ECE 375 Computer Organization and Assembly Language Programming Winter 2015 Assignment #4

The following questions are based on the enhanced AVR datapath (see Figures 8.24 and 8.26 in the text). The microoperation for the Fetch cycle is shown below.

Stage	Micro-operations
IF	$IR \leftarrow M[PC], PC \leftarrow PC + 1, NPC \leftarrow PC + 1, RAR \leftarrow PC + 1$

[25 pts]

- 1- Consider the implementation of the MOVW Rd, Rr (Copy Register Word) instruction on the enhanced AVR datapath.
 - (a) List and explain the sequence of microoperations required to implement MOVW Rd, Rr.
 - (b) List and explain the control signals and the Register Address Logic (RAL) output for the MOVW Rd, Rr instruction.

Note that this instruction takes one execute cycle (EX). Control signals for the Fetch cycle are given below. Clearly explain your reasoning.

Control	IF	MOVW
Signals	11	EX
MJ	0	
MK	0	
ML	0	
IR_en	1	
PC_en	1	
PCh_en	0	
PCl_en	0	
NPC_en	1	
SP_en	0	
DEMUX	X	
MA	X	
MB	X	
ALU_f	XXXX	
MC	XX	
RF_wA	0	
RF_wB	0	
MD	X	
ME	X	
DM r	X	
DM_w	0	
MF	X	
MG	X	
Adder_f	XX	
Inc_Dec	X	
MH	X	
MI	X	

RAL	MVVM		
Output	EX		
wA			
wB			
rA			
rB			

[25 pts]

- 2- Consider the implementation of the LD Rd, -X (*Load Indirect and Pre-decrement*) instruction on the enhanced AVR datapath.
 - (a) List and explain the sequence of microoperations required to implement LD $\,\mathrm{Rd}_{\,\prime}\,\,$ -X.
 - (b) List and explain the control signals and the Register Address Logic (RAL) output for the LD Rd, -X instruction. Some of the control signals are given below.

Note that this instruction takes two execute cycles (EX1 and EX2). Control signals for the Fetch cycle are given below. Clearly explain your reasoning.

Control	II	LD Rd, -X		
Signals	IF	EX1	EX2	
MJ	0			
MK	0			
ML	0			
IR_en	1			
PC_en	1			
PCh_en	0			
PCl_en	0			
NPC_en	1			
SP_en	0			
DEMUX	X			
MA	X			
MB	X			
ALU_f	XXXX			
MC	XX			
RF_wA	0			
RF_wB	0			
MD	X			
ME	X			
DM r	X			
DM_w	0			
MF	X			
MG	XX			
Adder_f	XX			
Inc_Dec	X			
MH	X			
MI	X			

RAL	LD Rd, -X	
Output	EX1	EX2
wA		
wB		
rA		
rB		

[25 pts]

- 3- Consider the implementation of the ICALL (Indirect Call to Subroutine) instruction on the enhanced AVR datapath shown below. ICALL is similar to the RCALL (Relative Call to Subroutine) instruction, except that the Z register points to the target address.
 - (a) List and explain the sequence of microoperations required to implement ICALL.
 - (b) List and explain the control signals and the Register Address Logic (RAL) output for the ICALL instruction Note that this instruction takes two execute cycles (EX1 and EX2). Control signals for the Fetch cycle are given below. Clearly explain your reasoning

Control	IE	IC	ALL	
Signals	IF	EX1	EX2	
MJ	0			
MK	0			
ML	0			
IR_en	1			
PC_en	1			
PCh_en	0			
PCl_en	0			
NPC_en	1			
SP_en	0			
DEMUX	X			
MA	X			
MB	X			
ALU f	XXXX			
MC	XX			
RF_wA	0			
RF_wB	0			
MD	X			
ME	X			
DM r	X			
DM_w	0			
MF	X			
MG	XX			
Adder_f	XX			
Inc_Dec	X			
MH	X			
MI	X			

RAL	ICALL		
Output	EX1	EX2	
wA			
wB			
rA			
rB			

[25 pts]

- 4- Consider the implementation of the RET (Return from subroutine) instruction on the enhanced AVR datapath shown on the following page.
 - (a) List and explain the sequence of microoperations required to implement RET.
 - (b) List and explain the control signals and the Register Address Logic (RAL) output for the RET instruction. Note that this instruction takes three execute cycles (EX1, EX2, and EX3). The Fetch cycle is shown below. Clearly explain your reasoning.

Control	IE		RET	
Signals	IF	EX1	EX2	EX3
MJ	0			
MK	0			
ML	0			
IR_en	1			
PC_en	1			
PCh_en	0			
PCl_en	0			
NPC_en	1			
SP_en	0			
DEMUX	X			
MA	X			
MB	X			
ALU_f	XXXX			
MC	XX			
RF_wA	0			
RF_wB	0			
MD	X			
ME	X			
DM r	X			
DM_w	0			
MF	X			
MG	X			
Adder_f	XX			
Inc_Dec	X			
MH	X			
MI	X			

RAL	RET			
Output	EX1	EX2	EX3	
wA				
wB				
rA				
rB				