NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2878

COMBINED EFFECT OF DAMPING SCREENS AND STREAM

CONVERGENCE ON TURBULENCE

By Maurice Tucker

Lewis Flight Propulsion Laboratory Cleveland, Ohio

Washington January 1953

> AFMCC TECHNICIL LIBRATIV

AFL 2811

TABLE OF CONTENTS

	Page
SUMMARY	. 1
INTRODUCTION	. 1
ANALYSIS FOR NEGLIGIBLE DECAY	. 6
Plane-Wave Analysis for Contraction Section	. 8
Configurations	131316
ESTIMATION OF DECAY EFFECTS	. 23
CONCLUDING REMARKS	. 26
APPENDIX A - SYMBOLS	. 28
APPENDIX B - TURBULENCE VELOCITY AND SCALE RATIOS	• 33
APPENDIX C - ONE-DIMENSIONAL SPECTRA	. 37
TABLE	. 40

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2878

COMBINED EFFECT OF DAMPING SCREENS AND STREAM

CONVERGENCE ON TURBULENCE

By Maurice Tucker

SUMMARY

An analysis is presented of the combined effect of a series of damping screens followed by an axisymmetric-stream convergence (or divergence) upon the mean-square fluctuation-velocity intensities, scales, correlations, and one-dimensional spectra of a turbulence field convected by a main stream. The treatment is restricted to negligible turbulence decay and linearized by postulating small fluctuation velocities and velocity gradients, and absence of viscosity except as simulated by the idealized screen action. Compressibility of the main stream is allowed for during passage through the contracting section. The density fluctuations associated with the turbulence field are regarded as negligible.

Numerical results for the statistical quantities describing the turbulence field downstream of a screen-contraction configuration are obtained for the case of upstream isotropic turbulence. The action of the damping screens and the stream convergence is to distort this initially isotropic field into a field of turbulence symmetric about the longitudinal direction with the lateral fluctuation velocities greater in magnitude than the longitudinal velocities.

An approximate method of taking into account the effects of turbulence decay upon the mean-square fluctuation velocities obtained for the case of negligible decay is presented. This method of correction together with the tabulation of fluctuation-velocity ratios over an extensive range of conditions should prove useful for engineering applications.

INTRODUCTION

The use of fine-mesh or damping screens located in a low-speed settling chamber followed by a contracting passage (entrance cone) to attain a low-turbulence test-section flow is well known from the

qualitative standpoint. Dryden and Schubauer (reference 1) have presented experimental data regarding the combined effect of screens and a contraction on the intensity of turbulence. Existing theoretical studies are confined to either the effect of the screens or of the stream contraction on turbulence. Taylor and Batchelor (reference 2) have obtained the effect of a damping screen located in a constant-area passage upon a triple Fourier integral representation of a turbulent field. The effect of a contraction upon a similar representation is analyzed in reference 3. In both references 2 and 3 initial isotropy is postulated in order to obtain numerical results.

The analyses of references 2 and 3 indicate that in the absence of decay effects (dissipation and mixing) an initially isotropic turbulence field will be distorted into a field of turbulence axisymmetric about the mean flow direction upon passage through either a damping screen or an axisymmetric contraction (contraction with all cross sections similar). An analysis of axisymmetric turbulence is given in reference 4. In conventional wind-tunnel configurations, turbulence that is initially isotropic will thus have been distorted into axisymmetric turbulence after passage through the first of the several damping screens and will remain axisymmetric while traversing the remaining screens and the following contraction. Inasmuch as the expressions obtained in reference 3 for the downstream mean-square velocity fluctuations require that the turbulence upstream of the contraction be isotropic; the results of references 2 and 3 cannot be combined in any simple manner to obtain the joint effect of screens and a contraction on turbulence that is initially isotropic.

The present analysis treats the combined effect of a series of N (symbols are defined in appendix A) identical damping screens and a downstream axisymmetric contraction upon the longitudinal and lateral turbulence velocity fluctuations, scales, correlations, and spectra of a turbulence field described by a triple Fourier integral. The configuration is shown schematically in figure 1. Although compressibility of the main stream is allowed for during passage through the contraction, the density fluctuations associated with the turbulence are regarded as negligible. The assumption of small turbulent velocity fluctuations and velocity gradients together with the postulated absence of viscosity, as in references 2 and 3, implies the absence of turbulent decay processes and linearizes the governing equations for both the screen and contraction effects.

After a discussion of the spectrum concepts used in the present analysis, the preliminary portions of the analysis which borrow from the results of references 2 and 3 are concerned with the effect of a screen and of a stream contraction upon a representative wave or Fourier component. Briefly, the screen affects only the amplitude vector of the wave; the contraction acts to change both the amplitude and wave-number

NACA IN 2878 3

vectors. In view of the linearized analysis and the resulting absence of modulation or mutual interference between the array of plane waves making up a field of turbulence, the correlation tensor is developed from the results obtained for a typical wave. The spectral tensor is obtained as the Fourier transform of the correlation tensor. Turbulence velocity and scale ratios obtained from the spectral densities (diagonal components of the spectral tensor) are then given in tabular form for the condition of upstream isotropic turbulence. The one-dimensional spectra and the correlation-coefficient curves for a special case of upstream isotropic turbulence are also determined. An approximation for taking into account decay effects is suggested. This investigation was conducted at the NACA Lewis laboratory.

ANALYSIS FOR NEGLIGIBLE DECAY

Spectral Representation of Turbulence

Turbulence is often regarded as an assembly of eddies of randomly varying size and intensity. The present analysis treats the turbulent field as a spectrum of plane sinusoidal waves with all possible wavelengths, wave-front orientations, and phases. This superposition provides the necessary three-dimensional character to the turbulence representation. Large eddies thus are represented by waves of large wavelength (small wave number). The fluctuation-velocity components $q_{\gamma}(\gamma=1,2,3)$ are represented at a given instant by the triple Fourier integral

$$q_{\gamma}(\underline{x}) = \iiint_{-\infty}^{\infty} Q_{\gamma}(\underline{k}) e^{\frac{i\underline{k}\cdot\underline{x}}{\underline{x}}} dk_{1}dk_{2}dk_{3}$$
 (1)

where \underline{x} is a position vector, Q_{γ} a wave-amplitude vector (reference 3), and \underline{k} a wave-number vector normal to the wave front. In order that the wave amplitude vector Q_{γ} be finite, the field of turbulence described by equation (1) is assumed to occupy a bounded region and to vanish everywhere outside this region. For the case treated herein in which the fluctuation components are related by the incompressible-flow form of the continuity equation

$$\sum_{\Upsilon} Q_{\Upsilon} k_{\Upsilon} = 0 \tag{2}$$

the plane waves of equation (1) are transverse. In the summation of equation (2) the index γ covers the range of values 1, 2, 3.

In order to obtain the spectral tensor and, in turn, the mean-square velocity fluctuations, it will be convenient to discuss first the correlation tensor and indicate its relation with the spectral tensor. The correlation tensor $R_{\gamma\delta}(\underline{r})$ is defined as the spatial mean value of the product of the velocity component q_{γ} at \underline{x} and the velocity component q_{δ} at $\underline{x}' = \underline{x} + \underline{r}$ as \underline{x} varies and the separation vector \underline{r} of the two points remains fixed during the averaging. If it is assumed that the field of turbulence is homogeneous and statistically steady and that the field is confined to a parallelepiped of edges $2D_1$, $2D_2$, $2D_3$ and vanishes everywhere outside, the space average is derived in reference 3 as

$$R_{\gamma\delta}(\underline{\mathbf{r}}) = \lim_{\tau \to \infty} \iiint_{-\infty}^{\infty} \frac{8\pi^3}{\tau} Q_{\gamma}(\underline{\mathbf{k}}) Q_{\delta}^*(\underline{\mathbf{k}}) e^{-i\underline{\mathbf{k}}\cdot\underline{\mathbf{r}}} dk_1 dk_2 dk_3$$

where $Q_{\delta}^*(\underline{k})$ is the complex conjugate of $Q_{\delta}(\underline{k})$ and $\underline{\tau}$ is the volume $8D_1D_2D_3$ of the parallelepiped. The expression $\lim_{\substack{t \to \infty}} \frac{8\pi^3}{\tau} Q_{\gamma}(\underline{k}) Q_{\delta}^*(\underline{k})$ is equivalent to the spectral tensor $\Gamma_{\gamma\delta}(\underline{k})$ defined in reference 5 as the Fourier transform of the correlation tensor $R_{\gamma\delta}(\underline{r})$

$$R_{\gamma\delta}(\underline{r}) = \iiint_{-\infty}^{\infty} \Gamma_{\gamma\delta}(\underline{k}) e^{-i\underline{k}\cdot\underline{r}} dk_1 dk_2 dk_3$$

or

$$\Gamma_{\gamma\delta}(\underline{k}) = \lim_{\tau \to \infty} \frac{8\pi^3}{\tau} Q_{\gamma}(\underline{k}) Q_{\delta}^*(\underline{k})$$
 (3)

A knowledge of the spectral tensor permits, as will be shown, determination of the various statistical quantities describing a turbulence field. Equation (3), which relates the spectral tensor to the waveamplitude vector obtained for a typical Fourier component in the absence of any modulation effects, is thus basic to the present analysis.

For isotropic homogeneous turbulence fields wherein the incompressible flow form of the continuity equation is satisfied, Batchelor (reference 5) has shown that the spectral tensor can be written

$$\Gamma_{\gamma\delta}(\underline{k}) = G(k) \left(k^2 \delta_{\gamma\delta} - k_{\gamma} k_{\delta} \right)$$
 (4a)

where $k^2 \equiv k_1^2 + k_2^2 + k_3^2$, $\delta_{\gamma\delta} = 1$ for $\gamma = \delta$, and $\delta_{\gamma\delta} = 0$ for $\gamma \neq \delta$.

NACA IN 2878 5

In matrix form

$$\Gamma_{\gamma\delta}(\underline{k}) = G(k) \begin{vmatrix} k_2^2 + k_3^2 & -k_1k_2 & -k_1k_3 \\ -k_1k_2 & k_1^2 + k_3^2 & -k_2k_3 \\ -k_1k_3 & -k_2k_3 & k_1^2 + k_2^2 \end{vmatrix}$$
(4b)

It is clear from the definition of the correlation tensor that for $\underline{r}=0$ the diagonal elements of the tensor yield the mean-square velocity fluctuations. In terms of the corresponding elements of the spectral tensor (energy spectral densities)

$$\frac{1}{q_{\gamma}^{2}} = \iiint_{-\infty} \Gamma_{\gamma\gamma}(\underline{k}) dk_{1}dk_{2}dk_{3}$$
 (5)

The mean-square velocity fluctuations of equation (5) refer to spatial averages. Hot-wire instrumentation used to obtain these fluctuations, however, provides only time averages. Taylor (reference 6) was able to show that the spectrum of the velocity fluctuations in time is the Fourier transform of the spatial correlation function. Taylor's hypothesis (reference 7) that the main stream carries along the pattern of a weak field of turbulence unchanged past the point of measurement permits analysis of the hot-wire output signal in the form of a one-dimensional spectrum defined in the equivalent of spatial terms. The relation between the one-dimensional spectral densities F_{γ} and the three-dimensional spectral densities $\Gamma_{\gamma\gamma}$ is easily shown by writing equation (5) as

$$\overline{q_{\gamma}^{2}} = \int_{0}^{\infty} \left[2 \iint_{-\infty}^{\infty} \Gamma_{\gamma\gamma}(\underline{k}) dk_{2} dk_{3} \right] dk_{1} = \int_{0}^{\infty} F_{\gamma}(k_{1}) dk_{1}$$
 (6)

The various statistical quantities which characterize a field of turbulence may be obtained from the one-dimensional spectral densities

as discussed in reference 8. Noting that $\frac{1}{q_{\gamma}^2} \int_0^{\infty} F_{\gamma}(k_1) dk_1 = 1$, the correlation coefficients are given by

$$R_{\gamma}(r_{1}) \equiv \frac{R_{\gamma\gamma}(r_{1},0,0)}{\frac{1}{q_{\gamma}^{2}}} = \frac{1}{\frac{1}{q_{\gamma}^{2}}} \int_{0}^{\infty} F_{\gamma}(k_{1}) \cos k_{1}r_{1} dk_{1}$$
 (7)

The Fourier transform relations yield

$$F_{\gamma}(k_{1}) = \frac{2\overline{q_{\gamma}^{2}}}{\pi} \int_{0}^{\infty} R_{\gamma} \cos k_{1}r_{1} dr_{1}$$
 (8)

Two sets of characteristic lengths are customarily defined for a turbulence field. The turbulence microscales λ_{γ} (mean lengths weighted in favor of the small eddies which are responsible for the greater part of the viscous dissipation) are given by

$$\frac{1}{\lambda_{\gamma}^{2}} = -\left(\frac{\partial^{2} R_{\gamma}}{\partial r_{1}^{2}}\right)_{r_{1}=0} = \frac{1}{q_{\gamma}^{2}} \int_{0}^{\infty} k_{1}^{2} F_{\gamma}(k_{1}) dk_{1}$$
 (9)

The turbulence scales I_{γ} (mean lengths representative of the average size of all the eddies) are obtained as

$$L_{\Upsilon} \equiv \int_{0}^{\infty} R_{\Upsilon} dr_{1} = \frac{\pi}{2q_{\Upsilon}^{2}} \left[F_{\Upsilon}(k_{1}) \right]_{k_{1}=0}$$
 (10)

This physical meaning for the scale of turbulence is only applicable when $R_{\gamma}>0$ as $r_1\to\infty$

Plane-Wave Analysis for Damping Screens

The preceding equations indicate that the statistical quantities describing a field of turbulence may be obtained from the spectral tensor of equation (3), which is presented in terms of the plane-wave amplitude vectors $Q_{\gamma}(\underline{k})$. The assumptions of small turbulent velocity fluctuations and of inviscid flow, with regard to both the main stream and the turbulence field convected by the main stream, linearize the equations which govern the action of the screens and of the contraction. In the resulting absence of any modulation or interaction effects between waves, the analysis is simplified by first treating the effect of a screen and a stream convergence (or divergence) upon a representative plane wave. Superposition is then used to obtain the combination of these effects upon the complete assembly of plane waves which describes the turbulent field.

The action of a fine-mesh or damping screen on a disturbance convected by a low-speed uniform stream may be characterized by two parameters K and $\alpha.$ The parameter K is defined in terms of the pressure drop ΔP required to drive fluid of density ρ and velocity U through the screen

$$K \equiv \Delta P / \frac{1}{2} \rho U^2$$

The parameter α which takes into account the side force per unit area was introduced by Taylor in reference 9 and relates the angles of flow incidence ψ_1 and flow emergence ψ_2 shown in figure 2. It has been shown experimentally that the ratio $\tan \psi_2/\tan \psi_1$ tends to a finite limit α as ψ_1 , which is usually very small, tends toward zero. For incompressible flow the continuity equation requires that the longitudinal velocity component be unchanged after passage through the screen. From kinematical considerations, at the screen the ratio of downstream to upstream lateral velocity components equals α for small values of the flow incidence angle ψ_1 .

As in reference 2 the uniform stream is regarded as incompressible and inviscid throughout the constant-area settling chamber in which the screens are located (station A to station B of fig. 1). A screen will, in general, decrease turbulent motions of larger scale than the mesh size and introduce turbulence of smaller scale. In the analysis the damping screens are assumed not to generate any wake turbulence, which implies that the screen mesh size and wire diameter are very small relative to the scale of the upstream turbulence. Far upstream of the screen, at station A, a single plane wave carried along by the main stream of velocity U in the x₁-direction will be designated

$$\tilde{q}_{\gamma}^{A} = \tilde{Q}_{\gamma}^{A} e^{i(\underline{k}\cdot\underline{x}-k_{\underline{l}}Ut)}$$

Coordinate axes are fixed, with the origin located at the screen and the positive x_1 -axis pointing downstream. It is shown in reference 2 on the basis of a steady-state disturbance analysis that far downstream of the screen, at station B, the wave is transformed to

$$\tilde{\mathbf{q}}_{\mathbf{r}}^{B} = \tilde{\mathbf{Q}}_{\mathbf{r}}^{B} e^{i(\underline{\mathbf{k}} \cdot \underline{\mathbf{x}} - \mathbf{k}_{1} \mathbf{U} \mathbf{t})}$$

In order to satisfy conditions at the screen, it is necessary to postulate disturbance fields upstream and downstream of the screen which are induced by the screen. These disturbance fields attenuate, vanishing at stations A and B. Taylor and Batchelor represent these induced velocities in terms of potential flows. With the velocity components u, v, w of figure 2 designating the combined effect of the turbulent velocity fluctuations and the induced velocities, the following conditions are imposed at the screen $(x_1 = 0)$

$$(u)_{x_1=0}^B = (u)_{x_1=0}^A$$

$$(v,w)_{x_1=0}^B = \alpha(v,w)_{x_1=0}^A$$

The root-mean-square fluctuation velocities are taken to be small relative to the stream velocity so that the equations of motion can be linearized. A further condition is imposed that the local pressure drop across the screen is determined by the local longitudinal velocity and the screen pressure-drop coefficient K. The basic relations describing this idealized action of a damping screen on a representative plane wave are then obtained in reference 2 as

$$\tilde{Q}_{1}^{B} = \tilde{Q}_{1}^{A} \frac{(\beta+i)(2\alpha\beta-i\nu)}{(\beta-i)(2\beta+i\mu)}$$
 (11a)

$$\tilde{\mathbf{Q}}_{2}^{B} = \alpha \tilde{\mathbf{Q}}_{2}^{A} + \frac{i\tilde{\mathbf{Q}}_{1}^{A} \mathbf{k}_{1} \mathbf{k}_{2}}{t^{2}} \left[\frac{\beta(\alpha-1)^{2} + i(\nu - \alpha\mu)}{(\beta-i)(2\beta + i\mu)} \right]$$
(11b)

$$\tilde{\mathbf{Q}}_{3}^{B} = \alpha \tilde{\mathbf{Q}}_{3}^{A} + \frac{i\tilde{\mathbf{Q}}_{1}^{A} \mathbf{k}_{1} \mathbf{k}_{3}}{\zeta^{2}} \left[\frac{\beta(\alpha-1)^{2} + i(\boldsymbol{v} - \alpha \mu)}{(\beta-i)(2\beta + i\mu)} \right]$$
(11c)

where
$$\zeta^2 \equiv k_2^2 + k_3^2$$
, $\beta^2 \equiv \frac{k_1^2}{\zeta^2}$, $\mu \equiv (1+\alpha+K)$, and $\nu \equiv (1+\alpha-\alpha K)$.

