Дискретная модель колебания длины низкоприоритетной очереди в тандеме систем обслуживания при циклическом алгоритме с продлением

Кочеганов Виктор Михайлович¹, Зорин Андрей Владимирович²

- ¹ Нижегородский госуниверситет им. Н. И. Лобачевского, e-mail: kocheganov@gmail.com
- ² Нижегородский госуниверситет им. Н. И. Лобачевского, e-mail: zoav1602@gmail.com

Пусть в систему с одним обслуживающим устройством поступают потоки Π_1, Π_2, Π_3 и Π_4 . Требования по потоку Π_i становятся в соответствующую очередь O_j с неограниченной вместимостью, $j=\overline{1,4}$. Для $j=\overline{1,3}$ дисциплина очереди O_j , имеет тип FIFO. Таким образом, для обслуживания из соответствующей очереди выбирается то требование, которое пришло раньше. Дисциплина очереди O_4 будет описана ниже. Входные потоки Π_1 и Π_3 формируются внешней средой, которая имеет только одно состояние, то есть вероятностная структура потоков не меняется с течением времени. Требования потоков Π_1 и Π_3 формируют независимые между собой неординарные пуассоновские потоки. Интенсивность простейшего потока Π_j будем обозначать λ_j , а распределение числа заявок в группе по потоку Π_j будем описывать производящей функцией $f_j(z) = \sum_{\nu=1}^{\infty} p_{\nu}^{(j)} z^{\nu}, j \in \{1,3\}$, которая предполагается аналитической при любом z из внутренности круга $|z|<(1+\varepsilon),\,\varepsilon>0.$ Величина $p_{\nu}^{(j)}$ определяет вероятность того, что по потоку Π_{j} число требований в группе равно ν . Обслуженные требования потока Π_1 поступают на повторное обслуживание, формируя при этом поток Π_4 . Потоки Π_2 и Π_3 являются конфликтными, что означает запрет на одновременное обслуживание требований этих потоков и, следовательно, исследование системы не может быть сведено к задаче с меньшим числом потоков. В каждый момент времени обслуживающее устройство находится в одном из конечного множества состояний $\Gamma = \{\Gamma^{(k,r)}: k=\overline{0,d}; r=\overline{1,n_k}\}$. Здесь $d,\,n_0,\,n_1,\,\ldots,\,n_d$ суть заданные натуральные числа. В каждом состоянии $\Gamma^{(k,r)}$ обслуживающее устройство находится в течение неслучайного времени $T^{(k,r)}$.

Предполагается, что длительности обслуживания различных требований могут быть зависимыми и иметь различные законы распределения, поэтому вместо классического способа, состоящего в указании функции распределения длительности обслуживания произвольного требования, будут использованы потоки насыщения. Поток насыщения Π_j^{hac} , $j=\overline{1,4}$, определяется как виртуальный выходной поток из очереди O_j при условии максимального ис-

пользования ресурсов обслуживающего устройства, а для $j=\overline{1,3}$ еще и при неограниченно больших длинах соответствующих очередей. Поток насыщения $\Pi_j^{\text{hac}},\ j=\overline{1,3},$ будет содержать неслучайное число $\ell_{k,r,j}$ требований, обслуженных в течение времени $T^{(k,r)},$ если обслуживается очередь $O_j,$ и будет содержать 0 требований в противном случае.

Для задания информации о системе введем следующие величины и элементы, а также укажем множества их возможных значений. Пусть \mathbb{Z}_+ — множество целых неотрицательных чисел. В качестве дискретной временной шкалы выберем последовательность $\tau_0=0,\,\tau_1,\,\tau_2,\,\ldots$ моментов смены состояний обслуживающего устройства. Обозначим $\Gamma_i\in\Gamma$ состояние обслуживающего устройства в промежутке $(\tau_{i-1},\tau_i]$, количество $\varkappa_{j,i}\in\mathbb{Z}_+$ требований в очереди O_j в момент времени τ_i , количество $\eta_{j,i}\in\mathbb{Z}_+$ требований, поступивших в очередь O_j по потоку Π_j за промежуток $(\tau_i,\tau_{i+1}]$, количество $\xi_{j,i}\in\mathbb{Z}_+$ требований по потоку насыщения Π_j^{hac} за промежуток $(\tau_i,\tau_{i+1}]$, количество $\overline{\xi}_{j,i}\in\mathbb{Z}_+$ реально обслуженных требований по потоку Π_j в промежутке $(\tau_i,\tau_{i+1}],\,j=\overline{1,4}$.

