

# **8W CAR RADIO AUDIO AMPLIFIER**

NOT FOR NEW DESIGN

The TDA2002 is a class B audio power amplifier in Pentawatt<sup>®</sup> package designed for driving low impedance loads (down to  $1.6\Omega$ ).

The device provides a high output current capability (up to 3.5A), very low harmonic and cross-over distortion.

In addition, the device offers the following features:

- very low number of external components
- assembly ease, due to Pentawatt<sup>®</sup> power package with no electrical insulation requirement
- space and cost saving
- high reliability
- flexibility in use

#### Protection against:

- a) short circuit;
- b) thermal over range;
- c) fortuitous open ground;
- d) load dump voltage surge.

#### See TDA 2003 for more complete information.



### ABSOLUTE MAXIMUM RATINGS

| V <sub>s</sub><br>V <sub>s</sub>                      | Peak supply voltage (50 ms) DC supply voltage                                      | 40<br>28<br>18 | V<br>V<br>V |
|-------------------------------------------------------|------------------------------------------------------------------------------------|----------------|-------------|
| $V_s$                                                 | Operating supply voltage                                                           | 3.5            | Α           |
| l <sub>o</sub>                                        | Output peak current (repetitive)                                                   | 4.5            | Α           |
| I <sub>o</sub>                                        | Output peak current (non repetitive) Power dissipation at T <sub>case</sub> = 90°C | 15             | W           |
| P <sub>tot</sub><br>T <sub>eta</sub> , T <sub>i</sub> | Storage and junction temperature                                                   | -40 to 150     | °C          |

Fig. 1 - Application circuit



June 1988

1/2

## **ELECTRICAL CHARACTERISTICS** ( $V_s = 14.4V$ , $T_{amb} = 25^{\circ}C$ unless otherwise specified)

| DC CHARACTERISTICS (Refer to DC test circuit) |                                  |     |     |     |    |  |  |
|-----------------------------------------------|----------------------------------|-----|-----|-----|----|--|--|
| Vs                                            | Supply voltage                   | 8   |     | 18  | V  |  |  |
| Vo                                            | Quiescent output voltage (pin 4) | 6.1 | 6.9 | 7.7 | V  |  |  |
| L L                                           | Quiescent drain current (pin 5)  |     | 45  | 80  | mA |  |  |

Test conditions

Unit

Max.

Min.

Тур.

#### AC CHARACTERISTICS (Refer to AC test circuit, $G_v$ = 40 dB)

**Parameter** 

| Po                   | Output power                  |     | d = 10%                                                                                        | f = 1 kHz<br>R <sub>L</sub> = 4Ω<br>R <sub>L</sub> = 2Ω                                               | 4.8          | 5,2                  |      | Ī.,,                |
|----------------------|-------------------------------|-----|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------|----------------------|------|---------------------|
|                      |                               |     | V <sub>s</sub> = 16V                                                                           | $R_{L}^{-}=2\Omega$ $R_{L}^{-}=4\Omega$ $R_{L}^{-}=2\Omega$                                           | 7            | 6.5                  |      | 8 8                 |
|                      |                               |     |                                                                                                | R <sub>L</sub> = 2Ω                                                                                   |              | 10                   |      | W                   |
| V <sub>i (rms)</sub> | Input saturation voltage      |     |                                                                                                |                                                                                                       | 300          |                      |      | mV                  |
| Vi                   | Input sensitivity             |     | P <sub>o</sub> = 0.5W<br>P <sub>o</sub> = 0.5W<br>P <sub>o</sub> = 5.2W<br>P <sub>o</sub> = 8W | f = 1 kHz<br>R <sub>L</sub> = 4Ω<br>R <sub>L</sub> = 2Ω<br>R <sub>L</sub> = 4Ω<br>R <sub>L</sub> = 2Ω |              | 15<br>11<br>55<br>50 |      | m > m > m > m > m > |
| В                    | Frequency response<br>(-3 dB) |     | R <sub>L</sub> = 4Ω                                                                            | P <sub>o</sub> = 1W                                                                                   | 40 to 15 000 |                      |      | Hz                  |
| d                    | Distortion                    |     | P <sub>o</sub> = 0.05 to :<br>P <sub>o</sub> = 0.05 to                                         | f = 1  kHz<br>3.5W $R_{\perp} = 4\Omega$<br>5W $R_{\perp} = 2\Omega$                                  |              | 0.2<br>0.2           |      | %<br>%              |
| Ri                   | Input resistance (pin 1)      |     | f = 1 kHz                                                                                      |                                                                                                       | 70           | 150                  |      | kΩ                  |
| G <sub>V</sub>       | Voltage gain (open loop)      |     | R <sub>L</sub> = 4Ω                                                                            | f = 1 kHz                                                                                             |              | 80                   |      | dB                  |
| G <sub>V</sub>       | Voltage gain (closed loop)    |     | R <sub>L</sub> = 4Ω                                                                            | f = 1 kHz                                                                                             | 39.3         | 40                   | 40.5 | dB                  |
| e <sub>N</sub>       | Input noise voltage           | (*) |                                                                                                |                                                                                                       |              | 4                    |      | μV                  |
| iN                   | Input noise current           | (*) | ]                                                                                              |                                                                                                       | <u> </u>     | 60                   |      | pA                  |
| η                    | Efficiency                    |     | P <sub>o</sub> = 5.2W<br>P <sub>o</sub> = 8W                                                   | f = 1 kHz<br>R <sub>L</sub> = 4Ω<br>R <sub>L</sub> = 2Ω                                               |              | 68<br>58             |      | %<br>%              |
| SVR                  | Supply voltage rejection      |     | $R_L = 4\Omega$ $R_g = 10 \text{ k}\Omega$ $f_{ripple} = 100 \text{ l}$                        | Hz                                                                                                    | 30           | 35                   |      | dB                  |

<sup>(\*)</sup> Filter with noise bandwidth: 22 Hz to 22 KHz.