Modelo Entidade-Relacionamento BCD29008 - Engenharia de Telecomunicações

Prof. Emerson Ribeiro de Mello

mello@ifsc.edu.br

12 de abril de 2022

Licenciamento

Estes slides estão licenciados sob a Licença Creative Commons "Atribuição 4.0 Internacional".

Cardinalidade de relacionamentos

Cardinalidade máxima - multiplicidade

Indica quantas vezes uma dada entidade poderá aparecer em um relacionamento

- Um professor pode ser orientador de quantos alunos?
- Um aluno pode ter quantos orientadores?

Cardinalidade máxima

Multiplicidade

Cardinalidade máxima Multiplicidade

Cardinalidade máxima

Multiplicidade

Exercício: Cardinalidade máxima

- 1 Uma pessoa pode ter mais de um endereço
- 2 Uma pessoa pode ter somente um endereço

■ Participação total – Se todas entidades do conjunto E participam de pelo menos um relacionamento de R

■ Participação total – Se todas entidades do conjunto E participam de pelo menos um relacionamento de R

■ Toda pessoa deve obrigatoriamente morar em uma cidade

Pessoa	Mora	Endereço
Juca	(Juca, São José)	São José
José	(José, São José)	Florianópolis
Hugo	(Hugo, São José)	São Paulo
Anna	(Anna, São Paulo)	Lages

- 0 Participação parcial associação opcional
- 1 Participação total associação obrigatória

- 0 Participação parcial associação opcional
- 1 Participação total associação obrigatória
- Toda pessoa deve ter no máximo uma cidade
- Uma cidade pode estar associada a mais de uma pessoa
- Toda pessoa deve obrigatoriamente morar em uma cidade
- Uma cidade pode não estar associada a alguma pessoa

- 0 Participação parcial associação opcional
- 1 Participação total associação obrigatória
- Toda pessoa deve ter no máximo uma cidade
- Uma cidade pode estar associada a mais de uma pessoa
- Toda pessoa deve obrigatoriamente morar em uma cidade
- Uma cidade pode não estar associada a alguma pessoa

- 0 Participação parcial associação opcional
- 1 Participação total associação obrigatória
- Toda pessoa deve ter no máximo uma cidade
- Uma cidade pode estar associada a mais de uma pessoa
- Toda pessoa deve obrigatoriamente morar em uma cidade
- Uma cidade pode não estar associada a alguma pessoa

Somente cardinalidade máxima

Um professor poderá orientar **no máximo um** aluno e um aluno poderá ter **no máximo um** orientador

Somente cardinalidade máxima

Um professor poderá orientar **no máximo um** aluno e um aluno poderá ter **no máximo um** orientador

Cardinalidade máxima e mínima

Um **professor** poderá orientar **no máximo dois** alunos e um **aluno** deverá ter **obrigatoriamente um** único **orientador**.

Cardinalidade máxima e mínima

Exercício

A todo funcionário deve ser alocada obrigatoriamente uma mesa, porém nem toda mesa precisará obrigatoriamente estar alocada a algum funcionário

Cardinalidade máxima e mínima

Exercício

A todo funcionário deve ser alocada obrigatoriamente uma mesa, porém nem toda mesa precisará obrigatoriamente estar alocada a algum funcionário

Revisão: relacionamentos

Relacionamento

Associação entre Entidades

Relacionamento: FAZ – subconjunto de *Aluno* × *Curso*

- Uma entidade pode aparecer 0, 1 ou mais vezes no relacionamento
- A combinação de entidades (i.e. João − Tele) só pode aparecer uma única vez

Relacionamentos com papéis: autorrelacionamento

Relacionamento entre entidades de um mesmo conjunto de entidades. Rótulos são usados para determinar o papel da entidade no relacionamento

Todo aluno possui um orientador e ambos são pessoas

Relacionamentos com papéis: autorrelacionamento

Relacionamento entre entidades de um mesmo conjunto de entidades. Rótulos são usados para determinar o papel da entidade no relacionamento

Todo aluno possui um orientador e ambos são pessoas

Exercício

Faça relacionamento com papéis para representar um casamento. Indique a cardinalidade

Revisão: Atributo identificador (chave primária)

■ Chave primária (primary key – pk) é uma chave candidata escolhida como principal meio para identificar unicamente uma entidade

Em alguns casos o **identificador é composto pelos atributos** da própria **entidade** e também pelos **relacionamentos dos quais a entidade participa**

