This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

REMARKS

Reconsideration is requested.

The claims have been amended, without prejudice, to advance prosecution. A basis for the Amendment may be found, for example, in the paragraphs spanning page 2, penultimate line through page 3, line 5 of the specification. As noted previously, the presently claimed invention provides a method of reducing the adhesion of microorganisms to the surface to the skin and/or mucous membranes. The presently claimed method does not require the use of antibiotic, bactericidal or fungicidal agents.

The Section 102 rejection of claims 13-17 and 20-22 over Wright (U.S. Patent No. 5,547,677), is obviated by the above amendments. Reconsideration and withdrawal of the rejection are requested as Wright, to the extent it teaches a method of applying a composition to the skin and/or mucous membranes, provides a composition containing antibiotic, bactericidal or fungicidal agents.

Specifically, the compositions of Wright are "antimicrobial oil-in-water emulsions" (see, column 2, lines 45-46). The term "antimicrobial" is used by Wright to describe an ability to inactivate infectious pathogens wherein "inactivate" is further defined as killing or inhibiting growth. See, column 2, lines 55-58 of Wright.

The Examiner is urged to appreciate that the presently claimed invention does not require inactivation, as described by Wright, but rather reducing the adhesion of microorangisms to the surface of the skin and/or mucous membranes.

The applicants further note that Wright includes the use of cationic halogencontaining compounds having a C_{12} - C_{16} chain. The preferred compounds within this group included by Wright is cetylpyridinium chloride (CPC), cetylpyridinium bromide (CPB) and cetyltrimethylammonium bromide (CPAB). See, column 3, lines 10-16 of Wright. Each of these compounds are known antimicrobial agents. See, page 336 of the Merck index, 12 edition, Merck and Company, Inc., Whitehouse Station, New Jersey (1996), copy attached. Accordingly, to the extent Wright may teach application of a composition to the skin and/or the mucous membranes, the composition of Wright fails to inherently or literally teach or suggest a method of reducing the adhesion of microorganisms to the surface of the skin and/or the mucous membranes in the absence of antibiotic, bactericidal or fungicidal agents, as presently claimed. Withdrawal of the Section 102 rejection of claims 13-17 and 20-22 over Wright is requested.

The Section 102 rejection of claims 13-24 over Harbeck (2001/000166) is traversed. Reconsideration and withdrawal of the rejection are requested as Harbeck discloses, at best, compositions which include borax and/or benzoin, each of which is a known antibacterial agent. See, the attached copy of a definition of borax from the website encyclopedia.com printed June 16, 2003 wherein borax is indicated as being a mild antiseptic and cleansing agent; and the attached copy of page 781 of the Merck index defining "gum benzoin" as an antiseptic; and the attached copy of page 114 from Webster's II New Riverside university dictionary (Houghton Mifflin Company, 2 Park Street, Boston, MA 02108 (1994)), defining "antiseptic" as relating to antisepsis which is "the destruction of microorganisms that cause disease, fermentation, or putrefaction." In view of the attached, therefore the applicants respectfully submit that each of the compositions of Harbeck include at least an antibiotic, bactericidal or fungicidal agent and therefore application of any of the compositions according to Harbeck to skin and/or

mucous membranes would not, inherently or literally, provide a method of reducing the adhesion of microorganisms to the surface of the skin and/or mucous membranes, as presently claimed. Withdrawal of the Section 102 rejection of claims 13-24 over Harbeck is requested.

A Section 102 rejection of claims 13 and 21-24 over JP 05186328 is traversed. Reconsideration and withdrawal of the rejection are requested as the composition of the cited document includes "lower alcohol" which, arguably, includes ethanol, methanol and isopropyl alcohol. Each of these lower alcohols, and mixtures thereof, are known bactericidal agents such that the composition of JP 05186328, if applied to the skin and/or the mucous membranes, is unable to literally or inherently provide a method of reducing the adhesion of microorganisms to the surface of the skin and/or the mucous membranes in the absence of antibiotic, bactericidal or fungicidal agents. See, the attached description of chemical disinfection from the website "health.vic.gov.au/ohs/polguide/chemdis.doc" which appears to be from the Australian Government publishing service and was printed June 16, 2003, and includes a description of "alcohol" having a good bactericidal, fungicidal and mycobactericidal activity. Withdrawal of the Section 102 rejection of claims 13 and 21-24 over JP 05186328 is requested.

The Section 103 rejection of claims 13-24 over Wright in view of Harbeck should be withdrawn as the cited documents fail to teach or suggest the presently claimed invention, as described above.

Entry of the above amendments will obviate the outstanding rejections, without raising new issues requiring further search and/or consideration. No new matter has

LEREBOUR et al. Serial No. 09/782,520

been added. Entry of the above amendments and withdrawal of the outstanding rejections are requested.

The claims, as amended, are submitted to be in condition for allowance and a Notice to that effect is requested.

The Examiner is requested to contact the undersigned if anything further is required in this regard.

Respectfully submitted,

NIXON & VANDERHYE P.C.

By:

ノ B. J. Sadoff Reg. No. 36,663

BJS:plb 1100 North Glebe Road, 8th Floor Arlington, VA 22201-4714

Telephone: (703) 816-4000 Facsimile: (703) 816-4100

THE MERCK INDEX

AN ENCYCLOPEDIA OF CHEMICALS, DRUGS, AND BIOLOGICALS

TWELFTH EDITION

Susan Budavari, Editor

Maryadele J. O'Neil, Senior Associate Editor

Ann Smith, Associate Editor

Patricia E. Heckelman, Assistant Editor

Joanne F. Kinneary, Assistant Editor

Published by Merck Research Laboratories Division of

MERCK & CO., INC.

