## $12a_{1136} \ (K12a_{1136})$



#### Ideals for irreducible components<sup>2</sup> of $X_{par}$

$$I_1^u = \langle u^{66} + u^{65} + \dots + 2u^2 + 1 \rangle$$
  

$$I_2^u = \langle u^6 + u^5 - 2u^4 - 2u^3 + 1 \rangle$$
  

$$I_3^u = \langle u - 1 \rangle$$

\* 3 irreducible components of  $\dim_{\mathbb{C}} = 0$ , with total 73 representations.

<sup>&</sup>lt;sup>1</sup>The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

<sup>&</sup>lt;sup>2</sup> All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I. 
$$I_1^u = \langle u^{66} + u^{65} + \dots + 2u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{5} - 2u^{3} + u \\ u^{7} - 3u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{12} - 5u^{10} + 9u^{8} - 6u^{6} + u^{2} + 1 \\ u^{14} - 6u^{12} + 13u^{10} - 10u^{8} - 2u^{6} + 4u^{4} + u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{4} + u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{11} + 4u^{9} - 4u^{7} - 2u^{5} + 3u^{3} \\ -u^{11} + 5u^{9} - 8u^{7} + 3u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{29} + 12u^{27} + \dots - 2u^{3} + u \\ -u^{29} + 13u^{27} + \dots + 3u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{30} - 13u^{28} + \dots + 2u^{2} + 1 \\ u^{32} - 14u^{30} + \dots - 20u^{8} + 2u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{65} - 28u^{63} + \dots + u + 2 \\ u^{65} - 29u^{63} + \dots + 3u^{2} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes =  $-4u^{63} + 116u^{61} + \cdots + 8u 10$

#### (iv) u-Polynomials at the component

| Crossings          | u-Polynomials at each crossing            |
|--------------------|-------------------------------------------|
| $c_1$              | $u^{66} - 15u^{65} + \dots - 1396u + 113$ |
| $c_2, c_3, c_8$    | $u^{66} - u^{65} + \dots + 2u^2 + 1$      |
| $c_4, c_7$         | $u^{66} - 6u^{65} + \dots + 84u + 8$      |
| $c_5, c_6, c_{11}$ | $u^{66} - u^{65} + \dots + 2u^2 + 1$      |
| <i>c</i> 9         | $u^{66} + 3u^{65} + \dots - 6u - 1$       |
| $c_{10}, c_{12}$   | $u^{66} + 3u^{65} + \dots - 2u - 1$       |

# (v) Riley Polynomials at the component

| Crossings          | Riley Polynomials at each crossing            |
|--------------------|-----------------------------------------------|
| $c_1$              | $y^{66} + 13y^{65} + \dots + 264176y + 12769$ |
| $c_2, c_3, c_8$    | $y^{66} - 59y^{65} + \dots + 4y + 1$          |
| $c_4, c_7$         | $y^{66} - 42y^{65} + \dots - 8112y + 64$      |
| $c_5, c_6, c_{11}$ | $y^{66} - 55y^{65} + \dots + 4y + 1$          |
| $c_9$              | $y^{66} + y^{65} + \dots - 52y + 1$           |
| $c_{10}, c_{12}$   | $y^{66} + 37y^{65} + \dots - 4y + 1$          |

