#### **Project Summary**

### Supply Chain Optimization DMAIC Process Improvement for a Real Estate & Home Building Firm

This project was a practical application of the DMAIC methodology to address supply chain inefficiencies in a real estate and home building firm, through which I identified significant ways to improve labor efficiency and reduce construction costs.

#### Project Overview

Objective

To identify and reduce supply chain inefficiencies in a real estate & home building firm. Challenge

Matching 7 quarters of vendor and client records.

Approach

Applied the DMAIC (Define, Measure, Analyze, Improve, Control) methodology, a Six Sigma process improvement tool.

#### Key Phases and Findings

Define

Identified the issue of employees frequently leaving job sites to purchase supplies inperson, incurring extra labor costs and extending construction times.

Measure

Analyzed 7 quarters of client accounting records and supplier invoices to understand purchasing patterns.

Analyze

Found that a significant portion of purchases was made in-person, leading to inefficiencies. Custom remodels were identified as the most inefficient project type. *Improve* 

Suggested strategies such as bundling in-person purchases, studying inefficient and efficient projects, and hiring an entry-level laborer to coordinate purchases.

Control

Recommended implementing an inventory management system and collecting company-wide feedback for sustainable improvements.

#### Impact and Results

Quantified inefficiency, projecting significant cost savings with even marginal reductions in trip frequency and labor rate.

The project led to actionable recommendations for the client, aiming at long-term efficiency gains.

#### Reflection on Process Improvement and Data Analysis

This project highlighted the power of data-driven decision-making in optimizing business processes.

Demonstrated the importance of a structured approach to problem-solving and the effectiveness of the DMAIC methodology in real-world scenarios.

#### Reflection on Working with Internal and External Stakeholders

To get this project done I had to thoroughly document the business process and collect the right data, which meant talking not only to different employees of the business but also vendors that work with the business. I had to query the business's accounting records, customer records, and a vendor database. This helped me develop my soft skills in communication and technical skills in wrangling, matching, and analyzing data, and prepared me for more difficult projects and assignments in the future, both in school and at work.

Full project deck starts on next page.



**BUSINESS CASE:** Previously unmeasured supply chain inefficiency calculated to cost client \$57,000 annually

### **Process Map**



#### **ANALYSIS**

After speaking with stakeholders, I learned how the supply chain works. New construction is generally better planned than a remodel. Materials are ordered in advance in both cases. Once a project begins, to keep clutter and waste to a minimum, contractors prefer not to have a significant amount of extra material on-site, and when new materials are needed, the minimum amount estimated to complete a given task is purchased. There is no formal inventory management process, and usually items that are needed are purchased right away by someone at the job site. There are good reasons for making in-person purchases, such as quality control, and length delivery windows (days).

### **DMAIC Goals**

- Discern key decision points during the purchasing process
- Measure the process in order to quantity both the in-person and delivery purchasing patterns from largest supplier, and how these trends vary with time and by project
  - Process has not previously been measured: order type is not recorded during invoice processing
- Make evidence-based recommendations to stakeholders based on granular analysis in order to improve process
- Reduce frequency of weekly in-person purchases by 20%
- Maintain efficiency gains in the long-term during control phase

#### **Initial Estimate**

Based on a simple random sample (n=20) of 1 month of data, 179 invoices, we estimate that more than 70% of purchases are in-person; some in the sample were for as few as \$20 of materials, which is problematic because we calculated a labor cost of \$56 for a 1-hour trip.

Most purchases may be in-person, and the labor cost of obtaining materials in-person may, in many cases, exceed the cost of materials.

