

Schletter, Inc.		30° Tilt w/o Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-10	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	2000 mm	Height =	1900 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 30°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load, P_g =	30.00 psf	
oped Roof Snow Load, P _s =	16.49 psf	(ASCE 7-10, Eq. 7.4-1)
I _s =	1.00	
$C_s =$	0.73	
$C_e =$	0.90	
$C_t =$	1.20	

2.3 Wind Loads

Design Wind Speed, V =	150 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 35.33 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Cf+ _{TOP}	=	1.150	
Cf+ BOTTOM	=	1.150 1.850 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel
Cf- TOP, OUTER PURLIN	=	- 2.600	testing done by Ruscheweyh Consult. Coefficients are located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-2.000 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.100	applied away nom the carrage.

2.4 Seismic Loads - N/A

S _s =	0.00	R = 1.25	ASOE 7 Castion 40 0.4 2: A manifesture C. of 4.5
S _{DS} =	0.00	$C_S = 0$	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5 may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used to
$T_a =$	0.00	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.5W 1.2D + 1.0W + 0.5S 0.9D + 1.0W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 0.6W 1.0D + 0.75L + 0.45W + 0.75S 0.6D + 0.6W M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ° 1.1785D + 0.65625E + 0.75S ° 0.362D + 0.875E °

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	<u>Location</u>	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	<u>Location</u>			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

^o Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>242.11</u>	<u>6946.39</u>	k
Compressive Load =	3173.91	<u>5076.80</u>	k
Lateral Load =	<u>11.13</u>	4270.60	k
Moment (Weak Axis) =	0.02	0.00	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 188480.4 in-lbs Resisting Force Required = 2636.09 lbs A minimum 143in long x 35in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 4393.48 lbs to resist overturning. Minimum Width = Weight Provided = 7559.64 lbs Sliding Force = 985.73 lbs Use a 143in long x 35in wide x 18in tall Friction = 0.4 Weight Required = 2464.34 lbs ballast foundation to resist sliding. Resisting Weight = 7559.64 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 985.73 lbs Cohesion = 130 psf Use a 143in long x 35in wide x 18in tall 34.76 ft² Area = ballast foundation. Cohesion is OK. Resisting = 3779.82 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

		Ballast	Width	
	<u>35 in</u>	36 in	37 in	<u>38 in</u>
$P_{ftg} = (145 \text{ pcf})(11.92 \text{ ft})(1.5 \text{ ft})(2.92 \text{ ft}) =$	7560 lbs	7776 lbs	7992 lbs	8208 lbs

ASD LC	1.0D + 1.0S				1.0D + 0.6W			1.0D + 0.75L + 0.45W + 0.75S			0.6D + 0.6W					
Width	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in
FA	983 lbs	983 lbs	983 lbs	983 lbs	1292 lbs	1292 lbs	1292 lbs	1292 lbs	1601 lbs	1601 lbs	1601 lbs	1601 lbs	-104 lbs	-104 lbs	-104 lbs	-104 lbs
FB	955 lbs	955 lbs	955 lbs	955 lbs	2173 lbs	2173 lbs	2173 lbs	2173 lbs	2245 lbs	2245 lbs	2245 lbs	2245 lbs	-3200 lbs	-3200 lbs	-3200 lbs	-3200 lbs
F _V	120 lbs	120 lbs	120 lbs	120 lbs	1769 lbs	1769 lbs	1769 lbs	1769 lbs	1405 lbs	1405 lbs	1405 lbs	1405 lbs	-1971 lbs	-1971 lbs	-1971 lbs	-1971 lbs
P _{total}	9498 lbs	9714 lbs	9930 lbs	10146 lbs	11025 lbs	11241 lbs	11457 lbs	11673 lbs	11405 lbs	11621 lbs	11837 lbs	12053 lbs	1232 lbs	1362 lbs	1491 lbs	1621 lbs
M	2608 lbs-ft	2608 lbs-ft	2608 lbs-ft	2608 lbs-ft	3174 lbs-ft	3174 lbs-ft	3174 lbs-ft	3174 lbs-ft	4057 lbs-ft	4057 lbs-ft	4057 lbs-ft	4057 lbs-ft	5815 lbs-ft	5815 lbs-ft	5815 lbs-ft	5815 lbs-ft
е	0.27 ft	0.27 ft	0.26 ft	0.26 ft	0.29 ft	0.28 ft	0.28 ft	0.27 ft	0.36 ft	0.35 ft	0.34 ft	0.34 ft	4.72 ft	4.27 ft	3.90 ft	3.59 ft
L/6	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft							
f _{min}	235.5 psf	235.0 psf	234.5 psf	234.1 psf	271.2 psf	269.7 psf	268.3 psf	267.0 psf	269.4 psf	267.9 psf	266.6 psf	265.3 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	311.0 psf	308.5 psf	306.0 psf	303.7 psf	363.2 psf	359.1 psf	355.3 psf	351.7 psf	386.9 psf	382.2 psf	377.8 psf	373.5 psf	227.3 psf	179.3 psf	156.6 psf	143.9 psf

Maximum Bearing Pressure = 387 psf Allowable Bearing Pressure = 1500 psf Use a 143in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Weak Side Design

Overturning Check

 $M_0 = 895.1 \text{ ft-lbs}$

Resisting Force Required = 613.79 lbs S.F. = 1.67

Weight Required = 1022.98 lbs Minimum Width = 35 in in Weight Provided = 7559.64 lbs A minimum 143in long x 35in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	ēΕ	1.1785D + 0.65625E + 0.75S			0.362D + 0.875E			
Width		35 in			35 in			35 in		
Support	Outer	Inner	Outer	Outer	Outer Inner Outer		Outer	Inner	Outer	
F _Y	222 lbs	514 lbs	222 lbs	625 lbs	1632 lbs	625 lbs	65 lbs	150 lbs	65 lbs	
F _V	1 lbs	0 lbs	1 lbs	5 lbs	0 lbs	5 lbs	0 lbs	0 lbs	0 lbs	
P _{total}	9581 lbs	7560 lbs	9581 lbs	9534 lbs	7560 lbs	9534 lbs	2802 lbs	7560 lbs	2802 lbs	
M	5 lbs-ft	0 lbs-ft	5 lbs-ft	16 lbs-ft	0 lbs-ft	16 lbs-ft	1 lbs-ft	0 lbs-ft	1 lbs-ft	
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	
L/6	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	
f _{min}	275.4 psf	217.5 psf	275.4 psf	273.4 psf	217.5 psf	273.4 psf	80.6 psf	217.5 psf	80.6 psf	
f _{max}	276.0 psf	217.5 psf	276.0 psf	275.2 psf	217.5 psf	275.2 psf	80.6 psf	217.5 psf	80.6 psf	

Maximum Bearing Pressure = 276 psf Allowable Bearing Pressure = 1500 psf

Use a 143in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 143in long x 35in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut
Maximum Axial Load =	2.441 k	Maximum Axial Load = 4.678 k
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity = 12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity = 7.421 k
Utilization =	<u>33%</u>	Utilization = <u>63%</u>
Diagonal Strut		
Maximum Axial Load =	2.884 k	
M12 Bolt Shear Capacity =	12.808 k	Bolt and bearing capacities are accounting for double shear.
Strut Bearing Capacity =	7.421 k	(ASCE 8-02, Eq. 5.3.4-1)
Utilization =	<u>39%</u>	

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, } h_{\text{sx}} = & 60.93 \text{ in} \\ \text{Allowable Story Drift for All Other} \\ \text{Structures, } \Delta = \{ & 0.020h_{\text{sx}} \\ 1.219 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.017 \text{ in} \\ \end{array}$

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_{b} = 84 \text{ in}$$

$$J = 0.432$$

$$232.383$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2))}]}$$

$$\phi F_1 = 28.4 \text{ ksi}$$

3.4.16

$$b/t = 32.195$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

Weak Axis:

3.4.14

$$L_{b} = 84$$

$$J = 0.432$$

$$147.782$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$S2 = \left(\frac{3c}{1.6}\right)$$

 $S2 = 1701.5$

$$\phi F_L = \phi b[Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_1 = 29.4$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

 $\phi F_L = 38.9 \text{ ksi}$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr - mDbr^* h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 25.1 \text{ ksi}$$
 $tx = 897074 \text{ mm}^4$
 2.155 in^4
 $ty = 41.015 \text{ mm}$
 $ty = 1.335 \text{ in}^3$
 $ty = 2.788 \text{ k-ft}$

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

h/t = 32.195

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 23.1 \; ksi \\ ly = & 446476 \; mm^4 \\ & 1.073 \; in^4 \\ x = & 45.5 \; mm \\ Sy = & 0.599 \; in^3 \\ M_{max} W k = & 1.152 \; k\text{-ft} \end{array}$$

 $M_{max}St =$

Compression

3.4.9

b/t = 32.195
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c[Bp-1.6Dp^*b/t]$$

 $\phi F_L = 25.1 \text{ ksi}$
b/t = 37.0588
S1 = 12.21
S2 = 32.70
 $\phi F_L = (\phi ck2^*\sqrt{(BpE))}/(1.6b/t)$
 $\phi F_L = 21.9 \text{ ksi}$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

$$P_{\text{max}} = 41.32 \text{ kips}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis:

3.4.14 $L_b = 104.56 \text{ in}$ J = 1.08 179.85 $\left(Bc - \frac{\theta_y}{\theta_b} Fcy\right)^{-1}$

$$S1 = \left(\frac{b_b}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$φF_L$$
= $φb[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$
 $φF_I$ = 29.0 ksi

3.4.16

b/t = 16.2

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$

Weak Axis:

$$\begin{array}{lll} \textbf{3.4.14} & & \\ \textbf{L}_{b} = & 104.56 & \\ \textbf{J} = & 1.08 & \\ & 190.335 & \\ S1 = & \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2} & \\ \textbf{S1} = & 0.51461 & \\ S2 = & \left(\frac{C_{c}}{1.6}\right)^{2} & \\ \textbf{S2} = & 1701.56 & \\ \phi \textbf{F}_{L} = & \phi \textbf{b}[\textbf{Bc-1.6Dc*} \sqrt{((\textbf{LbSc})/(\textbf{Cb*} \sqrt{(\textbf{lyJ})/2}))]} & \\ \phi \textbf{F}_{I} = & 28.9 & \\ \end{array}$$

b/t = 7.4

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$φF_L = φyFcy$$
 $φF_L = 33.3 \text{ ksi}$

3.4.16.1 Used Rb/t = 18.1
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = \phi b[Bt-Dt^* \sqrt{(Rb/t)}]$$

 $\phi F_L =$

3.4.16.1 N/A for Weak Direction

3.4.18

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.0 \text{ ksi}$$

$$bx = 984962 \text{ mm}^4$$

2.366 in⁴

1.375 in³

3.323 k-ft

y = 43.717 mm

31.1 ksi

3.4.18

$$h/t = 16.2$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40$$

$$Cc = 40$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 33.3 \text{ ksi}$$

$$\phi F_L Wk = 33.3 \text{ ksi}$$

$$\phi F_L Wk = 40 \text{ mm}$$

$$Sy = 1.409 \text{ in}^3$$

3.904 k-ft

 $M_{max}Wk =$

Compression

 $M_{max}St =$

Sx =

3.4.9

b/t =12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\varphi F_L = \varphi c[Bp-1.6Dp*b/t]$ $\varphi F_L =$ 31.6 ksi b/t =7.4 S1 = 12.21 32.70 S2 = $\phi F_L = \phi y F c y$ $\varphi F_L =$ 33.3 ksi

3.4.10

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi c [Bt - Dt^* \sqrt{(Rb/t)}]$
 $\phi F_L = 31.09 \text{ ksi}$
 $\phi F_L = 31.09 \text{ ksi}$
A = 1215.13 mm²
1.88 in²

58.55 kips

 $P_{max} =$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = **55x55**

Strong Axis:

3.4.14

$$L_b = 24.8 \text{ in}$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

 $\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$

Weak Axis:

3.4.14

$$\begin{split} L_b &= & 24.8 \\ J &= & 0.942 \\ & 38.7028 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= & 1701.56 \\ \phi F_L &= & \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}] \\ \phi F_L &= & 31.4 \end{split}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

 $\phi F_L = 31.4 \text{ ksi}$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used
Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$
S1 = 1.1
$$S2 = C_t$$
S2 = 141.0
$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

S.4.18
$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$k = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

27.5 mm

0.621 in³

3.4.18 h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

 $Sy = 0.621 \text{ in}^3$ $M_{max}Wk = 1.460 \text{ k-ft}$

y = Sx =

 $M_{max}St = 1.460 \text{ k-ft}$

Schletter

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 28.85 \text{ kips}$$

0.0

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

 $P_{max} =$

Strong Axis:	Weak Axis:
3.4.14	3.4.14
$L_b = 98.03 \text{ in}$	$L_b = 98.03$
J = 0.942 152.985	J = 0.942 152.985
$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$	$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$
S1 = 0.51461	S1 = 0.51461
$S2 = \left(\frac{C_c}{1.6}\right)^2$	$S2 = \left(\frac{C_c}{1.6}\right)^2$
S2 = 1701.56	S2 = 1701.56
$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2))}}]$	$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})]}$
$\varphi F_L = 29.4 \text{ ksi}$	$\phi F_L = 29.4$

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

4.16.1 Not Used
Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$
S1 = 1.1
$$S2 = C_t$$
S2 = 141.0
$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.18

3.4.16.1

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 2.26776 \\ r = & 0.81 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.89749 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 6.10803 \text{ ksi} \end{array}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_{1}Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_{L} = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_{L} = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 28.2 \text{ ksi} \\ ly = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ Sy = & 0.621 \text{ in}^3 \\ M_{max} W k = & 1.460 \text{ k-ft} \end{array}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \end{array}$$

3.4.10

 $\phi F_L =$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 6.11 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{\text{max}} = 6.29 \text{ kips}$$

28.2 ksi

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

Strong Axis: Weak Axis: 3.4.14 78.35 $L_b =$ 78.35 in $L_b =$ 0.942 0.942 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\varphi F_L =$ $\phi F_L =$ 29.8 ksi 29.8

$$SA.16$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

$$SA.16$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used
$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

 $\phi F_1 St = 28.2 \text{ ksi}$

 $M_{max}St = 1.460 \text{ k-ft}$

 $lx = 279836 \text{ mm}^4$

0.672 in⁴

0.621 in³

27.5 mm

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\varphi F_L Wk = 28.2 \text{ ksi}$$

$$\varphi F_L Wk = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

Sy=

 $M_{max}Wk =$

0.621 in³

1.460 k-ft

Compression

y = Sx =

3.4.7

$$\begin{array}{lll} \lambda = & 1.8125 \\ r = & 0.81 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ \phi cc = & 0.83375 \\ \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ \phi F_L = & 8.88278 \text{ ksi} \end{array}$$

b/t = 24.5
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c [Bp-1.6Dp^*b/t]$$

 $\phi F_L = 28.2 \text{ ksi}$
b/t = 24.5
S1 = 12.21
S2 = 32.70
 $\phi F_L = \phi c [Bp-1.6Dp^*b/t]$
 $\phi F_L = 28.2 \text{ ksi}$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt} \right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕF}_L \text{ψF}_L \text{ψF}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Dec 1, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-9.843	-9.843	0	0
2	M14	Υ	-9.843	-9.843	0	0
3	M15	Υ	-9.843	-9.843	0	0
4	M16	Υ	-9.843	-9.843	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-5.454	-5.454	0	0
2	M14	Υ	-5.454	-5.454	0	0
3	M15	Υ	-5.454	-5.454	0	0
4	M16	Υ	-5.454	-5.454	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-46.866	-46.866	0	0
2	M14	Υ	-46.866	-46.866	0	0
3	M15	Υ	-46.866	-46.866	0	0
4	M16	Υ	-46 866	-46 866	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-133.288	-133.288	0	0
2	M14	٧	-133.288	-133.288	0	0
3	M15	V	-214.42	-214.42	0	0
4	M16	V	-214.42	-214.42	0	0

Member Distributed Loads (BLC 5 : Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	301.347	301.347	0	0
2	M14	V	231.806	231.806	0	0
3	M15	V	127.493	127.493	0	0
4	M16	y	127.493	127.493	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Y		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25				1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Y		1	.56					6	1.25												

Model Name

Schletter, Inc.HCV

Standard PVMax Racking System

Dec 1, 2015

Checked By:____

Load Combinations (Continued)

