Certamen Recuperativo Introducción a la Informática Teórica

30 de septiembre de 2014

MORNING ROUTINE:

- I. WAKE UP
- 2. CATCH UP ON THE LIVES OF FRIENDS AROUND THE WORLD
- 3. GET OUT FROM UNDER THE COVERS

LAPTOPS ARE WEIRD.

- 1. Defina los siguientes términos:
 - a) Lenguaje recursivo y recursivamente enumerable
 - b) Problema NP-duro
 - c) Reducción de un problema a otro
 - d) Problema no decidible

(20 puntos)

 Demuestre que los lenguajes recursivamente enumerables son cerrados respecto de intersección con lenguajes regulares.

(15 puntos)

- 3. Un *autómata linealmente acotado* (LBA) es una máquina de Turing (posiblemente no determinista) que nunca abandona su entrada. Puede imaginarse que la entrada viene entre paréntesis, y que el autómata no puede avanzar a la izquierda con (ni a la derecha con).
 - a) Demuestre que los lenguajes sensibles al contexto son aceptados por LBA.
 - b) Demuestre que los lenguajes aceptados por LBA son cerrados respecto de intersección. **Pista:** Use una cinta con varias pistas, copie la entrada a otra pista y procese esa luego de la primera.
 - c) ¿Puede concluir de las anteriores que los lenguajes sensibles al contexto son cerrados respecto de intersección?

(30 puntos)

4. Demuestre que es decidible si un DFA con $\Sigma = \{a, b\}$ acepta alguna palabra con el mismo número de a que b. **Pista:** $L = \{\sigma : \#a = \#b\}$ es generado por la gramática $S \to aSbS \mid bSaS \mid \epsilon$, luego use teoremas sobre lenguajes regulares y de contexto libre.

(20 puntos)

5. El problema SET COVER dado un conjunto \mathscr{U} , subconjuntos $\mathscr{S}_i \subseteq \mathscr{U}$ para $0 \le i \le n$ y un entero k es determinar si hay una colección de k conjuntos \mathscr{S}_i tales que su unión es \mathscr{U} . El problema VERTEX COVER dado un grafo G = (V, E) y un entero k es determinar si hay un conjunto C de vértices de cardinalidad k tal que todos los arcos de G inciden en al menos un vértice en C. Sabemos que VERTEX COVER es NP-completo. Demuestre que SET COVER también lo es.

Pista: Considere conjuntos de arcos incidentes en cada vértice.

(35 puntos)