COMPARACIÓN DE MEDIAS DE PARÁMETROS ELECTROCARDIOGRÁFICOS EN JOVENES ESTUDIANTES DE LA UPCH BASADO EN SU IMC

CURSO: INTRODUCCIÓN A SEÑALES BIOMÉDICAS

INTEGRANTES:

ASHLEY ESTEFANIA BRAVO BRAVO
KEVIN ALEXIS PALOMINO DIAZ
LEONARDO NICOLAS ZUÑIGA DOMINGUEZ

INTRODUCCIÓN

El índice de masa corporal es un parámetro que mide la cantidad de grasa en una persona a través de la proporción entre su masa y el cuadrado de su altura lo cual nos da un indicador ampliamente aceptado del grado de obesidad o desnutrición de una persona [1].

BMI	Nutritional status
Below 18.5	Underweight
18.5-24.9	Normal weight
25.0-29.9	Pre-obesity
30.0-34.9	Obesity class I
35.0-39.9	Obesity class II
Above 40	Obesity class III

Tabla 1. Clasificación del estado nutricional de una persona según la OMS [2]

REVIEW article

Front. Endocrinol., 05 September 2021
Sec. Obesity

Volume 12 - 2021 | https://doi.org/10.3389/fendo.2021.706978

Obesity: Epidemiology, Pathophysiology, and Therapeutics

0	Xihua Lin	Hong Li*
		,

Department of Endocrinology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China

Obesity is a complex multifactorial disease that accumulated excess body fat leads to negative effects on health. Obesity continues to accelerate resulting in an unprecedented epidemic that shows no significant signs of slowing down any time soon. Raised body mass index (BMI) is a risk factor for noncommunicable diseases such as diabetes, cardiovascular diseases, and musculoskeletal disorders, resulting in dramatic decrease of life quality and expectancy. The main cause of obesity is long-term energy imbalance between consumed calories and expended calories. Here, we explore the biological mechanisms of obesity with the aim of providing actionable treatment strategies to achieve a healthy body weight from nature to nurture. This review summarizes the global trends in obesity with a special focus on the pathogenesis of obesity from genetic factors to epigenetic factors, from social environmental factors to microenvironment factors. Against this background, we discuss several possible intervention strategies to minimize BMI.

Revisión de la epidemiología, fisiopatología y enfermedades vinculadas a la obesidad [3]

De acuerdo al artículo, la aparición de enfermedades cardiovasculares, renales, metabólicas, entre otras, se encuentra altamente influenciada por el desarrollo de obesidad [3].

IMC EN POBLACIÓN DE ESTUDIANTES UPCH

Resumen

Introducción: La obesidad es un factor de riesgo directo para la aparición y desarrollo de patologías crónicas no transmisibles, como la diabetes, hipertensión, enfermedad renal y cardiovascular. El sobrepeso y obesidad están relacionados entre otros factores a la inactividad física en los diferentes grupos etáreos, lo cual genera un problema de salud pública que requiere atención oportuna y estrategias de prevención y control en la población. Objetivos: Determinar el sobrepeso, obesidad y su relación con la actividad física, en los estudiantes de enfermería pre grado de la Universidad Peruana Cayetano Heredia, 2017. Material y Método: Estudio descriptivo transversal y analítico, con una muestra aleatoria extraída de 198 alumnos, a quienes se les aplicó el instrumento validado Cuestionario Internacional de Actividad Física, previamente se tomaron medidas de peso, talla y calculó el Índice de

Estudio descriptivo de la prevalencia de sobrepeso, obesidad y actividad física en estudiantes de enfermería de la UPCH en el año 2017 [6]

CLASIFICACIÓN DEL ESTADO NUTRICIONAL SEGÚN IMC						
Sexo	Desnutrición	Normopeso	Sobrepeso	Obesidad	Total	
Femenino	2 (1,4%)	71 (50%)	40 (28,2%)	17 (12%)	130 (91,6%)	
Masculino	0	4 (2,8%)	5 (3,5%)	3 (2,1%)	12 (8,4%)	
Total	2 (1,4%)	75 (52,8%)	45 (31,7%)	20 (14,1%)	142 (100%)	

Tabla 2. Valores de IMC de los estudiantes agrupados por sexo [6]

OBJETIVO

Comparar las medias de parámetros electrocardiográficos en poblaciones de estudiantes universitarios de la Universidad Peruana Cayetano Heredia con peso normal y sobrepeso basado en su índice de masa corporal (IMC)

ADQUISICIÓN DE LA SEÑALES

IMC de participantes

• 1 - IMC: 21.78

• 2 - IMC: 23.59

• 3 - IMC: 26.26

• 4 - IMC: 27.8

Posicionamiento de electrodos

PROTOCOLO DE MEDICIÓN DE SEÑALES

Maniobra de Valsalva: El

participante realiza la maniobra de valsalva durante 15 segundos. Se registra el ECG durante la maniobra y por 15 segundos después de liberar la presión.

