BMA

Vor.: X, Y Mengen und $f: X \to Y$ eine Abbildung. $\forall A: A \subset X: f[A] = \{f(a): a \in A\}, \forall B: B \subset Y: f^{-1}[B] = \{x \in X: f(x) \in B\}.$

- (a) Vor.: $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}, (x,y) \mapsto (x+y,x-y)$ Beh.:
 - (i) f nicht surjektiv, also $\exists (a,b) \in \mathbb{Z} \times \mathbb{Z} : \forall (x,y) \in \mathbb{Z} \times \mathbb{Z} : (x+y,x-y) \neq (a,b)$
 - (ii) f injektiv, also $\forall (x_1, y_1), (x_2, y_2) \in \mathbb{Z} \times \mathbb{Z} : f(x_1, y_1) = f(x_2, y_2) \implies (x_1, y_1) = (x_2, y_2)$

(iii)

$$f^{-1}[\{(a,b)\}] = \begin{cases} \{(\frac{a+b}{2}, \frac{a-b}{2})\} & \text{wenn } \frac{a+b}{2}, \frac{a-b}{2} \in \mathbb{Z} \\ \emptyset & \text{sonst} \end{cases} =: M$$

(iv) $f[\{(x,x)\}] = \{(2x,0)\}$

Proof (i) -

- (i) setze $(a,b) \coloneqq (1,0)$, dann gilt $(a,b) \in \mathbb{Z} \times \mathbb{Z}$, zu zeigen $\forall (x,y) \in \mathbb{Z} \times \mathbb{Z} : (x+y,x-y) \neq (a,b)$, sei $x,y \in \mathbb{Z}$ gegeben, zu zeigen $(x+y,x-y) \neq (1,0)$, wir führen einen Beweis durch Widerspruch und nehmen an (x+y,x-y) = (a,b), dann gilt insesondere x-y=0, also x=y, außerdem gilt x+y=1, also x+x=1, also x+x=1.
- (ii) Seien $(x_1, y_1), (x_2, y_2) \in \mathbb{Z} \times \mathbb{Z} : f(x_1, y_1) = f(x_2, y_2)$, zu zeigen $(x_1, y_1) = (x_2, y_2)$. Es gilt

$$f(x_1, y_1) = f(x_2, y_2)$$
$$(x_1 + y_1, x_1 - y_1) = (x_2 + y_2, x_2 - y_2)$$

also

$$x_1 - y_1 = x_2 - y_2$$

$$x_1 - x_2 = y_1 - y_2$$

und

$$x_{1} + y_{1} = x_{2} + y_{2}$$

$$x_{1} - x_{2} = y_{2} - y_{1}$$

$$y_{1} - y_{2} = y_{2} - y_{1}$$

$$2y_{1} = 2y_{2}$$

$$y_{1} = y_{2}$$

Außerdem

$$x_1 + \underbrace{y_1}_{y_2} = x_2 + y_2$$
 $x_1 + y_2 = x_2 + y_2$
 $x_1 = x_2$

Also gilt $x_1 = x_2$ und $y_1 = y_2$ und somit $(x_1, y_1) = (x_2, y_2)$

(iii) Mengengleichheit:

$$\begin{tabular}{ll} \begin{tabular}{ll} ``C" & $M\subset f^{-1}[\{(a,b)\}]$ & Fall 1: $\frac{a+b}{2},\frac{a-b}{2}\in\mathbb{Z}$ & zu zeigen $\{(\frac{a+b}{2},\frac{a-b}{2})\}\subset f^{-1}[\{(a,b)\}]$ & also zu zeigen $(\frac{a+b}{2},\frac{a-b}{2})\in f^{-1}[\{(a,b)\}]$, also zu zeigen $(\frac{a+b}{2},\frac{a-b}{2})\in\mathbb{Z}\times\mathbb{Z}$ & und $f(\frac{a+b}{2},\frac{a-b}{2})\subset\{(a,b)\}$, da $\frac{a+b}{2},\frac{a-b}{2}\in\mathbb{Z}$, gilt $(\frac{a+b}{2},\frac{a-b}{2})\in\mathbb{Z}\times\mathbb{Z}$ und $(\frac{a+b}{2}+\frac{a-b}{2},\frac{a+b}{2})-\frac{a-b}{2})=(a,b)$, was zu zeigen war. } \end{tabular}$$

Fall 2

zu zeigen $\emptyset \subset f^{-1}[\{(a,b)\}]$, gegeben.

