1			
	Given that the point A has position vector $4\mathbf{i} - 5\mathbf{j}$ and the point B has position vector $-5\mathbf{i} - 2\mathbf{j}$,		
	(a) find the vector \overrightarrow{AB} ,	(2)	
	(b) find $ \overrightarrow{AB} $.	(2)	
	Give your answer as a simplified surd.	(2)	

2. The triangle \overrightarrow{PQR} is such that $\overrightarrow{PQ} = 3\mathbf{i} + 5\mathbf{j}$ and $\overrightarrow{PR} = 13\mathbf{i} - 15\mathbf{j}$				
(a) Find \overrightarrow{QR}	(2)			
(b) Hence find $ \overrightarrow{QR} $ giving your answer as a simplified surd.	(2)			
The point S lies on the line segment QR so that $QS:SR=3:2$				
(c) Find \overrightarrow{PS}	(2)			
	(2)			

3		
	[In this question the unit vectors \mathbf{i} and \mathbf{j} are due east and due north respectively.]	
	A stone slides horizontally across ice.	
	Initially the stone is at the point $A(-24\mathbf{i} - 10\mathbf{j})$ m relative to a fixed point O .	
	After 4 seconds the stone is at the point $B(12\mathbf{i} + 5\mathbf{j})$ m relative to the fixed point O .	
	The motion of the stone is modelled as that of a particle moving in a straight line at constant speed.	
	Using the model,	
	(a) prove that the stone passes through O ,	
		(2)
	(b) calculate the speed of the stone.	(3)

4		
	[In this question the unit vectors \mathbf{i} and \mathbf{j} are due east and due north respectively.]	
	A coastguard station O monitors the movements of a small boat.	
	At 10:00 the boat is at the point $(4\mathbf{i} - 2\mathbf{j})$ km relative to O .	
	At 12:45 the boat is at the point $(-3\mathbf{i} - 5\mathbf{j})$ km relative to O .	
	The motion of the boat is modelled as that of a particle moving in a straight line at constant speed.	
	(a) Calculate the bearing on which the boat is moving, giving your answer in degrees to	
	one decimal place.	(3)
	(b) Calculate the speed of the boat, giving your answer in km h ⁻¹	
		(3)

5. (i) Two non-zero vectors, a and b , are such that	
$ \mathbf{a} + \mathbf{b} = \mathbf{a} + \mathbf{b} $	
Explain, geometrically, the significance of this statement.	(1)
(ii) Two different vectors, \mathbf{m} and \mathbf{n} , are such that $ \mathbf{m} = 3$ and $ \mathbf{m} - \mathbf{n} = 6$ The angle between vector \mathbf{m} and vector \mathbf{n} is 30°	
Find the angle between vector \mathbf{m} and vector $\mathbf{m} - \mathbf{n}$, giving your answer, in degrees, to one decimal place.	(4)