

The Worldwide Ionospheric Data Base

Dieter Bilitza

April 1989

NATIONAL SPACE SCIENCE DATA CENTER/
WORLD DATA CENTER A FOR ROCKETS AND SATELLITES

(NASA-TM-101873) THE WORLDWIDE IONOSPHERIC
DATA BASE (NASA) 107-0 CSCL 041

N90-29714

Unclassified
63746 0219823

Ionosphere

ORIGINAL PAGE IS
OF POOR QUALITY

Atmosphere

The Worldwide Ionospheric Data Base

Dieter Bilitza

April 1989

NATIONAL SPACE SCIENCE DATA CENTER/
WORLD DATA CENTER A FOR ROCKETS AND SATELLITES

Progress, far from consisting in change, depends on retentiveness

Those who cannot remember the past are condemned to repeat it.

George Santayana

The Life of Reason (1905)

Contents

1. Introduction	1
1.1 The Ionospheric Plasma	1
1.2 Ionospheric Measurement Techniques	6
2. Ground-Based Measurements	7
2.1 Ionosonde	7
2.2 Incoherent Scatter Radar	15
2.3 Absorption	20
2.4 Other Techniques	21
3. Spacecraft Measurements	23
3.1 Beacons	24
3.2 In Situ Experiments	27
3.3 Topside Sounder	29
3.4 Rockets	31
3.5 Other Techniques	32
4. Comparisons and Compatibility of Different Data Sets	33
4.1 Electron Density	33
4.2 Electron and Ion Temperature	34
5. Modeling the Ionosphere	37
5.1 Theoretical Simulation	37
5.2 Empirical Modeling	39
6. References	43
7. Bibliography	53
Appendix: A Satellites, Experiments, and Data Sets	A-1
A.1 Alphabetical	A1-1
A.2 Chronological	A2-1
A.3 Software Packages by Discipline	A3-1
B Coordinated Projects	B-1
C Journals and Newsletters	C-1
D Prediction Services (Forecasts/Warnings/Alerts)	D-1
E Addresses and Abbreviations	E-1

Figures

2.1 Sample page from the <i>Directory of Solar-Terrestrial Physics Monitoring Stations</i>	8
2.2 Location of all ionosondes known to have operated	12, 13
2.3 Operational ionosondes 1930-1984	14
2.4 Global digisonde 256 network as of July 1988	14
3.1 Altitude/time chart of satellite data from in situ experiments	28
4.1 Comparison of AEROS and AE-C measurements.	36

Tables

1.1 Estimated maximum ionospheric effects on electromagnetic waves.	2
1.2 Measurement techniques and parameters	5
2.1 Ionosonde data on tape available from WDC-A-STP	10, 11
2.2 Soviet ionosonde data in digital form available at WDC-B2	15
2.3 Locations of digisonde stations, operating and planned, March 1988	16
2.4 Incoherent scatter radar facilities	17
2.5 Information sources for incoherent scatter stations	18
2.6 Ionospheric absorption stations	19, 20
2.7 Numbers of stations using other techniques	21
3.1 Data sets, experiments, and spacecraft in NSSDC/WDC-A-R&S data catalog . . .	24
3.2 Beacon satellites	25
3.3 Digital hourly TEC data at NGDC	26
3.4 References for in situ experiments	30
4.1 Widely used satellite data sets: Langmuir probe and retarding potential analyzer .	35
5.1 Empirical models of ionospheric electron density	38
5.2 Empirical models of ionospheric plasma temperatures	40
5.3 Empirical models of interest for ionospheric physics.	41

Chapter 1

Over the last decades, ground-based, rocket and satellite experiments have supplied us with a wealth of information about the ionospheric plasma.

From early on, exploration of the ionosphere was driven not only by the human quest to understand the world that surrounds us but also by basic day-to-day needs in radio communications. Soon the ionosphere was also recognized as a natural laboratory for testing our ideas and theories in plasma physics and thermodynamics. In our age, in which earth observation from space plays an ever increasing role in the global well-being of our planet, predictability of the ionospheric environment is more important than ever.

The electromagnetic waves used for remote sensing are affected by the ionospheric plasma. Moreover, the accuracy of satellite positioning and navigation depends heavily on proper corrections for ionospheric influence (see Table 1.1). Accurate knowledge of the satellite's orbit position is especially important for geodesy, altimetry, and gravimetry, as well as for Search and Rescue from space.

In solar-terrestrial physics we are getting closer and closer to understanding the flow of matter, energy, and momentum from the sun to the Earth. The ionosphere plays a crucial role in the large-scale coupled system of heliosphere, magnetosphere, and atmosphere [15, 17].

Introduction

The worldwide ionospheric data base is scattered over the entire globe. Different data sets are held at different institutions in the United States, the Soviet Union, Australia, Europe, and Asia. The World Data Centers in the different continents archive and distribute part of the huge data base; the scope and cross-section of the individual data holdings depend on the regional and special interest of the center.

This report should be viewed as a central document pulling together all the strings that point toward different ionospheric data holdings. It will provide requesters with the information about what is available and where to get it. An attempt is made to evaluate the reliability and compatibility of the different data sets based on the consensus in the ionospheric research community. The status and accuracy of standard ionospheric models are also discussed because they may considerably facilitate first order assessment of ionospheric effects.

This study is a first step towards an ionospheric data directory within the framework of NSSDC's Master Directory.

1.1 The Ionospheric Plasma

The gaseous envelope that surrounds our planet can be divided into two regions at about 80 km altitude. The turbulent and neutral gas mixture of the lower region is the stage for all

Chapter 1

meteorological processes. This part fills only 1/50,000 of the total gas volume, but it contains 10^5 times more gas than the rest. In the upper region, solar irradiation produces a partially ionized plasma composed of neutrals (O , N_2 , O_2 , He , H), ions (O^+ , H^+ , He^+ , NO^+ , O_2^+ , N_2^+) and electrons. The ionosphere is electrically neutral. The most abundant neutral is N_2 and the most abundant ion is O^+ . Above 1000 km altitude light ions (H^+ , He^+) become dominant; below 250 km heavy ions (NO^+ , O_2^+) play an important role.

Plasma-related nomenclature distinguishes the "ionosphere" as below about 1000 km altitude and the "protonosphere" or "plasmasphere" as above that altitude. Both regions are part of the much larger magnetosphere, which is the region controlled by the Earth's magnetic field.

Electron and total ion number densities are in the range 10^8 to 10^{13} m^{-3} . Neutral densities

decrease from 10^{17} m^{-3} at low altitudes to 10^{12} at about 500 km.

Unlike the almost hydrostatic altitude profiles of the neutral densities, the electron density profile exhibits several layers (E, F1, F2), as a result of the competing processes of particle production, loss, and transport. The highest densities (10^{12} to 10^{13} m^{-3}) are observed at the F2 peak; the peak altitude ranges from 250 to 350 km at mid-latitudes and from 350 to 500 km at equatorial latitudes. The E peak density is about one order of magnitude smaller than the F2 peak and typically located at 100 to 120 km altitude. Between these two layers under certain conditions a valley and/or an F1 ledge can be observed. Below the E peak, in the D region, the electron density decreases rapidly with altitude. At 80 to 90 km the profile may exhibit an inflection point.

The ionization in the D region is primarily caused by solar X-rays and depends strongly on the solar zenith angle. The highest values

TABLE 1.1 Estimated Maximum Ionospheric Effects on Electromagnetic Waves [11]

Effect	100 MHz	300 MHz	1 GHz	3 GHz	10 GHz
Faraday rotation (rotations)	30	3.3	0.3	0.033	0.003
Excess time delay (μs)	25	2.8	0.25	0.028	0.0025
Refraction	$\leq 1^\circ$	$0^\circ 7'$	$0^\circ 0.6'$	$0^\circ 0'4.2''$	$0^\circ 0'0.36''$
Variation in direction of arrival (s)	1200	132	12	1.32	0.12
Absorption, auroral and polar cap (dB)	5	1.1	0.05	6×10^{-3}	5×10^{-4}
Absorption midlatitude (dB)	< 1	0.1	< 0.01	< 1×10^{-3}	< 10^{-4}
Dispersion (ps/Hz)	0.4	0.015	0.0004	1.5×10^{-5}	4×10^{-7}

Note: Data were collected in the United States for one-way paths at an elevation angle of about 30° .

Worldwide Ionospheric Data Base

(10^8 to 10^9 m $^{-3}$) are reached near noon during summer. Below about 70 km ionization by cosmic rays becomes the major electron source. As a consequence of the different production sources, the electron density is negatively correlated with the solar cycle below 70 km and positively above.

The E region is under solar control, being formed mostly by ionization of atomic oxygen by EUV radiation. Again the daily maximum density occurs near noon, the seasonal maximum is found in summer, and the density increases with solar activity. During the night, the density decreases by more than an order of magnitude due to recombination. A very thin and patchy sporadic E (Es) layer occurs irregularly and can exceed the normal E and F peak densities (see special issue of *Radio Science*, Vol. 10, No. 3, 1975 for in depth discussion).

The F region consists of two overlapping layers (F1, F2), with the F2 layer being the most important, exceeding the F1 layer in magnitude and altitude. A clear separation, i.e. a distinct F1 ledge, is most obvious during daytime in summer. The F1 region at 150 to 200 km altitudes is still under strong solar control. With increasing altitude, however, the neutral densities decrease rapidly and transport processes become more important than the ionization process. Ambipolar diffusion, electrodynamic drift, and neutral wind drag determine the density distribution. As a result the F2 peak and the topside above it are highly variable (10 to 30 percent from day to day). The topside densities decrease exponentially to between 10^9 and 10^{10} m $^{-3}$ at 1000 km altitude. Unlike the lower layers, the F2 peak density tends to reach maximum values in the afternoon and during winter.

The latitudinal profile of F region electron density exhibits two crests at $\pm 15^\circ$ magnetic latitude with a minimum at the magnetic equator. Towards night (and also towards higher altitudes) the two crests merge into one latitudinal peak at the magnetic equator. This "equatorial anomaly" is caused by the so-called "fountain effect": the charged particles are pushed upward by the equatorial electric field and drift downward along magnetic field lines (see *Journal of Atmospheric and Terrestrial Physics*, Vol. 39, No. 9/10, 1977).

At high latitudes the ionosphere is strongly coupled to the magnetosphere and to the solar wind. The transition from closed to open magnetic field lines and the influx of energetic particles profoundly affect the ionospheric plasma [16, 17, 24, 26]. The boundary region, the auroral oval, is marked by the beautiful display of auroras (northern lights)[23]. In recent years satellite imaging instruments allowed us to monitor the oval from space. Surrounding the magnetic poles, the oval extends to near 75° geomagnetic latitude at noon and 65° at local midnight. On the nightside the oval is well marked by a depletion in electron density, the so-called trough. On the dayside one finds a region of enhanced densities just inside the oval, the so-called magnetospheric cleft; the electron density at the tip of the crest is almost an order of magnitude greater than it is at the bottom of the trough. During magnetic storms the trough moves equatorward by about 2° latitude per unit increase in K_p . The region inside the oval is called the polar cap. The auroral oval and its role in ionospheric physics was reviewed by Feldstein and Galperin [1985], and by Feldstein [1986].

A wide variety of ionospheric irregularities have been observed, predominantly at high latitudes and during the equatorial nighttime [Fejer and Kelley, 1980; Szuszczewicz, 1986]. The plasma fluctuations range in scale from hundreds of kilometers down to centimeters. Plasma instabilities play an important role in the generation of medium-scale (kilometers) and small-scale (meters) irregularities. Examples of irregularities are patches of enhanced ionization in the E region (sporadic E) and of depleted ionization in the F region (spread F). Spread F is most frequently observed in the equatorial nighttime ionosphere. The term "spread F" originates from the range and frequency spread on ionosonde recordings, with which it was first discovered. Reviews of spread F theories were given by Ossakow [1981], and by Ossakow et al. [1984]. The irregularities cause signal fluctuations in traversing radio waves, known as scintillations.

Influx of solar plasma into the tail of the magnetosphere, sometimes preceded by solar flares, can cause complex ionospheric disturbances (storms); the most consistent pattern is an enhancement in D region ioniza-

Chapter 1

tion. These effects are felt most strongly in the polar cap. A particular severe event is due to protons arriving from the sun and causes a radio communication blackout over considerable time periods, the so-called polar cap absorption (PCA) events.

The main source of energy for the terrestrial ionosphere is extreme ultraviolet radiation from the sun. The electrons are heated most efficiently and their temperature exceeds the temperatures of ions and neutrals. Electron temperatures increase from about 300 K at 100 km to about 3500 K at 800 km. Ion temperatures are close to the neutral temperature below about 400 km and increase towards the electron temperature above that altitude. Below 150 km the high neutral densities and the high collision frequencies result in the same temperature for electrons, ions, and neutrals. During nighttime (no solar heating) the temperatures of all species are close together.

In general, plasma temperatures are lowest at the geomagnetic equator and increase towards higher latitudes, due to the increased influence of heating by precipitating particles at auroral latitudes. At low altitudes, however, the electron temperature peaks at the magnetic equator, reaches minimal values at about $\pm 20^\circ$, and then increases towards higher latitudes. This behavior is the mirror image of the equatorial anomaly of the electron density and illustrates the strong anticorrelation between electron density and temperature.

Roughly speaking, the temperatures increase from an almost constant nighttime value to an almost constant daytime value. The most significant departure from this behavior is the early morning peak in electron temperature. It is most pronounced at the magnetic equator at about 300 km altitude (the peak temperature exceeds the daytime value by a factor of 2 to 3); its magnitude decreases rapidly towards higher and lower altitudes and towards higher latitudes. The temperature peak is a result of the sharp increase in solar heating with at the same time still low electron densities.

The electron temperature stays almost constant through a solar cycle, in contrast to the increase of almost all other neutral and ionized parameters. This again is a result of the close coupling with the electron density which

determines both energy gain and loss of the electron gas; the simultaneous increase of both terms leaves the electron temperature nearly unchanged.

An excellent review of ionospheric electron temperatures was published by Schunk and Nagy [1978]. The theoretical and experimental evidence for temperature anisotropies was reviewed by Demars and Schunk [1987] and by Oyama and Schlegel [1988].

The sun-induced thermospheric winds provide the energy source needed to drive the so-called ionospheric dynamo which maintains the system of ionospheric electric currents and fields. See Blanc [1979] and Richmond [1979] for review and references. On the sunlit side of the Earth two large vortices of electric current exist in the quiet equinoctial ionosphere; the current flows counterclockwise in the northern hemisphere and clockwise in the southern hemisphere (Sq currents). The concentrated current at the magnetic equator represents the equatorial electrojet [Forbes, 1981]. Magnetic storms severely affect thermospheric winds and ionospheric currents. The thermospheric winds and ionospheric drifts are of the order of 100 m/s and can reach 1000 m/s and more during magnetic storms. Ionospheric current densities are of the order of 10^{-6} A/m² and electric fields are of the order of 10⁻² V/m. The Earth's magnetic field reaches values of 3×10^{-8} T at ionospheric altitudes.

The solar wind blowing past the Earth's magnetic field creates a magnetospheric dynamo which drives ionization across the polar cap. The empirically found dependence of the auroral plasma convection on solar wind parameters [Reiff and Burch, 1985; Clauer and Banks, 1986] illustrates the strong coupling between solar wind and high-latitude ionosphere [19].

While the dynamics of the terrestrial ionosphere is largely controlled by the magnetic field, some other planetary ionospheres interact directly with the solar wind. The ionospheres of the other planets and their relation to the Earth's ionosphere were described by Strobel [1979] and by Schunk and Nagy [1980]. Korösmézey et al. [1987] investigated cometary ionospheres.

Worldwide Ionospheric Data Base

TABLE 1.2 Measurement Techniques and Parameters

Measurement Technique	Primary Parameters	Secondary Parameters	(1) First Year (2) Time Resolution (3) Spatial Resolution (4) Number of Stations (5) Volume of Data
<u>Ground-Based</u>			
Ionosonde	Plasma frequencies for E, F1, F2, Es Propagation factor M(3000) F2	Bottomside electron density profile Peak altitude of E, F1, F2	(1) 1940 (2) 1h, 15 min (4) ~ 400 (5) 45000 station-months
Incoherent scatter	Electron density Electron temperature Ion composition Ion temperature Ion drift velocity (line-of-sight)	Vector ion velocity Neutral drift velocity Electric field Neutral temperature	(1) 1964 (2) 1 - 30 min, 3 d/m (3) 5 - 100 km, (4) 8 stations
Absorption	Field strength (echo-amplitude)	Some information about the electron density in the D-region	(1) 1957 (4) 30 - 60
Others	Ionospheric modulation transfer (Laxenburg effect) VLF receiver (whistler) Ionospheric drifts (from travelling irregularities, meteor trail echoes, etc.) Atmospheric radio noise Optical measurements Artificial heating of the ionosphere		
<u>Satellite, Rocket</u>			
Beacon	Ionospheric and plasmaspheric electron content	Scintillations Irregularities	(1) 1958 (4) ~30
In situ	Most plasma parameters (depending on instrumentation)	Energy budget Particle budgets	(1) 1964 (2) 1 - 60 s
Topside sounder	Topside ionograms Plasma resonance frequencies	Topside electron density profile	(1) 1962 (2) 10 - 30 s (5) 4 million ionograms ~100,000 reduced
Others	VLF receiver (whistler) Chemical release (ion drift) and artificial disturbance of chemistry Optical measurements		

Chapter 1

1.2 Ionospheric Measurement Techniques

The existence of the ionosphere was first demonstrated by Marconi's transatlantic radio experiments in 1901. Observation of the ionosphere started in the mid-twenties, when several groups around the globe began to apply radio echo sounding. Since then their instrument, the ionosonde, has undergone a remarkable evolution into an almost wholly automated monitor of ionospheric parameters.

The knowledge acquired with the growing network of ionosondes has helped to facilitate and improve worldwide radio communication and broadcasting. Ionosonde measurements, however, are limited to the ionospheric plasma below the F peak. In 1957, Sputnik 1 heralded a new era of ionospheric exploration. Satellites carried the ionosonde beyond the F peak boundary and allowed in situ measurements and wave-propagation experiments between satellites and ground stations.

In the mid-sixties the newly developed incoherent scatter radar technique evolved into a powerful, ground-based observation tool. For the first time, the ionospheric parameters could be measured from top to bottom with the same experiment. The incoherent scatter spectrum that is received back by the radar

contains information about the electron and ion densities, temperatures, and drifts, thereby allowing a much more detailed investigation of ionospheric processes than the ionosonde, which is only sensitive to electron density. In parallel, satellite missions evolved from single-experiment/parameter investigations into highly equipped ionospheric and atmospheric observatories.

The region below the E peak (the D region), being inaccessible to either of the above measurement techniques, is the domain of rocket experiments. Rocket campaigns have provided important contributions to our understanding of specific ionospheric phenomena such as the winter anomaly or spread F. However, unlike ground-based and satellite observations, the short and localized rocket flights do not allow exploration of global or temporal behavior. Here the indirect evidence from ground-based radio absorption measurements has to be consulted.

Table 1.2 (see page 5) lists the measurement techniques addressed below. Far from being complete, our survey includes only those techniques of ionospheric exploration that have produced large data records that are of general interest to the science and engineering community.

Chapter 2

All ground-based measurement techniques yield information about the ionosphere from the difference in phase, amplitude, or polarization between transmitted and received radio waves. Evidently the ionosphere's refractive and absorptive effect on radio waves allows us, on the one hand, to use radio signals as a diagnostic tool but, on the other hand, causes unwanted side effects in measurements that utilize radio waves. One man's signal is another man's noise. This explains the importance ionospheric information has for radio communication, radio astronomy, satellite orbit determination, and remote sensing from space.

We distinguish three basic methods of ground-based observation: ionosonde, incoherent scatter radar, and absorption measurements. See Rawer and Suchy [1967] and Booker and Smith [1970] for general overview.

Information about the operating stations in all three categories worldwide is included in the *Directory of Solar-Terrestrial Physics Monitoring Stations*, by Shea et al. [1984], published for the Scientific Committee on Solar-Terrestrial Physics (SCOSTEP). It lists more than 1000 stations. For each station the directory provides information on station location, dates of operation, observing schedule, instrument description, and availability of raw and reduced data. Figure 2.1 shows a typical page.

The number of ionospheric monitoring stations has dropped from 368 before 1977 to 293 in 1984, a decrease of 20%.

Ground-Based Measurements

2.1 Ionosonde

Ionosonde measurements utilize the fact that each plasma has a characteristic plasma frequency f_p , which depends only on the electron density N_e of the plasma:

$$N_e/m^3 = 1.24 \times 10^{10} (f_p/\text{MHz})^2$$

Radio waves with this frequency are totally reflected by the plasma, due to the interaction between the electric field of the waves and the plasma electrons. The time delay between signal transmission and echo reception is a measure of the height at which reflection occurs.

Ionosondes record the time delay for different frequencies, sweeping from about 1 MHz to 20 MHz. The recording, usually on film, is called an ionogram. The time delay Δt is translated into a virtual height h' by assuming propagation at the speed of light c :

$$h' = c \frac{\Delta t}{2}$$

Actual reflection heights are smaller than virtual heights due to the ionospheric refraction effect.

The Earth's magnetic field splits the echo trace into an ordinary and an extraordinary trace. The usual ionogram reduction techniques use only the ordinary trace. Parameters routinely deduced from ionograms include

B01 Ionosphere Vertical Soundings (Cont.)

POITIERS, FRANCE

DISCIPLINE ----- B01 Ionosphere Vertical Soundings
 STATION LATITUDE ----- N 46.57
 STATION LONGITUDE ----- E 0.35
 ALTERNATE NAMES -----
 DATES OF OPERATION ----- 07/1948 to present
 OBSERVING SCHEDULE ----- REGULAR
 INSTRUMENT DESCRIPTION ----- LRN ionosonde. Ionograms every 15 minutes,
 1.6 - 17 MHz.
 RAW DATA ----- 35 mm film
 DATA REDUCTION PRACTICE ----- REGULAR SPECIAL
 REGULAR REDUCED DATA AVAILABLE AFTER ----- 3 MONTHS
 FORM OF REDUCED DATA ----- Monthly tables of hourly values (microfiche)
 magnetic tape since 01/1971
 DATA ROUTINELY PUBLISHED ----- BULLETIN DE MESURES IONOSPHERIQUES
 DATA SENT TO WDC-A ----- YES
 DATA SENT TO WDC-B ----- YES
 DATA SENT TO WDC-C ----- YES
 DATA AVAILABLE ON REQUEST -----
 ADDRESS FOR INFORMATION ABOUT STATION ----- Professeur Corcuff
 Laboratoire de Physique de la
 Haute Atmosphérique
 Le Delffend - Mignolous-Beauvoir
 66800 St. Julian L'ars
 France
 ADDRESS FOR INFORMATION ABOUT DATA ----- Monsieur l'ingénieur Charge du Service
 des Prévisions Ionosphériques
 CNET - B.P. 40
 22301 Lannion Cedex
 France
 ADDITIONAL COMMENTS ----- Special purpose data usually available after 3
 months.

ITEM: 464
DATE: 01/08/83

PROVIDENIYA BAY, USSR

ITEM: 2336
DATE: 01/05/84

DISCIPLINE ----- B01 Ionosphere Vertical Soundings
 STATION LATITUDE ----- N 64.4
 STATION LONGITUDE ----- E 186.6
 ALTERNATE NAMES -----
 DATES OF OPERATION ----- 1958 to present
 OBSERVING SCHEDULE ----- REGULAR
 INSTRUMENT DESCRIPTION ----- Set of ionosondes AIS No. 21 (made in 1957)
 and AIS No. 7515 (made in 1964)
 RAM DATA ----- Ionograms on 35 mm film
 DATA REDUCTION PRACTICE ----- REGULAR
 REGULAR REDUCED DATA AVAILABLE AFTER ----- 1/2 MONTHS
 FORM OF REDUCED DATA ----- F-plots, monthly tables of ionospheric
 parameters, ionograms on film
 DATA ROUTINELY PUBLISHED -----
 DATA SENT TO WDC-A -----
 DATA SENT TO WDC-B -----
 DATA SENT TO WDC-C -----
 DATA AVAILABLE ON REQUEST -----
 ADDRESS FOR INFORMATION ABOUT STATION -----
 ADDRESS FOR INFORMATION ABOUT DATA -----
 ADDITIONAL COMMENTS -----

YES
 Research Institute of Applied Geophysics
 Glebovskaya ul. 20-b
 107258 Moscow 8-258
 USSR
 Same as above

PORT AUX FRANCAIS, KERGULEN ISLANDS

DISCIPLINE ----- B01 Ionosphere Vertical Soundings
 STATION LATITUDE ----- S 49.35
 STATION LONGITUDE ----- E 70.24
 ALTERNATE NAMES ----- Port aux Français
 DATES OF OPERATION ----- 02/1953 to present - 1964 station moved
 OBSERVING SCHEDULE ----- REGULAR
 INSTRUMENT DESCRIPTION ----- Ionosonde. Magnetic AB, ionograms every 15 min and
 every 5 min on RWD, 0.25-20 MHz.
 RAW DATA ----- 35 mm film, 16 mm film
 DATA REDUCTION PRACTICE ----- REGULAR
 REGULAR REDUCED DATA AVAILABLE AFTER ----- 15 MONTHS
 FORM OF REDUCED DATA ----- Monthly tables of hourly values,
 magnetic tape since 04/1965
 BULLETIN DE MESURES IONOSPHERIQUES
 DATA ROUTINELY PUBLISHED -----
 DATA SENT TO WDC-A ----- YES
 DATA SENT TO WDC-B ----- YES
 DATA SENT TO WDC-C ----- YES
 DATA AVAILABLE ON REQUEST -----
 ADDRESS FOR INFORMATION ABOUT STATION ----- Monsieur le Dir. des Lab. Scientifiques
 T.A.A.F.,
 27 rue Daudinot
 Paris 75700
 France
 ADDRESS FOR INFORMATION ABOUT DATA ----- Monsieur le Chef du Dept. M.I.R.
 C.N.E.T.,
 Lannion 22301
 France
 ADDITIONAL COMMENTS ----- Station moved in 1964 (former station location
 \$49.30 E70.50).

ITEM: 302
DATE: 05/31/82

PRUHOMICE, CZECHOSLOVAKIA

ITEM: 821
DATE: 00/00/75

DISCIPLINE ----- B01 Ionosphere Vertical Soundings
 STATION LATITUDE ----- N 50.00
 STATION LONGITUDE ----- E 14.60
 ALTERNATE NAMES -----
 DATES OF OPERATION ----- 04/1958 to present
 OBSERVING SCHEDULE ----- REGULAR
 INSTRUMENT DESCRIPTION ----- ionosonde at 1-10 MHz
 RAM DATA ----- Film
 DATA REDUCTION PRACTICE -----
 REGULAR REDUCED DATA AVAILABLE AFTER ----- MONTHS
 FORM OF REDUCED DATA ----- Bulletins, microfilm
 DATA ROUTINELY PUBLISHED -----
 DATA SENT TO WDC-A -----
 DATA SENT TO WDC-B -----
 DATA SENT TO WDC-C -----
 DATA AVAILABLE ON REQUEST -----
 ADDRESS FOR INFORMATION ABOUT STATION ----- Dr. Pavel Triska
 Geophysical Inst., Czechoslovak Acad. Sci.
 Boční II
 Praha 4, Sporilov 141 31
 Czechoslovakia
 ADDRESS FOR INFORMATION ABOUT DATA ----- Same as above
 ADDITIONAL COMMENTS ----- No response to inquiry for updating material in 1980 or
 1983. Data have been received by the World Data Centers
 through 1978.

Figure 2.1 Sample page from the *Directory of Solar Terrestrial Physics Monitoring Stations*

Worldwide Ionospheric Data Base

the plasma frequencies and virtual heights of the F and E peaks: f_o F2 (the o stands for ordinary trace), f_o F1, f_o E, h F2, h E. In addition the maximum usable frequency (MUF) is scaled from ionograms. MUF (3000) is the highest frequency that, refracted in the ionosphere, can be received at a distance of 3000 km. The propagation factor

$$M(3000)F2 = \frac{MUF(3000)}{f_o F2}$$

has a strong correlation with the real height of the F2 peak and has been used to predict the variation of the F2 peak altitude. See Bilitza et al. [1979] for review. A comprehensive guide to ionogram interpretation and reduction was compiled by Piggott and Rawer [1972] for the International Union of Radio Science (URSI).

A more involved analysis of ionograms is necessary to obtain real peak altitudes and real height profiles. An inversion procedure is used which has to take account of the retardation of the radio wave by ionization below the reflection height. Its accuracy is limited by insufficient knowledge about (i) the ionization below the ionogram starting point, (ii) the valley between the E and F layers and (iii) the radio echo in the immediate neighborhood of the F2 peak [Jackson, 1971]. Reviews covering the various inversion techniques and the problems encountered were presented by McNamara [1978b] and Titheridge [1985, 1987].

The standard ionosonde of the past 40 years produces analog ionogram records on film. These raw data are used to generate the scaled, plotted, and digitized data archived at the World Data Centers. The data are available to users without restriction, but some WDCs must recover their cost of data preparation, reproduction, and postage. The material distributed by the WDCs includes:

- Ionograms (raw data) on 35mm and 16mm film, mostly for Regular World Days (3 or 4 days per month).
- Daily plots, generally with a resolution of 15 minutes, of F and E peak plasma frequencies on paper or microfiche (f -plots).

- Tables of daily/hourly values and monthly summary data on paper or magnetic tape. This is the standard information for interchange. Table 2.1 lists the data available on magnetic tape from the WDC-A-STP in Boulder. (For a complete listing, see Conkright et al. [1984]). The WDC-B2 in Moscow has started to put the data from Soviet ionosondes on tape (see Table 2.2 on page 15).
- Software for inversion of ionograms into electron density profiles. (See Appendix A.3.)
- WDC-A-STP, Boulder, also offers the service of generating electron density profiles from ionograms.

The data holdings of ionosonde measurements at the WDCs are listed in the combined *Catalog of Ionosphere Vertical Soundings Data*. The latest one is by Conkright et al. [1984]. Figure 2.2 is adapted from this catalog, and it shows all ionosondes known to have operated worldwide. Altogether the ionosonde data base includes about 45,000 station-months of hourly measurements.

The development of the international ionosonde network over the last 50 years is shown in Figure 2.3, indicating the positive impact of the International Geophysical Year (IGY, 1957/58) and the International Quiet Sun Year (IQS, 1964). It should be noted that (i) more than half of the stations are located in northern middle and low latitudes, and (ii) the number of stations has been decreasing in recent years. The operation of ionosondes is coordinated by the Ionospheric Network Advisory Group (INAG).

Recently the data centers have started to receive data generated by modern ionosondes with the ionograms recorded directly on magnetic tape. In addition to the data recorded by the "old" ionosondes, the digital instruments record phase, amplitude, polarization, direction of arrival, Doppler phase shift, etc. [Reinisch, 1986]. The operating and planned digisondes are shown in Figure 2.4 and listed in Table 2.3 (see pages 14 and 16, respectively).

A data base of more than 200,000 ionograms from oblique soundings is maintained at the

TABLE 2.1 Ionosonde Data on Tape Available From WDC-A-ASTP

Station	Station-Months of Data Available														
	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
Adak	0	0	0	0	0	0	0	12	12	0	0	0	0	0	0
Akita	0	0	0	0	0	0	0	0	0	0	0	0	7	12	12
Anchorage	0	0	0	0	0	0	0	0	12	0	0	0	0	0	0
Argentine Is.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12
Bangkok	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Barrow	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Bogota	0	0	0	0	0	0	0	0	12	12	0	0	0	0	0
Boulder	0	0	0	0	0	0	1	0	7	12	12	0	12	12	12
Brisbane	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Byrd Station	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Camden	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Canberra	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cape Kennedy	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Churchill	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
College	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Concepcion	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Darwin	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Djibouti	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Fort Monmouth	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Godhavn	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Grand Bahama	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Halley Bay	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hobart	12	10	0	0	0	0	0	0	0	0	0	0	0	0	0
Huancayo	0	12	0	0	0	0	0	0	0	0	0	0	0	0	0
Kriegselen	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Kiruna	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Lantton	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
La Paz	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Lycksele	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Maui	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mawson	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mundaring	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Narsarsuaq	0	12	0	0	0	0	0	0	0	0	0	0	0	0	0
Norfolk Is.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Okinawa	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ottawa	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Point Arguello	0	12	0	0	0	0	0	0	0	0	0	0	0	0	0
Port Moresby	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Port Stanley	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Resolute Bay	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Reykjavik	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Slough	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
South Georgia	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
South Pole	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
St. Johns	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Syowa	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Talara	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Thule	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Tokyo	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Townsville	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Upsala	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Vanimo	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Wakkanaai	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Wallops	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Washington	0	0	0	0	0	0	12	12	12	12	12	0	0	0	0
White Sands	0	12	0	0	0	0	12	12	0	0	0	12	0	5	1
Winnipeg	0	0	0	0	0	0	0	0	0	0	0	0	0	12	0
Yamagawa	0	0	0	0	0	0	0	0	0	0	7	12	12	12	0
Station-Months	12	46	0	1	0	19	182	272	46	79	112	159	169	194	289

TABLE 2.1 (continued) Ionosonde Data on Tape Available From WDC-A-STP

Station	Station-Months of Data Available													
	72	73	74	75	76	77	78	79	80	81	82	83	84	85
Adak	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Akita	0	12	0	0	0	0	0	0	0	0	0	0	0	0
Anchorage	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Argentine Is.	12	12	12	12	0	0	0	0	0	0	0	0	0	0
Bangkok	0	12	0	0	12	0	2	3	0	0	0	0	0	0
Barrow	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bogota	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Boulder	12	12	12	12	12	12	12	12	12	12	12	12	9	0
Brisbane	0	0	0	0	0	0	0	0	0	12	12	12	0	0
Byrd Station	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Camden	0	0	0	0	0	0	0	0	0	12	12	12	0	0
Canberra	0	0	0	0	0	0	0	0	0	12	12	12	0	0
Cape Kennedy	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Churchill	0	12	12	0	12	1	0	0	12	12	12	9	0	0
College	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Concepcion	12	12	3	4	12	12	12	12	0	0	0	0	0	0
Darwin	0	0	0	0	0	0	0	0	0	0	1	12	0	0
Djibouti	0	0	12	0	0	0	0	0	0	0	0	0	0	0
Fort Monmouth	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Godhavn	12	12	6	9	0	0	2	0	0	0	0	0	0	0
Grand Bahama	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Halley Bay	12	12	12	12	0	0	0	0	0	0	0	0	0	0
Hobart	0	0	0	0	0	0	0	0	0	12	12	12	0	0
Huancayo	12	12	12	12	12	12	12	12	12	12	11	4	0	0
Kerguelen	0	12	0	0	0	0	0	0	0	0	0	0	0	0
Kiruna	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Lannion	0	0	0	12	0	0	0	0	0	0	0	0	0	0
La Paz	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Lycksele	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Maui	12	12	12	12	12	8	12	12	12	12	12	12	12	5
Mawson	0	12	1	0	0	0	0	0	0	12	12	12	0	0
Mundaring	0	0	0	0	0	0	0	0	0	12	12	12	0	0
Narssarsuaq	12	12	12	8	1	0	2	0	0	0	10	0	0	0
Norfolk Is.	0	0	0	0	0	0	0	0	0	12	12	12	0	0
Okinawa	12	12	0	0	0	0	0	0	0	0	0	0	0	0
Ottawa	12	12	12	12	12	12	0	0	12	12	12	9	0	0
Point Arguello	12	11	5	0	0	12	12	12	12	8	12	12	12	1
Port Moresby	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Port Stanley	12	12	12	12	12	0	0	0	0	0	0	0	0	0
Resolute Bay	0	12	12	0	12	1	0	0	12	12	12	8	0	0
Reykjavik	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Slough	12	12	12	12	12	0	0	0	0	0	0	0	0	0
South Georgia	12	12	8	12	0	0	0	0	0	0	0	0	0	0
South Pole	0	0	0	0	0	0	0	0	0	0	0	0	0	0
St. Johns	0	12	12	0	12	6	0	0	8	0	0	0	0	0
Syowa	8	12	12	0	0	0	0	0	0	0	0	0	0	0
Talara	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Thule	12	12	12	2	0	0	2	0	0	0	0	0	0	0
Tokyo	12	12	0	0	0	0	0	0	0	0	0	0	0	0
Townsville	0	0	0	0	0	0	0	0	12	12	12	0	0	0
Uppsala	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Vanimo	0	0	0	0	0	0	0	0	0	12	12	12	0	0
Wakkanaï	12	12	0	0	0	0	0	0	0	0	0	0	0	0
Wallop	12	12	12	12	12	12	12	12	12	12	12	12	12	5
Washington	0	0	0	0	0	0	0	0	0	0	0	0	0	0
White Sands	7	0	0	0	5	6	12	5	0	0	0	0	0	0
Winnipeg	0	12	12	0	12	0	0	0	0	0	0	0	0	0
Yamagawa	12	12	0	0	0	0	0	0	0	0	0	0	0	0
Station-Months	255	335	227	155	162	94	92	80	100	204	214	198	45	11

EAST LONGITUDE

Figure 2.2 Location of all ionosondes known to have operated

Figure 2.2 (continued) Location of all ionosondes known to have operated

Figure 2.3 Number of ionosondes operational from 1930 to 1984: TOT = total number, NML = number of ionosondes at northern midlatitudes, EQU = at equatorial latitudes, SML = at southern midlatitudes, AUR = at auroral latitudes, IGY = International Geophysical Year, IQSY = International Quiet Sun Year

Figure 2.4 Global Digisonde 256 network as of July 1988

Worldwide Ionospheric Data Base

Naval Research Laboratory in Washington, DC [Goodman and Daehler, 1988]. About 42% of these have been scaled for "routine" propagation parameters (MOF, LOF, FOT bands) and have been recorded on magnetic tape cartridges. Since 1982 the ionograms have also been recorded on magnetic tape. Another data base of oblique soundings was established by CCIR (Data Bank D1, WP 6/1, Doc 265).

The information of the two catalogs [Shea et al., 1984; Conkright et al., 1984] is stored in computer files and may be remotely accessible in the near future. The WDC-C1 subcatalog is already held in an interactive data base, which can be accessed via the U.K. Joint Academic Computer Network (JANET). This network, in turn, can be reached from the United States on the Space Physics Analysis Network (SPAN).

2.2 Incoherent Scatter Radar

The incoherent scatter radar transmits very high power pulses at frequencies much higher than ionospheric plasma frequencies. Therefore the radar signals can travel through the whole ionosphere from bottom to top. Total reflection does not occur, and the whole ionosphere (including the topside and the E-F-valley region) can be explored from the ground. Only a very small part of the transmitted power, how-

ever, is scattered back to the receiver. The scattering occurs at small-scale electron density fluctuations [Walker et al., 1987]. The scattered power is proportional to the electron density in the scattering volume; this effectively determines the lower and upper altitude boundaries of incoherent scatter soundings. Below about 100 km and above about 800 km, the ionospheric electron densities become so low that the signal-to-noise ratio is no longer acceptable for reliable data reduction. Mathews [1984] has discussed incoherent scatter radar as a tool for D-region studies.

The high sensitivity requirements make incoherent scatter radars a rather large and expensive research tool. Only a few radars are operational in the whole world (see Table 2.4 on page 17). The recorded density profile is usually calibrated with the F peak density measured by a local ionosonde. The shape and Doppler broadening of the received spectrum allow determination of ion and electron temperature and the shift against the transmitter frequency indicates the ion drift.

In summary, the parameters calculated from incoherent scatter radar soundings include: electron density, electron temperature, line-of-sight ion velocity, ion temperature, ion-neutral collision frequency, and ion composition. Bi-

TABLE 2.2 Soviet Ionosonde Data in Digital Form Available at WDC-B2

Station	Code	Longitude	Latitude	Period
Alma Ata	AA343	76.9	43.2	1957-1988
Arkhangelsk	AZ163	40.5	64.4	1969-1988
Ashkhabad	AS237	58.3	37.9	1957-1985
Gorky	GK156	44.3	56.1	1958-1988
Irkutsk	IR352	104.0	52.5	1957-1988
Kaliningrad	KL154	20.6	54.7	1964-1988
Karaganda	KR250	73.1	49.8	1964-1988
Khabarovsk	KB538	135.1	48.5	1959-1982
Kiev	KV151	30.5	50.5	1964-1988
Leningrad	LD160	30.7	59.9	1958-1987
Magadan	MG560	151.0	60.0	1968-1988
Moscow	MO155	37.3	55.5	1957-1988
Murmansk	MM168	33.0	69.0	1957-1977
Novokazalinsk	NK246	62.1	45.8	1972-1988

Chapter 2

static and tristatic radars (one transmitter and two or three receivers) like the Malvern, St. Santin, and EISCAT facilities allow measurements of all velocity vector components. In addition, simple aeronomics theory together with a geomagnetic field model is often used to derive the vector ion velocity, electric field, meridional neutral wind, vector neutral wind, exospheric temperature, neutral temperature, atomic oxygen density, heat flux at high altitude, energy loss from electrons to ions and neutrals, energy input from thermal conduction, Hall conductivity, Pedersen conductivity, current perpendicular to the magnetic field, Birkeland current, Joule heating, ion-electron production rate, en-

ergy deposition by auroral electrons, energy spectrum of electrons, and several optical emissions. It must be noted that the underlying assumptions are not always true, particularly during disturbed conditions. Perrant et al. [1984 a, b] were able to obtain experimental evidence of non-isotropic ion velocity and temperature distributions from EISCAT measurements.

Excellent reviews of the theory and practice of the incoherent scatter technique were published by Evans [1969, 1975]. Most of the radar facilities are described in a special issue of *Radio Science* 9, 2, 1974. Radar studies have made an outstanding contribution to our understanding

TABLE 2.3 Locations of Digisonde Stations, Operating and Planned, March 1988

Station	North Latitude	East Longitude
Baguio	16.3	120.6
Ramey	18.5	292.9
Maui	20.5	203.7
Karachi	24.8	67.1
Patrick AFB	28.2	279.4
Central Texas	29.4	261.7
Bermuda	32.4	295.3
Islamabad	33.8	72.9
Vandenberg AFB	34.7	239.4
Xinxiang	35.3	113.9
Kokubunji	35.7	139.5
Kunsan	36.0	126.6
Sao Miguel Is.	37.5	334.5
Wallops Is.	37.9	284.5
Diyarbakir	37.9	40.2
Beijing	39.9	116.5
Roquetes	40.8	0.3
Lowell	42.6	288.5
Camp Darby	43.5	10.3
Argentia	47.6	307.3
Munchen	48.2	11.6
Dourbes	50.1	4.6
Croughton	52.0	358.8
Attu	52.6	186.9
Goose Bay	53.3	299.5
Slough	51.5	359.4
Sitka	57.0	224.8
College	64.9	212.2
Sondrestrom	67.0	309.0
Qaanaaq	77.5	290.8
Learmonth	-22.1	114.0
Sao Paulo	-23.5	313.5
La Trobe	-37.8	145.0

TABLE 2.4 Incoherent Scatter Radar Facilities

Site Name	Location of Transmitter	North Latitude	East Longitude	Period of Operation	Data at NCAR
Jicamarca	Near Lima, Peru	-11.9	284.0	1965	66-69 84-
Arecibo	Arecibo, Puerto Rico	18.3	293.2	1963-	66-77 81
St. Santin de Maurs*	St. Santin de Maurs, France	44.6	2.2	1965-	66-
Millstone Hill	Westford, MA, USA	42.6	288.5	1960-	78-
Chatanika†	Near Fairbanks, Alaska, USA	65.1	212.6	1971-1982	81
EISCAT*	Trømsø, Norway	69.6	19.2	1981-	84-
Sondrestrom	Sondre Stromfjord, Greenland	67.0	309.0	1983-	83-

* These stations operate with separate transmitter and receiver facilities. The observation volume is determined by the intersection of transmitter and receiver beams. All other stations determine the altitude from the signal time delay.

† Moved to Sondre Stromfjord

Notes

1. The Royal Radar Establishment operated an incoherent scatter radar at Great Malvern, Worcestershire, U.K., from 1968 into the 1970s.
2. A midlatitude radar in the Soviet Union has been used by the Department of Radio Physics of the Kharkov State University for incoherent scatter measurements since 1970. It is located near the Radio Physical Observatory in Gaudari, about 60 km from Kharkov.
3. The Altair radar on Kwajalein Island was used for incoherent scatter measurements during brief periods from 1977 to 1980.
4. A Japanese incoherent scatter facility became operational in 1987, at a site southeast of Kyoto.
5. The Southern Hemisphere Incoherent Scatter (SHISCAT) group hopes that Australia, New Zealand, and South Africa will combine forces to build and operate an incoherent scatter radar in the southern hemisphere.
6. The Millstone Hill, Chatanika, and Altair radars are able to scan the ionosphere over a region extending hundreds of kilometers horizontally from the radar.

Chapter 2

of ionospheric plasma processes [Blanc, 1979]. EISCAT's contributions to high-latitude ionosphere physics have been reviewed in a special issue of *Journal of Atmospheric and Terrestrial Physics* 50, 4/5, 1987.

Measurements are usually conducted during 2 to 3 days each month, preferably during Regular World Days (RWD); RWDs are selected by an international advisory group (see IUWDS in Appendices D and E). The temporal and spatial resolution of incoherent scatter data depends on the measurement mode used: long integration times provide high sensitivity but low time resolution; large backscatter volumes provide

good signal-to-noise ratios but bad altitude resolution. Typically the time resolution ranges from 1 to 30 minutes and the altitude resolution from a few to 100 km.

In 1985 the NCAR Incoherent-Radar Data Base was established at the National Center for Atmospheric Research, Boulder, as a cooperative project between NCAR and the institutions that operate incoherent scatter radars. NCAR archives raw and reduced data obtained from the different stations and gives access to this data base. Table 2.4 on page 17 indicates the time periods for which data are currently available from NCAR. In addition, the personnel can

TABLE 2.5 Information Sources for Incoherent Radar Stations

Site Name	Contact
NCAR	Arthur D. Richmond, HAO/NCAR, P.O. Box 3000, Boulder, CO 80307
Sondrestrom or Chathanika	Vincent B. Wickwar, Radio Physics Laboratory, SRI International, Menlo Park, CA 94025
EISCAT	Jürgen Röttger, EISCAT Scientific Association, Box 705, S-981 27, Kiruna, Sweden
Millstone Hill	John C. Foster, MIT Haystack Observatory, Westford, MA 01886
St. Santin	Christine Mazaudier, C.R.P.E., 4, avenue de Neptune, 94107 Saint-Maur CEDEX, France
Arecibo	Craig Tepley, Arecibo Ionospheric Observatory, P.O. Box 995, Arecibo, Puerto Rico 00612
Jicamarca	Bela G. Fejer, School of Electrical Engineering, Phillips Hall, Cornell University, Ithaca, NY 14853
Malvern	P.J.S. Williams, University College of Wales, Penglais, Aberystwyth, Dyfed, SY23 3B2, U.K.
Altair	R. Tsunoda, SRI International, Radio Physics Laboratory, 333 Ravenswood Avenue, Menlo Park, CA 94025
Kyoto	S. Kato, Ionosphere Research Laboratory, Kyoto University, Kyoto, Japan
U.S.S.R.	V.A. Misura, Kharkov State University, Department of Radio Physics, Kharkov-77, U.S.S.R.
SHISCAT	J. A. Gledhill, Department of Physics and Electronics, Rhodes University, P.O. Box 94, Grahamstown 6140, South Africa

TABLE 2.6 Ionospheric Absorption Stations

Station	N. Lat.	E. Long.	Start Date	A1	A2	A3
Station Nord, Greenland	81.6	343.3			x	
Nyaalesund, Norway	79.0	12.0	1966			
Thule, Greenland	77.5	290.8		x		
Danmarkshavn, Greenland	76.7	341.4		x		
Bear Island, Norway	74.5	19.2	1968	x		
Daneborg, Greenland	74.3	399.2		x		
Heiss Island, USSR	73.8		1964	x		
Jan Mayen, Norway	70.9	8.74	1979	x		
Scoresbysund, Greenland	70.5	338.0		x		
Cape Zhelaniza, USSR	70.3			x		
Trømso, Norway	69.7	19.0		x		
Ramfjordmoen, Norway	69.6	19.2	1975	x		
Godhavn, Greenland	69.3	306.5		x		
Norilsk, USSR	69.0	88.0	1964	x		
Kiruna, Sweden	67.8	20.4	1958	x		
Apatity, USSR	67.5	33.3	1967	x		
Dixon, USSR	67.2		1964	x		
Sondre Stromfjord, Greenland	67.0	309.3		x		
Fort Yukon, USA	66.6	214.8	1961	x		
Tjornes, Iceland	66.2	342.9		x		
Dolgoschelie, USSR	66.0	43.2			x	
Poker Flat, USA	65.1	212.5	1971	x		
Angmagssalik, Greenland	65.6	322.3		x		
College, USA	64.9	212.2	1964	x		
Arkhangelsk, USSR	64.6	40.5		x		
Lycksele, Sweden	64.6	18.7	1962	x		
Godthab, Greenland	64.2	308.3		x		
Keflavik, Iceland	64.0	337.3	1979		x	
Anderma, USSR	63.9		1964	x		
Thorshavn, Faeroe Islands	62.0	353.2		x		
Narssarssuaq, Greenland	61.2	314.6		x		
Andoya, Norway	60.3	16.0	1962	x		
Uppsala, Sweden	59.8	17.6	1962	x		
Juliusruh, GDR	54.6	13.4	1957	x		
Kühlungsborn, GDR	54.1	11.8	1948		x	
Norddeich, FRG	53.6	7.1	1970		x	
DeBilt, The Netherlands	52.1	5.2	1957	x		
Belsk, Poland	51.8	20.8	1975		x	
Panska Ves, Czechoslovakia	50.6	14.6	1961		x	
Upice, Czechoslovakia	50.3	16.0		x		
Dourbes, Belgium	50.1	4.6	1957	x		
Rostov, USSR	47.2	39.7	1958	x		
Genova, Italy	44.6	9.0			x	
McMath-Hulbert, USA	42.7	276.7	1957		x	
Ebro, Spain	40.8	0.5	1967		x	
Akita, Japan	39.7	140.1	1964		x	
Lajes, Azores	38.8	333.8	1977		x	
Ashkhabad, USSR	37.9	58.4	1957	x		
Hiraiso, Japan	36.4	140.6	1957		x	x
Tulsa, USA	35.9	264.2	1961	x		

TABLE 2.6 (continued) Ionospheric Absorption Stations

Station	N. Lat.	E. Long.	Start Date	A 1	A 2	A 3
Naval Ocean Systems Center, USA	32.7	242.7	1978			x
Lunping, Taiwan	25.0	121.2	1973			x
Udaipur, India	24.5	73.7	1971	x		
Ahmedabad, India	23.0	72.6	1972	x		
Sabana Seca, Puerto Rico	18.4	293.8	1977			x
Kodaikanal, India	10.2	77.5				x
Colombo, Sri Lanka	6.9	79.87	1976	x		
Monrovia, Liberia	6.43	349.2	1976			x
Sydney, Australia	-31.5	150.7	1974	x		x
Hermanus, Rep. of S. Africa	-34.3	19.2	1962		x	
Buenos Aires, Argentina	-34.5	301.5	1983	x		
Auckland, New Zealand	-37.0	175.0			x	
Hobart, Australia	-42.88	147.33	1983	x		
Trelew, Argentina	-43.2	294.7	future	x		
Port aux Francs, Kerguelen	-49.3	70.3	1962		x	
Campbell Island	-52.6	169.1	1965		x	
MacQuarie Island	-54.5	158.9	1964		x	
Ushuaia, Argentina	-54.8	291.7		x		
Novolasarevskaya, Antarctica	-66.2				x	
Casey, Antarctica	-66.5	110.4	1975		x	
Terre Adelie, Antarctica	-66.7	140.0	1965	x		x
Mawson, Antarctica	-67.6	62.9	1968		x	
Molodezhnaya, Antarctica	-67.6				x	
Davis, Antarctica	-68.6	78.0	1969		x	
Syowa, Antarctica	-69.0	39.3	1966		x	
Sanae, Antarctica	-70.3	357.6	1979		x	
Halley Bay, Antarctica	-75.5	321.2	1962		x	
Mirny, Antarctica	-76.8		1961		x	
General Belgrano, Antarctica	-78.0	321.2	1962		x	

assist in obtaining earlier measurements and information about software, analysis procedure, and related questions. They can also provide information on how to log on to the NCAR gateway computer.

The people and organizations listed in Table 2.5 (see page 18) can provide further information about the data from a particular radar.

2.3 Absorption

Ionosondes can record the ionospheric electron density from the F peak down to E region altitudes. Below the E peak, absorption caused by the high neutral densities weakens the reflected signal. Monitoring of the ionosphere in the D region and lower E region is done with absorption measurements. In general, absorption

measurements record the amplitude variation at a fixed frequency in relation to a minimal-loss case.

The methods of absorption measurements are documented and discussed in the *Manual on Ionospheric Absorption Measurements* edited by Rawer [1976]. Three different techniques are widely used:

(A1) Pulse Echo: echo amplitude observation at normal incidence on frequencies which are preferentially reflected in the E-region.

(A2) Riometer (Relative Ionospheric Opacity Meter): observation of the absorption of cosmic radio noise by the ionosphere (fixed frequency in the range 20 to 80 MHz).

Worldwide Ionospheric Data Base

(A3) CW (Continuous Wave) Field Strength:
Wave field strength observation at oblique incidence in the frequency range 2 to 3 MHz. (Receiver and transmitter are typically separated by 200 to 400 km.)

Absorption data are used for radio wave propagation forecasts, in particular for field strength estimation at HF or decameter wavelengths. Rare but severe disturbance of HF communications at high latitudes arises from polar cap absorption (PCA) events, in which intense ionization created by solar protons blankets both polar caps for several days. Results of auroral riometer measurements were reviewed by Hargreaves [1969].

The problems encountered in calculating electron density profiles from absorption measurements are numerous and not yet fully resolved [Serafimov et al., 1985]. The absorption recordings are, however, our only data source for investigating the global and long-term variations in the ionosphere below the E peak.

Since these techniques are relatively simple, stable, and technically reliable, long-term observation records exist at several facilities worldwide (see Table 2.6 on pages 19 and 20). Station parameters, data availability, and contact addresses for all three techniques are listed in the *Directory of Solar-Terrestrial Physics Monitoring Stations* by Shea et al. [1984]. Data sets are available as tabulated hourly absorption loss (in dB)* and as copies of the original paper stripcharts. Some of the stations have also started digital recording of absorption on magnetic tape. Tape recordings from several high-latitude stations are archived at WDC-A-STP, Boulder.

* dB = $10 \log (p/p_0)$ where p = signal power

2.4 Other Techniques

In addition to the techniques already mentioned, several other methods of ground-based ionospheric measurements have been used in the past. In general the data records of these experiments are much smaller and less consistent.

Drift observations make use of fluctuation patterns in the reflecting ionospheric layers. These irregularities can be recognized in the echo field strength at the ground and their drift velocity can thus be monitored [Rawer, 1968]. Ionospheric drifts have also been deduced from meteor trail observations. A summary description of the average drifts was established by Kazimirovsky et al. [1985].

In the so-called whistler mode, waves with very low frequencies (VLF) are guided along the magnetic field lines from the ionosphere through the magnetosphere into the magnetically conjugate ionosphere. The whistling signals (1 to 20 kHz) had been received on long telephone lines long before the ionosphere was systematically studied. Whistler stations monitor natural (lightning) and man-made VLF signals. Some conclusions concerning the electron density in the outermost ionosphere have been obtained from these measurements [Carpenter, 1988; Tarczai et al., 1988]. Helliwell and Gehrels [1958] were able to prove the existence of a magneto-electronic duct by receiving artificial radio signals at a conjugate receiver. Controlled injection of VLF signals from a ground-based transmitter have been shown to produce modulation effects in electrons precipitating from the radiation belts [Imhof et al., 1983]. Whistler signals have also been observed on Venus [Scarf et al., 1988]. Whistler monitoring stations record the structured noise in the 0.2

TABLE 2.7 Numbers of Stations Listed in *Directory*

Technique	Number of Stations
Whistlers and VLF emissions	35
Ionospheric drift	6
All-sky camera	28
Airglow (photometers, interferometer)	22

Chapter 2

40 kHz band. Atmospheric radio noise stations record electromagnetic disturbances at higher frequencies.

Optical instruments have been used to monitor auroral features and airglow. The all-sky camera uses a lens with a 160° field of view to record bright auroras over a circle of 1000 km diameter. Photometers measure absolute intensities of isolated spectral lines and bands of interest. Fabry-Perot interferometers measure spectral line broadening and Doppler shifts of airglow emissions. These parameters can yield information about densities, temperatures, and bulk motions of some neutral and ionic species.

Stations monitoring the ionosphere with these

techniques are listed in the *Directory of Solar-Terrestrial Physics Monitoring Stations* by Shea et al. [1984] as summarized in Table 2.7 on page 21.

