Termodynamika z elementami fizyki statystycznej Ćwiczenia 2 (6 marca 2023)

własności cieplne cd.

Zadanie 1

Opór właściwy półprzewodnika zależy od temperatury jak: $\rho(T) = A \exp{(\alpha/T)}$, gdzie $\alpha = 0.01 \text{eV/k}_B$. Jakie zmiany temperatury w okolicy 290 K można mierzyć takim termometrem zakładając, że potrafimy mierzyć opór z dokładnością do 0.01%. Przyjmij $k_B = 8.62 \cdot 10^{-5} \text{ eV/K}$.

Zadanie 2

Przy długości fali $\lambda=0.7\,\mu\mathrm{m}$ porównano natężenie promieniowania dwóch, doskonale czarnych, źródeł promieniowania o różnych temperaturach. Temperatura pierwszego ciała wynosi $T_1=1068^{\circ}\mathrm{C}$ (topnienie złota). Znaleźć temperaturę drugiego ciała T_2 , jeśli stosunek natężeń promieniowania wynosił $I_{\lambda}(T_2)/I_{\lambda}(T_1)=10$. Przyjmij $hc=1.24~\mathrm{eV}\mu\mathrm{m}$

Zadanie 3 (Pirometr dwubarwny)

Wyznaczyć temperaturę ciała świecącego wiedząc, że stosunek natężeń promieniowania dla długości fal $\lambda_1 = 550\,\mathrm{nm}$ i $\lambda_2 = 700\,\mathrm{nm}$ wynosi $R = I_{\lambda_2}/I_{\lambda_1}(T) = 1.286$. Przyjąć $T \sim 10^3~\mathrm{K}$.

Zadanie 4

Doskonale czarna kula (gwiazda) o temperaturze T i promieniu R otoczona jest czarną sferą (sferą Dysona) o promieniu r, której temperatura jest ustalona przez równowagę termodynamiczną. Jaka jest temperatura sfery? Rozważ następujące warianty:

- 1. wariant bardzo duża gwiazda gwiazda pochłania całe promieniowanie pochodzące z wnętrza sfery, ale temperatura gwiazdy nie zmienia się;
- 2. wariant mała gwiazda gwiazda jest tak mała, że promieniowanie pochłoniete przez nią jest zaniedbywalne
- 3. gwiazda ma temperaturę T przed nałożeniem osłony. Po nałożeniu osłony jej temperatura podniesie się, ale zakładamy, że energia produkowana wewnątrz gwiazdy nie zmieni się;

Zadanie 5 (Termos próżniowy)

Dane są dwie nieskończone doskonale czarne płaszczyzny o temperaturach $T_1=300\,\mathrm{K}$ i $T_2=4\,\mathrm{K}$. Obliczyć strumień energii (czyli moc na jednostkę powierzchni) przesyłaną między nimi. Rozważyć trzecią płaszczyznę (osłonę) między nimi, która odbija R=95% promieniowania. Obliczyć temperaturę osłony i strumień energii pomiędzy płaszczyznami. Przyjmij $\sigma=5.67\cdot10^{-8}\,\mathrm{W/m^2K^4}$

Zadanie 6

Korzystając z prawa promieniowania Plancka wykaż, bez całkowania, prawo Stefana-Boltzmanna.

Zadania domowe

Zadanie domowe 1

Zależność ciśnienia równowagi fazy ciekłej i lotnej opisuje w przybliżeniu wzór: $p = Ae^{-\alpha/T}$.

Dla wody: $p_3 = 612 \,\mathrm{Pa}$, $T_3 = 273.16 \,\mathrm{K}$, $p_{\mathrm{wrzenia}} = 1.013 \cdot 10^5 \,\mathrm{Pa}$, $T_{\mathrm{wrzenia}} = 373.2 \,\mathrm{K}$.

Wyznacz stałe A i α . Oblicz w jakiej temperaturze woda wrze na wysokościach:

- a) $2500 \,\mathrm{m} \mathrm{Rysy} \ (p = 0.75 \,\mathrm{bar})$
- b) $4800 \,\mathrm{m} \mathrm{Mont \ Blanc} \ (p = 0.55 \,\mathrm{bar})$
- c) $8850 \,\mathrm{m} \mathrm{Mont} \,\mathrm{Everest} \,(p = 0.33 \,\mathrm{bar}).$

Przy jakim ciśnieniu woda wrze w temperaturze $20^{\circ}\text{C}? - 3^{\circ}\text{C}?$

Odpowiedź:
$$\alpha = \log\left(\frac{p_w}{p_3}\right) \frac{T_w T_3}{T_w - T_3} \approx 5208K, \ A = p_w e^{\alpha/T_w} \approx 1.17 \cdot 10^{11} Pa$$
 $T_a \approx 367K, \ T_b \approx 358K, \ T_c \approx 346K$ $P(20^{\circ}C) \approx 2243 Pa, \ P(-3^{\circ}C) \approx 494 Pa$

