Study of Chronic Change of Hepatic Blood Flow Distribution of Fontan Patients

Wenjun Wu, Dr. Ajit P. Yoganathan

Cardiovascular Fluid Mechanics Lab, Georgia Tech, Atlanta, GA

Introduction

- Children born with single ventricle (SV) congenital heart defects have single ventricle with a mixture of oxygenated and deoxygenated blood.
- Fontan surgery finalizes in the the Total Cavopulmonary Connection (TCPC)

- Adverse hemodynamics in the TCPC have been related to some long term complications:
 - Limited exercise capacity: increased resistance to flow towards the lungs imposed by the connection, which has been linked to TCPC power loss (PL) during resting condition [1]
 - Pulmonary arteriovenous malformations (PAVM): uneven hepatic flow distribution (HFD) to the lungs
- Computational fluid dynamics has been widely used to understand complex Fontan hemodynamics and optimize the surgical strategies/connections.
 - Chronic changes are important since growth is unavoidable for our patients
 - Previous study has investigated chronic change of energy dissipation of **TCPC** [2];

Objective

- Retrospectively analyze simulations of 33 serial Fontan patients and explore the chronic changes of hepatic blood flow distribution of the TCPC.
- Investigate the relationship of chronic changes of Fontan hemodynamics to patients' outcomes.

Methods

Patient Selection

- of life.

Completed Fontan surgery had at least two CMR scans in	Time Point	Age (yr)	Body Surface Area (m2)	
database (T1, T2)	T1	11.8 ± 4.5	1.31±0.41	
Completed questionnaire for quality	T2	17.4±4.5	1.65±0.29	
$c \mapsto c$				

Anatomical and Flow Reconstruction

Cardiovascular magnetic Resonance Image acquisition

Vessel Segmentation from patient MRI [3]

Methods (Contd.)

Computational Fluid Dynamics (CFD)

- Mesh were generated with Gambit or ANSYS Meshing module
- Patient-specific flows were used as boundary conditions
- In-house immersed-boundary method was used for simulations
- Blood flow: assumed to be Newtonian, density = 1060 kg/m^3 , viscosity = $3.5 \times 10^{-6} \text{ m}^2 \text{s}^{-1}$

Quantification of hemodynamics

Power loss was defined using a control volume energy analysis of the TCPC

$$PL = \sum_{i=1}^{n} P_{in} \times Q_{in} - \sum_{i=1}^{n} P_{out} \times Q_{out}$$

where P is total pressure and Q is mean flow at each inlet/outlet

 HFD was defined by the percentage of IVC flow to the left pulmonary artery, which is obtained by an in-house particle tracking code

Quality of Life (QoL) Score

- QoL reflects the impact of a specific illness, medical therapy, or health services policy on the child's ability to function in society and draw personal satisfaction from a physical, psychological, and social functioning perspective [4]
- A higher score means a better perceived QoL^[4]
- QoLs were only taken at T2

Statistics

- Data normality: Anderson-Darling test
- Statistical Test: T-Test, Linear Regression (Significance: p < 0.05)

Time Points (T1, T2)

- Explored difference of QOL Score and HFD between different categories of patients (T-test)
- Variables included in statistical analyses include: values at two time points as well as the chronic changes of HFD, flows, and geometric characteristics of TCPC.

Change between T2 and T1

Result

Hepatic Flow Distribution

Туре					Change between 12 and 11		
HFD (in %) 52.6±21.2		54.3±23.1		1.7 ± 18.4			
P -valu	е	0.60 NA			IA		
Type		Gender (Female, Male)	Fontan Type (EC, LT)			Bilateral, non-Bilateral	Reconstructed, non- Reconstructed
ΔHFD (ir %)		1.75±21.9 4.1±15.6	0.6±20.4 2.6±17.8	3.3±17 -5.2±2		2.7±5.7 1.9±19.2	5.2±18.6 0.3±18.4
p values		0.38	0.78	0.35		0.95	0.49

No difference in AHFD between patients in different clinical categories

Results (Contd.)

Quality of Life Score

Type	Gender (Female, Male)	Fontan Type (EC, LT)	HLHS, non-HLHS	Bilateral, non- Bilateral	Reconstructed, non- Reconstructed	Overall
QOL Score			77.5± 10.9 76.3±16.7	87.6±9.6 76.2±11.4	79.2±11.5 76.2±11.6	74.9±16.8
p values	0.4176	0.2523	0.8398	0.1070	0.4884	NA

No difference in QoL score between patients in different categories

- According to R² above, there is no direct linear correlation between QOL Score, \triangle HFD, HFD at T1 and HFD at T2.
- However, the simulation conducted using steady flow boundary condition may not be accurate and important information/characteristics may be lost.

Limitation and Future Work

- (a) Flow rate is not constant in a cardiac cycle.
- (b) Velocity Stream-traces of simulation result using mean flow rate boundary condition
- (c) Velocity Stream-traces of simulation result under pulsatile boundary condition at three time points
- Blood flow in vessels are pulsatile, not steady.
- Future work will use pulsatile boundary conditions instead.

Acknowledgement

The authors acknowledge the mentorship from Dr. Zhenglun Wei. This work was made possible thanks to National Heart, Lung and Blood Institute, NHLBI grants HL67622 and HL098252.

Reference

[1] Khiabani, R. H., K. K. Whitehead, D. Han, M. Restrepo, E. Tang, J. Bethel, S. M. Paridon, M. a. Fogel, and a. P. Yoganathan. 2015. "Exercise Capacity in Single-Ventricle Patients after Fontan Correlates with Haemodynamic Energy Loss in TCPC." Heart 101 (2): 139–43. [2] Frakes, D.H., C.P. Conrad, T.M. Healy, J.W. Monaco, M. Fogel, S. Sharma, M.J. Smith, and A.P. Yoganathan, Application of an adaptive control grid interpolation technique to

morphological vascular reconstruction. IEEE Trans Biomed Eng, 2003. 50(2): p. 197-206. [3] Frakes, D.H., M.J. Smith, J. Parks, S. Sharma, S.M. Fogel, and A.P. Yoganathan, New techniques for the reconstruction of complex vascular anatomies from MRI images. J

[4] Drotar, D., Measuring Health-Related Quality of Life in Children and Adolescents. 1998: Mahwah, New Jersey: Lawrence Erlbaum Associates, Publishers. [5] Frakes, D.H., M.J. Smith, D.A. de Zélicourt, K. Pekkan, and A.P. Yoganathan, Three-dimensional velocity reconstruction. J Biomech Eng, 2004. 126(6): p. 727-35.