Opracowanie: Marek Kaluba

wierdzenie Gaussa-Bonneta

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba¹

2013

¹Uniwersytet im. Adama Mickiewicza, kalmar@amu.edu.pl

Wykład 13

Twierdzenie Gaussa-Bonneta

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Twierdzenie Gaussa-Bonneta

Odwzorowanie wykładnicze

rrianguracje

Twierdzenie Gaussa-Bonneta

Twierdzenie Gaussa-Bonneta

Odwzorowanie wykładnicze Triangulacje Twierdzenie Gaussa-Bonneta

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Twierdzenie Gaussa-Bonneta

Odwzorowanie wykła-

mangulacje

Twierdzenie Gaussa-Bonneta

Definicja

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką, $p \in M$ punktem na niej, i niech $v \in T_pM$ będzie wektorem stycznym do $M \le p$.

ightharpoonup Liczbę $ρ_V$ definiujemy jako

$$\rho_v \stackrel{\text{def.}}{=} \sup \left\{ r \in \mathbb{R} : \begin{array}{l} \text{istnieje geodezyjna } \gamma \colon (-r, r) \to M \\ \text{spełniająca: } \gamma(0) = p, \text{ oraz } \gamma'(0) = v. \end{array} \right\}$$

 $(\rho_v$ to maksymalna długość geodezyjnej na M jaką możemy poprowadzić przez p w kierunku v)

▶ Zbiór $E_p \subset T_p M$ definiujemy jako

$$E_p \stackrel{\text{def.}}{=} \left\{ v \in T_p M : \rho_v > 1 \right\}$$

 $(E_p$ to zbiór kierunków w których można poprowadzić geodezyjną dłuższą niż 1)

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Gaussa-Bonneta

Odwzorowanie wykładnicze

Iriangulacje

Iwierdzenie Gaussa-Bonneta

Liczbę ρ_v definiujemy jako

$$\rho_{\nu} \stackrel{\text{def.}}{=} \sup \left\{ r \in \mathbb{R} : \begin{array}{l} \text{istnieje geodezyjna } \gamma \colon (-r, r) \to M \\ \text{spełniająca: } \gamma(0) = p, \text{ oraz } \gamma'(0) = v. \end{array} \right\}.$$

 $(\rho_v$ to maksymalna długość geodezyjnej na M jaką możemy poprowadzić przez p w kierunku v)

▶ Zbiór $E_p \subset T_p M$ definiujemy jako

$$E_p \stackrel{\text{def.}}{=} \left\{ v \in T_p M : \rho_v > 1 \right\}$$

 $(E_p$ to zbiór kierunków w których można poprowadzić geodezyjną dłuższą niż 1)

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Gaussa-Bonneta

Odwzorowanie wykładnicze

Iwierdzenie Gaussa-Bonneta

ightharpoonup Liczbę $ρ_v$ definiujemy jako

$$\rho_{\nu} \stackrel{\text{def.}}{=} \sup \left\{ r \in \mathbb{R} : \begin{array}{l} \text{istnieje geodezyjna } \gamma \colon (-r, r) \to M \\ \text{spełniająca: } \gamma(0) = p, \text{ oraz } \gamma'(0) = v. \end{array} \right\}.$$

 $(\rho_v$ to maksymalna długość geodezyjnej na M jaką możemy poprowadzić przez p w kierunku v)

▶ Zbiór $E_p \subset T_p M$ definiujemy jako

$$E_p \stackrel{\text{def.}}{=} \left\{ v \in T_p M: \rho_v > 1 \right\}$$

(E_p to zbiór kierunków w których można poprowadzić geodezyjną dłuższą niż 1)

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Gaussa-Bonneta

Odwzorowanie wykładnicze

mangulacje

- W przypadku płaszczyzny czy sfery widzimy, że dla

$$\rho_{v}=\infty$$
,

• Oczywiście $E_p \neq \emptyset$, ponieważ środek układu

Flementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

► W definicji E_p zamiast 1 mogliśmy wybrać jakąkolwiek dodatnią liczbę rzeczywistą.

W przypadku płaszczyzny czy sfery widzimy, że dla

$$\rho_{v}=\infty$$
,

• Oczywiście $E_p \neq \emptyset$, ponieważ środek układu

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

- W definicji E_p zamiast 1 mogliśmy wybrać jakakolwiek dodatnią liczbę rzeczywistą.
- W przypadku płaszczyzny czy sfery widzimy, że dla każdego v w przestrzeni stycznej

$$\rho_v = \infty$$
,

więc w szczególności dla sfery mamy $E_p = T_p S^2$.

• Oczywiście $E_p \neq \emptyset$, ponieważ środek układu

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

- W definicji E_p zamiast 1 mogliśmy wybrać jakakolwiek dodatnią liczbę rzeczywistą.
- W przypadku płaszczyzny czy sfery widzimy, że dla każdego v w przestrzeni stycznej

$$\rho_v = \infty$$
,

więc w szczególności dla sfery mamy $E_p = T_p S^2$.

• Oczywiście $E_p \neq \emptyset$, ponieważ środek układu współrzędnych zawsze należy do Ep (jako geodezyjna stała).

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $p \in M$ będzie punktem. Wtedy zachodzą następujce twierdzenia.

