COMPUTATIONAL INTELLIGENCE

(INTRODUCTION TO MACHINE LEARNING) SS17

Lecture 3:

- Classification with Logistic Regression
- Advanced optimization techniques
- Underfitting & Overfitting
- Model selection (Training- & Validation- & Test set)

CLASSIFICATION WITH LOGISTIC REGRESSION

Logistic Regression

- Classification and not regression
- Classification = recognition

Logistic Regression

- "The" default classification model
 - Binary classification
 - Extensions to multi-class later in the course
- Simple classification algorithm
 - Convex cost unique local optimum
 - Gradient descent
 - No more parameter than with linear regression
- Interpretability of parameters
- Fast evaluation of hypothesis for making predictions

LOGISTIC REGRESSION

Hypothesis

Example (step function hypothesis)

"labelled data"

i	Tumour size (mm)	Malignant ?
	X	у
1	2.3	0 (N)
2	5.1	1 (Y)
3	1.4	0 (N)
4	6.3	1 (Y)
5	5.3	1 (Y)

Example (logistic function hypothesis)

"labeled data"

i	Tumor size (mm)	Malignant ?
	X	у
1	2.3	0 (N)
2	5.1	1 (Y)
3	1.4	0 (N)
4	6.3	1 (Y)
5	5.3	1 (Y)

Hypothesis: Tumor is malignant with probability p

Classification: if p < 0.5: 0

if $p \ge 0.5$: 1

Example (logistic function hypothesis)

"labeled data"

i	Tumor size (mm)	Malignant ?
	X	у
1	2.3	0 (N)
2	5.1	1 (Y)
3	1.4	0 (N)
4	6.3	1 (Y)
5	5.3	1 (Y)

Hypothesis: Tumor is malignant with probability p

Classification: if p < 0.5: 0

if $p \ge 0.5$: 1

Logistic (Sigmoid) function

- Advantages over step function for classification:
 - Differentiable → (gradient descent)
 - Contains additional information (how certain is the prediction?)

Logistic regression hypothesis (one input)

$$h_{\theta}(x) = \sigma(z) = \sigma(\theta_0 + \theta_1 \cdot x)$$

Classification with multiple inputs

i	Tumor size (mm)	Age	Maligna nt?
	x1	x2	у
1	2.3	25	0 (N)
2	5.1	62	1 (Y)
3	1.4	47	0 (N)
4	6.3	39	1 (Y)
5	5.3	72	1 (Y)

Multiple inputs and logistic hypothesis

i	Tumor size (mm)	Age	Maligna nt?
	x1	x2	у
1	2.3	25	0 (N)
2	5.1	62	1 (Y)
3	1.4	47	0 (N)
4	6.3	39	1 (Y)
5	5.3	72	1 (Y)

- 1. Reduce point in high-dimensional space to a scalar *z*
- 2. Apply logistic function

Classification with multiple inputs

i	Tumor size (mm) x1	Age x2	Maligna nt? y
1	2.3	25	0 (N)
2	5.1	62	1 (Y)
3	1.4	47	0 (N)
4	6.3	39	1 (Y)
5	5.3	72	1 (Y)

- 1. Reduce point in high-dimensional space to a scalar *z*
- 2. Apply logistic function

Logistic regression hypothesis

1. Reduce high-dimensional input $oldsymbol{x}$ to a scalar

$$z = \mathbf{x}^T \mathbf{\theta}$$

= $\theta_0 + \theta_1 \cdot x_1 + \dots + \theta_n \cdot x_n$

2. Apply logistic function

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \sigma(\boldsymbol{x}^T \boldsymbol{\theta})$$

= $\sigma(\theta_0 + \theta_1 \cdot x_1 + \dots + \theta_n \cdot x_n)$

3. Interpret output $h_{m{ heta}}(m{x})$ as probability and predict class:

Class =
$$\begin{cases} 0 & \text{if } h_{\boldsymbol{\theta}}(\boldsymbol{x}) < 0.5 \\ 1 & \text{if } h_{\boldsymbol{\theta}}(\boldsymbol{x}) \ge 0.5 \end{cases}$$

LOGISTIC REGRESSION

Cost function

- How well does the hypothesis $h_{m{ heta}}(m{x}) = \sigma(m{x}^Tm{ heta})$ fit the data?

Probabilistic model: y is 1 with probability:

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \sigma(\boldsymbol{x}^T \boldsymbol{\theta})$$

$$\langle x^{(1)}, y^{(1)} \rangle \dots \langle x^{(m)}, y^{(m)} \rangle$$

The "likelihood" of data:

$$p(y = (y_1, ... y_n), X = (x_1 ... x_n)|\theta)$$

i.e the probability of the given data as a function of parameters

For logistic regression we care about:

$$p(y = (y_1, ... y_n)|X = (x_1 ... x_n); \theta)$$

- We want to maximize the likelihood of data
- We usually maximize the log likelihood instead
 - i.e $\log p(y|X; \theta)$
 - (or minimize the negative log-likelihood)
- Because logarithm:
 - Is monotonically increasing
 - And products become sums
 - more numerically stable for small numbers (like probabilities)