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Υ		2	.6					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
	LATERAL - ASD 1.1785D + 0.65				1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	941.795	2	1309.182	2	.438	1	.002	1	0	1	Ó	1
2		min	-1115.826	3	-1748.261	3	.024	15	0	15	0	1	0	1
3	N7	max	.021	9	921.447	1	418	15	0	15	0	1	0	1
4		min	278	2	-26.946	3	-8.564	1	016	1	0	1	0	1
5	N15	max	.015	9	2441.466	2	0	3	0	10	0	1	0	1
6		min	-2.567	2	-186.235	3	0	11	0	11	0	1	0	1
7	N16	max	2987.446	2	3905.23	2	0	1	0	2	0	1	0	1
8		min	-3285.08	3	-5343.378	3	0	3	0	3	0	1	0	1
9	N23	max	.021	9	921.447	1	8.564	1	.016	1	0	1	0	1
10		min	278	2	-26.946	3	.418	15	0	15	0	1	0	1
11	N24	max	941.795	2	1309.182	2	024	15	0	15	0	1	0	1
12		min	-1115.826	3	-1748.261	3	438	1	002	1	0	1	0	1
13	Totals:	max	4867.912	2	10672.862	2	0	10						
14		min	-5516.973	3	-9080.026	3	0	1						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	48.425	1_	421.734	2	-6.784	15	0	15	.135	1	0	2
2			min	2.33	15	-784.408	3	-144.746	1	013	2	.007	15	0	3
3		2	max	48.425	1	293.11	2	-5.187	15	0	15	.036	1	.521	3
4			min	2.33	15	-554.245	3	-110.289	1	013	2	0	10	278	2
5		3	max	48.425	1	164.486	2	-3.589	15	0	15	.005	3	.862	3
6			min	2.33	15	-324.082	3	-75.833	1	013	2	037	1	456	2
7		4	max	48.425	1	35.861	2	-1.992	15	0	15	001	12	1.025	3
8			min	2.33	15	-93.919	3	-41.376	1	013	2	082	1	534	2
9		5	max	48.425	1	136.243	3	.806	10	0	15	004	12	1.008	3
10			min	2.33	15	-92.763	2	-6.92	1	013	2	101	1	512	2
11		6	max	48.425	1	366.406	3	27.536	1	0	15	004	15	.813	3
12			min	2.33	15	-221.387	2	-2.391	3	013	2	093	1	39	2
13		7	max	48.425	1	596.569	3	61.993	1	0	15	003	15	.438	3
14			min	2.33	15	-350.011	2	.044	3	013	2	058	1	167	2
15		8	max	48.425	1	826.732	3	96.449	1	0	15	.007	2	.155	2
16			min	2.33	15	-478.635	2	1.929	12	013	2	009	3	115	3
17		9	max	48.425	1	1056.895	3	130.906	1	0	15	.092	1	.577	2
18			min	2.33	15	-607.259	2	3.553	12	013	2	006	3	848	3
19		10	max	48.425	1	735.883	2	-5.177	12	.013	2	.207	1	1.1	2
20			min	2.33	15	-1287.058	3	-165.362	1	007	3	002	3	-1.759	3
21		11	max	48.425	1	607.259	2	-3.553	12	.013	2	.092	1	.577	2
22			min	2.33	15	-1056.895	3	-130.906	1	0	15	006	3	848	3
23		12	max	48.425	1	478.635	2	-1.929	12	.013	2	.007	2	.155	2
24			min	2.33	15	-826.732	3	-96.449	1	0	15	009	3	115	3
25		13	max	48.425	1	350.011	2	044	3	.013	2	003	15	.438	3
26			min	2.33	15	-596.569	3	-61.993	1	0	15	058	1	167	2

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Dec 1, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC			y-y Mome		z-z Mome	
27		14	max	48.425	1_	221.387	2	2.391	3	.013	2	004	15	.813	3
28			min	2.33	15	-366.406	3	-27.536	1	0	15	093	1_	39	2
29		15	max	48.425	1_	92.763	2	6.92	1	.013	2	004	12	1.008	3
30			min	2.33	15	-136.243	3	806	10	0	15	101	1	512	2
31		16	max	48.425	1	93.919	3	41.376	1	.013	2	001	12	1.025	3
32			min	2.33	15	-35.861	2	1.992	15	0	15	082	1	534	2
33		17	max	48.425	1	324.082	3	75.833	1	.013	2	.005	3	.862	3
34			min	2.33	15	-164.486	2	3.589	15	0	15	037	1	456	2
35		18	max	48.425	1	554.245	3	110.289	1	.013	2	.036	1	.521	3
36			min	2.33	15	-293.11	2	5.187	15	0	15	0	10	278	2
37		19	max	48.425	1	784.408	3	144.746	1	.013	2	.135	1	0	2
38			min	2.33	15	-421.734	2	6.784	15	0	15	.007	15	0	3
39	M14	1	max	33.001	1	510.465	2	-7.103	15	.015	3	.166	1	0	1
40	IVIIT	<u> </u>	min	1.579	15	-656.389	3	-151.52	1	016	2	.008	15	0	3
41		2	max	33.001	1	381.841	2	-5.505	15	.015	3	.062	1	.442	3
42			min	1.579	15	-480.313	3	-117.064	1	016	2	.002	15	347	2
43		3				253.217			15	.015	3	.003		.747	3
		3	max	33.001	1		2	-3.908					3		
44		-	min	1.579	15	-304.238	3	-82.607	1_	016	2	016	1	594	2
45		4	max	33.001	1	124.593	2	-2.311	15	.015	3	0	3	.915	3
46		-	min	1.579	15	-128.162	3	-48.151	1	016	2	067	1	741	2
47		5	max	33.001	1	47.913	3	.051	10	.015	3	003	12	.947	3
48			min	1.579	15	-7.853	1	-13.694	1	016	2	091	1	788	2
49		6	max	33.001	1_	223.988	3	20.762	1	.015	3	004	15	.841	3
50			min	1.579	15	-132.655	2	-3.007	3	016	2	088	1	735	2
51		7	max	33.001	1	400.064	3	55.218	1	.015	3	003	15	.598	3
52			min	1.579	15	-261.28	2	571	3	016	2	058	1	581	2
53		8	max	33.001	1	576.139	3	89.675	1	.015	3	.004	2	.218	3
54			min	1.579	15	-389.904	2	1.528	12	016	2	009	3	328	2
55		9	max	33.001	1	752.215	3	124.131	1	.015	3	.081	1	.049	1
56			min	1.579	15	-518.528	2	3.151	12	016	2	007	3	298	3
57		10	max	33.001	1	647.152	2	-4.775	12	.016	2	.191	1	.478	2
58			min	1.579	15	-928.29	3	-158.588	1	015	3	002	3	952	3
59		11	max	33.001	1	518.528	2	-3.151	12	.016	2	.081	1	.049	1
60			min	1.579	15	-752.215	3	-124.131	1	015	3	007	3	298	3
61		12	max	33.001	1	389.904	2	-1.528	12	.016	2	.004	2	.218	3
62		12	min	1.579	15	-576.139	3	-89.675	1	015	3	009	3	328	2
63		13	max	33.001	1	261.28	2	.571	3	.016	2	003	15	.598	3
64		13	min	1.579	15	-400.064	3	-55.218	1	015	3	058	1	581	2
65		14		33.001	1	132.655	2	3.007	3	.016	2	004	15	.841	3
		14	max				3		1		3		1		2
66		15	min	1.579	15	-223.988		-20.762		015		088		735	
67		15			1	7.853	1	13.694	1	.016	2	003	12	.947	3
68		40	min	1.579	15	-47.913	3	051	10	015	3	091	1	788	2
69		16	max	33.001	1	128.162	3	48.151	1	.016	2	0	3	.915	3
70		4-	min	1.579	15	-124.593	2	2.311	15	015	3	067	1	741	2
71		17	max	33.001	1	304.238	3	82.607	1	.016	2	.007	3	.747	3
72			min	1.579	15	-253.217	2	3.908	15	015	3	016	1	594	2
73		18	max		1	480.313	3	117.064	1	.016	2	.062	1	.442	3
74			min	1.579	15	-381.841	2	5.505	15	015	3	.003	15	347	2
75		19	max		1	656.389	3	151.52	1	.016	2	.166	1	0	1
76			min	1.579	15	-510.465	2	7.103	15	015	3	.008	15	0	3
77	M15	1	max	-1.665	15	723.616	2	-7.099	15	.017	2	.166	1	0	2
78			min	-34.507	1	-383.645	3	-151.539	1	013	3	.008	15	0	3
79		2	max	-1.665	15	531.889	2	-5.501	15	.017	2	.062	1	.261	3
80			min	-34.507	1	-288.702	3	-117.082	1	013	3	.003	15	488	2
81		3	max	-1.665	15	340.163	2	-3.904	15	.017	2	.007	3	.449	3
82			min	-34.507	1	-193.759		-82.626	1	013	3	016	1	827	2
83		4	max		15	148.436	2	-2.307	15	.017	2	0	3	.563	3
		 													

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Dec 1, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
84			min	-34.507	1	-98.815	3	-48.169	1	013	3	067	1	-1.017	2
85		5	max	-1.665	15	368	15	063	10	.017	2	003	12	.603	3
86			min	-34.507	1	-43.291	2	-13.713	1	013	3	091	1	-1.058	2
87		6	max	-1.665	15	91.071	3	20.743	1	.017	2	004	15	.569	3
88			min	-34.507	1	-235.018	2	-2.621	3	013	3	088	1	95	2
89		7	max	-1.665	15	186.014	3	55.2	1	.017	2	003	15	.461	3
90			min	-34.507	1	-426.744	2	186	3	013	3	058	1	693	2
91		8	max	-1.665	15	280.957	3	89.656	1	.017	2	.004	2	.28	3
92			min	-34.507	1	-618.471	2	1.76	12	013	3	008	3	286	2
93		9	max	-1.665	15	375.9	3	124.113	1	.017	2	.081	1_	.269	2
94			min	-34.507	1	-810.198	2	3.383	12	013	3	006	3	.002	15
95		10	max	-1.665	15	1001.925	2	-5.007	12	.013	3	.191	1	.974	2
96			min	-34.507	1	-470.843	3	-158.569	1	017	2	001	3	305	3
97		11	max	-1.665	15	810.198	2	-3.383	12	.013	3	.081	1_	.269	2
98			min	-34.507	1	-375.9	3	-124.113	1	017	2	006	3	.002	15
99		12	max	-1.665	15	618.471	2	-1.76	12	.013	3	.004	2	.28	3
100			min	-34.507	1	-280.957	3	-89.656	1	017	2	008	3	286	2
101		13	max	-1.665	15	426.744	2	.186	3	.013	3	003	15	.461	3
102			min	-34.507	1	-186.014	3	-55.2	1	017	2	058	1	693	2
103		14	max	-1.665	15	235.018	2	2.621	3	.013	3	004	15	.569	3
104			min	-34.507	1	-91.071	3	-20.743	1	017	2	088	1	95	2
105		15	max	-1.665	15	43.291	2	13.713	1	.013	3	003	12	.603	3
106			min	-34.507	1	.368	15	.063	10	017	2	091	1	-1.058	2
107		16	max	-1.665	15	98.815	3	48.169	1	.013	3	0	3	.563	3
108			min	-34.507	1	-148.436	2	2.307	15	017	2	067	1	-1.017	2
109		17	max	-1.665	15	193.759	3	82.626	1	.013	3	.007	3	.449	3
110			min	-34.507	1	-340.163	2	3.904	15	017	2	016	1	827	2
111		18	max	-1.665	15	288.702	3	117.082	1	.013	3	.062	1	.261	3
112			min	-34.507	1	-531.889	2	5.501	15	017	2	.003	15	488	2
113		19	max	-1.665	15	383.645	3	151.539	1	.013	3	.166	1	0	2
114			min	-34.507	1	-723.616	2	7.099	15	017	2	.008	15	0	3
115	M16	1_	max	-2.638	15	640.122	2	-6.8	15	.006	1	.138	1	0	2
116			min	-55.046	1	-306.932	3	-145.418	1	013	3	.007	15	0	3
117		2	max	-2.638	15	448.396	2	-5.203	15	.006	1	.038	1	.202	3
118			min	-55.046	1	-211.989	3	-110.962	1	013	3	.002	10	423	2
119		3	max	-2.638	15	256.669	2	-3.605	15	.006	1	.003	3	.33	3
120			min	-55.046	1	-117.046	3	-76.505	1	013	3	035	1	697	2
121		4	max	-2.638	15	64.942	2	-2.008	15	.006	1	002	12	.384	3
122			min	-55.046	1	-22.103	3	-42.049	1	013	3	081	1	823	2
123		5	max	-2.638	15	72.84	3	.368	10	.006	1	004	12	.364	3
124			min	-55.046	1	-126.785	2	-7.592	1	013	3	1	1	799	2
125		6	max	-2.638	15		3	26.864	1	.006	1	004	15	.271	3
126			min	-55.046	1	-318.511		-1.187	3	013	3	093	1	625	2
127		7	max	-2.638	15	262.726	3	61.32	1	.006	1	003	15	.103	3
128			min	-55.046	1_	-510.238	2	1.028	12	013	3	059	1_	303	2
129		8	max	-2.638	15	357.669	3	95.777	1	.006	1	.005	2	.168	2
130			min	-55.046	1	-701.965	2	2.652	12	013	3	007	3	138	3
131		9	max	-2.638	15	452.612	3	130.233	1	.006	1	.09	1	.789	2
132			min	-55.046	1	-893.692	2	4.275	12	013	3	003	3	453	3
133		10	max	-2.638		1085.419	2	-5.899	12	.013	3	.205	1	1.559	2
134			min	-55.046	1_	-547.556	3	-164.69	1	006	1	.003	12	842	3
135		11	max		15		2	-4.275	12	.013	3	.09	1	.789	2
136			min	-55.046	1	-452.612	3	-130.233		006	1_	003	3	453	3
137		12	max	-2.638	15	701.965	2	-2.652	12	.013	3	.005	2	.168	2
138			min	-55.046	1_	-357.669	3	-95.777	1	006	1_	007	3	138	3
139		13	max	-2.638	15	510.238	2	-1.028	12	.013	3	003	15	.103	3
140			min	-55.046	1	-262.726	3	-61.32	1	006	1	059	1	303	2

Model Name

Schletter, Inc.

: HCV

Standard PVMax Racking System

Dec 1, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
141		14	max	-2.638	15	318.511	2	1.187	3	.013	3	004	15	.271	3
142			min	-55.046	1_	-167.783	3	-26.864	1	006	1	093	1	625	2
143		15	max	-2.638	<u> 15</u>	126.785	2	7.592	1	.013	3	004	12	.364	3
144			min	-55.046	1	-72.84	3	368	10	006	1	1	1	799	2
145		16	max	-2.638	<u> 15</u>	22.103	3	42.049	1	.013	3	002	12	.384	3
146			min	-55.046	1	-64.942	2	2.008	15	006	1	081	1	823	2
147		17	max	-2.638	15	117.046	3	76.505	1	.013	3	.003	3	.33	3
148			min	-55.046	1_	-256.669	2	3.605	15	006	1	035	1	697	2
149		18	max	-2.638	15	211.989	3	110.962	1	.013	3	.038	1	.202	3
150			min	-55.046	1	-448.396	2	5.203	15	006	1	.002	10	423	2
151		19	max	-2.638	15	306.932	3	145.418	1	.013	3	.138	1	0	2
152			min	-55.046	1	-640.122	2	6.8	15	006	1	.007	15	0	3
153	M2	1	max	1090.364	2	2.025	4	.267	1	0	3	0	3	0	1
154			min	-1527.922	3	.476	15	.013	15	0	1	0	2	0	1
155		2	max	1090.893	2	1.954	4	.267	1	0	3	0	1	0	15
156			min	-1527.525	3	.459	15	.013	15	0	1	0	15	0	4
157		3	max	1091.422	2	1.883	4	.267	1	0	3	0	1	0	15
158			min	-1527.128	3	.443	15	.013	15	0	1	0	15	001	4
159		4		1091.951	2	1.812	4	.267	1	0	3	0	1	0	15
160			min	-1526.731	3	.426	15	.013	15	0	1	0	15	002	4
161		5	max		2	1.74	4	.267	1	0	3	0	1	0	15
162			min	-1526.334	3	.409	15	.013	15	0	1	0	15	003	4
163		6	max	1093.01	2	1.669	4	.267	1	0	3	0	1	0	15
164			min	-1525.937	3	.393	15	.013	15	0	1	0	15	003	4
165		7		1093.539	2	1.598	4	.267	1	0	3	0	1	0	15
166			min	-1525.54	3	.376	15	.013	15	0	1	0	15	004	4
167		8			2	1.527	4	.267	1	0	3	0	1	004	15
168		0	max min	-1525.143	3	.359	15	.013	15	0	1	0	15	004	4
169		9	_		_				1		3	_	1		15
		9		1094.598 -1524.746	2	1.456	4 15	.267		0	1	0	15	001	
170		10	min		3	.342		.013	15	0	_	0		005	4
171 172		10	max	1095.127 -1524.349	2	1.385	4 1E	.267	1	0	1	0	1	001 006	15
		4.4	min		3	.326	15	.013	15	0	_	0	15		4
173		11		1095.656 -1523.952	2	1.314	4	.267	1	0	1	0	1	001	15
174		40	min		3	.309	15	.013	15	0		0	15	006	4
175		12		1096.186	2	1.243	4	.267	1	0	3	.001	1_	002	15
176		40	min	-1523.555	3	.292	15	.013	15	0	1	0	15	006	4
177		13	max		2	1.172	4	.267	1	0	3	.001	1_	002	15
178		4.4	min	-1523.158	3	.269	12	.013	15	0	1	0	15	007	4
179		14		1097.244	2	1.101	4	.267	1	0	3	.001	1	002	15
180		4.5	min	-1522.761	3	.241	12	.013	15	0	1	0	15	007	4
181		15		1097.774	2	1.031	2	.267	1	0	3	.001	1	002	15
182			min	-1522.364	3	.214	12	.013	15	0	1	0	15	008	4
183		16		1098.303	2	.976	2	.267	1	0	3	.001	1	002	15
184				-1521.967	3	.186	12	.013	15	0	1	0	15	008	4
185		17		1098.832	2	.921	2	.267	1	0	3	.002	1	002	15
186				-1521.57	3	.158	12	.013	15	0	1	0	15	008	4
187		18		1099.361	2	.865	2	.267	1	0	3	.002	1_	002	15
188			min	-1521.173	3	.131	12	.013	15	0	1	0	15	009	4
189		19	max	1099.891	2	.81	2	.267	1	0	3	.002	1_	002	15
190			min		3	.103	12	.013	15	0	1	0	15	009	4
191	M3	1	max	854.314	2	8.876	4	.228	1	0	5	0	1	.009	4
192			min	-986.004	3	2.087	15	.011	15	0	1	0	15	.002	15
193		2	max	854.143	2	8.007	4	.228	1	0	5	0	1	.005	2
194			min		3	1.882	15	.011	15	0	1	0	15	0	12
195		3		853.973	2	7.138	4	.228	1	0	5	0	1	.002	2
196			min		3	1.678	15	.011	15	0	1	0	15	0	3
197		4	max	853.802	2	6.269	4	.228	1	0	5	0	1	0	2

