

Introduction to Fluid Power

Prof. Jari Vepsäläinen

Presenter Name

From a mechanical engineering perspective

The world

Consists mainly of...

Solids Fluids
FEM CFD

Physics: Statics, dynamics, thermodynamics, kinematics, mechanics...

Data: capturing things we can't explain with physics

Fluid Power Systems

Biological systems

Engineering systems

Intended learning outcomes

After this session, the student can...

- 1. Understand the fundamental principles of fluid power
- 2. Identify hydraulic system and its components
- 3. Understand the working principles of hydraulic components
- 4. Identify fluid power applications

Contents

- What is Fluid Power?
- 2. Fluid Power Systems
- Applications and Research

1. What is Fluid Power?

Fluid Power

Liquid = Hydraulics

Gas = Pneumatics

How it works?

- Power transmission with fluid
- Distribution of power

No pressure – no motion

Pressure difference causes flow.

Without pressure, there is no flow.

Hydraulic force conversion

Two cylinders

- Same pressure, bigger area for lift
- Higher force, lower speed
- Power transmission

System types

Pressure affects perpendicularly

Pressure is the same everywhere in the same volume

Absolute pressure

Units

SI Unit Pascal: 1 Pa = 1 N/m²

105 Pa = 1 bar (engineering unit)

Based on Bernoulli's equation

$$p = \frac{F}{A} + \rho g h + p_{am}$$

Gauge pressure

$$p = \frac{F}{A}$$

Flow

a) Laminar flow

Smooth and streamlined, low internal resistance

b) Turbulent flow

Chaotic and irregular -> Energy loss

Depends on

- Pipe size
- Fluid viscosity
- Speed

laminar flow

turbulent flow

2. Fluid Power Systems

System Components

- Power source
 - Electric motor or engine + pump
- Actuators to convey movement
 - Cylinders and motors
- Valves for logic & control
- Fluid to convey power
 - Oil or water
- Utilities
 - Pressure accumulator, heat exchanger, filters, tank

Energy losses

Basic Hydraulic system

"Powerpack": eMotor/Engine + Pump

Video (8 min)

Rotary Vane Pump

Pumps

http://www.designworldonline.com/a-quick-and-easy-guide-to-hydraulic-pump-technology-and-selection/#_

Pump equations

Ideal and real values for flow, torque and power

Produced flow rate $q_n = nV_r \eta_v$

$$q_v = nV_r \eta_v$$

Required torque

$$T = \frac{\Delta p V_r}{2\pi \eta_{hm}}$$

Required power

$$P = \frac{q_v \Delta p}{\eta_{tot}}$$

$$n =$$
Rotational speed [r/s]

 $V_{\rm r}$ = Displacement [m³/r]

 Δp = Pressure difference between inlet and outlet [Pa]

 $q_{\rm V}$ = Flow rate [m³/s]

= Volumetric efficiency []

 $\eta_{\rm hm}$ = Hydromechanical efficiency []

= Overall efficiency []

 $= \eta_{\rm v} \cdot \eta_{\rm hm}$

More torque and rotational speed ⇒ input power needed because of

Friction

(hydromechanical efficiency)

Leakages than in ideal pumps (volumetric efficiency)

Pump efficiency

 $\eta_{\rm v}$: volumetric efficiency (leaks)

 $\eta_{\rm hm}$: hydromechanical efficiency (flow and mechanical frictions)

 $\eta_{\rm t}$: overall efficiency

Actuation: Rotational and Linear

Often exactly the same structure as in a pump Types

- Axial piston
 Bent axis
- Radial piston
- Gear
- Vane

Motor equations

Efficiency is taken into account inversly compared to pumps

Flow rate in

$$q_v = \frac{nV_r}{\eta_v}$$

Produced torque

$$T = \frac{\Delta p V_r \eta_{hm}}{2\pi}$$

Power in
$$P = q_v \Delta p = \frac{T\omega}{\eta_t}$$

n = rotational speed [r/s]

 ω = angular velocity [rad/s]

 $V_{\rm r}$ = swept volume [m³/r]

T = load torque [Nm]

 Δp = pressure difference between

in- and outlet [Pa]

 $q_{\rm V}$ = flow rate [m³/s]

 $\eta_{\rm v}$ = volumetric efficiency []

 $\eta_{\rm hm}$ = hydromechanical efficiency []

 $\eta_{\rm t}$ = overall efficiency []

