Este trabalho abordou os conceitos utilizados para locomoção de robôs quadrúpedes e buscou aplicá-los no desenvolvimento de um robô real. O Caramelo foi desenvolvido para fins de educação e pesquisa na área de robôs com pernas, mais especificamente quadrúpedes. Trata-se de um projeto *open source*, cujo código fonte está disponível publicamente no *GitHub* [??].

Os testes e experimentos realizados buscaram avaliar a performance da locomoção do robô no espaço tridimensional. Os testes preliminares indicaram que o robô possui a capacidade de mover o corpo em 6 GDL e controlar sua orientação em roll e pitch.

Com base no primeiro experimento, pôde-se concluir que a pata é capaz de seguir uma trajetória até um ponto requisitado em \boldsymbol{x} e \boldsymbol{y} no cenário sem carga. Além disso, entre os dois testes realizados, não foram constatadas diferenças significativas no tempo total e na altura máxima da trajetória. Contudo, foi observado um atraso no tempo de execução trajetória, provavelmente relacionado ao atraso na resposta dos motores.

O segundo experimento mostrou que o robô não alcançou a velocidade desejada em nenhum dos testes, estando o teste com terreno plano e controle de angulação ativo o mais próximo deste valor. Essa diferença pode estar relacionada com o fato de que o sistema de controle não conseguiu operar de forma adequada ao precisar sustentar o peso do robô. Como o controle da trajetória é feito em malha aberta (apenas os controladores individuais das juntas possuem malha fechada), não há compensação e a pata não alcança a distância esperada. Ademais, também pôde-se observar que o controle de angulação resultou numa maior estabilidade do robô ao operar em ambos os terrenos.