Development and Integration of System-of-Systems Models for Unmanned Aircraft

Athanasios Papageorgiou MODPROD 2020

Background

- Aerospace products are part of a network or a "System of Systems"
 - SoS analyses have been used in the way customer acquire new assets

Manufacturers should be able to perform similar analyses

Background

"A holistic engineering approach to aeronautical product development"

Aim

Which is better?

Can we get more?

- Framework for SoS design space population
 - First step is to define the SoS combinations to be evaluated
 - Second step is to identify the performance of each CS and SS
 - Third step is to simulate the entire SoS to extract the MoE

- Framework for SoS design space population
 - Addresses all three levels of design
 - Not bound to any design space
 - Allows the use of multi-fidelity tools

Implementation

Sub-System (SS) Models

Expanding the SS level models (P, V, W) Need to capture the effects of sensors/communications Need to represent the electrical architecture/propulsion Mission Simulation

System-of-Systems (SoS) Simulations

- Capturing the SoS level interactions
 - Collaboration (divide search, avoid overlap)
 - Realism (failure modes, false positives, drift)

Multi-fidelity Computations

- Enabling faster computations
 - Metamodels at each one of the design levels
 - Approach of creating multiple metamodels

Look-up

table

Weather data

Proof Of Concept

- Setting up a case study
 - Search for missing survivors/objects
 - Dynamic weather (sea & air) conditions
- Two operational scenarios
 - A) fleet of 3 existing UAV designs (HF)
 - B) fleet of 2-4 yet-to-be-designed UAVs (LF)
- Monitored capabilities (MoEs)
 - Detection probability VS Mission costs
 - Total payload / Fleet maintenance costs

Case Study 1 (HF)

10 existing UAV designs (A-J)
3 ACs combinations

Original framework

- Results part A
 - A fleet of 3 existing UAV designs

- Results part A
 - A fleet of 3 existing UAV designs

Pareto front

- Results part A
 - A fleet of 3 existing UAV designs

Pareto front

"Stagnation points"

- Results part A
 - A fleet of 3 existing
 UAV designs

Pareto front

"Stagnation points"

Trade-off studies

Original

framework

Identifying SoS Capabilities

- Results part A
 - A fleet of 3 existing
 UAV designs

Pareto front

"Stagnation points"

Trade-off studies

UAV combinations

Original

framework

ies

Identifying SoS Capabilities

- Results part A
 - A fleet of 3 existing UAV designs

Pareto front

"Stagnation points"

Trade-off studies

UAV combinations

More capabilities

Case Study 2 (LF)

Yet-to-de-designed UAVs Combinations of 2-3-4 ACs

Metamodel framework

23

Identifying SoS Capabilities

- Results part B
 - A fleet of 2-4 yetto-be-designed UAVs

Metamodel framework

- Results part B
 - A fleet of 2-4 yetto-be-designed UAVs

Extended Pareto front

Metamodel framework

Identifying SoS Capabilities

- Results part B
 - A fleet of 2-4 yetto-be-designed UAVs

Extended Pareto front

"Stagnation points"

Metamodel framework

Identifying SoS Capabilities

- Results part B
 - A fleet of 2-4 yetto-be-designed UAVs

Extended Pareto front

"Stagnation points"

Trade-off studies

Metamodel framework

- Results part B
 - A fleet of 2-4 yetto-be-designed UAVs

Extended Pareto front

"Stagnation points"

Trade-off studies

UAV designs

Concluding Remarks

29

Summary

- Technical developments
 - A methodology for populating the design space
 - Model development at all three system levels
 - A multi-fidelity design exploration framework
 - Surrogate models as a low-fidelity alternative
- Case study results
 - MoE depend on the chosen SoS
 - SoS bring forward new capabilities
 - Strong effect of scenario, tactics, and fidelity

What comes next?

Airborne Early Warning & Control (AEW&C)

Thank you for your attention

Athanasios Papageorgiou

MODPROD 2020

