

Simplex Method and Sensitivity Analysis

Andrés D. González

Assistant Professor

School of Industrial and Systems Engineering, The University of Oklahoma

The University of Oklahoma, Norman, OK, USA

Converting inequalities into equations

- To convert a *less or equal* (\leq) inequality to an equation, a nonnegative **slack variable** is **added** to the left-hand side of the constraint.
- Correspondingly, to convert a greater or equal (≥) inequality to an equation, a
 nonnegative surplus variable is subtracted to the left-hand side of the constraint.
 - For example, the M1 constraint of the Reddy Mikks model (Example 2.1-1), which was

$$6x_1 + 4x_2 \le 24$$

can be replaced by

$$6x_1 + 4x_2 + s1 = 24$$
$$s1 \ge 0$$

Suppose you have the following LP model

Maximize
$$z = x_1 + 2x_2$$

subject to
$$3x_1 + x_2 \le 6$$
$$2x_1 - 4x_2 \ge -4$$
$$x_1, x_2 \ge 0$$

Suppose you have the following LP model

Maximize
$$z = x_1 + 2x_2$$

subject to
$$3x_1 + x_2 \le 6$$
$$2x_1 - 4x_2 \ge -4$$
$$x_1, x_2 \ge 0$$

Replace it by an equivalent LP model with only equality constraints and non-negative right-hand sides

Suppose you have the following LP model

Maximize
$$z = x_1 + 2x_2$$

subject to
$$3x_1 + x_2 \le 6$$
$$2x_1 - 4x_2 \ge -4$$
$$x_1, x_2 \ge 0$$

Replace it by an equivalent LP model with only equality constraints and non-negative right-hand sides

Maximize
$$z = x_1 + 2x_2$$

subject to
 $3x_1 + x_2 + s_1 = 6$
 $2x_1 - 4x_2 - s_2 = -4$
 $x_1, x_2, s_1, s_2 \ge 0$

Suppose you have the following LP model

Maximize
$$z = x_1 + 2x_2$$

subject to

$$3x_1 + x_2 \leq 6$$

$$2x_1 - 4x_2 \geq -4$$

$$x_1, x_2 \geq 0$$

Replace it by an equivalent LP model with only equality constraints and non-negative right-hand sides

Maximize
$$z = x_1 + 2x_2$$

subject to
 $3x_1 + x_2 + s_1 = 6$
 $-2x_1 + 4x_2 + s_2 = 4$
 $x_1, x_2, s_1, s_2 \ge 0$

Dealing with non-positive and unrestricted variables

- Case 1: Suppose you have an LP model with a variable y that is non-positive. You could simply replace it (everywhere in the model) by $-\hat{y}$, where \hat{y} is a non-negative variable
- Case 2: Suppose you have an LP model with a variable y that is free (or non-restricted). You could simply replace it (everywhere in the model) by $y^- y^+$, where y^- and y^- are non-negative variables

Suppose you have the following LP model

Maximize
$$z = -10x_1 + 5x_2$$

subject to
 $-x_1 + x_2 \le 10$
 $-3x_1 - 4x_2 \le 10$
 $x_1 \le 0$
 x_2 is free

Replace it by an equivalent LP model with only equality constraints, non-negative right-hand sides, and non-negative variables

Suppose you have the following LP model

Maximize
$$z = -10x_1 + 5x_2$$

subject to
 $-x_1 + x_2 \le 10$
 $-3x_1 - 4x_2 \le 10$
 $x_1 \le 0$
 x_2 is free

Replace it by an equivalent LP model with only equality constraints, non-negative right hand sides, and non-negative variables

Maximize
$$z = -10(-\hat{x}_1) + 5(x_2^- - x_2^+)$$
 subject to
$$-(-\hat{x}_1) + (x_2^- - x_2^+) + s_1 = 10$$

$$-3(-\hat{x}_1) - 4(x_2^- - x_2^+) + s_2 = 10$$
 Rearranging and simplifying
$$x_2^-, x_2^+ \ge 0$$
 Maximize $z = 10\hat{x}_1 + 5x_2^- - 5x_2^+$ subject to

