Olympiad in Informatics $\mathcal E$ Association for Computing Machinery–International Collegiate Programming Contest Olympic Tin Học Sinh Viên OLP $\mathcal E$ ACM-ICPC

Nguyễn Quản Bá Hồng¹

Ngày 10 tháng 7 năm 2025

¹A scientist- & creative artist wannabe, a mathematics & computer science lecturer of Department of Artificial Intelligence & Data Science (AIDS), School of Technology (SOT), UMT Trường Đại học Quản lý & Công nghệ TP.HCM, Hồ Chí Minh City, Việt Nam. E-mail: nguyenquanbahong@gmail.com & hong.nguyenquanba@umt.edu.vn. Website: https://nqbh.github.io/. GitHub: https://github.com/NQBH.

Mục lục

1	Introduction to Programming – Nnap Mon Lap Irinn	7						
II	Programming Techniques – Kỹ Thuật Lập Trình	9						
1	1 Pointer Variable & Dynamic Memory Technique – Biến Con Trỏ & Kỹ Thuật Bộ Nhớ Động 1							
2	Linked Lists – Danh Sách Liên Kết	11						
3	Abstract Data Structure Installation – Cài Đặt Cấu Trúc Dữ Liệu Trừu Tượng	12						
4	Strings & Algorithms – Chuỗi Ký Tự & Thuật Toán	13						
5	Search Algorithms & Applications – Thuật Toán Tìm Kiếm & Ứng Dụng	14						
6	6.1 Basic Terminologies – Thuật Ngữ Cơ Bản	15 15						
7	Recursion Programming – Lập Trình Đệ Quy 7.1 Basic Recursion Programming – Lập Trình Đệ Quy Cơ Bản	17 18 18 19						
8	8.1 Introduction to Dynamic Programming — Nhập Môn Quy Hoạch Động 8.1.1 Speeding up Fibonacci with dynamic programming (memoization) 8.1.2 Bottom-up Dynamic Programming 8.1.3 Classic dynamic programming problems — Các bài toán quy hoạch động cổ điển 8.2 Knapsack Problem — Bài Toán Xếp Balo 0-1 8.2.1 0-1 knapsack problem — Bài toán xếp balo 0-1 8.2.2 Complete knapsack problem — Bài toán xếp balo hoàn chỉnh 8.2.3 Multiple knapsack problem — Bài toán xếp balo bội 8.2.3.1 Binary grouping optimization — Tối ưu hóa nhóm nhị phân 8.2.3.2 Monotone queue optimization — Tối ưu hóa hàng đợi đơn điệu 8.2.4 Mixed knapsack problem — Bài toán xếp balo hỗn hợp 8.2.5 Extensions & generalizations of knapsack problem — Mở rộng & tổng quát hóa của bài toán xếp balo 8.3 Divide & Conquer Dynamic Programming — Chia & Trị Quy Hoạch Động 8.3.1 Preconditions — Điều kiện tiến quyết 8.3.2 Generic implementation — Thực thi chung 8.4 Knuth's Optimization — Tối Ưu của KNUTH 8.4.1 Conditions 8.4.2 Algorithm of Knuth's optimization — Thuật toán của tối ưu của Knuth	20 21 22 23 24 24 25 26 27 27 27 27 27 28 29 29						
9	9.1 Function Pointers – Con Trổ Hàm 9.1.1 Simple function pointers – Các con trổ hàm đơn giản 9.1.2 Functors/Function object – Đối tượng hàm 9.1.3 Method pointers – Các con trổ phương pháp	32 32 35 35 35						

Chương 0 Mục lục

9.1.4.1 Pointers to member functions in C++ - Con trỏ tới các hàm thành viên trong C++ 9.1.5 Alternate C & C++ syntax - Cú pháp thay thế C & C++	36 36
Data Structure & Algorithm – Cấu Trúc Đữ Liệu & Giải Thuật	38
Basic Data Structures – Cấu Trúc Dữ Liệu Cơ Bản 10.1 Minimum Stack/Minimum Queue – Ngăn Xếp Tối Thiểu/Hàng Đợi Tối Thiểu 10.1.1 Stack modification – Sửa đổi ngăn xếp 10.1.2 Queue modification – Sửa đổi hàng đợi	39 39 40
Object-Oriented Programming – Lập Trình Hướng Đối Tượng	41
Competitive Programming – Lập Trình Thi Đấu	42
Basic Competitive Programming – Lập Trình Thi Đấu Cơ Bản 11.1 The art of handling inputs & formatting outputs – Nghệ thuật xử lý các dạng đầu vào & định dạng các dạng đầu r 11.2 Repeat/Loop – Lặp 11.3 String data – Kiểu dữ liệu chuỗi 11.4 Array data – Kiểu dữ liệu mảng . 11.4.1 Kỹ thuật mảng chỉ số cho kiểu dữ liệu mảng .	44 45 45 45 46
Introductory Problems – Các Bài Toán Mở Đầu	47
Array & Sequence: Mång & Dãy	65
Sorting & Searching – Sắp Xếp & Tìm Kiếm	66
Practice for Simple Computing – Thực Hành Tính Toán Đơn Giản	78
Ad Hoc Problems 16.1 Solving Ad Hoc Problems by Mechanism Analysis	83 83 86
VNOI	87
Recurrence Relation – Quan Hệ Hồi Quy 18.1 Linear recurrence with constant coefficients – Hồi quy tuyến tính với hệ số hằng	88 90
Dynamic Programming – Quy Hoạch Động 19.1 Linear Dynamic Programming – Quy Hoạch Động Tuyến Tính 19.2 Problem: Dynamic Programming – Bài Tập: Quy Hoạch Động	91 92 93
Graph Algorithms – Thuật Toán Đồ Thị	106
Range Queries – Truy Vấn Phạm Vi	125
Tree Algorithms – Thuật Toán Trên Cây	127
Mathematics	128
String Algorithms	140
Computational Geometry – Hình Học Tính Toán 25.1 Computational Elementary Geometry – Hình Học Sơ Cấp Tính Toán	$142 \\ 142$

Chương 0 Mục lục

	25.1.1.2.2 Euclidean transformations – Các phép biến đổi Euclidean	
	25.1.1.3 Orientation & handedness \star – Định hướng & thuận tay \star	
	25.2 Shoelace formula – Công thức dây giày	
	25.2.1 Polygon area formulas – Công thức diện tích đa giác	
	25.2.1.2 Triangle formula, determinant form – Công thức tam giác, dạng định thức	146
	25.2.1.3 Shoelace formula – Công thức dây giày	
	25.2.1.4 Other formulas	
	25.2.2 Manipulations of a polygon – Các thao tác trên 1 đa giác	147
	25.2.3 Generalization of shoelace formula	
	25.3 Problems: Computational elementary geometry	148
26	Number Theory – Lý Thuyết Số	158
	26.1 Divisor – Ước Số	158 160
	26.2.1 p-adic absolute value	
	26.2.2 Finding power of factorial divisor – Tìm lũy thừa của ước số giai thừa	
	26.2.3 Legendre's formula – Công thức Legendre	$\frac{163}{164}$
	26.4 Divisor function – Hàm ước số	
27	Advanced Techniques – Các Kỹ Thuật Nâng Cao	166
28	Sliding Window Problems – Các Bài Toán Về Cửa Sổ Trượt	175
29	Interactive Problems – Các Bài Toán Tương Tác	176
30	Bitwise Operations – Các Phép Toán Bitwise	177
31	Construction Problems – Các Bài Toán Xây Dựng	182
32	Advanced Graph Problems – Các Bài Toán Đồ Thị Nâng Cao	185
33	Counting Problems – Các Bài Toán Đếm	196
34	Combinatorics	202
	34.1 Binomial Coefficients – Hệ Số Nhị Thức	202
	34.1.1 Calculation of binomial coefficients	$\frac{202}{203}$
	34.1.3 Computing binomial coefficients modulo m – Tính hệ số nhị thức modulo m	
95	Combinatorial Optimization – Tối Ưu Tổ Hợp	205
90	35.1 Some combinatorics problems in Mathematical Olympiads – Vài bài toán tổ hợp trong các kỳ thi Olympic Toán 35.2 Knapsack problem – Bài toán xếp balo	205 205 207
	35.2.1 Applications of knapsack problem – Úng dụng của bài toán xếp balo	207
	35.2.2 Definition of knapsack problem – Định nghĩa bài toán xếp balo	208
	35.2.3 Computational complexity of knapsack problem – Độ phức tạp tính toán của bài toán xếp balo	209
	35.2.3.1 Unit-cost models – Mô hình chi phí đơn vị	210 210
	35.2.4.1 Dynamic programming in-advance algorithm – Thuật toán quy hoạch động nâng cao	210
	35.2.4.2 0-1 knapsack problem – Bài toán xếp balo 0-1	211
	35.2.4.3 Meet-in-the-middle – Gặp nhau ở chính giữa	213 213
36	Miscellaneous	214
	36.1 Contributors	214
	36.2 Donate or Buy Me Coffee	
	90.0 Dec and	414

Chương 0	Мџс	c l	ųс	į
----------	-----	-----	----	---

Tài liệu tham khảo 215

Preface

Abstract

This text is a part of the series Some Topics in Advanced STEM & Beyond: URL: https://nqbh.github.io/advanced_STEM/.

Latest version:

• Olympiad in Informatics & Association for Computing Machinery–International Collegiate Programming Contest – Olympic Tin Học Sinh Viên OLP & ICPC.

PDF: URL: https://github.com/NQBH/advanced_STEM_beyond/blob/main/OLP_ICPC/NQBH_OLP_ICPC.pdf. TEX: URL: https://github.com/NQBH/advanced_STEM_beyond/blob/main/OLP_ICPC/NQBH_OLP_ICPC.tex.

- Codes:
 - $\circ \ C: \ https://github.com/NQBH/advanced_STEM_beyond/tree/main/OLP_ICPC/C. \\$
 - $\circ \ C++: \texttt{https://github.com/NQBH/advanced_STEM_beyond/tree/main/OLP_ICPC/C++}. \\$
 - $\ \, \circ \ \, Python: \\ \verb|https://github.com/NQBH/advanced_STEM_beyond/tree/main/OLP_ICPC/Python. \\ \end{aligned}$

Preliminaries – Kiến thức chuẩn bị

Resources - Tài nguyên.

- 1. [WW16]. Yonghui Wu, Jiande Wang. Data Structure Practice for Collegiate Programming Contests & Education.
- 2. [WW18]. Yonghui Wu, Jiande Wang. Algorithm Design Practice for Collegiate Programming Contests & Education.
- 3. Codeforces https://codeforces.com/.
- 4. CSES Problem Sets. https://cses.fi/problemset/.

Some critical-thinking questions:

Question 1 (Generalization; main ideas of a solution/proof). What are main ideas of a solution or a proof of a problem that can be used to generalize the original problem?

Question 2 (Link¹). Can we draw some link(s) between different problems? Even they are in different categories: algebra, analysis, \mathcal{E} combinatorics.

Remark 1 (Repeat & mathematical induction – Lặp & quy nạp toán học). Nếu bài toán có chứa $n \in \mathbb{N}^*$ tổng quát hoặc chứa số tự nhiên của năm ra đề, e.g., 2025, thì đưa 2025 về $n \in \mathbb{N}^*$, rồi sử dụng các kỹ thuật toán học để đưa về phép lặp, hoặc sử dụng phương pháp quy nạp toán học (method mathematical induction).

Notation - Ký hiệu

- $\overline{m,n} \coloneqq \{m,m+1,\ldots,n-1,n\}, \, \forall m,n \in \mathbb{Z}, \, m \le n.$ Hence the notation "for $i \in \overline{m,n}$ " means "for $i = m,m+1,\ldots,n$ ", i.e., chỉ số/biến chạy i chạy từ $m \in \mathbb{Z}$ đến $n \in \mathbb{Z}$. Trong trường hợp $a,b \in \mathbb{R}$, ký hiệu $\overline{a,b} \coloneqq \overline{\lceil a \rceil, \lfloor b \rfloor}$ có nghĩa như định nghĩa trước đó với $m \coloneqq \lceil a \rceil, n \coloneqq \lfloor b \rfloor \in \mathbb{Z}$; khi đó ký hiệu "for $i \in \overline{a,b}$ " với $a,b \in \mathbb{R}, \, a \le b$ có nghĩa là "for $i = \lceil a \rceil, \lceil a \rceil + 1,\ldots, \lfloor b \rfloor 1, \lfloor b \rfloor$, i.e., chỉ số/biến chạy i chạy từ $\lceil a \rceil$ đến $\lfloor b \rfloor \in \mathbb{Z}$.
- $\lfloor x \rfloor$, $\{x\}$ lần lượt được gọi là phần nguyên & phần lể (integer- & fractional parts) của $x \in \mathbb{R}$, see, e.g., Wikipedia/floor & ceiling functions, Wikipedia/fractional part.
- $x_+ \coloneqq \max\{x,0\}, x_- \coloneqq \max\{-x,0\} = -\min\{x,0\}$ lần lượt được gọi là phần dương & phần âm (positive- & negative parts) của $x \in \mathbb{R}$.
- s.t.: abbreviation of 'such that'.
- w.l.o.g.: abbreviation of 'without loss of generality'.

Question 3 (MO \mapsto OI: Mathematical Olympiads \mapsto Olympiads of Informatics). Những bài Olympic Toán học, e.g., VMO, USAMO, China MO, đặc biệt là IMO, IMO shortlists, etc. nào có thể code được? Đưa các tiêu chí cho việc code-able.

Answer. Trước hết các bài toán Olympic có thể code được gồm các bài về mảng số (arrays of real numbers, or finite sequence of real numbers), dãy số (infinite sequences of of real numbers), hình học tính toán (computational geometry), hình học tổ hợp (combinatorial geometry), số học/lý thuyết số (number theory). Đối với từng bài, mới biết có thể ra bài Olympic Tin tương ứng hay không, & còn tùy thuộc vào trình độ của người chế đề.

Các bài hình học thiên về thuần chứng minh thường khó ra đề Olympic Tin tương ứng 1 cách trực tiếp được, trừ khi là AlphaGeometry. Prove me wrong.

¹Watch, e.g., IMDb/Shi Guang Dai Li Ren ★ Link Click (2021–).

Phần I

Introduction to Programming – Nhập Môn Lập Trình

Resources - Tài nguyên.

1. [Thư+25]. TRẦN ĐAN THƯ, NGUYỄN THANH PHƯƠNG, ĐINH BÁ TIẾN, TRẦN MINH TRIẾT. Nhập Môn Lập Trình.

Phần II

Programming Techniques – Kỹ Thuật Lập Trình

Pointer Variable & Dynamic Memory Technique – Biến Con Trỏ & Kỹ Thuật Bộ Nhớ Động

Linked Lists - Danh Sách Liên Kết

Abstract Data Structure Installation – Cài Đặt Cấu Trúc Dữ Liệu Trừu Tượng

Strings & Algorithms – Chuỗi Ký Tự & Thuật Toán

Search Algorithms & Applications – Thuật Toán Tìm Kiếm & Ứng Dụng

Sort Algorithms & Applications – Thuật Toán Sắp Xếp & Ứng Dụng

()	or	1T. 6	n	T.S

6.1	Basic Terminologies – Thuật Ngữ Cơ Bản
6.2	Combinatorial Properties of Permutations – Tính Chất Tổ Hợp của Hoán Vị

6.1 Basic Terminologies – Thuật Ngữ Cơ Bản

Resources - Tài nguyên.

1. [Knu98]. Donald Erwin Knuth. The Art of Computer Programming. Volume 3: Sorting & Searching. Chap. 5: Sorting.

Definition 1 (Records, file, key, [Knu98], p. 4). We are given $n \in \mathbb{N}^*$ items $\{r_i\}_{i=1}^n$ to be sorted; we shall call them records, \mathcal{E} the entire collection of n records will be called a file. Each record r_i has a key, k_i , which governs sorting process, $\forall i \in [n]$. Additional data, besides the key, is usually also present; this extra "satellite information" has no effect no sorting except that it must be carried along as part of each record.

Định nghĩa 1 (Hồ sơ, tập tin, chìa khóa). Chúng ta được cung cấp $n \in \mathbb{N}^*$ mục $\{r_i\}_{i=1}^n$ để sắp xếp; chúng ta sẽ gọi chúng là records, & toàn bộ tập hợp n bản ghi sẽ được gọi là file. Mỗi bản ghi r_i có một key, k_i , điều khiển quá trình sắp xếp, $\forall i \in [n]$. Dữ liệu bổ sung, bên cạnh khóa, thường cũng có mặt; "thông tin vệ tinh" bổ sung này không có tác dụng gì đối với việc sắp xếp ngoại trừ việc nó phải được mang theo như một phần của mỗi bản ghi.

Definition 2 (Ordering relation, [Knu98], p. 4). An ordering relation "<" is specified on the keys so that the following conditions are satisfied for any key values a, b, c:

- (i) Law of trichotomy: Exactly 1 of the possibilities a < b, a = b, b < a is true.
- (ii) Law of transitivity: If $a < b \ \& \ b < c$, then a < c.

Properties (i) & (ii) characterize the mathematical concept of linear ordering, also called total ordering.

Định nghĩa 2 (Quan hệ thứ tự). Một quan hệ sắp xếp "<" được chỉ định trên các khóa sao cho các điều kiện sau được thỏa mãn đối với bất kỳ giá trị khóa nào a,b,c:

- (i) Luật tam phân: Có đúng 1 trong các khả năng a < b, a = b, b < a là đúng.
- (ii) Luât bắc cầu: $N\acute{e}u \ a < b \ \& \ b < c$, thì a < c.

Các thuộc tính (i) & (ii) mô tả khái niệm toán học về sắp xếp tuyến tính, còn được gọi là sắp xếp toàn phần.

Any relationship "<" satisfying these 2 properties can be sorted by most of common methods, although some sorting techniques are designed to work only with numerical or alphabetic keys that have the usual ordering.

– Bất kỳ mối quan hệ "<" nào thỏa mãn 2 tính chất này đều có thể được sắp xếp bằng hầu hết các phương pháp phổ biến, mặc dù một số kỹ thuật sắp xếp được thiết kế để chỉ hoạt đông với các khóa số hoặc chữ cái có thứ tư thông thường.

The goal of sorting is to determine a permutation $p(1)p(2) \dots p(n)$ of the indices [n] that will put the keys into nondecreasing order $k_{p(1)} \leq k_{p(2)} \leq \cdots k_{p(n)}$.

Definition 3 (Stable sorting). The sorting is called stable if we make the further requirement that records with equal keys should remain their original relative order. I.e., stable sorting has the additional property that

$$p(i) < p(j) \text{ whenever } k_{p(i)} = k_{p(j)} \land i < j.$$

$$(6.1)$$

Định nghĩa 3 (Sắp xếp ổn định, [Knu98], p. 4). Sắp xếp được gọi là ổn định nếu chúng ta đưa ra yêu cầu tiếp theo là các bản ghi có khóa bằng nhau phải giữ nguyên thứ tự tương đối ban đầu của chúng. Tức là, sắp xếp ổn định có thêm thuộc tính là

$$p(i) < p(j)$$
 bất cứ khi nào $k_{p(i)} = k_{p(j)} \wedge i < j.$ (6.2)

In some cases we will want the records to be physically rearranged in storage so that their keys are in order. But in other cases it will be sufficient merely to have an auxiliary table that specifies the permutation in some way, so that the records can be accessed in order of their keys.

– Trong một số trường hợp, chúng ta sẽ muốn các bản ghi được sắp xếp lại về mặt vật lý trong kho lưu trữ để các khóa của chúng được sắp xếp theo thứ tự. Nhưng trong những trường hợp khác, chỉ cần có một bảng phụ trợ chỉ định hoán vị theo một cách nào đó là đủ, để có thể truy cập các bản ghi theo thứ tự các khóa của chúng.

A few of the sorting methods assume the existence of either or both of the values " $\pm \infty$ ", which are defined to be greater than or less than all keys, resp: $-\infty < k_i < \infty$, $\forall i \in [n]$. Such extreme values are occasionally used as artificial keys or as sentinel indicators. The case of equality is excluded in $-\infty < k_i < \infty$, $\forall i \in [n]$; if equality can occur, the algorithms can be modified so that they will still work, but usually at the expense of some elegance & efficiency.

-1 số phương pháp sắp xếp giả định sự tồn tại của một hoặc cả hai giá trị " $\pm\infty$ ", được định nghĩa là lớn hơn hoặc nhỏ hơn tất cả các khóa, tương ứng: $-\infty < k_i < \infty$, $\forall i \in [n]$. Các giá trị cực trị như vậy đôi khi được sử dụng làm khóa nhân tạo hoặc làm chỉ báo canh gác. Trường hợp bằng nhau bị loại trừ trong $-\infty < k_i < \infty$, $\forall i \in [n]$; nếu có thể xảy ra bằng nhau, các thuật toán có thể được sửa đổi để chúng vẫn hoạt động, nhưng thường phải trả giá bằng một số tính thanh lịch & hiệu quả.

Sorting can be classified generally into *internal sorting*, in which the records are kept entirely in the computer's high-speed random-access memory, & *external sorting*, when more records are present than can be held comfortably in memory at once. Internal sorting allows more flexibility in the structuring & accessing of the data, while external sorting shows us how to live with rather stringent accessing constraints.

Sắp xếp có thể được phân loại chung thành sắp xếp nội bộ, trong đó các bản ghi được lưu giữ hoàn toàn trong bộ nhớ truy cập ngẫu nhiên tốc độ cao của máy tính, & sắp xếp bên ngoài, khi có nhiều bản ghi hơn mức có thể lưu trữ thoải mái trong bộ nhớ cùng một lúc. Sắp xếp nội bộ cho phép linh hoạt hơn trong việc cấu trúc & truy cập dữ liệu, trong khi sắp xếp bên ngoài cho chúng ta biết cách sống với các ràng buộc truy cập khá nghiêm ngặt.

The time required to sort n records, using a decent general-purpose sorting algorithm, is roughly proportional to $n \log n$; we make about $\log n$ "passes" over the data. This is the minimum possible time, if the records are in random order & if sorting is done by pairwise comparisons of keys. Thus if we double the number of records, it will take a little more than twice as long to sort them, all other things being equal. (Actually, as n approaches infinity, a better indication of the time needed to sort is $n(\log n)^2$, if the keys are distinct, since the size of the keys must grow at least as fast as $\log n$; but for practical purposes, n never really approaches infinity.)

– Thời gian cần thiết để sắp xếp n bản ghi, sử dụng một thuật toán sắp xếp mục đích chung tốt, gần như tỷ lệ thuận với $n \log n$; chúng ta thực hiện khoảng $\log n$ "lượt" trên dữ liệu. Đây là thời gian tối thiểu có thể, nếu các bản ghi được sắp xếp theo thứ tự ngẫu nhiên & nếu việc sắp xếp được thực hiện bằng cách so sánh từng cặp khóa. Do đó, nếu chúng ta tăng gấp đôi số bản ghi, sẽ mất nhiều thời gian hơn gấp đôi một chút để sắp xếp chúng, nếu mọi thứ khác đều như nhau. (Trên thực tế, khi n tiến tới vô cực, một chỉ báo tốt hơn về thời gian cần thiết để sắp xếp là $n(\log n)^2$, nếu các khóa là khác nhau, vì kích thước của các khóa phải tăng ít nhất là nhanh bằng $\log n$; nhưng vì mục đích thực tế, n không bao giờ thực sự tiến tới vô cực.)

On other hand, if the keys are known to be randomly distributed w.r.t. some continuous numerical distribution, we will see that sorting can be accomplished in O(n) steps on the average.

– Mặt khác, nếu các khóa được biết là phân phối ngẫu nhiên theo một phân phối số liên tục nào đó, chúng ta sẽ thấy rằng việc sắp xếp có thể được thực hiện trung bình trong O(n) bước.

Problem 1 ([Knu98], 1., p. 5, M20). Prove, from the laws of trichotomy & transitivity, that the permutation $p(1)p(2) \dots p(n)$ is uniquely determined when the sorting is assumed to be stable.

– Chứng minh, từ các định luật tam phân \mathcal{E} tính bắc cầu, rằng hoán vị $p(1)p(2)\dots p(n)$ được xác định duy nhất khi phép sắp xếp được cho là ổn định.

Problem 2 ([Knu98], 2., p. 5, 21).

Problem 3 ([Knu98], 3., p. 5, M25). Let < be a relation on k_1, \ldots, k_n that satisfies the law of trichotomy but not the transitive law. Prove that even without the transitive law it is possible to sort the records in a stable manner, meeting conditions $k_{p(1)} \le k_{p(2)} \le \cdots k_{p(n)}$ & (6.1); in fact, there are at least 3 arrangements that satisfy the conditions.

– Cho < là một quan hệ trên k_1, \ldots, k_n thỏa mãn luật tam phân nhưng không thỏa mãn luật bắc cầu. Chứng minh rằng ngay cả khi không có luật bắc cầu, vẫn có thể sắp xếp các bản ghi theo cách ổn định, thỏa mãn các điều kiện $k_{p(1)} \leq k_{p(2)} \leq \cdots k_{p(n)}$ \mathcal{E} (6.2); trên thực tế, có ít nhất 3 cách sắp xếp thỏa mãn các điều kiện.

Problem 4 ([Knu98], 4., p. 5, 21).

Problem 5 ([Knu98], ., p. 6,).

Bài toán 1 (Extended sorting problem – Bài toán sắp xếp mở rộng). Cho $n \in \mathbb{N}^*$, 1 tập tin $f = \{r_i\}_{i=1}^n$, mỗi hồ sơ r_i có 1 danh sách $n_i \in \mathbb{N}$ chìa khóa (keys or attributions) $\{k_{ij}\}_{j=1}^{n_i}$, $\forall i \in [n]$. (a) Tìm cách sắp xếp tập tin này theo 1 hàm so sánh hay hàm đánh giá tiêu chí $f(n_i, \{k_{ij}\}_{j=1}^{n_i})$ nào đó. (b) Viết thuật toán & chương trình C/C++, Pascal, Python để cài đặt thuật giải.

6.2 Combinatorial Properties of Permutations - Tính Chất Tổ Hợp của Hoán Vị

Recursion Programming – Lập Trình Đệ Quy

Contents

7.1	Basic Recursion Programming – Lập Trình Đệ Quy Cơ Bản	18
7.2	Problem: Recursion Programming – Bài Tập: Lập Trình Đệ Quy	19

7.1 Basic Recursion Programming – Lập Trình Đệ Quy Cơ Bản

Resources - Tài nguyên.

- 1. Wikipedia/recursion (computer science).
- 2. NGUYỄN QUẢN BÁ HỒNG. Lecture Note: Information Technology Fundamentals Bài Giảng: Nền Tảng Công Nghệ Thông Tin. Sect. Recursion Đệ Quy.

PDF: URL: https://github.com/NQBH/advanced_STEM_beyond/blob/main/IT_fundamentals/lecture/NQBH_IT_fundamentals_lecture.pdf.

TrX: URL: https://github.com/NQBH/advanced_STEM_beyond/blob/main/IT_fundamentals/lecture/NQBH_IT_fundamentals_

lecture.tex.

3. [Thư+21]. TRẦN ĐAN THƯ, NGUYỄN THANH PHƯƠNG, ĐINH BÁ TIẾN, TRẦN MINH TRIẾT, ĐẶNG BÌNH PHƯƠNG. $K\tilde{y}$ Thuật Lập Trình. Chap. 10: Lập Trình Đệ Quy.

"Kỹ thuật lập trình đệ quy (recursion) có ý nghĩa rất lớn trong khoa học máy tính. Có rất nhiều thuật toán đòi hỏi cài đặt rất phức tạp & cầu kỳ nếu không dùng kỹ thuật đệ quy. Đối với 1 số thuật toán do bản chất tự nhiên của chúng đã mang tính đệ quy, việc cài đặt đệ quy là gọn & đẹp nhất. Khuyết điểm lớn nhất của kỹ thuật đệ quy là lời giải đệ quy cho 1 số bài toán có thể bị chạy rất chậm do sự bùng nổ tổ hợp khi kích thước bài toán gia tăng." – [Thư+21, Chap. 10: Lập Trình Đệ Quy, p. 397]

Định nghĩa 4 (Khái niệm định nghĩa được đệ quy, [Thư+21], p. 397). Trong Toán học & Khoa học Máy tính, 1 khái niệm A được định nghĩa đệ quy nếu khi định nghĩa A ta có thể sử dụng ngay chính khái niệm A.

Trong lập trình, 1 chương trình con (hàm, thủ tục) được gọi là có tính đệ quy nếu trong thân của chương trình con đó có lệnh gọi lại chính nó 1 cách tường minh (explicit, trực tiếp) hay tiềm ẩn (implicit, gián tiếp)

1 chương trình con đệ quy căn bản gồm 2 phần:

- 1. Phần cơ sở (base cases): Chứa các tác động của hàm hoặc thủ tục với 1 số giá trị cụ thể ban đầu của tham số.
- 2. Phần đệ quy (recurrence part): Định nghĩa tác động cần được thực hiện cho giá trị hiện thời của các tham số bằng các tác động đã được định nghĩa trước đây với kích thước tham số nhỏ hơn.

Ví dụ 1. Định nghĩa số tự nhiên: (i) 0 là 1 số tự nhiên. (ii) n là 1 số tự nhiên nếu n-1 là 1 số tự nhiên. Hay viết theo ký hiệu toán học: (i) $0 \in \mathbb{N}$. (ii) $n-1 \in \mathbb{N} \Rightarrow n \in \mathbb{N}$.

 \mathbf{C}

```
#include <stdio.h>
   int is_natural(int n) {
        if (n == 0) return 1;
        else return is_natural(n - 1);
   }
   int main() {
        int n;
        scanf("%d", &n);
10
        printf("%d is_natural: %d", n, is_natural(n));
11
        return 0;
12
   }
^{13}
C++:
   #include <iostream>
   using namespace std;
   bool is_natural(int n) {
        if (n == 0) return true;
        else return is_natural(n - 1);
   }
   int main() {
        int n;
10
        cin >> n;
11
        cout << n << " is a natural number: " << is_natural(n) << '\n';</pre>
12
   }
Python:
   def is_natural(n):
        if n == 0: return 1
        else: return is_natural(n - 1)
   n = int(input())
   print(is_natural(n))
```

Bài toán 2 (Factorial - Giai thừa). Viết chương trình C/C++, Python tính n! bằng đệ quy.

7.2 Problem: Recursion Programming - Bài Tập: Lập Trình Đệ Quy

Dynamic Programming Techniques – Kỹ Thuật Quy Hoạch Động

Contents

8.1	Introd	uction to Dynamic Programming – Nhập Môn Quy Hoạch Động	20
	8.1.1	Speeding up Fibonacci with dynamic programming (memoization)	21
	8.1.2	Bottom-up Dynamic Programming	22
	8.1.3	Classic dynamic programming problems – Các bài toán quy hoạch động cổ điển	23
8.2	Knaps	ack Problem – Bài Toán Xếp Balo 0-1	24
	8.2.1	0-1 knapsack problem – Bài toán xếp balo 0-1	24
	8.2.2	Complete knapsack problem – Bài toán xếp balo hoàn chỉnh	25
	8.2.3	Multiple knapsack problem – Bài toán xếp balo bội	26
	8.2.4	Mixed knapsack problem – Bài toán xếp balo hỗn hợp	27
	8.2.5	Extensions & generalizations of knapsack problem – Mở rộng & tổng quát hóa của bài toán xếp balo .	27
8.3	Divide	e & Conquer Dynamic Programming – Chia & Trị Quy Hoạch Động	27
	8.3.1	Preconditions – Điều kiện tiên quyết	27
	8.3.2	Generic implementation – Thực thi chung	28
8.4	Knuth	's Optimization – Tối Ưu của KNUTH	29
	8.4.1	Conditions	29
	8.4.2	Algorithm of Knuth's optimization – Thuật toán của tối ưu của Knuth	29

8.1 Introduction to Dynamic Programming – Nhập Môn Quy Hoạch Động

Resources - Tài nguyên.

1. Algorithms for Competitive Programming/introduction to dynamic programming.

The essence of dynamic programming is to avoid repeated calculation. Often, dynamic programming problems are naturally solvable by recursion. In such cases, it's easiest to write the recursive solution, then save repeated states in a lookup table. This process is known as top-down dynamic programming with memoization. That's read "memoization" (like we are writing in a memo pad) not memorization.

– Bắn chất của quy hoạch động là tránh tính toán lặp lại. Thông thường, các vấn đề quy hoạch động có thể giải quyết được bằng đệ quy. Trong những trường hợp như vậy, cách dễ nhất là viết giải pháp đệ quy, sau đó lưu các trạng thái lặp lại trong bảng tra cứu. Quá trình này được gọi là quy hoạch động từ trên xuống với ghi nhớ. Đọc là "ghi nhớ" (giống như chúng ta đang viết trong 1 tâp ghi nhớ) chứ không phải ghi nhớ.

1 of the most basic, classic examples of this process is the Fibonacci sequence. Its recursive formulation is

$$\begin{cases} f(0) = 0, \ f(1) = 1, \\ f(n) = f(n-1) + f(n-2) \end{cases}$$

In C++, this would be expressed as:

```
int f(int n) {
if (n == 0) return 0;
if (n == 1) return 1;
return f(n - 1) + f(n - 2);
}
```

The runtime of this recursive function is exponential – approximately $O(2^n)$ since 1 function call f(n) results in 2 similarly sized function calls f(n-1), f(n-2).

– Thời gian chạy của hàm đệ quy này là hàm mũ – xấp xỉ $O(2^n)$ vì 1 lệnh gọi hàm f(n) dẫn đến 2 lệnh gọi hàm có kích thước tương tự f(n-1), f(n-2).

Remark 2. The subroutine for Fibonacci sequence can be extended easily for the sequence $\{a_n\}_{n=0}^{\infty}$ defined by

$$\begin{cases} a_0 = \alpha, \ a_1 = \beta, \\ a_n = aa_{n-1} + ba_{n-2}, \end{cases} where \ \alpha, \beta \in \mathbb{C}, \ a, b \in \mathbb{R}.$$

The above subroutine can be adapted as

```
int a(int n) {
    if (n == 0) return <\alpha>;
    if (n == 1) return <\beta>;
    return a * f(n - 1) + b * f(n - 2);
}
```

8.1.1 Speeding up Fibonacci with dynamic programming (memoization)

Our recursive function currently solves Fibonacci in exponential time, i.e., we can only handle small input values before the problem becomes too difficult, e.g., f(29) results in $> 10^9$ function calls.

– Hàm đệ quy của chúng ta hiện giải Fibonacci theo thời gian mũ, i.e., chúng ta chỉ có thể xử lý các giá trị đầu vào nhỏ trước khi vấn đề trở nên quá khó, e.g., f(29) dẫn đến $> 10^9$ lệnh gọi hàm.

To increase the speed, we recognize that the number of subproblem is only O(n), i.e., in order to calculate f(n) we only need to know $f(n-1), f(n-2), \ldots, f(0)$. Therefore, instead of recalculating these subproblems, we solve them once & then save the result in a lookup table. Subsequent calls will use this lookup table & immediately return a result, thus eliminating exponential work.

- Để tăng tốc độ, chúng ta nhận ra rằng số lượng bài toán con chỉ là O(n), tức là để tính f(n) chúng ta chỉ cần biết $f(n-1), f(n-2), \ldots, f(0)$. Do đó, thay vì tính toán lại các bài toán con này, chúng ta giải chúng 1 lần & sau đó lưu kết quả vào bảng tra cứu. Các lệnh gọi tiếp theo sẽ sử dụng bảng tra cứu này & trả về kết quả ngay lập tức, do đó loại bỏ công việc theo cấp số nhân.

Each recursive call will check against a lookup table to see if the value has been calculated. This is done in O(1) time. If we have previously calculated it, return the result, otherwise, we calculate the function normally. The overall runtime is O(n). This is an enormous improvement over the previous exponential time algorithm.

– Mỗi lệnh gọi đệ quy sẽ kiểm tra bảng tra cứu để xem giá trị đã được tính toán hay chưa. Việc này được thực hiện trong thời gian O(1). Nếu chúng ta đã tính toán trước đó, hãy trả về kết quả, nếu không, chúng ta sẽ tính toán hàm bình thường. Thời gian chạy tổng thể là O(n). Đây là 1 cải tiến rất lớn so với thuật toán thời gian mũ trước đó.

```
const int MAXN = 100;
bool found[MAXN];
int memo[MAXN];

int f(int n) {
   if (found[n]) return memo[n];
   if (n == 0) return 0;
   if (n == 1) return 1;
   found[n] = true;
   return memo[n] = f(n - 1) + f(n - 2);
}
```

With our new memoized recursive function, f(29), which used to result in $> 10^9$ calls, now results in only 57 calls, nearly 20000 times fewer function calls. Ironically, we are now limited by our data type. f(46) is the last Fibonacci number that can fit into a signed 32-bit integer.

– Với hàm đệ quy ghi nhớ mới của chúng tôi, f(29), trước đây tạo ra $> 10^9$ lệnh gọi, giờ chỉ tạo ra 57 lệnh gọi, ít hơn gần 20000 lần lệnh gọi hàm. Trở trêu thay, giờ chúng ta bị giới hạn bởi kiểu dữ liệu của mình. f(46) là số Fibonacci cuối cùng có thể vừa với số nguyên 32 bit có dấu.

Typically, we try to save states in arrays, if possible, since the lookup time is O(1) with minimal overhead. However, more generically, we can save states any way we like. Other examples include binary search trees (map in C++) or hash tables (unordered_map in C++), e.g.:

– Thông thường, chúng ta cố gắng lưu trạng thái trong mảng, nếu có thể, vì thời gian tra cứu là O(1) với chi phí tối thiểu. Tuy nhiên, nói chung hơn, chúng ta có thể lưu trạng thái theo bất kỳ cách nào chúng ta thích. Các ví dụ khác bao gồm cây tìm kiếm nhị phân (map trong C++) hoặc bảng băm (unordered_map trong C++), e.g.:

```
unordered_map<int, int> memo;
   int f(int n) {
2
       if (memo.count(n)) return memo[n];
       if (n == 0) return 0;
       if (n == 1) return 1;
       return memo[n] = f(n-1) + f(n-2);
  }
Or analogously: - Hoặc tương tư như sau:
  map<int, int> memo;
   int f(int n) {
       if (memo.count(n)) return memo[n];
       if (n == 0) return 0;
       if (n == 1) return 1;
       return memo[n] = f(n-1) + f(n-2);
   }
```

Both of these will almost always be slower than the array-based version for a generic memoized recursive function. These alternative ways of saving state are primarily useful when saving vectors or strings as part of the state space.

- Cả 2 cách này hầu như luôn chậm hơn phiên bản dựa trên mảng cho hàm đệ quy ghi nhớ chung. Những cách thay thế này để lưu trạng thái chủ yếu hữu ích khi lưu vectơ hoặc chuỗi như 1 phần của không gian trạng thái.

The layman's way of analyzing the runtime of a memoized recursive function is work per subproblem * number of subproblems.

- Cách phân tích thời gian chạy của 1 hàm đệ quy ghi nhớ thông thường là công trên mỗi bài toán con * số bài toán con.

Using a binary search tree (map in C++) to save states will technically result in $O(n \log n)$ as each lookup & insertion will take $O(\log n)$ work & with O(n) unique subproblem we have $O(n \log n)$ time.

– Sử dụng cây tìm kiếm nhị phân (map trong C++) để lưu trạng thái về mặt kỹ thuật sẽ dẫn đến $O(n \log n)$ vì mỗi lần tra cứu & chèn sẽ mất $O(\log n)$ công việc & với O(n) bài toán con duy nhất, chúng ta có $O(n \log n)$ thời gian.

This approached is called *top-down*, as we can call the function with a query value & the calculation starts going from the top (queried value) down to the bottom (base cases of the recursion), & makes shortcuts via memoization on the way.

Cách tiếp cận này được gọi là từ trên xuống, vì chúng ta có thể gọi hàm với giá trị truy vấn & phép tính bắt đầu từ trên cùng (giá trị được truy vấn) xuống dưới cùng (trường hợp cơ sở của đệ quy), & thực hiện các phím tắt thông qua ghi nhớ trong quá trình thực hiện.

8.1.2 Bottom-up Dynamic Programming

Until now we have only seen top-down dynamic programming with memoization. However, we can also solve problems with bottom-up dynamic programming. Bottom-up is exactly the opposite of top-down, you start at the bottom (base cases of the recursion), & extend it to more & more values.

- Cho đến nay chúng ta chỉ thấy quy hoạch động từ trên xuống với ghi nhớ. Tuy nhiên, chúng ta cũng có thể giải quyết vấn đề bằng quy hoạch động từ dưới lên. Từ dưới lên hoàn toàn ngược lại với từ trên xuống, bạn bắt đầu từ dưới lên (trường hợp cơ bản của đệ quy), & mở rộng nó thành nhiều & giá trị hơn.

To create a bottom-up approach for Fibonacci numbers, we initialize the base cases in an array. Then, we simply use the recursive definition on array:

```
const int MAXN = 100;
int fib[MAXN];

int f(int n) {
```

```
fib[0] = 0;
    fib[1] = 1;
    for (int i = 2; i \le n; ++i) fib[i] = fib[i - 1] + fib[i - 2];
    return fib[n]:
}
```

This is a bit silly for 2 reasons: 1stly, we do repeated work if we call the function more than once. Secondly, we only need to use the 2 previous values to calculate the current element. Therefore, we can reduce our memory from O(n) to O(1).

 Diều này hơi ngớ ngắn vì 2 lý do: 1. Chúng ta thực hiện công việc lặp lại nếu chúng ta gọi hàm nhiều hơn 1 lần. Thứ hai, chúng ta chỉ cần sử dung 2 giá tri trước đó để tính toán phần tử hiện tai. Do đó, chúng ta có thể giảm bô nhớ của mình từ O(n)xuống O(1).

Am example of a bottom-up dynamic programming solution for Fibonacci which uses O(1) memory might be:

```
const int MAX_SAVE = 3;
int fib[MAX_SAVE];
int f(int n) {
    fib[0] = 0;
    fib[1] = 1;
    for (int i = 2; i \le n; ++i)
        fib[i % MAX_SAVE] = fib[(i - 1) % MAX_SAVE] + fib[(i - 2) % MAX_SAVE];
    return fib[n % MAX_SAVE];
```

We have changed the constant from MAXN to MAX_SAVE. This is because the total number of elements we need to access is only 3. It no longer scales with the size of input & is, by definition, O(1) memory. Additionally, we use a common trick (using the modulo operator) only maintaining the values we need. That's the basic of dynamic programming: Don't repeat the work you have done before.

– Chúng ta đã thay đổi hằng số từ MAXN thành MAX_SAVE. Điều này là do tổng số phần tử chúng ta cần truy cập chỉ là 3. Nó không còn tỷ lệ với kích thước đầu vào nữa & theo định nghĩa là bộ nhớ O(1). Ngoài ra, chúng tôi sử dụng 1 thủ thuật phổ biến (sử dụng toán tử modulo) chỉ duy trì các giá trị chúng ta cần. Đó là cơ bản của quy hoạch động: Không lặp lại công việc bạn đã làm trước đó.

Classic dynamic programming problems - Các bài toán quy hoạch động cổ điển 8.1.3

Problem 6 (0-1 knapsack – xếp balo 0-1). Given $w, n, \ \mathcal{E} \ n \in \mathbb{N}^{\star}$ items with weights $w_i \in \mathbb{N}^{\star}$ \mathcal{E} values $v_i \in \mathbb{N}^{\star}$, $\forall i \in [n]$, what

is the maximum $\sum_{i=1}^k v_i$ for each subset of items of size $k \in [N]$ while ensuring $\sum_{i=1}^k w_i \le w$?

- Với w, n, & $n \in \mathbb{N}^*$ mục có trọng số $w_i \in \mathbb{N}^*$ & giá trị $v_i \in \mathbb{N}^*$, $\forall i \in [n]$, $\sum_{i=1}^k v_i$ tối đa là bao nhiều cho mỗi tập con các mục có kích thước $k \in [N]$ trong khi đảm bảo $\sum_{i=1}^k w_i \le w$?

Problem 7. Given $n \in \mathbb{N}^*$ integers & $t \in \mathbb{N}^*$, determine whether there exists a subset of the given set whose elements sum up to the t.

- Cho $n \in \mathbb{N}^\star$ số nguyên ℰ $t \in \mathbb{N}^\star$, hãy xác định xem có tồn tại tập hợp con nào của tập hợp đã cho có tổng các phần tử bằng t hay không.

Problem 8 (Longest increasing subsequence (LIS) – Dãy con tăng dài nhất). Given an array containing $n \in \mathbb{N}^*$ integers, determine the LIS in the array, i.e., a subsequence where every element is larger than the previous one.

- Cho 1 mảng chứa $n \in \mathbb{N}^*$ số nguyên, hãy xác định LIS trong mảng, tức là 1 dãy con trong đó mọi phần tử đều lớn hơn phần tử trước đó.

Problem 9 (Counting paths in a 2D array – Dém đường dẫn trong mảng 2 chiều). Given $m, n \in \mathbb{N}^*$, count all possible distinct paths from (1,1) to (m,n), where each step is either from (i,j) to (i+1,j) or (i,j+1).

- Cho $m,n \in \mathbb{N}^*$, hãy đếm tất cả các đường đi riêng biệt có thể có từ (1,1) đến (m,n), trong đó mỗi bước là từ (i,j) đến (i+1, j) hoăc (i, j+1).

Problem 10 (Longest common subsequence – Dãy con chung dài nhất). Given strings s, t. Find the length of the longest string that is a subsequence of both $s \, \mathcal{E} \, t$.

- Cho chuỗi s,t. Tìm đô dài của chuỗi dài nhất là chuỗi con của cả s & t.

Problem 11 (Longest path in a directed acyclic graph (DAG) – Đường đi dài nhất trong đồ thị có hướng không có chu trình). Finding the longest path in Directed Acyclic Graph (DAG).

- Tìm đường đi dài nhất trong Đồ thị có hướng phi chu trình (DAG).

Problem 12 (Longest palindromic subsequence – Dãy con palindromic dài nhất). Finding the Longest Palindromic Subsequence (LPS) of a given string.

Tìm chuỗi con Palindromic dài nhất (LPS) của 1 chuỗi cho trước.

Problem 13 (Rod cutting – Cắt thanh). Given a rod of length $n \in \mathbb{N}^*$ units, given an integer array cuts where cuts[i] denotes a position you should perform a cut at. The cost of 1 cut is the length of the rod to be cut. What is the minimum total cost of the cuts.

- Cho 1 thanh có độ dài n ∈ N* đơn vị, cho 1 mảng số nguyên cắt trong đó cuts[i] biểu thị vị trí bạn nên thực hiện 1 lần cắt. Chi phí của 1 lần cắt là độ dài của thanh cần cắt. Tổng chi phí tối thiểu của các lần cắt là bao nhiêu.

Problem 14 (Edit distance – khoảng cách chỉnh sửa). The edit distance between 2 strings is the minimum number of operations required to transform 1 string into the other. Operations are: add, remove, replace/substitution.

- Khoảng cách chỉnh sửa giữa 2 chuỗi là số thao tác tối thiểu cần thiết để chuyển đổi 1 chuỗi thành chuỗi kia. Các thao tác là: thêm, xóa, thay thế.

8.2 Knapsack Problem – Bài Toán Xếp Balo 0-1

Resources - Tài nguyên.

1. Algorithms for Competitive Programming/knapsack problem.

8.2.1 0-1 knapsack problem – Bài toán xếp balo 0-1

Problem 15 (USACO07 Dec, charm bracelet – vòng tay quyến rũ). There are $n \in \mathbb{N}^*$ distinct items & a knapsack of capacity $w \in [0, \infty)$. The ith item has 2 attributes, weights $w_i \in \mathbb{N}$ & value $v_i \in [0, \infty)$, $\forall i \in [n]$. You have to select a subset of items to put into the knapsack s.t. the total weight does not exceed the capacity w & the total value is maximized.

- Có $n \in \mathbb{N}^*$ vật phẩm riêng biệt \mathcal{E} 1 balo có sức chứa $w \in [0, \infty)$. Vật phẩm thứ i có 2 thuộc tính, trọng số $w_i \in \mathbb{N}$ \mathcal{E} giá trị $v_i \in [0, \infty)$, $\forall i \in [n]$. Bạn phải chọn 1 tập hợp con các vật phẩm để cho vào balo với điều kiện tổng trọng lượng không vượt quá sức chứa w \mathcal{E} tổng giá trị được tối đa hóa.

In this problem, each object has only 2 possible states: taken or not taken, corresponding to binary 0 & 1. Thus, this type of problem is called "0-1 knapsack problem".

Trong bài toán này, mỗi vật chỉ có 2 trạng thái có thể xảy ra: được lấy hoặc không được lấy, tương ứng với số nhị phân 0
 Loo đó, loại bài toán này được gọi là "bài toán balo 0-1".

Explanation of 0-1 knapsack. The input to the problem is the following: the weight of ith item w_i , the value of ith item v_i , & the total capacity of the knapsack w. Let $f_{i,j}$ be the dynamic programming state holding the maximum total value the knapsack can carry with capacity j, when only the 1st i items are considered, $\forall i, j \in \mathbb{N}$.

– Đầu vào của bài toán như sau: trọng lượng của vật phẩm thứ i w_i , giá trị của vật phẩm thứ i v_i , & tổng sức chứa của balo w. Giả sử $f_{i,j}$ là trạng thái quy hoạch động giữ giá trị tổng lớn nhất mà balo có thể mang theo với sức chứa j, khi chỉ xét đến i vật phẩm đầu tiên, $\forall i, j \in \mathbb{N}$.

Assuming that all states of the 1st i-1 items have been processed, what are the options for the ith item?

- When it is not put into the knapsack, the remaining capacity remains unchanged & total value does not change. Therefore, the maximum value in this case is $f_{i-1,j}$.
- When it is put into the knapsack, the remaining capacity decreases by w_i & the total value increased by v_i , so the maximum value in this case is $f_{i-1,j-w_i} + v_i$.
- Giả sử rằng tất cả các trạng thái của i-1 mục đầu tiên đã được xử lý, thì các tùy chọn cho vật thứ i là gì?
- Khi không cho vào balo, sức chứa còn lại vẫn không đổi & tổng giá trị không thay đổi. Do đó, giá trị tối đa trong trường hợp này là $f_{i-1,j}$.
- Khi cho vào balo, sức chứa còn lại giảm w_i & tổng giá trị tăng v_i , do đó giá trị tối đa trong trường hợp này là $f_{i-1,j-w_i} + v_i$.

From this we can derive the dp transition equation – Từ đó ta có thể suy ra phương trình chuyển đổi dp:

$$f_{i,j} = \max\{f_{i-1,j}, f_{i-1,j-w_i}\}, \ \forall i \in [n], \ \forall j \in \left\{\sum_{i \in I} w_i; I \subset [n]\right\} = \left\{\sum_{i=1}^n x_i w_i; x_i \in \{0,1\}, \ \forall i \in [n]\right\}.$$

Most of the transitions for knapsack problems are derived in a similar way.

- Hầu hết các chuyển đổi cho bài toán balo đều được suy ra theo cách tương tự.

Problem 16. Prove that if f_i is only dependent on f_{i-1} , we can remove the 1st dimension. We obtain the transition rule $f_j \leftarrow \max\{f_j, f_{j-w_i} + v_i\}$ that should be executed in the decreasing order of j so that f_{j-w_i} implicitly corresponds to $f_{i-1,j-w_i}$ \mathscr{E} not $f_{i,j-w_i}$).

- Chứng minh rằng nếu f_i chỉ phụ thuộc vào f_{i-1} , ta có thể loại bỏ chiều thứ nhất. Ta thu được quy tắc chuyển tiếp $f_j \leftarrow \max\{f_j, f_{j-w_i} + v_i\}$ cần được thực hiện theo thứ tự giảm dần của j sao cho f_{j-w_i} ngầm tương ứng với $f_{i-1,j-w_i}$ & không phải $f_{i,j-w_i}$).

Implementation. The algorithm described can be implemented in O(nw) as

```
for (int i = 1; i <= n; ++i)
for (int j = w; j >= w[i]; --j)
f[j] = max(f[j], f[j - w[i]] + v[i]);
```

Note the order of execution. It should be strictly followed to ensure the following invariant: right before the pair (i, j) is processed, f_k corresponds to $f_{i,k}$ for k > j, but to $f_{i-1,k}$ for k < j. This ensures that f_{j-w_i} is taken from the (i-1)th step, rather than from the ith one.

– Lưu ý thứ tự thực hiện. Cần tuân thủ nghiêm ngặt để đảm bảo bất biến sau: ngay trước khi cặp (i,j) được xử lý, f_k tương ứng với $f_{i,k}$ đối với k > j, nhưng tương ứng với $f_{i-1,k}$ đối với k < j. Điều này đảm bảo rằng f_{j-w_i} được lấy từ bước (i-1)th, chứ không phải từ bước ith.

8.2.2 Complete knapsack problem – Bài toán xếp balo hoàn chỉnh

The complete knapsack model is similar to the 0-1 knapsack, the only difference from the 0-1 knapsack is that an item can be selected an unlimited number of times instead of only once.

– Mẫu balo hoàn chỉnh tương tự như balo 0-1, điểm khác biệt duy nhất so với balo 0-1 là 1 vật phẩm có thể được chọn không giới hạn số lần thay vì chỉ 1 lần.

We can refer to the idea of 0-1 knapsack to define the state: $f_{i,j}$, the maximum value the knapsack can obtain using the 1st i items with maximum capacity j. Although the state definition is similar to that of a 0-1 knapsack, its transition rule is different from that of a 0-1 knapsack.

– Ta có thể tham khảo ý tưởng về balo 0-1 để định nghĩa trạng thái: $f_{i,j}$, giá trị lớn nhất mà balo có thể đạt được bằng cách sử dụng i vật phẩm đầu tiên có sức chứa tối đa j. Mặc dù định nghĩa trạng thái tương tự như balo 0-1, nhưng quy tắc chuyển tiếp của nó lại khác với balo 0-1.

Explanation of complete knapsack. The trivial approach is, for the 1st i items, enumerate how many times each item is to be taken. The time complexity of this is $O(n^2w)$. This yields the following transition equation:

$$f_{i,j} = \max_{k=0}^{\infty} f_{i-1,j-kw_i} + kv_i.$$

At the same time, it simplifies into a "flat" equation $f_{i,j} = \max\{f_{i-1,j}, f_{i,j-w_i} + v_i\}$. The reason this works is that $f_{i,j-w_i}$ has already been updated by $f_{i,j-2w_i}$ & so on. Similar to the 0-1 knapsack, we can remove the 1st dimension to optimize the space complexity. This gives us the same transition rule as 0-1 knapsack: $f_j \leftarrow \max\{f_j, f_{j-w_i} + v_i\}$.

– Cách tiếp cận tầm thường là, đối với i mục đầu tiên, hãy liệt kê số lần cần lấy mỗi mục. Độ phức tạp thời gian của cách này là $O(n^2w)$. Cách này tao ra phương trình chuyển đổi sau:

$$f_{i,j} = \max_{k=0}^{\infty} f_{i-1,j-kw_i} + kv_i.$$

Đồng thời, nó được đơn giản hóa thành phương trình "phẳng" $f_{i,j} = \max\{f_{i-1,j}, f_{i,j-w_i} + v_i\}$. Lý do cách này hiệu quả là $f_{i,j-w_i}$ đã được cập nhật bởi $f_{i,j-2w_i}$ & vân vân. Tương tự như balo 0-1, chúng ta có thể loại bỏ chiều thứ nhất để tối ưu hóa độ phức tạp của không gian. Điều này cung cấp cho chúng ta cùng 1 quy tắc chuyển tiếp như balo 0-1: $f_i \leftarrow \max\{f_i, f_{i-w_i} + v_i\}$.

Implementation. The algorithm described can be implemented in O(nw) as

```
for (int i = 1; i <= n; i++)
for (int j = w[i]; j <= W; j++)
f[j] = max(f[j], f[j - w[i]] + v[i]);</pre>
```

Despite having the same transition rule, the code above is incorrect for 0-1 knapsack. Observing the code carefully, we see that for the currently processed item i & the current state $f_{i,j}$, when $j \geq w_i, f_{i,j}$ will be affected by $f_{i,j-w_i}$. This is equivalent to being able to put item i into the backpack multiples times, which is consistent with the complete knapsack problem & not the 0-1 knapsack problem.

– Mặc dù có cùng quy tắc chuyển tiếp, đoạn mã trên không đúng đối với ba lô 0-1. Quan sát kỹ đoạn mã, chúng ta thấy rằng đối với mục i đang được xử lý & trạng thái hiện tại $f_{i,j}$, khi $j \geq w_i, f_{i,j}$ sẽ bị ảnh hưởng bởi $f_{i,j-w_i}$. Điều này tương đương với việc có thể đặt mục i vào ba lô nhiều lần, phù hợp với bài toán ba lô hoàn chỉnh & không phải là bài toán ba lô 0-1.

8.2.3 Multiple knapsack problem – Bài toán xếp balo bội

Multiple knapsack is also a variant of 0-1 knapsack. The main difference is that there are k_i of each item instead of just 1.

– Ba lô nhiều món cũng là 1 biến thể của ba lô 0-1. Sự khác biệt chính là có k_i của mỗi món thay vì chỉ có 1.

Explanation of multiple knapsack problem. A very simple idea is: "choose each item k_i times" \Leftrightarrow " k_i of the same item is selected 1 by 1". Thus converting it to a 0-1 knapsack model, which can be described by the transition function:

$$f_{i,j} = \max_{k=0}^{k_i} f_{i-1,j-kw_i} + kv_i.$$

The time complexity of this process is $O(w \sum_{i=1}^{n} k_i)$.

-1 ý tưởng rất đơn giản là: "chọn từng mục k_i lần" \Leftrightarrow " k_i của cùng 1 mục được chọn 1 x 1". Do đó, chuyển đổi nó thành mô hình ba lô 0-1, có thể được mô tả bằng hàm chuyển đổi:

$$f_{i,j} = \max_{k=0}^{k_i} f_{i-1,j-kw_i} + kv_i.$$

Độ phức tạp thời gian của quá trình này là $O(w \sum_{i=1}^{n} k_i)$.

8.2.3.1 Binary grouping optimization - Tối ưu hóa nhóm nhị phân

We still consider converting the multiple knapsack model into a o-1 knapsack model for optimization. The time complexity O(wn) cannot be further optimized with the approach above, so we focus on $O(\sum k_i)$ component.

– Chúng tôi vẫn cân nhắc việc chuyển đổi mô hình ba lô nhiều thành mô hình ba lô o-1 để tối ưu hóa. Độ phức tạp thời gian O(wn) không thể được tối ưu hóa thêm nữa bằng cách tiếp cận trên, vì vậy chúng tôi tập trung vào thành phần $O(\sum k_i)$.

Let $A_{i,j}$ denote the jth item split from the ith item. In the trivial approach discussed above, $A_{i,j}$ represents the same item $\forall j \leq k_i$. The main reason for our low efficiency is that we are doing a lot of repetitive work. E.g., consider selecting $\{A_{i,1}, A_{i,2}\}$, & selecting $\{A_{i,2}, A_{i,3}\}$. These 2 situations are completely equivalent. Thus optimizing the splitting method will greatly reduce the time complexity.

– Giả sử $A_{i,j}$ biểu thị phần tử jth được tách ra từ phần tử ith. Trong cách tiếp cận tầm thường được thảo luận ở trên, $A_{i,j}$ biểu thị cùng 1 phần tử $\forall j \leq k_i$. Lý do chính khiến hiệu suất thấp của chúng ta là chúng ta đang thực hiện rất nhiều công việc lặp đi lặp lại. Ví dụ, hãy xem xét việc chọn $\{A_{i,1}, A_{i,2}\}$, & chọn $\{A_{i,2}, A_{i,3}\}$. 2 tình huống này hoàn toàn tương đương nhau. Do đó, việc tối ưu hóa phương pháp tách sẽ làm giảm đáng kể độ phức tạp về thời gian.

The grouping is made more efficient by using binary grouping. Specifically, $A_{i,j}$ holds 2^j individual terms $j \in \overline{0, \lfloor \log_2(k_i+1) \rfloor - 1}$. If $k_i + 1$ is not an integer power of 2, another bundle of size $k_i - (2^{\lfloor \log_2(k_i+1) \rfloor} - 1)$ is used to make up for it.

- Việc nhóm được thực hiện hiệu quả hơn bằng cách sử dụng nhóm nhị phân. Cụ thể, $A_{i,j}$ chứa 2^j các số hạng riêng lẻ $j \in \overline{0, \lfloor \log_2(k_i+1) \rfloor - 1}$. Nếu $k_i + 1$ không phải là lũy thừa nguyên của 2, 1 bó khác có kích thước $k_i - (2^{\lfloor \log_2(k_i+1) \rfloor} - 1)$ được sử dụng để bù đấp cho nó.

Through the above splitting method, it is possible to obtain any sum of $\leq k_i$ items by selecting a few $A_{i,j}$'s. After splitting each item in the described way, it is sufficient to use 0-1 knapsack method to solve the new formulation of the problem. This optimization gives us a time complexity of $O(w \sum_{i=1}^{n} \log k_i)$.

– Thông qua phương pháp phân chia trên, có thể thu được bất kỳ tổng nào của $\leq k_i$ phần tử bằng cách chọn 1 vài $A_{i,j}$. Sau khi phân chia từng phần tử theo cách đã mô tả, chỉ cần sử dụng phương pháp 0-1 knapsack để giải quyết công thức mới của bài toán. Tối ưu hóa này cung cấp cho chúng ta độ phức tạp thời gian là $O(w\sum_{i=1}^{n} \log k_i)$.

Implementation:

```
index = 0;
   for (int i = 1; i \le n; ++i) {
        int c = 1, p, h, k;
        cin >> p >> h >> k;
        while (k > c) {
5
            k -= c;
            list[++index].w = c * p;
            list[index].v = c * h;
            c *= 2;
9
10
        list[++index].w = p * k;
11
        list[index].v = h * k;
   }
13
```

8.2.3.2 Monotone queue optimization - Tối ưu hóa hàng đợi đơn điệu

In this optimization, we aim to convert the knapsack problem into a maximum queue one. For convenience of description, let $g_{x,y} = f_{i,xw_i+y}, g'_{x,y} = f_{i-1,xw_i+y}$. Then the transition rule can be written as

$$g_{x,y} = \max_{k=0}^{k_i} g'_{x-k,y} + v_i k.$$

Further, let $G_{x,y} = g'_{x,y} - v_i x$. Then the transition rule can be expressed as:

$$g_{x,y} \leftarrow v_i x + \max_{k=0}^{k_i} G_{x-k,y}.$$

This transforms into a classic monotone queue optimization form. $G_{x,y}$ can be calculated in O(1), so for a fixed y, we can calculate $g_{x,t}$ in $O\left(\lfloor \frac{w}{w_i} \rfloor\right)$ time. Therefore, the complexity of finding all $g_{x,y}$ is $O\left(\lfloor \frac{w}{w_i} \rfloor\right) \times O(w_i) = O(w)$. In this way, the total complexity of the algorithm is reduced to O(nw).

– Trong quá trình tối ưu hóa này, chúng tôi hướng đến việc chuyển đổi bài toán ba lô thành bài toán hàng đợi tối đa. Để thuận tiện cho việc mô tả, hãy cho $g_{x,y} = f_{i,xw_i+y}, g'_{x,y} = f_{i-1,xw_i+y}$. Khi đó, quy tắc chuyển đổi có thể được viết thành

$$g_{x,y} = \max_{k=0}^{k_i} g'_{x-k,y} + v_i k.$$

Ngoài ra, hãy cho $G_{x,y} = g'_{x,y} - v_i x$. Khi đó, quy tắc chuyển đổi có thể được biểu thị thành:

$$g_{x,y} \leftarrow v_i x + \max_{k=0}^{k_i} G_{x-k,y}.$$

Điều này chuyển thành dạng tối ưu hóa hàng đợi đơn điệu cổ điển. $G_{x,y}$ có thể được tính trong O(1), vì vậy đối với y cố định, chúng ta có thể tính $g_{x,t}$ trong thời gian $O\left(\lfloor \frac{w}{w_i} \rfloor\right)$. Do đó, độ phức tạp của việc tìm tất cả $g_{x,y}$ là $O\left(\lfloor \frac{w}{w_i} \rfloor\right) \times O(w_i) = O(w)$. Theo cách này, độ phức tạp tổng thể của thuật toán được giảm xuống còn O(nw).

8.2.4 Mixed knapsack problem - Bài toán xếp balo hỗn hợp

The mixed knapsack problem involves a combination of the 3 problems described above, i.e., some items can only be taken once, some can be taken infinitely, & some can be taken at most k times. The pseudo code for the solution is as:

```
for (each item) {
    if (0-1 knapsack)
        apply 0-1 knapsack code;
    else if (complete knapsack)
        apply complete knapsack code;
    else if (multiple knapsack)
        apply multiple knapsack code;
}
```

8.2.5 Extensions & generalizations of knapsack problem – Mở rộng & tổng quát hóa của bài toán xếp balo

Problem 17 (Extend or generalize knapsack problem). Generalize the knapsack problem from 2 attributes to $m \in \mathbb{N}^*$ attributes. - $T\mathring{o}ng$ quát hóa bài toán balo từ 2 thuộc tính thành $m \in \mathbb{N}^*$ thuộc tính.

8.3 Divide & Conquer Dynamic Programming – Chia & Trị Quy Hoạch Động

Divide & Conquer is a dynamic programming optimization. - Chia & Trị là 1 phương pháp tối ưu hóa quy hoạch động.

8.3.1 Preconditions – Điều kiện tiên quyết

Some dynamic programming problems have a recurrence of this form:

$$dp(i,j) = 0, \ \forall j < 0, \ dp(i,j) = \min_{0 \le k \le j} dp(i-1,k-1) + C(k,j), \tag{8.1}$$

where C(k,j) is a cost function. If $0 \le i < m, 0 \le j < n$, & evaluating C takes O(1) time. Then the straightforward evaluation of (8.1) is $O(mn^2)$. There are mn states, & n transitions for each state.

− 1 số bài toán quy hoạch động có dạng tái diễn như sau:

$$dp(i,j) = 0, \ \forall j < 0, \ dp(i,j) = \min_{0 \le k \le j} dp(i-1,k-1) + C(k,j),$$

trong đó C(k,j) là hàm chi phí. Nếu $0 \le i < m, 0 \le j < n$, & đánh giá C mất O(1) thời gian. Khi đó, đánh giá trực tiếp của (8.1) là $O(mn^2)$. Có mn trạng thái, & n chuyển đổi cho mỗi trạng thái.

Let $\operatorname{opt}(i,j)$ be the value of k that minimizes the above expression. Assuming that the cost function satisfies the quadrangle inequality, we can show that $\operatorname{opt}(i,j) \leq \operatorname{opt}(i,j+1)$, $\forall i,j$. This is known as the *monotonicity condition*. Then, we can apply divide & conquer DP. The optimal "splitting point" for a fixed i increases as j increases.

– Giả sử opt(i,j) là giá trị của k làm tối thiểu hóa biểu thức trên. Giả sử rằng hàm chi phí thỏa mãn bất đẳng thức tứ giác, ta có thể chứng minh rằng opt(i,j) ≤ opt(i,j+1), $\forall i,j$. Điều này được gọi là điều kiện đơn điệu. Sau đó, ta có thể áp dụng chia & chinh phục DP. "Điểm chia tách" tối ưu cho i cố định tăng khi j tăng.

This lets us solve for all states more efficiently. Say we compute opt(i, j) for some fixed i, j. Then for any j' < j we know that $opt(i, j') \le opt(i, j)$, i.e., when computing opt(i, j'), we do not have to consider as many splitting points.

– Điều này cho phép chúng ta giải quyết cho tất cả các trạng thái hiệu quả hơn. Giả sử chúng ta tính opt(i,j) cho 1 số i,j cố định. Sau đó, đối với bất kỳ j' < j nào, chúng ta biết rằng opt $(i,j') \le \text{opt}(i,j)$, tức là khi tính opt(i,j'), chúng ta không phải xem xét nhiều điểm phân tách.

To minimize the runtime, we apply the idea behind divide & conquer. 1st, compute opt $(i, \lfloor \frac{n}{2} \rfloor)$, then, compute opt $(i, \lfloor \frac{n}{4} \rfloor)$, knowing that it is $\leq (i, \lfloor \lfloor \frac{n}{2} \rfloor)$ & opt $(i, \lfloor \frac{3n}{4} \rfloor)$ knowing that it is \geq opt $(i, \lfloor \frac{n}{2} \rfloor)$. By recursively keeping track of the lower & upper bound on opt, we reach a $O(mn \log n)$ runtime. Each possible value of opt(i, j) only appears in $\log n$ different nodes.

– Để giảm thiểu thời gian chạy, chúng ta áp dụng ý tưởng đằng sau phương pháp chia để trị. Đầu tiên, tính opt $(i, \lfloor \frac{n}{2} \rfloor)$, sau đó, tính opt $(i, \lfloor \frac{n}{4} \rfloor)$, biết rằng đó là $\leq (i, \lfloor \frac{n}{2} \rfloor)$ & opt $(i, \lfloor \frac{3n}{4} \rfloor)$ biết rằng đó là \geq opt $(i, \lfloor \frac{n}{2} \rfloor)$. Bằng cách theo dõi đệ quy giới hạn dưới & trên của opt, chúng ta đạt được thời gian chạy $O(mn \log n)$. Mỗi giá trị có thể của opt(i, j) chỉ xuất hiện ở $\log n$ nút khác nhau.

It doesn't matter how "balanced" opt(i, j) is. Across a fixed level, each value of k is used at most twice, & there are at most log n levels.

– Không quan trọng opt(i,j) "cân bằng" như thế nào. Trên 1 mức cố định, mỗi giá trị của k được sử dụng nhiều nhất hai lần, & có nhiều nhất $\log n$ mức.

8.3.2 Generic implementation – Thuc thi chung

Even though implementation varies based on problem, here's a fairly generic template. The function compute computes 1 row i of states dp_cur, given the previous row i-1 of state dp_before. It has to be called with compute(0, n - 1, 0, n - 1). The function solve computes m rows & returns the result.

– Mặc dù việc triển khai thay đổi tùy theo vấn đề, đây là 1 mẫu khá chung chung. Hàm compute tính toán 1 hàng i của các trạng thái dp_cur, cho hàng trước đó i-1 của trạng thái dp_before. Nó phải được gọi với compute(0, n - 1, 0, n - 1). Hàm solve tính toán m hàng & trả về kết quả.

```
int m, n;
    vector<long long> dp_before, dp_cur;
   long long C(int i, int j);
   // compute dp_cur[1], ... dp_cur[r] (inclusive)
6
   void compute(int 1, int r, int optl, int optr) {
        if (1 > r) return;
        int mid = (1 + r) >> 1;
9
        pair<long long, int> best = {LLONG_MAX, -1};
10
11
        for (int k = optl; k <= min(mid, optr); ++k)</pre>
12
            best = min(best, \{(k ? dp_before[k - 1] : 0) + C(k, mid), k\});
        dp_cur[mid] = best.first;
14
        int opt = best.second;
15
16
        compute(l, mid - 1, optl, opt);
17
        compute(mid + 1, r, opt, optr);
18
   }
19
```

```
20
    long long solve() {
21
        dp_before.assign(n, 0);
22
        dp_cur.assign(n, 0);
23
24
        for (int i = 0; i < n; ++i) dp_before[i] = C(0, i);
        for (int i = 1; i < m; ++i) {
26
            compute(0, n - 1, 0, n - 1);
            dp_before = dp_cur;
28
29
        return dp_before[n - 1];
30
    }
31
```

The greatest difficulty with Divide & Conquer DP problems is proving the monotonicity of opt. 1 special case where this is true is when the cost function satisfies the quadrangle inequality, i.e.,

$$C(a,c) + C(b,d) < C(a,d) + C(b,c), \ \forall a < b < c < d.$$
(8.2)

Many Divide & Conquer DP problems can also be solved with the Convex Hull trick or vice-versa.

– Khó khăn lớn nhất với các bài toán Chia & Chinh phục DP là chứng minh tính đơn điệu của opt. Một trường hợp đặc biệt mà điều này đúng là khi hàm chi phí thỏa mãn bất đẳng thức tứ giác, i.e., $C(a,c) + C(b,d) \le C(a,d) + C(b,c)$, $\forall a \le b \le c \le d$. Nhiều bài toán Chia & Chinh phục DP cũng có thể được giải bằng thủ thuật Convex Hull hoặc ngược lại.

8.4 Knuth's Optimization – Tối Ưu của KNUTH

Resources - Tài nguyên.

1. Algorithms for Competitive Programming/Knuth's optimization.

Knuth's optimization, also known as the Knuth-Yao Speedup, is a special case of dynamic programming on ranges, that can optimize the time complexity of solutions by a linear factor, from $O(n^3)$ for standard range DP to $O(n^2)$.

- $Tổi \ uu \ hóa \ Knuth$, còn được gọi là $Tăng \ tốc \ Knuth-Yao$, là 1 trường hợp đặc biệt của lập trình động trên phạm vi, có thể tối ưu hóa đô phức tạp thời gian của các giải pháp theo hệ số tuyến tính, từ $O(n^3)$ cho phạm vi chuẩn DP đến $O(n^2)$.

8.4.1 Conditions

The Speedup is applied for transitions of the form

$$\mathrm{dp}(i,j) = \min_{i \leq k < j} [\mathrm{dp}(i,k) + \mathrm{dp}(k+1,j) + C(i,j)] = \min_{i \leq k < j} [\mathrm{dp}(i,k) + \mathrm{dp}(k+1,j)] + C(i,j).$$

Similar to divide & conquer DP, let opt(i, j) be the value of k that minimizes the expression in the transition (opt is referred to as the "optimal splitting point" further in this article). The optimization requires that the following holds:

$$\operatorname{opt}(i, j - 1) \le \operatorname{opt}(i, j) \le \operatorname{opt}(i + 1, j).$$

We can show that it is true when the cost function C satisfies the following conditions for $a \le b \le c \le d$:

- 1. $C(b, c) \leq C(a, d)$
- 2. $C(a,c) + C(b,d) \le C(a,d) + C(b,c)$ (the quadrangle inequality [QI]).

8.4.2 Algorithm of Knuth's optimization – Thuật toán của tối ưu của Knuth

We process the dp states in such a way that we calculate dp(i, j - 1), dp(i + 1, j) before dp(i, j), & in doing so we also calculate opt(i, j - 1), opt(i + 1, j). Then for calculating opt(i, j), instead of testing values of k from i to j - 1, we only need to test from opt(i, j - 1) to opt(i + 1, j). To process (i, j) pairs in this order it is sufficient to use nested for loops in which i goes from the maximum value to the minimum one & j goes from i + 1 to the maximum value.

