In [1]: import numpy as np
import pandas as pd

In [2]: df=pd.read_csv(r"C:\Users\Admin\Downloads\2015 - 2015.csv")
 df

Out[2]:

	Country	Region	Happiness Rank	Happiness Score	Standard Error	Economy (GDP per Capita)	Family	Health (Life Expectancy)	Fre	
0	Switzerland	Western Europe	1	7.587	0.03411	1.39651	1.34951	0.94143	0.6	
1	Iceland	Western Europe	2	7.561	0.04884	1.30232	1.40223	0.94784	0.6	
2	Denmark	Western Europe	3	7.527	0.03328	1.32548	1.36058	0.87464	0.6	
3	Norway	Western Europe	4	7.522	0.03880	1.45900	1.33095	0.88521	0.6	
4	Canada	North America	5	7.427	0.03553	1.32629	1.32261	0.90563	0.6	
153	Rwanda	Sub- Saharan Africa	154	3.465	0.03464	0.22208	0.77370	0.42864	0.5	
154	Benin	Sub- Saharan Africa	155	3.340	0.03656	0.28665	0.35386	0.31910	0.4	
155	Syria	Middle East and Northern Africa	156	3.006	0.05015	0.66320	0.47489	0.72193	0.1	
156	Burundi	Sub- Saharan Africa	157	2.905	0.08658	0.01530	0.41587	0.22396	0.′	
157	Togo	Sub- Saharan Africa	158	2.839	0.06727	0.20868	0.13995	0.28443	0.3	
158 r	158 rows × 12 columns									

```
In [3]: df1=df[['Family','Freedom']]
df1
```

Out[3]:

	Family	Freedom
0	1.34951	0.66557
1	1.40223	0.62877
2	1.36058	0.64938
3	1.33095	0.66973
4	1.32261	0.63297
153	0.77370	0.59201
154	0.35386	0.48450
155	0.47489	0.15684
156	0.41587	0.11850
157	0.13995	0.36453

158 rows × 2 columns

Find mean, median, mode and describe

```
In [6]:
        print(df1.mode())
              Family
                       Freedom
             0.00000
                       0.00000
        1
             0.13995
                       0.07699
        2
             0.30285
                       0.09245
        3
             0.35386
                       0.10081
        4
             0.38174
                      0.10384
             1.34043
                       0.65821
        153
        154
             1.34951
                       0.65980
             1.36058
                       0.66246
        155
        156
             1.36948 0.66557
        157
             1.40223 0.66973
        [158 rows x 2 columns]
In [7]: print(df1.describe())
                    Family
                               Freedom
        count
               158.000000
                           158.000000
                  0.991046
        mean
                              0.428615
        std
                 0.272369
                              0.150693
                  0.000000
        min
                              0.000000
        25%
                 0.856823
                              0.328330
        50%
                 1.029510
                              0.435515
        75%
                  1.214405
                              0.549092
        max
                  1.402230
                              0.669730
```

```
In [9]:
         print(df1.cumsum())
                 Family
                          Freedom
         0
                1.34951
                          0.66557
         1
                2.75174
                          1.29434
         2
                4.11232
                          1.94372
         3
                5.44327
                          2.61345
         4
                6.76588
                          3.24642
         153 155.20069 66.59679
         154 155.55455 67.08129
              156.02944 67.23813
         155
         156 156.44531 67.35663
         157
              156.58526 67.72116
         [158 rows x 2 columns]
In [10]: print(df1.min())
         Family
                    0.0
         Freedom
                    0.0
         dtype: float64
In [11]:
         print(df1.max())
         Family
                    1.40223
         Freedom
                    0.66973
         dtype: float64
```

