icizy we w ac

krzywą

Niezmiennik krzywych

Twierdzenie klasyfikacyjne dla krzywych

Elementarna Geometria Różniczkowa

15 lutego 2013

Twierdzenie klasyfikacyjne dla

Krzywe w \mathbb{R}^3

Definicje Krzywe regularne

Wektory związane z krzywą

Wektor styczny i normalny Wektor binormalny Trójnóg Freneta

Niezmienniki krzywych

Krzywizna Torsja Wzory Freneta Wzory ogólne

Twierdzenie klasyfikacyjne dla krzywych

Translacja i obrót Twierdzenie klasyfikacyjne

Elementarna Geometria Różniczkowa

Wykład 1

Krzywe w \mathbb{R}^3

Krzywe w \mathbb{R}^3

Definicje

Wektory związane z krzywą

Niezmienniki krzywych

Krzywe w \mathbb{R}^3 Definicje
Krzywe regularne

Wektory związane z krzywą

Niezmienniki krzywych

Twierdzenie klasyfikacyjne dla krzywych

Krzywe w \mathbb{R}^3

Definicje

Wektory związane z krzywą

Niezmienniki krzywych

Definicje Krzywe regularne

Wektory związane z krzywą

krzywych

$$\alpha$$
: $(a,b) \to \mathbb{R}^3$;

▶ Dla każdego t ∈ (a, b) wektor prędkości w punkcie t określamy jako

$$\alpha'(t) = (\alpha_1'(t), \alpha_2'(t), \alpha_3'(t)),$$

gdzie $\alpha_i'(t)$, są poszczególnymi współrzędnymi funkcji α_i

▶ **prędkość**, lub **prędkość skalarna** w punkcie $t_0 \in (a, b)$ to po prostu długość wektora $\alpha'(t_0)$, oznaczana jako $\|\alpha'(t_0)\|$;

Krzywe w \mathbb{R}^3

Definicje

Krzywe regu

Wektory związane z krzywą

Niezmienniki krzywych

Krzywa gładka, lub po prostu krzywa w R³ to gładka funkcja z (otwartego) odcinka w trójwymiarową przestrzeń Euklidesową

$$\alpha$$
:(a , b) $\rightarrow \mathbb{R}^3$;

▶ Dla każdego t ∈ (a, b) wektor prędkości w punkcie t określamy jako

$$\alpha'(t) = (\alpha_1'(t), \alpha_2'(t), \alpha_3'(t)),$$

gdzie $\alpha_i'(t)$, są poszczególnymi współrzędnymi funkcji α ;

▶ **prędkość**, lub **prędkość skalarna** w punkcie $t_0 \in (a, b)$ to po prostu długość wektora $\alpha'(t_0)$, oznaczana jako $\|\alpha'(t_0)\|$;

Krzywe w \mathbb{R}^3

Definicje

Krzywe regularni

Wektory związane z krzywą

krzywych

Krzywa gładka, lub po prostu krzywa w R³ to gładka funkcja z (otwartego) odcinka w trójwymiarową przestrzeń Euklidesową

$$\alpha$$
: $(a, b) \to \mathbb{R}^3$;

▶ Dla każdego t ∈ (a, b) wektor prędkości w punkcie t określamy jako

$$\alpha'(t) = (\alpha_1'(t), \alpha_2'(t), \alpha_3'(t)),$$

gdzie $\alpha_i'(t)$, są poszczególnymi współrzędnymi funkcji α ;

▶ **prędkość**, lub **prędkość skalarna** w punkcie $t_0 \in (a, b)$ to po prostu długość wektora $\alpha'(t_0)$, oznaczana jako $\|\alpha'(t_0)\|$;

Krzywe w \mathbb{R}^3

Definicje

Krzywe regularn

Wektory związane z krzywą

Niezmienniki krzywych

Definicja

Krzywa gładka, lub po prostu krzywa w R³ to gładka funkcja z (otwartego) odcinka w trójwymiarową przestrzeń Euklidesową

$$\alpha$$
: $(a, b) \to \mathbb{R}^3$;

▶ Dla każdego t ∈ (a, b) wektor prędkości w punkcie t określamy jako

$$\alpha'(t) = (\alpha_1'(t), \alpha_2'(t), \alpha_3'(t)),$$

gdzie $\alpha_i'(t)$, są poszczególnymi współrzędnymi funkcji α ;

▶ **prędkość**, lub **prędkość skalarna** w punkcie $t_0 \in (a, b)$ to po prostu długość wektora $\alpha'(t_0)$, oznaczana jako $\|\alpha'(t_0)\|$;

Krzywe w \mathbb{R}^3

Definicje

Krzywe regularni

Wektory związane z krzywą

Niezmienniki krzywych

Niech $\alpha:(a,b)\to\mathbb{R}^3$ będzie krzywą gładką. **Długość** α

$$L(\alpha) \stackrel{\text{def.}}{=} \int_{a}^{b} \|\alpha'(t)\| dt$$

Krzywą nazywamy unormowaną gdy dla każdego

Definicje

Definicia

Niech α : $(a, b) \rightarrow \mathbb{R}^3$ będzie krzywą gładką. **Długość** α definiujemy jako całkę

$$L(\alpha) \stackrel{\text{def.}}{=} \int_a^b \|\alpha'(t)\| dt.$$

Krzywą nazywamy unormowaną gdy dla każdego

Definicje

Niech α : $(a, b) \to \mathbb{R}^3$ będzie krzywą gładką. **Długość** α definiujemy jako całkę

$$L(\alpha) \stackrel{\text{def.}}{=} \int_a^b \|\alpha'(t)\| dt.$$

 Krzywą nazywamy unormowaną gdy dla każdego $t \in (a, b)$ zachodzi $\|\alpha'(t)\| = 1$.

Definicje

$$\alpha'(t) = (-\sin t, \cos t, 2t),$$

zatem prędkość to $\|\alpha'(t)\|=\sqrt{1+4t^2}$, tak więc krzywa nie jest unormowana. Długość tej krzywej na odcinku od 0 do 2π wynosi

$$\int_0^{2\pi} \sqrt{1+4t^2} dt = \frac{1}{4} \left(2t\sqrt{1+4t^2} + \sinh^{-1}(2t) \right) \Big|_0^{2\pi} =$$

$$= \pi\sqrt{1+16\pi^2} + \frac{\sinh^{-1}(4\pi)}{4} \simeq 40.4097.$$

Krzywe w R³

Definicje

Wektory związane z

Niezmienniki krzywych

Definicja

Gładką krzywą $\alpha(t)$ nazywamy **regularną** (lub **naturalną**) jeśli $\alpha'(t) \neq (0,0,0)$ dla wszystkich $t \in (a,b)$. Jest to równoważne ze stwierdzeniem $\|\alpha'(t)\| \neq 0$ dla wszystkich $t \in (a, b)$.

$$\overline{\alpha} \stackrel{\text{def.}}{=} \alpha \circ h : (a, b) \stackrel{h}{\to} (c, d) \stackrel{\alpha}{\to} \mathbb{R}^3$$

Krzywe regularne

Gładką krzywą $\alpha(t)$ nazywamy **regularną** (lub **naturalną**) jeśli $\alpha'(t) \neq (0,0,0)$ dla wszystkich $t \in (a,b)$. Jest to równoważne ze stwierdzeniem $\|\alpha'(t)\| \neq 0$ dla wszystkich $t \in (a, b)$.

Definicja

Niech $\alpha:(c,d)\to\mathbb{R}^3$ będzie gładką krzywą, oraz niech $h:(a,b)\to(c,d)$ będzie pewnym dyfeomorfizmem. Krzywa powstałą przez złożenie α i h,

$$\overline{\alpha} \stackrel{\text{def.}}{=} \alpha \circ h: (a, b) \stackrel{h}{\to} (c, d) \stackrel{\alpha}{\to} \mathbb{R}^3$$

nazywamy **reparametryzacją** krzywej α przez dyfeomorfizm h.

$$h(t)=2t+1,$$

zaś $\alpha:(1,5)\to\mathbb{R}^3$ jako

$$\alpha(t) = (t^2 + 3, t - 7, \sin t).$$

Wówczas reparametryzacja α przez h jest zdana wzorem

$$\overline{\alpha}(t) = (4t^2 + 4t + 4, 2t - 6, \sin 2t + 1).$$

Niech α : $(a, b) \rightarrow \mathbb{R}^3$ będzie krzywą regularną. Wówczas istnieje reparametryzacja krzywej α przez dyfeomorfizm h będąca krzywą unormowaną.

$$q(t) = \int_{t_0}^t \|\alpha'(u)\| du.$$

$$q'(t) = \|\alpha'(t)\| > 0$$

Dowód:

Wybierzmy $t_0 \in (a, b)$. Następnie zdefiniujmy

$$q(t) = \int_{t_0}^t \|\alpha'(u)\| du.$$

Na mocy podstawowego twierdzenia rachunku całkowego funkcja *q* jest gładka, oraz jej pochodna jest równa

$$q'(t) = \|\alpha'(t)\| > 0$$

i ściśle większa od 0 (na mocy założenia o regularności α).

Krzywe w R³

Krzywe regularne

Wektory związane z krzywą

Niezmienniki krzywych

Dowód:

Wybierzmy $t_0 \in (a, b)$. Następnie zdefiniujmy

$$q(t) = \int_{t_0}^t \|\alpha'(u)\| du.$$

Na mocy podstawowego twierdzenia rachunku całkowego funkcja *q* jest gładka, oraz jej pochodna jest równa

$$q'(t) = \|\alpha'(t)\| > 0$$

i ściśle większa od 0 (na mocy założenia o regularności α).

Krzywe w \mathbb{R}^3

Krzywe regularne

Wektory związane z krzywą

Niezmienniki krzywych

Zatem $q:(a,b) \to \mathbb{R}$ jest funkcją ściśle rosnącą, więc jest różnowartościowa. Obraz funkcji q to pewien odcinek otwarty $(c,d) \in \mathbb{R}$ (jak wygladaja jego końce?), wiec możemy

powiedzieć, że

$$q:(a,b)\to(c,d)$$

jest gładką bijekcją. Niech

$$h:(c,d)\to(a,b)$$

będzie funkcją do niej odwrotną.Z analizy matematycznej wynika (wskazać odpowiednie twierdzenia!), że h jest funkcją gładką, oraz zachodzi

$$h'(t) = \frac{1}{q'(t)}.$$

Zatem $q:(a,b)\to\mathbb{R}$ jest funkcją ściśle rosnącą, więc jest różnowartościowa. Obraz funkcji q to pewien odcinek otwarty $(c,d)\in\mathbb{R}$ (jak wyglądają jego końce?), więc możemy powiedzieć, że

$$q:(a,b)\to(c,d)$$

jest gładką bijekcją. Niech

$$h:(c,d)\to(a,b)$$

będzie funkcją do niej odwrotną.Z analizy matematycznej wynika (wskazać odpowiednie twierdzenia!), że h jest funkcją gładką, oraz zachodzi

$$h'(t) = \frac{1}{q'(t)}.$$

$$q:(a,b)\to(c,d)$$

jest gładką bijekcją. Niech

powiedzieć, że

$$h:(c,d)\to(a,b)$$

będzie funkcją do niej odwrotną. Z analizy matematycznej

$$h'(t) = \frac{1}{q'(t)}.$$

Krzywe regularne

Zatem $q:(a,b)\to\mathbb{R}$ jest funkcją ściśle rosnącą, więc jest różnowartościowa. Obraz funkcji q to pewien odcinek otwarty $(c,d)\in\mathbb{R}$ (jak wyglądają jego końce?), więc możemy powiedzieć, że

$$q:(a,b)\to(c,d)$$

jest gładką bijekcją. Niech

$$h:(c,d)\to(a,b)$$

będzie funkcją do niej odwrotną. Z analizy matematycznej wynika (wskazać odpowiednie twierdzenia!), że h jest funkcją gładką, oraz zachodzi

$$h'(t) = \frac{1}{q'(t)}.$$

Twierdzenie klasyfikacyjne dla krzywych

Pozostaje więc jedynie sprawdzić, że $\overline{\alpha} \stackrel{\text{def.}}{=} \alpha \circ p$ jest reparametryzacją o szukanej własności:

$$\begin{aligned} |\overline{\alpha}'(t)|| &= \left\| \alpha(h(t))' \right\| = \left\| \frac{d\alpha(h(t))}{dh(t)} h'(t) \right\| = \\ &= \left\| \frac{d\alpha(h(t))}{dh(t)} \right\| \frac{1}{|q'(h(t))|} = \frac{\left\| \frac{d\alpha(h(t))}{dh(t)} \right\|}{\left\| \frac{d\alpha(h(t))}{dh(t)} \right\|} = 1 \quad \Box \end{aligned}$$

$$\|\overline{\alpha}'(t)\| = \|\alpha(h(t))'\| = \left\|\frac{d\alpha(h(t))}{dh(t)}h'(t)\right\| =$$

$$= \left\|\frac{d\alpha(h(t))}{dh(t)}\right\| \frac{1}{|q'(h(t))|} = \frac{\left\|\frac{d\alpha(h(t))}{dh(t)}\right\|}{\left\|\frac{d\alpha(h(t))}{dh(t)}\right\|} = 1 \quad \Box$$

Crzywe w \mathbb{R}^3

Krzywe regularne

Wektory związane z krzywą

Niezmienniki krzywych

$$\alpha(t) = (a\cos t, a\sin t, bt).$$

Rozważmy jej szczególną postać dla a = b = 1. Wtedy jej predkość jest równa $\|\alpha'(t)\| = \sqrt{2}$. Wybierzmy $t_0 = 0$. Wówczas

$$q(t) = \int_0^t \sqrt{2} du = \sqrt{2}t,$$

a więc

$$h(t) = \frac{t}{\sqrt{2}}.$$

Zatem parametryzacja unormowana tej krzywej jest równa

$$\overline{\alpha}(t) = (\alpha \circ h)(t) = \left(\cos \frac{t}{\sqrt{2}}, \sin \frac{t}{\sqrt{2}}, \frac{t}{\sqrt{2}}\right).$$

Niezmienniki krzywych

Niech α : $(a,b) \to \mathbb{R}^3$ oraz $\overline{\alpha}$: $(c,d) \to \mathbb{R}^3$ będą krzywymi różnowartościowymi o tym samym obrazie. Wówczas istnieje taki dyfeomorfizm

$$h:(a,b)\to(c,d),$$

że $\overline{\alpha}$ jest reparametryzacją krzywej α przez h.

Dowód

Niech h(t) oznacza złożenie

$$\alpha^{-1} \circ \overline{\alpha}(t)$$
.

Dokładne sprawdzenie że jest to szukana reparametryzacja jest zadaniem domowym.

Krzywe w \mathbb{R}^3 Definicje

Krzywe regularne

Wektory związane z krzywą

krzywych

Niech α : $(a,b) \to \mathbb{R}^3$ oraz $\overline{\alpha}$: $(c,d) \to \mathbb{R}^3$ będą krzywymi różnowartościowymi o tym samym obrazie. Wówczas istnieje taki dyfeomorfizm

$$h:(a,b)\to(c,d),$$

że $\overline{\alpha}$ jest reparametryzacją krzywej α przez h.

Dowód:

Niech h(t) oznacza złożenie

$$\alpha^{-1} \circ \overline{\alpha}(t)$$
.

Dokładne sprawdzenie że jest to szukana reparametryzacja jest zadaniem domowym.

