Diffuzz: Differential Fuzzing for Side-Channel Analysis

Shirin Nilizadeh¹, Yannic Noller², Corina S. Păsăreanu³

- ¹ University of Texas at Arlington, USA
- ² Humboldt-Universität zu Berlin, Germany
- ³ Carnegie Mellon University Silicon Valley, NASA Ames Research Center, Moffett Field, USA

Problem: Side-Channel Vulnerabilities

- **secure** if the secret data can not be inferred by an attacker through their observations of the system (aka *non-interference*)
- observables: execution time, memory consumption, response size, ...
- can be solved by self-composition

```
\forall pub, sec_1, sec_2 : c(P[pub, sec_1]) = c(P[pub, sec_2])
```

 ε -bounded non-interference

 $\forall pub, sec_1, sec_2 : |c(P[pub, sec_1]) - c(P[pub, sec_2])| < \epsilon$

Example (Timing Side-Channel)

```
boolean pwcheck (byte[] pub, byte[] sec) {
      if (pub.length != sec.length) { |
         return false;
                                            about length
      for (int i = 0; i < pub.length; i++) {
         if (pub[i] != sec[i]) { I
                                   leaks information
             return false;
                                    about the actual
                                    bytes
      return true;
10 }
```


Example Results

Initial Input: cost_{Diff} = 0 (measured in #instructions)

```
secret_1 = [72, 101, 108, 108, 111, 32, 67]
secret_2 = [97, 114, 110, 101, 103, 105, 101]
public = [32, 77, 101, 108, 108, 111, 110]
```

cost_{Diff} > 0 after ~ 5 sec

Input with highscore cost_{Diff} = 47 after ~ 69 sec (maximum length = 16 bytes):

```
secret_2 = [-48, -4, -48, 7, 17, 0, -24, -48, -48,
public = [-48, -4, -48, 7, 17, 0, -24, -48, -48,
         -28, 0, 100, 0, 0, 0, -48]
      \hookrightarrow 16, -48, -3, 108, 72, 32, 0]
         16, -48, -3, 108, 72, 32, 01
```

Evaluation

- comparison with **Blazer** and **Themis**, two state-of-the-art static analysis tools for detecting side-channel vulnerabilities in JAVA programs; extract is shown on the right →
- additional benchmarks from DARPA Space/Time Analysis für Cybersecurity (STAC) program
- new vulnerabilities found in Apache ftpserver
- different timing behaviors observed:

Benchmark	Version	DifFuzz	Themis	
		Average δ	€ = 64	$\epsilon = 0$
Spring-Security	Safe	1.00	✓	✓
	Unsafe	149.00	✓	✓
JDK-MsgDigest	Safe	1.00	✓	✓
	Unsafe	10,215.00	✓	✓
Picketbox	Safe	1.00	✓	X
	Unsafe	4,954.00	✓	✓
Tomcat	Safe	12.20	✓	X
	Unsafe	33,20	✓	✓
Jetty	Safe	5454.00	✓	✓
	Unsafe	10,786.60	✓	✓
oriented	Safe	6.00	✓	X
	Unsafe	6,604.00	✓	✓
pac4j	Safe	10.00	✓	X
	Unsafe	11.00	✓	✓
	Unsafe*	39.00	_	_
boot-auth	Safe	5.00	✓	X
	Unsafe	101.00	✓	✓
tourPlanner	Safe	0.00	✓	✓
	Unsafe	522.40	✓	✓
DynaTable	Unsafe	95.80	✓	✓
Advanced_table	Unsafe	92.40	✓	✓
OpenMRS	Unsafe	206.00	✓	✓
OACC	Unsafe	47.00	√	√