– Chúng ta xử lý các trạng thái dp theo cách mà chúng ta tính toán dp(i,j-1), dp(i+1,j) trước dp(i,j), & khi làm như vậy, chúng ta cũng tính toán opt(i,j-1), opt(i+1,j). Sau đó, để tính toán opt(i,j), thay vì kiểm tra các giá trị của k từ i đến j-1, chúng ta chỉ cần kiểm tra từ opt(i,j-1) đến opt(i+1,j). Để xử lý các cặp (i,j) theo thứ tự này, chỉ cần sử dụng các vòng lặp lồng nhau trong đó i đi từ giá trị lớn nhất đến giá trị nhỏ nhất i0 đi từ i+11 đến giá trị lớn nhất.

Generic implementation. Though implementation varies, here's a fairly generic example. The structure of the code is almost identical to that of Range DP.

– Mặc dù cách triển khai khác nhau, đây là 1 ví du khá chung chung. Cấu trúc của mã gần giống với cấu trúc của Range DP.

```
int solve() {
        int n;
        ... // read n & input
        int dp[N][N], opt[N][N];
        auto C = [\&](int i, int j) {
             ... // implement cost function C
        };
        for (int i = 0; i < N; ++i) {
10
            opt[i][j] = i;
11
            ... // initialize dp[i][j] according to the problem
12
13
14
        for (int i = N - 2; i \ge 0; --i) {
15
            for (int j = i + 1; j < N; ++j) {
                 int mn = INT_MAX;
17
                int cost = C(i, j);
                for (int k = opt[i][j - 1]; k \le min(j - 1, opt[i + 1][j]); ++k) {
19
                     if (mn \ge dp[i][k] + dp[k + 1][j] + cost) {
20
                         opt[i][j] = k;
21
                         mn = dp[i][k] + dp[k + 1][j] + cost;
                     }
23
                }
                dp[i][j] = mn;
25
            }
27
        return dp[0][N - 1];
28
29
```

Complexity. A complexity of the algorithm can be estimated as the following sum:

$$\sum_{i=1}^{N} \sum_{j=i+1}^{N} \operatorname{opt}(i+1,j) - \operatorname{opt}(i,j-1) = \sum_{i=1}^{N} \sum_{j=i}^{N-1} \operatorname{opt}(i+1,j+1) - \operatorname{opt}(i,j).$$

Most of the terms in this expression cancel each other out, except for positive terms with j = N - 1 & negative terms with i = 1. Thus, Thus, the whole sum can be estimated as

$$\sum_{i=1}^{N} \text{opt}(i, N) - \text{opt}(1, i) = O(n^{2}),$$

rather than $O(n^3)$ as it would be if we were using a regular range DP.

- Độ phức tạp của thuật toán có thể được ước tính như tổng sau:

$$\sum_{i=1}^{N} \sum_{j=i+1}^{N} \operatorname{opt}(i+1,j) - \operatorname{opt}(i,j-1) = \sum_{i=1}^{N} \sum_{j=i}^{N-1} \operatorname{opt}(i+1,j+1) - \operatorname{opt}(i,j).$$

Hầu hết các số hạng trong biểu thức này triệt tiêu lẫn nhau, ngoại trừ các số hạng dương với j = N - 1 & các số hạng âm với i = 1. Do đó, tổng thể có thể được ước tính là

$$\sum_{i=1}^{N} \text{opt}(i, N) - \text{opt}(1, i) = O(n^{2}),$$

thay vì $O(n^3)$ như khi chúng ta sử dụng phạm vi DP thông thường.

On practice. The most common application of Knuth's optimization is the Range DP, with the given transition. The only difficulty is in proving that the cost function satisfies the given conditions. The simplest case is when the cost function C(i,j) is simply the sum of the elements of the subarray $S[i,i+1,\ldots,j]$ for some array (depending on the question). However, they can be more complicated at times.

- Ứng dụng phổ biến nhất của tối ưu hóa Knuth là Range DP, với phép chuyển đổi đã cho. Khó khăn duy nhất là chứng minh rằng hàm chi phí thỏa mãn các điều kiện đã cho. Trường hợp đơn giản nhất là khi hàm chi phí C(i,j) chỉ đơn giản là tổng các phần tử của mảng con $S[i,i+1,\ldots,j]$ đối với 1 số mảng (tùy thuộc vào câu hỏi). Tuy nhiên, đôi khi chúng có thể phức tạp hơn.

More than the conditions on the dp transition & the cost function, the key to this optimization is the inequality on the optimum splitting point. In some problems, e.g. the optimal binary search tree problem (which is, incidentally, the original problem for which this optimization was developed), the transitions & cost function will be less obvious, however, one can still prove that $opt(i, j - 1) \le opt(i, j) \le opt(i + 1, j)$, & thus, use this optimization.

– Hơn cả các điều kiện trên chuyển đổi dp & hàm chi phí, chìa khóa cho quá trình tối ưu hóa này là bất đẳng thức trên điểm chia tách tối ưu. Trong 1 số bài toán, ví dụ như bài toán cây tìm kiếm nhị phân tối ưu (tình cờ là bài toán ban đầu mà quá trình tối ưu hóa này được phát triển), hàm chi phí chuyển đổi & sẽ ít rõ ràng hơn, tuy nhiên, người ta vẫn có thể chứng minh rằng opt(i, j - 1) ≤ opt(i, j) ≤ opt(i + 1, j), & do đó, hãy sử dụng quá trình tối ưu hóa này.

Proof of correctness. To prove the correctness of this algorithm in terms of C(i,j) conditions, it suffices to prove that $opt(i,j-1) \le opt(i,j) \le opt(i+1,j)$ assuming the given conditions are satisfied.

– Để chứng minh tính đúng đắn của thuật toán này theo các điều kiện C(i,j), chỉ cần chứng minh rằng opt $(i,j-1) \le opt(i,j) \le opt(i+1,j)$ giả sử các điều kiện đã cho được thỏa mãn.

Lemma 1. dp(i,j) also satisfies the quadrangle inequality, given the conditions of the problem are satisfied.

Function Pointers & Variable Sourcecodes – Con Trỏ Hàm & Mã Nguồn Tùy Biến

Contents

9.1	Function	on Pointers – Con Trỏ Hàm	
	9.1.1	Simple function pointers – Các con trỏ hàm đơn giản	
	9.1.2	Functors/Function object – Đối tượng hàm	
	9.1.3	Method pointers – Các con trỏ phương pháp	
	9.1.4	Pointers in C++ - Con trỏ trong C++	
	9.1.5	Alternate C & C++ syntax – Cú pháp thay thế C & C++	

9.1 Function Pointers – Con Tro Ham

Resources - Tài nguyên.

- 1. Wikipedia/function pointer.
- 2. Geeks4Geeks/function pointer in C.
- 3. [Thư+21]. TRẦN ĐAN THƯ, NGUYỄN THANH PHƯƠNG, ĐINH BÁ TIẾN, TRẦN MINH TRIẾT, ĐẶNG BÌNH PHƯƠNG. Kỹ Thuật Lập Trình. Chap. 10: Con Trỏ Hàm & Mã Nguồn Tùy Biến.

A function pointer, also called a subroutine pointer or procedure pointer, is a pointer reference executable code, rather than data. Dereferencing the function pointer yields the referenced function, which can be invoked & passed arguments just as in a normal function call. Such an invocation is also known as an "indirect" call, because the function is being invoked indirectly through a variable instead of directly through a fixed identifier or address.

– Con trỏ hàm, còn được gọi là con trỏ chương trình con hoặc con trỏ thủ tục, là 1 tham chiếu con trỏ mã thực thi, chứ không phải dữ liệu. Hủy tham chiếu con trỏ hàm tạo ra hàm được tham chiếu, có thể được gọi & truyền tham số giống như trong lệnh gọi hàm thông thường. Lệnh gọi như vậy cũng được gọi là lệnh gọi "gián tiếp", vì hàm được gọi gián tiếp thông qua 1 biến thay vì trực tiếp thông qua 1 định danh hoặc địa chỉ cố định.

Function pointers allow different code to be executed at runtime. They can also be passed to a function to enable callbacks.

– Con trỏ hàm cho phép thực thi mã khác nhau khi chạy. Chúng cũng có thể được truyền vào hàm để kích hoạt lệnh gọi lại. Function pointers are supported by 3rd-generation programming languages (e.g. PL/I, COBOL, Fortran, dBASE dBL, & C) & OOP languages (e.g. C++, C#, & D).

– Con trỏ hàm được hỗ trợ bởi các ngôn ngữ lập trình thế hệ thứ 3 (e.g., PL/I, COBOL, Fortran, dBASE dBL, & C) & ngôn ngữ OOP (ví du: C++, C#, & D).

9.1.1 Simple function pointers - Các con trỏ hàm đơn giản

The simplest implementation of a function (or subroutine) pointer is as a variable containing the address of the function within executable memory. Older 3rd-generation languages e.g. PL/I & COBOL, as well as more modern languages e.g. Pascal & C generally implement function pointers in this manner.

– Việc triển khai đơn giản nhất của con trỏ hàm (hoặc chương trình con) là 1 biến chứa địa chỉ của hàm trong bộ nhớ thực thi. Các ngôn ngữ thế hệ thứ 3 cũ hơn như PL/I & COBOL, cũng như các ngôn ngữ hiện đại hơn như Pascal & C thường triển khai con trỏ hàm theo cách này.

The following C program illustrate the use of 2 function pointers:

- func1 takes 1 double-precision (double) parameter & returns another double, & is assigned to a function which converts centimeters to inches.
- func2 takes a pointer to a constant character array as well as an integer & returns a pointer to a character, & is assigned to a C string handling function which returns a pointer to the 1st occurrence of a given character in a character array.
- Chương trình C sau minh họa cách sử dụng 2 con trỏ hàm:
- func1 lấy 1 tham số độ chính xác kép (double) & trả về 1 double khác, & được gán cho 1 hàm chuyển đổi centimet sang inch.
- func2 lấy 1 con trỏ đến 1 mảng ký tự hằng số cũng như 1 số nguyên & trả về 1 con trỏ đến 1 ký tự, & được gán cho 1 hàm xử lý chuỗi C trả về 1 con trỏ đến lần xuất hiện đầu tiên của 1 ký tự đã cho trong 1 mảng ký tự.

```
#include <stdio.h> /* for printf */
   #include <string.h> /* for strchr */
3
   double cm_to_inches(double cm) {
       return cm / 2.54;
5
   }
6
   // "strchr" is part of the C string handling (i.e., no need for declaration)
   int main(void) {
10
       double (*func1)(double) = cm_to_inches;
11
       char * (*func2)(const char *, int) = strchr;
12
       printf("%f %s", func1(15.0), func2("Wikipedia", 'p')); // prints "5.905512 pedia"
13
       return 0;
14
   }
15
```

The next program uses a function pointer to invoke 1 of 2 functions sin or cos indirectly from another function (compute_sum, computing an approximation of the function's Riemann integration). The program operates by having function main call function compute_sum twice, passing it a pointer to the library function sin the 1st time, & a pointer to function cos the 2nd time. Function compute_sum in turn invokes 1 of the 2 functions indirectly by dereferencing its function pointer argument funcp multiple times, adding together the values that the invoked function returns & returning the resulting sum. The 2 sums are written to the standard output by main.

- Chương trình tiếp theo sử dụng 1 con trỏ hàm để gọi 1 trong 2 hàm sin hoặc cos gián tiếp từ 1 hàm khác (compute_sum, tính toán xấp xỉ tích phân Riemann của hàm). Chương trình hoạt động bằng cách để hàm main gọi hàm compute_sum hai lần, truyền cho nó 1 con trỏ tới hàm thư viện sin lần đầu tiên, & 1 con trỏ tới hàm cos lần thứ 2. Đến lượt mình, hàm compute_sum gọi 1 trong 2 hàm gián tiếp bằng cách hủy tham chiếu đối số con trỏ hàm funcp của nó nhiều lần, cộng các giá trị mà hàm được gọi trả về & trả về tổng kết quả. 2 tổng được ghi vào đầu ra chuẩn bởi main.

```
#include <math.h>
   #include <stdio.h>
   // function taking a function pointer as an argument
   double compute_sum(double (*funcp)(double), double a, double b) {
        double sum = 0.0;
        // add values returned by the pointed-to function '*funcp'
        for (int i = 0; i \le 100; ++i) {
            // use the function pointer 'funcp' to invokve the function
10
            double x = i / 100.0 * (b - a) + a;
11
            double y = funcp(x);
12
            sum += y;
13
14
        return sum / 101.0 * (b - a);
15
   }
16
```

32

33

x = (int)x;

```
17
    double square(double x) {
18
        return x * x;
19
   }
20
21
    int main(void) {
        double sum;
23
        // use standard library function sin() as the pointed-to function
25
        sum = compute_sum(sin, 0.0, 1.0);
26
        printf("sum(sin): %g\n", sum);
27
        // use standard library function cos() as the pointed-to function
29
        sum = compute_sum(cos, 0.0, 1.0);
        printf("sum(cos): %g\n", sum);
31
        // use user-defined function square() as the pointed-to function
33
        sum = compute_sum(square, 0.0, 1.0);
34
        printf("sum(square): %g\n", sum);
35
        return 0;
36
   }
37
 Bài toán 3 ([Thư+21], pp. 477-479). Viết hàm tìm trong mảng 1 chiều gồm các số thực: (a) Số lớn nhất. (b) Số nhỏ nhất. (c)
 S \hat{o} có trị tuyệt đối nhỏ nhất. (d) S \hat{o} có trị số phần lẻ \{x\} = x - |x| \in [0,1) lớn nhất.
 Solution. C:
    #include <math.h>
    #include <stdio.h>
    int max_real(float a[], int n) {
        // precondition: n >= 1
        int id_max = 0;
        for (int i = 1; i < n; ++i)
        if (a[i] > a[id_max]) id_max = i;
        return id_max;
   }
10
11
    int min_real(float a[], int n) {
12
        // precondition: n >= 1
13
        int id_min = 0;
        for (int i = 1; i < n; ++i)
15
        if (a[i] < a[id_min]) id_min = i;</pre>
        return id_min;
17
    }
18
19
    int best_real(float a[], int n, int (*better)(float, float)) {
20
        int id_best = 0;
21
        for (int i = 1; i < n; ++i)
        if (better(a[i], a[id_best])) id_best = i;
23
        return id_best;
   }
25
26
    int abs_less(float x, float y) {
27
        return fabs(x) < fabs(y);
28
   }
29
30
    int frac_greater(float x, float y) {
31
        x = (float)fabs(x);
```

```
y = (float)fabs(y);
        y = (int)y;
35
        return x > y;
36
   }
37
38
    int main() {
39
        float a[] = \{-3.4F, 6.7F, -5.92F, 0.229F, -9.08F\};
40
        int n = sizeof(a) / sizeof(a[0]);
41
        int j = best_real(a, n, abs_less);
42
        printf("Element minimum abs = %f\n", a[j]);
43
        j = best_real(a, n, frac_greater);
44
        printf("Element maximum fraction = %f\n", a[j]);
45
        return 0;
46
   }
47
```

9.1.2 Functors/Function object – Đối tượng hàm

Resources - Tài nguyên.

1. Wikipedia/function object.

Functors, or function objects, are similar to function pointers, & can be used in similar ways. A functor is an object of a class type that implements the function-call operator, allowing the object to be used within expressions using the same syntax as a function call. Functors are more powerful than simple function pointers, being able to contain their own data values, & allowing the programmer to emulate closures. They are also used as callback functions if it is necessary to use a member function as a callback function.

9.1.3 Method pointers - Các con trỏ phương pháp

C++ includes support for object-oriented programming, so classes can have methods (usually referred to as member functions). Non-static member functions (instance methods) have an implicit parameter (the this pointer) which is the pointer to the object it is operating on, so the type of the object must be included as part of the type of the function pointer. The method is then used on an object of that class by using 1 of the "pointer-to-member" operators: .* or ->* (for an object or a pointer to object, resp.).

− C++ bao gồm hỗ trợ cho lập trình hướng đối tượng, do đó các lớp có thể có các phương thức (thường được gọi là hàm thành viên). Các hàm thành viên không tĩnh (phương thức thể hiện) có 1 tham số ngầm định (con trỏ thìs) là con trỏ đến đối tượng mà nó đang vận hành, do đó kiểu của đối tượng phải được bao gồm như 1 phần của kiểu của con trỏ hàm. Sau đó, phương thức được sử dụng trên 1 đối tượng của lớp đó bằng cách sử dụng 1 trong các toán tử "con trỏ đến thành viên": .* hoặc ->* (đối với 1 đối tượng hoặc 1 con trỏ đến đối tượng, tương ứng).

Although function pointers in C & C++ can be implemented as simple addresses, so that typically sizeof(Fx)==sizeof(void *), member points in C++ are sometimes implemented as "fat pointers", typically 2 or 3 times the size of a simple function pointer, in order to deal with virtual methods & virtual inheritance.

- Mặc dù các con trỏ hàm trong C & C++ có thể được triển khai như các địa chỉ đơn giản, do đó thông thường sizeof(Fx)==sizeof(void *), các điểm thành viên trong C++ đôi khi được triển khai như "con trỏ béo", thường có kích thước gấp 2 hoặc 3 lần kích thước của 1 con trỏ hàm đơn giản, để xử lý các phương thức ảo & kế thừa ảo.

9.1.4 Pointers in C++ - Con tro trong C++

In C++, in addition to the method used in C, it is also possible to use the C++ standard library class template std::function, of which the instances are function objects:

```
#include <iostream>
#include <functional>
using namespace std;

static double derivative(const function<double(double)> &f, double x0, double eps) {
    double eps2 = eps / 2;
    double a = x0 - eps2;
    double b = x0 + eps2;
```

```
return (f(b) - f(a)) / eps;
   }
10
11
   static double f(double x) {
12
        return x * x;
13
   }
14
15
    int main() {
        double x = 1;
17
        cout << "d/dx(x ^ 2) [@ x = " << x << "] = " << derivative(f, x, 1e-5) << '\n';
18
        return 0;
19
    }
20
```

9.1.4.1 Pointers to member functions in C++ - Con trở tới các hàm thành viên trong C++

This is how C++ uses function pointers when dealing with member functions of classes or structs. These are invoked using an object pointer or a **this** call. They are type safe in that you can only call members of that class (or derivatives) using a point of that type. This example also demonstrates the use of a typedef for the pointer to member function added for simplicity. Function pointers to static member functions are done in the traditional 'C' style because there is no object pointer for this call required.

– Đây là cách C++ sử dụng con trỏ hàm khi xử lý các hàm thành viên của lớp hoặc cấu trúc. Chúng được gọi bằng con trỏ đối tượng hoặc lệnh gọi this. Chúng an toàn về kiểu vì bạn chỉ có thể gọi các thành viên của lớp đó (hoặc các dẫn xuất) bằng cách sử dụng 1 điểm có kiểu đó. Ví dụ này cũng chứng minh việc sử dụng typedef cho con trỏ tới hàm thành viên được thêm vào để đơn giản hóa. Con trỏ hàm tới các hàm thành viên tĩnh được thực hiện theo kiểu 'C' truyền thống vì không cần con trỏ đối tương cho lênh gọi này.

9.1.5 Alternate C & C++ syntax - Cú pháp thay thế C & C++

The C & C++ syntax given above is the canonical one used in all the textbooks – but it's difficult to read & explain. even the above typedef examples use this syntax. However, every C & C++ compiler supports a more clear & concise mechanism to declare function pointers: use typedef, but don't store the pointer as part of the definition. Note that the only way this kind of typedef can actually be used is with a pointer – but that highlights the pointer-ness of it.

Cú pháp C & C++ nêu trên là cú pháp chuẩn được sử dụng trong tất cả các sách giáo khoa – nhưng rất khó để đọc & giải thích. ngay cả các ví dụ typedef ở trên cũng sử dụng cú pháp this. Tuy nhiên, mọi trình biên dịch C & C++ đều hỗ trợ 1 cơ chế & rõ ràng hơn để khai báo các con trỏ hàm: sử dụng typedef, nhưng không lưu trữ con trỏ như 1 phần của định nghĩa. Lưu ý rằng cách duy nhất để sử dụng loại typedef này thực sự là với 1 con trỏ – nhưng điều đó làm nổi bật tính chất con trỏ của nó. C & C++:

```
// This declares 'F', a function that accepts a 'char' & returns an 'int'. Definition is elsewhere.
   int F(char c);
    // This defines 'Fn', a type of function that accepts a 'char' & returns an 'int'.
   typedef int Fn(char c);
   // This defines 'fn', a variable of type pointer-to-'Fn', & assigns the address of 'F' to it.
   Fn *fn = &F; // Note '&' not required - but it highlights what is being done.
   // This calls 'F' using 'fn', assigning the result to the variable 'a'
10
   int a = fn('A');
11
12
   // This defines 'Call', a function that accepts a pointer-to-'Fn', calls it, & returns the result
13
    int Call(Fn *fn, char c) {
14
       return fn(c);
15
   } // call(fn, c)
16
17
   // This calls function 'Call', passing in 'F' & assigning the result to 'call'
18
   int call = Call(&F, 'A'); // again, '&' is not required
19
20
   // LEGACY: Note that to maintain existing code bases, the above definition style can still be used first;
21
    // then the original type can be defined in terms of it using the new style.
22
```

```
// This defines 'PFn', a type of pointer-to-type-Fn.
   typedef Fn *PFn;
25
26
   // 'PFn' can be used wherever 'Fn *' can
   PFn pfn = F;
   int CallP(PFn fn, char c);
 C++: These examples use the above definitions. In particular, note that the above definition for Fn can be used in pointer-to-
member-function definitions:
   // This defines 'C', a class with similar static & member functions, & then creates an instance called 'c'
   class C {
       public:
        static int Static(char c);
       int Member(char c);
   } c; // C
   // This defines 'p', a pointer to 'C' & assigns the address of 'c' to it
   C *p = &c;
   // This assigns a pointer-to-'Static' to 'fn'.
11
   // Since there is no 'this', 'Fn' is the correct type; and 'fn' can be used as above.
12
   fn = &C::Static;
14
   // This defines 'm', a pointer-to-member-of-'C' with type 'Fn',
   // and assigns the address of 'C::Member' to it.
16
   // You can read it right-to-left like all pointers:
   // "'m' is a pointer to member of class 'C' of type 'Fn'"
   Fn C::*m = \&C::Member;
   // This uses 'm' to call 'Member' in 'c', assigning the result to 'cA'
21
   int cA = (c.*m)('A');
22
   // This uses 'm' to call 'Member' in 'p', assigning the result to 'pA'
24
   int pA = (p->*m)('A');
25
   // This defines 'Ref', a function that accepts a reference-to-'C',
   // a pointer-to-member-of-'C' of type 'Fn', and a 'char',
   // calls the function and returns the result
29
   int Ref(C &r, Fn C::*m, char c) {
       return (r.*m)(c);
31
   } // Ref(r, m, c)
33
   // This defines 'Ptr', a function that accepts a pointer-to-'C',
   // a pointer-to-member-of-'C' of type 'Fn', and a 'char',
35
   // calls the function and returns the result
   int Ptr(C *p, Fn C::*m, char c) {
37
       return (p->*m)(c);
   } // Ptr(p, m, c)
39
   // LEGACY: Note that to maintain existing code bases, the above definition style can still be used first;
41
   // then the original type can be defined in terms of it using the new style.
42
   // This defines 'FnC', a type of pointer-to-member-of-class-'C' of type 'Fn'
   typedef Fn C::*FnC;
45
46
   // 'FnC' can be used wherever 'Fn C::*' can
47
   FnC fnC = &C::Member;
48
   int RefP(C &p, FnC m, char c);
```

Phần III

Data Structure & Algorithm – Cấu Trúc Dữ Liệu & Giải Thuật

Chương 10

Basic Data Structures – Cấu Trúc Dữ Liệu Cơ Bản

10.1 Minimum Stack/Minimum Queue – Ngăn Xếp Tối Thiểu/Hàng Đợi Tối Thiểu

Resources - Tài nguyên.

1. Algorithms for Competitive Programming/minimum stack/minimum queue.

Consider 3 problems: 1st modify a stack in a way that allows us to find the smallest element of the stack in O(1), then we will do the same thing with a queue, & finally we will use these data structures to find the minimum in all subarrays of a fixed length in an array in O(n).

– Xét 3 bài toán: Đầu tiên, sửa đổi một ngăn xếp theo cách cho phép chúng ta tìm phần tử nhỏ nhất của ngăn xếp trong O(1), sau đó chúng ta sẽ làm điều tương tự với một hàng đợi, & cuối cùng chúng ta sẽ sử dụng các cấu trúc dữ liệu này để tìm phần tử nhỏ nhất trong tất cả các mảng con có độ dài cố định trong một mảng trong O(n).

10.1.1 Stack modification – Sửa đổi ngăn xếp

We want to modify the stack data structure in such a way, that it is possible to find the smallest element in the stack in O(1) time, while maintaining the same asymptotic behavior for adding & removing elements from the stack. On a stack we only add & remove elements on 1 end.

– Chúng ta muốn sửa đổi cấu trúc dữ liệu ngăn xếp sao cho có thể tìm thấy phần tử nhỏ nhất trong ngăn xếp trong thời gian O(1), đồng thời vẫn duy trì hành vi tiệm cận tương tự khi thêm & xóa phần tử khỏi ngăn xếp. Trên ngăn xếp, chúng ta chỉ thêm & xóa phần tử ở đầu 1.

To do this, we will not only store the elements in the stack, but we will store them in pairs: the element itself & the minimum in the stack starting from this element & below:

```
stack<pair<int, int>> st;s
```

Finding the minimum in the whole stack consists only of looking at the value stack.top().second. Adding or removing a new element to the stack can be done in constant time.

- Việc tìm giá trị nhỏ nhất trong toàn bộ ngăn xếp chỉ bao gồm việc xem xét giá trị stack.top().second. Việc thêm hoặc xóa một phần tử mới vào ngăn xếp có thể được thực hiện theo thời gian không đổi.

Implementation:

• Add an element:

```
Câp
int new_min = st.empty() ? new_elem : min(new_elem, st.top().second);
st.push({new_elem, new_min});
```

• Remove an element:

```
int removed_element = st.top().first;
st.pop();
```

• Find the minimum:

```
int minimum = st.top().second;
```

10.1.2 Queue modification – Sửa đổi hàng đợi

We want to achieve the same operations with a queue, i.e. we want to add elements at the end & remove them from the front.

Phần IV

Object-Oriented Programming – Lập Trình Hướng Đối Tượng

Phần V

Competitive Programming – Lập Trình Thi Đấu

Contents

C CIII CII.			
10	0.1	Minimum Stack/Minimum Queue – Ngăn Xếp Tối Thiểu/Hàng Đợi Tối Thiểu	39
		10.1.1 Stack modification – Sửa đổi ngăn xếp	39
		10.1.2 Queue modification – Sửa đổi hàng đợi	

Chương 11

Basic Competitive Programming – Lập Trình Thi Đấu Cơ Bản

Contents

	The art of handling inputs & formatting outputs – Nghệ thuật xử lý các dạng đầu vào & định dạng các dạng	
	đầu ra	44
	Repeat/Loop – Lặp	
11.3	String data – Kiểu dữ liệu chuỗi	45
11.4	Array data – Kiểu dữ liệu mảng	45
	11.4.1 Kỹ thuật mảng chỉ số cho kiểu dữ liệu mảng	46

Resources - Tài nguyên.

- 1. [Laa20]. Antti Laaksonen. Guide to Competitive Programming: Learning & Improving Algorithms Through Contests.
- 2. [Thư+25]. TRẦN ĐAN THƯ, NGUYỄN THANH PHƯƠNG, ĐINH BÁ TIẾN, TRẦN MINH TRIẾT. Nhập Môn Lập Trình.
- 3. [Thư+21]. Trần Đan Thư, Nguyễn Thanh Phương, Đinh Bá Tiến, Trần Minh Triết, Đặng Bình Phương. $K\tilde{y}$ Thuật Lập Trình.
- 4. [TTK21]. TRẦN ĐAN THƯ, ĐINH BÁ TIẾN, NGUYỄN TẤN TRẦN MINH KHANG. Phương Pháp Lập Trình Hướng Đối Tượng.

11.1 The art of handling inputs & formatting outputs – Nghệ thuật xử lý các dạng đầu vào & đinh dang các dang đầu ra

To handle various types of inputs & format various types of outputs, see, e.g.:

• Peking University Judge Online for ACM/ICPC (POJ)/FAQ. See, e.g., [Laa20; Laa24, Chap. 2, Subsect. 2.1.1, pp. 10–11].

To compile a C++ program in Linux, run in Terminal:

```
$ g++ -02 -Wall program_name.cpp -o program_name
```

\$./program_name

or if you want to transfer input file into it & print output into Terminal screen:

\$./program_name < program_name.inp</pre>

or if you want to transfer input file into it & print output into a file:

- \$./program_name < program_name.inp > program_name.out
- Geeks4Geeks/std::endl vs. \n in C++: https://www.geeksforgeeks.org/endl-vs-n-in-cpp/.
- i++ vs. ++i: StackOverflow/Is there a performance difference between i++ & ++i in C?

11.2 Repeat/Loop - Lăp

11.3 String data – Kiểu dữ liệu chuỗi

11.4 Array data - Kiểu dữ liệu mảng

Về mặt toán học, kiểu dữ liệu mảng là dãy số hữu hạn $(a_i)_{i=1}^n = (a_1, a_2, \dots, a_n)$. Về mặt Tin học, kiểu dữ liệu mảng được ký hiệu bởi a[1..n].

Bài toán 4 ([Đức22], 141., pp. 140–141: Count digit – Đếm chữ số). Cho dãy số n số n guyên dương A[1..n] & 1 chữ số k. Dếm số lần xuất hiện chữ số k trong dãy A đã cho. E.g., với dãy A[] = (11, 12, 13, 14, 15), thì chữ số k = 1 xuất hiện 6 lần trong dãy A.

Input. Dòng 1 của đầu vào chứa số nguyên $T \in \mathbb{N}^*$ cho biết số bộ dữ liệu cần kiểm tra. Mỗi bộ dữ liệu gồm: (i) Dòng đầu chứa lần lượt $n,k \in \mathbb{N}$ là số phần tử trong dãy A[] & chữ số k. (ii) Dòng 2 chứa n số nguyên cách nhau 1 dấu cách, mô tả các phần tử của dãy A.

Output. Ứng với mỗi bộ dữ liệu, in ra 1 dòng chứa kết quả của bài toán tương ứng với bộ dữ liệu đầu vào đó.

Constraint. $1 \le T \le 100, 1 \le n \le 100, 0 \le k \le 9, 1 \le A[i] \le 1000, \forall i = 1, ..., n$.

- Input: https://github.com/NQBH/advanced_STEM_beyond/blob/main/OLP_ICPC/input/count_digit.inp.
- Output: https://github.com/NQBH/advanced_STEM_beyond/blob/main/OLP_ICPC/output/count_digit.out.
- Python: https://github.com/NQBH/advanced_STEM_beyond/blob/main/OLP_ICPC/Python/count_digit.py.
- C++: ?

Bài toán 5 ([Đức22], 141., pp. 140–141: Count digit – Đếm chữ số). Cho dãy số nguyên $a[1], a[2], \ldots, a[n]$. Thực hiện nhiệm vụ: Chia dãy thành 2 phần trái \mathcal{E} phải, trong đó phần trái gồm $\frac{n}{2}$ phần tử đầu tiên \mathcal{E} phần phải gồm các phần tử còn lại. Tính tổng các phần tử của mỗi phần, cuối cùng tính \mathcal{E} in ra tích 2 tổng tìm được.

Input. Dòng 1 của đầu vào chứa $t \in \mathbb{N}^*$ cho biết số bộ dữ liệu cần kiểm tra. Mỗi bộ dữ liệu gồm: (i) Dòng đầu chứa $n \in \mathbb{N}^*$ cho biết số phần tử của dãy. (ii) Dòng 2 chứa n số nguyên cách nhau bởi dấu cách, là các phần tử của dãy.

Output. Ứng với mỗi bộ dữ liệu, in ra 1 dong chứa kết quả của bài toán tương ứng với bộ dữ liệu đầu vào đó.

Constraint. $1 \le t \le 100, 1 \le n \le 100, 1 \le A[i] \le 100, \forall i = 1, ..., n$.

- Input: https://github.com/NQBH/advanced_STEM_beyond/blob/main/OLP_ICPC/input/prod_left_right_sums.inp.
- Output: https://github.com/NQBH/advanced_STEM_beyond/blob/main/OLP_ICPC/output/prod_left_right_sums.out.
- Python: https://github.com/NQBH/advanced_STEM_beyond/blob/main/OLP_ICPC/Python/prod_left_right_sums.py.

```
t = int(input())
for _ in range(t):
    n = int(input())
    a = list(map(int, input().split()))
    lsum = rsum = 0
    for i in range(n//2):
        lsum += a[i]
    for i in range(n//2, n):
        rsum += a[i]
    print(lsum * rsum)
```

• C++: ?

11.4.1 Kỹ thuật mảng chỉ số cho kiểu dữ liệu mảng

A general idea. Giả sử có dãy số $\{a_n\}_{n=1}^n$ được lưu với mảng a = a[0], a[1],...,a[n - 1] với $a_i =$ a[i - 1], $\forall i \in [n]$. Giả sử có $m \in \mathbb{N}^*$ mảng chỉ số $\{f_i\}_{i=1}^m$ mà mỗi mảng có số phần tử là 1 hàm của $n, f_i : [n] \to \mathbb{R}$, mà m mảng chỉ số này lại liên quan hay ràng buộc với nhau theo những cách nào đấy, biểu diễn được bằng công thức toán, e.g., $f_i(n) = F_i(f_1, f_2, \ldots, f_{i-1}, f_{i+1}, \ldots, f_n)$. Tìm hiểu cấu trúc toán học, cấu trúc giải thuật, & tạo ra các ví dụ để minh họa ý tưởng tổng quát này.

Kỹ thuật $sliding\ window\ cũng\ là 1$ trường hợp riêng của ý tưởng này với $m=2,\ f_1(i)=$ left index (chỉ số trái), $f_2(i)=$ right index (chỉ số phải) & ta thường lấy tổng $\sum_{\mathtt{left_index}}^{\mathtt{right_index}} a[i]$, tích $\prod_{\mathtt{left_index}}^{\mathtt{right_index}} a[i]$, hoặc 1 hàm nào đấy của các phần tử bị giới hạn bởi 2 chỉ số trái & phải này, e.g., $\sum_{\mathtt{left_index}}^{\mathtt{right_index}} f(a[i])$ or $F(a[\mathtt{left_index}], \ldots, a[\mathtt{right_index}])$.

Problem 18 (Techniques of additional arrays – Kỹ thuật mảng bổ sung, R+4). Establish the general & rigorous frameworks for the idea of using additional arrays to micro manage or to get insights of a given array in some higher levels.

- Thiết lập khuôn khổ chung & chặt chẽ cho ý tưởng sử dụng các mảng bổ sung để quản lý vi mô hoặc để có được thông tin chi tiết về 1 mảng nhất định ở 1 số cấp độ cao hơn.

Chương 12

Introductory Problems – Các Bài Toán Mở Đầu

Problem 19 (CSES Problem Set/weird algorithm). Consider an algorithm that takes as input a positive integer n. If n is even, the algorithm divides it by 2, & if n is odd, the algorithm multiplies it by 3 & adds 1. The algorithm repeats this, until n = 1. E.g., the sequence for n = 3 is as follows: $3 \to 10 \to 5 \to 16 \to 8 \to 4 \to 2 \to 1$. Simulate the execution of the algorithm for a given value of n.

Input. The only input line contains an integer $n \in \mathbb{N}^*$.

Output. rint a line that contains all values of n during the algorithm.

Constraints. $n \in [10^6]$.

Sample.

weird_algorithm.inp	weird_algorithm.out
3	3 10 5 16 8 4 2 1

Solution. Mấu chốt ở đây là phải sử dụng kiểu dữ liệu long long thay vì int (sẽ bị overflow), see, e.g., [Laa20; Laa24]. C++:

1. VNTA's C++: weird algorithm:

```
#include <bits/stdc++.h>
   using namespace std;
   int main() {
        ios_base::sync_with_stdio(0);
5
        cin.tie(0); cout.tie(0);
6
        long long n;
        cin >> n;
        while (n != 1) {
            cout << n << ', ';
10
            if (n \% 2 == 0) n /= 2;
11
            else n = n * 3 + 1;
12
        }
        cout << 1;
14
   }
```

2. NHH's C++: weird algorithm:

```
#include <iostream>
#include <vector>
using namespace std;

int main() {
    long long n; cin >> n;
    vector<long long> res;

cout << n << " ";
while (n != 1) {</pre>
```

```
if (n \% 2 == 0) {
 11
                  n /= 2;
 12
                  res.push_back(n);
 13
              } else {
 14
                  n = n * 3 + 1;
 15
                  res.push_back(n);
              }
 17
         }
 19
         for (int i = 0; i < res.size(); ++i) cout << res[i] << " ";
         return 0;
 21
 22
3. DXH's C++: weird algorithm:
     #include <bits/stdc++.h>
     using namespace std;
     void printCollatz(long long n) {
  5
         cout << n;</pre>
         while (n != 1) {
  6
              if (n \% 2 == 0) // chan thi chia cho 2
              n = n / 2;
              else
  9
              n = 3 * n + 1; // le thi * 3 + 1
 10
              cout << " " << n;
 11
         }
 12
         cout << "\n";
 13
     }
 14
 15
     int main() {
 16
         long long n; // n -> so nguyen duong
 17
         cin >> n;
 18
         printCollatz(n);
 19
     }
 20
4. DPAK's C++: weird algorithm:
     #include <bits/stdc++.h>
     using namespace std;
  2
  3
     signed main() {
         long long n; cin >> n;
         cout << n << " ";
         for (; n != 1; (n % 2 == 0 ? n /= 2 : (n *= 3, n++)), cout << n << " " );
         return 0;
     }
5. DNDK's C++: weird algorithm:
     #include <iostream>
     #define ll long long
     using namespace std;
     int main() {
         11 n;
         cin >> n;
  7
         while (n != 1) {
              cout << n << " ";
  9
              if (n \% 2 == 0) n = n / 2;
 10
              else n = n * 3 + 1;
 11
```

```
}
 12
         cout << n << '\n';
 13
         return 0;
 14
     }
 15
6. NLDK's C++: weird algorithm:
     #include <bits/stdc++.h>
     #pragma GCC optimize ("03")
     #pragma GCC optimize ("unroll-loops")
     #define Sanic_speed ios_base::sync_with_stdio(false);cin.tie(NULL);cout.tie(NULL);
     #define Ret return 0;
     #define ret return;
     #define all(x) x.begin(), x.end()
     #define el "\n";
     #define elif else if
     #define ll long long
 10
     #define fi first
 11
     #define se second
     #define pb push_back
 13
     #define pops pop_back
 14
     #define cYES cout << "YES" << "\n";</pre>
     #define cNO cout << "NO" << "\n";</pre>
     #define cYes cout << "Yes" << "\n";</pre>
 17
     #define cNo cout << "No" << "\n";</pre>
     #define cel cout << "\n";</pre>
     #define frs(i, a, b) for(int i = a; i < b; ++i)
     #define fre(i, a, b) for(int i = a; i \le b; ++i)
 21
     #define wh(t) while (t--)
     #define SORAI int main()
 23
     using namespace std;
 24
     typedef unsigned long long ull;
 25
 26
     void solve() {
 27
         11 n; cin >> n;
 28
         cout << n << " ";
 29
         while (n != 1) {
 30
              if (n & 1) {
 31
                  n = 3 * n + 1;
 32
              } else {
 33
                  n /= 2;
 34
              }
              cout << n << " ";
 36
         }
     }
 38
     SORAI {
 40
         Sanic_speed
 41
         int t = 1;// cin >> t;
 42
         wh(t) {solve();}
 43
     }
 44
7. TQS's C++: weird algorithm:
     #include <bits/stdc++.h>
     using namespace std;
     int main() {
  4
         long long n;
         cin >> n;
```

```
cout << n;</pre>
        while (n != 1) {
             if (n \% 2 == 0) {
9
                  n = n / 2;
10
                  cout << " " << n;
11
             }
             else {
13
                  n = n * 3 + 1;
                  cout << " " << n;
15
             }
16
        }
17
    }
18
```

Problem 20 (CSES Problem Set/missing number). You are given all numbers in [n] except one. Find the missing number.

Input. The 1st input line has an integer $n \in \mathbb{N}^*$. The 2nd line contains n-1 numbers. Each number is distinct & between 1 & n (inclusive).

Output. Print the missing number.

Constraints. $n \in \overline{2, 2 \cdot 10^5}$.

Sample.

missing_number.inp	missing_number.out
5	4
2 3 1 5	

Solution. C++:

1.

Problem 21 (CSES Problem Set/repetitions). You are given a DNA sequence: a string consisting of characters A, C, G, T. Find the longest repetition in the sequence. This is a maximum-length substring containing only 1 type of character.

Input. The only input line contains a string of $n \in \mathbb{N}^*$ characters.

Output. Print 1 integer: the length of the longest repetition.

Constraints. $n \in [10^6]$.

Sample.

repetition.inp	repetition.out
ATTCGGGA	3

Problem 22 (CSES Problem Set/increasing array). You are given an array of $n \in \mathbb{N}^*$ integers. You want to modify the array so that it is increasing, i.e., every element is at least as large as the previous element. On each move, you may increase the value of any element by 1. What is the minimum number of moves required?

Input. The 1st input line contains an integer $n \in \mathbb{N}^*$: the size of the array. Then, the 2nd line contains n integers $x_1, x_2, \ldots, x_n \in \mathbb{N}^*$: the contents of the array.

Output. Print the minimum number of moves.

Constraints. $n \in [2 \cdot 10^5], x_i \in [10^9], \forall i \in [n].$

Sample.

increasing_array.inp	increasing_array.out
5	5
3 2 5 1 7	

Problem 23 (CSES Problem Set/permutations). A permutation of [n] is called beautiful if there are no adjacent elements whose difference is 1. Given n, construct a beautiful permutation if such a permutation exists.

Input. The 1st input line contains an integers $n \in \mathbb{N}^*$.

Output. Print a beautiful permutation of integers 1, 2, ..., n. If there are several solutions, you may print any of them. If there are no solutions, print NO SOLUTION.

Constraints. $n \in [10^6]$.

Sample.

permutation.inp	permutation.out
5	4 2 5 3 1
3	NO SOLUTION

Problem 24 (CSES Problem Set/number spiral). A number spiral is an infinite grid whose upper-left square has number 1. Here are the 1st 5 layers of the spiral

1	2	9	10	25
4	3	8	11	24
5	6	7	12	23
16	15	14	13	22
17	18	19	20	21

Find out the number is row $y \in column x$.

Input. The 1st input line contains an integer $t \in \mathbb{N}^*$: the number of tests. After this, there are t lines, each containing integers $y, z \in \mathbb{N}^*$.

Output. For each test, print the number in row $y \in column \ x$.

Constraints. $t \in [10^5], x, y \in [10^9].$

Sample.

number_spiral.inp	number_spiral.out
3	8
2 3	1
11	15
4 2	

Solution. C++:

1. NHH's C++: number spiral:

```
#include <iostream>
   using namespace std;
   #define ll long long
   int main() {
5
        int t; cin >> t;
6
        while (t--) {
            11 y, x;
            cin >> y >> x;
10
            11 k = max(x, y);
            ll base = (k - 1) * (k - 1);
12
            ll ans;
13
14
            if (k \% 2 == 0) {
15
                 if (x == k)
16
                 ans = base + y;
17
                 else
18
```

```
ans = base + k + (k - x);
19
             } else {
20
                  if (y == k)
21
                 ans = base + x;
22
23
                  ans = base + k + (k - y);
25
             cout << ans << "\n";
27
        }
        return 0;
29
   }
30
```

Problem 25 (CSES Problem Set/2 knights). Count for $k \in [n]$ the number of ways 2 knights can be placed on a $k \times k$ chessboard so that they do not attack each other.

Input. The only input line contains an integer $n \in \mathbb{N}^*$.

Output. Print n integers: the results.

Constraints. $n \in [10^4]$.

Sample.

two_knight.inp	two_knight.out
8	0
	6
	28
	96
	252
	550
	1056
	1848

Solution. C++:

```
1. NHH's C++: 2 knights:
```

```
#include <iostream>
   #include <algorithm>
   #include <string>
   #define ll long long
   using namespace std;
   int main() {
       ll n; cin >> n;
       for (int i = 1; i <= n; ++i) {
            11 s = i * i; // number of squares in i x i chessboard
10
            // Cách chọn 2 vị trí bất kỳ cho 2 quân Mã - Tổ hợp
11
            ll total = (s * (s - 1)) / (ll) 2; // phải ép kiểu vì mặc định là (int) 2, không ll (2)
            // Cách chọn 2 vị trí 2 quân Mã có thể tấn công nhau
13
            ll attack = (11) 4 * (i - 1) * (i - 2); // = number of 2x3 or 3x2 rectangles in ixi chessboard
14
            // Cách chọn 2 vị trí không để 2 quân Mã tấn công nhau
15
            ll res = total - attack;
            cout << res << "\n";
17
       }
19
       return 0;
20
   }
21
```

2. PPP's C++: 2 knights:

```
#include <iostream>
    #include <cmath>
    using namespace std;
   using ul = unsigned long;
    ul n; // Số ô bàn cờ
    ul find_ways(ul k) {
        // Số cách tối đa đặt 2 quân mã lên bàn cờ
        ul knights_placements = (pow(k, 2) * (pow(k, 2) - 1)) / 2;
10
11
        // Trường hợp 2 quân mã tấn công nhau trên bàn cờ
12
        ul knights_attacks = 4 * (k - 1) * (k - 2);
13
        return knights_placements - knights_attacks; // Trả về số cách xếp 2 quân mã cuối cùng
15
    }
16
17
    int main() {
18
        cin >> n;
19
        for (ul i = 1; i \le n; ++i)
20
        cout << find_ways(i) << " ";</pre>
21
        return 0;
22
   }
23
```

Problem 26 (CSES Problem Set/two sets). Divide the numbers [n] into 2 sets of equal sum.

Input. The only input line contains an integer $n \in \mathbb{N}^*$.

Output. Print YES, if the division is possible, & NO otherwise. After this, if the division is possible, print an example of how to create the sets. 1st, print the number of elements in the 1st set followed by the elements themselves in a separate line, & then, print the 2nd set in a similar way.

Constraints. $n \in [10^6]$.

Sample.

two_set.inp	two_set.out
7	YES
	4
	$1\ 2\ 4\ 7$
	3
	3 5 6
6	NO

Problem 27 (CSES Problem Set/bit strings). Calculate the number of bit strings of length $n \in \mathbb{N}^*$, e.g., if n = 3, the correct answer is 8, because the possible bit strings are 000,001,010,011,100,101,110,111.

Input. The only input line has an integer $n \in \mathbb{N}^*$.

Output. Print the result modulo $10^9 + 7$.

Constraints. $n \in [10^6]$.

Sample.

bit_string.inp	bit_string.out
3	8

Solution. The number of bit strings of length $n \in \mathbb{N}^{\star}$ is 2^{n} . C++:

1. NHH's C++: bit strings:

```
#include <iostream>
   using namespace std;
2
   #define ll long long
   const ll MOD = 1e9 + 7; // tránh tràn số nguyên lớn
   int main() {
        ll n; cin >> n;
7
        11 \text{ res} = 1;
        // Với mỗi vị trí có 2 cách chọn các bit (0 hoặc 1)
10
        for (ll i = 0; i < n; ++i)
11
        res = (res * 2) \% MOD;
12
        cout << res << "\n";
13
        return 0;
14
   }
15
```

Problem 28 (CSES Problem Set/trailing zeros). Calculate the number of trailing zeros in the factorial n!, e.g., 20! = 243290200817664008 it has 4 trailing zeros.

Input. The only input line has an integer $n \in \mathbb{N}^*$.

Output. Print the number of trailing zeros is n!.

Constraints. $n \in [10^6]$.

Sample.

trailing_zero.inp	trailing_zero.out
20	4

Solution. C++:

```
1. NHH's C++: trailing 0s:
```

```
#include <iostream>
    #include <string>
    #define ll long long
   using namespace std;
    int main() {
6
        11 n; cin >> n;
7
        11 count = 0;
        11 n5 = 5;
        11 \text{ res} = n / n5;
10
11
        while (res != 0) {
12
             count += res;
13
             n5 = n5 * 5;
14
             res = n / n5;
15
16
        cout << count << " ";
17
        return 0;
18
    }
19
```

Problem 29 (CSES Problem Set/coin piles). You have 2 coin piles containing $a, b \in \mathbb{N}$ coins. On each move, you can either remove 1 coin from the left pile & 2 coins from the right pile, or 2 coins from the left pile & 1 coin from the right pile. Efficiently find out if you can empty both the piles.

Input. The 1st input line has an integer t integers $n, m \in \mathbb{N}^*$: the number of tests. After this, there are t lines, each of which has 2 integers $a, b \in \mathbb{N}$: the numbers of coins in the piles.

Output. For each test, print YES if you can empty the piles & NO otherwise.

Constraints. $t \in [10^5], a, b \in \overline{0, 10^9}$.

Sample.

coin_pile.inp	coin_pile.out
3	YES
2 1	NO
2 2	YES
3 3	

Solution. C++:

1. NHH's C++: coin pile:

```
#include <iostream>
   #include <vector>
   #include <algorithm>
   #include <cmath>
   #define ll long long
   using namespace std;
   int main() {
9
        11 t, a, b, sum = 0;
10
        cin >> t;
11
12
        while (t--) {
13
            cin >> a >> b;
            sum = a + b;
15
            if (sum % 3 == 0 \&\& max(a, b) <= 2 * min(a, b)) cout << "YES" << '\n';
16
            else cout << "NO" << '\n';
17
        }
18
        return 0;
19
20
```

Problem 30 (??CSES Problem Set/palindrome reorder). Given a string, recorder its letters in such a way that it becomes a palindrome (i.e., it reads the same forwards & backwards).

Input. The only input line has a string of length $n \in \mathbb{N}^*$ consisting of characters A-Z.

Output. Print a palindrome consisting of the characters of the original string. You may print any valid solution. If there are no solutions, print NO SOLUTION.

Constraints. $n \in [10^6]$.

Sample.

palindrome_reorder.inp	palindrome_reorder.out
AAAACACBA	AACABACAA

Problem 31 (CSES Problem Set/gray code). A Gray code (not Gay code) is a list of all 2^n bit strings of length $n \in \mathbb{N}^*$, where any 2 successive strings differ in exactly 1 bit (i.e., their Hamming distance is 1). Create a Gray code for a given length n.

Input. The only input line has an integer $n \in \mathbb{N}^*$.

Output. Print 2^n lines that describe the Gray code. You can print any valid solution.

Constraints. $n \in [16]$.

Sample.

gray_code.inp	gray_code.out
2	00
	01
	11
	10

Solution. C++:

1. PGL's C++: gray code:

```
#include <iostream>
   #include <vector>
   #include <algorithm>
   using namespace std;
   int main() {
        int n; cin >> n;
        vector<string> gray;
        gray.push_back("0");
        gray.push_back("1");
        for (int i = 2; i <= n; ++i) {
10
            vector<string> res;
11
            for (auto s : gray) res.push_back("0" + s);
            vector<string> rev;
13
            rev = gray;
            reverse(rev.begin(), rev.end());
15
            for (auto s : rev) res.push_back("1" + s);
            gray = res;
17
        }
        for (auto it : gray) cout << it << '\n';</pre>
19
        return 0;
20
   }
21
```

Problem 32 (CSES Problem Set/tower of Hanoi). The Tower of Hanoi game consists of 3 stacks (left, middle, & right) & $n \in \mathbb{N}^*$ round disks of different sizes. Initially, the left stack has all the disks, in increasing order of size from top to bottom. The goal is to move all the disks to the right stack using the middle stack. On each move you can move the uppermost disk from a stack to another stack. In addition, it is not allowed to place a larger disk on a smaller disk. Find a solution that minimizes the number of moves.

Input. The only input line has an integer $n \in \mathbb{N}^*$: the number of of disks.

Output. 1st print an integer $k \in \mathbb{N}^*$: the minimum number of moves. After this, print k lines that describe the moves. Each line has 2 integers $a, b \in [3]$: you move a disk from stack a to stack b.

Constraints. $n \in [16]$.

Sample.

tower_Hanoi.inp	tower_Hanoi.out
2	3
	1 2
	1 3
	2 3

Solution. For a given $n \in \mathbb{N}^*$, the number of moves is $2^n - 1$. C++:

1. NHH's C++: Hanoi tower:

```
#include <iostream>
     #include <vector>
     #include <cmath>
     #define ll long long
     using namespace std;
     void move (ll n, ll l, ll r, ll m) {
         if (n == 1) {
             cout << 1 << " " << r << '\n';
             return;
         }
 11
 12
         // move n-1 disks from left to middle, right as the 'middle man' (by recursion)
 13
         move(n - 1, 1, m, r);
         // move the nth disk (largest disk) from left to right
 15
         cout << 1 << " " << r << '\n';
         // move n-1 disks from middle to right (by recursion)
         move(n - 1, m, r, 1);
 18
     }
 19
 20
     int main() {
 21
         11 n; cin >> n;
 22
         cout << pow(2, n) - 1 << '\n'; // total moves
 23
         move(n, 1, 3, 2);
 24
         return 0;
     }
 26
2. DPAK's C++: Hanoi tower:
     #include <bits/stdc++.h>
     using namespace std;
     vector<pair<int, int>> ans;
     void move(int numDisk, int start, int temp, int target) {
  6
         if (numDisk == 1) {
             ans.push_back({start, target});
             return;
         }
         move(numDisk - 1, start, target, temp);
 10
         move(1, start, temp, target);
 11
         move(numDisk - 1, temp, start, target);
 12
     }
 13
 14
     int main() {
         int n; cin >> n;
 16
         move(n, 1, 2, 3);
         cout << ans.size() << '\n';</pre>
 18
         for (auto [s, t] : ans) {
 19
             cout << s << " " << t << '\n';
 20
         }
 21
     }
 22
3. DNDK's C++: Hanoi tower:
     #include <iostream>
     #include <cmath>
     using namespace std;
     void Hanoi(int x, int A, int B, int C) {
         if (x == 1) {
```

```
cout << A << " " << C << "\n";
            return;
        }
        Hanoi(x - 1, A, C, B);
10
        cout << A << " " << C << "\n";
11
        Hanoi(x - 1, B, A, C);
12
   }
13
   int main() {
        int n;
15
        cin >> n;
16
        double x = pow(2, n) - 1;
17
        cout << x << "\n";
18
        Hanoi(n, 1, 2, 3);
19
        return 0;
20
   }
21
```

Resources - Tài nguyên.

1. Wikipedia/tower of Hanoi.

Problem 33 (CSES Problem Set/creating strings). Given a string, generate all different strings that can be created using its characters.

Input. The only input line has a string of length $n \in \mathbb{N}^*$. Each character is between a-z.

Output. 1st print an integer k: the number of strings. Then print k lines: the strings in alphabetical order.

Constraints. $n \in [8]$.

Sample.

creating_string.inp	creating_string.out
aabac	20
	aaabc
	aaacb
	aabac
	aabca
	aacab
	aacba
	abaac
	abaca
	abcaa
	acaab
	acaba
	acbaa
	baaac
	baaca
	bacaa
	bcaaa
	caaab
	caaba
	cabaa
	cbaaa

Problem 34 (CSES Problem Set/apple division). There are $n \in \mathbb{N}^*$ apples with known weights. Divide the apples into 2 groups so that the difference between the weights of the groups is minimal.

Input. The 1st input line has an integer $n \in \mathbb{N}^*$: the number of apples. The next line has n integers p_1, p_2, \ldots, p_n : the weight of each apple.

Output. Print 1 integer: the minimum difference between the weights of the groups.

Constraints. $n \in [20], p_i \in [10^9]$.

Sample.

apple_division.inp	apple_division.out
5	1
3 2 7 4 1	

Explanation. Group 1 has weights 2,3,4 (total weight 9), & group 2 has weights 1,7 (total weight 8).

Solution. C++:

1. DPAK's C++: apple division

```
#include <bits/stdc++.h>
    #define ll long long
    using namespace std;
    vector<ll> a;
    11 n;
    signed main() {
        cin >> n;
9
        a.resize(n);
10
        for (ll i = 1; i \le n; ++i) cin >> a[i - 1];
11
        ll mask = 1 << n;
        vector<11> groupA, groupB;
13
        11 minWeight = INT_MAX;
        11 \text{ gA} = 0, \text{ gB} = 0;
15
        for (ll i = 0; i < mask; ++i) {
16
             11 \text{ sumA} = 0, \text{ sumB} = 0;
             for (11 j = 0; j < n; ++j) {
18
                  if (i & (1 << j)) sumA += a[j];
19
                 else sumB += a[j];
             }
             if (abs(sumA - sumB) < minWeight) {</pre>
22
                 groupA.clear(); groupB.clear();
23
                 for (ll j = 0; j < n; ++j)
24
                 if (i & (1 << j)) groupA.push_back(a[j]);</pre>
                 else groupB.push_back(a[j]);
26
                 minWeight = abs(sumA - sumB);
                 gA = sumA, gB = sumB;
             }
        }
30
        11 \text{ ans} = abs(gA - gB);
31
        cout << ans << '\n';</pre>
32
33
        for (ll a : groupA) {
34
             cout << a << " ";
35
        }
        cout << '\n';
37
        for (ll b : groupB) {
38
             cout << b << " ";
39
        }
        */
41
   }
42
```

Problem 35 (CSES Problem Set/chessboard & queens). Place 8 queens on a chessboard so that no 2 queens are attacking each other. As an additional challenge, each square is either free or reserved, & you can only place queens on the free squares. However, the reserved squares do not prevent queens from attacking each other. Count the number of possible ways are there to place the queens.

Input. The input line has 8 lines, & each of them has 8 characters. Each square is either free . or reversed ★.

Output. Print 1 integer: the number of ways you can place the queens.

Constraints. $n \in [10^5], m \in [100], x_i \in \{0, 1, \dots, m\}.$

Sample.

chessboard_queen.inp	chessboard_queen.out
	65
*	
**.	
*	

Problem 36 (CSES Problem Set/Raab game I). Consider a 2 play game where each player has $n \in \mathbb{N}^*$ cards numbered $1, 2, \ldots, n$. On each turn both players place 1 of their cards on the table. The player who placed the higher card gets 1 point. If the cards are equal, neither player gets a point. The game continues until all cards have been played. You are given the number of cards $n \in \mathbb{N}$ the players's scores at the end of the game, $a, b \in \mathbb{N}$. Give an example of how the game could have played out.

Input. The 1st input line contains 1 integer $t \in \mathbb{N}^*$: the number of tests. Then there are t lines, each with 3 integers $n, a, b \in \mathbb{N}^*$.

Output. For each test case print YES if there is a game with the given outcome & NO otherwise. If the answer is YES, print an example of 1 possible game. Print 2 line representing the order in which the players place their cards. You can give any valid example.

Constraints. $t \in [10^3], n \in [100], a, b \in \overline{0, n}$.

Sample.

Raab_game I.inp	Raab_game I.out
5	YES
4 1 2	1 4 3 2
2 0 1	2 1 3 4
3 0 0	NO
2 1 1	YES
4 4 1	1 2 3
	1 2 3
	YES
	1 2
	2 1
	NO

Solution. C++:

1. DAK's C++: Raab game I:

```
#include <bits/stdc++.h>
   using namespace std;
   /*
   (\_/)
   (**)
   / ?? <3
   */
   void IOfile()
   {
9
       ios_base::sync_with_stdio(false);
10
       cin.tie(NULL);
11
       freopen("b.inp", "r", stdin);
12
       freopen("b.out", "w", stdout);
   }
14
```

```
int n, a, b;
    int solve()
16
17
        cin >> n >> a >> b;
18
        // n = 1
19
        vector <int> ans1;
20
        vector <int> ans2;
21
        if (n == 1)
        {
23
             if (a + b == 0) {
                 cout << "YES" << '\n';
25
                 cout << 1 << '\n' << 1 << '\n';
26
                 return 0;
27
             }
28
             else {
29
                 cout << "NO" << '\n';
                 return 0;
31
             }
32
        }
33
        // n = 2
34
        if (n == 2)
36
             if (a + b == 1 || a == 2 || b == 2) {
37
                 cout << "NO" << '\n';
38
                 return 0;
             }
40
             else {
41
                 cout << "YES" << '\n';
42
                 if (a == 0 \&\& b == 0) {
43
                      cout << 1 << " " << 2 << '\n';
44
                      cout << 1 << " " << 2 << '\n';
                     return 0;
46
                 }
                 else {
48
                      cout << 2 << " " << 1 << '\n';
49
                      cout << 1 << " " << 2 << '\n';
                      return 0;
51
                 }
             }
53
        }
55
        if (a + b > n) {
57
             cout << "NO" << '\n';
58
             return 0;
59
        if (a == 0 \&\& b == 0) {
61
             cout << "YES" << '\n';
             for (int i = 1; i \le n; i++) cout << i << " "; cout <math><< ' \setminus n';
63
             for (int i = 1; i <= n; i++) cout << i << " "; cout << '\n';
            return 0;
65
        }
66
        if (a + b == n)
67
68
             if (a == 0 || b == 0) {
                 cout << "NO" << '\n';
70
                 return 0;
71
             }
72
             else {
```

```
cout << "YES" << '\n';
74
                  {
75
76
                       for (int i = 1; i <= n; i++) {
77
                           int a2 = i + a;
78
                           if (a2 > n) a2 -= n;
                           ans1.push_back(i);
80
                           ans2.push_back(a2);
                       }
82
                       for (int x : ans1) cout << x << " ";
                       cout << '\n';
84
                       for (int x : ans2) cout << x << " ";
85
                       cout << '\n';</pre>
                  }
87
                  return 0;
88
             }
89
         }
90
         if (a == 0 || b == 0) {
91
             cout << "NO" << '\n';
92
             return 0;
93
         }
         cout << "YES" << '\n';
95
         int s = a + b;
         for (int i = 1; i <= s; i++) {
97
             int a2 = i + a;
             if (a2 > s) a2 -= s;
99
             ans1.push_back(i);
100
             ans2.push_back(a2);
101
         }
102
         for (int i = s + 1; i \le n; i++)
103
         {
104
             ans1.push_back(i);
105
             ans2.push_back(i);
106
107
         for (int x : ans1) cout << x << " ";
108
         cout << '\n';</pre>
109
         for (int x : ans2) cout << x << " ";
110
         cout << '\n';
111
         return 0;
112
    }
113
    int main()
114
    {
115
         // IOfile();
116
         int T;
         cin >> T;
118
         while (T--)
119
         solve();
120
         return 0;
121
    }
122
```

Problem 37 (CSES Problem Set/mex grid construction). Construct an $n \times n$ grid where each square has the smallest nonnegative integer that does not appear to the left on the same row or above on the same column.

Input. The only input line has an integer $n \in \mathbb{N}^*$.

Output. Print the grid according to the example.

Constraints. $n \in [100]$.

Sample.

62

mex_grid_construction.inp	mex_grid_construction.out
5	
	0 1 2 3 4
	1 0 3 2 5
	2 3 0 1 6
	3 2 1 0 7
	4 5 6 7 0

Solution. C++:

1. DPAK's C++: mex grid construction:

```
#include <bits/stdc++.h>
   using namespace std;
   signed main() {
        int n; cin >> n;
        vector<vector<int>> a(n + 1, vector<int>(n + 1, -1));
6
        for (int i = 1; i <= n; ++i) {
            for (int j = 1; j \le n; ++j) {
                int num = 0;
10
                set<int> ms;
11
                for (int r = 1; r \le n; ++r)
12
                if (a[r][j] != -1) ms.insert(a[r][j]);
                for (int c = 1; c \le n; ++c)
14
                if (a[i][c] != -1) ms.insert(a[i][c]);
15
16
                for (auto it : ms)
17
                if (it == num) ++num;
                a[i][j] = num;
19
            }
        }
21
22
        for (int i = 1; i \le n; ++i)
23
        for (int j = 1; j \le n; ++j) cout << a[i][j] << " ";
        cout << '\n';
25
   }
```

Problem 38 (CSES Problem Set/knight moves grid). There is a knight on a $n \times n$ chessboard. For each square, print the minimum number of moves the knight needs to do to reach the top-left corner.

Input. The only input line has an integer $n \in \mathbb{N}^*$.

Output. Print the minimum number of moves for each square.

Constraints. $n \in \overline{4,10^3}$.

Sample.

knight_move_grid.inp	knight_move_grid.out
8	0 3 2 3 2 3 4 5
	$3\ 4\ 1\ 2\ 3\ 4\ 3\ 4$
	$2\ 1\ 4\ 3\ 2\ 3\ 4\ 5$
	$3\ 2\ 3\ 2\ 3\ 4\ 3\ 4$
	$2\; 3\; 2\; 3\; 4\; 3\; 4\; 5$
	$3\ 4\ 3\ 4\ 3\ 4\ 5\ 4$
	$4\ 3\ 4\ 3\ 4\ 5\ 4\ 5$
	$5\ 4\ 5\ 4\ 5\ 4\ 5\ 6$

Problem 39 (CSES Problem Set/grid coloring I). You are given an $n \times m$ grid where each cell contains 1 character A, B, C or D. For each cell, you must change the character to A, B, C or D. The new character must be different from the old one. Change the characters in every cell s.t. no 2 adjacent cells have the same character.

Input. The 1st input line has 2 integers $n, m \in \mathbb{N}^*$: the number of rows & columns. The next n lines each have m characters: the description of the grid.

Output. Print n lines each with m characters: the description of the final grid. You may print any valid solution. If no solution exists, just print IMPOSSIBLE.

Constraints. $m, n \in [500]$.

Sample.

<pre>grid_coloring_I.inp</pre>	<pre>grid_coloring_I.out</pre>
3 4	CDCD
AAAA	DCDC
BBBB	ABAB
CCDD	

Problem 40 (CSES Problem Set/digit queries). Consider an infinite string that consists of all positive integers in increasing order: 12345678910111213141516171819202122232425.... Process $q \in \mathbb{N}^*$ queries of the form: what is the digit at position $k \in \mathbb{N}^*$ in the string?

Input. The 1st input line has an integer $q \in \mathbb{N}^*$: the number of queries. After this, there are q lines that describe the queries. Each line has an integer k: a 1-indexed position in the string.

Output. For each query, print the corresponding digit.

Constraints. $q \in [10^3], k \in [10^{18}].$

Sample.

digit_query.inp	digit_query.out
3	7
7	4
19	1
12	

Problem 41 (CSES Problem Set/string reorder). Reorder the characters of a string so that no 2 adjacent characters are the same. What is the lexicographically minimal such string?

Input. The only input line has a string of length $n \in \mathbb{N}^*$ consisting of characters A-Z.

Output. Print the lexicographically minimal reordered string where no 2 adjacent characters are the same. If it is not possible to create such a string, print $\neg 1$.

Constraints. $n \in [10^6]$.

Sample.

string_reorder.inp	string_reorder.out
HATTIVATTI	AHATITITVT

Problem 42 (CSES Problem Set/grid path description). There are 88418 paths in a 7 × 7 grid from the upper-left square to the lower-left square. Each path corresponds to a 48-character description consisting of characters D, U, L, R (down, up, left, right, resp.). You are given a description of a path which may also contains characters? (any direction). Calculate the number of paths that match the description.

Input. The only input line has a 48-character string of characters?, D, U, L, R.

Output. Print 1 integer: the total number of paths.

Sample.

grid_path_description.inp	grid_path_description.out
??????R??????U??????????????????????LD????D?	201

Chương 13

Array & Sequence: Mång & Dãy

Problem 43 (IMO2007P1). Real numbers a_1, a_2, \ldots, a_n are given. For each $i \in [n]$ define

$$d_i \coloneqq \max_{j \in [i]} - \min_{j \in \overline{i,n}} a_j = \max_{1 \le j \le i} a_j - \min_{i \le j \le n} a_j, \ d = \max_{i \in [n]} d_i.$$

(a) Prove that, for any real numbers $x_1 \leq x_2 \leq \cdots \leq x_n$,

$$\max_{i \in [n]} |x_i - a_i| \ge \frac{d}{2}.$$

(b) Show that there are real numbers $x_1 \leq x_2 \leq \cdots \leq x_n$ s.t. equality holds.

Bài toán 6 ([VL24], 1., p. 10, IMO2007P1). Cho trước n số thực a_1, a_2, \ldots, a_n . Với mỗi $i \in [n]$, đặt

$$d_i \coloneqq \max_{j \in [i]} - \min_{j \in \overline{i,n}} a_j = \max_{1 \le j \le i} a_j - \min_{i \le j \le n} a_j, \ d = \max_{i \in [n]} d_i.$$

(a) Chứng minh: với n số thực $x_1 \le x_2 \le \cdots \le x_n$ tùy ý,

$$\max_{i \in [n]} |x_i - a_i| \ge \frac{d}{2}.$$

(b) Chỉ ra tồn tại n số thực $x_1 \leq x_2 \leq \cdots \leq x_n$ sao cho bất đẳng thức cuối trở thành đẳng thức.

Problem 44. Let $n \in \mathbb{N}^*$ & let $a_1, \ldots, a_k \in [n], k \geq 2$ s.t. $n | a_i(a_{i+1} - 1), \forall i \in [k-1]$. Prove that $n \not\mid a_k(a_1 - 1)$.

Bài toán 7 ([VL24], 1., p. 14, IMO2009P1). Cho $n \in \mathbb{N}^*$, $x\acute{e}t\ a_1, \ldots, a_k \in [n]$ là $k \in \mathbb{N}, k \geq 2$ số $nguyễn\ khác\ nhau\ sao\ cho$ $a_i(a_{i+1}-1)$: $n, \forall i \in [k-1]$. Chứng $minh\ a_k(a_1-1)$ / n.

Bài toán 8 (CP version of IMO2009P1). Cho $n \in \mathbb{N}^*$ được nhập vào. Đếm số tất cả các trường hợp có thể của dãy số $a_1, \ldots, a_k \in [n]$ là $k \in \mathbb{N}, k \geq 2$ số nguyên khác nhau sao cho $a_i(a_{i+1}-1)$: $n, \forall i \in [k-1], &$ xét tính chia hết của $a_k(a_1-1)$ cho n. (a) Sử dụng duyệt vét cạn thông thường. (b) Sử dụng phân tích thừa số nguyên tố.

Problem 45 (IMO2009P3). Suppose that $\{s_n\}_{n=1}^{\infty}$ is a strictly increasing sequence of positive integers s.t. the subsequences $\{s_s\}_{n=1}^{\infty}, \{s_{s_n+1}\}_{n=1}^{\infty}$ are both arithmetic progressions. Prove that the sequence $\{s_n\}_{n=1}^{\infty}$ is itself an arithmetic progression.

Bài toán 9 ([VL24], 1., p. 14, IMO2009P3). Cho biết $\{s_n\}_{n=1}^{\infty}$ là dãy tăng thực sự gồm các số nguyên dương sao cho 2 đãy con $\{s_{s_n}\}_{n=1}^{\infty}$, $\{s_{s_n+1}\}_{n=1}^{\infty}$ đều tạo thành 2 cấp số cộng. Chứng minh dãy $\{s_n\}_{n=1}^{\infty}$ cũng là cấp số cộng.

Bài toán 10 (CP version of IMO2009P3). (a) Minh họa cho bài toán IMO2009P3, e.g., khởi tạo $\{s_n\}_{n=1}^{\infty} = \{n\}_{n=1}^{\infty}$, rồi điều chỉnh bằng cách tăng giảm các số hạng s_n để 2 đãy con $\{s_{s_n}\}_{n=1}^{\infty}$, $\{s_{s_n+1}\}_{n=1}^{\infty}$ đều tạo thành 2 cấp số cộng, sau đó kiểm tra dãy ban đầu có phải là cấp số cộng không. (b) Bài toán có mở rộng ra cho cấp số nhân được không?

Problem 46 (IMO2010P6). Let $\{a_n\}_{n=1}^{\infty} \subset (0,\infty)$ be a sequence of positive real numbers. Suppose that for some positive integer s, we have $a_n = \max\{a_i + a_{n-i}; 1 \le i \le n-1\}$, $\forall n > s$. Prove that there exist $l \in [s], N \in \mathbb{N}^{\star}$ s.t. $a_n = a_l + a_{n-l}, \forall n \ge N$.

Bài toán 11 ([VL24], 6., p. 16, IMO2010P6). Giả sử $\{a_n\}_{n=1}^{\infty} \subset (0, \infty)$ là 1 dãy số thực dương. Giả sử với số nguyên dương s cố định nào đó, ta có $a_n = \max\{a_i + a_{n-i}; 1 \le i \le n-1\}$, $\forall n > s$. Chứng minh tồn tại $l \in [s], N \in \mathbb{N}^*$ sao cho $a_n = a_l + a_{n-l}$, $\forall n \ge N$.

Bài toán 12 (CP version of IMO2010P6). Viết thuật toán & chương trình C/C++, Pascal, Python để minh hoạ IMO2010P6.

Chương 14

Sorting & Searching – Sắp Xếp & Tìm Kiếm

Problem 47 (CSES Problem Set/distinct numbers). You are given a list of $n \in \mathbb{N}^*$ integers. Calculate the number of distinct values in the list.

Input. The 1st input line has an integer $n \in \mathbb{N}^*$: the number of values. The 2nd line has n integers $x_1, x_2, \ldots, x_n \in \mathbb{Z}$.

Output. Print 1 integer: the

Constraints. $n \in [2 \cdot 10^5], m \in [100], x_i \in [10^9].$

Sample.

distinct_number.inp	distinct_number.out
5	2
2 3 2 2 3	

Problem 48 (CSES Problem Set/apartments). There are $n \in \mathbb{N}^*$ applicants \mathcal{E} $m \in \mathbb{N}^*$ free apartments. Distribute the apartments so that as many applicants as possible will get an apartment. Each applicant has a desired apartment size, \mathcal{E} they will accept any apartment whose size is close enough to the desired size.

Input. The 1st input line has 3 integers $n, m, k \in \mathbb{N}^*$: the number of applicants, the number of apartments, & the maximum allowed difference. The next line contains n integers a_1, a_2, \ldots, a_n : the desired apartment size of each applicant. If the desired size of an applicant is x, they will accept any apartment whose size is between x - k & x + k. The last line contains m integers b_1, b_2, \ldots, b_m : the size of each apartment.

Output. Print 1 integer: the number of applicants who will get an apartment.

Constraints. $m, n \in [2 \cdot 10^5], k \in \overline{0, 10^9}, a_i, b_i \in [10^9], \forall i \in [n], \forall j \in [m].$

Sample.

apartment.inp	apartment.out
4 3 5	2
60 45 80 60	
30 60 75	

Problem 49 (CSES Problem Set/Ferris wheel). There are $n \in \mathbb{N}^*$ children who want to go to a Ferris wheel. Find a gondola for each child. Each gondola may have 1 or 2 children on it, \mathcal{E} in addition, the total weight in a gondola may not exceed x. You know the weight of every child. What is the minimum number of gondolas needed for the children?

Input. The 1st input line contains 2 integers $n, x \in \mathbb{N}^*$: the number of children \mathcal{E} the maximum allowed weight. The next line contains n integers p_1, p_2, \ldots, p_n : the weight of each child.

Output. Print 1 integer: the minimum number of gondolas.

Constraints. $n \in [2 \cdot 10^5], m \in [100], x \in [10^9], p_i \in [x], \forall i \in [n].$

Sample.

