Matrix Analysis Notes

Jasper Ty

September 29, 2024

What is this?

These are typed up notes for my Matrix Analysis class (MATH-504 at Drexel University). The class is based on the textbook "Matrix Analysis" by Horn and Johnson. I am using the second edition of the book [HoJo13]

The sections match up with the book, but theorem and definition numbers do not.

Contents

0	Rev	iew)
I	Eige	envectors, eigenvectors, and similarity	2
	1.0	Introduction	2
	I.I	The eigenvalue-eigenvector equation	3
	1.2	The characteristic polynomial and algebraic multiplicity	3
2	Unitary similarity and unitary equivalence		4
	2.I	Unitary matrices and the QR factorization	4

o Review

Omitted.

1 Eigenvectors, eigenvectors, and similarity

1.0 Introduction

Proposition 1.0.1. If T is a linear transformation on a vector space V, then if we fix a particular basis \mathcal{B} of V and put $A = [T]_{\mathcal{B}}$, then the set of *all possible basis representations of* T is the set of all *matrices similar to* A.

Definition 1.0.2. Let T be a linear transformation on a vector space V over \mathbb{F} . An *eigenvector* of T is a vector $\mathbf{v} \in V$ such that

$$T\mathbf{v} = \lambda \mathbf{v}$$

for some $\lambda \in \mathbb{F}$.

An *eigenvalue* of T is a scalar $\lambda \in \mathbb{F}$ such that *there exists* an eigenvector for which the above equation holds.

Eigenvectors arise, for example, from the problem of maximizing a real symmetric quadratic form on the boundary of the unit disk, namely the task of finding

$$\max\{\mathbf{x}^{\top}A\mathbf{x}:\mathbf{x}\in\mathbb{R}^n \text{ and } \mathbf{x}^{\top}\mathbf{x}=1\}.$$

where $A \in M_n(\mathbb{R})$ is a real symmetric matrix.

This can be solved with Lagrange multipliers, and the appropriate Lagrangian function is

$$\mathcal{L}(\mathbf{x}, \lambda) = \mathbf{x}^{\mathsf{T}} A \mathbf{x} - \lambda \mathbf{x}^{\mathsf{T}} \mathbf{x}.$$

To compute its stationary points: we have the following fact: $\nabla(\mathbf{x}^{T}A\mathbf{x}) = 2A\mathbf{x}$, which tells us that

$$\nabla \mathcal{L} = 2(A\mathbf{x} - \lambda \mathbf{x}).$$

Hence it must be that $A\mathbf{x} = \lambda \mathbf{x}$ is a necessary condition to find a maximizing or minimizing vector for our problem.

By Weierstrass's theorem, which is an avatar of the general topological theorem that *continuous images of compact spaces are compact*, we *know* that $\mathbf{x}^{\top} A \mathbf{x}$ attains its minimum and minimum for some \mathbf{x}_{\min} , \mathbf{x}_{\max} .

Theorem 1.0.3 (Weierstrass). Continuous images of compact Fix a vector space V with a norm $\|\cdot\|$. If $S \subseteq V$ is compact, and $f: S \to \mathbb{R}$ is continuous, then $\sup f(S) \in f(S)$ and $\inf f(S) \in f(S)$ respectively.

Then, since $A\mathbf{x} = \lambda \mathbf{x}$ was a *necessary condition* for such extrema to exist, it must follow that $A\mathbf{x}_{\text{max}} = \lambda_1 \mathbf{x}_{\text{max}}$ and $A\mathbf{x}_{\text{min}} = \lambda_2 \mathbf{x}_{\text{min}}$ for some $\lambda_1, \lambda_2 \in \mathbb{R}$.

What we have just proved is the following:

Theorem 1.0.4. Every real symmetric matrix has at least one real eigenvalue.

1.1 The eigenvalue-eigenvector equation.

We review basic terminology about eigenvalues and eigenvectors.

Definition 1.1.1. An *eigenpair* for a matrix $A \in M_n$ is a pair (\mathbf{x}, λ) where $\mathbf{x} \in \mathbb{C}^n \setminus \{0\}$ and $\lambda \in \mathbb{C}$ such that

$$A\mathbf{x} = \lambda \mathbf{x}$$
.

We call **x** an *eigenvector* of A, and we call λ an *eigenvalue* of A.

