Dedekind Ringe und Klassengruppen

Ana Marija Vego

1 Gebrochene Ideale

Im folgenden Abschnitt bezeichnet \mathcal{O} einen beliebigen Dedekindring, und K seinen Quotientenkörper.

Lemma 1.1. Zu jedem Ideal $\mathfrak{a} \neq 0$ von \mathcal{O} , existiert ein $r \in \mathbb{N}$ und von Null verschiedene Primideale $\mathfrak{p}_1, \mathfrak{p}_2, \ldots, \mathfrak{p}_r$ mit

$$\mathfrak{a}\supseteq \mathfrak{p}_1\mathfrak{p}_2\ldots\mathfrak{p}_r$$

Beweis: Sei M die Menge aller Ideale $\mathfrak a$ s.d. keine Primideale mit der obigen Eigenschaft existieren. Angenommen M sei nicht leer. Da $\mathcal O$ noethersch ist, bricht jede aufsteigende Idealkette ab. M ist daher hinsichtlich der Inklusion induktiv geordnet und besitzt somit nach dem Zornschen Lemma ein maximales Element $\mathfrak a$. Dieses kann kein Primideal sein, d.h. es gibt Elemente $b_1, b_2 \in \mathcal O$ mit $b_1b_2 \in \mathfrak a$, aber $b_1, b_2 \notin \mathfrak a$. Setzen wir $\mathfrak a_1 = (b_1) + \mathfrak a$, $\mathfrak a_2 = (b_2) + \mathfrak a$, so ist $\mathfrak a \subsetneq \mathfrak a_1$, $\mathfrak a \subsetneq \mathfrak a_2$ und $\mathfrak a_1\mathfrak a_2 \subseteq \mathfrak a$. Wegen der Maximalität enthalten $\mathfrak a_1$ und $\mathfrak a_2$ Primidealprodukte, deren Produkt in $\mathfrak a$ liegt, Widerspruch. \square

Lemma 1.2. Ist \mathfrak{p} ein Primideal von \mathcal{O} und

$$\mathfrak{p}^{-1} = \{ x \in K \mid x\mathfrak{p} \subseteq \mathcal{O} \}$$

so ist $\mathfrak{ap}^{-1} := \left\{ \sum_i a_i x_i \mid a_i \in \mathfrak{a}, x_i \in \mathfrak{p}^{-1} \right\} \neq \mathfrak{a} \text{ für jedes Ideal } \mathfrak{a} \neq 0.$

Beweis: Sei $a \in \mathfrak{p}, a \neq 0$, und $\mathfrak{p}_1\mathfrak{p}_2 \dots \mathfrak{p}_r \subseteq (a) \subseteq \mathfrak{p}$ mit minimalem r, wobei $\mathfrak{p}_1, \dots, \mathfrak{p}_r$ Primideale wie in Lemma 1.1 sind. Dann ist eines der \mathfrak{p}_i , o.B.d.A. \mathfrak{p}_1 , in \mathfrak{p} enthalten, also $\mathfrak{p}_1 = \mathfrak{p}$ wegen der Maximalität von \mathfrak{p}_1 . Denn sonst gäbe es für jedes i ein $a_i \in \mathfrak{p}_i \setminus \mathfrak{p}$ mit $a_1 \dots a_r \in \mathfrak{p}$. Wegen $\mathfrak{p}_2 \dots \mathfrak{p}_r \subseteq (a)$ gibt es ein $b \in \mathfrak{p}_2 \dots \mathfrak{p}_r$ mit $b \notin a\mathcal{O}$ also $a^{-1}b \notin \mathcal{O}$. Andererseits ist aber $b\mathfrak{p} \subseteq (a)$, also $a^{-1}b\mathfrak{p} \subseteq \mathcal{O}$, und somit $a^{-1}b \in \mathfrak{p}^{-1}$. Damit ist $\mathfrak{p}^{-1} \neq \mathcal{O}$. Sei nun $\mathfrak{a} \neq 0$ ein Ideal von \mathcal{O} und $\alpha_1, \dots, \alpha_n$ ein Erzeugendensystem. Nehmen wir an, das $\mathfrak{a}\mathfrak{p}^{-1} = \mathfrak{a}$. Dann ist für jedes $x \in \mathfrak{p}^{-1}$

$$x\alpha_i = \sum_j a_{ij}\alpha_j, \quad a_{ij} \in \mathcal{O}$$

Ist A die Matrix $(x\delta_{ij} - a_{ij})$, so ist also $A(\alpha_1, \ldots, \alpha_n)^t = \underline{0}$. Für die Determinante d := det(A) folgt $d\alpha_1 = \ldots = d\alpha_n = 0$ und somit d = 0. Daher ist x als