PREPROCESAMIENTO

FILTRO NOTCH

FILTRO PASABAJO

FILTRADO POR DWT (DB6)

PROCESAMIENTO

INTERVALOS RR

BPM (LATIDOS POR MINUTO)

RESULTADOS

LATIDOS POR MINUTO

TABLA 1 VALORES DE MEDIA, DESVIACIÓN ESTÁNDAR, MÍNIMO Y MÁXIMO PARA LATIDOS POR MINUTO

34 15.37691 50.97706 99.66777 36 15.12011 49.91681 99.17355
98 98

BPM_1: PARTICIPANTES CON PESO NORMAL

BPM_2: PARTICIPANTES CON SOBREPESO

DIAGRAMA DE CAJAS Y BIGOTES PARA VALORES DE LATIDOS POR MINUTOS EN PARTICIPANTES CON PESO NORMAL Y SOBREPESO

LATIDOS POR MINUTO

HO: LA MEDIA DE LOS DOS GRUPOS SON IGUALES

HA: LA MEDIA DE LOS DOS GRUPOS SON DIFERENTES

Paired t t	test					
Variable	0bs	Mean	Std. err.	Std. dev.	[95% conf.	interval]
bpm_1 bpm_2	41 41	75.93084 83.80587	2.40147 2.1243	15.37691 13.60216	71.07729 79.51249	80.78439 88.09924
diff	41	-7.875028	3.595102	23.01989	-15.141	6090557
mean(diff) = mean(bpm_1 - bpm_2) $t = -2.1905$ H0: mean(diff) = 0 Degrees of freedom = 40						
	(diff) < 0) = 0.0172		: mean(diff) T > t) = 0			(diff) > 0) = 0.9828

NIVEL DE SIGNIFICANCIA: 95%

P<0.05

BPM2>BPM1

PRUEBA T TEST PARA MUESTRAS INDEPENDIENTES, USANDO BPM1 Y BPM2 PARA VALORES DE LATIDOS POR MINUTOS EN PARTICIPANTES CON PESO NORMAL Y SOBREPESO

INTERVALO RR

TABLA 2 VALORES DE MEDIA, DESVIACIÓN ESTÁNDAR, MÍNIMO Y MÁXIMO PARA INTERVALO RR

Variable	0bs	Mean	Std. dev.	Min	Max
rr1	41	823.6098	171.6371	602	1177
rr2	44	756.0909	169.9982	605	1202

RR1: PARTICIPANTES CON PESO NORMAL

RR2: PARTICIPANTES CON SOBREPESO

DIAGRAMA DE CAJAS Y BIGOTES PARA VALORES DE LATIDOS POR MINUTOS EN PARTICIPANTES CON PESO NORMAL Y SOBREPESO

INTERVALO RR

HO: LA MEDIA DE LOS DOS GRUPOS SON IGUALES

HA: LA MEDIA DE LOS DOS GRUPOS SON DIFERENTES

Pr(T < t) = 0.9808

Paired t	test					
Variable	0bs	Mean	Std. err.	Std. dev.	[95% conf.	interval]
rr1 rr2	41 41	823.6098 738.3902	26.80521 22.39449	171.6371 143.3947	769.4344 693.1293	877.7851 783.6512
diff	41	85.21951	39.80934	254.9041	4.761835	165.6772
mean(diff) = mean(rr1 - rr2) $t = 2.1407$ H0: mean(diff) = 0 Degrees of freedom = 40						
Ha: mean	(diff) < 0	Ha	: mean(diff)	!= 0	Ha: mean	(diff) > 0

P<0.05

NIVEL DE

SIGNIFICANCIA

95%

Pr(T > t) = **0.0192**

RR1>RR2

PRUEBA T TEST PARA MUESTRAS INDEPENDIENTES, USANDO BPM1 Y BPM2 PARA VALORES DE LATIDOS POR MINUTOS EN PARTICIPANTES CON PESO NORMAL Y SOBREPESO

