L'ensemble des nombres complexes est : $\mathbb{C}=\ z=a+ib\ /\ a;b\ \in \mathbb{R}^2$ et $i^2=-1$

Soit le plan complexe muni d'un repère orthonormé direct $o, \overrightarrow{e_1}, \overrightarrow{e_2}$

> <u>Définition et propriétés :</u>

Soit z=a+ib un nombre complexe avec $a;b \in \mathbb{R}^2$

- La forme algébrique du nombre complexe z est : a+ib.
- La partie réelle du nombre complexe z est : $Re \ z = a$.
- La partie imaginaire du nombre complexe z est : Im z = b.
- Le nombre complexe z est **imaginaire pur** si $Re \ z = 0$.
- **Egalité** de deux nombres complexes : $z = z' \Leftrightarrow Re \ z = Re \ z' \ et \ Im \ z = Im \ z'$
- Le conjugué du nombre complexe z est : $\overline{z} = a ib$
- Le module du nombre complexe z est : $|z| = \sqrt{zz} = \sqrt{a^2 + b^2}$
- L'image du nombre complexe z=a+ib est le point M a,b , noté M z
- L'affixe du point $\,M\,$ $\,a,b\,$ est le nombre complexe z=a+ib , noté $\,z_M^{}$
- L'affixe du vecteur $\vec{u}~a,b~$ est le nombre complexe ~z=a+ib , noté $z_{\vec{u}}$
- L'affixe du vecteur \overrightarrow{AB} est le nombre complexe $z_{\overrightarrow{AB}}=z_B-z_A$
- **L'argument** du nombre complexe non nul z est une mesure θ de l'angle orienté $\overrightarrow{e_1},\overrightarrow{OM}$ noté argz

on a
$$arg z \equiv \theta \left[2\pi \right]$$

$$\cos \theta = \frac{\text{Re}(z)}{|z|} \quad et \quad \sin \theta = \frac{\text{Im}(z)}{|z|}$$

- La forme trigonométrique du nombre complexe non nul $\,z\,$ est :

$$z = r \cos \theta + i \sin \theta = [r, \theta]$$

avec
$$r=\left|z\right|$$
 et $\arg z\equiv \theta \left[2\pi\right]$

 $\left[r,\theta\right]$ est une écriture réduite du nombre complexe $\,r\,\cos\theta+i\sin\theta\,$

• La forme exponentielle du nombre complexe non nul z est : $z=re^{i\theta}$

avec
$$r=\left|z\right|$$
 et $arg\,z\equiv\theta\left[2\pi\right]$

Propriétés:

•	Conjugué	Module	Argument
Opposé	-z = -z	$\left -z\right = \left z\right $	$arg -z \equiv \pi + arg z [2\pi]$
Conjugué	$\overline{\overline{z}} = z$	$\left \overline{z}\right = \left z\right $	$arg\ \bar{z}\ \equiv -argz\big[2\pi\big]$
Produit	$\overline{z \times z'} = \overline{z} \times \overline{z'}$	$ z \times z' = z \times z' $	$arg zz' \equiv arg z + arg z' [2\pi]$
Puissance	$\overline{z^n} = \overline{z}^n$	$\left z^{n}\right = \left z\right ^{n}$	$arg \ z^n \equiv n arg z [2\pi]$
Inverse	$\overline{\left(\frac{1}{z'}\right)} = \frac{1}{\overline{z'}}$	$\left \frac{1}{z}\right = \frac{1}{ z }$	$arg\bigg(\frac{1}{z}\bigg) \equiv -argz\big[2\pi\big]$
Quotient	$\overline{\left(\frac{z}{z'}\right)} = \frac{\overline{z}}{\overline{z'}}$	$\left \frac{z}{z'}\right = \frac{ z }{ z' }$	$arg\left(\frac{z}{z'}\right) \equiv arg z - arg z' [2\pi]$
Somme	$\frac{\overline{z+z'}}{z+z'} = \overline{z+z'}$		

	Forme trigonométrique	Forme exponentielle
Opposé	$-\big[r,\theta\big] = \big[r,\pi+\theta\big]$	$-re^{i\theta} = re^{i\pi + \theta}$
Conjugué	$\overline{\left[r,\theta\right]} = \left[r,-\theta\right]$	$\overline{re^{i\theta}} = re^{-i\theta}$
Produit	$ [r,\theta] \times [r',\theta'] = [rr';\theta+\theta'] $	$re^{i\theta} \times r'e^{i\theta'} = rr'e^{i\theta + \theta'}$
Puissance	$\left[r,\theta\right]^n = \left[r^n; n\theta\right]$	$re^{i\theta}^{n} = r^{n}e^{i\ n\theta}$
Inverse	$\frac{1}{\left[r;\theta\right]} = \left[\frac{1}{r}; -\theta\right]$	$\frac{1}{re^{i\theta}} = \frac{1}{r}e^{-i\theta}$
Quotient	$\frac{\left[r;\theta\right]}{\left[r';\theta'\right]}\!=\!\left[\frac{r}{r'};\theta-\theta'\right]$	$\frac{re^{i\theta}}{r'e^{i\theta'}} = \frac{r}{r'}e^{i\theta'}$

