В. С. Симанков, Е. С. Тарасов

Россия, г. Краснодар, КубГТУ

МЕТОДИЧЕСКИЙ ПОДХОД К АНАЛИЗУ И ВЫРАБОТКЕ ПРИЕМОВ ПРОТИВОДЕЙСТВИЯ ИСПОЛЬЗОВАНИЮ НЕТРАДИЦИОННЫХ ИНФОРМАЦИОННЫХ КАНАЛОВ

Применение несертифицированного аппаратного и программного обеспечения в автоматизированных системах влечет за собой необходимость учета факторов, связанных с наличием в этом оборудовании недокументированных возможностей, влияющих на безопасность обрабатываемой информации.

Если рассматривать производителя средств, используемых для обработки конфиденциальной информации, как противника, то его возможности по несанкционированным действиям в вычислительной системе неограниченны.

Традиционные средства защиты бессильны против закладок, выполненных на уровне архитектуры. Когда речь идет о защите коммерческой информации, угроза совместных действий производителей выглядит малоправдоподобной, но в случае сведений, составляющих государственную тайну, приходится предполагать, что противник (например, спецслужбы стран-производителей оборудования) может (и будет) использовать все возможности, заложенные в архитектуру вычислительных систем.

Для нейтрализации данных угроз безопасности конфиденциальной информации проводится комплекс мероприятий по государственной сертификации импортного ПО и специальные проверки аппаратного обеспечения.

Развитие техники и технологий привело к возможности осуществления несанкционированного доступа к конфиденциальной информации, обрабатываемой в АС, по *нетрадиционным информационным каналам* (НИК), невидимым (скрытым) для современных средств защиты, с использованием, в частности, аппаратнопрограммных закладок (АПЗ), внедренных в систему.

Нетрадиционный информационный канал - это несанкционированный способ скрытой передачи нелегитимной информации по действующим («традиционным») каналам связи, нарушающий системную политику безопасности [10].

В связи с этим возникла проблема анализа нетрадиционных (скрытых) каналов всюду, где возникают ограничения на информационные потоки.

Любой такой анализ предполагает решение четырех взаимосвязанных задач:

- выявление скрытых каналов;
- оценка пропускной способности и опасности, которую несет их функционирование;
- выделение сигнала или получение какой-либо информации, передаваемой по скрытым каналам;
 - противодействие реализации скрытого канала вплоть до его уничтожения.

Если противник знает схему контроля в системе защиты, то при выполнении определенных условий возможно построение невидимого для нее скрытого канала управления программно-аппаратным агентом в компьютерной среде [1].

Аналогично – при условии знания противником системы защиты доказывается возможность построения скрытого канала при общении программно-аппаратных агентов в открытой среде между собой [2]; т. е. при помощи аппаратно-программных закладок, реализованных в оборудовании при поддержке производителя, возможно обеспечить двунаправленную передачу данных между злоумышленниками.

Доказательство невозможности обнаружения и устранения потайных каналов

имеется также в работах А. А. Грушо и Е. Е. Тимониной [4].

Рис. 1. Методы и средства анализа безопасности ИС

Со скрытыми каналами можно бороться двумя способами: пытаться блокировать их полностью или уменьшать пропускную способность. Представляется очевидным, что если не формализовать структуру данных, передаваемых программами по легальным каналам, последние всегда можно использовать для скрытой пе-

редачи информации [9]. Модели скрытых каналов используются для разработки методов их выявления или для обоснования невозможности такового.

Создание комплексных СЗИ в данных условиях (высокой степени неопределенности функционирования) должно сопровождаться использованием согласованного семейства моделей, адаптивно конструирующихся одна из другой и, таким образом, непрерывно совершенствующихся на основе оптимального выбора исходных данных; при непосредственном синтезе системы защиты исходными должны явиться положения о выборе математически продуктивного критерия оптимальности в соответствии с архитектурой системы защиты и технологией обработки информации на объекте и четкой математической формулировки задачи, учитывающей все имеющиеся сведения и позволяющей решить ее в соответствии с принятым критерием [3].

Использование комплекса моделей также необходимо для решения задач:

- описания структуры и поведения системы, прогнозирования значений ее параметров;
- формирования подмножеств контролируемых параметров и диапазонов значений зон их контроля на основе заданных требований к устойчивости функционирования системы;
 - контроля и диагностирования нарушений работоспособности системы;
- самоорганизации и саморазвития семейств моделей для описания структуры, поведения, прогнозирования, контроля и диагностирования с учетом обеспечения необходимой устойчивости системы в условиях влияния факторов среды.