Estimated weekly labor cost of purchasing materials from largest supplier in-person: \$1,794

# **Operational Definitions**

| Performance<br>Measure     | Data Type<br>(on disk) | Data Type<br>(statistics) | Operational Definition                                                                                             | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------|------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project Number             | Integer                | Discrete                  | Client-assigned numeric job identifier                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Project Name               | Character              | Discrete                  | Client-assigned character job identifier                                                                           | Usually last name of customer or street name of project.                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Project Owner              | Character              | Discrete                  | Party that finances construction, and owns the land and home built on the land                                     | Project owner can be either the client (a speculative project) or customer of client (a custom project)                                                                                                                                                                                                                                                                                                                                                                                                       |
| Project Type               | Character              | Discrete                  | Designates nature of construction; project types include new construction, remodels, small projects, and overhead. | An example of a small project would be building a garage. The overhead category exists to classify invoices that are purchases that are not for any specific project, and are therefore billed to the client as overhead.                                                                                                                                                                                                                                                                                     |
| Invoice Number             | Integar                | Discrete                  | Supplier-assigned numeric purchase order identifier for in-person purchases or delivered goods                     | An invoice, with a unique invoice number, is issued upon purchase of goods in-person or upon delivery of shipped goods                                                                                                                                                                                                                                                                                                                                                                                        |
| Quote Number               | Integar                | Discrete                  | Supplier-assigned numeric purchase order identifier for shipped goods                                              | A quote, with a quote number ,is issued when an order for delivery is placed, and subsequently a separate invoice with a unique, unrelated invoice number is issued upon arrival of the shipped goods. For the purposes of tracking order placement, quote numbers were incorporated into the data set for shipped orders, and invoice numbers were used for in-person purchases. This is because the arrival of goods, and therefore the invoice date, does not accurately reflect when the order was placed |
| Invoice Date               | Datetime               | Both                      | Date of in-person purchase for in-person purchases, or date of delivery for shipped goods.                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Quote Date                 | Datetime               | Both                      | Date that delivery order was placed.                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Order<br>Description       | Character              | Discrete                  | Client's characterization of the items purchased for the given invoice.                                            | Does not always contain 100% of the purchase.                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Order Amount (Client)      | Numeric                | Continuous                | The amount the client paid for the given invoice.                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Order Amount<br>(Supplier) | Numeric                | Continuous                | The amount the client was billed for the given invoice.                                                            | There is an important distinction here that caused a significant headache when merging the two datasets. The amount on the quotes for delivery orders often was different than the amount paid for the order. Sometimes quoted orders were split up into multiple invoices, delivered on the same day or different days.                                                                                                                                                                                      |
| Order Type                 | Character              | Discrete                  | Characterization of type of purchase                                                                               | Either POS for in-person purchases or SHIPPED for deliveries.                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

