Klausur Medizinelektronik

Teil 1: Aufgaben (R. Brucher) Teil 2: Aufgaben (M. Gross)

Hilfsmittel: bekannt **Semester: MT4**

Datum: 13. Juli 2012 Dauer: 90 Minuten

Hochschule Ulm

Hochschule Ulm

Mechatronik/Medizintechnik

Prof. Dr. R. Brucher

Name:_	Musterlösung	Vorname:_	Brucher
MatrNr.:		Punkte:	(Brucher)
		Punkte:	(Gross)
		Punkte:	(total) Note:

Teil 1:

Tragen Sie Ihre persönlichen Daten in den Kopf ein. Vergessen Sie nicht, jedes Blatt in der Kopfzeile mit Ihrem Namen zu versehen.

Benutzen Sie die Lösungsblätter!

Zwischenrechnungen auf eventuell beigefügten Notizblättern werden für die Klausur nicht berücksichtigt.

Der Umfang der Aufgaben ist für 100 Minuten ausgelegt!

Teil 1 (Brucher)

	maximale Punktezahl	erreichte Punktezahl
Aufgabe 1:	20	
Aufgabe 2:	18	
Aufgabe 3:	23	
Gesamt:	61	

Teil 2 (siehe M. Gross)

Aufgabe 1: Parallelanpassung eines Piezokristalls

(20 Punkte)

Abb. 1a zeigt ein Anpassungsnetzwerk an einen Piezokristall mittels einer parallelen Induktivität L_P mit ihrem Verlustwiderstand R_L . Der Kristall weist neben der elektrischen Kapazität C_0 eine Serienresonanz-Impedanz \underline{Z}_{ser} bei $f_r = 2MHz$ mit hoher Güte auf. Abb. 1b zeigt die Frequenzabhängigkeit der Gesamt-Impedanz \underline{Z}_0 mit klar erkennbarem Verlauf des Parallelschwingkreises C_0 und L_P mit geringer Güte.

- a) Welchen Verlustwiderstand R_L weist die parallelgeschaltete Spule auf?
- b) Welchen Wert muss C_0 aufweisen, damit man mit einer parallelen Induktivität $L_P=4,6\mu H$ so anpassen kann, dass die Resonanzfrequenz f_P des Parallel-Schwingkreises möglichst auf die Serienresonanz f_r =2MHz abgestimmt ist, d.h. beide identisch sind?
- c) Skizzieren Sie die Ortskurve von $\underline{\mathbf{Z}}_0$ unter Vernachlässigung des Serienresonanz-Impedanz.

Aufgabe 2: Sprungantwort eines Transistorvorverstärker (18 Punkte)

Abb.2a zeigt einen Transistorverstärker, der mittels seiner Sprungantwort (Abb.2b) analysiert werden soll. Aus den Sprungantworten sind die einzelnen Bauelemente in Ihren Größenwerten abzulesen.

Es gilt, den Verstärker richtig zu dimensionieren und dessen Frequenzgang zu diskutieren.

Abb. 2a: Elektrischer Schaltkreis des Transistorverstärkers

- a) Dimensionieren Sie R_1 für den Arbeitspunkt so, dass für den Arbeitspunkt $U_{\text{CE-A}}{=}10V$ gilt.
- b) Wie in Abb.2b gezeigt, wird ein entsprechendes Rechtecksignal U_0 eingespeist und die zugehörige Antwort an U_{CE} gemessen. Zeichnen Sie das WESB und ermitteln Sie dann anhand des charakteristischen Verlaufs von $U_{CE}\{t\}$ die Werte für R_L und C_1
- c) Dimensionieren Sie nun C_2 so, dass der Frequenzverlauf von $\underline{\mathbf{F}} = \underline{\mathbf{U}}_A/\underline{\mathbf{U}}_0$ nur eine untere Grenzfrequenz aufweist.

