MAT. DISCRETA 3

FUNZIONI

Prima di parlare di esercizi su funzioni bisogna chiarire alcuni argomenti importanti:

Che cos'è una funzione?

Una **funzione** $f: A \to B$ è una relazione che associa **a ogni elemento** x dell'insieme di partenza A (dominio) **uno ed un solo elemento** y dell'insieme di arrivo B (codominio).

Si scrive:

$$y = f(x)$$
.

- A = dominio: insieme dei valori ammessi in input.
- B = **codominio**: insieme "previsto" dei valori di output.
- Range o immagine = sottoinsieme di B che contiene i valori che effettivamente escono dalla funzione.

Esempio: $f(x) = x^2$ con dominio \mathbb{R} e codominio \mathbb{R} .

Che cos'è il dominio di una funzione?

È l'insieme di tutti i valori che posso dare in input a una funzione, senza avere problemi (divisioni per zero, radici quadrate di numeri negativi, ecc.).

Esempio:

- $f(x) = \frac{1}{x}$. Qui **non posso** mettere x=0, perché non si può dividere per zero. Quindi il dominio è $\mathbb{R} \setminus \{0\}$ (tutti i reali tranne 0).
- $g(x) = \sqrt{x}$. Qui non posso mettere valori negativi (altrimenti non ho radici reali). Quindi il dominio è $[0, \infty)$.
- h(x) = 2x + 3. Qui non c'è nessun problema \rightarrow il dominio è tutto \mathbb{R} .

Che cos'è il codominio?

È **l'insieme in cui sono previsti i risultati** della funzione.

⚠ *Importante*: il codominio non è "deciso" dalla funzione, ma da **come definisco** la funzione.

Di solito nei problemi è scritto: $f : \mathbb{R} \to \mathbb{R}$. Vuol dire che:

• dominio = \mathbb{R} (i valori di partenza)

• codominio = \mathbb{R} (i valori "previsti in arrivo").

Però non è detto che la funzione arrivi davvero a **tutti** i numeri del codominio. E qui entra in gioco il **range**.

Che cos'è il range (o immagine)?

È **l'insieme di tutti i valori effettivamente ottenuti dalla funzione**, cioè i risultati reali che la funzione produce quando varia il dominio.

Esempi:

- Funzione $f(x) = x^2$, con $f: \mathbb{R} \to \mathbb{R}$.
 - dominio = \mathbb{R} (posso dare qualsiasi numero reale in input).
 - codominio = R (per definizione).
 - range = $[0, \infty)$, perché i quadrati non possono essere negativi.

 \wedge **Vedi la differenza**: il codominio era \mathbb{R} , ma il range effettivo è solo la parte positiva.

- Funzione g(x) = |x| + 1, con $g : \mathbb{R} \to \mathbb{R}$.
 - dominio = \mathbb{R} (posso mettere qualunque numero).
 - codominio = \mathbb{R} .
 - range = $[1, \infty)$, perché $|x| \ge 0$, quindi $|x| + 1 \ge 1$. In pratica, i valori minori di 1 non possono uscire.

Come li trovo?

- 1. **Dominio**: guarda la formula della funzione e chiediti: ci sono restrizioni?
 - Divisione per 0
 - Radici quadrate di negativi
 - Logaritmi di numeri ≤0
 Se non c'è nulla di problematico, il dominio è tutto ℝ.
- 2. **Codominio**: di solito è scritto nel testo (es. $f : \mathbb{R} \to \mathbb{R}$). È un "contenitore" scelto dal prof. Se non è specificato, si prende di solito \mathbb{R} .
- 3. Range: guarda cosa esce davvero:
 - Analizza la funzione (es. quadrati ≥0, valori assoluti ≥0, ecc.).
 - Oppure calcola il minimo e massimo (se esistono).

Perché sono importanti?

- Per sapere se la funzione è suriettiva: serve che range = codominio.
- Per sapere se è invertibile: serve anche iniettività, ma range e codominio giocano un ruolo chiave.

Funzione iniettiva

Una funzione è iniettiva se due input diversi danno sempre output diversi.

Formalmente: se $f(x_1) = f(x_2)$ allora $x_1 = x_2$.

Immagine mentale: "Non schiaccia mai due frecce in un unico punto".

Esempi:

- f(x) = 2x + 1 (una retta inclinata): ogni valore di x produce un valore unico, mai ripetuto.
- $f(x) = x^3$: anche qui, ogni input diverso dà output diverso.

