BEST AVAILARIE COPY

Ziegler et al., ibid. 91, 2342 (1969); Kutney et al., ibid. 92, 1727 (1970); V. S. Giri et al., J. Heterocycl. Chem. 17, 1133 (1980); S. Takano et al., Heterocycles 16, 247 (1981). Enantioselective synthesis: eidem, Chem. Commun. 1980, 616; 1981, 1153.

Bitter leaflets, mp 145-147°. $[\alpha]_0^{20}$ -109 to -110° (acetone). uv max (methanol): 230, 287, 293 nm (log ϵ 4.55, 3.85, 3.84). Sol in acetone, alc, chloroform, ether, dil acids.

8041. Quebracho Colorado. Red quebracho. Wood of Loxopterygium lorentzii Griseb., Anacardiaceae. Habit. Argentine Republic. Constit. Tannin, coloring matter, Argentine Republic. loxopterygine.

USE: In dyeing and tanning.

8042. Queen Substance. (E)-9-Oxo-2-decenoic acid. $C_{10}H_{16}O_3$; mol wt 184.23. C 65.19%, H 8.75%, O 26.05%. Secreted in the mandibular gland of queen honey bees (Apis mellifera, A. florea, A. cerana, A. dorsata); inhibits the development of ovaries in worker bees, prevents queen cell formation and attracts male bees (drones) to virgin queens for the purpose of mating: Butler, Experientia 13, 256 (1957); Sannasi, Rajulu, Life Sci. 10, part 2, 195 (1971). Similarity with the ovary inhibiting hormone of prawns (Leander serratus): Carlisle, Butler, Nature 177, 276 (1956). Extraction and purification: Carlisle, Butler, loc. cit.; Butler et al., Nature 184, 1871 (1959). Synthesis: Barbier et al., Compt. Rend. 251, 1133 (1960); Jaeger, Robinson, Tetrahedron 14, 320 (1961); B. M. Trost, T. N. Salzman, J. Org. Chem. 40, 148 (1975); J. Tsuji et al., Tetrahedron Letters 1977, 2267; C. S. Subramaniam et al., Ind. J. Chem. 16B, 318 (1978); T. Fujisawa et al., Chem. Letters 1982, 219; Y. Naoshima et al., Agr. Biol. Chem. 48, 2151 (1984).

Transparent elongated plates from ether + petr ether or aq methanol, mp 54.5-55.5°. Stable to heat, acids, less stable to alkalies. Sol in acetone, alcohol. IR spectrum: Butler et

8043. Quercetagetin. 2-(3,4-Dihydroxyphenyl)-3,5,6,7-tetrahydroxy-4H-1-benzopyran-4-one; 3,3',4',5,6,7-hexahydroxyflavone; 6-hydroxycyanidenolon 1555. $C_{15}H_{10}O_8$; mol wt 318.23. C 56.61%, H 3.17%, O 40.22%. From flowers of French marigold, Tagetes patula Linn., Compositae: Perkin, J. Chem. Soc. 103, 209 (1913). Synthesis: Baker et al., ibid. 1929, 74; Rao, Seshadri, Proc. Indian Acad. Sci. 23A, 23 (1946), C.A. 40, 5052² (1946).

Dihydrate, pale yellow needles from dil alcohol, mp 318°. uv max (alc): 259, 361 nm (log ε 4.23, 4.34). Sol in hot alcohol; sparingly sol in boiling water.