Ionospheric modifications caused by powerful ground-based radio transmitters (heating) and by booster rocket exhausts have been studied with ground-based experiments. Information and references can be found in the proceedings of several international conferences [10,12].

New techniques and results of high-latitude radio wave research can be found in *Radio Science*, Vol. 18, 6, Nov.-Dec. 1983 (see especially the overview article by Greenwald and Hunsucker).

Chapter 3

Ionospheric satellite experiments can be classified in three general categories: *in situ*, topside sounder, and beacon. *In situ* techniques measure the plasma parameters at the satellite position, topside sounders measure the electron density from the satellite altitude down to the F peak maximum, and radio beacons measure the electron content between satellite and receiving station.

The relatively simple beacon experiments were the first satellite-borne diagnostic tools for ionospheric research. The technique was first applied with the identification signals of the early Sputnik (U.S.S.R.) and Explorer (U.S.A.) satellites. Since then, with considerably improved instrumentation, beacons have supplied electron content measurements over the lifetime of a variety of satellites (Section 3.1).

The classical ionospheric *in situ* instruments are the Langmuir probe (LP), the retarding potential analyzer (RPA), the impedance probe (IP) and the ion mass spectrometer (IMS). They are the basic equipment of the ionospheric observatories that have been launched since the mid-sixties (such as ESRO, AEROS, and AE). These experiments have undergone substantial improvements and refinement in technical design and in data analysis techniques since their early beginnings. All four instruments allow determination of electron density. In addition, the LP measures electron

Spacecraft Measurements

temperature, the RPA measures ion and electron temperature and energetic electron fluxes, and the IMS measures ion densities (Section 3.2).

Topside sounder instruments are basically ionosondes carried aboard satellites. From the early Alouette to the recent ISS-b satellites, this technique has shaped our understanding of the topside ionosphere (Section 3.3).

Other ground-based experiments that have been successfully flown on spacecraft are VLF (whistler) receivers, all-sky cameras for observation of auroral structure, and Fabry-Perot interferometers to monitor airglow.

All internationally identified ionospheric spacecraft are listed in Appendix A together with the experiments flown on these satellites. A large amount of ionospheric satellite data is archived and distributed by NASA's National Space Science Data Center and World Data Center A for Rockets and Satellites (NSSDC/WDC-A-R&S). These data sets are also listed in Appendix A.

The data sets, experiments, and spacecraft are described in detail in NSSDC's *Data Catalog* series as listed in Table 3.1. Most ionospheric satellite experiments and data are described in Volume 3. Volume 1 contains the spacecraft that observed planetary ionospheres. Beacon

Chapter 3

experiments were flown mostly on geostationary satellites, which are included in Volume 2.

NSSDC/WDC-A-R&S also assists and advises requesters who inquire about data sets not currently archived at NSSDC.

Ionospheric data from the numerous satellites launched by the U.S. Air Force (e.g. DMSP, S3, and OV series) are held at the different Air Force facilities. Some of the data are available to the interested science community.

Not much has been published on the availability of data from the ionospheric satellites launched by the Soviet Union in their Cosmos and Intercosmos satellite series. More information might be available from the Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation (IZMIRAN) or from the Institute of Space Research (IKI), both in Moscow (Appendix E).

Japan has sent several ionospheric observatories into orbit since it joined the club of satellite-launching nations in 1970. The satellites are supported by the Institute of Space and Astronautical Science (ISAS) and by the National Space Development Agency (NASDA). ISAS satellites are Taiyo, Kyokko, Hinotori, and Ohzora. The ETS (Kiku) 1, 2, 3, 4 and ISS satellites were developed and launched by NASDA for the Radio Research Laboratories (RRL).

The most recent ionospheric/magnetospheric satellites include Viking, HiLat, Polar BEAR (all in polar orbits), and San Marco (equatorial orbit).

3.1 Beacons

The first satellite in orbit, Sputnik 1, was successfully used as a beacon satellite. Satellite beacons transmit linearly polarized radio waves with frequencies around 20 MHz. At the ground stations the Faraday rotation of the plane of polarization is measured, which allows determination of the total ionospheric electron content between satellite and ground receiver. See Evans [1977] and Davies [1980] for review.

Beacons were flown on several medium- and high-altitude and interplanetary spacecraft as listed in Table 3.2. In recent years geostationary satellites specifically designed as radio beacons, like ATS-6 and ETS 2, have enabled us to observe the electron content with high time resolution (<1s).

Single-frequency beacons can only determine the ionospheric electron content (up to about 2000 km). The Faraday rotation technique depends on the magnetic field strength, which decreases with the inverse cube of altitude and, therefore, is not sensitive to plasmaspheric electrons. The total electron content including ionospheric and plasmaspheric contributions

TABLE 3.1 Data Sets, Experiments, and Spacecraft in NSSDC/WDC-A-R&S Data Catalogs

Volume	Title	Report No.	Date
Spacecraft and Experiments			
1A	Planetary and Heliocentric	82-21	1982
2A	Geostationary and High-Altitude Scientific	82-22	1982
3A	Low- and Medium-Altitude Scientific	83-03	1983
4A	Meteorological and Terrestrial Applications	85-03	1985
5A	Astronomy, Astrophysics, and Solar Physics	88-12	1988
Data Sets			
1B	Planetary and Heliocentric	87-03	1987
2B	Geostationary and High-Altitude Scientific	88-11	1988
3B	Low- and Medium-Altitude Scientific	86-01	1986
5B	Astronomy, Astrophysics, and Solar Physics	88-12	1988

TABLE 3.2 Beacon Satellites

Satellite	Country	Experiment ID	Form (Quantity) of Data Sets at NSSDC
VANGUARD 1	USA	58-002B-01	
SPUTNIK 3	USSR	58-004B-12	Fiche (2)
EXPLORER 6	USA	59-004A-09	
TRANSIT 2A	USA	60-007A-03	Fiche (3)
TRANSIT 4A	USA	61-015A-03	Fiche (2), Microfilm (1)
DISCOVERER 32	USA	61-027A-03	
ECHO 2	USSR	64-004A-01	
ELECTRON 1	USSR	64-006A-03	
SYNCOM 3	USA	64-047A-01	Plots, Tabulation (2)
OGO 1	USA	64-054A-05	Fiche (2)
EXPLORER 22	USA	64-064A-01	Book (27), Microfilm (4), Fiche (4)
ORBIS LOW	USA	64-075A-01	
SAN MARCO 1	Italy/USA	64-084A-02	
EARLY BIRD	USA	65-028A-01	
EXPLORER 27	USA	65-032A-01	Tape (1), Microfilm (1)
PIONEER 6*	USA	65-105A-04	Tape (1), Microfilm (1)
OGO 3	USA	66-049A-16	
PIONEER 7*	USA	66-075A-04	Tape (1), Microfilm (1)
ATS 1	USA	66-110A-15	Tape (1), Fiche (14)
SAN MARCO 2	Italy/USA	67-038A-03	
MARINER 5*	USA	67-060A-02	Tape (1)
ATS 3	USA	67-111A-02	
PIONEER 8*	USA	67-123A-03	Tape (1)
OV2-5	USA	68-081A-07	
PIONEER 9*	USA	68-100A-03	Tape (2), Microfilm (1)
OV1-17A	USA	69-025D-01	
ISIS 1	Canada/USA	69-009A-09	
ATS 5	USA	69-069A-12	
INTERCOSMOS 2	USSR	69-110A-01	
ISIS 2	Canada/USA	71-024A-09	
ATS 6	USA	74-039A-09	
INTASAT	Spain/USA	74-089C-01	
ETS 1	Japan	75-082A-01	
INTERCOSMOS 14	USSR	75-115A-05	
ETS 2	Japan	77-014A-01	Book (3)
ETS 4	Japan	81-012A-01	
ETS 3	Japan	82-087A-01	
HILAT	USA	83-063A-01	
UOSAT 2	USA	84-021B-04	

* These interplanetary spacecraft carried receivers for the 423.3 and 49.8 MHz signal transmitted from Stanford University. They measured the combined ionospheric, plasmaspheric, and interplanetary electron content.

TABLE 3.3 Digital Hourly TEC Data at NGDC

Station	Months of Data by Year																		
	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85
Anchorage, AK														4	12	12	12	12	8
Athens, Greece														12	12	12	12	12	8
Boulder, CO														12	12	12	12	12	8
Goose Bay, Labrador														12	12	12	12	12	8
La Posta, CA														12	12	12	12	12	8
Osan, Korea														12	12	12	12	12	8
Palehua, HI														12	12	12	12	12	8
Patrick, FL														12	12	12	12	12	8
Ramey, PR														12	12	12	12	12	8
Sagamore Hill, MA	2	12	12	12	12	12	12							12	12	12	12	12	8
Shemya, AK														12	12	12	12	12	8
Sydney, Australia	4	12	11	11	12	12	12	12	12	12	12	12	1						
Taiwan														12	12	12	12	12	8
Total:	6	24	23	23	24	24	12	12	6	0	0	0	0	136	144	144	144	144	96

Note: Taiwan data are also available on one magnetic tape as 15-minute values from December 1979 to July 1985.

Worldwide Ionospheric Data Base

can be obtained with experiments using more than one frequency. The difference in the (phase) propagation delay between waves of different frequencies allows determination of the total electron content. This technique has often been called the differential Doppler technique. See Davies [1980] for description and references.

Beacon studies have the disadvantage of being limited to locations where appropriately equipped receivers exist. The operating beacon stations throughout the world are listed in the *Directory of Solar-Terrestrial Physics Monitoring Stations* [Shea et al., 1984]. Most of these stations have operated since the late 1960s and provide hourly electron content data for the times of satellite coverage. Several data sets are archived and distributed by:

NSSDC Table 3.1 and Appendix A (by satellite)
NGDC Table 3.3 (listed by receiving station)

Suitable satellites for ionospheric beacon studies are listed in the COSPAR information bulletin (Appendix C). The ionospheric electron content can also be monitored with transmissions that are not specifically designed for ionospheric investigations, e.g., satellite tracking signals.

Beacon measurements have been used to investigate the global and temporal morphology of electron content and scintillations [Aarons, 1973, 1977] [10, 12]. Scintillations are rapid noiselike fluctuations in the amplitude, frequency, polarization, or direction of an observed beacon signal. They can disturb ground-to-satellite links and are dangerous for some sophisticated radio location methods. Scintillation observations in the UHF (GHz), made at Ascension Island from 1980 through 1982, were published by Mullen et al. [1985]. Global results are reported by Basu et al. [1987].

The contribution of beacon measurements to ionospheric and plasmaspheric studies is documented in the proceedings of several beacon symposia:

The Geophysical Use of Satellite Beacon Observations, M. Mendillo (ed.), Boston University, 1976.

Measurements of Plasmaspheric and Ionospheric Properties, P. F. Checcacci (ed.), IROE, Florence, Italy, 1979.

Scientific and Engineering Use of Satellite Radio Beacons, A. W. Wernik (ed.), Warszawa, Lodz, Poland, 1981.

Ionospheric Studies by Means of Beacon Satellites, New Delhi, India, *Radio Science*, Vol. 19, No. 3, 685-805, 1984.

International Beacon Satellite Symposium and Technical Workshop, 2 vols., University of Oulu, Finland, 1986 (ISBN 951-42-2256-3).

3.2 In Situ Experiments

In situ instruments measure the local plasma parameters at the spacecraft's position in the ionosphere. Unlike all the other methods described in this report they do not apply remote sensing techniques. In situ instruments are all well-known tools of laboratory plasma research and include: Langmuir probe, impedance probe, retarding potential analyzer, ion mass spectrometer, magnetometer, EUV (photon) spectrometer, and electron flux spectrometer. In designing these instruments for space-craft applications one has to consider the disturbing influence of spacecraft motion and charging. In-flight investigation of these disturbances started with the simultaneously launched Alouette 2 and Explorer 31 satellites [Brace and Findlay, 1969]. Detailed diagnostics studies were made on several Space Shuttle flights [Shawhan and Murphy, 1984].

The preflight calibration in the laboratory environment does not always guarantee reliable absolute measurements, especially during long-lasting satellite missions. Therefore, most of the more recent (roughly since the early seventies) instruments employ some form of in-flight calibration.

The different in situ instruments are described in detail in several dedicated publications as listed in Table 3.4 on page 30.

The satellites with in situ experiments are shown in Figure 3.1, indicating the time span and altitude range for which in situ data are available. See also Appendix A.

Figure 3.1 Altitude/time chart of satellite data from in situ experiments

Note: Alouette 1, 2; ISIS 1, 2; IR 19; and ISS-b also carried topside sounders measuring the electron density from satellite altitude down to the F peak; ionograms from the ISIS topside sounders were recorded into the mid-80s (see Section 3.3).

Worldwide Ionospheric Data Base

In situ measurements have been crucial to our understanding of local plasma processes. Providing simultaneous measurements of densities, temperatures, electric and magnetic field strength, solar EUV intensities, ionospheric UV intensities, and energetic electron fluxes, they allowed the identification of the atomic and molecular processes that result from the absorption of solar radiation. They enabled quantitative evaluation of the effects of solar energy: chemical changes, ionization, luminosity, and thermal energy.

The spatial and temporal resolution of data sets from in situ instruments depends on the satellite orbit characteristics, on data transmission times, and on the instrument's sampling rate. From the very beginning most satellite missions have avoided the spatial limitations of real time transmission with the help of onboard recording equipment. In situ instruments have sampling intervals of a few seconds, however, power supply considerations affect their operational time.

Most ionospheric satellites have been launched into high-inclination elliptical or circular orbits. Such orbits have the obvious limitation in local time, if elliptical, or in altitude, if circular. Low-inclination orbits, on the other hand, limit the latitudinal extent of a satellite mission; the maximum latitudes reached by a satellite in the northern and southern hemisphere are roughly equal to the inclination angle. The need for a useful lifetime has generally precluded perigees below 250 km because atmospheric drag causes the orbit altitude to decay rapidly. Some examples:

1. The AEROS satellites were injected into elliptical (250 km to 800 km) orbits at an inclination of 96.9°; at such high inclinations the orbit is stable in local time (2 a.m. and 2 p.m.).
2. The AE-C satellite spent most of its mission time in circular orbits providing an almost complete global and temporal (local time, seasons) picture of the ionosphere at altitudes of 300 and 400 km.
3. The low-inclination satellites AE-E and Taiyo have monitored the low-latitude ionosphere in the greatest detail. Investigation of

the equatorial ionosphere continues with the Italian-American San Marco satellite, which was launched on March 25, 1988, into an elliptical (250 to 700 km), very low inclination (2.89°) orbit and re-entered in December 1988.

Orbital limitations have been largely overcome with the fleet of Atmosphere Explorer satellites (C, D, E), which were launched into complementary orbits. In addition, the on-board propulsion system allowed circularization of the initially elliptical orbits of these satellites.

The coupling between ionosphere and atmosphere can be explored with a single well-equipped aeronomy satellite (e.g. AEROS, AE). Multisatellite missions, however, are necessary to investigate the couplings among ionosphere, magnetosphere, and solar wind. The Dynamics Explorer (DE 1 and 2) satellites were launched into coplanar orbits providing data at ionospheric and magnetospheric altitudes within common magnetic flux tubes. The coupling processes are also studied with coordinated satellite and ground-based measurement campaigns (see Appendix B).

In the International Solar-Terrestrial Program (ISTP) the U.S.A., U.S.S.R., E.S.A., and Japan plan to launch 12 satellites for simultaneous measurements in different regions of the Earth-sun system.

3.3 Topside Sounder

Ionosonde-carrying satellites were the first satellites dedicated exclusively to ionospheric research. Whereas ground-based ionosondes looking upward measure the bottomside electron density, satellite ionosondes looking downward measure the topside electron density from the satellite altitude down to the F peak (topside sounder). The two measurements together provide the whole ionospheric electron density profile. There are, however, major differences:

1. Topside sounder data cover the whole globe, whereas ground ionosonde data are available only for the stations shown in Figure 2.2.
2. Inversion of topside ionograms (into electron density profiles) is facilitated by the facts that the topside density decreases monotonically.

Chapter 3

cally and that the electron density at the starting altitude can be measured with in situ techniques.

3. A topside sounder transmitter needs much less power (a few hundred watts) than a ground-based ionosonde (several kilowatts) because the ionosphere shields the spacecraft from ground-based interference.

Determination of the plasma frequency at the F peak, however, is more difficult from the topside ionogram trace than from the bottom-side trace. Only the most recent topside sound-

ers (ISS-b for example) allowed determination of the F peak density.

Topside ionograms exhibit several plasma resonance features, which provide valuable insights into plasma physics and can be used to calculate electron density at the satellite altitude [Benson, 1977].

Topside sounder satellites are included in Figure 3.1 (see page 28) and Appendix A. A huge number of topside ionograms covering the period 1962-1978 were collected by the long-lasting U.S.-Canadian satellite missions

TABLE 3.4 References for In Situ Instruments

Satellite	Reference
Alouette 1, Explorer 31, ISIS 1, 2	<i>Proceedings of the IEEE</i> , Vol. 57, No. 6, 1969
OGO 1, 2, 3, 4, 5, 6	OGO Program Summary, NASA SP-7601, 1975
Alouette 1, 2; ISIS 1, 2	Alouette ISIS Program Summary, NSSDC/WDC-A-R&S Report 80-09, 1986
Explorer 22,23	<i>Space Research X</i> , 663-651, 1970
Atmospheric Explorer C, D, E	<i>Radio Science</i> , Vol.8, No. 4, 1973
AEROS A, B	<i>Journal of Geophysics</i> , Vol. 40, No. 5, 1974
Taiyo (SRATS)	<i>Journal of Geomagnetism and Geoelectricity</i> , Vol. 27, No. 2, 1975
ESRO 4	<i>Planetary and Space Science</i> . Vol. 24, 873-881, 1976
Dynamics Explorer 1, 2	<i>Space Science Instrumentation</i> , Vol. 5, No. 4, 1981
Viking (Sweden)	<i>Annales Geophysicae</i> , Vol. 5A, No.4, 1987 (results) <i>Eos Transactions</i> , Vol. 67, No. 42, 1986
DMSP	Air Force Geophysical Laboratory Reports AFGL-TR-80-0152 (1980), AFGL-TR-78-0071 (1978), AFGL-TR-86-0121 (1981), Hanscom AFB, MA <i>Eos Transactions</i> , Vol. 66, No. 26, 1985
HiLat	<i>Radio Science</i> , Vol. 20, No. 3, 1985 <i>Johns Hopkins APL Technical Digest</i> , Vol.5, No. 2, 1984
Polar BEAR	<i>Johns Hopkins APL Technical Digest</i> , Vol.8, No. 3, 1987

Worldwide Ionospheric Data Base

Alouette 1 and 2, and ISIS 1 and 2. Typically, ionograms were recorded once every 14 to 29 seconds for 6 to 8 hours per day. Latitude resolution is 1-2°.

About four million ionograms together with the needed ephemeris tables are archived and distributed by NSSDC/WDC-A-R&S. (See data users' note by Jackson [1988]). About one hundred thousand of these (~2.5%) have been inverted into electron density profiles and are available on magnetic tape or as tabulated data. NSSDC also provides software to reduce topside ionograms. A program summary of the Alouette and ISIS missions and a general review of results from the Alouette and Explorers 20 and 31 were compiled for NSSDC by Jackson [1986, 1988]. Data sets and software products related to these missions are listed in Appendix A.

Topside sounding instruments, data reduction techniques, results, and comparison with other techniques are described in the special issue: *Proceedings of the IEEE*, Vol. 57, No. 6, 1969. A review of topside sounding was presented by Jackson et al. [1980].

Japan has successfully launched two topside sounder satellites: ISS-b and OHZORA. ISS-b has provided valuable information about the topside ionosphere during the very high levels of solar activity reached in 1978/79 [Wakai and Matuura, 1980; Matuura et al., 1981].

Fixed frequency sounders, both bottomside and topside (Explorer 20, ISIS 1), have been used to study temporal changes in plasma resonances and small-scale ionospheric structures.

3.4 Rockets

Rocket launchings were the first technological step towards deployment of satellites into Earth orbit. All early space experiments were first tested on rockets. Rocket measurements are also our only means of exploring the ionospheric plasma below about 200 km, where high neutral densities and low electron densities make satellite and ground-based observations difficult. The limitations and the reliability of different measurement techniques

for the lower ionosphere were assessed in a special COSPAR Symposium in 1973 [Rawer, 1974].

Individual rocket experiments and multi-rocket campaigns are usually designed to study a specific aspect of plasma physics, for example spread F [Kelley et al., 1986] or Alfvén critical velocity [Wescott et al., 1986]. They have also provided much information about the chemical composition of the numerous ion species in this region, which depends strongly on time and altitude.

Rocket data sets are not of the same general interest to the science community as data sets from long-lasting satellite missions and from continuously operating ground-based facilities. Rockets, however, are important elements in coordinated satellite/rocket/ground-based campaigns (see Appendix B). For example, solar EUV measurements aboard the Atmosphere Explorer satellites were recalibrated with rocket measurements midway through their lifetime.

Several compilations of ionospheric rocket data have been published:

R. E. Bourdeau, J. H. Chapman, and K. Maeda [1960]. Reviews early rocket measurements and explains the different spacecraft measurement techniques.

K. Maeda [1972]. Midlatitude electron density profiles around noon for each season and different solar activities.

K. Hirao and K. Oyamo [1972]. Nine electron temperature profiles measured at the Kagoshima Space Centre, Japan.

E. A. Mechtly, S. A. Bowhill, and L. G. Smith [1972]. Several density profiles from Wallops Island showing solar activity variation.

A. D. Danilow and V. K. Semenov [1973]. Describes the data base for the low altitude ion composition of the International Reference Ionosphere. The latitude resolution is rather limited.

L. F. McNamara [1978a]. Presents electron density profiles from a wide variety of differ-

Chapter 3

ent techniques. There is, however, not enough information to assess the reliability of the different samples.

B. H. Subbaraya, S. Paskash, and S. P. Gupta [1983]. Langmuir probe measurements of electron density in the equatorial lower ionosphere made at Thumba, southern India, during the years 1966-1978.

Sounding Rocket Data in Japan, Vol. 1, 1958-1972, Vol. 2, 1960-1975. (Available from NSSDC on microfiche, data set RX-11A.)

A summary of international rocket launchings is published irregularly by NSSDC/WDC-A-R&S: *Launch Summary for 1973-77* (NSSDC/WDC-A-R&S Report 78-02, 1978); *Launch Summary for 1978-82* (NSSDC/WDC-A-R&S Report 84-01, 1984).

3.5 Other Techniques

Photometers and interferometers have been flown on several satellites to measure auroral

and airglow emissions. (See review by Hayes et al. [1988]).

Visible and ultraviolet imagers (scanning photometers) have been flown on a number of satellites including the DMSP satellites (visible and IR), HiLat (UV), DE 1 (visible and UV), Viking Sweden (UV), and Polar BEAR (visible and UV). These measurements have helped to map out the auroral oval [Gussenhoven, 1982; Frank et al., 1986]. A combination of eight optical instruments was proposed by McCoy et al. [1986] for a launch on a TIROS spacecraft in the early 1990s. The limb scanning experiment will allow remote sensing of neutral and ion composition.

All satellite experiments are listed in Appendix A.1, as are the data sets that are available from NSSDC. DMSP auroral images can be obtained from NGDC on 35mm film. (See Appendix A.3.)

Chapter 4

Comparisons and Data Set Compatibility

Comparisons among the results of different ionospheric measurement techniques have played an important role in recognizing and eliminating error sources for the different techniques. Improved and refined instrument design and data reduction methods have in most cases led to agreement and have explained earlier discrepancies. In this section we review the results of comparative studies, thus enabling the user of past ionospheric records to judge the compatibility and limitations of different data sets.

4.1 Electron Density

Ionospheric electron densities are measured by topside and bottomsider sounders (ionosonde), by incoherent scatter radar, and by satellite in situ probes.

Ionosondes are best suited for measuring peak plasma frequencies and electron densities (E, Es, F1, F2). The difficulties in determining bottomsider electron density profiles from ionograms have been pointed out earlier. (See Section 2.1, Jackson [1971], McNamara [1978b], and Titheridge [1987].) The largest discrepancies are to be expected close to the height of the F layer, where altitudes from ionogram analysis are typically less than those from incoherent scatter measurements by 10 km or more. No systematic assessment of these errors has yet been published. The few comparisons of ionosonde data with incoherent scatter pro-

files [Smith, 1970] and with rocket measurements [Wright and Paul, 1974] tended to focus on the conditions under which agreement is found.

Reduction of topside sounder ionograms encounters fewer problems and error sources than analysis of bottomsider ionograms. (See Section 3.3.) An early comparison among Alouette data and simultaneous incoherent scatter and rocket measurements indicated that below 600 km the difference was as much as 20 km [Bauer et al., 1964]. This finding was later confirmed in Jackson's [1969] comparative study. Fleury and Taleb [1971] found discrepancies of less than 15 km during 20 satellite passes (Alouette, ISIS) near the incoherent scatter radar at St. Santin, France. Electron densities calculated from ISIS topside soundings agreed with AEROS in situ measurements to within about 20% [Dumbs et al., 1979]. A recent comparison [Hoegy and Benson, 1988] between ISIS topside sounder measurements and DE 2 Langmuir probe data showed agreement within 30%.

On several ionospheric satellites the electron density was measured by more than one instrument. Langmuir probe, retarding potential analyzer, impedance probe, and ion mass spectrometer all measure the total electron or ion density. Comparisons among the results of different instruments on the same satellite have mostly been used for recalibration

Chapter 4

purposes. Some comparisons of independent results can be found in the final reports prepared by the scientific investigators for the sponsor agency. For AEROS as well as AE-C, good agreement was found between the different in situ techniques.

The AEROS and AE-C density results agree well with each other, as is shown for average values in Figure 4.1. Rich and Smiddy [1986] found good agreement between DMSP and ESRO-4 density measurements at altitudes of 600-700 km during similar solar activity conditions. Their DMSP measurements also compare well with ISS-b results at 1100 km altitude. However, the ISS-b measurements show a significant longitudinal dependence not expected from DMSP results.

For the lower ionosphere (D region and lower E region), there are conflicting results from different measurement techniques. (See Rawer [1974] and Ramanamurty [1985].) These discrepancies are extremely large (orders of magnitude) for the very low electron densities during nighttime. During the 1973 COSPAR symposium, the following conclusions were reached [Rawer, 1974]:

1. D-region profiles of greatest accuracy are derived from measurements of differential absorption and/or differential phase (Faraday rotation) of radio waves propagating between the ground and ascending rockets. Improved resolution is possible when Langmuir dc probes are flown on the same rockets.
2. All the ground-based techniques (VLF, LF, partial reflection, and wave interaction) begin with assumed profiles of electron concentration and collision frequency for the inversion of propagation integrals. Available measurements are never sufficiently comprehensive to determine unique profiles.

4.2 Electron and Ion Temperature

Early Langmuir probe measurements (Alouette 2, Explorer 31 and 32) gave electron temperatures that were substantially different from the values obtained by incoherent scatter radar [Hanson et al., 1969; Carlson and Sayers, 1970]. The satellite-to-radar ratio was 1.7 for Jicamarca (Peru), 1.4 for Millstone Hill (Massachusetts), and 1.4 for Arecibo (Puerto Rico). For the ion temperature, the ratio ranged from 1.2 to 1.4. Better agreement with incoherent scatter data was found for plasma temperatures measured during nighttime by OGO 6 [McClure et al., 1973]. ISIS 1 electron temperature measurements seem to be 10 to 20% higher than incoherent scatter and ISIS 2 measurements [Köhnlein, 1986].

With improved instrument design and data reduction techniques, the discrepancies became smaller. AEROS and AE-C temperatures differed only slightly (2 to 10%) from simultaneous incoherent scatter measurements [Benson et al., 1977; Spenner and Rawer, 1978]. Large systematic discrepancies have been observed between ESRO-4 and Malvern incoherent scatter data, whereas AE-C and ISIS 2 temperatures compare well with the Malvern data [McPherson, 1977].

Spennner et al. [1979] compared electron temperature measurements from the retarding potential analyzers aboard AEROS-B and TAIYO when the two satellites were close to each other. Good agreement was found during nighttime, whereas the daytime TAIYO temperatures exceeded the AEROS temperatures by 10%. Figure 4.1 shows that the AEROS and AE-C temperature averages agree well with each other.

Summarizing these comparisons, Table 4.1 lists the data sets of in situ plasma temperatures that can be regarded as most reliable.

TABLE 4.1 Widely Used Satellite Data Sets: Langmuir Probe (LP) and Retarding Potential Analyzer (RPA)

Satellite	Instrument	Measurement Period	Temperature		Altitude Range (km) (Year)	Diurnal Range	Solar Activity
			Electron	Ion			
ISIS-1*	LP	1/69 - 5/71	X		600 - 3500	All hours	High
OGO-6	RPA	6/69 - 4/71		X	410 - 1080	Mostly night	High
ISIS-2	LP	4/71 - 3/73	X		1400 \pm 50	All hours	Medium
AEROS-A	RPA	1/73 - 8/73	X	X	300 - 700	2 a.m., 2 p.m.	Low
AE-C	LP, RPA	12/73 - 12/78	X	X	150 - 4300 (74) 300 (75, 76) 400 (77, 78)	All hours	Low
AEROS-B	RPA	7/74 - 9/75	X	X	300 - 700	2 a.m., 2 p.m.	Medium
AE-D	RPA	10/75 - 1/76		X	140 - 1000	All hours	Medium
AE-E	RPA	11/75 - 6/81		X	140 - 1000	All hours	Medium
ISS-b	RPA	2/78 - 4/83	X	X	1100 \pm 100	Mostly night	High
DE-2	LP, RPA	8/81 - 1/83	X	X	300 - 1100	All hours	High

* In Köhnlein's [1981] comparison at 600 km altitude ISIS-1 electron temperature data exceed incoherent scatter data by ~400 K.

Figure 4.1 Comparison of results for ionospheric parameters from AEROS and AE-C satellites

Chapter 5

As in any geophysical discipline, modeling is an essential part of ionospheric physics. The two main goals are to understand the physical processes in the plasma and to be able to forecast ionospheric conditions. Empirical modeling tries to extract periodic behavior from past data records. Theoretical modeling tries to solve the Boltzman equation for the ionospheric gas. Both methods have been pursued over more than 30 years and have reached a high degree of sophistication. The major remaining challenge is the modeling of the auroral ionosphere with its coupling to magnetospheric and solar wind conditions [Schunk and Sojka, 1988; Gorney, 1987; Sisco, 1988].

Reviews of ionospheric modeling have been presented by Davies [1981], Rawer [1984], Rush [1986], and Schunk and Szuszczewicz [1988].

5.1 Theoretical Simulation

Theoretical simulations of the ionospheric environment start from the continuity, energy, and momentum equations for electrons and ions [Schunk, 1977]. The plasma densities, temperatures, and drifts are obtained numerically from the nonlinear coupled system of equations. Input parameters are the solar EUV radiation, the auroral particle precipitation, and the atmospheric and magnetospheric boundary conditions. In addition, various cross sections are needed for describing the interactions among the various species.

Modeling the Ionosphere

Over the past 15 years these computer simulations have been steadily improved in tune with our evolving understanding of the ionospheric plasma processes. Recent improvements of specific terms were reported by Hoegy [1984], Bilitza [1985], Richards et al. [1986], Gulcicek et al. [1988], and Grochulska [1988]. Ionospheric modeling has gone hand in hand with the modeling of the thermosphere and magnetosphere. The strong coupling in the magnetosphere/ionosphere/thermosphere system ultimately makes necessary a combined model of all three regions.

Several groups have pursued realistic simulations of the ionosphere. The most advanced computer simulations have been developed at the Utah State University [Young et al., 1980; Schunk et al., 1986]; at the University College London and the University of Sheffield [Quegan et al., 1982; Fuller-Rowell et al., 1987]; and at the National Center for Atmospheric Research in Boulder [Emery et al., 1985; Roble et al., 1988]. Self-consistent theoretical models including the global ionosphere and atmosphere are presently being developed by all three groups [e.g. Rees et al., 1987].

Theoretical models have proven their ability to simulate non-auroral densities and temperatures in comparison with measured values [Chandler et al., 1983; Roble et al., 1988]. Some discrepancies, however, remain. For example, the calculated photoelectron fluxes disagree

TABLE 5.1 Empirical Models of Ionospheric Electron Density

Model	Characteristics	Data Source
<u>Models With CCIR Peak</u>		
<u>Bottomside Only</u>		
Bradley and Dudeney [1973]	Parabolic and linear segments No F1, no valley, no D region	Ionosonde
Dudeney [1978]	Improved functional description No valley, no D region	Ionosonde
IONCAP [Lloyd et al., 1978]	Parabolic and linear segments Valley of constant density Exponential tail below E parabola	Ionosonde
Chasovitin et al. [1985]	Low- and mid-latitudes below 200 km	Incoherent scatter Rocket, Satellite
<u>Top and Bottomside</u>		
Bent and Llewellyn [1973]	Three exponential topside segments Bottomside bi-parabola	Satellite Ionosonde
International Reference Ionosphere [1978, 1981]	Analytical description of Bent's topside E valley, D region	Ionosonde Incoherent scatter Absorption Rocket, Satellite
<u>Models Without CCIR Peak</u>		
Ching and Chiu [1973] Chiu [1975]	Three superposed Elias-Chapman layers (E, F1, F2) Phenomenological description of peak parameters	Ionosonde
Kohnlein [1978]	One Elias-Chapman layer with parametrized scale height Phenomenological description of peak parameters	Incoherent scatter Topside sounder In situ

Worldwide Ionospheric Data Base

with measured fluxes by a factor of two [Hernandez et al., 1983; Richards and Torr, 1984].

Modeling of the auroral ionosphere has improved considerably in recent years [Quegan et al., 1982; Sojka and Schunk, 1988; Schunk and Sojka, 1988; Rasmussen et al., 1988]. However, all modeling attempts are still only case studies, limited by their use of globally smoothed input functions.

Further information can be found in the reviews by Schunk and Nagy [1980], Anderson [1981], Schunk [1983], Rawer [1984], and also in the *U.S. National Report to the International Union of Geodesy and Geophysics*, which is published in the *Review of Geophysics* every three years (see Bibliography).

The main disadvantage of using theoretical models for forecasting is the large amount of computer time needed. Several hours on a CRAY 1 computer are required to specify the electron density on a global scale. To overcome this limitation, Batten et al. [1987] suggested the creation of data bases of theoretically calculated ionospheric parameters similar to the data bases of actual measurements.

Anderson et al. [1985] have followed a similar approach with their semi-empirical, low-latitude ionospheric model (SLIM). They have calculated electron density profiles (180 to 1800 km) between 24°N and 24°S dip latitude based on Anderson's [1973] theoretical computations. The theoretical values were then approximated by Chapman-like profiles and the profile coefficients stored as the model matrix.

5.2 Empirical Modeling

Reviews of empirical models of the electron density were presented by Köhnlein [1978], Davies [1981], and Dudeney and Kressman [1986].

The first empirical models were developed for the F peak critical frequency f_{oF2} . This parameter is very important for radio communication and can be easily obtained from ionosonde measurements. The International Radio Consultative Committee (CCIR) presently recommends the f_{oF2} model that is based on the pioneering work of Jones and Gallet [1962, 1965] and Jones and Obitts [1970]. It utilizes

spherical harmonics and Fourier functions and needs 2867 coefficients per month. A similar model has been developed for the propagation factor $M(3000)F2$, which is related to the F peak altitude. (See Bilitza et al. [1979] for a review of this relationship.) It has long been known that the CCIR model has its shortcomings above the oceans and in the southern hemisphere, where ionosonde measurements are scarce or do not exist. Rush et al. [1983, 1984] have obtained a more balanced description by introducing theoretical values in regions of no measurements. Fox and McNamara [1986] have combined the Rush approach with a huge data base of ionosonde measurements and have calculated new coefficients. This new model was recently accepted as the new standard model by the International Union of Radio Science (URSI) and will probably be adopted by CCIR.

Several models of the ionospheric electron density profile (normalized to the CCIR F-peak density) have been developed, as listed in Table 5.1. The most widely used is the International Reference Ionosphere (IRI). IRI is a joint project of the Committee on Space Research (COSPAR) and URSI, and has by now undergone more than a decade of improvements and critical testing. Unlike all the other models, it also provides the electron and ion temperatures and the percentage ion densities. Progress in developing IRI is reported in several issues of *Advances in Space Research* [Vols. 2 (No. 10), 4 (1), 5 (7), 5 (10), 7 (6), and 8 (4)]. IRI is also the only model that takes advantage of all the different data sources described in Chapters 2 and 3.

Phenomenological descriptions of the peak parameters, as used in the last two models in Table 5.1, need fewer coefficients, but they cannot describe global variations in as much detail as the spherical harmonics development can. They have, however, the advantage of small computational effort and easy accessibility of global and temporal trends.

In general, empirical models describe average conditions (e.g. monthly or seasonal mean values) of the non-auroral, quiet ionosphere. Day-to-day deviations from these mean values can range from 10 to 30% for quiet magnetic conditions and even higher for magnetic storm

Chapter 5

conditions. Introduction of real-time values at certain altitudes can improve the prediction quality of the models at all altitudes. The IRI model, for example, has an option for using real-time F peak density and altitude instead of the CCIR model values. (Several of the ionospheric forecasting centers listed in Appendix D provide predictions of f_0F2 and $M(3000)F2$ on a weekly or monthly basis with daily update.)

An Ionospheric Conductivity and Electron Density (ICED) model is being developed by Tascione et al. [1988] for the USAF Air Weather Service. Their plan is to use real-time data from a network of digital ionosondes for the F

peak density and imager data from the DMSP satellite for the auroral boundary.

Models for the electron and ion temperatures are summarized in Table 5.2. The mission-specific models are restricted by the orbit characteristics of the specific satellites. The IRI model combines the mission models into a single analytical model with the help of Epstein functions. In addition, IRI users have the option of improving prediction accuracy by switching to a model that uses the strong anti-correlation between electron temperature and density. This is only recommended when measured (real-time) electron density values are available.

TABLE 5.2 Empirical Models of Ionospheric Plasma Temperatures

Authors	Characteristics	Data Base
<u>Electron temperature models for specific satellite missions</u>		
Spennler and Plugge [1979]	300 - 700 km; 3 a.m. and 3 p.m.	AEROS-A
Brace and Theis [1981]	300, 400, 1400 and 3000 km All local times	AE-C ISIS 1, 2
Smilauer and Atonin [1985]	500-1000 km; high solar activity	Interkosmos-19
<u>Electron and ion temperature models</u>		
IRI, Bilitza [1981] Bilitza et al. [1985]	Combines the first three models with incoherent scatter results	Several satellites and several incoherent scatter radars
Köhnlein [1986]	Large number of coefficients fitted simultaneously	Several satellites and several incoherent scatter radars
<u>Models of electron temperature/density anticorrelation</u>		
Brace and Theis [1978]	Depends on altitude	AE-C
Bilitza [1983]	Depends on altitude and dip latitude	AE-C, AEROS-B, incoherent scatter radar

TABLE 5.3 Empirical Models of Interest for Ionospheric Physics

Subject	Name/Author	Characteristics
Atmosphere	CIRA [1972]	Neutral densities and temperature of the atmosphere
	MSIS, Hedin [1987]	Neutral densities and temperature of middle and upper atmosphere
	Hedin et al. [1988]	Horizontal thermospheric winds
Earth's magnetic field	IGRF, Barraclough [1987]	Magnetic field without external sources
	Tsyganenko [1987]	Magnetic field with external sources
Earth's electric field	Heppner [1977]	High-latitude ionospheric electric fields
	Heppner and Maynard [1987]	
•	Volland [1973, 1978]	Large-scale magnetospheric electric field
	Richmond et al. [1980]	Ionospheric electric field at middle and low latitudes
	Heelis et al. [1982]	High-latitude ionospheric convection
	Reiff and Burch [1985]	High-latitude convection and Birkeland currents
	Holzworth and Meng [1975]	Mathematical representation of oval
	Hardy et al. [1985]	Auroral electron precipitation
Auroral oval	Foppiano and Bradley [1983]	Auroral absorption of HF waves
	Sawyer et al. [1976]	Trapped electron and proton fluxes in the magnetosphere
	Teague et al. [1979]	
Scintillation	Fremouw and Secan [1984]	Global distribution of scintillation
Conductances	Wallis and Budzinski [1981]	Height-integrated conductivities
	Spiro et al. [1982]	Auroral zone conductances
	Whalen [1983]	Spatial distribution and energy flux of aurora
	Brekke and Hall [1988]	Auroral quiet summer ionospheric conductances
Venus ionosphere	Theis et al. [1984]	Electron density and temperature

Chapter 5

Table 5.3 on page 41 lists empirical models of parameters which are related to ionospheric physics.

International efforts to improve forecasting of ionospheric conditions are summarized in the proceedings of the Solar-Terrestrial Predictions Workshops (Boulder, 1979 [14]; Meudon, 1984 [18]; Sydney, 1989).

The software packages for several of the empirical models listed in Tables 5.1, 5.2, and 5.3 are available from NSSDC (see Appendix A.3) on tape, diskette (for PCs), or on line on the Space Physics Analysis Network (SPAN; address: NCF::REQUEST).

Chapter 6

References

Aarons, J., (ed.), Total Electron Content and Scintillation Studies of the Ionosphere, AG-ARD-AG-166, 1973. (Available from NTIS.)

Aarons, J., Review of equatorial scintillations, *IEEE Trans. AP-25*, 729, 1977.

Anderson, D. N., A theoretical study of the ionospheric F region equatorial anomaly, *Planet. Space Sci. 21*, 409-442, 1973.

Anderson, D. N., Modeling the ambient, low latitude F region ionosphere—A review, *J. Atmos. Terr. Phys. 43*, 753-762, 1981.

Anderson, D. N., M. Mendillo, and B. Herniter, *A Semi-Empirical, Low-Latitude Ionospheric Model*, Air Force Geophysics Laboratory Technical Report AFGL-TR-85-0254, Hanscom AFB, Massachusetts, 1985.

Barracough, D. R., International Geomagnetic Reference Field Revision 1987, *J. Geomag. Geoelectr. 39*, 773-779, 1987.

Basu, Sa., E. M. MacKenzie, Su. Basu, E. Costa, P. I. Fougere, H. C. Carlson, and H. E. Whitney, 250 MHz/GHz scintillation parameters in the equatorial, polar, and auroral environments, *IEEE J. on Selected Areas in Communication, SAC-5*, 1987.

Batten, S., D. Rees, and J. Fuller-Rowell, A numerical and data base for VAX and personal computers for the storage, reconstruction, and

display of global thermospheric and ionospheric models, *Planet. Space Sci. 35*, 1167-1179, 1987.

Bauer, S. S., L. J. Blumle, J. L. Donley, R. J. Fitzenreiter, and J. E. Jackson, Simultaneous rocket and satellite measurements of the topside ionosphere, *J. Geophys. Res. 69*, 186-189, 1964.

Benson, R. F., Stimulated plasma waves in the ionosphere, *Radio Science 12*, 861-878, 1977.

Benson, R. F., et al., Electron and ion temperature—A comparison of ground-based incoherent scatter and AE-C satellite measurements, *J. Geophys. Res. 82*, 36-42, 1977.

Bent, R. B., and S. K. Llewellyn, *Documentation and Description of the Bent Ionospheric Model*, Report AFGL-TR-73-0657, Hanscom AFB, Massachusetts, 1973.

Bilitza, D., *Models for Ionospheric Electron and Ion Temperature*, World Data Center A for Solar-Terrestrial Physics Report UAG-82, 11-16, Boulder, Colorado, 1981.

Bilitza, D., New descriptive temperature model, *Adv. Space Res. 2* (10), 237-245, 1983.

Bilitza, D., Heat balance of the ionosphere: implications for the International Reference Ionosphere, *Adv. Space Res. 5* (10), 123-130, 1985.

Chapter 6

- Bilitza, D., N. M. Sheikh, and R. Eyfrig, A global model for the height of the F2-peak using M 3000 values from the CCIR numerical map, *Telecomm. J.* 46, 549-554, 1979.
- Bilitza, D., L. H. Brace, and R. F. Theis, Modeling of ionospheric temperature profiles, *Adv. Space Res.* 5 (7), 53-58, 1985.
- Blanc, M., Electrodynamics of the ionosphere from incoherent scatter—A review, *J. Geomag. Geoelectr.* 31, 137-164, 1979.
- Booker, H. G., and E. K. Smith, A comprehensive study of ionospheric measurement techniques, *J. Atmos. Terr. Phys.* 32, 467-497, 1970.
- Bourdeau, R. E., J. H. Chapman, and K. Maeda, Ionospheric research by rockets and satellites, *Radio Science* 3, 6-10, 1960.
- Brace, L. H., and J. A. Findlay, Comparison of cylindrical electrostatic probe measurements on Alouette II and Explorer XXXI satellites, *Proc. IEEE* 57, 1057-1060, 1969.
- Brace, L. H., and R. F. Theis, An empirical model of the interrelationship of electron temperature and density in the daytime thermosphere at solar minimum, *Geophys. Res. Lett.* 5, 275-278, 1978.
- Brace, L. H., and R. F. Theis, Global empirical models of ionospheric electron temperature in the upper F-region and plasmasphere based on in situ measurements from the Atmosphere Explorer-C, ISIS 1, and ISIS 2 satellites, *J. Atmos. Terr. Phys.* 43, 1317-1343, 1981.
- Bradley, P. A., and J. R. Dudeney, A simple model of the vertical distribution of electron concentration in the ionosphere, *J. Atmos. Terr. Phys.* 35, 2131-2146, 1973.
- Brekke, A., and C. Hall, Auroral ionospheric quiet summer time conductances, *Annales Geophysicae* 6 (4), 361-376, 1988.
- Carlson, H. C., and J. Sayers, Discrepancy in electron temperatures deduced from Langmuir probes and from incoherent scatter radars, *J. Geophys. Res.* 75, 4883-4886, 1970.
- Carpenter, D. L., Remote sensing of the magnetospheric plasma by means of whistler-mode signals, *Rev. Geophys.* 26, 535-549, 1988.
- Chandler, M. O., R. A. Behnke, A. F. Nagy, E. G. Fontheim, P. G. Richards, and D. G. Torr, Comparison of measured and calculated low-latitude ionospheric properties, *J. Geophys. Res.* 88, 9187-9196, 1983.
- Chasovitin, Yu. K., V. B. Shushkova, P. F. Denisenko, T. N. Sykilinda, V. V. Sotsky, and N. E. Shejdakov, An empirical model of electron density for low and middle latitudes below 200 km, *Adv. Space Res.* 5 (7), 21-24, 1985.
- Ching, B. K., and Y. T. Chiu, A phenomenological model of global ionospheric electron density in the E-, F1- and F2-regions, *J. Atmos. Terr. Phys.* 35, 1615-1630, 1973.
- Chiu, Y. T., An improved phenomenological model of ionospheric density, *J. Atmos. Terr. Phys.* 37, 1563-1570, 1975.
- CIRA, COSPAR International Reference Atmosphere 1972, Akademie-Verlag, Berlin, 1972. [For later improvements see *Adv. Space Res.* 2 (10), 5 (7), 7 (10), and 8 (5-6).].
- Cole, K. D., The world ionosphere-thermosphere study, *Eos Transactions, AGU* 68 (46), 1594, Nov. 17, 1987.
- Conkright, R., M. Ertle, M. Hapgood, A. Feldstein, and N. Matuura, *Combined Catalog of Ionosphere Vertical Soundings Data*, World Data Center A for Solar-Terrestrial Physics, Report UAG-91, Boulder, Colorado, 1984.
- Danilov, A. D., and V. K. Semenov, Atmospheric ion composition measurements up to a height of 170 km, *Space Research XIII*, 493, Akademie-Verlag, Berlin, 1973.
- Davies, K., Recent progress in satellite beacon studies with particular emphasis on the ATS-6 radio beacon experiment, *Space Sci. Rev.* 25, 357-430, 1980.
- Davies, K., Review of recent progress in ionospheric predictions, *Radio Science* 16, 1407-1430, 1981.

Worldwide Ionospheric Data Base

- Demars, H. G., and R. W. Schunk, Temperature anisotropies in the terrestrial ionosphere and plasmasphere, *Rev. Geophys.* 25, 1659-1679, 1987.
- Dudeney, J. R., An improved model of the variation of electron concentration with height in the ionosphere, *J. Atmos. Terr. Phys.* 40, 195-203, 1978.
- Dudeney, J. R., and R. I. Kressman, Empirical models of the electron concentration of the ionosphere and their value for radio communication purposes, *Radio Science* 21, 319-330, 1986.
- Durnbs, A., G. Emmenegger, R. Kist, D. Klumper, E. Neske, J. Slavik, K. Spenner, and H. Wolf, Results from the plasma experiments on AEROS, *J. Geomag. Geoelectr.* 31, 2125-2139, 1979.
- Emery, B. A., R. G. Roble, E. C. Ridley, T. L. Killen, M. H. Rees, J. D. Winningham, G. R. Carrigan, P. H. Hays, R. A. Heelis, W. B. Hanson, N. W. Spencer, L. H. Brace, and M. Sugiura, Thermospheric and ionospheric structure of the southern hemisphere polar cap on October 21, 1981, as determined from Dynamics Explorer 2 satellite data, *J. Geophys. Res.* 90, 6553-6566, 1985.
- Evans, J. V., Theory and practice of ionosphere study by Thompson scatter radar, *Proc. IEEE* 57, 496, 1969.
- Evans, J. V., High-power radar studies of the ionosphere, *Proc. IEEE* 63, 1636, 1975.
- Evans, J. V., Satellite beacon contribution to ionospheric studies, *Rev. Geophys.* 15, 325, 1977.
- Fejer, B. G., and M. C. Kelley, Ionospheric irregularities, *Rev. Geophys.* 18, 401-454, 1980.
- Feldstein, Y. I., A quarter of a century with the auroral oval, *Eos Transactions, AGU* 67 (40), 761, Oct. 7, 1986.
- Feldstein, Y. I., and Y. I. Galperin, The auroral luminosity structure in the high-latitude upper atmosphere: Its dynamics and relationship to the large-scale structure of the earth's magnetosphere, *Rev. Geophys.* 23, 217, 1985.
- Fleury, L., and C. Taieb, Simultaneous measurements of electronic density using topside soundings and incoherent scatter soundings, *J. Atmos. Terr. Phys.* 33, 909-918, 1971.
- Foppiano, A. J., and P. A. Bradley, Prediction of auroral absorption of high-frequency waves at oblique incidence, *Telecomm. J.* 50, 547-560, 1983.
- Forbes, J. M., The equatorial electrojet, *Rev. Geophys.* 19, 469-504, 1981.
- Fox, M. W., and L. F. McNamara, *Improved Empirical World Maps of foF2: 1. The Method*, Ionospheric Prediction Service, Technical Report IPS-TR-86-03, Sydney, Australia, 1986.
- Frank, L. A., et al., The theta aurora, *J. Geophys. Res.* 91, 3177-3224, 1986.
- Fremouw, E. J., and J. A. Secan, Modelling and scientific application of scintillation results, *Radio Science* 19, 687-694, 1984.
- Friedman, H., The legacy of the IGY, *Eos Transactions, AGU* 64 (32), 497, Aug. 9, 1983.
- Fuller-Rowell, T. J., D. Rees, S. Quegan, R. J. Moffett, and G. J. Bailey, Interactions between neutral thermospheric composition and the polar ionosphere-thermosphere model, *J. Geophys. Res.* 92, 7744-7748, 1987.
- Goodman, J. M., and M. Daehler, The NRL data base of oblique-incidence soundings of the ionosphere, Naval Research Laboratory, Memorandum Report 6337, Washington, DC, 1988.
- Gorney, O. J., U.S. Progress in auroral research: 1983-1986, *Rev. Geophys.* 25, 555-569, 1987.
- Grochulska, J., The effect of the large ion temperature differences on the solutions of diffusion and continuity equations, *J. Atmos. Terr. Phys.* 50, 33-40, 1988.
- Gulcicek, E. E., et al., Absolute differential and integral electron excitation cross sections for

Chapter 6

- atomic oxygen, *J. Geophys. Res.* 93, 5879-5889, 1988 (and earlier publications).
- Gussenhoven, M. S., Extremely high latitude auroras, *J. Geophys. Res.* 87, 2401-2412, 1982.
- Hanson, W. B., L. H. Brace, P. L. Dyson, and J. P. McClure, Conflicting electron temperature measurements in the upper F region, *J. Geophys. Res.* 74, 400, 1969.
- Hardy, D. A., M. S. Gussenhoven, and E. Holman, A statistical model of auroral electron precipitation, *J. Geophys. Res.* 90, 4229-4248, 1985.
- Hargreaves, J. K., Auroral absorption of HF radio waves in the ionosphere—A review of results from the first decade of riometry, *Proc. IEEE* 57, 1348-1373, 1969.
- Hartle, R. E., Earth Observing System: Concepts and implementation strategy, *Space Technology*, 7 (4), 337-344, 1987.
- Hays, P. B., V. J. Albreu, S. C. Solomon, and J. H. Kee, The visible airglow experiment—A review, *Planet. Space Sci.* 36, 21-35, 1988.
- Hedin, A. E., MSIS-86 Thermospheric Model, *J. Geophys. Res.* 92, 4649, 1987.
- Hedin, A. E., N. W. Spencer, and T. L. Killeen, Empirical global model of upper thermosphere winds based on Atmosphere and Dynamics Explorer satellite data, *J. Geophys. Res.* 93, 9959-9978, 1988.
- Heelis, R. A., J. K. Lowell, and R. W. Spiro, A model of the high-latitude ionospheric convection pattern, *J. Geophys. Res.* 87, 6339, 1982.
- Helliwell, R. A., and E. Gehrels, *Proc. Institute Radio Engineers N.Y.* 46, 785-787, 1958.
- Heppner, J. P., Empirical models of high-latitude electric fields, *J. Geophys. Res.* 82, 1115-1125, 1977.
- Heppner, J. P., and M. C. Maynard, Empirical high latitude electric field models, *J. Geophys. Res.* 92, 4467, 1987.
- Hernandez, S. P., J. P. Doering, J. Abreu, and G. A. Victor, Comparison of absolute photoelec- tron fluxes measured on AE-C and AE-E with theoretical fluxes and predicted and measured N22PG 3371 Å volume emission rates, *Planet. Space Sci.* 31, 221, 1983.
- Hirao, K., and K. Oyama, Profiles of electron temperature in the ionosphere observed with electron temperature probe on a rocket, *Space Research XII*, 1335-1339, Akademie-Verlag, Berlin, 1972.
- Hoegy, W. R., Thermal electron heating rate: A derivation, *J. Geophys. Res.* 89, 977-985, 1984.
- Hoegy, W. R., and R. F. Benson, DE/ISIS conjunction comparisons of high latitude electron density features, *J. Geophys. Res.* 93, 5947-5945, 1988.
- Holzworth, R. H., and C. I. Meng, Mathematical representation of the auroral oval, *Geophys. Res. Lett.* 2, 377-380, 1975.
- International Reference Ionosphere 1978*, URSI report, Brussels, 1978.
- International Reference Ionosphere 1979*, WDC-A for Solar-Terrestrial Physics Report UAG-82, 1981.
- Imhof, W. L., J. B. Regan, H. D. Voss, E. E. Gaines, D. W. Datlowe, J. Mobilia, R. A. Helliwell, U. S. Inan, J. Katsufakis, and R. G. Joiner, Direct observation of radiation belt electrons precipitated by the controlled injection of VLF signals from a ground-based transmitter, *Geophys. Res. Lett.* 10, 361 and 615, 1983.
- Jackson, J. E., Comparisons between topside and ground-based soundings, *Proc. IEEE* 57, 976-985, 1969.
- Jackson, J. E., *The P(f) to N(h) Inversion Problem in Ionospheric Soundings*, Goddard Space Flight Center Report X-625-71-186, Greenbelt, Maryland, 1971.
- Jackson, J. E., *Alouette-ISIS Program Summary*, National Space Science Data Center, NSSDC/WDC-A-R&S 86-09, Greenbelt, Maryland, 1986.
- Jackson, J. E., *Calibration and Identification of Alouette and ISIS Topsides Ionograms*, National Space Science Data Center Data Users'

Worldwide Ionospheric Data Base

Note, NSSDC/WDC-A-R&S 88-06, Greenbelt, Maryland, 1988.

Jackson, J. E., *Results from Alouette 1, Explorer 20, Alouette 2, and Explorer 31*, National Space Science Data Center, NSSDC/WDC-A-R&S 88-10, Greenbelt, Maryland, 1988.

Jackson, J. E., E. R. Schmerling, and J. H. Whittaker, Mini-review on topside sounding, *IEEE Trans. Antennas Propag. AP-28*, 284-288, 1980.

Jones, W. B., and R. M. Gallet, The representation of diurnal and geographic variations of ionospheric data by numerical methods, *Telecomm. J.* 29, 129, 1962, and 32, 18, 1965.

