

THÈSE

En vue de l'obtention du

DOCTORAT DE L'UNIVERSITÉ DE TOULOUSE

Délivré par : l'Institut Supérieur de l'Aéronautique et de l'Espace (ISAE)

Présentée et soutenue le 30 Octobre 2020 par :

Andrea BRUGNOLI

A port-Hamiltonian formulation of flexible structures Modelling and symplectic finite element discretization

JURY

DANIEL ALAZARD ISAE-Supaéro, Toulouse Directeur Valérie P. BUDINGER ISAE-Supaéro, Toulouse Co-directeur YANN LE GORREC Institut FEMTO-ST Rapporteur ALESSANDRO MACCHELLI Universitá di Bologna Rapporteur THOMAS HÉLIE Directeur de Recherches CNRS Examinateur Luc DUGARD GIPSA-LAB, Grenoble Président

École doctorale et spécialité:

EDSYS: Automatique

Unité de Recherche:

CSDV - Commande des Systèmes et Dynamique du Vol - ONERA - ISAE

Directeur de Thèse:

Daniel ALAZARD et Valérie POMMIER-BUDINGER

Rapporteurs:

Yann LE GORREC et Alessandro MACCHELLI

Abstract

This thesis aims at extending the port-Hamiltonian (pH) approach to continuum mechanics in higher geometrical dimensions (particularly in 2D). The pH formalism has a strong multiphysics character and represents a unified framework to model, analyze and control both finite- and infinite-dimensional systems. Despite the large literature on this topic, elasticity problems in higher geometrical dimensions have almost never been considered. This work establishes the connection between port-Hamiltonian distributed systems and elasticity problems. The originality resides in three major contributions. First, the novel pH formulation of plate models and coupled thermoelastic phenomena is presented. The use of tensor calculus is mandatory for continuum mechanical models and the inclusion of tensor variables is necessary to obtain an intrinsic, i.e. coordinate free, and equivalent pH description. Second, a finite element based discretization technique, capable of preserving the structure of the infinite-dimensional problem at a discrete level, is developed and validated. The discretization of elasticity problems in port-Hamiltonian form requires the use of non-standard finite elements. Nevertheless, the numerical implementation is performed thanks to well-established open-source libraries, providing external users with an easy to use tool for simulating flexible systems in pH form. Third, flexible multibody systems are recast in pH form by making use of a floating frame description valid under small deformations assumptions. This reformulation include all kinds of linear elastic models and exploits the intrinsic modularity of pH systems.

Résumé

Cette thèse vise à étendre l'approche port-hamiltonienne (pH) à la mécanique des milieux continus dans des dimensions géométriques plus élevées (en particulier on se focalise sur la dimension deux). Le formalisme pH, avec son fort caractère multiphysique, représente un cadre unifié pour modéliser, analyser et contrôler les systèmes de dimension finie et infinie. Malgré l'abondante littérature sur ce sujet, les problèmes d'élasticité en deux ou trois dimensions géométriques n'ont presque jamais été considérés. Dans ce travail de thèse la connexion entre problèmes d'élasticité et systèmes distribués port-Hamiltoniens est établie. L'originalité apportée réside dans trois contributions majeures. Tout d'abord, la nouvelle formulation pH des modèles de plaques et des phénomènes thermoélastiques couplés est présentée. L'utilisation du calcul tensoriel est obligatoire pour modéliser les milieux continus et l'introduction de variables tensorielles est nécessaire pour obtenir une description pH équivalente qui soit intrinsèque, c'est-à-dire indépendante des coordonnées choisies. Deuxièmement, une technique de discrétisation basée sur les éléments finis et capable de préserver la structure du problème de la dimension infinie au niveau discret est développée et validée. La discrétisation des problèmes d'élasticité écrits en forme port-Hamiltonienne nécessite l'utilisation d'éléments finis non standard. Néanmoins, l'implémentation numérique est réalisée grâce à des bibliothèques open source bien établies, fournissant aux utilisateurs externes un outil facile à utiliser pour simuler des systèmes flexibles sous forme pH. Troisièmement, une nouvelle formulation pH de la dynamique multicorps flexible est dérivée. Cette reformulation, valable sous de petites hypothèses de déformations, inclut toutes sortes de modèles élastiques linéaires et exploite la modularité intrinsèque des systèmes pH.

Aknowledgements

Remerciements

Ringraziamenti

Contents

AI	bstract	1
Ré	ésumé	iii
Al	knowledgements	v
Re	emerciements	vii
Ri	ingraziamenti	ix
Li	ist of Acronyms	xix
Ι	Introduction and state of the art	1
1	Introduction	3
	1.1 Motivation and context	. 3
	1.2 Overview of chapters	. 3
	1.3 Contributions	. 3
2	Literature review	5
	2.1 Port-Hamiltonian distributed systems	. 5
	2.2 Structure-preserving discretization	. 5
	2.3 Mixed finite element for elasticity	. 5
	2.4 Multibody dynamics	. 5
II	Port-Hamiltonian elasticity and thermoelasticity	7
3	Elasticity in port-Hamiltonian form	9

	3.1	Contii	nuum mechanics	9
		3.1.1	Non linear formulation of elasticity	10
		3.1.2	The linear elastodynamics problem	11
	3.2	Port-F	Hamiltonian systems	13
		3.2.1	The Stokes-Dirac structure	13
		3.2.2	Distributed port-Hamiltonian systems	18
	3.3	Port-H	Hamiltonian formulation of linear elasticity	22
		3.3.1	Energy and co-energy variables	22
		3.3.2	Final system and associated Stokes-Dirac structure	24
	3.4	Concl	usion	28
4	Por	t-Ham	iltonian plate (and shell?) theory	29
	4.1	First	order plate theory	30
		4.1.1	Mindlin-Reissner model	31
		4.1.2	Kirchhoff-Love model	33
	4.2	Port-I	Hamiltonian formulation of plates	34
		4.2.1	Port-Hamiltonian Mindlin plate	35
		4.2.2	Port-Hamiltonian Kirchhoff plate	39
	4.3	Lamin	nated anisotropic case	39
		4.3.1	Thin plate assumption	39
		4.3.2	Thick plate assumption	39
	4.4	The m	nembrane shell problem ?	39
5	The	rmoel	asticity in port-Hamiltonian form	41
	5.1	Linear	coupled thermoelasticity	41
	5.2	Therm	noelastic Euler-Bernoulli beam	41
	5.3	Thern	noelastic Kirchhoff plate	41

Η	I F	inite element structure preserving discretization	43				
6	6 Partitioned finite element method 4						
	6.1 General procedure						
		6.1.1 Non-linear case	45				
		6.1.2 Linear case	45				
		6.1.3 Examples	45				
	6.2	Connection with mixed finite elements	45				
	6.3	Inhomogeneous boundary conditions	45				
		6.3.1 Solution using Lagrange multipliers	45				
		6.3.2 Virtual domain decomposition	45				
7	Cor	nvergence numerical study	47				
	7.1	Plate problems using known mixed finite elements	47				
	7.2	Non-standard discretization of flexible structures	47				
8	Nui	merical applications	49				
	8.1	Boundary stabilization	49				
	8.2	Thermoelastic wave propagation	49				
	8.3	Mixed boundary conditions	49				
		8.3.1 Trajectory tracking of a thin beam	49				
		8.3.2 Vibroacoustic under mixed boundary conditions	49				
	8.4	Modal analysis of plates	49				
IX	7 P	Port-Hamiltonian flexible multibody dynamics	51				
9	Mo	dular multibody systems in port-Hamiltonian form	53				
	9.1	Reminder of the rigid case	53				
	9.2	Flexible floating body	53				

	9.3	Modular construction of multibody systems	53
10	Vali	dation	55
	10.1	Beam systems	55
		10.1.1 Modal analysis of a flexible mechanism	55
		10.1.2 Non-linear crank slider	55
		10.1.3 Hinged beam	55
	10.2	Plate systems	55
		10.2.1 Boundary interconnection with a rigid element	55
		10.2.2 Actuated plate	55
Cc	nclu	sions and future directions	59
A	Mat	hematical tools	61
	A.1	Differential operators	61
В	Fini	te elements gallery	63
C	Imp	lementation using FEniCS and Firedrake	65
Bi	bliog	raphy	67

List of Figures

3.1	A 2D continuum with Neumann and Dirichlet boundary conditions	26
4.1	Kinematic assumption for the Kirchhoff plate	33
4.2	Cauchy law for momenta and forces at the boundary	36
4.3	Reference frames and notations	36

List of Tables

List of Acronyms

DAE Differential-Algebraic Equation

 $\mathbf{dpHs} \qquad \qquad \textit{distributed port-Hamiltonian systems}$

FEM Finite Element Method

 ${\bf IDA\text{\bf -PBC}} \quad \textit{Interconnection and Damping Assignment Passivity Based Control}$

 $\textbf{PDE} \hspace{1cm} \textit{Partial Differential Equation}$

PFEM Partitioned Finite Element Method

 ${f pH}$ port-Hamiltonian

 $\mathbf{pHs} \hspace{1.5cm} \textit{port-Hamiltonian systems}$

 $\mathbf{pHDAE} \qquad \textit{port-Hamiltonian Descriptor System}$

Part I

Introduction and state of the art

CHAPTER 1

Introduction

Je n'ai cherché de rien prouver, mais de bien peindre et d'éclairer bien ma peinture.

André Gide

Préface de L'Immoraliste

Contents

1.1	Motivation and context	3
1.2	Overview of chapters	3
1.3	Contributions	3

- 1.1 Motivation and context
- 1.2 Overview of chapters
- 1.3 Contributions

Literature review

Whereof one cannot speak, thereof one must be silent.

Ludwig Wittgenstein Tractatus Logico-Philosophicus

2.1 Port-Hamiltonian distributed systems

For 1D linear PH systems with a generalized skew-adjoint system operator, [LGZM05] gives conditions on the assignment of boundary inputs and outputs for the system operator to generate a contraction semigroup. The latter is instrumental to show well-posedness of a linear PH system, see [JZ12]. Essentially, at most half the number of boundary port variables can be imposed as control inputs for a well-posed PH system in 1D.

- 2.2 Structure-preserving discretization
- 2.3 Mixed finite element for elasticity
- 2.4 Multibody dynamics

Part II

Port-Hamiltonian elasticity and thermoelasticity

Elasticity in port-Hamiltonian form

I try not to break the rules but merely to test their elasticity.

Bill Veeck

Contents

3.1 Con	tinuum mechanics
3.1.1	Non linear formulation of elasticity
3.1.2	The linear elastodynamics problem
3.2 Port	t-Hamiltonian systems
3.2.1	The Stokes-Dirac structure
3.2.2	Distributed port-Hamiltonian systems
3.3 Port	t-Hamiltonian formulation of linear elasticity
3.3.1	Energy and co-energy variables
3.3.2	Final system and associated Stokes-Dirac structure
3.4 Con	clusion

Ontinuum mechanics is the mathematical description of how materials behave kinematically under external excitations. In this framework, the microscopic structure of a material body is neglected and a macroscopic viewpoint, that describes the body as a continuum, is adopted. This leads to a PDE based model. In this chapter, the general linear elastodynamics problem is recalled. A suitable port-Hamiltonian formulation is then derived.

3.1 Continuum mechanics

In this section, the main concepts behind a deformable continuum are briefly recalled following [Lee12]. For a detailed discussion on this topic, the reader may consult [Abe12, LPKL12].

3.1.1 Non linear formulation of elasticity

The bounded region of \mathbb{R}^d (d=2,3) occupied by a solid is called configuration. The reference configuration Ω is the domain that a bodies occupies at the initial state. To describe how the body deforms in time the deformation map $\Phi: \Omega \times [0,T_f] \to \Omega' \subset \mathbb{R}^d$ is introduced. This map is differentiable and orientation preserving and the image of Ω under $\Phi(\cdot,t) \ \forall t \in [0,T_f]$ is called the deformed configuration Ω_t . Given a specific point in the reference frame its image is denoted by $\mathbf{y} = \Phi(\mathbf{x},t)$. The gradient of the deformation map is called the deformation gradient $\mathbf{F} := \nabla_x \Phi = \frac{\partial \mathbf{y}}{\partial \mathbf{x}}$. A rigid deformation maps a point $\mathbf{x} \in \Omega \to \mathbf{A}(t)\mathbf{x} + \mathbf{b}(t)$, where $\mathbf{A}(t)$ is an orthogonal matrix and $\mathbf{b}(t)$ an \mathbb{R}^d vector. A differentiable deformation map Φ is a rigid deformation iff $\mathbf{F}^{\top}\mathbf{F} - \mathbf{I} = 0$, where \mathbf{I} is the identity in $\mathbb{R}^{d \times d}$ (for the proof see [Cia88], page 44). For this reason, a suitable measure of the deformation is the Green-St. Venant strain tensor $\frac{1}{2}(\mathbf{F}^{\top}\mathbf{F} - \mathbf{I})$.

A quantity of interest is the displacement $\boldsymbol{u}: \Omega \times [0, T_f] \to \mathbb{R}^d$ with respect to the reference configuration. It is defined as $\boldsymbol{u}(\boldsymbol{x},t) = \boldsymbol{\Phi}(\boldsymbol{x},t) - \boldsymbol{x}$. The gradient of the displacement verifies grad $\boldsymbol{u} = \boldsymbol{F} - \boldsymbol{I}$. The strain tensor can now be written in terms of the displacement

$$\begin{split} \frac{1}{2}(\boldsymbol{F}^{\top}\boldsymbol{F} - \boldsymbol{I}) &= \frac{1}{2} \left[(\nabla_{x}\boldsymbol{u} + \boldsymbol{I})^{\top} (\nabla_{x}\boldsymbol{u} + \boldsymbol{I}) - \boldsymbol{I} \right] \\ &= \frac{1}{2} \left[\nabla_{x}\boldsymbol{u} + (\nabla_{x}\boldsymbol{u})^{\top} + (\nabla_{x}\boldsymbol{u})^{\top} (\nabla_{x}\boldsymbol{u}) \right], \end{split}$$

or in components

$$\frac{1}{2}(F_{ik}^{\top}F_{kj} - I_{ij}) = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} + \frac{\partial u_i}{\partial x_j} \frac{\partial u_j}{\partial x_i} \right).$$

To state the balance laws the actual deformed configuration is considered. The linear and angular momentum in a subdomain $\omega_t \subset \Omega_t$ are computed as

$$\int_{\omega_t} \rho \, \boldsymbol{v} \, d\omega_t, \qquad \int_{\omega_t} \rho \, \boldsymbol{y} \times \boldsymbol{v} \, d\omega,$$

where ρ is the mass density and the velocity $\mathbf{v} = \frac{D\mathbf{u}}{Dt}(\mathbf{y}, t)$ is material time derivative of the displacement (see [Abe12, Chapter 1]). Let $\omega_{t,1}$, $\omega_{t,2}$ be two subregions in a deformed continuum Ω_t with contacting surface S_{12} . There is a force acting on this surface for a continuum that is called stress vector or traction. If \mathbf{n} is the outward normal at \mathbf{y} on S_{12} with respect to $\omega_{t,1}$, then the surface force that $\omega_{t,1}$ exerts on $\omega_{t,2}$ is denoted by $\mathbf{t}(\mathbf{y},\mathbf{n}) \in \mathbb{R}^d$. By the Newton third law, the surface force that $\omega_{t,2}$ applies on $\omega_{t,1}$ is given by $\mathbf{t}(\mathbf{y},-\mathbf{n}) = -\mathbf{t}(\mathbf{y},\mathbf{n})$. It is assumed that the linear and angular momentum balance hold for any subregion $\omega \in \Omega_t$

$$\frac{d}{dt} \int_{\omega_t} \rho \boldsymbol{v} \, d\omega_t = \int_{\partial \omega_t} \boldsymbol{t}(\boldsymbol{y}, \boldsymbol{n}) \, dS + \int_{\omega_t} \boldsymbol{f} \, d\omega_t,$$

$$\frac{d}{dt} \int_{\omega_t} \rho \boldsymbol{y} \times \boldsymbol{v} \, d\omega_t = \int_{\partial \omega_t} \boldsymbol{y} \times \boldsymbol{t}(\boldsymbol{y}, \boldsymbol{n}) \, dS + \int_{\omega_t} \boldsymbol{y} \times \boldsymbol{f} \, d\omega_t,$$

where $\partial \omega_t$ stands for the boundary surface of the subdomain ω_t , \boldsymbol{n} is the outward normal to the surface $\partial \omega_t$ and \boldsymbol{f} represents is an exterior body force. The following theorem characterizes the stress vector (see [Cia88, Chapter 2]):

Theorem 1 (Cauchy's theorem)

If the linear and angular momenta balance hold, then there exists a matrix-valued function Σ from Ω_t to \mathbb{S} such that $\mathbf{t}(\mathbf{y}, \mathbf{n}) = \Sigma(\mathbf{y})\mathbf{n}$, $\forall \mathbf{y} \in \Omega_t$ where the right-hand side is the matrix-vector multiplication.