 $\hat{x}_1 + x_2^- - x_2^+ + s_1 = 10$

 $3\hat{x}_1 - 4x_2^- + 4x_2^+ + s_2 = 10$

 $\hat{x}_1, x_2^-, x_2^+ \ge 0$

Consider the following LP with two variables

Maximize
$$z = 2x_1 + 3x_2$$

subject to
$$2x_1 + x_2 \le 4$$
$$x_1 + 2x_2 \le 5$$
$$x_1, x_2 \ge 0$$

Let us solve it using the graphical method

- What is the equivalent LP with:
 - Only equality constraints
 - Only non-negative right-hand side
 - Only non-negative variables

Maximize
$$z = 2x_1 + 3x_2$$

subject to
 $2x_1 + x_2 + s_1 = 4$
 $x_1 + 2x_2 + s_2 = 5$
 $x_1, x_2, s_1, s_2 \ge 0$

Maximize
$$z = 2x_1 + 3x_2$$

subject to
$$2x_1 + x_2 + s_1 = 4$$
$$x_1 + 2x_2 + s_2 = 5$$
$$x_1, x_2, s_1, s_2 \ge 0$$

- For this problem, in the **optimal** solution s_1 and s_2 are zero
 - Thus, the optimal values of the other variables can be determined by solving

$$2x_1 + x_2 + \mathbf{0} = 4$$

 $x_1 + 2x_2 + \mathbf{0} = 5$

 Then, using Gauss-Jordan, it is easy to see that there is a unique solution:

$$x_1 = 1, x_2 = 2$$

Maximize
$$z = 2x_1 + 3x_2$$

subject to $2x_1 + x_2 + s_1 = 4$
 $x_1 + 2x_2 + s_2 = 5$
 $x_1, x_2, s_1, s_2 \ge 0$

- For this feasible solution, s_1 and x_2 are zero
 - Thus, the values of the other variables can be determined by solving the system of equations:

$$2x_1 + 0 + 0 = 4$$

 $x_1 + 0 + s_2 = 5$

 Then, using Gauss-Jordan, it is easy to see that there is a unique solution to this system of eqns:

$$x_1 = 2, s_2 = 3$$

Maximize
$$z = 2x_1 + 3x_2$$

subject to $2x_1 + x_2 + s_1 = 4$
 $x_1 + 2x_2 + s_2 = 5$
 $x_1, x_2, s_1, s_2 \ge 0$

- For this *infeasible* solution, x_1 and s_1 are zero
 - Thus, the values of the other variables can be determined by solving the system of equations:

$$0 + x_2 + 0 = 4$$

 $0 + 2x_2 + s_2 = 5$

 Then, using Gauss-Jordan, it is easy to see that there is a unique solution to this system of eqns:

$$x_2 = 4, s_2 = -3$$

Maximize
$$z = 2x_1 + 3x_2$$

subject to
 $2x_1 + x_2 + s_1 = 4$
 $x_1 + 2x_2 + s_2 = 5$
 $x_1, x_2, s_1, s_2 \ge 0$

Nonbasic (zero) variables	Basic variables	Basic solution	Associated corner point	l Feasible?	Objective value, z
(x_1,x_2)	(s_1, s_2)	(4,5)	A	Yes	0
(x_1,s_1)	(x_2, s_2)	(4, -3)	F •	No	12
(x_1,s_2)	(x_2,s_1)	(2.5,1.5)	В	Yes	7.5
(x_2,s_1)	(x_1,s_2)	(2,3)	D •	Yes	4
(x_2, s_2)	(x_1, s_1)	(5, -6)	E 🛑	No	10
(s_1, s_2)	(x_1, x_2)	(1,2)	C	Yes	8

Maximize
$$z = 2x_1 + 3x_2$$

subject to
 $2x_1 + x_2 + s_1 = 4$
 $x_1 + 2x_2 + s_2 = 5$
 $x_1, x_2, s_1, s_2 \ge 0$

Nonbasic (zero) variables	Basic variables	Basic solution	Associated corner point	Feasible?	Objective value, z
(x_1, x_2)	(s_1, s_2)	(4,5)	A	Yes	0
(x_1, s_1)	(x_2, s_2)	(4, -3)	F •	No	12
(x_1,s_2)	(x_2,s_1)	(2.5,1.5)	В	Yes	7.5
(x_2,s_1)	(x_1, s_2)	(2,3)	D •	Yes	4
(x_2, s_2)	(x_1, s_1)	(5, -6)	Е	No	10
(s_1, s_2)	(x_1, x_2)	(1,2)	C	Yes	8

