大学物理 I 期末模拟 1

2023年6月

已知: $\frac{1}{4\pi\varepsilon_0} = 9 \times 10^9 \,\mathrm{N}\cdot\mathrm{C}^{-2}\cdot\mathrm{m}^2$

$$\mu_0 = 4\pi \times 10^{-7} \text{ N} \cdot \text{A}^{-2}$$

一、选择题

- 1. 如图所示,将一试验电荷+q 放置在带负电的导体附近的 P 点处,测得试验电荷所受的静电力为 F.若试验电荷+q 的电场对导体电荷分布的影响不可忽略,则 []
- (A) F/q 比没有试验电荷时 P点的场强数值小.
- (B) F/q 比没有试验电荷时 P 点的场强数值大.
- (C) F/q 与没有试验电荷时 P 点的场强数值相等.
- (D) F/q 与没有试验电荷时 P 点的场强数值关系无法确定.

- 2. 如图所示,一均匀带电薄球壳半径为R,带电量为Q,在距球心R/2处有一点电荷q,球外有一点P,它至球心的距离为2R。在下列两种情况下,计算P点的场强: (1) 带电球壳由金属组成; (2) 带电球壳由电介质组成。
- (A) 不论是金属还是电介质 $E_P = \frac{q+Q}{16\pi\varepsilon_0 R^2}$
- (B) 金属时 $E_{\rm P}=rac{q+Q}{16\pi\varepsilon_0R^2}$,电介质时 $E_{\rm P}=rac{Q}{16\pi\varepsilon_0R^2}+rac{q}{9\pi\varepsilon_0R^2}$
- (C) 不论是金属还是电介质 $E_{\rm P} = \frac{Q}{16\pi\varepsilon_0 R^2} + \frac{q}{9\pi\varepsilon_0 R^2}$
- (D) 金属时 $E_{\rm P} = \frac{Q}{16\pi\varepsilon_0 R^2} + \frac{q}{9\pi\varepsilon_0 R^2}$, 电介质时 $E_{\rm P} = \frac{q+Q}{16\pi\varepsilon_0 R^2}$
- 3. 如图所示,将两个完全相同的平行板电容器 C_1 和 C_2 并联后与电源一直相连.若将一均匀且各向同性的电介质板插满电容器 C_1 后,电容器 C_1 和 C_2 的电量分别为 q_1 和 q_2 ,电容器极板间场强分别为 E_1 和 E_2 ,则下列关系正确的是
- (A) $q_1 > q_2$, $E_1 > E_2$
- (B) $q_1 < q_2$, $E_1 = E_2$
- (C) $q_1 < q_2$, $E_1 > E_2$
- (D) $q_1 > q_2$, $E_1 = E_2$

- 4. 如图所示,三块面积均为 S 的金属板 $A \times B \times C$ 平行放置,且 $A \times B$ 相距为 d_{AB} , $A \times B \times C$ C 相距 d_{AC} , 且满足 $d_{AB} = 2d_{AC}$ 。若 B、C 都接地。若使得 A 板带电为 q, 则 B、C 两 板上的感应电荷分别为 1
- (A) $q_{\rm B} = \frac{2}{3}q$, $q_{\rm C} = \frac{1}{3}q$
- (B) $q_{\rm B} = -\frac{2}{3}q$, $q_{\rm C} = -\frac{1}{2}q$
- (C) $q_{\rm B} = \frac{1}{3}q$, $q_{\rm C} = \frac{2}{3}q$
- (D) $q_{\rm B} = -\frac{1}{3}q$, $q_{\rm C} = -\frac{2}{3}q$

- 5. 一个大平行板电容器水平放置,两极板间的一半空间充有各向同性均匀电介质,另一 半为空气,如图所示。当极板上带上恒定的等量异号电荷时,有一个质量为 m、带电量 为+q 的质点在极板间的空气区域中处于平衡。此后,若把电介质抽去,则该质点[
- (A) 保持不动
- (B) 向下运动
- (C) 向上运动
- (D) 是否运动不能确定
- 6. 已知银的密度为 ρ ,摩尔质量为 M,阿伏加德罗常数为 N_A ,每个银原子贡献一个自由 电子,每个电子的电量为 e 。当截面积为 S 的银导线中通过电流为 I 时,电子的漂移速 度为多少? 1
- (A) $\frac{IMN_A}{\rho Se}$ (B) $\frac{IM}{\rho N_A Se^1}$ (C) $\frac{IM}{\rho N_A e}$ (D) $\frac{IM}{\rho N_A S}$
- 7. 如图所示,将两个圆线圈 1 和 2 平行放置,已知线圈 2 的面积是线圈 1 的两倍,通过 线圈 2 的电流也是线圈 1 电流的两倍,线圈 1 的电流所产生的通过线圈 2 的磁通量用 21 表示,线圈 2 的电流所产生的通过线圈 1 的磁通量用 12 表示,则 Φ_{21} 和 Φ_{12} 的大小关系 为
- (A) $\Phi_{12} = \Phi_{21}$
- (B) $\Phi_{12} = 2\Phi_{21}$
- (C) $2\Phi_{12} = \Phi_{21}$
- (D) $\Phi_{12}=4\Phi_{21}$

