

Fundamentos do Linux

Trabalhando com permissões

Prof. César Azevedo

- Introdução às permissões
- Modificando permissões
- Alterando dono e grupo dos arquivos

PERMISSÕES DE ACESSO

- Linux: sistema operacional multiusuário
- Necessidade de garantir permissões de acesso a arquivos, diretórios entre outros de maneira diferenciada

- Cada arquivo no Linux tem definido o seu controle de acesso.
- Esse controle é definido por três classes:
 - Permissões de Usuário: Definem a permissão para o usuário que é o "dono" do arquivo, quem o criou e o mantém

 Cada arquivo no Linux tem definido o seu controle de acesso.

 Permissões de Grupo: Definem a permissão para o grupo de usuários ao qual ele pertence.

 Cada arquivo no Linux tem definido o seu controle de acesso.

 Permissões para Outros Usuários: Definem a permissão para todos os outros usuários

TIPOS DE ACESSO

- Para cada classe, podemos definir três tipos de acesso:
 - leitura (r)
 - escrita (w)
 - execução (x)
- Esta divisão cobre praticamente todas as necessidades em termo de segurança

PERMISSÕES

 Podemos visualizar as permissões com instruções específicas e elas são sempre representadas por combinações de 10 caracteres, como a seguir:

DIAGRAMA DE PERMISSÕES

dono grupo outros
drwxrwxrwx

Tipo de arquivo:
d diretório

arquivo link

dispositivo de bloco dispositivo de caractere Dispositivo de bloco: HD, CD-ROM ou

Disquete

Dispositivo de caractere: Mouse,

teclado ou vídeo

CONTROLES DE ACESSO

 As definições de leitura, escrita e execução têm nuances diferentes se estamos trabalhando com arquivos ou diretórios. Vejamos o quadro a seguir:

PERMISSÕES EM ARQUIVOS E DIRETÓRIOS

OBJETO	Leitura	Gravação	Execução
	(r)	(w)	(x)
Arquivo	Permite ler o conteúdo do arquivo	Permite alterar o conteúdo do arquivo	Permite executar o arquivo como um programa
Diretório	Permite	Permite criar	Permite ler e
	listar o	e apagar	gravar
	conteúdo do	arquivos no	arquivos no
	diretório	diretório	diretório

REPRESENTAÇÃO DAS PERMISSÕES

- As permissões podem ser representadas sistema octal, binário ou através de letras
- Vejamos na próxima tabela:

TABELA DE REPRESENTAÇÃO DE PERMISSÕES

Octal	Binário	Letras	Descrição
0	000	<	Sem acesso
1	001	×	Somente execução
2	010	-w-	Somente escrita
3	011	-wx	Escrita e execução
4	100	\ r	Somente Leitura
5	101	r-x	Leitura e execução
6	110	rw-	Leitura e escrita
7	111	rwx	Leitura, escrita e execução

EXEMPLO DE PERMISSÃO

Documentos é um diretório (D) e possui as seguintes permissões:

usuário cesar: possui rwx

grupo cesar: possui r-x

outros: possui r-x

```
drwxr-xr-x 2 cesar cesar 4096 Jun 11 19:09 Documentos
drwxr-xr-x 7 cesar cesar 4096 Jul 10 16:26 Downloads
drwx----- 15 cesar cesar 4096 Jul 3 15:32 Dropbox
-rw-r--r-- 1 cesar cesar 8980 Jun 11 18:53 examples.desktop
```


EXEMPLO DE PERMISSÃO

As permissões do diretório Documentos também podem ser representadas pelos octetos 755 sendo usuário cesar: possui rwx (111) = 7 grupo cesar: possui r-x (101) = 5 outros: possui r-x (101)= 5

```
drwxr-xr-x 2 cesar cesar 4096 Jun 11 19:09 Documentos
drwxr-xr-x 7 cesar cesar 4096 Jul 10 16:26 Downloads
drwx----- 15 cesar cesar 4096 Jul 3 15:32 Dropbox
-rw-r--r-- 1 cesar cesar 8980 Jun 11 18:53 <u>exa</u>mples.desktop
```


REPRESENTAÇÕES DE TIPOS DE ARQUIVOS

Caractere	Significado	
- / /	Arquivo Comum	
d	Diretório	
Ь	Dispositivos de Bloco, como HD's, etc	
C	Dispositivos de Caractere, como terminais	
	Links simbólicos	

EXEMPLOS:

CRIANDO NOVOS ARQUIVOS

Quando novos arquivos são criados no sistema, têm suas permissões definidas gravadas no perfil de cada usuário e configuradas pelo comandos *umask*

COMANDO UMASK

- Mostra as permissões padrões quando os arquivos e diretórios são criados no sistema
- Aceita como argumento, um número inteiro de 3 dígitos

REGRA GERAL PARA CALCULAR AS PERMISSÕES DE ARQUIVOS E DIRETÓRIOS:

- Subtraia: 777 valor_da_umask
- Exemplo: Temos uma umask de valor 333 e queremos saber como ficarão as permissões de arquivos e diretórios.
- Calculemos então:
- o 777 333 = 444
- As permissões de arquivos e diretórios serão igual 444, ou seja, r-- r-- r--.

