HP 85027A/B/C DIRECTIONAL BRIDGE

			+
		÷	
131			
	1141		

MANUAL CHANGES

NDTE

Manual change supplements are revised as often as necessary to keep manuals as current and accurate as possible. Hewlett-Packard recommends that you periodically request the latest edition of this supplement. Free copies are available from all HP offices. When requesting copies, quote the manual identification information from your supplement, or the model number and print date from the title page of the manual.

MANUAL IDENTIFICATION

HP Number: HP 85027A/B/C Dale Printed: July 1985 Part Number: 85027-90001

This supplement contains important information for correcting manual errors and for adapting the manual to instruments containing improvements made after the printing of the manual.

Two types of information are included:

UPDATES - APPLY TD ALL SERIAL NUMBERS.

NUMBERED CHANGES - UPDATES THAT ARE SERIAL NUMBER PREFIX RELATED.

The information is in the following order: UPDATES, NUMBERED CHANGES in sequential order with applicable illustrations as close as possible to each numbered change.

To use this supplement, make all UPDATES and all appropriate serial number related CHANGES indicated in the following pages.

► = NEW ITEM

UPDATES

➤ Title Page:

Write (or paste) the following note on the title page:

Notice, this manual no longer supports the HP 85027A. Refer to the HP 85027A operating and service manual, HP Part Number 85027-90021.

Replace the following manual pages with the pages in this document (UPDATES):

General Information

1-6

Performance Tests

4-8

Adjustments

5-3

5-4

		ger gerer

Table 1-1. Specifications

	HP 85027A	HP 85027B	HP 85027C
Frequency Range (GHz) ¹	0.01-18.0	0.01-26.5	0.01-18.0
Connector: Input Test Port	Type N (f) APC-7	3.5mm (f) 3.5mm (f)	Type N (f) Type N (f)
Max. Input Power	+23 dBm or ±10 volts	+23 dBm or ±10 volts	+23 dBm or ±10 volts
Directivity ² 0.01 to 12.4 GHz 12.4 to 18.0 Ghz 18.0 to 20.0 Ghz 20.0 to 26.5 GHz	>=40 dB >=40 dB 	>=40 dB >=40 dB >=40 dB >=36 dB	>=36 dB >=34 dB —
Test Port Match ² 0.01 to 8.4 GHz 8.4 to 12.4 GHz 12.4 to 18.0 GHz 18.0 to 20.0 Ghz 20.0 to 26.5 Ghz	>=23 dB >=19 dB >=15 dB —	>=23 dB >=15 dB >=15 dB >=15 dB >=11 dB	>=23 dB >=19 dB >=15 dB —

Dynamic Power Accuracy

Equipme	nt	
---------	----	--

	HP 85027A	HP 85027B	HP 85027C
Sweep Oscillator	HP 8350B	HP 8350B	HP 8350B
RF plug-in	HP 83592A	HP 83595A	HP 83592A
Scalar network analyzer	HP 8757A	HP 8757A	HP 8757A
Cal. open/short	85021-60021	85037-60001	85032-60001
50 ohm load	909A opt 012	909D	909A opt 012
Adapter*	not req'd	85027-60002	1250-1475

^{*} A second directional bridge is required as a test instrument in addition to the directional bridge under test. The adapters recommended are suitable for use with two similar bridges.

Procedure

- 1. Set up the equipment as shown in Figure 4-4, with the calibrated open connected to the test directional bridge, not the directional bridge under test.
- PRESET the analyzer. It should indicate that Input A is on Channel 1. Turn off Channel 2. The
 Preset should also preset the sweep oscillator to a sweep time of 200 ms with 27.8 kHz
 modulation on.
- 3. Set the sweep oscillator start and stop frequencies to correspond to the first band of frequencies in the Performance Test Record (0.01 to 8.4 GHz).
- 4. Perform an open/short calibration and store it in memory.
- 5. Connect the directional bridge under test to the first directional bridge, test port to test port with an adapter if necessary. Connect the 50 ohm load to the input port of the directional bridge under test.
- 6. On the HP 8757A turn on the cursor and press the [MAX] softkey to find the point of minimum return loss (highest point) on the trace. Enter this value on the Performance Test Record.
- 7. Repeat steps 3 through 7 for each frequency band of interest.
- 8. If the test results (including uncertainties) are not within specifications as indicated on the Test Port Match Performance Test Record, refer to the Troubleshooting section of this manual.

Table 4-2. Test Port Match Performance Test Record

	HP	HP 85027A		HP 85027B		85027C
Frequency Band (GHz)	Spec.	Test Re s ult	Spec.	Test Result	Spec.	Test Result
0.01-8.4 8.4-12.4 12.4-18.0 18.0-20.0 20.0-26.5 Uncertainty*	>=23 dl >=19 dl >=15 dl >=1 dB	3		B B B	>=23 d >=19 d >=15 d >=2 dB	B

		2 %

- 5. Remove the printed, plastic switch configuration label from the back of the bridge (additional labels are available as HP P/N 85027-80004).
- 6. Disconnect the power sensor from the attenuator. Turn on modulation. Connect the bridge input port to the attenuator, leaving the test port open.
- 7. On the analyzer, turn on averaging (avg. factor =8), and the cursor. On the HP 8757A, turn on smoothing (5%).
- 8. Adjust R5 (see Figure 5-2) for a cursor reading of -6 ±0.1 dBm.
- 9. Set the attenuator to 30 dB. Adjust R29 (Figure 5-2) for a cursor reading of calibrated -30 dB mlnus 6 ±0.1 dBm.
- 10. Set the attenuator to 0 dB and adjust R29 (if required) until the cursor reads -6 ±0.1 dBm.
- 11. Repeat steps 8 through 10 until the change in level is equal to the **calibrated** 30 dB ±0.1 dB and, with 0 dB attenuation, the cursor indicates -6 ±0.1 dBm.

DC Adjustment Procedure

NOTE: You can perform this DC procedure only with an HP 8757A analyzer.

- 12. On the HP 8757A, set DC mode.
- 13. Set the reference level to -50 dBm at midscreen, and the scale to 5 dB/div.
- 14. On the source, turn off the RF power.
- 15. On the analyzer, press [CAL] [CONFIG SYSTEM]. If your analyzer has firmware revision 2.0 or above, press [CAL] and select [MORE] [AUTOCAL], to turn auto calibration OFF.
- 16. On the bridge, use a short jumper to short pad Y (where yellow wire terminates) to ground.
- 17. Adjust R25 (Figure 5-2) for a minimum reading on the analyzer (it should be < 50 dBm).
- 18. Remove the short, and turn auto cal back ON.

Feedthru Null Adjustment Procedure

- 19. On the analyzer, press [CAL] and select [DC DET ZERO] [AUTOZERO].
- 20. Adjust R10 (Figure 5-2) for as **HIGH** a trace as possible. Adjust slowly, because averaging and smoothing mask adjustment effects.

NOTE: Steps 19 and 20 must be repeated until no further change is noted.

DC Mode RF Adjustment Check

- 21. On the source, turn on the RF power.
- 22. Set the attenuator to 0 dB.
- 23. On the analyzer, verify DC mode, averaging, smoothing, and the cursor are still on. Allow the trace to settle. Press [DISPLAY] [MEAS→MEM] [MEAS-MEM]. The cursor should now indicate 0.0 dB.
- 24. Set the attenuator to 30 dB.
- 25. The cursor should now indicate the calibrated -30 dB to within 0.8 dB.
- 26. If the value indicated is not within 0.8 dB of the calibrated -30 dB, it may be necessary to adjust R5 and R29 until the difference between the 0 dB and 30 dB attenuator settings is just within 0.8 dB of the calibrated 30 dB. Adjust R5 when the attenuator setting is 0 dB and R29 when at 30 dB.
- 27. If any adjustments are made, it will be necessary to repeat the AC Adjustment Procedure again, only this time using a tolerance limit of ± 0.8 dB instead of the 0.1 dB indicated in steps 8 through 11. This will allow you to split the error difference between the two modes of operation.
- 28. Both AC and DC dynamic accuracy specifications should be within the limits stated in Table 1-1.

种香蕉 1

	T.		
			C

ADDENDUM MANUAL CHANGES

This addendum contains information received too late to be included in the manual shipped with your product. Use the information below to update your manual.

Manual Identification

This addendum applies to the following document:

Model Number:

85027A/B/C

Date Printed:

July 1985

Part Number:

85027-90001

Instructions

Make the following changes in your manual:

Page 6-4, Table 6-3A:

Change MP6 to 2190-0572

Change MP7 to 0360-0124

Change MP8 to 0515-1445

Change MP12 to 85027-80033

Change MP14 to 5180-8446

Delete MP17.

Change MP18 to 85027-80034.

Change MP19 to 85027-80035.

Change MP20 to 85027-80036.

Page 6-6, Table 6-3B:

Change MP12 to 85027-80026

Change MP14 to 5180-8446

Change MP16 to 85027-80037

Delete MP17.

Change MP18 to 85027-80034.

Change MP19 to 85027-80035.

Addendum Date: 18 October 1991

è					
	•.		5 ⁻		1.2
		+			

HP 85027A/B/C DIRECTIONAL BRIDGE

SERIAL NUMBERS

This manual applies directly to the HP 85027A/B/C directional bridge with serial numbers prefixed as follows:

Model	Serial Prefix
HP 85027A	2522A
HP 85027B	2522A
HP 85027C	2522A

For additional information about serial numbers, refer to INSTRUMENTS COVERED BY MANUAL in Section 1 and BACKDATING, Section 7.

© Copyright HEWLETT-PACKARD COMPANY 1985 1400 FOUNTAINGROVE PARKWAY, SANTA ROSA, CA 95401 U.S.A.

MANUAL PART NUMBER 85027-90001 Microfiche Part Number 85027-90002

Printed: JULY 1985

	di.		
4			

CONTENTS

Section		Page
1	GENERAL INFORMATION	1-1
	Introduction	1-1
	Specifications	1-1
	Safety Considerations	1-1
	Instruments Covered by Manual	1-1
	Description	1-3
	Equipment Required But Not Supplied	1-3
	Scalar Network Analyzer	1-3
	HP 8757A	1-3
	HP 8756A	1-3
	HP 8755C	1-4
	Swept Signal Source	1-4
	HP 8350B	1-4
	HP 8340A	1-4
	HP 8341A	1-4
	Detectors	1-4
	Power Splitters	1-4
	Equipment Available	1-4
	Accessories Available	1-4
	Recommended Test Equipment	1-5
	Warranty Restrictions	1-5
2	INSTALLATION	2-1
	1ntroduction	2-1
	Initial Inspection	2-1
	Preparation for Use	2-2
	Power Requirements	2-2
	Connecting the HP 85027	2-2
	Mating Connectors	2-2
	Operating Environment	2-3
	Storage and Shipment	2-3
	Environment	2-3
	Packaging	2-3
3	OPERATION	3-1
	Introduction	3-1
	Operating Precautions	3-1
	Connector Wear	3-1
	Operating Instructions	3-1
	Operator's Check	3-4
	Equipment	3-4
	Procedure	3-4

4	PERFORMANCE TESTS	4-1
	Introduction	4-1
	Performance Test Record	4-1
	Directivity	4-1
	Description	4-1
	Equipment	4-2
	Procedure	4-2
	Below 2 GHz	4-3
	Above 2 GHz	4-4
	Test Port Match	4-7
	Specifications	4-7
	Description	4-7
	Equipment	4-8
	Procedure	4-8
	Dynamic Power Accuracy (AC and DC)	4-9
	Specifications	4-9
	Description	4-9
	Equipment	4-9
	Procedure	4-10
5	ADJUSTMENTS	5-1
	Introduction	5-1
	Adjustment Procedures	5-1
	AC Adjustment Procedure	5-2
	DC Adjustment Procedure	5-3
	Feedthru Null Adjustment Procedure	5-3
	DC Mode RF Adjustment Check	5-4
6	REPLACEABLE PARTS	6-1
	Introduction	6-1
	Exchange Assemblies	6-1
	Replaceable Parts List	6-1
	Örganization	6-1
	Information	6-1
	Ordering Information	6-2
7	MANUAL BACKDATING CHANGES	7-1
	Introduction	7-1
	Application	7-1
8	SERVICE	8-1
	Introduction	8-1
	Theory of Operation	8-1
	Troubleshooting Procedures	8-2
	Gaining Internal Access	8-2
	Cable Continuity Check	8-2
	Power Cable Replacement	8-3
	Input Port and Test Port Resistance Checks	8-3
	Microcircuit Check	8-3
	A2 Circuit Board Assembly Replacement	8-4
	Al Bridge Microcircuit Assembly Replacement	8-4
	Power Supply Check	8-5
	Signal Path Check	8-7
	Clock/Control Check	8-7
	Connector Inspection	8-7
	Visual Inspection	8-7
	Mechanical Inspection	8-9
	Gaging the Precision 3.5mm Connector	8-9
	Gaging the APC-7 Connector	8-14

