Économétrie des Séries Temporelles

Fiche TD R #2

Processus ARMA stationnaires

Packages

```
library(readr)
library(zoo)
library(astsa)
library(forecast)
library(stats)
library(tseries)
library(aTSA)
#install.packages("aTSA")
```

Données (identiques au TP1)

 $Nice: https://github.com/bilelsanhaji/EdSTM1/blob/main/Data/SH_MIN006088001.csv$

Paris: https://github.com/bilelsanhaji/EdSTM1/blob/main/Data/SH MIN175114001.csv

Exercice 1

À partir des données d'insolation de Nice et Paris, utilisez les séries pour

- (a) donner une représentation graphique et tester statistiquement :
- 1. la stationarité

```
moyenne_Nice <- mean(Nice_ts)</pre>
moyenne_Paris <- mean(Paris_ts)</pre>
par(mfrow=c(2,1))
#Nice
tsplot(Nice_ts,
     main = "Durées d'insolation (Nice)",
     xlab = "Années",
     ylab = "Heures et 1/10",
     col = "darkblue")
abline(h = moyenne_Nice, col = "blue", lty = 3, lwd = 2)
#Paris
tsplot(Paris_ts,
       main = "Durées d'insolation (Paris)",
       xlab = "Années",
       ylab = "Heures et 1/10",
       col = "darkblue")
abline(h = moyenne_Paris, col = "red", lty = 3, lwd = 2)
```



```
tseries::adf.test(Nice_ts)
```

```
##
## Augmented Dickey-Fuller Test
##
## data: Nice_ts
## Dickey-Fuller = -9.551, Lag order = 10, p-value = 0.01
## alternative hypothesis: stationary
aTSA::adf.test(Nice_ts)
```

```
## Augmented Dickey-Fuller Test
## alternative: stationary
##
## Type 1: no drift no trend
## lag ADF p.value
```

```
## [1,]
          0 -3.71 0.0100
## [2,]
          1 -4.18 0.0100
          2 - 4.79
                   0.0100
## [3,]
## [4,]
          3 -4.52 0.0100
## [5,]
          4 -3.62
                   0.0100
## [6,]
          5 -2.72 0.0100
## [7,]
          6 -2.04 0.0418
## Type 2: with drift no trend
##
        lag
              ADF p.value
## [1,]
          0 -12.6
                      0.01
## [2,]
          1 -15.9
                      0.01
          2 -21.9
## [3,]
                      0.01
          3 -26.1
## [4,]
                      0.01
## [5,]
          4 - 27.4
                      0.01
## [6,]
          5 -27.1
                      0.01
## [7,]
          6 -25.8
                      0.01
## Type 3: with drift and trend
        lag
              ADF p.value
## [1,]
          0 -12.6
                      0.01
## [2,]
          1 - 15.9
                      0.01
## [3,]
          2 -21.9
                      0.01
## [4,]
          3 - 26.1
                      0.01
## [5,]
          4 -27.4
                      0.01
## [6,]
          5 -27.2
                      0.01
## [7,]
          6 -25.9
                      0.01
## Note: in fact, p.value = 0.01 means p.value <= 0.01
```

2. l'autocorrélation

```
acf(Nice_ts)
acf(Paris_ts)
```

Series Paris_ts


```
Box.test(Nice_ts, lag = 6, type = "Ljung-Box")
```

##

```
##
## data: Nice_ts
## X-squared = 1910.9, df = 6, p-value < 2.2e-16

Box.test(Paris_ts, lag = 6, type = "Ljung-Box")

##
## Box-Ljung test
##
## data: Paris_ts
## X-squared = 1778.8, df = 6, p-value < 2.2e-16
3. la normalité
hist(Nice_ts, freq = F, ylim=c(0,0.006))
lines(density(Nice_ts), col="darkblue")
lines(density(rnorm(n = length(Nice_ts), mean = mean(Nice_ts), sd = sd(Nice_ts))), col="darkred", lwd =</pre>
```

Box-Ljung test

Histogram of Nice_ts


```
hist(Paris_ts, freq = F, ylim=c(0,0.006))
lines(density(Paris_ts), col="darkgreen")
lines(density(rnorm(n = length(Paris_ts), mean = mean(Paris_ts), sd = sd(Paris_ts))), col="darkred", lw
```



```
qqnorm(Nice_ts, col = "darkblue")
qqline(Nice_ts, col="darkred", lwd = 3)
```

Normal Q-Q Plot


```
qqnorm(Paris_ts, col = "darkgreen")
qqline(Paris_ts, col="darkred", lwd = 3)
```

Normal Q-Q Plot


```
##
## Jarque Bera Test
##
## data: Nice_ts
## X-squared = 53.152, df = 2, p-value = 2.872e-12
jarque.bera.test(Paris_ts)
```

```
##
## Jarque Bera Test
##
## data: Paris_ts
## X-squared = 49.261, df = 2, p-value = 2.01e-11
```

- (b) estimer et interpréter un AR(1) pour chaque série, puis, sur les résidus :
- 1. refaire les tests effectués dans la partie (a)
- 2. interprétez tous les résultats obtenus

jarque.bera.test(Nice_ts)

3. discutez la différence qu'il y a entre les séries

Exercice 2

Simulez un processus AR(1) stationnaire avec 50 observations. Puis

- (a) "testez" graphiquement et testez statistiquement :
- 1. la stationarité
- 2. l'autocorrélation
- 3. la normalité
- 4. l'hétéroscédasticité
- (b) estimez la série simulée et discutez les résultats
- (c) reproduire les étapes (a) et (b) avec 5000 observations