Hexacetate, $C_{27}H_{22}O_{14}$, needles from alcohol + acetic acid, mp 209-211°. Sparingly sol in alc. 7-Glucoside, $C_{21}H_{20}O_{13}$, quercetagitrin. From flowers of the African marigold, Tagetes erecta L., Compositae: Rao,

Seshadri, Proc. Indian Acad. Sci. 14A, 289 (1941), CA 32 (1942); from Chrysanthemum coronarium L. C. 32 (1942); from Chrysanthemum Chrysanthe tae: Anyas, Steelink, Arcn. Biochem. Biophys. 90, 61 (Structure: Rajagopalan, Seshadri, Proc. Indian Aras: Crystals fire. 28A, 31 (1948), C.A. 43, 4265b (1949). Crystals fundamental dec 236-238°. uv max (95% ethand. 28A, 31 (1948), C.A. 40, ous pyridine, dec 236-238°. uv max (95% ethanis)

8044. Quercetin. 4-(x), 3,3',4',5,7-pentahylandana conhoretin; cyanidenolon 1522. wone; meletin; sopnoretin, cyamucanonin 1322, Cally mol wt 302.23. C 59.61%, H 3.34%, O 37.06%. The cally and of other glycosides. mol wt 302.23. C 55.0176, and of other glycosides. Wife at the single wingdom, esp in rinds and the same than the of quereitrin, of runn, and of considers, wide, tributed in the plant kingdom, esp in rinds and barn in ranged pollen. Isola it barn in the plant is barn in range of pollen. tributed in the piant kingsom, op in this and barn clover blossoms and in ragweed pollen. Isoln from king. clover blossoms and in tag was possess and from the dendron cinnabarinum Hook, Ericaceae: Rangaswam, r. 56A. 239 (1962). dendron cinnabarinum Hous, Ericaceae, Rangaswamire, Proc. Indian Acad. Sci. 56A, 239 (1962), C.A. 58, 48. Underhill et al., Can. J. Biochom. 1 (1963). Structure: Uniderina of all, Sain 3, Diochem Pr. (2) 35, 219 (1957). Biosynthesis: Watkin et al., ibid 226 (1) 36, 219 (1962). Patschke at al. (1962). Patschke at al. (1963). 35, 219 (1957). Biosynthesis: watch et al., 101d, 126 (1) bach, Biochem. J. 85, 3p (1962); Patschke et al., Z. Nev. forsch. 21b, 201 (1966). Synthesis: Shakhova et al., Z. Nev. Obshch. Khim. 32, 390 (1962), C.A. 58, 1426f (1961). A. Stalagawa et al., Biochim. Biochim. Obshch. Khim. 32, 370 (1903) v. tabolism: Nakagawa et al., Biochim. Biophys. Acta 91. (1965). Toxicity data: M. Sullivan et al., Proc. Sec. 1965). See also Biofilavanous. Biol. Med. 77, 269 (1951). See also Bioflavonoids.

, (c ,n,

, ch

ا ان

e. He

· it

.: in

·F: 7110

j. 5

: bra

< an levi "iER/

1049

15.35-01

75ta -265 [a]

a, ac

-187

lethy 225

950.

Dihydrate, yellow needles from dil alcohol. Become anhydr at 95-97°. When anhydr dec 314°. uv max (ax) 258, 375 nm (log \(\varepsilon \) 2.75, 2.75). One gram dissolves in [29]. abs alc, in 23 ml boiling alc. Soluble in glacial acid and a control of the control of t aq alkaline solns with yellow color. Practically inserwater. Alcoholic solns taste very bitter. LD₅₀ orally : mice: 160 mg/kg (Sullivan).

Pentabenzyl ether, C50H40O7, 3,3',4',5,7-pentakis(benzyl oxy)flavone, penta-O-benzylquercetin, Parietrope. Prene Chopin, Chadenson, Compt. Rend. Ser. C 263, 729 (1982). Binovic, Ger. pat. 2,122,514 (1972 to Biosedra), C.A. 113072n (1972). Crystals, mp 123-125°. uv max (chloroform): 249, 343 nm (log e 4.43, 4.14).

3-D-Galactoside hemipentahydrate, $C_{21}H_{20}O_{12}$. 2!2!1.0 ... 5!0 hyperin, hyperoside. From Acacia melanoxylon R. Br. k. ... 5!. guminosae: Falco, de Vries, Naturwiss. 51, 462 (1964). Ya wonin low needles from ethanol, dec 227-230°. $[\alpha]_{0}^{20}$ -83° (c $^{\circ}$) with in pyridine). uv max: 259, 364 nm (log ϵ 4.31, 4.39). THERAP CAT: Capillary protectant.