Whitehouse Station, NJ

Printer Friendly

borax Trackthis topic

(so 'deem tetrebôr' at dekehi 'drat) or sodium tetraborate decahydrate , chemical compound, Na $_2$ B $_4$ O $_7$ ·10H $_2$ O; sp. gr. 1.73; slightly soluble in cold water; very soluble in hot water; insoluble in acids. Borax is a colorless, monoclinic crystalline salt; it also occurs as a white powder. It readily effloresces, especially on heating. It loses all water of hydration when heated above 320 and fuses when heated above 740; a "borax bead" so formed is used in chemical analysis (see **bead test**). Borax is widely and diversely used, e.g., as a mild antiseptic, a cleansing agent, a water softener, a corrosion inhibitor for antifreeze, a flux for silver soldering, and in the manufacture of enamels, shellacs, heat-resistant glass (e.g., Pyrex), fertilizers, pharmaceuticals, and other chemicals. It is sometimes used as a preservative but is toxic if consumed in large doses. Naturally occurring borax (sometimes called tincal) is found in large deposits in the W United States (Borax Lake in Death Valley, Calif.; Nevada; and Oregon) and in the Tibet region of China. Borax can also be obtained from borate minerals such as kernite, colemanite, or ulexite. California is the chief source of borate minerals in the United States.

Columbia Encyclopedia, Sixth Edition, Copyright (c) 2003.

Encyclopedia.com is a service of Alacritude, LLC. Copyright © 2003. All rights reserved.

Section:

Safe Practice and Environment

P licy No.:

S5.1

Sub-

Infection Prevention & Survelliance

Issue Dat:

February 2001

Section:

CHEMICAL DISINFECTION

Revisi n

Subject:

N .:

PURPOSE AND SCOPE

The purpose of this policy is to provide NWH network staff with guidelines for the chemical disinfection of instruments and equipment.

POLICY

The Network policy on Chemical Disinfection is:

- All instruments and equipment must be cleaned prior to chemical disinfection to remove any particulate matter which may harbour infectious material
- The level of chemical disinfection required must be appropriate for the type of instrument or equipment, its clinical usage and the manufacturer's recommendations
- High level chemical disinfection should only be used when steam sterilisation is unsuitabl , when low temperature chemical sterilisation is either unavailable or is not recommended by the instrument manufacturer, or when thermal disinfection is unsuitable for the device
- Glutaraldehyde formulations should be used with caution, in accordance with the manufacture's directions. Glutaraldehyde should only be used in a well-ventilated area as defined by Worksafe Australia and appropriate personal protective equipment should be worn

PROCEDURE

Disinfectant Group

Antimicrobial Activity

Other Properties/Comments

Alcohol

Good:

- bactericidal
- fungicidal
- mycobactericidal

Variable:

virucidal

Poor:

not sporicidal

70 % w/w ethanol is rapid acting and dries quickly 90% w/w ethanol is useful as a virucide.

100% ethanol is not an effective disinfectant.

Ethanol is less effective against non enveloped (HBV) viruses than against enveloped (HIV) viruses. Alcohol (isopropanol):

Effective at 60-70%v/v but has variable mycobactericidal activity.

Not an effective virucide.

General properties of alcohols:

- Does not penetrate organic matter well, acts as a fixative, prior cleaning is required.
- Flammable.
- Can be combined with other bactericidal compounds for skin disinfection.

Aldehydes

Good:

- bactericidal
- fungicidal
- virucidal
- sporicidal slow

Variable:

mycobactericidal

Ineffective:

CJD

Highly irritant.

Acts as a fixative, prior cleaning is required

Penetrates organic material slowly; not inactivated by inorganic materials.

Usually non corrosive to metals.

Buffered alkaline solutions need to be activated prior to use and have limited shelf life.

Acidic solutions more stable, but slower acting; glycolated solutions have shorter kill times.

Instrument disinfectant when used for short periods (10-20 minutes).

Slow acting against atypical mycobacteria.

Chlorhexidine

Good:

- bactericidal gram positive organisms
- less active against gram-negative organisms

Variable:

- virucidal
- fungicidal

Poor:

- not sporicidal
- not mycobactericidal

Low toxicity and irritancy.

Inactivated by organic matter, soap and anionic detergents.

Useful for skin and mucous membrane. disinfection, but is neurotoxic (must not contact middle ear) and may cause corneal damage.

Hypochl rites

Good:

bactericidal

- virucidal
- fungicidal

Variable:

- sporicidal (pH 7.6 buffer)
- mycobactericidal (5000 ppm)

Fast acting.

Inactivated in presence of organic matter at low concentrations.

Incompatible with cationic detergents.

High concentrations corrosive to some metals.

Diluted form unstable.

Decomposed by light heat and heavy metals.

Chlorine gas released when mixed with strong acids.

Carcinogenic reaction product when mixed with formaldehyde.

Useful in food preparation areas and virology laboratories.

lodine Preparations

Good:

- bactericidal
- virucidal
- fungicidal

Variable:

sporicidal

May be inactivated by organic matter.

May corrode metals e.g. aluminum.

Useful as skin disinfectant, but some preparations may cause skin reactions.

Antiseptic strength iodophors are not usually sporicidal.

Peracetic acid

Other peroxygen compounds

Good:

- bactericidal
- virucidal
- fungicidal
- sporicidal

mycobactericidal

Variable:

• sporicidal

mycobactericidal Highly irritant.

Corrosive to some metals.

Reduced activity in the presence of organic matter.

Usually contain detergent.

May be used as an instrument disinfectant if compatible.

May be used as an instrument sterilant under specified conditions if compatible.

Hydrogen peroxide and potassium. monoperoxygen sulfate have low toxicity and irritancy.

Phenolics

Good:

- bactericidal
- mycobactericidal
- fungicidal

Variable:

virucidal

Poor:

• non enveloped viruses

Avoid contact with skin/mucous membranes.

Stable in presence of organic matter.
Incompatible with cationic detergents.

Not for use on food preparation surfaces/ equipment.

Detergent usually included.

Absorbed by rubber and plastics.

Diluted form unstable.

FURTHER INFORMATION

Infection Control Service.

National Health and Medical Research Council. 1996. Infection control in the health care setting. Canberra: Australian Government Publishing Service.

Section:

Safe Practice and Environment

Sub-

Infection Prevention & Survelliance

Section:

CHEMICAL DISINFECTION

P licy No.: Issu Date: S5.1 February 2001

Revisi n

N .:

Subject:

PURPOSE AND SCOPE

The purpose of this policy is to provide NWH network staff with guidelines for the chemical disinfection of instruments and equipment.

