A Book of Abstract Algebra (2nd Edition)

Chapter 16, Problem 2EB

2 Bookmarks

Show all steps: ON

Problem

Let $\mathscr{F}(\mathbb{R}) \to \mathbb{R}$ be defined by $\alpha(f) = f(1)$ and let $\beta : \mathscr{F}(\mathbb{R}) \to \mathbb{R}$ be defined by $\beta(f) = f(2)$.

Let J be the set of all the functions from \mathbb{R} to \mathbb{R} whose graph passes through the point (1,0)and let K be the set of all the functions whose graph passes through (2, 0). Use the FHT to prove that $\mathbb{R} \cong \mathcal{F}(\mathbb{R})/J$ and $\mathbb{R} \cong \mathcal{F}(\mathbb{R})/K$

Step-by-step solution

Step 1 of 4

Consider the two functions

$$\alpha: F(R) \to R$$

$$\beta: F(R) \to R$$

defined by

$$\alpha(f) = f(1),$$

$$\beta(f) = f(2)$$

Here, F(R) represents the group of all functions from R to R.

Suppose that J is the set of all real functions whose graph passes through the point (1,0) and let K is the set of all functions whose graph passes through the point (2,0). Objective is to use the fundamental homomorphism theorem and prove that

$$R \cong f(R)/J$$
 and $R \cong f(R)/K$.

Comment

Step 2 of 4

According to the fundamental homomorphism theorem, if $f: G \to H$ is a homomorphism of Gonto H, with kernel K then

 $H \cong G/K$

The function α is onto because for all $x \in R$, one can define a function $f: R \to R$ such that f(1) = x. If one finds the kernel of mapping α , it will be

$$\ker \alpha = \{ h \in F(R) : \alpha(h) = 0 \}$$

The condition $\alpha(h) = 0$ implies that h(1) = 0. That is, the function h will be the member of $\ker \alpha$ if it satisfies the condition h(1) = 0. Equivalently, the kernel is the set of all real functions whose graph passes through the point (1,0). Thus, J will form the kernel of α .

Comment

Step 3 of 4

Since $\alpha: F(R) \to R$ is an onto homomorphism with kernel J, therefore by the fundamental homomorphism theorem $R \cong f(R)/J$.

Similarly, The function β is onto because for all $x \in R$, one can define a function $f: R \to R$ such that f(2) = x. If one finds the kernel of mapping β , it will be

$$\ker \beta = \{ h \in F(R) : \beta(h) = 0 \}$$

The condition $\beta(h) = 0$ implies that h(2) = 0. That is, the function h will be the member of $\ker \beta$ if it satisfies the condition h(2) = 0. Equivalently, the kernel is the set of all real functions whose graph passes through the point (2, 0). Thus, K will form the kernel of β .

Comment

Step 4 of 4

Thus, $R \cong f(R)/K$.

Comment