▶ Jeśli $v \in E_p$ i $s \in \mathbb{R}$, wtedy sv należy do E_p wtedy i tylko wtedy, gdy

$$-\rho_{v} < s < \rho_{v}$$
.

(jeśli v należy do E_p , wówczas należy cały odcinek łączący $-\rho_v v$ z $\rho_v v$)

▶ Jeśli $u \in T_pM$ jest wektorem jednostkowym, wtedy

$$E_p \cap \{su: s \in \mathbb{R}\} = \{su: -\rho_v < s < \rho_v\}$$

Dowód:

Ćwiczenie na zrozumienie definicji ρ_v i E_p .

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $p \in M$ będzie punktem. Wtedy zachodzą następujce twierdzenia.

▶ Jeśli $v \in E_p$ i $s \in \mathbb{R}$, wtedy sv należy do E_p wtedy i tylko wtedy, gdy

$$-\rho_{v} < s < \rho_{v}$$
.

(jeśli v należy do E_p , wówczas należy cały odcinek łączący $-\rho_v v z \rho_v v$)

▶ Jeśli $u \in T_pM$ jest wektorem jednostkowym, wtedy

$$E_p \cap \{su : s \in \mathbb{R}\} = \{su : -\rho_v < s < \rho_v\}.$$

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $p \in M$ będzie punktem. Wtedy zachodzą następujce twierdzenia.

▶ Jeśli $v \in E_p$ i $s \in \mathbb{R}$, wtedy sv należy do E_p wtedy i tylko wtedy, gdy

$$-\rho_{v} < s < \rho_{v}$$
.

(jeśli v należy do E_p , wówczas należy cały odcinek łączący $-\rho_v v z \rho_v v$)

▶ Jeśli $u \in T_pM$ jest wektorem jednostkowym, wtedy

$$E_p \cap \{su : s \in \mathbb{R}\} = \{su : -\rho_v < s < \rho_v\}.$$

Dowód:

Cwiczenie na zrozumienie definicji ρ_v i E_p .

Niech $D(T_qM, \delta)$ oznacza kulę zawartą w przestrzeni T_qM o środku w punkcie O=(0,0) i promieniu δ .

Lemat

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $p \in M$ będzie punktem. Istnieją:

- otoczenie otwarte $W \subset M$ zawierające p,
- ightharpoonup promien δ (zależny od punktu p) takie, że la każdego q \in W zachodzi

$$D(T_qM,\delta)\subset E_q$$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Gaussa-Bonne

Odwzorowanie wykładnicze

Iriangulaci

Twierdzenie Gaussa-Bonneta

Chociaż nie jest to oczywiste E_p zawiera kulę otwartą o odpowiednio małym promieniu.

Niech $D(T_qM,\delta)$ oznacza kulę zawartą w przestrzeni T_qM o środku w punkcie $\mathfrak{O}=(0,0)$ i promieniu $\delta.$

Lema

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $p \in M$ będzie punktem. Istnieją:

- ightharpoonup otoczenie otwarte $W \subset M$ zawierające p,
- ▶ promień δ (zależny od punktu p) takie, że dla każdego q ∈ W zachodzi

 $D(T_qM,\delta)\subset E_q$

Elementarna

Chociaż nie jest to oczywiste E_p zawiera kulę otwartą o odpowiednio małym promieniu.

Niech $D(T_qM,\delta)$ oznacza kulę zawartą w przestrzeni T_qM o środku w punkcie $\mathfrak{O}=(0,0)$ i promieniu $\delta.$

Lemat

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $p \in M$ będzie punktem. Istnieją:

- ightharpoonup otoczenie otwarte $W \subset M$ zawierające p,
- ightharpoonup promień δ (zależny od punktu p) takie, że lla każdego $q \in W$ zachodzi

 $D(T_qM,\delta)\subset E_q$

Niech $D(T_qM,\delta)$ oznacza kulę zawartą w przestrzeni T_qM o środku w punkcie $\mathfrak{O}=(0,0)$ i promieniu δ .

Lemat

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $p \in M$ będzie punktem. Istnieją:

- otoczenie otwarte $W \subset M$ zawierające p,
- ▶ promień δ (zależny od punktu p) takie, że la każdego q ∈ W zachodzi

 $D(T_qM,\delta)\subset E_q$

Niech $D(T_qM, \delta)$ oznacza kulę zawartą w przestrzeni T_qM o środku w punkcie $\mathfrak{O}=(0,0)$ i promieniu δ .

Lemat

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $p \in M$ będzie punktem. Istnieją:

- ▶ otoczenie otwarte $W \subset M$ zawierające p,
- promień δ (zależny od punktu p) takie, że
 dla każdego q ∈ W zachodzi

 $D(T_qM,\delta)\subset E_q$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Gaussa-Bonnet

Odwzorowanie wykładnicze

Triangulac

Iwierdzenie Gaussa-Bonneta

Chociaż nie jest to oczywiste E_p zawiera kulę otwartą o odpowiednio małym promieniu.

Niech $D(T_qM, \delta)$ oznacza kulę zawartą w przestrzeni T_qM o środku w punkcie O = (0, 0) i promieniu δ.

