Analogical Reasoning How Humans Make Sense of the World

Brendan Shea, PhD

Introduction to Logic

Lesson Overview: From Pattern Recognition to Al

- This lesson explores how humans use analogical reasoning the process of understanding new situations by comparing them to familiar ones.
- We will examine why the human mind naturally thinks in analogies and how this shapes our understanding across different domains.
- You will learn to evaluate what makes analogies effective or misleading in science, ethics, and law.
- We conclude by comparing human analogical thinking with AI pattern recognition systems.

Core Question

What makes some analogies powerful tools for understanding while others lead us astray?

The Cognitive Architecture of Analogy-Making

- The human brain contains specialized regions that automatically search for structural similarities between different situations.
- Working memory allows us to hold multiple concepts simultaneously and map relationships between them.
- Our cognitive system prioritizes relational matches over surface features when making analogies.
- This architecture evolved because recognizing patterns across contexts provides survival advantages.

Key Components

- Pattern detection systems
- Relational mapping processes
- Similarity evaluation mechanisms

Why Our Brains Default to Analogical Thinking

- Analogical thinking allows us to apply previous knowledge to novel situations without starting from scratch.
- It serves as a cognitive shortcut that saves mental energy and processing time.
- This default mode helps us navigate uncertainty by finding familiar patterns in unfamiliar contexts.
- **Evolutionary pressure** favored minds that could quickly recognize "this is like that" for rapid decision-making.

Example

When early humans encountered a new predator, recognizing it as "like a lion" triggered appropriate defensive responses without direct experience.

Everyday Examples of Analogical Reasoning

- **Learning**: "Multiplication is just repeated addition" helps students understand a new operation through a familiar one.
- **Communication**: "The internet is like a highway" explains data flow using traffic and routes.
- Problem-solving: "This math problem is like the one we did yesterday" recognizes similar structure despite different numbers.
- **Social understanding**: "She's going through what I went through last year" applies personal experience to understand others.

Example

When teaching fractions, we say "cutting a pizza into slices" because:

- Source: Pizza (familiar, concrete)
- Target: Fractions (abstract, new)
- Mapping: Whole pizza = 1, slices = parts, sharing = division

Introduction to Logic

Pattern Recognition and the Evolution of Reasoning

- Pattern recognition emerged as a fundamental survival skill in early organisms detecting regularities in their environment.
- Human reasoning evolved from simple stimulus-response patterns to complex abstract pattern matching.
- Our ancestors who could recognize that "dark clouds mean rain" gained advantages in planning and resource management.
- This capacity expanded from physical patterns to social, causal, and conceptual patterns over evolutionary time.

From Metaphor to Model: The Spectrum of Analogical Thought

- Analogical thinking exists on a spectrum from loose metaphors to precise scientific models.
- **Metaphors** highlight selected similarities while ignoring differences (e.g., "time is money").
- **Analogies** make explicit comparisons between domains to explain or argue (e.g., "the heart is like a pump").
- **Models** systematically map multiple relationships from one domain to another (e.g., the planetary model of the atom).

Increasing	Precision

Туре	Purpose	Rigor
Metaphor	Illuminate	Low
Analogy	Explain/Argue	Medium
Model	Predict/Test	High

Anatomy of an Analogy: Source, Target, and Mapping

- Every analogy contains a source domain (the familiar concept) and a target domain (the unfamiliar concept being explained).
- The **mapping** identifies which elements in the source correspond to elements in the target.
- Strong analogies preserve **structural relationships** between elements, not just surface features.
- The process involves selecting relevant features while ignoring irrelevant differences between domains.

Example

Analogy: "The atom is like a solar system"

- Source: Solar system (familiar)
- Target: Atom (unfamiliar)
- ullet Mapping: Sun o nucleus, planets o electrons, orbits o electron paths

Structural Alignment: When Relationships Matter More Than Objects

- **Structural alignment** means matching the relationships between elements rather than the elements themselves.
- Good analogies preserve **higher-order relations** relationships between relationships.
- Surface similarities (color, size, shape) are less important than relational structure (causation, proportion, function).
- This principle explains why "the mind is a computer" works better than "the mind is a filing cabinet."

Key Insight

The power of an analogy lies not in how similar things look, but in how similarly they behave or relate to other elements in their respective systems.

Surface vs. Deep Features in Analogical Reasoning

- Surface features are immediately observable characteristics like appearance, color, or size.
- Deep features involve underlying relationships, functions, or causal structures.
- Novices tend to focus on surface similarities, while experts recognize deep structural patterns.
- Effective analogical reasoning requires looking past superficial resemblance to find meaningful connections.

