- FastChip, INC. wants to use a wafer fabrication process and you need to analyze the **steady-state mean cycle time** based on a simulation model.
- Suppose that 10 cross replications were made and each run is long enough so that 250 cycle times were collected.
- Find T₀:
 - A. Mean plot across 10 replications of 250 product cycle times

B. Plot of 250 products cycle times from replication 1, raw and cumulative average

- Suppose that you decides to make R=10 (cross) replication, each of length T0+TE=2200 hours, deleting the first $T_0=200$ hours before data collection.
- The (within) replication averages $(\bar{Y}_r(T_0+T_E,T_0), r=1,2,...,10)$ are shown in the following table.
- Estimate the long run average cycle time and measure the error of the estimate by a 95% confidence interval.

Replication r	Sample Mean for Replication r
1	46.86
2	46.09
3	47.64
4	47.43
5	46.94
6	46.43
7	47.11
8	46.56
9	46.73
10	46.80
Ÿ	46.86
S	0.46

- Now, we consider an initial sample size (# of cross-replications) n0 = 10 and its standard deviation S0 = 0.46. Suppose that it is desired to estimate long-run mean cycle time within ε =0.1 hours.
- Find the minimum number of (cross) replications to achieve it.