Chap 10. Local and Global behavior of functions.

- 10.1 Estimating functions
- We classify intervals according to their length and endpoints;
 <u>length: "finite" or infinite" [most common terminology; bounded or unbounded] endpoints: "closed" if the endpoints are included; "open" if they are not</u>

 $\begin{array}{l} (a,b) = \{x: a < x < b\}: \text{ finite (bounded) open interval} \\ [a,b] = \{x: a \leq x \leq b\}: \text{ finite (bounded) closed interval} \\ (a,\infty) = \{x: x > a\}: \text{ infinite (unbounded) open interval} \\ (-\infty,a] = \{x: x \leq a\}: \text{ infinite (unbounded) closed interval} \\ \end{array}$

Convention: We do not consider $(a,a) (= \emptyset)$ to be an interval. That is, any interval $I \neq \emptyset$

- \bigcirc An interval like [a,b) is called half-open; the interval $(-\infty,\infty)$, which has no endpoints, is considered as both open and closed.
- Def. The open interval $(a-\delta,a+\delta)$ is called the δ neighborhood of a.

$$a - \delta$$
 $+ \delta$ $a + \delta$

We call a its center and δ its radius.

- $x \in (a \delta, a + \delta) \Leftrightarrow a \delta < x < a + \delta \Leftrightarrow |x a| < \delta \equiv \underbrace{x \approx a}_{\text{denote}} \underbrace{x \approx a}_{|\mathbf{x} \mathbf{a}| < \delta}$ $\therefore x \approx a \text{ says that } x \text{ is approximately equal to } a \text{ if } \delta \text{ is small.}$
- We write f(I) for the set $\{f(x): x \in I\}$, and we call f(I) the range of f(x) over I, or the image of I under the mapping f. For example if $f(x) = \sin x$, then

$$f((-\infty,\infty)) = [-1,1], \quad f([0,\pi]) = [0,1], \quad f((0,\pi)) = (0,1]$$

Def. Given an interval I on which f(x) is defined, we say

- b is an upper bound for f(x) on $I\Leftrightarrow b$ is an upper bound for f(I) $\Leftrightarrow f(x)\leq b$ for $x\in I$
- f(x) is bounded above on $I \Leftrightarrow f$ has an upper bound on I
- a is a lower bound for f(x) on I \Leftrightarrow a is a lower bound for f(I) \Leftrightarrow $f(x) \ge a$ for $x \in I$
- f(x) is bounded below on I \Leftrightarrow f has a lower bound on I

We say $\ f(x)$ is bounded on $\ I$ if it is bounded above and bounded below on $\ I$.

$$\begin{array}{lll} \stackrel{\mathrm{i.e.}}{\Leftrightarrow} & \exists & b_1 \ \, \text{and} \ \, b_2 \ \, \text{such that} \ \, b_1 \leq f(x) \leq b_2 \quad \, \forall x \in \mathrm{I} \\ \Leftrightarrow & \exists \ \, \text{constant} \ \, K > 0 \ \, \text{such that} \, \mid f(x) \mid \leq K \ \, \forall x \in \mathrm{I} \\ \end{array}$$

Eg. Which of these functions is bounded below or above?

(a)
$$3\cos x$$
; $-3 \le 3\cos x \le 3$: bounded

(b)
$$e^{-x}$$
 on $[0,\infty)$; $0 < e^{-x} \le 1$ for $0 \le x < \infty$... bounded

(c)
$$1 - x^2$$
; $1 - x^2 \le 1$ for all x ... bounded above

(d)
$$\tan x$$
; not bounded above or below

Def. Suppose f(x) is defined on an interval I. We define

the supremum of
$$f(x)$$
 on $I = \sup_{\mathbf{I}} f(\mathbf{I})$ (notation $\sup_{\mathbf{I}} f(x)$)

the maximum of
$$f(x)$$
 on $\mathbf{I} = \max f(\mathbf{I})$ (notation $\max_{\mathbf{I}} f(x)$)

The infimum & minimum are defined analogously.

Notice that

$$f(x)$$
 has a maximum on $I \Leftrightarrow \sup_{\mathbf{I}} f(x) = f(\overline{m}), \text{ for some } \overline{m} \in \mathbf{I}$

$$f(x)$$
 has a minimum on $I \Leftrightarrow \inf_{\mathbf{I}} f(x) = f(\underline{m}), \text{ for some } \underline{m} \in \mathbf{I}$

Eg. Find the sup, inf, max, and min of f(x) over I and J:

$$f(x) = \sin x$$
, $I = (-\infty, \infty)$, $J = (0, \pi/2)$

Sol. Over I,
$$\sup f(x) = 1 = \max f(x)$$
, $\inf f(x) = -1 = \min f(x)$

Over J,
$$\sup f(x) = 1; \quad \max f(x) \text{ does not exist}$$
$$\inf f(x) = 0; \quad \min f(x) \text{ does not exist}$$

Note that $f(I) \neq \emptyset$ since any interval I is assumed to be non-empty.

Theorem (Completeness Property for functions)

Suppose f(x) is defined on an interval I.

If f(x) is bounded above on I, then $\sup_{\mathbf{I}} f(x)$ exists;

If f(x) is bounded below on $\,\mathrm{I}\,,$ then $\,\inf_{\mathrm{I}}\,f(x)\,$ exists

• Estimating functions: inequalities and absolute values

Recall that f(x) is a real number for each $x \in D_f$. Therefore,

$$| f(x)g(x) | = | f(x) | | g(x) |,$$
 $| f(x) + g(x) | \le | f(x) | + | g(x) |$

&

$$f(x)$$
 is bounded on I $\Leftrightarrow \exists$ constant $K > 0$ such that $|f(x)| \leq K \ \forall x \in I$

Eg.
$$f(x)$$
 and $g(x)$ are bounded on $I \Rightarrow f(x)g(x)$ is bounded on I

Pf.
$$\exists$$
 constants K and L such that $|f(x)| \leq K$ and $|g(x)| \leq L$

$$\therefore$$
 | $f(x)g(x)$ | = | $f(x)$ || $g(x)$ | $\leq KL$ (= constant)

Eg. erf
$$x = \int_0^x e^{-t^2/2} dt$$
 (the error function)

Show that erf x is bounded above on $[0, \infty)$

$$\mbox{Pf.} \quad \mbox{Since} \ \ e^{-t^2/2} > 0, \quad \int_0^x e^{-t^2/2} dt \quad \mbox{is} \ \ \uparrow \ \ \mbox{on} \ \ [0,\infty) \, .$$

Thus, it suffices to show that

$$\int_0^x e^{-t^2/2} dt$$
 is bounded above for $x \ge 1$

Since erf
$$x=\underbrace{\int_0^1 e^{-t^2/2} dt}_{\text{or clearly } < 1} + \int_1^x e^{-t^2/2} dt$$
 for $x \ge 1$,

it suffices to show the last integral is bounded above for $\ x \geq 1$.

Note that

$$t^2 \ge t$$
 for $t \ge 1$
 $\Rightarrow e^{t^2/2} \ge e^{t/2}$ for $t \ge 1$ since e^x is \uparrow
 $\Rightarrow e^{-t^2/2} \le e^{-t/2}$ for $t \ge 1$

Thus the above implies that, for $x \ge 1$,

$$\int_{1}^{x} e^{-t^{2}/2} dt \le \int_{1}^{x} e^{-t/2} dt = -2e^{-t/2} \Big|_{1}^{x} \le 2e^{-1/2}$$

$$\therefore \int_{1}^{x} e^{-t^{2}/2} dt \text{ is bounded above for } x \ge 1.$$

10.2 Approximating functions

Notation:

$$\begin{array}{lll} \mid f(x) - g(x) \mid < \varepsilon & \text{for} & x \in \mathcal{I} & \Leftrightarrow & f(x) \mathop{\approx}_{\varepsilon} g(x) & \text{for} & x \in \mathcal{I} \\ & & & \Leftrightarrow & g(x) - \varepsilon < f(x) < g(x) + \varepsilon & \text{for} & x \in \mathcal{I} \\ & & & \Leftrightarrow & f(x) = g(x) + e(x), & \text{where} & |e(x)| < \varepsilon & \text{for} & x \in \mathcal{I} \end{array}$$

EgA. Use
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots$$
 for all $x \in \mathbb{R}$ to find a δ -neighborhood of 0 over

which $\sin x \underset{\varepsilon}{\approx} x$ with $\varepsilon = 0.001$

Sol. Since $\sin x$ and x are odd functions, we can do the work for $x \ge 0$.

$$\sin x = \underbrace{x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots}_{\text{alternating series}} \quad \text{for any fixed } x \in [0, 1]$$

By the Alternating series test, we get

$$|\sin x - x| \le \frac{x^3}{3!} = \frac{x^3}{6}$$
, for $0 < x < 1$
 $\therefore < 0.001$ if $x^3 < 0.006$ (i.e., $x < \sqrt[3]{0.006} \doteq 0.18171$)

Thus if we take $\delta = 0.18$, then $\sin x \approx x \cos x$

© Elementary inequality for definite integral (will be proved later):

$$\left| \begin{array}{cccc} f(x) < g(x) & \text{for } x \in I & \& \\ \int_a^b f(x) \, dx & \& \int_a^b g(x) \, dx & \text{exists for } a, b \in I \text{ with } a < b \end{array} \right| \Rightarrow \int_a^b f(x) \, dx < \int_a^b g(x) \, dx$$

