CHAPTER 1

BASIC CONCEPT

All the programs in this file are selected from

Ellis Horowitz, Sartaj Sahni, and Susan Anderson-Freed "Fundamentals of Data Structures in C", Computer Science Press, 1992.

How to create programs

- Requirements
- Analysis: bottom-up vs. top-down
- Design: data objects and operations
- Refinement and Coding
- Verification
 - Program Proving
 - Testing
 - Debugging

Algorithm

- Definition
 - An *algorithm* is a finite set of instructions that accomplishes a particular task.
- Criteria
 - input
 - output
 - definiteness: clear and unambiguous
 - finiteness: terminate after a finite number of steps
 - effectiveness: instruction is basic enough to be carried out

Data Type

- Data Type
 A *data type* is a collection of *objects* and a set of *operations* that act on those objects.
- Abstract Data Type
 An *abstract data type(ADT)* is a data type that is organized in such a way that the specification of the objects and the operations on the objects is separated from the representation of the objects and the implementation of the operations.

Specification vs. Implementation

- Operation specification
 - function name
 - the types of arguments
 - the type of the results
- Implementation independent

```
*Structure 1.1: Abstract data type Natural Number (p.17)
structure Natural Number is
  objects: an ordered subrange of the integers starting at zero and ending
       at the maximum integer (INT MAX) on the computer
  functions:
   for all x, y \in Nat \ Number; TRUE, FALSE \in Boolean
    and where +, -, <, and == are the usual integer operations.
   Nat No Zero ( ) ::= 0
   Boolean Is Zero(x) ::= if(x) return FALSE
                            else return TRUE
   Nat\ No\ Add(x, y) ::= if ((x+y) \le INT\ MAX) return x+y
                            else return INT MAX
   Boolean Equal(x,y) ::= if (x== y) return TRUE
                           else return FALSE
   Nat\ No\ Successor(x) := if (x == INT\ MAX) return\ x
                            else return x+1
   Nat No Subtract(x,y) ::= if (x<y) return 0
                            else return x-y
```

end Natural Number

::= is defined as

Measurements

- Criteria
 - Is it correct?
 - Is it readable?
 - **—** ...
- Performance Analysis (machine independent)
 - space complexity: storage requirement
 - time complexity: computing time
- Performance Measurement (machine dependent)

Space Complexity

$$S(P)=C+S_{p}(I)$$

- $S(P)=C+S_{p}(I)$ Fixed Space Requirements (C)
 - Independent of the characteristics of the inputs and outputs
 - instruction space
 - space for simple variables, fixed-size structured variable, constants
- Variable Space Requirements (S_p(I)) depend on the instance characteristic I
 - number, size, values of inputs and outputs associated with I
 - recursive stack space, formal parameters, local variables, return address

CHAPTER 1

```
*Program 1.9: Simple arithmetic function (p.19)

float abc(float a, float b, float c)

{
    return a + b + b * c + (a + b - c) / (a + b) + 4.00;
}

S_{abc}(I) = 0
```

```
*Program 1.10: Iterative function for summing a list of numbers (p.20) float sum(float list[], int n)
```

```
float tempsum = 0;
int i;
for (i = 0; i<n; i++)
tempsum += list [i];
return tempsum;
```

$$S_{\text{sum}}(I) = 0$$

Recall: pass the address of the first element of the array & pass by value

```
*Program 1.11: Recursive function for summing a list of numbers (p.20)
float rsum(float list[], int n)
{
   if (n) return rsum(list, n-1) + list[n-1];
   return 0;
}

S_sum(I)=S_sum(n)=6n
```

Assumptions:

*Figure 1.1: Space needed for one recursive call of Program 1.11 (p.21)

Type	Name	Number of bytes
parameter: float	list []	2
parameter: integer	n	2
return address:(used internally)		2(unless a far address)
TOTAL per recursive call		6

Time Complexity

$$T(P)=C+T_p(I)$$

- Compile time (C)
 independent of instance characteristics
- run (execution) time T_p
- Definition $T_p(n) = c_a ADD(n) + c_s SUB(n) + c_t LDA(n) + c_{st} STA(n)$ A program step is a syntactically or semantically meaningful program segment whose execution time is independent of the instance characteristics.
- Example

$$- abc = a + b + b * c + (a + b - c) / (a + b) + 4.0$$

$$-abc = a + b + c$$

Regard as the same unit machine independent

Methods to compute the step count

- Introduce variable count into programs
- Tabular method
 - Determine the total number of steps contributed by each statement
 - step per execution × frequency
 - add up the contribution of all statements