Common Mistake

Students often group physics problems by surface features (inclined planes, pulleys) rather than deep principles (conservation of energy, Newton's laws).

The Role of Context in Analogical Transfer

- Context determines which features of an analogy are relevant and which should be ignored.
- The same source can map to different targets depending on the purpose of the comparison.
- **Pragmatic constraints** shape how we interpret and apply analogies in real situations.
- Cultural background influences which analogies feel natural or forced to different audiences.

Example

"Life is a journey" emphasizes different aspects in different contexts:

- Career counseling: progression, milestones, destinations
- Grief counseling: rough roads, companions, continuing forward
- Education: exploration, discovery, growth

Criteria for Evaluating Analogical Arguments

- **Relevance**: The shared properties must be relevant to the conclusion being drawn.
- Quantity: More similarities generally strengthen an analogy, but quality matters more than quantity.
- Diversity: Similarities across different types of features provide stronger support.
- **Disanalogy**: Important differences between source and target can weaken or defeat the argument.

Evaluation Checklist

- Are the similarities relevant to the conclusion?
- ② Do the differences matter for this purpose?
- Is the source well-understood?
- 4 Are there alternative analogies to consider?

Relevant Similarities and the Problem of Selection

- Any two things share infinite similarities and differences, creating a selection problem.
- Relevance depends on the specific claim or conclusion the analogy supports.
- We must identify which shared features actually matter for the inferential goal.
- Background knowledge and theory guide us in selecting appropriate features to compare.

When Dissimilarities Matter: Negative Analogy

- Negative analogy refers to the ways in which the source and target differ.
- Some differences are harmless to the analogy, while others are defeaters that undermine the comparison.
- A difference becomes critical when it affects the specific relationship or property being transferred.
- Recognizing relevant dissimilarities helps us avoid overextending analogies beyond their useful scope.

Critical Question

Does this difference break the relationship I'm trying to map from source to target?

The Danger of Superficial Resemblance

- Superficial resemblance occurs when things look similar but lack deep structural correspondence.
- This mistake often leads to false predictions and poor decision-making.
- Marketing and propaganda frequently exploit surface similarities to create misleading associations.
- Training in analogical reasoning helps us resist being fooled by mere appearance.

Example

Misleading Analogy: "This alternative medicine works like traditional medicine"

- Surface similarity: Both come in pill form
- Missing deep structure: No tested biological mechanism
- Result: False confidence in effectiveness

Historical Examples: From Plato's Cave to Darwin's Tree

- Plato's Cave: Reality is to shadows as true knowledge is to sensory experience.
- Newton's Clockwork Universe: The cosmos operates like a precise mechanical clock.
- Darwin's Tree of Life: Species relationships branch like a growing tree.
- Freud's Iceberg: Conscious thought is the tip; the unconscious lies beneath.

Why These Analogies Endured

These analogies succeeded because they:

- Mapped complex abstract ideas to concrete images
- Preserved crucial relationships
- Generated testable predictions

Everyday Analogies We Live By

- Time is money: We "spend," "save," "waste," and "invest" time.
- **Arguments are war**: We "defend" positions, "attack" weak points, and "win" debates.
- Ideas are food: We "digest" information, "chew on" problems, and find some ideas "hard to swallow."
- Organizations are organisms: Companies "grow," have "healthy" cultures, and can "die."

Models as Extended Analogies in Scientific Discovery

- Scientific **models** are systematic analogies that map multiple relationships from familiar to unfamiliar domains.
- Unlike simple analogies, models generate **quantitative predictions** that can be tested experimentally.
- Scientists use models as thinking tools to explore implications and design new experiments.
- The best models reveal unexpected connections and suggest new research directions.

From Analogy to Model	
Simple Analogy	Scientific Model
"Heart is like a pump"	Cardiac pressure equations
"Brain is like a computer"	Neural network algorithms
"DNA is like a code"	Base-pair transcription rules

Case Study: The Wave-Particle Duality of Light

- Scientists initially debated whether light was analogous to water waves or flying particles.
- Wave analogy explained: interference patterns, diffraction, and refraction phenomena.
- Particle analogy explained: photoelectric effect and discrete energy packets.
- The resolution required accepting that light doesn't perfectly match either familiar analogy.

Example

The double-slit experiment revealed the limitation of classical analogies:

- Individual photons (particle-like) create interference patterns (wave-like)
- Neither waves nor particles from everyday experience behave this way
- New quantum framework transcended both analogies

When Scientific Analogies Mislead: The Ether Hypothesis

- 19th-century physicists assumed light waves needed a medium like sound waves need air.
- They invented "luminiferous ether" by analogy to other wave phenomena.
- This analogy led to decades of failed experiments searching for ether's properties.
- The Michelson-Morley experiment finally showed the analogy was fundamentally flawed.

