Lecture 9: Cryptography

Table of contents

- 1 Last Lecture
- Selected HW3 Problems
- 3 Cryptography Private key cryptosystems
 - Introduction
 - Caesar cipher
 - Affine cipher

Euclidean algorithms

Assume $r_0 = a$ and $r_1 = b$ with $r_0 \ge r_1$.

Euclidean finds gcd(a, b)

•
$$r_0 = r_1 q_1 + r_2$$
:

$$r_{n-2} = r_{n-1}q_{n-1} + r_n$$

•
$$r_{n-1} = r_n q_n + 0$$

Conclusion:
$$gcd(a, b) = r_n$$

Extended Euclidean: $as + bt = \gcd(a, b)$ Notation: * = some number

•
$$r_n = r_{n-2} + r_{n-1} *$$

• Use prev. equation to find r_{n-1}

$$r_n = r_{n-2} + (r_{n-3} * + r_{n-2} *)(-q_{n-1})$$

 $r_n = r_{n-3} * + r_{n-2} *$

Keep doing this till first equation

$$r_n = r_0 s + r_1 t$$

Modular inverses

$$a^{-1} \mod m =$$
 an integer b with $ab \equiv 1 \pmod m$. Note that
$$a^{-1} \mod m \text{ exists} \Leftrightarrow \gcd(a,m) = 1$$

To find $a^{-1} \mod m$, we do the following steps

Modular inverses

$$a^{-1} \mod m =$$
 an integer b with $ab \equiv 1 \pmod m$. Note that
$$a^{-1} \mod m \text{ exists} \Leftrightarrow \gcd(a,m) = 1$$

To find $a^{-1} \mod m$, we do the following steps

① Compute gcd(a, m). If gcd(a, m) > 1, $a^{-1} \mod m$ doesn't exist. If gcd(a, m) = 1, proceed to the next step.

Modular inverses

 $a^{-1} \mod m =$ an integer b with $ab \equiv 1 \pmod m$. Note that

$$a^{-1} \mod m \text{ exists} \Leftrightarrow \gcd(a, m) = 1$$

To find $a^{-1} \mod m$, we do the following steps

- ① Compute gcd(a, m). If gcd(a, m) > 1, $a^{-1} \mod m$ doesn't exist. If gcd(a, m) = 1, proceed to the next step.
- 2 Find Bezout coefficients s and t of a and m:

$$as + mt = \gcd(a, m) = 1.$$

Conclusion:

$$a^{-1} \mod m = s$$
.

Convert negative to positive in congruence

- In finding $s = a^{-1} \mod m$ by Bezout coefficient, s might be negative. To convert s to positive, we add a suitable multiple of m.
- Examples

Convert negative to positive in congruence

- In finding $s = a^{-1} \mod m$ by Bezout coefficient, s might be negative. To convert s to positive, we add a suitable multiple of m.
- Examples

Since
$$3 \cdot (-3) + 2 \cdot 5 = 1$$
,
$$3^{-1} \mod 5 = (-3) \mod 5 = 2$$
 Since $5 \cdot (-7) + 9 \times 4 = 1$,
$$5^{-1} \mod 9 = (-7) \mod 9 = 2$$

Solving $ax \equiv b \pmod{m}$

- Find $d = \gcd(a, m)$ (by factorizing a and m)
 - If $d \nmid b$, the equation has no solution.
 - If $d \mid b$, proceed to the next step.
- Write $a = da_1, b = db_1, m = dm_1$. Dividing all terms of $ax \equiv b \pmod{m}$ by d, we obtain

$$a_1 x \equiv b_1 \pmod{m_1} \tag{1}$$

Solving $ax \equiv b \pmod{m}$

- Find $d = \gcd(a, m)$ (by factorizing a and m)
 - If $d \nmid b$, the equation has no solution.
 - If $d \mid b$, proceed to the next step.
- Write $a = da_1, b = db_1, m = dm_1$. Dividing all terms of $ax \equiv b \pmod{m}$ by d, we obtain

$$a_1 x \equiv b_1 \pmod{m_1} \tag{1}$$

3 Multiplying both sides of (1) by $a_2 = a_1^{-1} \mod m_1$, we obtain

$$x \equiv b_1 a_2 \pmod{m_1}$$
.

Exercise 1

Let a,b,m be integers with $\gcd(a,m) \nmid b$. Prove that the equation

$$ax \equiv b \pmod{m}$$

has no solution.

Exercise 2

Consider integers a=252 and m=356.

(a) Let s,t be Bezout coefficients of a,m. What is s?

(A) -24 (B) 332 (C) -380 (D) Any A,B,C (E) None of A,B,C

- (b) For what $b \in \mathbb{Z}$ does equation $252x \equiv b \pmod{356}$ have solution?
- (c) Solve $252x \equiv 12 \pmod{356}$?

(d) How many $x \in \{0, 1, ..., 355\}$ satisfies $252x \equiv 12 \pmod{356}$?

What is cryptography?

- The subject of transforming information so that it cannot be easily recovered without special knowledge
- Cryptography is a branch in cryptology which comprises of
 - **① Cryptography** How to design methods to hide information.
 - **2** Cryptanalysis How to break methods that hide information.

Applications of cryptography

- Secrecy in communications: Military, spies, diplomats, banking (ATM cards, credit cards, PayPal)
- Integrity protection (ability to detect change in messages):
 Electronic form submission.

Cryptography model

Model

Conventional notations

- The plaintext is denoted by P
- The ciphertext is denoted by C
- Encryption

The sender encrypts $P \to C$ and send C over the insecure channel.

Conventional notations

- The plaintext is denoted by P
- The ciphertext is denoted by C
- Encryption

The sender encrypts $P \to C$ and send C over the insecure channel.