### **Data Measurement Plan**

| Performance<br>Measure     | Data Type<br>(on disk) | Data Type<br>(statistics) | Data Source                                                                                             | Data<br>Location   | Data Collection Methods                                                                                                                                                        | Responsible<br>Parties | <b>Collection Dates</b> | Target Sample<br>Size      |
|----------------------------|------------------------|---------------------------|---------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------|----------------------------|
| Project Number             | Integer                | Discrete                  | Client's Internal Accounting Records                                                                    | Client<br>Database | Query database, aggregate 2019 Q1 - 2021 Q1<br>Records                                                                                                                         | SDS, Client            | 4/29 – 5/16             | NA; taking<br>every record |
| Project Name               | Character              | Discrete                  | Client's Internal Accounting Records                                                                    | Client<br>Database | Query database, aggregate 2019 Q1 - 2021 Q1<br>Records                                                                                                                         | SDS, Client            | 4/29 – 5/16             | NA; taking every record    |
| Project Owner              | Character              | Discrete                  | Client's Internal Accounting Records                                                                    | Client<br>Database | Query database, aggregate 2019 Q1 - 2021 Q1<br>Records                                                                                                                         | SDS, Client            | 4/29 – 5/16             | NA; taking every record    |
| Project Type               | Character              | Discrete                  | Client's Internal Accounting Records                                                                    | Client<br>Database | Query database, aggregate 2019 Q1 - 2021 Q1<br>Records                                                                                                                         | SDS, Client            | 4/29 – 5/16             | NA; taking<br>every record |
| Invoice Number             | Integar                | Discrete                  | Client's Internal Accounting Records                                                                    | Client<br>Database | Query database, aggregate 2019 Q1 - 2021 Q1<br>Records                                                                                                                         | SDS, Client            | 4/29 – 5/16             | NA; taking<br>every record |
| Quote Number               | Integar                | Discrete                  | Supplier's Records of Client's Purchase Invoices                                                        | Supplier<br>Portal | Download 2019 Q1 - 2021 Q1 records by job site and order type (Excel) and aggregate                                                                                            | SDS, Supplier          | 4/29 – 5/16             | NA; taking every record    |
| Invoice Date               | Datetime               | Both                      | Client's Internal Accounting<br>Records                                                                 | Client<br>Database | Query database, aggregate 2019 Q1 - 2021 Q1<br>Records                                                                                                                         | SDS, Client            | 4/29 – 5/16             | NA; taking<br>every record |
| Ship Date                  | Datetime               | Both                      | Supplier's Records of Client's Purchase Invoices                                                        | Supplier<br>Portal | Download 2019 Q1 - 2021 Q1 records by job site and order type (excel) and aggregate                                                                                            | SDS, Supplier          | 4/29 – 5/16             | NA; taking<br>every record |
| Order<br>Description       | Character              | Discrete                  | Client's Internal Accounting Records                                                                    | Client<br>Database | Query database, aggregate 2019 Q1 - 2021 Q1<br>Records                                                                                                                         | SDS, Client            | 4/29 – 5/16             | NA; taking<br>every record |
| Order Amount<br>(Client)   | Numeric                | Continuous                | Client's Internal Accounting<br>Records                                                                 | Client<br>Database | Query database, aggregate 2019 Q1 - 2021 Q1<br>Records                                                                                                                         | SDS, Client            | 4/29 – 5/16             | NA; taking<br>every record |
| Order Amount<br>(Supplier) | Numeric                | Continuous                | Supplier's Records of Client's<br>Purchase Invoices                                                     | Supplier<br>Portal | Download 2019 Q1 - 2021 Q1 records by job site and order type (excel) and aggregate                                                                                            | SDS, Client            | 4/29 – 5/16             | NA; taking<br>every record |
| Order Type                 | Character              | Discrete                  | Both Client's Internal<br>Accounting Records and<br>Supplier's Records of Client's<br>Purchase Invoices | SDS<br>Computer    | Match Client and Supplier records to determine order type using invoice number and quote number, invoice date and ship date, order amount (client) and order amount (supplier) | SDS                    | 4/29 – 5/16             | NA; taking<br>every record |

### Data Collection, Cleaning, and Validation Methods

**Goal**: using 8 quarters of financial records, determine which purchases were in-person from supplier, and which were delivery **Obstacle**: client accounting database excluded this information; delivery is free, so accountant did not record this information **Solution**: access supplier records, which include purchase type, and cross-reference with client records **Additional Obstacles:** supplier records are accessed via an online portal in fragments and required significant cleaning and munging; client records contained errors (never financial; only mistyped invoice numbers) and required cleaning and munging

#### Methods

Query client database to collect internal accounting data on invoices paid between Q2 2019 and Q1 2021

- Clean data set, resolving errors in data types and adding additional fields including project name, project owner, and project type Access supplier portal and retrieve invoices
- Automated retrieval process, including downloading invoices by purchase type and job site, aggregating all downloaded files and subsequently aggregating all supplier data into one table

Systematically match client invoice data with supplier invoice data

- Matched by price, price with tax it turns out the shipped orders did not have tax included on the supplier estimate as well as
  order date, project name which differed in both systems and resolved unmatched client records manually by further
  investigating idiosyncrasies in the data
  - Learned that deliveries were often split up into multiple deliveries, so client invoices wouldn't match a supplier quote
  - Learned the supplier database, which I accessed through an online portal, had been reset just before the start of Q3 2019 when the supplier was acquired by the current ownership; had to throw out Q2 2019 of client data
  - Further eliminated client records for credits and rebates, and kept a thorough, automatically updating log of data changes
- Manually checked remaining unknowns with pdfs of invoices to resolve any discrepancies
   Successfully determined exact order type of 2,229/2,331 invoices and estimated order type of final 2 based on price

