

# Bitcraze Workshop: PULP Introduction

Lorenzo Lamberti, Hanna Müller, Vlad Niculescu, Manuele Rusci, Daniele Palossi



















## Team

#### Lorenzo





Hanna



**ETH** zürich

### Vlad



**ETH** zürich

## Manuele







**Daniele** 







- Lorenzo Lamberti
- Hanna Müller
- Vlad Niculescu
- Dr. Manuele Rusci
- Dr. Daniele Palossi

**University of Bologna** 

ETH Zürich

ETH Zürich

University of Bologna / Greenwaves Tech.

IDSIA Lugano / ETH Zürich

lorenzo.lamberti@unibo.it

hanmuell@iis.ee.ethz.ch

vladn@iis.ee.ethz.ch

manuele.rusci@greenwaves-technologies.com

dpalossi@iis.ee.ethz.ch



**TH**Zürich

D. Palossi 16.04.2021

## **Team affiliations**

# **TH**zürich



Polytechnic of Zürich (ETHZ)











Greenwaves Tech. in Grenoble (GWT)



University of Bologna (UniBO)





We are looking for outstanding Ph.D. candidates: https://www.supsi.ch/home en/supsi/lavora-con-noi/2021-02-24-bando816.html





# Agenda

|          | Topic                | Time | Description                                   | Speaker |
|----------|----------------------|------|-----------------------------------------------|---------|
| Overview | PULP introduction    | 15'  | Parallel Ultra-low Power (PULP) overview      | Daniele |
|          | GAP8 architecture    | 10'  | System-on-Chip hardware architecture          | Manuele |
|          | Al-deck              | 15'  | Printed circuit board overview & GAP8 SDK     | Hanna   |
|          | Break                | 15'  |                                               |         |
| Hands-on | Basic programming    | 10'  | JTAG programming & 'Hello World' example      | Hanna   |
|          | Image manipulation   | 10'  | Image acquisition, parallel image filter      | Hanna   |
|          | Firmware integration | 15'  | App-layer integration, UART communication     | Vlad    |
|          | Video streaming      | 20'  | Basic Wi-Fi streaming, JPEG image compression | Lorenzo |
|          | Conclusion           | 5'   | Final remarks                                 | Daniele |





# Parallel Ultra-low Power (PULP)

- The PULP project started in 2013
- Collaboration between the University of Bologna and ETH Zürich
  - Large team, about 60 people, not all are working on PULP
- Academic/Research goals:
  - Create a compute platform used for research (e.g., autonomous nano-drones) by the PULP and other groups in Europe and in the World
  - Push energy efficiency of IoT computing systems as much as possible (we target research on low-power MCUs)
  - Open-source approach
- We wanted to start with a clean slate, no need to remain compatible with legacy systems, no dependency with any commercial IP
- We started with **OpenRISC** and around mid-2016 we moved to **RISC-V** ISA:
  - Larger community, more momentum



D. Palossi



# **PULP** ecosystem

RISC-V Cores

RI5CY Micro Zero Ariane riscy 32b 32b 64b

We have developed several optimized RISC-V cores







# Only processing cores are not ETHZürich

# **PULP** ecosystem

**RISC-V Cores RI5CY** Ariane Micro Zero riscy riscy 32b 32b 32b 64b

| Peripherals |      | Interconnect             |  |
|-------------|------|--------------------------|--|
| JTAG        | SPI  | Logarithmic interconnect |  |
| UART        | I2S  | APB – Peripheral Bus     |  |
| DMA         | GPIO | AXI4 – Interconnect      |  |

**HWCE** (convolution)

enough, we need more

**HWCrypt** (crypto)

**PULPO** (1st order opt)

**Accelerators** 

Neurostream (ML)

D. Palossi



# All these components are platforms combined into

# **PULP** ecosystem

**Peripherals RISC-V Cores JTAG** SPI Ariane **RI5CY** Micro Zero riscy riscy 125 **UART** 32b 32b 32b 64b **DMA GPIO** 

Interconnect Logarithmic interconnect APB - Peripheral Bus AXI4 – Interconnect

### **Platforms**



Single Core

**PULPino** 

**PULPissimo** 







## Multi-core

- **Fulmine**
- Mr. Wolf



Hero

IOT

**Accelerators** 

**HWCE** (convolution) Neurostream (ML)

**HWCrypt** (crypto)

**PULPO** (1st order opt)



**ETH** Zürich



# All these components are platforms ETHZürich combined into

# **PULP** ecosystem

# RISC-V Cores RI5CY Micro Zero Ariane riscy 32b 32b 32b 64b

| Peripherals |      | Interconnect             |  |
|-------------|------|--------------------------|--|
| JTAG SPI    |      | Logarithmic interconnect |  |
| UART        | I2S  | APB – Peripheral Bus     |  |
| DMA         | GPIO | AXI4 – Interconnect      |  |

