IS4200/CS6200 Information Retrieval

PageRank Continued

with slides from
Hinrich Schütze and Christina Lioma

Exercise: Assumptions underlying PageRank

- Assumption 1: A link on the web is a quality signal the author of the link thinks that the linked-to page is highquality.
- Assumption 2: The anchor text describes the content of the linked-to page.
- Is assumption 1 true in general?
- Is assumption 2 true in general?

 A Google bomb is a search with "bad" results due to maliciously manipulated anchor text.

- A Google bomb is a search with "bad" results due to maliciously manipulated anchor text.
- Google introduced a new weighting function in January 2007 that fixed many Google bombs.

- A Google bomb is a search with "bad" results due to maliciously manipulated anchor text.
- Google introduced a new weighting function in January 2007 that fixed many Google bombs.
- Still some remnants: [dangerous cult] on Google, Bing, Yahoo

- A Google bomb is a search with "bad" results due to maliciously manipulated anchor text.
- Google introduced a new weighting function in January 2007 that fixed many Google bombs.
- Still some remnants: [dangerous cult] on Google, Bing, Yahoo
 - Coordinated link creation by those who dislike the Church of Scientology

- A Google bomb is a search with "bad" results due to maliciously manipulated anchor text.
- Google introduced a new weighting function in January 2007 that fixed many Google bombs.
- Still some remnants: [dangerous cult] on Google, Bing, Yahoo
 - Coordinated link creation by those who dislike the Church of Scientology
- Defused Google bombs: [dumb motherf...], [who is a failure?],
 [evil empire]

Origins of PageRank: Citation analysis (1)

- Citation analysis: analysis of citations in the scientific literature.
- Example citation: "Miller (2001) has shown that physical activity alters the metabolism of estrogens."
- We can view "Miller (2001)" as a hyperlink linking two scientific articles.
- One application of these "hyperlinks" in the scientific literature:
 - Measure the similarity of two articles by the overlap of other articles citing them.
 - This is called cocitation similarity.
 - Cocitation similarity on the web: Google's "find pages like this" or "Similar" feature.

Origins of PageRank: Citation analysis (2)

- Another application: Citation frequency can be used to measure the impact of an article.
 - Simplest measure: Each article gets one vote not very accurate.
- On the web: citation frequency = inlink count
 - A high inlink count does not necessarily mean high quality ...
 - ... mainly because of link spam.
- Better measure: weighted citation frequency or citation rank
 - An article's vote is weighted according to its citation impact.
 - Circular? No: can be formalized in a well-defined way.

Origins of PageRank: Citation analysis (3)

- Better measure: weighted citation frequency or citation rank.
- This is basically PageRank.
- PageRank was invented in the context of citation analysis by Pinsker and Narin in the 1960s.
- Citation analysis is a big deal: The budget and salary of this lecturer are / will be determined by the impact of his publications!

Origins of PageRank: Summary

- We can use the same formal representation for
 - citations in the scientific literature
 - hyperlinks on the web
- Appropriately weighted citation frequency is an excellent measure of quality ...
 - ... both for web pages and for scientific publications.
- Next: PageRank algorithm for computing weighted citation frequency on the web.

Model behind PageRank: Random walk

- Imagine a web surfer doing a random walk on the web
 - Start at a random page
 - At each step, go out of the current page along one of the links on that page, equiprobably
- In the steady state, each page has a long-term visit rate.
- This long-term visit rate is the page's PageRank.
- PageRank = long-term visit rate = steady state probability.

 A Markov chain consists of N states, plus an N×N transition probability matrix P.

- A Markov chain consists of N states, plus an N×N transition probability matrix P.
- state = page

- A Markov chain consists of N states, plus an N×N transition probability matrix P.
- state = page
- At each step, we are on exactly one of the pages.

- A Markov chain consists of N states, plus an N×N transition probability matrix P.
- state = page
- At each step, we are on exactly one of the pages.
- For $1 \le i, j \ge N$, the matrix entry P_{ij} tells us the probability of j being the next page, given we are currently on page i.
- Clearly, for all i, $\sum_{j=1}^{N} P_{ij} = 1$

Example web graph

Link matrix for example

Link matrix for example

	d_0	d_1	d_2	d_3	d_4	d_5	d_6
d_0	0	0	1	0	0	0	0
d_1	0	1	1	0	0	0	0
d_2	1	0	1	1	0	0	0
d_3	0	0	0	1	1	0	0
d_4	0	0	0	0	0	0	1
d_5	0	0	0	0	0	1	1
d_6	0	0	0	1	1	0	1

Transition probability matrix *P* for example

Transition probability matrix *P* for example

	d_0	d_1	d_2	d_3	d_4	d_5	d_6
d_0	0.00	0.00	1.00	0.00	0.00	0.00	0.00
d_1	0.00	0.50	0.50	0.00	0.00	0.00	0.00
d_2	0.33	0.00	0.33	0.33	0.00	0.00	0.00
d_3	0.00	0.00	0.00	0.50	0.50	0.00	0.00
d_4	0.00	0.00	0.00	0.00	0.00	0.00	1.00
d_5	0.00	0.00	0.00	0.00	0.00	0.50	0.50
d_6	0.00	0.00	0.00	0.33	0.33	0.00	0.33

Recall: PageRank = long-term visit rate.

