REYES Nuclear Physics Mentoring Week 3

Aman Kumar

August 22, 2021

1 Introduction

This week's discussion began with the discussion on scattering amplitude. Scattering Amplitude M characterizes probability of an interaction to occur.

 $i\mathbb{M} \propto \langle final | \mathbb{S} - 1 | initial \rangle$

Where S is known as S matrx. And we subtract 1 from the S matrix to remove identity which means the condition of no interaction between the particles.

The S-matrix or scattering matrix relates the initial state and the final state of a physical system undergoing a scattering process.

1.1 Scattering Theory

Model independent features of scattering amplitudes are:

- 1. Spacetime Symmetry -Loretnz Invariance
- 2. Internal Symmetry -Flavour, Baryon Number
- 3. probability conservation -The S matrix is unnitary operator i.e $\mathbb{S}^{\dagger}\mathbb{S} = I$
- 4. causality Amplitudes are boundary values of analytic functions in complex energy plane.
- 5. CPT Symmetry Relates particle—anti-particles in scattering processes.

1.1.1 Probability Conservation

The S matrix is unnitary operator i.e $\mathbb{S}^{\dagger}\mathbb{S} = I$. After some work we can show that (in a limited energy region) $Im\mathbb{M} = \rho |\mathbb{M}|^2$.

 ρ is known as phase space kinematic function. Characterizes on-shell scattering of two-particles.

$$\rho = \frac{\xi q^*}{8\pi E^*}$$
 also $q^* = \frac{1}{2}\sqrt{E^{*2} - 4m^2}$ with $\xi = \begin{cases} \frac{1}{2} & identical \\ 1 & otherwise \end{cases}$

1.1.2 Phase Shift

At a fixed energy, amplitude determined by magnitude and phase (2 real numbers). Therefore scattering amplitude, $\mathbb{M} = |\mathbb{M}|e^{i\delta}$

Imposing unitarity $Im\mathbb{M} = \rho |\mathbb{M}^2|$ we get $|\mathbb{M}| = \frac{1}{\rho} sin\delta$. such that $\mathbb{M} = \frac{1}{\rho} e^{i\delta} sin\delta$. Here δ is the phase shift.

1.1.3 K-Matrix

We know that $Im\mathbb{M} = \rho |\mathbb{M}|^2$ This implies that $Im\mathbb{M}^{-1} = -\rho$ $\implies \mathbb{M}^{-1} = K^{-1} - i\rho$ $\mathbb{M} = K \frac{1}{1 = i\rho K}$ Note: K

Note: K matrix can be related to phase shift by $K = \rho \cot \delta$

$\mathbf{2}$ Exercises

2.1 Exercise 1

Plot ρ (phase space) for identical particles in the range $1.8 \le \frac{E*}{m} \le 3.2$

Solution:

$$\rho = \frac{\xi q^{\star}}{8\pi E^{\star}}$$

For identical particles : $\xi = 1/2$

and
$$q^* = \frac{1}{2}\sqrt{E^{*2} - 4m^2}$$

This makes it $\rho = \frac{1}{32\pi} \frac{\sqrt{E^{\star} - 4m^2}}{E^{\star}}$

$$\rho = \frac{1}{32\pi}\sqrt{1-4(\frac{m}{E^\star})^2}$$

Listing 1: Code used

import matplotlib.pyplot as plot

import numpy as np

import cmath as cm

def f(x):

return (1/32*cm.pi)*cm.sqrt(1 - (4*x**(-2)))

2.2 Exercise 2

Derive the phase shift representation for the scattering amplitude.

We know that $\mathbb{M} = |\mathbb{M}|e^{i\delta}$, using euler's formula, can be expanded as

$$\mathbb{M} = |\mathbb{M}|(cos\delta + isin\delta)$$

.

We also know that

$$Im\mathbb{M} = \rho |\mathbb{M}|^2$$

So from the above two relations we get that

$$|\mathbb{M}| sin\delta = \rho |\mathbb{M}|^2 \implies \rho = \frac{sin\delta}{|\mathbb{M}|}$$

Substituting $\mathbb{M}=|\mathbb{M}|e^{i\delta}$ in the above result we get:

$$\mathbb{M} = \frac{1}{\rho} e^{i\delta} sin\delta$$

2.3 Exercise 3

Show that $ImM^{-1} = -\rho$

Ww know that $\mathbb{M} = |\mathbb{M}|e^{i\delta}$.

Right multiplication by \mathbb{M}^{-1} .

$$\mathbb{M}\mathbb{M}^{-1} = e^{i\delta} |\mathbb{M}| \mathbb{M}^{-1} = I$$

$$\Longrightarrow \mathbb{M}^{-1} = \frac{I}{e^{i\delta} |\mathbb{M}|} = \frac{1}{e^{i\delta} |\mathbb{M}|} = \frac{e^{-i\delta}}{|\mathbb{M}|}$$

$$\mathbb{M}^{-1} = \frac{e^{-i\delta}}{|\mathbb{M}|} = \frac{\cos(-\delta) + i\sin(-\delta)}{|\mathbb{M}|} = \frac{\rho(\cos\delta - i\sin\delta)}{\sin\delta} \Longrightarrow Im\mathbb{M}^{-1} = -\rho$$

2.4 Exercise 4

Show that $K^{-1} = \rho \cot \delta$

$$\mathbb{M}^{-1} = \frac{\rho cos\delta - i\rho sin\delta}{sin\delta} = K^{-1} - \rho i \implies K^{-1} = \frac{\rho cos\delta}{sin\delta} = \rho cot\delta$$