

ArthoAid-Smart Arthritis Detection System

Dept. of Computer Application
Kalyani Government Engineering College
Maulana Abul Kalam Azad University of Technology

Under the guidance of

Dr. Indrajit Bhattacharya
Assistant Professor,
Dept. of CA, KGEC

Presented by:

Souvik Dey [10271023035]

Sudip Patra [10271023038]

Aditya Mallick [10271023002]

Index

- 1. Introduction
- 2. Problem Statement
- 3. Objectives
- 4. Technology Stack
- 5. Work-flow
- 6. User Experience & Interface

- 7. Performance Measures
- 8. Conclusion
- 9. Future Enhancements
- 10. References

Introduction

Project Overview:

ArthoAid is a system that detects and classifies Rheumatoid Arthritis (RA) and Osteoarthritis (OA) using patient data, and assesses OA severity through knee X-ray analysis with deep learning.

Purpose:

ArthoAid uses ML to detect RA and OA from patient data and X-rays, helping diagnose faster and more accurately, especially in low-resource areas.

Target Audience:

Doctors, clinics, patients with joint pain, and healthcare researchers.

Problem Statement

Arthritis diagnosis is slow and prone to errors.

Rural areas lack experts and proper tools.

Patients often don't understand disease severity.

Need Fast, reliable AI to detect arthritis and severity from data and X-rays.

Objectives

Patient Classification:

Use Machine Learning to classify individuals as Healthy, RA, or OA patients.

OA Severity Grading:

Apply Deep Learning (CNN) to assess the severity of Osteoarthritis from knee X-rays.

Accessible Healthcare Tool:

Develop a low-cost, user-friendly support tool for arthritis that helps reduce misdiagnosis and improve patient care.

Technology Stack

Manages user login and authentication

Analyzes knee X-rays

to determine OA severity

Random Forest

Classifies patients as Healthy, RA, or OA from clinical data

HTML, CSS

Create the user interface

TensorFlow

Framework used to train and run the CNN model

Web framework for the application

Scikit-learn

Machine learning library for various algorithms

Work-flow

Login /
RegistrationGo to
Dashboard

If OA, go to another page and upload X-ray for severity prediction

System displays results

CNN-based model for predicting OA severity from X-rays

User Experience & Interface

User Experience & Interface

User Experience & Interface

Performance Measures

Predicted

Confusion Matrix -1

> ML (Random Forest) based arthritis classification

Class	Healthy	OA	RA
Healthy	55	3	3
OA	1	71	0
RA	3	2	62

Classification Report:

Class	Precision	Recall	F1-Score	support
Healthy	0.93	0.90	0.92	61
OA	0.93	0.99	0.96	72
RA	0.95	0.93	0.94	67
Accuracy	-	-	0.94	200
Macro avg	0.94	0.94	0.94	200
Weighted avg	0.94	0.94	0.94	200

$$\label{eq:accuracy} \text{Accuracy} = \frac{\text{sum of diagonal elements}}{\text{total samples}}$$

Accuracy = 188/200= 0.94

Confusion Matrix -2

> CNN-based OA severity detection

Actual

Class	Class 0	Class 1	Class 2	Class 3	Class 4
Class 0	89	5	4	0	2
Class 1	12	80	1	4	3
Class 2	2	6	90	2	0
Class 3	0	3	0	89	8
Class 4	2	0	2	4	92

$$Accuracy = \frac{\text{sum of diagonal elements}}{\text{total samples}}$$

Accuracy =
$$440/500$$
 Weighted Precision ≈ 0.880 Weighted Recall ≈ 0.880 Weighted F1-Score ≈ 0.880

Future Plan

3

User Feedback

Allow users to give feedback on prediction accuracy.

Doctor Recommendation

Recommend nearby arthritis specialists based on diagnosis.

Mobile Support

Make the system mobile-friendly or develop a mobile app.

Dataset Expansion

Add more RA X-rays to enable RA severity prediction.

Conclusion

Provides an effective, AI-based tool to support early detection and management of arthritis.

Cost-Effective & Scalable

Designed for affordable deployment in clinics, including rural healthcare centers.

Technological Integration

Combines Machine Learning, Deep Learning, and software engineering efficiently.

Ready for Future Clinical Use

With enhancements, the system holds strong potential for real-world medical adoption.

References

- [1] M.J. Lespasio, et al., Knee osteoarthritis: a primer, Perm. J. (2017) 21.
- [2] A. Courties, J. Sellam, F. Berenbaum, Metabolic syndrome-associated osteoarthritis, Curr. Opin. Rheumatol. 29 (2) (2017) 214–222.
- [3] F. Cabitza, A. Locoro, G. Banfi, Machine learning in orthopedics: a literature review, Frontiers Bioengin. Biotechn. (2018) 6.
- [4] A.C. Staugaard, Robotics and AI: an Introduction to Applied Machine Intelligence, Prentice-Hall Englewood Cliffs, 1987.
- Dataset 1 Kaggle (https://www.kaggle.com/datasets/michaelkevin001/arthritis-clinical-dataset-using-blood-report)
- Dataset 2 Kaggle (https://www.kaggle.com/datasets/shashwatwork/knee-osteoarthritis-dataset-with-severity)

THANK YOU