04. Transformers

Transformers may not fix all your NLP problems.

•

.

٠

But they are worth some attention.

CS 1671/2071 Human Language Technologies

Session 16: Transformers part 1

Michael Miller Yoder March 17, 2025

Course logistics

- I will release the quiz for this week today, will be due this Thu Mar 20
- I pushed back the due date for the project progress report, now due this Thu Mar 27. I will release instructions for that early this week
 - I am in the process of setting up OpenAI API account to use (\$150 for class). In the meantime look into using Gemini free credits or other LLMs

Course logistics

- Homework 3 will be released this week, probably Fri Mar 21. Is due Apr 9
- There is a new textbook version, released 2025-01-12. I think it is largely the same as the old one from 2024-08-20 but just with typos fixed
 - If you notice anything strange with the alignment of the readings, let Michael know

Lecture overview: Transformers part 1

- Self-attention
- Multi-headed attention
- Transformer blocks
- Activity: work through self-attention

Contextual word embeddings

Problem with static embeddings (word2vec)

They are static! The embedding for a word doesn't reflect how its meaning changes in context.

The chicken didn't cross the road because it was too tired

What is the meaning represented in the static embedding for "it"?

Contextual Embeddings

- Intuition: a representation of meaning of a word should be different in different contexts!
- Contextual embedding: each word has a different vector that expresses different meanings depending on the surrounding words
- How to compute contextual embeddings? Attention

Contextual Embeddings

The chicken didn't cross the road because it

What should be the properties of "it"?

The chicken didn't cross the road because it was too **tired**The chicken didn't cross the road because it was too **wide**

At this point in the sentence, it's probably referring to either the chicken or the street

Intuition of attention

- Build up the contextual embedding from a word by selectively integrating information from all the neighboring words
- We say that a word "attends to" some neighboring words more than others

Self-attention

Self-attention illustrated

Source: The Illustrated Transformer

Attention definition

A mechanism for helping compute the embedding for a token by selectively attending to and integrating information from surrounding tokens (at the previous layer).

More formally: a method for doing a weighted sum of vectors.

An actual attention head: slightly more complicated

High-level idea: instead of using vectors (like x_i and x_4) directly, we'll represent 3 separate roles each vector \mathbf{x}_i plays:

- query: As the current element being compared to the other inputs.
- key: as an input that is being compared to the current element to determine a similarity
- value: a value of a preceding element that gets weighted and summed

Attention as a soft, averaging lookup table

We can think of **attention** as performing fuzzy lookup in a key-value store.

In a **lookup table**, we have a table of **keys** that map to **values**. The **query** matches one of the keys, returning its value.

In **attention**, the **query** matches all **keys** *softly*, to a weight between 0 and 1. The keys' **values** are multiplied by the weights and summed.

Parameters: weight matrices for queries, keys and values

- We'll use matrices to project each vector \mathbf{x}_i into a representation of its role as query, key, value:
- query: W^Q
- key: W^K
- value: W^V

$$\mathbf{q}_i = \mathbf{x}_i \mathbf{W}^{\mathbf{Q}}; \quad \mathbf{k}_i = \mathbf{x}_i \mathbf{W}^{\mathbf{K}}; \quad \mathbf{v}_i = \mathbf{x}_i \mathbf{W}^{\mathbf{V}}$$

An Actual Attention Head: slightly more complicated

• Given these 3 representation of x_i

$$\mathbf{q}_i = \mathbf{x}_i \mathbf{W}^{\mathbf{Q}}; \quad \mathbf{k}_i = \mathbf{x}_i \mathbf{W}^{\mathbf{K}}; \quad \mathbf{v}_i = \mathbf{x}_i \mathbf{W}^{\mathbf{V}}$$

- To compute the similarity of current element \mathbf{x}_i with some element (for self-attention) \mathbf{x}_i
- We'll use dot product between \mathbf{q}_i and \mathbf{k}_j .
- And instead of summing up x_i , we'll sum up v_i

Multi-headed attention

Multi-Headed Attention Expands Transformer Models' Ability to Focus on Different Positions

Maintain distinct weight matrices for each attention head—distinct representational subspaces:

Hypothetical example of multi-headed attention

Slide credit: John Hewitt

Source: Emma Strubell

Multi-head self-attention

Source: Emma Strubell

Multi-head self-attention

Source: Emma Strubell

Add a feedforward neural transformation for nonlinearity

Transformer blocks

Transformer blocks

Each block consists of:

- Self-attention
- Layer normalization and residual connections: tricks to optimize learning
- Feedforward neural network

Output: 1 vector for every input token

Activity: work through self-attention

Calculate transformed output for one input word

- Example sentence: "we wash our cats" (don't ask)
- Let's just calculate the vector output, for one input word: "we"
- High-level points to remember before you get buried in the math:
 - Each token will have an output vector that integrates contextual information from other tokens in the sentence
 - Each token can play a role as a query, key, and value
- Parameters (learned through backpropagation) are assumed given:
 - \circ W^Q , W^K , W^V

Computing Self-Attention, Step One: Compute Key, Query, and Value Vectors

Dot product: vector · matrix

Computing Self-Attention, Step One: Compute Key, Query, and Value Vectors

$$d_k \times d_x$$
-dimensional Weight Matrices

$$d_k$$
-dimensional vectors

$$x_1 = [3, 0, 1, -0.5]$$

$$\times W^{Q} = \begin{bmatrix} 1.5 & 1 & 2 \\ 3 & -2 & 5 \\ 1 & 2 & -2 \\ 9 & 4 & 2 \end{bmatrix} =$$

Find q_1 and k_1

$$x_1 = [3, 0, 1, -0.5]$$

$$\times$$
 W^{k}

$$\times W^{K_{=}} \begin{bmatrix} 1 & 0.5 & 2 \\ -2 & 0.5 & 3 \\ .5 & 2 & -3 \\ 5 & 3 & 2 \end{bmatrix} =$$

$$k_1$$

$$x_1 = [3, 0, 1, -0.5]$$

Computing Self-Attention, Step Two: Weighted Sum of Value Vectors

Wrapping up

- Transformers are a high-performing NLP architecture based on selfattention
- Transformer blocks perfom a number of transformations on vectors for input tokens, including integrating information from the surrounding tokens (self-attention)
- Transformer blocks produce one output vector per each input token, which is contextual, i.e. varies depending on what words surround the token
- Self-attention computation is easily parallelizable

Questions?