This definition can readily be manipulated to show the following:

Proposition 1.1.2. Eigenvectors are the nontrivial solutions to the matrix-vector equation

$$(\lambda I - A)\mathbf{x} = 0.$$

Definition 1.1.3. Let $A \in M_n$. The *spectrum*, $\sigma(A)$ of A is the set of all eigenvalues of A.

We note that *evaluating polynomials at matrices* is entirely well defined, as summing and taking powers of matrices is well defined.

We have the following theorem

Theorem 1.1.4. Let p be a polynomial. If λ , x is an eigenvalue-eigenvector pair of $A \in M_n$, then $p(\lambda)$, x is an eigenvalue-eigenvector pair of p(A).

Conversely, if $k \ge 1$ and μ is an eigenvalue of p(A), then there is some eigenvalue λ of A such that $\mu = p(\lambda)$.

1.2 The characteristic polynomial and algebraic multiplicity

Definition 1.2.1.

2 Unitary similarity and unitary equivalence

2.1 Unitary matrices and the QR factorization

Definition 2.1.1. A list of vectors $\mathbf{x}_1, \dots, \mathbf{x}_k \in \mathbb{C}^n$ is said to be *orthogonal* if $\mathbf{x}_i^* \mathbf{x}_j = 0$ for all $1 \le i < j \le k$. If, in particular, $\mathbf{x}_i^* \mathbf{x}_i$ for all $1 \le i \le k$, then we say that the list is *orthonormal*.

Theorem 2.1.2. Every orthonormal list of vectors in \mathbb{C}^n is linearly independent.

Proof. Let $\{\mathbf{x}_1, \dots, \mathbf{x}_k\}$ be an orthonormal set, and suppose $\alpha_1 \mathbf{x}_1 + \dots + \alpha_k \mathbf{x}_k = 0$. Then

$$0 = 0^*0$$

$$= (\alpha_1 \mathbf{x}_1 + \dots + \alpha_k \mathbf{x}_k)^* (\alpha_1 \mathbf{x}_1 + \dots + \alpha_k \mathbf{x}_k).$$

$$= \sum_{i,j} \overline{\alpha_i} \alpha_j \mathbf{x}_i^* \mathbf{x}_j$$

$$= \sum_i |\alpha_i|^2.$$

Hence each α_i must be zero.

Definition 2.1.3. A matrix $U \in M_n$ is unitary if $U^*U = I$. In particular, a real matrix $U \in M_n(\mathbb{R})$ is *orthogonal* if $U^TU = I$.

Theorem 2.1.4. Let $U \in M_n$. Then the following are equivalent

- (a) U is unitary.
- (b) U is nonsingular and $U^* = U^{-1}$.
- (c) $UU^* = I$.
- (d) U^* is unitary.
- (e) The columns of \boldsymbol{U} are orthonormal.
- (f) The rows of U are orthonormal.
- (g) For all $\mathbf{x} \in \mathbb{C}^n$, $\|\mathbf{x}\|_2 = \|U\mathbf{x}\|_2$.

Proof. (a) implies (b) follows from the defining equation

$$U^*U = I$$
.

- (b) implies (c) since matrix inverses are both left and right inverses.
 - (d) is verified directly from (c)

$$(U^*)^*(U^*) = UU^* = I.$$

TODO: Finish proof of characterizations of unitarity

Definition 2.1.5. A linear transformation $T: \mathbb{C}^n \to \mathbb{C}^n$ is called a *Euclidean isometry* if $\|\mathbf{x}\|_2 = \|T\mathbf{x}\|_2$ for all $x \in \mathbb{C}^n$.

The previous theorem tells us that all such transformations are in fact represented by *square* unitary matricess.

Remark 2.1.6. If $U, V \in M_n$ are unitary, then so is UV.

Proof.

$$(UV)^*(UV) = V^*U^*UV = V^*V = I.$$

Definition 2.1.7. The subset of $GL(n, \mathbb{C})$ consisting of all $n \times n$ unitary matrices is a subgroup called the unitary group U(n).

Theorem 2.1.8 (QR factorization). Let $A \in M_{n,m}$. If $n \ge m$, then there *always exist* matrices $Q_{n,m}$ and $R \in M_m$ such that

$$A = QR$$
.

where Q is an isometry, and R is diagonal.

Proof. The proof in the book uses the machinery of Householder matrices. The professor gave us a proof via keeping track of intermediate results in applying the Gram-Schmidt algorithm.

References

[HoJo13] Roger A. Horn and Charles R. Johnson, Matrix Analysis, Second Edition, Cambridge University Press 2013.