Transition from graphical to algebraic solution

The Simplex method

- In general, for a problem with non-empty set of feasible solutions, we have m linearly independent equations and n variables (including slack and surplus variables) (where $m \leq n$)
 - The maximum number of basic solutions (which correspond to corner points in the graphical solution space) is

$$C_m^n = \frac{n!}{m! (n-m)!}$$

This number is VERY large. For example, this for a problem with 20 variables and 10 constraints (a very small problem in most realistic applications) you'll have 184,756 basic solutions!

• We need a (much) more efficient algorithm: SIMPLEX

• Let's revisit Example 3...

1) Start from a feasible basic solution

- 1) Start from a feasible basic solution
- 2) Check if there is any "promising" direction to move
 - It needs to be along a "constraint"
 - You cannot move beyond the first "constraint" you find in your path

- 1) Start from a feasible basic solution
- 2) Check if there is any "promising" direction to move
 - It needs to be along a "constraint"
 - You cannot move beyond the first "constraint" you find in your path
- 3) From all the "promising" directions, move in the "most promising" direction, and update basic and non-basic variables
 - If there are no "promising" directions,
 STOP, since you are in the OPTIMAL
 SOLUTION

- 1) Start from a feasible basic solution
- 2) Check if there is any "promising" direction to move
 - It needs to be along a "constraint"
 - You cannot move beyond the first "constraint" you find in your path
- 3) From all the "promising" directions, move in the "most promising" direction, and update basic and non-basic variables
 - If there are no "promising" directions, STOP, since you are in the OPTIMAL SOLUTION
- 4) Repeat 2) and 3)

Let's follow the same idea... but algebraically

Maximize
$$z = 2x_1 + 3x_2$$

subject to
$$2x_1 + x_2 \le 4$$
$$x_1 + 2x_2 \le 5$$
$$x_1, x_2 \ge 0$$

 Step 1: Transform to LP model with only equality constraints, non-negative righthand side, and non-negative variables

Maximize
$$z = 2x_1 + 3x_2$$

subject to
$$2x_1 + x_2 + s_1 = 4$$
$$x_1 + 2x_2 + s_2 = 5$$
$$x_1, x_2, s_1, s_2 \ge 0$$

Let's follow the same idea... but algebraically

Maximize
$$z = 2x_1 + 3x_2$$

subject to
 $2x_1 + x_2 + s_1 = 4$
 $x_1 + 2x_2 + s_2 = 5$
 $x_1, x_2, s_1, s_2 \ge 0$

• Step 2: Find an initial feasible basic solution:

In this case, $x_1 = x_2 = 0$ (the trivial solution) is feasible! Thus, a feasible basic solution would be:

$$s_1 = 4, s_2 = 5$$
 $\rightarrow BASIC VARIABLES$
 $x_1 = x_2 = 0$ $\rightarrow NONBASIC VARIABLES$

Note: what if the trivial solution is not feasible? Then we need to use an initialization method (e.g., big-M method, two-phase method)

Let's start working in a table form (a.k.a. Simplex Tableau)

Maximize
$$z = 2x_1 + 3x_2$$

subject to
$$2x_1 + x_2 + s_1 = 4$$
$$x_1 + 2x_2 + s_2 = 5$$
$$x_1, x_2, s_1, s_2 \ge 0$$

$$\begin{vmatrix} s_1 = 4, s_2 = 5 \\ x_1 = x_2 = 0 \end{vmatrix} \rightarrow BASIC VARIABLES$$

Basic	Z	x_1	x_2	s_1	s_2	Solution	
Z	1	-2	-3	0	0	0	z-row
s_1	0	2	1	1	0	4	s_1 row
s_2	0	1	2	0	1	5	s ₂ row

Maximize
$$z = 2x_1 + 3x_2$$

$$z - 2x_1 - 3x_2 = 0$$
subject to
$$2x_1 + x_2 + s_1$$

$$x_1 + 2x_2 + s_2$$

$$x_1, x_2, s_1, s_2 \ge 0$$

$$s_1 = 4, s_2 = 5 \rightarrow BASIC VARIABLES$$

$$x_1 = x_2 = 0 \rightarrow NONBASIC VARIABLES$$

Basic	Z	x_1	x_2	s_1	s_2	Solution	
Z	1	-2	-3	0	0	0	z-row
s_1	0	2	1	1	0	4	s_1 row
s_2	0	1	2	0	1	5	s_2 row