Jones, W. B., and D. L. Obitts, *Global representation of annual and solar cycle variation of foF2 monthly median 1954-1958*, National Technical Information Service, OT/ITS Research Report 3, COM 75-11/43/AS, Springfield, Virginia, 1970.

Kazimirovsky, E. S., E. I. Zhovty, and M. A. Chernigovskaya, Modelling of ionospheric drifts in view of IRI, *Adv. Space Res.* 5 (7), 95-96, 1985.

Kelley, M. C., et al., The Condor equatorial spread F campaign: Overview and results of the large-scale measurements, *J. Geophys. Res.* 91, 5487-5503, 1986.

Killeen, T. L., D. G. Torr, B. A. Tinsley, and R. A. Behnke, CEDAR: An aeronomy initiative, *Eos Transactions, AGU* 68 (2), 19, Jan. 13, 1987.

Kohnlein, W., Electron density models of the ionosphere, *Rev. Geophys.* 16, 341-354, 1978.

Kohnlein, W., A model of the electron and ion temperatures in the ionosphere, *Planet. Space Sci.* 34, 609-630, 1986.

Korösmezey, A., T. E. Cravens, T. I. Gambosi, A. F. Nagy, D. A. Mendis, K. Szegő, B. E. Gribov, R. Z. Sagdeev, V. D. Shapiro, and V. I. Shevchenko, A new model of cometary ionospheres, *J. Geophys. Res.* 92, 7331-7340, 1987.

Lloyd, J. L., G. W. Haydon, D. L. Lucas, and L. R. Teters, *Estimating the Performance of Telecommunication Systems Using the Ionospheric Transmission Channel*, National Telecommunication and Information Administration, Boulder, Colorado, 1978.

Maeda, K., E region electron density profiles, *Space Research XII*, 1229-1240, Akademie-Verlag, Berlin, 1972.

Mathews, J. D., The incoherent scatter radar as a tool for studying the ionospheric D-region, *J. Atmos. Terr. Phys.* 46, 975-986, 1984.

Matuura, N., M. Kotaki, S. Miyazaki, E. Sagawa, and I. Iwamoto, ISS-b experimental results on global distribution of ionospheric parameters and thunderstorm activity, *Acta Astronautica* 8, 527-548, 1981.

McClure, J. P., et al., Comparison of Te and Ti from OGO 6 and from various incoherent scatter radars, *J. Geophys. Res.* 78, 197-205, 1973.

McCoy, R. P., et al., The remote atmospheric and ionospheric detection system, Society of Photo-Optical Instrumentation Engineers, SPIE 687, *Ultraviolet Technology*, 142, 1986.

McNamara, L. F., *A Collection of Computer-Accessible Experimental Profiles of the D and Lower E Regions*, World Data Center A for Solar-Terrestrial Physics, Report UAG-67, Boulder, Colorado, 1978a.

McNamara, L. F., *A Comparative Study of Methods of Electron Density Profile Analysis*, World Data Center A for Solar-Terrestrial Physics, Report UAG-68, Boulder, 1978b.

McPherson, P. H., F-Region temperatures measured simultaneously by satellite and incoherent scatter radar, *J. Atmos. Terr. Phys.* 39, 1459-1464, 1977.

Mechtley, E. A., S. A. Bowhill, and L. G. Smith, Changes of lower ionosphere electron concentrations with solar activity, *J. Atmos. Terr. Phys.* 34, 1899-1907, 1972.

Mullen, J. P., E. MacKenzie, Sa. Basu, and H. Whitney, UHF/GHz scintillation observed at

Chapter 6

- Ascension Island, from 1980 through 1982, *Radio Science* 20, 357-365, 1985.
- Ossakow, S. L., Spread-F theories—A review, *J. Atmos. Terr. Phys.* 43, 437-452, 1981.
- Ossakow, S. L., W. Burke, H. C. Carlson, P. Gary, R. Heelis, M. Keskinen, N. Maynard, C. Meng, and E. Szuszczewicz, High latitude ionospheric structure, in *Solar Terrestrial Physics Present and Future*, NASA Reference Publication 11200, Washington, DC, 1984.
- Oyama, K. I., and K. Schlegel, Observation of electron temperature anisotropy in the ionosphere—A review, *Annales Geophysicae* 6 (4), 389-400, 1988.
- Perrant, S., A. Brekke, M. Baron, and D. Hubert, EISCAT measurements of ion temperatures which indicate non-isotropic ion velocity distributions, *J. Atmos. Terr. Phys.* 46, 531-543, 1984.
- Perrant, S., N. Bjorna, A. Brekke, M. Baron, W. Kofman, C. Lathuilliere, and G. Lejeune, Experimental evidence of non-isotropic temperature distribution of ions observed by EISCAT in the auroral F-region, *Geophys. Res. Lett.* 11, 519-522, 1984.
- Piggott, W. R., and K. Rawer, *URSI Handbook of Ionogram Interpretation and Reduction*, World Data Center A for Solar-Terrestrial Physics, Report UAG-23, Boulder, Colorado, 1972.
- Quegan, S., G. J. Bailey, R. J. Moffett, R. A. Heelis, T. J. Fuller-Rowell, D. Rees, and R. W. Spiro, A theoretical study of the distribution of ionization in the high-latitude ionosphere and the plasmasphere: First results on the mid-latitude trough and light-ion trough, *J. Atmos. Terr. Phys.* 44, 719-640, 1982.
- Ramanamurty, Y. V., Input from station-oriented observations and its assimilation into the new formula for the International Reference Lower Ionosphere, *Adv. Space Res.* 5 (10), 79-88, 1985.
- Rasmussen, C. E., J. J. Sojka, R. W. Schunk, V. B. Wickwar, O. de la Beaujardiere, J. Foster, and J. Holt, Comparison of simultaneous Chatanika and Millstone Hill temperature measurements with ionospheric model predictions, *J. Geophys. Res.* 93, 1922-1932, 1988.
- Rawer, K., Ionosphere: Drift measurements, *Ann. IGSY* 1, 119-125, 1968.
- Rawer, K. (ed.), *Methods of Measurements and Results of Lower Ionosphere Structure*, Akademie-Verlag, Berlin, 1974.
- Rawer, K. (ed.), *Manual of Ionospheric Absorption Measurements*, World Data Center A for Solar-Terrestrial Physics, Report UAG-57, Boulder, Colorado, 1976.
- Rawer, K., Modelling of Neutral and Ionized Atmospheres, in *Encyclopedia of Physics*, 49/7, Springer-Verlag, Berlin, 1984.
- Rawer, K., and K. Suchy, Radio Observations of the Ionosphere, in *Encyclopedia of Physics* 49/2, S. Fluegge (ed.), Springer-Verlag, Berlin, 1967.
- Rees, D., T. J. Fuller-Rowell, S. Quegan, R. J. Moffett, and G. J. Bailey, Thermospheric dynamics: Understanding the unusual disturbances by means of simulations with a fully-coupled global thermosphere/high-latitude ionosphere model, *Annales Geophysicae* 5A, 303-328, 1987.
- Reiff, P. H., and J. L. Burch, IMF By-dependent plasma flow and Birkeland currents in the day-side magnetosphere: 2, A global model for northward and southward IMF, *J. Geophys. Res.* 90, 1595-1609, 1985.
- Reinisch, B. W., New techniques in ionospheric sounding, *Radio Science* 21, 331-341, 1986.
- Rich, F. J., and M. Smiddy, *Plasma Densities and Irregularities at 830 km Altitude Based on Observations During 1979*, Air Force Geophysical Laboratory, Report AFGL-TR-86-0121, Hanscom AFB, Massachusetts, 1986.
- Richards, P. G., and D. G. Torr, An investigation of the consistency of the ionospheric measurements of the photoelectron flux and solar EUV flux, *J. Geophys. Res.* 89, 5625-5635, 1984.
- Richards, P. G., D. G. Torr, and W. A. Abdou, Effects of vibrational enhancement of N₂ on the

Worldwide Ionospheric Data Base

- cooling rate of ionospheric thermal electrons, *J. Geophys. Res.* 9, 304-310, 1986.
- Richmond, A. D., Ionospheric wind dynamo theory—A review, *J. Geomag. Geoelectr.* 31, 287-310, 1979.
- Richmond, A. D., M. B. Blanc, A. Emery, R. H. Wand, B. G. Fejer, R. I. Woodman, S. Ganguly, P. Amayenc, R. A. Behnke, C. Calderon, and J. V. Evans, An empirical model of quiet-day ionospheric electric fields at middle and low latitudes, *J. Geophys. Res.* 85, 4658-4664, 1980.
- Roble, R. G., T. L. Killeen, N. W. Spencer, R. A. Heelis, P. H. Reiff, and J. D. Winningham, Thermospheric dynamics during November 21-22, 1981: Dynamics Explorer measurements and thermospheric general circulation model predictions, *J. Geophys. Res.* 93, 209-225, 1988.
- Rush, C. M., Ionospheric radio propagation models and predictions—A mini-review, *IEEE Transactions on Antennas and Propagation AP-34*, 1163-1169, 1986.
- Rush, C. M., M. Pokempner, D. N. Anderson, F. G. Stewart, and J. Perry, Improving ionospheric maps using theoretically derived values of foF2, *Radio Science* 18, 95-107, 1983.
- Rush, C. M., M. Pokempner, D. N. Anderson, J. Perry, F. G. Stewart, and R. Reasoner, Maps of foF2 derived from observations and theoretical data, *Radio Science* 19, 1083-1097, 1984.
- Sawyer, D. M., and J. I. Vette, AP-8 trapped proton environment for solar maximum and solar minimum, *NSSDC/WDC-A-R&S Report 76-06*, Greenbelt, Maryland, 1976.
- Scarf, F. L., K. F. Jordan, C. T. Russell, Distribution of Whistler mode bursts on Venus, *J. Geophys. Res.*, 1988.
- Schunk, R. W., Mathematical structure of transport equations for multispecies flows, *Rev. Geophys.* 15, 427-445, 1977.
- Schunk, R. W., The terrestrial ionosphere, in *Solar-Terrestrial Physics*, R. L. Carovillano and J. M. Forbes (eds.), D. Reidel Publishing Company, Boston, 1983.
- Schunk, R. W., and J. C. G. Walker, The theory of charged particle temperatures in the upper atmosphere, in *High Temperature Physics and Chemistry*, C. A. Rouse (ed.), Pergamon Press, New York, 1973.
- Schunk, R. W., and A. F. Nagy, Electron temperatures in the F region of the ionosphere: Theory and observation, *Rev. Geophys.* 16, 355-399, 1978.
- Schunk, R. W., and A. F. Nagy, Ionospheres of the terrestrial planets, *Rev. Geophys.* 18, 813-852, 1980.
- Schunk, R. W., J. J. Sojka, and M. D. Bowline, Theoretical study of the electron temperature in the high-latitude ionosphere for solar maximum and winter conditions, *J. Geophys. Res.* 91, 12041-12054, 1986.
- Schunk, R. W., and J. J. Sojka, Ionospheric climate and weather modeling, *Eos Transactions, AGU* 69 (11), 153, March 15, 1988.
- Schunk, R. W., and E. P. Szuszczewicz, First principal and empirical modelling of the global-scale ionosphere, *Annales Geophysicae* 6, 19-30, 1988.
- Serafimov, K. B., M. K. Seragimova, Y. V. Ramanamurty, and K. Rawer, A note on the use of absorption measurements for improving the IRI electron density distribution in the lower ionosphere, *Adv. Space Res.* 5 (10), 99-102, 1985.
- Shawhan, S. D., and G. B. Murphy, *Plasma Diagnostics Package Assessment of the STS-3 Orbiter Environment and Systems for Science*, American Institute of Aeronautics and Astronautics, AIAA-83-0253, New York, 1983, and *J. Spacecraft Rockets* 21, 387, 1984.
- Shea, M. A., S. A. Militello, H. E. Coffey, and J. H. Allen, *Directory of Solar-Terrestrial Physics Monitoring Stations*, Air Force Geophysics Laboratory and World Data Center A for Solar-Terrestrial Physics, AFGL-TR-84-0237, Special Report No. 239, Hanscom AFB, Bedford, Massachusetts, 1984.
- Siscoe, G. L., Quantitative modeling of magnetosphere-ionosphere coupling processes—A

Chapter 6

- symposium review, *J. Geomag. Geoelectr.* 40, 367-386, 1988.
- Smilauer, J., and V. V. Afonin, An experimental and empirical model of electron temperature for altitudes of 500 to 1000 km and for a high solar activity period, *Adv. Space Res.* 5 (7), 69-72, 1985.
- Smith, D. H., The comparison of electron density profiles obtained from backscatter observations and ionogram analysis, *Radio Science* 5, 685-692, 1970.
- Sojka, J. J., C. E. Rasmussen, and R. W. Schunk, An interplanetary magnetic field dependent model of the ionospheric convection electric field, *J. Geophys. Res.* 91, 11281-11290, 1986.
- Sojka, J. J., and R. W. Schunk, A model study of how electric field structures affect the polar cap F region, *J. Geophys. Res.* 93, 884-896, 1988.
- Spennner, K., and K. Rawer, F-region temperatures by AEROS-A satellite compared with incoherent scatter data, *J. Atmos. Terr. Phys.* 40, 969, 1978.
- Spennner, K., and R. Plugge, Empirical model of global electron temperature distribution between 300 and 700 km based on data from AEROS-A, *J. Geophys.* 46, 43-56, 1979.
- Spennner, K., H. Wolf, K. Hirao, and P. Lämmenzahl, Intercomparison of F-region electron temperatures measured by the satellites AEROS-B and TAIYO, *J. Geomag. Geoelectr.* 31, 521-529, 1979.
- Spiro, R. W., P. F. Reiff, and L. J. Maher, Precipitating electron energy flux and auroral zone conductances: An empirical model, *J. Geophys. Res.* 87, 8215-8227, 1982.
- Strobel, D. F., The ionospheres of the major planets, *Rev. Geophys.* 17, 1913-1922, 1979.
- Subbaraya, B. H., S. Parkash, and S. P. Gupta, *Electron Densities in the Equatorial Lower Ionosphere From the Langmuir Probe Experiment Conducted at Thumba During the Years 1966-1978*, Scientific Report, ISRO-PRL-SR-15-83, Bangalore, India, 1983.
- Szuszczewicz, E. P., Theoretical and experimental aspects of ionospheric structure: A global perspective on dynamics and irregularities, *Radio Science* 21, 351-362, 1986.
- Tarcsai, G., P. Szemerédy, and L. Hegymegi, Average electron density profiles in the plasmasphere between $L = 1.4$ and 3.2 deduced from whistlers, *J. Atmos. Terr. Phys.* 50, 607-611, 1988.
- Tascione, T. F., H. W. Kroehl, R. Creiger, J. W. Freeman, R. A. Wolf, R. W. Spiro, R. V. Hilmer, J. W. Shade, and B. A. Hausman, New ionospheric and magnetospheric specification models, *Radio Science* 23, 211-222, 1988.
- Teague, M. J., N. J. Schofield, K. W. Chan, and J. I. Vette, *A Study of Inner Zone Electron Data and Their Comparison with Trapped Radiation Models*, National Space Science Data Center, NSSDC/WDC-A-R&S 79-06, Greenbelt, Maryland, 1979.
- Theis, R. F., L. H. Brace, R. C. Elphic, and H. G. Mayr, New empirical models of the electron temperature and density in the Venus ionosphere with application to transterminator flow, *J. Geophys. Res.* 89, 1477-1488, 1984.
- Titheridge, J. E., *Ionogram Analysis with the Generalized Program POLAN*, World Data Center A for Solar-Terrestrial Physics, UAG-93, Boulder, Colorado, 1985.
- Titheridge, J. E., Numerical errors in the real-height analysis of ionograms at high latitudes, *Radio Science* 22, 715-727, 1987.
- Tsyganenko, N. A., Global quantitative models of the geomagnetic field in the cislunar magnetosphere for different disturbance levels, *Planet. Space Sci.* 35, 1347-1358, 1987.
- Volland, H., A semi-empirical model of the large-scale magnetospheric electric fields, *J. Geophys. Res.* 78, 171-180, 1973.
- Volland, H., A model of the magnetospheric electric convection field, *J. Geophys. Res.* 83, 2695-2699, 1978.

Worldwide Ionospheric Data Base

- Wakai, N., and N. Matuura, Operation and experimental results of the Ionosphere Sounding Satellite-b, *Acta Astronautica* 7, 999-1020, 1980.
- Walker, A. D. M., R. A. Greenwald, and K. B. Baker, Determination of the fluctuation level of ionospheric irregularities from radar backscatter measurement, *Radio Science* 22, 689-705, 1987.
- Wallis, D. D., and E. E. Budzinski, Empirical models of height-integrated conductivities, *J. Geophys. Res.* 86, 125-137, 1981.
- Wescott, E. M., H. C. Stenback-Nielsen, T. Hallinan, H. Foepli, and A. Valenzuela, Star of Condor: A strontium critical velocity experiment, Peru, 1983, *J. Geophys Res.* 91, 9933-9938, 1986.
- Wescott, E. M., H. C. Stenback-Nielsen, T. Hallinan, H. Foepli, and A. Valenzuela, Star of Lima: Overview and optical diagnostics of a barium Alfvén critical velocity experiment, *J. Geophys. Res.* 91, 9923-9931, 1986.
- Whalen, J. A., A quantitative description of the spatial distribution and dynamics of the energy flux in the continuous aurora, *J. Geophys. Res.* 88, 7155-7169, 1983.
- Wright, J. W., and A. K. Paul, Electron density profiles from ionograms: Comparisons with rocket profiles, in: *Methods of Measurements and Results of Lower Ionosphere Structure*, K. Rawer (ed.), 39-50, Akademie-Verlag, Berlin, 1974.
- Young, E. R., D. G. Torr, P. Richards, and A. F. Nagy, A computer simulation of the midlatitude plasmasphere and ionosphere, *Planet. Space Sci.* 28, 881-893, 1980.

Chapter 7

General Introduction

1. Rishbeth, H., and O. K. Garriott, *Introduction to Ionospheric Physics*, Academic Press, New York, 1969.
2. Ratcliffe, J. A., *An Introduction to the Ionosphere and Magnetosphere*, Cambridge University Press, 1972.
3. Banks, P. M., and G. Kockarts, *Aeronomy*, parts A and B, Academic Press, New York, 1973.
4. Bauer, S., *Physics of Planetary Ionospheres*, Springer-Verlag, Berlin, 1973.
5. Atreya, S. K., *Atmospheres and Ionospheres of the Outer Planets and Their Satellites*, Springer-Verlag, Berlin, 1986.
6. Chamberlain, J. W., and D. M. Hunten, *Theory of Planetary Atmospheres: An Introduction to their Physics and Chemistry*, second edition, International Geophysics Series, Volume 35, Academic Press, New York, 1987.

Radio Wave Propagation

7. Davies, K., *Ionospheric Radio Propagation*, Dover Publications Inc., New York, 1966.

Bibliography

8. Aarons, J. (ed.), *Ionospheric Radio Wave Propagation*, Chapter 10, 1983 Revision, *Handbook of Geophysics and Space Environments*, Air Force Geophysics Laboratory, AFGL-TR-84-0141, Environmental Research Paper No. 879, Hanscom AFB, Massachusetts, 1984.
9. Budden, K. G., *The Propagation of Radio Waves*, Cambridge University Press, 1985.
10. Soicher, H. (ed.), *Propagation Effects on Military Systems in the High Latitude Region*, *NATO-AGARD Conference Proceedings*, No. 382, NTIS, Springfield, Virginia, 1985.
11. Flock, W. L., *Propagation Effects on Satellite Systems at Frequencies Below 10 GHz*, *A Handbook for Satellite Systems Design*, second edition, NASA Reference Publication 1108 (02), Washington, DC, 1987.
12. Goodman, J. M. (ed.), *Proceedings of Ionospheric Effects Symposium: Effect of the Ionosphere on Radiowave Systems*, 1981; *Effect of the Ionosphere on C³I Systems*, 1984; *The Effect of the Ionosphere on Communication, Navigation, and Surveillance Systems*, 1988; NTIS, Springfield, Virginia. Selected papers from the 1984 symposium may be found in the May/June 1985 issue of *Radio Science*.

Chapter 7

and selected papers from the 1987 symposium may be found in the May/June 1988 issue of *Radio Science*.

Solar-Terrestrial Physics

13. Akasofu, S. I., and S. Chapman, *Solar-Terrestrial Physics*, Clarendon Press, Oxford, 1972.
14. Donnelly, R. F. (ed.), *Solar-Terrestrial Predictions Proceedings*, Volume 1: *Predictions Group Reports*, Volume 2: *Working Group Reports and Reviews*, Volume 3: *Solar Activity Predictions*, Volume 4: *Prediction of Terrestrial Effects of Solar Activity*, U. S. Government Printing Office, Washington, DC, 1979. (Summary of results concerning ionospheric prediction by Davies, 1981.)
15. The Physical Basis of the Ionosphere in the Solar-Terrestrial System, *NATO-AGARD Conference Proceedings*, No. 295, 1980.
16. Carovillano, R. L., and J. M. Forbes (eds.), *Solar-Terrestrial Physics: Principles and Theoretical Foundations*, D. Reidel Publishing Company, Dordrecht, 1983.
17. Butler, D. M., and K. Papadopoulos (eds.), *Solar Terrestrial Physics: Present and Future*, NASA Reference Publication 1120, 1984.
18. Simon, P., A. G. Heckman, and M. A. Shea (eds.), *Solar-Terrestrial Predictions*, *Proceedings NOAA/AFGL*, Meudon, 1984.
19. Kamide, Y., and J. A. Slavin (eds.), *Solar Wind-Magnetosphere Coupling*, Terra Scientific Publishing Co., Tokyo, 1986.
20. Hultqvist, B., D. Rees, and U. von Zahn, (eds.), *Solar-Terrestrial Physics 1986*, *Proceedings of the SCOSTEP Sixth International Solar-Terrestrial Physics Symposium*, *Physica Scripta*, T18, Alden Press, Oxford, 1987.
21. Helliwell, R. A., *Whistlers and Related Ionosphere Phenomena*, Stanford University Press, 1965.
22. Gurevich, A. V., *Nonlinear Phenomena in the Ionosphere*, Springer-Verlag, Berlin, 1978.
23. Eather, R. H., *Majestic Lights: The Aurora in Science, History, and the Arts*, AGU, Washington, DC, 1980.
24. Hultqvist, B., and T. Hagfors (ed.), *High-Latitude Space Plasma Physics*, Plenum Press, New York, 1983.
25. Merrill, R. T., and M. S. McElhinny, *The Earth's Magnetic Field*, Academic Press, New York, 1983.
26. Potemra, T. A. (ed.), *Magnetospheric Currents*, AGU, Washington, DC, 1984.
27. Bittencourt, J. A., *Fundamentals of Plasma Physics*, Pergamon Press, New York, 1986.
28. Chang, T. (ed.), *Ion Acceleration in the Magnetosphere and Ionosphere*, AGU, Washington, DC, 1986.
29. Moore, T. E., and J. H. Waite (eds.), *Modeling Magnetospheric Plasma*, Geophysical Monograph Series, Volume 44, AGU, Washington, DC, 1988.
30. Volume 49/1: Akasofu, S-I., S. Chapman, and A. B. Meinel, *The Aurora*.
31. Volume 49/2: Rawer, K., and K. Suchy, *Radio Observations of the Ionosphere*, 1967.
32. Volume 49/3: *Morphology and Observations of the Earth's Magnetic Field* (8 contributions).
33. Volume 49/4: Poeverlein, H., *The Earth's Magnetosphere*; Hess, W. N., *The Earth's Radiation Belt*; Ginzburg, V. L., and A. A. Ruhadze, *Waves and Resonances in Magneto-Active Plasma*, 1972.
34. Volume 49/5: Vassy, A. T. (French, The Nightglow); Alpert, J. L., *Wave-like Phenome-*

Worldwide Ionospheric Data Base

na in the Near Earth Plasma and Interactions with Man-Made Bodies; Gringauz, K. I., and T. K. Breus, Some Characteristic Features of the Ionosphere of Near-Earth Planets, 1976.

35. Volume 49/6: Thomas, L. *The Neutral and Ion Chemistry of the Upper Atmosphere*; Yonezawa, T., *Diffusion in the High Atmosphere*; Stubbe, P., *Interaction of Neutral and Plasma Motions in the Ionosphere*, 1982.

36. Volume 49/7: Schmidtke, G., *Modelling of the Solar Extreme Ultraviolet Irradiance for Aeronomics Applications*; Suchy, K., *Transport Coefficients and Collision Frequencies for Aeronomics Plasmas*; Rawer, K., *Modeling of Neutral and Ionized Atmospheres*, 1984.

Reviews of Progress

37. Lanzerotti, L. J., and C. G. Park (eds.), *Upper Atmosphere Research in Antarctica, Ant-*

arctic Research Series, Volume 29, AGU, Washington, DC, 1978.

38. *U.S. National Report to the International Union of Geodesy and Geophysics* (IUGG). IUGG general assemblies are held every four years (last 1987); the report summarizes activities between assemblies. The parts interesting for ionospheric physics can be found in *Reviews of Geophysics* (last: Vol. 25, No. 3, 1987; previously: Vol. 21, No. 2, 1983).

39. *Review of Radio Science*. Summarizes progress in radio science between general assemblies of URSI (every 3 years; last: 1987). Published by URSI.

Appendix A Satellites, Experiments, and Data Sets

Appendix A provides information about

- All satellites which carried ionospheric experiments
 - All experiments flown on board these satellites (including non-ionospheric)
 - All data sets collected by these experiments that are available from NSSDC

Appendix A contains three sections:

- A.1 Alphabetic listing of satellite names together with the international identification number. This listing also includes alternate satellite names. The identification number helps to locate the specific satellite within the main listing (A.2).
 - A.2 Chronological listing of satellites, experiments, and data sets.
 - A.3 Discipline oriented listing of software packages available from NSSDC and NGDC.

Appendix A.1

Alphabetical

NSSDC ID International identification number XX-YYYZ-UUW

XX = Year when satellite was launched

YYY = 001 For first satellite launched

 = 002 For second satellite launched, and so on

Z = A, B, . . . Distinguishes satellites launched simultaneously by the same launch vehicle

UU = 01, 02, . . . Experiment number

W = A, B, . . . Data set letter

IONOSPHERIC PHYSICS LISTING BY SPACECRAFT NAME
SATELLITE NAME

1958 BETA 2	58-002B
1958 DELTA 2	58-004B
1959 DELTA 1	59-004A
1959 IOTA 1	59-009A
1960 ETA 1	60-007A
1960 XI 1	60-014A
1961 ALPHA EPSILON 1	61-029A
1961 ALPHA GAMMA 1	61-027A
1961 ALPHA KAPPA 1	61-034A
1961 ETA 1	61-007A
1961 OMICRON 1	61-015A
1961 SIGMA 1	61-018A
1962 ALPHA BETA 1	62-026A
1962 ALPHA CHI 1	62-046A
1962 ALPHA CHI 1/ERS 2	62-046A
1962 ALPHA ETA 1	62-031A
1962 ALPHA GAMMA 1	62-027A
1962 ALPHA KAPPA 1	62-034A
1962 BETA ALPHA 1	62-049A
1962 BETA KAPPA	62-058A
1962 BETA RHO 1	62-065A
1962 BETA TAU 2	62-067B
1962 CHI 1	62-022A
1962 LAMBDA 1	62-011A
1962 OMICRON 1	62-015A
1962 PHI 1	62-021A
1962 PI 1	62-016A
1964-045A	64-045A
1965-027E	65-027E
1F1	65-028A
625-A2	72-100A
A 27	64-047A
A 52	63-024A
ABLE 3	59-004A
AE 5	75-107A
AE-A	63-009A
AE-B	66-044A
AE-C	73-101A
AE-D	75-096A
AE-E	75-107A
AEROS	72-100A
AEROS 2	74-055A
AEROS-B	74-055A
AIMP 1	66-058A
ALOUETTE 1	62-049A
ALOUETTE 2	65-098A
ALOUETTE-A	62-049A
ALOUETTE-B	65-098A
ANCHORED IMP 1	66-058A
ARIABAT	75-033A
ARIEL 1	62-015A
ARIEL 3	67-042A
ARIEL 4	71-109A
ARSP 68 1	68-059A
ARYABHATA	75-033A
ASTRO-A	81-017A
ASTRONOMICAL SATELLITE-A	81-017A
ATCOS 2	67-120A
ATMOSPHERE EXPLORER-A	63-009A
ATMOSPHERE EXPLORER-B	66-044A
ATMOSPHERE EXPLORER-C	73-101A
ATMOSPHERE EXPLORER-D	75-096A
ATMOSPHERE EXPLORER-E	75-107A
ATS 1	66-110A
ATS 2	67-031A
ATS 3	67-111A
ATS 5	69-069A
ATS 6	74-039A
ATS-A	67-031A
ATS-B	66-110A
ATS-C	67-111A
ATS-E	69-069A
ATS-F	74-039A
AURORAE	68-084A
BE-B	64-064A
BE-C	65-032A
BOREALIS	69-083A
BOREAS	69-083A
COSMOS 184	67-102A
COSMOS 320	70-005A
COSMOS 378	70-097A
COSMOS 381	70-102A
COSMOS 900	77-023A
DAPP(73-054A)	73-054A
DAPP(75-043A)	75-043A
DE 1	81-070A
DE 2	81-070B
DE-A	81-070A
DE-B	81-070B
DENPA	72-064A
DG7-2	68-081A
DIAL/WIKA	70-017A
DIAMANT-B NO 1	70-017A
DISCOVERER 32	61-027A
DISCOVERER 34	61-029A
DISCOVERER 36	61-034A
DME-A	65-098B
DMSP 7529	73-054A
DMSP 10533	75-043A
DMSP 13536	77-044A
DMSP 15539	79-050A
DMSP 5B/F4	73-054A

IONOSPHERIC PHYSICS LISTING BY SPACECRAFT NAME
SATELLITE NAME

DMSP 5C/F2	75-043A
DMSP 5D-1/F2	77-044A
DMSP 5D-1/F4	79-050A
DMSP BLOCK 5B	73-054A
DMSP BLOCK 5C	75-043A
DMSP BLOCK 5D-1	77-044A
DMSP BLOCK 5D-1	79-050A
DMSP-F2	77-044A
DMSP-F4	79-050A
DMSP5D1	77-044A
DSAF(73-054A)	73-054A
DSAF(75-043A)	75-043A
DYNAMICS EXPLORER 1	81-070A
DYNAMICS EXPLORER 2	81-070B
DYNAMICS EXPLORER-A	81-070A
DYNAMICS EXPLORER-B	81-070B
EARLY BIRD	65-028A
EGO 5	68-014A
ELECTRON 1	64-006A
ELECTRON 2	64-006B
ENGINEERING TEST SAT. 3	82-087A
ENGINEERING TEST SAT.-1	75-082A
ENGINEERING TEST SAT.-2	77-014A
EDCO 1	64-054A
EDCO 3	66-049A
EDCO 5	68-014A
ESRO 1A	68-084A
ESRO 1B	69-083A
ESRO 4	72-092A
ETS	75-082A
ETS 1	75-082A
ETS 2	77-014A
ETS 3	82-087A
ETS 4	81-012A
EXOS A	78-014A
EXOS-B	78-087A
EXOS-C	84-015A
EXOSPHERIC SAT. A	78-014A
EXOSPHERIC SAT. C	84-015A
EXPLORER 6	59-004A
EXPLORER 7	59-009A
EXPLORER 8	60-014A
EXPLORER 17	63-009A
EXPLORER 20	64-051A
EXPLORER 22	64-064A
EXPLORER 25	64-076B
EXPLORER 27	65-032A
EXPLORER 31	65-098B
EXPLORER 32	66-044A
EXPLORER 33	66-058A
EXPLORER 38	68-055A
EXPLORER 40	68-066B
EXPLORER 49	73-039A
EXPLORER 51	73-101A
EXPLORER 54	75-096A
EXPLORER 55	75-107A
FR 1	65-101A
FRANCE-1	65-101A
GEMINI 10	66-056A
GEMINI 11	66-081A
GEMINI 12	66-104A
GEOPHYSICAL RESEARCH SAT	63-026A
GRS-A2	72-100A
HILAT	83-063A
HINOTORI	81-017A
I1F1	65-028A
IE-A	64-051A
IK BULGARIA 1300	81-075A
IK- 2	69-110A
IK- 3	70-057A
IK-14	75-115A
IMP-D	66-058A
INDIAN SCIENTIFIC SAT.	75-033A
INJUN 2B	62-067B
INJUN 3	62-067B
INJUN 4	64-076B
INJUN 5	68-066B
INJUN IE-C	68-066B
INJUN-C	68-066B
INTA SATELLITE	74-089C
INTASAT	74-089C
INTERCOSMOS 2	69-110A
INTERCOSMOS 3	70-057A
INTERCOSMOS 14	75-115A
INTERCOSMOS 19	79-020A
INTERCOSMOS BULGAR 1300	81-075A
IONO-IK	79-020A
IONOSONDE-IK	79-020A
IONOSP SOUNDING SAT 2	78-018A
ISIS 1	69-009A
ISIS 2	71-024A
ISIS-A	69-009A
ISIS-B	71-024A
ISIS-X	65-098A
ISIS-X	65-098B
ISS-2	78-018A
ISS-B	78-018A
JIKIKEN	78-087A
KIKU	75-082A
KIKU 2	77-014A
KIKU-4	82-087A

**IONOSPHERIC PHYSICS LISTING BY SPACECRAFT NAME
SATELLITE NAME NSSDC ID**

KOSMOS 184
KOSMOS 320
KYOKKO
LAMBDA 4S-5
LOFTI 1
MARINER 5
MARINER VENUS 67
MIDAS 3
MS-F2
MU-4S-3
MU-4S-4
NA I
NA II
NORA-ALICE 1
NORA-ALICE 2
OGO 1
OGO 2
OGO 3
OGO 4
OGO 5
OGO 6
OGO-A
OGO-B
OGO-C
OGO-D
OGO-E
OGO-F
OHSUMI
OHZORA
ORBIS 2
ORBIS CAL II
ORBIS LOW
OSS-1/STS-3
OV1-14
OV1-15
OV1-17
OV1-17A
OV1-18
OV1-20
OV2-5
OV3-1
OV3-2
OV3-6
OV4-3
OV5-9
OVAL
P78-1
P78-2
P83-1
PIioneer 6
PIioneer 7
PIioneer 8
PIioneer 9
PIioneer 11
PIioneer VENUS 1
PIioneer VENUS 1978
PIioneer VENUS 1978 ORBIT
PIioneer VENUS 2
PIioneer VENUS ORBITER
PIioneer-A
PIioneer-B
PIioneer-C
PIioneer-D
PIioneer-G
POGO 1
POGO 2
POGO 3
POLAR BEAR
PROCN0Z 4
R6B-3
RADIO ASTRONOMY EXPLORER
RADIO ASTRONOMY EXPLORER
RAE 1
RAE-A
RAE-B
REX
REXS
S 1A
S 6
S 6A
S 6C
S 6D
S 6E
S 27
S 27A
S 27B
S 30
S 30A
S 48
S 49
S 49A
S 50
S 50A
S 51
S 53
S 59
S 60
S 66B
S 66C
S3-1
S3-2
S3-3

**IONOSPHERIC PHYSICS LISTING BY SPACECRAFT NAME
SATELLITE NAME NSSDC ID**

S74-2
S81-1
SAN MARCO 1
SAN MARCO 2
SAN MARCO-A
SAN MARCO-B
SCATHA
SESP 70-2A
SESP P73-5
SESP P78-2A
SESP S73-6
SESP S74-2A
SHINSEI
SHUTTLE OFT-3
SOLWIND
SPACE TEST PROGRAM P78-1
SPACE TRANSPORT SYS-3
SPACE TRANSPORT SYS-9
SPACELAB 1
SPACELAB 1/STS 9
SPADES 1988-059A
SPUTNIK 3
SRATS
SS74-2A
STARAD
STARFISH
STP P78-1
STP P78-2
STP P83-1
STP S81-1
STS 3/DSS-1
STS 9/SPACELAB 1
SYNCOM 3
TAIYO
TIROS 7
TIROS-C
TOPSI
TRANSIT 2A
TRANSIT 3B
TRANSIT 4A
TRS 1
TRS 1(A)
UK 3
UK 4
UK-E
UK1
UME 2
UDSAT 2
VANGUARD 1
VANGUARD TV4
VENUS 67
VIKING
VIKING 1 ORBITER
VIKING 2 ORBITER
VIKING SWEDEN
VIKING-A ORBITER
VIKING-B ORBITER
VIKNG-A
VIKNG-B
WIKA

Appendix A.2

Chronological

Satellites:

COUNTRY	The country primarily responsible for the satellite
LAUNCH DATE	Month/Day/Year when satellite was launched
INOP DATE	Month/Day/Year when satellite became inoperable
PERIAPSIS	Perigee in kilometers at mission beginning
APOAPSIS	Apogee in kilometers at mission beginning
INCLINATION	Satellite orbit inclination in degrees

Experiments:

PI	Principal investigator for a specific experiment/investigation
AGENCY	Affiliation of PI

Data Sets:

QUANTITY	Number of tapes, microfiche, rolls of microfilm. QUANTITY = 0 indicates that the data set is held at a different institution but can be made available through NSSDC.
TIME SPAN	Time span covered by the data set (MMDDYY)
NSSDC ID	International identification number XX-YYYZ-UUW XX = Year when satellite was launched YYY = 001 For first satellite launched = 002 For second satellite launched and so on Z = A,B,... Distinguishes satellites launched simultaneously by the same launch vehicle UU = 01,02,... Experiment number W = A,B,... Data set letter

AIM FILE IONOSPHERIC PHYSICS LISTING

SATELLITE NAME	ALTERNATE NAMES	COUNTRY	LAUNCH DATE	INOP DATE	PERIAPSIS	APOAPSIS	INCLINATION	
INVESTIGATION NAME		PI	AGENCY	QUANTITY	TIME SPAN	NSSDC ID		
DATA SET NAME								

VANGUARD 1-----	1958 BETA 2-----	UNTST	03/17/58	---	650.--	4010.--	34.25----58-002B	
PREDICTED WORLD MAPS				21	031858	120963	58-002B-00A	
REFINED WORLD MAPS				1	020562	040262	58-002B-00B	
RADIO BEACON		UNKNOWN					58-002B-01	
SATELLITE DRAG ATMOSPHERIC DENSITY	JACCHIA						58-002B-02	
ATMOSPHERIC DENSITY VALUES FROM SATELLITE DRAG MEASUREMENTS				6	051758	101061	58-002B-02A	
SPUTNIK 3-----	1958 DELTA 2-----	USSRN	05/15/58	---	217.--	1864.--	65.18----58-004B	
FLUXGATE MAGNETOMETER		DOLGINOV					58-004B-01	
SCINTILLATOR DETECTOR ELECTRONS 10 KEV UP		KRASSOVSK					58-004B-02	
CR PROTONS, NAI SCINTILLATOR DETECTOR		VERNOV					58-004B-03	
MAGNETIC PRESSURE GAGE		UNKNOWN					58-004B-04	
IONIZATION PRESSURE GAGE		UNKNOWN					58-004B-05	
SPHERICAL ION TRAPS		GRINGAUZ					58-004B-06	
GEN. ELECT. FIELD METER		IKI					58-004B-07	
R. F. MASS SPECTROMETER		UNKNOWN					58-004B-08	
CR HEAVY NUCLEI		ISTOMINA					58-004B-09	
PRIMARY CR MONITOR		UNKNOWN					58-004B-10	
MICROMeteorite MICROPHONE		UNKNOWN					58-004B-11	
BEACON		NAZAROVA					58-004B-12	
TOTAL ELECTRON CONTENT DATA ON MICROFICHE				2	083058	122159	58-004B-12A	
EXPLORER 6-----	ABLE 3-----	UNTST	08/07/59	10/06/59	237.000--	41900.0--	47.0----59-004A	
MASTER ORBIT WORLD MAPS				1	080759	091159	59-004A-00C	
EPHEMERIS, POSITION, VELOCITY AND B MODEL ON MAGNETIC TAPE				1	080759	080959	59-004A-00D	
RAW MULTI-EXPT. DIGITAL TELEMETRY DATA LISTINGS AND EPHEMERIS DATA ON MICROFILM				3	080759	090459	59-004A-00E	
MICROFILM PLOTS OF GEOMAGNETIC LATITUDE VS RANGE				1	080759	100759	59-004A-00F	
POSITIONS IN MAGNETIC, GEOGRAPHIC, AND CARTESIAN COORDINATES ON MICROFILM				2	081759	101159	59-004A-00G	
PROPORTIONAL COUNTER TELESCOPE		SIMPSON					59-004A-01	
SINGLE AND TRIPLE COINCIDENCE COUNT RATES VS TIME ON MICROFILM				1	080759	100659	59-004A-01A	
TABLES OF TRIPLE COINCIDENCE COUNTS (TIME ORDERED) ON MICROFILM				1	080759	100259	59-004A-01B	
SCINTILLATION COUNTER		SONETT					59-004A-02	
PUBLISHED PLOTS OF REDUCED COUNT RATE VS TIME ON MICROFILM				1	080859	091059	59-004A-02A	
RAW MULTI-EXPT. DIGITAL TELEMETRY DATA LISTINGS AND EPHEMERIS DATA ON MICROFILM				3	080759	100259	59-004A-02B	
SANBORN OSCILLOGRAMS OF RAW TELEMETRY CHANNEL DATA ON MICROFILM				29	080859	100359	59-004A-02C	
SANBORN OSCILLOGRAMS OF RAW TELEMETRY CHANNEL DATA (FILTERED) ON MICROFILM				13	080859	092059	59-004A-02D	
L-ORDERED AND L-INTERPOLATED COUNT RATES VS TIME, ON MAGNETIC TAPE				1	080859	090459	59-004A-02F	
ION CHAMBER AND GM COUNTER		WINCKLER					59-004A-03	
LISTING OF COUNTS AND PULSES ON MICROFILM				2	080759	100659	59-004A-03A	
CALIBRATED DIGITAL GM TUBE AND ION CHAMBER COUNT RATE DATA ON MICROFILM				2	080759	100259	59-004A-03B	
PLOTS OF ELECTRON COUNT RATES AND ION PULSE RATES ON MICROFILM				2	080759	100659	59-004A-03C	
MERGED L-ORDERED COUNT RATES ON TAPE				1	080759	100659	59-004A-03D	
SEARCH-COIL MAGNETOMETER		SONETT					59-004A-04	
PLOTS OF REDUCED MAGNETIC FIELD DATA ON MICROFILM				1	080859	091059	59-004A-04A	
SANBORN OSCILLOGRAM PLOTS OF RAW TELEMETRY CHANNEL DATA ON MICROFILM				29	080859	100359	59-004A-04B	
SANBORN OSCILLOGRAM PLOTS OF RAW TELEMETRY DATA (FILTERED) ON MICROFILM				13	080859	092059	59-004A-04C	
RAW MULTI-EXPT. DIGITAL TELEMETRY DATA LISTINGS AND EPHEMERIS DATA ON MICROFILM				3	080759	100259	59-004A-04D	
TV OPTICAL SCANNER		BAKER					59-004A-05	
MICROMeteorite		DUBIN					59-004A-06	
VLF RECEIVER (15.5 KHZ)		HELLIWELL					59-004A-07	
FLUXGATE MAGNETOMETER		STANFORD U					59-004A-08	
BEACON (108 + 378 MHZ)		COLEMAN, JR.					59-004A-09	
		GRAVES					59-004A-09A	
EXPLORER 7-----	1959 IOTA 1-----	UNTST	10/13/59	8/24/61	573.--	1073.--	50.27----59-009A	
PREDICTED WORLD MAPS				2	091761	010862	59-009A-00A	
REFINED WORLD MAPS				8	101359	091761	59-009A-00B	
THERMAL RADIATION		SUOMI					59-009A-01	
SELECTED WHITE SENSOR TEMPERATURE (NIGHTTIME) VALUES ON TAPE				1	111559	052460	59-009A-01A	
TEMPERATURE VALUES FROM ALL SENSORS ON TAPE				2	101959	060460	59-009A-01B	
SOLAR X-RAY (2-8A) AND LYMAN-ALPHA (1030-1350A) RADIATION		FRIEDMAN					59-009A-02	
HEAVY PRIMARY COSMIC RAYS		POMERANTZ					59-009A-03	
COUNTING RATES OF HEAVY PRIMARY COSMIC RAYS ON MAGNETIC TAPE				U OF DELAWARE			59-009A-03A	
TRAPPED RADIATION AND SOLAR PROTONS		VAN ALLEN			1	101359	053160	59-009A-03A
COUNT RATE AND ORBITAL DATA ON MAGNETIC TAPE				U OF IOWA			59-009A-04	
MICROMeteorite		LAGOW			14	101359	022861	59-009A-04A
GROUND BASED IONOSPHERIC		SWENSON, JR.					59-009A-05	
				U OF ILLINOIS			59-009A-06	
TRANSIT 2A-----	1960 ETA 1-----	UNTST	06/22/60	---	628.--	1047.--	66.69----60-007A	
PREDICTED WORLD MAPS				1	040961	050461	60-007A-00A	
REFINED WORLD MAPS				2	011161	041161	60-007A-00B	
INFRARED SCANNER		UNKNOWN					60-007A-01	
COSMIC NOISE RECEIVER		UNKNOWN					60-007A-02	
TRANSIT 2A-IONOSPHERIC BEACON		UNKNOWN					60-007A-03	
PLOTS OF ELECTRON CONTENT (AND DOPPLER SHIFT OFFSET) VS TIME NEAR STANFORD				3	072360	101360	60-007A-03A	
EXPLORER 8-----	1960 XI 1-----	UNTST	11/03/60	---	417.--	2288.--	50.0----60-014A	
REFINED WORLD MAPS				2	110360	122560	60-014A-00B	
R F IMPEDANCE		KANE					60-014A-01	
ION TRAPS		BOURDEAU					60-014A-02	
LANGMUIR PROBE		BERG					60-014A-03	
MICROMeteorite PHOTOMULTIPLIER		BERG					60-014A-04	
MICROMeteorite MICROPHONE		MCCRACKEN					60-014A-05	
ELECTRIC FIELD METER		DONLEY					60-014A-06	
SATELLITE DRAG ATMOSPHERIC DENSITY	JACCHIA	SAO					60-014A-07	
SATELLITE DRAG ATMOSPHERIC DENSITY VALUES				4	110760	032070	60-014A-07A	
TRANSIT 3B-----	1961 ETA 1-----	UNTST	02/22/61	---	150.000--	847.000--	28,360----61-007A	
REFINED WORLD MAPS				3	022261	040261	61-007A-00B	
VLF RECEIVER (18 KHZ)		UNKNOWN					61-007A-01	
TRANSIT 4A-----	1961 OMICRON 1-----	UNTST	06/29/61	---	881.--	998.--	66.81----61-015A	
PREDICTED WORLD MAPS				2	123162	031963	61-015A-00A	
REFINED WORLD MAPS				18	090361	122462	61-015A-00B	

AIM FILE IONOSPHERIC PHYSICS LISTING

SATELLITE NAME INVESTIGATION NAME DATA SET NAME	ALTERNATE NAMES	COUNTRY	LAUNCH DATE	INOP DATE	PERIAPSIS PI	APOAPSIS	INCLINATION	AGENCY	QUANTITY	TIME SPAN	NSSDC ID
IONOSPHERIC BEACON	UNKNOWN	UNKNOWN						ATOMIC ENERGY COMM			61-015A-01
IONOSPHERIC TOTAL ELECT. CONTENT ON 35-MM FILM	UNKNOWN	APPLIED PHYSICS LAB									61-015A-02
TOTAL ELECTRON CONTENT AND SLAB THICKNESS NEAR BANGKOK DURING 1964											61-015A-03
											61-015A-03A
MIDAS 3-----1961 SIGMA 1-----UNTST-----07/12/61-----											61-018A
PLASMA SCINTILLATION COUNTER	IMHOF	LOCKHEED PALO ALTO									61-018A-01
COSMIC RAY MONITOR	SMART	USAF GEOPHYS LAB									61-018A-02
RETARDING POTENTIAL ANALYZER	HINTEREGGER	USAF GEOPHYS LAB									61-018A-03
SCANNING RADIOMETER	JURSA	USAF GEOPHYS LAB									61-018A-04
MICROMeteorite DETECTOR	DELLA LUCCA	USAF GEOPHYS LAB									61-018A-05
DISCOVERER 32-----1961 ALPHA GAMMA 1-----UNTST-----10/13/61-----											61-027A
COSMIC RADIATIONS (EMULSIONS AND METALS)	FILZ	USAF GEOPHYS LAB									61-027A-01
ELECTRON AND ION DENSITY (PLASMA PROBES)	SAGALYN	USAF GEOPHYS LAB									61-027A-02
RAPID BEACON	UNKNOWN	UNKNOWN									61-027A-03
	UNKNOWN	UNKNOWN									61-027A-04
DISCOVERER 34-----1961 ALPHA EPSILON 1-----UNTST-----11/05/61-----											61-029A
COSMIC RADIATIONS (EMULSIONS AND METALS)	FILZ	USAF GEOPHYS LAB									61-029A-01
SPATIAL AND TEMPORAL ELECTRONS (DENSITY VARIATIONS)	ULWICK	USAF GEOPHYS LAB									61-029A-02
DISCOVERER 36-----1961 ALPHA KAPPA 1-----UNTST-----12/12/61-----											61-034A
COSMIC RADIATION (EMULSIONS AND METALS)	FILZ	USAF GEOPHYS LAB									61-034A-01
COSMIC RAY MONITOR (CRM-9A)	KATZ	USAF GEOPHYS LAB									61-034A-02
COSMIC RAY MONITOR (CRM-8A)	KATZ	USAF GEOPHYS LAB									61-034A-03
SPATIAL AND TEMPORAL ELECTRONS (DENSITY VARIATIONS)	ULWICK	USAF GEOPHYS LAB									61-034A-04
1962 LAMBDA 1-----00276-----UNTST-----04/18/62-----5/25/62-----											62-011A
COSMIC RADIATION (NUCLEAR EMULSIONS)	FILZ	USAF GEOPHYS LAB									62-011A-01
NEUTRON ALBEDO MEASUREMENTS	LOCKWOOD	U OF NEW HAMPSHIRE									62-011A-02
SPATIAL AND TEMPORAL ELECTRON DENSITY VARIATIONS	ULWICK	USAF GEOPHYS LAB									62-011A-03
SCANNING RADIOMETER	JURSA	USAF GEOPHYS LAB									62-011A-04
RETARDING POTENTIAL ANALYZER	KNUDSEN	LOCKHEED PALO ALTO									62-011A-05
ARIEL 1-----UK1-----UNTST-----04/26/62-----11/09/64-----											62-015A
PREDICTED WORLD MAPS											62-015A-00A
REFINED WORLD MAPS											62-015A-00B
RADIO FREQUENCY CAPACITANCE PROBE	SAYERS	U OF BIRMINGHAM									62-015A-01
ELECTRON DENSITY DATA ON TAPE											62-015A-01A
ANALYZED ELECTRON DENSITY DATA ON MICROFILM											62-015A-01B
ELECTRON TEMPERATURE GAUGE	BOYD	U COLLEGE LONDON									62-015A-02
COSMIC-RAY DETECTOR	ELLIOT	IMPERIAL COLLEGE									62-015A-03
REDUCED COUNT RATE AND ORBITAL DATA ON MAGNETIC TAPE											62-015A-04
ION MASS SPHERE	BOYD	U COLLEGE LONDON									62-015A-04
LYMAN ALPHA GAUGE	BOWLES	U COLLEGE LONDON									62-015A-05
X-RAY	BOYD	U COLLEGE LONDON									62-015A-06
1962 PI 1-----00286-----UNTST-----04/26/62-----4/28/62-----											62-016A
COSMIC RAY EMULSION	FILZ	USAF GEOPHYS LAB									62-016A-01
NEUTRON ALBEDO	LOCKWOOD	DOC-CRC									62-016A-02
RETARDING POTENTIAL ANALYZER	HINTEREGGER	USAF GEOPHYS LAB									62-016A-03
ELECTRON DENSITY	ULWICK	USAF GEOPHYS LAB									62-016A-04
SCANNING RADIOMETER	JURSA	USAF GEOPHYS LAB									62-016A-05
1962 PHI 1-----00302-----UNTST-----05/30/62-----											62-021A
COSMIC RADIATION (NUCLEAR EMULSIONS AND METALS)	FILZ	USAF GEOPHYS LAB									62-021A-01
RETARDING POTENTIAL ANALYZER	HINTEREGGER	USAF GEOPHYS LAB									62-021A-02
ION AND ELECTRON MEASUREMENTS	SAGALYN	USAF GEOPHYS LAB									62-021A-03
BETA-GAMMA MEASUREMENTS	PFISTER	USAF GEOPHYS LAB									62-021A-04
ELECTRON DENSITY (IMPEDANCE PROBE)	ULWICK	USAF GEOPHYS LAB									62-021A-05
1962 CHI 1-----00304-----UNTST-----06/02/62-----											62-022A
RETARDING POTENTIAL ANALYZER	HINTEREGGER	USAF GEOPHYS LAB									62-022A-01
IMPEDANCE PROBE	ULWICK	USAF GEOPHYS LAB									62-022A-02
ION AND ELECTRON MEASUREMENTS	SAGALYN	USAF GEOPHYS LAB									62-022A-03
COSMIC RAY STUDIES (EMULSIONS AND METALS)	SAGALYN	USAF GEOPHYS LAB									62-022A-04
BETA-GAMMA MEASUREMENTS	UNKNOWN	USAF GEOPHYS LAB									62-022A-05
1962 ALPHA BETA 1-----00315-----UNTST-----06/23/62-----											62-026A
IMPEDANCE PROBE MEASUREMENTS	ULWICK	USAF GEOPHYS LAB									62-026A-01
ION AND ELECTRON MEASUREMENTS	SAGALYN	USAF GEOPHYS LAB									62-026A-02
BETA-GAMMA MEASUREMENTS	PFISTER	USAF GEOPHYS LAB									62-026A-03
INFRARED MEASUREMENTS OF AGENA PLUME	UNKNOWN	UNKNOWN									62-026A-04
RADIO NOISE	HUGENIN	HARVARD COLLEGE OBS									62-026A-05
1962 ALPHA GAMMA 1-----00316-----UNTST-----06/28/62-----											62-027A
COSMIC RADIATION (NUCLEAR EMULSIONS)	FILZ	USAF GEOPHYS LAB									62-027A-01
SATELLITE MAGNETIC MEASUREMENTS	SHUMAN	USAF GEOPHYS LAB									62-027A-02
ION AND ELECTRON MEASUREMENTS	SAGALYN	USAF GEOPHYS LAB									62-027A-03
BETA GAMMA MEASUREMENTS	PFISTER	USAF GEOPHYS LAB									62-027A-04
MICROMeteorite DETECTOR	SOBERMAN	GENERAL ELECTRIC CO									62-027A-05
ELECTRON DENSITY (IMPEDANCE PROBE)	ULWICK	USAF GEOPHYS LAB									62-027A-06
1962 ALPHA ETA 1-----00344-----UNTST-----07/21/62-----											62-031A
Spherical ION TRAP	SAGALYN	USAF GEOPHYS LAB									62-031A-01
COSMIC RAY MONITOR	KATZ	USAF GEOPHYS LAB									62-031A-02
GALACTIC RADIO NOISE	HUGENIN	HARVARD COLLEGE OBS									62-031A-03
COSMIC RAY EMULSION	FILZ	USAF GEOPHYS LAB									62-031A-04
1962 ALPHA KAPPA 1-----00360-----UNTST-----08/02/62-----											62-034A
ELECTRON DENSITY (IMPEDANCE PROBE)	ULWICK	USAF GEOPHYS LAB									62-034A-01
ION AND ELECTRON MEASUREMENTS	SAGALYN	USAF GEOPHYS LAB									62-034A-02