The set $\mathbb{S} = \mathbb{R}^{d \times d}_{\text{sym}}$ denotes the field of symmetric matrices in $\mathbb{R}^{d \times d}$. The symmetry of the stress tensor Σ is due to the balance of angular momentum. The divergence theorem can then be applied

$$\int_{\partial \omega} \mathbf{\Sigma} \, \mathbf{n} \, dS = \int_{\omega} \nabla_y \cdot \mathbf{\Sigma} \, d\omega,$$

where ∇_y is the tensor divergence with respect to the deformed configuration, $\nabla_y \cdot \mathbf{\Sigma} = \sum_{i=1}^d \frac{\partial \Sigma_{ij}}{\partial y_i}$. Because the considered subregion ω is arbitrary, using the linear balance momentum and the conservation of mass the following PDE is found

$$\rho \frac{D \boldsymbol{v}}{D t} - \nabla_y \cdot \boldsymbol{\Sigma} = \boldsymbol{f}, \qquad \boldsymbol{y} \in \Omega_t.$$

This equation is written with respect to the deformed configuration Ω_t . For a detailed derivation of this equation the reader may consult [Abe12, Chapter 4]. To obtain a closed formulation, the constitutive law, namely the link between Σ and the strain tensor $\frac{1}{2}(\mathbf{F}^{\top}\mathbf{F} - \mathbf{I})$, has to be introduced. In the next such relation will be investigated for the case of linear elasticity.

3.1.2 The linear elastodynamics problem

Whenever deformations are small, $\|\nabla_x \boldsymbol{u}\| \ll 1$, then the reference and deformed configurations are almost indistinguishable $\boldsymbol{y} = \boldsymbol{x} + \boldsymbol{u} = \boldsymbol{x} + O(\nabla_x \boldsymbol{u}) \approx \boldsymbol{x}$. This allows to write the linear momentum balance in the reference configuration

$$\rho \frac{\partial \boldsymbol{v}}{\partial t}(\boldsymbol{x}, \boldsymbol{t}) - \text{Div}(\boldsymbol{\Sigma}(\boldsymbol{x}, t)) = \boldsymbol{f}, \qquad \boldsymbol{x} \in \Omega.$$

The material derivative simplifies to a partial one. The operator Div is the divergence of a tensor field with respect to the reference configuration

$$\operatorname{Div}(\mathbf{\Sigma}(\boldsymbol{x},t)) = \nabla_x \cdot \mathbf{\Sigma}(\boldsymbol{x},t) = \left(\sum_{i=1}^d \frac{\partial \Sigma_{ij}}{\partial x_i}\right)_{1 \leq i \leq d}.$$

Furthermore, the non-linear terms in the Green-St. Venant strain tensor can be dropped

$$\frac{1}{2}(\boldsymbol{F}^{\top}\boldsymbol{F} - \boldsymbol{I}) = \frac{1}{2}\left[\nabla_{x}\boldsymbol{u} + (\nabla_{x}\boldsymbol{u})^{\top} + (\nabla_{x}\boldsymbol{u})^{\top}(\nabla_{x}\boldsymbol{u})\right] \approx \frac{1}{2}\left[\nabla_{x}\boldsymbol{u} + (\nabla_{x}\boldsymbol{u})^{\top}\right].$$

The linearized strain tensor (also called infinitesimal strain tensor) is the symmetric gradient of the displacement

$$\boldsymbol{arepsilon} := \operatorname{Grad} \boldsymbol{u}, \qquad ext{where} \qquad \operatorname{Grad} \boldsymbol{u} = rac{1}{2} \left[
abla_x \boldsymbol{u} + (
abla_x \boldsymbol{u})^{ op}
ight].$$

To obtain a closed system of equations, it is now necessary to characterize the relation between stress and strain. This relation is normally called *constitutive law*. In the following, the particular case of elastic materials is considered. These are able to resist distorting excitations and return to its original size and shape when these are removed. For this class of materials, the stress tensor is solely determined by the deformed configuration at a given time (Hooke's law)

$$\Sigma(x) = \mathcal{D}(x) \, \varepsilon(u(x)).$$

The stiffness tensor or elasticity tensor $\mathcal{D}: \mathbb{S} \to \mathbb{S}$ is a rank 4 tensor that is symmetric positive definite and uniformly bounded above and below. Because of symmetry, its components satisfy

$$\mathcal{D}_{ijkl} = \mathcal{D}_{jikl} = \mathcal{D}_{klij}$$
.

From the uniform boundedness of \mathcal{D} , the map $\mathcal{D}: L^2(\Omega; \mathbb{S}) \to L^2(\Omega; \mathbb{S})$ is a symmetric positive definite bounded linear operator $(L^2(\Omega; \mathbb{S}))$ is the space of square integrable symmetric tensor-valued functions). The compliance tensor \mathcal{C} is defined by $\mathcal{C} = \mathcal{D}^{-1}$. Thus $\mathcal{C}: \mathbb{S} \to \mathbb{S}$ is as well symmetric positive definite and uniformly bounded above and below. An isotropic elastic medium has the same kinematic properties in any direction and at each point. If an elastic medium is isotropic, then the stiffness and compliance tensors assume the form

$$\mathcal{D}(\cdot) = 2\mu(\cdot) + \lambda \operatorname{Tr}(\cdot) \mathbf{I}, \qquad \mathcal{C}(\cdot) = \frac{1}{2\mu} \left[(\cdot) - \frac{\lambda}{2\mu + d\lambda} \operatorname{Tr}(\cdot) \mathbf{I} \right], \qquad d = \{2, 3\}, \tag{3.1}$$

where Tr is the trace operator and the positive scalar functions μ, λ , defined on Ω , are called the Lamé coefficients. In engineering applications it is easier to compute experimentally two other parameters: the Young modulus E and Poisson's ratio ν . Those are expressed in terms of the Lamé coefficients as

$$\nu = \frac{\lambda}{2(\lambda + \mu)}, \qquad E = \frac{\mu(3\lambda + 2\mu)}{\lambda + \mu}, \tag{3.2}$$

and conversely

$$\lambda = \frac{E\nu}{(1+\nu)(1-2\nu)}, \qquad \mu = \frac{E}{2(1+\nu)}.$$
 (3.3)

The stiffness and compliant tensor assume the expressions

$$\mathbf{\mathcal{D}}(\cdot) = \frac{E}{1+\nu} \left[(\cdot) + \frac{\nu}{1-2\nu} \operatorname{Tr}(\cdot) \mathbf{I} \right], \qquad \mathbf{\mathcal{C}}(\cdot) = \frac{1+\nu}{E} \left[(\cdot) - \frac{\nu}{1+\nu(d-2)} \operatorname{Tr}(\cdot) \mathbf{I} \right]. \tag{3.4}$$

The linear elastodynamics problem is formulated through a vector-valued PDE

$$\rho \frac{\partial^2 \boldsymbol{u}}{\partial t^2} - \text{Div}(\boldsymbol{\mathcal{D}} \text{Grad } \boldsymbol{u}) = \boldsymbol{f}.$$
 (3.5)

The classical elastodynamics problem is expressed in terms of the displacement as the unknown. This PDE goes together with appropriate boundary conditions that will be specified in 3.3.

3.2 Port-Hamiltonian systems

Before introducing the pH formulation of the elastodynamics problem, the main concept behind this formalism are recalled. First, the concept of Stokes-Dirac structure is presented. This is normally introduced by making use of a differential geometry approach. The interested reader may consult [Kot19, Chapter 2]. Despite being really insightful in terms of geometrical structure, this approach does not encompass the case of higher-order differential operators. An extension in this sense is still an open question. Since bending problems in elasticity introduce higher-order differential operators, the language of PDE will be privileged over the one of differential forms. To have the most suitable definition of Stokes-Dirac structure for flexible systems, the approach adopted in [MvdSM05] is here recovered.

Second, distributed port-Hamiltonian systems are introduced, in connection with the underlying Stokes-Dirac structure. PHs as boundary control systems have been analyzed deeply in one geometrical dimension [JZ12, LGZM05]. Here, a more general definition is given. The complete characterization of pH in arbitrary dimension is still an open research field. Two notable exceptions ([KZ15, Skr19]) provide partial answers to this problem. The first demonstrate the well-posedness of the linear wave equation in arbitrary geometrical dimensions. The second generalizes this result to treat the case of generic first order linear pHs in arbitrary geometrical dimensions.

3.2.1 The Stokes-Dirac structure

In the section the concept of Stokes-Dirac structure for distributed, i.e. infinite-dimensional, pHs is introduced. First, the finite-dimensional case is considered. Then, to introduce the infinite-dimensional extension of Dirac structure, namely the Stokes-Dirac structure, the differential operators that come into play are characterized.

3.2.1.1 Dirac Structures

Consider a finite dimensional space F over the field \mathbb{R} and $E \equiv F'$ its dual, i.e. the space of linear operator $\mathbf{e}: F \to \mathbb{R}$. The elements of F are called flows, while the elements of E are called efforts. Those are port variables and their combination gives the power flowing inside the system. The space $B = F \times E$ is called the bond space of power variables. Therefore the power is defined as $\langle \mathbf{e}, \mathbf{f} \rangle = \mathbf{e}(\mathbf{f})$, where $\langle \mathbf{e}, \mathbf{f} \rangle$ is the dual product between \mathbf{f} and \mathbf{e} .

Definition 1 ([Cou90], Def. 1.1.1)

Given the finite-dimensional space F and its dual E with respect to the inner product $\langle \cdot, \cdot \rangle$: $F \times E \to \mathbb{R}$, define the symmetric bilinear form:

$$\langle \langle (\mathbf{f}_1, \mathbf{e}_1), (\mathbf{f}_2, \mathbf{e}_2) \rangle \rangle := \langle \mathbf{e}_1, \mathbf{f}_2 \rangle + \langle \mathbf{e}_2, \mathbf{f}_1 \rangle, \quad where \quad (\mathbf{f}_i, \mathbf{e}_i) \in B, \ i = 1, 2$$
 (3.6)

A Dirac structure on $B:=F\times E$ is a subspace $D\subset B$, which is maximally isotropic under $\langle\langle\cdot,\cdot\rangle\rangle$. Equivalently, a Dirac structure on $B:=F\times E$ is a subspace $D\subset B$ which equals its orthogonal complement with respect to $\langle\langle\cdot,\cdot\rangle\rangle:D=D^{\perp}$.

This definition can be extended to consider distributed forces and dissipation [Vil07].

Proposition 1

Consider the space of power variables $F \times E$ and let X denote an n-dimensional space, the space of energy variables. Suppose that $F := (F_s, F_e)$ and that $E := (E_s, E_e)$, with $\dim F_s = \dim E_s = n$ and $\dim F_e = \dim E_e = m$. Moreover, let $\mathbf{J}(\mathbf{x})$ denote a skew-symmetric matrix of dimension n and $\mathbf{B}(\mathbf{x})$ a matrix of dimension $n \times m$. Then, the set

$$D := \left\{ (\mathbf{f}_s, \mathbf{f}_e, \mathbf{e}_s, \mathbf{e}_e) \in F \times E | \quad \mathbf{f}_s = -\mathbf{J}(\mathbf{x})\mathbf{e}_s - \mathbf{B}(\mathbf{x})\mathbf{f}_e, \ \mathbf{e}_e = \mathbf{B}(\mathbf{x})^{\mathsf{T}}\mathbf{e}_s \right\}$$
(3.7)

is a Dirac structure.

3.2.1.2 Finite-dimensional PHs

Consider the time-invariant dynamical system:

$$\begin{cases} \dot{\mathbf{x}} &= \mathbf{J}(\mathbf{x}) \nabla H(\mathbf{x}) + \mathbf{B}(\mathbf{x}) \mathbf{u}, \\ \mathbf{y} &= \mathbf{B}(\mathbf{x})^{\top} \nabla H(\mathbf{x}), \end{cases}$$
(3.8)

where $H(\mathbf{x}): X \to \mathbb{R}$, the Hamiltonian, is a real-valued function bounded from below. Such a system is called port-Hamiltonian, as it arises from the Hamiltonian modelling of a physical system and it interacts with the environment through the input \mathbf{u} , included in the formulation. The connection with the concept of Dirac structure is achieved by considering the following port behavior:

$$\mathbf{f}_s = -\dot{\mathbf{x}}, \qquad \mathbf{e}_s = \nabla H(\mathbf{x}),$$

 $\mathbf{f}_e = \mathbf{u}, \qquad \mathbf{e}_e = \mathbf{y}.$ (3.9)

With this choice of the port variables system (3.8) defines, by Proposition 1, a Dirac structure. Dissipation and distributed forces can be included and the corresponding system defines an extended Dirac structure, once the proper port variables have been introduced.

3.2.1.3 Constant matrix differential operators

Let Ω denote a compact subset of \mathbb{R}^d representing the spatial domain of the distributed parameter system. Then, let $U = C^{\infty}(\Omega, \mathbb{R}^{q_u})$ and $V = C^{\infty}(\Omega, \mathbb{R}^{q_v})$ denote the sets of smooth functions from Ω to \mathbb{R}^{q_u} and \mathbb{R}^{q_v} respectively.

Definition 2

A constant matrix differential operator of order n is a map $\mathcal{L}: U \to V$ such that, given $\mathbf{u} = (u_1, \dots, u_{q_u}) \in U$ and $\mathbf{v} = (v_1, \dots, v_{q_v}) \in V$:

$$v = \mathcal{L}u \iff v := \sum_{|\alpha|=0}^{n} P_{\alpha} \partial^{\alpha} u,$$
 (3.10)

where $\alpha := (\alpha_1, \dots, \alpha_d)$ is a multi-index of order $|\alpha| := \sum_{i=1}^d \alpha_i$, P_{α} is a set of constant real $q_v \times q_u$ matrices and $\partial^{\alpha} := \partial_{x_1}^{\alpha_1} \dots \partial_{x_d}^{\alpha_d}$ is a differential operator of order $|\alpha|$ resulting from a combination of spatial derivatives.

The following definition, instrumental for the case of dpHs, is a simplified version of (6).

Definition 3

Consider the constant matrix differential operator (3.10). Its formal adjoint is the map \mathcal{L}^* from V to U such that:

$$\boldsymbol{u} = \mathcal{L}^* \boldsymbol{v} \iff \boldsymbol{u} := \sum_{|\alpha|=0}^n (-1)^{|\alpha|} \boldsymbol{P}_{\alpha}^{\top} \partial^{\alpha} \boldsymbol{v}.$$
 (3.11)

Remark 1 (Differences between adjoint and formal adjoint)

The definition of formal adjoint is such that the integration by parts formula is respected

$$\int_{\Omega} \boldsymbol{a} \cdot (\mathcal{L}\boldsymbol{b}) \, d\Omega = \int_{\Omega} (\mathcal{L}^*\boldsymbol{a}) \cdot \boldsymbol{b} \, d\Omega,$$

where $\mathbf{a} \in C_0^{\infty}(\Omega, \mathbb{R}^{q_u})$, $\mathbf{b} \in C_0^{\infty}(\Omega, \mathbb{R}^{q_v})$ are smooth functions with compact support. This corresponds to the adjoint definition for an operator between L^2 spaces of square integrable functions

$$\langle oldsymbol{a}, \mathcal{L} oldsymbol{b}
angle_{L^2(\Omega, \mathbb{R}^{q_v})} = \langle \mathcal{L}^* oldsymbol{a}, oldsymbol{b}
angle_{L^2(\Omega, \mathbb{R}^{q_u})} \,.$$

That means that, contrarily to the adjoint of an operator, the formal adjoint definition does not regard the actual domain of the operator nor the boundary conditions. For example, the differential operators Div, Grad are unbounded in the L^2 topology. Whenever unbounded operators are considered, it is important to define their domain. To avoid the need of specifying domains, the notion of formal adjoint can be evoked. The formal adjoint respects the integration by parts formula and is defined only for sufficiently smooth functions with compact support. In this sense Div, Grad are formally skew-adjoint, since for smooth functions with

compact support, it holds

$$\langle \boldsymbol{Y}, \operatorname{Grad}(\boldsymbol{x}) \rangle_{L^2(\Omega, \mathbb{R}^{3 \times 3}_{sym})} = -\langle \operatorname{Div}(\boldsymbol{Y}), \, \boldsymbol{x} \rangle_{L^2(\Omega, \mathbb{R}^3)},$$

for $\mathbf{Y} \in C_0^{\infty}(\Omega, \mathbb{R}_{sym}^{3 \times 3})$, $\mathbf{x} \in C_0^{\infty}(\Omega, \mathbb{R}^3)$ (I.B.P. stands for integration by parts). The definition of the domain of the operators, that requires the knowledge of the boundary conditions, has not been specified.

