Adversarial Examples Are Not Bugs, They Are Features

Source: A Brief Introduction to Adversarial Examples – gradient science

4 марта, 2024 Александр Демин

План

- Докладчик: вступление, в двух словах о статье
- Исследователь: о соседних результатах и экспериментах

Сеттинг: Adversarial examples

Adversarial examples, Adversarial attack:

Незаметное возмущение данных, из-за которого происходит неверная классификация

"A wide variety of models with different architectures trained on different subsets of the training data misclassify the same adversarial example." - [1412.6572]

Source: Improving neural networks by preventing co-adaption of feature detectors (uwaterloo.ca)

Q: Как возникают Adversarial examples?

"panda"

+ 0.007 ×

noise

"gibbon"

57.7% confidence 99.3% confidence

Пример: Data poisoning

- Пре-тренированная модель выпускается в публичный доступ.
- Авторы модели могут активировать уязвимости в модели на основе известных Adversarial examples

Backdoor / poisoning integrity attacks place mislabeled training points in a region of the feature space far from the rest of training data. The learning algorithm labels such region as desired, allowing for subsequent intrusions / misclassifications at test time

Сеттинг: устойчивые признаки

Proposition: Adversarial examples могут возникать как результат возмущения неустойчивых признаков, не заметных человеческому глазу

Основной тезис(ы)

T1: Уязвимость к Adversarial examples вызвана обучением на неустойчивых признаках

T2: Adversarial examples появляются благодаря хорошей обобщательной способности признаков

Основные определения

Дано:

- датасет (x, y) ~ D.
- признак f(x) : $\mathbb{R}^n \to \mathbb{R}$

Мы называем признак f(x) **полезным**, если он скоррелирован с лейблом y:

$$\mathbb{E}_{(x,y)\sim\mathcal{D}}[y\cdot f(x)] \ge \rho.$$

Robust features

Correlated with label even with adversary

Non-robust features

Correlated with label on average, but can be flipped within ℓ_2 ball

Input

Мы называем признак f(x) устойчивым, если его полезность устойчива к возмущениям x:

$$\mathbb{E}_{(x,y)\sim\mathcal{D}}\left[\inf_{\delta\in\Delta(x)}y\cdot f(x+\delta)\right]\geq\gamma.$$

Построение устойчивого датасета: 1

- Устойчивые признаки условно соответствуют предпоследнему слою нейронной сети, натренированной с помощью **Adversarial training**.

Построение устойчивого датасета: 2

- Для каждого элемента датасета *D*, строится его "устойчивый аналог"
- Используется Adversarial training + + projected gradient descent

"airplane" "ship"

- 1. $C_R \leftarrow ADVERSARIALTRAINING(D)$ $g_R \leftarrow$ mapping learned by C_R from the input to the representation layer
- 2. $D_R \leftarrow \{\}$
- 3. For $(x,y) \in D$ $x' \sim D$ $x_R \leftarrow \arg\min_{z \in [0,1]^d} \|g_R(z) - g_R(x)\|_2$ # Solved using ℓ_2 -PGD starting from x' $D_R \leftarrow D_R \cup \{(x_R, y)\}$
- 4. Return D_R

No features no worry

Результаты на CIFAR-10

Заключение

- Устойчивость (или неустойчивость) может возникать как свойство данных
- Модели могут находить и использовать устойчивые признаки для повышения точности классификации

Построение неустойчивого датасета: 1

Idea:

- Избавиться от устойчивых признаков, перемешав датасет и лейблы
- Выучиться на перемешанном распределении

good accuracy

Relabel as cat

Robust Features: dog Non-Robust Features: cat

Evaluate on original test set

GETNONROBUSTDATASET (D, ε)

- 1. $D_{NR} \leftarrow \{\}$
- 2. $C \leftarrow STANDARDTRAINING(D)$
- 3. For $(x,y) \in D$ $t \overset{\text{uar}}{\sim} [C] \qquad \text{# or } t \leftarrow (y+1) \mod C$ $x_{NR} \leftarrow \min_{||x'-x|| \leq \varepsilon} L_C(x',t) \qquad \text{# Solved using } \ell_2 \text{ PGD}$ $D_{NR} \leftarrow D_{NR} \bigcup \{(x_{NR},t)\}$
- 4. Return D_{NR}

Построение неустойчивого датасета: 2

+ стартуем со случайного шума

Перемешали лейблы:

Adversarial training

Model		Robust Accuracy	
	Accuracy	$\varepsilon = 0.25$	$\varepsilon = 0.5$
Standard Training	95.25 %	4.49%	0.0%
Robust Training	90.83%	82.48%	70.90%
Trained on non-robust dataset (constructed from images)	87.68%	0.82%	0.0%
Trained on non-robust dataset (constructed from noise)	45.60%	1.50%	0.0%
Trained on robust dataset (constructed from images)	85.40%	48.20 %	21.85%
Trained on robust dataset (constructed from noise)	84.10%	48.27 %	29.40%

PS: устойчивые признаки могут мешать