Step 3: Find the "most promising" direction to move:

In other words, determine which non-basic variable (i.e., is zero) would improve the objective function the most if it became basic (i.e., if it became non-zero)

- Let's use this rule (for now):
 - If maximization problem: select "most negative" in z-row
 - If minimization problem: select "most positive" in z-row

Basic	Z	x_1	x_2	s_1	s_2	Solution	
Z	1	-2	-3	0	0	0	z-row
s_1	0	2	1	1	0	4	s_1 row
s_2	0	1	2	0	1	5	s ₂ row

Note: if there is no "promising" variable (i.e., if no non-basic variable would improve the objective function by becoming basic), you are in the OPTIMAL SOLUTION

Step 4: Move in the "most promising" direction as much as you can:

In other words, determine which basic variable would become zero (i.e., become non-basic) first

 You cannot move beyond that point, otherwise your variable would become negative (i.e., infeasible)

Basic	Z	x_1	x_2	s_1	s_2	Solution	
Z	1	-2	-3	0	0	0	z-row
s_1	0	2	1	1	0	4	s_1 row
s_2	0	1	2	0	1	5	s ₂ row

Basic	Entering (x_2)	Solution	Ratio (or intercept)	
s_1	1	4	$x_2 = 4/1 = 4$	
s_2	2	5	$x_2 = 5/2 = 2.5$	Minimum

Conclusion: x_2 enters (becomes basic) and s_2 leaves (becomes non-basic)

• Step 5: Update table:

 x_2 enters (pivot column) and s_2 leaves (pivot row). The intersection is called pivot element

Basic	Z	x_1	x_2	s_1	s_2	Solution	
Z	Ī	-2	-3	0	0	0	z-row
s_1	0	2	1	1	0	4	s_1 row
s_2	0	1	2	0	1	5	s_2 row

You need to update the table using Gauss-Jordan row operations

- 1. Pivot row
 - a) Replace the leaving variable in the Basic column with the entering variable
 - b) New pivot row = Current pivot row ÷ Pivot element
- 2. All other rows, including z
 New row = (Current row) (Pivot column coefficient) x (New pivot row)

• Step 5: Update table:

- 1. Pivot row
 - a) Replace the leaving variable in the Basic column with the entering variable

Basic	Z	x_1	x_2	s_1	s_2	Solution	
Z	1	-2	-3	0	0	0	z-row
s_1	0	2	1	1	0	4	s_1 row
s_2	0	1	2	0	1	5	s ₂ row

Basic	Z	x_1	x_2	s_1	s_2	Solution	
Z	1	-2	-3	0	0	0	z-row
s_1	0	2	1	1	0	4	s_1 row
x_2	0	1	2	0	1	5	x_2 row

• Step 5: Update table:

- 1. Pivot row
 - a) Replace the leaving variable in the Basic column with the entering variable
 - b) New pivot row = Current pivot row ÷ Pivot element

Basic	Z	x_1	x_2	s_1	s_2	Solution	
Z	1	-2	-3	0	0	0	z-row
s_1	0	2	1	1	0	4	s_1 row
x_2	0	1	2	0	1	5	x_2 row

Basic	Z	x_1	x_2	s_1	s_2	Solution	
Z	1	-2	-3	0	0	0	z-row
s_1	0	2	1	1	0	4	s_1 row
x_2	0/2	1/2	2/2	0/2	1/2	5/2	x_2 row

• Step 5: Update table:

1. Pivot row

- a) Replace the leaving variable in the Basic column with the entering variable
- b) New pivot row = Current pivot row ÷ Pivot element

s_1		1	4	s_1 row

Basic	Z	x_1	x_2	s_1	s_2	Solution	
Z	1	-2	-3	0	0	0	z-row
s_1	0	2	1	1	0	4	s_1 row
x_2	0	0.5	1	0	0.5	2.5	x_2 row

• Step 5: Update table:

2. All other rows, including z
New row = (Current row) - (Pivot column coefficient) x (New pivot row)

Basic	Z	x_1	x_2	s_1	s_2	Solution	
Z	1	-2	-3	0	0	0	z-row
s_1	0	2	1	1	0	4	s_1 row
x_2	0	0.5	1	0	0.5	2.5	x_2 row

• Step 5: Update table:

2. All other rows, including z

New row = (Current row) - (Pivot column coefficient) x (New pivot row)

Basic	Z	x_1	x_2	s_1	s_2	Solution	
Z	1	-2	-3	0	0	0	z-row
s_1				1		4	s_1 row
x_2	0	0.5	1	0	0.5	2.5	x_2 row

Basic	Z	x_1	x_2	s_1	s_2	Solution	
Z	1-((-3)x0)	-2-((-3)x0.5)	-3-((-3)x1)	0-((-3)x0)	0-((-3)x0.5)	0-((-3)x2.5)	z-row
x_2	0	0.5	1	0	0.5	2.5	x_2 row

• Step 5: Update table:

2. All other rows, including z

New row = (Current row) - (Pivot column coefficient) x (New pivot row)

Basic	Z	x_1	x_2	s_1	s_2	Solution	
s_1	0	2	1	1	0	4	s_1 row
x_2	0	0.5	1	0	0.5	2.5	x_2 row

Basic	Z	x_1	x_2	s_1	s_2	Solution	
	1-((-3)x0)	-2-((-3)x0.5)		0 - ((-3)x0)	0-((-3)x0.5)	0-((-3)x2.5)	z-row
<i>s</i> ₁	0-(1x0)	2-(1x0.5)	1-(1x1)	1-(1x0)	0-(1x0.5)	4-(1x2.5)	s_1 row
x_2	0	0.5	1	0	0.5	2.5	x_2 row

• Step 5: Update table:

2. All other rows, including z

New row = (Current row) - (Pivot column coefficient) x (New pivot row)

s_1			1	4	s_1 row
x_2		1			

Basic	Z	x_1	x_2	s_1	s_2	Solution	
Z	1	-0.5	0	0	1.5	7.5	z-row
s_1	0	1.5	0	1	-0.5	1.5	s_1 row
x_2	0	0.5	1	0	0.5	2.5	x_2 row

• Step 6: Go back to Step 3

Basic	Z	x_1	x_2	s_1	s_2	Solution	
Z	1	-0.5	0	0	1.5	7.5	z-row
s_1	0	1.5	0	1	-0.5	1.5	s_1 row
x_2	0	0.5	1	0	0.5	2.5	x_2 row

• Step 3: Find the "most promising" direction to move:

Basic	Z	x_1	x_2	s_1	s_2	Solution	
Z	1	-0.5	0	0	1.5	7.5	z-row
s_1	0	1.5	0	1	-0.5	1.5	s_1 row
x_2	0	0.5	1	0	0.5	2.5	x_2 row

Basic	Z	x_1	x_2	s_1	s_2	Solution	
Z	1	-0.5	0	0	1.5	7.5	z-row
s_1	0	1.5	0	1	-0.5	1.5	s_1 row
x_2	0	0.5	1	0	0.5	2.5	x_2 row

• Step 4: Move in the "most promising" direction as much as you can

Basic	Z	x_1	x_2	s_1	s_2	Solution	
Z	1	-0.5	0	0	1.5	7.5	z-row
s_1	0	1.5	0	1	-0.5	1.5	s_1 row
x_2	0	0.5	1	0	0.5	2.5	x_2 row

Basic	Z	x_1	x_2	s_1	s_2	Solution	
Z	1	-0.5	0	0	1.5	7.5	z-row
s_1	0	1.5	0	1	-0.5	1.5	s_1 row
x_2	0	0.5	1	0	0.5	2.5	x_2 row

Basic	Z	x_1	x_2	s_1	s_2	Solution	
Z	1	-0.5	0	0	1.5	7.5	z-row
s_1	0	1.5	0	1	-0.5	1.5	s_1 row
x_2	0	0.5	1	0	0.5	2.5	x_2 row

Basic	Z	x_1	x_2	s_1	s_2	Solution	
Z	1	-0.5	0	0	1.5	7.5	z-row
x_1	0/1.5	1.5/1.5	0/1.5	1/1.5	-0.5/1.5	1.5/1.5	x_1 row
x_2	0	0.5	1	0	0.5	2.5	x_2 row