Definition 4

Let $W = C^{\infty}(\Omega, \mathbb{R}^q)$ be the space of vector-valued smooth functions and $\mathcal{J}: W \to W$ a constant matrix differential operator. Then, \mathcal{J} is formally skew-adjoint (or skew-symmetric) if and only if $\mathcal{J} = -\mathcal{J}^*$. This corresponds to the algebraic condition:

$$\boldsymbol{P}_{\alpha} = (-1)^{|\alpha|+1} \boldsymbol{P}_{\alpha}^{\top}, \quad \forall \alpha.$$
 (3.12)

An important relation between a differential operator and its adjoint is expressed by the following theorem.

Theorem 2 ([RR04], Chapter 9, theorem 9.37)

Consider a matrix differential operator \mathcal{L} and let \mathcal{L}^* denote its formal adjoint. Then, for each function $\mathbf{u} \in U$ and $\mathbf{v} \in V$:

$$\int_{\Omega} \left(\boldsymbol{v}^{\top} \mathcal{L} \boldsymbol{u} - \boldsymbol{u}^{\top} \mathcal{L}^* \boldsymbol{v} \right) d\Omega = \int_{\partial \Omega} \widetilde{\mathcal{B}}_{\mathcal{L}}(\boldsymbol{u}, \boldsymbol{v}) dA, \tag{3.13}$$

where $\widetilde{\mathcal{B}}_{\mathcal{L}}$ is a differential operator induced on the boundary $\partial\Omega$ by \mathcal{L} , or equivalently:

$$\boldsymbol{v}^{\top} \mathcal{L} \boldsymbol{u} - \boldsymbol{u}^{\top} \mathcal{L}^* \boldsymbol{v} = \operatorname{div} \widetilde{\mathcal{B}}_{\mathcal{L}}(\boldsymbol{u}, \boldsymbol{v}). \tag{3.14}$$

It is important to note that $\widetilde{\mathcal{B}}_{\mathcal{L}}$ is a constant differential operator. The quantity $\widetilde{\mathcal{B}}_{\mathcal{L}}(u, v)$ is a constant linear combination of the functions u and v together with their spatial derivatives up to a certain order and depending on \mathcal{L} .

Corollary 1

Consider a skew-symmetric differential operator \mathcal{J} . Then, for each function $\mathbf{u} \in U$ and $\mathbf{v} \in V$ with $q_u = q_v = q$:

$$\int_{\Omega} \left(\boldsymbol{v}^{\top} \mathcal{J} \boldsymbol{u} + \boldsymbol{u}^{\top} \mathcal{J} \boldsymbol{v} \right) d\Omega = \int_{\partial \Omega} \widetilde{\mathcal{B}}_{\mathcal{J}}(\boldsymbol{u}, \boldsymbol{v}) dA, \tag{3.15}$$

where $\widetilde{\mathcal{B}}_{\mathcal{J}}$ is a symmetric differential operator on $\partial\Omega$ depending on the differential operator \mathcal{J} .

3.2.1.4 Constant Stokes-Dirac structures

Following [MvdSM05], let F denote the space of flows, i.e. the space of smooth functions from the compact set $\Omega \subset \mathbb{R}^d$ to \mathbb{R}^q . For simplicity assume that the space of efforts is $E \equiv F$

(generally speaking these spaces are Hilbert spaces linked by duality, as in [Vil07]). Given $\mathbf{f} = (f_1, \dots, f_q) \in F$ and $\mathbf{e} = (e_1, \dots, e_q) \in E$. Let $\mathbf{z} = \mathcal{B}_{\partial}(\mathbf{e})$ denote the boundary terms, where \mathcal{B}_{∂} provides the restriction on $\partial\Omega$ of the effort e and of its spatial derivatives of proper order. The associated boundary space is $Z := \{\mathbf{z} | \mathbf{z} = \mathcal{B}_{\partial}(\mathbf{e})\}$. Then, it holds

$$\int_{\partial\Omega} \widetilde{\mathcal{B}}_{\mathcal{J}}(\boldsymbol{e}_1, \boldsymbol{e}_2) \, \mathrm{d}S = \int_{\partial\Omega} \mathcal{B}_{\mathcal{J}}(\boldsymbol{z}_1, \boldsymbol{z}_2) \, \mathrm{d}S, \quad \text{with} \quad \widetilde{\mathcal{B}}_{\mathcal{J}}(\cdot, \cdot) = \mathcal{B}_{\mathcal{J}}(\mathcal{B}_{\partial}(\cdot), \, \mathcal{B}_{\partial}(\cdot)). \tag{3.16}$$

The following theorem characterizes Stokes-Dirac structures for pHs of arbitrary geometrical dimension and differential order.

Proposition 2 (Proposition 3.3 [MvdSM05])

Consider the space of power variables $B = F \times E \times Z$. The linear subspace $D \subset B$

$$D_{\mathcal{J}} = \{ (\boldsymbol{f}, \boldsymbol{e}, \boldsymbol{z}) \in F \times E \times Z \mid \boldsymbol{f} = -\mathcal{J}\boldsymbol{e}, \ \boldsymbol{z} = \mathcal{B}_{\partial}(\boldsymbol{e}) \},$$
(3.17)

is a Stokes-Dirac structure on $\mathcal B$ with respect to the pairing

$$\left\langle \left\langle \left(\boldsymbol{f}^{1}, \boldsymbol{e}^{1}, \boldsymbol{z}^{1} \right), \left(\boldsymbol{f}^{2}, \boldsymbol{e}^{2}, \boldsymbol{z}^{2} \right) \right\rangle \right\rangle := \int_{\Omega} \left(\boldsymbol{e}^{1 \top} \boldsymbol{f}^{2} + \boldsymbol{e}^{2 \top} \boldsymbol{f}^{1} \right) d\Omega + \int_{\partial\Omega} \mathcal{B}_{\mathcal{J}}(\boldsymbol{z}^{1}, \boldsymbol{z}^{2}) dS.$$
 (3.18)

From this proposition, if $(f, e, z) \in D_{\mathcal{J}}$, then $\langle \langle (f, e, z), (f, e, z) \rangle \rangle = 0$, that is

$$\int_{\Omega} \boldsymbol{e}^{\top} \boldsymbol{f} \, d\Omega + \frac{1}{2} \int_{\partial \Omega} \mathcal{B}_{\mathcal{J}}(\boldsymbol{z}, \boldsymbol{z}) \, dS = 0.$$
 (3.19)

This relation expresses the power conservation property of the Stokes–Dirac structure. It states the relation between the variation of internal energy (the integral on the domain Ω) with the power flowing through the boundary (the integral over $\partial\Omega$). Thanks to the power conservation property dpHs always dispose of an associated Stokes Dirac structure. This concept can be extended to consider dissipation or distributed forces. To this aim, it is necessary to include additional ports to account for the power exchange due to these effects (see Theorem 3.4 [MvdSM05]).

Remark 2

The constant Stokes-Dirac structure has been defined in case of smooth vector-valued functions for simplicity. The definition is indeed more general and encompasses the case of more complex functional spaces, in particular the L^2 space of square integrable functions. Linear elasticity for example is defined on a mixed function space of vector- and tensor-valued functions. The constant differential operator may contain intrinsic operators (Div, Grad) as it will be shown in §3.3. The result presented here remains valid provided that the proper pairing is being chosen.

3.2.2 Distributed port-Hamiltonian systems

A distributed conservative port-Hamiltonian system is defined by a set of variables that describes the unknowns, by a formally skew-adjoint differential operator, an energy functional and a set of boundary inputs and corresponding conjugated outputs. Such a system is described by the following set of equations

$$\frac{\partial \boldsymbol{\alpha}}{\partial t} = \mathcal{J}\boldsymbol{e},
\boldsymbol{u}_{\partial} = \mathcal{B}\boldsymbol{e},
\boldsymbol{y}_{\partial} = \mathcal{C}\boldsymbol{e},
\boldsymbol{e} := \frac{\delta H}{\delta \boldsymbol{\alpha}}.$$
(3.20)

The unknowns α are called energy variables in the port-Hamiltonian framework, the formally skew-adjoint operator \mathcal{J} is named interconnection operator (see appendix A, Def. 6 for a precise definition of formal skew adjointness). \mathcal{B}, \mathcal{C} are boundary operator, that provide the boundary input u_{∂} and output y_{∂} . The variational derivative of the Hamiltonian define the so-called coenergy variables e.

Remark 3

It will become clear in this section that the effort variable of the Stokes-Dirac structure are indeed equivalent to the co-energy variables of the pH system. This justifies using the same notation for both.

Definition 5 (Variational derivative, Def. 4.1 in [Olv93])

Consider a functional $H(\alpha)$

$$H(\boldsymbol{\alpha}) = \int_{\Omega} \mathcal{H}(\boldsymbol{\alpha}) \ \mathrm{d}\Omega.$$

Given a variation $\alpha = \bar{\alpha} + \eta \delta \alpha$ the variational derivative $\frac{\delta H}{\delta \alpha}$ is defined as

$$H(\bar{\boldsymbol{\alpha}} + \eta \boldsymbol{\delta \alpha}) = H(\bar{\boldsymbol{\alpha}}) + \eta \int_{\Omega} \frac{\delta H}{\delta \boldsymbol{\alpha}} \cdot \boldsymbol{\delta \alpha} \; \mathrm{d}\Omega + O(\eta^2).$$

Remark 4

If the integrand does not contain derivative of the argument α then the variational derivative is equal to the partial derivative of the Hamiltonian density \mathcal{H}

$$\frac{\delta H}{\delta \alpha} = \frac{\partial \mathcal{H}}{\partial \alpha}.$$

Conservative port-Hamiltonian systems possess a peculiar property. The energy rate is

given by the power due to the boundary ports u_{∂} , y_{∂}

$$\dot{H} = \int_{\Omega} \frac{\delta H}{\delta \alpha} \cdot \frac{\partial \alpha}{\partial t} d\Omega = \langle \delta_{\alpha} H, \partial_{t} \alpha \rangle_{\Omega}, \quad \text{Stokes theorem}
= \int_{\partial \Omega} \mathbf{u}_{\partial} \cdot \mathbf{y}_{\partial} dS = \langle \mathbf{u}_{\partial}, \mathbf{y}_{\partial} \rangle_{\partial \Omega},$$
(3.21)

From the energy rate, the structural power balance is obtained

$$-\langle \delta_{\alpha} H, \partial_{t} \alpha \rangle_{\Omega} + \langle u_{\partial}, y_{\partial} \rangle_{\partial \Omega} = 0$$
 (3.22)

From (3.19), it is clear by identification that $\mathcal{B}_{\mathcal{J}}(z,z) = 2 u_{\partial} \cdot y_{\partial}$. This means that the boundary space can be split into boundary input and output

$$Z := \{ \boldsymbol{z} | \ \boldsymbol{z} = \mathcal{B}_{\partial}(\boldsymbol{e}) = (\boldsymbol{u}_{\partial}, \ \boldsymbol{y}_{\partial}) \}$$

If the flow, effort and boundary variables are chosen to be

$$f := -\partial_t \alpha, \quad e := \delta_{\alpha} H, \quad z := (u_{\partial}, y_{\partial}),$$
 (3.23)

then system (3.20) defines a Stokes Dirac structure by Proposition 2. In this rather informal treatment of dpHs, no rigorous characterization whatsoever has been introduced for operators \mathcal{B} , \mathcal{C} in system (3.20). A formal characterization of these operators has been given in [LGZM05] for pH of generic order only in one geometrical dimensional. In the following examples it will be shown that from the power balance appropriate boundary variables can be defined.

3.2.2.1 Wave equation

Given an in open bounded connected set $\Omega \subset \mathbb{R}^2$ with Lipschitz continuous boundary $\partial\Omega$, the vibrations of a drum can be described by the following model

$$\rho \partial_{tt} w(\boldsymbol{x}, t) = T \Delta w(\boldsymbol{x}, t), \qquad \boldsymbol{x} \in \Omega, \quad \Delta = \text{div grad},$$
 (3.24)

where the scalar fields ρ , T are the mass density and the drum tension respectively. The scalar field $w \in \mathbb{R}$ represents the drum vertical deflection . The Hamiltonian (total energy) reads

$$H = \frac{1}{2} \int_{\Omega} \left\{ \rho(\partial_t w)^2 + \|T\nabla w\|^2 \right\} d\Omega.$$

To recast (3.24) in pH form the energy variables has to be introduced $\boldsymbol{\alpha} = [\alpha_p, \boldsymbol{\alpha}_v]^{\top}$

$$\alpha_p := \rho \partial_t w, \qquad \boldsymbol{\alpha}_v := \nabla w.$$

The Hamiltonian is now a quadratic function of the energy variable

$$H = \frac{1}{2} \int_{\Omega} \left\{ \frac{1}{\rho} \alpha_p^2 + \|T \boldsymbol{\alpha}_v\|^2 \right\} d\Omega.$$

By definition, the co-energy are

$$e_p = \frac{\delta H}{\delta \alpha_p} = \frac{1}{\rho} \alpha_p, \qquad e_v = \frac{\delta H}{\delta \alpha_v} = T \alpha_v.$$

Equation (3.24) can be recast in port-Hamiltonian form

$$\frac{\partial}{\partial t} \begin{pmatrix} \alpha_p \\ \boldsymbol{\alpha}_v \end{pmatrix} = \begin{bmatrix} 0 & \text{div} \\ \text{grad} & \mathbf{0} \end{bmatrix} \begin{pmatrix} e_p \\ \boldsymbol{e}_v \end{pmatrix}.$$

From the energy rate it is possible to identify the boundary variables.

$$\begin{split} \dot{H} &= \int_{\Omega} \left\{ e_{p} \, \partial_{t} \alpha_{p} + \boldsymbol{e}_{v} \cdot \partial_{t} \boldsymbol{\alpha}_{v} \right\} \, \mathrm{d}\Omega, \\ &= \int_{\Omega} \left\{ e_{p} \, \mathrm{div} \, \boldsymbol{e}_{v} + \boldsymbol{e}_{v} \cdot \mathrm{grad} \, e_{p} \right\} \, \mathrm{d}\Omega, \qquad \qquad \text{Chain rule,} \\ &= \int_{\Omega} \mathrm{div}(e_{p} \, \boldsymbol{e}_{v}) \, \mathrm{d}\Omega, \qquad \qquad \text{Stokes theorem,} \\ &= \int_{\partial\Omega} e_{p} \, \boldsymbol{e}_{v} \cdot \boldsymbol{n} \, \mathrm{d}S = \left\langle e_{p}, \boldsymbol{e}_{v} \cdot \boldsymbol{n} \right\rangle_{\partial\Omega}. \end{split}$$

The boundary term $\langle e_p, e_v \rangle_{\partial\Omega}$ pairs two power variables. One is taken as control input, the other plays the role of power-conjugated output. The assignment of these roles to the boundary power variables is referred to as causality of the boundary port [Kot19, Chapter 2]. Under uniform causality assumption, either e_p or e_v can assume the role of (distributed) boundary input, but not both. This leads to two possible selection:

- First case $u_{\partial} = e_p$, $y_{\partial} = e_v \cdot n$. This imposes the variable $e_p := \partial_t w$ as boundary input and corresponds to a classical Dirichlet condition.
- Second case $u_{\partial} = \mathbf{e}_v \cdot \mathbf{n}$, $y_{\partial} = e_p$. This imposes the variable $\mathbf{e}_v \cdot \mathbf{n} := \partial_{\mathbf{n}} w$ as boundary input and corresponds to a classical Neumann condition.

