CS 4400 Computer Systems

LECTURE 3

Representing integers
Integer arithmetic

Encoding Integers

- Two different ways bits can be used to encode integers:
 - unsigned only nonnegative numbers represented
 - signed negative, zero, and positive values represented
- Both encodings represent a finite range of integers.

type declaration (C)	min	max
char	-128	127
unsigned char	0	255
short	-32768	32767
unsigned short	0	65535
int	-2147483648	2147483647
unsigned int	0	4294967295

Unsigned Integers

- Let vector $\vec{x} = [x_{w-1}, x_{w-2}, ..., x_0]$ denote a w-bit integer value.
- Treat x as a number written in binary notation to obtain the unsigned interpretation.

$$B2U_w(\vec{x}) = \sum_{i=0}^{w-1} x_i * 2^i$$

- $UMin_w = [00 ... 00] = 0$
- $UMax_w = [11 ... 11] = 2^w 1$
- B2U_w: $\{0,1\}^w \to \{0, ..., 2^w 1\}$
- Bijection—associates a unique value to each w-bit vector.

Signed Integers

 The most common computer representation of signed integers is two's complement.

$$B2T_w(\vec{x}) = -x_{w-1} * 2^{w-1} + \sum_{i=0}^{w-2} x_i * 2^i$$

- Sign bit—the MSB, 1: negative and 0: nonnegative.
- $TMin_w = [10 \dots 00] = -2^{w-1}$
- $TMax_w = [01 \dots 11] = 2^{w-1} 1$
- B2T_w: $\{0,1\}^w \to \{-2^{w-1}, \dots, 2^{w-1} 1\}$
- Is B2Tw a bijection?

Exercise: Encoding Integers

• Let w = 4

Hex	Binary	B2U _w	B2T _w
0xA	[1010]	$2^3+2^1=10$	$-2^3 + 2^1 = -6$
0xB			
0xC			
0xD			
0xE			
0xF			

• Let w = 8. Compute $B2T_w$ for hex $0 \times AE$.

Exercise: Encoding Integers

Let w = 4

Hex	Binary	B2U _w	B2T _w
0xA	[1010]	$2^3+2^1=10$	$-2^3 + 2^1 = -6$
0xB	[1011]	$2^3 + 2^1 + 2^0 = 11$	$-2^3 + 2^1 + 2^0 = -5$
0xC	[1100]	$2^3+2^2=12$	$-2^3 + 2^2 = -4$
0xD	[1101]	$2^3 + 2^2 + 2^0 = 13$	$-2^3 + 2^2 + 2^0 = -3$
0xE	[1110]	$2^3 + 2^2 + 2^1 = 14$	$-2^3 + 2^2 + 2^1 = -2$
0xF	[1111]	$2^3+2^2+2^1+2^0=15$	$-2^3 + 2^2 + 2^1 + 2^0 = -1$

• Let w = 8. Compute $B2T_w$ for hex $0 \times AE$.

More on Two's Complement

- The two's complement range is asymmetric.
- $UMax_w > 2 * TMax_w$. Why?
- Both encodings represent numeric value 0 the same way.
- The C standard does not require two's complement for signed integers.
 - Nearly all machines use it anyway. Does this affect portability?
 - See limits.h for constants delimiting ranges of different integer data types for a particular compiler and machine.
 - Other ways of representing signed integers?

Question

 When is ~x equivalent to each of the following expressions?

```
A. x
```

B.
$$-x$$

C.
$$x + 1$$

D.
$$-x + 1$$

E.
$$-x - 1$$

Signed-Unsigned Conversions

- Since both B2U_w and B2T_w are bijections, they have well-defined inverses, U2B_w and T2B_w.
- Consider $U2T_w(\vec{x}) = B2T_w(U2B_w(\vec{x}))$
 - Takes number between 0 and 2^{w-1} , yields number between -2^{w-1} and $2^{w-1}-1$.
 - Both numbers have identical bit representations.
- Conversely, consider $T2U_w(\vec{x}) = B2U_w(T2B_w(\vec{x}))$
- Example (8-bit): [10101010], 170 unsigned, -86 signed
- How do these functions affect signed and unsigned in C?

