Digital Image Processing - Homework #7 Juan Silva ECE 595 November 6, 2019

1) Question 8.5

A 8-bit image with 5.3 bits / pixel entropy [computed from its histogram using Eq. (8.1-7)] is to be Huffman coded.

- (a) What is the maximum compression that can be expected?
- (b) Will it be obtained?
- (c) If a greater level of lossless compression is required, what else can be done?

The maximum compression will be a ratio by the number of bits over the entropy value: $C=\frac{8}{5.3}\to 1.509$. Therefore, this will not be obtained because over 33% of the image will be lost to image redundancy. $R=1-\frac{1}{1.509}\to 0.337$. One way to reduce repeating values is taking different, non-redundant values in the neighborhood before applying the Hoffman code.

2) Question 8.8

- (a) How many unique Huffman codes are there for a three-symbol source?
- (b) Construct them.

	Left Side	Right Side
A	11	1
В	10	01
С	0	00

3) Question 8.10

Using the Huffman code in Fig. 8.8, decode the encoded string 010100000101111110100.

Original source			Source reduction							
Symbol	Probability	Code	1		2		3		4	
<i>a</i> ₂	0.4	1	0.4	1	0.4	1	0.4	1 _	-0.6	0
a_6	0.3	00	0.3	00	0.3	00	0.3	00 +	0.4	1
a_1	0.1	011	0.1	011	⊏0.2	010 →	-0.3	01 🚽		
a_4	0.1	0100	0.1	0100	0.1	011				
a_3	0.06	01010	-0.1	0101 -	┙					
a_5	0.04	01011								

01010 00 00 1 0101011 1 1 1 0100
$$a_3$$
 a_6 a_6 a_2 a_5 a_2 a_2 a_2 a_4

The decoded string is $a_3a_6a_6a_2a_5a_2a_2a_2a_4$.

4) Question 8.22

- (a) Construct the entire 4-bit Gray code.
- (b) Create a general procedure for converting a Gray-coded number to its binary equivalent and use it to decode 0111010100111.

0	0000
1	0001
2	0011
3	0010
4	0110
5	0111
6	0101
7	0100
8	1100
9	1101
10	1111
11	1110
12	1010
13	1011
14	1001
15	1000

$$g_i = a_i \oplus a_{i+1} \quad 0 \le i \le m - 2 g_{m-1} = a_{m-1}$$
 (8.2-9)

The binary equivalent of 0111010100111 will equal to 0101100111010.