- Recall: PageRank = long-term visit rate.
- Long-term visit rate of page d is the probability that a web surfer is at page d at a given point in time.

- Recall: PageRank = long-term visit rate.
- Long-term visit rate of page d is the probability that a web surfer is at page d at a given point in time.
- Next: what properties must hold of the web graph for the long-term visit rate to be well defined?

- Recall: PageRank = long-term visit rate.
- Long-term visit rate of page d is the probability that a web surfer is at page d at a given point in time.
- Next: what properties must hold of the web graph for the long-term visit rate to be well defined?
- The web graph must correspond to an ergodic Markov chain.

- Recall: PageRank = long-term visit rate.
- Long-term visit rate of page d is the probability that a web surfer is at page d at a given point in time.
- Next: what properties must hold of the web graph for the long-term visit rate to be well defined?
- The web graph must correspond to an ergodic Markov chain.
- First a special case: The web graph must not contain dead ends.

The web is full of dead ends.

- The web is full of dead ends.
- Random walk can get stuck in dead ends.

- The web is full of dead ends.
- Random walk can get stuck in dead ends.
- If there are dead ends, long-term visit rates are not well-defined (or non-sensical).

Teleporting – to get us of dead ends

Teleporting – to get us of dead ends

At a dead end, jump to a random web page with prob.
 1/ N.

- At a dead end, jump to a random web page with prob.
 1/ N.
- At a non-dead end, with probability 10%, jump to a random web page (to each with a probability of 0.1/N).

- At a dead end, jump to a random web page with prob.
 1/ N.
- At a non-dead end, with probability 10%, jump to a random web page (to each with a probability of 0.1/N).
- With remaining probability (90%), go out on a random hyperlink.

- At a dead end, jump to a random web page with prob.
 1/ N.
- At a non-dead end, with probability 10%, jump to a random web page (to each with a probability of 0.1/N).
- With remaining probability (90%), go out on a random hyperlink.
 - For example, if the page has 4 outgoing links: randomly choose one with probability (1-0.10)/4=0.225

- At a dead end, jump to a random web page with prob.
 1/ N.
- At a non-dead end, with probability 10%, jump to a random web page (to each with a probability of 0.1/N).
- With remaining probability (90%), go out on a random hyperlink.
 - For example, if the page has 4 outgoing links: randomly choose one with probability (1-0.10)/4=0.225
- 10% is a parameter, the teleportation rate.

- At a dead end, jump to a random web page with prob.
 1/ N.
- At a non-dead end, with probability 10%, jump to a random web page (to each with a probability of 0.1/N).
- With remaining probability (90%), go out on a random hyperlink.
 - For example, if the page has 4 outgoing links: randomly choose one with probability (1-0.10)/4=0.225
- 10% is a parameter, the teleportation rate.
- Note: "jumping" from dead end is independent of teleportation rate.

With teleporting, we cannot get stuck in a dead end.

- With teleporting, we cannot get stuck in a dead end.
- But even without dead ends, a graph may not have welldefined long-term visit rates.

- With teleporting, we cannot get stuck in a dead end.
- But even without dead ends, a graph may not have welldefined long-term visit rates.
- More generally, we require that the Markov chain be ergodic.

A Markov chain is ergodic if it is irreducible and aperiodic.

- A Markov chain is ergodic if it is irreducible and aperiodic.
- Irreducibility. Roughly: there is a path from any other page.

- A Markov chain is ergodic if it is irreducible and aperiodic.
- Irreducibility. Roughly: there is a path from any other page.
- Aperiodicity. Roughly: The pages cannot be partitioned such that the random walker visits the partitions sequentially.

- A Markov chain is ergodic if it is irreducible and aperiodic.
- Irreducibility. Roughly: there is a path from any other page.
- Aperiodicity. Roughly: The pages cannot be partitioned such that the random walker visits the partitions sequentially.
- A non-ergodic Markov chain:

Theorem: For any ergodic Markov chain, there is a unique long-term visit rate for each state.

- Theorem: For any ergodic Markov chain, there is a unique long-term visit rate for each state.
- This is the steady-state probability distribution.

- Theorem: For any ergodic Markov chain, there is a unique long-term visit rate for each state.
- This is the steady-state probability distribution.
- Over a long time period, we visit each state in proportion to this rate.

- Theorem: For any ergodic Markov chain, there is a unique long-term visit rate for each state.
- This is the steady-state probability distribution.
- Over a long time period, we visit each state in proportion to this rate.
- It doesn't matter where we start.

- Theorem: For any ergodic Markov chain, there is a unique long-term visit rate for each state.
- This is the steady-state probability distribution.
- Over a long time period, we visit each state in proportion to this rate.
- It doesn't matter where we start.
- Teleporting makes the web graph ergodic.

- Theorem: For any ergodic Markov chain, there is a unique long-term visit rate for each state.
- This is the steady-state probability distribution.
- Over a long time period, we visit each state in proportion to this rate.
- It doesn't matter where we start.
- Teleporting makes the web graph ergodic.
- Web-graph+teleporting has a steady-state probability distribution.