Find covariance and correlation (spearman and pearsons)

```
In [12]:
         print(df1.cov())
                     Family
                               Freedom
         Family
                   0.074185
                             0.018122
         Freedom 0.018122
                             0.022708
In [70]: |d1=df1['Family'][0:10]
         d1
Out[70]: 0
               1.34951
         1
               1.40223
         2
               1.36058
         3
               1.33095
         4
               1.32261
         5
               1.31826
         6
               1.28017
         7
               1.28907
         8
               1.31967
               1.30923
         Name: Family, dtype: float64
```

```
In [74]: | d2=df1['Freedom'][0:10]
Out[74]: 0
              0.66557
              0.62877
              0.64938
         2
         3
              0.66973
         4
              0.63297
         5
              0.64169
         6
              0.61576
         7
              0.65980
         8
              0.63938
              0.65124
         Name: Freedom, dtype: float64
In [75]: from scipy.stats import pearsonr
         print(pearsonr(d1,d2))
         (0.055241629786797655, 0.8795270232785586)
In [76]: from scipy.stats import spearmanr
         print(spearmanr(d1,d2))
         SpearmanrResult(correlation=0.11515151515151514, pvalue=0.7514196523258483)
         П
In [15]: import numpy as np
         import pandas as pd
```

Out[16]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	le
0	1.0	lounge	51.0	882.0	25000.0	1.0	44.907242	8.6115598
1	2.0	pop	51.0	1186.0	32500.0	1.0	45.666359	12.241889
2	3.0	sport	74.0	4658.0	142228.0	1.0	45.503300	11.417
3	4.0	lounge	51.0	2739.0	160000.0	1.0	40.633171	17.634609
4	5.0	pop	73.0	3074.0	106880.0	1.0	41.903221	12.495650
				•••			•••	
1544	NaN	NaN	NaN	NaN	NaN	NaN	NaN	lenç
1545	NaN	NaN	NaN	NaN	NaN	NaN	NaN	conc
1546	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Null va l u
1547	NaN	NaN	NaN	NaN	NaN	NaN	NaN	fi
1548	NaN	NaN	NaN	NaN	NaN	NaN	NaN	sear

1549 rows × 11 columns

In [17]: df3=df2[['age_in_days','price']]
 df3

Out[17]:

	age_in_days	price
0	882.0	8900
1	1186.0	8800
2	4658.0	4200
3	2739.0	6000
4	3074.0	5700
1544	NaN	5
1545	NaN	Ionprice
1546	NaN	NO
1547	NaN	1
1548	NaN	1

1549 rows × 2 columns

Find mean, median, mode and describe¶

```
In [18]:
         print(df3.mean())
         age_in_days
                         1650.980494
         dtype: float64
In [19]:
         print(df3.median())
         age_in_days
                         1035.0
         dtype: float64
In [20]: print(df3.mode())
             age_in_days price
         0
                   366.0
                          10500
         1
                   790.0
                            NaN
         print(df3.describe())
In [21]:
                 age_in_days
                1538.000000
         count
                 1650.980494
         mean
         std
                 1289.522278
         min
                  366.000000
         25%
                  670.000000
         50%
                 1035.000000
         75%
                 2616.000000
         max
                 4658.000000
```

```
In [23]:
         print(df3.cumsum())
                age_in_days
                                                                           price
         0
                      882.0
                                                                            8900
         1
                     2068.0
                                                                        89008800
         2
                     6726.0
                                                                    890088004200
                     9465.0
         3
                                                               8900880042006000
         4
                    12539.0
                                                           89008800420060005700
                             8900880042006000570079001075091905600600089501...
         1544
                        NaN
         1545
                        NaN
                             8900880042006000570079001075091905600600089501...
                             8900880042006000570079001075091905600600089501...
         1546
                        NaN
                             8900880042006000570079001075091905600600089501...
         1547
                        NaN
         1548
                        NaN
                             8900880042006000570079001075091905600600089501...
         [1549 rows x 2 columns]
In [24]: print(df3.min())
         age_in_days
                         366.0
         price
                           1.0
         dtype: float64
In [25]:
         print(df3.max())
         age_in_days
                             4658
         price
                         lonprice
         dtype: object
```

Find covariance and correlation (spearman and pearsons)

```
print(df3.cov())
In [26]:
                        age_in_days
         age_in_days 1.662868e+06
         d3=df3['age in days'][0:10]
In [77]:
Out[77]:
         0
                882.0
               1186.0
          1
         2
               4658.0
         3
               2739.0
         4
               3074.0
         5
               3623.0
         6
                731.0
         7
               1521.0
         8
               4049.0
         9
               3653.0
         Name: age_in_days, dtype: float64
```

```
In [78]: d4=df3['price'][0:10]
Out[78]: 0
                8900
                8800
         2
                4200
         3
                6000
         4
                5700
         5
                7900
         6
               10750
         7
                9190
         8
                5600
         9
                6000
         Name: price, dtype: object
In [89]: from scipy.stats import spearmanr
         print(spearmanr(d3,d4))
```