Plane-Wave Analysis for Contraction Section

The main stream will be regarded as compressible and inviscid throughout the contraction section (station B to station C of fig. 1). In the case of supersonic test-section flow, the term "contraction" is retained for convenience. As before, the turbulent field is taken to be incompressible and inviscid. The contraction section has its initial breadth and height reduced by the factors l_2 and l_3 , respectively, while the velocity $U(\mathbf{x}_1)$ at station B is increased to $l_1U(\mathbf{x}_1)$ at station C. A cubical fluid volume element of edge D at station B will have been distorted into a parallelepiped of edges l_1D , l_2D , l_3D upon reaching station C (fig. 3). The effect of a contraction upon a turbulent field arises principally from changes in vorticity following such distortion of the fluid elements passing through the contraction.

At station B (time t=0) in figure 3, a particle at distance \underline{x} from a corner particle of a given fluid element will at station C (time t=t) be at a distance \underline{x} from the corner particle. The coordinate axes are taken to move with the main stream at velocity $U(x_1)$. With the assumption of a weak turbulence field, the relative displacement of adjacent particles in a given fluid element due to turbulent

NACA TN 2878 9

mixing is taken to be very much smaller than the displacement due to the contraction. The relation between \underline{x} and $\underline{\chi}$ is then simply

$$\chi_{\gamma} = l_{\gamma} x_{\gamma} \tag{12}$$

With equation (12) the continuity equation for the main stream in Lagrangean form provides the relation

$$\sigma l_1 l_2 l_3 = 1$$
 (13)

where σ is the ratio of stream density at station C to stream density at station B. The product l_2l_3 represents the ratio of tunnel cross-sectional area at station C to tunnel area at station B. The parameter l_1 represents the speed ratio referred to these stations.

The equations describing the changes in vorticity following distortion of a fluid element are, from reference 9:

$$\omega_{\rm C} = \alpha \sum_{\rm Q} \omega_{\rm Q} \frac{9x^{\rm Q}}{9x^{\rm L}}$$

Use of equation (12) linearizes these equations relating the upstream and downstream vorticities to

$$\omega_{\Upsilon}^{C} = \sigma l_{\Upsilon} \omega_{\Upsilon}^{B} \tag{14}$$

Upstream of the contraction at station B, a single plane wave being carried along by the main stream is designated at time t = 0 by

$$\tilde{\mathbf{q}}_{\mathbf{Y}}^{B} = \tilde{\mathbf{Q}}_{\mathbf{Y}}^{B} e^{i\underline{\mathbf{k}}\cdot\underline{\mathbf{x}}}$$
 (15)

The vorticity at station B is obtained from the curl of equation (15). A velocity distribution at station C compatible with equation (14) and satisfying continuity, equation (2), is obtained in reference 3 as

$$\tilde{\mathbf{q}}_{\mathbf{r}}^{C} = \tilde{\mathbf{Q}}_{\mathbf{r}}^{C} e^{i\mathbf{\underline{\kappa}}\cdot\mathbf{\underline{\chi}}}$$

where the wave-amplitude vector is

$$\tilde{Q}_{\gamma}^{C} = \frac{1}{l\gamma} \left(\tilde{Q}_{\gamma}^{B} - \sum_{\delta} \frac{\tilde{Q}_{\delta}^{B} k_{\delta} k_{\gamma}}{l_{\delta}^{2} \kappa^{2}} \right)$$
 (16)

and where the new wave-number vector $\underline{\kappa}$ resulting from distortion of the fluid volume element is given by

$$\underline{\kappa} \equiv \frac{k_1}{l_1}, \frac{k_2}{l_2}, \frac{k_3}{l_3} \tag{17}$$

Thus both the wave-number and wave-amplitude vectors of a plane wave are altered in going through a contraction, whereas only the amplitude vector is altered in traversing a screen.

Equations (16) and (17) describe the effect of an arbitrary contraction on a representative plane wave. For an axisymmetric contraction defined by the condition $l_2 = l_3$ (all cross sections are similar but not necessarily circular), equation (16) with the aid of equation (2) simplifies, in expanded form, to

$$\tilde{Q}_{1}^{C} = \frac{\tilde{Q}_{1}^{B}}{l_{1}} \frac{k_{1}^{2} + \zeta^{2}}{\epsilon k_{1}^{2} + \zeta^{2}}$$
(18a)

$$\tilde{\mathbf{Q}}_{2}^{C} = \frac{1}{l_{2}} \left[\tilde{\mathbf{Q}}_{2}^{B} + \frac{\tilde{\mathbf{Q}}_{1}^{B} \mathbf{k}_{1} \mathbf{k}_{2} (1 - \epsilon)}{\epsilon \mathbf{k}_{1}^{2} + \zeta^{2}} \right]$$
 (18b)

$$\tilde{Q}_{3}^{C} = \frac{1}{l_{2}} \left[\tilde{Q}_{3}^{B} + \frac{\tilde{Q}_{1}^{B} k_{1} k_{3} (1 - \epsilon)}{\epsilon k_{1}^{2} + \zeta^{2}} \right]$$
(18c)

where $\epsilon \equiv {l_2}^2/{l_1}^2$. For an axisymmetric contraction, the contraction parameters l_1 , l_2 , and ϵ may be expressed in terms of the Mach numbers at stations B and C as follows:

$$l_{1}^{2} = \left(\frac{M_{C}}{M_{B}}\right)^{2} \left(\frac{5+M_{B}^{2}}{5+M_{C}^{2}}\right) .$$

$$l_{2}^{2} = \left(\frac{M_{B}}{M_{C}}\right) \left(\frac{5+M_{C}^{2}}{5+M_{B}^{2}}\right)^{3}$$

$$\epsilon = \left(\frac{M_{B}}{M_{C}}\right)^{3} \left(\frac{5+M_{C}^{2}}{5+M_{B}^{2}}\right)^{4}$$

$$(19)$$

Spectral Tensors for Multiple-Screen-Contraction Configurations

Equations (11) and (18) describe the effect of a screen and an axisymmetric contraction $(l_2=l_3)$, respectively, upon the amplitude vector \tilde{Q}_{γ} of a single plane wave typical of the assembly of waves representing the turbulence field (equation (1)). In the Fourier integral \tilde{Q}_{γ} corresponds to dq_{γ} , $\tilde{Q}_{\gamma}(\underline{k})$ to Q_{γ} $dk_1dk_2dk_3$, and $\tilde{Q}_{\gamma}(\underline{k})$ to Q_{γ} $dk_1dk_2dk_3$. Since at station C (fig. 1) the distortion resulting from the contraction transforms the wave-number vector from \underline{k} to \underline{k} and that for axisymmetry $dk_1dk_2dk_3 = l_1l_2^2 dk_1dk_2dk_3$, equations (11) and (18) yield

$$Q_{1}^{B} = Q_{1}^{A} \frac{(\beta+i)(2\alpha\beta-i\nu)}{(\beta-i)(2\beta+i\mu)}$$
 (20a)

$$Q_{2}^{B} = \alpha Q_{2}^{A} + \frac{iQ_{1}^{A}k_{1}k_{2}}{\zeta^{2}} \left[\frac{\beta(\alpha-1)^{2} + i(\nu-\alpha\mu)}{(\beta-i)(2\beta+i\mu)} \right]$$
(20b)

$$Q_{3}^{B} = \alpha Q_{3}^{A} + \frac{iQ_{1}^{A}k_{1}k_{3}}{t^{2}} \left[\frac{\beta(\alpha-1)^{2} + i(\nu - \alpha\mu)}{(\beta-i)(2\beta + i\mu)} \right]$$
(20c)

$$Q_1^C = l_2^2 Q_1^B \left(\frac{k_1^2 + \zeta^2}{\epsilon k_1^2 + \zeta^2} \right)$$
 (20d)

$$Q_2^C = l_1 l_2 \left[Q_2^B + \frac{Q_1^B k_1 k_2 (1 - \epsilon)}{\epsilon k_1^2 + \zeta^2} \right]$$
 (20e)

$$Q_3^{C} = l_1 l_2 \left[Q_3^{B} + \frac{Q_1^{B} k_1 k_3 (1 - \epsilon)}{\epsilon k_1^{2} + \zeta^{2}} \right]$$
 (20f)

If the fluid element volume τ is taken to be a cube of edge D at station A, and hence at station B, the volume will have been distorted into a parallelepiped of edges l_1D , l_2D , l_2D at station C for an axisymmetric contraction. The energy spectral densities which enter directly into the calculation of turbulence fluctuation velocities are obtained from equation (3) as

$$\left[\Gamma_{\gamma\gamma}(\underline{\mathbf{k}})\right]^{A,B} = \lim_{D \to \infty} \frac{8\pi^3}{D^3} \left[Q_{\gamma}(\underline{\mathbf{k}})Q_{\gamma}^*(\underline{\mathbf{k}})\right]^{A,B}$$
(21a)

$$\left[\Gamma_{\gamma\gamma}(\underline{\kappa})\right]^{C} = \lim_{D \to \infty} \frac{8\pi^{3}}{l_{1}l_{2}^{2}D^{3}} \left[Q_{\gamma}(\underline{\kappa})Q_{\gamma}^{*}(\underline{\kappa})\right]^{C}$$
(21b)

With the products $Q_{\gamma}Q_{\gamma}^{*}$ from equations (20) formed and with the use of equations (21) and the continuity relations $Q_{\gamma}k_{\gamma}=0$ and $Q_{\gamma}^{*}k_{\gamma}=0$, the energy spectral densities may be written as:

$$\Gamma_{11}^{B}(\underline{k}) = \left(\frac{4\alpha^{2}k_{1}^{2} + \nu^{2}\zeta^{2}}{4k_{1}^{2} + \mu^{2}\zeta^{2}}\right)\Gamma_{11}^{A}(\underline{k}) \qquad (22a)$$

$$\left[\Gamma_{22}(\underline{\mathbf{k}}) + \Gamma_{33}(\underline{\mathbf{k}})\right]^{B} = \alpha^{2}\left[\Gamma_{22}(\underline{\mathbf{k}}) + \Gamma_{33}(\underline{\mathbf{k}})\right]^{A} + \frac{(v^{2} - \alpha^{2}\mu^{2})k_{1}^{2}}{4k_{1}^{2} + \mu^{2}\zeta^{2}} \Gamma_{11}^{A}(\underline{\mathbf{k}})$$

$$\Gamma_{11}^{C}(\underline{\kappa}) = \frac{\iota_{2}^{2}}{\iota_{1}} \left(\frac{k_{1}^{2} + \zeta^{2}}{\epsilon k_{1}^{2} + \zeta^{2}}\right)^{2} \Gamma_{11}^{B}(\underline{k})$$
 (22b)

$$\left[\Gamma_{22}(\underline{\kappa}) + \Gamma_{33}(\underline{\kappa})\right]^{C} = i_{1} \left\{ \left[\Gamma_{22}(\underline{k}) + \Gamma_{33}(\underline{k})\right]^{B} + \left[\frac{k_{1}^{2}(1-\epsilon)^{2}\zeta^{2} - 2k_{1}^{2}(1-\epsilon)(\epsilon k_{1}^{2}+\zeta^{2})}{(\epsilon k_{1}^{2}+\zeta^{2})^{2}}\right] \Gamma_{11}^{B}(\underline{k}) \right\}$$
(22d)

With the use of equations (22a) and (22c), the longitudinal energy spectral density at station C for N screens in series followed by an axisymmetric contraction may be expressed in terms of the spectral density at station A as

$$\left[\Gamma_{11}^{C}(\underline{\kappa})\right]_{N} = \frac{\iota_{2}^{2}}{\iota_{1}} \left(\frac{k_{1}^{2} + \zeta^{2}}{\epsilon k_{1}^{2} + \zeta^{2}}\right)^{2} \left(\frac{4\alpha^{2}k_{1}^{2} + v^{2}\zeta^{2}}{4k_{1}^{2} + \mu^{2}\zeta^{2}}\right)^{N} \left[\Gamma_{11}^{A}(\underline{k})\right]$$
(23)

For conciseness, equations (22a), (22b), and (22d) may be written as $\mathbf{H_1}^B = \Lambda \mathbf{H}^A$, $\mathbf{V_1}^B = \alpha^2 \mathbf{V_1}^A + \Sigma \mathbf{H}^A$, and $\mathbf{V_1}^C = \mathbf{I_1} \mathbf{V_1}^B + \mathbf{I_1} \mathbf{\Omega} \mathbf{H_1}^B$, respectively. Then for N screens in series, $\mathbf{H_N}^B = \Lambda \mathbf{H_{N-1}^B} = \Lambda^N \mathbf{H}^A$, $\mathbf{V_N}^B = \alpha^2 \mathbf{V_{N-1}^B} + \Sigma \mathbf{H_{N-1}^B}$, and $\mathbf{V_N}^C = \mathbf{I_1} \mathbf{V_N}^B + \mathbf{I_1} \mathbf{\Omega} \mathbf{H_N}^B$. The lateral energy spectral densities at station C for N screens in series followed by an axisymmetric contraction may then be grouped as

$$\left[\Gamma_{22}^{C}(\underline{\kappa}) + \Gamma_{33}^{C}(\underline{\kappa})\right]_{\mathbb{N}} = \alpha^{2}\left[\Gamma_{22}^{C}(\underline{\kappa}) + \Gamma_{33}^{C}(\underline{\kappa})\right]_{\mathbb{N}-1} + \frac{\imath_{1}(\nu^{2} - \alpha^{2}\mu^{2})k_{1}^{2}}{4k_{1}^{2} + \mu^{2}\xi^{2}}\right]^{2} - \frac{(1 - \epsilon)\xi^{2}}{4k_{1}^{2} + \mu^{2}\xi^{2}}\left[\Gamma_{11}^{A}(\underline{k})\right]$$
(24)

Equations (23) and (24) relate the energy spectral densities downstream of a multiple-screen-axisymmetric-contraction configuration to the corresponding upstream spectral densities at station A.

Results for Negligible Decay

The solutions to be given (see appendixes B and C) will now be restricted to the case of isotropic upstream turbulence. The upstream energy spectral densities $\Gamma_{\gamma\gamma}{}^A(\underline{k})$ may then be obtained from equations (4).

Turbulence velocity ratios. - As shown in appendix B, the turbulence velocity ratio or ratio of mean-square fluctuation velocities downstream of a series of N identical screens followed by an axisymmetric contraction to the corresponding upstream fluctuation velocities is given for initially isotropic turbulence by

$$\frac{\left(\frac{q_{1}^{2}}{q_{1}^{2}}\right)_{N}^{C}}{\left(\frac{q_{1}^{2}}{q_{1}^{2}}\right)^{A}} = \frac{3a^{4}}{4l_{1}^{2}} \int_{0}^{\pi} \frac{\Delta^{N} \sin^{3} \theta \, d\theta}{\left(a^{2} - \cos^{2} \theta\right)^{2}}$$
(25)

$$\frac{\left(\overline{q_{2}^{2}}\right)_{N}^{C}}{\left(\overline{q_{2}^{2}}\right)_{N}^{A}} = \frac{\left(\overline{q_{3}^{2}}\right)_{N}^{C}}{\left(\overline{q_{3}^{2}}\right)_{N}^{A}} = \alpha^{2} \frac{\left(\overline{q_{2}^{2}}\right)_{N-1}^{C}}{\left(\overline{q_{2}^{2}}\right)_{N-1}^{A}} + \frac{3(a^{2}-1)^{2}(v^{2}-\alpha^{2}\mu^{2})}{8i_{2}^{2}} \int_{0}^{\pi} \frac{\Delta^{N-1} \sin^{3}\theta \cos^{2}\theta d\theta}{(4\cos^{2}\theta+\mu^{2}\sin^{2}\theta)(a^{2}-\cos^{2}\theta)^{2}} \tag{26}$$

where
$$a^2 = \frac{1}{1-\epsilon}$$
 and $\Delta = \frac{4\alpha^2 \cos^2\theta + v^2 \sin^2\theta}{4 \cos^2\theta + \mu^2 \sin^2\theta}$

A convenient approximation for equation (26) is presented later (see equation (39)).