### **Measurement Error Analysis**

- Possible sources of error: mistyped invoice/quote numbers on the client end and the supplier end
  - Client manually entering data; this did happen. Supplier seems to automate the process; this did not happen
  - When I was done, I saw no instances of an unknown supplier record. If I had seen unknown supplier and unknown client records, I would have some uncertainty.
  - The two unknown client records are likely to be purchases from another supplier, but it can't be ruled out that they are from this supplier
- Errors in the code I wrote to match client and supplier records
  - I iteratively corrected over time and used so many different fields that I am confident I eliminated this source of error.
  - I cross-referenced any unknowns I could not eliminate with my code by manually checking the pdfs of the invoices and quotes
- In summary, there were external sources of measurement error (client and supplier mismanaging data) and internal sources of measurement error (my own misinterpretation of data) but I am confident that I effectively eliminated this error

### **Sigma Quality Level Calculations**

| Sigma Quality Level: Before                  |                                             | Sigma Quality Level: After                   |                                      |
|----------------------------------------------|---------------------------------------------|----------------------------------------------|--------------------------------------|
| 1. Definition of unit:                       |                                             | 1. Definition of unit:                       |                                      |
| Unit Definition:                             | 1 week                                      | Unit Definition:                             | 1 week                               |
| 2. Defect opportunities per unit:            |                                             | 2. Defect opportunities per unit:            |                                      |
| Defect 1                                     | Average spending less than \$112/in-person  | Defect 1                                     | Average spending less than \$112/in- |
|                                              | purchase in a week (twice the labor cost of |                                              | person purchase in a week (twice the |
|                                              | an in-person purchase)                      |                                              | labor cost of an in-person purchase) |
| Defect 2                                     | More than 7 in-person purchases in a week   | Defect 2                                     | More than 7 in-person purchases in a |
| D =                                          | 2                                           | D =                                          | 2                                    |
| 3. Units produced per timeframe:             |                                             | 3. Units produced per timeframe:             |                                      |
| timeframe:                                   | 92 weeks                                    | timeframe:                                   | 2 weeks                              |
| U =                                          | 92                                          | U =                                          | 2                                    |
| 4. Total possible defects per timeframe:     |                                             | 4. Total possible defects per timeframe:     |                                      |
| D × U =                                      | 184                                         | D × U =                                      | 4                                    |
| 5. Total actual defects:                     |                                             | 5. Total actual defects:                     |                                      |
| Defect 1                                     | _                                           | Defect 1                                     | 1                                    |
| Defect 2                                     | 90                                          | Defect 2                                     | 2                                    |
| A =                                          | 141                                         | A =                                          | 3                                    |
| 6. Defect-per-opportunity rate:              |                                             | 6. Defect-per-opportunity rate:              |                                      |
| A ÷ DU = DPO =                               | 0.766304348                                 | A ÷ DU = DPO =                               | 0.75                                 |
| 7. Defects per million opportunities (DPMO): |                                             | 7. Defects per million opportunities (DPMO): |                                      |
| DPO × 1,000,000 =                            | 766,304.35                                  | DPO × 1,000,000 =                            | 750,000.00                           |
| 8. SQL value:                                |                                             | 8. SQL value:                                |                                      |
| SQL = NORM.S.INV(1-DPMO/1000000) + 1.5       | 0.77                                        | SQL = NORM.S.INV(1-DPMO/1000000) + 1.5       | 0.83                                 |

#### **ANALYSIS**

There was not a significant change in S.Q.L. after the Improve Phase. The biggest driver: improvements were not implemented company-wide. Ongoing efforts are underway to implement improvements and SQL will be periodically recalculated.

# What proportion of purchases are in-person? What proportion of spending is in-person?



#### **ANALYSIS**

This was the first set of charts I made upon completely cleaning my data set, and they offer a stark conclusion: the problem is even bigger than we had thought. A huge majority of the client's purchases were done in-person, while only comprising a quarter of the overall spending for this time period. This indicates frequent, low-spending trips to the supplier's store may be common.

