2

1

2

1

2

WHAT IS CLAIMED IS:

1	1. A nucleic acid-lipid particle composition for introducing a nucleic acid
2	into a cell, said particle comprising: a cationic lipid, a conjugated lipid that inhibits
3	aggregation of particles, a nucleic acid and an endosomal membrane destabilizer.

- The nucleic acid-lipid particle composition of claim 1, wherein said endosomal membrane destabilizer is outside said nucleic acid-lipid particle.
- The nucleic acid-lipid particle composition of claim 1, wherein said endosomal membrane destabilizer is both outside and inside said nucleic acid-lipid particle.
- 1 4. The nucleic acid-lipid particle composition of claim 1, wherein said 2 endosomal membrane destabilizer is Ca⁺⁺ ion.
 - 5. The nucleic acid-lipid particle composition of claim 4, wherein the concentration of Ca⁺⁺ ion is from about 0.1 mM to about 100 mM.
 - 6. The nucleic acid-lipid particle composition of claim 5, wherein the concentration of Ca⁺⁺ ion is from about 1 mM to about 20 mM.
 - 7. The nucleic acid-lipid particle composition of claim 1, wherein said particle has a median diameter of less than about 150 nm.
- 1 8. The nucleic acid-lipid particle composition of claim 1, wherein said
- 2 cationic lipid is a member selected from the group consisting of N,N-dioleyl-N,N-
- 3 dimethylammonium chloride (DODAC), N,N-distearyl-N,N-dimethylammonium bromide
- 4 (DDAB), N-(1-(2,3-dioleoyloxy)propyl)-N,N,N-trimethylammonium chloride (DOTAP), N-
- 5 (1-(2,3-dioleyloxy)propyl)-N,N,N-trimethylammonium chloride (DOTMA), and N,N-
- 6 dimethyl-2,3-dioleyloxy)propylamine (DODMA), and combinations thereof.
- 1 9. The nucleic acid-lipid particle composition of claim 1, wherein said 2 particle further comprises an additional noncationic lipid.
- 1 10. The nucleic acid-lipid particle composition of claim 9, wherein said 2 noncationic lipid is selected from the group consisting of DOPE, POPC, and EPC.

2

The nucleic acid-lipid particle composition of claim 1, wherein said 11. 1 particle comprises a functional group that facilitates Ca++ ion chelation. 2 The nucleic acid-lipid particle composition of claim 1, wherein said **12**. 1 conjugated lipid that inhibits aggregation of particles has the formula 2 A----Y I 3 4 wherein: A is a lipid moiety; W is a hydrophilic polymer; and 5 Y is a polycationic moiety. 6 The nucleic acid-lipid particle composition of claim 12, wherein W is a 13. 1 polymer selected from the group consisting of PEG, polyamide, polylactic acid, polyglycolic 2 acid, polylactic acid/polyglycolic acid copolymers and combinations thereof, said polymer 3 having a molecular weight of about 250 to about 7000 daltons. 4 The nucleic acid-lipid particle composition of claim 12, wherein Y has **14**. 1 at least 4 positive charges at a selected pH. 2 The nucleic acid-lipid particle composition of claim 12, wherein Y is a 15. 1 member selected from the group consisting of lysine, arginine, asparagine, glutamine, 2 3 derivatives thereof and combinations thereof. The nucleic acid-lipid particle composition of claim 12, wherein A is a 16. 1 member selected from the group consisting of a diacylglycerolyl moiety, a dialkylglycerolyl 2 moiety, a N-N-dialkylamino moiety, a 1,2-diacyloxy-3-aminopropane moiety and a 1,2-3 dialkyl-3-aminopropane moiety. 4 The nucleic acid-lipid particle composition of claim 12, wherein W is 1 **17**. 2 PEG. The nucleic acid-lipid particle composition of claim 12, wherein W is a 1 **18**. 2 polyamide polymer. The nucleic acid-lipid particle composition of claim 12, wherein W has 19.

a molecular weight of about 250 to about 2000 daltons.

20. The nucleic acid-lipid particle composition of claim 17, having the general structure of Formula II:

$$A - \left(X - (CH_2 - CH_2 - O)_n - Z\right) - Y$$

 $_{3}$

4 wherein

23.

