ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ВЫСШАЯ ШКОЛА ЭКОНОМИКИ

ОТЧЕТ ПО НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ

Решение проблемы фаз в кристаллографии методами машинного обучения

Студент	
Группа	
Научный руководитель	

Содержание

1	ВВЕДЕНИЕ	3
2	ОБЗОР ЛИТЕРАТУРЫ	3
3	ОСНОВНАЯ ЧАСТЬ	3
4	РЕЗУЛЬТАТЫ И ВЫВОДЫ	5

1 ВВЕДЕНИЕ

Что, зачем, актуальность,

2 ОБЗОР ЛИТЕРАТУРЫ

Текущие попытки применения ML моделей в химии/кристаллографии

3 ОСНОВНАЯ ЧАСТЬ

Все модели обучались на суперкомпьютере НИУ ВШЭ «Харизма». Для создания моделей использовался язык python и билиотеки машинного обучения Tensorflow и Keras.

Обучение модели с одним скрытым слоем из 709 нейронов на 709 отражениях из 7000 файлов дало следующие результаты:

Рис. 1:

Рис. 2:

Обучение той же модели на 709 отражениях из 50 000 файлов дало следующие результаты:

Рис. 3:

Зависимость качества обучения от размера датасета

То же для 3 слоев

Зависимость качества обучения от типа весов

4 РЕЗУЛЬТАТЫ И ВЫВОДЫ

Рис. 4:

Рис. 5:

Рис. 6:

Рис. 7:

Рис. 8:

Рис. 9:

Рис. 10:

Рис. 11:

Рис. 12:

Рис. 13:

Рис. 14:

Рис. 15: