Homework5

陈淇奥 21210160025

2021年11月1日

Exercise 1 (2.1.31). 如果 X 是冯·诺伊曼基数的集合,则 $\bigcup X$ 也是冯·诺伊曼基数

证明. 若 X 的元素都是有穷的,则 X 中有一个最大的元素 n,且 $\bigcup X = n$,于是 $\bigcup X$ 也是冯诺依曼序数。

否则,假设 $\alpha = Card(\bigcup X)$ 且 $\alpha < \bigcup X$ 。则存在一个双射 $f: \bigcup X \to \alpha$ 。因为 $\alpha \in \bigcup X$,于是存在一个 X 中的冯诺依曼序数 κ 使得 $\alpha \in \kappa$ 。因为 $\kappa \subseteq \bigcup X$,于是 $f \upharpoonright \kappa$ 是一个从 κ 到 $f(\kappa) \subseteq \alpha$ 的双射,于是 $Card(\kappa) < \kappa$,矛盾。因此 $\alpha = \bigcup X$, $\bigcup X$ 是冯诺依曼序数。

Exercise 2 (2.1.39). 令 X 是一个不可良序化的集合,令 $\lambda = H(X)$ 。 λ 是冯 诺依曼基数。证明: $\lambda \not \Delta X$ 并且 $X \not \Delta \lambda$

证明. 若 $X \preceq \lambda$,则存在单射 $f: X \to \lambda$,于是有双射 $g: X \to f(X)$,而 $f(X) \subseteq \lambda$ 是良序集,于是 X 可良序,矛盾。

 \overline{A} λ \preceq X , \overline{A} λ 是最小的不与 X 的子集等势的序数,矛盾。 □

Exercise 3 (2.1.37). 如果 $F: \mathbb{O} \to \mathbb{O}$ 是严格递增的,并且是连续的,则对任意序数 α ,存在 $\epsilon > \alpha$, $F(\epsilon) = \epsilon$ 。即,F 有任意大的不动点

证明. 首先证明对任意序数 α 都有 $F(\alpha) \geq \alpha$ 。

若 $\alpha = 0$,则 $F(0) \ge 0$ 。

若 $\alpha = \beta + 1$,则 $F(\alpha) = F(\beta + 1) > F(\beta) \ge \beta + 1$ 。

若 $\alpha = \bigcup_{\beta < \alpha} \beta$,则 $F(\alpha) = \bigcup \{F(\beta) \mid \beta < \alpha\} \ge \bigcup \{\beta < \alpha\} = \alpha$ 。 注意到 $F(\alpha) \le F(\alpha)^{\alpha}$, $F(\alpha)^{F(\alpha)^{\alpha}} \ge F(\alpha)^{\alpha}$,令 $\epsilon_0 = \alpha$,对于任意 $i \in \omega$,构造 ϵ_{i+1} 为

$$\begin{split} &\epsilon_{i+1,0} = F(\epsilon_i) \\ &\epsilon_{i+1,n+1} = F(\epsilon_i)^{\epsilon_{i+1,n}} \quad n \in \omega \\ &\epsilon_{i+1} = \bigcup_{n \in \omega} \epsilon_{i,n} \end{split}$$

于是 $F(\epsilon_i)^{\epsilon_{i+1}} = \bigcup \{F(\epsilon_i)^{\epsilon_{i+1,n}} \mid n \in \omega\} = \bigcup \{\epsilon_{i+1,n+1} \mid n \in \omega\} = \epsilon_{i+1}$ 。 令 $\epsilon = \bigcup_{i \in \omega} \epsilon_i$,则 $\epsilon = F(\epsilon)^{\epsilon}$ 。由于 $F(\epsilon) \geq \epsilon$ 且 $F(\epsilon) \leq F(\epsilon)^{\epsilon} = \epsilon$,我们有 $F(\epsilon) = \epsilon$ 。