Self-Test 3

Describe briefly the locus of points that satisfy the conditions.

- 1. In the plane of two intersecting lines j and k, and equidistant from the lines
- 2. In space and t units from point P
- 3. In space and equidistant from points W and X that are 10 cm apart
- 4. In the plane of $\angle DEF$, equidistant from the sides of the angle, and 4 cm from \overrightarrow{EF}
- 5. In the plane of two parallel lines s and t, equidistant from s and t, and 4 cm from a particular point A in the plane (three possibilities)
- **6.** Construct a large isosceles $\triangle RST$. Then construct the locus of points that are equidistant from the vertices of $\triangle RST$.
- 7. Draw a long segment, \overline{BC} , and an acute angle, $\angle 1$. Construct a right triangle with an acute angle congruent to $\angle 1$ and hypotenuse congruent to \overline{BC} .

Extra

The Nine-Point Circle

Given any $\triangle ABC$, let H be the intersection of the three altitudes. There is a circle that passes through these nine special points:

midpoints L, M, N of the three sides points R, S, T, where the three altitudes of the triangle meet the sides midpoints X, Y, Z of \overline{HA} , \overline{HB} , \overline{HC}

Key steps of proof:

- 1. XYMN is a rectangle.
- 2. The circle circumscribed about XYMN has diameters \overline{MX} and \overline{NY} .
- 3. Because $\angle XSM$ and $\angle YTN$ are right angles, the circle contains points S and T as well as X, Y, M, and N.
- 4. XLMZ is a rectangle.
- 5. The circle circumscribed about XLMZ has diameters \overline{MX} and \overline{LZ} .
- 6. Because $\angle XSM$ and $\angle ZRL$ are right angles, the circle contains points S and R as well as X, L, M, and Z.