- Theorem: For any ergodic Markov chain, there is a unique long-term visit rate for each state.
- This is the steady-state probability distribution.
- Over a long time period, we visit each state in proportion to this rate.
- It doesn't matter where we start.
- Teleporting makes the web graph ergodic.
- Web-graph+teleporting has a steady-state probability distribution.
- Each page in the web-graph+teleporting has a PageRank.

• A probability (row) vector $\vec{x} = (x_1, ..., x_N)$ tells us where the random walk is at any point.

- A probability (row) vector $\vec{x} = (x_1, ..., x_N)$ tells us where the random walk is at any point.
- Example: (0 0 0 ... 1 ... 0 0 0)
 1 2 3 ... i ... N-2 N-1 N

• A probability (row) vector $\vec{x} = (x_1, ..., x_N)$ tells us where the random walk is at any point.

```
    Example: ( 0 0 0 ... 1 ... 0 0 0 )
    1 2 3 ... i ... N-2 N-1 N
```

• More generally: the random walk is on the page i with probability x_i .

- A probability (row) vector $\vec{x} = (x_1, ..., x_N)$ tells us where the random walk is at any point.
- Example: (0 0 0 ... 1 ... 0 0 0)
 1 2 3 ... i ... N-2 N-1 N
- More generally: the random walk is on the page i with probability x_i .
- Example:

```
( 0.05 0.01 0.0 ... 0.2 ... 0.01 0.05 0.03 )
1 2 3 ... i ... N-2 N-1 N
```

- A probability (row) vector $\vec{x} = (x_1, ..., x_N)$ tells us where the random walk is at any point.
- Example: (0 0 0 ... 1 ... 0 0 0)

 1 2 3 ... i ... N-2 N-1 N
- More generally: the random walk is on the page i with probability x_i .
- Example:
 - (0.05 0.01 0.0 ... 0.2 ... 0.01 0.05 0.03) 1 2 3 ... *i* ... N-2 N-1 N

Change in probability vector

• If the probability vector is $\vec{x} = (x_1, ..., x_N)$, at this step, what is it at the next step?

Change in probability vector

- If the probability vector is $\vec{x} = (x_1, ..., x_N)$, at this step, what is it at the next step?
- Recall that row i of the transition probability matrix P tells us where we go next from state i.

Change in probability vector

- If the probability vector is $\vec{x} = (x_1, ..., x_N)$, at this step, what is it at the next step?
- Recall that row i of the transition probability matrix P tells us where we go next from state i.
- So from \vec{x} , our next state is distributed as $\vec{x}P$.

• The steady state in vector notation is simply a vector $\vec{\pi} = (\pi_1, \pi_2, ..., \pi_N)$ of probabilities.

- The steady state in vector notation is simply a vector $\vec{\pi} = (\pi_1, \pi_2, ..., \pi_N)$ of probabilities.
- (We use $\vec{\pi}$ to distinguish it from the notation for the probability vector \vec{x} .)

- The steady state in vector notation is simply a vector $\vec{\pi} = (\pi_1, \pi_2, ..., \pi_N)$ of probabilities.
- (We use $\vec{\pi}$ to distinguish it from the notation for the probability vector \vec{x} .)
- π is the long-term visit rate (or PageRank) of page i.

- The steady state in vector notation is simply a vector $\vec{\pi} = (\pi_1, \pi_2, ..., \pi_N)$ of probabilities.
- (We use $\vec{\pi}$ to distinguish it from the notation for the probability vector \vec{x} .)
- π is the long-term visit rate (or PageRank) of page *i*.
- So we can think of PageRank as a very long vector one entry per page.

Steady-state distribution: Example

Steady-state distribution: Example

What is the PageRank / steady state in this example?

	$\begin{vmatrix} x_1 \\ P_t(d_1) \end{vmatrix}$	X_2 $P_t(d_2)$		
			$P_{11} = 0.25$ $P_{21} = 0.25$	$P_{12} = 0.75$ $P_{22} = 0.75$
$t_0 \ t_1$	0.25	0.75		

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$

$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

	$\begin{vmatrix} x_1 \\ P_t(d_1) \end{vmatrix}$	X_2 $P_t(d_2)$		
			$P_{11} = 0.25$ $P_{21} = 0.25$	$P_{12} = 0.75$ $P_{22} = 0.75$
$t_0 \ t_1$	0.25	0.75	0.25	0.75

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$

$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

	$\begin{vmatrix} x_1 \\ P_t(d_1) \end{vmatrix}$	X_2 $P_t(d_2)$		
			$P_{11} = 0.25$ $P_{21} = 0.25$	$P_{12} = 0.75$ $P_{22} = 0.75$
$t_0 \ t_1$	0.25 0.25	0.75 0.75	0.25	0.75

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$

$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

	$\begin{vmatrix} x_1 \\ P_t(d_1) \end{vmatrix}$	X_2 $P_t(d_2)$			
			$P_{11} = 0.25$ $P_{21} = 0.25$	$P_{12} = 0.75$ $P_{22} = 0.75$	
t_0	0.25	0.75	0.25	0.75	
t_1	0.25	0.75	(convergence)		

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$

$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

In other words: how do we compute PageRank?

