# Class Notes on GANs Models

#### Jack Li

# October 24, 2024

# Contents

| 1 | Introduction   |                                                          |          |  |  |
|---|----------------|----------------------------------------------------------|----------|--|--|
| 2 | Basic          | Math                                                     | <b>2</b> |  |  |
|   | 2.1 P          | Probability Theory                                       | 2        |  |  |
|   | 2.2 S          | ampling from a Probability Distribution: Why $P(x) dx$ ? | 2        |  |  |
|   | 2              | .2.1 Mathematical Expression                             | 2        |  |  |
|   | 2              | .2.2 Why $P(x) dx$ ?                                     | 2        |  |  |
|   | 2              | .2.3 Example of Sampling                                 | 2        |  |  |
|   | 2.3 S          |                                                          | 2        |  |  |
|   |                |                                                          | 3        |  |  |
|   |                | •                                                        | 3        |  |  |
|   |                | .5.1 Definition                                          | 3        |  |  |
|   | $\overline{2}$ |                                                          | 3        |  |  |
|   |                | v                                                        | 4        |  |  |
|   |                |                                                          | 4        |  |  |
|   | $\frac{1}{2}$  |                                                          | 4        |  |  |
|   |                | v                                                        | 4        |  |  |
|   |                |                                                          | 4        |  |  |
|   |                |                                                          | 4        |  |  |
|   | _              |                                                          | 4        |  |  |
|   | _              |                                                          | 4        |  |  |
|   |                | - ·                                                      | 4        |  |  |
|   |                |                                                          | 5        |  |  |
|   | _              |                                                          | 5        |  |  |
|   |                |                                                          | 5        |  |  |
|   | 2.11 0         | pelinization                                             | J        |  |  |
| 3 | PyToi          | rch Basics                                               | 5        |  |  |
|   | 3.1 T          | Tensors                                                  | 5        |  |  |
|   |                |                                                          |          |  |  |
| 4 |                |                                                          | 5        |  |  |
|   |                |                                                          | 6        |  |  |
|   |                |                                                          | 7        |  |  |
|   | 4.3 L          | oss Functions                                            | 8        |  |  |
| 5 | GANs Models 9  |                                                          |          |  |  |
| _ |                |                                                          | 9        |  |  |
|   |                |                                                          | 9        |  |  |
|   |                |                                                          | 9        |  |  |
|   |                |                                                          | 9        |  |  |
| c |                |                                                          |          |  |  |
| 6 | Concl          | usion                                                    | 9        |  |  |

# 1 Introduction

Provide an introduction to GANs and their importance in machine learning.

#### 2 Basic Math

#### 2.1 Probability Theory

• Definitions of probability, random variables, expectation, etc.

#### 2.2 Sampling from a Probability Distribution: Why P(x) dx?

In continuous probability theory, the \*\*probability density function\*\* (PDF) P(x) represents the density of the probability at a particular point x. However, the actual probability of the random variable X falling within a small interval around x, say [x, x + dx], is given by the product of the PDF at x and the small interval dx.

#### 2.2.1 Mathematical Expression

The probability of X falling within the interval [x, x + dx] is approximately:

$$P(X \in [x, x + dx]) \approx P(x) dx$$

Where: - P(x) is the probability density function evaluated at x, - dx is an infinitesimally small interval around x.

#### **2.2.2 Why** P(x) dx?

- The PDF P(x) by itself does not give the actual probability for any specific value of x, because for continuous random variables, the probability of any single point is zero:

$$P(X = x) = 0$$
 for continuous variables.

- Instead, the \*\*probability\*\* is found by integrating the PDF over an interval:

$$P(X \in [a, b]) = \int_a^b P(x) \, dx$$

For a very small interval dx, the integral simplifies to:

$$P(X \in [x, x + dx]) \approx P(x) dx$$

This shows that the product P(x) dx gives the probability mass within the small region [x, x + dx].

#### 2.2.3 Example of Sampling

When sampling a value x from a distribution, the probability that a sample lies within a small range [x, x + dx] is proportional to P(x) dx. For example, in the case of a Gaussian (Normal) distribution, the probability density is given by:

$$P(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

To find the probability of the random variable X falling within the range [x, x + dx], we compute:

$$P(X \in [x, x + dx]) \approx P(x) dx$$

#### 2.3 Standard Sampling (Non-Differentiable)

In the standard sampling method, we sample directly from a normal distribution, which does not allow gradients to propagate:

```
# Non-differentiable direct sampling
mu = torch.tensor(0.0, requires_grad=True)
sigma = torch.tensor(1.0, requires_grad=True)

# Direct sampling from a normal distribution
z = torch.normal(mu, sigma)
```

```
8  # Loss function
9  loss = (z - 5) ** 2
10  loss.backward()  # This breaks the gradient flow
```

This will not compute gradients correctly because the sampling is a discrete, non-differentiable operation.

