

Frank Schindler RIKEN, 14 September 2017

Probing many-body localization with neural networks

Titus Neupert (U Zurich)

Nicolas Regnault (ENS Paris)

PRB 95, 245134 (2017)

- 1) Intro to neural networks
- 2) Problem: Detection of MBL versus thermalization
- 3) Network architecture
- 4) Results on phase diagrams and structure of MBL states
- 5) Dreaming

Machine Learning/ Artificial Intelligence

Supervised learning

Train network with large amount of labelled data (input-output pairs): Reduce cost function (distance measure between network output and labels) via gradient descent.

Verify network performance on distinct test data set.

Unsupervised learning

Use unlabelled data, network learns to cluster data/find structure/learn probability distribution of features

Holy grail of the field

Supervised learning with Artificial Neural Networks

goal: learn complicated function $\hat{F}(\vec{x})$ with $\dim(\vec{x})\gg 1$ from examples by finding $\min_F \mathrm{Error}[F,\hat{F}]$

Individual neuron:

combination of linear map (weights + biases) and nonlinear activation function

Deep network: many layers of neurons

Objective:

Classification of phases of matter using entanglement spectra

Supervised learning:

Train network with data deep in the respective phase

Determine phase boundary:

Apply network to states for which classification is less clear

Toy problem: Many-body localization

Standard model of MBL: spin-1/2 disordered Heisenberg chain, open boundary conditions

$$H = J \sum_{\mathsf{r}=1}^{N-1} \boldsymbol{S}_{\mathsf{r}} \cdot \boldsymbol{S}_{\mathsf{r}+1} + \sum_{\mathsf{r}=1}^{N} h_{\mathsf{r}} S_{\mathsf{r}}^z$$

$$J=1$$
 $h_{\mathsf{r}}\in [-ar{h},ar{h}]$

$$\bar{h} \ll 1$$
 thermalizing regime (obeys ETH) volume law entanglement

Conventional classification methods

based on energy level spectrum or entanglement entropy/spectrum

$$\rho_A = \operatorname{Tr}_B |\Psi\rangle \langle \Psi| \equiv e^{-H_e}$$

- i) Schmidt gap: $\lambda_1(\rho_A) \lambda_2(\rho_A)$ $\rightarrow 1$ for MBL (nearly pure) $\ll 1$ for ETH
- ii) Volume vs. area law scaling of $S(N_A)$ with N_A
- iii) Standard deviation of $S(N_A)$ over many consecutive eigenstates large near the transition where both MBL and ETH like states coexist
- iii) Level statistics of either the entanglement spectrum or the energy spectrum follow distinct statistical distributions in each regime

Conventional classification methods

based on energy level spectrum or entanglement entropy/spectrum

$$\rho_A = \operatorname{Tr}_B |\Psi\rangle \langle \Psi| \equiv e^{-H_e}$$

crude

i) Schmidt gap: $\lambda_1(\rho_A) - \lambda_2(\rho_A) \longrightarrow 1$ for MBL (nearly pure)

needs finite size scaling

- ii) Volume vs. area law scaling of S(N)
- phase transition does not iii) Standard deviation of $\,S(N_A)\,$ correspond to maximum large near the transition where both MBL and ETH like states coexist
- iii) Level statistics of either the entanglement spectrum or the energy spectrum follow distinct statistical distributions in each regime

needs large systems

Structure of neural network

Cost function and regularization

In training, we minimize the following functional for F via gradient descent:

Cross entropy

$$\operatorname{Error}[F, \hat{F}] = -\sum_{\vec{x} \in \operatorname{TD}} \sum_{i=1}^{2} \hat{F}_{i}(\vec{x}) \log F_{i}(\vec{x}) + \mu \sum_{\vec{w}} |\vec{w}|^{2} - \delta \sum_{\vec{x} \in \operatorname{TR}} \sum_{i=1}^{2} F_{i}(\vec{x}) \log F_{i}(\vec{x})$$

labelled training data

classifying
output
neurons:
2 options,
ETH or MBL

Weight decay

favors having only few nonzero weights/using as few neurons as possible

Confidence optimization

favors unlabelled data near phase transition to be classified confidently

random subset of spectra near transition

For comparison: Conventional methods

Volume law coefficient of the entanglement entropy

[Luitz et al., PRB 2015]