- In other words: how do we compute PageRank?
- Recall: $\vec{\pi} = (\pi_1, \pi_2, ..., \pi_N)$ is the PageRank vector, the vector of steady-state probabilities ...

- In other words: how do we compute PageRank?
- Recall: $\vec{\pi} = (\pi_1, \pi_2, ..., \pi_N)$ is the PageRank vector, the vector of steady-state probabilities ...
- ... and if the distribution in this step is \vec{x} , then the distribution in the next step is $\vec{x}P$.

- In other words: how do we compute PageRank?
- Recall: $\vec{\pi} = (\pi_1, \pi_2, ..., \pi_N)$ is the PageRank vector, the vector of steady-state probabilities ...
- ... and if the distribution in this step is \vec{x} , then the distribution in the next step is $\vec{x}P$.
- But $\vec{\pi}$ is the steady state!

- In other words: how do we compute PageRank?
- Recall: $\vec{\pi} = (\pi_1, \pi_2, ..., \pi_N)$ is the PageRank vector, the vector of steady-state probabilities ...
- ... and if the distribution in this step is \vec{x} , then the distribution in the next step is $\vec{x}P$.
- But $\overline{\pi}$ is the steady state!
- So: $\vec{\pi} = \vec{\pi} P$

- In other words: how do we compute PageRank?
- Recall: $\vec{\pi} = (\pi_1, \pi_2, ..., \pi_N)$ is the PageRank vector, the vector of steady-state probabilities ...
- ... and if the distribution in this step is \vec{x} , then the distribution in the next step is $\vec{x}P$.
- But $\vec{\pi}$ is the steady state!
- So: $\vec{\pi} = \vec{\pi} P$
- Solving this matrix equation gives us $\vec{\pi}$.

- In other words: how do we compute PageRank?
- Recall: $\vec{\pi} = (\pi_1, \pi_2, ..., \pi_N)$ is the PageRank vector, the vector of steady-state probabilities ...
- ... and if the distribution in this step is \vec{x} , then the distribution in the next step is $\vec{x}P$.
- But $\vec{\pi}$ is the steady state!
- So: $\vec{\pi} = \vec{\pi} P$
- Solving this matrix equation gives us $\vec{\pi}$.
- $\vec{\pi}$ is the principal left eigenvector for P ...

- In other words: how do we compute PageRank?
- Recall: $\vec{\pi} = (\pi_1, \pi_2, ..., \pi_N)$ is the PageRank vector, the vector of steady-state probabilities ...
- ... and if the distribution in this step is \vec{x} , then the distribution in the next step is $\vec{x}P$.
- But $\vec{\pi}$ is the steady state!
- So: $\vec{\pi} = \vec{\pi} P$
- Solving this matrix equation gives us $\vec{\pi}$.
- $\vec{\pi}$ is the principal left eigenvector for P ...
- ... that is, $\vec{\pi}$ is the left eigenvector with the largest eigenvalue.

- In other words: how do we compute PageRank?
- Recall: $\vec{\pi} = (\pi_1, \pi_2, ..., \pi_N)$ is the PageRank vector, the vector of steady-state probabilities ...
- ... and if the distribution in this step is \vec{x} , then the distribution in the next step is $\vec{x}P$.
- But $\vec{\pi}$ is the steady state!
- So: $\vec{\pi} = \vec{\pi} P$
- Solving this matrix equation gives us $\vec{\pi}$.
- $\vec{\pi}$ is the principal left eigenvector for P ...
- ... that is, $\vec{\pi}$ is the left eigenvector with the largest eigenvalue.
- All transition probability matrices have largest eigenvalue 1.

• Start with any distribution \vec{x} , e.g., uniform distribution

- Start with any distribution \vec{x} , e.g., uniform distribution
- After one step, we're at $\vec{x}P$.

- Start with any distribution \vec{x} , e.g., uniform distribution
- After one step, we're at $\vec{x}P$.
- After two steps, we're at $\vec{x}P^2$.

- Start with any distribution \vec{x} , e.g., uniform distribution
- After one step, we're at $\vec{x}P$.
- After two steps, we're at $\vec{x}P^2$.
- After k steps, we're at $\vec{x}P^k$.

- Start with any distribution \vec{x} , e.g., uniform distribution
- After one step, we're at $\vec{x}P$.
- After two steps, we're at $\vec{x}P^2$.
- After k steps, we're at $\vec{x}P^k$.
- Algorithm: multiply \vec{x} by increasing powers of *P* until convergence.

- Start with any distribution \vec{x} , e.g., uniform distribution
- After one step, we're at $\vec{x}P$.
- After two steps, we're at $\vec{x}P^2$.
- After k steps, we're at $\overrightarrow{x}P^k$.
- Algorithm: multiply \vec{x} by increasing powers of *P* until convergence.
- This is called the power method.

- Start with any distribution \vec{x} , e.g., uniform distribution
- After one step, we're at $\vec{x}P$.
- After two steps, we're at $\vec{x}P^2$.
- After k steps, we're at $\overrightarrow{x}P^k$.
- Algorithm: multiply \vec{x} by increasing powers of *P* until convergence.
- This is called the power method.
- Recall: regardless of where we start, we eventually reach the steady state $\vec{\pi}$.