#### 2.4 Reparameterization Trick (Differentiable)

In the reparameterization trick, we express the random variable z as a function of  $\mu$ ,  $\sigma$ , and a noise term  $\epsilon$ , which allows backpropagation to compute gradients:

$$z = \mu + \sigma \cdot \epsilon$$

```
# Differentiable sampling using reparameterization trick
mu = torch.tensor(0.0, requires_grad=True)
log_sigma = torch.tensor(0.0, requires_grad=True)
sigma = torch.exp(log_sigma)

# Sample epsilon from N(0, 1)
epsilon = torch.randn_like(sigma)

# Reparameterization: z = mu + sigma * epsilon
z = mu + sigma * epsilon

# Loss function
loss = (z - 5) ** 2
loss.backward() # Gradient flows through mu and sigma
```

Here,  $\epsilon$  is sampled from a standard normal distribution  $\mathcal{N}(0,1)$ , and the parameters  $\mu$  and  $\sigma$  can be updated by gradient descent because the whole process is now differentiable.

#### 2.5 Gumbel-Softmax

#### 2.5.1 Definition

The Gumbel-Softmax trick is a method for sampling from a categorical distribution in a differentiable way. It provides a continuous approximation to a categorical distribution, making it suitable for use in backpropagation.

Let  $\pi_1, \pi_2, \dots, \pi_k$  be the probabilities of each category in a categorical distribution. The Gumbel-Softmax trick works by introducing Gumbel noise  $g_i$  for each category i, sampled from a Gumbel distribution:

$$q_i = -\log(-\log(u_i)), \quad u_i \sim \text{Uniform}(0,1)$$

The continuous approximation to the categorical distribution is given by the softmax function:

$$y_i = \frac{\exp((\log(\pi_i) + g_i)/\tau)}{\sum_{j=1}^k \exp((\log(\pi_j) + g_j)/\tau)}$$

where  $\tau$  is the temperature parameter controlling the sharpness of the approximation. As  $\tau \to 0$ , the distribution becomes more discrete (closer to one-hot), and as  $\tau \to \infty$ , the distribution becomes more uniform.

#### 2.5.2 Proof of Differentiability

Let  $\pi = (\pi_1, \pi_2, \dots, \pi_k)$  be the parameter of the categorical distribution. The reparameterization with Gumbel noise is differentiable because:

$$\frac{\partial y_i}{\partial \pi_j} = \frac{\partial}{\partial \pi_j} \left( \frac{\exp((\log(\pi_i) + g_i)/\tau)}{\sum_{i=1}^k \exp((\log(\pi_i) + g_i)/\tau)} \right)$$

Since  $g_i$  is independent of  $\pi_j$ , the function remains differentiable.

#### 2.6 Concrete Distribution

#### 2.6.1 Definition

The Concrete distribution is similar to the Gumbel-Softmax but is defined for both binary and multinomial distributions. The Concrete distribution for binary random variables introduces a continuous relaxation by using the logistic sigmoid function for binary variables.

For a binary random variable with probability p, the Concrete distribution samples:

$$z = \frac{\log(p) + g}{\tau}$$

where  $g \sim \text{Gumbel}(0,1)$  and  $\tau$  is the temperature parameter. The output z is passed through the sigmoid function to produce a value between 0 and 1:

$$y = \sigma(z) = \frac{1}{1 + \exp(-z)}$$

#### 2.6.2 Differentiability

As in the Gumbel-Softmax case, the Concrete distribution is differentiable because the sampling is reparameterized using Gumbel noise, and the final step uses differentiable functions like the softmax or sigmoid.