POLICY

The Network policy on Chemical Disinfection is:

- All instruments and equipment must be cleaned prior to chemical disinfection to remove any
 particulate matter which may harbour infectious material
- The level of chemical disinfection required must be appropriate for the type of instrument or equipment, its clinical usage and the manufacturer's recommendations
- High level chemical disinfection should only be used when steam sterilisation is unsuitable, when low temperature chemical sterilisation is either unavailable or is not recommended by the instrument manufacturer, or when thermal disinfection is unsuitable for the device
- Glutaraldehyde formulations should be used with caution, in accordance with the manufacture's directions. Glutaraldehyde should only be used in a well-ventilated area as defined by Worksafe Australia and appropriate personal protective equipment should be worn

PROCEDURE

Disinfectant Group

Antimicrobial Activity

Other Properties/Comments

Alcohol

Good:

- bactericidal
- fungicidal
- mycobactericidal

Variable:

virucidal

Poor:

not sporicidal

Ethanol:

70 % w/w ethanol is rapid acting and dries quickly

90% w/w ethanol is useful as a virucide.

100% ethanol is not an effective disinfectant.

Ethanol is less effective against non enveloped (HBV) viruses than against enveloped (HIV) viruses. **Alcohol** (isopropanol): Effective at 60-70%v/v but has variable mycobactericidal activity.

Not an effective virucide.

General properties of alcohols:

- Does not penetrate organic matter well, acts as a fixative, prior cleaning is required.
- Flammable.
- Can be combined with other bactericidal compounds for skin disinfection.

Aldehydes

Good:

- bactericidal
- fungicidal
- virucidal
- sporicidal slow

Variable:

mycobactericidal

Ineffective:

CJD

Highly irritant.

Acts as a fixative, prior cleaning is required

Penetrates organic material slowly; not inactivated by inorganic materials.

Usually non corrosive to metals.

Buffered alkaline solutions need to be activated prior to use and have limited shelf life.

Acidic solutions more stable, but slower acting; glycolated solutions have shorter kill times.

Instrument disinfectant when used for short periods (10-20 minutes).

Slow acting against atypical mycobacteria.

Chlorhexidine

Good:

- bactericidal gram positive organisms
- less active against gram-negative organisms

Variable:

- virucidal
- fungicidal

Poor:

- not sporicidal
- not mycobactericidal

Low toxicity and irritancy.

Inactivated by organic matter, soap and anionic detergents.

Useful for skin and mucous membrane. disinfection, but is neurotoxic (must not contact middle ear) and may cause corneal damage.

Hypochlorites

Good:

bactericidal

- virucidal
- fungicidal

Variable:

- sporicidal (pH 7.6 buffer)
- mycobactericidal (5000 ppm)

Fast acting.

Inactivated in presence of organic matter at low concentrations.

Incompatible with cationic detergents.

High concentrations corrosive to some metals.

Diluted form unstable.

Decomposed by light heat and heavy metals.

Chlorine gas released when mixed with strong acids.

Carcinogenic reaction product when mixed with formaldehyde.

Useful in food preparation areas and virology laboratories.

I dine Preparations

Good:

- bactericidal
- virucidal
- fungicidal

Variable:

sporicidal

May be inactivated by organic matter.

May corrode metals e.g. aluminum.

Useful as skin disinfectant, but some preparations may cause skin reactions.

Antiseptic strength iodophors are not usually sporicidal.

Peracetic acid

Other peroxygen compounds

Good:

- bactericidal
- virucidal
- fungicidal
- sporicidal

mycobactericidal

Variable:

sporicidal

mycobactericidal
Highly irritant.
Corrosive to some metals.
Reduced activity in the presence of organic matter.
Usually contain detergent.

May be used as an instrument disinfectant if compatible.

May be used as an instrument sterilant under specified conditions if compatible.

Hydrogen peroxide and potassium, monoperoxygen sulfate have low toxicity and irritancy.

Phenolics

Good:

- bactericidal
- mycobactericidal
- fungicidal

Variable:

virucidal

Poor:

non enveloped viruses

Avoid contact with skin/mucous membranes.

Stable in presence of organic matter.
Incompatible with cationic detergents.

Not for use on food preparation surfaces/ equipment.

Detergent usually included.

Absorbed by rubber and plastics.

Diluted form unstable.

FURTHER INFORMATION

Infection Control Service.

National Health and Medical Research Council. 1996. Infection control in the health care setting. Canberra: Australian Government Publishing Service.

No One Does I

inumbe

őeople w.

Webster's II, you'll Webster's d no oti find true we have imcommon to other die just the newest, but Webster's dictionar a sampling of what

Word Histories

This is the feature n users. Webster's II g his orv paragraphs pment of int ldelanguage. Example

> word history: Abov board. It is recorded as e if the gambler's hands presumably he could no in other forms of chear

Usage Guidanc You'll find two kir usage notes are in p oblem terms in In addition, a sect plains in detail sc confusing questic In the main part (

all right adv. L Sati rect < Your conclusio 5. Without a doubt < not acceptable to write

an-ti-mo-ni-al (ān'tə-mô'nē-al) adi. Of or containing antimony. n. A medicine containing antimony.

anti-mo-ny (in'to-mô'nê) n. [ME antimonie < Med. Lat. antimonium.] Symbol Sb A metallic element used in a wide variety of alloys, esp. with lead in battery plates, and in paints, semiconductors, and ceramic products, atomic number 51, atomic weight 121.75.

antimony glance n Stibnite.
antimony planete (in'te-ne's-plastik) adi. Suppressing the

growth or expansion of neoplasms. an-ti-neu-tri-no (in'té-noo-tre'no, -nyob-) n. pl. -nos. The anti-

particle of the neutrino. an-ti-neu-tron (in'te-noo'tron', -nyoo'-) n. The antiparticle of the neutron.

an-ti-node (in'ti-nod') n. The point or region of greatest amplitude between adjacent nodes

an-ti-no-mi-an (in'd-no'me-on) n. [Med. Lat. antinomus : Gk. anti-, against + nomos, law.] A member of a Christian sect believing that faith alone is necessary to salvation. -an'ti-no'mi-an adj en'ti-no'mi-an-ism n

an-tin-o-my (ân-tin'o-mê) n., pl. -mies. [Lat antinomia < Gk. : anti-, against + nomos, law.] 1. An apparent contradiction between valid principles or conclusions that seem equally necessary and reasonable. 2. A contradiction, opposition, or conflict.