Lemat

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $p \in M$ będzie punktem. Istnieją:

- \triangleright otoczenie otwarte $W \subset M$ zawierające p,
- promień δ (zależny od punktu p) takie, że

dla każdego $q \in W$ zachodzi

$$D(T_qM,\delta)\subset E_q.$$

$$\exp_p(v) \stackrel{\text{def.}}{=} \gamma_v(1).$$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Definicja

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $p \in M$. Dla każdego $v \in E_p \subset T_p M$ niech $\gamma_v : (-\rho_v, \rho_v) \to M$ będzie geodezyjną spełniającą $\gamma_v(0) = p, \gamma_v'(0) = v$. **Odwzorowanie wykładnicze** $\exp_p : E_p \to M$ jest zdefiniowane wzorem

$$\exp_p(v) \stackrel{\text{def.}}{=} \gamma_v(1).$$

Uwaga

Odwzorowanie wykładnicze jest dobrze określone, ponieważ wszystkie geodezyjne które mają dziedzinę większą niż (-1,1) mają tę samą wartość dla t=1 (dlaczego?).

Definicia

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $p \in M$. Dla każdego $v \in E_p \subset T_p M$ niech $\gamma_v : (-\rho_v, \rho_v) \to M$ będzie geodezyjną spełniającą $\gamma_{\nu}(0) = p, \gamma_{\nu}'(0) = \nu$. **Odwzorowanie wykładnicze** $\exp_p: E_p \to M$ jest zdefiniowane wzorem

$$\exp_p(v) \stackrel{\text{def.}}{=} \gamma_v(1).$$

Uwaga

Odwzorowanie wykładnicze jest dobrze określone, ponieważ wszystkie geodezyjne które mają dziedzinę większą niż (-1, 1)mają tę samą wartość dla t = 1 (dlaczego?).

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Gaussa-Bonnet

Odwzorowanie wykładnicze

Iriangulacje

Twierdzenie Gaussa-Bonneta

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $p \in M$ będzie punktem. Niech ponadto $v \in E_p$ będzie wektorem stycznym do M. Wtedy krzywa $\zeta: (-\rho_v, \rho_v) \to M$ zdefiniowana przez

$$\zeta(s) = \exp_p(sv)$$

jest geodezyjną spełniającą $\zeta(0)=p$ oraz $\zeta'(0)=v$. Jej długość na odcinku od p do $\exp_p(v)$ jest równa $\|v\|$.

Dowód:

Niech $\gamma_v: (-\rho_v, \rho_v) \to M$ będzie geodezyjną spełniającą: $\gamma_v(0) = p$, oraz $\gamma_v'(0) = v$. Ustalmy $s \in (-\rho_v, \rho_v)$ i zdefiniujmy $\widetilde{\gamma}: (-\rho_v/s, \rho_v/s) \to M$ jako

$$\widetilde{\gamma}(t) = \gamma_{\nu}(st).$$

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $p \in M$ będzie punktem. Niech ponadto $v \in E_p$ będzie wektorem stycznym do M. Wtedy krzywa $\zeta: (-\rho_v, \rho_v) \to M$ zdefiniowana przez

$$\zeta(s) = \exp_p(sv)$$

jest geodezyjną spełniającą $\zeta(0)=p$ oraz $\zeta'(0)=v$. Jej długość na odcinku od p do $\exp_p(v)$ jest równa $\|v\|$.

Dowód:

Niech $\gamma_{v}:(-\rho_{v},\rho_{v})\to M$ będzie geodezyjną spełniającą: $\gamma_{v}(0)=p,$ oraz $\gamma_{v}'(0)=v.$ Ustalmy $s\in(-\rho_{v},\rho_{v})$ i zdefiniujmy $\widetilde{\gamma}:(-\rho_{v}/s,\rho_{v}/s)\to M$ jako

$$\widetilde{\gamma}(t) = \gamma_{\nu}(st).$$

Ponieważ funkcja $t \to st$ jest liniowa, więc z charakteryzacji parametryzacji krzywych geodezyjnych (lemat ??) wynika, że $\widetilde{\gamma}$ jest również geodezyjną. Oczywiście $\widetilde{\gamma}(0) = p$ i $\widetilde{\gamma}'(0) = sv$.

$$\zeta(s) = \exp_p(sv) = \widetilde{\gamma}(1) = \gamma_v(s)$$

dla wszystkich $s \in (-\rho_v, \rho_v)$. Zatem $\zeta \equiv \gamma_v$ jest geodezyjną (korzystamy tutaj z jedyności!).

Przypomnijmy, że geodezyjne mają stałą prędkość, więc

$$\|\zeta'(s)\| = \|\zeta'(0)\| = \|\gamma'(0)\| = \|v\|$$

dla wszystkich s. Zatem długość geodezyjnej można policzyć jako

$$\int_0^1 \|\zeta'(s)\| ds = \|v\| \int_0^1 ds = \|v\|.$$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Gaussa-Bonneta

Odwzorowanie wykładnicze

rrianguiacje

Twierdzenie Gaussa-Bonneta

Ponieważ funkcja $t \to st$ jest liniowa, więc z charakteryzacji parametryzacji krzywych geodezyjnych (lemat $\ref{position}$) wynika, że $\ref{position}$ jest również geodezyjną. Oczywiście $\ref{position}$ (0) = p i $\ref{position}$ '(0) = sv. Mamy teraz:

$$\zeta(s) = \exp_p(sv) = \widetilde{\gamma}(1) = \gamma_v(s)$$

dla wszystkich $s \in (-\rho_v, \rho_v)$. Zatem $\zeta \equiv \gamma_v$ jest geodezyjną (korzystamy tutaj z jedyności!).

