Splines and basis expansion (week 3?)

6 Feb 2023

Table of contents

linear basis expansion
polynomial basis
piecewise polynomial bases
splines
spline terminology
truncated power basis
B-spline basis
natural cubic splines
smoothing splines
degrees of freedom and smoother matrix 5
multidimensional splines
tensor produce \dots θ
thin-plate splines
null space
$\ \ {\rm reduced\text{-}rank} \ \ldots \ldots \ldots \ldots \ldots \qquad \qquad$

linear basis expansion

- transformations of various kinds
- quadratic expansion
- nonlinear transformations
- indicator variables

Select or regularize from the expanded set.

polynomial basis

• polynomial basis: $y_i = \sum_{j=0}^n \beta_j x_i^j$

```
## replicate figure 3.2 from Wood
library(ggplot2)
x <- seq(0, 1, length = 101)
n <- 4
y <- sapply(0:n, \(j) x^j)
beta <- c(4.31, -10.72, 16.8, 2.22, -10.88)
y <- cbind(y, fx = y %*% beta)
dimnames(y) <- list(x = x, j = c(0:n, "f(x)"))
yy <- as.data.frame(as.table(y))
yy$x <- as.numeric(as.character(yy$x))
ggplot(yy, aes(x, Freq)) + geom_line() + facet_wrap(~j, scale = "free")</pre>
```


piecewise polynomial bases

- constant, linear, continuous
- basis functions
- translate from x_i to columns of ${\bf X}$

splines

- piecewise polynomials with continuity/smoothness constraints
- very useful for function approximation
- convert a single numeric predictor into a flexible basis
- efficient
- with multiple predictors, consider additive models
- handle interactions (multidim smooth surfaces) if reasonably low-dimensional: tensor products etc.

spline terminology

- knots: breakpoints (boundary, interior)
- order-M (ESL): continuous derivatives up to order M-2 (cubic, M=4)
- typically M = 1, 2, 4
- number of knots = df (degrees of freedom) -1 -intercept

truncated power basis

- $X^0 \dots X^n$
- remaining columns are $(x \xi_{\ell}) + M^{-1}$ where ℓ are the *interior knots*

B-spline basis

- splines of a given order with minimal support (i.e., local)
- basis functions defined by recursion (not pretty)
- convenient for regression splines (see below)

natural cubic splines

• linear constraints beyond boundary knots (so 2d and 3d derivatives are 0 at the boundaries)

```
library(splines)
  bb \leftarrow bs(1:20, df = 5)
  attributes(bb)[c("degree", "knots", "Boundary.knots")]
$degree
[1] 3
$knots
33.3333% 66.66667%
7.333333 13.666667
$Boundary.knots
[1] 1 20
  nn < -ns(1:20, df = 7)
  attributes(nn)[c("degree", "knots", "Boundary.knots")]
$degree
[1] 3
$knots
14.28571% 28.57143% 42.85714% 57.14286% 71.42857% 85.71429%
3.714286 6.428571 9.142857 11.857143 14.571429 17.285714
$Boundary.knots
[1] 1 20
  par(mfrow = c(1,2),las =1, bty ="1")
  matplot(ns(1:20, df = 5), type = "l", main = "natural spline")
  matplot(bs(1:20, df = 5), type = "1", main = "B-spline")
```


smoothing splines

- as many knots as data points
- plus squared-second-derivative ("wiggliness") penalty

$$RSS + \lambda \int (f''(t))^2 dt$$

* defined on an infinite-dimensional space * minimizer is a natural cubic spline with knots at x_i

$$(\mathbf{y} - \mathbf{N}\theta)^{\top}(\mathbf{y} - \mathbf{N}\theta) + \lambda \theta^{\top}\Omega_N \theta$$

with $\{\Omega_N\}_{jk}=\int N_j''(t)N_k''(t)\,dt$ \$\$ generalized ridge regression: penalize by $\lambda\Omega_N$ rather than λI * same data augmentation methods as before except that now we use $\sqrt{\lambda}C$ where C is a matrix square root of Ω_N

See Wood (2017), Perperoglou et al. (2019)

degrees of freedom and smoother matrix

• The equivalent of the hat matrix is

Wood, Simon N. 2017. Generalized Additive Models: An Introduction with R. CRC Texts in Statistical Science. Chapman & Hall. https://www.amazon.com/Generalized-Additive-Models-Introduction-Statistical-ebook/dp/B071Z9L5D5/ref=sr_1_1?ie=UTF8&qid=1511887995&sr=8-1&keywords=wood+additive+models.

Perperoglou, Aris, Willi Sauerbrei, Michal Abrahamowicz, and Matthias Schmid. 2019. "A Review of Spline Function Procedures in R." *BMC Medical Research Methodology* 19 (1): 46. https://doi.org/10.1186/s12874-019-0666-3.

multidimensional splines

tensor produce

thin-plate splines

null space

reduced-rank

150 - 0.4 - 0.2 - 0.0 - 0.2 - 0.4 - 0.2 - 0.2 - 0.4 - 0.2 - 0.2 - 0.4 - 0.2 - 0.2 - 0.4 - 0.2 - 0.2 - 0.4 - 0.2 - 0.2 - 0.2 - 0.4 - 0.2 -

50

Dimensions: 200 x 11

Dimensions: 200 x 11

1.0 0.8

0.6