Spark Performance Tuning

By: Shakti Garg and Nisha Kumari

- general purpose execution engine
 - batch/ iterative/ interactive jobs
- fast, in-memory processing
- distributed/ scalable
- fault-tolerant
- rich, optimized API support

What are we covering?

Coding Optimization

- 1. Data structures
- Data format and compression
- 3. API optimization
- 4. Serialization

Cluster Optimization

- Resource Allocation (executors/memory)
- 2. Dynamic Allocation
- 3. Tuning parallelism
- 4. Spark speculative execution
- 5. YARN optimization

1. Slim down data structures!

- Why?
- How?
 - Numeric or Enum keys over Strings
 - Java fastUtil over Java Collections
 - Avoid wrapper objects, nested data structures, pointers etc
 - JVM flag XX:+UseCompressedOops to set pointers of 4 byte size than 8

2. Data format and compression

- Data Serialization
 - Avro
 - Protobuf
- Data RC formats
 - Parquet
 - ORC
- Data Compression (In Rest & In Transit)

```
--conf spark.hadoop.mapred.output.compress=true
--conf spark.hadoop.mapred.output.compression.codec=snappy
```

--conf spark.io.compression.codec=snappy

Spark at work: Overview

Spark at work: Detailed

Execution: Job-Stages-Tasks

3. API Optimization

"Understand execution plan of your Spark application!"

- Prefer higher level Spark abstractions, DataFrame/Dataset over RDDs
- Still we need RDD's flexibility!
 - Don't collect large RDDs

```
rdd.take / rdd.takeSample
```

Avoid using count()

```
 \frac{\text{if } (\text{dataFrame.count}() == 0) \ \{\} }   if (\text{dataFrame.take}(1).\text{length} == 0) \ \{\}  rdd.isEmpty
```

avoid groupBykey() for associative reductive operation

```
rdd.groupByKey().mapValues(_.sum)
rdd.reduceByKey(_ + _)
```


avoid reduceBykey() when input and output value types are different

```
rdd.map(kv => (kv._1, new Set[String]() + kv._2)) .reduceByKey(_ ++ _)
rdd.aggregateByKey(new Set[String]())( (set, v) => set += v, (set1, set2) => set1 ++= set2 )
```

avoid flatmap()-join()-groupBy() pattern

```
rdd1 = inputRDD1.groupByKey
rdd2 = inputRDD2.groupByKey

<del>joinRDD = rdd1.join(rdd2)</del> => (K, (V1,V2))

joinRDD = rdd1.cogroup(rdd2) => (K, (Iterable<V1>, Iterable<V2>))
```

- Use TreeReduce/TreeAggregate over reduce/aggregate
 - → treeReduce uses function, reduceByKey to do reduction in parallel

- Broadcast variables for efficient joins
 - immutable shared variable, cached on each executor
 - → Join between a large and a small RDD

```
val lookupTable = sc.broadcast(smallRDD.collect.toMap)
largeRDD.flatMap( { case(key, value) => lookupTable.value.get(key).map { otherValue => (key, (value, otherValue)) } }
}
```

→ Join between a large and a medium RDD

```
val keys = sc.broadcast(mediumRDD.map(_._1).collect.toSet)
val reducedRDD = largeRDD.filter{ case(key, value) => keys.value.contains(key) }
reducedRDD.join(mediumRDD)
```

- coalesce() over repartition()
 - After filtering down a large dataset, if you want to decrease number of partitions
 - coalesce() do optmized local shuffling, repartition() do random shuffling

"Shuffle less, Shuffle efficiently"

How much tasks?

- No. of tasks processing Input RDD = number of partitions explicitly mentioned (default is number of HDFS blocks)
- No. of tasks processing Join/CoGroup RDD = max(number of tasks of each input RDD)

Optimum # of tasks

There should be sufficient number of tasks

- More Tasks = More parallelization = Better performance as each task gets less data
- More Tasks = Prevents shuffle spill. (Shuffle spill can be very costly to a stage and if it is in your SparkUl's stage metrics, you needs to increase tasks or reduce data per task)
- More Tasks = More containers needed = More Resources and container warmup time

5. Data Serialization

- 1. Storage RDD persistence level
 - MEMORY_ONLY (default)
 - prefer MEMORY_AND_DISK_SER over MEMORY_ONLY
- 2. Each stage persists its shuffle output on disk in order to prevent recomputation in case of failure.

As a result, if a stage is input to multiple stages, it is computed for one and skipped for others.

- 3. Persist only costly & reusable RDDs
- 4. Network transfer
 - Shuffle data between nodes
 - □ I/O tasks

Recommended: Kryo Serializer over Java Serializer

Cluster Optimization: Spark + YARN

- 2- Submit Application
- 3- Launch Application Master
- 4,5- Request Resources
- 6- Launch Containers via YARN NodeManager
- 7- Launch Spark Executors
- 8- Register with the Driver
- 9- Launch Tasks

1. Resource Allocation - Executors

Number of executors

- # executors != # of cores in cluster
- other applications on cluster
- cores taken by application master & driver

Cores per executor

- Avoid Single core executor
- single core can easily handle 3-5 tasks in parallel

continued...

Given

10 data node cluster with 64 cores each i.e. 640 cores and your pool has 40% resource allocation and you need to support on average 3 jobs in parallel

Assumption

1 core per node is reserved for OS and hadoop overhead Each job's driver is taking 1 core Each executor is allocated 4 cores

Solution

Number of cores per job should be $^{\sim}$ (10 * 64 * .4 - 1 * 10 - 3) / 3 = 81

Number of executors $^{\sim}$ (81 / 4) = 20

2. Resource Allocation - Memory

continued...

Given

10 data node cluster with each having 64 GB of RAM And # of executor = 20 i.e. 2 executor per node And memory reserved for OS and hadoop processes = 4 GB

Solution

Memory available for each YARN container $^{\sim}(64 - 4) / 2 = 30$

Memory available for each Spark Executor $^{\sim}(30 - 0.1 * 30) = 27$

"Running executors with too much memory often results in excessive garbage-collection delays."

3. Dynamic allocation

- Assign executors to a job based on workload
- Scale up policy
- Scale down policy
- External shuffle service should be enabled (to safely persist task output in case executor is scaled down)

```
spark-submit ..
--conf spark.shuffle.service.enabled="true"

--conf "spark.dynamicAllocation.enabled"="true"
--conf "spark.dynamicAllocation.minExecutors"="1"
--conf "spark.dynamicAllocation.maxExecutors"="5"
--conf "spark.dynamicAllocation.executorIdleTimeout"="30"
--conf "spark.dynamicAllocation.cachedExecutorIdleTimeout"="30"
```

3. Dynamic allocation...

- MaxExecutors can be skipped if we are not sure on upper limit of data. (If no of task > (maxExecutor * tasks per executor), performance worsens as it tries to launch more tasks per executor and hence more failure retries)
- cachedExecutorIdleTimeout is infinity by default. In case of cached RDD, tune it to scope time of cached RDD. If not, it will result in recomputation.

4. Spark Speculative Execution

Turn on to prevent Straggler Tasks...

```
spark-submit ..
--conf "spark.speculation"="true"
--conf "spark.speculation.interval"="5000"
--conf "spark.speculation.multiplier"="5"
--conf "spark.speculation.quantile"="0.90"
```

5. YARN Optimization

YARN container size

= spark.executor.memory + spark.yarn.executor.memoryOverhead

where default value of

spark.yarn.executor.memoryOverhead

= max(384 MB, 0.10*spark.executor.memory)

or can be explicitly set in configuration

Thank You! QUESTIONS?