Advanced Statistics DS2003 (BDS-4A) Lecture 16

Instructor: Dr. Syed Mohammad Irteza
Assistant Professor, Department of Computer Science, FAST
14 April, 2022

Previous Lecture

- Difference in two means (t or z test)
 - Example of diamonds (99 carat and 100 carat)
- Difference in more than two means (ANOVA)
 - Example 1: The Wolf River in Tennessee → aldrin concentration at three levels (surface, mid-depth and bottom)
 - Research Question: Is there a difference between the mean aldrin concentrations among the three levels? → To compare means of 3+ groups we use a new test called ANOVA and a new statistic called F
 - Example 2: Hours worked vs Education

		Df	Sum Sq	Mean Sq	F value	Pr(>F)
(Group)	depth	2	16.96	8.48	6.13	0.0063
(Error)	Residuals	27	37.33	1.38		
	<i>T</i> otal	29	54.29			

Degrees of freedom associated with ANOVA

• groups: $df_G = k - 1$, where k is the number of groups

• total: $df_T = n - 1$, where n is the total sample size

• error: $df_E = df_T - df_G$

•
$$df_G = k - 1 = 3 - 1 = 2$$

•
$$df_T = n - 1 = 30 - 1 = 29$$

•
$$df_F = 29 - 2 = 27$$

		Df	Sum Sq	Mean Sq	F value	Pr(>F)
(Group)	depth	2	16.96	8.48	6.13	0.0063
(Error)	Residuals	27	37.33	1.38		
	<i>T</i> otal	29	54.29			

Sum of squares error, SSE

Measures the variability within groups:

$$SSE = SST - SSG$$

		Df	Sum Sq	Mean Sq	F value	Pr(>F)
(Group)	depth	2	16.96	8.48	6.13	0.0063
(Error)	Residuals	27	37.33	1.38		
	<i>T</i> otal	29	54.29			

Sum of squares between groups, SSG

Measures the variability between groups

$$SSG = \sum_{i=1}^{k} n_i (\bar{x}_i - \bar{x})^2$$

where is each group size, \bar{x}_i is the average for each group, \bar{x} is the overall (grand) mean

n	mean
10	6.04
10	5.05
10	4.2
30	5.1
	10 10 10

$$SSG = (10 \times (6.04 - 5.1)^{2})$$

$$+ (10 \times (5.05 - 5.1)^{2})$$

$$+ (10 \times (4.2 - 5.1)^{2})$$

$$= 16.96$$

		Df	Sum Sq	Mean Sq	F value	Pr(>F)
(Group)	depth	2	16.96	8.48	6.13	0.0063
(Error)	Residuals	27	37.33	1.38		
	<i>T</i> otal	29	54.29			

Sum of squares total, SST

Measures the variability between groups

$$SST = \sum_{i=1}^{n} (x_i - \bar{x})^2$$

where x_i represent each observation in the dataset

$$SST = (3.8 - 5.1)^{2} + (4.8 - 5.1)^{2} + (4.9 - 5.1)^{2} + ... + (5.2 - 5.1)^{2}$$
$$= (-1.3)^{2} + (-0.3)^{2} + (-0.2)^{2} + ... + (0.1)^{2}$$
$$= 1.69 + 0.09 + 0.04 + ... + 0.01$$
$$= 54.29$$

		Df	Sum Sq	Mean Sq	F value	Pr(>F)
(Group)	depth	2	16.96	8.48	6.13	0.0063
(Error)	Residuals	27	37.33	1.38		
	<i>T</i> otal	29	54.29			

Sum of squares error, SSE

Measures the variability within groups:

$$SSE = SST - SSG$$

		Df	Sum Sq	Mean Sq	F value	Pr(>F)
(Group)	depth	2	16.96	8.48	6.13	0.0063
(Error)	Residuals	27	37.33	1.38		
	<i>T</i> otal	29	54.29			

Mean square error

Mean square error is calculated as sum of squares divided by the degrees of freedom

$$MSG = 16.96/2 = 8.48$$

$$MSE = 37.33/27 = 1.38$$

		Df	Sum Sq	Mean Sq	F value	Pr(>F)
(Group)	depth	2	16.96	8.48	6.14	0.0063
(Error)	Residuals	27	37.33	1.38		
	<i>T</i> otal	29	54.29			