 $= \eta_{
m v} \cdot \eta_{
m hm}$

Cylinder Types

Single acting

Single or Double acting

Cylinder equations

Flow rate

$$q_{v1} = \frac{A_1 v}{\eta_v}$$

Force balance

$$p_1A_1 = \frac{F}{\eta_{hm}} + p_2A_3$$

Required power
$$P = q_{v1}(\mathbf{p}_1 - \frac{\mathbf{A}_3}{\mathbf{A}_1}\mathbf{p}_2) = \frac{\mathbf{F}_{\text{net}}\mathbf{v}}{\eta_t}$$

= piston area on the working chamber $[m^2]$ A_1

= piston area on the opposing chamber $[m^2]$ A_3

= piston speed [m/s]

= external load force [N]

= pressure on the opposing chamber [Pa]

= volumetric efficiency [] $\eta_{
m v}$

= hydromechanical efficiency []

= overall efficiency []

Cylinder size

D= 500 mm

@ 400 bar

 \Rightarrow 7.7 MN

⇒ Lift 800 tons

AIRBUS A380 - Superjumbo

- 3 jacks
- Cylinders made in Finland
- Empty mass 277 000 kg

Control: Valves

Directional Control Valves

Other valves

Presure Relief Valve (PRV)

To protect from over pressure Usually connects the protected line to tank Necessary component in practice

Check valve

Block reverse flow direction

Shuttle valve

Choose the larger pressure level

Check valve

Pressure Relief Valve (PRV)

Shuttle valve

- Pressure passes from higher pressure
- Comparison between ports A and B

Energy Storage: Pressure Accumulator

Pressure Accumulator

- Energy storage
- Fluid compresses nitrogen gas
- Pressure depends on loading condition

System Architectures: Throttling vs. Pump control

Throttle control

- "Traditional system"
- Constant Flow
 - Engine on one speed
 - Fixed displacement pump
- < 40 % efficiency
- Easy to control

Pump Contro

- Aka Electro-Hydraulic Actuation (EHA)
- Electric motor controls the flow
 - No need for control valves
- > 80 % efficiency

 Difficult to control with varying loads and speeds

Hermansson, R. (2021). Testing and simulation of energy efficiency of direct drive hydraulic system. Master's thesis.

Hydraulic fluids

Oil

- Good lubricant
- Environmental hazard
- Health risk
 - Food industry
- Expensive
- Fire hazard
- Viscosity index

Filtering

- Metal chips, water, air

Water

- Needs additives to lubricate
- "Clean"
- Expensive components
- Can freeze
- Corrosion
 - Stainless steel must be used (or even plastics for low pressures)

Fluid power systems

Pros

- High power/weight –ratio
- Linear and rotational motion
- Robust control
 - Compliant if needed
 - Overload prevention
- Freedom of system layout
 - Distributed power

Cons

- Energy efficiency
 - 22 % on avg.
 - New tech even over 80%
- Characteristics of pressure medium
 - Leaks
 - Impurities

3. Applications and Research

Workmachines

Harvester

Aalto-yliopisto Aalto-universitetet

Aalto University

Excavator

Mining loader

Wheel loader

Boston dynamics: Atlas

28 hydraulic joints

Telescopic crane

Airplanes

Elevator, rudder
Landing gear
Brakes
Cargo doors, stairs

Hydraulic press

Forming sheets by pressing them into a mold with a huge force

Hydraulic brakes

Emerging Technologies

ExoskeletonsAging population

Wave Energy Converters
Climate crisis

Pneumatics

Production Line automation

- fast actuation

Soft grippers

- Compliant grip
- Usually coupled with force sensing or haptic sensing

Soft gripper

Pneumatic muscles

- Very light weigth
- Inherently compliant
- Biomimetic

Research focus: Non-Road Mobile Machinery

There is a need for electrification to reduce emissions and improve efficency. High power requires large batteries and motors. Challeges:

- Cost
- Weight
- Space
- Heat

Challenge: Industry is very conservative, hard to introduce new solutions

Research Topics Breakdown

Non-Road Mobile Machines

System Design

Thermal Design

Improved Performance

Increasing Longevity

Waste Heat Utilization

Managing Peak Loads

Energy Recuperation Optimizing Components

Vibration Damping

Predictive Maintenance

Adsorption Materials Phase Change Materials

Cooling Dimensioning

Summary

Hydraulics is a power transmission method

- Pressure differences required to create flow
- High forces and power from compact actuators
- Good efficiency actuators, often bad efficiency systems

Hydraulic system consists of

- Powerpack: eMotor/Engine + Pump
- Actuators: Cylinders and motors
- Valves: Directional and Control
- Sensors: pressure, flow, position, force, temperature
- Fluid: oil, water
- Utilities: Pressure accumulator, heat exchanger, filters, tank

Kiitos aalto.fi

7.11.2024