Aufgabe 3: OP-Linearverstärker und Bodediagramm

(23 Punkte)

Abb.3 zeigt eine OP-Schaltung, die es gilt als Filter in ihrem Frequenzgang zu untersuchen

Abb. 3:OP-Schaltung

- a) Welche typische Filterübertragungsfunktion hat $\underline{\mathbf{F}}_1 = \underline{\mathbf{U}}_1 \, / \, \underline{\mathbf{U}}_0$? Berechnen Sie hierzu auch die charakteristische Frequenz.
- b) Ermitteln Sie die Übertragungsfunktion von $\underline{\mathbf{F}}_2 = \underline{\mathbf{U}}_A / \underline{\mathbf{U}}_1$ und berechnen Sie die typischen Frequenzen.
- c) Skizzieren Sie das Bodediagramm $\underline{\mathbf{F}} = \underline{\mathbf{U}}_{A}/\underline{\mathbf{U}}_{0}$ zusammengesetzt aus $\underline{\mathbf{F}}_{1}$ und $\underline{\mathbf{F}}_{2}$

Lösungsblatt für Aufgabe 1:

(20):

Teilaufgabe 1a): Ermittlung des Verlustwiderstandes R_L aus dem Diagramm

 R_L :

(3):

Im Diagramm bei niedrigen Frequenzen strebt \mathbf{Z}_0 dem Wert von $\mathbf{R}_{\scriptscriptstyle L}$ zu:

Aus Diagramm gilt daher

$$Z_0\{f<0,1MHz\}=R_L=30\Omega$$

Teilaufgabe 1b): Berechnung der Kapazität C₀ basierend auf f_P=f_s und L_P=4,6µH

 $L_{\scriptscriptstyle P}$:

(7):

(P:4) die Admittanz des Parallelschwingkreis ist:

$$Y_{0} = j\omega C_{0} + \frac{1}{R_{L} + j\omega L_{P}} = j\omega C_{0} + \frac{R_{L} - j\omega L_{P}}{R_{L}^{2} + (\omega L_{P})^{2}} = j\left(\omega C_{0} - \frac{\omega L_{P}}{R_{L}^{2} + (\omega L_{P})^{2}}\right) + \frac{R_{L}}{R_{L}^{2} + (\omega L_{P})^{2}}$$

 $(P:3) \quad \text{Im Re sonanzfalle gilt Im} \{Y_0 \{\omega_{res}\} = 0 \Rightarrow$

$$C_0 = \frac{L_P}{R_L^2 + (\omega_{res}L_P)^2} = \frac{4.6\mu H}{(30)^2 + (12.5MHz \cdot 4.6\mu m)^2} = \frac{4.6\mu H}{(30)^2 + (57.5)^2} = \boxed{1.1nF}$$

Teilaufgabe 1c): Ortskurve $Z_0\{f\}$ unter Vernachlässigung der Serienresonanz Z_{ser}

Lösungsblatt für Aufgabe 2:

(18):

Teilaufgabe 2a):

Dimensonierung des Widerstandes R_1 für den Arbeitspunkt $U_{\text{CE,A}}$ =10V

Für DC gilt Maschenanalyse \Rightarrow $U_{CE,A} = U_{BE,k} + R_{1}I_{B,A} \Rightarrow$ $R_{1} = \frac{U_{CE,A} - U_{BE,K}}{I_{B,A}} = \frac{9,3V}{100\mu A} = \frac{93}{100\mu A} = \frac{9}{100\mu A} = \frac{1}{100\mu A} = \frac{1}{1000\mu A} = \frac{1}{100\mu A} = \frac{1}{1000\mu A} = \frac{1}{10000\mu A} = \frac{1}{1000\mu A} = \frac{1}{10000\mu A} = \frac{1}{1000\mu A} = \frac{1}{1000\mu A} = \frac{1}{1000\mu A} = \frac{1}{10000\mu A} = \frac{1}{10000\mu A} = \frac{1}{10000\mu A} = \frac{1}{10000\mu A} = \frac{1}$

Teilaufgabe 2b):

Berechnung von C_1 und R_L :

Kapazität C₁:

Der Hochpass durch C₁ bewirkt

(5):

die Zeitkonstante aus der ersten Sprunghöhe zum statischen Endzustand

$$\tau = C_1 R_{ers} = 7ms$$
 $\Rightarrow C_1 = \frac{\tau}{R_{ers}} = \frac{7ms}{152\Omega} = \frac{46\mu F}{152\Omega}$

$$R_{ers} = R_{1,Miller} \| r_{BE} \approx 152\Omega$$

$$r_{BE} = \frac{U_T}{I_{B,A}} = \frac{30mV}{100\mu A} = 300\Omega$$

$$R_{1,Miller} = \frac{R_1}{1 - V} \Big|_{V = \frac{10V - 7V}{10mV} = -300} = \frac{93k}{301} = 309\Omega$$

Teilaufgabe 2b) (Fortsetzung):

Widerstand R_L:

(4):

Die Sprunghöhe bedeutet die Verstärkung bei hohen Frequenzen (C₁=Kurzschluss)