Atributo identificador

Exemplo

- Um funcionário pode ter 0 ou mais dependentes
- Um dependente obrigatoriamente deverá estar relacionado com um único funcionário

 1234, Juca
 776, Joãozinho, 1234

 2456, Hugo
 777, Mariazinha, 1234

 2211, Anna

Relacionamento identificador (um-para-muitos)

Um dependente é identificado pelo seu id e pelo idEmpregado ao qual ele está relacionado

Relacionamento identificador (um-para-muitos)

- Um departamento é identificado por seu código único e pelo campus ao qual está relacionado
- Um curso é identificado por seu código único, pelo departamento ao qual está relacionado e pelo campus ao qual seu departamento está relacionado

```
123, 456, 789, Engenharia de Telecomunicações
```

Relacionamento identificador pode trazer facilidades quando for realizar consultas na base de dados. Ex: liste nome dos campi e dos cursos ofertados em cada um.

Grau de um relacionamento

Número de ocorrências de entidades que participa de cada ocorrência do relacionamento

- Relacionamento binário envolve dois conjuntos de entidades
- Cada ocorrência do relacionamento associa duas ocorrências de entidade


```
(Professor1, Aluno1)
(Professor1, Aluno2)
(Professor2, Aluno3)
(Professor3, Aluno4)
```


Grau de um relacionamento

Relacionamento ternário envolve três conjuntos de entidades

 Cada ocorrência do relacionamento associa três ocorrências de entidade


```
(SJE, Distribuidor 1, Caneta)
(SJE, Distribuidor 1, Lápis)
(FLN, Distribuidor 2, Caneta)
```


Cardinalidade em relacionamento binário

Em um relacionamento binário R entre duas entidades A e B

A cardinalidade máxima de A em R indica quantas ocorrências de
 B podem estar associadas a cada ocorrência de A

Cardinalidade em relacionamento binário

Em um relacionamento binário R entre duas entidades A e B

A cardinalidade máxima de A em R indica quantas ocorrências de
 B podem estar associadas a cada ocorrência de A

- Ocorrências válidas do relacionamento Orientador
 - (P1,A1)
 - (P1,A2)
 - (P2,A1)

Cardinalidade em relacionamento binário

Em um relacionamento binário R entre duas entidades A e B

A cardinalidade máxima de A em R indica quantas ocorrências de
 B podem estar associadas a cada ocorrência de A

- Ocorrências válidas do relacionamento Orientador
 - (P1,A1)
 - (P1,A2)
 - (P2,A1)

Cardinalidade em relacionamento ternários

Em um relacionamento R entre três entidades A, B e C

A cardinalidade máxima de A e B em R indica o número de ocorrências de C que podem estar associadas a um par de ocorrências de A e B

Para cada par de ocorrência (cidade, produto) está associado no máximo um distribuidor. Ou seja, um distribuidor possui exclusividade para distribuir um produto em uma cidade.

Cardinalidade em relacionamento ternários

Cardinalidade refere-se a pares de entidades

- Cada par (professor, aluno) está associado a no máximo 1 projeto
- A um par (professor, projeto) podem estar associados muitos alunos
- A um par (aluno, projeto) podem estar associados muitos professores

- \blacksquare (prof 1, a1) \rightarrow P1

- $\blacksquare (a1, P1) \rightarrow prof1$
- $\blacksquare (a2, P1) \rightarrow prof 2$

Em relacionamentos ternários ou maiores limita-se a no **máximo uma restrição** a fim de evitar ambiguidade

Ambas afirmações são válidas

- Cada par (professor, aluno) está associado a no máximo 1 projeto e cada par (professor, projeto) está associado a no máximo 1 aluno; ou
- Professor está associado a no máximo com uma entidade aluno e uma entidade projeto

Generalização / especialização

- Disjuntiva entidade pode pertencer a no máximo um conjunto de entidades especializadas
 - Um cliente poderá ser PF ou PJ
- Superposição entidade pode pertencer a vários conjuntos de entidades especializadas
 - Um funcionário de uma universidade também poderá ser aluno

Generalização / especialização - Completude

especialização total

especialização parcial

- **Total** Toda entidade no nível superior precisa pertencer a um conjunto de entidades do nível inferior
 - Um cliente deverá ser obrigatoriamente PF ou PJ
- Parcial Algumas entidades do nível superior podem não pertencer a um conjunto de entidades do nível inferior
 - Nem todo Funcionário é Motorista ou Secretária

Exercícios

HEUSER, C. A.

