Curve

Curva in \mathbb{R}^n

Definizione

Si chiama curva una mappa $\gamma:I\to\mathbb{R}^n$ continua, $\gamma(t):=(\gamma_1(t),\ldots,\gamma_n(t))$, I intervallo di \mathbb{R} , $\gamma_i(t):I\to\mathbb{R}$ $(i=1,\ldots,n)$

Se I=[a,b], $\gamma(a)$ e $\gamma(b)$ si chiamano estremi della curva

L'insieme $\gamma(I)\subset\mathbb{R}^n$ si chiama sostegno o supporto della curva

 $\underline{x}=(x_1,\ldots,x_n)=\gamma(t)$ si chiama equazione parametrica o anche legge oraria della curva

Curva chiusa

Se I=[a,b] e gli estremi coincidono, $\gamma(a)=\gamma(b)$, γ si dice chiusa

Curva semplice

 γ si dice semplice se è iniettiva, oppure se è chiusa e $\gamma:[a,b)\to\mathbb{R}^n$ è iniettiva

Curve cartesiane

 $f \in \mathrm{C}^0([a,b]), \, \gamma, \gamma^*: [a,b] o \mathbb{R}^n, \, \gamma(t) = (t,f(t)), \gamma^*(t) = (f(t),t)$ sono dette curve piane cartesiane

Q Osservazione >

Se almeno una componente γ_i p iniettiva $\implies \gamma$ è iniettiva

Orientazione di una curva semplice

Definizione

Una curva semplice $\gamma:I\to\mathbb{R}^n$ induce un'orientazione, anche detta verso, al suo sostegno Si dice che $\underline{x_1}=\gamma(t_1)$ precede $\underline{x_2}=\gamma(t_2)$ se $t_1< t_2$

Vettore velocità e retta tangente

Definizione

 $\gamma:I o\mathbb{R}^n$ curva, se $\gamma_i:I o\mathbb{R}$ sono derivabili in $t_0\in I$ $\gamma'(t_0):=(\gamma_1'(t_0),\ldots,\gamma_n'(t_0))$ è detto vettore velocità di γ in t_0 Se $t o t_0$ $\gamma(t)=\gamma(t_0)+\gamma'(t_0)(t-t_0)+o(t-t_0)$

Q Osservazione >

$$\gamma'(t_0) = J_\gamma(t_0)^T$$

Definizione

Se $\gamma'(t_0)
eq \underline{0}$ si chiama retta tangente a γ in $x_0 = \gamma(t_0)$ la retta $\underline{x} = \gamma(t_0) + \gamma'(t_0)(t-t_0)$

 $\gamma:I o\mathbb{R}^n$ si dice di classe C^m se $\gamma_i\in\mathrm{C}^m(I)\;\;orall i\in\{1,\ldots,n\}$

 γ si dice regolare se $\gamma \in \mathrm{C}^1(I)$ e $\gamma'(t) \neq 0 \ \ orall t \in I$

Si chiama versore o direzione tangente a γ il campo vettore

$$T_{\gamma}(t) := rac{\gamma'(t)}{||\gamma'(t)||}$$

 $\gamma:[a,b] o\mathbb{R}^n$ si dice C^1 a tratti se $\exists\{a=t_0<\ldots< t_k=b\}$ suddivisione di [a,b] tale che $\gamma_j=\gamma|_{[t_{j-1},t_j]}:[t_{j-1},t_j] o\mathbb{R}^n$ è di classe C^1 e $\gamma=igcup_{j=1}^k\gamma_j$

Cambiamento di parametro

Definizione

 $\gamma:I o\mathbb{R}^n, ilde{\gamma}: ilde{I} o\mathbb{R}^n$ di classe C^1 si dicono equivalenti se $\exists \varphi: ilde{I} o I$ biiettiva tale che $\varphi\in\mathrm{C}^1(ilde{I})$, $\varphi'(au)
eq 0$ e $ilde{\gamma}=\gamma(\varphi(au))\ \ \forall au\in ilde{I}$ $au\in ilde{I} o t=\varphi(au)\in I$ si dice cambiamento di parametrizzazione

Q Osservazione >

Se $\varphi(\tau)>0 \ \ \forall \tau\in ilde{I}$ allora γ e $ilde{\gamma}$ hanno lo stesso verso, altrimenti se $\varphi(\tau)<0 \ \ \forall \tau\in ilde{I}$ hanno verso opposto