My Portfolio

MECHANICAL ENGINEERING AT THE UNIVERSITY OF Ottawa

Ahmed Yassine Ben Ayed

Summary

I am a 3rd-year Mechanical Engineering student at the University of Ottawa with strong interests in automation systems (PLC, Arduino, embedded control) and CAD design.

I enjoy working on engineering projects that combine **hands-on design with project leadership**, where I can contribute both technically and by guiding a team towards successful deliverables.

This portfolio highlights a selection of my most relevant **academic**, **professional**, **and personal projects**. Each project page follows a clear *What / How / Results* structure with visuals, and **all project titles are clickable links** to the corresponding GitHub repositories containing documentation, CAD models, and code.

Wind Turbine Nacelle

What?

- Designed a reliable nacelle for a horizontal-axis domestic wind turbine (client: Eole).
- Targeted Ontario's weather conditions and domestic energy needs.
- Delivered a complete report with CAD models, calculations, and assembly drawings.

How?

- Developed subsystems:
 - CVT speed regulation system for smooth adaptation of rotor speed to generator.
 - o Fail-safe braking system
 - Yaw control with ring gear and pinions.
 - 50 kW permanent magnet generator + LiFePO4 battery for storage.
- Integrated bearings, shafts, couplings, and optimized materials (fiberglass, steel).
- Modeled in SolidWorks, with detailed CAD and 2D drawings.

Results

- Produced a full design meeting client requirement for efficiency, durability, and maintainability.
- Optimized robustness and ease of assembly/maintenance with local materials.

My Portfolio

MECHANICAL ENGINEERING AT THE UNIVERSITY OF Ottawa —— Ahmed Yassine Ben Ayed

2D Mini Printer

What?

- Designed a prototype linear actuator using a 28BYJ-48 stepper motor, Arduino Nano and SolidWorks.
- Intended for precision motion applications (e.g., CNC mini-systems, automated mechanisms).

How?

- Built with 3D-printed components (rack, pinion, sliding rail, holders) on a wood/MDF baseplate.
- Controlled via Arduino + ULN2003 driver, enabling step control and calibration routines.

Next Step

- Prototype partially functional; identified issues in smoothness.
- Next iterations will integrate end-stop detection, improved 3D-printed tolerances, and optimized Arduino code for smoother motion.

Inventory Management System - Inventrack

- Designed and implemented an RFID-based inventory system to automate check-ins and check-outs.
- Developed as part of a university project with Shared Services Canada as client.

How?

- Built using Arduino UNO, RC522 RFID reader, tags, LEDs, and buzzer for realtime feedback.RC522 RFID reader.
- Integrated with Excel via PLX-DAQ for live data logging (date, time, UID) and visualization.

Results

- Fully functional demo presented with poster + live system.
- Improved traceability and reduced manual errors in inventory management.
- Reduced project costs by 55% through optimization strategies.

My Portfolio

MECHANICAL ENGINEERING AT THE UNIVERSITY OF Ottawa

Ahmed Yassine Ben Ayed

Pennsylvania Truss Bridge

What?

- Designed, analyzed, and physically built a
 Pennsylvania truss bridge as part of the Mechanics of Materials course.
- Compared two truss types (Pratt vs. Pennsylvania) and selected the Pennsylvania truss for its superior rigidity and load capacity.

How?

- Performed manual calculations (static equilibrium, joint method, buckling/stress checks).
- Modeled and validated the bridge using SAP2000 simulations under applied loads.
- Optimized cross-sections for stability and material efficiency.
- Constructed the bridge using balsa wood, based on calculated results.

Results

- Final bridge weight: 200 g.
- Load resisted: 940 N.
- Achieved a load-to-selfweight ratio of ~234x.
- Successfully demonstrated a balance between theoretical design and practical construction.

Arduino

What?

 Developed several prototypes using Arduino microcontrollers for automation and data acquisition.

How?

 Integrated various sensors (RFID, motion, environmental, distance) with Arduino and Processing/Excel for real-time monitoring and control.

Results

 Gained strong hands-on experience in embedded systems and rapid prototyping, with functional demos presented in academic settings.