

京东云跨集群大规模应用管理实践

JDC1oud

JDCloud

China 2024

优化人员简介

王晓飞

JDCloud 云原生开发工程师 wangxiaofei67@jd.com

目 录

01 京东云容器化发展历程

02 联邦集群

03 跨集群弹性伸缩

04 总结

01

京东云容器化发展历程

京东容器化发展历程

一切围绕应用

单集群困境

- 故障时爆炸半径过大,影响应用SLA。
- 应用跨集群弹性伸缩存在难度,人工运维。

跨集群调度

- 资源统一调度
- 多分组灵活调度策略

跨集群弹性伸缩

- 跨集群弹性伸缩
- 一键迁移

多活和高可用

- 应用多活
- 跨集群网络

京东云·云舰

https://www.jdcloud.com/cn/products/yunjian

基于Karmada进行深度开发和增强

https://github.com/karmada-io/karmada

整体架构

China 2024

联邦集群服务部署

新建

FedClusterManagerAPI处理用户创建 联邦集群请求,和ConfigAPI 服务交互,获取 创建上下文和参数。创建FedCluster CR。

运行

FedClusterController监听到FedCluster, 按照Spec声明,在指定Kubernetes集群创建联 邦集群 ControlPlane.

管理

FedClusterController监听FedCluster, 声明Spec加入指定联邦集群, 联邦集群开始管理来自多云的Kubernetes集群。

FedKService 控制器

资源调度引擎

基于Hippo服务,进行多集群资源精准测算,得出 资源画像。

副本计算引擎

按照资源画像以及调度策略,进行副本多集群拆分。

弹性计算控制器

执行弹性策略,执行扩缩容计划。

AppSet控制器

直接控制pod的工作负载

联邦增强

KService status sync

解决KService status资源从子集群同步合并到联邦集群。

StatefulSet起始序号在多集群控制

在联邦集群使用StatefulSet和单Kubernetes集群序号控 制行为相同。

全局代理性能提升

1.子集群查询时使用pb协议; 2.从单独查询,修改为并发查询; 3.存储过程优化,使得存取数据性能更高。 4.性能提升30%

Karmada scheduler增强调度

支持GPU集群调度,支持异构集群调度。

03

跨集群弹性伸缩

JDC1 oud 2024

弹性伸缩架构

联邦弹性伸缩过程

资源测算,

分发调度副本

实时匹配弹性策略,

计算应用需要副本数

根据弹性策略反复执

行扩缩容,直至挂量

Pod数达到期望值

配置化生命周期管理

异常Pod GC机制

扩容 + 应用状态前置 + 挂量后置 应用状态检查 容器正常运行 + 摘量后置 + 摘量前置 Serverless缩容

Karmada

下发调度结果

弹性伸缩场景

故障自动迁移

集群节点故障迁移 集群下线 跨机房容灾迁移

指标监控弹性伸缩

支持机器性能、方法调用性能指标 个性化定制扩缩容规则

大促压测容器热备

流量低时,热备容器压缩为低规格 流量高时,低规格热备容器恢复

定时扩缩容

支持Cron表达式

资源:	CPU使用率			聚合方式:	Avg	v
组内容	器平均值连续:	>=3	② 次 :	大于等于: >=	=1 0	%时进行扩容
 组内容	器平均值连续:	>=3	② 次	小于等于: >=	=1 ?	%时进行缩容

扩缩方式: 数量 🔻					
在 thenyanyings	将实例数	扩容	> 到	2	↑ And
且在	将实例数	缩容	到	2	^
0 0 1 * * ?					

生产实践分享: 弹性伸缩和人工部署的切换

弹性伸缩场景

- 默认开启, 自动伸缩
- 只调整副本数
- 不负责镜像版本、环境变量、配置文件等更新

人工部署场景

- 第一次上线部署
- 镜像更新、配置更新、环境变量等更新
- 指定单个Pod更新,线上回归验证

场景矛盾

- 人工部署时,希望副本数稳定,停止弹性伸缩。
- 弹性伸缩时,人工部署会干扰扩缩容的执行效果

弹性伸缩和人工部署切换

hina 2024 -

Manual模式

人工部署场景 允许人工部署下发 屏蔽弹性伸缩控制

Auto模式

弹性伸缩场景 允许弹性伸缩下发 屏蔽人工部署控制

None模式

无模式状态,隔离场景 屏蔽弹性伸缩控制 屏蔽人工部署控制

全流程操作

China 2024

第一次部署

第一次人工部署 是Manual模式

确认人工部署完成

- 支持手动或自动确认上线
- 完成部署下发后才能切换

模式切换

切换条件:

- 配置并开启弹性策略
- 人工部署下发完成
- Pod版本一致

人工抢占

抢占后处理:

- 停止弹性控制器扩缩容工作
- 副本数修正

技术挑战: 应用启动加速

低规格容器热备

解决场景问题

大促压测前需要提前准备热备容器, 占用大量资源

优点

- 无损,应用无需改造
- Pod启动快,启动时间减少80%以上
- Java应用无需预热即可承接流量

缺点

需要提前部署低规格实例, 占用少量资源

适用场景

工作负载主要由流量触发,摘流后CPU利用率低

JoyLive

China 2024

单元化多活

- 服务治理框架 基于字节码增强的面向 应用多活和单元化的微服 务流量治理框架
- 高可用 提升联邦集群集成多活 Unit和Cell等属性
- 开源
 https://github.com/jd
 -opensource/joylive agent

跨集群服务发现和跨集群网络

跨集群通信

- 跨集群服务发现 面向多集群的四层LB和联邦域名注册
- 跨集群网络通信 基于eBPF的高性能负载均衡
- 开源准备中

支持多次京东618、 京东11.11, 电商大 促,支撑**万亿级**交 易额业务扩缩容

JDC1oud

JDCloud Dev

Tech Group

