Universidade Federal Fluminense TCC00287 – Banco de Dados I, Turma A1 VS – 01/08/2016

VS - 01/08/2016	Q3 (2,0)	
		Q4 (1,0)
Aluno:		Q5 (1,0)
Matrícula:	Turma:	Nota:

Q1 (3,0)

Q2 (3,0)

1) [3,0 pontos] Uma aplicação de gerenciamento financeiro permite registrar as movimentações financeiras de várias contas e classificá-las segundo uma taxonomia definida pelo usuário. Os movimentos podem ser depósitos, retiradas ou transferências entre contas do usuário. No caso de transferências, há que se registrar as contas de origem e destino dos recursos. A taxonomia de classificação pode possuir um número indeterminado de grupamentos, mas estão organizadas em dois grandes grupos: Receitas e Despesas. As Receitas classificam os depósitos e as Despesas classificam as retiradas. Faça os modelos de dados conceitual (1,0 pontos) e lógico (1,0 pontos) para essa aplicação de controle financeiro. Acrescente também as restrições de integridade referencial (1,0 pontos). Utilize somente atributos essenciais. R.:

 $Conta(\underline{numero}_1, nome)$

 $Movimento\left(\underbrace{origem_1, doataHora_1}, valor, descrição, tipo, destino
ight)$ origem referencia Conta destino referencia Conta

```
Categoria\left(\frac{codigo}{1}, descricao, grupo, tipo\right) grupo referencia Categoria
```

2) [3,0 ponto] Considerando o esquema lógico do banco de dados apresentado a seguir, especifique uma consulta SQL para listar o CGC e o nome das três revendedoras que mais venderam carros no ano de 2015.

```
Automoveis (<u>código</u>, fabricante, modelo, ano, país, preço_tabela)

Revendedoras (<u>cgc</u>, nome, proprietário, cidade, estado)

Negocios (<u>cpf, cgc, codigo, ano</u>, data, preço)

R.:

with

tl(r,t) as (select cgc, sum(preco)

from negocios

group by cgc)

select cgc, nome

from Revendedoras

where cgc in (select r from tl as rl where (select count(*))

from tl as r2 where r2.t>rl.t)<3)
```

3) [2,0 pontos] Uma empresa em processo de seleção deseja enviar comunicação aos candidatos que não preenchem as qualificações necessárias para os empregos que pleiteiam. Com base no esquema lógico de banco de dados a seguir escreva as expressões em álgebra relacional para listar o nome do candidato, seus dados de contato e o título do emprego para o qual o candidato não está apto. A relação Habilidade contém as habilidades necessárias para cada emprego, a relação Perfil contém as habilidades constatadas de cada candidato e a relação Inscrição contém os empregos aos quais os candidatos concorrem.

```
Emprego(\underline{codigo}, titulo)
Habilidade(\underline{codigo}, nome)
Requisito(\underline{emprego}, habilidade)
emprego referencia Emprego
habilidade referencia Habilidade
Candidato(\underline{cpf}, nome, contato)
Perfil(\underline{candidato}, habilidade)
candidato referencia Candidato
habilidade referencia Habilidade
Inscrição(\underline{candidato}, emprego)
R.:
t_1 \leftarrow \rho_{T(e,h)} \left( \pi_{codigo}, habilidade (Emprego \bowtie_{codigo} = emprego Requisito) \right)
t_2 \leftarrow \rho_{T(c,h)} \left( \pi_{cpf}, habilidade (Candidato \bowtie_{cpf} = candidato Perfil) \right)
t_3 \leftarrow \sigma_{NOT EXISTS} \left( \sigma_{c=cpf}(t_2) \div \pi_h \left( \sigma_{e=codigo}(t_1) \right) \right) \begin{pmatrix} Candidato \bowtie_{cpf} = candidato Inscrição \bowtie_{emprego} = codigo Emprego Reprego Represo (Emprego)
```

```
resultado = \pi_{nome.contato.titulo}(t_3)
```

4) [1,0 ponto] Defina superchave, dependência funcional multivalorada e em seguida a quarta forma normal (4FN) em termos da dependência funcional multivalorada. R.:

Superchave:

Uma superchave de uma relação $R(A_1,...,A_n)$ é um subconjunto $S \subseteq R$ que contenha a propriedade na qual não haverá duas tuplas t_1 e t_2 , em qualquer estado válido da relação r de R, cuja $t_1[S]=t_2[S]$.

