Theorem.

1. if A \le m B and B is ret then A is r.e.

If A \le m B and A is not ret then B is not re.

2. If $A \leq mB$ and B is recursive then A is recursive.

Proof.

1. Suppose $A \leq mB$ via σ and B is r.e. B = L(m)Construct a TM N $s \cdot + L(N) = A$ as follows:

On input oc, 1. Compute $\sigma(x)$ 2. Run m on $\sigma(x)$ 3. Accept if m accepts.

Naccepts ∞ iff M accepts $\sigma(x)$ iff $\sigma(x) \in B$ iff $x \in A$.

Definition of $A \leq_m B$.

2. Recall: A is recursive iff A is re and A is re.

Suppose $A \leq mB$ via σ and B is recursive. Then $\overline{A} \leq mB$ via $\overline{\sigma}$ [follows from the definition]

if B is recursive then both B and B are r.e.

By part 1, both A and A are r.e. => A is recursive

FIN = { M / L(M) is finite } is not re Example 1.

We give a reduction: HP = m FIN -

HP = 2M#x | M does not halt on oct.

(a) and Theorem => FIN is not recursively enumerable

HP = m FIN: From M# x construct a TM M,= o (M#x) Such that

M does not halt on x iff L(Mi) is finite.
M, on input y works as follows.

1. Erases the input y
2. Writes x on the tape z Descriptions of Mand x3. Runs m on input x z are hard coded in m_1

4. Accept if mhalts on x.

if M does not halt on x then M, does not reach step 4 Thus Midoes not accept its input y.

Mhalts on $x \Rightarrow L(M_i) = \xi^* \Rightarrow L(M_i)$ is infinite. M does not halt on $x \Rightarrow L(M_i) = \phi \Rightarrow L(M_i)$ is finite Thus HP =m FIN.

FIN= {M | L(M) is finite} is not re FIN is not v.e.

HP Sm FIN

By definition of &m, if A &m B via o then ASMB Via 5.

Subjects to show that $HP \leq_m FIN$ via some T 1.e., given M and x, construct $M_2 = T(M \# x)$ 8.t M halts on x iff $L(M_2)$ is finite.

M2 on input y works as follows:

- 1. Save y on one of the tracks
- 2. Write oc on a separate track 7 Mand x are
 3. Simulate Mon x for 14 Steps Shord coded in M2

Exase one symbol in y for each step of Monx

4. Accept if M has not halted in |y| steps.
Otherwise reject

if M does not halt on $\infty = M_2$ halts and accepts $y - \forall y$. if M halts on ∞ then it halts after some n steps. M_2 accepts y if $|y| \le n$.

M does not halt on $x \Rightarrow L(M_z) = z^{2} \Rightarrow L(M_z)$ is infinite

M halts on $x \Rightarrow L(m_2) = \frac{2}{3}y | |y| < \pi unning time of Mon <math>x$ ⇒ L(Mz) is finite

Rice's Theorem.

Theorem. Every non-trivial property of r.e. sets is undecidable.

Property of the re sets is a function.

P: {r.e. subsets of = } => {T, }

 $P(A) = \begin{cases} T & \text{if } A = \phi \\ L & \text{if } A \neq \phi \end{cases}$ Emptiness

 $P(A) = 2 \perp if A is finite$ Finiteness

 $P(A) = \sum_{i=1}^{\infty} if A is regular$ Regular

Question. For a property Pobre sets, is Pdecidable?

The set has to be given a finite presentation.

Assumption. The r.e. set is presented as a Turing machine whose language is the set.

Note. Property P is that of the set not a property of the Turing machine.

Example. Does a TMM have 100 states? ? Decidable. Does a TMM halt on E in 100 Steps?

Non-trivial. The property is not universely True or False

That is, there exists r.e sets ARB S.+ P(A)=T and P(B)=1

Proof of Rice's Theorem. Let P be non-trivial.

Wlog, assume $P(\phi) = \bot$ and $P(A) = \top$ for some A.

Let L(K)=A for some TMK [Note A 15 r.e]

We give a reduction HP = m 2 M | P(L(m)) = T3.

Conclude - not recursive.

Given M and >c, Construct $M' = \sigma(M \# >c)$. M' on input y works as follows:

- 1. Saves y on one of its tracks.
- 2. Write on a separate track? Mand oc are 3 Runs mon input oc Shard coded in m!
- 4. if Mhalts on x, M runs K on input y
 L> L(K)= A.

 M'accepts if Kaccepts.

if M does not half on $x \Rightarrow step 3$ never stops. $\Rightarrow y \notin L(m')$ for all y.

if Mhelts on $\infty \Rightarrow Step 4$ is executed $\Rightarrow y \in L(m')$ iff $y \in L(K)$.

M halts on $x \Rightarrow L(m') = A \Rightarrow P(L(m')) = P(A) = T$

M does not holf on $\alpha \Rightarrow L(m') = \phi \Rightarrow P(L(m')) = P(\phi) = \bot$.

HP =m &M/P(L(m))=T3 => not recursive

Thus it is undecidable if L(M) satisfies P.

Problems about CFLs

Membership problem. Given a CFG G and a string x, is $x \in L(G)$?

Answer. Decidable — CKY algorithm

Emptiness problem. Given a CFG G, is $L(G) = \emptyset$?

Answer, Decidable.

Sunil Simon Rice's Theorem

Problems about CFLs

Membership problem. Given a CFG G and a string x, is $x \in L(G)$?

Answer. Decidable — CKY algorithm

Emptiness problem. Given a CFG G, is $L(G) = \emptyset$?

Answer. Decidable.

Universality problem. Given a CFG G, is $L(G) = \Sigma^*$?

Answer. Undecidable

Sunil Simon Rice's Theorem

Valid Computation Histories

Configurations of a Turing machine

A configuration of a Turing machine M is a triple (q, y, n) where

- q is a state,
- y describes the content of the tape,
- *n* an integer describing the head position.

Encoding configurations. We can encode configurations as finite strings over the alphabet $\Gamma \times (Q \cup \{-\})$.

Start Configuration.

$$Fa_1 a_2 \cdots a_r$$

 $8 - \cdots -$

Valid Computation Histories

Alphabet: $\Gamma \times (Q \cup \{-\})$.

A valid computation history of *M* on *x* is a string

$$\#\alpha_0\#\alpha_1\#\alpha_2\#\cdots\#\alpha_N\#$$

- α_0 is a start configuration of M on x,
- α_N is a halting configuration (state is either the accept state t or reject state r),
- α_{i+1} follows in one step from α_i according to δ of M. That is, for $0 \le i \le N-1$,

$$\alpha_i \xrightarrow{1} \alpha_{i+1}$$
.

Let $\Delta = \{\#\} \cup (\Gamma \times (Q \cup \{-\}))$, then

 $\mathsf{VALCOMPS}(\mathit{M},x) = \left\{\mathsf{valid} \ \mathsf{computation} \ \mathsf{histories} \ \mathsf{of} \ \mathit{M} \ \mathsf{on} \ x\right\} \subseteq \Delta^{\star}.$

 $VALCOMPS(M, x) = \emptyset$ iff M does not halt on x.

 $\sqrt{\text{AL(OMPS}(m, x)} = \Delta^*$ iff m does not half on x. Rice's Theorem