## (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape           |
|---------------------------|---------------------------------------|----------------------|
| u = -0.990309 + 0.197371I | 0.77149 - 3.51641I                    | -4.00000 + 4.68932I  |
| u = -0.990309 - 0.197371I | 0.77149 + 3.51641I                    | -4.00000 - 4.68932I  |
| u = 0.983886 + 0.233964I  | -4.05748 + 7.29975I                   | 0 6.02392I           |
| u = 0.983886 - 0.233964I  | -4.05748 - 7.29975I                   | 0. + 6.02392I        |
| u = 0.917926              | -1.63623                              | -6.25380             |
| u = -0.855417 + 0.248728I | -8.04962 + 0.09735I                   | -10.00686 + 0.77062I |
| u = -0.855417 - 0.248728I | -8.04962 - 0.09735I                   | -10.00686 - 0.77062I |
| u = 0.738976 + 0.315928I  | -3.71204 - 7.38704I                   | -6.03668 + 3.97983I  |
| u = 0.738976 - 0.315928I  | -3.71204 + 7.38704I                   | -6.03668 - 3.97983I  |
| u = 1.20059               | -1.54443                              | 0                    |
| u = 0.262184 + 0.729860I  | -5.40381 + 11.28260I                  | -8.66884 - 8.74113I  |
| u = 0.262184 - 0.729860I  | -5.40381 - 11.28260I                  | -8.66884 + 8.74113I  |
| u = -0.710255 + 0.292534I | 1.06112 + 3.49327I                    | -1.18332 - 2.67462I  |
| u = -0.710255 - 0.292534I | 1.06112 - 3.49327I                    | -1.18332 + 2.67462I  |
| u = -0.262033 + 0.720142I | -0.59286 - 7.29825I                   | -4.05645 + 7.44817I  |
| u = -0.262033 - 0.720142I | -0.59286 + 7.29825I                   | -4.05645 - 7.44817I  |
| u = -0.224274 + 0.729292I | -10.09160 - 3.88890I                  | -12.88295 + 4.18648I |
| u = -0.224274 - 0.729292I | -10.09160 + 3.88890I                  | -12.88295 - 4.18648I |
| u = 0.256468 + 0.700542I  | -3.25124 + 3.34292I                   | -7.24196 - 3.75335I  |
| u = 0.256468 - 0.700542I  | -3.25124 - 3.34292I                   | -7.24196 + 3.75335I  |
| u = 0.176621 + 0.719075I  | -6.50527 - 3.62888I                   | -10.79295 + 1.37881I |
| u = 0.176621 - 0.719075I  | -6.50527 + 3.62888I                   | -10.79295 - 1.37881I |
| u = 0.224321 + 0.695502I  | -3.61835 + 3.40694I                   | -9.07650 - 5.66068I  |
| u = 0.224321 - 0.695502I  | -3.61835 - 3.40694I                   | -9.07650 + 5.66068I  |
| u = -0.354761 + 0.564052I | 0.22062 - 5.60280I                    | -3.25617 + 7.64930I  |
| u = -0.354761 - 0.564052I | 0.22062 + 5.60280I                    | -3.25617 - 7.64930I  |
| u = -1.317080 + 0.220326I | -0.01372 - 5.66365I                   | 0                    |
| u = -1.317080 - 0.220326I | -0.01372 + 5.66365I                   | 0                    |
| u = 0.610474 + 0.243113I  | -1.66667 + 0.22451I                   | -3.98223 - 1.07282I  |
| u = 0.610474 - 0.243113I  | -1.66667 - 0.22451I                   | -3.98223 + 1.07282I  |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape           |
|---------------------------|---------------------------------------|----------------------|
| u = 0.368164 + 0.533247I  | 4.23434 + 1.69125I                    | 1.84273 - 4.33152I   |
| u = 0.368164 - 0.533247I  | 4.23434 - 1.69125I                    | 1.84273 + 4.33152I   |
| u = -1.354690 + 0.123144I | 3.75022 - 0.64597I                    | 0                    |
| u = -1.354690 - 0.123144I | 3.75022 + 0.64597I                    | 0                    |
| u = -0.392625 + 0.501531I | 0.44010 + 2.19041I                    | -2.25026 + 0.38117I  |
| u = -0.392625 - 0.501531I | 0.44010 - 2.19041I                    | -2.25026 - 0.38117I  |
| u = 1.355680 + 0.183514I  | 4.57952 + 3.25192I                    | 0                    |
| u = 1.355680 - 0.183514I  | 4.57952 - 3.25192I                    | 0                    |
| u = 0.102907 + 0.618996I  | -4.43547 + 2.62457I                   | -11.91060 - 4.28004I |
| u = 0.102907 - 0.618996I  | -4.43547 - 2.62457I                   | -11.91060 + 4.28004I |
| u = 1.367250 + 0.272605I  | 3.25888 + 3.51289I                    | 0                    |
| u = 1.367250 - 0.272605I  | 3.25888 - 3.51289I                    | 0                    |
| u = -1.408740 + 0.110369I | 4.37917 - 1.51275I                    | 0                    |
| u = -1.408740 - 0.110369I | 4.37917 + 1.51275I                    | 0                    |
| u = -1.38787 + 0.27581I   | 1.50869 - 6.93616I                    | 0                    |
| u = -1.38787 - 0.27581I   | 1.50869 + 6.93616I                    | 0                    |
| u = 1.41479 + 0.09089I    | 7.41801 - 2.39956I                    | 0                    |
| u = 1.41479 - 0.09089I    | 7.41801 + 2.39956I                    | 0                    |
| u = 1.38826 + 0.29191I    | -4.97005 + 7.59047I                   | 0                    |
| u = 1.38826 - 0.29191I    | -4.97005 - 7.59047I                   | 0                    |
| u = -1.42024 + 0.07916I   | 2.81245 + 6.36681I                    | 0                    |
| u = -1.42024 - 0.07916I   | 2.81245 - 6.36681I                    | 0                    |
| u = -1.40307 + 0.27814I   | 2.03846 - 6.90566I                    | 0                    |
| u = -1.40307 - 0.27814I   | 2.03846 + 6.90566I                    | 0                    |
| u = 1.42052 + 0.19384I    | 6.18270 + 0.37995I                    | 0                    |
| u = 1.42052 - 0.19384I    | 6.18270 - 0.37995I                    | 0                    |
| u = -1.42012 + 0.20531I   | 9.92026 - 4.41693I                    | 0                    |
| u = -1.42012 - 0.20531I   | 9.92026 + 4.41693I                    | 0                    |
| u = 1.40654 + 0.28588I    | 4.72530 + 10.95400I                   | 0                    |
| u = 1.40654 - 0.28588I    | 4.72530 - 10.95400I                   | 0                    |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = 1.42058 + 0.21544I    | 5.87848 + 8.46734I                    | 0                   |
| u = 1.42058 - 0.21544I    | 5.87848 - 8.46734I                    | 0                   |
| u = -1.40733 + 0.29033I   | -0.0836 - 14.9873I                    | 0                   |
| u = -1.40733 - 0.29033I   | -0.0836 + 14.9873I                    | 0                   |
| u = -0.148067 + 0.449066I | -0.202946 - 0.853104I                 | -4.89270 + 7.93904I |
| u = -0.148067 - 0.449066I | -0.202946 + 0.853104I                 | -4.89270 - 7.93904I |

