

LINEAR INTEGRATED CIRCUITS

Dr Shashidhar TantryElectronics and Communication Engineering

Unit 2 Simultaneous equations with m < 1

• Linear op amp transfer function is limited to equation of straight line $\underline{y} = +/-mx+/-b$

Table 5.1: The Gain and Offset Matrix

		b < 0	b = 0	b > 0
Noninverting	m > 1	Case 2 (Section 4.4.2)	Noninverting gain	Case 1 (Section 4.4.1)
			(Section 2.3)	
	m = 1	Section 5.4	Noninverting buffer	
			(Section 5.7)	
	m < 1		Section 5.2	Section 5.3
	m = 0	Negative reference or	Ground	Positive reference or
		regulator (Chapter 21)		regulator (Chapter 20)
Inverting	m < -1	Section 5.7	Section 5.5	Section 5.6
	$m \geq -1$	Case 4 (Section 4.4.4)	Inverting gain	Case 3 (Section 4.4.3)
			(Section 2.4)	

Unit 2 Non inverting attenuator with zero offset, positive offset and negative offset

Vout =
$$m \times Vin$$

 $m = \frac{R2}{R2}$

Vout =
$$m \times Vin + b$$

 $m = \frac{1/R1}{1/R1 + 1/R2 + 1/R3}$
 $b = Vref \times \frac{1/R3}{1/R1 + 1/R2 + 1/R3}$

Zero offset

Positive offset

Unit 2 Non inverting attenuator with zero offset, positive offset and negative offset

Vout = $m \times Vin$

Vout =
$$m \times Vin + b$$

 $m = \frac{1/R1}{1/R1 + 1/R2 + 1/R3}$
 $b = Vref \times \frac{1/R3}{1/R1 + 1/R2 + 1/R3}$

Zero offset

$$Vout = m \times Vin - b$$

$$m = \left(\frac{R2}{R1 + R2}\right) \times \left(1 + \frac{Rf}{Rg}\right)$$

$$b = Vref \times \frac{Rf}{Rg}$$

Unit 2 Inverting attenuator with zero offset, positive offset and negative offset

$$\begin{aligned} &Vout = -m \times Vin + b \\ &m = \frac{Rf \times Ratten}{Rin \times (Rin + 2 \times Ratten)} \\ &b = Vref \times \left(\frac{R2}{R1 + R2}\right) \times \left(1 + \frac{Rf}{Rin + Rin ||Ratten}\right) \end{aligned}$$

Zero offset

Positive offset

Unit 2 Inverting attenuator with zero offset, positive offset and negative offset

Zero offset

Vout =
$$-m \times Vin + b$$

$$m = \frac{Rf \times Ratten}{Rin \times (Rin + 2 \times Ratten)}$$

$$b = Vref \times \left(\frac{R2}{R1 + R2}\right) \times \left(1 + \frac{Rf}{Rin + Rin ||Ratten|}\right)$$

Positive offset

$$Vout = -m \times Vin - b$$

$$m = \frac{Rf \times Ratten}{Rin \times (Rin + 2 \times Ratten)}$$

$$b = Vref \times \frac{Rf}{Rg}$$

Unit 2 Development of non ideal op amp equations

- Concept of DC errors and AC errors
- Inaccuracies can be minimized using negative feedback
- Stability is usually an criteria when operating frequency is high
- Internally compensated and externally compensated to improve stability

Unit 2 Development of non ideal op amp equations

Feedback system block diagram.

$$\frac{V_{OUT}}{V_{IN}} = \frac{A}{1 + A\beta}$$

When loop gain is large,

$$\frac{V_{OUT}}{V_{IN}} = \frac{1}{\beta}$$

Feedback loop broken to calculate loop gain.

