

三天零基础入门Python

第一章: 课程导学

Python! Python! Python!

Python的历史和理念

优雅、明确、简单

Python的创始人 吉多·范罗苏姆 (Guido van Rossum)

本课程设计的核心思想

为了学PYTHON而学,目标缺失

内容繁多复杂, 耗时长

大量语法讲解,实用性不足

针对数据分析和人工智能定制

目标明确的简明课程设计

重点学习实用模块的实战

课程的预期目标

1. 以进入数据分析和人工智能行业为目标,快速掌握最实用的Python知识

2. 学习实际工作中最常用的PYTHON模块

3. 获得PYTHON编码和实战的经验,为未来学习工作打好基础

讲师介绍-Charlie老师

- 人工智能算法科学家-曾服务于某世界500强中国AI Lab,后自主创业
- 2019国家培训计划讲师-面向高职院校老师的培训课程
- 深圳市海外高层次人才认定(孔雀人才)
- 美国圣地亚哥国家超算中心博士后
- 加利福尼亚大学圣地亚哥全奖博士
- 参与美国自然科学基金(NSF)及加州能源局 (CEC)资助的392MW IVANPAH 等智慧电网项目
- 21篇国际期刊文章(sci收录17篇),总引用接近1000
- 第一作者发明专利11份

课程纲要

- Python开发环境的准备(Anaconda, Jupyter Notebook, Spyder)
- Python基础知识(变量类型,基础数学运算,基础语法,常用数据结构, 比较和逻辑运算,循环语句,Python函数,文件IO,时间模块与OS模块, 异常处理)
- Numpy的使用(ndarray,向量与矩阵的形变和运算,向量和矩阵的生成、 运算、拼接、和索引,常用numpy科学计算方法)
- Pandas 和 Matplotlib
- 爬虫实战 (Request, BeautifulSoup)

Python开发的环境

过了若干时间后。。。。。。。

课程相关资料

欢迎大家扫码或者添加微信好友ai_flare(学习小助手),加入学习群,老师会在群里和大家进行交流和答疑(名额有限、人满即止)

第二章: Python基础知识

变量的类型

Int

Float

String

Python基础数学运算

名称	符号
力口	+
减	
乘	*
除	/
模量	%
指数	**

Python基础语法

- Print和輸出
- 行和缩进
- 多行语句
- 注释

常用数据结构

- list
- tuple
- dict
- set

Python比较运算

	As As I
全称	符号
大于	>
小于	<
等于	==
大于等于	>=
小于等于	<=
不等于	!=

Python逻辑运算

名称	符号
和	and
或	or
非	not

循环语句

本章回顾

- 变量
- 基础数学运算
- 基础语法
- 常用数据结构
- 比较运算 ___
- 逻辑运算
- 循环语句

课后习题

1. 用循环语句实现求和1到200(1+2+3+。。。 +199+200)

2. 找到13个能被13整除的数字(比如13,26等,一共13个)

课程相关资料

欢迎大家扫码或者添加微信好友ai_flare(学习小助手),加入学习群,老师会在群里和大家进行交流和答疑(名额有限、人满即止)

第三章: Python基础知识2

上一章回顾

- 变量
- 基础数学运算
- 基础语法
- 常用数据结构
- 比较运算
- 逻辑运算
- 循环语句

习题讲解

1. 用循环语句实现求和1到200 (1+2+3+。。。 +199+200)

2. 找到13个能被13整除的数字(比如13,26等,一共13个)

本章学习内容

- Python函数
- 文件IO
- 模块 (时间模块与OS模块)
- 异常处理

Python函数

- 函数是组织好的,可重复使用的,用来实现单一,或相关联功能的代码段。
- 函数能提高应用的模块性,和代码的重复利用率。

```
functionname( parameters ):
function_suite
return [expression]
```


文件IO

```
file=open("test.txt","r")
        file.read()
        file.read(100)
        file.readline()
        file.readlines()
file=open("test.txt","w")
        file.write("你好")
file=open("test.txt","a")
file.close()
```


Python模块

```
import time
   time.time()
   time.strftime('%Y-%m-%d %H:%M:%S')
import os
   os.getcwd()
   os.listdir()
   os.mkdir("temp2")
   os.chdir()
```


异常处理

try:

运行代码

except:

如果在try部份引发了异常的应对代码

本章回顾

- Python函数
- 文件IO
- 模块 (时间模块与OS模块)
- 异常处理

课后习题

1. 定义一个函数,他能从输入的列表[2,6,7,4,9,5,1,0,3,8]中 找到最大值,输出运算的时间,并把结果写成一个文本文 件存在运行脚本的同一路径/目录下