- Start with any distribution \vec{x} , e.g., uniform distribution
- After one step, we're at $\vec{x}P$.
- After two steps, we're at $\vec{x}P^2$.
- After k steps, we're at $\vec{x}P^k$.
- Algorithm: multiply \vec{x} by increasing powers of *P* until convergence.
- This is called the power method.
- Recall: regardless of where we start, we eventually reach the steady state $\vec{\pi}$.
- Thus: we will eventually (in asymptotia) reach the steady state.

Power method: Example

Power method: Example

What is the PageRank / steady state in this example?

	X_1 $P_t(d_1)$	x_2 $P_t(d_2)$			
			$P_{11} = 0.1$ $P_{21} = 0.3$	$P_{12} = 0.9$ $P_{22} = 0.7$	
t_0	0	1			$= \overrightarrow{x}P$ $= \overrightarrow{x}P^{2}$ $= \overrightarrow{x}P^{3}$ $= \overrightarrow{x}P^{4}$
t_1					$=\overrightarrow{x}P^2$
t_2					$=\overrightarrow{x}P^3$
t_3					$= \overrightarrow{x}P^4$
$t_{\scriptscriptstyle\infty}$					$=\overrightarrow{x}P^{\infty}$

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$

$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

	X_1 $P_t(d_1)$	X_2 $P_t(d_2)$			
			$P_{11} = 0.1$ $P_{21} = 0.3$	$P_{12} = 0.9$ $P_{22} = 0.7$	
t_0	0	1	0.3	0.7	$=\overrightarrow{x}P$
t_1					$= \overrightarrow{x}P^{2}$ $= \overrightarrow{x}P^{3}$ $= \overrightarrow{x}P^{4}$
t_2					$=\overrightarrow{x}P^3$
t_3					$= \overrightarrow{x}P^4$
t_{∞}					$=\overrightarrow{x}P^{\infty}$

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$

$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

	X_1 $P_t(d_1)$	x_2 $P_t(d_2)$			
			$P_{11} = 0.1$ $P_{21} = 0.3$	$P_{12} = 0.9$ $P_{22} = 0.7$	
t_0	0	1	0.3	0.7	$=\overrightarrow{x}P$
t_1	0.3	0.7			$= \overrightarrow{x}P^{2}$ $= \overrightarrow{x}P^{3}$ $= \overrightarrow{x}P^{4}$
t_2					$=\overrightarrow{x}P^3$
t_3					$=\overrightarrow{x}P^4$
$t_{\scriptscriptstyle\infty}$					$=\overrightarrow{x}P^{\infty}$

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$

$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

	X_1 $P_t(d_1)$	x_2 $P_t(d_2)$			
			$P_{11} = 0.1$ $P_{21} = 0.3$	$P_{12} = 0.9$ $P_{22} = 0.7$	
t_0	0	1	0.3	0.7	$=\overrightarrow{x}P$
t_1	0.3	0.7	0.24	0.76	$=\overrightarrow{x}P^2$
t_2					$= \overrightarrow{x}P^3$ $= \overrightarrow{x}P^4$
t_3					$= \overrightarrow{x}P^4$
$t_{\scriptscriptstyle\infty}$					$= \overrightarrow{x}P^{\infty}$

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$

$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

	X_1 $P_t(d_1)$	x_2 $P_t(d_2)$			
			$P_{11} = 0.1$ $P_{21} = 0.3$	$P_{12} = 0.9$ $P_{22} = 0.7$	
t_0	0	1	0.3	0.7	$=\overrightarrow{x}P$
t_1	0.3	0.7	0.24	0.76	$=\overrightarrow{x}P^2$
t_2	0.24	0.76			$= \overrightarrow{x}P^3$ $= \overrightarrow{x}P^4$
t_3					$=\overrightarrow{x}P^4$
					• • •
$t_{\scriptscriptstyle\infty}$					$=\overrightarrow{x}P^{\infty}$

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$

$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

	X_1 $P_t(d_1)$	x_2 $P_t(d_2)$			
			$P_{11} = 0.1$ $P_{21} = 0.3$	$P_{12} = 0.9$ $P_{22} = 0.7$	
t_0	0	1	0.3	0.7	$= \overrightarrow{x}P$
t_1	0.3	0.7	0.24	0.76	$= \overrightarrow{x}P^2$
t_2	0.24	0.76	0.252	0.748	$=\overrightarrow{x}P^3$
t_3					$= \overrightarrow{x}P^4$
$t_{\scriptscriptstyle\infty}$					$=\overrightarrow{x}P^{\infty}$

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$

$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

	X_1 $P_t(d_1)$	x_2 $P_t(d_2)$			
			$P_{11} = 0.1$ $P_{21} = 0.3$	$P_{12} = 0.9$ $P_{22} = 0.7$	
t_0	0	1	0.3	0.7	$= \overrightarrow{x}P$
t_1	0.3	0.7	0.24	0.76	$=\overrightarrow{x}P^2$
t_2	0.24	0.76	0.252	0.748	$=\overrightarrow{x}P^3$
t_3	0.252	0.748			$=\overrightarrow{x}P^4$
$t_{\scriptscriptstyle\infty}$					$= \overrightarrow{x}P^{\infty}$