3.2.2.2 2D shallow water equations

This formulation may be found in [CR16, Section 6.2.]. This model describes a thin fluid layer of constant density in hydrostatic balance, like the propagation of a tsunami wave far from shore. Consider an open bounded connected set $\Omega \subset \mathbb{R}^2$ and a constant bed profile. The mass conservation implies

$$\frac{\partial h}{\partial t} + \operatorname{div}(h\boldsymbol{v}) = 0,$$

where $h(x, y, t) \in \mathbb{R}$ is a scalar field representing the fluid height, $\mathbf{v}(x, y, t) \in \mathbb{R}^2$ is the fluid velocity field. The conservation of linear momentum reads

$$\frac{\partial \rho \mathbf{v}}{\partial t} + \rho (\mathbf{v} \cdot \nabla) \mathbf{v} + \nabla (\rho g h) = 0,$$

where ρ is the mass density and g the gravitational acceleration constant. Using the identity

$$(\boldsymbol{v}\cdot\nabla)\boldsymbol{v} = \frac{1}{2}\nabla(\|\boldsymbol{v}\|^2) + (\nabla\times\boldsymbol{v})\times\boldsymbol{v},$$

where $\nabla \times$ is the rotational of \boldsymbol{v} (also denoted curl \boldsymbol{v}), the momentum is rearranged as follows

$$\frac{\partial \rho \boldsymbol{v}}{\partial t} = -\nabla \left(\frac{1}{2}\rho \left\|\boldsymbol{v}\right\|^2 + \rho g h\right) - \rho (\nabla \times \boldsymbol{v}) \times \boldsymbol{v}.$$

The last term on the right side can be rewritten

$$\rho(\nabla \times \boldsymbol{v}) \times \boldsymbol{v} = \begin{bmatrix} 0 & -\rho\omega \\ \rho\omega & 0 \end{bmatrix} \boldsymbol{v},$$

with $\omega = \partial_x v_y - \partial_y v_x$ the local vorticity term. To derive a suitable pH formulation the energy, made up of kinetic and potential contribution, has to be invoked

$$H = \frac{1}{2} \int_{\Omega} \left\{ \rho h \| \boldsymbol{v} \|^2 + \rho g h^2 \right\} d\Omega.$$

As energy variable the fluid height and the linear momentum are chosen

$$\alpha_h = h, \qquad \boldsymbol{\alpha}_v = \rho \boldsymbol{v}.$$

The Hamiltonian is a non separable functional of the energy variables

$$H(\alpha_h, \boldsymbol{\alpha}_v) = \frac{1}{2} \int_{\Omega} \frac{1}{\rho} \alpha_h \|\boldsymbol{\alpha}_v\|^2 + \rho g \alpha_h^2 d\Omega.$$

The co-energy variables are given by

$$e_h := rac{\delta H}{\delta lpha_h} = rac{1}{2
ho} \left\| oldsymbol{lpha}_v
ight\|^2 +
ho g lpha_h, \qquad oldsymbol{e}_v := rac{\delta H}{\delta oldsymbol{lpha}_v} = rac{1}{
ho} lpha_h oldsymbol{lpha}_v.$$

The mass and momentum conservation are then rewritten as follows

$$\frac{\partial}{\partial t} \begin{pmatrix} \alpha_h \\ \boldsymbol{\alpha}_v \end{pmatrix} = \begin{bmatrix} 0 & -\operatorname{div} \\ -\operatorname{grad} & \mathcal{G} \end{bmatrix} \begin{pmatrix} e_h \\ e_v \end{pmatrix},$$

The gyroscopic skew-symmetric term \mathcal{G} introduces a non-linearity as it depends on the energy variables

$$\mathcal{G}(\alpha_h, \boldsymbol{\alpha}_v) = \frac{\omega}{\alpha_h} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \qquad \omega = \partial_x \alpha_{v,y} - \partial_y \alpha_{v,x}.$$

Despite the non-standard formulation, the energy rate provides anyway the boundary variables

$$\begin{split} \dot{H} &= + \int_{\Omega} \left\{ e_h \, \partial_t \alpha_h + \boldsymbol{e}_v \cdot \partial_t \boldsymbol{\alpha}_v \right\} \, \mathrm{d}\Omega, \\ &= - \int_{\Omega} \left\{ e_h \, \mathrm{div} \, \boldsymbol{e}_v + \boldsymbol{e}_v \cdot (\mathrm{grad} \, e_h - \mathcal{G} \boldsymbol{e}_v) \right\} \, \mathrm{d}\Omega, \\ &= - \int_{\Omega} \left\{ e_h \, \mathrm{div} \, \boldsymbol{e}_v + \boldsymbol{e}_v \cdot \mathrm{grad} \, e_h \right\} \, \mathrm{d}\Omega, \quad \text{Chain rule and skew-symmetry of } \mathcal{G} \\ &= - \int_{\Omega} \mathrm{div} (e_h \, \boldsymbol{e}_v) \, \mathrm{d}\Omega, \quad \text{Stokes theorem,} \\ &= - \int_{\partial\Omega} e_h \, \boldsymbol{e}_v \cdot \boldsymbol{n} \, \mathrm{d}S = - \langle e_h, \boldsymbol{e}_v \cdot \boldsymbol{n} \rangle_{\partial\Omega}. \end{split}$$

Again two possible cases of homogeneous boundary causality arise:

- First case $u_{\partial} = e_h$, $y_{\partial} = e_v \cdot n$. This imposes the variable $e_h := h$ as boundary input ans corresponds to a given water level for a fluid boundary.
- Second case $u_{\partial} = \mathbf{e}_v \cdot \mathbf{n}$, $y_{\partial} = e_p$. This imposes the variable $\mathbf{e}_v \cdot \mathbf{n} := h\mathbf{v} \cdot \mathbf{n}$ as boundary input and corresponds to a given volumetric flow rate.

3.3 Port-Hamiltonian formulation of linear elasticity

In this section a port-Hamiltonian formulation for elasticity is deduced from the classical elastodynamics problem. It must be appointed that already in the seventies a purely hyperbolic formulation for elasticity was detailed [HM78]. The missing point is the clear connection with the theory of Hamiltonian PDEs. An Hamiltonian formulation can be found in [Gri15, Chapter 16], but without any connection to the concept of Stokes-Dirac structure induced by the underlying geometry.

3.3.1 Energy and co-energy variables

Consider an open connected set $\Omega \subset \mathbb{R}^d$, d = (2,3). The displacement within a deformable continuum are given by Eq. (3.5).

$$\rho \frac{\partial^2 \boldsymbol{u}}{\partial t^2} - \text{Div}(\boldsymbol{\mathcal{D}} \operatorname{Grad} \boldsymbol{u}) = 0, \qquad \boldsymbol{x} \in \Omega.$$
(3.25)

The contribution of the body force f has been removed for ease of presentation. To derive a pH formulation, the total energy, that includes the kinetic and deformation energy, is needed

$$H = \frac{1}{2} \int_{\Omega} \left\{ \rho \|\partial_t \boldsymbol{u}\|^2 + \boldsymbol{\Sigma} : \boldsymbol{\varepsilon} \right\} d\Omega.$$
 (3.26)

Recall that $\varepsilon = \operatorname{Grad} u$ and $\Sigma = \mathcal{D}\varepsilon$. The energy variables are then the linear momentum and the deformation field

$$\alpha_v = \rho v, \qquad A_{\varepsilon} = \varepsilon,$$

where $v := \partial_t u$. The Hamiltonian can be rewritten as a quadratic functional in the energy variables

$$H = \frac{1}{2} \int_{\Omega} \left\{ \frac{1}{\rho} \boldsymbol{\alpha}_{v}^{2} + (\boldsymbol{\mathcal{D}} \boldsymbol{A}_{\varepsilon}) : \boldsymbol{A}_{\varepsilon} \right\} d\Omega.$$
 (3.27)

The notation $\mathbf{A} : \mathbf{B} = \text{Tr}(\mathbf{A}^{\top}\mathbf{B}) = A_{ij}B_{ij}$ denotes the tensor contraction. The co-energy variables are given by

$$e_v := \frac{\delta H}{\delta \alpha_v} = v, \qquad E_\varepsilon := \frac{\delta H}{\delta A_\varepsilon} = \Sigma.$$
 (3.28)

The tensor-valued co-energy E_{ε} is obtained by taking the variational derivative with respect to a tensor.

Proposition 3

The variational derivative of the Hamiltonian with respect to the strain tensor is the stress tensor $\delta_{\mathbf{A}_{\varepsilon}}H = \mathbf{\Sigma}$.

Proof. The contribution due to the deformation part in Hamiltonian is given by:

$$H_{\mathrm{def}}(\boldsymbol{A}_{\varepsilon}) = \frac{1}{2} \int_{\Omega} (\boldsymbol{\mathcal{D}} \boldsymbol{A}_{\varepsilon}) : \boldsymbol{A}_{\varepsilon} \ \mathrm{d}\Omega.$$

A variation ΔA_{ε} of the strain tensor with respect to a given value \bar{A}_{ε} leads to:

$$H_{\mathrm{def}}(\bar{\boldsymbol{A}}_{\varepsilon} + \eta \Delta \boldsymbol{A}_{\varepsilon}) = +\frac{1}{2} \int_{\Omega} (\boldsymbol{\mathcal{D}} \bar{\boldsymbol{A}}_{\varepsilon}) : \bar{\boldsymbol{A}}_{\varepsilon} \ d\Omega$$
$$+ \eta \frac{1}{2} \int_{\Omega} \left\{ (\boldsymbol{\mathcal{D}} \bar{\boldsymbol{A}}_{\varepsilon}) : \Delta \boldsymbol{A}_{\varepsilon} + (\boldsymbol{\mathcal{D}} \Delta \boldsymbol{A}_{\varepsilon}) : \bar{\boldsymbol{A}}_{\varepsilon} \right\} \ d\Omega + O(\eta^{2}).$$

The term $(\mathcal{D}\Delta A_{\varepsilon}): \bar{A}_{\varepsilon}$ can be further rearranged using the symmetry of \mathcal{D} and the commutativity of the tensor contraction

$$(\mathcal{D} \Delta A_{arepsilon}) : ar{A}_{arepsilon} = (\mathcal{D} ar{A}_{arepsilon}) : \Delta A_{arepsilon},$$

so that

$$H_{\mathrm{def}}(\bar{\boldsymbol{A}}_{\varepsilon} + \eta \boldsymbol{\Delta} \boldsymbol{A}_{\varepsilon}) = \frac{1}{2} \int_{\Omega} (\boldsymbol{\mathcal{D}} \bar{\boldsymbol{A}}_{\varepsilon}) : \bar{\boldsymbol{A}}_{\varepsilon} \ \mathrm{d}\Omega + \eta \int_{\Omega} (\boldsymbol{\mathcal{D}} \bar{\boldsymbol{A}}_{\varepsilon}) : \boldsymbol{\Delta} \boldsymbol{A}_{\varepsilon} \ \mathrm{d}\Omega + O(\eta^{2}).$$

By definition of variational derivative it can be written:

$$H_{\mathrm{def}}(\bar{\boldsymbol{A}}_{\varepsilon} + \eta \boldsymbol{\Delta} \boldsymbol{A}_{\varepsilon}) = H_{\mathrm{def}}(\bar{\boldsymbol{A}}_{\varepsilon}) + \eta \left\langle \frac{\delta H}{\delta \boldsymbol{A}_{\varepsilon}}, \boldsymbol{\Delta} \boldsymbol{A}_{\varepsilon} \right\rangle_{L^{2}(\Omega,\mathbb{S})} + O(\eta^{2}),$$

where $L^2(\Omega, \mathbb{S})$ is the space of the square integrable $\mathbb{R}^{d \times d}$ symmetric tensors endowed with the tensor contraction as inner product

$$\langle \boldsymbol{A}, \boldsymbol{B} \rangle_{L^2(\Omega, \mathbb{S})} = \int_{\Omega} \boldsymbol{A} : \boldsymbol{B} \, d\Omega.$$
 (3.29)

Then, by identification

$$rac{\delta H_{ ext{def}}}{\delta oldsymbol{A}_arepsilon} = oldsymbol{\mathcal{D}}ar{oldsymbol{A}}_arepsilon = oldsymbol{\Sigma}.$$

Since the Hamiltonian is separable then $\delta_{A_{\varepsilon}}H_{\mathrm{def}}=\delta_{A_{\varepsilon}}H$, leading to the final result. \Box

3.3.2 Final system and associated Stokes-Dirac structure

It is now possible to state the final pH form

$$\frac{\partial}{\partial t} \begin{pmatrix} \boldsymbol{\alpha}_v \\ \boldsymbol{A}_{\varepsilon} \end{pmatrix} = \begin{bmatrix} \boldsymbol{0} & \text{Div} \\ \text{Grad} & \boldsymbol{0} \end{bmatrix} \begin{pmatrix} \boldsymbol{e}_v \\ \boldsymbol{E}_{\varepsilon} \end{pmatrix}. \tag{3.30}$$

The first equation of the system is the conservation of linear momentum. The second represents a compatibility condition

$$\partial_t \mathbf{A}_{\varepsilon} = \operatorname{Grad}(\mathbf{e}_v),$$

$$\partial_t \mathbf{\varepsilon} = \operatorname{Grad}(\mathbf{v}),$$

$$\partial_t \operatorname{Grad} \mathbf{u} = \operatorname{Grad}(\partial_t \mathbf{u}).$$
(3.31)

Assuming that $u \in C^2$, higher order derivatives commute (Schwarz theorem). Hence, the equation is verified. The following theorem ensures the differential operator is formally skew-adjoint (one can also find this result in [PZ20, Lemma 3.3]).

Theorem 3

The formal adjoint of the tensor divergence Div is -Grad, the opposite of the symmetric gradient.

Proof. The space of symmetric tensor field in $\mathbb{R}^{d\times d}$ is denoted by \mathbb{S} , whereas the space of vector field in \mathbb{R}^d is denoted by \mathbb{V} . Let us consider the Hilbert space of the square integrable symmetric tensors $L^2(\Omega,\mathbb{S})$ with scalar product is defined in (3.29). Moreover consider the Hilbert space of the square integrable vector function $L^2(\Omega,\mathbb{V})$, endowed with the usual scalar product:

$$\langle \boldsymbol{a}, \boldsymbol{b} \rangle_{L^2(\Omega, \mathbb{V})} = \int_{\Omega} \boldsymbol{a} \cdot \boldsymbol{b} \ \mathrm{d}\Omega = \int_{\Omega} \boldsymbol{a}^{\top} \boldsymbol{b} \ \mathrm{d}\Omega, \quad \forall \boldsymbol{a}, \boldsymbol{b} \in L^2(\Omega, \mathbb{V}).$$

Let us consider the tensor divergence operator defined as:

Div:
$$L^2(\Omega, \mathbb{S}) \to L^2(\Omega, \mathbb{V}),$$

 $\Psi \to \text{Div } \Psi = \psi,$ with $\psi_j = \text{div}(\Psi_{ij}) = \sum_{i=1}^d \frac{\partial \Psi_{ij}}{\partial x_i}.$

We try to identify Div*

$$\mathrm{Div}^*: L^2(\Omega, \mathbb{V}) \to L^2(\Omega, \mathbb{S}),$$

 $\phi \to \mathrm{Div}^* \phi = \Phi.$

such that

$$\langle \operatorname{Div} \Psi, \phi \rangle_{L^2(\Omega, \mathbb{V})} = \langle \Psi, \operatorname{Div}^* \phi \rangle_{L^2(\Omega, \mathbb{S})} \,, \qquad \begin{array}{l} \forall \Psi \in \operatorname{Domain}(\operatorname{Div}) \subset L^2(\Omega, \mathbb{S}) \\ \forall \phi \in \operatorname{Domain}(\operatorname{Div}^*) \subset L^2(\Omega, \mathbb{V}) \end{array}$$

Now let us take $\Psi \in C_0^1(\Omega, \mathbb{S}) \subset \text{Domain}(\text{Div})$ the space of differentiable symmetric tensors with compact support in Ω . Additionally ϕ will belong to $C_0^1(\Omega, \mathbb{V}) \subset \text{Domain}(\text{Div}^*)$, the space of differentiable vector functions with compact support in Ω . Then

$$\begin{split} \langle \mathrm{Div}\, \boldsymbol{\Psi}, \boldsymbol{\phi} \rangle_{L^2(\Omega, \mathbb{V})} &= \int_{\Omega} \boldsymbol{\psi} \cdot \boldsymbol{\phi} \; \mathrm{d}\Omega, \\ &= \int_{\Omega} \sum_{i=1}^d \sum_{j=1}^d \frac{\partial \Psi_{ij}}{\partial x_i} \phi_j \; \mathrm{d}\Omega, \\ &= -\int_{\Omega} \sum_{i=1}^d \sum_{j=1}^d \Psi_{ij} \frac{\partial \phi_j}{\partial x_i} \; \mathrm{d}\Omega, \qquad \text{since the functions vanish at the boundary,} \\ &= -\int_{\Omega} \sum_{i=1}^d \sum_{j=1}^d \Psi_{ij} F_{ij} \; \mathrm{d}\Omega, \qquad \qquad \text{where} \qquad F_{ij} = \frac{\partial \phi_j}{\partial x_i}, \\ &= -\langle \boldsymbol{\Psi}, \boldsymbol{F} \rangle_{L^2(\Omega, \mathbb{S})}, \qquad \qquad \boldsymbol{F} = (\nabla \boldsymbol{\phi})^\top. \end{split}$$

But in this latter case, it could not be stated that $\mathbf{F} \in L^2(\Omega, \mathbb{S})$. Now, since $\mathbf{\Psi} \in L^2(\Omega, \mathbb{S})$, $\Psi_{ji} = \Psi_{ij}$, thus we are allowed to further decompose the last equality as

$$\sum_{i,j} \Psi_{ij} \frac{\partial \phi_j}{\partial x_i} = \sum_{i,j} \Psi_{ij} \frac{1}{2} \left(\frac{\partial \phi_i}{\partial x_j} + \frac{\partial \phi_j}{\partial x_i} \right) = \sum_{i,j} \Psi_{ij} \Phi_{ij}, \quad \text{with } \Phi_{ij} := \frac{1}{2} \left(\frac{\partial \phi_i}{\partial x_j} + \frac{\partial \phi_j}{\partial x_i} \right).$$

Thus $\Phi = \operatorname{Grad} \phi \in L^2(\Omega, \mathbb{S})$ and it can be stated that:

$$\langle \operatorname{Div} \mathbf{\Psi}, \boldsymbol{\phi} \rangle_{L^{2}(\Omega, \mathbb{V})} = -\int_{\Omega} \sum_{i,j} \Psi_{ij} \frac{1}{2} \left(\frac{\partial \phi_{i}}{\partial x_{j}} + \frac{\partial \phi_{j}}{\partial x_{i}} \right) d\Omega$$
$$= -\int_{\Omega} \sum_{i,j} \Psi_{ij} \Phi_{ij} d\Omega = \langle \mathbf{\Psi}, -\operatorname{Grad} \boldsymbol{\phi} \rangle_{L^{2}(\Omega, \mathbb{S})}.$$

It can be concluded that the formal adjoint of Div is $Div^* = -Grad$.