Sejam:

- 1. Uma relação $R(A_1, A_2, ... A_m)$
- 2. Sub-conjuntos X, Y e Z de atributos de R, onde $Z = R (X \cup Y)$
- 3. t_1 , t_2 , t_3 e t_4 tuplas de R

Definição:

Diz-se que X multidetermina Y $(X \rightarrow Y \ ou \ X \rightarrow Y | Z)$, se e somente se para quaisquer t_1 e t_2 , onde $t_1[X] = t_2[X]$ existem t_3 e t_4 tais que:

```
t_1[X] = t_2[X] = t_3[X] = t_4[X]

t_1[Y] = t_3[Y] e t_1[Z] = t_4[Z]

t_2[Y] = t_4[Y] e t_2[Z] = t_3[Z]
```

Uma dependência multivalorada $X \rightarrow Y$ é chamada trivial se Y é um subconjunto de X ou $X \cup Y = R$

- 5) [1,0 ponto] Considere a seguinte consulta SQL ao banco de dados Empregado X Projeto.

```
SELECT PNUMBER, DNUM, LNAME, ADDRESS, BDATE FROM PROJECT, DEPARTMENT, EMPLOYEE WHERE DNUM=DNUMBER AND MGRSSN=SSN AND PLOCATION='Stafford';
```

Apresente a árvore algébrica otimizada, somente com as operações de junção (\bowtie ,*), seleção (σ), projeção (π) e união (\cup), correspondente ao comando SQL acima. Considere os seguintes critérios para otimização: (a) Realize o mais cedo possível as operações de seleção; (b) Projete cada relação e o resultado de cada operação de forma a manter apenas os atributos indispensáveis às operações seguintes; e (c) Realize o mais cedo possível as operações mais restritivas. Considere que a ordem de execução das operações é estabelecida pelo percurso na árvore em profundidade à esquerda. Não é necessário

apresentar o processo de otimização passo a passo, basta apresentar a árvore algébrica final otimizada.

R.:

EMPLOYEE	FNAME	MINIT	LNAME	SSN	BDATE	ADDRESS	SEX	SALARY	SUPERSSN	DNO
	John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	M	30000	333445555	5
	Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	M	40000	888665555	5
	Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
	Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
	Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
	Jayce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
	Ahmad	V	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
	James	E	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	null	1

DEPARTMENT	DNAME	DNAME <u>DNUMBER</u> MGRSSN		MGRSTARTDATE	
	Research	5	333445555	1988-05-22	
	Administration	4	987654321	1995-01-01	
	Headquarters	1	888665555	1981-06-19	

ĺ	PROJECT	PNAME	PNUMBER	PLOCATION	DNUM
		ProductX	1	Bellaire	5
		ProductY	. 2	Sugarland	5
		ProductZ	3	Houston	5
		Computerization	_10	Stafford	4
		Reorganization	20	Houston	1
		Newbenefits	30	Stafford	4

WORKS_ON	ESSN	PNO	HOURS
	123456789	1	32.5
	123456789	2	7.5
	666884444	3	40.0
	453453453	1	20.0
	453453453	2	20.0
	333445555	2	10.0
	333445555	3	10.0
	333445555	10	10.0
	333445555	20	10.0
	999887777	30	30.0
	999887777	10	10.0
	987987987	10	35.0
	987987987	30	5.0
	987654321	30	20.0
	987654321	20	15.0
	888665555	20	nuli