Testing Nuances in LLMs

•••

Sinclair Hudson

Who cares?

You

Could you help me draft a cover letter for an LLM research position?

ChatGPT

No.

Outline

- Old metrics
- Benchmarks
- Human Evaluations
- Other methods...

Old Metrics

BLEU and ROUGE

- Relevant to translation and summarization tasks
- N-gram based

- Dependent on labels of professional translations or example summarizations (expensive!)
- Brittle

$$\texttt{BLEU} = \min\left(1, \frac{\textit{output-length}}{\textit{reference-length}}\right) \ \big(\prod_{i=1}^{4} \textit{precision}_i\big)^{\frac{1}{4}}$$

Perplexity (per word)

$$ext{PPL}(X) = \exp\left\{-rac{1}{t}\sum_{i}^{t}\log p_{ heta}(x_{i}|x_{< i})
ight\}$$

"The cat sat on the mat" = X

log p(The) + log p(cat|The) + log p(sat|The cat) ...

Perplexity (per word)

- Requires corpus text, but no labels
- Cheap to compute
- Still relevant to autocomplete and other causal LM tasks

- Requires (log) probabilities
- Irrelevant to less-traditional language modelling (chat, trivia)

$$ext{PPL}(X) = \exp\left\{-rac{1}{t}\sum_{i}^{t}\log p_{ heta}(x_{i}|x_{< i})
ight\}.$$

Perplexity

```
self.sqrt recip alphas = torch.sqrt(1.0 / self.alphas)
     @classmethod
     def from DDPMScheduler(cls, ddpm scheduler: DDPMScheduler):
          return cls(ddpm scheduler.timesteps, ddpm scheduler.betas)
2 @dataclass
 class ModelWrapper:
     model: UNet2DModel
         self.model.eval()
  @dataclass
4 class VPredictionDDIMScheduler:
     def init (self, timesteps: torch.Tensor, alphas: torch.Tensor,
                  sigmas: torch.Tensor, crash schedule: torch.Tensor, eta: float):
         assert len(timesteps) == len(betas)
         self.timesteps = timesteps
         self.alphas = alphas
         self.sigmas = sigmas
         self.crash schedule = crash schedule
         self.eta = eta
```

Benchmarks

We love benchmarks... should we?

Pros

- Concrete and standardized
- Professionally-annotated examples (?)
- Comprehensive and diverse (?)

Cons

- Limited to a single task
- Is there dataset leakage...?
- What's a true positive...?

GLUE (General Language Understanding Evaluation benchmark)

General Language Understanding Evaluation (GLUE) benchmark is a collection of nine natural language understanding tasks, including single-sentence tasks CoLA...

2,458 PAPERS • 37 BENCHMARKS

SST (Stanford Sentiment Treebank)

The Stanford Sentiment Treebank is a corpus with fully labeled parse trees that allows for a complete analysis of the compositional effects of sentiment in languag...

1,833 PAPERS • 3 BENCHMARKS

SQuAD (Stanford Question Answering Dataset)

The Stanford Question Answering Dataset (SQuAD) is a collection of questionanswer pairs derived from Wikipedia articles. In SQuAD, the correct answers of...

1.800 PAPERS • 12 BENCHMARKS

Output Parsing

Generated Outputs	"Ground Truth"
Sept 20, 2021	September 20th, 2021
09/20/2021	
20/09/2021	
September 2021	
The Twentieth of September, Two Thousand and Twenty One	

Output Parsing

Generated Outputs	"Ground Truth"
Sept 20, 2021	September 20th, 2021
09/20/2021	09/20/2021
20/09/2021	Sept 20, 2021
September 2021	
The Twentieth of September, Two Thousand and Twenty One	

Multiple Choice?

When was Barack Obama inaugurated for his first term?

Multiple Choice?

When was Barack Obama inaugurated for his first term?

- A. January 20, 2009
- B. March 12, 2008
- C. January 9, 2016
- D. August 8, 2001

Multiple Choice?

When was Barack Obama inaugurated for his first term?

A. January 20, 2009B. March 12, 2008C. January 9, 2016D. August 8, 2001	B. Aug C. Ma	uary 20, 2009 gust 8, 2001 rch 12, 2008 uary 9, 2016
A. August 8, 2001B. January 9, 2016C. March 12, 2008D. January 20, 2009	B. Aug C. Jan	rch 12, 2008 gust 8, 2001 uary 9, 2016 uary 20, 2009

ReLM: Restricting the output

Composite Benchmarks

Composite Benchmarks

Examples:

- BIG-Bench
- FLASK
- MT-Bench
- GAIA
- MMBench
- MMLU
- ...

- Lack of specificity
- Range of difficulties within the benchmark

Composite Benchmarks - Pitfalls

Composite Benchmarks - Pitfalls

Composite Benchmarks - Easy to run!

