Ευθείες Γενική Εξίσωση Ευθείας

Κωνσταντίνος Λόλας

 10^o ΓΕΛ Θεσσαλονίκης

Αχχχχ! Μεγαλώνουμε

Μέχρι στιγμής καμαρώνουμε τις ευθείες σε μία μορφή

$$y = \alpha x + \beta$$

Αν και όχι πάντα (π.χ. x = a)

Αχχχχ! Μεγαλώνουμε

Μέχρι στιγμής καμαρώνουμε τις ευθείες σε μία μορφή

$$y = \alpha x + \beta$$

Αν και όχι πάντα (π.χ. x = a)

Τι γνωρίζουμε?

- γραμμή ονομάζουμε οποιαδήποτε εξίσωση με τουλάχιστον μία μεταβλητή
- $oldsymbol{2}$ έχουμε δύο περιπτώσεις (λόγω κλίσης λ)
- ③ άρα...

γιατί να μην έχουμε ΜΙΑ εξίσωση και ας μην έχουμε λ.

Τι γνωρίζουμε?

- γραμμή ονομάζουμε οποιαδήποτε εξίσωση με τουλάχιστον μία μεταβλητή
- $oldsymbol{2}$ έχουμε δύο περιπτώσεις (λόγω κλίσης λ)
- ③ άρα...

γιατί να μην έχουμε ΜΙΑ εξίσωση και ας μην έχουμε λ .

Τι γνωρίζουμε?

- γραμμή ονομάζουμε οποιαδήποτε εξίσωση με τουλάχιστον μία μεταβλητή
- ② έχουμε δύο περιπτώσεις (λόγω κλίσης λ)
- ③ άρα...

γιατί να μην έχουμε ΜΙΑ εξίσωση και ας μην έχουμε λ.

Τι γνωρίζουμε?

- γραμμή ονομάζουμε οποιαδήποτε εξίσωση με τουλάχιστον μία μεταβλητή
- $oldsymbol{2}$ έχουμε δύο περιπτώσεις (λόγω κλίσης λ)
- ③ άρα...

γιατί να μην έχουμε ΜΙΑ εξίσωση και ας μην έχουμε λ .

YEAHHHHH!

Θα μας έκανε κάτι τέτοιο?

$$\mathbf{A}x + \mathbf{B}y + \Gamma = 0$$
, $\mathbf{\mu}\mathbf{\epsilon} \mathbf{A}^2 + \mathbf{B}^2 \neq 0$

Check 1!

Υπάρχει η $y=\alpha x+\beta$ στην $\mathbf{A}x+\mathbf{B}y+\Gamma=0$, με $\mathbf{A}^2+\mathbf{B}^2\neq 0$? Φυσικά, αρκεί $\mathbf{B}\neq 0$

$$Ax + By + \Gamma = 0$$
$$By = -Ax - \Gamma$$
$$y = -\frac{A}{B}x - \frac{\Gamma}{B}$$

Check 1!

Υπάρχει η $y=\alpha x+\beta$ στην $\mathbf{A}x+\mathbf{B}y+\Gamma=0$, με $\mathbf{A}^2+\mathbf{B}^2\neq 0$? Φυσικά, αρκεί $\mathbf{B}\neq 0$

$$Ax + By + \Gamma = 0$$
$$By = -Ax - \Gamma$$
$$y = -\frac{A}{B}x - \frac{\Gamma}{B}$$

Check 2!

Υπάρχει η
$$x=\alpha$$
 στην $\mathbf{A}x+\mathbf{B}y+\Gamma=0$, με $\mathbf{A}^2+\mathbf{B}^2\neq 0$? Φυσικά, αρκεί $\mathbf{B}=0$ και $\mathbf{A}\neq 0$

$$Ax + 0y + \Gamma = 0$$
$$Ax = -\Gamma$$
$$x = -\frac{\Gamma}{A}$$

Check 2!

Υπάρχει η $x=\alpha$ στην $\mathbf{A}x+\mathbf{B}y+\Gamma=0$, με $\mathbf{A}^2+\mathbf{B}^2\neq 0$? Φυσικά, αρκεί $\mathbf{B}=0$ και $\mathbf{A}\neq 0$

$$\begin{aligned} \mathbf{A}x + 0y + \Gamma &= 0 \\ \mathbf{A}x &= -\Gamma \\ x &= -\frac{\Gamma}{\mathbf{A}} \end{aligned}$$

Check 1!

Γράφεται η $y=\alpha x+\beta$ στην $\mathbf{A}x+\mathbf{B}y+\Gamma=0$, με $\mathbf{A}^2+\mathbf{B}^2\neq 0$? Φυσικά

$$y = \alpha x + \beta$$
$$\alpha x - 1y + \beta = 0$$

Check 1!

