PNV 3321 – MÉTODOS DE OTIMIZAÇÃO APLICADOS A SISTEMAS DE ENGENHARIA

PROBLEMAS DE MODELAGEM - 2024

Questão 16 - Uma empresa dispõe de uma frota homogênea para fazer entrega de seus produtos a partir de um determinado depósito. Num dado dia, a empresa deve atender m clientes e um "roteirista" já identificou, preliminarmente, todos os n roteiros viáveis R_1 , R_2 , R_3 , com custos C_1 , C_2 , C_3 , respectivamente, cada qual atendendo um certo subconjunto de clientes. Um roteiro R_j é caracterizado por um vetor $A_j = [a_{1j}, a_{2j}, a_{2j}, a_{mj}]^T$ em que $a_{ij} = 1$, se o roteiro j passa pelo cliente i e $a_{ij} = 0$, em caso contrário. Por motivo específico, dois desses m clientes, r e s respectivamente, devem ser colocados num mesmo roteiro. Formular o modelo matemático para determinar a melhor forma de atender os clientes.

Conjuntos e Parâmetros

 a_{ij} – Parâmetro binário que vale 1 se a rota $j:1\dots n$ visita o cliente $i:1\dots m$, e 0 em caso contrário.

R – Conjunto de rotas viáveis (índice j)

 R_{rs} – Conjunto de rotas viáveis que passam pelos clientes r e s ($R_{rs} \subset R$).

OBS: O conjunto R_{rs} pode ser definido à priori, selecionando-se, dentre as rotas viáveis presentes no conjunto R, aquelas que visitam os clientes r e s.

Variável de decisão

 x_i – Variável binária que assume valor 1 se a rota $j \in R$ for escolhida, e 0 em caso contrário.

Restrições

Todos os clientes devem ser visitados uma única vez.

$$\sum_{j=1}^{n} a_{ij} x_j = 1 \qquad \forall i: 1 \dots m, i \neq r, i \neq s$$

Uma rota do conjunto R_{rs} precisa ser escolhida para que ocorra uma visita, na mesma rota, dos clientes r e s.

$$\sum_{j \in R_{rs}} x_j = 1$$

Domínio da variável de decisão.

$$x_i \in \{0,1\}, \forall j \in R$$

Função Objetivo

$$\min C = \sum_{j \in R} c_j x_j$$