Crzywe w \mathbb{R}^3

Krzywe regularne

Wektory związane z krzywą

krzywych

Niech $\alpha:(a,b)\to\mathbb{R}^3$ będzie krzywą gładką. Jeśli $\overline{\alpha}:(c,d)\to\mathbb{R}^3$ jest jej reparametryzacją, wówczas

$$L(\overline{\alpha}) = L(\alpha).$$

$$\overline{\alpha} = \alpha \circ h$$

$$h(c) = a$$
 i $h(d) = b$

Elementarna Geometria Różniczkowa

$$L(\overline{\alpha}) = L(\alpha).$$

Dowód:

Ponieważ $\overline{\alpha}$ jest reparametryzacją α , zatem z definicji, istnieje taki dyfeomorfizm $h:(c,d) \to (a,b)$, że

$$\overline{\alpha} = \alpha \circ h$$
.

$$h(c) = a$$
 i $h(d) = b$.

$$L(\overline{\alpha}) = L(\alpha)$$
.

Dowód:

Ponieważ $\overline{\alpha}$ jest reparametryzacją α , zatem z definicji, istnieje taki dyfeomorfizm $h:(c,d) \to (a,b)$, że

$$\overline{\alpha} = \alpha \circ h$$
.

Ponieważ *h* jest dyfeomorfizmem, więc jego pochodna nie może zmieniać znaku. Możemy bez straty ogólności przyjąć, że $h'(t) \ge 0$ (tj. h jest funkcją niemalejącą), oraz

$$h(c) = a$$
 i $h(d) = b$.

$$L(\overline{\alpha}) = \int_{c}^{d} \|\overline{\alpha}'(s)\| ds = \int_{c}^{d} \|\alpha'(h(s))h'(s)\| ds =$$

$$= \int_{c}^{d} \|\alpha'(h(s))\|h'(s) ds = \int_{h(c)}^{h(d)} \|\alpha'(t)\| dt =$$

$$= \int_{a}^{b} \|\alpha'(t)\| dt = L(\alpha)$$

Krzywe w \mathbb{R}^3

Krzywe regularne

Wektory związane z

Niezmienniki krzywych

$$L(\overline{\alpha}) = \int_{c}^{d} \|\overline{\alpha}'(s)\| ds = \int_{c}^{d} \|\alpha'(h(s))h'(s)\| ds =$$

$$= \int_{c}^{d} \|\alpha'(h(s))\|h'(s) ds = \int_{h(c)}^{h(d)} \|\alpha'(t)\| dt =$$

$$= \int_{a}^{b} \|\alpha'(t)\| dt = L(\alpha)$$

 $\langle rzywe w \mathbb{R}^3 \rangle$

Krzywe regularne

Wektory związane z krzywa

Niezmienniki krzywych

$$L(\overline{\alpha}) = \int_{c}^{d} \|\overline{\alpha}'(s)\| ds = \int_{c}^{d} \|\alpha'(h(s))h'(s)\| ds =$$

$$= \int_{c}^{d} \|\alpha'(h(s))\|h'(s) ds = \int_{h(c)}^{h(d)} \|\alpha'(t)\| dt =$$

$$= \int_{a}^{b} \|\alpha'(t)\| dt = L(\alpha)$$

rzywe w \mathbb{R}^3

Krzywe regularne

Wektory związane z krzywą

Niezmienniki krzywych

$$L(\overline{\alpha}) = \int_{c}^{d} \|\overline{\alpha}'(s)\| \, ds = \int_{c}^{d} \|\alpha'(h(s))h'(s)\| \, ds =$$

$$= \int_{c}^{d} \|\alpha'(h(s))\|h'(s) \, ds = \int_{h(c)}^{h(d)} \|\alpha'(t)\| \, dt =$$

$$= \int_{a}^{b} \|\alpha'(t)\| \, dt = L(\alpha).$$

Crzywe w \mathbb{R}^3

Krzywe regularne

Wektory związane z krzywą

Niezmienniki krzywych

Elementarna Geometria Różniczkowa

Krzywe w K

Wektory związane z krzywą

Wektor binormalny

Trojnog Frenet

krzywych

Twierdzenie klasyfikacyjne dla krzywych

Wykład 2

Wektory związane z krzywą

Elementarna Geometria Różniczkowa

Krzywe w \mathbb{R}^3

Wektory związane z krzywą Wektor styczny i normalny Wektor binormalny Trójnóg Freneta

Niezmienniki krzywych

Twierdzenie klasyfikacyjne dla krzywych

Krzywe w R³

Wektory związane z krzywą

Wektor styczny i normalny

Irojnog Frenet

krzywych

Niech $\alpha:(a,b)\to\mathbb{R}^3$ będzie regularną krzywą gładką. Definiujemy **jednostkowy wektor styczny** do krzywej α w punkcie t jako

$$T_{\alpha}(t) \stackrel{\text{def.}}{=} \frac{\alpha'(t)}{\|\alpha'(t)\|}.$$

Krzywe w K

krzywą

Wektor styczny i normalny

Tráinág Eronata

...,.....

krzywych

Niech $\alpha(t)$ będzie unormowaną krzywą regularną. Wówczas dla każdego t zachodzi

$$\langle T(t), T'(t) \rangle = 0.$$

$$1 = ||T(t)|| = \langle T(t), T(t) \rangle,$$

$$0 = ||T(t)||' = \langle T'(t), T(t) \rangle + \langle T(t), T'(t) \rangle = 2\langle T(t), T'(t) \rangle.$$

Wektor styczny i normalny

Niech $\alpha(t)$ będzie unormowaną krzywą regularną. Wówczas dla każdego t zachodzi

$$\langle T(t), T'(t) \rangle = 0.$$

Dowód:

Zauważmy, że T(t) jest funkcją gładką. Mamy

$$1 = ||T(t)|| = \langle T(t), T(t) \rangle,$$

a więc korzystając ze standardowego wzoru na różniczkowanie iloczynu skalarnego (sprawdzić ten wzor!) otrzymujemy:

$$0 = ||T(t)||' = \langle T'(t), T(t) \rangle + \langle T(t), T'(t) \rangle = 2\langle T(t), T'(t) \rangle.$$

Krzywe w \mathbb{R}^3

Wektory związane krzywą

Wektor styczny i normalny

Tráinág Eronota

Niezmienni

krzywych

Niech $\alpha(t)$ będzie unormowaną krzywą regularną. Wówczas dla każdego t zachodzi

$$\langle T(t), T'(t) \rangle = 0.$$

Dowód:

Zauważmy, że T(t) jest funkcją gładką. Mamy

$$1 = ||T(t)|| = \langle T(t), T(t) \rangle,$$

a więc korzystając ze standardowego wzoru na różniczkowanie iloczynu skalarnego (sprawdzić ten wzor!) otrzymujemy:

$$0 = ||T(t)||' = \langle T'(t), T(t) \rangle + \langle T(t), T'(t) \rangle = 2\langle T(t), T'(t) \rangle.$$

Krzywe w R³

crzywą

Wektor styczny i normalny

Wektor binorma

krzywych

Niech $\alpha(t)$ będzie unormowaną krzywą regularną. Wówczas dla każdego t zachodzi

$$\langle T(t), T'(t) \rangle = 0.$$

Dowód:

Zauważmy, że T(t) jest funkcją gładką. Mamy

$$1 = ||T(t)|| = \langle T(t), T(t) \rangle,$$

a więc korzystając ze standardowego wzoru na różniczkowanie iloczynu skalarnego (sprawdzić ten wzor!) otrzymujemy:

$$0 = ||T(t)||' = \langle T'(t), T(t) \rangle + \langle T(t), T'(t) \rangle = 2 \langle T(t), T'(t) \rangle.$$

(rzywe w R³

Wektory związane z krzywą

Wektor styczny i normalny

Trójnóg Freneta

Niezmienni

Twierdzenie

klasyfikacyjne dla krzywych

$$N(t) \stackrel{\text{def.}}{=} \frac{T'(t)}{\|T'(t)\|}.$$

Jeśli T(t) oraz N(t) są dobrze określone (tj. $T'(t) \neq 0$), płaszczyznę rozpiętą przez te dwa wektory nazywamy płaszczyzną ściśle styczną.

Płaszczyzna ściśle styczna jest w pewnym sensie płaszczyzną najlepiej przybliżającą naszą krzywą, tak jak prosta styczna jest prostą która najlepiej przybliża krzywą α.

Krzywe w R³

krzywą

Wektor styczny i normalny

Trójnóg Freneta

krzywych

$$N(t) \stackrel{\text{def.}}{=} \frac{T'(t)}{\|T'(t)\|}.$$

Jeśli T(t) oraz N(t) są dobrze określone (tj. $T'(t) \neq 0$), płaszczyznę rozpiętą przez te dwa wektory nazywamy **płaszczyzną ściśle styczną**.

Płaszczyzna ściśle styczna jest w pewnym sensie płaszczyzną najlepiej przybliżającą naszą krzywą, tak jak prosta styczna jest prostą która najlepiej przybliża krzywą α.

Krzywe w \mathbb{R}^3

krzywą

Wektor styczny i normalny

Trójnóg Freneta

Niezmienni

Twierdzenie

klasyfikacyjne dla krzywych

$$N(t) \stackrel{\text{def.}}{=} \frac{T'(t)}{\|T'(t)\|}.$$

Jeśli T(t) oraz N(t) są dobrze określone (tj. $T'(t) \neq 0$), płaszczyznę rozpiętą przez te dwa wektory nazywamy **płaszczyzną ściśle styczną**.

Płaszczyzna ściśle styczna jest w pewnym sensie płaszczyzną najlepiej przybliżającą naszą krzywą, tak jak prosta styczna jest prostą która najlepiej przybliża krzywą α .

Krzywe w K

Vektory związa

Wektor styczny i normalny

Tráinág Eronoto

...,....

krzywych

Niezmiennik krzywych

Twierdzenie klasyfikacyjne dla krzywych

Lemat

Niech α : $(a, b) \to \mathbb{R}^3$ będzie krzywą regularną. Następujące warunki są równoważne dla każdego $t \in (a, b)$:

- 1. $||T'(t)|| \neq 0$,
- 2. wektory $\alpha'(t)$ oraz $\alpha''(t)$ są liniowo niezależne,
- 3. $\alpha'(t) \times \alpha''(t) \neq 0$, gdzie \times oznacza iloczyn wektorowy

Lemat

Niech α : $(a, b) \to \mathbb{R}^3$ będzie krzywą regularną. Następujące warunki są równoważne dla każdego $t \in (a, b)$:

- 1. $||T'(t)|| \neq 0$,
- 2. wektory $\alpha'(t)$ oraz $\alpha''(t)$ są liniowo niezależne,
- 3. lpha'(t) imes lpha''(t)
 eq 0, gdzie imes oznacza iloczyn wektorowy

krzywych

Twierdzenie klasyfikacyjne dla krzywych

Lemat

Niech α : $(a, b) \to \mathbb{R}^3$ będzie krzywą regularną. Następujące warunki są równoważne dla każdego $t \in (a, b)$:

- 1. $||T'(t)|| \neq 0$,
- 2. wektory $\alpha'(t)$ oraz $\alpha''(t)$ są liniowo niezależne,
- 3. $\alpha'(t) \times \alpha''(t) \neq 0$, gdzie \times oznacza iloczyn wektorowy

Niech α : $(a,b) \to \mathbb{R}^3$ będzie krzywą regularną. Następujące warunki sa równoważne dla każdego $t \in (a, b)$:

- 1. $||T'(t)|| \neq 0$,
- 2. wektory $\alpha'(t)$ oraz $\alpha''(t)$ są liniowo niezależne,
- 3. $\alpha'(t) \times \alpha''(t) \neq 0$, gdzie × oznacza iloczyn wektorowy.

Implikacja $(1 \Rightarrow 2)$. Załóżmy, że istnieje t_0 dla którego wektory $\alpha'(t_0)$ i $\alpha''(t_0)$ są liniowo zależne, tj. $\alpha''(t_0) = k\alpha'(t_0)$ dla pewnego $k \in \mathbb{R}$. Pokażemy (bezpośrednim rachunkiem), że wówczas $T(t_0)$ jest wektorem zerowym. Oznaczmy $v(t) \stackrel{\text{def.}}{=} \|\alpha'(t)\|$ i zauważmy, że $v = \sqrt{(\alpha_1')^2 + (\alpha_2')^2 + (\alpha_3')^2}$, więc

$$v' = \frac{2(\alpha_1'\alpha_1'' + \alpha_2'\alpha_2'' + \alpha_3'\alpha_3'')}{2\sqrt{(\alpha_1')^2 + (\alpha_2')^2 + (\alpha_3')^2}} = \frac{\langle \alpha', \alpha'' \rangle}{v}.$$

Krzywe w R

Wektory związane z krzywą

Wektor styczny i normalny

Trójnóg Frenet

Niezmiennik krzywych

Szkic dowodu:

- ► Implikacje (2 ⇔ 3) wynikają z definicji i własności iloczynu wektorowego.
- Implikacja $(1 \Rightarrow 2)$. Załóżmy, że istnieje t_0 dla którego wektory $\alpha'(t_0)$ i $\alpha''(t_0)$ są liniowo zależne, tj. $\alpha''(t_0) = k\alpha'(t_0)$ dla pewnego $k \in \mathbb{R}$. Pokażemy (bezpośrednim rachunkiem), że wówczas $T(t_0)$ jest wektorem zerowym. Oznaczmy $v(t) \stackrel{\text{def.}}{=} \|\alpha'(t)\|$ i zauważmy, że $v = \sqrt{(\alpha'_1)^2 + (\alpha'_2)^2 + (\alpha'_3)^2}$, więc

$$v' = \frac{2(\alpha_1'\alpha_1'' + \alpha_2'\alpha_2'' + \alpha_3'\alpha_3'')}{2\sqrt{(\alpha_1')^2 + (\alpha_2')^2 + (\alpha_3')^2}} = \frac{\langle \alpha', \alpha'' \rangle}{v}$$

Implikacja $(1 \Rightarrow 2)$. Załóżmy, że istnieje t_0 dla którego wektory $\alpha'(t_0)$ i $\alpha''(t_0)$ są liniowo zależne, tj. $\alpha''(t_0) = k\alpha'(t_0)$ dla pewnego $k \in \mathbb{R}$. Pokażemy (bezpośrednim rachunkiem), że wówczas $T(t_0)$ jest wektorem zerowym. Oznaczmy $v(t) \stackrel{\text{def.}}{=} \|\alpha'(t)\|$ i zauważmy, że $v = \sqrt{(\alpha'_1)^2 + (\alpha'_2)^2 + (\alpha'_3)^2}$, więc

$$v' = \frac{2(\alpha_1'\alpha_1'' + \alpha_2'\alpha_2'' + \alpha_3'\alpha_3'')}{2\sqrt{(\alpha_1')^2 + (\alpha_2')^2 + (\alpha_3')^2}} = \frac{\langle \alpha', \alpha'' \rangle}{v}.$$

Krzywe w \mathbb{R}^3

Wektory związane z krzywą

Wektor styczny i normalny

Trójnóg Freneta

Niezmiennik

- ► Implikacje (2 ⇔ 3) wynikają z definicji i własności iloczynu wektorowego.
- Implikacja $(1 \Rightarrow 2)$. Załóżmy, że istnieje t_0 dla którego wektory $\alpha'(t_0)$ i $\alpha''(t_0)$ są liniowo zależne, tj. $\alpha''(t_0) = k\alpha'(t_0)$ dla pewnego $k \in \mathbb{R}$. Pokażemy (bezpośrednim rachunkiem), że wówczas $T(t_0)$ jest wektorem zerowym. Oznaczmy $v(t) \stackrel{\text{def.}}{=} \|\alpha'(t)\|$ i zauważmy, że $v = \sqrt{(\alpha_1')^2 + (\alpha_2')^2 + (\alpha_3')^2}$, więc

$$v' = \frac{2(\alpha_1'\alpha_1'' + \alpha_2'\alpha_2'' + \alpha_3'\alpha_3'')}{2\sqrt{(\alpha_1')^2 + (\alpha_2')^2 + (\alpha_3')^2}} = \frac{\langle \alpha', \alpha'' \rangle}{v}$$

