Deep Learning

Convolutional Operation

$$\begin{split} s_{11} &= a \cdot w_{11} + b \cdot w_{12} + d \cdot w_{21} + e \cdot w_{22} \\ s_{12} &= b \cdot w_{11} + c \cdot w_{12} + e \cdot w_{21} + f \cdot w_{22} \\ s_{21} &= d \cdot w_{11} + e \cdot w_{12} + g \cdot w_{21} + h \cdot w_{22} \\ s_{22} &= e \cdot w_{11} + f \cdot w_{12} + h \cdot w_{21} + i \cdot w_{22} \end{split}$$

Learning goals

- What are filters?
- Convolutional Operation
- 2D Convolution

- Filters are widely applied in Computer Vision (CV) since the 70's.
- One prominent example: Sobel-Filter.
- It detects edges in images.

Figure: Sobel-filtered image.

- Edges occur where the intensity over neighboring pixels changes fast.
- Thus, approximate the gradient of the intensity of each pixel.
- Sobel showed that the gradient image G_x of original image A in x-dimension can be approximated by:

$$\mathbf{G}_{x} = \begin{bmatrix} -1 & 0 & +1 \\ -2 & 0 & +2 \\ -1 & 0 & +1 \end{bmatrix} * \mathbf{A} = \mathbf{S}_{x} * \mathbf{A}$$

where * indicates a mathematical operation known as a **convolution**, not a traditional matrix multiplication.

 The filter matrix S_x consists of the product of an averaging and a differentiation kernel:

$$\underbrace{\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}^T}_{averaging} \underbrace{\begin{bmatrix} -1 & 0 & +1 \end{bmatrix}}_{differentiation}$$

 Similarly, the gradient image G_y in y-dimension can be approximated by:

$$\mathbf{G}_{y} = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ +1 & +2 & +1 \end{bmatrix} * \mathbf{A} = \mathbf{S}_{y} * \mathbf{A}$$

 The combination of both gradient images yields a dimension-independent gradient information G:

$$\mathbf{G} = \sqrt{\mathbf{G}_{x}^{2} + \mathbf{G}_{y}^{2}}$$

 These matrix operations were used to create the filtered picture of Albert Einstein.

HORIZONTAL VS VERTICAL EDGES

Figure: Sobel filtered images. Outputs are normalized in each case.

- Let's do this on a dummy image.
- How to represent a digital image?

0	0	0	0	255	255	0	0	0	0
0	0	0	255	255	255	255	0	0	0
0	0	0	0	255	255	0	0	0	0
255	0	0	255	255	255	255	0	0	0
0	0	255	255	255	255	255	255	0	0
0	255	0	255	255	255	255	0	255	0
0	0	0	255	255	255	255	0	0	0
0	0	0	255	255	255	255	0	0	0
0	0	0	255	0	0	255	0	0	255
0	0	255	255	0	0	255	255	0	0

Basically as an array of integers.

S_x enables us to to detect vertical edges!

Sobel-Operator

$$S_{x} = \begin{bmatrix} -1 & 0 & +1 \\ -2 & 0 & +2 \\ -1 & 0 & +1 \end{bmatrix}$$

0	0	0	0	255	255	0	0	0	0
0	0	0	255	255	255	255	0	0	0
0	0	0	0	255	255	0	0	0	0
255	0	0	255	255	255	255	0	0	0
0	0	255	255	255	255	255	255	0	0
0	255	0	255	255	255	255	0	255	0
0	0	0	255	255	255	255	0	0	0
0	0	0	255	255	255	255	0	0	0
0	0	0	255	0	0	255	0	0	255
0	0	255	255	0	0	255	255	0	0

Sobel-Operator
$$S_X = \begin{bmatrix} -1 & 0 & +1 \\ -2 & \boxed{0} & +2 \\ -1 & 0 & +1 \end{bmatrix}$$

$$(\mathbf{G}_x)_{(i,j)} = (\mathbf{I} \star \mathbf{S}_x)_{(i,j)} = -1 \cdot 0 + 0 \cdot 255 + 1 \cdot 255$$

 $-2 \cdot 0 + 0 \cdot 0 + 2 \cdot 255$
 $-1 \cdot 0 + 0 \cdot 255 + 1 \cdot 255$

```
510
             1020
                    510 -510 -1020
                                        -510
-255
       510
             1020
                    510
                         -510 -1020
                                        -510
-255
       765
              765
                    255 -255
                                -765
                                        -765
                                               -255
255
       765
              510
                                -510
                                        -765
                                               -510
255
       510
              765
                                -765
                                        -510
                                               -255
       765
             1020
                               -1020
                                        -765
                                       -1020
                                                255
      1020
              765
                   -255
                           255
                                -765
255
      1020
                    -765
                           765
                                       -1020
                                                255
```

 Applying the Sobel-Operator to every location in the input yields the feature map.