ORIGINAL PAGE IS
OF POOR QUALITY

AIM FILE IONOSPHERIC PHYSICS LISTING

SATELLITE NAME INVESTIGATION NAME DATA SET NAME	ALTERNATE NAMES	COUNTRY	LAUNCH DATE	INOP DATE	PERIAPSIS	APOAPSIS	INCLINATION	AGENCY	QUANTITY	TIME SPAN	NSSDC ID
BETA-GAMMA SPECTROMETRIC MEASUREMENTS MICROMeteorite DETECTOR SATellite MAGNETIC MEASUREMENTS COSMIC RADIATION (NUCLEAR EMULSIONS)	PFISTER SOBERMAN SHUMAN FILZ	USAF GEOPHYS LAB GENERAL ELECTRIC CO USAF GEOPHYS LAB USAF GEOPHYS LAB						62-034A-03 62-034A-04 62-034A-05 62-034A-06			
1962 ALPHA CHI 1/ERS 2-----TRS 1-----	UNST-----09/17/62-----				--	--	--	62-046A			
PREDICTED WORLD MAPS COSMIC RAY EMULSION LANGMUIR PROBE EARTH IR BACKGROUND NEUTRON ALBEDO SOLAR CELL DAMAGE	FILZ ULWICK UNKNOWN KATZ DENNEY	USAF GEOPHYS LAB USAF GEOPHYS LAB UNKNOWN USAF GEOPHYS LAB TRW SYSTEMS GROUP			1 091862 092262			62-046A-00A 62-046A-01 62-046A-02 62-046A-03 62-046A-04 62-046A-05			
ALOUETTE 1-----1962 BETA ALPHA 1-----	UNST-----09/29/62-----	996.--	1032.--	80.5	---	62-049A					
PREDICTED WORLD MAPS GSFC REFINED WORLD MAPS ON MICROFILM GSFC EXTENDED WORLD MAPS ON MICROFILM TIME CHARTS OF ALOUETTE 1 OPERATIONS ON MAGNETIC TAPE (DRTE DATA) EXTENDED WORLD MAPS ON MAGNETIC TAPE TIME CHARTS OF ALOUETTE 1 OPERATIONS ON MICROFICHE (DRTE DATA) CRC INDEX OF EXPERIMENT "DATA AVAILABLE" ON TAPE CRPL EXTENDED WORLD MAPS ON MICROFILM CRC PUBLISHED INDEX OF EXPERIMENT "DATA AVAILABLE" ON MICROFICHE GSFC ORBIT ELEMENTS AT ABOUT 2 WEEK INTERVALS ON MAGNETIC TAPE		1 122971 032872 27 092962 062071 71 070164 022872 2 092962 121666 67 120367 022872 39 092962 123165 2 010166 123167 17 092962 063064 5 010166 123168 1 100762 021372						62-049A-00A 62-049A-00B 62-049A-00C 62-049A-00D 62-049A-00E 62-049A-00F 62-049A-00G 62-049A-00H 62-049A-00I 62-049A-00J			
SWEEP-FREQUENCY SOUNDER	WHITTEKER	DOC-CRC	5067	092962 113070				62-049A-01A			
SWEEP-FREQUENCY IONGRAMS ON MICROFILM ALOUETTE SYNOPTIC (ALOSYN) SCALED DATA ON MICROFILM ALOUETTE SYNOPTIC (ALOSYN) SCALED DATA ON TAPE RRS ELECTRON DENSITY VALUES AT 10-KM INTERVALS ON MICROFICHE DRTE ELECTRON DENSITY VALUES AT LAMINA BOUNDARIES ON MICROFICHE NASA-ARC ELECTRON DENSITY AND SCALE HEIGHT SUMMARIES NASA-ARC ELECTRON DENSITY VALUES AT 50-KM INTERVALS ON MICROFICHE ALOUETTE SYNOPTIC (ALOSYN) SCALED DATA ON MICROFICHE CRC ELECTRON DENSITY VALUES AT 50-KM INTERVALS ON MICROFICHE IONOGRAM INVENTORY ON TAPE UCLA INTERPOLATED ELECTRON DENSITY PROFILES AT 25-KM INTERVALS ON TAPE INDEX OF IONograms SHOWING DUCTED ECHOES ON MAGNETIC TAPE RSRS ELECTRON DENSITY (AND SCALE HEIGHT) PLOTS AND LISTINGS WITH PASS SUMMARY PLOTS IONOSonde RECEIVER SIGNAL AMPLITUDE VERSUS TIME PLOTS CRC ELECTRON DENSITY VS HEIGHT AT SCALED POINTS ONLY, ON MAGNETIC TAPE CRC N(H) DATA GIVING DENSITY AT END OF LAMINATIONS AND HEIGHT COEFFICIENTS, TAPE		9 092962 083164 6 092962 063067 9 112662 073163 73 093062 072868 1 103162 012764 71 110162 012864 311 092962 123168 47 093062 072868 6 092962 113070 2 093062 050264 1 120162 123168 7 100362 090466 51 012163 062764 2 092962 033066 1 111962 110671					62-049A-01B 62-049A-01C 62-049A-01E 62-049A-01F 62-049A-01I 62-049A-01J 62-049A-01K 62-049A-01L 62-049A-01O 62-049A-01P 62-049A-01Q 62-049A-01R 62-049A-01S 62-049A-01T 62-049A-01U				
ENERGETIC PARTICLES DETECTORS	MCDIARMID	NATL RES COUNC OF CAN						62-049A-02			
TEN-SEC AVERAGED COUNT RATES ON TAPE FOR E GT 40 KEV, P GT 500 KEV	KATZ	DOC-CRC	2 092962 032664					62-049A-02A			
VLF RECEIVER	ULWICK							62-049A-03			
COSMIC RADIO NOISE	IMHOFF	DOC-CRC						62-049A-04			
COSMIC RADIO NOISE - AGC LEVELS PLOTTED ON 35-MM MICROFILM, MERGED WITH IONograms	LOVETTE	DOC-CRC	5067	092962 113070				62-049A-04A			
STARAD-----1962 BETA KAPPA-----	UNST-----10/26/62-----							62-058A			
TRAPPED PARTICLE MEASUREMENTS	KATZ	USAF GEOPHYS LAB						62-058A-01			
ELECTRON DENSITY (IMPEDANCE PROBE)	ULWICK	USAF GEOPHYS LAB						62-058A-02			
CHARGED PARTICLE DETECTOR	IMHOFF	LOCKHEED PALO ALTO						62-058A-03			
ELECTRON MAGNETIC SPECTROMETER	UNKNOWN	UNKNOWN						62-058A-04			
1962 BETA RHO 1-----00481-----	UNST-----11/24/62-----							62-065A			
ELECTRON DENSITY	ULWICK	USAF GEOPHYS LAB						62-065A-01			
EARTH IR BACKGROUND	LOVETTE	USAF GEOPHYS LAB						62-065A-02			
INJUN 3-----1962 BETA TAU 2-----	UNST-----12/13/62-----		235.--	2785.--	70.38	62-067B					
PREDICTED WORLD MAPS	O'BRIEN	DEPT OF ENVIRON PROT	1 110463 120363	5 121362 110363		62-067B-00A					
REFINED WORLD MAPS			1 122062 101363	5 121462 102863		62-067B-00B					
GEIGER TUBE DETECTORS			1 121462 102863	5 121462 051563		62-067B-01					
TABULATION OF 2- TO 12-A SOLAR SOFT X-RAY DATA			1 010163 102063	5 121462 102563		62-067B-01A					
MASTER FILE ON MAGNETIC TAPE, GM COUNTS			5 121462 102863	5 121462 102863		62-067B-01B					
GM COUNTER PARTICLE FLUX PLOTS ON MICROFILM			1 010163 051563	1 122562 102563		62-067B-01C					
PULSE SCINTILLATOR	O'BRIEN	DEPT OF ENVIRON PROT	5 121462 102863	5 121462 102863		62-067B-02					
MASTER FILE ON MAGNETIC TAPE, PULSE SCINTILLATOR COUNTS	O'BRIEN	DEPT OF ENVIRON PROT	5 121462 102863	5 121462 102863		62-067B-02A					
MAGNETIC DIFFERENTIAL ELECTRON SPECTROMETER	O'BRIEN	DEPT OF ENVIRON PROT	5 121462 102863	5 121462 102863		62-067B-03					
MASTER FILE ON MAGNETIC TAPE, ELECTRON SPECTROMETER COUNTS	O'BRIEN	DEPT OF ENVIRON PROT	5 121462 102863	5 121462 051563		62-067B-03A					
MAGNETIC DIFFERENTIAL ELECTRON SPECTROMETER FLUX PLOTS ON MICROFILM	O'BRIEN	DEPT OF ENVIRON PROT	5 121462 102863	1 122562 051563		62-067B-03B					
INTEGRAL MAGNETIC ELECTRON SPECTROMETER	O'BRIEN	DEPT OF ENVIRON PROT	5 121462 102863	5 121462 102863		62-067B-04					
MASTER FILE ON MAGNETIC TAPE, GM COUNTS (STARFISH)	O'BRIEN	DEPT OF ENVIRON PROT	5 121462 102863	5 121462 102863		62-067B-04A					
DC SCINTILLATOR	O'BRIEN	DEPT OF ENVIRON PROT	5 121462 102863	5 121462 102863		62-067B-05					
MASTER FILE ON MAGNETIC TAPE, DC SCINTILLATOR COUNTS	O'BRIEN	DEPT OF ENVIRON PROT	5 121462 102863	5 121462 103163		62-067B-05A					
ELECTRON MULTIPLIER	O'BRIEN	DEPT OF ENVIRON PROT	5 121462 102863	5 121462 102563		62-067B-06					
MASTER FILE ON MAGNETIC TAPE, ELECTRON MULTIPLIER COUNTS	O'BRIEN	DEPT OF ENVIRON PROT	5 121462 102863	5 121462 102563		62-067B-07					
PROTON SPECTROMETER	O'BRIEN	DEPT OF ENVIRON PROT	5 121462 102863	5 121462 103163		62-067B-07A					
MASTER FILE ON MAGNETIC TAPE, P-N COUNTS	O'BRIEN	DEPT OF ENVIRON PROT	5 121462 102863	5 121462 102863		62-067B-08					
AURORAL AND AIRGLOW PHOTOMETERS	O'BRIEN	U OF IOWA	5 121462 102863	5 122562 102563		62-067B-08A					
MASTER FILE ON MAGNETIC TAPE, PHOTOMETER COUNTS	O'BRIEN	U OF IOWA	2468 121362 112063	5 122562 102563		62-067B-09					
VLF ELECTROMAGNETIC RADIATION	GURNETT	U OF IOWA	2468 121362 112063	2468 121362 112063		62-067B-09A					
MASTER FILE ON MAGNETIC TAPE, NARROW-BAND DATA	GURNETT	SAO	3 121562 041567	3 121562 041567		62-067B-09B					
VLF AURAL RECORDINGS (0.5-7.0 KHZ) ON ANALOG TAPE	GURNETT	SAO	3 121562 041567	3 121562 041567		62-067B-12					
VLF WIND BAND RECEIVER (0-10KHZ)	JACCHIA	SAO	3 121562 041567	3 121562 041567		62-067B-13					
SATELLITE DRAG ATMOSPHERIC DENSITY											
SATELLITE DRAG-ATMOSPHERIC DENSITY VALUES											
AE-A-----EXPLORER 17-----	UNST-----04/03/63-----	295.--	916.--	57.6	62-009A						
PREDICTED WORLD MAPS	REBER	NASA-GSFC	1 071563 081363	2 040363 072163		63-009A-00A					
REFINED WORLD MAPS	BRACE	NASA-GSFC	2 040363 060163	1 040463 071063		63-009A-00B					
MASS SPECTROMETER	NEWTON	NASA HEADQUARTERS				63-009A-01					
ATMOSPHERIC COMPOSITION DENSITY DATA IN TABULAR FORM ON MICROFICHE						63-009A-01A					
LANGMUIR PROBES						63-009A-02					
TABLES OF ELECTRON TEMPERATURES AND ION DENSITIES ON MICROFILM						63-009A-02A					
PRESSURE GAUGE						63-009A-03					

AIM FILE IONOSPHERIC PHYSICS LISTING

SATELLITE NAME INVESTIGATION NAME DATA SET NAME	ALTERNATE NAMES	COUNTRY	LAUNCH DATE	INOP DATE	PERIAPSIS	APOAPSIS	INCLINATION	PI	AGENCY	QUANTITY	TIME SPAN	NSSDC ID
NEUTRAL DENSITY DATA IN TABULAR FORM ON MICROFICHE												
TIROS 7-----A 52-----	PREDICTED WORLD MAPS TIROS VII ATTITUDE SUMMARY LOW-RESOLUTION OMNIDIRECTIONAL RADIOMETER SCANNING RADIOMETER FINAL METEOROLOGICAL RADIATION TAPES (FMRT) RADIATION DATA CATALOG AND USERS' MANUAL ON MICROFICHE LANGMUIR PROBE TABLE OF ELECTRON DENSITIES ON MICROFILM TELEVISION CAMERA SYSTEM	SUOMI BARKSDALE BRACE NESDIS STAFF	U OF WISCONSIN NASA-GSFC NASA-GSFC NOAA-NESDIS	06/19/63-----2/03/67-----	621-- 27 10 9 692 14 1	649-- 061963 122667 061963 082865 061963 082963 061963 061965 061963 061965 061963 070963	58.23-----63-024A 63-024A-000 63-024A-01 63-024A-01A 63-024A-02 63-024A-02B 63-024A-03 63-024A-03A 63-024A-04	1	040363 060863	63-009A-03A		
GEOPHYSICAL RESEARCH SAT----00612-----	PREDICTED WORLD MAPS AEROSPACE COMPOSITION RETARDING POTENTIAL ANALYZER PERSONAL HAZARDS ASSOC. WITH SPACE RADIATION	NARCISI HINTEREGGER UNKNOWN	USAF GEOPHYS LAB USAF GEOPHYS LAB UNKNOWN	06/28/63-----	----	-- 2	062863 090863	----	----	63-026A 63-026A-00A 63-026A-01 63-026A-02 63-026A-03		
ELECTRON 1-----00746-----	SOFT PARTICLE COUNTER LOW-ENERGY (1 TO 30 MEV) PROTON DETECTOR RADIO BEACON MICROMETEORITE DETECTOR MASS SPECTROMETER (1-34 AMU) SOLAR CELL TECHNOLOGY	SOSNOVETS	INST NUCLEAR PHYSICS	USSRN---01/30/64-----	----	-- -	----	----	64-006A 64-006A-01 64-006A-02 64-006A-03 64-006A-04 64-006A-05 64-006A-06			
ELECTRON 2-----00748-----	FLUXGATE MAGNETOMETER LOW-ENERGY (1 TO 30 MEV) PROTON DETECTOR ELECTROSTATIC SPHERICAL ANALYZER SOLAR X-RAY COUNTER (2-18A) MASS SPECTROMETER (1-34AMU) SOLAR CELL TECHNOLOGY COSMIC RAY COMPOSITION + FLUX RADIO NOISE, 725 + 1525 KHZ SPHERICAL ANALYZER	DOLGINOV SOSNOVETS	IZMIRAN INST NUCLEAR PHYSICS	USSRN---01/30/64-----	----	-- -	----	----	64-006B 64-006B-01 64-006B-02 64-006B-03 64-006B-04 64-006B-05 64-006B-06 64-006B-07 64-006B-08 64-006B-09			
1964-045A-----00850-----	FARADAY CUP	UNKNOWN	UNKNOWN	UNTST---08/14/64-----	----	-- -	----	----	64-045A 64-045A-01			
SYNCOM 3-----A 27-----	PREDICTED WORLD MAPS FARADAY ROTATION TOTAL ELECTRON CONTENT, PLOTS AND TABULATIONS	DAROSA	STANFORD U	UNTST---08/19/64-----	----	-- 12 2	082064 010675 092064 071666	----	64-047A 64-047A-00A 64-047A-01 64-047A-01B			
IE-A-----EXPLORER 20-----	PREDICTED WORLD MAPS GSFC REFINED WORLD MAPS ON MICROFILM MASTER ORBIT WORLD MAPS FIXED-FREQUENCY IONOSonde TIME-ORDERED FIXED-FREQUENCY IONOGRAMS ON MICROFILM SINGAPORE AND WINKFIELD TIME-ORDERED, FIXED-FREQUENCY IONOGRAMS ON MICROFILM IONOGRAM INVENTORY ON TAPE SPHERICAL ION-MASS SPECTROMETER COSMIC NOISE	KNECHT BOYD STONE	NATL BUREAU OF STD U COLLEGE LONDON NASA-GSFC	UNTST---08/25/64-----12/29/65-----	864-- 2 9 1 1017 110 1 1025-- 2 010466 040566 082564 010866 072466 080766 082564 122965 082764 122265 082564 122265 1025-- 79.9-----64-051A 64-051A-00A 64-051A-00B 64-051A-00C 64-051A-01 64-051A-01A 64-051A-01C 64-051A-01D 64-051A-02 64-051A-02C 64-051A-03 64-051A-04 64-051A-05 64-051A-06 64-051A-07 64-051A-08 64-051A-09 64-051A-09A 64-051A-09B 64-051A-09C 64-051A-09D 64-051A-09E 64-051A-09F 64-051A-09G 64-051A-09H 64-051A-09I 64-051A-09J 64-051A-09K 64-051A-09L 64-051A-09M 64-051A-09N 64-051A-09O 64-051A-09P 64-051A-09Q 64-051A-09R 64-051A-09S 64-051A-09T 64-051A-09U 64-051A-09V 64-051A-09W 64-051A-09X 64-051A-09Y 64-051A-09Z 64-051A-09AA 64-051A-09AB 64-051A-09AC 64-051A-09AD 64-051A-09AE 64-051A-09AF 64-051A-09AG 64-051A-09AH 64-051A-09AI 64-051A-09AJ 64-051A-09AK 64-051A-09AL 64-051A-09AM 64-051A-09AN 64-051A-09AO 64-051A-09AQ 64-051A-09AR 64-051A-09AS 64-051A-09AT 64-051A-09AU 64-051A-09AV 64-051A-09AW 64-051A-09AX 64-051A-09AY 64-051A-09AZ 64-051A-09BA 64-051A-09BB 64-051A-09BC 64-051A-09BD 64-051A-09BE 64-051A-09BF 64-051A-09BG 64-051A-09BH 64-051A-09BI 64-051A-09BJ 64-051A-09BK 64-051A-09BL 64-051A-09BM 64-051A-09BN 64-051A-09BO 64-051A-09BP 64-051A-09BQ 64-051A-09BR 64-051A-09BS 64-051A-09BT 64-051A-09BU 64-051A-09BV 64-051A-09BW 64-051A-09BX 64-051A-09BY 64-051A-09BZ 64-051A-09CA 64-051A-09CB 64-051A-09CC 64-051A-09CD 64-051A-09CE 64-051A-09CF 64-051A-09CG 64-051A-09CH 64-051A-09CI 64-051A-09CJ 64-051A-09CK 64-051A-09CL 64-051A-09CM 64-051A-09CN 64-051A-09CO 64-051A-09CP 64-051A-09CQ 64-051A-09CR 64-051A-09CS 64-051A-09CT 64-051A-09CU 64-051A-09CV 64-051A-09CW 64-051A-09CX 64-051A-09CY 64-051A-09CZ 64-051A-09DA 64-051A-09DB 64-051A-09DC 64-051A-09DD 64-051A-09DE 64-051A-09DF 64-051A-09DG 64-051A-09DH 64-051A-09DI 64-051A-09DJ 64-051A-09DK 64-051A-09DL 64-051A-09DM 64-051A-09DN 64-051A-09DO 64-051A-09DP 64-051A-09DQ 64-051A-09DR 64-051A-09DS 64-051A-09DT 64-051A-09DU 64-051A-09DV 64-051A-09DW 64-051A-09DX 64-051A-09DY 64-051A-09DZ 64-051A-09FA 64-051A-09FB 64-051A-09FC 64-051A-09FD 64-051A-09FE 64-051A-09FF 64-051A-09FG 64-051A-09FH 64-051A-09FI 64-051A-09FJ 64-051A-09FK 64-051A-09FL 64-051A-09FM 64-051A-09FN 64-051A-09FO 64-051A-09FP 64-051A-09FQ 64-051A-09FR 64-051A-09FS 64-051A-09FT 64-051A-09FU 64-051A-09GV 64-051A-09HW 64-051A-09IV 64-051A-09JV 64-051A-09KV 64-051A-09LV 64-051A-09MV 64-051A-09NV 64-051A-09PV 64-051A-09QV 64-051A-09RV 64-051A-09SV 64-051A-09TV 64-051A-09UV 64-051A-09VV 64-051A-09WV 64-051A-09XV 64-051A-09YV 64-051A-09ZV 64-051A-09AA 64-051A-09AB 64-051A-09AC 64-051A-09AD 64-051A-09AE 64-051A-09AF 64-051A-09AG 64-051A-09AH 64-051A-09AI 64-051A-09AJ 64-051A-09AK 64-051A-09AL 64-051A-09AM 64-051A-09AN 64-051A-09AO 64-051A-09AP 64-051A-09AQ 64-051A-09AR 64-051A-09AS 64-051A-09AT 64-051A-09AU 64-051A-09AV 64-051A-09AW 64-051A-09AX 64-051A-09AY 64-051A-09AZ 64-051A-09BA 64-051A-09BB 64-051A-09BC 64-051A-09BD 64-051A-09BE 64-051A-09BF 64-051A-09BG 64-051A-09BH 64-051A-09BI 64-051A-09BJ 64-051A-09BK 64-051A-09BL 64-051A-09BM 64-051A-09BN 64-051A-09BO 64-051A-09BP 64-051A-09CQ 64-051A-09CR 64-051A-09CS 64-051A-09CT 64-051A-09CU 64-051A-09CV 64-051A-09CW 64-051A-09CX 64-051A-09CY 64-051A-09CZ 64-051A-09DA 64-051A-09DB 64-051A-09DC 64-051A-09DD 64-051A-09DE 64-051A-09DF 64-051A-09DG 64-051A-09DH 64-051A-09DI 64-051A-09DJ 64-051A-09DK 64-051A-09DL 64-051A-09DM 64-051A-09DN 64-051A-09DO 64-051A-09DP 64-051A-09DQ 64-051A-09DR 64-051A-09DS 64-051A-09DT 64-051A-09DU 64-051A-09DV 64-051A-09DW 64-051A-09DX 64-051A-09DY 64-051A-09DZ 64-051A-09FA 64-051A-09FB 64-051A-09FC 64-051A-09FD 64-051A-09FE 64-051A-09FF 64-051A-09FG 64-051A-09FH 64-051A-09FI 64-051A-09FJ 64-051A-09FK 64-051A-09FL 64-051A-09FM 64-051A-09FN 64-051A-09FO 64-051A-09FP 64-051A-09FQ 64-051A-09FR 64-051A-09FS 64-051A-09FT 64-051A-09FU 64-051A-09GV 64-051A-09HW 64-051A-09IV 64-051A-09JV 64-051A-09KV 64-051A-09LV 64-051A-09MV 64-051A-09NV 64-051A-09PV 64-051A-09QV 64-051A-09RV 64-051A-09SV 64-051A-09TV 64-051A-09UV 64-051A-09VV 64-051A-09WV 64-051A-09XV 64-051A-09YV 64-051A-09ZV 64-051A-09AA 64-051A-09AB 64-051A-09AC 64-051A-09AD 64-051A-09AE 64-051A-09AF 64-051A-09AG 64-051A-09AH 64-051A-09AI 64-051A-09AJ 64-051A-09AK 64-051A-09AL 64-051A-09AM 64-051A-09AN 64-051A-09AO 64-051A-09AP 64-051A-09AQ 64-051A-09AR 64-051A-09AS 64-051A-09AT 64-051A-09AU 64-051A-09AV 64-051A-09AW 64-051A-09AX 64-051A-09AY 64-051A-09AZ 64-051A-09BA 64-051A-09BB 64-051A-09BC 64-051A-09BD 64-051A-09BE 64-051A-09BF 64-051A-09BG 64-051A-09BH 64-051A-09BI 64-051A-09BJ 64-051A-09BK 64-051A-09BL 64-051A-09BM 64-051A-09BN 64-051A-09BO 64-051A-09BP 64-051A-09CQ 64-051A-09CR 64-051A-09CS 64-051A-09CT 64-051A-09CU 64-051A-09CV 64-051A-09CW 64-051A-09CX 64-051A-09CY 64-051A-09CZ 64-051A-09DA 64-051A-09DB 64-051A-09DC 64-051A-09DD 64-051A-09DE 64-051A-09DF 64-051A-09DG 64-051A-09DH 64-051A-09DI 64-051A-09DJ 64-051A-09DK 64-051A-09DL 64-051A-09DM 64-051A-09DN 64-051A-09DO 64-051A-09DP 64-051A-09DQ 64-051A-09DR 64-051A-09DS 64-051A-09DT 64-051A-09DU 64-051A-09DV 64-051A-09DW 64-051A-09DX 64-051A-09DY 64-051A-09DZ 64-051A-09FA 64-051A-09FB 64-051A-09FC 64-051A-09FD 64-051A-09FE 64-051A-09FF 64-051A-09FG 64-051A-09FH 64-051A-09FI 64-051A-09FJ 64-051A-09FK 64-051A-09FL 64-051A-09FM 64-051A-09FN 64-051A-09FO 64-051A-09FP 64-051A-09FQ 64-051A-09FR 64-051A-09FS 64-051A-09FT 64-051A-09FU 64-051A-09GV 64-051A-09HW 64-051A-09IV 64-051A-09JV 64-051A-09KV 64-051A-09LV 64-051A-09MV 64-051A-09NV 64-051A-09PV 64-051A-09QV 64-051A-09RV 64-051A-09SV 64-051A-09TV 64-051A-09UV 64-051A-09VV 64-051A-09WV 64-051A-09XV 64-051A-09YV 64-051A-09ZV 64-051A-09AA 64-051A-09AB 64-051A-09AC 64-051A-09AD 64-051A-09AE 64-051A-09AF 64-051A-09AG 64-051A-09AH 64-051A-09AI 64-051A-09AJ 64-051A-09AK 64-051A-09AL 64-051A-09AM 64-051A-09AN 64-051A-09AO 64-051A-09AP 64-051A-09AQ 64-051A-09AR 64-051A-09AS 64-051A-09AT 64-051A-09AU 64-051A-09AV 64-051A-09AW 64-051A-09AX 64-051A-09AY 64-051A-09AZ 64-051A-09BA 64-051A-09BB 64-051A-09BC 64-051A-09BD 64-051A-09BE 64-051A-09BF 64-051A-09BG 64-051A-09BH 64-051A-09BI 64-051A-09BJ 64-051A-09BK 64-051A-09BL 64-051A-09BM 64-051A-09BN 64-051A-09BO 64-051A-09BP 64-051A-09CQ 64-051A-09CR 64-051A-09CS 64-051A-09CT 64-051A-09CU 64-051A-09CV 64-051A-09CW 64-051A-09CX 64-051A-09CY 64-051A-09CZ 64-051A-09DA 64-051A-09DB 64-051A-09DC 64-051A-09DD 64-051A-09DE 64-051A-09DF 64-051A-09DG 64-051A-09DH 64-051A-09DI 64-051A-09DJ 64-051A-09DK 64-051A-09DL 64-051A-09DM 64-051A-09DN 64-051A-09DO 64-051A-09DP 64-051A-09DQ 64-051A-09DR 64-051A-09DS 64-051A-09DT 64-051A-09DU 64-051A-09DV 64-051A-09DW 64-051A-09DX 64-051A-09DY 64-051A-09DZ 64-051A-09FA 64-051A-09FB 64-051A-09FC 64-051A-09FD 64-051A-09FE 64-051A-09FF 64-051A-09FG 64-051A-09FH 64-051A-09FI 64-051A-09FJ 64-051A-09FK 64-051A-09FL 64-051A-09FM 64-051A-09FN 64-051A-09FO 64-051A-09FP 64-051A-09FQ 64-051A-09FR 64-051A-09FS 64-051A-09FT 64-051A-09FU 64-051A-09GV 64-051A-09HW 64-051A-09IV 64-051A-09JV 64-051A-09KV 64-051A-09LV 64-051A-09MV 64-051A-09NV 64-051A-09PV 64-051A-09QV 64-051A-09RV 64-051A-09SV 64-051A-09TV 64-051A-09UV 64-051A-09VV 64-051A-09WV 64-051A-09XV 64-051A-09YV 64-051A-09ZV 64-051A-09AA 64-051A-09AB 64-051A-09AC 64-051A-09AD 64-051A-09AE 64-051A-09AF 64-051A-09AG 64-051A-09AH 64-051A-09AI 64-051A-09AJ 64-051A-09AK 64-051A-09AL 64-051A-09AM 64-051A-09AN 64-051A-09AO 64-051A-09AP 64-051A-09AQ 64-051A-09AR 64-051A-09AS 64-051A-09AT 64-051A-09AU 64-051A-09AV 64-051A-09AW 64-051A-09AX 64-051A-09AY 64-051A-09AZ 64-051A-09BA 64-051A-09BB 64-051A-09BC 64-051A-09BD 64-051A-09BE 64-051A-09BF 64-051A-09BG 64-051A-09BH 64-051A-09BI 64-051A-09BJ 64-051A-09BK 64-051A-09BL 64-051A-09BM 64-051A-09BN 64-051A-09BO 64-051A-09BP 64-051A-09CQ 64-051A-09CR 64-051A-09CS 64-051A-09CT 64-051A-09CU 64-051A-09CV 64-051A-09CW 64-051A-09CX 64-051A-09CY 64-051A-09CZ 64-051A-09DA 64-051A-09DB 64-051A-09DC 64-051A-09DD 64-051A-09DE 64-051A-09DF 64-051A-09DG 64-051A-09DH 64-051A-09DI 64-051A-09DJ 64-051A-09DK 64-051A-09DL 64-051A-09DM 64-051A-09DN 64-051A-09DO 64-051A-09DP 64-051A-09DQ 64-051A-09DR 64-051A-09DS 64-051A-09DT 64-051A-09DU 64-051A-09DV 64-051A-09DW 64-051A-09DX 64-051A-09DY 64-051A-09DZ 64-051A-09FA 64-051A-09FB 64-051A-09FC 64-051A-09FD 64-051A-09FE 64-051A-09FF 64-051A-09FG 64-051A-09FH 64-051A-09FI 64-051A-09FJ 64-051A-09FK 64-051A-09FL 64-051A-09FM 64-051A-09FN 64-051A-09FO 64-051A-09FP 64-051A-09FQ 64-051A-09FR 64-051A-09FS 64-051A-09FT 64-051A-09FU 64-051A-09GV 64-051A-09HW 64-051A-09IV 64-051A-09JV 64-051A-09KV 64-051A-09LV 64-051A-09MV 64-051A-09NV 64-051A-09PV 64-051A-09QV 64-051A-09RV 64-051A-09SV 64-051A-09TV 64-051A-09UV 64-051A-09VV 64-051A-09WV 64-051A-09XV 64-051A-09YV 64-051A-09ZV 64-051A-09AA 64-051A-09AB 64-051A-09AC 64-051A-09AD 64-051A-09AE 64-051A-09AF 64-051A-09AG 64-051A-09AH 64-051A-09AI 64-051A-09AJ 64-051A-09AK 64-051A-09AL 64-051A-09AM 64-051A-09AN 64-051A-09AO 64-051A-09AP 64-051A-09AQ 64-051A-09AR 64-051A-09AS 64-051A-09AT 64-051A-09AU 64-051A-09AV 64-051A-09AW 64-051A-09AX 64-051A-09AY 64-051A-09AZ 64-051A-09BA 64-051A-09BB 64-051A-09BC 64-051A-09BD 64-051A-09BE 64-051A-09BF 64-051A-09BG 64-051A-09BH 64-051A-09BI 64-051A-09BJ 64-051A-09BK 64-051A-09BL 64-051A-09BM 64-051A-09BN 64-051A-09BO 64-051A-09BP 64-051A-09CQ 64-051A-09CR 64-051A-09CS 64-051A-09CT 64-051A-09CU 64-05							

AIM FILE IONOSPHERIC PHYSICS LISTING

SATELLITE NAME INVESTIGATION NAME DATA SET NAME	ALTERNATE NAMES	COUNTRY	LAUNCH DATE	INOP DATE	PERIAPSIS	APOAPSIS	INCLINATION	AGENCY	QUANTITY	TIME SPAN	NSSDC ID
COSMIC-RAY ISOTOPIC ABUNDANCE COSMIC-RAY SPECTRA AND FLUXES	MCDONALD SIMPSON	NASA-GSFC U OF CHICAGO						64-054A-17 64-054A-18			
REDUCED COUNT RATE DATA ON MAGNETIC TAPE SELECTED 1/2-HR AVERAGE DIGITAL AND ANALOG COUNT RATE PLOTS ON MICROFILM		35	090664	112567				64-054A-18A			
PULSE HEIGHT ANALYZER DATA ON MAGNETIC TAPE		1	090764	112567				64-054A-18B			
U OF CHICAGO COUNTING RATE TAPE LOG FOR		3	090466	112567				64-054A-18C			
U OF CHICAGO PULSE HEIGHT ANALYZER TAPE		1	090564	112567				64-054A-18D			
TRAPPED RADIATION AND HIGH-ENERGY PROTONS	VAN ALLEN	U OF IOWA						64-054A-18E			
IONIZATION CHAMBER	WINCKLER	U OF MINNESOTA						64-054A-19			
PLOTS OF 1-MIN AVERAGED PULSE RATES VS TIME ON MICROFILM ORIGINAL REDUCED PULSE RATES ON TAPE		1	091264	060567				64-054A-20A			
ATLAS OF 10- TO 50-KEV SOLAR FLARE X RAYS ON MICROFILM		17	090564	120667				64-054A-20B			
PLOTS OF 1-MIN AVERAGED PULSE RATES VS L ON MICROFILM		1	050265	052867				64-054A-20C			
TABULATIONS OF HOURLY AVERAGED PULSE RATES ON MICROFILM		1	090764	060467				64-054A-20D			
TABULATIONS OF 1-MIN AVERAGED PULSE RATES ON MICROFILM		1	090564	120667				64-054A-20E			
PLOTS OF 2-MIN AVERAGED PULSE RATES VS SPACECRAFT RADIAL DISTANCE ON MICROFILM		4	090564	120667				64-054A-20F			
PLOTS OF 2-MIN AVERAGED PULSE RATES VS TIME ON MICROFILM		1	091064	060567				64-054A-20G			
PLOTS OF 2-MIN AVERAGED PULSE RATES VS TIME ON MICROFILM		1	090764	060567				64-054A-20H			
PLOTS OF 1-MIN AVERAGED PULSE RATES VS TIME (NEAR PERIGEE) ON MICROFILM		1	091564	052766				64-054A-20I			
ION CHAMBER PULSE RATE TAPES (64-054A-20B) REFORMATTED AS A STANDARD TAPE DATA SET		7	090564	120667				64-054A-20K			
ELECTRON SPECTROMETER	WINCKLER	U OF MINNESOTA						64-054A-21			
PLOTS OF 2-MIN AVERAGED COUNT RATES VS TIME (RADIATION BELTS) ON MICROFILM		1	091564	052766				64-054A-21A			
PLOTS OF COUNT RATES VS R ON MICROFILM		1	090764	060467				64-054A-21B			
ORIGINAL REDUCED ELECTRON SPECTROMETER ACCUMULATED COUNT DATA ON MAGNETIC TAPE		11	090764	120667				64-054A-21C			
TABULATION OF 5-MIN AVERAGED COUNT RATES ON MICROFILM		6	090764	060567				64-054A-21D			
2- AND 5-MINUTE AVERAGED ELECTRON COUNT RATES PLOTTED VS L, ON MICROFILM		1	090764	060467				64-054A-21E			
TABULATIONS OF ELECTRON COUNT RATES VS TIME AT DISCRETE L VALUES ON MICROFILM		1	091564	120565				64-054A-21F			
PLOTS OF 5-MIN AVERAGED ELECTRON COUNT RATES VS T NEAR PERIGEE ON MICROFILM		1	090764	060567				64-054A-21G			
PLOTS OF COUNT RATES VS TIME FOR DISCRETE L VALUES ON MICROFILM		1	092164	120565				64-054A-21H			
REDUCED L-INTERPOLATED COUNT RATES ON MAGNETIC TAPE		1	091564	070767				64-054A-21I			
ELECTRON SPECTR. COUNT DATA (64-054A-21C) REFORMATTED AS A STANDARD TAPE DATA SET		5	090764	120667				64-054A-21J			
BE-B-----EXPLORER 22-----UNTST---10/10/64---- 2/00/70---- 889.-- 1081.-- 79.7----64-064A											
PREDICTED WORLD MAPS		3	021069	071569				64-064A-00A			
REFINED WORLD MAPS		27	101064	021469				64-064A-00B			
RADIO FREQUENCY BEACON	BLUMLE	NASA-GSFC						64-064A-01			
TOTAL ELECTRON CONTENT DATA ON MICROFILM		4	101364	041769				64-064A-01A			
TOTAL ELECTRON CONTENT, HARDCOPY		27	101664	123167				64-064A-01B			
LATITUDE VERSUS TOTAL ELECTRON CONTENT OVER ILLINOIS, MICHIGAN AND MONTANA, MFCH		4	102164	031765				64-064A-01C			
LANGMUIR PROBE	BRACE	NASA-GSFC						64-064A-02			
TABULATIONS OF ELECTRON DENSITY DATA ON MICROFILM		1	101064	053165				64-064A-02A			
LASER TRACKING REFLECTOR	PLOTKIN	NASA-GSFC						64-064A-03			
SAO LASER REFLECTOR DATA ON MAGNETIC TAPE		1	031066	062667				64-064A-03A			
NASA LASER REFLECTOR DATA ON MAGNETIC TAPE		1	051267	071471				64-064A-03B			
RADIO DOPPLER SYSTEM	ANDERLE	USN SURFACE WEAPNS CTR						64-064A-04			
US NAVY DOPPLER DATA ON MAGNETIC TAPE		1	111164	033065				64-064A-04A			
ORBIS LOW-----ORBIS 2-----UNTST---11/18/64---- 10.004 MHZ BEACON	UNKNOWN	UNKNOWN						64-075A			
								64-075A-01			
INJUN 4-----EXPLORER 25-----UNTST---11/21/64----											
PREDICTED WORLD MAPS		522.--	2494.--	81.4----64-076B							
REFINED WORLD MAPS		3	060865	090666				64-076B-00A			
SPHERICAL RETARDING POTENTIAL ANALYZER	SAGALYN	USAF GEOPHYS LAB						64-076B-00B			
RETARDING POTENTIAL ANALYZER RATE DATA ON MAGNETIC TAPE		10	112164	071966				64-076B-02			
GEIGER-MUELLER COUNTER	VAN ALLEN	47	021365	071966				64-076B-02A			
MASTER FILE ON MAGNETIC TAPE, GM COUNTS	VAN ALLEN	U OF IOWA						64-076B-03			
SOLID-STATE DETECTOR	VAN ALLEN	47	021365	071966				64-076B-04			
MASTER FILE ON MAGNETIC TAPE, P-N COUNTS	VAN ALLEN	47	021365	071966				64-076B-04A			
PROTON COUNT RATE PLOTS ON MICROFILM	VAN ALLEN	11	112364	071966				64-076B-04B			
CADMUM SULFIDE DETECTORS	VAN ALLEN	U OF IOWA						64-076B-05			
MASTER FILE ON MAGNETIC TAPE, CDS COUNTS	VAN ALLEN	47	021365	071966				64-076B-05A			
PLASTIC SCINTILLATOR PARTICLE DETECTORS	VAN ALLEN	U OF IOWA						64-076B-06			
MASTER FILE ON MAGNETIC TAPE, PLASTIC SCINTILLATOR COUNTS	VAN ALLEN	47	021365	071966				64-076B-06A			
SAN MARCO 1-----SM-A-----UNTST---12/15/64----								64-084A			
PREDICTED WORLD MAPS		1	121564	122964				64-084A-00A			
REFINED WORLD MAPS		1	122964	010565				64-084A-00B			
ATMOSPHERE	BROGLIO	NATL RES COUNC ITALY						64-084A-01			
ELECTRON CONTENT-BEACON	CARRARA	U OF FLORENCE						64-084A-02			
1965-027E-----UNTST---04/03/65----								65-027E			
ATMOSPHERIC DENSITY	MCISAAC	USAF GEOPHYS LAB						65-027E-01			
PLASMA DETECTOR	SAGALYN	USAF GEOPHYS LAB						65-027E-02			
IMPEDANCE PROBE	ULWICK	USAF GEOPHYS LAB						65-027E-03			
MICROMETEORITE DETECTOR	SOBERMAN	GENERAL ELECTRIC CO						65-027E-04			
EARLY BIRD-----IIFl-----UNTST---04/06/65----								65-028A			
PREDICTED WORLD MAPS		1	040765	041065				65-028A-00A			
RADIO BEACON	UNKNOWN	UNKNOWN						65-028A-01			
BE-C-----EXPLORER 27-----UNTST---04/29/65----								65-032A			
PREDICTED WORLD MAPS		927.--	1320.--	41.1----65-032A							
REFINED WORLD MAPS		33	081268	112679				65-032A-00A			
RADIO BEACON	BLUMLE	21	042965	081268				65-032A-00B			
TOTAL ELECTRON CONTENT DATA ON MICROFILM	VAN ALLEN	NASA-GSFC						65-032A-01			
LANGMUIR PROBE	BRACE	NASA-GSFC						65-032A-02			
LASER TRACKING REFLECTOR	BERBERT	NASA-GSFC						65-032A-03			
SAO LASER REFLECTOR DATA ON MAGNETIC TAPE		1	012566	062467				65-032A-03A			
NASA LASER REFLECTOR DATA ON MAGNETIC TAPE		1	040367	050270				65-032A-03B			
NASA LASER DATA ON TAPE		99	040175	063082				65-032A-03C			
SAO LASER DATA ON TAPE		36	010175	053182				65-032A-03D			
GERMAN LASER WETZEL STATION DATA ON MAGNETIC TAPE		2	072478	100881				65-032A-03E			
RADIO DOPPLER SYSTEM	ANDERLE	USN SURFACE WEAPNS CTR						65-032A-04			

AIM FILE IONOSPHERIC PHYSICS LISTING

SATELLITE NAME	ALTERNATE NAMES	COUNTRY	LAUNCH DATE	INOP DATE	PERIAPSIS	APOAPSIS	INCLINATION
INVESTIGATION NAME		PI	AGENCY	QUANTITY	TIME SPAN	NSSDC ID	
DATA SET NAME							
US NAVY DOPPLER DATA ON MAGNETIC TAPE				1	050265 022466	65-032A-04A	
OGO 2-----OGO-C-----	-----UNTST-----10/14/65-----2/01/68-----	414.--	1510.--	87.4----	65-081A-08A		
PREDICTED WORLD MAPS				3	061967 022468	65-081A-00A	
GSFC EXTENDED MASTER ORBIT WORLD MAPS ON MICROFILM				16	101465 100367	65-081A-00C	
RADIO ASTRONOMY	HADDOCK	U OF MICHIGAN				65-081A-01	
VLF NOISE AND PROPAGATION	HELLIWELL	STANFORD U				65-081A-02	
VLF SPECTROGRAMS, LOW RESOLUTION ON 35-MM PAPER ROLLS			226	101765 090266	65-081A-02B		
VLF MEASUREMENT-2	MORGAN	DARTMOUTH COLLEGE				65-081A-03	
TRIAXIAL SEARCH-COIL MAGNETOMETER	SMITH	NASA-JPL				65-081A-04	
RUBIDIUM VAPOR MAGNETOMETER	CAIN	US GEOLOGICAL SURVEY				65-081A-05	
UNCOMPRESSED 0.5-SEC MAGNETIC FIELD AVERAGES ON TAPE			10	101465 123066	65-081A-05E		
MICROFILM PLOTS OF REDUCED MAGNETIC AND DELTA FIELD (CAIN 12/66 GSFC MODEL) DATA			1	101465 012266	65-081A-05F		
0.5-SEC MAGNETIC FIELD AVERAGES ON COMPRESSED TAPES			4	101465 122266	65-081A-05G		
MICROFILM PLOTS OF REDUCED MAGNETIC AND DELTA FIELD (CAIN 10/68 POGO MODEL) DATA			2	101465 100267	65-081A-05H		
COMPRESSED 0.5-SEC REDUCED MAGNETIC FIELD AVERAGES ON TAPE			4	101465 100267	65-081A-05I		
0.5-SEC AVERAGES OF MAGNETIC FIELD MAGNITUDE SAMPLED EVERY 10 SEC ON TAPE			1	101465 100267	65-081A-05J		
COSMIC-RAY IONIZATION	ANDERSON	SCIENCE APPL, INC				65-081A-05K	
MICROFILM PLOTS OF TOTAL IONIZATION RATES AND SATELLITE ALT VS INVARIANT LAT			5	101465 040266	65-081A-06A		
LOW-ENERGY PROTON, ALPHA PARTICLE MEASUREMENT	SIMPSON	U OF CHICAGO				65-081A-07	
REDUCED COSMIC-RAY COUNT RATE AND ORBITAL DATA MERGED ON MAGNETIC TAPE			22	101465 110365	65-081A-07A		
COUNT RATE PLOTS (R VS ENERGY LOSS) AND ORBITAL DATA ON MICROFILM			6	101565 121366	65-081A-07B		
GALACTIC AND SOLAR COSMIC RAY	WEBBER	U OF NEW HAMPSHIRE				65-081A-08A	
REDUCED PARTICLE COUNT RATES 50-2000 MEV/NUCLEON			1	101565 102465	65-081A-08B		
PLOTS OF REDUCED PARTICLE COUNT RATES ON MICROFILM			1	101565 102465	65-081A-08C		
NSSDC STANDARD TAPE VERSION OF PHA PART OF DATA SET 65-081A-08A			1	101565 102465	65-081A-08D		
SCINTILLATION DETECTOR	HOFFMAN	NASA-GSFC				65-081A-09	
AIRGLOW STUDY	REED	NASA-GSFC				65-081A-10	
LYMAN-ALPHA AND UV AIRGLOW	MANGE	US NAVAL RESEARCH LAB				65-081A-11	
AIRGLOW STUDY	BARTH	U OF COLORADO				65-081A-12	
NEUTRAL PARTICLE AND ION COMPOSITION	JONES	U OF MICHIGAN				65-081A-13	
INTERPLANETARY DUST PARTICLES	NILSSON	FLINDERS U OF S AUST				65-081A-14	
ANALYZED MICROMeteorite DATA PUBLISHED IN SAO CONTRACT REPORT	NAS 5-1107		1	101665 040866	65-081A-14Z		
IONOSPHERIC COMPOSITION	TAYLOR, JR.	NASA-GSFC				65-081A-15	
SOLAR X-RAYS	KREPLIN	US NAVAL RESEARCH LAB				65-081A-16	
SOLAR X-RAY DATA 0.5 TO 60A IN 4 RANGES			1	101465 102365	65-081A-16A		
SOLAR UV SPECTROMETER	HINTEREGGER	USAF GEOPHYS LAB				65-081A-17	
CORPUSCULAR RADIATION	VAN ALLEN	U OF IOWA				65-081A-18	
POSITIVE ION STUDY	DONLEY	NASA-GSFC				65-081A-19	
NEUTRAL PARTICLE STUDY	NEWTON	NASA HEADQUARTERS				65-081A-20	
ELECTRON DENSITY MEASUREMENTS	HADDOK	U OF MICHIGAN				65-081A-21	
TRAPPED AND DUMPED ELECTRONS	VAN ALLEN	U OF IOWA				65-081A-22	
ALOUETTE 2-----ALOUETTE-B-----	-----UNTST-----11/29/65-----	505.--	2987.--	79.8----	65-098A		
PREDICTED WORLD MAPS			2	051069 042571	65-098A-00A		
REFINED WORLD MAPS			13	061167 033173	65-098A-00E		
GSFC EXTENDED WORLD MAPS ON MICROFILM			62	112965 033173	65-098A-00G		
EXTENDED WORLD MAPS ON MAGNETIC TAPE			91	080667 033173	65-098A-00H		
CRC INDEX OF EXPERIMENT 'DATA AVAILABLE' ON TAPE			1	112965 123166	65-098A-00I		
CRC PUBLISHED INDEX OF EXPERIMENT "DATA AVAILABLE", FICHE			7	112965 123168	65-098A-00J		
GSFC ORBIT ELEMENTS AT ABOUT 2 WEEK INTERVALS, ON MAGNETIC TAPE			1	120565 032173	65-098A-00K		
SWEEP-FREQUENCY SOUNDER	WHITTEKER	DOC-CRC				65-098A-01A	
SWEEP-FREQUENCY IONGRAMS ON MICROFILM			2571	112965 013175	65-098A-01A		
RRL PUBLISHED ELECTRON DENSITY AND SCALE HEIGHT PROFILES ON MICROFICHE			22	101266 122768	65-098A-01B		
INDEXING INFORMATION FOR SWEEP-FREQUENCY IONGRAMS WITH DUCTED ECHOES			2	120165 042169	65-098A-01B		
PHOTOGRAPHIC PRINTS OF SWEEP-FREQUENCY IONGRAMS WITH DUCTED ECHOES			2451	120165 042169	65-098A-01B		
CRC INTERPOLATED ELECTRON DENSITY PROFILES ON MICROFICHE			6	121565 030970	65-098A-01B		
CRC ELECTRON DENSITY VALUES AT LAMINA BOUNDARIES ON MICROFICHE			10	121565 030970	65-098A-01H		
IONGRAM INVENTORY ON TAPE			3	112965 042373	65-098A-01I		
NASA-ARC ELECTRON DENSITIES INTERPOLATED TO 100-KM INTERVALS ON (PACKED) TAPE			2	112965 060872	65-098A-01L		
NASA-ARC ELECTRON DENSITIES INTERPOLATED TO 100 KM INTERVALS ON MICROFILM			8	112965 031170	65-098A-01N		
NSSDC STANDARD TAPE FORMAT DATA SET FROM DATA SET 65-098A-01J			1	112965 031170	65-098A-01P		
INDEX OF IONGRAMS SHOWING DUCTED ECHOES			1	112965 103071	65-098A-01R		
CRC ELECTRON DENSITY PROFILES AT SCALED POINTS ON MAGNETIC TAPES			3	121565 071072	65-098A-01T		
RSRS ELECTRON DENSITY (AND SCALE HEIGHT) PLOTS AND LISTINGS WITH PASS SUMMARY PLOTS			5	121265 081168	65-098A-01V		
VLF RECEIVER	BELROSE	DOC-CRC				65-098A-02A	
VLF EMISSION INTENSITY OBSERVATIONS AT 6 NARROW BAND FREQUENCIES OVER KASHIMA			1	022571 092671	65-098A-02B		
COSMIC RADIO NOISE	HARTZ	DOC-CRC				65-098A-03A	
COSMIC RADIO NOISE - AGC LEVELS PLOTTED ON 35-MM MICROFILM, MERGED WITH IONGRAMS			2188	112965 060073	65-098A-03B		
SUMMARY OF COSMIC RADIO NOISE STRIP CHARTS PLUS DOCUMENTATION, ON MICROFILM			1	063066 070169	65-098A-03C		
COSMIC RADIO NOISE ON STRIP CHARTS			1625	063066 070169	65-098A-03D		
ENERGETIC PARTICLE DETECTORS	MCDIARMID	NATL RES COUNC OF CAN				65-098A-04A	
REDUCED COUNT RATE DATA ON MAGNETIC TAPE			8	112965 061869	65-098A-04B		
ANALYZED SELECTED BOUNDARY DATA ON MAGNETIC TAPE			1	112965 061869	65-098A-04C		
CYLINDRICAL ELECTROSTATIC PROBES	BRACE	NASA-GSFC				65-098A-05A	
ELECTRON DENSITY AND TEMPERATURE ON TAPE			1	022166 111367	65-098A-05B		
ELECTRON DENSITY AND TEMPERATURE ON MICROFILM			1	022166 111367	65-098A-05C		
ELECTRON DENSITY AND TEMPERATURE PLOTS ON MICROFILM			1	022166 030167	65-098A-05D		
DME-A-----EXPLORER 31-----	-----UNTST-----11/29/65-----1/15/71-----	505.--	2978.--	79.8----	65-098B		
PREDICTED WORLD MAPS			4	063069 102070	65-098B-00A		
REFINED WORLD MAPS			16	112965 070169	65-098B-00B		
HERMAL ION PROBE	MAIER	NASA-GSFC				65-098B-01	
GRAPHS OF HERMAL ION PROBE DATA ON MICROFILM			2	121465 060269	65-098B-01A		
TABULATED MEASURED GEOPHYSICAL QUANTITIES ON 16MM MICROFILM			3	010166 060969	65-098B-01B		
PARTIALLY REDUCED EXPERIMENT MEASUREMENTS ON MICROFILM			1179	122565 083167	65-098B-01C		
CYLINDRICAL ELECTROSTATIC PROBES	BRACE	NASA-GSFC				65-098B-02	
ELECTRON TEMPERATURE	WILLMORE	U OF BIRMINGHAM				65-098B-03	
ION MASS SPECTROMETER	WILLMORE	U OF BIRMINGHAM				65-098B-04	
MAGNETIC ION-MASS SPECTROMETER	HOFFMAN	U OF TEXAS, DALLAS				65-098B-05	
ION COMPOSITION AND DENSITY PLOTS ON MICROFILM			66	120165 030368	65-098B-05A		
ION COMPOSITION AND DENSITY MEASUREMENTS ON MAGNETIC TAPE			100	120165 030368	65-098B-05B		
INDEX OF ION DENSITY DATA ON MICROFILM			1	120165 030368	65-098B-05C		
HERMAL ELECTRON PROBE	MAIER	NASA-GSFC				65-098B-06	

AIM FILE IONOSPHERIC PHYSICS LISTING

SATELLITE NAME INVESTIGATION NAME DATA SET NAME	ALTERNATE NAMES	COUNTRY PI	LAUNCH DATE	INOP DATE	PERIAPSIS	APOAPSIS	INCLINATION	AGENCY	QUANTITY	TIME SPAN	NSSDC ID

