

Ensemble Learning and Reinforcement Learning for Energy Demand Prediction

Hanliang Jiang, Mentor: Julio Massignan, Mentor: Ashmin Mansingh

CAISO (California Independent System Operator)

Basic Concepts from Energy Markets

The role of resources optimization

CAISO (California Independent System Operator)

Overall Plan for demand forecasting

CAISO Dataset

DAM: Day Ahead Market

ACTUAL: Ground Truth Data

RTD: Real Time Dispatch

RTPD: Read Time Pre-Dispatch

DAM: Day Ahead Market

Inputs and outputs of the day-ahead market

CAISO (California Independent System Operator)

45 | SMEC=\$14.37012

QUICK LINKS

OASIS Home

∅ CONNECTED

For RT Interval 08:30 - LMP for ZP26=\$-32.42717 NP15=\$22.2

WWW.CAISO.COM

Support System Technical Information

CAISO (California Independent System Operator)

INTERVALST/ INTERVALENI L	OAD_TYPE	OPR_DT T	OPR_HR T	OPR_INTERV	MARKET_RUI	TAC_AREA_N	LABEL T	XML_DATA_I	POS T	MW T
2023-01-01T2 2023-01-01T2	1	2023-01-01	15	0	DAM	AVA	Demand Fored	SYS_FCST_D/	2.8	1426.98
2023-01-01T1 2023-01-01T1	1	2023-01-01	10	0	DAM	AVA	Demand Fored	SYS_FCST_D/	2.8	1461.02
2023-01-01T1 2023-01-01T1	1	2023-01-01	9	0	DAM	AVA	Demand Fored	SYS_FCST_D/	2.8	1423.28
2023-01-01TC 2023-01-01T1	1	2023-01-01	2	0	DAM	AVA	Demand Fored	SYS_FCST_D/	2.8	1164.2
2023-01-02T(2023-01-02T(1	2023-01-01	22	0	DAM	AVA	Demand Fored	SYS_FCST_D/	2.8	1424.59
2023-01-02T(2023-01-02T(1	2023-01-01	18	0	DAM	AVA	Demand Fored	SYS_FCST_D/	2.8	1597.37
2023-01-01T2 2023-01-02T0		2023-01-01	16	0	DAM	AVA	Demand Fored	SYS_FCST_D/	2.8	1446.45
2023-01-01T1 2023-01-01T2	1	2023-01-01	12	0	DAM	AVA	Demand Fored	SYS_FCST_D/	2.8	1462.8
2023-01-01T1 2023-01-01T1	1	2023-01-01	11	0	DAM	AVA	Demand Fored	SYS_FCST_D/	2.8	1466.69
2023-01-01T1 2023-01-01T1	1	2023-01-01	8	0	DAM	AVA	Demand Fored	SYS_FCST_D/	2.8	1362.17
2023-01-01T2 2023-01-01T2	1	2023-01-01	13	0	DAM	AVA	Demand Fored	SYS_FCST_D/	2.8	1452.11
2023-01-01T1 2023-01-01T1	1	2023-01-01	5	0	DAM	AVA	Demand Fored	SYS_FCST_D/	2.8	1187.78
2023-01-02T(2023-01-02T(2023-01-01	24	0	DAM	AVA	Demand Fored	SYS_FCST_D/	2.8	1270.49
2023-01-01T1 2023-01-01T1	1	2023-01-01	4	0	DAM	AVA	Demand Fored	SYS_FCST_D/	2.8	1164.94
2023-01-01T1 2023-01-01T1	1	2023-01-01	3	0	DAM	AVA	Demand Fored	SYS_FCST_D/	2.8	1157.8
2023-01-01TC 2023-01-01TC	1	2023-01-01	1	0	DAM	AVA	Demand Fored	SYS_FCST_D/	2.8	1183.83
2023-01-02T(2023-01-02T(1	2023-01-01	19	0	DAM	AVA	Demand Fored	SYS_FCST_D/	2.8	1580.71
2023-01-02T(2023-01-02T(1	2023-01-01	17	0	DAM	AVA	Demand Fored	SYS_FCST_D/	2.8	1526.89
2023-01-01T1 2023-01-01T1		2023-01-01	6	0	DAM	AVA	Demand Fored	SYS_FCST_D/	2.8	1230.45
2023-01-01T1 2023-01-01T1	1	2023-01-01	7	0	DAM	AVA	Demand Fored	SYS_FCST_D/	2.8	1290.14
2023-01-02T(2023-01-02T(1	2023-01-01	23	0	DAM	AVA	Demand Fored	SYS_FCST_D/	2.8	1336.41
2023-01-02T(2023-01-02T(1	2023-01-01	21	0	DAM	AVA	Demand Fored	SYS_FCST_D/	2.8	1501.16
2023-01-02T(2023-01-02T(2023-01-01	20	0	DAM	AVA	Demand Fored	SYS_FCST_D/	2.8	1549.48
2023-01-01T2 2023-01-01T2	1	2023-01-01	14	0	DAM	AVA	Demand Fored	SYS_FCST_D/	2.8	1435.78
2023-01-02T(2023-01-02T(2023-01-01	21	0	DAM	AZPS	Demand Fored	SYS_FCST_D/	2.8	3218.27
2023-01-01T2 2023-01-01T2	1	2023-01-01	13	0	DAM	AZPS	Demand Fored	SYS_FCST_D/	2.8	2319.39
2023-01-01TC 2023-01-01TC	1	2023-01-01	1	0	DAM	AZPS	Demand Fored	SYS_FCST_DA	2.8	2708.88

Dataset split

Training set: Jan 1st, 2023 – July 1st, 2023

Validation set: July 1st, 2023 – August 1st, 2023

Test set: August 1st, 2023 – August 20th, 2023

Day Ahead Market

Real Time Market

CAISO Prediction Bias

Data Augmentation

Data Augmentation: Gaussian Noise

Data Augmentation: Beta Noise

Data Augmentation: Weibull Noise

Data Augmentation: Laplace Noise

Model Ensembling

Model Ensembling

Linear Regression with Actual Values as a feature: Parameters

```
Intercept: 3.637978807091713e-12
Coefficients: [-1.56102205e-16 -5.55111512e-17 -5.07042306e-17 -1.15643556e-16
-6.97027300e-17 1.00000000e+00]
LR: 2.7630033906398518e-12
```


K Nearest Neighbors: Tuning Hyperparameters

K Nearest Neighbors: Tuning Hyperparameters

Multilayer Perceptron: Tuning Hyperparameters

Multilayer Perceptron: Tuning Hyperparameters

Random Forest: Tuning Hyperparameters

Random Forest: Tuning Hyperparameters

Linear Regression: Parameters

Intercept: 3809.3155696293616

Coefficients: [0.05976227 0.19431258 0.19846912 0.19496223 0.19161918]

LR: 1940.2586104000395

Error compared with single models

Error compared with single models

Conclusion

In this research project, we explore the whole procedure of deploying and optimizing machine learning models for increasing prediction accuracy, by experimenting with data processing and machine learning methods, we improved the accuracy of the power demand forecasting.

- Reinforcement learning methods
- Combining with data markets
- Real world CAISO model improvement

SIEMENS

