

Aurum Mining Corporation (AMC)

Empowering the Health & Safety organization

Trilytics'23 Conclave Case Study

Team Maverick Minds

Susanket Sarkar Yash Jangade

Executive Summary

GENERAL

UTILITY

ACCIDENT

RISK

D

Predictive framework for risk assessment, probabilistic health and safety incident categorisation, and data-driven insights.

ACCIDENT PREDICTOR

- Data Operator present at mine inputs data into model present in their local machine.
- Model processes and predicts grey areas
- Health and Safety team takes precautionary measures (based on model prediction)
- Reduces risk of accident occurring

BUSINESS IMPACT PREDICTOR

- In case an accident happens team present at site inputs data into a server.
- Model processes the data and predicts it's impact.
- Findings are delivered to AURUM's Operations Team.
- Team takes necessary measures based on model predictions to mitigate losses.

BUSINESS VALUE

SAFETY

Proactive Risk Mitigation at early stage, Cultivate Safety culture at workplace

COST

Resource Optimization, Reduction in expenses related to medical, compensation, and downtime costs

DECISION MAKING

Facilitates Data Driven
Decisions, quicker and accurate
Incident response

PRODUCTIVITY

Minimizes accidents and days lost, leading to higher workforce productivity

Data Feeding \

Integration

Finding Potential
Data sources

Creating Centralized
Database

Our Model

Current System used by company

Data Visualization and Insights

EXECUTION

Data Preprocessing

Feature Engineering I

- Decomposed ACCIDENT_DT into 'Accident Year', 'Month', 'Day of Week', and 'Quarter'
- Helps to capture seasonality or Time based trends that might be present in accident occurrences.

Feature Engineering II

Raw Data (36016 rows x 49 columns)

- Created 'BEFORE_MINE_EXPER'
 & 'BEFORE_JOB_EXPER' from
 'JOB_EXPER', 'MINE_EXPER', and
 'TOT_EXPER'
- New Features captures years worked in other mines and jobs.

Textual Data

- 'Removing Stop Word' i.e. eliminating words that don't add much meaning.
- Next, transforming the words into numerical vectors using the Gensim library (Grouping similar words together)

Standardisation

Scaling and transforming data to a common range, ensuring consistent and optimal model performance across features.

Imputation

Employed KNN Imputer to fill in missing values, which predicts these values based on record similarity.

Solution

Accident Prediction Model

Impact Prediction Model

Accident Prediction Model

We created a model capable of **predicting health and safety incidents** in the mining industry. This model uses incident descriptions to **forecast whether an incident is likely to occur.**

Model Selection:

- Sequential Data Modeling LSTM: Recognizing the sequential nature of our data, with
 events unfolding over time, we decided to utilize a Long Short-Term Memory (LSTM) model.
 LSTMs are a type of Recurrent Neural Network that are well-suited to learning from
 time-series data due to their ability to remember and utilize context from earlier points in
 the sequence.
- Tree-Based Models XGBoost, CatBoost, and LightGBM: Alongside the LSTM, we also trained a selection of tree-based models: XGBoost, CatBoost, and LightGBM. These models were chosen for their compatibility with tabular numerical data like ours. They are known for their ability to handle mixed data types, capture complex interactions between features, and provide robust performance even with missing values or outliers.

estimated values

Anticipate, Act, Avoid

Models helps to identify risk zones for precautionary measures.

Impact Prediction Model

Our next model is capable of **predicting the business impact** of an mining accident. This model uses incident descriptions to **evaluate business impact and classify accident type.**

Model Selection:

- With our data prepared, we trained a diverse set of models LSTM, SVM, XGBoost, CatBoost, and LightGBM to predict the business impact of an accident. This selection combines models that are well-suited for numerical data (XGBoost, CatBoost, and LightGBM), a model good at handling text data (LSTM), and a model (SVM) known for its effectiveness on a wide range of data types.
- Using a diverse set of models (LSTM, SVM, XGBoost, CatBoost, and LightGBM) for accident impact prediction brings advantages: robustness by reducing biases, improved accuracy with ensemble voting, knowledge sharing through transfer learning, dynamic model selection, enhanced interpretability, and future-proofing.

