In [1]: from IPython.display import Image
Image(filename = "C:/Users/HP/Downloads/auto.png")

Out[1]:

Revised from CMU StatLib library, data concerns city-cycle fuel consumption

Dataset Characteristics Subject Area Associated Tasks

Multivariate Other Regression

Feature Type # Instances # Features

Real, Categorical, Integer 398 7

Dataset Information

Additional Information

This dataset is a slightly modified version of the dataset provided in the StatLib library. In line with the use by Ross Quinlan (1993) in predicting the attribute "mpg", 8 of the original instances were removed because they had unknown values for the "mpg" attribute. The original dataset is available in the file "auto-mpg.data-original"....

SHOW MORE V

Import Basic Packages

```
In [2]:
    import os
    import numpy as np
    import pandas as pd
    import seaborn as sns
    import matplotlib.pyplot as plt
    %matplotlib inline
    sns.set()

import warnings
warnings.filterwarnings("ignore")
```

```
In [3]: file_path = "C:/Users/HP/Downloads/mpg.txt"
with open(file_path, "r") as file:
    datadiscription = file.read()
print(datadiscription)
```

- 1. Title: Auto-Mpg Data
- 2. Sources:
 - (a) Origin: This dataset was taken from the StatLib library which is maintained at Carnegie Mellon University. The dataset was used in the 1983 American Statistical Association Exposition.
 - (c) Date: July 7, 1993
- 3. Past Usage:
 - See 2b (above)
 - Quinlan, R. (1993). Combining Instance-Based and Model-Based Learning. In Proceedings on the Tenth International Conference of Machine Learning, 236-243, University of Massachusetts, Amherst. Morgan

Kaufmann.

4. Relevant Information:

This dataset is a slightly modified version of the dataset provided in the StatLib library. In line with the use by Ross Quinlan (1993) in predicting the attribute "mpg", 8 of the original instances were removed because they had unknown values for the "mpg" attribute. The original dataset is available in the file "auto-mpg.data-original".

"The data concerns city-cycle fuel consumption in miles per gallon, to be predicted in terms of 3 multivalued discrete and 5 continuous attributes." (Quinlan, 1993)

- 5. Number of Instances: 398
- 6. Number of Attributes: 9 including the class attribute
- 7. Attribute Information:

1. mpg: continuous

2. cylinders: multi-valued discrete

3. displacement: continuous4. horsepower: continuous5. weight: continuous6. acceleration: continuous

7. model year: multi-valued discrete 8. origin: multi-valued discrete

9. car name: string (unique for each instance)

8. Missing Attribute Values: horsepower has 6 missing values

In [4]: data = pd.read_csv('mpg.csv')
 data.head()

mpg cylinders displacement horsepower weight acceleration model_year origin Out[4]: name chevrolet chevelle **0** 18.0 8 307.0 130 3504 12.0 70 1 malibu **1** 15.0 350.0 165 3693 11.5 70 buick skylark 320 **2** 18.0 8 318.0 70 150 3436 11.0 plymouth satellite **3** 16.0 304.0 150 3433 12.0 70 amc rebel sst **4** 17.0 8 302.0 140 3449 10.5 70 1 ford torino

In [5]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 398 entries, 0 to 397
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	mpg	398 non-null	float64
1	cylinders	398 non-null	int64
2	displacement	398 non-null	float64
3	horsepower	398 non-null	object
4	weight	398 non-null	int64
5	acceleration	398 non-null	float64
6	model_year	398 non-null	int64
7	origin	398 non-null	int64
8	name	398 non-null	object

```
dtypes: float64(3), int64(4), object(2)
memory usage: 28.1+ KB
```

No missing values

Handling char val

In [8]:

In [9]:

Out[9]:

mpg

cylinders displacement

weight

data.isnull().sum()

0

As horsepower is numerical value but here in dataset it is given object .. so we will convert this column into int

```
def horsepwr(h):
In [6]:
            h = h.replace('?','0')
           h = int(h)
           return h
        data['horsepower new'] = data['horsepower'].map(horsepwr)
        data.drop('horsepower', axis=1,inplace = True)
        sns.boxplot(data['horsepower new'])
        <Axes: >
Out[7]:
        200
         150
         100
          50
           0
                                              0
```

data['horsepower new'] = data['horsepower new'].replace(0, data['horsepower new'].median

acceleration 0
model_year 0
origin 0
name 0
horsepower_new 0
dtype: int64

Treating outlier

In [11]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 398 entries, 0 to 397
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	mpg	398 non-null	float64
1	cylinders	398 non-null	int64
2	displacement	398 non-null	float64
3	weight	398 non-null	int64
4	acceleration	398 non-null	float64
5	model_year	398 non-null	int64
6	origin	398 non-null	int64
7	name	398 non-null	object
8	horsepower_new	398 non-null	int64
dtyp	es: $float64(3)$,	int64(5), object	(1)
memo	ry usage: 28.1+	KB	

```
In [12]: sns.boxplot(data['acceleration'])
```

