${\bf Vorlesung\ Rechnerorganisation\ Wintersemester\ 2020/21}$

- Übungsblatt 3 -

Name, Vorname: Slavov, Velislav

Matrikelnummer: 2385786

Studiengang: Informatik BsC

Name des Tutors: Joras Heinle

4) "Velislav Slavov" verschlüsselt ist wieder "Velislav Slavov" A2) 1. Ausgabe: 12541.2324218750 Ich gehe davon aus, doss der Author entheder Nullen oder Dreier nach dem .233 erwartet hat 2. Bei mir wird ein Segmentation fault erläutert und auch beim compilieren bekonne ich ein Warning. Scheinbar kann man die Adresse einer lokalen Varable nicht zurückgeben. 3. Da : ein unsigned int ist, wird i-1 bei der letzte Iteration der For Schleife auf -1 gesetzt, nas zu einem Fehler führt. Kein array Index -1 möglich!

1. So muss die Speicher adressierung nicht explizit angegeben werden. Also uir nehmen einfach die Bits nach dem Opcode und das ist der West. - IAR = Instruktions adresse register: Speichert die Adresse der nächsten Instruktion -IR = Instruktions register: Speichert die Bits der nächsten Instruktion (inplusiv Parametera) - SAR = Speicheradressregister: Speichert eine Speicheradresse auf die später zugegriffen wird - SDR = Speicherdætenregister: Speichert die Daten die vom Speicher gelesen nurden (bzw. in Speicher geschrieben werden) 4. Z.B. braucht die Addition die IAR, SAR & SDR picht, da alle Infos schon im IR stehen.

Architektur der MIMA

$C_2C_1C_0$	ALU Operation
0 0 0	tue nichts (d.h. Z -> Z)
0 0 1	X + Y -> Z
0 1 0	rotiere X nach rechts -> Z
0 1 1	X AND Y -> Z
100	X OR Y -> Z
1 0 1	X XOR Y -> Z
1 1 0	Eins-Komplement von X -> Z
111	falls $X = Y$, -1 -> Z, sonst $0 \rightarrow Z$

				Т.
OpCode	Mnemo	onik	Beschreibung	N:
0	LDC	С	c -> Akku	B ₂₃ -B ₁₆ :
1	LDV	а	<a> -> Akku	23 16
2	STV	а	Akku -> <a>	
3	ADD	а	Akku + <a> -> Akku	
4	AND	а	Akku AND <a> -> Akku	Befehl
5	OR	а	Akku OR <a> -> Akku	Con I
6	XOR	а	Akku XOR <a> -> Akku	Op Code A
7	EQL	а	falls Akku = <a>:-1 -> Akku	23 20 OpCode
			sonst: 0 -> Akku	
8	JMP	а	a -> IAR	F
9	JMN	а	falls Akku < 0 : a -> IAR	23 20
F0	HALT		stoppt die MIMA	
F1	NOT		bilde Eins-Komplement von Akku -	> Akku

Register

Akku: Akkumulator
X: 1. ALU Operand
Y: 2. ALU Operand
Z: ALU Ergebnis
Eins: Konstante 1

IAR: InstruktionsadreßregisterIR: InstruktionsregisterSAR: SpeicheradreßregisterSDR: Speicherdatenregister

Steuersignale vom SW

- für den internen Datenbus

A_r: Akku liest
A_w: Akku schreibt
x: X-Register liest
y: Y-Register liest

z: Z-Register schreibt

E: Eins-Register schreibt
P_: IAR liest

P_w: IAR schreibt I_r: IR liest

I_w: IR schreibt D_r: SDR liest

D_w: SDR schreibts: SAR liest

– für die ALU

c2-c0: Operation auswählen

für den SpeicherR: Leseanforderung

w: Schreibanforderung

Meldesignale zum SW

T: Takteingang

n: Vorzeichen des Akku B_{23} - B_{16} : OpCode-Feld im IR

Befehlsformate

F2 RAR rotiere Akku eins nach rechts -> Akku