FIGURES

Figure	Title	Page
1-1 1-2	HP 85027A Directional Bridge in Accessory Case Supplied HP 85027A, 85027B and 85027C Directional Bridges	1-0 1-2
3-1 3-2 3-3 3-4 3-5	HP 85027B with Connector Saver HP 85027 Features (Rear View) Typical Operator's Check Using HP 8757A Typical Measurement Setup Using HP 8757A Typical Measurement Setup Using Power Splitter	3-2 3-3 3-4 3-6 3-6
4-1 4-2 4-3 4-4 4-5	Directivity Performance Test Setup Probable Range of Directivity Values Signal Separation Chart Test Port Match Performance Test Setup Dynamic Power Accuracy Performance Test Setup	4-2 4-3 4-5 4-7 4-9
5-1 5-2	Adjustment Setup Locations of Adjustment Potentiometers	5-1 5-2
6-1A 6-1B 6-1C 6-2 6-3	HP 85027A Replaceable Parts Identification HP 85027B Replaceable Parts Identification HP 85027C Replaceable Parts Identification A2 Circuit Board Component Location (Component Side) A2 Circuit Board Component Location (Solder Side)	6-5 6-7 6-9 6-11 6-11
8-1 8-2 8-3 8-4 8-5 8-6 8-7 8-8 8-9 8-10 8-11	A2 Circuit Board Power Supply Check Points A2 Circuit Board Schematic Cleaning APC-7 Connectors SMA and Precision 3.5mm Connectors Precision 3.5mm Male Connector Gauge Zeroing Precision 3.5mm Male Connector Gauge Measuring Precision 3.5mm Male Connectors The APC-7 Connector Gauge Zeroing the APC-7 Gauge Gaging APC-7 Connectors Collet Removal and Replacement, APC-7 Connectors	8-5 8-6 8-8 8-10 8-11 8-12 8-13 8-15 8-16 8-17

TABLES

Table	Title	Page
1-1 1-2 1-3 1-4 1-5	Specifications Supplemental Characteristics System Verification Kits Accessories Available (Adapters and General) Recommended Test Equipment	1-6 1-8 1-9 1-9 1-10
2-1	Contents of HP 85027 Directional Bridges	2-1
4-1 4-2 4-3	Directivity Performance Test Record Test Port Match Performance Test Record Dynamic Power Accuracy Performance Test Record	4-6 4-8 4-10
6-1 6-2	Exchange Microcircuit Bridge Assemblies Manufacturers Code List, Reference Designators	6-2
6-3A 6-3B 6-3C 6-4	and Abbreviations HP 85027A Replaceable Parts HP 85027B Replaceable Parts HP 85027C Replaceable Parts A2 Circuit Board Assembly Replaceable Parts	6-2 6-4 6-6 6-8 6-10
7-1	Manual Backdating Changes By Serial Number Prefix	7-1
8-1	Conductors in Power Cable W1	8-3

Figure 1-1. HP 85027B in Accessory Case Supplied

SECTION I

GENERAL INFORMATION

INTRODUCTION

You will find operating and service information for the Hewlett-Packard 85027A, 85027B and 85027C directional bridges in this manual. When the three different bridges share a common trait or procedure, they will be referred to as the HP 85027. The HP 85027B in its case is illustrated in Figure 1-1. Figure 1-2 shows all three directional bridges. The rest of this section describes specifications, supplemental performance characteristics, safety considerations, instrument identification, description, and other basic information.

You may order this manual in microfiche form as part number 85027-90002. With the manual (in 4 x 6 inch microfilm transparency format) you will also receive the latest manual changes supplement and all pertinent service notes in print form.

SPECIFICATIONS

Table 1-1 lists the specifications for the HP 85027 directional bridges. The specifications are performance standards or limits against which the bridges may be tested. Table 1-2 lists supplemental characteristics, non-warranted but typical performance parameters, useful in test applications.

SAFETY CONSIDERATIONS

The voltages in these directional bridges do not warrant more than normal caution for operator safety.

CAUTION

The CAUTION sign in this manual identifies an operating procedure or practice which, if not correctly performed, could damage or destroy the equipment. Do not proceed beyond a CAUTION sign until you fully understand and meet the conditions indicated.

INSTRUMENTS COVERED BY MANUAL

You will find a two-part serial number on the bridge. The first four digits and the letter are the serial number prefix. The last five digits are the sequential suffix which is unique to each bridge. The contents of this manual apply directly to bridges with the same serial number prefix as the one on the title page under the heading SERIAL NUMBERS.

If the serial prefix of your bridge is not listed on the title page, your instrument is different from those documented in this manual. The differences are documented in the vellow manual changes supplement supplied with the manual.

Figure 1-2. HP 85027A, 85027B and 85027C Directional Bridges

To keep this manual as current and accurate as possible, Hewlett-Packard recommends that you periodically request the latest manual changes supplement as it may contain error correction information as well as change information. The supplement for this manual is keyed to the manual's print date and part number (on the title page) and is available free from Hewlett-Packard.

DESCRIPTION

The HP 85027 bridges are microwave directional bridges designed for making modulated (AC) or unmodulated (DC) scalar reflection measurements with the HP 8757A scalar network analyzer and AC measurements with the HP 8765A and HP 8755C. A single zero-biased Schottky diode detector in the bridge performs reflection measurements by sampling the return loss of the device under test. A detector can be added for simultaneous transmission measurements. A power splitter can be used with the bridge or detector or both for ratio measurements. In all modes, typically the RF input signal is supplied by a sweep oscillator or a synthesized sweeper.

The frequency range and connector type of each bridge appears below and in Table 1-1.

	HP 85027A	HP 85027B	HP 85027C
Frequency range (GHz)	0.01 to 18.0	0.01-26.5	0.01-18.0
Input Connector	Type $N(f)$	3.5mm (f)	Type N (f)
Test Port Connector	APC-7*	3.5mm (f)	Typc N (f)

^{*}APC-7 is a registered trademark of the Bunker-Ramo Corporation.

EQUIPMENT REQUIRED BUT NOT SUPPLIED

The following equipment is required for usc with the HP 85027 in making reflection, transmission and ratio measurements:

Scalar Network Analyzer

The frequency range of the three following analyzers is determined by the HP 85027 directional bridge in use.

HP 8757A: this scalar network analyzer is a microprocessor based four-channel, three input (four with Option 001) receiver with integral digital display. At RF and microwave frequencies, it makes scalar transmission and reflection measurements over a dynamic range of +16 dBm to -60 dBm and amplitude ratio measurements up to 152 dB. The HP 8757A is completely programmable through HP-IB (Hewlett-Packard Interface Bus, HP's hardware, software, documentation and support for IEEE-488 and IEC 625). Additionally the HP 8757A can control a plotter, a printer, such as the Thinkjet printer, and a swept source through the 8757 System Interface.

The HP 8757A offers both AC and DC detection techniques. The AC technique involves modulating the source signal at 27.8 kHz. Note that in this manual the modulation frequency of 27.8 kHz is actually 27.778 kHz. The DC detection technique modulates the input signal at 27.8 kHz within the bridge, after the DUT.

HP 8756A: this scalar network analyzer is also a microprocessor based receiver with its own digital display. With its dual channels, it makes scalar transmission and reflection measurements at RF and microwave frequencies over a dynamic range of -50 dBm to +10 dBm. It can measure amplitude ratios up to 60 dB. It is completely

programmable through HP-IB and can control a plotter and swept source through the 8756 System Interface.

The HP 8756A is only capable of AC mode measurements with the HP 85027 directional bridges.

HP 8755C: although this scalar network analyzer is not programmable, it also measures amplitude levels of -50 dBm to +10 dBm and amplitude ratios of 60 dB. Like the HP 8756A, the 8755C is capable of AC mode measurements only.

The HP 8755C plugs into a HP 180 series display mainframe such as the HP 182T or 180TR. If your application requires memory or normalization, use this analyzer with the HP 8750A Storage Normalizer. Refer to Section 1 of the HP 8755C Operation and Service manual for additional information on HP 8750A/8755C compatibility.

Swept Signal Source

HP 8350B: This sweep oscillator mainframe, for one, is a good source for the HP 85027 bridges mated to the HP 8757A because it is solid-state, fully HP-IB programmable and can be controlled by the HP 8757A through the 8757 System Interface. It has internal 27.8 kHz square wave modulation capability and, depending on the RF plug-in selected, can cover the entire frequency range of 0.01 to 26.5 GHz.

HP 8340A: this synthesized sweeper is also fully HP-IB programmable and can be controlled by the HP 8757A. It does not require a plug-in as it is a complete analog sweep synthesizer. It generates synthesized output frequencies from 0.01 to 26.5 GHz. The HP 8340A can be square wave modulated at 27.8 kHz by the HP 8757A.

HP 8341A: this synthesized sweeper differs from the HP 8340A (above) in frequency range: 0.01 to 20.0 GHz.

Detectors

One or more HP 85025A/B detectors are used with the HP 85027 directional bridges and the HP 8757A to make transmission measurements in AC or DC mode. The HP 85025A has a frequency range of 10 MHz to 18 GHz and uses a type-N connector (Option 001, APC-7 connector). The HP 85025B has a frequency range of 10 MHz to 26.5 GHz and uses a precision 3.5mm connector. Detection in the AC and DC mode is similar to that of the HP 85027. For AC mode transmission measurements, the HP 11664A/E detector may be used.

Power Splitter

Ratio measurements can be made with the addition of a power splitter. The HP 11667A has a frequency range of DC to 18 GHz; the HP 11667B, DC to 26.5 GHz.

EQUIPMENT AVAILABLE

Additional equipment available for use with the HP 85027 directional bridges and the HP 8757A scalar network analyzer is listed in Section 1 of the analyzer's Operating and Service Manual.

ACCESSORIES AVAILABLE

System verification kits, precision adapters and other miscellaneous accessories available are listed in Table 1-4. Note that the system verification kits are designed so that the

phase response of the short is exactly opposite that of the shielded open and thus provides the best possible calibration data.

RECOMMENDED TEST EQUIPMENT

Table 1-5 lists equipment recommended for use in performance testing the HP 85027 bridges. Other equipment may be substituted if its specifications meet or exceed the specifications listed in the Critical Specifications column.

WARRANTY RESTRICTIONS

Performing any disassembly or repair procedure not included in Section 8, Service, of this manual will void the warranty.

Subjecting a HP 85027 bridge to RF input power levels in excess of +23 dBm or ±10 volts will likewise void the warranty.

Connector damage caused by mating with out of spec connectors or improper technique is not covered by the warranty. (See "Connector Inspection" in Section 8, Service.)

