# Software Defined Network

# What is SDN?



# What is SDN?



# What is SDN?

- Separate the forwarding hardware and control decisions
- Centralized in software-based controllers (the control plane)
- Network devices = packet forwarding devices (the data plane)
- Common SDN architecture (ForCES, OpenFlow)

# SDN Architectures

- ForCES
- OpenFlow
- OpenFlow is overwhelmingly more common
- OpenFlow has hardware support from networking companies

# 

### ForCES

- The control element(CE)
- The forwarding element(FE)

### ForCES

#### ForCES Architecture - FE

FE Model



- ForCES Protocol
  - To provide a universal standardized control interface for FEs
- LFB Logical Functional Block
  - · e.g., Classifier LFB, IPv4 LPF LFB, IPv6 LPF LFB, Scheduler LFB
- Datapath
  - Can configure dynamically LFB topology for supporting various over IP services

## ForCES

- The control element(CE) separate from the forwarding element(FE)
- The FEs use hardware to handle packet
- The CEs execute control and signaling function + instruct the FEs
- The Logical Function Block(LFB) enables the CEs to control the FEs
  (Configuration + process)

# Openflow

The control plane device

The data plane device



# Openflow

- 1) Controller
- 2) Openflow switch
  - Abstract Layer
  - Flow table
    - Match Field (Rule)
    - Set of Instructions
    - Counter



# ForCES vs OpenFlow: What are the differences?

- ForCES uses Logical Function Blocks (LFBs) while OpenFlow uses flow tables
- Every router in ForCES has both the control plane and the data plane
- In OpenFlow however, there are separate control devices and forwarding devices
- Both can be "programmed" to achieve the same task

# Forwarding Devices

- Computational tasks are offloaded to the controller
- Forwarding devices are called just "switches"
- Forwarding devices still need to process OpenFlow rules
  - General-purpose CPU or special network acceleration card can be added
- Forwarding devices have small memory
  - OpenFlow rules are more complex than traditional IP rules
  - Many solutions by multiple groups exist as extensions to OpenFlow

## The Controller

- Usually a computer running control software
- Applications interact with controllers using REST API and can be developed in any languages
- Control Scalability
  - Modern and upcoming controllers can support many flow requests and switches now
  - Greatly impacted by Control models
- Control models
  - Can be centralized or distributed
  - Flow decisions take time, should never consider each packet separately
  - Flows should be grouped whenever possible
  - Some policies should be pushed to the switches

#### Communications

- Controller-Switch (Southbound)
  - Must be secure as the protocol (OpenFlow) is open source
    - OpenFlow 1.3.0 has TLS support and (some) support for certificate exchange
    - No fine-grained (permission control) specified yet by the standard
- Controller-Service and Controller-Controller (Northbound)
  - No standards defined yet as of now

#### SDN Development tools

Simulation tool

Mininet

Native SDN Switches



Software Switch Platforms





## Open vSwitch

enable massive network automation through programmatic extension distribution across multiple physical servers similar to VMware





#### SDN BENEFICIAL

- Enterprise Networks
- Data Centers
- Infrastructure-based Wireless Access Networks
- Optical Networks
- Home and Small Business

#### Statistic on Datacenter

network subset which satisfies current traffic conditions and

turns off switches that are not needed.

• 3 billion kWh in 2006.

- energy savings between 25-62%
- 0.75 1.86 billion kWh