For N = 1, equation (25) for the longitudinal turbulence velocity ratio integrates to

$$\frac{\left(\overline{q_{1}^{2}}\right)_{1}^{C}}{\left(\overline{q_{1}^{2}}\right)^{A}} = \frac{3a^{4}\eta^{2}v^{2}}{4l_{1}^{2}\mu^{2}\xi^{2}(a^{2}-\eta^{2})^{2}} \left[\frac{(a^{2}-\eta^{2})(\xi^{2}-a^{2})}{a^{2}} + A_{1}\left(\frac{1}{a} \tanh^{-1} \frac{1}{a}\right) + A_{2}\left(\frac{1}{\eta} \tanh^{-1} \frac{1}{\eta}\right) \right] \tag{27}$$

where

$$\xi^2 \equiv \frac{v^2}{v^2 - 4\alpha^2}$$

$$\eta^2 \equiv \frac{\mu^2}{\mu^2 - 4}$$

$$A_{1} \equiv a^{2}(a^{2}+1) + \eta^{2}(1-3a^{2}) + \frac{\xi^{2}(a^{2}-1)^{2} + (a^{2}+1)(\eta^{2}-1)}{a^{2}}$$

$$A_{2} \equiv 2(\eta^{2}-1)(\eta^{2}-\xi^{2})$$

Equation (26) for the lateral velocity ratio (see appendix B) integrates for N=1 to

$$\frac{\left(\overline{q_2^2}\right)_1^C}{\left(\overline{q_2^2}\right)^A} = \frac{\alpha^2}{i_2^2} + \frac{v^2\eta^2}{8i_2^2\xi^2\mu^2} \left[B_1 + B_2 \left(\frac{1}{a} \tanh^{-1} \frac{1}{a}\right) - B_3 \left(\frac{1}{\eta} \tanh^{-1} \frac{1}{\eta}\right) \right]$$
(28)

where

$$\begin{split} \mathbf{B}_1 &\equiv \frac{\mu^2}{2\eta^2} \left(\xi^2 - \eta^2 \right) (2 - 3\eta^2) + 6 (\xi^2 - \eta^2) - 2 + \frac{3(\mathbf{a}^2 - 1)(\mathbf{a}^2 - \xi^2)}{(\mathbf{a}^2 - \eta^2)} \\ \mathbf{B}_2 &\equiv \frac{3(\mathbf{a}^2 - 1)^2}{(\mathbf{a}^2 - \eta^2)^2} \left[\mathbf{a}^2 (3\eta^2 - \mathbf{a}^2) - \xi^2 (\mathbf{a}^2 + \eta^2) \right] \\ \mathbf{B}_3 &\equiv \frac{3(\eta^2 - 1)(\xi^2 - \eta^2)}{2} \left[(4 - \mu^2) - \frac{4(\mathbf{a}^4 - \eta^2)}{(\mathbf{a}^2 - \eta^2)^2} \right] \end{split}$$

For the case of axisymmetric contraction with the screen absent $(\alpha^2=1, K \rightarrow 0)$, equations (27) and (28) reduce, respectively, to

$$\frac{\left(\frac{q_{1}^{2}}{Q_{1}^{2}}\right)_{0}^{C}}{\left(q_{1}^{2}\right)_{A}^{A}} = \frac{\left(\frac{q_{1}^{2}}{Q_{1}^{2}}\right)_{0}^{C}}{\left(q_{1}^{2}\right)_{B}^{B}} = -\frac{3a^{2}}{4l_{1}^{2}}\left[1 - (a^{2}+1)\left(\frac{1}{a} \tanh^{-1} \frac{1}{a}\right)\right]$$

and

$$\frac{\left(\overline{q_2^2}\right)_0^C}{\left(q_2^2\right)_A^A} = \frac{\left(\overline{q_2^2}\right)_0^C}{\left(q_2^2\right)_B^B} = \frac{3}{8l_2^2} \left[(a^2 + 1) - (a^2 - 1)^2 \left(\frac{1}{a} \tanh^{-1} \frac{1}{a}\right) \right]$$

which, in the present notation, are identical with the corresponding results of reference 3. Similarly, for the case of a screen and no contraction $(a^2 \rightarrow \infty)$, the results of reference 2 are recovered in the form

$$\frac{\left(\overline{q_{1}^{2}}\right)_{1}^{C}}{\left(\overline{q_{1}^{2}}\right)_{1}^{A}} = \frac{\left(\overline{q_{1}^{2}}\right)_{1}^{B}}{\left(\overline{q_{1}^{2}}\right)_{1}^{A}} = \frac{v^{2}\eta^{2}}{2\xi^{2}\mu^{2}} \left\{3\xi^{2} - 1 + 3(1-\eta^{2})\left[1 - (\eta^{2}-\xi^{2})\left(\frac{1}{\eta} \tanh^{-1} \frac{1}{\eta}\right)\right]\right\}$$

$$\frac{\left(\overline{q_2^2}\right)_1^C}{\left(\overline{q_2^2}\right)_1^A} = \frac{\left(\overline{q_2^2}\right)_1^B}{\left(\overline{q_2^2}\right)_1^A} = \alpha^2 + \frac{v^2}{8} + \frac{v^2\eta^2}{16\xi^2} \left[\overline{3}(\eta^2 - \xi^2) - 2\right] - \frac{3v^2\eta^2(\eta^2 - 1)(\eta^2 - \xi^2)}{16\xi^2} \left(\frac{1}{\eta} \tanh^{-1} \frac{1}{\eta}\right)$$

Punched-card equipment was used to obtain the turbulence-velocity ratios listed in table I. For the cases N = 2, 3, and 4, the integrations required for equations (25) and (26) were performed numerically by use of Simpson's rule after changing the variable of integration from θ to x by applying the transformation x = cos θ . Intervals $\Delta x = 0.01$ were used in the range $0 \le x \le 0.9$; intervals $\Delta x = 0.001$ were used in the range $0.9 \le x \le 1.0$. In all computations the Mach number MB upstream of the contraction was taken equal to 0.05. The turbulence velocity ratios listed in table I may be corrected for values of MB other than 0.05 as follows: Values of the parameters l_1^2 , l_2^2 , and $a^2 \equiv \frac{1}{1-\varepsilon}$ for MB = 0.05 and for the desired value of MB are obtained from equations (19). Noting that the quantities

 $l_1^2 = \frac{\left(\overline{q_1^2}\right)^C_N}{\left(\overline{q_1^2}\right)^A}$ and $l_2^2 = \frac{\left(\overline{q_2^2}\right)^C_N}{\left(\overline{q_2^2}\right)^A}$ depend only upon a^2 and K, the values

of these quantities for the a^2 corresponding to the desired M_B are obtained from table I. With l_1^2 and l_2^2 known for M_B = 0.05 and the desired M_B, the corrected velocity ratios are obtained by simple computation. The following empirical relations (reference 1) were utilized in obtaining numerical results:

$$\alpha^2 = \left(\frac{8-K}{8+K}\right)^2$$
 for $K \le 1$

$$\alpha^2 = \left(\frac{1.21}{1+K}\right)$$
 for $K > 1$

For design purposes, the screen pressure-drop coefficient K may be estimated, according to reference 10, from the solidity ratio b, where b is the area of the holes in a unit area of screen, as

$$K \approx \frac{1 - b}{b^2}$$

For square-mesh screen with wire diameter d and mesh designation m, the solidity ratio as defined is

$$b = (1-md)^2$$

A better agreement with the screen data given in reference 1 is obtained from

$$b \approx (1-md)^{7/4}$$

The variation of the longitudinal and lateral root-mean-square velocity ratio with speed ratio l_1 for a single screen (N=1) upstream of the contraction is plotted in figures 4(a) and 4(b), respectively, for selected values of the screen pressure-drop coefficient K. The results for K=0, which correspond to the case of stream convergence or divergence in the absence of any screen, are, of course, identical with the results of reference 3. In general, both the longitudinal and the lateral fluctuation velocities downstream of the screen-contraction configuration are reduced as the screen parameter K is increased. The somewhat anomalous trend of the longitudinal velocity ratios for values of the speed ratio less than 2 seems to reflect the variation of the auxiliary screen parameter ξ^2 which approaches zero at K=2.76, becomes infinitely large in the negative sense as K increases to 5.28, and becomes infinitely large in the positive sense as K decreases to 5.28.

The losses incurred through the use of damping screens are proportional to the product $NKU_A{}^3$, where N denotes the number of identical screens in series (multiple screens) and NK is the over-all screen pressure-drop coefficient. The velocity ratios for a multiple-screen arrangement upstream of a contraction are compared on the basis of equal screen losses in figure 5 for the particular case NK = 6. The advantages of using a number of screens in series to attain a given over-all coefficient NK are obvious. An examination of table I indicates that the use of multiple screens to attenuate the downstream fluctuation velocities becomes more effective as the over-all coefficient NK is increased. The screen losses can be reduced by decreasing the settling-chamber stream velocity U_A . Low-turbulence wind tunnels are generally characterized by their many damping screens and large-cross-sectional-area settling chambers.

One-dimensional spectra. - In accordance with equation (6), the one-dimensional spectra at stations A and B are given by

$$F_{\gamma}^{A} = 2 \int_{-\infty}^{\infty} \Gamma_{\gamma \gamma}^{A}(\underline{k}) dk_{2} dk_{3}$$
 (29)

and

$$F_{\gamma}^{C} = 2 \int_{-\infty}^{\infty} \Gamma_{\gamma \gamma}^{C}(\underline{\kappa}) d\kappa_{2} d\kappa_{3}$$

As pointed out in reference 3, a comparison of the upstream and down-stream spectra on the basis of the upstream longitudinal wave number kis equivalent to a comparison of the time spectra indicated by fixed hot-wire probes located at the corresponding stations. Defining the downstream spectra $F_{\Upsilon}^{C}(k_{1}) \equiv i^{-1}F_{\Upsilon}^{C}$ such that

 $\int_{0}^{\infty} F_{\gamma}^{C}(k_{1}) dk_{1} = \int_{0}^{\infty} F_{\gamma}^{C}(\kappa_{1}) d\kappa_{1}, \text{ the one-dimensional spectra at station C are given by}$

$$\left[\mathbb{F}_{\Upsilon}^{C}(\mathbf{k}_{1})\right]_{N} = \frac{2}{l_{1}l_{2}^{2}} \int \int \left[\mathbb{F}_{\Upsilon\Upsilon}^{C}\left(\frac{\mathbf{k}_{1}}{l_{1}}, \frac{\mathbf{k}_{2}}{l_{2}}, \frac{\mathbf{k}_{3}}{l_{2}}\right)\right]_{N} d\mathbf{k}_{2} d\mathbf{k}_{3}$$
(30)

Evaluation of equations (29) and (30) requires that the amplitude function G(k) in equation (4) be specified. Compatible with the empirical relation for isotropic turbulence obtained in reference 8, this function is taken to be

$$G(k) = \frac{H}{(k_1^2 + n^2 + \zeta^2)^3}$$
 (31)

where the constants n and H are defined as $n \equiv \frac{1}{(L_1)^A}$ and $H \equiv \frac{2n}{\pi^2} \left(q_1^2\right)^A$.

As shown in appendix C, the one-dimensional spectra obtained from equations (4) and (31) may be expressed in terms of a dimensionless wave number k_1/n as incorporated in the following parameters:

$$s \equiv 1 + k_1^2/n^2$$

$$f \equiv s/\eta^2 + 4/\mu^2$$

$$g \equiv s/\xi^2 + 4\alpha^2/v^2$$

$$h \equiv \frac{1 - a^2 - s^2}{a^2}$$
(32)

18 NACA TN 2878

Thus the upstream one-dimensional spectra for this special case of isotropic turbulence are, in dimensionless form,

$$\frac{F_1^{A}(k_1/n)}{F_1^{A}(0)} = \frac{1}{s}$$
 (33)

$$\frac{F_2^{A}(k_1/n)}{F_2^{A}(0)} = \frac{3s-2}{s^2}$$
 (34)

Also, the longitudinal one-dimensional spectrum downstream of a single-screen-axisymmetric-contraction configuration may be written (see appendix C) in dimensionless form as

$$\frac{F_1^{C}(k_1/n)}{F_1^{A}(0)} = \frac{2v^2}{l_1^2\mu^2} \left[c_1 + c_2 \log_e \frac{s+h}{s} + c_3 \log_e \frac{4(s-1)}{\mu^2 s} \right]$$
(35)

where

$$\begin{split} c_1 &\equiv \frac{1}{h^3} \left\{ \frac{g(2f-h)}{f^2} + \frac{gh}{2fs} + \frac{h(1+2g)}{f} + \frac{(1+h)^2\mu^2}{v^2} \left[\frac{a^2(v^2-4\alpha^2) - v^2}{a^2(\mu^2-4) - \mu^2} \right] \right\} \\ c_2 &\equiv \frac{\mu^2}{h^2 \left[a^2(\mu^2-4) - \mu^2 \right]} \left\{ \frac{3sg}{h^2} + \frac{g(s+2) + 2s}{h} + 1 - h - \frac{\mu^2(s+h)(g+h)}{h \left[a^2(\mu^2-4) - \mu^2 \right]} \right\} \\ c_3 &\equiv \frac{(s-f)(f-g)(\mu^2-4)^2a^4}{f^3 \left[a^2(\mu^2-4) - \mu^2 \right]^2} \end{split}$$

The corresponding lateral one-dimensional spectrum is

$$\frac{F_2^{C}(k_1/n)}{F_2^{A}(0)} = \frac{2(s-1)}{l_2^{2}} \left[E_1 + E_2 \log_e \frac{s+h}{s} + E_3 \log_e \frac{4(s-1)}{\mu^2 s} \right]$$
(36)

where

The one-dimensional spectra given by equations (33) to (36) are applicable when the amplitude function G(k) has the particular form of equation (31). Although these spectra are not expected to be valid for the very high wave numbers because of the neglect of viscosity, various experiments on isotropic turbulence have indicated that equations (33) and (34) provide a very good approximation to that portion of the actual isotropic spectrum containing the largest part of the turbulent energy. Equations (35) and (36) should furnish a similar approximation for axisymmetric turbulence. The restrictions given for equations (33) to (36) do not apply to the expressions for turbulence velocity ratios, equations (25) and (26), for which there is no need to particularize the spectrum amplitude function G(k).

The downstream longitudinal and lateral one-dimensional spectra, equations (35) and (36), are compared with the corresponding upstream isotropic spectra, equations (33) and (34), in figures 6(a) and 6(b), respectively, for the following typical case: $M_{\rm B}=0.05,\,M_{\rm C}=2.0,\,$ K = 2, N = 1. The case K = 0, as obtained in reference 3, has also been included for comparison. The scaling factors indicated by equations (B5) and (B6) of appendix B have been incorporated in the downstream spectral ordinates so that the zero-wave-number intercept gives the turbulence scale ratio (appendix B).

The distortion in shape of the longitudinal spectrum noted in reference 3 as a consequence of the stream convergence is accentuated (fig. 6(a)) by the presence of a damping screen upstream of the contraction. This distortion is accompanied by a reduction in the ordinate values by the factors $\left(\overline{q_1^2}\right)^C / \left(\overline{q_1^2}\right)^A$ and $\left(\overline{q_1^2}\right)^C / \left(\overline{q_1^2}\right)^B$ for K=2 and K=0, respectively. The downstream lateral spectrum ordinates

 $(\frac{\text{fig. }6(b))}{(q_2^2)^C}$ are increased by the factors $(\overline{q_2^2})^C/(\overline{q_2^2})^A$ and $(\overline{q_2^2})^C/(\overline{q_2^2})^B$ for K=2 and K=0, respectively. The distortion in shape is relatively slight compared with the distortion noted for the longitudinal spectrum.

As may be seen from equations (33) and (34) for the upstream isotropic spectra, the longitudinal and lateral spectral ordinates have maximum values at $k_1/n=0$ and $k_1/n=1/\sqrt{3}$, respectively. The situation is reversed for the downstream spectra. Here the lateral spectral ordinates have maximum values at $k_1/n=0$ and the longitudinal spectral ordinates at $k_1/n\approx 1.4$. Occurrence of a peak in the spectrum curve at some wave number other than zero is an indication that the correlation coefficient may take on negative values. I

Scale ratios and correlation coefficients. - For the scales of turbulence defined by equation (10), the longitudinal and lateral turbulence scale ratios (ratios of downstream to corresponding upstream scales) for a screen-contraction configuration are obtained in appendix B as

$$\frac{\left(L_{1}\right)_{N}^{C}}{\left(L_{1}\right)^{A}} = \left(\frac{v^{2}}{\mu^{2}}\right)^{N} \left[l_{1}^{2} \frac{\left(\overline{q_{1}^{2}}\right)_{N}^{C}}{\left(\overline{q_{1}^{2}}\right)^{A}}\right]^{-1}$$
(37)

$$\frac{\left(L_{2}\right)_{N}^{C}}{\left(L_{2}\right)^{A}} = \alpha^{2N} \left[l_{2}^{2} \frac{\left(\overline{q_{2}^{2}}\right)_{N}^{C}}{\left(\overline{q_{2}^{2}}\right)^{A}} \right]^{-1}$$
(38)

The scale ratios obtained from equations (37) and (38) which do not require that the amplitude function G(k) of equation (31) be specified are listed in table I for the case of isotropic turbulence at station A. Typical results are plotted in figure 7.

The lateral scale ratio (see fig. 7(a)) approaches a constant value of approximately 4/3 for values of the speed ratio l_1 greater than 3. Measurements of the lateral correlation curve at a speed ratio near unity which are reported in reference 11 indicate that the lateral scale is substantially unchanged by damping screens. This is in qualitative agreement with the present result which indicates that for l_1 slightly greater than unity the downstream lateral scale will not exceed the

For example, when $F_{\gamma}(k_1) = k_1^{P-1} e^{-k_1/n}$, the correlation coefficient is obtained by using equation (7) as $\left[\left(\frac{1}{n}\right)^2 + r_1^2\right]^{-P/2} \Gamma(P) \cos\left(P \tan^{-1} nr_1\right) \text{ where } \Gamma \text{ designates the gamma function. For } P = 1$, $R_{\gamma}(r_1)$ is always positive; for P > 1, $R_{\gamma}(r_1)$ will take on negative values for particular values of r_1 .

NACA IN 2878 21

corresponding upstream scale by more than about 20 percent. Taking the lateral scale ratio equal to 4/3 leads to the following convenient approximation for the lateral turbulence velocity ratio from equation (38):

$$\frac{\left(\overline{q_2^2}\right)_N^C}{\left(\overline{q_2^2}\right)^A} \approx \frac{3\alpha^{2N}}{4l_2^2} \tag{39}$$

For a given value of the screen pressure-drop coefficient NK, the longitudinal scale ratio (see fig. 7(b)) decreases with increasing speed ratio l_1 to a minimum value at $l_1=27.4$ (corresponding to $\rm M_B=0.05$, $\rm M_C=\sqrt{3}$) where the contraction parameter a² has its minimum value. As shown in table I, the longitudinal scale ratio attains a zero value when the screen parameter $v^2=0$ (K ≈ 2.76). This and the occurrence of maximums in the downstream longitudinal spectrum curves at nonzero wave numbers suggest that the downstream longitudinal correlation coefficients are negative for extensive ranges of the separation distance $\rm r_1$. Under these conditions interpretation of the conventionally defined scales as lengths characteristic of the average size of the turbulence eddies is open to question, and consideration of the correlation coefficient curves is advisable.

The correlation coefficients at station A for isotropic turbulence with the spectrum amplitude function G(k) given by equation (31) are obtained from equation (7) as

$$R_{l}^{A} = e^{-r_{l}n} \tag{40}$$

$$R_2^A = \left(1 - \frac{r_1^n}{2}\right) e^{-r_1^n} \tag{41}$$

The contour integrations used to obtain equations (40) and (41) are not valid when r_1 = 0; hence the microscales λ_{γ} are evaluated from the integral relation of equation (9). Such evaluations indicate that $\lambda_1^{\ A}=\lambda_2^{\ A}$ = 0, which is to be expected in view of the neglect of viscosity effects in the analysis. The longitudinal correlation coefficient curve of equation (40) is plotted in figure 8(a) and is always positive; the lateral correlation coefficient curve of equation (41) plotted in figure 8(b) reaches its zero value at $r_1 n=2$ $(r_1=2L_1^A)$ and its minimum value at $r_1 n=3$ $(r_1=3L_1^A)$.