Unsigned and Signed in C

```
int x = -1;
unsigned ux = (unsigned) x; // ux is UMax_w
```

- In C, values are signed unless
 - explicitly type-cast (e.g., (unsigned short))
 - put U in constant (e.g., 1234U)
 - doesn't fit in signed long
 - starts 0x and doesn't fit in signed int
- Use conversion codes %d (or %i), %u to print signed and unsigned decimal values, respectively.

Implicit Casts in C Expressions

- The values in a C expression are "promoted" to signed integer type before the expression is evaluated
 - Unsigned values smaller than int become signed
 - Unsigned values of int size (or larger) stay unsigned
 - Why?
- When signed and unsigned values of the same size are mixed in an expression, the signed values are converted into unsigned
- These language features interact poorly sometimes

Example: Unsigned and Signed

```
#include <stdio.h>
                             unix> gcc unsigned_signed.c
                             unix> ./a.out
int main(void) {
 int tx, ty;
                             -96, 15, 4294967200, 15
 unsigned ux, uy;
                             -81
 tx = -96i
 uy = 15;
 ux = (unsigned) tx; // explicit cast to unsigned
                    // implicit cast to signed
 ty = uy;
 printf("%d, %d, %u, %u\n", tx, ty, ux, uy);
 printf("%d\n", ux + ty); // WHY = -81??
 return 0;
```

unsigned_signed.c

Expanding Bit Representations

- A common operation is to convert between integers of different word sizes, retaining the same numeric value.
- To convert from smaller word size to larger:
 - for unsigned, simply add leading 0s zero extension
 - for signed, add leading Xs such that X=MSB sign extension
- Example:

What does this program print?

```
#include <stdio.h>
int main (void)
  long a = -1;
 unsigned b = 1;
  printf ("%d\n", a > b);
  return 0;
```

Truncating Bit Representations

- To convert from larger word size to smaller (wbit to k-bit, where w > k):
 - drop high-order w-k bits truncation
- Truncation of a number can alter its value, a form of overflow.

```
short x = (int) 12345; // 0x00003039, x is 12345 short y = (int) 53191; // 0x0000CFC7, y is -12345
```

- For unsigned x, truncation to k-bit equivalent to x mod 2k.
- For signed x?

Advice on Unsigned

- Implicit casts are tricky (because they are easy to overlook) and can lead to bugs.
- To avoid such bugs, one might consider using only signed values.
 - Few languages other than C support unsigned values.
 - Java supports only signed values, requires two's complement, and guarantees that >> is an arithmetic shift.
- Unsigned values are very useful when thought of as a collection of bits (flags), with no math interpretation.

Unsigned Addition

- Consider w-bit unsigned values x and y, 0 ≤ x, y ≤ 2w-1.
 - Representing the sum could require w+1 bits, $0 \le x + y \le 2w+1-2$
- In math, we cannot place any bound on the word size required to fully represent the results of arithmetic ops.
- Unsigned arithmetic is a form of modulo arithmetic.
 - Unsigned addition is equivalent to $(x + y) \mod 2w$.
 - unsigned_add(x, y) = x + y, if $x + y < 2^w$
 - unsigned_add(x, y) = $x + y 2^w$, if $2^w \le x + y < 2^{w+1}$
- Example: unsigned short x = 65530 + 6; // x is 0

Unsigned Overflow

- An arithmetic operation is said to overflow when the full integer result cannot fit within the limits of the data type.
- In C, overflow is not signaled as an error.
 - Some types of overflow <u>may</u> be signaled with a warning.
- We know that overflow has occurred during unsigned integer addition s = x + y, if s < x (equivalently, if s < y).
- Example:

```
unsigned x = ~0;
unsigned y = 2;
unsigned s = x + y;
if(s < x) { ... } // overflow</pre>
```