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$

$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

	X_1 $P_t(d_1)$	X_2 $P_t(d_2)$			
			$P_{11} = 0.1$ $P_{21} = 0.3$	$P_{12} = 0.9$ $P_{22} = 0.7$	
t_0	0	1	0.3	0.7	$= \overrightarrow{x}P$
$t_{\scriptscriptstyle 1}$	0.3	0.7	0.24	0.76	$= \overrightarrow{x}P^2$
t_2	0.24	0.76	0.252	0.748	$= \overrightarrow{x}P^3$
t_3	0.252	0.748	0.2496	0.7504	$= \overrightarrow{x}P^4$
$t_{\scriptscriptstyle\infty}$					$= \overrightarrow{x} P^{\infty}$

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$

$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

	X_1 $P_t(d_1)$	x_2 $P_t(d_2)$			
			$P_{11} = 0.1$ $P_{21} = 0.3$	$P_{12} = 0.9$ $P_{22} = 0.7$	
t_0	0	1	0.3	0.7	$=\overrightarrow{x}P$
t_{1}	0.3	0.7	0.24	0.76	$=\overrightarrow{x}P^2$
t_2	0.24	0.76	0.252	0.748	$=\overrightarrow{x}P^3$
t_3	0.252	0.748	0.2496	0.7504	$=\overrightarrow{x}P^4$
t∞					$=\overrightarrow{x}P^{\infty}$

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$

$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

Computing PageRank: Power Example

	X_1 $P_t(d_1)$	X_2 $P_t(d_2)$			
			$P_{11} = 0.1$ $P_{21} = 0.3$	$P_{12} = 0.9$ $P_{22} = 0.7$	
t_0	0	1	0.3	0.7	$=\overrightarrow{x}P$
$t_{\scriptscriptstyle 1}$	0.3	0.7	0.24	0.76	$=\overrightarrow{x}P^2$
t_2	0.24	0.76	0.252	0.748	$=\overrightarrow{x}P^3$
t_3	0.252	0.748	0.2496	0.7504	$= \overrightarrow{x}P^4$
				•	
$t_{\scriptscriptstyle\infty}$	0.25	0.75			$=\overrightarrow{x}P^{\infty}$

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$

$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

Computing PageRank: Power Example

	X_1 $P_t(d_1)$	X_2 $P_t(d_2)$			
			$P_{11} = 0.1$ $P_{21} = 0.3$	$P_{12} = 0.9$ $P_{22} = 0.7$	
t_0	0	1	0.3	0.7	$= \overrightarrow{x}P$
$t_{\scriptscriptstyle 1}$	0.3	0.7	0.24	0.76	$= \overrightarrow{x}P^2$
t_2	0.24	0.76	0.252	0.748	$=\overrightarrow{x}P^3$
t_3	0.252	0.748	0.2496	0.7504	$= \overrightarrow{x}P^4$
				•	
$t_{\scriptscriptstyle\infty}$	0.25	0.75	0.25	0.75	$= \overrightarrow{x} P^{\infty}$

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$

$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

Computing PageRank: Power Example

	X_1 $P_t(d_1)$	X_2 $P_t(d_2)$			
			$P_{11} = 0.1$ $P_{21} = 0.3$	$P_{12} = 0.9$ $P_{22} = 0.7$	
t_0	0	1	0.3	0.7	$=\overrightarrow{x}P$
$t_{\scriptscriptstyle 1}$	0.3	0.7	0.24	0.76	$=\overrightarrow{x}P^2$
t_2	0.24	0.76	0.252	0.748	$=\vec{x}P^3$
t_3	0.252	0.748	0.2496	0.7504	$= \overrightarrow{x}P^4$
				•	
$t_{\scriptscriptstyle\infty}$	0.25	0.75	0.25	0.75	$=\overrightarrow{x}P^{\infty}$

PageRank vector =
$$\overrightarrow{\pi}$$
 = (π_1, π_2) = (0.25, 0.75)
 $P_t(d_1) = P_{t-1}(d_1) * P_{11} + P_{t-1}(d_2) * P_{21}$
 $P_t(d_2) = P_{t-1}(d_1) * P_{12} + P_{t-1}(d_2) * P_{22}$

Power method: Example

What is the PageRank / steady state in this example?

■ The steady state distribution (= the PageRanks) in this example are 0.25 for d_1 and 0.75 for d_2 .

Exercise: Compute PageRank using power method

Exercise: Compute PageRank using power method

	X_1 $P_t(d_1)$	X_2 $P_t(d_2)$		
			$P_{11} = 0.7$ $P_{21} = 0.2$	$P_{12} = 0.3$ $P_{22} = 0.8$
t_0	0	1		
t_1				
t_2				
t_3				
$t_{\scriptscriptstyle\infty}$				

PageRank vector =
$$\overrightarrow{\pi}$$
 = (π_1, π_2) = (0.4, 0.6)
 $P_t(d_1) = P_{t-1}(d_1) * P_{11} + P_{t-1}(d_2) * P_{21}$
 $P_t(d_2) = P_{t-1}(d_1) * P_{12} + P_{t-1}(d_2) * P_{22}$

