LOCAL SEARCH ALGORITHMS: Applications

Regression Problem, K-Means Clustering Problem.

Linear regression – an example that uses gradient descent

$$y = mx + b$$

We want to fit a straight line (in 2D case). The sample we are given with is $\{(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)\}.$

We want to find (m, b).

In the space (m, b) what is the function we are going to define? Minimum value of that function should be a solution for us.

Error_(m,b) =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - (mx_i + b))^2$$

$$\frac{\partial}{\partial \mathbf{m}} = \frac{2}{N} \sum_{i=1}^{N} -x_i (y_i - (mx_i + b))$$
$$\frac{\partial}{\partial \mathbf{b}} = \frac{2}{N} \sum_{i=1}^{N} -(y_i - (mx_i + b))$$

$$\frac{\partial}{\partial \mathbf{b}} = \frac{2}{N} \sum_{i=1}^{N} -(y_i - (mx_i + b))$$

Single airport problem in 1D

 We are asked to locate the airport place, so that it is "sum of squared distances" from all 3 cities, viz., C1,C2, and C3, is minimized.

2 dimensional, single airport

- Closed form solution
 - The centroid?
 - Why?

2 dimensional, 2 airports problem

- Single airport problem can be easily visualized.
- •But 2 airports problem is difficult to visualize.
 - •You need to work in a 4 dimensional space.

•3 airports problem you need to work in a 6D space.

Airports Problem (3 airports) ...

Coordinates of the three airports be

$$(x_1, y_1)^t, (x_2, y_2)^t, (x_3, y_3)^t$$

- $f((x_1, y_1, x_2, y_2, x_3, y_3)^t)$ = Sum of squared distances from each city to its nearest airport
- Find values for the six parameters that minimize $f(\cdot)$

The 3 airports problem

- What is the criterion?
- Sum of squared distances of cities from their nearest airport locations.

K means clustering: Introduction

Let the cities be located at $C_1, C_2, ..., C_n$ and let the three airport locations be A_1, A_2, A_3 .

Arbitrarily choose A_1 , A_2 , A_3 .

Let
$$J = \sum_{i} \min_{j} ||C_i - A_j||^2$$

We want to find A_1, A_2, A_3 such that J is minimized.

- Minimum of convex functions, in general is not convex.
- So the objective is not convex.

An illustration: how k means works

This, indeed, gets stuck with local minima.

Global minima is ...

Lloyd in 1982 gave the k means clustering algorithm

- This is an iterative Newton's Descent Method.
- Gradient descent also works, but is slow.

 Single airport problem can be solved with a closed form solution. (Newton's method gives this).

K airports problems via k means clustering

- Choose randomly k points from the data. (these are the initial airport locations)
- (1) Assign each point to its nearest airport (center/mean) → This gives partition of the data.
- (2) For each block of the partition, solve single airport problem. → Reduce the criterion using Newton's method. (this gives k new points)
- Repeat (1) and (2) iteratively till convergence.

Illustration: see how mean vectors are moving as iterations are increased.

Example, k=2

Initial means:
Point 1 and Point 4

Individual	Distance to mean 1	Distance to mean 2
1	0	7.21
2	1.12	6.10
3	3.61	3.61
4	7.21	0
5	4.71	2.5
6	5.31	2.06
7	4.3	2.91

Point	х	У
1	1.0	1.0
2	1.5	2.0
3	3.0	4.0
4	5.0	7.0
5	3.5	5.0
6	4.5	5.0
7	3.5	4.5

Clusters: {1,2,3}, {4,5,6,7}

New Mean vectors are: (1.83,2.33), (4.125, 5.375)

Point 3 now is closer to mean 2

Dist (3, mean 1) = 2.039

Dist (3, mean 2) = 1.777

So, point 3 moves from cluster 1 to cluster 2.

Clusters = $\{1,2\}$, $\{3,4,5,6,7\}$

Point	Х	У
1	1.0	1.0
2	1.5	2.0
3	3.0	4.0
4	5.0	7.0
5	3.5	5.0
6	4.5	5.0
7	3.5	4.5

- Clusters = $\{1,2\}$, $\{3,4,5,6,7\}$
- Final means = $\{(1.25,1,5),(3.9,5.1)\}$