### How does purchasing behavior vary over time?



#### **ANALYSIS**

This was another question I wanted to answer immediately. There is always a clear gap between inperson and delivery purchases, with a notable plummet during the onset of the global pandemic. The momentary spike in weekly deliveries once the company started doing construction again quickly subsides. In-person purchases appear to be trending up.

Weekly Average
19.67 In-Person Purchases

### How is order type distributed?

| Spending Descriptive Statistics |        |       |        |         |          |                    |         |         |
|---------------------------------|--------|-------|--------|---------|----------|--------------------|---------|---------|
| Purchase Type                   | Min    | Q1    | Median | Q3      | Max      | Percentile of Mean | Mean    | Std Dev |
| In-Person                       | \$0.85 | \$25  | \$60   | \$141   | \$1,548  | 57%                | \$110   | \$1,055 |
| Delivery                        | \$0.27 | \$183 | \$446  | \$1,133 | \$15,344 | 75%                | \$1,148 | \$2,013 |



Distribution of In-Person Purchases from Largest Supplier
Binwidth = \$10



#### **ANALYSIS**

Now I can better understand the purchasing behavior of the client's management and employees. Both distributions are skewed heavily to the right, indicating the occasional expensive purchases, as seen on the histograms, inflate the mean, making median a better measure of center. Most purchases that are done in-person are for small amounts, relatively speaking. The third quartile of the in-person purchases fits neatly inside the first quartile of delivery purchases.

## What can we learn from taking a closer look at these distributions?



#### <u>ANALYSIS</u>

The side-by-side boxplots allow for comparisons that the individual histograms do not, and summarize the descriptive statistics table nicely. Comparing the two boxplots for in-person orders, we can see the outsize effect this outliers have on the mean, and how tight the range is for in-person purchases.

## How much does the inefficiency cost the client?



#### **ANALYSIS**

Now that I thoroughly understood the basic summary statistics of order type, I could finally answer this question. I decided that modeling the estimated cost for the time period I analyzed on a weekly basis was a logical way to break up the data because we want to address this problem in terms of purchases and spending per week.

Weekly Average \$1,100 labor cost

### How I estimated the cost of the inefficiency:

| Trips/Week =        | 19.6719  |          | Ti       | me to Pu | rchase (F | Irs)     |           |
|---------------------|----------|----------|----------|----------|-----------|----------|-----------|
| Annual Labor Cost = | \$57,860 | 0.25     | 0.5      | 0.75     | 1         | 1.25     | 1.5       |
|                     | \$15     | \$4,822  | \$9,643  | \$14,465 | \$19,287  | \$24,108 | \$28,930  |
|                     | \$20     | \$6,429  | \$12,858 | \$19,287 | \$25,715  | \$32,144 | \$38,573  |
|                     | \$25     | \$8,036  | \$16,072 | \$24,108 | \$32,144  | \$40,180 | \$48,216  |
|                     | \$30     | \$9,643  | \$19,287 | \$28,930 | \$38,573  | \$48,216 | \$57,860  |
| Labor Rate          | \$35     | \$11,251 | \$22,501 | \$33,752 | \$45,002  | \$56,253 | \$67,503  |
|                     | \$40     | \$12,858 | \$25,715 | \$38,573 | \$51,431  | \$64,289 | \$77,146  |
|                     | \$45     | \$14,465 | \$28,930 | \$43,395 | \$57,860  | \$72,325 | \$86,790  |
|                     | \$50     | \$16,072 | \$32,144 | \$48,216 | \$64,289  | \$80,361 | \$96,433  |
|                     | \$55     | \$17,679 | \$35,359 | \$53,038 | \$70,718  | \$88,397 | \$106,076 |
|                     | \$60     | \$19,287 | \$38,573 | \$57,860 | \$77,146  | \$96,433 | \$115,720 |

| Calculations           |            |
|------------------------|------------|
| In-Person Purchases    | 1807       |
| Time Period Start      | 6/27/2019  |
| Time Period Stop       | 3/31/2021  |
| True Trips/Week        | 19.6718507 |
|                        |            |
| Labor Rate             | \$45.00    |
| Billed Labor Rate      | \$56.41    |
| Time to Purchase (hrs) | 1          |
| Trips/Week             | 19.6718507 |
| Annual Cost            | \$57,860   |

# Impact of Trip Time and Labor Rate on Annual Labor Cost of In-Person Purchases Q3 2019 - Q1 2021



#### <u>ANALYSIS</u>

By performing a sensitivity analysis to estimate trip time and labor cost, I projected the annual labor cost. Our best estimate was 1 hour for a trip and \$45/hr as a standard labor rate, which amounts to \$57,860 annually, or \$1,112/week. This table and graph allowed me to clearly communicate my findings, and a potential range of estimated labor costs, with the client.