#### 2.7 Pros and Cons

| Method                     | Pros                                                         | Cons                                                               |
|----------------------------|--------------------------------------------------------------|--------------------------------------------------------------------|
| Gumbel-Softmax             | - Differentiable approximation of categor-                   | - Approximation error due to continuous                            |
|                            | ical variables.                                              | relaxation.                                                        |
|                            | - Control over discreteness via tempera-                     | - Gradients vanish as $\tau \to 0$ .                               |
|                            | ture $\tau$ .                                                | - Limited to categorical (one-hot) out-                            |
|                            | - Easy to implement for multiclass prob-                     | puts.                                                              |
|                            | lems.                                                        |                                                                    |
| Concrete Distribu-<br>tion | - Differentiable for both binary and categorical variables.  | - Same vanishing gradient issue as Gumbel-Softmax for low $\tau$ . |
|                            | - More flexibility than Gumbel-Softmax for binary decisions. | - Still an approximation of a discrete distribution, not exact.    |

Table 1: Comparison of Gumbel-Softmax and Concrete distribution

#### 2.8 Use Cases

#### 2.8.1 Gumbel-Softmax

- \*\*Generative Models\*\*: Used in \*\*Variational Autoencoders (VAEs)\*\* for categorical latent variables, allowing for discrete sampling while maintaining differentiability. - \*\*Reinforcement Learning\*\*: In policy gradient methods, Gumbel-Softmax can be used for discrete action selection.

#### 2.8.2 Concrete Distribution

- \*\*Binary Decision Making\*\*: Useful in models where decisions are binary, like in the \*\*Binary Variational Autoencoder (Binary VAE)\*\*. - \*\*Binary Latent Variables\*\*: Concrete distributions work well for models with binary latent variables, where a differentiable approximation is required.

#### 2.9 Equations Summary

#### 2.9.1 Gumbel-Softmax Equation

For categorical variables, the Gumbel-Softmax approximation is given by:

$$y_i = \frac{\exp((\log(\pi_i) + g_i)/\tau)}{\sum_{j=1}^k \exp((\log(\pi_j) + g_j)/\tau)}$$

where  $g_i \sim \text{Gumbel}(0,1)$ .

#### 2.9.2 Concrete Distribution Equation

For binary variables, the Concrete distribution is given by:

$$z = \frac{\log(p) + g}{\tau}, \quad g \sim \text{Gumbel}(0, 1)$$

and the relaxed binary sample is:

$$y = \frac{1}{1 + \exp(-z)}$$

#### 2.10 Linear Algebra

• Vectors, matrices, eigenvalues, eigenvectors, etc.

#### 2.11 Optimization

• Gradient descent, stochastic gradient descent, etc.

## 3 PyTorch Basics

#### 3.1 Tensors

• Definition and operations on tensors.

### 4 PyTorch training gradients

Code 1: PyTorch training gradients

```
#SECTION: Gradient computation
2
   # Step 1: Define a simple model
   model = nn.Linear(1, 1)
   optimizer = optim.SGD(model.parameters(), lr=0.01)
   # Dummy input and target
   input = torch.tensor([[1.0]], requires_grad=True)
   target = torch.tensor([[2.0]])
   # Step 2: Print the initial parameters
11
   print("Initial parameters:")
12
   for param in model.parameters():
13
       print(param.data)
14
   # Step 3: Forward pass
16
   output = model(input)
   loss = (output - target).pow(2).mean()
   # Step 4: Zero the gradients
20
   optimizer.zero_grad()
21
   # Step 5: Backward pass
23
   loss.backward()
24
   # Step 6: Update the parameters
26
   optimizer.step()
27
28
   # Step 7: Print the parameters after the update
29
   print("\nParameters after one training step:")
30
   for param in model.parameters():
31
       print(param.data)
32
```

#### 1. Initialize Parameters:

- Assume initial weights w and bias b are both 0.

- Model: y = wx + b
  - 2. Forward Pass:
- Compute the output:  $\hat{y} = wx + b$
- Given input x = 1.0 and target y = 2.0:

$$\hat{y} = 0 \cdot 1.0 + 0 = 0$$

#### 3. Compute Loss:

- Loss function: Mean Squared Error (MSE)

Loss = 
$$\frac{1}{N} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

- For our single data point:

$$Loss = (0 - 2.0)^2 = 4.0$$

#### 4. Backward Pass (Gradient Calculation):

- Compute gradients of the loss with respect to w and b:

$$\frac{\partial \text{Loss}}{\partial w} = 2(\hat{y} - y)x = 2(0 - 2.0) \cdot 1.0 = -4.0$$

$$\frac{\partial \text{Loss}}{\partial b} = 2(\hat{y} - y) = 2(0 - 2.0) = -4.0$$

#### 5. Parameter Update:

- Using Stochastic Gradient Descent (SGD) with learning rate  $\eta = 0.01$ :

$$w_{\text{new}} = w - \eta \frac{\partial \text{Loss}}{\partial w} = 0 - 0.01 \cdot (-4.0) = 0.04$$
$$b_{\text{new}} = b - \eta \frac{\partial \text{Loss}}{\partial b} = 0 - 0.01 \cdot (-4.0) = 0.04$$

#### 6. Updated Parameters:

- After one training step, the new parameters are:

$$w = 0.04, \quad b = 0.04$$

**Summary** - Initial parameters: w = 0, b = 0 - After one training step: w = 0.04, b = 0.04

#### 4.1 Autograd

• Automatic differentiation in PyTorch.