Iterative summing of a list of numbers *Program 1.12: Program 1.10 with count statements (p.23)

```
float sum(float list[], int n)
  float tempsum = 0; count++; /* for assignment */
  int i;
  for (i = 0; i < n; i++)
     count++; /*for the for loop */
     tempsum += list[i]; count++; /* for assignment */
  count++; /* last execution of for */
  return tempsum;
  count++; /* for return */
```

2n + 3 steps

*Program 1.13: Simplified version of Program 1.12 (p.23)

```
float sum(float list[], int n)
{
    float tempsum = 0;
    int i;
    for (i = 0; i < n; i++)
        count += 2;
    count += 3;
    return 0;
}</pre>
```

2n + 3 steps

Recursive summing of a list of numbers

*Program 1.14: Program 1.11 with count statements added (p.24)

```
float rsum(float list[], int n)
   count++; /*for if conditional */
   if (n) {
       count++; /* for return and rsum invocation */
       return rsum(list, n-1) + list[n-1];
   count++;
   return list[0];
```

2n+2

Matrix addition

*Program 1.15: Matrix addition (p.25)

```
*Program 1.16: Matrix addition with count statements (p.25)
void add(int a[][MAX SIZE], int b[][MAX SIZE],
                 int c[][MAX SIZE], int row, int cols)
 int i, j;
                                 2\text{rows} * \text{cols} + 2\text{ rows} + 1
 for (i = 0; i < rows; i++)
     count++; /* for i for loop */
     for (j = 0; j < cols; j++)
       count++; /* for j for loop */
       c[i][j] = a[i][j] + b[i][j];
       count++; /* for assignment statement */
     count++; /* last time of j for loop */
 count++; /* last time of i for loop */
                     CHAPTER 1
```

*Program 1.17: Simplification of Program 1.16 (p.26)

```
void add(int a[][MAX SIZE], int b [][MAX SIZE],
                 int c[][MAX SIZE], int rows, int cols)
  int i, j;
  for( i = 0; i < rows; i++) {
    for (j = 0; j < cols; j++)
      count += 2;
      count += 2;
  count++;
           2rows \times cols + 2rows + 1
```

Suggestion: Interchange the loops when rows >> cols CHAPTER 1 18

Tabular Method

*Figure 1.2: Step count table for Program 1.10 (p.26)

Iterative function to sum a list of numbers steps/execution

Statement	s/e	Frequency	Total steps
float sum(float list[], int n)	0	0	0
{	0	0	0
float tempsum $= 0$;	1	1	1
int i;	0	0	0
for(i=0; i <n; i++)<="" td=""><td>1</td><td>n+1</td><td>n+1</td></n;>	1	n+1	n+1
tempsum += list[i];	1	n	n
return tempsum;	1	1	1
}	0	0	0
Total			2n+3

Recursive Function to sum of a list of numbers

*Figure 1.3: Step count table for recursive summing function (p.27)

Statement	s/e	Frequency	Total steps
float rsum(float list[], int n)	0	0	0
{	0	0	0
if (n)	1	n+1	n+1
<pre>return rsum(list, n-1)+list[n-1];</pre>	1	n	n
return list[0];	1	1	1
}	0	0	0
Total			2n+2

Matrix Addition

*Figure 1.4: Step count table for matrix addition (p.27)

Statement	s/e	Frequency	Total steps	
Void add (int a[][MAX_SIZE] • • •) { int i, j; for (i = 0; i < row; i++) for (j=0; j < cols; j++) c[i][j] = a[i][j] + b[i][j]; }	0 0 0 1 1 1 0	0 0 0 rows+1 rows• (cols+1) rows• cols	0 0 0 rows+1 rows • cols+rows rows • cols	
Total	2rows• cols+2rows+1			

*Program 1.18: Printing out a matrix (p.28)

```
void print_matrix(int matrix[][MAX_SIZE], int rows, int cols)
{
   int i, j;
   for (i = 0; i < row; i++) {
      for (j = 0; j < cols; j++)
           printf("%d", matrix[i][j]);
      printf( "\n");
   }
}</pre>
```

*Program 1.19:Matrix multiplication function(p.28)

```
void mult(int a[ ][MAX_SIZE], int b[ ][MAX_SIZE], int c[ ][MAX_SIZE])
{
   int i, j, k;
   for (i = 0; i < MAX_SIZE; i++)
      for (j = 0; j < MAX_SIZE; j++) {
        c[i][j] = 0;
      for (k = 0; k < MAX_SIZE; k++)
        c[i][j] += a[i][k] * b[k][j];
      }
}</pre>
```

