Estructures de Dades i Algorismes

FIB

Transparències d' Antoni Lozano (amb edicions menors d'altres professors)

Q1 2021 - 22

- 1 Preliminars matemàtics
- 2 Cues amb prioritats
 - Introducció
 - Heaps
 - Operacions bàsiques
 - Implementació recursiva
 - Implementació iterativa
- 3 Heapsort
 - Algorisme bàsic
 - Millores de l'algorisme bàsic
- 4 Altres aplicacions
 - El problema de selecció

- 1 Preliminars matemàtics
- 2 Cues amb prioritats
 - Introducció
 - Heaps
 - Operacions bàsiques
 - Implementació recursiva
 - Implementació iterativa
- 3 Heapsort
 - Algorisme bàsic
 - Millores de l'algorisme bàsic
- 4 Altres aplicacions
 - El problema de selecció

Definició

El nivell d'un node en un arbre és la distància de l'arrel al node.

Definició

Un arbre binari és perfecte si totes les fulles estan al mateix nivell.

Exemples

Definició

L' alçada d'un arbre és el nivell màxim dels nodes.

Definició

El nivell d'un node en un arbre és la distància de l'arrel al node.

Definició

Un arbre binari és perfecte si totes les fulles estan al mateix nivell.

Exemples

Definició

L' alçada d'un arbre és el nivell màxim dels nodes.

Proposició

Un arbre binari perfecte d'alçada h té $2^{h+1} - 1$ nodes.

Demostració

Farem inducció en l'alçada. Sigui T un arbre binari perfecte d'alçada h.

- Base d'inducció: h = 0. L'arbre ha de tenir un sol node, però $1 = 2^{0+1} - 1$.
- Pas d'induccio: h > 0. Els subarbres esquerre i dret tenen alçada h - 1 i, per hipòtesi d'inducció, cadascun té $2^h - 1$ nodes. El nombre de nodes de T és la

nodes de
$$T = 2(2^h - 1) + 1 = 2^{h+1} - 2 + 1 = 2^{h+1} - 1$$
.

Proposició

Un arbre binari perfecte d'alçada h té $2^{h+1} - 1$ nodes.

Demostració

Farem inducció en l'alçada. Sigui *T* un arbre binari perfecte d'alçada *h*.

- Base d'inducció: h = 0.
 L'arbre ha de tenir un sol node, però 1 = 2⁰⁺¹ 1.
- Pas d'inducció: h > 0.
 Els subarbres esquerre i dret tenen alçada h 1 i, per hipòtesi d'inducció, cadascun té 2^h 1 nodes. El nombre de nodes de T és la suma d'aquests nodes més un (de l'arrel):

nodes de
$$T = 2(2^h - 1) + 1 = 2^{h+1} - 2 + 1 = 2^{h+1} - 1$$
.

Definició

Un arbre binari d'alçada h és complet si

- \bigcirc els h-1 primers nivells estan plens
- 2 el nivell h té les fulles el màxim a l'esquerra.

Exemples

Proposició

Un arbre binari complet d'alçada h té entre 2^h i $2^{h+1} - 1$ nodes.

Demostració

Sigui T un arbre binari complet d'alçada h:

- El mínim nombre de nodes de T es produeix quan té un sol node a alçada h. Com que fins a alçada h-1, T té 2^h-1 nodes, sumant l'únic node a alçada h, s'obtenen 2^h nodes.
- El màxim nombre de nodes de T correspon a un arbre perfecte d'alçada h, que té 2^{h+1} – 1 nodes.

Proposició

Un arbre binari complet d'alçada h té entre 2^h i $2^{h+1} - 1$ nodes.

Demostració

Sigui *T* un arbre binari complet d'alçada *h*:

- El mínim nombre de nodes de T es produeix quan té un sol node a alçada h. Com que fins a alçada h-1, T té 2^h-1 nodes, sumant l'únic node a alçada h, s'obtenen 2^h nodes.
- El màxim nombre de nodes de T correspon a un arbre perfecte d'alçada h, que té $2^{h+1} 1$ nodes.