8045. Quercimeritrin. 2-(3,4-Dihydroxyphenyl)-7-(3) glucopyranosyloxy)-3,5-dihydroxy-4H-1-benzopyran-4-me quercetin-7-p-glucoside; 3,3',4',5,7-pentahydroxyllawad 7-D-glucoside. C₂₁H₂₀O₁₂; mol wt 464.37. C 54.31. If 4.34%, O 41.34%. Found in flowers of Gossypium herbucos L., Malvaceae: Perkin, J. Chem. Soc. 95, 2181 (1909): is-Compositae: Geissman, Steelink, J. Org. Chem. 22. (1957); Anyas, Steelink, Arch. Biochem. Biophys. 90. (1960). Structure: Attree, Perkin, J. Chem. Soc. 1927. Rao, Seshadri, Proc. Indian Acad. Sci. 9A, 365 (1939): (1 34, 1071 (1940); Pacheco, Grouiller, Compt. Rend. 253. ... (1961).

Trihydrate, yellow plates from aq pyridine. The water crystn is given up at 100°, the anhydr material is hygroxic, mp 247-249°, uv max (ethanol): 372, 257 nm (log 147) 4.38). Practically insol in cold water, more sol in hot water sol in methanol. Sol in aq alkaline solns with deep yelecolor. Is hydrolyzed by 7% H₂SO₄ yielding 1 mol queixen and 1 mol D-glucose.

In the mother liquor from quercimeritrin the glucosit gossypitrin and isoquercitrin q.v., are also found. Gowiff rin, C₂₁H₂₀O₁₃, orange-yellow needles melting at 200. slightly sol in alcohol and acetic acid.

1₂₁NO₃; mol wt 263.33. C 68.41%, H 8.04%, N 176.3%. Prepn: Morrison, Rinderknecht. 21NO₃; mol wt 203.33. Solution of the control of 52, 7361e (1958).

rystals from ethanol, mp 110°. rystals from ethanol, mp 110. ydrochloride, C₁₅H₂₁NO₂·HCl, crystals, mp 171. ble in water; slightly sol in alc. aution: May be habit forming. This is a controlled ce (opiate) listed in the U.S. Code of Federal Res. 1308 11 (1985) s, Title 21, Part 1308.11 (1985). IERAP CAT: Narcotic analgesic.

770. Hydroxyphenamate. 2-Phenyl-1,2-butes rbamate; carbamic acid β-ethyl-β-hydroxyphon r; β-ethyl-β-hydroxyphenethyl carbamic acid ester. 1-β-hydroxyphenethyl carbamate; 2-hydroxy-2-pl 1-β-hydroxypneneury; carounies, 2 mon, 2 mon, 2 learbamate; Al 0361; Listica. C₁₁H₁₈N0; and 24. C 63.14%, H 7.23%, N 6.69%, O 22.94%. a β-ethyl-β-hydroxyphenethyl alcohol and ethyl nate followed by reaction with ammonia: Sifferd, be 3, U.S. pat. 3,066,164 (1962 to Armour-Pharm.). ology and toxicology: Bastian, Clements, Dis Nen

rystals, mp 55-56.5°. Soly in water at 25°: 25°, orally in mice: 830 mg/kg.
HERAP CAT: Anxiolytic.

1771. N-(4-Hydroxyphenyl)glycine. p-Hydroxypinoacetic acid; p-hydroxyanilinoacetic acid; photos /cin; Iconyl; Monazol. C₈H₉NO₃; mol wt 167.14, 48%, H 5.43%; N 8.38%, O 28.71%. Prepd from thenol and chloracetic acid: Vater, J. Prakt. Chair (1884); Meldola et al., J. Chem. Soc. 111, 552 (1913). latis, Helv. Chim. Acta 4, 576 (1921).