128	191	255	191	64	0	64	128
96	191	255	191	64	0	64	128
96	223	223	159	96	32	32	96
159	223	191	128	128	64	32	64
159	191	223	128	128	32		
128	223	255	128	128	0	32	128
128	255	223	96	159	32	0	159
159	255	128	32	223	128	0	159

- Normalized feature map reveals vertical edges.
- Note the dimensional reduction compared to the dummy image.

WHY DO WE NEED TO KNOW ALL OF THAT?

- What we just did was extracting pre-defined features from our input (i.e. edges).
- A convolutional neural network does almost exactly the same: "extracting features from the input".
 - ⇒ The main difference is that we usually do not tell the CNN what to look for (pre-define them), the CNN decides itself.
- In a nutshell:
 - We initialize a lot of random filters (like the Sobel but just random entries) and apply them to our input.
 - Then, a classifier which (e.g. a feed forward neural net) uses them as input data.
 - Filter entries will be adjusted by common gradient descent methods.

WHY DO WE NEED TO KNOW ALL OF THAT?

WHY DO WE NEED TO KNOW ALL OF THAT?

WORKING WITH IMAGES

- In order to understand the functionality of CNNs, we have to familiarize ourselves with some properties of images.
- Grey scale images:
 - Matrix with dimensions **h**eight \times **w**idth \times 1.
 - Pixel entries differ from 0 (black) to 255 (white).
- Color images:
 - Tensor with dimensions **h**eight \times **w**idth \times 3.
 - The depth 3 denotes the RGB values (red green blue).
- Filters:
 - A filter's depth is always equal to the input's depth!
 - In practice, filters are usually square.
 - Thus we only need one integer to define its size.
 - For example, a filter of size 2 applied on a color image actually has the dimensions 2 × 2 × 3.

- Suppose we have an input with entries a, b, \dots, i (think of pixel values).
- The filter we would like to apply has weights w_{11} , w_{12} , w_{21} and w_{22} .

Input: 3x3x1

Filter: 2x2x1

- Suppose we have an input with entries a, b, \dots, i (think of pixel values).
- The filter we would like to apply has weights w_{11} , w_{12} , w_{21} and w_{22} .

- Suppose we have an input with entries a, b, \ldots, i (think of pixel values).
- The filter we would like to apply has weights w_{11} , w_{12} , w_{21} and w_{22} .

To obtain s_{11} we simply compute the dot product:

$$s_{11} = a \cdot w_{11} + b \cdot w_{12} + d \cdot w_{21} + e \cdot w_{22}$$

- Suppose we have an input with entries a, b, \dots, i (think of pixel values).
- The filter we would like to apply has weights w_{11} , w_{12} , w_{21} and w_{22} .

Same for s_{12} :

$$s_{12} = b \cdot w_{11} + c \cdot w_{12} + e \cdot w_{21} + f \cdot w_{22}$$

- Suppose we have an input with entries a, b, \dots, i (think of pixel values).
- The filter we would like to apply has weights w_{11} , w_{12} , w_{21} and w_{22} .

As well as for s_{21} :

$$s_{21} = d \cdot w_{11} + e \cdot w_{12} + g \cdot w_{21} + h \cdot w_{22}$$

- Suppose we have an input with entries a, b, \dots, i (think of pixel values).
- The filter we would like to apply has weights w_{11} , w_{12} , w_{21} and w_{22} .

And finally for s_{22} :

$$s_{22} = e \cdot w_{11} + f \cdot w_{12} + h \cdot w_{21} + i \cdot w_{22}$$

- Suppose we have an input with entries a, b, \ldots, i (think of pixel values).
- The filter we would like to apply has weights w_{11} , w_{12} , w_{21} and w_{22} .

W ₁₁	W ₁₂
W ₂₁	W ₂₂
Filter:	2x2x1

Input: 3x3x1

$$s_{11} = a \cdot w_{11} + b \cdot w_{12} + d \cdot w_{21} + e \cdot w_{22}$$

$$s_{12} = b \cdot w_{11} + c \cdot w_{12} + e \cdot w_{21} + f \cdot w_{22}$$

$$s_{21} = d \cdot w_{11} + e \cdot w_{12} + g \cdot w_{21} + h \cdot w_{22}$$

$$s_{22} = e \cdot w_{11} + f \cdot w_{12} + h \cdot w_{21} + i \cdot w_{22}$$

- Suppose we have an input with entries a, b, ..., i (think of pixel values).
- The filter we would like to apply has weights w_{11} , w_{12} , w_{21} and w_{22} .

W ₁₁	W ₁₂
W ₂₁	W ₂₂

Filter: 2x2x1

Input: 3x3x1

More generally, let I be the matrix representing the input and W be the filter/kernel. Then the entries of the output matrix are defined by $s_{ij} = \sum_{m,n} l_{i+m-1,j+n-1} w_{mn}$ where m,n denote the image size and kernel size respectively.