Projeto de banco de dados

6a. Edição - Editora Bookman, 2009

Seção 2.8 (página 64)

Exercícios: 4, 7, 10, 17, 27 e 31

HENRY F.; SUDARSHAN SILBERSCHATZ, ABRAHAM; KORTH. SISTEMAS DE BANCO DE DADOS.

6a. Edição - Editora Campus, 2012

Capítulo 7 (página 193)

■ Exercícios: 7.2 e 7.15

Como modelar

Modelo ER para registrar os produtos comprados por cada cliente

A modelagem acima atenderia os casos abaixo?

- João gostaria de comprar um salgado
- João gostaria de comprar outra água

Modelo ER para registrar os produtos comprados por cada cliente

A modelagem acima atenderia os casos abaixo? Não!

- João gostaria de comprar um salgado
- João gostaria de comprar outra água

Modelo ER para registrar os produtos comprados por cada cliente

- João gostaria de comprar um salgado
- João gostaria de comprar outra água

pessoa	produto	<u>dataHora</u>
João	Água	2017-07-14 08:10
Ana	Água	2017-07-14 08:11
Pedro	Salgado	2017-07-14 08:15
João	Água	2017-07-14 12:00
João	Salgado	2017-07-15 12:00

Modelo ER para registrar os produtos comprados por cada cliente

- João gostaria de comprar um salgado
- João gostaria de comprar outra água

pessoa	produto	dataHora
João	Água	2017-07-14 08:10
Ana	Água	2017-07-14 08:11
Pedro	Salgado	2017-07-14 08:15
João	Água	2017-07-14 12:00
João	Salgado	2017-07-15 12:00

Nota

Algumas abordagens ER excluem o uso de relacionamentos **n:n**, outras excluem apenas relacionamentos **n:n** com atributos

Diferentes modelos ER podem gerar o mesmo esquema

Todo relacionamento muitos-para-muitos (n:n) pode ser transformado em entidade

■ Uma ou mais compras por par (pessoa, produto)

<u>id</u>	pessoa	produto	dataHora
1	iDJoão	iDÁgua	2017-07-14 08:00
2	iDJoão	iDÁgua	2017-07-14 09:00
3	iDJoão	iDSalgado	2017-07-14 09:00
4	iDPedro	iDSalgado	2017-07-14 09:10

Diferentes modelos ER podem gerar o mesmo esquema

Todo relacionamento muitos-para-muitos (n:n) pode ser transformado em entidade

Modelagem: atributo versus entidade relacionada

- Se não houver qualquer objeto relacionado com a Cor, então essa poderia ser modelada como atributo
- Se fosse necessário registrar o fabricante da tinta da referida cor, datas de início e fim de uso da cor, etc. então optaria por modelar como entidade

Modelagem: atributo versus entidade relacionada

- Se não houver qualquer objeto relacionado com a Cor, então essa poderia ser modelada como atributo
- Se fosse necessário registrar o fabricante da tinta da referida cor, datas de início e fim de uso da cor, etc. então optaria por modelar como entidade

Deseja-se armazenar os telefones dos alunos. Qual abordagem usar?

- 1 Telefone como atributo de Aluno
- Zelefone como uma entidade

Modelagem: atributo versus especialização

 A especialização deve ser usada quando sabe-se que os objetos possuem propriedades particulares

Modelagem: atributo versus especialização

 A especialização deve ser usada quando sabe-se que os objetos possuem propriedades particulares

É necessário representar o fato que os funcionários são divididos entre homens e mulheres. Qual abordagem usar?

Leitura recomendada

HEUSER, C. A.

PROJETO DE BANCO DE DADOS

6a. Edição - Editora Bookman, 2009

Capítulo 3 (página 72)

■ Ler seções 3.1, 3.2 e 3.3

Aulas baseadas em

HENRY F.; SUDARSHAN SILBERSCHATZ, ABRAHAM; KORTH. SISTEMAS DE BANCO DE DADOS.

6a. Edição - Editora Campus, 2012

HEUSER, C. A.

PROJETO DE BANCO DE DADOS

6a. Edição - Editora Bookman, 2009

SULLIVAN, D. G.

COMPUTER SCIENCE - HARVARD UNIVERSITY