Ferris_wheel.inp	Ferris_wheel.out
4 10	3
7 2 3 9	

Problem 50 (CSES Problem Set/concert tickets). There are $n \in \mathbb{N}^*$ concert tickets available, each with a certain price. Then, $m \in \mathbb{N}^*$ customers arrive, one after another. Each customer announces the maximum price they are willing to pay for a ticket, \mathcal{E} after this, they will get a ticket with the nearest possible price s.t. it does not exceed the maximum price.

Input. The 1st input line contains 2 integers $n, m \in \mathbb{N}^*$: the number of tickets & the number of customers. The next line contains n integers h_1, h_2, \ldots, h_n : the price of each ticket. The last line contains m integers t_1, t_2, \ldots, t_m : the maximum price for each customer in the order they arrive.

Output. Print, for each customer, the price that they will pay for their ticket. After this, the ticket cannot be purchased again. If a customer cannot get any ticket, print -1.

Constraints. $m, n \in [2 \cdot 10^5], h_i, t_j \in [10^9], \forall i \in [n], \forall j \in [m].$

Sample.

concert_ticket.inp	concert_ticket.out
5 3	3
5 3 7 8 5	8
483	-1

Problem 51 (CSES Problem Set/restaurant customers). You are given the arrival \mathcal{E} leaving times of $n \in \mathbb{N}^*$ customers in a restaurant. What was the maximum number of customers in the restaurant at any time?

Input. The 1st input line has an integer $n \in \mathbb{N}^*$: the number of customers. After this, there are n lines that describe the customers. Each line has 2 integers $a, b \in \mathbb{N}^*$: the arrival & leaving times of a customer. You may assume that all arrival & leaving times are distinct.

Output. Print 1 integer: the maximum number of customers.

Constraints. $n \in [2 \cdot 10^5], 1 \le a < b \le 10^9$.

Sample.

restaurant_customer.inp	restaurant_customer.out
3	2
5 8	
2 4	
3 9	

Problem 52 (CSES Problem Set/movie festival). In a movie festival $n \in \mathbb{N}^*$ movies will be shown. You know the starting \mathfrak{C} ending time of each movie. What is the maximum number of movies you can watch entirely?

Input. The 1st input line has an integer $n, m \in \mathbb{N}^*$: the number of movies. After this, there are n lines that describe the movies. Each line has 2 integers $a, b \in \mathbb{N}$: the starting \mathscr{C} ending times of a movie.

Output. Print 1 integer: the maximum number of movies.

Constraints. $n \in [2 \cdot 10^5], 1 \le a < b \le 10^9$.

Sample.

movie_festival.inp	movie_festival.out
3	2
3 5	
4 9	
5 8	

Problem 53 (CSES Problem Set/sum of 2 values). You are given an array of $n \in \mathbb{N}^*$ integers. Find 2 values (at distinct positions) whose sum is x.

Input. The 1st input line has 2 integers $n, x \in \mathbb{N}^*$: the array size \mathcal{E} the target sum. The 2nd line has n integers a_1, a_2, \ldots, a_n : the array values.

Output. Print 2 integers: the positions of the values. If there are several solutions, you may print any of them. If there are no solutions, print IMPOSSIBLE.

Constraints. $n \in [2 \cdot 10^5], x, a_i \in [10^9], \forall i \in [n].$

Sample.

sum_2_value.inp	sum_2_value.out
4 8	2 4
2 7 5 1	

Problem 54 (CSES Problem Set/maximum subarray sum). Given an array of $n \in \mathbb{N}^*$ integers. Find the maximum sum of values in a contiguous, nomepty subarray.

Input. The 1st input line has an integer $n \in \mathbb{N}^*$: the size of the array. The 2nd line has n integers $x_1, x_2, \ldots, x_n \in \mathbb{Z}$: the array values.

Output. Print 1 integer: the maximum subarray sum.

Constraints. $n \in [2 \cdot 10^5], x_i \in \overline{-10^9, 10^9}$.

Sample.

max_subarray_sum.inp	max_subarray_sum.out
8	9
-1 3 -2 5 3 -5 2 2	

Problem 55 (CSES Problem Set/stick lengths). There are $n \in \mathbb{N}^*$ sticks with some lengths. Modify the sticks so that each stick has the same length. You can either lengthen \mathfrak{C} shorten each stick. Both operations cost x where x is the difference between the new \mathfrak{C} original length. What is the minimum total cost?

Input. The 1st input line contains an integer $n \in \mathbb{N}^*$: the number of sticks. Then there are n integers: p_1, p_2, \ldots, p_n : the lengths of the sticks.

Output. Print 1 integer: the minimum total cost.

Constraints. $n \in [2 \cdot 10^5], p_i \in [10^9], \forall i \in [n].$

Sample.

stick_length.inp	stick_length.out
5	6
2 3 1 5 2	

Problem 56 (CSES Problem Set/missing coin sum). You have $n \in \mathbb{N}^*$ coins with positive integer values. What is the smallest sum you cannot create using a subset of the coins?

Input. The 1st input line has an integer $n \in \mathbb{N}^*$: the number of coins. the 2nd line has n integers x_1, x_2, \ldots, x_n : the value of each coin.

Output. Print 1 integer: the smallest coin sum.

Constraints. $n \in [2 \cdot 10^5], x_i \in [10^9], \forall i \in [n].$

Sample.

missing_coin_sum.inp	missing_coin_sum.out
5	6
29127	

Problem 57 (CSES Problem Set/collecting numbers). You are given an array that contains each number $\in [n]$ exactly once. Collect the numbers from 1 to n in increasing order. On each round, you go through the array from left to right & collect as many numbers as possible. What will be the total number of rounds?

Input. The 1st input line has an integer $n \in \mathbb{N}^*$: the array size. The next line has n integers x_1, x_2, \ldots, x_n : the numbers in the array.

Output. Print 1 integer: the number of rounds.

Constraints. $n \in [2 \cdot 10^5], m \in [100], x_i \in \{0, 1, \dots, m\}.$

Sample.

collecting_number.inp	collecting_number.out
5	3
4 2 1 5 3	

Problem 58 (CSES Problem Set/collecting numbers II). You are given an array that contains each number $\in [n]$ exactly once. Collect the numbers from 1 to n in increasing order. On each round, you go through the array from left to right & collect as many numbers as possible. Giving $m \in \mathbb{N}^*$ operations that swap 2 numbers in the array, report the number of rounds after each operation.

Input. The 1st input line has 2 integers $n, m \in \mathbb{N}^*$: the array size & the number of operations. The next line has n integers x_1, x_2, \ldots, x_n : the numbers in the array. Finally, there are m lines that describe the operations. Each line has 2 integers $a, b \in \mathbb{N}^*$: the numbers at positions a, b are swapped.

Output. Print m integers: the number of rounds after each swap.

Constraints. $m, n \in [2 \cdot 10^5], a, b \in [n]$.

Sample.

collecting_number_II.inp	collecting_number_II.out
5 3	2
4 2 1 5 3	3
2 3	4
1 5	
2 3	

Problem 59 (CSES Problem Set/playlist). You are given a playlist of a radio station since its establishment. The playlist has a total of $n \in \mathbb{N}^*$ songs. What is the longest sequence of successive songs where each song is unique?

Input. The 1st input line contains an integer $n \in \mathbb{N}^*$: the number of songs. The next line has n integers k_1, k_2, \ldots, k_n : the id number of each song.

Output. Print the length of the longest sequence of unique songs.

Constraints. $n \in [2 \cdot 10^5], m \in [100], k_i \in [10^9], \forall i \in [n].$

Sample.

playlist.inp	playlist.out
8	5
$1\ 2\ 1\ 3\ 2\ 7\ 4\ 2$	

Problem 60 (CSES Problem Set/towers). You are given $n \in \mathbb{N}^*$ cubes in a certain order. Build towers using them. Whenever 2 cubes are 1 on top of the other, the upper cube must be smaller than the lower cube. You must process the cubes in the given order. You can always either place the cube on top of an existing tower, or begin a new tower. What is the minimum possible number of towers?

Input. The 1st input line contains an integer $n \in \mathbb{N}^*$: the number of cubes. The next line contains n integers k_1, k_2, \ldots, k_n : the sizes of the cubes.

Output. Print 1 integer: the minimum number of towers.

Constraints. $n \in [2 \cdot 10^5], k_i \in [10^9].$

Sample.

tower.inp	tower.out
5	2
3 8 2 1 5	

Problem 61 (CSES Problem Set/traffic lights). There is a street of length x whose positions are numbered 0, 1, ..., x. Initially there are no traffic lights, but $n \in \mathbb{N}^*$ sets of traffic lights are added to the street one after another. Calculate the length of the longest passage without traffic lights after each addition.

Input. The 1st input line has 2 integers $x, n \in \mathbb{N}^*$: the length of the street \mathcal{E} the number of sets of traffic lights. Then, the next line contains n integers p_1, p_2, \ldots, p_n : the position of each set of traffic lights. Each position is distinct.

Output. Print the length of the longest passage without traffic lights after each addition.

Constraints. $x \in [10^9], n \in [2 \cdot 10^5], p_i \in [x-1], \forall i \in [n].$

Sample.

traffic_light.inp	traffic_light.out
8 3	5 3 3
3 6 2	

Problem 62 (CSES Problem Set/distinct values subarrays). Given an array of $n \in \mathbb{N}^*$ integers, count the number of subarrays where each element is dictinct.

Input. The 1st input line has an integer $m \in \mathbb{N}^*$: the array size. The 2nd line has n integers x_1, x_2, \ldots, x_n : the array contents.

Output. Print the number of subarrays with distinct elements.

Constraints. $n \in [2 \cdot 10^5], m \in [100], x_i \in [10^9], \forall i \in [n].$

Sample.

distinct_values_subarray.inp	distinct_values_subarray.out
4	8
1 2 1 3	

Explanation. The subarrays are [1] (2 times), [2], [3], [1, 2], [1, 3], [2, 1], [2, 1, 3].

Problem 63 (CSES Problem Set/distinct values subsequences). Given an array of $n \in \mathbb{N}^*$ integers, count the number of subsequences where each element is distinct.

Input. The 1st input line has an integer $n \in \mathbb{N}^*$: the array size. The 2nd line has n integers x_1, x_2, \ldots, x_n : the array contents.

Output. Print the number of subsequences with distinct elements. The answer can be large, so print it modulo $10^9 + 7$.

Constraints. $n \in [2 \cdot 10^5], m \in [100], x_i \in [10^9], \forall i \in [n].$

Sample.

distinct_value_subsequence.inp	distinct_value_subsequence.out
4	11
1 2 1 3	

Explanation. The subsequences are [1] (2 times), [2], [3], [1, 2], [1, 3] (2 times), [2, 1], [2, 3], [1, 2, 3], [2, 1, 3].

Problem 64 (CSES Problem Set/Josephus problem I). Consider a game where there are $n \in \mathbb{N}^*$ children (numbered 1, 2, ..., n) in a circle. During the game, every other child is removed from the circle until there are no children left. In which order will the children be removed?

Input. The only input line has an integer $n \in \mathbb{N}^*$.

Output. Print n integers: the removal order.

Constraints. $n \in [2 \cdot 10^5]$.

Sample.

Josephus_problem_I.inp	Josephus_problem_I.out
7	2 4 6 1 5 3 7

Solution. C++:

1. VNTA's C++: Josephus problem I:

```
#include <bits/stdc++.h>
     using namespace std;
  2
  3
     long long solve(long long n, long long k) {
         if (n == 3 && k == 2) return 1;
         if (n == 1) return 1;
         if (k \le n / 2) return (2 * k);
         long long new_n = n / 2;
         long long new_k = k - (n + 1) / 2;
         long long res = solve(new_n, new_k);
 10
         if (n \% 2 == 0) return 2 * res - 1;
 11
         else return 2 * res + 1;
 12
     }
 13
     int main() {
 15
         ios_base::sync_with_stdio(false);
 16
         cin.tie(0); cout.tie(0);
 17
         int q;
 18
         cin >> q;
 19
         long long n, k;
 20
         while (q--) {
 21
             cin >> n >> k;
 22
             cout << solve(n, k) << "\n";
 23
         }
 24
     }
 25
2. NLDK's C++: Josephus problem I:
     #include<bits/stdc++.h>
     #pragma GCC optimize ("03")
     #pragma GCC optimize ("unroll-loops")
     #define Sanic_speed ios_base::sync_with_stdio(false);cin.tie(NULL);cout.tie(NULL);
     #define Ret return 0;
     #define ret return;
     #define all(x) x.begin(), x.end()
     #define el "\n";
     #define elif else if
     #define ll long long
 10
     #define fi first
     #define se second
     #define pb push_back
     #define pops pop_back
     #define cYES cout << "YES" << "\n";</pre>
 15
     #define cNO cout << "NO" << "\n";
     #define cYes cout << "Yes" << "\n";</pre>
     #define cNo cout << "No" << "\n";</pre>
     #define frs(i, a, b) for(int i = a; i < b; ++i)
     #define fre(i, a, b) for(int i = a; i \le b; ++i)
     #define wh(t) while (t--)
 21
     #define SORAI int main()
     using namespace std;
 23
     typedef unsigned long long ull;
 25
     int Looping(int n, int k) {
         if (n == 1) {return 1;}
 27
         if ((n + 1) / k \ge 2) {
 28
             if (k * 2 > n) {return 2 * k % n;}
 29
             else {return 2 * k;}
 30
 31
         int temp = Looping(n / 2, k - (n + 1) / 2);
```

```
if (n & 1) {return 2 * temp + 1;}
 33
         else {return 2 * temp - 1;}
 34
     }
 35
 36
     void solve() {
 37
         int n, k;
         cin >> n >> k;
 39
         cout << Looping(n, k) << el</pre>
     }
 41
     /*
 42
     1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 43
 44
     1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 45
     1 3 5 7 9 11 13 15 17 19
     1 5 9 13 17
     1 9 17
     9
     */
 50
     SORAI {
 51
         Sanic_speed
 52
         int t; cin >> t;
         wh(t) {solve();}
 54
     }
3. NHT's C++: Josephus problem I:
     #include <bits/stdc++.h>
     #define ll long long
     using namespace std;
     ll fix(ll n, ll k) {
         if (n == 1) return 1;
  6
         if (k \le ((n + 1) / 2)) {
              if (2 * k > n) return (2 * k) % n;
              else return 2 * k;
  9
 10
         ll tmp = fix(n / 2, k - (n + 1) / 2);
 11
         if (n \% 2 == 1) return 2 * tmp + 1;
 12
         else return 2 * tmp - 1;
 13
     }
 14
 15
     int main() {
 16
         ios::sync_with_stdio(0);
 17
         cin.tie(0);
 18
         int q;
 19
         cin >> q;
 20
         while (q--) {
 21
              ll n, k;
 22
              cin >> n >> k;
              cout << fix(n, k) << "\n";
 24
         }
 25
         return 0;
     }
```

Mở rộng bài toán trên từ 2 thành $k \in \mathbb{N}^*$:

Bài toán 13 (Áp dụng danh sách liên kết vòng, [Thư+21], p. 275). 1 đoàn thám hiểm gồm $n \in \mathbb{N}^*$ thành viên cần phải vượt qua 1 khu rừng rậm. Chẳng may, khi đi đến giữa rừng thì họ bị bộ lạc ăn thịt người bắt giữ. Bộ lạc này quyết định mỗi ngày sẽ ăn thịt 1 người trong đoàn. Cách mà bộ lạc chọn người là họ sẽ sắp xếp n người thành 1 vòng tròn. Họ sẽ bắt đầu đếm lần lượt

từ người thứ nhất trở đi cho đến $k \in \mathbb{N}^*$ người. Khi đó người thứ k sẽ bị giết thịt. Ngày hôm sau, họ sẽ tiếp tục đếm lại từ người thứ k+1 (người đứng ngay sau người k hôm qua) $\mathcal E$ đếm lần lượt cho đến k $\mathcal E$ chọn người mới này. Quá trình đếm được thực hiện trên vòng tròn (i.e., sau người cuối cùng sẽ là người đầu tiên) $\mathcal E$ mỗi ngày họ bắt đi 1 người. Bộ lạc này cũng ra điều kiện là nếu ai may mắn là người cuối cùng còn sót lại trong n người thì sẽ được tha. Viết chương trình để minh họa quá trình thực hiện bài toán với n, k được nhập vào. Chương trình cần in ra lần lượt những người bị giết theo thứ tự $\mathcal E$ cuối cùng là người may mắn sẽ thoát chết.

Problem 65 (CSES Problem Set/Josephus problem II). Consider a game where there are $n \in \mathbb{N}^*$ children (numbered 1, 2, ..., n) in a circle. During the game, repeatedly $k \in \mathbb{N}^*$ children are skipped & 1 child is removed from the circle. In which order will the children be removed?

Input. The only input line has 2 integers $n, k \in \mathbb{N}^*$.

Output. Print n integers: the removal order.

Constraints. $n \in [2 \cdot 10^5] k \in \overline{0, 10^9}$.

Sample.

Josephus_problem_II.inp	Josephus_problem_II.out
7 2	$3\ 6\ 2\ 7\ 5\ 1\ 4$

Problem 66 (CSES Problem Set/nested ranges check). Given $n \in \mathbb{N}^*$ ranges, determine for each range if it contains some order range & if some other range contains it. Range [a,b] contains range [c,d] if $a \le c$ & $d \le b$.

Input. The 1st input line has an integer $n, m \in \mathbb{N}^*$: the number of ranges. After this, there are n lines that describe the ranges. Each line has 2 integers $x, y \in \mathbb{Z}$: the range is [x, y]. You may assume that no range appears more than once in the input.

Output. 1st print a line that describes for each range (in the input order) if it contains some other range 1 or not 0. Then print a line that describes for each range (in the input order) if some other range contains it 1 or not 0.

Constraints. $n \in [2 \cdot 10^5], 1 \le x < y \le 10^9$.

Sample.

nested_range_check.inp	nested_range_check.out
4	
1 6	1 0 0 0
2 4	0 1 0 1
4 8	
3 6	

Problem 67 (CSES Problem Set/nested ranges count). Given $n \in \mathbb{N}^*$ ranges, count for each range how many other ranges it contains \mathcal{E} how many other ranges contain it. Range [a,b] contains range [c,d] if $a \leq c \mathcal{E}$ $d \leq b$.

Input. The 1st input line has an integer $n \in \mathbb{N}^*$: the number of ranges. After this, there are n lines that describe the ranges. Each line has 2 integers $x, y \in \mathbb{Z}$: the range is [x, y]. You may assume that no range appears more than once in the input.

Output. 1st print a line that describes for each range (in the input order) how many other ranges it contains. Then print a line that describes for each range (in the input order) how many other ranges contain it.

Constraints. $n \in [2 \cdot 10^5], 1 \le x < y \le 10^9$.

Sample.

nested_ranges_count.inp	nested_ranges_count.out
4	2 0 0 0
1 6	0 1 0 1
2 4	
4 8	
3 6	

Problem 68 (CSES Problem Set/room allocation). There is a large hotel, \mathcal{E} $n \in \mathbb{N}^*$ customers will arrive soon. Each customer wants to have a single room. You know each customer's arrival \mathcal{E} departure day. 2 customers can stay in the same room if the departure day of the 1st customer is earlier than the arrival day of the 2nd customer. What is the minimum number of rooms that are needed to accommodate all customers? \mathcal{E} how can the rooms be allocated?

Input. The 1st input line has an integer $n \in \mathbb{N}^*$: the number of of customers. Then there are n lines, each of which describes 1 customer. Each line has 2 integers $a, b \in \mathbb{N}^*$: the arrival & departure day.

Output. 1st print an integer k: the minimum number of rooms required. After that, print a line that contains the room number of each customer in the same order in the input. The rooms are numbered $1, 2, \ldots, k$. You can print any valid solution.

Constraints. $n \in [2 \cdot 10^5], 1 \le a \le b \le 10^9$.

Sample.

room_allocation.inp	room_allocation.out
3	2
1 2	1 2 1
2 4	
4 4	

Problem 69 (CSES Problem Set/factory machines). A factory has $n \in \mathbb{N}^*$ machines which can be used to make products. Make a total of $t \in \mathbb{N}^*$ products. For each machine, you know the number of seconds it needs to make a single product. The machines can work simultaneously, & you can freely decide their schedule. What is the shortest time needed to make t products?

Input. The 1st input line has 2 integers $n, t \in \mathbb{N}^*$: the number of machines & products. The next line has n integers k_1, k_2, \ldots, k_n : the time needed to make a product using each machine.

Output. Print 1 integer: the minimum time needed to make t products.

Constraints. $n \in [2 \cdot 10^5], t, k_i \in [10^9], \forall i \in [n].$

Sample.

factory_machine.inp	factory_machine.out
3 7	8
3 2 5	

Explanation. Machine 1 makes 2 products, machine 2 makes 4 products & machine 3 makes 1 product.

Problem 70 (CSES Problem Set/tasks & deadlines). You have to process $n \in \mathbb{N}^*$ tasks. Each task has a duration & a deadline, & you will process the tasks in some order one after another. Your reward for a task is d-f where d is its deadline & f is your finishing time. (The starting time is 0, & you have to process all tasks even if a task would yield negative reward.) What is your maximum reward if you act optimally?

Input. The 1st input line has 2 integers $n, m \in \mathbb{N}^*$: the number of tasks. After this, there are n lines that describe the tasks. Each line has 2 integers $a, d \in \mathbb{N}^*$: the duration \mathfrak{E} deadline of the task.

Output. Print 1 integer: the maximum reward.

Constraints. $n \in [2 \cdot 10^5], a, d \in [10^6].$

Sample.

task_deadline.inp	task_deadline.out
3	2
6 10	
8 15	
5 12	

Problem 71 (CSES Problem Set/reading books). There are $n \in \mathbb{N}^*$ books, & KOTIVALO & JUSTIINA are going to read them all. For each book, you know the time it takes to read it. They both read each book from beginning to end, & they cannot read a book at the same time. What is the minimum total time required?

Input. The 1st input line has an integer $n \in \mathbb{N}^*$: the number of books. The 2nd line has n integers t_1, t_2, \ldots, t_n : the time required to read each book.

Output. Print 1 integer: the minimum total time.

Constraints. $n \in [2 \cdot 10^5], t_i \in [10^9], \forall i \in [n].$

Sample.

reading_book.inp	reading_book.out
3	16
2 8 3	

Problem 72 (CSES Problem Set/sum of 3 values). You are given an array of $n \in \mathbb{N}^*$ integers. Find 3 values (at distinct positions) whose sum is x.

Input. The 1st input line has 2 integers $n, x \in \mathbb{N}^*$: the array size & the target sum. The 2nd line has n integers a_1, a_2, \ldots, a_n : the array values.

Output. Print 3 integers: the positions of the values. If there are several solutions, you may print any of them. If there are no solutions, print IMPOSSIBLE.

Constraints. $n \in [5000], m \in [100], x, a_i \in [10^9], \forall i \in [n].$

Sample.

sum_3_value.inp	sum_3_value.out
4 8	1 3 4
2 7 5 1	

Problem 73 (CSES Problem Set/sum of 4 values). You are given an array of $n \in \mathbb{N}^*$ integers. Find 4 values (at distinct positions) whose sum is x.

Input. The 1st input line has 2 integers $n, x \in \mathbb{N}^*$: the array size \mathcal{E} the target sum. The 2nd line has n integers a_1, a_2, \ldots, a_n : the array values.

Output. Print 4 integer: the positions of the values. If there are several solutions, you may print any of them. If there are no solutions, print IMPOSSIBLE.

Constraints. $n \in [1000], x, a_i \in [10^9], \forall i \in [n].$

Sample.

sum_4_value.inp	sum_4_value.out
8 15	2 4 6 7
3 2 5 8 1 3 2 3	

Problem 74 (CSES Problem Set/nearest smaller values). Given an array of $n \in \mathbb{N}^*$ integers. Find for each array position the nearest position to its left having a smaller value.

Input. The 1st input line has an integer $n \in \mathbb{N}^*$: the size of the array. The 2nd line has n integers x_1, x_2, \ldots, x_n : the array values. Output. Print n integer: for each array position the nearest position with a smaller value. If there is no such position, print 0. Constraints. $n \in [2 \cdot 10^5], x_i \in [10^9], \forall i \in [n]$.

Sample.

nearest_smaller_values.inp	nearest_smaller_values.out
8	0 1 0 3 4 3 3 7
2 5 1 4 8 3 2 5	

Problem 75 (CSES Problem Set/subarray sums I). Given an array of $n \in \mathbb{N}^*$ positive integers. Count the number of subarrays having sum x.

Input. The 1st input line has 2 integers $n, x \in \mathbb{N}^*$: the size of the array \mathcal{E} the target sum x. The 2nd line has n integers $a_1, a_2, \ldots, a_n \in \mathbb{N}^*$: the contents of the array.

Output. Print 1 integer: the required number of subarrays.

Constraints. $n \in [2 \cdot 10^5], m \in [100], x, a_i \in [10^9], \forall i \in [n].$

Sample.

subarray_sums_I.inp	subarray_sums_I.out
5 7	3
2 4 1 2 7	

Problem 76 (CSES Problem Set/subarray sums II). Given an array of $n \in \mathbb{N}^*$ integers. Count the number of subarrays having sum x.

Input. The 1st input line has 2 integers $n \in \mathbb{N}^*$, $x \in \mathbb{Z}$: the size of the array \mathcal{E} the target sum x. The 2nd line has n integers $a_1, a_2, \ldots, a_n \in \mathbb{Z}$: the contents of the array.

Output. Print 1 integer: the required number of subarrays.

Constraints. $n \in [2 \cdot 10^5], m \in [100], x, a_i \in \overline{-10^9, 10^9}, \forall i \in [n].$

Sample.

subarray_sums_II.inp	subarray_sums_II.out
5 7	2
2 -1 3 5 -2	

Problem 77 (CSES Problem Set/subarray divisibility). Given an array of $n \in \mathbb{N}^*$ integers. Count the number of subarrays where the sum of values is divisible by n.

Input. The 1st input line has an integers $n \in \mathbb{N}^*$: the size of the array. The 2nd line has n integers $a_1, a_2, \ldots, a_n \in \mathbb{Z}$: the contents of the array.

Output. Print 1 integer: the required number of subarrays.

Constraints. $n \in [2 \cdot 10^5], a_i \in \overline{-10^9, 10^9}, \forall i \in [n].$

Sample.

subarray_divisibility.inp	subarray_divisibility.out
5	1
3 1 2 7 4	

Problem 78 (CSES Problem Set/distinct values subarrays II). Given an array of $n \in \mathbb{N}^*$ integers. Calculate the number of subarrays that have at most k distinct values.

Input. The 1st input line has 2 integers $n, k \in \mathbb{N}^*$. The next line has n integers x_1, x_2, \ldots, x_n : the contents of the array.

Output. Print 1 integer: the number of subarrays.

Constraints. $1 \le k \le n \le 2 \cdot 10^5, x_i \in [10^9], \forall i \in [n].$

Sample.

distinct_values_subarray_II.inp	distinct_values_subarray_II.out
5 2	10
1 2 3 1 1	

Problem 79 (CSES Problem Set/array division). You are given an array containing $n \in \mathbb{N}^*$ positive integers. Divide the array into $k \in \mathbb{N}^*$ subarrays so that the maximum sum in a subarray is as small as possible.

Input. The 1st input line has 2 integers $n, k \in \mathbb{N}^*$: the size of the array \mathcal{E} the number of subarrays in the division. The next line contains n integers x_1, x_2, \ldots, x_n : the contents of the array.

Output. Print 1 integer: the maximum sum in a subarray in the optimal division.

Constraints. $n \in [2 \cdot 10^5], k \in [n], x_i \in [10^9].$

Sample.

array_division.inp	array_division.out
5 3	8
2 4 7 3 5	

Explanation. An optimal division is [2,4], [7], [3,5] where the sums of the subarrays are 6,7,8. The largest sum is the last sum 8.

Problem 80 (CSES Problem Set/movie festival II). In a movie festival, $n \in \mathbb{N}^*$ movies will be shown. Syrjälä's movie club consists of $k \in \mathbb{N}^*$ members, who will be all attending the festival. You know the starting \mathscr{E} ending time of each movie. What is the maximum total number of movies the club members can watch entirely if they act optimally?

Input. The 1st input line has 2 integers $n, k \in \mathbb{N}^*$: the number of movies & club members. After this, there are n lines that describe the movies. Each line has 2 integers $a, b \in \mathbb{B}$: the starting & ending time of a movie.

Output. Print 1 integer: the maximum total number of movies.

Constraints. $1 \le k \le n \le 2 \cdot 10^5, 1 \le a < b \le 10^9$.

Sample.

movie_festival_II.inp	movie_festival_II.out
5 2	4
1 5	
8 10	
3 6	
2 5	
6 9	

Problem 81 (CSES Problem Set/maximum subarray II). Given an array of $n \in \mathbb{N}^*$ integers. Find the maximum sum of values in a contiguous subarray with length between a, b.

Input. The 1st input line has 3 integers $n, a, b \in \mathbb{N}^*$: the size of the array \mathcal{E} the minimum \mathcal{E} maximum subarray length. The 2nd line has n integers $x_1, x_2, \ldots, x_n \in \mathbb{Z}$: the array values.

Output. Print 1 integer: the maximum subarray sum.

Constraints. $n \in [2 \cdot 10^5], 1 \le a \le b \le n, x_i \in \overline{-10^9, 10^9}, \forall i \in [n].$

Sample.

maximum_subarray_II.inp	maximum_subarray_II.out
8 1 2	8
-1 3 -2 5 3 -5 2 2	

Chương 15

Practice for Simple Computing – Thực Hành Tính Toán Đơn Giản

Resources - Tài nguyên.

- 1. [WW16]. Yonghui Wu, Jiande Wang. Data Structure Practice for Collegiate Programming Contests & Education.
- 2. [WW18]. Yonghui Wu, Jiande Wang. Algorithm Design Practice for Collegiate Programming Contests & Education.

Problem 82 ([WW16], p. 4: financial management). LARRY graduated this year & finally has a job. He's making a lot of money, but somehow never seems to have enough. LARRY has decided that he needs to get a hold of his financial portfolio & solve his financial problems. The 1st step is to figure out what's been going on with his money. LARRY has his bank account statements & wants to see how much money he has. Help LARRY by writing a program to take his closing balance from each of the past 12 months & calculate his average account balance.

Input. The input will be 12 lines. Each line will contain the closing balance of his bank account for a particular month. Each number will be positive & displayed to the penny. No dollar sign will be included.

Output. The output will be a single number, the average (mean) of the closing balances for the 12 months. It will be rounded to the nearest penny, preceded immediately by a dollar sign, & followed by the end of the line. There will be no other spaces or characters in the output.

Source. ACM Mid-Atlantic United States 2001.

IDs for online judges. POJ 1004, ZOJ 1048, UVA 2362.

Math Analysis. Let $\{a_i\}_{i=1}^{12} \subset [0,\infty)$ be monthly incomes of 12 months. Compute their average by the formula $\overline{a} = \frac{1}{12} \sum_{i=1}^{12} a_i$. This can be generalized to $n \in \mathbb{N}^*$ months with a sequence of monthly incomes $\{a_i\}_{i=1}^n \subset [0,\infty)$ with its average value given by the formula $\overline{a} := \frac{1}{n} \sum_{i=1}^n a_i$.

CS Analysis. The income of 12 months a [0..11] is input by a for statement & the total income sum := $\sum_{i=0}^{11} a[i]$ is calculated. Then the average monthly income avg = sum/12 is calculated. Finally, avg is output in accordance with the problem's output format by utilizing printf's format functionalities via printf("\$%.2f", avg).

- Input: https://github.com/NQBH/advanced_STEM_beyond/blob/main/OLP_ICPC/input/financial_management.inp.
- Output: https://github.com/NQBH/advanced_STEM_beyond/blob/main/OLP_ICPC/output/financial_management.out.
- C++: https://github.com/NQBH/advanced_STEM_beyond/blob/main/OLP_ICPC/C++/financial_management.cpp.

```
#include <iostream>
using namespace std;
int main() {
   double avg, sum = 0.0, a[12] = {0};
   for (int i = 0; i < 12; ++i) { // input income of 12 months a[0..11] & summation
        cin >> a[i];
        sum += a[i];
   }
   avg = sum/12; // compute average monthly
   printf("$%.2f", avg); // output average monthly
   return 0;
}
```

Remark 3 (array of 0s). The technique a[12] = {0} initializes an array a with all zero elements.

Python: https://github.com/NQBH/advanced_STEM_beyond/blob/main/OLP_ICPC/Python/financial_management.py.

```
sum = 0
for __ in range(12):
a = float(input())
sum += a
print("${:.2f}".format(sum / 12))
```

Bài toán 14 (Basic statistical data sample – mẫu dữ liệu thống kê cơ bản). Cho 1 mẫu dữ liệu $(a_i)_{i=1}^n$. Tính trung bình, độ lệch chuẩn, phương sai của mẫu.

Problem 83 ([WW16], pp. 5–6: doubles). As part of an arithmetic competency program, your students will be given randomly generated lists of 2–15 unique positive integers & asked to determine how many items in each list are twice some other item in same list. You will need a program to help you with the grading. This program should be able to scan the lists & output the correct answer for each one. E.g., given the list 1 4 3 2 9 7 18 22 your program should answer 3, as 2 is twice 1, 4 is twice 2, & 18 is twice 9.

Input. The input file will consist of 1 or more lists of numbers. There will be 1 list of numbers per line. Each list will contain from 2-15 unique positive integers. No integer will be > 99. Each line will be terminated with the integer 0, which is not considered part of the list. A line with the single number -1 will mark the end of the file. Some lists may not contain any doubles.

Output. The output will consist of 1 line per input list, containing a count of the items that are double some other item.

Source. ACM Mid-Central United States 2003.

IDs for online judges. POJ 1552, ZOJ 1760, UVA 2787.

Remark 4 (Multiple test cases – đa bộ test). For any problem with multiple test cases, a loop is used to deal with multiple test cases. The loop enumerates every test case.

- Đối với bất kỳ vấn đề nào có nhiều trường hợp thử nghiệm, 1 vòng lặp được sử dụng để xử lý nhiều trường hợp thử nghiệm.
 Vòng lặp liệt kê mọi trường hợp thử nghiệm.
- Input: https://github.com/NQBH/advanced_STEM_beyond/blob/main/OLP_ICPC/input/double.inp.
- Output: https://github.com/NQBH/advanced_STEM_beyond/blob/main/OLP_ICPC/output/double.out.
- C++:

o https://github.com/NQBH/advanced_STEM_beyond/blob/main/OLP_ICPC/C++/double.cpp.

```
#include <iostream>
using namespace std;
int main() {
    int i, j, n, count, a[20];
    cin >> a[0]; // input 1st element
    while (a[0] != -1) \{ // \text{ if it is not end of input, input a new test case}
        n = 1;
        for (;; ++n) {
             cin >> a[n];
             if (a[n] == 0) break;
        count = 0; // determine how many items in each list are twice some other item
        for (i = 0; i < n - 1; ++i) \{ // \text{ enumerate all pairs } 
             for (j = i + 1; j < n; ++j) {
                 if (a[i]*2 == a[j] \mid\mid a[j]*2 == a[i]) // accumulation
                 ++count;
             }
        }
        cout << count << '\n'; // output result</pre>
        cin >> a[0]; // input 1st element of next test case
    }
```

```
return 0;
}
```

• https://github.com/NQBH/advanced_STEM_beyond/blob/main/OLP_ICPC/C++/double_DPAK.cpp: use map & vector.

Bài toán có thể mở rộng từ double thành triple, multiple, or just equal.

Problem 84 ([WW16], pp. 7–8: sum of consecutive prime numbers). Some positive integers can be represented by a sum of 1 or more consecutive prime numbers. How many such representations does a give positive integer have? E.g., the integer 53 has 2 representations 5+7+11+13+17 & 53. The integer 41 has 3 representations: 2+3+5+7+11+13,11+13+17, & 41. The integer 3 has only 1 representation, which is 3. The integer 20 has no such representations. Note: summands must be consecutive prime numbers, so neither 7+13 nor 3+5+5+7 is a valid representation for the integer 20. Your mission is to write a program that reports the number of representations for the given positive integer.

Input. The input is a sequence of positive integers, each in a separate line. The integers are between 2 & 10000, inclusive. The end of the input is indicated by a zero.

Output. The output should be composed of lines each corresponding to an input line, except the last zero. An output line includes the number of representations for the input integer as the sum of 1 or more consecutive prime numbers. No other characters should be inserted in the output.

Source. ACM Japan 2005.

IDs for online judges. POJ 2739, UVA 3399.

Problem 85 ([WW16], pp. 9–10: I think I need a houseboat). FRED MAPPER is considering purchasing some land in Louisiana to build his house on. In the process of investigating the land, he learned that the state of Louisiana is actually shrinking by 50 square miles each year, due to erosion caused by the Mississippi River. Since FRED is hoping to live in this house for the rest of his life, he needs to know if his land is going to be lost to erosion.

After doing more research, FRED has learned that the land that is being lost forms a semicircle. This semicircle is part of a circle centered at (0,0), with the line that bisects the circle being the x axis. Locations below the x axis are in the water. The semicircle has an area of 0 at the beginning of year 1.

Input. The 1st line of input will be a positive integer indicating how many data sets will be included N. Each of the next N lines will contain the x,y Cartesian coordinates of the land FRED is considering. These will be floating-point numbers measured in miles. The y coordinate will be nonnegative. (0,0) will not be given.

Output. For each data set, a single line of output should appear. This line should take the form of

Property N: This property will begin eroding in year Z.

where N is the data set (counting from 1) & Z is the 1st year (start from 1) this property will be within the semicircle AT THE END OF YEAR Z. Z must be an integer. After the last data set, this should print out "END OF OUTPUT."

Source. ACM Mid-Atlantic United States 2001.

Note. No property will appear exactly on the semicircle boundary: it will be either inside or outside. This problem will be judged automatically. Your answer must match exactly, including the capitalization, punctuation, \mathcal{E} white space. This includes the periods at the ends of the lines. All locations are given in miles.

IDs for online judges. POJ 1005, ZOJ 1049, UVA 2363.

 $\label{eq:mathematics} \textit{Mathematics analysis}. \ \text{Gọi} \ S_n, \ r_n \ \text{lần lượt là tổng diện tích đất sạt lở & bán kính của hình bán nguyệt của mảnh đất sạt lở đến hết năm <math>n, \ S_1 = 0, S_n = S_{n-1} + 50 = 50(n-1) = \frac{\pi r_n^2}{2} \Rightarrow r_n = \sqrt{\frac{100(n-1)}{\pi}}, \ \forall n \in \mathbb{N}^\star. \ \text{Tìm n thỏa mãn $r_{n-1} < \sqrt{x^2 + y^2} < r_n$, tuwong }$

Problem 86 ([WW16], p. 12, hangover). How far can you make a stack of cards overhang a table? If you have 1 card, you can create a maximum overhang of half a card length. (We're assuming that the cards must be perpendicular to the table.) With 2 cards, you can make the top card overhang the bottom one by half a card length, & the bottom one overhang the table by a third of a card length, for a total maximum overhang of $\frac{1}{2} + \frac{1}{3} = \frac{5}{6}$ card lengths. In general, you can make n cards overhang by $\sum_{i=2}^{n+1} \frac{1}{i} = \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n+1}$ card lengths, where the top card overhangs the 2nd by $\frac{1}{2}$, the 2nd overhangs the 3rd by $\frac{1}{3}$, the 3rd overhangs the 4th by $\frac{1}{4}$, & so on, & the bottom card overhangs the table by $\frac{1}{n+1}$.

Input. The input consists of 1 or more test cases, followed by a line containing the number 0.00 that signals the end of the input. Each test case is a single line containing a positive floating-point number c whose value is at least 0.01 $\mathscr E$ at most 5.20; c will contain exactly 3 digits.

Output. For each test case, output the minimum number of cards necessary to achieve an overhang of at least c card lengths. Use the exact output format shown in the examples.

Source. ACM Mid-Central United States 2001. item IDs for online judges. POJ 1003, UVA 2294.

Problem 87 ([WW16], p. 17, sum). Find the sum of all integer numbers lying between 1 \mathcal{E} N inclusive.

Input. The input consists of a single integer N that is not greater than 10000 by its absolute value.

Output. Write a single integer number that is the sum of all integer numbers lying between 1 & N inclusive.

Source. Source: ACM 2000, Northeastern European Regional Programming Contest (test tour).

ID for online judge. Ural 1068.

Problem 88 ([WW16], p. 17, specialized 4-digit numbers). Find & list all 4-digit numbers in decimal notation that have the property that the sum of their 4 digits equals the sum of their digits when represented in hexidecimal (base 16) notation & also equals the sum of their digits when represented in duodecimal (base 12) notation. E.g., the number 2991 has the sum of (decimal) digits 2+9+9+1=21. Since $2991=1\cdot1728+8\cdot144+9\cdot12+3$, its duodecimal representation is $\overline{1893}|_{12}$, & these digits also sum up to 21. But in hexadecimal, 2991 is \overline{BAF}_{16} , & 11+10+15=36, so 2991 should be rejected by your program. The next 2992, however, has digits that sum to 22 in all 3 representations (including \overline{BBO}_{16}), so 2992 should be on the listed output. (We don't want decimal numbers with fewer than 4 digits – excluding leading zeros – so that 2992 is the 1st correct answer.)

Input. There is no input for this problem.

Output. Your output is to be 2992 & all larger 4-digit numbers that satisfy the requirements (in strictly increasing order), each on a separate line, with no leading or trailing blanks, ending with a new-line character. There are to be no blank lines in the output. The 1st few lines of the output are shown below:

Sample.

specialized_4_digit_number.inp	specialized_4_digit_number.out
	2992
	2993
	2994
	2995
	2996
	2997
	2998
	2999

Source. ACM Pacific Northwest 2004.

IDs for online judges. POJ 2196, ZOJ 2405, UVA 3199.

Problem 89 ([WW16], p. 19, quick sum).

Input. The 1st input line has 2 integers $n, m \in \mathbb{N}^*$: the number of

Output. Print 1 integer: the

Constraints. $n \in [2 \cdot 10^5], m \in [100], x_i \in [10^9], \forall i \in [n].$

Sample.

.inp	.out

Bài toán 15 ([Tru23b], HSG12 Tp. Hà Nội 2020–2021, Prob. 1, p. 80: Find mid – Tìm giữa). (a) Cho $l, r \in \mathbb{N}^*$. Tìm $m \in [l, r) \cap \mathbb{N}^*$ để chênh lệch giữa tổng các số nguyên liên tiếp từ l đến m & tổng các số nguyên liên tiếp từ m+1 đến r là nhỏ nhất. (b) Mở rộng cho $l, r \in \mathbb{Z}$. (c*) Thay tổng bởi tổng bình phương, tổng lập phương, tổng lũy thừa bậc $a \in \mathbb{R}$.

Input. $2 s \hat{\delta} l, r \in \mathbb{N}^*, l < r \le 10^9$.

Output. Gồm 1 số nguyên duy nhất là m thỏa mãn.

Limits. Subtask 1: 60% các test có $l < r \le 10^3$. Subtask 2: 40% các test còn lại có $l < r \le 10^9$.

• Input: https://github.com/NQBH/advanced_STEM_beyond/blob/main/OLP_ICPC/input/find_mid.inp.

- Output: https://github.com/NQBH/advanced_STEM_beyond/blob/main/OLP_ICPC/output/find_mid.out.
- $\bullet \ C++: \ https://github.com/NQBH/advanced_STEM_beyond/blob/main/OLP_ICPC/C++/find_mid.cpp.$
- Python: https://github.com/NQBH/advanced_STEM_beyond/blob/main/OLP_ICPC/Python/find_mid.py.

Chương 16

Ad Hoc Problems

Contents

16.1	Solving Ad Hoc Problems by Mechanism Analysis	83
16.2	Solving Ad Hoc Problems by Statistical Analysis	86

- ad hoc [a] (from Latin) arranged or happening when necessary & not planned in advance; [adv] (from Latin) in a way that is arranged or happens when necessary & is not planned in advance.
 - (từ tiếng Latin) được sắp xếp hoặc xảy ra khi cần thiết & không được lên kế hoạch trước; [adv] (từ tiếng Latin) theo cách được sắp xếp hoặc xảy ra khi cần thiết & không được lên kế hoạch trước.

For the definitions of "ad hoc", see also, e.g., viWikipedia/ad hoc, enWikipedia/ad hoc.

16.1 Solving Ad Hoc Problems by Mechanism Analysis

Problem 90 ([WW18], 1.1.1, p. 1, Factstone Benchmark). AMTEL has announced that it will release a 128-bit computer chip by 2010, a 256-bit computer by 2020, & so on, continuing its strategy of doubling the word size every 10 years. (AMTEL released a 64-bit computer in 2000, a 32-bit computer in 1990, a 16-bit computer in 1980, an 8-bit computer in 1970, & a 4-bit computer, its 1st, in 1960.) AMTEL will use a new benchmark – the Factstone – to advertise the vastly improved capacity of its new chips. The Factstone rating is defined to be the largest integer n such that n! can be represented as an unsigned integer in a computer word. Given a year $1960 \le y \le 2160$, what will be the Factstone rating of AMTEL's most recently released chip?

Input. There are several test cases. For each test case, there is 1 line of input containing y. A line containing 0 follows that last test case.

Output. For each test case, output a line giving the Factstone rating.

Source. Waterloo local 2005.09.24

IDs for Online Judges. POJ 2661, UVA 10916

Bài toán 16 ([WW18], 1.1.1, p. 1, Điểm chuẩn Factstone). AMTEL đã thông báo rằng họ sẽ phát hành 1 con chip máy tính 128-bit vào năm 2010, 1 máy tính 256-bit vào năm 2020, & cứ thế, tiếp tục chiến lược tăng gấp đôi kích thước từ sau mỗi 10 năm. (AMTEL đã phát hành 1 máy tính 64-bit vào năm 2000, 1 máy tính 32-bit vào năm 1990, 1 máy tính 16-bit vào năm 1980, 1 máy tính 8-bit vào năm 1970, & 1 máy tính 4-bit, máy tính đầu tiên của họ, vào năm 1960.) AMTEL sẽ sử dụng 1 chuẩn mực mới – Factstone – để quảng cáo cho khả năng được cải thiện đáng kể của các con chip mới của mình. Xếp hạng Factstone được định nghĩa là số nguyên n lớn nhất sao cho n! có thể được biểu diễn dưới dạng 1 số nguyên không dấu trong 1 từ máy tính. Với năm $1960 \le y \le 2160$, xếp hạng Factstone của chip mới nhất được phát hành của AMTEL sẽ là bao nhiêu?

Đầu vào. Có 1 số trường hợp thử nghiệm. Đối với mỗi trường hợp thử nghiệm, có 1 dòng đầu vào chứa y. Một dòng chứa 0 theo sau trường hợp thử nghiệm cuối cùng đó.

Đầu ra. Đối với mỗi trường hợp thử nghiệm, đầu ra là 1 dòng cho biết xếp hạng Factstone.

Analysis. For a given year $y \in [1960, 2160] \cap \mathbb{N}$, 1st the number of bits for the computer in this year is calculated, & then the largest integer n, i.e., the Factstone rating, that n! can be represented as an unsigned integer in a computer word is calculated. Since the computer was a 4-bit computer in 1960 & AMTEL doubles the word size every 10 years, the number of bits for the computer in year y is $b = 2^{2+\lfloor \frac{y-1960}{10} \rfloor} \in \mathbb{N}^*$. The largest unsigned integer for b-bit is $2^b - 1 \in \mathbb{N}^*$. If n! is the largest unsigned integer $\leq 2^b - 1$, then n is the Factstone rating in year y. There are 2 calculation methods:

Chương 16 Ad Học Problems

- 1. Calculate n! directly, which is slow & easily leads to overflow.
- 2. Logarithms are used to calculate n!, based on the following inequality

$$n! \le 2^b - 1 \Rightarrow \log_2 n! = \sum_{i=1}^n \log_2 i = \log_2 1 + \log_2 2 + \dots + \log_2 n \le \log_2 (2^b - 1) < \log_2 2^b = b,$$

n can be calculated by a loop: Initially i := 1, repeat ++i, & $\log_2 i$ is accumulated until the sum is > b. Then i-1 is the Factstone rating.

Codes:

• C++: https://github.com/NQBH/advanced_STEM_beyond/blob/main/OLP_ICPC/C++/Factstone_benchmark.cpp.

```
#include <stdio.h>
#include <math.h>
int main() {
    int v;
    while (1 == scanf("%d", &y) && y) { // input test cases}
        double w = log(4);
        for (int Y = 1960; Y \le y; Y += 10)
            w *= 2;
        int i = 1; // accumulation log2 i until > w
        double f = 0; // f: sum of accumulation for log2 i
        while (f < w)
            f += log((double)++i);
        printf("%d\n", i - 1); // output Factstone rating
    }
    if (y) printf("fishy ending %d\n", y);
}
```

• Python:

Bài toán 17 (Mở rộng [WW18], 1.1.1, p. 1, Điểm chuẩn Factstone). AMTEL đã thông báo rằng kể từ năm $y_0 \in \mathbb{N}^*$ cho trước, họ sẽ phát hành 1 con chip b^{b_0} -"bit" computer ("bit" ở đây được hiểu theo nghĩa rộng là theo cơ số $b \in \mathbb{N}^*$, $b \geq 2$, chứ không phải hệ nhị phân 2-bit), & cứ sau δ_y năm & δ_m tháng $(\delta_m \in \overline{1,11})$, số "bit" sẽ gấp $b \in \mathbb{N}$, $b \geq 2$ lên so với trước đó. AMTEL sẽ sử dụng 1 chuẩn mực mới – Factstone – để quảng cáo cho khả năng được cải thiện đáng kể của các con chip mới của mình. Xếp hạng Factstone được định nghĩa là số nguyên n lớn nhất sao cho n! có thể được biểu diễn dưới dạng 1 số nguyên không dấu trong 1 từ máy tính. Với năm $y_0 \leq y$, xếp hạng Factstone của chip mới nhất được phát hành của AMTEL sẽ là bao nhiêu?

Đầu vào. Có 1 số trường hợp thử nghiệm. Đối với mỗi trường hợp thử nghiệm, có 1 dòng đầu vào chứa y. Một dòng chứa 0 theo sau trường hợp thử nghiệm cuối cùng đó.

Dầu ra. Đối với mỗi trường hợp thử nghiệm, đầu ra là 1 dòng cho biết xếp hạng Factstone.

Remark 5 (log: product \mapsto sum). When you encounter a product function of n, i.e., f(n), e.g. n! above, use logarithm to transform products into sums.

Question 4 (Sum \leftrightarrows Product). Làm sao để chuyển 1 tổng thành 1 tích? Làm sao chuyển 1 tích thành 1 tổng?

Answer. Chuyển tổng thành tích: $e^{a+b}=e^ae^b, \forall a,b\in\mathbb{R}$. Tổng quát:

$$e^{\sum_{i=1}^{n} a_i} = \prod_{i=1}^{n} e^{a_i}, \ \forall a_i \in \mathbb{R}, \ \forall n \in \mathbb{N}^{\star}, \ \forall i = 1, \dots, n.$$

Chuyển tích thành tổng: $\ln(ab) = \ln a + \ln b, \forall a, b \in (0, \infty)$. Tổng quát:

$$\ln \prod_{i=1}^{n} a_i = \sum_{i=1}^{n} \ln a_i, \ \forall a_i \in (0, \infty), \ \forall n \in \mathbb{N}^*, \ \forall i = 1, \dots, n.$$

Note: Có thể thay $\ln x$ bởi $\log x, \log_a x$ với $a \in (0, \infty)$ bất kỳ.

Chương 16 Ad Học Problems

Problem 91 ([WW18], 1.1.2, p. 3, Bridge). Consider that n people wish to cross a bridge at night. A group of at most 2 people may cross at any time, & each group must have a flashlight. Only 1 flashlight is available among the n people, so some sort of shuttle arrangement must be arranged in order to return the flashlight so that more people may cross.

Each person has a different crossing speed; the speed of a group is determined by the speed of the slower member. Your job is to determine a strategy that gets all n people across the bridge in the minimum time.

Input. The 1st line of input contains n, followed by n lines giving the crossing times for each of the people. There are not more than 1000 people, \mathcal{E} nobody takes more than 100 seconds to cross the bridge.

Output. The 1st line of output must contain the total number of seconds required for all n people to cross the bridge. The following lines give a strategy for achieving this time. Each line contains either 1 or 2 integers, indicating which person or people form the next group to cross. (Each person is indicated by the crossing time specified in the input. Although many people may have the same crossing time, the ambiguity is of no consequence.) Note that the crossings alternate directions, as it is necessary to return the flashlight so that more may cross. If more than 1 strategy yields the minimal time, any one will do.

Source. POJ 2573, ZOJ 1877, UVA 10037

IDs for Online Judge. Waterloo local 2000.09.30

Bài toán 18 ([WW18], 1.1.2, p. 3, "Đi cầu"). Hãy xem xét n người muốn đi qua cầu vào ban đêm. Một nhóm tối đa 2 người có thể đi qua bất kỳ lúc nào, & mỗi nhóm phải có 1 chiếc đèn pin. Chỉ có 1 chiếc đèn pin trong số n người, vì vậy phải sắp xếp 1 số loại hình sắp xếp đưa đón để trả lại đèn pin để nhiều người hơn có thể đi qua.

Mỗi người có tốc độ đi qua khác nhau; tốc độ của 1 nhóm được xác định bởi tốc độ của thành viên chậm hơn. Nhiệm vụ của bạn là xác định 1 chiến lược giúp tất cả n người đi qua cầu trong thời gian ngắn nhất.

Đầu vào. Dòng 1 của đầu vào chứa n, theo sau là n dòng cho biết thời gian đi qua của mỗi người. Không có quá 1000 người, & không ai mất hơn 100 giây để đi qua cầu.

Dầu ra. Dòng 1 của đầu ra phải chứa tổng số giây cần thiết để tất cả n người đi qua cầu. Các dòng sau đưa ra 1 chiến lược để đạt được thời gian này. Mỗi dòng chứa 1 hoặc 2 số nguyên, cho biết người hoặc những người nào tạo thành nhóm tiếp theo để vượt sông. (Mỗi người được chỉ định theo thời gian vượt sông được chỉ định trong đầu vào. Mặc dù nhiều người có thể có cùng thời gian vượt sông, nhưng sự mơ hồ không quan trọng.) Lưu ý rằng các lần vượt sông thay đổi hướng, vì cần phải trả lại đèn pin để nhiều người có thể vượt sông. Nếu có nhiều hơn 1 chiến lược tạo ra thời gian tối thiểu, bất kỳ chiến lược nào cũng được.

Computer Science Analysis. The strategy that gets all n people, numbered P_1, \ldots, P_n , across the bridge in the minimum time is: fast people should return the flashlight to help slow people. Because a group of ≤ 2 people may cross the bridge each time, we solve the problem by analyzing members of groups. 1st, n people's crossing times, denoted by t_1, \ldots, t_n , are sorted in descending order: $t_{i_1} \geq t_{i_2} \geq \cdots t_{i_n}$ where (i_1, \ldots, i_n) is some rearrangement of $(1, \ldots, n)$, i.e., $\{i_1, \ldots, i_n\} = \{1, \ldots, n\}$. Suppose that in the current sequence (i.e., after some people have crossed the bridge & hence being not counted in the current sequence), A, B are the current fastest person P_A & the current 2nd fastest person P_B 's crossing times, respectively, a, b are the current slowest person P_b 's crossing time, respectively. Obviously, A < B < b < a. There are 2 methods for making the current slowest person & the current 2nd slowest person to cross the bridge:

- Method 1: The fastest person P_A helps the slowest person P_a & the 2nd slowest person P_b to cross the bridge. The steps:
 - 1. The fastest person P_A & the slowest person P_a cross the bridge, which takes time $\max\{A,a\}=a$.
 - 2. The fastest person P_A is back, which takes time A.
 - 3. The fastest person P_A & the 2nd slowest person P_b cross the bridge, which takes time $\max\{A,b\}=b$.
 - 4. The fastest person is back, which takes time A.

It takes times a + A + b + A = 2A + a + b.

- Method 2: The fastest person P_A & the 2nd fastest person P_B help the current slowest person P_a & the current 2nd slowest person P_b to cross the bridge. The steps:
 - 1. The fastest person P_A & the 2nd fastest person P_B cross the bridge, which takes time $\max\{A, B\} = B$.
 - 2. The fastest person P_A is back & returns the flashlight to the slowest person P_a & the 2nd slowest person P_b , which takes time A.
 - 3. The slowest person P_a & the 2nd slowest person P_b cross the bridge & give the flashlight to the 2nd fastest person P_B , which takes time max $\{a,b\} = a$.
 - 4. The 2nd faster person P_B is back, which takes time B.

It takes time B + A + a + B = 2B + A + a. Note: In Method 2, the roles of the fastest person P_A & the 2nd fastest person P_B are the same & hence they will take the same time, indeed: B + B + a + A = 2B + a + A.

Chương 16 Ad Học Problems

Each time, we need to compare Method 1 & Method 2. If $2A + a + b < 2B + A + a \Leftrightarrow A + b < 2B$, then we use Method 1, else we use Method 2 (in the case $2A + a + b = 2B + A + a \Leftrightarrow A + b = 2B$, either of them can be used). & each time the current slowest person & the current 2nd slowest person cross the bridge. Finally, there are 2 cases depending on n being even or odd (since only 2 persons can cross the bridge in each turn):

- Case 1: If there are only 2 persons who need to cross the bridge, then the 2 persons cross the bridge. It takes time B.
- Case 2: There are 3 persons who need to cross the bridge. 1st, the fastest person & the slowest person cross the bridge. Then, the fastest person is back. Finally, the last 2 persons cross the bridge. It takes time $\max\{A, a\} + A + \max\{A, b\} = a + A + b$.

Mathematical Analysis.

Codes:

• C++:

16.2 Solving Ad Hoc Problems by Statistical Analysis

Unlike mechanism analysis, statistical analysis begins with a partial solution to the problem, & the overall global solution is found based on analyzing the partial solution. Solving problems by statistical analysis is a bottom-up method.

– Không giống như phân tích cơ chế, phân tích thống kê bắt đầu bằng 1 giải pháp cục bộ cho vấn đề, & giải pháp toàn cục tổng thể được tìm thấy dựa trên việc phân tích giải pháp cục bộ. Giải quyết vấn đề bằng phân tích thống kê là phương pháp từ dưới lên.

Problem 92 ([WW18], 1.2.1., p. 6, Ants). An army of ants walk on a horizontal pole of length l cm, each with a constant speed of 1 cm/s. When a walking ant reaches an end of the pole, it immediately falls off it. When 2 ants meet, they turn back \mathcal{E} start walking in opposite directions. We know the original positions of ants on the pole; unfortunately, we do not know the directions in which the ants are walking. Your task is to compute the earliest \mathcal{E} the latest possible times needed for all ants to fall off the pole.

Input. The 1st line of input contains 1 integer giving the number of cases that follow. The data for each case start with 2 integer numbers: the length of pole (in cm) & n, the number of ants residing on the pole. These 2 numbers are followed by n integers giving the position of each ant on the pole as the distance measured from the left end of the pole, in no particular order. All input integers are $\leq 10^6$, & they are separated by whitespace.

Output. For each case of input, output 2 numbers separated by a single space. The 1st number is the earliest possible time when all ants fall off the pole (if the directions of their walks are chosen appropriately), & the 2nd number is the latest possible such time.

Source. Waterloo local 2004.09.19

IDs for Online judges. POJ 1852, ZOJ 2376, UVA 10714

Bài toán 19 ([WW18], 1.2.1., p. 6, Kiến). Một đội quân kiến đi trên 1 cột nằm ngang dài l cm, mỗi con có tốc độ không đổi là 1 cm/s. Khi 1 con kiến đi đến 1 đầu của cột, nó ngay lập tức rơi khỏi cột. Khi 2 con kiến gặp nhau, chúng quay lại & bắt đầu đi theo hướng ngược nhau. Chúng ta biết vị trí ban đầu của các con kiến trên cột; thật không may, chúng ta không biết hướng mà các con kiến đang đi. Nhiệm vụ của bạn là tính toán thời gian sớm nhất & thời gian muộn nhất có thể cần thiết để tất cả các con kiến rơi khỏi cột.

Dầu vào. Dòng 1 của đầu vào chứa 1 số nguyên cho biết số trường hợp theo sau. Dữ liệu cho mỗi trường hợp bắt đầu bằng 2 số nguyên: chiều dài của cột (tính bằng cm) \mathcal{E} n, số kiến trú ngụ trên cột. 2 số này được theo sau bởi n số nguyên cho biết vị trí của mỗi con kiến trên cột là khoảng cách được đo từ đầu bên trái của cột, không theo thứ tự cụ thể. Tất cả các số nguyên đầu vào là $\leq 10^6$, \mathcal{E} chúng được phân cách bằng khoảng trắng.

Đầu ra. Đối với mỗi trường hợp đầu vào, đầu ra 2 số được phân cách bằng 1 khoảng trắng. Số thứ nhất là thời gian sớm nhất có thể khi tất cả các con kiến rơi khỏi cột (nếu hướng đi của chúng được chọn 1 cách thích hợp), & số thứ 2 là thời gian muộn nhất có thể như vậy.

Analysis.

Problem 93 ([WW18], 1.3.1., pp. 12–13, Perfection). From the article Number Theory in the 1994 Microsoft Encarta: "If $a,b,c \in \mathbb{Z}$ s.t. a=bc, a is called a multiple of b or of c, & b or c is called a divisor or factor of a. If $c \neq \pm 1$, b is called a proper divisor of a.

Chương 17

VNOI

Bài toán 20 (gcd in Pascal triangle – UCLN trong tam giác Pascal, https://oj.vnoi.info/problem/gpt). Tam giác Pascal là 1 cách sắp xếp hình học của các hệ số nhị thức vào 1 tam giác. Hàng thứ $n \in \mathbb{N}$ của tam giác bao gồm các hệ số trong khai triển của đa thức $f(x,y) = (x+y)^n$. I.e., phần tử tại cột thứ k, hàng thứ n của tam giác Pascal là $C_n^k = \binom{n}{k}$, i.e., tổ hợp chập k của n phần tử $0 \le k \le n$. Cho $n \in \mathbb{N}$. Tính GPT(n) là UCLN của các số nằm giữa 2 số 1 trên hàng thứ n của tam giác Pascal. Input. Dòng đầu ghi T là số lượng test. T dòng tiếp theo, mỗi dòng ghi 1 số nguyên n.

Output. $G\grave{o}m\ T\ d\grave{o}ng,\ m\~{o}i\ d\grave{o}ng\ ghi\ {\rm GPT}(n)\ tương\ \'ung.$

Constraint. $1 \le T \le 20$, $2 \le n \le 10^9$.

 $Ph\hat{a}n\ t\acute{i}ch.\ \text{Công thức khai triển nhị thức Newton:}\ (a+b)^n = \sum_{i=0}^n C_n^i a^{n-i} b^i,\ \forall n\in\mathbb{N},\ \text{see, e.g.,}\ \frac{\text{Wikipedia/binomial theorem.}}{\text{Cần tính gcd}(\{C_n^i;1\leq i\leq n-1\}) = \gcd(C_n^1,C_n^2,\ldots,C_n^{n-1}).\ \text{Chú ý mỗi hàng của tam giác Pascal có tính chất đối xứng nên chỉ cần xét "1 nửa" là đủ.\ Cụ thể hơn:}\ C_n^k = C_n^{n-k},\ \forall k\in\mathbb{N},\ k\leq n,\ \text{nên}$

$$\{C_n^1,\dots,C_n^{n-1}\} = \{C_n^1,\dots,C_n^{\lfloor \frac{n}{2} \rfloor}\} = \begin{cases} \{C_n^1,\dots,C_n^{\frac{n-1}{2}}\} & \text{if } n \not \ 2, \\ \{C_n^1,\dots,C_n^{\frac{n}{2}}\} & \text{if } n \not \ 2, \end{cases}$$

nên thay vì xét $i=1,\ldots,n-1$, chỉ cần xét $i=1,\ldots,\lfloor\frac{n}{2}\rfloor$ là đủ.

• C++: https://github.com/NQBH/advanced_STEM_beyond/blob/main/OLP_ICPC/C++/gcd_Pascal_triangle.cpp.

Theorem 1.

$$\gcd\{C_n^i\}_{i=1}^{n-1} = \begin{cases} p & \textit{if } n = p^k \textit{ for some prime } p \; \mathcal{C} \textit{ some } n \in \mathbb{N}^\star, \\ 1 & \textit{if } n \neq p^k \textit{ for all prime } p \; \mathcal{C} \textit{ any } n \in \mathbb{N}^\star. \end{cases}$$

See also, e.g.:

• Mathematics StackExchange/gcd of binomial coefficients.

Chương 18

Recurrence Relation – Quan Hệ Hồi Quy

Contents

Resources – Tài nguyên.

1. [AB20]. Dorin Andrica, Ovidiu Bagdasar. Recurrent Sequences: Key Results, Applications, & Problems.

Let X be an arbitrary set. A function $f: \mathbb{N} \to X$ defines a sequence $(x_n)_{n=0}^{\infty}$ of elements of X, where $x_n = f(n)$, $\forall n \in \mathbb{N}$. The set of all sequences with elements in X is denoted by $X^{\mathbb{N}}$, while X^n denotes Cartesian product of n copies of X, where X will be chosen as \mathbb{C} , the Euclidean space \mathbb{R}^m , the algebra $M_r(A)$ of the $r \times r$ matrices with entries in a ring A, etc. The set $X^{\mathbb{N}}$ has numerous important subsets. E.g., when $X = \mathbb{R}$, the set of real numbers $\mathbb{R}^{\mathbb{N}}$ includes sequences which are bounded, monotonous, convergent, positive, nonzero, periodic, etc.

– Cho X là 1 tập hợp tùy ý. Một hàm $f: \mathbb{N} \to X$ định nghĩa 1 $dãy (x_n)_{n=0}^{\infty}$ các phần tử của X, trong đó $x_n = f(n)$, $\forall n \in \mathbb{N}$. Tập hợp tất cả các dãy có các phần tử trong X được ký hiệu là $X^{\mathbb{N}}$, trong khi X^n biểu thị tích Descartes của n bản sao của X, trong đó X sẽ được chọn là \mathbb{C} , không gian Euclidean \mathbb{R}^m , đại số $M_r(A)$ của các ma trận $r \times r$ có các phần tử trong vành A, v.v. Tập hợp $X^{\mathbb{N}}$ có nhiều tập con quan trọng. Ví dụ, khi $X = \mathbb{R}$, tập hợp các số thực $\mathbb{R}^{\mathbb{N}}$ bao gồm các dãy số bị chặn, đơn điệu, hội tụ, dương, khác không, tuần hoàn, v.v.

When $a \in X$ is fixed, in *implicit form*, a recurrence relation is defined by

$$F_n(x_n, x_{n-1}, \dots, x_0) = a, \ \forall n \in \mathbb{N}^*, \tag{18.1}$$

where $F_n: X^{n+1} \to X$ is a function of n+1 variables, $n \in \mathbb{N}^*$. In general, the implicit form of a recurrence relation does not define uniquely the sequence $(x_n)_{n=0}^{\infty}$.

The explicit form of a recurrence relation is

$$x_n = f_n(x_{n-1}, \dots, x_0), \ \forall n \in \mathbb{N}^*, \tag{18.2}$$

where $f_n: X^n \to X$ is a function, $\forall n \in \mathbb{N}^*$. The relations (18.2) give the rule to construct the term x_n of the sequence $(x_n)_{n\geq 0}$ from the 1st term $x_0: x_1 = f_1(x_0), x_2 = f_2(x_1, x_0), \ldots$, i.e., (18.2) is a functional type relation.

In mathematics, a *recurrence relation* is an equation according to which the nth term of a sequence of numbers is equal to some combination of the previous terms, i.e.:

$$\begin{cases} u_0 \in \mathbb{F}, \\ u_n = f_n(n, u_0, u_1, \dots, u_{n-1}), \ \forall n \in \mathbb{N}^*, \end{cases}$$
 (18.3)

if u_0 is the initial element, which is an element of the given field \mathbb{F} , of the sequence $\{u_n\}_{n=0}^{\infty}$, where $f_n: \mathbb{N}^* \times \mathbb{F}^n \to \mathbb{F}$ is a scalar-valued function of (n+1)-dimensional-vector-valued argument, $\forall n \in \mathbb{N}^*$; &

$$\begin{cases} u_1 \in \mathbb{F}, \\ u_n = f_n(n, u_1, \dots, u_{n-1}), \ \forall n \in \mathbb{N}, \ n \ge 2, \end{cases}$$
 (18.4)

if u_1 is the initial element, which is an element of the given field \mathbb{F} , of the sequence $\{u_n\}_{n=1}^{\infty}$, where $f_n: \mathbb{N}_{\geq 2} \times \mathbb{F}^{n-1} \to \mathbb{F}$ is a scalar-valued function of n-dimensional-vector-valued argument, $\forall n \in \mathbb{N}, n \geq 2$.

Question 5. What define uniquely (18.3)?

Answer. The solutions $\{u_n\}_{n=0}^{\infty}$ defined by (18.3), are uniquely determined in terms of $u_0 \in \mathbb{F}, \{f_n\}_{n=1}^{\infty}$. Analogously, the solutions $\{u_n\}_{n=0}^{\infty}$ defined by (18.4), are uniquely determined in terms of $u_1 \in \mathbb{F}, \{f_n\}_{n=2}^{\infty}$.

Remark 6 (Starting index of a sequence). The starting index of a sequence $\{u_n\}_{n\in\{0,1\}}^{\infty}$ can be 0, which is commonly used in Computer Science & various programming languages, or 1, which is commonly used in Mathematics.

Often, only k previous terms of the sequence appear in the equation, for a parameter k that is independent of n; this number k is called the *order* of the relation. If the values of the 1st k numbers in the sequence have been given, the rest of the sequence can be calculated by repeatedly applying the equation.

In *linear recurrences*, the nth term is equated to a linear function of the k previous terms. A famous example is the recurrence for the Fibonacci numbers

$$\begin{cases}
F_0 = F_1 = 1, \\
F_n = F_{n-1} + F_{n-2}, \ \forall n \in \mathbb{N}, \ n \ge 2,
\end{cases}$$
(Fib)

where the order k = 2 & the linear function merely adds the 2 previous terms. This example is a linear recurrence with constant coefficients, because the coefficients of the linear function (1 & 1) are constants that do not depend on n. For these recurrences, one can express the general term of the sequence as a closed-form expression of n. Linear recurrences with polynomial coefficients depending on n are also important, because many common [elementary functions] & special functions have a Taylor series whose coefficients satisfy such a recurrence relation (see Wikipedia/holonomic function).

Def: Solving a recurrence relation means obtaining a closed-form solution: a non-recursive function of n.

The concept of a recurrence relation can be extended to multidimensional arrays, i.e., indexed families that are indexed by tuples of naturals.

Definition 4 (Recurrence relation). A recurrence relation is an equation that expresses each element of a sequence as a function of preceding ones. More precisely, in the case where only the immediately preceding element is involved, a 1st order recurrence relation has the form

$$\begin{cases} u_0 \in X, \\ u_n = \varphi(n, u_{n-1}), \ \forall n \in \mathbb{N}^*, \end{cases}$$
 (18.5)

where $\varphi : \mathbb{N} \times X \to X$ is a function, where X is a set to which the elements of a sequence must belong. For any $u_0 \in X$, this defines a unique sequence with u_0 as its 1st element, called the initial value, which is easy to modify the definition for getting sequences starting from the term of index 1 or higher.

A recurrence relation of order $k \in \mathbb{N}^*$ has the form

$$\begin{cases}
 u_0, u_1, \dots, u_{k-1} \in X, \\
 u_n = \varphi(n, k, u_{n-1}, u_{n-2}, \dots, u_{n-k}), \ \forall n \in \mathbb{N}, \ n \ge k,
\end{cases}$$
(18.6)

where $\varphi : \mathbb{N}^2 \times X^k \to X$ is a function that involves k consecutive elements of the sequence. In this case, k initial values are needed for defining a sequence.

Remark 7 (Explicit- vs. implicit recurrence relations). The explicit recurrence relations are the recurrence relations that can be given as (18.3) or (18.4); meanwhile the implicit recurrence relations are the recurrence relations that can be given as

$$\begin{cases} u_0 \in \mathbb{F}, \\ f_n(n, u_0, u_1, \dots, u_{n-1}, u_n) = 0, \ \forall n \in \mathbb{N}^*, \end{cases}$$
 (18.7)

if u_0 is the initial element, which is an element of the given field \mathbb{F} , of the sequence $\{u_n\}_{n=0}^{\infty}$, where $f_n : \mathbb{N}^* \times \mathbb{F}^{n+1} \to \mathbb{F}$ is a scalar-valued function of (n+1)-dimensional-vector-valued argument, $\forall n \in \mathbb{N}^*$; &

$$\begin{cases} u_1 \in \mathbb{F}, \\ f_n(n, u_1, \dots, u_{n-1}, u_n) = 0, \ \forall n \in \mathbb{N}, \ n \ge 2, \end{cases}$$
 (18.8)

if u_1 is the initial element, which is an element of the given field \mathbb{F} , of the sequence $\{u_n\}_{n=1}^{\infty}$, where $f_n: \mathbb{N}_{\geq 2} \times \mathbb{F}^n \to \mathbb{F}$ is a scalar-valued function of n-dimensional-vector-valued argument, $\forall n \in \mathbb{N}, n \geq 2$. The wellposednesses of (18.7) \mathcal{E} (18.8) require that the corresponding recurrent equation has a unique solution to be able to define u_n uniquely.

Example 1 (Factorial). The factorial is defined by the recurrence relation $n! = n \cdot (n-1)!$, which is (18.5) with $X = \mathbb{N}^*$, $u_0 = 0! = 1$, $\varphi(x, y) = xy$, $\forall x, y \in X = \mathbb{N}^*$ so that $u_n = \varphi(n, u_{n-1}) = nu_{n-1} = n(n-1)! = n!$, $\forall n \in \mathbb{N}^*$. This is an example of a linear recurrence with polynomial coefficients of order 1, with the simple polynomial (in n) n as its only coefficient.

Example 2 (Logistic map). An example of a recurrence relation is the logistic map defined by

$$\begin{cases} x_0 \in \mathbb{R}, \\ x_{n+1} = rx_n(1 - x_n), \end{cases}$$
 (lgt)

for a given constant r. The behavior of the sequence depends dramatically on r, but is stable when the initial condition x_0 varies (proofs?)

18.1 Linear recurrence with constant coefficients — Hồi quy tuyến tính với hệ số hằng

See, e.g., Wikipedia/linear recurrence with constant coefficients. In mathematics (including combinatorics, linear algebra, & dynamical system), a linear recurrence with constant coefficients (also known as a linear recurrence relation or linear difference equation) sets equal to 0 a polynomial that is linear in the various iterates of a variable – i.e., in the values of the elements of a sequence. The polynomial's linearity means that each of its terms has degree 0 or 1. A linear recurrence denotes the evolution of some variable over time, with the current time period or discrete moment in time denoted as t, 1 period earlier denoted as t-1, 1 period later as t+1, etc.