Table 1-1. Specifications

	HP 85027A	HP 85027B	HP 85027C
Frequency Range (GHz) ¹	0.01-18,0	0.01-26.0	0,01-18,0
Connector: Input Test port	Type N (f) APC-7	3.5mm (f) 3.5mm (f)	Type N (f) Type N (f)
Max. Input Power	+23 dB or +-10 volts	+23 dB or +-10 volts	+23 dB or +-10 volts
Directivity ² 0.01 to 12.4 GHz 12.4 to 18.0 GHz 18.0 to 20.0 GHz 20.0 to 26.5 GHz	>=40 dB >=40 dB	>=40 dB >=40 dB >=40 dB >=36 dB	>=36 dB >=34 dB
Test Port Match ² 0.01 to 8.4 GHz 8.4 to 12.4 GHz 12.4 to 18.0 GHz 18.0 to 20.0 GHz 20.0 to 26.5 GHz	>=23 dB >=19 dB >=17 dB	>=23 dB >=15 dB >=15 dB >=15 dB >=11 dB	>=23 dB >=19 dB >=17 dB

Dynamic Power Accuracy

Dimensions

26 mm high x 124 mm wide x 118 mm deep (1.0" x 4.9" x 4.4") 1219 mm (48")

cable length

Weight

net: 0.5 kg (1.2 lb) shipping: 2.3 kg (5 lb)

 1_2 Unless otherwise noted, all specifications apply from 0°C to +55°C. +25°C +-5°C.

Table 1-2. Supplemental Characteristics

Values in this table are not specifications but are typical, non-warranted performance parameters included for user information.

Typical Directivity with Connector Savers (Adapters) (To 3.5mm male or female)

HP 85027A

HP 85027B

	HP 85027A	HP 85027B	HP 85027C
Typical Insertion Loss at 0.01 GHz at 18.0 GHz at 26.5 GHz	6.5 dB 8.0 dB	6.5 dB 8.0 dB 10.0 dB	6.5 dB 8.0 dB
Typical Input Port Match 0.01 to 8.4 GHz 8.4 to 18.0 GHz 18.0 to 26.5 GHz	>=20 dB >=15 dB	>=20 dB >=15 dB >=10 dB	>=20 dB >=15 dB
Typical Min. Input Power for a 40 dB Return Loss at 18 GHz HP 8757A HP 8756A/55C	+2 dBm +7 dBm	+2 dBm +7 dBm	+2 dBm +7 dBm
Typical Impedance	50 ohms	50 ohms	50 ohms

Table 1-3. System Verification Kits

	t dote 1 S. Sybtem 7 cm, tout to 1 xx					
HP 85023A (APC-7) for use with HP 85027A						
Qty 1 1 1 1 1 1	Accessory APC-7 open/short N (m) to N (m) adapter APC-7 50 ohm termination APC-7 10 dB pad instrument ease operating note	HP Part or Model No. 85021-60001 1250-1475 909A 8492A opt 010 9211-1582 85023-90001				
	HP 85023B (3.5mm) for use with HP 85027B					
Qty 1 1 1 1 1 1	Accessory 3.5mm open/short 3.5mm (m) to N (m) adapter 3.5mm 50 ohm termination 3.5mm 10 dB pad instrument case operating note	HP Part or Model No. 85037-60001 1250-1743 909D 8493C opt 010 9211-1582 85023-90003				
	HP 85023C (Type-N) for use with HP 85027C					
Qty Accessory HP Part or Model 1 Type-N short 11512A 1 Type-N open 85032-60001 1 N (m) to N (m) adapter 1250-1475 1 Type-N 50 ohm termination 909A opt 012 1 Type-N 10 dB pad 8491B opt 010 1 instrument case 9211-1582 1 operating note 85023-90005						

Table 1-4. Accessories Available

Connector	3.5mm m	3.5 mm f	N m	$\mathbf{N} \mathbf{f}$
APC-7 3.5mm m 3.5mm f N m N f	1250-1746 85027-60002	1250-1747 85027-60003 1250-1749	11525A 1250-1743 1250-1744 1250-1475	11524A 1250-1750 1250-1745 1250-1472
	ct extractor		5060-(
	ector service kit open end 1/2" x ' ist strap	9/16"	11591 8710-(9300-()877

Table 1-5. Recommended Test Equipment

Instrument	Critical Specifications	85027A	85027B	85027C	
Scalar Network Analyzer	85027 AC/DC compatible	8757A	8757A	8757A	
Sweep Oscillator with RF Plug-in	8757A compatible Frequency: 0.01 to 18 GHz Frequency: 0.01 to 26.5 GHz	8350B with 83592A/B or 83595A	8350B with 83595A	8350B with 83592A/B or 83595A	
or Synthesized Sweeper	Frequency: 0.01 to 20 GHz Frequency: 0.01 to 26.5 GHz	8341A	8340A	8341A	
Detectors (2)	Frequency: 0.01 to 18 GHz Frequency: 0.01 to 26.5 GHz	85025A	85025B	85025A	
Power Splitter	Frequency: 0.01 to 18 GHz Frequency: 0.01 to 26.5 GHz	11667A	11667B	11667A	
Power Meter	Frequency: 0.01 to 26.5 GHz	436A	436A	436A	
Power Sensor	Frequency: 0.01 to 18 GHz Connector: Type-N (f)	8481B		8481B	
	Frequency: 0.05 to 26.5 GHz Connector: 3.5mm		8485A		
10 dB Step Attenuator	Frequency: dc to 4 GHz Connector: Type-N (f)	8495A opt 001		8495A opt 001	
	Frequency: dc to 26.5 GHz Connector: 3.5mm		8495D opt 004		
50 ohm Fixed Load	APC-7 3.5mm Type-N	909C	909D/040	909C/012	
50 ohm Sliding Load	APC-7/Type-N, 1.8 to 18 GF 3.5mm, 2 to 26.5 GHz	Hz 905A	911C	905A	
Digital Multimeter	Accuracy: ±0.01% Input Impedance: >=10MΩ	3456A	3456A	3456A	
This equipment is used for performance testing, adjustment and troubleshooting.					

SECTION 2

INSTALLATION

INTRODUCTION

This section provides information about initial inspection, preparation for use, mating connectors, packaging, storage and shipment.

INITIAL INSPECTION

Inspect the shipping container (including cushioning material) for damage. If damaged, keep it until you have (1) checked the contents for completeness, (2) read the three following cautions and (3) checked the bridge mechanically and electrically. The contents are listed in Table 2-1.

	HP 85027A	HP 85027B	HP 85027C
Instrument Case	yes	yes	yes
Operating and Service Manual	yes	yes	yes
Adapter/ Connector saver	Type-N m/Type-N m	3.5mm m/3.5mm m 3.5mm m/3.5mm f	Type-N m/Type-N m
Open/short	7mm open/short	3.5mm open/short	Type-N open Type-N short
Wrench	no	yes	no

Table 2-1. Contents of HP 85027 Directional Bridges

Read and observe these cautions: save yourself time and trouble.

CAUTION

Use caution when mating an SMA male connector to the precision 3.5mm female connectors on the HP 85027B. Push the connectors straight together, with the male contact concentric with the female. DO NOT overtighten or rotate either center conductor; turn only the outer nut of the male. An out of spee connector can permanently damage its mate. For this reason, you should measure connectors with a connector gage (see Section 8, "Mechanical Inspection") and use connector savers whenever possible (see Figure 3-1).

CAUTION

Do not apply more than ± 23 dBm RF power or more than ± 10 volts DC to the HP 85027. More power or voltage will damage the bridge.

CAUTION

Electrostatic discharge (ESD) can damage the highly sensitive microcircuits in the HP 85027 bridges. ESD damage is most likely to occur as the bridges are connected or disconnected. Protect the bridges by wearing a grounding strap that provides a path to ground of no less than I Megohm and no more than 2.5 Megohms. Alternatively, ground yourself by touching the outer shell of any grounded instrument chassis before touching the bridge connectors.

Never touch the center contacts of the connectors.

Use a work station equipped with an anti-static surface.

Electrical performance checks are in Section 4 of this manual. If the bridge does not pass the electrical performance tests, refer to the Troubleshooting Procedures in Section 8. If the bridge does not pass the electrical tests, or if it is damaged or defective, or if the contents are incomplete, keep the shipping materials and notify both the carrier and the nearest Hewlett-Packard office. The HP office will arrange for repair or replacement of the bridge without waiting for settlement of the claim.

PREPARATION FOR USE

Power Requirements

Power for the HP 85027 is supplied by the network analyzer.

Connecting the HP 85027

Insert the connector of the bridge's power cable (W1) into the A, B, (C if HP 8757A, Option 001) or R mating connector of the analyzer and turn the outer sleeve clockwise to tighten it.

Connect the HP 85027's input port to the RF output port of the source.

Connect the device under test to the bridge's test port. Section 3 shows typical measurement configurations. Refer to Section 8 for information on the care and use of APC-7 and precision 3.5mm connectors.

Mating Connectors

APC-7 connectors mate with APC-7 connectors. Precision Type-N connectors mate with the corresponding precision Type-N connectors whose dimensions conform to US specification MIL-C-39012. 3.5mm connectors mate to the corresponding 3.5mm connectors.

To extend the life of the 3.5mm fcmale connectors, use the precision 3.5mm (m) to 3.5mm (m) adapter or the 3.5mm (m) to 3.5mm (f) adapter. They are included with the HP 85027B as noted in Table 2-1 and illustrated in Figure 3-1.

Operating Environment

The instrument may be operated in temperatures from 0°C to +55°C but should be protected from environmental conditions which cause internal condensation. It may be operated at altitudes up to 4 572 metres (15 000 feet).

HP 85027A/B/C Installation

STORAGE AND SHIPMENT

Environment

The HP 85027 may be shipped or stored in temperatures from -40°C to +75°C and at altitudes up to 15 240 metres (50 000 feet). It should be protected from environmental conditions which may cause internal moisture condensation.

Packaging

Ideally each bridge should be repackaged in the original factory package if reshipping is required. Containers and materials identical to those used by the factory are available through Hewlett-Packard offices. Alternatively, comparable packaging materials may be used. In any case, please observe the following guidelines:

- a. Wrap the bridge in heavy paper or anti-static plastic. If shipping to a HP Office or Service Center complete and attach a service tag (HP P/N 9320-3896, see Section 6 of this manual or another system component manual).
- b. Use sufficient shock absorbing material on all sides of the HP 85027 to provide a thick, firm cushion and prevent internal movement.
- c. Seal the shipping container securely and mark it FRAGILE.

In any correspondence, refer to the component by full model and serial number.

OPERATION

INTRODUCTION

This section contains information concerning operation of the HP 85027 directional bridges.

OPERATING PRECAUTIONS

You can dramatically degrade the performance of the HP 85027 bridges through ESD damage, excessive input or excessive mechanical shock. Therefore read and heed the cautions below:

CAUTION

Do not subject the bridge to ESD. Work static-free.

Do not input more than $\pm 23 dBm$ RF power or more than ± 10 volts DC.

Do not drop the HP 85027 or subject it to mechanical shock.

CONNECTOR WEAR

The input port and test port connectors are part of the microcircuit bridge assembly. They are not separately replaceable or field repairable although the entire assembly can be replaced with a new or rebuilt assembly. An exception to the preceding sentence is described in Section 8. Information about exchange assemblies is in Section 6.

Repeated connections will cause the connectors to become worn with a consequent degradation of performance. This is a subtle but relentless form of degradation. It is best countered by using an adapter, or connector saver, on the test port whenever some loss in directivity can be tolerated. Refer to Table 1-2 to see the minimal performance loss incurred by using HP's high quality adapters and connector savers.

For measuring SMA devices from 10 MHz to 18 GHz, HP recommends using the HP 85027A with an APC-7 to 3.5mm adapter. For measuring SMA devices to 26.5 GHz, HP recommends using the HP 85027B with one of the connector savers (male/male or male/female) which are supplied with the bridge (see Figure 3-1).

Only high quality adapters achieve accurate, repeatable measurements and even they must be replaced periodically for best performance. When calibrating, use the same adapters and interconnect cables that will be used for measurements. Additional information on the proper care and inspection of connectors, adapters and connector savers is in Section 8.

OPERATING INSTRUCTIONS

Because the HP 85027 has been designed specifically to operate with the HP 8757A sealar network analyzer, operating instructions have been included in Section 3 of the analyzer's Operating manual. Figure 3-2 of this manual illustrates the features of the bridges. Figure 3-2 shows a typical measurement setup with the HP 8757A. When you use the bridge with the HP 8757A, set the configuration switch on the bridge to the

HP 85027A/B/C Operation

[HP8757] position. If you are using the HP 8756A or 8755C with the HP 85027, set the bridge configuration switch to [HP8756/HP8755] and refer to that analyzer's manual for the corresponding setups. Figure 3-5 shows a typical measurement setup using a power splitter.