Nullstelle des normierten Polynoms $f(x) = det(X\delta_{ij} - a_{ij}) \in \mathcal{O}[X]$ ganz über \mathcal{O} , d.h. $x \in \mathcal{O}$. Es ergibt sich somit $\mathfrak{p}^{-1} = \mathcal{O}$, Wiederspruch. \square

Satz 1.3. Jedes von (0) und (1) verschiedene Ideal \mathfrak{a} von \mathcal{O} besitzt eine, bis auf Vertauschung, eindeutige Zerlegung

$$\mathfrak{a} = \mathfrak{p}_1 \dots \mathfrak{p}_r$$

in Primideale \mathfrak{p}_i von \mathcal{O} .

Beweis:

I. Existenz der Primzerlegung.

Sei \mathfrak{M} die Menge aller von (0) und (1) verschiedenen Ideale, die keine Primzerlegung besitzen. Ist \mathfrak{M} nicht leer, so schließen wir wie bei (1.1), dass es ein maximales Element, sage \mathfrak{a} , in \mathfrak{M} gibt. Es liegt in einem maximalen Ideal \mathfrak{p} , und wir erhalten wegen $\mathcal{O} \subseteq \mathfrak{p}^{-1}$:

$$\mathfrak{a}\subseteq\mathfrak{ap}^{-1}\subseteq\mathfrak{pp}^{-1}\subseteq\mathcal{O}$$

Nach Lemma 1.2 ist $\mathfrak{a} \subsetneq \mathfrak{a}\mathfrak{p}^{-1}$ und $\mathfrak{p} \subsetneq \mathfrak{p}\mathfrak{p}^{-1} \subseteq \mathcal{O}$. Da \mathfrak{p} ein maximales Ideal ist, so folgt $\mathfrak{p}\mathfrak{p}^{-1} = \mathcal{O}$. Wegen der Maximalität von \mathfrak{a} in \mathfrak{M} und wegen $\mathfrak{a} \neq \mathfrak{p}$, also $\mathfrak{a}\mathfrak{p}^{-1} \neq \mathcal{O}$, besitzt $\mathfrak{a}\mathfrak{p}^{-1}$ eine Primzerlegung $\mathfrak{a}\mathfrak{p}^{-1} = \mathfrak{p}_1 \dots \mathfrak{p}_r$ also auch $\mathfrak{a} = \mathfrak{a}\mathfrak{p}^{-1}\mathfrak{p} = \mathfrak{p}_1 \dots \mathfrak{p}_r\mathfrak{p}$, Widerspruch.

II. Eindeutigkeit der Primzerlegung.

Für ein Primideal $\mathfrak p$ gilt nach Definition: $\mathfrak a\mathfrak b \subseteq \mathfrak p \Rightarrow \mathfrak a \subseteq \mathfrak p$ oder $\mathfrak b \subseteq \mathfrak p$, d.h. $\mathfrak p | \mathfrak a\mathfrak b \Rightarrow \mathfrak p | \mathfrak a$ oder $\mathfrak p | \mathfrak b$. Seien nun

$$\mathfrak{a} = \mathfrak{p}_1 \mathfrak{p}_2 \dots \mathfrak{p}_r = \mathfrak{q}_1 \mathfrak{q}_2 \dots \mathfrak{q}_s$$

zwei Primzerlegungen von \mathfrak{a} . Dann teilt \mathfrak{p}_1 einen Faktor \mathfrak{q}_i , etwa \mathfrak{q}_1 , und ist wegen der Maximalität = \mathfrak{q}_1 . Wir multiplizieren mit \mathfrak{p}_1^{-1} und erhalten wegen $\mathfrak{p}_1 \neq \mathfrak{p}_1 \mathfrak{p}_1^{-1} = \mathcal{O}$

$$\mathfrak{p}_2 \dots \mathfrak{p}_r = \mathfrak{q}_2 \dots \mathfrak{q}_s$$

So fortfahrend erhalten wir r=s und nach eventueller Umordnung $\mathfrak{p}_i=\mathfrak{q}_i, i=1,\ldots,r$. \square