The downstream correlation coefficient curves (at station C) have been obtained numerically for the case N=1 from the following rearrangement of equations (7):

$$R_{\underline{1}}^{C}(\mathbf{r}_{\underline{1}}\mathbf{n}) = \frac{2}{\pi} \int_{0}^{\infty} \frac{F_{\underline{1}}^{C}(\frac{k_{\underline{1}}}{n})}{F_{\underline{1}}^{A}(0)} \frac{(\overline{q_{\underline{1}}^{2}})_{\underline{1}}^{C}}{(\overline{q_{\underline{1}}^{2}})^{A}} \cos k_{\underline{1}}\mathbf{r}_{\underline{1}} d(\frac{k_{\underline{1}}}{n})$$
(42)

$$R_2^{C}(\mathbf{r}_1 \mathbf{n}) = \frac{1}{\pi} \int_0^{\infty} \frac{F_2^{C}(\frac{\mathbf{k}_1}{\mathbf{n}})}{F_2^{A}(0)} \frac{(\overline{\mathbf{q}_2^2})_1^{C}}{(\overline{\mathbf{q}_2^2})^{A}} \cos \mathbf{k}_1 \mathbf{r}_1 d(\frac{\mathbf{k}_1}{\mathbf{n}})$$
(43)

In evaluating equations (42) and (43), values of the integrand were obtained for k_1/n ranging from 0 to 50; and for k_1/n greater than

50, in view of the asymptotic behavior of the functions $\frac{F_{\gamma}^{C}(\frac{k_{1}}{n})}{F_{\gamma}^{A}(0)} \frac{(\frac{q_{\gamma}^{2}}{q_{\gamma}^{2}})_{1}^{C}}{(\frac{q_{\gamma}^{2}}{q_{\gamma}^{2}})^{A}},$ the integrand was approximated as

the integrand was approximated as $\frac{\cos k_1 r_1}{(k_1/n)^2}$. Typical downstream longi-

tudinal and lateral correlation coefficient curves (for the case $M_B = 0.05$, $M_C = 2.00$, K = 2, N = 1) are also plotted in figures 8(a) and 8(b), respectively, to indicate the changes resulting from passage of initially isotropic turbulence through a given screen and contraction. Although the downstream lateral correlation coefficient is shown in figure 8(b) to reach slightly negative values, it is believed that these are the result of unavoidable "round-off" errors in computation of the Fourier transforms and that the coefficient is actually always positive, consistent with the corresponding spectrum curve of figure 6(b), which has its maximum value at zero wave number.

The correlation between simultaneous fluctuation velocities at two points a distance r1 apart will decrease more rapidly with increasing values of r1 when the eddies comprising the turbulent field are small than when the eddies are large. Figure 8(a) thus indicates that the longitudinal scale of an initially isotropic field of turbulence is decreased by passage through the particular screen-contraction configuration chosen. Figure 8(b) indicates that the corresponding lateral scale is increased.

In view of the negative values attained by the downstream longitudinal correlation coefficient, no physical meaning can be assigned to the longitudinal scale ratio defined in the conventional manner by equation (10). For example, the longitudinal scale ratio reaches a zero value even though the longitudinal turbulence velocity ratios are finite when the screen pressure-drop coefficient NK has the value 2.76. The negative values attained by the upstream lateral correlation coefficient do not present a similar anomaly because of the relation between the longitudinal and lateral scales in the case of isotropic turbulence, namely, $L_1^A = 2L_2^A$.

NACA TN 2878

The difficulty is removed if an effective longitudinal scale L_1 ' is defined as the positive area under the corresponding correlation curve. Effective longitudinal scale ratios are plotted in figure 9 and show a qualitative similarity with the conventional ratios shown in figure 7(b). For a given value of the screen pressure-drop coefficient NK, the effective scale ratio decreases with increasing speed ratio l_1 to a minimum value at $l_1 = 27.4$ for which the contraction parameter a^2 has its minimum value. For a given contraction the effective scale ratio reaches its minimum value when NK ≈ 2.76 .

ESTIMATION OF DECAY EFFECTS

In view of the assumptions of inviscid flow and small fluctuation velocities relative to the main stream, the preceding analysis is strictly applicable only in the absence of the turbulent decay processes (viscous dissipation and turbulent mixing). For many wind-tunnel configurations, effects of decay upon turbulence are of the same order of magnitude as the screen-contraction effects. Correction of the theoretical turbulence velocity ratios may therefore prove necessary for practical applications of the theory.

Selection of the appropriate decay correction presents certain difficulties inasmuch as there is a lack of experimental investigations of axisymmetric turbulence decay. Some guidance may be obtained from the theoretical studies of Batchelor (reference 4) and Chandrasekhar (reference 12) on axisymmetric turbulence. The time rates of change of the mean-square velocity components are, in the notation of reference 4:

$$\frac{d}{dt} \left(\overline{u_1^2} \right) = -4m_0 + 2v(-10a - 2b - 2c - 14d)$$

$$\frac{d}{dt}\left(\overline{u_2^2}\right) = 2m_0 + 2v(-10a + b - 3d)$$

In these equations and in equations (44) and (45), the symbol ν represents the kinematic viscosity coefficient. The corresponding expression for the mean-square resultant velocity is

$$\frac{d}{dt} \left(\overline{u_1^2} + 2\overline{u_2^2} \right) = -2v(30a + 2c + 20d)$$
 (44)

For isotropic turbulence, c = d = 0 and equation (44) becomes

$$\frac{\mathrm{d}}{\mathrm{dt}} \left(\overline{\mathbf{u}_{1}^{2}} + 2\overline{\mathbf{u}_{2}^{2}} \right) = \frac{\mathrm{d}}{\mathrm{dt}} \left(3\overline{\mathbf{u}_{1}^{2}} \right) = -2v(30a) \tag{45}$$

The velocity components $\overline{u_1}^2$ and $\overline{u_2}^2$ of reference 4 are identical with $\overline{q_1}^2$ and $\overline{q_2}^2$ in the present notation. The quantities a, b, c, and d in appropriate groupings represent the coefficients in the series expansions in r_1 for the longitudinal and lateral velocity correlation coefficients. The quantity m_0 depends on the two-point velocity-pressure correlation which tends to zero as isotropy is approached. For the decay of isotropic turbulence in a constant-area channel during the initial period wherein both inertia and viscous forces are of importance, equation (45) leads to the semiempirical relation (reference 13)

$$\frac{1}{3} \left[\frac{\overline{q_1^2}}{(\overline{q_1^2})^A} + 2 \frac{\overline{q_2^2}}{(\overline{q_2^2})^A} \right] = \left\{ 1 + \frac{0.58t(l_1)}{L_2^A} \left[(\overline{q_1^2})^{\overline{A}} \right]^{1/2} \right\}^{-1} \equiv J \quad (46)$$

where $\overline{q_1^2}$ and $\overline{q_2^2}$ represent the mean-square velocity components at any station downstream of the reference station A and $t(l_1)$ represents the appropriate decay time.

The absence of the velocity-pressure correlation term $m_{\rm O}$ in both equations (44) and (45) suggests that, provided the quantity (2c + 20d) is much smaller than the quantity 30a, equation (46) may yield a satisfactory approximation for the decay of the mean-square resultant turbulent velocity in axisymmetric turbulence. The data of references 1 and 14 tend to support such an approximation. The assumption that the effects of the screen-contraction combination and the decay upon the turbulent velocity ratios proceed independently (see reference 3) leads to the relation

$$\frac{1}{3} \left[\frac{\left(\overline{q_{1}^{2}}\right)_{N}^{C}}{\left(\overline{q_{1}^{2}}\right)^{A}} + 2 \frac{\left(\overline{q_{2}^{2}}\right)_{N}^{C}}{\left(\overline{q_{2}^{2}}\right)^{A}} \right|_{scd} = \frac{3}{3} \left[\frac{\left(\overline{q_{1}^{2}}\right)_{N}^{C}}{\left(\overline{q_{1}^{2}}\right)^{A}} + 2 \frac{\left(\overline{q_{2}^{2}}\right)_{N}^{C}}{\left(\overline{q_{2}^{2}}\right)^{A}} \right]_{sc}$$
(47)

where the subscript sc refers to the turbulence velocity ratios obtained in the absence of decay, computed from equations (25) and (26) and listed in table I, and the subscript scd implies that the effects of initial period decay have been included. In computing J from equation (46), the decay time $t(l_1)$ is taken as the time required for a particle at local main-stream velocity to pass through the screens and the contraction starting from station A. This implies that the contraction affects only the decay time. Some question exists as to the applicability of equation (46) and hence equation (47) for damping screens in which the wire diameters are usually very small.

NACA TN 2878 25

A comparison of the theoretical mean-square resultant turbulence velocity ratio corrected for decay by the use of equation (47) with the experimental ratios obtained from reference 1 is shown in figure 10. The mean-square resultant velocity in the absence of decay for the case of a single-screen-contraction configuration (N=1) is also included to show the magnitude of the correction involved for the configuration of reference 1. The following data were used in applying the decay correction: $U_A = 62.8$ feet per second, $I_A = 0.15$ foot per second; and $I_A = 0.05$ foot (estimated). The screen pressure-drop coefficients were corrected as suggested in reference 14

$$K = K_e + \frac{U_A}{2} \frac{dK_e}{d\overline{U}_A}$$

where $K_{\rm e}$ designates the screen pressure-drop coefficient measured at a given speed $U_{\rm A}$. Although the single experimental points obtained for each multiscreen arrangement do not check the decay correction as well as do those for the single-screen arrangement, the limited data do not warrant any refinement of the correction method for multiscreen-contraction configurations.

In order to obtain the resolution of the resultant turbulence velocity ratio into longitudinal and lateral components, some knowledge of the velocity-pressure correlation is required. As shown in reference 4 the effect of this correlation as represented by the term m_0 is to transfer energy from the larger to the smaller of the velocity components, thus providing a drive towards isotropy. As shown in table I, the longitudinal component will, in general, be much smaller than the lateral component so that adjustment of the longitudinal component is more critical than adjustment of the lateral component. The magnitude of the longitudinal component is governed by two opposing effects. Turbulent decay processes reduce this component; the drive towards isotropy tends to increase it. In the absence of any quantitative knowledge concerning the velocity-pressure term m_0 , the simplest assumption to be made is that the longitudinal turbulence velocity ratio may be corrected for decay and isotropy drive by taking an average of the values for zero decay and isotropic decay or

$$\left[\frac{\left(\overline{q_1^2}\right)_N^C}{\left(\overline{q_1^2}\right)_N^A}\right]_{\text{sed}} = \left(\frac{J+1}{2}\right) \left[\frac{\left(\overline{q_1^2}\right)_N^C}{\left(\overline{q_1^2}\right)_N^A}\right]_{\text{se}}$$
(48)

Consistent values of the lateral turbulence velocity ratio are then obtained from the longitudinal velocity ratio of equation (48) and the resultant velocity ratio of equation (47).

The comparison shown in figure 11 provides some estimate as to the agreement that might be expected between the predicted turbulence-velocity-ratio components (corrected for decay) and the experimental values. The agreement shown is considered satisfactory for most engineering applications. The theoretical velocity ratios obtained in the absence of decay are included for the case N=1 to indicate the magnitude of the correction.

The turbulence scales are also affected by the turbulence decay process, tending to increase as the decay time is increased. Under the action of the viscous forces the smallest eddies are dissipated so that the average eddy size (scale) would be expected to increase. For isotropic turbulence, the change in scale during the initial period analogous to the relation given for the fluctuation velocity, equation (46), is

$$\left(\frac{L_2}{L_2^A}\right)^2 = J^{-1}$$

Presumably the effect of decay upon the scales of turbulence could thus be obtained by a procedure similar to the one suggested for the fluctuation velocities. In the absence of any experimental data such development does not appear warranted.

CONCLUDING REMARKS

The present analysis treats, in the absence of turbulent decay processes, the combined effect of a series of identical damping screens followed by a stream convergence (or divergence) upon the mean-square fluctuation velocities, scales, correlation coefficients, and one-dimensional spectra of a field of turbulence convected by a main stream. Numerical results are presented for the case of upstream isotropic turbulence.

The limited experimental data available confirm at least qualitatively some of the theoretical results obtained such as the distortion of an initially isotropic field of turbulence by the damping screens and stream convergence into a field axisymmetric about the main-stream direction with the lateral components of the resultant fluctuation velocity larger in magnitude than the longitudinal component, and the relative insensitivity of the lateral scale of turbulence to damping-screen and stream-convergence effects. The beneficial effects of using several screens in series to attain a given over-all screen pressure-drop coefficient in attenuating the fluctuation velocities are also substantiated. This attenuation is accentuated as the screen coefficient NK is increased.

NACA TN 2878 27

The theory predicts certain marked changes in the ordinates of the downstream one-dimensional spectra and, in the case of the longitudinal spectra, a noticeable distortion of shape which should be confirmable by experiment. The longitudinal downstream correlation coefficients attain negative values over a large range of the separation distance r₁. Under these conditions, the scales of turbulence as conventionally defined cannot be regarded as representative of the average eddy size. Accordingly, the longitudinal scales have been redefined. The effect of the damping screens and stream convergence is to decrease the longitudinal scale and to increase the lateral scale.

An approximate method of correcting the predicted turbulent fluctuation velocities for the effects of turbulent decay is presented. Tabulations of the fluctuation velocities over a wide range of conditions are provided for convenience in engineering applications.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, October 28, 1952

APPENDIX A

SYMBOLS

The following symbols are used in this report:

A_{1,2} parameter groupings defined after equation (27)

 a^2 auxiliary contraction parameter, $a^2 \equiv 1/1 - \epsilon$

B_{1,2,3} parameter groupings defined after equation (28)

b solidity ratio of damping screen

C_{1,2,3} parameter groupings defined after equation (35)

D_{1,2,3} edge lengths of volume within which the turbulence field is defined

d wire diameter of damping screen

E_{1.2.3} parameter groupings defined after equation (36)

 F_{γ} F_1 , F_2 , or F_3

 F_1 one-dimensional longitudinal spectral density (see equation (6))

 $F_{2.3}$ one-dimensional lateral spectral densities (see equation (6))

f auxiliary wave-number parameter, f $\equiv s/\eta^2 + 4/\mu^2$

G(k) amplitude function in isotropic spectrum tensor (see equations (4) and (31))

g auxiliary wave-number parameter, $g \equiv s/\xi^2 + 4\alpha^2/v^2$

H constant appearing in amplitude function of special isotropic spectrum tensor, $H \equiv \frac{2n}{\pi^2} \left(\overline{q_1^2}\right)^A$ (see equation (31))

h auxiliary wave-number parameter, $h \equiv \frac{1 - a^2 - s^2}{a^2}$

i $\sqrt{-1}$

NACA IN 2878 29

```
J turbulence decay factor (see equation (46))
```

K screen pressure-drop coefficient,
$$K = \frac{\Delta p}{\frac{1}{2} \rho U^2}$$

k amplitude of vector
$$\underline{\mathbf{k}}$$
: $\mathbf{k}^2 = \mathbf{k_1}^2 + \mathbf{k_2}^2 + \mathbf{k_3}^2$

$$\underline{k}$$
 $k_{\Upsilon} = k_{1}$, k_{2} , or k_{3} ; wave-number vector

$$L_{\gamma}$$
 L_1 , L_2 , or L_3

$$L_1$$
' effective longitudinal scale of turbulence

$$L_2$$
, L_3 lateral scales of turbulence (see equation (10))

stream breadth at station C divided by stream breadth at station B (see equation (19))

stream height at station C divided by stream height at station B

MB.C stream Mach number at station B, C

m mesh designation of damping screen (reciprocal of center-tocenter distance between neighboring wires)

N number of screens in series (cascade)

n constant appearing in amplitude function of special isotropic spectral tensor, n $\equiv \frac{1}{(L_1)^A}$

P constant

p static pressure

 \underline{Q} $Q_{\gamma} = Q_{1}, Q_{2}, \text{ or } Q_{3}; \text{ wave-amplitude vector}$

 $q_{\gamma} = q_1, q_2, \text{ or } q_3; \text{ turbulence-velocity-fluctuation vector}$

 $R_{\gamma}(r_1)$ correlation coefficient (see equation (7))

$$\mathtt{R}_{\gamma\delta}(\underline{\mathtt{r}}) \quad \text{correlation tensor, } \mathtt{R}_{\gamma\delta}(\underline{\mathtt{r}}) \equiv \overline{\mathtt{q}_{\gamma}(\underline{\mathtt{x}})\mathtt{q}_{\delta}(\underline{\mathtt{x}}+\underline{\mathtt{r}})}$$

 $\underline{\mathbf{r}}$ $\mathbf{r}_{\gamma} = \mathbf{r}_{1}, \mathbf{r}_{2}, \text{ or } \mathbf{r}_{3}; \text{ separation vector}$

s wave-number parameter, $s = k_1^2/\gamma^2 + 1$

t time

 $t(l_1)$ decay time

U main-stream velocity

u longitudinal component of combined turbulent velocity fluctuations and potential-flow velocities induced by screen

V₁ longitudinal root-mean-square turbulence velocity ratio (used in table I)

V₂ lateral root-mean-square turbulence velocity ratio (used in table I)

v,w lateral components of combined turbulent velocity fluctuations and potential-flow velocities induced by screen

 \underline{x} $x_{\gamma} = x_1, x_2, \text{ or } x_3; \text{ position vector}$

α screen deflection parameter, α ≡ lim $\frac{tan ψ_2}{tan ψ_1}$

$$\beta^2$$
 $k_1^2 (k_2^2 + k_3^2)^{-1}$

 $\Gamma_{\gamma\delta}(\underline{\mathtt{k}})$ three-dimensional spectral tensor

$$\Delta \qquad \frac{4\alpha^2 \cos^2 \theta + v^2 \sin^2 \theta}{4 \cos^2 \theta + \mu^2 \sin^2 \theta}$$

```
\delta_{\gamma\delta} Kronecker delta; \delta_{\gamma\delta}=1 for \gamma=\delta and \delta_{\gamma\delta}=0 for \gamma\neq\delta
```

31

$$\epsilon$$
 axisymmetric contraction parameter, $\epsilon \equiv l_2^2/l_1^2$

$$\xi^2 = k_2^2 + k_3^2$$

$$\eta^2$$
 auxiliary screen parameter, $\eta^2 \equiv \frac{\mu^2}{\mu^2 - 4}$

$$\theta$$
 polar angle (see appendix B)

$$\kappa$$
 amplitude of vector κ ; $\kappa^2 = \kappa_1^2 + \kappa_2^2 + \kappa_3^2$

$$\kappa_{\gamma} = \kappa_{1}, \kappa_{2}, \text{ or } \kappa_{3}$$
: wave-number vector at station C

$$\Lambda = \frac{4\alpha^2 k_1^2 + v^2 \zeta^2}{4k_1^2 + \mu^2 \zeta^2} \quad \text{(see equation (22a))}$$

$$\lambda_{\Upsilon}$$
 λ_{1} , λ_{2} , or λ_{3}

$$\lambda_1$$
 longitudinal microscale of turbulence (see equation (9))

$$\lambda_{2.3}$$
 lateral microscales of turbulence (see equation (9))

$$\mu$$
 auxiliary screen parameter, $\mu \equiv 1 + \alpha + K$

$$v$$
 auxiliary screen parameter, $v \equiv 1 + \alpha - \alpha K$

$$\xi^2$$
 auxiliary screen parameter, $\xi^2 \equiv \frac{v^2}{v^2 - 4\alpha^2}$

$$\Sigma = \frac{(v^2 - \alpha^2 \mu^2) k_1^2}{4k_1^2 + \mu^2 \zeta^2}$$
 (see equation (22b))

