

Object Oriented NeXus Classes

Mark Könnecke

Laboratory for Development and Methods
Paul Scherrer Institut

- The plane perpendicular to the main rotation axis of the sample table defines the scattering plane of the instrument.
- As components are commonly positioned using angles, a polar coordinate system is used.
- When distances are required then we assume that the sample is a zero. Distances towards the source are negative, distances behind the sample, towards the detector are positive.

Polar Angle, Distance and Rotation

- The angle between the extension of the direct beam between a given component and its previous component and the projection of a third component onto the scattering plane is the polar_angle. This corresponds to longitude in a a geographical coordinate system. In scattering this is synonymous with two theta or gamma in normal beam geometry.
- Birds eye view on scattering plane:

Elevation

Standing besides the instrument:

 Elevation corresponds to latitude in geography. In neutron scattering this is often the angle nu.

Azimuthal Angle

Again birds eye view onto the scattering plane

Birds eye view again:

Miscellaneous Classes

NXreflection

- +h:NX_FLOAT32:[1..n] +k:NX_FLOAT32:[1..n]
- +I:NX_FLOAT32:[1..n]

NXmirrormaterial

- +substrate_material:String
- +substrate_thickness:NX_FLOAT32
- +substrate_roughness:NX_FLOAT32
- +coating_material:String
- +coating_thickness:NX_FLOAT32
- +coating_roughness:NX_FLOAT32
- +m_value:NX_FLOAT32

NXspectrum

+wavelength:NX_FLOAT32:[1..n] +intensity:NX_FLOAT32:[1..n]

NXlog

- +starttime:NXtime
- +offset:NX_INT32:[1..n]
- +value:NX_FLOAT32:[1..n]

NXuser

- +name:String
- +affiliation:String
- +address:String
- +e-mail:String

NXarchive

- +user:NXuser
- +instrument_reponsible:NXuser
- +sample:String
- +proposal_id: String
- +experiment_stardate:NXtime
- +title: String

NeXus Shape

NeXus Stages

NXtranslation_table

+x:NX_FLOAT32:[1..n]

+y:NX_FLOAT32:[1..n]

+z:NX_FLOAT32:[0..n]

NXtilt_table

+sgu:NX_FLOAT32:[1..n] +sgl:NX_FLOAT32[1..n]

Source Components

Samples

NXsample_description +name:String +chemical_formula:String:[0..1] +origin:String:[0..1]

NXenvironment +name:String +value:NX_FLOAT32 +log:NXlog:[0..1] +mean_value:NX_FLOAT32:[0..1] +standard_deviation:NX_FLOAT32:[0..1]

Detectors

- Concerning data handling there are the following types of detectors:
 - single detectors
 - linear detectors
 - area detectors
 - ID detectors
- Detectors have different geometries:
 - Detectors can have regular shapes: rectangles, lines etc which are best described as such
 - Some detectors (especially @ ISIS) are highly irregular: Then we need to describe each pixel.
- For each detector pixel we need to be able to deduce:
 - The scattering angle towards the previous component

Object Oriented NeXus Classes - p.16

- The elevation out of the scattering plane
- The distance to the provious component

Monochromatic Instruments

TOF Instruments

Conclusion

- The current NeXus classes are messy due to lack of specialization
- More classes improve clarity
- Inheritance brings better maintainability: for instance adding NXellipitcal as a NXshape does not require changes downstream
- Caveats:
 - backwards compatability difficult
 - description in XML problematic