Error indicator, proportional to signal and inversely proportional to loop gain

$$E = \frac{V_{IN}}{1 + A\beta}$$

Unit 2 Development of non ideal op amp equations Non Inverting amp

Figure 7.3 Noninverting op amp.

amplifier transfer equation.

$$V_{OUT} = a(V_{IN} \pm V_B)$$

----- 2

 V_B calculated based on resistor divider from V_{OUT}

$$V_B = \frac{V_{OUT}Z_G}{Z_F + Z_G}$$
 for $I_B = 0$ -----2

From 1 and 2,

$$V_{OUT} = aV_{IN} - \frac{aZ_GV_{OUT}}{Z_G + Z_F}$$

After simplification,

$$\frac{V_{OUT}}{V_{IN}} = \frac{a}{1 + \frac{aZ_G}{Z_G + Z_F}}$$

In the form of closed loop function,

$$\frac{V_{OUT}}{V_{IN}} = \frac{A}{1 + A\beta}$$

$$\begin{array}{c} | O \circ P \longrightarrow A\beta = \frac{aZ_G}{Z_G + Z_F} \\ \text{gain} \end{array}$$

Unit 2 Development of non ideal op amp equations Non Inverting amp

Open-loop noninverting op amp.

$$\begin{split} V_{RETURN} &= \frac{aV_{TEST}Z_G}{Z_F + Z_G} \\ \frac{V_{RETURN}}{V_{TEST}} &= A\beta = \frac{aZ_G}{Z_F + Z_G} \end{split}$$

For measurement, break the loop, apply test signal at one end and measure voltage at the other end

Unit 2 Development of non ideal op amp equations Inverting amp

Figure 7.5 Inverting op amp.

$$V_{OUT} = -aV_A$$

$$V_A = \frac{V_{IN}Z_F}{Z_G + Z_F} + \frac{V_{OUT}Z_G}{Z_G + Z_F} \text{ for } I_B = 0$$

$$\frac{V_{OUT}}{V_{IN}} = \frac{\frac{-aZ_F}{Z_G + Z_F}}{1 + \frac{aZ_G}{Z_G + Z_F}}$$

- Open loop gain is different compared to non inverting amp
- Loop gain is same compared to non inverting amp

Unit 2 Development of non ideal op amp equations Inverting amp

Inverting op amp: feedback loop broken for loop gain calculation.

$$\frac{V_{RETURN}}{V_{TEST}} = \frac{aZ_G}{Z_G + Z_F} = A\beta$$

For measurement, break the loop, apply test signal at one end and measure voltage at the other end

Unit 2 Development of non ideal op amp equations Differential amp

Figure 7.7
Differential amplifier circuit.

: transfer equation.

$$V_{OUT} = aV_E = V_+ \pm V_-$$

$$V_{+} = V_2 \frac{Z_F}{Z_F + Z_G}$$

$$V_{-} = V_1 \frac{Z_F}{Z_F + Z_G} - V_{OUT} \frac{Z_G}{Z_F + Z_G}$$

$$V_{OUT} = a \left[\frac{V_2 Z_F}{Z_F + Z_G} - \frac{V_1 Z_F}{Z_F + Z_G} - \frac{V_{OUT} Z_G}{Z_F + Z_G} \right] \label{eq:VOUT}$$

Unit 2 Development of non ideal op amp equations Differential amp

Figure 7.7
Differential amplifier circuit.

$$\frac{V_{OUT}}{V_2 - V_1} = \frac{\frac{aZ_F}{Z_F + Z_G}}{1 + \frac{aZ_G}{Z_F + Z_G}}$$

Loop gain is same compared to non inverting amp and inverting amp

Operation

Figure 7.8
Bode response of a typical op amp.