Non injettive:

- $f(x) = x^2$: sia x = 2 che x = -2 danno lo stesso valore 4.
- g(x) = |x| : g(3) = g(-3) = 3.
- Consiglio pratico: Portare nella maggior parte delle volte la x a 1 o -1 dovrebbe verificare la sua iniettività.

Funzione suriettiiva

Una funzione è suriettiva se **copre tutto il codominio**: per ogni valore y nel codominio, esiste almeno un x nel dominio che ci arriva.

Immagine mentale: "Nessun buco rimane vuoto nel codominio".

Esempi:

- $f:\mathbb{R} \to \mathbb{R}, \ f(x)=2x+1$. È suriettiva perché qualsiasi $y\in \mathbb{R}$ si ottiene risolvendo y=2x+1.
- $f: \mathbb{R} \to 0, \infty), \ f(x) = x^2$. È suriettiva su $[0, \infty)$ perché ogni numero positivo è il quadrato di qualcosa.

Non suriettive:

• $f: \mathbb{R} \to \mathbb{R}, \ f(x) = x^2$. Qui il codominio è \mathbb{R} , ma la funzione produce solo numeri ≥ 0 . Quindi i negativi non sono coperti \to non è suriettiva.

Funzione biettiva

Una funzione è biettiva se è **sia iniettiva che suriettiva**. Quindi:

- Non schiaccia due input nello stesso output (iniettiva).
- Copre tutto il codominio (suriettiva).
 Immagine mentale: "È una corrispondenza perfetta, tipo coppie uno-a-uno".

Esempi:

 $ullet f: \mathbb{R}
ightarrow \mathbb{R}, \ f(x) = 2x+1.$

Iniettiva (retta inclinata, mai valori ripetuti) + suriettiva (copre tutto \mathbb{R}) = biettiva. Non biettive:

• $f(x) = x^2 : \mathbb{R} \to \mathbb{R}$. Non iniettiva e non suriettiva \to quindi non biettiva.

Funzione invertibile

Una funzione è invertibile se esiste un'altra funzione f^{-1} che "annulla" f, cioè:

$$\mathsf{f}^{-1}(f(x)) = x$$
 e $f(f^{-1}(y)) = y$

Una funzione è invertibile se e solo se è biettiva.

Esempi:

- f(x) = 2x + 1. Inversa: $f^{-1}(y) = rac{y-1}{2}$.
- $f(x) = x^3$. Inversa: $f^{-1}(y) = \sqrt[3]{y}$.

Non invertibili:

- $f(x)=x^2:\mathbb{R} o\mathbb{R}$. Non è iniettiva (sia 2 che -2 vanno su 4) o non invertibile.
- Però se restringo il dominio a $[0,\infty)$, diventa invertibile con inversa $f^{-1}(y)=\sqrt{y}$.

ESERCIZIO D'ESEMPIO da traccia d'esame

Soluzione passo-passo e spiegazioni (Esercizio 3)

Riprendo l'enunciato:

$$egin{aligned} f:\mathbb{R} &
ightarrow \mathbb{R}, \; f(x) = 2 - rac{x}{5}. \ g:\mathbb{R} &
ightarrow \mathbb{R}, \; g(x) = |x| + 1. \end{aligned}$$

Richiesto: calcolare $f \circ g$ e $g \circ f$; determinare se f e g sono invertibili e, se sì, trovare le inverse.

Ti mostro ogni passaggio e ti spiego **perché** faccio quella scelta.

1) Dominio / codominio / range (per orientarsi)

• **Dominio**: l'enunciato dice $f: \mathbb{R} \to \mathbb{R}$, $g: \mathbb{R} \to \mathbb{R} \to \text{dominio}$ e codominio dichiarati sono \mathbb{R} per entrambe.

(Se la funzione avesse avuto una radice o una divisione per espressione che può essere 0, il dominio sarebbe stato diverso.)

- Range (immagine effettiva):
 - Per f: essendo una retta inclinata (affine) con coefficiente $-\frac{1}{5}$ non nullo, f assume **tutti** i reali \rightarrow range di $f = \mathbb{R}$.

- Per g:g(x)=|x|+1. Poiché $|x|\geq 0$ per ogni x, $g(x)\geq 1$. Quindi range di $g=[1,\infty)$

Queste informazioni servono spesso per decidere se una funzione è suriettiva o se una composizione è ben definita.