Krzywe w \mathbb{R}^3

Wektory związane z krzywą

Wektor styczny i normalny

Trójnóg Freneta

Niezmienniki crzywych

Implikacja $(1 \Rightarrow 2)$. Załóżmy, że istnieje t_0 dla którego wektory $\alpha'(t_0)$ i $\alpha''(t_0)$ są liniowo zależne, tj. $\alpha''(t_0) = k\alpha'(t_0)$ dla pewnego $k \in \mathbb{R}$. Pokażemy (bezpośrednim rachunkiem), że wówczas $T(t_0)$ jest wektorem zerowym. Oznaczmy $v(t) \stackrel{\text{def.}}{=} \|\alpha'(t)\|$ i zauważmy, że $v = \sqrt{(\alpha'_1)^2 + (\alpha'_2)^2 + (\alpha'_3)^2}$, więc

$$v' = \frac{2(\alpha_1'\alpha_1'' + \alpha_2'\alpha_2'' + \alpha_3'\alpha_3'')}{2\sqrt{(\alpha_1')^2 + (\alpha_2')^2 + (\alpha_3')^2}} = \frac{\langle \alpha', \alpha'' \rangle}{v}.$$

Krzywe w R

Wektory związane z krzywą

Wektor styczny i normalny

Trójnóg Freneta

KIP . .

rzywych

Implikacja $(1\Rightarrow 2)$. Załóżmy, że istnieje t_0 dla którego wektory $\alpha'(t_0)$ i $\alpha''(t_0)$ są liniowo zależne, tj. $\alpha''(t_0) = k\alpha'(t_0)$ dla pewnego $k \in \mathbb{R}$. Pokażemy (bezpośrednim rachunkiem), że wówczas $T(t_0)$ jest wektorem zerowym. Oznaczmy $v(t) \stackrel{\text{def.}}{=} \|\alpha'(t)\|$ i zauważmy, że $v = \sqrt{(\alpha'_1)^2 + (\alpha'_2)^2 + (\alpha'_3)^2}$, więc

$$v^{\,\prime} = \frac{2(\alpha_1^{\prime}\alpha_1^{\prime\prime} + \alpha_2^{\prime}\alpha_2^{\prime\prime} + \alpha_3^{\prime}\alpha_3^{\prime\prime})}{2\sqrt{(\alpha_1^{\prime})^2 + (\alpha_2^{\prime})^2 + (\alpha_3^{\prime})^2}} = \frac{\langle \alpha^{\prime}, \alpha^{\prime\prime} \rangle}{v}.$$

Krzywe w R

krzywą

Wektor styczny i normalny

Trójnóg Freneta

Niezmienni

crzywych

$$T'(t_0) = \left(\frac{\alpha'(t_0)}{\nu(t_0)}\right)' = \frac{\alpha''(t_0)\nu(t_0) - \alpha'(t_0)\nu'(t_0)}{\nu(t_0)^2},$$

$$\frac{k\alpha'(t_0)\nu(t_0) - \alpha'(t_0)\frac{\langle \alpha'(t_0), k\alpha'(t_0)\rangle}{\nu(t_0)}}{\nu^2(t_0)} = \frac{k\alpha'(t_0)\nu(t_0) - k\alpha'(t_0)\frac{\nu(t_0)^2}{\nu(t_0)}}{\nu^2(t_0)} = \frac{k\alpha'(t_0)(\nu(t_0) - \nu(t_0))}{\nu(t_0)^2} = (0, 0, 0).$$

Krzywe w 🏻 R³

Wektory związane z krzywą

Wektor styczny i normalny

Wektor binorma

- -

krzywych

$$T'(t_0) = \left(\frac{\alpha'(t_0)}{\nu(t_0)}\right)' = \frac{\alpha''(t_0)\nu(t_0) - \alpha'(t_0)\nu'(t_0)}{\nu(t_0)^2},$$

$$\frac{k\alpha'(t_0)\nu(t_0) - \alpha'(t_0)\frac{\langle \alpha'(t_0), k\alpha'(t_0)\rangle}{\nu(t_0)}}{\nu^2(t_0)} = \frac{k\alpha'(t_0)\nu(t_0) - k\alpha'(t_0)\frac{\nu(t_0)^2}{\nu(t_0)}}{\nu^2(t_0)} = \frac{k\alpha'(t_0)(\nu(t_0) - \nu(t_0))}{\nu(t_0)^2} = (0, 0, 0).$$

Krzywe w 🏻 R³

Wektory związane z krzywą

Wektor styczny i normalny

Wektor binorm

- -

krzywych

$$T'(t_0) = \left(\frac{\alpha'(t_0)}{\nu(t_0)}\right)' = \frac{\alpha''(t_0)\nu(t_0) - \alpha'(t_0)\nu'(t_0)}{\nu(t_0)^2},$$

$$\frac{k\alpha'(t_0)v(t_0) - \alpha'(t_0)\frac{\langle \alpha'(t_0), k\alpha'(t_0)\rangle}{v(t_0)}}{v^2(t_0)} = \frac{k\alpha'(t_0)v(t_0) - k\alpha'(t_0)\frac{v(t_0)^2}{v(t_0)}}{v^2(t_0)} = \frac{k\alpha'(t_0)(v(t_0) - v(t_0))}{v(t_0)^2} = (0, 0, 0).$$

Krzywe w \mathbb{R}^3

Wektory związane z krzywą

Wektor styczny i normalny

Tráinág Eronota

...

krzywych

$$T'(t_0) = \left(\frac{\alpha'(t_0)}{\nu(t_0)}\right)' = \frac{\alpha''(t_0)\nu(t_0) - \alpha'(t_0)\nu'(t_0)}{\nu(t_0)^2},$$

$$\frac{k\alpha'(t_0)\nu(t_0) - \alpha'(t_0)\frac{\langle \alpha'(t_0), k\alpha'(t_0)\rangle}{\nu(t_0)}}{\nu^2(t_0)} = \frac{k\alpha'(t_0)\nu(t_0) - k\alpha'(t_0)\frac{\nu(t_0)^2}{\nu(t_0)}}{\nu^2(t_0)} = \frac{k\alpha'(t_0)(\nu(t_0) - \nu(t_0))}{\nu(t_0)^2} = (0, 0, 0).$$

Krzywe w ℝ³

Wektory związane z krzywą

Wektor styczny i normalny

Tráinág Eronota

...

krzywych

$$T'(t_0) = \left(\frac{\alpha'(t_0)}{\nu(t_0)}\right)' = \frac{\alpha''(t_0)\nu(t_0) - \alpha'(t_0)\nu'(t_0)}{\nu(t_0)^2},$$

$$\frac{k\alpha'(t_0)v(t_0) - \alpha'(t_0)\frac{\langle \alpha'(t_0), k\alpha'(t_0)\rangle}{v(t_0)}}{v^2(t_0)} = \frac{k\alpha'(t_0)v(t_0) - k\alpha'(t_0)\frac{v(t_0)^2}{v(t_0)}}{v^2(t_0)} = \frac{k\alpha'(t_0)(v(t_0) - v(t_0))}{v(t_0)^2} = (0, 0, 0).$$

Krzywe w 🏻 R³

Wektory związane z crzywą

Wektor styczny i normalny

Wektor binorma

Niozmionni

krzywych

Załóżmy, że istnieje t_0 dla którego $\|T'(t_0)\| = 0$. Wtedy sam $T'(t_0)$ jest wektorem zerowym. Oznaczmy $v(t) \stackrel{\text{def.}}{=} \|\alpha'(t)\|$. Mamy wtedy

$$0 = T'(t)\big|_{t=t_0} = \left(\frac{\alpha'(t_0)}{\nu(t_0)}\right)' = \frac{\alpha''(t_0)\nu(t_0) - \alpha'(t_0)\nu'(t_0)}{\nu(t_0)^2}.$$

Zatem $\alpha''(t_0)v(t_0)-\alpha'(t_0)v'(t_0)=0$, więc albo oba współczynniki (tj. $v(t_0)$ i $v'(t_0)$) są zerowe, albo wektory $\alpha'(t_0)$ i $\alpha''(t_0)$ są liniowo zależne. Z regularności krzywej wiemy, że może zachodzić tylko druga sytuacja.

Krzywe w R³

Wektory związane z krzywą

Wektor styczny i normalny

Trójnóg Freneta

liezmienniki rzywych

$$0 = T'(t)\big|_{t=t_0} = \left(\frac{\alpha'(t_0)}{\nu(t_0)}\right)' = \frac{\alpha''(t_0)\nu(t_0) - \alpha'(t_0)\nu'(t_0)}{\nu(t_0)^2}.$$

Zatem $\alpha''(t_0)v(t_0) - \alpha'(t_0)v'(t_0) = 0$, więc albo oba współczynniki (tj. $v(t_0)$ i $v'(t_0)$) są zerowe, albo wektory $\alpha'(t_0)$ i $\alpha''(t_0)$ są liniowo zależne. Z regularności krzywej wiemy, że może zachodzić tylko druga sytuacja.

Krzywe w R³

krzywą

Wektor styczny i normalny

Trójnóg Freneta

rzvwych

$$0 = T'(t)\big|_{t=t_0} = \left(\frac{\alpha'(t_0)}{\nu(t_0)}\right)' = \frac{\alpha''(t_0)\nu(t_0) - \alpha'(t_0)\nu'(t_0)}{\nu(t_0)^2}.$$

Zatem $\alpha''(t_0)v(t_0) - \alpha'(t_0)v'(t_0) = 0$, więc albo oba współczynniki (tj. $v(t_0)$ i $v'(t_0)$) są zerowe, albo wektory $\alpha'(t_0)$ i $\alpha''(t_0)$ są liniowo zależne. Z regularności krzywej wiemy, że może zachodzić tylko druga sytuacja.

Krzywe w \mathbb{R}^3

Wektory związane z krzywą

Wektor styczny i normalny

Trójnóg Freneta

liezmienniki

Podobnie udowodnimy implikację $(2 \Rightarrow 1)$. Załóżmy, że istnieje t_0 dla którego $||T'(t_0)|| = 0$. Wtedy sam $T'(t_0)$ jest wektorem zerowym. Oznaczmy $v(t) \stackrel{\text{def.}}{=} ||\alpha'(t)||$. Mamy wtedy

$$0 = T'(t)\big|_{t=t_0} = \left(\frac{\alpha'(t_0)}{\nu(t_0)}\right)' = \frac{\alpha''(t_0)\nu(t_0) - \alpha'(t_0)\nu'(t_0)}{\nu(t_0)^2}.$$

Zatem $\alpha''(t_0)v(t_0) - \alpha'(t_0)v'(t_0) = 0$, więc albo oba współczynniki (tj. $v(t_0)$ i $v'(t_0)$) są zerowe, albo wektory $\alpha'(t_0)$ i $\alpha''(t_0)$ są liniowo zależne. Z regularności krzywej wiemy, że może zachodzić tylko druga sytuacja.

Krzywe w \mathbb{R}^3

krzywą

Wektor styczny i normalny

Trójnóg Freneta

liezmienniki rzywych

Podobnie udowodnimy implikację $(2 \Rightarrow 1)$. Załóżmy, że istnieje t_0 dla którego $\|T'(t_0)\| = 0$. Wtedy sam $T'(t_0)$ jest wektorem zerowym. Oznaczmy $v(t) \stackrel{\text{def.}}{=} \|\alpha'(t)\|$. Mamy wtedy

$$0 = T'(t)\big|_{t=t_0} = \left(\frac{\alpha'(t_0)}{\nu(t_0)}\right)' = \frac{\alpha''(t_0)\nu(t_0) - \alpha'(t_0)\nu'(t_0)}{\nu(t_0)^2}.$$

Zatem $\alpha''(t_0)v(t_0) - \alpha'(t_0)v'(t_0) = 0$, więc albo oba współczynniki (tj. $v(t_0)$ i $v'(t_0)$) są zerowe, albo wektory $\alpha'(t_0)$ i $\alpha''(t_0)$ są liniowo zależne. Z regularności krzywej wiemy, że może zachodzić tylko druga sytuacja.

Krzywe w K

krzywą

Wektor styczny i normalny

Trójnóg Freneta

rzywych

$$B(t) \stackrel{\text{def.}}{=} T(t) \times N(t).$$

Płaszczyznę rozpiętą przez wektory N(t) i B(t) nazywamy płaszczyzną normalną, lub płaszczyzą prostopadłą do krzywej.

(rzywe w 🏻 R³

vektory związane z rzywą

ktor styczny i nom

Wektor binormalny

Trojnog Freneta

krzywych

Niech α : $(a,b) \to \mathbb{R}^3$ będzie krzywą regularną. Dla każdego $t \in (a,b)$ takiego, że $\|T'(t)\| \neq 0$ definiujemy **jednostkowy wektor binormalny** jako

$$B(t) \stackrel{\text{def.}}{=} T(t) \times N(t).$$

Płaszczyznę rozpiętą przez wektory N(t) i B(t) nazywamy płaszczyzną normalną, lub płaszczyzą prostopadłą do krzywej.

Krzywe w \mathbb{R}^3

ektory związano zywą

ektor styczny i norm

Wektor binormalny

rojnog Freneta

krzywych

Definicja

Układ ortonormalny $\{T(t), N(t), B(t)\}$ nazywać będziemy **trójnogiem** (lub **reperem**) Freneta.

Elementarna Geometria Różniczkowa

Krzywe w \mathbb{R}^3

Wektory związane z krzywą

> tor styczny i normalny tor binormalny

Trójnóg Freneta

Niezmiennik krzywych

- Jedyny wybór jaki dokonaliśmy podczas definiowania trójnogu Freneta to kierunek (tj. znak) wektora binormalnego.
- 2. Definicja B(t) jest uzależniona od tego, że obraz krzywe umieszczony jest w przestrzeni \mathbb{R}^3 . W wymiarach wyższych jest wiele możliwych wyborów wektora prostopadłego do dwóch danych (innymi słowy: nie ma iloczynu wektorowego)

Krzywe w 🏻

Wektory związane z krzywą

> ektor styczny i normain ektor binormalny

Trójnóg Freneta

Niezmienniki krzywych

Jedyny wybór jaki dokonaliśmy podczas definiowania trójnogu Freneta to kierunek (tj. znak) wektora binormalnego.

2. Definicja B(t) jest uzależniona od tego, że obraz krzywej umieszczony jest w przestrzeni R³. W wymiarach wyższych jest wiele możliwych wyborów wektora prostopadłego do dwóch danych (innymi słowy: nie ma iloczynu wektorowego)

(rzywe w 🏻 R3

Vektory związane z rzywą

ktor binormalny

Trójnóg Freneta

Niezmienniki

krzywych

- 1. Jedyny wybór jaki dokonaliśmy podczas definiowania trójnogu Freneta to kierunek (tj. znak) wektora binormalnego.
- 2. Definicja B(t) jest uzależniona od tego, że obraz krzywej umieszczony jest w przestrzeni \mathbb{R}^3 . W wymiarach wyższych jest wiele możliwych wyborów wektora prostopadłego do dwóch danych (innymi słowy: nie ma iloczynu wektorowego)

Trójnóg Freneta

Elementarna Geometria Różniczkowa

...,

krzywą

Niezmienniki krzywych

Torsja

Wzory reni Wzory ogóli

Twierdzenie klasyfikacyjne dla krzywych

Wykład 3

Niezmienniki krzywych

Krzywe w \mathbb{R}^3

Wektory związane z krzywą

Niezmienniki krzywych

Krzywizna Torsja Wzory Freneta

Wzory ogólne

Twierdzenie klasyfikacyjne dla krzywych

Krzywe w R³

Wektory związane z krzywą

Niezmienniki krzywych

Torsja
Wzory Frenet

Wzory ogólne

Definicja

Niech α : $(a,b) \to \mathbb{R}^3$ będzie (regularną) krzywą unormowaną. Dla każdego $t \in (a,b)$ **krzywiznę** definiujemy jako funkcję κ : $(a,b) \to \mathbb{R}$

$$\kappa(t) \stackrel{\text{def.}}{=} ||T'(t)|| = ||\alpha''(t)||$$

Zauważmy, że krzywizna jest zawsze nieujemna, $\kappa(t) \geqslant 0$.

