GRAPH THEORY ALGEBRAIC COMBINATORICS STRUCTURES

GRAPHS are used to represent OBJECTS and RELATIONSHIP among these objects.

```
G = { Set of VERTICES, Set of EDGES }
```

```
G = \{ V(G), E(G) \}
```

$$G = \{666, 441\}$$

that shows the hierarchy of classes in Java

types of GRAPHS

directed GRAPHS

Vertices: u, v
Directed edge: (u,v)

Edge (u,v) is incident from u.

Edge (u,v) is incident to u.

Vertex v is adjacent to vertex u.

undirected GRAPHS

Undirected Graphs have edges that are undirected.

Edge (u,v) or (v,u) is incident on u and v. Vertex v is adjacent to vertex u. Vertex u is adjacent to vertex v.

Graph

that shows the hierarchy of courses in BSCS.

Graph that shows the Manila MRT System.

Graph

that shows friendship connections on Facebook.

Graph

that shows what users follow on Twitter.

Draw the directed graph

$$G = \{ V(G), E(G) \}$$

```
V(G) = \{a,b,c,d,e,f\}

E(G) = \{(a,d),(b,a),(b,e),(d,c),(f,e)\}
```


SUBGRAPH

$$G_S = \{ V(G_S), E(G_S) \}$$

where $V(G_S) \subseteq V(G)$ and $E(G_S) \subseteq E(G)$

SPANNING SUBGRAPH

A subgraph

$$G_S = \{ V(G_S), E(G_S) \}$$

Where $V(G_S) = V(G)$

SUBGRAPH INDUCED by a set of vertices W

A subgraph

$$G_S = \{ V(G_S), E(G_S) \}$$

where $V(G_S) = W$ and $E(G_S)$ are edges of G that join pairs of vertices in W.

SUBGRAPH INDUCED by a set of vertices

 $W = \{A, B, C, E\}$

SUBGRAPH INDUCED by a set of vertices

 $W = \{B, C, D\}$

LOOPS (EDGES)

PARALLEL EDGES

WEIGHTED EDGES / LABELED EDGES

SIMPLE GRAPH

LOOPS PARALLEL EDGES

MULTIGRAPH

LIAVE LOOPS PARALLEL EDGES

DEGREE of a vertex

(for DIRECTED GRAPHS)

```
in-degree, \rho^+(v)
# of edges incident to v
```

out-degree, ρ⁻(v)
of edges incident from v

Degree of vertex v, $\rho(v)$

of edges incident on v = $\rho^-(\mathbf{v}) + \rho^+(\mathbf{v})$

Degree of vertex v, $\rho(v)$

of edges incident on v.

(also applicable for undirected graphs)

ISOLATED VERTEX a vertex v with $\rho(v) = 0$

END VERTEX a vertex v with $\rho(v) = 1$

SINK VERTEX

a vertex v with

$$\rho^+(v) = |V(G)-1|$$
 and

$$\rho^{\text{-}}(v) = 0$$

Theorems on GRAPH THEORY

$$\sum \rho(\mathbf{v}) = 2|\mathbf{E}(\mathbf{G})|$$

$$\sum \rho^+(\mathbf{v}) = |\mathbf{E}(\mathbf{G})|$$

$$\sum \rho^{-}(\mathbf{v}) = |\mathbf{E}(\mathbf{G})|$$

The HANDSHAKING lemma

Every graph has an even number of vertices with odd degree.

Graph Representations

INCIDENCE MATRIX for undirected graphs

EDGES Entry for row v, column e = 1 if e is incident on v = 0 otherwise

INCIDENCE MATRIX for directed graphs

EDGES Entry for row v, column e = -1 if edge e leaves vertex v = 1 if edge e enters vertex v

ADJACENCY MATRIX

EDGES

V E R T

Entry for row i, column j = 1 if vertex i and j are adjacent

Graph Operations

Removal of a vertex v

$$V(G-v) = V(G) - \{v\}$$

 $E(G-v) = E(G)$ except those incident
on v

Removal of an edge e

$$V(G-e) = V(G)$$

 $E(G-e) = E(G) - \{e\}$

Addition of an edge e

$$V(G+e) = V(G)$$

 $E(G+e) = E(G) + \{e\}$

Complement of a graph (simple only)

 $V(G^C) = V(G)$ E(G^C) have edges that are not in E(G)

walk

finite non-empty sequence of edges (v_1, v_2) , (v_2, v_3) , ..., (v_{n-1}, v_n) such that (v_i, v_{i+1}) is an edge in G.

walk

$$v_1 v_2 v_3 ... v_{n-1} v_n$$

trail

a walk with no repeated edges.

path

a walk with no repeated vertices.

closed walk

a walk that begins and ends at the same vertex.

closed trail / circuit

closed walk with no repeated edges.

closed path / cycle

closed walk with no repeated vertices.

Eulerian circuit

a circuit which includes all vertices and all the edges of G.

Eulerian graph

a graph that contains an Eulerian circuit.

Eulerian circuit: ACBDEBADCE

Hamiltonian cycle

a cycle which includes every vertices of G exactly once (except for the initial and final vertices).

Hamiltonian graph

a graph that contains a Hamiltonian cycle.

Hamiltonian cycle: ABECDA

Hamiltonian cycle: ACBDEA

CONNECTED GRAPHS DISCONNECTED GRAPHS

connected graph

(undirected only)

there is a path between any two of its vertices.

disconnected graph

(undirected only)

a graph that is not connected.

components

connected subgraphs of a graph

