CS 5683: Big Data Analytics

Analysis of Large Graphs: PageRank

Arunkumar Bagavathi

Department of Computer Science

Oklahoma State university

Topics Overview

High. Dim. Data

Data Features

Dimension ality Reduction

Application Rec. Systems Text Data

Clustering

Non-linear Dim. Reduction

<u>Application</u> IR **Graph Data**

PageRank

ML for Graphs

Community Detection

Others

Data Streams Mining

Intro. to Apache Spark

The Network!

Entities/Nodes/Vertices

Network

Networks & Complex Systems

Complex systems are hopelessly around us:

- Society is a collection of 7+ billion individuals
- Communication systems link electronic devices
- Information and knowledge is organized and linked January 31, 2021 Texas, US
- Thousands of genes in our cells work together in a seamless fashion

• Our thoughts are hidden in the connections between billions of

neurons in our brain

Types of Network Representations Directed vs. Undirected

Undirected

 Links: undirected (symmetrical, reciprocal)

- Examples:
 - Collaborations
 - Friendship on Facebook

Directed

Links: directed (arcs)

- Examples:
 - Phone calls
 - Following on Twitter

Node Degrees

Judirected

Directed

Source: Node with $k^{in} = 0$

Sink: Node with $k^{out} = 0$

Node degree, k_i : the number of edges adjacent to node i

$$k_A = 4$$

Avg. degree:
$$\overline{k} = \langle k \rangle = \frac{1}{N} \sum_{i=1}^{N} k_i = \frac{2E}{N}$$

In directed networks we define an **in-degree** and **out-degree**.

The (total) degree of a node is the sum of in- and out-degrees.

$$k_C^{in} = 2 k_C^{out} = 1 k_C = 3$$

$$\overline{k} = \frac{E}{N} \overline{k^{in}} = \overline{k^{out}}$$

Web as a Graph

Web as a Directed Graph

Broad Question

• How to organize the Web?

- First try: Human curated Web directories
 - Yahoo, DMOZ, LookSmart
- Second try: Web Search
 - Information Retrieval investigates:
 Find relevant docs in a small and trusted set
 - Newspaper articles, Patents, etc.
 - But: Web is huge, full of untrusted documents, random things, web spam, etc.

Web Search: 2 Challenges

2 challenges of web search:

- (1) Web contains many sources of information Who to "trust"?
 - Trick: Trustworthy pages may point to each other!
- (2) What is the "best" answer to query "newspaper"?
 - No single right answer
 - Trick: Pages that actually know about newspapers might all be pointing to many newspapers

Ranking Nodes on the Graph

• All web pages are not equally "important"

There is large diversity in the web-graph node connectivity.

Let's rank the pages by the link structure!

Link Analysis Algorithms

- We will cover the following Link Analysis approaches for computing importance of nodes in a graph:
 - Page Rank
 - Hubs and Authorities (HITS)
 - Topic-Specific (Personalized) Page Rank
 - Web Spam Detection Algorithms

PageRank – Links as Votes

- Idea: Links as votes
 - Page is more important if it has more links
 - In-coming links? Out-going links?
- Think of in-links as votes:
 - www.okstate.edu has 1,000s of in-links
 - www.joe-schmoe.com has 1 in-link
- Are all in-links are equal?
 - Links from important pages count more
 - Recursive question!

Example: PageRank Scores

Simple Recursive Formulation

- Each link's vote is proportional to the **importance** of its source page
- If page j with importance r_j has n out-links, each link gets r_j / n votes
- Page j's own importance is the sum of the votes on its in-links

PageRank: The "Flow" Model

- A "vote" from an important page is worth more
- A page is important if it is pointed to by other important pages
- Define a "rank" r_j for page j

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

 d_i ... out-degree of node i

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2 + r_m$$

$$r_m = r_a/2$$

Solving the Flow Equations

- 3 equations, 3 unknowns, no constants
 - No unique solution
 - All solutions equivalent modulo the scale factor
- Additional constraint forces uniqueness:

$$r_y + r_a + r_m = 1$$

• Solution:
$$r_y = \frac{2}{5}$$
, $r_a = \frac{2}{5}$, $r_m = \frac{1}{5}$

 Gaussian elimination method works for small examples, but we need a better method for large web-size graphs

We need a new formulation!