Out[12]: <Axes: >

Outlier Treatment

```
In [13]: Q1 = data['acceleration'].quantile(0.25)
         Q3 = data['acceleration'].quantile(0.75)
         IQR = Q3 - Q1
         upper limit = Q3 + 1.5 * IQR
         lower limit = Q1 - 1.5*IQR
         print('Q1: ',Q1)
         print("Q3: ",Q3)
         print('IQR: ',IQR)
         print('upper limit: ',upper limit)
         print('lower limit: ',lower limit)
         Q1: 13.825000000000001
         Q3: 17.175
         IQR: 3.349999999999996
         upper limit: 22.2
         lower limit: 8.8
In [14]: | data['acceleration'] = np.where(data['acceleration']>upper limit, upper limit,
                                          np.where(data['acceleration'] < lower limit, lower limit,</pre>
                                                  data['acceleration']))
         #label encoding for name
In [15]:
         data['origin'].value counts()
              249
Out[15]:
               79
               70
         Name: origin, dtype: int64
         # categorical features = ['origin','cylinders','model year']
In [16]:
         from sklearn.preprocessing import LabelEncoder
In [17]:
         origin enco = LabelEncoder()
         data['origin'] = origin enco.fit transform(data['origin'])
```

```
data['cylinders'] = cylinder enco.fit transform(data['cylinders'])
In [19]: data['cylinders'].value_counts()
              204
Out[19]:
              103
              84
         0
                4
         Name: cylinders, dtype: int64
         model enco = LabelEncoder()
In [20]:
         data['model year'] = model enco.fit transform(data['model year'])
         Feature Scaling
         data.drop("name", axis = 1, inplace = True)
In [21]:
In [22]: data.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 398 entries, 0 to 397
         Data columns (total 8 columns):
          # Column
                         Non-Null Count Dtype
                              _____
          0
                              398 non-null float64
            mpg
          1 cylinders 398 non-null int64
2 displacement 398 non-null float64
3 weight 398 non-null int64
          4 acceleration 398 non-null float64
          5 model year 398 non-null int64
                             398 non-null
          6 origin
                                              int64
            horsepower new 398 non-null
         dtypes: float64(3), int64(5)
         memory usage: 25.0 KB
         x = data.iloc[:,2:]
In [23]:
         y = data.iloc[:, 0:1]
         x.head()
In [24]:
Out[24]:
           displacement weight acceleration model_year origin horsepower_new
         0
                  307.0
                         3504
                                     12.0
                                                                    130
                  350.0
                         3693
                                     11.5
                                                                    165
                  318.0
                         3436
                                     11.0
                                                                    150
                  304.0
                         3433
                                     12.0
                                                                    150
                  302.0
                                     10.5
                                                       0
                         3449
                                                                    140
         y.head()
In [25]:
Out[25]:
           mpg
            18.0
```

In [18]: cylinder enco = LabelEncoder()