Результатом исследований должны быть созданные на основе известных и специально разработанных методов и средств модели для описания структуры и поведения СЗИ, а также контроля, диагностирования и прогнозирования ее состояний (системы выявления АПЗ сетевого уровня, выявление на системном уровне, функционирующие на основе заданной совокупности критериев, полученных в результате вероятностного, логического, синтаксического или семантического анализа).

Методы и средства, используемые для анализа и оценки безопасности ИС, можно разделить на две категории: контрольно-испытательные и логико-аналитические (рис.1) – по различиям в точке зрения на предмет исследования [7, 8].

Контрольно-испытательные методы анализа рассматривают его через призму фиксации факта нарушения безопасного состояния системы, а логико - аналитические — посредством доказательства наличия отношения эквивалентности между моделью исследуемой программы и моделью объекта (АПЗ). В такой классификации тип используемых для анализа средств не принимается во внимание - в этом ее преимущество по сравнению, например, с разделением на статический и динамический анализ

Комплексная система исследования безопасности должна включать как контрольно-испытательные, так и логико-аналитические методы анализа, используя преимущества каждого их них.

С методической точки зрения логико - аналитические методы выглядят более предпочтительными, так как позволяют оценить надежность полученных результатов и проследить последовательность (путем обратных рассуждений) их получения.

Однако эти методы еще мало развиты и, несомненно, более трудоемки, чем контрольно-испытательные, те, в которых критерием безопасности программы служит факт регистрации в ходе тестирования программы нарушения требований по безопасности, предъявляемых к системе (рис. 2).

Контрольно-испытательные методы делятся на контролирующие процесс функционирования ИС и те, в которых отслеживаются возможные изменения, вызванные деятельностью АПЗ. Эти методы не требуют формального анализа, позволяют использовать имеющиеся технические и программные средства и быстро ведут к созданию готовых методик.

Рис. 2. Схема анализа безопасности с помощью контрольно-испытательных методов

Они начинаются с определения набора контролируемых параметров системы; этот набор будет зависеть от используемого аппаратного и программного обеспечения (от операционной системы) и исследуемого объекта. Затем составляется программа испытаний и проверки требований безопасности, предъявляемых к данной системе в предполагаемой среде эксплуатации на запротоколированных действиях и изменениях в операционной среде, использующая стохастические методы и экстраполяцию результатов. Очевидно, что наибольшую трудность здесь представляет определение набора критичных с точки зрения безопасности параметров, которые сильно зависят от специфики исследуемой системы и определяются путем экспертных оценок; кроме того, в условиях ограниченных объемов испытаний, заключение о выполнении или невыполнении требований безопасно-

сти, как правило, будет носить вероятностный характер.

При проведении анализа безопасности с помощью логико-аналитических методов (рис. 3) строится модель исследуемой системы и формально доказывается эквивалентность ее модели объекта (АПЗ). Методы используют формальные модели, основанные на совокупности признаков, свойственных той или иной группе известных объектов.

Рис. 3. Схема анализа безопасности с помощью логико-аналитических методов

Для проведения логико-аналитического анализа безопасности необходимо, во-первых, выбрать способ представления и получения моделей системы и объектов. После этого необходимо построить модель исследуемой системы и попытаться доказать принадлежность ее части к отношению эквивалентности, задающему

множество объектов.

Необходимо, чтобы модели объекта и системы были заданы одним и тем же способом. Проблемой здесь является создание формальных моделей систем и объектов, или хотя бы определенных их классов. Механизм задания отношения между системой и объектами определяется способом представления модели. Наиболее перспективным здесь видится использование семантических графов и объектноориентированных моделей [5].

Для моделирования поведения системы могут быть применены методы интеллектуального анализа. При достаточном количестве данных о поведении объекта возможно автоматическое порождение гипотез о взаимосвязи (в том числе и неявной) между различными параметрами и компонентами, корреляционных зависимостях и оценка вероятности каждой гипотезы; некоторые системы, используя аппарат нечеткой логики, могут оценивать данные не только с количественной, но и с качественной стороны.

В целом полный процесс анализа состоит из лексического верификационного, синтаксического верификационного и семантического анализа. Каждый из них представляет собой законченное исследование, выводы которого могут иметь как самостоятельное значение, так и коррелироваться с результатами полного процесса анализа [6].

Лексический верификационный анализ предполагает поиск, распознавание и классификацию различных лексем объекта исследования. Синтаксический верификационный анализ предполагает поиск, распознавание и классификацию синтаксических структур объектов, а также построение структурно - алгоритмической модели самой системы.