Flow equations:

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2 + r_m$$

$$r_m = r_a/2$$

PageRank: Matrix Formulation

Stochastic adjacency matrix M

- lacktriangle Let page i has d_i out-links
- If $i \rightarrow j$, then $M_{ji} = \frac{1}{d}$ else $M_{ji} = 0$
 - *M* is a column stochastic matrix
 - Columns sum to 1

- $lacktriangleright r_i$ is the importance score of page i
- $-\sum_{i} r_{i} = 1$
- The flow equations can be written

$$r = M \cdot r$$

M

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

Example

- Remember the flow equation: $r_j = \sum_{i \to j} \frac{r_i}{d_i}$ Flow equation in the matrix form
- Flow equation in the matrix form
- $M \cdot r = r$
 - Suppose page i links to 3 pages, including j

Eigenvector Formulation

The flow equations can be written

$$r = M \cdot r$$

NOTE: x is an eigenvector with the corresponding eigenvalue λ if: $Ax = \lambda x$

- So, the **rank vector r** is an **eigenvector** of the stochastic web matrix **M**
 - In fact, its first or principal eigenvector, with corresponding eigenvalue 1
 - Largest eigenvalue of M is 1 since M is column stochastic (with non-negative entries)
 - lacktriangle We know r is unit length and each column of $m{M}$ sums to one, so $m{M}r \leq m{1}$
- We can now efficiently solve for r!
 The method is called Power iteration

Example: Flow Equations & M

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2 + r_m$$

$$r_m = r_a/2$$

	y	a	m
y	1/2	1/2	0
a	1/2	0	1
m	0	1/2	0

$$r = M \cdot r$$

$$\begin{vmatrix} y \\ a \\ m \end{vmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 1 \\ 0 & \frac{1}{2} & 0 \end{vmatrix} \begin{vmatrix} y \\ a \\ m \end{vmatrix}$$

Power Iteration Method

• Given a web graph with n nodes, where the nodes are pages and edges are hyperlinks

- Power iteration: a simple iterative scheme
 - Suppose there are N web pages
 - Initialize: $\mathbf{r}^{(0)} = [1/N,....,1/N]^T$
 - Iterate: $\mathbf{r}^{(t+1)} = \mathbf{M} \cdot \mathbf{r}^{(t)}$
 - Stop when $|\mathbf{r}^{(t+1)} \mathbf{r}^{(t)}|_1 < \varepsilon$

$$|\mathbf{x}|_1 = \sum_{1 \le i \le N} |\mathbf{x}_i|$$
 is the **L**₁ norm
Can use any other vector norm, e.g., Euclidean

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i}$$

d_i out-degree of node i

PageRank: How to solve?

■ Power Iteration:

- Set $r_j = 1/N$
- 1: $r'_j = \sum_{i \to j} \frac{r_i}{d_i}$
- 2: r = r'
- Goto 1

Example:

$\mathbf{r}_{\mathbf{y}}$		1/3
r_a	=	1/3
$r_{\rm m}$		1/3
		Iteration 0, 1, 2,

	У	a	m
y	1/2	1/2	0
a	1/2	0	1
m	0	1/2	0

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2 + r_m$$

$$r_m = r_a/2$$

PageRank: How to solve?

Power Iteration:

- Set $r_j = 1/N$
- 1: $r'_j = \sum_{i \to j} \frac{r_i}{d_i}$
- 2: r = r'
- Goto 1

	у	a	m
y	1/2	1/2	0
a	1/2	0	1
m	0	1/2	0

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2 + r_m$$

$$r_m = r_a/2$$

Example:

$$r_y$$
 1/3 1/3 5/12 9/24 6/15
 r_a = 1/3 3/6 1/3 11/24 ... 6/15
 r_m 1/3 1/6 3/12 1/6 3/15

Iteration 0, 1, 2, ...