Wektory związane z krzywą

Niezmienniki krzywych

Krzywizna

/zory Freneta

zory ogólne

Dla regularnych krzywych nieunormowanych możemy posłużyć się odpowiednią reparametryzacją:

Definicja

Niech α : $(a, b) \to \mathbb{R}^3$ będzie krzywą regularną, oraz niech $\beta = \alpha \circ h$: $(c, d) \to \mathbb{R}^3$ będzie jej reparametryzacją unormowaną (h: $(c, d) \to (a, b))$. Wówczas

$$\kappa_{\alpha}(t) \stackrel{\text{def.}}{=} \kappa_{\beta}(h^{-1}(t))$$

Czy definicja jest niezależna od wyboru parametryzacji?

Dla regularnych krzywych nieunormowanych możemy posłużyć się odpowiednią reparametryzacją:

Definicja

Niech α : $(a,b) \to \mathbb{R}^3$ będzie krzywą regularną, oraz niech $\beta = \alpha \circ h$: $(c,d) \to \mathbb{R}^3$ będzie jej reparametryzacją unormowaną (h: $(c,d) \to (a,b))$. Wówczas

$$\kappa_{\alpha}(t) \stackrel{\text{def.}}{=} \kappa_{\beta}(h^{-1}(t))$$

Czy definicja jest niezależna od wyboru parametryzacji?

Definicja

Niech α : $(a,b) \to \mathbb{R}^3$ będzie krzywą regularną, oraz niech $\beta = \alpha \circ h$: $(c,d) \to \mathbb{R}^3$ będzie jej reparametryzacją unormowaną (h: $(c,d) \to (a,b))$. Wówczas

$$\kappa_{\alpha}(t) \stackrel{\text{def.}}{=} \kappa_{\beta}(h^{-1}(t))$$

Czy definicja jest niezależna od wyboru parametryzacji?

Krzywe w \mathbb{R}^3

Wektory związane z krzywą

Krzywizna

Forsja

Wzory ogólne

Niech α : $(a,b) \to \mathbb{R}^3$ będzie krzywą regularną i niech $\alpha \circ h_1$ oraz $\alpha \circ h_2$ będą dwiema reparametryzacjami unormowanymi, gdzie h_1 : $(c_1,d_1) \to (a,b)$, oraz h_2 : $(c_2,d_2) \to (a,b)$ są dyfeomorfizmami. Jeśli κ_1 i κ_2 oznaczają krzywizny krzywych odpowiednio $\alpha \circ h_1$ oraz $\alpha \circ h_2$, wtedy

$$\kappa_1(h_1^{-1}(t)) = \kappa_2(h_2^{-1}(t))$$

dla wszystkich t \in (a, b).

Wniosek

Definicja krzywizny dla krzywej nieunormowanej nie zależy od wyboru parametryzacji.

Krzywe w R3

Wektory związane z krzywą

Krzywizna

Krzywizna

Wzory Freneta Wzory ogólne

Niech α : $(a,b) \to \mathbb{R}^3$ będzie krzywą regularną i niech $\alpha \circ h_1$ oraz $\alpha \circ h_2$ będą dwiema reparametryzacjami unormowanymi, gdzie h_1 : $(c_1,d_1) \to (a,b)$, oraz h_2 : $(c_2,d_2) \to (a,b)$ są dyfeomorfizmami. Jeśli κ_1 i κ_2 oznaczają krzywizny krzywych odpowiednio $\alpha \circ h_1$ oraz $\alpha \circ h_2$, wtedy

$$\kappa_1(h_1^{-1}(t)) = \kappa_2(h_2^{-1}(t))$$

dla wszystkich t ∈ (a, b).

Wniosek

Definicja krzywizny dla krzywej nieunormowanej nie zależy od wyboru parametryzacji.

Krzywe w R

Wektory związane : krzywą

Krzywizna

Krzywizna

Wzory Freneta Wzory ogólne

$$h_2^{-1} \circ h_1: (c_1, d_1) \to (c_2, d_2)$$

$$(h_2^{-1} \circ h_1)(t) = \pm t + C,$$

$$1 = \|(\alpha \circ h_i)'(t)\| = \|\alpha'(h_i(t))\||h_i'(t)|$$

Krzywizna

Najpierw pokażemy, że h_1 i h_2 (funkcje reparametryzujące do krzywych unormowanych) mogą się różnić jedynie znakiem i przesunięciem, tj. pokażemy, że złożenie

$$h_2^{-1} \circ h_1: (c_1, d_1) \to (c_2, d_2)$$

jest równe

$$(h_2^{-1} \circ h_1)(t) = \pm t + C,$$

dla pewnej stałej $C \in \mathbb{R}$.

Dla obu indeksów i = 1, 2 i wszystkich $t \in (c_i, d_i)$ mamy

$$1 = \|(\alpha \circ h_i)'(t)\| = \|\alpha'(h_i(t))\||h_i'(t)|$$

Krzywe w R³

Wektory związane z krzywą

krzywych

Krzywizna

orsja /zory Freneta

Vzory ogólne

Najpierw pokażemy, że h_1 i h_2 (funkcje reparametryzujące do krzywych unormowanych) mogą się różnić jedynie znakiem i przesunięciem, tj. pokażemy, że złożenie

$$h_2^{-1} \circ h_1 : (c_1, d_1) \to (c_2, d_2)$$

jest równe

$$(h_2^{-1} \circ h_1)(t) = \pm t + C,$$

dla pewnej stałej $C \in \mathbb{R}$.

Dla obu indeksów i = 1, 2 i wszystkich $t \in (c_i, d_i)$ mamy

$$1 = \|(\alpha \circ h_i)'(t)\| = \|\alpha'(h_i(t))\||h_i'(t)|$$

Krzywe w R

wektory związane z krzywą

Krzywych Krzywizna

Torsia

/zory Freneta

Wzory ogólne

Najpierw pokażemy, że h_1 i h_2 (funkcje reparametryzujące do krzywych unormowanych) mogą się różnić jedynie znakiem i przesunięciem, tj. pokażemy, że złożenie

$$h_2^{-1} \circ h_1 : (c_1, d_1) \to (c_2, d_2)$$

jest równe

$$\left(h_2^{-1}\circ h_1\right)(t)=\pm t+C,$$

dla pewnej stałej $C \in \mathbb{R}$.

Dla obu indeksów i = 1, 2 i wszystkich $t \in (c_i, d_i)$ mamy

$$1 = \|(\alpha \circ h_i)'(t)\| = \|\alpha'(h_i(t))\||h_i'(t)|.$$

Krzywe w K

Wektory związane z krzywą

Krzywyci Krzywizna

Torsia

Vzory Freneta

Twierdzenie klasyfikacyjne dla

$$h'_{1}(t) = \frac{\pm 1}{\|\alpha'(h_{1}(t))\|} = \frac{\pm 1}{\|\alpha'(h_{2}(h_{2}^{-1}[h_{1}(t)]))\|} = \\ = \pm h_{2}[(h_{2}^{-1} \circ h_{1})(t)]$$

$$(h_2^{-1} \circ h_1)'(t) = (h_2^{-1})' [h_1(t)] h_1'(t) = \frac{h_1'(t)}{h_2'(h_2^{-1} \circ h_1(t))} = \pm 1$$

Całkując obie strony równości otrzymujemy

$$(h_2^{-1} \circ h_1)(t) = \pm t + C$$
$$h_1(t) = h_2(\pm t + C)$$
$$h_2^{-1}(t) = h_1^{-1}(\pm t) + C$$

Krzywe w \mathbb{R}^3

Wektory związane z krzywa

Niezmienniki krzywych

Krzywizna

orsja Vzory Freneta

Wzory ogólne

$$h'_{1}(t) = \frac{\pm 1}{\|\alpha'(h_{1}(t))\|} = \frac{\pm 1}{\|\alpha'(h_{2}(h_{2}^{-1}[h_{1}(t)]))\|} = \\ = \pm h_{2}[(h_{2}^{-1} \circ h_{1})(t)].$$

$$(h_2^{-1} \circ h_1)'(t) = (h_2^{-1})' [h_1(t)] h_1'(t) = \frac{h_1'(t)}{h_2'(h_2^{-1} \circ h_1(t))} = \pm$$

Całkując obie strony równości otrzymujemy

$$(h_2^{-1} \circ h_1)(t) = \pm t + C$$

$$h_1(t) = h_2(\pm t + C)$$

$$h_2^{-1}(t) = h_1^{-1}(\pm t) + C$$

Krzywe w \mathbb{R}^3

Wektory związane z krzywą

Niezmiennik krzywych

Krzywizna

orsja Vzory Freneta

Twierdzenie klasyfikacyjne dla

$$h'_{1}(t) = \frac{\pm 1}{\|\alpha'(h_{1}(t))\|} = \frac{\pm 1}{\|\alpha'(h_{2}(h_{2}^{-1}[h_{1}(t)]))\|} = \\ = \pm h_{2}[(h_{2}^{-1} \circ h_{1})(t)].$$

$$(h_2^{-1} \circ h_1)'(t) = (h_2^{-1})' [h_1(t)] h_1'(t) = \frac{h_1'(t)}{h_2'(h_2^{-1} \circ h_1(t))} = \pm 1$$

Całkując obie strony równości otrzymujemy

$$(h_2^{-1} \circ h_1)(t) = \pm t + C$$

 $h_1(t) = h_2(\pm t + C)$
 $h_2^{-1}(t) = h_2^{-1}(\pm t) + C$

Krzywe w R³

Wektory związane z krzywą

Niezmienniki krzywych

Krzywizna

orsja Vzory Freneta

$$h_{1}'(t) = \frac{\pm 1}{\|\alpha'(h_{1}(t))\|} = \frac{\pm 1}{\|\alpha'(h_{2}(h_{2}^{-1}[h_{1}(t)]))\|} = \\ = \pm h_{2}[(h_{2}^{-1} \circ h_{1})(t)].$$

$$(h_2^{-1} \circ h_1)'(t) = (h_2^{-1})' [h_1(t)] h_1'(t) = \frac{h_1'(t)}{h_2'(h_2^{-1} \circ h_1(t))} = \pm 1$$

Całkując obie strony równości otrzymujemy

$$(h_2^{-1} \circ h_1)(t) = \pm t + C$$

 $h_1(t) = h_2(\pm t + C)$
 $h_2^{-1}(t) = h_1^{-1}(\pm t) + C$

Krzywe w \mathbb{R}^3

Vektory związane z rzywą

krzywych

Krzywizna

orsja Vzory Freneta

$$h'_{1}(t) = \frac{\pm 1}{\|\alpha'(h_{1}(t))\|} = \frac{\pm 1}{\|\alpha'(h_{2}(h_{2}^{-1}[h_{1}(t)]))\|} = \\ = \pm h_{2}[(h_{2}^{-1} \circ h_{1})(t)].$$

$$(h_2^{-1} \circ h_1)'(t) = (h_2^{-1})' [h_1(t)] h_1'(t) = \frac{h_1'(t)}{h_2'(h_2^{-1} \circ h_1(t))} = \pm 1$$

Całkując obie strony równości otrzymujemy

$$(h_2^{-1} \circ h_1)(t) = \pm t + C$$

 $h_1(t) = h_2(\pm t + C)$
 $h_2^{-1}(t) = h_1^{-1}(\pm t) + C$

Krzvwe w R³

Vektory związane z rzywą

krzywych

Krzywizna

orsja /zory Freneta

$$h_{1}'(t) = \frac{\pm 1}{\|\alpha'(h_{1}(t))\|} = \frac{\pm 1}{\|\alpha'(h_{2}(h_{2}^{-1}[h_{1}(t)]))\|} = \\ = \pm h_{2}[(h_{2}^{-1} \circ h_{1})(t)].$$

$$(h_2^{-1} \circ h_1)'(t) = (h_2^{-1})' [h_1(t)] h_1'(t) = \frac{h_1'(t)}{h_2'(h_2^{-1} \circ h_1(t))} = \pm 1$$

Całkując obie strony równości otrzymujemy

$$(h_2^{-1} \circ h_1)(t) = \pm t + C$$
$$h_1(t) = h_2(\pm t + C)$$
$$h_2^{-1}(t) = h_1^{-1}(\pm t) + C.$$

Krzvwe w R³

Vektory związane z rzywą

Niezmienniki krzywych

Krzywizna

orsja /zory Freneta

Podstawiając przedostatnią równość do α mamy

$$(\alpha \circ h_1)(t) = (\alpha \circ h_2)(\pm t + C),$$

więc zachodzi również $\kappa_1(t)=\kappa_2(\pm t+C)$. Podstawiając teraz $t=h_1^{-1}(s)$ otrzymujemy

$$\kappa_1(h_1^{-1})(s) = \kappa_2(h_1^{-1}(s) + C) = \kappa_2(h_2^{-1}(s))$$

Podstawiając przedostatnią równość do α mamy

$$(\alpha \circ h_1)(t) = (\alpha \circ h_2)(\pm t + C),$$

więc zachodzi również $\kappa_1(t)=\kappa_2(\pm t+C)$. Podstawiając teraz $t=h_1^{-1}(s)$ otrzymujemy

$$\kappa_1(h_1^{-1})(s) = \kappa_2(h_1^{-1}(s) + C) = \kappa_2(h_2^{-1}(s))$$

Podstawiając przedostatnią równość do α mamy

$$(\alpha \circ h_1)(t) = (\alpha \circ h_2)(\pm t + C),$$

więc zachodzi również $\kappa_1(t)=\kappa_2(\pm t+C)$. Podstawiając teraz $t=h_1^{-1}(s)$ otrzymujemy

$$\kappa_1(h_1^{-1})(s) = \kappa_2(h_1^{-1}(s) + C) = \kappa_2(h_2^{-1}(s)).$$

Uwaga

Na razie pokazaliśmy, że dla wybranej parametryzacji α krzywizna nie zależy od reparametryzacji unormowanej.

Uwaga

Na razie pokazaliśmy, że dla wybranej parametryzacji α krzywizna nie zależy od reparametryzacji unormowanej.

Chcemy jednak pokazać coś więcej, mianowicie, że krzywizna jest funkcją zależną tylko od punktów w obrazie krzywej i w ogóle nie zależy od wyboru parametryzacji. Zostanie to wykazane pod koniec tego wykładu.

Krzywe w R

wektory związane z krzywą

krzywycł

Krzywizna

Forsja Wzory Freneta

Twierdzenie klasyfikacyjne dla

Dowód:

Bez straty ogólności możemy założyć, że α jest krzywą unormowaną. Załóżmy, że wektor normalny do α jest zerowy,

$$N(t) = (0, 0, 0).$$

Całkując to równanie otrzymujemy T(t) = v = const. Całkując ponownie mamy

$$\alpha(t) = vt + w$$

gdzie $v, w \in \mathbb{R}^3$ są ustalonymi wektorami, czyli α jest prostą.