Definition 1.1 (gebrochenes Ideal). Sei \mathcal{O} ein Dedekind Ring und K sein Quotientenkörper. Ein **gebrochenes Ideal** von K ist ein endlich erzeugter \mathcal{O} -Untermodul $\mathfrak{a} \neq 0$ von K. Ein **ganzes Ideal** von K ist ein Ideal von \mathcal{O} .

Die Definition vom ganzen Ideal ist jetzt nötig um unterscheiden zu können von gebrochenen Idealen.

Satz 1.4. Die gebrochenen Ideale bilden eine abelsche Gruppe, die Idealgruppe J_K von K. Das Einselement $(1) = \mathcal{O}$, und das Inverse zu \mathfrak{a} ist

$$\mathfrak{a}^{-1} = \{ x \in K : x\mathfrak{a} \subseteq \mathcal{O} \}$$

Beweis: Assoziativität, Kommutativität und $\mathfrak{a}(1) = \mathfrak{a}$ sind klar. Für ein Primideal \mathfrak{p} ist nach Lemma (1.1) $\mathfrak{p} \subsetneq \mathfrak{p}\mathfrak{p}^{-1}$, also $\mathfrak{p}\mathfrak{p}^{-1} = \mathcal{O}$ wegen der Maximalität von \mathfrak{p} . Ist $\mathfrak{a} = \mathfrak{p}_1...\mathfrak{p}_r$ ein ganzes Ideal, so ist $\mathfrak{b} = \mathfrak{p}_1^{-1}...\mathfrak{p}_r^{-1}$ ein Inverses. Wegen $\mathfrak{b}\mathfrak{a} = \mathcal{O}$ ist $\mathfrak{b} \subseteq \mathfrak{a}^{-1}$. Ist umgekehrt $x\mathfrak{a} \subseteq \mathcal{O}$, so ist $x\mathfrak{a}\mathfrak{b} \subseteq \mathfrak{b}$, also $x \in \mathfrak{b}$ wegen $\mathfrak{a}\mathfrak{b} = \mathcal{O}$. Daher ist $\mathfrak{b} = \mathfrak{a}^{-1}$. Ist \mathfrak{a} ein gebrochenes Ideal und $\mathfrak{c} \in \mathcal{O}$, $\mathfrak{c} \neq 0$, mit $\mathfrak{c}\mathfrak{a} \subseteq \mathcal{O}$, so ist $(\mathfrak{c}\mathfrak{a})^{-1} = \mathfrak{c}^{-1}\mathfrak{a}^{-1}$ das Inverse von $\mathfrak{c}\mathfrak{a}$, also $\mathfrak{a}\mathfrak{a}^{-1} = \mathcal{O}$. \square

Bemerkung: Da \mathcal{O} noeterisch ist, ist ein \mathcal{O} -Untermodul $\mathfrak{a} \neq 0$ von $K = \operatorname{Quot}(\mathcal{O})$ ein gebrochenes Ideal g.d.w. ein $0 \neq c \in \mathcal{O}$ existiert mit $c\mathfrak{a} \subseteq \mathcal{O}$. Die gebrochene Ideale multipliziert man genauso wie Ideale von \mathcal{O} .

Korollar 1.4.1. Jedes gebrochene Ideal $\mathfrak a$ besitzt eine eindeutige Produktdarstellung

$$\mathfrak{a}=\prod_{\mathfrak{p}}\mathfrak{p}^{\nu_{\mathfrak{p}}}$$

 $mit \ \nu_{\mathfrak{p}} \in \mathbb{Z} \ und \ \nu_{\mathfrak{p}} = 0 \ f\"{u}r \ fast \ alle \ \mathfrak{p}.$ Mit anderen Worten: J_K ist die durch die Primideale $\mathfrak{p} \neq 0$ erzeugte freie abelsche Gruppe.

