

Algorithm Selection

Two-day workshop Duke University Adam Chekroud

(Supervised) Machine Learning

Working definition: using computer algorithms to identify patterns in data that help us **predict** things we care about

Most accurate mapping from observables to an outcome

Neuroscience has readily adopted the notion of "distributed processing"

--> Multivariate approach is more sensitive in capturing complex signal

Supervised Learning

Very different to traditional inference!

Often, we must leave interpretability at the door...

While regression was all about estimating beta...

....ML is all about y-hat

Supervised Learning

Algorithms are, for the most part, data agnostic:

 Medical diagnosis, computer vision, spam filtering, neuroscience, genetics, tailoring ads, selling you stuff, filling ur amazon wishlist.

How do we choose an algorithm?

ML algorithms come with different "flavours'

Three broad aspects to consider (at least)

- Accuracy
- · Feasibility
- Linearity (or, the nature of the problem)

Choosing an algorithm

Accuracy

- More accuracy is not always better (!!)
- Is an approximation sufficient?
- Is an approximation better?!
 - · Simpler models less likely to over fit

c.f. Bias-variance tradeoff

Choosing an algorithm

Feasibility

- What can your data support? (realistic!)
 - 10 subjects? 10k? 100k?
 - Powerful algorithms are usually data hungry
- What can you afford, computationally?
 - · Not just one model
 - Tuning parameters, cross validation...
 - Implementation?
 - · Laptop is easy but slow
 - HPC/AWS, fast, but hard

Choosing an algorithm

Linearity (or approach)

- Is the problem likely to have linear solution?
- Was your problem just finding the key variable?

Choosing an algorithm

• Did you just need more flexibility?

Despite their dangers, linear algorithms are very popular as a first line of attack. They tend to be algorithmically simple and fast to train

Choosing an algorithm

Linearity (or approach)

• How about a non-parametric approach?

Choosing an algorithm

Linearity (or approach)

• If only it was that simple...

Choosing an algorithm

Inductive Bias: Algorithm selection necessarily introduces a bias

- We can only approximate a correct output
- Not necessarily a bad thing
 - · That is how we learn!
 - ...but we want to be as less wrong as possible.

Inductive Bias (reading)

Algorithm	Inductive Bias
Candidate-Elimination	The target concept c is contained in the hypothesis space H.
Linear Regression	The relationship between the attributes x and the output y is linear. The goal is to minimize the sum of squared errors.
Decision Trees	Shorter trees are preferred over longer trees. Trees that place high information gain attributes close to the root are preferred over those that do not.
Neural Networks with Backpropagation	Smooth interpolation between data points.
K-Nearest Neighbors	The classification of an instance x will be most similar to the classification of other instances that are nearby in Euclidean distance.
Support Vector Machines	Distinct classes tend to be separated by wide margins.
Naive Bayes	Each input depends only on the output class or label; the inputs are independent from each other.

Interim summary

Working definition: using computer algorithms to identify patterns in data that help us **predict** things we care about

• Pragmatic approach, different to classic inference

Try them all, but think about:

- Accuracy
- · Feasibility
- Inductive bias

What are the options?

ML framework called caret

Collection of functions that streamline ML processes

Contains tools for

- · Data splitting
- · Pre-processing
- · Feature selection
- Model tuning
- Variable importance estimation
- · Model validation
- Many models already integrated into this framework:

	Model
Boor	sted Classification Trees
Bag	ged AdaBoost
Adal	Boost.M1
Ada	ptive Mixture Discriminant Analysis
Ada _l Syst	ptive-Network-Based Fuzzy Inference tem
Mod	lel Averaged Neural Network
	re Bayes Classifier with Attribute ghting
	Augmented Naive Bayes Classifier with bute Weighting
Bag	ged Model
Bag	ged MARS
Bag	ged MARS using gCV Pruning
Bag	ged Flexible Discriminant Analysis
Bag	ged FDA using gCV Pruning
Вау	esian Additive Regression Trees
Bayı	esian Generalized Linear Model
Self	-Organizing Map
Bina	ry Discriminant Analysis
Boos	sted Tree
The	Bayesian lasso
Bayı	esian Ridge Regression (Model Averaged)
	dom Forest with Additional Feature action
Вау	esian Ridge Regression
	esian Regularized Neural Networks
Boos	sted Linear Model
Boos	sted Smoothing Spline
Boos	sted Tree
C5.0)
Cost	t-Sensitive C5.0
Sing	le C5.0 Ruleset
Sing	le C5.0 Tree
Con	ditional Inference Random Forest
CHi-	squared Automated Interaction Detection
SIM	CA
Con	ditional Inference Tree
	no contract me

http://topepo.github.io/caret/modelList.html

What are the options?

High-level overview

- No stats
- No equations
- No jargon**
- All "off the shelf"

Cover some popular algorithms

- k-Nearest Neighbours
- Support vector machine
 - linear
 - non-linear (radial)
- Decision tree
- · Penalized regression

**call me out on it if I do!

k-NN - finer details (optional)

Defining neighbours

- Which "distance measure"?
 - Pearson/spearman correlation
- How many neighbours?
 - Choose k through cross-validation
- Are all neighbours equal?
 - Weighted circle of neighbours

Dimensionality?

• PCA first, then k-NN

https://saravananthirumuruganathan.wordpress.com/2010/05/17/adetailed-introduction-to-k-nearest-neighbor-knn-algorithm/

Support Vector Machine

Aim: find a boundary that (optimally) separates our classes

Decision trees - downsides

Not a one-size-fits-all

· can be clumsy

Finer details

- how do we choose the variable to split on?
- when do we stop splitting?
- what if the tree gets too large?
- define accuracy?

Low bias, but high variance

· Accurate, but can overfit

Trees vs linear models

Decision trees - advanced

What if we make loads of really small trees?

Bagging - "forests" of trees

- Take bootstrap samples (e.g. 1000)
- Fit a small tree (bad accuracy)
- Average predictions of all 1000 trees

Boosting

- As above, but every time we fit a new tree, upweight the misclassified observations
- "each tree is an expert on the errors of its predecessor"

NB: when these trees only use

a few (randomly chosen) features, they are called a "random" forest

Penalized regression

Penalization, or regularization, is the imposing of constraints on a model to limit its complexity

Key concept:

- Just because our model is accurate, doesn't mean it will fit new data
- Maybe a simpler, less accurate model would be better in future?

(Statistically:

- Inclusion of more terms in the model causes high variance in coefficient estimates
- Will re-visit when we talk about bias-variance tradeoff)

Penalized regression

Only include predictors if they are "worth" it

- i.e. they reduce RSS enough to justify inclusion
- two typical methods: LASSO and Ridge regression

L1-regularization:

- aka. LASSO regression
- · minimize total absolute beta weight

Penalized regression

L2-regularization:

- aka. Ridge regression
- minimize total squared beta weight

Elastic net regression: blend of both penalties

Conclusions

- ML algorithms help us identify patterns in the data that predict outcomes we care about
- No one algorithm fits all, so try multiple. But consider:
 - Accuracy, feasibility, and the nature of your problem
- Starting points?
 - k-NN, SVM, Trees (and fancy trees, or penalized methods)
- This was just an intro!
- Try them out—best way to learn good parameters

BUT

- · ML is not a replacement for *lots* of good, useful data.
- · Fancy algorithms not a substitute for good predictors
 - Don't fall down the rabbit hole.....