# How much could we reduce this inefficiency cost if we decrease inperson purchase frequency and labor rate for trips to supplier?

| Time to Purchase (Hrs) | 1        |          |          | Trips    | /Week    |          |           |
|------------------------|----------|----------|----------|----------|----------|----------|-----------|
| Annual Labor Cost      | \$57,860 | 5        | 10       | 15       | 19.6719  | 25       | 30        |
|                        | \$15     | \$4,902  | \$9,804  | \$14,706 | \$19,287 | \$24,510 | \$29,412  |
|                        | \$20     | \$6,536  | \$13,072 | \$19,608 | \$25,715 | \$32,681 | \$39,217  |
|                        | \$25     | \$8,170  | \$16,340 | \$24,510 | \$32,144 | \$40,851 | \$49,021  |
|                        | \$30     | \$9,804  | \$19,608 | \$29,412 | \$38,573 | \$49,021 | \$58,825  |
| Labor Rate             | \$35     | \$11,438 | \$22,876 | \$34,315 | \$45,002 | \$57,191 | \$68,629  |
| Labor Hate             | \$40     | \$13,072 | \$26,144 | \$39,217 | \$51,431 | \$65,361 | \$78,433  |
|                        | \$45     | \$14,706 | \$29,412 | \$44,119 | \$57,860 | \$73,531 | \$88,237  |
|                        | \$50     | \$16,340 | \$32,681 | \$49,021 | \$64,289 | \$81,701 | \$98,042  |
|                        | \$55     | \$17,974 | \$35,949 | \$53,923 | \$70,718 | \$89,871 | \$107,846 |
|                        | \$60     | \$19,608 | \$39,217 | \$58,825 | \$77,146 | \$98,042 | \$117,650 |

| Calculations           |            |
|------------------------|------------|
| In-Person Purchases    | 1807       |
| Time Period Start      | 6/27/2019  |
| Time Period Stop       | 3/31/2021  |
| True Trips/Week        | 19.6718507 |
|                        |            |
| Labor Rate             | \$45.00    |
| Billed Labor Rate      | \$56.41    |
| Time to Purchase (hrs) | 1          |
| Trips/Week             | 19.6718507 |
| Annual Cost            | \$57,860   |

Sensitivity Analysis: Impact of Trip Frequency and Labor Rate on Annual Labor Cost of In-Person Purchases



#### **ANALYSIS**

This sensitivity analysis allowed us to have constructive conversations about the concrete impact of setting specific goals for reducing trips/week. A 25% reduction leads to a \$13,000 savings at a labor rate of \$45/hr, and reducing the labor rate for purchasing materials to \$20/hr reduces the annual cost to less than \$20,000 at 15 trips/week!

# What should we target as a minimum-spending threshold for future in-person purchases?



#### **ANALYSIS**

With this analysis I could hone in on this critical number, which appears to be near the inflection point on the curve for in-person purchases: more than 70% of in-person purchases are for \$125 or less. Interestingly, this is approximately double our "typical" purchase (the median is \$60). One way to put it would be doubling the goods purchased in a typical trip would reduce labor costs by at least 35%; if 70% of trips are for \$125, then by combining trips, we will at least halve the number of these trips taken by combining them into one.

## How does purchasing vary by project?



#### **ANALYSIS**

This analysis led to some very interesting improvement insights. Looking at the data in this way help me understand what types of projects are driving the in-person spending trend. The Chief offender appears to be custom remodels. Some chi-square tests helped affirm that there are real differences here.