Figure 3.1: A 2D continuum with Neumann and Dirichlet boundary conditions

The boundary values are then found by evaluating the energy rate

$$\dot{H} = \int_{\Omega} \left\{ \boldsymbol{e}_{v} \cdot \partial_{t} \boldsymbol{\alpha}_{v} + \boldsymbol{E}_{\varepsilon} : \partial_{t} \boldsymbol{A}_{\varepsilon} \right\} d\Omega,
= \int_{\Omega} \left\{ \boldsymbol{e}_{v} \cdot \operatorname{Div} \boldsymbol{E}_{\varepsilon} + \boldsymbol{E}_{\varepsilon} : \operatorname{Grad} \boldsymbol{e}_{v} \right\} d\Omega, \qquad \text{Chain rule,}
= \int_{\Omega} \operatorname{div}(\boldsymbol{E}_{\varepsilon} \cdot \boldsymbol{e}_{v}) d\Omega, \qquad \text{Stokes theorem (see [BBF^{+}13, Chapter 1]),}
= \int_{\partial\Omega} \boldsymbol{e}_{v} \cdot (\boldsymbol{E}_{\varepsilon} \cdot \boldsymbol{n}) dS = \left\langle \boldsymbol{e}_{v}, \boldsymbol{E}_{\varepsilon} \cdot \boldsymbol{n} \right\rangle_{\partial\Omega}.$$
(3.32)

The imposition of the velocity field along the boundary $\mathbf{e}_v = \partial_t \mathbf{u}$ corresponds to a Dirichlet condition. On the contrary, setting $\mathbf{E}_{\varepsilon} \cdot \mathbf{n} = \mathbf{\Sigma} \cdot \mathbf{n} = \mathbf{t}$ corresponds to a Neumann condition. Consider a partition of the boundary $\partial \Omega = \Gamma_N \cup \Gamma_D$ and $\Gamma_N \cap \Gamma_D = \{\emptyset\}$, where a Dirichlet and a Neumann condition applies on the subset Γ_D and Γ_N respectively (see Fig. 3.1). Then the final pH formulation reads

$$\frac{\partial}{\partial t} \begin{pmatrix} \boldsymbol{\alpha}_{v} \\ \boldsymbol{A}_{\varepsilon} \end{pmatrix} = \underbrace{\begin{bmatrix} \mathbf{0} & \text{Div} \\ \text{Grad} & \mathbf{0} \end{bmatrix}}_{\mathcal{J}} \begin{pmatrix} \boldsymbol{e}_{v} \\ \boldsymbol{E}_{\varepsilon} \end{pmatrix},$$

$$\boldsymbol{u}_{\partial} = \underbrace{\begin{bmatrix} \boldsymbol{\gamma}_{0}^{\Gamma_{D}} & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\gamma}_{n}^{\Gamma_{N}} \end{bmatrix}}_{\mathcal{B}} \begin{pmatrix} \boldsymbol{e}_{v} \\ \boldsymbol{E}_{\varepsilon} \end{pmatrix},$$

$$\boldsymbol{y}_{\partial} = \underbrace{\begin{bmatrix} \mathbf{0} & \boldsymbol{\gamma}_{n}^{\Gamma_{D}} \\ \boldsymbol{\gamma}_{0}^{\Gamma_{N}} & \mathbf{0} \end{bmatrix}}_{\mathcal{C}} \begin{pmatrix} \boldsymbol{e}_{v} \\ \boldsymbol{E}_{\varepsilon} \end{pmatrix},$$
(3.33)

where $\gamma_0^{\Gamma_*}$ denotes the trace over the set Γ_* , namely $\gamma_0^{\Gamma_*} \boldsymbol{e}_v = \boldsymbol{e}_v|_{\Gamma_*}$. Furthermore, $\gamma_n^{\Gamma_*}$ denotes the normal trace over the set Γ_* , namely $\gamma_n^{\Gamma_*} \boldsymbol{E}_{\varepsilon} = \boldsymbol{E}_{\varepsilon} \cdot \boldsymbol{n}|_{\Gamma_*}$.

Theorem 4 (Stokes-Dirac structure for elastodynamics) Let $H^{Grad}(\Omega, \mathbb{V})$ the space of vectors with symmetric gradient in $L^2(\Omega, \mathbb{S})$ and $H^{Div}(\Omega, \mathbb{S})$ denote the space of symmetric tensor with divergence in $L^2(\Omega, \mathbb{V})$. Denote by $H = H^{\mathrm{Div}}(\Omega, \mathbb{S}) \times H^{\mathrm{Grad}}(\Omega, \mathbb{V})$, $F = L^2(\Omega, \mathbb{V}) \times L^2(\Omega, \mathbb{S})$ and $F_{\partial} = L^2(\partial\Omega, \mathbb{V})$.

The set

$$D_{\mathcal{J}} = \left\{ \begin{pmatrix} \boldsymbol{f} \\ \boldsymbol{f}_{\partial} \\ \boldsymbol{e} \\ \boldsymbol{e}_{\partial} \end{pmatrix} \mid \boldsymbol{e} \in H, \ \boldsymbol{f} = -\mathcal{J}\boldsymbol{e}, \ \boldsymbol{f}_{\partial} = \mathcal{B}\boldsymbol{e}, \ \boldsymbol{e}_{\partial} = \mathcal{C}\boldsymbol{e} \right\}, \tag{3.34}$$

where $\mathbf{e} = (\mathbf{e}_v, \mathbf{E}_{\varepsilon})$ and $\mathcal{J}, \mathcal{B}, \mathcal{C}$ are defined in (3.33), is a Stokes-Dirac structure with respect to the pairing

$$\left\langle \left\langle \left. \left\langle \left(\boldsymbol{f}^{1}, \boldsymbol{f}_{\partial}^{1}, \boldsymbol{e}^{1}, \boldsymbol{e}_{\partial}^{1} \right), \left(\boldsymbol{f}^{2}, \boldsymbol{f}_{\partial}^{2}, \boldsymbol{e}^{2}, \boldsymbol{e}_{\partial}^{2} \right) \right. \right\rangle \right\rangle := \left\langle \boldsymbol{e}^{1}, \boldsymbol{f}^{2} \right\rangle_{F} + \left\langle \boldsymbol{e}^{2}, \boldsymbol{f}^{1} \right\rangle_{F} + \left\langle \boldsymbol{e}_{\partial}^{1}, \boldsymbol{f}_{\partial}^{2} \right\rangle_{F_{\partial}} + \left\langle \boldsymbol{e}_{\partial}^{2}, \boldsymbol{f}_{\partial}^{1} \right\rangle_{F_{\partial}}. \tag{3.35}$$

Proof. A Stokes-Dirac is characterized by the fact that $D_{\mathcal{J}} = D_{\mathcal{J}}^{\perp}$. Then one has to show that $D_{\mathcal{J}} \subset D_{\mathcal{J}}^{\perp}$ and $D_{\mathcal{J}}^{\perp} \subset D_{\mathcal{J}}$. The proof is found by employing the integration by parts formula already used for (3.32). The main steps of Theorem 3.6 in [LGZM05] are followed here.

Step 1. To show that $D_{\mathcal{J}} \subset D_{\mathcal{J}}^{\perp}$, take $(f, f_{\partial}, e, e_{\partial}) \in D_{\mathcal{J}}$. Then

$$\begin{split} \langle \langle \left(\left(\boldsymbol{f}, \boldsymbol{f}_{\partial}, \boldsymbol{e}, \boldsymbol{e}_{\partial} \right), \left(\boldsymbol{f}, \boldsymbol{f}_{\partial}, \boldsymbol{e}, \boldsymbol{e}_{\partial} \right) \rangle \rangle &= 2 \left\langle \boldsymbol{e}, \boldsymbol{f} \right\rangle_{F} + 2 \left\langle \boldsymbol{e}_{\partial}, \boldsymbol{f}_{\partial} \right\rangle_{F_{\partial}}, \\ &= 2 \left\langle \boldsymbol{e}, -\mathcal{J} \boldsymbol{e} \right\rangle_{F} + 2 \left\langle \boldsymbol{e}_{\partial}, \boldsymbol{f}_{\partial} \right\rangle_{F_{\partial}}, \\ &= -2 \int_{\Omega} \left\{ \boldsymbol{e}_{v} \cdot \operatorname{Div} \boldsymbol{E}_{\varepsilon} + \boldsymbol{E}_{\varepsilon} : \operatorname{Grad} \boldsymbol{e}_{v} \right\} \, d\Omega \\ &+ 2 \int_{\partial \Omega} \boldsymbol{e}_{v} \cdot \left(\boldsymbol{E}_{\varepsilon} \cdot \boldsymbol{n} \right) \, dS = 0, \quad \text{from (3.32)}. \end{split}$$

This implies $D_{\mathcal{J}} \subset D_{\mathcal{J}}^{\perp}$.

Step 2. Take $(\phi, \phi_{\partial}, \epsilon, \epsilon_{\partial}) \in D_{\mathcal{J}}^{\perp}$ and $e_0 \in H$ with compact support on Ω . This implies $\mathcal{B}e_0 = (\mathbf{0}, \mathbf{0})$ and $\mathcal{C}e_0 = (\mathbf{0}, \mathbf{0})$. Taking $(-\mathcal{J}e_0, \mathbf{0}, e_0, \mathbf{0}) \in D_{\mathcal{J}}$ then

$$\langle \langle (\boldsymbol{\phi}, \boldsymbol{\phi}_{\partial}, \boldsymbol{\epsilon}, \boldsymbol{\epsilon}_{\partial}), (\mathcal{J}\boldsymbol{e}_{0}, \boldsymbol{0}, \boldsymbol{e}_{0}, \boldsymbol{0}) \rangle \rangle = \langle \boldsymbol{\epsilon}, -\mathcal{J}\boldsymbol{e}_{0} \rangle_{E} + \langle \boldsymbol{e}_{0}, \boldsymbol{\phi} \rangle_{E} = 0, \quad \forall \boldsymbol{e}_{0} \in H.$$

It follows that $\epsilon \in H$ and $\phi = -\mathcal{J}\epsilon$.

Step 3. Take $(\phi, \phi_{\partial}, \epsilon, \epsilon_{\partial}) \in D_{\mathcal{J}}^{\perp}$ and $(f, f_{\partial}, e, e_{\partial}) \in D_{\mathcal{J}}$. Variables e, ϵ are indeed tuples containing a vector and a tensor, namely $e = (e_v, E_{\varepsilon}), \epsilon = (\epsilon_v, \mathcal{E}_{\varepsilon})$. From step 2 and (4.30)

$$\begin{split} 0 &= -\langle \boldsymbol{e}, \mathcal{J}\boldsymbol{\epsilon} \rangle_F - \langle \mathcal{J}\boldsymbol{e}, \boldsymbol{\epsilon} \rangle_F + \langle \boldsymbol{e}_{\partial}, \boldsymbol{\phi}_{\partial} \rangle_{F_{\partial}} + \langle \boldsymbol{\epsilon}_{\partial}, \boldsymbol{f}_{\partial} \rangle_{F_{\partial}} \,, \\ &= -\int_{\partial \Omega} \left\{ \boldsymbol{e}_v \cdot (\boldsymbol{\mathcal{E}}_{\varepsilon} \cdot \boldsymbol{n}) + \boldsymbol{\epsilon}_v \cdot (\boldsymbol{E}_{\varepsilon} \cdot \boldsymbol{n}) \right\} \, \mathrm{d}S + \langle \boldsymbol{e}_{\partial}, \boldsymbol{\phi}_{\partial} \rangle_{F_{\partial}} + \langle \boldsymbol{\epsilon}_{\partial}, \boldsymbol{f}_{\partial} \rangle_{F_{\partial}} \end{split}$$

Consider the splitting of the boundary $\partial \Omega = \Gamma_N \cup \Gamma_D$

$$\int_{\partial\Omega} \left\{ \boldsymbol{e}_{v} \cdot (\boldsymbol{\mathcal{E}}_{\varepsilon} \cdot \boldsymbol{n}) + \boldsymbol{\epsilon}_{v} \cdot (\boldsymbol{E}_{\varepsilon} \cdot \boldsymbol{n}) \right\} dS = + \int_{\Gamma_{N}} \left\{ \boldsymbol{e}_{\partial,2} \cdot (\boldsymbol{\mathcal{E}}_{\varepsilon} \cdot \boldsymbol{n}) + \boldsymbol{\epsilon}_{v} \cdot \boldsymbol{f}_{\partial,2} \right\} dS,$$
$$+ \int_{\Gamma_{D}} \left\{ \boldsymbol{f}_{\partial,1} \cdot (\boldsymbol{\mathcal{E}}_{\varepsilon} \cdot \boldsymbol{n}) + \boldsymbol{\epsilon}_{v} \cdot \boldsymbol{e}_{\partial,1} \right\} dS,$$

where the elements of the vectors $\mathbf{f}_{\partial} = (\mathbf{f}_{\partial,1}, \mathbf{f}_{\partial,2})$, $\mathbf{e}_{\partial} = (\mathbf{e}_{\partial,1}, \mathbf{e}_{\partial,2})$ have been considering. By expanding of the terms $\langle \mathbf{e}_{\partial}, \phi_{\partial} \rangle_{F_{\partial}} + \langle \mathbf{e}_{\partial}, \mathbf{f}_{\partial} \rangle_{F_{\partial}}$ and given the fact that \mathbf{e}_{∂} , \mathbf{f}_{∂} have arbitrary values then

$$oldsymbol{\phi}_{\partial} = egin{bmatrix} oldsymbol{\gamma}_0^{\Gamma_D} & oldsymbol{0} \ oldsymbol{0} & oldsymbol{\gamma}_n^{\Gamma_N} \end{bmatrix} egin{pmatrix} oldsymbol{\epsilon}_v \ oldsymbol{\mathcal{E}}_arepsilon \end{pmatrix}, \qquad oldsymbol{\epsilon}_{\partial} = egin{bmatrix} oldsymbol{0} & oldsymbol{\gamma}_n^{\Gamma_D} \ oldsymbol{\gamma}_0^{\Gamma_N} & oldsymbol{0} \end{bmatrix} egin{pmatrix} oldsymbol{\epsilon}_v \ oldsymbol{\mathcal{E}}_arepsilon \end{pmatrix},$$

meaning that $D_{\mathcal{J}}^{\perp} \subset D_{\mathcal{J}}$. This concludes the proof.

Linear elasticity falls within the assumption of [Skr19]. Therefore, it is a well posed boundary controlled pH systems. A question that naturally arises is how to reformulate this system using the language of differential geometry. This is possible through the usage of vector-valued differential forms. The interested reader may consult [Bre08].