Figure 3-1. HP 85027B with Connector Saver

- 1. Test port connector J2 (APC-7). Connect the device under test (DUT), calibration short or open here.
- 2. Input port connector J1 (Type-N). Apply the RF input signal herc.
- 3. Power supply cable W1. This cable supplies DC voltages to the bridge, performs control functions and feeds to the analyzer data on the signal reflected by the DUT.
- 4. Configuration switch S1. This switch sets the bridge for use with either the HP 8757A or HP 8756A/8755C.
- 5. Test port connector J2 (3.5 mm). Connect the DUT, calibration short or open here.
- 6. Input connector J1 (3,5 mm). Apply the RF signal here.
- 7. Test port connector J2 (Type-N). Connect the DUT, calibration short or open here.
- 8. Input connector J1 (Type-N). Apply the RF signal here.

Figure 3-2. HP 85027 Features (Rear View)

OPERATOR'S CHECK

Figure 3-3 illustrates the setup for the operator's check procedure. Follow this procedure to quickly check the entire measurement system. Incorrect results may be caused by any portion of the system, but if the HP 85027 is suspected use the performance tests in Section 4 to determine whether the bridge is operating correctly. If the bridge fails those tests, turn to Section 8 to isolate the problem.

Figure 3-3. Typical Operator's Check using HP 8757A

Equipment

Bridge	HP 85027A	HP 85027B	HP 85027C
Analyzer*	HP 8757A	HP 8757A	HP 8757A
Sweep oscillator	HP 8350B	HP 8350B	HP 8350B
RF plug-in	HP 83592A	HP 83595A	HP 83592A
Calibrated open	85021-60001	85037-60001	85032-60001
Calibrated short	85021-60001	85037-60001	11512A
10 dB pad	8492A Opt 010	8493C Opt 010	8491B Opt 010

^{*}Note: If you perform this procedure with the HP 8756A or 8755C, (1) set the configuration switch in step 2 to [HP8756/HP8755] and (2) do not perform step 9.

Procedure

- 1. Connect the equipment as shown in Figure 3-3 and turn it on.
- 2. Set the HP 85027 switch (S1) to [HP8757].

HP 85027A/B/C Operation

- 3. PRESET the HP 8757A and turn off channel 2.
- 4. Set the HP 8350B to output 50 MHz swept CW.
- 5. Perform a short/open calibration and then press [DISPLAY] [MEAS-MEM] on the HP 8757A for normalized measurements. Turn on the cursor.
- 6. With nothing connected to the test port of the bridge, set the RF plug-in to indicate a CRSR value of 0.0 dB on the CRT.
- 7. Connect the 10 dB pad to the test port of the bridge.
- 8. The CRSR value should now be $-20.0 \pm 2.0 \text{ dB}$.
- 9. To check the DC performance of the bridge, perform steps 1 through 4. Then select [MODE DC] and perform a manual DC ZERO. Continue with steps 5 through 9. The final result should again be -20.0 ±2.0 dB.

HP 85027A/B/C Operation

Figure 3-4. Typical Measurement Setup using HP 8757A

Figure 3-5. Typical Measurement Setup using Power Splitter

PERFORMANCE TESTS

INTRODUCTION

The procedures in this section test the directivity, test port match and dynamic accuracy of the HP 85027 directional bridges using the specifications of Table 1-1 as the performance standards. Space to record the specifications and test results are incorporated in Tables 4-1, 4-2 and 4-3. Each test procedure lists the equipment required. You may substitute test equipment if the substitute equipment meets or exceeds the critical specifications of Table 1-5. Each of the tests can be performed without access to the interior of the bridge.

PERFORMANCE TEST RECORD

Tabulate the results of the performance tests in Tables 4-1, 4-2 and 4-3. The performance test records provide space to list all of the tested specifications and their acceptable limits. Test results recorded during incoming inspection can be used for comparison with test results obtained after periodic maintenance, troubleshooting, repairs or adjustments.

DIRECTIVITY

Description

Directivity is a measure of the ability of a directive device (in this case the HP 85027) to discriminate between incident and reflected signals. In principle directivity can be measured when the test port is terminated with a perfect load to absorb (and thereby eliminate) all reflected signals. In this perfect situation, any remaining signals detected would be directivity errors, the result of reflections due to imperfections of the bridge itself.

Perfect loads do not exist. The following test procedures make allowances for the errors caused by the imperfect loads. Note that while there are no perfect loads, loads do vary in quality and that quality directly influences the performance test results. Use the highest quality load available.

Figure 4-1. Directivity Performance Test Setup

Equipment

	HP 85027A	HP 85027B	HP 85027C
Analyzer Sweep oscillator RF plug-in Short Open Sliding load Fixed load	HP 8757A	HP 8757A	HP 8757A
	HP 8350B	HP 8350B	HP 8350B
	HP 83592A	HP 83595A	HP 83592A
	85021-60001	85037-60001	11512A
	85021-60001	85037-60001	85032-60001
	905A	911C	905A
	909C	909D opt 040	909C opt 012

NOTE

This test must be performed between 20 °C and 30 °C to be valid.

Procedure

- 1. Connect the equipment as shown in Figure 4-1. Do not connect anything to the bridge test port.
- 2. On the HP 8757A, press [PRESET] to configure the system. The HP 8757A PRESET will also (1) set the sweep time and turn on the modulation of the sweep oscillator and (2) turn on the RF output and set the power level of the RF plug-in. Do not reset the power level. Press the analyzer's softkey [CHAN 2 OFF] to turn off channel 2.

Below 2 GHz:

- 3. On the HP 8350B set the START and STOP frequencies to the frequencies on the first line of Table 4-1, Directivity Performance Test Record.
- 4. Perform a short/open calibration by pressing [CAL] on the HP 8757A and then following the prompts on the CRT.
- 5. Attach the fixed load to the test port of the HP 85027. On the analyzer, press [CURSOR] and softkeys [CURSOR ON] and [MAX] to find the point of minimum return loss (the high point on the trace). Record the displayed CURSOR value on the appropriate line of Table 4-1. Note that this value represents the scalar sum of directivity signals (the desired measurement plus signals reflected from the fixed load (undesired error). Thus fixed load quality directly affects the quality of directivity measurements.

Figure 4-2. Probable Range of Measurable Directivity Values

6. Refer to Figure 4-2. The shaded areas in this figure represent the probable range of measureable values for each of the three specified directivity values: 34 dB, 36 dB and 40 dB. On the horizontal axis, locate the fixed load's reflection coefficient or its specified return loss (convert from SWR if necessary). Move up from this point to the upper limit of the shaded area between the appropriate diagonal lines. Allowing for load error, any directivity measurement that falls below this upper limit indicates with 90% probability that the HP 85027 is within specifications. If

HP 85027A/B/C Performance Tests

the bridge does not meet specifications, perform the troubleshooting procedures outlined in Section 8.

Above 2 GHz:

- 7. On the sweep oscillator, set the start and stop frequencies to match line 2 of Table 4-1, Directivity Performance Test Record.
- 8. Perform a short/open calibration.
- 9. Connect the sliding load to the test port of the bridge. (Refer to the sliding load's Operating and Service Manual if need be.)
- 10. On the HP 8757A press [AUTOSCALE] to position the trace on the display. Slowly move the sliding load back and forth: the trace should change slightly as the phase of the sliding load reflection changes. For several frequencies on the display, note the maximum and minimum measured return loss for various sliding load positions.
- 11. For each frequency, the maximum and minimum measured return loss values correspond to the directivity signal and the sliding load signal adding and subtracting. You can separate these two signals with the Signal Separation Chart, Figure 4-3. Calculate the difference in dB between the maximum and minimum measured return loss for each frequency and locate this value on the vertical axis of Figure 4-3. Draw a horizontal line across the chart from the point just located and note the two places where it intersects the curves. The intersections are the two correction values in dB. Add each of them to the minimum measured return loss. The resulting two corrected values are the directivity signal and the sliding load reflected signal.

Figure 4-3. Signal Separation Chart

- 12. Usually the larger return loss value is the measured directivity error. You ean verify this by performing the following step.
- 13. Slowly retract the center conductor of the sliding load about 2mm. This will introduce a discontinuity at the HP 85027 test port and change the measured directivity. Repeat steps 10 and 11 above. After the signals are separated, one of the two should match one of the two separated signals from the first measurement. The matching value is the return loss of the sliding load. The other separated value from the first measurement is the directivity of the HP 85027.
- 14. Enter the directivity on the Directivity Performance Test Record, Table 4-1.
- 15. Although the signal separation procedure removes reflections of the load itself, the mismatch of the sliding load connector and airline introduces reflections and uncertainties. To estimate these uncertainties, refer to Figure 4-2. Locate the specified return loss of the sliding load airline and connector on the horizontal axis (convert from SWR). Move up from this point to the upper limit of the bridge specified directivity corresponding to the sliding load's return loss for this frequency range. Enter this value in Table 4-1.
- 16. Set the start and stop frequencies of the source to the next band of interest in Table 4-1. Repeat steps 8 through 15.

HP 85027A/B/C Performance Tests

Table 4-1. Directivity Performance Test Record

	HP 85027	
Frequency Band (GHz)	Scalar Sum of Directivity Signals	Upper Limit (from Figure 4-2)
0.01-2.0 2.0-12.4 12.4-18.0 18.0-20.0* 20.0-26.5*		
*HP 85027B only		-

TEST PORT MATCH

Specifications

The test port match specifications are incorporated in Table 4-2, Test Port Match Performance Test Record, below.

Description

Using a typical reflection measurement setup, as shown in Figure 4-4, a second directional bridge is used to measure the TEST PORT of the bridge under test. The bridge under test must be biased by the HP 8757A and its RF IN PORT must be properly terminated.

Figure 4-4. Test Port Match Performance Test Setup

Equipment

	HP 85027A	HP 85027B	HP 85027C
Sweep oscillator	HP 8350B	HP 8350B	HP 8350B
RF plug-in	HP 83592A	HP 83595A	HP 83592A
Scalar network analyzer	HP 8757A	HP 8757A	HP 8757A
Cal. open/short	85021-60021	85037-60001	85032-60001
50 ohm load	909A opt 012	909D	909A opt 012
Adapter*	not req'd	85027-60002	1250-1475

^{*}A second directional bridge is required as a test instrument in addition to the directional bridge under test. The adapters recommended are suitable for use with two similar bridges.

Procedure

- 1. Set up the equipment as shown in Figure 4-4, with the calibrated open connected to the test directional bridge, not the directional bridge under test.
- 2. PRESET the analyzer. It should indicate that Input A is on Channel 1. Turn off Channel 2. The Preset should also preset the sweep oscillator to a sweep time of 200 ms with 27.8 kHz modulation on.
- 3. Set the sweep oscillator start and stop frequencies to correspond to the first band of frequencies in the Performance Test Record (0.01 to 8.4 GHz).
- 4. Perform an open/short calibration and store it in memory.
- 5. Connect the directional bridge under test to the lirst directional bridge, test port to test port with an adapter if necessary. Connect the 50 ohm load to the input port of the directional bridge under test.
- 6. On the HP 8757A turn on the cursor and press the [MAX] softkey to find the point of minimum return loss (highest point) on the trace. Enter this value on the Performance Test Record.
- 7. Repeat steps 3 through 7 for each frequency band of interest.
- 8. If the test results (including uncertainties) are not within specifications as indicated on the Test Port Match Performance Test Record, refer to the Troubleshooting section of this manual.

Table 4-2. Test Port Match Performance Test Record

	HP 85027A	HP 85027B	HP 85027C
Frequency Band (GHz)	Spec. Test Result	Spec. Test Result	Spec. Test Result
0.01-8.4 8.4-12.4 12.4-18.0 18.0-20.0 20.0-26.5 Uncertainity*	>=23 dB >=19 dB >=17 dB 1 dB	>=23 dB >=15 dB >=15 dB >=15 dB >=11 dB	>=23 dB >=19 dB >=17 dB

*Approximate uncertainity excluding effect of any adapter used.

