MB590-012 Microbiome Analysis Beta Diversity

Dr. Christine Hawkes

NC STATE UNIVERSITY

Today's outline

- Beta-diversity
 - Overview
 - Distance/dissimilarity metrics
- Phylogenetic beta-diversity
 - Overview
 - Transformation
 - Distance
- Ordination

 Reminder: HPC tutorial certificates due by Tue 2/22 (3 of you still have not logged in!)

HPC prep for next week (before class!)

See: MicrobiomeAnalysis2022/dada2-on-hpc

Log in and go to the scratch directory:

```
cd /share/mb590s22
ls
```

There should be a directory with your UnityID.

```
cd $USER
```

If not:

```
mkdir $USER cd $USER
```

Check the groups – you should be in *mb590s22* and *bioinfo*:

```
groups
```

Before logging out, do:

```
module load conda conda init tcsh
```

Scale of diversity

- 1. alpha diversity = local, single community
- 2. beta diversity = between two communities

Beta-diversity

- Variation in species across samples
- Measure change in community structure between samples
- Change can be in identity or abundance of taxa

Beta-diversity – distance/ dissimilarity comparisons

- Whether gradient turnover or spatial variation, goal is to define a community matrix of pairwise dissimilarities between samples
- Can also examine relationship of those dissimilarities to environmental data

Beta-diversity – workflow

Anderson et al. 2011 Eco Lett doi: 10.1111/j.1461-0248.2010.01552.x

Beta-diversity – distance / dissimilarity

- Turnover and variation are measured as pairwise distance in species composition
- Some distances can be thought of geometrically
- Common examples:

Beta-diversity – Euclidean distance

Euclidean distance between two points

$$D_{Eucl}^{ij} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$

 Extended to many pairs of samples (i,j) with many ASVs (k = 1 to n)

$$D_{Eucl}^{ij} = \sqrt{\sum_{k=1}^{n} (x_{k,i} - x_{k,j})^2}$$

ASV k in sample i # ASV k in sample j

Beta-diversity – common distances

	•	
Dissimilarity	Abundance-based	Incidence-based
Euclidean distance (Metric)	$\sqrt{\sum_{j=1}^{p} [y_{1j} - y_{2j}]^2}$	$\sqrt{p\left(\frac{b+c}{a+b+c+d}\right)} = \sqrt{b+c}$
Manhattan distance (Metric)	$\sum_{j=1}^{p} y_{1j} - y_{2j} $	$p\left(\frac{b+c}{a+b+c+d}\right) = b+c$
Hellinger distance (Metric)	$\sqrt{\sum_{j=1}^{p} \left[\sqrt{\frac{y_{1j}}{y_{1+}}} - \sqrt{\frac{y_{2j}}{y_{2+}}}\right]^2}$	$\sqrt{2\left(1-\frac{a}{\sqrt{(a+b)(a+c)}}\right)}$
Chord distance (Metric)	$\sqrt{\sum_{j=1}^{p} \left[\frac{y_{1j}}{\sqrt{\sum_{k=1}^{p} y_{1k}^{2}} - \frac{y_{2j}}{\sqrt{\sum_{k=1}^{p} y_{2k}^{2}}} \right]^{2}}$	$\sqrt{2\left(1-\frac{a}{\sqrt{(a+b)(a+c)}}\right)}$
Percentage difference (alias Bray–Curtis dissimilarity [§])	$\frac{\sum_{j=1}^{p} y_{1j} - y_{2j} }{y_{1+} + y_{2+}} \text{sum of all abs spp diffs} $ total num spp	$\frac{b+c}{2a+b+c}$
(Semi-metric) Abundance-based Jaccard (Metric)	$ \left(1 - \frac{UV}{U + V - UV}\right) \underline{\text{shared}} \underline{\text{unshared}} $	$\frac{b+c}{a+b+c}$
Abundance-based Sørensen (Semi-metric)	$\left(1 - \frac{2UV}{U + V}\right)$	$\frac{b+c}{2a+b+c}$

Legendre & Caceras 2013 Eco Lett 16: 951-963 doi: 10.1111/ele.12141; Chao et al. 2004 Eco Lett 8: 148-159 doi 10.1111/j.1461-0248.2004.00707.x

Beta-diversity – distance properties

Metric distances

- Minimum value is zero when two samples are identical
- 2. When two samples differ, distance is positive (no negative distances allowed)
- Distances are symmetric (A to B is same as B to A)
- 4. Triangle inequality axiom: with three samples, distance between one pair cannot be larger than the sum of the other two distances

$$((A to B) + (B to C)) > (A to C)$$

Semi-metric distances violate #4

Non-metric distances can also violate #1-3 (not used in ecology)