an-ti-novel (in'te-nov'al) n. A novel lacking traditional features of a work of fiction, as coherent structure and character development. —en'ti-nov'el-ist n

an-ti-nu-cle-on (an'te-noo'kle-on', -nyoo'-) n. The antiparticle of

a nucleon. an-ti-ox-i-dant (an'te-ok'si-dont) n. A chemical substance that in-

hibits oxidation. an-ti-par-ti-cle (an'te-par'ti-kal) n. A subatomic particle, as a positron, antiproton, or antineutron, having the same mass, average lifetime, spin, magnitude of magnetic moment, and magnitude of electric charge as the particle to which it corresponds but having the opposite sign of electric charge, opposite intrinsic parity, and opposite direction of magnetic moment.

antipasto (ān'tē-pās'tō) n., pl. -tos or -ti (-tē) [ital. : anti-, before (< Lat. ante) + pasto, food < Lat. pastus < pastore to feed.] An appetizer usu, including cheese, smoked meats, fish, and vegetables,

served with oil and vinegar.
antipathetic (intipathetik) also antipathetical (-I-kal) adi. 1. Having an inherent feeling of aversion, repugnance, or

opposition. 2 Causing antipathy —an-tip's thet'i-cally adv.
an-tip-a-thy (an-tip's-the) n. pl. -thies. [Lat antipathia < Gk. antipatheia: anti- against + pathos, feeling 1 L A strong feeling of aversion, repugnance, or opposition. 2 An object of aversion. antiperiodic (an't-pir-e-od'lk) adi. Preventing regular recur-

rence of fever or disease. n An antiperiodic drug

antipersonnel (an'té-pur's-nél') adj. Designed to injure or kill the military personnel or civilian population of an enemy country. an-ti-per-spi-rant (an'te-pur'spor-ont) n. A preparation applied esp. to the underarms to decrease or prevent excessive perspiration. an tiphlogistic (an'te-fla-jis'tik) adj. Reducing inflammation

or fever. -an'ti-phlo-gis'tic n. an-ti-phon (in'to-fon') n. [Fr. antiphone < Med. Lat. antiphona. sung responses. -- see ANTHEM.] L A devotional composition sung responsively as part of a liturgy. 2. A short liturgical text chanted

an tiph o nary (in-tif's nere) n., pl. -ies. A bound collection of

antiphony (in-tif >ne) n. pl. -nies. L Responsive singing or chanting 2 ANTIPHON 1. 3. One that answers or echoes another.

an-tip-o-dal (an-tip'o-dal) adj. 1. Of, relating to, or located on the opposite side or sides of the earth. 2. Diametrically opposed. an-ti-pode (an'ti-pod') n. [Back-formation from ANTIPODES.] A direct opposite.

an-tip-o-des (in-tip's-dez') pl.n. [ME < Lat. < Gk. < antipous, with the feet opposite : anti-, opposite + pous, foot.] 1. Two places or regions on opposite sides of the earth. 2 (sing. or pl. in number). One that is the exact opposite of another.

one that is the exact opposite of another.

antipol·lution (in'te-p-loo'shan) adi. Intended to counteract
or eliminate environmental pollution.—an'ti-pol·lu'tion-ist n.

anti-pope (in'ti-pop') n. [ME < Med. Lat. antipapa : Lat. antiopposed to + papa, pope.] One claiming to be pope in opposition to
the one chosen by church law.

antipoverty (an'te-povarte) adi. Intended to alleviate poverty.
anti-proton (an'te-proton') n. The antiparticle of the proton.

an-ti-py-ret-ic (in'te-pi-rer'ik) adi. Reducing fever. pyretic drug or agent. -an'ti-py-re'ais (-re'sis) n.

anti-pyrine (an'te-pi'ren') n. [Orig. a trademark.] A white powder, C₁H₁N₁O, used to reduce pain and fever.

anti-quari-an (an'ti-kware-an) adj. 1. Of or relating to antiquaries or the study of antiquities. 2. Dealing in or concerning rate

old books. —n. An antiquary. —an'ti-quar'i-an-ism n. anti-quark (ān'tē-kwork') n. The antiparticle of a quark. an ti-quary (an'ti-kwere) n., pl. -les. [Lat. antiquarius < anti-quus. old.] A student of or dealer in antiquities.

antiquate (an'tikwar') vz -quated, -quating, -quates [] antiquate, antiquat, to leave in an old state < antiquus, old.] make old-fashioned or obsolete. -an'ti-qua'tion n

an-ti-quat-ed (in'ti-kwi'tid) adi. L So old as to be useless or to suitable : OBSOLETE. 2. Very old : AGED. -an'tiquat'e an tique (in-tek') adi. [Fr. < Lat. antiques. old.] 1. Of, pertaini to, or belonging to ancient times. 2. Belonging to, made in, or typing to, or belonging to ancient times. 2. Belonging to, made in, or typing of an earlier period. 3. Old-fashioned.—n. An object having special value because of its age, esp. 2 work of art or handicraft more than 100 years old.—vt. -tiqued, -tiquing, -tiques. To give the appearance of the second of ance of an antique to. -an-tique ly adv. -an-tique nes an-tiquer (In-te kar) n. One who treats or finishes new furnit

so as to make it appear antique.

antiquity (in-th'wi-te) n. pl. -ties. 1. Ancient times, esp to
times before the Middle Ages. 2. The people, esp. the writers, of
ancient times. 3. The quality or state of being old or ancient. 4. often antiquities. Something, as a relic, belonging to or dating from a

cient times an-ti-ra-chit-ic (an'te-ro-kit'ik) adj. Preventing or treating riche

n. An antirachitic drug or food. an-tir-rhi-num (ān'tə-n'nəm) n. [NLat., genus name < Gk ams rhinon : anti-, counterfeiting + rhis, nose.] A plant of the gen Antirrhinum, as a snapdragon.

an-ti-scor-bu-tic (an'te-skôr-byoo'tik) adj. Preventing or treat scurvy. —n. An antiscorbutic food or drug.

