In this lab, you will learn to use

- reference data type: BigInteger
- loops
- console input and output
- method overloading

Problem statement: Write a program that takes an integer input n from the user and calculates its Factorial. **Factorial rules**:

- 0! = 1
- $n! = n \times (n-1)!$
- Factorial of a negative number is undetermined. So your program should print 1 whenever a negative number is passed to it.

The list of factorials for $n \le 15$ is shown below. Notice when $n \ge 13$, n! values differ because int can handle only up to 2,147,483,647*. So you need to create a program that uses BigInteger data type to calculate factorials for $n \ge 13$. As shown in Fig.1 to Fig.5, the program should ask for a number input, and then calculate its factorial correctly.

Factorial using int	Factorial using BigInteger
1! = 1	1! = 1
2! = 2	2! = 2
3! = 6	3! = 6
4! = 24	4! = 24
5! = 120	5! = 120
6! = 720	6! = 720
7! = 5,040	7! = 5,040
8! = 40,320	8! = 40,320
9! = 362,880	9! = 362,880
10! = 3,628,800	10! = 3,628,800
11! = 39,916,800	11! = 39,916,800
12! = 479,001,600	12! = 479,001,600
13! = 1,932,053,504	13! = 6,227,020,800
14! = 1,278,945,280	14! = 87,178,291,200
15! = 2,004,310,016	15! = 1,307,674,368,000

Solution Design: The program has one class Factorial that has three methods as shown in Figure 6. The calcFactorial() method is overloaded as one takes int and the other BigInteger as a parameter.

Instructions:

- 1. Download Factorial.java and TestFactorial.java from Canvas
- 2. Create a package named lab2 and import these two files into this package
- 3. Fill in your code in Factorial.java. Do not change any method signatures.
- 4. Test your Factorial.java using TestFactorial.java. Do not change TestFactorial.java.
- 5. Make sure your console output also comes out as expected.
- 6. Write your Andrew-id and name as top line comment in your Factorial.java file only and submit it on Canvas.

Figure 1: n = 0

```
Enter number
1
Factorial of 1 is 1
```

Figure 2: n = 1

```
Enter number
5
Factorial of 5 is 120
```

Figure 3: n = 5

```
Enter number
-5
Factorial of -5 is 1
```

Figure 4: n = -5

```
Enter number
13
Factorial of 13 is 6,227,020,800
```

Figure 5: n = 13

Figure 6: Class diagram

Enter number 0 Factorial of 0 is 1

^{*} Can you find out at what value of n will n! run out of space if n! is stored in a variable of type 'long'?