13 Creometric Satake Equivalence I
Motivation and Preliminary
(1) What is E.? "Langlands dual group"
W. Thurston "On progress and proof of mathematics"
W. Thurston "On progress and proof of mathematics" "One person's clear mental image is another's intimidation" Goal of class is to parse this sentence:
Goal of class is to parse this soutence.
of G(C[t])-equivarient perverse sheaves on G(C(t)) Tannation formalism
7 Tannakian Formalism Grassmunnian
I Idea of Hecke algebras
1. Tannakian formalism Previously, Gubelian ~ G ~ G=G
Now, Ct attine ulg. ~ ?
For Enon-delian cut. & unitary characters
consider Rep a cat of t.d repins of a over k
Rep & is K-linear abelian category (hom-space is k-linear vector space
rector space vector space Rep & Rep & Rep & Rep & Rep & No of the space No of the space of t
w/ associativity, unity k=11 = Rep &

· Rep Go is symmetric monoidal, I fun: VOW = WOV st. 7m. 7m = idvon (curronical) Rep & is <u>rigid</u> YV E Rep GJJV*E Rep G Forget Ful functor

w: Rep G -+ (Vect, Q)

exout, Fully Faithful

fiber functor Dom A neutral Tamakian cutegory is a rigid, symmetric monoidal t-linear abelirum category A equipped with a fiber functor Ce my Rep Ce neutral Tannakian cut. Thm (Tamatian Formulism) A neutral tannation category (A with - Vecty)
is equivalent to Rep & Where G = Aut (w) FX

Vect, weid vect, as Antlid) = &13

Vect, as People |

Vect, as Rep& |

Rep& Vect, as Rep&|

Rep& Vect, as Rep&|

Vect, as Rep& |

Vect, as Aut Car) = Ge ignal-gr 2-851 Rep E = Rep G ignot-gr 2-ggr $V_i \otimes V_i = V_2$ $V_i \otimes V_i \otimes V_i = V_2$ $V_i \otimes V_i \otimes V_i = V_2$ $V_i \otimes V_i \otimes V_i \otimes V_i \otimes V_i = V_2$ $V_i \otimes V_i \otimes$ V m ~ vot = Rep(kx) EVn3mer HV= OVn

LS(X) cot of local systems on X \rightarrow L5 $\stackrel{?}{\sim}$ Rep $\pi_{r}(X,x)$ LS - Rep IT, (X,X) aly rull of TT, Rmk main motivation for motives ~> descendants (Gasbis repins (l-actic)) RMK (extensions) · A -> QC(5) · A symm monoidal ~> A = Rep G . A braided (E_2) moraidal $\Rightarrow A \stackrel{\sim}{=} Rep \ U_a \stackrel{\sim}{=}$ · A En-monoidal > A=? . In DAG, A -> Vet, replaced by X in a CON(X) If X= BG = pt/G QCd(BG) = Rep G

Hecke algebra G ~> (AG, w) neutral Turmation ~ AG ~ Rep(Aut (a))
where Aut(a) = G Goal: Construct AG Let's work with a finite gp. H (C[H],*) group algebra $(P, \star P_2)(h) = \sum_{x \in H} P_i(x) P_2(x'h) = \sum_{x \neq h} P_i(x) P_i(x) P_i(x'h) = \sum_{x \neq h} P_i(x'h)$ TT, HXH TT2 $(p_1 * p_2) = m_* (\pi_1 * p_1 \cdot \pi_2 * p_2)$ Where for Fix+Y $(f^*\gamma)(x) = \gamma(f(x)), \quad (f_*P)(y) = \sum_{x \in F(y)} g(x)$ Use KCH subgp to Find a commaly. I technal dependent KOIH] = C[KIH/K] = : HIK KH Xx H/K IT2 $p_1 * p_2 = m_* (p_1 \cdot \pi_2 * p_2)$ ussociative alg.

For any repin V of QH Alex V: 5 veV | K. v = v 3 9 HAK Universal way "Recall" Frobenius reciprocity Hom (Ind W, V)= Hom (W, Res KV) Rest : Rep H + Rep K Indk': Rep K -> Rep H W - C[H] OCCK] W 11 pt " V = Home (Ctrive Rest V) = Hom H (Indu Friv, V) = Hom H (C[1/K], V) 9 HH, K Endy (C[1/K]) = HHK KO[H/K] = C[K) +VK] If K is small, Rep # 4 can survive K(-), so XMK knows a lot about Rep H If K is large, Klt/K is small so they has better gructure reg. commutativity) For Rep G one needs to find the right balance!