Przypomnijmy, że geodezyjne mają stałą prędkość, więc

$$\|\zeta'(s)\| = \|\zeta'(0)\| = \|\gamma'(0)\| = \|v\|$$

dla wszystkich s. Zatem długość geodezyjnej można policzyć jako

$$\int_0^1 \|\zeta'(s)\| ds = \|v\| \int_0^1 ds = \|v\|.$$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Gaussa-Bonneta

Odwzorowanie wykładnicze

Iriangulacje

Iwierdzenie Gaussa-Bonneta

Ponieważ funkcja $t \to st$ jest liniowa, więc z charakteryzacji parametryzacji krzywych geodezyjnych (lemat ??) wynika, że $\widetilde{\gamma}$ jest również geodezyjną. Oczywiście $\widetilde{\gamma}(0) = p$ i $\widetilde{\gamma}'(0) = sv$. Mamy teraz:

$$\zeta(s) = \exp_p(sv) = \widetilde{\gamma}(1) = \gamma_v(s)$$

dla wszystkich $s\in (-\rho_v,\rho_v)$. Zatem $\zeta\equiv\gamma_v$ jest geodezyjną (korzystamy tutaj z jedyności!).

Przypomnijmy, że geodezyjne mają stałą prędkość, więc

$$\|\zeta'(s)\| = \|\zeta'(0)\| = \|\gamma'(0)\| = \|v\|$$

dla wszystkich s. Zatem długość geodezyjnej można policzyć jako

$$\int_0^1 \|\zeta'(s)\| ds = \|v\| \int_0^1 ds = \|v\|.$$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Gaussa-Bonneta

Odwzorowanie wykładnicze

Triangulacje

Twierdzenie Gaussa-Bonneta

Lemat

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $p \in M$. Istnieje wtedy taka $\delta > 0$, że

- ▶ $zbi\acute{o}r \exp_p(D(T_pM, \delta) jest otwarty w M, oraz$
- odwzorowanie wykładnicze

$$\exp_p \big|_{D(T_pM,\delta_p)}$$

ograniczone do zbioru $D(T_pM, \delta_p)$ jest dyfeomorfizmem na swój obraz.

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Odwzorowanie wykładnicze

,

Triangulacje

Twierdzenie Gaussa-Bonneta

Przypomnijmy, że przez $D(T_pM,\delta)$ oznaczamy dysk o środku w punkcie $(0,0)\in T_pM$ i promieniu δ .

Lemat

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $p \in M$. Istnieje wtedy taka $\delta > 0$, że

- ▶ $zbi\acute{o}r \exp_p(D(T_pM, \delta) jest otwarty w M, oraz$
- odwzorowanie wykładnicze

$$\exp_p \big|_{D(T_pM,\delta_p)}$$

ograniczone do zbioru $D(T_pM, \delta_p)$ jest dyfeomorfizmem na swój obraz.

Przypomnijmy, że przez $D(T_pM,\delta)$ oznaczamy dysk o środku w punkcie $(0,0)\in T_pM$ i promieniu δ .

Lemat

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $p \in M$. Istnieje wtedy taka $\delta > 0$, że

- ▶ $zbi\acute{o}r \exp_p(D(T_pM, \delta) jest otwarty w M, oraz$
- odwzorowanie wykładnicze

$$\exp_p \big|_{D(T_pM,\delta_p)}$$

ograniczone do zbioru $D(T_pM, \delta_p)$ jest dyfeomorfizmem na swój obraz.

Elementarna Geometria Różniczkowa

Triangulacj

Twierdzenie Gaussa-Bonneta

Widzimy, że $\exp_p: D(T_pM, \delta_p) \to M$ jest dyfeomorfizmem na swój obraz. Nietrudno sprawdzić, że jest to przykład lokalnego układu współrzędnych na M ($D(T_pM, \delta) \cong D^2 \subset \mathbb{R}^2$).

Wniosek

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $p \in M$ będzie punktem na niej. Ustalmy $0 < \varepsilon < \delta$. Wtedy istnieje $V \subset M$ – otwarte otoczenie punktu p, które posiada następujące własności:

- ▶ $V \subset \exp_q(D(T_qM, \varepsilon))$ dla wszstkich $q \in V$.
- każde dwa punkty w V można połączyć krzywą geodezyjną o długości mniejszej niż ε.

Widzimy, że $\exp_p: D(T_pM, \delta_p) \to M$ jest dyfeomorfizmem na swój obraz. Nietrudno sprawdzić, że jest to przykład lokalnego układu współrzędnych na $M(D(T_nM, \delta) \cong D^2 \subset \mathbb{R}^2)$.