Beta-diversity – joint/double zeros

- Double zeros typically do not provide ecological insight
- Symmetrical coefficients
 - treat double zeros the same as shared presences
 - consider samples with shared zeros as more similar
 - Euclidean, Manhattan
- Asymmetrical coefficients
 - distance does not change with double zeros
 - consider only shared presences
 - Bray-Curtis, Jaccard, Sorensen, Hellinger, Chord

Distance properties

	Largest distant between	ces en	Distance increase	ce inv ses	plication ariance		abu	ariance to Indance)	Euclide proper		
Double-zero asymmetry	shared	es with no taxa	with ur taxa wi sites	/	Unit invaria	ance up	ked oper ound		rections dersamp	,	transforn distance	l by n + Euclidean
Dissimilarity	P4	P5	P6	P7	P8	P9	P10	P11	P12	P13	P14	$D_{ m max}$
Euclidean distance	0	0	1	0	0	0	0	0	0	2	1	_
Manhattan distance	0	0	1	0	0	0	0	0	0	1	0	_
Modified mean character difference	1	0	1	1	0	0	1	0	0	0	0	_
Species profile distance	1	0	0	0	1	1	0	1	0	2	1	$\sqrt{2}$
Hellinger distance	1	1	1	1	1	1	1	1	0	2	1	$\sqrt{2}$
Chord distance	1	1	1	1	1	1	1	1	0	2	1	$\frac{\sqrt{2}}{\sqrt{2}}$
Chi-square distance	1	0	1	1	1	1	NA	0	0	2	1	$\sqrt{2y_{++}}$
Coefficient of divergence	1	1	1	1	1	1	1	0	0	2	0	1
Canberra metric	1	1	1	1	1	1	1	0	0	1	0	1
Whittaker's index of association	1	1	1	1	1	1	1	1	0	1	0	1
Percentage difference (alias Bray–Curtis)	1	1	1	1	1	1	1	0	0	1	0	1
Wishart coefficient = (1-similarity ratio)	1	1	1	1	1	1	1	0	0	1	0	1
D = (1–Kulczynski coefficient)	1	1	1	1	1	1	1	0	0	0	0	1
Abundance-based Jaccard	1	1	1	1	1	1	1	1	1	0	0	1
Abundance-based Sørensen	1	1	1	1	1	1	1	1	1	0	0	1

Choice of dissimilarity metrics affects distances

	ASV 1	ASV2	ASV3
Plot 1	0	1	1
Plot 2	1	0	0
Plot 3	0	4	8

Distances for plots 1 and 2

Euclidean =
$$\sqrt{(0-1)^2 + (1-0)^2 + (1-0)^2}$$
 = 1.732

Bray-Curtis =
$$\frac{(|0-1|+|1-0|+|1-0|)}{(2+1)}$$
 = 0.100 * 100 = 100% dissimilar

Distances for plots 1 and 3

Euclidean =
$$\sqrt{(0-0)^2 + (1-4)^2 + (1-8)^2}$$
 = 7.615

Bray-Curtis =
$$\frac{(|0-0|+|1-4|+|1-8|)}{(2+12)}$$
 = 0.714 * 100 = 71.4% dissimilar

Choice of dissimilarity metrics affects distances

	ASV 1	ASV2
Plot 1	1	0
Plot 2	1	1
Plot 3	10	0
Plot 4	10	10

Example calcs for Plot3 & Plot4

Euclidean

$$=\sqrt{(10-10)^2+(10-0)^2}=10$$

Bray-Curtis

$$= \frac{(|10-10|+|10-0|)}{(10+20)} = 0.333 * 100 = 33.3\%$$

Bray Curtis Distance Matrix

	Plot 1	Plot 2	Plot 3	Plot 4
Plot 1	0			
Plot 2	33.3	0		
Plot 3	81.8	83.3	0	
Plot 4	90.5	83.3	33.3	0

Euclidean Curtis Distance Matrix

	Plot 1	Plot 2	Plot 3	Plot 4
Plot 1	0			
Plot 2	1.0	0		
Plot 3	9.0	9.1	0	
Plot 4	13.4	12.7	10.0	0

Phylogenetic Beta diversity

- Data transformation: PhILR
- Distances: Unifrac (unweighted and weighted)
- Distance + ordination: DPCoA