Shiny leaflets from water, browns at 200°, begin to 220°, completely melted at 245-247° (decompn). tate, benzene, glacial acetic acid. Sol in alkalic d acids. Freely sol in warm 20% hydrochloric JSE: Photographic developer. In determination tection and determination of phosphorus and id indicator in bacteriology.

4/12. Hydroxyprocaine. Diethylaminoethyl ylate; Oxycaine; Oxyprocain. C₁₃H₂₀N₁O₃; mol vi 61.88%, H 7.99%, N 11.10%, O 19.02%. Prepd vi ion of diethylaminoethanol to an H₂SO₃ suspinosalicylic acid: Grimme, Schmitz, Ber. 34, 14 iii, Rademacher, Arzneimittel-Forsch. 1, 154, 11 iii, Rademacher, Arzneimittel-Forsch. 1, 270, 201 iiime et al., ibid. 326; cf. Swiss pat. 270, 201 iem. Zentr. 1951, II, 102.

$$\begin{array}{c} \text{OH} \\ \\ \text{H}_2\text{N} \end{array} \\ \begin{array}{c} \text{COOCH}_2\text{CH}_2\text{N} \left(\text{C}_2\text{H}_5\right)_2 \end{array} \\ \end{array}$$

Soluble in chloroform. $_{
m dioride}^{
m quo}$, $C_{13}{
m H}_{20}{
m N}_2{
m O}_3$.HCl, prisms from ethanol, mp

Simble in water.

Simble 3 salt, C₁₃H₂₀N₂O₃.C₁₆H₁₈N₂O₄S, dec 112-113°.

Simble in water (7.5 g/l).

Local anesthetic.

Cl 17a-Hydroxyprogesterone. 17-Hydroxypregn-4-17a-Hydroxyprogesterone. 17-Hydroxypregn-4-17a-hydroxypregnen-17a-01-3,20-dione; Gestageno; C₁H₂O₂; mol wt 330.45. C 76.32%, H 9.15%, O 18 Isola from adrenal glands: Pfiffner, North, J. Biol. 11 459 (1940): 139. 855 (1941): 100. Econ. Isola from adrenai glands: Pfiffner, North, J. Biol. 132, 459 (1940); 139, 855 (1941); von Euw, ReichHdt. Chim. Acta 24, 879 (1941). Prepn: Julian et al.,
152, 1548,662 (1953 to Glidden); Ringold et al.; Stork US pats. 2,802,839 and 2,805,203 (both 1957 to Syn-US, pats. 4,604,605 and 1,604 and 1, not, U.S. pat. 3,000,883 (1961 to Upjohn).

or hexagonal leaflets from acetone or alcohol, 22.23" (rapid heating). With slow heating the subundergoes molecular rearrangement accompanied by resolidification and becomes completely molten only $\Re [a]_0^{n+105.6}$ (c = 1.0417 in chloroform).

trait, CnHnO, 17a-acetoxyprogesterone. Crystals from mom + methanol, mp 239-240°. uv max: 240 nm (4.33). Ref: Stork et al., loc. cit. TAP CAT: Progestogen.

Estrus regulator.

17. 17α-Hydroxyprogesterone Caproate. 17-[(1ayloxy/pregn-4-ene-3,20-dione; 17-hydroxypregn-4-Molione hexanoate; 17α-hydroxyprogesterone hexadalutin; Hyproval P.A.; Lentogest; Pharlon; Progest Depot; Teralutil. C₂₇H₄₀O₃; mol wt 428.59. C
3. H 9.41%, O 14.93%. Prepn: Kaspar et al., U.S. pat.
10 (1956 to Schering AG). Comprehensive descriptions. Florey, Ed. in Analytical Profiles of Drug Substances
11 (Lademic Prog. New York 1975) pp. 209-224. Academic Press, New York, 1975) pp 209-224.

edles from isopropyl ether or methanol, mp 119-15-61 (c = 1 in chloroform). Soly (mg/ml): CAT: Progestogen.

