Steven Rosendahl Homework 4

- 1. Recall that $f(x) = x^2 + 1$ has two zeros $\alpha, \beta \in \mathbb{Z}_5$ satisfying $|\alpha 2|_5 \le 1/5$ and $|\beta 3|_5 \le 1/5$. Find the first three terms b_0, b_1 , and b_3 of the *p-adic* expansion of β .
- 2. User Hensel's Lemma to verify that $f(x) = x^3 + 1$ has a zero $\alpha \in \mathbb{Z}_7$. Find an integer n such that $|\alpha n|_7 \le 1/7$.

If we let $\alpha = 3$, then $f(\alpha) = 27 + 1 \equiv 0 \mod 7$. We also have that $f'(\alpha) = 3(9) = 27 \not\equiv 0 \mod 7$, so Hensel's Lemma tells us that there is a zero of the function.

3. Show that Hensel's Lemma fails to apply to the polynomial $f(x) = x^3 + 1$ in \mathbb{Z}_3 . Is this sufficient to conclude that f has no zeros in \mathbb{Z}_5 ?

Hensel's Lemma requires that $f'(x) \not\equiv 0 \mod p$. In this case, $f'(x) = 3x^2$, and $3x^2 \equiv 0 \mod 3$, so we cannot use it. This is not enough to say that f has no zeros. Hensel's Lemma only tells us about the properties of a zero, but it does not guarantee the existence of a zero.