

Universidad Tecnológica de la Mixteca

Clave DGP:

Doctorado en Inteligencia Artificial

-> 00006

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA			
MODELADO ESTOCÁSTICO			

SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Primero	351102	80

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Conocer las bases matemáticas de diferentes tipos de modelos además de conocer las circunstancias en las que son empleados.

TEMAS Y SUBTEMAS

1. Modelos

- 1.1. Modelos paramétricos y no paramétricos.
- 1.2. Dimensionalidad y agrupamiento.
- 1.3. Clasificación y regresión.
- 1.4. Mezclas de modelos (GMM).
- 1.5. Selección de modelos.

2. Probabilidad y Estadística

- 2.1. Distribuciones de probabilidad.
- 2.2. Regla de Bayes.
- 2.3. Modelos probabilísticos y selección.
- 2.4. Transformaciones.
- 2.5. Estimadores, sesgo y varianza.
- 2.6. Medidas de desempeño.

3. Modelos Gaussianos

- 3.1. Análisis discriminante.
- 3.2. Sistemas Gaussianos lineales.
- 3.3. Inferencia en distribuciones Gaussianas.
- 3.4. Parametrización.

4. Redes Bayesianas

- 4.1. Correlación, causalidad y modelos gráficos.
- 4.2. Inferencia en Redes Bayesians.
- 4.3. Aprendizaje de la estructura.
- 4.4. Estimación de parámetros.

ACTIVIDADES DE APRENDIZAJE

Exposición en clase por parte del profesor, tareas y proyectos individuales.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

El Capítulo II, De las Evaluaciones, del Reglamento General de Posgrado establece que, Artículo 33, la calificación final del alumno se obtendrá de tres evaluaciones parciales (50%) y un examen ordinario (50%), Artículo 32. Para cada evaluación parcial se indicada a finicio de semestre la modalidad de evaluación a utilizar, Artículo 24.

VICE-RECTORIA ACADÉMICA

Universidad Tecnológica de la Mixteca

Doctorado en Inteligencia Artificial

. 00007

PROGRAMA DE ESTUDIOS

BIBLIOGRAFÍA (TIPO, TITULO, AUTOR, EDITORIAL Y AÑO)

Básica:

- Machine Learning. A probabilistic perspective. Kevin P. Murphy. MIT Press, 2012.
- Probabilistic Graphical Models. Daphne Koller & Nir Friedman. MIT Press, 2009.
- Artificial Intelligence: A Modern Approach. S. Russell & P. Norvig. 4a ed. Pearson, 2020.

Consulta:

- An introduction to statistical learning. With Applications in R. Gareth James, Daniela Witten, Trevor Hastie & Robert Tibshirani. Springer, 2017.
- Bayesian and frequentist regression methods. Jon Wakefild. Springer, 2013.
- Expert Systems and Probabilistic Network Models. Enrique Castillo, José Manuel Gutiérrez & Ali S. Hadi. Springer, 1997

PERFIL PROFESIONAL DEL DOCENTE

Estudios mínimos de Doctorado en Ciencias de la Computación, Matemáticas Aplicadas o área afin con conocimientos en Inteligencia Artificial.

Vo.Bo

DR. JOSÉ ANÍBAL ARIAS AGUILAR DIVISION DE ESTUDIOS JEFE DE LA DIVISIÓN DE ESTUDIOS DE **POSGRADO**

AUTORIZÓ

DR. AGUSTÍN SANTIAGO ALVARADO VICE-RECTOR AGADÉMICOECTORIA