6/1/24, 1:45 PM CL_NPC

Il problema CL è NP-completo

Dati un grafo non orientato G=(V,E) ed un intero $k\in\mathbb{N}$, esiste un sottoinsieme di almeno k nodi tale che ogni coppia di nodi in quel sottoinsieme è collegata da un arco?

- $\mathcal{I}_{CL} = \{ \langle G = (V, E), k \rangle : G \text{ è un grafo non orientato e } k \text{ un intero positivo } \}.$
- $\mathcal{S}_{CL}(G,k) = \{ C \subset V \}.$
- $\pi_{CL}(G, k, \mathcal{S}_{CL}(G, k)) = \exists C \in \mathcal{S}_{CL}(G, k) : |C| \ge k \land \forall (u, v) \in C[(u, v) \in E].$

Dimostriamo che $CL \in \mathbf{NP}$ mostrando un certificato che sia verificabile in tempo polinomiale: un certificato è un sottoinsieme C di V e per verificare che C è effettivamente una clique per G, ossia che C soddisfa

 $\pi_{CL}(G,k,\mathcal{S}_{CL}(G,k))$, dobbiamo esaminare ciascuna coppia di nodi $u,v\in C$ e verificare che $(u,v)\in E$, perciò verifichiamo un certificato in tempo O(|V|2|E|)

Dimostriamo che CL è completo per ${\bf NP}$ riducendo polinomialmente IS a CL.

Trasformiamo una istanza $\langle G=(V,E),k\rangle$ di IS nell'istanza $\langle G^c=(V,E_c),k\rangle$ di CL, in cui G^c è il grafo complemento di G: (u,v) è un arco di G^c se e soltanto se (u,v) non è un

arco di G, ossia $E^c = \{(u, v) : (u, v) \notin E\}$.

 $I \subseteq V$ è un insieme indipendente per G se e soltanto se I è una clique per G^c , ossia, $\langle G = (V, E), k \rangle$ è una istanza sì di IS se e solo se $\langle G^c = (V, E^c), k \rangle$ è una istanza sì di CL e calcolare $\langle G^c = (V, E^c), k \rangle$ richiede tempo polinomiale in $|\langle G = (V, E), k \rangle|$

6/1/24, 1:45 PM CL_NPC