```
In [1]: import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
         from sklearn.preprocessing import StandardScaler
         from sklearn.model selection import train test split
         from sklearn.naive bayes import GaussianNB
         from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recal
In [2]: iris=pd.read csv('iris.csv')
In [3]: print(iris)
            sepal.length sepal.width
                                         petal.length petal.width
                                                                       variety
       0
                      5.1
                                    3.5
                                                  1.4
                                                                0.2
                                                                         Setosa
       1
                      4.9
                                                                0.2
                                                                         Setosa
                                    3.0
                                                  1.4
       2
                      4.7
                                    3.2
                                                  1.3
                                                                0.2
                                                                         Setosa
       3
                      4.6
                                    3.1
                                                  1.5
                                                                0.2
                                                                         Setosa
       4
                                                                0.2
                      5.0
                                    3.6
                                                  1.4
                                                                         Setosa
                      . . .
                                    . . .
                                                                . . .
       . .
                                                  . . .
       145
                      6.7
                                    3.0
                                                  5.2
                                                                2.3 Virginica
                      6.3
                                    2.5
                                                  5.0
                                                                1.9 Virginica
       146
       147
                      6.5
                                    3.0
                                                  5.2
                                                                2.0 Virginica
       148
                      6.2
                                    3.4
                                                  5.4
                                                                2.3 Virginica
                      5.9
                                                  5.1
                                                                1.8 Virginica
       149
                                    3.0
       [150 rows x 5 columns]
In [4]: iris.describe()
Out[4]:
                sepal.length sepal.width petal.length petal.width
                 150.000000
                             150.000000
                                          150.000000
                                                      150.000000
         count
                   5.843333
                                                         1.199333
         mean
                                3.057333
                                            3.758000
                   0.828066
                                            1.765298
           std
                               0.435866
                                                         0.762238
          min
                   4.300000
                                2.000000
                                            1.000000
                                                         0.100000
          25%
                   5.100000
                                2.800000
                                                         0.300000
                                            1.600000
          50%
                   5.800000
                                3.000000
                                            4.350000
                                                         1.300000
          75%
                   6.400000
                                3.300000
                                            5.100000
                                                         1.800000
                   7.900000
                                4.400000
                                            6.900000
                                                         2.500000
          max
In [5]: iris.info
```

Out[5]:	<bound dataframe.info="" method="" of<="" th=""><th>sepal.length</th><th>sepal.wid</th><th>Ith petal.length</th><th>peta</th></bound>		sepal.length	sepal.wid	Ith petal.length	peta	
	l.width	variety					
	0	5.1	3.5	1.4	0.2	Setosa	
	1	4.9	3.0	1.4	0.2	Setosa	
	2	4.7	3.2	1.3	0.2	Setosa	
	3	4.6	3.1	1.5	0.2	Setosa	
	4	5.0	3.6	1.4	0.2	Setosa	
	• •	• • •	• • •	• • •	• • •	• • •	
	145	6.7	3.0	5.2	2.3 V	/irginica	
	146	6.3	2.5	5.0	1.9 ∖	/irginica	
	147	6.5	3.0	5.2	2.0 V	/irginica	
	148	6.2	3.4	5.4	2.3 V	/irginica	
	149	5.9	3.0	5.1	1.8 \	/irginica	
	[150 nows v 5 columns]						

[150 rows x 5 columns]>

In [6]: iris.head()

Out[6]:		sepal.length	sepal.width	petal.length	petal.width	variety
	0	5.1	3.5	1.4	0.2	Setosa
	1	4.9	3.0	1.4	0.2	Setosa
	2	4.7	3.2	1.3	0.2	Setosa
	3	4.6	3.1	1.5	0.2	Setosa
	4	5.0	3.6	1 4	0.2	Setosa

In [7]: iris.describe()

Out[7]:		sepal.length	sepal.width	petal.length	petal.width
	count	150.000000	150.000000	150.000000	150.000000
	mean	5.843333	3.057333	3.758000	1.199333
	std	0.828066	0.435866	1.765298	0.762238
	min	4.300000	2.000000	1.000000	0.100000
	25%	5.100000	2.800000	1.600000	0.300000
	50%	5.800000	3.000000	4.350000	1.300000
	75 %	6.400000	3.300000	5.100000	1.800000
	max	7.900000	4.400000	6.900000	2.500000

In [8]: iris.shape

Out[8]: (150, 5)