DYNAMIC POWER ACCURACY (AC and DC)

Specifications

The dynamic power accuracy specifications for the bridge in AC mode are incorporated in Table 4-3, Dynamic Power Accuracy, which follows.

Description

Using the setup illustrated in Figure 4-5 to measure the dynamic power accuracy of the HP 85027.

Figure 4-5. Dynamic Power Accuracy Performance Test Setup

Equipment

Sweep Oscillator RF Plug-in Scalar network analyzer Short/open Adapter(s) Step attenuator HP 8350B HP 83592A HP 8757A 85021-60001 1250-1475 8495B opt 00	HP 8350B HP 83595A HP 8757A HP 8757A 85037-60001 85027-60002 1250-1475 8495D opt 004 HP 8350B HP 83592A HP 8757A 11512A/8503 1250-1475	

HP 85027A/B/C Performance Tests

Procedure

- 1. Set up the equipment as shown in Figure 4-5, preset the instruments and allow 30 minutes for warm-up.
- 2. Adjust the RF plug-in as required to output +7 dBm at 50 MHz CW.
- 3. Set the attenuator to 0 dB attenuation.
- 4. On the analyzer, turn on the cursor and press [MEAS-->MEM] and [MEAS-MEM]. This should result in a 0 dB reading.
- 5. Step down the attenuator 10 dB at a time and note the cursor readings on the appropriate lines of Table 4-3.
- 6. All of the test results should be within the specifications as tabulated in column two of Table 4-3. However there is a source of error which can adversely affect the results. This error is that of attenuator inaccuracy: the attenuator at a nominal setting of, say 10 dB, may not actually attenuate 10 dB.
 - To overcome this error, refer to the attenuator's calibration data and use the actual attenuation value for each setting.
- 7. If after removing the source of error from the test results as noted above you believe that the bridge still does not meet its specifications, refer to Section 8, Troubleshooting.
- 8. If you are using an HP 8757A with the bridge and wish to test its DC dynamic power accuracy, return to the SYSTEM menu, select DC mode and perform a short/open calibration by pressing these keys: [SYSTEM] [MODE] [CAL] [SHORT/OPEN] [DISPLAY] and [MEAS-MEM].
- 9. Perform steps 3 through 8 and enter the results in the fourth column of Table 4-3.

Table 4-3. Dynamic Power Accuracy Performance Test Record

Delta Power Nominal Actual	AC/DC Spec	AC Test Result	DC Test Result
0 dB -10 dB	Ref -10±0.4 dB	Ref	Ref
-20 dB -30 dB	-20±0.4 dB -30±0.5 dB		
-40 dB	-40±1.0 dB	***************************************	**************************************

ADJUSTMENTS

INTRODUCTION

You do not have to make any adjustments to the HP 85027 for regular calibration or normal use. However, if you repair or replace the internal bridge microcircuit assembly (A1) or the circuit board assembly (A2), you must make the following adjustments to match the preamplifier to the characteristics of the microcircuit. Additionally, if the HP 85027 does not pass one of its performance tests you may need to perform the adjustments in this section.

ADJUSTMENT PROCEDURES

Figure 5-1. Adjustment Setup

Note: to perform the following adjustments refer to Figure 5-2 for the locations of the adjustment potentiometers.

Figure 5-2. Locations of Adjustment Potentiometers

AC Adjustment Procedure

- 1. Set up the equipment as shown in Figure 5-1. Turn on the analyzer, source and power meter and allow 30 minutes for warm-up. Refer to Figure 5-2 for locations of the adjustments.
- 2. Connect the power meter sensor to the calibrated 10 dB step attenuator.

NOTE

If your attenuator does not have calibration data, determine exactly how much the attenuation changes between the 0dB and 30dB settings. Determine this with the source set for about +13 dBm at 50 MHz CW. Use this figure when the procedure refers to ealibrated 30 dB; for example, 29.9 dB or 30.06 dB.

- 3. Set the attenuator for 0 dB.
- 4. Preset the analyzer. Set the source to generate 50 MHz CW without modulation. Adjust the output for a reading of +6.5 dBm on the power meter and then turn on the modulation.

HP 85027A/B/C Adjustments

- 5. On the back of the bridge is a printed, self-adhesive plastic label with a note that explains the switch configuration. Remove the label. (Note: additional labels may be ordered as P/N 85027-80004.)
- 6. Disconnect the power sensor from the attenuator. Turn on the modulation (note: the modulation frequency must be correct). Connect the input port of the bridge to the attenuator. Leave the test port open.
- 7. On the HP 8757A or 8756A, turn on the averaging (8, default factor) and eursor. On the also HP 8757A turn on the smoothing (5%, default factor).
- 8. Adjust the bridge's gain potentiometer (R5) for a cursor reading of -6±0.1 dBm.
- 9. Set the attenuator for 30 dB. Adjust the bridge's load potentiometer (R29) for a cursor reading of ealibrated -30 dB minus 6±0.1 dBm.
- 10. Set the attenuator to 0 dB and readjust the gain potentiometer (if required) until the cursor indicates -6±0.1 dBm.
- 11. Repeat steps 8 through 10 until the change in level is equal to the ealibrated 30 dB ±0.1 dB and the cursor with 0 dB attenuation indicates -6±0.1 dBm.

DC Adjustment Procedure

NOTE

This DC procedure can be performed only with an HP 8757A analyzer.

- 12. Set the HP 8757A to DC mode.
- 13. Set the analyzer's reference level to -50 dBm at midscreen with a scale of 5 dB/division.
- 14. Turn off the RF power from the source.
- 15. Configure the system by pressing [CAL] [CONFIG SYSTEM] on the analyzer.
- 16. On the bridge, temporarily short pad "Y" (where the yellow wire terminates) to ground with a short jumper.
- 17. Adjust the bridge Offset potentiometer (R25) for a minimum reading on the analyzer. It should be less than -50 dBm.
- 18. Remove the short completely.

Feedthru Null Adjustment Procedure

- 19. Press [SYS] [CAL] [DC DET ZERO] [AUTOZERO] on the HP 8757A. Note that for the AUTOZERO feature to function, the analyzer and source must be connected through the System Interface.
- 20. Adjust the bridge "feedthru null" potentiometer (R10) for as HIGH a trace as possible. Work slowly as the averaging and smoothing features will mask the effects of your adjustments.

HP 85027A/B/C Adjustments

NOTE

Steps 19 and 20 must be repeated until no further change is noted.

DC Mode RF Adjustment Check

- 21. Turn on the source RF.
- 22. Connect the power meter sensor to the calibrated 10 dB step attenuator.
- 23. Set the attenuator for 0 dB.
- 24. Preset the source. Set it to generate 50 MHz CW without modulation. Adjust the output for a reading of +6.5 dBm on the power meter.
- 25. Disconnect the power sensor from the attenuator. Connect the input port of the bridge to the attenuator. Leave the test port open.
- 26. On the analyzer, confirm that smoothing (5%, default factor), averaging (8, default factor) and the cursor are on.
- 27. ONLY if the cursor does not indicate -6 ± 0.8 dBm, adjust the bridge's gain potentiometer (R5) for a cursor reading of 0 ± 0.8 dB.
- 28. Set the attenuator for 30 dB. Only if the cursor does not indicate calibrated -30 minus 6+-0.8dBm, adjust the bridge's load potentiometer (R29) for that cursor reading.
- 29. Set the attenuator to 0 dB and readjust the gain potentiometer (if required) until the cursor indicates -6±0.8 dBm.
- 30. Repeat steps 27 through 30 ONLY until the change in level is equal to the calibrated 30 dB ±0.8 dB and the cursor with 0 dB attenuation indicates -6 dB±0.8 dB.

REPLACEABLE PARTS

INTRODUCTION

This section contains information for ordering parts. Table 6-1 lists the exchange assemblies available. Table 6-2 lists (1) the names and addresses of manufacturers which correspond to the manufacturers' code numbers and (2) reference designator definitions and abbreviations used in the replaceable parts list. Tables 6-3A, 6-3B and 6-3C are the replaceable parts lists for the HP 85027A, 85027B and 85027C respectively. They list the replaceable parts in reference designator order. Table 6-4 lists the replaceable parts of A2 Circuit Board, common to all three bridges.

Figures 6-1A, 6-1B and 6-1C show the major assembly and miscellaneous parts locations for the 3 bridges. The circuit board assembly (A2) for all 3 bridges is the same. Figure 6-2 shows the component side, Figure 6-3 shows the solder side, Table 6-2 lists its replaceable parts.

EXCHANGE ASSEMBLIES

You may replace, on an exchange basis, the bridge microcircuit assembly and realize a considerable cost saving. This assembly includes the input and test port connectors and the reference termination. Table 6-1 lists these factory repaired and tested assemblies and their HP part numbers. The defective assemblics must be returned for credit to realize the cost savings. Thus, assemblies required for spare parts stock must be ordered by the new assembly part number.

REPLACEABLE PARTS LIST

Organization

Table 6-3 is the list of replaceable parts and is organized as follows:

- a. Electrical assemblies and their components in alpha-numerical order by reference designation.
- b. Major assemblies and cables.
- c. Options.
- d. Miscellaneous (including mechanical and attaching hardware) parts.

Information

The following information is tabulated for each entry:

- a. The Hewlett-Packard part number.
- b. The part number check digit (CD).
- c. The total quantity (Qty) in the instrument or, if accompanied by an illustration, the total quantity illustrated therein.
- d. The description of the part.

- e. The five digit code of the typical manufacturer of the part.
- f. The manufacturer's part number for the part.

NOTE

The total quantity for each part is given only onee, at the first appearance of the part in the list.

ORDERING INFORMATION

To order a part listed in the Replaceable Parts List, indicate the Hewlett-Packard part number (with check digit to ensure efficient processing) and the quantity desired. Address the order to the nearest Hewlett-Packard office.

To order a part that is not listed in the Replaceable Parts List, include the instrument model and serial number, the description and function of the part and the quantity desired. Address the order to the nearest Hcwlett-Packard office.

Table 6-1. Exchange Microcircuit Bridge Assemblies

BRIDGE	NEW PART NUMBER	EXCHANGE (REBUILT) PART NUMBER	
HP 85027A	5086-7376	5086-6376	A THE STREET, SAN ASSESSMENT OF THE
HP 85027B	5086-7377	5086-6377	
HP 85027C	5086-7399	5086-6399	

Table 6-2. Manufacturers Code List, Reference Designators and Abbreviations

	MANUFACTURERS	CODE LIST	
Code	Manufacturer	Address	Zip Code
04713 Motorola Semiconductor Products 06383 Panduit Corp 06665 Precision Monoliths Inc 24546 Corning Glass Works (Bradford) 25088 Siemans Corp 27014 National Semiconductor Corp 28480 Hewlett-Packard Co Corporate HQ 32997 Bourns Inc Trimpot Prod Div		Tinley Park IL Santa Clara CA Bradford PA Iselin NJ Santa Clara CA IQ Palo Alto CA Riverside CA	85008 60477 95050 16701 08830 95051 94304 92507
C CR J L	termination assembly capacitor diode jack	R resistor FP test point S switch U integrated circuit VR diode W cable	

ABBREVIATIONS	AB	BRE	VIA	TIO	NS
----------------------	----	-----	-----	-----	----

ADJ	adjustable	RMS	root-mean-square
ASSY	assembly	SGL	signal
BD	board	SI	silicon
CER	ceramic	SIG	signa1
DBLHX	double camfered, hex	SLDR	solder
FXD	fixed	STR	straight
G	giga (10 ⁹)	TA	tantalum
K	1000	THD	thread
MA	milli-amp	TML	terminal
MEG	million (10 ⁶)	TRMR	trimmer
MFR	manufacturer	TRN	turn
MHZ	megahertz	UF	microfarad
PF	picofarad	VDC	volts, direct current
PRCN	precision	W	watt
RGLTR	regulator	ZNR	zener