- 8. 如图所示,一根长为 31 的铜棒 AB 垂直置于均匀磁场中,绕过棒上 O 点且平行于磁 场方向的转轴以角速率 ω 匀速转动. 若 Ο 点距 Α 端长为]
- (A) $V_{\rm A} >$, $\varepsilon_{\rm AB} = \frac{5}{2} B \omega l^2$
- (B) $V_{\rm A} < V_{\rm B}$, $\varepsilon_{\rm AB} = \frac{5}{2} B \omega l^2$
- (C) $V_{\rm A} > V_{\rm B}$, $\varepsilon_{\rm AB} = \frac{3}{2}B\omega l^2$
- (D) $V_{\rm A} < V_{\rm B}$, $\varepsilon_{\rm AB} = \frac{3}{2}B\omega l^2$

9. 无限长直导线在 P 处弯成半径为 R 的圆,当通以电流 I 时,则在圆心 O 点的磁感强 度大小等于 Γ

(D)
$$\frac{\mu_0 I}{2R} (1 - \frac{1}{\pi})$$

- 10. 如图所示,在某匀强磁场中的载流金属导体块中出现霍尔效应,测得上下两底面 M、 N 的电势差为 $V_{\rm M}-V_{\rm N}>0$,则图中所加匀强磁场的方向为
 - (A) 竖直向上 (B) 竖直向下 (C) 水平向前
- (D) 水平向后
- 11. 如图所示,无限长载流直导线与矩形载流线圈在同一平面内,若长直导线固定不动, 则矩形载流线框在磁力的作用下将

- (A)转动 (B)不动 (C)向长直导线方向平移
- (D) 背离长直导线方向平移

- 12. 如图所示, 平行板电容器接通电源充电, A 板接正极, B 板接负极。在电容器充电 过程中,A 板之间的电场和位移电流的方向分别为(用图中 x 轴方向表示) []
- (A) x 轴负方向, x 轴负方向
- (B) x 轴负方向, x 轴正方向
- (C) x 轴正方向, x 轴负方向
- (D) x 轴正方向, x 轴负方向

二、填空题

1. 如图所示,在真空中将半径为 R 的金属球接地,在与球心 O 相距为 r (r>R)处放置 一个点电荷 q, 不计接地导线上电荷的影响,则金属球表面上的感应电荷

2. 如图所示,带电导体球壳的内外半径分别为 R_1 和 R_2 ,所带净电荷量为+q。现在球壳 内部距球心为 r 处放一电荷量为 +Q 的点电荷。若选无穷远处为电势零点,求: (1)球心处电势 ;(2)距离球心 $R_1 + R_2$ 处的电场强度的大小 _____。

- 5. 如图,一平板空气电容器,极板面积为S,两板相距为d,两极板的电势分别维持在 $V_A = V$, $V_B = 0$ 不变,现在把一块带有电荷q 的导体薄片平行放在两极板的正中,薄片的面积也为S,厚度可忽略不计,也不考虑边缘效应,则薄片的电势为______。

- 7. 在匀强磁场 \vec{B} 中,取一半径为 R 的圆,圆面的法线 \vec{n} 与 \vec{B} 成 60° 角,如图所示,则通过以该圆周为边线的如图所示的任意曲面 S 的磁通量 \vec{B} .

8. 一个表面均匀带电的圆筒绕其中心轴以角速度 ω 匀速转动,已知圆筒的半径为 R,长为 L,圆筒表面电荷的面密度为 σ ,则圆筒内部磁场的磁感应强度为_____,磁场强度为_____。

9. 霍耳效应可用于测量管道中离子溶液的流速,其原理如图所示. 在矩形截面的管道上下表面安装电极并在两侧加以磁场. 设管道高为 2.0 mm, 磁感强度为 0.08 T, 毫伏表测出电极间的电压为 0.20 mV,则离子溶液的速度为 m/s.

三、计算题

1. 已知棒长为L、质量为M,水平放置在摩擦系数为 μ 的桌面上并绕其一端作定轴转动。 计算: (1) 摩擦力对棒的力矩; (2) 若棒的初始角速度为 ω 0,则它静止下来所需要的最短时间。

2. 一根长为 L 的均匀带电直杆,电荷线密度为 λ 。求:(1)带电直杆的中垂线上 P 点的电场强度(设 P 点到杆的垂直距离为 r);(2)带电直杆的延长线上 Q 点的电场强度(设 Q 点到杆右端的距离为 r)。

3. 如图所示,一个半径为 R 的无限长半圆柱面导体,沿长度方向的电流 I_1 在柱面上均匀分布, 求: (1) 半圆柱面轴线 OO'上的磁感强度大小和方向; (2) 若将一通过电流为 I_2 的直导线置于半圆柱的轴线上,求单位长度导线所受的安培力大小及方向。

4. 如图所示,与水平面倾角为 θ 的两光滑平行导轨之间的距离为 L,两者下端接有电阻 R。导轨处于竖直向上的均匀磁场中,磁场的磁感强度以 $B(t)=\beta t$ 的规律变化。质量为 m 的金属杆 ab 横跨在导轨上,t=0时在平行于导轨平面的外力 F 的作用下,从导轨底端自静止开始以加速度 a_0 匀加速上升。假定金属杆和导轨的电阻可不计,且导轨足够长。考虑在 t 时刻杆和导轨构成的回路(忽略回路的自感),求:(1)通过回路的磁通量;(2)回路中的感应电动势的大小和方向:(3)回路中的动生电动势和感生电动势的大小和方向;(4)杆 ab 所受磁力的大小和方向.

