ADA

Insertion sort

# Analisis y Diseño de Algoritmos

Juan Gutiérrez

September 14, 2021

ADA

Insertion sort

```
INSERTION-SORT (A)

1 for j = 2 to A. length

2 key = A[j]

3 // Insert A[j] into the sorted sequence A[1..j-1].

4 i = j-1

5 while i > 0 and A[i] > key

6 A[i+1] = A[i]

7 i = i-1

8 A[i+1] = key
```

Figure: Tomada del libro Cormen, Introduction to Algorithms

ADA

Insertion sort



Figure: Tomada del libro Cormen, Introduction to Algorithms

ADA

Insertion sort

Invariante: Al inicio de cada iteracion del for de las lineas 1–8, el subarreglo A[1..j-1] consiste en los elementos de A[1..j-1] pero ordenados de manera no descendente.

ADA

Insertion sort

```
INSERTION-SORT (A)
                                                       times
                                              cost
   for j = 2 to A. length
                                              c_1 n
                                              c_2 = n - 1
2 	 key = A[j]
   // Insert A[j] into the sorted
           sequence A[1...j-1].
                                              0 - n - 1
                                              c_4 = n - 1
      i = j - 1
                                              c_5 \qquad \sum_{j=2}^n t_j
5 while i > 0 and A[i] > key
                                              c_6 \qquad \sum_{j=2}^{n} (t_j - 1)

c_7 \qquad \sum_{j=2}^{n} (t_j - 1)
          A[i + 1] = A[i]
  i = i - 1
      A[i+1] = kev
                                              C_8
```

Figure: Tomada del libro Cormen, Introduction to Algorithms

ADA

$$O(g(n)) = \{f(n) : \text{existen constants positivas } c, n_0$$
  
tales que  $0 \le f(n) \le cg(n)$  para todo  $n \ge n_0\}$ 



ADA

**Ejemplo 2.1.** Probar que 
$$n^2 + 10n + 2 = O(n^2)$$

ADA

Ejemplo 2.2. Probar 
$$n^2/2 + 3n = O(n^2)$$

ADA

Insertion sort

Ejemplo 2.3. Probar n/100 no es O(1).

ADA

Insertion sort

Ejemplo 2.4. Probar que  $an + b = O(n^2)$  para todo a > 0.

# Notacion Omega

ADA

Insertion sort

Dada una función g(n), definimos  $\Omega(g(n))$  según

$$\Omega(g(n)) = \{f(n) : \text{existen constantes positivas } c, n_0$$
 tales que  $0 \le cg(n) \le f(n)$  para todo  $n \ge n_0\}$ 



ADA

Insertion sort

Dada una función g(n), definimos  $\Theta(g(n))$  según

$$\Theta(g(n)) = \{f(n) : \text{existen constantes positivas } c_1, c_2, n_0$$
 tales que  $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$  para todo  $n \ge n_0\}.$ 

ADA



Figure 4: Tomada del libro Cormen, Introduction to Algorithms

ADA

Ejemplo 2.1. Demostrar que 
$$\frac{1}{2}n^2 - 3n = \Theta(n^2)$$
.

ADA

Insertion sort

Ejemplo 2.2. Demostrar que  $6n^3 \neq \Theta(n^2)$ .

ADA

$$\mbox{\bf Ejercicio 2.1.} \ an^2 + bn + c = \Theta(n^2) \ para \ todo \ a > 0. \label{eq:equation_eq}$$

ADA

Insertion sort

Dada una función g(n), definimos o(g(n)) según

$$o(g(n)) = \{f(n) : \text{para cada constante } c > 0$$

existe una constante  $n_0$ tal que  $0 \leq f(n) < cg(n)$  para todo  $n \geq n_0 \}$ 

ADA

Ejemplo 2.7. 
$$2n = o(n^2)$$

ADA

Ejemplo 2.8. 
$$2n^2 \neq o(n^2)$$

ADA

Observación 2.4. 
$$f(n) = o(g(n))$$
 si y solo si  $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$ .

# Notacion $\omega$

ADA

Insertion sort

Dada una función g(n), definimos  $\omega(g(n))$  según

$$\omega(g(n)) = \{f(n) : \text{para cada constante } c > 0\}$$

existe una constante  $n_0$  tal que  $0 \le cg(n) < f(n)$  para todo  $n \ge n_0$ 

ADA

Insertion sort

### Transitividad

- $f(n) = \Theta(g(n)), g(n) = \Theta(h(n)), \text{ entonces } f(n) = \Theta(h(n))$
- f(n) = O(g(n)), g(n) = O(h(n)), entonces f(n) = O(h(n))
- $f(n) = \Omega(g(n)), g(n) = \Omega(h(n)),$  entonces  $f(n) = \Omega(h(n))$
- f(n) = o(g(n)), g(n) = o(h(n)),entonces f(n) = o(h(n))
- $f(n) = \omega(g(n)), g(n) = \omega(h(n)), \text{ entonces } f(n) = \omega(h(n))$

ADA

Insertion sort

### Reflexividad

$$\bullet \ f(n) = \Theta(f(n))$$

• 
$$f(n) = O(f(n))$$

$$\bullet \ f(n) = \Omega(f(n))$$

ADA

Insertion sort

### Simetría

• 
$$f(n) = \Theta(g(n))$$
 entonces  $g(n) = \Theta(f(n))$ 

### Simetría transpuesta

• 
$$f(n) = O(g(n))$$
 si y solo si  $g(n) = \Omega(f(n))$ 

• 
$$f(n) = o(g(n))$$
 entonces  $g(n) = \omega(f(n))$ 

AD/

Insertion sort

**Observación 2.6.** Existen funciones no comparables, por ejemplo n y  $n^{1+\sin n}$ .

# Gracias