Γράφεται η $y=\alpha x+\beta$ στην $\mathbf{A}x+\mathbf{B}y+\Gamma=0$, με $\mathbf{A}^2+\mathbf{B}^2\neq 0$? Φυσικά

$$y = \alpha x + \beta$$
$$\alpha x - 1y + \beta = 0$$

Check 2!

Γράφεται η
$$x=\alpha$$
 στην $\mathbf{A}x+\mathbf{B}y+\Gamma=0$, με $\mathbf{A}^2+\mathbf{B}^2\neq 0$? Φυσικά

$$x = \alpha$$
$$1x + 0y - \alpha = 0$$

Check 2!

Γράφεται η $x = \alpha$ στην $Ax + By + \Gamma = 0$, με $A^2 + B^2 \neq 0$? Φυσικά

$$x = \alpha$$
$$1x + 0y - \alpha = 0$$

Μα γιατί να ασχοληθούμε???

Μπορούμε να βρίσκουμε άμεσα το παράλληλο στην ευθεία διάνυσμα

Το παράλληλο 1

Aν $\mathbf{B}\neq 0$ γράφεται ως εξής $y=-\frac{\mathbf{A}}{\mathbf{B}}x-\frac{\Gamma}{\mathbf{B}}$, άρα ένα διάνυσμα παράλληλό της είναι το $(-\mathbf{B},\mathbf{A})$

Το παράλληλο 2

Αν B=0 και $A\neq 0$ τότε ένα παράλληλο είναι το (0,A) (γιατί?) άρα και πάλι το

$$(-B, A)$$

Γιατί όχι και κάθετα?

Αφού η ευθεία είναι παράλληλη στο (-B,A)

Το κάθετο

η ευθεία $\mathbf{A}x+\mathbf{B}y+\Gamma=0$ είναι κάθετη στο διάνυσμα (\mathbf{A},\mathbf{B})

- ξανά τις ασκήσεις από άλλη σκοπιά
- ② θα ξέρουμε κατ' ευθείαν την παράλληλη σε διάνυσμα ευθεία
- ③ θα ξέρουμε κατ' ευθείαν την κάθετη σε διάνυσμα ευθεία
- 🚇 θα ξέρουμε κατ' ευθείαν τις συμμετρικές ως προς άξονες ευθείες

- ξανά τις ασκήσεις από άλλη σκοπιά
- ② θα ξέρουμε κατ' ευθείαν την παράλληλη σε διάνυσμα ευθεία
- ③ θα ξέρουμε κατ' ευθείαν την κάθετη σε διάνυσμα ευθεία
- 🚇 θα ξέρουμε κατ' ευθείαν τις συμμετρικές ως προς άξονες ευθείες

- ξανά τις ασκήσεις από άλλη σκοπιά
- ② θα ξέρουμε κατ' ευθείαν την παράλληλη σε διάνυσμα ευθεία
- Θα ξέρουμε κατ' ευθείαν την κάθετη σε διάνυσμα ευθεία
- 🐠 θα ξέρουμε κατ' ευθείαν τις συμμετρικές ως προς άξονες ευθείες

- ξανά τις ασκήσεις από άλλη σκοπιά
- Θα ξέρουμε κατ' ευθείαν την παράλληλη σε διάνυσμα ευθεία
- Θα ξέρουμε κατ' ευθείαν την κάθετη σε διάνυσμα ευθεία
- Θα ξέρουμε κατ' ευθείαν τις συμμετρικές ως προς άξονες ευθείες

Στο moodle θα βρείτε τις ασκήσεις που πρέπει να κάνετε, όπως και αυτή τη παρουσίαση

Ασκήσεις

Δίνεται η ευθεία $\varepsilon:2x+3y-6=0$. Να βρείτε:

- Φ την ευθεία ζ που είναι παράλληλη στην ευθεία ε και διέρχεται από το σημείο $\mathrm{A}(-1,2)$
- τα σημεία τομής της ευθείας ζ με τους άξονες

Λόλας (10° ΓΕΛ) Ευθείες 12/19

Δίνεται η ευθεία $\varepsilon: 2x + 3y - 6 = 0$. Να βρείτε:

- σημείο A(-1,2)
- τα σημεία τομής της ευθείας ζ με τους άξονες

Λόλας (10^o ΓΕΛ) Ευθείες 12/19

Να αποδείξετε ότι οι ευθείες

$$\varepsilon_1 : x - 3y + 2 = 0$$

$$\varepsilon_1 : x - 3y + 2 = 0$$
 $\varepsilon_2 : 2x - y - 1 = 0$ $\varepsilon_3 : 5x - 3y - 2 = 0$

$$\varepsilon_3: 5x - 3y - 2 = 0$$

διέρχονται από το ίδιο σημείο

Λόλας (10^o ΓΕΛ) Ευθείες 13/19

Δίνεται η εξίσωση:

$$(\lambda^2-1)x+(\lambda^2-\lambda)y+\lambda+1=0,\lambda\in\mathbb{R}$$

Να βρείτε για ποιες τιμές του λ η εξίσωση παριστάνει:

- ευθεία

Λόλας (10^o ΓΕΛ) Ευθείες 14/19

Δίνεται η εξίσωση:

$$(\lambda^2-1)x+(\lambda^2-\lambda)y+\lambda+1=0,\lambda\in\mathbb{R}$$

Να βρείτε για ποιες τιμές του λ η εξίσωση παριστάνει:

- ευθεία
- ευθεία παράλληλη στον άξονα x'x

Λόλας (10^o ΓΕΛ) Ευθείες 14/19

Δίνεται η εξίσωση:

$$(\lambda^2-1)x+(\lambda^2-\lambda)y+\lambda+1=0,\lambda\in\mathbb{R}$$

Να βρείτε για ποιες τιμές του λ η εξίσωση παριστάνει:

- ευθεία
- ευθεία παράλληλη στον άξονα x'x
- ευθεία παράλληλη στον άξονα y'y

Λόλας (10^o ΓΕΛ) Ευθείες 14/19

Δίνονται οι ευθείες:

- $\bullet \ \varepsilon_1 : (\mu 1)x (\mu 2)y \mu = 0$
- $\bullet \ \varepsilon_2 : (\mu 2)x (\mu + 1)y 3 = 0$

Να βρείτε το μ ώστε:

- **1** οι ευθείες ε_1 και ε_2 να τέμνονται

Λόλας (10^o ΓΕΛ) Ευθείες 15/19

Δίνονται οι ευθείες:

- $\bullet \ \varepsilon_1 : (\mu 1)x (\mu 2)y \mu = 0$
- $\bullet \ \varepsilon_2 : (\mu 2)x (\mu + 1)y 3 = 0$

Να βρείτε το μ ώστε:

- **1** οι ευθείες ε_1 και ε_2 να τέμνονται
- $2 \varepsilon_1 \parallel \varepsilon_2$

Λόλας (10^o ΓΕΛ) Ευθείες 15/19

Δίνονται οι ευθείες:

- $\varepsilon_1 : (\mu 1)x (\mu 2)y \mu = 0$
- $\varepsilon_2 : (\mu 2)x (\mu + 1)y 3 = 0$

Να βρείτε το μ ώστε:

- f 0 οι ευθείες $arepsilon_1$ και $arepsilon_2$ να τέμνονται
- $\mathbf{2} \ \varepsilon_1 \parallel \varepsilon_2$
- \bullet $\varepsilon_1 \perp \varepsilon_2$

Λόλας (10° ΓΕΛ) Ευθείες 15/19

Να βρείτε την οξεία γωνία των ευθειών

$$\varepsilon_1: y = (-2 + \sqrt{3})x$$

και

$$\varepsilon_2:y=-x$$

Λόλας (10^o ΓΕΛ) Ευθείες 16/19

Να βρείτε τις ευθείες που διέρχονται από το σημείο $\mathrm{P}(1,-1)$ και σχηματίζουν με την ευθεία $\eta: x+y-1=0$ οξεία γωνία ίση με 45°

Λόλας (10^o ΓΕΛ) Ευθείες 17/19

Να αποδείξετε ότι όλες οι ευθείες που ορίζονται από την εξίσωση:

$$\varepsilon_\lambda: (\lambda+1)x + (\lambda-1)y + 2\lambda = 0$$
, όπου $\lambda \in \mathbb{R}$

διέρχονται από το ίδιο σημείο Α και στη συνέχεια, να βρείτε εκείνη την ευθεία ε που ορίζεται από την εξίσωση αυτή και είναι κάθετη στην ευθεία $\zeta: y = 2x$

Λόλας (10^o ΓΕΛ) Ευθείες 18/19

Δίνεται η εξίσωση: $x^2 - 3y^2 - 2x + 1 = 0$

- ① Να αποδείξετε ότι παριστάνει δύο ευθείες ε_1 και ε_2 συμμετρικές ως προς τον άξονα x'x
- \bigcirc Να βρείτε την οξεία γωνία που σχηματίζουν οι ευθείες ε_1 και ε_2

Λόλας (10° ΓΕΛ) Ευθείες 19/19

Δίνεται η εξίσωση: $x^2 - 3y^2 - 2x + 1 = 0$

- Να αποδείξετε ότι παριστάνει δύο ευθείες ε_1 και ε_2 συμμετρικές ως προς τον άξονα x'x
- ② Να βρείτε την οξεία γωνία που σχηματίζουν οι ευθείες ε_1 και ε_2

Λόλας (10^o ΓΕΛ) Ευθείες 19/19