 REGRA DE EXCEÇÃO: quando os números da umask forem par (0, 2, 4 ou 6), o método de cálculo para a permissão dos ARQUIVOS muda (diretórios PERMANECEM seguindo a regra geral), ficando assim:

Subtraia: 6 - valor_da_umask

0

REGRA DE EXCEÇÃO:

- Exemplo: tomando a umask default como base 022;
- Para ARQUIVOS a permissão será calculada assim:
- 666 022 = 644
- As permissões de arquivos serão igual a 644 ou seja, rw-r--r--;

- REGRA DE EXCEÇÃO:
- Para DIRETÓRIOS, continuamos seguindo a regra geral, então o cálculo fica:
- o 777 022 = 755
- As permissões de diretórios serão igual a 755, ou seja, rwxr-xr-x.
- OBS: Perceba que DIRETÓRIOS SEMPRE usam a REGRA GERAL

REGRA DE EXCEÇÃO:

Mais um exemplo pra fixar a idéia

umask 324

Teremos que aplicar ambas as regras neste caso, pois temos o 3 que segue a regra geral tanto para arquivos como para diretórios e temos o 2 e o 4 que seguirão a regra de exceção no caso das permissões para arquivos.

Vamos primeiro calcular como ficarão as permissões para ARQUIVOS:

- 7 3 = 4 (segue regra geral porque o valor é 3)
- 6 2 = 4 (segue a regra de exceção porque o valor 2 faz parte da regra de exceção)
- 6 4 = 2 (segue a regra de exceção porque o valor 4 faz parte da regra de exceção)

Resultado: para arquivos a permissão ficará igual a 442, ou seja, r--r--w-.

REGRA DE EXCEÇÃO:

Mais um exemplo pra fixar a idéia

umask 324

Agora calculemos as permissões para DIRETÓRIOS (que segue sempre a regra geral):

- 7 3 = 4
- 7 2 = 5
- 7 4 = 3

Resultado: para diretórios a permissão ficará igual a 453, ou seja, r--r-x-wx.

MODIFICANDO AS PERMISSÕES DE ARQUIVOS

- O comando utilizado para modificar as permissões dos arquivos é o chmod.
- Este comando aceita a representação através de letras ou octetos

- classes de permissões
 - u : user (dono do arquivo)
 - o g:group
 - o o: others
 - a : all

- operações com permissões
 - + : adicionar a permissão
 - -: retirar a permissão
 - = : configurar as permissões com exatidão

- permissões utilizadas
 - r : leitura (Read)
 - w : escrita (Write)
 - x : execução (eXecute)

 Exemplos de mudança de permissões:

chmod 755 Leiame.txt

- Muda as permissões do arquivo *Leiame.txt* para *rwx* para o Usuário, *r-x* para o Grupo e *r-x* para Outros.
- A mesma permissão poderia ser configurada como:

chmod u=rwx,go=rx Leiame.txt

 Para colocar permissões de execução em um arquivo, você pode simplesmente adicionar a permissão de execução:

chmod +x Backup.sh

- Comando chown: altera o dono do arquivo
- sintaxe:
 - chown [opções] usuário arquivo
 - Exemplo
 - chown redes teste (usuário redes passa a ser o dono do arquivo teste)

- Comando chown: altera o dono do arquivo
- sintaxe:
 - chown [opções] usuário arquivo
 - Exemplo
 - chown redes. teste (teste passa a pertencer ao usuário redes e ao grupo ao qual redes pertence)

- Comando chown: altera o dono do arquivo
- sintaxe:
 - chown [opções] usuário arquivo
 - Exemplo
 - chown redes.havai teste (teste passa a pertencer ao usuário redes e ao grupo havai)

- Comando chown: altera o dono do arquivo
- sintaxe:
 - chown [opções] usuário arquivo
 - Exemplo
 - chown .havai teste (teste passa a pertencer ao grupo havai mas não modifica o proprietário do arquivo)

- Comando chgrp: altera o grupo do arquivo
- sintaxe:
 - Vamos alterar o grupo do arquivo prova01 para o grupo professor
 - \$ sudo chgrp professor prova01