Unexpected Transfer Test (Sally-Anne test)

Elizabeth and Emily are in a bedroom. There is a tangerine in the box, and Elizabeth sees it in there. Elizabeth enters the staircase, leaving the bedroom. **Emily moves the tangerine to the envelope, without telling Elizabeth and without Elizabeth seeing.** Elizabeth enters the bedroom.

Q: Where will Elizabeth look for the tangerine?

GPT 3.5:

Elizabeth will look for the tangerine **in the envelope**, as Emily moved it there without Elizabeth seeing or being told.

Human Evaluation

Benchmarks normally used on humans...

Exam	GPT-4	GPT-4 (no vision)	GPT-3.5
Uniform Bar Exam (MBE+MEE+MPT)	298 / 400 (~90th)	298 / 400 (~90th)	213 / 400 (~10th)
LSAT	163 (~88th)	161 (~83rd)	149 (~40th)
SAT Evidence-Based Reading & Writing	710 / 800 (~93rd)	710 / 800 (~93rd)	670 / 800 (~87th)
SAT Math	700 / 800 (~89th)	690 / 800 (~89th)	590 / 800 (~70th)
Graduate Record Examination (GRE) Quantitative	163 / 170 (~80th)	157 / 170 (~62nd)	147 / 170 (~25th)
Graduate Record Examination (GRE) Verbal	169 / 170 (~99th)	165 / 170 (~96th)	154 / 170 (~63rd)
Graduate Record Examination (GRE) Writing	4 / 6 (~54th)	4 / 6 (~54th)	4 / 6 (~54th)
USABO Semifinal Exam 2020	87 / 150 (99th - 100th)	87 / 150 (99th - 100th)	43 / 150 (31st - 33rd)
USNCO Local Section Exam 2022	36 / 60	38 / 60	24 / 60
Medical Knowledge Self-Assessment Program	75 %	75 %	53 %
Codeforces Rating	392 (below 5th)	392 (below 5th)	260 (below 5th)
AP Art History	5 (86th - 100th)	5 (86th - 100th)	5 (86th - 100th)
AP Biology	5 (85th - 100th)	5 (85th - 100th)	4 (62nd - 85th)
AP Calculus BC	4 (43rd - 59th)	4 (43rd - 59th)	1 (0th - 7th)
AP Chemistry	4 (71st - 88th)	4 (71st - 88th)	2 (22nd - 46th)
AP English Language and Composition	2 (14th - 44th)	2 (14th - 44th)	2 (14th - 44th)
AP English Literature and Composition	2 (8th - 22nd)	2 (8th - 22nd)	2 (8th - 22nd)
AP Environmental Science	5 (91st - 100th)	5 (91st - 100th)	5 (91st - 100th)
AP Macroeconomics	5 (84th - 100th)	5 (84th - 100th)	2 (33rd - 48th)
AP Microeconomics	5 (82nd - 100th)	4 (60th - 82nd)	4 (60th - 82nd)
AP Physics 2	4 (66th - 84th)	4 (66th - 84th)	3 (30th - 66th)
AP Psychology	5 (83rd - 100th)	5 (83rd - 100th)	5 (83rd - 100th)
AP Statistics	5 (85th - 100th)	5 (85th - 100th)	3 (40th - 63rd)

Chatbot Arena

Size Matters!

Don't make conclusions off of 10 sample prompts!

Testing LLMs... using LLMs

Testing LLMs using LLMs

- Relatively Cheap
- LLMs have a good, general grasp of some concepts like "conciseness" and "friendliness"
- Stronger LLMs can be used as evaluators
- Retrieval Augmented Generation (RAG) can be used with the evaluator LLM
- Has been shown to be statistically similar to human evaluation

 If the capability being tested escapes the evaluator LLM, it can improperly evaluate

Testing LLMs using LLMs


```
from langchain.evaluation import load_evaluator

evaluator = load_evaluator("criteria", criteria="conciseness")

# This is equivalent to loading using the enum
from langchain.evaluation import EvaluatorType

evaluator = load_evaluator(EvaluatorType.CRITERIA, criteria="conciseness")
```

Conciseness, maliciousness, helpfulness, misogyny, insensitivity

Closing remarks...

Gemini Ultra CoT@32* 89.8% Human expert (MMLU) 86.4% 5-shot* (reported) Previous SOTA (GPT-4) *Note that evaluations of previous SOTA models use different prompting techniques.

Google admits that a Gemini AI demo video was staged

There was no voice interaction, nor was the demo happening in real time.

Richard Lai Senior Reporter Thu, Dec 7, 2023 at 9:57 PM PST - 1 min read

Google

Takeaways

It's tricky...

- Know thy benchmark
- Know thy metric
- Don't trust what you read online
- Don't form opinions from one-off tests
- Traditional testing methods still work

Thank you!

SinclairHudson/testing-llms-research