SpearmanrResult(correlation=-0.3404271044608362, pvalue=0.3357822630985314)

Ш

```
In [29]: import numpy as np import pandas as pd
```

In [30]: df4=pd.read_csv(r"C:\Users\Admin\Downloads\3_Fitness-1 - 3_Fitness-1.csv")
df4

Out[30]:

	Row Labels	Sum of Jan	Sum of Feb	Sum of Mar	Sum of Total Sales
0	А	5.62%	7.73%	6.16%	75
1	В	4.21%	17.27%	19.21%	160
2	С	9.83%	11.60%	5.17%	101
3	D	2.81%	21.91%	7.88%	127
4	E	25.28%	10.57%	11.82%	179
5	F	8.15%	16.24%	18.47%	167
6	G	18.54%	8.76%	17.49%	171
7	Н	25.56%	5.93%	13.79%	170
8	Grand Total	100.00%	100.00%	100.00%	1150

```
In [31]: df5=df4[['Sum of Total Sales']]
df5
```

Out[31]:

	Sum of Total Sales
0	75
1	160
2	101
3	127
4	179
5	167
6	171
7	170
8	1150

Find mean, median, mode and describe

```
In [32]: print(df5.mean())
         Sum of Total Sales
                                 255.55556
         dtype: float64
In [33]:
         print(df5.median())
         Sum of Total Sales
                                 167.0
         dtype: float64
In [34]: print(df5.mode())
             Sum of Total Sales
         0
                             75
         1
                             101
         2
                             127
         3
                             160
         4
                             167
         5
                             170
         6
                             171
                             179
         8
                           1150
```

```
In [35]:
         print(df5.sum())
         Sum of Total Sales
                                 2300
         dtype: int64
In [36]: print(df5.cumsum())
             Sum of Total Sales
                             75
                            235
         1
         2
                            336
         3
                            463
         4
                            642
         5
                            809
                            980
         7
                           1150
                           2300
In [37]:
         print(df5.min())
                                 75
         Sum of Total Sales
         dtype: int64
In [38]:
         print(df5.max())
         Sum of Total Sales
                                 1150
         dtype: int64
```

Find covariance and correlation (spearman and pearsons)

IV

```
In [42]: import numpy as np import pandas as pd
```

In [43]: df6=pd.read_csv(r"C:\Users\Admin\Downloads\8_BreastCancerPrediction - 8_BreastC
df6

Out[43]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_
0	842302	М	17.99	10.38	122.80	1001.0	0.
1	842517	М	20.57	17.77	132.90	1326.0	0.0
2	84300903	М	19.69	21.25	130.00	1203.0	0.
3	84348301	М	11.42	20.38	77.58	386.1	0.
4	84358402	М	20.29	14.34	135.10	1297.0	0.
564	926424	М	21.56	22.39	142.00	1479.0	0.
565	926682	М	20.13	28.25	131.20	1261.0	0.0
566	926954	М	16.60	28.08	108.30	858.1	0.0
567	927241	М	20.60	29.33	140.10	1265.0	0.
568	92751	В	7.76	24.54	47.92	181.0	0.0

569 rows × 32 columns

In [44]: df7=df6[['radius_mean','area_mean']]
df7

Out[44]:

	radius_mean	area_mean
0	17.99	1001.0
1	20.57	1326.0
2	19.69	1203.0
3	11.42	386.1
4	20.29	1297.0
564	21.56	1479.0
565	20.13	1261.0
566	16.60	858.1
567	20.60	1265.0
568	7.76	181.0

