

The Basics of Integration (Integrals)

The Basics of Integration (Integrals)

What is an Integral?

• An integral represents the accumulation of quantities, often visualized as the area under a curve. It can be thought of as the reverse operation of differentiation. While differentiation gives the rate of change, integration gives the total amount accumulated over an interval.

ikSaan.com

The Basics of Integration (Integrals)

How to Compute an Integral

• The integral of a function |f(x)| from a point |a| to b is written as

$$\int_a^b f(x) \, dx$$

This integral represents the area under the curve of f(x) from x=a to x=b.

Example:

If
$$f(x)=x^2$$
, then the integral from 0 to 2 is: $\int_0^2 x^2\,dx=\left[\frac{x^3}{3}\right]_0^2=rac{8}{3}-0=rac{8}{3}$

This means that the area under the curve of $f(x)=x^2$ from x=0 to x=2 is $\frac{8}{3}$.

The Basics of Integration (Integrals)

The Basics of Integration (Integrals)

Geometric Interpretation of an Integral

• Imagine the graph of a function. The integral calculates the total area under the curve between two points. This is useful when determining total quantities, such as distance traveled by an object moving at varying speeds.