σ main-stream density at station C divided by main-stream density at station B

τ volume

φ azimuth angle (see appendix B)

- χ $\chi_{\gamma} = \chi_{1}, \chi_{2}, \text{ or } \chi_{3}; \text{ position vector (see equation (12))}$
- ψ_{1} angle to screen normal of flow incidence upstream of screen
- ψ_{2} angle to screen normal of flow emergence downstream of screen

$$\Omega = \frac{k_1^2(1-\epsilon)^2 \zeta^2 - 2k_1^2(1-\epsilon)(\epsilon k_1^2 + \zeta^2)}{(\epsilon k_1^2 + \zeta^2)^2} \text{ (see equation (22d))}$$

 $\underline{\omega}$ $\omega_r = \omega_1, \omega_2, \text{ or } \omega_3; \text{ vorticity vector}$

Superscripts:

- A station upstream of screens
- B station downstream of screens and upstream of contraction
- C station downstream of contraction
- * complex conjugate

Subscripts:

- A station upstream of screens
- B station downstream of screens and upstream of contraction
- C station downstream of contraction
- N number of like screens in series
- sc only effects of screens and contraction present
- scd effects of screen and contraction corrected for initial period of decay
- l longitudinal component
- 2,3 lateral components

APPENDIX B

TURBULENCE VELOCITY AND SCALE RATIOS

Velocity ratios. - Using spherical polar coordinates

$$k_1 \equiv k \cos \theta$$

 $k_2 = k \sin \theta \cos \varphi$

 $k_3 \equiv k \sin \theta \sin \varphi$

$$k^2 = k_1^2 + k_2^2 + k_3^2$$

equations (23) and (24) may be put in the form

$$\left[\Gamma_{11}^{C}\left(\underline{\mathbf{k}}\right)\right]_{N} = \frac{l_{2}^{2}k^{2}G(k)}{l_{1}} \frac{\Delta^{N}\sin^{2}\theta}{(\epsilon\cos^{2}\theta + \sin^{2}\theta)^{2}}$$
(B1)

$$\left[\Gamma_{22}^{C}(\underline{\kappa}) + \Gamma_{33}^{C}(\underline{\kappa})\right]_{\underline{N}} = \alpha^{2}\left[\Gamma_{22}^{C}(\underline{\kappa}) + \Gamma_{33}^{C}(\underline{\kappa})\right]_{\underline{N-1}} + \frac{\imath_{\underline{1}G}(\underline{\kappa})\left(\nu^{2} - \alpha^{2}\mu^{2}\right) k^{2} \Delta^{\underline{N-1}} \varepsilon^{2} \sin^{2}\theta \cos^{2}\theta}{(4 \cos^{2}\theta + \mu^{2} \sin^{2}\theta)(\varepsilon \cos^{2}\theta + \sin^{2}\theta)^{2}}$$
(B2)

where
$$\Delta \equiv \frac{4\alpha^2 \cos^2 \theta + v^2 \sin^2 \theta}{4 \cos^2 \theta + u^2 \sin^2 \theta}$$

The downstream mean-square fluctuation velocities are given by

$$\left(\overline{q_{\gamma}^{2}}\right)^{C} = \iiint_{\infty} \Gamma_{\gamma \gamma}^{C}(\underline{\kappa}) d\kappa_{1} d\kappa_{2} d\kappa_{3}$$

analogous to equation (5). Inasmuch as the function G(k) appears in the expressions for the energy spectral densities, the variable of integration will be changed from $\underline{\kappa}$ to \underline{k} so that

$$\overline{q_{\gamma}^2} = \frac{1}{l_1 l_2^2} \iiint_{-\infty} \Gamma_{\gamma \gamma}(\underline{\kappa}) dk_1 dk_2 dk_3. \text{ Noting that}$$

 $dk_1dk_2dk_3 = k^2\sin\theta d\theta d\phi dk$, the downstream mean-square velocity components of the turbulent field are obtained from equations (B1) and (B2) as

NACA TN 2878

$$\left(\overline{q_1^2}\right)_{\mathbb{N}}^{\mathbb{C}} = \frac{1}{l_1^2} \int_0^{\infty} k^4 G(k) \ dk \int_0^{2\pi} d\phi \int_0^{\pi} \frac{\Delta^{\mathbb{N}} \sin^3 \theta \ d\theta}{\left(\epsilon \cos^2 \theta + \sin^2 \theta\right)^2}$$

and, inasmuch as the downstream turbulence will be axisymmetric when the upstream turbulence is isotropic,

$$(\overline{q_2^2})_N^C = (\overline{q_3^2})_N^C = \alpha^2 (\overline{q_2^2})_{N-1}^C + \frac{\epsilon^2 (v^2 - \alpha^2 \mu^2)}{2l_2^2} \int_0^\infty k^4 G(k) \ dk \int_0^{2\pi} d\varphi \int_0^\pi \frac{\Delta^{N-1} \sin^5 \theta \cos^2 \theta \ d\theta}{(4 \cos^2 \theta + \mu^2 \sin^2 \theta)(\epsilon \cos^2 \theta + \sin^2 \theta)^2}$$

The mean-square velocity components of the upstream isotropic turbulence are obtained by using equation (4) as

$$\left(\overline{q_1^2}\right)^A = \left(\overline{q_2^2}\right)^A = \left(\overline{q_3^2}\right)^A = \int_0^\infty k^4 G(k) \ dk \ \int_0^{2\pi} d\phi \ \int_0^\pi \sin^3\!\theta \ d\theta = \frac{8\pi}{3} \ \int_0^\infty k^4 G(k) \ dk$$

The turbulence velocity ratio or ratio of mean-square fluctuation velocities downstream of a series of N identical screens followed by an axisymmetric contraction to the corresponding upstream fluctuation velocities is then given for the longitudinal and lateral components, respectively, by

$$\frac{\left(\overline{q_1^2}\right)_{N}^{C}}{\left(\overline{q_1^2}\right)^{A}} = \frac{3a^4}{4l_1^2} \int_{0}^{\pi} \frac{\Delta^{N} \sin^3 \theta \, d\theta}{(a^2 - \cos^2 \theta)^2}$$
(B3)

$$\frac{\left(\overline{q_{2}^{2}}\right)_{N}^{C}}{\left(\overline{q_{2}^{2}}\right)_{N}^{A}} = \frac{\left(\overline{q_{2}^{2}}\right)_{N}^{C}}{\left(\overline{q_{2}^{2}}\right)_{N}^{A}} = \alpha^{2} \frac{\left(\overline{q_{2}^{2}}\right)_{N-1}^{C}}{\left(\overline{q_{2}^{2}}\right)_{N-1}^{A}} + \frac{3(a^{2}-1)^{2}(v^{2}-\alpha^{2}\mu^{2})}{8i_{2}^{2}} \int_{0}^{\pi} \frac{\Delta^{N-1} \sin^{3}\theta \cos^{2}\theta d\theta}{(4 \cos^{2}\theta + \mu^{2} \sin^{2}\theta)(a^{2}-\cos^{2}\theta)^{2}} \tag{B4}$$

where $a^2 \equiv \frac{1}{1-\epsilon}$. The new contraction parameter a^2 is introduced for convenience in subsequent calculations. It may be noted that the velocity ratios are independent of the amplitude function G(k) which appears in both the isotropic and axisymmetric spectral tensors. Equations (B3) and (B4) appear in the text as equations (25) and (26), respectively.

Turbulence scale ratios. - The turbulence scales may be obtained from the energy spectral densities as indicated by equations (6) and (10). Compatible with the formulation

$$\left(\overline{q_{\gamma}^{2}}\right)^{C} = \frac{1}{l_{1}l_{2}^{2}} \iiint_{-\infty}^{\infty} \Gamma_{\gamma\gamma}^{C}(\underline{\kappa}) dk_{1} dk_{2} dk_{3}$$

the longitudinal scale at station C is

$$\left(\mathbb{I}_{1}\right)_{N}^{C} = \frac{\pi}{\imath_{1}\imath_{2}^{2} \left(\overline{q_{1}^{2}}\right)_{N}^{C}} \int_{-\infty}^{\infty} \left\{ \left[\Gamma_{11}^{C}(\underline{\kappa})\right]_{N} \right\}_{\kappa_{1}=0} dk_{2}dk_{3}$$

or, applying equation (24),

$$\left(\text{L}_{1}\right)_{N}^{C} = \frac{\pi}{l_{1}^{2} \left(\overline{q_{1}^{2}}\right)_{N}^{C}} \left(\frac{v^{2}}{\mu^{2}}\right)^{N} \int_{-\infty}^{\infty} \left[\overline{\Gamma}_{11}^{A}(\underline{k})\right]_{k_{1}=0} dk_{2}dk_{3}$$

The longitudinal scale at station A is

$$(\mathbf{L}_{1})^{A} = \frac{\pi}{\left(\overline{\mathbf{q}_{1}^{2}}\right)^{A}} \int_{-\infty}^{\infty} \left[\overline{\mathbf{r}_{11}}^{A}(\underline{\mathbf{k}})\right]_{\mathbf{k}_{1}=0} d\mathbf{k}_{2} d\mathbf{k}_{3}$$

The ratio of longitudinal scale downstream of a series of N identical screens followed by an axisymmetric contraction to the corresponding upstream scale or longitudinal scale ratio is thus.

$$\frac{\left(L_{1}\right)_{N}^{C}}{\left(L_{1}\right)^{A}} = \frac{\left[F_{1}(0)\right]_{N}^{C}}{\left[q_{1}^{2}\right]_{N}^{C}} = \left(\frac{v^{2}}{\mu^{2}}\right)^{N} \left[z_{1}^{2} \frac{\left(\overline{q_{1}^{2}}\right)_{N}^{C}}{\left(\overline{q_{1}^{2}}\right)^{A}}\right]^{-1} \tag{B5}$$

36 . NACA IN 2878

The corresponding ratio for the lateral scales is obtained in a similar manner as

$$\frac{(L_{Z})_{N}^{C}}{(L_{Z})^{A}} \equiv \frac{\left[F_{Z}(0)\right]_{N}^{C}}{\left[\overline{L_{Z}}^{2}\right]_{N}^{C}} = (\alpha^{Z})^{N} \left[\imath_{Z}^{Z} \frac{\left(\overline{q_{Z}^{2}}\right)_{N}^{C}}{\left(\overline{q_{Z}^{2}}\right)^{A}}\right]$$
(B6)

These relations for the scale ratios do not require that the upstream turbulence be isotropic. Equations (B5) and (B6) appear in the text as equations (37) and (38), respectively.

APPENDIX C

ONE-DIMENSIONAL SPECTRA

With the use of equations (4) and (31), equations (29) can be written

$$F_1^A = 4\pi H \int_0^\infty \frac{\zeta^3 d\zeta}{(k_1^2 + n^2 + \zeta^2)^3}$$

$$F_2^A = F_3^A = 2\pi H \int_0^\infty \frac{(2k_1^2 + \zeta^2)\zeta d\zeta}{(k_1^2 + n^2 + \zeta^2)^3}$$

Integration yields, after use of equation (32),

$$F_{\perp}^{A} = \frac{\pi H}{n^{2}s} \tag{C1}$$

$$F_2^A = F_3^A = \frac{\pi H(3s-2)}{2n^2s^2}$$
 (C2)

Equations (33) and (34) follow upon dividing equations (C1) and (C2) by $(F_1^A)_{k_1/n=0}$ and $(F_2^A)_{k_1/n=0}$, respectively.

With use of equations (4) and (B1) and (B2) of appendix B, equations (30) can be written

For the case of a single-screen-axisymmetric-contraction configuration, integration of equations (C3) and (C4) yields equations (35) and (36) of the text, respectively. For the case N = 1, the quantity $({\bf F_2}^C)_{N-1}$ designates the one-dimensional lateral spectrum downstream of an axisymmetric contraction in the absence of damping screens and may be obtained from reference 3.

NACA TN 2878

REFERENCES

39

- 1. Dryden, Hugh L., and Schubauer, G. B.: The Use of Damping Screens for the Reduction of Wind-Tunnel Turbulence. Jour. Aero. Sci., vol. 14, no. 4, April 1947, pp. 221-228.
- 2. Taylor, G. I., and Batchelor, G. K.: The Effect of Wire Gauze on Small Disturbances in a Uniform Stream. Quart. Jour. Mech. Appl. Math., vol. II, 1949, pp. 1-29.
- 3. Ribner, H. S., and Tucker, M.: Spectrum of Turbulence in a Contracting Stream. NACA TN 2606, 1952.
- 4. Batchelor, G. K.: The Theory of Axisymmetric Turbulence. Proc. Roy. Soc. (London), ser. A., vol. 186, Sept. 24, 1946, pp. 480-502.
- 5. Batchelor, G. K.: The Role of Big Eddies in Homogeneous Turbulence. Proc. Roy. Soc. (London), ser. A, vol. 195, Feb. 3, 1949, pp. 513-532.
- 6. Taylor, G. I.: The Spectrum of Turbulence. Proc. Roy. Soc. (London), ser. A, vol. 164, Feb. 18, 1938, pp. 476-490.
- 7. Lin, C. C.: On Taylor's Hypothesis in Wind-Tunnel Turbulence. Naval Ordnance Lab. Memo. 10775, Proj. NR-061-069, Feb. 20, 1950.
- 8. Dryden, Hugh L.: A Review of the Statistical Theory of Turbulence. Quart. Appl. Math., vol. 1, no. 1, April 1943, p. 35.
- 9. Lamb, Horace: Hydrodynamics. Cambridge Univ. Press. 6th ed., 1932, p. 205.
- 10. Simmons, L. F. G., and Cowdrey, C. F.: Measurements of the Aerodynamic Forces Acting on Porous Screens. R. & M. No. 2276, British A.R.C., Aug. 1945.
- 11. Schubauer, G. B., Spangenberg, W. G., and Klebanoff, P. S.: Aero-dynamic Characteristics of Damping Screens. NACA TN 2001, 1950.
- 12. Chandrasekhar, S.: The Theory of Axisymmetric Turbulence. Phil. Trans. Roy. Soc. (London), ser. A. vol. 242, 1950, pp. 557-577.
- 13. Dryden, Hugh L., and Abbott, Ira H.: The Design of Low-Turbulence Wind Tunnels. NACA Rep. 940, 1949. (Supersedes NACA TN 1755.)
- 14. Townsend, A. A.: The Passage of Turbulence Through Wire Gauzes. Quart. Jour. Mech. Appl. Math., vol. IV, 1951, pp. 308-320.

