# CSC411 Assignment 3

#### Yue Guo

### December 3, 2017

## 1 20 News Group

## 1.1 Top 3 Algorithms

#### 1.1.1 Neural Network

#### 1. Hypterparameter

In the code nn\_news, I have tried a single layer neural network vs multi-layered neural network by calling It turns out that the single neural network is the fastest and also most accurate.

#### 2. Train/test loss

- Train accuracy 0.971451299275
- Test accuracy 0.632235793946

#### 3. My expectations

This meets my expectation because NNs are good at working with a large dataset with many feartures. When I increase the number of hidden layers, accuracy decreases. I think this is because it overfits.

#### 1.1.2 Random forest

#### 1. Hypterparameter

In the code nn\_news, I have tried a single layer neural network vs multi-layered neural network. It turns out that the single neural network is the fastest and also most accurate.

#### 2. Train/test loss

- Train accuracy 0.974721583878
- Test accuracy 0.59346787042

#### 3. My expectations

This meets my expectations because Random Forest adds more randomness in each step, and ensamble method is more resistant to overfitting because it assigns weights to different features in each step. My code also tried decision—tree, and it does not generalize well.

#### 1.1.3 SVM - Best Classifier

### 1. Hypterparameter

In the code, I have tried different rand\_state and cross validated each. It turns out  $rand_state = 0$  is the best

#### 2. Train/test loss

- Train accuracy 0.972511932119
- Test accuracy 0.691980881572

#### 3. Test confusion matrix

The most confused classes are class 11 and 20 70.0 75.073.0 66.0 76.071.077.0 79.0 78.080.077.074.077.0 75.079.045.057.0 9.0 68.070.0 0.0 5.03.0 4.0 6.01.0 7.0 9.08.0 10.0 7.0 4.0 7.0 5.0 9.025.0 13.0 79.0 138.075.0 5.0 0.0 2.0 9.0 1.0 4.0 2.0 4.0 3.0 5.0 2.0 1.0 2.0 0.0 4.0 30.0 18.0 84.0 143.0 73.0 3.0 2.0 0.0 7.0 3.0 2.0 4.0 6.05.0 7.04.0 1.0 4.0 2.0 6.028.0 16.0 82.0 141.0 9.0 7.0 10.0 14.0 13.0 21.0 66.0 4.0 0.0 5.0 11.0 13.0 12.0 11.0 8.0 11.0 9.0 9.0 75.0 134.0 76.0 6.0 1.0 3.0 10.0 0.0 5.0 1.0 3.0 2.0 4.0 2.0 1.0 1.0 3.0 31.0 19.0 85.0 144.0 9.0 8.0 3.0 71.01.0 4.0 2.0 5.0 5.0 0.0 6.0 7.0 6.0 6.0 4.0 8.0 26.014.0 80.0 139.0 77.07.0 2.0 4.011.0 1.0 6.0 0.02.0 1.0 3.0 0.0 3.0 0.0 2.0 2.0 32.0 20.086.0145.09.0 6.0 79.0 4.0 13.0 3.0 8.0 2.0 0.0 1.0 1.0 2.0 5.0 2.0 4.0 0.0 34.0 22.0 88.0 147.0 78.0 8.0 3.0 5.0 12.0 2.0 7.0 1.0 1.0 0.0 2.0 1.0 4.0 1.0 3.0 1.0 33.0 21.0 87.0 146.080.0 10.0 5.0 7.0 14.0 4.09.0 3.0 1.0 2.0 0.0 3.0 6.0 3.0 5.0 1.0 35.023.089.0 148.077.0 7.0 2.0 4.0 11.0 1.0 6.0 0.0 2.0 1.0 3.0 0.0 3.0 0.0 2.0 2.0 32.0 20.0 86.0 145.0 74.04.01.0 1.0 8.0 2.0 3.0 3.0 5.04.0 6.0 3.0 0.03.0 1.0 5.029.0 17.083.0 142.077.0 7.0 2.0 4.0 11.0 1.0 6.00.0 2.0 1.0 3.0 0.0 3.0 0.0 2.0 2.0 32.0 20.0 86.0 145.075.05.00.02.0 9.0 1.0 4.02.0 4.03.0 5.02.0 1.0 2.0 0.04.030.0 18.0 84.0 143.079.0 9.0 6.0 13.0 3.0 8.0 2.0 0.0 1.0 2.0 5.0 2.0 0.0 34.0 22.0 88.0 147.0 4.0 1.0 4.0 45.025.030.0 28.0 21.0 31.0 26.032.0 34.033.0 35.0 32.0 29.032.0 30.0 34.0 0.012.0 54.0113.0 13.0 16.0 22.0 23.0 20.0 20.0 22.0 12.0 57.0 18.0 9.0 19.0 14.0 20.0 21.0 17.0 18.0 0.0 66.0 125.0 9.0 79.0 84.0 82.0 75.085.0 80.0 86.0 88.0 87.0 89.0 86.0 83.0 86.0 84.0 88.0 54.0 66.0 0.0 59.0 141.068.0 138.0 143.0 134.0 144.0 139.0 145.0 147.0 146.0 148.0 145.0 142.0145.0 143.0 147.0 113.0 125.059.0 0.0

#### 4. My expectations

SVM is the best out of all. I think it is because it has a linear decision boundary and does not overfit on training data. The test accuracy is close to single neuron neural net, but still higher.