II. 
$$I_2^u = \langle u^6 + u^5 - 2u^4 - 2u^3 + 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{5} - 2u^{3} + u + 1 \\ 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{5} - 2u^{3} + u + 1 \\ 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{4} + u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{4} + u^{2} - u + 1 \\ -u^{4} - u^{3} + 2u^{2} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{4} + u^{2} + u - 1 \\ u^{5} - 2u^{3} - u^{2} + u + 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{3} - u^{2} + 1 \\ -u^{4} + u^{3} + 2u^{2} - u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{3} + u^{2} + 1 \\ -u^{5} + u^{3} + u^{2} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -6

#### (iv) u-Polynomials at the component

| Crossings                             | u-Polynomials at each crossing     |
|---------------------------------------|------------------------------------|
| $c_1$                                 | $u^6 - u^5 + 2u^3 + 2u^2 - 4u + 1$ |
| $c_2, c_3, c_5$<br>$c_6, c_8, c_{11}$ | $u^6 - u^5 - 2u^4 + 2u^3 + 1$      |
| $c_4, c_7$                            | $(u+1)^6$                          |
| $c_9, c_{10}, c_{12}$                 | $u^6 + u^4 - 2u^3 + 2u^2 - 2u - 1$ |

## (v) Riley Polynomials at the component

| Crossings                           | Riley Polynomials at each crossing           |
|-------------------------------------|----------------------------------------------|
| $c_1$                               | $y^6 - y^5 + 8y^4 - 10y^3 + 20y^2 - 12y + 1$ |
| $c_2, c_3, c_5 \\ c_6, c_8, c_{11}$ | $y^6 - 5y^5 + 8y^4 - 2y^3 - 4y^2 + 1$        |
| $c_4, c_7$                          | $(y-1)^6$                                    |
| $c_9, c_{10}, c_{12}$               | $y^6 + 2y^5 + 5y^4 - 2y^3 - 6y^2 - 8y + 1$   |