Corol·lari

L'alçada d'un arbre binari complet de n nodes és $\lfloor \log n \rfloor \in \Theta(\log n)$.

Demostració

Pel resultat anterior, un arbre binari complet d'alçada h i n nodes compleix:

$$2^h \le n < 2^{h+1}$$
.

Si prenem logaritmes en base 2, tenim

$$h \le \log n < h + 1.$$

I prenent la part baixa del logaritme,

$$h = \lfloor \log n \rfloor$$
.

Per tant, $h \in \Theta(\log n)$.

Corol·lari

L'alçada d'un arbre binari complet de n nodes és $\lfloor \log n \rfloor \in \Theta(\log n)$.

Demostració

Pel resultat anterior, un arbre binari complet d'alçada h i n nodes compleix:

$$2^h \le n < 2^{h+1}$$
.

Si prenem logaritmes en base 2, tenim

$$h \leq \log n < h + 1.$$

I prenent la part baixa del logaritme,

$$h = \lfloor \log n \rfloor$$
.

Per tant, $h \in \Theta(\log n)$.

- 1 Preliminars matemàtics
- 2 Cues amb prioritats
 - Introducció
 - Heaps
 - Operacions bàsiques
 - Implementació recursiva
 - Implementació iterativa
- 3 Heapsort
 - Algorisme bàsic
 - Millores de l'algorisme bàsic
- 4 Altres aplicacions
 - El problema de selecció

Introducció

Moltes aplicacions requereixen processar les entrades seguint un ordre parcial determinat per prioritats.

- Programació de tasques: s'executen abans les més importants/curtes/...
- Sistemes de simulació: se simulen esdeveniments en ordre cronològic.
- Algorismes voraços: en cada moment es prova la millor opció disponible.

Les cues amb prioritat són una eina bàsica en el disseny d'algorismes.

Operacions

Definició

Una cua amb prioritat és una estructura de dades que disposa de dues operacions bàsiques:

- afegir: afegir un element i
- treure_min: treure i retornar l'element més petit.

Implementacions senzilles

implementacions	afegir	treure₋min
seqüencial desordenada	Θ(1)	$\Theta(n)$
seqüencial ordenada (creixent)	$\Theta(n)$	$\Theta(n)$
sequencial ordenada (decreixent)	$\Theta(n)$	Θ(1)
heaps	$\Theta(\widehat{\log n})$	$\Theta(\log n)$

Definició

Un *min-heap* és un arbre binari complet on el valor d'un node és sempre més petit o igual que els valors dels nodes dels seus fills.

Exemples

Són min-heaps:

No són min-heaps:

Definició

Un *max-heap* és un arbre binari complet on el valor d'un node és sempre més gran o igual que els valors dels nodes dels seus fills.

Exemples

Són max-heaps:

No són max-heaps:

Terminologia

- Quan parlem de heaps sense especificar res més, aquí ens referirem als min-heaps.
- En català, dels heaps en diem munts o monticles.

Els heaps es representen de manera compacta mitjançant vectors.

Per exemple, el heap

es representa amb el vector

No calen punters perquè:

- el pare del node de la posició i és a la posició |i/2|
- el fill esquerre del node de la posició i és a la posició 2i
- el fill dret del node de la posició i és a la posició 2i + 1

Operacions bàsiques

Operació afegir

El més senzill és afegir l'element en la següent posició lliure del vector i fer-lo ascendir fins la posició en què es torna a complir la propietat del heap.

Operacions bàsiques

Operació treure-min

L'element en l'última posició del vector es trasllada a la primera i es fa descendir fins que troba la seva posició. Es retorna l'antiga arrel.