anti-Semrite (an'te-sem'lt') n. One who discriminates against o

is hostile to or prejudiced against Jews. -an'ti-Se-mit'ic (-sa-mit ik) adi. -an'ti-Sem'i-tism n.

an-ti-sep-sis (in ti-sep sis) n. The destruction of microorganism that cause disease, fermentation, or putrefaction.

an-ti-sep-tic (an'ti-sép'tik) adi. 1 Of, relating to, or designation antisepsis. 2. Capable of producing antisepsis. 3. Entirely clean. 4. Do void of enlivening or enriching qualities. 5. Impersonal. —n. An n tiseptic drug or agent. —an tiseptic drug or agent.

an-ti-se-rum (ān'ti-sir'am) n. pl. -rums or -ra (-ra). Human or animal serum having antibodies for at least one antigen.

an-ti-slav-ery (ān'tē-slā'və-rē, -slāv'rē) adi. Opposed to slave -an'ti-slav'ery n.
an-ti-smog (in'te-smog', -smog') adj. Counteracting or eliminating

an-ti-so-cial (in te-so'shal) adi. 1. Avoiding the society of others UNSOCIABLE. 2. 2. Opposed to the established social order. b. Cham terized by or engaging in behavior that violates conventional mo

-an'ti-so'cial-ly adv.
an-ti-spas-mod-ic (ăn'tē-spāz-mod'lk) adj. Alleviating or preven

ing spasms. —a. An antispasmodic drug antistatic (in testivik) also antistat (-testiv) adj. Preve ing or inhibiting the build-up of static electricity.

antistro-phe (in-tis'tra-fe) n. [Llat < Gk. antistrophé, a tumin back < antistrophein, to turn back: anti-, back + strephein, turn.] 1. The movement following and in the same meter as its strophe in antistrophe. strophe in ancient Greek choral poetry or drama, sung while the chorus moves in the opposite direction from that of the strophe 2. The second stanza in a poem having alternating stanzas in a trasting metric form. —an'ti-stroph'ie (in'ti-strof'ik) adi. —an' stroph'i-cal-ly adv.

antisub marine (in'të sub'm>rën', sub'm>rën') adi. U

against enemy submarines. an-ti-tank (in'te-tingk') adi. Designed for combat against armo

vehicles, esp. tanks. antithesis (in tith isis) n. pl. ecs (sez) [Llat < Gk., opposition < antitithenaf, to oppose : anti-against + tithenaf, to set 1. Direct contrast: OPPOSITION. 2. The direct opposite. 3. 2. The id taposition of sharply contrasting ideas in balanced or parallel word phrases, or grammatical structures, e.g., Milton's "He for God on the for God in him." b. The second and contrasting part of such juxtaposition. 4. The second stage of the dialectic process.

antithetical (anti-therikal) also anti-thetic (-ik) a [Liat antitheticus. Ck. antithetikos < antitethenai, to oppose. ANTITHESIS.] 1. Relating to, like, or characterized by antithesis. 2. I rectly opposed. —an'ti-thet'i-cal-ly adv.
anti-tox-ic (in'te-tok'sik) adi. 1. Counteracting a toxin or poisa

2. Of or relating to an antitoxin.

an-ti-tox-in (in'te-tok'sin) n. L An antibody formed in resp to and capable of neutralizing a biological poison. 2 An animal rum containing antitoxins.

an ti trades (in ti-tradz) pl.n. The westerly winds above the winds of the tropics, which become the westerly winds of the midd an ti-trust (in te-trust') adi. Opposing or regulating trusts, carte

or similar business monopolies.
antitumor (in'ti-t00'mar, ty60'.) also antitumor (-mar-al) adi. Anticancer.

åpat åpay ircare äfather epet ebe hwwhich i ir pier o pot o toe o paw, for oi noise oo t

New Riversi University Dict

What Do People Want Dictionary?

Webster's II New Riverside Uni is not only the latest, most upprepared according to the prir Webster—it is also the most d we compiled Webster's II, we sive research through the Gal to find out what features peop a dictionary. As a result, Web a number of unique features people wanted most of all.

NO One Does It Bette

In Webster's II, you'll find sp no other Webster's dictiona find that we have improved common to other dictionari just the newest, but also the Webster's dictionary availa a sampling of what you'll f

Word Histories

This is the feature most reusers. Webster's II gives yo history paragraphs descril development of interestir language. Example:

word history: Aboveboard it board. It is recorded as early as the fifthe gambler's hands were about the state of the state presumably he could not surrept in other forms of cheating.

Usage Guidance

You'll find two kinds of usage notes are include problem terms in the rr In addition, a section is plains in detail some o confusing questions al In the main part of the

Words that are believed to be registered trademarks have been checked with authoritative sources. No investigation has been made of common-law trademark rights in any word, because such investigation is impracticable. Words that are known to have current registrations are shown with an initial capital and are also identified as trademarks. The inclusion of any word in this Dictionary is not, however, an expression of the Publisher's opinion as to whether or not it is subject to proprietary rights. Indeed, no definition in this Dictionary is to be regarded as affecting the validity or any

Copyright © 1984, 1988 by Houghton Mifflin Company. All rights reserved.

No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or by any information storage or retrieval system without the prior written permission of Houghton Mifflin Company unless such copying is expressly permitted by federal copyright law. Address inquiries to Permissions, Houghton Mifflin Company, 2 Park Street, Boston, MA 02108.

Library of Congress Cataloging in Publication Data Main entry under title:

Webster's II new Riverside university dictionary.

1. English language-Dictionaries. I. Riverside Publishing Company. II. Title: Webster's two new Riverside university dictionary. III. Title: Webster's 2 new Riverside university dictionary. 83-3799 423

PE1625.W244 1984

ISBN: 0-395-33957-X (thumb index, trade edition) 0.395-37928-8 (high school edition)

Manufactured in the United States of America

rect < Your conclusions are all right > 3. Olimber > 3. Section of the section of all right adv. 1. Satisfactory

Crystals from methanol, melts over a range of 200-280°. Hydrochloride. C₁₁H₂₂NO₄·HCl. DV-1006, Neuer. Crystals from methanol/ether, mp 238-240°. THERAP CAT: Antiulcerative.