- $z + \overline{z} = 2Re z$
- $z \overline{z} = 2 \operatorname{Im} z$
- $z\overline{z} = \left[Re \ z\right]^2 + \left[Im \ z\right]^2$ $|z| = 0 \Leftrightarrow z = 0$
- $|z| = 0 \Leftrightarrow z = 0$
- $\bullet \quad \forall k \in \mathbb{Z} \quad \left[r, \theta + 2k\pi \right] = \left[r, \theta \right]$
- $z \ est \ r\'eel \Leftrightarrow z = z$
- $z \operatorname{est} r\acute{e}el \Leftrightarrow \operatorname{arg} z = k\pi / k \in \mathbb{Z}$
- z est imaginaire $pur \Leftrightarrow z = -z$
 - $z \operatorname{est\ imaginaire\ pur} \Leftrightarrow \operatorname{arg\ } z = \frac{\pi}{2} + k\pi \ / \ k \in \mathbb{Z}$

Formule de Moivre :

$$\cos\theta + i\sin\theta^{n} = \cos n\theta + i\sin n\theta$$

Formules d'Euler:

$$cos\theta = \frac{1}{2} e^{i\theta} + e^{-i\theta}$$
$$sin \theta = \frac{1}{2i} e^{i\theta} - e^{-i\theta}$$

Equations du second degré à coefficients réels :

L'équation :		Ensemble de solution:
$z \in \mathbb{C} az^2 + bz + c = 0$ $\Delta = b^2 - 4ac$	$\Delta > 0$	$S = \left\{ \frac{-b - \sqrt{\Delta}}{2a}; \frac{-b + \sqrt{\Delta}}{2a} \right\}$
	$\Delta = 0$	$S = \left\{ \frac{-b}{2a} \right\}$
	$\Delta < 0$	$S = \left\{ \frac{-b - i\sqrt{-\Delta}}{2a}; \frac{-b + i\sqrt{-\Delta}}{2a} \right\}$

Nombres Complexes et géométrie:

Notion complexe:	Relation géométrique :
$ z_B - z_A $	la distance AB
$ z - z_A = r \qquad r > 0$	• $AM=r$ • M appartient au cercle de centre A et de rayon r
$\left z-z_{A}\right =\left z-z_{B}\right $	• $AM = BM$ • M appartient à la médiatrice de $\begin{bmatrix}AB\end{bmatrix}$
$z_I = \frac{z_A + z_B}{2}$	I milieu de $igl[ABigr]$
$\frac{z_C-z_A}{z_B-z_A}\in\mathbb{R}$	A,B et C trois points alignés
$\left(\overrightarrow{\overrightarrow{AB}}; \overrightarrow{\overrightarrow{AC}} \right) \equiv arg \left(\frac{z_c - z_A}{z_B - z_A} \right) [2\pi]$	mesure de l'angle $\left(\overrightarrow{AB};\overrightarrow{AC} ight)$

Nature d'un triangle:

	Nature du triangle ABC	
$\frac{z_C - z_A}{z_B - z_A} = \left[r; \pm \frac{\pi}{2}\right]$	ABC est un triangle rectangle en A	
$\frac{z_C - z_A}{z_B - z_A} = \begin{bmatrix} 1; \theta \end{bmatrix}$	ABC est un triangle isocèle en A	
$ \frac{z_C - z_A}{z_B - z_A} = \left[1; \pm \frac{\pi}{2}\right] $	ABC est un triangle isocèle et rectangle en A	
$\frac{z_C - z_A}{z_B - z_A} = \left[1; \pm \frac{\pi}{3}\right]$	ABC est un triangle équilatéral	

Ecritures complexes des transformations du plan:

Transformations:	Ecriture complexe :
Translation de vecteur $ec{u}$ d'affixe $z_{\overrightarrow{u}}$	$z'=z+z_{\vec{u}}$
Homothétie de centre $\Omega \ \omega$ et de rapport k	$z' - \omega = k \ z - \omega$
Rotation de centre $\Omega \omega$ et d'angle $ heta$	$z' - \omega = e^{i\theta} \ z - \omega$

Reconnaitre une translation, une homothétie ou une rotation à partir de leurs expressions complexes :

Soit le plan complexe muni d'un repère orthonormé direct $\stackrel{\rightarrow}{o},\stackrel{\rightarrow}{e_1},\stackrel{\rightarrow}{e_2}$

Soit M^\prime z^\prime l'image d'un point M z par une transformation F

L'expression complexe du transformation F		Nature du transformation F	
	a = 1		F est une translation $ ightarrow$ de vecteur u d'affixe $z_{ ightarrow}=b$
$z'=az+b$ a vec a ; $b\in\mathbb{C}^2$ $(a eq 0)$	$a \neq 1$	$a \in \mathbb{R}^* - 1$	F est une homothétie de rapport a et de centre Ω d'affixe $\omega=rac{b}{1-a}$ (ω vérifie la relation : $\omega=a\omega+b$)
		$a \in \mathbb{C}^* - 1$ avec $ a = 1$	F est une rotation