TABLE I. - TURBULENCE VELOCITY AND SCALE RATIOS

				T.		C (0.2)	_	105			
					$\begin{bmatrix} v_1^2 & (\frac{q_1}{q_1^2}) \end{bmatrix}$	$\begin{array}{c} \mathbf{r} \\ \mathbf{r} \\ \mathbf{A} \end{array}, \ \nabla_2^2 = \frac{\left(\overline{\mathbf{q}_2^2}\right)}{\left(\overline{\mathbf{q}_2^2}\right)}$	Д, н _В = 0.06			The state of the s	ACA
н	ĸ	NIK	и _с	11	v ₁ 2	V2 ²	1/5 (V1 + 2V2 2)	٧,	₹2	$\frac{\begin{pmatrix} L_1 \end{pmatrix}_N^C}{\begin{pmatrix} L_1 \end{pmatrix}^{\Lambda}}$	(r ⁵) _y
111111111111111111111111111111111111111	.40 .50 1.50 2.50 2.50 3.76 3.50 4.00 4.50 6.00	0.0 0 2 0 2 0 1.0 0 1.5 0 2.5 0 2.7 6 3.0 0 3.5 0 4.0 0 4.5 0 4.0 0 4.5 0 4.0 0	0.023 .023 .023 .023 .023 .023 .023 .023	0,4 64 A 64	1.675 1.140369 7.775910 5.27867 8.40814 .087097 .0101346 .007103 .016454 .021981 .036716 .036716 .051690	0.9597933 .5649303 .5060905 .5351905 .149593 .1495978 .11878789 .1187805 .078868 .078868	1198100 8900765 870645 5132976 1912367 1930777 9874196 9774184 97701841 97018411 96565550	18940 10679 8809 72657 49951 11708 108433 11266 11917 1274 1274	0,97966 87461 778133 5,99333 4,2893 3,57601 3,57508 3,1971 3,0971 8,0971 8,0971 8,0971	2778090 2786984 27869870 27869870 284839943 2849189931 38680885 315768861 20068661 21737733 2847549800	0.4836 .5491 .6149 .6798 .7980 .9234 1007 110991 10991 10831 10175 .8707
111111111111111111	0.00 4.00 1.00 2.00 2.76 3.50 4.00 4.00 1.00	200 200 100 150 250 276 300 450 450 450 450 600	00855	99 99 99 99 99 99 99 99 99 99 99 99 99	1094991 747277 509285 234764 0.865149 0.11321 0.0079895 0.16007 0.16057 0.16057 0.16057	761268 5214258 5214258 521536990 19556478 195646378 11308163 11082811 1082811	9725093 9725093 9726093 9736090 97396093 97396093 973993 97410983 976559 976569 976569 976569	104445 84456 84477447 1104744 1104844 1104844 1104844 110488 110888	2551264667 	24.476757 23.944144 23.9441745 23.9441745 23.945755 23.94575 23.94575 24.94575 24.94575 24.94575 24.94575 24.94575 24.94575 24.94575 24.94575 24.94575 24.94575 24.94575 24.94575 24.94575 24.94575 24.94575 24.94575 24.94575	55899 555999 555999 57831655 108999 1111169 1111169 1111169 1111169 1111169 1111169 1111169 1111169 1111169 1111169 1111169 1111169
11111111111111111	0.00 40 40 100 150 200 250 276 350 450 450	000 900 1000 1000 2000 2700 2700 3500 4500 1000	0.0000000000000000000000000000000000000	**************************************	98804659 46856993 48856983 47474789 901147499 90116877 90116877 90116877 90116877	07799 81669965942 669965942 66996699669 6699669669669 669969696969	797729098779447878988779447878988777944787878484111998784787847	98849868895110 988498868895110	90000785751810 70061868406617 70757771107540	1887875 188957868 188957868 16835836 1347767 150655938 186755938 186755938 186755938 186755938 186755938 186755938 186755938	71095 76708 76708 91087377 10060886 11113108 1111408 111108
11111111111111111	1000 0.00 .40 .60 1.50 2.50 2.76 3.00 4.50 4.50 10.00	250 250 250 250 250 250 250 250 250 250	000000000000000000000000000000000000000	00 07,000	044585 1899 901771 627119 436591 8122699 087003 036888 0145879 014583 0131859 015789 016789 0030137 040476	0917 209017 40404 40	1.040 0.00	11400 9799 84919 84919 8499 8509 8509 8509 8509 8609 8609 8609 8609 8609 8609 8609 86	660 23 4 4 458 27 7 15 4 0 6 8 27 7 15 4 0 6 8 27 7 15 4 0 6 8 27 7 15 4 0 6 8 27 7 15 4 7 7 15 15 2 15 2 15 2 15 2 15 2 15 2 15	000877098898898899999999999999999999999	1005000 7000000 70000000 7000000000000
1111111111111111111	10.00 .40 .40 .40 .400 .400 .276 .276 .276 .450 .450 .600 .000	0,00 0,40 0,60 1,50 2,50 2,50 2,50 4,50 4,50 1,00 0,00	0.35 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040	4000 4000 4000 4000 4000 4000 4000 400	1.84 .839528 .582630 .410177 .204891 .040297 .021625 .017558 .015745 .015745 .020284 .028327 .028327 .0365	09168 09168 09168551 04999305 049695266 02895266 02895266 02895266 02895266 0289526 04865579 0486579 0486579 0486579 0486579 0486579 0486579 0486579 0476579	261433 1014107 8114077 660393175 741383175 741383175 741583268 7416688 7416688 7416688 7416688 7416688 7416	308808 109808 7645860 7645860 764587 11335438 114588 114688 114688 114688	0968606 8788666 8788666 77886594 778896594 147748 1	13694 14394 14394 1439339 1436836559 06069316 06069316 06069316 06069316 06069316 143916 143916	0.8577 .85770 .97371 1.08776 1.125445 1.116446 1.116466 1.1
חחחחחחחחחחחחחחח	30 40 400 1150 8350 8350 8350 8350 1500 1000	0.8 0 0.6 0 1.0 0 2.5 0 2.5 0 3.5 0 4.5 0 4.5 0 6.0 0 0.0 0	0455 9445 9445 9445 9445 9445 9445 9445	900 900 900 900 900 900 900 900 900 900	.767481 .544413 .587481 .198657 .043450 .043450 .024720 .030324 .016199 .016197 .026553 .034849	840201 7366137 506299 388974 264937 244885 229020 2021252 1645998 085300 10428	815962 672214 560918 403752 2894514 184865 11708725 140410 116497 068284 100330	875757 7618 7618 7618 7618 7618 7618 7618 761	915445 915445 915147 91	1.07 621 9 1.01 621 9 95 50 92 9 57 4 7 7 7 2.04 16 50 7 2.05 20 8 8 9 2.07 20 8 9	9698 10088 10088 10088 110759 111782 111782 111827 111827 111827 1119976 1119057 1119057
111111111111111	.20 .40 .60 1.00 1.50 2.00 2.50 2.76 3.00 3.50 4.00 4.50 6.00 1 0.00	0.2 0 0.4 0 0.6 0 1.0 0 2.0 0 2.5 0 8.7 6 3.0 0 3.5 0 4.0 0 4.5 0 6.0 0	0.555555555555555555555555555555555555	1100 1100 1100 1100 1100 1100 1100 110	65118 484937 149737 149737 1097204 0048618 0048630 004	923899 8238992 82305183 554205183 554211 13714766 29715775 2411575 241157 24115	8376327 632	8155 89910 89010 89010 89010 89010 89010 8000 800	9612 990647 90647 87647 87649	8327458 76843581 770704085 777744085 17713080418 1123000418 114643904 114643904 114643904 115471 116187 116187 116187	10770 10946 111145 111478 111918 112078 112131 122131 122131 12231 12313 12313

				TABLE I	_		SLOCITY AND SCA	LE RATIOS			
					$\left[A_{1_{3}} \times \left(\frac{\left(\underline{d^{1}_{3}}\right)_{1}}{\left(\underline{d^{1}_{3}}\right)_{1}} \right) \right]$	$\left(\begin{array}{c} 2 \\ 1 \end{array}\right)^{\frac{1}{2}}, \nabla_2^2 = \left(\begin{array}{c} \sqrt{q_2^2} \end{array}\right)^{\frac{1}{2}} \\ \left(\begin{array}{c} \sqrt{q_2^2} \end{array}\right)^{\frac{1}{2}} \end{array}$	с К, н _В = 0.05		_	N	CA
H	K	HK	M _O	11	4 15	v₂²	$\frac{1}{3}(v_1^2 + 2v_2^2)$	v ₁	₹2	$\frac{(\Gamma^{J})_{V}}{(\Gamma^{J})_{C}^{H}}$	(r ⁵) _k
11111111111111111	250 250 250 250 250 300 350 400 450	00.0 0 0.8 0 0.4 0 0.6 0 1.0 0 1.5 0 2.5 0 8.7 6 3.5 0 4.0 0 4.5 0 1.0 0	0.000	01200 1200 1200 1200 1200 1200 1200 120	0.8 5 8 0 2	10912 97716887 97716887 77408887 77408887 486887 486887 3993617 286887 287887 2	1013500 855048 728963 6271035 32836912 2369124 1627124 162713 148481 148486 11886 1080790	09263 78834 578736 578736 32499 116447 114428 114428 115663	10446 98570 98570 988777 693245 596307 46087 46087 46087 46087	0.809500 748178 6886328 6233021 315901 138408 018090 0014015 116004 358097 3620774 7688337	10990 11113667 111697 111697 112921 123061 123065 1234028 1234028 1234028 1234028
	.000 .400 .600 .500 .200 .2500 .2500 .200 .200 .200	000 0 000 000 000 000 000 000 000 000	00770 0770 0770 0770 0770 0770 0770 07	0140000 140000 1140000 11440000 11440000 114400 11440 114400 11400 114000 114000 114000 114000 114000 114000 114000 114000 11400 11400 114000 114000 114000 114000 114000 114000 114000 114000 114000 1	8287444566465938297 820845454566465938297 8208454545684659395 8208454545890792005503755828 84007355959542891595838836505037759040518411 84007357595674891593838836505037759040518411 840073757590407475003779040747171170865188411 8400747575790477904747171707867184411 8400747779047790477904779047790477904779	19841768618979906 99848768618979906 998841845988778858 97848418459988778858 77845884184599878888 77845845845896579888 7784584589459965965965965965965966996699669966996	10479303 379303 37932667 523472032 32704252 32704252 32704252 32704252 32704252 32704252 32704252 32704252 3270425 327045 3270425 327045 32	087.457960170776696 87.4571320777776696 87.457132077777711111111111111111111111111111	10362050341444249356052605034444249356050344142493360503441424933605034414249336050344544545605035050350503505050505050505050505050	0 68 48 58 68 58 68 58 68 58 68 58 58 58 58 58 58 58 58 58 58 58 58 58	111967 111967 111967 112961 1123461 1123461 1123461 1123461 11236
***************************************	100 000 000 000 000 000 000 000 000 000	10 10 10 10 10 10 10 10 10 10 10 10 10 1	00000000000000000000000000000000000000	Control of the c	105 400 400 94 105 105 105 105 105 105 105 105 105 105	TANGET TO BE COME TO C	100 117 4 10 00 0 10 0 14 0 70 0 1 1 17 7 0 1 0 1 1 10 0 0 0 0 0	ממחקר אטמטר אינממטאסיים אין ידשקיטם ארם אוסטים און ידשקיטם און אינטים אינטים אינטים אינטים אינטים אינטים אינטי ידמים אינטים אינ	30000000000000000000000000000000000000	104180667787557008866554007786860185509.4607551846767658974.17	13138 13149 131490 131996 131996 131996 132000 132010 132222 13222 13222 13222 13222 1322

TABLE I. - Continued. TURBULENCE VELOCITY AND SCALE RATIOS

$$\left[v_1^2 \times \frac{(\overline{q_1^2})^C_N}{(\overline{q_1^2})^A}, v_2^2 \times \frac{(\overline{q_2^2})^C_N}{(\overline{q_2^2})^A}, N_B = 0.05 \right]$$

NACA

											
N	ĸ	MK	иc	11	v₁²	V2 ²	$\frac{1}{3}({v_1}^2+2{v_2}^2)$	v ₁	٧2	$\frac{\left(\Gamma^{J}\right)_{N}^{Q}}{\left(\Gamma^{J}\right)_{N}^{Q}}$	$\frac{(r^5)_{\rm V}}{(r^5)_{\rm C}^{\rm M}}$
1111	0.00 .30 .40	0.0 0 .2 0 .4 0	0.500 .500	09.761 9.761 9.761	0.05604 .046780 .039456	6492 5874457 5314650	4346700 3931898 3556258	0.2367 2163 1986 1831	25480 24237 23054 21925	0.187400 150331 .119194 .093389	1.3325 1.3325 1.3325 1.3325
11111	1.00 1.50 2.00	100 150 200	.500 .500 .500	9.7 61 9.7 61 9.7 61 9.7 61	.033540 .084714 .017857 .013756	4.806979 3.927496 3142310 2.618585	3215833 2626569 2100826 1750309	1572 1336 1173	1.9818 1.7727 1.6182	.055034 .024476 .007688	1,3325 1,3325 1,3325
1 1	2.76 3.00	2.7 6 3.0 0	.500 .500	9.7 61 9.7 61 9.7 61	.011116 .010099 .009314	2089289 1963930	1500036 1396236 1312391	1054 1005 .0965	1.4982 1.4454 1.4014	.000787 .000000 .000544	1.3325 1.3325 1.3325
1 1 1	3.5 0 4.0 0 4.5 0	3.5 0 4.0 0 4.5 0	.500 .500 .500	9.7 61 9.7 61 9.7 61 9.7 61	.008025 .007066 .006330 .004892	1.745 711 1.571137 1428303 1182323	1166483 1049780 954313 749846	.0896 .0841 .0796 .0699	1,3213 1,2534 1,1951 1,0594	.004561 .011148 .019158 .045397	13326 13326 13326 13325
1	0.00 10.00 0.00 .20	600 1000 000 80	0.700 -700	9761 13363 13363	.003225 0.03340 .028092	714137 7947 7189677	477166 5309100 4802482 4344320	0568 01828 1676 1545	.8451 2.8190 2.6814	099853 0167600 133563	1.5326 1.3320 1.3330
1 1 1 1	.60 1.00	.50 1.00	.700 .700	13.363 13.363 13.363	.023879 .020447 .015262	6.504541 5.883211 4.806829	3.928956 3.209640	1430	2.5504 2.4255 2.1984	105078 .081732 .047548	1,3330 1,3330 1,3330 1,3330
1 1 1	1.50 8.90 2.50	1.5 0 2.0 0 2.5 0	.700 .700 .700	13363 13363 13363 13363	.011179 .008709 .007098 .006472	3.845 853 3.204 876 2.747035 2.557080	2567628 2139487 1833723 1706877	.0933 .0843 .0804	1.9611 1.7902 1.6574 1.5991	.020859 .006479 .000658	13330 13330 13330
11111	3.7 6 3.0 0 3.5 0 4.0 0	3.7 6 3.0 0 3.5 0 4.0 0	.700 .700 .700	13363 13363 13363	.005986 .005180 .004575	2403654 8136581 1982921	1.604431 1.426114 1.283472	.0774 .0720 .0676	1.5504 1.4617 1.3867	.000453 .003769 .009187	1,3330 1,3330 1,3330
1 1 1	4.50 6.00 1,0.00	4.5 0 6.0 0 1 0.0 0	.700 .700 .700	13363 13363 13363 16702	.004105 .003175 .002069	1748109 1373513 874050	1166774 916734 583390 5753000	.0641 .0563 .0455	13882 11780 9349 29360	.015760 .037326 .083039	13330 13330 13330 13330
1111	0.00 .80 .40	20 20 40 50	.900 .900 .900	16.702 16.702 16.702 16.702	.019262 .019262 .016442 .014133	8.618 7.798224 7.055097 6.381177	5205237 4.708879 4.258829	.1388 1282 1189	2.7925 2.6561 2.5261	.124703 .097700 .075702	1,3331 1,3331 1,3331
1 1 1	1.00 1.50 8.00	1.0 0 1.5 0 2.0 0	900 900 900	16.702 16.702 16.702	.010620 .007835 .006138	5.813690 4171377 3.476146	3479333 2783530 2319477 1988044	.0885 .0783 .0709	2,2834 2,0424 1,8644 1,7261	.043743 .019054 .005885	1,3331 1,3331 1,3331 1,3331
11111	2.50 8.76 3.00 3.50	2.76 3.00 3.50	900 900 900	16.708 16.708 16.708 16.702	.005025 .004591 .004252 .003688	2,979554 2,773580 8,607109 8,317489	1850544 1739490 1546182	.0678 .0652 .0607	1.6654 1.6147 1.5283	.000000 .000407 .003389	13331 13331 13331 13331
1 1 1	400 450 600	4.0.0 4.5.0 6.0.0	900 900 900	16708 16708 16708	.003262 .002931 .002268	2.085686 1.896078 1.489775	1391545 1265029 993939	.0571 .0541 .0476	1.4442 1.3770 1.2206	.008247 .014134 .033448 .074750	1,3331 1,3331
1	1000 000 .80	1000	1000 1000	16703 18262 18263 18262	.001471 0.01946 .016493 .014098	.948037 8694 7.867129 7.117438	.633515 5802500 5250250 4749658	0384 01395 1884 1187	9737 29490 28048 26679	0154000 .121824 .095315	1,3331 1,3330 1,3332 1,3332
1 1 1	.60 1.00 1.50	.40 .60 1.00 1.50	1.000 1.000 1.000	18.262 18.262 18.262	.012133 .009137 .006756	6.437563 5.859759 4.208236	4.895753 3.509552 2.807743	1101 0956 0822	2.5372 2.2934 2.0514	.073761 .042529 .018483	1.3332 1.3332 1.3332
11111111	2.50 2.50 2.76	2.0 0 2.5 0 2.7 6	1.000 1.000 1.000	18.262 18.262 18.262 18.262	.005303 .004348 .003974 .003682	3.506862 3.005882 2.798028	2339676 2005371 1866677 1754658	.0728 .0659 .0630 .0607	1.8727 1.7337 1.6727 1.6218	.005698 .000575 .000000	1,3,3,3,2 1,3,3,3,2 1,3,3,3,2
1	3.00 3.50 4.00 4.50	3.0 0 3.5 0 4.0 0 4.5 0	1000 1000 1000 1000	18262 18262 18262	.003197 .002829 .002542	2630146 2337907 2104116 1912833	1.559670 1.403687 1.276069	.0565 .0532 .0504	1.5290 1.4506 1.3831	.003271 .007955 .013629	1,3333 1,3338 1,3338
1	1000 000	1688	1.000 1.000 1.200	18262 18262 21153	.001968 .001275 0.01492	1.502939 .956415 8.436 7.634507	1002615 -638035 5629000 5093902	0444 0357 01221 1127	12259 9780 29040 27631	.038844 .072147 0.149900 .117998	1.33332 1.33333 1.33330
1111	.80 .40 .60 1.00	20 40 50 100	1.200 1.200 1.200 1.200	21153 21153 21153 21153	.012693 .010869 .009370 .007077	6906978 6247207 5104232	4.608275 4.167928 3.405180	1043 9968 9841	2.6281 2.4994 2.8593	.092149 .071193 .040930	1.3332 1.3332 1.3338 1.3338
1111	1.50 2.00 2.50	1.5 0 2.0 0 2.5 0 2.7 6	1.300 1.300 1.300 1.300	21153 21153 21153 21153	.005248 .004129 .003392 .003103	4083801 3403167 2917000 2715293	2.724283 2.270154 1.945797 1.811230	0724 0643 0582 0557	2.0208 1.8448 1.7079 1.6478	.017735 .005454 .000549 .000000	1.3332 1.3332 1.3332 1.3332
1111	2,76 3.00 3.50 4.00	300 350 400	1.800 1.800 1.800	21153 21153 21153	.002876 .002500 .002214	2.552375 2.268777 2.041899	1.702542 1.513351 1.362004	.0536 .0500 .0471	1.5976 1.5063 1.4390	.000375 .003118 .007577	1,3338 1,3332 1,3332
1	4.50 6.00 10,00	4.5 0 6.0 0 10.0 0	1,800 1,800 1,800 1,500	21153 21153 21153 24920	.001990 .001541 .000997 0.01103	1856272 1458499 .928135 7391	1238178 972846 619089 4931000	.0446 .0393 .0316 01050	1.3625 1.2077 .9634 2.7190	.012975 .030684 .068764 0146100	13332 13332 13333
1111	0.00 .20 .40	000 20 40	1.500 1.500 1.500	24920 24920 24920	.009358 .008023 .006925	6.688463 6.051094 5.473081	4.462095 4.036737 3.651029	-0967 -0896 -0832	25862 24599 83395	.115309 .089940 .069405	1,3332 1,3332 1,3332 1,3332
111111	1.00 1.50 2.00 2.50	1.0 0 1.5 0 2.0 0 2.5 0	1.500 1.500 1.500	24.920 24.920 24.920 24.920	.005841 .003895 .003069 .008584	4471737 3577754 2981461 2555538	2982905 2386468 1988664 1704533	.0724 .0624 .0554 .0502	21146 18915 17267 15986	.039822 .017819 .005287 .000532	13338 13338 13338 13338 13338 13338
1 1 1	2.76 3.00 3.50	2.76 3.00 3.50	1.500 1.500 1.500 1.500	34930 84930 84930	.002310 .002143 .001864	2378825 2236096 1987641	1.586653 1.491445 1.325715	.0481 .0463 .0432	1.5423 1.4954 1.4098	.000000 .000363 .003013	
111111	4.00 4.50 6.00 1 0,00	400 450 600 1000	1.500 1.500 1.500 1.500	24920 24920 24920 24920	.001651 .001485 .001151 .000744	1.788876 1.626251 1.277769 .813125	1193134 1084662 852230 542331	.0406 .0385 .0339 .0273	1.3375 1.2752 1.1304 .9017	.007319 .012530 .029620 .066442	13332 13332 13332 13332
•				~							