CONCLUSIONES

SE ENCONTRARON DIFERENCIAS PARA VALORES DE MEDIAS EN AMBOS GRUPOS, TANTO PARA VALORES DE LATIDOS POR MINUTOS COMO INTERVALO RR

LOS VALORES DE LATIDOS POR MINUTO EN ESTUDIANTES CON SOBREPESO ES MAYOR A VALORES DE LATIDOS POR MINUTO CON PESO NORMAL

LOS VALORES DE INTERVALO RR EN ESTUDIANTES CON PESO NORMAL ES MAYOR A VALORES DE LATIDOS POR MINUTO CON SOBREPESO

REFERENCIAS BIBLIOGRÁFICAS

- [1] Nuttall, Frank Q. MD, PhD. Body Mass Index: Obesity, BMI, and Health. Nutrition Today 50(3):p 117-128, May/June 2015. | DOI:
- 10.1097/NT.0000000000000092
- [2] World Health Organization: WHO, "A healthy lifestyle WHO recommendations," May 06, 2010. https://www.who.int/europe/news-room/fact-sheets/item/a-healthy-lifestyle---who-recommendations
- [3] X. Lin and H. Li, "Obesity: Epidemiology, pathophysiology, and Therapeutics," Frontiers in Endocrinology, vol. 12, Sep. 2021, doi: 10.3389/fendo.2021.706978.
- [4] "Indicator Group Details." https://www.who.int/data/gho/data/themes/topics/indicator-groups/indicator-group-details/GHO/bmi-among-adults
- [5] "Perú: Enfermedades No Transmisibles y Transmisibles, 2022," Informes Y Publicaciones Instituto Nacional De Estadística E Informática Plataforma
- Del Estado Peruano. https://www.gob.pe/institucion/inei/informes-publicaciones/4233635-peru-enfermedades-no-transmisibles-y-transmisibles-2022
- [6] Huaman-Carhuas L, Bolaños-Sotomayor N. Sobrepeso, obesidad y actividad física en estudiantes de enfermería pregrado de una universidad privada 2017. Enferm Nefrol [Internet]. 2020 [consultado 19 May 2024];23(2):[aprox. 7 p.]. Disponible en:
- https://www.enfermerianefrologica.com/revista/article/view/3541
- [7] "BITalino (r)evolution User Manual." Disponible en: https://support.pluxbiosignals.com/wp-content/uploads/2021/11/bitalino-revolution-user-manual.pdf
- [8]"cmty_blog_detail," community.dynamics.com. https://community.dynamics.com/blogs/post/?postid=ca1db7e7-50d3-4ea3-9b8a-4dfa8e7a943e
- [9] R. Sharma, A. B. Bhatt, and S. Dwivedi, "Effect of obesity on autonomic functions of Heart among healthy volunteers at a teaching Institute," Journal of family medicine and primary care, vol. 11, no. 7, pp. 3636–3636, Jan. 2022, doi: https://doi.org/10.4103/jfmpc.jfmpc_2413_21.
- [10] "BITalino (r)evolution Lab Guide." Available: https://support.pluxbiosignals.com/wp-content/uploads/2022/04/HomeGuide2_ECG.pdf
- [11]F. Shi, "A review of noise removal techniques in ECG signals," 2022 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS),
- Dalian, China, 2022, pp. 237-240, doi: 10.1109/TOCS56154.2022.10015982. keywords: {Noise reduction;Interference;Electrocardiography;White noise;Wavelet analysis;Optics;Electromyography;ECG;Denoising;Wavelet threshold;modal decomposition;threshold},
- [12]S. R. and C. P., "Effect of obesity on heart rate variability among obese middle-aged individuals," 2019 International Conference on Advances in Computing, Communication and Control (ICAC3), Mumbai, India, 2019, pp. 1-5, doi: 10.1109/ICAC347590.2019.9036808. keywords: {Heart Rate Variability
- (HRV);Blood Pressure (BP);Heart Rate (HR);mean RR;SDNN;RMSSD;Approximate Entropy (AppEN);Sample Entropy (SampEN)},
- [13] "Pluxbiosignals/Biosignalsnotebooks." GitHub, 30 Apr. 2024, github.com/pluxbiosignals/biosignalsnotebooks?tab=readme-ov-file. Accessed 19 May 2024.
- [14] "Stata | Explore Our Products." Stata.com, 2019, www.stata.com/products/.

MUCHAS GRACIAS!