Table 6-3A. HP 85027A Replaceable Parts

Reference Designation	HP Part Number	CD	Qty	Description	Mfr Code	Mfr Part Number
				85027A REPLACEABLE PARTS		
A1 A1	5086-7376 5086-6376	4 2	1	BRIDGE MICROCIRCUIT ASSEMBLY (NEW) BRIDGE MICROCIRCUIT ASSEMBLY (REBUILT)	28480 28480	5086-7376 5086-6376
A2** AT1 J1 J2 J2MP1	85027-60001 P/O A1 P/O A1 P/O A1 1250-1837	5	1 1 1	CIRCUIT BOARD ASSEMBLY TERMINATION CARTRIDGE INPUT CONNECTOR TEST PORT CONNECTOR BARREL-RF CONNECTOR 15.9MM DIA X 30 MM	28480 28480 26480 28480 28480	85027-80001 P/O A1 P/O A1 P/O A1 1250-1837
/2MP2 /2MP3 /4P1 /4P2 //P3	1250-1465 1250-1839 85027-00001 85027-20005 85027-20003	57620	1 1 1 1 1 1	COMPONENT-RF CONNECTOR APC-7 COUPLING CONTACT-RF CONNECTOR APC-7 SERIES DRESS COVER CABLE COVER EXTRUDED HOUSING	28480 28480 28480 28480 28480	1250-1465 1250-1839 85027-00001 85027-20005 85027-20003
4P4 4P5 4P6 4P7 4P8	85027-20004 0535-0684 2190-0584 0369-1190 0516-1417	13038	1 1 4 2 4	PORT COVER NUTM-DBLHX LOCKWASHER M3.0 TML STUD SGL-PIN SCREW-THD-RLG M3 X 0.5 10MM-LG	28480 28480 28480 28480 28480	85027-20004 0535-0694 2190-0584 0369-1190 0515-1417
AP9 NP10 NP11 AP12 NP13*	1531-0289 0515-0820 0515-0820 85027-80001 1400-0249	5 5 5 4 0	1 1 1	MACHINED PART-SST SPACER-BRIDGE SCREW-MACH M2 X 0.4 5MM-LG 90-DEG-FLH-HD SCREW-MACH M2 X 0.4 5MM-LG 90-DEG-FLH-HD ID LABEL 85027A CABLE TIE .062625-DIA .091-WD NYL	28480 28480 28480 28480 28480 06383	1531-0289 0515-0820 0515-0820 05027-80001 PLT1M-8
1P14 1P15*	85027-80009 85027-80012	2 7	1	INSTRUMENT CASE FOAM PAD	28480 28480	85027-80009 85027-80012
1P16 1P17 1P18"	9211-0126 85027-80004	9 7	1	NOT ASSIGNED CARTON-CORR RSC 11,5-IN-LG 8,625-IN-WD LABEL IN RF IN TEST	28480 28480	9211-0126 85027-80004
1P19 1P20 1P21	85027-80005 85027-80006	8	1	LABEL WARNING MAXIMUM INPUT LABEL ID 85027A	28480 28480	85027-80005 85027-80006
1P22* 1P23*	1250-1475 85021-60001	7 6	1	NOT ASSIGNED ADAPTER-COAX STR M-PRCN N M-PRCN N 7MM OPEN/SHORT ASSEMBLY	28480 28480	1250-1475 85021-60001
/1	85025-60003 85027-90001	2 5	1	CABLE ASSY OPERATING AND SERVICE MANUAL	28480 28480	85025-60003 85027-90001
				*NOT SHOWN **SEE TABLE 6-4		

					1	
h-yer manure de da						

See introduction to this section for ordering information

CAUTION

Only the parts listed are replaceable. Any attempt to perform any disassembly or repair procedure not specifically outlined in Section 8 of this manual will void the warranty. Damaged connectors can be repaired or replaced only by Hewlett-Packard.

Table 6-3B. HP 85027B Replaceable Parts

Reference Designation	HP Part Number	CD		Description	Mfr Code	Mfr Part Number
				85027B REPLACEABLE PARTS		
A1 A1	5086-7377 5086-6377	5	1	BRIDGE MICROCIRCUIT ASSEMBLY (NEW) BRIDGE MICROCIRCUIT ASSEMBLY (REBUILT)	28490 28490	5096-7377 5086-6377
A2** AT1 J1 J2 MP1	85027-60001 P/O A1 P/O A1 P/O A1 85027-00001	6	1 1 1 1	CIRCUIT BOARD ASSEMBLY TERMINATION CARTRIDGE INPUT CONNECTOR TEST PORT CONNECTOR DRESS COVER	28480 28480 28480 28480 28480	85027-60001 P/O A1 P/O A1 P/O A1 85027-00001
MP2 MP3 MP4 MP5 MP6*	65027-20005 85027-20003 85027-20004 0535-0684 85027-00002	20137	1 1 1 1 1 1	CABLE COVER EXTRUDED HOUSING PORT COVER NUTM-DBLHX WRENCH, CONNECTOR-SAVER	28480 28480 28480 28480 28480	85027-20005 85027-20003 85027-20004 0535-0694 85027-00002
MP7 MP8 MP9 MP10 MP11	0360-0002 0515-1445 1531-0289 0515-0820 0515-0912	62556	1 4 1 4 4	TERMINAL-SLDR LUG PL-MTG FOR-#2-SCR SCREW-THD-RLG M3 X 0.5 BMM-LG MACHINED PART-SST SPACER-BRIDGE SCREW-MACH M2 X 0.4 5MM-LG 90-DEG-FLH-HD SCREW-MACH 3.0 X 8MM PN PD	28480 28480 28480 28480 28480	0360-0002 0515-1445 1531-0299 0515-0820 0515-0812
MP12* MP13* MP14* MP15 MP16	85027-80002 85027-80012 85027-80010 2190-0584 85027-80007	57500	1 1 1 4 1	ID LABEL 85027B FOAM PAD INSTRUMENT CASE LOCK WASHER M3.0 LABEL ID 85027B	28480 28480 28480 28480 28480	95027-80002 95027-80012 95027-80010 2190-0584 85027-80007
MP17* MP18 MP19 MP20 MP21*	9211-0126 85027-80004 85027-80005	9 7 8 3	1 1	CARTON-CORR RSC 11.5-IN-LG 8.625-IN-WD LABEL IN RF IN TEST LABEL WARNING MAXIMUM INPUT NOT ASSIGNED ADAPTER M 3.5 M 3.5	28480 28480 28480 28480	9211-0126 95027-80004 85027-80005 85027-60002
MP22* MP23* W1	85027-60003 85037-60001 85025-60003 85027-90001	4 2 5	1 1	ADAPTER M 3.5 F 3.5 3.5MM OPEN/SHORT ASSEMBLY CABLE ASSY OPERATING AND SERVICE MANUAL	28480 28480 28480 28480	85027-60003 85037-60001 85025-60003 85027-90001
				'NOT SHOWN "SEE TABLE 6-4		
				,		

See introduction to this section for ordering information

CAUTION

Only the parts listed are replaceable. Any attempt to perform any disassembly or repair procedure not specifically outlined in Section 8 of this manual will void the warranty. Damaged connectors can be repaired or replaced only by Hewlett-Packard.

Table 6-3C. HP 85027C Replaceable Parts

Reference Designation	HP Part Number	CD	Qty	Description	Mfr Code	Mfr Part Number
				85027C REPLACEABLE PARTS		
11 11 12** 11 11	5086-7399 5086-8399 85027-60001 P/O A1	1 9 2	1	BRIDGE MICROCIRCUIT ASSEMBLY (NEW) BRIDGE MICROCIRCUIT ASSEMBLY (REBUILT) CIRCUIT BOARD ASSEMBLY TERMINATION CARTRIDGE INPUT CONNECTOR	28480 28480 28480 28480 28480	5086-7399 5086-8399 85027-80001 P/O A1
12 MP1 MP2 MP3 MP4	P/O A1 85027-00001 85027-20005 85027-20003 85027-20004	6201	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TEST PORT CONNECTOR DRESS COVER GABLE COVER EXTRUOED HOUSING PORT COVER	28480 28480 28480 28480 28480 28480	P/C A1 85027-00001 85027-20005 85027-20003 85027-20004
MP6 MP6 MP7 MP8	0535-0694 0515-1417 1531-0289	3 8 5	1 4 1	NUTM-DBLHX NOT ASSIGNED NOT ASSIGNED SCREW-THD-RLG M3 X 0.5 10MM-LG MACHINED PART-SST SPACER-BRIDGE	28480 28480 28480	0535-0694 0515-1417 1531-0289
MP9 MP10 MP11 MP12 MP13	0515-0820 0515-0912 85027-80003 1400-0249 9211-4429	56603	4 4 1 1 1 1	SCREW-MACH M2 X 0.4 5MM-LG 90-DEG-FLH-HD SCREW-MACH 3.0 X 8MM PN PD ID LABEL 85027C CABLE TIE .062625-DIA .091-WD NYL CASE-ACCESS BIRCH 9.71IN-LG 6.76IN-WD	28480 28480 28480 06383 28480	0515-0820 0515-0912 85027-80003 PLT1M-6 9211-4429
MP15* MP16 MP17* MP18	85027-80012 85027-80008 85027-800011 85027-80004 85027-80005	71678		FOAM PAD LABEL ID 85027C INSTRUMENT CASE LABEL IN RF IN TEST LABEL WARNING MAXIMUM INPUT	28480 28480 28480 28480 28480	85027-80012 85027-80008 85027-80011 85027-80004 85027-80005
MP19 MP20 MP21* MP22* MP23*	2190-0584 1250-1475 11512A 85032-60001 85025-60003	07092	4 1 1	LOCKWASHER M 3.0 ADAPTER-COAX STR M-PRCN N M-PRCN N SHORT "N" MALE OPEN CKT ASSY M N CABLE ASSEMBLY	28480 28480 28480 28480 28480	2190-0584 1280-1475 11512A 95032-60001 85025-60003
W1	85027-90001	5		OPERATING AND SERVICE MANUAL NOT SHOWN SEE TABLE 6-4	28480	85027-90001

