ISE 426 Optimization models and applications

Lecture 11 — October 2, 2014

- Basic feasible solutions
- simplex method
- sensitivity analysis

Reminders:

Quiz on 10/14, practice on 10/09.

Simplex Method

maximize

$$3x_1 + 5x_2$$

 subject to
 $x_1 + 2x_2 \le 4$
 $2x_2 \le 12$
 $3x_1 + 2x_2 \le 18$
 $x_1 + 2x_2 \le 0$
 $x_2 \ge 0$

The lines are the **constraint** boundaries.

Corner-Point Solutions

5 corner-point feasible (CPF) solutions:

- 1. (0,0)
- 2. (4,0)
- 3. (4,3)
- 4. (2,6)
- 5. (0,6)

The Key Idea

Taken together, the two properties mean we can find an optimal solution by:

- 1. Starting at any CPF solution
- 2. Moving to a better adjacent CPF solution, if one exists
- Continuing until the current CPF solution has no adjacent CPF solutions that are better

This is the essence of the simplex method.

The Dual

minimize	$4u_1$	+	12 <i>u</i> ₂	+	18 <i>u</i> ₃		
subject to	u_1			+	$3u_3$	\geq	3
			$2u_2$	+	$2u_3$	\geq	5
	u_1					\geq	0
			u_2			\geq	0
					u_3	\geq	0

Consider optimal $(x_1, x_2) = (2, 6)$, compute dual from complementary slackness:

$$u_1(x_1 - 4) = 0$$

$$u_2(+2x_2 - 12) = 0$$

$$u_3(3x_1 + 2x_2 - 18) = 0$$

$$x_1(u_1 + 3u_3 - 3) = 0$$

$$x_2(2u_2 + 2u_3 - 5) = 0$$

$$u_{1}(-2) = 0$$

$$u_{2}(0) = 0$$

$$\Rightarrow u_{3}(0) = 0$$

$$2(u_{1} + 3u_{3} - 3) = 0$$

$$6(2u_{2} + 2u_{3} - 5) = 0$$

min
$$4u_1 + 12u_2 + 18u_3$$

s.t. $u_1 + 3u_3 \ge 3$
 $2u_2 + 2u_3 \ge 5$
 $u_1 + 2u_3 \ge 0$
 $u_2 + 2u_3 \ge 0$

Consider optimal $(x_1, x_2) = (2, 6)$, compute dual from complementary slackness:

$$u_1 = 0$$

 $3u_3 = 3$
 $2u_2 + 2u_3 = 5$

$$\Rightarrow u_1 = 0$$

$$u_2 = \frac{3}{2}$$

$$u_3 = 1$$

min
$$4u_1 + 12u_2 + 18u_3$$

s.t. $u_1 + 3u_3 \ge 3$
 $2u_2 + 2u_3 \ge 5$
 $u_1 \ge 0$
 $u_2 \ge 0$
 $u_3 \ge 0$

Consider a feasible CPF $(x_1, x_2) = (4,3)$, compute dual complementary solution:

$$u_1(x_1 - 4) = 0$$

$$u_2(+2x_2 - 12) = 0$$

$$u_3(3x_1 + 2x_2 - 18) = 0$$

$$x_1(u_1 + 3u_3 - 3) = 0$$

$$x_2(2u_2 + 2u_3 - 5) = 0$$

$$u_1(0) = 0$$

$$u_2(-4) = 0$$

$$u_3(0) = 0$$

$$2(u_1 + 3u_3 - 3) = 0$$

$$6(2u_2 + 2u_3 - 5) = 0$$

min
$$4u_1 + 12u_2 + 18u_3$$

s.t. $u_1 + 3u_3 \ge 3$
 $2u_2 + 2u_3 \ge 5$
 $u_1 \ge 0$
 $u_2 \ge 0$
 $u_3 \ge 0$

Consider a feasible CPF $(x_1, x_2) = (4, 3)$, compute dual complementary solution:

$$u_2 = 0$$

 $u_1 + 3u_3 = 3$
 $2u_3 = 5$

$$\Rightarrow \begin{array}{c} u_1 = -\frac{9}{2} \\ u_2 = 0 \\ u_3 = \frac{5}{2} \end{array}$$

```
min 4u_1 + 12u_2 + 18u_3

s.t. u_1 + 3u_3 \ge 3

2u_2 + 2u_3 \ge 5

u_1 \ge 0

u_2 \ge 0

u_3 \ge 0
```

