Grade 9 Science

Atoms, Elements and Compounds
Class 3

Patterns in the Periodic Table

- As you go down the family, what do you see?
 - Number of orbits increases
 - Number of electrons in the outer orbit is the same
- The outer electrons (valence electrons) are held loosely the farther they are from the nucleus
- As you go across a period, what do you see?
 - Number of valence electrons increases

Condensed Notation: Bohr-Rutherford Diagrams

- Drawing Bohr-Rutherford Diagrams can become cumbersome
- Instead of drawing full circular orbitals and all the electrons, the condensed notation shows partial orbits and the number of electrons in each shell

How to Draw a Condensed Notation B-R Diagram

Draw the Condensed Notation BR Diagram for Fluorine

- 1) Draw the nucleus and write the number of protons and neutrons inside
- 2) Draw the half orbitals and label the number of electrons in each shell

Checkpoint

Draw the Condensed Notation Bohr-Rutherford Diagram of:

- a) Magnesium
- b) Argon

Charcoal to Diamonds

- Charcoals, graphite and diamonds are all made of carbon but differ in the arrangement
 - Charcoal random arrangement
 - Graphite sheets of carbon atoms
 - Diamond 3D arrangement of carbon atoms

Atoms and Molecules

- Molecules 2 or more atoms of the same or different elements that are chemically joined together in a unit
 - Molecular Elements molecule consisting of atoms of the same element (ex: H₂, O₂, F₂, Br₂, I₂, N₂, Cl₂)
 - Molecular Compound molecule consisting of atoms of different elements (ex: H₂O, CO₂)

Checkpoint

Consider the following substances:

 H_2 CO_2 Ne C_3H_8

Which substances are:

- a) Elements
- b) Compounds
- c) Atom
- d) Molecule

How Atoms Combine

- Atoms combine to become more stable
 - Metal + Metal (alloy) ex: sterling silver 92.5%
 silver and 7.5% copper
 - Metal + Nonmetal (ionic compound) ex: NaCl
 - Nonmetal + Nonmetal (covalent compound) ex: H₂

Ionic Compounds

- Ionic compounds: made up of charged particles called ions; metal + nonmetal
 - Cation positively charged ion (ex: Na⁺, Mg²⁺)
 - Anion negatively charged ion (ex: Cl⁻, O²⁻)
- Atoms become ions due to a loss/gain of electrons

	Sodium, Na*	Chloride, Cl ⁻
positive charge (protons)	+11	+17
negative charge (electrons)	<u>-10</u>	<u>-18</u>
ionic charge	+1	-1

Checkpoint

Find the molecular formula of sodium sulfide using a complete Bohr-Rutherford Diagram.

Naming Ionic Compounds

- 1. Write the name of the metal and nonmetal
- 2. Change the ending of the nonmetal to -ide

Chemical formula	Chemical name	Common name	Common use
NaCl	sodium chloride	table salt/road salt	food seasoning, melting road ice
KCI	potassium chloride	potash	fertilizer
CaO	calcium oxide	quicklime	masonry
Na0H	sodium hydroxide	lye	drain cleaner
CaCO ₃	calcium carbonate	limestone, chalk	building materials
NaHCO ₃	sodium hydrogen carbonate	baking soda	rising agent in baking
Mg(OH) ₂	magnesium hydroxide	milk of magnesia	antacid
CuSO ₄	copper(II) sulfate	bluestone	algicide and fungicide

Covalent Compounds

- Unlike ions, nonmetals do not feel a strong pull for electrons
- They share the electrons and form a covalent bond

Chemical formula	Chemical name	Common name	Common use/Source
N ₂	nitrogen	nitrogen	approximately 80 % of air
02	oxygen	oxygen	approximately 20 % of air
0 ₃	trioxygen	ozone	in stratosphere absorbs ultraviolet light
H ₂ 0	dihydrogen oxide	water	needed in all cells home for aquatic organisms
CO ₂	carbon dioxide	dry ice (solid)	carbonated beverages refrigeration
HCI	hydrogen chloride	muriatic acid (solution)	stomach acid important industrial chemical
CH ₄	methane	natural gas	• fuel
NH ₃	nitrogen trihydride	ammonia	used in fertilizers and household cleaners
C ₃ H ₈	propane	propane	• fuel
C ₂ H ₄ O ₂	acetic acid	vinegar	used in cooking preservative
C ₉ H ₈ O ₄	acetylsalicylic acid (ASA)	Aspirin	blood thinner for pain

Concept Map

Gas Tests

- Oxygen is essential for burning; things burn more vigorously in oxygen
- Hydrogen ignited in air causes an explosive "pop" sound because the H combines with O₂ to form water vapour
- Carbon dioxide does not burn; extinguishes the flame

Oxygen Gas Test

 Hydrogen peroxide will decompose into water and oxygen gas with a manganese catalyst

$$2H_2O_2 \xrightarrow{Mn} 2H_2O + O_2$$

Presence of oxygen will cause your glowing splint to re-ignite

Hydrogen Gas Test

 Magnesium metal and hydrochloric acid will cause the Mg to dissolve and form hydrogen bubbles

$$Mg + 2HCl \rightarrow MgCl_2 + H_2$$

 The hydrogen gas will cause the splint to make a "pop" sound

Carbon Dioxide Gas Test

 Hydrochloric acid and baking soda will break into sodium chloride, water and carbon dioxide

$$HC1 + NaHCO_3 \rightarrow NaC1 + H_2O + CO_2$$

Formation of carbon dioxide will extinguish your burning flame

Checkpoint

Why do think:

- a) Birthday balloons are filled with Helium instead of Hydrogen?
- b) During surgery with oxygen chambers, why do medical staff wear coverings over their shoes to eliminate sparks due to static electricity?

Hydrogen Peroxide H₂O₂

- Found in teeth whiteners, hair bleach, disinfectant, contact lens solutions
- Hydrogen Peroxide easily breaks into a more stable hydrogen and oxygen
 - The oxygen released can bleach many chemicals
- Bought in plastic, brown bottles to prevent explosions