

Предсказание ценовой функции смартфонов на российском рынке

Тевс Анна БЭАД223

Сбор данных

Было решено использовать достаточно аккуратное и подробное описание характеристик телефонов с **Мвидео**. (Запросы по внутреннему **АРІ сайта**)

Признаки:

- ID: name, brand
- <u>Size:</u> Экран (Дюймы), Габаритные размеры (В*Ш*Т/В*Ш*Г мм), Вес (г)
- <u>Resolution:</u> Камера (МПикс), Разрешение экрана, Разрешение видеосъемки (Пикс), Зум (х)
- <u>Inside:</u> Технология экрана, Яркость (кд/кв.м), Частота обновления экрана (Гц), Количество ядер (шт), Память (ГБ), Количество камер (шт), Степень защиты (IPXY), Мощность блока питания (Вт), Емкость аккумулятора (мАч)
- Outside/features: Безрамочный, Съемка видео в портретном режиме, Оптическая стабилизация, Поддержка симкарт, Поддержка стандартов, Поддержка WiFi, Технология NFC, Сенсор распознавания лица, Сканер отпечатка пальца, Материал корпуса, Блок питания, Кабель, Чехол
- Others: Гарантия, Страна, Год релиза
- <u>Targets</u>: **salePrice**, basePrice

Обработка и анализ данных

Проблема: много характеристик

Решение:

- Анализ nan
- Графики
- а) для дамми в основном box-plot
- b) для количественных logreg, scatter, lineplot
- с) для категориальных всё ранее упомянутое + частота через histplot
- Построения "локальных" регрессия (для выявления незначимых на первых этапах)
- Здравый смысл! (+ ориентир на будущие предположения)

Мультиколлинеарность

Correlation matrix VIF

Изменения:

- новый признак (strong_frame = разность наличия металла и пластика в корпусе)
- PCA на разрешение видео (h/v)
- Периметр
- IP (сумма влагозащиты и защиты от пыли)

	feature	VIF
0	brand_Apple	9.870583
1	depth	8.542697
2	width	6.542193
3	battery	5.462524
4	water_IP	5.379111
5	strong_frame	4.442066
6	brand_Samsung	4.153618
7	height	3.767653
8	dust_IP	3.292562
9	main_camera_mp_total	3.267930
10	<pre>video_resolution_h</pre>	3.225892
11	screen_resolution_h	3.103757
12	is_5G	3.096500
13	screen_resolution_v	3.052016
14	main_cams	2.988218
15	screen_diag	2.631178
16	<pre>video_resolution_v</pre>	2.430543
17	brand_HUAWEI	2.293055
18	zoom	2.168234
19	brand_Xiaomi	2.134353
20	year	2.130298
21	opt_zoom	2.057209
22	<pre>front_camera_mp_total</pre>	2.022238
23	brand_Tecno	1.776077
27	memory	
28	brand_Infinix	1.414392
29	weight	1.403383
30	const	1.000000

Гетероскедастичность

Тесты:

- Визуальный (облако точек)
- Уайта (F-Test p-value: 0.0000)

Проблема решена использование стандартных ошибок в форме Уайта

(っ ~^)っ (cov_type='HC3')

Also tried:

- Изменить функциональную форму на этом этапе
- Полулогарифмическую модель

Выбор функциональной формы

Тест: Бокса-Кокса <u>линейная vs полулогарифмическая</u>

RSS (линейная модель): 374909571109.45 **RSS** (лог-преобразованная модель): 67.12

Статистика LM: 20850.042

Р-значение: 0.0000

Отвергаем Н0: полулогарифмическая модель лучше.

Dep. Variable:	$\operatorname{salePrice}$		R-squared:		0.903	
Model:	OLS		Adj. R-squared:		0.900	
Method:	Least Squares		F-statistic:		434.9	
Date:	Sun, 11 May 2025		Prob (F-statistic		c): 0.00	
Time:	13:31:32		Log-Likelihood:		2083.9	
No. Observations:	929)	AIC:		-4106.	
Df Residuals:	898		BIC:		-3956.	
Df Model:	30					
Covariance Type:	HC3					
	coef	std err	\mathbf{z}	P> z	[0.025]	0.975]
const	-11.3353	3.946	-2.872	0.004	-19.070	-3.601
main_cams	0.0079	0.006	1.423	0.155	-0.003	0.019
memory	7.356e-05	8.52e-06	8.634	0.000	5.69e-05	9.03e-05
height	-0.0006	0.002	-0.268	0.788	-0.005	0.004
width	-0.0005	0.002	-0.209	0.835	-0.005	0.004
depth	-0.0006	0.002	-0.287	0.774	-0.005	0.004
video_resolution_v	2.569e-06	9.99e-07	2.573	0.010	6.12e-07	4.53e-06
video_resolution_h	1.317e-06	1.81e-06	0.727	0.467	-2.23e-06	4.87e-06
$screen_resolution_h$	1.676e-05	4.35e-06	3.854	0.000	8.24e-06	2.53e-05
$screen_resolution_v$	1.833e-05	3.87e-06	4.738	0.000	1.07e-05	2.59e-05
screen_diag	0.0073	0.019	0.391	0.696	-0.029	0.044
$\operatorname{dust}_{oldsymbol{IP}}$	-0.0012	0.002	-0.709	0.478	-0.005	0.002
water_IP	0.0041	0.001	3.292	0.001	0.002	0.007
zoom	2.913e-05	6.68e-05	0.436	0.663	-0.000	0.000
weight	0.0001	0.000	0.706	0.480	-0.000	0.000
is_new	0.0421	0.005	8.293	0.000	0.032	0.052
battery	-2.727e-06	4.89e-06	-0.558	0.577	-1.23e-05	6.85e-06
is_5G	0.0409	0.004	10.073	0.000	0.033	0.049
frameless	0.0071	0.004	1.658	0.097	-0.001	0.015
year	0.0067	0.002	3.709	0.000	0.003	0.010
opt_zoom	0.0020	0.001	1.545	0.122	-0.001	0.005
front_camera_mp_total	0.0004	0.000	2.827	0.005	0.000	0.001
main_camera_mp_total	0.0001	$5.42\mathrm{e}\text{-}05$	2.320	0.020	1.95e-05	0.000
brand_Apple	0.0687	0.015	4.553	0.000	0.039	0.098
brand_Samsung	0.0236	0.005	4.306	0.000	0.013	0.034
brand_Xiaomi	-0.0005	0.004	-0.120	0.904	-0.008	0.007
brand_Tecno	0.0008	0.005	0.142	0.887	-0.010	0.011
brand_HONOR	0.0075	0.008	0.904	0.366	-0.009	0.024
brand_HUAWEI	0.0153	0.009	1.676	0.094	-0.003	0.033
brand_Infinix	0.0052	0.007	0.762	0.446	-0.008	0.019
$strong_frame$	0.0159	0.005	3.383	0.001	0.007	0.025