### **Platforms**



## Single Core

- PULPino
- PULPissimo





IOT

**Accelerators** 

HWCE (convolution) Neurostream (ML)

HWCrypt (crypto)

PULPO (1st order opt)



# **PULP Silicon Prototypes**







Copyright 2021 @ ETH zürich

http://asic.ethz.ch/applications/Pulp.html

Credit: Daniele Palossi

# **-TH**Zürich

# **PULP Silicon Prototypes**





Copyright 2021 © FTH zürich

http://asic.ethz.ch/applications/Pulp.html

Credit: Daniele Palossi



## Who uses PULP?

#### **Industrial users:**



### **Direct research collaborators:**







16.04.2021

# users we are Academic aware of:

Università di Genova Stanford University M UC Los Angeles İstanbul Teknik Üniversitesi UC San Diego Columbia University  $\Rightarrow$ TU Darmstadt LIRMM Montpelie RWTH Aachen Universität Bremen University of Stuttgart Hongik University Seou UFRN Rio Grande do Norte IIT Kharagpur 働 TU Münich ТШП FORTH Hellas Chalmers Göteborg FAU Erlangen-Nürnberg 0 NTNU Trondheim Kyoto University Tecnologico de Costa Rica TEC IDSIA Manno SVNIT Surat





## The PULP-Shield

## **ULP heterogeneous model [1]**









## The PULP-Shield

## **ULP heterogeneous model [1]**







[1] F. Conti, D. Palossi, A. Marongiu, D. Rossi, and L. Benini. "Enabling the heterogeneous accelerator model on ultra-low power microcontroller platforms." IEEE DATE, 2016.



16.04.2021

D. Palossi



## The PULP-Shield

## **ULP heterogeneous model [1]**



## PULP-Shield [2]





Multi-core









- $\sim 5 g 30x28 mm$
- PULP GAP8 SoC
- Off-chip DRAM/Flash
- QVGA ULP Camera
- Open source hardware





[1] F. Conti, D. Palossi, A. Marongiu, D. Rossi, and L. Benini. "Enabling the heterogeneous accelerator model on ultra-low power microcontroller platforms." IEEE DATE, 2016. [2] D. Palossi, F. Conti, and L. Benini "An open source and open hardware deep learning-powered visual navigation engine for autonomous nano-UAVs." IEEE DCOSS, 2019.





## The PULP-Shield

## **ULP heterogeneous model [1]**







## PULP-Shield [2]

















 $\sim 5 \text{ g} - 30 \text{x} 28 \text{ mm}$ 

PULP GAP8 SoC









- $\sim 8 \text{ g} 40 \text{x} 28 \text{ mm}$
- PULP GAP8 SoC
- 8/64 MB DRAM/Flash
- QVGA ULP Camera
- WiFi module



**ETH** Zürich







## The Al-Deck

## Crazyflie (STM32)

Al-Deck (GAP8)

Crazyflie + Al-Deck



Radio: Nordic BTLE



nRF51 2.4GHz

Data rate: 0,25/1/2 Mbit/s

**UART Link** 

Data rate: 1 Mbit/s

Radio: NINA Wi-Fi

Wifi

NINA-W102 2.4 GHz Data rate: 6-54 Mbit/s

## Radio dongle



Wi-Fi card

**ETH** Zürich



D. Palossi 16.04.2021



## The Al-Deck

## Crazyflie (STM32)

Radio: **Nordic BTLE** 



nRF51 2.4GHz

Data rate: 0,25/1/2 Mbit/s

Data rate: 1 Mbit/s

**UART Link** 

Radio: **NINA Wi-Fi** 

Wi Fi

NINA-W102 2.4 GHz Data rate: 6-54 Mbit/s Radio dongle



Wi-Fi card

ETHZürich

Crazyflie + Al-Deck

Hands-on 1-2: GAP8 programming & camera

Al-Deck (GAP8)

