GIẢN ĐỔ LATIMER

Số oxh +2 +1 0
$$Cu^{2+} \longrightarrow Cu^{+} \longrightarrow Cu$$
 ϕ^{0} $(Cu^{2+}/Cu^{+}) = 0,159V$ ϕ^{0} $(Cu^{+}/Cu) = 0,520V$

Trong giản đồ Latimer:

- Số OXH của nguyên tố giảm dần từ trái sang phải.
- Trong 1 cặp OXHK liên hợp: dạng nằm bên trái mũi tên là dạng OXH (số OXH lớn hơn), dang nằm bên phải mũi tên là dạng KHỦ liên hợp (số OXH nhỏ hơn).

♣TÍNH THẾ KHỦ CHUẨN CỦA CÁC CẶP OXH-KHỦ KHÔNG GẦN NHAU.

 $\rightarrow \phi^0(A/D) = (n_1\phi^0(A/B) + n_2\phi^0(B/C) + n_3\phi^0(C/D)) / (n_1 + n_2 + n_3)$

♣ DỰ ĐOÁN TRẠNG THÁI OXY HÓA BỀN CỦA NGUYÊN TỐ.

Xét hai nửa phản ứng cạnh nhau trong giản đồ latimer :

Bên trái Bên phải

- ✓ Nếu thế khử bên phải mũi tên nhỏ hơn thế khử bên trái mũi tên: ϕ^0 (A/B) $> \phi^0$ (B/C)
 - \rightarrow Dạng oxh **A** (tính oxh mạnh hơn **B**) sẽ tác dụng với dạng khử **C**(tính khử mạnh hơn **B**)
 - \rightarrow Ta gọi là sự hợp phân (nhị hợp): $\mathbf{A} + \mathbf{C} \rightarrow \mathbf{B} + \mathbf{B}$ (B bền; A và C kém bền)

✓ Nếu thế khử bên phải mũi tên lớn hơn thế khử bên trái mũi tên: ϕ^0 (A/B) $< \phi^0$ (B/C)

- \rightarrow Dạng oxh **B** (tính oxh mạnh hơn **A**) sẽ tác dụng với dạng khử **B**(tính khử mạnh hơn **C**)
- \rightarrow Ta gọi là sự dị phân : $B + B \rightarrow A + C$ (B kém bền; A và C bền hơn)

Ví dụ:
$$Cu^{2+} \rightarrow Cu^{+} \rightarrow Cu$$

$$\phi^{0} (\mathbf{Cu^{2+}}/\mathbf{Cu^{+}}) = 0,159V < \phi^{0} (\mathbf{Cu^{+}}/\mathbf{Cu}) = 0,520V \rightarrow Cu^{+} \text{ không bền, bị dị phân.}$$

$$\mathbf{Cu^{+}} + \mathbf{Cu^{+}} \rightarrow \mathbf{Cu^{2+}} + \mathbf{Cu}$$

Câu 9.1. Chọn phát biểu đúng.

Xét giản đồ Latimer: (pH = 0)

- 1. Thế khử chuẩn $\varphi^0(H_2O_2/H_2O) = 1,76V$
- 2. H₂O₂ không bền bị dị phân thành H₂O và O₂.
- 3. O_2 và H_2O hợp phân để tạo H_2O_2 .
- A. Chỉ 1,2
- B. Chỉ 3
- C. Tất cả
- D. Chỉ 2

Câu 9.2. Chọn nhận xét đúng.

Cho nguyên tố Ganvanic gồm điện cực clo tiêu chuẩn ($P_{Cl_2} = 1atm$, NaCl 1M) (1) và điện cực Cl_2 (áp suất của $Cl_2 = 1$ atm) nhúng vào trong dung dịch NaCl 0.1M (2). Ở nhiệt độ nhất định nguyên tố này có:

- a) Suất điện động giảm khi pha loãng dung dịch ở điện cực (1)
- b) Điện cực (1) làm điện cực catod
- c) Ở mạch ngoài electron chuyển từ điện cực (2) sang điện cực (1)
- d) Suất điện động của pin ở 25°C là 0.1V

Câu 9.3. Chọn phương án **đúng**: Cho pin nồng độ ở 25° C:

- (1) $Ag \mid Ag^{+}(dd) \ 0.001M \parallel Ag^{+}(dd) \ 0.100M \mid Ag \ (2)$
- 1) Điện cực (1) là anod
- 2) Điện cực (2) là catod
- 3) O mạch ngoài electron di chuyển từ điện cực (2) qua (1)
- 4) Tại điện cực (1) xuất hiện kết tủa Ag
- 5) Tại điện cực (2) Ag bị tan ra
- 6) Sức điện động của pin ở 25° C là 0.059V
- 7) Khi pin ngừng hoạt động khi nồng độ Ag⁺ trong dung dịch ở hai điện cực là 0.0505M
- **a**) 3,4,5
- **b**) 1,2,6
- c) 4,6,7
- **d**) 1,2,7

Câu 9.4. Tính hằng số cân bằng K của phản ứng sau ở 25°C:

3 Au⁺ (dd) \rightleftarrows Au³⁺ (dd) + 2 Au (r). Cho biết ở 25°C: $\phi^{\circ}_{(Au^{3+}/Au^{+})} = 1,4V$; $\phi^{\rm o}_{({\rm Au^+/Au})}$ = 1,7 V ; F = 96500 C/mol; R = 8.314 J/mol.K

- a) 4.5×10^9
- **b)** 2.5×10^9 **c)** 1.41×10^{10} **d)** 3.1×10^{12}

Câu 9.5.

Trước đây, người ta không không rõ ion thủy ngân (I) tồn tại trong dung dịch dưới dạng Hg_nⁿ⁺ với giá trị n bằng bao nhiều. Để xác định n, có thể lập một pin như sau ở 25°C.

Pt, $Hg(\ell)$ | dd A|| dd B| $Hg(\ell)$, Pt

1 lit dung dịch A chứa 0.263g Hg(I) nitrat và 1 lit dung dịch B chứa 2.630g Hg(I) nitrat. Sức điện động đo được là 0.0289 V. Hãy xác định giá trị của n.

- **a)** n = 3
- **b**) n = 4
- **c**) n = 1
- **d**) n = 2

Câu 9.6. Chọn phương án đúng. Cho quá trình điện cực:

$$3Fe^{3+}(dd) + 4H_2O(\ell) + 1e \rightarrow Fe_3O_4(r) + 8H^+(dd)$$

Phương trình Nerst đối với quá trình đã cho ở 25°C có dạng:

a)
$$\varphi = \varphi^{\circ} + 0.0591g \frac{[H^{+}]^{8}}{[Fe^{3+}]^{3}[H_{2}O]^{4}}$$
 c) $\varphi = \varphi^{\circ} + 0.0591g \frac{[Fe^{3+}]^{3}}{[H^{+}]^{8}}$

c)
$$\varphi = \varphi^{\circ} + 0.0591g \frac{[Fe^{3+}]^3}{[H^+]^8}$$

b)
$$\varphi = \varphi^{\circ} + 0.059 \lg \frac{[H^{+}]^{8}}{[Fe^{3+}]^{3}}$$

d)
$$\varphi = \varphi^{\circ} + 0.059 \lg \frac{[Fe^{3+}]^3 [H_2O]^4}{[Fe_3O_4][H^+]^8}$$

Câu 9.7.

Hãy xác định ở giá trị nào của pH thì phản ứng sau bắt đầu xảy ra theo chiều thuân ở 25°C.

 $HAsO_2(dd) + I_2(r) + 2H_2O(\ell) \rightleftharpoons H_3AsO_4(dd) + 2I^-(dd) + 2H^+(dd)$

Cho biết, ở 25°C: $\phi_{(H_3AsO_4/HAsO_2)}^{\circ} = +0.559V$; $\phi_{(I_2/I^-)}^{\circ} = +0.5355V$

Nồng độ các chất: $[H_3AsO_4]=[I^-]=[HAsO_2]=1M$

- **a)** pH > 0.4
- **b**) pH > 3.0
- c) pH > 1.0
- **d**) pH > 2.0

Câu 9.8. Chọn phương án đúng và đầy đủ:

Cho pin điện hóa: $(1)Cr|Cr_2(SO_4)_31M||Cr_2(SO_4)_30.02M|Cr(2)$

1) Điện cực (1) gọi là cathode, có xuất hiện kết tủa Crom

- 2) Điện cực (2) gọi là anod, điện cực Crom bị tan ra
- 3) Suất điện động của pin là E = 0.0334V
- 4) Trong quá trình pin hoạt động, nồng độ $Cr^{3+}(dd)$ ở điện cực (1) giảm dần và ở điện cực (2) tăng dần. Khi nồng độ $Cr^{3+}(dd)$ ở hai điện cực bằng nhau thì pin ngừng hoạt động.
- **a)** 1,2,3,4
- **b**) 1,2
- **c**) 3,4
- **d)** 1,2,4