Wniosek

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $p \in M$ będzie punktem na niej. Ustalmy $0 < \varepsilon < \delta$. Wtedy istnieje $V \subset M$ – otwarte otoczenie punktu p, które posiada następujące własności:

- ▶ $V \subset \exp_q(D(T_qM, \varepsilon))$ dla wszstkich $q \in V$.
- każde dwa punkty w V można połączyć krzywą geodezyjną

Uwaga

Widzimy, że $\exp_p: D(T_pM, \delta_p) \to M$ jest dyfeomorfizmem na swój obraz. Nietrudno sprawdzić, że jest to przykład lokalnego układu współrzędnych na M ($D(T_pM, \delta) \cong D^2 \subset \mathbb{R}^2$).

Wniosek

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $p \in M$ będzie punktem na niej. Ustalmy $0 < \varepsilon < \delta$. Wtedy istnieje $V \subset M$ – otwarte otoczenie punktu p, które posiada następujące własności:

- ▶ $V \subset \exp_q(D(T_qM, \varepsilon))$ dla wszstkich $q \in V$.
- każde dwa punkty w V można połgczyć krzywą geodezyjną o długości mniejszej niż ε.

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Odwzorowanie wykładnicze

Odwie wykladnieże

Iriangulacji

Twierdzenie Gaussa-Bonneta

Uwaga

Płaszczyzna ma tę własność, że wokół każdego punktu istnieje wypukłe otoczenie otwarte, tj. otoczenie w którym każde dwa punkty można połączyć odcinkiem geodezyjnej (czyli odcinkiem prostej). Tę własność nazywamy wypukłością geodezyjną i (co nie jest do końca oczywiste) posiada ją każda powierzchnia.

Triangulacja

Definicja

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką, i niech $x, y, z \in M$ będą różnymi punktami. Podzbiór $T \subset M$ nazywamy **trójkątem geodezyjnym** o wierzchołkach x, y, z i oznaczamy $\triangle xyz$ jeśli T jest homeomorficzny z dyskiem jednostkowym $D^2 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$, oraz brzeg T oznaczany jako ∂T składa się z trzech krzywych geodezyjnych $\overline{xy}, \overline{yz}, \overline{xz}$ (o końcach w x, y, z). Te geodezyjne nazywamy krawędziami trójkata geodezyjnego $\triangle xyz$.

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Gaussa-Bonneta

Triangulacje

irianguiacje

Iwierdzenie Gaussa-Bonneta

Triangulacja

Geometria Różniczkowa Opracowanie: Marek Kaluba

Flementarna

e - 1 - -

Odwzorowanie wykładnicze

Triangulacje

Twierdzenie Gaussa-Bonneta

Definicja

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką, i niech $x, y, z \in M$ będą różnymi punktami. Podzbiór $T \subset M$ nazywamy **trójkątem geodezyjnym** o wierzchołkach x, y, z i oznaczamy $\triangle xyz$ jeśli T jest homeomorficzny z dyskiem jednostkowym $D^2 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1\}$, oraz brzeg T oznaczany jako ∂T składa się z trzech krzywych geodezyjnych $\overline{xy}, \overline{yz}, \overline{xz}$ (o końcach w x, y, z). Te geodezyjne nazywamy **krawędziami** trójkąta geodezyjnego $\triangle xyz$.

- ▶ $T_1 \cap T_2 = \{x\}$ i x jest ich wspólnym wierzchołkiem, lub
- $T_1 \cap T_2 = \{\overline{xy}\}$, gdzie \overline{xy} jest ich wspólną krawędzią, lub
- $ightharpoonup T_1 \cap T_2 = \varnothing$.

Opracowanie: Marek Kaluba

Triangulacje

- ▶ $T_1 \cap T_2 = \{x\}$ i x jest ich wspólnym wierzchołkiem, lub
- $T_1 \cap T_2 = \{\overline{xy}\}$, gdzie \overline{xy} jest ich wspólną krawędzią, lub
- $ightharpoonup T_1 \cap T_2 = \varnothing$.

Opracowanie: Marek Kaluba

Triangulacje

Niech T będzie (skończoną) rodziną trójkątów geodezyjnch na M. Załóżmy, że dla wszystkie trójkąty w T są różne i każdy punkt $x \in M$ należy do pewnego trójkąta z T. Rodzinę T nazywamy **triangulacją** powierzchni *M* jeśli dla dowolnych dwóch trójkątów $T_1, T_2 \in \mathfrak{T}$ mamy

- ▶ $T_1 \cap T_2 = \{x\}$ i x jest ich wspólnym wierzchołkiem, lub
- ▶ $T_1 \cap T_2 = \{\overline{xy}\}$, gdzie \overline{xy} jest ich wspólną krawędzią, lub
- $ightharpoonup T_1 \cap T_2 = \varnothing$.

