

CEFET-MG — Centro Federal de Educação Tecnológica de Minas Gerais

DEPARTAMENTO DE COMPUTAÇÃO DE DIVINÓPOLIS — DECOM-DV

Microprocessadores e Microcontroladores

Primeira Atividade Avaliativa

Aluno: DANIEL COUTO FONSECA

Valor: 30 pontos (cada questão vale 5 pontos)

Turma: 2024/1

Prof. M. Sc. Diego Ascânio Santos

Respostas:

1 2 3 4 5 6

Questão 1

Acerca do ATmega328P, microcontrolador presente no arduino UNO e NANO, avalie as assertivas:

- I. A CPU do ATmega328P é baseada na arquitetura Harvard com um conjunto complexo de instruções (CISC);
- II. O ATmega328P possui 32KB de memória flash;
- III. A CPU do ATmega328P é baseada na arquitetura Von Neummann com um conjunto reduzido de instruções (RISC);
- IV. É possível usar as 6 entradas analógicas do ATmega328P simultâneamente;
- V. Para qualquer pino presente no microcontrolador, o ATmega328P não permite que um mesmo pino possa executar mais de uma função;
- VI. Exceder os limites operacionais de tensão e corrente do ATmega328P não danifica o microcontrolador.

Quais estão corretas?

- a) Nenhuma das assertivas.
- b) II.
- c) II, IV, V.
- d) II, IV, V, VI.
- e) Todas as assertivas.

Questão 2

Interrupções no arduino podem ser habilitadas e associadas a funções de*callback* — que são executadas quando interrupções ocorrem — através do **ISR** (Interrupt Service Routine). Em relações aos recursos e limitações que as funções de *callback* apresentam, é correto afirmar que:

- a) Funções de callback de interrupções podem receber argumentos e retornar valores.
- b) É possível executar múltiplos callbacks ao mesmo tempo.
- c) Funções de callback não podem receber argumentos e nem retornar valores.

- d) Podem ser interrompidas por outras interrupções.
- e) Nenhum tipo de modificador de variável precisa ser utilizado para permitir a modificação de variáveis globais na função de *callback* e na função principal.

Questão 3

(ENADE 2005 - 11) Apesar de todo o desenvolvimento, a construção de computadores e processadores continua, basicamente, seguindo a arquitetura clássica de von Neumann. As exceções a essa regra encontram-se em computadores de propósitos específicos e nos desenvolvidos em centros de pesquisa. Assinale a opção em que estão corretamente apresentadas características da operação básica de um processador clássico:

- a) Instruções e dados estão em uma memória física única; um programa é constituído de uma seqüência de instruções de máquina; uma instrução é lida da memória de acordo com a ordem dessa seqüência e, quando é executada, passa-se, então, para a próxima instrução na seqüência.
- b) Instruções e dados estão em memórias físicas distintas; um programa é constituído de um conjunto de instruções de máquina; uma instrução é lida da memória quando o seu operando-destino necessita ser recalculado; essa instrução é executada e o resultado é escrito no operando de destino, passando-se, então, para o próximo operando a ser recalculado.
- c) Instruções e dados estão em uma memória física única; um programa é constituído de um conjunto de instruções de máquina; uma instrução é lida da memória quando todos os seus operandos-fonte estiverem prontos e disponíveis; essa instrução é executada e o resultado é escrito no operando de destino, passando-se, então, para a instrução seguinte que tiver todos seus operandos disponíveis.
- d) Instruções e dados estão em memórias físicas distintas; um programa é constituído de um conjunto de instruções de máquina; uma instrução é lida da memória quando todos os seus operandos-fonte estiverem prontos e disponíveis; essa instrução é executada e o resultado é escrito no operando de destino, passando-se, então, para a instrução seguinte que estiver com todos os seus operandos disponíveis.
- e) Instruções e dados estão em memórias físicas distintas; um programa é constituído de uma seqüência de instruções de máquina; uma instrução é lida da memória de acordo com a ordem dessa seqüência e, quando é executada, passa-se, então, para a próxima instrução na seqüência.

Questão 4

Leia o seguinte código em Arduino:

```
int greenLED = 3, redLED = 4;
int leftButton = 6, rightButton = 7;
void setup() {
 pinMode(greenLED, OUTPUT);
 pinMode(redLED, OUTPUT);
 pinMode(leftButton, INPUT_PULLUP);
 pinMode(rightButton, INPUT_PULLUP);
void loop() {
  while (digitalRead(leftButton) == LOW) {
   digitalWrite(redLED, HIGH);
  while (digitalRead(rightButton) == LOW) {
   digitalWrite(greenLED, HIGH);
   delav(1000);
   digitalWrite(greenLED, LOW);
    delay(1000);
  while (digitalRead(leftButton) == HIGH && digitalRead(rightButton) == HIGH) {
   digitalWrite(greenLED, LOW);
   digitalWrite(redLED, LOW);
```

O que este programa faz?

a) Acende o LED verde quando rightButton é pressionado e apaga o LED vermelho quando leftButton é pressionado.

- b) Apaga os LEDs se nenhuma das teclas for pressionada, acende o LED vermelho enquanto leftButton é pressionado e pisca o LED verde de 1 em 1 segundo enquantorightButton é pressionado.
- c) Acende o LED verde quandorightButton é pressionado e apaga o LED vermelho quando leftButton é pressionado, mas não apaga os LEDs se nenhuma das teclas for pressionada.
- d) Apaga os LEDs se as teclas forem processionadas, acende o LED vermelho enquantoleftButton não é pressionado e pisca o LED verde de 1 em 1 segundo enquanto rightButton não é pressionado.
- e) Nenhuma das alternativas anteriores, pois, não existe configuração de entrada do tipo INPUT_PULLUP.

Questão 5

A respeito de memórias escolha a alternativa falsa:

- a) Se minha memória tem 16 pinos de endereço e 8 pinos de dados então ela consegue armazenar 65536 bytes de informação.
- b) Uma memória com 32 pinos de endereço e 32 bits de dados consegue armazenar 16GB de informação.
- c) Uma memória com 32 pinos de endereço e 32 bits de dados consegue armazenar 4GB de informação.
- d) Uma memória RAM do tipo dinâmica depende de atualizações periódicas conhecidas como *refresh* para manter suas informações armazenadas.
- e) Toda memória ROM foi uma PROM até ter sido fabricada.

Questão 6

Quanto a entradas digitais no Arduino, é correto afirmar que:

- a) Esperar um tempo após a leitura de um pino digital técnica conhecida como**debounce** é uma boa prática para garantir que o valor lido seja estável.
- b) A comutação de chaves mecânicas é imune ao aparecimento de ruídos, efeito conhecido como **bouncing**.
- c) Resistores de *pull-up* fazem com que o estado padrão de uma entrada digital seja nível lógico BAIXO.
- d) Resistores de *pull-down* fazem com que o estado padrão de uma entrada digital seja nível lógico ALTO.
- e) Nenhum dos itens anteriores está correto.