Random Walk Interpretation

Imagine a random web surfer:

- At any time t, surfer is on some page i
- lacktriangle At time t+1, the surfer follows an out-link from i uniformly at random
- Ends up on some page j linked from i
- Process repeats indefinitely

Let:

- p(t) ... vector whose ith coordinate is the prob. that the surfer is at page i at time t
- lacksquare So, $m{p}(m{t})$ is a probability distribution over pages

The Stationary Distribution

$$p(t+1) = \mathbf{M} \cdot p(t)$$

- Where is the surfer at time *t*+1?
 - Follows a link uniformly at random

$$p(t+1) = M \cdot p(t)$$

Suppose the random walk reaches a steady state

$$p(t+1) = M \cdot p(t) = p(t)$$

- then p(t) is stationary distribution of a random walk
- Our original rank vector r satisfies $r = M \cdot r$
 - So, r is a stationary distribution for the random walk

Existence and Uniqueness

A central result from the theory of random walks (a.k.a. Markov processes):

For graphs that satisfy **certain conditions**, the **stationary distribution is unique** and eventually will be reached no matter what the initial probability distribution at time **t** = **0**

PageRank: Google Formulation

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{\mathbf{d_i}} \quad \text{or} \quad \mathbf{r} = Mr$$

Google's PageRank with 3 Questions:

- Does this converge?
- Does it converge to what we want?
- Are results reasonable?

1. Does this converge?

The "Spider trap" problem

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{\mathbf{d}_i}$$

Example:

2. Does this converge to what we want?

The "Dead end" problem

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i}$$

Example:

PageRank: Problems

2 problems:

- (1) Some pages are dead ends (have no out-links)
 - Random walk has "nowhere" to go to
 - Such pages cause importance to "leak out"

- Random walker gets "stuck" in a trap
- And eventually spider traps absorb all importance

Problem: Spider Traps

Power Iteration:

- Set $r_i = 1$
- $r_j = \sum_{i \to j} \frac{r_i}{d_i}$
 - And iterate

m is a spider trap

	у	a	m
y	1/2	1/2	0
a	1/2	0	0
m	0	1/2	1

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2$$

$$r_m = r_a/2 + r_m$$

Example:

r_y		1/3	2/6	3/12	5/24	0
r_a	=	1/3	1/6	2/12	3/24	0
r_{m}		1/3	3/6	7/12	16/24	1

Iteration 0, 1, 2, ...

All the PageRank score gets "trapped" in node m.

Solution: Teleports!

- The Google solution for spider traps: At each time step, the random surfer has two options
 - With prob. β , follow a link at random
 - With prob. **1-** β , jump to some random page
 - \blacksquare Common values for β are in the range 0.8 to 0.9
- Surfer will teleport out of spider trap within a few time steps

Problem: Dead Ends

Power Iteration:

- Set $r_j = 1$
- $r_j = \sum_{i \to j} \frac{r_i}{d_i}$
 - And iterate

	У	a	m
y	1/2	1/2	0
a	1/2	0	0
n	0	1/2	0

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2$$

$$r_m = r_a/2$$

Example:

r_y		1/3	2/6	3/12	5/24		0
\mathbf{r}_{a}	=	1/3	1/6	2/12	3/24	• • •	0
$r_{\rm m}$		1/3	1/6	1/12	2/24		0

Iteration 0, 1, 2, ...

Here the PageRank "leaks" out since the matrix is not stochastic.

Solution: Always Teleport!

- Teleports: Follow random teleport links with probability 1.0 from dead-ends
 - Adjust matrix accordingly

Why Teleports Solve the Problem?

Why are dead-ends and spider traps a problem and why do teleports solve the problem?

