6장 생존함수 동일성 검정

2020년 가을학기

전북대학교 통계학과

Outline

직관적 방법으로서의 검정

일집단에 대한 로그-순위 검정

이집단에 대한 로그-순위 검정

여러 집단에 대한 로그-순위 검정

층화 로그-순위 검정

직관적 방법으로서의 검정 _______

	사		
그룹	yes (사건발생)	no (중도절단)	총합
0	d_0	$n_0 - d_0$	<i>n</i> ₀
1	d_1	n_1-d_1	n_1
총합	d	n-d	n

Table 1: 그룹별 사건발생여부 2 × 2 표

주변값 고정 \Rightarrow $d_0 \sim$ 초기하분포

$$E(d_0) = d rac{n_0}{n}$$
 $Var(d_0) = d(n-d) rac{n_0 n_1}{n^2 (n-1)}$

3

가설: 두그룹의 동일성 검정

H₀:사건발생여부는 그룹과 관련 없다.

 H_1 :사건발생여부는 그룹과 관련 있다.

검정통계량: Mantel-Haenzel 로그-순위 통계량

$$\chi^{2}_{MH} = \frac{[d_{0} - E(d_{0})]^{2}}{Var(d_{0})} = \frac{[d_{0} - d\frac{n_{0}}{n}]^{2}}{d(n - d)\frac{n_{0}n_{1}}{n^{2}(n - 1)}} \stackrel{H_{0}}{\sim} \chi^{2}_{1}$$

• 근사적으로 두그룹의 동일성에 대한 Pearson 카이제곱통계량

$$\chi_P^2 = \sum \frac{(O - E)^2}{E}$$
 (O: 관측도수, $E =$ 기대도수)

4

 2×2 표가 K개 있는 경우 집단 간 사건 발생 동일성 여부 검정

예) K개 병원에서 조사된 2×2 표

• K개 표는 독립이라고 가정

j = 1	사		
그룹	yes (사건발생)	no (중도절단)	총합
0	d_{10}	$n_{10} - d_{10}$	n ₁₀
1	d_{11}	$n_{11} - d_{11}$	n ₁₁
총합	d_1	n_1-d_1	n ₁

: :

j = K	사		
그룹	yes (사건발생)	no (중도절단)	총합
0	d_{K0}	$n_{K0}-d_{K0}$	n _{K0}
1	d_{K1}	$n_{K1}-d_{K1}$	n _{K1}
총합	d_K	$n_K - d_K$	n _K

Table 2: K개 층 그룹별 사건발생여부 2×2 표

가설:

H₀: K개 층에서 사건발생여부는 그룹과 관련 없다.

 $H_1: K$ 개 층에서 사건발생여부는 그룹과 관련 있다.

검정통계량: Cochran-Mantel-Haenzel 로그-순위 통계량

$$\chi^{2}_{CMH} = \frac{\left[\sum_{j=1}^{K} (d_{j0} - E(d_{j0}))\right]^{2}}{\sum_{j=1}^{K} Var(d_{j0})} = \frac{\left[\sum_{j=1}^{K} (d_{j0} - d_{j} \frac{n_{j0}}{n_{j}})\right]^{2}}{\sum_{j=1}^{K} d_{j}(n_{j} - d_{j}) \frac{n_{j0}n_{j1}}{n_{j}^{2}(n_{j} - 1)}} \stackrel{H_{0}}{\sim} \chi^{2}_{1}$$

6

예세 6.1 처리법과 독성발생여부의 관련성 검정

	독성		
처리그룹	yes	no	총합
0	8	42	50
1	2	48	50
총합	10	90	100

Table 3: 그룹별 독성 사건발생여부

가설:

H₀:독성발생여부는 처리그룹과 관련 없다.

 $H_1:$ 독성발생여부는 처리그룹과 관련 있다.