Krzywe w R³

Wektory związane z krzywą

krzywycł

Krzywizna

vorsja Wzory Freneta

Wzory ogólne

Dowód:

Bez straty ogólności możemy założyć, że α jest krzywą unormowaną. Załóżmy, że wektor normalny do α jest zerowy,

$$N(t) = (0, 0, 0).$$

Całkując to równanie otrzymujemy T(t) = v = const. Całkując ponownie mamy

$$\alpha(t) = vt + w$$

gdzie $v, w \in \mathbb{R}^3$ są ustalonymi wektorami, czyli α jest prostą.

Krzywe w \mathbb{R}^3

Wektory związane z krzywą

krzywych

Krzywizna

Forsja Wzory Freneta

Wzory ogólne

Dowód:

Bez straty ogólności możemy założyć, że α jest krzywą unormowaną. Załóżmy, że wektor normalny do α jest zerowy,

$$N(t) = (0, 0, 0).$$

Całkując to równanie otrzymujemy T(t) = v = const. Całkując ponownie mamy

$$\alpha(t) = vt + w$$

gdzie $v, w \in \mathbb{R}^3$ są ustalonymi wektorami, czyli α jest prostą.

Krzywe w R³

Wektory związane z krzywą

Krzywizna

Krzywizna

Vzory Freneta

Wzory ogólne

Dowód:

Bez straty ogólności możemy założyć, że α jest krzywą unormowaną. Załóżmy, że wektor normalny do α jest zerowy,

$$N(t) = (0, 0, 0).$$

Całkując to równanie otrzymujemy T(t) = v = const. Całkując ponownie mamy

$$\alpha(t) = vt + w$$

gdzie $v, w \in \mathbb{R}^3$ są ustalonymi wektorami, czyli α jest prostą.

Krzywe w \mathbb{R}^3

Wektory związane z krzywą

krzywych

Krzywizna

orsja Vzory Frenet:

Wzory ogólne

Dowód:

Bez straty ogólności możemy założyć, że α jest krzywą unormowaną. Załóżmy, że wektor normalny do α jest zerowy,

$$N(t) = (0, 0, 0).$$

Całkując to równanie otrzymujemy T(t) = v = const. Całkując ponownie mamy

$$\alpha(t) = vt + w$$

gdzie v, $w \in \mathbb{R}^3$ są ustalonymi wektorami, czyli α jest prostą.

Krzywe w R³

krzywą

Krzywizna

Krzywizna

Wzory Freneta Wzory ogólne

Niezmienniki krzywych

Krzywizna

Wzory Frenet

Wzory ogólne

Twierdzenie klasyfikacyjne dla krzywych

Załóżmy teraz, że α jest prostą. Mamy wtedy (postać parametryczna prostej) $\alpha(t) = vt + w$, gdzie $v, w \in \mathbb{R}^3$. Wtedy oczywiście

$$T(t) = \frac{\alpha'(t)}{\|\alpha'(t)\|} = \frac{v}{\|v\|}$$

zatem T'(t) = 0 więc automatycznie N(t) = 0

krzywych

Krzywizna

Vzory Freneta

Vzory ogólne

Twierdzenie klasyfikacyjne dla krzywych

Załóżmy teraz, że α jest prostą. Mamy wtedy (postać parametryczna prostej) $\alpha(t) = vt + w$, gdzie $v, w \in \mathbb{R}^3$. Wtedy

$$T(t) = \frac{\alpha'(t)}{\|\alpha'(t)\|} = \frac{v}{\|v\|}$$

zatem T'(t) = 0 więc automatycznie N(t) = 0

Niezmienniki krzywych

Krzywizna

Wzory Freneti

Wzory ogólne

lwierdzenie klasyfikacyjne dla krzywych

Załóżmy teraz, że α jest prostą. Mamy wtedy (postać parametryczna prostej) $\alpha(t)=vt+w$, gdzie v, $w\in\mathbb{R}^3$. Wtedy oczywiście

$$T(t) = \frac{\alpha'(t)}{\|\alpha'(t)\|} = \frac{v}{\|v\|},$$

zatem T'(t) = 0 więc automatycznie N(t) = 0.

Niech α : $(a,b) \to \mathbb{R}^3$ będzie krzywą regularną, oraz załóżmy, że dla wszystkich $t \in (a,b)$ zachodzi $N(t) \neq 0$. **Torsję** krzywej α w punkcie t definiujemy jako funkcję

$$\tau(t) \stackrel{\text{def.}}{=} \langle B'(t), N(t) \rangle.$$

Uwaga

- Torsja jest funkcją gladką (wynika to z gladkości iloczynu skalarnego).
- Podobnie jak w przypadku krzywizny mamy $|\tau(t)| = ||B'(t)||$, jednak torsja może mieć wartości ujemne.

Krzywe w \mathbb{R}^3

Wektory związane z krzywą

rzywych

Torsia

Vzory Frenet

zory ogólne

Niech α : $(a,b) \to \mathbb{R}^3$ będzie krzywą regularną, oraz załóżmy, że dla wszystkich $t \in (a,b)$ zachodzi $N(t) \neq 0$. **Torsję** krzywej α w punkcie t definiujemy jako funkcję

$$\tau(t) \stackrel{\text{def.}}{=} \langle B'(t), N(t) \rangle.$$

Uwaga

- Torsja jest funkcją gładką (wynika to z gładkości iloczynu skalarnego).
- Podobnie jak w przypadku krzywizny mamy $|\tau(t)| = ||B'(t)||$, jednak torsja może mieć wartości ujemne.

Krzywe w \mathbb{R}^3

Wektory związane z krzywą

crzywych

Torsia

Wzory Frene

zory ogólne

$$\tau(t) \stackrel{{\sf def.}}{=} \langle {\it B}'(t), {\it N}(t) \rangle.$$

Uwaga

- Torsja jest funkcją gładką (wynika to z gładkości iloczynu skalarnego).
- Podobnie jak w przypadku krzywizny mamy $|\tau(t)| = ||B'(t)||$, jednak torsja może mieć wartości ujemne.

Krzywe w \mathbb{R}^3

Wektory związane z krzywą

rzywych

Torsja

Vzory Freneta

$$\tau(t) \stackrel{\text{def.}}{=} \langle B'(t), N(t) \rangle.$$

Uwaga

- Torsja jest funkcją gładką (wynika to z gładkości iloczynu skalarnego).
- Podobnie jak w przypadku krzywizny mamy $|\tau(t)| = ||B'(t)||$, jednak torsja może mieć wartości ujemne.

Krzywe w 🏻

wektory związane z krzywą

rzywych

Krzywizna

Torsja

Wzory ogólne

Torsia

Wzorv Frene

Wzory ogólne

Twierdzenie klasyfikacyjne dla krzywych

Uwaga

Dla wygody od teraz będziemy opuszczać argument t jeśli nie będzie to prowadziło do niejednoznaczności.

Niech α : $(a,b) \to \mathbb{R}^3$ będzie unormowaną krzywą regularną, oraz załóżmy, że dla wszystkich $t \in (a,b)$ zachodzi $N(t) \neq 0$. Wówczas zachodzą następujące równości.

$$T' = \kappa N \tag{3.1}$$

$$N' = -\kappa T + \tau B \tag{3.2}$$

$$B' = -\tau N \tag{3.3}$$

(rzywe w \mathbb{R}^3

wektory związane z krzywą

Niezmienniki crzywych

rzywizna rsia

Wzory Freneta

Wzory ogólne

$$N' = aT + bB.$$

$$0 = \langle N', T \rangle + \langle N, T' \rangle = \langle N', T \rangle + \underbrace{\langle N, \kappa N \rangle}_{=\kappa},$$

Wzory Freneta

$$N' = aT + bB.$$

$$0 = \langle N', T \rangle + \langle N, T' \rangle = \langle N', T \rangle + \underbrace{\langle N, \kappa N \rangle}_{=\kappa}$$

Elementarna Geometria Różniczkowa

Wzory Freneta

Wzór 3.1 na T' wynika z przyjętych definicji κ i N. Ponieważ wektory z repera Freneta są jednostkowe, więc N' jest prostopadły do N. Ponieważ jednak T, N, B tworzy bazę przestrzeni \mathbb{R}^3 , więc N' musi być kombinacją liniową wektorów T i B,

$$N' = aT + bB$$
.

Mnożąc tę równość skalarnie przez wektor T (odpowiednio B) otrzymujemy $a=\langle N',T\rangle$ (odpowiednio $b=\langle N',B\rangle$). Wyliczenie a rozpocznijmy od równości $0=\langle N,T\rangle$. Różniczkując obie strony otrzymujemy

$$0 = \langle N', T \rangle + \langle N, T' \rangle = \langle N', T \rangle + \underbrace{\langle N, \kappa N \rangle}_{=\kappa}$$

zatem $a=\langle N',T\rangle=-\kappa$. Ponieważ $\langle N,B\rangle=0$, w podobny sposób możemy stwierdzić, że $\langle N',B\rangle=-\tau$. Pozostawiamy to jako zadanie domowe.

Krzywe w \mathbb{R}^3

Wektory związane z krzywą

zywych

orsja

Wzory ogólne

$$N' = aT + bB$$
.

Mnożąc tę równość skalarnie przez wektor T (odpowiednio B) otrzymujemy $a=\langle N',T\rangle$ (odpowiednio $b=\langle N',B\rangle$).

Wyliczenie a rozpocznijmy od równości $0 = \langle N, T \rangle$. Różniczkując obie strony otrzymujemy

$$0 = \langle N', T \rangle + \langle N, T' \rangle = \langle N', T \rangle + \underbrace{\langle N, \kappa N \rangle}_{=\kappa}$$

zatem $a=\langle N',T\rangle=-\kappa$. Ponieważ $\langle N,B\rangle=0$, w podobny sposób możemy stwierdzić, że $\langle N',B\rangle=-\tau$. Pozostawiamy to jako zadanie domowe.

Krzywe w \mathbb{R}^3

wektory związane z krzywą

zywycn rzywizna

rsja

Wzory ogólne

wierdzenie

◆ロト ◆同ト ◆ヨト ◆ヨト ヨ めのや

$$N' = aT + bB$$
.

Mnożąc tę równość skalarnie przez wektor T (odpowiednio B) otrzymujemy $a=\langle N',T\rangle$ (odpowiednio $b=\langle N',B\rangle$). Wyliczenie a rozpocznijmy od równości $0=\langle N,T\rangle$. Różniczkując obie strony otrzymujemy

$$0 = \langle N', T \rangle + \langle N, T' \rangle = \langle N', T \rangle + \underbrace{\langle N, \kappa N \rangle}_{=\kappa}$$

zatem $a=\langle N',T\rangle=-\kappa$. Ponieważ $\langle N,B\rangle=0$, w podobny sposób możemy stwierdzić, że $\langle N',B\rangle=-\tau$. Pozostawiamy to jako zadanie domowe.

Krzywe w R³

Wektory związane z krzywą

rzywych

orsja

Wzory ogólne

$$N' = aT + bB$$
.

Mnożąc tę równość skalarnie przez wektor T (odpowiednio B) otrzymujemy $a=\langle N',T\rangle$ (odpowiednio $b=\langle N',B\rangle$). Wyliczenie a rozpocznijmy od równości $0=\langle N,T\rangle$. Różniczkując obie strony otrzymujemy

$$0 = \langle N', T \rangle + \langle N, T' \rangle = \langle N', T \rangle + \underbrace{\langle N, \kappa N \rangle}_{=\kappa},$$

zatem $a=\langle N',T\rangle=-\kappa$. Ponieważ $\langle N,B\rangle=0$, w podobny sposób możemy stwierdzić, że $\langle N',B\rangle=-\tau$. Pozostawiamy to jako zadanie domowe.

Krzywe w R

Wektory związane z krzywą

rzywych

Torsja Wzory Freneta

Vzory ogólne

$$N' = aT + bB$$
.

Mnożąc tę równość skalarnie przez wektor T (odpowiednio B) otrzymujemy $a=\langle N',T\rangle$ (odpowiednio $b=\langle N',B\rangle$). Wyliczenie a rozpocznijmy od równości $0=\langle N,T\rangle$. Różniczkując obie strony otrzymujemy

$$0 = \langle N', T \rangle + \langle N, T' \rangle = \langle N', T \rangle + \underbrace{\langle N, \kappa N \rangle}_{=\kappa},$$

zatem $a = \langle N', T \rangle = -\kappa$. Ponieważ $\langle N, B \rangle = 0$, w podobny sposób możemy stwierdzić, że $\langle N', B \rangle = -\tau$. Pozostawiamy to jako zadanie domowe.

Krzywe w R

Wektory związane z krzywą

rzywych

Torsja Wzory Freneta

Vzory ogólne

Wzór 3.1 na T' wynika z przyjętych definicji κ i N. Ponieważ wektory z repera Freneta są jednostkowe, więc N' jest prostopadły do N. Ponieważ jednak T, N, B tworzy bazę przestrzeni \mathbb{R}^3 , więc N' musi być kombinacją liniową wektorów T i B,

$$N' = aT + bB$$
.

Mnożąc tę równość skalarnie przez wektor T (odpowiednio B) otrzymujemy $a=\langle N',T\rangle$ (odpowiednio $b=\langle N',B\rangle$). Wyliczenie a rozpocznijmy od równości $0=\langle N,T\rangle$. Różniczkując obie strony otrzymujemy

$$0 = \langle N', T \rangle + \langle N, T' \rangle = \langle N', T \rangle + \underbrace{\langle N, \kappa N \rangle}_{=\kappa},$$

zatem $a=\langle N',T\rangle=-\kappa$. Ponieważ $\langle N,B\rangle=0$, w podobny sposób możemy stwierdzić, że $\langle N',B\rangle=-\tau$. Pozostawiamy to jako zadanie domowe.

Krzywe w R

wektory związane z krzywą

zywych

Torsja Wzory Freneta

Vzory ogólne

$$B' = aT + bN$$
.

$$0 = \langle B', T \rangle + \langle B, T' \rangle = \langle B', T \rangle + \langle B, \kappa N \rangle = \langle B', T \rangle$$

Tak więc B' jest współliniowy z N i równość 3.3 charakteryzująca B' wynika z definicji torsji τ.

Krzywe w R³

Wektory związane z krzywą

rzywych

Torsja Wzory Freneta

Wzory ogólne

Twierdzenie klasyfikacyjne dla

$$B' = aT + bN$$
.

$$0 = \langle B', T \rangle + \langle B, T' \rangle = \langle B', T \rangle + \langle B, \kappa N \rangle = \langle B', T \rangle.$$

Tak więc B' jest współliniowy z N i równość 3.3 charakteryzująca B' wynika z definicji torsji τ .

Krzywe w R³

wektory związane z krzywą

krzywych

Krzy wizna Forsia

Wzory Freneta

Wzory ogólne

$$B' = aT + bN$$
.

$$0 = \langle B', T \rangle + \langle B, T' \rangle = \langle B', T \rangle + \langle B, \kappa N \rangle = \langle B', T \rangle.$$

Tak więc B' jest współliniowy z N i równość 3.3 charakteryzująca B' wynika z definicji torsji τ .

Krzywe w R³

Wektory związane z krzywą

viezmienniki krzywych

> rzywizna irsia

Wzory Freneta

Wzory ogólne

$$B' = aT + bN$$
.

$$0 = \langle B', T \rangle + \langle B, T' \rangle = \langle B', T \rangle + \langle B, \kappa N \rangle = \langle B', T \rangle.$$

Tak więc B' jest współliniowy z N i równość 3.3 charakteryzująca B' wynika z definicji torsji τ .