Frequency

noninverting op amp:

$$\frac{V_{OUT}}{V_{IN}} = \frac{a}{1 + \frac{aZ_G}{Z_G + Z_F}}$$

When open loop gain is high

When open loop gain is high

When
$$a >$$

Vour = 1+ 2+

Vin 26

inverting op amp stage:

$$\frac{V_{OUT}}{V_{IN}} = \frac{\frac{-aZ_F}{Z_G + Z_F}}{1 + \frac{aZ_G}{Z_G + Z_F}}$$

When open loop gain is high

$$V_{in}$$
 Z_{in} Z_{in} Z_{in}

Table 7.1: Real Inverting Op Amp Stage Gains for a = 80 dB

a	R_G	R _F	Attempted	Actual	Error (%)
10,000	100,000	100,000	-1	-0.9998	-0.0200
10,000	10,000	100,000	-10	-9.9890	-0.1099
10,000	1000	100,000	-100	-99.0001	-0.9999
10,000	100	100,000	-1000	-909.0083	-9.0992
10,000	10	100,000	-10,000	-4999.7500	-50.0025
10,000	1	100,000	-100,000	-9090.8264	-90.9092
10,000	1	1.00E + 12	-1E + 12	-9999.9999	-100

Table 7.2: Real Noninverting Op Amp Stage Gains for a = 80 dB

a	R_G	R _F	Attempted	Actual	Error (%)
10,000	100,000	100,000	2	1.9996	-0.0200
10,000	10,000	100,000	11	10.9879	-0.1099
10,000	1000	100,000	101	99.9901	-0.9999
10,000	100	100,000	1001	909.9173	-9.0992
10,000	10	100,000	10,001	5000.2500	-50.0025
10,000	1	100,000	100,001	9090.9174	-90.9092
10,000	1	1.00E + 12	1E + 12	9999.9999	-100

higher

Unit 2 Voltage feedback op amp compensation

Background

- Oscillations are considered as boundary between stability and non stability
- Poor stability circuit exhibits ringing and overshoot
- Phase margin is one measure for stability
- Compensation provides patch between stability and performance
- Compensation network is by RC network

Unit 2 Voltage feedback op amp compensation Internal compensation

A capacitor C connected between input and output for compensation, called internal compensation capacitor

Plot of internally compensated op amp

changes phose marger

Unit 2 Voltage feedback op amp compensation Internal compensation

Phase margin and percent overshoot versus damping ratio.

Plot of internally compensated op amp, measure of phase margin with damping ratio and overshoot (Data sheet for TL03X)

Unit 2 Importance of external compensation

- High frequency noise reduction
- Improve phase margin
- Reduce overshoot
- Compensation can be tailored to the circuit requirement

- Output capacitor added
- Combination of output capacitor and output impedance forms dominant pole

Equivalent circuit after loop break

Apply Thevenin's theorem to separate Z_o and C_L

$$V_{TH} = \frac{\Delta Va}{Z_0 C_L s + 1}$$

$$Z_{TH} = \frac{Z_O}{Z_O C_{LS} + 1}$$

Calculate V_{return} voltage

$$V_{RETURN} = \frac{V_{TH}Z_{G}}{Z_{G} + Z_{F} + Z_{TH}} = \frac{\Delta Va}{Z_{O}C_{L}s + 1} \left(\frac{Z_{G}}{Z_{F} + Z_{G} + \frac{Z_{O}}{Z_{O}C_{L}s + 1}} \right)$$

$$V_{RETURN} = \frac{V_{TH}Z_G}{Z_G + Z_F + Z_{TH}} = \frac{\Delta V_a}{Z_O C_L S + 1} \left(\frac{Z_G}{Z_F + Z_G + \frac{Z_O}{Z_O C_L S + 1}} \right)$$
Here $\Delta V_a = \Delta V_{test}$

$$\frac{V_{RETURN}}{V_{TEST}} = A\beta = \frac{\frac{aZ_G}{Z_F + Z_G + Z_O}}{\frac{(Z_F + Z_G)Z_OC_Ls}{Z_F + Z_G + Z_O} + 1}$$

When $(Z_F + Z_O) \gg Z_O$

$$A\beta = \frac{aZ_G}{Z_F + Z_G} \left(\frac{1}{Z_O C_L s + 1} \right)$$

$$\frac{V_{RETURN}}{V_{TEST}} = A\beta = \frac{\frac{aZ_G}{Z_F + Z_G + Z_O}}{\frac{(Z_F + Z_G)Z_OC_Ls}{Z_F + Z_G + Z_O} + 1}$$