피어슨 검정통계량

Mantel-Haenzel 검정통계량

예제 6.2

심장병 (heart disease)에 나이아신 (naiacin) 효과에 대한 5개 병원에서의 임상시험결과: 심장질환 환자에게 나이아신 투약 후 관상동맥 혈관재생 (coronary artery revascularization)에 대한 데이터

가설:

			사건			
j	그룹	Revascularzation	No Revascularzation	총합	percent of Revascularzation	
1	Niacin	2	46	48	4,2%	
	placebo	11	41	53	21,2%	
2	Niacin	4	67	71	5,6%	
	placebo	12	60	72	16,7%	
3	Niacin	1	86	90	1,1%	
	placebo	4	76	80	5.0%	
4	Niacin	1	37	38	2,6%	
	placebo	6	32	38	15,8%	
5	Niacin	2	92	94	2,1%	
	placebo	1	93	94	1,1%	

 H_0 :나이아신 그룹과 위약 그룹에서 혈관재생비율이 같다. (혈관재생비율은 처리 그룹과 관련 없다.)

H₁:나이아신 그룹과 위약 그룹에서 혈관재생비율이 같지 않다

(혈관재생비율은 처리 그룹과 관련 있다.)

Cochran-Mantel-Haenzel 검정통계량

예제 6.3 42명의 백혈병 환자들의 재발사건 정리 표

연구목적: 처리그룹별 재발시간의 분포가 같은지 검정

백혈병 수		
yes (재발)	no (중도절단)	총합
21	0	21
9	12	21
30	12	42
	yes (재발) 21 9	21 0 9 12

- Mantel-Haenzel 검정통계량 $\chi^2_{MH}=16.4,~p$ -값= $0.001<lpha=0.05\Rightarrow H_0$ 기각
- Mantel-Haenzel 검정은 사건발생 건수에 대해서만 다룸
- 사건의 발생시간이나 그 시점에서의 위험집합에 대한 고려가 없음

그룹간 생존함수 비교를 하고자 하는 경우는?

로그-순위 검정 (log-rank test)

- 그룹 간 생존함수 비교검정
- 사건발생 시점마다 그룹에 남아 있는 위험군을 고려한 조건부 2×2 표 작성하여 그룹과 사건발생과의 관련성을 구하여 통합
- Nelson-Aalen 추정량에 기반하여 귀무가설 하에서 기댓값을 구하여 비교
- 관측값과 기댓값의 차이에 가중치를 주는 방식으로 계산
- 추정된 위험함수와 귀무가설에서 가정된 위험함수의 가중비교를 통해 일집단에 대한 검정

관심 가설

- H_0 : 모집단 위험함수는 $h_0(t), t \leq \tau$
 - H_1 :적어도 $t \leq \tau$ 의 일부분에서 모집단 위험함수는 $h_0(t)$ 가 아니다
- $h_0(t)$ 는 미리 정해진 또는 알려진 위험함수
- τ 는 관측값이 있는 연구기간의 최댓값
 - H_0 :모집단 생존함수는 $S_0(t),\ t \leq au$
 - H_1 :적어도 $t \leq \tau$ 의 일부분에서 모집단 생존함수는 $S_0(t)$ 가 아니다
- $S_0(t)$ 는 미리 정해진 또는 알려진 생존함수
- H_0 :모집단 생존시간에 대한 분포함수는 $F_0(t),\ t \leq \tau$
- H_1 :적어도 $t \leq au$ 의 일부분에서 모집단 생존시간에 대한 분포함수는 $F_0(t)$ 가 아니다
 - $F_0(t) = 1 S_0(t)$

검정법에 대한 아이디어

관측값이 일어난 개수 D, $t_1 < t_2 < \cdots < t_D$

Nelson-Aalen 누적위험추정량

$$\hat{H}(t) = \sum_{t_i \leq t} \frac{d_i}{Y_i} = \sum_{t_i \leq t} \frac{dN(t_i)}{Y(t_i)} \left(= \int_0^t \frac{dN(s)}{Y(s)} \right)$$

검정법에 대한 아이디어

관측값이 일어난 개수 $D, t_1 < t_2 < \cdots < t_n$

Nelson-Aalen 누적위험추정량

$$\hat{H}(t) = \sum_{t_i \leq t} \frac{d_i}{Y_i} = \sum_{t_i \leq t} \frac{dN(t_i)}{Y(t_i)} \left(= \int_0^t \frac{dN(s)}{Y(s)} \right)$$