Test statistic, F value

As we discussed before, the *F* statistic is the ratio of the between group and within group variability

$$F = \frac{MSG}{MSE}$$

$$F = \frac{8.48}{1.38} = 6.14$$

		Df	Sum Sq	Mean Sq	F value	Pr(>F)
(Group)	depth	2	16.96	8.48	6.14	0.0063
(Error)	Residuals	27	37.33	1.38		
	<i>T</i> otal	29	54.29			

p-value

p-value is the probability of at least as large a ratio between the "between group" and "within group" variability, if in fact the means of all groups are equal. It's calculated as the area under the F curve, with degrees of freedom df_G and df_F , above the observed F statistic.

Conclusion

- If p-value is small (less than α), reject H_o . The data provide convincing evidence that at least one mean is different from (but we can't tell which one)
- If p-value is large, fail to reject H_0 . The data do not provide convincing evidence that at least one pair of means are different from each other, the observed differences in sample means are attributable to sampling variability (or chance)

GSS - Hours worked vs Education (ANOVA table)

	DF	Sum Sq	Mean Sq	F value	Prob (> F)
Degrees	4	2006.16	501.54	2.189	0.0682
Residuals	1167	267382	229.12		
Total	1171	269388.16			

Cannot reject H₀.

	Educational a	Educational attainment									
	Less than HS	HS	Jr College	Bachelor's	Graduate	Total					
Mean	38.67	39.6	41.39	42.55	40.85	40.45					
SD	15.81	14.97	18.1	13.62	15.51	15.17					
n	121	546	97	253	155	1172					

Lecture For Today

- Difference in more than two means (ANOVA), continued
- Which group is different?

(1) Independence

Does this condition appear to be satisfied?

(1) Independence

Does this condition appear to be satisfied?

In this study the we have no reason to believe that the aldrin concentration won't be independent of each other

(2) Approximately normal

Does this condition appear to be satisfied?

(3) Constant variance

Does this condition appear to be satisfied?

• Earlier we concluded that at least one pair of means differ. The natural question that follows is "which ones?"

- Earlier we concluded that at least one pair of means differ. The natural question that follows is "which ones?"
- We can do two sample t tests for differences in each possible pair of groups

- Earlier we concluded that at least one pair of means differ. The natural question that follows is "which ones?"
- We can do two sample t tests for differences in each possible pair of groups

Can you see any pitfalls with this approach?

- Earlier we concluded that at least one pair of means differ. The natural question that follows is "which ones?"
- We can do two sample t tests for differences in each possible pair of groups

Can you see any pitfalls with this approach?

- When we run too many tests, the Type 1 Error rate increases
- This issue is resolved by using a modified significance level

Remember: a type 1 error means rejecting the null hypothesis when it's actually true

Multiple comparisons

 The scenario of testing many pairs of groups is called multiple comparisons

Multiple comparisons

- The scenario of testing many pairs of groups is called multiple comparisons
- The Bonferroni correction suggests that a more stringent significance level is more appropriate for these tests:

$$\alpha^* = \alpha/K$$

where *K* is the number of comparisons being considered

Multiple comparisons

- The scenario of testing many pairs of groups is called multiple comparisons
- The Bonferroni correction suggests that a more stringent significance level is more appropriate for these tests:

$$\alpha^* = \alpha/K$$

where K is the number of comparisons being considered

• If there are k groups, then usually all possible pairs are compared and

$$K = \frac{k(k-1)}{2}$$

Determining the modified α

In the aldrin data set depth has 3 levels: bottom, mid-depth, and surface. If $\alpha = 0.05$, what should be the modified significance level for two sample t tests for determining which pairs of groups have significantly different means?

A.
$$\alpha^* = 0.05$$

B.
$$\alpha^* = 0.05/2 = 0.025$$

C.
$$\alpha^* = 0.05/3 = 0.0167$$

D.
$$\alpha^* = 0.05/6 = 0.0083$$

Determining the modified α

In the aldrin data set depth has 3 levels: bottom, mid-depth, and surface. If $\alpha = 0.05$, what should be the modified significance level for two sample t tests for determining which pairs of groups have significantly different means?