X is a member selected from the group consisting of a single bond or a functional group covalently attaching said lipid to at least one ethylene oxide unit;

Z is a member selected from the group consisting of a single bond or a functional group covalently attaching said at least one ethylene oxide unit to a cationic group; and

n is an integer having a value of between about 6 to about 50.

21. The nucleic acid-lipid particle composition of claim 20, wherein X is a member selected from the group consisting of a single bond, phosphatidylethanolamino, phosphatidylethanolamido, phosphoro, phospho, phosphoethanolamino, phosphoethanolamido, carbonyl, carbamate, carboxyl, carbonate, amido, thioamido, oxygen, sulfur and NR, wherein R is a hydrogen or alkyl group.

The nucleic acid-lipid particle composition of claim 20, wherein

- 22. The nucleic acid-lipid particle composition of claim 20, wherein Z is a member selected from the group consisting of a single bond, phosphatidylethanolamino, phosphatidylethanolamido, phosphoro, phospho, phosphoethanolamino, phosphoethanolamido, carbonyl, carbamate, carboxyl, carbonate, amido, thioamido, oxygen, sulfur and NR, wherein R is a hydrogen or alkyl group.
- A is a diacylglycerolyl moiety;

 X is phosphoethanolamido;

 Z is NR, wherein R is a hydrogen atom; and

 Y is a member selected from the group consisting of about 1 to about 10 basic amino acids or derivatives thereof.
 - 24. The nucleic acid-lipid particle composition of claim 23, wherein

2	A 19	s a diacylgercerolyl molety having 2 latty acyl chains, wherein each acyl		
3	chain is independe	chain is independently between 2 and 30 carbons in length and is either saturated or has		
4	varying degrees of saturation.			
1	25.	The nucleic acid-lipid particle composition of claim 23, wherein		
2	Y is	s a member selected from the group consisting of lysine, arginine,		
3	asparagine, glutamine, derivatives thereof and combinations thereof.			
1	26.	The nucleic acid-lipid particle composition of claim 23, wherein		
2	A i	s a diacylgercerolyl moiety having 2 fatty acyl chains, wherein each acyl		
3		d C-18 carbon chain; and		
4	Y is a cationic group having 4 lysine residues or derivatives thereof.			
1	27.	The nucleic acid-lipid particle composition of claim 1, wherein said		
2	conjugated lipid th	nat inhibits aggregation of particles is a PEG-lipid.		
1	28.	The nucleic acid-lipid particle composition of claim 27, wherein said		
2	PEG-lipid is PEG	-ceramide.		
1	29.	The nucleic acid-lipid particle composition of claim 28, wherein the		
2	ceramide of said PEG-ceramide comprises a fatty acid group having about 8 to about 20			
3	carbon atoms.			
1	30.	The nucleic acid-lipid particle composition of claim 28, wherein said		
2	PEG-lipid is PEG	-phosphatidylethanolamine.		
1	31.	The nucleic acid-lipid particle composition of claim 1, wherein said		
2	conjugated lipid that inhibits aggregation of particles is an ATTA-lipid.			
1	32.	The nucleic acid-lipid particle composition of claim 1, wherein said		
2	nucleic acid is sel	ected from the group consisting of a plasmid, an antisense oligonucleotide,		
3	and a ribozyme.			
1	33	A method of introducing a nucleic acid into a cell, said method		
2	comprising:			
3	COI	ntacting said cell with a nucleic acid-lipid particle composition, said particle		
4	comprising a cationic lipid, a conjugated lipid that inhibits aggregation of particles, and a			
5	nucleic acid; and an endosomal membrane destabilizer.			