THERMAL ELECTRON PROBE DATA ON MICROFILM TABULATED MEASURED GEOPHYSICAL QUANTITIES ON MICROFILM PARTIALLY REDUCED EXPERIMENT MEASUREMENTS ON MICROFILM					2	121465	060269		65-098B-06B		
ENERGETIC ELECTRON CURRENT MONITOR	MAIER	NASA-GSFC			3	010666	060969		65-098B-06C		
ENERGETIC ELECTRON CURRENT (RETARDING POTENTIAL ANALYZER) DATA ON MICROFILM					1179	121465	060969		65-098B-06D		
FR 1-----FRANCE-1-----UNTST---12/06/65----	8/26/68----	746.--	762.--	75.87----	65-101A						
PREDICTED WORLD MAPS			11	120665	091167				65-101A-00A		
VLF RECEIVER	STOREY	IONOSPHERIC RES GROUP							65-101A-01		
QUICK-LOOK VLF MAGNETIC FIELD DATA ON MICROFILM			2	120765	080168				65-101A-01A		
ELECTRON DENSITY	SAYERS	U OF BIRMINGHAM							65-101A-02		
PIONEER 6-----PIONEER-A-----UNTST---12/16/65----	-----	0.813--	0.983--	0.168----	65-105A						
PLOT OF PIONEER 6 AND 7 TRAJECTORY IN FIXED SUN-EARTH LINE COORDINATES			1	121665	031170				65-105A-00D		
MULTI-COORDINATE SYSTEM EPHEMERIS TAPES			9	121665	051672				65-105A-00E		
COMPRESSED EPHEMERIS DATA ON MAGNETIC TAPE			1	121665	051672				65-105A-00F		
COROTATION DELAY TIME PLOTS AND LISTINGS ON MICROFILM			1	120165	050172				65-105A-00G		
UNIAXIAL FLUXGATE MAGNETOMETER	NESS	NASA-GSFC							65-105A-01		
30-SEC AVERAGED VECTOR MAGNETIC FIELD DATA ON TAPE			3	012666	072666				65-105A-01A		
HOURLY AVERAGED VECTOR MAGNETIC FIELD DATA ON MICROFILM			1	121765	090567				65-105A-01B		
TIME SEQUENCED INTERSPERSED PIONEER 6 + 7 HR AVERAGED MAGNETIC FIELD DATA ON TAPE			1	121565	091567				65-105A-01C		
SOLAR WIND PLASMA FARADAY CUP	BRIDGE	MASS INST OF TECH							65-105A-02		
PLOTS OF HOURLY AVERAGED SOLAR WIND PLASMA PARAMETERS ON MICROFILM			1	121865	040369				65-105A-02A		
HOURLY AVERAGED VELOCITY AND DENSITY VALUES IN SGD BULLETINS			11	030169	022870				65-105A-02B		
1-HR AVG SOLAR WIND DATA FROM THE EXPERIMENTS ON PIONEER 6 AND PIONEER 7			8	121665	051871				65-105A-02C		
HOURLY AVERAGED PLASMA PARAMETERS ON BCD 7-TRACK MAGNETIC TAPE			1	121665	050971				65-105A-02D		
COSMIC-RAY TELESCOPE	SIMPSON	U OF CHICAGO							65-105A-03		
REDUCED COUNT RATE AND PULSE HEIGHT ANALYZER DATA ON MAGNETIC TAPE			10	121665	123070				65-105A-03A		
COUNT RATE PLOTS AND TRAJECTORY PLOT ON MICROFILM			1	121665	122668				65-105A-03D		
COSMIC-RAY PROTON COUNTING RATES PUBLISHED IN 'SOLAR GEOPHYSICAL DATA'			39	030769	050575				65-105A-03E		
TWO-FREQUENCY BEACON RECEIVER	ESHLEMAN	STANFORD U							65-105A-04		
HOURLY VALUES OF REDUCED TOTAL ELECTRON CONTENT DATA ON MAGNETIC TAPE			1	121665	071166				65-105A-04A		
HOURLY VALUES OF REDUCED TOTAL ELECTRON CONTENT DATA ON MICROFILM			1	121665	071166				65-105A-04B		
DIGITAL VALUES OF SOLAR WIND ELECTRON DENSITY VS TIME NORMALIZED TO 1 AU ON TAPE			1	010966	052566				65-105A-04D		
DIGITAL VALUES OF SOLAR WIND ELECTRON DENSITY VS TIME NORMALIZED TO IAU (MFILM)			1	011066	060166				65-105A-04E		
COSMIC-RAY ANISOTROPY	MCCRACKEN	CSIRO							65-105A-05		
COUNT RATE LISTINGS ON MICROFILM			1	121665	020667				65-105A-05A		
COUNT RATE PLOTS ON MICROFILM			1	121665	012567				65-105A-05B		
ELECTROSTATIC ANALYZER	WOLFE	NASA-ARC							65-105A-06		
PLOTS OF ANALYZED PLASMA PARAMETERS ON MICROFILM			22	121665	031874				65-105A-06A		
PUBLISHED PRELIMINARY SOLAR WIND PARAMETERS			71	121665	050575				65-105A-06B		
HOURLY AVERAGED PLASMA PARAMETERS			2	121865	030466				65-105A-06C		
HOURLY AVERAGED PLASMA PARAMETERS ON MICROFILM			1	121865	030466				65-105A-06D		
CELESTIAL MECHANICS	ANDERSON	NASA-JPL							65-105A-07		
DOPPLER RADIO TRACKING DATA ON TAPE			2	121865	092467				65-105A-07A		
SUPERIOR CONJUNCTION FARADAY ROTATION	LEVY	NASA-JPL							65-105A-08		
SUPERIOR CONJUNCTION FARADAY ROTATION DATA ON TAPE			1	101266	112466				65-105A-08A		
SPECTRAL BROADENING	GOLDSTEIN	NASA-JPL							65-105A-09		
RELATIVITY INVESTIGATION	ANDERSON	NASA-JPL							65-105A-10		
OV3-1-----02150-----UNTST---04/22/66----	-----	-----	-----	-----	-----	-----	-----	-----	66-034A		
COSMIC RADIATION	KATZ	USAF GEOPHYS LAB							66-034A-01		
PROTON SPECTROMETER	KATZ	USAF GEOPHYS LAB							66-034A-02		
ELECTRON SPECTROMETER	KATZ	USAF GEOPHYS LAB							66-034A-03		
LOW ENERGETIC ELECTRON ANALYZER	SAGALYN	USAF GEOPHYS LAB							66-034A-04		
GEIGER COUNTERS	UNKNOWN	UNKNOWN							66-034A-05		
MAGNETOMETERS	UNKNOWN	UNKNOWN							66-034A-06		
AE-B-----EXPLORER 32-----UNTST---05/25/66----	3/22/67----	276.--	2725.--	64.67----	66-044A						
REFINED WORLD MAPS			4	052566	041867				66-044A-00B		
ION MASS SPECTROMETER	BRINTON	NASA HEADQUARTERS							66-044A-01		
ION MASS SPECTROMETER DATA ON MAGNETIC TAPE			1	060966	011767				66-044A-01A		
ION MASS SPECTROMETER DATA ON MICROFILM			1	060966	011767				66-044A-01B		
NEUTRAL PARTICLE MAGNETIC MASS SPECTROMETER	REBER	NASA-GSFC							66-044A-02		
NEUTRAL PARTICLE DENSITIES IN TABULAR FORM			1	052666	053166				66-044A-02A		
SATELLITE DRAG ATMOSPHERIC DENSITY	WULF-MATHIES	U OF TUBINGEN							66-044A-03		
SATELLITE DRAG ATMOSPHERIC DENSITY VALUES			4	122366	082571				66-044A-03A		
PRESSURE GAUGES	NEWTON	NASA HEADQUARTERS							66-044A-04		
ELECTRON TEMPERATURE AND DENSITY	BRACE	NASA-GSFC							66-044A-05		
OGO 3-----OGO-B-----UNTST---06/07/66----	2/29/72----	295.--	122219.--	31.4----	66-049A						
PREDICTED WORLD MAPS	10	081268	032172						66-049A-00A		
REFINED WORLD MAPS ON MICROFILM	1	091871	111771						66-049A-00B		
MASTER ORBIT WORLD MAPS	24	060766	030172						66-049A-00C		
PLOTS OF EQUATORIAL PITCH ANGLE, LOCAL TIME, AND L VERSUS R ON MICROFILM	2	060966	040268						66-049A-00D		
LISTING OF ONE MIN AVERAGES OF ORBIT PARAMETERS ON MICROFILM	5	060766	042368						66-049A-00E		
PLOTS OF L AGAINST EQUATORIAL PITCH ANGLE AND LOCAL TIME ON MICROFILM	2	061066	040268						66-049A-00F		
ANALYZED, CONDENSED, ORBIT/ATTITUDE TAPE	1	060766	012967						66-049A-00G		
MULTICOORDINATE SYSTEM EPHEMERIS PLOTS	3	060766	040268						66-049A-00H		
SOLAR COSMIC RAYS	ANDERSON	U OF CALIF, BERKELEY							66-049A-01		
SOLAR COSMIC RAY PARTICLE COUNT ACCUMULATIONS ON MAGNETIC TAPE	30	062466	022767						66-049A-01A		
COSMIC-RAY ISOTOPIC ABUNDANCE	MCDONALD	NASA-GSFC							66-049A-02		
COSMIC-RAY SPECTRA AND FLUXES	SIMPSON	U OF CHICAGO							66-049A-03		
REDUCED COSMIC RAY PARTICLE COUNT RATES ON MAGNETIC TAPE			65	060966	120169				66-049A-03A		
1/2-HR AVG DIGITAL AND ANALOG COUNT RATE PLOTS ON MICROFILM			2	060966	120169				66-049A-03B		
PULSE HEIGHT ANALYZER DATA ON MAGNETIC TAPE			27	060966	081668				66-049A-03C		
U OF CHICAGO LOG OF DATA SET 66-049A-03A			1	060966	120169				66-049A-03D		
U OF CHICAGO LOG OF DATA SET 66-049A-03C			1	060966	081668				66-049A-03E		
POSITRON SEARCH AND GAMMA-RAY SPECTROMETER	CLINE	NASA-GSFC							66-049A-04		
ELECTROSTATIC PLASMA ANALYSIS (PROTONS .1-20KEV).	WOLFE	NASA-ARC							66-049A-05		
PLASMA PROBE, FARADAY CUP	BRIDGE	MASS INST OF TECH							66-049A-06		
LOW ENERGY PROTON MEASUREMENT	EVANS	NOAA-ERL							66-049A-07		
LOW-ENERGY ELECTRONS AND PROTONS	FRANK	U OF IOWA							66-049A-08		
LOW ENERGY PROTON AND ELECTRON SPECTRA SURVEY OF THE MAGNETOSPHERE ON MOVIE FILM			400	071466	071666				66-049A-08A		

AIM FILE IONOSPHERIC PHYSICS LISTING

SATELLITE NAME INVESTIGATION NAME DATA SET NAME	ALTERNATE NAMES	COUNTRY PI	LAUNCH DATE	INOP DATE	PERIAPSIS AGENCY	APOAPSIS	INCLINATION	NSSDC ID
					QUANTITY	TIME SPAN		
TRAPPED RADIATION SCINTILLATION COUNTER	KONRADI	NASA-JSC						66-049A-10
ALL PROTON-ELECTRON COUNT RATES, ANALYSED			14	060966 012667				66-049A-10A
HIGH BIT RATES OF REDUCED			9	060966 011667				66-049A-10B
MAGNETIC SURVEY USING TWO MAGNETOMETERS	HEPPNER	NASA-GSFC						66-049A-11
FIELD MAGNITUDE AS MEASURED BY THE GSFC RUBIDIUM VAPOR MAGNETOMETER, ON MICROFILM			32	060966 081468				66-049A-11A
MICROFILM LISTINGS OF 30-SEC AVG MAGNETIC FIELD MEASUREMENTS IN SEVERAL COORDINATES			3	060966 072166				66-049A-11B
TRIAXIAL SEARCH-COIL MAGNETOMETER	SMITH	NASA-JPL						66-049A-12
36.864-SEC AVERAGED SEARCH-COIL MAGNETOMETER DATA ON MAGNETIC TAPE			41	060966 042768				66-049A-12A
SEARCH-COIL MAGNETOMETER SQUISH PLOTS ON MICROFILM			1	060966 021268				66-049A-12B
INDEXES FOR TAPES IN DATA SET 66-049A-12A ON MICROFILM			1	060966 042768				66-049A-12C
SUPERICAL ION AND ELECTRON TRAP	SACALYN	USAF GEOPHYS LAB						66-049A-13
PLANAR ION ELECTRON TRAP	WHIPPLE	U OF CALIF, SAN DIEGO						66-049A-14
POSITIVE ION CONCENTRATION	TAYLOR, JR.	NASA-GSFC						66-049A-15
ION CONCENTRATIONS VS L -5X8 FILM			167	072466 101767				66-049A-15A
RADIO PROPAGATION	Fritz	NOAA-ERL						66-049A-16
VLF NOISE AND PROPAGATION	HELLIWELL	STANFORD U						66-049A-17
RADIO ASTRONMY	HADDOCK	U OF MICHIGAN						66-049A-18
4- TO 2-MHZ SOLAR BURST LIST ON MICROFILM			1	061366 092967				66-049A-18A
4- TO 2-MHZ RADIO NOISE DATA ON MICROFILM			86	060966 081668				66-049A-18B
DATA SET CATALOG FOR 66-049A-19B ON MICROFILM			1	060966 100367				66-049A-18C
GEOCRONAL LYMAN-ALPHA SCATTERING	MANGE	US NAVAL RESEARCH LAB						66-049A-19
GEGENSCHENK PHOTOMETRY	WOLFF	NASA-GSFC						66-049A-20
INTERPLANETARY DUST PARTICLES	BORN	TEMPLE U						66-049A-21
ELECTRON SPECTROMETER	WINCKLER	U OF MINNESOTA						66-049A-22
PLOTS OF 2-MIN AVERAGED COUNT RATES VS TIME (NEAR RADIATION BELTS) ON MICROFILM			2	061166 042768				66-049A-22A
PLOTS OF 15-MIN AVG'D. SPECTROMETER COUNT RATES VS S/C RADIAL DISTANCE ON MICROFILM			2	060966 040268				66-049A-22B
ORIGINAL REDUCED ELECTRON SPECTROMETER COUNTS ON CONDENSED MAGNETIC TAPES			18	060966 050368				66-049A-22C
TABULATIONS OF 5-MIN AVERAGED COUNT RATES ON MICROFILM			7	060966 050168				66-049A-22D
PLOTS OF 2- AND 5-MIN AVERAGED COUNT RATES VS L ON MICROFILM			2	061166 040268				66-049A-22E
TABULATIONS OF COUNT RATES VS TIME AT DISCRETE L VALUES ON MICROFILM			1	061166 122767				66-049A-22F
PLOTS OF 5-MIN AVERAGED COUNT RATES VS TIME ON MICROFILM			2	060966 043068				66-049A-22G
PLOTS OF COUNT RATES VS EQUATORIAL PITCH ANGLE FOR DISCRETE L VALUES ON MICROFILM			1	010067 120067				66-049A-22H
PITCH ANGLE NORMALIZED COUNT RATE VS T PLOTS FOR DISCRETE L VALUES, ON MICROFILM			1	120066 060067				66-049A-22I
PLOTS OF COUNT RATES VS TIME FOR DISCRETE INNER ZONE L VALUES ON MICROFILM			1	060066 020068				66-049A-22J
REDUCED L-INTERPOLATED COUNT RATES ON MAGNETIC TAPES			1	061166 122767				66-049A-22K
REFORMATTED ELECT SPECTROMETER COUNT DATA ON NSSDC STANDARD TAPES OF 66-049A-22C			6	060966 050368				66-049A-22L
IONIZATION CHAMBER	WINCKLER	U OF MINNESOTA						66-049A-23
PLOTS OF 1-MIN AVERAGED ION CHAMBER PULSE RATES VS TIME ON MICROFILM			3	060866 081168				66-049A-23A
ORIGINAL REDUCED ION CHAMBER PULSE RATES ON MAGNETIC TAPES			31	060966 081268				66-049A-23B
PLOTS OF 1-MIN AVERAGED PULSE RATES VS L ON MICROFILM			2	061166 040268				66-049A-23C
ATLAS OF 10- TO 50-KEV SOLAR FLARE X RAYS ON MICROFILM			1	062566 122967				66-049A-23D
PLOTS OF 2-MIN AVERAGED PULSE RATES VS SPACECRAFT RADIAL DISTANCE ON MICROFILM			2	060966 040268				66-049A-23E
TABULATIONS OF HOURLY AVERAGED PULSE RATES ON MICROFILM			1	060966 081068				66-049A-23F
PLOTS OF 2-MIN AVERAGED PULSE RATES VS TIME ON MICROFILM			2	060966 081068				66-049A-23G
TABULATIONS OF 1-MIN AVERAGED PULSE RATES ON MICROFILM			5	060966 081068				66-049A-23H
PLOTS OF 1-MIN AVERAGED PULSE RATES VS TIME NEAR PERIGEE ON MICROFILM			2	061166 081068				66-049A-23J
PLOTS OF 2-MIN AVERAGED PULSE RATES VS TIME ON MICROFILM			2	060966 081068				66-049A-23K
REFORMATTED ION CHAMBER PULSE RATES (FROM DATA SET 66-049A-23B) ON STANDARD TAPES			11	060966 081068				66-049A-23L
IMP-D-----EXPLORER 33-----UNTST-----07/01/66---- 9/21/71----265680.--480763.-- 24.4----66-058A								
PREDICTED WORLD MAPS			17	070266 111671				66-058A-00A
SOLAR ECLIPTIC AND SOLAR MAGNETOSPHERIC EPHEMERIS PLOTS ON MICROFILM			1	070166 102971				66-058A-00D
SOLAR ECLIPTIC EPHEMERIS PLOTS			2	070166 022870				66-058A-00E
MULTICOORDINATE SYSTEM EPHEMERIS TAPES			49	070166 030170				66-058A-00F
12-HOUR SOLAR ECLIPTIC EPHEMERIS PARAMETER LISTING ON MICROFILM			1	070166 022870				66-058A-00G
COMPACTED VERSION OF DATA SET 66-058A-00F			5	070166 123170				66-058A-00H
GSFC MAGNETOMETER	NESS	NASA-GSFC						66-058A-01
5.12-SEC VECTOR MAGNETIC FIELD DATA ON TAPE			59	070166 100568				66-058A-01A
NSSDC STANDARD TAPES OF 66-058A-01A			47	070166 100568				66-058A-01B
82-SEC AVERAGED VECTOR MAGNETIC FIELD DATA ON MAGNETIC TAPE			15	070166 100568				66-058A-01C
MULTI-SPACECRAFT HOURLY AVERAGED INTER- PLANETARY MAGNETIC FIELD VECTORS ON TAPE			1	070166 100568				66-058A-01D
81.92-SEC VECTOR MAGNETIC FIELD PLOTS ON MICROFILM			3	070166 102868				66-058A-01E
MERGED NESS/SONETT 82 SECOND AVERAGED MAGNETOMETER DATA ON MAGNETIC TAPE			3	070166 080368				66-058A-01F
LOW-ENERGY INTEGRAL SPECTRUM MEASUREMENT EXPERIMENT	SERBU	NASA-GSFC						66-058A-02
AMES MAGNETIC FIELDS	SONETT	U OF ARIZONA						66-058A-03
AVERAGED MAGNETIC FIELD VECTOR PLOTS ON MICROFILM			4	070166 091370				66-058A-03A
HOURLY AVERAGED INTERPLANETARY MAGNETIC FIELD DATA ON TAPE			1	010167 123169				66-058A-03B
81.92-SEC VECTOR MAGNETIC FIELD DATA ON MAGNETIC TAPES			20	070166 091470				66-058A-03C
5.12 SEC VECTOR MAGNETIC FIELD DATA ON MAGNETIC TAPES			195	070166 091470				66-058A-03D
MERGED NESS/SONETT 82 SECOND AVERAGED MAGNETOMETER DATA ON MAGNETIC TAPE			3	070166 080368				66-058A-03E
REBLOCKED 82 SECOND AVERAGED MAGNETIC FIELD VECTORS ON MAGNETIC TAPE			20	070166 091470				66-058A-03F
ION CHAMBER AND GM COUNTERS	ANDERSON	U OF CALIF, BERKELEY						66-058A-04
ORIGINAL REDUCED ION CHAMBER AND GM COUNTS ON TAPE			7	070166 060967				66-058A-04A
ELECTRON AND PROTON DETECTORS	VAN ALLEN	U OF IOWA						66-058A-05
PLOTS OF 2- TO 12-A SOLAR SOFT X-RAY FLUXES ON MICROFILM			2	070266 092668				66-058A-05A
2- TO 12-A SOLAR SOFT X-RAY FLUXES ON TAPE			2	070266 092668				66-058A-05B
SOLAR SOFT X-RAY FLUX LISTINGS ON MICROFILM			8	070266 092668				66-058A-05C
SOLAR SOFT X-RAY BURST DATA ON TAPE			1	070366 072567				66-058A-05D
LISTING OF SOLAR SOFT X-RAY BURST DATA ON MICROFILM			1	070366 072567				66-058A-05E
SOLAR SOFT X-RAY DATA COVERAGE ON MICROFILM			1	070266 072667				66-058A-05F
PLOTS OF X-RAY AND PARTICLE DATA ON MICROFILM			18	070166 123168				66-058A-05G
HALF HOUR SUMMARY OF ALL DETECTORS ON MAGNETIC TAPE			3	063066 110271				66-058A-05H
PLASMA PROBE	BRIDGE	MASS INST OF TECH						66-058A-06
HOURLY AVERAGED INTERPLANETARY PLASMA PARAMETERS ON TAPE AS SUPPLIED BY MIT			1	070166 093069				66-058A-06A
3-MIN INTERPLANETARY PLASMA PARAMETERS ON MAGNETIC TAPE			2	070666 101471				66-058A-06B
PLOTS OF HOURLY AVERAGED PLASMA PARAMETERS ON FICHE			1	070666 042071				66-058A-06C
HOURLY AVERAGED INTERPLANETARY PLASMA DATA ON TAPE WITH BLOCKS OF ZEROS REMOVED			1	070666 092369				66-058A-06D
LISTINGS OF HOURLY AVERAGED INTERPLANETARY PLASMA PARAMETERS			1	070666 092369				66-058A-06F
SOLAR CELL DAMAGE	SLIFER, JR.	NASA-GSFC						66-058A-07
LUNAR IONOSPHERE AND RADIO PROPAGATION EXPERIMENT	PETERSON	STANFORD U						66-058A-08
SELENODESY	KAULA	U OF CALIF, LA						66-058A-09
GEMINI 10-----02349-----UNTST-----07/18/66---- 7/21/66---- 391.-- 400.-- 28.86----66-066A								
ZODIACAL LIGHT PHOTOGRAPHY	NEY	U OF MINNESOTA						66-066A-01

AIM FILE IONOSPHERIC PHYSICS LISTING

SATELLITE NAME INVESTIGATION NAME DATA SET NAME	ALTERNATE NAMES	COUNTRY	LAUNCH DATE	INOP DATE	PERIAPSIS	APOAPSIS	INCLINATION	PI	AGENCY	QUANTITY	TIME SPAN	NSSDC ID
ZODIACAL LIGHT PHOTOGRAPHY ON 35-MM FILM									NASA-GSFC	1	071866 072166	66-066A-01A
70-MM HASSELBLAD SYNOPTIC TERRAIN PHOTOGRAPHS	LOWMAN, JR.				NOAA-NMC					66-066A-02		
SYNOPTIC WEATHER PHOTOGRAPHY	NAGLER				DUDLEY OBS					66-066A-03		
AGENA MICROMeteorite COLLECTION	HEMENWAY				DUDLEY OBS					66-066A-04		
MICROMeteorite COLLECTION	HEMENWAY				DUDLEY OBS					66-066A-05		
UV STAR FIELD CAMERA	HENIZE				NASA-JSC					66-066A-06		
ION WAKE MEASUREMENT	MEDVED				ELECTRO-OPT SYSTEMS					66-066A-07		
STAR OCCULTATION NAVIGATION	VALLERIE				USAF AVIONICS LAB					66-066A-08		
TRI-AXIS MAGNETOMETER	WOMACK				NASA-JSC					66-066A-09		
LUNAR UV SPECTRAL REFLECTANCE	STOKES				NASA-JSC					66-066A-10		
BETA SPECTROMETER	MARBACH				LOCKHEED ELECTRONICS					66-066A-11		
BREMSSTRAHLUNG SPECTROMETER	LINDSEY				NASA-JSC					66-066A-12		
LANDMARK CONTRAST MEASUREMENT	UNKNOWN				UNKNOWN					66-066A-13		
POSITIVE ION SENSING	SMIDDY				USAF GEOPHYS LAB					66-066A-14		
PIONEER 7-----PIONEER-B-----UNTST-----08/17/66-----								1.009--	1.125-- 0.098----	66-075A		
PLOT OF PIONEER 6 AND 7 TRAJECTORY IN FIXED SUN-EARTH LINE COORDINATES								1	081766 070971	66-075A-00D		
MULTI-COORDINATE SYSTEM EPHemeris TAPes								9	081766 010272	66-075A-00E		
COMPRESSED EPHemeris DATA ON MAGNETIC TAPE								1	081766 010272	66-075A-00F		
COROTATION DELAY TIME PLOTS AND LISTINGS ON MICROFILM								1	080166 010072	66-075A-00G		
SINGLE-AXIS MAGNETOMETER	NESS				NASA-GSFC					66-075A-01		
VECTOR MAGNETIC FIELD DATA, 30-SEC AVERAGES ON TAPE								4	081766 022567	66-075A-01A		
HOURLY AVERAGED VECTOR MAGNETIC FIELD DATA ON MICROFILM								1	081766 102967	66-075A-01B		
TIME SEQUENCED INTERSPERSED PIONEER 6 + 7 HR AVERAGED MAGNETIC FIELD DATA ON TAPE								1	081766 102767	66-075A-01C		
SOLAR WIND PLASMA FARADAY CUP	BRIDGE				MASS INST OF TECH					66-075A-02		
PLOTS OF HOURLY AVERAGED SOLAR WIND PLASMA PARAMETERS ON MICROFILM								1	081866 120268	66-075A-02A		
HOURLY AVERAGED VELOCITY AND DENSITY VALUES IN SGD BULLETINS								5	060269 103169	66-075A-02B		
1-HR AVG SOLAR WIND DATA FROM THE EXPERIMENTS ON PIONEER 6 AND PIONEER 7								8	081866 120268	66-075A-02C		
HOURLY AVERAGED PLASMA PARAMETERS ON BCD 7-TRACK MAGNETIC TAPE								1	081966 112968	66-075A-02D		
LISTINGS OF MAGNETOTAIL HIGH RESOLUTION FLUXES ON MICROFILM								1	091966 093066	66-075A-02E		
ELECTROSTATIC ANALYZER	WOLFE				NASA-ARC					66-075A-03		
PLOTS OF ANALYZED PLASMA PARAMETERS ON MICROFILM								11	081766 020969	66-075A-03A		
PUBLISHED PRELIMINARY SOLAR WIND PARAMETERS								56	052175 052175	66-075A-03B		
HOURLY AVERAGED PLASMA PARAMETERS								1	081966 112866	66-075A-03C		
HOURLY AVERAGED PLASMA PARAMETERS ON MICROFILM								1	081966 112866	66-075A-03D		
TWO-FREQUENCY BEACON RECEIVER	ESHLEMAN				STANFORD U					66-075A-04		
HOURLY VALUES OF REDUCED TOTAL ELECTRON CONTENT DATA ON TAPE								1	081866 112967	66-075A-04A		
HOURLY VALUES OF REDUCED TOTAL ELECTRON CONTENT DATA ON MICROFILM								1	081866 112967	66-075A-04B		
DIGITAL VALUES OF SOLAR WIND ELECTRON DENSITY VS TIME NORMALIZED TO 1 AU ON TAPE								1	081766 102667	66-075A-04D		
DIGITAL VALUES OF SOLAR WIND ELECTRON DENSITY VS TIME NORMALIZED IAU (MICROFILM)								1	091266 052069	66-075A-04E		
COSMIC-RAY ANISOTROPY	MCCRACKEN				CSIRO					66-075A-05		
COUNT RATE LISTINGS ON MICROFILM								1	081866 013167	66-075A-05A		
COUNT RATE PLOTS ON MICROFILM								1	081766 012867	66-075A-05B		
COSMIC-RAY TELESCOPE	SIMPSON				U OF CHICAGO					66-075A-06		
REDUCED COUNT RATE AND PULSE HEIGHT ANALYZER DATA ON MAGNETIC TAPE								8	081766 122967	66-075A-06A		
COUNT RATE PLOTS (COUNTS/SEC VS DAY NUMBER) AND TRAJECTORY PLOT ON MICROFILM								1	081766 122768	66-075A-06D		
COSMIC-RAY PROTON COUNTING RATES PUBLISHED IN 'SOLAR GEOPHYSICAL DATA'								32	030769 080771	66-075A-06E		
CELESTIAL MECHANICS	ANDERSON				NASA-JPL					66-075A-07		
SUPERIOR CONJUNCTION FARADAY ROTATION	LEVY				NASA-JPL					66-075A-08		
SUPERIOR CONJUNCTION FARADAY ROTATION DATA ON TAPE								1	061367 071967	66-075A-08A		
GEMINI 11-----02415-----UNTST-----09/12/66-----9/15/66-----161.-- 280.-- 28.83----66-081A												
NUCLEAR EMULSION	SHAPIRO				US NAVAL RESEARCH LAB					66-081A-01		
AIRGLOW HORIZON PHOTOGRAPHY	KOONEN									66-081A-02		
UV STAR FIELD CAMERA	HENIZE									66-081A-03		
ION-WAKE MEASUREMENT	MEDVED				ELECTRO-OPT SYSTEMS					66-081A-04		
LUNAR UV SPECTRAL REFLECTANCE	STOKES				NASA-JSC					66-081A-05		
SYNOPTIC TERRAIN PHOTOGRAPHS	LOWMAN, JR.				NASA-GSFC					66-081A-06		
SYNOPTIC WEATHER PHOTOGRAPHY	NAGLER				NOAA-NMC					66-081A-07		
DUST AND PARTICULATE MATTER BEHIND AND AHEAD OF THE MOON'S PATH	MORRIS				US GEOLOGICAL SURVEY					66-081A-08		
SYNERGISTIC EFFECTS OF RADIATION AND ZERO-G ON WHITE BLOOD + NEURBENDER					HOLIFIELD NATL LAB					66-081A-09		
IMAGE ORTHICON OBSERVATIONS OF ASTRONOMICAL PHENOMENA	HEMENWAY				DUDLEY OBS					66-081A-10		
OV3-2-----02517-----UNTST-----10/28/66-----										66-097A		
2 ELECTROSTATIC ANALYZERS	UNKNOWN				UNKNOWN					66-097A-01		
2 RETARDING POTENTIAL ANALYZERS	UNKNOWN				UNKNOWN					66-097A-02		
IMPEDENCE PROBE	UNKNOWN				UNKNOWN					66-097A-03		
MASS SPECTROMETER POSITIVE ION	UNKNOWN				UNKNOWN					66-097A-04		
PLASMA PROBES	UNKNOWN				UNKNOWN					66-097A-05		
ATMOSPHERIC DRAG	WULF-MATHIES				U OF BONN					66-097A-06		
OV4-3-----02524-----UNTST-----11/02/66-----										66-099A		
HEAT TRANSER APL 601	DELANEY				USAF AEROPROPUL LAB					66-099A-01		
MICROMETERITE DETECTOR CRL 574	SOBERMAN				GENERAL ELECTRIC CO					66-099A-02		
BIO CELL SAM 501	IRVINE				USAF AEROSPACE MED					66-099A-03		
ORBIS(LOW) CRLF 738	MULLEN				USAF GEOPHYS LAB					66-099A-04		
FUEL CELL APL 704	HAROOTYAN, JR.				USAF AEROPROPUL LAB					66-099A-05		
GEMINI 12-----02566-----UNTST-----11/11/66-----11/15/66-----243.-- 310.-- 28.78----66-104A												
FROG EGG GROWTH	UNKNOWN				UNKNOWN					66-104A-01		
SYNOPTIC TERRAIN PHOTOGRAPHS	LOWMAN, JR.				NASA-GSFC					66-104A-02		
SYNOPTIC WEATHER PHOTOGRAPHY	NAGLER				NOAA-NMC					66-104A-03		
MICROMETEOROID CRATERING	HEMENWAY				DUDLEY OBS					66-104A-04		
AIRGLOW HORIZON PHOTOGRAPHY	KOONEN				US NAVAL RESEARCH LAB					66-104A-05		
MICROMETEORITES	HEMENWAY				DUDLEY OBS					66-104A-06		
UV STAR FIELD CAMERA	HENIZE				NASA-JSC					66-104A-07		
EARTH MOON LIBRATION REGION PHOTOGRAPHY	MORRIS				CNR-SA					66-104A-08		
SODIUM CLOUD PHOTOGRAPHY	BLAMONT				NASA-JSC					66-104A-09		
TRI AXIS MAGNETOMETER	WOMACK				NASA-JSC					66-104A-10		
LUNAR UV SPECTRAL REFLECTANCE	STOKES				LOCKHEED ELECTRONICS					66-104A-11		
BETA SPECTROMETER	MARBACH				UNKNOWN					66-104A-12		
BREMSSTRAHLUNG SPECTROMETER	UNKNOWN				USAF GEOPHYS LAB					66-104A-13		
POSITIVE ION SENSING	SMIDDY				US NAVAL RESEARCH LAB					66-104A-14		
UV PICTURES OF THE INNER CORONA	TOUSEY									66-104A-15		

AIM FILE IONOSPHERIC PHYSICS LISTING

SATELLITE NAME INVESTIGATION NAME DATA SET NAME	ALTERNATE NAMES	COUNTRY	LAUNCH DATE	INOP DATE	PERIAPSIS	APOAPSIS	INCLINATION	AGENCY	QUANTITY	TIME SPAN	NSSDC ID
DUST PARTICLES IN THE UPPER ATMOSPHERE		HEMENWAY			DUDLEY OBS						66-104A-16
ATS 1-----ATS-B-----	-----UNTST-----12/07/66-----		35782.---	35793.---	0.1-----	66-110A					
PREDICTED WORLD MAPS			27	120766	120379	66-110A-00A					
SUPRATHERMAL ION DETECTOR	FREEMAN	RICE U				66-110A-01					
SUPRATHERMAL ION DATA FROM THE ATS-1 SPECTROMETER ON BCD MAGNETIC TAPE			55	121066	021867	66-110A-01A					
BIAxIAL FLUXGATE MAGNETOMETER	COLEMAN, JR.	U OF CALIF, LA				66-110A-02					
2.5-MIN AVG VECTOR MAGNETOMETER DATA FROM SYNCHRONOUS ALTITUDE ON FILM			2	111767	122968	66-110A-02B					
2.5-MIN AVG VECTOR MAGNETOMETER DATA FROM SYNCHRONOUS ALTITUDE ON TAPE			3	120766	122968	66-110A-02C					
15-SEC AVG VECTOR MAGNETOMETER DATA FROM SYNCHRONOUS ALTITUDE ON FILM			4	121066	122968	66-110A-02D					
15-SEC AVG VECTOR MAGNETOMETER DATA FROM SYNCHRONOUS ALTITUDE ON TAPE			22	120766	122968	66-110A-02E					
ATS 1 COMMAND LOG ON FILM			1	120766	123068	66-110A-02F					
SPACECRAFT AND EXPERIMENT COMMAND LOG AS			1	120766	123168	66-110A-02G					
OMNIDIRECTIONAL SPECTROMETER	PAULIKAS	AEROSPACE CORP				66-110A-03					
PROTON AND ELECTRON FLUX VALUES ON TAPE			49	121766	120568	66-110A-03A					
PROTON AND ELECTRON FLUX VALUES ON REFORMATTED TAPE			10	121766	120568	66-110A-03C					
HOURLY AVERAGED PROTON FLUXES PUBLISHED IN 'SOLAR-GEOPHYSICAL DATA'			32	010170	083172	66-110A-03D					
ELECTRON SPECTROMETER	WINCKLER	U OF MINNESOTA				66-110A-04					
6-MIN AVERAGED COUNT RATES ON MAGNETIC TAPE			1	121966	123067	66-110A-04A					
6-MIN AVERAGED COUNT RATE PLOTS ON MICROFILM			1	121966	123067	66-110A-04B					
PARTICLE TELESCOPE	BROWN	BELL TELEPHONE LAB				66-110A-05					
PLOTS OF REDUCED PARTICLE COUNT RATES ON MICROFILM			7	120966	030167	66-110A-05A					
SOLAR CELL RADIATION DAMAGE	WADDLE	NASA-GSFC				66-110A-06					
THERMAL COATING DEGRADATION	TRIOLO	NASA-GSFC				66-110A-07					
RANGE RATE BEACON (NASA-GSFC)	UNKNOWN	UNKNOWN				66-110A-08					
SPIN-SCAN CLOUDCOVER CAMERA (SSCC)	SUOMI	U OF WISCONSIN				66-110A-09					
THE ATS METEOROLOGICAL DATA CONTROL ON MICROFICHE			42	010167	052570	66-110A-09A					
COMMUNICATION MICROWAVE TRANSPONDER (HUGHES CO.)	UNKNOWN	UNKNOWN				66-110A-10					
COMMUNICATION VHF TRANSPONDER (HUGHES CO.)	UNKNOWN	UNKNOWN				66-110A-11					
NUTATION SENSOR	UNKNOWN	UNKNOWN				66-110A-12					
RESISTO-JET THRUSTER	UNKNOWN	UNKNOWN				66-110A-13					
ELECTROSTATIC PARTICLE ANALYZER (CANCELLED)	HARRISON	TRW SYSTEMS GROUP				66-110A-14					
FARADAY ROTATION	DAROSA	STANFORD U				66-110A-15					
PUBLISHED PLOTS OF ANALYZED TOTAL ELECTRON CONTENT DATA			4	010167	123170	66-110A-15A					
TOTAL ELECTRON CONTENT, PLOTS AND TABULATIONS			14	010171	123171	66-110A-15B					
TOTAL ELECTRON CONTENT DATA ON MAGNETIC TAPE			1	010170	123071	66-110A-15C					
METEOROLOGICAL DATA RELAY SYSTEM	WISHNA	NASA-GSFC				66-110A-16					
ATS 2-----ATS-A-----	-----UNTST-----04/06/67-----9/00/68-----		178.---	11124.---	28.40-----	67-031A					
PREDICTED WORLD MAPS			3	040667	092468	67-031A-00A					
RADIO ASTRONOMY	STONE	NASA-GSFC				67-031A-01					
SEVEN-STEP 0.5- TO 3-MHZ RADIO FLUXES ON MAGNETIC TAPE			34	040667	102267	67-031A-01A					
RADIO FLUX LISTING ON MICROFILM			3	040676	102367	67-031A-01B					
PLOTS OF SINGLE FREQUENCY FLUX VS TIME ON MICROFILM			8	040967	102367	67-031A-01C					
PLOTS OF MULTIFREQUENCY FLUX VS TIME ON MICROFILM			1	040767	102367	67-031A-01D					
MAGNETOSPHERIC ELECTRIC FIELDS	AGGSON	NASA-GSFC				67-031A-02					
ELECTRON MAGNETIC DEFLECTION SPECTROMETER	WINCKLER	U OF MINNESOTA				67-031A-03					
PARTICLE TELESCOPE	BROWN	BELL TELEPHONE LAB				67-031A-04					
OMNIDIRECTIONAL PROTON AND ELECTRON DETECTORS	MCILWAIN	U OF CALIF, SAN DIEGO				67-031A-05					
REDUCED ELECTRON AND PROTON COUNT RATES ON MAGNETIC TAPE			31	040767	102367	67-031A-05A					
VLF RECEIVER	BROWN	BELL TELEPHONE LAB				67-031A-06					
EARTH'S ALBEDO (DOD)	UNKNOWN	UNKNOWN				67-031A-07					
COMMUNICATION MICROWAVE TRANSPONDER (HUGHES CO.)	UNKNOWN	UNKNOWN				67-031A-08					
GRAVITY GRADIENT STABILIZATION (GEN. ELECT. CO.)	UNKNOWN	UNKNOWN				67-031A-09					
ADVANCED VIDICON CAMERA SYSTEM (AVCS)	OSTROW	NASA-GSFC				67-031A-10					
THERMAL COATING DEGRADATION	TRIOLO	NASA-GSFC				67-031A-11					
SOLAR CELL DEGRADATION	WADDLE	NASA-GSFC				67-031A-12					
SAN MARCO 2-----SAN MARCO-B-----	KENYA-----04/26/67-----8/14/67-----		--	--	--	67-038A					
PREDICTED WORLD MAPS			1	081167	082367	67-038A-00A					
REFINED WORLD MAPS			2	042667	081467	67-038A-00B					
RADIO BEACON	BROGLIO	NATL RES COUNC ITALY				67-038A-01					
ATMOSPHERIC DRAG DENSITY ACCELEROMETER	BROGLIO	NATL RES COUNC ITALY				67-038A-02					
20MC BEACON	CARRARA	U OF FLORENCE				67-038A-03					
ARIEL 3-----UK 3-----	-----UNTST-----05/05/67-----12/14/70-----		497.---	608.---	80.17-----	67-042A					
PREDICTED WORLD MAPS			15	050567	121571	67-042A-00A					
REFINED ORBIT ELEMENTS AT 3 DAY INTERVALS			2	050667	121370	67-042A-00D					
LANGMUIR PROBE	SAYERS	U OF BIRMINGHAM				67-042A-01					
ELECTRON TEMPERATURE VALUES ON MAGNETIC TAPE			1	050567	101267	67-042A-01A					
ELECTRON TEMPERATURE PLOTS ON MICROFILM			11	050567	041468	67-042A-01B					
ELECTRON DENSITY AND TEMPERATURE PLOTS ON MICROFILM			12	050567	041568	67-042A-01C					
ELECTRON DENSITY AND TEMPERATURE LISTINGS ON MICROFILM			3	050667	123167	67-042A-01D					
GALACTIC RADIO NOISE SOURCES	SMITH	U OF CAMBRIDGE				67-042A-02					
MOLECULAR OXYGEN DISTRIBUTION	STEWART	METEOROLOGICAL OFFICE				67-042A-03					
MOLECULAR OXYGEN SMOOTHED VOLTAGE OUTPUT TAPES			2	050567	011268	67-042A-03A					
PRINTOUT OF MOLECULAR OXYGEN DENSITY PROFILES ON MICROFILM			1	050567	112167	67-042A-03B					
TERRESTRIAL RADIO (THUNDERSTORM) NOISE	MURPHY	UNKNOWN				67-042A-04					
PLOTS OF THUNDERSTORM NOISE VS LATITUDE ON MICROFILM			53	050567	041468	67-042A-04A					
VLF RECEIVER, FIXED-FREQUENCY SIGNAL STRENGTH	KAIER	U OF SHEFFIELD				67-042A-05					
MINIMUM, MAXIMUM, AND MEAN VLF SIGNAL STRENGTH VALUES ON MICROFILM			4	050567	093067	67-042A-05A					
MINIMUM, MAXIMUM, AND MEAN VLF SIGNAL STRENGTH VALUES ON TAPE			29	050567	041468	67-042A-05B					
RADIO FREQUENCY CAPACITANCE PROBE	SAYERS	U OF BIRMINGHAM				67-042A-06					
PLASMA FREQUENCY VALUES ON MAGNETIC TAPE			53	050567	041468	67-042A-06A					
PLASMA FREQUENCY PLOTS ON MICROFILM			11	050567	041468	67-042A-06B					
MARINER 5-----MARINER VENUS 67-----	-----UNTST-----06/14/67-----11/21/67-----		--	--	--	67-060A					
S-BAND OCCULTATION	KLIORE	NASA-JPL				67-060A-01					
TWO-FREQUENCY BEACON RECEIVER	ESHLEMAN	STANFORD U				67-060A-02					
HOURLY VALUES OF REDUCED TOTAL ELECTRON CONTENT DATA ON PUNCHED CARDS			1	061467	112167	67-060A-02A					
HOURLY VALUES OF REDUCED TOTAL ELECTRON CONTENT DATA ON MICROFILM			1	061467	112167	67-060A-02B					
DIGITAL VALUES OF SOLAR WIND ELECTRON DENSITY VS TIME NORMALIZED TO 1AU	BRIDGE	MASS INST OF TECH				67-060A-02C					
INTERPLANETARY ION PLASMA PROBE FOR			1	090167	102667	67-060A-03					

AIM FILE IONOSPHERIC PHYSICS LISTING

SATELLITE NAME INVESTIGATION NAME DATA SET NAME	ALTERNATE NAMES	COUNTRY	LAUNCH DATE	INOP DATE	PERIAPSIS	APOAPSIS	INCLINATION	AGENCY	QUANTITY	TIME SPAN	NSSDC ID
HOURLY AVERAGED PROTON PLASMA PARAMETERS ON 16-MM MICROFILM					1	061467	112167	U OF IOWA			67-060A-03A
HOURLY AVERAGED PROTON PLASMA PARAMETERS ON 7-TRACK BCD MAGNETIC TAPE					1	061467	112167	NASA-JPL			67-060A-03B
LISTINGS OF COUNTS/FRAME-FINE TIME RESOLUTION ON MICROFILM					1	061467	112167				67-060A-03C
HIGH TIME RESOLUTION PLASMA PARAMETERS MERGED WITH MAGNETIC FIELD VECTORS ON TAPE					1	061467	112167				67-060A-03D
TRAPPED RADIATION DETECTOR	VAN ALLEN	U OF IOWA									67-060A-04
TRIAXIAL LOW FIELD HELIUM MAGNETOMETER	SMITH	NASA-JPL									67-060A-05
FINE-TIME SCALE MAGNETOMETER DATA ON TAPE					1	061467	112167				67-060A-05A
1-, 3-, AND 24-HOUR AVERAGES OF INTERPLANETARY MAGNETIC FIELD VECTORS					1	061467	112167				67-060A-05B
1-DAY, 3-HR, AND 1-HR AVG PLOTS OF TRIAXIAL MAGNETOMETER DATA ON MICROFILM					1	061467	112167				67-060A-05C
TRIAXIAL MAGNETIC FIELD MEASUREMENTS FOR THE MARINER ENCOUNTER WITH VENUS					1	101967	101967				67-060A-05D
MAGNETIC FIELD VECTORS MERGED WITH HIGH TIME RESOLUTION PLASMA PARAMETERS ON TAPE					1	061467	112167				67-060A-05E
ULTRAVIOLET PHOTOMETER	BARTH	U OF COLORADO									67-060A-06
CELESTIAL MECHANICS	ANDERSON	NASA-JPL									67-060A-07
DOPPLER RADIO TRACKING DATA ON TAPE					2	061467	112067				67-060A-07A
OGO 4 ----- OGO-D ----- UNTST --- 07/28/67 ---- 2/00/70 ----			412.--	908.--	86.--						67-073A
PREDICTED WORLD MAPS					6	012769	102171				67-073A-00A
MASTER ORBIT WORLD MAPS					11	072867	080669				67-073A-00C
ORBIT ATTITUDE DATA ON MAGNETIC TAPE					2	072867	050868				67-073A-00D
RADIO ASTRONOMY	HADDOCK	U OF MICHIGAN									67-073A-01
VLF NOISE AND PROPAGATION	HELLIWELL	STANFORD U									67-073A-02
VLF RECEIVER, DARTMOUTH	MORGAN	DARTMOUTH COLLEGE									67-073A-03
TRIAXIAL SEARCH-COIL MAGNETOMETER	SMITH	NASA-JPL									67-073A-05
MAGNETIC SURVEY, RUBIDIUM VAPOR MAGNETOMETER	CAIN	US GEOLOGICAL SURVEY									67-073A-06
RUBIDIUM MAGNETOMETER DATA					11	072967	011969				67-073A-06A
COSMIC-RAY IONIZATION	ANDERSON	SCIENCE APPL, INC									67-073A-07
MICROFILM PLOTS OF TOTAL IONIZATION RATES AND SATELLITE ALT. VS INVARIANT LAT.	SIMPSON	U OF CHICAGO			1	073067	081167				67-073A-07A
LOW-ENERGY PROTON, ALPHA PARTICLE MEASUREMENT					291	072867	020269				67-073A-08
REDUCED COSMIC-RAY COUNT RATE AND ORBITAL DATA MERGED ON MAGNETIC TAPE					15	072967	120768				67-073A-08B
COUNT RATE PLOTS (R VS ENERGY LOSS) AND ORBITAL DATA ON MICROFILM					2	073067	082767				67-073A-09
GALACTIC AND SOLAR COSMIC RAYS	WEBBER	U OF NEW HAMPSHIRE			1	073067	082767				67-073A-09A
REDUCED COSMIC-RAY DATA ON TAPE 50-2000 MEV/NUCLEON					1	073067	082767				67-073A-09B
PLOTS OF PARTICLE COUNT RATES ON MICROFILM					1	073067	082767				67-073A-09C
NSSDC STANDARD TAPE VERSION OF PHA PART OF DATA SET 67-073A-09A					1	073067	082767				67-073A-10
LOW-ENERGY PROTON AND ELECTRON	VAN ALLEN	U OF IOWA									67-073A-11
LOW-ENERGY AURORAL PARTICLE DETECTOR	HOFFMAN	NASA-GSFC									67-073A-11
LOW-ENERGY (AURORAL) PARTICLE COUNT RATES ON MAGNETIC TAPE					77	073067	012569				67-073A-11A
REDUCED COUNT RATE DATA ON MAGNETIC TAPE					101	073067	012569				67-073A-11D
LISTINGS OF DATA ACQUISITION TIMES ON MICROFILM					1	073067	012569				67-073A-11E
PLOTS OF 0.576-MIN AVERAGED COUNT RATE DATA FROM THREE DETECTORS ON MICROFILM					5	073067	011469				67-073A-11F
MICROFILMED PLOTS OF PORTIONS OF THE SATELLITE ORBIT WHERE DATA WERE TAKEN	REED	NASA-GSFC			3	073067	012569				67-073A-11G
AIRGLOW PHOTOMETER											67-073A-12
AIRGLOW DATA MAPS AS COLOR TRANSPARENCIES					19	083067	011068				67-073A-12A
AIRGLOW DATA MAPS AS COLOR NEGATIVES					19	083067	011068				67-073A-12B
AIRGLOW INTENSITIES ON MAGNETIC TAPE					9	081967	011968				67-073A-12C
AIRGLOW DATA MAPS BY ORBIT ON MICROFILM					11	081967	012968				67-073A-12D
SECOND BY SECOND AIRGLOW DATA ON FILM					40	072967	122168				67-073A-12E
CALIBRATION DATA ON FILM					6	072867	123068				67-073A-12F
DIRECTORY PLOTS ON FILM					1	072967	071969				67-073A-12G
SYNOPTIC POLAR PLOTS ON FILM					18	072967	013168				67-073A-12H
LATITUDE-LONGITUDE PLOTS ON FILM					19	081967	012968				67-073A-12I
ELECTROMETER OUTPUTS VS LATITUDE ON FILM					16	083067	011668				67-073A-12J
ZONAL AVERAGES ON TAPE					1	072967	122168				67-073A-12K
CALIBRATION DATA ON TAPE					4	072867	123068				67-073A-12M
DIRECTORY DATA ON TAPE					9	072967	112468				67-073A-12N
PHOTOMETER OUTPUT MAP ON MAGNETIC TAPE					11	081967	012968				67-073A-12O
SECOND BY SECOND AIRGLOW DATA ON TAPE					46	072967	100268				67-073A-12P
SYNOPTIC AIRGLOW DATA ON TAPE					6	081967	013168				67-073A-12Q
LYMAN-ALPHA AND UV AIRGLOW STUDY	MANGE	US NAVAL RESEARCH LAB									67-073A-13
AIRGLOW RADIATION INTENSITY PLOTS ON MICROFILM					2	072967	021268				67-073A-13A
UV SPECTROMETER 1100-1750A, 1750-3400A	BARTH	U OF COLORADO			1	083067	022968				67-073A-14
OZONE DATA ON MAGNETIC TAPE											67-073A-14A
NEUTRAL PARTICLE AND ION MEASUREMENTS	JONES	U OF MICHIGAN									67-073A-15
POSITIVE ION COMPOSITION	TAYLOR, JR.	NASA-GSFC									67-073A-16
NEUTRAL PARTICLE MEASUREMENTS	NEWTON	NASA HEADQUARTERS									67-073A-17
INTERPLANETARY DUST PARTICLES	NILSSON	FLINDERS U OF S AUST									67-073A-18
POSITIVE ION STUDY	CHANDRA	NASA-GSFC									67-073A-19
SOLAR UV EMISSIONS	HINTEREGGER	USAF GEOPHYS LAB									67-073A-20
SOLAR X-RAY EMISSIONS	KREPLIN	US NAVAL RESEARCH LAB									67-073A-21
SOLAR X-RAY PLOTS ON MICROFILM					19	072967	071668				67-073A-21A
HOURLY AVERAGED SOLAR X-RAY FLUXES ON MAGNETIC TAPE					1	072967	071568				67-073A-21B
HOURLY AVERAGED SOLAR X-RAY FLUXES ON MICROFILM					1	072967	071568				67-073A-21C
PLOTS OF X-RAY FLUXES DURING SOLAR FLARES ON MICROFILM					1	073067	122067				67-073A-21D
SOLAR X-RAY FLUXES - FOUR BANDS ON MAGNETIC TAPE					4	100267	071568				67-073A-21E
NSSDC STANDARD TAPE OF 67-073A-21E					1	100267	071568				67-073A-21F
FOUR BAND SOLAR X-RAY 0.5-6 ANGSTROMS, MICROFILM					1	073067	122076				67-073A-21G
COSMOS 184 ----- KOSMOS 184 ----- USSR --- 10/24/67 ---- 5/00/68 ----			600.--	638.--	81.19	--	67-102A				
DUAL VIDEOCAM CAMERAS	UNKNOWN	SOVIET ACAD OF SCI									67-102A-01
SCANNING HRIR	UNKNOWN	SOVIET ACAD OF SCI									67-102A-02
ACTINOMETRIC INSTRUMENT	UNKNOWN	SOVIET ACAD OF SCI									67-102A-03
ION DETECTOR	UNKNOWN	UNKNOWN									67-102A-04
ICM DETECTORS	PONOMAREV	UNKNOWN									67-102A-05
ATS 3 ----- ATS-C ----- UNTST --- 11/05/67 ----			-----	35776.--	35812.--	0.45	--	67-111A			
PREDICTED WORLD MAPS					23	051270	052978				67-111A-00A
MULTICOLOR SPIN-SCAN CLOUDCOVER CAMERA (MSSCC)	SUOMI	U OF WISCONSIN			5	110567	052570				67-111A-01
METEOROLOGICAL DATA CATALOG FOR THE APPLICATIONS TECHNOLOGY SATELLITES	DAROSA	STANFORD U									67-111A-02
RADIO BEACON					10	120167	010272				67-111A-02A
TOTAL ELECTRON CONTENT, PLOTS AND TABULATIONS					5	113067	121972				67-111A-02B
TOTAL ELECTRON CONTENT FOR MAGNETIC STORM FROM 1967 THROUGH 1972 ON MICROFICHE					5	110167	033174				67-111A-02C
TOTAL ELECTRON CONTENT (AFTRL MEDIAN) NEAR 39 DEG N											67-111A-03
IMAGE DISSECTOR CAMERA (IDC)	BRANCHFLOWER	SPAR AEROSPACE			42	110767	073169				67-111A-03A
THE ATS METEOROLOGICAL DATA CATALOG ON MICROFICHE											67-111A-03C

