

4. laboratorijska vježba

Projektiranje PID regulatora zakreta kamere prema ZN metodi

1. Uvod

Cilj ove laboratorijske vježbe je doći do parametara PID regulatora prema Ziegler-Nicholsovoj (ZN) metodi prijelazne funkcije. Zadatak je precizno regulirati usmjerenje (zakret) kamere. Tablica 1 daje empirijski izračun parametara PID regulatora prema ZN metodi prijelazne funkcije.

Tip	Vrijednosti parametara		
regulatora	K_R	T_{I}	T_D
P	$\frac{1}{K_p} \frac{t_a}{t_z}$	-	-
PI	$\frac{0.9}{K_p} \frac{t_a}{t_z}$	$3.33t_z$	ı
PID	$\frac{1.2}{K_p} \frac{t_a}{t_z}$	$2t_z$	$0.5t_z$

Tablica 1: ZN metoda prijelazne funkcije

PRIPREMA ZA VJEŽBU

Slika 1: Fizikalno njihalo

Na Slici 1 prikazana je kamera pričvršćena jednim krajem za podlogu (strop) tako da bez djelovanja ulaznog momenta i vanjskih sila visi u vertikalnom položaju. Kameru zakreće motor koji se nalazi u vrhu kamere s kojim je pričvršćena za podlogu. Dinamiku motora nećemo uzimati u obzir nego pretpostavimo da možemo ostvariti proizvoljni moment M_u . Osim ulaznog momenta M_u , na kameru djeluju gravitacija $g = 9.81 m/s^2$, sila trenja suprotna tangencijalnoj brzini gibanja centra mase $F_{tr} = -bv$, a centar mase nalazi se na polovici duljine kamere $l_{cm} = \frac{l}{2}$. Parametri kamere su sljedeći: m = 0.5 kg, l = 0.1 m, b = 10 kg/s.

Slika 2: Sustav upravljanja

Kao pripremu za vježbu potrebno je pripremiti upravljačku strukturu kao na Slici 2 te napraviti sljedeće:

- a) Napisati prijenosnu funkciju realnog PID regulatora u paralelnoj formi.
- b) Napisati prijenosnu funkciju $Y(s) = G_r(s)R(S) + G_z(s)Z(S)$ tako da $G_r(s)$ i $G_z(s)$ zapišete preko $G_{PID}(s)$ i $G_p(s)$, gdje je $G_p(s)$ linearizirani model stvarnog procesa (ove prijenosne funkcije nije potrebno raspisivati).
- c) Napravite skriptu za određivanje parametara t_z , t_a i K_P iz prijelazne funkcije procesa simulirajući proces zakreta kamere. Kao pomoć koristite pripremljenu simulacijsku shemu kamerazn.mdl stvarnog modela kamere s pridruženom skriptom parametri.m.
- d) Odrediti parametre P, PI i PID regulatora prema ZN metodi prijelazne funkcije.

RAD NA RAČUNALU

ZADATAK 1

Koristeći rezultate iz pripreme potrebno je:

- a) Simulirati zatvoreni sustav upravljanja s PID regulatorom tako što u trenutku t=0 s djeluje referenca tipa skokovite pobude $r(t) = 45 \cdot S(t)$, dok u trenutku t = 5 s djeluje poremećaj tipa skokovite pobude $z(t) = -0.24 \cdot S(t-5)$. Što fizikalno označuje referenca, a što poremećaj? Koju fizikalnu veličinu računa PID regulator?
- b) Odrediti parametre kvalitete izlazne veličine zatvorenog sustava prema referenci (nadvišenje σ_m , vrijeme prvog maksimuma t_m , vrijeme smirivanja $t_{5\%}$). Možete postaviti poremećaj na 0, odnosno $z(t) = 0 \cdot S(t-5)$ da ne smeta odzivu na referencu.
- c) Dodajte u referentnu granu prefiltar $G_f=rac{1}{1+T_f s}$ te odredite simulacijom vremensku konstantu T_f tako da nadvišenje zatvorenog kruga pri odzivu na referencu nestane. Kakav je odziv sustava na poremećaj sa i bez prefiltra?
- d) Simulirajte sustav s P i PI regulatorom dobivenim u pripremi i usporedite odzive s a) zadatkom.