2) Calcolo di $f\circ g$ (cioè f(g(x))) — passo per passo

Definizione: $(f \circ g)(x) = f(g(x))$.

- 1. Calcoliamo g(x) : g(x) = |x| + 1.
- 2. Mettiamo g(x) dentro f: $g(x) = g(x) \frac{|x|}{2}$

$$f(g(x)) = 2 - rac{g(x)}{5} = 2 - rac{|x|+1}{5}.$$

3. Svolgiamo l'algebra:

$$2=rac{10}{5},$$
 quindi $f(g(x))=rac{10}{5}-rac{|x|+1}{5}=rac{10-(|x|+1)}{5}=rac{9-|x|}{5}.$

Risultato:

$$(f\circ g)(x)=rac{9-|x|}{5}.$$

Osservazioni utili:

- Dominio: tutto $\mathbb R$ (nessuna restrizione).
- Range: massimo quando $|x|=0 \to \text{valore} = 9/5$. Per $|x|\to \infty$ la funzione $\to -\infty$. Quindi range $=(-\infty,\ 9/5]$.
- Iniettività: non è iniettiva perché dipende da |x|. Per esempio x=2 e x=-2 danno lo stesso valore:

$$(f\circ g)(2)=rac{9-2}{5}=rac{7}{5}=(f\circ g)(-2).$$

Quindi $f \circ g$ non è iniettiva e (dato che il range è solo $(-\infty, 9/5]$) neanche suriettiva su \mathbb{R} .

3) Calcolo di $g \circ f$ (cioè g(f(x))) — passo per passo

Definizione: $(g \circ f)(x) = g(f(x))$.

- 1. Calcoliamo $f(x) = 2 \frac{x}{5}$.
- 2. Mettiamo dentro g: $g(f(x)) = \left| f(x) \right| + 1 = \left| 2 \frac{x}{5} \right| + 1.$

Risultato:

$$(g\circ f)(x)=\left|2-rac{x}{5}
ight|+1.$$

Osservazioni:

• Dominio: tutto \mathbb{R} .

- Range: se poniamo $u=2-\frac{x}{5}$, allora u varia su tutto $\mathbb R$ (perché f è suriettiva), quindi |u|+1 varia su $[1,\infty)$. Quindi range di $g\circ f$ è $[1,\infty)$.
- Iniettività: non è iniettiva. Quindi $g \circ f$ non è iniettiva; inoltre il suo range $[1, \infty)$ non è tutto \mathbb{R} , quindi non è suriettiva su \mathbb{R} .

4) Verifica invertibilità di f

Strategia: verificare iniettività e suriettività (bijettività).

- $f(x)=2-\frac{x}{5}$ è una funzione affine con coefficiente angolare $-\frac{1}{5}\neq 0$. Le funzioni affini con coefficiente diverso da zero sono **monotone** (qui monotona decrescente), quindi **iniettive**.
- Per la suriettività: dato un $y\in\mathbb{R}$, risolvo $y=2-\frac{x}{5}$ per x: x=5(2-y)=10-5y, che è sempre un reale: quindi per ogni y esiste x tale che f(x)=y. Quindi f è suriettiva.

Conclusione: $f \in bijettiva$ su \mathbb{R} e quindi invertibile.

Trovo f^{-1} : risolvo $y=2-\frac{x}{5}$ per x e poi scambio ruolo delle variabili: $x=10-5y \implies f^{-1}(y)=10-5y$.

Usando x come argomento dell'inversa:

$$f^{-1}(x) = 10 - 5x.$$

5) Verifica invertibilità di g

- g(x) = |x| + 1. Per **iniettività** osserva subito che g(x) = g(-x) per ogni x. Quindi esistono sempre coppie diverse (x, -x) con la stessa immagine (a meno di x = 0). Quindi **non iniettiva** su \mathbb{R} .
- Per suriettività su \mathbb{R} : poiché $g(x) \geq 1$, non si ottengono valori <1. Quindi non suriettiva su \mathbb{R} .

Conclusione: g **non è invertibile** come funzione $\mathbb{R} \to \mathbb{R}$.