## (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_2^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape |
|---------------------------|---------------------------------------|------------|
| u = 0.733459              | -1.64493                              | -6.00000   |
| u = -0.181278 + 0.698849I | -1.64493                              | -6.00000   |
| u = -0.181278 - 0.698849I | -1.64493                              | -6.00000   |
| u = 1.35202               | -1.64493                              | -6.00000   |
| u = -1.361460 + 0.284643I | -1.64493                              | -6.00000   |
| u = -1.361460 - 0.284643I | -1.64493                              | -6.00000   |

III. 
$$I_3^u = \langle u-1 \rangle$$

(i) Arc colorings

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -6

#### (iv) u-Polynomials at the component

| Crossings                                     | u-Polynomials at each crossing |
|-----------------------------------------------|--------------------------------|
| $c_1$                                         | u-1                            |
| $c_2, c_3, c_4$ $c_5, c_6, c_7$ $c_8, c_{11}$ | u+1                            |
| $c_9, c_{10}, c_{12}$                         | u                              |

## (v) Riley Polynomials at the component

| Crossings                                          | Riley Polynomials at each crossing |
|----------------------------------------------------|------------------------------------|
| $c_1, c_2, c_3$ $c_4, c_5, c_6$ $c_7, c_8, c_{11}$ | y-1                                |
| $c_9, c_{10}, c_{12}$                              | y                                  |

## (vi) Complex Volumes and Cusp Shapes

|     | Solutions to $I_3^u$ | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape |
|-----|----------------------|---------------------------------------|------------|
| u = | 1.00000              | -1.64493                              | -6.00000   |

IV. u-Polynomials

| Crossings             | u-Polynomials at each crossing                                                 |  |
|-----------------------|--------------------------------------------------------------------------------|--|
| $c_1$                 | $ (u-1)(u^6 - u^5 + \dots - 4u + 1)(u^{66} - 15u^{65} + \dots - 1396u + 113) $ |  |
| $c_2, c_3, c_8$       | $(u+1)(u^6 - u^5 - 2u^4 + 2u^3 + 1)(u^{66} - u^{65} + \dots + 2u^2 + 1)$       |  |
| $c_4, c_7$            | $((u+1)^7)(u^{66}-6u^{65}+\cdots+84u+8)$                                       |  |
| $c_5, c_6, c_{11}$    | $(u+1)(u^6 - u^5 - 2u^4 + 2u^3 + 1)(u^{66} - u^{65} + \dots + 2u^2 + 1)$       |  |
| <i>c</i> <sub>9</sub> | $u(u^{6} + u^{4} + \dots - 2u - 1)(u^{66} + 3u^{65} + \dots - 6u - 1)$         |  |
| $c_{10}, c_{12}$      | $u(u^{6} + u^{4} + \dots - 2u - 1)(u^{66} + 3u^{65} + \dots - 2u - 1)$         |  |

#### V. Riley Polynomials

| Crossings          | Riley Polynomials at each crossing                                                                        |
|--------------------|-----------------------------------------------------------------------------------------------------------|
| $c_1$              | $(y-1)(y^6 - y^5 + 8y^4 - 10y^3 + 20y^2 - 12y + 1)$ $\cdot (y^{66} + 13y^{65} + \dots + 264176y + 12769)$ |
| $c_2, c_3, c_8$    | $(y-1)(y^6 - 5y^5 + \dots - 4y^2 + 1)(y^{66} - 59y^{65} + \dots + 4y + 1)$                                |
| $c_4, c_7$         | $((y-1)^7)(y^{66} - 42y^{65} + \dots - 8112y + 64)$                                                       |
| $c_5, c_6, c_{11}$ | $(y-1)(y^6 - 5y^5 + \dots - 4y^2 + 1)(y^{66} - 55y^{65} + \dots + 4y + 1)$                                |
| <i>c</i> 9         | $y(y^6 + 2y^5 + \dots - 8y + 1)(y^{66} + y^{65} + \dots - 52y + 1)$                                       |
| $c_{10}, c_{12}$   | $y(y^6 + 2y^5 + \dots - 8y + 1)(y^{66} + 37y^{65} + \dots - 4y + 1)$                                      |