Let's translate all this into geometry π_{1} $\chi \times H$ π_{2} $\chi \times H$ π_{2} $\chi \times H$ XXX H/K π_i $\int a \int \pi_2$ X/K X/K K/H/K pectxs, x ectys C[X/K] Y HAK $\rho \cdot \alpha = \alpha_{*} \left(\pi_{i}^{*} \mathcal{P} \cdot \pi_{2}^{*} \alpha \right)$ Fun (X/K) of HHK = Fun (KIH/K) D(Bung) site @ O(Buna) Find X, H, K s.t. X9 H · X/K = Bun = Bune C ~, D(BUNG) D(KIH/K) First work in top's cate connected he group competed he group compet. Riemann or genus grope [top G] where LtopG = & DX -> G } THE = SD -> EZ Lont @ = { C x -; G } 0 = disk around x DX = DIEXE CX = C (EXX)

pf) LOOE = (P, a, B) = dain where P is a Ge-bundle on C $a: P/_{D} \cong P'/_{C}$ $p: P/_{C} \cong P'/_{C}$ trivialization D is contractible >> & exists Plax x = 25' [5' → BG] $=\pi_{i}(BG)=\pi_{i}(G)$ homotopy cluss is trivial For each 5' so the whole bundle is trivial y = B xof: PO/DX - P/DX = DXXE Dx - G E Ltop G => n & Ltop G, triv on D triv on cx glue them wing of to get P Ltop Ce = trivializations on 40 Lout G = trivializations on CX Bung = X/K Goal: X= Ltop (= \ Ltop G, H=Ltop G K=Ltop G

```
In an algebraic cutegory;
  Thm (Weil Uniformization)
        c smooth proper curve / k = 15q
       Bung(k) = Ge(k(c)) (G(A)/G(O)
    where Bun = Bun (C) is moduli of
adele G-bundles on C, k(c) is function field A = TT^{res} X_{x}, O = TT B_{x}
        with \chi_x = k(t_x) \mathcal{I}_x = k[t_x]
  Rmk | L^2(G(k(c))/G(A)/G(D))
is space of automorphic representations!

(for unramified case)
G(K\alpha) (\sigma(K_X) 6) G(K_X)
                    (~(Ox)
   D(G(0x)) G(Xx)/G(0x) (] D(Bunge)
                                                 HXEC
        SphGx spherial Hecké category
   We Finally understand the sense of spectral
          Decomposition of D(Bung)
```

try to sind a neutral Tannakian category & DEFN Gra= G(X)/G(8) affine Grassmanian $\mathcal{R} = \mathcal{C}(t)$, $\mathcal{J} = \mathcal{C}(t^2)$ $|D| = Spec \theta$ $|C(x)| = \int Maps |D| \rightarrow G \xrightarrow{\text{define kar}} G(x) = \int Maps |D| \rightarrow G \xrightarrow{\text{define kar}} G(x) = \int G(x)$ like the stag variety G/B Lustig, Drinteld, Ginzburg, Mirkaiz - Virloren [hm (Geometric Sutake) PG(0) (Erg) is a neutral Tannakian Category $P_{G(a)}(Gr_{G}) \cong Rep G$ Ront/ P abelian category of perverse steaves

D-modules P p

works better

in char > 0 DCGOX)(G(X)/G(OX)) has natural * structure

Mirules] OP is closed under *! 2 4, /2 ep P, * 1 = P, * Ø. Basic Geometry of Gra a lettice Kn is an 8 n submodule L s.t. thy = Lct Non for some N prop | Gra = { Luttices in x ? } lattice transitive G(K) Q0" G(0): stabilizer ~ Gre= & luttice } $\mathcal{K}^{n} \leq tie_{L} = 1 = 1 = 1 = 1$ $t^{-2} \mid t^{2}e_{1} \mid t^{2}e_{2} \mid t^{-2}e_{n} \mid t^{-2}e_{n} \mid t^{-1} \mid$ 1 1 CQ Imagine K=Q, $\theta=Z$

On submodule \iff closed under t. $Gr_{G}^{k} \subset G^{2kn}$ k=2 1 5 can take <math>N=k +2 +2 Cosed condition $Gr_{G}=U^{k} Gr_{G}^{k} \text{ ind-projective variety}$