#### 1.1.4 Bernoulli Baseline

- 1. Train/test loss
  - Train accuracy 0.598727240587
  - Test accuracy 0.457912904939

## 2 SVM

#### 2.1 SVM test



Figure 1: Plot of test SVM

## 2.2 SVM code

see code

## 2.3 SVM on MINIST

- 1. Train loss= 0.400699029921
- 2. Test loss=0.37243523202
- 3. classification accuracy on training set = 0.818503401361
- 4. classification accuracy on testing set = 0.826985854189
- 1. Train loss= 0.400699029921
- 2. Test loss=0.37243523202
- 3. classification accuracy on training set = 0.809977324263
- 4. classification accuracy on testing set = 0.817555313747



Figure 2: Plot momentum = 0



Figure 3: Plot momentum = 0.1

## 3 Kernels

## 3.1 Positive semidefinite and quadratic form

Assume K is symmetric, we can decompose K into  $U\Lambda U^T$ 

$$\boldsymbol{x}^T K \boldsymbol{x} = \boldsymbol{x}^T (U \Lambda U^T) \boldsymbol{x} = (\boldsymbol{x}^T U) \Lambda (U^T \boldsymbol{x})$$

 $\Lambda$  has the eigenvalues  $\lambda_i$ , and if K is positive, and all  $\lambda_i > 0$ ,

$$x^T K x = \sum_{i=1}^d \lambda_i ([x^T U_i])^2 >= 0$$

Then  $x^T K x >= 0$  for all x in  $\mathbb{R}^d$ 

## 3.2 Kernel properties

#### **3.2.1** $\alpha$

Define mapping  $\phi(x) = \sqrt{\alpha}$ ,  $\alpha > 0$ , and the kernel  $\langle \phi(x), \phi(y) \rangle = \alpha$ . The resulting matrix K has item  $K_{ij} = \alpha$ , the matrix K has equal number of row and columns, and each element is  $\alpha$ . Since  $\alpha > 0$ , and all elements are equal, K is positive semidefinite

**3.2.2** 
$$f(x), f(y)$$

$$K_{ij} = \langle \phi(x), \phi(y) \rangle,$$
  
define  $\phi(x) = f(x), \forall f : \mathbb{R}^d \to \mathbb{R}$   
define  $\phi(y) = f(y), \forall f : \mathbb{R}^d \to \mathbb{R}$   
Since  $f(x)$  and  $f(y)$  produce a scalar,  $\langle \phi(x), \phi(y) \rangle = f(x) \cdot f(y)$ 

#### 3.2.3 k1 and k2

If the gram matrix,  $K_1$  of kernel k1 and gram matrix,  $K_2$  of kernel k2 are positive semidefinite, by scaling them and adding each element, the new gram matrix of  $a \cdot k_1(x,y) + b \cdot k_2(x,y)$ , call it K, each element of K is positive since a b > 0.

K is also symmetric because  $K_1$  and  $K_2$  are symmetric with the same dimension, and element wise addition and linear combination preserve the symmetric property.

**3.2.4** 
$$k(x,y) = \frac{k_1(x,y)}{\sqrt{k_1(x,x)}\sqrt{k_1(y,y)}}$$

Let  $\phi_1$  be the mapping defined by  $k_1$ We define a new mapping,  $\phi$  for k(x, y)

We let  $\phi(x) = \frac{\phi_1(x)}{\|\phi_1(x)\|}$ 

$$k(x,y) = \langle \phi(x), \phi(y) \rangle$$

$$= \frac{\phi_1(x)}{\|\phi_1(x)\|} \cdot \frac{\phi_1(y)}{\|\phi_1(y)\|}$$

$$= \frac{\phi_1(x)}{\sqrt{\phi_1(x) \cdot \phi_1(x)}} \cdot \frac{\phi_1(y)}{\sqrt{\phi_1(y) \cdot \phi_1(y)}}$$

$$= \frac{\phi_1(x)}{(\sqrt{\phi_1(x)} \cdot \sqrt{\phi_1(y)})} \cdot \frac{\phi_1(y)}{(\sqrt{\phi_1(x)} \cdot \sqrt{\phi_1(y)})}$$

$$= \frac{\phi_1(x)}{\sqrt{\phi_1(x) \cdot \phi_1(y)}} \cdot \frac{\phi_1(x)}{\sqrt{\phi_1(x) \cdot \phi_1(y)}}$$

$$k(x,y) = \frac{k_1(x,y)}{\sqrt{k_1(x,x)} \sqrt{k_1(y,y)}}$$

Therefore, there is a new mapping  $\phi(x)$  that supports k(x,y) and it is a kernel because  $\phi(x)$  is the product of two kernel mappings