Índices ecológicos

Santos G

Tabla de contenidos

1	Contexto del proyecto	1
2	Limpieza y revisión inicial de los datos	1
3	Construcción de la matriz de abundancia	7
4	Calcular índices de diversidad y curvas de rarefacción	8

1 Contexto del proyecto

El presente documento guía describe el dataset palmerpenguins (mediciones morfométricas y metadatos de tres especies de pingüinos: *Adelie*, *Chinstrap* y *Gentoo*). Antes de calcular índices ecológicos o métricas de biodiversidad, es fundamental evaluar la calidad y consistencia de los datos. Para ello se realizará la limpieza y revisión inicial de los datos (nombres, estructura, NA, duplicados, categorías).

2 Limpieza y revisión inicial de los datos

```
#|label: prep
 #Librerías
3 library(tidyverse)
4 library(janitor)
 library(skimr)
  library(palmerpenguins)
  df_raw <- penguins %>% as_tibble() # guardo raw para auditoría
 #|label: clean_names
 df <- df_raw %>% clean_names()
  names(df) # comprobar
  [1] "species"
                           "island"
                                               "bill_length_mm"
  [4] "bill_depth_mm"
                           "flipper_length_mm" "body_mass_g"
  [7] "sex"
                           "year"
```

```
#|label: skim
```

skim(df) #Resumen rápido (estructura + NA)

Tabla 1: Data summary

Name	df
Number of rows	344
Number of columns	8
Column type frequency:	
factor	3
numeric	5
Group variables	None

Variable type: factor

skim_variable	n_missing	complete_rate	ordered	n_unique	top_counts
species	0	1.00	FALSE	3	Ade: 152, Gen: 124, Chi: 68
island	0	1.00	FALSE	3	Bis: 168, Dre: 124, Tor: 52
sex	11	0.97	FALSE	2	mal: 168, fem: 165

Variable type: numeric

skim_variable 1	n_missingco	mplete_ra	temean	sd	p0	p25	p50	p75	p100	hist
bill_length_mm	2	0.99	43.92	5.46	32.1	39.23	44.45	48.5	59.6	
bill_depth_mm	2	0.99	17.15	1.97	13.1	15.60	17.30	18.7	21.5	
flipper_length_m	nm 2	0.99	200.92	14.06	172.0	190.00	197.00	213.0	231.0	
body_mass_g	2	0.99	4201.75	801.95	2700.0	3550.00	4050.00	4750.0	6300.0	
year	0	1.00	2008.03	0.82	2007.0	2007.00	2008.00	2009.0	2009.0	

De acuerdo con la **Tabla 1**, la base de datos penguins contiene 344 registros y 8 variables, de las cuales 3 son categóricas (species, island, sex) y 5 numéricas (bill_length_mm, bill_depth_mm, flipper_length_mm, body_mass_g, year).

En las variables categóricas:

- species: tres categorías (*Adelie* = 152, *Gentoo* = 124, *Chinstrap* = 68), sin valores faltantes.
- island: tres categorías (*Biscoe* = 168, *Dream* = 124, *Torgersen* = 52), sin valores faltantes.
- sex: dos categorías (male = 168, female = 165) con 11 valores faltantes (3%).

En las variables numéricas:

- bill_length_mm: media ≈ 43.9 mm, rango 32.1-59.6 mm, con 2 valores faltantes.
- bill_depth_mm: media ≈ 17.2 mm, rango 13.1–21.5 mm, con 2 faltantes.
- flipper_length_mm: media ≈ 200.9 mm, rango 172–231 mm, con 2 faltantes.

- body_mass_g: media ≈ 4201 g, rango 2700–6300 g, con 2 faltantes.
- year: muestreos entre 2007–2009, sin valores faltantes.