Câu 9.9. Chọn phương án đúng:

Xét chiều của phản ứng ở 25° C: Fe + Cd²⁺ = Fe²⁺ +Cd, Cho biết:

$$E^0 = \phi^0(Cd^{2+}/Cd) - \phi^0(Fe^{2+}/Fe) = 0.04V$$

- 1) Khi $[Fe^{2+}] = 0.10M$ và $[Cd^{2+}] = 1.00M$ phản ứng diễn ra theo chiều thuận
- 2) Khi $[Fe^{2+}] = 0.10 \text{M và} [Cd^{2+}] = 1.00 \text{M}$ phản ứng diễn ra theo chiều nghịch
- 3) Khi $[Fe^{2+}] = 1.00M$ và $[Cd^{2+}] = 0.01M$ ứng diễn ra theo chiều thuận
- 4) Khi $[Fe^{2+}] = 1.00 \text{M và} [Cd^{2+}] = 0.01 \text{M}$ ứng diễn ra theo chiều nghịch
- **a**) 2, 4
- **b**) 1, 4
- **c**) 2, 3
- **d**) 1, 3

Câu 9.10. Chọn phương án đúng.

Phản ứng giữa bột MnO₂ và dung dịch NaCl trong môi trường acid không xảy ra. Muốn phản ứng xảy ra phải dùng biện pháp nào?

Cho:
$$\phi^0_{MnO_2,H^+/Mn^{2+}} = 1.2V$$
; $\phi^0_{Cl_1/2Cl^-} = 1.358V$

- a) Thêm HCl đậm đặc.
- **b**) Thêm NaOH.
- c) Tăng nồng độ NaCl.
- d) Không có cách nào ngoại trừ thay thế MnO₂ bằng chất oxi hóa khác.

Câu 9.11. Chọn phương án đúng:

Khi ghép một tấm bạc trong dung dịch bão hòa AgBr và một tấm bạc khác trong dung dịch AgNO₃ 0,01M ta được pin nồng độ có suất điện động ở 25°C là 0.245V. Hãy tính tích số tan của AgBr ở 25°C.

a) 2×10^{-12}

c) 5×10^{-13}

b) 2×10^4

d) Không đủ dữ liệu để tính

Câu 9.12. Chọn phương án đúng:

Cho $\phi^0_{Fe^{3+}/Fe^{2+}} = 0.77 V$ và $\phi^0_{Sn^{4+}/Sn^{2+}} = +0.15 V$. Tính hằng số cân bằng ở 25^{o} C của phản ứng: $2Fe^{3+}(dd) + Sn^{2+}(dd) \rightleftarrows 2Fe^{2+}(dd) + Sn^{4+}(dd)$

- a) 10^{14}
- **b**) 10^{18}
- c) 10^{21}
- **d**) 10^{27}

Câu 9.13. Chọn phương án đúng:

Tính thế điện cực tiêu chuẩn của MnO_4^-/MnO_2 ở 25^0 C. Cho biết ở 25^0 C thế điện cực tiêu chuẩn của MnO_4^-/Mn^{2+} và MnO_2/Mn^{2+} lần lượt bằng 1.51V và 1.23V.

- **a**) 0.28V
- **b**) 2.41V
- c) 2.74V
- **d**) 1.70V

Câu 9.14. Chọn phương án **đúng**: Cho phản ứng sau ở 25° C:

$$Fe^{2+}(dd) + Ag^{+}(dd) \rightleftharpoons Fe^{3+}(dd) + Ag(r)$$

Biết: số Faraday F = 96484(C); $φ^0(Fe^{3+}/Fe^{2+}) = +0.771V$; $φ^0(Ag^+/Ag) = 0.7991V$. Với $[Fe^{3+}] = 0.1M$; $[Fe^{2+}] = 0.01M$; $[Ag^+] = 0.01M$ và Ag kim loại dư.

- 1) $\varphi(Fe^{3+}/Fe^{2+}) = +0.830V$
- 2) $\varphi(Ag^{+}/Ag) = 0.681V$
- 3) $(\Delta G_{298})_{phån \text{ \'ung}} = +14.376 kJ$
- 4) Tại thời điểm đang xét, phản ứng đang diễn ra theo chiều thuận
- 5) Tại thời điểm đang xét, phản ứng đang diễn ra theo chiều nghịch
- a) Chỉ 5 đúng
- b) Chỉ 4 đúng
- c) 1,2,3,5 đúng
- **d**) 1,2,4 đúng