## Are the observed differences among projects significant?

Ho: order type and project type are independent

Ha: order type and project type are not independent

#### Purchases by Project Type and Order Type

| Observed         |           | Order_Type |     |       |  |
|------------------|-----------|------------|-----|-------|--|
| Project_Type     | In-Person | Deliv      | ery | Total |  |
|                  |           |            |     |       |  |
| New Construction |           | 717        | 343 | 1060  |  |
| Overhead         |           | 55         | 6   | 61    |  |
| Remodel          |           | 946        | 165 | 1111  |  |
| Small Projects   |           | 89         | 10  | 99    |  |
| Total            |           | 1807       | 524 | 2331  |  |

| Expected         |           | Order_Type |         |       |
|------------------|-----------|------------|---------|-------|
| Project_Type     | In-Person | D          | elivery | Total |
|                  |           |            |         |       |
| New Construction |           | 822        | 238     | 1060  |
| Overhead         |           | 47         | 14      | 61    |
| Remodel          |           | 861        | 250     | 1111  |
| Small Projects   |           | 77         | 22      | 99    |
| Total            |           | 1807       | 524     | 2331  |

| Chi-square       | Order_Typ | e        |       |        |
|------------------|-----------|----------|-------|--------|
| Project_Type     | In-Person | Delivery |       | Total  |
|                  |           |          |       |        |
| New Construction |           | 13.34    | 46.02 | 59.36  |
| Overhead         |           | 1.26     | 4.34  | 5.60   |
| Remodel          |           | 8.34     | 28.76 | 37.10  |
| Small Projects   |           | 1.96     | 6.75  | 8.71   |
| Total            |           | 24.90    | 85.86 | 110.76 |



Ho: order type and project owener are independent
Ha: order type and project owner

#### Purchases by Project Owner and Order Type

| Order_Type |          |                                 |                                                                                                        |
|------------|----------|---------------------------------|--------------------------------------------------------------------------------------------------------|
| In-Person  | Delivery |                                 | Total                                                                                                  |
|            |          |                                 |                                                                                                        |
|            | 1066     | 258                             | 1324                                                                                                   |
|            | 55       | 6                               | 61                                                                                                     |
|            | 686      | 260                             | 946                                                                                                    |
|            | 1807     | 524                             | 2331                                                                                                   |
|            |          | In-Person Delivery  1066 55 686 | In-Person         Delivery           1066         258           55         6           686         260 |

| Expected      | О         | Order_Type |     |       |  |  |
|---------------|-----------|------------|-----|-------|--|--|
| Project_Owner | In-Person | Delivery   |     | Total |  |  |
|               |           |            |     |       |  |  |
| Custom        |           | 1026       | 298 | 1324  |  |  |
| Overhead      |           | 47         | 14  | 61    |  |  |
| Speculative   |           | 733        | 213 | 946   |  |  |
| Total         |           | 1807       | 524 | 2331  |  |  |

| Chi-square    | Ord       |          |       |       |
|---------------|-----------|----------|-------|-------|
| Project_Owner | In-Person | Delivery |       | Total |
|               |           |          |       |       |
| Custom        |           | 1.53     | 5.28  | 6.83  |
| Overhead      |           | 1.26     | 4.34  | 5.60  |
| Speculative   |           | 3.06     | 10.54 | 13.60 |
| Total         |           | 5.84     | 20.15 | 26.00 |
|               |           |          |       |       |



#### **ANALYSIS**

A chi-square hypothesis tests yield p-values that are essentially zero. I am 99% confident that project type has an influence on order type, and I am 99% confident that project owner has an influence on order type. Remodel projects, particularly custom remodels, should be thoroughly examined as they also have the greatest number of inperson purchases.

# What does a granular view of purchasing trends look like? Which projects can we learn the most from about improving this process?



#### **ANALYSIS**

On the left we have all projects, and on the right we have only remodels. 6 of the 9 projects with more than 100 in-person purchases are remodels. Now that I know that sites by name, I refer the projects to the client so we can learn more from the supervisors about what factors may have led to these purchasing patterns.

