# PROJECT – 2B

# EEE 234 Project 2B

Name: Mihir Rajendra Mahajan

EMAIL: mihirmahajan92@gmail.com

#### TABLE OF CONTENTS

| CALCULATIONS           | 4  |
|------------------------|----|
| INVERTER               |    |
| SCHEMATIC              |    |
| SYMBOL                 |    |
| TESTBENCH              |    |
| WAVEFORM               | 11 |
| 2 INPUT NANDGATE       |    |
| SCHEMATIC              |    |
| SCHEMATIC SYMBOL       |    |
| TESTBENCH              |    |
| WAVEFORM               |    |
| 2 INPUT NOR GATE       |    |
|                        |    |
| SCHEMATIC              |    |
| SYMBOL                 |    |
| TESTBENCH              |    |
| WAVEFORM               | 21 |
| 2 INPUT XOR GATE       |    |
| SCHEMATIC              | 23 |
| SYMBOL                 |    |
| TESTBENCH              |    |
| WAVEFORM               |    |
| 2 INPUT AND GATE       | 27 |
| SCHEMATIC              |    |
| SYMBOL                 |    |
| TESTBENCH              |    |
| WAVEFORM               |    |
|                        |    |
| 2 INPUT OR GATE        |    |
| SCHEMATIC              | 33 |
| Symbol                 |    |
| TESTBENCH              | 35 |
| WAVEFORM               | 36 |
| 1 BIT HALF ADDER       | 37 |
| SCHEMATIC              | 38 |
| Symbol                 |    |
| TESTBENCH              |    |
| WAVEFORM               | 41 |
| 1BIT FULL ADDER        | 42 |
| SCHEMATIC              |    |
| SYMBOL                 |    |
| TESTBENCH              |    |
| WAVEFORM               |    |
| 4 BIT ADDER/SUBTRACTOR |    |
|                        |    |
| SCHEMATIC              |    |
| SYMBOL                 |    |
| TESTBENCH              |    |
| WAVEFORM               | 51 |

| D Flip-Flop      | 52 |
|------------------|----|
| SCHEMATIC        | 53 |
| Symbol           |    |
| TESTBENCH        | 55 |
| WAVEFORM         |    |
| 4 BIT MULTIPLIER | 57 |
| SCHEMATIC        | 58 |
| Symbol           | 59 |
| TESTBENCH        | 60 |
| WAVEFORM         | 61 |
| 2:1 MULTIPLXER   | 62 |
| SCHEMATIC        | 63 |
| SYMBOL           | 64 |
| TESTBENCH        | 65 |
| WAVEFORM         | 66 |
| 8:1 MULTIPLXER   | 67 |
| SCHEMATIC        | 68 |
| SYMBOL           | 69 |
| TESTBENCH        | 70 |
| WAVEFORM         | 71 |
| 4 BIT ALU        | 72 |
| SCHEMATIC        |    |
| SYMBOL           |    |
| TESTBENCH        | 75 |
| WAVEFORM         | 76 |
| CONCLUSION       | 78 |

# **Inverter**

$$(W/L)_n = 1.8/0.18$$

$$(W/L)_p = 3.6/0.18$$

#### **Schematic (Inverter)**



## **Testbench (Inverter)**





#### Sun Oct 7 20:43:09 2018



# 2-input NAND gate

 $(W/L)_n = 5.4/0.18$ 

 $(W/L)_p = 3.6/0.18$ 

#### Schematic (2-input NAND gate)



## **Tesbench (2-input NAND gate)**





#### Sun Oct 7 20:34:47 2018



# 3-input NOR gate

 $(W/L)_n = 1.8/0.18$ 

 $(W/L)_p = 7.2/0.18$ 

## Schematic (3-input NOR gate)



# Testbench (3-input NOR gate)



#### **Transient Response**

#### Sun Oct 7 20:24:44 2018



# Transmission Gate

$$(W/L)_n = 1.8/0.18$$

$$(W/L)_p = 3.6/0.18$$

## **Schematic (Transmission Gate)**



## **Test bench (Transmission Gate)**





#### Sun Oct 7 20:11:20 2018



# 2 Input AND gate

# 2 Input AND gate schematic







#### **Transient Response**

#### Fri Nov 30 22:32:02 2018































































250.0

time (ns)

300.0

350.0

400.0

-0.1

0.0

50.0

100.0

150.0

200.0

500.0

450.0





















### **Transient Response**

### Fri Dec 7 23:24:51 2018



D Flip Flop







### **Transient Response**

#### Fri Dec 7 23:09:24 2018

















# Calculation

### Rise Time and Fall Time Calculation

Rise Time= (at 90% Output) - (at 10% Output)

Fall Time = (at (10% Output) - (at 90% Output)

# **Propagation Delay**

Propagation Delay(rising  $t_{pdr}$ )= 50% of Output time - 50% of Input time Propagation Delay(falling  $t_{pdf}$ )= 50% of Output time - 50% of Input time

Average Propagation Delay =  $(t_{pdr}+t_{pdf})/2$ 

| Gate               | tr      | tf     | tpdr   | tpdf    | Average(Tpdr+tpdf)/2 |
|--------------------|---------|--------|--------|---------|----------------------|
| Inverter           | 2.17ns  | 1.67ns | 1.02ns | 0.9ns   | 0.96ns               |
| NAND               | 2.20ns  | 0.99ns | 1.05ns | 0.519ns | 0.788ns              |
| AND                | 0.7ns   | 0.6ns  | 0.89ns | 1.025ns | 0.95ns               |
| NOR                | 3.26ns  | 0.57ns | 1.56ns | 0.31ns  | 0.936ns              |
| OR                 | 0.457ns | 0.17ns | 0.36ns | 0.06ns  | 0.21s                |
| XOR                | 2.17ns  | 1.67ns | 0.9ns  | 1.02ns  | 0.96ns               |
| TM Gate            | 0.32ns  | 0.2ns  | 0.12ns | 0.079ns | 0.095ns              |
| 1 Bit Half Adder 1 | 24ns    | 1.05ns | 0.15ns | 0.24ns  | 0.19ns               |
| 1 Bit Full Adder 0 | 18ns    | 0.09ns | 0.36ns | 0.34ns  | 0.35ns               |
| 4 Bit Fuller Adder | 0.1ns   | 1.05ns | 1.42ns | 1.00ns  | 2.71ns               |
| Multiplier         | 0.17ns  | 0.36ns | 0.36ns | 0.93ns  | 0.645ns              |
| D Flip-Flop        | 1.29ns  | 1.02ns | 2.65ns | 1.26ns  | 1.95                 |
| 2:1 MUX            | 0.59ns  | 0.43ns | 1.02ns | 0.59ns  | 0.805ns              |
| 8:1 MUX            | 0.12ns  | 0.25ns | 0.04ns | 0.107ns | 0.03ns               |
| ALU                | 0.1ns   | 0.54ns | 0.3ns  | 0.667ns | 0.48ns               |

## **CONCLUSION:**

Thus the layout of the ALU is designed using the basic gates and the Post Simulation results are obtained.