2068. Cetrimonium Bromide. N,N,N-Trimethyl-1-hexadecanaminium bromide; hexadecyltrimethylammonium bromide; cetyltrimethylammonium bromide; Bromat; Cetab; Cetavlon; Cetylamine; C.T.A.B.; Lissolamine V; Micol; Quamonium. C₁₉H₄₂BrN; mol wt 364.45. C 62.62%, H 11.62%. Br 21.92%. N 3.84%. [CH₃(CH₂)₁₅N(CH₃)₃]Br. Prepd from cetyl bromide and trimethylamine: Shelton et al., J. Am. Chem. Soc. 68, 753 (1946). Toxicity and pharmacology: B. Isomaa, K. Bjondahl, Acta Pharmacol. Toxicol. 47, 17 (1980).

Crystals, mp 237-243°. Soluble in about 10 parts water. Freely sol in alc; sparingly sol in acetone. Practically insol in ether, benzene. Stable in acid soln. LD₂₀ in mice, rats (mg/kg): 32.0, 44.0 i.v. (Isomaa, Bjondahl).

p-Toluenesulfonate analog, C26H49NO3S, cetrimonium

tosylate, Cetats.

Note: Cetrimide is a mixture consisting chiefly of tetradecyltrimethylammonium bromide together with smaller amounts of dodecyltrimethylammonium bromide and cetrimonium bromide.

USE: As cationic detergent and antiseptic; as laboratory reagent.

THERAP CAT: Antiseptic (topical).

THERAP CAT (VET): Antiseptic, cleansing agent.

2069. Cetrimonium Stearate. N,N,N-Trimethyl-1-hexadecanaminium octadecanoate; hexadecyltrimethylammonium stearate: cetyltrimethylammonium stearate; trimethylhexastearate; cetyltrimethylammonium stearate; trimethylhexadecylammonium stearate; Arquad 16 stearate; Dynafac. C₃₇H₇₇NO₂; mol wt 568.02. C 78.24%, H 13.66%, N 2.47%, O 5.63%. [CH₃(CH₂)₁₆COO][CH₃(CH₂)₁₅N(CH₃)₃]. Prepri: Gautier et al., Bull. Soc. Chim. France 1955, 634. Solid, mp 142-143°. Practically insol in water, alcohol.

Note: The commercial product, a waxy solid, also contains other alkyltrimethylammonium stearates, since the hexadecyl chain is derived from soybean fatty acids.

2070. Cetyl Alcohol. 1-Hexadecanol; ethal; ethol; palmityl alcohol. C₁₆H₃₄O; mol wt 242.45. C 79.27%, H 14.14%, O 6.60%. CH₃(CH₃)₁₆CH₄OH. Discovered by Chevreul in 1813. Obtained from spermaceti by saponification: Spada. Gavioli. Farm. Sci. e Tec. (Pavia) 7, 435 (1952), C.A. 47, 891c (1953). Prepn from palmitoyl chloride NaRH. Caikin. Brown J. Am. Chem. Soc. 71, 122 + NaBH₄: Caikin, Brown, J. Am. Chem. Soc. 71, 122 (1949); from methylthiopalmitate + Raney Ni: Ruzicka, Prelog, U.S. pat. 2,509,171 (1950 to Ciba); from hexadecyl bromide: Levine. Clippinger, U.S. pat. 3,018,308 (1962 to California P. Comp.)

California Res. Corp.).
White crystals. d 0.811. mp 49°. bp 344°; bp₁₅ 190°. n₀°
1.4283. Practically insol in water. Sol in alcohol, chloro-

Note: The hexadecyl alcohol developed by Esso Res. & form, ether. Eng. Co. for cosmetics is a liquid, primary, branched chain, C₁₆ alcohol, made up of an array of isomeric compds maintained in constant proportion by a complex manufacturing process (not from spermaceti): Edman. Lowden. Drug Cosnet. Ind. 93, 631 (Nov. 1963). Liquid. 429 0.842. bp. 195-205°. Freezes at < -60°. Miscible with most alcohols. glycols, esters, ketones, cosmetic oils and aromatics.

miscible with water. USE: In cosmetics as emollient, emulsion modifier, coupling agent. Pharmaceutic aid (emulsifying and stiffening agent).

2071. Cetyldimethylethylammonium Bromide. N-Ethyl-N.N-dimethyl-1-hexadecanaminium bromide; ethylhexadecyldimethylammonium bromide; ethyl cetab: CDA: Ammonyx DME: Bretol. C20H44BrN: mol wt 378.48.

63.47%, H 11.72%, Br 21.11%, N 3.70%. Cationic gen dal detergent. Prepn and antibacterial activity: R. S. ton et al. J. Am. Chem. Soc. 68, 753 (1946).

White powder, mp 178-186. Soluble in water, alcoslightly sol in chloroform, benzene, ether. LD₅₀ orally rats: 500 mg/kg, RTECS Vol. 1, R. J. Lewis, R. L. Tat Eds. (1979) p 107.

USE: Disinfectant; laboratory reagent.

THERAP CAT: Antiseptic (topical). THERAP CAT (VET): Antiseptic (topical).

2072. Cetyl Lactate. 2-Hydroxypropanoic acid i decyl ester; 1-hexadecanol lactate; lactic acid cetyl ester; 1-hexadecanol lactate; lactic acid cetyl ester; tic acid hexadecyl ester; Ceraphyl 28. C₁₉H₃₀O₃; mod 314.51. C 72.56%, H 12.18%, O 15.26%. CH₃CHO COOC₁₆H₃₃. Preparation: Rehberg, Marion, J. Am. O Soc. 72, 1918 (1950).

Waxy solid. mp 41°. bp_{0,1} 132°; bp₁ 170°; bp₁₀ 219°,

1.4410; n₀ 1.4370. USE: Non-ionic emollient. To improve feel and textus cosmetic and pharmaceutical prepns.