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Dec 1, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
198			min	-986.388	3	1.474	15	.011	15	0	1	0	15	003	3
199		5	max	853.632	2	5.4	4	.228	1	0	5	0	1	001	15
200			min	-986.516	3	1.27	15	.011	15	0	1	0	15	004	4
201		6	max	853.462	2	4.532	4	.228	1	0	5	0	1	002	15
202			min	-986.643	3	1.065	15	.011	15	0	1	0	15	007	4
203		7	max	853.291	2	3.663	4	.228	1	0	5	0	1	002	15
204			min	-986.771	3	.861	15	.011	15	0	1	0	15	009	4
205		8	max	853.121	2	2.794	4	.228	1	0	5	0	1_	002	15
206			min	-986.899	3	.657	15	.011	15	0	1	0	15	01	4
207		9	max	852.951	2	1.925	4	.228	1	0	5	.001	_1_	003	15
208			min	-987.027	3	.453	15	.011	15	0	1	0	15	011	4
209		10	max	852.78	2	1.056	4	.228	1	0	5	.001	1_	003	15
210			min	-987.154	3	.248	15	.011	15	0	1	0	15	012	4
211		11	max	852.61	2	.32	2	.228	1	0	5	.001	1	003	15
212			min	-987.282	3	129	3	.011	15	0	1	0	15	012	4
213		12	max	852.44	2	16	15	.228	1	0	5	.001	1	003	15
214			min	-987.41	3	682	4	.011	15	0	1	0	15	012	4
215		13	max	852.269	2	364	15	.228	1	0	5	.001	1	003	15
216			min	-987.538	3	-1.551	4	.011	15	0	1	0	15	012	4
217		14	max	852.099	2	569	15	.228	1	0	5	.002	1	003	15
218			min	-987.665	3	-2.42	4	.011	15	0	1	0	15	011	4
219		15	max	851.929	2	773	15	.228	1	0	5	.002	1	002	15
220			min	-987.793	3	-3.288	4	.011	15	0	1	0	15	009	4
221		16	max		2	977	15	.228	1	0	5	.002	1	002	15
222			min	-987.921	3	-4.157	4	.011	15	0	1	0	15	008	4
223		17	max	851.588	2	-1.181	15	.228	1	0	5	.002	1	001	15
224			min	-988.049	3	-5.026	4	.011	15	0	1	0	15	006	4
225		18	max	851.418	2	-1.386	15	.228	1	0	5	.002	1	0	15
226		1	min	-988.176	3	-5.895	4	.011	15	0	1	0	15	003	4
227		19	max	851.247	2	-1.59	15	.228	1	0	5	.002	1	0	1
228		10	min	-988.304	3	-6.764	4	.011	15	0	1	0	15	0	1
229	M4	1	max		1	0	1	418	15	0	1	.002	1	0	1
230			min	-29.246	3	0	1	-8.784	1	0	1	0	15	0	1
231		2	max		1	0	1	418	15	0	1	0	1	0	1
232		_	min	-29.118	3	0	1	-8.784	1	0	1	0	15	0	1
233		3	max	918.722	1	0	1	418	15	0	1	0	15	0	1
234			min	-28.99	3	0	1	-8.784	1	0	1	0	1	0	1
235		4	max	918.892	1	0	1	418	15	0	1	0	15	0	1
236			min	-28.862	3	0	1	-8.784	1	0	1	001	1	0	1
237		5	max		1	0	1	418	15	0	1	0	15	0	1
238				-28.735	3	0	1	-8.784	1	0	1	002	1	0	1
239		6	max		1	0	1	418	15	0	1	0	15	0	1
240			min	-28.607	3	0	1	-8.784	1	0	1	003	1	0	1
241		7		919.403	1	0	1	418	15	0	1	0	15	0	1
242			min	-28.479	3	0	1	-8.784	1	0	1	004	1	0	1
243		8		919.574	1	0	1	418	15	0	1	0	15	0	1
244		Ť	min	-28.351	3	0	1	-8.784	1	0	1	005	1	0	1
245		9		919.744	1	0	1	418	15	0	1	0	15	0	1
246			min		3	0	1	-8.784	1	0	1	006	1	0	1
247		10		919.914	1	0	1	418	15	0	1	0	15	0	1
248		10	min		3	0	1	-8.784	1	0	1	007	1	0	1
249		11		920.085	1	0	1	418	15	0	1	0	15	0	1
250		11		-27.968	3	0	1	-8.784	1	0	1	008	1	0	1
		12	min				1		15		1	008	15		1
251		12		920.255	1	0	1	418	15	0	1		1	0	1
252		12	min	-27.84	3	0		-8.784		0		009		0	_
253		13		920.425	1	0	1	418	15	0	1	0	<u>15</u>	0	1
254			min	-27.712	3	0	1	-8.784	1	0	1	01	_1_	0	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Dec 1, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]		Torque[k-ft]	LC	y-y Mome		z-z Mome	LC
255		14	max		_1_	0	1	418	15	0	_1_	0	<u> 15</u>	0	1
256			min	-27.585	3	0	1	-8.784	1	0	1	011	1	0	1
257		15	max		1	0	1	418	15	0	1	0	15	0	1
258			min	-27.457	3	0	1	-8.784	1	0	1	012	1	0	1
259		16	max	920.936	1	0	1	418	15	0	1	0	15	0	1
260			min	-27.329	3	0	1	-8.784	1	0	1	013	1	0	1
261		17	max	921.107	1	0	1	418	15	0	1	0	15	0	1
262			min	-27.201	3	0	1	-8.784	1	0	1	014	1	0	1
263		18	max		1	0	1	418	15	0	1	0	15	0	1
264			min	-27.074	3	0	1	-8.784	1	0	1	015	1	0	1
265		19	max		1	0	1	418	15	Ö	1	0	15	0	1
266			min	-26.946	3	0	1	-8.784	1	0	1	016	1	0	1
267	M6	1		3238.862	2	2.295	2	0	1	0	1	0	1	0	1
268	IVIO		min	-4677.703	3	.23	12	0	1	0	1	0	1	0	1
269		2		3239.391	2	2.239	2	0	1	0	1	0	1	0	12
270			min	-4677.306	3	.203	12	0	1	0	1	0	1	0	2
271		3		3239.921	2	2.184	2	0	1	0	1	0	1	0	12
272		3		-4676.909	3	.17	3	0	1	0	1	0	1	002	2
		4	min		_				1		1	_	_		
273		4	max	3240.45 -4676.512	2	2.129	2	0		0		0	1_	0	12
274		_	min		3	.128	3	0	1	0	1_	0	1_	002	2
275		5		3240.979	2	2.073	2	0	1	0	1	0	1_	0	3
276			min	-4676.115	3	.087	3	0	1	0	1_	0	1_	003	2
277		6		3241.509	2	2.018	2	0	1	0	1	0	1_	0	3
278			min	-4675.718	3	.045	3	0	1	0	1	0	1_	004	2
279		7		3242.038	2	1.963	2	0	1	0	_1_	0	_1_	0	3
280			min	-4675.321	3	.004	3	0	1	0	1_	0	1_	005	2
281		8	max	3242.567	2	1.907	2	0	1	0	_1_	0	_1_	0	3
282			min	-4674.924	3	038	3	0	1	0	_1_	0	_1_	005	2
283		9	max	3243.096	2	1.852	2	0	1	0	1	0	1	0	3
284			min	-4674.527	3	079	3	0	1	0	1	0	1	006	2
285		10	max	3243.626	2	1.797	2	0	1	0	1	0	1	0	3
286			min	-4674.13	3	121	3	0	1	0	1	0	1	007	2
287		11	max	3244.155	2	1.741	2	0	1	0	1	0	1	0	3
288			min	-4673.733	3	162	3	0	1	0	1	0	1	007	2
289		12	max	3244.684	2	1.686	2	0	1	0	1	0	1	0	3
290			min	-4673.336	3	204	3	0	1	0	1	0	1	008	2
291		13	max	3245.214	2	1.63	2	0	1	0	1	0	1	0	3
292			min	-4672.939	3	245	3	0	1	0	1	0	1	008	2
293		14		3245.743	2	1.575	2	0	1	0	1	0	1	0	3
294			min	-4672.542	3	287	3	0	1	0	1	0	1	009	2
295		15		3246.272	2	1.52	2	0	1	0	1	0	1	0	3
296			min		3	328	3	0	1	0	1	0	1	01	2
297		16	+	3246.802	2	1.464	2	0	1	0	1	0	1	0	3
298			min		3	37	3	0	1	0	1	0	1	01	2
299		17	1	3247.331	2	1.409	2	0	1	0	1	0	1	0	3
300		17	min		3	411	3	0	1	0	1	0	1	011	2
301		18	_	3247.86	2	1.354	2	0	1	0	1	0	1	0	3
302		10	min		3	453	3	0	1	0	1	0	1	011	2
		10		3248.389	_	1.298	2		1	_	1		1	011 0	3
303		19			2			0	1	0	1	0	1		
304	N 17	4	min		3	494	3	0		0		0		012	2
305	<u>M7</u>	1		2734.373	2	8.897	4	0	1	0	1	0	1	.012	2
306			min	-2881.506	3	2.09	15	0	1	0	1	0	1_	0	3
307		2		2734.203	2	8.028	4	0	1	0		0	1_	.008	2
308			min		3_	1.885	15	0	1	0	1	0	1_	003	3
309		3		2734.032	2	7.159	4	0	1	0	1	0	_1_	.005	2
310			min		3	1.681	15	0	1	0	1	0	1_	005	3
311		4	max	2733.862	_2_	6.29	4	0	1	0	_1_	0	<u>1</u>	.002	2

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Dec 1, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	
312			min	-2881.89	3	1.477	15	0	1	0	1	0	1	006	3
313		5	max	2733.692	2	5.421	4	0	1	0	1	0	1	0	2
314			min	-2882.018	3	1.273	15	0	1	0	1	0	1	007	3
315		6	max	2733.521	2	4.552	4	0	1	0	1	0	1	002	15
316			min	-2882.145	3	1.068	15	0	1	0	1	0	1	008	3
317		7		2733.351	2	3.683	4	0	1	0	1	0	1	002	15
318		-	min	-2882.273	3	.864	15	0	1	0	1	0	1	009	3
319		8	+	2733.181	2	2.815	4	0	1	0	1	0	1	002	15
320			min	-2882.401	3	.66	15	0	1	0	1	0	1	01	4
321		9	max		2	2.046	2	0	1	0	1	0	1	003	15
322		- 3	min	-2882.529	3	.324	12	0	1	0	1	0	1	011	4
323		10			2	1.369	2	0	1		1	0	1	003	$\overline{}$
		10	max	-2882.656			3	_	1	0	1		<u> </u>	012	15
324		4.4	min		3	092		0	•	0	-	0			4
325		11	max		2	.692	2	0	1	0	1	0	1	003	15
326		10	min	-2882.784	3	6	3	0	1	0	1	0	1_	012	4
327		12		2732.499	2	.015	2	0	1	0	1	0	1	003	15
328			min		3_	-1.108	3	0	1_	0	1_	0	_1_	012	4
329		13		2732.329	_2_	361	15	0	1_	0	_1_	0	_1_	003	15
330			min	-2883.04	3	-1.615	3	0	1	0	1	0	1	012	4
331		14	max	2732.159	2	566	15	0	1	0	_1_	0	_1_	003	15
332			min	-2883.167	3	-2.399	4	0	1	0	1	0	1	011	4
333		15	max	2731.988	2	77	15	0	1	0	1	0	1	002	15
334			min	-2883.295	3	-3.268	4	0	1	0	1	0	1	009	4
335		16	max	2731.818	2	974	15	0	1	0	1	0	1	002	15
336			min	-2883.423	3	-4.137	4	0	1	0	1	0	1	008	4
337		17	max	2731.648	2	-1.178	15	0	1	0	1	0	1	001	15
338			min	-2883.551	3	-5.005	4	0	1	0	1	0	1	006	4
339		18	+	2731.477	2	-1.382	15	0	1	0	1	0	1	0	15
340		-10	min	-2883.678	3	-5.874	4	0	1	0	1	0	1	003	4
341		19		2731.307	2	-1.587	15	0	1	0	1	0	1	0	1
342		13	min	-2883.806	3	-6.743	4	0	1	0	1	0	1	0	1
343	M8	1	max		2	0.743	1	0	1	0	1	0	1	0	1
344	IVIO		min		3	0	1	0	1	0	1	0	1	0	1
345		2		2438.571	2	0	1	0	1	0	1	0	1	0	1
346			min		3	0	1	0	1	0	1	0	1	0	1
347		3		2438.741	2	0	1	0	1	0	1	0	1	0	1
		3							-		_				
348		4	min		3_	0	1	0	1	0	1	0	1_	0	1
349		4		2438.911	2	0	1	0	1	0	1	0	1	0	1
350		_	min	-188.151	3	0	1	0	1	0	1_	0	1_	0	1
351		5_		2439.082	2	0	1	0	1	0	1	0	1	0	1
352				-188.023		0	1	0	1	0	1	0	1	0	1
353		6		2439.252	2	0	1	0	1	0	1	0	1	0	1
354				-187.896	3_	0	1_	0	1	0	<u>1</u>	0	1_	0	1
355		7		2439.422	2	0	1	0	1	0	_1_	0	1_	0	1
356				-187.768	3	0	1	0	1	0	1	0	1_	0	1
357		8		2439.593	2	0	1	0	1	0	_1_	0	1_	0	1
358			min	-187.64	3	0	1	0	1	0	1	0	1	0	1
359		9	max	2439.763	2	0	1	0	1	0	1	0	1	0	1
360			min	-187.512	3	0	1	0	1	0	1	0	1	0	1
361		10	max	2439.933	2	0	1	0	1	0	1	0	1	0	1
362				-187.384	3	0	1	0	1	0	1	0	1	0	1
363		11		2440.104	2	0	1	0	1	0	1	0	1	0	1
364				-187.257	3	0	1	0	1	0	1	0	1	0	1
365		12		2440.274	2	0	1	0	1	0	1	0	1	0	1
366		12		-187.129	3	0	1	0	1	0	1	0	1	0	1
367		13		2440.444	2	0	1	0	1	0	1	0	1	0	1
368		13		-187.001	3	0	1	0	1	0	1	0	1	0	1
300			111111	-107.001	<u>ა</u>	U		U		U		U		U	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Dec 1, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
369		14		2440.615	2	0	1	0	1	0	1_	0	1	0	1
370			min	-186.873	3	0	1	0	1	0	1	0	1	0	1
371		15	max	2440.785	2	0	1	0	1	0	1	0	1	0	1
372			min	-186.746	3	0	1	0	1	0	1	0	1	0	1
373		16	max	2440.955	2	0	1	0	1	0	1	0	1	0	1
374			min	-186.618	3	0	1	0	1	0	1	0	1	0	1
375		17	max	2441.126	2	0	1	0	1	0	1	0	1	0	1
376			min	-186.49	3	0	1	0	1	0	1	0	1	0	1
377		18	max	2441.296	2	0	1	0	1	0	1	0	1	0	1
378			min	-186.362	3	0	1	0	1	0	1	0	1	0	1
379		19	max	2441.466	2	0	1	0	1	0	1	0	1	0	1
380			min	-186.235	3	0	1	0	1	0	1	0	1	0	1
381	M10	1		1090.364	2	2.025	4	013	15	0	1	0	2	0	1
382			min	-1527.922	3	.476	15	267	1	0	3	0	3	0	1
383		2		1090.893	2	1.954	4	013	15	0	1	0	15	0	15
384			min	-1527.525	3	.459	15	267	1	0	3	0	1	0	4
385		3	max	1091.422	2	1.883	4	013	15	0	1	0	15	0	15
386			min	-1527.128	3	.443	15	267	1	0	3	0	1	001	4
387		4	max	1091.951	2	1.812	4	013	15	0	1	0	15	0	15
388			min	-1526.731	3	.426	15	267	1	0	3	0	1	002	4
389		5	max	1092.481	2	1.74	4	013	15	0	1	0	15	0	15
390			min	-1526.334	3	.409	15	267	1	0	3	0	1	003	4
391		6	max	1093.01	2	1.669	4	013	15	0	1	0	15	0	15
392			min	-1525.937	3	.393	15	267	1	0	3	0	1	003	4
393		7	max	1093.539	2	1.598	4	013	15	0	1	0	15	0	15
394			min	-1525.54	3	.376	15	267	1	0	3	0	1	004	4
395		8	max	1094.069	2	1.527	4	013	15	0	1	0	15	001	15
396			min	-1525.143	3	.359	15	267	1	0	3	0	1	004	4
397		9	max	1094.598	2	1.456	4	013	15	0	1	0	15	001	15
398			min	-1524.746	3	.342	15	267	1	0	3	0	1	005	4
399		10	max	1095.127	2	1.385	4	013	15	0	1	0	15	001	15
400			min	-1524.349	3	.326	15	267	1	0	3	0	1	006	4
401		11	max	1095.656	2	1.314	4	013	15	0	1	0	15	001	15
402			min	-1523.952	3	.309	15	267	1	0	3	0	1	006	4
403		12	max	1096.186	2	1.243	4	013	15	0	1	0	15	002	15
404				-1523.555	3	.292	15	267	1	0	3	001	1	006	4
405		13	max	1096.715	2	1.172	4	013	15	0	1	0	15	002	15
406			min	-1523.158	3	.269	12	267	1	0	3	001	1	007	4
407		14	max	1097.244	2	1.101	4	013	15	0	1	0	15	002	15
408			min	-1522.761	3	.241	12	267	1	0	3	001	1	007	4
409		15		1097.774	2	1.031	2	013	15	0	1	0	15	002	15
410				-1522.364	3	.214	12	267	1	0	3	001	1	008	4
411		16		1098.303	2	.976	2	013	15	0	1	0	15	002	15
412				-1521.967	3	.186	12	267	1	0	3	001	1	008	4
413		17		1098.832	2	.921	2	013	15	0	1	0	15	002	15
414				-1521.57	3	.158	12	267	1	0	3	002	1	008	4
415		18		1099.361	2	.865	2	013	15	0	1	0	15	002	15
416				-1521.173	3	.131	12	267	1	0	3	002	1	009	4
417		19		1099.891	2	.81	2	013	15	0	1	0	15	002	15
418				-1520.776	3	.103	12	267	1	0	3	002	1	009	4
419	M11	1		854.314	2	8.876	4	011	15	0	1	0	15	.009	4
420				-986.004	3	2.087	15	228	1	0	5	0	1	.002	15
421		2		854.143	2	8.007	4	011	15	0	1	0	15	.005	2
422				-986.132	3	1.882	15	228	1	0	5	0	1	0	12
423		3	max	853.973	2	7.138	4	011	15	0	1	0	15	.002	2
424				-986.26	3	1.678	15	228	1	0	5	0	1	0	3
425		4		853.802	2	6.269	4	011	15	0	1	0	15	0	2
720			παλ	300.002		0.200	т_	.011	10				ı		