	X_1 $P_t(d_1)$	x_2 $P_t(d_2)$		
			$P_{11} = 0.7$ $P_{21} = 0.2$	$P_{12} = 0.3$ $P_{22} = 0.8$
t ₀ t ₁ t ₂	0	1	0.2	0.8
t ₃				
$t_{\scriptscriptstyle\infty}$				

PageRank vector =
$$\overrightarrow{\pi}$$
 = (π_1, π_2) = (0.4, 0.6)
 $P_t(d_1) = P_{t-1}(d_1) * P_{11} + P_{t-1}(d_2) * P_{21}$
 $P_t(d_2) = P_{t-1}(d_1) * P_{12} + P_{t-1}(d_2) * P_{22}$

	X_1 $P_t(d_1)$	x_2 $P_t(d_2)$		
			$P_{11} = 0.7$ $P_{21} = 0.2$	$P_{12} = 0.3$ $P_{22} = 0.8$
t_0	0	1	0.2	0.8
t_1	0.2	0.8		
t_2				
t_3				
$t_{\scriptscriptstyle\infty}$				

PageRank vector =
$$\overrightarrow{\pi}$$
 = (π_1, π_2) = (0.4, 0.6)
 $P_t(d_1) = P_{t-1}(d_1) * P_{11} + P_{t-1}(d_2) * P_{21}$
 $P_t(d_2) = P_{t-1}(d_1) * P_{12} + P_{t-1}(d_2) * P_{22}$

	X_1 $P_t(d_1)$	X_2 $P_t(d_2)$		
			$P_{11} = 0.7$ $P_{21} = 0.2$	$P_{12} = 0.3$ $P_{22} = 0.8$
t_0	0	1	0.2	0.8
t_1	0.2	0.8	0.3	0.7
t_2				
t_3				
$t_{\scriptscriptstyle\infty}$				

PageRank vector =
$$\overrightarrow{\pi}$$
 = (π_1, π_2) = (0.4, 0.6)
 $P_t(d_1) = P_{t-1}(d_1) * P_{11} + P_{t-1}(d_2) * P_{21}$
 $P_t(d_2) = P_{t-1}(d_1) * P_{12} + P_{t-1}(d_2) * P_{22}$

	X_1 $P_t(d_1)$	x_2 $P_t(d_2)$		
			$P_{11} = 0.7$ $P_{21} = 0.2$	$P_{12} = 0.3$ $P_{22} = 0.8$
t_0	0	1	0.2	0.8
t_1	0.2	0.8	0.3	0.7
t_2	0.3	0.7		
t_3				
$t_{\scriptscriptstyle\infty}$				

PageRank vector =
$$\overrightarrow{\pi}$$
 = (π_1, π_2) = (0.4, 0.6)
 $P_t(d_1) = P_{t-1}(d_1) * P_{11} + P_{t-1}(d_2) * P_{21}$
 $P_t(d_2) = P_{t-1}(d_1) * P_{12} + P_{t-1}(d_2) * P_{22}$

	X_1 $P_t(d_1)$	X_2 $P_t(d_2)$		
			$P_{11} = 0.7$ $P_{21} = 0.2$	$P_{12} = 0.3$ $P_{22} = 0.8$
t_0	0	1	0.2	0.8
t_1	0.2	0.8	0.3	0.7
t_2	0.3	0.7	0.35	0.65
t_3				
$t_{\scriptscriptstyle\infty}$				

PageRank vector =
$$\overrightarrow{\pi}$$
 = (π_1, π_2) = (0.4, 0.6)
 $P_t(d_1) = P_{t-1}(d_1) * P_{11} + P_{t-1}(d_2) * P_{21}$
 $P_t(d_2) = P_{t-1}(d_1) * P_{12} + P_{t-1}(d_2) * P_{22}$

	X_1 $P_t(d_1)$	X_2 $P_t(d_2)$		
			$P_{11} = 0.7$ $P_{21} = 0.2$	$P_{12} = 0.3$ $P_{22} = 0.8$
t_0	0	1	0.2	0.8
t_1	0.2	0.8	0.3	0.7
t_2	0.3	0.7	0.35	0.65
t_3	0.35	0.65		
t_{∞}				

PageRank vector =
$$\overrightarrow{\pi}$$
 = (π_1, π_2) = (0.4, 0.6)
 $P_t(d_1) = P_{t-1}(d_1) * P_{11} + P_{t-1}(d_2) * P_{21}$
 $P_t(d_2) = P_{t-1}(d_1) * P_{12} + P_{t-1}(d_2) * P_{22}$

	X_1 $P_t(d_1)$	X_2 $P_t(d_2)$		
			$P_{11} = 0.7$ $P_{21} = 0.2$	$P_{12} = 0.3$ $P_{22} = 0.8$
t_0	0	1	0.2	0.8
t_1	0.2	0.8	0.3	0.7
t_2	0.3	0.7	0.35	0.65
t_3	0.35	0.65	0.375	0.625
$t_{\scriptscriptstyle\infty}$				

PageRank vector =
$$\overrightarrow{\pi}$$
 = (π_1, π_2) = (0.4, 0.6)
 $P_t(d_1) = P_{t-1}(d_1) * P_{11} + P_{t-1}(d_2) * P_{21}$
 $P_t(d_2) = P_{t-1}(d_1) * P_{12} + P_{t-1}(d_2) * P_{22}$