 \bullet Assume a < b. Then

(*)
$$f(x) \approx g(x) \text{ on } [a,b] \implies \int_a^b f(x) dx \approx \sum_{\varepsilon(b-a)} \int_a^b g(x) dx$$

Pf.
$$f(x) \underset{\varepsilon}{\approx} g(x) \text{ for } x \in [a, b]$$

$$\Rightarrow g(x) - \varepsilon < f(x) < g(x) + \varepsilon \text{ for } x \in [a, b]$$

$$\Rightarrow \int_{a}^{b} (g(x) - \varepsilon) dx < \int_{a}^{b} f(x) dx < \int_{a}^{b} (g(x) + \varepsilon) dx$$
i.e.,
$$\int_{a}^{b} g(x) dx - \varepsilon(b - a) < \int_{a}^{b} f(x) dx < \int_{a}^{b} g(x) dx + \varepsilon(b - a)$$

$$\Rightarrow \int_{a}^{b} f(x) dx \underset{\varepsilon(b - a)}{\approx} \int_{a}^{b} g(x) dx$$

Sol. From the result in EgA, we know

$$\sin x \approx x \text{ for } |x| < 0.18, \text{ so for } |x| < 0.1$$

$$\overset{(*)}{\Rightarrow} \quad \int_0^x \sin t \ dt \quad \underset{0.001x}{\approx} \quad \int_0^x t \ dt \quad \text{for} \quad 0 < x < 0.1$$

$$\therefore 1 - \cos x \approx \frac{x^2}{0.0001}$$
 for $0 < x < 0.1$

Since $1 - \cos x$ & $\frac{x^2}{2}$ are even, it is also true that

$$1 - \cos x \approx \frac{x^2}{0.0001}$$
 for $-0.1 < x < 0$

$$\therefore \cos x \approx 1 - \frac{x^2}{2}$$
 for $|x| < 0.1$

10.3 Local behavior

To study the **continuity** or **differentiability** of f(x) at x_0 , we need to its <u>local behavior near</u> x_0 . (i.e., its behavior in some δ – nbd of x_0)

For that purpose, we use the notation

for
$$x \approx x_0$$
 or for x near x_0

which means

for
$$x$$
 in some δ – nbd of x_0 (i.e., $x \underset{\delta}{\approx} x_0$ for some $\delta > 0$)

EgA. T or F?

(a)
$$x^4 \le x^2$$
 for $x \approx 0$ (b) $x^3 \le x$ for $x \approx 0$ (c) $x^3 \le x$ for $x \approx 0, x \ge 0$

Sol. (a) is True because
$$x^4 \le x^2$$
 for $|x| < 1$ (: $x^4 \le x^2$ for $x \approx 0$)

- (b) is **False** because $x^3 > x$ for -1 < x < 0
- (c) is True because $x^3 \le x$ for $0 \le x < 1$

EgB. If f(x) and g(x) are bounded for $x \approx x_0$, so is f(x) + g(x) Pf. By hypo,

$$\mid f(x) \mid < K \text{ for } x \approx x_0, \text{ say for } \mid x - x_0 \mid < \delta'$$
 & $\mid g(x) \mid < L \text{ for } x \approx x_0, \text{ say for } \mid x - x_0 \mid < \delta''$

Thus,
$$|f(x) + g(x)| \le |f(x)| + |g(x)| < K + L$$
 for $|x - x_0| < \min\{\delta', \delta''\} \equiv \delta$
Therefore, $f(x) + g(x)$ is bounded for $x \approx x_0$

Sometimes, one wants to know the behavior of f(x) on some interval like (a, ∞) or $(-\infty, a)$. For that purpose, we use the notation

for
$$x\gg 1$$
, for x large, for x in some interval (a,∞)
for $x\ll -1$, for negatively large x , for x in some interval $(-\infty,a)$
for $|x|\gg 1$, for large $|x|$, for $|x|>$ some positive number a

where in each case, an appropriate value of a exists, but is unspecified.