In [9]: iris.size

```
Out[9]: 750
In [10]: iris.isnull().sum()
Out[10]: sepal.length
          sepal.width
                          0
          petal.length
                           0
          petal.width
                           0
          variety
                           0
          dtype: int64
            1. Implement Simple Naïve Bayes classification algorithm using Python/R on
          iris.csv dataset
In [11]: X=iris.iloc[:,0:4].values # SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm
         y=iris.iloc[:,4].values # Targeted variable -- Species
In [12]: X
```

```
Out[12]: array([[5.1, 3.5, 1.4, 0.2],
                 [4.9, 3., 1.4, 0.2],
                 [4.7, 3.2, 1.3, 0.2],
                 [4.6, 3.1, 1.5, 0.2],
                 [5., 3.6, 1.4, 0.2],
                 [5.4, 3.9, 1.7, 0.4],
                 [4.6, 3.4, 1.4, 0.3],
                 [5., 3.4, 1.5, 0.2],
                 [4.4, 2.9, 1.4, 0.2],
                 [4.9, 3.1, 1.5, 0.1],
                 [5.4, 3.7, 1.5, 0.2],
                 [4.8, 3.4, 1.6, 0.2],
                 [4.8, 3., 1.4, 0.1],
                 [4.3, 3., 1.1, 0.1],
                 [5.8, 4., 1.2, 0.2],
                 [5.7, 4.4, 1.5, 0.4],
                 [5.4, 3.9, 1.3, 0.4],
                 [5.1, 3.5, 1.4, 0.3],
                 [5.7, 3.8, 1.7, 0.3],
                 [5.1, 3.8, 1.5, 0.3],
                 [5.4, 3.4, 1.7, 0.2],
                 [5.1, 3.7, 1.5, 0.4],
                 [4.6, 3.6, 1., 0.2],
                 [5.1, 3.3, 1.7, 0.5],
                 [4.8, 3.4, 1.9, 0.2],
                 [5., 3., 1.6, 0.2],
                 [5., 3.4, 1.6, 0.4],
                 [5.2, 3.5, 1.5, 0.2],
                 [5.2, 3.4, 1.4, 0.2],
                 [4.7, 3.2, 1.6, 0.2],
                 [4.8, 3.1, 1.6, 0.2],
                 [5.4, 3.4, 1.5, 0.4],
                 [5.2, 4.1, 1.5, 0.1],
                 [5.5, 4.2, 1.4, 0.2],
                 [4.9, 3.1, 1.5, 0.2],
                 [5., 3.2, 1.2, 0.2],
                 [5.5, 3.5, 1.3, 0.2],
                 [4.9, 3.6, 1.4, 0.1],
                 [4.4, 3., 1.3, 0.2],
                 [5.1, 3.4, 1.5, 0.2],
                 [5., 3.5, 1.3, 0.3],
                 [4.5, 2.3, 1.3, 0.3],
                 [4.4, 3.2, 1.3, 0.2],
                 [5., 3.5, 1.6, 0.6],
                 [5.1, 3.8, 1.9, 0.4],
                 [4.8, 3., 1.4, 0.3],
                 [5.1, 3.8, 1.6, 0.2],