*Program 1.20:Matrix product function(p.29)

```
\label{eq:condition} \begin{tabular}{ll} void prod(int a[ ][MAX\_SIZE], int b[ ][MAX\_SIZE], int c[ ][MAX\_SIZE], int rowsa, int colsb, int colsa) \\ \{ & int i, j, k; \\ for (i = 0; i < rowsa; i++) \\ & for (j = 0; j < colsb; j++) \{ \\ & c[i][j] = 0; \\ for (k = 0; k < colsa; k++) \\ & c[i][j] \ += \ a[i][k] \ * \ b[k][j]; \\ \} \\ \} \\ \end{tabular}
```

*Program 1.21:Matrix transposition function (p.29)

```
void transpose(int a[ ][MAX_SIZE])
{
  int i, j, temp;
  for (i = 0; i < MAX_SIZE-1; i++)
    for (j = i+1; j < MAX_SIZE; j++)
        SWAP (a[i][j], a[j][i], temp);
}</pre>
```

Asymptotic Notation (O)

- Definition f(n) = O(g(n)) iff there exist positive constants c and n_0 such that $f(n) \le cg(n)$ for all n, $n \ge n_0$.
- Examples

```
-3n+2=O(n) /*3n+2 \le 4n \text{ for } n \ge 2 */
```

$$-3n+3=O(n) /*3n+3 \le 4n \text{ for } n \ge 3 */$$

$$-100n+6=O(n)$$
 /* $100n+6\le101n$ for $n\ge10$ */

$$-10n^2+4n+2=O(n^2) /* 10n^2+4n+2 \le 11n^2 \text{ for } n \ge 5 */$$

$$-6*2^n+n^2=O(2^n) /*6*2^n+n^2 \le 7*2^n \text{ for } n \ge 4*/$$

Example

- Complexity of $c_1 n^2 + c_2 n$ and $c_3 n$
 - for sufficiently large of value, $c_3 n$ is faster than $c_1 n^2 + c_2 n$
 - for small values of n, either could be faster
 - $c_1=1$, $c_2=2$, $c_3=100$ --> $c_1n^2+c_2n \le c_3n$ for $n \le 98$
 - $c_1=1$, $c_2=2$, $c_3=1000$ --> $c_1n^2+c_2n \le c_3n$ for $n \le 998$
 - break even point
 - no matter what the values of c1, c2, and c3, the n beyond which c_3 n is always faster than c_1 n²+ c_2 n

- \bullet O(1): constant
- O(n): linear
- $O(n^2)$: quadratic
- $O(n^3)$: cubic
- $O(2^n)$: exponential
- O(logn)
- O(nlogn)

*Figure 1.7:Function values (p.38)

	Instance characteristic n								
Time	Name	1	2	4	8	16	32		
1	Constant	1	1	1	1	1	1		
log n	Logarithmic	0	1	2	3	4	5		
n log n	Linear	1	2	- 4	8	16	32		
	Log linear	0	2	8	24	64	160		
n2	Quadratic	1	4	16	64	256	1024		
n^3	Cubic	1	8	64	512	4096	32768		
2"	Exponential	2	4	16	256	65536	4294967296		
71!	Factorial	1	2	24	40326	20922789888000	26313 x 10 ⁵³		

*Figure 1.8:Plot of function values(p.39)

*Figure 1.9: Times on a 1 billion instruction per second computer(p.40)

	Time for $f(n)$ instructions on a 10^9 instr/sec computer									
n	n $f(n)=n$	$f(n) = \log_2 n$	$f(n)=n^2$	$f(n)=n^3$	$f(n)=n^4$	$f(n)=n^{10}$	$f(n)=2^n$			
10	.01µs	.03µs	.1µs	1µs	10µs	10sec	1µs			
20	.02µs	.09µs	.4μs	8µs	160µs	2.84hr	1ms			
30	.03µs	.15µs	.9µs	27µs	810µs	6.83d	1sec			
40	.04µs	.21µs	1.6µs	64µs	2.56ms	121.36d	18.3mir			
50	.05µs	.28µs	2.5µs	125µs	6.25ms	3.1yr	13d			
100	.10µs	.66µs	10µs	1ms	100ms	3171yr	4*10 ¹³ yr			
1,000	1.00µs	9.96µs	1ms	1sec	16.67min	3.17*10 ¹³ yr	32*10 ²⁸³ yr			
10,000	10.00µs	130.03µs	100ms	16.67min	115.7d	3.17*10 ²³ yr				
100,000	100.00µs	1.66ms	10sec	11.57d	3171yr	3.17*10 ³³ yr				
1,000,000	1.00ms	19.92ms	16.67min	31.71yr	3.17*10 ⁷ yr	3.17*10 ⁴³ yr				

 μs = microsecond = 10^{-6} seconds ms = millisecond = 10^{-3} seconds

sec = seconds

min = minutes

hr = hours

d = days

yr = years