We can also use the terminology like

local behavior of
$$f(x)$$
 at ∞ (= for $x \gg 1$)
local behavior of $f(x)$ at $-\infty$ (= for $x \ll -1$)
local behavior of $f(x)$ at $\pm \infty$ (= for $|x| \gg 1$)

EgC. Let f(x) be a polynomial with positive leading coefficient. That is,

$$f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_n, \quad a_0 > 0.$$

Then

(a)
$$f(x) > 0$$
 at ∞ (i.e., $f(x) > 0$ for $x \gg 1$)

(b) if
$$n$$
 is even, then $f(x)>0$ at $-\infty$ (i.e., $f(x)>0$ for $x\ll -1$); if n is odd, then $f(x)<0$ at $-\infty$

(c)
$$\frac{1}{f(x)}$$
 is bounded at $\pm \infty$ (i.e., for $|x| \gg 1$)

• Local properties at a point

f(x) is locally increasing at x_0 means f(x) is inc for $x \approx x_0$

f(x) is locally bounded at x_0 means f(x) is bounded for $x \approx x_0$

f(x) is locally positive at x_0 means f(x) is positive for $x \approx x_0$

EgD. (Easy to prove)

(a)
$$f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_n$$
 (with const term $a_n > 0$) is locally positive at 0.

(b) $\sin x$ is locally inc at every $x_0 \in (-\pi/2, \pi/2)$, but not at $\pm \pi/2$.

(c) The function
$$f(x) = \begin{cases} 1/x & x \neq 0 \\ 0 & x = 0 \end{cases}$$
 is locally bounded at any $x_0 \neq 0$, but not at 0 .

10.4 Local and global properties of functions

Def. We say that f(x) is locally bounded on the open interval I if it is locally bounded at every point of I:

for all
$$x_0 \in I$$
, $f(x)$ is bounded for $x \approx x_0$

EgA. Show that $\frac{1}{x}$ is locally bounded on $(0,\infty)$

Sol.

For any $x_0 = a > 0$, take $\delta = \frac{a}{2}$. Then

$$a - \delta < x < a + \delta$$
 (i.e., $\frac{a}{2} < x < \frac{3a}{2}$) $\Rightarrow \frac{2}{3a} < \frac{1}{x} < \frac{2}{a}$

 $\therefore \quad f(x) \text{ is bounded for } x \underset{\delta}{\approx} a \text{ where } \delta = \frac{a}{2}.$

Remark. $\frac{1}{x}$ is not bounded on $(0,\infty)$ since $\lim_{x\to 0^+}\frac{1}{x}=\infty$

Def. We say f(x) is locally inc on an open interval I if it is locally inc at every point $x_0 \in I$

EgB. $f(x) = \tan x$ is locally inc on every interval of its domain: $(-\frac{\pi}{2}, \frac{\pi}{2}), (\frac{\pi}{2}, \frac{3\pi}{2}), \cdots$

However, it is not increasing (: $f(\pi/4) = 1 > 0 = f(\pi)$)

Remark(on local behavior at endpoints). In the preceding definitions, if I = [a, b],

replace "for
$$x \approx a$$
" by "for $x \approx a$, $x \geq a$ " (notation: for $x \approx a^+$)

"for
$$x \approx b$$
" by "for $x \approx b$, $x \leq b$ " (notation: for $x \approx b^-$)

Thus we say $\ f$ is locally inc at the left endpoint of $\ [a,b]$ if $\ f(x)$ is inc. for $x \approx a^+$

EgC. Show that \sqrt{x} is locally bounded on $[0,\infty)$

Sol. If a > 0, take $\delta = a$, say; then $0 \le \sqrt{x} \le \sqrt{2a}$ for $x \approx a$

If a=0, take $\delta=1$, say; then $0 \le \sqrt{x} \le 1$ for $x \approx 0^+$

Note that \sqrt{x} is not bounded on $[0,\infty)$ since $\lim_{x\to\infty} \sqrt{x} = \infty$

More precisely, if \sqrt{x} is bounded on $[0,\infty)$, then

 $\exists M > 0 \text{ such that }$

$$|\sqrt{x}| = \sqrt{x} \le M \quad \forall x \in [0, \infty)$$

Let $x \to \infty \Rightarrow LHS \to \infty$, but RHS (= M) is a fixed positive number; a contradiction

Local vs Global

· local property:

A property is **local** if to verify that it holds on an interval, it is enough to check that it holds in **a nbd** of each point on this interval; (for ex, locally inc or locally bdd on I)

• global property:

A property is **global** if to see if it holds on an interval I, one must *look at* the function on the interval I as a whole; (for example, f is bounded on I or f is periodic on $(-\infty,\infty)$)

① In general, if a property P is global, then P is also local.

For example,

Theorem (will be proved later)

Let f(x) be a function defined on a <u>closed and bounded</u> interval I = [a, b]. Then f(x) is locally bounded on $I \Rightarrow f(x)$ is (globally) bounded on I

• pointwise property:

This is a property of f(x) on an interval I which can be verified **point-by-point** in I; for example, *positivity* is a pointwise property

$$(:: f(x) \text{ is positive on } I \Leftrightarrow f(a) > 0 \text{ for each } a \in I)$$