Phylogenetic Isometric Log Ratio (PhILR) Transformation for Compositional Data

- ILR transforms represent the ratio ("balance") of relative abundances on each side of a binary partition
- PhILR defines those partitions by the phylogeny
 - For each internal node, transforms data as the log ratio of the geometric mean relative abundances of taxa in the two clades descending from that node
 - Uses unit-length branches, but can include branch length weights
 - Option to include weights for taxa abundances (used to downweight influence of taxa with many zero or near-zero counts)
- Results in coordinates that capture evolutionary relationships between clades
- Use with Euclidean distances for PCoA

Phylogenetic Isometric Log Ratio Transformation for Compositional Data

Silverman et al. 2017 eLife DOI: 10.7554/eLife.21887.001

Phylogeny-aware distances

- Unifrac unweighted
 - Phylogenetic extension of Jaccard index
 - Qualitative based on presence/absence
 - Defines distances between pairs of samples as proportion of branch lengths unique to one sample or the other
 - Relies more heavily on shallow tree structure (tips)
 - Sensitive to sequencing depth (rarefaction used to get around this problem, but sensitive to specific rarefactions)
- Unifrac weighted
 - Quantitative
 - Each branch length is weighted by the difference in proportional abundance of taxa between two samples
 - Relies more heavily on deep structure of the tree

Unweighted UniFrac

$$Dist(x, y) = \frac{+}{+}$$

UF = $(0+0)/(0+0+26) = \mathbf{0}$ All branches shared (identical communities)

UF = (7+7)/(7+7+12) = 0.53Approx. half of branches shared (similar communities)

Unweighted vs. weighted UniFrac

Based on presence/absence only Weights branch lengths by different abundances of red/blue

Note that there are multiple approaches to weighting – if you decide to use this approach for your data, be sure to read up on the latest methods at the time of your analysis.

Additional phylogenetic distance options

- Generalized Unifrac (Chen et al. 2012)
 - https://academic.oup.com/bioinformatics/article/28/16/2106/324465
 - https://cran.r-project.org/web/packages/GUniFrac/index.html
- Information Unifrac, Ratio Unifrac (Wong et al. 2016)
 - https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0161196
 - https://search.r-project.org/CRAN/refmans/abdiv/html/unifrac.html
- Evodiss (Pavoine et al. 2016)
 - https://onlinelibrary.wiley.com/doi/full/10.1111/oik.03262
 - https://search.r-project.org/CRAN/refmans/adiv/html/evodiss.html

Ordination

- Goal is to represent sample and species relationships in lowdimensional space
- Distance between points in the ordination reflects the underlying distance measure and are proportional to their dissimilarity
- Each axis represents some amount of variation in the data
- Ordination is on samples, species can be overlain
- Can correlate or constrain ordination axes with environmental variables

- Primarily used for data reduction, exploration, and visualization
- Ordination is NOT a statistical test of significant differences among treatments

Constrained vs. Unconstrained

Unconstrained (indirect gradient): includes the species table, and resulting axes can be correlated with environmental variables

Constrained (direct gradient):
considers only the variation in the
species table that can be explained by
environmental variables

Ramette (2007) FEMS Microbiology Ecology 62: 142-160 doi: 10.1111/j.1574-6941.2007.00375.x

Common Unconstrained Ordination Methods

- Principal components analysis (PCA)
- Principal coordinates analysis (PCoA)
 - metric multidimensional scaling (MMDS)
- Non-metric multidimensional scaling (NMDS)

PCA

 Used for data reduction: reduce n cases by p variables to synthetic variables (axes) while preserving Euclidean distance – provides unique solution

 Finds successive orthogonal (uncorrelated) axes that have the strongest linear correlation structure among variables

- Requires linearity and multivariate normality
- All data must be in same units or standardized to be unitless
- Highly affected by outliers
- Heterogeneous data results in horseshoe pattern (ends of gradients pulled together) because PCA interprets shared zeros as a positive relationship
- Not useful for microbial community data, works for environmental or trait data

PCoA

- Preserves Euclidean distances between samples
- Finds successive orthogonal axes that best explain variability in the data
- Solution is unique and will always be the same

- Works with any dissimilarity measure
- Can handle quantitative, qualitative, or mixed variables
- Samples with high variability can strongly influence the solution

