Answer: In the notes we considered the LMS algorithm for fitting the model $h_{\theta}(x) = \theta^T x$ with update rule $\theta := \theta + \alpha \sum_{i=1}^n (y_i - h_{\theta}(x_i)) x_i$. Here $x \in \mathbb{R}^d$, and in order to introduce a feature map $\phi(x) \in \mathbb{R}^p$ e.g. $(1, x_1, x_2, x_1^2, x_1 x_2, \ldots)$ etc., we had then $\theta := \theta + \alpha \sum_{i=1}^n (y_i - \theta^T \phi(x_i)) \phi(x_i)$. Applying the Kernel trick in this scenario to deal with high/infinite dimensional feature involved

Applying the Kernel trick in this scenario to deal with high/infinite dimensional feature involved taking $\theta^{(0)} = \sum_{i=1}^n \beta_i^{(0)} \phi(x_i)$ and observing that the update becomes $\beta := \beta + \alpha(y - K\beta)$ where K is the matrix $K_{ij} = \langle \phi(x_i), \phi(x_j) \rangle$, and we've "replaced" θ with a new parametrisation of the n-vector β .

Then resultant prediction $\theta^T\phi(x)=(\sum_j\beta_j\phi(x_j))^T\phi(x)=\sum_j\beta_jK(x_j,x)$. The important is that we've replaced keeping track of high dimensional $\phi(x)$ by instead computing easier $K(x,z)=\phi(x)^T\phi(z)$ which generally should be easier to compute.

In the perceptron learning algorithm we have a slightly different setup: $h_{\theta}(x) = \operatorname{sgn}(\theta^T x)$, and with update rule $\theta^{(i+1)} := \theta^{(i)} + \alpha(y_{i+1} - h_{\theta^{(i)}}(x_{i+1}))x_{i+1}$. For some reason we make an update based on just one training example, and make just one pass through the training set. $\theta^{(0)} = 0$. The higher-dimensional kernel analogue is then taking at the i+1th step, $\theta^{(i+1)} := \theta^{(i)} + \alpha(y_{i+1} - h_{\theta^{(i)}}(\phi(x_{i+1})))\phi(x_{i+1})$, and so $\beta^{(i+1)}_{i+1} := \beta^{(i)}_{i+1} + \alpha(y_{i+1} - \operatorname{sgn}(\sum_j K_{i+1,j}\beta^{(i)}_j))$.

I.e. at each step we oddly only update one index of β . so $\beta^0=0$. Then $\beta^1_1=\alpha y_1$. Then $\beta^2_2=\alpha(y_2+\sum_j\beta^1_jK_{2,j})=\alpha(y_2+\beta^1_1K_{2,1})$, and so on...