3 The Fundamental Group

3.1 Definition. A pointed topological space is a pair (X, x_0) , where X is a topological space and $x_0 \in X$. We say that x_0 is the basepoint of X. Given two pointed spaces (X, x_0) and (Y, y_0) a basepoint preserving map $f: (X, x_0) \to (Y, y_0)$ is a continuous function $f: X \to Y$ such that $f(x_0) = y_0$.

3.2 Definition. Let ω , ω' : $[0,1] \to X$ be paths such that $\omega(0) = \omega'(0) = x_0$ and $\omega(1) = \omega'(1) = x_1$ for some $x_0, x_1 \in X$. We say that the paths ω and ω' are *path homotopic* if for every $t \in [0,1]$ there exists a path h_t : $[0,1] \to X$ such that:

- 1) $h_t(0) = x_0$, and $h_t(1) = x_1$ for all $t \in [0, 1]$
- 2) $h_0 = \omega$, and $h_1 = \omega'$
- 3) the function $h: [0,1] \times [0,1] \to X$ given by $h(s,t) = h_t(s)$ is continuous.

In this case we write $\omega \simeq \omega'$ and we say that h is a path homotopy between ω and ω' .

3.3 Lemma. Let X be a space and let $x_0, x_1 \in X$. Path homotopy defines an equivalence relation of the set of paths in X that start at x_0 and terminate at x_1 .	n
Proof. Exercise.	
3.4 Definition. For a path ω we will denote by $[\omega]$ the equivalence class of ω taken with respect the equivalence relation given by path homotopy. We will say that $[\omega]$ is the homotopy class of ω .	0

3.6 Definition. Let ω , τ : $[0,1] \to X$ be paths such that $\omega(1) = \tau(0)$. The *concatenation* of ω and τ is the path $\omega * \tau$: $[0,1] \to X$ given by

$$(\omega * \tau)(s) = \begin{cases} \omega(2s) & \text{for } s \in [0, \frac{1}{2}] \\ \tau(2s - 1) & \text{for } s \in [\frac{1}{2}, 1] \end{cases}$$

3.7 Proposition. Let ω , τ be paths in X such that $\omega(1) = \tau(0)$. If ω' , τ' are paths such that $\omega \simeq \omega'$ and $\tau \simeq \tau'$ then $\omega * \tau \simeq \omega' * \tau'$.

3.8 Lemma. If ω , τ , σ are paths in a space X such that $\omega(1) = \tau(0)$ and $\tau(1) = \sigma(0)$ then $([\omega] \cdot [\tau]) \cdot [\sigma] = [\omega] \cdot ([\tau] \cdot [\sigma])$

3.9 Lemma. Let X be a space, and let $x_0 \in X$. Let $c_{x_0} \colon [0,1] \to X$ denote the constant path at the point $x_0 \colon c_{x_0}(s) = x_0$ for all $t \in [0,1]$. If ω is a path in X such that $\omega(0) = x_0$ then $[c_{x_0}] \cdot [\omega] = [\omega]$. Also, if τ is a path such that $\tau(1) = x_0$ then $[\tau] \cdot [c_{x_0}] = [\tau]$.

3.10 Lemma. Let ω be a path in a space X such that $\omega(0)=x_0$ and $\omega(1)=x_1$. We have:

$$[\omega] \cdot [\overline{\omega}] = [c_{x_0}], \qquad [\overline{\omega}] \cdot [\omega] = [c_{x_1}]$$

3.11 Proposition. Let X be a topological space and let $x_0 \in X$. The set $\pi_1(X, x_0)$ taken with the multiplication given by

$$[\omega] \cdot [\tau] = [\omega * \tau]$$

for $[\omega]$, $[\tau] \in \pi_1(X, x_0)$ is a group. The trivial element in this group is the homotopy class of the constant path $[c_{x_0}]$, and for $[\omega] \in \pi_1(X, x_0)$ we have $[\omega]^{-1} = [\overline{\omega}]$.

3.12 Definition. Let (X, x_0) be a pointed space. The group $\pi_1(X, x_0)$ is called the *fundamental group* of (X, x_0) .

3.15 Corollary. The assignments
$$(X, x_0) \mapsto \pi_1(X, x_0)$$
 and $f \mapsto f_*$ define a functor

$$\pi_1 \colon \mathsf{Top}_* \to \mathsf{Gr}$$

3.16 Corollary. If
$$(X, x_0)$$
, (Y, y_0) are pointed spaces and $f: X \to Y$ is a homeomorphism such that $f(x_0) = y_0$, then $f_*: \pi_1(X, x_0) \to \pi_1(Y, y_0)$ is an isomorphism.

 $\textbf{3.18 Note.} \ \ \textbf{Alternative construction of the fundamental group.}$