                 [4.6, 3.2, 1.4, 0.2],
                 [5.3, 3.7, 1.5, 0.2],
                 [5., 3.3, 1.4, 0.2],
                 [7., 3.2, 4.7, 1.4],
                 [6.4, 3.2, 4.5, 1.5],
                 [6.9, 3.1, 4.9, 1.5],
                 [5.5, 2.3, 4., 1.3],
                 [6.5, 2.8, 4.6, 1.5],
                 [5.7, 2.8, 4.5, 1.3],
```

```
[6.3, 3.3, 4.7, 1.6],
[4.9, 2.4, 3.3, 1.],
[6.6, 2.9, 4.6, 1.3],
[5.2, 2.7, 3.9, 1.4],
[5., 2., 3.5, 1.],
[5.9, 3., 4.2, 1.5],
[6., 2.2, 4., 1.],
[6.1, 2.9, 4.7, 1.4],
[5.6, 2.9, 3.6, 1.3],
[6.7, 3.1, 4.4, 1.4],
[5.6, 3., 4.5, 1.5],
[5.8, 2.7, 4.1, 1.],
[6.2, 2.2, 4.5, 1.5],
[5.6, 2.5, 3.9, 1.1],
[5.9, 3.2, 4.8, 1.8],
[6.1, 2.8, 4., 1.3],
[6.3, 2.5, 4.9, 1.5],
[6.1, 2.8, 4.7, 1.2],
[6.4, 2.9, 4.3, 1.3],
[6.6, 3., 4.4, 1.4],
[6.8, 2.8, 4.8, 1.4],
[6.7, 3., 5., 1.7],
[6., 2.9, 4.5, 1.5],
[5.7, 2.6, 3.5, 1.],
[5.5, 2.4, 3.8, 1.1],
[5.5, 2.4, 3.7, 1.],
[5.8, 2.7, 3.9, 1.2],
[6., 2.7, 5.1, 1.6],
[5.4, 3., 4.5, 1.5],
[6., 3.4, 4.5, 1.6],
[6.7, 3.1, 4.7, 1.5],
[6.3, 2.3, 4.4, 1.3],
[5.6, 3., 4.1, 1.3],
[5.5, 2.5, 4., 1.3],
[5.5, 2.6, 4.4, 1.2],
[6.1, 3., 4.6, 1.4],
[5.8, 2.6, 4., 1.2],
[5., 2.3, 3.3, 1.],
[5.6, 2.7, 4.2, 1.3],
[5.7, 3., 4.2, 1.2],
[5.7, 2.9, 4.2, 1.3],
[6.2, 2.9, 4.3, 1.3],
[5.1, 2.5, 3., 1.1],
[5.7, 2.8, 4.1, 1.3],
[6.3, 3.3, 6., 2.5],
[5.8, 2.7, 5.1, 1.9],
[7.1, 3., 5.9, 2.1],
[6.3, 2.9, 5.6, 1.8],
[6.5, 3., 5.8, 2.2],
[7.6, 3., 6.6, 2.1],
[4.9, 2.5, 4.5, 1.7],
[7.3, 2.9, 6.3, 1.8],
[6.7, 2.5, 5.8, 1.8],
[7.2, 3.6, 6.1, 2.5],
[6.5, 3.2, 5.1, 2.],
[6.4, 2.7, 5.3, 1.9],
```

```
[6.8, 3., 5.5, 2.1],
[5.7, 2.5, 5., 2.],
[5.8, 2.8, 5.1, 2.4],
[6.4, 3.2, 5.3, 2.3],
[6.5, 3., 5.5, 1.8],
[7.7, 3.8, 6.7, 2.2],
[7.7, 2.6, 6.9, 2.3],
[6., 2.2, 5., 1.5],
[6.9, 3.2, 5.7, 2.3],
[5.6, 2.8, 4.9, 2.],
[7.7, 2.8, 6.7, 2.],
[6.3, 2.7, 4.9, 1.8],
[6.7, 3.3, 5.7, 2.1],
[7.2, 3.2, 6., 1.8],
[6.2, 2.8, 4.8, 1.8],
[6.1, 3., 4.9, 1.8],
[6.4, 2.8, 5.6, 2.1],
[7.2, 3., 5.8, 1.6],
[7.4, 2.8, 6.1, 1.9],
[7.9, 3.8, 6.4, 2.],
[6.4, 2.8, 5.6, 2.2],
[6.3, 2.8, 5.1, 1.5],
[6.1, 2.6, 5.6, 1.4],
[7.7, 3., 6.1, 2.3],
[6.3, 3.4, 5.6, 2.4],
[6.4, 3.1, 5.5, 1.8],
[6., 3., 4.8, 1.8],
[6.9, 3.1, 5.4, 2.1],
[6.7, 3.1, 5.6, 2.4],
[6.9, 3.1, 5.1, 2.3],
[5.8, 2.7, 5.1, 1.9],
[6.8, 3.2, 5.9, 2.3],
[6.7, 3.3, 5.7, 2.5],
[6.7, 3., 5.2, 2.3],
[6.3, 2.5, 5., 1.9],
[6.5, 3., 5.2, 2.],
[6.2, 3.4, 5.4, 2.3],
[5.9, 3., 5.1, 1.8]])
```

