第三章 微分中值定理与导数应用

第二节 洛必达法则

主讲 武忠祥 教授

洛必达法则

若 1)
$$\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x) = 0$$
;

- 2) f(x) 和 g(x)在 $U(x_0,\delta)$ 内可导,且 $g'(x) \neq 0$;
- 3) $\lim_{x\to x_0} \frac{f'(x)}{g'(x)}$ 存在 (或 ∞);

$$\iiint_{x\to x_0} \frac{f(x)}{g(x)} = \lim_{x\to x_0} \frac{f'(x)}{g'(x)}.$$

例1 求极限
$$\lim_{x\to 0} \frac{\tan x - x}{x - \sin x}$$

例2 求极限
$$\lim_{x\to 0} \frac{x^2 + 2\cos x - 2}{(e^x - 1)^2 \ln(1 + x^2)}$$

例3 求
$$\lim_{x\to +\infty} \frac{\log_a x}{x^{\alpha}}$$
 与 $\lim_{x\to +\infty} \frac{x^{\alpha}}{a^x} . (a>1,\alpha,\beta>0)$

例4 求
$$\lim_{x\to 0} \left[\frac{1}{\ln(1+x)} - \frac{1}{x}\right]$$
 (2)

例5 求
$$\lim_{x\to 0^+}(x)^{\sin x}=1$$

例6 求 $\lim_{x\to+\infty} \left(\frac{2}{\pi} \arctan x\right)^x = e^{-\frac{2}{\pi}}$

内容小结

1) 适用类型: $\frac{0}{0}$; $\frac{\infty}{\infty}$; $0 \cdot \infty$; $\infty - \infty$; 1^{∞} ; ∞^{0} ; 0^{0} .

- 2) 注意两点:
 - (1) 化简.
 - (2) 条件3);

洛必达法则

- **若 1)** $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x) = 0$;
 - 2) f(x) 和 g(x)在 $U(x_0,\delta)$ 内可导,且 $g'(x) \neq 0$;
 - 3) $\lim_{x\to x_0} \frac{f'(x)}{g'(x)}$ 存在(或 ∞);
- $\iiint_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}.$

作业 P137: 1(3)(5)(9)(11)(13)(15)(16); 2; 3;