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Dec 1, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC				LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	
426			min	-986.388	3	1.474	15	228	1	0	5	0	1	003	3
427		5	max	853.632	2	5.4	4	011	15	0	1	0	15	001	15
428			min	-986.516	3	1.27	15	228	1	0	5	0	1	004	4
429		6	max	853.462	2	4.532	4	011	15	0	1	0	15	002	15
430			min	-986.643	3	1.065	15	228	1	0	5	0	1	007	4
431		7	max		2	3.663	4	011	15	0	1	0	15	002	15
432			min	-986.771	3	.861	15	228	1	0	5	0	1	009	4
433		8	max		2	2.794	4	011	15	0	1	0	15	002	15
434		1	min	-986.899	3	.657	15	228	1	0	5	0	1	01	4
435		9	max	852.951	2	1.925	4	011	15	0	1	0	15	003	15
436		9		-987.027	3	.453	15	228	1	0	5	001	1	003	4
		40	min												
437		10	max	852.78	2	1.056	4	011	15	0	1	0	15	003	15
438			min	-987.154	3	.248	15	228	1_	0	5	001	1	012	4
439		11	max	852.61	2	.32	2	011	15	0	1	0	15	003	15
440			min	-987.282	3	129	3	228	1	0	5	001	1	012	4
441		12	max	852.44	2	16	15	011	15	0	1	0	15	003	15
442			min	-987.41	3	682	4	228	1	0	5	001	1	012	4
443		13	max	852.269	2	364	15	011	15	0	1	0	15	003	15
444			min	-987.538	3	-1.551	4	228	1	0	5	001	1	012	4
445		14	max	852.099	2	569	15	011	15	0	1	0	15	003	15
446			min	-987.665	3	-2.42	4	228	1	0	5	002	1	011	4
447		15	max		2	773	15	011	15	0	1	0	15	002	15
448			min	-987.793	3	-3.288	4	228	1	0	5	002	1	009	4
449		16	max	851.758	2	977	15	011	15	0	1	0	15	002	15
450		10	min	-987.921	3	-4.157	4	228	1	0	5	002	1	008	4
451		17			2	-1.181	15	011	15	0	1	0	15	001	15
		17	max	-988.049							_				
452		4.0	min		3	-5.026	4	228	1	0	5	002	1	006	4
453		18	max		2	-1.386	15	011	15	0	1	0	15	0	15
454		4.0	min	-988.176	3	<u>-5.895</u>	4	228	1_	0	5	002	1	003	4
455		19	max	851.247	2	-1.59	15	011	15	0	1	0	15	0	1
456	1446		min	-988.304	3	-6.764	4	228	1	0	5	002	1	0	1
457	M12	1	max		1	0	1	8.784	1	0	1	0	15	0	1
458			min	-29.246	3	0	1	.418	15	0	1	002	1	0	1
459		2	max	918.552	1_	0	1	8.784	1	0	1	0	15	0	1
460			min	-29.118	3	0	1	.418	15	0	1	0	1	0	1
461		3	max	918.722	1	0	1	8.784	1	0	1	0	1	0	1
462			min	-28.99	3	0	1	.418	15	0	1	0	15	0	1
463		4	max	918.892	1	0	1	8.784	1	0	1	.001	1	0	1
464			min	-28.862	3	0	1	.418	15	0	1	0	15	0	1
465		5	max		1	0	1	8.784	1	0	1	.002	1	0	1
466				-28.735	3	0	1	.418	15	0	1	0	15	0	1
467		6		919.233	1	0	1	8.784	1	0	1	.003	1	0	1
468		Ť	min	-28.607	3	0	1	.418	15	0	1	0	15	0	1
469		7	max		1	0	1	8.784	1	0	1	.004	1	0	1
470			min	-28.479	3	0	1	.418	15	0	1	0	15	0	1
471		8			<u> </u>	0	1	8.784	1	0	1	.005	1	0	1
		-	max												
472			min	-28.351	3	0	1	.418	15	0	1	0	15	0	1
473		9	max		1	0	1	8.784	1	0	1	.006	1	0	1
474			min	-28.224	3	0	1	.418	15	0	1	0	15	0	1
475		10	max		1	0	1	8.784	1	0	1	.007	1	0	1
476			min	-28.096	3	0	1	.418	15	0	1	0	15	0	1
477		11	max	920.085	1	0	1	8.784	1	0	1	.008	1	0	1
478			min	-27.968	3	0	1	.418	15	0	1	0	15	0	1
479		12	max	920.255	1	0	1	8.784	1	0	1	.009	1	0	1
480			min	-27.84	3	0	1	.418	15	0	1	0	15	0	1
481		13	max		1	0	1	8.784	1	0	1	.01	1	0	1
482			min	-27.712	3	0	1	.418	15	0	1	0	15	0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Dec 1, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
483		14	max	920.596	1	0	1	8.784	1	0	1	.011	1	0	1
484			min	-27.585	3	0	1	.418	15	0	1	0	15	0	1
485		15	max	920.766	1	0	1	8.784	1	0	1	.012	1	0	1
486			min	-27.457	3	0	1	.418	15	0	1	0	15	0	1
487		16	max	920.936	1	0	1	8.784	1	0	1	.013	1	0	1
488			min	-27.329	3	0	1	.418	15	0	1	0	15	0	1
489		17	max	921.107	1	0	1	8.784	1	0	1	.014	1	0	1
490			min	-27.201	3	0	1	.418	15	0	1	0	15	0	1
491		18	max	921.277	1	0	1	8.784	1	0	1	.015	1	0	1
492			min	-27.074	3	0	1	.418	15	0	1	0	15	0	1
493		19	max	921.447	1	0	1	8.784	1	0	1	.016	1	0	1
494			min	-26.946	3	0	1	.418	15	0	1	0	15	0	1
495	M1	1	max	144.751	1	784.309	3	-2.33	15	0	2	.135	1	0	15
496			min	6.784	15	-420.817	2	-48.36	1	0	3	.007	15	013	2
497		2	max	145.593	1	783.215	3	-2.33	15	0	2	.105	1	.249	2
498			min	7.038	15	-422.276	2	-48.36	1	0	3	.005	15	493	3
499		3	max	638.488	3	565.734	2	-2.317	15	0	3	.075	1	.5	2
500			min	-382.81	2	-620.383	3	-48.197	1	0	2	.004	15	964	3
501		4	max	639.12	3	564.275	2	-2.317	15	0	3	.045	1	.15	2
502			min	-381.968	2	-621.478	3	-48.197	1	0	2	.002	15	578	3
503		5	max	639.751	3	562.816	2	-2.317	15	0	3	.015	1	005	15
504			min	-381.125	2	-622.572	3	-48.197	1	0	2	0	15	2	2
505		6	max	640.383	3	561.357	2	-2.317	15	0	3	0	15	.194	3
506			min	-380.283	2	-623.666	3	-48.197	1	0	2	015	1	549	2
507		7	max	641.015	3	559.898	2	-2.317	15	0	3	002	15	.582	3
508			min	-379.441	2	-624.76	3	-48.197	1	0	2	045	1	897	2
509		8	max	641.647	3	558.439	2	-2.317	15	0	3	004	15	.97	3
510			min	-378.598	2	-625.855	3	-48.197	1	0	2	075	1	-1.244	2
511		9	max	657.461	3	52.759	2	-3.896	15	0	9	.05	1	1.127	3
512			min	-317.065	2	.446	15	-81.236	1	0	3	.002	15	-1.418	2
513		10	max	658.093	3	51.3	2	-3.896	15	0	9	0	10	1.105	3
514			min	-316.223	2	.005	15	-81.236	1	0	3	0	1	-1.451	2
515		11	max	658.725	3	49.841	2	-3.896	15	0	9	002	15	1.083	3
516			min	-315.38	2	-1.783	4	-81.236	1	0	3	051	1	-1.482	2
517		12	max	674.156	3	425.206	3	-2.23	15	0	2	.073	1	.952	3
518			min	-253.68	2	-671.281	2	-46.74	1	0	3	.004	15	-1.317	2
519		13	max	674.788	3	424.111	3	-2.23	15	0	2	.044	1	.688	3
520			min	-252.837	2	-672.74	2	-46.74	1	0	3	.002	15	9	2
521		14	max	675.419	3	423.017	3	-2.23	15	0	2	.015	1	.425	3
522			min	-251.995	2	-674.199	2	-46.74	1	0	3	0	15	482	2
523		15	max	676.051	3	421.923	3	-2.23	15	0	2	0	15	.163	3
524			min	-251.153	2	-675.658	2	-46.74	1	0	3	014	1	078	1
525		16	max	676.683	3	420.828	3	-2.23	15	0	2	002	15	.357	2
526			min	-250.31	2	-677.117	2	-46.74	1	0	3	043	1	098	3
527		17	max	677.315	3	419.734	3	-2.23	15	0	2	003	15	.778	2
528			min	-249.468	2	-678.576	2	-46.74	1	0	3	072	1	359	3
529		18	max	-7.054	15	642.39	2	-2.638	15	0	3	005	15	.393	2
530			min	-146.256	1	-305.995	3	-55.108	1	0	2	103	1	177	3
531		19	max	-6.8	15	640.931	2	-2.638	15	0	3	007	15	.013	3
532			min	-145.413	1	-307.089	3	-55.108	1	0	2	138	1	006	1
533	M5	1	max	330.714	1	2574.065	3	0	1	0	1	0	1	.026	2
534			min	10.355	12	-1468.049	2	0	1	0	1	0	1	0	15
535		2		331.556	1	2572.971	3	0	1	0	1	0	1	.937	2
536			min	10.776	12	-1469.508	2	0	1	0	1	0	1	-1.583	3
537		3		1918.038	3	1445.653	2	0	1	0	1	0	1	1.818	2
538			min	-1173.313	2	-1748.469	3	0	1	0	1	0	1	-3.132	3
539		4		1918.67	3	1444.193	2	0	1	0	1	0	1	.921	2
		_						_				_			

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Dec 1, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC :	z-z Mome	LC
540			min	-1172.471	2	-1749.563	3	0	1	0	1	0	1	-2.047	3
541		5	max	1919.302	3	1442.734	2	0	1	0	1	0	1	.062	1
542			min	-1171.629	2	-1750.657	3	0	1	0	1	0	1	961	3
543		6	max	1919.933	3	1441.275	2	0	1	0	1	0	1	.126	3
544			min	-1170.786	2	-1751.752	3	0	1	0	1	0	1	87	2
545		7	max	1920.565	3	1439.816	2	0	1	0	1	0	1	1.214	3
546			min	-1169.944	2	-1752.846	3	0	1	0	1	0	1	-1.764	2
547		8	max	1921.197	3	1438.357	2	0	1	0	1	0	1	2.302	3
548			min	-1169.101	2	-1753.94	3	0	1	0	1	0	1	-2.657	2
549		9	max	1935.3	3	180.594	2	0	1	0	1	0	1	2.653	3
550			min	-1030.293	2	.438	15	0	1	0	1	0	1	-3.05	2
551		10	max	1935.932	3	179.135	2	0	1	0	1	0	1	2.562	3
552			min	-1029.451	2	002	15	0	1	0	1	0	1	-3.161	2
553		11	max	1936.564	3	177.676	2	0	1	0	1	0	1	2.472	3
554			min	-1028.608	2	-1.703	4	0	1	0	1	0	1	-3.272	2
555		12	max	1951.433	3	1137.425	3	0	1	0	1	0	1	2.161	3
556			min	-890.136	2	-1798.155	2	0	1	0	1	0	1	-2.925	2
557		13	max	1952.065	3	1136.331	3	0	1	0	1	0	1	1.456	3
558			min	-889.293	2	-1799.614	2	0	1	0	1	0	1	-1.808	2
559		14	max	1952.697	3	1135.237	3	0	1	0	1	0	1	.751	3
560			min	-888.451	2	-1801.073	2	0	1	0	1	0	1	691	2
561		15	max	1953.328	3	1134.142	3	0	1	0	1	0	1	.427	2
562			min	-887.609	2	-1802.532	2	0	1	0	1	0	1	0	15
563		16	max	1953.96	3	1133.048	3	0	1	0	1	0	1	1.547	2
564			min	-886.766	2	-1803.991	2	0	1	0	1	0	1	657	3
565		17	max	1954.592	3	1131.954	3	0	1	0	1	0	1	2.667	2
566			min	-885.924	2	-1805.45	2	0	1	0	1	0	1	-1.36	3
567		18	max	-12.218	12	2175.062	2	0	1	0	1	0	1	1.36	2
568			min	-330.231	1	-1094.416	3	0	1	0	1	0	1	705	3
569		19	max	-11.797	12	2173.603	2	0	1	0	1	0	1	.012	1
570			min	-329.388	1_	-1095.511	3	0	1	0	1	0	1	026	3
571	M9	1	max	144.751	1	784.309	3	48.36	1	0	3	007	15	0	15
572			min	6.784	15	-420.817	2	2.33	15	0	2	135	1	013	2
573		2	max	145.593	1	783.215	3	48.36	1	0	3	005	15	.249	2
574			min	7.038	15	-422.276	2	2.33	15	0	2	105	1	493	3
575		3	max	638.488	3	565.734	2	48.197	1	0	2	004	15	.5	2
576			min	-382.81	2	-620.383	3	2.317	15	0	3	075	1	964	3
577		4	max	639.12	3	564.275	2	48.197	1	0	2	002	15	.15	2
578			min	-381.968	2	-621.478	3	2.317	15	0	3	045	1	578	3
579		5	max		3	562.816	2	48.197	1	0	2	0	15	005	15
580				-381.125			3	2.317	15	0	3	015	1	2	2
581		6		640.383	3_	561.357	2	48.197	1	0	2	.015	1	.194	3
582				-380.283	2	-623.666	3	2.317	15	0	3	0	15	549	2
583		7	max	641.015	3	559.898	2	48.197	1	0	2	.045	1	.582	3
584			min	-379.441	2	-624.76	3	2.317	15	0	3	.002	15	897	2
585		8		641.647	3_	558.439	2	48.197	1	0	2	.075	1	.97	3
586				-378.598	2	-625.855	3	2.317	15	0	3	.004	15	-1.244	2
587		9		657.461	3	52.759	2	81.236	1	0	3	002	15	1.127	3
588			min	-317.065	2	.446	15	3.896	15	0	9	05	1	-1.418	2
589		10	max		3	51.3	2	81.236	1	0	3	0	1	1.105	3
590				-316.223	2	.005	15	3.896	15	0	9	0	10	-1.451	2
591		11		658.725	3	49.841	2	81.236	1	0	3	.051	1	1.083	3
592				-315.38	2	-1.783	4	3.896	15	0	9	.002	15	-1.482	2
593		12	max	674.156	3	425.206	3	46.74	1	0	3	004	15	.952	3
594			min	-253.68	2	-671.281	2	2.23	15	0	2	073	1	-1.317	2
595		13		674.788	3	424.111	3	46.74	1	0	3	002	15	.688	3
596			min	-252.837	2	-672.74	2	2.23	15	0	2	044	1	9	2

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Dec 1, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
597		14	max	675.419	3	423.017	3	46.74	1	0	3	0	15	.425	3
598			min	-251.995	2	-674.199	2	2.23	15	0	2	015	1	482	2
599		15	max	676.051	3	421.923	3	46.74	1	0	3	.014	1	.163	3
600			min	-251.153	2	-675.658	2	2.23	15	0	2	0	15	078	1
601		16	max	676.683	3	420.828	3	46.74	1	0	3	.043	1	.357	2
602			min	-250.31	2	-677.117	2	2.23	15	0	2	.002	15	098	3
603		17	max	677.315	3	419.734	3	46.74	1	0	3	.072	1	.778	2
604			min	-249.468	2	-678.576	2	2.23	15	0	2	.003	15	359	3
605		18	max	-7.054	15	642.39	2	55.108	1	0	2	.103	1	.393	2
606			min	-146.256	1	-305.995	3	2.638	15	0	3	.005	15	177	3
607		19	max	-6.8	15	640.931	2	55.108	1	0	2	.138	1	.013	3
608			min	-145.413	1	-307.089	3	2.638	15	0	3	.007	15	006	1

