BACCALAURÉAT GÉNÉRAL

Session 2020

MATHÉMATIQUES-INFORMATIQUES (Épreuve pratique)

Série L

Durée: 2 heures Coefficient: 3

Ce sujet comporte 4 pages numérotées de 1/4 à 4/4.

Un fichier GeoGebra et deux fichiers Excel sont sur le bureau de l'ordinateur

Un ordinateur contenant l'ensemble des logiciels mathématiques nécessaire est à la disposition du candidat.

L'utilisation d'une calculatrice personnelle n'est pas autorisée.

Le candidat doit traiter tous les exercices.

Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse, qu'il aura développée.

Il est rappelé que la qualité de la rédaction, la clarté et la précision des raisonnements seront prises en compte dans l'appréciation des copies

20MATL2 Page 1 sur 4

Exercice 1: (5 points) QCM

Pour chaque question, une seule des trois réponses proposées est correcte. Relever sur la copie le numéro de la question ainsi que la lettre correspondant à la réponse choisie. Aucune justification n'est demandée.

1. Sur 4 ans, le prix d'un article augmente globalement de 7 %. Cela signifie que sur cette période, le taux d'évolution moyen annuel du prix de cet article a été d'environ :

a) 31 %

b) 7 %

c) 1,7%

2. La valeur affichée par l'algorithme suivante est :

a) 1

b) 249

c) 9

Variables k et u sont des entiers Traitement $1 \rightarrow u$ Pour k allant de 1 à 3 $5u + 4 \rightarrow u$ Fin pour Sortie Afficher u

3. On considere une suite géometrique (u_n) de raison q = 2 et de premier terme $u_0 = 6$. La valuer de u_{10} est :

a) 3072

b) 6144

c) 12288

4. On considère la feuille de calcul ci-contre.

Si on tire vers le bas, la formule saisie dans la cellule C1, alors la valeur affichée dans la cellule C2 est :

- **a)** 276
- **b**) 272
- **c)** 147

C1 ▼ (•		<i>f</i> _{xc} =A1+\$B\$	1
	Α	В	С
1	102	41	143
2	231	45	
3	480	52	
4	602	25	

- **5.** Sur **R**, l'équation $x^3 14x^2 + 35x 22 = 0$ admet :
- a) 3 solutions
- **b)** 2 solutions
- c) 1 solution

Exercice 2: (4 points)

Pour cet exercice, utiliser le fichier exercice 2.xls fourni sur le bureau de l'ordinateur.

Le tableau suivant donne la consommation d'eau d'une entreprise, en milliers de m³.

	А	В	С	D	Е	F	G	Н	I
1	Année	2010	2011	2012	2013	2014	2015	2016	2017
2	Rang de l'année (x_i)	1	2	3	4	5	6	7	8
3	Consommation d'eau en milliers de $m^3(y_i)$	10,1	11,2	12	12,8	13,4	13,6	14,2	14,7
4									
5	Moyenne \bar{x}	4,5							
6	Moyenne \overline{y}								

- 1. Quelle formule faut-il saisir en dans la cellule B6 pour calculer la moyenne \overline{y} de la consommation d'eau?
- **2.** Déterminer les coordonnées du point moyen G du nuage des points $M_i(x_i; y_i)$.
- **3.** Déterminer une équation de la droite d'ajustement du nuage de points obtenue par la méthode des moindres carrés (*arrondir les coefficients au centième près*).
- **4.** On fait l'hypothèse que le modèle d'ajustement reste valable pour les 6 prochaines années. Déterminer une estimation de la consommation d'eau de l'entreprise en 2020.

Exercice 3: (5 points)

Pour cet exercice, utiliser le fichier exercice 3.xls fourni sur le bureau de l'ordinateur. En 2010, une association plante 56 000 arbres. L'association decide d'augmenter le nombre d'arbres plantés de 5% par année.

	А	В	С	
	Année	Nombres d'arbres	Nombre total	
1	Annee	plantés par année	d'arbres plantés	
2	2010	56 000	56 000	
3	2011	58 800	114 800	
4	2012	61 740	176 540	
5	2013	64 827	241 367	
6	2014	68 068	309 435	
7	2015	71 472	380 907	
8	2016	75 045	455 952	
9	2017	78 798	534 750	
10	2018	82 738	617 488	
11	2019	86 874	704 362	

- 1. Justifier par un calcul que le nombre d'arbres plantés en 2011 est 58 800.
- 2. En quelle année, le nombre d'arbres plantés annuellement dépassera 100 000 arbres ?
- **3.** Quelle sera le nombre total d'arbres plantés par l'association en 15 ans ?

20MATL2 Page 3 sur 4

4. En quelle année, l'association aura plantés un total de 4 000 000 d'arbres ?

Exercice 4: (6 points)

Pour cet exercice, utiliser le fichier exercice 4.ggb fourni sur le bureau de l'ordinateur.

Un menuisier desire installer un miroir dans un morceau de bois en forme d'un demi-cercle. Il schématise la situation comme suit :

Le triangle BAD représente le miroir. Le segment [AB] représente le diamètre du demi-cercle. Le point D est un point libre du demi-cercle. L'unité de longueur est le centimètre.

- 1. Déterminer la longueur du diamètre [AB].
- 2. L'aire du miroir est-elle proportionnelle à la distance AD?
- 3. Déterminer une valeur approchée de l'aire du miroir lorsque AD = 40 cm.
- 4. Déterminer la distance AD pour laquelle l'aire du miroir est maximale.
- 5. En déduire l'aire et le périmètre du miroir correspondants.

20MATL2 Page 4 sur 4