FPGA 結合智慧製造

指導教師:

林浩仁教授

陸子強教授

專題學生:

資工三 A 410921888 王昱閎

<s1092188@gm.pu.edu.tw>

資工三 A 410919085 陳鏈翔

 $<\!\!s1091908@gm.pu.edu.tw\!\!>$

資工三B 410928204 許嘉顯

<s1092820@gm.pu.edu.tw>

資工三B 410919019 何奂文

 $<\!s1091901@gm.pu.edu.tw\!>$

資工三B 410918380 蒙羿辰

<s1091838@gm.pu.edu.tw>

資工三B 410928246 李以崴

 $<\!\!s1092824@gm.pu.edu.tw\!\!>$

中華民國一一二年二月

● 摘要

現今人工智慧日益發展,如何節省其功耗及提升其運算效能成為了深度學習上的一大課題,本專題旨在基於 FPGA 靈活的特性上,設計出相較 CPU 或 GPU 更針對於進行卷積網路的 SoC。

● 進行方法及步驟

我們會透過 Xilinx 官方提供的流程來完成我們硬體及平台的設計,首先使用 Xilinx Vivado 這套軟體,可以根據我們所需的功能來設計出 FPGA 上 PL 端的配置,從而生成出一個 xsa 檔案,包含了這個 SoC 的所有必要資訊,之後再透過 Xilinx Peta Linux 這套軟體,從 xsa 檔案產生出 Linux image、file system 等等資訊,進而使訓練好的模型能於 FPGA 開發版上運行。

模型訓練我們會使用 Visual Studio Code 這套軟體搭配 PyTouch 當作框架來進行,將拍攝好的照片作為輸入,經過一連串的卷積及池化後,使機器能判斷出產品是否損耗,並將輸出告知使用者。

● 設備需求

運算伺服器

Xilinx Vivado

Xilinx Peta Linux

Visual Studio Code

Zynq UltraScale+ MPSoC ZCU104

● 經費預算需求表

石口夕较	說明	單位	數量	單價	小 計	備註
項目名稱	动	半位	数 里	臺幣(元)	臺幣(元)	加 註
CNC	物品銑削	台	1	50000	50000	由系上實
						驗室提供
開發工作	專案之進行	台	4	26000	104000	由系上實
站						驗室提供

消耗性器	印表機消耗材	批	1	5000	5000	由系上實
材	料、紙張等					驗室提供
開發版	開發叛	批	1	45000	45000	由系上實
						驗室提供
雜支費	印刷費、文具	批	1	10000	500	自行負擔
	等					
共				計	214000	

● 工作分配

FPGA 晶片開發、機器佈線(王昱閎) FPGA 晶片開發、模型訓練(蒙羿辰) 嵌入式系統開發、機器佈線(陳鏈翔) 嵌入式系統開發、模型架構設計(何與文) 模型訓練、模型架構設計(李以崴) 模型訓練、模型架構設計(許嘉顯)

● 預期完成之工作項目及具體成果

本專題目標能在自行架設與打包的 Linux 系統中,使用 Zynq UltraScale+ MPSoC ZCU104 這塊 FPGA 開發版,運行我們訓練的 CNN 模型,並結合攝影機達到即時的影像處理,判斷物件是否出現瑕疵,藉此提高產線的效率與品質,同時兼顧高度客製化、低功耗、升級維護容易等特點,是 GPU 與 ASIC 等方案難以達到的彈性優勢,適合中小企業以低成本發展工業 4.0。