Einführung in die Algebra

BLATT 11

Jendrik Stelzner

9. Januar 2014

Aufgabe 11.1.

Es bezeichne $f \in \mathbb{Q}[X]$ das Minimalpolynom von $z = \sqrt{3} + i \in \mathbb{C}$ über \mathbb{Q} . Dieses existiert, denn $\sqrt{3}$ und i sind algebraisch über \mathbb{Q} , also auch z.

Da z eine Nullstelle von f ist, und $z \notin \mathbb{R}$, ist auch $\bar{z} \neq z$ eine Nullstelle von f. Folglich hat f in $\mathbb{C}[X]$ die beiden Linearfaktoren $X-z, X-\bar{z} \in \mathbb{C}[X]$ und es ist deg $f \geq 2$. Da

$$(X-z)(X-\bar{z}) = X^2 - (z+\bar{z})X + |z|^2 = X^2 - 2\sqrt{3}X + 4 \notin \mathbb{Q}[X]$$

ist sogar deg f > 2.

Es ist auch $\deg f>3$: Wäre $\deg f=3$, so hätte f zusätzlich zu z und \bar{z} noch eine reelle Nullstelle (denn jedes Polynom ungeraden Gerades in $\mathbb{R}[X]$, und damit auch in $\mathbb{Q}[X]\subseteq\mathbb{R}[X]$, hat eine reelle Nullstelle), es gäbe also ein $\alpha\in\mathbb{R}$ mit

$$f = (X - z)(X - \bar{z})(X - \alpha) = (X^2 - 2\sqrt{3}X + 4)(X - \alpha)$$

= $X^3 - (2\sqrt{3} + \alpha)X^2 + (4 + 2\sqrt{3}\alpha)X - 4\alpha \in \mathbb{Q}[X].$

Da $4\alpha\in\mathbb{Q}$ wäre bereits $\alpha\in\mathbb{Q}$ und wegen $2\sqrt{3}+\alpha\in\mathbb{Q}$ damit auch $\sqrt{3}\in\mathbb{Q}$. Dies ist offenbar ein Widerspruch. Also muss deg f>3. Da z eine Nullstelle des Polynoms

$$(X-z)(X-\bar{z})(X+z)(X+\bar{z}) = X^4 - 4X^2 + 16 \in \mathbb{Q}[X]$$

ist, folgt aus dem obigen Beobachtungen, dass

$$f = X^4 - 4X^2 + 16.$$

Wäre nämlich f nicht das Minimalpolynom von z über \mathbb{Q} , so wäre f wegen der offensichtlichen Normiertheit reduzibel. Dann gebe es ein normiertes Polynom $g \in \mathbb{Q}[X]$ vom Grad $1 \leq \deg g \leq 3$ mit $g \mid f$ und g(z) = 0, was den obigen Beobachtungen widerspricht.

Aufgabe 11.3.

Lemma 1. Für einen Körper K gibt es unendlich viele normierte, irreduzible Polynome in K[X].

Beweis. Der Beweis läuft analog zum klassischen Beweises des Satzes von Euklid. Angenommen, die Menge

$$P:=\{g\in K[X]: g \text{ ist normiert und irreduzibel}\}$$

ist endlich. Wir wissen, dass P ein Repräsentantensystem der Primelemente in K[X] ist, und dass sich jedes Element $f \in K[X]$ eindeutig als Produkt

$$f = \varepsilon g_1 \cdots g_n$$

mit $\varepsilon \in K$ und $g_1, \dots, g_n \in P$ schreiben lässt. Es sei

$$f := \prod_{g \in P} g.$$

Da $\deg g \geq 1$ für alle $g \in P$ ist $g \nmid 1$ für alle $g \in P$, also $g \nmid (f+1)$ für alle $g \in P$. Also ist $f+1 \in P$. Deshalb ist $(f+1) \nmid (f+1)$. Dies ist offenbar ein Widerspruch. \square

Sei Kein algebraisch abgeschlossener Körper. Da jedes Polynom aus K[X] in Linearfaktoren zerfällt ist

$$\{f \in K[X] : f \text{ ist normiert und irreduzibel}\} = \{X - \lambda \in K[X] : \lambda \in K\}.$$

Da die linke Menge nach Lemma 1 unendlich ist, ist es auch die rechte. Es muss also K unendlich sein.