Закон изменения состояния обслуживающего устройства будем предполагать заданным соотношением $\Gamma_{i+1}=h(\Gamma_i,\varkappa_{3,i})$, где отображение $h(\cdot,\cdot)$ определено следующим образом. Зададим непересекающиеся множества состояний $C_k=\{\Gamma^{(k,r)}\colon r=1,2,\ldots n_k\}\in \Gamma,\ k=\overline{1,d},$ называемые далее $uu\kappa_namu$. При k=0 состояния $\Gamma^{(0,r)},\ r=\overline{0,n_0}$ будем называть состояниями продления. Положим $r\oplus_k 1=r+1$ для $r< n_k$ и $r\oplus_k 1=1$ при $r=n_k,\ k=0,\ 1,\ \ldots,d$. В цикле C_k выделим подмножества $C_k^{\rm O}$ выходных состояний, $C_k^{\rm I}$ входных состояний и $C_k^{\rm N}=C_k\setminus (C_k^{\rm O}\cup C_k^{\rm I})$ нейтральных состояний. При этом, будем предполагать, что все циклы имеют ровно одно входное и одно выходное состояние. Наконец, все состояния продления образуют один цикл. Пусть задано положительное целое число L, множество $N_0=\{1,2,\ldots,n_0\}$ и заданы отображения $h_1(\cdot)\colon\bigcup_{k=1}^d C_k^{\rm O}\to N_0,\ h_2(\cdot)\colon N_0\to N_0$ и $h_3(\cdot)\colon N_0\to\bigcup_{k=1}^d C_k^{\rm I}$. Тогда $h(\Gamma^{(k,r)},y)$ принимает значение $\Gamma^{(k,r\oplus_k 1)}$ при $\Gamma^{(k,r)}\in C_k^{\rm O}$ и y>L, значение $\Gamma^{(0,h_1(\Gamma^{(k,r)})}$ при $\Gamma^{(k,r)}\in C_k^{\rm O}$ и $y\leqslant L$, значение $\Gamma^{(0,h_2(r))}$ при k=0 и y>L.

Для определения длительности T_{i+1} состояния обслуживающего устройства в течение времени $(\tau_i, \tau_{i+1}]$ удобно ввести функцию $h_T(\cdot, \cdot)$: $h_T(\Gamma_i, \varkappa_{3,i}) = T^{(k,r)}$, где $\Gamma^{(k,r)} = h(\Gamma_i, \varkappa_{3,i})$. Далее, функциональная зависимость

$$\overline{\xi}_{j,i} = \min\{\varkappa_{j,i} + \eta_{j,i}, \xi_{j,i}\}, \quad j = \overline{1,3}, \tag{1}$$

между величиной $\overline{\xi}_{j,i}$ и величинами $\varkappa_{j,i},\,\eta_{j,i},\,\xi_{j,i}$ реализует стратегию меха-

низма обслуживания требований. Из равенства $\varkappa_{j,i+1}=\varkappa_{j,i}+\eta_{j,i}-\overline{\xi}_{j,i}$ и соотношения (1) следует соотношение $\varkappa_{j,i+1}=\max\{0,\varkappa_{j,i}+\eta_{j,i}-\xi_{j,i}\}$ для $j=\overline{1,3}$. Из формулировки поставленной задачи также следуют соотношения для потока Π_4 : $\eta_{4,i}=\min\{\xi_{1,i},\varkappa_{1,i}+\eta_{1,i}\},\varkappa_{4,i+1}=\varkappa_{4,i}+\eta_{4,i}-\eta_{2,i}$ и $\xi_{4,i}=\varkappa_{4,i}$. Функцию $\psi(\cdot,\cdot,\cdot)$ зададим формулой $\psi(k;y,u)=C_y^ku^k(1-u)^{y-k}, \, k,y\in Z_+, u\in[0,1]$. Для $j\in\{1,3\}$ и $t\in\mathbb{R}$ функцию $\varphi_j(\cdot,\cdot)$ введем из разложения $\sum_{\nu=0}^\infty z^\nu \varphi_j(\nu,t)=\exp\{\lambda_j t(f_j(z)-1)\}$. Пусть $a=(a_1,a_2,a_3,a_4)\in\mathbb{Z}_+^4$ и $x=(x_1,x_2,x_3,x_4)\in\mathbb{Z}_+^4$ и $\Gamma^{(\tilde{k},\tilde{r})}=h(\Gamma^{(k,r)},x_3)$. Индикатор равенства двух величин x и y будем выражать символом Кронекера $\delta_{x,y}$. Тогда из постановки задачи на содержательном уровне следует, что при фиксированном значении пары $(\Gamma_i;\varkappa_i)$ вероятность $\varphi(a,k,r,x)$ одновременного выполнения равенств $\eta_{1,i}=a_1,\eta_{2,i}=a_2,\eta_{3,i}=a_3,\eta_{4,i}=a_4$ есть $\varphi_1(a_1,h_T(\Gamma^{(k,r)},x_3))\times\psi(a_2,x_4,p_{\tilde{k},\tilde{r}})\times \varphi_3(a_3,h_T(\Gamma^{(k,r)},x_3))\times\delta_{a_4,\min\{\ell(\tilde{k},\tilde{r},1),x_1+a_1\}}$. Пусть $b=(b_1,b_2,b_3,b_4)\in\mathbb{Z}_+^4$. Из содержательной постановки задачи также следует, что вероятность $\zeta(b,k,r,x)$ одновременного выполнения равенств $\xi_{1,i}=b_1,\,\xi_{2,i}=b_2,\,\xi_{3,i}=b_3,\,\xi_{4,i}=b_4$ при фиксированном значении $(\Gamma_i;\varkappa_i)$ есть $\delta_{b_1,\ell(\tilde{k},\tilde{r},1)}\times\delta_{b_2,\ell(\tilde{k},\tilde{r},2)}\times\delta_{b_3,\ell(\tilde{k},\tilde{r},3)}\times\delta_{b_4,x_4}$. Указанные функциональные соотношения и свойства условных распре-