Krzywe w K

krzywą

rzywych

orsia

Wzory Freneta

Wzory ogólne

- Obraz krzywej α jest zawarty w pewnej płaszczyźnie;
- 2. B jest wektorem stałym

3. $\tau \equiv 0$

Uwaga

Krzywą spełniającą jeden z tych warunków nazywamy krzywą płaską.

Krzywe w R

Wektory związane z krzywą

krzywycl

Torsja

Wzory Freneta

zory ogolne/

Niech α : $(a,b) \to \mathbb{R}^3$ będzie krzywą unormowaną oraz niech $N(t) \neq 0$ dla każdego $t \in (a,b)$. Następujące warunki są równoważne.

- 1. Obraz krzywej α jest zawarty w pewnej płaszczyźnie;
- 2. B jest wektorem stałym
- $3. \ \tau \equiv 0$

Krzywą spełniającą jeden z tych warunków nazywamy krzywą płaską.

Krzywe w R³

wektory związane z krzywą

rzywych

orsja

Wzory Freneta

zory ogolne/

Niech α : $(a,b) \to \mathbb{R}^3$ będzie krzywą unormowaną oraz niech $N(t) \neq 0$ dla każdego $t \in (a,b)$. Następujące warunki są równoważne.

- 1. Obraz krzywej α jest zawarty w pewnej płaszczyźnie;
- 2. B jest wektorem stałym;
- $3. \tau \equiv 0$

Uwaga

Krzywą spełniającą jeden z tych warunków nazywamy krzywą płaską.

Krzywe w R³

wektory związane z krzywą

crzywych

Torsja

Wzory Freneta

zory ogoine

Niech α : $(a,b) \to \mathbb{R}^3$ będzie krzywą unormowaną oraz niech $N(t) \neq 0$ dla każdego $t \in (a,b)$. Następujące warunki są równoważne.

- 1. Obraz krzywej α jest zawarty w pewnej płaszczyźnie;
- 2. B jest wektorem stałym;
- 3. $\tau \equiv 0$

Uwaga

Krzywą spełniającą jeden z tych warunków nazywamy krzywą płaską.

Krzywe w R³

krzywą

krzywych

Crzywizna

Wzory Freneta

zory ogoine

Lemat

Niech α : $(a,b) \to \mathbb{R}^3$ będzie krzywą unormowaną oraz niech $N(t) \neq 0$ dla każdego $t \in (a,b)$. Następujące warunki są równoważne.

- 1. Obraz krzywej α jest zawarty w pewnej płaszczyźnie;
- 2. B jest wektorem stałym;
- 3. $\tau \equiv 0$

Uwaga

Krzywą spełniającą jeden z tych warunków nazywamy krzywą płaską.

Krzywe w IK

krzywą

rzywych

zywizna irsia

Wzory Freneta

zory ogoine

2 ⇔ 3 wynika ze wzoru Freneta (3.3)

$$B' = -\tau N$$

Krzywe w R³

Wektory związane z krzywą

krzywych

Torsja Wzory Freneta

Wzory ogólne

Twierdzenie klasyfikacyjne dla 1 ⇒ 2 Jeśli krzywa leży w jednej płaszczyźnie to leżą w niej wektory styczny i normalny (dlaczego?), więc jest to płaszczyzna ściśle styczna. Wtedy kierunek prostopadły do tej płaszczyzny jest współliniowy z B. Zatem B nie zmienia ani zwrotu ani długości.

2 ⇔ 3 wynika ze wzoru Freneta (3.3)

$$B' = -\tau N$$

Krzywe w R³

Wektory związane z krzywą

krzywych

Krzywizna

Wzory Freneta

Wzory ogólne

- 1 ⇒ 2 Jeśli krzywa leży w jednej płaszczyźnie to leżą w niej wektory styczny i normalny (dlaczego?), więc jest to płaszczyzna ściśle styczna. Wtedy kierunek prostopadły do tej płaszczyzny jest współliniowy z B. Zatem B nie zmienia ani zwrotu ani długości.
- $2 \Leftrightarrow 3$ wynika ze wzoru Freneta (3.3):

$$B' = -\tau N$$

Krzywe w R

Wektory związane z krzywą

krzywych

orsia

Wzory Freneta

Wzory ogólne

Rozważmy funkcję

$$f(t) = \langle \alpha(t) - \alpha(p), B(t) \rangle$$

- Funkcja ta mierzy długość rzutu wektora binormalnego na wektor wyznaczony przez naszą krzywą (bez straty ogólności możemy przecież założyć, że α(p) = (0, 0, 0).)
- Przy założeniu, że B(t) = B jest wektorem stałym, pokażemy, że funkcja f jest tożsamościowo równa 0, a zatem krzywa α w całości leży w płaszczyźnie normalnej do B i zawierającej punkt $\alpha(p)$.

Krzywe w R3

Wektory związane z krzywą

rzywych

Torsja Wzory Freneta

zory ogólne

Rozważmy funkcję

$$f(t) = \langle \alpha(t) - \alpha(p), B(t) \rangle.$$

- Funkcja ta mierzy długość rzutu wektora binormalnego na wektor wyznaczony przez naszą krzywą (bez straty ogólności możemy przecież założyć, że α(p) = (0,0,0).)
- Przy założeniu, że B(t) = B jest wektorem stałym, pokażemy, że funkcja f jest tożsamościowo równa 0, a zatem krzywa α w całości leży w płaszczyźnie normalnej do B i zawierającej punkt $\alpha(p)$.

Krzywe w R3

Wektory związane z krzywą

rzywych

Torsja Wzory Freneta

Vzory ogólne

- 2 ⇒ 1 Niech $p \in (a, b)$ będzie punktem z dziedziny α .
 - Rozważmy funkcję

$$f(t) = \langle \alpha(t) - \alpha(p), B(t) \rangle.$$

- Funkcja ta mierzy długość rzutu wektora binormalnego na wektor wyznaczony przez naszą krzywą (bez straty ogólności możemy przecież założyć, że α(p) = (0,0,0).)
- Przy założeniu, że B(t) = B jest wektorem stałym, pokażemy, że funkcja f jest tożsamościowo równa 0, a zatem krzywa α w całości leży w płaszczyźnie normalnej do B i zawierającej punkt $\alpha(p)$.

Krzywe w \mathbb{R}^3

Wektory związane z krzywą

arzywych

rzywizna

Wzory Freneta

Wzory ogólne

- 2 ⇒ 1 Niech $p \in (a, b)$ będzie punktem z dziedziny α .
 - Rozważmy funkcję

$$f(t) = \langle \alpha(t) - \alpha(p), B(t) \rangle.$$

- Funkcja ta mierzy długość rzutu wektora binormalnego na wektor wyznaczony przez naszą krzywą (bez straty ogólności możemy przecież założyć, że α(p) = (0,0,0).)
- Przy założeniu, że B(t) = B jest wektorem stałym, pokażemy, że funkcja f jest tożsamościowo równa 0, a zatem krzywa α w całości leży w płaszczyźnie normalnej do B i zawierającej punkt $\alpha(p)$.

Krzywe w \mathbb{R}^3

Wektory związane z krzywą

krzywych

rzywizna orsia

Wzory Freneta

Wzory ogólne

Obliczmy

$$f'(t) = \frac{d}{dt} (\langle \alpha(t) - \alpha(p), B(t) \rangle) =$$

$$= \underbrace{\langle \alpha'(t), B(t) \rangle}_{=(T(t), B(t)) = 0} + \underbrace{\langle \alpha(t) - \alpha(p), B'(t) \rangle}_{=0 \text{ bo } B(t) \text{ jest staly}} = 0.$$

▶ Zatem f jest funkcją stałą. Jeśli podstawimy t = p otrzymamy f(p) = 0, więc f jest tożsamościowo równa 0

Krzywe w R^s

Wektory związane z krzywą

rzywych

Torsja

Wzory Freneta

Wzory ogólne

$$f'(t) = \frac{d}{dt} (\langle \alpha(t) - \alpha(p), B(t) \rangle) =$$

$$= \underbrace{\langle \alpha'(t), B(t) \rangle}_{=\langle T(t), B(t) \rangle = 0} + \underbrace{\langle \alpha(t) - \alpha(p), B'(t) \rangle}_{=0 \text{ bo } B(t) \text{ jest staly}} = 0.$$

▶ Zatem f jest funkcją stałą. Jeśli podstawimy t = p otrzymamy f(p) = 0, więc f jest tożsamościowo równa 0.

(rzywe w 🏻 R3

Wektory związane z krzywą

rzywych

Torsja Wzory Freneta

Wzory ogólne

$$f'(t) = \frac{d}{dt} (\langle \alpha(t) - \alpha(p), B(t) \rangle) =$$

$$= \underbrace{\langle \alpha'(t), B(t) \rangle}_{=\langle T(t), B(t) \rangle = 0} + \underbrace{\langle \alpha(t) - \alpha(p), B'(t) \rangle}_{=0 \text{ bo } B(t) \text{ jest staly}} = 0.$$

▶ Zatem f jest funkcją stałą. Jeśli podstawimy t = p otrzymamy f(p) = 0, więc f jest tożsamościowo równa 0.

(rzywe w \mathbb{R}^3

Wektory związane z krzywą

krzywych

Torsja

Wzory Freneta

Wzory ogólne

Obliczmy

$$f'(t) = \frac{d}{dt} (\langle \alpha(t) - \alpha(p), B(t) \rangle) =$$

$$= \underbrace{\langle \alpha'(t), B(t) \rangle}_{=\langle T(t), B(t) \rangle = 0} + \underbrace{\langle \alpha(t) - \alpha(p), B'(t) \rangle}_{=0 \text{ bo } B(t) \text{ jest stary}} = 0.$$

Zatem f jest funkcją stałą. Jeśli podstawimy t = p otrzymamy f(p) = 0, więc f jest tożsamościowo równa 0. (rzywe w 🏻 R3

Wektory związane z krzywą

crzywych

Torsja

Wzory Freneta

Twierdzenie klasyfikacyjne dla Obliczmy

$$f'(t) = \frac{d}{dt} \left(\langle \alpha(t) - \alpha(p), B(t) \rangle \right) =$$

$$= \underbrace{\langle \alpha'(t), B(t) \rangle}_{=\langle T(t), B(t) \rangle = 0} + \underbrace{\langle \alpha(t) - \alpha(p), B'(t) \rangle}_{=0 \text{ bo } B(t) \text{ jest staly}} = 0.$$

▶ Zatem f jest funkcją stałą. Jeśli podstawimy t = p otrzymamy f(p) = 0, więc f jest tożsamościowo równa 0.

Irzywe w \mathbb{R}^3

Wektory związane z krzywą

krzywych

Krzywizna Forsja

Wzory Freneta

Wzory ogólne

$$T = \frac{\alpha'}{\|\alpha'\|} \tag{3.4}$$

$$B = \frac{\alpha' \times \alpha''}{\|\alpha' \times \alpha''\|} \tag{3.5}$$

$$N = B \times T \tag{3.6}$$

$$\kappa = \frac{\|\alpha' \times \alpha''\|}{\|\alpha'\|^3} \tag{3.7}$$

$$\tau = \frac{\langle \alpha' \times \alpha'', \alpha''' \rangle}{\|\alpha' \times \alpha''\|}$$
 (3.8)

Krzywe w \mathbb{R}^3

Wektory związane z krzywą

Niezmiennik krzywych

Krzywizna

zory Freneta

Wzory ogólne

$$T = \frac{\alpha'}{\|\alpha'\|} \tag{3.4}$$

$$B = \frac{\alpha' \times \alpha''}{\|\alpha' \times \alpha''\|} \tag{3.5}$$

$$N = B \times T \tag{3.6}$$

$$\kappa = \frac{\|\alpha' \times \alpha''\|}{\|\alpha'\|^3} \tag{3.7}$$

$$\tau = \frac{\langle \alpha' \times \alpha'', \alpha''' \rangle}{\|\alpha' \times \alpha''\|}$$
 (3.8)

Krzywe w R³

Wektory związane z krzywą

Niezmienniki krzywych

Torsja

tory Freneta

Wzory ogólne

$$T = \frac{\alpha'}{\|\alpha'\|} \tag{3.4}$$

$$B = \frac{\alpha' \times \alpha''}{\|\alpha' \times \alpha''\|} \tag{3.5}$$

$$N = B \times T \tag{3.6}$$

$$\kappa = \frac{\|\alpha' \times \alpha''\|}{\|\alpha'\|^3} \tag{3.7}$$

$$\tau = \frac{\langle \alpha' \times \alpha'', \alpha''' \rangle}{\|\alpha' \times \alpha''\|} \tag{3.8}$$

Krzywe w R³

wektory związane z krzywą

rzywych

Krzywizna

ory Freneta

Wzory ogólne

$$T = \frac{\alpha'}{\|\alpha'\|} \tag{3.4}$$

$$B = \frac{\alpha' \times \alpha''}{\|\alpha' \times \alpha''\|} \tag{3.5}$$

$$N = B \times T \tag{3.6}$$

$$\kappa = \frac{\|\alpha' \times \alpha''\|}{\|\alpha'\|^3} \tag{3.7}$$

$$\tau = \frac{\langle \alpha' \times \alpha'', \alpha''' \rangle}{\|\alpha' \times \alpha''\|}$$
 (3.8)

Krzywe w R³

wektory związane z krzywą

niezmienniki crzywych

Krzywizna Forsia

ory Freneta

Wzory ogólne

$$T = \frac{\alpha'}{\|\alpha'\|} \tag{3.4}$$

$$B = \frac{\alpha' \times \alpha''}{\|\alpha' \times \alpha''\|} \tag{3.5}$$

$$N = B \times T \tag{3.6}$$

$$\kappa = \frac{\|\alpha' \times \alpha''\|}{\|\alpha'\|^3} \tag{3.7}$$

$$\tau = \frac{\langle \alpha' \times \alpha'', \alpha''' \rangle}{\|\alpha' \times \alpha''\|}$$
 (3.8)

Krzywe w R

krzywą

Niezmienniki crzywych

Grzywizna Torsja

ory Freneta

Wzory ogólne

Niech α : $(a, b) \to \mathbb{R}^3$ będzie krzywą unormowaną oraz niech $N(t) \neq 0$ dla każdego $t \in (a, b)$. Wówczas zachodzą następujące wzory:

$$T = \frac{\alpha'}{\|\alpha'\|} \tag{3.4}$$

$$B = \frac{\alpha' \times \alpha''}{\|\alpha' \times \alpha''\|} \tag{3.5}$$

$$N = B \times T \tag{3.6}$$

$$\kappa = \frac{\|\alpha' \times \alpha''\|}{\|\alpha'\|^3} \tag{3.7}$$

$$\tau = \frac{\langle \alpha' \times \alpha'', \alpha''' \rangle}{\|\alpha' \times \alpha''\|}$$
 (3.8)

Krzywe w R

Wektory związane z krzywą

Niezmienniki krzywych

rzywizna orsja

ory Freneta

Wzory ogólne

Dowód polega na przeliczeniu odpowiednich pochodnych bez zakładania, że α jest krzywą unormowaną. Pozostawiamy go jako ćwiczenie.

Uwaga

Powyższy lemat pozwala liczyć trójnóg Freneta, krzywiznę i torsję nie odwołując się do żadnej konkretnej parametryzacji (unormowanej bądź nie). Dowodzi to, że T, N, B, κ i τ są funkcjami tylko i wyłącznie punktów na krzywej (rozumianej jako obraz wykresu w \mathbb{R}^3) i nie zależą od parametryzacji.