3.4 Conclusion

In this chapter, the pH formulation of elasticity have been obtained. This model represents a generalization of the wave equation to higher dimensional variables. This leads to the introduction of symmetric tensorial quantities describing the state of stress and deformation within the body.

For a plane continuum with moderate thickness, it is possible to reduce the general three-dimensional mode to two uncoupled system: one representing the in plane behavior ruled by 2D elasticity and one representing the out-of-plane deflection. This will be the object of the next chapter dedicated to the study of a pH formulation of plate bending. It is important to remember that plate models are just particular cases of three-dimensional elasticity.

Port-Hamiltonian plate (and shell?) theory

You get tragedy where the tree, instead of bending, breaks.

Culture and Value Ludwig Wittgenstein

Contents

4.1	First	order plate theory
4	.1.1	Mindlin-Reissner model
4	.1.2	Kirchhoff-Love model
4.2	Port-	Hamiltonian formulation of plates
4	.2.1	Port-Hamiltonian Mindlin plate
4	.2.2	Port-Hamiltonian Kirchhoff plate
4.3	Lami	nated anisotropic case
4	.3.1	Thin plate assumption
4	.3.2	Thick plate assumption
4.4	The	membrane shell problem ?

Lates are plane structural element with a small thickness compared to the planar dimension. Because of the thickness smallness, it is not necessary to model plate structure using three-dimensional models. Therefore, dimensional reduction strategies are employed to model plate structures as two-dimensional problems. These strategies rely on a educated guess of the displacement field. Enough freedom is left so that the assumed field satisfies the equations of elasticity. For beams and plates the displacement field is expressed in terms of unknown functions $\phi_i^j(x,y,t)$ that solely depends on the midplane coordinates (x,y)

$$u_i(x, y, z, y) = \sum_{j=0}^{m} (z)^j \phi_i^j(x, y, t).$$

where u_i for $i = \{x, y, z\}$ are the component of the displacement field. The unknown functions are determined so to respect the principle of virtual displacement. In this chapter, the main focus is on the first-order theory. This means that only a linear dependence on z is considered. Two main models arise from such a framework:

- The Kirchhoff-Love model for thin plates;
- The Mindlin-Reissner model for thick plates;

The interested reader may consult [Red06] for a detailed monograph on the topic.

4.1 First order plate theory

In this section the common features of first order plate models are recalled. As previously state first order theories assume a linear dependence on the vertical coordinate

$$u_i(x, y, z, t) = \phi_i^0(x, y, t) + z\phi_i^1(x, y, t).$$

This hypothesis implies that the fibers, segments perpendicular to the mid-plane before deformation, remain straight after deformation. Additionally, for plate with moderate thickness the fibers are considered inextensible, meaning that $\phi_z^1 = 0$. These assumption lead to the following displacement field

$$u_x(x, y, z, t) = u_x^0(x, y, t) - z\theta_x(x, y, t),$$

$$u_y(x, y, z, t) = u_y^0(x, y, t) - z\theta_y(x, y, t),$$

$$u_z(x, y, z, t) = u_z^0(x, y, t),$$
(4.1)

where $u_i(x, y, t) = \phi_i^0(x, y, t)$, $\theta_i(x, y, t) = -\phi_i^1(x, y, t)$. Assuming a linear elastic behavior, the 3D strain tensor for such a displacement field takes the form

$$\begin{split} \varepsilon_{\alpha\beta} &= \frac{1}{2} \left(\partial_{\beta} u_{\alpha} + \partial_{\alpha} u_{\beta} \right) - z \frac{1}{2} \left(\partial_{\beta} \theta_{\alpha} + \partial_{\alpha} \theta_{\beta} \right) = \varepsilon_{\alpha\beta}^{0} - z \kappa_{\alpha\beta}, \\ \varepsilon_{\alpha z} &= \frac{1}{2} \left(\partial_{\alpha} u_{z} - \theta_{\alpha} \right) = \frac{1}{2} \gamma_{\alpha}, \end{split}$$

where $\alpha = \{x, y\}$, $\beta = \{x, y\}$. The tensors ε^0 , κ , γ are called membrane, bending (or curvature) and shear strain tensor

$$\boldsymbol{\varepsilon}^0 = \operatorname{Grad} \boldsymbol{u}^0, \quad \text{where} \quad \boldsymbol{u}^0 = (u_x, u_y)^\top,$$
 (4.2)

$$\kappa = \operatorname{Grad} \boldsymbol{\theta}, \quad \text{where} \quad \boldsymbol{\theta} = (\theta_x, \theta_y)^{\top}, \tag{4.3}$$

$$\gamma = \operatorname{grad} u_z - \boldsymbol{\theta}. \tag{4.4}$$

For an isotropic linear elastic material the Hooke's law for 3D continua reads

$$\Sigma = \frac{E}{1+\nu} \left[\boldsymbol{\varepsilon} + \frac{\nu}{1-2\nu} \operatorname{Tr}(\boldsymbol{\varepsilon}) \boldsymbol{I}_{3\times 3} \right].$$

where E, ν are the Young modulus and Poisson ratio. The hypothesis of inextensible fibers leads to $\varepsilon_{zz} = 0$. However, imposing a plane strain condition provides a model that is too stiff. Rather than a plain strain assumption, a plain stress hypothesis is used to derive the constitutive law for plates. Setting $\Sigma_{zz} = 0$, then one gets

$$\varepsilon_{zz} = -\frac{\nu}{1-\nu}(\varepsilon_{xx} + \varepsilon_{yy}).$$

Consequently, one computes

$$\operatorname{Tr}(\boldsymbol{\varepsilon}) = \frac{1 - 2\nu}{1 - \nu} (\varepsilon_{xx} + \varepsilon_{yy}).$$

The constitutive law for the in-plane stress takes the form

$$\Sigma_{2D} = \mathcal{D}_{2D} \, \varepsilon_{2D},$$

where $\Sigma_{2D} = \Sigma_{\alpha\beta}$, $\varepsilon_{2D} = \varepsilon_{\alpha\beta}$ and

$$\mathcal{D}_{2D} = \frac{E}{1 - \nu^2} \left[(1 - \nu)(\cdot) + \nu \operatorname{Tr}(\cdot) \mathbf{I}_{2 \times 2} \right].$$

Concerning the shear deformation, the constitutive law reduces to

$$\sigma_s = G\gamma, \tag{4.5}$$

where $\sigma_{\alpha} := \Sigma_{\alpha,3}$ and $G = \frac{E}{2(1+\nu)}$ is the shear modulus. In the following sections the most common plate model will be presented and discussed.

4.1.1 Mindlin-Reissner model

The Mindlin-Reissner model was formulated by Mindlin in the fifties [Min51]. It represent a first-order shear deformation theory for describing the bending of plate. The in-plane displacement of the mid-plane are assumed to be zero $\mathbf{u}^0(x,y) = \mathbf{0}$. Hence, the displacement field assumes the form

$$u_x(x, y, z) = -z\partial_x \theta_x,$$

$$u_y(x, y, z) = -z\partial_y \theta_y,$$

$$u_z(x, y, z) = u_z^0(x, y).$$
(4.6)

In pure bending, the strain tensor is given by

$$\varepsilon_b := \varepsilon_{2D}(\boldsymbol{u}^0 = \boldsymbol{0}) = -z\boldsymbol{\kappa},$$

with κ given by (4.3). Consequently, the stress tensor reads

$$\Sigma_b := \Sigma_{2D}(\boldsymbol{u}^0 = \boldsymbol{0}) = -z\boldsymbol{\mathcal{D}}_{2D}\boldsymbol{\kappa}.$$

To effectively reduce the problem from three- to two-dimensional, the stresses have to be integrated along the fibers. Consider an undeformed middle plane of the plate is denoted by Ω . The total domain of the plate is the product $\Omega \times (-h/2, h/2)$, where h is the constant thickness. Since the stress varies linearly, one has to multiply the stress by z to get a non null contribution. Such a quantity is called bending momenta tensor and is given by

$$\mathbf{M} := -\int_{-h/2}^{h/2} z \mathbf{\Sigma}_b \, \mathrm{d}z = \mathbf{\mathcal{D}}_b \, \mathbf{\kappa}, \tag{4.7}$$

where

$$\mathcal{D}_b = D_b \left[(1 - \nu)(\cdot) + \nu \operatorname{Tr}(\cdot) \mathbf{I}_{2 \times 2} \right], \quad \text{where} \quad D_b = \frac{Eh^3}{12(1 - \nu^2)}. \tag{4.8}$$

Furthermore, the shear stress has to be integrated along the fibers. However, given the excessive rigidity of the shear contribution, a correction factor k=5/6 [Red06, Chapter 10] is introduced

$$q = \int_{-h/2}^{h/2} k \sigma_s = kGh\gamma, \tag{4.9}$$

where γ is defined in Eq. (4.4). The equations of motion can be obtained using the Hamilton principle [Red06, Chapter 10]. It consists in minimizing the total Lagrangian, given by $L = E_{\text{def}} - E_{\text{kin}} + W$, where E_{def} , E_{kin} , W are the deformation energy, the kinetic energy and the work of external forces respectively

$$E_{\text{def}} = \frac{1}{2} \int_{\Omega} \int_{-h/2}^{h/2} \mathbf{\Sigma} : \boldsymbol{\varepsilon} \, d\Omega \, dz = \frac{1}{2} \int_{\Omega} \{ \boldsymbol{M} : \boldsymbol{\kappa} + \boldsymbol{q} \cdot \boldsymbol{\gamma} \} \, d\Omega, \tag{4.10}$$

$$E_{\text{kin}} = \frac{1}{2} \int_{\Omega} \int_{-h/2}^{h/2} \rho \|\partial_t \boldsymbol{u}\|^2 d\Omega dz = \frac{1}{2} \int_{\Omega} \left\{ \frac{\rho h^3}{12} \|\partial_t \boldsymbol{\theta}\|^2 + \rho h (\partial_t u_z)^2 \right\} d\Omega, \tag{4.11}$$

$$W = \frac{1}{2} \int_{\Omega} f u_z \, d\Omega, \tag{4.12}$$

where ρ is the mass density and f a distributed surface force. The Hamilton principle states that

$$\int_0^T \delta L \, dt = \int_0^T \left\{ \delta E_{\text{def}} + \delta W - \delta E_{\text{kin}} \right\} \, dt = 0.$$

The final result is the following system of PDEs (for the detailed computations the reader may consult [Red06, Chapter 10])

$$\rho \frac{\partial^2 u_z}{\partial t^2} = \operatorname{div} \mathbf{q} + f, \qquad (x, y) \in \Omega,$$

$$\frac{\rho h^3}{12} \frac{\partial^2 \mathbf{\theta}}{\partial t^2} = \operatorname{Div} \mathbf{M} + \mathbf{q},$$
(4.13)

Figure 4.1: Kinematic assumption for the Kirchhoff plate

with $\mathbf{M} = \mathcal{D}_b \operatorname{Grad} \boldsymbol{\theta}$ and $\mathbf{q} = kGh (\operatorname{grad} u_z - \boldsymbol{\theta})$. This PDE goes together with specified boundary conditions. Those will be detailed in 4.2.1.

4.1.2 Kirchhoff-Love model

The Kirchhoff hypotheses on the displacement field consists of the following three points (see Fig. 4.1):

- 1. The fibers, segments perpendicular to the mid-plane before deformation, remain straight after deformation.
- 2. The fibers are inextensible.
- 3. While rotating, fibers remain perpendicular to the middle surface after deformation.

While the first two points are common for first order plate models, the third assumption is peculiar to the Kirchhoff-Love model. For this class of plates the span-to-thickness ratio is of the order of $L/h \approx 100-1000$. Such an assumption implies zero transverse shear deformation.

$$\gamma = 0 \implies \varepsilon_{xz} = -\theta_x + \frac{\partial w}{\partial x} = 0, \qquad \varepsilon_{yz} = -\theta_y + \frac{\partial w}{\partial y} = 0,$$

where ε_{ii} are the components of the infinitesimal strain tensor. The rotation vector is then related to the vertical displacement $\boldsymbol{\theta} = \operatorname{grad} u_z$. Plugging this into (4.3), it is found

$$\kappa = \operatorname{Grad} \operatorname{grad} u_z = \operatorname{Hess} u_z.$$
(4.14)

Again the focus is the bending behavior, the in-plane displacement of the mid-plane are assumed to be zero $\mathbf{u}^0(x,y) = \mathbf{0}$. Hence, the displacement field assumes the form

$$u_x(x, y, z) = -z\partial_x u_z,$$

$$u_y(x, y, z) = -z\partial_y u_z,$$

$$u_z(x, y, z) = u_z^0(x, y).$$
(4.15)

For the Kirchhoff plate, the same link between the momenta and bending tensor holds

$$M = \mathcal{D}_b \kappa$$
,

where \mathcal{D}_b and κ are given in (4.8), (4.14) respectively. The equations of motion can be obtained using the Hamilton principle [Red06, Chapter 2]. The deformation energy, kinetic energy and external work read

$$E_{\text{def}} = \frac{1}{2} \int_{\Omega} \int_{-h/2}^{h/2} \mathbf{\Sigma} : \boldsymbol{\varepsilon} \, d\Omega \, dz = \frac{1}{2} \int_{\Omega} \{ \boldsymbol{M} : \boldsymbol{\kappa} + \boldsymbol{q} \cdot \boldsymbol{y} \} \, d\Omega, \tag{4.16}$$

$$E_{\rm kin} = \frac{1}{2} \int_{\Omega} \int_{-h/2}^{h/2} \rho \|\partial_t \boldsymbol{u}\|^2 d\Omega dz \approx \frac{1}{2} \int_{\Omega} \rho h(\partial_t u_z)^2 d\Omega, \tag{4.17}$$

$$W = \frac{1}{2} \int_{\Omega} f u_z \, d\Omega, \tag{4.18}$$

where f is a distributed surface force. For the kinetic energy the rotary contribution

$$E_{\text{rot}} = \frac{1}{2} \int_{\Omega} \int_{-h/2}^{h/2} \left\{ \rho \left(\partial_t u_x \right)^2 + \left(\partial_t u_y \right)^2 \right\} d\Omega dz = \frac{h^3}{24} \int_{\Omega} \left\{ \rho \left(\partial_t u_z \right)^2 + \left(\partial_t u_z \right)^2 \right\} d\Omega = O(h^3),$$

is neglected given the small thickness assumption. The final result from the Hamilton's principle is the following PDE (for the detailed computations the reader may consult [Red06, Chapter 2])

$$\rho \frac{\partial^2 u_z}{\partial t^2} + \operatorname{div} \operatorname{Div} \mathbf{M} = f, \qquad (x, y) \in \Omega. \tag{4.19}$$

Considering that $M = \mathcal{D}_b$ Hess u_z then one obtains

$$\rho \frac{\partial^2 u_z}{\partial t^2} + D_b \Delta^2 u_z = f, \qquad (x, y) \in \Omega.$$

where $\Delta^2 = \frac{\partial^4}{\partial x^4} + 2\frac{\partial^2}{\partial x^2}\frac{\partial^2}{\partial y^2} + \frac{\partial^4}{\partial y^4}$ is the bilaplacian. Appropriate boundary conditions for this problem will be detailed in 4.2.2.

4.2 Port-Hamiltonian formulation of plates

In this section the pH formulation of the Mindlin and Kirchhoff plate models is studied. In [MMB05], the Mindlin plate model was put in pH form by appropriate selection of the energy variables. However, the final system does not consider the nature of the different variables that come into play, leading to a non intrinsic final formulation. Additionally, this model was presented using the jet bundle formalism in [SS17]. The Kirchhoff model was never explored in the framework of pHs and represents an original contribution of this thesis. The interested reader can find in [RZ18] a rigorous mathematical treatment of the biharmonic problem and its decomposition in 2D geometries (the 3D, that does not relate to plate bending, is treated in [PZ18]), but only for the static case.

4.2.1 Port-Hamiltonian Mindlin plate

Let $w := u_z$ denote the vertical displacement of the plate. Consider the Hamiltonian (total energy) expression:

$$H = \int_{\Omega} \frac{1}{2} \left\{ \rho h \left(\frac{\partial w}{\partial t} \right)^2 + \frac{\rho h^3}{12} \left\| \frac{\partial \boldsymbol{\theta}}{\partial t} \right\|^2 + \boldsymbol{M} : \boldsymbol{\kappa} + \boldsymbol{q} \cdot \boldsymbol{\gamma} \right\} d\Omega, \tag{4.20}$$

where M, κ , q, γ are defined in Eqs. (4.7), (4.3), (4.9), (4.4) respectively. The choice of the energy variables is the same as in [MMB05] but here scalar, vector and tensor variables are gathered together:

$$\alpha_w = \rho h \frac{\partial w}{\partial t}$$
, Linear momentum, $\alpha_\theta = \frac{\rho h^3}{12} \frac{\partial \boldsymbol{\theta}}{\partial t}$, Angular momentum, (4.21)
 $\boldsymbol{A}_\kappa = \boldsymbol{\kappa}$, Curvature Tensor, $\alpha_\gamma = \boldsymbol{\gamma}$. Shear Deformation.