TABLE I. - Continued. TURBULENCE VELOCITY AND SCALE RATIOS

TABLE I. - Continued. TURBULENCE VELOCITY AND SCALE RATIOS

				TABLE I.		TURBULENCE VE	LOCITY AND SCA	TE WILLO			
					$v_1^2 = \frac{\left(q_1^2\right)_{ij}}{\left(\overline{q_1}^2\right)_{ij}^{k}}$., $v_2^2 = \frac{\left(\overline{q_2^2}\right)_N^6}{\left(\overline{q_2^2}\right)_N^A}$, M _B = 0.05			***	CA
и	ĸ	юx	и _с	ıı	∀ 1²	∀ 2 ²	\frac{1}{3}(\nabla_1^2 + 2\nabla_2^2)	v 1	₹2	$\frac{\left(\Gamma^{J}\right)_{Y}}{\left(\Gamma^{J}\right)_{C}^{M}}$	(L2) K
3 3	40 40	0.4 0 .8 0 1.3 0	0.023	0.464 .464 0.464	0.785545 371594 178021	0.618041 .419605 .298374 .167112	0.673875 .403602 .258257 .126094	0.8863 .6096 .4219 .2099	0.7862 .6478 .5462	2652732 2507957 2322131	0.6149 .7413 .8529 1.0165
200000	1.00 1.50 2.00 3.00	200 300 400 600	.023 .023 .023	0,4 6 4 0,4 6 4 0,4 6 4 0,4 6 4	.044058 .010725 .004726 .002293	.096034 .063441 .034306	067597 043870 083635 007950	1036 2687 2479	4088 3099 2519 1852	1769190 750454 .099721 .000478	1,0165 11383 11903 18388
2	6.00 0.20 .40 .60	1200 040 80 120	0.040 0.040 0.40	0.4.6.4 0.8.0.0 .8.0.0 0.8.0.0	0.585905 294319 150619	011177 0.698921 .533812 .414747 .258771	0661849 453981 326704 186743	07654 5425 3681	1057 08360 .7306 .6440	1389594 1197477 1066106 984080	12410 0.9371 10042 10574
2022	1.00 1.50 3.00	200 300 400	240 240 240	0.500 0.500	.048685 .011303 .004366 .001534	106705		2066 1063 0661 0392	5087 3974 3867 3416	984080 614885 239743 036348	Haisa
30	3.00 6.00 0.20	1200 1200 040	040 040 0060	0800 0800 01300 1300	-7267848	058374 018756 0866741 693157	039487 018881 0729457 544584	0308 06745 4973 3718	1370 09310 .8326	036348 000238 737471 0685651 564129 447473	19541 19744 11397 11593
******	460 1.00 1.50	1.30 2.00 3.00	060 060 060	1200 1200 1200	347860 138272 047655 015875	556944 362462 887308 155745	417387 257587 156830 106134	3718 2183 1260 0831 0478	.7463	.244613 .075882	11804 18107 18359 18526
1 2	2.00 3.00 6.00	4.0 0 6.0 0 12.0 0	.060 .060 .060	1200 1800 1300 02000	.006911 .002285 .000865 0301743	087768	058262 018797 0956933	2324	.4768 .3946 .2937 .1666	010807 .000071 .59645 0378588	12723 18907 12690
38 88 88	40 40 100	80 120 200	100 100 100	2.000 2.000	186322	1047444 854219 567447 361559 250191	.760403 .607688 .394819	4317 3386 8886	1.0234 9242 7533	269852 194569 084846 080633	13777
22 22 23	1.50 2.00 3.00 6.00	300 4.00 6.00 12.00	100 100 100 100	2.000 2.000 2.000	.049564 .021045 .010767 .004020	361559 350191 140033	248055 170383 094695 030606	1451 1038 0534 04633 04633	6013 5008 3748 8131 13179	000015	18946 18946 13946 13099 130064 130066 131121 131159 131159 13120
8 8	0.20 .40 .60	0.4 0 .8 0 1.2 0	0140 140	2000 02795 2795 2795	.000986 0.814613 138113 .091947	140033 045417 1736805 1430288 1160994 774017 494807 343229 198728 062744 8193567 1794905	1,829408 992892 .804645 .530783	3038	1,3179 1,1918 1,0775 ,8798	113752 0267784 186093 183993 048510	13064 13076 13086
2000	1.00 1.50 2.00 3.00	200 300 400 600	140 140 140 140	2795 2795 2795 2795 2795	.044314 .020974 .011600 .004733	.774017 .494807 .343229		3105 1448 1077 0688	.7034 .5859 .4390	010583 001191 000006	13121 13136 13159
3	828	1200 340 80	140 0180 180	3795	001081	063744 2193567 1794905	232686 130063 048190 1315906 1338333	0389 04007 3274 8718	2505 14811 13397 18116	- 953817 - 053817	13198 13198 13802
######################################	.60 1.00 1.50 8,00	1.20 2.00 3.00 4.00	180 180 180 180	3589 3589 3589 3589 3589	.07189 .073890 .037837 .019006 .010988	1,794905 1,468001 9,79547 .626741 .435056 2,44550 0,79748 3,911170 3,201216 2,618,821	1003897 .665644 .484163 .4937615 .053530 2630567	1379	7917	145422 .093577 .034457 .007083	13205 13211 13217 13283
3	5.00 6.00 0.20	1200 040	180 180	3589 3589 06724	.004745 .001094 0.069182	244550 079748 3911170	164615 053530 2630507	0.669 0.331 0.8630	4945 2884 19777 17892	031778	13349
********	.40 .60 1.00 1.50	200 200 300	340 340 340	6,724 6,724 6,724 6,724	.049196 .035933 .020270	3201216 2618821 1748177 1119031	1757858	2218 1896 1484 1057	1,6183 1,3822 1,0578	054884 .018325 .003430 .000323	13311 13311 13311 13311 13318
333	3.00 3.00 6.00 0.30	4.00 6.00 13.00	340 340 340 340	6.724	020270 011181 006945 003318 000839	1748177 1119031 777085 437090 142708 5315313	.749748 .520371 .392499 .095418	0633 0576 0390 01987	.6611 .5778 23055	.000323 .000002 .0119374 .073344	13311 13318 13318 13313 13314 13385
38.88	40 40 100	040 90 120 200	500 500 500 500	6.734 09.761 9.761 9.761 9.761	000839 0.039476 028735 021421 012489	4350530 3559077 2375879	2379858 1588082	1464 1118	18866	073344 043641 014114 008561	13325 13325 13325 13325
8 8 8 8	1.50 2.00 3.00	3.00 4.00 06.00	500 500 500	9.7 61 9.7 61 9.7 61	.007107 .004523	1,520870	1016288 705611 396808	0843 0673 .0473	15414 12332 10277 .7708	.002561 .000236 .000001 .007882	13336
2000	600 030 .40 .60	1200	1,000 1,000 1,000	9761 18262 18262 18262	.000596 0.014104 .010514 .007999	594088 193997 7118320 5826291 4766372	129530 4750248 3887699 3180248	0244 01188 1025 .0894	4405 86680 84138 21838	0095464 .057271 .033391 .010460	13385 13338 13338 13338
3 3	1.00 1.50 2.00	200 300 400	1000 1000 1000 1000	18862 18862 18862 18862	.004815 .008883 .001838 .000943	3181827 2036787 1414434 .795618 259798	2122823 1358799 943569 530786	.0694 .0531 .0429 .0307	17838 14272 11893	.010460 .001848 .000166	13338 13338 13338 13338 13338
30000	3.00 600 0.20 .40	600 1200 040 80	1,500 1,500 1,500 1,500	18363 34920 34920	.000265 0.008027 .006016	259792 6051848 4953391 4052273	173283 4037241 3304266 2703048	00163 00896 .0776	14878 11893 .8980 .5097 84601 22256	.005060 0.090089 .053750 .031196	13332
3 3	.60 1.00 1.50	1.20 200 300	1,500 1,500 1,500 1,500	24,920 24,920 24,920 84,920	.004598 .002787 .001644 .001076		1804346 1154971	.0678 .0528 .0406 .0328	20130 16447 13159 10966	.031196 .009705 .001698 .000152	13338 13338 13338 13338 13338
33.00	2.00 3.00 6.00 0.20	4.00 4.00 18.00 18.00	1.500 1.500 2.000	24,920 24,920 29,823	.000556 .000159	1731635 1232524 676417 220871	451130 147300 2013918	.0236 .0126	.9224 .4700 20538	.000001 .004550 0090096	
22 22	.40 .60 1,00 1,50	.80 130 200 300	2000 2000 2000	29.832 29.832 29.832 29.833	.004200 .003210 .001946	3.452454 2.824385 1.885441 1.306929	2303036 1863994 1257609 ,805002	.0648 .0567 .0441 .0339	18581 16806 13731	.053758 .031202 .009707 .001699	13338 13338 13338 13338
201200000000000000000000000000000000000	3.00 3.00 0,30	400 600 1200	3.000 2.000 3.000	39.833 39.838 39.833 35.866	.000751 .000388 .000111	.838145 .471455 .153944 1681025 1375906	559014 314433 102666 1121887	.0874 .0197 .0105 0.0601	10986 9155 4866 3924 12965	.000152 .000001 .004551 0096648	13332 13332 13332 13332
3333	40	120	3.000 3.000 3.000 3.000	35,866 35,866 35,866 35,866	.003612 .002690 .002044 .001229	1681025 1375906 1125601 751403	1121887 918167 751082 501345	.0519 .0452 .0351	1,1730 10609	058046 033877 010689	協議
3 3	1.00 1.50 2.00 3.00	2,00 3,00 4,00 6,00	3.000 3.000 3.000	35866 35866 35866	-000719	1125601 .751403 .480996 .334025 .187889	380904 282840	.0268 .0216	.5935 .5779 .4335	.001875 .000169	13331 13331 13331 13331
2222	0.30 0.40	1200 040 80 130	3.000 5.000 5.000 5.000	35866 40835 40835 40835	.000240 .000067 0.002233 .001623	0387879 2333171 190752	040923 0190663 155988 127571	.0082 0.0472 .0403 .0348	2477 05337 4829 .4368	000001 005177 0130618 074199 044197 014318	13382
2 2	1.50	200 300 400	5,000	40.835 40.835 40.835 40.835	.001209 .000704 .000400	.187337 .081512 .056605	088126 054475 037822	.0200 .0159	.4368 .3568 .2855 .8379	.014318 .002603 .000240	13385 13385 13385 13385 13386
333	3.00 600 0.20	200 200 040 80	5.000 5.000 7.000 7.000	40,835 40,835 42,611 42,611	.000126 .000033 .001608 .001132	.031840 -019397	006942 0046208 037759	.0112 .0056 .00401 .0337	1784 1080 03617 2368	0183816 0183816 097668	13386 13301 13301 13302
20000	100 150	1,30 2,00 3,00	7.000 7.000 7.000	48611	.000830	056072 .045870 .030620 .019600 .013610	030854 020565 013149	.0286 .0214 .0156	1750 1400	.059885 .080278 .003847 .000367	13308
3 3	2.00 3.00 6.00	4,00 6,00 12,00	7,000 7,000 7,000	48.611 42.611 42.611 42.611	.000153 -000072 .000018	.013610 .007655 .003499	009124 005127 001672	.0124 .0085 .0042	1167 0875 0500	.000002 .013846	13304 13305 13307

TABLE I. - Continued. TURBULENCE VELOCITY AND SCALE RATIOS

$v_1^2 = \frac{\left(\overline{q_1}^2\right)^2}{\left(\overline{q_1}^2\right)^2}$	$rac{c}{\chi}, v_2^2 = \frac{(q_2^2)_{N}^{c}}{(q_2^2)^{\Lambda}}, M_B = 0.05$
---	---

N	_	·				$V_1^2 = \overline{\left(q_1^2\right)}$	(, ₄ (<u>a⁵</u>),	r, M _B = 0.05			THE THE	CA
1	N	ĸ	NIK	и _с	1,	۷ ₁ 2	V2 ²	$\frac{1}{3}(v_1^2+2v_2^2)$	٧,	v ₂	$\frac{\left(L_{2}\right)_{N}^{C}}{\left(L_{2}\right)_{N}^{A}}$	(L2) _Y
1	3	.40 .60	1.30 1.80	.023 .023	.464	179071 .062658	298411 191382	358631 148474	.4232 .2503	.5463 .4375	2332176 1969100	.8533 .9845
1	3 3	1.50 2.00	4.5 0 6.0 0 9.0 0	.023 .023	A 64 A 64 A 64	.003090	043429 024431 010061	029982 016821	.0556 :0400	2084 1563 1003	108462	1.2119
3 300 500 600	3 3	.60 1.00	1.20 1.80 3.00	.040	008 008 008	.150915 .057997 .010863	414814 290588 149045	326848 813058 102984	.3885 .2408	.6441 .5391 .3861	.931719 .716250 .313094	10579 11174 11888
1	3 3	2.00 3.00 0.20	0.00 9.00 0.60	.040 .040	.800 .800 01,800	.000948 .000897 0.334281	0774595	.028130 .011595 0.627834	.0308 .0178 0.5782	,3043 1313 0,8801	.001686 .000001 0,685819	1,8581 1,848 1,1468
1	3	.60 1.00 1.50	1,8 0 3,0 0 4,5 0	.060 .060	1,300 1,300 1,300	.061227 .014901 .003837	.403982 .814731	140404	2474 1821 2619	.6356 .4634 .3285	301609 101467 .013076	1,3048 1,3363 1,3597
\$ 200	3	3.00 0.20 .40	9.0 0 0.6 0 1.8 0	0.100 0.100	1,300 08,000 2,000	.000348 0.233820 .114535	.854734	700800T	0187 04835 3384	1,604 1,0770 .9245	.000000 0.322197 .196721	18909 18715 18778
3	13	1,00 1,50 2,00	3.0 0 4.5 0 6.0 0	.100 .100	2,000 2,000 2,000	,019743 ,006456 ,002674	174130 100394	118232 067821	.0804	.5845 .4173	.027607 .008801 .000096	1,3900 1,8965
3	3 3 3	0.8 0 .4 0 .6 0	0.60 1.30 1.80	0.140 .140 .140	02.795 2.795 2.795	.091893 .058607	1.161718 .858724	805110 590018	,3031 ,2894	1.2533 1.0778 9267	125338 064681	1,3086
\$\frac{1}{5}\$ \(\text{cos} \) \(3	1,5 0 2,0 0 3,0 0	4.5 0 6.0 0 9.0 0	140	2.7 9 5 2.7 9 5 2.7 9 5	.003261	.339110 .138196 .058187	161828 093818 039106	.0852 .0571 .0307	.4890 .3717 .8412	.001273 .000040 .000000	
\$ 2.00	3 3 3	.60 1,00	1,20 1,80 3,00	.180 .180 .180	3589 3589 3589 3589	.073861 .044337 .017917	1468924 1086540 .592291	739139	2718 2106 1339	1,2120 1,0484 .7696 .5506	.094578 .046545 .009430	13205 13210 13217 13225
3 1.00 3.00 3.40 6.724 .0.10361	3	2,00 3.00 0.20	6,0 0 9,0 0 0,6 0	0.340	3.5 8 9 3.5 8 9 0 6,7 2 4	.003322 .001027	175357 .073919 3.538875	.118012 .049621 2378623	.0576 .0380	.4188 .3719 1,8812	.000024 .000000 0114493	1,32,31 1,32,43 1,33,11 1,33,11
1	1 3	1.00 1.50 2.00	3,0 0 4,5 0	340 340 340	6.7 2 4 6.7 2 4 6.7 2 4 6.7 2 4	.010561 .004615	1938943 1057512 541593 313411	1,300385 708529 362600 209728	1028 0679 0486	1,3925 1,0284 .7359 .5598	.085266 .004558 .000346 .000010	13312 13318 13312
1.50	3	.60	1,20 1,80	0.500 .500 .500	9.7 61 9.7 61 9.7 61	081424	4.809388 3.561311	2381348 1761502	01838 1464 1193	21930 18871 16833	.044083 .019596	13313 13385 13325 13325
3 1.00 3.00 1.000 18262 .002667 1.924808 1.284095 .0516 1.3874 .002447 1.3332	_3_	1,50 2,00 3,00	4,5 0 6.0 0 9.0 0	.500 .500 .500	9.7 61 9.7 61 9.7 61	.001601	425979	.284520 i	.0551 .0400 .0342	.6587	.000249 .000007	1,3386 1,3386 1,3386
2	3 3	.40 .60 1.00	1,30 1,80 3,00	1.000 1.000 1.000	18,262 18,262 18,262	.008001	3,529023	3182845 2354499 1284095	.0894 .0738 .0516	21839 18786 13874	.033785 .014680 .008447	1,3338
1,00	3	0.20 2.00 5.00	6.0 0 9.0 0	1000 1000 1500	18362 18363 24,930	.000675 .000857 0.006930	.570488 .440674 5.475824	380550 160535 3652859	.0260 .0160 0.0838	.7553 4906 23400	.000005 .000000	13332
3 300 300 3.500 3.4920 .000153 204616 .136462 .0184 .4523 .000000 .13338 .3588 .3588 .3588 .3588 .38	3	.60 1.00 1.50	1.8 0 3.0 0 4.5 0	1,500 1,500 1,500	24.920 24.920 24.920	.003152 .001554 .000732	3000303 1636434 .838111	2001253 1091474 558985	.0561 .0394 .0271	1,7321 1,8792 9155	.002256	1,3338 1,3338 1,3338
150	3 3 3	3.00 0.20 .40	9.00 0.60 120 1.80	1.500 2.000 2.000 2.000	24930 29822 29822	0.004838 .003211	204616 3816584 2826159		0184 00696 0567	19536 16811	000000 0069938 .031513 .013587	1.3338 1.3338 1.3338
3	3 3 3	1.00 1.50 2.00 3.00	4.5 0 6.0 0 9.0 0	2,000 2,000 2,000 2,000	29.822 29.822 29.822	.001085 .000511 .000278	1140575 .584153 .338052	389606 285460	0329 .0826 .0167	10680 .7643 .5814 .3776	.000159 .000004	13338 13338 13338 13338
3 3.00	3	0.20 .40 .60 1.00	0.60 1.20 1.80 3.00	3.000 3.000 3.000 3.000	35,866 35,866 35,866	.002045 .001392 .000680	1,1 26 30 8 .8 3 3 3 9 5 .4 5 4 5 5 3	.751554 .556060 .303262	.0452 .0373 .0261	1,8333 1,0613 9129 6742	0.075878 .034216 .014851 .002490	1,3331 1,3331 1,3331
3 .60 180 5.000 40.835 .000808 1.41.832 .094422 .0283 37588 .019872 13325 3 1.50 4.50 5.000 40.835 .000378 .077031 .051480 .0194 .8775 .003456 133325 3 1.50 4.50 5.000 40.835 .000171 .039452 .026358 .0131 .1986 .000854 13325 3 2.00 6.00 5.000 40.835 .000090 .02831 .015250 .0095 1.511 .000007 1.3325 3 3.00 9.00 5.000 40.835 .000033 .009632 .006432 .0057 .0981 .000000 1.3385 5 0.20 0.60 7.000 42.611 .000103 .00638 .0041772 .00367 .02490 .0123896 .13501 5 4.0 120 7.000 42.611 .000820 .045899 .030873 .0286 .8148 .060441 1.3302 3 .60 180 7.000 42.611 .000255 .033961 .0028816 .0229 .1843 .027877 .13502 3 1.00 3.00 7.000 42.611 .000255 .033961 .002816 .0153 .1361 .005113 1.3303 3 1.50 4.50 7.000 42.611 .000255 .018522 .013426 .0153 .1361 .005113 1.3303 3 1.50 4.50 7.000 42.611 .000101 .009486 .006357 .0100 .0974 .000394 1.3304	-3 -	2.00 3.00 0.20	6,0 0 9,0 0 0,6 0	3.000 3.000 5.000	35.866 35.866 40.835	.000171 .000065 0.001897	.134784 .056836 0257763	.089873 .037913 0172475	.0131 .0081 00436	0.5077	.000005 .000000 0.095120	13331 13331 13325
3 3.00 9.00 5.000 40.835 000033 000638 00.6438 00.57 0.981 00.0000 13585 5 0.20 0.60 7.000 42.611 0.001344 0.61987 0.41773 0.0367 0.2490 0.123896 13501 3 .40 1.20 7.000 42.611 0.00820 0.45899 0.30873 0.286 2.148 0.60441 1.3302 3 .60 1.80 7.000 42.611 0.00825 0.33961 0.28816 0.229 1.843 0.27877 1.3308 3 1.00 3.00 7.000 42.611 0.000255 0.18528 0.13426 0.153 1.361 0.05113 1.3303 3 1.50 4.50 7.000 42.611 0.00101 0.09486 0.06357 0.100 0.9744 0.00394 1.3304 3 2.00 6.00 7.000 42.611 0.00051 0.05489 0.03676 0.071 0.741 0.00011 1.3305	3 3 3 7	.60 1,00 1,50	1.8 0 3.0 0 4.5 0	5.000 5.000 5.000	4 0.8 3 5 4 0.8 3 5 4 0.8 3 5	.000802 .000378 .000171	.141232 .077031 .039452	.094422 .051480 .026358	.0283 .0194 .0131	3758 2775 1986	.019872 .003456 .000854	13325 13325
3 2.00 6.00 7.000 42.611 .000051 .005489 .003676 .0071 .0741 .000011 13305	13.	3.00 0,20 -40	9,00 0,60 1,20	7.000 7.000 7.000	40.835 42.611 42.611	0.001344 0.001820	.009632 0061987 .045899	006432 0041773 030873	.0057 00367 .0886	0,2490 ,2148	000000 0123296 .060441	1,3302
	3	1.00 1.50 2.00	3,0 0 4,5 0 6,0 0	7.000 7.000 7.000	42611 42611 42611	.000235 .000101 .000051	£018523 £009486 £005489	.012426 .006357 .003676	.0153 .0100 .0071	.1361 .0974 .0741	.005113 .000394 .000011	1,3303 1,3304 1,3305

