

RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES, MIHINTALE

B.Sc. (General) Degree in Applied Sciences Second year – Semester II Examination – November/December 2016

BIO 2114 – STATISTICAL METHODS IN BIOLOGY II

Time: Time: One and half $(1_{1/2})$ hours

Answer all questions

1. An experiment was conducted to study the effect of four hormones (H₁, H₂, H₃, and H₄) on amount of glycogen (in mg) in the liver of test rats. Twenty homogenous rats were selected and each hormone was injected to five rats that were randomly selected. Subsequently the level of glycogen (in mg) in the liver was measured, results are presented below.

Hormone		glyco	gen (in r	ng)	
H ₁	106	101	110	96	112
H ₂	81	88	85	80	91
H ₃	103	94	100	93	95
H_4	60	66	61	72	65

a) Conduct an appropriate statistical test to find out whether there is an effect of hormone on glycogen production rats (Use 0.05 alpha level)

Note: Clearly indicate your Null hypothesis, Alternative hypothesis and conclusions

- b) Conduct mean comparison using least significant difference (LSD) test and discuss the results.
- 2. Four laboratories and four technicians were used in a study to find out the effect of four culture media (A, B, C and D) on the growth of a microorganism. The researcher intends to eliminate both laboratory-to-laboratory and technician-to-technician variation. Hence, the experiment was arranged as follows. The observed number of microbial colonies under each conditions are given in bolded font.

			Technician		
		T_1	T ₂	T_3	T ₄
tory	L_1	A 25	B 14	C 8	D 9
Laboratory	L_2	B 11	C 10	D 11	A 24
	L ₃	C 10	D 10	A 23	B 12
	L ₄	D 12	A 21	B 10	C 9

Conduct an appropriate statistical test the influence of culture media on microbial; growth (Use 0.05 alpha level)

Note: Clearly indicate your Null hypothesis, Alternative hypothesis and conclusions

3. A laboratory experiment was conducted to evaluate the effect of two factors (temperature and relative humidity) on growth of a fungus using two temperature levels (T1, T2) and two relative humidity levels (RH1, RH2). Eight identical Petri dishes were inoculated with the specific fungus and randomly assigned two pery dishes a particular combinations temperature, relative humidity. At the end of the experimental period area (cm²) covered by fungus in each Petri dish was measured and is given in the following table.

T ₁ -RH ₁ 38	T ₁ -RH ₂ 28	T ₂ -RH ₁ 12	T ₂ -RH ₂
T ₁ -RH ₁ 42	T ₁ -RH ₂ 32	T ₂ - R H ₁ 10	T ₂ -RH ₂ 28

- a) Conduct an appropriate statistical test to find out effect of each factor and their interaction (Use 0.05 alpha level)
- b) Explain the results using a profile map

END

Table 8:

Students' distribution

Example: For 15 degrees of freedom, the t value that corresponds to an area of 0.05 in both tails combined is 2.131

Degrees of freedom	Area in Both Tails Combined												
Degrees of freedom	0.10	0.05	0.02	0.01									
	6.314	12.706	31.821	63.657									
2	2.920	4.303	6.965	9.925									
3	2,353	3.182	4.541	5.841									
4	2.132	2.776	3.747	4.604									
5	2.015	2.571	3.365	4.032									
6	1.943	2.447	3.143	3.707									
7	1.895	2.365	2.998	3.499									
8	1.860	2.306	2.896	3.355									
9	1.833	2.262	2.821	3.250									
10	1.812	2.228	2.764	3.169									
-11	1.796	2.201	2.718	3.106									
12	1.782	2.179	2.681	3.055									
13	1.771	2.160	2.650	3.012									
14	1.761	2.145	2.624	2.977									
15	1.753	2.131	2.602	2.947									
16	1.746	2.120	2.583	2.921									
17	1.740	2.110	2.567	2.898									
18	1.734	2.101	2.552	2.878									
19	1.729	2.093	2.539	2.861									
20	1.725	2.086	2.528	2.845									
21	1.721	2.080	2.518	2.831									
22	1.717	2.074	2.508	2.819									
23	1.714	2.069	0.431	2.807									
24	1.711	2.064	2.492	2.797									
25	1.708	2.060	2.485	2.787									
26	1.706	2.056	2.479	2.779									
27	1.703	2.052	2.473	2.771									
28	1.701	2.048	2.467	2.763									
29	1.699	2.045	2.462	2.756									
30	1.697	2.042	2.457	2.750									
40	1.684	2.021	2.423	2.704									
60	1.671	2.000	2.390	2.660									
120	1.658	1.980	2.358	2.617									
normal distribution	1.645	1.960	2.326	2.576									

