

deeplearning.ai

Part of Speech Tagging

Outline

- What is part of speech tagging?
- Markov chains
- Hidden Markov models
- Viterbi algorithm
- Example
- Coding assignment!

What is part of speech?

```
Why not learn something?

adverb adverb verb noun punctuation mark, sentence closer
```

Part of speech (POS) tagging

Part of speech tags:

lexical term	tag	example
noun	NN	something, nothing
verb	VB	learn, study
determiner	DT	the, a
w-adverb	WRB	why, where

Why not learn something?

WRB RB VB NN .

Applications of POS tagging

Named entities

Co-reference resolution

324m

Speech recognition

deeplearning.ai

Markov Chains

Example

```
Why not learn ...

verb verb?

noun?
...?
```

Part of Speech Dependencies

```
Why not learn ...

verb verb?

noun?
...?
```

The Most Likely Next Word

Why not learnswimming? **verb noun**

Less Likely Words

Why not learnswim?

verb verb

Visual Representation

What are Markov chains?

States

deeplearning.ai

Markov Chains and POS Tags

POS tags as States

Why not **learn** something?

Why not **learn** something?

Why not **learn** something?

The transition matrix

$A = \frac{1}{2}$		NN	VB	0
	NN (noun)	0.2	0.2	0.6
	VB (verb)	0.4	0.3	0.3
	O (other)	0.2	0.3	0.5

The transition matrix

$A = \frac{1}{2}$		NN	VB	0
	NN (noun)	0.2	0.2	0.6
	VB (verb)	0.4	0.3	0.3
	O (other)	0.2	0.3	0.5

$$\sum_{i=1}^{N} a_{ij} = 1$$

The first word

Why not learn something?

NN?

VB?

0?

Initial probabilities

		NN	VB	0
	π (initial)	0.4	0.1	0.5
A =	NN (noun)	0.2	0.2	0.6
	VB (verb)	0.4	0.3	0.3
	O (other)	0.2	0.3	0.5

Transition table and matrix

		NN	VB	0
	π (initial)	0.4	0.1	0.5
A =	NN (noun)	0.2	0.2	0.6
	VB (verb)	0.4	0.3	0.3
	O (other)	0.2	0.3	0.5

$$A = \begin{pmatrix} 0.4 & 0.1 & 0.5 \\ 0.2 & 0.2 & 0.6 \\ 0.4 & 0.3 & 0.3 \\ 0.2 & 0.3 & 0.5 \end{pmatrix}$$

Summary

$$Q = \{q_1, \dots, q_N\}$$

Transition matrix

$$A = \begin{pmatrix} a_{1,1} & \dots & a_{1,N} \\ \vdots & \ddots & \vdots \\ a_{N+1,1} & \dots & a_{N+1,N} \end{pmatrix}$$

deeplearning.ai

Hidden Markov Models

Hidden Markov Model

jump = verb

machine

jump = ?

*observable

		NN	VB	О
	π (initial)	0.4	0.1	0.5
4 =	NN (noun)	0.2	0.2	0.6
	VB (verb)	0.4	0.3	0.3
	O (other)	0.2	0.3	0.5

Emission probabilities

Emission probabilities

B =		going	to	eat	•••
	NN (noun)	0.5	0.1	0.02	
	VB (verb)	0.3	0.1	0.5	
	O (other)	0.3	0.5	0.68	

Emission probabilities

B =		going	to	eat	
	NN (noun)	0.5	0.1	0.02	
	VB (verb)	0.3	0.1	0.5	
	O (other)	0.3	0.5	0.68	

The emission matrix

$$\sum_{j=1}^{V} b_{ij} = 1$$

He lay on his back.

I'll be back.

Summary

States

$$Q = \{q_1, \dots, q_N\} \quad A = \begin{pmatrix} a_{1,1} & \dots & a_{1,N} \\ \vdots & \ddots & \vdots \\ a_{N+1,1} & \dots & a_{N+1,N} \end{pmatrix} \quad B = \begin{pmatrix} b_{11} & \dots & b_{1V} \\ \vdots & \ddots & \vdots \\ b_{N1} & \dots & b_{NV} \end{pmatrix}$$

deeplearning.ai

Calculating Probabilities

transition probability: + = $\frac{2}{3}$

1. Count occurrences of tag pairs

$$C(t_{i-1},t_i)$$

1. Count occurrences of tag pairs

$$C(t_{i-1},t_i)$$

1. Calculate probabilities using the counts

$$P(t_i|t_{i-1}) = \frac{C(t_{i-1}, t_i)}{\sum_{j=1}^{N} C(t_{i-1}, t_j)}$$

The corpus

In a Station of the Metro

The apparition of these faces in the crowd:

Petals on a wet, black bough.