- di: 관측값에서의 사건발생수
- Y_i: t_i시점에서 위험개체수 (아직 사건이 발생하지 않은 개체수)
- - t_i 시점 바로 전까지 생존한 경우 사건발생을 경험할 수 있는 조건부 확률 $1-\frac{d_i}{V_c}:t_i$ 시점 바로 전까지 생존한 경우 t_i 시점 이후 살아남을 확률
 - H_0 하에서 t_i 시점에서의 기댓값 = $h_0(t_i)$

t:시점에서 관측값과 기댓값의 차이를 구하고 적절한 가중치를 줌

$$\sum_{t_i} \frac{(O-E)^2}{E} \sim \chi_{df}^2$$

일집단 로그-순위 검정 가중함수 W(t) = Y(t) 사용, $Y(t_i) = Y_i$

 \Rightarrow 가중함수 $W(t_i) = Y_i$ 를 적용한 검정통계량

$$Z(\tau) = O(\tau) - E(\tau)$$

$$= \sum_{i=1}^{D} W(t_i) \frac{d_i}{Y_i} - \int_0^{\tau} W(s) h_0(s) ds$$

$$= \sum_{i=1}^{D} d_i - \sum_{i=1}^{D} Y_i h_0(t_i)$$

$$= \sum_{i=1}^{D} d_i - \sum_{i=1}^{D} Y_i [H_0(t_{i+1}) - H_0(t_i)]$$

- O(τ): 관측값 사건수
- *E*(τ): 기대 사건수
- $H_0(t)$: 귀무가설 하에서 누적위험함수

귀무가설하에서 검정통계량 $Z(\tau)$ 의 분산

$$Var[Z(\tau)] = \int_0^{\tau} W(s)^2 \frac{h_0(s)}{Y(s)} ds = \sum_{j=1}^{D} [H_0(t_{j+1}) - H_0(t_j)]$$

귀무가설하에서 표본의 크기가 충분히 크면

$$\chi^2 = \frac{Z(\tau)^2}{Var(Z(\tau))} \stackrel{\cdot}{\sim} + \chi_1^2$$

예제 6.4

 $[\pm 1.4]$ 자가골수이식을 받은 백혈병 환자의 위험률이 알려진 위험률 $\lambda = 0.045$ 과 차이가 있는지 검정

$$H_0: \lambda = 0.045, \quad H_1: \lambda \neq 0.045$$

• 2개 모집단에 대한 생존함수의 동일성 검정

 \bullet au는 적어도 한 명은 위험집합에 존재하는 가장 큰 생존시간

관심 가설

$$H_0:h_1(t)=h_2(t),\ t\leq au$$
 $H_1:$ 적어도 $t\leq au$ 의 일부분에서 $h_1(t)
eq h_2(t)$

$$H_0:S_1(t)=S_2(t),\ t\le au$$

 $H_1:$ 적어도 $t\le au$ 의 일부분에서 $S_1(t)\ne S_2(t)$

$$H_0:F_1(t)=F_2(t),\ t\le au$$

 $H_1:$ 적어도 $t\le au$ 의 일부분에서 $F_1(t)\ne F_2(t)$

데이터 구조

두 그룹의 데이터

그룹
$$1:(t_{11}, \delta_{11}), (t_{12}, \delta_{12}), \dots, (t_{1n_1}, \delta_{1n_1})$$

그룹 $2:(t_{21}, \delta_{21}), (t_{22}, \delta_{22}), \dots, (t_{2n_2}, \delta_{2n_2})$

두 그룹에 속한 관측값을 통합하여 크기 순으로 나열하여 $\delta_{ij}=1$ 인 값들 $t_1 < t_2 < \cdots < t_D$ 생성 각 t_i 시점에서

- d_{1i} : 그룹1로부터 관찰된 사건수
- $Y_{1i} = \sum_{k=1}^{n_1} I(t_{1k} \ge t_i)$: 그룹1로부터 위험그룹에 속한 건수
- *d*_{2i} : 그룹2로부터 관찰된 사건수
- $Y_{2i} = \sum_{k=1}^{n_2} I(t_{2k} \geq t_i)$: 그룹2로부터 위험그룹에 속한 건수

