Công thức Phân tích vectơ lớp 10 chi tiết nhất

A. Lí thuyết tóm tắt.

- Định nghĩa tích của vectơ với một số: Cho số $k \neq 0$ và vectơ $\vec{a} \neq \vec{0}$. Tích của vectơ \vec{a} với số k là một vectơ, kí hiệu là $k\vec{a}$ và có độ dài bằng $|k||\vec{a}|$.
- Điều kiện để hai vectơ cùng phương: \vec{a} và \vec{b} cùng phương khi và chỉ khi tồn tại số k để $\vec{a} = k\vec{b}$.
- Điều kiện ba điểm thẳng hàng: Ba điểm phân biệt A, B, C thẳng hàng khi và chỉ khi có tồn tại một số k khác 0 để $\overrightarrow{AB} = k\overrightarrow{AC}$.
- Tính chất của tích vectơ với một số:

+)
$$k(\vec{a} + \vec{b}) = k\vec{a} + k\vec{b}$$

+)
$$(h+k)\vec{a} = h\vec{a} + k\vec{a}$$

+)
$$\vec{h}(\vec{ka}) = (\vec{hk})\vec{a}$$

+)
$$1.\vec{a} = \vec{a}; (-1)\vec{a} = -\vec{a}$$

+)
$$0.\vec{a} = \vec{0}$$
; $k.\vec{0} = \vec{0}$

- Phân tích một vectơ theo hai vectơ không cùng phương: hai vectơ \vec{a} và \vec{b} không cùng phương. Khi đó mọi vectơ \vec{x} đều phân tích được một cách duy nhất theo hai vectơ \vec{a} và \vec{b} sao cho $\vec{x} = h\vec{a} + k\vec{b}$. (h, k là duy nhất).

B. Các công thức.

- Quy tắc trung điểm: I là trung điểm của AB

$$\overrightarrow{MA} + \overrightarrow{MB} = 2\overrightarrow{MI}$$
 (M tùy ý)

- Quy tắc trọng tâm: G là trọng tâm tam giác ABC

$$\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = 3\overrightarrow{MG}$$
 (M tùy ý)

- Quy tắc ba điểm: $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$.
- Phân tích một vectơ theo hai vectơ \vec{a} và \vec{b} không cùng phương: $\vec{x} = h\vec{a} + k\vec{b}$ (h, k là duy nhất)

- Độ dài vectơ tích của vectơ với một số: $\left|\vec{ka}\right| = \left|\vec{k}\right| . \left|\vec{a}\right|$

- Điều kiện 2 vecto \vec{a} và \vec{b} ($\vec{b} \neq 0$) cùng phương: $\vec{a} = k\vec{b}$ ($k \neq 0$)

- Điều kiện 3 điểm thẳng hàng: $\overrightarrow{AB} = k\overrightarrow{AC}$

- Tính chất của tích vectơ với một số:

$$k(\vec{a} + \vec{b}) = k\vec{a} + k\vec{b}$$

$$(h+k)\vec{a} = h\vec{a} + k\vec{a}$$

$$\vec{h}(\vec{ka}) = (\vec{hk})\vec{a}$$

$$1.\vec{a} = \vec{a}; (-1)\vec{a} = -\vec{a}$$

$$0.\vec{a} = \vec{0}$$
; $k.\vec{0} = \vec{0}$

C. Ví dụ minh họa.

Bài 1: Cho AK và BM là hai trung tuyến của tam giác ABC. Hãy phân tích vecto \overrightarrow{AB} theo hai vecto \overrightarrow{AK} và \overrightarrow{BM} .

Giải:

Vì K là trung điểm của BC nên $\overrightarrow{CB} = 2\overrightarrow{KB}$.

Vì M là trung điểm của AC nên $\overrightarrow{AC} = 2\overrightarrow{AM}$.