### **Improve Phase**

#### **Suggestions to Stakeholders:**

Collect the order type data from invoices when reconciling invoices paid

- Will make measuring, and therefore, improving, the process significantly easier by eliminating the need for the type of complex validation with the supplier's invoice data that I performed
- Involve the entire company, from entry-level laborers to senior site managers in improving this process
- Without full support of the employees making the actual purchase decisions, this long-established practice is unlikely to change
- As already evidenced, they offer valuable insight into the process, such as the fact the in-person-purchasing is necessary or preferred for certain order types including purchasing smaller quantities of lumber, where performing quality control is essential

Study the most inefficient and efficient projects

- 6 of the 9 most inefficient projects were custom remodels
  - \*redacted and \*redacted in particular can be used as case studies that senior leaders, management, and employees can learn valuable lessons from
- The most efficient remodel was a \*redacted a speculate project
  - Similarly, analyzing how this project was managed may yield actionable insights
- \* identifying information redacted

#### Suggestions to Stakeholders, cont.

Bundle in-person trips together

- 40% of in-person purchases are for materials that cost less than or the same as the labor cost of purchasing them (\$56)
- 50% of in-person purchases are for \$60 or less
- 70% of in-person purchases are for \$125 or less
- Planning ahead and purchasing these items will reduce unnecessary trips

Hire an entry-level laborer whose duties include fulfilling orders for different projects

- This way one person can coordinate purchases among project sites
- This person could be instructed what to buy for each site, then make regularly occurring trips to purchase necessary inperson items and distribute among jobs sites accordingly
- This way, a more senior carpenter isn't removed from a job site, minimizing cost and increasing time spent working on projects

Implement an inventory-management system

- This could be as basic as using a cloud-based notes app to keep a running list of what each site needs
- Perform regular inventory checks on each site to determine what supplies may needed and what may need to be purchased soon

Order more items through delivery

 Not all items are ideal to order through delivery, but the most commonly purchased items could be purchased on a regular basis for delivery instead of shipment, thus further eliminating unnecessary trips

#### **Primary reason for lack of SQL change:**

Longer timeframe needed to change this longestablished, company-wide practice

- In 1 month, it was difficult to implement any of these suggestions company-wide
- Current process is fragmented and requires coordination to improve
- Before we can reduce the number of trips, all employees need to feel invested in changing the process

### **Control Phase**

- By collecting purchase type data, monitoring the process will be significantly easier by continuing to employee the previously used tools as well as a control chart
- We will be able to directly measure the success of any changes in the process by looking at the number and proportion of inperson vs delivery purchases, as well as the associated spending
- Implementing and iteratively improving an inventory management system will be critical to securing long-term improvements
- Regularly collecting feedback from carpenters and other employees in one-on-ones and surveys will also be critical
  - We can learn what they feel is helping them, what they feel isn't helping them, and make continual adjustments
  - If everyone is a partner in improving this process, we should be able to maintain improvements for the long-term
- The control phase summary will be updated periodically as the process continues to be monitored and improvements are implemented

#### **Bottom Line: "What gets measured gets done."**

Continuing to measure this process will offer previously unavailable insight that will enable stakeholders to make evidence-based supply-chain management decisions.

### **Conclusion**

Although the process has not improved yet, by measuring and analyzing the process, I have offered my stakeholders a granular view of the issue and quantified the cost of this specific supply chain inefficiency. In addition, by determining that custom remodels contribute most significantly to the issue, we can concentrate on learning from issues that arose at the most inefficient projects in order to avoid or lessen the impact of similar issues in the future. Over the next several quarters, by working with all levels of the client's employees, we can implement the improvements that everyone agrees will make the biggest impact and iteratively reduce unnecessary labor costs while increasing labor efficiency. In the long-term, developing an inventory management system and continuing to incorporate employee feedback will control the process and ensure these inefficiencies do not persist.

This is an ongoing project, and as the process improves, this slide deck will be updated to reflect new progress and findings.

If you've made it this far, thank you for reading. I welcome any questions or feedback: <a href="mailto:spdeerys@syr.edu">spdeerys@syr.edu</a>