2073. Cetyl Palmitate. Hexadecanoic acid hexa ester; palmitic acid hexadecyl ester; hexadecyl palmitate. ester; paiming acia nexadecyl ester; nexadecyl paimintate. H₆O₃; mol wt 480.86. C 79.93%, H 13.42%, O 6.6 CH₃(CH₂)₁₄COOCH₃(CH₂)₁₄COOCH₃(CH₂)₁₄CH₃. Prepn from paimintate and cetyl alcohol in the presence of Mg. Page Choloride and cetyl alcohol in the presence of Mg. Page Bouquet, Bull. Soc. Chim. France 1947, 321; by CrO₃-H₂ Bouquet and Croix alcohol. oxidation of cetyl alcohol: Cymerman-Craig, Horning Org. Chem. 25, 2098 (1960). Biosynthesis using inoculture of the control o Nocardia salmonicolor: Davis, U.S. pat. 3,169,099 (196 Socony Mobil Oil).

Monoclinic leaflets, mp 54°. d²⁰ 0.989. n⁷⁰ 1.4398. tically insol in water. Sol in abs alc, ether.

2074. Cetylpyridinium Chloride. 1-Hexadecylpyridium chloride; Ceepryn; Cepacol: Dobendan; Media Merocet; Pristacin; Pyrisept. C₂₁H₃₈ClN; mol wt 339.97 (1942), H 11.27%, Cl 10.43%, N 4.12%. Pharmacolory, toxicology: J. Pharmacol. Exp. Ther. 74, 401 (1942), view of early literature: C. L. Huyck, Am. J. Pharm. 11, (1944). Toxicity data: J. W. Nelson, S. C. Lyster, L. Pharm. Assoc. 35, 89 (1946). 1-Hexadecylpy 2074. Cetylpyridinium Chloride. Pharm. Assoc. 35, 89 (1946).

Monohydrate, Halset. White powder, mp 77-83°, sol in water, alcohol, chloroform; very slightly sol in ene, ether. pH (1% aq soln): 6.0 to 7.0. Surface (25°): 43 dyn/cm (0.1% aq soln); 41 dyn/cm (1.0%), LD₅₀ in rats (mg/kg): 250 s.c.; 6 in the control of the c

USE: Pharmaceutic aid (preservative).

THERAP CAT: Antiseptic; disinfectant. THERAP CAT (VET): Topical antiseptic; disinfectant

2075. Cevadine. [3β(Z), 4α, 16β]-4, 9-Εροχνετ 12,14,16,17,20-heptol 3-(2-methyl-2-butenoate); ver C₃₁H₄₀NO₆; mol wt 591.74. C 64,95%, H 8.35%, N O 24,33%. From seeds of Schoenocaulon officinale (Schoenocaulon officinale & Cham.) A. Gray (Sabadilla officinarum Brandti-ceae: Poetsch et al. J. Am. Pharm. Assoc. 38, 525. Ringel, ibid. 45, 433 (1956). Evaluation as installation of the state of t Ringel, 101a. 43, 435 (1936). Evaluation as unated likewa. Link et al., J. Biol. Chem. 159, 517 (1945). ture: Kupchan, Alfonso, ibid. 49, 242 (1960). 1 study: Swiss, Bauer, Proc. Soc. Exp. Biol. Med. (1951). Review: Wintersteiner in Graff. Essays: Chemistry (Wiley. New York, 1956) pp. 108-321. chemistry (Wiley, New York, 1956) pp 308-321.

nonohydrate, C₁₀H₁₂N₅O₈PNa R decomp at about 250°. Char nolar absorbancy): 13.7 × 10° n water at 25° about 25 g/100 mb hol, acetone, ether. um salt as flavor intensifier, like

ım glutamate. Said to be more Principal polysaccharide fro

ds, Cyamopsis tetragonaloba (L.). ne, Whistler, J. Am. Chem. Soc. 7 Whistler, Durso, ibid. 74, 51400 oleske, Kurath, J. Polymer Sci. P. Deuel et al., Chimia 8, 64 (19

aOH). Sol in cold water. is material, mp 226-227. Can be which can be elongated 550%. es not develop crystallinity. nd paper industry.

Guar flour: gum cyamop onite V-7-E; Jaguar; Decorpa: 1. Mol wt about 220,000. The imopsis tetragonolobus (L.) Taud ultivated in India as livestock ion (85%) of guar flour is called linear chains of (1-4)-3-D-mail x-D-galactopyranosyl units atta latio of D-galactose to D-manne tabolism: D. J. A. Jenkins 979); on glucose and lipid level olunteers: U. Smith, G. Hoh in patients with non-insuling (clvor et al., Am. J. Clin. Nursestudies: S. L. Graham et al., 37 (1981) 37 (1981). Comprehensive tgomery, The Chemistry of Industrial Gums, R. L. Jew York, 2nd ed., 1973) p wder. Completely sol in cold insol in oils, greases, hydroc er solns are tasteless, odorie ent gray color, and neutral ght times the thickening pour e converted to a gel by small sions are neutral. Cf. "A C cially Available Guar Gum Bartilucci. Drug Standards 1 ale, female rats (g/kg): 7.35

izing; as a protective collo 1 forming agent for cheese :ps; as a binding and disinte ons; in pharmaceutical jelly y as a flocculant, as a filter ulsions, lotions, creams, to a coagulant aid.

djunct to diet, insulin or if diabetes.

Green B. N-Ethyl-N-[4-[[4mino]phenyl]phenylmethyle

n-1-ylidene]-3-sulfobenzenemethanaminium inner Tyline salt: C.I. Acid Green 3; C.I. Food Green 1; FD Green 1; C.I. 42085. C₃₇H₃₅N₂NaO₅S; mol wt 690.82. H 5.11%. N 4.06%, Na 3.13%, O 13.90%, S Prepri: Jones et al. J. Assoc. Offic. Agr. Chem. 38, 1955). Toxicity studies: F. C. Lu, A. Lavalle, Can. 197, 30 (1964); W. H. Hansen et al. Food Cosmet. 4, 389 (1966). See also: Colour Index vol. 4 (3rd (1.771) p 4385.

L dark green powder, or a bright, crystalline solid. water to a green soln which becomes brownish-yellow of HCI and blackish-green with NaOH. An excess OH decolorizes the soln. Sparingly sol in alcohol; it is in concd H₂SO₄ to a yellow soln which, when diwater, turns first yellowish-red, then green. LD 50 in rats: >2 g/kg (Lu, Lavalle).