15.0

```
17.0
           from sklearn.preprocessing import StandardScaler
In [26]:
           scaler = StandardScaler()
           sc x = scaler.fit transform(x)
           pd.DataFrame(sc x)
Out[26]:
                                  1
                                             2
                                                        3
                                                                             5
                 1.090604
                            0.630870
                                     -1.320595
                                                -1.627426
                                                           -0.715145
                                                                      0.673589
                 1.503514
                            0.854333
                                     -1.506489
                                                -1.627426
                                                           -0.715145
                                                                      1.590266
                 1.196232
                            0.550470
                                     -1.692383
                                                -1.627426
                                                                      1.197404
                                                           -0.715145
                 1.061796
                            0.546923
                                     -1.320595
                                                -1.627426
                                                           -0.715145
                                                                      1.197404
                 1.042591
                            0.565841
                                     -1.878278
                                                -1.627426
                                                           -0.715145
                                                                      0.935497
           393
                -0.513026
                           -0.213324
                                      0.017842
                                                 1.621983
                                                           -0.715145
                                                                      -0.478804
                -0.925936
                           -0.993671
                                      2.471644
                                                 1.621983
                                                            0.533222
                                                                     -1.369289
                -0.561039
                           -0.798585
                                     -1.469311
                                                 1.621983
                                                           -0.715145
                                                                      -0.531185
               -0.705077
                          -0.408411
                                                 1.621983
                                                           -0.715145
                                                                     -0.662139
                                      1.133207
           397 -0.714680 -0.296088
                                      1.430637
                                                 1.621983 -0.715145 -0.583567
          398 rows \times 6 columns
           pd.DataFrame(sc x).describe()
In [27]:
Out[27]:
                                              1
                                                             2
                                                                            3
                                                                                           4
                                                                                                          5
           count
                   3.980000e+02
                                  3.980000e+02
                                                  3.980000e+02
                                                                 3.980000e+02 3.980000e+02
                                                                                               3.980000e+02
                   -1.785283e-17
                                  -1.606755e-16
                                                                               -5.355850e-17
                                                                                               1.428227e-16
           mean
                                                 -1.071170e-16
                                                                  2.142340e-16
                   1.001259e+00
                                  1.001259e+00
                                                  1.001259e+00
                                                                 1.001259e+00
                                                                               1.001259e+00
                                                                                               1.001259e+00
             std
             min
                  -1.204411e+00
                                 -1.604943e+00
                                                 -2.510317e+00
                                                                -1.627426e+00
                                                                               -7.151448e-01
                                                                                              -1.526434e+00
            25%
                   -8.563178e-01
                                                                 -8.150739e-01 -7.151448e-01
                                  -8.828266e-01
                                                 -6.420819e-01
                                                                                               -7.407114e-01
            50%
                   -4.314040e-01
                                  -1.973624e-01
                                                 -1.933672e-02
                                                                 -2.721449e-03 -7.151448e-01
                                                                                               -3.216593e-01
            75%
                    6.584879e-01
                                   7.538337e-01
                                                  6.034085e-01
                                                                  8.096310e-01
                                                                                5.332220e-01
                                                                                               5.426356e-01
                   2.511784e+00
                                  2.565185e+00
                                                  2.471644e+00
                                                                 1.621983e+00
                                                                               1.781589e+00
                                                                                               3.292665e+00
            max
In [28]:
           var = sc x
           var.shape
           (398, 6)
Out[28]:
```

Checking multicollinearity

2

18.0

16.0

```
In [29]: from statsmodels.stats.outliers_influence import variance_inflation_factor
    var = sc_x
    vif =pd.DataFrame()
    vif['variance_inflation_factor'] = [variance_inflation_factor(var,i) for i in range(var.
    vif['features'] = x.columns
In [30]: variance_inflation_factor features
```

	variance_inflation_factor	features
0	12.178992	displacement
1	10.498106	weight
2	2.596991	acceleration
3	1.244622	model_year
4	1.729181	origin
5	9.432523	horsepower_new

17.0

In [34]:

scaler1 = StandardScaler()

Vif of displacement column is higher so we will remove it

```
remove it
         data.drop('displacement',axis = 1, inplace = True)
In [31]:
         data.head()
Out[31]:
            mpg cylinders weight acceleration model_year origin horsepower_new
         0 18.0
                            3504
                                         12.0
                                                      0
                                                            0
                                                                          130
                        4
         1 15.0
                            3693
                                         11.5
                                                      0
                                                            0
                                                                          165
         2 18.0
                                                      0
                                                            0
                            3436
                                        11.0
                                                                          150
                                                            0
         3 16.0
                            3433
                                         12.0
                                                                          150
           17.0
                            3449
                                         10.5
                                                            0
                                                                          140
         x1 = data.iloc[:,2:]
In [32]:
          y1 = data.iloc[:,0:1]
         y1.head()
In [33]:
Out[33]:
            mpg
         0 18.0
            15.0
            18.0
           16.0
```

```
0.630870 -1.320595 -1.627426 -0.715145
                                                0.673589
     0.854333 -1.506489
                         -1.627426 -0.715145
                                                1.590266
     0.550470 -1.692383
                         -1.627426
                                    -0.715145
                                                1.197404
     0.546923
              -1.320595
                         -1.627426
                                    -0.715145
                                                1.197404
     0.565841 -1.878278
                         -1.627426 -0.715145
                                                0.935497
393
     -0.213324
                0.017842
                           1.621983
                                    -0.715145
                                               -0.478804
    -0.993671
                2.471644
                           1.621983
                                      0.533222
                                               -1.369289
    -0.798585
              -1.469311
                           1.621983
                                    -0.715145
                                               -0.531185
    -0.408411
                1.133207
                           1.621983
                                     -0.715145
                                               -0.662139
    -0.296088
                1.430637
                           1.621983 -0.715145 -0.583567
```