A.
$$\alpha^* = 0.05$$

B.
$$\alpha^* = 0.05/2 = 0.025$$

C.
$$\alpha^* = 0.05/3 = 0.0167$$

D.
$$\alpha^* = 0.05/6 = 0.0083$$

Based on the box plots below, which means would you expect to be significantly different?

- A. bottom & surface
- B. bottom & mid-depth
- C. mid-depth & surface
- D. bottom & mid-depth; mid-depth & surface
- E. bottom & mid-depth;bottom & surface;mid-depth & surface

Which means differ? (cont.)

If the ANOVA assumption of equal variability across groups is satisfied, we can use the data from all groups to estimate variability:

- \bullet Estimate any within-group standard deviation with $$\tt ,$$ which is $s_{\it pooled}$
- Use the error degrees of freedom, n k, for t-distributions

Difference in two means: after ANOVA

$$SE = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \approx \sqrt{\frac{MSE}{n_1} + \frac{MSE}{n_2}}$$

	n	mean	sd						
bottom	10	6.04	1.58		Df	Sum Sq	Mean Sq	F value	Pr(>F)
middepth	10	5.05	1.10	depth	2	16.96	8.48	6.13	0.0063
surface	10	4.2	0.66	Residuals	27	37.33	1.38		
overall	30	5.1	1.37	Total	29	54.29			

$$T_{df_E} = rac{\left(ar{x}_{bottom} - ar{x}_{middepth}
ight)}{\sqrt{rac{MSE}{n_{bottom}} + rac{MSE}{n_{middepth}}}}$$

	n	mean	sd						
bottom	10	6.04	1.58		Df	Sum Sq	Mean Sq	F value	Pr(>F)
middepth	10	5.05	1.10	depth	2	16.96	8.48	6.13	0.0063
surface	10	4.2	0.66	Residuals	27	37.33	1.38		
overall	30	5.1	1.37	Total	29	54.29			

$$T_{df_E} = \frac{\left(\bar{x}_{bottom} - \bar{x}_{middepth}\right)}{\sqrt{\frac{MSE}{n_{bottom}} + \frac{MSE}{n_{middepth}}}}$$

$$T_{27} = \frac{(6.04 - 5.05)}{\sqrt{\frac{1.38}{10} + \frac{1.38}{10}}} = \frac{0.99}{0.53} = 1.87$$

	n	mean	sd						
bottom	10	6.04	1.58		Df	Sum Sq	Mean Sq	F value	Pr(>F)
middepth	10	5.05	1.10	depth	2	16.96	8.48	6.13	0.0063
surface	10	4.2	0.66	Residuals	27	37.33	1.38		
overall	30	5.1	1.37	Total	29	54.29			

$$T_{df_E} = \frac{\left(\bar{x}_{bottom} - \bar{x}_{middepth}\right)}{\sqrt{\frac{MSE}{n_{bottom}} + \frac{MSE}{n_{middepth}}}}$$

$$T_{27} = \frac{(6.04 - 5.05)}{\sqrt{\frac{1.38}{10} + \frac{1.38}{10}}} = \frac{0.99}{0.53} = 1.87$$

$$0.05$$

	n	mean	sd						
bottom	10	6.04	1.58		Df	Sum Sq	Mean Sq	F value	Pr(>F)
middepth	10	5.05	1.10	depth	2	16.96	8.48	6.13	0.0063
surface	10	4.2	0.66	Residuals	27	37.33	1.38		
overall	30	5.1	1.37	Total	29	54.29			

$$T_{df_E} = \frac{\left(\bar{x}_{bottom} - \bar{x}_{middepth}\right)}{\sqrt{\frac{MSE}{n_{bottom}} + \frac{MSE}{n_{middepth}}}}$$

$$T_{27} = \frac{(6.04 - 5.05)}{\sqrt{\frac{1.38}{10} + \frac{1.38}{10}}} = \frac{0.99}{0.53} = 1.87$$

$$0.05 $\alpha^* = \frac{0.05}{3} = 0.0167$$$

	n	mean	sd						
bottom	10	6.04	1.58		Df	Sum Sq	Mean Sq	F value	Pr(>F)
middepth	10	5.05	1.10	depth	2	16.96	8.48	6.13	0.0063
surface	10	4.2	0.66	Residuals	27	37.33	1.38		
overall	30	5.1	1.37	Total	29	54.29			

$$T_{df_E} = rac{\left(ar{x}_{bottom} - ar{x}_{middepth}
ight)}{\sqrt{rac{MSE}{n_{bottom}} + rac{MSE}{n_{middepth}}}}$$
 $T_{27} = rac{(6.04 - 5.05)}{\sqrt{rac{1.38}{10} + rac{1.38}{10}}} = rac{0.99}{0.53} = 1.87$
 $0.05
 $lpha^* = rac{0.05}{3} = 0.0167$$