Figure 6-1C. HP 85027C Replaceable Parts Identification

Table 6-4. A2 Bridge Circuit Board Assembly

A2	Reference Designation	HP Part Number	CD	Qty	Description	Mfr Code	Mfr Part Number
ACCI							05007 00004
ACCID 0186.2375 2 2 CAPACTOR-EXXD, JUF +-10% 50VDC CER 28480 0160.5375 0160.5375 2 2 CAPACTOR-EXXD, JUF +-10% 50VDC CER 28480 0160.5375 0160.5375 2 2 CAPACTOR-EXXD, JUF +-10% 50VDC CER 28480 0160.5375 0160.	A2C1	0160-5375	5 2	1 8	BRIDGE PC BOARD ASSEMBLY CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER	29480	0160-5375
ABCOD 1169-5375 12 CAPACTOR-FXD 11F +-10% 50VDC CER 28480 1169-5375 11 CAPACTOR-FXD 11F +-10% 50VDC TA 25088 1169-5375 116	A2C4 A2C5 A2C6	0160-5375 0180-2683 0160-5375	2 2	1	CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD 4.7UF+-20% 35VDC TA CAPACITOR-FXD .1UF +-10% 50VDC CER	28480 28480 28480	0160-5375 0180-2683 0160-5375
MacCrit 1901-0050 3	A2C9 A2C10 A2C11	0160-5375 0190-2661 0190-2661	22552		CAPACITOR.FXD .1UF +-10% 50VDC CER CAPACITOR.FXD 1UF+-10% 50VDC TA CAPACITOR.FXD 1UF+-10% 50VDC TA	29490 25089 25088	0160-5375 D1R0GS1A50K D1R0GS1A50K
ASPR	A2CR2 A2CR3 A2MP1	1901-0050 1901-0539 85027-20001	3 9	1	DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SM SIG SCHOTTKY BD-AC/DC BRIDGE	28480 28480 28480	1901-0050 1901-0539 85027-20001
RESISTOR 100 1% 05W F TC=0+-100 24546 C3-1/8-TO-100R-F C3-1/8-	A2R3 A2R4 A2R5	0898-7249 0698-7284 2100-3091	5	1	RESISTOR 100K 1% .05W F TC=0+-100 RESISTOR-TRMR 2K 10% C TOP ADJ 17-TRN	24546 24546 32997	C3-1/8-T0-3481-F C3-1/8-T0-1003-F 3292W-1-202
A2P114 0699-7288 9 1 RESISTOR 147K 196.05W F TC=0+-100 24546 C3-1/8-T0-1001-F 0698-7253 8 2 RESISTOR 15 K 196.05W F TC=0+-100 24546 C3-1/8-T0-1001-F 0698-7253 8 2 RESISTOR 15 K 196.05W F TC=0+-100 24546 C3-1/8-T0-1001-F 0698-7253 8 2 RESISTOR 100 196.05W F TC=0+-100 24546 C3-1/8-T0-5111-F 0698-7253 8 2 RESISTOR 100 196.05W F TC=0+-100 24546 C3-1/8-T0-5111-F 0698-7251 0 1 RESISTOR 111 196.05W F TC=0+-100 24546 C3-1/8-T0-5111-F 0698-7251 0 1 RESISTOR 2.87K 196.05W F TC=0+-100 24546 C3-1/8-T0-5111-F 0698-7251 0 1 RESISTOR 2.87K 196.05W F TC=0+-100 24546 C3-1/8-T0-5111-F 0698-7251 0 1 RESISTOR 2.87K 196.05W F TC=0+-100 24546 C3-1/8-T0-102-F 0698-7251 0 1 RESISTOR 4.22K 196.05W F TC=0+-100 24546 C3-1/8-T0-102-F 0698-7251 0 1 RESISTOR 4.22K 196.05W F TC=0+-100 24546 C3-1/8-T0-1010-F 0698-7251 0 1 RESISTOR 4.22K 196.05W F TC=0+-100 24546 C3-1/8-T0-111-F 0698-7251 0 1 RESISTOR 4.22K 196.05W F TC=0+-100 24546 C3-1/8-T0-4221-F 0698-7251 0 1 RESISTOR 4.22K 196.05W F TC=0+-100 24546 C3-1/8-T0-4221-F 0698-7251 0 1 RESISTOR 4.22K 196.05W F TC=0+-100 24546 C3-1/8-T0-316R-F 0698-7251 0 1 RESISTOR 7.87M 10 K 10% C TOP-ADJ 17-TRN 32997 3292W-1-202 C3-1/8-T0-316R-F 0698-7277 0 1 RESISTOR 7.87M 10 K 10% C TOP-ADJ 17-TRN 32997 3292W-1-103 24546 C3-1/8-T0-316R-F 0698-7277 0 1 RESISTOR 7.87M 10 K 10% C TOP-ADJ 17-TRN 32997 3292W-1-103 24546 C3-1/8-T0-5112-F 0698-727 0 1 RESISTOR 7.87M 10 K 10% C TOP-ADJ 17-TRN 32997 3292W-1-103 24546 C3-1/8-T0-5112-F 0698-727 0 1 RESISTOR 7.87M 10 K 10% C TOP-ADJ 17-TRN 32997 3292W-1-103 24546 C3-1/8-T0-5112-F 0698-727 0 1 RESISTOR 7.87M 10 K 10% C TOP-ADJ 17-TRN 32997 3292W-1-103 24546 C3-1/8-T0-5112-F 0698-727 0 1 RESISTOR 7.87M 10 K 10% C TOP-ADJ 17-TRN 32997 3292W-1-103 24546 C3-1/8-T0-5112-F 0698-727 0 1 RESISTOR 7.87M 10 K 10% C TOP-ADJ 17-TRN 32997 3292W-1-103 24546 C3-1/8-T0-4221-F 0698-727 0 1 RESISTOR 7.87M 10 K 10% C TOP-ADJ 17-TRN 32997 3292W-1-103 24546 C3-1/8-T0-4221-F 0698-727 0 1 RESISTOR 7.87M 10 K 10% C TOP-ADJ 17-TRN 32997 3292W-1-103 24546 C3-1/8-T0-4221-F 0698-727 0 1 RESISTOR 7.	A2R8 A2R9 A2R10	0698-7212 0698-8615 2100-3097	9 8 7		RESISTOR 100 1% .05W F TC=0+-100 RESISTOR 75K 1% .05W F TC=0+-100 RESISTOR-TRMR 100K 10% C TOP-ADJ 17-TRN	24546 28480 32997	C3-1/9-TO-100R-F 0698-8615 3292W-1-104
A2R22	A2R14 A2R15 A2R16	0698-7298 0698-7236 0698-7253	9 7		RESISTOR 147K 1% .05W F TC=0+-100 RESISTOR 1K 1% .05W F TC=0+-100 RESISTOR 5.11K 1% .05W F TC=0+-100	24546 24546 24546	C3-1/8-T0-1473-F C3-1/8-T0-1001-F C3-1/8-T0-5111-F
A2R25 A2R28 A2R28 A2R28 A2R29 A2R29 A2R29 A2R29 A2R30 A3297 A2846 C3-1,8-1-02 A2840 A3297 A2846 C3-1,8-1-02 A2840 A3297 A2846 A3297 A2846 A2840 A3297 A2840	A2R19 A2R21 A2R22	0698-7247 0698-7261 0698-7253	8	1 1	RESISTOR 2.87K 1% .05W F TC=0+-100 RESISTOR 11K 1% .05W F TC=0+-100 RESISTOR 5.11K 1% .05W F TC=0+-100	24546 24546 24546	C3-1/8-T0-5111-F
A2S1 3101-2851 2 1 SWITCH 28480 3101-2851 A2U1 1NB7-8045 6 1 PREAMP HYBRID ASSEMBLY 28480 1NB7-8045 A2U2 1NB7-8039 8 1 CLOCK HYBRID ASSEMBLY 28480 1NB7-8039 A2U3 1826-0412 1 1 COMPARATOR PRON DUAL 8-DIP-P PKG 27014 LM393N A2U4 1826-0772 6 1 IC V RGLTR-ADJ-POS 1.2/32V TO-92 PKG 28480 1826-0772 A2U5 1826-0285 6 1 IC V RGLTR TO-92 04713 MC79LOSC A2U6 1826-0932 0 1 IC OP AMP PRON 8-DIP-C PKG 06665 OP-27FZ A2VR1 1902-3245 6 2 DIODE-ZNR 2.187 2.5% DO-35 PD=4W 28480 1902-3245	A2R25 A2R28 A2R29	2100-3091 0698-7224 2100-3286	3 6	1	RESISTOR-TRMR 2K 10% C TOP-ADJ 17-TRN RESISTOR 316 1% ,05W F TC=0+-100 RESISTOR-TRMR 10K 10% C TOP-ADJ 17-TRN	32997 24546 32997	3292W-1-202 C3-1/8-TO-316R-F 3292W-1-103
A2U5 1826-0295 6 1 1C V RGLTR TO 92 04713 MC79L05C 1826-0932 0 1 1C OP AMP PRON 8-DIP-C PKG 05665 OP-27FZ A2VR1 1902-3245 6 2 DIODE-ZNR 21.5V. 59/6 DQ-35 PQ=4W 28480 1902-3245	A2S1 A2U1 A2U2	3101-2851 1NB7-8045 1NB7-8039	2 6 8	1 1 1 1 1 1	SWITCH PREAMP HYBRID ASSEMBLY CLOCK HYBRID ASSEMBLY	28480 28480 28480	3101-2851 1NB7-8045 1NB7-8039
A2VR2 1902-3245 6 DIODE-ZINR 21.5V 5% DO-35 FLE-1917	A2U5 A2U6	1826-0285 1826-0932	6		IC V RGLTR TO-92	04713 06665	MC79L05C OP-27FZ
		, ,					
				A de la constanta de la consta			

See introduction to this section for ordering information

Hindicates factors selected value

Figure 6-2. A2 Circuit Board Component Location (Component Side)

Figure 6-3. A2 Circuit Board Component Location (Solder Side)

MANUAL BACKDATING CHANGES

INTRODUCTION

By following the instructions on this page, you can adapt this manual to any instrument with a serial number prefix lower or higher than the one on the title page.

APPLICATION

This manual applies directly to instruments with serial number prefixes on the title page. There are no earlier versions of the instrument (with lower serial number prefixes).

To adapt this manual to a later version (higher serial number prefix) instrument, refer to a Manual Changes Supplement. The supplement is keyed to this manual's print date and part number (on the title page) and is available free from Hewlett-Packard.

Additional information about serial number coverage is in Section 1 under INSTRUMENTS COVERED BY THE MANUAL.

SERVICE

INTRODUCTION

You will find in this section information concerning troubleshooting and repair of the HP 85027. Heed the caution signs or risk damaging the bridge. You may wish to read the Theory of Operation with its associated diagrams as an aid to troubleshooting.

Troubleshooting the bridge begins with performing the Operator's Check (Section 3) and the Performance Tests (Section 4). If the bridge does not pass the Performance Tests, refer to Adjustments in Section 5. If the problem persists, refer to Troubleshooting Procedures later in this section. Those procedures require the use of test equipment which is listed in Section 1, General Information.

You will also find the following inspection, repair and replacement procedures in this section:

- * Gaining Internal Access
- * Cable Continuity Check Power Cable Replacement
- * Input Port and Test Port Resistance Checks
- * A2 Circuit Board Assembly Replacement
- * Microcircuit Check A1 Bridge Microcircuit Assembly Replacement
- * Power Supply Check
- * Signal Path Check
- * Clock/Control Check
- * Connector Inspection
- * HP 85027A APC-7 Connector Repair

THEORY OF OPERATION

The HP 85027 can detect RF or microwave signals which are either 27.8 kHz squarewave modulated (AC mode) or unmodulated (DC mode). In both detection modes, the bridge provides a 27.8 kHz square wave signal for the analyzer to interpret and display.

In AC mode, the signal is amplitude modulated at the source. The bridge demodulates (envelop detects) this signal to produce a 27.8 kHz square wave signal whose peak-to-peak voltage corresponds to the magnitude of the signal at the bridge test port. Since only the modulated signal is detected, unmodulated broadband noise and extraneous signals are disregarded. Additionally, this technique provides nearly drift-free operation.

HP 85027A/B/C Service

In DC mode, the source signal is not modulated. Instead the bridge converts the signal into an equivalent DC voltage which it then chops at a frequency of 27.8 kHz. Finally it amplifies the chopped signal to simulate the signal produced by AC detection and outputs this signal to the analyzer. This technique is preferrable for devices such as some amplifiers with ALC circuits and very narrow bandwidth filters.

TROUBLESHOOTING PROCEDURES

If a problem persists after you have performed the Operator's Check in Section 3 or the Performance Tests in Section 4, perform the troubleshooting procedures outlined below.

CAUTION

The HP 85027 contains microcircuits which are highly sensitive to electrostatic discharge (ESD). Work only at a station equipped with an anti-static surface. Wear a grounded wrist strap. Do not touch the center contacts of the connectors with your fingers. Before you make a measurement, ground the leads of the digital multimeter by touching them to the grounded instrument chassis.

Gaining Internal Aceess

To obtain access to the interior of the HP 85027, proceed as follows:

- 1. Disconnect the bridge from the analyzer.
- 2. With the HP 85027A only, use a thin 1/2 inch open-end wrench to remove the coupling nut from the APC-7 test port connector.
- 3. Remove the two screws which hold the (test) port cover (end plate).
- 4. Remove the port cover.
- 5. Slide the top dress cover out of the bridge housing. The component side of the circuit board and the bridge assembly are now accessible.

Cable Continuity Check

- 1. Disconnect the HP 85027 from the analyzer and ground the leads of the DMM by touching them to the grounded chassis of the DMM.
- 2. Use a digital multimeter (DMM) to check the continuity of the conductors of the power cable (W1) from the connector pins to the wire connections inside the bridge housing. Table 8-1 lists the W1 connector pins and the corresponding wires.
- 3. If there are any discontinuities, replace cable W1 by following the instructions in Power Cable Replacement.