Lesson Learned

Even productive analogies have limits - scientific progress often requires abandoning familiar comparisons for genuinely new concepts.

Thought Experiments as Analogical Tools

- Thought experiments use imaginative analogies to explore logical consequences of theories.
- They allow scientists to test ideas when real experiments are impossible or impractical.
- Famous examples include Einstein's elevator, Schrödinger's cat, and Maxwell's demon.
- These analogical scenarios reveal hidden assumptions and paradoxes in our theories.

The Computer Model of Mind: Strengths and Limitations

- The **computational theory of mind** treats mental processes as information processing operations.
- Strengths: Explains memory storage, logical reasoning, and step-by-step problem solving.
- Limitations: Struggles with consciousness, emotions, and contextual understanding.
- This analogy revolutionized cognitive science but may constrain how we think about minds.

Mapping the Analogy

- Hardware → Brain structure
- Software → Mental processes
- Input/Output → Perception/Action
- Bugs → Mental disorders (problematic?)

DNA as Code: A Productive Metaphor

- The genetic code analogy helped scientists understand how DNA stores and transmits information.
- DNA is like an instruction book (or computer program) for building proteins. Genes are like chapters.
- This framing led to breakthroughs in sequencing, gene editing, and synthetic biology.
- The analogy suggests we can "debug" genetic diseases and "reprogram" organisms.
- However, biological systems are messier than computer code, with complex feedback loops.

Example

Successful predictions from the code analogy:

- lacktriangle Four-letter alphabet (A, T, G, C) \rightarrow words (codons) \rightarrow sentences (genes)
- Copy errors → mutations
- $\bullet \ \ \mathsf{Reading} \ \mathsf{frames} \to \mathsf{translation} \ \mathsf{mechanisms}$

Moral Reasoning Through Analogical Cases

- Ethical reasoning often proceeds by finding analogous cases where our intuitions are clearer.
- We test moral principles by applying them to similar situations and checking for consistency.
- Case-based reasoning helps us navigate novel ethical dilemmas using established precedents.
- The challenge lies in determining which features are morally relevant for comparison.

Key Ethical Question

If we accept X in situation A, must we also accept Y in analogous situation B?

The Trolley Problem and Its Analogical Extensions

- The trolley problem uses a concrete scenario to explore abstract principles about harm and intention.
- Suppose a runaway trolley is headed toward five workers—it will kill them if not stopped. You are standing near a switch that will redirect this trolley so it kills one worker on a different track instead.
- Variations test our intuitions: switching tracks vs. pushing someone, acting vs. allowing harm.
- These thought experiments reveal tensions between utilitarian and deontological ethics.
- Real-world applications include medical triage, autonomous vehicles, and military decisions.

Using Analogies to Expand Our Moral Circle

- Moral progress often occurs when we recognize analogies between accepted and contested cases.
- Historical example: Arguments against slavery drew analogies to accepted rights of free persons.
- Contemporary debates use analogical extension: animal rights, Al rights, environmental protection.
- The expanding circle of moral concern relies on seeing similarities across boundaries.

Pattern of Moral Expansion

- Establish principle for core case (humans deserve respect)
- 2 Identify relevant similarity (capacity to suffer)
- Extend principle to analogous beings (animals can suffer too)
- Overcome resistance from surface differences

When Ethical Analogies Break Down

- Ethical analogies fail when morally relevant differences are overlooked or minimized.
- False analogies can justify harmful actions by focusing on superficial similarities.
- Context and relationships matter: what works in one domain may not transfer to another.
- We must carefully examine whether the features that ground moral status are truly shared.

Warning Signs

An ethical analogy may be flawed when:

- It ignores power differentials
- It strips away important context
- It assumes universal values across cultures
- It oversimplifies complex relationships

Animal Rights Arguments: From Human to Non-Human

- Peter Singer's argument uses analogical reasoning to extend rights from humans to animals.
- Core analogy: If suffering matters morally for humans, it should matter for all sentient beings.
- The argument maps our obligations to vulnerable humans onto our treatment of animals.
- Critics challenge the analogy by pointing to cognitive differences and special human relationships.

Example

Argument by analogy:

- We don't harm human infants (who lack full rationality)
- Adult pigs are more cognitively capable than human infants
- Therefore, the capacity difference doesn't justify harming pigs
- Conclusion: Species membership alone is arbitrary (speciesism)

28 / 37

The Violinist Argument in Bioethics

- Judith Thomson's famous thought experiment uses analogical reasoning to examine abortion ethics.
- Scenario: You have been kidnapped by the Society of Music Lovers, and wake up connected to a famous unconscious (innocent) violinist who needs your kidneys for nine months.
- The analogy maps bodily autonomy rights from this case to specific pregnancy situations. perspective.