Table 2:

Upper percentage points of the F-distribution

(a) F v_1 , v_2 (0.05)

																						Ĭ														
	8 5	120	60	30	2 1	70	28	21	20	3 5	25	24	23	22	21	20	17	10 8	10	6	15	1	14 5	12	15	= =	, 4	0 0	0 ~	10	N U1	+	۷ (2 1) —	5/5
	3.84	202	4 00	4.17	1.0	4 10	4.20	4.21	4.23	121	4 24	4.26	4.28	4.30	4.32	4.35	4.30	441	4.45	4.49	4.54	4.00	1.07	1 67	4.04	4.96	3.12	5 13	5.39	5 50	6.61	1./1	771	10.12	161.4	
	3.00	207	2 1 2	3.32	0.00	2 22	3.34	3.35	3.3/	2.27	3 30	3.40	3.42	3.44	3.47	3,49	3.32	3.33	3.59	3.63	3.68	3/4	3.74	2.07	2 00	4.10	4.20	4.46	4./4	5,14	5.79	0.94	0.6	0,61	199.5	ь
	2.60	260	2.04	2.92	2.78	3 02	2.95	2.96	2.98	2.99	2 00	3.01	3.03	3.05	3.07	3.10	5.15	3.16	3.20	3.24	3.29	0.04	2.41	3.49	3,39	3.71	3,80	4.0/	4.33	4./6	5.41	0.39	9.3	19.2	215.7	t
	2.37	2 42	2.52	2.69	2./0	3 70	2.71	2.73	2.74	2.70	27 76	2.78	2.80	2.82	2.84	2.87	2.90	2.93	2.96	3.01	3.06	3.11	3.10	3.20	3.36	3.48	3.03	3.04	4.12	4.53	5.19	0.39	2.1	19.2	224.6	+
	2.21	2.70	2.43	2.53	2,33	22 C	2.56	2.57	2.59	2.00	360	2.62	2.64	2.66	2.68	2.71	2.74	2.77	2.81	2.85	2.90	2.90	3.03	11,5	3.20	3.33	5.48	3 69	3.97	4.39	5.05	6.26	9.0	19.3	230.2	v
	2.10	2 17	204	2.42	2.43	2	2.45	2.46	2.47	2.49	3	2.51	2.53	2.55	2.57	2.60	2.63	2.66	2.70	2.74	2.79	2.85	2.92	3.00	3 09	3.22	3.37	3.58	3.87	4.28	4.95	6.16	8.9	19.3	234.0	o
	2.01	11.7	2.23	2,33	2.33	2	2.36	2.37	2,39	2.40		2.42	2.44	2.46	2.49	2,51	2.54	2.58	2.61	2.66	2.71	2,/6	2.83	2.91	3.01	3.14	3,29	3.50	3.79	4.21	4.88	6.09	8.9	19.4	236.8	1
	1.94	2.10	21.8	2,27	2.28	o i	2.29	2.31	2.32	2.34	2 1	2.36	2.37	2.40	2.42	2.45	2.48	2.51	2.55	2.59	2.64	2.70	2.77	2,85	2.95	3.07	3,23	3.44	3.73	4.15	4.82	6.04	00	19.4	238.9	oc
	 	2.04	2.12	2,21	2.22	o i	2 24	2,25	2,27	2.28		2.30	2.32	2.34	2.37	2.39	2.42	2.46	2.49	2.54	2.59	2.65	2.71	2.80	2.90	3.02	3.18	3,39	3.68	4.10	4.77	6.00	00	19.4	240.5	9