-Hydroxy-L-proline. Hyp; L_s-hydroxyproline; doupproline: Hyp; L₂-nydroxyplomic Chyproline: 4-hydroxy-2-pyrrolidinecarboxylic Chyo, mol wt 131.13. C 45.79%, H 6.92%, N 136.60%. An amino acid classified as nonessential to its growth effect in rats. Constituent of coltuols from gelatin hydrolyzates: E. Fischer, Ber. (1902); Klabunde, J. Biol. Chem. 90, 293 (1931).

Synthesis: Leuchs, Ber. 38, 1937 (1905); R. Gaudry, C. Godin, J. Am. Chem. Soc. 76, 139 (1954); C. Eguchi, A. Kakuta, Bull. Chem. Soc. Japan 47, 1704 (1974); S. G. Ramaswamy, E. Adams, J. Org. Chem. 42, 3440 (1977). Flow sheets of four different syntheses: Chem. & Eng. News 40, 40 (Nov. 12, 1962). Structure based on crystallographic data: Zussman, Acta Cryst. 4, 72 (1951); Donohue, True-blood, ibid. 5, 414 (1952). Stereochemistry: Hudson, Neuberger, J. Org. Chem. 15, 24 (1950). In plant glycoproteins: D. Ashford, A. Neuberger, Trends in Biochem. Sci. 5, 245 (1980). Isoln of cis-form from Santalum album L.: A. N. Radhakrishnan, K. V. Giri, Biochem. J. 58, 57 (1954). Detection of cis- and trans isomers in collagen hydrolysates: G. Bellon et al., Anal. Biochem. 137, 151 (1984). Review of metabolism: E. Adams, L. Frank, Ann. Rev. Biochem. 49, 1005-1061 (1980).

Rhombs or needles from water, mp 274°. $[\alpha]_D$ -76.5° (c = 2.5 in water). pK_1' 1.82; pK_2' 9.65. Soly in water at 0°: 288.6 g/l; at 25°: 361.1 g/l; at 50°: 451.8 g/l; at 65°: 516.7 g/l. Very slightly sol in alcohol; insol in ether. cis-Form, allohydroxyproline. mp 238-241°. $[\alpha]_D^{18}$ -58.1°

(c = 5.2 in water).

4776. Hydroxypropyl Cellulose. Cellulose 2-hydroxypropyl ether; oxypropylated cellulose; Klucel; Lacrisert. Nonionic water soluble ether of cellulose, Aucei, Lacrisert. Non-having a wide range of viscosity (200-2500 cp). Prepn: Neth. pat. Appl. 6,401,036; E. D. Klug, U.S. pats. 3,278,-520, 3,278,521 (1964, 1966, 1966 all to Hercules). Use in the treatment of dry eye syndrome: T. P. Werblin et al., Oph-thalmology 88, 78 (1981); P. Huguet et al., Bull. Soc. Ophthalmol. Fr. 81, 1173 (1981). Review of chemistry, physical properties and uses: E. D. Klug in Encyclopedia of Polymer Science and Technology vol. 15 (Interscience, New York, 1971) pp 307-314; A. J. Desmarais, Industrial Gums, R. L. Whistler, Ed. (Academic Press, New York, 2nd ed., 1973) pp 649-672.

Off-white powder, softens at 130°. Sol in many polar organic solvents. Ppts from water at 40-45°. Thermoplastic. USE: As emulsifier, stabilizer, whipping aid, protective colloid, film former or thickener in foods; as binder in ceramics and glazes; in hair and cosmetic prepns; in vacuumformed containers and blow-molded bottles; as suspending agent in PVC polymerization. Pharmaceutic aid (tablet

coating agent).

THERAP CAT: Protectant (topical).

4777. Hydroxypropyl Methylcellulose. Cellulose 2hydroxypropyl methyl ether; hypromellose; Gonak; Goniosol; Lacril; Tearisol; Methocel HG; Ultra Tears. Non-ionic water soluble ether of methylcellulose, q.v. that produces solns having a wide range of viscosity (400-15,000 cp). Prepn: A. B. Savage, U.S. pat. 2,949,252 (1960 to Dow). Review of chemistry, physical properties and use: idem, Encyclopedia of Polymer Science and Technology vol. 3 (Interscience, New York, 1965); pp 496-511; G. K. Greminger, A. B. Savage, Industrial Gums, R. L. Whistler, Ed. (Academic Press, New York, 1973) pp 619-647.