Districted use as a dye for silk and wool fabrics; as

ical stain. Delisted by FDA in 1966 for use in foods. and cosmetics.

M. p-Gulonic Acid. C₆H₁₂O₇; mol wt 196.16. C **B. H.** 6.17%, O 57.09%. Prepd as the sodium salt by of sodium glucuronate with sodium amalgam in Bacdium: Fischer, Piloty, Ber. 24, 525 (1891); from acid y-lactone: Rehorst, Naumann, ibid. 77, 24

(10 min) - -38.6° (15 days). The free acid lectone spontaneously. pK (25°): 3.68. mit, C₆H₁₁NaO₇, crystals. [a]_D +11.5°. Sol in

asit. $Ca(C_6H_{11}O_7)_{P}$ $[\alpha]_0^{21}$ -14.45° (c = 1.73).

L-Galonic Acid. Xylosecarboxylic acid. C₆H₁₂196.16. C 36.74%, H 6.17%, O 57.09%. Prepd
196.16. C 36.74%, H 6.17% of 197. Stahel, Ber. 24, 529 (1891). Prepn from D197. acid: Ger. pat. 618,907 (1935 to Hoffmann-La Cd: Ger. pat. 618,997 (1955 to Ftoliment, July 10 Legulonolactone: Ishidate et al., Chem. 13, 173 (1965).

as the lactone on evapn of an aq soln. $[a]_0^{20} + 12.7^{\circ}$ (c = 9). Freely sol in water.

Galose. C₆H₁₂O₆ mol wt 180.16. C 40.00%. Prepd by sodium amalgam reduction of a milonic acid: Fischer, of the γ -lactone of D-gulonic acid: Fischer,

Stahel, Ber. 24, 532 (1891); van Ekenstein, Blanksma, Rec. Tray. Chim. 27, 3 (1908). Alternate synthesis: Meyer zu Reckendorf, Angew. Chem. Int. Ed. 6, 177 (1967); idem, Methods Carbohyd. Chem. 6, 129 (1972); R. Köster et al., Angew. Chem. Int. Ed. 19, 547 (1980).

Syrup. Sweet taste. $[\alpha]_0^{20} - 20.4^{\circ}$. Sol in water, slight sol in alcohol. Not fermentable by yeast.

4607. L-Gulose. C₆H₁₂O₆ mol wt 180.16. C 40.00%, Prepd by sodium amalgam reduction H 6.71%, O 53.28%. Prepd by sodium amalgam reduction of an acid soln of the y-lactone of L-gulonic acid: Fischer, Piloty, Ber. 24, 526 (1891). See also van Ekenstein, Blanksma, Rec. Trav. Chim. 27, 3 (1908); Levene, LaForge, J. Biol. Chem. 20, 430 (1915); Talen, Rec. Trav. Chim. 44, 891 (1925); Isbell, J. Am. Chem. Soc. 55, 2167 (1933). Synthesis from D-mannose: Evans, Parrish, Carbohyd. Res. 28, 359 (1973); from D-glucose: D. K. Minster, S. M. Hecht, J. Org. Chem. 43, 3987 (1978).

Syrup. $[\alpha]_D^{20} + 61.6^\circ$. $[\alpha]_D + 21.3^\circ$ (c = 4.58) (Evans, Parrish). Freely sol in water; slightly sol in alcohol. Not fermentable by yeast.

4608. Gum Benzoin. Resin benzoin; resin benjamin: gum benjamin. Balsamic resin from Styrax benzoin Dryand., known as Sumatra benzoin, or from S. tonkinensis (Pierre) Craib, Stynacaceae, or other species of Stynax known as Siam benzoin. Habit. Thailand, Cambodia, S. Vietnam, Sumatra, Java, and Sunda Islands. Constit. Ethereal oil, free and combined benzoic and cinnamic acids up to 39%, vanillin, coniferyl benzoate, resin (a mixture of benzoresinol and benzoresinotannol) esterified with benzoic acid, styrol, styracin. Not less than 90% of Siam and not less than 75% of Sumatra benzoic is sol in alc (U.S.P.). Ref: Reinitzer, Arch. Pharm. 264, 131 (1926): Brans, Pharm. Weekbl. 73,

374 (1936); Freudenberg, Bittner, Ber. 83, 600 (1950).
USE: Preserving ointments; preparing natural benzoic acid; for fumigating pastilles; in perfumery and cosmetics.

THERAP CAT: Topical protectant.
THERAP CAT (VET): Tincture is used topically as an antiseptic and to promote healing; as an inhalant for bronchitis. and orally as an expectorant.

4609. Gum Tragacanth. Tragacanth. Mol wt about 840,000. The dried gummy exudation from Astragalus gummifer Labill. (white gavan) or other Asiatic species of Astragalus, Leguminosae, found largely in Iran, also in Asia Minor and in Syria. When mixed with water gives a soluble fraction, as a hydrosol, called tragacanthin which is a complex mixture of polysaccharides containing D-galacturonic acid, other sugars, and traces of starch and cellulose. insoluble fraction swells to a gel and consists of 60-70% bassorin, q.v. Structural studies: Norman. Biochem. J. 25, 200 (1931); James, Smith. J. Chem. Soc. 1945, 739, 749; Aspinall, Baillie, ibid. 1963, 1702, 1714. Reviews: Beach, in Aspinali, Baillie, 101d. 1903, 1702, 1714. Reviews: Beach, in Natural Plant Hydrocolloids. Advances in Chemistry Series 11 (A.C.S., Washington, 1954) pp 38-44; Meer et al. in Industrial Gums, R. L. Whistler, Ed. (Academic Press, New York, 2nd ed., 1973) pp 289-299. Book: F. Smith, R. Montgomery, The Chemistry of Plant Gums and Mucilages (Reinhold, New York, 1959) 627 pp.

Odorless. Insipid, mucilaginous taste. Acid reaction. One gram requires 0.9 ml 0.1N NaOH for neutralization to phenolphthalein: Gabel, J. Am. Pharm. Assoc. 23, 341 (1934). Viscosity of tragacanth mucilages is reduced by adding acid. alkali, and NaCl particularly if the mucilage is heated: Mantell, The Water-Soluble Gums (New York.