

Figure 24.5: An affine space: the line of equation x + y - 1 = 0.

24.2 Examples of Affine Spaces

Let us now give an example of an affine space that is not given as a vector space (at least, not in an obvious fashion). Consider the subset L of \mathbb{A}^2 consisting of all points (x, y) satisfying the equation

$$x + y - 1 = 0.$$

The set L is the line of slope -1 passing through the points (1,0) and (0,1) shown in Figure 24.5.

The line L can be made into an official affine space by defining the action $+: L \times \mathbb{R} \to L$ of \mathbb{R} on L defined such that for every point (x, 1 - x) on L and any $u \in \mathbb{R}$,

$$(x, 1-x) + u = (x+u, 1-x-u).$$

It is immediately verified that this action makes L into an affine space. For example, for any two points $a = (a_1, 1 - a_1)$ and $b = (b_1, 1 - b_1)$ on L, the unique (vector) $u \in \mathbb{R}$ such that b = a + u is $u = b_1 - a_1$. Note that the vector space \mathbb{R} is isomorphic to the line of equation x + y = 0 passing through the origin.

Similarly, consider the subset H of \mathbb{A}^3 consisting of all points (x,y,z) satisfying the equation

$$x + y + z - 1 = 0$$
.

The set H is the plane passing through the points (1,0,0), (0,1,0), and (0,0,1). The plane H can be made into an official affine space by defining the action $+: H \times \mathbb{R}^2 \to H$ of \mathbb{R}^2 on