Envelope Member Section Deflections

1 4		Sec		x [in]	LC	y [in]	LC	z [in]	<u> C x Rotate</u>	[r	LC		LC	(n) L/z Ratio	LC
1	M13	1	max	0	1	.224	2	.012	3 1.546	9-2	2	NC	_1_	NC	1_
2			min	0	15	072	3	008	2 -4.977		3	NC	1	NC	1
3		2	max	0	1	.172	2	.015	3 1.634		2	NC	4	NC	1
4			min	0	15	.004	15	004	10 -4.499	e-3	3	1226.283	3	NC	1
5		3	max	0	1	.178	3	.029	1 1.722	9-2	2	NC	4	NC	2
6			min	0	15	.003	15	003	10 -4.022		3	672.741	3	5555.388	1
7		4	max	0	1	.25	3	.042	1 1.8116	9-2	2	NC	5	NC	2
8			min	0	15	.003	15	002	10 -3.544	e-3	3	522.098	3	3827.726	1
9		5	max	0	1	.274	3	.048	1 1.8996	9-2	2	NC	5	NC	2
10			min	0	15	.003	15	003	10 -3.066	e-3	3	486.452	3	3371.118	1
11		6	max	0	1	.249	3	.045	1 1.987	9-2	2	NC	4	NC	2
12			min	0	15	.003	15	005	10 -2.589	e-3	3	522.954	3	3631.358	1
13		7	max	0	1	.208	2	.033	3 2.075	9-2	2	NC	2	NC	2
14			min	0	15	.004	15	008	10 -2.111	e-3	3	649.035	3	4948.538	1
15		8	max	0	1	.266	2	.035	3 2.163	9-2	2	NC	4	NC	1
16			min	0	15	.005	15	013	2 -1.634		3	953.918	3	7508.06	3
17		9	max	0	1	.316	2	.035	3 2.252	9-2	2	NC	4	NC	1
18			min	0	15	.006	15	021	2 -1.156		3	1686.184	3	7259.634	3
19		10	max	0	1	.339	2	.036	3 2.34e		2	NC	4	NC	1
20			min	0	1	007	3	025	2 -6.783		3	1460.309	2	7207.347	3
21		11	max	0	15	.316	2	.035	3 2.252	9-2	2	NC	4	NC	1
22			min	0	1	.006	15	021	2 -1.156		3	1686.184	3	7259.634	3
23		12	max	0	15	.266	2	.035	3 2.163		2	NC	4	NC	1
24			min	0	1	.005	15	013	2 -1.634		3	953.918	3	7508.06	3
25		13	max	0	15	.208	2	.033	3 2.075		2	NC	2	NC	2
26			min	0	1	.004	15	008	10 -2.111		3	649.035	3	4948.538	1
27		14	max	0	15	.249	3	.045	1 1.987		2	NC	4	NC	2
28			min	0	1	.003	15	005	10 -2.589		3	522.954	3	3631.358	1
29		15	max	0	15	.274	3	.048	1 1.899	- 2	2	NC	5	NC	2
30			min	0	1	.003	15	003	10 -3.066	e-3	3	486.452	3	3371.118	1
31		16	max	0	15	.25	3	.042	1 1.811		2	NC	5	NC	2
32			min	0	1	.003	15	002	10 -3.544		3	522.098	3	3827.726	1
33		17	max	0	15	.178	3	.029	1 1.722		2	NC	4	NC	2
34			min	0	1	.003	15	003	10 -4.022		3	672.741	3	5555.388	1
35		18	max	0	15	.172	2	.015	3 1.634		2	NC	4	NC	1
36			min	0	1	.004	15	004	10 -4.499		3	1226.283	3	NC	1
37		19	max	0	15	.224	2	.012	3 1.546		2	NC	1	NC	1
38			min	0	1	072	3	008	2 -4.977		3	NC	1	NC	1
39	M14	1	max	0	1	.478	3	.011	3 8.425		2	NC	1	NC	1
40			min	0	15	662	2	007	2 -7.049		3	NC	1	NC	1

Model Name

: Schletter, Inc. : HCV

: HC

: Standard PVMax Racking System

Dec 1, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r					LC
41		2	max	0	1	.668	3	.012	3 9.524e-3	2	NC	5_	NC	1
42			min	0	15	847	2	004	2 -8.089e-3	3	885.513	3	NC	1
43		3	max	0	1	.837	3	.021	1 1.062e-2	2	NC	5	NC	2
44			min	0	15	-1.016	2	003	10 -9.129e-3	3	468.269	3_	7523.835	
45		4	max	0	1	.971	3	.034	1 1.172e-2	2	NC	_5_	NC 4700 000	2
46		_	min	0	15	<u>-1.157</u>	2	002	10 -1.017e-2	3	339.226	2	4760.286	
47		5	max	0	1	1.061	3	.041	1 1.282e-2	2	NC 070 505	<u>15</u>	NC 2005 040	2
48		_	min	0	15	-1.263	2	003	10 -1.121e-2	3	279.535	2	3995.013	
49		6	max	0	1	1.107	3	.039	1 1.392e-2	2	NC	15	NC	2
50		7	min	0	15	-1.331	2	004	10 -1.225e-2	3	250.995	2	4169.722	1
51		7	max	0	1	1.112	3	.029	1 1.502e-2	2	NC 000.040	15	NC FF 40, 000	2
52		_	min	0	15	<u>-1.365</u>	2	007	10 -1.329e-2	3	239.042	2	5549.832	1
53		8	max	0	1	1.09	3	.03	3 1.612e-2	2	NC	<u>15</u>	NC	1
54			min	0	15	-1.371	2	012	2 -1.433e-2	3	237.032	2	8581.25	3
55		9	max	0	1	1.057	3	.031	3 1.722e-2	2	NC 040.040	<u>15</u>	NC 0000 04	1
56		40	min	0	15	-1.361	2	019	2 -1.537e-2	3	240.216	2	8236.34	3
57		10	max	0	1	1.04	3	.031	3 1.832e-2	2	NC 040,000	15	NC 0457.554	1
58		4.4	min	0	1	<u>-1.353</u>	2	023	2 -1.641e-2	3	242.922		8157.554	3
59		11	max	0	15	1.057	3	.031	3 1.722e-2	2	NC 040.040	15	NC 0000 04	1
60		40	min	0	1	<u>-1.361</u>	2	<u>019</u>	2 -1.537e-2	3	240.216	2	8236.34	3
61		12	max	0	15	1.09	3	.03	3 1.612e-2	2	NC 007,000	15	NC 0504.05	1
62		40	min	0	1	-1.371	2	012	2 -1.433e-2	3	237.032	2	8581.25	3
63		13	max	0	15	1.112	3	.029	1 1.502e-2	2	NC 000.040	<u>15</u>	NC FF 40, 000	2
64		4.4	min	0	1	-1.365	2	007	10 -1.329e-2	3	239.042	2	5549.832	1
65		14	max	0	15	1.107	3	.039	1 1.392e-2	2	NC	<u>15</u>	NC	2
66		4.5	min	0	1	-1.331	2	004	10 -1.225e-2	3	250.995	2	4169.722	1
67		15	max	0	15	1.061	3	.041	1 1.282e-2	2	NC 070 505	<u>15</u>	NC 0005 040	2
68		40	min	0	1	-1.263	2	003	10 -1.121e-2	3	279.535	2	3995.013	
69		16	max	0	15	.971	3	.034	1 1.172e-2	2	NC	_5_	NC 4700 000	2
70		47	min	0	1	<u>-1.157</u>	2	002	10 -1.017e-2	3	339.226	2	4760.286	
71		17	max	0	15	.837	3	.021	1 1.062e-2	2	NC 400,000	5	NC 7500 005	2
72		40	min	0	1	<u>-1.016</u>	2	003	10 -9.129e-3	3	468.269	3	7523.835	
73		18	max	0	15	.668	3	.012	3 9.524e-3	2	NC 005 542	5	NC NC	1
74		40	min	0	1	847	2	004	2 -8.089e-3	3	885.513	3	NC NC	1
75		19	max	0	15	.478	3	.011	3 8.425e-3	2	NC NC	<u>1</u> 1	NC NC	1
76	NA E	4	min	0	•	662	2	007	2 -7.049e-3	3	NC NC	•	NC NC	•
77	M15	1	max	0	15	.488	3	.01	3 6.064e-3	3	NC NC	1_4	NC NC	1
78		_	min	0	1	66	2	007	2 -8.785e-3	2	NC NC	1_	NC NC	1
79		2	max	0	15	.635	3	.011	3 6.946e-3	3	NC 700.747	5	NC NC	1
80 81		3	min	0	15	88 .77	3	004 .022	2 -9.941e-3	2	763.717	<u>2</u> 5	NC NC	2
82		3	max		1		2	002	1 7.827e-3 10 -1.11e-2	2	NC 402.77	2	7466.674	
		4	min	0	15	<u>-1.077</u> .884	3			3	NC	5	NC	2
83		4	max	0	1	-1.235	2	.035 002	1 8.709e-3		292.11	2	4727.161	
84		-							10 -1.225e-2 1 9.591e-3	2	NC		NC	
85 86		5	max	0	15	.971 -1.345	2	.041 002	1 9.591e-3 10 -1.341e-2	2	245.293	<u>15</u> 2	3965.241	2
87		6	min	0	15	1.029	3	002 .04	1 1.047e-2	3	NC	15		2
		0	max				2	004			225.667			
88		7	min	0	1	<u>-1.405</u>			10 -1.456e-2 1 1.135e-2	2			4131.285	
89		-	max	0	15	1.06	3	.03		3	NC 221.34	15	NC 5472 201	2
90		0	min	0		<u>-1.419</u>	3	006	10 -1.572e-2 3 1.224e-2	2			5473.301	1
91		8	max		15	1.069		.028		3	NC 226.747	1 <u>5</u>	NC	1
		0	min	0		<u>-1.401</u>	3	011	2 -1.688e-2	2			9234.658	
93		9	max	0	15	1.066		.029	3 1.312e-2	3	NC	<u>15</u>	NC	1
94		10	min	0	1	<u>-1.37</u>	2	018	2 -1.803e-2	2	236.731		8909.626	
95 96		10	max	0	1	1.061 -1.352	2	.029 022	3 1.4e-2 2 -1.919e-2	2	NC 242.792	<u>15</u> 2	NC 8844.889	1
96		11	min	0	1		3	022 .029		3	NC	<u></u>		1
_ J/		<u> </u>	max	U		1.066	_ S	.029	3 1.312e-2	<u>ა</u>	INC	10	INC	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Dec 1, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r					
98		10	min	0	15	-1.37	2	018	2 -1.803e-2	2	236.731	2	8909.626	3
99		12	max	0	1	1.069	3	.028	3 1.224e-2	3	NC	<u>15</u>	NC	1
100		40	min	0	15	<u>-1.401</u>	2	011	2 -1.688e-2	2	226.747	2	9234.658	3
101		13	max	0	1	1.06	3	.03	1 1.135e-2	3	NC	15	NC 5472 204	2
102		14	min max	<u> </u>	1 <u>5</u>	<u>-1.419</u> 1.029	3	006 .04	10 -1.572e-2 1 1.047e-2	3	221.34 NC	<u>2</u> 15	5473.301 NC	2
104		14	min	0	15	-1.405	2	004	10 -1.456e-2	2	225.667	2	4131.285	1
105		15	max	0	1	.971	3	.041	1 9.591e-3	3	NC	15	NC	2
106		13	min	0	15	-1.345	2	002	10 -1.341e-2	_	245.293	2	3965.241	1
107		16	max	0	1	.884	3	.035	1 8.709e-3	3	NC	5	NC	2
108		10	min	0	15	-1.235	2	002	10 -1.225e-2	2	292.11	2	4727.161	1
109		17	max	0	1	.77	3	.022	1 7.827e-3	3	NC	5	NC	2
110			min	0	15	-1.077	2	002	10 -1.11e-2	2	402.77	2	7466.674	1
111		18	max	0	1	.635	3	.011	3 6.946e-3	3	NC	5	NC	1
112			min	0	15	88	2	004	2 -9.941e-3	2	763.717	2	NC	1
113		19	max	0	1	.488	3	.01	3 6.064e-3	3	NC	1	NC	1
114			min	0	15	66	2	007	2 -8.785e-3	2	NC	1	NC	1
115	M16	1	max	0	15	.199	2	.009	3 1.171e-2	3	NC	1	NC	1
116			min	0	1	173	3	006	2 -1.299e-2	2	NC	1	NC	1
117		2	max	0	15	.105	2	.012	1 1.259e-2	3	NC	4	NC	1
118			min	0	1	142	3	003	10 -1.334e-2	2	1785.775	2	NC	1
119		3	max	0	15	.049	1	.029	1 1.347e-2	3	NC	4	NC	2
120			min	0	1	12	3	001	10 -1.37e-2	2	997.451	2	5551.06	1
121		4	max	0	15	.023	9	.043	1 1.434e-2	3	NC	4	NC	2
122			min	0	1	113	3	0	10 -1.406e-2	2	800.399	2	3803.114	1
123		5	max	0	15	.025	9	.049	1 1.522e-2	3	NC	4_	NC	2
124			min	0	1	125	3	0	10 -1.442e-2	2	790.699	2	3328.175	1
125		6	max	0	15	.051	1	.046	1 1.61e-2	3	NC	_4_	NC	2
126			min	0	1	<u>154</u>	3	002	10 -1.477e-2	2	947.498	2	3550.762	1
127		7	max	0	15	.101	1	.034	1 1.697e-2	3	NC	4_	NC	2
128			min	0	1	195	3	005	10 -1.513e-2	2	1490.358	2	4745.197	1
129		8	max	0	15	.164	2	.025	3 1.785e-2	3	NC 0460 607	1_	NC	2
130			min	0	1	242	3	008	10 -1.549e-2	2	2463.697	3_4	9303.698	1
131		9	max	0	15	.234	2	.025	3 1.873e-2	3	NC	4	NC NC	1
132		10	min	<u> </u>	1	<u>281</u> .266	2	016 .025	2 -1.585e-2 3 1.96e-2	3	1563.745 NC	<u>3</u>	NC NC	1
134		10	max	0	1	298	3	02	2 -1.621e-2	2	1348.034	3	NC NC	1
135		11	max	0	1	.234	2	.025	3 1.873e-2	3	NC	4	NC	1
136			min	0	15	281	3	016	2 -1.585e-2	2	1563.745	3	NC	1
137		12	max	0	1	.164	2	.025	3 1.785e-2	3	NC	1	NC	2
138			min	0	15	242	3	008	10 -1.549e-2					
139			max	0	1	.101	1	.034	1 1.697e-2	3	NC	4	NC	2
140			min	0	15	195	3	005	10 -1.513e-2		1490.358	2	4745.197	1
141		14	max	0	1	.051	1	.046	1 1.61e-2	3	NC	4	NC	2
142			min	0	15	154	3	002	10 -1.477e-2	2	947.498	2	3550.762	1
143		15	max	0	1	.025	9	.049	1 1.522e-2	3	NC	4	NC	2
144			min	0	15	125	3	0	10 -1.442e-2	2	790.699	2	3328.175	1
145		16	max	0	1	.023	9	.043	1 1.434e-2	3	NC	4	NC	2
146			min	0	15	113	3	0	10 -1.406e-2	2	800.399	2	3803.114	1
147		17	max	0	1	.049	1	.029	1 1.347e-2	3	NC	4	NC	2
148			min	0	15	12	3	001	10 -1.37e-2	2	997.451	2	5551.06	1
149		18	max	0	1	.105	2	.012	1 1.259e-2	3	NC	4	NC	1
150			min	0	15	142	3	003	10 -1.334e-2	2	1785.775	2	NC	1
151		19	max	0	1	.199	2	.009	3 1.171e-2	3	NC	1	NC	1
152			min	0	15	173	3	006	2 -1.299e-2	2	NC	1	NC	1
153	M2	1	max	.008	2	.012	2	.006	1 -6.696e-6		NC	1_	NC	1
154			min	011	3	018	3	0	15 -1.387e-4	1	6404.038	2	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Dec 1, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r			LC) LC
155		2	max	.008	2	.01	2	.006	1	-6.369e-6	15	NC	_1_	NC	1
156			min	011	3	018	3	0	15	-1.32e-4	1_	7422.371	2	NC	1
157		3	max	.007	2	.009	2	.005	1_	-6.041e-6		NC	_1_	NC	1
158			min	01	3	017	3	0		-1.252e-4	1_	8804.824	2	NC	1
159		4	max	.007	2	.007	2	.005	1	-5.714e-6	<u>15</u>	NC	_1_	NC	1
160		_	min	009	3	017	3	0	15	-1.184e-4	1_	NC NC	1_	NC NC	1
161		5	max	.006	2	.006	2	.004	1	-5.386e-6	<u>15</u>	NC	1	NC	1
162			min	009	3	016	3	0	15	-1.116e-4	1_	NC NC	1_	NC NC	1
163		6	max	.006	2	.004	2	.004	1	-5.059e-6	<u>15</u>	NC NC	1_1	NC	1
164 165		7	min	008	2	015	2	0	15	-1.048e-4	1_	NC NC	<u>1</u> 1	NC NC	1
166		1	max	.005 008	3	.003 015	3	.003	15	-4.732e-6 -9.799e-5	<u>15</u> 1	NC NC	1	NC NC	1
167		8	min	008 .005	2	.002	2	.003	1		15	NC NC	1	NC NC	1
168		0	max	005	3	014	3	<u>.003</u>	15	-4.404e-6 -9.12e-5	1	NC NC	1	NC NC	1
169		9	max	.005	2	<u>014</u> 0	2	.002	1	-9.12e-5 -4.077e-6	15	NC	1	NC	1
170		9	min	006	3	013	3	0	15	-8.441e-5	1	NC	1	NC	1
171		10	max	.004	2	0	2	.002	1	-3.749e-6	15	NC	1	NC	1
172		10	min	006	3	012	3	0	15	-7.762e-5	1	NC	1	NC	1
173		11	max	.004	2	001	2	.002	1	-3.422e-6	15	NC	1	NC	1
174			min	005	3	011	3	0	15	-7.083e-5	1	NC	1	NC	1
175		12	max	.003	2	002	15	.001	1	-3.095e-6	15	NC	1	NC	1
176			min	004	3	01	3	0	15	-6.404e-5	1	NC	1	NC	1
177		13	max	.003	2	002	15	0	1	-2.767e-6	15	NC	1	NC	1
178			min	004	3	009	3	0	15	-5.724e-5	1	NC	1	NC	1
179		14	max	.002	2	002	15	0	1	-2.44e-6	15	NC	1	NC	1
180			min	003	3	008	3	0	15	-5.045e-5	1	NC	1	NC	1
181		15	max	.002	2	001	15	0	1	-2.113e-6	15	NC	1	NC	1
182			min	003	3	006	3	0	15	-4.366e-5	1	NC	1	NC	1
183		16	max	.001	2	001	15	0	1	-1.785e-6	15	NC	1	NC	1
184			min	002	3	005	3	0	15	-3.687e-5	1	NC	1	NC	1
185		17	max	0	2	0	15	0	1	-1.458e-6	15	NC	_1_	NC	1
186			min	001	3	003	4	0	15	-3.008e-5	1_	NC	1_	NC	1
187		18	max	0	2	00	15	00	1	-1.13e-6	15	NC	_1_	NC	1
188			min	0	3	002	4	0	15	-2.329e-5	1_	NC	1_	NC	1
189		19	max	0	1	0	1	0	1	-8.029e-7	<u>15</u>	NC	_1_	NC	1
190			min	0	1	0	1	0	1	-1.649e-5	_1_	NC	1_	NC	1
191	<u>M3</u>	1	max	0	1	0	1	0	1	3.342e-6	1_	NC	1_	NC	1
192			min	0	1	0	1	0	1	1.631e-7	15	NC	1_	NC	1
193		2	max	0	3	0	15	0	15	1.952e-5	1_	NC		NC	1
194			min	0	2	003	4	0	1_1_	9.322e-7	<u>15</u>	NC NC	1_	NC NC	1
195		3	max	.001	3	001	15	0		3.57e-5		NC NC	1	NC NC	1
196		4	min	0	2	006	4	0	1_1_	1.701e-6	<u>15</u>	NC NC	1_	NC NC	1
197		4	max	.002	3	002	15	0		5.188e-5 2.47e-6	1_	NC NC	1	NC NC	1
198 199		5	min	001 .002	3	009 003	15	<u> </u>	15	6.806e-5	<u>15</u> 1	NC NC	1	NC NC	1
200		3	max min	002	2	003 012	4	0	1	3.239e-6		8392.885	4	NC NC	1
201		6	max	.002	3	012 004	15	0	15		1	NC	2	NC	1
202		0	min	002	2	004 015	4	0	1	4.009e-6		6810.205	4	NC NC	1
203		7	max	.002	3	015 004	15	0		1.004e-4	1	NC	5	NC	1
204			min	003	2	004 018	4	0	1	4.778e-6		5856.599	4	NC NC	1
205		8	max	.003	3	016 005	15	0	10	1.166e-4	1 <u>1</u>	NC	5	NC NC	1
206			min	003	2	003	4	0	1	5.547e-6		5268.617	4	NC	1
207		9	max	.004	3	005	15	0	1	1.328e-4	1	NC	5	NC	1
208		Ť	min	004	2	021	4	0	3	6.316e-6		4922.233	4	NC	1
209		10	max	.005	3	005	15	0	1	1.49e-4	1	NC	5	NC	1
210			min	004	2	022	4	0	12	7.085e-6		4757.377	4	NC	1
211		11	max	.005	3	005	15	0	1	1.651e-4	1	NC	5	NC	1
			,an	.000		.000				, r				<u> </u>	