Two's Complement Addition

- Consider w-bit values x and y, $-2^{w-1} \le x$, $y \le 2^{w-1}-1$.
 - Representing the sum could require w+1 bits, $-2^w \le x + y \le 2^{w}-2$
- We must truncate the result to w bits.
 - However, this is not as familiar as modulo arithmetic.
- The w-bit sum is the same as for unsigned addition.

$$U2T_{w}([(x + y) \text{ mod } 2^{w}])$$

- Both positive and negative overflow can occur.
- These overflows are undefined behavior in C and C++

What does this program do?

```
#include <stdio.h>
#include <limits.h>
int foo (int x) {
  return (x+1) > x;
int main (void)
  printf ("%d\n", (INT MAX+1) > INT MAX);
  printf ("%d\n", foo(INT MAX));
  return 0;
```

Output (depends on compiler version)

```
$ gcc overflow.c -02
$ ./a.out
$ clang overflow.c -02
$ ./a.out
```

Cases of Overflow

- Negative overflow—if $-2^{w} \le x + y < -2^{w-1}$.
 - both x and y must be negative
 - a nonnegative integer is the result (counter to usual math)
 - twoscomp_add(x, y) = $x + y + 2^w$
- *No overflow*—if $-2^{w-1} \le x + y < 2^{w-1}$.
 - twoscomp_add(x, y) = x + y
- Positive overflow—if $2^{w-1} \le x + y < 2^w$.
 - both x and y must be positive
 - a negative integer is the result (counter to usual math)
 - twoscomp_add(x, y) = $x + y 2^w$

Unsigned Multiplication

Consider w-bit unsigned values x and y, $0 \le x$, y $\le 2^w-1$.

• The product could require 2w bits, $0 \le x * y \le (2^w-1)^2$

We must truncate the result to w bits.

- In C, the low-order w bits are retained as the result.
- Equivalent to computing the product mod 2^w.

Example:

```
unsigned short x = 1 << 15; // 32768 x *= 3; // 32768
```

Two's Complement Multiplication

- Consider w-bit values x and y, $-2^{w-1} \le x$, $y \le 2^{w-1}-1$.
 - The product could require 2w bits, $-2^{2w-2} + 2^{w-1} \le x * y \le 2^{2w-2}$
- We must truncate the result to w bits.
 - However, this is not as familiar as for unsigned multiplication.
- The w-bit product is the same as for unsigned multiply.

$$U2T_{w}([(x * y) mod 2^{w}])$$

Signed multiplication overflows in C are undefined

Multiplication by Powers of Two

- Integer multiplication used to be slow (≥ 12 cycles) compared to other integer operations.
 - addition, subtraction, bit-level ops, and shifts—1 cycle
 each
- An important (compiler) optimization was to replace multiplications by constant factors with shifts and adds.
- Let x be an integer. For any $k \ge 0$, $x * 2^k$ is equivalent to adding k 0's to the right of the bit representation of x.
- Example:

```
unsigned int = 11 << 3;  // 88
int = -11 << 3;  // -88
```

Division by Powers of Two

- Integer division was also slow (≥ 30 cycles).
- Let x be an unsigned integer. For any k ≥ 0, x / 2^k is equivalent to adding k 0's to the left of the bit rep for x.
 - logical shift
- Let x be an signed integer. For any $k \ge 0$, $x / 2^k$ is equivalent to adding k b's to the left of the bit rep for x.
 - b is the value of x's MSB, arithmetic shift
 - What if x < 0?
- Example:

```
int x = 55 >> 3i // 6
int y = -55 >> 3i // -7 (should be -6)
```

Biasing

- If x < 0, integer division should round negative results up toward zero. Right shifting does not accomplish this.
- To correct for this improper rounding, we must "bias" the value before shifting.
 - First add 2^k -1 to x.
- For x, represented with two's complement and using arithmetic shifts, $x / 2^k$ is equivalent to

```
(x<0 : (x + (1<< k)-1) : x) >> k
```

• Example: int y = (-55 + (1 << 3) - 1) >> 3i // -6