In case op-amp a Second order

$$a = \frac{K}{(s + \tau_1)(s + \tau_2)}$$

Loop gain is equal to

$$A\beta = \frac{K}{(s+\tau_1)(s+\tau_2)} \frac{Z_G}{Z_F + Z_G} \frac{1}{Z_O C_L s + 1} \label{eq:beta}$$

It is a three pole System

Log(f)

 $1/\tau_2$

20 Log (AB)

0dB

Dominant Pole

Additional pole By compensation terhuis ne

Loop gain
$$A\beta = \frac{aZ_G}{Z_F + Z_G} \left(\frac{1}{Z_O C_L s + 1} \right)$$

$$\frac{AB - aZG}{ZG + ZF}$$

Closed loop transfer function is given by

$$\frac{V_{OUT}}{V_{IN}} = \frac{a}{1 + \frac{aZ_G}{Z_G + Z_F}}$$

$$\frac{V_{OUT}}{V_{IN}} = \frac{Z_F + Z_G}{Z_G}$$

Which represents gain of non inverting amp

Unit 2 Gain compensation

Loop gain parameter and closed loop parameters are related

$$A\beta = \frac{aZ_G}{Z_G + Z_F}$$

$$\frac{V_{OUT}}{V_{IN}} = \frac{a}{1 + \frac{aZ_G}{Z_G + Z_F}}$$

- Example, Change non inverting amp gain from 2 to 10
- Loop gain will reduce by -14db

Improvement observation from the Bode plot

PES UNIVERSITY CELEBRATING 50 YEARS

• C is because of parasitic capacitance

Break the loop for loop gain calculation

Contribution of open loop op amp

$$A\beta = \left(\frac{R_G}{R_G + R_F}\right) \left(\frac{R_F C s + 1}{R_G \|R_F C s + 1}\right) \left(\frac{K}{(s + \tau_1)(s + \tau_2)}\right)$$

redun =
$$aR_G(SCR_F+1)$$

 V_{test} $R_G(SCR_F+1)+R_F$

 R_G

Modified Transfer Function

Log(f)

1/R_FC 1/R_FIIR_GC

$$A\beta = \left(\frac{R_G}{R_G + R_F}\right) \left(\frac{R_F C s + 1}{R_G \|R_F C s + 1}\right) \left(\frac{K}{(s + \tau_1)(s + \tau_2)}\right)$$

$$= \frac{1}{R_G} \frac{1}{R_F} \frac{1}{R_$$

- Zero placed near pole 2
- R_F has to larger compared to R_G in parallel with R_F

Transfer function of inverting amp is given by

$$\frac{V_{OUT}}{V_{IN}} = \frac{\frac{-aZ_F}{Z_G + Z_F}}{1 + \frac{aZ_G}{Z_G + Z_F}} -----10$$

$$a = \frac{K}{(s + \tau_1)(s + \tau_2)}$$
 ----11

When **a** is infinity, transfer function can be seen as,

$$\frac{V_{OUT}}{V_{IN}} = -\frac{Z_F}{Z_{IN}} \ge C_{C}$$

Substituting $R_F \| C$ for Z_F and R_G for Z_G

Transfer function is given by

Behavior on bode plot for 10, 11,12

Figure 8.15
Inverting op amp with lead compensation.

Stray capacitance is added due to PCB trace This circuit is unstable because of three poles

Loop gain

$$A\beta = \left(\frac{R_G}{R_G + R_F}\right) \left(\frac{1}{R_G \|R_F C s + 1}\right) \left(\frac{K}{(\tau_1 s + 1)(\tau_2 s + 1)}\right)$$

Compensation capacitor is added parallel to feedback resistor

Loop gain

$$A\beta = \begin{bmatrix} \frac{R_G}{R_GC_Gs+1} \\ \frac{R_G}{R_GC_Gs+1} + \frac{R_F}{R_FC_Fs+1} \end{bmatrix} \begin{pmatrix} \frac{K}{(\tau_1s+1)(\tau_2s+1)} \end{pmatrix}$$