Preparation of the corpus

```
<s> In a Station of the Metro
<s> The apparition of these faces in the crowd
```

<s> Petals on a wet , black bough .

Preparation of the corpus

```
<s> in a station of the metro
<s> the apparition of these faces in the crowd
.
```

<s> petals on a wet , black bough .

deeplearning.ai

		NN	VB	0
	π			
A =	NN (noun)			
	VB (verb)			
	O (other)			

<s> in a station of the metro <s> the apparition of these faces in the crowd

<s> petals on a wet , black bough .

		NN	VB	0
	π			
A =	NN (noun)			
	VB (verb)			
	O (other)			

```
<s> in a station of the metro
<s> the apparition of these faces in the crowd
:
<s> petals on a wet , black bough .
```

		NN	VB	0
A =	π	$C(\pi, NN)$		
	NN (noun)	C(NN,NN)		
	VB (verb)	C(VB,NN)		
	O (other)	C(O,NN)		

```
<s> in a station of the metro
<s> the apparition of these faces in the crowd
:
<s> petals on a wet , black bough .
```

A =		NN	VB	0
	π	1		
	NN (noun)	C(NN,NN)		
	VB (verb)	C(VB,NN)		
	O (other)	C(O,NN)		

```
<s> in a station of the metro
<s> the apparition of these faces in the crowd
:
<s> petals on a wet , black bough .
```

Ezra Pound -

1913

A =		NN	VB	0
	π	1		
	NN (noun)	0		
	VB (verb)	C(VB,NN)		
	O (other)	C(O,NN)		

```
<s> in a station of the metro
<s> the apparition of these faces in the crowd
:
<s> petals on a wet , black bough .
```

		NN	VB	0
A =	π	1		
	NN (noun)	0		
	VB (verb)	0		
	O (other)	C(O,NN)		

```
<s> in a station of the metro
<s> the apparition of these faces in the crowd
:
<s> petals on a wet , black bough .
```

A =		NN	VB	0
	π	1		
	NN (noun)	0		
	VB (verb)	0		
	O (other)	6		

```
<s> in a station of the metro
<s> the apparition of these faces in the crowd
:
<s> petals on a wet , black bough .

Ezra Pound -
```

1913

		NN	VB	0
A =	π	1		
	NN (noun)	0		
	VB (verb)	0		
	O (other)	6		

```
<s> in a station of the metro
<s> the apparition of these faces in the crowd
:
<s> petals on a wet , black bough .
```

		NN	VB	0
A =	π	1	0	
	NN (noun)	0	0	
	VB (verb)	0	0	0
	O (other)	6	0	

```
<s> in a station of the metro
<s> the apparition of these faces in the crowd
:
<s> petals on a wet , black bough .
```

Ezra Pound -

1913

		NN	VB	0
	π	1	0	2
A =	NN (noun)	0	0	
	VB (verb)	0	0	0
	O (other)	6	0	

```
<s> in a station of the metro
<s> the apparition of these faces in the crowd
:
<s> petals on a wet , black bough .
```

A =		NN	VB	0
	π	1	0	2
	NN (noun)	0	0	6
	VB (verb)	0	0	0
	O (other)	6	0	

```
<s> in a station of the metro
<s> the apparition of these faces in the crowd

<s> petals on a wet , black bough .

Ezra Pound -
1913
```

		NN	VB	0
A =	π	1	0	2
	NN (noun)	0	0	6
	VB (verb)	0	0	0
	O (other)	6	0	8

```
<s> in a station of the metro
<s> the apparition of these faces in the crowd
:
<s> petals on a wet , black bough .

Ezra Pound -
```

1913

		NN	VB	0
	π	1	0	2
A =	NN	0	0	6
	VB	0	0	0
	О	6	0	8

$$P(t_i|t_{i-1}) = \frac{C(t_{i-1}, t_i)}{\sum_{j=1}^{N} C(t_{i-1}, t_j)}$$

		NN	VB	0	
$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	π	1	0	2	3
	NN	0	0	6	6
	VB	0	0	0	0
	0	6	0	8	14

$$P(\text{NN}|\pi) = \frac{C(\pi, \text{NN})}{\sum_{j=1}^{N} C(\pi, t_j)} = \frac{1}{3}$$