Krzywe w R

Wektory związane z krzywą

Niezmienniki krzywych

> orsja /zorv Freneta

Wzory ogólne

Dowód:

Dowód polega na przeliczeniu odpowiednich pochodnych bez zakładania, że α jest krzywą unormowaną. Pozostawiamy go jako ćwiczenie.

Uwaga

Powyższy lemat pozwala liczyć trójnóg Freneta, krzywiznę i torsję nie odwołując się do żadnej konkretnej parametryzacji (unormowanej bądź nie). Dowodzi to, że T, N, B, κ i τ są funkcjami tylko i wyłącznie punktów na krzywej (rozumianej jako obraz wykresu w \mathbb{R}^3) i nie zależą od parametryzacji.

Krzywe w \mathbb{R}^3

Wektory związane z krzywą

krzywych

Grzywizna Forsia

Vzory Frenet

Wzory ogólne

Dowód:

Dowód polega na przeliczeniu odpowiednich pochodnych bez zakładania, że α jest krzywą unormowaną. Pozostawiamy go jako ćwiczenie.

Uwaga

Powyższy lemat pozwala liczyć trójnóg Freneta, krzywiznę i torsję nie odwołując się do żadnej konkretnej parametryzacji (unormowanej bądź nie). Dowodzi to, że T, N, B, κ i τ są funkcjami tylko i wyłącznie punktów na krzywej (rozumianej jako obraz wykresu w \mathbb{R}^3) i nie zależą od parametryzacji.

Krzywe w R

Wektory związane z krzywą

krzywych

orsja Vzory Freneta

Wzory ogólne

Elementarna Geometria Różniczkowa

Krzywe w R

krzywą

Niezmiennik krzywych

Twierdzenie klasyfikacyjne dla krzywych

Translacja i obrót
Twierdzenie klasyfikacyjne

Wykład 4

Krzywe w \mathbb{R}^3

Wektory związane z krzywa

Niezmienniki krzywych

Twierdzenie klasyfikacyjne dla krzywych Translacja i obrót Twierdzenie klasyfikacyjne Krzywe w 🏻

Wektory związane z krzywą

Niezmiennił krzywych

Twierdzenie klasyfikacyjne dla krzywych

- ► Translacja krzywej α , tj. krzywa $\beta = \alpha + q$, gdzie $q \in \mathbb{R}^3$ jest wybranym stałym wektorem ma taką samą krzywiznę i torsję jak α .
- Niech $A \in O(3)$ będzie macierzą 3×3 o współczynnikach rzeczywistych, o wyznaczniku ± 1 oraz ortogonalnych kolumnach. Krzywa

$$\gamma \stackrel{def.}{=} A \cdot \alpha$$

ma taką samą krzywiznę i torsję jak α.

Uwaga

Dowód pierwszej części jest bardzo prosty. Dowód drugiej pozostawiamy jako bardziej ambitne zadanie.

Krzywe w \mathbb{R}^3

Wektory związane z krzywą

Niezmienniki rzywych

dasyfikacyjne dla krzywych Translacja i obrót

Niech α : $(a, b) \rightarrow \mathbb{R}^3$ będzie krzywą regularną.

- ▶ Translacja krzywej α , tj. krzywa $\beta = \alpha + q$, gdzie $q \in \mathbb{R}^3$ jest wybranym stałym wektorem ma taką samą krzywiznę i torsję jak α .
- Niech $A \in O(3)$ będzie macierzą 3×3 o współczynnikach rzeczywistych, o wyznaczniku ± 1 oraz ortogonalnych kolumnach. Krzywa

$$\gamma \stackrel{def.}{=} A \cdot \alpha$$

ma taką samą krzywiznę i torsję jak α.

Uwaga

Dowód pierwszej części jest bardzo prosty. Dowód drugiej pozostawiamy jako bardziej ambitne zadanie.

Krzywe w \mathbb{R}^3

Wektory związane z krzywą

Niezmienniki rzywych

crzywych Translacja i obrót

Niech α : $(a, b) \rightarrow \mathbb{R}^3$ będzie krzywą regularną.

- ► Translacja krzywej α, tj. krzywa β = α + q, gdzie $q ∈ ℝ^3$ jest wybranym stałym wektorem ma taką samą krzywiznę i torsję jak α.
- Niech $A \in O(3)$ będzie macierzą 3×3 o współczynnikach rzeczywistych, o wyznaczniku ± 1 oraz ortogonalnych kolumnach. Krzywa

$$\gamma \stackrel{def.}{=} A \cdot \alpha$$

ma taką samą krzywiznę i torsję jak α .

Translacja i obrót

Niech α : $(a, b) \rightarrow \mathbb{R}^3$ będzie krzywą regularną.

- ► Translacja krzywej α, tj. krzywa β = α + q, gdzie $q ∈ ℝ^3$ jest wybranym stałym wektorem ma taką samą krzywiznę i torsję jak α.
- Niech $A \in O(3)$ będzie macierzą 3×3 o współczynnikach rzeczywistych, o wyznaczniku ± 1 oraz ortogonalnych kolumnach. Krzywa

$$\gamma \stackrel{def.}{=} A \cdot \alpha$$

ma taką samą krzywiznę i torsję jak α .

Uwaga

Dowód pierwszej części jest bardzo prosty. Dowód drugiej pozostawiamy jako bardziej ambitne zadanie.

Translacja i obrót

Mnożenie przez taką macierz A oznacza obrót wokół środka układu współrzędnych, symetrię względem płaszczyzny, lub kombinację tych dwóch. Grupa O(3) to tzw. grupa symetrii \mathbb{R}^3 i jej bazę stanowią macierze obrotów o dowolny kąt wokół każdej z osi, oraz macierz symetrii względem (dowolnie wybranej) płaszczyzny.

Uwaga

Grupa składająca się ze wszystkich obrotów oraz translacji przestrzeni euklidesowej \mathbb{R}^3 jest tzw. grupą Liego E(3). Jest to grupa izometrii (poznamy to pojęcie w następnej części wykładu) przestrzeni euklidesowej . Intuicyjnie mamy trzy "stopnie swobody" pochodzące od obrotu i kolejne trzy od translacji o wektor, więc grupa E(3) powinna być "6-wymiarowa".

Krzywe w R

Wektory związane : krzywą

Niezmienniki krzywych

dasyfikacyjne dla crzywych

Translacja i obrót Twierdzenie klasyfikacyjne Mnożenie przez taką macierz A oznacza obrót wokół środka układu współrzędnych, symetrię względem płaszczyzny, lub kombinację tych dwóch. Grupa O(3) to tzw. grupa symetrii \mathbb{R}^3 i jej bazę stanowią macierze obrotów o dowolny kąt wokół każdej z osi, oraz macierz symetrii względem (dowolnie wybranej) płaszczyzny.

Uwaga

Grupa składająca się ze wszystkich obrotów oraz translacji przestrzeni euklidesowej \mathbb{R}^3 jest tzw. grupą Liego E(3). Jest to grupa izometrii (poznamy to pojęcie w następnej części wykładu) przestrzeni euklidesowej . Intuicyjnie mamy trzy "stopnie swobody" pochodzące od obrotu i kolejne trzy od translacji o wektor, więc grupa E(3) powinna być "6-wymiarowa".

crzywe w ik

wektory związane krzywą

krzywych

dasyfikacyjne dla crzywych

Translacja i obrót

krzywych
Translacja i obrót

Twierdzenie klasyfikacyjne

Uwaga

Te dwie operacje definiują nam relację równoważności pomiędzy wykresami krzywych w \mathbb{R}^3 . Krzywą α uznajemy za równoważną krzywej β , jeśli wykres β można otrzymać przez zastosowanie odpowiednich translacji obrotów i symetrii do wykresu α .

Niech κ, τ : $(a, b) \to \mathbb{R}$ będą gładkimi funkcjami, oraz niech $\kappa(t) > 0$ dla wszystkich $t \in (a, b)$. Wówczas zachodzą następujące stwierdzenia.

Istnieje taka krzywa gładka

$$\alpha:(a,b)\to\mathbb{R}^3,$$

► leśli

$$\beta:(a,b)\to\mathbb{R}^3$$

Niech κ, τ : $(a, b) \to \mathbb{R}$ będą gładkimi funkcjami, oraz niech $\kappa(t) > 0$ dla wszystkich $t \in (a, b)$. Wówczas zachodzą następujące stwierdzenia.

Istnieje taka krzywa gładka

$$\alpha$$
: $(a, b) \to \mathbb{R}^3$,

że jej krzywizna κ_{α} i torsja τ_{α} są tożsamościowo równe funkcjom κ oraz τ .

► leśli

$$\beta:(a,b)\to\mathbb{R}^3$$

Niech κ, τ : $(a, b) \to \mathbb{R}$ będą gładkimi funkcjami, oraz niech $\kappa(t) > 0$ dla wszystkich $t \in (a, b)$. Wówczas zachodzą następujące stwierdzenia.

Istnieje taka krzywa gładka

$$\alpha$$
: $(a, b) \to \mathbb{R}^3$,

że jej krzywizna κ_{α} i torsja τ_{α} są tożsamościowo równe funkcjom κ oraz τ .

Jeśli

$$\beta:(a,b)\to\mathbb{R}^3$$

jest drugą taką krzywą, to krzywą β można uzyskać z α stosując przesunięcia obroty i symetrie w przestrzeni \mathbb{R}^3 .

$$lpha(p) = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \quad \text{oraz}$$
 $N_{lpha}(p) = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad B_{lpha}(p) = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$

Szkic dowodu:

Niech $p \in (a, b)$. Pokażemy, że istnieje dokładnie jedyna krzywa unormowana $\alpha:(a,b)\to\mathbb{R}^3$ taka, że

$$\alpha(p) = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \quad \text{oraz}$$
 $T_{\alpha}(p) = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad N_{\alpha}(p) = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad B_{\alpha}(p) = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$

$$lpha(p) = egin{pmatrix} 0 \ 0 \ 0 \end{pmatrix}, \quad \text{oraz}$$
 $T_{lpha}(p) = egin{pmatrix} 1 \ 0 \ 0 \end{pmatrix}, \quad N_{lpha}(p) = egin{pmatrix} 0 \ 1 \ 0 \end{pmatrix}, \quad B_{lpha}(p) = egin{pmatrix} 0 \ 0 \ 1 \end{pmatrix}$

o zadanej krzywiźnie i torsji (dlaczego to wystarczy?).

Krzywe w R

Wektory związane z krzywą

Niezmienniki krzywych

Twierdzenie klasyfikacyjne dla krzywych

Translacja i obrot

Krzywe w \mathbb{R}^3

Wektory związane z krzywą

Niezmienniki krzywych

Twierdzenie klasyfikacyjne dla krzywych

$$u'_{1}(t) = \kappa(t)u_{4}(t)$$

$$u'_{2}(t) = \kappa(t)u_{5}(t)$$

$$u'_{3}(t) = \kappa(t)u_{6}(t)$$

$$u'_{7}(t) = \tau(t)u_{4}(t)$$

$$u'_{8}(t) = \tau(t)u_{5}(t)$$

$$u'_{9}(t) = \tau(t)u_{6}(t)$$

$$u'_{4}(t) = -\kappa(t)u_{1}(t) + \tau(t)u_{7}(t)$$

$$u'_{5}(t) = -\kappa(t)u_{2}(t) + \tau(t)u_{8}(t)$$

$$u'_{6}(t) = -\kappa(t)u_{3}(t) + \tau(t)u_{9}(t)$$

$$u_{1}(p) = 1$$

$$u_{2}(p) = 0$$

$$u_{2}(p) = 0$$

$$u_{3}(p) = 0$$

$$u_{6}(p) = 0$$

$$u'' = -\kappa N'',$$

$$u'' = -\tau N'',$$

$$u'' = -\kappa T + \tau B$$

$$u'_{7}(p) = 0$$

$$u_{7}(p) = 0$$

$$u_{8}(p) = 0$$

$$\begin{aligned} u_1'(t) &= \kappa(t) \, u_4(t) \\ u_2'(t) &= \kappa(t) \, u_5(t) \\ u_3'(t) &= \kappa(t) \, u_6(t) \end{aligned} \right\} \, dla \, "T' &= \kappa N", \\ u_3'(t) &= \kappa(t) \, u_6(t) \end{aligned} dla \, "B' &= -\tau N", \\ u_9'(t) &= \tau(t) \, u_5(t) \\ u_9'(t) &= \tau(t) \, u_6(t) \end{aligned} dla \, "B' &= -\tau N", \\ u_9'(t) &= \tau(t) \, u_6(t) \end{aligned} dla \, "N' &= -\kappa T + \tau B". \\ -\kappa(t) \, u_1(t) + \tau(t) \, u_2(t) \\ -\kappa(t) \, u_2(t) + \tau(t) \, u_8(t) \\ -\kappa(t) \, u_3(t) + \tau(t) \, u_9(t) \end{aligned} dla \, "N' &= -\kappa T + \tau B".$$

Crzywe w R

wektory związane z crzywą

Niezmienniki crzywych

Fwierdzenie klasyfikacyjne dla krzywych

$$u'_{1}(t) = \kappa(t)u_{4}(t)$$

$$u'_{2}(t) = \kappa(t)u_{5}(t)$$

$$u'_{3}(t) = \kappa(t)u_{6}(t)$$

$$u'_{7}(t) = \tau(t)u_{4}(t)$$

$$u'_{8}(t) = \tau(t)u_{5}(t)$$

$$u'_{9}(t) = \tau(t)u_{6}(t)$$

$$dla "B' = -\tau N",$$

$$u'_{9}(t) = \tau(t)u_{6}(t)$$

$$u'_{4}(t) = -\kappa(t)u_{1}(t) + \tau(t)u_{7}(t)$$

$$u'_{5}(t) = -\kappa(t)u_{2}(t) + \tau(t)u_{8}(t)$$

$$u'_{6}(t) = -\kappa(t)u_{3}(t) + \tau(t)u_{9}(t)$$

$$dla "N' = -\kappa T + \tau B".$$

$$u'_{6}(t) = -\kappa(t)u_{3}(t) + \tau(t)u_{9}(t)$$

$$u_{1}(p) = 1 \qquad u_{4}(p) = 0 \qquad u_{7}(p) = 0$$

$$u_{2}(p) = 0 \qquad u_{5}(p) = 1 \qquad u_{8}(p) = 0$$

$$u_{1}(p) = 1 \qquad u_{1}(p) = 0 \qquad u_{2}(p) = 1$$

(rzywe w \mathbb{R}^3

Wektory związane z krzywą

Niezmienniki crzywych

Twierdzenie klasyfikacyjne dla krzywych

Translacja i obrot

$$u'_{1}(t) = \kappa(t)u_{4}(t)$$

$$u'_{2}(t) = \kappa(t)u_{5}(t)$$

$$u'_{3}(t) = \kappa(t)u_{6}(t)$$

$$u'_{7}(t) = \tau(t)u_{4}(t)$$

$$u'_{8}(t) = \tau(t)u_{5}(t)$$

$$u'_{9}(t) = \tau(t)u_{6}(t)$$

$$dla "B' = -\tau N",$$

$$u'_{9}(t) = \tau(t)u_{6}(t)$$

$$u'_{4}(t) = -\kappa(t)u_{1}(t) + \tau(t)u_{7}(t)$$

$$u'_{5}(t) = -\kappa(t)u_{2}(t) + \tau(t)u_{8}(t)$$

$$u'_{6}(t) = -\kappa(t)u_{3}(t) + \tau(t)u_{9}(t)$$

$$dla "N' = -\kappa T + \tau B".$$

$$u'_{6}(t) = -\kappa(t)u_{3}(t) + \tau(t)u_{9}(t)$$

$$u_{1}(p) = 1 \qquad u_{4}(p) = 0 \qquad u_{7}(p) = 0$$

$$u_{2}(p) = 0 \qquad u_{5}(p) = 1 \qquad u_{8}(p) = 0$$

$$u_{3}(p) = 0 \qquad u_{6}(p) = 0 \qquad u_{9}(p) = 1$$

(rzywe w \mathbb{R}^3

Vektory związane z rzywą

Niezmienniki krzywych

Twierdzenie klasyfikacyjne dla krzywych

Transiacja i obrot Twiordzonio klacufikocyjno

Niech $(a, b) \subset \mathbb{R}$, oraz niech $A \in M_{n,n}(\mathbb{R})$. Ustalmy liczbę $t_0 \in (a, b)$ i punkt $v_0 \in \mathbb{R}^n$. Wtedy istnieje dokładnie jedna funkcja gładka $\alpha:(a, b) \to \mathbb{R}^n$ która spełnia

$$\alpha(t_0) = v_0$$
, oraz $\alpha'(t) = A(t)\alpha(t)$ dla wszystkich $t \in (a, b)$.