2113,-1149--

第四章: Python数据分析之Numpy

上一章回顾

- Python函数
- 文件IO
- 模块 (时间模块与OS模块)
- 异常处理

习题讲解

1. 定义一个函数,他能从输入的列表[2,6,7,4,9,5,1,0,3,8]中 找到最大值,输出运算的时间,并把结果写成一个文本文 件存在运行脚本的同一路径/目录下

Numpy简介

NumPy 是一个运行速度 非常快的数学库,主要用 于数组计算,包含:

- 一个强大的N维数组 对象 ndarray
- 广播功能函数
- 整合 C/C++/Fortran代码的工具
- 线性代数、傅里叶变换、随机数生成等功能

Numpy简介

Numerical Python

NumPy 是一个运行速度 非常快的数学库,主要用 于数组计算,包含:

- 一个强大的N维数组 对象 ndarray
- 广播功能函数
- 整合 C/C++/Fortran代码的工具
- 线性代数、傅里叶变换、随机数生成等功能

Spyder介绍

Spyder(Scientific PYthon Development EnviRonment)是一个强大的交互式 Python 语言开发环境,提供高级的代码编辑、交互测试、调试等特性,支持包括 Windows、Linux 和 OS X 系统。

- 提供了变量的可视化
- 可以逐行执行代码,便于DEBUG
- · 很便捷的查看路径和执行LOG

CEC1,2,3)

Markab

Numpy的ndarray

```
载入numpy import numpy as np
定义ndarray
a=np.array([1,2,3,4]) {
b=np.array([[1,2,3],[3,2,1]])
c=np.array([[1,2,5,3.14],[13.1,2.6,1.2]])
d=np.array([[1,2,3,4]])
```

一些查看的指令

a.size

a.shape

b.shape

b.size

b.ndim

	0	1	2
0	1	2	3
1	3	2	1

	0	1	2	3
0	1	2	3	4

Numpy的使用

向量生成

np.arange(10) np.linspace(0,10,20)

矩阵生成

temp=np.zeros((5,5)) temp=np.ones((5,5))

	0	1	2	3	4
0	-1.38569	2.25316	-0.438421	-0.878835	-0.0026496
1	-0.0846714	-0.196645	1.14361	-0.539697	-1.03301
2	-0.3868	-1.77855	0.0083608	-1.13897	-0.0286621
3	0.903734	0.393386	-0.409159	0.0630359	0.492297
4	-0.0541013	-1.77399	0.54087	0.85008	0.116791

uniform distribution between 0 and 1 temp=np.random.rand(5,5)

#Gaussian distribution with mean 0 and variance 1 temp=np.random.randn(5,5)

Numpy的使用

自动是可能

矩阵运算

a+1

a*b

np.dot(a,b)

a.T

矩阵的拼接

np.vstack([a,b]) np.hstack([a,b])

np.concatenate((a,b),axis=0)
np.concatenate((a,b),axis=1)

矩阵形变

.reshape(2,2)

	0	1	2
0	1	2	3

向量和矩阵索引

向量索引

print(a[0])

print(a[0:3])

print(a[1:3])

print(a[3:])

print(a[:3])

print(a[1:-1])

矩阵索引

print(b[2,0])

print(b[2][0])

print(b[3])

print(b[3,:])

print(b[:,0])

	0	1	2	3
0	1	2	3	4

			<u> </u>			
	0	1	2	3	4	
0	-1.38569	2.25316	-0.438421	-0.878835	-0.0026496	
1	-0.0846714	-0.196645	1.14361	-0.539697	-1.03301	
2	-0.3868	-1.77855	0.0083608	-1.13897	-0.0286621	
3	0.903734	0.393386	-0.409159	0.0630359	0.492297	
4	-0.0541013	-1.77399	0.54087	0.85008	0.116791	

Numpy常用科学计算

```
np.log(a)
np.max(a)
np.mean(a)
```

np.std(a) np.count(a)

np.sin(a) np.exp(a) np.abs(a)

np.argmax(a)
np.argmin(a)

本章回顾

- Numpy介绍和使用
- Spyder介绍和使用
- Ndarray
- 向量与矩阵的形变和运算
- 向量和矩阵的拼接和生成
- 向量和矩阵的索引
- 常用numpy科学计算方法

EDU

课后习题

1.创建一个10*10的ndarray对象,且矩阵边界全为1,里面全为0

2.创建一个5X3随机矩阵和一个3X2随机矩阵,求矩阵积以及其最大值,最小值,平均值和标准差

3.y=x^{e^{x/3}}, 如果y=10,求解x, (用数值法求解)

课程相关资料

欢迎大家扫码或者添加微信好友ai_flare(学习小助手),加入学习群,老师会在群里和大家进行交流和答疑(名额有限、人满即止)