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Dec 1, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
212			min	005	2	022	4	0	15	7.854e-6	15	4749.848	4	NC	1
213		12	max	.006	3	005	15	0	1	1.813e-4	_1_	NC	5	NC	1
214			min	005	2	021	4	0	15	8.623e-6	15	4902.042	4	NC	1
215		13	max	.006	3	005	15	.001	1	1.975e-4	_1_	NC	5	NC	1
216			min	006	2	02	4	0	15	9.392e-6	15	5245.067	4	NC	1
217		14	max	.007	3	004	15	.002	1_	2.137e-4	_1_	NC	5_	NC	1
218			min	006	2	018	4	0	15	1.016e-5	15	5854.749	4	NC	1
219		15	max	.008	3	004	15	.002	1	2.299e-4	1	NC	3	NC	1
220			min	006	2	015	4	0	15	1.093e-5	15	6898.697	4	NC	1
221		16	max	.008	3	003	15	.003	1	2.46e-4	1_	NC	1_	NC	1
222			min	007	2	012	4	0	15	1.17e-5	15	8782.493	4	NC	1
223		17	max	.009	3	002	15	.004	1	2.622e-4	1	NC	1	NC	1
224			min	007	2	009	4	0	15	1.247e-5	15	NC	1	NC	1
225		18	max	.009	3	001	15	.005	1	2.784e-4	1	NC	1	NC	1
226			min	008	2	005	3	0	15	1.324e-5	15	NC	1	NC	1
227		19	max	.01	3	0	10	.006	1	2.946e-4	1	NC	1	NC	1
228			min	008	2	002	3	0	15	1.401e-5	15	NC	1	NC	1
229	M4	1	max	.002	1	.008	2	0	15	1.132e-4	1_	NC	1_	NC	2
230			min	0	3	01	3	006	1	5.419e-6	15	NC	1	4190.99	1
231		2	max	.002	1	.008	2	0	15	1.132e-4	1	NC	1	NC	2
232			min	0	3	009	3	005	1	5.419e-6	15	NC	1	4546.859	1
233		3	max	.002	1	.007	2	0	15	1.132e-4	1	NC	1	NC	2
234			min	0	3	009	3	005	1	5.419e-6	15	NC	1	4971.064	1
235		4	max	.002	1	.007	2	0	15	1.132e-4	1	NC	1	NC	2
236			min	0	3	008	3	005	1	5.419e-6	15	NC	1	5481.237	1
237		5	max	.002	1	.006	2	0	15	1.132e-4	1	NC	1	NC	2
238			min	0	3	008	3	004	1	5.419e-6	15	NC	1	6101.353	1
239		6	max	.002	1	.006	2	0	15	1.132e-4	1	NC	1	NC	2
240			min	0	3	007	3	004	1	5.419e-6	15	NC	1	6864.66	1
241		7	max	.001	1	.005	2	0	15	1.132e-4	1	NC	1	NC	2
242			min	0	3	007	3	003	1	5.419e-6	15	NC	1	7818.353	1
243		8	max	.001	1	.005	2	0	15	1.132e-4	1	NC	1	NC	2
244			min	0	3	006	3	003	1	5.419e-6	15	NC	1	9031.252	1
245		9	max	.001	1	.004	2	0	15	1.132e-4	1	NC	1	NC	1
246			min	0	3	006	3	002	1	5.419e-6	15	NC	1	NC	1
247		10	max	.001	1	.004	2	0	15	1.132e-4	1	NC	1	NC	1
248			min	0	3	005	3	002	1	5.419e-6	15	NC	1	NC	1
249		11	max	0	1	.004	2	0	15	1.132e-4	1	NC	1	NC	1
250			min	0	3	004	3	002	1	5.419e-6	15	NC	1	NC	1
251		12	max	0	1	.003	2	0	15	1.132e-4	1	NC	1	NC	1
252			min	0	3	004	3	001		5.419e-6		NC	1	NC	1
253		13	max	0	1	.003	2	0		1.132e-4	1	NC	1	NC	1
254			min	0	3	003	3	0	1	5.419e-6	15	NC	1	NC	1
255		14	max	0	1	.002	2	0	15	1.132e-4	1	NC	1	NC	1
256			min	0	3	003	3	0	1	5.419e-6	15	NC	1	NC	1
257		15	max	0	1	.002	2	0	15	1.132e-4	1	NC	1	NC	1
258		1	min	0	3	002	3	0	1	5.419e-6	15	NC	1	NC	1
259		16	max	0	1	.002	2	0	15	1.132e-4	1	NC	1	NC	1
260		1.0	min	0	3	002	3	0	1	5.419e-6	15	NC	1	NC	1
261		17	max	0	1	0	2	0	15	1.132e-4	1	NC	1	NC	1
262			min	0	3	001	3	0	1	5.419e-6	15	NC	1	NC	1
263		18	max	0	1	0	2	0	15	1.132e-4	1	NC	1	NC	1
264		10	min	0	3	0	3	0	1	5.419e-6	15	NC	1	NC	1
265		19	max	0	1	0	1	0	1	1.132e-4	1	NC	1	NC	1
266		13	min	0	1	0	1	0	1	5.419e-6	15	NC NC	1	NC	1
267	M6	1	max	.024	2	.039	2	0	1	0	1 <u>1</u>	NC NC	3	NC	1
268	IVIO		min	035	3	054	3	0	1	0	1	2010.716	2	NC	1
200			1111111	033	J	054	J	U		U		2010.710		INC	