A =		NN	VB	0	
	π	1	0	2	3
	NN	0	0	6	6
	VB	0	0	0	0
	0	6	0	8	14

$$P(NN|O) = \frac{C(O, NN)}{\sum_{j=1}^{N} C(O, t_j)} = \frac{6}{14}$$

$$P(t_i|t_{i-1}) = \frac{C(t_{i-1}, t_i)}{\sum_{j=1}^{N} C(t_{i-1}, t_j)}$$

Smoothing

		NN	VB	0	
	π	1+ε	0+ε	2+ε	3+3*ε
A =	NN	0+ε	0+ε	3+6	6+3*ε
	VB	3+0	0+ε	3+0	0+3*ε
	0	3+6	3+0	8+ε	14+3*ε

$$P(t_{i}|t_{i-1}) = \frac{C(t_{i-1}, t_{i}) + \epsilon}{\sum_{j=1}^{N} C(t_{i-1}, t_{j}) + N * \epsilon}$$

Smoothing

A =		NN	VB	0
	π	0.3333	0.0003	0.6663
	NN	0.0001	0.0001	0.9996
	VB	0.3333	0.3333	0.3333
	0	0.4285	0.0000	0.5713

$$P(t_i|t_{i-1}) = \frac{C(t_{i-1}, t_i) + \epsilon}{\sum_{j=1}^{N} C(t_{i-1}, t_j) + N * \epsilon}$$

deeplearning.ai

Populating the Emission Matrix

Emission probabilities

Count: 2

Count: 3

emission probability: You = 3/3

		in	а	
	NN (noun)			
B =	VB (verb)			
	O (other)			

<s> in a station of the metro</s>
<s> the apparition of these faces in the crowd</s>
:

<s> petals on a wet , black bough .

		in	а	
	NN (noun)	$C(\mathrm{NN,in})$		
B =	VB (verb)	C(VB, in)		
	O (other)	C(O, in)		

```
<s> in a station of the metro
<s> the apparition of these faces in the crowd
:
<s> petals on a wet , black bough .
```

		in	а	
	NN (noun)	0		
B =	VB (verb)	C(VB, in)		
	O (other)	C(O, in)		

```
<s> in a station of the metro
<s> the apparition of these faces in the crowd
:
<s> petals on a wet , black bough .
```

		in	а	
	NN (noun)	0		
B =	VB (verb)	0		
	O (other)	C(O, in)		

```
<s> in a station of the metro
<s> the apparition of these faces in the crowd
:
<s> petals on a wet , black bough .
```

		in	a	
	NN (noun)	0		
B =	VB (verb)	0		
	O (other)	2		

```
<s> in a station of the metro
<s> the apparition of these faces in the crowd
:
<s> petals on a wet , black bough .
```

The emission matrix

$$P(w_i|t_i) = \frac{C(t_i, w_i) + \epsilon}{\sum_{j=1}^{V} C(t_i, w_j) + N * \epsilon}$$
$$= \frac{C(t_i, w_i) + \epsilon}{C(t_i) + N * \epsilon}$$

Summary

- 1. Calculate transition and emission matrix
- 1. How to apply smoothing

deeplearning.ai

The Viterbi Algorithm

Why not learn something?

Probability for this sequence of

hidden states: 0.0003

Viterbi algorithm – Steps

- 1. Initialization step
- 2. Forward pass
- 3. Backward pass

		W ₁	W ₂	 w _K
C =	t ₁			
C =				
	t _N			

		W ₁	W ₂	 w _K
D -	t ₁			
D =				
	t _N			

deeplearning.ai

Viterbi: Initialization

Viterbi algorithm – Steps

1. Initialization step

Initialization step

		w ₁	W ₂	•••	w _K
C =	t ₁	C _{1,1}			
C =					
	t _N	C _{N,1}			

$$c_{i,1} = \pi_i * b_{i,cindex(w_1)}$$
$$= a_{1,i} * b_{i,cindex(w_1)}$$

Initialization step

		W ₁	W ₂	 w _K
D —	t ₁	d _{1,1}		
D =				
	t _N	d _{N,1}		

$$d_{i,1} = 0$$

deeplearning.ai

Viterbi: Forward Pass

Viterbi algorithm – Steps

		W ₁	W ₂	 w _K
C =	t ₁	c _{1,1}	c _{1,2}	C _{1,K}
C =				
	t _N	c _{N,1}	c _{N,2}	C _{N,K}

$$c_{i,j} = \max_{k} c_{k,j-1} * a_{k,i} * b_{i,cindex(w_j)}$$

		W ₁	W ₂	 W _K
C =	t ₁	C _{1,1}	C _{1,2}	C _{1,K}
C =				
	t _N	c _{N,1}	c _{N,2}	C _{N,K}