Decryption

Upon receiving C, the receiver decrypts $C \to P$ to retrieve the information.

Caesar cipher: Encryption

• Identify each letter with an integer between 0 and 25. Write out the plaintext P after this identification.

```
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
```

Caesar cipher: Encryption

• Identify each letter with an integer between 0 and 25. Write out the plaintext P after this identification.

② Fix a key $k \in \mathbb{Z}_{26} = \{0, 1, ..., 25\}$ (kept secret)

Caesar cipher: Encryption

• Identify each letter with an integer between 0 and 25. Write out the plaintext P after this identification.

- ② Fix a key $k \in \mathbb{Z}_{26} = \{0, 1, ..., 25\}$ (kept secret)
- lacktriangledown The plaintext P is encrypted to a cipher text C by

$$C = P + k \mod 26$$
.

Convert C back to a string of letters.

Caesar cipher: Decryption

• Since $C = P + k \mod 26$, we have

$$P = C - k \mod 26$$
.

Example 1

Encrypt the following text using Caesar cipher with the key k=11.

WEWILLMEETATMIDNIGHT.

Example 1 solution

• Convert the plaintext into integers between 0 and 25.

$$P = (22, 4, 22, 8, 11, 11, 12, 4, 4, 19, 0, 19, 12, 8, 3, 13, 8, 6, 7, 19)$$

Example 1 solution

• Add each integer by 11 and compute the result modulo 26.

$$C = P + 11 \mod 26 = (7, 15, 7, 19, 22, 22, 23, 5, 15, 4, 11, \dots)$$

Example 1 solution

Convert the integers back to letters

HPHTWWXPPELEXTOYTRSE

Encryption: $P \rightarrow C$

lacksquare Identify each letter with an integer between 0 and 25.

Write out the plaintext P after this identification.

- **2** Fix a key $k \in \mathbb{Z}_{26} = \{0, 1, \dots, 25\}.$
- lacksquare The plaintext P is encrypted to a cipher text C by

$$C = P + k \mod 26$$
.

Decryption: $C \rightarrow P$

$$P = C - k \mod 26$$
.

Exercise 3

Using the Caesar cipher with the key k=6, $\mbox{encrypt}$ the plaintext

SITISGREAT

Exercise 4

Decrypt the ciphertext ZNK KGXRE HOXJ MKZY ZNK CUXS using Caesar cipher with the key k=6.

How to break Caesar cipher?

The Caesar cipher is easy to break, as the key space is small.

- There are 26 possible values $0, 1, \ldots, 25$ for the key k.
- 2 Try all possible values.

Affine cipher: Encryption

Identify each letter with an integer between 0 and 25.
 Write out the plaintext P after this identification.

Affine cipher: Encryption

- Identify each letter with an integer between 0 and 25. Write out the plaintext P after this identification.
- ② Choose $a, b \in \mathbb{Z}_{26}$ such that gcd(a, 26) = 1.

$$a \in \{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25\}$$

Affine cipher: Encryption

- Identify each letter with an integer between 0 and 25.
 Write out the plaintext P after this identification.
- ② Choose $a, b \in \mathbb{Z}_{26}$ such that gcd(a, 26) = 1.

$$a \in \{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25\}$$

lacktriangledown The plaintext P is encrypted to a ciphertext C by

$$C = aP + b \mod 26$$
.

Affine cipher: Decryption

• Decryption: Since $C = aP + b \mod 26$, we have

$$P = a^{-1}(C - b) \mod 26.$$

• Remark. $a^{-1} \mod 26$ exists because gcd(a, 26) = 1.

Remarks on affine cipher

• When a=1, the affine cipher becomes Caesar cipher.

Remarks on affine cipher

- When a = 1, the affine cipher becomes Caesar cipher.
- The key space for affine cipher is

$$K = \{(a, b) : a, b \in \mathbb{Z}_{26}, \gcd(a, 26) = 1\}.$$

Key space of affine cipher

$$K = \{(a, b) : a, b \in \mathbb{Z}_{26}, \gcd(a, 26) = 1\}.$$

Key space of affine cipher

$$K = \{(a, b) : a, b \in \mathbb{Z}_{26}, \gcd(a, 26) = 1\}.$$

• There are 12 choices for a

$$a \in \{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25\}$$

• There are 26 choices for b

$$b \in \{0, 1, \dots, 25\}$$

Key space of affine cipher

$$K = \{(a, b) : a, b \in \mathbb{Z}_{26}, \gcd(a, 26) = 1\}.$$

• There are 12 choices for a

$$a \in \{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25\}$$

• There are 26 choices for b

$$b \in \{0, 1, \dots, 25\}$$

• The key space is $|K| = 12 \cdot 26 = 312$.

Example 2

Encrypt the plaintext SITISTHEBEST using affine cipher with the key (a,b)=(3,13).

Summary on affine cipher

Encryption: $P \rightarrow C$

- Identify each letter with an integer between 0 and 25. Write out the plaintext P after this identification.
- ② Choose a key k = (a, b) with $a \in \mathbb{Z}_{26}^*, b \in \mathbb{Z}_{26}$.
- lacktriangledown The plaintext P is encrypted to a cipher text C by

$$C = aP + b \mod 26$$
.

Decryption: $C \rightarrow P$

$$P = a^{-1}(C - b) \mod 26.$$

Exercise 5

In this exercise, we decrypt the ciphertext AXG using affine cipher with key $(a,b)=(7,3)\,$

(a) Write out the formula which gives **decryption rule** for affine cipher with the key (a, b) = (7, 3).

Exercise 5

(b) Find $7^{-1} \mod 26$ and decrypt AXG using affine cipher with key (a,b)=(7,3).