The solution of such an equation is a function of t, & not of any iterate values, giving the value of the iterate at any time. To find the solution, it is necessary to know the specific values (known as *initial conditions*) of n of the iterates, & normally these are the n iterates that are oldest. The equation or its variable is said to be *stable* if from any set of initial conditions the variable's limit as time goes to ∞ exists; this limit is called the *steady state*.

Difference equations are used in a variety of contexts, e.g. in economics to model the evolution through time of variables e.g. gross domestic product, the inflation rate, the exchange rate, etc. They are used in modeling such time series because values of these variables are only measured at discrete intervals. In econometric applications, linear difference equations are modeled with stochastic terms in the form of autoregressive (AR) models & in models e.g. vector autoregression (VAR) & autoregressive moving average (ARMA) models that combine AR with other features.

Definition 5 (Linear recurrence with constant coefficients). A linear recurrence with constant coefficients is an equation of the following form, written in terms of parameters a_1, \ldots, a_n, b :

$$y_n = \sum_{i=1}^k a_i y_{n-i} + b, (18.9)$$

or equivalently as

$$y_{n+k} = \sum_{i=1}^{n} a_i y_{n+k-i} + b, \tag{18.10}$$

Chương 19

Dynamic Programming - Quy Hoạch Động

Contents

19.1	Linear Dynamic Programming – Quy Hoạch Động Tuyến Tính	92
19.2	Problem: Dynamic Programming – Bài Tập: Quy Hoạch Động	93

Resource - Tài nguyên.

- 1. Wikipedia/dynamic programming.
- 2. [Ber05; Ber17]. DIMITRI P. BERTSEKAS. Dynamic Programming & Optimal Control. Vol. I. 3e. 4e (can't download yet).
- 3. [Ber07; Ber12] DIMITRI P. BERTSEKAS. Dynamic Programming & Optimal Control. Vol. II. 3e. 4e (can't download yet).
- 4. [Thư+21]. TRẦN ĐAN THƯ, NGUYỄN THANH PHƯƠNG, ĐINH BÁ TIẾN, TRẦN MINH TRIẾT, ĐẶNG BÌNH PHƯƠNG. $K\tilde{y}$ Thuật Lập Trình. Chap. 9: Kỹ Thuật Quy Hoạch Động.
- 5. [WW16]. YONGHUI WU, JIANDE WANG. Data Structure Practice for Collegiate Programming Contests & Education. Chap. 3: Simple Recursion Đệ Quy Đơn Giản.
- 6. [WW18]. YONGHUI WU, JIANDE WANG. Algorithm Design Practice for Collegiate Programming Contests & Education. Chap. 9: Practice for Dynamic Programming Thực Hành Quy Hoạch Động.

Dynamic programming (DP) is used to solve optimization problems. DP breaks an optimization problem into a sequence of related subproblems, solves these subproblems just once, stores solutions to subproblems, & constructs an optimal solution to the problem, based on solutions to subproblems. The method for storing solutions to subproblems is called *memorization*. When the same subproblem occurs, its solution can be used directly.

– Lập trình động (DP) được sử dụng để giải quyết các bài toán tối ưu hóa. DP chia 1 bài toán tối ưu hóa thành 1 chuỗi các bài toán con có liên quan, giải các bài toán con này chỉ 1 lần, lưu trữ các giải pháp cho các bài toán con, & xây dựng 1 giải pháp tối ưu cho bài toán, dựa trên các giải pháp cho các bài toán con. Phương pháp lưu trữ các giải pháp cho các bài toán con được gọi là ghi nhớ. Khi cùng 1 bài toán con xảy ra, giải pháp của nó có thể được sử dụng trực tiếp.

There are 2 characteristics for a problem solved by DP:

- 1. Optimization: An optimal solution to a problem consists of optimal solutions to subproblems.
- 2. No aftereffect: A solution to a subproblem is only related to solutions to its direct predecessors.
- Có 2 đặc điểm cho 1 bài toán được giải quyết bằng DP:
- 1. Tối ưu hóa: Một giải pháp tối ưu cho 1 bài toán bao gồm các giải pháp tối ưu cho các bài toán con.
- 2. Không có hậu quả: Một giải pháp cho 1 bài toán con chỉ liên quan đến các giải pháp cho các bài toán tiền nhiệm trực tiếp của nó.

Dynamic Programming experiments are organized as follows:

- Linear Dynamic Programming,
- Tree-Like Dynamic Programming,
- Dynamic Programming with State Compression.

- Các thí nghiệm DP được tổ chức như sau:
- Quy hoạch động tuyến tính,
- Quy hoach động dang cây,
- Quy hoạch động với nén trạng thái.

19.1 Linear Dynamic Programming – Quy Hoạch Động Tuyến Tính

Basic concepts for DP & the method for linear DP are as follows.

- 1. Stage $k \, \mathcal{E}$ state s_k : The solution to a problem is divided into k orderly & related stages. In a stage there are several states. State s_k is a state in stage k.
 - Giai đoạn k & trạng thái s_k : Giải pháp cho 1 vấn đề được chia thành k giai đoạn có thứ tự & liên quan. Trong 1 giai đoạn có 1 số trạng thái. Trạng thái s_k là trạng thái trong giai đoạn k.
- 2. Decision u_k & available decision set $D_k(s_k)$: The choice from a state in stage k-1 (the current stage) to a state in stage k (the next stage) is called decision u_k . Normally, a state can be reachable through more than 1 decision from the last stage, & such decisions constitute an available decision set $D_k(s_k)$. A decision sequence from the initial state to the goal state is called a strategy.
 - Quyết định u_k & tập quyết định khả dựng $D_k(s_k)$: Lựa chọn từ trạng thái ở giai đoạn k-1 (giai đoạn hiện tại) đến trạng thái ở giai đoạn k (giai đoạn tiếp theo) được gọi là quyết định u_k . Thông thường, 1 trạng thái có thể đạt được thông qua nhiều hơn 1 quyết định từ giai đoạn cuối cùng, & các quyết định như vậy tạo thành 1 tập quyết định khả dụng $D_k(s_k)$. Trình tự quyết định từ trạng thái ban đầu đến trạng thái mục tiêu được gọi là $chi\acute{e}n\ lược$.
- 3. Successor Function & Optimization. A successor function is used to describe the transition from stage k-1 to stage k. The DP method is used to solve some optimization problems. Successor functions are used to find a solution with the optimal (minimum or maximum) value to a problem. A successor function can be formally defined as follows:

$$f_k(s_k) = \text{opt}_{u_k \in D_k(s_k)} g(f_{k-1}(T_k(s_k, u_k)), u_k),$$

where $T_k(s_k, u_k)$ is a state s_{k-1} in stage k-1 which relates to state s_k through decision u_k , & $f_{k-1}(T_k(s_k, u_k))$ is an optimal solution, $g(x, u_k)$ is a function for value x & decision u_k , i.e., $g(f_{k-1}(T_k(s_k, u_k)))$ is a function from state s_{k-1} to state s_k through decision u_k ; opt means optimization; & $f_1(s_1)$ is an initial value. Because u_k is 1 decision in a decision set $D_k(s_k)$, all decisions are enumerated to get the optimal solution to s_k . From the initial state, successor functions are used to get the optimal solution f_n (goal state) to the problem finally.

- Hàm kế thừa \mathcal{E} Tối ưu hóa. Hàm kế thừa được sử dụng để mô tả quá trình chuyển đổi từ giai đoạn k-1 sang giai đoạn k. Phương pháp DP được sử dụng để giải 1 số bài toán tối ưu hóa. Hàm kế thừa được sử dụng để tìm giải pháp có giá trị tối ưu (tối thiểu hoặc tối đa) cho 1 bài toán. Một hàm kế thừa có thể được định nghĩa chính thức như sau:

$$f_k(s_k) = \text{opt}_{u_k \in D_k(s_k)} g(f_{k-1}(T_k(s_k, u_k)), u_k),$$

trong đó $T_k(s_k, u_k)$ là trạng thái s_{k-1} ở giai đoạn k-1 liên quan đến trạng thái s_k thông qua quyết định u_k , & $f_{k-1}(T_k(s_k, u_k))$ là 1 giải pháp tối ưu, $g(x, u_k)$ là 1 hàm cho giá trị x & quyết định u_k , tức là, $g(f_{k-1}(T_k(s_k, u_k)))$ là 1 hàm từ trạng thái s_{k-1} đến trạng thái s_k thông qua quyết định u_k ; opt có nghĩa là tối ưu hóa; & $f_1(s_1)$ là giá trị ban đầu. Vì u_k là 1 quyết định trong tập quyết định $D_k(s_k)$, tất cả các quyết định đều được liệt kê để có được giải pháp tối ưu cho s_k . Từ trạng thái ban đầu, các hàm kế thừa được sử dụng để có được giải pháp tối ưu f_n (trạng thái mục tiêu) cho bài toán cuối cùng.

If the stages are in linear order, linear DP is used to solve the problem.

- Nếu các giai đoạn theo thứ tự tuyến tính, DP tuyến tính được sử dụng để giải quyết vấn đề.

```
for (every state i is processed in linear order) {
    for (every state j in state i is enumerated (j\in S_i)) {
        for (every state k in stage i - 1 which is related to state j is enumerated (k\in S_{i-1})) {
            calculate f_i(j) = opt_{u_k\in D_k(k)} g(f_{i-1}(k), u_k);
        }
    }
}
```

Problem 94 (Brackets sequence, [WW18], p. 261). Define a regular brackets sequence in the following way:

- 1. An empty sequence is a regular sequence.
- 2. If S is a regular sequence, then (S) $\mathcal{E}[S]$ are both regular sequences.
- 3. If A, B are regular sequences, then AB is a regular sequence.

E.g., all of the following sequences of characters are regular brackets sequences: (), [], (()), ([]), ()[()]

19.2 Problem: Dynamic Programming – Bài Tập: Quy Hoạch Động

Bài toán 21 ([Thư+21], p. 441). (a) Tìm $(x,y) \in \mathbb{R}^2$ thỏa $x^2 + y^2 \le 1$ để x + y đạt GTNN, GTLN. (b) Tìm $(x,y) \in \mathbb{R}^2$ thỏa $x^2 + y^2 \le r^2$ để x + y đạt GTNN, GTLN với $r \in (0,\infty)$. (c) Phát biểu ý nghĩa hình học của bài toán.

Phát biểu bài toán tối ưu/bài toán quy hoạch:

$$\begin{aligned} \max_{x^2+y^2 \leq r^2} x + y &= \sqrt{2}, \ \arg\max_{x^2+y^2 \leq r^2} x + y = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right), \\ \min_{x^2+y^2 \leq r^2} x + y &= -\sqrt{2}, \ \arg\min_{x^2+y^2 \leq r^2} x + y = \left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right), \end{aligned}$$

Definition 6 (Fibonacci sequences). Fibonacci sequences are defined by

$$\begin{cases} F_0 = 0, \ F_1 = 1, \\ F_n = F_{n-1} + F_{n-2}, \ \forall n \in \mathbb{N}, \ n \ge 2. \end{cases}$$

Definition 7 (Lucas sequences). The sequence of Lucas numbers are defined by

$$\begin{cases} L_0 = 2, \ L_1 = 1, \\ L_n = L_{n-1} + L_{n-2}, \ \forall n \in \mathbb{N}, \ n \ge 2. \end{cases}$$

Bài toán 22 (Fibonacci numbers – Số Fibonacci). (a) Tính dãy số Fibonacci & dãy Lucas bằng: (i) Truy hồi $O(a^n)$ với $a \approx 1.61803$. (ii) Quy hoạch động O(n). (iii) Quy hoạch động cải tiến. (b) Trong mỗi thuật toán, tính cụ thể số lần gọi hàm tính $F_i, L_i,$ với $i = 0, 1, \ldots, n$, số phép cộng đã thực hiện. Tính time- & space complexities. (c) Mở rộng bài toán cho dãy số truy hồi cấp 2 với hệ số hằng $\{u_n\}_{n=1}^{\infty}$ được xác định bởi:

$$\begin{cases} u_0 = \alpha, \ u_1 = \beta, \\ u_{n+2} = au_{n+1} + bu_n, \ \forall n \in \mathbb{N}, \end{cases}$$

 $với \ a,b,\alpha,\beta \in \mathbb{C}$ cho trước. (d) Mở rộng bài toán cho dãy số truy hồi cấp 2 với hệ số thay đổi $\{u_n\}_{n=1}^{\infty}$ được xác định bởi:

$$\begin{cases} u_0 = \alpha, \ u_1 = \beta, \\ u_n = a(n)u_{n-1} + b(n)u_{n-2}, \ \forall n \in \mathbb{N}, \ n \ge 2. \end{cases}$$

 $v\acute{o}i \ \alpha, \beta \in \mathbb{C}, \ a,b: \mathbb{N}_{\geq 2} \to \mathbb{C} \ l\grave{a} \ 2 \ h\grave{a}m \ gi\acute{a} \ tri \ ph\acute{u}c \ cho \ tru\acute{o}c.$

Chứng minh. Cho $n \in \mathbb{N}$. Đặt f(n,i) là số lần xuất hiện (frequency) của F_i khi tính F_n bằng công thức truy hồi. Để chứng minh bằng phương pháp quy nạp Toán học: $f(n,n-i)=F_{i+1}, \forall i=0,1,\ldots,n$.

- Số lần call hàm truy hồi = $\sum_{i=0}^n f_{n-i} = \sum_{i=0}^n F_{i+1} = \sum_{i=1}^{n+1} F_i = F_{n+3} 1$.
- Số lần thực hiện phép cộng = $F_{n+1} 1$.
- Tốn n+1 ô nhớ để chứa F_0, F_1, \ldots, F_n .

 $C++: \verb|https://github.com/NQBH/advanced_STEM_beyond/blob/main/OLP_ICPC/C++/Fibonacci.cpp|.$

```
#include <iostream>
using namespace std;
const long nMAX = 10000;
long fib(long i) {
    if (i == 1 || i == 2)
        return 1;
    else
        return fib(i - 1) + fib(i - 2);
}
// \cite{Thu_Phuong_Tien_Triet_Phuong_KTLT}, p. 443
long fib_recurrence(long n) {
    long ans, Fn_1, Fn_2;
    if (n \le 2)
        ans = 1;
    else {
        Fn_1 = fib_recurrence(n - 1);
        Fn_2 = fib_recurrence(n - 2);
        ans = Fn_1 + Fn_2;
    }
    return ans;
}
// \cite{Thu_Phuong_Tien_Triet_Phuong_KTLT}, p. 443
long fib_dynamic(long n) {
    long F[nMAX + 1];
    F[0] = 0;
    F[1] = F[2] = 1;
    for (int i = 2; i \le n; ++i)
        F[i] = F[i - 1] + F[i - 2];
    return F[n];
}
// \cite{Thu_Phuong_Tien_Triet_Phuong_KTLT}, p. 443
long fib_dynamic_improved(long n) {
    long lastF = 1, F = 1;
    int i = 1;
    while (i < n) {
        F += lastF;
        lastF = F - lastF;
        ++i;
    }
    return F;
}
int main() {
    long n, i;
    cin >> n;
    cout << "Fibonacci sequence of length " << n << ":\n";</pre>
    for (i = 0; i \le n; ++i)
        cout << fib(i) << " ";</pre>
    cout << "\n";
    for (i = 0; i \le n; ++i)
        cout << fib_recurrence(i) << " ";</pre>
    cout << "\n";
```

Bài toán 23 ([Tru23a], Đăk Nông THCS 2022–2023, 4: virus, p. 32). Flashback là 1 loại virus máy tính sinh sản rất nhanh khi gặp môi trường thuận lợi & là 1 loại virus nguy hiểm, có tốc độ lây lan nhanh trong môi trường mạng. Flashback lần đầu được phát hiện vào năm 2011 bởi công ty diệt virus Intego dưới dạng 1 bản cài đặt flash giả & chúng sinh sản theo quy luật:

- Ngày đầu tiên (ngày thứ 0) có n cá thể ở mức 1.
- Ở mỗi ngày tiếp theo, mỗi cá thể mức i sinh ra i cá thể mức 1, các cá thể mới sẽ sinh sôi, phát triển từ ngày hôm sau.
- Bån thân cá thể thứ i sẽ phát triển thành mức i+1 \mathcal{E} chu kỳ phát triển trong ngày chấm dứt.

Requirement. Xác định sau k ngày trong môi trường có bao nhiều cá thể.

Input. Vào từ file flashback.inp gồm: Dòng 1 chứa số bộ test $t \in \mathbb{N}^*$. t dòng tiếp theo, mỗi dòng chứa $n, k \in \mathbb{N}^*$, ràng buộc $n \in [1000], k \leq [10^5]$.

Output. Ghi ra file flashback.out 1 số nguyên duy nhất là số dư của kết quả tìm được chia cho $10^9 + 7$. Limit.

- Subtask 1: có 40% số test ứng với $n \le 100, k \le 1000$.
- Subtask 2: có 60% số test ứng với $n \le 1000, k \le 10^5$.

Sample.

flashback.inp	flashback.out
5	65
5 3	130
10 3	170
5 4	2563
11 6	232767
999 6	

(a) Mô tả thành mô hình toán học. (b) Viết chương trình C/C++, Pascal, Python để giải.

```
Chứng minh. Gọi a(d,l) là số cá cá thể ở mức l vào ngày d (d: day, l: level). Thiết lập công thức truy hồi: Kết quả cuối cùng: n(F_1 + \sum_{i=1}^k F_{2i}) = n \sum_{i=1}^k F_{2i} = n F_{2k+1}. C++ codes:
```

- $\bullet \ \ DAK's \ C++: \ https://github.com/NQBH/advanced_STEM_beyond/blob/main/OLP_ICPC/C\%2B\%2B/DAK_virus.cpp.$
- NHT's C++: https://github.com/NQBH/advanced_STEM_beyond/blob/main/OLP_ICPC/C%2B%2B/NHT_virus.cpp.

```
#include <bits/stdc++.h>
#define ll long long
using namespace std;

const int MOD = 1e9 + 7;
int fib[2000009];

int main() {
   ios::sync_with_stdio(false);
   cin.tie(nullptr);
```

```
fib[0] = 0;
fib[1] = 1;
for(int i = 2; i <= 200005; i++) {
    fib[i] = (fib[i - 1] + fib[i - 2]) % MOD;
}

int T;
cin >> T;
while(T--) {
    int n, k;
    cin >> n >> k;
    cout << n*fib[2*k+1] << '\n';
}
return 0;
}</pre>
```

Bài toán 24 ([Tru23a], Hà Nội HSG9 2021–2022, 5: cổ phiếu VNI, p. 37). Bình mua bán cổ phiếu VNI trên thị trường chứng khoán. Giả sử giá của 1 cổ phiếu VNI trong $n \in \mathbb{N}^*$ ngày lần lượt là a_1, a_2, \ldots, a_n . Biết mỗi ngày Bình chỉ thực hiện 1 trong 3 hoạt động:

- 1. Mua 1 cổ phiếu VNI
- 2. Bán số lượng cổ phiếu bất kỳ mà Bình đang sở hữu
- 3. Không thực hiện bất kỳ giao dịch nào.

Requirement. Bình thực hiện mua bán cổ phiếu VNI như thế nào để thu được lợi nhuận lớn nhất nếu Bình tham gia mua bán bắt đầu từ ngày thứ $t \in \mathbb{N}^*$ cho trước?

Input. $Doc \ t \hat{u} \ file \ vni.inp \ g \hat{o} m$:

- Dòng 1: $n \in [10^5]$ là số ngày biết giá cổ phiếu.
- Dòng 2: gồm n số nguyên dương a_1, a_2, \ldots, a_n tương ứng là giá cổ phiếu VNI trong từng ngày $a_i \in [10^9], 1 \le i \le n$.
- Dòng 3: $q \in [10^5]$ là số lượng truy vấn.
- q dòng tiếp theo, $m\tilde{o}i$ dòng $q\tilde{o}m$ $t\in [n]$ thể hiện cho ngày đầu tiên $m\tilde{a}$ Bình tham gia mua bán cổ phiếu VNI.

Output. Ghi ra file vni.out gồm q dòng, mỗi dòng 1 số nguyên duy nhất là lợi nhuận lớn nhất mà Bình thu được ở mỗi truy vấn tương ứng.

Limit.

- Subtask 1: có 50% số test tương ứng $n \in [10^3], q = 1$.
- Subtask 2: có 30% số test tương ứng $n \in [10^5], q = 1$.
- Subtask 3: có 20% số test còn lại không có ràng buộc gì thêm.

Sample.

flashback.inp	flashback.out
4	7
1 2 5 4	0
2	
1	
3	

Bài toán 25 ([Tru23a], BRVT HSG9 2022–2023, 2: đố vui tin học, p. 57). Để tổng kết phát thưởng cho cuộc thi Đố vui Tin học. Ban tổ chức có $n \in \mathbb{N}^*$ phần quà được đánh số thứ tự từ 1 đến n, phần quà thứ i có giá trị là a_i . Ban tổ chức yêu cầu học sinh chọn các phần quà theo quy tắc:

- Phần quà chọn sau phải có số thứ tự lớn hơn phần quà chọn trước đó.
- Phần quà chọn sau phải có giá trị lớn hơn phần quà chọn trước đó ít nhất k giá trị.

Requirement. Giúp các học sinh lựa chọn theo quy tắc ban tổ chức đặt ra sao cho số lượng phần quà được chọn là nhiều nhất. Input. Vào từ file gift.inp:

- Dòng 1 chứa số bộ test $t \in \mathbb{N}^*$.
- Với mỗi bộ test:
 - $D \delta ng \ 1 \ ch t a \ n \in [10^4], k \in [10^3].$
 - o Dòng 2 chứa n số nguyên dương $a_i \in [10^6]$ là giá trị của phần quà thứ $i, \forall i \in [n]$.

Output. Ghi ra file gift.out 1 dòng duy nhất chứa số lượng phần quà nhiều nhất thỏa mãn yêu cầu của Ban tổ chức. Sample.

gift.inp	gift.out
4	3
5 2	5
4 5 6 4 8	4
10 2	3
4 3 6 5 7 6 9 10 8 12	
10 3	
4 3 6 5 7 6 9 10 8 12	
10 4	
4 3 6 5 7 6 9 10 8 12	

Bài toán 26 ([Tru23a], BRVT HSG9 2022–2023, 3: trò chơi, p. 58). Nhân dịp kỷ niệm ngày thành lập Đoàn, cô Tổng phụ trách tổ chức 1 trò chơi có thưởng cho các bạn lớp 9: Có $n \in \mathbb{N}^*$ ô vuông được vẽ thẳng hàng trên sân trường, các ô vuông được đánh số thứ tự từ 1 đến n. Mỗi ô vuông i có giá trị năng lượng là h_i . 1 học sinh đang ở ô thứ i, bạn ấy có thể nhảy tới ô vuông tiếp theo theo các cách:

- Nếu đang ở ô thứ i, có thể nhảy đến ô vuông thứ tự $i+1, i+2, \ldots, i+k$.
- Chi phí năng lượng tiêu hao cho 1 lần nhảy là $|h_i h_j|$ với h_j là ô đích mà bạn nhủy tới.

Học sinh nào di chuyển từ ô 1 đến ô n với chi phí năng lượng thấp nhất sẽ được cô thưởng 1 phần quà.

Yêu cầu. Tìm chi phí thấp nhất để giúp các học sinh nhảy từ ô vuông thứ 1 đến ô vuông thứ n.

Input. Vào từ file game.inp:

- Dòng 1 chứa số bộ test $t \in \mathbb{N}^*$.
- Với mỗi bộ test:
 - \circ Dòng 1 chứa $2 \le n \le 10^5$, $k \in [100]$, lần lượt là số ô vuông $\mathfrak E$ số ô vuông tối đa mà học sinh có thể nhảy qua.
 - \circ Dòng 2 chứa n giá trị $h_i \in [10^4]$, mỗi số cách nhau 1 ký tự trắng là chi phí năng lượng của ô thứ $i, \forall i \in [n]$.

Output. Ghi ra file game.out 1 số nguyên là chi phí năng lượng ít nhất. Sample.

game.inp	game.out
1	20
5 3	
10 25 35 40 20	

Bài toán 27 ([Tru23a], Lâm Đồng HSG9 2022–2023, 4: biểu diễn văn nghệ, p. 82). Trong 1 chương trình nghệ thuật diễn ra liên tục trong $n \in \mathbb{N}^*$ giờ, công ty X có danh sách $m \in \mathbb{N}^*$ nghệ sĩ khác nhau có thể thuê để biểu diễn. Thời điểm bắt đầu biểu diễn được tính bằng 0. Để đơn giản trong quản lý & sắp xếp, các nghệ sĩ được đánh số thứ tự từ 1 đến m, nghệ sĩ thứ $i \in [n]$ biểu diễn trong thời điểm s_i đến thời điểm t_i , $0 \le s_i < t_i \le n$, với tiền công là c_i , $0 \le c_i \le 10^6$.

Requirement. Viết chương trình thuê các nghệ sĩ để bất cứ thời điểm nào cũng luôn có ít nhất 1 nghệ sĩ biểu diễn đồng thời tổng chi phí thuê là nhỏ nhất.

Input. $Vao\ từ\ file\ art_performance.inp\ g\^om:$

- Dòng 1 chứa số bộ test $t \in \mathbb{N}^*$.
- Với mỗi bô test:
 - o Dòng 1 chứa $n, m \in [400]$.
 - \circ m dòng tiếp theo, mỗi dòng chứa 3 số nguyên không âm s_i, t_i, c_i .

Output. $Ghi\ ra\ file\ art_performance.out\ 1\ s\'o\ nguyễn\ là\ chi\ phí\ thuế\ nhỏ\ nhất.$ Sample.

art_performance.inp	art_performance.out
1	20
9 5	
0 5 25	
1 3 18	
3 7 21	
4 6 38	
7 9 20	

Bài toán 28 ([Tru23a], TS10 chuyên Tin Bình Dương 2023–2024, 2: ghép tranh, p. 93). Trò chơi thứ 2 của lớp 9A là trò chơi ghép tranh. Cô chủ nhiệm cho 1 bức tranh có $n \in \mathbb{N}^*$ mảnh ghép & $k \in \mathbb{N}^*$, $1 \le k \le n \le 50$. Lần lượt từng tổ sẽ thay phiên nhau lên ghép tranh với số mảnh ghép sử dụng không vượt quá k. An nhận thấy phải tìm được tất cả các cách ghép tranh mới có thể chiến thắng trò chơi. Có thể có nhiều cách ghép tranh, 2 cách ghép khác nhau nếu tồn tại 1 cách ghép giúp hoàn thành được bức tranh & bị bỏ qua ở cách kia.

Requirement. Giúp An xác định số cách ghép tranh khác nhau để tổ của An có thể ghép hoàn thành bức tranh.

Input. $Vao\ till$ file picture.inp $g \delta m$:

- Dòng 1 chứa số bộ test $t \in \mathbb{N}^*$.
- $M\tilde{o}i \ b\hat{o} \ test \ q\hat{o}m \ 1 \ d\hat{o}nq \ chứa \ n, k \in \mathbb{N}^{\star}.$

Output. Với mỗi bô test, qhi ra file picture.out 1 số nguyên duy nhất là số cách qhép tranh khác nhau.

picture.inp	picture.out
1	7
4 3	

Bài toán 29 ([Tru23a], Vĩnh Phúc HSG9 2022–2023, 2: lật ký tự, p. 210). Cho xâu S gồm $n \in \mathbb{N}^*$ ký tự . # được đánh số từ 1 đến n. Thao tác lật ký tư của xâu được đinh nghĩa như sau:

- Chọn $i \in [n]$.
- Nếu ký tự thứ i của xâu S là . thì nó sẽ được thay thế bằng #. Ngược lại, nếu là # thì sẽ được thay thế bằng ...

Requirement. Lập trình tính xem cần thực hiện ít nhất bao nhiều thao tác để trong xâu không có ký tự . nào ở ngay bên phải ký $t\psi \#$.

Input. Vào từ file pchar.inp: Dòng 1 chứa số bộ test $t \in \mathbb{N}^*$. Với mỗi bộ test:

- Dòng 1 ghi $n \in [200000]$ là số lượng ký tự xâu trong S.
- Dòng 2 ghi xâu S gồm n ký tự . #.

Subtask.

- Subtask 1: Ràng buộc $1 \le n \le 2000$
- Subtask 2: Không có ràng buộc bổ sung.

Output. Ghi ra file pchar.out 1 số nguyên duy nhất là số thao tác ít nhất cần thực hiện để xâu S không có bất kỳ thứ tự. nào ở ngay bên phải ký tự #.

Sample.

pchar.inp	pchar.out
3	1
3	2
#.#	0
5	
#.##.	
9	

Định nghĩa 5 (Dãy phần tử cực trị của 1 dãy số thực cho trước). Cho dãy số thực $\{a_i\}_{i=1}^n$. Dãy phần tử lớn nhất *của dãy số* thực $\{a_i\}_{i=1}^n$ được định nghĩa bởi:

$$a_i^{\max} \coloneqq \max_{i \le j \le n} a_j.$$

Tương tự, dãy phần tử nhỏ nhất của đãy số thực $\{a_i\}_{i=1}^n$ được định nghĩa bởi:

$$a_i^{\min} \coloneqq \min_{i \le j \le n} a_j.$$

Bài toán 31 ([Thư+21], p. 446, tính C_n^k). (a) Viết chương trình C/C++, Python để tính C_n^k – số tổ hợp chập k của n phần tử bằng công thức truy hồi nhờ đẳng thức Pascal:

$$C_n^k = \begin{cases} 1 & \text{if } k = 0 \lor k = n, \\ C_{n-1}^k + C_{n-1}^{k-1} & \text{if } 0 < k < n, \end{cases}$$

 $với \ n,k \in \mathbb{N},\ 0 \leq k \leq n,\ dược \ nhập vào.$ (b) Có thể sử dụng mảng 1 chiều để lưu lại dòng trước đó mà không cần phải lưu lại tất cả.

Bài toán 32 ([Thư+21], II.1, p. 447, tìm dãy con đơn điệu tăng dài nhất). Cho dãy số nguyên $a = \{a_i\}_{i=1}^n = a_1, \ldots, a_n \ gồm n \in \mathbb{N}^*$ phần tử. 1 dãy con của a là 1 cách chọn trong a 1 số phần tử giữ nguyên thứ tự (có tất cả 2^n dãy con của 1 dãy có n phần tử). Tìm dãy con đơn điệu tăng (resp., giảm, không tăng, không giảm) của a có độ dài lớn nhất.

CS solution. Giả sử dãy ban đầu gồm $a[1], a[2], \ldots, a[n]$. Bổ sung vào a 2 phần tử $a[0] = -\infty$ & $a[n+1] = \infty$ (khi viết chương trình $\pm \infty$ sẽ được cài đặt các giá trị thích hợp). Khi đó dãy con đơn điệu tăng dài nhất sẽ bắt đầu từ a[0] & kết thúc ở a[n+1]. Đặt l(i) là độ dài dãy con đơn điệu tăng dài nhất bắt đầu từ a[i], $\forall i = 0, 1, \ldots, n+1$. Cần tính tất cả l(i) này. Đáp số bài toán sẽ là dãy ứng với $l(i_0)$ có GTLN.

Cơ sở quy hoạch động (bài toán nhỏ nhất). Trường hợp đặc biệt, l(n+1) là độ dài dãy con đơn điệu tăng dài nhất bắt đầu tại $a[n+1] = \infty$. Do dãy con này chỉ gồm 1 phần tử ∞ nên l(n+1) = 1.

Công thức truy hồi. Cần tính l(i) với $i=n,\ldots,1,0$. Giá trị l(i) sẽ được tính trong điều kiện $l(i+1),\ldots,l(n+1)$ đã biết. Dãy con đơn điệu tăng dài nhất bắt đầu từ a[i] sẽ được thành lập bằng cách lấy a[i] ghép vào đầu 1 trong số các dãy con đơn điệu tăng dài nhất bắt đầu từ vị trí a[j]>a[i] (để đảm bảo tính tăng) nào đó đứng sau a[i] & chọn dãy dài nhất trong số đó để ghép a[i] vào đầu để đảm bảo tính dài nhất. Nên l(i) được tính bằng cách xét tất cả các chỉ số $j=i+1,\ldots,n+1$ mà a[j]>a[i], chọn ra chỉ số j_{\max} có $l(j_{\max})$ lớn nhất:

$$l(i) = l(j_{\max}) + 1 = \max\{l(j); i < j \le n+1, \ a[i] < a[j]\} + 1.$$

Bài toán 33 ([Thư+21], II.1.4.1., p. 451, bố trí phòng họp). Có $n \in \mathbb{N}^*$ cuộc họp, cuộc họp thứ i bắt đầu vào thời điểm s_i (start) \mathscr{E} kết thúc vào thời điểm f_i (final). Do chỉ có 1 phòng hội thảo nên 2 cuộc họp bất kỳ sẽ được cùng bố trí phục vụ nếu khoảng thời gian làm việc của chúng chỉ giao nhau tại 1 đầu mứt. Bố trí phòng họp để phục vụ được nhiều cuộc họp nhất.

Bài toán 34 ([Thư+21], II.1.4.2., p. 451, cho thuê máy). Trung tâm tính toán hiệu năng cao nhận được đơn đặt hàng của $n \in \mathbb{N}^*$ khách hàng. Khách hàng i muốn sử dụng máy trong khoảng thời gian từ s_i (start) đến f_i (final) & thủ tiền thuê là c_i . Bố trí lịch thuê máy để tổng số tiền thu được là lớn nhất mà thời gian sử dụng máy của 2 khách bất kỳ được phục vụ đều không giao nhau.

Bài toán 35 ([Thư+21], II.1.4.3., p. 451, dãy tam giác bao nhau). Cho $n \in \mathbb{N}^*$ tam giác trên mặt phẳng. Tam giác i bao tam giác j nếu 3 đỉnh của tam giác j đều nằm trong tam giác i (có thể nằm trên cạnh). Tìm dãy tam giác bao nhau có nhiều tam giác nhất.

Problem 95 (CSES Problem Set/dice combinations). Count the number of ways to construct sum $n \in \mathbb{N}^*$ by throwing a dice 1 or more times. Each throw produces an outcome between 1 & 6. E.g., if n = 3, there are 4 ways: 3 = 1 + 1 + 1 = 1 + 2 = 2 + 1 = 3.

Input. The only input line has an integer $n \in \mathbb{N}^*$.

Output. Print the number of ways module $10^9 + 7$.

Constraints. $n \in [10^6]$.

Problem 96 (CSES Problem Set/minimizing coins). Consider a money system consisting of n coins. Each coin has a positive integer value. Your task is to produce a sum of money x using the available coins in such a way that the number of coins is minimal. E.g., if the coins are $\{1,5,7\}$ & the desired sum is 11, an optimal solution is 5+5+1 which requires 3 coins.

Input. The 1st input line has 2 integer $n, x \in \mathbb{N}^*$: the number of coins & the desired sum of money. The 2nd line has n distinct integers $\{c_i\}_{i=1}^n = c_1, c_2, \ldots, c_n$: the value of each coin.

Output. Print 1 integer: the minimum number of coins. If it is not possible to produce the desired sum, print -1.

Constraints. $n \in [100], x \in [10^6], c_i \in [10^6].$

Sample.

minimizing_coin.inp	minimizing_coin.out
3 11	3
157	

Problem 97 (CSES Problem Set/coin combinations I). Consider a money system consisting of n coins. Each coin has a positive integer value. Calculate the number of distinct ways you can produce a money sum x using the available coins. E.g., if the coins are $\{2,3,5\}$ & the desired sum is 9, there are 8 ways: 8 = 2 + 2 + 5 = 2 + 5 + 2 = 5 + 2 + 2 = 3 + 3 + 3 = 2 + 2 + 2 + 3 = 2 + 2 + 3 + 2 = 2 + 3 + 2 + 2 = 3 + 2 + 2 + 2 + 2.

Input. The 1st input line has 2 integers $n, x \in \mathbb{N}^*$: the number of coins \mathcal{E} the desired sum of money. The 2nd line has n distinct integers $\{c_i\}_{i=1}^n = c_1, c_2, \ldots, c_n$: the value of each coin.

Output. Print 1 integer: the number of ways module $10^9 + 7$.

Constraints. $n \in [100], x \in [10^6], c_i \in [10^6].$

Sample.

coin_combination_I.inp	coin_combination_I.out
3 9	8
2 3 5	

Problem 98 (CSES Problem Set/coin combinations II). Consider a money system consisting of n coins. Each coin has a positive integer value. Calculate the number of distinct ordered ways you can produce a money sum x using the available coins. E.g., if the coins are $\{2,3,5\}$ & the desired sum is 9, there are 3 ways: 8 = 2 + 2 + 5 = 3 + 3 + 3 = 2 + 2 + 2 + 3.

Input. The 1st input line has 2 integers $n, x \in \mathbb{N}^*$: the number of coins & the desired sum of money. The 2nd line has n distinct integers $\{c_i\}_{i=1}^n = c_1, c_2, \ldots, c_n$: the value of each coin.

Output. Print 1 integer: the number of ways module $10^9 + 7$.

Constraints. $n \in [100], x \in [10^6], c_i \in [10^6].$

Sample.

coin_combination_II.inp	coin_combination_II.out
3 9	3
2 3 5	

Problem 99 (CSES Problem Set/removing digits). You are given an integer $n \in \mathbb{N}^*$. On each step, you may subtract 1 of the digits from the number. How many steps are required to make the number equal to 0?

Input. The only input line has an integer $n \in \mathbb{N}^*$.

Output. Print 1 integer: the minimum number of steps.

Constraints. $n \in [10^6]$.

Sample.

removing_digit.inp	removing_digit.out
27	5

Explanation: An optimal solution is $27 \rightarrow 20 \rightarrow 18 \rightarrow 10 \rightarrow 9 \rightarrow 0$.

Problem 100 (CSES Problem Set/grid paths I). Consider an $n \times n$ grid whose squares may have traps. It is not allowed to move to a square with a trap. Calculate the number of paths from the upper-left square to the lower-right square. You can only move right or down.

Input. The 1st input line has an integer $n \in \mathbb{N}^*$: the size of the grid. After this, there are n lines that describe the grid. Each line has n character: . denotes an empty cell, $\mathfrak{E} *$ denotes a trap.

Output. Print the number of paths modulo $10^9 + 7$.

Constraints. $n \in [10^3]$.

Sample.

<pre>grid_path_I.inp</pre>	<pre>grid_path_I.out</pre>
4	3
.*	
*	
*	

Problem 101 (CSES Problem Set/book shop). You are in a book shop which sells $n \in \mathbb{N}^*$ different books. You know the price \mathcal{E} number of pages of each book. You have decided that the total price of your purchases will be at most x. What is the maximum number of pages you can buy? You can buy each book at most once.

Input. The 1st input line contains 2 integers $n, x \in \mathbb{N}^*$: the number of books & the maximum total price. The next line contains n integers h_1, h_2, \ldots, h_n : the price of each book. The last line contains n integers s_1, s_2, \ldots, s_n : the number of pages of each book.

Output. Print 1 integer: the maximum number of pages.

Constraints. $n \in [10^3], x \in [10^5], h_i, s_i \in [10^3], \forall i \in [n].$

Sample.

book_shop.inp	book_shop.out
4 10	13
4853	
5 12 8 1	

Problem 102 (CSES Problem Set/array description). You know that an array has $n \in \mathbb{N}^*$ integers in [m], & the absolute difference between 2 adjacent values is at most 1. Given a description of the array where some values may be unknown, count the number of arrays that match the description.

Input. The 1st input line has integers $n, m \in \mathbb{N}^*$: the array size \mathcal{E} the upper bound for each value. The next line has n integers $x_1, x_2, \ldots, x_n \in \mathbb{N}^*$: the contents of the array. Value 0 denotes an unknown value.

Output. Print 1 integer: the number of arrays module $10^9 + 7$.

Constraints. $n \in [10^5], m \in [100], x_i \in \{0, 1, ..., m\}, \forall i \in [n].$

Sample.

array_description.inp	array_description.out
3 5	3
202	

Explanation: The arrays [2, 1, 2], [2, 2, 2], [2, 3, 2] match the description.

Problem 103 (CSES Problem Set/counting towers). Build a tower whose width is 2 \mathcal{E} height is n. You have an unlimited supply of blocks whose width \mathcal{E} height are integers. Given n, how many different towers can you build? Mirrored \mathcal{E} rotated towers are counted separately if they look different.

Input. The 1st input line has integers $t \in \mathbb{N}^*$: the number of tests. After this, there are t lines, \mathcal{E} each line contains an integer $n \in \mathbb{N}^*$: the height of the tower.

Output. For each test, print the number of towers module $10^9 + 7$.

Constraints. $t \in [100], n \in [10^6]$.

Sample.

counting_tower.inp	counting_tower.out
3	8
2	2864
6	640403945
1337	

Problem 104 (CSES Problem Set/edit distance). The edit distance between 2 strings is the minimum number of operations required to transform 1 string into the other. The allowed operations are:

- Add 1 character to the string.
- Remove 1 character from the string.
- Replace 1 character in the string.

E.g., the edit distance between LOVE & MOVIE is 2, because you can 1st replace L with M, & then add I. Calculate the edit distance between 2 strings.

Input. The 1st input line has a string that contains $n \in \mathbb{N}^*$ characters between A-Z. The 2nd input line has a string that contains $m \in \mathbb{N}^*$ characters between A-Z.

Output. Print 1 integer: the edit distance between the strings.

Constraints. $m, n \in [5000]$.

Sample.

edit_distance.inp	edit_distance.out
LOVE	2
MOVIE	

Problem 105 (CSES Problem Set/longest common subsequence). Given 2 arrays of integers, find their longest common subsequence. A subsequence is a sequence of array elements from left to right that can contain gaps. A common subsequence is a subsequence that appears in both arrays.

Input. The 1st input line has 2 integers $n, m \in \mathbb{N}^*$: the size of the arrays. The 2nd line has n integers a_1, a_2, \ldots, a_n : the contents of the 1st array. The 3rd line has m integers b_1, b_2, \ldots, b_m : the contents of the 2nd array.

Output. 1st print the length of the longest common subsequence. After that, print an example of such a sequence. If there are several solutions, you can print any of them.

Constraints. $m, n \in [10^3], a_i, b_i \in [10^9], \forall i \in [n].$

Sample.

longest_common_subsequence.inp	longest_common_subsequence.out
8 6	3
3 1 3 2 7 4 8 2	1 2 4
651234	

Problem 106 (CSES Problem Set/rectangle cutting). Given an $a \times b$ rectangle, cut it into squares. On each move, you can select a rectangle $\mathscr E$ cut it into 2 rectangles in such a way that all side lengths remain integers. What is the minimum possible number of moves?

Input. The only input line has 2 integers $a, b \in \mathbb{N}^*$:

Output. Print 1 integer: the minimum number of moves.

Constraints. $a, b \in [500]$.

Sample.

rectangle_cutting.inp	rectangle_cutting.out
3 5	3

Problem 107 (CSES Problem Set/minimal grid path). You are given an $n \times n$ grid whose each square contains a letter. You should move from the upper-left square to the lower-right square. You can only move right or down. What is the lexicographically minimal string you can construct?

Input. The 1st input line has integers $n, m \in \mathbb{N}^*$: the size of the grid. After this, there are n lines that describe the grid. Each line has n letters between A-Z.

Output. Print the lexicographically minimal string.

Constraints. $n \in [3000]$.

Sample.

minimal_grid_path.inp	minimal_grid_path.out
4	AAABACA
AACA	
BABC	
ABDA	
AACA	

Problem 108 (CSES Problem Set/money sums). You have n coins with certain values. Find all money sums you can create using these coins.

Input. The 1st input line has integers $n, m \in \mathbb{N}^*$: the number of coins. The next line has n integers x_1, x_2, \ldots, x_n : the values of the coins.

Output. 1st print an integer $k \in \mathbb{N}^*$: the number of distinct money sums. After this, print all possible sums in increasing order. Constraints. $n \in [100], x_i \in [10^3], \forall i \in [n]$.

Sample.

money_sum.inp	money_sum.out
4	9
4 2 5 2	2 4 5 6 7 8 9 11 13

Problem 109 (CSES Problem Set/removal game). There is a list of $n \in \mathbb{N}^*$ numbers & 2 players who move alternately. On each move, a player removes either the 1st or last number from the list, & their score increases by that number. Both players try to maximize their scores. What is the maximum possible score for the 1st player when both players play optimally?

Input. The 1st input line has integers $n, m \in \mathbb{N}^*$: the size of the list. The next line has n integers x_1, x_2, \ldots, x_n : the contents of the list.

Output. Print the maximum possible score for the 1st player.

Constraints. $n \in [5000], m \in [100], x_i \in \overline{-10^9, 10^9}, \forall i \in [n].$

Sample.

removal_game.inp	removal_game.out
4	8
4 5 1 3	

Problem 110 (CSES Problem Set/2 sets II). Count the number of ways numbers [n] can be divided into 2 sets of equal sum. E.g., if n = 7, there are 4 solutions: $\{1,3,4,6\}$ & $\{2,5,7\}$, $\{1,2,5,6\}$ & $\{3,4,7\}$, $\{1,2,4,7\}$ & $\{3,5,6\}$, $\{1,6,7\}$ & $\{2,3,4,4\}$. Input. The only input line contains an integer $n \in \mathbb{N}^*$:

Output. Print the answer modulo $10^9 + 7$.

Constraints. $n \in [500]$.

Sample.

two_sets_II.inp	two_sets_II.out
7	4

Problem 111 (CSES Problem Set/mountain range). There are $n \in \mathbb{N}^*$ mountains in a row, each with a specific height. You begin your hang gliding route from some mountain. You can glide from mountain a to mountain b if mountain a is taller than mountain b & all mountains between a & b. What is the maximum number of mountains you can visit on your route?

Input. The 1st input line has an integer $n \in \mathbb{N}^*$: the number of mountains. The next line has n integers h_1, h_2, \ldots, h_n : the heights of the mountains.

Output. Print 1 integer: the maximum number of mountains.

Constraints. $n \in [2 \cdot 10^5], h_i \in [10^9], \forall i \in [n].$

Sample.

.inp	.out
10	5
20 15 17 35 25 40 12 19 13 12	

Problem 112 (CSES Problem Set/increasing subsequence). You are given an array containing $n \in \mathbb{N}^*$ integers. Determine the longest increasing subsequence in the array, i.e., the longest subsequence where every element is larger than the previous one. A subsequence is a sequence that can be derived from the array by deleting some elements without changing the order of the remaining elements.

Input. The 1st input line has an integer $n \in \mathbb{N}^*$: the size of the array. After this there are n integers x_1, x_2, \ldots, x_n : the contents of the array.

Output. Print the length of the longest increasing subsequence.

Constraints. $n \in [2 \cdot 10^5], x_i \in [10^9], \forall i \in [n].$

Sample.

increasing_subsequence.inp	increasing_subsequence.out
8	4
7 3 5 3 6 2 9 8	

Problem 113 (CSES Problem Set/projects). There are $n \in \mathbb{N}^*$ you can attend. For each project, you know its starting & ending days & the amount of money you would get as reward. You can only attend 1 project during a day. What is the maximum amount of money you can earn?

Input. The 1st input line has an integer $n \in \mathbb{N}^*$: the number of projects. After this, there are n lines. Each such line has 3 integers $a_i, b_i, p_i \in \mathbb{N}^*$: the starting day, the ending day, & the reward.

Output. Print 1 integer: the maximum amount of money you can earn.

Constraints. $n \in [2 \cdot 10^5], a_i, b_i, p_i \in [10^9], a_i \le b_i, \forall i \in [n].$

Sample.

project.inp	project.out
4	7
2 4 4	
3 6 6	
6 8 2	
5 7 3	

Problem 114 (CSES Problem Set/elevator rides). There are $n \in \mathbb{N}^*$ people who want to get to the top of a building which has only 1 elevator. You know the weight of each person \mathcal{E} the maximum allowed weight in the elevator. What is the minimum number of elevator rides?

Input. The 1st input line has 2 integers $n, x \in \mathbb{N}^*$: the number of people \mathcal{E} the maximum allowed weight in the elevator. The 2nd line has n integers w_1, w_2, \ldots, w_n : the weight of each person.

Output. Print 1 integer: the minimum number of rides.

Constraints. $n \in [20], x \in [10^9], w_i \in [x]$.

Sample.

elevator_ride.inp	elevator_ride.out
4 10	2
4 8 6 1	

Problem 115 (CSES Problem Set/counting tilings). Count the number of ways you can fill an $n \times m$ grid using $1 \times 2 \times 2 \times 1$ tiles.

Input. The 1st input line has 2 integers $n, m \in \mathbb{N}^*$:

Output. Print 1 integer: the number of ways module $10^9 + 7$.

Constraints. $n \in [10], m \in [1000]$.

Sample.

counting_tiling.inp	counting_tiling.out
4 7	781

Problem 116 (CSES Problem Set/counting numbers). Count the number of integers between $a, b \in \mathbb{N} \star$ where no 2 adjacent digits are the same.

Input. The 1st input line has 2 integers $a, b \in \mathbb{N}^*$:

Output. Print 1 integer: the answer to the problem.

Constraints. $0 \le a \le b \le 10^{18}$.

Sample.

counting_number.inp	counting_number.out
123	321

Problem 117 (CSES Problem Set/increasing subsequence II). Given an array of $n \in \mathbb{N}^*$ integers, calculate the number of increasing subsequences it contains. If 2 subsequences have the same values but in different positions in the array, they are counted separately.

Input. The 1st input line has an integer $n \in \mathbb{N}^*$: the size of the array. The 2nd line has n integers x_1, x_2, \ldots, x_n : the contents of the array.

Output. Print 1 integer: the number of increasing subsequences module $10^9 + 7$.

Constraints. $n \in [2 \cdot 10^5], x_i \in [10^9].$

Sample.

increasing_subsequence_II.inp	increasing_subsequence_II.out
3	5
2 1 3	

Explanation: The increasing subsequences are [2], [1], [3], [2, 3], [1, 3].

Bài toán 36 (VNOI/cắt hình chữ nhật). Người ta dùng máy cắt để cắt 1 hình chữ nhật kích thước $m \times n$, với $m, n \in [5000]$, thành 1 số ít nhất các hình vuông có kích thước nguyên dương \mathcal{E} có các cạnh song song với cạnh hình chữ nhật ban đầu. Máy cắt khi cắt luôn cắt theo phương song với 1 trong 2 cạnh của hình chữ nhật \mathcal{E} chia hình chữ nhạt thành 2 phần.

Input. Gồm 2 số là kích thước m,n cách nhau bởi dấu cách.

Output. Ghi số k là số hình vuông nhỏ nhất được tạo ra.

Sample.

cut_rectangle.inp	cut_rectangle.out
5 6	5

Chương 20

Graph Algorithms – Thuật Toán Đồ Thị

Problem 118 (CSES Problem Set/counting rooms). You are given a map of a building, \mathcal{E} your task is to count the number of its rooms. The size of the map is $n \times m$ squares, \mathcal{E} each square is either floor or wall. You can walk left, right, up, \mathcal{E} down through the floor squares.

Input. The 1st input lines has 2 integers n, m: the height \mathcal{E} width of the map. Then there are n lines of m characters describing the map. Each character is either. (floor) or # (wall).

Output. Print 1 integer: the number of rooms.

Constraints. $1 \le n, m \le 10^3$.

Sample.

counting_room.inp	counting_room.out
5 8	3
#######	
###	
####.#.#	
###	
#######	

Bài toán 37. Bạn được cung cấp 1 bản đồ của 1 tòa nhà, & nhiệm vụ của bạn là đếm số phòng trong đó. Kích thước của bản đồ là $n \times m$ ô vuông, & mỗi ô vuông là sàn hoặc tường. Bạn có thể đi sang trái, phải, lên, & xuống qua các ô vuông trên sàn.

Đầu vào. Dòng đầu vào thứ nhất có 2 số nguyên n,m: chiều cao \mathcal{E} chiều rộng của bản đồ. Sau đó, có n dòng gồm m ký tự mô tả bản đồ. Mỗi ký tự là . (sàn) hoặc # (tường).

Đầu ra. In 1 số nguyên: số phòng.

Ràng buộc. $1 \le n, m \le 10^3$.

Sample.

counting_room.inp	counting_room.out
5 8	3
#######	
###	
####.#.#	
###	
#######	

Solution. C++:

- 1. PGL's C++: counting room: https://github.com/NQBH/advanced_STEM_beyond/blob/main/OLP_ICPC/C%2B%2B/PGL_counting_room.cpp
 - #include <iostream>
 - #include <vector>
 - 3 using namespace std;

```
void dfs(vector<vector<char>> &a, int r, int c, int n, int m) {
5
        if (r < 0 || c < 0 || r >= n || c >= m || a[r][c] != '.') {
6
            return;
        }
        a[r][c] = '#';
10
11
        dfs(a, r + 1, c, n, m);
12
        dfs(a, r - 1, c, n, m);
13
        dfs(a, r, c + 1, n, m);
14
        dfs(a, r, c - 1, n, m);
15
   }
16
17
   void Countroom(vector<vector<char>> &a, int n, int m) {
18
        int count = 0;
19
        for (int i = 0; i < n; i++) {
20
            for (int j = 0; j < m; j++) {
21
                 if (a[i][j] == '.') {
22
                     dfs(a, i, j, n, m);
23
                     ++count;
                 }
25
            }
26
        }
27
        cout << count << '\n';</pre>
28
   }
29
30
   int main() {
31
        int n, m; cin >> n >> m;
32
        vector<vector<char>> a(n, vector<char>(m)) ;
33
        for (int i = 0; i < n; i++) {
34
            for (int j = 0; j < m; j++) {
35
                 cin >> a[i][j];
36
            }
37
        }
38
        Countroom(a, n, m);
39
   }
40
```

Problem 119 (CSES Problem Set/labyrinth). You are given a map of a labyrinth, task: find a path from start to end. You can walk left, right, up, & down.

Input. The 1st input line has 2 integers n,m: the height $\mathscr E$ width of the map. Then there are n lines m characters describing the labyrinth. Each character is . (floor), # (wall), A (start), or B (end). There is exactly 1 A $\mathscr E$ 1 B in the input.

Output. 1st print YES, if there is a path, & No otherwise. If there is a path, print the length of the shortest such path & its description as a string consisting of characters L (left), R (right), U (up), & D (down). You can print any valid solution.

Constraints. $1 \le n, m \le 1000$.

Sample. Input:

```
5 8
#######
#.A#...#
#.##.#B#
#.....#
```

Output:

YES 9

LDDRRRRRU

Problem 120 (CSES Problem Set/building roads). Byteland has n cities, & m roads between them. Goal: construct new roads so that there is a route between any 2 cities. Task: find out the minimum number of roads required, & also determine which roads should be built.

Input. The 1st input line has 2 integers n, m: the number of cities & roads. The cities are numbered $1, 2, \ldots, n$. After that, there are m lines describing the roads. Each lines has 2 integers a, b: there is a road between those cities. A road always connects 2 different cities, & there is at most 1 road between any 2 cities.

Output. 1st print an integer k: the number of required roads. Then, print k lines that describe the new roads. You can print any valid solution.

Constraints. $1 \le n \le 10^5, 1 \le m \le 2 \cdot 10^5, 1 \le a, b \le n$.

Sample.

build_road.inp	build_road.out
4 2	1
1 2	2 3
3 4	

Problem 121 (CSES Problem Set/message route). Syrjälä's network has n computers \mathcal{E} m connections. Task: find out if Uolevi can send a message to Maija, \mathcal{E} if it is possible, what is the minimum number of computers on such a route.

Input. The 1st input line has 2 integers n, m: the number of computers & connections. The computers are numbered $1, 2, \ldots, n$. Unlevi's computer is 1 & Maija's computer is n. Then, there are m lines describing the connections. Each line has 2 integers a, b: there is a connection between those computers. Every connection is between 2 different computers, & there is at most 1 connection between any 2 computers.

Output. If it is possible to send a message, 1st print k: the minimum number of computers on a valid route. After this, print an example of such a route. You can print any valid solution. If there are no routes, print IMPOSSIBLE.

Constraints. $2 \le n \le 10^5, 1 \le m \le 2 \cdot 10^5, 1 \le a, b \le n$.

Sample.

message_route.inp	message_route.out
5 5	3
1 2	1 4 5
1 3	
1 4	
2 3	
5 4	

Problem 122 (CSES Problem Set/building team). There are n pupils in Uolevi's class, & m friendships between them. Task: divide pupils into 2 teams in such a way that no 2 pupils in a team are friends. You can freely choose the sizes of the teams.

Input. The 1st input line has 2 integers n, m: the number of pupils & friendships. The pupils are numbered $1, 2, \ldots, n$. Then, there are m lines describing the friendships. Each line has 2 integers a, b: pupils a, b are friends. Every friendship is between 2 different pupils. You can assume that there is at most 1 friendship between any 2 pupils.

Output. Print an example of how to build the teams. For each pupil, print 1 or 2 depending on to which team the pupil will be assigned. You can print any valid team. If there are no solutions, print IMPOSSIBLE.

Constraints. $1 \le n \le 10^5, 1 \le m \le 2 \cdot 10^5, 1 \le a, b \le n$.

build_team.inp	build_team.out
5 3	1 2 2 1 2
1 2	
1 3	
4 5	

Problem 123 (CSES Problem Set/round trip). Byteland has n cities & m roads between them. Task: design a round trip that begins in a city, goes through 2 or more other cities, & finally returns to starting city. Every intermediate city on the route has to be distinct.

Input. The 1st input line has 2 integers n, m: the number of cities & roads. The cities are numbered $1, 2, \ldots, n$. Then, there are m lines describing the roads. Each line has 2 integers a, b: there is a road between those cities. Every road is between 2 different cities, & there is at most 1 road between any 2 cities.

Output. 1st print an integer k: the number of cities on the route. Then print k cities in order they will be visited. You can print any valid solution. If there are no solutions, print IMPOSSIBLE.

Constraints. $1 \le n \le 10^5, 1 \le m \le 2 \cdot 10^5, 1 \le a, b \le n$.

Sample.

build_team.inp	build_team.out
5 6	4
1 3	3 5 1 3
1 2	
5 3	
1 5	
2 4	
4 5	

Problem 124 (CSES Problem Set/monsters). You & some monsters are in a labyrinth. When taking a step to some direction in the labyrinth, each monster may simultaneously take 1 as well. Goal: reach 1 of the boundary squares without ever sharing a square with a monster. Task: find out if your goal is possible, & if it is, print a path that you can follow. Your plan has to work in any situation; even if the monsters know your path beforehand.

Input. The 1st input line has 2 integers n, m: the height \mathcal{E} width of the map. After this there are n lines of m characters describing the map. Each character is . (floor), # (wall), A (start), or M (monster). There is exactly 1 A in the input.

Output. 1st print YES if your goal is possible, & NO otherwise. If your goal is possible, also print an example of a valid path (the length of the path & its description using characters D, U, L, R). You can print any path, as long as its length is at most mn steps.

Constraints. $1 \le m, n \le 10^3$.

Sample. Input:

5 8 ####### #M.A..# #.#.M#.# #M#..#..

Output:

YES 5 RRDDR

Problem 125 (CSES Problem Set/shortest routes I). There are n cities \mathcal{E} m flight connections between them. Task: determine the length of the shortest route from Syrjälä to every city.

Input. The 1st input line has 2 integers n, m: the number of cities & flight connections. The cities are numbered $1, 2, \ldots, n$, & city 1 is Syrjälä. After that, there are m lines describing the flight connections. Each line has 3 integers a, b, c: a flight begins at city a, ends at city b, & its length is c. Each flight is a 1-way flight. You can assume that it is possible to travel from Syrjälä to all other cities.

Output. Print n integers: the shortest route lengths from Syrjälä to cities $1, 2, \ldots, n$.

Constraints. $1 \le n \le 10^5, 1 \le m \le 2 \cdot 10^5, 1 \le a, b \le n, 1 \le c \le 10^9$.

Sample.

shortest_route_I.inp	shortest_route_I.out
3 4	0 5 2
1 2 6	
1 3 2	
3 2 3	
1 3 4	

Problem 126 (CSES Problem Set/shortest routes II). There are n cities \mathcal{E} m roads between them. Task: process q queries where you have to determine the length of the shortest route between 2 given cities.

Input. The 1st input line has 3 integers n, m, q: the number of cities, roads, \mathcal{E} queries. Then, there are m lines describing the roads. Each line has 3 integers a, b, c: there is a road between cities a \mathcal{E} b whose length is c. All roads are 2-way roads. Finally, there are q lines describing the queries. Each line has 2 integers a, b: determine the length of the shortest route between cities a \mathcal{E} b.

Output. Print the length of the shortest route for each query. If there is no route, print -1 instead.

Constraints. $1 \le n \le 500, 1 \le m \le n^2, 1 \le q \le 10^5, 1 \le a, b \le n, 1 \le c \le 10^9$.

Sample.

shortest_route_II.inp	shortest_route_II.out
4 3 5	5
1 2 5	5
1 3 9	8
2 3 3	-1
1 2	3
2 1	
1 3	
1 4	
3 2	

Problem 127 (CSES Problem Set/high score). You play a game consisting of n rooms \mathcal{E} m tunnels. Your initial score is 0, \mathcal{E} each tunnel increases your score by x where x may be both positive or negative. You may go through a tunnel several times. Task: walk from room 1 to room n. What is the maximum score you can get?

Input. The 1st input line has 2 integers n, m: the number of rooms & tunnels. The rooms are numbered $1, 2, \ldots, n$. Then, there are m lines describing the tunnels. Each line has 3 integers a, b, x: the tunnel starts at room a, ends at room b, & it increases your score by x. All tunnels are 1-way tunnels. You can assume that it is possible to get from room a to room a.

Output. Print 1 integer: the maximum score you can get. However, if you can get an arbitrarily large score, print -1.

Constraints. $1 \le n \le 2500, 1 \le m \le 5000, 1 \le a, b \le n, -10^9 \le x \le 10^9$.

Sample.

high_score.inp	high_score.out
4 5	5
1 2 3	
2 4 -1	
1 3 -2	
3 4 7	
1 4 4	

Problem 128 (CSES Problem Set/flight discount). Task: find a minimum-price flight route from Syrjälä to Metsälä. You have 1 discount coupon, using which you can halve the price of any single flight during the route. However, you can only use the coupon once. When you use the discount coupon for a flight whose price is x, its price becomes $\lfloor \frac{x}{2} \rfloor$.

Input. The 1st input line has 2 integers n, m: the number of cities & flight connections. The cities are numbered 1, 2, ..., n. City 1 is Syrjälä, & city n is Metsälä. After this there are m lines describing the flights. Each line has 3 integers a, b, c: a flight begins at city a, ends at city b, & its price is c. Each flight is unidirectional. You can assume that it is always possible to get from Syrjälä to Metsälä.

Output. Print 1 integer: the price of the cheapest route from Syrjälä to Metsälä.

Constraints. $1 \le n \le 10^5, 1 \le m \le 2 \cdot 10^5, 1 \le a, b \le n, 1 \le c \le 10^9$.

Sample.

flight_discount.inp	flight_discount.out
3 4	2
1 2 3	
2 3 1	
1 3 7	
2 1 5	

Problem 129 (CSES Problem Set/cycle finding). You are given a directed graph, & task: find out if it contains a negative cycle, & also give an example of such a cycle.

Input. The 1st input line has 2 integers n, m: the number of nodes & edges. The nodes are numbered $1, 2, \ldots, n$. After this, the input has m lines describing the edges. Each line has 3 integers a, b, c: there is an edge from node a to node b whose length is c.

Output. If the graph contains a negative cycle, print 1st YES, & then the nodes in the cycle in their correct order. If there are several negative cycles, you can print any of them. If there are no negative cycles, print NO.

Constraints. $1 \le n \le 2500, 1 \le m \le 5000, 1 \le a, b \le n, -10^9 \le c \le 10^9$.

Sample.

cycle_finding.inp	cycle_finding.out
4 5	YES
1 2 1	1 2 4 1
2 4 1	
3 1 1	
4 1 -3	
4 3 -2	

Problem 130 (CSES Problem Set/flight routes). Find the $k \in \mathbb{N}^*$ shortest flight routes from Syrjälä to Metsälä. A route can visit the same city several times. Note that there can be several routes with the same price \mathcal{E} each of them should be considered

Input. The 1st input line has 3 integers $n, m, k \in \mathbb{N}^*$: the number of cities, the number of flights, & the parameter k. The cities are numbered $1, 2, \ldots, n$. City 1 is Syrjälä, & city n is Metsälä. After this, the input has m lines describing the flights. Each line has 3 integers a, b, c: a flight begins at city a, ends at city b, & its price is c. All flights are 1-way flights. You may assume that there are at least k distinct routes from Syrjälä to Metsälä.

Output. Print k integers: the prices of the k cheapest routes sorted according to their prices.

Constraints. $n \in \overline{2, 10^5}, m \in [2 \cdot 10^5], a, b \in [n], c \in [10^9], k \in [10].$

Sample.

flight_route.inp	flight_route.out
4 6 3	4 4 7
1 2 1	
1 3 3	
2 3 2	
2 4 6	
3 2 8	
3 4 1	

Explanation. The cheapest routes are $1 \to 3 \to 4$ (price 4), $1 \to 2 \to 3 \to 4$ (price 4), $6 \to 2 \to 4$ (price 7).

Problem 131 (CSES Problem Set/round trip II). Byteland has $n \in \mathbb{N}^*$ & $m \in \mathbb{N}^*$ flight connections. Design a round trip that begins in a city, goes through 1 or more other cities, & finally returns to the starting city. Every intermediate city on the route has to be distinct.

Input. The 1st input line has 2 integers $n, m \in \mathbb{N}^*$: the number of cities & flights. The cities are numbered $1, 2, \ldots, n$. Then, there are m lines describing the flights. Each line has 2 integers $a, b \in \mathbb{N}^*$: there is a flight connection from city a to city b. All connections are 1-way flights from a city to another city.

Output. 1st print an integer $k \in \mathbb{N}^*$: the number of cities on the route. Then print k cities in the order they will be visited. You can print any valid solution. If there are no solutions, print IMPOSSIBLE.

Constraints. $n \in [10^5], m \in [2 \cdot 10^5], a, b \in [n].$

Sample.

round_trip_II.inp	round_trip_II.out
4 5	4
1 3	2 1 3 2
2 1	
2 4	
3 2	
3 4	

Problem 132 (CSES Problem Set/course schedule). You have to complete $n \in \mathbb{N}^*$ courses. There are $m \in \mathbb{N}^*$ requirements of the form "course a has to be completed before course b". Find an order in which you can complete the courses.

Input. The 1st input line has 2 integers $n, m \in \mathbb{N}^*$: the number of courses & requirements. The courses are numbered $1, 2, \ldots, n$. After this, there are m lines describing the requirements. Each line has 2 integers $a, b \in \mathbb{N}^*$: course a has o be completed before course b.

Output. Print an order in which you can complete the courses. You can print any valid order that includes all the courses. If there are no solutions, print IMPOSSIBLE.

Constraints. $n \in [10^5], m \in [2 \cdot 10^5], a, b \in [n].$

Sample.

course_schedule.inp	course_schedule.out
5 3	3 4 1 5 2
1 2	
3 1	
4 5	

Problem 133 (CSES Problem Set/longest flight route). Uolevi has won a contest, & the prize is a free flight trip that can consist of 1 or more flights through cities. Of course, Uolevi wants to choose a trip that has as many cities as possible. Uolevi wants to fly from Syrjälä to Lehmälä so that he visits the maximum number of cities. You are given the list of possible flights, & you know that there are no directed cycles in the flight network.

Input. The 1st input line has 2 integers $n, m \in \mathbb{N}^*$: the number of cities & flights. The cities are numbered $1, 2, \ldots, n$. City 1 is Syrjälä, & city n is Lehmälä. After this, there are m lines describing the flights. Each line has 2 integers $a, b \in \mathbb{N}^*$: there is a flight from city a to city b. Each flight is a 1-way flight.

Output. 1st print the maximum number of cities on the route. After this, print the cities in the order they will be visited. You can print any valid solution. If there are no solutions, print IMPOSSIBLE.

Constraints. $n \in \overline{2, 10^5}$, $m \in [2 \cdot 10^5]$, $a, b \in [n]$.

Sample.

longest_flight_route.inp	longest_flight_route.out
5 5	4
1 2	1 3 4 5
2 5	
1 3	
3 4	
4 5	

Problem 134 (CSES Problem Set/game routes). A game has $n \in \mathbb{N}^*$ levels, connected by $m \in \mathbb{N}^*$ teleporters. Get from level 1 to level n. The game has been designed so that there are no directed cycles in the underlying graph. In how many ways can you complete the game?

Input. The 1st input line has 2 integers $n, m \in \mathbb{N}^*$: the number of levels & teleporters. The levels are numbered $1, 2, \ldots, n$. After this, there are m lines describing the teleporters. Each line has 2 integers a, b: there is a teleporter from level a to level b.

Output. Print 1 integer: the number of ways you can complete the game. Since the result may be large, print it modulo $10^9 + 7$. Constraints. $n \in [10^5], m \in [2 \cdot 10^5], a, b \in [n]$.

Sample.

game_route.inp	game_route.out
4 5	3
1 2	
2 4	
1 3	
3 4	
1 4	

Problem 135 (CSES Problem Set/investigation). You are going to travel from Syrjälä to Lehmälä by plane. You would like to find answers to the following questions:

- What is the minimum price of such a route?
- How many minimum-price routes are there? (modulo $10^9 + 7$)?
- What is the minimum number of flights in a minimum-price route?
- What is the maximum number of flights in a minimum-price route?

Input. The 1st input line has 2 integers $n, m \in \mathbb{N}^*$: the number of cities & the number of flights. The cities are numbered $1, 2, \ldots, n$. City 1 is Syrjälä, & city n is Lehmälä. After this, there are m lines describing the flights. Each line has 3 integers $a, b, c \in \mathbb{N}^*$: there is a flight from city a to city b with price c. All flights are 1-way flights. You may assume that there is a route from Syrjälä to Lehmälä.

Output. Print 4 integers according to the problem statement.

Constraints. $n \in [10^5], m \in [2 \cdot 10^5], a, b \in [n], c \in [10^9].$

Sample.

investigation.inp	investigation.out
4 5	5 2 1 2
1 4 5	
1 2 4	
2 4 5	
1 3 2	
3 4 3	

Problem 136 (CSES Problem Set/planets queries I). You are playing a game consisting of $n \in \mathbb{N}^*$ planets. Each planet has a teleporter to another planet (or the planet itself). process $q \in \mathbb{N}^*$ queries of the form: when you begin on planet $x \in \mathbb{N}$ travel through $k \in \mathbb{N}^*$ teleporters, which planet will you reach?

Input. The 1st input line has 2 integers $n, q \in \mathbb{N}^*$: the number of planets & queries. The planets are numbered 1, 2, ..., n. The 2nd line has n integers $t_1, t_2, ..., t_n$: for each planet, the destination of the teleporter. It is possible that $t_i = i$. Finally, there are q lines describing the queries. Each line has 2 integers $x, k \in \mathbb{N}^*$: you start on planet $x \notin t$ travel through k teleporters.

Output. Print the answer to each query.

Constraints. $n, q \in [2 \cdot 10^5], x \in [n], k \in \overline{0, 10^9}, t_i \in [n], \forall i \in [n].$

<pre>planet_query_I.inp</pre>	planet_query_I.out
4 3	1
2 1 1 4	2
1 2	4
3 4	
4 1	

Problem 137 (CSES Problem Set/planet queries II). You are playing a game consisting of $n \in \mathbb{N}^*$ planets. Each planet has a teleporter to another planet (or the planet itself). You have to process $q \in \mathbb{N}^*$ queries of the form: You are now on planet a \mathcal{E} want to reach planet b. What is the minimum number of teleportations?

Input. The 1st input line has 2 integers $n, q \in \mathbb{N}^*$: the number of the number of planets & queries. The planets are numbered $1, 2, \ldots, n$. The 2nd line contains n integers t_1, t_2, \ldots, t_n : for each planet, the destination of the teleporter. Finally, there are q lines describing the queries. Each line has 2 integers $a, b \in \mathbb{N}^*$: you are now on planet a & want to reach planet b.

Output. For each query, print the minimum number of teleportations. If it is not possible to reach the destination, print -1.

Constraints. $n, q \in [2 \cdot 10^5], a, b \in [n]$.

Sample.

planet_query_II.inp	planet_query_II.out
5 3	1
2 3 2 3 2	2
1 2	-1
1 3	
1 4	

Problem 138 (CSES Problem Set/planets cycles). You are playing a game consisting of $n \in \mathbb{N}^*$ planets. Each planet has a teleporter to another planet (or the planet itself). You start on a planet \mathcal{E} then travel through teleporters until you reach a planet that you have already visited before. Calculate for each planet the number of teleportations there would be if you started on that planet.

Input. The 1st input line has an integer $n \in \mathbb{N}^*$: the number of planets. The planets are numbered 1, 2, ..., n. The 2nd line has n integers $t_1, t_2, ..., t_n$: for each planet, the destination of the teleporter. It is possible that $t_i = i$.

Output. Print n integers according to the problem statement.

Constraints. $n \in [2 \cdot 10^5], t_i \in [n], \forall i \in [n].$

Sample.

<pre>planet_cycle.inp</pre>	planet_cycle.out
5	3 3 1 3 4
2 4 3 1 4	

Problem 139 (CSES Problem Set/road reparation). There are $n \in \mathbb{N}^*$ cities $\mathcal{E} m \in \mathbb{N}^*$ roads between them. Unfortunately, the condition of the roads is so poor that they cannot be used. Repair some of the roads so that there will be a decent route between any 2 cities. For each road, you know its reparation cost, \mathcal{E} you should find a solution where the total cost is as small as possible.

Input. The 1st input line has 2 integers $n, m \in \mathbb{N}^*$: the number of cities & roads. The cities are numbered $1, 2, \ldots, n$. Then, there are m lines describing the roads. Each line has 3 integers $a, b, c \in \mathbb{N}^*$: there is a road between cities $a \notin b$, & its reparation cost is c. All roads are 2-way roads. Every road is between 2 different cities, & there is at most 1 road between 2 cities.

Output. Print 1 integer: the minimum total reparation cost. However, if there are no solutions, print IMPOSSIBLE.

Constraints. $n \in [10^5], m \in [2 \cdot 10^5], a, b \in [n], c \in [10^9].$

Sample.

road_reparation.inp	road_reparation.out
5 6	14
1 2 3	
2 3 5	
2 4 2	
3 4 8	
5 1 7	
5 4 4	

Problem 140 (CSES Problem Set/road construction). There are $n \in \mathbb{N}^*$ cities & initially no roads between them. However, every day a new road will be constructed, & there will be a total of $m \in \mathbb{N}^*$ roads. A component is a group of cities where there is a route between any 2 cities using the roads. After each day, find the number of components & the size of the largest component.

Input. The 1st input line has 2 integers $n, m \in \mathbb{N}^*$: the number of cities & roads. The cities are numbered $1, 2, \ldots, n$. Then, there are m lines describing the roads. Each line has 2 integers $a, b \in \mathbb{N}^*$: a new road is constructed between cities a, b. You may assume that every road will be constructed between 2 different cities.