Fail to reject H_0 , the data do not provide convincing evidence of a difference between the average aldrin concentrations at bottom and mid depth

$$T_{df_E} = \frac{(\bar{x}_{bottom} - \bar{x}_{surface})}{\sqrt{\frac{MSE}{n_{bottom}} + \frac{MSE}{n_{surface}}}}$$

$$T_{df_E} = \frac{(\bar{x}_{bottom} - \bar{x}_{surface})}{\sqrt{\frac{MSE}{n_{bottom}} + \frac{MSE}{n_{surface}}}}$$

$$T_{27} = \frac{(6.04 - 4.2)}{\sqrt{\frac{1.38}{10} + \frac{1.38}{10}}} = \frac{1.84}{0.53} = 3.47$$

$$T_{df_E} = \frac{(\bar{x}_{bottom} - \bar{x}_{surface})}{\sqrt{\frac{MSE}{n_{bottom}} + \frac{MSE}{n_{surface}}}}$$

$$T_{27} = \frac{(6.04 - 4.2)}{\sqrt{\frac{1.38}{10} + \frac{1.38}{10}}} = \frac{1.84}{0.53} = 3.47$$

$$p - value < 0.01 \quad (two - sided)$$

$$T_{df_E} = \frac{(\bar{x}_{bottom} - \bar{x}_{surface})}{\sqrt{\frac{MSE}{n_{bottom}} + \frac{MSE}{n_{surface}}}}$$
 $T_{27} = \frac{(6.04 - 4.2)}{\sqrt{\frac{1.38}{10} + \frac{1.38}{10}}} = \frac{1.84}{0.53} = 3.47$
 $p - value < 0.01 \quad (two - sided)$
 $\alpha^* = \frac{0.05}{3} = 0.0167$

Is there a difference between the average aldrin concentration at the bottom and at surface?

$$T_{df_E} = \frac{(\bar{x}_{bottom} - \bar{x}_{surface})}{\sqrt{\frac{MSE}{n_{bottom}} + \frac{MSE}{n_{surface}}}}$$

$$T_{27} = \frac{(6.04 - 4.2)}{\sqrt{\frac{1.38}{10} + \frac{1.38}{10}}} = \frac{1.84}{0.53} = 3.47$$

$$p - value < 0.01 \quad (two - sided)$$

$$\alpha^* = \frac{0.05}{3} = 0.0167$$

Reject H_0 , the data provide convincing evidence of a difference between the average aldrin concentrations at bottom and surface

More 1-Way ANOVA Tests

Group1	Group2	Gro	oup3
4	-8	49	47
5	51	55	51
4	.9	53	55
4	.5	54	47
5	3	48	57
4	-6	47	52
5	51	54	48
4	.5	55	52
5	3	48	48
5	3	45	52
5	0	47	47
4	.5	46	51
4	-8	48	58
4	.5	51	47
4	.5	50	49

Three different set of males, and we are measuring the height they jump in a vertical jump in centimeters

I want to perform a 1-way ANOVA to determine if there is a significant difference between the average height measures of my 3 groups

https://ldrv.ms/x/s!Apc0G8okxWJ1y2TfLO0Cj1M7B9G1?e=Y2syQo

Group 1	Group 2	Group 3
85	91	79
86	92	78
88	93	88
75	85	94
78	87	92
94	84	85
98	82	83
79	88	85
71	95	82
80	96	81

Sources

• openintro.org/os (Chapter 7, Section 7.5)

Helpful Links:

- 1-Way ANOVA Tests using Excel:
 - https://www.youtube.com/watch?v=ZvfO7-J5u34
- Jbstatistics:
 - https://www.youtube.com/watch?v=QUQ6YppWCeg
 - https://www.youtube.com/watch?v=WUoVftXvjiQ