WHAT IS CLAIMED IS:

1	1. A method for processing a film over a substrate in a process		
2	chamber, the method comprising:		
3	flowing a process gas suitable for processing the film over the substrate		
4	into the process chamber in accordance with a predetermined algorithm specifying		
5	process conditions;		
6	monitoring a parameter during processing of the film over a thickness		
7	greater than 3 μm; and		
8	changing the process conditions in accordance with a correlation among		
9	a value of the parameter, an optical property of the film, and the process conditions.		
1	2. The method recited in claim 1 further comprising forming a		
2	plasma in the process chamber from the process gas.		
1	3. The method recited in claim 1 wherein monitoring the parameter		
2	comprises monitoring the parameter during processing of the film over a thickness		
3	greater than 5 μm.		
1	4. The method recited in claim 1 wherein the predetermined		
2	algorithm is optimized to control a vertical profile of the film.		
1	5. The method recited in claim 1 wherein the predetermined		
2	algorithm is optimized to control a horizontal profile of the film.		
1	6. The method recited in claim 1 wherein changing the process		
2	conditions is performed in response to a change in the parameter.		
1	7. The method recited in claim 1 wherein the parameter comprises a		
2	process parameter.		
1	8. The method recited in claim 1 wherein the parameter comprises a		
2	film-property parameter.		
1	9. The method recited in claim 8 wherein the parameter comprises a		
2	reflectometry measurement.		

1	10.	The method recited in claim 8 wherein the parameter comprises		
2	an ellipsometry measurement.			
1	11.	The method recited in claim 1 wherein the parameter comprises a		
2	stress uniformity of	the film.		
1	12.	The method recited in claim 1 wherein changing the process		
2	conditions is perform	ned by a trained evaluation system.		
1	13.	The method recited in claim 12 wherein the trained evaluation		
2	system comprises an	expert system.		
1	14.	The method recited in claim 12 wherein the trained evaluation		
2	2 system comprises a neural network.			
1	15.	The method recited in claim 1 wherein changing the process		
2	conditions is performed to maintain a substantially constant value for the optical			
3	property of the film	throughout processing the film.		
1	16.	The method recited in claim 1 wherein changing the process		
2	conditions is performed to deposit the film with a desired variation in the optical			
3	property of the film	throughout processing the film.		
1	17.	The method recited in claim 1 wherein the process gas comprises		
2	a silicon-containing gas and an oxygen-containing gas.			
1	18.	The method recited in claim 1 wherein processing the film		
2	comprises depositing the film.			
1	19.	The method recited in claim 1 wherein processing the film		
2	comprises etching th	ne film.		
1	20.	The method recited in claim 1 further comprising annealing the		
2	film.			
1	21.	A method for forming an optical waveguide over a substrate in a		
2	process chamber, the	e method comprising:		
3	formi	ng a placma in the process chamber.		

4	flowing a silicon-containing gas and an oxygen-containing gas into the			
5	process chamber in accordance with a predetermined algorithm specifying process			
6	conditions to deposit a film over the substrate;			
7	monitoring a refractive-index value of the film during deposition of the			
8	film over a thickness greater than 3 µm; and			
9	changing the process conditions in accordance with a correlation			
10	between the refractive-index value and the process conditions.			
1	22.	The mothed recited in claim 21 wherein manifesing the		
1		The method recited in claim 21 wherein monitoring the		
2	refractive-index value comprises monitoring the refractive-index value of the film			
3	during deposition of	the film over a thickness greater than 5 μm.		
1	23.	The method recited in claim 21 wherein the predetermined		
2	algorithm is optimized to control a vertical profile of the film.			
1	24.	The method recited in claim 21 wherein the predetermined		
2	algorithm is optimize	ed to control a horizontal profile of the film.		
1	25.	The method recited in claim 21 wherein changing the process		
2				
1	26.	The method recited in claim 25 wherein the trained evaluation		
2	system comprises an	expert system.		
1	27.	The method recited in claim 25 wherein the trained evaluation		
2	system comprises a neural network.			
1	28.	The method recited in claim 21 wherein changing the process		
2	conditions is performed to maintain a substantially constant value for the refractive-			
3	index value throughout the deposition.			
1	29.	The method recited in claim 21 wherein changing the process		
2		ned to deposit the film with a desired variation in the refractive-		
3	index value throughout the deposition.			
1	30.	The method recited in claim 21 wherein changing the process		

conditions comprises increasing an RF source power for maintaining the plasma.

1		31. The method recited in claim 30 wherein the RF source power is	
2	increased discr	etely.	
1		32. The method recited in claim 30 wherein the RF source power is	
2	increased conti	nuously.	
1	·	33. The method recited in claim 21 further comprising annealing the	
2	film.		
1	·	34. A thick-film processing system comprising:	
2		a housing defining a process chamber;	
3		a plasma-generating system operatively coupled to the process chamber;	
4		a substrate holder configured to hold a substrate during substrate	
5	processing;	<u> </u>	
6	-	a gas-delivery system configured to introduce gases into the process	
7	chamber;		
8		a pressure-control system for maintaining a selected pressure within the	
9	process chamber;		
10	-	a sensor disposed to monitor a parameter during processing within the	
l 1	process chamb		
12		a controller for controlling the plasma-generating system, the gas-	
13	delivery system, the sensor, and the pressure-control system; and		
14		a memory coupled with the controller, the memory comprising a	
15	computer-read	able medium having a computer-readable program embodied therein for	
16	directing operation of the thick-film processing system, the computer-readable program		
17	including:		
8		instructions to control the plasma-generating system to form a	
9	plasma in the p	rocess chamber;	
20		instructions to control the gas-delivery system to flow a process	
21	gas suitable for depositing the film over the substrate in accordance with a		
22	predetermined algorithm specifying process conditions;		
23		instructions to control the sensor to monitor the parameter during	
24	processing of the film over a thickness greater than 3 µm; and		

25 instructions to change the process conditions in accordance with 26 a correlation among a value of the parameter, an optical property of the film, and the 27 process conditions. 35. 1 The thick-film processing system recited in claim 34 wherein the 2 instructions for monitoring the parameter comprise instructions for monitoring the 3 parameter over a thickness greater than 5 µm. 1 36. The thick-film processing system recited in claim 34 wherein the 2 predetermined algorithm is optimized to control a vertical profile of the film. 1 37. The thick-film processing system recited in claim 34 wherein the 2 predetermined algorithm is optimized to control a horizontal profile of the film. 1 38. The thick-film processing system recited in claim 34 wherein the 2 instructions to change the process conditions are executed in response to a change in 3 the parameter. 1 39. The thick-film processing system recited in claim 34 wherein the 2 sensor comprises a reflectometer. 1 40. The thick-film processing system recited in claim 34 wherein the 2 sensor comprises an ellipsometer. 1 41. The thick-film processing system recited in claim 34 wherein the 2 sensor is configured to measure a stress of the film. 1 42. The thick-film processing system recited in claim 34 wherein the 2 instructions for changing the process conditions are executed to maintain a substantially 3 constant value for the optical property of the film throughout depositing the film. 43. The thick-film processing system recited in claim 34 wherein the 1 2 instructions for changing the process conditions are executed to deposit the film with a

desired variation in the optical property of the film.

3