- Spider-traps are not a problem, but with traps PageRank scores are not what we want
 - Solution: Never get stuck in a spider trap by teleporting out of it in a finite number of steps
- Dead-ends are a problem
 - The matrix is not column stochastic so our initial assumptions are not met
 - Solution: Make matrix column stochastic by always teleporting when there is nowhere else to go

Solution: Random Teleports

- Google's solution that does it all:
 - At each step, random surfer has two options:
 - With probability β , follow a link at random
 - With probability $1-\beta$, jump to some random page
- PageRank equation [Brin-Page, 98]

$$r_j = \sum_{i o j} eta \; rac{r_i}{d_i} + (1 - eta) rac{1}{N}$$
 d_i ... out-degree of node i

This formulation assumes that *M* has no dead ends. We can either preprocess matrix *M* to remove all dead ends or explicitly follow random teleport links with probability 1.0 from dead-ends.

The Google Matrix

PageRank equation

$$r_j = \sum_{i \to j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N}$$

■ The Google Matrix A:

$$A = \beta M + (1 - \beta) \left[\frac{1}{N} \right]_{N \times N}$$
 [1/N]_{NxN}...N by N matrix where all entries are 1/N

- We have a recursive problem: $r = A \cdot r$ And the Power method still works!
- What is β ?
 - In practice $\beta = 0.8, 0.9$ (make 5 steps on avg., jump)

Random Teleports (β =0.8)

How do we actually compute PageRank?

Key step is matrix-vector multiplication

$$rightarrow restauration resta$$

■ Easy if we have enough main memory to hold **A**, **r**^{old}, **r**^{new}

$$\mathbf{A} = \beta \cdot \mathbf{M} + (1 - \beta) [1/N]_{N \times N}$$

- Say N = 1 billion pages
 - We need 4 bytes for each entry (say)
 - 2 billion entries for vectors, approx 8GB
 - Matrix A has N² entries
 - 10¹⁸ is a large number!

$$\mathbf{A} = 0.8 \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 1 \end{bmatrix} + 0.2 \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$$

Matrix Formulation

- Suppose there are N pages
- Consider page *i*, with **d**_i out-links
- We have $M_{ji} = 1/|d_i|$ when $i \rightarrow j$ and $M_{ji} = 0$ otherwise
- The random teleport is equivalent to:
 - Adding a **teleport link** from i to every other page and setting transition probability to $(1-\beta)/N$
 - Reducing the probability of following each out-link from $1/|d_i|$ to $\beta/|d_i|$
 - **Equivalent:** Tax each page a fraction $(1-\beta)$ of its score and redistribute evenly

Rearranging the Equation

•
$$r = A \cdot r$$
, where $A_{ji} = \beta M_{ji} + \frac{1-\beta}{N}$
• $r_j = \sum_{i=1}^N A_{ji} \cdot r_i$
• $r_j = \sum_{i=1}^N \left[\beta M_{ji} + \frac{1-\beta}{N}\right] \cdot r_i$
 $= \sum_{i=1}^N \beta M_{ji} \cdot r_i + \frac{1-\beta}{N} \sum_{i=1}^N r_i$
 $= \sum_{i=1}^N \beta M_{ji} \cdot r_i + \frac{1-\beta}{N}$ since $\sum r_i = 1$
• So we get: $r = \beta M \cdot r + \left[\frac{1-\beta}{N}\right]_N$

Note: Here we assumed **M** has no dead-ends

Sparse Matrix Formulation

- We just rearranged the PageRank equation
- $r = \beta M \cdot r + \left[\frac{1-\beta}{N}\right]_N$
 - where $[(1-\beta)/N]_N$ is a vector with all N entries $(1-\beta)/N$
- M is a sparse matrix! (with no dead-ends)
 - 10 links per node, approx 10N entries
- So in each iteration, we need to:
 - Compute $r^{\text{new}} = \beta M \cdot r^{\text{old}}$
 - Add a constant value (1- β)/N to each entry in r^{new}
 - Note if M contains dead-ends then $\sum_j r_j^{new} < 1$ and we also have to renormalize r^{new} so that it sums to 1