Output. Print m lines: the required information after each day.

Constraints. $n \in [10^5], m \in [2 \cdot 10^5], a, b \in [n].$

Sample.

road_construction.inp	road_construction.out
5 3	4 2
1 2	3 3
1 3	2 3
4 5	

Problem 141 (CSES Problem Set/flight routes check). There are $n \in \mathbb{N}^*$ cities \mathcal{E} $m \in \mathbb{N}^*$ flight connections. Check if you can travel from any city to any other city using the available flights.

Input. The 1st input line has 2 integers $n, m \in \mathbb{N}^*$: the number of cities & flights. The cities are numbered $1, 2, \ldots, n$. After this, there are m lines describing the flights. Each line has 2 integers $a, b \in \mathbb{N}^*$: there is a flight from city a to city b. All flights are 1-way flights.

Output. Print YES if all routes are possible, & NO otherwise. In the latter case also print 2 cities $a, b \in \mathbb{N}^*$ s.t. you cannot travel from city a to city b. If there are several possible solutions, you can print any of them.

Constraints. $n \in [10^5], m \in [2 \cdot 10^5], a, b \in [n].$

Sample.

flight_routes_check.inp	flight_routes_check.out
4 5	NO
1 2	4 2
2 3	
3 1	
1 4	
3 4	

Problem 142 (CSES Problem Set/planets & kingdoms). A game has $n \in \mathbb{N}^*$ planets, connected by $m \in \mathbb{N}^*$ teleporters. 2 planets a, b belong to the same kingdom exactly when there is a route both from a to b & from b to a. Determine for each planet its kingdom.

Input. The 1st input line has 2 integers $n, m \in \mathbb{N}^*$: the number of planets & teleporters. The planets are numbered $1, 2, \ldots, n$. After this, there are m lines describing the teleporters. Each line has 2 integers $a, b \in \mathbb{N}^*$: you can travel from planet a to planet b through a teleporter.

Output. 1st print an integer $k \in \mathbb{N}^*$: the number of kingdoms. After this, print for each planet a kingdom label between 1 & k. You can print any valid solution.

Constraints. $n \in [10^5], m \in [2 \cdot 10^5], a, b \in [n]$.

Sample.

planet_kingdom.inp	planet_kingdom.out
5 6	2
1 2	1 1 1 2 2
2 3	
3 1	
3 4	
4 5	
5 4	

Problem 143 (CSES Problem Set/giant pizza). Unlevi's family is going to order a large pizza $\mathscr E$ eat it together. A total of $n \in \mathbb N^*$ family members will join the order, $\mathscr E$ there are $m \in \mathbb N^*$ possible toppings. The pizza may have any number of toppings. Each family member gives 2 wishes concerning the toppings of the pizza. The wishes are of the form "topping x is good/bad". Choose the toppings so that at least 1 wish from everybody becomes true (a good topping is included in the pizza or a bad topping is not included).

Input. The 1st input line has 2 integers $n, m \in \mathbb{N}^*$: the number of family members \mathcal{E} toppings. The toppings are numbered $1, 2, \ldots, m$. After this, there are n lines describing the wishes. Each line has 2 wishes of the form "+x" (topping x is good) or "-x" (topping x is bad).

Output. Print a line with m symbols: for each topping + if it is included \mathscr{C} - if it is not included. You can print any valid solution. Constraints. $m, n \in [10^5], x \in [m]$.

Sample.

giant_pizza.inp	giant_pizza.out
3 5	-+++-
+ 1 + 2	
-1+3	
+ 4 - 2	

Problem 144 (CSES Problem Set/coin collector). A game has $n \in \mathbb{N}^*$ rooms \mathcal{E} $m \in \mathbb{N}^*$ tunnels between them. Each room has a certain number of coins. What is the maximum number of coins you can collect while moving through the tunnels when you can freely choose your starting \mathcal{E} ending room?

Input. The 1st input line has 2 integers $n, m \in \mathbb{N}^*$: the number of rooms & tunnels. The rooms are numbered $1, 2, \ldots, n$. Then, there are n integers k_1, k_2, \ldots, k_n : the number of coins in each room. Finally, there are m lines describing the tunnels. Each line has 2 integers $a, b \in \mathbb{N}^*$: there is a tunnel from room a to room b. Each tunnel is a 1-way tunnel.

Output. Print 1 integer: the maximum number of coins you can collect.

Constraints. $n \in [10^5], m \in [2 \cdot 10^5], a, b \in [n], k_i \in [10^9], \forall i \in [n].$

Sample.

coin_collector.inp	coin_collector.out
4 4	16
4 5 2 7	
1 2	
2 1	
1 3	
2 4	

Problem 145 (CSES Problem Set/mail delivery). Deliver mail to the inhabitants of a city. For this reason, you want to find a route whose starting & ending point are the post office, & that goes through every street exactly once.

Input. The 1st input line has 2 integers $n, m \in \mathbb{N}^*$: the number of crossings & streets. The crossings are numbered $1, 2, \ldots, n$, & he post office is located at crossing 1. After that, there are m lines describing the streets. Each line has 2 integers $a, b \in \mathbb{N}^*$: there is a street between crossings a, b. All streets are 2-way streets. Every street is between 2 different crossings, & there is at most 1 street between 2 crossings.

Output. Print all the crossings on the route in the order you will visit them. You can print any valid solution. If there are no solutions, print IMPOSSIBLE.

Constraints. $n \in \overline{2, 10^5}, m \in [2 \cdot 10^5], a, b \in [n].$

Sample.

mail_delivery.inp	mail_delivery.out
6 8	1 2 6 3 2 4 5 3 1
1 2	
1 3	
2 3	
2 4	
2 6	
3 5	
3 6	
4 5	

Problem 146 (CSES Problem Set/de Bruijn sequence). Construct a minimum-length bit string that contains all possible substrings of length $n \in \mathbb{N}^*$, e.g., when n = 2, the string 00110 is a valid solution, because its substrings of lengt 2 are 00, 01, 10, 11.

Input. The only input line has an integer $n \in \mathbb{N}^*$.

Output. Print a minimum-length bit string that contains all substrings of length n. You can print any valid solution.

Constraints. $n \in [15]$.

Sample.

de_Bruijn_sequence.inp	de_Bruijn_sequence.out
2	00110

Problem 147 (CSES Problem Set/teleporters path). A game has $n \in \mathbb{N}^*$ levels \mathcal{E} $m \in \mathbb{N}^*$ teleportes between them. You win the game if you move from level 1 to level n using every teleporter exactly once. Can you win the game, \mathcal{E} what is a possible way to do it?

Input. The 1st input line has 2 integers $n, m \in \mathbb{N}^*$: the number of levels & teleporters. The levels are numbered $1, 2, \ldots, n$. Then, there are m lines describing the teleporters. Each line has 2 integers a, b: there is a teleporter from level a to level b. You can assume that each pair (a, b) in the input is distinct.

Output. Print m+1 integers: the sequence in which you visit the levels during the game. You can print any valid solution. If there are no solutions, print IMPOSSIBLE.

Constraints. $n \in \overline{2, 10^5}, m \in [2 \cdot 10^5], a, b \in [n]$.

Sample.

teleporter_path.inp	teleporter_path.out
5 6	1 3 1 2 4 2 5
1 2	
1 3	
2 4	
2 5	
3 1	
4 2	

Problem 148 (CSES Problem Set/Hamiltonian flights). There are $n \in \mathbb{N}^*$ cities \mathcal{E} $m \in \mathbb{N}^*$ flight connections between them. You want to travel from Syrjälä to Lehmälä so that you visit each city exactly once. How many possible routes are there?

Input. The 1st input line has 2 integers $n, m \in \mathbb{N}^*$: the number of cities & flights. The cities are numbered $1, 2, \ldots, n$. City 1 is Syrjälä, & city n is Lehmälä. Then, there are m lines describing the flights. Each line has 2 integers $a, b \in \mathbb{N}^*$: there is a flight from city a to city b. All flights are 1-way flights.

Output. Print 1 integer: the number of routes modulo $10^9 + 7$.

Constraints. $n \in \overline{2,20}, m \in [n^2], a,b \in [n]$.

Sample.

Hamiltonian_flight.inp	Hamiltonian_flight.out
4 6	2
1 2	
1 3	
2 3	
3 2	
2 4	
3 4	

Problem 149 (CSES Problem Set/knight's tour). Given a starting position of a knight on an 8×8 , find a sequence of moves s.t. it visits every square exactly once. On each move, the knight may either move 2 steps horizontally \mathcal{E} 1 step vertically, or 1 step horizontally \mathcal{E} 2 steps vertically.

Input. The only input line has 2 integers $x, y \in \mathbb{N}^*$: the knight's starting position.

Output. Print a grid that shows how the knight moves (according to the example). You can print any valid solution.

Constraints. $x, y \in [8]$.

Sample.

knight_tour.inp	knight_tour.out
2 1	8 1 10 13 6 3 20 17
	11 14 7 2 19 16 23 4
	26 9 12 15 24 5 18 21
	49 58 25 28 51 22 33 30
	40 27 50 59 32 29 52 35
	57 48 41 44 37 34 31 62
	42 39 46 55 60 63 36 53
	47 56 43 38 45 54 61 64

Problem 150 (CSES Problem Set/download speed). Consider a network consisting of $n \in \mathbb{N}^*$ computers & $m \in \mathbb{N}^*$ connections. Each connection specifies how fast a computer can send data to another computer. KOTIVALO wants to download some data from a server. What is the maximum speed he can do this, using the connections in the network?

Input. The 1st input line has 2 integers $n, m \in \mathbb{N}^*$: the number of computers & connections. The computers are numbered $1, 2, \ldots, n$. Computer 1 is the server & computer n is Kotivalo's computer. After this, there are m lines describing the connections. Each line has 3 integers $a, b, c \in \mathbb{N}^*$: computer a can send data to computer b at speed c.

Output. Print 1 integer: the maximum speed Kotivalo can download data.

Constraints. $n \in [500], m \in [1000], a, b \in [n], c \in [10^9].$

Sample.

download_speed.inp	download_speed.out
4 5	6
1 2 3	
2 4 2	
1 3 4	
3 4 5	
4 1 3	

Problem 151 (CSES Problem Set/police chase). Kaaleppi has just robbed a bank & is now heading to the harbor. However, the police wants to stop him by closing some streets of the city. What is the minimum number of streets that should be closed so that there is no route between the bank & the harbor?

Input. The 1st input line has 2 integers $n, m \in \mathbb{N}^*$: the number of crossings & streets. The crossings are numbered $1, 2, \ldots, n$. The bank is located at crossing 1, & the harbor is located at crossing n. After this, there are m lines that describing the streets. Each line has 2 integers $a, b \in \mathbb{N}^*$: there is a street between crossings a, b. All streets are 2-way streets, & there is at most 1 street between 2 crossings.

Output. 1st print 1 integer k: the minimum number of streets that should be closed. After this, print k lines describing the streets. You can print any valid solution.

Constraints. $n \in \overline{2,500}, m \in [1000], a, b \in [n].$

Sample.

police_chase.inp	police_chase.out
4 5	2
1 2	3 4
1 3	1 4
2 3	
3 4	
1 4	

Problem 152 (CSES Problem Set/school dance). There are $n \in \mathbb{N}^*$ boys \mathscr{E} $m \in \mathbb{N}^*$ girls in a school. Next week a school dance will be organized. A dance pair consists of a boy \mathscr{E} a girl, \mathscr{E} there are $k \in \mathbb{N}^*$ potential pairs. Find out the maximum number of dance pairs \mathscr{E} show how this number can be achieved.

Input. The 1st input line has 3 integers $n, m, k \in \mathbb{N}^*$: the number of boys, girls, & potential pairs. The boys are numbered $1, 2, \ldots, n$ & the girls are numbered $1, 2, \ldots, m$. After this, there are k lines describing the potential pairs. Each line has 2 integers $a, b \in \mathbb{N}^*$: boy a & girl b are willing to dance together.

Output. 1st print 1 integer r: the maximum number of dance pairs. After this, print r lines describing the pairs. You can print any valid solution.

Constraints. $m, n \in [500], k \in [1000], a \in [n], b \in [m]$.

Sample.

school_dance.inp	school_dance.out
3 2 4	2
11	1 2
1 2	3 1
2 1	
3 1	

Problem 153 (CSES Problem Set/distinct routes). A game consists of $n \in \mathbb{N}^*$ rooms & $m \in \mathbb{N}^*$ teleporters. At the beginning of each day, you start in room 1 & you have to reach room n. You can use each teleporter at most once during the game. How many days can you play if you choose your routes optimally?

Input. The 1st input line has 2 integers $n, m \in \mathbb{N}^*$: the number of rooms & teleporters. The rooms are numbered $1, 2, \ldots, n$. After this, there are m lines describing the teleporters. Each line has 2 integers $a, b \in \mathbb{N}^*$: there is a teleporter from room a to room b. There are no 2 teleporters whose starting & ending room are the same.

Output. 1st print an integer k: the maximum number of days you can play the game. Then, print k route descriptions according to the example. You can print any valid solution.

Constraints. $n \in \overline{2,500}, m \in [1000], a, b \in [n].$

Sample.

distinct_route.inp	distinct_route.out
6 7	2
1 2	3
1 3	1 2 6
2 6	4
3 4	1 3 4 6
3 5	
4 6	
5 6	

Problem 154 (IMO2007P3). In a mathematical competition some competitors are friends. Friendship is always mutual. Call a group of competitors a clique if each 2 of them are friends. (In particular, any group of < 2 competitors is a clique.) The number of members of a clique is called its size.

Give that, in this competition, the largest size of a clique is even, prove that the competitors can be arranged in 2 rooms s.t. the largest size of a clique contained in 1 room is the same as the largest size of a clique contained in the other room.

Bài toán 38 ([VL24], 3., p. 10, IMO2007P3). Trong 1 kỳ thi học sinh giỏi Toán, có vài thí sinh là bạn bè của nhau. Quan hệ bạn bè luôn là quan hệ 2 chiều. Gọi 1 nhóm các thí sinh là nhóm bạn bè nếu như 2 người bất kỳ trong nhóm này đều là bạn bè của nhau. (1 nhóm tùy ý có < 2 thí sinh cũng vẫn được cơi là 1 nhóm bạn bè). Số lượng các thí sinh của 1 nhóm bạn bè được gọi là cỡ của nó. Cho biết trong kỳ thi này, cỡ của 1 nhóm bạn bè có nhiều người nhất là 1 số chẵn. Chứng minh: có thể xếp tất cả các thí sinh vào 2 phòng sao cho cỡ của nhóm bạn bè có nhiều người nhất trong phòng này cũng bằng cỡ của nhóm bạn bè có nhiều người nhất trong phòng kia.

Bài toán 39 (CP version of IMO2007P3). Cho $n \in \mathbb{N}^*$ người, được đánh số $1, 2, \ldots, n$, tạo thành 1 đồ thị đơn vô hướng hữu hạn (finite undirected simple graph) G = ([n], E). $e_{ij} \in E \Leftrightarrow người i & người j quen lẫn nhau, <math>\forall i, j \in [n]$. 1 nhóm bạn bè được định nghĩa là 1 đồ thị con đầy đủ (complete subgraph G' = (V', E') với $V' \subset [n], |E'| = \frac{|V'|(|V'|-1)}{2}$), i.e., 2 đỉnh bất kỳ của G' được nối với nhau. Viết chương trình C/C++, Pascal, Python để tính bậc lớn nhất có thể có của 1 nhóm bạn bè. Sau đó tìm cách phân hoạch tập [n] thành 2 tập con (tương ứng 2 phòng R_1, R_2) sao cho bậc lớn nhất của thể của 1 nhóm bạn bè trong mỗi phòng bằng nhau.

Input. Dòng 1 chứa số $n \in \mathbb{N}^*$. Dòng thứ $i \in [n]$ trong n dòng tiếp theo chứa các đỉnh nối với đỉnh i, i.e., tập láng giếng (neighborhood) của đỉnh i: $N(i) \coloneqq \{j \in [n]; e_{ij} \in E\}$.

Output. $Xu\acute{a}t$ ra dòng đầu tiên gồm 1 số nguyên dương: cỡ lớn nhất của nhóm bạn. 2 dòng tiếp theo chứa các đỉnh trong phòng R_1, R_2 thỏa mãn. Dòng cuối chứa cỡ lớn nhất chung của 2 phòng R_1, R_2 .

Sample.

IMO2007_P3.inp	IM02007_P3.out
5	4
2 3 4	1 3
1 3 4	2 4 5
1 2 4 5	2
1 2 3 5	

Solution. C++:

47

```
1. DXH's C++: IMO2007 P3:
     #include <bits/stdc++.h>
     #define ll long long
     using namespace std;
     // Class đại diện cho từng sinh viên
     class sv {
         protected:
         int id;
         vector<int> friends;
 10
         public:
 11
         // Constructor
 12
         sv(int id) : id(id) {}
 13
         // Phương thức thêm bạn bè
 15
         void addFriend(int friendId) {
 16
              friends.push_back(friendId);
         }
 19
         // Getter: để lấy id từ bên ngoài khi cần
         int getId() const { return id; }
 21
         // Getter: để lấy danh sách bạn bè
 23
         vector<int> getFriends() const { return friends; }
     };
 25
 26
     // Class quản lý toàn bộ hệ thống kết nối sinh viên
 27
     class sodoketnoisv {
 28
         private:
         map<int, sv*> students;
 30
 31
         public:
 32
         void addsv(int id) {
              students[id] = new sv(id);
 34
 35
 36
         void addbanbe(int id, int friendId) {
              students[id]->addFriend(friendId);
 38
              students[friendId]->addFriend(id);
         }
 40
 41
         // Getter để lấy toàn bộ danh sách sinh viên ra
 42
         map<int, sv*> getStudents() {
 43
              return students;
 44
         }
 45
     };
 46
```

```
// Hàm chia phòng
48
    void chiaphong(sodoketnoisv &sinhvien) {
49
         // Giả sử tìm được clique sẵn
50
        vector<int> clique = {203, 204, 205, 206};
51
52
        vector<int> roomA, roomB;
54
        // Chia clique vào 2 phòng
        for (int i = 0; i < static_cast<int>(clique.size()); i++) {
56
             if (i < static_cast<int>(clique.size() / 2))
             roomA.push_back(clique[i]);
58
             else
59
             roomB.push_back(clique[i]);
        }
61
62
        // Tìm những sinh viên còn lại (vệ tinh)
        map<int, sv*> allStudents = sinhvien.getStudents();
64
        vector<int> others;
65
66
        for (auto pair : allStudents) {
67
             int id = pair.first;
             if (find(clique.begin(), clique.end(), id) == clique.end()) {
69
                 others.push_back(id);
70
        }
73
        // Phân bổ vệ tinh vào 2 phòng
        for (int id : others) {
75
             int countA = 0, countB = 0;
             vector<int> friends = sinhvien.getStudents()[id]->getFriends();
77
             for (int friendId : friends) {
                 if (find(roomA.begin(), roomA.end(), friendId) != roomA.end())
                 countA++;
81
                 if (find(roomB.begin(), roomB.end(), friendId) != roomB.end())
82
                 countB++;
             }
84
85
             if (countA <= countB)</pre>
86
             roomA.push_back(id);
             else
88
             roomB.push_back(id);
        }
90
        // In kết quả chia phòng ra màn hình (kiểm tra)
92
        cout << "Room A: ";</pre>
        for (int id : roomA)
        cout << id << " ";
        cout << '\n';</pre>
96
97
        cout << "Room B: ";</pre>
98
        for (int id : roomB)
99
        cout << id << " ";
100
        cout << '\n';
101
    }
102
103
    int main() {
104
         ios::sync_with_stdio(0);
105
106
```

```
sodoketnoisv sinhvien;
107
108
         // Thêm sinh viên
109
         sinhvien.addsv(203);
110
         sinhvien.addsv(204);
111
         sinhvien.addsv(205);
         sinhvien.addsv(206);
113
         sinhvien.addsv(207);
         sinhvien.addsv(208);
115
         // Thêm các cặp bạn bè (ví dụ)
117
         sinhvien.addbanbe(203, 204);
118
         sinhvien.addbanbe(204, 205);
119
         sinhvien.addbanbe(205, 206);
         sinhvien.addbanbe(203, 205);
121
         sinhvien.addbanbe(203, 206);
122
         sinhvien.addbanbe(204, 206);
123
         sinhvien.addbanbe(207, 203);
124
         sinhvien.addbanbe(208, 204);
125
126
         // Gọi hàm chia phòng
127
         chiaphong(sinhvien);
128
     }
129
2. DAK's C++: IMO2007 P3:
     #include <bits/stdc++.h>
     using namespace std;
     const int N = 65;
     int n;
     bool adj[N][N];
     vector<int> best_clique_so_far;
     void find_max_clique_recursive(const vector<int>& potential_nodes, vector<int> current_clique) {
         if (current_clique.size() > best_clique_so_far.size())
         best_clique_so_far = current_clique;
 10
 11
         for (size_t i = 0; i < potential_nodes.size(); ++i) {</pre>
 12
              int v = potential_nodes[i];
 13
              if (current_clique.size() + (potential_nodes.size() - i) <= best_clique_so_far.size())</pre>
 14
              return;
 15
              vector<int> new_potential_nodes;
 17
              for (size_t j = i + 1; j < potential_nodes.size(); ++j)</pre>
              if (adj[v][potential_nodes[j]])
 19
              new_potential_nodes.push_back(potential_nodes[j]);
 21
              vector<int> next_clique = current_clique;
 22
              next_clique.push_back(v);
 23
              find_max_clique_recursive(new_potential_nodes, next_clique);
         }
 25
     }
 26
 27
     vector<int> get_max_clique(const vector<int>& nodes) {
 28
         if (nodes.empty())
 29
         return {};
 30
         best_clique_so_far.clear();
 31
         find_max_clique_recursive(nodes, {});
 32
         return best_clique_so_far;
 33
     }
 34
```

```
35
    void print_vector(const vector<int>& vec) {
36
        for (size_t i = 0; i < vec.size(); ++i)
37
        cout << vec[i] << (i == vec.size() - 1 ? "" : " ");</pre>
38
        cout << '\n';
39
    }
40
41
    int main() {
        ios_base::sync_with_stdio(false);
43
        cin.tie(NULL);
44
        cin >> n;
45
        cin.ignore();
46
        for (int i = 1; i \le n; ++i) {
            string line;
49
            getline(cin, line);
            stringstream ss(line);
            int neighbor;
52
            while (ss >> neighbor)
53
            adj[i][neighbor] = true;
54
        }
56
        vector<int> all_nodes(n);
57
        iota(all_nodes.begin(), all_nodes.end(), 1);
58
        vector<int> C = get_max_clique(all_nodes);
60
        cout << C.size() << '\n';
61
62
        vector<int> room1 = C;
63
        vector<int> room2;
64
        sort(C.begin(), C.end());
66
        sort(all_nodes.begin(), all_nodes.end());
68
        set_difference(all_nodes.begin(), all_nodes.end(),
69
        C.begin(), C.end(),
        back_inserter(room2));
71
72
        for (size_t i = 0; i <= C.size(); ++i) {
73
            sort(room1.begin(), room1.end());
            sort(room2.begin(), room2.end());
75
            int size1 = get_max_clique(room1).size();
            int size2 = get_max_clique(room2).size();
79
            if (size1 == size2) {
                print_vector(room1);
                print_vector(room2);
                cout << size1 << '\n';</pre>
83
                return 0;
            }
86
            if (i < C.size()) {
87
                 int node_to_move = C[i];
                room1.erase(remove(room1.begin(), room1.end(), node_to_move), room1.end());
90
                room2.push_back(node_to_move);
91
            }
92
        }
```

```
94
95 return 1;
96 }
```

Chương 21

Range Queries - Truy Vấn Phạm Vi

Problem 155 (CSES Problem Set/static range sum queries). Given an array of $n \in \mathbb{N}^*$, process $q \in \mathbb{N}^*$ queries of the form: what is the sum of values in range [a, b]?

Input. The 1st input line has 2 integers $n, q \in \mathbb{N}^*$: the number of values & queries. The 2nd line has n integers x_1, x_2, \ldots, x_n : the array values. Finally, there are q lines describing the queries. Each line has 2 integers a, b: what is the sum of values in range [a, b]?

Output. Print the result of each query.

Constraints. $n, q \in [2 \cdot 10^5], 1 \le a \le b \le n, x_i \in [10^9], \forall i \in [n].$

Sample.

static_range_sum_query.inp	static_range_sum_query.out
8 4	11
3 2 4 5 1 1 5 3	2
2 4	24
5 6	4
1 8	
3 3	

Problem 156 (CSES Problem Set/).

Input. The 1st input line has 2 integers $n, m \in \mathbb{N}^*$: the number of

Output. Print 1 integer: the

Constraints. $n \in [2 \cdot 10^5], m \in [100], x_i \in [10^9], \forall i \in [n].$

Sample.

.inp	.out

Problem 157 (CSES Problem Set/).

Input. The 1st input line has 2 integers $n, m \in \mathbb{N}^*$: the number of

Output. Print 1 integer: the

Constraints. $n \in [2 \cdot 10^5], m \in [100], x_i \in [10^9], \forall i \in [n].$

Sample.

.inp	.out

Problem 158 (CSES Problem Set/).

Input. The 1st input line has 2 integers $n, m \in \mathbb{N}^*$: the number of

Output. Print 1 integer: the

Constraints. $n \in [2 \cdot 10^5], m \in [100], x_i \in [10^9], \forall i \in [n].$

Sample.

.inp	.out

Problem 159 (CSES Problem Set/).

Input. The 1st input line has 2 integers $n, m \in \mathbb{N}^*$: the number of

Output. Print 1 integer: the

Constraints. $n \in [2 \cdot 10^5], m \in [100], x_i \in [10^9], \forall i \in [n].$

Sample.

.inp	.out

Problem 160 (CSES Problem Set/).

Input. The 1st input line has 2 integers $n, m \in \mathbb{N}^*$: the number of

Output. Print 1 integer: the

Constraints. $n \in [2 \cdot 10^5], m \in [100], x_i \in [10^9], \forall i \in [n].$

Sample.

.inp	.out

Problem 161 (CSES Problem Set/).

Input. The 1st input line has 2 integers $n, m \in \mathbb{N}^*$: the number of

Output. Print 1 integer: the

Constraints. $n \in [2 \cdot 10^5], m \in [100], x_i \in [10^9], \forall i \in [n].$

.out

Chương 22

Tree Algorithms – Thuật Toán Trên Cây

Chương 23

Mathematics

Problem 162 (CSES/Josephus queries). Consider a game where there are $n \in \mathbb{N}^*$ children, numbered $1, 2, \ldots, n$, in a circle. During the game, every 2nd child is removed from circle, until there are no children left. Task: process q queries of the form: "when there are n children, who is the kth child that will be removed?"

- Input. The 1st input line has an integer q: the number of queries. After this, there are q lines that describe the queries. Each line has 2 integers n, k: the number of children \mathcal{E} the position of the child.
- Output. Print q integers: the answer for each query.

Note 1. It seems to me that Jack97 (nickname: abortion_grandmaster) (?) proposed this problem.

Solution. C++:

```
1. VNTA's C++: Josephus Queries:
```

```
#include <bits/stdc++.h>
     using namespace std;
     long long solve(long long n, long long k) {
         if (n == 3 && k == 2) return 1;
         if (n == 1) return 1;
  6
         if (k \le n / 2) return (2 * k);
         long long new_n = n / 2;
         long long new_k = k - (n + 1) / 2;
         long long res = solve(new_n, new_k);
         if (n \% 2 == 0) return 2 * res - 1;
 11
         else return 2 * res + 1;
     }
 13
 14
     int main() {
 15
         ios_base::sync_with_stdio(false);
 16
         cin.tie(0); cout.tie(0);
 17
         int q;
 18
         cin >> q;
 19
         long long n, k;
 20
         while (q--) {
              cin >> n >> k;
              cout << solve(n, k) << "\n";
 23
         }
 24
     }
 25
2. NLDK's C++: Josephus Queries:
```

```
#include <bits/stdc++.h>
#pragma GCC optimize ("03")
#pragma GCC optimize ("unroll-loops")
#define Sanic_speed ios_base::sync_with_stdio(false);cin.tie(NULL);cout.tie(NULL);
```

```
#define Ret return 0;
     #define ret return;
     #define all(x) x.begin(), x.end()
     #define el "\n";
     #define elif else if
     #define ll long long
     #define fi first
 11
     #define se second
     #define pb push_back
     #define pops pop_back
     #define cYES cout << "YES" << "\n";</pre>
     #define cNO cout << "NO" << "n";
     #define cYes cout << "Yes" << "\n";</pre>
     #define cNo cout << "No" << "\n";</pre>
     #define frs(i, a, b) for(int i = a; i < b; ++i)
     #define fre(i, a, b) for(int i = a; i \le b; ++i)
     #define wh(t) while (t--)
     #define SORAI int main()
     using namespace std;
 23
     typedef unsigned long long ull;
 24
     int Looping(int n, int k) {
 26
         if (n == 1) {return 1;}
 27
         if ((n + 1) / k \ge 2) {
 28
              if (k * 2 > n) {return 2 * k % n;}
              else {return 2 * k;}
 30
         }
         int temp = Looping(n / 2, k - (n + 1) / 2);
 32
         if (n & 1) {return 2 * temp + 1;}
 33
         else {return 2 * temp - 1;}
 34
     }
 36
     void solve() {
 37
         int n, k;
 38
         cin >> n >> k;
 39
         cout << Looping(n, k) << el</pre>
  40
     }
 41
 42
     SORAI {
 43
         Sanic_speed
 44
         int t; cin >> t;
 45
         wh(t) {solve();}
     }
 47
3. NHT's C++: Josephus Queries:
     #include <bits/stdc++.h>
     #define ll long long
     using namespace std;
     ll fix(ll n, ll k) {
         if (n == 1) return 1;
         if (k \le ((n + 1) / 2)) {
  7
              if (2 * k > n) return (2 * k) % n;
              else return 2 * k;
  9
         }
 10
         ll tmp = fix(n / 2, k - (n + 1) / 2);
 11
         if (n \% 2 == 1) return 2 * tmp + 1;
 12
         else return 2 * tmp - 1;
     }
 14
```

```
15
    int main() {
16
        ios::sync_with_stdio(0);
17
        cin.tie(0);
18
        int q;
19
        cin >> q;
20
        while (q--) {
21
             ll n, k;
             cin >> n >> k;
23
             cout << fix(n, k) << "\n";
25
        return 0;
26
    }
27
```

Problem 163 (CSES Problem Set/exponentiation). Efficiently calculate values $a^b \mod 10^9 + 7$. Assume $0^0 = 1$.

Input. The 1st input line contains an integer $n \in \mathbb{N}^*$: the number of calculations. After this, there are n lines, each containing 2 integers $a, b \in \mathbb{N}^*$.

Output. Print each value $a^b \mod 10^9 + 7$.

Constraints. $n \in [2 \cdot 10^5], a, b \in \overline{0, 10^9}.$

Sample.

exponentiation.inp	exponentiation.out
3	81
3 4	256
2 8	
123 123	921450052

Problem 164 (CSES Problem Set/exponentiation II). Efficiently calculate values $a^{b^c} \mod 10^9 + 7$. Assume $0^0 = 1$.

Input. The 1st input line contains an integer $n \in \mathbb{N}^*$: the number of calculations. After this, there are n lines, each containing 3 integers $a, b, c \in \mathbb{N}^*$.

Output. Print each value $a^{b^c} \mod 10^9 + 7$.

Constraints. $n \in [2 \cdot 10^5], a, b, c \in \overline{0, 10^9}$.

Sample.

exponentiation_II.inp	exponentiation_II.out
3	2187
3 7 1	50625
15 2 2	763327764
3 4 5	

Problem 165 (CSES Problem Set/counting divisors). Given $n \in \mathbb{N}^*$, report for each integer the number of its divisors, e.g., if x = 18, the correct answer is 6 because its divisors are 1, 2, 3, 6, 9, 18.

Input. The 1st input line has an integer $n \in \mathbb{N}^*$: the number of integers. After this, there are n lines, each containing an integer x

Output. For each integer, print the number of its divisors.

Constraints. $n \in [10^5], x \in [10^6].$

counting_divisor.inp	counting_divisor.out
3	5
16	2
17	6
18	

Problem 166 (CSES Problem Set/common divisors). Given array of $n \in \mathbb{N}^*$ positive integers. Find 2 integers s.t. their greatest common divisor is as large as possible.

Input. The 1st input line has an integer $n \in \mathbb{N}^*$: the size of the array. The 2nd line has n integers x_1, x_2, \ldots, x_n : the contents of the array.

Output. Print the maximum greatest common divisor.

Constraints. $n \in \overline{2, 2 \cdot 10^5}, x_i \in [10^6], \forall i \in [n].$

Sample.

common_divisor.inp	common_divisor.out
5	7
3 14 15 7 9	

Problem 167 (CSES Problem Set/sum of divisors). Let $\sigma(n)$ denote the sum of divisors of an integer $n \in \mathbb{N}^*$, e.g., $\sigma(12) = 1 + 2 + 3 + 4 + 6 + 12 = 28$. Calculate the sum $\sum_{i=1}^{n} \sigma(i) \mod 10^9 + 7$.

Input. The only input line has an integer $n \in \mathbb{N}^*$.

Output. Print $\sum_{i=1}^{n} \sigma(i) \mod 10^9 + 7$.

Constraints. $n \in [10^{12}]$.

Sample.

sum_divisor.inp	sum_divisor.out
5	21

Problem 168 (CSES Problem Set/divisor analysis). Given an integer, find the number, sum, & product of its divisors, e.g., consider the number 12:

- the number of divisors is 6 (they are 1, 2, 3, 4, 6, 12)
- the sum of divisors is 1 + 2 + 3 + 4 + 6 + 12 = 28
- the product of divisors is $1 \cdot 2 \cdot 3 \cdot 4 \cdot 6 \cdot 12 = 1728$.

Since the input number may be large, it is given as a prime factorization.

Input. The 1st input line has an integer $n \in \mathbb{N}^*$: the number of parts in the prime factorization. After this, there are n lines that describe the factorization. Each line has 2 integers $x, k \in \mathbb{N}^*$ where x is a prime \mathcal{E} k is its power.

Output. Print 3 integers modulo $10^9 + 7$: the number, sum, & product of the divisors.

Constraints. $n \in [10^5], x \in \overline{2,10^6}, k \in [10^9], each x is a distinct prime.$

Sample.

divisor_analysis.inp	divisor_analysis.out
2	6 28 1728
2 2	
3 1	

Problem 169 (CSES Problem Set/prime multiples). Given $k \in \mathbb{N}^*$ distinct prime numbers a_1, a_2, \ldots, a_k & an integer $n \in \mathbb{N}^*$. Calculate how many of the 1st n positive integers are divisible by at least 1 of the given prime numbers.

Input. The 1st input line has 2 integers $n, k \in \mathbb{N}^*$. The 2nd line has k prime numbers a_1, a_2, \ldots, a_k .

Output. Print 1 integer: the number integers \in [n] that are divisible by at least 1 of the prime numbers.

Constraints. $n \in [10^{18}], k \in [20], a_i \in \overline{2, n}, \forall i \in [n].$

<pre>prime_multiple.inp</pre>	prime_multiple.out
20 2	12
2 5	

Explanation.: The 12 numbers are 2, 4, 5, 6, 8, 10, 12, 14, 15, 16, 18, 20.

Problem 170 (CSES Problem Set/couting coprime pairs). Given a list of $n \in \mathbb{N}^*$ positive integers, count the number of pairs of integers that are coprime (i.e., their greatest common divisor is 1).

Input. The 1st input line has an integer $n \in \mathbb{N}^*$: the number of elements. The next line has n integers $x_1, x_2, \ldots, x_n \in \mathbb{N}^*$: the contents of the list.

Output. Print 1 integer: the answer for the task.

Constraints. $n \in [10^5], x_i \in [10^6], \forall i \in [n].$

Sample.

couting_coprime_pair.inp	couting_coprime_pair.out
8	19
5 4 20 1 16 17 5 15	

Problem 171 (CSES Problem Set/next prime). Given a positive integer $n \in \mathbb{N}^*$, find the next prime number after it.

Input. The 1st input line has an integer $t \in \mathbb{N}^*$: the number of tests. After that, each line has a positive integer $n \in \mathbb{N}^*$.

Output. For each test, print the next prime after n.

Constraints. $t \in [20], n \in [10^{12}].$

Sample.

next_prime.inp	next_prime.out
5	2
1	3
2	5
3	43
42	1361
1337	

Problem 172 (CSES Problem Set/binomial coefficients). Calculate $n \in \mathbb{N}^*$ binomial coefficients modulo $10^9 + 7$. A binomial coefficient $\binom{a}{b}$ can be calculated using the formula $\frac{a!}{b!(b-a)!}$. We assume that $a, b \in \mathbb{N}, 0 \le b \le a$.

Input. The 1st input line has an integer $n \in \mathbb{N}^*$: the number of calculations. After this, there are n lines, each of which contains 2 integers $a, b \in \mathbb{N}$.

Output. Print each binomial coefficient modulo $10^9 + 7$.

Constraints. $n \in [10^5], 0 \le b \le a \le 10^6$.

Sample.

binomial_coefficient.inp	binomial_coefficient.out
3	10
5 3	8
8 1	
9 5	126

Problem 173 (CSES Problem Set/create strings II). Given a string, calculate the number of different strings that can be created using its characters.

Input. The only input line has a string of length $n, m \in \mathbb{N}^*$. Each character is between a-z.

Output. Print the number of different strings modulo $10^9 + 7$.

Constraints. $n \in [10^6]$.

create_string_II.inp	create_string_II.out
aabac	20

Problem 174 (CSES Problem Set/distributing apples). There are $n \in \mathbb{N}^*$ children & $m \in \mathbb{N}^*$ apples that will be distributed to them. Count the number of ways this can be done. E.g., if n=3, m=2, there are 6 ways: [0,0,2], [0,1,1], [0,2,0], [1,0,1], [1,1,0], [2,0,0].

Input. The only input line has 2 integers $n, m \in \mathbb{N}^{\star}$.

Output. Print the number of ways modulo $10^9 + 7$.

Constraints. $m, n \in [10^6]$.

Sample.

distributing_apple.inp	distributing_apple.out
3 2	6

Problem 175 (CSES Problem Set/Christmas party). There are $n \in \mathbb{N}^*$ children at a Christmas party, & each of them has brought a gift. The idea is that everybody will get a gift brought by someone else. In how many ways can the gifts be distributed? Input. The only input line has an integer $n \in \mathbb{N}^*$: the number of children.

Output. Print the number of ways modulo $10^9 + 7$.

Constraints. $n \in [10^6]$.

Sample.

Christmas_party.inp	Christmas_party.out
4	9

Problem 176 (CSES Problem Set/permutation order). Let p(n,k) denote the kth permutation (in lexicographical order) of [n], e.g., p(4,1) = [1,2,3,4], p(4,2) = [1,2,4,3]. Process 2 types of tests:

- 1. Given n, k, find p(n, k)
- 2. Given n, p(n, k), find k.

Input. The 1st input line has an integer $t \in \mathbb{N}^*$: the number of tests. Each test is either "1 n k" or "2 n p(n,k)".

Output. For each test, print the answer according to the example.

Constraints. $t \in [10^3], n \in [20], k \in [n!]$.

Sample.

permutation_order.inp	permutation_order.out
pormacacron_cracr.rmp	_
6	1 2 3 4
1 4 1	1 2 4 3
1 4 2	1
2 4 1 2 3 4	2
2 4 1 2 4 3	2 4 5 3 1
1 5 42	42
2 5 2 4 5 3 1	

Problem 177 (CSES Problem Set/permutation rounds). There is a sorted array [1, 2, ..., n] & a permutation $p_1, p_2, ..., p_n$. On each round, all elements move according to the permutation: the element at position i moves to position p_i . After how many rounds is the array sorted again for the 1st time?

Input. The 1st input line has an integer $n \in \mathbb{N}^*$. The next line contains n integers p_1, p_2, \ldots, p_n .

Output. Print the number of rounds modulo $10^9 + 7$.

Constraints. $n \in [2 \cdot 10^5]$.

Sample.

permutation_round.inp	permutation_round.out
8	4
5 3 2 6 4 1 8 7	

Problem 178 (CSES Problem Set/bracket sequences I). Calculate the number of valid bracket sequences of length $n \in \mathbb{N}^*$, e.g., when n = 6, there are 5 sequences: ()()(),()()(),()()),(()()).

Input. The 1st input line has an integer $n \in \mathbb{N}^*$.

Output. Print the number of rounds modulo $10^9 + 7$.

Constraints. $n \in [10^6]$.

Sample.

bracket_sequence_I.inp	bracket_sequence_I.out
6	5

Problem 179 (CSES Problem Set/bracket sequences II). Calculate the number of valid bracket sequences of length $n \in \mathbb{N}^*$ when a prefix of the sequence is given.

Input. The 1st input line has an integer $n \in \mathbb{N}^*$. The 2nd line has a string of $k \in \mathbb{N}^*$ characters: the prefix of the sequence.

Output. Print the number of rounds modulo $10^9 + 7$.

Constraints. $1 \le k \le n \le 10^6$.

Sample.

bracket_sequence_II.inp	bracket_sequence_II.out
6	2
(()	

Explanation. There are 2 possible sequences: (())(),(()()).

Problem 180 (CSES Problem Set/counting necklaces). Count the number of different necklaces that consist of $n \in \mathbb{N}^*$ pearls \mathcal{E} each pearl has $m \in \mathbb{N}^*$ possible colors. 2 necklaces are considered to be different if it is not possible to rotate 1 of them so that they look the same.

Input. The only input line has 2 integers $n, m \in \mathbb{N}^*$: the number of pearls & colors.

Output. Print 1 integer: the number of different necklaces modulo $10^9 + 7$.

Constraints. $m, n \in [10^6]$.

Sample.

count_necklace.inp	count_necklace.out
4 3	24

Problem 181 (CSES Problem Set/couting grids). Count the number of different $n \times n$ grids whose each square is black or white. 2 grids are considered to be different if it is not possible to rotate one of them so that they look the same.

Input. The only input line has an integer $n \in \mathbb{N}^*$: the size of the grid.

Output. Print 1 integer: the number of grids modulo $10^9 + 7$.

Constraints. $n \in [10^9]$.

Sample.

count_grid.inp	count_grid.out
4	16456

Problem 182 (CSES Problem Set/Fibonacci numbers). The Fibonacci numbers can be defined as follows: $F_0 = F_1 = 1$, $F_n = F_{n-1} + F_{n-2}$. Calculate the value of F_n for a given $n \in \mathbb{N}^*$.

Input. The only input line has an integer $n \in \mathbb{N}^*$.

Output. Print the value of $F_n \mod 10^9 + 7$.

Constraints. $n \in \overline{0, 10^{18}}$.

Fibonacci_number.inp	Fibonacci_number.out
10	55

Problem 183 (CSES Problem Set/throwing dice). Calculate the number of ways to get a sum $n \in \mathbb{N}^*$ by throwing dice. Each throw yields an integer $\in [6]$, e.g., if n = 10, some possible ways are 3 + 3 + 4, 1 + 4 + 1 + 4, 1 + 1 + 6 + 1 + 1.

Input. The only input line has an integer $n \in \mathbb{N}^*$.

Output. Print the value of $F_n \mod 10^9 + 7$.

Constraints. $n \in [10^{18}]$.

Sample.

throw_dice.inp	throw_dice.out
8	125

Problem 184 (CSES Problem Set/graph paths I). Consider a directed graph that has $n \in \mathbb{N}^*$ nodes \mathcal{E} $m \in \mathbb{N}^*$ edges. Count the number of paths from node 1 to node n with exactly k edges.

Input. The 1st input line has 3 integers $n, m, k \in \mathbb{N}^*$: the number of nodes & edges, & the length of the path. The nodes are numbered $1, 2, \ldots, n$. Then, there are m lines describing the edges. Each line contains 2 integers $a, b \in \mathbb{N}^*$: there is an edge from node a to node b.

Output. Print the value of $F_n \mod 10^9 + 7$.

Constraints. $n \in [100], m \in [n(n-1)], k \in [10^9], 1 \le a \le b \le n$.

Sample.

graph_path_I.inp	graph_path_I.out
3 4 8	2
1 2	
2 3	
3 1	
3 2	

Explanation. The paths are $1 \rightarrow 2 \rightarrow 3 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 1 \rightarrow 2 \rightarrow 3 \not\in 1 \rightarrow 2 \rightarrow 3 \rightarrow 2 \rightarrow 3 \rightarrow 2 \rightarrow 3 \rightarrow 2 \rightarrow 3$.

Problem 185 (CSES Problem Set/graph paths II). Consider a directed weighted graph having $n \in \mathbb{N}^*$ nodes & $m \in \mathbb{N}^*$ edges. Calculate the minimum path length from node 1 to node n with exactly $k \in \mathbb{N}^*$ edges.

Input. The 1st input line has 3 integers $n, m, k \in \mathbb{N}^*$: the number of nodes & edges, & the length of the path. The nodes are numbered $1, 2, \ldots, n$. Then, there are m lines describing the edges. Each line contains 3 integers $a, b, c \in \mathbb{N}^*$: there is an edge from node a to node b with weight c.

Output. Print the minimum path length. If there are no such paths, print -1.

Constraints. $n \in [100], m \in [n(n-1)], c, k \in [10^9], a, b \in [n].$

Sample.

<pre>graph_path_II.inp</pre>	<pre>graph_path_II.out</pre>
3 4 8	27
1 2 5	
2 3 4	
3 1 1	
3 2 2	

Problem 186 (CSES Problem Set/system of linear equations). Given n(m+1) coefficients a_{ij}, b_i which form the following $n \in \mathbb{N}^*$ linear equations:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1m}x_m = b_1 \mod 10^9 + 7, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2m}x_m = b_2 \mod 10^9 + 7, \\ & \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nm}x_m = b_n \mod 10^9 + 7. \end{cases}$$

Find any m integers x_1, x_2, \ldots, x_m that satisfy the given equations.

Input. The 1st input line has 2 integers $n, m \in \mathbb{N}^*$: the number of equations & variables. The next n lines each have m+1 integers $a_{i1}, a_{i2}, \ldots, a_{im}, b_i$: the coefficients of the ith equation.

Output. Print m integers $x_1, x_2, ..., x_m$: the values of the variables that satisfy the equations. The values must also satisfy $0 \le x_i < 10^9 + 7$. You can print any valid solution. If no solution exists print only -1.

Constraints. $m, n \in [500], a_{ij}, b_i \in \overline{0, 10^9 + 6}$.

Sample.

system_linear_eqn.inp	system_linear_eqn.out
3 3	2 1000000006 3
2017	
1 2 0 0	
1 3 1 2	

Problem 187 (CSES Problem Set/sum of 4 squares). A well known result in number theory is that every non-negative integer can be represented as the sum of four squares of non-negative integers. Given $n \in \mathbb{N}$. Find 4 nonnegative integers $a, b, c, d \in \mathbb{N}$ s.t. $n = a^2 + b^2 + c^2 + d^2$.

Input. The 1st input line has an integer $t \in \mathbb{N}^*$: the number of test cases. Each of the next t lines has an integer n.

Output. For each test case, print 4 nonnegative integers $a,b,c,d\in\mathbb{N}$ satisfying $n=a^2+b^2+c^2+d^2$.

Constraints. $t \in [10^3], n \in \overline{0, 10^7}$, the sum of all n is at most 10^7 .

Sample.

sum_4_square.inp	sum_4_square.out
3	2 1 0 0
5	1 2 3 4
30	314 159 265 358
322266	

Problem 188 (CSES Problem Set/triangle number sums). A triangle number is a positive integer of the form $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$. The 1st triangle numbers are 1,3,6,10,15. Every positive integer can be represented as a sum of triangle numbers, e.g., 42 = 21 + 21 & 1337 = 1326 + 10 + 1. Given $n \in \mathbb{N}$, determine the smallest number of triangle numbers that sum to n.

Input. The 1st input line has an integer $t \in \mathbb{N}^*$: the number of test cases. After that, each line has a positive integer $n \in \mathbb{N}$.

Output. For each test, print the smallest number of triangle numbers.

Constraints. $t \in [100], n \in [10^{12}].$

Sample.

triangle_number_sum.inp	triangle_number_sum.out
5	1
1	2
2	1
3	2
42	3
1337	

Problem 189 (CSES/Dice Probability). You throw a dice $n \in \mathbb{N}^*$ times, \mathcal{E} every throw produces an outcome between 1 \mathcal{E} 6. What is the probability that the sum of outcomes is between $a, b \in \mathbb{N}^*$?

- Input. The only input line contains 3 integers $n, a, b \in \mathbb{N}^*$.
- Output. Print probability rounded to 6 decimal places (rounding half to even).
- Constraints. $n \in [100], 1 \le a \le b \le 6n$.
- Sample.

dice_probability.inp	dice_probability.out
2 9 10	0.194444

Phân tích. Gọi n outcomes là $a_1, \ldots, a_n \in \{1, \ldots, 6\}$. Sum of outcomes: $S := \sum_{i=1}^n a_i \in \{n, \ldots, 6n\}$.

Problem 190 (CSES Problem Set/moving robots). Each square of an 8×8 chessboard has a robot. Each robot independently moves $k \in \mathbb{N}^*$, & there can be many robots on the same square. On each turn, a robot moves one step left, right, up or down, but not outside the board. It randomly chooses a direction among those where it can move. Calculate the expected number of empty squares after k turns.

Input. The only input line has an integer $k \in \mathbb{N}^*$.

Output. Print the expected number of empty squares rounded to six decimal places (rounding half to even).

Constraints. $k \in [100]$.

Sample.

moving_robot.inp	moving_robot.out
10	23.120740

Problem 191 (CSES Problem Set/candy lottery). There are $n \in \mathbb{N}^*$ children, & each of them independently gets a random integer number of candies $\in [k]$. What is the expected maximum number of candies a child gets?

Input. The only input line has 2 integers $n, k \in \mathbb{N}^*$.

Output. Print the expected number rounded to six decimal places (rounding half to even).

Constraints. $n, k \in [100]$.

Sample.

candy_lottery.inp	candy_lottery.out
2 3	2.444444

Problem 192 (CSES Problem Set/inversion probability). An array has $n \in \mathbb{N}^*$ integers x_1, x_2, \ldots, x_n , & each of them has been randomly chosen between 1 & r_i . An inversion is a pair (a, b) where a < b & r_i . What is the expected number of inversions in the array?

Input. The 1st input line has an integer $n \in \mathbb{N}^*$: the size of the array. The 2nd line contains n integers r_1, r_2, \ldots, r_n : the range of possible values for each array position.

Output. Print the expected number of inversions rounded to six decimal places (rounding half to even).

Constraints. $n, r_i \in [100], m \in [100], \forall i \in [n]$.

Sample.

inversion_probability.inp	inversion_probability.out
3	1.057143
5 2 7	

Problem 193 (CSES Problem Set/stick game). Consider a game where 2 players remove sticks from a heap. The players move alternately, & the player who removes the last stick wins the game. A set $P = \{p_1, p_2, \ldots, p_k\}$ determines the allowed moves, e.g., if $P = \{1, 3, 4\}$, a player may remove 1, 3, or 4 sticks. Find out for each number of sticks $1, 2, \ldots, n$ if the 1st player has a winning or losing position.

Input. The 1st input line has 2 integers $n, k \in \mathbb{N}^*$: the number of sticks & moves. The next line has k integers p_1, p_2, \ldots, p_k that describe the allowed moves. All integers are distinct, & 1 of them is 1.

Output. Print a string containing n characters: W means a winning position, & L means a losing position.

Constraints. $n \in [10^6], k \in [100], p_i \in [n], \forall i \in [n].$

Sample.

stick_game.inp	stick_game.out
10 3	WLWWWWLWLW
1 3 4	

Problem 194 (CSES Problem Set/nim game I). There are $n \in \mathbb{N}^*$ heaps of sticks & 2 players who move alternately. On each move, a player chooses a nonempty heap & removes any number of sticks. The player who removes the last stick wins the game. Find out who wins if both players play optimally.

Input. The 1st input line has an integer $t \in \mathbb{N}^*$: the number of tests. After this, t test cases are described: The 1st line contains an integer $n \in \mathbb{N}^*$: the number of heaps. The next line has n integers x_1, x_2, \ldots, x_n : the number of sticks in each heap.

Output. For each test case, print first if the 1st player wins the game & second if the 2nd player wins the game.

Constraints. $t, n \in [2 \cdot 10^5], x_i \in [10^9], \forall i \in [n], the sum of all n is at most <math>2 \cdot 10^5$.

Sample.

nim_game_I.inp	nim_game_I.out
3	first
4	first
5 7 2 5	second
2	
4 1	
3	
3 5 6	

Problem 195 (CSES Problem Set/nim game II). There are $n \in \mathbb{N}^*$ heaps of sticks & 2 players who move alternately. On each move, a player chooses a nonempty heap & removes 1, 2, or 3 sticks. The player who removes the last stick wins the game. Find out who wins if both players play optimally.

Input. The 1st input line has an integer $t \in \mathbb{N}^*$: the number of tests. After this, t test cases are described: The 1st line contains an integer $n \in \mathbb{N}^*$: the number of heaps. The next line has n integers x_1, x_2, \ldots, x_n : the number of sticks in each heap.

Output. For each test case, print first if the 1st player wins the game & second if the 2nd player wins the game.

Constraints. $t, n \in [2 \cdot 10^5], x_i \in [10^9], \ \forall i \in [n], \ the \ sum \ of \ all \ n \ is \ at \ most \ 2 \cdot 10^5.$

Sample.

nim_game_II.inp	nim_game_II.out
3	first
4	first
5725	second
2	
4 1	
3	
4 4 4	

Problem 196 (CSES Problem Set/stair game). There is a staircase consisting of $n \in \mathbb{N}^*$ stairs, numbered 1, 2, ..., n. Initially, each stair has some number of balls. There are 2 players who move alternately. On each move, a player chooses a stair $k \neq 1$ & it has at least 1 ball. Then, the player moves any number of balls from stair k to stair k-1. The player who moves last wins the game. Find out who wins the game when both players play optimally. Note that if there are no possible moves at all, the 2nd player wins.

Input. The 1st input line has an integer $t \in \mathbb{N}^*$: the number of tests. After this, t test cases are described: The 1st line contains an integer $n \in \mathbb{N}^*$: the number of stairs. The next line has n integers p_1, p_2, \ldots, p_n : the initial number of balls on each stair.

Output. For each test case, print first if the 1st player wins the game & second if the 2nd player wins the game.

Constraints. $t, n \in [2 \cdot 10^5], p_i \in [10^9], \forall i \in [n], the sum of all n is at most <math>2 \cdot 10^5$.

stair_game.inp	stair_game.out
3	first
3	second
0 2 1	first
4	
1111	
2	
5 3	

Problem 197 (CSES Problem Set/Grundy's game). There is a heap of $n \in \mathbb{N}^*$ coins & 2 players who move alternately. On each move, a player chooses a heap and divides into 2 nonempty heaps that have a different number of coins. The player who makes the last move wins the game. Find out who wins if both players play optimally.

Input. The 1st input line has an integer $t \in \mathbb{N}^*$: the number of tests. After this, there are t lines that describes the tests. Each line has an integer $n \in \mathbb{N}^*$: the number of coins in the initial heap.

Output. For each test case, print first if the 1st player wins the game & second if the 2nd player wins the game.

Constraints. $t \in [10^5], n \in [10^6]$.

Sample.

Grundy_game.inp	Grundy_game.out
3	first
6	second
7	first
8	

Problem 198 (CSES Problem Set/another game). There is a heap of $n \in \mathbb{N}^*$ coins & 2 players who move alternately. On each move, a player selects some of the nonempty heaps & removes 1 coin from each heap. The player who removes the last coin wins the game. Fnd out who wins if both players play optimally.

Input. The 1st input line has an integer $t \in \mathbb{N}^*$: the number of tests. After this, t test cases are described. The 1st line contains an integer $n \in \mathbb{N}^*$: the number of heaps. The next line has n integers $x_1, x_2, \ldots, x_n \in \mathbb{N}^*$: the number of coins in each heap.

Output. For each test case, print first if the 1st player wins the game & second if the 2nd player wins the game.

Constraints. $t, n \in [2 \cdot 10^5], x_i \in [10^9], \forall i \in [n], the sum of all n is at most <math>2 \cdot 10^5$.

another_game.inp	another_game.out
3	first
3	second
1 2 3	first
2	
2 2	
4	
5 5 4 5	

Chương 24

String Algorithms

Chương 25

Computational Geometry – Hình Học Tính Toán

Contents

25.1	Computational Elementary Geometry – Hình Học Sơ Cấp Tính Toán
	25.1.1 Cartesian coordinate system – Hệ tọa độ Descartes
25.2	Shoelace formula – Công thức dây giày
	25.2.1 Polygon area formulas – Công thức diện tích đa giác
	25.2.2 Manipulations of a polygon – Các thao tác trên 1 đa giác
	25.2.3 Generalization of shoelace formula
25.3	Problems: Computational elementary geometry

25.1 Computational Elementary Geometry - Hình Học Sơ Cấp Tính Toán

Resources - Tài nguyên.

- 1. [Đàm+19b]. Hồ Sĩ Đàm, Đỗ Đức Đông, Lê Minh Hoàng, Nguyễn Thanh Hùng. Tài Liệu Chuyên Tin Học Quyển 3.
- 2. [Đàm+19a]. Hồ Sĩ Đàm, Đỗ Đức Đông, Lê Minh Hoàng, Nguyễn Thanh Hùng. *Tài Liệu Chuyên Tin Học Bài Tập Quyển 3*.

Hình học tính toán (computational geometry) là 1 nhánh của ngành khoa học máy tính (Computer Science), chuyên nghiên cứu về thuật toán giải quyết các bài toán liên quan tới các đối tượng hình học (geometrical object). Trong Toán học & công nghệ hiện đại, hình học tính toán có ứng dụng khá rộng rãi trong các lĩnh vực về đồ họa máy tính, thiết kế, mô phỏng, etc.

25.1.1 Cartesian coordinate system – Hệ tọa độ Descartes

Resources - Tài nguyên.

1. Wikipedia/Cartesian coordinate system.

In geometry, a Cartesian coordinate system in a plane is a coordinate system that specifies each point uniquely by a pair of real numbers called coordinates, which are the signed distances to the point from 2 fixed perpendicular oriented lines, called coordinate lines, coordinate axes or just axes (plural of axis) of the system. The point where the axes meet is called the origin & has (0,0) as coordinates. The axes directions represent an orthogonal basis. The combination of origin & basis forms a coordinate frame called the Cartesian frame.

– Trong hình học, 1 hệ tọa độ Descartes trong 1 mặt phẳng là 1 hệ tọa độ chỉ định mỗi điểm duy nhất bởi 1 cặp số thực gọi là tọa độ, là khoảng cách có dấu đến điểm từ 2 đường thẳng cố định vuông góc với nhau, được gọi là đường tọa độ, trực tọa độ hoặc chỉ là trực (số nhiều của trực) của hệ thống. Điểm mà các trực gặp nhau được gọi là gốc & có (0,0) làm tọa độ. Các hướng của trực biểu diễn 1 cơ sở trực giao. Sự kết hợp của gốc & cơ sở tạo thành 1 khung tọa độ được gọi là khung Descartes.

Similarly, the position of any point in 3D space can be specified by 3 $Cartesian\ coordinates$, which are the signed distances from the point to 3 mutually perpendicular planes. More generally, n Cartesian coordinates specify the point in an n-dimensional Euclidean space for any dimension n. These coordinates are the signed distances from the point to n mutually perpendicular fixed hyperplanes.

– Tương tự như vậy, vị trí của bất kỳ điểm nào trong không gian 3 chiều có thể được chỉ định bởi 3 *tọa độ Descartes*, là khoảng cách có dấu từ điểm đến 3 mặt phẳng vuông góc với nhau. Tổng quát hơn, n tọa độ Descartes chỉ định điểm trong không

gian Euclidean n chiều cho bất kỳ chiều n nào. Các tọa độ này là khoảng cách có dấu từ điểm đến n siêu phẳng cố định vuông góc với nhau.

Cartesian coordinates are named for René Descartes, whose invention of them in the 17th century revolutionized mathematics by allowing the expression of problems of geometry in terms of algebra & calculus. Using the Cartesian coordinate system, geometric shapes (e.g. curves) can be described by equations involving the coordinates of points of the shape. E.g., a circle of radius 2, centered at the origin of the plane, may be described as the set of all points whose coordinates x, y satisfy the equation $x^2 + y^2 = 4$; the area, the perimeter, & the tangent line at any point can be computed from this equation by using integrals & derivatives, in a way that can be applied to any curve.

– Tọa độ Descartes được đặt theo tên của RENÉ DESCARTES, người đã phát minh ra chúng vào thế kỷ 17 đã cách mạng hóa toán học bằng cách cho phép biểu diễn các bài toán hình học theo đại số & phép tính. Sử dụng hệ tọa độ Descartes, các hình dạng hình học (ví dụ: đường cong) có thể được mô tả bằng các phương trình liên quan đến tọa độ của các điểm của hình dạng đó. Ví dụ, 1 đường tròn bán kính 2, có tâm tại gốc của mặt phẳng, có thể được mô tả là tập hợp tất cả các điểm có tọa độ x,y thỏa mãn phương trình $x^2 + y^2 = 4$; diện tích, chu vi, & đường tiếp tuyến tại bất kỳ điểm nào có thể được tính toán từ phương trình này bằng cách sử dụng tích phân & đạo hàm, theo cách có thể áp dụng cho bất kỳ đường cong nào.

Cartesian coordinates are the foundation of analytic geometry, & provide enlightening geometric interpretations for many other branches of mathematics, e.g. linear algebra, complex analysis, differential geometry, multivariate calculus, group theory, & more. A familiar example is the concept of the graph of a function. Cartesian coordinates are also essential tools for most applied disciplines that deal with geometry, including astronomy, physics, engineering, & many more. They are the most common coordinate system used in computer graphics, computer-aided geometric design, & other geometry-related data processing.

– Tọa độ Descartes là nền tảng của hình học giải tích, & cung cấp các diễn giải hình học bổ ích cho nhiều nhánh toán học khác, ví dụ như đại số tuyến tính, phân tích phức, hình học vi phân, phép tính đa biến, lý thuyết nhóm, & nhiều hơn nữa. Một ví dụ quen thuộc là khái niệm đồ thị của 1 hàm. Tọa độ Descartes cũng là công cụ thiết yếu cho hầu hết các ngành ứng dụng liên quan đến hình học, bao gồm thiên văn học, vật lý, kỹ thuật, & nhiều hơn nữa. Chúng là hệ tọa độ phổ biến nhất được sử dụng trong đồ họa máy tính, thiết kế hình học hỗ trợ máy tính, & xử lý dữ liệu liên quan đến hình học khác.

25.1.1.1 History of Cartesian coordinate system

The adjective *Cartesian* refers to the French mathematician & philosopher René Descartes, who published this idea in 1637 while he was resident in the Netherlands. It was independently discovered by Pierre De Fermat, who also worked in 3D, although Fermat did not publish the discovery. The French cleric Nicole Oresme used constructions similar to Cartesian coordinates well before the time of Descartes & Fermat.

– Tính từ Cartesian ám chỉ nhà toán học & triết gia người Pháp RENÉ DESCARTES, người đã công bố ý tưởng này vào năm 1637 khi ông đang cư trú tại Hà Lan. Nó được phát hiện độc lập bởi PIERRE DE FERMAT, người cũng làm việc trong không gian 3 chiều, mặc dù FERMAT không công bố khám phá này. Giáo sĩ người Pháp NICOLE ORESME đã sử dụng các cấu trúc tương tự như tọa độ Descartes từ rất lâu trước thời của DESCARTES & FERMAT.

Both Descartes & Fermat used a single axis in their treatments & have a variable length measured in reference to this axis. The concept of using a pair of axes was introduced later, after Descartes' *La Géométrie* was translated into Latin in 1649 by Frans van Schooten & his students. These commentators introduced several concepts while trying to clarify the ideas contained in Descartes's work.

– Cả DESCARTES & FERMAT đều sử dụng 1 trục duy nhất trong các phương pháp xử lý của họ & có chiều dài biến đổi được đo theo trục này. Khái niệm sử dụng 1 cặp trục được giới thiệu sau đó, sau khi DESCARTES' La Géométrie được dịch sang tiếng Latin vào năm 1649 bởi FRANS VAN SCHOOTEN & các học trò của ông. Những nhà bình luận này đã giới thiệu 1 số khái niệm trong khi cố gắng làm rõ các ý tưởng có trong tác phẩm của DESCARTES.

The development of the Cartesian coordinate system would play a fundamental role in the development of the calculus by Isaac Newton & Gottfried Wilhelm Leibniz. The 2-coordinate description of the plane was later generalized into the concept of vector spaces.

– Sự phát triển của hệ tọa độ Descartes sẽ đóng vai trò cơ bản trong sự phát triển phép tính của ISAAC NEWTON & GOTTFRIED WILHELM LEIBNIZ. Mô tả 2 toa đô của mặt phẳng sau đó được khái quát thành khái niêm không gian vectơ.

Many other coordinate systems have been developed since DESCARTES, e.g. the polar coordinates for the plane, & the spherical & cylindrical coordinates for 3D space.

– Nhiều hệ tọa độ khác đã được phát triển kể từ thời DESCARTES, e.g., tọa độ cực cho mặt phẳng, & tọa độ hình cầu & tọa độ hình trụ cho không gian 3D.

25.1.1.2 Cartesian formulae for the plane - Công thức Descartes cho mặt phẳng

25.1.1.2.1 Distance between 2 points – Khoảng cách giữa 2 điểm. The Euclidean distance between 2 points of the plane with Cartesian coordinates $A_1(x_1,y_1), A_2(x_2,y_2) \in \mathbb{R}^2$ is $d(A_1,A_2) = d((x_1,y_1),(x_2,y_2)) := \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$. This is the Cartesian version of Pythagoras's theorem. In 3D space, the distance between points $A_1(x_1,y_1,z_1), A_2(x_2,y_2,z_2) \in \mathbb{R}^3$ is $d(A_1,A_2) = d((x_1,y_1,z_1),(x_2,y_2,z_2)) := \sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}$, which can be obtained by 2 consecutive application of Pythagoras's theorem.

- **25.1.1.2.2** Euclidean transformations Các phép biến đổi Euclidean. The *Euclidean transformations* or *Euclidean motions* are the (bijective) mappings of points of the *Euclidean plane* to themselves which preserve distances between points. There are 4 types of these mappings (also called *isometries*): translations, rotations, reflections, & glide reflections.
- Phép biến đổi Euclidean hoặc Chuyển động Euclidean là phép ánh xạ (song ánh) của các điểm trên mặt phẳng Euclidean với chính chúng, phép ánh xạ này bảo toàn khoảng cách giữa các điểm. Có 4 loại phép ánh xạ này (còn gọi là đẳng cự): phép tịnh tiến, phép quay, phép phản xạ, & phản xạ trượt.
- 1. **Translation Phép tịnh tiến.** Translating a set of points of the plane, preserving the distances & directions between them, is equivalent to adding a fixed pair of numbers (a, b) to the Cartesian coordinates of every point in the set. I.e., if the original coordinates of a point are (x, y), after the translation they will be (x', y') = (x + a, y + b).
 - Việc tịnh tiến 1 tập hợp các điểm của mặt phẳng, bảo toàn khoảng cách & hướng giữa chúng, tương đương với việc thêm 1 cặp số cố định (a,b) vào tọa độ Descartes của mọi điểm trong tập hợp. Tức là, nếu tọa độ ban đầu của 1 điểm là (x,y), sau khi tịnh tiến, chúng sẽ là (x',y') = (x+a,y+b).
- 2. **Rotation Phép quay.** To rotate a figure counterclockwise around the origin by some angle θ is equivalent to replacing every point with coordinates (x, y) by the point with coordinates (x', y'), where $x' = x \cos \theta y \sin \theta$, $y' = x \sin \theta + y \cos \theta$.
 - Để quay 1 hình ngược chiều kim đồng hồ quanh gốc tọa độ θ tương đương với việc thay thế mọi điểm có tọa độ (x,y) bằng điểm có tọa độ (x',y'), trong đó $x'=x\cos\theta-y\sin\theta, y'=x\sin\theta+y\cos\theta$. Thus $(x',y')=(x\cos\theta-y\sin\theta,x\sin\theta+y\cos\theta)$.
- 3. **Reflection Phép phản xạ.** If (x,y) are the Cartesian coordinates of a point, then (-x,y) are the coordinates of its reflection across the 2nd coordinate axis (the y-axis), as if that line were a mirror. Likewise, (x, -y) are the coordinates of its reflection across the 1st coordinate axis (the x-axis). In more generality, reflection across a line through the origin making an angle θ with the x-axis, is equivalent to replacing every point with coordinates (x,y) by the point with coordinates $(x',y') = (x\cos 2\theta + y\sin 2\theta, x\sin 2\theta y\cos 2\theta)$.
 - Nếu (x,y) là tọa độ Descartes của 1 điểm, thì (-x,y) là tọa độ của phép phản chiếu của nó qua trục tọa độ thứ 2 (trục y), như thể đường thẳng đó là 1 tấm gương. Tương tự như vậy, (x,-y) là tọa độ của phép phản chiếu của nó qua trục tọa độ thứ nhất (trục x). Nói chung hơn, phép phản chiếu qua 1 đường thẳng đi qua gốc tọa độ tạo thành 1 góc θ với trục x, tương đương với việc thay thế mọi điểm có tọa độ (x,y) bằng điểm có tọa độ $(x',y') = (x\cos 2\theta + y\sin 2\theta, x\sin 2\theta y\cos 2\theta)$.
- 4. **Glide reflection Phản xạ lướt.** A glide reflection is the composition of a reflection across a line followed by a translation in the direction of that line. It can be seen that the order of these operations does not matter (the translation can come 1st, followed by the reflection).
 - Phản xạ lướt là sự kết hợp của phản xạ qua 1 đường thẳng theo sau là phép tịnh tiến theo hướng của đường thẳng đó. Có thể thấy rằng thứ tự của các phép toán này không quan trọng (phép tịnh tiến có thể đứng thứ nhất, sau đó là phép phản xạ).
- 5. General matrix form of the transformations Dang ma trận tổng quát của các phép biến đổi. All affine transformations of the plane can be described in a uniform way by using matrices. For this purpose, the coordinates (x, y) of a point are commonly represented as the column matrix $\binom{x}{y}$. The result (x', y') of applying an affine transformation to a point (x, y) is given by the formula

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = A \begin{pmatrix} x \\ y \end{pmatrix} + b \text{ where } A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \in M_2, \ b = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}.$$

I.e.,

$$x' = xA_{11} + yA_{11} + b_1, \ y' = xA_{21} + yA_{22} + b_2.$$

Among the affine transformations, the Euclidean transformations are characterized by the fact that the matrix A is orthogonal, i.e., its columns are orthogonal vectors of Euclidean norm 1, or explicitly,

$$A_{11}A_{12} + A_{21}A_{22} = 0, \ A_{11}^2 + A_{21}^2 = A_{12}^2 + A_{22}^2 = 1 \Leftrightarrow AA^{\top} = I.$$

If these conditions do not hold, the formula describes a more general affine transformation.

Theorem 2. (a) The transformation is a translation iff A = I. The transformation is a rotation around some point iff A is a rotation matrix, i.e., it is orthogonal $\mathcal{E}(A_{11}A_{22} - A_{21}A_{12}) = 1$. A reflection or glide reflection is obtained when $A_{11}A_{22} - A_{21}A_{12} = -1$. (b) Assuming that translations are not used, i.e., $b_1 = b_2 = 0$, transformations can be composed by simply multiplying the associated transformation matrices. In the general case, it is useful to use the augmented matrix of the transformations, i.e., to rewrite the transformation formula

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = A' \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} \text{ where } A' = \begin{pmatrix} A_{11} & A_{12} & b_1 \\ A_{21} & A_{22} & b_2 \\ 0 & 0 & 1 \end{pmatrix}.$$

With this trick, the composition of affine transformations is obtained by multiplying the augmented matrices.

25.1.1.2.3 Affine transformation – Phép biến hình affine. Affine transformations of the Euclidean plane are transformations that map lines to lines, but may change distances & angles. They can be represented with augmented matrices:

$$\begin{pmatrix} A_{11} & A_{21} & b_1 \\ A_{12} & A_{22} & b_2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix}.$$

The Euclidean transformations are the affine transformations s.t. the 2×2 matrix of the A_{ij} is orthogonal.

– Phép biến đổi afin của mặt phẳng Euclid là phép biến đổi ánh xạ các đường thẳng thành các đường thẳng, nhưng có thể thay đổi khoảng cách & góc. Chúng có thể được biểu diễn bằng các ma trận tăng cường:

$$\begin{pmatrix} A_{11} & A_{21} & b_1 \\ A_{12} & A_{22} & b_2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix}.$$

Phép biến đổi Euclid là phép biến đổi afin vì ma trận 2×2 của A_{ij} là trực giao.

The augmented matrix that represents the composition of 2 affine transformations is obtained by multiplying their augmented matrices. Some affine transformations that are not Euclidean transformations have received specific names.

- Ma trận tăng cường biểu diễn thành phần của 2 phép biến đổi afin thu được bằng cách nhân các ma trận tăng cường của chúng. Một số phép biến đổi afin không phải là phép biến đổi Euclid đã nhận được tên gọi cụ thể.
- Scaling Tỷ lệ. An example of an affine transformation which is not Euclidean is given by scaling. To make a figure larger or smaller is equivalent to multiplying the Cartesian coordinates of every point by the same positive number $m \in (0, \infty)$. If (x, y) are the coordinates of a point on the original figure, the corresponding point on the scaled figure has coordinates (x', y') = (mx, my). If m > 1, the figure becomes larger; if $m \in (0, 1)$, it becomes smaller.
 - -1 ví dụ về phép biến đổi afin không phải Euclidean được đưa ra bằng cách chia tỷ lệ. Để làm cho 1 hình lớn hơn hoặc nhỏ hơn tương đương với việc nhân tọa độ Descartes của mọi điểm với cùng 1 số dương $m \in (0, \infty)$. Nếu (x, y) là tọa độ của 1 điểm trên hình gốc, thì điểm tương ứng trên hình đã chia tỷ lệ có tọa độ (x', y') = (mx, my). Nếu m > 1, hình trở nên lớn hơn; nếu $m \in (0, 1)$, nó trở nên nhỏ hơn.
- Shearing Cắt. A shearing transformation will push the top of a square sideways to form a parallelogram. Horizontal shearing is defined by (x', y') = (x + sy, y). Shearing can also be applied vertically: (x', y') = (x, sx + y).
 - Phép biến đổi cắt sẽ đẩy đỉnh của hình vuông sang 1 bên để tạo thành hình bình hành. Cắt ngang được định nghĩa bởi (x',y')=(x+sy,y). Cắt cũng có thể được áp dụng theo chiều dọc: (x',y')=(x,sx+y).

