Algorithm 2 Search-Based Rectangle Fitting **Input:** range data points $X \in \mathbb{R}^{n \times 2}$

Output: rectangle edges $\{a_ix + b_ix = c_i | i = 1, 2, 3, 4\}$ 1: $Q \leftarrow \emptyset$ 2: for $\theta = 0$ to $\pi/2 - \delta$ step δ do 3: $\hat{e}_1 \leftarrow (\cos \theta, \sin \theta)$ > rectangle edge direction vector

4: $\hat{e}_2 \leftarrow (-\sin\theta, \cos\theta)$ 5: $C_1 \leftarrow X \cdot \hat{e}_1^T$ 6: $C_2 \leftarrow X \cdot \hat{e}_2^T$ ⊳ projection on to the edge

7: $q \leftarrow \text{CalculatecriterionX}(C_1, C_2)$ 8: insert q into Q with key (θ)

9: end for 10: select key (θ^*) from Q with maximum value 11: $C_1^* \leftarrow X \cdot (\cos \theta^*, \sin \theta^*)^T, C_2^* \leftarrow X \cdot (-\sin \theta^*, \cos \theta^*)^T$

12: $a_1 \leftarrow \cos \theta^*$, $b_1 \leftarrow \sin \theta^*$, $c_1 \leftarrow \min\{C_1^*\}$

13: $a_2 \leftarrow -\sin\theta^*$, $b_2 \leftarrow \cos\theta^*$, $c_2 \leftarrow \min\{C_2^*\}$

14: $a_3 \leftarrow \cos \theta^*$, $b_3 \leftarrow \sin \theta^*$, $c_3 \leftarrow \max\{C_1^*\}$

15: $a_4 \leftarrow -\sin\theta^*$, $b_4 \leftarrow \cos\theta^*$, $c_4 \leftarrow \max\{C_2^*\}$

return α 6: end function

5:

$$a_4 \leftarrow -\sin v$$
, $a_4 \leftarrow \cos v$, $a_4 \leftarrow \max\{c_2\}$

1: **function** CalculateArea
$$(C_1, C_2)$$

1: **function** CalculateArea(
$$C_1, C_2$$
)

1: **function** CalculateArea(
$$C_1, C_2$$
)
2: $c_1^{max} \leftarrow \max\{C_1\}$, $c_1^{min} \leftarrow \min\{C_1\}$

2:
$$c_1^{max} \leftarrow \max\{C_1\}$$
, $c_1^{min} \leftarrow \min\{C_1\}$
3: $c_2^{max} \leftarrow \max\{C_2\}$, $c_2^{min} \leftarrow \min\{C_2\}$
4: $\alpha \leftarrow -(c_1^{max} - c_1^{min}) \cdot (c_2^{max} - c_2^{min})$