Structure of the ArgumentViolinist CaseTarget CaseKidnapped personPregnant womanUnconscious violinistFetusLife support connectionPregnancyRight to disconnect?Right to terminate?

Legal Precedent as Institutionalized Analogy

- The common law system operates through analogical reasoning from case to case.
- Stare decisis ("let the decision stand") requires treating like cases alike.
- Lawyers argue by showing similarities to favorable precedents and differences from unfavorable ones.
- This system embeds analogical reasoning into the fundamental structure of legal decision-making.

Legal Reasoning Process

- Identify relevant precedent cases
- Extract the legal principle (ratio decidendi)
- 3 Map facts from precedent to current case
- 4 Apply the principle if facts are sufficiently similar

The Art of Distinguishing Cases

- **Distinguishing** means showing why a precedent doesn't apply to the current case.
- Lawyers must identify legally relevant differences between cases.
- The skill lies in determining which factual differences actually matter for the legal principle.
- Judges must balance consistency with precedent against adapting to new circumstances.

Example

A lawyer might distinguish cases by arguing:

- "In Smith v. Jones, the contract was verbal, but here it's written"
- This difference matters if the legal principle involves proof standards
- But wouldn't matter if the principle is about consideration

Ratio Decidendi: Finding the Relevant Similarities

- Ratio decidendi is the legal principle that emerges from the essential facts of a case.
- Courts must determine which facts were crucial to the decision and which were incidental
- Future cases are bound by the ratio, not by irrelevant details (obiter dicta).
- Different interpretations of the ratio lead to narrower or broader applications of precedent.

Precedent Case Current Case Facts: A, B, C, D, E Facts: B, D, F, G

Ratio: $B + D \rightarrow Liability$ Apply ratio? Yes

Landmark Cases and Their Analogical Legacy

- Landmark cases establish principles that shape legal reasoning for generations.
- Brown v. Board: "Separate but equal" fails because segregation inherently implies inequality.
- *Miranda v. Arizona*: Custodial interrogation is inherently coercive without warnings.
- These cases become source domains for countless analogical arguments in new contexts.

Extending Landmark Principles

Brown's equality principle has been analogically extended to:

- Gender discrimination in education
- Disability accommodations
- LGBTQ+ rights
- Each extension required arguing the analogy held

When New Technology Challenges Old Analogies

- Legal systems struggle when new technologies don't fit existing analogical frameworks.
- Courts must decide: Is the internet like a newspaper, a broadcast, or something entirely new?
- Cryptocurrency challenges analogies: Is it property, currency, a security, or a new category?
- Poor analogical choices can lead to decades of problematic legal precedents.

Example

Email privacy case:

- Is email like a sealed letter (strong protection)?
- Or like a postcard (limited protection)?
- Or like a phone call (context-dependent)?
- The chosen analogy shapes privacy rights

How AI Systems Approach Pattern Matching

- Al systems find patterns through statistical correlation rather than causal understanding.
- Machine learning identifies similarities in high-dimensional feature spaces.
- Unlike humans, Al doesn't rely on structural mapping or understanding relationships.
- Al can detect patterns humans miss but also make errors humans would never make.

Al vs Human Pattern Recognition	
Human Analogies	Al Pattern Matching
Causal understanding	Statistical correlation
Structural alignment	Feature similarity
Context-sensitive	Context-agnostic
Few examples needed	Many examples needed

Key Differences: Statistical Correlation vs. Causal Understanding

- Humans use analogies to infer causal mechanisms from one domain to another.
- Al systems find **correlational patterns** without understanding why they exist.
- This difference explains why AI can be fooled by adversarial examples that wouldn't confuse humans.
- Understanding this distinction helps us use Al appropriately and recognize its limitations.

Human

Sees: Bird flies Sees: Birds + flight co-occur

Infers: Wings cause flight Learns: Feature correlation

Predicts: Planes need wings Predicts: Feathers predict flight

The Power and Peril of Thinking in Analogies

- Analogical reasoning is fundamental to human cognition and cultural progress.
- It enables us to leverage past experience, communicate abstract ideas, and make creative leaps.
- However, analogies can also constrain thinking, perpetuate biases, and mislead us.
- The key is developing metacognitive awareness about when and how we use analogies.

Final Takeaways

- Recognize when you're reasoning by analogy
- Evaluate the structural mapping, not surface features
- Consider multiple analogies before committing
- Know when to abandon an analogy that no longer serves