25.1.1.3 Orientation & handedness \star – Dinh hướng & thuận tay \star

25.2 Shoelace formula - Công thức dây giày

Resources - Tài nguyên.

1. Wikipedia/shoelace formula.

The shoelace formula, also known as Gauss's area formula & the surveyor's formula, is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. It is called the shoelace formula because of the constant cross-multiplying for the coordinates making up the polygon, like threading shoelaces. It has applications in surveying & forestry, among other areas.

– công thức dây giày, còn được gọi là công thức diện tích Gauss & công thức của người khảo sát, là 1 thuật toán toán học để xác định diện tích của 1 đa giác đơn giản có các đỉnh được mô tả bằng tọa độ Descartes của chúng trên mặt phẳng. Nó được gọi là công thức dây giày vì phép nhân chéo không đổi đối với các tọa độ tạo nên đa giác, giống như việc xổ dây giày. Nó có ứng dụng trong khảo sát & lâm nghiệp, trong số các lĩnh vực khác.

The formula was described by Albrecht Ludwig Friedrich Meister (1724–1788) in 1769 & is based on the trapezoidal formula which was described by Carl Friedrich Gauss & C.G.J. Jacobi. The triangle form of the area formula can be considered to be a special case of Green's theorem.

– Công thức này được Albrecht Ludwig Friedrich Meister (1724–1788) mô tả vào năm 1769 & dựa trên công thức hình thang được Carl Friedrich Gauss mô tả & C.G.J. Jacobi. Dạng tam giác của công thức diện tích có thể được coi là 1 trường hợp đặc biệt của định lý Green.

The area formula can also be applied to self-overlapping polygons since the meaning of area is still clear even though self-overlapping polygons are not generally simple. Furthermore, a self-overlapping polygon can have multiple "interpretations" but the Shoelace formula can be used to show that the polygon's area is the same regardless of the interpretation.

Công thức diện tích cũng có thể được áp dụng cho các đa giác tự chồng lên nhau vì ý nghĩa của diện tích vẫn rõ ràng mặc dù các đa giác tự chồng lên nhau thường không đơn giản. Hơn nữa, 1 đa giác tự chồng lên nhau có thể có nhiều "cách diễn giải" nhưng công thức Shoelace có thể được sử dụng để chỉ ra rằng diện tích của đa giác là như nhau bất kể cách diễn giải nào.

25.2.1 Polygon area formulas – Công thức diện tích đa giác

Basic idea. Any polygon edge determines the signed area of a trapezoid. All these areas sum up to the polygon area.

- Ý tưởng cơ bản. Bất kỳ cạnh đa giác nào cũng xác định diện tích *có dấu* của hình thang. Tất cả các diện tích này cộng lại thành diện tích đa giác.

Given. A planar simple polygon with a positively oriented (counter clock wise) sequence of points $P_i = (x_i, y_i), \forall i \in [n]$ in a Cartesian coordinate system. For the simplicity of the formulas below it is convenient to set $P_0 = P_n, P_{n+1} = P_1$.

– Cho: 1 đa giác phẳng đơn giản với 1 chuỗi hướng dương (ngược chiều kim đồng hồ) các điểm $P_i = (x_i, y_i), \forall i \in [n]$ trong hệ tọa độ Descartes. Để đơn giản hóa các công thức bên dưới, thuận tiện hơn là đặt $P_0 = P_n, P_{n+1} = P_1$.

Formulas. The area of the given polygon can be expressed by a variety of formulas, which are connected by simple operations. If the polygon is negatively oriented, then the result A of the formulas is negative. In any case |A| is the sought area of the polygon.

– Công thức. Diện tích của đa giác cho trước có thể được biểu thị bằng nhiều công thức khác nhau, được kết nối bằng các phép toán đơn giản. Nếu đa giác có hướng $\hat{a}m$, thì kết quả A của các công thức là $\hat{a}m$. Trong mọi trường hợp |A| là diện tích cần tìm của đa giác.

25.2.1.1 Trapezoid formula - Công thức hình thang

The trapezoid formula sums up a sequence of oriented areas $A_i = \frac{1}{2}(y_i + y_{i+1})(x_i - x_{i+1})$ of trapezoids with $P_i P_{i+1}$ as 1 of its 4 edges:

$$A = \frac{1}{2} \sum_{i=1}^{n} (y_i + y_{i+1})(x_i - x_{i+1}) = \frac{1}{2} ((y_1 + y_2)(x_1 - x_2) + \dots + (y_n + y_1)(x_n - x_1)).$$

Derivation of trapezoidal formula. The edge P_iP_{i+1} determines the trapezoid $(x_i, y_i), (x_{i+1}, y_{i+1}), (x_i, 0), (x_{i+1}, 0)$ with its oriented area

$$A_i = \frac{1}{2}(y_i + y_{i+1})(x_i - x_{i+1}).$$

In case of $x_i < x_{i+1}$, $A_i < 0$, otherwise $A_i > 0$ or $A_i = 0$ if $x_i = x_{i+1}$. In the diagram the orientation of an edge is shown by an arrow. The color shows the sign of A_i : red means $A_i < 0$, green indicates $A_i > 0$.

Hình 25.1: Deriving the trapezoid formula. Source: Wikipediat/shoelace formula.

In the 1st case the trapezoid is called *negative* in the 2nd case *positive*. The negative trapezoids delete those parts of positive trapezoids, which are outside the polygon. In case of a convex polygon (in the diagram the upper example) this is obvious: The polygon area is the sum of the areas of the positive trapezoids (green edges) minus the areas of the negative trapezoids (red edges). In the nonconvex case one has to consider the situation more carefully. In any case the result is

$$A = \sum_{i=1}^{n} A_i = \frac{1}{2} \sum_{i=1}^{n} (y_i + y_{i+1})(x_i - x_{i+1}).$$

25.2.1.2 Triangle formula, determinant form - Công thức tam giác, dạng định thức

The triangle formula sums up the oriented areas A_i of triangles OP_iP_{i+1} :

$$A = \frac{1}{2} \sum_{i=1}^{n} (x_i y_{i+1} - x_{i+1} y_i) = \frac{1}{2} \sum_{i=1}^{n} \begin{vmatrix} x_i & x_{i+1} \\ y_i & y_{i+1} \end{vmatrix} = \frac{1}{2} \sum_{i=1}^{n} \begin{vmatrix} x_i & y_i \\ x_{i+1} & y_{i+1} \end{vmatrix} = \frac{1}{2} (x_1 y_2 - x_2 y_1 + x_2 y_3 - x_3 y_2 + \dots + x_n y_1 - x_1 y_n).$$

Eliminating the brackets & using $\sum_{i=1}^{n} x_i y_i = \sum_{i=1}^{n} x_{i+1} y_{i+1}$ (convention $P_{n+1} = P_1$), one gets the determinant form of the area formula:

$$A = \frac{1}{2} \sum_{i=1}^{n} (x_i y_{i+1} - x_{i+1} y_i) = \frac{1}{2} \sum_{i=1}^{n} \begin{vmatrix} x_i & x_{i+1} \\ y_i & y_{i+1} \end{vmatrix}.$$

Because 1 half of the *i*th determinant is the oriented area of the triangle ΔOP_iP_{i+1} this version of the area formula is called triangle form.

- Công thức tam giác tổng hợp các diện tích định hướng A_i của các tam giác OP_iP_{i+1} :

$$A = \frac{1}{2} \sum_{i=1}^{n} (x_i y_{i+1} - x_{i+1} y_i) = \frac{1}{2} \sum_{i=1}^{n} \begin{vmatrix} x_i & x_{i+1} \\ y_i & y_{i+1} \end{vmatrix} = \frac{1}{2} \sum_{i=1}^{n} \begin{vmatrix} x_i & y_i \\ x_{i+1} & y_{i+1} \end{vmatrix} = \frac{1}{2} (x_1 y_2 - x_2 y_1 + x_2 y_3 - x_3 y_2 + \dots + x_n y_1 - x_1 y_n).$$

Loại bỏ dấu ngoặc & sử dụng $\sum_{i=1}^{n} x_i y_i = \sum_{i=1}^{n} x_{i+1} y_{i+1}$ (quy ước $P_{n+1} = P_1$), ta sẽ có được dạng định thức của công thức diện tích:

$$A = \frac{1}{2} \sum_{i=1}^{n} (x_i y_{i+1} - x_{i+1} y_i) = \frac{1}{2} \sum_{i=1}^{n} \begin{vmatrix} x_i & x_{i+1} \\ y_i & y_{i+1} \end{vmatrix}.$$

Vì 1 nửa của định thức i là diện tích định hướng của tam giác OP_iP_{i+1} nên phiên bản này của công thức diện tích được gọi là dạng tam giác.

25.2.1.3 Shoelace formula - Công thức dây giày

The triangle formula is the base of the popular *shoelace formula*, which is a scheme that optimizes the calculation of the sum of the 2×2 -determinants by hand:

$$2A = \begin{vmatrix} x_1 & x_2 \\ y_1 & y_2 \end{vmatrix} + \begin{vmatrix} x_2 & x_3 \\ y_2 & y_3 \end{vmatrix} + \dots + \begin{vmatrix} x_n & x_1 \\ y_n & y_1 \end{vmatrix} = \begin{vmatrix} x_1 & x_2 & x_3 & \dots & x_n & x_1 \\ y_1 & y_2 & y_3 & \dots & y_n & y_1 \end{vmatrix}$$

Sometimes this determinant is transposed (written vertically, in 2 columns).

25.2.1.4 Other formulas

$$A = \frac{1}{2} \sum_{i=1}^{n} y_i (x_{i-1} - x_{i+1}) = \frac{1}{2} (y_1 (x_n - x_2) + y_2 (x_1 - x_3) + \dots + y_n (x_{n-1} - x_1)) = \frac{1}{2} \sum_{i=1}^{n} x_i (y_{i+1} - y_{i-1}).$$

With $\sum_{i=1}^{n} x_i y_{i+1} = \sum_{i=1}^{n} x_{i-1} y_i$ (convention $P_0 = P_n, P_{n+1} = P_1$) one gets

$$2A = \sum_{i=1}^{n} (x_i y_{i+1} - x_{i+1} y_i) = \sum_{i=1}^{n} x_i y_{i+1} - \sum_{i=1}^{n} x_{i+1} y_i = \sum_{i=1}^{n} x_{i-1} y_i - \sum_{i=1}^{n} x_{i+1} y_i.$$

Combining both sums & excluding y_i leads to

$$A = \frac{1}{2} \sum_{i=1}^{n} y_i (x_{i-1} - x_{i+1}).$$

With the identity $\sum_{i=1}^{n} x_{i+1}y_i = \sum_{i=1}^{n} x_iy_{i-1}$ one gets

$$A = \frac{1}{2} \sum_{i=1}^{n} x_i (y_{i+1} - y_{i-1}).$$

Alternatively, this is a special case of Green's theorem with 1 function set to 0 & the other set to x, s.t. the area is the integral of x dy along the boundary.

of x dy along the boundary. – Với $\sum_{i=1}^n x_i y_{i+1} = \sum_{i=1}^n x_{i-1} y_i$ (quy ước $P_0 = P_n, P_{n+1} = P_1$) ta có

$$2A = \sum_{i=1}^{n} (x_i y_{i+1} - x_{i+1} y_i) = \sum_{i=1}^{n} x_i y_{i+1} - \sum_{i=1}^{n} x_{i+1} y_i = \sum_{i=1}^{n} x_{i-1} y_i - \sum_{i=1}^{n} x_{i+1} y_i.$$

Kết hợp cả 2 tổng & loại trừ y_i dẫn đến

$$A = \frac{1}{2} \sum_{i=1}^{n} y_i (x_{i-1} - x_{i+1}).$$

Với hằng đẳng thức $\sum_{i=1}^n x_{i+1}y_i = \sum_{i=1}^n x_iy_{i-1}$ ta có

$$A = \frac{1}{2} \sum_{i=1}^{n} x_i (y_{i+1} - y_{i-1}).$$

Ngoài ra, đây là trường hợp đặc biệt của định lý Green với 1 hàm được đặt thành 0 & hàm còn lại được đặt thành x, s.t. diện tích là tích phân của x dy dọc theo biên.

25.2.1.5 Exterior algebra – Đại số ngoài

A particularly concise statement of the formula can be given in terms of the exterior algebra. Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ be the consecutive vertices of the polygon. The Cartesian coordinate expansion of the outer product w.r.t. the standard ordered orthonormal plane basis (\mathbf{x}, \mathbf{y}) gives $\mathbf{v}_i \wedge \mathbf{v}_{i+1} = (x_i y_{i+1} - x_{i+1} y_i) \mathbf{x} \wedge \mathbf{y}$ & the oriented area is given as follows:

$$A = \frac{1}{2} \sum_{i=1}^{n} \mathbf{v}_{i} \wedge \mathbf{v}_{i+1} = \frac{1}{2} \sum_{i=1}^{n} (x_{i} y_{i+1} - x_{i+1} y_{i}) \mathbf{x} \wedge \mathbf{y}.$$

The area is given as a multiple of the unit area $\mathbf{x} \wedge \mathbf{y}$.

-1 phát biểu đặc biệt ngắn gọn về công thức có thể được đưa ra dưới dạng đại số ngoài. Giả sử $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ là các đỉnh liên tiếp của đa giác. Khai triển tọa độ Descartes của tích ngoài w.r.t. cơ sở mặt phẳng chuẩn trực chuẩn sắp xếp (\mathbf{x}, \mathbf{y}) cho $\mathbf{v}_i \wedge \mathbf{v}_{i+1} = (x_i y_{i+1} - x_{i+1} y_i) \mathbf{x} \wedge \mathbf{y}$ & diện tích định hướng được đưa ra như sau:

$$A = \frac{1}{2} \sum_{i=1}^{n} \mathbf{v}_{i} \wedge \mathbf{v}_{i+1} = \frac{1}{2} \sum_{i=1}^{n} (x_{i} y_{i+1} - x_{i+1} y_{i}) \mathbf{x} \wedge \mathbf{y}.$$

Diện tích được đưa ra dưới dạng bội số của diện tích đơn vị $\mathbf{x} \wedge \mathbf{y}$.

Bài toán 40 (Area of polygon – Diện tích đa giác). Viết thuật toán & chương trình C/C++, Pascal, Python $d\mathring{e}$ tính diện tích của đa giác $n \in \mathbb{N}, n \geq 3$ đỉnh $A_1A_2 \dots A_n$ với tọa độ n đỉnh $A_i(x_i, y_i) \in \mathbb{R}^2$ cho trước, $\forall i \in [n]c$.

Input. Dòng 1 chứa 1 số nguyên $n \in \mathbb{N}$, $n \geq 3$. Mỗi dòng trong n dòng tiếp theo chứa 2 số thực $x_i, y_i \in \mathbb{R}$, $\forall i \in [n]$.

Output. In ra 1 số thực dương là diện tích của đa giác $A_1A_2...A_n$.

25.2.2 Manipulations of a polygon – Các thao tác trên 1 đa giác

 $A(P_1, \ldots, P_n)$ indicates the oriented area of the simple polygon P_1, \ldots, P_n with $n \in \mathbb{N}, n \geq 4$. A is positive/negative if the orientation of the polygon is positive/negative. From the triangle form of the area formula or the diagram below one observes for $i \in \overline{2, n-1}$:

$$A(P_1, \dots, P_n) = A(P_1, \dots, P_{i-1}, P_{i+1}, \dots, P_n) + A(P_{i-1}, P_i, P_{i+1}).$$

In case of i = 1 or i = n one should 1st shift the indices. Hence:

- 1. Moving P_i affects only $\underline{A(P_{i-1}, P_i, P_{i+1})}$ & leaves $A(P_1, \dots, P_{i-1}, P_{i+1}, \dots, P_n)$ unchanged. There is no change of the area if P_i is moved parallel to $\overline{P_{i-1}P_{i+1}}$.
- 2. Purging P_i changes the total area by $A(P_{i-1}, P_i, P_{i+1})$, which can be positive or negative.
- 3. Inserting point Q between P_i , P_{i+1} changes the total area by $A(P_i, Q, P_{i+1})$, which can be positive or negative.
- $-A(P_1,\ldots,P_n)$ biểu thị diện tích định hướng của đa giác đơn P_1,\ldots,P_n với $n\in\mathbb{N},n\geq 4$. A là dương/âm nếu định hướng của đa giác là dương/âm. Từ dạng tam giác của công thức diện tích hoặc sơ đồ bên dưới, người ta quan sát thấy đối với $i\in\overline{2,n-1}$:

$$A(P_1, \dots, P_n) = A(P_1, \dots, P_{i-1}, P_{i+1}, \dots, P_n) + A(P_{i-1}, P_i, P_{i+1}).$$

Trong trường hợp i=1 hoặc i=n, trước tiên người tạ phải dịch chuyển các chỉ số. Do đó:

- 1. Di chuyển P_i chỉ ảnh hưởng đến $A(P_{i-1}, P_i, P_{i+1})$ & giữ nguyên $A(P_1, \dots, P_{i-1}, P_{i+1}, \dots, P_n)$. Không có thay đổi nào về diện tích nếu P_i được di chuyển song song với $\overline{P_{i-1}P_{i+1}}$.
- 2. Xóa P_i làm thay đổi tổng diện tích theo $A(P_{i-1}, P_i, P_{i+1})$, có thể dương hoặc âm.
- 3. Chèn điểm Q giữa P_i, P_{i+1} làm thay đổi tổng diện tích theo $A(P_i, Q, P_{i+1})$, có thể dương hoặc âm.

25.2.3 Generalization of shoelace formula

In higher dimensions the area of a polygon can be calculated from its vertices using the exterior algebra form of the Shoelace formula (e.g., in 3D, the sum of successive cross products):

$$A = \frac{1}{2} \left\| \sum_{i=1}^{n} v_i \wedge v_{i+1} \right\|$$

(when the vertices are not coplanar this computes the vector area enclosed by the loop, i.e., the projected area or "shadow" in the plane in which it is greatest).

- Ở các chiều cao hơn, diện tích của 1 đa giác có thể được tính từ các đỉnh của nó bằng cách sử dụng dạng đại số ngoài của công thức Shoelace (ví dụ, trong 3D, tổng của các tích có hướng liên tiếp):

$$A = \frac{1}{2} \left\| \sum_{i=1}^{n} v_i \wedge v_{i+1} \right\|$$

(khi các đỉnh không đồng phẳng, công thức này sẽ tính diện tích vectơ được bao quanh bởi vòng lặp, tức là diện tích chiếu hoặc "bóng" trên mặt phẳng mà diện tích đó lớn nhất).

This formulation can also be generalized to calculate the volume of an n-dimensional polytope from the coordinates of its vertices, or more accurately, from its hypersurface mesh. E.g., the volume of a 3D polyhedron can be found by triangulating its surface mesh & summing the signed volumes of the tetrahedra formed by each surface triangle & the origin:

$$V = \frac{1}{6} \left\| \sum_{F} v_a \wedge v_b \wedge v_c \right\|$$

where the sum is over the faces & care has to be taken to order the vertices consistently (all clockwise or anticlockwise viewed from outside the polyhedron). Alternatively, an expression in terms of the face areas & surface normals may be derived using the divergence theorem.

- Công thức này cũng có thể được khái quát hóa để tính thể tích của 1 đa diện n chiều từ tọa độ các đỉnh của nó, hoặc chính xác hơn, từ lưới siêu bề mặt của nó. E.g., thể tích của 1 đa diện 3D có thể được tìm thấy bằng cách tam giác hóa lưới bề mặt của nó & cộng các thể tích có dấu của tứ diện được tạo thành bởi mỗi tam giác bề mặt & gốc:

$$V = \frac{1}{6} \left\| \sum_{F} v_a \wedge v_b \wedge v_c \right\|$$

trong đó tổng nằm trên các mặt & phải cẩn thận để sắp xếp các đỉnh 1 cách nhất quán (tất cả theo chiều kim đồng hồ hoặc ngược chiều kim đồng hồ khi nhìn từ bên ngoài đa diện). Ngoài ra, 1 biểu thức theo diện tích mặt & pháp tuyến bề mặt có thể được suy ra bằng cách sử dụng định lý phân kỳ.

25.3 Problems: Computational elementary geometry

Bài toán 41 (Bao phủ hình chữ nhật nguyên 2D nhỏ nhất). (2.5 điểm) Viết chương trình Python để tính chu vi, diện tích, \mathcal{E} độ dài đường chéo hình chữ nhật nhỏ nhất "chứa trọn" $n \in \mathbb{N}^*$ điểm $A_1(x_1, y_1), A_2(x_2, y_2), \ldots, A_n(x_n, y_n) \in \mathbb{R}^2$ với tọa độ nguyên $x_i, y_i \in \mathbb{Z}$, $\forall i = 1, \ldots, n$, cho trước trong mặt phẳng 2 chiều, "chứa trọn" ở đây nghĩa là các điểm chỉ được nằm bên trong hình chữ nhật, không được nằm trên cạnh hình chữ nhật.

Input. Dòng 1 chứa số nguyên $n \in \mathbb{N}^*$: * số điểm trong mặt phẳng 2 chiều. n dòng tiếp theo, mỗi dòng chứa 2 số nguyên $x_i, y_i \in \mathbb{Z}$: hoành độ \mathcal{E} tung độ của điểm thứ i $A_i(x_i, y_i)$.

Output. In ra chu vi, diện tích, & đường chéo của hình chữ nhật thỏa mãn nhờ gọi lại hàm của Bài 1 (hoặc tự viết lại nếu muốn). Sample.

min_rectangle.inp	min_rectangle.out
4	P=26
1 0	S = 40
-2 2	d = 9.43398113206
-1 3	
4 2	

Solution. Python:

```
n = int(input()) # number of 2D points -- số điểm trên mặt phẳng
            x_min = y_min = 1e9
            x_max = y_max = -1e9
            for i in range(n):
            x, y = map(int, input().split())
            if x < x_min:
            x_min = x
            if x > x_max:
            x_max = x
            if y < y_min:
10
11
            y_{min} = y
            if y > y_max:
12
            y_max = y
13
            a, b = x_max - x_min + 2, y_max - y_min + 2
14
            print('P =', 2 * (a + b))
15
            print('S = ', a * b)
16
17
            print('d = ', sqrt(a * a + b * b))
```

Bài toán 42 (Bao phủ hình hộp chữ nhật nguyên 3D nhỏ nhất). (3.5 điểm) Viết chương trình Python để tính diện tích toàn phần, thể tích, & độ dài đường chéo hình hộp chữ nhật nhỏ nhất chứa $n \in \mathbb{N}^*$ điểm $A_1(x_1, y_1, z_1), A_2(x_2, y_2, z_2), \ldots, A_n(x_n, y_n, z_n) \in \mathbb{R}^3$ với tọa độ nguyên $x_i, y_i \in \mathbb{Z}$, $\forall i = 1, \ldots, n$, cho trước trong không gian 3 chiều, ở đây các điểm có thể nằm bên trong hoặc nằm trên cạnh hình hộp chữ nhật.

Input. Dòng 1 chứa số nguyên $n \in \mathbb{N}^*$: số điểm trong không gian 3 chiều. n dòng tiếp theo, mỗi dòng chứa 3 số nguyên $x_i, y_i, z_i \in \mathbb{Z}$: hoành độ, tung độ, \mathcal{E} cao độ của điểm thứ i $A_i(x_i, y_i, z_i)$.

Output. In ra diện tích toàn phần, thể tích, \mathcal{E} độ dài đường chéo hình hộp chữ nhật thỏa mãn, biết với hình hộp chữ nhật có kích thước $a \times b \times c$ thì $S_{\rm tp} = 2(ab + bc + ca)$, V = abc, $d = \sqrt{a^2 + b^2 + c^2}$.

Sample.

min_rectangular_cuboid.inp	min_rectangular_cuboid.out
4	$S_{\rm tp} = 22$
1 0 0	$S_{\rm tp} = 22$ $V = 6$
0 1 0	d = 3.74165738677
-1 0 2	
2 0 1	

Solution. Python:

```
n = int(input()) # number of 3D points
            x_min = y_min = z_min = 1e9
            x_max = y_max = z_max = -1e9
            for i in range(n):
            x, y, z = map(int, input().split())
            if x < x_min:</pre>
            x_min = x
            if x > x_max:
            x_max = x
            if y < y_min:</pre>
10
            y_min = y
11
            if y > y_max:
12
            y_max = y
13
            if z < z_{min}:
            z_{min} = z
15
            if z > z_{max}:
            z_{max} = z
17
            a, b, c = x_max - x_min, y_max - y_min, z_max - z_min
```

```
print('S_tp =', 2 * (a * b + b * c + c * a))
print('V =', a * b * c)
print('d =', sqrt(a * a + b * b + c * c))
```

Bài toán 43 ([$\frac{1}{1}$ àm+19b], 8.1, segment in triangle – tìm độ dài đoạn thẳng nằm trong tam giác). Trên mặt phẳng cho ΔABC & đoạn thẳng DE. Tính độ dài của phần đoạn thẳng DE nằm trong ΔABC .

Input. Dòng 1 có 6 số thực $x_A, y_A, x_B, y_B, x_C, y_C$ lần lượt từng cặp là tọa độ tương ứng của 3 đỉnh A, B, C. Dòng 2 là 4 số thực x_D, y_D, x_E, y_E lần lượt từng cặp là tọa độ 2 điểm D, E.

Output. In 1 số thực duy nhất là đô dài phần đoan thẳng DE nằm trong ΔABC .

Sample.

segment_in_triangle.inp	segment_in_triangle.out
0 2 2 4 4 2	3.16228
0 2 3 3	

Bài toán 44 ([Dàm+19b], 8.2, common area of 2 triangles – tìm diện tích phần chung của 2 tam giác). Trên mặt phẳng cho 2 tam giác. Tìm diện tích phần chung của 2 tam giác.

Input. $G\hat{o}m$ 2 dòng, $m\tilde{o}i$ dòng có 6 số thực lần lượt từng cặp là tọa độ tương ứng của 3 đỉnh của 1 tam giác. Các tọa độ có giá tri tuyệt đối $\leq 10^3$.

Output. In ra duy nhất 1 số thực là diện tích phần chung của 2 tam gaics này.

Constraints. $n \in [2 \cdot 10^5], m \in [100], x_i \in \{0, 1, \dots, m\}.$

Sample.

common_area_triangle.inp	common_area_triangle.out
0 6 8 6 4 0	16
488202	

Problem 199 (CSES Problem Set/point location test). There is a line that goes through the points $p_1 = (x_1, y_2), p_2(x_2, y_2)$. There is also a point $p_3 = (x_3, y_3)$. Determine whether p_3 is located on the left or right side of the line or if it touches the line when we are looking from p_1 to p_2 .

Input. The 1st input line has an integer $t \in \mathbb{N}^*$: the number of tests. After this, there are t lines that describe the tests. Each line has 6 integers $x_1, y_1, x_2, y_2, x_3, y_3 \in \mathbb{Z}$.

Output. For each test, print LEFT, RIGHT or TOUCH.

Constraints. $t \in [10^5], x_i, y_i \in \overline{-10^9, 10^9}, \forall i \in [3], x_1 \neq x_2 \text{ or } y_1 \neq y_2 \text{ (i.e., } (x_1, x_1) \neq (x_2, y_2)).$

Sample.

point_location_test.inp	point_location_test.out
3	LEFT
$1\ 1\ 5\ 3\ 2\ 3\ 0\ 2$	RIGHT
$1\ 1\ 5\ 3\ 4\ 1$	TOUCH
$1\ 1\ 5\ 3\ 3\ 2$	

Solution. C++:

1. PVT's C++: point location test

```
#include <bits/stdc++.h>
using namespace std;
#define ll long long

void solve() {
    ll x1, y1, x2, y2, x3, y3;
    cin >> x1 >> y1 >> x2 >> y2 >> x3 >> y3;
    ll dot = (x2 - x1) * (x3 - x1) + (y2 - y1) * (y3 - y1);
```

```
ll det = (x2 - x1) * (y3 - y1) - (x3 - x1) * (y2 - y1);
          double angle = atan2(det, dot);
 10
          if (angle == 0 || angle == M_PI || angle == -M_PI) cout << "TOUCH\n";
 11
          else if (angle > 0) cout << "LEFT\n";</pre>
 12
          else cout << "RIGHT\n";</pre>
 13
     }
 14
 15
     int main() {
          ios_base::sync_with_stdio(false); cin.tie(NULL);
 17
          11 t; cin >> t;
 18
          while (t--)
 19
          solve();
 20
     }
 21
2. NHT's C++: point location test
     #include <bits/stdc++.h>
     #define ll long long
     using namespace std;
     int t;
     int main() {
          ios_base::sync_with_stdio(false);
          cin.tie(nullptr);
  9
 10
          cin >> t;
 11
          while (t--) {
 12
              ll x1, y1, x2, y2, x3, y3;
              cin >> x1 >> y1 >> x2 >> y2 >> x3 >> y3;
              ll area = (x2 - x1) * (y3 - y1) - (y2 - y1) * (x3 - x1);
 15
              if (area > 0)
 16
              cout << "LEFT\n";</pre>
 17
              else if (area < 0)
              cout << "RIGHT\n";</pre>
 19
              else
 20
              cout << "TOUCH\n";</pre>
          }
 22
     }
 23
```

Problem 200 (CSES Problem Set/line segment intersection). There are 2 line segments: the 1st goes through the points $(x_1, y_1), (x_2, y_2)$, & the 2nd goes through the points $(x_3, y_3), (x_4, y_4)$. Determine if the line segments intersect, i.e., they have at least 1 common point.

Input. The 1st input line has an integer $t \in \mathbb{N}^*$: the number of tests. After this, there are t lines that describe the tests. Each line has 8 integers $x_1, y_1, x_2, y_2, x_3, y_3, x_4, y_4 \in \mathbb{Z}$.

Output. For each test, print TEST if the line segments intersect & NO otherwise.

Constraints. $t \in [10^5], x_i, y_i \in -10^9, 10^9, \forall i \in [4], (x_1, x_1) \neq (x_2, y_2), (x_3, x_3) \neq (x_4, y_4).$

Sample.

line_segment_intersection.inp	line_segment_intersection.out
5	NO
1 1 5 3 1 2 4 3	YES
1 1 5 3 1 1 4 3	YES
1 1 5 3 2 3 4 1	YES
1 1 5 3 2 4 4 1	YES
1 1 5 3 3 2 7 4	

Solution. C++:

1. VNTA's C++: line segment intersection: https://github.com/NQBH/advanced_STEM_beyond/blob/main/OLP_ICPC/C%2B% 2B/VNTA_line_segment_intersection.cpp.

```
#include <bits/stdc++.h>
    using namespace std;
    #define ll long long
   struct P {
        11 x;
6
        11 y;
   };
    int ori(P a, P b, P c) {
10
        11 v = (b.y - a.y) * (c.x - b.x) - (b.x - a.x) * (c.y - b.y);
11
        if (v == 0) return 0;
12
        return (v > 0) ? 1 : 2;
13
    }
14
15
    bool onSeg(P a, P b, P c) {
16
        return (b.x \leq max(a.x, c.x) &&
17
        b.x \ge min(a.x, c.x) &&
18
        b.y \le max(a.y, c.y) &&
19
        b.y \ge min(a.y, c.y);
20
21
22
    bool check(P a, P b, P c, P d) {
23
        int o1 = ori(a, b, c);
        int o2 = ori(a, b, d);
25
        int o3 = ori(c, d, a);
        int o4 = ori(c, d, b);
27
        if (o1 != o2 && o3 != o4) return true;
29
30
        if (o1 == 0 && onSeg(a, c, b)) return true;
31
        if (o2 == 0 && onSeg(a, d, b)) return true;
32
        if (o3 == 0 && onSeg(c, a, d)) return true;
33
        if (o4 == 0 && onSeg(c, b, d)) return true;
35
        return false;
36
    }
37
38
    int main() {
39
        ios::sync_with_stdio(0);
40
        cin.tie(0);
41
42
        int t; cin >> t;
        while (t--) {
44
            P p1, p2, p3, p4;
45
            cin >> p1.x >> p1.y >> p2.x >> p2.y >> p3.x >> p3.y >> p4.x >> p4.y;
46
            if (check(p1, p2, p3, p4)) cout << "YES\n";
47
            else cout << "NO\n";</pre>
48
        }
49
    }
50
```

Problem 201 (CSES Problem Set/polygon area). Calculate the area of a given polygon. The polygon consists of n vertices (x_i, y_i) , $\forall i \in [n]$. The vertices (x_i, y_i) & (x_{i+1}, y_{i+1}) are adjacent for $i \in [n-1]$, & the vertices (x_1, y_1) & (x_n, y_n) are also adjacent.

Input. The 1st input line has an integer $n \in \mathbb{N}^*$: the number of vertices. After this, there are n lines that describe the vertices. The ith such line has 2 integers $x_i, y_i \in \mathbb{Z}$. You may assume that the polygon is simple, i.e., it does not intersect itself.

Output. Print 1 integer: $2a \in \mathbb{Z}$ where the area of the polygon is a (is ensures that the result is an integer).

Constraints. $n \in \overline{3,1000}, x_i, y_i \in \overline{-10^9, 10^9}, \forall i \in [n].$

Sample.

polygon_area.inp	polygon_area.out
4	16
11	
4 2	
3 5	
1 4	

Problem 202 (CSES Problem Set/point in polygon). You are given a polygon of $n \in \mathbb{N}^*$ vertices \mathcal{E} a list of $m \in \mathbb{N}^*$ points. Determine for each point if it is inside, outside or on the boundary of the polygon. The polygon consists of n vertices (x_i, y_i) , $\forall i \in [n]$. The vertices (x_i, y_i) \mathcal{E} (x_{i+1}, y_{i+1}) are adjacent for $i \in [n-1]$, \mathcal{E} the vertices (x_1, y_1) \mathcal{E} (x_n, y_n) are also adjacent.

Input. The 1st input line has 2 integer $n, m \in \mathbb{N}^*$: the number of vertices in the polygon & the number of points. After this, there are n lines that describe the polygon. The ith such line has 2 integers x_i, y_i . You may assume that the polygon is simple, i.e., it does not intersect itself. Finally, there are m lines that describe the points. Each line has 2 integers $x, y \in \mathbb{Z}$.

Output. For each point, print INSIDE, OUTSIDE or BOUNDARY.

Constraints. $M, n \in \overline{3,1000}, m \in [1000], x, y, x_i, y_i \in \overline{-10^9, 10^9}, \forall i \in [n].$

Sample.

point_in_polygon.inp	point_in_polygon.out
4 3	INSIDE
1 1	OUTSIDE
4 2	BOUNDARY
3 5	
1 4	
2 3	
3 1	
1 3	

Problem 203 (CSES Problem Set/polygon lattice points). Given a polygon, calculate the number of lattice points inside the polygon \mathcal{E} on its boundary. A lattice point is a point whose coordinates are integers. The polygon consists of $n \in \mathbb{N}^*$ vertices $(x_i, y_i), \forall i \in [n]$. The vertices (x_i, y_i) \mathcal{E} (x_{i+1}, y_{i+1}) are adjacent for $i \in [n-1]$, \mathcal{E} the vertices (x_1, y_1) \mathcal{E} (x_n, y_n) are also adjacent.

Input. The 1st input line has an integer $n \in \mathbb{N}^*$: the number of vertices. After this, there are n lines that describe the vertices. The ith such line has 2 integers x_i, y_i . You may assume that the polygon is simple, i.e., it does not intersect itself.

Output. Print 2 integers: the number of lattice points inside the polygon & on its boundary.

Constraints. $n \in \overline{3,10^5}, x_i, y_i \in \overline{-10^9,10^9}, \ \forall i \in [n].$

Sample.

polygon_lattice_point.inp	polygon_lattice_point.out
4	6 8
1 1	
5 3	
3 5	
1 4	

Problem 204 (CSES Problem Set/minimum Euclidean distance). Given a set of points in 2D plane, find the minimum Euclidean distance between 2 distinct points. The Euclidean distance of points $(x_1, y_1), (x_2, y_2)$ is $d((x_1, y_1), (x_2, y_2)) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$.

Input. The 1st input line has an integer $n \in \mathbb{N}^*$: the number of points. After this, there are n lines that describe the points. Each line has 2 integers $x, y \in \mathbb{Z}$: the coordinates of a point. You may assume that each point is distinct.

Output. Print 1 integer: d^2 where d is the minimum Euclidean distance (this ensures that the result is an integer).

Constraints. $n \in \overline{2, 2 \cdot 10^5}, x, y \in \overline{-10^9, 10^9}$.

Sample.

minimum_Euclidean_distance.inp	minimum_Euclidean_distance.out
4	2
2 1	
4 4	
1 2	
6 3	

Problem 205 (CSES Problem Set/convex hull). Given a set of $n \in \mathbb{N}^*$ points in the 2D plane, determine the convex hull of the points.

Input. The 1st input line has an integer $n \in \mathbb{N}^*$: the number of points. After this, there are n lines that describe the points. Each line has 2 integers $x, y \in \mathbb{Z}$: the coordinates of a point. You may assume that each point is distinct, & the area of the hull is positive.

Output. 1st print an integer $k \in \mathbb{N}$: the number of points in the convex hull. After this, print k lines that describe the points. You can print the points in any order. Print all points that lie on the convex hull.

Constraints. $n \in \overline{3, 2 \cdot 10^5}, x, y \in \overline{-10^9, 10^9}$.

Sample.

.inp	.out
6	4
2 1	2 1
2 5	2 5
3 3	4 4
4 3	6 3
44	
6 3	

Problem 206 (CSES Problem Set/maximum Manhattan distance). A set is initially empty \mathcal{E} $n \in \mathbb{N}^*$ points are added to it. Calculate the maximum Manhattan distance of 2 points after each addition.

Input. The 1st input line has an integer $n \in \mathbb{N}^*$: the number of points. The following n lines describe the points. Each line has 2 integers $x, y \in \mathbb{Z}$. You can assume that each point is distinct.

Output. After each addition, print the maximum distance.

Constraints. $n \in \overline{2, 2 \cdot 10^5}, x, y \in \overline{-10^9, 10^9}$.

Sample.

maximum_Manhattan_distance.inp	maximum_Manhattan_distance.out
5	0
11	3
3 2	4
2 4	4
2 1	7
4 5	

Problem 207 (CSES Problem Set/all Manhattan distances). Given a set of points, calculate the sum of all Manhattan distances between 2 point pairs.

Input. The 1st input line has an integer $n \in \mathbb{N}^*$: the number of points. The following n lines describe the points. Each line has 2 integers $x, y \in \mathbb{Z}$. You can assume that each point is distinct.

Output. Print the sum of all Manhattan distances.

Constraints. $n \in \overline{2, 2 \cdot 10^5}, x, y \in \overline{-10^9, 10^9}$.

Sample.

all_Manhattan_distance.inp	all_Manhattan_distance.out
5	36
1 1	
3 2	
2 4	
2 1	
4 5	

Problem 208 (CSES Problem Set/intersection points). Given $n \in \mathbb{N}^*$ horizontal & vertical line segments, calculate the number of their intersection points. You can assume that no parallel line segments intersect, & no endpoint of a line segment is an intersection point.

Input. The 1st input line has an integer $n \in \mathbb{N}^*$: the number of line segments. Then there are n lines describing the line segments. Each line has 4 integers: x_1, y_1, x_2, y_2 : a line segment begins at point (x_1, y_1) & ends at point (x_2, y_2) .

Output. Print the number of intersection points.

Constraints. $n \in [10^5], x_1, x_2, y_1, y_2 \in \overline{-10^6, 10^6}, (x_1, y_1) \neq (x_2, y_2).$

Sample.

<pre>intersection_point.inp</pre>	intersection_point.out
3	2
2 3 7 3	
3 1 3 5	
6 2 6 6	

Problem 209 (CSES Problem Set/line segments trace I). There are $n \in \mathbb{N}^*$ line segments whose endpoints have integer coordinates. The left x-coordinate of each segment is 0 & the right x-coordinate is $m \in \mathbb{N}^*$. The slope of each segment is an integer. For each x-coordinate $0, 1, \ldots, m$, find the maximum point in any line segment.

Input. The 1st input line has 2 integer $n, m \in \mathbb{N}^*$: the number of line segments \mathcal{E} the maximum x-coordinate. The next n lines describe the line segments. Each line has 2 integers y_1, y_2 : there is a line segment between points $(0, y_1)$ \mathcal{E} (m, y_2) .

Output. Print m+1 integers: the maximum points for $x=0,1,\ldots,m$.

Constraints. $m, n \in [10^5], m \in [100], y_1, y_2 \in \overline{0, 10^9}.$

Sample.

line_segment_trace_I.inp	line_segment_trace_I.out
4 5	10 8 6 5 5 6
1 6	
7 2	
5 5	
10 0	

Problem 210 (CSES Problem Set/line segments trace II). There are $n \in \mathbb{N}^*$ line segments whose endpoints have integer coordinates. Each x-coordinate is between 0 & m. The slope of each segment is an integer. For each x-coordinate $0, 1, \ldots, m$, find the maximum point in any line segment. If there is no segment at some point, the maximum is -1.

Input. The 1st input line has 2 integers $n, m \in \mathbb{N}^*$: the number of line segments & the maximum x-coordinate. The next n lines describe the line segments. Each line has 4 integers x_1, y_1, x_2, y_2 : there is a line segment between points $(x_1, y_1), (x_2, y_2)$.

Output. Print m+1 integers: the maximum points for $x=0,1,\ldots,m$.

Constraints. $m, n \in [10^5], 0 \le x_1 < x_2 \le m, y_1, y_2 \in \overline{0, 10^9}$.

Sample.

line_segment_trace_II.inp	line_segment_trace_II.out
4 5	-1 2 8 6 6 7
1 1 3 3	
1 2 4 2	
2 4 5 7	
2 8 5 2	

Problem 211 (CSES Problem Set/lines & queries I). Efficiently process the following types of queries:

1. Add a line ax + b.

2. Find the maximum point in any line at position x.

Input. The 1st input line has an integer $n \in \mathbb{N}^*$: the number of queries. The following n lines describe the queries. The format of each line is either 1 a b or 2 x. You may assume that the 1st query is of type 1.

Output. Print the answer for each query of type 2.

Constraints. $n \in [2 \cdot 10^5], a, b \in \overline{-10^9, 10^9}, x \in \overline{0, 10^5}.$

Sample.

line_query_I.inp	line_query_I.out
6	3
1 1 2	5
2 1	4
2 3	5
1 0 4	
2 1	
2 3	

Problem 212 (CSES Problem Set/lines & queries II). Efficiently process the following types of queries:

1. Add a line ax + b that is active in range [l, r].

2. Find the maximum point in any active line at position x.

Input. The 1st input line has an integer $n \in \mathbb{N}^*$: the number of queries. The following n lines describe the queries. The format of each line is either 1 a b 1 r or 2 x.

Output. Print the answer for each query of type 2. If no line is active, print NO.

Constraints. $n \in [2 \cdot 10^5], a, b \in \overline{-10^9, 10^9}, x, l, r \in \overline{0, 10^5}.$

Sample.

line_query_II.inp	line_query_II.out
6	5
1 1 2 1 3	NO
2 3	5
2 4	4
10415	
2 3	
2 4	

Problem 213 (CSES Problem Set/area of rectangles). Given $n \in \mathbb{N}^*$, determine the total area of their union.

Input. The 1st input line has an integer $n \in \mathbb{N}^*$: the number of rectangles. After that, there are n lines describing the rectangles. Each line has 4 integers x_1, y_1, x_2, y_2 : a rectangle begins at point (x_1, y_1) & ends at point (x_2, y_2) .

Output. Print the total area covered by the rectangles.

Constraints. $n \in [10^5], m \in [100], x_1, x_2, y_1, y_2 \in \overline{-10^6, 10^6}$.

Sample.

area_rectangle.inp	area_rectangle.out
3	24
1 3 4 5	
3 1 7 4	
5 3 8 6	

Problem 214 (CSES Problem Set/robot path). You are given a description of a robot's path. The robot begins at point (0,0) \mathcal{E} performs $n \in \mathbb{N}^*$ commands. Each command moves the robot some distance up, down, left, or right. The robot will stop when it has performed all commands, or immediately when it returns to a point that it has already visited. Calculate the total distance the robot moves.

Input. The 1st input line has an integer $n \in \mathbb{N}^*$: the number of commands. After that, there are n lines describing the commands. each line has a character $d \in \mathbb{N}^*$: the robot moves the distance x to the direction d. Each direction is U, D, L, R (up, down, left, right).

Output. Print the total distance the robot moves.

Constraints. $n \in [10^5], x \in [10^6]$.

Sample.

robot_path.inp	robot_path.out
5	9
U 2	
R 3	
D 1	
L 5	
U 2	

Problem 215 (IMO2007P6). Let $n \in \mathbb{N}^*$. Consider $S = \{(x, y, z); x, y, z \in \overline{0, n}, x + y + z > 0\}$ as a set of $(n + 1)^3 - 1$ points in 3D space. Determine the smallest possible number of planes, the union of which contains S but does not include (0, 0, 0).

Bài toán 45 ([VL24], 6., p. 10, IMO2007P6). Cho $n \in \mathbb{N}^*$. Xét $S = \{(x,y,z); x,y,z \in \overline{0,n}, \ x+y+z>0\}$ là 1 tập hợp gồm $(n+1)^3-1$ điểm trong không gian 3-chiều. Xác định số nhỏ nhất có thể các mặt phẳng mà hợp của chúng chứa tất cả các điểm của S nhưng không chứa điểm (0,0,0).

Number Theory – Lý Thuyết Số

Contents

26.1	Divisor – Ước Số
26.2	<i>p</i> -adic valuation – Đánh giá <i>p</i> -adic
	26.2.1 <i>p</i> -adic absolute value
	26.2.2 Finding power of factorial divisor – Tìm lũy thừa của ước số giai thừa
	26.2.3 Legendre's formula – Công thức Legendre
26.3	Primorial
26.4	Divisor function – Hàm ước số

26.1 Divisor - Ước Số

Problem 216 (IMO2007P5). Let $a, b \in \mathbb{N}^*$. Show that if $4ab - 1|(4a^2 - 1)^2$, then a = b.

Bài toán 46 (CP version of IMO2007P5). Cho $m, n \in \mathbb{N}^*$. Dếm số phần tử của tập hợp

$$S = \{(a,b) \in [m] \times [n]; 4ab - 1|(4a^2 - 1)^2\} = \{(a,b) \in [m] \times [n]; (4a^2 - 1)^2 : 4ab - 1\}.$$

Input. Chỉ 1 dòng chứa $m, n \in \mathbb{N}^*$.

Output. |S|.

Sample.

IM02007_P5.inp	IMO2007_P5.out
5 3	3
10 15	10

Solution. Theo lời giải bài toán IMO2007P5 trước đó, đáp số bài toán này đơn giản chỉ là $\min\{m, n\}$. Nhưng đó là về mặt chứng minh toán học, sau đây ta sẽ dùng vòng lặp để kiểm tra.

C++:

1. DPAK's C++: IMO2007P5:

```
#include <iostream>
using namespace std;
int m, n;
const double oo = 1e9 + 7;

int main() {
    cin >> m >> n;
    int cnt = 0;
    for (int a = 1; a <= m; ++a) {
        int num = 4 * a * a - 1;
        num = num * num;
}</pre>
```

```
for (int b = 1; b \le n; ++b) {
 12
                   int divisor = 4 * a * b - 1;
 13
                  if (num % divisor == 0) ++cnt;
 14
              }
 15
          }
 16
          cout << cnt;</pre>
 17
     }
 18
2. TQS's & DNDK's C++: IMO2007P5:
     #include <iostream>
     using namespace std;
     int main() {
          int m, n, count = 0;
  5
          cin >> m >> n;
          for (int i = 1; i <= m; ++i)
              for (int j = 1; j \le n; ++j)
                   if (((4 * i * i - 1) * (4 * i * i - 1)) \% (4 * i * j - 1) == 0) ++count;
          cout << count;</pre>
 10
     }
 11
```

Remark 8. Dù code này không cần dùng tới 2 biến phụ num, divisor như code của DPAK, nhưng sẽ tính nhiều lần hơn do đoạn code (4 * i * i - 1) * (4 * i * i - 1) lặp lại phép tính (4 * i * i - 1) 2 lần (unnecessary duplication).

Problem 217 (IMO2008P3). Prove that there exists infinitely many positive integers n s.t. $n^2 + 1$ has a prime divisor which is $> 2n + \sqrt{2n}$.

Bài toán 47 ([VL24], p. 12, IMO2008P3). Chứng minh tồn tại vô hạn $n \in \mathbb{N}^*$ sao cho $n^2 + 1$ có ước nguyên tố lớn hơn $2n + \sqrt{2n}$.

Bài toán 48 (CP version of IMO2008P3). Đếm số số $n \in \mathbb{N}^*$ sao cho $n^2 + 1$ có ước nguyên tố lớn hơn $2n + \sqrt{2n}$ trong phạm $vi \ n \in [a,b]$ với $a,b \in \mathbb{N}^*$ cho trước.

Input. $2 s \hat{o} a, b \in \mathbb{N}^*$.

Output. $S\hat{o} \ s\hat{o} \ n \in [a,b] \ thỏa \ mãn$.

Solution. C++:

1. DPAK's C++: IMO2008P3:

```
#include <iostream>
   #include <cmath>
   using namespace std;
   long long a, b;
   const double oo = 1e9 + 7;
   int main() {
        long long cnt = 0;
        cin >> a >> b;
9
        for (long long i = a; i \le b; ++i) {
10
            long long new_num = i * i + 1;
11
            double limit = 2.0 * i + sqrt(2 * i);
12
            long long temp = new_num;
            bool ok = false;
            for (long long j = 2; j * j \le new_num; ++j)
15
            if (temp \% j == 0) {
16
                while (temp \% j == 0) temp /= j;
17
                if (j > limit) {
                     ok = true;
19
                     break;
20
                }
21
```

```
}
 22
              if (!ok && temp > 1 && temp > limit) ok = true;
 23
              if (ok) ++cnt;
 24
          cout << cnt;</pre>
 26
     }
 27
2. DNDK's C++: IMO2008P3:
     #include <iostream>
     #include <cmath>
     using namespace std;
     bool check(long long n) {
          long long x = n * n + 1, X = x;
  6
          long long y = 2 * n + sqrtl(2 * n);
  7
          for (long long i = 2; i * i <= X; ++i)
              if (x \% i == 0) {
                   while (x \% i == 0) x /= i;
                   if (i > y) return true;
 11
 12
          if (x > 1 \text{ and } x > y) return true;
 13
          return false;
     }
 15
 16
     int main() {
 17
          long long a, b;
 18
          cin >> a >> b;
 19
          long long count = 0;
 20
          for (long long i = a; i \le b; ++i)
 21
              if (check(i)) ++count;
          cout << count;</pre>
 23
 24
```

Problem 218 (IMO2011P1). Given any set $A = \{a_1, a_2, a_3, a_4\}$ of 4 distinct positive integers, we denote $s_A := a_1 + a_2 + a_3 + a_4$. Let n_A denote the number of pairs (i, j) with $1 \le i < j \le 4$ for which $a_i + a_j | s_A$. Find all sets A of 4 distinct positive integers which achieve the largest possible value of n_A .

Bài toán 49 ([VL24], 1., p. 17, IMO2011P1). Cho tập hợp $A = \{a_1, a_2, a_3, a_4\}$ gồm 4 số nguyên phân biệt, ta ký hiệu tổng $a_1 + a_2 + a_3 + a_4$ bởi s_A . Giả sử n_A là số các cặp (i,j) với $1 \le i < j \le 4$ sao cho $a_i + a_j : s_A$. Tìm tất cả các tập hợp A gồm 4 số nguyên dương phân biệt mà với chúng n_A đạt được GTLN có thể.

Bài toán 50. Viết thuật toán & chương trình C/C++, Pascal, Python để minh hoạ IMO2011P1.

26.2 p-adic valuation – Đánh giá p-adic

Resources - Tài nguyên.

1. Wikipedia/p-adic valuation.

In number theory, the *p-adic valuation* or *p-adic order* of an integer n is the exponent of the highest power of the prime number p that divides n, denoted by $\nu_p(n)$. Equivalently, $\nu_p(n)$ is the exponent to which p appears in the prime factorization of n.

– Trong lý thuyết số, p-adic evaluation hoặc p-adic order của 1 số nguyên n là số mũ của lũy thừa cao nhất của số nguyên tố p chia hết cho n, được ký hiệu là $\nu_p(n)$. Tương đương, $\nu_p(n)$ là số mũ mà p xuất hiện trong phép phân tích thừa số nguyên tố của n.

$$n : p^{\nu_p(n)}, \ n \not \mid p^{\nu_p(n)+1}, \ \forall n \in \mathbb{N}^*, \ \forall p \text{ is prime.}$$

Definition 8 (p-adic valuation). Let p be a prime number. The p-adic valuation of $n \in \mathbb{Z}$ is defined by

$$\nu_p(n) = \begin{cases} \max\{k \in \mathbb{N}; p^k | n\} & \text{if } n \neq 0, \\ \infty & \text{if } n = 0. \end{cases}$$

In particular, ν_p is a function $\nu_p : \mathbb{Z} \to \mathbb{N} \cup \{\infty\}$. The p-adic valuation can be extended to the rational numbers as the function $\nu_p : \mathbb{Q} \to \mathbb{Z} \cup \{\infty\}$ defined by $\nu_p\left(\frac{r}{s}\right) = \nu_p(r) - \nu_p(s)$.

Example 3. (a)
$$|-12| = 12 = 2^2 \cdot 3^1 \cdot 5^0 \Rightarrow \nu_2(-12) = \nu_2(12) = 2, \nu_3(-12) = \nu_3(12) = 1, \nu_p(-12) = \nu_p(12) = 0, \forall prime $p \ge 5$. (b) $\frac{9}{8} = 2^{-3} \cdot 3^2 \Rightarrow \nu_2\left(\pm\frac{9}{8}\right) = -3, \nu_3\left(\pm\frac{9}{8}\right) = 2$.$$

The notation $p^k||n$ is sometimes used to mean $k=\nu_p(n)$. One has

$$n : p^{\nu_p(n)} \Rightarrow n \ge p^{\nu_p(n)} \Rightarrow \nu_p(n) \le \log_n n, \ \forall n \in \mathbb{N}^*.$$

Lemma 2 (Some properties of p-adic valuation). (i) $\nu_p(rs) = \nu_p(r) + \nu_p(s)$. (ii) $\nu_p(r+s) = \min\{\nu_p(r), \nu_p(s)\}$.

(iii) (Legendre's formula)
$$\nu_p(n!) = \sum_{i=1}^{\infty} \left\lfloor \frac{n}{p^i} \right\rfloor = \sum_{i=1}^{\lfloor \log_p n \rfloor} \left\lfloor \frac{n}{p^i} \right\rfloor, \, \forall n \in \mathbb{N}.$$

(iv)

$$\nu_p(n) = \nu_p(n!) - \nu_p((n-1)!) = \sum_{i=1}^{\infty} \left(\left\lfloor \frac{n}{p^i} \right\rfloor - \left\lfloor \frac{n-1}{p^i} \right\rfloor \right) = \sum_{i=1}^{\lfloor \log_p n \rfloor} \left(\left\lfloor \frac{n}{p^i} \right\rfloor - \left\lfloor \frac{n-1}{p^i} \right\rfloor \right), \ \forall n \in \mathbb{N}.$$

This formula can be extended to negative integer values

$$\nu_p(n) = \sum_{i=1}^{\lfloor \log_p |n| \rfloor} \left(\left\lfloor \frac{|n|}{p^i} \right\rfloor - \left\lfloor \frac{|n|-1}{p^i} \right\rfloor \right), \ \forall n \in \mathbb{Z}.$$

26.2.1 *p*-adic absolute value

Definition 9 (p-adic absolute value). The p-adic absolute value (or p-adic norm, though not a form in the sense of analysis) on \mathbb{Q} is the function $|\cdot|_p:\mathbb{Q}\to [0,\infty)$ defined by $|r|_p=p^{-\nu_p(r)}$.

Định nghĩa 6 (Giá trị tuyệt đối p-adic). Giá trị tuyệt đối p-adic (hoặc p-adic norm, mặc dù không phải là 1 dạng theo nghĩa phân tích) trên \mathbb{Q} là hàm $|\cdot|_p:\mathbb{Q}\to[0,\infty)$ được xác định bởi $|r|_p=p^{-\nu_p(r)}$.

Example 4. (a)
$$|0|_p = p^{-\infty} = 0$$
, $\forall p \text{ prime.}$ (b) $|-12|_2 = 2^{-2} = \frac{1}{4}$. (c) $\left|\frac{9}{8}\right|_2 = 2^{-(-3)} = 8$.

Lemma 3 (Some properties of p-adic absolute value). The p-adic absolute value satisfies the following properties:

- (i) Nonnegativity: $|r|_p \geq 0$.
- (ii) $|r|_p = 0 \Leftrightarrow r = 0$.
- (iii) $|rs|_p = |r|_p |s|_p$.
- (iv) Non-Archimedean: $|r+s|_p \leq \max\{|r|_p, |s|_p\}$.

From the multiplicativity $|rs|_p = |r|_p |s|_p$ it follows that $|1|_p = 1 = |-1|_p$ for the roots of unity ± 1 & consequently also $|-r|_p = |r|_p$. The subadditivity $|r+s|_p \le |r|_p + |s|_p$ follows from the non-Archimedean triangle inequality $|r+s|_p \le \max(|r|_p, |s|_p)$.

– Từ phép nhân $|rs|_p = |r|_p |s|_p$ suy ra $|1|_p = 1 = |-1|_p$ đối với các căn bậc hai của đơn vị ± 1 & do đó cũng $|-r|_p = |r|_p$. Phép nhân dưới $|r+s|_p \le |r|_p + |s|_p$ suy ra từ bất đẳng thức tam giác không phải Archimedean $|r+s|_p \le \max(|r|_p, |s|_p)$.

The choice of base p in the exponentiation $p^{-\nu_p(r)}$ makes no difference for most of the properties, but supports the product formula: $\prod_{0,p} |r|_p = 1$ where the product is taken over all primes p & the usual absolute value, denoted $|r|_0$. This follows from simply taking the prime factorization: each prime power factor p^k contributes its reciprocal to its p-adic absolute value, & then the usual Archimedean absolute value cancels all of them.

– Việc lựa chọn cơ số p trong phép lũy thừa $p^{-\nu_p(r)}$ không tạo ra sự khác biệt đối với hầu hết các tính chất, nhưng hỗ trợ công thức tích: $\prod_{0,p} |r|_p = 1$ trong đó tích được lấy trên tất cả các số nguyên tố p & giá trị tuyệt đối thông thường, được ký hiệu là $|r|_0$. Điều này tuân theo cách đơn giản là lấy thừa số nguyên tố: mỗi thừa số nguyên tố p^k đóng góp nghịch đảo của nó vào giá trị tuyệt đối p-adic của nó, & sau đó giá trị tuyệt đối Archimedean thông thường sẽ hủy bỏ tất cả chúng.

A metric space can be formed on the set \mathbb{Q} with a (non-Archimedean, translation-invariant) metric $d: \mathbb{Q} \times \mathbb{Q} \to [0, \infty)$ defined by $d(r, s) = |r - s|_p$. The completion of \mathbb{Q} w.r.t. this metric leads to the set \mathbb{Q}_p of p-adic numbers.

- 1 không gian metric có thể được hình thành trên tập $\mathbb Q$ với 1 metric (không phải Archimedean, bất biến tịnh tiến) $d: \mathbb Q \times \mathbb Q \to [0,\infty)$ được xác định bởi $d(r,s) = |r-s|_p$. Sự hoàn thành của $\mathbb Q$ đối với metric này dẫn đến tập $\mathbb Q_p$ của các số p-adic.

26.2.2 Finding power of factorial divisor - Tìm lũy thừa của ước số giai thừa

Resources - Tài nguyên.

1. Algorithms for Competitive Programming/finding power of factorial divisor.

Problem 219. Given 2 numbers $n, k \in \mathbb{N}^*$. Find the largest power x of k s.t. $n! \vdots k^x$. - Cho 2 $s\acute{o}$ $n, k \in \mathbb{N}^*$. Tim lũy thừa x lớn nhất của k s.t. $n! \vdots k^x$.

Solution. If k = 1, $x = \infty$. If $k \neq 1$, we consider 2 cases:

1. Case k=p is a prime. The explicit expression for factorial $n!=\prod_{i=1}^n i=1\cdot 2\cdot 3\cdots (n-1)n$. Every pth element of the product is divisible by p, i.e., adds 1 to the answer; the number of such elements is $\left\lfloor \frac{n}{p} \right\rfloor$, consisting $p, 2p, 3p, \ldots, \left\lfloor \frac{n}{p} \right\rfloor p$. Every p^2 -th element is divisible by p^2 , i.e., adds 1 to the answer (the 1st power of p has already been counted in the previous paragraph); the number of such elements is $\left\lfloor \frac{n}{p^2} \right\rfloor$, consisting $p^2, 2p^2, 3p^2, \ldots, \left\lfloor \frac{n}{p^2} \right\rfloor p^2$. & so on, for every i each p^i th element adds another 1 to the answer, & there are $\left\lfloor \frac{n}{p^i} \right\rfloor$ such elements. The final answer is given by the Legendre's formula:

$$\sum_{i=1}^{\infty} \left\lfloor \frac{n}{p^i} \right\rfloor = \sum_{i=1}^{\log_p n} \left\lfloor \frac{n}{p^i} \right\rfloor = \left\lfloor \frac{n}{p} \right\rfloor + \left\lfloor \frac{n}{p^2} \right\rfloor + \dots + \left\lfloor \frac{n}{p^i} \right\rfloor + \dots.$$

The sum is of course finite, since only approximately the 1st $\log_p n$ elements are nonzero. Thus, the runtime of this algorithm is $O(\log_p n)$.

- Trường hợp k=p là số nguyên tố. Biểu thức rõ ràng cho giai thừa $n!=\prod_{i=1}^n i=1\cdot 2\cdot 3\cdots (n-1)n$. Mỗi phần tử thứ p của tích chia hết cho p, tức là thêm 1 vào đáp án; số các phần tử như vậy là $\left\lfloor \frac{n}{p} \right\rfloor$, bao gồm $p,2p,3p,\ldots,\left\lfloor \frac{n}{p} \right\rfloor p$. Mỗi phần tử thứ p^2 chia hết cho p^2 , tức là thêm 1 vào đáp án (lũy thừa thứ 1 của p đã được đếm trong đoạn trước); số các phần tử như vậy là $\left\lfloor \frac{n}{p^2} \right\rfloor$, bao gồm $p^2,2p^2,3p^2,\ldots,\left\lfloor \frac{n}{p^2} \right\rfloor p^2$. & cứ thế, với mỗi p0 mỗi phần tử thứ p^p 1 thêm 1 số 1 vào đáp số, & có $\left\lfloor \frac{n}{p^p} \right\rfloor$ 2 các phần tử như vậy. Câu trả lời cuối cùng được đưa ra bởi công thức Legendre:

$$\sum_{i=1}^{\infty} \left\lfloor \frac{n}{p^i} \right\rfloor = \sum_{i=1}^{\lfloor \log_p n \rfloor} \left\lfloor \frac{n}{p^i} \right\rfloor = \left\lfloor \frac{n}{p} \right\rfloor + \left\lfloor \frac{n}{p^2} \right\rfloor + \dots + \left\lfloor \frac{n}{p^i} \right\rfloor + \dots.$$

Tổng tất nhiên là hữu hạn, vì chỉ xấp xỉ phần tử $\log_p n$ đầu tiên khác không. Do đó, thời gian chạy của thuật toán này là $O(\log_p n)$.

Implementation.

```
int factorial_pow(int n, int p) {
    int res = 0;
    while (n) {
        n /= p;
        res += n;
    }
    return res;
}
```

2. Case k is composite. The same idea can't be applied directly. Instead we can factor $k = \prod_{i=1}^{m} p_i^{k_i} = p_1^{k_1} p_2^{k_2} \cdots p_m^{k_m}$ where $\{p_i\}_{i=1}^{m}$ are primes. For each p_i , we find the number of times it is present in n! using the algorithm described above, which is $\nu_{p_i}(n!)$. Then

$$n! \vdots k^{x} = \left(\prod_{i=1}^{m} p_{i}^{k_{i}}\right)^{x} = \prod_{i=1}^{m} p_{i}^{k_{i}x} \Leftrightarrow \nu_{p_{i}}(n!) \geq xk_{i}, \ \forall i \in [m] \Leftrightarrow x \leq \frac{\nu_{p_{i}}(n!)}{k_{i}}, \ \forall i \in [m] \Leftrightarrow x \leq \min_{i \in [m]} \frac{\nu_{p_{i}}(n!)}{k_{i}}.$$

Thus, the answer for composite k will be

$$x_{\min} \coloneqq \min_{i \in [m]} \frac{\nu_{p_i}(n!)}{k_i} = \min_{i \in [m]} \frac{1}{k_i} \sum_{j=1}^{\lfloor \log_{p_i} n \rfloor} \left\lfloor \frac{n}{p_i^j} \right\rfloor, \ \forall n \in \mathbb{N}.$$

- Trường hợp k là hợp số. Không thể áp dụng trực tiếp ý tưởng tương tự. Thay vào đó, chúng ta có thể phân tích $k = \prod_{i=1}^m p_i^{k_i} = p_1^{k_1} p_2^{k_2} \cdots p_m^{k_m}$ trong đó $\{p_i\}_{i=1}^m$ là các số nguyên tố. Đối với mỗi p_i , chúng ta tìm số lần nó xuất hiện trong n! bằng thuật toán được mô tả ở trên, đó là $\nu_{p_i}(n!)$. Sau đó

$$n! : k^x = \left(\prod_{i=1}^m p_i^{k_i}\right)^x = \prod_{i=1}^m p_i^{k_i x} \Leftrightarrow \nu_{p_i}(n!) \ge xk_i, \ \forall i \in [m] \Leftrightarrow x \le \frac{\nu_{p_i}(n!)}{k_i}, \ \forall i \in [m] \Leftrightarrow x \le \min_{i \in [m]} \frac{\nu_{p_i}(n!)}{k_i}.$$

Do đó, đáp án cho hợp số k sẽ là

$$x_{\min} \coloneqq \min_{i \in [m]} \frac{\nu_{p_i}(n!)}{k_i} = \min_{i \in [m]} \frac{1}{k_i} \sum_{j=1}^{\lfloor \log_{p_i} n \rfloor} \left\lfloor \frac{n}{p_i^j} \right\rfloor, \ \forall n \in \mathbb{N}.$$

26.2.3 Legendre's formula – Công thức Legendre

Resources - Tài nguyên.

1. Wikipedia/Legendre's formula.

In mathematics, Legendre's formula gives an expression for the exponent of the largest power of a prime p that divides the factorial n!. It is named after Adrien-Marie Legendre. It is also sometimes known as de Polignac's formula, named after Alphonse de Polignac.

– Trong toán học, *Công thức Legendre* đưa ra biểu thức cho số mũ của lũy thừa lớn nhất của số nguyên tố *p* chia hết cho giai thừa *n*!. Công thức này được đặt tên theo ADRIEN-MARIE LEGENDRE. Đôi khi công thức này còn được gọi là *công thức de Polignac*, được đặt theo tên của ALPHONSE DE POLIGNAC.

Theorem 3 (Legendre's formula). For any prime number $p \in A$ any $n \in \mathbb{N}^*$, let $\nu_p(n)$ be the exponent of the largest power of p that divides n (i.e., the p-adic valuation of n). Then

$$\nu_p(n!) = \sum_{i=1}^{\infty} \left\lfloor \frac{n}{p^i} \right\rfloor = \sum_{i=1}^{\lfloor \log_p n \rfloor} \left\lfloor \frac{n}{p^i} \right\rfloor.$$

While the 1st sum of the RHS is an infinite sum, for any particular values of n,p it has only finitely many nonzero terms: for every i large enough that $p^i > n \Leftrightarrow i > \log_p n$, one has $\left\lfloor \frac{n}{p^i} \right\rfloor = 0$, which reduces the infinite sum to the finite sum $\sum_{i=1}^{\lfloor \log_p n \rfloor} \left\lfloor \frac{n}{p^i} \right\rfloor$.

– Trong khi tổng đầu tiên của Vế phải là tổng vô hạn, đối với bất kỳ giá trị cụ thể nào của n,p nó chỉ có hữu hạn số hạng khác không: đối với mọi i đủ lớn để $p^i > n \Leftrightarrow i > \log_p n$, ta có $\left\lfloor \frac{n}{p^i} \right\rfloor = 0$, điều này làm giảm tổng vô hạn thành tổng hữu hạn $\sum_{i=1}^{\lfloor \log_p n \rfloor} \left\lfloor \frac{n}{n^i} \right\rfloor.$

Proof. Since n! is the product of the integers 1 through n, we obtain at least 1 factor of p in n! for each multiple of $p \in [n]$, of which there are $\left\lfloor \frac{n}{p} \right\rfloor$. Each multiple of p^2 contributes an additional factor of p, each multiple of p^3 contributes yet another factor of p, etc. Adding up the number of these factors gives the infinite sum for $\nu_p(n!)$.

- Vì n! là tích của các số nguyên 1 đến n, chúng ta thu được ít nhất 1 ước số của p trong n! cho mỗi bội số của $p \in [n]$, trong đó có $\left\lfloor \frac{n}{p} \right\rfloor$. Mỗi bội số của p^2 đóng góp thêm 1 ước số của p, mỗi bội số của p^3 đóng góp thêm 1 ước số nữa của p, v.v. Cộng số lượng các ước số này lại sẽ cho tổng vô hạn của $\nu_p(n!)$. □

Example 5. For n=6, $6!=720=2^4\cdot 3^2\cdot 5$. The exponents $\nu_2(6!)=4$, $\nu_3(6!)=2$, $\nu_5(6!)=1$ can be computed by Legendre's formula as follows:

$$\nu_2(6!) = \sum_{i=1}^{\infty} \left\lfloor \frac{6}{2^i} \right\rfloor = \left\lfloor \frac{6}{2} \right\rfloor + \left\lfloor \frac{6}{2^2} \right\rfloor = 3 + 1 = 4,$$

$$\nu_3(6!) = \sum_{i=1}^{\infty} \left\lfloor \frac{6}{3^i} \right\rfloor = \left\lfloor \frac{6}{3} \right\rfloor = 2,$$

$$\nu_5(6!) = \sum_{i=1}^{\infty} \left\lfloor \frac{6}{5^i} \right\rfloor = \left\lfloor \frac{6}{5} \right\rfloor = 1,$$

$$\nu_p(6!) = \sum_{i=1}^{\infty} \left\lfloor \frac{6}{p^i} \right\rfloor = 0, \ \forall p \ge 7, \ p \ is \ prime.$$

Alternate form of Legendre's formula – Dạng thay thế của công thức Legendre. One may also reformulate Legendre's formula in terms of the base-p expansion of n.

- Người ta cũng có thể xây dựng lại công thức của Legendre theo dạng khai triển cơ số p của n.

Theorem 4. Let $s_p(n)$ denote the sum of the digits in the base-p expansion of n, then

$$\nu_p(n!) = \frac{n - s_p(n)}{p - 1}.$$

Proof. Write $n = \sum_{i=0}^{l} n_i p^i = n_l p^l + \dots + n_1 p + n_0$ in base p. Then $\left\lfloor \frac{n}{p^i} \right\rfloor = \sum_{j=i}^{l} n_j p^{j-i} = n_l p^{l-i} + \dots + n_{i+1} p + n_i$, & therefore

$$\nu_p(n!) = \sum_{i=1}^l \left\lfloor \frac{n}{p^i} \right\rfloor = \sum_{i=1}^l \sum_{j=i}^l n_j p^{j-i} n_j p^{j-i} = \sum_{j=1}^l \sum_{i=1}^i n_j p^{j-i} = \sum_{j=1}^l n_j \cdot \frac{p^j - 1}{p - 1} = \sum_{j=0}^l n_j \cdot \frac{p^j - 1}{p - 1}$$
$$= \frac{1}{p - 1} \sum_{j=0}^l (n_j p^j - n_j) = \frac{1}{p - 1} (n - s_p(n)).$$

Example 6. (a) In binary, $n = 6_{10} = 110_2$, $s_2(6) = 1 + 1 + 0 = 2$ & so $\nu_2(6!) = \frac{6-2}{2-1} = 4$. (b) In ternary, $6_{10} = 20_3$, $s_3(6) = 2 + 0 = 2$ & so $\nu_3(6!) = \frac{6-2}{3-1} = 2$.

Applications of Legendre's formula – Các ứng dụng của công thức Legendre. Legendre's formula can be used to prove Kummer's theorem. As 1 special case, it can be used to prove that if $n \in \mathbb{N}^*$ then $\binom{2n}{n} : 4 \Leftrightarrow n$ is not a power of 2.

– Công thức Legendre có thể được sử dụng để chứng minh định lý Kummer. Là 1 trường hợp đặc biệt, nó có thể được sử dụng để chứng minh rằng nếu $n \in \mathbb{N}^*$ thì $\binom{2n}{n}$: 4 ⇔ n không phải là lũy thừa của 2.

It follows from Legendre's formula that the p-adic exponential function has radius of convergence $p^{-\frac{1}{p-1}}$.

– Từ công thức Legendre suy ra rằng hàm mũ p-adic có bán kính hội tụ $p^{-\frac{1}{p-1}}$.

26.3 Primorial

In mathematics, & more particular in number theory, primorial, denoted by $p_n\#:\mathbb{N}\to\mathbb{N}$ similar to the factorial function, but rather than successively multiplying positive integers, the function only multiplies prime numbers. The name "primorial", coined by Harvey Dubner, draws an analogy to primes similar to the way the name "factorial" relates to factors.

– Trong toán học, & cụ thể hơn trong lý thuyết số, primorial, được ký hiệu là $p_n\#: \mathbb{N} \to \mathbb{N}$ tương tự như hàm giai thừa, nhưng thay vì nhân liên tiếp các số nguyên dương, hàm này chỉ nhân các số nguyên tố. Tên "primorial", do HARVEY DUBNER đặt ra, có sự tương tự với primes tương tự như cách tên "factorial" liên quan đến các thừa số.

Definition 10 (Primorial for prime numbers). For the nth prime number p_n , the primorial $p_n\#$ is defined as the product of the 1st n primes: $p_n\# = \prod_{i=1}^n p_i$, where p_i is the ith prime number.

The 1st few primorials $p_n\#$ are $1,2,6,30,210,2310,30030,510510,9699690,\dots$ (sequence A002110 in the OEIS). Asymptotically, primorials $p_n\#$ grow according to $p_n\#=e^{(1+o(1))n\log n}$.

Definition 11. The primarial n# for $n \in \mathbb{N}^*$ is the product of the primes that are not greater than n, i.e.,

$$n\# = \prod_{p \le n, p \text{ prime}} p = \prod_{i=1}^{\pi(n)} p_i = p_{\pi(n)}\#,$$

where $\pi(n)$ is the prime-counting function (sequence A000720 in the OEIS), which gives the number of primes $\leq n$. This is equivalent to:

$$n\# = \begin{cases} 1 & \text{if } n = 0, 1, \\ (n-1)\# \times n & \text{if } n \text{ is prime,} \\ (n-1)\# & \text{if } n \text{ is composite.} \end{cases}$$

Example 7. $12\# = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 = 2310$. Since $\pi(12) = 5$, this can be calculated as $12\# = p_{\pi(12)}\# = p_5\# = 2310$.