398 rows × 5 columns

3

4

```
In [35]:
          var1 = sc x1
          var1.shape
          (398, 5)
Out[35]:
          vif1 = pd.DataFrame()
In [36]:
          vif1['variance inflation factor1'] = [variance inflation factor(var1,i) for i in range(v
          vif1['features'] = x1.columns
          vif1
In [37]:
             variance_inflation_factor1
Out[37]:
                                          features
          0
                           6.120806
                                           weight
          1
                           2.499726
                                        acceleration
          2
                           1.228353
                                        model_year
```

origin

Finding correlation

1.538155

8.699791 horsepower_new

```
In [38]: plt.figure(figsize=(20,15))
    sns.heatmap(data.corr(), annot = True, cmap='coolwarm')
    plt.show()
```


In [39]: from sklearn.model_selection import train_test_split
 x_train,x_test,y_train,y_test = train_test_split(x,y,test_size =0.2,random_state=101)

Rergrssion model 1

```
In [40]:
         from sklearn.linear model import LinearRegression
         lm = LinearRegression()
         lm.fit(x_train,y_train)
Out[40]:
         ▼ LinearRegression
         LinearRegression()
In [41]:
         print(lm.coef_)
         print('***********5)
         print(lm.intercept_)
                                                0.78616418 1.16995869 -0.01721717]]
         [[ 0.01520499 -0.00688301 0.0592133
         [36.60074904]
In [42]:
         x test.head()
Out[42]:
             displacement weight acceleration model_year origin horsepower_new
```

130	122.0	2451	16.5	4	0	80
202	258.0	3193	17.8	6	0	95
322	86.0	2110	17.9	10	2	65
104	400.0	4906	12.5	3	0	167
91	400.0	4464	12.0	3	0	150

Predict test dataset wih linear model

```
In [43]: y pred = lm.predict(x test)
         y_pred
         array([[24.32978998],
Out[43]:
                 [22.68151893],
                [33.52757722],
                 [ 9.13806293],
                 [12.44344079],
                 [26.08186269],
                 [34.43798179],
                 [25.11370197],
                 [27.03714153],
                 [24.0735922],
                 [25.75123137],
                 [26.39348539],
                 [34.75037624],
                 [28.60873554],
                 [17.20164285],
                 [18.55360875],
                 [20.71415173],
                 [19.86982306],
                [25.66218644],
                 [25.39752065],
                 [ 8.58575882],
                 [24.33951096],
                 [29.39886739],
                 [20.72518866],
                 [15.50028393],
                 [32.80409456],
                 [25.35716315],
                 [29.64592711],
                 [17.42654862],
                 [ 9.77994572],
                 [20.60806978],
                 [34.06511164],
                 [24.67313184],
                 [26.07496705],
                 [25.8439045],
                 [11.60777446],
                 [28.3439356],
                 [30.20284646],
                 [15.95486995],
                 [24.47684353],
                 [32.71758896],
                 [16.40550344],
                 [26.66595053],
                 [14.16428926],
                 [21.65874182],
                 [19.54208705],
                 [29.05947031],
                 [22.66456658],
```

```
[21.20134455],
[33.00662901],
[21.428808 ],
[22.16992788],
[23.22771654],
[25.69373339],
[15.66447169],
[27.83069754],
[34.78846079],
[25.32294323],
[16.80688139],
[32.01631988],
[30.40880856],
[25.43215002],
[35.08598643],
[19.09575745],
[21.40004846],
[23.79206428],
[31.05429952],
[32.55619221],
[12.68297108],
[13.22560415],
[18.92585729],
[25.0982099],
[19.39392958],
[27.9750004],
[18.9963028],
[12.11979723],
[25.45758
          ],
[13.62522468],
[21.31933959],
[20.75414116]])
```