Interpretación general:

- Los nombres de variables ya están estandarizados.
- El dataset presenta un bajo porcentaje de NA (<1% en mediciones y 3% en sex). Estos casos podrán eliminarse o imputarse según el análisis.
- No se observan inconsistencias de escritura en categorías ni rangos numéricos irreales.

```
#|label: duplicates
n_dup <- sum(duplicated(df))
n_dup # Número de filas duplicadas

[1] 0

# si quieres, ver filas duplicadas (opcional)
df %>% filter(duplicated(.)) %>% head()

# A tibble: 0 x 8
# i 8 variables: species <fct>, island <fct>, bill_length_mm <dbl>,
# bill_depth_mm <dbl>, flipper_length_mm <int>, body_mass_g <int>, sex <fct>,
# year <int>
# eliminar duplicados exactos (opcional)
df <- df %>% distinct()
```

En este caso no se encontraron filas duplicadas $(n_dup = 0)$.

Interpretación general:

- Cuando no hay duplicados, no se requieren cambios.
- Si en futuros proyectos aparecen duplicados, se recomienda, verificar primero si son errores de registro o réplicas biológicas válidas, ya que si son errores (mismo individuo registrado más de una vez), deben eliminarse, caso contrario deben mantenerse o promediarse según el objetivo del estudio.

```
df %>% count(species)
  # A tibble: 3 x 2
    species
    <fct>
              <int>
  1 Adelie
                152
  2 Chinstrap
                 68
  3 Gentoo
                124
 df %>% count(island)
  # A tibble: 3 x 2
    island
    <fct>
              <int>
  1 Biscoe
               168
  2 Dream
                124
  3 Torgersen
                 52
  df %>% count(sex)
  # A tibble: 3 x 2
    sex
               n
    <fct> <int>
  1 female
             165
  2 male
             168
  3 <NA>
             11
  #Tipos de variables (convertir a factor si hace falta)
  df <- df %>%
    mutate(species = as.factor(species),
           island = as.factor(island),
           sex = as.factor(sex))
5
  #Revisar posibles inconsistencias de texto
  unique(df$species)
  [1] Adelie
                Gentoo
                          Chinstrap
  Levels: Adelie Chinstrap Gentoo
 unique(df$island)
  [1] Torgersen Biscoe
                          Dream
  Levels: Biscoe Dream Torgersen
 unique(df$sex)
```

```
[1] male female <NA>
Levels: female male
```

```
df1 <- df %>% select(-year) #Eliminar columnas innecesarias
```

Las variables categóricas (species, island, sex) presentan 3, 3 y 2 categorías respectivamente, sin inconsistencias de escritura. Se ajustaron los tipos de variable a factor y se eliminó la columna year, ya que no será utilizada en los análisis posteriores.

```
# Boxplots rápidos para ver rangos y "outliers" visuales
  key_vars <- c("bill_length_mm","bill_depth_mm","flipper_length_mm",</pre>
                 "body_mass_g")
   df %>%
5
     select(all_of(key_vars)) %>%
     pivot_longer(everything(), names_to = "variable", values_to = "value") %>%
     ggplot(aes(x = variable, y = value)) +
8
     geom_boxplot() +
     coord_flip() +
10
     labs(title = "Boxplots rápidos: rangos y valores extremos",
11
          x = "", y = "Valor") +
12
     theme_minimal(base_size = 13) +
13
     theme(
      plot.title = element_text(hjust = 0.5, face = "bold"),
15
      legend.position = "none",
16
      strip.text = element_text(face = "bold")
17
18
```

Boxplots rápidos: rangos y valores extremos

Figura 1: Rangos y valores extremos de variables morfométricas.

En la **Figura 1**, se observa que los rangos numéricos se encuentran dentro de lo esperado para las especies registradas, y los gráficos de caja confirman que los valores extremos corresponden a variabilidad natural más que a errores de registro.

```
#|label: Manejo de los NA
   # Manejo de los NA
   df <- df %>%
     mutate(
       n_na_numeric = rowSums(is.na(select(., bill_length_mm, bill_depth_mm,
6
                                              flipper_length_mm, body_mass_g)))
     )
   df <- df %>%
10
     mutate(
11
       sex = case_when(
12
         is.na(sex) & n na numeric <= 1 ~ "Unknown", # casi toda la info presente
13
         TRUE ~ as.character(sex)
                                                        # dejar como está
       )
15
     )
16
17
   df <- df %>%
18
     filter(!(is.na(bill_length_mm) &
19
               is.na(bill_depth_mm) &
20
```

```
is.na(flipper_length_mm) &
    is.na(body_mass_g)))

df <- df %>% select(-n_na_numeric) #Eliminar columnas innecesarias
```

Se contabilizó cuántas mediciones morfométricas tiene cada registro (bill_length_mm, bill_depth_mm, flipper length mm, body mass g).