Consider the 1st 12 values of n#: 1, 2, 6, 6, 30, 30, 210, 210, 210, 210, 2310, 2310. We see that for composite n every term n# simply duplicates the preceding term (n-1)#, as given in the definition. Since 12 is a composite number, $12\# = p_5\# = 11\#$.

Primorials are related to the 1st Chebyshev function, written $\vartheta(n)$ or $\theta(n)$ according to $\ln(n\#) = \vartheta(n)$. Since $\vartheta(n)$ asymptotically approaches n for large values of n, primorials therefore grow according to $n\# = e^{(1+o(1))n}$. The idea of multiplying all known primes occur in some proofs of the infinitude of the prime numbers, where it is used to derive the existence of another prime.

Theorem 5 (Characteristics of primorials). (a) Let p, q be 2 adjacent prime numbers. Given any $n \in \mathbb{N}$, where $p \leq n < q$, n # = p #.

(b) The fact that the binomial coefficient $\binom{2n}{n}$ is divisible by every prime between n+1 & 2n, together with the inequality $\binom{2n}{n} \leq 2^n$, allows to derive the upper bound $n\# \leq 4^n$.

26.4 Divisor function - Hàm ước số

Resources - Tài nguyên.

1. Wikipedia/divisor function.

In mathematics, & specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer. When referred to as the divisor function, it counts the number of divisors of an integer (including 1 & the number itself). It appears in a number of remarkable identities, including relationships on the Riemann zeta function & the Eisenstein series of modular forms. Divisor functions were studied by RAMANUJAN, who gave a number of important congruences & identities; these are treated separately in Wikipedia/Ramanujan's sum.

Definition 12. The sum of positive divisors function $\sigma_z(n)$, for a real or complex number z, is defined as the sum of the zth powers of the positive divisors of n. It can be expressed in sigma notation as

$$\sigma_z(n) = \sum_{d|n} d^z, \ \forall n \in \mathbb{N}^*.$$

The notation $d(n), \nu(n), \tau(n)$ (for the German Teiler = divisors) are also used to denote $\sigma_0(n)$, or the number-of-divisors function (OEIS: A000005). When z = 1, the function is called the sigma function or sum-of-divisors function, & the subscript is often omitted, so $\sigma(n)$ is the same as $\sigma_1(n)$ (OEIS: A000203).

The aliquot sum s(n) of n is the sum of the proper divisors (i.e., the divisors excluding n itself, OEIS: A001065), & equals $\sigma_1(n) - n$; the aliquot sequence of n is formed by repeatedly applying the aliquot sum function.

Example 8. The number of divisors of 12 is $\sigma_0(12) = 6$, the sum of all the divisors of 12 is $\sigma_1(12) = 1 + 2 + 3 + 4 + 6 + 12 = 28$, & the aliquot sum s(12) = 1 + 2 + 3 + 4 + 6 = 16. $\sigma_{-1}(n)$ is sometimes called the abundancy index of n, & we have $\sigma_{-1}(12) = 1 + 2^{-1} + 3^{-1} + 4^{-1} + 6^{-1} + 12^{-1} = \frac{1}{1} + \frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \frac{1}{12} = \frac{12 + 6 + 4 + 3 + 2 + 1}{12} = \frac{28}{12} = \frac{\sigma_1(12)}{12}$.

Theorem 6. For any prime number p: (a) $\sigma_0(p) = 2$, $\sigma_1(p) = p + 1$. (b) $\sigma_0(p^n) = n + 1$, $\sigma_1(p^n) = \sum_{i=0}^n p^i = \frac{p^{n+1} - 1}{p-1}$, $\forall n \in \mathbb{N}$. (c) $\sigma_0(p_n \#) = 2^n$ where $p_n \#$ denotes the **primorial**

Advanced Techniques – Các Kỹ Thuật Nâng Cao

Problem 220 (CSES Problem Set/meet in the middle). You are given an array of $n \in \mathbb{N}^*$ numbers. In how many ways can you choose a subset of the numbers with sum $x \in \mathbb{N}^*$?

Input. The 1st input line has 2 integers $n, x \in \mathbb{N}^*$: the array size \mathcal{E} the required sum. The 2nd line has n integers t_1, \ldots, t_n : the numbers in the array.

Output. Print the number of ways you can create the sum x.

Constraints. $n \in [40], x \in [10^9], t_i \in [10^9], \forall i \in [n].$

Sample.

meet_middle.inp	meet_middle.out
4 5	3
1 2 3 2	

Problem 221 (CSES Problem Set/Hamming distance). The Hamming distance between 2 strings a, b of equal length is the number of positions where the strings differ. You are given $n \in \mathbb{N}^*$ bit strings, each of length $k \in \mathbb{N}^*$ & your task is to calculate the minimum Hamming distance between 2 strings.

Input. The 1st input line has 2 integer $n \in \mathbb{N}^*$: the number of bit strings & their length. Then there are n lines each consisting of 1 bit string of length k.

Output. Print the minimum Hamming distance between 2 strings.

Constraints. $2 \le n \le 2 \cdot 10^4, k \in [30]$.

Sample.

Hamming_distance.inp	Hamming_distance.out
3 5	3
202	

C++:

1. NHT's C++: Hamming distance.

```
#include <bits/stdc++.h>
using namespace std;

const int maxN = 2e4;
int N, ans, b[maxN];

int scanBinary() {
    char c;
    int res = 0;
    while ((c = getchar()) != '\n') {
        res <<= 1;
        res += (c - '0') & 1;
}</pre>
```

```
return res;
14
   }
15
16
   int main() {
17
        scanf("%d %d ", &N, &ans);
18
        for (int i = 0; i < N; i++)
19
        b[i] = scanBinary();
20
21
        for (int i = 0; i < N; i++)
22
        for (int j = i + 1; j < N; j++)
        ans = min(ans, __builtin_popcount(b[i] ^ b[j]));
24
25
        printf("%d\n", ans);
26
   }
27
```

Problem 222 (CSES Problem Set/corner subgrid check). You are given a grid of letters. Find subgrids whose height & width is at least 2 & all the corners have the same letter. For each letter, check if there is a valid subgrid whose corners have that letter.

Input. The 1st input line has 2 integers $n, k \in \mathbb{N}^*$: the size of the grid \mathcal{E} the number of letters. The letters are the 1st k uppercase letters. After this, there are n lines that describe the grid. Each line has n letters.

Output. Print k lines: for each letter, YES if there is a valid subgrid \mathcal{E} NO otherwise.

Constraints. $n \in [3000], k \in [26]$.

Sample.

corner_subgrid_check.inp	corner_subgrid_check.out
4 5	YES
AAAA	YES
CBBC	NO
CBBE	NO
AAAA	NO

Problem 223 (CSES Problem Set/corner subgrid count). You are given an $n \times n$ grid whose each square is either black or white. A subgrid is called beautiful if its height \mathcal{E} width is at least 2 \mathcal{E} all of its corners are black. How many beautiful subgrids are there within the given grid?

Input. The 1st input line has an integer $n \in \mathbb{N}^*$: the size of the grid. Then there are n lines describing the grid: 1 means that a square is black & 0 means it is white.

Output. Print the number of beautiful subgrids.

Constraints. $n \in [3000]$.

Sample.

corner_subgrid_count.inp	corner_subgrid_count.out
5	4
00010	
11111	
00110	
11001	
00010	

Problem 224 (CSES Problem Set/reachable nodes). A directed acyclic graph consists of $n \in \mathbb{N}^*$ nodes \mathcal{E} $m \in \mathbb{N}^*$ edges. The nodes are numbered $1, 2, \ldots, n$. Calculate for each node the number of nodes you can reach from that node (including the node itself).

Input. The 1st input line has 2 integers $n, m \in \mathbb{N}^*$: the number of nodes & edges. Then there are m lines describing the edges. Each line has 2 distinct integers $a, b \in \mathbb{N}^*$: there is an edge from node a to node b.

Output. Print n integers: for each node the number of reachable nodes.

Constraints. $n \in [5 \cdot 10^4], m \in [10^5]$.

Sample.

reachable_node.inp	reachable_node.out
5 6	5 3 2 2 1
1 2	
1 3	
1 4	
2 3	
3 5	
4 5	

Problem 225 (CSES Problem Set/reachability queries). A directed graph consists of $n \in \mathbb{N}^*$ nodes & $m \in \mathbb{N}^*$ edges. The edges are numbered $1, 2, \ldots, n$. Answer q queries of the form "can you reach node b from node a?"

Input. The 1st input line has 3 integers $n, m, q \in \mathbb{N}^*$: the number of nodes, edges, & queries. Then there are m lines describing the edges. Each line has 2 distinct integers a, b: there is an edge from node a to node b. Finally there are q lines describing the queries. Each line consists of 2 integers a, b: "can you reach node b from node a?"

Output. Print the answer for each query: either YES or NO.

Constraints. $n \in [5 \cdot 10^4], m \in [100], m, q \in [10^5].$

Sample.

reachability_query.inp	reachability_query.out
4 4 3	YES
1 2	NO
2 3	YES
3 1	
4 3	
1 3	
1 4	
4 1	

Problem 226 (CSES Problem Set/cut & paste). Given a string, process operations where you cut a substring & paste it to the end of the string. What is the final string after all the operations?

Input. The 1st input line has 2 integers $n.m \in \mathbb{N}^*$: the length of the string & the number of operations. The characters of the string are numbered $1, 2, \ldots, n$. The next line has a string of length n that consists of characters A-Z. Finally, there are m lines that describe the operations. Each line has 2 integers $a, b \in \mathbb{N}^*$: you cut a substring from position a to position b.

Output. Print the final string after all the operations.

Constraints. $m, n \in [2 \cdot 10^5], 1 \le a \le b \le n$.

Sample.

cut_paste.inp	cut_paste.out
7 2	AYABTUB
AYBABTU	
3 5	
3 5	

Problem 227 (CSES Problem Set/substring reversals). Given a string, process operations where you reverse a substring of the string. What is the final string after all the operations?

Input. The 1st input line has 2 integers $n, m \in \mathbb{N}^*$: the length of the string & the number of operations. The characters of the string are numbered $1, 2, \ldots, n$. The next line has a string of length n that consists of characters A-Z. Finally, there are m lines that describe the operations. Each line has 2 integers a, b: you reverse a substring from position a to position b.

Output. Print the final string after all the operations.

Constraints. $m, n \in [2 \cdot 10^5], 1 \le a \le b \le n$.

Sample.

substring_reversal.inp	substring_reversal.out
7 2	AYAUTBB
AYBABTU	
3 4	
4 7	

Problem 228 (CSES Problem Set/reversals & sums). Given an array of $n \in \mathbb{N}^*$ integers, you have to process following operations:

- 1. Reverse a subarray
- 2. Calculate the sum of values in a subarray.

Input. The 1st input line has 2 integer $n, m \in \mathbb{N}^*$: the size of the array \mathcal{E} the number of operations. The array elements are numbered $1, 2, \ldots, n$. The next line as n integers x_1, x_2, \ldots, x_n : the contents of the array. Finally, there are m lines that describe the operations. Each line has 3 integers t, a, b. If t = 1, you should reverse a subarray from a to b. If t = 2, you should calculate the sum of values from a to b.

Output. Print the answer to each operation where t = 2.

Constraints. $n \in [2 \cdot 10^5], m \in [10^5], x_i \in \overline{0, 10^9}, 1 \le a \le b \le n$.

Sample.

reversal_sum.inp	reversal_sum.out
8 3	8
2 1 3 4 5 3 4 4	9
2 2 4	
1 3 6	
2 2 4	

Problem 229 (CSES Problem Set/necessary roads). There are $n \in \mathbb{N}^*$ cities & $m \in \mathbb{N}^*$ roads between them. There is a route between any 2 cities. A road is called necessary if there is no route between some 2 cities after removing that road. Find all necessary roads.

Input. The 1st input line has 2 integers $n, m \in \mathbb{N}^*$: the number of cities & roads. The cities are numbered 1, 2, ..., n. After this, there are m lines that describe the roads. Each line has 2 integers $a, b \in \mathbb{N}^*$: there is a road between cities a & b. There is at most 1 road between 2 cities, & every road connects 2 distinct cities.

Output. 1st print an integer: the number of necessary roads. After that, print k lines that describe the roads. You may print the roads in any order.

Constraints. $n \in \overline{2,10^5}, m \in [2 \cdot 10^5], a, b \in [n].$

Sample.

necessary_road.inp	necessary_road.out
5 5	2
1 2	3 5
1 4	4 5
2 4	
3 5	
4 5	

Problem 230 (CSES Problem Set/necessary cities). There are $n \in \mathbb{N}^*$ cities \mathcal{E} $m \in \mathbb{N}^*$ roads between them. There is a route between any 2 cities. A city is called necessary if there is no route between some other 2 cities after removing that city (\mathcal{E} adjacent roads). Find all necessary cities.

Input. The 1st input line has 2 integers $n, m \in \mathbb{N}^*$: the number of cities & roads. The cities are numbered $1, 2, \ldots, n$. After this, there are m lines that describe the roads. Each line has 2 integers $a, b \in \mathbb{N}^*$: there is a road between cities $a \notin b$. There is at most 1 road between 2 cities, & every road connects 2 distinct cities.

Output. 1st print an integer: the number of necessary cities. After that, print a list of k cities. You may print the cities in any order.

Constraints. $n \in \overline{2, 10^5}, m \in [2 \cdot 10^5], a, b \in [n].$

Sample.

necessary_city.inp	necessary_city.out
5 5	2
1 2	4 5
1 4	
2 4	
3 5	
4 5	

Problem 231 (CSES Problem Set/Eulerian subgraphs). You are given an undirected graph that has $n \in \mathbb{N}^*$ nodes \mathcal{E} $m \in \mathbb{N}^*$ edges. We consider subgraphs that have all nodes of the original graph \mathcal{E} some of its edges. A subgraph is called Eulerian if each node has even degree. Count the number of Eulerian subgraphs modulo $10^9 + 7$.

Input. The 1st input line has 2 integers $n, m \in \mathbb{N}^*$: the number of nodes & edges. The nodes are numbered $1, 2, \ldots, n$. After this, there are m lines that describe the edges. Each line has 2 integers $a, b \in \mathbb{N}^*$: there is an edge between nodes a & b. There is at most 1 edge between 2 nodes, & each edge connects 2 distinct nodes.

Output. Print the number of Eulerian subgraphs modulo $10^9 + 7$.

Constraints. $n \in [10^5], m \in [100], x_i \in \{0, 1, \dots, m\}.$

Sample.

Eulerian_subgraph.inp	Eulerian_subgraph.out
4 3	2
1 2	
1 3	
2 3	

Explanation. You can either keep or remove all edges, so there are 2 possible Eulerian subgraphs.

Problem 232 (CSES Problem Set/monster game I). You are playing a game that consists of $n \in \mathbb{N}^*$ levels. Each level has a monster. On levels $1, 2, \ldots, n-1$, you can either kill or escape the monster. However, on level n you must kill the final monster to win the game. Killing a monster takes sf time where s is the monster's strength & f is your skill factor (lower skill factor is better). After killing a monster, you get a new skill factor. What is the minimum total time in which you can win the game?

Input. The 1st input line has 2 integers $n, x \in \mathbb{N}^*$: the number of levels & your initial skill factor. The 2nd line has n integers $s_1, s_2, \ldots, s_n \in \mathbb{N}^*$: each monster's strength. The 3rd line has n integers $f_1, f_2, \ldots, f_n n \in \mathbb{N}^*$: your new skill factor after killing a monster.

Output. Print 1 integer: the minimum total time to win the game.

Constraints. $n \in [2 \cdot 10^5], x \in [10^6], 1 \le s_1 \le s_2 \le \dots \le s_n \le 10^6, x \ge f_1 \ge f_2 \ge \dots \ge f_n \ge 1.$

Sample.

monster_game_I.inp	monster_game_I.out
5 100	4800
20 30 30 50 90	
90 60 20 20 10	

Explanation. The best way to play is to kill the 3rd & 5th monsters.

Problem 233 (CSES Problem Set/monster game II). You are playing a game that consists of $n \in \mathbb{N}^*$ levels. Each level has a monster. On levels $1, 2, \ldots, n-1$, you can either kill or escape the monster. However, on level n you must kill the final monster to win the game. Killing a monster takes sf time where s is the monster's strength & f is your skill facto. After killing a monster, you get a new skill factor (lower skill factor is better). What is the minimum total time in which you can win the game?

Input. The 1st input line has 2 integers $n, x \in \mathbb{N}^*$: the number of levels & your initial skill factor. The 2nd line has n integers $s_1, s_2, \ldots, s_n \in \mathbb{N}^*$: each monster's strength. The 3rd line has n integers $f_1, f_2, \ldots, f_n n \in \mathbb{N}^*$: your new skill factor after killing a monster.

Output. Print 1 integer: the minimum total time to win the game.

Constraints. $n \in [2 \cdot 10^5], x \in [10^6], x \in [10^6], s_i, f_i \in [10^6].$

Sample.

monster_game_II.inp	monster_game_II.out
5 100	2600
50 20 30 90 30	
60 20 20 10 90	

Explanation. The best way to play is to kill the 2nd & 5th monsters.

Problem 234 (CSES Problem Set/subarray squares). Given an array of $n \in \mathbb{N}^*$ elements, divide into $k \in \mathbb{N}^*$ subarrays. The cost of each subarray is the square of the sum of the values in the subarray. What is the minimum total cost if you act optimally? Input. The 1st input line has 2 integers $n, k \in \mathbb{N}^*$: the array elements & the number of subarrays. The array elements are numbered $1, 2, \ldots, n$. The 2nd line has n integers x_1, x_2, \ldots, x_n : the contents of the array.

Output. Print 1 integer: the minimum total cost.

Constraints. $1 \le k \le n \le 3000, x_i \in [10^5], \forall i \in [n].$

Sample.

subarray_square.inp	subarray_square.out
8 3	110
$2\ 3\ 1\ 2\ 2\ 3\ 4\ 1$	

Explanation. An optimal solution is [2,3,1], [2,2,3], [4,1], whose cost is $(2+3+1)^2+(2+2+3)^2+(4+1)^2=110$.

Problem 235 (CSES Problem Set/houses & schools). There are $n \in \mathbb{N}^*$ houses on a street, numbered 1, 2, ..., n. The distance of houses a, b is |a - b|. You know the number of children in each house. Establish k schools in such a way that each school is in some house. Then, each child goes to the nearest school. What is the minimum total walking distance of the children if you act optimally?

Input. The 1st input line has 2 integers $n, k \in \mathbb{N}^*$: the number of houses & the number of schools. The houses are numbered $1, 2, \ldots, n$. After this, there are n integers c_1, c_2, \ldots, c_n : the number of children in each house.

Output. Print the minimum total distance.

Constraints. $1 \le k \le n \le 3000, c_i \in [10^9], \forall i \in [n].$

Sample.

house_school.inp	house_school.out
6 2	11
271464	

Explanation. Houses 2, 5 will have schools.

Problem 236 (CSES Problem Set/Knuth division). Given an array of n numbers, divide it into n subarrays, each of which has a single element. On each move, you may choose any subarray & split it into 2 subarrays. The cost of such a move is the sum of values in the chosen subarray. What is the minium total cost if you act optimally?

Input. The 1st input line has an integers $n \in \mathbb{N}^*$: the array size. The array elements are numbered 1, 2, ..., n. The 2nd line has n integers $x_1, x_2, ..., x_n$: the contents of the array.

Output. Print 1 integer: the minimum total cost.

Constraints. $n \in [5000], x_i \in [10^9].$

Sample.

Knuth_division.inp	Knuth_division.out
5	43
27325	

Problem 237 (CSES Problem Set/apples & bananas). There are $n \in \mathbb{N}^*$ apples & $m \in \mathbb{N}^*$ bananas, & each of them has an integer weight between $1, \ldots, k$. Calculate, for each weight $m \in \mathbb{N}^*$ between $m \in \mathbb{N}^*$ bananas, & each of them has an banana whose combined weight is $m \in \mathbb{N}^*$.

Input. The 1st input line contains 3 integers $k, n, m \in \mathbb{N}^*$: the number K, the number of apples \mathcal{E} the number of bananas. The next line contains n integers a_1, a_2, \ldots, a_n : weight of each apple. The last line contains m integers b_1, b_2, \ldots, b_m : weight of each banana.

Output. For each integer w between $2, \ldots, 2k$, print the number of ways to choose an apple $\mathscr E$ a banana whose combined weight is w.

Constraints. $m, n, k \in [2 \cdot 10^5], a_i, b_j \in [k], \forall i \in [n], \forall j \in [m].$

Sample.

apple_banana.inp	apple_banana.out
5 3 4	$0\ 0\ 1\ 2\ 1\ 2\ 4\ 2\ 0$
5 2 5	
4 3 2 3	

Explanation. E.g., for w=8 there are 4 different ways: we can pick an apple of weight 5 into 2 different ways \mathcal{E} a banana of weight 3 in 2 different ways.

Problem 238 (CSES Problem Set/1 bit positions). You are given a binary string of length n. Calculate, for every k between $1, \ldots, n-1$, the number of ways we can choose 2 positions i, j s.t. i-j=k \mathcal{E} there is a 1-bit at both positions.

Input. The only input line has a string that consists only of characters 0, 1.

Output. For every distance k between $1, \ldots, n-1$ print the number of ways we can choose 2 such positions.

Constraints. $n \in \overline{2, 2 \cdot 10^5}$.

Sample.

one_bit_position.inp	one_bit_position.out
1001011010	$1\ 2\ 3\ 0\ 2\ 1\ 0\ 1\ 0$

Problem 239 (CSES Problem Set/signal processing). You are given 2 integer sequences: a signal \mathcal{E} a mask. Process the signal by moving the mask through the signal from left to right. At each mask position calculate the sum of products of aligned signal \mathcal{E} mask values in the part where the signal \mathcal{E} the mask overlap.

Input. The 1st input line consists of 2 integers $n, m \in \mathbb{N}^*$: the length of the signal & the length of the mask. The next line consists of n integers a_1, a_2, \ldots, a_n defining the signal. The last line consists of m integers b_1, b_2, \ldots, b_m defining the mask.

Output. Print n + m - 1 integer: the sum of products of aligned values at each mask position from left to right.

Constraints. $m, n \in [2 \cdot 10^5], a_i, b_i \in [100].$

Sample.

signal_processing.inp	signal_processing.out
5 3	3 11 13 10 16 9 4
1 3 2 1 4	
1 2 3	

Explanation. E.g., at the 2nd mask position the sum of aligned products is $2 \cdot 1 + 3 \cdot 3 = 11$.

Problem 240 (CSES Problem Set/new roads queries). There are $n \in \mathbb{N}^*$ cities in Byteland but no roads between them. However, each day, a new road will be built. There will be a total of $m \in \mathbb{N}^*$ roads. Process $q \in \mathbb{N}^*$ queries of the form: "after how many days can we travel from city a to city b for the 1st time?"

Input. The 1st input line has 3 integers $n, m, q \in \mathbb{N}^*$: the number of cities, roads, & queries. The cities are numbered $1, 2, \ldots, n$. After this, there are m lines that describe the roads in the order they are built. Each line has 2 integers a, b: there will be a road between cities a & b. Finally, there are q lines that describe the queries. Each line has 2 integers a, b: we want to travel from city a to city b.

Output. For each query, print the number of days, or -1 if it is never possible.

Constraints. $m, n, q \in [2 \cdot 10^5], a, b \in [n]$.

Sample.

new_roads_query.inp	new_roads_query.out
5 4 3	2
1 2	-1
2 3	4
1 3	
2 5	
1 3	
3 4	
3 5	

Problem 241 (CSES Problem Set/dynamic connectivity). Consider an undirected graph that consists of $n \in \mathbb{N}^*$ nodes \mathcal{E} $m \in \mathbb{N}^*$ edges. There are 2 types of events that can happen:

- 1. A new edge is created between nodes a, b.
- 2. An existing edge between nodes a, b is removed.

Report the number of components after every event.

Input. The 1st input line has 3 integers $n, m, k \in \mathbb{N}^*$: the number of nodes, edges, & events. After this there are m lines describing the edges. Each line has 2 integers a, b: there is an edge between nodes a, b. There is at most 1 edge between any pair of nodes. Then there are k lines describing the events. Each line has the form t a b where t = 1 (create a new edge) or t = 2 (remove an edge). A new edge is always created between 2 nodes that do not already have an edge between them, & only existing edges can get removed.

Output. Print k+1 integers: 1st the number of components before the 1st event, & after this the new number of components after each event.

Constraints. $n \in \overline{2, 10^5}, m, k \in [10^5], a, b \in [n].$

Sample.

dynamic_connectivity.inp	dynamic_connectivity.out
5 3 3	2 2 2 1
1 4	
2 3	
3 5	
1 2 5	
2 3 5	
1 1 2	

Problem 242 (CSES Problem Set/parcel delivery). There are $n \in \mathbb{N}^*$ cities \mathcal{E} $m \in \mathbb{N}^*$ routes through which parcels can be carried from 1 city to another city. For each route, you know the maximum number of parcels \mathcal{E} the cost of a single parcel. You want to send k parcels from Syrjälä to Lehmälä. What is the cheapest way to do that?

Input. The 1st input line has 3 integers $n, m, k \in \mathbb{N}^*$: the number of cities, routes, & parcels. The cities are numbered $1, 2, \ldots, n$. City 1 is Syrjälä & city n is Lehmälä. After this, there are m lines that describe the routes. Each line has 4 integers a, b, r, c: there is a route from city a to city b, at most r parcels can be carried through the route. & the cost of each parcel is c.

Output. Print 1 integer: the minimum total cost or -1 if there are no solutions.

Constraints. $2 \le n \le 500, m \in [1000], k \in [100], a, b \in [n], r, c \in [1000].$

Sample.

parcel_delivery.inp	parcel_delivery.out
4 5 3	750
1 2 5 100	
1 3 10 50	
1 4 7 500	
2 4 8 350	
3 4 2 100	

Explanation. 1 parcel is delivered through route $1 \rightarrow 2 \rightarrow 4$ (cost $1 \cdot 450 = 450$) & 2 parcels are delivered through route $1 \rightarrow 3 \rightarrow 4$ (cost $2 \cdot 150 = 300$).

Problem 243 (CSES Problem Set/task assignment). A company has $n \in \mathbb{N}^*$ employees & there are n tasks that need to be done. We know for each employee the cost of carrying out each task. Every employee should be assigned to exactly 1 task. What is the minium total cost if we assign the task's optimally & how could they be assigned?

Input. The 1st input line has 1 integer $n \in \mathbb{N}^*$: the number of employees & the number of tasks that need to be done. After this, there are n lines each consisting of n integers. The ith line consists of integers $c_{i1}, c_{i2}, \ldots, c_{in}$: the cost of each task when it is assigned to the ith employee.

Output. 1st print the minimum total cost. Then print n lines each consisting of 2 integers a, b: you assign the bth task to the ath employee. If there are multiple solutions you can print any of them.

Constraints. $n \in [200], c_{ij} \in [1000]$.

Sample.

task_assignement.inp	task_assignement.out
4	33
17 8 16 9	1 4
7 15 12 19	2 1
6 9 10 11	3 3
14 7 13 10	4 2

Explanation. The minim total cost is 33. We can reach this by assigning employee 1 task 4, employee 2 task 1, employee 3 task 3, & employee 4 task 2. This will cost 9+7+10+7=33.

Problem 244 (CSES Problem Set/distinct routes II). A game consists of $n \in \mathbb{N}^*$ rooms & $m \in \mathbb{N}^*$ teleporters. At the beginning of each day, you start in room 1 & you have to reach room n. You can use each teleporter at most once during the game. You want to play the game for exactly k days. Every time you use any teleporter you have to pay 1 coin. What is the minimum number of coins you have to pay during k days if you play optimally?

Input. The 1st input line has 3 integers $n, m, k \in \mathbb{N}^*$: the number of rooms, the number of teleporters \mathcal{E} the number of days you play the game. The rooms are numbered $1, 2, \ldots, n$. After this, there are m lines describing the teleporters. Each line has 2 integers a, b: there is a teleporter from room a to room b. There are no 2 teleporters whose starting \mathcal{E} ending room are the same.

Output. 1st print 1 integer: the minimum number of coins you have to pay if you pay optimally. Then, print k route descriptions according to the example. You can print any valid solution. If it is not possible to play the game for k days, print only -1.

Constraints. $2 \le n \le 500, m \in [1000], 1 \le k \le n - 1, 1 \le a, b \le n$.

Sample.

distinct_routes_II.inp	distinct_routes_II.out
8 10 2	6
1 2	4
1 3	1 2 4 8
2 5	4
2 4	1 3 5 8
3 5	
3 6	
4 8	
5 8	
6 7	
7 8	

Sliding Window Problems – Các Bài Toán Về Cửa Sổ Trượt

The sliding window technique is 1 of common techniques in digital image processing & Computer Vision.

Interactive Problems – Các Bài Toán Tương Tác

Bitwise Operations - Các Phép Toán Bitwise

Problem 245 (CSES Problem Set/counting bits). Count the number of 1 bits in the binary representations of integers between $1 \text{ \& } n \in \mathbb{N}^*$.

Input. The only input line has an integer $n \in \mathbb{N}^*$.

Output. Print the number of one bits in the binary representations of integers between 1 \mathcal{E} n.

Constraints. $n \in [10^{15}]$.

Sample.

counting_bit.inp	counting_bit.out
7	12

Explanation. The binary representations of $1, 2, \ldots, 7$ are 1, 10, 11, 100, 101, 110, 111, so there are a total of 12 1 bits.

Solution. C++:

```
1. VNTA's C++: count bits
```

```
#include <bits/stdc++.h>
   using namespace std;
    typedef long long 11;
    long long solve(long long n) {
        long long res = 0;
        for (int i = 0; i \le 50; i++) {
            long long s = 1LL << (i + 1); //2^{(i+1)}
            long long fs = (n + 1) / s;
            long long r = (n + 1) \% s;
10
            res += fs * (s / 2);
            res += \max(OLL, r - (s / 2));
12
13
        return res;
   }
15
    int main() {
17
        ios::sync_with_stdio(0);
        cin.tie(0); cout.tie(0);
19
        long long n;
        cin >> n;
21
        cout << solve(n);</pre>
   }
23
```

2. DAK's C++: count bits

- #include <iostream>
- using namespace std;

```
using ll = long long;
   int main() {
5
        11 n;
6
        cin >> n;
7
        11 sum = 0;
9
        for (int j = 60; j >= 0; --j) {
            ll bit = 111 << j; // 2^j
11
            sum += n / (bit * 2) * bit;
            sum += max(011, n \% (bit * 2) - (bit - 1));
13
14
        cout << sum << '\n';
15
   }
```

Problem 246 (CSES Problem Set/maximum xor subarray). Given an array of $n \in \mathbb{N}^*$ integers, find the maximum xor sum of a subarray.

Input. The 1st input line has an integer $n \in \mathbb{N}^*$: the size of the array. The next line has n integers x_1, x_2, \ldots, x_n : the contents of the array.

Output. Print 1 integer: the maximum xor sum in a subarray.

Constraints. $n \in [2 \cdot 10^5], x_i \in \overline{0, 10^9}, \forall i \in [n].$

Sample.

max_xor_subarray.inp	max_xor_subarray.out
4	13
5 1 5 9	

Solution. C++:

1. DXH's C++: maximum xor subarray (pass 9/14 CSES test cases):

```
#include <iostream>
   #include <vector>
   using namespace std;
   // Sử dụng O(n^2) để tìm max XOR
   int main() {
       int n;
6
       cin >> n;
       vector<int> a(n);
       // Nhập mảng đầu vào
10
       for (int i = 0; i < n; ++i) cin >> a[i];
11
12
       // Tao mang prefix XOR: prefix[i] = a[0] ^ a[1] ^ ... ^ a[i-1]
13
       vector<int> prefix(n + 1, 0);
       for (int i = 0; i < n; ++i)
15
       prefix[i + 1] = prefix[i] ^ a[i];
17
       // Duyệt tất cả các subarray: [i, j)
       int maxXOR = 0;
19
       for (int i = 0; i < n; ++i) {
            for (int j = i + 1; j \le n; ++j) {
21
                int subXOR = prefix[j] ^ prefix[i];
22
                maxXOR = max(maxXOR, subXOR);
            }
24
       }
25
26
```

Problem 247 (CSES Problem Set/maximum xor subset). Given an array of $n \in \mathbb{N}^*$ integers, find the maximum xor sum of a subset.

Input. The 1st input line has an integer $n \in \mathbb{N}^*$: the size of the array. The next line has n integers x_1, x_2, \ldots, x_n : the contents of the array.

Output. Print 1 integer: the maximum xor sum of a subset.

Constraints. $n \in [2 \cdot 10^5], x_i \in \overline{0, 10^9}, \forall i \in [n].$

Sample.

maximum_xor_subset.inp	maximum_xor_subset.out
4	13
1 6 12 6	

Problem 248 (CSES Problem Set/number of subset xors). Given an array of $n \in \mathbb{N}^*$ integers, find the number of different subset xors.

Input. The 1st input line has an integer $n \in \mathbb{N}^*$: the size of the array. The next line has n integers x_1, x_2, \ldots, x_n : the contents of the array.

Output. Print 1 integer: the number of different subset xors.

Constraints. $n \in [2 \cdot 10^5], x_i \in \overline{0, 10^9}, \forall i \in [n].$

Sample.

number_subset_xor.inp	number_subset_xor.out
3	4
3 6 5	

Explanation. The following values can be the xor of a subset: 0 = xor of the empty set, $3 = 3, 5 = 3 \oplus 6, 6 = 3 \oplus 5$. In this case, no other values can be the xor of a subset.

Problem 249 (CSES Problem Set/k subset xors). Given an array of $n \in \mathbb{N}^*$ integers. Consider the xors of all 2^n subsets of the array (including the empty subset with xor equal to zero). Find the k smallest subset xors.

Input. The 1st input line has 2 integers $n, k \in \mathbb{N}^*$: the size of the array \mathcal{E} the number of subset xors k. The next line has n integers x_1, x_2, \ldots, x_n : the contents of the array.

Output. Print k integers: the k smallest subset xors in increasing order.

Constraints. $n \in [2 \cdot 10^5], k \in [\min\{2^n, 2 \cdot 10^5\}], x_i \in \{0, 1, \dots, m\}.$

Sample.

k_subset_xor.inp	k_subset_xor.out
4 9	0 0 3 3 5 5 6 6 8
3 5 14 8	

Problem 250 (CSES Problem Set/all subarray xors). Given an array of $n \in \mathbb{N}^*$ integers, find all integers that are the xor sum in some subarray.

Input. The 1st input line has an integer $n \in \mathbb{N}^*$: the size of the array. The next line has n integers x_1, x_2, \ldots, x_n : the contents of the array.

Output. 1st print an integer k: the number of distinct integers that are the xor sum in some subarray. After this print k integers: the xor sums in increasing order.

Constraints. $n \in [2 \cdot 10^5], x_i \in \{0, 1, \dots, m\}.$

Sample.

all_subarray_xor.inp	all_subarray_xor.out
4	7
5 1 5 9	1 4 5 8 9 12 13

Problem 251 (CSES Problem Set/xor pyramid peak). Consider a xor pyramid where each number is the xor of lower-left and lower-right numbers. Given the bottom row of the pyramid, find the topmost number.

Input. The 1st input line has an integer $n \in \mathbb{N}^*$: the size of the pyramid. The next line has n integers a_1, a_2, \ldots, a_n : the bottom row of the pyramid.

Output. Print 1 integer: the topmost number.

Constraints. $n \in [2 \cdot 10^5], a_i \in [10^9], \forall i \in [n].$

Sample.

xor_pyramid_peak.inp	xor_pyramid_peak.out
8	9
2 10 5 12 9 5 1 5	

Problem 252 (CSES Problem Set/xor pyramid diagonal). Consider a xor pyramid where each number is the xor of lower-left and lower-right numbers. Given the bottom row of the pyramid, find the leftmost number of each row.

Input. The 1st input line has an integer $n \in \mathbb{N}^*$: the size of the pyramid. The next line has n integers a_1, a_2, \ldots, a_n : the bottom row of the pyramid.

Output. Print n integers: the leftmost numbers of the rows from bottom to top.

Constraints. $n \in [2 \cdot 10^5], a_i \in [10^9], \forall i \in [n].$

Sample.

xor_pyramid_diagonal.inp	xor_pyramid_diagonal.out
8	2 8 7 1 11 4 15 9
2 10 5 12 9 5 1 5	

Problem 253 (CSES Problem Set/xor pyramid row). Consider a xor pyramid where each number is the xor of lower-left and lower-right numbers. Given the bottom row of the pyramid, find the numbers on the kth row from the top.

Input. The 1st input line has 2 integers $n, k \in \mathbb{N}^*$: the size of the pyramid \mathcal{E} the given row. The next line has n integers a_1, a_2, \ldots, a_n : the bottom row of the pyramid.

Output. Print k integers: the numbers on the kth row from the top.

Constraints. $1 \le k \le n \le 2 \cdot 10^5, a_i \in [10^9], \forall i \in [n].$

Sample.

xor_pyramid_row.inp	xor_pyramid_row.out
8 5	1 10 5 1 8
2 10 5 12 9 5 1 5	

Problem 254 (CSES Problem Set/SOS bit problem). Given a list of $n \in \mathbb{N}^*$, calculate for each element x:

- 1. the number of elements y s.t. x|y = x
- 2. the number of elements y s.t. x & y = x
- 3. the number of elements y s.t. $x\&y \neq 0$.

Input. The 1st input line has an integer $n \in \mathbb{N}^*$: the size of the list. The next line has n integers x_1, x_2, \ldots, x_n : the elements of the list.

Output. Print n integers: for each element the required values.

Constraints. $n \in [2 \cdot 10^5], x_i \in [10^6], \forall i \in [n].$

Sample.

SOS_bit.inp	SOS_bit.out
5	3 2 5
37292	4 1 5
	$2\ 4\ 4$
	1 1 3
	$2\ 4\ 4$

Problem 255 (CSES Problem Set/& subset count). Given an array of $n \in \mathbb{N}^*$ integers, calculate the number of non-empty subsets whose elements' bitwise & is equal to k for each $k \in \overline{0, n}$.

Input. The 1st input line has an integer $n \in \mathbb{N}^*$: the size of the array. The next line has n integers a_1, a_2, \ldots, a_n : the contents of the array.

Output. Print n+1 integers as specified above modulo 10^9+7 .

Constraints. $n \in [2 \cdot 10^5], a_i \in \overline{0, n}, \forall i \in [n].$

and_subset_count.inp	and_subset_count.out
4	7 4 0 3 1
3 1 3 4	

Chương 31

Construction Problems – Các Bài Toán Xây Dựng

Problem 256 (CSES Problem Set/inverse inversions). Create a permutation of [n] that has exactly k inversions. An inversion is a pair (a,b) where $a < b \ \mathcal{E} \ p_a > p_b$ where p_i denotes the number at position i in the permutation.

Input. The only input line has 2 integers $n, k \in \mathbb{N}^*$.

Output. Print a line that contains the permutation. You can print any valid solution.

Constraints. $n \in [10^6], k \in \overline{0, \frac{n(n-1)}{2}}$.

Sample.

inverse_inversion.inp	inverse_inversion.out
5 4	1 5 2 4 3

Problem 257 (CSES Problem Set/monotone subsequences). Create a permutation of [n] whose longest monotone subsequence has exactly $k \in \mathbb{N}^*$ elements. A monotone subsequence is either increasing or decreasing, e.g., some monotone subsequences in [2, 1, 4, 5, 3] are [2, 4, 5], [4, 3].

Input. The 1st input line has an integer $t \in \mathbb{N}^*$: the number of tests. After this, there are t lines. Each line has 2 integers $n, k \in \mathbb{N}^*$.

Output. For each test, print a line that contains the permutation. You can print any valid solution. If there are no solutions, print IMPOSSIBLE.

Constraints. $t \in [10^3], 1 \le k \le n \le 100$.

Sample.

monotone_subsequence.inp	monotone_subsequence.out
3	2 1 4 5 3
5 3	IMPOSSIBLE
5 2	$1\ 2\ 3\ 4\ 5\ 6\ 7$
7 7	

Problem 258 (CSES Problem Set/3rd permutation). Given 2 permutations a, b s.t. $a_i \neq b_i$ in every position. Create a 3rd permutation c s.t. $a_i \neq c_i$, $b_i \neq c_i$ in every position.

Input. The 1st input line has an integer $n \in \mathbb{N}^*$: the permutation size. The 2nd line has n integers a_1, a_2, \ldots, a_n . The 3rd line has n integers b_1, b_2, \ldots, b_n .

Output. Print n integers c_1, c_2, \ldots, c_n . You can print any valid solution. If there are no solutions, print IMPOSSIBLE.

Constraints. $n \in \overline{2,10^5}$.

third_permutation.inp	third_permutation.out
5	3 2 5 4 1
1 3 2 5 4	
4 1 3 2 5	

Problem 259 (CSES Problem Set/permutation prime sums). Given $n \in \mathbb{N}^*$, create 2 permutations a, b of size n s.t. $a_i + b_i$ is prime for $i \in [n]$.

Input. The only input line has an integer n.

Output. Print 2 permutations. You can print any valid solution. If there are no solutions, print IMPOSSIBLE.

Constraints. $n \in [10^5]$.

Sample.

permutation_prime_sum.inp	permutation_prime_sum.out
5	2 1 3 5 4
	$5\ 1\ 4\ 2\ 3$

Explanation. The sums are 2+5=7, 1+1=2, 3+4=7, 5+2=7, 4+3=7 which are all primes.

Problem 260 (CSES Problem Set/chess tournament). There will be a chess tournament of $n \in \mathbb{N}^*$ players. Each player has announced the number of games they want to play. Each pair of players can play at most one game. Your task is to determine which games will be played so that everybody will be happy.

Input. The 1st input line has an integer $n \in \mathbb{N}^*$: the number of players. The players are numbered $1, 2, \ldots, n$. The next line has n integers x_1, x_2, \ldots, x_n : for each player, the number of games they want to play.

Output. 1st print an integer k: the number of games. Then, print k lines describing the games. You can print any valid solution. If there are no solutions, print IMPOSSIBLE.

Constraints. $n \in [10^5], \sum_{i=1}^n x_i \in [2 \cdot 10^5].$

Sample.

chess_tournament.inp	chess_tournament.out
5	
1 3 2 0 2	4
	1 2
	2 3
	2 5
	3 5

Problem 261 (CSES Problem Set/distinct sums grid). Create an $n \times n$ grid that fulfills the following requirements:

- 1. Each integer $1, \ldots, n$ appears n times in the grid.
- 2. If we create a set that consists of all sums in rows & columns, there are 2n distinct values.

Input. The only input line has an integer $n \in \mathbb{N}^*$.

Output. Print a grid that fulfills the requirements. You can print any valid solution. If there are no solutions, print IMPOSSIBLE. Constraints. $n \in [10^3]$.

Sample.

.inp	.out
5	2 3 1 1 1
	$21\ 5\ 5\ 3\ 3$
	$22\ 3\ 5\ 2\ 4$
	$25\ 4\ 5\ 4\ 1$
	22 3 4 4 2

Explanation. Each integer 1, 2, 3, 4, 5 appears 5 times, & the sums in rows & columns are {8, 11, 12, 14, 15, 16, 17, 18, 19, 20}.

Problem 262 (CSES Problem Set/filling trominos). Fill an $n \times m$ grid using L-trominos (3 squares that have an L-shape). Input. The 1st input line has an integer $t \in \mathbb{N}^*$: the number of tests. After that, there are t lines that describe the tests. Each line has 2 integers $n, m \in \mathbb{N}^*$.

Output. For each test, print YES if there is a solution, & NO otherwise. If there is a solution, also print n lines that each contain m letters between A-Z. Adjacent squares must have the same letter exactly when they belong to the same tromino. You can print any valid solution.

Constraints. $t, m, n \in [100]$.

Sample.

filling_tromino.inp	filling_tromino.out
2	YES
4 6	AADDBB
4 7	ACCDEB
	BCAEEC
	BBAACC
	NO

Problem 263 (CSES Problem Set/grid path construction). Given an $n \times m$ grid & 2 squares $a = (y_1, x_1), b = (y_2, x_2),$ create a path from a to b that visits each square exactly once.

Input. The 1st input line has an integer $t \in \mathbb{N}^*$: the number of tests. After this, there are t lines that describe the tests. Each line has 6 integers n, m, y_1, x_1, y_2, x_2 . In all tests $y_1, y_2 \in [n], x_1, x_2 \in [m]$. In addition, $y_1 \neq y_2$ or $x_1 \neq x_2$.

Output. Print YES, if it is possible to construct a path, & NO otherwise. If there is a path, also print its description which consists of characters U, D, L, R (up), down, left, right). If there are several paths, you can print any of them.

Constraints. $t \in [100], m, n \in [50]$.

grid_path_construction.inp	grid_path_construction.out
5	YES
1 3 1 1 1 3	RR
1 3 1 2 1 3	NO
2 2 1 1 2 2	NO
2 2 1 1 2 1	YES
471336	RDL
	YES
	RRRRDDDLLLLLLUUURDDRURDRURD

Chương 32

Advanced Graph Problems – Các Bài Toán Đồ Thị Nâng Cao

Problem 264 (CSES Problem Set/nearest shops). There are $n \in \mathbb{N}^*$ cities \mathcal{E} $m \in \mathbb{N}^*$ roads. Each road is bidirectional \mathcal{E} connects 2 cities. It is also known that $k \in \mathbb{N}^*$ cities have an anime¹ shop. If you live in a city, you of course know the local anime shop well if there is one. You would like to find the nearest anime shop that is not in your city. For each city, determine the minimum distance to another city that has an anime shop.

Input. The 1st input line has 3 integers $n, m, k \in \mathbb{N}^*$: the number of cities, roads, & anime shops. The cities are numbered $1, 2, \ldots, n$. The next line contains k integers: the cities that have an anime shop. Finally, there are m lines that describe the roads. Each line has 2 integers $a, b \in \mathbb{N}^*$: there is a road between cities a & b.

Output. Print n integers: for each city, the minimum distance to another city with an anime shop. If there is no such city, print -1 instead.

Constraints. $1 \le k \le n \le 10^5, m \in \overline{0, 2 \cdot 10^5}$.

Sample.

nearest_shop.inp	nearest_shop.out
9 6 4	1 1 1 1 -1 1 -1 2 -1
2 4 5 7	
1 2	
1 3	
1 8	
2 4	
3 4	
5 6	

Problem 265 (CSES Problem Set/Prüfer code). A Prüfer code of a tree of $n \in \mathbb{N}^*$ nodes is a sequence of n-2 integers that uniquely specifies the structure of the tree. The code is constructed as follows: As long as there are at least 3 nodes left, find a leaf with the smallest label, add the label of its only neighbor to the code, & remove the leaf from the tree. Given a Prüfer code of a tree, your task is to construct the original tree.

Input. The 1st input line contains an integer $n \in \mathbb{N}^*$: the number of nodes. The nodes are numbered $1, 2, \ldots, n$. The 2nd line contains n-2 integers: the Prüfer code.

Output. Print n-1 lines describing the edges of the tree. Each line has to contain 2 integers $a, b \in \mathbb{N}^*$: there is an edge between nodes $a \in B$. You can print the edges in any order.

Constraints. $n \in \overline{3, 2 \cdot 10^5}, a, b \in [n]$.

Prufer_code.inp	Prufer_code.out
5	1 2
2 2 4	2 3
	2 4
	4 5

¹NQBH: ordinary types, not hentai ones.

Problem 266 (CSES Problem Set/tree traversals). There are 3 common ways to traverse the nodes of a binary node:

- 1. Preorder: 1st process the root, then the left subtree, & finally the right subtree.
- 2. Inorder: 1st process the left subtree, then the root, & finally the right subtree.
- 3. Postorder: 1st process the left subtree, then the right subtree, & finally the root.

There is a binary tree of $n \in \mathbb{N}^*$ nodes with distinct labels. You are given the preorder \mathcal{E} inorder traversals of the tree, determine its postorder traversal.

Input. The 1st input line has an integer $n \in \mathbb{N}^*$: the number of nodes. The nodes are numbered $1, 2, \ldots, n$. After this, here are 2 lines describing the preorder \mathcal{E} inorder traversals of the tree. Both lines consist of n integers. You can assume that the input corresponds to a binary tree.

Output. Print the postorder traversal of the tree.

Constraints. $n \in [10^5]$.

Sample.

tree_traversal.inp	tree_traversal.out
5	3 1 4 2 5
5 3 2 1 4	
3 5 1 2 4	

Problem 267 (CSES Problem Set/course schedule II). You want to complete $n \in \mathbb{N}^*$ courses that have requirements of the form "course a has to be completed before course b". You want to complete course 1 as soon as possible. If there are several ways to do this, you want then to complete course 2 as soon as possible, & so on. Determine the order in which you complete the courses.

Input. The 1st input line has 2 integers $n, m \in \mathbb{N}^*$: the number of courses & requirements. The courses are numbered $1, 2, \ldots, n$. Then, there are m lines describing the requirements. Each line has 2 integers $a, b \in \mathbb{N}^*$: course a has to be completed before course b. You can assume that there is at least 1 valid schedule.

Output. Print 1 line having n integers: the order in which you complete the courses.

Constraints. $n \in [10^5], m \in [2 \cdot 10^5], a, b \in [n].$

Sample.

course_schedule_II.inp	course_schedule_II.out
4 2	2 1 3 4
2 1	
2 3	

Problem 268 (CSES Problem Set/acyclic graph edges). Given an undirected graph, choose a direction for each edge so that the resulting directed graph is acyclic.

Input. The 1st input line has 2 integers $n, m \in \mathbb{N}^*$: the number of nodes & edges. The nodes are numbered $1, 2, \ldots, n$. After this, there are m lines describing the edges. Each line has 2 distinct integers a, b: there is an edge between nodes a & b.

Output. Print m lines describing the directions of the edges. Each line has 2 integers $a, b \in \mathbb{N}^*$: there is an edge from node a to node b. You can print any valid solution.

Constraints. $n \in [10^5], m \in [2 \cdot 10^5], a, b \in [n]$.

Sample.

acyclic_graph_edge.inp	acyclic_graph_edge.out
3 3	1 2
1 2	3 2
2 3	3 1
3 1	

Problem 269 (CSES Problem Set/strongly connected edges). Given an undirected graph, choose a direction for each edge so that the resulting directed graph is strongly connected.

Input. The 1st input line has 2 integers $n, m \in \mathbb{N}^*$: the number of nodes & edges. The nodes are numbered 1, 2, ..., n. After this, there are m lines describing the edges. Each line has 2 integers $a, b \in \mathbb{N}^*$: there is an edge between nodes a & b. You may assume that the graph is simple, i.e., there are at most 1 edge between 2 nodes & every edge connects 2 distinct nodes.

Output. Print m lines describing the directions of the edges. Each line has 2 integers $a, b \in \mathbb{N}^*$: there is an edge from node a to node b. You can print any valid solution. If there are no solutions, only print IMPOSSIBLE.

Constraints. $n \in [10^5], m \in [2 \cdot 10^5], a, b \in [n]$.

Sample.

strongly_connected_edge.inp	strongly_connected_edge.out
3 3	1 2
1 2	2 3
1 3	3 1
2 3	

Problem 270 (CSES Problem Set/even outdegree edges). Given an undirected graph, choose a direction for each edge so that in the resulting directed graph each node has an even outdegree. The outdegree of a node is the number of edges coming out of that node.

Input. The 1st input line has 2 integers $n, m \in \mathbb{N}^*$: the number of nodes & edges. The nodes are numbered $1, 2, \ldots, n$. After this, there are m lines describing the edges. Each line has 2 integers $a, b \in \mathbb{N}^*$: there is an edge between nodes $a \notin b$. You may assume that the graph is simple, i.e., there are at most 1 edge between 2 nodes & every edge connects 2 distinct nodes.

Output. Print m lines describing the directions of the edges. Each line has 2 integers $a,b \in \mathbb{N}^*$: there is an edge from node a to node b. You can print any valid solution. If there are no solutions, only print IMPOSSIBLE.

Constraints. $n \in [10^5], m \in [2 \cdot 10^5], a, b \in [n].$

Sample.

	., , , ,
even_outdegree_edge.inp	even_outdegree_edge.out
4 4	1 2
1 2	3 2
2 3	3 4
3 4	1 4
1 4	

Problem 271 (CSES Problem Set/graph girth). Given an undirected graph, determine its girth, i.e., the length of its shortest cycle.

Input. The 1st input line has 2 integers $n, m \in \mathbb{N}^*$: the number of nodes & edges. The nodes are numbered 1, 2, ..., n. After this, there are m lines describing the edges. Each line has 2 integers $a, b \in \mathbb{N}^*$: there is an edge between nodes a & b. You may assume that there is at most 1 edge between each 2 nodes.

Output. Print 1 integer: the girth of the graph. If there are no cycles, print -1.

Constraints. $n \in [2500], m \in [5000].$

Sample.

graph_girth.inp	graph_girth.out
5 6	3
1 2	
1 3	
2 4	
2 5	
3 4	
4 5	

Problem 272 (CSES Problem Set/fixed length walk queries). You are given an undirected graph with $n \in \mathbb{N}^*$ & $m \in \mathbb{N}^*$ edges. The graph is simple and connected. You start at a specific node, & on each turn you must move through an edge to another node. Answer $q \in \mathbb{N}^*$ queries of the form: "is it possible to start at node a & end up on node b after exactly x turns?"

Input. The 1st input line has 2 integers $n, m \in \mathbb{N}^*$: the number of nodes & edges. The nodes are numbered $1, 2, \ldots, n$. After this, there are m lines describing the edges. Each line has 2 integers $a, b \in \mathbb{N}^*$: there is an edge between nodes $a \in b$. Finally, there are q lines, each describing a query. Each line contains 3 integers $a, b, x \in \mathbb{N}^*$.

Output. For each query, print the answer (YES or NO) on its own line.

Constraints. $n \in \overline{2,2500}, m \in [5000], q \in [10^5], x \in \overline{0,10^9}.$

Sample.

fixed_length_walk_query.inp	fixed_length_walk_query.out
4 5 6	YES
1 2	NO
2 3	YES
1 3	NO
2 4	YES
3 4	YES
1 2 2	
1 4 1	
1 4 5	
2 2 1	
2 2 2	
3 4 8	

Explanation. In query 1, a possible route is $1 \to 3 \to 2$. In query 3, a possible route is $1 \to 3 \to 2 \to 1 \to 3 \to 4$. In query 6, a possible route is $3 \to 4 \to 2 \to 3 \to 4 \to 2 \to 1 \to 3 \to 4$.

Problem 273 (CSES Problem Set/transfer speeds sum). A computer network has $n \in \mathbb{N}^*$ computers & n-1 connections between 2 computers. Information can be exchanged between every pair of computers using the connections. Each connection has a certain transfer speed. Let d(a,b) denote transfer speed between computers a & b, which is the speed of the slowest connection on the route between a & b. Compute the sum of transfer speeds between all pairs of computers.

Input. The 1st input line contain an integer $n, m \in \mathbb{N}^*$: the number of computers. The computers are numbered $1, 2, \ldots, n$. After this, there are n-1 lines, which describe the connections. Each line has 3 integers $a, b, x \in \mathbb{N}^*$: there is a connection between computers $a \not\in b$ with transfer speed x.

Output. Print 1 integer: the sum of transfer speeds.

Constraints. $n \in [2 \cdot 10^5], x \in [10^6]$.

Sample.

transfer_speed_sum.inp	transfer_speed_sum.out
4	12
1 2 5	
2 3 1	
2 4 2	

Problem 274 (CSES Problem Set/MST edge check). Given an undirected weighted graph, determine for each edge if it can be included in a minimum spanning tree.

Input. The 1st input line has 2 integers $n, m \in \mathbb{N}^*$: the number of nodes & edges. The nodes are numbered $1, 2, \ldots, n$. The following m lines describe the edges. Each line has 3 integers $a, b, w \in \mathbb{N}^*$: there is an edge between nodes a & b with weight w. You can assume that the graph is connected and simple & each edge appears at most once in the graph.

Output. For each edge in the input order, print YES if it can be included in the minimum spanning tree & NO otherwise.

Constraints. $n \in [10^5], m \in [2 \cdot 10^5], a, b \in [n], w \in [10^9].$

MST_edge_check.inp	MST_edge_check.out
5 6	NO
1 2 4	YES
1 3 2	YES
2 4 2	YES
3 4 1	YES
3 5 3	YES
4 5 3	

Problem 275 (CSES Problem Set/MST edge set check). Given an undirected weighted graph & edge sets, determine for each set if the edges can be included in a minimum spanning tree.

Input. The 1st input line has 3 integers $n, m, q \in \mathbb{N}^*$: the number of nodes, edges, & edge sets. The nodes are numbered $1, 2, \ldots, n$. The following m lines describe the edges. Each line has 3 integers $a, b, w \in \mathbb{N}^*$: there is an edge between nodes $a \notin b$ with weight w. The edges are numbered $1, 2, \ldots, m$ in the input order. The following 2q lines describe the edge sets. For each set, the 1ts line contains its size & the 2nd line contains its edges. The total number of edges in all sets is at most m. You can assume that the graph is connected and simple & each edge appears at most once in the graph.

 ${\tt Output.}\ \textit{For each edge in the input order, print YES if it can be included in the minimum spanning tree \ \ \&\ \ \verb{NO}\ \ otherwise.}$

Constraints. $n \in [10^5], m, q \in [2 \cdot 10^5], a, b \in [n], w \in [10^9].$

Sample.

MST_edge_set_check.inp	MST_edge_set_check.out
5 6 4	YES
1 2 4	NO
1 3 2	YES
2 4 2	NO
3 4 1	
3 5 3	
4 5 3	
3	
2 3 4	
1	
1	
2	
2 6	
2	
5 6	

Problem 276 (CSES Problem Set/MST edge cost). Given an undirected weighted graph, determine for each edge the minimum spanning tree cost if the edge must be included in the spanning tree.

Input. The 1st input line has 2 integers $n, m \in \mathbb{N}^*$: the number of nodes & edges. The nodes are numbered $1, 2, \ldots, n$. The following m lines describe the edges. Each line has 3 integers $a, b, w \in \mathbb{N}^*$: there is an edge between nodes a & b with weight w. You can assume that the graph is connected and simple & each edge appears at most once in the graph.

Output. For each edge in the input order, print the minimum spanning tree cost when the edge is included.

Constraints. $n \in [10^5], m \in [2 \cdot 10^5], a, b \in [n], w \in [10^9]$

MST_edge_cost.inp	MST_edge_cost.out
5 6	10
1 2 4	8
1 3 2	8
2 4 2	8
3 4 1	9
3 5 4	8
4 5 3	

Problem 277 (CSES Problem Set/network breakdown). Syrjälä's network has $n \in \mathbb{N}^*$ computers $\mathfrak{E} \ m \in \mathbb{N}^*$ connections between them. The network consists of components of computers that can send messages to each other. Nobody in Syrjälä understands how the network works. For this reason, if a connection breaks down, nobody will repair it. In this situation a component may be divided into 2 components. Calculate the number of components after each connection breakdown.

Input. The 1st input line has 3 integers $n, m, k \in \mathbb{N}^*$: the number of computers, connections, & breakdowns. The computers are numbered $1, 2, \ldots, n$. Then, there are m lines describing the connections. Each line has 2 integers $a, b \in \mathbb{N}^*$: there is a connection between computers a & b: Each connection is between 2 different computers, & there is at most 1 connection between 2 computers. Finally, there are k lines describing the breakdowns. Each line has 2 integers $a, b \in \mathbb{N}^*$: the connection between computers a & b breaks down.

Output. After each breakdown, print the number of components.

Constraints. $n \in [10^5], m \in [2 \cdot 10^5], k \in [m], a, b \in [n]$

Sample.

network_breakdown.inp	network_breakdown.out
5 5 3	2 2 3
1 2	
1 3	
2 3	
3 4	
4 5	
3 4	
2 3	
4 5	

Problem 278 (CSES Problem Set/tree coin collecting I). You are given a tree with $n \in \mathbb{N}^*$ nodes. Some nodes contain a coin. Answer $q \in \mathbb{N}^*$ queries of the form: what is the shortest length of a path from node a to node b that visits a node with a coin?

Input. The 1st input line has 2 integers $n, q \in \mathbb{N}^*$: the number of nodes & queries. The nodes are numbered $1, 2, \ldots, n$. The 2nd line contains n integers c_1, c_2, \ldots, c_n . If $c_i = 1$, node i has a coin. If $c_i = 0$, node i doesn't have a coin. You can assume at least 1 node has a coin. Then there are n-1 lines describing the edges. Each line contains 2 integers $a, b \in \mathbb{N}^*$: there is an edge between nodes a & b. Finally, there are q lines describing the queries. Each line contains 2 integers a, b: the start & end nodes.

Output. Print q integers: the answers to the queries.

Constraints. $n, q \in [2 \cdot 10^5], a, b \in [n]$.

Sample.

tree_coin_collecting_I.inp	tree_coin_collecting_I.out
5 4	2
10010	3
2 4	0
2 3	4
1 3	
3 5	
15	
3 2	
4 4	
5 5	

Problem 279 (CSES Problem Set/tree coin collecting II). You are given a tree with $n \in \mathbb{N}^*$ nodes. Some nodes contain a coin. Answer $q \in \mathbb{N}^*$ queries of the form: what is the shortest length of a path from node a to node b that visits all nodes with coins?

Input. The 1st input line has 2 integers $n, q \in \mathbb{N}^*$: the number of nodes & queries. The nodes are numbered $1, 2, \ldots, n$. The 2nd line contains n integers c_1, c_2, \ldots, c_n . If $c_i = 1$, node i has a coin. If $c_i = 0$, node i doesn't have a coin. You can assume at least 1 node has a coin. Then there are n-1 lines describing the edges. Each line contains 2 integers $a, b \in \mathbb{N}^*$: there is an edge between nodes a & b. Finally, there are q lines describing the queries. Each line contains 2 integers a, b: the start & end nodes.

Output. Print q integers: the answers to the queries.

Constraints. $n, q \in [2 \cdot 10^5], a, b \in [n]$.

Sample.

tree_coin_collecting_I.inp	tree_coin_collecting_I.out
5 4	6
1 0 0 1 0	5
2 4	6
2 3	8
1 3	
3 5	
1 5	
3 2	
4 4	
5 5	

Problem 280 (CSES Problem Set/tree isomorphism I). Given 2 rooted trees, find out if they are isomorphic, i.e., it is possible to draw them so that they look the same.

Input. The 1st input line has an integer $t \in \mathbb{N}^*$: the number of tests. Then, there are t tests described as follows: The 1st line has an integer $n \in \mathbb{N}^*$: the number of nodes in both trees. The nodes are numbered $1, 2, \ldots, n$, \mathcal{E} node 1 is the root. Then, there are n-1 lines describing the edges of the 1st tree, \mathcal{E} finally n-1 lines describing the edges of the 2nd tree.

Output. For each test, print YES, if the trees are isomorphic, & NO otherwise.

Constraints. $t \in [10^3], n \in \overline{2,10^5}, \text{ the sum of all values of } n \text{ is at most } 10^5.$

Sample.

tree_isomorphism_I.inp	tree_isomorphism_I.out
2	NO
3	YES
1 2	
2 3	
1 2	
1 3	
3	
1 2	
2 3	
1 3	
3 2	

Problem 281 (CSES Problem Set/tree isomorphism II). Given 2 (not rooted) trees, find out if they are isomorphic, i.e., it is possible to draw them so that they look the same.

Input. The 1st input line has an integer $t \in \mathbb{N}^*$: the number of tests. Then, there are t tests described as follows: The 1st line has an integer $n \in \mathbb{N}^*$: the number of nodes in both trees. The nodes are numbered $1, 2, \ldots, n$, & node 1 is the root. Then, there are n-1 lines describing the edges of the 1st tree, & finally n-1 lines describing the edges of the 2nd tree.

Output. For each test, print YES, if the trees are isomorphic, $\ensuremath{\mathfrak{C}}$ NO otherwise.

Constraints. $t \in [10^3], n \in \overline{2,10^5}$, the sum of all values of n is at most 10^5 .

tree_isomorphism_II.inp	tree_isomorphism_II.out
2	YES
3	YES
1 2	
2 3	
1 2	
1 3	
3	
1 2	
2 3	
1 3	
3 2	

Problem 282 (CSES Problem Set/flight route requests). There are $n \in \mathbb{N}^*$ cities with airports but no flight connections. You are given $m \in \mathbb{N}^*$ requests which routes should be possible to travel. Determine the minimum number of 1-way flight connections which makes it possible to fulfil all requests.

Input. The 1st input line has 2 integers $n, m \in \mathbb{N}^*$: the number of cities & requests. The cities are numbered $1, 2, \ldots, n$. After this, there are m lines describing the requests. Each line has 2 integers $a, b \in \mathbb{N}^*$: there has to be a route from city a to city b. Each request is unique.

Output. Print 1 integer: the minimum number of flight connections.

Constraints. $n \in [10^5], m \in [2 \cdot 10^5], a, b \in [n].$

Sample.

flight_route_request.inp	flight_route_request.out
4 5	4
1 2	
2 3	
2 4	
3 1	
3 4	

Explanation. You can create the connections $1 \to 2, 2 \to 3, 2 \to 4, 3 \to 1$. Then you can also fly from city 3 to city 4 using the route $3 \to 1 \to 2 \to 4$.

Problem 283 (CSES Problem Set/critical cities). There are $n \in \mathbb{N}^*$ cities \mathcal{E} $m \in \mathbb{N}^*$ flight connections between them. A city is called a critical city if it appears on every route from a city to another city. Find all critical cities from Syrjälä to Lehmälä.

Input. The 1st input line has 2 integers $n, m \in \mathbb{N}^*$: the number of cities & flights. The cities are numbered $1, 2, \ldots, n$. City 1 is Syrjälä, & city n is Lehmälä. Then, there are m lines describing the connections. Each line has 2 integers $a, b \in \mathbb{N}^*$: there is a flight from city a to city b. All flights are 1-way. You may assume that there is a route from Syrjälä to Lehmälä.

Output. 1st print an integer k: the number of critical cities. After this, print k integers: the critical cities in increasing order. Constraints. $n \in \overline{2,10^5}, m \in [2 \cdot 10^5], a,b \in [n]$.

Sample.

critical_city.inp	critical_city.out
5 5	3
1 2	1 2 5
2 3	
2 4	
3 5	
4 5	

Problem 284 (CSES Problem Set/visting cities). You want to travel from Syrjälä to Lehmälä by plane using a minimum-price route. Which cities will you certainly visit?

Input. The 1st input line has 2 integers $n, m \in \mathbb{N}^*$: the number of cities & flights. The cities are numbered $1, 2, \ldots, n$. City 1 is Syrjälä, & city n is Lehmälä. Then, there are m lines describing the flights. Each line has 3 integers $a, b, c \in \mathbb{N}^*$: there is a flight from city a to city b with price c. All flights are 1-way. You may assume that there is a route from Syrjälä to Lehmälä.

Output. 1st print an integer k: the number of cities that are certainly in the route. After this, print the k cities sorted in increasing order.

Constraints. $n \in [10^5], m \in [2 \cdot 10^5], a, b \in [n], c \in [10^9].$

visit_city.inp	visit_city.out
5 6	4
1 2 3	1 3 4 5
1 3 4	
2 3 1	
2 4 5	
3 4 1	
4 5 8	

Problem 285 (CSES Problem Set/graph coloring). You are given a simple graph with $n \in \mathbb{N}^*$ nodes \mathfrak{C} $m \in \mathbb{N}^*$ edges. Use the minimum possible number of colors to color each node such that no edge connects 2 nodes of the same color.

Input. The 1st input line has 2 integers $n, m \in \mathbb{N}^*$: the number of nodes & edges. The nodes are numbered $1, 2, \ldots, n$. Then there are m lines describing the edges. Each line has 2 integers $a, b \in \mathbb{N}^*$: there is an edge connecting nodes a & b.

Output. 1st print an integer k: the minimum number of colors. After this, print n integers c_1, c_2, \ldots, c_n : the colors of the nodes. The colors should satisfy $c_i \in [k]$. You may print any valid solution.

Constraints. $n \in [16], m \in [100], m \in \overline{0, \frac{n(n-1)}{2}}.$ Sample.

<pre>graph_coloring.inp</pre>	<pre>graph_coloring.out</pre>
4 4	2
1 2	1 2 1 2
2 3	
3 4	
4 1	

Problem 286 (CSES Problem Set/bus companies). There are $n \in \mathbb{N}^*$ cities \mathscr{E} $m \in \mathbb{N}^*$ bus companies. Each bus company operates in specific cities \mathscr{E} sells tickets for a specific price. Buying a ticket from a bus company allows you to travel between any 2 cities that the company operates in. Determine the cost of the cheapest route from Syrjälä to every city.

Input. The 1st input line has 2 integers $n, m \in \mathbb{N}^*$: the number of cities & bus companies. The cities are numbered $1, 2, \ldots, n$, & city 1 is Syrjälä. The next line has m integers c_1, c_2, \ldots, c_m : the ticket costs for each bus company. After that, there are m pairs of lines describing the cities for each bus company. The 1st line of each pair has a single integer k: the number of cities the bus company operates in. The 2nd line of each pair has k distinct integers a_1, a_2, \ldots, a_k : the cities & bus company operates in. You can assume that it is possible to travel from Syrjälä to all other cities.

Output. Print n integers: the cheapest route costs from Syrjälä to cities $1, 2, \ldots, n$.

Constraints. $m, n \in [10^5], c \in [10^9], k \in \overline{2, n}, a \in [n], the sum of all k is at most <math>2 \cdot 10^5$. Sample.

bus_company.inp	bus_company.out
5 3	0 5 4 4 3
4 3 2	
3	
1 4 3	
2	
5 1	
4	
2 3 4 5	

Problem 287 (CSES Problem Set/split into 2 paths). You are given an acyclic directed graph with $n \in \mathbb{N}^*$ nodes & $m \in \mathbb{N}^*$ edges. Determine whether 2 paths can be formed in the graph s.t. each node of the graph appears in exactly 1 of the paths. Note that all edges of the graph do not need to appear in the paths.

Input. The 1st input line has 2 integers $n, m \in \mathbb{N}^*$: the number of nodes & the number of edges. The nodes are numbered $1, 2, \ldots, n$. After this, there are m lines which describe the edges. Each line has 2 integers $a, b \in \mathbb{N}^*$: there is an edge in the graph from node a to node b.

Output. 1st print the line YES if the paths can be formed, or NO otherwise. If the paths can be formed, print them on the following 2 lines. At the beginning of both lines, print the amount of nodes in the path & then the nodes of the path in order. There must be an edge in the graph between subsequent nodes. 1 of the paths may contain zero nodes. If there exist multiple solutions, you can print any solution.

Constraints. $n \in \overline{2, 2 \cdot 10^5}, m \in \overline{0, 5 \cdot 10^5}$.

split_into_2_path.inp	split_into_2_path.out
5 4	YES
1 2	2 1 2
1 4	3 3 4 5
3 4	
4 5	
5 4	NO
1 2	
1 3	
1 4	
1 5	

Problem 288 (CSES Problem Set/network renovation). Syrjälä's network consists of $n \in \mathbb{N}^*$ computers \mathcal{E} n-1 connections between them. It is possible to send data between any 2 computers. However, if any connection breaks down, it will no longer be possible to send data between some computers. Add the minimum number of new connections in such a way that you can still send data between any 2 computers even if any single connection breaks down.

Input. The 1st input line has 2 integers $n, m \in \mathbb{N}^*$: the number of computers. The computers are numbered $1, 2, \ldots, n$. After this, there are n-1 lines describing the connections. Each line has 2 integers $a, b \in \mathbb{N}^*$: there is a connection between computers a \mathcal{E} b

Output. 1st print an integer k: the minimum number of new connections. After this, print k lines describing the connections. You can print any valid solution.

Constraints. $n \in \overline{3, 10^5}, a, b \in [n]$.

Sample.

network_renovation.inp	network_renovation.out
5	2
1 2	2 4
1 3	4 5
3 4	
3 5	

Problem 289 (CSES Problem Set/forbidden cities). There are $n \in \mathbb{N}^*$ cities & $m \in \mathbb{N}^*$ roads between them. Kaaleppi is currently in city a & wants to travel to city b. However, there is a problem: Kaaleppi has recently robbed a bank in city c & can't enter the city, because the local police would catch him. Find out if there is a route from city a to city b that does not visit city c. As an additional challenge, you have to process q queries where a, b, c vary.

Input. The 1st input line has 3 integers $n, m, q \in \mathbb{N}^*$: the number of cities, roads, & queries. The cities are numbered $1, 2, \ldots, n$. Then, there are m lines describing the roads. Each line has 2 integers $a, b \in \mathbb{N}^*$: there is a road between cities a & b. Each road is bidirectional. Finally, there are q lines describing the queries. Each line has 3 integers $a, b, c \in \mathbb{N}^*$: is there a route from city a to city b that does not visit city c? You can assume that there is a route between any 2 cities.

Output. For each query, print YES, if there is such a route, and NO otherwise.

Constraints. $n, q \in [10^5], m \in [2 \cdot 10^5], a, b, c \in [n]$

forbidden_city.inp	forbidden_city.out
5 6 3	YES
1 2	NO
1 3	YES
2 3	
2 4	
3 4	
4 5	
1 4 2	
3 5 4	
3 5 2	

Problem 290 (CSES Problem Set/creating offices). There are $n \in \mathbb{N}^*$ cities & n-1 roads between them. There is a unique route between any 2 cities, & their distance is the number of roads on that route. A company wants to have offices in some cities, but the distance between any 2 offices has to be at least d. What is the maximum number of offices they can have?

Input. The 1st input line has 2 integers $n, d \in \mathbb{N}^*$: the number of cities & the minimum distance. The cities are numbered $1, 2, \ldots, n$. After this, there are n-1 lines describing the roads. Each line has 2 integers $a, b \in \mathbb{N}^*$: there is a road between cities $a \notin b$.

Output. 1st print an integer k: the maximum number of offices. After that, print the cities which will have offices. You can print any valid solution.

Constraints. $n, d \in [2 \cdot 10^5], a, b \in [n]$.

Sample.

creating_office.inp	creating_office.out
5 3	2
1 2	1 4
2 3	
3 4	
3 5	

Problem 291 (CSES Problem Set/new flight routes). There are $n \in \mathbb{N}^*$ cities & $m \in \mathbb{N}^*$ flight connections between them. Add new flights so that it will be possible to travel from any city to any other city. What is the minimum number of new flights required?

Input. The 1st input line has 2 integers $n, m \in \mathbb{N}^*$: the number of cities & flights. The cities are numbered 1, 2, ..., n. After this, there are n-1 lines describing the roads. Each line has 2 integers $a, b \in \mathbb{N}^*$: there is a road between cities a & b. All flights are 1-way flights.

Output. 1st print an integer k: the required number of new flights. After that, print k lines describing the new flights. You can print any valid solution.

