	Gain		BW		PM		FoM	
Evaluation Metric	RMSE ↓	Pearson's r↑	RMSE ↓	Pearson's r↑	RMSE ↓	Pearson's r↑	RMSE ↓	Pearson's r↑
CktGNN	0.682 ± 0.004	0.723 ± 0.003	$\textbf{0.596} \pm \textbf{0.009}$	$\textbf{0.806} \pm \textbf{0.008}$	0.993 ± 0.002	0.288 ± 0.009	$\textbf{0.597} \pm \textbf{0.009}$	$\textbf{0.806} \pm \textbf{0.007}$
DAGNN D-VAE	$egin{array}{l} \textbf{0.409} \pm \textbf{0.002} \\ 0.467 \pm 0.004 \end{array}$	0.911 ± 0.003 0.881 ± 0.003	0.639 ± 0.002 0.756 ± 0.003	$\begin{array}{c} 0.778 \pm 0.003 \\ 0.667 \pm 0.002 \end{array}$	0.947 ± 0.004 0.999 ± 0.004	0.412 ± 0.004 0.265 ± 0.003	0.639 ± 0.002 0.755 ± 0.004	0.778 ± 0.003 0.668 ± 0.003

Table 1: Predictive performance on Ckt-Bench101. Shown is the mean \pm s.d. of 10 runs with different random seeds. **Best results** are highlighted. FoM characterizes the quality of the circuit, and it is the metric to optimize in most circuit optimization. Gain, be, pm are other circuit properties.

Methods	Valid DAGs (%) ↑	Valid circuits (%) ↑	Novel circuits (%) ↑	Reconstruction (Acc) ↑
CktGNN	93.10	91.92	96.34	0.453
DAGNN D-VAE	98.81 89.75	37.96 39.53	98.67 96.78	0.180 0.149

Table 2: Effectiveness in real-world electronic circuit design. Overall, the valid circuits proportion plays the most critical role in real-world circuit optimization through Bayesain optimization.

Bohamiann search			DNGO search		
Methods	Best FoM (detected) ↑	Regret ↓	Best FoM (detected) ↑	Regret ↓	
CktGNN	175.85 ± 11.26	$\textbf{21.37} \pm \textbf{11.26}$	163.29 ± 16.57	$\textbf{33.94} \pm \textbf{16.57}$	
DAGNN D-VAE	$168.61 \pm 11.25 \\ 154.21 \pm 14.83$	28.62 ± 11.25 43.02 ± 14.83	$162.58 \pm 15.33 \\ 152.72 \pm 20.62$	34.65 ± 15.33 44.51 ± 20.62	

Table 3: Bayesian optimization results on Ckt-Bench301. Shown is the mean \pm s.d. of 20 runs with different random seeds. **Best results** are highlighted. Best FoM (detected) is the FoM of the circuit detected by the searching algorithm, while regret is the difference of it and the oracle optimal FoM.