Powder. Dissolves slowly in cold water. Insol in hot water. Sol in most polar organics. Has thermogelling pro-Has higher salt tolerance and is more sol than

methylcellulose

USE: As emulsifier, film former, protective colloid, stabilizer, suspending agent, or thickener in foods. Pharmaceutic aid (suspending agent; tablet excipient; demulcent; viscosity increasing agent); ophthalmic lubricant. In adhesives, asphalt emulsions, caulking compounds, tile mortars, plastic mixes, cements, paints. As sticker for agricultural sprays and dusts.

4778. 8-Hydroxyquinoline. 8-Quinolinol; oxyquinoline; hydroxybenzopyridine; oxybenzopyridine; phenopyridine; oxychinolin; oxine; Bioquin; Quinophenol. C₉H₇NO; mol wt 145.15. C 74.47%, H 4.86%, N 9.65%, O 11.02%. Prepn

re using this section.

3EST AVAILABLE COPY

from o-aminophenol, glycerol and H₂SO₄: Z. H. Skraup, Monatsh. 1, 316 (1880); 3, 536 (1882); R. H. F. Manske et al., Can. J. Res. 27F, 359 (1949). Review: J. P. Phillips, Chem. Rev. 56, 271-297 (1956). Book: R. G. W. Hollingshead, Oxine and Its Derivatives, I-IV (Butterworth, London, 1954/56).

White crystals or cryst powder. mp 76°. bp \sim 267°. Almost insol in water, ether; freely sol in alc, acetone, chloroform, benzene, aq mineral acids. LD₅₀ i.p. in mice: 48 mg/kg, Bernstein et al., Toxicol. Appl. Pharmacol. 5, 599 (1963).

USE: As fungistat; chelating agent in determn of trace metal ions.

THERAP CAT: Disinfectant.

4779. 8-Hydroxyquinoline Sulfate. 8-Quinolinol sulfate; oxyquinoline sulfate; oxine sulfate; 8-hydroxyquinoline sulfuric acid salt; Quinosol; Chinosol. $C_{18}H_{16}N_2O_6S$; mol wt 388.40. C 55.66%, H 4.15%, N 7.21%, O 24.72%, S 8.25%. $(C_9H_7NO)_2\cdot H_2SO_4\cdot$

Pale yellow, cryst powder; slight saffron odor; burning taste. mp 175-178°. Freely sol in water; sol in about 100 parts glycerol, slightly in alcohol; insol in ether.

Aluminum salt, C₂₇H₂₄AlN₃O₁₅S₃, Nyxolan, Aloxyn.
USE: Antiseptic, antiperspirant, deodorant.
THERAP CAT: Topical antiseptic, disinfectant.

4780. 8-Hydroxy-5-quinolinesulfonic Acid. C₉H₇NO₄S; mol wt 225.22. C 47.99%, H 3.13%, N 6.22%, O 28.42%, S 14.24%. Prepn: K. Matsumura, *J. Am. Chem. Soc.* 49, 810 (1927); N. K. Chawla, M. M. Jones, *Inorg. Chem.* 3, 1549 (1964).

Pale yellow, needle-like crystals or cryst powder; odorless. mp 322-324°. Freely sol in water, slightly in organic solvents.

USE: In determn of trace metal ions.

