

Overview

- ➤ Background
 - o Soft bias?
 - Fricative context impacts vowel perception
 - Coarticulation?
 - Sensitivity to interactions in the acoustics?
- Modeling prior work
- Model predictions
- > Future directions

Background

Soft biases on phonotactics

- Absolute (hard) biases
 - O *FRICATIVES
 (Barlow, 1997; Barlow & Gierut, 1999)
- "Soft" biases → gradient phenomena
 - Phonological markedness as ease of learnability
 - Preferences that can be overridden

Soft biases on *fricative-vowel* phonotactics

- Several comparable phonotactic constraints on fricative-vowel combinations
 - sibilant place contrasts in the context of [i] in …
 - Japanese (Vance, 2008)
 - /∫u/, /∫i/, /su/, */si/
 - Chinese "dialects" (Li, 2021)
 - Chakobo (Panoan); Telugu (Dravidian) (Lee-Kim, 2014)
- Do such contrasts arise, at least in part, from perceptual biases?

Anticipatory effects in perception (/sV/, /JV/)

- Listeners can anticipate the category of the vowel during aperiodic energy of the fricative, even before hearing the periodic energy of the vowel
 - (Yeni-Komshian & Soli, 1981; Galle et al., 2019)
- Fricative noise influences vowel categorization (Whalen, 1989)
- Vowel F2 also influences fricative categorization (Kunisaki & Fujisaki, 1977; Mann & Repp, 1980; Whalen, 1981)
- Probably due to coarticulation

Coarticulation

- Articulation of vowel begins during the fricative
 - at some point, fricative and vowel are articulated simultaneously
- Can be observed in the acoustics
- Cues listeners to both the fricative and vowel simultaneously

Coarticulation

- /s/:
 - more anterior constriction
 - SHORTER front cavity
 HIGHER frication noise
 - LONGER back cavityLOWER F2
- /ʃ/:
 - more posterior constriction
 - LONGER front cavityLOWER frication noise
 - SHORTER back cavity

HIGHER F2

Is coarticulation all we need?

- Anticipation is a domain-general cognitive ability
- Perceptual informativity of coarticulation is well established
- Still not clear whether it accounts for the totality of the anticipation effects
- Listeners might have processing biases that contribute to anticipation, independent of what is present in the speech signal

Whalen (1989): Experiment 2

- "Fricative noise can influence vowel categorization"
- Naturally produced fricative (/s/, /J/) noise
- Vowels synthesized along a continuum between /u/ & /i/.
- \bullet Fricatives were excised from /si/, /su/, / \int i/ and / \int u/ recordings
 - o Fricative acoustics contained coarticulation for the vowel context
 - Participants had to judge category of ambiguous vowel as /i/ or /u/

Whalen (1989): Key takeaways

 fricatives excised from /u/ contexts condition more /u/ responses than those excised from /i/ contexts

• The higher frequencies associated with /s/ condition more /u/ responses (lower F2) than the lower frequencies associated with /∫/

Questions left open

• Can we observe the effect of fricative context on vowel perception without coarticulation?

 Can we observe similar patterns of discrimination along a continuum, rather than discrete categories?

Model

Deriving Whalen (1989) results in DFT

Remember:

- Fricative spectral peak frequencies ← size of the cavity in front of the constriction during generation of aperiodic energy
- F2 at the onset of voicing ← resonance of the back cavity;
 - periodic energy might correspond with spectral peak in preceding fricative turbulence

Deriving Whalen (1989) results in DFT

 Distinct neural populations process aperiodic and periodic energy in speech sounds
 (Yrttiaho et al., 2011)

 Our model: coupled DNFs independently detecting aperiodic and periodic energy

peak frequency

higher expected F2 from $/\int/$

Whalen (1989): Model

Whalen (1989): Model

Model predictions

"Attraction effect":

- Listeners are more likely to perceive lower F2s as "same" for /s/ stimuli than /ʃ/ stimuli
- Listeners are more likely to perceive higher F2s as "same" for /∫/ stimuli than /s/ stimuli

 H_{θ} : no difference between proportion of same responses across fricatives

Effect of coarticulation:

 We expect any observed effect of fricative category on vowel perception to be stronger when coarticulation is present in the signal

 H_{ϱ} : the presence or absence of coarticulation makes no difference

Summary

 Prior work has demonstrated contextual effects on fricative-vowel perception

 We used a DFT model to make predictions about this phenomenon on a continuous scale

Future work can empirically test these predictions
 Which we have done! :)

Thank you

Appendix: Model parameters

	/s _(u) /	/s _(i) /	/ʃ _(u) /	/ʃ _(i) /
preshape_p	100	100	115	115
preshape_w	4	6	5	6
preshape_a	4	4	4	4

Across simulations:

-
$$F2 w = 8$$

-
$$F2_a = 6$$

$$T = 10$$

$$h = -5$$

$$\beta = 4$$

$$sigmaExc = 10$$

$$ampExc = 10$$

$$ampInh = 5$$