STAT 510 Mathematical Statistics Fall 2022

Problem set 3: Due on 11:59pm, Friday, 9/30/2022

1. K-component Gaussian mixture model. Let X_1, \ldots, X_n be i.i.d. p-dimensional random variables with mixture distribution of K Gaussians, i.e., the common probability density function of X_i , $i = 1, \ldots, n$ is given by

$$f(x \mid \theta) = \sum_{k=1}^{K} \frac{\pi_k}{\sqrt{\det(2\pi\Sigma_k)}} \exp\left[-\frac{1}{2}(x-\mu_1)^T \Sigma_k^{-1}(x-\mu_1)\right], \quad x \in \mathbb{R}^p,$$

where $\theta = \{(\pi_k, \mu_k, \Sigma_k)_{k=1}^K\}$ contains the unknown parameters such that $\pi_k \ge 0, \sum_{k=1}^K \pi_k = 1, \ \mu_k \in \mathbb{R}^p$, and $\Sigma_k \succ 0$ is a $p \times p$ positive-definite matrix.

- (a) **E-step.** Compute the Q-function defined as $Q(\theta|\theta^{(t)}) = \mathbb{E}[\ell(\theta|X,Z)|X,\theta^{(t)}]$, where $X = (X_1, \dots, X_n)$ and $Z = (Z_{ik})_{i=1,\dots,n;k=1,\dots,K}$ contains the cluster membership hidden variables (i.e., if X_i comes from component k then $Z_{ik} = 1$, and $Z_{ik} = 0$ otherwise), $\theta^{(t)}$ is the current estimate of parameter θ at iteration t, and $\ell(\theta|X,Z)$ is the complete data log-likelihood function.
- (b) **M-step.** Maximize $Q(\theta|\theta^{(t)})$ over θ in the above Gaussian mixture model and obtain the explicit updating expression for $\theta^{(t+1)}$.
- (c) **Implementation.** Submit your computer program code to implement the EM algorithm for the above K-component Gaussians mixture model.
- (d) **Data.** Apply your EM algorithm for clustering the Iris data with p=4 features and 150 data points. Output your estimated θ from the EM algorithm. Meanwhile, report the convergence of the EM algorithm, i.e., look at $\theta^{(t)} \theta$ versus t, where θ is the true parameter. Iris data is provided in the file Iris data.txt and description of the Iris data is provided in iris description.txt.
- 2. Missing data problem. Let $X = (X_1, X_2, X_3)$ be a (three-category) multinomial random variable with the following probability mass function

$$f(x \mid \theta) = \frac{(x_1 + x_2 + x_3)!}{x_1! \, x_2! \, x_3!} \, \left(\frac{4 + \theta}{6}\right)^{x_1} \left(\frac{1 - \theta}{3}\right)^{x_2} \left(\frac{\theta}{6}\right)^{x_3}, \quad x = (x_1, x_2, x_3),$$

where $\theta \in (0,1)$ is the unknown parameter.

- (a) Derive the EM algorithm for estimating the parameter θ in the above multinomial model (that is, write down the Q-function and maximize it).
- (b) Submit your computer program code to implement the EM algorithm derived in part (a). Output your estimated θ and report the convergence of the EM algorithm on the given data X=(42,10,15).