Predict, Initiate & ProTecc

NATURE INJURY

EQUIP_MFR_NAME DEGREE_INJURY

ACCIDENT_MONTH ACCIDENT TYPE

> ACCIDENT_QTR MINE_EXPER

UG_LOCATION EQUIP MODEL NO

OCCUPATION ACCIDENT YEAR

CLOSED_NO ACCIDENT DAY

COAL_MINE FIPS_STATE_CD

IOB EXPER

Model predicts business impact, furnishes investigation triggers & help in preventing future accidents

Feature Importance in Business Impact Prediction Model

Quality Checks: Metrics & Validation

Assessed the performance of the model using cross validation technique, ensuring the model works well on different subsets of data and verifies that our model generalizes well to new data by utilizing various metrics like Accuracy, Recall, and Mean Squared Error

Accident Prediction Model

Recall is important for accident prediction models because it minimizes false negatives, which could lead to injuries or deaths. In our context, a false negative means predicting no accident when an accident actually occurs.

How the Recall changes for different validation sets

- Training and testing recall values are closely aligned. This indicates that the model does not overfit the training data.
- High values for recall, precision, and accuracy confirm that the model has been trained effectively.

ACCURACY

PRECISION

RECALL

penalizes larger errors actual between and predicted values more heavily.

Our model achieved a low **MSE score**, which indicates that it was able to make accurate predictions on both the training and testing sets

The Mean Squared Error How does the regression metrics look for the model?

Impact Prediction Model

Accuracy of the Bussiness Impact Prediction Model

• The choice of Accuracy aims to ensure our model's ability to precisely predict business impacts.

CLASSIFICATION

SOURCE INJ ID

MINING EQP

UG METHOD ID

- RMSE, on the other hand, provides an estimate of how far our predictions deviate from the actual values. measured in the same units as the target variable.
- As we can see from the figure below, the LSTM model was overfitting over 40 epochs. So we only considered upto 40 epochs.

RMSE of the Business Impact Prediction Model NO INJ DAYS LOST DAYS RESTRI TIME TO RET URN TO W.. SCHEDULE (HARGE

ACCURACY PRECISION

Our model's predictions are on average 11 units off the values

Streamlining Health & Safety Data Integration

Data Operator

Collating information from

Assisting in generating

various sources.

reports

- Location-specific Accident Probability
- Predicts Injury Severity and Nature

Early Precautionary Measures

- Enhanced Safety Culture
- Reduce severity & frequency
- Safeguarding lives and resources

In Case Accident Happens

Accident occurs

Post-Accident Analysis Dashboard

- Accident Impact Analysis
- Incident Documentation
- Investigation Triggers
- Instant Metrics & KPIs

Easy Integration and Automation:

Tracking Incidents

Ideal Benchmarks vs. Real Occurrences

Safety Benchmarks & Standards

Goals & Objectives

Appendix: Dashboard

A comprehensive dashboard empowering Safety and Data Management team with actionable insights for enhanced operations and risk mitigation.

Seamless Management

- Single point access to various areas
- Easy Performance Monitoring

Centralized System

- Easy access of data to officials
- Streamlining the reporting processes

Remote Access to the Data

- Flexibility to review data on-demand
- Quick & informed decisions remotely.

Instant KPIs

- Assess alignment with goals.
- Early problem detection

Integration with Incident Database

- Real time Insights
- Dynamic plots
- Compliant Incident records

Data Visualization

- Concise presentation of data
- Show patterns and trends
- Highlight Focus Areas

UnderGround Location: Collectively around **55**% of the accidents happen in FILO (Faces, Intersection and last Open Crosscuts). **Regular Inspections, Proper Illumination and Safety Training** can help reduce the chances of these accidents.

Overexertion can be mitigated by **better scheduling** and **job rotation**

Injury Source: 4 main sources broadly contribute to 50% of the injuries. A focus on improving safety protocols, regular maintenance and inspections, and deploying protective gear can help mitigate these accidents.

Underground account for **70%** of the accidents.

Thank You

Do you have any questions?