Zadanie

Przepisać sformułowanie naszego problemu tak, aby zastosować do niego powyższe twierdzenie (podać α , A, t_0 i v_0).

Krzywe w R³

Wektory związane z krzywą

Niezmiennik krzywych

klasyfikacyjne dl krzywych

Twierdzenie klasyfikacyjne

Niech $(a, b) \subset \mathbb{R}$, oraz niech $A \in M_{n,n}(\mathbb{R})$. Ustalmy liczbę $t_0 \in (a, b)$ i punkt $v_0 \in \mathbb{R}^n$. Wtedy istnieje dokładnie jedna funkcja gładka $\alpha: (a, b) \to \mathbb{R}^n$ która spełnia

$$\alpha(t_0) = v_0$$
, oraz $\alpha'(t) = A(t)\alpha(t)$ dla wszystkich $t \in (a, b)$.

Crzywe w R³

Wektory związane z krzywą

krzywych

krzywych Translacia i obrót

Twierdzenie klasyfikacyjne

Zadanie

Przepisać sformułowanie naszego problemu tak, aby zastosować do niego powyższe twierdzenie (podać α , A, t_0 i v_0).

$$X_1(t) = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}(t), \quad X_2(t) = \begin{pmatrix} u_4 \\ u_5 \\ u_6 \end{pmatrix}(t), \quad X_3(t) = \begin{pmatrix} u_7 \\ u_8 \\ u_9 \end{pmatrix}(t).$$

Aby pokazać, że $\{X_1(t), X_2(t), X_3(t)\}$ tworzą bazę ortogonalną dla wszystkich $t \in (a, b)$ posłużymy się następującą funkcją:

$$p_{i,j}(t) = \langle X_i(t), X_j(t) \rangle, \qquad i, j = 1, 2, 3.$$

Oczywiście mamy (warunek początkowy na X_1 , X_2 i X_3)

$$p_{i,j}(p) = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$
 (4.1)

Krzywe w \mathbb{R}^3

Wektory związane z krzywą

krzywych Twierdzenie

Translacja i obrót

$$X_1(t) = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} (t), \quad X_2(t) = \begin{pmatrix} u_4 \\ u_5 \\ u_6 \end{pmatrix} (t), \quad X_3(t) = \begin{pmatrix} u_7 \\ u_8 \\ u_9 \end{pmatrix} (t).$$

Aby pokazać, że $\{X_1(t), X_2(t), X_3(t)\}$ tworzą bazę ortogonalną dla wszystkich $t \in (a, b)$ posłużymy się następującą funkcją:

$$p_{i,j}(t) = \langle X_i(t), X_j(t) \rangle, \qquad i, j = 1, 2, 3.$$

Oczywiście mamy (warunek początkowy na X_1 , X_2 i X_3)

$$p_{i,j}(p) = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$
 (4.1)

Krzvwe w R³

Wektory związane z krzywą

krzywych Twierdzenie

Krzywych Translacja i obrót

$$X_1(t) = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}(t), \quad X_2(t) = \begin{pmatrix} u_4 \\ u_5 \\ u_6 \end{pmatrix}(t), \quad X_3(t) = \begin{pmatrix} u_7 \\ u_8 \\ u_9 \end{pmatrix}(t).$$

Aby pokazać, że $\{X_1(t), X_2(t), X_3(t)\}$ tworzą bazę ortogonalną dla wszystkich $t \in (a, b)$ posłużymy się następującą funkcją:

$$p_{i,j}(t) = \langle X_i(t), X_j(t) \rangle, \qquad i, j = 1, 2, 3.$$

Oczywiście mamy (warunek początkowy na $X_1,\,X_2$ i $X_3)$

$$p_{i,j}(p) = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$
 (4.1)

Krzywe w \mathbb{R}^3

Wektory związane z krzywą

Niezmienniki krzywych

krzywych
Translacja i obrót

spełniające nasz układ wraz z warunkiem początkowym.

Możemy myśleć o nich jako o $\{T, N, B\}$ dla krzywej która realizuje κ jako krzywiznę i τ jako torsję.

Aby pokazać, że $\{X_1(t), X_2(t), X_3(t)\}$ tworzą bazę ortogonalną dla wszystkich $t \in (a, b)$ posłużymy się następującą funkcją:

$$p_{i,j}(t) = \langle X_i(t), X_j(t) \rangle, \qquad i, j = 1, 2, 3.$$

Oczywiście mamy (warunek początkowy na X1, X2 i X3)

$$p_{i,j}(p) = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$
 (4.1)

Krzvwe w \mathbb{R}^3

Wektory związane z krzywą

Niezmienniki krzywych

klasyfikacyjne dla krzywych

Twierdzenie klasyfikacyjne

$$X_1(t) = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}(t), \quad X_2(t) = \begin{pmatrix} u_4 \\ u_5 \\ u_6 \end{pmatrix}(t), \quad X_3(t) = \begin{pmatrix} u_7 \\ u_8 \\ u_9 \end{pmatrix}(t).$$

Aby pokazać, że $\{X_1(t), X_2(t), X_3(t)\}$ tworzą bazę ortogonalną dla wszystkich $t \in (a, b)$ posłużymy się następującą funkcją:

$$p_{i,j}(t) = \langle X_i(t), X_j(t) \rangle, \qquad i, j = 1, 2, 3.$$

Oczywiście mamy (warunek początkowy na X_1, X_2 i X_3)

$$p_{i,j}(p) = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$
 (4.1)

Krzywe w \mathbb{R}^3

Wektory związane z krzywą

Niezmienniki krzywych

Twierdzenie klasyfikacyjne dla krzywych

Translacja i obrót

$$X_1(t) = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}(t), \quad X_2(t) = \begin{pmatrix} u_4 \\ u_5 \\ u_6 \end{pmatrix}(t), \quad X_3(t) = \begin{pmatrix} u_7 \\ u_8 \\ u_9 \end{pmatrix}(t).$$

Aby pokazać, że $\{X_1(t), X_2(t), X_3(t)\}$ tworzą bazę ortogonalną dla wszystkich $t \in (a, b)$ posłużymy się następującą funkcją:

$$p_{i,j}(t) = \langle X_i(t), X_j(t) \rangle, \qquad i, j = 1, 2, 3.$$

Oczywiście mamy (warunek początkowy na X_1 , X_2 i X_3)

$$p_{i,j}(p) = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$
 (4.1)

Krzywe w \mathbb{R}^3

Wektory związane z krzywą

Niezmienniki krzywych

dasyfikacyjne dla crzywych

$$X_1(t) = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}(t), \quad X_2(t) = \begin{pmatrix} u_4 \\ u_5 \\ u_6 \end{pmatrix}(t), \quad X_3(t) = \begin{pmatrix} u_7 \\ u_8 \\ u_9 \end{pmatrix}(t).$$

Aby pokazać, że $\{X_1(t), X_2(t), X_3(t)\}$ tworzą bazę ortogonalną dla wszystkich $t \in (a, b)$ posłużymy się następującą funkcją:

$$p_{i,j}(t) = \langle X_i(t), X_j(t) \rangle, \qquad i, j = 1, 2, 3.$$

Oczywiście mamy (warunek początkowy na X_1 , X_2 i X_3)

$$p_{i,j}(p) = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$
 (4.1)

Przykład

$$\begin{aligned} p_{1,1}'(t) &= (\langle X_1(t), X_1(t) \rangle)' = \\ &= \underbrace{\langle X_1'(t)}_{-\kappa(t)X_2(t)}, X_1(t) \rangle + \langle X_1(t), \underbrace{X_1'(t)}_{-\kappa(t)X_2(t)} = \\ &= \kappa(t) p_{2,1}(t) + \kappa(t) p_{1,2}(t). \end{aligned}$$

(rzywe w R³

Wektory związane z krzywą

Niezmienniki krzywych

lasyfikacyjne dl rzywych

Sformułować układ równań wiążących pochodne funkcji $p'_{i,j}(t)$ z funkcjami $\{p_{i,j}(t)\}$ oraz $\kappa(t)$ i $\tau(t)$.

Przykład

$$\begin{aligned} p_{1,1}'(t) &= (\langle X_1(t), X_1(t) \rangle)' = \\ &= \underbrace{\langle X_1'(t), X_1(t) \rangle}_{=\kappa(t)X_2(t)} + \langle X_1(t), \underbrace{X_1'(t) \rangle}_{=\kappa(t)X_2(t)} = \\ &= \kappa(t)p_{2,1}(t) + \kappa(t)p_{1,2}(t). \end{aligned}$$

Krzywe w \mathbb{R}^3

Wektory związane z krzywą

Niezmienniki krzywych

lasyfikacyjne dl rzywych

acja i obrót

Twierdzenie klasyfikacyjne

Uzyskany układ wraz z warunkami początkowymi (4.1) ponownie posiada jednoznaczne rozwiązanie na mocy twierdzenia cytowanego powyżej. Można sprawdzić, że delta

$$\delta_{ij}(t) = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

$$\delta_{ij}(t) = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

spełnia otrzymany układ, a zatem jest jedynym rozwiązaniem.

Z definicji $p_{i,j}(t)$ wynika, że $\{X_1(t), X_2(t), X_3(t)\}$ tworzy bazę ortogonalną dla wszystkich t. Możemy wreszcie zdefiniować

$$\alpha(t) \stackrel{\text{def.}}{=} \int_{p}^{t} X_{1}(s) \ ds$$

Krzywe w \mathbb{R}^3

Wektory związane z krzywą

Niezmiennik krzywych

krzywych Translacja i obrót

$$\delta_{ij}(t) = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

spełnia otrzymany układ, a zatem jest jedynym rozwiązaniem. Z definicji $p_{i,j}(t)$ wynika, że $\{X_1(t), X_2(t), X_3(t)\}$ tworzy bazę ortogonalną dla wszystkich t.

Możemy wreszcie zdefiniować

$$\alpha(t) \stackrel{\text{def.}}{=} \int_{p}^{t} X_{1}(s) \ ds.$$

Krzywe w \mathbb{R}^3

krzywą

Niezmiennik krzywych

klasyfikacyjne dla krzywych

Uzyskany układ wraz z warunkami początkowymi (4.1) ponownie posiada *jednoznaczne* rozwiązanie na mocy twierdzenia cytowanego powyżej. Można sprawdzić, że delta Kroneckera

$$\delta_{ij}(t) = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

spełnia otrzymany układ, a zatem jest jedynym rozwiązaniem. Z definicji $p_{i,j}(t)$ wynika, że $\{X_1(t), X_2(t), X_3(t)\}$ tworzy bazę ortogonalną dla wszystkich t. Możemy wreszcie zdefiniować

$$\alpha(t) \stackrel{\text{def.}}{=} \int_{0}^{t} X_{1}(s) \ ds.$$

Krzywe w R

krzywą

Niezmiennik krzywych

klasyfikacyjne dla krzywych

$$\alpha'(t) = T_{\alpha}(t) = X_1(t)$$

$$\alpha''(t) = \kappa_{\alpha}(t)N_{\alpha}(t) = \kappa(t)X_2(t)$$

$$|\tau_{\alpha}(t)|B_{\alpha}(t) = \tau(t)X_3(t).$$

Pozostaje jedynie pokazać, że zgadzają się zwroty wektorów $X_3(t)$ i $B_{\alpha}(t)$.

Jest to ładny argument wykorzystujący niezdegenerowanie naszego trójnogu, oraz to, że w jednym punkcie (czyli w p) ten zwrot jest taki sam. Zostawiamy to jako zadanie domowe.

(rzywe w R³

Wektory związane z krzywą

Niezmiennik krzywych

Twierdzenie klasyfikacyjne dla krzywych

$$\alpha'(t) = T_{\alpha}(t) = X_1(t)$$

$$x''(t) = \kappa_{\alpha}(t)N_{\alpha}(t) = \kappa(t)X_2(t)$$

$$|\tau_{\alpha}(t)|B_{\alpha}(t) = \tau(t)X_3(t).$$

Pozostaje jedynie pokazać, że zgadzają się zwroty wektorów $X_3(t)$ i $B_{\alpha}(t)$.

Jest to ładny argument wykorzystujący niezdegenerowanie naszego trójnogu, oraz to, że w jednym punkcie (czyli w p) ten zwrot jest taki sam. Zostawiamy to jako zadanie domowe.

rzywe w R

krzywą

Niezmiennil krzywych

Twierdzenie klasyfikacyjne dla krzywych

iviardzania klacufikacuin

$$\alpha'(t) = T_{\alpha}(t) = X_1(t)$$

$$\alpha''(t) = \kappa_{\alpha}(t)N_{\alpha}(t) = \kappa(t)X_2(t)$$

$$|\tau_{\alpha}(t)|B_{\alpha}(t) = \tau(t)X_3(t).$$

$$\alpha'(t) = T_{\alpha}(t) = X_1(t)$$

$$\alpha''(t) = \kappa_{\alpha}(t)N_{\alpha}(t) = \kappa(t)X_2(t)$$

$$|\tau_{\alpha}(t)|B_{\alpha}(t) = \tau(t)X_3(t).$$

Pozostaje jedynie pokazać, że zgadzają się zwroty wektorów $X_3(t)$ i $B_{\alpha}(t)$.

Jest to ładny argument wykorzystujący niezdegenerowanie naszego trójnogu, oraz to, że w jednym punkcie (czyli w p) ten zwrot jest taki sam. Zostawiamy to jako zadanie domowe.

rzywe w R

krzywą

Niezmiennik krzywych

klasyfikacyjne dla krzywych

$$\alpha'(t) = T_{\alpha}(t) = X_1(t)$$

$$\alpha''(t) = \kappa_{\alpha}(t)N_{\alpha}(t) = \kappa(t)X_2(t)$$

$$|\tau_{\alpha}(t)|B_{\alpha}(t) = \tau(t)X_3(t).$$

Pozostaje jedynie pokazać, że zgadzają się zwroty wektorów $X_3(t)$ i $B_{\alpha}(t)$.

$$\alpha'(t) = T_{\alpha}(t) = X_1(t)$$

$$\alpha''(t) = \kappa_{\alpha}(t)N_{\alpha}(t) = \kappa(t)X_2(t)$$

$$|\tau_{\alpha}(t)|B_{\alpha}(t) = \tau(t)X_3(t).$$

Pozostaje jedynie pokazać, że zgadzają się zwroty wektorów $X_3(t)$ i $B_{\alpha}(t)$.

Jest to ładny argument wykorzystujący niezdegenerowanie naszego trójnogu, oraz to, że w jednym punkcie (czyli w p) ten zwrot jest taki sam. Zostawiamy to jako zadanie domowe.

(rzywe w R³

krzywą

Niezmiennik krzywych

klasyfikacyjne dla krzywych