Consider a feasible CPF $(x_1, x_2) = (4,3)$, compute dual complementary solution:

- ▶ $u_1 = -\frac{9}{2}$ is the shadow price for the constraint $x_1 \le 4$ at the solution $x_1 = 4$.
- ▶ u_1 < 0 means that the objective function will improve if we allow x < 4 while we keep $3x_1 + 2x_2 = 18$.
- Consider $x_1 = 3$, then $x_2 = \frac{9}{2}$ and $3x_1 + 5x_2 = 3 * 4 + 5 * 3 + \frac{9}{2}$.

min
$$4u_1 + 12u_2 + 18u_3$$

s.t. $u_1 + 3u_3 \ge 3$
 $2u_2 + 2u_3 \ge 5$
 $u_1 \ge 0$
 $u_2 \ge 0$
 $u_3 \ge 0$

Consider a feasible CPF $(x_1, x_2) = (0, 6)$, compute dual complementary solution:

$$u_1(x_1 - 4) = 0$$

$$u_2(+2x_2 - 12) = 0$$

$$u_3(3x_1 + 2x_2 - 18) = 0$$

$$x_1(u_1 + 3u_3 - 3) = 0$$

$$x_2(2u_2 + 2u_3 - 5) = 0$$

$$u_{1}(-4) = 0$$

$$u_{2}(0) = 0$$

$$\Rightarrow u_{3}(-6) = 0$$

$$0(u_{1} + 3u_{3} - 3) = 0$$

$$6(2u_{2} + 2u_{3} - 5) = 0$$

Consider a feasible CPF $(x_1, x_2) = (0, 6)$, compute dual complementary solution:

$$u_1 = 0$$

$$2u_2 = 2$$

$$u_3 = 0$$

$$u_1 = 0$$

$$\Rightarrow u_2 = \frac{5}{2}$$

$$u_3 = 0$$

$$u_1 + 3u_3 - 3 = -3$$

Consider a feasible CPF $(x_1, x_2) = (0, 6)$, compute dual complementary solution:

- ▶ $s_1 = u_1 + 3u_3 3 = -3$ is the reduced cost for the variable $x_1 \ge 0$ at the solution $x_1 = 0$.
- ▶ s_1 < 0 means that the objective function will improve if we allow x > 0 while we keep $2x_2 = 12$.
- Consider $x_1 = 1$, then $x_2 = 6$ then $3x_1 + 5x_2 = 3 * 0 + 5 * 6 + 3$.

Changes in Objective Function Coefficients

- ▶ Suppose x^* is the optimal solution for an LP.
- $ightharpoonup Z^*$ is its optimal objective value.
- ▶ Suppose that some objective function coefficient c_j changes.

$$\max Z = \frac{3x_1 + 5x_2}{s.t.}$$
s.t. $x_1 \le 4$

$$2x_2 \le 12$$

$$3x_1 + 2x_2 \le 18$$

$$x_1, x_2 \ge 0$$

▶ What if the 3 changed?

Changes in c, cont'd

$$\max Z = \frac{3x_1 + 5x_2}{\text{s.t.}} \qquad \frac{5}{2} = \frac{4}{2}$$

$$3x_1 + 2x_2 \le 18$$

$$x_1, \quad x_2 \ge 0$$

- ▶ If 3 changed to 0, what would the new solution be?
- ▶ If 3 changed to 30, what would the new solution be?
- ▶ If the 3 changed to $3 \pm \delta$, where δ is tiny, what would the new solution be?

Example: Maximization

$$\max Z = \frac{3x_1 + 5x_2}{\text{s.t.}}$$
s.t. $x_1 \le 4$
 $2x_2 \le 12$
 $3x_1 + 2x_2 \le 18$
 x_1 , $x_2 \ge 0$

- Optimal solution is $(x_1^*, x_2^*) = (2, 6), Z^* = 36.$
- ► Suppose the 3 increased to 7.
- Which of the following is true?
 - 1. Z^* will increase.
 - 2. *Z** will decrease.
 - 3. Z^* will stay the same.
 - We can't say.