Same as PCA when Euclidean distances are used

PCoA and PCA – fit and # axes

Total variance explained also used as a criterion

PCoA and PCA – fit and # axes

NMDS

- Non-parametric uses ranked distances
- Can handle data that are non-normal, nonlinear, heterogeneous, and have many zeros
- Iteratively searches for axes (k dimensions) that minimize the stress of the configuration
 - Stress = goodness of fit; departure from monotonicity in the original distances vs. in the ordination space (i.e., how well is the original preserved?)
- Solution depends on starting configuration
 - Random iterations vs. prior ord start
 - Might be local not global
- Axes not necessarily orthogonal
- Dissimilarities can be distorted by ranks

NMDS – rules of thumb

Stress	Representation
< 0.05	Excellent
< 0.10	Good
< 0.20	Acceptable
> 0.20	Unsatisfactory - rerun

```
Call:
metaMDS(comm = veganifyOTU(physeq), distance = distance, trymax = 100)
global Multidimensional Scaling using monoMDS

Data: wisconsin(veganifyOTU(physeq))
Distance: bray

Dimensions: 2
Stress: 0.1200766
Stress type 1, weak ties
Two convergent solutions found after 20 tries
Scaling: centring, PC rotation, halfchange scaling
Species: expanded scores based on 'wisconsin(veganifyOTU(physeq))'
```

Also need good fit between ordination distances and true dissimilarities ($r^2 > 0.9$)

High stress or poor fit?

- Increase # of axes (k)
- Rerun with new start configuration
- Use different distance metric or transformation

Double Principal Coordinates Analysis (DPCoA)

- Aims to obtain low-dimensional representation of taxa abundance data accounting for relationships among taxa
- Based on Rao's diversity index
 - Taxa first positioned in high-dim space so that distances match phylogenetic distances
 - Each community/sample then positioned at center of a cloud of its taxa and weighted by taxa abundance in the community
 - PCoA is used to find low-dim representation of the species points for each community
- Similarity measure given by phylogeny (but can be other)
- Largely robust to noise in the data
- In generalized DPCoA, use of tuning parameter, r, gives full family of options (e.g., R::adaptiveGPCA)
 - r=0, DPCoA = Euclidean distance PCA (no phylog)
 - r=1, DPCoA = Rao's DPCoA distance (phylog)

Other phylogenetic ordination approaches

- evoPCoA (Pavoine et al. 2016)
 - https://onlinelibrary.wiley.com/doi/full/10.1111/oik.032
 62
- Edge PCA (Matson & Evans 2013)
 - https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0056859

Recall contrast between standard and compositional approaches to analysis of beta diversity

Operation	Standard approach	Compositional approach
Normalization	-Rarefaction 'DESeq'	CLR ILR ALR
Distance	Bray-Curtis UniFrac Jenson- Shannon	Aitchison
Ordination	NMDS PCoA (Abundance)	PCA (Variance)
Multivariate comparison	perManova ANOSIM	perMANOVA ANOSIM
Correlation	Pearson Spearman	SparCC SpiecEasi Φ ρ
Differential abundance	metagenomSeq LEfSe DESeq	ALDEx2 ANCOM

Some practical issues

- Accessing results in list objects
- "Phylo" warnings
- Plotting options

Accessing results: lists

NMDS

ord1	list [35] (S3: metaME	list [35] (S3: metaMDS, monoMD List of length 35		
points	double [23 x 2]	-0.5614 -0.5746 -0.5211 0.8228 0.8075 0.0538 -0.1504 -0.1389 -0.2988 -0.3102		
stress	double [1]	0.1200766		
o call	language	metaMDS(comm = veganifyOTU(physeq), distance = distance, trymax = 100)		
species	double [2640 x 2]	-0.289 -0.457 -0.518 -0.320 -0.435 -0.326 -0.493 -0.528 -0.695 -0.671 -0.336 -0		

DPCoA

ord_dpcoa	list [14] (S3: dpcoa)	List of length 14
🕠 tab	list [23 x 2639] (S3: data.frame)	A data.frame with 23 rows and 2639 columns
cw	double [2639]	111111
Iw	double [23]	0.0224 0.0329 0.0182 0.0635 0.0845 0.0279
eig	double [22]	0.04494 0.02112 0.01745 0.00805 0.00565 0.00330
rank	integer [1]	22
nf	double [1]	2
● li	list [23 x 2] (S3: data.frame)	A data.frame with 23 rows and 2 columns
○ c1	list [2639 x 2] (S3: data.frame)	A data.frame with 2639 rows and 2 columns
🕟 call	language	dpcoa(df = data.frame(OTU), dis = patristicDist, scannf = scannf)
O dls	list [2640 x 2] (S3: data.frame)	A data.frame with 2640 rows and 2 columns
dw	double [2640]	2.63e-05 2.06e-05 2.74e-05 6.45e-06 3.80e-05 1.83e-05
RaoDiv	double [23]	0.304 0.300 0.315 0.361 0.299 0.319
RaoDis	double [253] (S3: dist)	0.123 0.160 0.500 0.574 0.326 0.236
RaoDecodiv	list [3 x 1] (S3: data.frame)	A data.frame with 3 rows and 1 column

