

@魔女のお茶会#3

LWE暗号入門

DiKO

Outline

- 自己紹介
- 背景
- LWE問題
- ・LWE問題を利用した公開鍵暗号方式

自己紹介

Name: DiKO

Like :暗号と猫

CTF: Crypto

Study:暗号のハードウェア実装(RNS)

カードベース暗号

その他

Seccamp2020:完全準同型暗号のC++実装

Seccamp2021: TA

Twitter

今日の資料

背景: Why Post Quantum Cryptography?

背景: Why Post Quantum Cryptography?

NIST PQC Standardization

公募開始 2016 2024年までに決定、2030年までに移行 2017 **First Round** PKE/ KEMsとして45方式 Signaturesとして19方式 2018 2019 **Second Round** PKE/ KEMsとして16方式 Signaturesとして10方式 2020 2021 **Third Round (Finalists)** PKE/ KEMsとして4方式

Signaturesとして3方式

Table.1 Third Round Candidate

Туре	PKE/KEMs	Signatures
<u>Lattice</u>	CTYSTALS-Kyber NTRU <u>Saber</u>	<u>Dilithium</u> Falcon
Code-based	Classic McEliece	
Multivariate		Rainbow

LWE問題ベース

 完全準同型暗号を構成可能なことから 高機能暗号としても注目

LWE問題

eがあることで困難化

 \pmod{q}

探索問題: $(A, B = A \cdot s + e)$ が与えられたとき、sを求める問題

<u>判定問題</u>: (A,B), (A,B')が与えられたとき、どちらがBかを判定する問題

→ 多次元格子の最近ベクトル問題に帰着可能

LWE問題

eがあることで困難化

 \pmod{q}

秘密ベクトル

sを知っていれば $B-A\cdot s=e$ で e を計算し、Bからeを取り除くことができる eを取り除くことができれば、(A,B)からsを求めることができる!

どうやって暗号を作るか?

Regev方式

- 最初に提案されたLWE問題ベースの公開鍵暗号方式
- 平文を1bit ずつ暗号化
- 今日はこれ

Peikert方式

- LWE問題を少し拡張して平文をまとめて暗号化できる
- GitHubに簡単な実装を書いてみたので興味があれば (暗号化して復号できるレベル)

その他沢山

鍵生成

秘密鍵は s $k=s \leftarrow \mathbb{F}_q^n$

公開鍵は $pk = (A, B) = (A, A \cdot s + e \pmod{q})$ 探索問題の困難性から s は漏れない

v)) 「您志問題の日難性から。」は得れない

秘密鍵 sk

 $n \times 1$

S

公開鍵 pk

暗号化

※ 平文を1bitずつ暗号化する

$$c = (a, b + \lfloor q/2 \rfloor) \qquad c = (a, b)$$

復号

$$sk = s, c = (a, b)$$

$$1 \times 1$$

$$b - a \times s = ?$$

$$> \lfloor q/2 \rfloor$$

$$egin{aligned} oldsymbol{b} - oldsymbol{a} \cdot oldsymbol{s} < \lfloor q/2
floor \ & ext{No} \ & ext{No} \ & ext{0} \end{aligned}$$

ここで[q/2]より大きくなっている

Alice

鍵生成

$$\frac{pk = (A, B = A \cdot s + e) \pmod{q}}{sk = s}$$

pk

Bob

$$m = \{110100 \cdots\}$$
$$pk = (A, B)$$

暗号化 -

$$a = \sum A_i, b = \sum B_i$$

if
$$m[i] = 0$$

$$c = (a, b) \pmod{q}$$

if m[i] = 1

$$c = (a, b + \lfloor q/2 \rfloor) \pmod{q}$$

復号

if
$$b - a \cdot s \pmod{q} < \lfloor q/2 \rfloor$$

$$m[i] = 0$$

else

$$m[i] = 1$$

c[i]

:

最近はRing-LWE問題が人気!

全て多項式環 \mathbb{Z}_q/x^n+1 上の計算に置き換えた

探索問題: $(A[x], B[x] = A[x] \cdot s[x] + e[x])$ が与えられたとき、sを求める問題

<u>判定問題</u>:(A,B),(A,B')が与えられたとき、どちらがBかを判定する問題