D. Palossi



## The Al-Deck



Al-Deck (GAP8)

Radio: Nordic BTLE



nRF51 2.4GHz

Data rate: 0,25/1/2 Mbit/s

**UART Link** 

Data rate: 1 Mbit/s

Radio: NINA Wi-Fi

Wifi

NINA-W102 2.4 GHz Data rate: 6-54 Mbit/s

## Radio dongle



Wi-Fi card



D. Palossi 16.04.2021



## The Al-Deck

Crazyflie (STM32)

Radio: **Nordic BTLE** 

nRF51 2.4GHz

Data rate: 0,25/1/2 Mbit/s

Wi Fi



Wi-Fi card

16.04.2021



Al-Deck (GAP8)

Radio: **NINA Wi-Fi** 

Data rate: 1 Mbit/s

NINA-W102 2.4 GHz Data rate: 6-54 Mbit/s

ETHZürich

Crazyflie + Al-Deck

Radio dongle

Hands-on 4: Wi-Fi image streaming

D. Palossi



# Al-based applications (not in this workshop)

## **PULP-Dronet**:



| Task:     | Lane detection / Obstacle avoidance |  |
|-----------|-------------------------------------|--|
| CNN:      | 41 MMAC/frame                       |  |
| Onboard:  | 6fps@45mW / 18fps@272mW             |  |
| Device:   | PULP-Shield (GAP8)                  |  |
| arXiv.org | https://arxiv.org/abs/1805.01831    |  |







https://www.youtube.com/watc h?v=JKY03NV3C2s





# Al-based applications (not in this workshop)

### **PULP-Dronet**:



| Task:                                   | Lane detection / Obstacle avoidance |  |
|-----------------------------------------|-------------------------------------|--|
| CNN:                                    | 41 MMAC/frame                       |  |
| <b>Onboard:</b> 6fps@45mW / 18fps@272mW |                                     |  |
| Device:                                 | PULP-Shield (GAP8)                  |  |
| arXiv.org                               | https://arxiv.org/abs/1805.01831    |  |







https://www.youtube.com/watc h?v=JKY03NV3C2s



PULP-Dronet v2 for the Al-Deck coming soon on GitHub







## Al-based applications (not in this workshop)

## **PULP-Dronet**:



| Task:                            | Lane detection / Obstacle avoidance |  |
|----------------------------------|-------------------------------------|--|
| CNN:                             | 41 MMAC/frame                       |  |
| Onboard:                         | 6fps@45mW / 18fps@272mW             |  |
| Device:                          | PULP-Shield (GAP8)                  |  |
| https://arxiv.org/abs/1805.01831 |                                     |  |







https://www.youtube.com/watc h?v=JKY03NV3C2s

#### **PULP-Frontnet:**

| ① PULP-Frontnet 160×32<br>② PULP-Frontnet 160×16<br>③ PULP-Frontnet 80×32 | /S Convolution<br>/S: stride factor<br>N×N N×N: filter size | /S Max-pooling<br>/S: stride factor<br>N×N N×N: pool size | Batch<br>Normalization             | ReLu Dropot                        | ut Fully Connected Linear |
|---------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------|------------------------------------|------------------------------------|---------------------------|
| ② 160×96×1 ② 80×48×16                                                     | ① 40×24×32<br>② 40×24×16<br>③ 20×12×32<br>② 10×6×32         | ) <b>- (///) - (////) - (//-)</b> - (                     | ① 10×6×64<br>② 10×6×32<br>③ 5×3×64 | ⊕ 5×3×128<br>⊕ 5×3×64<br>⊕ 3×2×128 | 0 1920                    |
| Input image                                                               | BLOCK 1                                                     |                                                           | BLOCK 2                            | вьоск з                            |                           |

| Task:                                      | Human pose estimation    |  |
|--------------------------------------------|--------------------------|--|
| CNN:                                       | 14 / 4.3 / 4 MMAC/frame  |  |
| Onboard:                                   | 48fps@20mW / 135fps@86mW |  |
| Device: Al-Deck (GAP8)                     |                          |  |
| arXiv.org https://arxiv.org/abs/2103.10873 |                          |  |









PULP-Dronet v2 for the Al-Deck coming soon on GitHub



D. Palossi