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Dec 1, 2015

Checked By:____

268		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio			LC
271	269		2	max	.023	2	.035	2	0	1	0	1	NC	3	NC	1
272	270			min	033	3	051	3	0	1	0	1	2207.711	2	NC	1
272	271		3	max	.021	2	.032	2	0	1	0	1	NC	3	NC	1
273									0	1	0	1				1
274			4						0	1	0	1		3		1
276			·							1						
276			5								-	•				
277			—	_					-							1
278			6													1
279			-								-					
280			-									•				_
281			/													1
282			_													1
283			8						0		0	_1_				1
284				min					0	1	0	1_		2		1
285	283		9	max	.013		.013	2	0	1	0	1		1_	NC	1
286	284			min	019	3	03	3	0	1	0	1	5875.244	2	NC	1
286	285		10	max	.012	2	.011	2	0	1	0	1	NC	1	NC	1
287				min			027		0	1	0	1	7271.059	2	NC	1
288			11							1						1
289											-					
290			12													_
291			12													
292			12											•		
293			13						_							_
294										•	•	_		_		
295			14													_
296											-	•		•		
297			15	_					0					_1_		1
298	296			min	008	3	012	3	0	1	0	1	NC	1_	NC	1
17 max	297		16	max	.004	2	0	2	0	1	0	1	NC	1_	NC	1
300	298			min	006	3	009	3	0	1	0	1	NC	1	NC	1
300	299		17	max	.003	2	0	2	0	1	0	1	NC	1	NC	1
301				min			006		0	1	0	1	NC	1		1
302			18						0	1		1		1		1
303			1.0											1		1
304			10							•	-			_		-
305 M7			13			_		-								-
306		1.47	1									•		•		
307 2 max .002 3 0 15 0 1 0 1 NC 1 NC 1 308 min 001 2 004 3 0 1 0 1 NC 1 NC 1 309 3 max .003 3 001 15 0 1 0 1 NC 1 NC 1 310 min 003 2 008 3 0 1 0 1 NC 1 NC 1 311 4 max .005 3 002 15 0 1 0 1 NC 1 NC 1 312 min 004 2 011 3 0 1 0 1 NC 1 NC 1 313 5 max .006 3 003 15 0 1		IVI /		_	-				-							
308			_			-								•		-
309 3 max .003 3 001 15 0 1 0 1 NC 1 NC 1 310 min 003 2 008 3 0 1 0 1 NC 1 NC 1 311 4 max .005 3 002 15 0 1 0 1 NC 1 NC 1 312 min 004 2 011 3 0 1 0 1 NC 1 NC 1 313 5 max .006 3 003 15 0 1 0 1 NC 1 NC 1 314 min 006 2 014 3 0 1 0 1 NC 1 NC 1 315 6 max .008 3 004 15 0 1			2						-		-					
310 min 003 2 008 3 0 1 0 1 NC 1 NC 1 311 4 max .005 3 002 15 0 1 0 1 NC 1 NC 1 312 min 004 2 011 3 0 1 0 1 NC 1 NC 1 313 5 max .006 3 003 15 0 1 0 1 NC 1 NC 1 314 min 006 2 014 3 0 1 0 1 NC 1 NC 1 315 6 max .008 3 004 15 0 1 0 1 NC 1 NC 1 316 min 007 2 017 3 0 1 0														_		
311 4 max .005 3 002 15 0 1 0 1 NC 1 NC 1 312 min 004 2 011 3 0 1 0 1 NC 1 NC 1 313 5 max .006 3 003 15 0 1 0 1 NC 1 NC 1 314 min 006 2 014 3 0 1 0 1 7993.887 3 NC 1 315 6 max .008 3 004 15 0 1 0 1 NC 1 NC 1 316 min 007 2 017 3 0 1 0 1 6748.551 3 NC 1 317 7 max .009 3 004 15 0			3	max					0	1	0	_1_		_1_		1
312 min 004 2 011 3 0 1 0 1 NC 1 NC 1 313 5 max .006 3 003 15 0 1 0 1 NC 1 NC 1 314 min 006 2 014 3 0 1 0 1 7993.887 3 NC 1 315 6 max .008 3 004 15 0 1 0 1 NC 1 NC 1 316 min 007 2 017 3 0 1 0 1 6748.551 3 NC 1 317 7 max .009 3 004 15 0 1 0 1 NC 1 NC 1 318 min 009 2 019 3 0 1				min					0			1		_		
313 5 max .006 3 003 15 0 1 0 1 NC 1 NC 1 314 min 006 2 014 3 0 1 0 1 7993.887 3 NC 1 315 6 max .008 3 004 15 0 1 0 1 NC 1 NC 1 316 min 007 2 017 3 0 1 0 1 6748.551 3 NC 1 317 7 max .009 3 004 15 0 1 0 1 6748.551 3 NC 1 318 min 009 2 019 3 0 1 0 1 5924.812 4 NC 1 319 8 max .011 3 005 15 0 </td <td></td> <td></td> <td>4</td> <td>max</td> <td></td> <td>3</td> <td></td> <td>15</td> <td>0</td> <td>1</td> <td>0</td> <td>1_</td> <td></td> <td>1_</td> <td></td> <td>1</td>			4	max		3		15	0	1	0	1_		1_		1
313 5 max .006 3 003 15 0 1 0 1 NC 1 NC 1 314 min 006 2 014 3 0 1 0 1 7993.887 3 NC 1 315 6 max .008 3 004 15 0 1 0 1 NC 1 NC 1 316 min 007 2 017 3 0 1 0 1 6748.551 3 NC 1 317 7 max .009 3 004 15 0 1 0 1 6748.551 3 NC 1 318 min 009 2 019 3 0 1 0 1 5924.812 4 NC 1 319 8 max .011 3 005 15 0 </td <td>312</td> <td></td> <td></td> <td>min</td> <td>004</td> <td>2</td> <td>011</td> <td>3</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>NC</td> <td>1</td> <td>NC</td> <td>1</td>	312			min	004	2	011	3	0	1	0	1	NC	1	NC	1
314 min 006 2 014 3 0 1 0 1 7993.887 3 NC 1 315 6 max .008 3 004 15 0 1 0 1 NC 1 NC 1 316 min 007 2 017 3 0 1 0 1 6748.551 3 NC 1 317 7 max .009 3 004 15 0 1 0 1 6748.551 3 NC 1 318 min 009 2 019 3 0 1 0 1 NC 1 NC 1 318 min 009 2 019 3 0 1 0 1 NC 1 319 8 max .011 3 005 15 0 1 0 1	313		5	max	.006	3	003	15	0	1	0	1	NC	1	NC	1
315 6 max .008 3 004 15 0 1 0 1 NC 1 NC 1 316 min 007 2 017 3 0 1 0 1 6748.551 3 NC 1 317 7 max .009 3 004 15 0 1 0 1 NC 2 NC 1 318 min 009 2 019 3 0 1 0 1 5924.812 4 NC 1 319 8 max .011 3 005 15 0 1 0 1 NC 1 NC 1 320 min 01 2 021 3 0 1 0 1 NC 1 NC 1 321 9 max .013 3 005 15 0 <										1		1		3		1
316 min 007 2 017 3 0 1 0 1 6748.551 3 NC 1 317 7 max .009 3 004 15 0 1 0 1 NC 2 NC 1 318 min 009 2 019 3 0 1 0 1 5924.812 4 NC 1 319 8 max .011 3 005 15 0 1 0 1 5924.812 4 NC 1 320 min 01 2 021 3 0 1 0 1 NC 1 NC 1 321 9 max .013 3 005 15 0 1 0 1 NC 5 NC 1 322 min 012 2 022 3 0 1			6						0	1	-	1		_		
317 7 max .009 3 004 15 0 1 0 1 NC 2 NC 1 318 min 009 2 019 3 0 1 0 1 5924.812 4 NC 1 319 8 max .011 3 005 15 0 1 0 1 NC 2 NC 1 320 min 01 2 021 3 0 1 0 1 5325.641 4 NC 1 321 9 max .013 3 005 15 0 1 0 1 NC 5 NC 1 322 min 012 2 022 3 0 1 0 1 4972.127 4 NC 1 323 10 max .014 3 005 15 0			Ĭ	_												
318 min 009 2 019 3 0 1 0 1 5924.812 4 NC 1 319 8 max .011 3 005 15 0 1 0 1 NC 2 NC 1 320 min 01 2 021 3 0 1 0 1 5325.641 4 NC 1 321 9 max .013 3 005 15 0 1 0 1 NC 5 NC 1 322 min 012 2 022 3 0 1 0 1 4972.127 4 NC 1 323 10 max .014 3 005 15 0 1 0 1 NC 5 NC 1 324 min 013 2 023 3 0 1			7													-
319 8 max .011 3 005 15 0 1 0 1 NC 2 NC 1 320 min 01 2 021 3 0 1 0 1 5325.641 4 NC 1 321 9 max .013 3 005 15 0 1 0 1 NC 5 NC 1 322 min 012 2 022 3 0 1 0 1 4972.127 4 NC 1 323 10 max .014 3 005 15 0 1 0 1 NC 5 NC 1 324 min 013 2 023 3 0 1 0 1 4802.856 4 NC 1											-					
320 min 01 2 021 3 0 1 0 1 5325.641 4 NC 1 321 9 max .013 3 005 15 0 1 0 1 NC 5 NC 1 322 min 012 2 022 3 0 1 0 1 4972.127 4 NC 1 323 10 max .014 3 005 15 0 1 0 1 NC 5 NC 1 324 min 013 2 023 3 0 1 0 1 4802.856 4 NC 1			0											_		_
321 9 max .013 3 005 15 0 1 0 1 NC 5 NC 1 322 min 012 2 022 3 0 1 0 1 4972.127 4 NC 1 323 10 max .014 3 005 15 0 1 0 1 NC 5 NC 1 324 min 013 2 023 3 0 1 0 1 4802.856 4 NC 1			0											-		
322 min 012 2 022 3 0 1 0 1 4972.127 4 NC 1 323 10 max .014 3 005 15 0 1 0 1 NC 5 NC 1 324 min 013 2 023 3 0 1 0 1 4802.856 4 NC 1																
323 10 max .014 3 005 15 0 1 0 1 NC 5 NC 1 324 min 013 2 023 3 0 1 0 1 4802.856 4 NC 1			9													
324 min013 2023 3 0 1 0 1 4802.856 4 NC 1										•	_					-
			10													
325 11 max .016 3005 15 0 1 0 1 NC 5 NC 1				min	013		023			1		1		4		1
	325		11	max	.016	3	005	15	0	1	0	1	NC	5	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Dec 1, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r		(n) L/y Ratio			
326			min	015	2	023	3	0	1	0	1_	4792.944	4	NC	1
327		12	max	.017	3	005	15	0	1	0	_1_	NC	5	NC	1
328			min	016	2	022	3	0	1	0	1_	4944.506	4	NC	1
329		13	max	.019	3	005	15	0	1	0	_1_	NC	5	NC	1
330			min	018	2	021	3	0	1	0	1	5288.692	4	NC	1
331		14	max	.02	3	004	15	0	1	0	_1_	NC	2	NC	1
332			min	019	2	02	3	0	1	0	1	5901.763	4	NC	1
333		15	max	.022	3	004	15	0	1	0	1	NC	1	NC	1
334			min	021	2	018	3	0	1	0	1	6952.476	4	NC	1
335		16	max	.023	3	003	15	0	1	0	1	NC	1	NC	1
336			min	022	2	015	3	0	1	0	1	8849.336	4	NC	1
337		17	max	.025	3	002	15	0	1	0	1	NC	1_	NC	1
338			min	024	2	013	3	0	1	0	1	NC	1	NC	1
339		18	max	.027	3	001	15	0	1	0	1	NC	1	NC	1
340			min	025	2	01	3	0	1	0	1	NC	1	NC	1
341		19	max	.028	3	0	10	0	1	0	1	NC	1	NC	1
342			min	027	2	007	3	0	1	0	1	NC	1	NC	1
343	M8	1	max	.006	2	.026	2	0	1	0	1	NC	1	NC	1
344			min	0	3	029	3	0	1	0	1	NC	1	NC	1
345		2	max	.005	2	.025	2	0	1	0	1	NC	1	NC	1
346			min	0	3	027	3	0	1	0	1	NC	1	NC	1
347		3	max	.005	2	.023	2	0	1	0	1	NC	1	NC	1
348			min	0	3	026	3	0	1	0	1	NC	1	NC	1
349		4	max	.005	2	.022	2	0	1	0	1	NC	1	NC	1
350			min	0	3	024	3	0	1	0	1	NC	1	NC	1
351		5	max	.005	2	.02	2	0	1	0	1	NC	1	NC	1
352			min	0	3	023	3	0	1	0	1	NC	1	NC	1
353		6	max	.004	2	.019	2	0	1	0	1	NC	1	NC	1
354			min	0	3	021	3	0	1	0	1	NC	1	NC	1
355		7	max	.004	2	.017	2	0	1	0	1	NC	1	NC	1
356			min	0	3	019	3	0	1	0	1	NC	1	NC	1
357		8	max	.004	2	.016	2	0	1	0	1	NC	1	NC	1
358			min	0	3	018	3	0	1	0	1	NC	1	NC	1
359		9	max	.003	2	.014	2	0	1	0	1	NC	1	NC	1
360			min	0	3	016	3	0	1	0	1	NC	1	NC	1
361		10	max	.003	2	.013	2	0	1	0	1	NC	1	NC	1
362		1	min	0	3	014	3	0	1	0	1	NC	1	NC	1
363		11	max	.003	2	.012	2	0	1	0	1	NC	1	NC	1
364			min	0	3	013	3	0	1	0	1	NC	1	NC	1
365		12	max	.002	2	.01	2	0	1	0	1	NC	1	NC	1
366		1	min	0	3	011	3	0	1	Ō	1	NC	1	NC	1
367		13	max	.002	2	.009	2	0	1	0	1	NC	1	NC	1
368		10	min	0	3	01	3	0	1	0	1	NC	1	NC	1
369		14	max	.002	2	.007	2	0	1	0	1	NC	1	NC	1
370			min	0	3	008	3	0	1	0	1	NC	1	NC	1
371		15	max	.001	2	.006	2	0	1	0	1	NC	1	NC	1
372		10	min	0	3	006	3	0	1	0	1	NC	1	NC	1
373		16	max	0	2	.004	2	0	1	0	1	NC	1	NC	1
374		10	min	0	3	005	3	0	1	0	1	NC	1	NC	1
375		17	max	0	2	.003	2	0	1	0	1	NC	1	NC	1
376		17	min	0	3	003	3	0	1	0	1	NC	1	NC	1
377		18	max	0	2	.003	2	0	1	0	1	NC	1	NC	1
378		10	min	0	3	002	3	0	1	0	1	NC	1	NC	1
379		19		0	1	<u>002</u> 0	1	0	1	0	1	NC NC	1	NC NC	1
380		19	max	0	1	0	1	0	1	0	1	NC NC	1	NC NC	1
381	M10	1	min	.008	2	.012	2	0	15	1.387e-4	1	NC NC	1	NC NC	1
	IVITU		max				3								
382			min	011	3	018	3	006	1	6.696e-6	10	6404.038	2	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Dec 1, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio	LC) LC
383		2	max	.008	2	.01	2	0	15	1.32e-4	_1_	NC	_1_	NC	1
384			min	011	3	018	3	006	1	6.369e-6	15	7422.371	2	NC	1
385		3	max	.007	2	.009	2	00	15	1.252e-4	_1_	NC	_1_	NC	1
386			min	01	3	017	3	005	1	6.041e-6		8804.824	2	NC	1
387		4	max	.007	2	.007	2	0	15	1.184e-4	1_	NC	_1_	NC	1
388		-	min	009	3	017	3	005	1	5.714e-6	15	NC NC	1_	NC NC	1
389		5	max	.006	2	.006	2	0	15	1.116e-4	1_	NC	1	NC	1
390			min	009	3	016	3	004	1_1	5.386e-6	<u>15</u>	NC NC	1_	NC NC	1
391		6	max	.006	2	.004	2	0	15	1.048e-4	1_	NC NC	1_1	NC	1
392		7	min	008	2	015	2	004	1 1 5	5.059e-6 9.799e-5	<u>15</u>	NC NC	<u>1</u> 1	NC NC	1
393 394		+-	max	.005 008	3	.003 015	3	003	15	4.732e-6	<u>1</u> 15	NC NC	1	NC NC	1
395		8	min	.005	2	.002	2	003 0	15	9.12e-5	15 1	NC NC	1	NC NC	1
396		0	max	007	3	014	3	003	1	4.404e-6	15	NC NC	1	NC NC	1
397		9	max	.005	2	<u>014</u> 0	2	<u>003</u> 0	15	8.441e-5	1	NC	1	NC	1
398		3	min	006	3	013	3	002	1	4.077e-6	15	NC	1	NC	1
399		10	max	.004	2	0	2	0	15	7.762e-5	1	NC	1	NC	1
400		10	min	006	3	012	3	002	1	3.749e-6	15	NC	1	NC	1
401		11	max	.004	2	001	2	0	15	7.083e-5	1	NC	1	NC	1
402			min	005	3	011	3	002	1	3.422e-6	15	NC	1	NC	1
403		12	max	.003	2	002	15	0	15	6.404e-5	1	NC	1	NC	1
404		<u> </u>	min	004	3	01	3	001	1	3.095e-6	15	NC	1	NC	1
405		13	max	.003	2	002	15	0	15	5.724e-5	1	NC	1	NC	1
406			min	004	3	009	3	0	1	2.767e-6	15	NC	1	NC	1
407		14	max	.002	2	002	15	0	15	5.045e-5	1	NC	1	NC	1
408			min	003	3	008	3	0	1	2.44e-6	15	NC	1	NC	1
409		15	max	.002	2	001	15	0	15	4.366e-5	1	NC	1	NC	1
410			min	003	3	006	3	0	1	2.113e-6	15	NC	1	NC	1
411		16	max	.001	2	001	15	0	15	3.687e-5	1	NC	1	NC	1
412			min	002	3	005	3	0	1	1.785e-6	15	NC	1	NC	1
413		17	max	0	2	0	15	0	15	3.008e-5	1_	NC	_1_	NC	1
414			min	001	3	003	4	0	1	1.458e-6	15	NC	1_	NC	1
415		18	max	0	2	0	15	0	15	2.329e-5	_1_	NC	1_	NC	1
416			min	0	3	002	4	0	1	1.13e-6	15	NC	1_	NC	1
417		19	max	0	1	0	1	0	1	1.649e-5	_1_	NC	_1_	NC	1
418			min	0	1	0	1	0	1	8.029e-7	15	NC	1_	NC NC	1
419	<u>M11</u>	1_	max	0	1	0	1	0	1	-1.631e-7	<u>15</u>	NC	1	NC	1
420			min	0	1	0	1	0	1	-3.342e-6	1_	NC NC	1_	NC NC	1
421		2	max	0	3	0	15	0	1	-9.322e-7	<u>15</u>	NC NC	1_	NC	1
422 423		3	min	0	3	003	15	0	1 <u>5</u>	-1.952e-5 -1.701e-6	1_	NC NC	<u>1</u> 1	NC NC	1
		3	max	.001	2	001		0					1		1
424 425		4	min	.002	3	006 002	15	0	15 1	-3.57e-5 -2.47e-6	1_	NC NC	1	NC NC	1
426		4	max min	001	2	002	4	0		-5.188e-5	<u>15</u> 1	NC NC	1	NC NC	1
427		5	max	.002	3	003	15	0	1	-3.188e-5 -3.239e-6	•	NC	1	NC	1
428		5	min	002	2	003 012	4	0			1	8392.885	4	NC	1
429		6	max	.003	3	004	15	0	1	-4.009e-6		NC	2	NC	1
430			min	002	2	015	4	0			1	6810.205	4	NC	1
431		7	max	.002	3	004	15	0	1	-4.778e-6		NC	5	NC	1
432			min	003	2	018	4	0	15	-1.004e-4	1	5856.599	4	NC	1
433		8	max	.003	3	005	15	0	1	-5.547e-6		NC	5	NC	1
434			min	003	2	02	4	0		-1.166e-4	1	5268.617	4	NC	1
435		9	max	.003	3	005	15	0	3	-6.316e-6		NC	5	NC	1
436		Ť	min	004	2	021	4	0	1	-1.328e-4	1	4922.233	4	NC	1
437		10	max	.005	3	005	15	0	12		15	NC	5	NC	1
438		· · ·	min	004	2	022	4	0	1	-1.49e-4	1	4757.377	4	NC	1
439		11	max	.005	3	005	15	0	15	-7.854e-6	15	NC	5	NC	1
			,												