Accessing results: lists level 1

NMDS

```
    ● ord1 list [35] (S3: metaMDS, monoMD List of length 35
    points double [23 x 2] -0.5614 -0.5746 -0.5211 0.8228 0.8075 0.0538 -0.1504 -0.1389 -0.2988 -0.3102 ...
    stress double [1] 0.1200766
    ● call language metaMDS(comm = veganifyOTU(physeq), distance = distance, trymax = 100)
    species double [2640 x 2] -0.289 -0.457 -0.518 -0.320 -0.435 -0.326 -0.493 -0.528 -0.695 -0.671 -0.336 -0. ...
```

```
> ord1$points
                MDS1
                            MDS2
CL3
         -0.56137470 -0.15041554
CC1
         -0.57455196 -0.13892538
SV1
         -0.52109567 -0.29877483
M31Fcsw
         0.82277021 -0.31016681
M11Fcsw
          0.80749731 -0.18154944
M31Plmr
          0.05384666 -0.56136199
M11Plmr
         -0.18668236 -0.38822058
F21Plmr
         -0.01610317 -0.56723829
M31Tong
        0.24182596
                      0.03360672
M11Tona
          0.21095737 -0.07873058
LMEpi24M -0.15139391 -0.08728815
SLEpi20M -0.28124412 -0.04857476
AQC1cm
         -0.41782842
                      0.11308597
AOC4cm
         -0.46640468 0.12862121
AOC7cm
         -0.47970363 0.12851005
NP2
         -0.03559036 0.48051343
NP3
          0.07088107 0.29072726
NP5
          0.19402274 0.37163610
TRRsed1
          0.25916692 0.56204248
TRRsed2
         -0.26171419
                      0.34476688
TRRsed3
         -0.05703100
                     0.27619383
TS28
          0.77650848
                      0.09309473
TS29
          0.57324144 -0.01155231
```

Accessing results: lists level 2

ord_dpcoa	list [14] (S3: dpcoa)	List of length 14
🕟 tab	list [23 x 2639] (S3: data.frame)	A data.frame with 23 rows and 2639 columns
cw	double [2639]	111111
Iw	double [23]	0.0224 0.0329 0.0182 0.0635 0.0845 0.0279
eig	double [22]	0.04494 0.02112 0.01745 0.00805 0.00565 0.00330
rank	integer [1]	22
nf	double [1]	2
👽 li	list [23 x 2] (S3: data.frame)	A data.frame with 23 rows and 2 columns
Axis1	double [23]	-0.00629 -0.00750 -0.01449 -0.35276 -0.36708 -0.04249
Axis2	double [23]	-0.131 -0.128 -0.102 0.138 0.269 -0.159

Phylo conflict warnings

Found more than one class "phylo" in cache; using the first, from namespace 'phyloseq Also defined by 'tidytree'

- This warning indicates that both phyloseq and tidytree share class "phylo"
 - shows up when you're accessing the tree in the ps object
- Can be ignored here, but it's a good idea to specify your package use when these arise
- In Rmd, can be suppressed in code chunk with message=FALSE

Many, many plotting options

- phyloseq::plot_ordination
- vegan::ordiplot
 - vegan::ordiellipse, vegan::ordihull, vegan::ordispider
- can also modify many plot options with ggplot2
 - ggplot2::geom_line, ggplot2::geom_point
- ggordiplots has lots of built-in options
- ggvegan is another option
- Good tutorial on diy versions in ggplot2:
 - https://rstudio-pubsstatic.s3.amazonaws.com/694016_e2d53d65858d4a1985616fa3855d237f.html

Practice!

Wk6_betadiv.html from GitHub

```
download.file(url = "https://rawgithubfilelocation",
destfile = ".../yourlocalfolder/filename")
```

- Working with GlobalPatterns data again
 - Filtered and VST transformed for class
- Two NMDS examples phyloseq and vegan+envfit
- Phylogentic ILR transform and PCoA
- PCoA with Unifrac distances unweighted and weighted
- Coding exercises: clr transformed data, PCoA in phyloseq, PCoA in other package, DPCoA