 $Y_i = Y_{1i} + Y_{2i} : t_i$ 시점에서 위험그룹에 속한 개체의 총합

데이터 구조

- $d_i = \sum_{g=1}^2 d_{gi}$: t_i 시점에서 관찰된 사건발생수
- $Y_i = \sum_{g=1}^2 Y_{gi} : t_i$ 시점에서 통합한 데이터에서 위험개체수
- $\frac{d_i}{Y_i}$: t_i 시점에서 관측된 위험률
- $\frac{d_{1i}}{Y_{1i}}$: t_i 시점에서 그룹1에서 관측된 위험률
- $\frac{d_{2i}}{Y_{2i}}$: t_i 시점에서 그룹2에서 관측된 위험률

귀무가설이 참이라면 ti 시점에서

$$\frac{d_i}{Y_i} = \frac{d_{1i}}{Y_{1i}} = \frac{d_{2i}}{Y_{2i}}$$

검정통계량

$$Z(\tau) = \sum_{i=1}^{D} \left[\frac{d_{1i}}{Y_{1i}} - \frac{d_{i}}{Y_{i}} \right] = \sum_{i=1}^{D} \frac{1}{Y_{1i}} \left[d_{1i} - Y_{1i} \frac{d_{i}}{Y_{i}} \right] = \sum_{i=1}^{D} \frac{1}{Y_{1i}} [O_{1i} - E_{1i}]$$

NOTE:
$$(O_{1i} - E_{1i}) = -(O_{2i} - E_{2i})$$

가중함수를 이용한 검정통계량

$$Z^* = \sum_{i=1}^D W(t_i) \left[rac{d_{1i}}{Y_{1i}} - rac{d_i}{Y_i}
ight], \quad W(t_i)$$
: 양의 값을 갖는 가중함수

귀무가설 하에서 표본의 크기가 충분히 크면

$$Z = \frac{\sum_{i=1}^{D} W(t_i) \left[\frac{d_{1i}}{Y_{1i}} - \frac{d_i}{Y_i} \right]}{\sqrt{\sum_{i=1}^{D} W(t_i)^2 \frac{Y_{1i}}{Y_i} \left(1 - \frac{Y_{1i}}{Y_i} \right) \left(1 - \frac{Y_{i-}d_i}{Y_{i-1}} d_i \right)}}} \approx N(0, 1)$$

귀무가설 하에서 표본의 크기가 충분히 크면 **로그-순위 검정 통계량**

$$\chi^2 = Z^2 \sim \chi_1^2$$

여러형태의 가중함수

여러형태의 가중함수

검정법	가중함수 $w_i = W(t_i)$
Log-rank	$w_i = 1$
Gehan's Wilcoxon	$w_i = Y_i$
Peto/Prentice	$w_i = n\hat{S}(t_i)$
Fleming-Harrington	$w_i = [\hat{S}(t_{i-1})]^{\alpha}[1 - \hat{S}(t_{i-1})]^{1-\alpha}$
Tarone-Ware	$w_i = \sqrt{Y_i}$
Peto와 Peto	$w_i = 1 - \hat{H}(t_i)$: t_i 시점에서 사건발생 $w_i = -\hat{H}(t_i)$: t_i 시점에서 중도절단

- 로그-순위 검정 :모집단의 위험률이 서로 비례관계에 있을 때 최적의 검정력을 가짐
- Gehan(1965) : 이집단 Mann-Whitney-Wilcoxon 검정의 일반화