Constraints. $n \in [10^5], m \in [2 \cdot 10^5], a, b \in [n].$

new_flight_route.inp	new_flight_route.out
4 5	1
1 2	4 2
2 3	
3 1	
1 4	
3 4	

Chương 33

Counting Problems – Các Bài Toán Đếm

Problem 292 (CSES Problem Set/filled subgrid count I). You are given a grid of letters. Calculate, for each letter, the number of square subgrids whose each letter is the same.

Input. The 1st input line has 2 integers $n, k \in \mathbb{N}^*$: the size of the grid & the number of letters. The letters are the 1st k uppercase letters. After this, there are n lines that describe the grid. Each line has n letters.

Output. Print k integer: for each letter, the number of subgrids.

Constraints. $n \in [3000], k \in [26]$.

Sample.

filled_subgrid_count_I.inp	filled_subgrid_count_I.out
5 3	21
ABBBC	10
BBBBC	3
BCAAA	
AAAAA	
AAAAA	

Solution. C++:

1. VNTA's C++: filled subgrid count I

```
#include <bits/stdc++.h>
    using namespace std;
    int main() {
        ios_base::sync_with_stdio(0);
5
        cin.tie(0); cout.tie(0);
6
        int n, k;
        cin >> n >> k;
        vector<string> g(n);
        for (int i = 0; i < n; ++i) cin >> g[i];
10
        vector<long long> res(k, 0);
11
        vector<vector<int>> dp(n, vector<int>(n, 0));
12
        for (char c = 'A'; c < 'A' + k; ++c) {
            for (int i = 0; i < n; ++i)
14
            fill(dp[i].begin(), dp[i].end(), 0);
            long long d = 0;
            for (int i = 0; i < n; ++i) {
17
                 for (int j = 0; j < n; ++j) {
                      if (g[i][j] == c) {
19
                          if (i == 0 || j == 0) dp[i][j] = 1;
                          {\tt else \; dp[i][j] = min(\{dp[i \; - \; 1][j], \; dp[i][j \; - \; 1], \; dp[i \; - \; 1][j \; - \; 1]\}) \; + \; 1;}
21
                          d += dp[i][j];
22
                     }
23
```

```
}
 24
              }
 25
              res[c - 'A'] = d;
 26
 27
          for (int i = 0; i < k; ++i) cout << res[i] << "\n";
 28
          return 0;
 30
2. DPAK's C++: filled subgrid count I
     #include <bits/stdc++.h>
     #define 11 long long
     using namespace std;
     int main() {
  5
          ios_base::sync_with_stdio(0);
  6
          cin.tie(0);
  7
          ll n, k; cin >> n >> k;
          vector<vector<char>> a(n + 1, vector<char>(n + 1));
          for (ll i = 1; i <= n; ++i) {
 10
              for (ll j = 1; j \le n; ++j) cin >> a[i][j];
 11
 12
          vector<ll> ans(k, 0);
          vector < vector < 11 >> dp(n + 1, vector < 11 > (n + 1, 0));
 14
          for (11 c = 0; c < k; ++c) {
 16
              char CHAR = c + 'A';
              dp.resize(n + 1, vector < ll > (n + 1, 0)); // reset value
 18
              for (ll i = 1; i \le n; ++i)
              for (ll j = 1; j \le n; ++j)
              ans[c] += dp[i][j] = (a[i][j] == CHAR ? min({dp[i - 1][j], dp[i][j - 1], dp[i - 1][j - 1]}) + 1 : (a[i][j] == cHAR ? min({dp[i - 1][j], dp[i][j] - 1], dp[i - 1][j - 1]})
 21
 22
          for (ll c = 0; c < k; ++c) cout << ans[c] << ^{\prime}n';
 24
 25
3. NLDK's C++: filled subgrid count I
     #include <bits/stdc++.h>
     #pragma GCC optimize ("03")
     #pragma GCC optimize ("unroll-loops")
     #define Sanic_speed ios_base::sync_with_stdio(false);cin.tie(NULL);cout.tie(NULL);
     #define Ret return 0;
     #define ret return;
     #define all(x) x.begin(), x.end()
     #define el "\n";
     #define elif else if
     #define ll long long
     #define fi first
 11
     #define se second
     #define pb push_back
     #define pops pop_back
     #define cYES cout << "YES" << "\n";</pre>
     #define cNO cout << "NO" << "\n";</pre>
     #define cYes cout << "Yes" << "\n";</pre>
     #define cNo cout << "No" << "\n";</pre>
     #define cel cout << "\n";</pre>
     #define frs(i, a, b) for(int i = a; i < b; ++i)
     #define fre(i, a, b) for(int i = a; i \le b; ++i)
     #define wh(t) while (t--)
```

```
#define SORAI int main()
 23
     using namespace std;
 24
     typedef unsigned long long ull;
 25
 26
     void solve() {
 27
         int n, k;
         cin >> n >> k;
 29
         string s[n];
         vector<vector<int>> dp(n, vector<int> (n, 0));
 31
         vector<11> a(k, 0);
         frs(i, 0, n) cin >> s[i];
 33
         frs(i, 0, k) {
 34
             char c = i + 'A';
             dp = vector<vector<int>>(n, vector<int>(n, 0));
             frs(j, 0, n) \{if (s[0][j] == c) dp[0][j] = 1; a[i] += dp[0][j]; \}
 37
             frs(j, 1, n) {
                  if (s[j][0] == c) \{dp[j][0] = 1; a[i] += dp[j][0];\}
                  frs(m, 1, n) {
 40
                      if (s[j][m] == c) {
 41
                          dp[j][m] = 1 + min({dp[j - 1][m], dp[j][m - 1], dp[j - 1][m - 1]});
 42
                          a[i] += dp[j][m];
 44
                  }
 45
             }
 46
         }
         // answer
 48
         frs(i, 0, k) cout << a[i] << el
 49
     }
 50
 51
     SORAI {
 52
         Sanic_speed
 53
         int t = 1; //cin >> t;
 54
         wh(t) {solve();}
 55
     }
 56
4. PPP's C++: filled subgrid count I
     #include <iostream>
     #include <vector>
     using namespace std;
     using ll = long long;
     int main() {
  6
         ll n, k; cin >> n >> k;
         vector<string> luoi(n); // vector lưu trữ lưới
         for (ll i = 0; i < n; ++i) cin >> luoi[i];
 10
 11
         // Đếm số hình vuông cho từng chữ cái A-Z
 12
         vector<ll> result(26, 0);
 14
         // Kích thước lớn nhất của hình vuông kết thúc ở (i, j)
         vector<vector<ll>> dp(n, vector<ll>(n, 1));
 16
         // Tính số lượng hình vuông con có các ô giống nhau
 18
         for (ll i = 0; i < n; ++i) { // Duyệt từng hàng của lưới grid
 19
             for (ll j = 0; j < n; ++j) { // Duyệt từng cột trong hàng i.
                  if (i > 0 \&\& j > 0 \&\&
 21
                  luoi[i][j] == luoi[i - 1][j] &&
                                                        // Chỉ xét những ô không nằm ở biên
 22
                  luoi[i][j] == luoi[i][j - 1] &&
                                                        // Lý do: Vì các ô ở hàng đầu và cột đầu không có đủ 3 ô bé
 23
```

```
luoi[i][j] == luoi[i - 1][j - 1])
                                                        // trên và chéo trái trên để so sánh.
 24
                  dp[i][j] = min(dp[i - 1][j], min(dp[i][j - 1], dp[i - 1][j - 1])) + 1;
 25
                  // Với mỗi ô (i,j), ta cộng dp[i][j] vào tổng số hình vuông của chữ cái đó.
 26
                  result[luoi[i][j] - 'A'] += dp[i][j];
 27
              }
 28
         }
 30
         for (int i = 0; i < k; ++i) cout << result[i] << '\n';
         return 0;
 32
     }
5. NHT's C++: filled subgrid count I
     #include <bits/stdc++.h>
     #define ll long long
     using namespace std;
     const int N = 3005;
     string grid[N];
     int dp[N][N];
     11 result[30];
     int n, m;
 10
     int main() {
 11
 12
         ios_base::sync_with_stdio(false);
         cin.tie(NULL);
 13
         cout.tie(NULL);
 15
         cin >> n >> m;
         for (int i = 0; i < n; ++i)
 17
         cin >> grid[i];
         for (int i = 1; i <= n; ++i) {
 19
              vector<pair<int, int>> monotone;
              11 \text{ rects} = 0;
              for (int j = 1; j \le n; ++j) {
 22
                  dp[i][j] = 1;
 23
                  if (i > 1 \text{ and } grid[i - 1][j - 1] == grid[i - 2][j - 1])
                  dp[i][j] += dp[i - 1][j];
 26
                  if (j > 1 \text{ and } grid[i - 1][j - 1] != grid[i - 1][j - 2]) {
 27
                      monotone.clear();
 28
                      rects = 0;
 30
                  int cnt = 1;
                  while (monotone.size() and monotone.back().first >= dp[i][j]) {
 32
                       cnt += monotone.back().second;
                       rects -= 1LL * monotone.back().first * monotone.back().second;
 34
                       monotone.pop_back();
 35
                  }
                  monotone.push_back({dp[i][j], cnt});
 37
                  rects += 1LL * dp[i][j] * cnt;
 38
                  result[grid[i - 1][j - 1] - 'A'] += rects;
 39
              }
 40
         }
 41
         for (int i = 0; i < m; ++i)
 42
         cout << result[i] << '\n';</pre>
 43
 44
         return 0;
 45
     }
 46
```

Problem 293 (CSES Problem Set/filled subgrid count II). You are given a grid of letters. Calculate, for each letter, the number of rectangular subgrids whose each letter is the same.

Input. The 1st input line has 2 integers $n, k \in \mathbb{N}^*$: the size of the grid & the number of letters. The letters are the 1st k uppercase letters. After this, there are n lines that describe the grid. Each line has n letters.

Output. Print k integer: for each letter, the number of subgrids.

Constraints. $n \in [3000], k \in [26]$.

Sample.

filled_subgrid_count_II.inp	filled_subgrid_count_II.out
5 3	64
ABBBC	24
BBBBC	4
BCAAA	
AAAAA	
AAAAA	

Problem 294 (CSES Problem Set/all letter subgrid count I). You are given a grid of letters. Calculate the number of square subgrids that contain all the letters.

Input. The 1st input line has 2 integers $n, m \in \mathbb{N}^*$: the size of the grid \mathfrak{G} the number of letters. The letters are the 1st k uppercase letters. After this, there are n lines that describe the grid. Each line has n letters.

Output. Print the number of subgrids.

Constraints. $n \in [3000], k \in [26]$.

Sample.

all_letter_subgrid_count_I.inp	all_letter_subgrid_count_I.out
5 3	15
ABBBC	
BBBBC	
BCAAA	
AAAAA	
AAAAA	

Problem 295 (CSES Problem Set/all letter subgrid count II). You are given a grid of letters. Calculate the number of rectangular subgrids that contain all the letters.

Input. The 1st input line has 2 integers $n, m \in \mathbb{N}^*$: the size of the grid \mathfrak{C} the number of letters. The letters are the 1st k uppercase letters. After this, there are n lines that describe the grid. Each line has n letters.

Output. Print the number of subgrids.

Constraints. $n \in [500], k \in [26]$.

Sample.

all_letter_subgrid_count_II.inp	all_letter_subgrid_count_II.out
5 3	70
ABBBC	
BBBBC	
BCAAA	
AAAAA	
AAAAA	

Problem 296 (IMO2008P5). Let $n, k \in \mathbb{N}^*$, $k \geq n$, k - n: 2. Let 2n lamps labeled $1, 2, \ldots, 2n$ be given, each of which can be either on or off. Initially all the lamps are off. We consider sequences of steps: at each step 1 of the lamps is switched (from on to off or from off to on). Let N be the number of such sequences consisting of k steps $\mathscr E$ resulting in the state where lamps 1 through n are all on, $\mathscr E$ laps n+1 through n are all off. Let n be the number of such sequences consisting of n steps, resulting in the state where lamps 1 through n are all on, n are all on, n are all off, but where none of the lamps n+1 through n is ever switched on. Determine the ratio n n.

Bài toán 51 ([VL24], p. 12, IMO2008P5). Gi^a sử $n,k \in \mathbb{N}^*$, $k \geq n, k-n : 2$. Cho 2n bóng đèn được đánh số từ 1 đến 2n; mỗi bóng có thể sáng hoặc tắt. Tại thời điểm ban đầu mỗi bóng đều tắt. Xét các đãy gồm các bước: tại mỗi bước, công tắc của 1 trong các bóng đèn được bật (từ sáng chuyển thành tắt hoặc từ tắt chuyển thành sáng). Gi^a sử N là số các dãy mà mỗi dãy gồm k bước \mathcal{E} kết thúc ở trạng thái: các bóng đèn từ 1 đến n sáng, các bóng từ n+1 đến 2n tắt. Gi^a sử M là số các dãy mà mỗi dãy gồm k bước \mathcal{E} cũng kết thúc ở trạng thái: các bóng đèn từ 1 đến n sáng, các bóng từ n+1 đến 2n tắt, nhưng trong quá trình đó n0 không n1 công tắc nào của các bóng từ n+11 đến n2 được bật. n2 Tính tỷ số n3.

Input. Chỉ chứa 1 dòng gồm 2 số $n,k\in\mathbb{N}^{\star},\;k\geq n,\;k-n$: 2 (viết if else để kiểm tra điều kiện này). Output. Tỷ số $\frac{M}{N}$.

Chương 34

Combinatorics

Contents

34.1	Binomial Coefficients – Hệ Số Nhị Thức	
	$34.1.1 \text{Calculation of binomial coefficients} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	
	34.1.2 Pascal's triangle – Tam giác Pascal	
	34.1.3 Computing binomial coefficients modulo m – Tính hệ số nhị thức modulo m	

Resources - Tài nguyên.

1. NGUYỄN QUẢN BÁ HỒNG. Lecture Note: Combinatorics & Graph Theory - Bài Giảng: Tổ Hợp & Lý Thuyết Đồ Thị.

PDF: URL: https://github.com/NQBH/advanced_STEM_beyond/blob/main/combinatorics/lecture/NQBH_combinatorics_graph_theory_lecture.pdf.

TEX: URL: https://github.com/NQBH/advanced_STEM_beyond/blob/main/combinatorics/lecture/NQBH_combinatorics_graph_theory_lecture.tex.

- 2. [Sha22]. Shahriar Shahriari. An Invitation To Combinatorics.
- 3. [Val02; Val21]. Gabriel Valiente. Algorithms on Trees & Graphs With Python Code. 2e.

34.1 Binomial Coefficients – Hê Số Nhi Thức

Resources - Tài nguyên.

1. Algorithms for Competitive Programming/binomial coefficients.

Binomial coefficients $\binom{n}{k}$ are the number of ways to select a set of k elements from n different elements without taking into account the order of arrangement of these elements (i.e., the number of unordered sets).

– Hệ số nhị thức $\binom{n}{k}$ là số cách chọn 1 tập hợp k phần tử từ n phần tử khác nhau mà không tính đến thứ tự sắp xếp của các phần tử này (tức là số tập hợp không có thứ tự).

Binomial coefficients are also the coefficients in the expansion of $(a + b)^n$ (so-called binomial theorem):

$$(a+b)^n = \sum_{i=0}^n \binom{n}{i} a^{n-i} b^i = \binom{n}{0} a^n + \binom{n}{1} a^{n-1} b + \binom{n}{2} a^{n-2} b^2 + \dots + \binom{n}{k} a^{n-k} b^k + \dots + \binom{n}{n} b^n, \ \forall a,b \in \mathbb{C}, \ \forall n \in \mathbb{N}.$$

34.1.1 Calculation of binomial coefficients

Straightforward calculation using analytical formula – Tính toán đơn giản bằng công thức phân tích. The 1st, straightforward formula is very easy to code, but this method is likely to overflow even for relatively small values of n, k (even if the answer completely fit into some datatype, the calculation of the intermediate factorials can lead to overflow). Therefore, this method often can only be used with long arithmetic:

– Công thức đầu tiên, đơn giản rất dễ mã hóa, nhưng phương pháp này có khả năng tràn ngay cả đối với các giá trị tương đối nhỏ của n, k (ngay cả khi câu trả lời hoàn toàn phù hợp với 1 số kiểu dữ liệu, thì việc tính toán các giai thừa trung gian có thể dẫn đến tràn). Do đó, phương pháp này thường chỉ có thể được sử dung với số học dài:

Chương 34 Combinatorics

```
int C(int n, int k) {
   int res = 1;
   for (int i = n - k + 1; i <= n; ++i) res *= i;
   for (int i = 2; i <= k; ++i) res /= i;
   return res;
}</pre>
```

Improved implementation – Cải thiện việc thực hiện. Note that in the above implementation the numerator & denominator have the same number of factors k, each of which is ≥ 1 . Therefore, we can replace our fraction with a product k fractions, each of which is real-valued. However, on each step after multiplying current answer by each of the next fractions the answer will still be integer (this follows from the property of factoring in).

– Lưu ý rằng trong triển khai trên, tử số & mẫu số có cùng số lượng ước số k, mỗi ước số là ≥ 1 . Do đó, chúng ta có thể thay phân số của mình bằng tích k phân số, mỗi phân số đều có giá trị thực. Tuy nhiên, ở mỗi bước sau khi nhân câu trả lời hiện tại với mỗi phân số tiếp theo, câu trả lời vẫn sẽ là số nguyên (điều này tuân theo tính chất của việc phân tích thành thừa số).

C++ implementation:

```
int C(int n, int k) {
    double res = 1;
    for (int i = 1; i <= k; ++i) res = res * (n - k + i) / i;
    return (int)(res + 0.01);
}</pre>
```

Here we carefully cast the floating point number to an integer, taking into account that due to the accumulated errors, it may be slightly less than the true value (e.g., 2.99999 instead of 3).

- Ở đây, chúng ta cẩn thận chuyển đổi số dấu phẩy động sang số nguyên, lưu ý rằng do các lỗi tích lũy, giá trị này có thể nhỏ hơn 1 chút so với giá trị thực (ví dụ: 2.99999 thay vì 3).

34.1.2 Pascal's triangle – Tam giác Pascal

By using the recurrence relation we can construct a table of binomial coefficients (Pascal's triangle) & take the result from it. The advantage of this method is that intermediate results never exceed the answer & calculating each new table element requires only 1 addition. The flaw is slow execution for large n, k if you just need a single value & not the whole table (because in order to calculate $\binom{n}{k}$ you will need to build a table of all $\binom{i}{j}$, $\forall i, j \in [n]$, or at least to $j \in [\min\{i, 2k\}]$). The time complexity can be considered to be $O(n^2)$.

– Bằng cách sử dụng quan hệ đệ quy, chúng ta có thể xây dựng 1 bảng các hệ số nhị thức (tam giác Pascal) & lấy kết quả từ đó. Ưu điểm của phương pháp này là các kết quả trung gian không bao giờ vượt quá câu trả lời & tính toán mỗi phần tử bảng mới chỉ cần 1 phép cộng. Nhược điểm là thực thi chậm đối với n,k lớn nếu bạn chỉ cần 1 giá trị duy nhất & không phải toàn bộ bảng (vì để tính $\binom{n}{k}$), bạn sẽ cần xây dựng 1 bảng gồm tất cả $\binom{i}{j}$, $\forall i,j\in[n]$, hoặc ít nhất là $j\in[\min\{i,2k\}]$). Độ phức tạp thời gian có thể được coi là $O(n^2)$.

C++ implementation:

```
const int maxn = ...;
int C[maxn + 1] [maxn + 1];
C[0][0] = 1;
for (int n = 1; n <= maxn; ++n) {
        C[n][0] = C[n][n] = 1;
        for (int k = 1; k < n; ++k) C[n][k] = C[n - 1][k - 1] + C[n - 1][k];
}</pre>
```

If the entire table of values is not necessary, storing only 2 last rows of it is sufficient (current nth row & the previous (n-1)th).
— Nếu không cần toàn bộ bảng giá trị, chỉ cần lưu trữ 2 hàng cuối cùng của bảng là đủ (hàng hiện tại thứ n & hàng trước đó thứ n-1).

Calculation in O(1). In some situations it is beneficial to precompute all the factorials in order to produce any necessary binomial coefficient with only 2 divisions later. This can be advantageous when using long arithmetic, when the memory does not allow precomputation of the whole Pascal's triangle.

– Trong 1 số trường hợp, việc tính toán trước tất cả các giai thừa là có lợi để tạo ra bất kỳ hệ số nhị thức cần thiết nào chỉ sau 2 lần chia. Điều này có thể có lợi khi sử dụng số học dài, khi bộ nhớ không cho phép tính toán trước toàn bộ tam giác Pascal.

Chương 34 Combinatorics

34.1.3 Computing binomial coefficients modulo m – Tính hệ số nhị thức modulo m

Quite often you come across the problem of computing binomial coefficients modulo some m.

– Bạn thường gặp phải vấn đề tính hệ số nhị thức modulo 1 số m nào đó.

Binomial coefficient for small n – Hệ số nhị thức cho n nhỏ. The previously discussed approach of Pascal's triangle can be used to calculate all values of $\binom{n}{k}$ mod m for reasonably small n, since it requires time complexity $O(n^2)$. This approach can handle any modulo, since only addition operations are used.

– Phương pháp tiếp cận tam giác Pascal đã thảo luận trước đó có thể được sử dụng để tính toán tất cả các giá trị của $\binom{n}{k}$ mod m cho n khá nhỏ, vì nó đòi hỏi độ phức tạp thời gian $O(n^2)$. Phương pháp tiếp cận này có thể xử lý bất kỳ modulo nào, vì chỉ sử dụng các phép toán cộng.

Binomial coefficient module large prime – Hệ số nhị thức modulo nguyên tố lớn. The formula for the binomial coefficients is $\binom{n}{k} = \frac{n!}{k!(n-k)!}$, so if we want to compute it module some prime m > n we get

$$\binom{n}{k} \equiv n!(k!)^{-1}((n-k)!)^{-1} \mod m.$$

– Công thức cho hệ số nhị thức là $\binom{n}{k} = \frac{n!}{k!(n-k)!}$, vì vậy nếu chúng ta muốn tính toán nó theo môđun một số nguyên tố m > n, chúng ta sẽ có

$$\binom{n}{k} \equiv n!(k!)^{-1}((n-k)!)^{-1} \mod m.$$

1st we precompute all factorials module m up to MAXN! in O(MAXN) time.

```
factorial[0] = 1;
for (int i = 1; i <= MAXN; i++) factorial[i] = factorial[i - 1] * i % m;</pre>
```

Afterwards we can compute the binomial coefficient in $O(\log m)$ time. – Sau đó chúng ta có thể tính hệ số nhị thức trong thời gian $O(\log m)$.

```
long long binomial_coefficient(int n, int k) {
    return factorial[n] * inverse(factorial[k] * factorial[n - k] % m) % m;
}
```

We even can compute the binomial coefficient in O(1) time if we precompute the inverse of all factorials in $O(\text{MAXN} \log m)$ using the regular method for computing the inverse, or even in O(MAXN) time using the congruence $(x!)^{-1} \equiv ((x-1)!)^{-1}x^{-1}$ & the method for computing all inverses in O(n).

– Chúng ta thậm chí có thể tính hệ số nhị thức trong thời gian O(1) nếu chúng ta tính trước nghịch đảo của tất cả các giai thừa trong $O(\text{MAXN}\log m)$ bằng phương pháp thông thường để tính nghịch đảo, hoặc thậm chí trong thời gian O(MAXN) bằng cách sử dụng phép đồng dư $(x!)^{-1} \equiv ((x-1)!)^{-1}x^{-1}$ & phương pháp để tính tất cả các nghịch đảo trong O(n).

```
long long binomial_coefficient(int n, int k) {
return factorial[n] * inverse_factorial[k] % m * inverse_factorial[n - k] % m;
}
```

Binomial coefficient module prime power – Modulo hệ số nhị thức lũy thừa. ***

Binomial coefficient module an arbitrary number. ***

Binomial coefficient for large n & small modulo. ***

Chương 35

Combinatorial Optimization – Tối Ưu Tổ Hợp

Contents
Coments

35.1	Some combinatorics problems in Mathematical Olympiads – Vài bài toán tổ hợp trong các kỳ thi Olympic Toán 205
35.2	Knapsack problem – Bài toán xếp balo
	35.2.1 Applications of knapsack problem – Úng dụng của bài toán xếp balo
	35.2.2 Definition of knapsack problem – Định nghĩa bài toán xếp balo
	35.2.3 Computational complexity of knapsack problem – Độ phức tạp tính toán của bài toán xếp balo 209
	35.2.4 Solving knapsack problem – Giải bài toán xếp balo
35.3	Traveling salesman problem – Bài toán người bán hàng du lịch

35.1 Some combinatorics problems in Mathematical Olympiads – Vài bài toán tổ hợp trong các kỳ thi Olympic Toán

Problem 297 (IMO2009P6). Let a_1, a_2, \ldots, a_n be distinct positive integers \mathcal{E} let M be a set of n-1 positive integers not containing $s = \sum_{i=1}^{n} a_i$. A grasshopper is to jump along the real axis, starting at the point 0 \mathcal{E} making n jumps to the right with lengths a_1, a_2, \ldots, a_n in some order. Prove that the order can be chosen in such a way that the grasshopper never lands on any point in M.

Bài toán 52 ([VL24], 6., p. 14, IMO2009P6). Giả sử a_1, a_2, \ldots, a_n là $n \in \mathbb{N}^*$ số nguyên dương khác nhau từng cặp & M là tập hợp gồm n-1 số nguyên dương không chứa số $s = \sum_{i=1}^n a_i$. 1 con châu chấu nhảy dọc theo trục thực, xuất phát từ điểm 0 & tiến hành n bước nhảy về bên phải với độ dài n bước nhảy là a_1, a_2, \ldots, a_n theo 1 thứ tự nào đó. Chứng minh con châu chấu có thể chọn thứ tự các bước nhảy sao cho nó không bao giờ nhảy lên bất kỳ điểm nào thuộc M.

Bài toán 53 (CP version of IMO2009P6). $Gi\mathring{a} s\mathring{u} a_1, a_2, \ldots, a_n$ là $n \in \mathbb{N}^*$ số nguyên dương khác nhau từng cặp $\mathcal{E} M$ là tập hợp gồm n-1 số nguyên dương $b_1, b_2, \ldots, b_{n-1}\mathbb{N}^*$ không chứa số $s = \sum_{i=1}^n a_i$. 1 con châu chấu nhảy dọc theo trục thực, xuất phát từ điểm 0 \mathcal{E} tiến hành n bước nhảy về bên phải với độ dài n bước nhảy là a_1, a_2, \ldots, a_n theo 1 thứ tự nào đó. Đếm số cách để con châu chấu có thể chọn thứ tự các bước nhảy sao cho nó không bao giờ nhảy lên bất kỳ điểm nào thuộc M \mathcal{E} liệt kê cụ thể các bước nhảy của từng cách đó.

Input. Dòng 1 chứa 1 số nguyên dương $n \in \mathbb{N}^*$. Dòng 2 chứa n số nguyên dương khác nhau từng cặp $a_1, a_2, \ldots, a_n \in \mathbb{N}^*$. Dòng 3 chứa n-1 số nguyên dương $b_1, b_2, \ldots, b_{n-1}\mathbb{N}^*$ là n-1 phần tử của tập M (dùng lệnh if else để kiểm tra xem số $s = \sum_{i=1}^n a_i$ có thuộc M hay không).

Output. Dòng 1 chứa số cách N nhảy thỏa mãn. N dòng tiếp theo liệt kê cu thể các bước nhảy của từng cách đó.

Note 2. Hình như bài IMO2009P6 là 1 trong các bài IMO khó nhất về mặt Toán học. Thư xem CP version coi khó tương đương không.

Problem 298 (IMO2010P5). In each of 6 boxes $B_1, B_2, B_3, B_4, B_5, B_6$ there is initially 1 coin. There are 2 types of operation allowed:

- 1. Type 1: Choose a nonempty box B_i with $i \in [5]$. Remove 1 coin from B_i & add 2 coins to B_{i+1} .
- 2. Type 2: Choose a nonempty box B_i with $i \in [4]$. Remove 1 coin from B_i & exchange the contents of (possibly empty) boxes B_{i+1} & B_{i+2} .

Determine whether there is a finite sequence of such operations that results in boxes

$$B_1, B_2, B_3, B_4, B_5$$

being empty & box B_6 containing exactly $2010^{2010^{2010}}$ coins. (Note that $a^{b^c} = a^{(b^c)}$.)

Bài toán 54 ([VL24], 5., p. 16, IMO2010P5). Mỗi 1 hộp trong 6 hộp B_1, B_2, B_3, B_4, B_5 ban đầu chứa 1 đồng xu. Cho phép tiến hành 2 loại thao tác:

- 1. Chọn 1 hộp không rỗng B_i với $i \in [5]$. Lấy 1 đồng xu ra khỏi B_i & bỏ thêm 2 đồng xu vào B_{i+1} .
- 2. Chọn 1 hộp không rỗng B_i với $i \in [4]$. Lấy 1 đồng xu ra khỏi B_i & tráo đổi số đồng xu đựng trong các hộp (có thể rỗng) B_{i+1}, B_{i+2} cho nhau.

Tồn tại hay không 1 đãy hữu hạn thao tác như trên sao cho đi đến kết quả cuối cùng là 5 hộp B_1, B_2, B_3, B_4, B_5 đều rỗng, còn hộp B_6 đưng đúng $2010^{2010^{2010}}$ đồng xu?

Bài toán 55 (CP version of IMO2010P5). Mỗi 1 hộp trong 6 hộp $B_1, B_2, B_3, B_4, B_5, B_6$ ban đầu chứa 1 đồng xu. Cho phép tiến hành 2 loại thao tác:

- 1. Chọn 1 hộp không rỗng B_i với $i \in [5]$. Lấy 1 đồng xu ra khỏi B_i & bỏ thêm 2 đồng xu vào B_{i+1} .
- 2. Chọn 1 hộp không rỗng B_i với $i \in [4]$. Lấy 1 đồng xu ra khỏi B_i & tráo đổi số đồng xu đựng trong các hộp (có thể rỗng) B_{i+1}, B_{i+2} cho nhau.

Tồn tại hay không 1 dãy hữu hạn thao tác như trên sao cho đi đến kết quả cuối cùng là trạng thái B_i chứa a_i đồng xu, $\forall i \in [6]$. Input. 6 số nguyên $a_1, a_2, a_3, a_4, a_5, a_6$.

Output. NO nếu không thể đi đến trạng thái cuối $\{|B_i|\}_{i=1}^6 = \{a_i\}_{i=1}^6$. YES nếu có thể đi đến trạng thái cuối $\{|B_i|\}_{i=1}^6 = \{a_i\}_{i=1}^6$, sau đó in ra 1 dãy hữu hạn thao tác thỏa mãn (bất cứ dãy thao tác thỏa mãn nào cũng được, tính duy nhất không/chưa (?) được đảm bảo ở đây).

Bài toán 56 (Generalized CP version of IMO2010P5). (a) Mỗi 1 hộp trong $n \in \mathbb{N}^*$ hộp B_i ban đầu chứa $a_i \in \mathbb{N}$ đồng xu, $\forall i \in [n]$. Cho phép tiến hành 2 loại thao tác:

- 1. Chọn 1 hộp không rỗng B_i với $i \in [n-1]$. Lấy 1 đồng xu ra khỏi B_i & bỏ thêm b_i đồng xu vào B_{i+1} .
- 2. Chọn 1 hộp không rỗng B_i với $i \in [n-2]$. Lấy 1 đồng xu ra khỏi B_i & tráo đổi số đồng xu đựng trong các hộp (có thể rỗng) B_{i+1}, B_{i+2} cho nhau.

Tồn tại hay không 1 dãy hữu hạn thao tác như trên sao cho đi đến kết quả cuối cùng là trạng thái B_i chứa c_i đồng xu, $\forall i \in [n]$. Input. Dòng 1 chứa 1 số nguyên dương $n \in \mathbb{N}^*$. Dòng 2 chứa n số nguyên a_1, a_2, \ldots, a_n . Dòng 3 chứa n-1 số nguyên dương $c_1, c_2, \ldots, c_{n-1}$.

Output. In ra NO nếu không thể đi đến trạng thái cuối $\{|B_i|\}_{i=1}^n = \{c_i\}_{i=1}^n$. In ra YES nếu có thể đi đến trạng thái cuối $\{|B_i|\}_{i=1}^6 = \{c_i\}_{i=1}^n$, sau đó in ra 1 dãy hữu hạn thao tác thỏa mãn (bất cứ dãy thao tác thỏa mãn nào cũng được, tính duy nhất không/chưa (?) được đảm bảo ở đây). (b) Có thể mở rộng từ 2 thao tác đã mô tả cho vài thao tác khác phức tạp hơn được không?

Problem 299 (IMO2011P4). Let $n \in \mathbb{N}^*$. We are given a balance \mathcal{E} n weights of weight $2^0, 2^1, \ldots, 2^{n-1}$. We are to place each of the n weights on the balance, 1 after another, in such a way that the right pan is never heavier than the left pan. At each step we choose 1 of the weights that has not yet been placed on the balance, \mathcal{E} place it on either the left pan or the right pan, until all of the weights have been placed. Determine the number of ways in which this can be done.

Bài toán 57 ([VL24], 5., p. 16, IMO2010P5). Cho $n \in \mathbb{N}^*$. Cho 1 cái cân 2 đĩa & n quả cân với trọng lượng là $2^0, 2^1, \ldots, 2^{n-1}$. Ta muốn đặt lên cái cân mỗi 1 trong n quả cân, lần lượt từng quả 1, theo cách để đảm bảo đĩa cân bên phải không bao giờ nặng hơn đĩa cân bên trái. Ở mỗi bước ta chọn 1 trong các quả cân chưa được đặt lên cân, rồi đặt nó hoặc vào đĩa bên trái, hoặc vào đĩa bên phải, cho đến khi tất cả các quả cân đều đã được đặt trên cân. Đếm số cách để thực hiện được mục tiêu.

Problem 300 (IMO2012P3). The liar's guessing game is a game played between 2 players A, B. The rules of the game depend on 2 positive integers $k, n \in \mathbb{N}^*$ which are known to both players. At the start of the game A chooses integers x, N with $x \in [N]$. Player A keeps x secret, \mathcal{E} truthfully tells N to player B. Player B now tries to obtain information about x by asking player A questions as follows: each question consists of B specifying an arbitrary set S of positive integers (possibly one specified in some previous question), \mathcal{E} asking A whether x belongs to S. Player B may asks as many such questions as he wishes. After each question, player A must immediately it with yes or no, but is allowed to lie as many times as she wants; the only restriction is that, among any k+1 consecutive answers, at least 1 answer must be truthful. After B has asked as many questions as he wants, he must specify a set X of at most n positive integers. If $x \in X$, then B wins; otherwise, he loses. Prove: (a) If $n \geq 2^k$, then B can guarantee a win. (b) For all sufficiently large k, there exists an integer $n \geq 1.99^k$ s.t. B cannot guarantee a win.

Bài toán 58 ([VL24], IMO2012P3). Trò chơi nói dối & đoán là 1 trò chơi giữa 2 người chơi $A \, \mathcal{E} \, B$. $Luật chơi dựa trên số số nguyên dương <math>k, n \in \mathbb{N}^*$ mà cả 2 người chơi đều được biết trước. Khi bắt đầu trò chơi, A chọn các số nguyên x, N với $x \in [N]$. Người chơi A giữ bí mật số x, \mathcal{E} thông báo số N 1 cách trung thực cho người chơi B. Bây giờ B tìm cách nhận thông tin về số x bằng cách hỏi người chơi A các câu hỏi: B xác định 1 tập hợp S các số nguyên dương tùy ý \mathcal{E} hỏi A liệu x có thuộc S. Người chơi B có thể hỏi bao nhiều câu hỏi cũng được, \mathcal{E} cũng có thể hỏi lại 1 câu hỏi nhiều lần, vào bất cứ lúc nào mà anh ta muốn. Người chơi A phải trả lời mỗi câu hỏi của B ngay lập tức bằng đúng hoặc sai, nhưng anh ta được phép nói dối nhiều lần 1 cách tùy ý. Sự hạn chế duy nhất ở đây là trong bất kỳ k+1 câu trả lời liên tiếp nào cũng phải có ít nhất 1 câu trả lời thật. Sau khi B đã đặt nhiều câu hỏi như anh ta muốn, anh ta phải xác định 1 tập hợp X có không quá n số nguyên dương. Nếu $x \in X$ thì B thắng cuộc; còn nếu ngược lại, anh ta thua cuộc. Chứng minh: (a) Nếu $n \geq 2^k$, thì B có thể đảm bảo thắng cuộc. (b) Với tất cả số k đủ lớn, tồn tại $n \geq 1.99^k$ sao cho B không thể thắng cuộc.

Remark 9. For this kind of lie-&-guess game, watch, e.g., Tomodachi Game (2022.

35.2 Knapsack problem – Bài toán xếp balo

Resources - Tài nguyên.

- 1. Wikipedia/knapsack problem.
- 2. Wikipedia/list of knapsack problem.

The knapsack problem is the following problem in combinatorial optimization:

Problem 301. Given a set of items, each with a weight \mathcal{E} a value, determine which items to include in the collection so that the total weight is less than or equal to a given limit \mathcal{E} the total value is as large as possible.

- Cho 1 tập hợp các mục, mỗi mục có 1 trọng số & 1 giá trị, hãy xác định những mục nào sẽ đưa vào bộ sưu tập sao cho tổng trọng số nhỏ hơn hoặc bằng 1 giới hạn nhất định & tổng giá trị lớn nhất có thể.

It derives its name from the problem faced by someone who is constrained by a fixed-size knapsack & must fill it with the most valuable items. The problem often arises in resource allocation where the decision-makers have to choose from a set of non-divisible projects or tasks under a fixed budget or time constraint, resp.

Nó có tên bắt nguồn từ vấn đề mà 1 người phải đối mặt khi bị hạn chế bởi 1 chiếc balo có kích thước cố định & phải lấp đầy nó bằng những vật phẩm có giá trị nhất. Vấn đề thường phát sinh trong việc phân bổ nguồn lực, khi những người ra quyết định phải lựa chọn từ 1 tập hợp các dự án hoặc nhiệm vụ không thể chia nhỏ theo 1 ngân sách cố định hoặc hạn chế thời gian, tương ứng.

The knapsack problem has been studied for more than a century, with early works dating as far back as 1897.

– Bài toán balo đã được nghiên cứu trong hơn 1 thế kỷ, với những tác phẩm đầu tiên có niên đại từ năm 1897.

The subset sum problem is a special case of the decision & 0-1 problems where each kind of item, the weight equals the value $w_i = v_i$. In the field of cryptography, the term $knapsack\ problem$ is often used to refer specifically to the subset sum problem. The subset sum problem is 1 of Karp's 21 NP-complete problems.

– Bài toán tổng tập con là 1 trường hợp đặc biệt của bài toán quyết định & 0-1 trong đó mỗi loại mục, trọng số bằng giá trị $w_i = v_i$. Trong lĩnh vực mật mã, thuật ngữ $knapsack\ problem$ thường được sử dụng để chỉ cụ thể bài toán tổng tập con. Bài toán tổng tập con là 1 trong 21 bài toán NP-complete của Karp.

35.2.1 Applications of knapsack problem - Úng dụng của bài toán xếp balo

Knapsack problems appear in real-world decision-making processes in a wide variety of fields, e.g. finding the least wasteful way to cut raw materials, selection of investments & portfolios, selection of assets for asset-backed securitization, & generating keys for the Merkle-Hellman & other knapsack cryptosystems.

– Các vấn đề về balo xuất hiện trong các quá trình ra quyết định thực tế ở nhiều lĩnh vực khác nhau, ví dụ như tìm cách ít lãng phí nhất để cắt giảm nguyên liệu thô, lựa chọn khoản đầu tư & danh mục đầu tư, lựa chọn tài sản để chứng khoán hóa bằng tài sản, & tạo khóa cho Merkle–Hellman & các hệ thống mật mã balo khác.

1 early application of knapsack algorithms was in the construction & scoring of tests in which the test-takers have a choice as to which questions they answer. For small examples, it is a fairly simple process to provide the test-takers with such a choice. E.g., if an exam contains 12 questions each worth 10 points, the test-taker need only answer 10 questions to achieve a maximum possible score of 100 points. However, on tests with a heterogeneous distribution of point values, it is more difficult to provide choices. Feuerman & Weiss proposed a system in which students are given a heterogeneous test with a total of 125 possible points. The students are asked to answer all of the questions to the best of their abilities. Of the possible subsets of problems whose total point values add up to 100, a knapsack algorithm would determine which subset gives each student the highest possible score.

– 1 ứng dụng ban đầu của thuật toán balo là trong việc xây dựng & chấm điểm các bài kiểm tra trong đó người làm bài kiểm tra có thể lựa chọn câu hỏi mà họ trả lời. Đối với các ví dụ nhỏ, đây là 1 quá trình khá đơn giản để cung cấp cho người làm bài kiểm tra sự lựa chọn như vậy. Ví dụ, nếu 1 bài kiểm tra có 12 câu hỏi, mỗi câu có giá trị 10 điểm, người làm bài kiểm tra chỉ cần trả lời 10 câu hỏi để đạt được số điểm tối đa có thể là 100 điểm. Tuy nhiên, đối với các bài kiểm tra có sự phân bố điểm không đồng nhất, việc cung cấp các lựa chọn sẽ khó khăn hơn. Feuerman & Weiss đã đề xuất 1 hệ thống trong đó học sinh được đưa ra 1 bài kiểm tra không đồng nhất với tổng số 125 điểm có thể. Học sinh được yêu cầu trả lời tất cả các câu hỏi theo khả năng tốt nhất của mình. Trong số các tập hợp con có thể có của các bài toán có tổng giá trị điểm bằng 100, thuật toán balo sẽ xác định tập hợp con nào mang lại cho mỗi học sinh điểm cao nhất có thể.

A 1999 study of the Stony Brook University Algorithm Repository showed that, out of 75 algorithmic problems related to the field of combinatorial algorithms & algorithm engineering, the knapsack problem was the 19th most popular & the 3rd most needed after suffix trees & the bin packing problem.

35.2.2 Definition of knapsack problem - Định nghĩa bài toán xếp balo

The most common problem being solved is the 0-1 knapsack problem, which restricts the number x_i of copies of each kind of item to 0 or 1. Given a set of n items numbered from 1 up to n, each with a weight w_i & a value v_i , along with a maximum weight capacity W,

maximize
$$\sum_{i=1}^{n} v_i x_i$$
 subject to $\sum_{i=1}^{n} w_i x_i \leq W, \ x_i \in \{0,1\}, \forall i \in [n].$

Here x_i represents the number of instances of item i to include in the knapsack. Informally, the problem is to maximize the sum of the values of the items in the knapsack so that the sum of the weights is \leq the knapsack's capacity.

– Bài toán phổ biến nhất đang được giải quyết là bài toán balo 0-1, bài toán này hạn chế số lượng x_i bản sao của mỗi loại vật phẩm là 0 hoặc 1. Cho 1 tập hợp n vật phẩm được đánh số từ 1 đến n, mỗi vật phẩm có trọng lượng w_i & giá trị v_i , cùng với sức chứa trọng lượng tối đa W,

maximize
$$\sum_{i=1}^{n} v_i x_i$$
 theo $\sum_{i=1}^{n} w_i x_i \leq W$, $x_i \in \{0,1\}$, $\forall i \in [n]$.

Tại đây x_i biểu thị số lượng các trường hợp của vật phẩm i cần đưa vào balo. Nói 1 cách không chính thức, bài toán là phải tối đa hóa tổng giá trị của các vật phẩm trong balo sao cho tổng trọng lượng bằng \leq sức chứa của balo.

The bounded knapsack problem (BKP) removes the restriction that there is only 1 of each item, but restricts the number x_i of copies of each kind of item to a maximum nonnegative integer value c:

maximize
$$\sum_{i=1}^{n} v_i x_i$$
 theo $\sum_{i=1}^{n} w_i x_i \leq W$, $x_i \in \overline{0, c}$, $\forall i \in [n]$.

– Bài toán balo bị giới hạn (BKP) loại bỏ hạn chế là chỉ có 1 cho mỗi mục, nhưng hạn chế số lượng x_i bản sao của mỗi loại mục thành giá trị số nguyên không âm tối đa c:

maximize
$$\sum_{i=1}^{n} v_i x_i$$
 theo $\sum_{i=1}^{n} w_i x_i \leq W$, $x_i \in \overline{0, c}$, $\forall i \in [n]$.

The unbounded knapsack problem (UKP) places no upper bound on the number of copies of each kind of item & can be formulated as above except that the only restriction on x_i is that it is a nonnegative integer.

maximize
$$\sum_{i=1}^{n} v_i x_i$$
 theo $\sum_{i=1}^{n} w_i x_i \leq W$, $x_i \in \mathbb{N}$, $\forall i \in [n]$.

– Bài toán balo không giới hạn (UKP) không đặt giới hạn trên cho số lượng bản sao của mỗi loại vật phẩm & có thể được xây dưng như trên ngoại trừ han chế duy nhất đối với x_i là nó là 1 số nguyên không âm.

maximize
$$\sum_{i=1}^{n} v_i x_i$$
 theo $\sum_{i=1}^{n} w_i x_i \leq W$, $x_i \in \mathbb{N}$, $\forall i \in [n]$.

Bài toán 59 ([Thà13], p. 25, xếp balo, MAX-KNAPSACK). Cho 1 lô hàng hóa gồm các gói hàng, mỗi gói đều có khối lượng cùng với giá trị cụ thể, & cho 1 chiếc balo. Chọn từ lô này vài gói hàng nào đó & xếp đầy vào balo, nhưng không được quá, sao cho thu được 1 GTLN có thể.

Đây là 1 bài toán tối ưu tổ hợp quen thuộc, được ký hiệu là MAX-KNAPSACK & được phát biểu bằng ngôn ngữ Toán học dưới dạng tổng quát:

- Input. Cho 2 dãy số nguyên dương $\{s_i\}_{i=1}^N \cup \{S\} = s_1, \dots, s_n, S \in \mathbb{N}^\star$ & $\{\nu_i\}_{i=1}^n = \nu_1, \dots, \nu_n$.
- $\bullet\,$ Task. Tìm 1 tập con $I\subset [n]$ thỏa

$$\sum_{i \in I} s_i \le S, \ \sum_{i \in I} \nu_i \to \max.$$

• Formulation of an optimization problem.

$$\max_{I \subset [n]} \sum_{i \in I} \nu_i \text{ subject to } \sum_{i \in I} s_i \leq S.$$

35.2.3 Computational complexity of knapsack problem – Độ phức tạp tính toán của bài toán xếp balo

The knapsack problem is interesting from the perspective of computer science for many reasons:

- The decision problem form of the knapsack problem (Can a value of at least V be achieved without exceeding the weight W?) is NP-complete, thus there is no known algorithm that is both correct & fast (polynomial-time) in all cases.
- There is no known polynomial algorithm which can tell, given a solution, whether it is optimal (i.e., there is no solution with a larger V). This problem is co-NP-complete.
- There is a pseudo-polynomial time algorithm using dynamic programming.
- There is a pseudo-polynomial time algorithm using dynamic programming.
- There is a fully polynomial-time approximation scheme, which uses the pseudo-polynomial time algorithm as a subroutine.
- Many cases that arise in practice, & "random instances" from some distributions, can nonetheless be solved exactly.
- Bài toán balo rất thú vị theo góc nhìn của khoa học máy tính vì nhiều lý do:
- Dạng bài toán quyết định của bài toán balo (Có thể đạt được giá trị ít nhất là V mà không vượt quá trọng số W?) là NP-complete, do đó không có thuật toán nào vừa đúng & nhanh (thời gian đã thức) trong mọi trường hợp.
- Không có thuật toán đa thức nào có thể cho biết, với 1 giải pháp, liệu nó có tối ưu hay không (tức là không có giải pháp nào có V lớn hơn). Bài toán này là đồng NP-complete.
- Có 1 thuật toán thời gian đa thức giả sử dụng quy hoạch động.
- Có 1 thuật toán thời gian đa thức giả sử dụng quy hoạch động.
- Có 1 lược đồ xấp xỉ thời gian đa thức hoàn toàn, sử dụng thuật toán thời gian đa thức giả làm chương trình con.
- Nhiều trường hợp phát sinh trong thực tế, & "các trường hợp ngẫu nhiên" từ 1 số phân phối, tuy nhiên vẫn có thể được giải quyết chính xác.

There is a link between the "decision" & "optimization" problems in that if there exists a polynomial algorithm that solves the "decision" problem, then one can find the maximum value for the optimization problem in polynomial time by apply this algorithm iteratively while increasing the value of k. On the other hand, if an algorithm finds the optimal value of the optimization problem in polynomial time, then the decision problem can be solved in polynomial time by comparing the value of the solution output by this algorithm with the value of k. Thus, both versions of the problem are of similar difficulty.

Có 1 mối liên hệ giữa các bài toán "quyết định" & "tối ưu hóa" ở chỗ nếu tồn tại 1 thuật toán đa thức giải quyết được bài toán "quyết định", thì người ta có thể tìm giá trị cực đại cho bài toán tối ưu hóa trong thời gian đa thức bằng cách áp dụng thuật toán này theo cách lặp lại trong khi tăng giá trị của k. Mặt khác, nếu 1 thuật toán tìm thấy giá trị tối ưu của bài toán tối ưu hóa trong thời gian đa thức, thì bài toán quyết định có thể được giải quyết trong thời gian đa thức bằng cách so sánh giá trị của đầu ra giải pháp của thuật toán này với giá trị của k. Do đó, cả 2 phiên bản của bài toán đều có độ khó tương tự nhau.

1 theme in research literature is to identify what the "hard" instances of the knapsack problem look like, or viewed another way, to identify what properties of instances in practice might make them more amenable than their worst-case NP-complete behavior suggests. The goal in finding these "hard" instances is for their use in public-key cryptography systems, e.g. the Merkle-Hellman knapsack cryptosystem. More generally, better understanding of the structure of the space of instances of an optimization problem helps to advance the study of the particular problem & can improve algorithm selection.

− 1 chủ đề trong tài liệu nghiên cứu là xác định các trường hợp "khó" của bài toán balo trông như thế nào, hoặc xem xét theo cách khác, để xác định các thuộc tính nào của các trường hợp trong thực tế có thể khiến chúng dễ xử lý hơn so với hành vi NP-complete tệ nhất của chúng gợi ý. Mục tiêu trong việc tìm ra các trường hợp "khó" này là để sử dụng chúng trong các hệ thống mật mã khóa công khai, ví dụ như hệ thống mật mã balo Merkle-Hellman. Nói chung, hiểu rõ hơn về cấu trúc của không gian các trường hợp của 1 bài toán tối ưu hóa giúp thúc đẩy việc nghiên cứu bài toán cụ thể & có thể cải thiện việc lựa chọn thuật toán.

Furthermore, notable is the fact that the hardness of the knapsack problem depends on the form of the input. If the weights & profits are given as integers, it is weakly NP-complete, while it is strongly NP-complete if the weights & profits are given as rational numbers. However, in the case of rational weights & profits is still admits a fully polynomial-time approximation scheme.

– Hơn nữa, đáng chú ý là thực tế rằng độ khó của bài toán balo phụ thuộc vào dạng đầu vào. Nếu trọng số & lợi nhuận được đưa ra dưới dạng số nguyên, thì nó là NP-hoàn chỉnh yếu, trong khi nó là NP-hoàn chỉnh mạnh nếu trọng số & lợi nhuận được đưa ra dưới dạng số hữu tỉ. Tuy nhiên, trong trường hợp trọng số & lợi nhuận hữu tỉ, nó vẫn thừa nhận 1 lược đồ xấp xỉ thời gian đa thức đầy đủ.

35.2.3.1 Unit-cost models - Mô hình chi phí đơn vị

The NP-hardness of the Knapsack problem relates to computational models in which the size of integers matters (e.g. the Turing machine). In contrast, decision trees count each decision as a single step. Dobkin & Lipton show an $\frac{1}{2}n^2$ lower bound on linear decision trees for the knapsack problem, i.e., trees where decision nodes test the sign of affine functions. This was generalized to algebraic decision trees by Steele & Yao. If the elements in the problem are real numbers or rationals, the decision-tree lower bound extends to the real random-access machine model with an instruction set that includes addition, subtraction, & multiplication of real numbers, as well as comparison & either division or remaindering ("floor"). This model covers more algorithms than the algebraic decision-tree model, as its encompasses algorithms that use indexing into tables. However, in this model all program steps are counted, not just decisions. An upper bound for a decision-tree model was given by Meyer auf decision with no showed that for every n there exists an $O(n^4)$ -deep linear decision tree that solves the subset-sum problem with n items. Note that this does not imply an upper bound for an algorithm that should solve the problem for any given n.

– Độ khó NP của bài toán Knapsack liên quan đến các mô hình tính toán trong đó kích thước của các số nguyên là quan trọng (ví dụ: máy Turing). Ngược lại, cây quyết định tính mỗi quyết định là 1 bước duy nhất. DOBKIN & LIPTON cho thấy giới hạn dưới $\frac{1}{2}n^2$ trên các cây quyết định tuyến tính cho bài toán knapsack, tức là các cây mà các nút quyết định kiểm tra dấu của các hàm affine. Điều này đã được STEELE & YAO tổng quát hóa thành các cây quyết định đại số. Nếu các phần tử trong bài toán là số thực hoặc số hữu tỉ, giới hạn dưới của cây quyết định mở rộng thành mô hình máy truy cập ngẫu nhiên thực với 1 tập lệnh bao gồm phép cộng, phép trừ, & phép nhân các số thực, cũng như phép so sánh & phép chia hoặc phép chia lấy phần dư ("floor"). Mô hình này bao gồm nhiều thuật toán hơn mô hình cây quyết định đại số, vì nó bao gồm các thuật toán sử dụng chỉ mục vào các bảng. Tuy nhiên, trong mô hình này, tất cả các bước chương trình đều được tính, không chỉ các quyết định. giới hạn trên cho mô hình cây quyết định được đưa ra bởi MEYER AUF DER HEIDE, người đã chỉ ra rằng với mọi n thì tồn tại 1 cây quyết định tuyến tính sâu $O(n^4)$ giải quyết được bài toán tổng tập con với n phần tử. Lưu ý rằng điều này không ngụ ý giới hạn trên cho 1 thuật toán có thể giải quyết được bài toán cho bất k0 n0 nào.

35.2.4 Solving knapsack problem – Giải bài toán xếp balo

Several algorithms are available to solve knapsack problems, based on the dynamic programming approach, the branch & bound approach or hybridizations of both approaches.

- Có 1 số thuật toán có thể giải quyết các bài toán balo, dựa trên phương pháp quy hoạch động, phương pháp nhánh & cận hoặc lai ghép cả 2 phương pháp.

35.2.4.1 Dynamic programming in-advance algorithm – Thuật toán quy hoạch động nâng cao

The unbounded knapsack problem (UKP) places no restriction on the number of copies of each kind of item. Besides, here we assume that $x_i > 0$

$$m[v'] = \max \sum_{i=1}^n v_i x_i \text{ subject to } \max \sum_{i=1}^n w_i x_i \leq w', \ x_i > 0, \ \forall i \in [n].$$

Observe that m[w] has the following properties:

- 1. m[0] = 0 (the sum of zero items, i.e., the summation of the empty set).
- 2. $m[w] = \max_{i \in [n]} (v_i + m[w w_i]) = \max(v_1 + m[w w_1], v_2 + m[w w_2], \dots, v_n + m[w w_n]), w_i \leq w$, where v_i is the value of the ith kind of item.

– Bài toán balo không giới hạn (UKP) không đặt ra giới hạn nào về số lượng bản sao của mỗi loại mục. Bên cạnh đó, ở đây chúng ta giả sử rằng $x_i > 0$

$$m[v'] = \max \sum_{i=1}^{n} v_i x_i$$
 tùy thuộc vào $\max \sum_{i=1}^{n} w_i x_i \le w', \ x_i > 0, \ \forall i \in [n].$

Lưu ý rằng m[w] có các thuộc tính sau:

- 1. m[0] = 0 (tổng của các mục không, tức là tổng của tập rỗng).
- 2. $m[w] = \max_{i \in [n]} (v_i + m[w w_i]) = \max(v_1 + m[w w_1], v_2 + m[w w_2], \dots, v_n + m[w w_n]), w_i \le w$, trong đó v_i là giá trị của loại mục thứ i.

The 2nd property needs to be explained in detail. During the process of the running of this method, how do we get the weight w? There are only i ways & the previous weights are $w - w_1, w - w_2, \ldots, w - w_i$ where there are total i kinds of different item (i.e., the weight & the value are not completely the same). If we know each value of these i items & the related maximum value previously, we just compare them to each other & get the maximum value ultimately & we are done.

– Tính chất thứ 2 cần được giải thích chi tiết. Trong quá trình chạy phương pháp này, làm thế nào để chúng ta có được trọng số w? Chỉ có i cách & các trọng số trước đó là $w-w_1, w-w_2, \ldots, w-w_i$ trong đó có tổng cộng i loại mục khác nhau (tức là trọng số & giá trị không hoàn toàn giống nhau). Nếu chúng ta biết từng giá trị của i mục này & giá trị tối đa liên quan trước đó, chúng ta chỉ cần so sánh chúng với nhau & cuối cùng nhận được giá trị tối đa & chúng ta đã hoàn thành.

Here the maximum of the empty set is taken to be 0. Tabulating the results from m[0] up through m[W] gives the solution. Since the calculation of each m[w] involves examining at most n items, & there are at most W values of m[w] to calculate, the running time of the dynamic programming solution is O(nW). Dividing w_1, w_2, \ldots, w_n, W by their greatest common divisor is a way to improve the running time.

- Ở đây, GTLN của tập rỗng được lấy là 0. Việc lập bảng các kết quả từ m[0] lên đến m[W] sẽ cho ra giải pháp. Vì phép tính của mỗi m[w] liên quan đến việc kiểm tra tối đa n phần tử, & có tối đa W giá trị của m[w] cần tính toán, nên thời gian chạy của giải pháp quy hoạch động là O(nW). Chia w_1, w_2, \ldots, w_n, W cho ước số chung lớn nhất của chúng là 1 cách để cải thiện thời gian chạy.

Even if $P \neq NP$, the O(nW) complexity does not contradict the fact that the knapsack problem is NP-complete, since W, unlike n, is not polynomial in the length of the input to the problem. The length of the W input to the problem is proportional to the number of bits in W, log W, not to W itself. However, since this runtime is pseudopolynomial, this makes the (decision version of the) knapsack problem a weakly NP-complete problem.

– Ngay cả khi P≠NP, độ phức tạp O(nW) không mâu thuẫn với thực tế là bài toán knapsack là NP-complete, vì W, không giống như n, không phải là đa thức theo độ dài của đầu vào cho bài toán. Độ dài của đầu vào W cho bài toán tỷ lệ thuận với số bit trong W, log W, không phải với chính W. Tuy nhiên, vì thời gian chạy này là giả đa thức, điều này làm cho (phiên bản quyết đinh của) bài toán knapsack trở thành 1 bài toán NP-complete yếu.

35.2.4.2 0-1 knapsack problem – Bài toán xếp balo 0-1

A similar dynamic programming solution for the 0-1 knapsack problem also runs in pseudo-polynomial time. Assume $\{w_i\}_{i=1}^n, W$ are strictly positive integers. Define m[i, w] to be the maximum value that can be attained with weight $\leq w$ using items up to i (1st i items).

-1 giải pháp quy hoạch động tương tự cho bài toán balo 0-1 cũng chạy trong thời gian giả đa thức. Giả sử $\{w_i\}_{i=1}^n, W$ là các số nguyên dương nghiêm ngặt. Xác định m[i,w] là giá trị lớn nhất có thể đạt được với trọng số $\leq w$ bằng cách sử dụng các mục lên đến i (i mục đầu tiên).

We can define m[i, w] recursively as follows (Def. 1):

- m[0, w] = 0.
- m[i, w] = m[i-1, w] if $w_i > w$ (the new item is more than the current weight limit)
- $m[i, w] = \max(m[i-1, w], m[i-1, w-w_i] + v_i)$ if $w_i \le w$.

The solution can then be found by calculating m[n, W]. To do this efficiently, we can use a table to store previous computations. The following is pseudocode for the dynamic program:

- Chúng ta có thể định nghĩa m[i, w] theo cách đệ quy như sau:
- m[0, w] = 0.
- m[i,w]=m[i-1,w] nếu $w_i>w$ (phần tử mới lớn hơn giới hạn trọng lượng hiện tại)
- $m[i,w] = \max(m[i-1,w],m[i-1,w-w_i]+v_i)$ nếu $w_i \leq w.$

Sau đó, có thể tìm ra giải pháp bằng cách tính m[n, W]. Để thực hiện việc này 1 cách hiệu quả, chúng ta có thể sử dụng bảng để lưu trữ các phép tính trước đó. Sau đây là mã giả cho chương trình động:

```
// Input:
   // values (stored in array v)
   // weights (stored in array w)
   // number of distinct items (n)
   // knapsack capacity (W)
   // Note: the array "v" & array "w" are assumed to store all relevant values starting at index 1.
   array m[0..n, 0..W];
   for j from 0 to W do:
       m[0, j] := 0
10
   for i from 1 to n do:
11
       m[i, 0] := 0
12
13
   for i from 1 to n do:
14
        for j from 1 to W do:
15
            if w[i] > j then:
16
                m[i, j] := m[i - 1, j]
17
            else:
18
                m[i, j] := max(m[i - 1, j], m[i - 1, j - w[i]] + v[i])
```

This solution will therefore run in O(nW) time & O(nW) space. (If we only need the value m[n, W], we can modify the code so that the amount of memory required is O(W) which stores the recent 2 lines of the array m.)

– Do đó, giải pháp này sẽ chạy trong thời gian O(nW) & không gian O(nW). (Nếu chúng ta chỉ cần giá trị m[n, W], chúng ta có thể sửa đổi mã để lượng bộ nhớ cần thiết là O(W) lưu trữ 2 dòng gần đây của mảng m.)

However, if we take it a step or 2 further, we should know that the method will run in the time between O(nW) & $O(2^n)$. From Def. 1, we know that there is no need to compute all the weights when the number of items & the items themselves that we chose are fixed. I.e., the program above computes more than necessary because the weight changes from 0 to W often. From this perspective, we can program this method so that it runs recursively.

– Tuy nhiên, nếu chúng ta tiến thêm 1 hoặc 2 bước nữa, chúng ta sẽ biết rằng phương pháp này sẽ chạy trong khoảng thời gian giữa O(nW) & $O(2^n)$. Từ Định nghĩa 1, chúng ta biết rằng không cần phải tính toán tất cả các trọng số khi số lượng mục & chính các mục mà chúng ta chọn là cố định. I.e., chương trình trên tính toán nhiều hơn mức cần thiết vì trọng số thay đổi từ 0 đến W thường xuyên. Theo quan điểm này, chúng ta có thể lập trình phương pháp này để nó chạy đệ quy.

```
// Input:
   // values (stored in array v)
   // weights (stored in array w)
   // number of distinct items (n)
   // knapsack capacity (W)
    // Note: the array "v" & array "w" are assumed to store all relevant values starting at index 1.
   define value[n, W]
    initialize all value[i, j] = -1
10
   define m := (i, j) { // define function m so that it represents the maximum value we can get under the
11
        // condition: use 1st i items, total weight limit is j
12
        if i == 0 or j <= 0 then:
13
            value[i, j] = 0
14
15
            return
16
        if (value[i-1, j] == -1) then: // m[i-1, j] has not been calculated, we have to call function m
17
            m(i - 1, j)
18
19
        if w[i] > j then: // item cannot fit in the bag
20
            value[i, j] = value[i - 1, j]
21
        else:
22
            if (value[i - 1, j - w[i]] == -1) then: // m[i - 1, j - w[i]] has not been calculated, we have
23
                // to call function m
24
```

Besides, we can break the recursion & convert it into a tree. Then we can cut some leaves & use parallel computing to expedite the running of this method.

– Ngoài ra, chúng ta có thể phá vỡ đệ quy & chuyển đổi nó thành 1 cây. Sau đó, chúng ta có thể cắt 1 số lá & sử dụng tính toán song song để đẩy nhanh quá trình chạy phương pháp này.

To find the actual subset of items, rather than just their total value, we can run this after running the function above:

 Để tìm tập hợp con thực tế của các mục, thay vì chỉ tổng giá trị của chúng, chúng ta có thể chạy lệnh này sau khi chạy hàm trên:

```
* Returns the indices of the items of the optimal knapsack.
    * i: We can include items 1 through i in the knapsack
    * j: maximum weight of the knapsack
    */
   function knapsack(i: int, j: int): Set<int> {
       if i == 0 then:
           return {}
       if m[i, j] > m[i - 1, j] then:
           return {i} \cup knapsack(i - 1, j - w[i])
10
       else
11
           return knapsack(i - 1, j)
12
   }
13
14
   knapsack(n, W)
```

35.2.4.3 Meet-in-the-middle - Gặp nhau ở chính giữa

Another algorithm for 0-1 knapsack, discovered in 1974 & sometimes called "meet-in-the-middle" due to parallels to a similarly named algorithm in cryptography, is exponential in the number of different items but may be preferable to the DP algorithm when W is large compared to n. In particular, if the w_i are nonnegative but not integers, we could still use the dynamic programming algorithm by scaling & rounding (i.e., using fixed-point arithmetic), but if the problem requires d fractional digits of precision to arrive at the correct answer, W will need to be scaled by 10^d , & the DP algorithm will require $O(W \cdot 10^d)$ space & $O(nW \cdot 10^d)$ time.

-1 thuật toán khác cho balo 0-1, được phát hiện vào năm 1974 & đôi khi được gọi là "meet-in-the-middle" do có điểm tương đồng với 1 thuật toán có tên tương tự trong mật mã học, là hàm mũ theo số lượng các mục khác nhau nhưng có thể được ưu tiên hơn thuật toán DP khi W lớn so với n. Đặc biệt, nếu w_i không âm nhưng không phải là số nguyên, chúng ta vẫn có thể sử dụng thuật toán quy hoạch động bằng cách chia tỷ lệ & làm tròn (tức là sử dụng số học dấu phẩy cố định), nhưng nếu bài toán yêu cầu d chữ số thập phân có độ chính xác để đi đến câu trả lời đúng, W sẽ cần được chia tỷ lệ theo 10^d , & thuật toán DP sẽ yêu cầu $O(W10^d)$ không gian & $O(nW10^d)$ thời gian.

```
algorithm Meet-in-the-middle is
input: A set of items with weights & values.
output: The greatest combined value of a subset.

partition the set [n] into 2 sets A & B of approximately equal size compute the weights & values of all subsets of each set

for each subset of A do
find the subset of B of greatest value s.t. the combined weight is less than W

keep track of the greatest combined value seen so far
```

35.3 Traveling salesman problem – Bài toán người bán hàng du lịch

Chương 36

Miscellaneous

Contents

36.1	Contributors	
36.2	Donate or Buy Me Coffee	
36.3	See also	

36.1 Contributors

In alphabetical order:

- 1. VÕ NGỌC TRÂM ANH [VNTA]. C++ codes.
- 2. Đặng Phúc An Khang [DPAK]. C++ codes.
 - Đặng Phúc An Khang. Combinatorics & Number Theory in Competitive Programming Tổ Hợp & Lý Thuyết Số trong Lập Trình Thi Đấu.
 - Đặng Phúc An Khang. Hướng Đến Kỳ Thi Olympic Tin học Sinh Viên Toàn Quốc & ICPC 2025. URL: https://github.com/GrootTheDeveloper/OLP-ICPC/blob/master/2025/COMPETITIVE_REPORT.pdf.
- 3. NGUYỄN LÊ ANH KHOA. C++ codes.
- 4. Anh/thầy Lê Phúc Lữ. Tặng NQBH quyển [VL24] để tác giả có thể sáng tạo các bài toán với phiên bản lập trình thi đấu (Competitive Programming version) tương ứng các bài VMO, VN TST, IMO tương ứng.
- 5. Phan Vĩnh Tiến. C++ codes.

36.2 Donate or Buy Me Coffee

Donate (but do not donut) or buy me some coffee via NQBH's bank account information at https://github.com/NQBH/publication/blob/master/bank/NQBH_bank_account_information.

36.3 See also

1. Vietnamese Mathematical Olympiad for High School- & College Students (VMC) – Olympic Toán Học Học Sinh & Sinh Viên Toàn Quốc.

PDF: URL: https://github.com/NQBH/advanced_STEM_beyond/blob/main/VMC/NQBH_VMC.pdf.

TEX: URL: https://github.com/NQBH/advanced_STEM_beyond/blob/main/VMC/NQBH_VMC.tex.

- Codes:
 - o C++ code: https://github.com/NQBH/advanced_STEM_beyond/tree/main/VMC/C++.
 - $\circ \ \ Python\ code: \ https://github.com/NQBH/advanced_STEM_beyond/tree/main/VMC/Python.$
- Resource: https://github.com/NQBH/advanced_STEM_beyond/tree/main/VMC/resource.
- Figures: https://github.com/NQBH/advanced_STEM_beyond/tree/main/VMC/figure.

Tài liệu tham khảo

- [AB20] Dorin Andrica and Ovidiu Bagdasar. Recurrent sequences—key results, applications, and problems. Problem Books in Mathematics. Springer, Cham, [2020] ©2020, pp. xiv+402. ISBN: 978-3-030-51502-7; 978-3-030-51501-0. DOI: 10.1007/978-3-030-51502-7. URL: https://doi.org/10.1007/978-3-030-51502-7.
- [Ber05] Dimitri P. Bertsekas. *Dynamic programming and optimal control. Vol. I.* Third. Athena Scientific, Belmont, MA, 2005, pp. xvi+543. ISBN: 1-886529-26-4.
- [Ber07] Dimitri P. Bertsekas. *Dynamic programming and optimal control. Vol. II.* Third. Athena Scientific, Belmont, MA, 2007, p. 445.
- [Ber12] Dimitri P. Bertsekas. Dynamic programming and optimal control. Vol. II. Approximate dynamic programming. Fourth. Athena Scientific, Belmont, MA, 2012, pp. xvii+694. ISBN: 978-1-886529-44-1; 1-886529-44-2; 1-886529-08-6.
- [Ber17] Dimitri P. Bertsekas. Dynamic programming and optimal control. Vol. I. Fourth. Athena Scientific, Belmont, MA, 2017, pp. xix+555. ISBN: 978-1-886529-43-4; 1-886529-43-4; 1-886529-08-6.
- [Đàm+19a] Hồ Sĩ Đàm, Đỗ Đức Đông, Lê Minh Hoàng, and Nguyễn Thanh Hùng. *Tài Liệu Chuyên Tin Học Bài Tập Quyển* 3. Tái bản lần 2. Nhà Xuất Bản Giáo Dục Việt Nam, 2019, p. 159.
- [Đàm+19b] Hồ Sĩ Đàm, Đỗ Đức Đông, Lê Minh Hoàng, and Nguyễn Thanh Hùng. *Tài Liệu Chuyên Tin Học Quyển 3*. Tái bản lần 3. Nhà Xuất Bản Giáo Dục Việt Nam, 2019, p. 171.
- [Đức22] Nguyễn Tiến Đức. *Tuyển Tập 200 Bài Tập Lập Trình Bằng Ngôn Ngữ Python*. Nhà Xuất Bản Đại Học Thái Nguyên, 2022, p. 327.
- [Knu98] Donald Ervin Knuth. The Art of Computer Programming. Volume 3: Sorting & Searching. 2nd edition. Addison-Wesley Professional, 1998, p. 800.
- [Laa20] Antti Laaksonen. Guide to Competitive Programming: Learning & Improving Algorithms Through Contests. 2nd edition. Undergraduate Topics in Computer Science. Springer, 2020, pp. xv+309.
- [Laa24] Antti Laaksonen. Guide to Competitive Programming: Learning & Improving Algorithms Through Contests. 3rd edition. Undergraduate Topics in Computer Science. Springer, 2024, pp. xviii+349.
- [Sha22] Shahriar Shahriari. An invitation to combinatorics. Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge, 2022, pp. xv+613. ISBN: 978-1-108-47654-6.
- [Thà13] Lê Công Thành. Lý Thuyết Độ Phức Tạp Tính Toán. Nhà Xuất Bản Khoa Học Tự Nhiên & Công Nghệ, 2013, p. 370.
- [Thư+21] Trần Đan Thư, Nguyễn Thanh Phương, Đinh Bá Tiến, Trần Minh Triết, and Đặng Bình Phương. Kỹ Thuật Lập Trình. Nhà Xuất Bản Khoa Học & Kỹ Thuật, 2021, p. 526.
- [Thư+25] Trần Đan Thư, Nguyễn Thanh Phương, Đinh Bá Tiến, and Trần Minh Triết. Nhập Môn Lập Trình. Nhà Xuất Bản Khoa Học & Kỹ Thuật, 2025, p. 427.
- [Tru23a] Vương Thành Trung. Tuyển Tập Đề Thi Học Sinh Giỏi Cấp Tỉnh Trung Học Cơ Sở & Đề Thi Vào Lớp 10 Chuyên Tin Môn Tin Học. Nhà Xuất Bản Dân Trí, 2023, p. 220.
- [Tru23b] Vương Thành Trung. Tuyển Tập Đề Thi Học Sinh Giỏi Cấp Tỉnh Trung Học Phổ Thông Tin Học. Tài liệu lưu hành nội bộ, 2023, p. 235.
- [TTK21] Trần Đan Thư, Đinh Bá Tiến, and Nguyễn Tấn Trần Minh Khang. Phương Pháp Lập Trình Hướng Đối Tượng. Nhà Xuất Bản Khoa Học & Kỹ Thuật, 2021, p. 401.
- [Val02] Gabriel Valiente. Algorithms on trees and graphs. Springer-Verlag, Berlin, 2002, pp. xiv+490. ISBN: 3-540-43550-6. DOI: 10.1007/978-3-662-04921-1. URL: https://doi.org/10.1007/978-3-662-04921-1.

Chương 36 Tài liệu tham khảo

[Val21] Gabriel Valiente. Algorithms on trees and graphs—with Python code. Texts in Computer Science. Second edition [of 1926815]. Springer, Cham, [2021] ©2021, pp. xv+386. ISBN: 978-3-303-81884-5; 978-3-303-81885-2. DOI: 10.1007/978-3-030-81885-2. URL: https://doi.org/10.1007/978-3-030-81885-2.

- [VL24] Lê Anh Vinh and Lê Phúc Lữ. *Tuyển Tập Đề Thi Học Sinh Giỏi Toán Quốc Gia & Chọn Đội Tuyển Quốc Tế Môn Toán.* Nhà Xuất Bản Giáo Dục Việt Nam, 2024, pp. x+588.
- [WW16] Yonghui Wu and Jiande Wang. Data Structure Practice for Collegiate Programming Contests & Education. 1st edition. CRC Press, 2016, p. 496.
- [WW18] Yonghui Wu and Jiande Wang. Algorithm Design Practice for Collegiate Programming Contests & Education. 1st edition. CRC Press, 2018, p. 692.