

Métodos Numéricos para Ingeniería Método de diferencias finitas para la ecuación de Poisson

Algoritmo del método de diferencias finitas para la ecuación de Poisson

Para aproximar la solución de la ecuación de Poisson [1]

$$\frac{\partial^2 u}{\partial x^2}(x,y) + \frac{\partial^2 u}{\partial y^2}(x,y) = f(x,y), \qquad a \le x \le b, \qquad c \le y \le d,$$

sujeta a las condiciones de frontera

$$u(x,y) = g(x,y)$$
 si $x = a$ o $x = b$ y $c \le y \le d$

У

$$u(x,y) = g(x,y)$$
 si $y = c$ o $y = d$ y $a \le x \le b$.

ENTRADA extremos a, b, c, d; enteros $m \ge 3, n \ge 3$; tolerancia TOL; número máximo de iteraciones N. **SALIDA** aproximaciones $w_{i,j}$ a $u(x_i, y_j)$ para cada $i = 1, \ldots, n-1$ y para cada $j = 1, \ldots, m-1$ o un mensaje que indica que se excedió el número máximo de iteraciones. Paso 1 Sea h = (b - a)/n; k = (d - c)/m. Paso 2 Para i = 1, ..., n-1 sea $x_i = a + ih$. (Los pasos 2 y 3 construyen puntos de malla.) Paso 3 Para j = 1, ..., m - 1 sea $y_j = c + jk$. Paso 4 Para i = 1, ..., n - 1para j = 1, ..., m - 1 sea $w_{i,j} = 0$. Paso 5 Sea $\lambda = h^2/k^2$; $\mu = 2(1+\lambda);$ l = 1.Mientras $l \leq N$ haga los pasos 7-20. (Los pasos 7-20 realizan iteraciones de Gauss-Seidel.) Paso 6 Paso 7 Sea $z = \left(-h^2 f(x_1, y_{m-1}) + g(a, y_{m-1}) + \lambda g(x_1, d) + \lambda w_{1,m-2} + w_{2,m-1}\right) / \mu;$ $NORM = |z - w_{1,m-1}|;$ $w_{1,m-1} = z$. Paso 8 Para i = 2, ..., n - 2sea $z = (-h^2 f(x_i, y_{m-1}) + \lambda g(x_i, d) + w_{i-1, m-1} + w_{i+1, m-1} + \lambda w_{i, m-2}) / \mu;$ si $|w_{i,m-1}-z| > NORM$ entonces sea $NORM = |w_{i,m-1}-z|$; sea $w_{i,m-1} = z$. Sea $z = (-h^2 f(x_{n-1}, y_{m-1}) + g(b, y_{m-1}) + \lambda g(x_{n-1}, d) + w_{n-2, m-1} + \lambda w_{n-1, m-2}) / \mu;$ si $|w_{n-1,m-1}-z| > NORM$ entonces sea $NORM = |w_{n-1,m-1}-z|$; sea $w_{n-1,m-1} = z$.


```
Paso 10 Para j = m - 2, ..., 2 haga los pasos 11, 12 y 13.
```

Paso 11 Sea
$$z = (-h^2 f(x_1, y_j) + g(a, y_j) + \lambda w_{1,j+1} + \lambda w_{1,j-1} + w_{2,j}) / \mu;$$

si $|w_{1,j} - z| > NORM$ entonces sea $NORM = |w_{1,j} - z|;$
sea $w_{1,j} = z.$

Paso 12 Para
$$i = 2, ..., n-2$$

sea $z = \left(-h^2 f(x_i, y_j) + w_{i-1,j} + \lambda w_{i,j+1} + w_{i+1,j} + \lambda w_{i,j-1}\right) / \mu;$
si $|w_{i,j} - z| > NORM$ entonces sea $NORM = |w_{i,j} - z|;$
sea $w_{i,j} = z.$

Paso 13 Sea
$$z = (-h^2 f(x_{n-1}, y_j) + g(b, y_j) + w_{n-2,j} + \lambda w_{n-1,j+1} + \lambda w_{n-1,j-1}) / \mu;$$

si $|w_{n-1,j} - z| > NORM$ entonces sea $NORM = |w_{n-1,j} - z|;$
sea $w_{n-1,j} = z.$

Paso 14 Sea
$$z = (-h^2 f(x_1, y_1) + g(a, y_1) + \lambda g(x_1, c) + \lambda w_{1,2} + w_{2,1}) / \mu;$$

si $|w_{1,1} - z| > NORM$ entonces sea $NORM = |w_{1,1} - z|;$
sea $w_{1,1} = z.$

Paso 15 Para
$$i = 2, ..., n-2$$

$$sea z = (-h^2 f(x_i, y_1) + \lambda g(x_i, c) + w_{i-1,1} + \lambda w_{i,2} + w_{i+1,1}) / \mu;$$
si $|w_{i,1} - z| > NORM$ entonces sea $NORM = |w_{i,1} - z|$;
sea $w_{i,1} = z$.

Paso 16 Sea
$$z = (-h^2 f(x_{n-1}, y_1) + g(b, y_1) + \lambda g(x_{n-1}, c) + w_{n-2,1} + \lambda w_{n-1,2}) / \mu;$$

si $|w_{n-1,1} - z| > NORM$ entonces sea $NORM = |w_{n-1,1} - z|;$
sea $w_{n-1,1} = z.$

Paso 17 Si
$$NORM \leq TOL$$
 entonces hacer los pasos 18 y 19

Paso 18 Para
$$i = 1, ..., n - 1$$

para $j = 1, ..., m - 1$ SALIDA $(x_i, y_j, w_{i,j})$.

Paso 19 PARE. (El procedimiento fue exitoso.)

Paso 20 Sea l = l + 1.

Paso 21 SALIDA ('Número máximo de iteraciones excedido'); (El procedimiento no fue exitoso.) PARE.

Problema: Considere la ecuación de Poisson

$$\begin{split} \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} &= -(\cos(x+y) + \cos(x-y)), \quad 0 < x < \pi, \quad 0 < y < \frac{\pi}{2}; \\ u(x,0) &= \cos x, \quad u\left(x,\frac{\pi}{2}\right) = 0, \quad 0 \le x \le \pi, \\ u(0,y) &= \cos y, \quad u(\pi,y) = -\cos y, \quad 0 \le y \le \frac{\pi}{2}. \end{split}$$

Actividades:

- 1) Resuelva analíticamente el problema planteado.
- 2) Implemente el algoritmo del método de diferencias finitas para la ecuación de Poisson en Python siguiendo estrictamente las instrucciones del documento. No se deben utilizar variantes alternativas del algoritmo.
- 3) Encuentre una aproximación del problema, usando el algoritmo del método de diferencias finitas para la ecuación de Poisson .
- 4) Realice una comparación mediante una gráfica 3D entre la solución analítica y la aproximación obtenida por el método de diferencias finitas para la ecuación de Poisson .

Bibliografía

1. Richard L. Burden, Douglas J. Faires, Annette M. Burden. Análisis Numérico. 10a edición. Cengage Learning. 2017.