$$c_{1,2} = \max_k c_{k,1} * a_{k,1} * b_{1,cindex(w_2)}$$

		W ₁	W ₂	 W _K
C =	t ₁	C _{1,1}	c _{1,2}	C _{1,K}
C =				
	t _N	c _{N,1}	c _{N,2}	C _{N,K}

$$c_{1,2} = \max_{k} c_{k,1} * a_{k,1} * b_{1,cindex(w_2)}$$

		w ₁	W ₂	 w _K
C -	t ₁	C _{1,1}	C _{1,2}	C _{1,K}
C =				
	t _N	c _{N,1}	c _{N,2}	C _{N,K}

$$c_{1,2} = \max_{k} c_{k,1} * a_{k,1} * b_{1,cindex(w_2)}$$

		W ₁	W ₂	 w _K
C =	t ₁	c _{1,1}	c _{1,2}	C _{1,K}
C =				
	t _N	C _{N,1}	c _{N,2}	C _{N,K}

$$c_{1,2} = \max_{k} c_{k,1} * a_{k,1} * b_{1,cindex(w_2)}$$

 W_{K}

 $d_{1.K}$

deeplearning.ai

Viterbi: Backward Pass

Viterbi algorithm – Steps

$$s = \operatorname*{argmax}_{i} c_{i,K}$$

		W ₁	W ₂	 w _K
D	t ₁	d _{1,1}	d _{1,2}	d _{1,K}
D =				
	t _N	d _{N,1}	d _{N,2}	d _{N,K}

		W ₁	W_2	W ₃	W ₄	W ₅
	t ₁	0	1	3	2	3
D =	t_2	0	2	4	1	3
	t ₃	0	2	4	1	4
	t ₄	0	4	4	3	1

<s></s>	w1	w2	
	w3	w4	
	w5		

\sim	
(;	
\sim	

	w ₁	W ₂	W_3	W ₄	W ₅
t ₁	0.25	0.125	0.025	0.0125	0.01
t_2	0.1	0.025	0.05	0.01	0.003
t_3	0.3	0.05	0.025	0.02	0.0000
t ₄	0.2	0.1	0.000	0.0025	0.0003

$$s = \operatorname*{argmax}_{i} c_{i,K} = 1$$

<s></s>	w1	w2	
	w3	w4	
	w5		

		W ₁	W_2	W ₃	W ₄	W ₅
	t ₁	0	1	3	2	3
D =	t_2	0	2	4	1	3
	t ₃	0	2	4	1	4
'	t ₄	0	4	4	3	1

<s></s>	w1	w2	
	w3	w4	
	w5		

 t_1

		W ₁	W_2	W_3	W ₄	W ₅
	t ₁	0	1	3	2	3
D =	t ₂	0	2	4	1	3
	t ₃	0	2	4	1	4
'	t ₄	0	4	4	3	1

<s></s>	w1 w3 w5	w2 w4	

t t₁

		W ₁	W_2	W ₃	W ₄	W ₅
	t ₁	0	1	3	2	3
D =	t ₂	0	2	4	1	3
	t ₃	0	2	4	1	4
	t ₄	0	4	4	3	1

		W ₁	W_2	W_3	W ₄	W ₅
	t ₁	0	1	3	2	3
D = 0	t ₂	0	2	4	1	3
	t ₃	0	2	4	4	4
	t ₄	0	4	4	3	1

		W ₁	W ₂	W_3	W_4	W ₅
	t ₁	0	1	3	2	3
D =	t_2	0	2	4	1	3
	t ₃	0	2	4	4	4
	t ₄	0	4	4	3	1

		W_1	W ₂	W_3	W ₄	W ₅
	t ₁	0	1	ર	2	,3
D =	t_2	0	2	4	1	3
	t ₃	0	2	4	1	4
'	t ₄	0	4	4	3	1

		W_1	W ₂	W_3	W ₄	W ₅
	t ₁	0	1	3	2	3
D =	t ₂	0	2	4	1	3
	t ₃	0	2	4	1	4
	t ₄	0	4	4	3	1

Implementation notes

- 1. In Python index starts with 0!
- 2. Use log probabilities

$$c_{i,j} = \max_k c_{k,j-1} * a_{k,i} * b_{i,cindex(w_j)}$$

$$\downarrow \\ log(c_{i,j}) = \max_k log(c_{k,j-1}) + log(a_{k,i}) + log(b_{i,cindex(w_j)})$$

Summary

- 1. From word sequence to POS tag sequence
- 2. Viterbi algorithm
- 3. Log probabilities