	X_1 $P_t(d_1)$	x_2 $P_t(d_2)$		
			$P_{11} = 0.7$ $P_{21} = 0.2$	$P_{12} = 0.3$ $P_{22} = 0.8$
t_0	0	1	0.2	0.8
t_{1}	0.2	0.8	0.3	0.7
t_2	0.3	0.7	0.35	0.65
t_3	0.35	0.65	0.375	0.625
$t_{\scriptscriptstyle\infty}$				

PageRank vector =
$$\overrightarrow{\pi}$$
 = (π_1, π_2) = (0.4, 0.6)
 $P_t(d_1) = P_{t-1}(d_1) * P_{11} + P_{t-1}(d_2) * P_{21}$
 $P_t(d_2) = P_{t-1}(d_1) * P_{12} + P_{t-1}(d_2) * P_{22}$

	X_1 $P_t(d_1)$	X_2 $P_t(d_2)$		
			$P_{11} = 0.7$ $P_{21} = 0.2$	$P_{12} = 0.3$ $P_{22} = 0.8$
t_0	0	1	0.2	0.8
t_1	0.2	0.8	0.3	0.7
t_2	0.3	0.7	0.35	0.65
t_3	0.35	0.65	0.375	0.625
				•
$t_{\scriptscriptstyle\infty}$	0.4	0.6		

PageRank vector =
$$\overrightarrow{\pi}$$
 = (π_1, π_2) = (0.4, 0.6)
 $P_t(d_1) = P_{t-1}(d_1) * P_{11} + P_{t-1}(d_2) * P_{21}$
 $P_t(d_2) = P_{t-1}(d_1) * P_{12} + P_{t-1}(d_2) * P_{22}$

	X_1 $P_t(d_1)$	X_2 $P_t(d_2)$		
			$P_{11} = 0.7$ $P_{21} = 0.2$	$P_{12} = 0.3$ $P_{22} = 0.8$
t_0	0	1	0.2	0.8
t_1	0.2	0.8	0.3	0.7
t_2	0.3	0.7	0.35	0.65
t_3	0.35	0.65	0.375	0.625
				•
t_{∞}	0.4	0.6	0.4	0.6

PageRank vector =
$$\overrightarrow{\pi}$$
 = (π_1, π_2) = (0.4, 0.6)
 $P_t(d_1) = P_{t-1}(d_1) * P_{11} + P_{t-1}(d_2) * P_{21}$
 $P_t(d_2) = P_{t-1}(d_1) * P_{12} + P_{t-1}(d_2) * P_{22}$

Preprocessing

- Preprocessing
 - Given graph of links, build matrix P

- Preprocessing
 - Given graph of links, build matrix P
 - Apply teleportation

- Preprocessing
 - Given graph of links, build matrix P
 - Apply teleportation
 - From modified matrix, compute $\vec{\pi}$

- Preprocessing
 - Given graph of links, build matrix P
 - Apply teleportation
 - From modified matrix, compute $\vec{\pi}$
 - $\vec{\pi}_i$ is the PageRank of page *i*.

- Preprocessing
 - Given graph of links, build matrix P
 - Apply teleportation
 - From modified matrix, compute $\vec{\pi}$
 - $\vec{\pi}_i$ is the PageRank of page *i*.
- Query processing

- Preprocessing
 - Given graph of links, build matrix P
 - Apply teleportation
 - From modified matrix, compute $\vec{\pi}$
 - $\vec{\pi}_i$ is the PageRank of page *i*.
- Query processing
 - Retrieve pages satisfying the query

- Preprocessing
 - Given graph of links, build matrix P
 - Apply teleportation
 - From modified matrix, compute $\vec{\pi}$
 - $\vec{\pi}_i$ is the PageRank of page *i*.
- Query processing
 - Retrieve pages satisfying the query
 - Rank them by their PageRank

- Preprocessing
 - Given graph of links, build matrix P
 - Apply teleportation
 - From modified matrix, compute $\vec{\pi}$
 - $\vec{\pi}_i$ is the PageRank of page *i*.
- Query processing
 - Retrieve pages satisfying the query
 - Rank them by their PageRank
 - Return reranked list to the user

PageRank issues

- Real surfers are not random surfers.
 - Examples of nonrandom surfing: back button, short vs. long paths, bookmarks, directories – and search!
 - → Markov model is not a good model of surfing.
 - But it's good enough as a model for our purposes.
- Simple PageRank ranking (as described on previous slide) produces bad results for many pages.
 - Consider the query [video service].
 - The Yahoo home page (i) has a very high PageRank and (ii) contains both video and service.
 - If we rank all pages containing the query terms according to PageRank, then the Yahoo home page would be top-ranked.
 - Clearly not desirable.

How important is PageRank?

- Frequent claim: PageRank is the most important component of web ranking.
- The reality:
 - There are several components that are at least as important: e.g., anchor text, phrases, proximity, tiered indexes ...
 - Rumor has it that PageRank in his original form (as presented here) now has a negligible impact on ranking!
 - However, variants of a page's PageRank are still an essential part of ranking.
 - Addressing link spam is difficult and crucial.