Results: Disorder-averaged phase diagram

Confidence for MBL averaged over disorder realization and eigenstates in energy window

- fewer disorder realizations (40)
- smaller system (N=16)

Results: Disorder-averaged phase diagram

Confidence for MBL averaged over disorder realization and eigenstates in energy window

- fewer disorder realizations (40)
- smaller system (N=16)

Results: Transition in single disorder realization

standard deviation of entanglement entropy over 512 consecutive eigenstates

fraction of uncertainly classified states (out of 512 consecutive states)

output >0.9 taken as certain

Results: Comparison with energy level statistics

blue: with confidence optimization

red: without confidence optimization

Ratio of adjacent gaps:

$$r_n = \frac{\min(E_n - E_{n-1}, E_{n+1} - E_n)}{\max(E_n - E_{n-1}, E_{n+1} - E_n)}$$

ETH: GOE statistics $r \sim 0.530$

MBL: Poisson statistics $r \sim 0.386$

Results: Determination of critical field

Arbitrariness of quantitative determination of phase boundary

$$\bar{h}_{\rm c} = 3.6 \pm 0.5$$

Correlation between average absolute field value and transition for 40 disorder realizations

Correlation coefficient: 0.76

Results: Local structure

Compare classification results for different entanglement cuts in the same disorder realization

N = 18; cuts from 6 ... 12

red: ETH blue: MBL white: not confident

On ETH side: spatially extended, spectrally isolated MBL states

Cul

On MBL side: spatially and spectrally isolated ETH states

Results: Local structure

Compare classificatio cuts in the same diso

N = 18; cuts from 6...

red: ETH blue: MBL

On ETH side: spat

blue: all 7 cuts ETH

red: all 7 cuts MBL

black: at least one ETH and one MBL cut

h

ETH/MBL asymmetry in local structure near the transition: reaffirms bubble hypothesis

