

Principios y aplicaciones del análisis de redes en la vigilancia y epidemiología de enfermedades infecciosas: exemplos con influenza A en el Sudeste Asiático y China

Prof. R.J. Soares Magalhāes
Professor Titular de Enfermedades Zoonoticas y Bioseguridad
Queensland Alliance for One Health Sciences, University of Queensland
r.magalhaes@uq.edu.au; www.spatialepilab.com

Historia natural de la infección: modelo SEIR para una infección inmunizante of Queensland

- S Susceptible
- E Exposed (infected)
- I Infectious
- R –Recovered (Immune)

La probabilidad de que el contacto infeccioso resulte en infección (β) of QUEENSLAND

Dinámica a nivel de población

¿Cuál es el potencial de infección? – Tasa de reproducción (R0)

¿Pero qué determina si habrá un brote o no?

The threshold conditions for disease spread:

- Deterministic approach
 - R=1 (endemic situation)
 - R<1 disease will not spread
 - R>1 disease will spread
- Stochastic approach
 - R<1 minor outbreaks may occur
 - R>1 minor or major outbreak may occur

- Proportion of the population needed to be immunised to control transmission:
 - Herd immunity threshold = 1- $(1/R_0)$

R0 para enfermedades infecciosas seleccionadas

Basic Reproductive ratio (R0) - Average number of secondary infections produced by the introduction of an infectious case in a homogeneously mixing, totally susceptible population during its entire infectious period.

$$R_0 = ecr \times \left(\frac{1}{r}\right)$$

R0 is related to the number of individuals effectively contacted by per unit time (effective contact rate) and the duration of the infectious period.

La fuerza de la infección (Force of infection)

- The force of infection λ is the probability for a susceptible host to acquire the infection.
- In a simple model with homogeneous "mixing", it has 3 "factors":
 λ = m x (I / N) x t
- m: "mixing" rate (contact pattern using contact networks)
- •I / N: proportion of contacts with infectious hosts

Effective contact rate (ECR)

- •t : probability of transmission of the infection once a contact is made between an infectious host and a susceptible host
- \rightarrow Number of new infections = $\lambda \times S$ ("catalytic model")

¿Qué es una red?

01

A network consists of "units of interest" that may be "linked" in some way (or not!) 02

Units of interest are NODES

03

Links are EDGES and represent some form of "relationship"

04

Each type of link defines a distinct network

 It may (or may not) be reasonable to amalgamate networks

Presentation Title | Date CRICOS code 00025B 10

Medición de patrones de contacto: ejemplos de redes de movimient of Queensland Of Queensland Of Queensland

Cattle movement, UK, Feb 2002 Christley et al, SVEPM 2005

Redes de mercado de aves vivas en el sudeste de China

Presentation Title | Date CRICOS code 00025B

Redes de movimiento de individuos entre localidades de Samoa.

Presentation Title | Date CRICOS code 00025B 13

¿Qué es el análisis de red?

A toolbox of methods for:

- **Exploring** the topology of networks (i.e. relationship between individuals)
- Identifying subgroups
- Statistical analysis of network data
 - -Characterising the role of individuals
- and more...

Research questions:

Size, duration and probability of an outbreak

Network Centrality

 Network centrality is a measure of an individuals "position" in a network

- Many centrality measures exist;
 - Degree
 - Betweenness
 - Closeness
 - K-Core
 - Eigenvector
 - ..

Network Centrality - Degree

Definition: the sum of unique contacts made by a node to all other nodes. <u>Individual level measure of connectivity</u>

Directed graphs, can describe the:

- In-degree: the number of ties connecting to a node
- Out-degree: the number of ties leaving a node

1 mode "source-source node" network of poultry movement in eastern China ale University according to the degree value

Disassortative network nodes tend to connect to other nodes that have different degree.

Assortative network – nodes connected to other nodes that have similar degree.

Network Centrality in Valued and Directed Networks

Degree: the sum of unique contacts made by a node to all other nodes.

ID	Out degree	In degree
1	0	1
2	2	0
3	1	0
4	3	3
5	1	1
6	3	3
7	1	3

Network Centrality – K-core

Definition

Maximal subgraph (subgroup of nodes) in which each node has at least degree *k* within the subgraph (ie., 2-core, 3-coreetc....)

- Identifies relatively dense subgraphs
- Uses degree to identify clusters
- -Generally used on undirected networks
- -A component always a 1-core

Remove lowest k-cores until the network breaks up into relatively dense components

Remove lowest k-cores until the network breaks up into relatively dense components

Red de movimiento de aves de corral de 2-mode "nodo de mercadofuente" en el sur de China según el valor k-core

4/13/2025 23

Network structure has important implications for infectious disease control

Networks with skewed degree distributions said to be:

- •Resistant to random *control* programmes
- •Susceptible to targeted control programmes

Implications for disease control and biosecurity:

- •Random (elective) control/prevention/biosecurity may have little effect globally unless undertaken on a large proportion of nodes
- Targeting "high risk" nodes
 - -More useful in disassortative networks (?biological)
 - -May need to target more nodes in assortative networks (?social)
 - -Requires identification of high-risk individuals
 - Difficult
 - Varies with time

Individual level factors

- Disease status
- Social status/age

Management factors

- Biosecurity indicators
- Housed v's pastured
- Stocking density

Geographic and Environmental factors

- Spatial location
- Climate/season
- Terrain

A diseased individual may have: Increased contact rate Early stages of on outbreaks

• **Decreased** contact rate

Disease control interventions
in place- e.g. movement
restriction

Resumen de las pruebas de autocorrelación en el análisis de redes sociales

Statistical Tests

Continuous variable similarity (e.g., income, score)

Moran's I, Geary's C or t-test

Categorical attribute clustering (e.g., gender, role)

Join Count or Assortativity

Testing relationship between attribute matrix and network ties

QAP or Mantel Test

Modeling influence or behavior diffusion

Network autocorrelation models or SAOM

Group or community-based clustering

Modularity / ERGMs

Diferencias estadísticas en "Degree" entre ubicaciones con diferentes patrones de infección en diferentes puntos temporales

Month/County infection status	Not-infected	Infected	Two-tailed t-test probability of the difference of the mean degree
January			
Poultry outbreaks	47	21	-0.203 (P = 0.933)
Market infection	43	25	0.577 (P = 0.768)
Human outbreaks	53	15	-6.974 (P = 0.001)
February			
Poultry outbreaks	61	24	4.561 (P = 0.018)
Market infection	59	26	5.475 (P = 0.001)
Human outbreaks	68	17	-1.941 (P = 0.202)
March			
Poultry outbreaks	57	20	5.325 (P = 0.076)
Market infection	57	20	5.325 (P = 0.078)
Human outbreaks	65	12	-8.559 (P = 0.011)
April			
Poultry outbreaks	41	19	1.972 (P = 0.324)
Market infection	40	20	2.100 (P = 0.281)
Human outbreaks	49	11	-5.187 (P = 0.018)

doi:10.1371/journal.pone.0049712.t002

The connectivity among counties experiencing human infection was significantly higher compared to counties without human infection for the months of January, March and April. Conversely, counties with poultry infections were found to be significantly less connected than counties without poultry infection for the month of February.

4/13/2025 28

Gracias - preguntas?

Prof. R.J. Soares Magalhāes
Professor Titular de Enfermedades Zoonoticas y Bioseguridad
Queensland Alliance for One Health Sciences, University of Queensland
r.magalhaes@uq.edu.au; www.spatialepilab.com

Presentation Title | Date

CRICOS code 00025B