Семантический анализ предполагает исследование системы, изучение смысла составляющих ее компонентов в аспекте единой операционной среды. В отличие от предыдущих видов, основанных на статическом исследовании, семантический анализ нацелен на изучение динамики системы, ее взаимодействия с окружающей средой. На основании полученных результатов можно сделать заключение о степени безопасности ИС.

Неэффективность традиционных математических методов (статистики и теории вероятностей, классических методов оптимизации) и сложность процесса принятия решений приводят к тому, что при оценке и выборе альтернатив необходимо использовать и обрабатывать качественную экспертную информацию. Перспективным направлением разработки методов принятия решений в данной ситуации является лингвистический подход на базе теории нечетких множеств.

Решение задач анализа и синтеза СЗИ усложняется рядом их особенностей, основными из которых являются: сложная опосредствованная взаимосвязь показателей качества СЗИ с показателями качества информационной системы; необходимость учета большого числа показателей (требований) СЗИ при оценке и выборе их рационального варианта; преимущественно качественный характер показателей, учитываемых при анализе и синтезе СЗИ; существенная взаимосвязь и взаимозависимость этих показателей, имеющих противоречивый характер; трудность получения исходных данных, необходимых для решения задач анализа и синтеза СЗИ, в особенности на ранних этапах их проектирования.

Изучение проблематики скрытых каналов показывает, как важно правильно поставить задачу, рассматривая ее не изолированно, а в реальном окружении с неуклонным повышением системности подхода — в том смысле, что проблема защиты заключается не только в создании соответствующих механизмов, а представляет собой регулярный процесс, осуществляемый на всех этапах жизненного цикла системы при комплексном использовании всех имеющихся возможностей.

Проведенный анализ и представленные методики позволяют подойти к решению исследуемой проблемы с системной точки зрения, демонстрируя, как при этом все средства, методы и мероприятия, используемые для защиты, рационально объединяются в единый целостный механизм.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Грушо А. А. Скрытые каналы и безопасность информации в компьютерных системах // Дискретная математика, Т. 10. Вп. 1. 1998.
- 2. *Грушо А. А.* О существовании скрытых каналов // Дискретная математика. Т.11. Вып. 1. 1999.
- 3. *Грушо А. А., Тимонина Е. Е.* Теоретические основы защиты информации. М.: Издво. -«Яхтсмен», 1996.
- 4. *Тимонина Е.Е.* Механизмы контроля скрытых каналов // Информационные технологии в науке, образовании, телекоммуникации, бизнесе: Труды международной конференции. Украина, Крым, 2002.
- Казарин О. В. Безопасность программного обеспечения компьютерных систем. М., 2003.
- 6. Домарев В. В. Безопасность информационных технологий. Системный подход. Киев: ДиаСофт. 2001.
- 7. Зегжда Д. П.,Шмаков Э. М. Проблема анализа безопасности программного обеспечения// Безопасность информационных технологий. 1995. №2.
- 8. 3егжда Д. П. Проблемы безопасности программного обеспечения. СПб.: Изд-во. СПбГТУ, 1995.
- 9. Lampson B. W. A Note of the Confinement Problem. Communications of ACM, 1973. 10. Tsai C. R., Gligor V. D., Chandersekaran C. S. A Formal Method for the Identification of Covert Storage Channels in Source Code. IEEE Transactions on Software Engineering, 1990.

А. П. Жук, Р. Ю. Савелов

Россия, г. Ставрополь, Ставропольский государственный университет

АРХИТЕКТУРА МЕЖСЕТЕВОГО ЭКРАНА ДЛЯ КОРПОРАТИВНЫХ СЕТЕЙ

В настоящее время ввиду бурного развития бизнеса наиболее большое распространение получили корпоративные сети, которые также называют сетями масштаба предприятия. Пользователями корпоративной сети являются только сотрудники предприятия [1].

Корпоративные сети имеют ряд концептуальных преимуществ, таких как высокая отказоустойчивость, способность выполнения параллельных вычислений, возможность гибкого распределения работ по всей системе, оперативный доступ к обширной корпоративной информации, взаимодействие с потенциальными клиентами посредством общедоступных сетей и Internet и другие.

Но вместе с этим в корпоративных сетях появляются и риски, связанные с опасностями взаимодействия с открытой и неконтролируемой внешней средой. Такая среда представляет собой большую угрозу безопасности корпоративным сетям, так как возрастает количество удалённых пользователей, которые могут получить несанкционированный доступ к ресурсам сети предприятия.

Для устранения проблем, связанных с безопасностью, известно много различных решений, самым распространенным из которых является применение межсетевых экранов. Их использование - это первый шаг, который должно сделать любое предприятие, подключающее свою корпоративную сеть к Internet [2].