The energy is now a quadratic function of the energy variables

$$H = \int_{\Omega} \frac{1}{2} \left\{ \frac{1}{\rho h} \alpha_w^2 + \frac{12}{\rho h^3} \|\boldsymbol{\alpha}_{\theta}\|^2 + (\boldsymbol{\mathcal{D}}_b \boldsymbol{A}_{\kappa}) : \boldsymbol{A}_{\kappa} + (\boldsymbol{\mathcal{D}}_s \boldsymbol{\alpha}_{\gamma}) \cdot \boldsymbol{\alpha}_{\gamma} \right\} d\Omega, \tag{4.22}$$

where $\mathcal{D}_s := GhkI_{2\times 2}$ and G is the shear modulus k the correction factor. The co-energy variables are found by computing the variational derivative of the Hamiltonian:

$$e_w := \frac{\delta H}{\delta \alpha_w} = \frac{\partial w}{\partial t},$$
 Linear velocity, $e_\theta := \frac{\delta H}{\delta \alpha_\theta} = \frac{\partial \theta}{\partial t},$ Angular velocity, $E_\kappa := \frac{\delta H}{\delta A_\kappa} = M,$ Momenta Tensor, $e_\gamma := \frac{\delta H}{\delta \gamma} = q$ Shear stress. (4.23)

Proposition 4

The variational derivative of the Hamiltonian with respect to the curvature tensor is the momenta tensor $\frac{\delta H}{\delta A_{\kappa}} = M$.

Proof. The proof is analogous to one already detailed in Prop. 3

Once the variables are concatenated together, the port-Hamiltonian system is expressed as follows:

$$\frac{\partial}{\partial t} \begin{pmatrix} \alpha_w \\ \boldsymbol{\alpha}_{\theta} \\ \boldsymbol{A}_{\kappa} \\ \boldsymbol{\alpha}_{\gamma} \end{pmatrix} = \begin{bmatrix} 0 & 0 & 0 & \operatorname{div} \\ 0 & 0 & \operatorname{Div} & \boldsymbol{I}_{2\times 2} \\ 0 & \operatorname{Grad} & 0 & 0 \\ \operatorname{grad} & -\boldsymbol{I}_{2\times 2} & 0 & 0 \end{bmatrix} \begin{pmatrix} e_w \\ e_{\theta} \\ \boldsymbol{E}_{\kappa} \\ \boldsymbol{e}_{\gamma} \end{pmatrix}.$$
(4.24)

The first two equations are equivalent to (4.13). The last two equations, like (3.31) for linear elasticity represent the fact the higher order derivatives commute. We shall now establish the total energy balance in terms of boundary variables. Those will then be part of the

Figure 4.2: Cauchy law for momenta and forces at the boundary.

Figure 4.3: Reference frames and notations.

underlying Stokes-Dirac structure of this model. The energy rate reads

$$\dot{H} = \int_{\Omega} \left\{ \frac{\partial \alpha_{w}}{\partial t} e_{w} + \frac{\partial \alpha_{\theta}}{\partial t} \cdot e_{\theta} + \frac{\partial A_{\kappa}}{\partial t} : E_{\kappa} + \frac{\partial \alpha_{\gamma}}{\partial t} \cdot e_{\gamma} \right\} d\Omega$$

$$= \int_{\Omega} \left\{ \operatorname{div}(\boldsymbol{e}_{\gamma}) e_{w} + \operatorname{Div}(\boldsymbol{E}_{\kappa}) \cdot \boldsymbol{e}_{\theta} + \operatorname{Grad}(\boldsymbol{e}_{\theta}) : \boldsymbol{E}_{\kappa} + \operatorname{grad}(\boldsymbol{e}_{w}) \cdot \boldsymbol{e}_{\gamma} \right\} d\Omega$$

$$= \int_{\partial \Omega} \left\{ w_{t} q_{n} + \omega_{n} M_{nn} + \omega_{s} M_{ns} \right\} ds, \tag{4.25}$$

where s is the curvilinear abscissa. The last integral is obtained by applying the Stokes theorem. The boundary variables appearing in the last line of (4.25) and illustrated in Fig. 4.2 are defined as follows:

Shear Force
$$q_n := \mathbf{q} \cdot \mathbf{n} = \mathbf{e}_{\gamma} \cdot \mathbf{n}$$
,
Flexural momentum $M_{nn} := \mathbf{M} : (\mathbf{n} \otimes \mathbf{n}) = \mathbf{E}_{\kappa} : (\mathbf{n} \otimes \mathbf{n})$, (4.26)
Torsional momentum $M_{ns} := \mathbf{M} : (\mathbf{s} \otimes \mathbf{n}) = \mathbf{E}_{\kappa} : (\mathbf{s} \otimes \mathbf{n})$,

Vectors \boldsymbol{n} and \boldsymbol{s} designate the normal and tangential unit vectors to the boundary, as shown in Fig. 4.3. Given two vectors $\boldsymbol{a} \in \mathbb{R}^n$, $\boldsymbol{a} \in \mathbb{R}^m$, the notation $\boldsymbol{a} \otimes \boldsymbol{b} = \boldsymbol{a} \boldsymbol{b}^\top \in \mathbb{R}^{n \times m}$ denote the outer product of two vectors (dyadic product) The corresponding power conjugated variables

are:

Vertical velocity
$$w_t := \frac{\partial w}{\partial t} = e_w,$$

Flexural rotation $\omega_n := \frac{\partial \boldsymbol{\theta}}{\partial t} \cdot \boldsymbol{n} = \boldsymbol{e}_{\boldsymbol{\theta}} \cdot \boldsymbol{n},$ (4.27)
Torsional rotation $\omega_s := \frac{\partial \boldsymbol{\theta}}{\partial t} \cdot \boldsymbol{s} = \boldsymbol{e}_{\boldsymbol{\theta}} \cdot \boldsymbol{s}.$

Consider a partition of the boundary $\partial\Omega = \overline{\Gamma}_C \cup \overline{\Gamma}_S \cup \overline{\Gamma}_F$, $\overline{\Gamma}_C \cap \overline{\Gamma}_S \cap \overline{\Gamma}_F = \{\emptyset\}$. The set Γ_C , Γ_S , Γ_F could be empty. Given definitions (4.26), (4.27), the boundary conditions for the Mn that will be considered are:

- Clamped (C) on $\Gamma_C \subseteq \partial \Omega$: $w_t = 0$, $\omega_n = 0$, $\omega_s = 0$;
- Simply supported hard (S) on $\Gamma_S \subseteq \partial \Omega$: $w_t = 0$, $m_{nn} = 0$, $\omega_s = 0$;
- Free (F) on $\Gamma_F \subseteq \partial \Omega$: $q_n = 0$, $m_{nn} = 0$, $m_{ns} = 0$.

The imposition of the velocity field along the boundary $e_v = \partial_t u$ corresponds to a Dirichlet condition. On the contrary, setting $E_{\varepsilon} \cdot n = \Sigma \cdot n = t$ corresponds to a Neumann condition. Consider a partition of the boundary $\partial \Omega = \Gamma_N \cup \Gamma_D$ and $\Gamma_N \cap \Gamma_D = \{\emptyset\}$, where a Dirichlet and a Neumann condition applies on the subset Γ_D and Γ_N respectively (see Fig. 3.1). Then the final pH formulation reads

$$\frac{\partial}{\partial t} \begin{pmatrix} \alpha_w \\ \alpha_\theta \\ A_\kappa \\ \alpha_\gamma \end{pmatrix} = \underbrace{\begin{bmatrix} 0 & 0 & 0 & \operatorname{div} \\ 0 & 0 & \operatorname{Div} & I_{2\times 2} \\ 0 & \operatorname{Grad} & 0 & 0 \\ \operatorname{grad} & -I_{2\times 2} & 0 & 0 \end{bmatrix}}_{\mathcal{J}} \begin{pmatrix} e_w \\ e_\theta \\ E_\kappa \\ e_\gamma \end{pmatrix},$$

$$\mathbf{u}_{\partial} = \underbrace{\begin{bmatrix} \gamma_0^{\Gamma_D} & \mathbf{0} \\ \mathbf{0} & \gamma_n^{\Gamma_N} \end{bmatrix}}_{\mathcal{B}} \begin{pmatrix} e_v \\ E_\varepsilon \end{pmatrix},$$

$$\mathbf{y}_{\partial} = \underbrace{\begin{bmatrix} \mathbf{0} & \gamma_n^{\Gamma_D} \\ \gamma_0^{\Gamma_N} & \mathbf{0} \end{bmatrix}}_{\mathcal{C}} \begin{pmatrix} e_v \\ E_\varepsilon \end{pmatrix},$$

$$(4.28)$$

where $\gamma_0^{\Gamma_*}$ denotes the trace over the set Γ_* , namely $\gamma_0^{\Gamma_*} e_v = e_v|_{\Gamma_*}$. Furthermore, $\gamma_n^{\Gamma_*}$ denotes the normal trace over the set Γ_* , namely $\gamma_n^{\Gamma_*} E_{\varepsilon} = E_{\varepsilon} \cdot n|_{\Gamma_*}$.

Remark 5

It can be observed that the interconnection structure given by \mathcal{J} in (4.28) mimics that of the Timoshenko beam [JZ12, Chapter 7].

Theorem 5 (Stokes-Dirac structure for elastodynamics) Let $H^{\text{Grad}}(\Omega, \mathbb{V})$ the space of vectors with symmetric gradient in $L^2(\Omega, \mathbb{S})$ and $H^{\text{Div}}(\Omega, \mathbb{S})$ denote the space of symmetric tensor with divergence in $L^2(\Omega, \mathbb{V})$. Denote by $H = H^{\text{Div}}(\Omega, \mathbb{S}) \times H^{\text{Grad}}(\Omega, \mathbb{V})$, $F = L^2(\Omega, \mathbb{V}) \times L^2(\Omega, \mathbb{S})$ and $F_{\partial} = L^2(\partial\Omega, \mathbb{V})$.

The set

$$D_{\mathcal{J}} = \left\{ \begin{pmatrix} \boldsymbol{f} \\ \boldsymbol{f}_{\partial} \\ \boldsymbol{e} \\ \boldsymbol{e}_{\partial} \end{pmatrix} \mid \boldsymbol{e} \in H, \ \boldsymbol{f} = -\mathcal{J}\boldsymbol{e}, \ \boldsymbol{f}_{\partial} = \mathcal{B}\boldsymbol{e}, \ \boldsymbol{e}_{\partial} = \mathcal{C}\boldsymbol{e} \right\}, \tag{4.29}$$

where $\mathbf{e} = (\mathbf{e}_v, \mathbf{E}_{\varepsilon})$ and $\mathcal{J}, \mathcal{B}, \mathcal{C}$ are defined in (3.33), is a Stokes-Dirac structure with respect to the pairing

$$\left\langle \left\langle \left. \left\langle \left(\boldsymbol{f}^{1}, \boldsymbol{f}_{\partial}^{1}, \boldsymbol{e}^{1}, \boldsymbol{e}_{\partial}^{1} \right), \left(\boldsymbol{f}^{2}, \boldsymbol{f}_{\partial}^{2}, \boldsymbol{e}^{2}, \boldsymbol{e}_{\partial}^{2} \right) \right. \right\rangle \right\rangle := \left\langle \boldsymbol{e}^{1}, \boldsymbol{f}^{2} \right\rangle_{F} + \left\langle \boldsymbol{e}^{2}, \boldsymbol{f}^{1} \right\rangle_{F} + \left\langle \boldsymbol{e}_{\partial}^{1}, \boldsymbol{f}_{\partial}^{2} \right\rangle_{F_{\partial}} + \left\langle \boldsymbol{e}_{\partial}^{2}, \boldsymbol{f}_{\partial}^{1} \right\rangle_{F_{\partial}}. \tag{4.30}$$

Proof. A Stokes-Dirac is characterized by the fact that $D_{\mathcal{J}} = D_{\mathcal{J}}^{\perp}$. Then one has to show that $D_{\mathcal{J}} \subset D_{\mathcal{J}}^{\perp}$ and $D_{\mathcal{J}}^{\perp} \subset D_{\mathcal{J}}$. The proof is found by employing the integration by parts formula already used for (3.32). The main steps of Theorem 3.6 in [LGZM05] are followed here.

Step 1. To show that $D_{\mathcal{J}} \subset D_{\mathcal{J}}^{\perp}$, take $(f, f_{\partial}, e, e_{\partial}) \in D_{\mathcal{J}}$. Then

$$\begin{split} \langle \langle (\boldsymbol{f}, \boldsymbol{f}_{\partial}, \boldsymbol{e}, \boldsymbol{e}_{\partial}), (\boldsymbol{f}, \boldsymbol{f}_{\partial}, \boldsymbol{e}, \boldsymbol{e}_{\partial}) \rangle \rangle &= 2 \langle \boldsymbol{e}, \boldsymbol{f} \rangle_{F} + 2 \langle \boldsymbol{e}_{\partial}, \boldsymbol{f}_{\partial} \rangle_{F_{\partial}}, \\ &= 2 \langle \boldsymbol{e}, -\mathcal{J} \boldsymbol{e} \rangle_{F} + 2 \langle \boldsymbol{e}_{\partial}, \boldsymbol{f}_{\partial} \rangle_{F_{\partial}}, \\ &= -2 \int_{\Omega} \left\{ \boldsymbol{e}_{v} \cdot \operatorname{Div} \boldsymbol{E}_{\varepsilon} + \boldsymbol{E}_{\varepsilon} : \operatorname{Grad} \boldsymbol{e}_{v} \right\} \, d\Omega \\ &+ 2 \int_{\partial \Omega} \boldsymbol{e}_{v} \cdot (\boldsymbol{E}_{\varepsilon} \cdot \boldsymbol{n}) \, dS = 0, \quad \text{from (3.32)}. \end{split}$$

This implies $D_{\mathcal{J}} \subset D_{\mathcal{J}}^{\perp}$.

Step 2. Take $(\phi, \phi_{\partial}, \epsilon, \epsilon_{\partial}) \in D_{\mathcal{J}}^{\perp}$ and $e_0 \in H$ with compact support on Ω . This implies $\mathcal{B}e_0 = (\mathbf{0}, \mathbf{0})$ and $\mathcal{C}e_0 = (\mathbf{0}, \mathbf{0})$. Taking $(-\mathcal{J}e_0, \mathbf{0}, e_0, \mathbf{0}) \in D_{\mathcal{J}}$ then

$$\langle \langle (\boldsymbol{\phi}, \boldsymbol{\phi}_{\partial}, \boldsymbol{\epsilon}, \boldsymbol{\epsilon}_{\partial}), (\mathcal{J}\boldsymbol{e}_{0}, \boldsymbol{0}, \boldsymbol{e}_{0}, \boldsymbol{0}) \rangle \rangle = \langle \boldsymbol{\epsilon}, -\mathcal{J}\boldsymbol{e}_{0} \rangle_{E} + \langle \boldsymbol{e}_{0}, \boldsymbol{\phi} \rangle_{E} = 0, \quad \forall \boldsymbol{e}_{0} \in H.$$

It follows that $\epsilon \in H$ and $\phi = -\mathcal{J}\epsilon$.

