Analysis of Algorithms Script of Lecture 2

Amalia Duch

September 25, 2019

Contents

- Quick reminder on asymptotic notations \mathcal{O} , Ω , Θ .
- Rules to calculate the cost of iterative algorithms.
- Examples
- Master theorems to calculate the cost of recursive algorithms.
- Examples

Analysis of Iterative Algorithms

- The cost of elementary operations (see previous class) is $\Theta(1)$.
- Sequential composition: Given two fragments of code s_1 , s_2 with cost f_1 and f_2 respectively, the cost of the fragment:

is
$$f_1 + f_2$$

• Conditional composition: Let A be an expression with cost to evaluate f_a , and s_1 and s_2 two fragments of code with cost f_1 and f_2 respectively, the cost, in worst case, of the fragment:

is: $f_a + \max\{f_1, f_2\}$

• Iterative Composition: Let A be an expression with cost to evaluate it at the i-th iteration g_i , and it is a code fragment with cost to the i-th iteration f_i , the cost, if not worse, of the fragment:

if n iterations are performed is: $\sum_{i=1}^{n} (f_i + g_i) = O(n(f+g))$ with $f = \max\{f_i\}$ and $g = \max\{g_i\}$.

Examples

Calculation of the cost of different loops.

Analysis of recursive algorithms

The cost (in worst case, average, ...) of a recursive algorithm T(n) satisfies a recurrent equation: this is, T(n) will depend on the value of T for smaller values of n. Frequently, the recurrence has one of the following forms:

$$T(n) = a \cdot T(n-c) + g(n),$$

$$T(n) = a \cdot T(n/b) + g(n).$$

The first one corresponds to algorithms that have a non recursive part with cost g(n) and do a recursive calls with subproblems of size n-c, with c a constant.

The second one corresponds to algorithms with a non recursive part of cost g(n) that do a recursive calls with subproblems of size (approximately) n/b, with b>1.

Theorem 1. Let T(n) be the cost (worst case, average case, ...) of a recursive algorithm that satisfies the recurrence:

$$T(n) = \begin{cases} f(n) & \text{if } 0 \le n < n_0 \\ a \cdot T(n-c) + g(n) & \text{if } n \ge n_0, \end{cases}$$

where n_0 is a constant, $c \ge 1$, f(n) is an arbitrary function and $g(n) = \Theta(n^k)$ for a constant $k \ge 0$.

Then

$$T(n) = \begin{cases} \Theta(n^k) & \text{if } a < 1\\ \Theta(n^{k+1}) & \text{if } a = 1\\ \Theta(a^{n/c}) & \text{if } a > 1. \end{cases}$$

Theorem 2. Let T(n) be the cost (worst case, average case, ...) of a recursive algorithm that satisfies the recurrence:

$$T(n) = \begin{cases} f(n) & \text{if } 0 \le n < n_0 \\ a \cdot T(n/b) + g(n) & \text{if } n \ge n_0, \end{cases}$$

where n_0 is a constant, b > 1, f(n) is an arbitrary function and $g(n) = \Theta(n^k)$ for a constant $k \ge 0$.

Let $\alpha = \log_b a$. Then

$$T(n) = \begin{cases} \Theta(n^k) & \text{if } \alpha < k \\ \Theta(n^k \log n) & \text{if } \alpha = k \\ \Theta(n^{\alpha}) & \text{if } \alpha > k. \end{cases}$$

Examples

- Binary search: $\Theta(\log(n))$ in the worst case.
- Fast exponentiation: $\Theta(\log(n))$.
- Fibonacci numbers: $\mathcal{O}(2^n)$ and $\Omega(2^{(n/2)})$.