Table 8-1	Conductors	in Power	Cable	WI
$I \cup G \cap I \subset G^{m} I$.		116 X (7)1 C1	CHULL	7 5 16

Connector Pin	Conductor (Label)	Signal
1	White (W)	Output
2	Green (G)	Return
3	Yellow (Y)	Control
4	Blue (B)	-12.6v
5	Red (R)	+15v

Power Cable Replacement

- 1. To replace the power cable (W1), first open the bridge by following the instructions above in "Gaining Internal Access".
- 2. Unsolder the wires connected to the power cable/circuit board assembly.
- 3. Remove the two screws from the cable cover end platc.
- 4. Remove the 1/2 inch hex nut which fastens the cable to the end plate.
- 5. Replace the cable and reinstall it by performing in reverse order steps 1 through 4. Note that the pads on which the wires are soldered are labeled as indicated in Table 8-1.

Input Port and Test Port Resistance Checks

1. Disconnect the HP 85027 from the analyzer. Momentarily ground the leads of the DMM by touching them to its grounded chassis.

CAUTION

WORK STATIC-FREE. ESD can damage the highly sensitive microcircuits in the HP 85027 bridges.

- 2. Measure the resistance from the center contact of input port connector J1 to the center contact of test port connector J2. The resistance should be 33±2 ohms.
- 3. Measure the resistance from the center contact of input connector J1 to signal ground (the black/white wire connected to the microeircuit housing). The resistance should be 83±2 ohms.
- 4. Measure the resistance from the center contact of test port connector J2 to signal ground. It should be 83±2 ohms.
- 5. If any of the above results are not correct, the bridge microcircuit assembly A1 is defective and must be replaced: refer to "A1 Bridge Microcircuit Assembly Replacement.

Microcircuit Check

1. Connect the input port of the bridge to the RF out port of the RF plug-in or synthesized sweeper. Do not terminate the bridge test port.

- 2. Set the RF output to +13 dBm with the modulation on.
- 3. With a true RMS DMM, measure the voltage across the two output pins of the microcircuit.
- 4. The bridge diode is probably good if the reading in step 3 is approximately $0.07V_{\rm rms}$.
- 5. If the reading in step 3 is low, remove the self-adhesive plastic label with the note which explains the switch configuration and center the load potentiometer (R29, see Figure 5-2). Measure again. If the reading remains low, the microcircuit is defective and must be replaced.

A2 Circuit Board Assembly Replacement

- 1. To remove the circuit board, first open up the bridge and unsolder the power cable wires (see "Gaining Internal Access" and "Power Cable Replacement").
- 2. At the circuit board pads, unsolder the signal, signal ground and chassis ground wires from the microcircuit.
- 3. Remove the four screws and lockwashers which fasten the A2 circuit board to the standoffs.
- 4. Reverse the above procedure to install the repaired or replacement board.
- 5. Refer to Section 5, Adjustments, and perform them as indicated to match the A2 board to the A1 microcircuit.
- 6. Reassembly the remaining parts of the bridge.

A1 Bridge Microcircuit Assembly Replacement

- 1. Type the serial number of the HP 85027 on the rear panel label supplied with the new or replacement bridge assembly.
- 2. On the HP 85027A only, remove the coupling nut from the APC-7 test port connector with a thin 1/2 inch open-end wrench.
- 3. Remove the two screws holding the (test) port cover (end plate) and remove the port cover.
- 4. Remove the two screws holding the cable cover (end plate). This will allow the cable and cable cover to move freely.
- 5. Unsolder the two white/black wires (signal ground and chassis ground) and the white/red wire (signal) at the microcircuit. Remove the capacitor from the microcircuit pins.
- 6. Remove the four screws and lockwashers which fasten the A2 Circuit Board Assembly to the standoffs.
- 7. Remove the A2 Circuit Board Assembly with the cable cover and cable from the extruded housing.

- 8. Turn the bridge over. Remove the four screws which fasten the microcircuit assembly. Take out the microcircuit assembly. Note the stainless steel spacer under it.
- 9. Install the spacer over the screw holes and the bridge microcircuit assembly over the spacer. Reinstall the four microcircuit assembly screws.
- 10. Perform in reverse sequence steps 2 through 8.
- 11. Refer to Section 5, Adjustments, and perform them as required to match the microcircuit to the preamplifier and pass the performance tests.
- 12. Attach the new label to the bridge housing.

Power Supply Check

- 1. Connect the power cord of the bridge (W1) to the analyzer and turn on the analyzer.
- 2. Refer to Figure 8-1 and check the power supply voltages of +15, -12.6, +8 and -5 volts at the 4 pads indicated. Since the +15V and -12.6V are supplied by the analyzer, those voltages are specified in the analyzer's manual. The +8V should be $+8.3\pm0.3V$; -5V should be $-5\pm0.2V$.

Figure 8-1. A2 Circuit Board Power Supply Check Points

3. Refer to Figure 8-1 and check the power supplies at the various components as indicated by malfunction.

Signal Path Check

- 1. Check the output of the buffer amp at U6 pin 6. The voltage should be the same as that measured in step 3 of the microcircuit check. It may be offset.
- 2. Check the output of U1 pin 14 with the gain potentiometer (R5) centered. The voltage should be approximately 0.44V_{rms}.

Clock/Control Check

- 1. With the HP 85027 configuration switch set at [HP8756/HP8755], verify that there is no squarewave output at U2 pins 1, 2 and 4.
- 2. Set the HP 85027 configuration switch to the [HP8757] position.
- 3. Configure the HP 8757A for DC mode.
- 4. Verify a squarewave output of 27.778 kHz at U1 pin 14.
- 5. If U1 pin 14 does not have a squarewave output, check for a squarewave of 27.778 kHz at U1 pins 2 and 3, also U2 pins 1 and 2; 55.555 kHz at U1 pin 9, also U2 pin 4.

CONNECTOR INSPECTION

Periodically inspect the connectors visually and mechanically. A bad connector can damage a good connector on the first connection. The effort and expense of replacing bridges with damaged connectors can be lessened by using good connectors. If a connector fails the visual or mechanical inspection or, in use doesn't feel right, don't use it

Visual Inspection

Inspect connectors with an illuminated, 4-power magnifying glass. The lighting is crucial, the exact power is not. Normal room lighting, especially oblique desk lamp lighting, casts shadows. The shadows can mask the small defects you are trying to expose. Magnifying glasses with integral lighting provide shadowless, axial illumination. They are readily available from general equipment suppliers. Get one and use it.

Examine connectors for obvious problems such as deformed or clogged threads, contamination or corrosion. Concentrate on the contact surfaces. Look for burrs, scratches, rounded shoulders or other signs of wear or damage. Defects which you can see with the magnifying glass can degrade performance. Replace defective connectors.

If a connector is dirty, clean it. Work static free. Refer to Figure 8-3 for cleaning suggestions. Note that those suggestions apply equally to 3.5mm and Type-N connectors. Try blowing off the dirt with compressed air first. Brush or wipe any remaining dirt from the surface carefully. Use trichlorotrifluoroethane (liquid Freon) sparingly as a cleaning solvent if need be. Do not use abrasives or other solvents which could damage the thin metal plating or the plastic dielectric supporting element.

NOTE

TRY TO CLEAN THE CONNECTOR WITH COMPRESSEO AIR BEFORE RESORTING TO SWABS.

WRAP THIN FOAM OR A LINT-FREE CLOTH AROUNO A SLENOER WOODEN ROO (SUCH AS A TOOTHPICK) FOR CLEANING AREAS THAT ARE TOO SMALL FOR THE SWABS.

CIRCULAR STROKES LEAVE TORN FIBERS SNAGGED ON EOGES OF CENTER COLLET. USE CIRCULAR STROKES FOR OUTER CONOUCTOR FACE ONLY.

Figure 8-3. Cleaning APC-7 Connectors

HP 85027A/B/C Service

Mechanical Inspection

Gaging the Precision 3.5mm Connector: Use a precision 3.5mm connector gage to check the mechanical dimensions of the connector. The tolerances are tight, but must be met to ensure perfect mating between the connector surfaces. Perfect mating both ensures a good electrical match and reduces the possibility of connector damage.

The recession of the center conductor is the critical dimension. The maximum allowable recession of the center conductor is 0.003 in. (0.08mm). The minimum allowable recession of the center conductor is 0.00 in. Any center conductor which protrudes beyond the outer conductor mating plane is out of tolerance. It will permanently damage any connector attached to it by buckling the female contact fingers. This damage and the resultant electrical interference is often noticeable as a power hole of several dB at about 22 GHz.

Any center conductor which is recessed too far (>0.003 in.) behind the outer conductor mating plane will cause poor electrical contact and high reflections.

Before using the connector gage to measure the connector, visually inspect the end of the gage and the calibration block. Dirty or damaged gage facings can cause dirty or damaged connectors. Refer to Figures 8-5 and 8-6 to see how to use and zero the gage. Refer to Figure 8-7 to see how to measure precision 3.5mm connectors. Note that a plus (+) reading on the gage indicates a recession. Thus center conductor readings must be between +0.000 and +0.003 in.

If you will be mating precision 3.5mm connectors with SMA connectors, please refer to Figure 8-4, SMA and precision 3.5mm connectors.

CAUTION: SMA CONNECTORS

SMA connectors will mate with precision 3.5mm connectors. But use caution to prevent accidental damage due to worn or out-ot-specification connectors. Such connectors can destroy a precision 3.5mm connector even on the very first connection. Hewlett-Packard recommends that you keep two points in mind when you mate SMA with 3.5mm connectors.

(1) SMA connectors are not precision mechanical devices. They are very susceptible to mechanical wear and are often found to be out of specification prior to first use. Thus gaging SMA connectors is the single most important step you can take to prevent damaging your equipment. It takes very little time as shown in Section 8.

Also take care with initial alignment: push the two connectors straight together without overtightening or rotating either center conductor. Use a torque wrench (HP part number 8710-1582) for the final connection. This torque (5 lb-in, 60 N-cm) is less than is used when mating 3.5mm connectors together. Use connector-savers for an extra margin of safety.

(2) Important structural and dimensional differences exist between these two types of connectors. Thus when an SMA connector is mated to a precision 3.5mm connector, the connection will typically exhibit a discontinuity match at about 20 GHz. This mismatch is less than when two SMA connectors are mated together although it is higher than when precision 3.5mm connectors are mated together.

PRECISION 3.5mm CONNECTOR

SMA CONNECTOR

Figure 8-4. SMA and Precision 3.5mm Connectors

Figure 8-5. Precision 3.5mm (m) Connector Gage

Figure 8-6. Zeroing Precision 3.5mm (m) Connector Gage

Figure 8-7. Gaging Precision 3.5mm (m) Connector

HP 85027A/B/C Service

Gaging the APC-7 Connector: APC-7 connectors have 3 parts which determine the 2 critical dimensions in terms of mating surfaces. Figure 8-10 shows these parts and their critical dimensions. The outer conductor may be recessed or protruding from the extreme end of the connector coupling sleeve. That amount of recession or protrusion is not critical because the important dimensions are relative to the plane of the outer conductor itself. The center conductor is a very thin tube which holds the center collet. The center conductor must recede from the plane of the outer conductor. The center conductor is rigid and serves only to hold the center collet in place. It is the center collet which must protrude to make contact. Note that the center collet is spring loaded and thus can retract without damage when mated.

Refer to Figures 8-8, 8-9 and 8-10 to see how to read and zero the APC-7 gage and how to use it to gage APC-7 connectors.

If the center collet is damaged, and the other parts of the connector are neither damaged nor excessively worn, you can replace the collet. Refer to Figure 8-11 for instructions.

Figure 8-8. The APC-7 Connector Gage

Figure 8-9. Zeroing the APC-7 Gage

ALLOWABLE RANGE (ALL CONNECTORS): +0.002 INCH TO +0.010 INCH

CENTER COLLET MUST PROTRUCE BEYONO PLANE OF OUTER CONDUCTOR 0.002 -0.010 INCH (0.05 - 0.25 mm).

Figure 8-10. Gaging APC-7 Connectors

REMOVING OLD COLLET. REPLACING OLD COLLET, OR INSERTING NEW COLLET. BLUNT PLASTIC ROO PUSH LIGHTLY TO SNAP INTO PLACE. **FORCEPS**

Figure 8-11. Collet Removal and Replacement, APC-7 Connectors