- Registros con ≥ 3 mediciones y sex = NA fueron etiquetados como sex = "Unknown": son registros con información morfométrica suficiente como para conservarlos en análisis de biodiversidad/morfometría, pero sin identificación sexual.
- Registros con 0 mediciones (probablemente avistamientos sin mediciones) fueron eliminados, ya que no aportan datos morfométricos para los análisis previstos.

3 Construcción de la matriz de abundancia

```
#Librerías
  library(knitr)
   library(kableExtra)
   # Matriz especie x isla
   abund <- df %>%
2
     count(island, species) %>%
3
     pivot wider(names from = species, values from = n, values fill = 0)
   # Crear tabla
6
   abund %>%
     kable(caption = "Abundancia de pingüinos por especie e isla
8
           en el archipiélago Palmer.",
           align = "lccc",
10
           col.names = c("Isla", "Adelie", "Gentoo", "Chinstrap")) %>%
11
     kable styling(full width = FALSE, bootstrap options = c("striped",
12
         "hover", "condensed"))
13
```

Tabla 4: Abundancia de pingüinos por especie e isla en el archipiélago Palmer.

Isla	Adelie	Gentoo	Chinstrap		
Biscoe	44	123	0		
Dream	56	0	68		
Torgersen	51	0	0		

Aunque palmerpenguins no es un dataset clásico de abundancias de especies (es más bien morfométrico), podemos adaptarlo, para ello tomamos las especies como categorías biológicas (3 especies: *Adelie*, *Gentoo*, *Chinstrap*) y contamos número de individuos por especie y por isla, para tener una matriz de abundancias que nos permita calcular índices de biodiversidad.

En la **Tabla 4** se muestra la distribución de individuos por especie e isla:

- **Biscoe**: domina la especie *Gentoo* con 123 individuos, seguida por *Adelie* con 44. No se registran individuos en *Chinstrap*.
- **Dream**: comunidad más equilibrada, con 56 *Adelie* y 68 *Chinstrap*. No se registran individuos en *Gentoo*.
- Torgersen: exclusiva de *Adelie*, con 51 individuos; no se observan individuos de *Gentoo* ni *Chinstrap*.

Interpretación general: Cada isla presenta una composición particular. Mientras Biscoe está claramente dominada por *Gentoo*, Dream muestra coexistencia entre *Adelie* y *Chinstrap*, y Torgersen resulta la más restringida, con presencia exclusiva de *Adelie*. Esta variación espacial será clave al analizar los índices de diversidad y equidad.

4 Calcular índices de diversidad y curvas de rarefacción

```
#Librerías
  library(vegan)
  # Matriz especie x isla
  mat <- abund %>% select(-island) %>% as.matrix()
  rownames(mat) <- abund$island
3
   # indices
5
  shannon <- diversity(mat, index = "shannon")</pre>
   simpson <- diversity(mat, index = "simpson")</pre>
  richness <- specnumber(mat)</pre>
   evenness <- ifelse(richness > 1, shannon / log(richness), 0) # corregido
9
10
  indices <- data.frame(</pre>
11
     Isla = rownames(mat),
12
     Riqueza = richness,
13
     Shannon = round(shannon, 2),
14
     Simpson = round(simpson, 2),
15
     Equidad = round(evenness, 2)
16
17
18
   knitr::kable(indices, caption = NULL)
```

Tabla 5: Índices de diversidad de especies de pingüinos por isla.

	Isla	Riqueza	Shannon	Simpson	Equidad
Biscoe	Biscoe	2	0.58	0.39	0.83
Dream	Dream	2	0.69	0.50	0.99
Torgersen	Torgersen	1	0.00	0.00	0.00

Figura 2: Curvas de rarefacción de riqueza de especies de pingüinos por isla.