Transsistorverstärkung

$$V\{f \to \infty\} = -S(R_C || R_L)|_{S = \frac{I_{C,A}}{U_T} = 0.666} = \frac{10V - 7V}{10mV} = 300 \Rightarrow$$

$$(R_C || R_L) = \frac{300}{S} = R_P = 450\Omega \Rightarrow \frac{R_C \cdot R_L}{R_C + R_L} = R_P \Rightarrow R_L = \frac{R_P R_C}{R_C - R_P} = \boxed{4,5k}$$

Teilaufgabe 2c):

Dimensionierung von C_2 basierend auf der Identität mit der Grenzfrequenz von C_1 :

Die Grenzfrequenz von HP mit $(C_1) \Rightarrow$

 $\omega_{HP} = 1/\tau_1 = 1/7ms = 143Hz$

Ladezeitkonstante für C₂:

$$\tau_2 = C_2 R_{ers} = \frac{1}{\omega_1} = 7ms$$
 $R_{ers} = (R_C || R_L) = R_P = 450\Omega$

$$C_2 = \tau_2 / R_{ers} = \frac{7ms}{450\Omega}) = \boxed{15,5\mu F}$$

(3):

Lösungsblatt für Aufgabe 3:

(23):

(3):

Teilaufgabe 3a):

Übertragungsfunktion $\underline{\mathbf{F}}_1 = \underline{\mathbf{U}}_1 / \underline{\mathbf{U}}_0$

Die Schaltung F_1 ist ein HP, der durch den zweiten R_1 zusätzlich belastet ist: \Rightarrow Ladezeitkonstante von C_1 :

$$\tau_1 = C_1 R_{ers} = C_1 (R_1 || R_1) = \frac{1}{\omega_1} = 20 \mu F \cdot 50 \Omega = 1 ms$$

 $\omega_1 = 1kHz$

Teilaufgabe 3b):

Herleitung des Übertragungsfunktion $\underline{F}_2 = \underline{U}_A / \underline{U}_1$

 $(P:7) \quad F_{2} \text{ ist ein invertierender Verstärker} \Rightarrow \tag{10}:$ $F_{2} = \frac{U_{A}}{U_{1}} = -\frac{Z_{F}}{R_{1}}$ $\underline{Z}_{F} = \frac{1}{j\omega C_{3}} + \frac{1}{\frac{1}{R_{2}} + j\omega C_{2}} = \frac{1}{j\omega C_{3}} + \frac{R_{2}}{1 + j\omega R_{2}C_{2}} = \frac{j\omega R_{2}C_{3} + 1 + j\omega R_{2}C_{2}}{(j\omega C_{3}) \cdot (1 + j\omega R_{2}C_{2})} = \frac{1 + j\omega R_{2}(C_{2} + C_{3})}{(j\omega C_{3}) \cdot (1 + j\omega R_{2}C_{2})}$ $F_{2} = \frac{U_{A}}{U_{1}} = -\frac{Z_{F}}{R_{1}} = -\frac{1 + j\omega R_{2}(C_{2} + C_{3})}{(j\omega R_{1}C_{3}) \cdot (1 + j\omega R_{2}C_{2})} = \frac{1 + j\omega / \omega_{23}}{(j\omega / \omega_{13})(1 + j\omega / \omega_{22})}$

Berechnung der charakteristischen Frequenzen von $\underline{F}_2 = \underline{U}_A / \underline{U}_1$:

(P:3)
$$\omega_{1}$$
 Werte:

$$\omega_{23} = \frac{1}{R_{2}(C_{2} + C_{3})} = \frac{1}{1k \cdot 11\mu F} = \frac{1}{11ms} = 90Hz$$

$$\omega_{13} = \frac{1}{R_{1}C_{3}} = \frac{1}{100 \cdot 10\mu F} = \frac{1}{1ms} = 1kHz$$

$$\omega_{22} = \frac{1}{R_{2}C_{2}} = \frac{1}{1k \cdot 1\mu F} = \frac{1}{1ms} = 1kHz$$

Teilaufgabe 3c):

(10):

Vollständiges Bodediagramm der Übertragungsfunktion $\underline{\mathbf{F}} = \underline{\mathbf{U}}_{\mathbf{A}} / \underline{\mathbf{U}}_{\mathbf{0}}$:

Klausur Medizinelektronik SS12

Teil 1 (Prof. Dr. Brucher)

Seit 10 von 10