KUSHAL MANJUNATH

(571) 220-3272 • kushal.manjunath@outlook.com • linkedin.com/in/kushal-manjunath-603a85185 • CA

EDUCATION

Master of Science in Electrical Engineering George Washington University, Washington, DC May 2025

3.5 GPA

Relevant Courses: VLSI design, High-level RTL design, Computer Architecture, Advanced Microarchitecture, HPC

TECHNICAL SKILLS

VLSI Design: Full custom design, Physical design, Analog/Mixed-Signal Integration, CAD for VLSI, ASIC/FPGA design flow BTL Clock-domain crossing FSM Low-power DSP STA CTS Logic design. Analog circuit design

flow, RTL, Clock-domain crossing, FSM, Low-power, DSP, STA, CTS, Logic design, Analog circuit design **Programming Languages:** C/Embedded C, C++, Python, Shell scripting, Assembly, CUDA, UPC

EDA Tools: OrCAD, Cadence Suite (Virtuoso, Xcelium, Innovus), MATLAB

HDL: SystemVerilog, Verilog

Embedded Systems: Real time systems, driver development, IOT, Microcontroller Programming (NXP S32G, NRF52, Raspberry Pi, Beagle bone Black), Embedded Linux, YOCTO

Automotive: AUTOSAR (Classic and Adaptive), QNX RTOS

Advanced Computing: Neural Networks, neuromorphic computing, HPC design, Scientific computing

Computer Architecture: ISA (X86, ARM, MIPS, RISC-V), pipeline design, cache and memory design, CPU design, tools (WinMIPS, Dinero, GEM5, ScaleSim, SimpleScalar)

PROFESSIONAL EXPERIENCE

Research Assistant | Adam Lab, George Washington University, Washington, DC

Jun 2024 – Aug 2024

- Leveraged NVIDIA CUDA to accelerate computational tasks, improving simulation speed for large-scale spiking neural networks by 25%.
- Implemented neural activity models using CARLsim, a GPU-accelerated neural network simulator; achieved enhanced data processing speeds that supported the analysis of up to 1 million neuron interactions simultaneously.

Senior Automotive Engineer/Tech Lead | Luxoft Pvt Ltd, Bengaluru, India

Nov 2021 – Jul 2023

- Revamped on-chip resource management for NXP S32G SoC, accomplishing efficient memory controllers and interconnects to boost overall system performance.
- Led a team of three to develop a custom ASIC for automotive infotainment, integrating secure boot, OTA updates, power gating, and clock domain techniques for reliability and security ensuring robust operation in automotive environments.
- Created edge computing applications on Linux-based automotive systems for real-time decision making, decreasing real-time processing latency and execution time to meet strict timing and power constraints.
- Recruited and coached 15 interns and launched a mentorship program for new joiners in the Bengaluru office.

Automotive Engineer | RealThingks Automotive, Bengaluru, India

Feb 2020 - Apr 2021

- Architected, and tested firmware for automotive-grade microcontrollers leveraging embedded C & C++, ensuring enhanced code execution and resource efficiency, cutting down code execution time by 20%.
- Developed hardware interfaces for NVM controllers and GPIO in automotive ASICs, integrating precise timing control
 and reliability features to meet stringent industry standards.
- Researched and formulated on-chip communication protocols for signal-to-service translation in heterogeneous automotive SoCs; findings enabled cloud-connected architectures, and next-gen automotive ecosystems.

Intern | RealThingks GmbH, Bengaluru, India

Aug 2019 – Feb 2020

- Designed high-power PCBs for smart furniture, optimizing layout and component placement to ensure efficient power distribution and signal integrity, reducing verification time by 80%.
- Devised an on-chip bootloader module for IoT-focused ASICs, leading to the resolution of common initialization failures that affected over 100 devices in field tests.

ACADEMIC PROJECTS

Network on chip design

Dec 2024

 Investigated architectural adaptations for Network-on-Chip designs on heterogeneous multi-core systems; findings helped mitigate traffic congestion by 25%.

Machine learning accelerator

Dec 2024

 Crafted a novel analog-mixed-signal architecture for efficient machine learning inference, improving energy efficiency by 35%.

Binomial low pass filter

Dec 2023

• Designed and simulated a 6-tap binomial low-pass filter(circuit and layout) in Cadence Virtuoso. Built Python scripts to automate testing, cutting verification time by 50%.

Digital communication system

Dec 2023

• Developed an RTL-based digital communication system with symbol mapping, up-sampling, and filtering with built-in SPI module and deployed clock-domain-crossing for synchronization, maximizing for timing, area, and power. Synthesized and implemented design in Cadence Innovus and verified the system on an FPGA.