예세 6.5 [예제 5.4] 백혈병 데이터의 두 그룹에 대한 생존함수가 같다고 할 수 있는지 로그-순위 검정

[표 6.6] 백혈	병 데이터에	대한 각	시점에서	기댓값	계산
------------	--------	------	------	-----	----

ordered time	# of observed		# of observed at risk		Expe	Expected		pected
t_i	d_{1i}	d_{2i}	Y_{1i}	Y_{2i}	E_{1i}	E_{2i}	$d_{1i} - E_{1i}$	$d_{2i} - E_{2i}$
1	0	2	21	21	$(21/42) \times 2$	$(21/42) \times 2$	-1.00	1.00
2	0	2	21	19	$(21/40) \times 2$	$(19/40) \times 2$	-1.05	1.05
3	0	1	21	17	$(21/38) \times 1$	$(17/38) \times 1$	-0.55	0.55
4	0	2	21	16	$(21/37) \times 2$	$(16/37) \times 2$	-1.14	1.14
5	0	2	21	14	$(21/35) \times 2$	$(14/35) \times 2$	-1.20	1.20
6	3	0	21	12	$(21/33) \times 3$	$(12/33) \times 3$	1.09	-1.09
7	1	0	17	12	$(17/29) \times 1$	$(12/29) \times 1$	0.41	-0.41
8	0	4	16	12	$(16/28) \times 4$	$(12/28) \times 4$	-2.29	2.29
10	1	0	15	8	$(15/23) \times 1$	$(8/23) \times 1$	0.35	-0.35
11	0	2	13	8	$(12/21) \times 2$	$(8/21) \times 2$	-1.24	1.24
12	0	2	12	6	$(12/18) \times 2$	$(6/18) \times 2$	-1,33	1.33
13	1	0	12	4	$(12/16) \times 1$	$(4/16) \times 1$	0.25	0.25
15	0	1	11	4	$(11/15) \times 1$	$(4/15) \times 1$	-0.73	0.73
16	1	0	11	3	$(11/14) \times 1$	$(3/14) \times 1$	0.21	-0.21

그룹1의 i번째 셀의 기댓값=위험집합에서 그룹1의 사건비율 \times 두 그룹에서의 사건 발생수

$$E_{1i} = \left(\frac{Y_{1i}}{Y_{1i} + Y_{2i}}\right) \times \left(d_{1i} + d_{2i}\right) = Y_{1i} \frac{d_i}{Y_i}$$

그룹2의 j번째 셀의 기댓값 $E_{2j}=Y_{2j}\frac{d_j}{Y_j}$

	사		
그룹	yes (사건발생)	no (중도절단)	총합
1	d_{1i}	$Y_{1i}-d_{1i}$	Y_{1i}
2	d_{2i}	$Y_{2i}-d_{2i}$	Y_{2i}
총합	di	$Y_i - d_i$	Yi

Table 4: 백혈병 데이터에 대한 각 시점 t_i 에서 관측도수

동점이 없을 경우 로그-순위 검정통계량

$$\chi^{2}_{LR} = \frac{\left[\sum_{i=1}^{D} \left(d_{1i} - Y_{1i} \frac{d_{i}}{Y_{i}}\right)\right]^{2}}{\sum_{i=1}^{D} \frac{Y_{1i} Y_{2i}}{Y_{i} - 1} \frac{d_{i}}{Y_{i}} \left(1 - \frac{d_{i}}{Y_{i}}\right)}$$

- 그룹간 위험률이 비례할 때 검정력이 좋음
- 시간의 구간에 따라 그룹 간 위험률이 서로 교차하는 경우 검정력이 낮아짐
- 비례위험률이 아닐 경우에는 어떤 검정법을 사용해야할 지 고려
- 사건발생시간의 순위에 점수를 주어 계산
- 점수 대신 가중함수를 주어 일반적인 로그-순위 검정통계량을 만들 수 있음-선형순위검정 (linear rank test)

로그-순위 검정통계량의 일반적인 형태: 가중함수 w;

$$\chi_{GLR}^{2} = \frac{\left[\sum_{i=1}^{D} w_{i} \left(d_{1i} - Y_{1i} \frac{d_{i}}{Y_{i}}\right)\right]^{2}}{\sum_{i=1}^{D} \frac{w_{i}^{2} Y_{1i} Y_{2i}}{Y_{i} - 1} \frac{d_{i}}{Y_{i}} \left(1 - \frac{d_{i}}{Y_{i}}\right)}$$