Выбор функциональной формы

Тест: Рамсея

1. Оценивается исходная линейная модель:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$$

- 2. Из неё получают предсказанные значения \hat{y} .
- 3. В расширенную модель добавляют **степени** \hat{y} (обычно \hat{y}^2 , \hat{y}^3):

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \alpha_1 \hat{y}^2 + \alpha_2 \hat{y}^3 + \epsilon$$

- 4. Проверяют **F-тестом**, значимы ли новые коэффициенты (α_1, α_2):
 - ∘ Если **p-value** < $0.05 \rightarrow \text{отвергаем H}_0$ (модель некорректна).
 - ∘ Если **p-value > 0.05** → **нет оснований отвергать H** $_0$ (форма модели адекватна).

Дополнительно добавили признаки с функциями: log, sqrt(), ^2, ^3, ^4, ^5

После оценки незначимости коэффициентов перед огромным количеством переменных, а также сравнением моделей по R^2 регрессоры изменились

- 1				
		Feature	Transformation	R2
	0	IP	x^4	0.495507
	1	P	x^5	0.128859
	2	brand_Apple	X	0.241322
	3	brand_H0N0R	x	0.008218
	4	brand_HUAWEI	X	0.001738
	5	brand_Infinix	x	0.033923
	6	brand_Samsung	x	0.075613
	7	brand_Tecno	x	0.072250
	8	brand_Xiaomi	X	0.045041
	9	dim_PC1	log(x)	0.470167
	10	dim_PC2	x	0.343538
	11	frameless	x	0.042148
	12	is_5G	x	0.507242
	13	is_new	x	0.000479
	14	memory	x	0.215443
	15	opt_zoom	x	0.266491
	16	screen_diag	log(x)	0.041654
	17	screen_resolution_h	x^5	0.200900
	18	screen_resolution_v	log(x)	0.111842
	19	strong_frame	x	0.583260
	20	weight	x	0.038507
	21	year	x^5	0.000311
	22	zoom	log(x)	0.144068

8

Выбросы

Тесты и статистики:

- Леверидж

Леверидж h_{ii} — диагональные элементы матрицы

$$H = X(X^TX)^{-1}X^T$$
 ("hat matrix").

$$h_{ii}>rac{2(k+1)}{n}$$
 — точка с высоким влиянием.

- Стьюдентизированные остатки

$$r_i = rac{e_i}{s\sqrt{1-h_{ii}}}$$

Где:

- ullet $e_i=y_i-\hat{y_i}$ обычный остаток для і-го наблюдения
- ullet s стандартная ошибка остатков всей модели (RMSE)
- h_{ii} леверидж (диагональный элемент матрицы влияния H)

|r_i| > 3 — явный выброс

Удалено 5 выбросов

- DFFITS

Формула

$$DFFITS_i = t_i \sqrt{rac{h_{ii}}{1-h_{ii}}}$$

где t_i — стьюдентизированный остаток, h_{ii} — леверидж.

Интерпретация

ullet $|DFFITS_i| > 2\sqrt{rac{k+1}{n}}$ — точка сильно влияет на модель.

Выводы

```
In(price) = -55.96 + 0.4 In(memory) + 0.7 brand_Apple + 0.47 is_new + 0.292 strong_frame + 0.42 is_5G + 0.2 main_cams + 0.099 In(zoom) + 0.000015 year^2 - 0.0004 (brand_Apple * memory) + 0.00005 (frameless * year) + 0.08 dim_PC2 - 0.000005 P^2 + 0.001 IP^2 - 0.004 (brand_HUWAEI * front_camera_mp_total) + e
```

Попробовали предсказать цену телефона Google Смартфон Google Pixel 7 Pro 12/128GB, который стоит 49.990, у нас получилось 52.360

```
R-squared: 0.902
Adj. R-squared: 0.900
F-statistic: 925.3
Prob (F-statistic): 0.00
Log-Likelihood: -106.57
AIC: 245.1
BIC: 322.4
```


Квантильная регрессия

Квантили: 0.1, 0.5, 0.75, 0.9