Указанные функциональные соотношения и свойства условных распределений позволяют построить веростноятное пространство $(\Omega, \mathcal{F}, \mathbf{P}(\cdot))$ и конструктивно задать на нем марковскую случайную последовательность $\{(\Gamma_i, \varkappa_{1,i}, \varkappa_{2,i}, \varkappa_{3,i}, \varkappa_{4,i}); i \geq 0\}$. Основной результат настоящей работы содержится в следующих теоремах

Теорема 1. Пусть $\Gamma_0 = \Gamma^{(k,r)} \in \Gamma$ и $\varkappa_{3,0} = x_{3,0} \in \mathbb{Z}_+$ фиксированы. Тогда последовательность $\{(\Gamma_i, \varkappa_{3,i}); i \geqslant 0\}$ является счетной цепью Маркова.

Теорема 2. Пусть x_3 , $\tilde{x}_3 \in \mathbb{Z}_+$ и $\Gamma^{(k,r)}$, $\Gamma^{(\tilde{k},\tilde{r})} = h(\Gamma^{(k,r)},x_3)$. Тогда условная вероятность $\mathbf{P}(\{\Gamma_{i+1} = \Gamma^{(\tilde{k},\tilde{r})},\varkappa_{3,i+1} = \tilde{x}_3\}|\{\Gamma_i = \Gamma^{(k,r)},\varkappa_{3,i} = x_3\})$ равна $\delta_{\tilde{x}_3,0}\sum_{a=0}^{\ell(\tilde{k},\tilde{r},3)-x} \varphi_3(a,h_T(\Gamma^{(k,r)},x_3))+(1-\delta_{\tilde{x}_3,0})\varphi_3(\tilde{x}_3+\ell(\tilde{k},\tilde{r},3)-x_3,h_T(\Gamma^{(k,r)},x_3))$. **Теорема 3.** Пусть для $r=1,n_0$ определено множество $S_{0,r}^3=\{(\Gamma^{(0,r)},x_3)\colon x_3\in Z_+,L\geqslant x_3>L-\max\{\sum_{t=0}^{n_k}\ell_{k,t,3}\colon k=\overline{1,d}\}\}$ и для $k=\overline{1,d},r=\overline{1,n_k}$ обозначено $S_{k,r}^3=\{(\Gamma^{(k,r)},x_3)\colon x_3\in Z_+,x_3>L-\sum_{t=0}^{r-1}\ell_{k,t,3}\}$. Тогда множество существенных состояний марковской цепи $\{(\Gamma_i,\varkappa_{3,i}); i\geqslant 0\}$ есть $\bigcup_{k=0}^d(\bigcup_{r=1}^{n_k}S_{k,r}^3)$.

Работа выполнена в рамках фундаментальной НИР «Математическое моделирование и анализ стохастических эволюционных систем и процессов принятия решений» (номер госрегистрации: 01201456585) и государственной программы «Поддержка ведущих универсистетов РФ в целях повышения их конкурентноспособности среди ведущих мировых научно-образовательных центров».