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Triangulacje

Definicja

Niech ${\mathbb T}$ będzie (skończoną) rodziną trójkątów geodezyjnch na M. Załóżmy, że dla wszystkie trójkąty w ${\mathbb T}$ są różne i każdy punkt $x\in M$ należy do pewnego trójkąta z ${\mathbb T}$. Rodzinę ${\mathbb T}$ nazywamy **triangulacją** powierzchni M jeśli dla dowolnych dwóch trójkątów $T_1,\,T_2\in{\mathbb T}$ mamy

- ► $T_1 \cap T_2 = \{x\}$ i x jest ich wspólnym wierzchołkiem, lub
- ▶ $T_1 \cap T_2 = \{\overline{xy}\}$, gdzie \overline{xy} jest ich wspólną krawędzią, lub
- $T_1 \cap T_2 = \varnothing.$

Lemat

Dla każdego $\varepsilon > 0$ istnieje triangulacja geodezyjna $\mathbb T$ zwartej powierzchni $M \subset \mathbb R^3$ w której każdy trójkąt geodezyjny ma średnicę mniejszą od ε .

Przykład

Triangulacja geodezyjna sfery S^2 .

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Twierdzenie Gaussa-Bonne

Odwzorowanie wykładnicze

Triangulacje

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką. Jeśli \triangle xyz jest trójkątem geodezyjnym na M zawartym w obrazie $\exp_x(D(T_xM,\delta_x))$, wtedy

$$\int_{\Delta xyz} K dA = \angle x + \angle y + \angle z - \pi.$$

Uwaga

Zapis dA oznacza całkowanie względem formy powierzchni którą używaliśmy podczas badania intuicyjnej definicji krzywizny Gaussa. Można inaczej zapisać d $A = \det(g_{ij})$ dsdt, wtedy należałoby wybrać lokalny układ współrzędnych i całkować po przeciwobrazie $x^{-1}(\Delta xyz)$.

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Gaussa-Bonneta

----,....

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką. Jeśli \triangle xyz jest trójkątem geodezyjnym na M zawartym w obrazie $\exp_x(D(T_xM,\delta_x))$, wtedy

$$\int_{\triangle xyz} K dA = \angle x + \angle y + \angle z - \pi.$$

Uwaga

Zapis dA oznacza całkowanie względem formy powierzchni którą używaliśmy podczas badania intuicyjnej definicji krzywizny Gaussa. Można inaczej zapisać dA = $\det(g_{ij})$ dsdt, wtedy należałoby wybrać lokalny układ współrzędnych i całkować po przeciwobrazie $x^{-1}(\Delta xyz)$.

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Gaussa-Bonne

Odwzorowanie wykładnicze

mangulacj

$$\chi^{\Upsilon}(M) \stackrel{\text{def.}}{=} V_{\Upsilon} - E_{\Upsilon} + F_{\Upsilon}$$

nazywamy charakterystyką Eulera powierzchni M

Uwaga

Charakterystyka Eulera **nie zależy** od wyboru triangulacji, więc zamiast $\chi^T M$ będziemy pisać $\chi(M)$.

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Gaussa-Bonneta

Odwzorowanie wykładni

Triangulacj

Niech $\mathcal T$ będzie triangulacją zwartej powierzchni M. Niech $F_{\mathcal T}$ oznacza liczbę trójkątów w $\mathcal T$, $E_{\mathcal T}$ – liczbę ich $r\acute{o}$ żnych krawędzi, zaś $V_{\mathcal T}$ – liczbę ich $(r\acute{o}$ żnych) wierzchołków. Liczbę całkowitą

$$\chi^{\mathfrak{I}}(M) \stackrel{\text{def.}}{=} V_{\mathfrak{I}} - E_{\mathfrak{I}} + F_{\mathfrak{I}}$$

nazywamy charakterystyką Eulera powierzchni M.

Uwaga

Charakterystyka Eulera **nie zależy** od wyboru triangulacji, więc zamiast $\chi^T M$ będziemy pisać $\chi(M)$.

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Gaussa-Bonneta

Odwzorowanie wykładnicze

irianguiacj

Niech \mathcal{T} będzie triangulacją zwartej powierzchni M. Niech $F_{\mathcal{T}}$ oznacza liczbę trójkątów w \mathfrak{T} , $E_{\mathfrak{T}}$ – liczbę ich *różnych* krawędzi, zaś $V_{\mathfrak{T}}$ – liczbę ich (*różnych*) wierzchołków. Liczbę całkowita

$$\chi^{\mathfrak{I}}(M) \stackrel{\text{def.}}{=} V_{\mathfrak{I}} - E_{\mathfrak{I}} + F_{\mathfrak{I}}$$

nazywamy charakterystyką Eulera powierzchni M.

Uwaga

Charakterystyka Eulera **nie zależy** od wyboru triangulacji, więc zamiast $\chi^T M$ będziemy pisać $\chi(M)$.

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Opracowanie: Marek Kaluba

Gaussa-Bonneta

Irianguia

Twierdzenie Gaussa-Bonneta

Twierdzenie (Twierdzenie Gaussa-Bonneta)

Niech $M \subset \mathbb{R}^3$ będzie zwartą powierzchnią. Wtedy

$$\int_{\mathcal{M}} K dA = 2\pi \chi(M).$$

Dowód z wykorzystaniem lokalnego twierdzenia G-B:

- Ponieważ M jest zwarta, więc istnieje taka δ_M , że odwzorowanie wykładnicze $\exp_p: D^2_{\delta_M} \to M$ w każdym punkcie $p \in M$ jest dyfeomorfizmem na swój obraz.
- ▶ Niech T będzie triangulacją geodezyjną powierzchni M. Możemy założyć, że każdy trójkąt $T \in T$ jest zawarty w obrazie pewnego odwzorowania wykładniczego \exp_q .
- Zatem do każdego trójkąta T∈ T (i każdego jego wierzchołka) możemy zastosować lokalne twierdzenie Gaussa-Bonneta.