Basic	Z	x_1	x_2	s_1	s_2	Solution	
Z	1	-0.5	0	0	1.5	7.5	z-row
x_1	0	1	0	2/3	-1/3	1	x_1 row
x_2	0	0.5	1	0	0.5	2.5	x_2 row

Basic	Z	x_1	x_2	s_1	s_2	Solution	
Z	1	-0.5	0	0	1.5	7.5	z-row
x_1	0	1	0	2/3	-1/3	1	x_1 row
x_2	0	0.5	1	0	0.5	2.5	x_2 row

Basic	Z	x_1	x_2	s_1	s_2	Solution	
Z	1-((-0.5)x0)	-0.5 -((-0.5)x1)	0 -((-0.5)x0)	0-((-0.5) x(2/3))	1.5-((-0.5) x(-1/3))	7.5-((-0.5) x1)	z-row
x_1	0	1	0	2/3	-1/3	1	x_1 row
x_2	0-(0.5x0)	0.5-(0.5x1)	1-(0.5x0)	0(0.5 x(2/3))	0.5-(0.5 x(-1/3))	2.5-(0.5x1)	x_2 row

			1.5	7.5	
x_1	1		-1/3	1	

Basic	Z	x_1	x_2	s_1	s_2	Solution	
Z	1	0	0	1/3	4/3	8	z-row
x_1	0	1	0	2/3	-1/3	1	x_1 row
x_2	0	0	1	-1/3	2/3	2	x_2 row

• Step 6: Go back to Step 3

Basic	Z	x_1	x_2	s_1	s_2	Solution	
Z	1	0	0	1/3	4/3	8	z-row
x_1	0	1	0	2/3	-1/3	1	x_1 row
x_2	0	0	1	-1/3	2/3	2	x_2 row

Step 3: Find the "most promising" direction to move:

Basic	Z	x_1	x_2	s_1	s_2	Solution	
Z	1	0	0	1/3	4/3	8	z-row
x_1	0	1	0	2/3	-1/3	1	x_1 row
x_2	0	0	1	-1/3	2/3	2	x_2 row

There is no "promising" direction, thereby we are in the OPTIMAL SOLUTION

$$s_1 = 0, s_2 = 0$$

$$x_1 = 1, x_2 = 2$$

$$z = 8$$

- $s_1 = 0, s_2 = 0$ \rightarrow Non-basic variables $x_1 = 1, x_2 = 2$ \rightarrow Basic variables

 - → Objective function

What if the "trivial solution" is not feasible?

Maximize
$$z = 2x_1 + 3x_2$$

subject to
$$2x_1 + x_2 \le 4$$
$$x_1 + x_2 \ge 2$$
$$x_1, x_2 \ge 0$$

- The point $x_1 = x_2 = 0$ is not feasible
 - How can we find a feasible basic solution (to initialize our algorithm)?

Big M method & Two-phase method

M method (a.k.a. Big M method)

Maximize
$$c^T x - Mr$$
 subject to $Ax + r = b$ $x, r \ge 0$

Note: in minimization problems, the penalization should be +Mr

- Two-phase method
 - Phase 1: find initial feasible solution

Minimize
$$\mathbf{1}^T \mathbf{r}$$
 subject to $A\mathbf{x} + \mathbf{r} = \mathbf{b}$

$$x, r \ge 0$$

- Phase 2: If you found a feasible solution, use it

- feasible solution, use it to initialize your original problem

 If you are using
 - If you are using Tableau, don't forget to use the updated coefficients

Special cases in the Simplex method

- There are four special cases that arise in the use of the simple method
 - Degeneracy
 - Alternative optima
 - Unbounded solutions
 - Non-existing (or infeasible) solutions

Degeneracy

Maximize
$$z = 3x_1 + 9x_2$$

subject to
$$x_1 + 4x_2 \le 8$$
$$x_1 + 2x_2 \le 4$$
$$x_1, x_2 \ge 0$$

- There is a basic solution that has more than one constraint going through it
 - This means that (in addition to all nonbasic variables) at least one basic variable has to be zero
 - This can lead to cycling

Degeneracy

Maximize $z = 3x_1 + 9x_2$ subject to

$$x_1 + 4x_2 \le 8$$

 $x_1 + 2x_2 \le 4$
 $x_1, x_2 \ge 0$

- There is a basic solution that has more than one constraint going through it
 - There is a redundant constraint (that you should try to eliminate)

Alternative optima

Maximize
$$z = 2x_1 + 4x_2$$

subject to
 $x_1 + 2x_2 \le 5$
 $x_1 + x_2 \le 4$
 $x_1, x_2 \ge 0$

- When solving this example with Simplex, you will converge to an optimal solution
 - However...