Example: Maximization, cont'd

$$\max Z = \frac{3x_1 + 5x_2}{\text{s.t.}}$$
s.t.
$$x_1 \leq 4$$

$$2x_2 \leq 12$$

$$3x_1 + 2x_2 \leq 18$$

$$x_1, x_2 \geq 0$$

- $(x_1^*, x_2^*) = (2, 6), Z^* = 36.$
- ▶ 3 increases to 7.
- ▶ The local rate of increase is derived from $x_1^*\delta = 2 \times 4 = 8$.
- Which of the following is true?
 - 1. Z^* will increase by exactly 8.
 - 2. Z^* will increase by at most 8.
 - 3. Z^* will increase by at least 8.
 - 4. Z^* will increase, but we don't know by how much.

Changes in Constraint Right-Hand Sides

$$\max Z = 3x_1 + 5x_2$$
s.t. $x_1 \le 4$

$$2x_2 \le 12$$

$$3x_1 + 2x_2 \le 18$$

$$x_1, x_2 \ge 0$$

- ► Suppose 12 increased.
- Would optimal solution change?
- Would optimal objective value change?
- Would optimal basis change?

$$\max Z = 3x_1 + 5x_2$$
s.t. $x_1 \le 4$

$$2x_2 \le 12$$

$$3x_1 + 2x_2 \le 18$$

$$x_1, x_2 \ge 0$$

- ▶ Optimal solutions are $(x_1^*, x_2^*) = (2, 6)$, $(u_1^*, u_2^*, u_3^*) = (0, \frac{3}{2}, 1)$, $Z^* = 36$.
- ► Suppose the 12 increased to 16.
- Which of the following is true?
 - 1. Z^* will increase.
 - 2. Z* will decrease.
 - 3. Z^* will stay the same.
 - 4. We can't say.

Example, cont'd

$$\max Z = 3x_1 + 5x_2$$
s.t. $x_1 \le 4$
 $2x_2 \le 12$
 $3x_1 + 2x_2 \le 18$
 $x_1, x_2 \ge 0$

- $(x_1^*, x_2^*) = (2, 6), (u_1^*, u_2^*, u_3^*) = (0, \frac{3}{2}, 1), Z^* = 36.$
- ▶ 12 increases to 16.
- ► The local rate of increase come from the shadow price: $u_2^*\delta = \frac{3}{2} \times 4 = 6$.
- Which of the following is true?
 - 1. Z^* will increase by *exactly* 6.
 - 2. Z^* will increase by at most 6.
 - 3. Z^* will increase by at least 6.
 - 4. Z^* will increase, but we don't know by how much.

Relationship to Complementary Slackness

- ▶ Suppose there is slack in the *i*th primal constraint.
 - ▶ Increasing the RHS would not change the optimal solution.
 - ▶ By complementary slackness, u_i^* must equal 0 (in the dual).
 - Using the statement on the previous slides, the optimal objective function changes by u_i*, or 0.
- ▶ Suppose there is no slack in the *i*th primal constraint.
 - ▶ Increasing the RHS *would* change the optimal solution.
 - u_i^* probably (!) is greater than 0.
 - ▶ Using the statement above, the optimal objective function changes by u_i^* .
- ► This agrees with our interpretation of the dual values as *shadow prices*.

Relationship to Complementary Slackness, cont'd

- ▶ Now suppose there is slack in the *j*th dual constraint.
 - By complementary slackness, $x_i^* = 0$ (in the primal).
 - ▶ If we increase c_j slightly, we'll still want to set $x_j^* = 0$.
 - ▶ We argued that for each unit increase in c_j , Z^* changes by x_j^* (if optimal basis stays the same).
 - ▶ So Z^* increases by 0 when c_j increases.
- Suppose there is no slack in the jth dual constraint (reduced cost is 0).
 - $x_i^* > 0$ (probably).
 - ▶ If we increase c_i by 1, the objective value will go up by x_i^* .