If
$$R_G C_G = R_F C_F$$

$$A\beta = \left[\frac{R_G}{R_G + R_F}\right] \left(\frac{K}{(\tau_1 s + 1)(\tau_2 s + 1)}\right)$$

$$A\beta = \left[\frac{\frac{R_G}{R_GC_Gs+1}}{\frac{R_G}{R_GC_Gs+1} + \frac{R_F}{R_FC_Fs+1}} \right] \left(\frac{K}{(\tau_1s+1)(\tau_2s+1)} \right)$$

Compensation capacitor is added, acts like open loop gain two pole system

Gain plot

Closed loop gain of inverted amp does not change. Capacitor has not effect on gain

Closed loop gain

$$\frac{V_{OUT}}{V_{IN}} = \frac{\frac{R_F}{R_F C_F s + 1}}{\frac{R_G}{R_G C_G s + 1}}$$
 When $R_F C_F = R_G C_G$
$$\frac{V_{OUT}}{V_{IN}} = -\left(\frac{R_F}{R_G}\right)$$

- R and C used for compensation
- Compensation circuit adds Pole and Zero

loop gain

$$A\beta = \frac{K}{(\tau_{1}s+1)(\tau_{2}s+1)} \frac{R_{G}}{R_{G}+R_{F}} \frac{RCs+1}{(RR_{G}+RR_{F}+R_{G}R_{F})} \frac{RCs+1}{(R_{G}+R_{F})} \frac{RCs+1}{$$

$$A\beta = \frac{K}{(\tau_{1}s+1)(\tau_{2}s+1)} \frac{R_{G}}{R_{G}+R_{F}} \frac{RCs+1}{\frac{(RR_{G}+RR_{F}+R_{G}R_{F})}{(R_{G}+R_{F})}Cs+1}$$

Gain plot

Ideal closed loop gain calculated

Ideal closed loop gain calculated

$$V_{TH} = V_{IN} \frac{R + \frac{1}{Cs}}{R + R_G + \frac{1}{Cs}}$$

$$V_{OUT} = -V_{TH} \frac{R_F}{R_{TH}}$$

Substitute Vth and Rth

$$R_{TH} \frac{R_G \left(R + \frac{1}{Cs}\right)}{R + R_G + \frac{1}{Cs}}$$

$$R_{TH} \frac{R_G \left(R + \frac{1}{Cs}\right)}{R + R_G + \frac{1}{Cs}} \qquad -\frac{V_{OUT}}{V_{IN}} = \frac{R + \frac{1}{Cs}}{R + R_G + \frac{1}{Cs}} \frac{R_F}{R_G \left(R + \frac{1}{Cs}\right)} \stackrel{R_F}{=} \frac{R_F}{R_G}$$

$$A\beta = \frac{K}{(\tau_{1}s+1)(\tau_{2}s+1)} \frac{R_{G}}{R_{G}+R_{F}} \frac{RCs+1}{\frac{(RR_{G}+RR_{F}+R_{G}R_{F})}{(R_{G}+R_{F})}Cs+1}$$

$$-\frac{V_{OUT}}{V_{IN}} = \frac{R_F}{R_G}$$

Unit 3 Comparison of compensation schemes

Scheme	Advantages	Disadvantages
Internal compensation	No need for extra component	Under certain load capacitance, it is unstable
Dominant pole compensation	Suitable for high load capacitance	Load capacitance make op amp to ring
Gain compensation	Good in terms of stability	Gain reduces
Lead compensation	Increases bandwidth	Reduces closed loop gain
Compensated attenuator	Useful scheme when stray capacitance seen at inverting input	Needs matching two RC time constants
Lead lag compensation	Increased bandwidth	More external components

Textbook:

Op Amp for Everyone : Bruce Carter and Ron Mancini Fifth Edition 2017

THANK YOU

Dr Shashidhar Tantry

Electronics & Communication Engineering

stantry@pes.edu