Probabilistic model: y is 1 with probability: $p(C_1|X) = h_{\theta}(x) = \sigma(x^T\theta)$

The parameters should maximize the log-likelihood of the data

$$\max_{\theta} \log p(y|X; \theta)$$

If data points are independent $p(y_i, y_j|X; \theta) = p(y_j|X; \theta) p(y_i|X; \theta)$ $\max_{\theta} \sum_{i} \log p(y_i|X; \theta)$

Separating positive and negative examples

$$\max_{\theta} \sum_{t_i=1} \log p(y_i = 1|X; \theta) + \sum_{t_i=0} \log p(y_i = 0|X; \theta)$$

$$\sigma(x^T \theta) \qquad 1 - \sigma(x^T \theta)$$

- · How well does the hypothesis $h_{m{ heta}}(m{x}) = \sigma(m{x}^Tm{ heta})$ fit the data?
- "Cost" for predicting probability p when the real value is y:

$$Cost(p, y) = \begin{cases} -\log(1-p) & \text{if } y = 0, \\ -\log(p) & \text{if } y = 1. \end{cases}$$

Mean over all training examples:

$$J(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}), y^{(i)})$$

Multiple inputs and logistic hypothesis

· How well does the hypothesis $h_{m{ heta}}(m{x}) = \sigma(m{x}^Tm{ heta})$ fit the data?

Comparison cost functions

Linear regression

$$Cost(h, y) = (h - y)^2$$

Logistic regression

Mean over all training examples:

$$J(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}), \ \boldsymbol{y}^{(i)})$$

Why not mean squared error (MSE) again?

- MSE with logistic hypothesis is non-convex (many local minima)
- Logistic regression is convex (unique minimum)
- Cost function can be derived from statistical principles ("maximum likelihood")

LOGISTIC REGRESSION

Learning from data

Minimizing the cost via gradient descent

Gradient descent

$$\theta_j := \theta_j - \eta \cdot \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta})$$

(simultaneous update for j=0...n)

Gradient of logistic regression cost:

$$\frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^m \left(\underline{h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}) - y^{(i)}} \right) \cdot \underline{x_j^{(i)}}_{\text{"input"}}$$

(for j=0:
$$x_0^{(i)} = 1$$
)

Linear features

$$x_1 = \text{Tumor Size}, \ x_2 = \text{Age}$$

$$h_{\theta}(\mathbf{x}) = \sigma(-10 + 2 \cdot x_1 + 0.05 \cdot x_2)$$

Non-linear features

$$\phi_1 = \text{Tumor Size}, \ \phi_2 = \text{Age}, \ \phi_3 = \text{Tumor Size}^2,$$

$$\phi_4 = \text{Age}^2, \ \phi_5 = \text{Tumor Size} \cdot \text{Age}, \dots$$

$$h_{\theta}(\phi) = \sigma(-3 + 1.2 \cdot \phi_1 + 0.07 \cdot \phi_2 - 0.9 \cdot \phi_3 + \dots)$$

Decision boundaries

$$h_{\theta}(\mathbf{x}) = \sigma(-10 + 2 \cdot x_1 + 0.05 \cdot x_2)$$
 $h_{\theta}(\phi) = \sigma(-3 + 1.2 \cdot \phi_1 + 0.07 \cdot \phi_2 - 0.9 \cdot \phi_3 + \dots)$

Decision boundary is a property of hypothesis, not of data!

Linear vs. Logistic Regression

Linear Regression

- Regression
- Hypothesis $h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \boldsymbol{x}^T \boldsymbol{\theta}$
- Cost for one training example:

$$Cost(h, y) = (h - y)^2$$

Gradient

$$rac{\partial}{\partial heta_j} J(m{ heta}) = rac{2}{m} \sum_{i=1}^m \left(h_{m{ heta}}(m{x}^{(i)}) - y^{(i)}
ight) \cdot x_j^{(i)}$$
 "input"

Analytical:

$$oldsymbol{ heta}^* = \left(oldsymbol{X}^Toldsymbol{X}
ight)^{-1}oldsymbol{X}^Toldsymbol{y}$$

Logistic Regression

- Binary classification (!)
- Hypothesis $h_{\theta}(x) = \sigma(x^T \theta)$
- Cost for one training example:

$$Cost(p, y) = \begin{cases} -\log(1-p) & \text{if } y = 0, \\ -\log(p) & \text{if } y = 1. \end{cases}$$

Gradient

$$\frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta}) = \frac{2}{m} \sum_{i=1}^m \underbrace{\left(h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}) - y^{(i)}\right)}_{\text{"error"}} \cdot \underbrace{x_j^{(i)}}_{\text{"input"}} \qquad \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^m \underbrace{\left(h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}) - y^{(i)}\right)}_{\text{"error"}} \cdot x_j^{(i)}$$

No analytical solution!

EVALUATION OF HYPOTHESIS

Training and Test set

Training and Test set

- Training set: used by learning algorithm to fit parameters and find a hypothesis.
- **Test set**: independent data set, used after learning to estimate the performance of the hypothesis on **new (unseen) test examples.**

E.g. 80% randomly chosen examples from dataset are training examples, the remaining 20% are test examples.