In [13]: **y**

```
Out[13]: array(['Setosa', 'Setosa', 'Seto
                                                               'Setosa', 'Setosa', 'Setosa', 'Setosa', 'Setosa',
                                                               'Setosa', 'Setosa', 'Setosa', 'Setosa', 'Setosa',
                                                              'Setosa', 'Setosa', 'Setosa', 'Setosa', 'Setosa',
                                                               'Setosa', 'Setosa', 'Setosa', 'Setosa', 'Setosa',
                                                               'Setosa', 'Setosa', 'Versicolor', 'Versicolor', 'Versicolor',
                                                               'Versicolor', 'Versicolor', 'Versicolor',
                                                                                                           , 'Versicolor', 'Versicolor', 'Versicolor',
                                                               'Versicolor',
                                                               'Versicolor', 'Versicolor', 'Versicolor',
                                                              'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'V
                                                               'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor'
                                                               'Versicolor', 'Versicolor', 'Versicolor',
                                                               'Versicolor', 'Versicolor', 'Versicolor',
                                                              'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'V
                                                              'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor', 'Virginica', 'Virginica',
                                                               'Virginica', 'Virginica', 'Virginica', 'Virginica',
                                                              'Virginica', 'Virginica', 'Virginica', 'Virginica',
                                                               'Virginica', 'Virginica', 'Virginica', 'Virginica',
                                                               'Virginica', 'Virginica', 'Virginica', 'Virginica',
                                                              'Virginica', 'Virginica', 'Virginica', 'Virginica',
                                                               'Virginica', 'Virginica', 'Virginica', 'Virginica',
                                                               'Virginica', 'Virginica', 'Virginica', 'Virginica',
                                                               'Virginica', 'Virginica', 'Virginica', 'Virginica',
                                                               'Virginica', 'Virginica', 'Virginica', 'Virginica',
                                                               'Virginica', 'Virginica', 'Virginica'], dtype=object)
In [14]: #Train and Test split
                                   X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3,random_state=0)
In [15]: # Feature Scaling
                                   # Standard Scaler --> It scales the data such that the mean is 0 and the standard d
                                   sc = StandardScaler()
                                   X train = sc.fit transform(X train)
                                   X test = sc.transform(X_test)
In [16]: | gaussian = GaussianNB()
                                   gaussian.fit(X train, y train)
Out[16]: ▼ GaussianNB
                                  GaussianNB()
In [17]: Y pred = gaussian.predict(X test)
In [18]: print(Y pred)
```

```
['Virginica' 'Versicolor' 'Setosa' 'Virginica' 'Setosa' 'Virginica'
         'Setosa' 'Versicolor' 'Versicolor' 'Virginica' 'Versicolor'
         'Versicolor' 'Versicolor' 'Versicolor' 'Setosa' 'Versicolor' 'Versicolor'
         'Setosa' 'Setosa' 'Virginica' 'Versicolor' 'Setosa' 'Setosa' 'Virginica'
         'Setosa' 'Setosa' 'Versicolor' 'Versicolor' 'Setosa' 'Virginica'
         'Versicolor' 'Setosa' 'Virginica' 'Virginica' 'Versicolor' 'Setosa'
         'Versicolor' 'Versicolor' 'Versicolor' 'Virginica' 'Setosa' 'Virginica'
         'Setosa' 'Setosa']
In [19]: accuracy nb=round(accuracy score(y test,Y pred)* 100, 2)
         accuracy_nb
Out[19]: 100.0
In [20]: acc gaussian = round(gaussian.score(X train, y train) * 100, 2)
         acc gaussian
Out[20]: 94.29
           2. Compute Confusion matrix to find TP, FP, TN, FN, Accuracy, Error rate,
         Precision, Recall on the given dataset.
In [21]: from sklearn import metrics
         from sklearn.metrics import confusion_matrix, f1_score, precision_score, recall_scor
In [22]: cm = confusion_matrix(y_test, Y_pred)
         accuracy = accuracy score(y test,Y pred)
         precision =precision_score(y_test, Y_pred,average='micro')
         recall = recall_score(y_test, Y_pred,average='micro')
         f1 = f1_score(y_test,Y_pred,average='micro')
         print('Confusion matrix for Naive Bayes\n',cm)
         print('accuracy_Naive Bayes: %.3f' %accuracy)
         print('precision_Naive Bayes: %.3f' %precision)
         print('recall Naive Bayes: %.3f' %recall)
         print('f1-score_Naive Bayes : %.3f' %f1)
        Confusion matrix for Naive Bayes
         [[16 0 0]
         [ 0 18 0]
         [ 0 0 11]]
        accuracy_Naive Bayes: 1.000
        precision Naive Bayes: 1.000
        recall Naive Bayes: 1.000
        f1-score Naive Bayes : 1.000
In [23]: cm df = pd.DataFrame(cm,columns = ['Predicted Setosa','Predicted Versicolor','Predi
         cm df
```

Out[23]:

	Predicted Setosa	Predicted Versicolor	Predicted Virginica
Actual Setosa	16	0	0
Actual Veriscolor	0	18	0
Actual Virginica	0	0	11