Áp dụng quy tắc ba điểm ta có:

$$\overrightarrow{AB} = \overrightarrow{AC} + \overrightarrow{CB}$$

$$\Rightarrow \overrightarrow{AB} = 2\overrightarrow{AM} + 2\overrightarrow{KB}$$

$$\Rightarrow \overrightarrow{AB} = 2(\overrightarrow{AB} + \overrightarrow{BM}) + 2(\overrightarrow{KA} + \overrightarrow{AB})$$

$$\Rightarrow \overrightarrow{AB} = 2\overrightarrow{AB} + 2\overrightarrow{BM} + 2\overrightarrow{KA} + 2\overrightarrow{AB}$$

$$\Rightarrow \overrightarrow{AB} = 4\overrightarrow{AB} + 2\overrightarrow{BM} + 2\overrightarrow{KA}$$

$$\Rightarrow \overrightarrow{AB} - 4\overrightarrow{AB} = 2\overrightarrow{BM} - 2\overrightarrow{AK}$$

$$\Rightarrow$$
 $-3\overrightarrow{AB} = 2\overrightarrow{BM} - 2\overrightarrow{AK}$

$$\Rightarrow \overrightarrow{AB} = \frac{-2}{3}\overrightarrow{BM} + \frac{2}{3}\overrightarrow{AK}$$

Bài 2: Xét đoạn thẳng AB có trung điểm M, điểm N nằm ngoài AB, khác M. Phân tích vecto \overrightarrow{NM} theo hai vecto \overrightarrow{NA} và \overrightarrow{NB} .

Giải:

Áp dụng quy tắc trung điểm ta có:

$$\overrightarrow{NA} + \overrightarrow{NB} = 2\overrightarrow{NM}$$

$$\Rightarrow \overrightarrow{NM} = \frac{1}{2}\overrightarrow{NA} + \frac{1}{2}\overrightarrow{NB}$$

Bài 3: Cho hình bình hành ABCD. Gọi I là trung điểm của CD. Lấy điểm M trên đoạn BI sao cho BM = 2MI. Chứng minh A, M, C thẳng hàng.

Giải:

Ta có: BM = 2MI

$$\Rightarrow \overrightarrow{BM} = 2\overrightarrow{MI}$$

Áp dụng quy tắc ba điểm có: $\overrightarrow{BM} = \overrightarrow{BA} + \overrightarrow{AM}$

$$\Rightarrow \overrightarrow{BA} + \overrightarrow{AM} = 2\overrightarrow{MI}$$

Mà ABCD là hình bình hành nên: $\overrightarrow{BA} = \overrightarrow{CD}$

$$\Rightarrow \overrightarrow{CD} + \overrightarrow{AM} = 2\overrightarrow{MI}$$

Mà I là trung điểm CD nên: $\overrightarrow{CD} = 2\overrightarrow{CI}$.

$$\Rightarrow 2\overrightarrow{CI} + \overrightarrow{AM} = 2\overrightarrow{MI}$$

$$\Rightarrow \overrightarrow{AM} = 2\overrightarrow{MI} - 2\overrightarrow{CI}$$

$$\Rightarrow \overrightarrow{AM} = 2(\overrightarrow{MI} + \overrightarrow{IC})$$

$$\Rightarrow \overrightarrow{AM} = 2\overrightarrow{MC}$$

Vậy A, M, C thẳng hàng.

D. Bài tập tự luyện.

Bài 1: Cho tam giác ABC có P là trung điểm của AB và hai điểm M, N thỏa mãn các hệ thức $\overrightarrow{MA} - 2\overrightarrow{MC} = \overrightarrow{0}$ và $\overrightarrow{NA} + 2\overrightarrow{NC} = \overrightarrow{0}$. Chứng minh rằng M, N, P thẳng hàng.

Bài 2: Cho hình bình hành ABCD có M, N là trung điểm của các cạnh DC, DA. Phân tích vector \overrightarrow{AB} theo hai vector \overrightarrow{AM} và \overrightarrow{BN} .

Bài 3: Cho tam giác A, B, C. Có N là điểm sao cho $\overrightarrow{CN} = \frac{1}{2}\overrightarrow{BC}$, G là trọng tâm tam giác ABC. Phân tích \overrightarrow{AC} theo \overrightarrow{AG} và \overrightarrow{AN} .