The active selection gradient.norm(2, dim = 1) is a PyTorch operation that computes the L2 norm (Euclidean norm) of the gradient tensor along a specified dimension. In this case, the dimension specified is dim = 1.

$$\Theta = \operatorname{argmin}_{\Theta} \frac{1}{B} \sum_{i=1}^{B} \left[ D(z_i, \Theta) - D(y_i, \Theta) \right] + \lambda \left( \left\| \frac{\partial D(y, \Theta)}{\partial y} \right\| - 1 \right)^2$$

Detailed Explanation:

#### 1. L2 Norm (Euclidean Norm):

- - The L2 norm of a vector is a measure of its magnitude and is calculated as the square root of the sum of the squares of its components. Mathematically, for a vector v, the L2 norm is given by  $||v||_2 = \sqrt{\sum v_i^2}$ .
- - In PyTorch, the *norm* function can compute various types of norms, with the L2 norm being specified by the argument 2.

6

#### 2. Dimension Specification (dim = 1):

- - The *dim* argument specifies the dimension along which the norm is computed. In a multi-dimensional tensor, this allows you to compute norms along specific axes.
- - For example, if gradient is a 2D tensor (matrix) with shape [batchsize, numfeatures], setting dim = 1 means that the norm is computed for each row independently. This results in a tensor of shape [batchsize], where each element is the L2 norm of the corresponding row in the original tensor.

Code 2: PyTorch gradient sampling example

```
# Define the sampling function
   def sample_function(x):
2
       return torch.sin(x)
3
4
5
   # NOTE: Generate sample points with requires_grad=True, and need requires_grad=True
6
    Generate sample points with requires_grad=True
     = torch.tensor(
       np.linspace(0, 2 * np.pi, 100), dtype=torch.float32, requires_grad=True
9
   )
10
11
   # Define f by sampling from the sample_function
12
13
   f = sample_function(x)
14
   \mbox{\tt\#} Compute the gradient of f with respect to x
15
   grad = torch.autograd.grad(outputs=f, inputs=x, grad_outputs=torch.ones_like(f))
16
17
   print(f"The gradient of f(x) = sin(x) at x = {x} is {grad[0]}")
18
```

#### 4.2 Building Neural Networks

 $\bullet$  Layers, activation functions, loss functions, etc.

# Input image Object



Image



Object

Cat

A single bounding box



Multiple bounding boxes

# Semantic segmentation



One mask for all objects with the same class

Instance segmentation



Multiple masks

Figure 1: An example image illustrating segmentation.

#### 4.3 Loss Functions

#### — PyTorch Conv2d Equation

The output size of a Conv2d layer can be calculated using the following equation:

$$\label{eq:output Size} \text{Output Size} = \left\lfloor \frac{\text{Input Size} + 2 \times \text{Padding} - \text{Kernel Size}}{\text{Stride}} \right\rfloor + 1$$

Where: - Input Size is the size of the input feature map (height or width). - Padding is the number of zero-padding added to both sides of the input. - Kernel Size is the size of the convolution kernel (height or width). - Stride is the stride of the convolution.

 ${\bf PyTorch~ConvTranspose2d~Equation}$ 

The output size of a ConvTranspose2d (transposed convolution) layer can be calculated using the following equation:

$$Output\ Size = (Input\ Size - 1) \times Stride - 2 \times Padding + Kernel\ Size + Output\ Padding$$

Where: - Input Size is the size of the input feature map (height or width). - Stride is the stride of the convolution. - Padding is the number of zero-padding added to both sides of the input. - Kernel Size is the size of the convolution kernel (height or width). - Output Padding is the additional size added to the output (usually used to ensure the output size matches a specific value).

# 5 GANs Models

#### 5.1 Basic GAN

- Architecture: Generator and Discriminator.
- Loss functions: Minimax game.
- Training process.

#### 5.2 DCGAN

- Architecture: Convolutional layers.
- Improvements over basic GAN.
- Training tips.

#### 5.3 WGAN

- Wasserstein distance.
- Critic network.
- Gradient penalty.

#### 5.4 CycleGAN

- Architecture: Cycle consistency loss.
- $\bullet$  Applications: Image-to-image translation.

# 6 Conclusion

Summarize the key points and discuss future directions.