	28.7	1.99	2.08	2.16	2.18	1.15	2 19	2.20	2.22	2.24		2.25	2 27	2.30	2.32	2.35	2.38	2.41	2.45	2.49	2.54	2.60	2.67	2.75	2.85	2,98	3.14	3,35	3.64	4.06	4.74	5.96	00.00	19.4	241.9	10
	1.83	76.1	2.00	2.09	2,10	1.11	217	2.13	2.15	2.16	1.10	2 18	2.20	2.23	2.25	2,28	2,31	2.34	2.38	2.42	2.48	2.53	2.60	2.69	2.79	2.91	3.07	3.28	3.57	4.00	4.68	5.91	8.7	19,4	243.9	12
	1.75	1.84	1.92	2.01	2.03	10.4	204	2.06	2.07	2.09	1	2 1	2.13	2.15	2.18	2.20	2 23	2.27	2.31	2.35	2.40	2.46	2.53	2.62	2.72	2.85	3.01	3.22	3.51	3.94	4.62	5.86	8.7	19.4	245.9	15
1-01	1.66	1.75	1.84	1.93	1.94	1.50	1 06	1.97	1.99	2,01	1.00	2 03	2.05	2.07	2.10	2.12	2,16	2.19	2.23	2,28	2,33	2,39	2.46	2.54	2,65	2.77	2.94	3.15	3.44	3.87	4.56	5.80	8.7	19.4	248.0	20
1.01	1.60	1.70	1,79	1.89	1.90	1.71	101	1.93	1.95	1.96	1.70	1 00	2.01	2 03	2.05	2.08	2.11	2.15	2.19	2.24	2.29	2.35	2.42	2.51	2.61	2.74	2.90	3.12	3.41	3.84	4.53	5.77	8.6	19.5	249.1	24
1.70	1.55	1.65	1.74	1.84	1.85	1.0/	107	- 000	1.90	1.92	1,74	104	106	1 98	2.01	2.04	2.07	2.11	2.15	2.19	2.25	2.31	2.38	2.47	2.57	2.70	2.86	3.08	3,38	3.81	4.50	5.75	8.6	19.5	250 1	30
1.37	1.50	1.59	1.69	1.79	1.81	1.62	1 02	1.84	005	1.87	7.09	100	1 9 .	194	1 96	1.99	2.03	2.06	2.10	2.15	2.20	2.27	2.34	2.43	2.53	2.66	2.83	3.04	3.34	3.77	4.46	5.72	8.6	19.5	251.1	40
1.32	1,43	1.53	1.64	1.74	1.75	1://	1 77	1 79	1.80	1.82	1.64	1 00	1 86	1 89	1 92	1.95	1.98	2.02	2.06	211	2.16	2.22	2.30	2.38	2,49	2.62	2.79	3.01	3.30	3,74	4.43	5.69	8.6	19.5	252.2	60
77.	1.35	1.47	1.58	1.68	1.70	1./1	17.0	1 73	1.75	1.77	1./9	1.00	1 81	1 84	1 87	0 1.90	1.93	1.97	2.01	2.06	2 11	2.18	2,25	2.34	2.45	2.58	2.75	2.97	3.27	3.70	4.40	5.66	8.55	19.49	253.25	120
1.00	1.25	1.39	1.51	1.62	1.64	1.65	.0.	1 67	1.69	1.71	1./3	1.70	1 76	1 78	1 81	1 84	1.88	1.92	1.96	2.01	2.07	2.13	2.21	2.30	2.40	2.54	2.71	2.93	3,23	3.67	4.3	5.63	8.5	19.50	254.3	