569 rows × 2 columns

Find mean, median, mode and describe

```
In [45]:
         print(df7.mean())
                          14.127292
         radius_mean
         area_mean
                         654.889104
         dtype: float64
In [46]:
         print(df7.median())
         radius_mean
                          13.37
         area_mean
                         551.10
         dtype: float64
In [47]:
         print(df7.mode())
             radius_mean area_mean
         0
                   12.34
                              512.2
```

```
In [48]:
          print(df7.sum())
          radius mean
                            8038.429
          area mean
                          372631.900
          dtype: float64
In [49]: print(df7.cumsum())
               radius mean
                             area mean
                    17.990
          0
                                1001.0
          1
                    38.560
                                2327.0
          2
                    58.250
                                3530.0
          3
                    69.670
                                3916.1
          4
                    89.960
                                5213.1
                                   . . .
                        . . .
                  7973.339
                              369066.8
          564
          565
                  7993.469
                              370327.8
          566
                  8010.069
                              371185.9
          567
                  8030.669
                              372450.9
          568
                  8038.429
                              372631.9
          [569 rows x 2 columns]
In [50]:
          print(df7.min())
          radius_mean
                            6.981
          area_mean
                          143.500
          dtype: float64
```

In [51]: print(df7.max())

radius_mean 28.11 area_mean 2501.00

dtype: float64

Find covariance and correlation (spearman and pearsons)

In [52]: print(df7.cov())

radius_mean area_mean radius_mean 12.418920 1224.483409 area_mean 1224.483409 123843.554318

V

In [55]: import numpy as np
import pandas as pd

```
In [64]: df8=pd.read_csv(r"C:\Users\Admin\Downloads\9_bottle.csv")
df8
```

C:\Users\Admin\anaconda3\lib\site-packages\IPython\core\interactiveshell.py:3
071: DtypeWarning: Columns (47,73) have mixed types.Specify dtype option on i
mport or set low_memory=False.

has_raised = await self.run_ast_nodes(code_ast.body, cell_name,

Out[64]:

	Cst_Cnt	Btl_Cnt	Sta_ID	Depth_ID	Depthm	T_degC	SaInty	O2ml_L	STheta	O2Sa
0	1	1	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0000A-3	0	10.500	33.4400	NaN	25.64900	Na
1	1	2	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0008A-3	8	10.460	33.4400	NaN	25.65600	Na
2	1	3	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0010A-7	10	10.460	33.4370	NaN	25.65400	Na
3	1	4	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0019A-3	19	10.450	33.4200	NaN	25.64300	Na
4	1	5	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0020A-7	20	10.450	33.4210	NaN	25.64300	Na
				•••					•••	
864858	34404	864859	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0000A-7	0	18.744	33.4083	5.805	23.87055	108.7
864859	34404	864860	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0002A-3	2	18.744	33.4083	5.805	23.87072	108.7
864860	34404	864861	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0005A-3	5	18.692	33.4150	5.796	23.88911	108.4
864861	34404	864862	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0010A-3	10	18.161	33.4062	5.816	24.01426	107.7

864862	34404	864863	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264-	15	17.533	33.3880	5.774	24.15297	105.6
				09340264- 0015A-3						

Cst_Cnt Btl_Cnt Sta_ID Depth_ID Depthm T_degC Salnty O2ml_L

864863 rows × 74 columns

```
In [65]: df9=df8[['Cst_Cnt','R_PRES']]
df9
```

Out[65]:

	Cst_Cnt	R_PRES
0	1	0
1	1	8
2	1	10
3	1	19
4	1	20
864858	34404	0
864859	34404	2
864860	34404	5
864861	34404	10
864862	34404	15

864863 rows × 2 columns

Find mean, median, mode and describe

STheta O2Sa

```
In [61]: print(df9.sum())
         Cst_Cnt
                    14822706164
         R_PRES
                       197530985
         dtype: int64
In [62]:
         print(df9.cumsum())
                      Cst_Cnt
                                  R_PRES
         0
                            1
                                       0
         1
                            2
                                       8
                            3
                                      18
                            4
         3
                                      37
         4
                            5
                                      57
         864858 14822568548 197530953
         864859
                 14822602952
                              197530955
         864860 14822637356 197530960
         864861 14822671760
                              197530970
         864862 14822706164 197530985
         [864863 rows x 2 columns]
In [63]:
         print(df9.min())
         Cst_Cnt
                     1
         R_PRES
         dtype: int64
In [66]:
         print(df9.max())
         Cst_Cnt
                     34404
         R PRES
                      5458
         dtype: int64
```

Find covariance and correlation (spearman and pearsons)

```
In [67]: print(df9.cov())
```

Cst_Cnt R_PRES Cst_Cnt 1.048771e+08 -529861.015146 R_PRES -5.298610e+05 102052.603292