

Trine Nyholm Kragh & Laura Nyrup Mogensen Mathematical Engineering, MATTEK

Master's Thesis

Mathematical Engineering Aalborg University http://www.aau.dk

STUDENT REPORT

Title:	Abstract:
Bayesian Dictionary Learning for EEG	
Source Identification	Here is the abstract

Theme:

Project Period: Fall Semester 2019

Project Group:

Mattek9

Participant(s): Trine Nyholm Kragh Laura Nyrup Mogensen

Supervisor(s):
Jan Østergaard

Copies: 1

Page Numbers: 9

Date of Completion: September 17, 2019

The content of this report is freely available, but publication (with reference) may only be pursued due to agreement with the author.

Matematik-Teknologi

Aalborg Universitet http://www.aau.dk

AALBORG UNIVERSITET

STUDENTERRAPPORT

Titel:	Abstract:
Bayesian Bibliotek Læring for EEG Kilde	
Identifikation	Her er resuméet

Tema:

Projektperiode: Efterårssemestret 2019

Projektgruppe: Mattek9

Deltager(e):

Trine Nyholm Kragh Laura Nyrup Mogensen

Vejleder(e):
Jan Østergaard

Oplagstal: 1

Sidetal: 9

Afleveringsdato: 17. september 2019

Rapportens indhold er frit tilgængeligt, men offentliggørelse (med kildeangivelse) må kun ske efter aftale med forfatterne.

Preface

dere is the preface. You should put your signatures at the end of the preface.					ce.	
		A	alborg.	University,	September	17, 2019
Trine Nyho					ıp Mogense	
<trijen15@stuc< td=""><td>dent.aau.dk></td><td></td><td><</td><td><lmogen15@s< td=""><td>tudent.aau.dk</td><td>:></td></lmogen15@s<></td></trijen15@stuc<>	dent.aau.dk>		<	<lmogen15@s< td=""><td>tudent.aau.dk</td><td>:></td></lmogen15@s<>	tudent.aau.dk	:>
		vii				

Danish Summary

Dansk resume?

Contents

Pr	reface	vii
Da	anish Summary	ix
In	troduction	3
1	Problem Analysis?	5
2	Theory 2.1 Compressive Sensing	7 7
\mathbf{A}	Appendix A	9

Introduction

Introduktion til hele projektet, skal kunne læses som en appetitvækker til resten af rapporten, det vi skriver her skal så uddybes senere. Brug dog stadigvæk kilder.

- kort intro a EEG og den brede anveldelse, anvendelse indenfor høreapperat.
- intro af model, problem med overbestemt system
- Seneste forslag til at løse dette
- vi vil efterviser dette og udvide til realtime tracking
- opbygningen af rapporten

Chapter 1

Problem Analysis?

indhold

Chapter 2

Theory

2.1 Compressive Sensing

Compressive sensing is used to recover high-dimensional signal from incomplete measurements using efficient algorithm. In compressive sensing a linear model is used to describe the relationship:

$$y = Ax$$
,

where x is a $1 \times N$ vector and A is a matrix of size $M \times N$.

As we want $M \ll N$ then A becomes rank-deficieny and therefore have a nonempty nullspace.

We want x to be a sparse representation, meaning that we have a signal of lenght N we want to represent it with k « N nonzero coefficient

signal can be well-approximated from a linearly combination of few elements extracted from a known basis or dictionary. If the representation is exact then the signal is sparse. A signal x said to be k-sparse when it has at most k nonzeros in x:

$$||x||_0 \le k$$
,

where

$$\Sigma_k = \{ x : \|x\|_0 \le k \},$$

denote the set of all k-sparse signals [\IeC {\textbullet }]. ℓ_p norm is given as

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}, \quad p \in [1, \infty)$$

the norm is used as an measure of the strength of a signal or as an error.

8 Chapter 2. Theory

Then ℓ_0 norm is np hard to calculate and therefore we seek for an approximation within the ℓ_1 norm. Therefore, we instead find the best k-term approximation of the

some conditions must be satisfied to insure that we recover all sparse representation of a signal. Some of the most known conditions explore the null space: Null Space Conditions.

The null space of the matrix A is defined as

$$\mathcal{N}(A) = \{z : Az = 0\}.$$

NSP do not take account for noise and we must therefore look at some stronger conditions which incoperate noise, the following restricted isometry property (RIP) [\IeC {\textbullet }].

Definition 2.1 (Restricted Isometry Property)

A matrix A satisfies the RIP of order k if there exists a $\delta_k \in (0,1)$ such that $(1-\delta_k)\|x\|_2^2 \leq \|Ax\|_2^2 \leq (1+\delta_k)\|x\|_2^2,$ holds for all $x \in \Sigma_k$

$$(1 - \delta_k) \|x\|_2^2 \le \|Ax\|_2^2 \le (1 + \delta_k) \|x\|_2^2$$

If a matrix A satisfy RIP then it will also satisfy the NSP as RIP is strictly stronger than NSP.

If A satisfies the RIP of order 2k with the constant $\delta_{2k} < \sqrt{2} - 1$. Then

$$C = \frac{2}{1 - (1 + \sqrt{2})\delta_{2k}}$$

Another measure used for sparsity is coherence [\IeC {\textbullet }].

Definition 2.2 (Coherence)

Coherence of the matrix A, denoted as $\mu(A)$, is the largest absolute value between two columns a_i and a_j from A:

$$\mu(A) = \max_{1 \le i < j \le n} \frac{|\langle a_i, a_j \rangle|}{\|a_i\|_2 \|a_j\|_2}$$

Appendix A

Appendix A