AIM FILE IONOSPHERIC PHYSICS LISTING

SATELLITE NAME INVESTIGATION NAME DATA SET NAME	ALTERNATE NAMES	COUNTRY	LAUNCH DATE	INOP DATE	PERIAPSIS	APOAPSIS	INCLINATION	PI	AGENCY	QUANTITY	TIME SPAN	NSSDC ID
COMMUNICATION MICROWAVE TRANSPONDER (HUGHES CO.)		UNKNOWN			UNKNOWN				USAF GEOPHYS LAB			67-111A-04
COMMUNICATION VHF RADIO TRANSPONDER (HUGHES CO.)		UNKNOWN			UNKNOWN				USAF GEOPHYS LAB			67-111A-05
SEIF CONTAINED NAVIGATION EXPERIMENT (CDC CO.)		UNKNOWN			UNKNOWN				USAF GEOPHYS LAB			67-111A-06
REFLECTROMETER EXPERIMENT		UNKNOWN			UNKNOWN				USAF GEOPHYS LAB			67-111A-07
HYDRAZINE THRUSTER		UNKNOWN			UNKNOWN				USAF GEOPHYS LAB			67-111A-08
RESISTO-JET THRUSTER		UNKNOWN			UNKNOWN				USAF GEOPHYS LAB			67-111A-09
METEOROLOGICAL DATA RELAY SYSTEM	HOLMES	NOAA-NESDIS							NOAA-NESDIS			67-111A-10
OMEGA POSITION AND LOCATION EQUIPMENT (OPLE)	LAUGHLIN	NASA-GSFC							NASA-GSFC			67-111A-11
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
OV3-6 ----- ATCOS 2 ----- UNTST ----- 12/05/67 -----												67-120A-04
ATMOSPHERIC COMPOSITION	NARCISI	USAF GEOPHYS LAB							USAF GEOPHYS LAB			67-120A-01
ATMOSPHERIC DENSITY	CHAMPION	USAF GEOPHYS LAB							USAF GEOPHYS LAB			67-120A-02
RADIO PROPAGATION DETECTOR	UNKNOWN	USAF GEOPHYS LAB							USAF GEOPHYS LAB			67-120A-03
ELECTRIC FIELD DETECTOR	UNKNOWN	USAF GEOPHYS LAB							USAF GEOPHYS LAB			67-120A-04
COSMIC RAY ANISOTROPY	UNKNOWN	USAF GEOPHYS LAB							USAF GEOPHYS LAB			67-120A-05
COSMIC RAY GRADIENT DETECTOR	UNKNOWN	USAF GEOPHYS LAB							USAF GEOPHYS LAB			67-120A-06
COSMIC DUST DETECTOR	UNKNOWN	USAF GEOPHYS LAB							USAF GEOPHYS LAB			67-120A-07
PIONEER 8 ----- PIONEER-C ----- UNTST ----- 12/13/67 -----			0.992--	1.088--	0.057----	-----	-----	-----	-----	-----	-----	67-123A-04
MULTI-COORDINATE SYSTEM EPHEMERIS TAPES			6	121367	111571				USAF GEOPHYS LAB			67-123A-00D
COMPRESSED EPHEMERIS DATA ON MAGNETIC TAPE			1	121367	111571				USAF GEOPHYS LAB			67-123A-00E
COROTATION DELAY TIME PLOTS AND LISTINGS ON MICROFILM			1	121367	110171				USAF GEOPHYS LAB			67-123A-00F
SINGLE-AXIS MAGNETOMETER	NESS	NASA-GSFC							NASA-GSFC			67-123A-01
HOURLY AVERAGED VECTOR MAGNETIC FIELD PLOTS ON MICROFILM			1	122367	120768				NASA-GSFC			67-123A-01A
MAGNETIC FIELD VECTOR 30-SEC AVERAGES ON TAPE			3	121367	120368				NASA-GSFC			67-123A-01B
HOURLY AVERAGED MAGNETIC FIELD VECTORS ON MAGNETIC TAPE			1	121767	123069				NASA-GSFC			67-123A-01C
ELECTROSTATIC ANALYZER	WOLFE	NASA-ARC	36	121467	010574				NASA-ARC			67-123A-02
ANALYZED PLASMA PARAMETERS ON MICROFILM									NASA-ARC			67-123A-02A
TWO-FREQUENCY BEACON RECEIVER	ESHLEMAN	STANFORD U							STANFORD U			67-123A-03
HOURLY VALUES OF REDUCED TOTAL ELECTRON CONTENT DATA ON PUNCHED CARDS			1	121467	082569				STANFORD U			67-123A-03A
HOURLY VALUES OF REDUCED TOTAL ELECTRON CONTENT DATA ON MICROFILM			1	121467	082569				STANFORD U			67-123A-03B
DIGITAL VALUES OF SOLAR WIND ELECTRON DENSITY VS TIME NORMALIZED TO 1 AU			1	121967	030771				STANFORD U			67-123A-03C
MICROFILM PLOTS OF SOLAR WIND ELECTRON DENSITY VS TIME NORMALIZED TO 1 AU			1	022068	083070				STANFORD U			67-123A-03D
COSMIC DUST DETECTOR	BERG	NASA-GSFC							NASA-GSFC			67-123A-04
COSMIC-RAY ANISOTROPY	MCCRACKEN	CSIRO							CSIRO			67-123A-05
7.5-MIN AND 1-HR COUNT RATES FOR ALL MODES ON MAGNETIC TAPE			6	121367	033169				CSIRO			67-123A-05A
7.5-MIN AND 1-HR COUNT RATES, ALL MODES, ON MICROFILM			3	032169	123170				CSIRO			67-123A-05B
COSMIC-RAY GRADIENT DETECTOR	WEBBER	U OF NEW HAMPSHIRE							U OF NEW HAMPSHIRE			67-123A-06
20-MIN AVERAGES OF PARTICLE COUNT RATES ON MICROFILM			1	121367	041068				U OF NEW HAMPSHIRE			67-123A-06A
8-HR AVERAGES OF ALPHA PARTICLE COUNT RATES ON MICROFILM			1	121367	042168				U OF NEW HAMPSHIRE			67-123A-06B
PROTON COUNT RATES PUBLISHED IN 'SOLAR-GEOPHYSICAL DATA'			52	120169	052875				U OF NEW HAMPSHIRE			67-123A-06C
DAILY AVERAGED COUNT RATE LISTINGS ON MICROFILM			1	121367	110571				U OF NEW HAMPSHIRE			67-123A-06D
DAILY AVERAGED COUNT RATE PLOTS ON MICROFILM			1	121367	110671				U OF NEW HAMPSHIRE			67-123A-06E
PLASMA WAVE DETECTOR	SCARP	TRW SYSTEMS GROUP							TRW SYSTEMS GROUP			67-123A-07
REDUCED ELECTRIC FIELD DATA ON MICROFILM			16	121367	100768				TRW SYSTEMS GROUP			67-123A-07A
SUMMARY PLOTS OF EACH EXPERIMENT CYCLE ON MICROFILM			2	121367	092368				TRW SYSTEMS GROUP			67-123A-07B
CELESTIAL MECHANICS	ANDERSON	NASA-JPL							NASA-JPL			67-123A-08
OGO 5 ----- OGO-E ----- UNTST ----- 03/04/68 ----- 10/08/71 -----			272. -- 148228. --	31.1	-----	-----	-----	-----	-----	-----	-----	68-014A
PREDICTED WORLD MAPS			2	010470	081272				-----			68-014A-00A
MASTER ORBIT WORLD MAPS			24	030468	100971				-----			68-014A-00C
MULTI-COORDINATE EPHEMERIS DATA ON MICROFILM			5	030468	100471				-----			68-014A-00D
TABLE OF EPHEMERIS PARAMETERS ON MICROFILM			12	030468	042670				-----			68-014A-00E
SUPER Spherical ELECTROSTATIC PROBE	BOYD	U COLLEGE LONDON							U COLLEGE LONDON			68-014A-01
PLASMA TEMPERATURE, DENSITY AND FLUX	SAGALYN	USAF GEOPHYS LAB							USAF GEOPHYS LAB			68-014A-02
LOW-ENERGY INTEGRAL SPECTRAL MEASUREMENT	SERBU	NASA-GSFC							NASA-GSFC			68-014A-03
ENERGETIC RADIATIONS FROM SOLAR FLARES	ANDERSON	U OF CALIF. BERKELEY							U OF CALIF. BERKELEY			68-014A-04
14.7-SECOND-AVERAGED ELECTRON AND X-RAY COUNT RATES ON MAGNETIC TAPE			3	053168	100469				U OF CALIF. BERKELEY			68-014A-04A
40-SEC AVERAGED X-RAY COUNT RATES ON MAGNETIC TAPE			10	030868	100469				U OF CALIF. BERKELEY			68-014A-04B
PROTON AND ALPHA PARTICLE COUNT RATES ON MAGNETIC TAPE			2	030868	111769				U OF CALIF. BERKELEY			68-014A-04C
STUDY OF PROTONS, ELECTRONS, POSITRONS, AND GAMMA RAYS	CLINE	NASA-GSFC							NASA-GSFC			68-014A-05
ELECTRON AND PROTON SPECTROMETER	WEST, JR.	LAWRENCE LIVERMORE LAB							LAWRENCE LIVERMORE LAB			68-014A-06
20-MIN COUNT RATE PLOTS ON MICROFILM			30	030468	061368				LAWRENCE LIVERMORE LAB			68-014A-06A
2-HR COUNT RATE PLOTS ON MICROFILM			93	030668	110671				LAWRENCE LIVERMORE LAB			68-014A-06B
PARTICLE COUNT RATE, EPHEMERIS, AND MAGNETIC FIELD DATA ON MAGNETIC TAPES			35	052368	050169				LAWRENCE LIVERMORE LAB			68-014A-06C
L-SORTED INNER-ZONE CORRECTED ELECTRON FLUXES, CHANNELS 1 TO 5, ON MAGNETIC TAPE			1						LAWRENCE LIVERMORE LAB			68-014A-06D
LOW-ENERGY PROTON AND ELECTRON DIFFERENTIAL ENERGY ANALYZER (LEPEFRANK)									U OF IOWA			68-014A-07
ENERGETIC PHOTONS IN PRIMARY COSMIC RAYS	HUTCHINSON	U OF SOUTHAMPTON							U OF SOUTHAMPTON			68-014A-08
COSMIC-RAY ELECTRONS	MEYER	U OF CHICAGO							U OF CHICAGO			68-014A-09
SELECTION OF VARIOUS PLOTS FOR PROTONS AND FOR ELECTRONS ON MICROFILM			1	030568	071372				U OF CHICAGO			68-014A-09A
PARTICLE ACCUMULATIONS AND PULSE HEIGHT ANALYSIS ON MAGNETIC TAPE			106	030568	071472				U OF CHICAGO			68-014A-09B
TRIAXIAL ELECTRON ANALYZER	MCDONALD	NASA-GSFC							NASA-GSFC			68-014A-10
MEASUREMENT OF THE ABSOLUTE FLUX AND ENERGY SPECTRUM OF ELECTRONS VAN DE HULST	OGILVIE	NASA-GSFC							NASA-GSFC			68-014A-11
DAILY AVERAGED COSMIC-RAY ELECTRON AND PROTON COUNT RATES			1	030568	083171				NASA-GSFC			68-014A-12
0.5 TO 10 GEV COSMIC RAY ELECTRON COUNT RATES ON MICROFILM			1	030568	083171				NASA-GSFC			68-014A-12A
PARTICLE WAVE STUDY	COLEMAN, JR.	U OF CALIF. LA	89	030568	042070				U OF CALIF. LA			68-014A-12B
REAL TIME TELEMETRED ELECTRON DATA, 0.05 TO 1.2 MEV ON MAGNETIC TAPE			6	030368	021471				U OF CALIF. LA			68-014A-13
TAPE PLAYBACK ELECTRON DATA, 0.05 TO 1.2 MEV ON MAGNETIC TAPE			16	030568	111869				U OF CALIF. LA			68-014A-13B
UCLA TRIAXIAL FLUXGATE MAGNETOMETER	COLEMAN, JR.	U OF CALIF. LA							U OF CALIF. LA			68-014A-14
1-MIN AVERAGED VECTOR MAGNETIC FIELD DATA ON MICROFILM			14	030568	090168				U OF CALIF. LA			68-014A-14A
1-MIN AVG VECTOR MAGNETIC FIELD AND RMS NOISE AMPLITUDE DATA TAPES IN S/C COORD.			5	030568	011069				U OF CALIF. LA			68-014A-14B
4.608-SEC AVERAGED FLUXGATE MAGNETOMETER DATA IN SPACECRAFT COORDINATES ON TAPE			40	030568	080669				U OF CALIF. LA			68-014A-14C
4.608-S AVERAGED FLUXGATE MAGNETOMETER B-FIELD PLOTS IN S/C COORDS ON MICROFILM			14	030568	090168				U OF CALIF. LA			68-014A-14D
1-MIN AVG VECTOR MAGNETIC FIELD DATA ON TAPE IN GSE COORDINATES			15	030568	050570				U OF CALIF. LA			68-014A-14E
1-MIN AVG VECTOR MAGNETIC FIELD DATA ON TAPE IN GSM COORDINATES			4	030668	080371				U OF CALIF. LA			68-014A-14F
LISTING OF MAGNETOSPHERIC-B, MODEL-B, L, DIPOLE DATA ON MICROFILM			15	030768	032168				U OF CALIF. LA			68-014A-14H
HIGHEST TIME RESOLUTION INTERPLANETARY B DATA FROM ORBITS 2 TO 7 FOR SPECTRUM ANAL.									U OF CALIF. LA			68-014A-14I
MAGNETIC SURVEY USING TWO MAGNETOMETERS	HEPPNER	NASA-GSFC							NASA-GSFC			68-014A-15
SCALAR RUBIDIUM MAGNETOMETER MAGNETIC FIELD MEASUREMENTS ON 35-MM MICROFILM			71	030568	051370				NASA-GSFC			68-014A-15A
36.9-SEC AVG MAGNETIC FIELD VECTORS IN SPACECRAFT AND VARIOUS GEOPHYSICAL COORDS			141	031568	030870				NASA-GSFC			68-014A-15B
AN INDEX TO TIMES WHEN DATA WAS RECORDED FROM THE RUBIDIUM MAGNETOMETER			1	030768	100372				NASA-GSFC			68-014A-15C
TRIAXIAL SEARCH-COIL MAGNETOMETER	SMITH	NASA-JPL							NASA-JPL			68-014A-16

AIM FILE IONOSPHERIC PHYSICS LISTING

SATELLITE NAME INVESTIGATION NAME DATA SET NAME	ALTERNATE NAMES	COUNTRY	LAUNCH DATE	INOP DATE	PERIAPSIS	APOAPSIS	INCLINATION	
			PI		AGENCY	QUANTITY	TIME SPAN	NSSDC ID
2.5-MIN-AVG SEARCH-COIL MAGNETOMETER	NOISE AMPLITUDES, 0.03-1000 HZ, MICROFILM			6	030768	030771		68-014A-16A
SEARCH-COIL MAGNETOMETER SUMMARY TAPES, 36.9-SEC TIME RESOLUTION				45	030768	010171		68-014A-16B
INDEX TO THE MAGNETIC TAPES CONTAINING SEARCH COIL 37 SEC. AVERAGED DATA				1	030768	021971		68-014A-16C
FREQUENCY TIME SPECTROGRAMS FOR 0-1000 HZ ANALOG SEARCH-COIL MAGNETOMETER, MICROFILM				27	030668	102768		68-014A-16D
MICROFILM INDEX TO FREQUENCY-TIME 0-1 KHZ SEARCH-COIL SPECTROGRAMS, 68-014A-16D				1	030668	042568		68-014A-16E
PLASMA SPECTROMETER	SYNDR	NASA-JPL						68-014A-17
PLOTS OF HOUR AVERAGED PROTON BULK SPEED, 27 DAYS PER FRAME ON MICROFICHE				2	030568	043071		68-014A-17A
HOUR-AVERAGED PLASMA PARAMETERS				2	030568	043071		68-014A-17B
LISTING OF HIGH TIME RESOLUTION INTER- PLANETARY PLASMA PARAMETERS ON MICROFILM				2	050868	043071		68-014A-17C
HIGH TIME RESOLUTION PLASMA DATA AND PLASMA PARAMETERS ON MAGNETIC TAPE				12	030568	043071		68-014A-17D
HIGH TIME RESOLUTION PLOTS OF SOME PLASMA PARAMETERS ON MICROFILM				5	030568	043071		68-014A-17E
LISTING OF HOURLY AVERAGED INTERPLANETARY PLASMA PARAMETERS				1	030568	043071		68-014A-17F
LIGHT ION MASS MAGNETIC SPECTROMETER	SHARP	NASA HEADQUARTERS						68-014A-18
OXYGEN, HELIUM, AND HYDROGEN ION CONCENTRATIONS AND EPHEM DATA ON MAG TAPE				14	030768	053169		68-014A-18A
50 KHZ TO 3.5 MHZ SOLAR RADIO ASTRONOMY IN EIGHT STEPS	HADDOCK	U OF MICHIGAN						68-014A-20
SOLAR RADIO EMISSIONS VS TIME FOR 8 FREQUENCY CHANNELS, ON MICROFILM				50	030568	093071		68-014A-20A
ULTRAVIOLET AIRGLOW	THOMAS	U OF COLORADO						68-014A-21
AIRGLOW INTENSITIES AT 1304 Å AND 1216 Å ON MAGNETIC TAPES				456	030468	062872		68-014A-21A
CALCOMP PLOTS OF UV AIRGLOW AT 1216 Å AND 1304 Å ON MICROFILM				1	032768	052069		68-014A-21B
GEOCORONAL LYMAN-ALPHA MEASUREMENT	BLAMONT	CNR-SA						68-014A-22
LYMAN ALPHA GEOCORONAL DATA ON MAGNETIC TAPES				32	030568	123169		68-014A-22A
SOLAR X-RAY EMISSIONS	KREPLIN	US NAVAL RESEARCH LAB						68-014A-23
SOLAR X-RAY VARIATION ON MICROFILM				1	030868	122769		68-014A-23A
PLASMA WAVE DETECTOR	CROOK	GAINES M. CROOK ASSOC						68-014A-24
ORIGINAL ELECTRIC FIELD SONOGRAMS ON MICROFILM				40	031168	010371		68-014A-24A
TABULATED 3-MINUTE ELECTRIC AND MAGNETIC WAVE ENVELOPES ON MICROFILM				5	031168	011171		68-014A-24C
3.26-MIN-AVERAGED ELECTRIC AND MAGNETIC DIGITAL SPECTRUM ANALYSES ON MAGNETIC TAPE				5				68-014A-24D
SELECTED 0-10 KHZ SPECTRA, MAGNETOSPHERIC AND PLASMAPHERIC BOUNDARIES ON MICROFILM				14	031468	051269		68-014A-24E
OPEP 2-SCAN MECHANISM	BROWNING	NASA-GSFC						68-014A-25
ELECTRIC FIELD MEASUREMENT	AGGSON	NASA-GSFC						68-014A-26
LOW-ENERGY HEAVY COSMIC-RAY PARTICLES	SIMPSON	U OF CHICAGO						68-014A-27
HIGH-ATOMIC-WEIGHT, LOW-ENERGY COSMIC-RAY COUNT RATES & P.H.A. DATA ON MAGNETIC TAPE				6	030568	071472		68-014A-27A
HIGH-ATOMIC-WEIGHT, LOW-ENERGY COSMIC-RAY COUNT RATE PLOTS ON MICROFILM				1	030568	071372		68-014A-27B
OV1-14-----PL-682E-----UNTST---04/06/68-----								68-026B
OMNIDIRECTIONAL PROTON + ELECTRON SPECTROMETER	UNKNOWN	UNKNOWN						68-026B-01
MAGNETIC ELECTRON SPECTROMETER	UNKNOWN	UNKNOWN						68-026B-02
TRAPPED	UNKNOWN	UNKNOWN						68-026B-03
PROTON FLUXES + SPECTRA	UNKNOWN	UNKNOWN						68-026B-04
DE/DX+E PARTICLE TELESCOPE	UNKNOWN	UNKNOWN						68-026B-05
DE/DX+R PARTICLE TELESCOPE	UNKNOWN	UNKNOWN						68-026B-06
VERY LOW FREQUENCY + LOW FREQUENCY PLASMA WAVE	UNKNOWN	UNKNOWN						68-026B-07
LYMAN-ALPHA	UNKNOWN	UNKNOWN						68-026B-08
FARADAY CUP	UNKNOWN	UNKNOWN						68-026B-09
RAE-A-----RADIO ASTRONOMY EXPLORER--UNTST---07/04/68-----								68-055A
PREDICTED WORLD MAPS	1	063072	012973					68-055A-00A
REFINED WORLD MAPS	17	070768	070572					68-055A-00B
STEP FREQUENCY RADIOMETERS	STONE	NASA-GSFC						68-055A-01
RYLE-VONBERG RECEIVER PLOTS	STONE	NASA-GSFC						68-055A-01A
RADIO BURSTS RECEIVERS	STONE	NASA-GSFC						68-055A-02
SWEEP FREQUENCY BURST RECEIVER CONTOUR PLOTS		308	092568	122572				68-055A-02A
SWEEP FREQUENCY BURST RECEIVER MULTIGRID PLOTS		79	052569	031371				68-055A-02B
BURST RECEIVER MULTIGRID TEN-MINUTE PLOTS		530	092668	120372				68-055A-02C
FULL ORBIT BURST RECEIVER PLOTS		1041	072368	072071				68-055A-02D
CAPACITANCE PROBE	STONE	NASA-GSFC						68-055A-03
IMPEDANCE PROBE	STONE	NASA-GSFC						68-055A-04
PLANAR ELECTRON TRAP	STONE	NASA-GSFC						68-055A-05
OV1-15-----PL-682F-----UNTST---07/11/68----11/06/68-----								68-059A
TRIAXIAL ACCELEROMETER	CHAMPION	USAF GEOPHYS LAB						68-059A-01
TRIAXIAL ACCELEROMETER ATMOSPHERIC DENSITY PLOTS				1	071468	092868		68-059A-01A
ION DENSITY GAUGE	UNKNOWN	UNKNOWN						68-059A-02
2 QUAD MASS SPECTROMETERS	UNKNOWN	UNKNOWN						68-059A-03
NEUTRAL MASS SPECTROMETER (CICS)	UNKNOWN	UNKNOWN						68-059A-04
RAM ATMOSPHERE DENSITY GAUGE	ELLIOITT	SRI INTERNATIONAL						68-059A-05
ATMOSPHERIC DENSITY AT 250,300,350 AND 400 KM, FOR 13 AND 14 JUL 1968				1	071368	071468		68-059A-05A
SOLAR UV, 300 TO 2000 Å	MORSE	AEROSPACE CORP						68-059A-06
SOLAR X RAYS, 1 TO 60 Å	WALKER, JR.	STANFORD U						68-059A-07
ENERGETIC PARTICLE FLUX	UNKNOWN	UNKNOWN						68-059A-08
ION ATTITUDE SENSING	UNKNOWN	UNKNOWN						68-059A-09
BEACON TRACKING ATMOSPHERIC DRAG	CARTER	AEROSPACE CORP						68-059A-10
INJUN 5-----EXPLORER 40-----UNTST---08/08/68----5/31/70-----								68-066B
PREDICTED WORLD MAPS	665	2525	--	80.7				68-066B-00A
LOW-ENERGY PROTON AND ELECTRON DIFFERENTIAL ENERGY ANALYZER (LEPEFRANK)	8	080968	062370					68-066B-00B
MASTER FILE ON MAGNETIC TAPE, LEPEDEA COUNT RATES		949	080968	052970				68-066B-01A
VLF RECEIVER	GURNETT	U OF IOWA						68-066B-02
MASTER DATA TAPE, VLF SIGNAL STRENGTH		949	080968	052970				68-066B-02A
VLF DETECTOR DATA ON ANALOG TAPE		18016	090568	052670				68-066B-02B
SOLID-STATE PARTICLE DETECTOR	VAN ALLEN	U OF IOWA						68-066B-03
MASTER FILE ON MAGNETIC TAPE, PROTON, ELECTRON, AND ALPHA PARTICLE COUNT RATES		949	080968	052970				68-066B-03A
15-SEC AVERAGED EXPERIMENT-MODE PARTICLE 15-SEC AVERAGED PARTICLE		17	082968	053070				68-066B-03B
SPHERICAL RETARDING POTENTIAL ANALYZER	SAGALYN	USAF GEOPHYS LAB						68-066B-04
RETARDING POTENTIAL ANALYZER COUNT RATE DATA ON MAGNETIC TAPE		949	080968	052970				68-066B-04A
OV2-5-----PL-683G-----UNTST---09/26/68-----								68-081A
OMNIDIRECTIONAL ELECTRON FLUXES	UNKNOWN	UNKNOWN						68-081A-01
DE/DX+R PARTICLE TELESCOPE	UNKNOWN	UNKNOWN						68-081A-02
ELECTRON SPECTROMETER	UNKNOWN	UNKNOWN						68-081A-03
LOW ENERGY ELECTRON/PROTON	UNKNOWN	UNKNOWN						68-081A-04
LEMES	UNKNOWN	UNKNOWN						68-081A-05
ANGULAR DISTRIBUTION	UNKNOWN	UNKNOWN						68-081A-06
VERY LOW FREQUENCY RECEIVER	MCPHERSON	AEROSPACE CORP						68-081A-07

AIM FILE IONOSPHERIC PHYSICS LISTING

AIM FILE IONOSPHERIC PHYSICS LISTING

SATELLITE NAME INVESTIGATION NAME DATA SET NAME	ALTERNATE NAMES	COUNTRY	LAUNCH DATE	INOP DATE	PERIAPSIS	APOAPSIS	INCLINATION	PI	AGENCY	QUANTITY	TIME SPAN	NSSDC ID
OV1-18-----	03824-----	UNST	03/18/69		---	---	---		LOCKHEED PALO ALTO	---	---	69-025B
PLANAR ION TRAP					JOHNSON	SHARP	SHARP		LOCKHEED PALO ALTO	---	---	69-025B-01
MULTICHANNEL PARTICLE ANALYZERS					ZAMITES	HARRIS	LOCKHEED PALO ALTO		AEROSPACE CORP	---	---	69-025B-02
RADIO FREQUENCY INTERFERENCE					MOZER	SHARP	LOCKHEED PALO ALTO		69-025B-03	---	---	69-025B-04
0.5 TO 10 MEV NEUTRON SPECTROMETER					SHARP	SHARP	LOCKHEED PALO ALTO		U OF CALIF, BERKELEY	---	---	69-025B-05
ELECTRIC FIELD MEASUREMENT					REAGAN	JOHNSON	LOCKHEED PALO ALTO		LOCKHEED PALO ALTO	---	---	69-025B-06
SCINTILLATION PHOTOMULTIPLIER THRESHOLD DETECTORS							LOCKHEED PALO ALTO		LOCKHEED PALO ALTO	---	---	69-025B-07
CROSSED FIELD ANALYZER							LOCKHEED PALO ALTO		LOCKHEED PALO ALTO	---	---	69-025B-08
PENETRATING RADIATION MONITOR							LOCKHEED PALO ALTO		LOCKHEED PALO ALTO	---	---	69-025B-09
LANGMUIR PROBE												
OV1-17A-----	ORBIS CAL II-----	UNST	03/18/69		---	---	---		---	---	---	69-025D
TWO HIGH FREQUENCY RADIO FREQUENCY BEACONS					UNKNOWN	UNKNOWN	UNKNOWN			---	---	69-025D-01
OV5-9-----	PL-684F-----	UNST	05/23/69		---	---	---		6 060469 083171	---	---	69-046C
PREDICTED WORLD MAPS					STEVENS	BLAKE	VAMPOLA		AEROSPACE CORP	---	---	69-046C-00A
ELECTROSTATIC ANALYZER					VAMPOLA	VAMPOLA	VAMPOLA		AEROSPACE CORP	---	---	69-046C-01
DE/DX, E TELESCOPE					UNKNOWN	UNKNOWN	UNKNOWN		AEROSPACE CORP	---	---	69-046C-02
SOLAR FLARE ELECTRON SPECTROMETER					WALKER, JR.				UNKNOWN	---	---	69-046C-03
CERENKOV TELESCOPE									STANFORD U	---	---	69-046C-04
VLF WAVES										---	---	69-046C-05
SOLAR X RAY FLUX (0.3 TO 15 A)										---	---	69-046C-06
OGO 6-----	OCO-F-----	UNST	06/05/69	3/00/72	413.--	1077.--	82.--		---	---	---	69-051A
PREDICTED WORLD MAPS ON MICROFILM					2 011771 013172	13 060569 100571				---	---	69-051A-00A
EXTENDED WORLD MAPS (EPHEMERIDES) ON MICROFILM									NASA HEADQUARTERS	---	---	69-051A-00C
MICROPHONE ATMOSPHERIC DENSITY GAUGE					SHARP				8 061169 013170	---	---	69-051A-01
MICROPHONE DENSITY GAUGE DATA TAPES					NAGY				U OF MICHIGAN	---	---	69-051A-02
LANGMUIR PROBES					HANSON				U OF TEXAS, DALLAS	---	---	69-051A-03
PLANAR ION AND ELECTRON TRAP									9 060769 042371	---	---	69-051A-03A
PLOTS OF ION CONCENTRATION, ION									13 060769 042371	---	---	69-051A-03B
COMPOSITE (ION TEMP, ION/ELEC CONCENTRATION									30 060769 042371	---	---	69-051A-03C
ION DENSITY, FLUX AND TEMPERATURE SUMMARIES ON TAPE					REBER				NASA-GSFC	---	---	69-051A-04
NEUTRAL ATMOSPHERE COMPOSITION									1 062769 051371	---	---	69-051A-04A
ATMOSPHERIC COMPOSITION AND TEMPERATURE ON MICROFICHE									6 060669 062671	---	---	69-051A-04B
NEUTRAL ATMOSPHERIC COMPOSITION DATA ON TAPE					TAYLOR, JR.				NASA-GSFC	---	---	69-051A-05
ION MASS SPECTROMETER									10 061169 123170	---	---	69-051A-05A
BENNETT ION MASS SPECTROMETER DATA ON TAPE									13 061169 123170	---	---	69-051A-05B
ION MASS SPECTROMETER PLOTS ON MICROFILM					HANSON				U OF TEXAS, DALLAS	---	---	69-051A-06
ION MASS SPECTROMETER					MCKEOWN				FARADAY LAB	---	---	69-051A-07
ENERGY TRANSFER PROBE FOR ATMOSPHERIC DENSITY					KREPLIN				US NAVAL RESEARCH LAB	---	---	69-051A-08
SOLAR X-RAY EMISSIONS					BEDO				USAF GEOPHYS LAB	---	---	69-051A-09
SOLAR UV EMISSIONS					REGENER				U OF NEW MEXICO	---	---	69-051A-10
SOLAR UV SURVEY (1800 TO 3200 A)					BLAMONT				CNRS-SA	---	---	69-051A-11
AIRGLOW AND AURORAL EMISSIONS					CLARK				AEROSPACE CORP	---	---	69-051A-12
LYMAN-ALPHA PHOTOMETER									1 060869 060869	---	---	69-051A-12A
REDUCED PHOTOMETER CURRENTS, ATTITUDE AND EPHEMERIS DATA ON MAGNETIC TAPE					BARTH				U OF COLORADO	---	---	69-051A-13
UV PHOTOMETER									110 060969 072470	---	---	69-051A-13A
AIRGLOW INTENSITIES AT 1304 A AND 1216 A									1 060969 110570	---	---	69-051A-13B
CALCOMP PLOTS OF UV AIRGLOW DATA ON MICROFILM					BLAMONT				CNRS-SA	---	---	69-051A-14
LINE SHAPE OF THE 6300-A AIRGLOW EMISSION					EVANS				NOAA-ERL	---	---	69-051A-15
AURORAL PARTICLE MEASUREMENT					FARELY				U OF CALIF, LA	---	---	69-051A-16
TRAPPED AND PRECIPITATING ELECTRONS UCLA					WILLIAMS				APPLIED PHYSICS LAB	---	---	69-051A-17
TRAPPED AND PRECIPITATING ELECTRONS GSFC					LOCKWOOD				U OF NEW HAMPSHIRE	---	---	69-051A-18
NEUTRON MONITOR									2 060769 123169	---	---	69-051A-18A
1-MINUTE AVERAGED NEUTRON MONITOR COUNT RATES ON MAGNETIC TAPE					MASLEY				TRW SYSTEMS GROUP	---	---	69-051A-19
LOW-ENERGY COSMIC-RAY MEASUREMENT									1 060769 082670	---	---	69-051A-19A
SOLAR-PARTICLE EVENT SUMMARY PLOTS ON MICROFILM									38 060769 082670	---	---	69-051A-19B
POLAR-PASS AND ENERGY-SPECTRAL PLOTS DURING SOLAR EVENTS, ON MICROFILM					STONE				CALIF INST OF TECH	---	---	69-051A-20
COSMIC-RAY STUDY									349 060769 052570	---	---	69-051A-20A
PARTICLE COUNT RATES AND PULSE HEIGHT ANALYSIS ON MAGNETIC TAPE									37 060769 031771	---	---	69-051A-20B
PARTICLE COUNT RATES AND EPHEMERIS PLOTS ON MICROFILM									US GEOLOGICAL SURVEY	---	---	69-051A-21
MAGNETIC SURVEY, RUBIDIUM VAPOR MAGNETOMETER					CAIN				NASA-JPL	---	---	69-051A-22
TRIAXIAL SEARCH-COIL MAGNETOMETER					SMITH				5 061069 101370	---	---	69-051A-22A
36-SEC AVERAGED MAGNETOMETER DATA, MICROFILMED PLOTS									NASA-GSFC	---	---	69-051A-23
ELECTRIC FIELD MEASUREMENTS					AGGSON				STANFORD U	---	---	69-051A-24
VLF NOISE AND PROPAGATION					HELLIWELL				DARTMOUTH COLLEGE	---	---	69-051A-25
WHISTLER AND LOW-FREQUENCY ELECTRIC FIELD STUDY					LAASPERE				8 123069 123170	---	---	69-051A-25B
SUMMARY PRINTOUTS OF 0.2-1000 KHZ WB AND NB (200 + 500 KHZ) VLF NOISE INTENSITY									45 100671 011172	---	---	69-051A-25D
VLF WHISTLER WAVE (AND RELATED TWO COMPONENT GROUND) SPECTROGRAMS					DONAHUE				U OF MICHIGAN	---	---	69-051A-26
SODIUM AIRGLOW PHOTOMETER												
ATS 5-----	PL-692B-----	UNST	08/12/69		35777.--	35790.--	2.5----		24 081269 100879	---	---	69-069A
PREDICTED WORLD MAPS										---	---	69-069A-00A
ELECTRIC FIELDS MEASUREMENT					AGGSON				NASA-GSFC	---	---	69-069A-01
COSMIC RADIO NOISE, SOLAR RADIO BURSTS					STONE				NASA-GSFC	---	---	69-069A-02
OMNIDIRECTIONAL HIGH-ENERGY PARTICLE DETECTOR					MCILWAIN				U OF CALIF, SAN DIEGO	---	---	69-069A-03
TRI-DIRECTIONAL, MEDIUM-ENERGY PARTICLE DETECTOR					MOZER				U OF CALIF, BERKELEY	---	---	69-069A-04
FLUX OF ELECTRONS CENTERED AT 40,75,120 KEV & OF PROTONS AT 60,120,165 KEV ON TAPE									319 091169 040971	---	---	69-069A-04A
FLUX OF ELECTRONS CENTERED AT 40,75,120 KEV & OF PROTONS AT 60,120,165 KEV ON MFLM									3 091769 100170	---	---	69-069A-04B
PROTON ELECTRON DETECTOR					SHARP				LOCKHEED PALO ALTO	---	---	69-069A-05
MILLIMETER WAVE PROPAGATION EXPERIMENT					IPPOLITO				NASA-GSFC	---	---	69-069A-06
COMMUNICATION MICROWAVE TRANSPONDER (HUGHES CO.)					UNKNOWN				UNKNOWN	---	---	69-069A-07
COMMUNICATION L-BAND TRANSPONDER					UNKNOWN				UNKNOWN	---	---	69-069A-08
GRAVITY GRADIENT STABILIZATION (GEN. ELECT. CO.)					UNKNOWN				UNKNOWN	---	---	69-069A-09
ION ENGINE THRUSTOR					UNKNOWN				UNKNOWN	---	---	69-069A-10
BIDIRECTIONAL LOW-ENERGY PARTICLE DETECTOR					MCILWAIN				U OF CALIF, SAN DIEGO	---	---	69-069A-11
SPECTROGRAMS OF ELECTRON AND PROTON FLUXES									8 081869 123172	---	---	69-069A-11A
PLASMA SPECTROGRAMS DURING SPACECRAFT CHARGING AND NEUTRALIZATION ON MICROFILM									2 022575 040178	---	---	69-069A-11B
FIRST 4 MOMENTS OF DISTRIBUTION FUNCTION FOR ELECTRONS AND PROTONS DATA ON MAG TAPE									1 110869 112470	---	---	69-069A-11C
RADIO BEACON					GARRIOTT				NASA-JSC	---	---	69-069A-12
MAGNETIC FIELD MONITOR					SUGIURA				NASA-GSFC	---	---	69-069A-13
TRIAXIAL 1.5-MIN AVG MAGNETIC FIELD DATA UNCORRECTED FOR SPACECRAFT INTERFERENCE									1 120469 050970	---	---	69-069A-13A

AIM FILE IONOSPHERIC PHYSICS LISTING

SATELLITE NAME INVESTIGATION NAME DATA SET NAME	ALTERNATE NAMES	COUNTRY PI	LAUNCH DATE	INOP DATE	PERIAPSIS	APOAPSIS	INCLINATION	AGENCY	QUANTITY	TIME SPAN	NSDC ID	
DAILY VARIATIONS IN HOURLY AVERAGED MAGNETIC FIELD PLOTTED IN PUBLISHED REPORT MAGNETIC FIELD COMPONENTS SUPPLIED IN MCILWAINS PARTICLE DATA SET					1 090169	093071	69-069A-13B			8 081869	123172	69-069A-13C
BOREAS-----BOREALIS-----UNTST-----10/01/69-----					1 100169	112369	69-083A	69-083A-00A				
PREDICTED WORLD MAPS								RUTHERFORD APPLETON L.				69-083A-01
TRAPPED AND PRECIPITATED ELECTRON FLUX	DALZIEL							KIRUNA GEOPHYS INST				69-083A-02
LOW-ENERGY AURORAL PARTICLE	REIDLER							U OF BERGEN				69-083A-03
TRAPPED AND PRECIPITATED PROTON SPECTRA	SORAAS							ELEKTRONIKCENTRALEN				69-083A-04
PITCH ANGLE DISTRIBUTION OF ELECTRONS	PETERSEN							RUTHERFORD APPLETON L.				69-083A-05
FLUX AND ENERGY SPECTRA OF SOLAR PROTONS	DALZIEL							NORW INST OF COS PHYS				69-083A-06
AURORAL PHOTOMETER	EGELAND							U OF BIRMINGHAM				69-083A-07
LANGMUIR PROBES	WILLMORE											
INTERCOSMOS 2-----04285-----USSRN-----12/25/69-----												69-110A
RADIO BEACONS	UNKNOWN											69-110A-01
SPHERICAL ION TRAPS	SERAFIMOV							CLSR-BAS				69-110A-02
SPHERICAL HIGH FREQUENCY PROBES	SHMEZOVSKE							UNKNOWN				69-110A-03
CYLINDRICAL LANGMUIR PROBES	SHMILAYER							UNKNOWN				69-110A-04
COSMOS 320-----KOSMOS 320-----USSRN-----01/16/70-----2/10/70-----					240--	342.--	48.5----	70-005A				
THREE-CHANNEL NARROW-ANGLE TELEPHOTOMETERS	UNKNOWN							SOVIET ACAD OF SCI				70-005A-01
NARROW-ANGLE IR RADIOMETER	UNKNOWN							SOVIET ACAD OF SCI				70-005A-02
THREE-CHANNEL WIDE-ANGLE RADIOMETERS	FORAPANOVA							SAS-IPA				70-005A-03
TV CAMERA SYSTEM	UNKNOWN							SOVIET ACAD OF SCI				70-005A-04
UPPER ATMOSPHERIC ION ANALYZER	DZHORDZHO							SOVIET ACAD OF SCI				70-005A-05
OHSUMI-----LAMBDA 4S-5-----JAPAN-----02/11/70-----					350--	5140.--	31.-----	70-011A				
SPHERICAL LANGMUIR PROBE	UNKNOWN							UNKNOWN				70-011A-01
ELECTRON TEMPERATURE PROBE	UNKNOWN							UNKNOWN				70-011A-02
ELECTRON DENSITY	UNKNOWN							UNKNOWN				70-011A-03
SOLAR RADIO NOISE	UNKNOWN							UNKNOWN				70-011A-04
ENERGETIC PARTICLE COUNTERS	UNKNOWN							UNKNOWN				70-011A-05
DIAL/WIKA-----04344-----FRNGN-----03/10/70-----					328--	1629.--	5.53-----	70-017A				
GEOCORONA PHOTOMETER	BERAN							DFVLR				70-017A-01
IMPEDANCE PROBE	MELZNER							MPI-EXTRATERR PHYS				70-017A-02
CHARGED PARTICLE DETECTOR	FISCHER							U OF KIEL				70-017A-03
MAGNETOMETER	MUSMANN							BRAUNSCHWEIG TECH U				70-017A-04
INTERCOSMOS 3-----04482-----USSRN-----08/07/70-----					207.--	1320.--	49.-----	70-057A				
PROTONS 1-30 MEV AND ELECTRONS ABOVE 40 KEV	UNKNOWN							UNKNOWN				70-057A-01
VLF BROAD AND NARROW BAND	UNKNOWN							UNKNOWN				70-057A-02
COSMOS 378-----04713-----USSRN-----11/17/70-----					241.--	1763.--	74.-----	70-097A				
LANGMUIR PROBE	UNKNOWN							UNKNOWN				70-097A-01
HIGH FREQUENCY IMPEDANCE PROBE	UNKNOWN							UNKNOWN				70-097A-02
COSMOS 381-----04783-----USSRN-----12/02/70-----					985.--	1023.--	74.-----	70-102A				
COSMIC RAY DETECTOR	UNKNOWN							UNKNOWN				70-102A-01
VLF RECEIVER	UNKNOWN							UNKNOWN				70-102A-02
SOLAR ULTRAVIOLET (3 - 1500A)	UNKNOWN							UNKNOWN				70-102A-03
SPACE RADIATION DETECTOR	UNKNOWN							UNKNOWN				70-102A-04
HIGH FREQUENCY IMPEDANCE PROBE	UNKNOWN							UNKNOWN				70-102A-05
ISIS 2-----ISIS-B-----UNTST-----04/01/71-----					1358.--	1428.--	88.1-----	71-024A				
PREDICTED WORLD MAPS					9	022873	120379	71-024A-00A				
EXTENDED WORLD MAPS ON MICROFILM					161	041771	061579	71-024A-00C				
EXTENDED WORLD MAPS ON MAGNETIC TAPE					57	040171	102473	71-024A-00D				
GSFC ORBIT ELEMENTS AT ABOUT 2 WEEK INTERVALS					1	040871	012375	71-024A-00E				
EXPERIMENT OPERATION LOG, TAPE					1	120171	123174	71-024A-00F				
EXPERIMENT OPERATION LOG, CHRONOLOGICAL LISTING ON MICROFILM.					1	010181	123182	71-024A-00G				
LATITUDE VERSUS TIME PLOTS OF SATELLITE OPERATION (ON MICROFILM)					1	120171	063076	71-024A-00H				
COORDINATED IONOSPHERIC + MAGNETOSPHERIC OBSERVATIONS FROM ISIS 2 (IN 4 VOLUMES)	TURNER				4	102271	080272	71-024A-00I				
SWEEP-FREQUENCY SONDER								IONOSPHERIC PRED SERV				71-024A-01
SWEEP-FREQUENCY IONOGRAMS ON MICROFILM					2427	052871	061783	71-024A-01A				
NSSDC INDEX OF IONOGRAMS ON TAPE					1	040871	113073	71-024A-01B				
NASA-ARC ELECTRON DENSITIES INTERPOLATED TO 100-KM INTERVALS ON (PACKED) TAPE					1	040971	060772	71-024A-01C				
INDEX OF IONOGRAMS SHOWING DUCTED ECHOES					1	040971	062272	71-024A-01E				
CRC ELECTRON DENSITY PROFILES AT SCALED POINTS ON MAGNETIC TAPE					7	040871	082679	71-024A-01F				
CRC ELECTRON DENSITY VALUES AT LAMINA BOUNDARIES (ON MICROFICHE)					8	040871	101372	71-024A-01G				
COORDINATED IONOSPHERIC + MAGNETOSPHERIC OBSERVATIONS FROM ISIS 2 (IN 4 VOLUMES)					4	101371	121375	71-024A-01I				
FIXED-FREQUENCY SONDER	CALVERT							U OF IOWA				71-024A-02
FIXED-FREQUENCY IONOGRAMS ON MICROFILM					2083	040871	070975	71-024A-02A				
VLF RECEIVERS	BARRINGTON							DOC-CRC				71-024A-03
VLF EMISSION INTENSITY DATA AT 6 NARROW BAND FREQUENCIES FROM KASHIMA AND SYOWA					14	110872	062383	71-024A-03B				
COORDINATED IONOSPHERIC + MAGNETOSPHERIC OBSERVATIONS FROM ISIS 2 (IN 4 VOLUMES)	MCDIARMID				4	051571	010174	71-024A-03C				
ENERGETIC PARTICLE DETECTORS								NATL RES COUNC OF CAN				71-024A-04
REDUCED COUNT RATE DATA ON MAGNETIC TAPE					176	041971	033078	71-024A-04A				
INDEX OF PROCESSED SATELLITE PASSES FOR ENERGETIC PARTICLE DETECTOR (ON ISIS 2)					1	041971	042474	71-024A-04B				
COORDINATED IONOSPHERIC + MAGNETOSPHERIC OBSERVATIONS FROM ISIS 2 (IN 4 VOLUMES)					4	070271	121375	71-024A-04C				
SOFT-PARTICLE SPECTROMETER	HEIKKILA							U OF TEXAS, DALLAS				71-024A-05
SOFT PARTICLE SPECTROGRAMS OF ELECTRON AND PROTON DATA ON MICROFILM					102	042171	040273	71-024A-05A				
COORDINATED IONOSPHERIC + MAGNETOSPHERIC OBSERVATIONS FROM ISIS 2 (IN 4 VOLUMES)					4	070271	101272	71-024A-05B				
ION-MASS SPECTROMETER	HOFFMAN							U OF TEXAS, DALLAS				71-024A-06
ION MASS SPECTROMETER DATA ON MICROFILM					83	042171	111572	71-024A-06A				
ION MASS SPECTROMETER DATA ON MAGNETIC TAPE					18	042171	123172	71-024A-06B				
COORDINATED IONOSPHERIC + MAGNETOSPHERIC OBSERVATIONS FROM ISIS 2 (IN 4 VOLUMES)					4	101971	061873	71-024A-06C				
CYLINDRICAL ELECTROSTATIC PROBES	BRACE							NASA-GSFC				71-024A-07
AVERAGED VALUE OF ELECTRON DENSITY AND TEMPERATURE ON MAGNETIC TAPE					8	041471	033173	71-024A-07A				
AVERAGED VALUES OF ELECTRON DENSITY AND TEMPERATURE ON MICROFILM					8	041471	033173	71-024A-07B				
COORDINATED IONOSPHERIC + MAGNETOSPHERIC OBSERVATIONS FROM ISIS 2 (IN 4 VOLUMES)					4	051571	121375	71-024A-07C				
RETARDING POTENTIAL ANALYZER	MAIER							NASA-GSFC				71-024A-08
PLOTS OF O+, H+, HE+, AND TEMPERATURE VS TIME					2	042871	122272	71-024A-08A				
LISTINGS OF O+, H+, HE+, AND TEMPERATURE VS TIME					2	042871	122272	71-024A-08B				

AIM FILE IONOSPHERIC PHYSICS LISTING

SATELLITE NAME INVESTIGATION NAME DATA SET NAME	ALTERNATE NAMES	COUNTRY	LAUNCH DATE	INOP DATE	PERIAPSIS	APOAPSIS	INCLINATION	PI	AGENCY	QUANTITY	TIME SPAN	NSSDC ID
COORDINATED IONOSPHERIC + MAGNETOSPHERIC OBSERVATIONS FROM ISIS 2 (IN 4 VOLUMES)					4	051571	070473		WESTERN ONTARIO U			71-024A-08C
RADIO BEACON	FORSYTH								DOC-CRC			71-024A-09
COSMIC RADIO NOISE	HARTZ											71-024A-10
COSMIC RADIO NOISE, AGC LEVEL PLOTS ON 35-MM MICROFILM, MERGED WITH IONOGRAMS					1137	040871	113073					71-024A-10A
3914-A AND 5577-A PHOTOMETER	ANGER								U OF CALGARY			71-024A-11
3914-A AND 5577-A INTENSITY MAPS ON TAPE					1	042371	123171					71-024A-11A
POLAR PLOTS OF OPTICAL EMISSION INTENSITIES (3914-A AND 5577-A)					1	010673	012974					71-024A-11B
COORDINATED IONOSPHERIC + MAGNETOSPHERIC OBSERVATIONS FROM ISIS 2 (IN 4 VOLUMES)					4	101771	121375					71-024A-11C
6300-A PHOTOMETER	SHEPHERD								YORK U			71-024A-12
6300-A INTENSITY MAPS ON MAGNETIC TAPE					1	042371	123171					71-024A-12A
POLAR PLOTS OF OPTICAL EMISSION INTENSITIES (6300-A)					1	010673	012974					71-024A-12B
COORDINATED IONOSPHERIC + MAGNETOSPHERIC OBSERVATIONS FROM ISIS 2 (IN 4 VOLUMES)					4	112371	121375					71-024A-12C
OV1-20-----SESP 70-2A-----UNTST-----08/07/71-----					----	----	----	----				71-067A
PREDICTED WORLD MAPS					1	080771	081871					71-067A-00A
ENERGETIC PROTON ANALYZER	KOLASINSKI								AEROSPACE CORP			71-067A-01
THERMAL ION DETECTOR	MCPHERSON								AEROSPACE CORP			71-067A-02
SHINSEI-----MS-F2-----JAPAN-----09/28/71-----9/00/73-----					874.--	1871.--	32.-----	71-080A				
PREDICTED WORLD MAPS					1	092871	111671					71-080A-00A
SOLAR RADIO EMISSION RECEIVER, 5 + 8 MHZ	TAKAKURA								U OF TOKYO			71-080A-01
ENERGETIC ELECTRONS (100-400 KEV)	MIYAZAKI								INST PHYS + CHEM RES			71-080A-02
IONOSPHERIC PLASMA PROBE	HIROAO								U OF TOKYO			71-080A-03
ARIEL 4-----UK 4-----UNTST-----12/11/71-----					----	480.--	590.--	83.0-----	71-109A			
PREDICTED WORLD MAPS					6	120971	080574					71-109A-00A
LANGMUIR PROBE	WILLMORE								U OF BIRMINGHAM			71-109A-01
LANGMUIR PROBE MERGED DATA ON MAGNETIC TAPE					476	120171	120973					71-109A-01A
MHZ BAND NOISE (E FIELD)	SMITH								U OF CAMBRIDGE			71-109A-02
MHZ BAND RADIO NOISE (E-F) MERGED DATA ON MAGNETIC TAPE					476	120171	120973					71-109A-02A
VLF-ELF RECEIVER	KAI SER								U OF SHEFFIELD			71-109A-03
VLF-ELF PROPAGATION MERGED DATA ON MAGNETIC TAPE					476	120173	120973					71-109A-03A
LOW ENERGY PROTON AND ELECTRON DIFFERENTIAL ENERGY ANALYZER (LEPEFRANK									U OF IOWA			71-109A-04
PARTICLE COUNT RATES ON MULTI-EXPERIMENT DATA TAPES					476	120171	120973					71-109A-04A
LANGMUIR PROBE	DALZIEL								RUTHERFORD APPLETON L.			71-109A-05
VLF IMPULSE COUNTER	HORNER								RUTHERFORD APPLETON L.			71-109A-06
DENPA-----REXS-----JAPAN-----08/19/72-----					----	240.--	6570.--	31.-----	72-064A			
ELECTROMAGNETIC AND PLASMA WAVES	UNKNOWN								UNKNOWN			72-064A-01
IMPEDANCE PROBES	UNKNOWN								UNKNOWN			72-064A-02
CYCLOTRON INSTABILITY	UNKNOWN								UNKNOWN			72-064A-03
ELECTRON BEAM ANALYZER	UNKNOWN								UNKNOWN			72-064A-04
FLUXGATE MAGNETOMETER	UNKNOWN								UNKNOWN			72-064A-05
RUBIDIUM VAPOR MAGNETOMETER	UNKNOWN								UNKNOWN			72-064A-06
PLASMA WAVES	UNKNOWN								UNKNOWN			72-064A-07
ESRO 4-----PL-724C-----UNTST-----11/22/72-----					----	252.--	1186.--	91.1-----	72-092A			
PREDICTED WORLD MAPS					4	112272	040874					72-092A-00A
POSITIVE ION SPECTROMETER	BOYD								U COLLEGE LONDON			72-092A-01
ION AND ELECTRON DATA ON TAPE					3	112272	041474					72-092A-01A
NEUTRAL MASS SPECTROMETER	VON ZAHN								U OF BONN			72-092A-02
AURORAL PARTICLE SPECTROMETER	HULTQVIST								KIRUNA GEOPHYS INST			72-092A-03
SOUTHERN POLAR CAP SOLAR PARTICLE	DE JAGER								U OF Utrecht			72-092A-04
NORTHERN POLAR CAP SOLAR PARTICLE	LUST								MPI-EXTRATERR PHYS			72-092A-05
AEROS-----GRS-A2-----UNTST-----12/16/72-----8/22/73-----					223.0--	867.0--	96.9-----	72-100A				
PREDICTED WORLD MAPS					3	120872	082273					72-100A-00A
DENSITY AND COMPOSITION OF UPPER ATMOSPHERE (2-44 AMU)	KRANKOWSKY								MPI-NUCLEAR PHYS			72-100A-01
ENERGY DISTRIBUTION OF IONS AND	SPANNER								INST FUR PHYS WELTRAUM			72-100A-02
RETARDING POTENTIAL ANALYZER PLASMA MEASUREMENT DATA ON MAGNETIC TAPE					1	010473	080373					72-100A-02A
ELECTRON CONCENTRATION IN THE IONOSPHERE	NESKE								INST FUR PHYS WELTRAUM			72-100A-03
SOLAR EUV RADIATION	SCHMIDTKE								INST FUR PHYS WELTRAUM			72-100A-04
EUV SPECTRA DATA ON MAGNETIC TAPE					1	122372	080573					72-100A-04A
NEUTRAL GAS TEMPERATURE IN THE THERMOSPHERE	SPENCER								NASA-GSFC			72-100A-05
NEUTRAL DENSITY AND TEMPERATURE DATA ON MICROFILM					15	122672	080973					72-100A-05A
ATMOSPHERIC DRAG ANALYSIS	ROEMER								U OF BONN			72-100A-06
PIONEER 11-----PIONEER-G-----UNTST-----04/06/73-----					----	--	--	--				73-019A
ATTITUDE AND HEC TRAJECTORY DATA ON MAGNETIC TAPE					1	042173	102287					73-019A-00E
ATTITUDE AND HEC TRAJECTORY DATA ON MAGNETIC TAPE					1	042173	102287					73-019A-00F
MAGNETIC FIELDS	SMITH								NASA-JPL			73-019A-01
MINUTE AND HOURLY AVERAGED VECTOR MAGNETIC FIELD PLOTS ON MICROFILM					1	040673	060273					73-019A-01A
ONE MINUTE, HOURLY, AND DAILY AVERAGES OF CRUISE VECTOR MAGNETIC FIELD DATA ON TAPE					71	040673	123182					73-019A-01B
HIGH TIME RESOLUTION (5.3 VECTORS/SEC) INTERPLANETARY DATA ON TAPE					16	043073	121474					73-019A-01C
SATURN ENCOUNTER, ONE MINUTE AVERAGED, PE COORDINATE DATA ON MAGNETIC TAPE					1	083079	090879					73-019A-01D
JUPITER ENCOUNTER INSIDE 7 RJ, JC COORDINATES DATA ON MAGNETIC TAPE					1	120374	120374					73-019A-01E
JUPITER ENCOUNTER 1 MINUTE AVERAGED DATA ON MAGNETIC TAPE					1	112474	122474					73-019A-01F
HOURLY & DAILY MAGNETIC FIELD AVERAGES ON MAGNETIC TAPE					1	040673	123180					73-019A-01G
CHARGED PARTICLE COMPOSITION	SIMPSON								U OF CHICAGO			73-019A-02
15-MIN ACCUMULATED PULSE-HEIGHT ANALYSIS DATA ON TAPE					53	040773	123187					73-019A-02A
5-MIN. ACCUMULATED SECTORED COUNTING-RATE SUMMARY TAPES					26	040773	123187					73-019A-02B
COUNT RATE PLOTS BY SOLAR ROTATIONS ON MICROFILM					1	040673	011474					73-019A-02C
ASTEROID/METEOROID ASTRONOMY	SOBERMAN								GENERAL ELECTRIC CO			73-019A-03
REFORMATTED REDUCED DATA ON SKY/ASTEROID/ METEROID LIGHT EMISSIONS ON MAG. TAPES					39	041173	122974					73-019A-03A
FINAL REPORT OF DATA ANALYSIS					5							73-019A-03B
METEOROID DETECTORS	KINARD								NASA-LARC			73-019A-04
METEOROID ENVIRONMENT DATA FOR JUPITER					4							73-019A-04A
RESULTS FROM METEOROID EXPERIMENT FOR SATURN					1							73-019A-04B
COMPLETE SET OF EVENT GROUND CONFIRM TIMES, CHANNELS 0 + 1, ON MICROFICHE					1	040673	030384					73-019A-04C
JOVIAN TRAPPED RADIATION	FILLIUS								U OF CALIF, SAN DIEGO			73-019A-05
JUPITER TRAPPED RADIATION DATA SUMMARY TAPES					4	112574	120974					73-019A-05A
JUPITER TRAPPED RADIATION DATA ANALYSIS TAPE					1	120274	120374					73-019A-05B
JOVIAN TRAPPED PARTICLE INTERPLANETARY DATA SUMMARIES ON MAGNETIC TAPE					2	041673	053177					73-019A-05C
TRAPPED RADIATION DETECTOR SATURN ENCOUNTER BINARY REDUCTION DATA ON TAPE					10	083079	090479					73-019A-05D

