Block I

Definitions

1. Statistical models & Statistics

introduction

Statistical model

Let:

 $\cdot \Omega$ set

 $\cdot\,\mathcal{A}$ sigma-algebra over Ω

$$\cdot \mathcal{P} \subset \mathcal{F}(\Omega, [0, 1])$$

Then, $(\Omega, \mathcal{A}, \mathcal{P})$ is a statistical model if:

$$\cdot \forall P \in \mathcal{P}$$
:

 (Ω, \mathcal{A}, P) probability space

Parametrization

Let:

 $\cdot (\Omega, \mathcal{A}, \mathcal{P})$ statistical model

$$\cdot \, \Theta \subset \mathbb{R}^d$$

Then, $(\Omega, \mathcal{A}, \mathcal{P})$ is parametrized by Θ if:

$$\cdot \mathcal{P} = \{P_{\theta}\}_{\theta \in \Theta}$$

We denote:

 $\cdot (\Omega, \mathcal{A}, \mathcal{P}) : (\Omega, \mathcal{A}, \{P_{\theta}\}_{\theta \in \Theta}) \text{ d-D statistical model}$

Likelihood function

Let:

$$\cdot (\Omega, \mathcal{A}, \{P_{\theta}\}_{\theta \in \Theta})$$
 d-D statistical model

We name likelihood function of $(\Omega, \mathcal{A}, \mathcal{P})$ to:

$$\begin{array}{cccc} L6: & \Omega \times \Theta & \longrightarrow & [0,1] \\ & (x,\theta) & \longmapsto & P_{\theta}(x) \end{array}$$

Exponential model

Let:

- $\cdot (\Omega, \mathcal{A}, \{P_{\theta}\}_{\theta \in \Theta})$ d-D statistical model
- · L likelihood function of $(\Omega, \mathcal{A}, \mathcal{P})$

Then, $(\Omega, \mathcal{A}, \mathcal{P})$ is exponential if:

$$\cdot \exists \{f_i\}_{i=0}^r \subset \mathcal{F}(\Omega,\mathbb{R}) :$$

$$\forall i \in [0, r]_{\mathbb{N}}$$
:

 f_i measurable

$$\cdot \exists \{\phi_i\}_{i=0}^r \subset \mathcal{F}(\Theta, \mathbb{R}) :$$

$$\forall x \in \Omega$$
:

$$\forall \theta \in \Theta$$
:

$$L(x,\theta) = \exp(\sum_{i=1}^{r} f_i(x)\phi_i(\theta) + f(x) + \phi(\theta))$$

Statistic

Let:

 $\cdot (\Omega, \mathcal{A}, \{P_{\theta}\}_{\theta \in \Theta})$ d-D statistical model

$$f: (\Omega, \mathcal{A}) \to (\mathbb{R}^m, \mathbb{B}(\mathbb{R}^m))$$

Then, f is a statistic if:

 $\cdot f$ measurable

Sufficiency

Let:

 $\cdot (\Omega, \mathcal{A}, \{P_{\theta}\}_{\theta \in \Theta})$ d-D statistical model

 $\cdot (M, \Sigma)$ measurable space

 $\cdot\,X\,:\,M\to\Omega$ random variable

 $T: \Omega \to \mathbb{R}^m$ statistic

Then, T is sufficient if:

$$\cdot \forall \theta_1, \theta_2 \in \Theta$$
:

 $\forall x \in M$:

 $\forall t \in \mathbb{R}^m$:

$$P_{\theta_1}(X=x\mid T\circ X=t)=P_{\theta_2}(X=x\mid T\circ X=t)$$

2. Information & Decision

Regularity

Let:

$$\cdot \left(\Omega, \mathcal{A}, \{P_{\theta}\}_{\theta \in \Theta}\right)$$
1-D **real** statistical model

· L likelihood function of
$$(\Omega, \mathcal{A}, \{P_{\theta}\}_{\theta \in \Theta})$$

Then, $(\Omega, \mathcal{A}, \{P_{\theta}\}_{\theta \in \Theta})$ is regular if:

 $\cdot \Theta$ open

$$\cdot \forall \theta_1, \theta_2 \in \Theta$$
:

$${x \in \Omega \mid L(x, \theta_1) = 0} = {x \in \Omega \mid L(x, \theta_2) = 0}$$

$$\cdot \ \forall \ \theta \in \Theta :$$

$$\exists f: \Omega \to \mathbb{R}^+:$$

$$\exists \mathcal{E}_{\theta} \subset \Theta$$
:

 \mathcal{E}_{θ} neighborhood of θ

$$\forall \theta' \in \mathcal{E}_{\theta}$$
:

$$|\partial_{\theta} \log(L(x,\theta))| \lor |\partial_{\theta^{2}} \log(L(x,\theta))\theta| \le$$

f(x)

$$\cdot \ \forall \ \theta \in \Theta :$$

$$E_x(|\partial_\theta \log(L(x,\theta))|^2)$$
 finite

Fisher's information

Let:

 $\cdot (\Omega, \mathcal{A}, \{P_{\theta}\}_{\theta \in \Theta})$ 1-D regular statistical model

· L likelihood function of $(\Omega, \mathcal{A}, \{P_{\theta}\}_{\theta \in \Theta})$

We name Fisher's information of $(\Omega, \mathcal{A}, \{P_{\theta}\}_{\theta \in \Theta})$ to:

$$f: \Theta \longrightarrow \mathbb{R}$$

$$\theta \longmapsto E_x \left(|\log(L(x,\theta))|^2 \right)$$

We denote:

$$\cdot f(\theta) : I_F(\theta)$$

Kullback's information

Let:

$$\cdot (\Omega, \mathcal{A}, \{P_{\theta}\}_{\theta \in \Theta})$$
 d-D statistical model

We name Kullback's information of $(\Omega, \mathcal{A}, \{P_{\theta}\}_{\theta \in \Theta})$ to:

$$f: \Theta^2 \longrightarrow \mathbb{R}$$

$$(\theta_1, \theta_2) \longmapsto E_{\theta_2} \left(\log(\frac{L(x, \theta_1)}{L(x, \theta_2)}) \right)$$

We denote:

$$\cdot f((\theta_1,\theta_2)) : I_K(\theta_1 \mid \theta_2)$$

Decision

Let:

- $\cdot (\Omega, \mathcal{A}, \{P_{\theta}\}_{\theta \in \Theta})$ d-D **measurable** statistical model
- $\cdot (D, \mathcal{D})$ measurable space

$$f: \Omega \to D$$

Then, f is a decision if:

 $\cdot f$ measurable

We denote:

$$\cdot \{ f : \Omega \to D \mid f \text{ measurable } \} : \Xi$$

Decision order

Let:

- $\cdot \left(\Omega, \mathcal{A}, \{P_{\theta}\}_{\theta \in \Theta}\right)$ d-D
 measurable statistical model
- $\cdot (D, \mathcal{D})$ measurable space
- $\cdot f_1, f_2 : \Omega \to D$ decisions

Then, f_1 is better than f_2 if:

 $\cdot conditions$

.

Loss function

Let:

- $\cdot (\Omega, \mathcal{A}, \{P_{\theta}\}_{\theta \in \Theta})$ d-D statistical model
- $\cdot (D, \mathcal{D})$ measurable space

$$W: D \times \Theta \to \mathbb{R}^+$$

Then, W is a loss function if:

- $\cdot W$ measurable
- $\cdot \forall d \in D$, d correct :

$$W(d,\theta) = 0$$

 $\cdot \ \forall \ d_1, d_2 \in D$, d_1 better than d_2 :

$$W(d_1,\theta) \leq W(d_2,\theta)$$

Risk function

Let:

- $\cdot (\Omega, \mathcal{A}, \{P_{\theta}\}_{\theta \in \Theta})$ d-D statistical model
- $\cdot (D, \mathcal{D})$ measurable space
- $W: D \times \Theta \to \mathbb{R}^+$ loss function

We name risk function of W to:

$$R: \Xi \times \Theta \longrightarrow \mathbb{R}$$

$$(\chi, \theta) \longmapsto E_x ((W(\chi(x), \theta)))$$

3. Punctual Estimations

introduction

$\mathbf{U}\mathbf{M}\mathbf{V}$

Let:

 $\cdot statements \\$

.

Then, item is a/an entity if:

 $\cdot conditions$

.

We denote:

 $\cdot property : notation$

•

12 3 unit name

Same conditions

Let:

 $\cdot (\Omega, \mathcal{A}, \mathcal{P})$ parametric statistical model

 $\cdot X : \Omega \to \mathbb{R}$ random variable

 $\cdot \Theta \subset \mathbb{R}$ interval

 $\cdot \chi_F$ real estimator with integrable quadratic

.

Then, *item* is a/an entity if:

 $\cdot \ \forall \ \theta \in \Theta :$

 $\exists h : \mathbb{R} \to \mathbb{R} :$

 $h \ge 0$

h integrable

 $\exists \mathcal{U} \subset \mathbb{R}$:

 $\theta \in \mathcal{U}$

 $|T(x)\partial_{\theta}L(x,\theta)| \le h$

Efficient

Let:

 \cdot mismas condiciones

Then, T is efficient if:

$$\cdot Var_{\theta}T = \frac{g'(\theta)^2}{I(\theta)}$$