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Dec 1, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC		LC		
440			min	005	2	022	4	0	1 -1.651e-4	1	4749.848	4	NC	1
441		12	max	.006	3	005	15	0		<u>15</u>	NC	5	NC	1
442			min	005	2	021	4	0	1 -1.813e-4	1	4902.042	4	NC	1
443		13	max	.006	3	005	15	0		15	NC	5	NC	1_
444			min	006	2	02	4	001	1 -1.975e-4	1	5245.067	4	NC	1
445		14	max	.007	3	004	15	0		15	NC	5	NC	1
446			min	006	2	018	4	002	1 -2.137e-4	1	5854.749	4	NC	1
447		15	max	.008	3	004	15	0	15 -1.093e-5	15	NC	3	NC	1
448			min	006	2	015	4	002	1 -2.299e-4	1	6898.697	4	NC	1
449		16	max	.008	3	003	15	0	15 -1.17e-5	15	NC	1	NC	1
450			min	007	2	012	4	003	1 -2.46e-4	1	8782.493	4	NC	1
451		17	max	.009	3	002	15	0	15 -1.247e-5	15	NC	1	NC	1
452			min	007	2	009	4	004	1 -2.622e-4	1	NC	1	NC	1
453		18	max	.009	3	001	15	0	15 -1.324e-5	15	NC	1	NC	1
454			min	008	2	005	3	005	1 -2.784e-4	1	NC	1	NC	1
455		19	max	.01	3	0	10	0	15 -1.401e-5	15	NC	1	NC	1
456			min	008	2	002	3	006	1 -2.946e-4	1	NC	1	NC	1
457	M12	1	max	.002	1	.008	2	.006	1 -5.419e-6	15	NC	1	NC	2
458			min	0	3	01	3	0	15 -1.132e-4	1	NC	1	4190.99	1
459		2	max	.002	1	.008	2	.005		15	NC	1	NC	2
460			min	0	3	009	3	0	15 -1.132e-4	1	NC	1	4546.859	1
461		3	max	.002	1	.007	2	.005		15	NC	1	NC	2
462			min	0	3	009	3	0	15 -1.132e-4	1	NC	1	4971.064	1
463		4	max	.002	1	.007	2	.005		15	NC	1	NC	2
464			min	0	3	008	3	0	15 -1.132e-4	1	NC	1	5481.237	1
465		5	max	.002	1	.006	2	.004		15	NC	1	NC	2
466			min	0	3	008	3	0	15 -1.132e-4	1	NC	1	6101.353	
467		6	max	.002	1	.006	2	.004		15	NC	1	NC	2
468		Ť	min	0	3	007	3	0	15 -1.132e-4	1	NC	1	6864.66	1
469		7	max	.001	1	.005	2	.003		15	NC	1	NC	2
470			min	0	3	007	3	0	15 -1.132e-4	1	NC	1	7818.353	1
471		8	max	.001	1	.005	2	.003		15	NC	1	NC	2
472			min	0	3	006	3	0	15 -1.132e-4	1	NC	1	9031.252	1
473		9	max	.001	1	.004	2	.002		15	NC	1	NC	1
474			min	0	3	006	3	0	15 -1.132e-4	1	NC	1	NC	1
475		10	max	.001	1	.004	2	.002		15	NC	1	NC	1
476		1.0	min	0	3	005	3	0	15 -1.132e-4	1	NC	1	NC	1
477		11	max	0	1	.004	2	.002		15	NC	1	NC	1
478			min	0	3	004	3	0	15 -1.132e-4	1	NC	1	NC	1
479		12	max	0	1	.003	2	.001	1 -5.419e-6		NC	1	NC	1
480		12	min	0	3	004	3	0	15 -1.132e-4		NC	1	NC	1
481		13	max	0	1	.003	2	0	1 -5.419e-6		NC	1	NC	1
482		10	min	0	3	003	3	0	15 -1.132e-4	1	NC	1	NC	1
483		14	max	0	1	.002	2	0	1 -5.419e-6	15	NC	1	NC	1
484		17	min	0	3	003	3	0	15 -1.132e-4	1	NC	1	NC	1
485		15	max	0	1	.002	2	0		15	NC	1	NC	1
486		13	min	0	3	002	3	0	15 -1.132e-4	1	NC	1	NC	1
487		16	max	0	1	.002	2	0		15	NC NC	1	NC NC	1
488		10	min	0	3	002	3	0	15 -1.132e-4	1	NC NC	1	NC	1
489		17	max	0	1	<u>002</u> 0	2	0	1 -5.419e-6		NC NC	1	NC NC	1
490		17	min	0	3	001	3	0	15 -1.132e-4	1	NC NC	1	NC NC	1
491		10					2				NC NC	1	NC NC	-
		18	max	0	3	0		0		10		1		1
492		10	min	0		0	3	0	15 -1.132e-4	1 E	NC NC	•	NC NC	
493		19	max	0	1	0	1	0		15	NC NC	<u>1</u> 1	NC	1
494	N 1 4	4	min	.012		<u>0</u> .224		0	1 111020 1	1	NC NC		NC NC	
495	<u>M1</u>	1	max		3		2	0	1 5.81e-3	2	NC NC	1	NC NC	1
496			min	008	2	072	3	0	15 -1.522e-2	3	NC	<u>1</u>	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Dec 1, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC	(n) L/y Ratio		(n) L/z Ratio	LC
497		2	max	.012	3	.108	2	0	15	2.85e-3	2		5	NC	1
498			min	008	2	033	3	005	1	-7.556e-3	3		2	NC	1
499		3	max	.012	3	.019	3	00	15	2.258e-5	10	NC	5	NC	1
500			min	008	2	015	2	006	1	-1.111e-4	1_	569.071	2	NC	1
501		4	max	.012	3	.096	3	0	15	3.743e-3	2	NC	5	NC NC	1
502		-	min	008	2	149	2	006	1_	-3.925e-3	3	363.342	2	NC NC	1
503		5	max	.012	3	.188	3	0	15	7.48e-3	2		15	NC NC	1
504			min	007	2	288	2	004	1	-7.751e-3	3		2	NC NC	1
505		6	max	.011	3	.286	3	0	15	1.122e-2	2		15	NC NC	1
506		7	min	007	2	422	3	002	1	-1.158e-2	3	209.961	2	NC NC	1
507			max	.011	3	.378 54		0	3	1.495e-2 -1.54e-2	3		15 2	NC NC	1
508 509		8	min	007 .011	3	<u>54</u> .455	3	<u> </u>	1	1.869e-2	2		<u>-</u> 15	NC NC	1
510		0	max	007	2	633	2	0		-1.923e-2	3	158.2	2	NC NC	1
511		9	max	.011	3	<u>033</u> .504	3	0	15	2.091e-2	2		15	NC	1
512		1 3	min	007	2	692	2	0	1	-1.987e-2	3		2	NC	1
513		10	max	.01	3	.522	3	0	1	2.212e-2	2		15	NC	1
514		10	min	007	2	712	2	0	15	-1.839e-2	3		2	NC	1
515		11	max	.01	3	.51	3	0	1	2.333e-2	2		15	NC	1
516			min	007	2	692	2	0	15	-1.69e-2	3	148.688	2	NC	1
517		12	max	.01	3	.468	3	0	15	2.228e-2	2		15	NC	1
518		<u> </u>	min	006	2	63	2	0	1	-1.482e-2	3		2	NC	1
519		13	max	.01	3	.399	3	0	10	1.786e-2	2		15	NC	1
520			min	006	2	532	2	0	1	-1.186e-2	3	181.293	2	NC	1
521		14	max	.009	3	.311	3	.001	1	1.345e-2	2		15	NC	1
522			min	006	2	41	2	0	15	-8.895e-3	3		2	NC	1
523		15	max	.009	3	.212	3	.004	1	9.035e-3	2	NC	15	NC	1
524			min	006	2	274	2	0	15	-5.931e-3	3	280.559	2	NC	1
525		16	max	.009	3	.108	3	.005	1	4.621e-3	2	NC	5	NC	1
526			min	006	2	136	2	0	15	-2.967e-3	3	395.894	2	NC	1
527		17	max	.009	3	.007	3	.006	1	4.041e-4	1	NC	5	NC	1
528			min	006	2	008	2	0	15	-3.879e-6	3	640.546	2	NC	1
529		18	max	.009	3	.101	2	.004	1	5.279e-3	2	NC	5	NC	1
530			min	006	2	086	3	0	15	-1.75e-3	3	1351.428	2	NC	1
531		19	max	.009	3	.199	2	0	15	1.052e-2	2	NC	1	NC	1
532			min	006	2	173	3	0	1	-3.581e-3	3	NC	1	NC	1
533	<u>M5</u>	1	max	.036	3	.339	2	0	1	0	1		1	NC NC	1
534			min	025	2	007	3	0	1	0	1		1	NC NC	1
535		2	max	.036	3	.161	2	0	1	0	1	NC TTO CO.	5	NC NC	1
536			min	025	2	.002	3	0	1	0	1_	773.894	2	NC NC	1
537		3	max	.035	3	.056	3	0	1	0	1		5	NC NC	1
538		1	min	025	2	042	2	0	1	0	1		2	NC NC	1
539		4	max	.035	3	.188	2	0	1	0	<u>1</u> 1		15 2	NC NC	1
540 541		5	min	025 .034	3	29 .377	3	0	1	0	1		<u>-</u> 15	NC NC	1
542		5	max min	024	2	564	2	0	1	0	1		2	NC	1
543		6	max	.033	3	.593	3	0	1	0	+		15	NC	1
544		-	min	024	2	839	2	0	1	0	1		2	NC	1
545		7	max	.032	3	.805	3	0	1	0	+		15	NC	1
546			min	024	2	-1.09	2	0	1	0	1		2	NC	1
547		8	max	.032	3	.984	3	0	1	0	1		15	NC NC	1
548			min	023	2	-1.292	2	0	1	0	1		2	NC	1
549		9	max	.031	3	1.099	3	0	1	0	1		15	NC	1
550			min	023	2	-1.42	2	0	1	0	1		2	NC	1
551		10	max	.03	3	1.141	3	0	1	0	1		15	NC NC	1
552			min	022	2	-1.464	2	0	1	0	1		2	NC	1
553		11	max	.029	3	1.112	3	0	1	0	1		15	NC	1
			max	.020					<u> </u>			0			

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Dec 1, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC_
554			min	022	2	-1.421	2	0	1	0	1	77.974	2	NC	1
555		12	max	.029	3	1.014	3	0	1	0	1_	4072.813	15	NC	1
556			min	021	2	-1.287	2	0	1	0	1	84.798	2	NC	1
557		13	max	.028	3	.856	3	0	1	0	1_	4650.65	15	NC	1
558			min	021	2	-1.072	2	0	1	0	1	98.431	2	NC	1
559		14	max	.027	3	.658	3	0	1_	0	_1_		15	NC	1
560			min	021	2	807	2	0	1	0	1	122.648	2	NC	1
561		15	max	.026	3	.44	3	0	1	0	1_	7395.884	15	NC	1
562			min	02	2	523	2	0	1	0	1	166.528	2	NC	1
563		16	max	.026	3	.22	3	0	1	0	1		15	NC	1
564			min	02	2	251	2	0	1	0	1	253.508	2	NC	1
565		17	max	.025	3	.018	3	0	1	0	1	NC	5	NC	1
566			min	02	2	022	2	0	1	0	1	453.876	2	NC	1
567		18	max	.025	3	.141	2	0	1	0	1	NC	5	NC	1
568			min	02	2	15	3	0	1	0	1	1014.192	3	NC	1
569		19	max	.025	3	.266	2	0	1	0	1	NC	1	NC	1
570			min	02	2	298	3	0	1	0	1	NC	1	NC	1
571	M9	1	max	.012	3	.224	2	0	15	1.522e-2	3	NC	1	NC	1
572			min	008	2	072	3	0	1	-5.81e-3	2	NC	1	NC	1
573		2	max	.012	3	.108	2	.005	1	7.556e-3	3	NC	5	NC	1
574			min	008	2	033	3	0	15	-2.85e-3	2	1172.471	2	NC	1
575		3	max	.012	3	.019	3	.006	1	1.111e-4	1	NC	5	NC	1
576			min	008	2	015	2	0	15	-2.258e-5	10	569.071	2	NC	1
577		4	max	.012	3	.096	3	.006	1	3.925e-3	3	NC	5	NC	1
578			min	008	2	149	2	0	15	-3.743e-3	2	363.342	2	NC	1
579		5	max	.012	3	.188	3	.004	1	7.751e-3	3	NC	15	NC	1
580			min	007	2	288	2	0	15	-7.48e-3	2	264.683	2	NC	1
581		6	max	.011	3	.286	3	.002	1	1.158e-2	3	9182.461	15	NC	1
582			min	007	2	422	2	0	15	-1.122e-2	2	209.961	2	NC	1
583		7	max	.011	3	.378	3	0	3	1.54e-2	3		15	NC	1
584			min	007	2	54	2	0	1	-1.495e-2	2	177.483	2	NC	1
585		8	max	.011	3	.455	3	0	15	1.923e-2	3		15	NC	1
586			min	007	2	633	2	0	1	-1.869e-2	2	158.2	2	NC	1
587		9	max	.011	3	.504	3	0	1	1.987e-2	3		15	NC	1
588			min	007	2	692	2	0	15	-2.091e-2	2	148.127	2	NC	1
589		10	max	.01	3	.522	3	0	15	1.839e-2	3		15	NC	1
590			min	007	2	712	2	0	1	-2.212e-2	2	145.185	2	NC	1
591		11	max	.01	3	.51	3	0	15	1.69e-2	3		15	NC	1
592			min	007	2	692	2	0	1	-2.333e-2	2	148.688	2	NC	1
593		12	max	.01	3	.468	3	0	1	1.482e-2	3		15	NC	1
594			min		2	63	2	0	15	-2.228e-2		159.829	2	NC	1
595		13	max	.01	3	.399	3	0	1	1.186e-2	3		15	NC	1
596			min	006	2	532	2	0	10	-1.786e-2	2	181.293	2	NC	1
597		14	max	.009	3	.311	3	0	15		3		15	NC	1
598			min	006	2	41	2	001	1	-1.345e-2	2	217.875	2	NC	1
599		15	max	.009	3	.212	3	0	15	5.931e-3	3		15	NC	1
600			min	006	2	274	2	004	1	-9.035e-3	2	280.559	2	NC	1
601		16	max	.009	3	.108	3	0	15	2.967e-3	3	NC	5	NC	1
602		1.0	min	006	2	136	2	005	1	-4.621e-3	2	395.894	2	NC	1
603		17	max	.009	3	.007	3	<u>.005</u>	15	3.879e-6	3	NC	5	NC NC	1
604			min	006	2	008	2	006	1	-4.041e-4	1	640.546	2	NC	1
605		18	max	.009	3	.101	2	<u>000</u>	15	1.75e-3	3	NC	5	NC	1
606		10	min	006	2	086	3	004	1	-5.279e-3	2	1351.428	2	NC	1
607		19	max	.009	3	.199	2	0	1	3.581e-3	3	NC	1	NC	1
608		13	min	006	2	173	3	0		-1.052e-2	2	NC	1	NC	1
000			1111111	.000		.170	J	U	10	1.0026-2		110		INO	

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method: ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			•

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1020.0	27.0	565.0	565.6	
Sum	1020.0	27.0	565.0	565 6	

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1020

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)	
8095	0.75	6071	

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_t)$	Nc / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4))			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247.75	0.967	1.00	1.000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

rt-term K _{sat} τ _{k,cr} (psi)
0 1.00 1035
. D-16f)
(in) h_{ef} (in) N_{a0} (lb)
0 6.000 9755
Ψ _{ed,Na} Ψ _{p,Na} N _{a0} (Sec. D.4.1 & Eq. D-16a)
$\Psi_{\text{ed},Na}$ $\Psi_{\text{p},Na}$

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 14-	40 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	7.00	6947			
$\phi V_{cby} = \phi (A_V)$	/c / A vco) \(\mathcal{P}_{ed, V} \(\mathcal{P}_{c, V} \)	$ \sqrt{\Psi_{h,V}V_{by}} $ (Sec.	D.4.1 & Eq. D-2	1)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$arPsi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)	
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934	

 V_{bx} (lb)

8282

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/c$	$(d_a)^{0.2} \sqrt{d_a} \lambda \sqrt{f'_c} c_{a1}$				
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	
4.00	0.50	1.00	2500	7.87	

 $\phi V_{cbx} = \phi (A_{Vc}/A_{Vco}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{bx}$ (Sec. D.4.1 & Eq. D-21)

Avc (in ²)	Avco (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f_c c_{a1}}^{1.5} \text{ (Eq. D-24)}$ $\frac{I_e \text{ (in)} \qquad d_a \text{ (in)} \qquad \lambda \qquad \qquad f'_c \text{ (psi)} \qquad c_{a1} \text{ (in)} \qquad V_{by} \text{ (lb)}}{4.00 \qquad 0.50 \qquad 1.00 \qquad 2500 \qquad 7.00 \qquad 6947}$ $\phi V_{cbx} = \phi (2) (A_{Vc}/A_{Vc}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{by} \text{ (Sec. D.4.1, D.6.2.1(c) \& Eq. D-21)}$

$\varphi \mathbf{v} \cos \varphi \left(\frac{2}{3} \right) (11)$	/c/ / (v co) 1 eu, v 1 c, i	V 1 11, V V by (OCO. D	.+. 1, D.O.Z. 1(0)	α Lq. D Z 1)			
Avc (in ²)	$Av\infty$ (in ²)	$\varPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	da (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cby} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a \; ; \; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \, \Psi_{ed,Na} \, \Psi_{p,Na} N_{a0} \; ; \; k_{cp} (A_{Nc}/A_{Nco}) \, \Psi_{ed,N} \, \Psi_{c,N} \, \Psi_{cp,N} N_b| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{p,Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
Anc (in²)	Ανω (in²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ	$\phi V_{c ho}$ (lb)
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			_

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1020	6071	0.17	Pass
Concrete breakout	1020	5710	0.18	Pass
Adhesive	1020	5365	0.19	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	566	3156	0.18	Pass (Governs)
T Concrete breakout y+	565	3934	0.14	Pass
T Concrete breakout x+	27	3018	0.01	Pass
Concrete breakout y+	27	8508	0.00	Pass
Concrete breakout x+	565	6875	0.08	Pass
Concrete breakout, combined	-	-	0.14	Pass
Pryout	566	12298	0.05	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rat	io Permissible	Status
Sec. D.7.1 0.1	9 0.00	19.0 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 32-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail:

Comment:

Project description:

Location:

Fastening description:

2. Input Data & Anchor Parameters

General

Design method: ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 32-	40 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016				
Engineer:	HCV	Page:	3/5				
Project:	Standard PVMax - Worst Case, 32-40 Inch Width						
Address:							
Phone:							
E-mail:							

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2732.0	1650.0	0.0	1650.0
2	2732.0	1650.0	0.0	1650.0
Sum	5464.0	3300.0	0.0	3300.0

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 5464 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	ť _c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_I)$	$_{ m Nc}$ / $A_{ m Nco}$) $\Psi_{ m ec,N}$ $\Psi_{ m ec}$	I,N $\Psi_{c,N} \Psi_{cp,N} N_b$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ec,N}$	$\mathscr{V}_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
408.24	324.00	1.000	1.000	1.00	1.000	12492	0.65	10231

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	† short-term	K _{sat}	τ _{k,cr} (psi)	
1035	1.00	1.00	1035	
$N_{a0} = \tau_{k,cr} \pi d_{al}$	hef (Eq. D-16f)			
τ _{k,cr} (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)	
1035	0.50	6.000	9755	

 $\phi N_{ag} = \phi \left(A_{Na} / A_{Na0} \right) \Psi_{\text{ed},Na} \Psi_{g,Na} \Psi_{\text{ec},Na} \Psi_{p,Na} N_{a0} \left(\text{Sec. D.4.1 \& Eq. D-16b} \right)$

A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m extsf{p},Na}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	8/1/2016			
Engineer:	HCV	Page:	4/5			
Project:	Standard PVMax - Worst Case, 32-40 Inch Width					
Address:						
Phone:						
E-mail:						

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	da (in)	λ	f'_c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	Avc/Avco) Yec, v Ye	$_{ed,V} arPsi_{c,V} arPsi_{h,V} arV_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\varPsi_{\sf ed,V}$	$arPsi_{ extsf{c}, extsf{V}}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (lb)
576.00	648.00	1.000	0.928	1.000	1.000	15593	0.70	9001

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

le (in)	da (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	13.66	18939		
$\phi V_{cbx} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$arPsi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
737.64	839.68	1.000	1.000	1.000	18939	0.70	23292

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{\textit{Cpg}} = \phi \min |\textit{KcpNag}\;;\; \textit{KcpNcbg}| = \phi \min |\textit{Kcp}(\textit{A}_\textit{Na} / \textit{A}_\textit{Na0}) \, \Psi_{\textit{ed},\textit{Na}} \, \Psi_{\textit{e},\textit{Na}} \, \Psi_{\textit{e},\textit{Na}} \, \Psi_{\textit{e},\textit{Na}} \, N_{\textit{a0}}\;;\; \textit{Kcp}(\textit{A}_\textit{Nc} / \textit{A}_\textit{Nco}) \, \Psi_{\textit{e},\textit{N}} \, \Psi_{\textit{e},\textit{N}} \, \Psi_{\textit{e},\textit{N}} \, \Psi_{\textit{e},\textit{N}} \, N_{\textit{b}}|\; (\text{Eq. D-30b})$

, ,,,	1 1 3 7 1		(3,	r, , , , , , , ,	, ,		
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\Psi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m extsf{p},Na}$	<i>N</i> _{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A _{Nc} (in²)	A _{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	N _{cb} (lb)	ϕ
408.24	324.00	1.000	1.000	1.000	1.000	12492	15740	0.70

φV_{cpg} (lb) 20601

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2732	6071	0.45	Pass
Concrete breakout	5464	10231	0.53	Pass
Adhesive	5464	8093	0.68	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1650	3156	0.52	Pass (Governs)
T Concrete breakout x+	3300	9001	0.37	Pass

Company:	Schletter, Inc.	Date:	8/1/2016			
Engineer:	HCV	Page:	5/5			
Project:	Standard PVMax - Worst Case, 32-40 Inch Width					
Address:						
Phone:						
E-mail:						

Concrete breako	ut y- 1650	23292	2 0.0	07	Pass	
Pryout	3300	20601	0.1	16	Pass	
					-	
Interaction check	$N_{ua}/\phi N_n$	$V_{ua}/\phi V_n$	Combined Ratio	Permissible	Status	
Sec. D.7.3	0.68	0.52	119.8 %	1.2	Pass	

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.