Implementació recursiva

Definició de la classe CuaPrio

Constructora

Crea una cua amb prioritat buida. Cost: $\Theta(1)$.

```
CuaPrio () {
    t.push_back(Elem());
}
```

Consultar la talla

Retorna la talla de la cua amb prioritat. Cost: $\Theta(1)$.

```
int talla () {
    return t.size()-1;
}
```

Consultar si és buida

Indica si la cua amb prioritat és buida. Cost: $\Theta(1)$.

```
bool buida () {
    return t.talla()==0;
}
```

Retornar element mínim

Retorna un element amb prioritat mínima. Cost: $\Theta(1)$.

```
Elem minim () {
    if (buida()) throw ErrorPrec("CuaPrio buida");
    return t[1];
}
```

afegir

```
Afegeix un nou element. Cost: Θ(log n).

void afegir (Elem& x) {
   t.push_back(x);
   surar(talla());
}
```

treure_min

```
Treu i retorna l'element mínim. Cost: Θ(log n).

Elem treure_min () {
    if (buida()) throw ErrorPrec("CuaPrio buida");
    Elem x = t[1];
    t[1] = t.back();
    t.pop_back();
    enfonsar(1);
    return x;
}
```

Implementació recursiva: funcions privades

surar

Fer ascendir un element fins que ocupi una posició compatible amb la condició d'ordenació del heap. Cost: $\Theta(\log n)$.

```
void surar (int i) {
    if (i!=1 and t[i/2]>t[i]) {
        swap(t[i],t[i/2]);
        surar(i/2);
}
```

Implementació recursiva: funcions privades

enfonsar

Fer descendir un element fins que ocupi una posició compatible amb la condició d'ordenació del heap. Cost: $\Theta(\log n)$.

```
void enfonsar (int i) {
   int n = talla();
   int c = 2*i;
   if (c<=n) {
      if (c+1<=n and t[c+1]<t[c]) c++;
      if (t[i]>t[c]) {
            swap(t[i],t[c]);
            enfonsar(c);
      }
}
```

Implementació iterativa

Les operacions que canvien són **afegir** i **treure_min**, on les antigues **surar** i **enfonsar** estan optimitzades. Els costos asimptòtics són els mateixos que en el cas recursiu: $\Theta(\log n)$.

afegir

```
void afegir (Elem& x) {
    t.push_back(x);
    int i = talla();
    while (i!=1 and t[i/2]>x) {
        t[i] = t[i/2];
        i = i/2;
    }
    t[i] = x;
}
```

Implementació iterativa

treure_min

```
Elem treure_min () {
    if (buida()) throw ErrorPrec("CuaDePrio buida");
    int n = talla();
    Elem e = t[1], x = t[n];
    t.pop_back(); --n;
    int i = 1; c = 2*i;
    while (c \le n) {
         if (c+1 \le n \text{ and } t[c+1] \le t[c]) ++c;
         if (x \le t[c]) break;
        t[i] = t[c];
        i = c;
        c = 2*i;
    t[i] = x;
    return e;
```

- 1 Preliminars matemàtics
- 2 Cues amb prioritats
 - Introducció
 - Heaps
 - Operacions bàsiques
 - Implementació recursiva
 - Implementació iterativa
- 3 Heapsort
 - Algorisme bàsic
 - Millores de l'algorisme bàsic
- 4 Altres aplicacions
 - El problema de selecció

Les cues amb prioritat es poden fer servir per ordenar en temps $\Theta(n \log n)$.

L'algorisme es diu heapsort i va ser presentat el 1964 per J.W.J. Williams.

Donat un vector de *n* elements,

- \bigcirc s'afegeixen els *n* elements a un *heap*: $\Theta(n \log n)$
- ② es fan n operacions **treure_min** per construir un vector ordenat: $\Theta(n \log n)$

El temps total és $\Theta(n \log n)$, que és òptim per a un algorisme d'ordenació.

Heapsort

Amb vectors separats per al *heap* i l'entrada/sortida. Temps: $\Theta(n \log n)$. Espai auxiliar: n. template <typename elem> void heapsort (vector<elem>& T) { CuaPrio<elem> h; for (int i=0; i < n; ++i) h.afegir(T[i]); for (int i=0; i < n; ++i) T[i] = h.treure min();

Exemple

Suposem que partim del vector:

i afegim els elements a un heap, un per un.