Results: What can go wrong

Fraction of uncertain spectra; same disorder realization, N = 18

$$\begin{aligned} & \operatorname{Cost}(\hat{f},f) = -\sum_{x \in \operatorname{TD}} \sum_{i}^{2} f_{i}(x) \log \hat{f}_{i}(x) - \delta \sum_{x \in \operatorname{TR}} \sum_{i}^{2} \hat{f}_{i}(x) \log \hat{f}_{i}(x) + \mu |V|^{2} \\ & \underbrace{\sum_{i=1}^{2} \delta_{i}(x) \log \hat{f}_{i}(x) - \delta \sum_{i=1}^{2} \sum_{j=1}^{2} \hat{f}_{i}(x) \log \hat{f}_{i}(x) + \mu |V|^{2}}_{0.9} \\ & \underbrace{\sum_{i=1}^{2} \delta_{i}(x) \log \hat{f}_{i}(x) - \delta \sum_{i=1}^{2} \sum_{j=1}^{2} \hat{f}_{i}(x) \log \hat{f}_{i}(x) + \mu |V|^{2}}_{0.9} \\ & \underbrace{\sum_{i=1}^{2} \delta_{i}(x) \log \hat{f}_{i}(x) - \delta \sum_{i=1}^{2} \sum_{j=1}^{2} \hat{f}_{i}(x) \log \hat{f}_{i}(x) + \mu |V|^{2}}_{0.9} \\ & \underbrace{\sum_{i=1}^{2} \delta_{i}(x) \log \hat{f}_{i}(x) - \delta \sum_{i=1}^{2} \sum_{j=1}^{2} \hat{f}_{i}(x) \log \hat{f}_{i}(x) + \mu |V|^{2}}_{0.9} \\ & \underbrace{\sum_{i=1}^{2} \delta_{i}(x) \log \hat{f}_{i}(x) - \delta \sum_{i=1}^{2} \sum_{j=1}^{2} \hat{f}_{i}(x) \log \hat{f}_{i}(x) + \mu |V|^{2}}_{0.9} \\ & \underbrace{\sum_{i=1}^{2} \delta_{i}(x) \log \hat{f}_{i}(x) - \delta \sum_{i=1}^{2} \sum_{j=1}^{2} \hat{f}_{i}(x) \log \hat{f}_{i}(x) + \mu |V|^{2}}_{0.9} \\ & \underbrace{\sum_{i=1}^{2} \delta_{i}(x) \log \hat{f}_{i}(x) - \delta \sum_{i=1}^{2} \sum_{j=1}^{2} \hat{f}_{i}(x) \log \hat{f}_{i}(x) + \mu |V|^{2}}_{0.9} \\ & \underbrace{\sum_{i=1}^{2} \delta_{i}(x) \log \hat{f}_{i}(x) - \delta \sum_{i=1}^{2} \sum_{j=1}^{2} \hat{f}_{i}(x) \log \hat{f}_{i}(x) + \mu |V|^{2}}_{0.9} \\ & \underbrace{\sum_{i=1}^{2} \delta_{i}(x) \log \hat{f}_{i}(x) - \delta \sum_{i=1}^{2} \sum_{j=1}^{2} \hat{f}_{i}(x) \log \hat{f}_{i}(x) + \mu |V|^{2}}_{0.9} \\ & \underbrace{\sum_{i=1}^{2} \delta_{i}(x) \log \hat{f}_{i}(x) - \delta \sum_{i=1}^{2} \sum_{j=1}^{2} \hat{f}_{i}(x) \log \hat{f}_{i}(x) + \mu |V|^{2}}_{0.9} \\ & \underbrace{\sum_{i=1}^{2} \delta_{i}(x) \log \hat{f}_{i}(x) - \delta \sum_{i=1}^{2} \sum_{j=1}^{2} \hat{f}_{i}(x) \log \hat{f}_{i}(x) + \mu |V|^{2}}_{0.9} \\ & \underbrace{\sum_{i=1}^{2} \delta_{i}(x) \log \hat{f}_{i}(x) - \delta \sum_{i=1}^{2} \hat{f}_{i}(x) \log \hat{f}_{i}(x) - \delta \sum_{i=1}^{2} \hat{f}_{i}(x) \log \hat{f}_{i}(x) + \mu |V|^{2}}_{0.9} \\ & \underbrace{\sum_{i=1}^{2} \delta_{i}(x) \log \hat{f}_{i}(x) - \delta \sum_{i=1}^{2} \hat{f}_{i}(x) \log \hat{f}_{i}(x) - \delta \sum_$$

Need both terms in cost function

Results: Finite size effects

- artifact structures near transition for smaller systems
- smooth and sharp phase boundary at largest system size
- confirms that confidence threshold 0.9 is appropriate for the system size

Dreaming: What the network has learned

Dreaming: What the network has learned

Shape reproduced, magnitude not

Reproduces power-law form of entanglement spectra

[Serbyn et al., PRL 2016]

What we have learned: Recipe for phase classification

- train NN deep in the phases
- increase number of hidden layers until convergence on test set
- use dropout regularization
- use weight decay
- use confidence optimization near phase transition region

Problems

- quantitative correctness not guaranteed
- discovery of new phases
- interpretability

Advantages

- simple and performant
- no physical insight about phase characteristics assumed

Summary

- performance comparable to established (physical) methods
- works for single disorder realizations, individual eigenstates, small systems
- simple and natural choice of network and cost function; no tweaking
- blueprint for other phase classification applications using NNs

Open source code

Low entry barrier through packages like Google's TensorFlow

