Experiment – 2

Student Name: KJ Pritpal Singh UID: 23BCS14164

Branch: BE-CSE Section/Group: KRG_1A

Semester: 5th Date of Performance: 24-07-25

Subject Name: ADBMS Subject Code: 23CSP-333

1. Aim:

Q1) Organizational Hierarchy Explorer

You are a Database Engineer at TalentTree Inc., an enterprise HR analytics platform that stores employee data, including their reporting relationships. The company maintains a centralized Employee relation that holds each employee's ID, name, department, and manager ID (who is also an employee in the same table). Your task is to generate a report that maps employees to their respective managers, showing: The employee's name and department Their manager's name and department (if applicable) This will help the HR department visualize the internal reporting hierarchy.

Q2) NPV Lookup Using Left Join

You have two tables:

- 1. Year tbl: contains actual NPV (Net Present Value) for different years and IDs.
- 2. Queries: contains (ID, YEAR) pairs for which you want to find the NPV.

Goal: Return the queried (ID, YEAR) pairs along with the corresponding NPV

If NPV doesn't exist for that (ID, YEAR), show 0.

2. Requirements (Hardware/Software):

MySQL, PostgreSQL, Oracle, or SQL Server

3. DBMS Script & Output:

[MEDIUM LEVEL]

-- Organizational Hierarchy Explorer

```
CREATE TABLE EMPLOYEE (
 EmpID int,
 Ename varchar(15),
 Department varchar(10),
 ManagerID int
);
INSERT INTO EMPLOYEE VALUES (1, 'Alice', 'HR', NULL);
INSERT INTO EMPLOYEE VALUES (2, 'Bob', 'Finance',1);
INSERT INTO EMPLOYEE VALUES (3, 'Charlie', 'IT',1);
INSERT INTO EMPLOYEE VALUES (4, 'David', 'Flnance',2);
INSERT INTO EMPLOYEE VALUES (5, 'Eve', 'IT',3);
INSERT INTO EMPLOYEE VALUES (6, 'Frank', 'HR',1);
--SELECT * FROM EMPLOYEE;
SELECT E.Ename AS [EMPLYEE NAME], E2. Ename AS [MANAGER
   NAME],
E.Department AS [EMPLOYEE DEPARTMENT], E2.DEPARTMENT AS
   [MANAGER DEPARTMENT]
FROM
EMPLOYEE AS E
LEFT JOIN
EMPLOYEE AS E2
ON
E.ManagerID=E2.EmpID
[HARD LEVEL]
CREATE TABLE Year tbl(
 ID int,
 YEAR int,
```

```
NPV int.
);
TRUNCATE TABLE Year tbl;
INSERT INTO Year tbl VALUES(1,2018,100);
INSERT INTO Year tbl VALUES(7,2020,30);
INSERT INTO Year tbl VALUES(13,2019,40);
INSERT INTO Year tbl VALUES(1,2019,113);
INSERT INTO Year tbl VALUES(2,2008,121);
INSERT INTO Year tbl VALUES(3,2009,12);
INSERT INTO Year tbl VALUES(11,2020,99);
INSERT INTO Year tbl VALUES(7,2019,0);
--SELECT * FROM Year tbl;
CREATE TABLE Queries tbl(
 ID int,
 YEAR int
);
INSERT INTO Queries tbl VALUES(1,2019);
INSERT INTO Queries_tbl VALUES(2,2008);
INSERT INTO Queries tbl VALUES(3,2009);
INSERT INTO Queries tbl VALUES(7,2018);
INSERT INTO Queries_tbl VALUES(7,2019);
INSERT INTO Queries tbl VALUES(7,2020);
INSERT INTO Queries_tbl VALUES(13,2019);
--SELECT * FROM Queries tbl;
SELECT Q.ID,Q.YEAR,ISNULL(Y.NPV,0)AS NPV
FROM Queries tbl AS Q
LEFT OUTER JOIN
Year tbl AS Y
```

ON

Y.ID=Q.ID

and

Y.YEAR=Q.YEAR

4. Output:

[MEDIUM LEVEL]

EMPLOYEENAME	EMPLOYEEDEPT	MANAGERNAME	MANAGERDEPT
Frank	HR	Alice	HR
Charlie	IT	Alice	HR
Bob	Finance	Alice	HR
David	Finance	Bob	Finance
Eve	IT	Charlie	IT
Alice	HR	-	-

[HARD LEVEL]

ID	YEAR	NPV
1	2019	113
2	2008	121
3	2009	12
7	2018	0
7	2019	0
7	2020	30
13	2019	40

5. LEARNING OUTCOMES:

- Gained practical experience in table creation and record manipulation in databases.
- Learned how to join tables and extract relevant values efficiently.
- Understood implementation of OUTER JOINs to integrate and analyze related data.