第五章: Pandas与Matplotlib

上一章回顾

Numpy介绍和使用

Spyder介绍和使用

Ndarray

向量与矩阵的生成

向量和矩阵的运算,拼接和形变

向量和矩阵的索引

常用numpy科学计算方法

习题讲解

1.创建一个10*10的ndarray对象,且矩阵边界全为1,里面全为0

2.创建一个5X3随机矩阵和一个3X2随机矩阵,求矩阵积以及其最大值,最小值,平均值和标准差

3. $y=x^{e^{x/3}}$,如果y=10,求解x,(用数值法求解)

Pandas简介

Permel docted

Pandas是为了解决数据分 析任务而创建的。Pandas 纳入了大量库和一些标准 的数据模型,提供了高效 地操作大型数据集所需的 工具。是使Python成为强 大而高效的数据分析环境 的重要因素之一

Pandas 与 Numpy 对比

VS

- 可以轻易的处理浮点及非浮点数据类型的缺失值(NaN) 大小可变: DataFrame和Panel都可以删除或插入列 数据自动对齐
- 灵活强大的分组功能,可对数据集进行拆分组合操作
- 基于智能标签的切片,花式索引,轻易从大数据集中取 出子集
- 直观的合并,连接数据集
- 轻易的重新定义数据集形状和转置
- 轴(axes)的分层标签(使每个元组有多个标签成为可能)

Matplotlib介绍

matplotlib是基于Python语言的开源项目,旨在为 Python提供一个数据绘图包, 实现专业的绘图功能。

Pandas

数据导入和储存 data=pd.read_csv("data.csv") data.to_csv("data1.csv")

数据查看
data.index
data.columns
data.head())
data["Job"]
data.loc[3,"Job"])
data.iloc[3:5,0:1]

■ data - DataFrame						
Index	Name	Age	Job			
0	Alice	20	Analysis			
1	Charlie	30	Teacher			
2	Bob	40	Doctor			
3	David	25	Police			
4	Egg	34	nan			
5	Fish	21	farmer			
6	Grubby	54	worker			
7	Harry	22	farmer			
8	Ice	45	lawyer			

Pandas数据预处理

数据连接

pd.read_csv("data.csv")
pd.read_csv("data.csv")

pd.concat([data1,data2])
data.append([data1,data2])

数据清洗

data.isnull() data.dropna() data.fillna(0)

Pandas的函数应用

```
data.drop(2)
data["Age"].sum()
data["Age"].mean()
data["Age"].std()
data["Age"].argmax()
data["Age"].argmin()
data.sort values(by="Age")
data["Job"].unique()
data["Age"].values
data["Job"].describe()
```


Matplotlib代码作图的实现1

import matplotlib.pyplot as plt plt.plot(x,y) plt.legend() plt.xlabel("x") plt.ylabel("y") plt.xlim(0,5)plt.ylim(0,2)plt.title("asdf") plt.grid(True) plt.show()

Matplotlib代码作图的实现2

plt.figure()
plt.subplot(1,2,1)
plt.plot(x,y1,"r-")
plt.subplot(1,2,2)
plt.plot(x,y2,"b--")

Matplotlib代码作图的实现3

plt.imshow()

本章回顾

课程相关资料

欢迎大家扫码或者添加微信好友ai_flare(学习小助手),加入学习群,老师会在群里和大家进行交流和答疑(名额有限、人满即止)

第六章: 简明爬虫实战

上一章回顾

爬虫简介

Web oranter

• 自动获取网页内容的程序

• 高效获得网上的海量数据

爬虫简介

- · 通过网址和DNS服务器找到服务器主机
- 发送请求获得浏览器结果
- 解析获得浏览器呈现的结果

几种常用爬虫工具

- Urllib
- Requests
- Scrapy
- Selenium

pip install requests

Requests的使用

```
import requests
data=requests.get("https://www.csdn.net")
data.encoding
data.text
data.status code
header = {'user-agent':'Mozilla/5.0'}
      requests.get(url=url,headers=header, timeout=3)
requests.get(url="www.csdn.net",proxies=prox)
```

status_code

200

2字头: 代表请求已经被服务器成功接收和理解

3字头: 重新定向

4字头:客户端发生错误

5,6字头: 服务器发生错误或异常

BeautifulSoup

pip install beautifulsoup4 from bs4 import BeautifulSoup

BeautifulSoup(sample_text, 'lxml') soup.find(name="ul") soup.find all(name="li")

网页搜索内容爬取实战

本章回顾

- Requests
- BeautifulSoup
- 网页爬取实战

课程回顾

- 环境准备
- Python基础知识和使用
- time和os
- Numpy
- Pandas
- Matplotlib
- 爬虫实战

课程相关资料

欢迎大家扫码或者添加微信好友ai_flare(学习小助手),加入学习群,老师会在群里和大家进行交流和答疑(名额有限、人满即止)