Sistema de Diagnóstico de Padrões de falhas usando Simulador de Processo Químico

Victor N. Rebli Email: victor.rebli@gmail.com

Esse relatório se propõe a realizar algumas simulações de falhas em simulador de processos quimicos CSTR (Continuous Stirred Tank Reactor), cujo funcionamento mostra a figura abaixo.

É possível realizar 21 simulações de falhas que podem afetar o funcionamento do sistema, e somado a essas simulações, é possivel modificar os valores das 14 variaveis que continuamente coletam dados de vários pontos do reator e que indicam o funcionamento do sistema.

As duas figuras abaixo indicam quais são as falhas possíveis e as variaveis sensores que existem.

SENSED VARIABLES AND CONSTRAINTS OF THE CSTR SIMULATOR

#	Variable/Constraint name	Acronym	Nominal value	Units
1	Feed concentration	c_{A0}	20.0	mol/m ³
2	Feed flowrate	F_1	0.25	m^3/s
3	Feed temperature	T_1	30.0	K
4	Reactor level	L	2.0	m
5	Product A concentration	c_A	2.85	mol/m ³
6	Product B concentration	c_B	17.114	mol/m ³
7	Reactor temperature	T_2	80.0	K
8	Coolant flowrate	F_5	0.9	m^3/s
9	Product flowrate	F_4	0.25	m^3/s
10	Coolant inlet temperature	T_3	20.0	K
11	Coolant inlet pressure	PCW	56250.0	Pa
12	Level controller output	CNT_1	74.7	-
13	Coolant controller output	CNT_2	0.9	2
14	Coolant setpoint	CNT_3	59.3	-
15	Inventory	r_1	0.0	4
16	Mol balance	r_2	0.0	-
17	Cooling water pressure drop	r_3	0.0	-
18	Effluent pressure drop	r_4	0.0	H

#	Fault name	Affected parameter
1	No fault	-
2	Blockage at tank outlet	R_1
3	Blockage in jacket	R_9
5	Jacket leak to environment	R_8
5	Jacket leak to tank	R_7
6	Leak from pump	R_2
7	Loss of pump pressure	PP
8	Jacket exchange surface fouling	UA
9	External heat source (sink)	Q_{ext}
10	Primary reaction activation energy	β_1
11	Secondary reaction activation energy	β_2
12	Abnormal feed flowrate	F_1
13	Abnormal feed temperature	T_1
14	Abnormal feed concentration	c_{A0}
15	Abnormal cooling water temperature	T_3
16	Abnormal cooling water pressure	PCW
17	Abnormal jacket effluent pressure	JEP
18	Abnormal reactor effluent pressure	REP
19	Abnormal level controller setpoint	SP_1
20	Abnormal temperature controller setpoint	SP_2
21	Control valve 1 stuck	V_1
22	Control valve 2 stuck	V_2
23	Sensor fault(s) (sensed variables)	'MEAS'

Foram feitas duas simulações:

- 1) Leak from pump, afetando a variável R2
- 2) Abnormal level controller setpoint, afetando a variável SP1

Para cada simulação foi imposto 100 minutos como tempo de duração para as simulações, sendo as amostragens sendo obtidas a cada 1 minuto, então no final teremos 100 amostragens.

Foi calculado o PCA seguindo os seguintes passos:

- 1) Centralização dos dados e normalização dos dados
- 2) Cálculo da matriz de covâriancia
- 3) O cálculo dos autovetores e autovalores.
- 4) Ordenação dos autovetores em forma descendente para, tendo o primeiro componente principal, o segundo compomente principal, e assim por diante.
- 5) A projeção dos dados nos k componentes principais que desejo ter.

Para calculo da estatistica T2, foi seguido os seguintes passos:

$$_{1)} \quad T^2 = \mathbf{z}^T \mathbf{z}.$$

$$\mathbf{z} = \boldsymbol{\Lambda}^{-1/2} \, \boldsymbol{V}^{T} \mathbf{x},$$

Simulação 1:

Como demonstra a figura 1 abaixo, impondo uma falha de vazamento da bomba a partir do instante de tempo 60, afeta imediamente alguns sensores, tais como o Reactor level, cuja senso acusa uma diminuição do nivel, product A concentration, que tem um aumento de concentração e o coolant flowrate, que tem seu valor ligeiramente diminuido.

Figura 1

No cálculo do PCA, as onze primeiras componentes principais representavam 95% do total da variância. Visualização das primeiras duas componentes principais.

Figura 2

Visualização das primeiras três componentes principais.

Figura 3Como cálculo da estatística T2 foi utilizado a classe normal, e obtive o valor de 32.981
Visualização da estatística T2.

Figura 4

Simulação 2:

Um falha devido a Abnormal level controller setpoint, afetando a variavel SP1 , como consequência afeta diversos outros sensores.

Figura 5

No cálculo do PCA, as onze primeiras componentes principais representavam 95% do total da variância.

Visualização das primeiras duas componentes principais

Figura 6

Visualização das primeiras três componentes principais

Figura 7

Como cálculo da estatísitca T2 foi utilizado a classe normal, e obtive o valor de 32.981.

Visualização da estatística T2.

Figura 8