- The method of introducing a nucleic acid into a cell of claim 33, 34. 1 wherein said endosomal membrane destabilizer is outside said nucleic acid-lipid particle. 2 The method of introducing a nucleic acid into a cell of claim 33, 35. 1 wherein said endosomal membrane destabilizer is Ca⁺⁺ ion. 2 The method of introducing a nucleic acid into a cell of claim 35, 36. 1 wherein the concentration of Ca⁺⁺ ion is from about 0.1 mM to about 100 mM. 2 The method of introducing a nucleic acid into a cell of claim 36, 1 37. wherein the concentration of Ca⁺⁺ ion is from about 1 mM to about 20 mM. 2 The method of introducing a nucleic acid into a cell of claim 33, 38. 1 wherein said particle has a median diameter of less than about 150 nm. 2 The method of introducing a nucleic acid into a cell of claim 33, **39**. 1 wherein said cationic lipid is a member selected from the group consisting of N,N-dioleyl-2 N,N-dimethylammonium chloride (DODAC), N,N-distearyl-N,N-dimethylammonium 3 bromide (DDAB), N-(1-(2,3-dioleoyloxy)propyl)-N,N,N-trimethylammonium chloride 4 (DOTAP), N-(1-(2,3-dioleyloxy)propyl)-N,N,N-trimethylammonium chloride (DOTMA), 5 and N,N-dimethyl-2,3-dioleyloxy)propylamine (DODMA), and combinations thereof. 6 The method of introducing a nucleic acid into a cell of claim 33, 40. 1 wherein said particle further comprises an additional noncationic lipid. 2 The method of introducing a nucleic acid into a cell of claim 40, 41. 1 wherein said noncationic lipid is selected from the group consisting of DOPE, POPC, and 2 EPC. 3 The method of introducing a nucleic acid into a cell of claim 33, 42. 1 wherein said particle comprises a functional group that facilitates Ca⁺⁺ ion chelation. 2
 - A----Y

wherein said conjugated lipid that inhibits aggregation of particles has the formula

1

2

43.

The method of introducing a nucleic acid into a cell of claim 33,

2

3

4

1

2

4	wherein:	A is a lipid moiety;
5		W is a hydrophilic polymer; and
6		V is a polycationic moiety.

- 1 44. The method of introducing a nucleic acid into a cell of claim 43, 2 wherein W is a polymer selected from the group consisting of PEG, polyamide, polylactic 3 acid, polyglycolic acid, polylactic acid/polyglycolic acid copolymers and combinations 4 thereof, said polymer having a molecular weight of about 250 to about 7000 daltons.
- 1 45. The method of introducing a nucleic acid into a cell of claim 43, 2 wherein Y has at least 4 positive charges at a selected pH.
- 1 46. The method of introducing a nucleic acid into a cell of claim 43, 2 wherein Y is a member selected from the group consisting of lysine, arginine, asparagine, 3 glutamine, derivatives thereof and combinations thereof.
 - 47. The method of introducing a nucleic acid into a cell of claim 43, wherein A is a member selected from the group consisting of a diacylglycerolyl moiety, a dialkylglycerolyl moiety, a N-N-dialkylamino moiety, a 1,2-diacyloxy-3-aminopropane moiety and a 1,2-dialkyl-3-aminopropane moiety.
- The method of introducing a nucleic acid into a cell of claim 43, wherein W is PEG.
 - 49. The method of introducing a nucleic acid into a cell of claim 43, wherein W is a polyamide polymer.
- The method of introducing a nucleic acid into a cell of claim 43, wherein W has a molecular weight of about 250 to about 2000 daltons.
- The method of introducing a nucleic acid into a cell of claim 48, having the general structure of Formula II:

$$A - \left(X - (CH_2 - CH_2 - O)_n - Z\right) - Y$$

4 wherein

3

II

5	X is a member selected from the group consisting of a single bond or a			
6	functional group covalently attaching said lipid to at least one ethylene oxide unit;			
7	Z is a member selected from the group consisting of a single bond or a			
8	functional group covalently attaching said at least one ethylene oxide unit to a cationic group;			
9	and			
10	n is an integer having a value of between about 6 to about 50.			
1	52. The method of introducing a nucleic acid into a cell of claim 51,			
2	wherein			
3	X is a member selected from the group consisting of a single bond,			
4	phosphatidylethanolamino, phosphatidylethanolamido, phosphoro, phospho,			
5	phosphoethanolamino, phosphoethanolamido, carbonyl, carbamate, carboxyl, carbonate,			
6	amido, thioamido, oxygen, sulfur and NR, wherein R is a hydrogen or alkyl group.			
1	53. The method of introducing a nucleic acid into a cell of claim 51,			
2	wherein			
3	Z is a member selected from the group consisting of a single bond,			
4	phosphatidylethanolamino, phosphatidylethanolamido, phosphoro, phospho,			
5	phosphoethanolamino, phosphoethanolamido, carbonyl, carbamate, carboxyl, carbonate,			
6	amido, thioamido, oxygen, sulfur and NR, wherein R is a hydrogen or alkyl group.			
1	54. The method of introducing a nucleic acid into a cell of claim 51,			
2	wherein			
3	A is a diacylglycerolyl moiety;			
4	X is phosphoethanolamido;			
5	Z is NR, wherein R is a hydrogen atom; and			
6	Y is a member selected from the group consisting of about 1 to about 10 basic			
7	amino acids or derivatives thereof.			
1	55. The method of introducing a nucleic acid into a cell of claim 54,			
2	wherein			
3	A is a diacylgercerolyl moiety having 2 fatty acyl chains, wherein each acyl			
4	chain is independently between 2 and 30 carbons in length and is either saturated or has			
5	varying degrees of saturation.			

2	wherein		
3	Y is a member selected from the group consisting of lysine, arginine,		
4	asparagine, glutamine, derivatives thereof and combinations thereof.		
			The state of the large and into a call of alaim 54
1		57 .	The method of introducing a nucleic acid into a cell of claim 54,
2	wherein		
3			diacylgercerolyl moiety having 2 fatty acyl chains, wherein each acyl
4	chain is a saturated C-18 carbon chain; and		
5		Y is a	cationic group having 4 lysine residues or derivatives thereof.
1		58 .	The method of introducing a nucleic acid into a cell of claim 33,
2	wherein said o		ted lipid that inhibits aggregation of particles is a PEG-lipid.
_	Whorehi bara c	,ongugu	1 1
1		59 .	The method of introducing a nucleic acid into a cell of claim 58,
2	wherein said I	PEG-lip	id is PEG-ceramide.
1		60 .	The method of introducing a nucleic acid into a cell of claim 59,
2	wherein the co	eramide	of said PEG-ceramide comprises a fatty acid group having about 8 to
3	about 20 carbo	on atom	ıs.
1		61.	The method of introducing a nucleic acid into a cell of claim 59,
2	wherein said I	PEG-lip	oid is PEG-phosphatidylethanolamine.
_		(2	TI 41 - 1 - Cintur during a muslais said into a sall of alaim 22
1		62 .	The method of introducing a nucleic acid into a cell of claim 33,
2	wherein said	conjuga	ted lipid that inhibits aggregation of particles is an ATTA-lipid.
1		63.	The method of introducing a nucleic acid into a cell of claim 33,
2	wherein said i	nucleic	acid is selected from the group consisting of a plasmid, an antisense
3	oligonucleotic		
	J	,	·
1		64 .	A method for inducing H _{II} phase structure in a lipid bilayer, said
2	method comp	rising:	contacting said lipid bilayer with an endosomal membrane destabilizer,
3	thereby inducing H_{II} phase structure in a lipid bilayer.		
1	•	6 5	The method for inducing H _{II} phase structure of claim 64 , wherein said
1	1, , 1, 1, 14	65 .	<u> </u>
2	lipid bilayer comprises DOPC:DOPE:DOPS:Chol.		

The method of introducing a nucleic acid into a cell of claim 54,

.

- 1 66. The method for inducing H_{II} phase structure of claim 64, wherein said endosomal membrane destabilizer is Ca⁺⁺ ion.
- 1 67. The method for inducing H_{II} phase structure of claim 66, wherein Ca⁺⁺
 2 ion acts in concert with low levels of the cationic lipid to trigger H_{II} phase formation.
- 1 68. Use of nucleic acid-lipid particle composition for introducing a nucleic 2 acid into a cell, said particle comprising: a cationic lipid, a conjugated lipid that inhibits 3 aggregation of particles, a nucleic acid and an endosomal membrane destabilizer.