Calidad del Aire

Proyecto Final de Deep Learning

Presentan: Jorge III Altamirano Astorga, Luz Aurora Hernández Martínez, Ita-Andehui Santiago Castillejos.

+ Plomo

Particulas suspendidas

Introducción: Fuente de datos

Fuente	Descripción	Registros	Resolución
EWAE 680	Sensor Bosch para medir contaminantes en interior.	+2 Millones	Cada 3 segundos
	Datos del Gobierno de las Estaciones de Monitoreo Ambiental.	+2,100	Cada 60 minutos

Introducción: Variables.

	Fuentes	Variable	Rango de Valores	Tipo de Variable
		Temperatura	-40C a 85C	Continua
\mathcal{X}		Humedad	10% a 95%	Continua
		Presión Atmosférica	300 hPa - 1100 hPa	Continua
		Fechas y Hora	12/02/2021 - 24/04/2021	*
		Contaminantes	ppm principalmente	Discreta
7 2		Resistencia del Gas	0 Ohms - 3 Mega Ohms	Continua
	1.100	IAQ	0 IAQ - 500 IAQ	Continua

Introducción: Exploración de Datos del Sensor

Datos faltantes: ~1%

Introducción: Exploración de Datos SINAICA

Introducción: Exploración de Datos del Gobierno

Solución: Preprocesamiento

Procesamos los datos como una Serie de Tiempo: como en el Miniproyecto 4 y en un tutorial oficial de Tensorflow y Keras.

$$0-0-x-0\rightarrow$$

Tuvimos que imputar, porque **todos** los datos tenían algún faltante, como se vió anteriormente. Usamos interpolación, aunque exploramos KNN, Métodos Lineales Generalizados (Bayes), Medias, Hot Deck.

Escalamiento: al tener datos en diversas escalas.

Limpieza de Datos: descartar primeras observaciones por el Windowing.

Solución: Arquitectura de Redes Neuronales

Dense:

- Simple y Rápida.
- No entregó tan buenos resultados.
- Imprescindible:
 Es la base del resto de los distintas arquitecturas.

Convolutional 1D:

- Desempeño robusto.
 - Demandante en procesamiento.
- Resultados "ruidosos".

LSTM:

- Desempeño razonable.
 - Procesamiento intermedio.
 - Resultados estables.

Solución: Propusimos Combinar CNN+LSTM+DNN

Combinación de Redes:

- Esperábamos resultados sustancialmente mejores.
- Logramos desempeño estable y razonable.
- El tiempo de entrenamiento fue bastante razonable, aún teniendo una arquitectura compleja.
- Técnicamente fue un reto implementarlo.

	Modelo	Tiempo	# Params	val_mae	mae
mod	model_dnn01	1m40.90s	4,609	74.06	61.15
	model_best03a	14m0.58s	485,633	75.94	55.80
	model_conv01	14m3.57s	294,401	127.78	5.79
	model_conv03	6m33.58s	419,841	129.51	6.13

Resultados

Conclusiones: Logros y Siguientes Pasos

• Logros:

- Logramos poder predecir y es medible el desempeño modelo.
- Logramos reducir el sobreajuste.
- Logramos aprender sobre la realización de un proyecto *end-to-end*, sobre redes neuronales y las series de tiempo.

• Siguientes Pasos:

- Hacer modelos más grandes y con más historia.
- Buscar cómo mejorar el desempeño con *hyper parameter tuning* y la arquitectura de la red.
- Modificar la forma de tratamiento de las series de tiempo.

Conclusiones: Aprendizajes

- ✓ Cumplir con los principios científicos: reproducibilidad y repetibilidad.
- ✓ Nunca se debe subestimar la inversión de tiempo necesaria para limpiar, explorar, imputar, "corregir" y conocer los datos.
- ✓¡Mejorar el desempeño es difícil!
- ✓ No se debe confiar en la disponibilidad de datos externos.
- ✓ Hay muchísimos recursos en Internet: buenos y malos.
- ✓ Las APIs cambian: No tener miedo a aprender continuamente.
- ✓ Nos resultó muy útil tener un modelo *baseline*: nuestra H₀
- ✓ Tener cuidado con los detalles.
- ✓ "Des-escalar" los datos nos dio una idea más clara del desempeño.
- ✓ Es efectivo ir construyendo de modelos simples → modelos más elaborados. También probar, probar, probar.

12

Gracias!

¿Preguntas?