TABLE I. - Concluded. TURBULENCE VELOCITY AND SCALE RATIOS

				TABLE 1.	Concluded. رحمار		SLOCITY AND SCA	CLE HATIOS			
					$v_1^2 = \frac{(q_1^2)_1}{(q_1^2)^2}$	$\frac{1}{4}, \ \nabla_2^2 = \frac{\left(\overline{q_2^2}\right)_1^4}{\left(\overline{q_2^2}\right)^4}$, M _B = 0.05			NA.	
N	ĸ	MK	и _с	11	۷ ₁ 2	V ₂ ²	$\frac{1}{5}(v_1^2 + 2v_2^2)$	٧ ₁	v ₂	(L1) N C	(L ₂) ^R /A
4 4 4 4 4 4 4	0.20 .40 .60 1.00 1.50 2.00 3.00	0.8 0 1.6 0 2.4 0 4.0 0 6.0 0 8.0 0 1.20 0	0,0 23 .0 23 .0 23 .0 23 .0 23	0.4 6 4 :4 6 4 .4 6 4 .4 6 4 .4 6 4 .4 6 4 .4 6 4	0.372531 .088571 .024446 .004133 .001340 .000627 .000196 0.894622	0.419630 .280316 .129783 .052064 .030415 .009659 .003004	0.403930 176401 .094631 .036087 .014057 .006648 .002068	0.6104 2976 1564 .0643 .0366 .0350 .0140	0.6478 .4694 .3602 .2282 .1429 .0983 .0548	2511758 8118971 1506345 316765 010418 000076	0,7415 ,9461 10754 11940 18478 18719 18939
444444	0.20 .40 .60 1.00 1.50 2.00 3.00	00,80 1,60 2,40 4,00 6,00 8,00	0.040 .040 .040 .040 .040	0080 008 0008 0008 0008	0.894623 .079295 .028570 .003558 .001634 .000391 .000307	0.533828 386488 207318 .087652 .034873 .016564 .005156	0454089 244095 147735 059631 033793 011139 003507 0544608	0.5428 2816 1.6596 .0596 .0404 .0171 .0144	0.7306 .5714 .4553 .2961 .1867 .1287 .0718	1069313 .794648 .433953 .183891 .002877 .000055 .000000 0.566333	10045 11003 11596 18883 18588 12788 12998 11594
444444	0.20 .40 .60 1.00 1.50 2.00	00,8 0 1,6 0 2,4 0 4,0 0 6,0 0 8,0 0	0,060 .060 .060 .060	1,800 1,800 1,800 1,800 1,800 1,800	.079644 .039065 .005464 .001149 .000361 .00070	.0893281 .449581 .894652 .128129 .051638 .024658 .007718	326269 206123 .087241 .034808 .016559 .005169	2822 1705 .0739 .0339 .0190	.6705 .5428 .3580 .2272 .1570	3551702 189625 .035861 .001818 .000000 0276230	11977 18831 18534 12744 18870 13011
4 4 4 4 4 4 4	0.80 .40 .60 1.00 1.50 2.00 3.00	0080 160 240 400 600 800 1200	0100 100 100 100 100 100 100	2,000 2,000 2,000 2,000 2,000 2,795	.074048 .033598 .008663 .002214 .000747 .000141	.697804 .464998 .305972 .083973 .040349	489885 321198 140202 056719 027149 008518 0993118	0.4875 8781 1835 9351 9471 9273 9115 03716	10336 .8353 .6819 .4538 .2898 .2099 .1187	136356 .059130 .008154 .000040 .000000 0.186881	18738 18818 18867 18945 13011 13059 13131
4 4 4 4 4 4	.40 .60 100 150 200 300	1.60 2.40 4.00 6.00 8.00 12.00	140 140 140 140 140 140 140	2,7 9 5 2,7 9 5 2,7 9 5 2,7 9 5 2,7 9 5 2,7 9 5 2,7 9 5 3,5 8 9	.068988 .031611 .009446 .003721 .000996 .000307	1420634 .950311 .635245 .282570 .115587 .055665 .017577 1795354	6554517 434034 191528 077965 037442 011787	3578 3578 3778 3978 39588 39144 37874	9748 7970 5316 3409 1326	.088080 .038187 .003883 .000148 .000001 .000000	13121 13076 13095 13111 13135 13176 13176 13803
4 4 4 4	1.50 2.00 3.00 0.20	160 240 400 800 1200	180 180 180 180 180	3.5 8 9 3.5 8 9 3.5 8 9 3.5 8 9 3.5 8 9 3.5 8 9 3.5 8 9	.052254 .027760 .008997 .002685 .001078 .000240 .026790	1302174 .804234 .358159 .146665 .070690 .022347	.818868 .545410 .841772 .098673 .047484 .014978	100418 100418 100418 100518 10008 1008 10008 10008 10008 10008 10008 10008 10008 10008 10008 10008 100	109965 109965 13659 1495 17894	059904 .032187 .002434 .000087 .000001	13808 13814 13828 13831 13838 13850
444444	.60 1.00 1.50 2.00 3.00	160 840 400 600 800 1200	340 340 340 340 340	6.7 2 4 6.7 2 4 6.7 2 4 6.7 2 4 6.7 2 4 6.7 2 4	.0249790 .015537 .005717 .001981 .000837 .000215	2145072 1435571 639715 262183 126404 039992 4351619	1438978 962226 428382 175409 084549	1637 12346 27466 27445 2889 0147	11646 11998 7998 5120 3555 2000	.033891 .011394 .001091 .000034 .000000 .000000	13311 13313 13313 13313 13313 13314 13385
4 4 4 4	0.20 .40 .60 1.50 2.00	00.8 0 1,6 0 2,4 0 4.0 0 6.0 0 8.0 0	55555555555555555555555555555555555555	9.7 61 9.7 61 9.7 61 9.7 61 9.7 61 9.7 61	.016262 .009712 .003726 .001342 .000585	2,915 262 1,951048 1,956268 1,71810 1,054361 5,827744	2910658 1948929 1393936 580873 237959 114735 036393	1375 .0985 .0616 .0348 .0136	17074 17074 13968 95869 4145 2332	.026085 .008575 .000795 .000000 .000000	13385 13385 13386 13386 13386 13386
444444	0,30 .60 1,00 1,50 2,00	008 0 1,60 2,40 400 600 800 1200	1,000 1,000 1,000 1,000 1,000 1,000	18363 18363 18363 18363 18363 18363	0.010515 .006181 .003795 .001504 .000565 .000254	3904175 2612889 1164390 477129 230097	2,604843 1,743191 7,76761 3,18275 1,53483	0786 0616 .0388 .0238 .0159	1,9759 1,6164 1,0791 .6907 .4797	.019565 .006869 .000563 .000016 .000000	1,3338 1,3338 1,3338 1,3338 1,3338 1,3338
444444	0.20 .40 .60 1.00 1.50 2.00 3.00	0.8 0 1.6 0 2.4 0 4.0 0 6.0 0 8.0 0 12.0 0	1,500 1,500 1,500 1,500 1,500 1,500	249922 249922 2449922 2449922 2449922 244992	0.006017 .003566 .002203 .000887 .000334 .000151 .000043	4,954687 3,5192449 2,2214425 9,899942 4,05646 1,95624 1,051896 3,4553316	3305090 2214021 1.481684 .660257 .270548 130466 041879	0.0776 .0597 .0469 .0898 .0183 .0183 .0066	28259 18819 14904 99569 4483 8488 18583	0.053968 .018809 .005799 .000518 .000015 .000000 0.053970	1,3338 1,3338 1,3338 1,3338 1,3338 1,3338
****	0.20 .40 .60 1.00 1.50 2.00 3.00	0.8 0 1.6 0 2.4 0 4.0 0 6.0 0 8.0 0 1.2 0 0	2000 2000 2000 2000 2000 2000	29.822 29.822 29.822 29.822 29.822	.003490 .001538 .000619 .000233 .000105	2313477 1548307 689977 2882730 136348 043141	2303611 1543148 1032717 460191 188564 090933 028771	.0 6 4 8 .0 4 9 9 .0 3 9 2 .0 3 4 9 .0 1 5 3 .0 1 0 3 .0 0 5 5	1.8583 1.5810 1.8443 .8306 .5317 .3693 .8077	.018212 .005800 .00513 .000015 .000000 .000000	1,3338 1,3338 1,3338 1,3338 1,3338 1,3338 1,3338
*****	0.30 .40 .60 1.50 2.00 3.00	0.8 0 1.6 0 2.4 0 4.0 0 6.0 0 8.0 0 13.0 0	3.000 3.000 3.000 3.000 3.000 3.000	35.866 35.866 35.866 35.866 35.866 35.866	0.002690 .001578 .000968 .000386 .000144 .000064	1376249 921989 617046 274976 112676 054338 017193 02333229	0.918396 615185 411686 183446 0.75165 0.36847 0.11468	0.0519 .0397 .0311 .0196 .0120 .0080	11731 9602 7855 5844 3357 8331 1311	0.058876 .019867 .006374 .000569 .000016 .000000 .000000	13331 13331 13331 13331 13331 13331 13332
44444	.60 1.00 1.50 2.00 3.00	0.8 0 1.6 0 2.4 0 4.0 0 6.0 0 8.0 0 1.8 0 0	5.000 5.000 5.000 5.000 5.000 5.000	40,835 40,835 40,835 40,835 40,835 40,835	0.001623 .000917 .000547 .000209 .000075 .000033	156246 104568 .046599 .019094 .009208	0156027 104470 .069894 .031136 .012755 .001945 0037768	.0303 .0303 .0334 .0145 .0087 .0057 .0030	3953 3234 2159 1382 0960 0540	.000000 .0098065	1,3385 1,3385 1,3385 1,3385 1,3385 1,3386
444444	0.20 .40 .60 1.00 1.50 2.00 3.00	08 0 1.6 0 2.4 0 4.0 0 6.0 0 8.0 0 1 2.0 0	7.000 7.000 7.000 7.000 7.000 7.000	42.611 42.611 42.611 42.611 42.611 42.611 42.611	0.001132 .000607 .000348 .000126 .000043 .000018	0.056086 .037572 .025144 .011204 .004591 .002214 .000700	025250 016879 007512 003075 001482 000468	.0346 .0186 .0112 .0065 .0042 .0021	0.8368 1938 1586 1059 0.678 0.471 0.265	.036606 .018576 .001837 .000039 .000000	1,3301 1,3302 1,3303 1,3303 1,3304 1,3305 1,3307

Figure 1. - Configuration treated in analysis.

NACA IN 2878

Figure 2. - Action of damping screen on components of combined turbulent and induced velocities at screen.

Figure 3. - Typical fluid-element- and plane-wave distortions resulting from stream convergence.

Figure 4. - Variation of root-mean-square turbulence velocity ratio with speed ratio (MB of 0.05) and screen pressure-drop coefficient K in absence of turbulence decay for single-screen-axisymmetric-contraction configurations with upstream isotropic turbulence.

Figure 4. - Concluded. Variation of root-mean-square turbulence velocity ratio with speed ratio (MB of 0.05) and screen pressure-drop coefficient. K in absence of turbulence decay for single-screen-axisymmetric-contraction configurations with upstream isotropic turbulence.

Figure 5. - Effect of multiple screens N and speed ratio (NB of 0.05) on root-mean-square turbulence velocity ratio in absence of turbulence decay for screen-axisymmetric-contraction configurations with upstream isotropic turbulence and constant screen losses. Over-all screen pressure-drop coefficient, NK, 6.

Figure 5. - Concluded. Riffect of multiple screens N and speed ratio (MB of 0.05) on root-mean-square turbulence velocity ratio in absence of turbulence decay for screen-axisymmetric-contraction configurations with upstream isotropic turbulence and constant screen losses. Over-all screen pressure-drop coefficient, NK, 6.

Figure 6. - Comparison of one-dimensional spectra in absence of turbulence decay for contraction and for single-screen-contraction configurations for upstream isotropic turbulence having amplitude function $G(k) = H(k^2 + n^2)^{-3}$. M_B, 0.05; M_C, 2.00; h_1 , 29.822.

Figure 6. - Concluded. Comparison of one-dimensional spectra in absence of turbulence decay for contraction and for single-screen-contraction configurations for upstream isotropic turbulence having amplitude function $G(k) = H(k^2 + n^2)^{-5}$. M_B , 0.05; M_C , 2.00; l_1 , 29.822.

56 NACA IN 2878

Figure 7. - Variation of scale ratio with speed ratio ($M_{\rm B}$ of 0.05) and screen pressure-drop coefficient K in absence of turbulence decay for single-screen-axisymmetric-contraction configurations with upstream isotropic turbulence.

(b) Longitudinal scale ratio. Longitudinal scale ratio equals zero for $K \approx 2.76$.

Figure 7. - Concluded. Variation of scale ratio with speed ratio ($M_{\rm B}$ of 0.05) and screen pressure-drop coefficient K in absence of turbulence decay for single-screen-axisymmetric-contraction configurations with upstream isotropic turbulence.

58 NACA IN 2878

Figure 8. - Comparison of correlation coefficients in absence of decay for a screen-contraction configuration ($M_{\rm B}=0.05,\,M_{\rm C}=2.00,\,K=2,\,N=1$) with upstream isotropic turbulence having amplitude function $G(k)=H(k^2+n^2)^{-3}$.

Figure 8. - Concluded. Comparison of correlation coefficients in absence of decay for a screen-contraction configuration ($M_{\rm B}$ = 0.05, $M_{\rm C}$ = 2.00, K = 2, N = 1) with upstream isotropic turbulence having amplitude function $G(k) = H(k^2 + n^2)^{-3}$.

Figure 9. - Variation of effective longitudinal scale ratio in absence of turbulence decay with speed ratio ($M_{\rm B}$ of 0.08) and screen pressure-drop coefficient K for single-screen-axisymmetric-contraction configuration with upstream isotropic turbulence having amplitude function $Q(k) = H(k^2 + n^2)^{-5}$.

Figure 10. - Comparison of theoretical mean-square resultant turbulence velocity ratios corrected for decay with experiment of reference 1. Speed ratio l_1 , 6.7 ($M_{\rm B}$ = 0.06, $M_{\rm C}$ = 0.34); N screens in series; upstream isotropic turbulence; scale $L_{\rm Z}^{\rm A}$, 0.05 foot (estimated).

Figure 11. - Comparison of theoretical root-mean-square longitudinal and lateral turbulence velocity ratios corrected for decay with experiment of reference 1. Speed ratio l_1 , 8.7 ($M_B = 0.05$, $M_C = 0.54$); N screens in series; upstream isotropic turbulence; scale L_2^A , 0.05 foot (estimated).

NACA - Langley Field, V.