Must be disjoint subsets!

Training and Test set workflow

Linear regression training vs. Test error

$$J(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^{m} \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)^{2}$$

MSEtest=2.02

$$J_{\text{test}}(\boldsymbol{\theta}) = \frac{1}{m_{\text{test}}} \sum_{i=1}^{m_{\text{test}}} \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}_{\text{test}}^{(i)} \right) - y_{\text{test}}^{(i)} \right)^{2}$$

Classification Training / Test set

Logistic regression training vs. test error

$$J(\boldsymbol{\theta}) = -\frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}(h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}), \ \boldsymbol{y}^{(i)}) \qquad J_{\text{test}}(\boldsymbol{\theta}) = -\frac{1}{m_{\text{test}}} \sum_{i=1}^{m_{\text{test}}} \operatorname{Cost}(h_{\boldsymbol{\theta}}(\boldsymbol{x}_{\text{test}}^{(i)}), \ \boldsymbol{y}_{\text{test}}^{(i)})$$

UNDERFITTING AND OVERFITTING

Logistic regression with polynomial terms

Logistic regression with polynomial terms

Logistic regression with polynomial terms

Under-/ and Overfitting

Under- and Overfitting

- Underfitting:
 - Model is too simple (often: too few parameters)
 - High training error, high test error
- Overfitting
 - Model is too complex (often: too many parameters relative to number of training examples)
 - Low training error, high test error
- In between:
 - Model has "right" complexity
 - Moderate training error
 - Lowest test error

How to deal with overfitting

- Use model selection to automatically select the right model complexity
- Use regularization to keep parameters small (other lecture...)

- Collect more data
 (often not possible or inefficient)
- Manually throw out features which are unlikely to contribute (often hard to guess which ones, potentially throwing out the wrong ones)
- Find better features with less noise, more predictive of the output (often not possible or inefficient)

MODEL SELECTION

Training, Validation and Test sets

Model selection

 Selection of learning algorithm and "hyperparameters" (model complexity) that are most suitable for a given learning problem

Idea

- Try out different learning algorithms/variants
 - Vary degree of polynomial
 - Try different sets of features
 - •

 Select variant with best predictive performance

Training, Validation, Test set

- Training set: used by learning algorithm to fit parameters and find a hypothesis for each learning algorithm/variant.
- Validation set: used to estimate predictive performance of each learning algorithm/variant. The hypothesis with lowest validation error (cost) is selected.
- **Test set**: independent data set, used after learning and model selection to estimate the performance of the final (selected) hypothesis on **new (unseen) test examples**.

E.g. 60/20/20% randomly chosen examples from dataset. Must be disjoint subsets!

Training/Validation/Test set workflow

Training/Validation/Test set workflow

GRADIENT DESCENT TRICKS, AND MORE ADVANCED OPTIMIZATION TECHNIQUES

For linear regression, logistic regression,

Minimizing the cost via gradient descent

Gradient descent

$$\theta_j := \theta_j - \eta \cdot \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta})$$

(simultaneous update for j=0...n)

Gradient of logistic regression cost:

$$\frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^m \left(\underline{h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}) - y^{(i)}} \right) \cdot \underline{x_j^{(i)}}_{\text{"input"}}$$

(for j=0:
$$x_0^{(i)} = 1$$
)

GD trick #1: feature scaling

- Feature scaling and mean normalization
 - Bring all features into a similar range
 - E.g.: shift and scale each feature to have mean 0 and variance 1

- Do not apply to constant feature $\,x_0/\phi_0\,\,\,!$
- Typically leads to much faster convergence

GD trick #2: monitoring convergence

Diagnose typical issues with Gradient Descent:

GD trick #3: adaptive learning rate

- At each iteration
 - Compare cost function value $J(\theta)$ before and after Gradient Descent update
- If cost increased:
 - Reject update (go back to previous parameters)
 - Multiply learning rate η by **0.7** (for example)

• Multiply learning rate η by **1.02** (for example)

Variants of Gradient Descent

- SGD: Stochastic Gradient Descent
- Momentum: with momentum term
- RMSProp: adaptive learning rate

Source: http://sebastianruder.com/optimizing-gradient-descent/index.html

More advanced optimization methods

Gradient methods = order 1 Newton m

Newton methods = order 2

- Need Hessian matrix or approximations
- Avoid choosing a learning rate
- Conjugate gradient, BFGS, L-BFGS, ...
- Tricky to implement (numerical stability, etc.)
 - Use available toolbox / library implementations!
 scipy.optimize.minimize
 - Only use when fighting for performance

SUMMARY

And questions

Some questions...

- Logistic regression is a method for ... regression/classification?
- What is the hypothesis for Logistic regression?
- What's the cost function used for logistic regression?
- Is the cost function convex or non-convex?
- What is under-/overfitting?
- What is model selection?
- What are training, validation and test sets?
- How does model selection work (procedure)?
- What does "adaptive learning rate" mean in the context of gradient descent?

What is next?

- Neural Networks (Guillaume Bellec):
 - Perceptron
 - Feedforward Neural Network
 - Backpropagation