AIM FILE IONOSPHERIC PHYSICS LISTING

SATELLITE NAME INVESTIGATION NAME DATA SET NAME	ALTERNATE NAMES	COUNTRY	LAUNCH DATE	INOP DATE	PERIAPSIS	APOAPSIS	INCLINATION	AGENCY	QUANTITY	TIME SPAN	NSSDC ID
INHOMOGENEOUS DAILY SUMMARY DATA AT VARIOUS BIT RATES ON MAGNETIC TAPE					1	041673	123180	U OF SOUTHERN CALIF	73-019A-05E		
INTERPLANETARY DATA PLOTS ON MICROFILM					1	041673	020982		73-019A-05F		
24-HOUR COMPRESSED SUMMARY DATA ON MAGNETIC TAPE					1	020173	123186		73-019A-05G		
ULTRAVIOLET PHOTOMETRY	JUDGE	U OF SOUTHERN CALIF							73-019A-06		
EUV EDR PHOTON EMISSION DATA ON MAGNETIC TAPE					46	040673	052381		73-019A-06A		
USC ULTRAVIOLET DATA PLOTS					1	043073	093080		73-019A-06B		
IMAGING PHOTOPOLARIMETER (IPP)	GEHRELS	U OF ARIZONA							73-019A-07		
COLOR PRESS RELEASE PHOTOGRAPHY			25						73-019A-07A		
POLARIZATION DATA FOR JUPITER			256	053073	090579				73-019A-07B		
BLACK AND WHITE PHOTOPOLARIMETER IMAGERY			288	113074	120474				73-019A-07C		
PHOTOS FROM PIONEER 11 IMAGE PHOTOPOLARIMETER ON 8X10 NEGATIVE FILM			47	113074	120474				73-019A-07D		
INDEX TO PHOTOS OF PIONEER 11 IMAGE PHOTOPOLARIMETER ON FICHE			1	112374	120674				73-019A-07E		
IMAGING PHOTOPOLARIMETER POLARIZATION DATA ON MAG TAPE			12	053173	102976				73-019A-07F		
JUPITER IMAGE LOG ON MICROFICHE			1	112374	120974				73-019A-07G		
JUPITER COLOR IMAGERY			47	112974	120674				73-019A-07H		
SATURN ENCOUNTER			82	082379	090579				73-019A-07J		
SATURN ENCOUNTER DATA ON MAGNETIC TAPE			6	082579	090579				73-019A-07K		
INDEX OF JUPITER IMAGES			4						73-019A-07L		
INDEX OF SATURN IMAGES			4						73-019A-07M		
BLACK AND WHITE PRESS RELEASE PHOTOGRAPHY			7						73-019A-07N		
INFRARED RADIOMETER	INGERSOLL	CALIF INST OF TECH							73-019A-08		
CELESTIAL MECHANICS	ANDERSON	NASA-JPL							73-019A-09		
DOPPLER TRACKING DATA AT JUPITER ENCOUNTER ON MAGNETIC TAPE			1	041774	122574				73-019A-09A		
DOPPLER TRACKING DATA SATURN ENCOUNTER DATA ON MAGNETIC TAPE			1	080179	091879				73-019A-09B		
S-BAND OCCULTATION	KLIORÉ	NASA-JPL							73-019A-10		
FINAL PLOTS AND LISTINGS OF JUPITER OCCULTATION DATA, ON MICROFILM			1	120374	120374				73-019A-10A		
INTERMEDIATE DATA FILES OF JUPITER OCCULTATION DATA, ON MAGNETIC TAPE			1	120374	120374				73-019A-10B		
REDUCED TELEMETRY SIGNALS FOR JUPITER OCCULTATION, ON MAGNETIC TAPE			3	120374	120374				73-019A-10C		
JOVIAN CHARGED PARTICLES	VAN ALLEN	U OF IOWA							73-019A-11		
JUPITER ENCOUNTER PROTON AND ELECTRON COUNT RATES ON TAPE			7	111974	121274				73-019A-11A		
SATURN ENCOUNTER-CHARGED PARTICLES			1	083079	090579				73-019A-11B		
ONE HOUR CRUISE AVERAGES ON MAGNETIC TAPE			3	040673	032988				73-019A-11C		
24 HOUR CORRECTED CRUISE COUNT RATE AVERAGES WITH TRAJECTORY ON MAGNETIC TAPE			1	040673	032888				73-019A-11D		
COSMIC-RAY SPECTRA	MCDONALD	NASA HEADQUARTERS							73-019A-12		
15-MIN AVERAGED JUPITER ENCOUNTER DATA ON MAGNETIC TAPE			1	112674	120974				73-019A-12A		
15-MIN AVERAGED SATURN ENCOUNTER DATA ON MAGNETIC TAPE.			1	083179	090479				73-019A-12B		
6 HOUR AVERAGED INTERPLANETARY DATA ON MAGNETIC TAPE			1	040873	123187				73-019A-12C		
QUADRISPHERICAL PLASMA ANALYZER	BARNES	NASA-ARC							73-019A-13		
SOLAR WIND PROTON BULK SPEED DATA ON MAGNETIC TAPE			5	042173	123179				73-019A-13A		
FULL HISTORY, SOLAR WIND PROTON PLASMA DATA ON MAGNETIC TAPE.			1	042173	050886				73-019A-13B		
HOURLY AVERAGED SOLAR WIND PROTON PLASMA DATA AND MOMENTS ON MAGNETIC TAPE.			1	042173	050486				73-019A-13C		
DAILY AVERAGED SOLAR WIND PROTON PLASMA DATA AND MOMENTS ON MAGNETIC TAPE.			1	042173	041786				73-019A-13D		
FULL HISTORY SOLAR WIND PROTON PLOTS ON MICROFICHE			6	042173	120681				73-019A-13E		
54-DAY SOLAR WIND PROTON T,N,V PLOTS ON MICROFICHE.			1	042173	120681				73-019A-13F		
LISTING OF DAILY AVERAGES SOLAR WIND PROTON AND MOMENTS ON MICROFICHE			1	042173	120681				73-019A-13G		
FULL HISTORY, SOLAR WIND PROTON, PLASMA DATA ON MAGNETIC TAPE			1	042173	050886				73-019A-13H		
DAILY AVERAGED SOLAR WIND PROTON PLASMA DATA AND MOMENTS ON MAGNETIC TAPE			1	042173	050486				73-019A-13I		
HOURLY AVERAGED SOLAR WIND PROTON PLASMA DATA AND MOMENTS ON MAGNETIC TAPE			1	042173	041786				73-019A-13J		
JOVIAN MAGNETIC FIELD	ACUNA	NASA-GSFC							73-019A-14		
FLUXGATE MAGNETOMETER JOVIAN ENCOUNTER 5 MINUTE AVERAGES ON MAGNETIC TAPE			1	120274	120374				73-019A-14A		
SATURN ENCOUNTER 5 MINUTE AVERAGED DATA ON MAGNETIC TAPE			1	090179	090179				73-019A-14B		
JOVIAN ENCOUNTER, 36-SEC FLUXGATE MAGNETOMETER AVERAGES, ON TAPE			1	120374	120374				73-019A-14C		
SATURN ENCOUNTER, 1-MIN 10-S + 2-MIN 26-S FLUXGATE MAGNETOMETER AVERAGES, ON TAPE			1	090179	090179				73-019A-14D		
ZODIACAL-LIGHT TWO-COLOR PHOTOPOLARIMETRY	WEINBERG	SPACE ASTRONOMY LAB							73-019A-15		
PIONEER 11 STARLIGHT/ZODIACAL LIGHT EXPERIMENT DATA ON MAGNETIC TAPE			1	052874	092474				73-019A-15A		
HIGH-RESOLUTION PHOTO-IMAGING OF JUPITER'S CLOUD COVER	GEHRELS	U OF ARIZONA							73-019A-16		
RAE-B-----RADIO ASTRONOMY EXPLORER---UNTST---06/10/73-----			-----1052.98--1063.84--	55.7-----	73-039A						
PREDICTED WORLD MAPS			11	061073	071177				73-039A-00A		
STEP FREQUENCY RADIOMETERS	STONE	NASA-GSFC							73-039A-01		
RYLE-VONBERG 24 HOUR PLOTS			8	103174	042677				73-039A-01A		
RYLE-VONBERG 24-HOUR DATA ON MAGNETIC TAPE			11	071273	062875				73-039A-01B		
RAPID-BURST RECEIVERS	STONE	NASA-GSFC							73-039A-02		
DATA SUMMARY (10 MIN. INTERVALS) FROM BURST RECEIVER ON LOWER V ANTENNA, ON MFLM			1	071273	063075				73-039A-02A		
DATA SUMMARY (10 MIN. INTERVALS) FROM BURST RECEIVER ON LOWER V ANTENNA, ON TAPE			2	071273	030976				73-039A-02B		
BURST RECEIVER HOURLY PLOTS ON MICROFILM			49	071273	042677				73-039A-02C		
BURST RECEIVED 24-HOUR PLOTS			12	071273	042677				73-039A-02D		
SPECTRAL BURST RECEIVER HOURLY PLOTS ON MICROFILM			1	050775	042477				73-039A-02E		
IMPEDANCE PROBE	STONE	NASA-GSFC							73-039A-03		
DMSP 5B/F4-----DAPP (73-054A)-----UNTST---08/17/73----8/09/71-----			811.0--	852.0--	98.9-----	73-054A					
SCANNING RADIOMETER (SR)	AFGWC STAFF								73-054A-01		
AURORAL IMAGERY ON MICROFILM			50	092173	043077				73-054A-01A		
NIGHTTIME POLAR IMAGERY ON 35MM MICROFILM			50	092173	043077				73-054A-01B		
ELECTRON SPECTROGRAPH (SSJ)	ROTHWELL	USAF GEOPHYS LAB							73-054A-03		
AE-C-----EXPLORER 51-----UNTST---12/16/73----12/12/78-----			149.0--	4294.0--	68.1-----	73-101A					
PREDICTED WORLD MAPS			29	121473	112978				73-101A-00A		
CYLINDRICAL ELECTROSTATIC PROBES (CEP)	BRACE	NASA-GSFC							73-101A-01		
CYLINDRICAL ELECTROSTATIC PROBE (CEP) DATA ON MAGNETIC TAPE			62	121673	121178				73-101A-01A		
CYLINDRICAL ELECTROSTATIC PROBE DATA ON MICROFILM			8	121973	092375				73-101A-01B		
ATMOSPHERIC DENSITY ACCELEROMETER (MESA)	CHAMPION	USAF GEOPHYS LAB							73-101A-02		
MINIATURE ELECTROSTATIC ACCELEROMETER (MESA) DENSITY DATA			62	121673	121178				73-101A-02A		
MINIATURE ELECTROSTATIC ACCELEROMETER (MESA) DENSITY DATA ON MICROFILM			8	121973	092375				73-101A-02B		
PHOTOELECTRON SPECTROMETER (PES) DATA ON MAGNETIC TAPE	DOERING	JOHNS HOPKINS U							73-101A-03		
PHOTOELECTRON SPECTROMETER (PES) DATA ON MICROFILM			62	121673	121178				73-101A-03A		
RETARDING POTENTIAL ANALYZER/DRIFT METER	HANSON	U OF TEXAS, DALLAS							73-101A-03B		
RETARDING POTENTIAL ANALYZER (RPA) DATA ON MAGNETIC TAPE			62	121673	121178				73-101A-04A		
RETARDING POTENTIAL ANALYZER DATA ON MICROFILM			8	121973	092375				73-101A-04B		
EXTREME SOLAR UV MONITOR (ESUM)	HEATH	NASA-GSFC							73-101A-05		
ESUM DATA ON TAPE			62	121673	121178				73-101A-05A		
ULTRAVIOLET SOLAR FLUX MEASUREMENTS ON MICROFICHE			1	031474	112774				73-101A-05B		
ABSOLUTE ULTRAVIOLET SOLAR FLUX			1	122073	123173				73-101A-05C		

AIM FILE IONOSPHERIC PHYSICS LISTING

SATELLITE NAME INVESTIGATION NAME DATA SET NAME	ALTERNATE NAMES	COUNTRY PI	LAUNCH DATE	INCP DATE	PERIAPSIS AGENCY QUANTITY	APOAPSIS TIME SPAN	INCLINATION	NSSDC ID
SOLAR EUV SPECTROPHOTOMETER (EUVS)	HINTEREGGER	USAF GEOPHYS LAB			73-101A-06			
SOLAR EUV FLUXES ON MAGNETIC TAPE		62	121673	121178	73-101A-06A			
ATMOSPHERIC EUV ABSORPTION DATA, ON MAGNETIC TAPE		1	020274	022074	73-101A-06B			
OPEN-SOURCE NEUTRAL MASS SPECTROMETER	NIER	U OF MINNESOTA			73-101A-07			
OSS NEUTRAL ATMOSPHERE CONCENTRATIONS ON TAPE		62	121673	121178	73-101A-07A			
OPEN SOURCE SPECTROMETER DATA ON MICROFILM		8	121973	092375	73-101A-07B			
CLOSED-SOURCE NEUTRAL MASS SPECTROMETER	PELZ	NASA-GSFC			73-101A-08			
CLOSED SOURCE NEUTRAL MASS SPECTROMETER COMPOSITION DATA ON TAPE		62	121673	121178	73-101A-08A			
NACE NEUTRAL ATMOSPHERE COMPOSITION DATA ON MICROFILM		8	121973	092375	73-101A-08B			
NEUTRAL ATMOSPHERE TEMPERATURE (NATE)	SPENCER	NASA-GSFC			73-101A-09			
NEUTRAL ATMOSPHERE TEMPERATURE AND COMPOSITION		62	121673	121178	73-101A-09A			
NEUTRAL ATMOSPHERE TEMPERATURE AND COMPOSITION DATA ON MICROFILM		8	121973	092375	73-101A-09B			
MAGNETIC ION-MASS SPECTROMETER (MIMS)	HOFFMAN	U OF TEXAS, DALLAS			73-101A-10			
MAGNETIC ION MASS SPECTROMETER DATA ON TAPE		62	121673	121178	73-101A-10A			
MAGNETIC ION MASS SPECTROMETER DATA ON MICROFILM		8	121973	092375	73-101A-10B			
BENNETT ION-MASS SPECTROMETER (BIMS)	BRINTON	NASA HEADQUARTERS			73-101A-11			
ION SPECIES CONCENTRATIONS ON TAPE		62	121673	121178	73-101A-11A			
BENNETT ION MASS SPECTROMETER DATA ON MICROFILM		8	121973	092375	73-101A-11B			
LOW-ENERGY ELECTRONS (LEE)	HOFFMAN	NASA-GSFC			73-101A-12			
LOW-ENERGY ELECTRON DATA, TAPE		62	121673	121178	73-101A-12A			
LOW ENERGY ELECTRON DATA ON MICROFILM		8	121973	092375	73-101A-12B			
ULTRAVIOLET NITRIC-OXIDE (UVNO)	BARTH	U OF COLORADO			73-101A-13			
NITRIC OXIDE DATA ON TAPE		62	121673	121178	73-101A-13A			
ULTRAVIOLET NITRIC OXIDE DATA ON MICROFILM		8	121973	092375	73-101A-13B			
VISIBLE AIRGLOW PHOTOMETER (VAE)	HAYS	U OF MICHIGAN			73-101A-14			
VISIBLE AIRGLOW PHOTOMETER DATA ON TAPE		62	121673	121178	73-101A-14A			
VISIBLE AIRGLOW DATA ON MICROFILM		8	121973	092375	73-101A-14B			
COLD CATHODE ION GAUGE	RICE	AEROSPACE CORP			73-101A-15			
CAPACITANCE MANOMETER	RICE	AEROSPACE CORP			73-101A-16			
MAGNETOMETER (SPACECRAFT)	ZMUDA	APPLIED PHYSICS LAB			73-101A-17			
TEMPERATURE ALARM	CARUSO	NASA-GSFC			73-101A-18			
ATS 6-----PL-71A-----UNTST---05/30/74----			35763.0-35818.0--	1.8----	74-039A			
PREDICTED WORLD MAPS			17	053074	043079	74-039A-00A		
MEASUREMENT OF LOW-ENERGY PROTONS	KONRADI	NASA-JSC			74-039A-01			
HIGH ENERGY PROTON DATA ON MAGNETIC TAPE		2	072877	121277	74-039A-01A			
1-MINUTE AVERAGED PROTON AND HEAVY ION SUMMARY FLUX PLOTS ON MICROFILM		16	061174	090875	74-039A-01B			
HIGH-RESOLUTION PROTON AND HEAVY ION FLUX PLOTS ON MICROFILM		150	061174	082775	74-039A-01C			
MAGNETOMETER EXPERIMENT	COLEMAN, JR.	U OF CALIF, LA			74-039A-02			
SIXTY-FOUR SEC. AVERAGE MAGNETIC FIELD VECTORS IN DIPOLE COORDINATES		1	053174	090975	74-039A-02A			
SIXTY FOUR SEC. AVERAGE PC-1 BAND ULF INDEX		1	053174	090875	74-039A-02B			
0.5 SECOND S/C X + Z COMPONENT MAGNETIC FIELD		1	072977	072977	74-039A-02E			
LOW-ENERGY PROTON/ELECTRON EXPERIMENT	ARNOLDY	U OF NEW HAMPSHIRE			74-039A-03			
LOW ENERGY PROTON AND ELECTRON PLASMA DATA ON MAGNETIC TAPE		2	072877	121277	74-039A-03A			
LOW ENERGY ELECTRON-PROTON SPECTROGRAMS ON MICROFILM		1	063077	022179	74-039A-03B			
PARTICLE ACCELERATION MECHANISMS AND DYNAMICS OF THE OUTER TRAPPIWINCKLER		U OF MINNESOTA			74-039A-04			
ELECTRON AND PROTON PLOTS VERSUS TIME ON MICROFILM		4	061474	033175	74-039A-04A			
AURORAL PARTICLES EXPERIMENT	MCILWAIN	U OF CALIF, SAN DIEGO			74-039A-05			
PLASMA SPECTROGRAMS DURING SPACECRAFT CHARGING AND NEUTRALIZATION ON MICROFILM		3	071874	040977	74-039A-05A			
FIRST 4 MOMENTS OF DISTRIBUTION FUNCTION FOR ELECTRONS AND PROTONS DATA ON MAG TAPE		1	070574	021776	74-039A-05B			
SOLAR COSMIC RAYS AND GEOMAGNETICALLY TRAPPED RADIATION	MASLEY	TRW SYSTEMS GROUP			74-039A-06			
OMNIDIRECTIONAL SPECTROMETER	PAULIKAS	AEROSPACE CORP			74-039A-07			
ENERGETIC PARTICLE SPECTROMETER DATA ON MAGNETIC TAPE		4	061474	123177	74-039A-07A			
GEOSYNCHRONOUS VERY HIGH RESOLUTION RADIOMETER (GVHRR)	SHENK	NASA-GSFC			74-039A-08			
BLACK AND WHITE VISUAL IMAGES ON FILM		750	060774	081574	74-039A-08A			
BLACK AND WHITE INFRARED IMAGES ON FILM		750	060774	081574	74-039A-08B			
GEOSYN. VERY HIGH RESOLUTION RADIOMETER INFRARED DIGITAL IMAGE DATA MAGNETIC TAPES		1176	061774	082074	74-039A-08C			
RADIO BEACON	DAVIES	NOAA-ERL			74-039A-09			
OBlique TOTAL ELECTRON CONTENT AND PLASMASPERIC ELEC CONTENT TO BOULDER STA		1	070174	053175	74-039A-09A			
RADIO FREQUENCY INTERFERENCE	PALAZZOIA	HUGHES AIRCRAFT CO			74-039A-11			
MILLIMETER WAVE PROPAGATION	IPPOLITO	NASA-GSFC			74-039A-13			
CESIUM BOMBARDMENT ION ENGINE EXPERIMENT	BARTLETT	NASA-GSFC			74-039A-14			
SOLAR CELL RADIATION DAMAGE	DUNKERLY	HUGHES AIRCRAFT CO			74-039A-16			
SATELLITE INSTRUCTIONAL TV	MILLER	NASA-GSFC			74-039A-17			
TRACKING AND DATA RELAY	GALICINAO	NASA-GSFC			74-039A-18			
POSITION, LOCATION AND AIRCRAFT COMMUNICATION	GALICINAO	NASA-GSFC			74-039A-19			
SPACECRAFT ATTITUDE CONTROL	ISLEY	NASA-GSFC			74-039A-20			
COMSAT PROPAGATION (13-AND 18-GHZ)	HYDE	COMMUN SATELLITE CORP			74-039A-21			
ADVANCED THERMAL CONTROL FLIGHT	KIRKPATRICK	NASA-ARC			74-039A-22			
QUARTZ CRYSTAL MICROBALANCE	ROGERS	NASA-GSFC			74-039A-23			
HEALTH AND EDUCATION TELECOMMUNICATIONS	WHALEN	NASA-GSFC			74-039A-24			
VERY HIGH RESOLUTION CAMERA SYSTEM FOR DAYLIGHT CLOUD PICTURES	HUBERT	NOAA			74-039A-25			
GIMBAL GRAVITY GRADIENT BOOM EXPERIMENT	GATLIN	NASA-GSFC			74-039A-27			
TELEVISION RELAY USING SMALL TERMINALS	MILLER	NASA-GSFC			74-039A-28			
R.F. INTERFEROMETER SUBSYSTEM	KAMPINSKY	NASA-GSFC			74-039A-29			
SPACECRAFT VIBRATION ACCELEROMETER	MATTISON	NASA-GSFC			74-039A-30			
TELEVISION CAMERA	PATTERSON	NASA-GSFC			74-039A-31			
AEROS 2-----AEROS-B-----UNTST---07/16/74---- 9/25/75---- 217.-- 879.-- 97.4---- 74-055A								
PREDICTED WORLD MAPS		7	071674	092675	74-055A-00A			
MASS SPECTROMETER (MS)	KRANKOWSKY	MPJ-NUCLEAR PHYS			74-055A-01			
ENERGY DISTRIBUTION OF IONS AND	SPENNER	INST FUR PHYS WELTRAUM			74-055A-02			
RETARDING POTENTIAL ANALYZER PLASMA MEASUREMENT DATA ON MAGNETIC TAPE		5	072074	090475	74-055A-02A			
ELECTRON CONCENTRATION IN THE IONOSPHERE	NESKE	INST FUR PHYS WELTRAUM			74-055A-03			
ELECTRON DENSITY DATA ON MAGNETIC TAPE	SCHMIDTKE	INST FUR PHYS WELTRAUM			74-055A-03A			
EUV SPECTRA DATA ON MAGNETIC TAPE		2	072374	092575	74-055A-04			
NEUTRAL ATMOSPHERE TEMPERATURE	SPENCER	NASA-GSFC			74-055A-05			
ATMOSPHERIC DRAG ANALYSIS	ROEMER	U OF BONN			74-055A-06			
S3-1-----SESP P73-5-----UNTST---10/29/74---- 5/26/75---- 152.0-- 3795.0-- 97.0---- 74-085C								
ACCELEROMETER DENSITY OBSERVATIONS	MARCOS	USAF GEOPHYS LAB			74-085C-01			
ION DENSITY GAUGES	MCISAAC	USAF GEOPHYS LAB			74-085C-02			
MASS SPECTROMETER	PHILBRICK	USAF GEOPHYS LAB			74-085C-03			

AIM FILE IONOSPHERIC PHYSICS LISTING

SATELLITE NAME INVESTIGATION NAME DATA SET NAME	ALTERNATE NAMES	COUNTRY	LAUNCH DATE	INOP DATE	PERIAPSIS	APOAPSIS	INCLINATION	
			PI		AGENCY	QUANTITY	TIME SPAN	NSSDC ID
SOLAR UV EXPERIMENT	PRAG				AEROSPACE CORP		74-085C-04	
ELECTROSTATIC ANALYZER	RICE				AEROSPACE CORP		74-085C-05	
RETARDING POTENTIAL ANALYZER	RICE				AEROSPACE CORP		74-085C-06	
ELF-VLF RECEIVER	KOONS				AEROSPACE CORP		74-085C-07	
INTASAT-----INTA SATELLITE-----	INTA SATELLITE	UNITED STATES	11/15/74	10/06/76	1440.0--	1457.0--	101.7----	74-089C
REFINED WORLD MAPS ON MICROFILM	SAGREDO				19	111574	100776	00B
IONOSPHERIC BEACON								74-089C-01
SRATS-----TAIYO-----	TAIYO	JAPAN	02/24/75		249.--	3129.--	31.54----	75-014A
SOLAR X-RAY MONITOR	MATSUOKA				U OF TOKYO			75-014A-01
SUMMARY PLOTS ON MICROFICHE					7	022575	051976	01A
HYDROGEN LYMAN-ALPHA	OOSHIO				OSAKA CITY U			75-014A-02
SUMMARY PLOTS ON MICROFICHE					7	022575	051976	02A
GEOCORONAL UV GLOW AND EARTH UV ALBEDO	TOHMATSU				U OF TOKYO			75-014A-03
ELECTRON DENSITY MEASUREMENT	OYA				U OF TOHOKU			75-014A-04
SUMMARY PLOTS ON MICROFICHE	HIRAO				7	022575	051976	04A
ELECTRON TEMPERATURE					U OF TOKYO			75-014A-05
SUMMARY PLOTS ON MICROFICHE					7	022575	051976	05A
RETARDING POTENTIAL ANALYZER	MIYAZAKI				RADIO RESEARCH LAB			75-014A-06
IONIC COMPOSITION	FUGONO				RADIO RESEARCH LAB			75-014A-07
ARYABHATA-----ARIABAT-----	ARYABHATA	INDIA	04/19/75	9/23/76	568.--	611.--	50.7----	75-033A
X-RAY ASTRONOMY	RAO				ISRO SATELLITE CENTER			75-033A-01
SOLAR NEUTRON AND GAMMA RAYS	DANIEL				TATA INST OF FUND RES			75-033A-02
IONOSPHERIC ELECTRON TRAP AND UV CHAMBERS	PRAKASH				PHYSICAL RESEARCH LAB			75-033A-03
DMSP 5C/F2-----DAPP (75-043A)-----	DMSP 5C/F2	UNITED STATES	05/24/75	4/01/77	813.--	892.--	98.93----	75-043A
4 CHANNEL SCANNING RADIOMETER (SR)	AFGWC STAFF				GLOBAL WEATHER CTR			75-043A-01
AURORAL IMAGERY ON MICROFILM					34	053075	073177	01A
NIGHTTIME POLAR IMAGERY ON 35MM MICROFILM					34	053075	073177	01B
VERTICAL TEMPERATURE PROFILE RADIOMETER (SSE)	AFGWC STAFF				GLOBAL WEATHER CTR			75-043A-02
ELECTRON SPECTROMETER (SSJ/2)	ROTHWELL				USAF GEOPHYS LAB			75-043A-03
VIKING 1 ORBITER-----PL-733B-----	VIKING 1 ORBITER	UNITED STATES	08/20/75	9/30/80	1513.--	32600.--	37.9----	75-075A
BIBLIOGRAPHY OF THE VIKING MARS SCIENCES	CARR				1			75-075A-00D
ORBITER IMAGING					50	041276	112278	01
BLACK AND WHITE PRESS RELEASE PHOTOGRAPHY					33100	112076	081580	01B
B/W RECTILINEAR PHOTOGRAPHY					16743	072376	051377	01C
B/W ORTHOGRAPHIC PHOTOGRAPHY					7	061876	030377	01D
COLOR PRESS RELEASE PHOTOGRAPHY					4	062376	092076	01E
SEDR PHOTOGRAPHIC SUPPORT DATA ON MICROFILM					504			75-075A-01F
MOSAICS MADE FROM THE BLACK AND WHITE RECTILINEAR AND ORTHOGRAPHIC PHOTOGRAPHY					28	062376	042277	01H
B/W STEREO PAIRS					6			75-075A-01I
INDEX BY LATITUDE, LONGITUDE, AND 10 DEGREE BOX ON MICROFICHE					1			75-075A-01J
MOSAIC SUMMARY AND INDEX ON MICROFILM					1			75-075A-01K
PHOBOS, DEIMOS, STAR, TERMINATOR, AND LIMB IMAGES INDEX ON MICROFILM					4			75-075A-01L
RECTILINEAR AND ORTHOGRAPHIC PHOTOGRAPHY INDEX ORDERED BY ROLL/FILE NUMBER					1			75-075A-01M
INDEX OF IMAGES ORDERED BY QUADRANT, LATITUDE, AND LONGITUDE ON MICROFILM					300	110876	032679	01N
IPL PROCESSING OF THE VIKING ORBITER IMAGES ON 5-INCH FILM					503			75-075A-01O
PRIME AND EXTENDED MISSION CATALOG ON MICROFICHE					25	073076	073076	01P
IPL PROCESSED FALSE COLOR RECONSTRUCTED ORBITER IMAGES					94			75-075A-01Q
USGS PHOTOMOSAIC COLOR NEGATIVES					173			75-075A-01R
USGS PHOTO MOSAICS 5M					117			75-075A-01S
USGS PHOTOMOSAICS 7.5M					73			75-075A-01T
SEDR QUADRANT AND SUBQUADRANT PLOTS ON MICROFICHE					900			75-075A-01U
MARS IN 3D, MOVIE FILM					120			75-075A-01V
BLACK AND WHITE PHOTOMOSAICS 1:500,000					138			75-075A-01W
USGS PHOTOMOSAICS 1:2M					367	061876	081580	01X
IMAGING DATA ON MAGNETIC TAPE					7			75-075A-01Y
STEREO IMAGING CATALOG ON MICROFICHE					6			75-075A-01Z
COLOR COMPOSITES OF MARS								
INFRARED THERMAL MAPPING (IRTM)	KIEFFER							75-075A-02
DECALIBRATED INFRARED THERMAL MAPPING DATA ON MAGNETIC TAPE					36	062276	022379	02A
MARS ATMOSPHERIC WATER DETECTION (MAWD)	FARMER							75-075A-03
ATMOSPHERIC WATER RADIANCE/GEOMETRY DATA ON TAPE					68	061876	061580	03A
ORBITER RADIO SCIENCE	MICHAEL, JR.							75-075A-04
SURFACE ELECTRICAL PROPERTY DATA PLOTS ON MICROFILM					1	072176	100476	04A
RADIO OCCULTATION OBSERVATIONS ON MAGNETIC TAPE					7	100676	110176	04B
ETS-----ETS 1-----	ETS 1	JAPAN	09/09/75		962.573--	1092.51--	46.993----	75-082A
VIKING 2 ORBITER-----PL-733A-----	VIKING 2 ORBITER	UNITED STATES	09/09/75	7/25/78	1499.--	35800.--	55.2----	75-083A
BIBLIOGRAPHY OF THE VIKING MARS SCIENCES	CARR				10			75-083A-00D
ORBITER IMAGING					13			75-083A-01
BLACK AND WHITE PRESS RELEASE PHOTOGRAPHY					378			75-083A-01A
MOSAICS MADE FROM THE BLACK AND WHITE RECTILINEAR AND ORTHOGRAPHIC PHOTOGRAPHY					20708	081276	062478	01B
B/W RECTILINEAR PHOTOGRAPHY					9649	081276	112777	01E
BLACK AND WHITE ORTHOGRAPHIC PHOTOGRAPHY					24	092276	042477	01F
B/W STEREO PAIRS					2	081176	072378	01G
SEDR PHOTOGRAPHIC SUPPORT DATA ON MICROFILM					6			75-083A-01H
INDEX BY LATITUDE, LONGITUDE, AND 10 DEGREE BOX ON MICROFICHE					1			75-083A-01I
MOSAIC SUMMARY AND INDEX ON MICROFILM					1			75-083A-01J
PHOBOS, DEIMOS, STAR, LIMB, AND TERMINATOR IMAGES ON MICROFILM					1			75-083A-01K
RECTILINEAR AND ORTHOGRAPHIC PHOTOGRAPHY INDEXES ORDERED BY ROLL/FILE NUMBER					4			75-083A-01L
INDEX OF IMAGES ORDERED BY QUADRANT, LATITUDE, AND LONGITUDE ON MICROFILM					516	080576	020277	01N
IPL PROCESSING OF BLACK AND WHITE PHOTOGRAPHY					1			75-083A-01M
IPL PROCESSED BLACK AND WHITE PHOTOGRAPHY					300	112476	070578	01P
IPL PROCESSED FALSE COLOR RECONSTRUCTED ORBITER IMAGES					34	110476	053077	01Q
COLOR PRESS RELEASE PHOTOGRAPHY					1	061478	061478	01R
USGS PHOTOMOSAICS 5M					173			75-083A-01Q
USGS PHOTOMOSAICS 7.5M					117			75-083A-01R
SEDR QUADRANT AND SUBQUADRANT PLOTS ON MICROFICHE					73			75-083A-01S
MARS IN 3D, MOVIE FILM					900			75-083A-01T

AIM FILE IONOSPHERIC PHYSICS LISTING

SATELLITE NAME INVESTIGATION NAME DATA SET NAME	ALTERNATE NAMES	COUNTRY	LAUNCH DATE	INOP DATE	PERIAPSIS	APCAPSIS	INCLINATION	AGENCY	QUANTITY	TIME SPAN	NSSDC ID		
USGS PHOTOMOSAICS 1:2M IMAGING DATA ON MAGNETIC TAPE				081276	062478			US GEOLOGICAL SURVEY	138		75-083A-01V		
STEREO IMAGING CATALOG ON MICROFICHE					7						75-083A-01W		
COLOR COMPOSITES OF MARS					6						75-083A-01X		
INFRARED THERMAL MAPPING (IRTM) DECALIBRATED INFRARED THERMAL MAPPING DATA ON MAGNETIC TAPE	KIEFFER										75-083A-02		
MARS ATMOSPHERIC WATER DETECTION (MAND) ATMOSPHERIC WATER RADIANCE/GEOOMETRY DATA ON TAPE	FARMER			081176	072478			USAF GEOPHYS LAB	20		75-083A-02A		
ORBITER RADIO SCIENCE	MICHAEL, JR.										75-083A-03		
SURFACE ELECTRICAL PROPERTY DATA PLOTS ON MICROFILM LINE OF SIGHT ACCELERATION LISTINGS AND PLOTS					25	073176	072478				75-083A-03A		
ACCELERATION GRAVITY DATA ON MAGNETIC TAPE									1	072176	100476	75-083A-04	
									1	100077	070078	75-083A-04F	
									1	121677	092879	75-083A-04G	
AE-D-----EXPLORER 54-----UNTST---10/06/75---- 1/29/76----					154.--	3816.--	90.1----				75-096A		
PREDICTED WORLD MAPS					3	100775	020276				75-096A-00A		
CYLINDRICAL ELECTROSTATIC PROBE (CEP)	BRACE							USAF GEOPHYS LAB	4	100675	012976	75-096A-01	
CYLINDRICAL ELECTROSTATIC PROBE (CEP) DATA ON MAGNETIC TAPE									4	100675	012976	75-096A-01A	
ATMOSPHERIC DENSITY ACCELEROMETER (MESA)	CHAMPION								4	100675	012976	75-096A-02	
ATMOSPHERIC DENSITY ACCELEROMETER (MESA) DATA ON MAGNETIC TAPE									4	100675	012976	75-096A-02A	
PHOTOELECTRON SPECTROMETER (PES)	DOERING							JOHNS HOPKINS U			75-096A-03		
PHOTOELECTRON SPECTROMETER (PES) DATA ON MAGNETIC TAPE									4	100675	012976	75-096A-03A	
RETARDING POTENTIAL ANALYZER/DRIFT METER	HANSON							U OF TEXAS, DALLAS			75-096A-04		
RETARDING POTENTIAL ANALYZER/DRIFT METER									4	100675	012976	75-096A-04A	
SOLAR EUV SPECTROPHOTOMETER (EUVS)	HINTEREGGER							USAF GEOPHYS LAB			75-096A-05		
OPEN-SOURCE NEUTRAL MASS SPECTROMETER	NIER										75-096A-07		
NEUTRAL ATMOSPHERE COMPOSITION (NACE)	REBER								4	100675	012976	75-096A-07A	
NEUTRAL ATMOSPHERE COMPOSITION (NACE) DATA ON MAGNETIC TAPE									4	100675	012976	75-096A-08	
NEUTRAL ATMOSPHERE TEMPERATURE (NATE)	SPENCER								4	100675	012976	75-096A-09	
NEUTRAL ATMOSPHERE TEMPERATURE (NATE) DATA ON MAGNETIC TAPE									4	100675	012976	75-096A-09A	
MAGNETIC ION-MASS SPECTROMETER (MIMS)	HOFFMAN							U OF TEXAS, DALLAS			75-096A-10		
MAGNETIC ION-MASS SPECTROMETER (MIMS) DATA ON MAGNETIC TAPE									4	100675	012976	75-096A-10A	
ULTRAVIOLET NITRIC-OXIDE EXPERIMENT	BARTH							U OF COLORADO			75-096A-11		
UV NITRIC OXIDE (UVNO) DATA ON MAGNETIC TAPE									4	100675	012976	75-096A-11A	
LOW-ENERGY ELECTRONS (LEE)	HOFFMAN								4	100675	012976	75-096A-12	
LOW ENERGY ELECTRON (LEE) DATA ON MAGNETIC TAPE									4	100675	012976	75-096A-12A	
VISIBLE AIRGLOW PHOTOMETER (VAE)	HAYS							U OF MICHIGAN			75-096A-13		
VISIBLE AIRGLOW PHOTOMETER (VAE) DATA ON MAGNETIC TAPE									4	100675	012976	75-096A-13A	
CAPACITANCE MANOMETER	RICE							AEROSPACE CORP			75-096A-14		
COLD CATHODE ION GAUGE	RICE							AEROSPACE CORP			75-096A-15		
ELECTRIC FIELDS	MAYNARD							NASA-GSFC			75-096A-16		
REFLECTED GAS (SPACERCRAFT)	SCIAUDONE							NASA-GSFC			75-096A-17		
PLANETARY ATMOSPHERE COMPOSITION TEST	NIEMANN							NASA-GSFC			75-096A-18		
AE-E-----EXPLORER 55-----UNTST---11/20/75---- 6/10/81----					156.--	2983.--	19.7----				75-107A		
PREDICTED WORLD MAPS					23	112275	112579				75-107A-00A		
CYLINDRICAL ELECTROSTATIC PROBE (CEP)	BRACE							NASA-GSFC			75-107A-01		
CYLINDRICAL ELECTROSTATIC PROBE DATA ON MAGNETIC TAPE									68	112175	060781	75-107A-01A	
ATMOSPHERIC DENSITY ACCELEROMETER (MESA)	CHAMPION							USAF GEOPHYS LAB			75-107A-02		
MINIATURE ELECTROSTATIC ACCELEROMETER (MESA) DENSITY DATA ON MAGNETIC TAPE									68	112175	060781	75-107A-02A	
PHOTOELECTRON SPECTROMETER (PES)	DOERING							JOHNS HOPKINS U			75-107A-03		
PHOTOELECTRON SPECTROMETER DATA ON MAGNETIC TAPE									68	112175	060781	75-107A-03A	
RETARDING POTENTIAL ANALYZER/DRIFT METER	HANSON							U OF TEXAS, DALLAS			75-107A-04		
RETARDING POTENTIAL ANALYZER DATA ON MAGNETIC TAPE									68	112175	060781	75-107A-04A	
EXTREME SOLAR UV MONITOR (ESUM)	HEATH							NASA-GSFC			75-107A-05		
ESUM DATA ON TAPE									68	112175	123079	75-107A-05A	
ULTRA VIOLET SOLAR FLUX MEASUREMENTS ON MICROFICHE									5	120375	092476	75-107A-05B	
ABSOLUTE ULTRAVIOLET SOLAR FLUX	HINTEREGGER								1	122073	123173	75-107A-05C	
SOLAR EUV SPECTROPHOTOMETER (EUVS)								USAF GEOPHYS LAB			75-107A-06		
SOLAR EUV SPECTROMETER (EUVS) DATA ON MAGNETIC TAPE									68	112175	123079	75-107A-06A	
EUV ABSORPTION DATA ON MAGNETIC TAPE									1	122776	123079	75-107A-06B	
DETAILED REFERENCE SPECTRUM OF EUV IRRADIANCE DATA ON MAGNETIC TAPE									1	060377	092580	75-107A-06C	
OPEN-SOURCE NEUTRAL MASS SPECTROMETER	NIER							U OF MINNESOTA			75-107A-07		
OPEN-SOURCE NEUTRAL MASS SPECTROMETER COMPOSITION DATA ON MAGNETIC TAPE									68	112175	060781	75-107A-07A	
NEUTRAL ATMOSPHERE COMPOSITION (NACE)	REBER										75-107A-08		
CLOSED-SOURCE NEUTRAL MASS SPECTROMETER DATA ON MAGNETIC TAPE								NASA-GSFC			75-107A-08A		
NEUTRAL ATMOSPHERE TEMPERATURE (NATE)	SPENCER									68	112175	060781	75-107A-09
NEUTRAL ATMOSPHERE TEMPERATURE AND COMPOSITION DATA ON MAGNETIC TAPE								NASA-GSFC			75-107A-09A		
BENNETT ION-MASS SPECTROMETER (BIMS)	BRINTON							NASA HEADQUARTERS			75-107A-10		
BENNETT ION-MASS SPECTROMETER DATA ON MAGNETIC TAPE									68	112175	060781	75-107A-10A	
VISIBLE AIRGLOW PHOTOMETER (VAE)	HAYS							U OF MICHIGAN			75-107A-11		
VISIBLE AIRGLOW PHOTOMETER (VAE) DATA ON MAGNETIC TAPE									68	112175	060781	75-107A-11A	
CAPACITANCE MANOMETER	RICE							AEROSPACE CORP			75-107A-12		
COLD CATHODE ION GAUGE	RICE							AEROSPACE CORP			75-107A-13		
HELUM AND HYDROGEN AIRGLOW (SIDS)	BOWYER							U OF CALIF, BERKELEY			75-107A-14		
NITRIC OXIDE AIRGLOW (SIDS)	BARTH							U OF COLORADO			75-107A-15		
BACKSCATTER UV SPECTROMETER (BUV)	HEATH							NASA-GSFC			75-107A-16		
BACKSCATTER ULTRAVIOLET SPECTROMETER (BUV) DATA ON TAPE									68	112175	060781	75-107A-16A	
TEMPERATURE ALARM (SPACERCRAFT)	CARUSO										75-107A-17		
RADIATION DAMAGE	CLIFF										75-107A-18		
ENERGY ANALYZER SPECTROMETER TEST	HOFFMAN										75-107A-19		
ENERGY ANALYZER SPECTROMETER TEST DATA ON MAGNETIC TAPE									68	112175	060781	75-107A-19A	
S3-2-----SESP S73-6-----UNTST---12/03/75---- 5/01/78----					236.--	1558.--	96.3----				75-114B		
NEUTRAL DENSITY EXPERIMENTS (COLD AND	MCISAAC							USAF GEOPHYS LAB			75-114B-01		
VELOCITY MASS SPECTROMETER	PHILBRICK							AEROSPACE CORP			75-114B-02		
NEUTRAL DENSITY EXPERIMENT (COLD CATHODE	RICE							USAF GEOPHYS LAB			75-114B-03		
LOW ENERGY PROTON SPECTROMETER	YATES										75-114B-04		
PROTON-ALPHA PARTICLE DETECTOR	MOOMEY							USAF GEOPHYS LAB			75-114B-05		
ENERGETIC ELECTRON (0.1- 1.0 MEV) SENSOR	MOOMEY							LOS ALAMOS SCI LAB			75-114B-06		
8-STEP 36-317 KEV PROCESSED ELECTRON DATA BASE ON MAGNETIC TAPE									5			75-114B-06A	
ELECTRIC FIELD OBSERVATIONS	SMIDDY							USAF GEOPHYS LAB			75-114B-07		
MAGNETOMETER	SMIDDY							AEROSPACE CORP			75-114B-08		
ELECTROSTATIC ANALYZER (1-20 KEV)	SMIDDY							USAF GEOPHYS LAB			75-114B-09		

AIM FILE IONOSPHERIC PHYSICS LISTING

SATELLITE NAME INVESTIGATION NAME DATA SET NAME	ALTERNATE NAMES	COUNTRY	LAUNCH DATE	INOP DATE	PERIAPSIS	APOAPSIS	INCLINATION	AGENCY	QUANTITY	TIME SPAN	NSSDC ID
TRIAXIAL PIEZOELECTRIC ACCELEROMETER RETARDING POTENTIAL ANALYZER (RPA) SPHERICAL ELECTRON SENSOR AND PLANAR ELECTROSTATIC ANALYZER (2-300 EV) PROTON TIME-OF-FLIGHT AND PROTON ALPHA COUNTERS		MCISAAC RICE WILDMAN WILDMAN FENNELL	USAF GEOPHYS LAB AEROSPACE CORP USAF GEOPHYS LAB USAF GEOPHYS LAB AEROSPACE CORP	75-114B-10 75-114B-11 75-114B-12 75-114B-13 75-114B-14							
INTERCOSMOS 14-----IK-14-----	SPHERICAL ION TRAPS PERPENDICULAR AND PARALLEL ELECTRON TEMPERATURE ELF/VLF RECEIVER MICROMETEORITE DETECTOR FOUR FREQUENCY BEACON	GDALEVICH GRINGAUZ LIKHTER NAZAROVA SCHMILAUER	IKI IKI IZMIRAN SOVIET ACADEMY OF SCI CZECH ACADEMY OF SCI	75-115A-01 75-115A-02 75-115A-03 75-115A-04 75-115A-05	6/28/76-----	345.--	1707.--	74.-----	75-115A		
PROGNOS 4-----	THREE AXIS FLUXGATE MAGNETOMETER PLASMA DETECTOR SOLAR X-RAYS ENERGETIC PARTICLES AND CHARGE COMPOSITION KILOMETRIC/HECTOMETRIC RECEIVER PROTON AND HEAVY NUCLEI SPECTROMETER	EROSHENKO GRINGAUZ KACHAROV LOGACHEV GRIGORYEVA SKREBTSOV	IZMIRAN IKI LENGRAD INST PHYS TECH INST NUCLEAR PHYSICS STERNBERG ASTRON INST LENGRAD INST PHYS TECH	75-122A-01 75-122A-02 75-122A-03 75-122A-04 75-122A-05 75-122A-06	USSR-----12/22/75-----	3/11/76-----	634.--	199000.--	65.-----	75-122A	
S3-3-----SESP S74-2A-----	DC ELECTRIC FIELDS VECTOR ELECTRIC FIELD MEASUREMENTS ON MAGNETIC TAPE LOW-ENERGY PARTICLE SPECTROMETER LOW ENERGY PARTICLE SPECTROMETER BOUNDARY ENCOUNTERS DATA ON MAGNETIC TAPE LOW-ENERGY PROTON SPECTROMETERS PROTON TELESCOPE ELECTRIC FIELDS-ION DRIFT ELF/VLF RECEIVER ENERGETIC ELECTRON MAGNETIC SPECTROMETER 1 SECOND AVERAGED ENERGETIC ELECTRON AND PROTON MASS SPECTROMETER DATA ON TAPE ION-ELECTRON MASS SPECTROMETER ION-ELECTRON MASS SPECTROMETER DATA ON MAGNETIC TAPE	MOZER SHARP YATES YATES SAGALYN CAUFFMAN VAMPOLA FENNELL	U OF CALIF, BERKELEY LOCKHEED PALO ALTO USAF GEOPHYS LAB USAF GEOPHYS LAB USAF GEOPHYS LAB LOCKHEED PALO ALTO AEROSPACE CORP AEROSPACE CORP AEROSPACE CORP	76-065B-01 76-065B-02 76-065B-03 76-065B-04 76-065B-05 76-065B-06 76-065B-07 76-065B-07A 76-065B-08 76-065B-08A	UNTST-----07/08/76-----	246.--	7856.--	97.5-----	76-065B		
ETS 2-----ENGINEERING TEST SAT.-2-----JAPAN-----					02/23/77-----	35780.--	35790.--	0.1-----	77-014A		
COSMOS 900-----09898-----	FLAT RETARDING POTENTIAL ANALYZER HIGH-FREQUENCY ELECTRON TEMPERATURE PROBE SPHERICAL ION TRAP WITH FLOATING POTENTIAL CYLINDRICAL ELECTROSTATIC PROBE DIFFERENTIAL ENERGY SPECTROMETER ELECTRON AND PROTON DATA ON MAGNETIC TAPE DIFFERENTIAL LOW ENERGY SPECTROMETER PANORAMIC ELECTROSTATIC SPECTROMETER RELATIVISTIC PROTON AND ELECTRON COUNTER AURORAL PHOTOMETER	AFONIN AFONIN GDALEVICH GDALEVICH SOSNOVETS	IKI IKI IKI IKI INST NUCLEAR PHYSICS INST NUCLEAR PHYSICS INST NUCLEAR PHYSICS INST NUCLEAR PHYSICS INST NUCLEAR PHYSICS	77-023A-01 77-023A-02 77-023A-03 77-023A-04 77-023A-05 77-023A-05 77-023A-06 77-023A-07 77-023A-08 77-023A-09	USSR-----03/30/77-----	10/11/79-----	460.--	523.--	83.-----	77-023A	
DMSP 5D-1/F2-----DMSP 13536-----	OPERATIONAL LINESCAN SYSTEM (OLS) AURORAL IMAGERY ON MICROFILM MULTICHANNEL FILTER RADIOMETER (SSH) TOTAL OZONE AND CALIBRATED RADIANCE DATA MFR TOTAL OZONE GRID POINT DATA ON MAGNETIC TAPE PRECIPITATING ELECTRON SPECTROMETER PRECIPITATING ELECTRON SPECTROMETER PARTICLE DATA ON MAGNETIC TAPE PASSIVE IONOSPHERIC MONITOR (SSI/P) IONOSPHERIC PLASMA MONITOR (SSI/E) REMOTE X-RAY SENSOR - PRECIPITATING ELECTRONS (SSB/O)	AFGWC STAFF AFGWC STAFF ROTHWELL SNYDER SAGALYN MIZERA	GLOBAL WEATHER CTR GLOBAL WEATHER CTR USAF GEOPHYS LAB USAF GEOPHYS LAB USAF GEOPHYS LAB AEROSPACE CORP	77-044A-01 77-044A-01 77-044A-02 77-044A-02A 77-044A-02B 77-044A-03 77-044A-03 77-044A-04 77-044A-05 77-044A-06	UNTST-----06/05/77-----	2/17/80-----	811.--	869.--	99.-----	77-044A	
KYOKO-----EXOSPHERIC SAT. A-----JAPAN-----	ELECTRON PROBES ELECTRON TEMPERATURE AND DENSITY PLOTS ON MICROFILM ELECTRON ENERGY ANALYZER LOW-ENERGY ELECTRON FLUX SPECTROGRAMS ON MICROFILM UV AURORAL TV IMAGING ELECTROSTATIC PLASMA WAVE MEASUREMENT PLASMA TIME-FREQUENCY SPECTROGRAMS ON MICROFILM UV GLOW SPECTROPHOTOMETER EXTREME ULTRAVIOLET AIRGLOW PLOTS ON MICROFILM ION MASS SPECTROMETER ION COMPOSITION PLOTS ON MICROFILM	OYAMA MUKAI MUKAI KANEDA YOSHINO NAKAMURA IWAMOTO	ISAS ISAS ISAS ISAS U OF ELECTRO-COMMUN TSUKUBA U RADIO RESEARCH LAB RADIO RESEARCH LAB	78-014A-01 78-014A-01A 78-014A-02 78-014A-02A 78-014A-03 78-014A-04 78-014A-04A 78-014A-05 78-014A-05A 78-014A-06	02/04/78-----11/09/79-----	642.--	3978.--	65.4-----	78-014A		
ISS-B-----IONOSP SOUNDING SAT 2-----JAPAN-----	SWEET FREQUENCY TOPSIDE IONOSPHERIC ISS-B FOF2 MODELS FOR 6 4-MONTHS PERIOD EACH GIVES GLOBAL MAPS FOR UT=0,1,...,23 TOPSIDE IONOGRAMS ON MICROFICHE. TOPSIDE SOUNDER SUMMARY PLOTS ON MICROFICHE HE	AIJKO KATOH SAGAWA	RADIO RESEARCH LAB RADIO RESEARCH LAB RADIO RESEARCH LAB	78-018A-01 78-018A-01A 78-018A-01B 78-018A-01C 78-018A-02 78-018A-02A 78-018A-02B 78-018A-03 78-018A-03A 78-018A-03B 78-018A-04 78-018A-04A 78-018A-04B 78-018A-04C	02/16/78-----4/01/83-----	972.--	1225.--	69.4-----	78-018A		
PIONEER VENUS 1-----PIONEER VENUS 1978 ORBIT-----	ORBITAL PLOTS ON MICROFICHE ATTITUDE-ORBIT LISTINGS ON MICROFICHE IONPAUSE AND BOWSHOCK CROSSINGS TIMES AND LOCATIONS	IWAMOTO	RADIO RESEARCH LAB	78-051A-00D 78-051A-00E 78-051A-00F	05/20/78-----	200.--	66614.--	105.-----	78-051A		

AIM FILE IONOSPHERIC PHYSICS LISTING

SATELLITE NAME INVESTIGATION NAME DATA SET NAME	ALTERNATE NAMES	COUNTRY	LAUNCH DATE	INOP DATE	PERIAPSIS	APOAPSIS	INCLINATION	AGENCY	QUANTITY	TIME SPAN	NSSDC ID
IONOPAUSE AND BOWSHOCK INBOUND AND OUTBOUND CROSSING TIMES AND LOCATIONS EPHEMERIS, TAKEN FROM SEDR, DATA ON MAGNETIC TAPE.					1 120578 111981						78-051A-00G
ELECTRON TEMPERATURE PROBE (OETP)	MCELROY	HARVARD U	49 120578 081682								78-051A-00H
ELECTRON TEMPERATURE AND DENSITY (UADS-LFD FILE) DATA ON MAGNETIC TAPE			10 120578 112681								78-051A-01A
CD OBSERVED IONPAUSE LOCATIONS DATA ON MAGNETIC TAPE			1 120578 080781								78-051A-01B
PIONEER VENUS ORB. ELECTRON TEMPERATURE AND DENSITY PROBE, 12-S, (UADS-LFD)	BROWN, JR.		1 120678 021884								78-051A-01C
RADAR MAPPER (ORAD)											78-051A-02
TOPOGRAPHIC MAPS											78-051A-02A
RADAR MEASUREMENT (UADS-LFD FILE) DATA ON MAGNETIC TAPE			1 052880 052880								78-051A-02B
RADAR ALTIMETRY OF CRUST-FIXED LAT + LONG DATA ON MAGNETIC TAPE			10 120578 112681								78-051A-02C
ALTIMETRIC AND RADIOMETRIC, LOW FREQUENCY DATA ON MAGNETIC TAPE			1 120578 090181								78-051A-02D
GAS-PLASMA ENVIRONMENT-DUAL FREQUENCY EXPERIMENT (OGPE)	CROFT		1 120878 031981								78-051A-03
GAS AND PLASMA ENVIRONMENT SIGNAL STRENGTH LISTS											78-051A-03G
GAMMA BURST DETECTOR (OGBD)	EVANS		4 121278 112879								78-051A-05
OGBD SOLAR EVENTS DATA ON MAGNETIC TAPE			1 052278 090783								78-051A-05A
OGBD HOURLY AVERAGES ON MAGNETIC TAPE			1 052278 090783								78-051A-05B
OGBD HOURLY AVERAGES ON MICROFICHE											78-051A-05C
CLOUD PHOTOPOLARIMETER	STONE										78-051A-06
COLOR PRESS RELEASE PHOTOGRAPHY			17 121378 052879								78-051A-06A
DIGITAL MAP IMAGES ON MAGNETIC TAPE			67 120878 051486								78-051A-06B
ORBITER CLOUD PHOTOPOLARIMETER IMAGERY			420 120578 071579								78-051A-06C
RETARDING POTENTIAL ANALYZER (ORPA)	KNUDSEN		10 120578 112681								78-051A-07
PLASMA PARAMETER (UADS-LFD FILE) DATA ON MAGNETIC TAPE											78-051A-07A
NEUTRAL MASS SPECTROMETER (ONMS)	NIEMANN										78-051A-11
NEUTRAL GAS COMPOSITION (UADS-LFD FILE) DATA ON MAGNETIC TAPE			10 120578 112681								78-051A-11A
ONMS VENUS SUMMARY LOW FREQUENCY DATA ON MAGNETIC TAPE			1 122478 081380								78-051A-11B
12-S SAMPLED NEUTRAL GAS DENSITY DATA PLOTS ON FILM			250								78-051A-11C
12-S SAMPLED ENERGETIC ION (40EV) DATA ON MAGNETIC TAPE											78-051A-11D
12-S SAMPLED ENERGETIC ION (140EV) DATA ON MICROFICHE			44 011282 110584								78-051A-11E
MAGNETOMETER (OMAG)	RUSSELL										78-051A-12
24 SECOND AVERAGED (UADS-LFD FILE) DATA ON MAGNETIC TAPE			10 120578 112681								78-051A-12A
CD 32 SECOND TOTAL MAGNETIC FIELD DATA ON TAPE			1 040479 060379								78-051A-12B
CD 32 SEC MERGED MAGNETIC AND PEAK ELECTRIC FIELD DATA ON TAPE			1 060879 080879								78-051A-12C
SEDR LISTINGS OF EPHEMERIS DATA			95 030582 072383								78-051A-12D
HIGH-RESOLUTION, 12 SEC AND 2 MIN B AND E PLOTS ON MICROFICHE			1612 120578 090584								78-051A-12E
12-SEC B + E FIELD, PERIAPSIS DATA (VENUS IONOSPHERE) ON MAGNETIC TAPE.			4 120578 052883								78-051A-12F
2-MINUTE OVERLAPPED AVERAGED DATA TAKEN EVERY MINUTE ON MAGNETIC TAPE			24 120578 093084								78-051A-12G
ELECTRIC FIELD DETECTOR (OEFD)	SCARF										78-051A-13
24 SECOND AVERAGED (UADS-LFD FILE) DATA ON MAGNETIC TAPE			10 120578 112681								78-051A-13A
CD 32 SEC MERGED MAGNETIC AND PEAK ELECTRIC FIELD DATA ON TAPE			1 060879 080879								78-051A-13B
HIGH-RESOLUTION, 12 SEC AND 2 MIN B AND E PLOTS ON MICROFICHE			1612 120578 090584								78-051A-13C
2-MINUTE OVERLAPPED AVERAGED DATA TAKEN EVERY MINUTE ON MAGNETIC TAPE.			4 120578 052883								78-051A-13D
PROGRAMMABLE ULTRAVIOLET SPECTROMETER	STEWART										78-051A-13E
FAKE COLOR IMAGES			4 052979 052979								78-051A-15A
AIRGLOW MEASUREMENT (UADS-LFD FILE) DATA ON MAGNETIC TAPE			10 120578 112681								78-051A-15B
INFRARED RADIOMETER (OIR)	TAYLOR										78-051A-16
ORBITER INFRARED RADIOMETER RADIANCE DATA ON MAGNETIC TAPE			2 121278 021479								78-051A-16A
COMPUTER ENHANCEMENT OF THERMAL EMISSION			1 120878 011379								78-051A-16B
ION MASS SPECTROMETER 1-60AMU (OIMS)	TAYLOR, JR.										78-051A-17
12 SECOND AVERAGED ION DENSITY (UADS-LFD FILE) DATA ON MAGNETIC TAPE			10 120578 112681								78-051A-17A
POSITIVE ION COMPOSITION MEASUREMENTS ON MAGNETIC TAPE			3 120578 021887								78-051A-17B
OIMS HIGH-RESOLUTION DATA BASE ON MAGNETIC TAPE			8 120578 022587								78-051A-17C
SOLAR WIND PLASMA ANALYZER (OPA)	BARNES										78-051A-18
OPA (SED) DATE AND VELOCITY DATA (ORBIT 1-740) ON MAGNETIC TAPE			1 120578 102181								78-051A-18A
SOLAR WIND PLASMA ANALYZER DATA, DECEMBER 11, 1978			1 121178 121178								78-051A-18B
SOLAR WIND PLASMA (UADS-LFD FILE) DATA ON MAGNETIC TAPE			10 120578 112681								78-051A-18C
ATMOSPHERIC DRAG (OAD)	KEATING										78-051A-19
ATMOSPHERIC DRAG DENSITIES			1 120978 080779								78-051A-19A
OAD (SED) P/V ATMOSPHERIC DRAG MODEL ON MAGNETIC TAPE			1 120978 080779								78-051A-19B
OAD (SED) P/V ATMOSPHERIC DRAG OBSERVATIONS (OBITS 5-246) ON MAG. TAPE			1 120978 080779								78-051A-19C
RADIO OCCULTATION (ORO)	KLIORE										78-051A-20
S-BAND AND X-BAND RADIO OCCULTATION DATA ON MAGNETIC TAPE			3 120578 022779								78-051A-21
CELESTIAL MECHANICS (OCM)	SHAPIRO										78-051A-21A
HIGH-RESOLUTION VENUS GRAVITY DATA ON MAGNETIC TAPE			1 042579 052879								78-051A-21B
GRAVITATIONAL POTENTIAL MODEL OF BETA REGIO ON MAGNETIC TAPE			1 042579 052879								78-051A-22
ATMOSPHERIC AND SOLAR CORONA TURBULENCE	WOO										78-051A-22A
RADIO OCCULTATION ATMOSPHERIC TURBULENCE (MTUR/OTUR) DATA ON MAGNETIC TAPE			1 121378 020579								78-051A-23
INTERNAL DENSITY DISTRIBUTION (OIDD)	PHILLIPS										78-051A-23A
LINE-OF-SIGHT ACCELERATION PLOTS AND LISTINGS			2 030179 083080								78-051A-23B
HIGH RESOLUTION ACCELERATION GRAVITY DATA ON MAGNETIC TAPE			5 120979 082980								78-051A-23C
VENUS GRAVITY: ANALYSIS OF BETA REGIO											78-051A-23D
GRAVITY FIELD OF VENUS: A PRELIMINARY ANALYSIS											78-051A-23E
GRAVITY ANOMALIES ON VENUS											78-051A-23F
VENUS GRAVITY ANOMALIES AND CORRELATIONS WITH TOPOGRAPHY											78-051A-23G
LINE-OF-SIGHT DATA ON MAGNETIC TAPE											
PIONEER VENUS 2-----PIONEER VENUS 1978-----UNTST---08/08/78----12/09/78----			--	--	--	--	--				78-078A
ION MASS SPECTROMETER (BIMS)	TAYLOR, JR.	NASA-GSFC									78-078A-02
BIMS DATA, 850-140KM DATA ON MAGNETIC TAPE			1 120978 120978								78-078A-02B
NEUTRAL MASS SPECTROMETER (BNMS)	VON ZAHN	U OF BONN									78-078A-03
THE UPPER ATMOSPHERE OF VENUS DURING MORNING CONDITIONS			2 120978 120978								78-078A-03B
JIKKEN-----EXOS-B-----JAPAN---09/16/78----1/00/83----230.-- 30558.-- 31.----78-087A											
STIMULATED PLASMA WAVE (SPW)	OYA	U OF TOHOKU									78-087A-01
VLF WAVE-PARTICLE INTERACTIONS OF SELECTED DATA ON MICROFICHE	OYA		1 071779 090179								78-087A-01A
NATURAL PLASMA WAVES (NPW)	OYA	U OF TOHOKU									78-087A-02
VLF WAVE-PARTICLE INTERACTIONS OF SELECTED DATA ON MICROFICHE	OYA		1 071779 090179								78-087A-02A
VLF DOPPLER PROPAGATION (DPL)	KIMURA	KYOTO U									78-087A-03
VLF WAVE-PARTICLE INTERACTIONS OF SELECTED DATA ON MICROFICHE	KIMURA		1 071779 090179								78-087A-03A
IMPEDANCE AND ELECTRIC FIELD (IEF)	NISHIDA	ISAS									78-087A-04
FLUXGATE MAGNETOMETER (MGF)	AOYAMA	TOKAI U									78-087A-05
ENERGY SPECTRUM OF PARTICLES (ESP)	KAWASHIMA	U OF TOKYO									78-087A-06