Evaluation for model 1

```
In [44]: from sklearn.metrics import r2_score
print("Accuracy: ", r2_score(y_test,y_pred))
Accuracy: 0.8050952184103181
```

linear model 2

```
y1 pred
         array([[24.67141909],
Out[49]:
                [21.85002448],
                [33.25246854],
                [ 9.19258794],
                [11.87363863],
                [26.84693733],
                [33.81272775],
                [25.41645485],
                [26.2725117],
                [24.34405765],
                [25.41768553],
                [26.84256453],
                [34.26322503],
                [28.16717412],
                [17.01226883],
                [18.17578991],
                [19.90359117],
                [19.45393895],
                [25.7879024],
                [25.80089887],
                [ 8.52586436],
                [24.30678357],
                [29.42283771],
                [20.20832814],
                [15.73158117],
                [32.06505479],
                [25.70529563],
                [29.84726814],
                [17.31077758],
                [ 9.0420631 ],
                [20.81716152],
                [33.79204695],
                [25.19650056],
                [26.51599687],
                [27.093569],
                [11.61432794],
                [28.5560865],
                [30.48753813],
                [15.75164895],
                [24.2109772],
                [32.8024156],
                [16.36215631],
                [26.55833956],
                [14.32627697],
                [21.58586971],
                [18.99067271],
                [28.9632257],
                [23.43148299],
                [20.89292508],
                [32.51698249],
                [20.59101696],
                [21.96319569],
                [22.63250839],
                [26.18607954],
                [15.41712019],
                [28.40804476],
                [34.40706377],
                [25.18803771],
                [16.9366266],
                [31.66258724],
                [30.35631524],
                [25.4684354],
                [34.73539456],
                 [19.16741528],
```

```
[30.79613519],
                  [32.59075319],
                  [13.18962885],
                  [12.94689774],
                  [18.40691334],
                  [25.21394
                  [19.27554839],
                  [28.3054246],
                  [16.61662767],
                  [12.6632652],
                  [25.78774242],
                  [13.5767135],
                  [20.76031012],
                  [20.64604912]])
In [50]:
          from sklearn.metrics import r2 score
In [51]:
          print("Accuracy: ",r2 score(y1 test,y1 pred))
          Accuracy: 0.8078071902824695
         OLS method
          # model1
In [52]:
          from statsmodels.regression.linear model import OLS
          import statsmodels.regression.linear model as smf
In [53]:
          reg1 = smf.OLS(endog = y train, exog=x train).fit()
          reg test1 = smf.OLS(endog = y test,exog = x test).fit()
In [54]:
          reg1.summary()
In [55]:
                                 OLS Regression Results
Out[55]:
             Dep. Variable:
                                            R-squared (uncentered):
                                                                      0.967
                                   mpg
                   Model:
                                    OLS
                                        Adj. R-squared (uncentered):
                                                                      0.967
                  Method:
                            Least Squares
                                                        F-statistic:
                                                                      1543.
                           Fri, 19 Jan 2024
                                                   Prob (F-statistic):
                                                                  1.37e-228
                    Date:
                    Time:
                                22:25:17
                                                    Log-Likelihood:
                                                                     -929.90
          No. Observations:
                                    318
                                                             AIC:
                                                                      1872.
              Df Residuals:
                                    312
                                                              BIC:
                                                                      1894.
                Df Model:
           Covariance Type:
                               nonrobust
                            coef std err
                                             t P>|t| [0.025 0.975]
                          0.0137
                                   0.009
                                          1.573 0.117
                                                      -0.003
             displacement
                                                              0.031
                          -0.0088
                                   0.001
                                         -8.521 0.000
                                                      -0.011
                                                             -0.007
                  weight
```

[21.34044718], [23.36415765],

acceleration

model_year

1.6214

1.0404

0.084

0.074

19.239

14.139 0.000

0.000

1.456

0.896

1.787

1.185

origin	2.10	56	0.404	5.210	0.000	1.310	2.901
horsepower_new	0.13	59	0.016	8.257	0.000	0.103	0.168
Omnibus:	1.485	D	urbin-W	atson:	2.00	4	
Prob(Omnibus):	0.476	Jar	que-Bera	a (JB):	1.53	3	
Skew:	0.163		Pro	b(JB):	0.46	5	
Kurtosis:	2.900		Con	d. No.	4.91e+0	3	

Notes:

- [1] R^2 is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [3] The condition number is large, 4.91e+03. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [56]: reg_test1.summary()
```

Out[56]:

OLS Regression Results

Dep. Variable:	mpg	R-squared (uncentered):	0.977
Model:	OLS	Adj. R-squared (uncentered):	0.975
Method:	Least Squares	F-statistic:	514.5
Date:	Fri, 19 Jan 2024	Prob (F-statistic):	3.30e-58
Time:	22:25:17	Log-Likelihood:	-217.81
No. Observations:	80	AIC:	447.6
Df Residuals:	74	BIC:	461.9
Df Model:	6		

Covariance	Type:	nonrobust
------------	-------	-----------

	coef	std err	t	P> t	[0.025	0.975]
displacement	-0.0257	0.015	-1.760	0.083	-0.055	0.003
weight	-0.0041	0.001	-2.962	0.004	-0.007	-0.001
acceleration	1.4029	0.117	11.946	0.000	1.169	1.637
model_year	0.6845	0.135	5.073	0.000	0.416	0.953
origin	3.0225	0.748	4.043	0.000	1.533	4.512
horsepower_new	0.1234	0.028	4.431	0.000	0.068	0.179

Omnibus:	3.085	Durbin-Watson:	2.136
Prob(Omnibus):	0.214	Jarque-Bera (JB):	2.425
Skew:	0.406	Prob(JB):	0.297
Kurtosis:	3.258	Cond. No.	5.44e+03

Notes:

- [1] R² is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [3] The condition number is large, 5.44e+03. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [57]: reg2 = smf.OLS(endog=y1_train,exog = x1_train).fit()
In [58]: reg2_test = smf.OLS(endog = y1_test,exog=x1_test).fit()
In [59]: reg2.summary()
Out[59]:
OLS Regression Results
Dep. Variable: mpg R-squared (uncentered): 0.967
```

Model: OLS Adj. R-squared (uncentered): 0.967 Method: Least Squares F-statistic: 1842. Date: Fri, 19 Jan 2024 **Prob (F-statistic):** 1.04e-229 Time: 22:25:17 Log-Likelihood: -931.15 No. Observations: AIC: 1872. 318 **Df Residuals:** 313 BIC: 1891. **Df Model:** 5

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
weight	-0.0077	0.001	-10.132	0.000	-0.009	-0.006
acceleration	1.5502	0.071	21.747	0.000	1.410	1.691
model_year	1.0298	0.073	14.021	0.000	0.885	1.174
origin	1.8944	0.382	4.958	0.000	1.143	2.646
horsepower_new	0.1419	0.016	8.851	0.000	0.110	0.173

Kurtosis:	2 959	Cond. No.	4 64e+03
Skew:	0.117	Prob(JB):	0.687
Prob(Omnibus):	0.685	Jarque-Bera (JB):	0.750
Omnibus:	0.757	Durbin-Watson:	1.984

Notes:

- [1] R² is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [3] The condition number is large, 4.64e+03. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [60]: plt.scatter(y_test,y_pred)
   plt.show()
```


In [61]: plt.scatter(y1_test,y1_pred)
 plt.show()

In [62]: sns.distplot((y_test-y_pred),bins = 50)
plt.show()

In [63]: sns.distplot((y1_test-y1_pred),bins = 50)
plt.show()


```
In [64]: import statsmodels.api as sm
from statsmodels.formula.api import ols
```

In [65]: data1 = pd.read_csv('mpg.csv')
 data1.head()

0	18.0	8	307.0	130	3504	12.0	70	1	chevrolet chevelle malibu
1	15.0	8	350.0	165	3693	11.5	70	1	buick skylark 320
2	18.0	8	318.0	150	3436	11.0	70	1	plymouth satellite
3	16.0	8	304.0	150	3433	12.0	70	1	amc rebel sst
4	17.0	8	302.0	140	3449	10.5	70	1	ford torino

In [66]: model = ols('mpg~displacement', data=data1).fit()
annova_result = sm.stats.anova_lm(model,typ=2)
print(annova_result)

 sum_sq
 df
 F
 PR(>F)

 displacement
 15685.163618
 1.0
 724.994303
 1.655889e-91

 Residual
 8567.411859
 396.0
 NaN
 NaN

In [67]: data.head()

Out[67]:		mpg	cylinders	weight	acceleration	model_year	origin	horsepower_new
	0	18.0	4	3504	12.0	0	0	130
	1	15.0	4	3693	11.5	0	0	165
	2	18.0	4	3436	11.0	0	0	150
	3	16.0	4	3433	12.0	0	0	150
	4	17.0	4	3449	10.5	0	0	140