4781. Hydroxystilbamidine. 4-{2-{4-(Aminoiminomethyl)phenyl}ethenyl}-3-hydroxybenzenecarboximidamide; 2-hydroxy-4,4'-stilbenedicarboxamidine; 2-hydroxy-4,4'-diamidinostilbene; 2-hydroxy-4,4'-diaguanylstilbene; 2-hydroxystilbamide. C₁₆H₁₆N₄O; mol wt 280.33. C 68.55%, H 5.75%, N 19.99%, O 5.71%. Prepn: J. N. Ashley, J. O. Harris, J. Chem. Soc. 1946, 567; A. J. Ewins et al., Brit, pat. 574,486; A. J. Ewins, U.S. pat. 2,510,047 (1946, 1950 both to May & Baker). Organ and tissue distribution in animals: I. Snapper et al., Cancer 4, 1246 (1951). Pharmacology and antiprotozoal activity: I. Snapper et al., Trans. N.Y. Acad. Sci. 14, 269 (1952). Probe for studying nucleic acid conformation: B. Festy, C.R. Acad. Sci. Ser. D 266, 1433 (1968); B. Festy, M. Daune, Biochemstry 12, 4827 (1973); B. Festy et al., Biochim. Biophys. Acta 407, 24 (1975). Crystal structure: C. Courseille et al., C.R. Acad. Sci. Ser. C 274, 1921 (1972). Use as a fluorochrome for selective staining of nuclei: L. B. Murgatroyd, Histochemstry 74, 107 (1982). Review: B. Festy in Antibiotics vol. 5, pt. 2, F. E. Hahn, Ed. (Springer-Verlag, New York, 1979) pp 223-235.

$$\begin{array}{c|c} & \text{OH} & \text{NH} \\ \parallel & \parallel & \parallel \\ \text{H}_2\text{N} - \text{C} & \text{CH} - \text{CH} - \text{NH}_2 \end{array}$$

Yellow microcrystals from nitrobenzene, mp 235 in mice (mg/g); 0.027 i.v.; 0.14 s.c. (Ewins, 1950). Isethionate, C₂₀H₂₈N₄O₉S₂, yellow crystals, discolored in the control of the

4782. Hydroxystreptomycin. Reticulin (the antibude 16.41%, O 34.81%. Antibiotic substance produced by Stromyces reticuli: Hosoya et al., Japan. J. Exp. Med. 20.10. [1951]; by S. griseocarneus (1949), C.A. 45, 3459i (1951); by S. griseocarneus (1951); Benedict, Stodola et al., J. Am. Chem. Soc. 73. [1951]; Benedict, Stodola et al., J. Am. Chem. Soc. 73. [1951]; Benedict, Stodola, U.S. pat. 2,617,755 (1952); L. Antibiot. & Chemother. 1, 309 (1951); by S. subrutilus et al., J. Antibiot. 17A, 23 (1964). Identity of reticular, antibiotic) and hydroxystreptomycin: Hosoya et al., J. Exp. Med. 22, 303 (1952), CA. 48, 3477a (1954). [1651]

Trihydrochloride, $C_{21}H_{42}Cl_3N_7O_{13}$. The physical dental acteristics approx those of streptomycin. The specific value in water is 91° under conditions which give 86.1° streptomycin trihydrochloride. Hydroxystreptomycin interpretation when assayed against Bacillus subilists with found to be equiv to 784 µg of streptomycin base/mg. It has corresponding value of streptomycin is 842 µg/mg. ItDgs with in mice: 865 mg/kg (Ambrose).

4783. Hydroxytetracaine. 4-Butylamino-2-hydroxide zoic acid 2-dimethylaminoethyl ester; p-butylaminoethica acid 2-dimethylaminoethyl ester; 2-dimethylaminoethyl p-butylaminosalicylate; hydroxamethocaine; Rhenut Salicain. C₁₅H₂₄N₂O₃; mol wt 280.36. C 64.26%, H Sei N 9.99%, O 17.12%. Prepn: Brit. pats. 736,960 (1955) - 36,003 (1956 to Rheinpreussen AG); Grimme. Schriften Ber. 84, 734 (1951).

Ŋ

ali

icli

Hydrochloride, C₁₅H₂₄N₂O₃.HCl, crystals from water 157°. Soly in water at 20°: about 4%. Hemihydrate, prisms from ligroin, mp 48°. THERAP CAT: Topical anesthetic.