Zadanie domowe 2

Do budowy termoregulatorów, ograniczników temperatury i tym podobnych urządzeń stosuje się często urządzenie zwane bimetalem. Jest to pasek złożony z dwóch spojonych ze sobą warstw metali o różnych współczynnikach rozszerzalności. Pasek taki przy ogrzewaniu będzie się wyginał i może w ten sposób zamykać lub otwierać obwód elektryczny. Dany jest bimetal o grubości d, złożony z metali o współczynnikach rozszerzalności liniowej α_1 i α_2 ($\alpha_1 > \alpha_2$). W temperaturze T_0 bimetal jest prosty. Znajdź promień krzywizny bimetalu po ogrzaniu go o ΔT . Wykonaj obliczenia dla: $\alpha_1 = 1.8 \cdot 10^{-5} \, \mathrm{K}^{-1}$ (mosiądz), $\alpha_2 = 1.2 \cdot 10^{-5} \, \mathrm{K}^{-1}$ (stal), grubość $d = 1 \, \mathrm{mm}$, długość $l_0 = 5 \, \mathrm{cm}$, $\Delta T = 100 \, \mathrm{K}$.

Odpowiedź:
$$R = \frac{d}{2} \frac{2 + (\alpha_1 + \alpha_2)\Delta T}{(\alpha_1 - \alpha_2)\Delta T} \approx 167cm$$

Zadanie domowe 3

Opór właściwy miedzi zależy od temperatury jak: $\rho(T) = A\left(\frac{T}{T_0}\right) \operatorname{tgh}^3\left(\frac{T}{T_0}\right)$; $T_0 = 87 \,\mathrm{K}$. W temperaturze 290 K miedziany czujnik ma opór $10 \,\Omega$.

- 1. Jaki opór ma ten czujnik w temperaturze 700 K?
- 2. Jak zmieni się opór dla temperatury 701 K? Ile wynosi $\Delta R/R$?
- 3. Jaki jest opór w temperaturze 20 K?
- 4. Jak zmieni się opór dla temperatury 21 K? Ile wynosi $\Delta R/R$?

Zadanie rozwiąż rachunkiem bezpośrednim oraz korzystając z odpowiednich rozwinięć.

Odpowiedź:

- 1. $\rho(700K) = 24.323\Omega$
- 2. Bezpośrednio $\rho(701K)=24.358\Omega$ Przy użyciu rozwinięcia $\rho(701K)\approx\rho(700K)+\rho'(700K)1K=24.358\Omega$ $\Delta R/R\approx0.0014$
- 3. $\rho(20K) = 0.008\Omega$
- 4. Bezpośrednio $\rho(21K)=0.0097\Omega$ Przy użyciu rozwinięcia $\rho(21K)\approx\rho(20K)+\rho'(20K)1K=0.00957\Omega$ $\Delta R/R\approx0.21$

Zadanie domowe 4

Oszacuj całkowitą moc jaką wypromieniowujesz. Opisz przyjęte założenia i zastosowane przybliżenia. Oszacuj wydatek energetyczny organizmu na utrzymanie temperatury ciała (różnice pomiędzy mocą wypromieniowywana i otrzymywana) jeżeli znajdujesz się w otoczeniu o temperaturze 20°C.

Odpowiedź:
$$\Delta P = S\sigma(T_c^4 - T_o^4) \approx 211W, \ \lambda_{max} = 9.5 \mu m$$

Zadanie domowe 5

Sonda kosmiczna o kształcie kuli i doskonale czarnej powierzchni ma zbadać okolice Merkurego. Aby uniknąć przegrzania sondy wyposażono ją w ekran termiczny - cienką osłonkę o kształcie półsfery zrobioną z metalu o współczynniku odbicia r. Osłona założona jest bardzo blisko powierzchni sondy, ale nie styka się z nią. Sonda zwrócona jest osłonieta strona do Słońca.

- 1. Znajdź wyrażenie na temperaturę sondy w funkcji jej odległości od Słońca i porównaj z temperaturą sondy pozbawionej osłony
- 2. Dobierz współczynnik odbicia r tak aby w pobliżu Merkurego sonda miała temperaturę $T_{\text{sondy}} = 300 \,\text{K}$. Jaka jest wtedy temperatura osłony?

Temperatura Słońca wynosi $T_{\odot}=5800\,\mathrm{K},$ promień Słońca $R_{\odot}=7\cdot10^8\,\mathrm{m},$ odległość Merkurego od Słońca $d = 5.8 \cdot 10^{10}$ m. Zakładamy, że cała powierzchnia sondy ma tę samą temperaturę.

Odpowiedź:

- 1. Bez osłony: $T_{sondy}^4=\frac{T_\odot^4}{4}\frac{R_\odot^2}{d^2}$ Z osłoną: $T_{sondy}^4=\frac{1-r}{3(2-r)}\frac{T_\odot^4}{4}\frac{R_\odot^2}{d^2}$ 2. $r\approx 0.755$

Zadanie domowe 6

Dwie równoległe, duże, doskonale czarne płyty umieszczone są w próżni i mają temperatury T_1 i T_2 . Między te płyty wstawiamy równolegle do nich n dużych, cienkich, doskonale czarnych płyt. Jaka jest temperatura i-tej płyty? Ile razy, w wyniku wstawienia płytek, zmniejszy się strumień energii pomiędzy płaszczyznami?

Odpowiedź: Temperatura *i*-tej płyty $T_i = T_1^4 + \frac{T_N^4 - T_1^4}{N-1}(i-1)$ Zmiana strumienia $I_N/I_2 = \frac{1}{N-1}$