Beweis: Jedes gebrochene Ideal $\mathfrak a$ ist Quotient $\mathfrak a = \mathfrak b/\mathfrak c$ zweier ganzer Ideale $\mathfrak b$ und $\mathfrak c$, die nach (1.3) eine Primfaktorzerlegung besitzen. Daher besitzt $\mathfrak a$ eine Primzerlegung im Sinne des Korollars. Sie ist nach (1.3) eindeutig, wenn $\mathfrak a$ ganz ist, und damit auch im allgemeinen Fall. \square

Das Korollar 1.4.1 gibt einen Zusammenhang zu den lokalen Bewertungen. Nach dem Satz (11.5) in [MP11] [2] erhalten wir dass zu jedem Primideal $\mathfrak{p} \neq 0$ in \mathcal{O} ein zugehöriger diskreter Bewertungsring $\mathcal{O}_{\mathfrak{p}}$ mit der entsprechenden Bewertung des Quotientenkörpers:

$$v_{\mathfrak{p}}:K^{\times}\to\mathbb{Z}$$

existiert. Diese Bewertung hat eine beziehung zur Primzerlegung. Ist $x \in K^{\times}$ und

$$(x) = \prod_{\mathfrak{p}} \mathfrak{p}^{\nu_p}$$

die Primzerlegung des Hauptideals (x), so ist

$$\nu_{\mathfrak{p}} = v_{\mathfrak{p}}(x)$$

für alle \mathfrak{p} . Denn für ein festes Primideal $\mathfrak{q}\neq 0$ von \mathcal{O} folgt (wegen $\mathfrak{p}\mathcal{O}_{\mathfrak{q}}=\mathcal{O}_{\mathfrak{q}}$ für $\mathfrak{p}\neq \mathfrak{q}$) aus der ersten Gleichung

$$x\mathcal{O}_{\mathfrak{q}} = (\prod_{\mathfrak{p}} \mathfrak{p}^{\nu_p}) \mathcal{O}_{\mathfrak{q}} = \mathfrak{q}^{\nu_{\mathfrak{q}}} \mathcal{O}_{\mathfrak{q}} = \mathfrak{m}_{\mathfrak{q}}^{\nu_{\mathfrak{q}}}$$

also in der Tat $v_{\mathfrak{q}}(x) = \nu_{\mathfrak{q}}$.

2 Die Klassengruppe

Definition-Proposition 2.1. Die Klassengruppe ist definiert als die Faktorgruppe

$$Cl_K = J_K/P_K$$
.

wobei P_K aus den gebrochenen Hauptidealen $(a) = a\mathcal{O}, a \in K^{\times}$ besteht. Bemerkung: P_K ist eine Untergruppe der Idealgruppe J_K .

Generell rechnet man in der Gruppe der gebrochenen Ideale mit der entsprechenden Äquivalenzrelation lieber als in der Klassengruppe von K. Man setzt hierbei für zwei gebrochene Ideale \mathcal{I}, \mathcal{J} :

$$\mathcal{I} \sim \mathcal{J} \iff \mathcal{I}P_K = \mathcal{J}P_K$$

$$\iff \exists x \in K^{\times} : \mathcal{I} = (x)\mathcal{J}$$

$$\iff \exists x \in K^{\times} : \mathcal{I} = x\mathcal{J}$$
(1)

Bemerkung: Ein Dedekindring ist ein Hauptidealring wenn die Klassengruppe trivial ist.

Beispiel: Sei $K := \mathbb{Q}(\sqrt{d})$, für $d \in \mathbb{Z}$ quadratfrei. Die negativen quadratfreien Zahlen d < 0 für die die Klassengruppe von K trivial ist, sind:

$$d = -1, -2, -3, -7, -11, -19, -43, -67, -163$$

References

- [1] [N92] J. Neukirch, Algebraische Zahlentheorie. Springer-Verlag, Berlin, 1992
- [2] [MP11] S. Müller-Stach und J. Piontkowski, Elementare und algebraische Zahlentheorie, 2., erweiterte Auflage, Springer, Berlin, 2011

 $Email\ address:\ avego@student.ethz.ch$