AIM FILE IONOSPHERIC PHYSICS LISTING

SATELLITE NAME INVESTIGATION NAME DATA SET NAME	ALTERNATE NAMES	COUNTRY	LAUNCH DATE	INOP DATE	PERIAPSIS	APOAPSIS	INCLINATION	PI	AGENCY	QUANTITY	TIME SPAN	NSSDC ID
VLF WAVE-PARTICLE INTERACTIONS OF SELECTED DATA ON MICROFICHE CONTROLLED ELECTRON BEAM EMISSIONS (CBE)	KAWASHIMA				1	071779	090179					78-087A-06A
STP P78-2-----SESP P78-2A-----UNTST-----01/30/79-----			27553.--	43239.--	7.7-----	79-007A						78-087A-07
PRINTOUT OF PREDICTED MAGNETIC CONJUNCTIONS ON MICROFILM ORBITAL PLOTS FOR PROMIS PERIOD IN GSM COORDINATES, ON MICROFICHE				1 031579 021781		79-007A-00D						
SPACECRAFT SURFACE POTENTIAL MONITOR	MIZERA			1 032986 061686		79-007A-00E						
CHARGING ELECTRICAL EFFECTS ANALYZER	KOONS											79-007A-01
QUARTZ CRYSTAL MICROBALANCES IN RETARDING POTENTIAL ANALYZERS	HALL											79-007A-02
THERMAL CONTROL SAMPLE MONITOR	HALL											79-007A-03
ELECTRIC FIELD DETECTOR	AGGSON											79-007A-04
ELECTRON FIELD COMPONENTS THREE FILES PER DAY DATA ON MAGNETIC TAPE												79-007A-05
SPACECRAFT SHEATH FIELDS DETECTOR	FENNELL											79-007A-06
SC2-3 PLASMA DATA												79-007A-07
ELECTRON GUN-ION GUN	COHEN											79-007A-08
MAGNETIC FIELD MONITOR	LEDLEY											79-007A-09
B FIELD ONE MINUTE AVERAGES ON MAGNETIC TAPE												79-007A-10
LIGHT ION MASS SPECTROMETER	REASONER											79-007A-11
PLASMA PROBE	SAGALYN											79-007A-12
UCSD CHARGED PARTICLE DETECTOR	WHIPPLE											79-007A-13
CHARGED PARTICLE DETECTOR ON MAGNETIC TAPE												79-007A-14
CHARGED PARTICLE DETECTOR AVERAGED DATA ON MAGNETIC TAPE												79-007A-15
RAPID SCAN PARTICLE DETECTOR	HARDY											79-007A-16
SC5 FINAL ATLAS ELECTRONS AND IONS DATA ON MAGNETIC TAPE												79-007A-17
ENERGETIC ION SPECTROMETER	JOHNSON											79-007A-18
ENERGETIC ION SPECTROMETER ON MAGNETIC TAPE												79-007A-19
H ⁺ AND O ⁺ ENERGY FLUX AND DENSITIES DATA ON MAGNETIC TAPE.												79-007A-20
ENERGETIC PROTON DETECTOR	BLAKE											79-007A-21
ENERGETIC PROTON FLUXES - ONE MINUTE AVERAGES ON MAGNETIC TAPE												79-007A-22
HIGH-ENERGY PARTICLE DETECTOR	REAGAN											79-007A-23
64-SECOND RESOLUTION DIFFERENTIAL ELECTRON FLUX DATA, ON MAGNETIC TAPE												79-007A-24
TRANSIENT PULSE MONITOR	NANEVICZ											79-007A-25
STP P78-1-----SPACE TEST PROGRAM P78-1--UNTST-----02/24/79-----			560.--	600.--	97.9-----	79-017A						
PREDICTED WORLD MAPS ON MICROFILM				3 022879 012680		79-017A-00A						
GAMMA RAY SPECTROMETER	IMHOF											79-017A-01
SOLAR WIND MONITOR	MICHELS											79-017A-02
SOLAR X-RAY SPECTROMETER	KREPLIN											79-017A-03
EXTREME ULTRAVIOLET SPECTROMETER	BOWYER											79-017A-04
HIGH LATITUDE PARTICLE SPECTROMETER	VANCOUR											79-017A-05
HIGH LATITUDE PARTICLE SPECTROMETER DATA ON MAGNETIC TAPE												79-017A-06
X-RAY MONITOR	SHULMAN											79-017A-07
PRELIMINARY AEROSOL MONITOR	PEPIN											
INTERCOSMOS 19-----11285-----USSRN-----02/27/79----- 8/00/81-----			502.--	966.--	74.-----	79-020A						
TOPSIDE SOUNDER	UNKNOWN											79-020A-01
ELECTROPHOTOMETER (EMO-1)	GOGOSHEV											79-020A-02
PLASMA EXPERIMENT	UNKNOWN											79-020A-03
WAVE EXPERIMENT	UNKNOWN											79-020A-04
PARTICLE EXPERIMENT	UNKNOWN											79-020A-05
DMSP SD-1/F4-----DMSP 15539-----UNTST-----06/06/79----- 8/08/80-----			817.--	839.--	98.7-----	79-050A						
OPERATIONAL LINESCAN SYSTEM (OLS)	AFGWC STAFF											79-050A-01
AURORAL IMAGERY ON MICROFILM												
MULTICHANNEL FILTER RADIOMETER (SSH)	AFGWC STAFF											79-050A-02
TOTAL OZONE AND CALIBRATED RADIANCE DATA												79-050A-02A
MFR TOTAL OZONE GRID POINT DATA ON MAGNETIC TAPE												79-050A-02B
PRECIPITATING ELECTRON SPECTROMETER (SSJ/3)	ROTHWELL											79-050A-03
PASSIVE IONOSPHERIC MONITOR (SSI/P)	SNYDER											79-050A-04
IONOSPHERIC PLASMA MONITOR (SSI/E)	SAGALYN											79-050A-05
MICROWAVE TEMPERATURE SOUNDER (SSM/T)	AFGWC STAFF											79-050A-06
ATMOSPHERIC DENSITY SENSOR (SSD)	HICKMAN											79-050A-07
SNOW/CLOUD DISCRIMINATOR SPECIAL SENSOR C (SSC)	AFGWC STAFF											79-050A-08
ETS 4-----12295-----JAPAN-----02/11/81-----			223.--	35824.--	28.6-----	81-012A						
HINOTORI-----ASTRONOMICAL SATELLITE-A--JAPAN-----02/21/81-----			548.--	603.--	31.3-----	81-017A						
SOLAR FLARE 5-40 KEV X-RAYS USING ROTATING MODULATION COLLIMATOR	TAKAKURA											81-017A-01
SOLAR FLARE X-RAY BRAGG SPECTROSCOPY IN 1.7-2.0 Å RANGE	TANAKA											81-017A-02
TIME PROFILE AND SPECTRA OF X-RAY FLARES IN THE 2-20 KEV RANGE	MATSUOKA											81-017A-03
SOLAR FLARE GAMMA-RAY DETECTOR IN 0.2-9.0 MEV RANGE	KONDO											81-017A-04
ELECTRON FLUX ABOVE 100 KEV PARTICLE DETECTOR MONITOR	TAKEUCHI											81-017A-05
PLASMA PROBES	HIRAO											81-017A-06
DYNAMICS EXPLORER 1-----DE-A-----UNTST-----08/03/81-----			567.6--	23289.--	89.9-----	81-070A						
DAILY ORBIT PLOTS ON MICROFICHE				10 090181 022883		81-070A-00D						
DYNAMICS EXPLORER MAGNETIC CONJUNCTIONS ON MICROFICHE				2 092081 021983		81-070A-00E						
OPERATION TIMES PLOTTED FOR OVERLAY ON AE INDEX PLOTS IN WDC-C2 GEOMAG DATA BOOKS				3 032986 061686		81-070A-00F						
MAG CONJ W/VIK-SWED 3X180 BINS MFICHE				26 080481 021883		81-070A-00G						
MAG CONJ W/VIK-SWED 3X80 BINS ON MI CDFICHE				4 030186 063086		81-070A-00H						
MAGNETIC FIELD OBSERVATIONS	SUGIURA			3 030186 063086		81-070A-00I						
MAGNETOMETER DATA-6 SEC-CDAW-8 DATA ON MAGNETIC TAPE.												81-070A-01A
PLASMA WAVES	SHAWHAN											81-070A-02
GLOBAL AURORAL IMAGING AT VISIBLE AND ULTRAVIOLET WAVELENGTHS	FRANK											81-070A-03
RETARDING ION MASS SPECTROMETER	CHAPPELL											81-070A-04
COLD PLASMA ION COUNT RATES DATA ON MAGNETIC TAPE.												81-070A-04A
HIGH ALTITUDE PLASMA INSTRUMENT	HOFFMAN											81-070A-05
HOT PLASMA COMPOSITION	SHELLEY											81-070A-06
ENERGETIC ION COMPOSITION SPECTROMETER (EICS) FLUX DATA ON MAGNETIC TAPE.												81-070A-06A
ENERGETIC ION COMPOSITION SPECTROMETER (EICS) DENSITY DATA ON MAGNETIC TAPE.												81-070A-06B
CONTROLLED AND NATURALLY OCCURRING WAVE PARTICLE INTERACTIONS	HELLIWELL											81-070A-08
DYNAMICS EXPLORER 2-----DE-B-----UNTST-----08/03/81----- 2/19/83-----			309.--	1012.5--	89.9-----	81-070B						

AIM FILE IONOSPHERIC PHYSICS LISTING

SATELLITE NAME INVESTIGATION NAME DATA SET NAME	ALTERNATE NAMES	COUNTRY PI	LAUNCH DATE	INOP DATE	PERIAPSIS AGENCY	APOAPSIS QUANTITY	INCLINATION TIME SPAN	NSSDC ID
DAILY ORBIT PLOTS ON MICROFICHE				10 090181	022883	10	090181 022883	81-070B-00D
DYNAMICS EXPLORER MAGNETIC CONJUNCTIONS ON MICROFICHE				2 092081	021983	2	092081 021983	81-070B-00E
OPERATION TIMES PLOTTED FOR OVERLAY ON AE INDEX PLOTS IN WDC-C2 GEOMAG DATA BOOKS				26 080481	021883	26	080481 021883	81-070B-00F
DATA ACQUISITION TIMES ON MICROFICHE				2 080181	021883	2	080181 021883	81-070B-00G
MAGNETIC FIELD OBSERVATIONS	SUGIURA	NASA-GSFC						81-070B-01
MAGNETOMETER DATA-0.5 SEC DATA-CDAW-8,ON MAGNETIC TAPE.						2	012883 012983	81-070B-01A
ELECTRIC FIELD INVESTIGATIONS	MAYWARD	NASA-GSFC				1	012883 012983	81-070B-02
VECTOR E-FIELD INSTRUMENT DATA ON MAGNETIC TAPE.								81-070B-02A
NEUTRAL ATMOSPHERE COMPOSITION	CARIGNAN	U OF MICHIGAN						81-070B-03
WIND AND TEMPERATURE SPECTROMETER	SPENCER	NASA-GSFC						81-070B-04
FABRY-PEROT INTERFEROMETER	HAYS	U OF MICHIGAN						81-070B-05
ION DRIFT METER	HEELIS	U OF TEXAS, DALLAS						81-070B-06
RETARDING POTENTIAL ANALYZER	HANSON	U OF TEXAS, DALLAS						81-070B-07
LOW ALTITUDE PLASMA INSTRUMENT	KLUMPAR	U OF TEXAS, DALLAS						81-070B-08
LANGMUIR PROBE	BRACE	NASA-GSFC						81-070B-09
IK BULGARIA 1300-----INTERCOSMOS BULGAR 1300---USSRN---08/07/81-----			825.--	906.--	81.2----	81.2	81-075A	
ION DRIFT METER AND RETARDING POTENTIAL ANALYZER	BANKOV	CLSR-BAS						81-075A-01
SPHERICAL ELECTROSTATIC ION TRAP	IVANOVA	CLSR-BAS						81-075A-02
CYLINDRICAL LANGMUIR PROBE	IVANOVA	CLSR-BAS						81-075A-03
DOUBLE SPHERICAL ELECTRON TEMPERATURE	MARKOV	CLSR-BAS						81-075A-04
LOW-ENERGY ELECTRON-PROTON ELECTROSTATIC ANALYZER ARRAY IN 3 ORTHODACHES	NENOVSKI	CLSR-BAS						81-075A-05
ION ENERGY-MASS COMPOSITION ANALYZERS	KAZAKOV	CLSR-BAS						81-075A-06
PROTON SOLID-STATE TELESCOPE	GOGOSHEV	CLSR-AO						81-075A-07
VISIBLE AIRGLOW PHOTOMETERS	SARGOICHEV	CLSR-AO						81-075A-08
WAVELENGTH SCANNING UV PHOTOMETER	STANEV	CLSR-BAS						81-075A-09
TRIAXIAL SPHERICAL VECTOR ELECTRIC FIELD PROBES	BOCHEV	CLSR-BAS						81-075A-10
TRIAXIAL FLUXGATE MAGNETOMETER								81-075A-11
STS 3/DSS-1-----SHUTTLE OPT-3-----UNTST---03/22/82-----			240.--	240.--	38.-----	82-022A		
PLASMA DIAGNOSTIC PACKAGE	SHANHAN	U OF IOWA						82-022A-01
AC WAVE, ION+ELEC SPECTRA, NEUT P, ION COMP+ Curr DEN+FLOW, DC ELEC+MAG FLD, ELEC FLUX			342 032282	032782				82-022A-01A
WIDE BAND ANALOG DATA (0-30 kHz)			2240	032282	032882			82-022A-01B
SOLAR FLARE X-RAY POLARIMETER EXPERIMENT	NOVICK	COLUMBIA U						82-022A-02
SOLAR ULTRAVIOLET SPECTRAL IRRADIANCE MONITOR	BRUECKNER	US NAVAL RESEARCH LAB						82-022A-03
VEHICLE CHARGING AND POTENTIAL EXPERIMENT	BANKS	STANFORD U						82-022A-04
THERMAL CANISTER EXPERIMENT	OLLENDORF	NASA-GSFC						82-022A-05
CHARACTERISTICS OF SHUTTLE/SPACELAB INDUCED ATMOSPHERE	WEINBERG	U OF FLORIDA						82-022A-06
INFLUENCE OF WEIGHTLESSNESS IN LIGNIFICATION OF PLANT SEEDLINGS	COWLES	U OF HOUSTON						82-022A-07
MICROABRASION FOIL	MCDONELL	U OF KENT, CANTERBURY						82-022A-08
CONTAMINATION MONITOR	TRILO	NASA-GSFC						82-022A-09
STS S81-1-----S81-1-----UNTST---05/11/82-----12/05/82-----			177.--	262.--	96.4----	82-041A		
COSMIC RAY ISOTOPE EXPERIMENT-LOW ENERGY (ONR-602) (PHOENIX 1)	SIMPSON	U OF CHICAGO						82-041A-01
STIMULATED EMISSION OF ENERGETIC PARTICLES, ONR-804	IMHOF	LOCKHEED PALO ALTO						82-041A-02
HILAT-----STP P83-1-----UNTST---06/27/83-----			828.2--	830.8--	82.2----	83-063A		
COHERENT BEACON	RINO	SRI INTERNATIONAL						83-063A-01
PLASMA MONITOR	RICH	USAF GEOPHYS LAB						83-063A-02
THREE-AXIS FLUXGATE MAGNETOMETER	POTEMRA	APPLIED PHYSICS LAB						83-063A-03
ELECTRON SPECTROMETER	HARDY	USAF GEOPHYS LAB						83-063A-04
AURORAL IONOSPHERIC MAPPER	HUFFMAN	USAF GEOPHYS LAB						83-063A-05
ETS 3-----13492-----JAPAN---09/03/82-----			964.--	1234.--	45.-----	82-087A		
STS 9/SPACELAB 1-----SPACELAB 1/STS 9-----UNTST---11/28/83-----			242.--	254.--	57.-----	83-116A		
AN IMAGING SPECTROMETRIC OBSERVATORY	TORR	UTAH STATE U						83-116A-01
SPACE EXPERIMENTS WITH PARTICLE ACCELERATORS (SEpac)	OBAYASHI	ISAS, U OF TOKYO						83-116A-02
ATMOSPHERIC EMISSION PHOTOMETRIC IMAGING	MENDE	LOCKHEED PALO ALTO						83-116A-03
ACTIVE CAVITY RADIOMETER SOLAR IRRADIANCE MONITOR	WILLSON	NASA-JPL						83-116A-04
FAR UV ASTRONOMY USING THE FAUST TELESCOPE	BOWYER	U OF CALIF, BERKELEY						83-116A-07
BEARING LUBRICANT WETTING, SPREADING AND OPERATING CHARACTERISTIC PAN	BENTON	COLUMBIA U						83-116A-09
RADIATION ENVIRONMENT MAPPING	BROWN	U OF CALIF, SAN FRANC.						83-116A-11
NUTATION OF HELIANTHUS ANNUUS	YOUNG	MASS INST OF TECH						83-116A-13
VESTIBULAR STUDIES	LEACH	NASA-JSC						83-116A-14
INFLUENCE OF SPACEFLIGHT ON ERYTHROKINETICS IN MAN	SULZMAN	STATE U OF NEW YORK						83-116A-15
CHARACTERIZATION OF PERSISTING CIRCADIAN RHYTHMS	RESCHEK	NASA-JSC						83-116A-16
VESTIBULO-SPINAL REFLEX MECHANISMS		U OF ILLINOIS						83-116A-17
EFFECTS OF PROLONGED WEIGHTLESSNESS ON THE HUMORAL IMMUNE RESPONSES, JR.	LIPPENS	IASB						83-116A-18
GRILLE SPECTROMETER	HERSE	CNRS-SA						83-116A-19
WAVES IN THE OH EMISSIVE LAYER		CNRS-SA						83-116A-21
MEASUREMENT OF THE SOLAR SPECTRUM FROM 170 TO 3200 NANOMETERS	BLAMONT	CNRS-SA						83-116A-22
INVESTIGATION ON ATMOSPHERIC H AND D THROUGH THE MEASUREMENT OF LIBERTAUX	SCHMIDT	AUSTRIAN ACAD OF SCI						83-116A-23
DC AND LOW FREQUENCY VECTOR MAGNETOMETER		MPI-AERONOMY						83-116A-24
STUDY OF LOW-ENERGY ELECTRON FLUX AND ITS REACTION TO ACTIVE EXPWELHELM	BEGHIN	CNR, CTR FOR SPECTROM						83-116A-25
PHENOMENA INDUCED BY CHARGED PARTICLE BEAMS	CROMMELYNCK	ROYAL METEOR. INST BELG						83-116A-26
ABSOLUTE MEASUREMENT OF THE SOLAR CONSTANT		CNR-LAS						83-116A-27
VERY WIDE FIELD GALACTIC CAMERA	COURTES	MULLARD SPACE SCI LAB						83-116A-28
SPECTROSCOPY IN X-RAY ASTRONOMY	KELLOCK	U OF KIEL						83-116A-29
ISOTOPE STACK	ENGE	U OF STIRLING						83-116A-30
MASS DISCRIMINATION DURING WEIGHTLESSNESS	ROSS	U OF BERLIN						83-116A-31
MEASUREMENT OF (CENTRAL) VENOUS PRESSURE BY PUNCTURING AN ARM VEIKIRSCH		DFVLR						83-116A-32
ADVANCED BIOSTACK EXPERIMENT	BUCKER	U OF ROME						83-116A-33
BALLISTOCARDIOGRAPHIC RESEARCH IN WEIGHTLESSNESS	SCANO	DFVLR						83-116A-34
MICRO-ORGANISMS AND BIOMOLECULES IN THE SPACE ENVIRONMENT	HORNECK	CLINICAL RES CENTER						83-116A-35
ELECTRO-PHYSIOLOGICAL TAPE RECORDER	GREEN	FEDERAL INST OF TECH						83-116A-36
LYMPHOCYTE PROLIFERATION IN WEIGHTLESSNESS	COGOILI	U OF BERLIN						83-116A-37
COLLECTION BLOOD SAMPLES FOR DETERMINING A.D.H., ALDOSTERONE, AND KIRSCH	REYNOLDS	ESA-TOULOUSE						83-116A-38
METRIC CAMERA EXPERIMENT	DIETERLE	ESA-TOULOUSE						83-116A-39
MICROWAVE REMOTE SENSING EXPERIMENT		JOHANNES GUTENBERG U						83-116A-41
EFFECTS OF RECTILINEAR ACCELERATION, OPTOKINETIC AND CALORIC STIMULUS BAUMGARTEN	HUTH	ESA						83-116A-42
MATERIALS SCIENCE								
OHZORA-----EXOSPHERIC SAT. C-----JAPAN---02/14/84-----			354.--	865.--	74.6-----	84-015A		

AIM FILE IONOSPHERIC PHYSICS LISTING

SATELLITE NAME INVESTIGATION NAME DATA SET NAME	ALTERNATE NAMES	COUNTRY	LAUNCH DATE	INOP DATE	PERIAPSIS	APOAPSIS	INCLINATION	AGENCY	QUANTITY	TIME SPAN	NSSDC ID		
ORBITAL ELEMENTS ON MICROFICHE LIMB SCANNING IR RADIOMETER ULTRAVIOLET SPECTROMETER INFRARED SOLAR SPECTROMETER PRECIPITATING PARTICLE ENERGY ANALYZER SOLAR IMAGE-RADIOMETER TOPSIDE PLASMA SOUNDER PLASMA PROBES MONITOR OF HIGH ENERGY PARTICLES		MAKINO OGAWA MATSUZAKI MUKAI TAKAGI OYA TAKAHASHI DOKE	RIKKYO U ISAS ISAS ISAS NAGOYA U U OF TOHOKU U OF TOHOKU WASEDA U	1 041984	102485			84-015A-00D					
----- UOSAT 2----- TRIAXIAL FLUXGATE MAGNETOMETER EARTH IMAGING CHARGE PARTICLES HIGH FREQUENCY BEACON MICROWAVE BEACON	14781----- UNTST-----03/01/84-----	ACUNA SWEETING FEREBEE SMITHERS SWEETING	NASA-GSFC U OF SURREY U OF SURREY U OF SURREY U OF SURREY	678.--	696.--	98.3-----	84-021B-01	84-015A-01	84-015A-02	84-015A-03	84-015A-04		
VIKING SWEDEN----- VIKING----- SWDEN-----02/22/86-----			ANGER	822.--	14000.--	98.7-----	86-019B	86-019B-00D	86-019B-00E	86-019B-00F	86-019B-00G		
MAG CONJ W/DE-1 3X180 BINS, FICHE MAG CONJ W/CCE 3X180 BINS ON MICROFICHE MAG CONJ W/CCE 6X12 BINS FICHE MAG CONJ W/DE-1 3X80 BINS, FICHE ULTRAVIOLET AURORAL IMAGER UV AURORAL QUICK LOOK PLOTS ON MICROFICHE HIGH FREQUENCY WAVE EXPERIMENT HIGH FREQUENCY WAVE, QUICK LOOK PLOTS ON MICROFICHE LOW FREQUENCY WAVE EXPERIMENT VIKING LOW FREQUENCY WAVE QUICK LOOK PLOTS ON MFICHE VECTOR ELECTRIC FIELD EXPERIMENT VECTOR ELECTRIC FIELD QUICK LOOK PLOTS ON MICROFICHE HOT PLASMA EXPERIMENT HOT PLASMA QUICK LOOK PLOTS ON MICROFICHE MAGNETIC FIELD EXPERIMENT		BAHNSEN HOLBACK BLOCK LUNDIN POTEMRA	U OF CALGARY 170 031786 051287 DANISH SPACE RES INST 170 031786 051287 UPPSALA IONOSPHER OBS 170 031786 051287 ROYAL INST OF TECH 170 031786 051287 KIRUNA GEOPHYS INST 170 031786 051287 APPLIED PHYSICS LAB	3 032986 4 030186 2 030186 2 030186 3 030186 170 170 170 170 170 170 170	061686 063086 063086 063086 063086 051287 051287 051287 051287 051287 051287 051287		86-019B-01	86-019B-01A	86-019B-02	86-019B-03	86-019B-04	86-019B-05	
POLAR BEAR----- STP P87-A----- MULTI-FREQUENCY COHERENT RADIO BEACON AURORAL/IONOSPHERIC REMOTE SENSOR	----- UNTST-----11/13/86-----	WITTWER HUFFMAN		970.--	1012.--	89.55-----	86-088A	DEFENSE NUCLEAR AGENCY	86-088A-01	USAF GEOPHYS LAB	86-088A-02		
SAN MARCO-D/L----- 19013----- DRAG BALANCE AND AIR DENSITY AIRGLOW-SOLAR SPECTROMETER ION VELOCITY INSTRUMENT (IVI) PLANAR RETARDING POTENTIAL ANALYZER HANSON WIND AND TEMPERATURE SPECTROMETER (WATS) 3-AXIS ELECTRIC FIELD INSTRUMENT (EFI)	----- 03/25/88-----		BROGLIO SCHMIDTKE SPENCER MAYNARD	263.--	615.--	3.0-----	88-026A	NATL RES COUNC ITALY INST FUR PHYS WELTRAUM U OF TEXAS, DALLAS NASA-GSFC USAF GEOPHYS LAB	88-026A-01	88-026A-02	88-026A-03	88-026A-04	88-026A-05

Appendix A.3

Software Packages by Discipline

FORM CODES

CD	Compact Disk/Read Only Memory (CD/ROM)
CN	16-mm color negatives (quantity shows number of photos)
FD	5½ inch floppy disk (3½ inch diskettes maybe available on request)
FT	unlabeled ASCII tape for use on systems other than VAX or IBM
HC	hard copy (quantity shows number of reports)
HP	hard copy (quantity shows number of pages)
IT	tape generated on IBM (or MODCOMP) mainframe
MF	microfiche (quantity shows number of microfiche cards)
MO	35-mm microfilm (quantity shows number of reels)
MP	16-mm microfilm (quantity shows number of reels)
PC	5½ (or 3½) inch floppy disk ready for use on IBM compatible XT, AT
VT	tape generated on VAX mainframe in VMS

Most software packages (all FD, VT; some IT) can also be transferred electronically over the Space Physics Analysis Network (SPAN) or any network connected to it.

Name	Date	Form	Quantity	NSSDC-ID
IONOSPHERE				
Ionospheric Models (whole)				
Bent & Llewellyn model	1972	MF	1	MI-91G
Rush & Miller model	1973	MF	1	MI-91B
Ching & Chiu model	1975	MF	1	MI-91A
IONCAP, telcomm. systems, NTIA 83-127	1983	PC	1	NOAA/NTIA
Brace & Theis, Venus (Ne, Te) model	1984	VT,FT	1	MI-93A
Semi-empirical Low-Latitude (SLIM)	1985	HC	1	AFGL-TR-85-0254
QSTMUF, maximum useable frequency	1985	PC	1	NOAA/NGDC
International Reference Ionosphere (IRI)	1986	FT,VT,PC	1	MI-91C,D,E
Ionospheric Models (F2 peak)				
<i>fo</i> F2 & M(3000)F2 coeff. maps	1967 and 1976	IT	2	MI-92A,B
CCIR, <i>fo</i> F2 and M3000F2, coeff. maps	1967	VT,FD	1	MI-92C
URSI, <i>fo</i> F2, coeff. maps	1987	VT,FD	1	MI-92D
Ionogram Reduction				
Ionosonde (Jackson)	1971	IT	1	PI-11A
Topside Sounder (Jackson, short ver.)	1971	IT	1	PI-21A
Topside Sounder (Jackson, long ver.)	1973	IT	1	PI-21B
Ionosonde, POLAN, WDC-A-STP Rep. UAG-93	1985	HC	1	NGDC
Beacon Analysis				
M-factor calculation program	1970	IT	1	PI-31A
Auroral Imagery				
All sky camera, aurora	02/18/79 - 03/31/79	CN	200	GN-12A
DMSP, nighttime images	1972-1980,1982	MO		AWS/NGDC
DMSP, educational set	1984	SL	52	NGDC
All-sky camera, long data records from observ.		MO,MP		NGDC
DMSP, 0.2 - 20 keV	1975-1980,1983-	FT		NGDC
GEOMAGNETIC FIELD				
Magnetic Field Models (with external sources)				
Olson & Pfitzer model	1974	IT	1	MG-23A
MDTILT package (O&P, McDonnell Douglas)	1974	IT	1	MG-22A
Mead & Fairfield model	1975	VT	1	MG-21A,B
Beard Geotail model	1979	IT	1	MG-24A
Tsyganenko & Usmanov model	1982	VT	1	MG-25A
Tsyganenko & Stern model	1987	VT	1	MG-25B

Name	Date	Form	Quantity	NSSDC-ID
GEOMAGNETIC FIELD (cont.)				
Magnetic Field Models (main field only)				
	No. of Coeff.	Degree	Epoch	
Jensen & Cain	48	6	1960	IT 1 MG-11A
GSFC (09/65)	99	9	1960	IT 1 MG-12A
GSFC (12/66)	120	10	1960	IT 1 MG-13A
GSFC (09/80)	462	13	1980	IT 1 MG-12B
GSFC (11/87)	390	13	1982	VT 1 MG-12C
MAGSAT (03/80)	195	13	1980	IT 1 MG-1BA
MAGSAT (04/81)	258	13	1980	IT 1 MG-1BB
POGO (03/68)	99	9	1960	IT 1 MG-16A
POGO (10/68)	143	11	1960	IT 1 MG-17A
POGO (08/69)	120	10	1960	IT 1 MG-18A
POGO (08/71)	120	10	1960	IT 1 MG-19A
IGRF (DGRF45 - DGRF80)	120	10	1945,50	VT,PC 1 PG-18C
IGRF (IGRF85,IGRF85/90)	120	10	1985	VT,PC 1 PG-18C
USGS,Peddie (U.S. model)	24	4		1 online at USGS
USGS,Peddie (Hawaii model)	8	2		1 online at USGS
Magnetic Field Models (related software)				
INVAR: L-shell (McIlwain + later corr.)	1966	VT	1	PG-16A
FIELD,FIELDG: B,... (Cain,NSSDC 68-11)	1968	IT	1	PG-11A
FELDG,SHELLG,INTELG: B,L (Kluge,ESA)	1970	VT	1	PG-13A
ALLMAG,LINTR: B,trac. (Stassinopoulos)	1972	IT	1	PG-12A,B
BLOLSON: B,L (Pfister)	1977	IT	1	PG-18A
TRAJLST: B,trac. (Sawyer,NSSDC/SSC)	1980	IT	1	PG-18B
BILCAL: B,B0,L,... (IGRF)	1987	FT,VT,PC	1	PG-18C
TSYKA: B, mag. coord., trac. (T&U, 1982)	1987	VT,PC	1	PG-18D
ATMOSPHERE				
Reference Atmospheres and Models				
COSPAR Intern. Ref. Atmosphere (CIRA)	1961	HC	1	MN-11A
COSPAR Intern. Ref. Atmosphere (CIRA)	1965	HC	1	MN-15A
COSPAR Intern. Ref. Atmosphere (CIRA)	1972	HC	1	MN-16A
Jacchia Ref. Atmosphere for 1970	1970	MF	1	MN-30A
Jacchia Ref. Atmosphere for 1971	1971	MF	1	MN-31A
Jacchia Standard Atmosphere	1977	MF	1	MN-37A
U.S. Standard Atmosphere	1962	HC	1	MN-22A
U.S. Standard Atmosphere	1966	HC	1	MN-26A
U.S. Standard Atmosphere	1976	HC	1	MN-27A
MSIS-86 model (Hedin)	1986	VT,FT,PC	1	MN-61A,B,D
Hedin Neutral Wind Model	1988	VT,FD	1	MN-61E

Name	Date	Form	Quantity	NSSDC-ID
SOLAR AND MAGNETOSPHERIC PARTICLES				
Trapped Particle (Model Maps)				
AE-4, Electrons, outer zone	1972	HC,IT	1	MT-24A,B
AE-5, Electrons, inner zone, min	1974	HC,IT	1	MT-26A,B
AE-6, Electrons, inner zone, max	1976	HC,IT	1	MT-28A,B
AEI-7,Electrons, high, low	1978	HP,IT	3,2	MT-29A,B,C
AE-8, Electrons, latest model	1980	IT	2	MT-2AA,AB
AP-1, Protons, 30-50 MeV	1966	HC,IT	1,2	MT-11A,B
AP-5, Protons, 0.1-4 MeV	1967	MF,IT	14,2	MT-15A,B
AP-6, Protons, 4-30 MeV	1969	HC,IT	1,2	MT-16A,B
AP-7, Protons, above 50 MeV	1970	HC,IT	1,2	MT-17A,B
AP-8, Protons, 0.1-400 MeV, latest model	1979	HC,IT	1,2	MT-18A,B,C,D
Trapped Particle (Related Software)				
ORP: Orbital flux integ. (needs ORB)	1974	IT	1	PT-12A
SOFIP: Orbital flux integ. (Stassinopolous)	1979	HC,IT	1	PT-15A
SHIELDOSE:Shielding, rad. dose (Seltzer)	1980	HC,IT	1	PT-16A
RADBELT: AE-8, AP-8 fluxes for B/Bo,L	1988	FT,VT,PC	1	PT-11B
Solar Particle Flux Models				
SOLPRO: solar protons (King & Stassinopolous)	1975	HC	1	PZ-11A
Solar to trapped proton ratios		HC	1	MZ-13A
SOLAR-TERRESTRIAL INDICES				
Magnetic Indices				
AE,1.0 min	01/01/78 - 12/31/83	IT	1	GG-33C
AE,2.5 min	01/01/66 - 12/31/73	IT	7	GG-31C
AE,hourly	07/01/57 - 12/31/74	IT	10	GG-32B
DST,hourly	01/01/57 - 12/31/74	IT	1	GG-41B
DST,hourly	01/01/81 - 07/31/87	HP	87	GG-41A
DST,hourly	01/01/57 - 12/31/80	MF	8	GG-41C
Events list (IAGA Bull.)	01/01/57 - 12/31/64	HC	12	GG-71A
Rapid var. data (IAGA Bull.)	01/01/69 - 07/31/87	HP	138	GG-71A
Km,Am,Kn,An, WDC-A-STP	01/01/59 - 12/31/74	IT	1	GG-61C
Kp,Ap,Cp, ESRO	01/01/32 - 04/30/88	IT	1	GG-61B
Kp,Ap,Cp,Ci (IAGA Bull.)	09/01/69 - 09/30/87	HP	682	GG-61A
STP indices and data (see below)	1932-1987	CD	1	NGDC
Solar Activity Indices				
Sunspot numbers (Rep. UAG-95)	1610-1985	HC	1	NGDC
2800 MHz (10.7 cm) solar flux	1970-1987	FD	2	NGDC

Name	Date	Form	Quantity	NSSDC-ID
STP indices and data:	1987	CD	1	NGDC
Annual, daily, hourly magnetic field measurements from several observatories				
AE (hourly, since 1957)				
DST (hourly, 1957 to 1984)				
Kp, Ap (3-hourly, 1932 to 1987)				
Solar flares (1955 to 1987)				
Sunspot number (daily, monthly, yearly, 1749 to 1986)				
IMF & solar wind (hourly, 1964-85, OMNItape)				
Listing of operational periods of several magnetic observatories and ionosonde stations				
CELESTIAL MECHANICS				
Orbit Elements				
COMSAT	11/24/72-08/30/82	MP	1	SX-71B
GSFC	01/04/72-05/19/85	HP,MP	695,9	SX-41A,B
NORAD	01/31/58-05/31/75	FT,MP	4	SX-32A,B
R.A.E	10/04/57-08/15/83	HP	198	SX-51A
Orbit Generation Programs				
ORB program	1974	IT	1	PX-21A
GEODYN package		IT	21	PX-22A
ORBGEN program	1986	VT	1	PX-21C

Appendix B

CEDAR. Coupling, Energetics, and Dynamics of the Atmosphere Regions. Aeronomy initiative of the U.S. National Science Foundation. Coordinated measurement programs of mostly ground-based instruments and some satellite experiments. Started in 1986. Data will be archived at NCAR.

Publications: Killeen et al. [1987]; *The CEDAR Post*, quarterly newsletter; *CEDAR, Volume I: Overview; Volume II: Detailed Facility Development; The First CEDAR Data Base Report*. *Journal of Atmospheric and Terrestrial Physics*, Vol. 50, No. 10/11, 1988.

Workshops are held once per year at NCAR. Several coordinated programs have been initiated by CEDAR or were conducted in connection with CEDAR:

- **GISMOS.** Global Ionospheric Simultaneous Measurement of Substorms (Jan. 84, Jul. 84, Mar. 85, Apr. 86, Sep. 86).
- **GITCAD.** Global Ionosphere Thermosphere Coupling and Dynamics (Jan. 87).
- **HLPS.** High Latitude Plasma Studies (Feb. 88).
- **LTCS.** Lower Thermosphere Coupling Study (Oct. 87).
- **MITHRAS.** Magnetosphere - Ionosphere - Thermosphere Radar Studies (Rasmussen et al., 1988) (May 81 to June 82).

Coordinated Projects

CDAW. Coordinated Data Analysis Workshop. Started as centralized data base system for IMS. Computer-assisted workshops held at NSSDC mostly dealing with magnetospheric physics. (CDAW-6: *Journal of Geophysical Research*, Vol. 90, 1175-1375, 1985.) The most recent, CDAW-8, was devoted to the study of sub-storm effects in the deep magnetotail.

EOS. Earth Observing System. Remote sensing and in situ instruments for continuous monitoring of processes at the Earth's surface, in the atmosphere, in the ionosphere, and in the magnetosphere. Three instrument platforms (2 USA, 1 ESA) launched into low, polar, sun-synchronous orbits. Fifteen-year mission to begin in the mid-1990s [Hartle, 1987].

IACG. Inter-Agency Consultative Group. Formed in 1988 by IKI, ISAS, ESA, and NASA. Coordinates multinational satellite missions.

IGBP. International-Geosphere-Biosphere Program. A Study of Global Change. Synthesis of information about the atmosphere, biosphere, hydrosphere, and lithosphere on a global scale, to develop interactive models and prediction capabilities (ICSU programs are planned to begin in the early 1990s).

IGY. International Geophysical Year, 1957. Ionosonde, absorption, drift, airglow, solar activity, cosmic ray, and meteorological measurements. The measurement techniques, pro-

grams, and results are reported in the *Annals of IGY*. See also the review by Friedman [1983]. Period of high solar activity. Launch of first satellite, Sputnik 1.

IMS. International Magnetospheric Study. The scope and status of IMS are described in: *IMS Source Book*, C. Russell and D. Southwood (eds.), AGU, 1982. *The Scientific Satellite Program During the IMS*, K. Knobb and B. Battrick (eds.), D. Riedel Pub., Dordrecht, 1976. *Achievements of the IMS*, ESA SP-217, 1984, *IMS Bulletin*, SCOSTEP, 1975. Hard copies of the computer-based IMS Data Catalog are available from WDC-A-STP, Boulder, Colorado.

IQSY. International Quiet Sun Years, 1964/65. Period of low solar activity (solar cycle minimum). In addition to the techniques of the IGY, satellite and rocket experiments contributed substantially to the IQSY. Techniques, observational schedules, and treatment of data are discussed in the *Annals of IQSY*, M.I.T. Press, Cambridge, Massachusetts, 1968.

ISTP. International Solar-Terrestrial Physics Program. Collaboration among ISAS, ESA, and NASA to encourage progress in solar-terrestrial physics. Six spacecraft missions are planned for 1989 to 1993 for simultaneous measurements in the different regions of the Earth-sun system. A data networking system is planned to facilitate worldwide access to the ISTP data base. (International Solar-Terrestrial Physics Program, NASA, Washington, DC, 1984). ISTP and other satellite missions related to solar terrestrial physics are coordinated by IACG.

ISY. International Space Year. The year 1992 will mark the 500th anniversary of the landing in the New World by Christopher Columbus and the 35th anniversary of the IGY. ISY is supported by ICSU and the International Astronomical Academy and Federation. The proposed central theme will be "Understanding and Utilizing Space for Humanity."

MAC. Middle Atmosphere Cooperation. Continuation of MAP (1987-1988).

MAP. Middle Atmosphere Program. Ambitious international measurement program of

stratospheric and mesospheric constituents, energy budget, and dynamics. Progress and measurement techniques are described in *Handbook of MAP*, published irregularly by SCOSTEP. A quarterly *MAP Newsletter* informs about the ongoing activities (1982-1986). The MAP project Winter (1983/84) in Northern Europe (WINE) is described in the *Journal of Atmospheric and Terrestrial Physics*, Vol. 49, No. 7/8, 1987.

PAD. Polar and Auroral Dynamics. SCOSTEP program to coordinate international efforts in studying high latitude solar-terrestrial physics. PAD is part of STEP.

PROMIS. Polar Region Outer Magnetosphere International Study. March to June 1986. Coordinated data acquisition of DE, Viking, ISEE 1 and 2, IMP 8, and AMPTE/IRM. Measurements in the magnetotail and solar wind simultaneously with auroral image sequences.

STEP. Solar-Terrestrial Energy Program. SCOSTEP's follow-up program to WITS (1990-1995). Ground-based, aircraft, balloon, and rocket experiments.

SUNDIAL. Worldwide study of interactive ionospheric processes and their roles in the transfer of energy and mass in the sun-earth system. (Oct. 84, Sep. 86, June 87, . . .) See special issue of *Annales Geophysicae*, Vol. 6, No. 1, 1988.

WAGS. World Acoustic Gravity Wave Study. The measurement periods of these campaigns are announced in the *International Geophysical Calendar* (see Appendix D).

WITS. World Ionosphere-Thermosphere Study. International three-year program organized by SCOSTEP; started in 1987. Coordinated measurement campaigns (mostly ground-based) and numerical modeling (Cole, 1987).

Information about the status of international projects can be found in the *Solar Terrestrial Physics (STP) Newsletter*, which is distributed for SCOSTEP by WDC-A-STP.

Appendix C

Advances in Space Research. The official journal of the Committee on Space Research (COSPAR). Proceedings of the general assemblies held every even year.

Pergamon Press,
Hedington Hill Hall,
Oxford OX3 OBW, England

Annales Geophysicae. The official journal of the European Geophysical Society (EGS). Six issues per year dealing with atmospheres, hydrospheres, and space science.

Gauthier-Villars,
17, rue Remy-Dumoncel,
B. P. 50, 75661 Paris,
CEDEX 14, France

COSPAR Information Bulletin. Information about COSPAR conferences and publications. News from the national space agencies. List of new satellites, of satellites particularly suited for international participation, and of satellite objects that are nearing their decay. Pergamon Press.

Eos Transactions. The newsletter for AGU members: news, book reviews, feature articles, abstracts. Weekly. AGU.

Geomagnetism and Aeronomy. The English edition of the bimonthly Soviet journal *Geomagnetism i Aeronomy*. Covers progress in ionospheric physics in the U.S.S.R. AGU.

Journals and Newsletters

Geophysical Research Letters. Short and interesting contributions of broad geophysical interest. Almost everything new in geophysics is printed here first. Monthly. AGU.

Ionospheric Data. Monthly median ionospheric data from selected ground stations. Published monthly from 1944 to 1974 by NGDC. Back issues available on microfiche.

Ionospheric Network Station Information Bulletin. Newsletter of INAG. Published quarterly by NGDC.

Journal of Atmospheric and Terrestrial Physics. Papers in ionospheric and atmospheric physics. Several special issues dedicated to certain measurement techniques or coordinated campaigns. Monthly. Pergamon Press.

Journal of Geomagnetism and Geoelectricity. The Society of Terrestrial Magnetism and Electricity of Japan. Fields of interest are geomagnetism, ionosphere, magnetosphere, solar-terrestrial physics. Center for Academic Publications, 4-16, Yayoi 2-Chome, Bunkyo-ku, Tokyo 113, Japan

Journal of Geophysical Research (Space Physics). Papers on aeronomy and magnetospheric physics, planetary atmospheres and magneto-

spheres, interplanetary and external solar physics, cosmic rays, and heliospheric physics. The most widely cited journal in space physics. Monthly. AGU.

Journal of Geophysics. Official journal of the German Geophysical Society. Strong orientation to geomagnetic research. Bimonthly. Springer-Verlag, Postfach 105280, 6900 Heidelberg 1, F.R.G.

NSSDC News. Information about the ongoing activities at the National Space Science Data Center. Quarterly. NSSDC.

Planetary and Space Science. Specific areas include planetary and terrestrial atmospheres, atomic processes, auroras, ionosphere, radiation belts, solar wind. Monthly. Pergamon Press.

Radio Science. All aspects of electromagnetic phenomena related to physical problems; propagation of electromagnetic waves through all kinds of geophysical media; remote sensing; telecommunications. Bimonthly. AGU.

Recommendations and Reports of the International Radio Consultative Committee (CCIR). Reports, resolutions, opinions, decisions, questions, and study programs of the CCIR plenary assemblies (every four years). For ionospheric physics, Volume VI (*Propagation in Ionized Media*) is particularly interesting. CCIR is a member of the International Telecommunication Union (ITU), Geneva. CCIR.

Reviews of Geophysics. Invited reviews and summaries in all fields of geophysic research. Eight times a year. AGU

Telecommunications Journal. Monthly journal of the International Telecommunications Union (ITU). English, French, and Italian editions. Scientific articles on ionospheric radio-wave propagation. La Presse Technique SA, 3a rue due Vieux-Billard, 1205 Genève, Switzerland

URSI Information Bulletin. Information about the activities of the International Union of Radio Science (URSI) including conferences and publications. URSI.

Appendix D Prediction Services (Forecasts/Warnings/Alerts)

Reports and Circulars

Spacewarn Bulletin

Lists newly launched satellites, spacecraft suited for international participation, and satellite objects about to decay. Monthly. WDC-A-R&S.

Preliminary Report and Forecast of Solar Geophysical Data

Includes daily solar and geomagnetic indices, flare and energetic events forecasts and alerts. Weekly. SESC.

CCIR Circular of Basic Indices for Ionospheric Propagation

Monthly mean and 12-month running mean of solar indices. Distributed monthly by CCIR/ITU prior to publication in the *Telecommunication Journal*.

International Geophysical Calendar

Informs about the internationally recommended measurement periods for a variety of ground-based techniques; times of meteor showers and solar eclipses; times of satellite measurements in solar wind; intervals of global coordinated campaigns. Coordinated and distributed by IUWDS. New calendar is published at end of old year in *Eos Transactions* and in *COSPAR Bulletin*.

Telephone, Telex, and Remote Access Service (SESC)

Telephone Recording of Solar Activity:
A tape-recorded message of solar and geophysical activity and indices for the most recent 24 hours and for the next 24 hours, updated every 3 hours. Telephone numbers: commercial (303) 497-3235; FTS 320-3235.

WWV Recording of Solar Activity:
A 40-second message providing similar information, on WWV (2.5, 5, 10, 15, 20, MHz) at 18 minutes past each hour.

SESC Satellite Broadcast:

Allows for data reception with a microstation consisting of a small (2-foot diameter) antenna and portable controller. The controller can be connected to a simple printer, video terminal, or any microcomputer of choice, which enables customers to collect and use the data for individual purposes. Serves continental United States, Canada, Alaska, and Hawaii.

Real-Time Alert:

Notification by telephone or teletype. Persons or organizations requiring notification of the prediction or occurrence of various solar geophysical phenomena are contacted when their event thresholds are met.

Direct Access to the SELDADS:

Using standard computer terminals, customers may access the SELDADS (Space Environment Laboratory Data Acquisitions and Display System) and obtain printouts of solar and geomagnetic variations data.

Public Bulletin Board System (PBBS):

SESC has been operating a remote-access Public Bulletin Board System 24 hours a day, 7

days a week since January 15, 1987. The PBBS operates unattended and regularly downloads solar and ionospheric forecasts and fresh daily values from a limited number of numerical data sets which are maintained in the SELDADS II data base. The SESC PBBS may be accessed at (303) 497-5000. The protocol is a conventional 9-bit data word with one stop bit and no parity. The PBBS will operate at both 300 and 1200 baud.

Agency by Country

Country	Organization
Argentina	LIARA Av. Liberator No. 327 Vicente Lopez
Australia	IPS
Belgium	Institut Royal Meteorologique 3, avenue Circulaire, Uccle, Brussels
Canada	Communications Research Center P. O. Box 11490, Ottawa, Ontario
France	CNET Service des Ursigrammes Observatoire de Paris, 92190 Meudon CNET, Mesures Ionosphériques Route de Trégastel, 2230 Lannion
FRG	FTZ, Forschungsinstitut
Japan	RRL
India	Radio Research Committee National Physical Laboratories Hillside Road, New Delhi, 12
Sweden	Central Administration of Swedish Telecommunication S-12386 Tarsta
U. K.	Rutherford Appleton Laboratory Chilton, Didcot Oxfordshire, OX11 OQX
U. S. A.	SESC/NOAA
U.S.S.R.	Hydrometeorological Services Institute for Applied Geophysics Glebovskaya 206, Moscow 107258

Appendix E

Addresses and Abbreviations

AFGL	Air Force Geophysics Laboratory Hanscom AFB, MA 01731, U.S.A.	FTZ	Fernmeldetechnisches Zentralamt Deutsche Bundespost P. O. Box 5000 6100 Darmstadt, F.R.G.
AGU	American Geophysical Union 2000 Florida Avenue, NW Washington, DC 20009, U.S.A.	IAGA	International Association of Geomagnetism and Aeronomy M. Gadsden (Secretary General) Physics Department Aberdeen University Aberdeen AB9 2UE, U.K.
CCIR	International Radio Consultative Committee Place des Nations CH-1211 Geneve 20, Switzerland	ICSU	International Council of Scientific Unions 51 Boulevard de Montmorency 75016 Paris, France
CIRA	COSPAR International Reference Atmosphere (COSPAR Working Group)	IGRF	International Geomagnetic Reference Field (IAGA Working Group)
CNET	Centre Nationale d'Etudes des Telecommunications 3 Ave de la Republique 92130 Issy-les-Moulineaux, France	IKI	Institute of Space Research Academy of Sciences Profsoyuznaya Ulitsa 88 Moscow V-485, 117810, U.S.S.R.
COSPAR	Committee on Space Research 51 Boulevard de Montmorency 75016 Paris, France	INAG	International Ionospheric Network Advisory Group Contact WDC-A-STP or AFGL (Ionospheric Branch) for more information
ECS	European Geophysical Society G. M. Brown (Secretary General) Department of Physics The University College of Wales Aberystwyth SY 23 3BZ, U.K.		

IPS	Ionospheric Prediction Service P. O. Box 702 Darlinghurst, NSW 2010, Australia	NOAA	National Oceanic and Atmospheric Administration Boulder, CO 80303, U.S.A.
IRI	International Reference Ionosphere (COSPAR/URSI Working Group)	NSSDC	National Space Science Data Center Goddard Space Flight Center Code 630.2 Greenbelt, MD 20771, U.S.A.
ISAS	Institute of Space and Astronautical Science 6-1, Komaba, 4-chome, Meguro-ku Tokyo 153, Japan	PRL	Physical Research Laboratory Ahmedabad - 380009, India
ITU	International Telecommunication Union Place des Nations CH-1211 Geneve 20, Switzerland	RRL	Radio Research Laboratories Ministry of Posts and Telecommunications 2-1, Nukui-Kitamachi, 4-chome Koganei-shi Tokyo 184, Japan
IUGG	International Union of Geodesy and Geophysics P. Melchior (Secretary General) Observatoire Royal de Belgique Avenue Circulaire 3 1180 Bruxelles, Belgium	SCAR	Scientific Committee on Antarctic Research (Contact ICSU for address)
IUWDS	International Ursigram and World Days Service R. Thompson, IPS (Chairman) H.E. Coffey, WDC-A-STP (Secretary)	SCOSTEP	Scientific Committee on Solar Terrestrial Physics J. G. Roederer (President) Geophysical Institute University of Alaska Fairbanks, AK 99775-0800 U.S.A.
IZMIRAN	Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation Soviet Academy of Sciences 142092, Troitsk Moscow Region, U.S.S.R.	SESC	Space Environment Services Center, NOAA 325 Broadway, R/E/SE2 Boulder, CO 80303-3328 U.S.A.
MONSEE	Monitoring of Sun-Earth Environment Committee M. A. Shea (Chairman) Space Physics Division, AFGL	URSI	International Union of Radio Science Avenue Albert Lancaster 32 B 1180 Bruxelles, Belgium
NCAR	National Center for Atmospheric Research Boulder, CO 80307, U.S.A.	USGS	U.S. Geological Survey Denver, CO 80225 U.S.A.
NGDC	National Geophysical Data Center NOAA E/GC2, 325 Broadway Boulder, CO 80303, U.S.A.	WDC-A-R&S	World Data Center A for Rockets and Satellites Goddard Space Flight Center Code 630.2 Greenbelt, MD 20771, U.S.A.

WDC-A- STP	World Data Center A for Solar- Terrestrial Physics NOAA E/GC2 325 Broadway Boulder, CO 80303, U.S.A.	WDC-C1	World Data Center C1 for Solar- Terrestrial Physics Rutherford Appleton Laboratory Chilton, Didcot Oxfordshire OX11 0QX, U. K.
WDC-B2	World Data Center B2 Molodezhnaya 3 Moscow 117296, U.S.S.R.	WDC-C2	World Data Center C2 Radio Research Laboratories 2-1 Nukui Kitamachi, 4-chome Koganei-shi Tokyo 184, Japan