"\cdot"
$$M \supset f^{-1}[\{(a,b)\}]$$

Fall 1: $\frac{a-b}{2}, \frac{a-b}{2} \in \mathbb{Z}$

Da f injektiv, gibt es zu jedem Bild genau ein Urbild, also ist, das oben genannte Urbild $(\frac{a+b}{2}, \frac{a-b}{2})$, das einzige.

Fall 2

sei $g: \mathbb{Q} \times \mathbb{Q} \to \mathbb{Q} \times \mathbb{Q}, (x,y) \mapsto (x+y,x-y)$, dann gilt analog zu (i), dass g injektiv.

$$\{(\frac{a+b}{2},\frac{a-b}{2})\} \subset g^{-1}[\{(a,b)\}]$$
 also $(\frac{a+b}{2},\frac{a-b}{2}) \in \mathbb{Q} \times \mathbb{Q}$ und $g(\frac{a+b}{2},\frac{a-b}{2}) \subset \{(a,b)\},$ da $a,b,2 \in \mathbb{Z}$, gilt $\frac{a+b}{2},\frac{a-b}{2} \in \mathbb{Q}$, gilt $(\frac{a+b}{2},\frac{a-b}{2}) \in \mathbb{Q} \times \mathbb{Q}$ und $(\frac{a+b}{2},\frac{a-b}{2}) \subset \{(a,b)\},$ da $a,b,2 \in \mathbb{Z}$, gilt $\frac{a+b}{2},\frac{a-b}{2} \in \mathbb{Q}$, gilt $(\frac{a+b}{2},\frac{a-b}{2}) \in \mathbb{Q} \times \mathbb{Q}$ und $(\frac{a+b}{2}+\frac{a-b}{2},\frac{a+b}{2}) - \frac{a-b}{2}) = (a,b)$, und da g injektiv, existiert nur diese eine Lösung. Da aber $\frac{a+b}{2} \notin \mathbb{Z}$, oder $\frac{a-b}{2} \notin \mathbb{Z}$, ist $(\frac{a+b}{2},\frac{a-b}{2}) \notin \mathbb{Z} \times \mathbb{Z}$ also ist das Urbild leer

(iv) zu zeigen
$$\{(2x,0)\} = \{f(a,b): (a,b) \in \{(x,x)\}\}\$$
 $\{f(a,b): (a,b) \in \{(x,x)\}\} = \{f(a,b): (a,b) = (x,x)\} = \{f(x,x)\} = \{(x+x,x-x)\} = \{2x,0\}$

(b) (i) **Beh.:** Für alle teilmengen $B_1, B_2 \subset Y$ gilt $f^{-1}[B_1 \cap B_2] = f^{-1}[B_1] \cap f^{-1}[B_2]$

Proof

zu zeigen

$$f^{-1}[B_1 \cap B_2] = f^{-1}[B_1] \cap f^{-1}[B_2]$$

$$f^{-1}[B_1 \cap B_2] = \{x \in X : f(x) \in B_1 \cap B_2\}$$

$$= \{x \in X : f(x) \in B_1 \wedge f(x) \in B_2\}$$

$$= \{x \in X : f(x) \in B_1\} \cap \{x \in X : f(x) \in B_2\}$$

$$= f^{-1}[B_1] \cap f^{-1}[B_2]$$

(ii) **Beh.:**

$$A_1, A_2 \subset X$$
 gilt $f[A_1] \setminus f[A_2] \subset f[A_1 \setminus A_2]$, also

$$\forall y \in Y : y \in f[A_1] \setminus f[A_2] \implies y \in f[A_1 \setminus A_2]$$

Proof

Sei $y \in f[A_1] \setminus f[A_2]$ gegeben, dann gilt:

$$y \in f[A_1] \setminus f[A_2]$$

$$\iff y \in f[A_1] \land y \notin f[A_2]$$

$$\iff y \in \{f(x) : x \in A_1\} \land y \notin \{f(x) : x \in A_2\}$$

Also existiert ein $x_1 \in A_1 : f(x_1) = y$ und für alle $x_2 \in A_2 : f(x_2) \neq y$, also gilt insbesondere $x_1 \notin A_2$, da sonst $f(x_1) \neq y$.

Zu zeigen $y \in f[A_1 \setminus A_2]$, also $y \in \{f(x) : x \in A_1 \setminus A_2\}$, also zu zeigen $\exists x \in A_1 \setminus A_2$ mit f(x) = y.

Setze $x := x_1$, zu zeigen $x \in A_1 \setminus A_2$ und f(x) = y dann gilt $x = x_1 \in A_1$ und $x = x_1 \notin A_2$, also $x \in A_1 \setminus A_2$, was zu zeigen war.

$$f(x) = f(x_1) = y$$