Step 3. Take $(\phi, \phi_{\partial}, \epsilon, \epsilon_{\partial}) \in D_{\mathcal{J}}^{\perp}$ and $(f, f_{\partial}, e, e_{\partial}) \in D_{\mathcal{J}}$. Variables e, ϵ are indeed tuples containing a vector and a tensor, namely $e = (e_v, \mathbf{E}_{\varepsilon}), \epsilon = (\epsilon_v, \mathbf{\mathcal{E}}_{\varepsilon})$. From step 2 and (4.30)

$$0 = -\langle \boldsymbol{e}, \mathcal{J}\boldsymbol{\epsilon} \rangle_{F} - \langle \mathcal{J}\boldsymbol{e}, \boldsymbol{\epsilon} \rangle_{F} + \langle \boldsymbol{e}_{\partial}, \boldsymbol{\phi}_{\partial} \rangle_{F_{\partial}} + \langle \boldsymbol{\epsilon}_{\partial}, \boldsymbol{f}_{\partial} \rangle_{F_{\partial}},$$

$$= -\int_{\partial\Omega} \{\boldsymbol{e}_{v} \cdot (\boldsymbol{\mathcal{E}}_{\varepsilon} \cdot \boldsymbol{n}) + \boldsymbol{\epsilon}_{v} \cdot (\boldsymbol{E}_{\varepsilon} \cdot \boldsymbol{n})\} \, dS + \langle \boldsymbol{e}_{\partial}, \boldsymbol{\phi}_{\partial} \rangle_{F_{\partial}} + \langle \boldsymbol{\epsilon}_{\partial}, \boldsymbol{f}_{\partial} \rangle_{F_{\partial}}$$

Consider the splitting of the boundary $\partial \Omega = \Gamma_N \cup \Gamma_D$

$$\int_{\partial\Omega} \left\{ \boldsymbol{e}_{v} \cdot (\boldsymbol{\mathcal{E}}_{\varepsilon} \cdot \boldsymbol{n}) + \boldsymbol{\epsilon}_{v} \cdot (\boldsymbol{E}_{\varepsilon} \cdot \boldsymbol{n}) \right\} dS = + \int_{\Gamma_{N}} \left\{ \boldsymbol{e}_{\partial,2} \cdot (\boldsymbol{\mathcal{E}}_{\varepsilon} \cdot \boldsymbol{n}) + \boldsymbol{\epsilon}_{v} \cdot \boldsymbol{f}_{\partial,2} \right\} dS,
+ \int_{\Gamma_{D}} \left\{ \boldsymbol{f}_{\partial,1} \cdot (\boldsymbol{\mathcal{E}}_{\varepsilon} \cdot \boldsymbol{n}) + \boldsymbol{\epsilon}_{v} \cdot \boldsymbol{e}_{\partial,1} \right\} dS,$$

where the elements of the vectors $\mathbf{f}_{\partial} = (\mathbf{f}_{\partial,1}, \mathbf{f}_{\partial,2})$, $\mathbf{e}_{\partial} = (\mathbf{e}_{\partial,1}, \mathbf{e}_{\partial,2})$ have been considering. By expanding of the terms $\langle \mathbf{e}_{\partial}, \boldsymbol{\phi}_{\partial} \rangle_{F_{\partial}} + \langle \boldsymbol{\epsilon}_{\partial}, \mathbf{f}_{\partial} \rangle_{F_{\partial}}$ and given the fact that \mathbf{e}_{∂} , \mathbf{f}_{∂} have arbitrary values then

$$oldsymbol{\phi}_{\partial} = egin{bmatrix} oldsymbol{\gamma}_0^{\Gamma_D} & oldsymbol{0} \ oldsymbol{0} & oldsymbol{\gamma}_n^{\Gamma_N} \end{bmatrix} egin{pmatrix} oldsymbol{\epsilon}_v \ oldsymbol{\mathcal{E}}_arepsilon \end{pmatrix}, \qquad oldsymbol{\epsilon}_{\partial} = egin{bmatrix} oldsymbol{0} & oldsymbol{\gamma}_n^{\Gamma_D} \ oldsymbol{\gamma}_0^{\Gamma_N} & oldsymbol{0} \end{bmatrix} egin{pmatrix} oldsymbol{\epsilon}_v \ oldsymbol{\mathcal{E}}_arepsilon \end{pmatrix},$$

meaning that $D_{\mathcal{J}}^{\perp} \subset D_{\mathcal{J}}$. This concludes the proof.

The Mindlin plate falls within the assumption of [Skr19], hence it is a well posed boundary controlled pH systems.

4.2.2 Port-Hamiltonian Kirchhoff plate

4.3 Laminated anisotropic case

- 4.3.1 Thin plate assumption
- 4.3.2 Thick plate assumption
- 4.4 The membrane shell problem?

Thermoelasticity in port-Hamiltonian form

- 5.1 Linear coupled thermoelasticity
- 5.2 Thermoelastic Euler-Bernoulli beam
- 5.3 Thermoelastic Kirchhoff plate

Part III

Finite element structure preserving discretization

Partitioned finite element method

- 6.1 General procedure
- 6.1.1 Non-linear case
- 6.1.2 Linear case
- 6.1.3 Examples
- 6.2 Connection with mixed finite elements
- 6.3 Inhomogeneous boundary conditions
- 6.3.1 Solution using Lagrange multipliers
- 6.3.2 Virtual domain decomposition

Convergence numerical study

- 7.1 Plate problems using known mixed finite elements
- 7.2 Non-standard discretization of flexible structures

Numerical applications

- 8.1 Boundary stabilization
- 8.2 Thermoelastic wave propagation
- 8.3 Mixed boundary conditions
- 8.3.1 Trajectory tracking of a thin beam
- 8.3.2 Vibroacoustic under mixed boundary conditions
- 8.4 Modal analysis of plates

Part IV

Port-Hamiltonian flexible multibody dynamics

Modular multibody systems in port-Hamiltonian form

- 9.1 Reminder of the rigid case
- 9.2 Flexible floating body
- 9.3 Modular construction of multibody systems

Validation

- 10.1 Beam systems
- 10.1.1 Modal analysis of a flexible mechanism
- 10.1.2 Non-linear crank slider
- 10.1.3 Hinged beam
- 10.2 Plate systems
- 10.2.1 Boundary interconnection with a rigid element
- 10.2.2 Actuated plate

Conclusion

Conclusions and future directions

Mathematical tools

A.1 Differential operators

The space of all, symmetric and skew-symmetric $d \times d$ matrices are denoted by \mathbb{M} , \mathbb{S} , \mathbb{K} respectively. The space of \mathbb{R}^d vectors is denoted by \mathbb{V} . $\Omega \subset \mathbb{R}^d$ is an open connected set. For a scalar field $u: \Omega \to \mathbb{R}$ the gradient is defined as

$$\operatorname{grad}(u) = \nabla u := \left(\partial_{x_1} u \dots \partial_{x_d} u\right)^{\top}.$$

For a vector field $u: \Omega \to \mathbb{V}$, with components u_i , the gradient (Jacobian) is defined as

$$\operatorname{grad}(\boldsymbol{u})_{ij} := (\nabla \boldsymbol{u})_{ij} = \partial_{x_i} u_i.$$

The symmetric part of the gradient operator Grad (i. e. the deformation gradient in continuum mechanics) is thus given by

$$\operatorname{Grad}(\boldsymbol{u}) := \frac{1}{2} \left(\nabla \boldsymbol{u} + (\nabla \boldsymbol{u})^{\top} \right).$$

The Hessian operator of u is then computed as follows

$$\operatorname{Hess}(u) = \nabla^2 u = \operatorname{Grad}(\operatorname{grad}(u)),$$

For a tensor field $U: \Omega \to \mathbb{M}$, with components u_{ij} , the divergence is a vector, defined column-wise as

$$\operatorname{Div}(\boldsymbol{U}) = \nabla \cdot \boldsymbol{U} := \left(\sum_{i=1}^{d} \partial_{x_i} u_{ij}\right)_{j=1,\dots,d}.$$

The double divergence of a tensor field \boldsymbol{U} is then a scalar field defined as

$$\operatorname{div}(\operatorname{Div}(\boldsymbol{U})) := \sum_{i,j=1}^{d} \partial_{x_i} \partial_{x_j} u_{ij}.$$

Definition 6 (Formal adjoint, Def. 5.80 [RR04])

Consider the differential operator defined on Ω

$$\mathcal{L}(\boldsymbol{x}, \partial) = \sum_{|\alpha| \le k} a_{\alpha}(\boldsymbol{x}) \partial^{\alpha}, \tag{A.1}$$

where $\alpha := (\alpha_1, \ldots, \alpha_d)$ is a multi-index of order $|\alpha| := \sum_{i=1}^d \alpha_i$, a_{α} are a set of real scalars and $\partial^{\alpha} := \partial_{x_1}^{\alpha_1} \ldots \partial_{x_d}^{\alpha_d}$ is a differential operator of order $|\alpha|$ resulting from a combination of spatial derivatives. The formal adjoint of \mathcal{L} is the operator defined by

$$\mathcal{L}^*(\boldsymbol{x}, \partial)u = \sum_{|\alpha| \le k} (-1)^{\alpha} \partial^{\alpha}(a_{\alpha}(\boldsymbol{x})u(\boldsymbol{x})). \tag{A.2}$$

The importance of this definition lies in the fact that

$$\langle \phi, \mathcal{L}(\mathbf{x}, \partial) \psi \rangle \Omega = \langle \mathcal{L}^*(\mathbf{x}, \partial) \phi, \psi \rangle \Omega$$
 (A.3)

for every $\phi, \psi \in C_0^{\infty}(\Omega)$. If the assumption of compact support is removed, then (A.3) no longer holds; instead the integration by parts yields additional terms involving integrals over the boundary $\partial\Omega$. However, these boundary terms vanish if ϕ and ψ satisfy certain restrictions on the boundary.

Appendix B

Finite elements gallery

Appendix C

Implementation using FEniCS and Firedrake

Bibliography

- [Abe12] R. Abeyaratne. Lecture Notes on the Mechanics of Elastic Solids. Volume II: Continuum Mechanics. Cambridge, MA and Singapore, 1st edition, 2012.
- [BBF⁺13] Daniele Boffi, Franco Brezzi, Michel Fortin, et al. *Mixed finite element methods and applications*, volume 44. Springer, 2013.
- [Bre08] F. Brezzi. Mixed finite elements, compatibility conditions, and applications. Springer, 2008.
- [Cia88] P. G. Ciarlet. *Mathematical Elasticity: Three-Dimensional Elasticity*. Studies in mathematics and its applications. North-Holland, 1988.
- [Cou90] T.J. Courant. Dirac manifolds. Transactions of the American Mathematical Society, 319(2):631–661, 1990.
- [CR16] F.L. Cardoso Ribeiro. Port-Hamiltonian modeling and control of fluid-structure system. PhD thesis, Université de Toulouse, Dec. 2016.
- [Gri15] M. Grinfeld. *Mathematical Tools for Physicists*. John Wiley & Sons Inc, 2nd edition, jan 2015.
- [HM78] T. J.R. Hughes and J.E. Marsden. Classical elastodynamics as a linear symmetric hyperbolic system. *Journal of Elasticity*, 8(1):97–110, 1978.
- [JZ12] B. Jacob and H. Zwart. Linear Port-Hamiltonian Systems on Infinitedimensional Spaces. Number 223 in Operator Theory: Advances and Applications. Springer Verlag, Germany, 2012. https://doi.org/10.1007/ 978-3-0348-0399-1.
- [Kot19] P. Kotyczka. Numerical Methods for Distributed Parameter Port-Hamiltonian Systems. TUM University Press, 2019.
- [KZ15] M. Kurula and H. Zwart. Linear wave systems on n-d spatial domains. *International Journal of Control*, 88(5):1063-1077, 2015. https://www.tandfonline.com/doi/abs/10.1080/00207179.2014.993337.
- [Lee12] J. Lee. Mixed methods with weak symmetry for time dependent problems of elasticity and viscoelasticity. PhD thesis, University of Minnesota, 2012.
- [LGZM05] Y. Le Gorrec, H. Zwart, and B. Maschke. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization, 44(5):1864–1892, 2005. https://doi.org/10. 1137/040611677.
- [LPKL12] L. D. Landau, L. P. Pitaevskii, A. M. Kosevich, and E. M. Lifshitz. *Theory of Elasticity*. Butterworth Heinemann, third edition, Dec 2012.

68 Bibliography

[Min51] R. D. Mindlin. Influence of rotatory inertia and shear on flexural motions of isotropic elastic Plates. *Journal of Applied Mechanics*, 18:31–38, March 1951.

- [MMB05] A. Macchelli, C. Melchiorri, and L. Bassi. Port-based modelling and control of the Mindlin plate. In Proceedings of the 44th IEEE Conference on Decision and Control, pages 5989–5994, Dec 2005. https://doi.org/10.1109/CDC.2005. 1583120.
- [MvdSM05] A. Macchelli, A. J. van der Schaft, and C. Melchiorri. Port Hamiltonian formulation of infinite dimensional systems I. Modeling. In *Proceedings of the 44th IEEE Conference on Decision and Control*, volume 4, pages 3762 3767. IEEE, 01 2005.
- [Olv93] P. J. Olver. Applications of Lie groups to differential equations, volume 107 of Graduate texts in mathematics. Springer-Verlag New York, 2 edition, 1993.
- [PZ18] Dirk Pauly and Walter Zulehner. The divdiv-complex and applications to biharmonic equations. Applicable Analysis, 0(0):1-52, 2018.
- [PZ20] D. Pauly and W. Zulehner. The elasticity complex, 2020. arXiv preprint arXiv:2001.11007.
- [Red06] Junuthula Narasimha Reddy. Theory and analysis of elastic plates and shells. CRC press, 2006.
- [RR04] M. Renardy and R. C. Rogers. An Introduction to Partial Differential Equations. Number 13 in Texts in Applied Mathematics. Springer-Verlag New York, 2 edition, 2004.
- [RZ18] K. Rafetseder and W. Zulehner. A decomposition result for kirchhoff plate bending problems and a new discretization approach. SIAM Journal on Numerical Analysis, 56(3):1961–1986, 2018.
- [Skr19] N. Skrepek. Well-posedness of linear first order port-Hamiltonian systems on multidimensional spatial domains, 2019. arXiv preprint arXiv:1910.09847.
- [SS17] M. Schöberl and K. Schlacher. Variational Principles for Different Representations of Lagrangian and Hamiltonian Systems. In Hans Irschik, Alexander Belyaev, and Michael Krommer, editors, Dynamics and Control of Advanced Structures and Machines, pages 65–73. Springer International Publishing, 2017.
- [Vil07] J.A. Villegas. A Port-Hamiltonian Approach to Distributed Parameter Systems. PhD thesis, University of Twente, May 2007.

Résumé — Malgré l'abondante littérature sur le formalisme pH, les problèmes d'élasticité en deux ou trois dimensions géométriques n'ont presque jamais été considérés. Cette thèse vise à étendre l'approche port-Hamiltonienne (pH) à la mécanique des milieux continus. L'originalité apportée réside dans trois contributions majeures. Tout d'abord, la nouvelle formulation pH des modèles de plaques et des phénomènes thermoélastiques couplés est présentée. L'utilisation du calcul tensoriel est obligatoire pour modéliser les milieux continus et l'introduction de variables tensorielles est nécessaire pour obtenir une description pH équivalente qui soit intrinsèque, c'est-à-dire indépendante des coordonnées choisies. Deuxièmement, une technique de discrétisation basée sur les éléments finis et capable de préserver la structure du problème de la dimension infinie au niveau discret est développée et validée. La discrétisation des problèmes d'élasticité nécessite l'utilisation d'éléments finis non standard. Néanmoins, l'implémentation numérique est réalisée grâce à des bibliothèques open source bien établies, fournissant aux utilisateurs externes un outil facile à utiliser pour simuler des systèmes flexibles sous forme pH. Troisièmement, une nouvelle formulation pH de la dynamique multicorps flexible est dérivée. Cette reformulation, valable sous de petites hypothèses de déformations, inclut toutes sortes de modèles élastiques linéaires et exploite la modularité intrinsèque des systèmes pH.

Mots clés : Systèmes port-Hamiltonien, méchanique des solides, discretisation symplectique, méthode des éléments finis, dynamique multicorps

Abstract — Despite the large literature on pH formalism, elasticity problems in higher geometrical dimensions have almost never been considered. This work establishes the connection between port-Hamiltonian distributed systems and elasticity problems. The originality resides in three major contributions. First, the novel pH formulation of plate models and coupled thermoelastic phenomena is presented. The use of tensor calculus is mandatory for continuum mechanical models and the inclusion of tensor variables is necessary to obtain an intrinsic, i.e. coordinate free, and equivalent pH description. Second, a finite element based discretization technique, capable of preserving the structure of the infinite-dimensional problem at a discrete level, is developed and validated. The discretization of elasticity problems requires the use of non-standard finite elements. Nevertheless, the numerical implementation is performed thanks to well-established open-source libraries, providing external users with an easy to use tool for simulating flexible systems in pH form. Third, flexible multibody systems are recast in pH form by making use of a floating frame description valid under small deformations assumptions. This reformulation include all kinds of linear elastic models and exploits the intrinsic modularity of pH systems.

Keywords: Port-Hamiltonian systems, continuum mechanics, structure preserving discretization, finite element method, multibody dynamics.