PageRank: The Complete Algorithm

- Input: Graph G and parameter β
 - Directed graph G (can have spider traps and dead ends)
 - Parameter **β**
- Output: PageRank vector r^{new}
 - Set: $r_j^{old} = \frac{1}{N}$
 - repeat until convergence: $\sum_{j} \left| r_{j}^{new} r_{j}^{old} \right| > \varepsilon$
 - $\forall j : r'_{j}^{new} = \sum_{i \to j} \beta \frac{r_{i}^{old}}{d_{i}}$ $r'_{j}^{new} = \mathbf{0} \text{ if in-degree of } \mathbf{j} \text{ is } \mathbf{0}$
 - Now re-insert the leaked PageRank:

$$\forall j: r_j^{new} = r_j^{new} + \frac{1-S}{N}$$
 Where: $S = \sum_j r_j^{new}$

 $r^{old} = r^{new}$

If the graph has no dead-ends then the amount of leaked PageRank is $1-\beta$. But since we have dead-ends the amount of leaked PageRank may be larger. We have to explicitly account for it by computing **S**.

Sparse Matrix Encoding

- Encode sparse matrix using only nonzero entries
 - Space proportional roughly to number of links
 - Say 10B, or 4*10*1 billion = 40GB
 - Still won't fit in memory, but will fit on disk

source node	degree	destination nodes
0	3	1, 5, 7
1	5	17, 64, 113, 117, 245
2	2	13, 23

Basic Algorithm: Update Step

- Assume enough RAM to fit r^{new} into memory
 - Store *r*^{old} and matrix **M** on disk
- 1 step of power-iteration is:

```
Initialize all entries of r^{new} = (1-\beta) / N
```

For each page i (of out-degree d_i):

Read into memory: i, d_i , $dest_1$, ..., $dest_{di}$, $r^{old}(i)$

For $j = 1...d_i$

 $r^{new}(dest_i) += \beta r^{old}(i) / d_i$

0	rne
0	
2	
2 3 4 5	
4	
5	
6	

source degree destination				
0	3	1, 5, 6		
1	4	17, 64, 113, 117		
2	2	13, 23		

•old		0
		1
		2
		3
		4
		5
		6
	1	

Analysis

- Assume enough RAM to fit r^{new} into memory
 - Store *r*^{old} and matrix *M* on disk
- In each iteration, we have to:
 - Read **r**^{old} and **M**
 - Write *r*^{new} back to disk
 - Cost per iteration of Power method:

$$= 2|r| + |M|$$

• Question:

■ What if we could not even fit *r*^{new} in memory?

Block-based Update Algorithm

destination

0, 1, 3, 5

0, 5

3, 4

r ^{old}	
	0
	1
	2
	3
	4
	5

- Break **r**^{new} into **k** blocks that fit in memory
- Scan M and r^{old} once for each block

Analysis of Block Update

Similar to nested-loop join in databases

- Break r^{new} into k blocks that fit in memory
- Scan *M* and *r*^{old} once for each block

Total cost:

- k scans of M and rold
- Cost per iteration of Power method: k(|M| + |r|) + |r| = k|M| + (k+1)|r|

Can we do better?

■ **Hint:** *M* is much bigger than *r* (approx 10-20x), so we must avoid reading it *k* times per iteration

Block-Stripe Update Algorithm

rold

5

Break *M* **into stripes!** Each stripe contains only destination nodes in the corresponding block of *r*^{new}

Block-Stripe Analysis

- Break M into stripes
 - Each stripe contains only destination nodes in the corresponding block of *r*^{new}
- Some additional overhead per stripe
 - But it is usually worth it
- Cost per iteration of Power method = $|M|(1+\varepsilon) + (k+1)|r|$

Some Problems with PageRank

- Measures generic popularity of a page
 - Biased against topic-specific authorities
 - Solution: Topic-Specific PageRank (next)
- Uses a single measure of importance
 - Other models of importance
 - Solution: Hubs-and-Authorities
- Susceptible to Link spam
 - Artificial link topographies created in order to boost page rank
 - **Solution:** TrustRank

Questions???

Acknowledgements

Most of this lecture slides are obtained from the Mining Massive

Datasets course: http://www.mmds.org/