- ▶ Ponieważ M jest zwarta, więc istnieje taka δ_M , że odwzorowanie wykładnicze $\exp_p: D^2_{\delta_M} \to M$ w każdym punkcie $p \in M$ jest dyfeomorfizmem na swój obraz.
- Niech $\mathcal T$ będzie triangulacją geodezyjną powierzchni M. Możemy założyć, że każdy trójkąt $T \in \mathcal T$ jest zawarty w obrazie pewnego odwzorowania wykładniczego \exp_a .
- ▶ Zatem do każdego trójkąta $T \in \mathcal{T}$ (i każdego jego wierzchołka) możemy zastosować lokalne twierdzenie Gaussa-Bonneta.

Opracowanie: Marek Kaluba

Gaussa-Bonneta

Odwzorowanie wykład

Triangulacje

- ▶ Ponieważ M jest zwarta, więc istnieje taka δ_M , że odwzorowanie wykładnicze $\exp_p: D^2_{\delta_M} \to M$ w każdym punkcie $p \in M$ jest dyfeomorfizmem na swój obraz.
- Niech $\mathcal T$ będzie triangulacją geodezyjną powierzchni M. Możemy założyć, że każdy trójkąt $T \in \mathcal T$ jest zawarty w obrazie pewnego odwzorowania wykładniczego \exp_q .
- ► Zatem do każdego trójkąta T ∈ T (i każdego jego wierzchołka) możemy zastosować lokalne twierdzenie Gaussa-Bonneta.

Opracowanie: Marek Kaluba

Gaussa-Bonneta

Odwzorowanie wykład

TT TATIBUTAL JC

- Niech T będzie triangulacją geodezyjną powierzchni M. Możemy założyć, że każdy trójkąt T∈ T jest zawarty w obrazie pewnego odwzorowania wykładniczego exp_a.
- ► Zatem do każdego trójkąta T∈ T (i każdego jego wierzchołka) możemy zastosować lokalne twierdzenie Gaussa-Bonneta.

Opracowanie: Marek Kaluba

Gaussa-Bonneta

Odwzorowanie wykład

rriangulacje

$$\int_{M} KdA = \sum_{T \in \mathcal{T}} \int_{T} KdA =$$

$$= \sum_{T \in \mathcal{T}} \left[\left(\sum_{v \in T} \angle(T, v) \right) - \pi \right] =$$

$$= \sum_{T \in \mathcal{T}} \sum_{v \in T} \angle(T, v) - \sum_{T \in \mathcal{T}} \pi =$$

$$= \sum_{v \in T} \sum_{T \in \mathcal{T}} \angle(T, v) - \pi F_{\mathcal{T}}.$$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Iwierdzenie Gaussa-Bonn

Odwzorowanie wykładniczi

Iriangulac

$$\int_{M} KdA = \sum_{T \in \mathcal{T}} \int_{T} KdA =$$

$$= \sum_{T \in \mathcal{T}} \left[\left(\sum_{v \in T} \angle(T, v) \right) - \pi \right] =$$

$$= \sum_{T \in \mathcal{T}} \sum_{v \in T} \angle(T, v) - \sum_{T \in \mathcal{T}} \pi =$$

$$= \sum_{v \in T} \sum_{T \in \mathcal{T}} \angle(T, v) - \pi F_{\mathcal{T}}.$$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Gaussa-Bonne

Triangulac,

$$\int_{M} KdA = \sum_{T \in \mathcal{T}} \int_{T} KdA =$$

$$= \sum_{T \in \mathcal{T}} \left[\left(\sum_{v \in T} \angle(T, v) \right) - \pi \right] =$$

$$= \sum_{T \in \mathcal{T}} \sum_{v \in T} \angle(T, v) - \sum_{T \in \mathcal{T}} \pi =$$

$$= \sum_{v \in T} \sum_{T \in \mathcal{T}} \angle(T, v) - \pi F_{\mathcal{T}}.$$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Gaussa-Bonne

Ouwzorowanie wykladnieże

Iriangulac

$$\int_{M} KdA = \sum_{T \in \mathcal{T}} \int_{T} KdA =$$

$$= \sum_{T \in \mathcal{T}} \left[\left(\sum_{v \in T} \angle(T, v) \right) - \pi \right] =$$

$$= \sum_{T \in \mathfrak{I}} \sum_{v \in T} \angle(T, v) - \sum_{T \in \mathfrak{I}} \pi =$$

$$= \sum_{v \in T} \sum_{T \in \mathfrak{I}} \angle(T, v) - \pi F_{\mathfrak{I}}.$$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Gaussa-Bonne

Ouwzorowanie wykladnieże

Triangulac

$=\sum_{v\in\mathcal{T}}\sum_{T\in\mathcal{T}}\mathcal{L}(T,v)-\pi F_{\mathcal{T}}=\sum_{v\in\mathcal{T}}2\pi-\pi F_{\mathcal{T}}=$

$$=2\pi V_{\mathfrak{T}}-\pi F_{\mathfrak{T}}=\pi(2V_{\mathfrak{T}}-F_{\mathfrak{T}}).$$