+4, +2, +7:

2

4

2

7

+16, +9: 2 4 7 4 7 16 9

El heap resultant s'emmagatzema en el vector:

Ara traspassem els elements en ordre al vector original.

Exemple: evolució dels vectors (operació afegir)

5

8

Exemple: evolució dels vectors (operació afegir)

Exemple: evolució dels vectors (operació afegir)

Exemple: evolució dels vectors (operació treure_min)

Exemple: evolució dels vectors (operació treure_min)

Exemple: evolució dels vectors (operació treure_min)

Exemple: evolució dels vectors (operació treure_min)

entrada/sortida

Primera millora

Implementar l'algorisme sobre un únic vector fent una divisió en:

- una part esquerra per mantenir el heap
- una part dreta per a l'entrada/sortida

Cada cop que es fa una operació de **treure_min**, s'escriu el mínim com a primer element de la part dreta. Els elements queden ordenats de manera descendent.

Si es volen en ordre ascendent, es pot fer servir un max-heap.

Segona millora

Construir el heap en temps $\Theta(n)$ en lloc de $\Theta(n \log n)$ seguint els passos següents:

- Introduir els elements en el heap en qualsevol ordre (i temps lineal).
- Per cada node x que no sigui una fulla, en ordre decreixent de posició enfonsar x

(De tota manera, el cost de l'algorisme continua sent $\Theta(n \log n)$.)

Com que molts dels subheaps són petits, **enfonsar** fa $\Theta(n)$ intercanvis

Exemple

Per a un heap de 127 nodes, hi ha:

- 1 heap de mida 127 i alçada 6
- 2 heaps de mida 63 i alçada 5
- ...
- 32 heaps de mida 3 i alçada 1

Intercanvis en arbres perfectes

Un arbre perfecte d'alçada h té 2^i nodes a nivell i per cada $0 \le i \le h - 1$. Cada node a nivell i és arrel d'un subheap amb alçada h - i.

Com a molt es fan
$$\sum_{0 \le i \le h-1} 2^i \cdot (h-i) = 2^{h+1} - h - 2 < n$$
 intercanvis

ja que un arbre perfecte d'alçada h té $2^{h+1} - 1$ nodes.

(Per arbres complets, es demostra la mateixa fita.)

Tema 4. Cues amb prioritats

- Preliminars matemàtics
- 2 Cues amb prioritats
 - Introducció
 - Heaps
 - Operacions bàsiques
 - Implementació recursiva
 - Implementació iterativa
- 3 Heapsort
 - Algorisme bàsic
 - Millores de l'algorisme bàsic
- 4 Altres aplicacions
 - El problema de selecció

El problema de selecció

Problema de selecció

Donat un vector S de naturals i un $k \in \mathbb{N}$, determinar el k-èsim element més petit de S.

Fent servir els heaps, podem trobar un nou algorisme:

- **①** Construir un min-heap a partir de S. $\Theta(n)$
- **2** Efectuar k operacions **treure_min** del min-heap. $\Theta(k \log n)$
- 3 Retornar l'últim element extret. ⊖(1)

Cost total: $\Theta(n + k \log n)$.

La mediana correspon a k = n/2. Cost: $\Theta(n \log n)$. En el cas $k = O(n/\log n)$, el cost és $\Theta(n)$.

El problema de selecció

Problema de selecció

Donat un vector S de naturals i un $k \in \mathbb{N}$, determinar el k-èsim element més petit de S.

Fent servir els heaps, podem trobar un nou algorisme:

- ① Construir un min-heap a partir de $S. \Theta(n)$
- ② Efectuar k operacions treure_min del min-heap. $\Theta(k \log n)$
- Retornar l'últim element extret. ⊖(1)

Cost total: $\Theta(n + k \log n)$.

La mediana correspon a k = n/2. Cost: $\Theta(n \log n)$.

En el cas $k = O(n/\log n)$, el cost és $\Theta(n)$.