Alternative optima

Maximize
$$z = 2x_1 + 4x_2$$

subject to
$$x_1 + 2x_2 \le 5$$
$$x_1 + x_2 \le 4$$
$$x_1, x_2 \ge 0$$

- When solving this example with Simplex, you will converge to an optimal solution
 - However there are multiple solutions that are optimal

Unbounded solution space

Maximize
$$z = 2x_1 + x_2$$

subject to
$$x_1 - x_2 \le 10$$
$$2x_1 \le 4$$
$$x_1, x_2 \ge 0$$

- The feasible solution space is not bounded
 - For this example, you could move in a direction that increases the objective function indefinitely
 - However...

Unbounded solution space

Maximize
$$z = 2x_1 + x_2$$

subject to
$$x_1 - x_2 \le 10$$
$$2x_1 \le 4$$
$$x_1, x_2 \ge 0$$

- The feasible solution space is not bounded
 - For this example, you could move in a direction that increases the objective function indefinitely
 - However, depending on the objective function (or its maximization or minimization) you may have a finite optimal solution

Infeasible solution space

Maximize
$$z = 3x_1 + 2x_2$$

subject to
$$x_1 + x_2 \le 2$$
$$3x_1 + 4x_2 \ge 12$$
$$x_1, x_2 \ge 0$$

- There is no feasible solution
 - Thereby, there is no optimal solution

Computational issues in linear programming

- An LP code is deemed robust if it satisfies two fundamental requirements:
 - Speed
 - Accuracy
- Key aspects to consider
 - Simplex entering variable (pivot) rule How do we determine the "most promising" direction?
 - Classical
 - Most improvement
 - Steepest edge
 - Primal vs. dual simplex algorithm
 - Revised simplex vs. tableau simplex
 - Barrier (interior point) algorithm vs. simplex algorithm
 - Degeneracy
 - Input model conditioning (pre-solving)
 - Advances in computers

Sensitivity analysis

Suppose you have the problem

Maximize
$$z = c^T x$$

subject to
 $Ax = b$
 $x \ge 0$

- There are some sensitivity analyses of interest:
 - Changes/perturbations in c: vector of costs
 - Changes/perturbations in A: matrix of coefficients
 - Changes/perturbations in **b**: right-hand side vector

Sensitivity analysis

Suppose you have the problem

Maximize
$$z = c^T x$$

subject to
 $Ax = b$
 $x \ge 0$

- There are some sensitivity analyses of interest:
 - Changes/perturbations in c: vector of costs
 - Changes/perturbations in A: matrix of coefficients
 - Changes/perturbations in **b**: right-hand side vector

MORE ON THIS LATER...

In-class Exercise

Solve the "Reddy Mikks" paint production problem (Example 2.1-1) using Simplex

Maximize
$$z = 5x_1 + 4x_2$$

subject to
 $6x_1 + 4x_2 \le 24$
 $x_1 + 2x_2 \le 6$
 $-x_1 + x_2 \le 1$
 $x_2 \le 2$
 $x_1, x_2 \ge 0$

LP model in equation form

- Simplex is algorithm to solve an LP model
 - If it has an optimal solution, simplex will reach in a finite amount of steps
 - In addition to require an LP formulation, it also requires:
 - All the constraints should be equations with non-negative right-hand side
 - All variables are non-negative
 - That means that, you should be able to write your LP model in the following (matrix) form

Maximize
$$z = c^T x$$

subject to
 $Ax = b$
 $x \ge 0$

- c: vector of costs
- A: matrix of coefficients
- **b**: right-hand side vector
- x: vector of decision variables

THANK YOU QUESTIONS?

Andrés D. González | andres.gonzalez@ou.edu