Zauważmy teraz, że każda krawędź należy dokładnie do dwóch trójkątów. Ponieważ każdy trójkąt ma trzy krawędzie mamy następująca równość

$$3F_{\mathfrak{T}}=2E_{\mathfrak{T}}.$$

Stosując to do poprzedniego wyniku mamy

$$\int_{M} KdA = \pi(2V_{\mathcal{T}} - F_{\mathcal{T}}) = \pi(2V_{\mathcal{T}} - 3F_{\mathcal{T}} + 2F_{\mathcal{T}}) =$$

$$= 2\pi(V_{\mathcal{T}} - E_{\mathcal{T}} + F_{\mathcal{T}}) = 2\pi\chi(M).$$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Gaussa-Bonneta

Odwzorowanie wykładni

Triangulacje

$$= \sum_{v \in T} \sum_{T \in \mathfrak{T}} \angle(T, v) - \pi F_{\mathfrak{T}} = \sum_{v \in T} 2\pi - \pi F_{\mathfrak{T}} =$$

$$= 2\pi V_{\mathfrak{T}} - \pi F_{\mathfrak{T}} = \pi (2V_{\mathfrak{T}} - F_{\mathfrak{T}}).$$

$$3F_{\mathfrak{T}}=2E_{\mathfrak{T}}.$$

Stosując to do poprzedniego wyniku mamy

$$\int_{M} KdA = \pi(2V_{\mathcal{T}} - F_{\mathcal{T}}) = \pi(2V_{\mathcal{T}} - 3F_{\mathcal{T}} + 2F_{\mathcal{T}}) =$$

$$= 2\pi(V_{\mathcal{T}} - E_{\mathcal{T}} + F_{\mathcal{T}}) = 2\pi\chi(M).$$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Gaussa-Bonneta

Odwzorowanie wykładnie

Friangulacje

$$= \sum_{v \in T} \sum_{T \in \mathfrak{T}} \angle(T, v) - \pi F_{\mathfrak{T}} = \sum_{v \in T} 2\pi - \pi F_{\mathfrak{T}} =$$

$$= 2\pi V_{\mathfrak{T}} - \pi F_{\mathfrak{T}} = \pi (2V_{\mathfrak{T}} - F_{\mathfrak{T}}).$$

$$3F_{\mathfrak{T}}=2E_{\mathfrak{T}}.$$

Stosując to do poprzedniego wyniku mamy

$$\int_{M} KdA = \pi(2V_{\mathcal{T}} - F_{\mathcal{T}}) = \pi(2V_{\mathcal{T}} - 3F_{\mathcal{T}} + 2F_{\mathcal{T}}) =$$

$$= 2\pi(V_{\mathcal{T}} - E_{\mathcal{T}} + F_{\mathcal{T}}) = 2\pi\chi(M).$$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Gaussa-Bonneta

Odwzorowanie wykład

Triangulacje

$$\begin{split} &= \sum_{\mathbf{v} \in \mathcal{T}} \sum_{\mathbf{T} \in \mathcal{T}} \measuredangle(\mathbf{T}, \mathbf{v}) - \pi F_{\mathcal{T}} = \sum_{\mathbf{v} \in \mathcal{T}} 2\pi - \pi F_{\mathcal{T}} = \\ &= 2\pi V_{\mathcal{T}} - \pi F_{\mathcal{T}} = \pi (2V_{\mathcal{T}} - F_{\mathcal{T}}). \end{split}$$

$$3F_{\mathfrak{T}}=2E_{\mathfrak{T}}.$$

Stosując to do poprzedniego wyniku mamy

$$\int_{M} KdA = \pi (2V_{\mathcal{T}} - F_{\mathcal{T}}) = \pi (2V_{\mathcal{T}} - 3F_{\mathcal{T}} + 2F_{\mathcal{T}}) =$$

$$= 2\pi (V_{\mathcal{T}} - E_{\mathcal{T}} + F_{\mathcal{T}}) = 2\pi \chi(M).$$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Gaussa-Bonneta

Odwzorowanie wykład

Triangulacje

$$= \sum_{v \in T} \sum_{T \in \mathfrak{T}} \angle(T, v) - \pi F_{\mathfrak{T}} = \sum_{v \in T} 2\pi - \pi F_{\mathfrak{T}} =$$

$$= 2\pi V_{\mathfrak{T}} - \pi F_{\mathfrak{T}} = \pi (2V_{\mathfrak{T}} - F_{\mathfrak{T}}).$$

$$3F_{\mathfrak{T}}=2E_{\mathfrak{T}}.$$

Stosując to do poprzedniego wyniku mamy

$$\int_{M} KdA = \pi(2V_{\mathcal{T}} - F_{\mathcal{T}}) = \pi(2V_{\mathcal{T}} - 3F_{\mathcal{T}} + 2F_{\mathcal{T}}) =$$

$$= 2\pi(V_{\mathcal{T}} - E_{\mathcal{T}} + F_{\mathcal{T}}) = 2\pi\chi(M).$$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Gaussa-Bonneta

Odwzorowanie wykładi

_