Schema operativo — Verifica di Iniettività, Suriettività, Biiettività (e calcolo dell'inversa)

Scopo: fornire uno schema chiaro e riutilizzabile per affrontare esercizi su iniettività, suriettività, biiettività e calcolo delle inverse, con tutti i controlli necessari e i metodi più usati.

Regole preliminari (prima di iniziare)

- 1. **Scrivi esplicitamente dominio e codominio** richiesti dall'esercizio. Non darli per scontati.
- 2. **Semplifica** l'espressione della funzione (espandi, riscrivi valore assoluto, pezzi, etc.).
- 3. Se la funzione è *a tratti*, tratta ogni intervallo separatamente.
- 4. Se compaiono simboli particolari (valore assoluto, radici, log, trig), annota le proprietà utili.

Procedura passo-passo

Segui i punti nell'ordine indicato — ogni punto contiene i metodi principali da usare.

1 Verifica di iniettività

Obiettivo: dimostrare $f(x1) = f(x2) \Rightarrow x1 = x2$ oppure fornire un controesempio.

Metodi utili:

- Metodo algebrico (diretto): scrivi f(x1) = f(x2) e riduci fino a ottenere & nbsp; x1=x2.
- **Derivata (per funzioni reali, differenziabili):** se f'(x) > 0 per tutti $x \in D$ (o sempre <0) allora f è monotona e quindi iniettiva. ATTENZIONE: $f'(x) \ge 0$ non basta; devono esserci segni stretti o monotonia provata per altri metodi.
- Controesempio (per mostrare non iniettività): trova $x1 \neq x2$ con f(x1) = f(x2) (es.: funzioni pari, valore assoluto, quadratica tipicamente falliscono).

Scrittura della risposta:

- Se dimostri iniettività: mostra i passaggi algebrici o argomento con derivata; concludi chiaramente.
- Se non è iniettiva: fornisci un controesempio numerico e spiega perché è sufficiente.

2 Verifica di suriettività

Obiettivo: dimostrare che per ogni $y \in C$ esiste $x \in D$ con f(x) = y.

Metodi utili:

- **Risolvi** y = f(x) **per x** in funzione di y. Se riesci a esprimere $x = \phi(y)$ e $\phi(y) \in D$ per ogni $y \in C$, allora f è suriettiva.
- Studio dell'immagine (range): determina l'insieme delle immagini tramite:
 - analisi dei limiti per $x \to \pm \infty$,
 - comportamento ai punti singolari (es. discontinuità, punti a pezzi).

• Controesempio (per mostrare non suriettività): trova $y0 \in C$ tale che l'equazione f(x) = y0 non abbia soluzioni in D.

Scrittura della risposta:

- Se è suriettiva: mostra la soluzione $x = \phi(y)$ con la verifica che $\phi(y) \in D$ per ogni $y \in C$.
- Se non è suriettiva: fornisci $y0 \in C$ (spesso un valore limite) e mostra che non esiste x con f(x) = y0.

3 Conclusione su bijettività

- Se iniettiva E suriettiva su $D \rightarrow C$ allora biiettiva.
- Se biiettiva \Rightarrow esiste f $-1: C \rightarrow D$.

4. Calcolo dell'inversa (se biiettiva)

- 1. Scrivi y = f(x).
- 2. Scambia i ruoli: considera x = f(y).
- 3. Risolvi per y in funzione di x: y=F(x). Allora f-1(x)=F(x).
- 4. **Specifica dominio e codominio** dell'inversa: il dominio di f-1 è la **immagine** di f, il codominio è il dominio di f.
- 5. Verifica (controllo rapido): f 1(f(x)) = x per ogni $x \in D$ e f(f 1(y)) = y per ogni y nell'immagine.

5. Composizioni e proprietà d'invertibilità

- Se f e g sono invertibili allora $f \circ g$ è invertibile e $(f \circ g) 1 = g 1 \circ f 1$.
- Se $f \circ g$ è invertibile allora **g** deve essere iniettiva e **f** deve essere suriettiva (ma questo non garantisce che f e g siano entrambe invertibili separatamente).

6. Come rendere una funzione invertibile (restringendo il dominio)

- Se f non è iniettiva per simmetria (es. x2, (|x|)), scegli un ramo monotono (es. per x2 prendi x≥0).
- Se f non è suriettiva sul codominio scelto, o cambia il codominio all'immagine naturale di f.
- Documenta sempre la restrizione: scrivi la nuova funzione e i nuovi insiemi dominio/codominio.