This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

庁内整理番号

(11)特許出顧公開番号

特開平7-232978

(43)公開日 平成7年(1995)9月5日

(51) Int.Cl.6

識別記号

M

FΙ

技術表示箇所

C 0 4 B 41/87

C 0 1 B 31/00

C30B 7/10

審査請求 未請求 請求項の数9 OL (全 8 頁)

(21)出願番号

特願平6-22815

(22)出願日

平成6年(1994)2月21日

(31)優先権主張番号 特願平5-354620

(32)優先日

平5 (1993)12月29日

(33)優先権主張国

日本 (JP)

(71)出顧人 000229173

日本タングステン株式会社

福岡県福岡市博多区美野島1丁目2番8号

(71)出願人 592105701

吉村 昌弘

神奈川県綾瀬市寺尾中1丁目6番12号

(72)発明者 吉村 昌弘

神奈川県綾瀬市寺尾中1-6-12

(74)代理人 弁理士 小堀 益

(54) 【発明の名称】 ダイアモンドライクカーボン膜を被覆した材料とその形成方法

(57)【要約】

【目的】 最も普通に用いられて来た炭化物の表面に炭 素皮膜を形成するための新規で、簡単で、且つ安価な方 法を提供する。

【構成】 SiC、TiC、NbC、TaC、WCのよ うな炭化物の板状、小片状、粉体、針状、ウイスカーの ような基材を1~300MPaの加圧状態の100℃~ 9 0 0 ℃に加熱された水によって 1 ~ 5 0 0 時間、水熱 処理して10nmから $2\mu m$ の厚みの炭素皮膜を形成す る。炭化物基材としては、SiCのみならず、TiC、 NbC、TaC、WCのような炭化物を板状、小片状、 粉体、ウイスカー状はもちろんこれらの多結晶体、焼結 助剤を含む多結晶焼結体、単結晶体、さらに、これらを 各種マトリックスに分散した複合体が形成基材として用 いられる。

1

【特許請求の範囲】

【請求項1】 炭化物基体の表面にダイアモンドライクカーボン膜を被覆した材料であって、同膜と前記基体の境界部が膜表面側から基体内部側に向かって徐々に減少する炭素濃度分布を有するダイアモンドライクカーボン膜を被覆した材料。

【請求項2】 炭化物基体の表面にダイアモンドライクカーボン膜を被覆した材料であって、膜のラマン分光スペクトルがダイアモンドライクとグラファイトのラマンシフトの位置に明確なピークが存在するダイアモンドラ 10イクカーボン膜を被覆した材料。

【請求項3】 炭化物基体の表面にダイアモンドライクカーボン膜を被覆した材料であって、同膜と前記基体の境界部において、膜表面側から基体内部側に向かって徐々に減少する炭素濃度分布を有し、且つ、膜のラマン分光スペクトルがダイアモンドライクとグラファイトのラマンシフトの位置に明確なピークが存在するダイアモンドライクカーボン膜を被覆した材料。

【請求項4】 炭化物基体が板状、小片状、粉体、針状、ウイスカーの性状を有する請求項1から3の何れかに記載のダイアモンドライクカーボン膜を被覆した材料。

【請求項5】 炭化物基体を100~900℃の水性媒体中で1~300MPaの圧力で1~500時間で水熱処理して炭化物基体表面に、膜と基体の境界部で炭素の濃度が膜側から基体側に向かって徐々に減少する濃度分布を有するダイアモンドライクカーボン膜を被覆した材料の形成方法。

【請求項6】 炭化物基体を100~900℃の水性媒体中で1~300MPaの圧力で1~500時間水熱処 30 理処理して炭化物基体の表面に、膜のラマン分光スペクトルをダイアモンドライクとグラファイトのラマンシフトの位置に存在するダイアモンドライクカーボン膜を被覆した材料の形成方法。

【請求項7】 炭化物基体を100~900℃の水性媒体中で1~300MPaの圧力で1~500時間水熱処理して炭化物基体表面に、膜と基体の境界部で炭素の濃度が膜側から基体側に向かって徐々に減少する濃度分布を有し、かつ膜のラマン分光スペクトルがダイアモンドライクとグラファイトのラマンシフトの位置に明確なピ 40一クが見られるダイアモンドライクカーボン膜を被覆した材料の形成方法。

【請求項8】 炭化物基体が、SiC, TiC, NbC, TaC, WCのうち少なくとも一種以上からなる炭化物または炭化物の複合物または焼結助剤を含む炭化物焼結体である請求項6から7の何れかに記載のダイアモンドライクカーボン膜を被覆した材料の形成方法。

【請求項9】 炭化物基体が、板状、小片状、粉体、針状、ウイスカーの性状を有する請求項6から8の何れかに記載のダイアモンドライクカーボン膜を被覆した材料 50

の形成方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、炭化物基材に特異な炭素質皮膜を被覆した材料とその材料の形成方法に関する。

[0002]

【従来の技術】近年、連続炭素質皮膜は、その優れた物理的、化学的、熱的それに機械的性質を兼ね備えたその特異な性質を有するために、宇宙で用いられる各種のマイクロ電子機器あるいは核融合装置の部材等、多くの技術分野における応用が可能な材料として魅力があることが認識されてきている。

【0003】例えば、その高強度と破壊物性を利用して、航空宇宙分野、核分野さらには自動車分野への応用が充分可能なセラミックス複合体に広く用いられている。この特性は、従来の文献に、以下のことが開示されている。繊維とマトリックスの間の境界面における炭素層の存在によって、繊維質あるいは強化粒子とマトリックスとの間の脆性破壊の進行を、接合状態を無くして各構成材の特性の変化を軽減して複合体の物性が改善される。炭素の中間層によって、非直線的な応力ー歪み特性が生じ、非断層的な破壊状態を示す。さらには、このような層を得るためには化学的な蒸着(CVD)が従来から用いられていることも開示されている。

【0004】CVD法は例えば、エス・キムラ(S. Kimura)著「CVD-C. SiCコーティングによるSiCファイバーの熱安定性の改良(Improvement of Thermal Stability of SiC Fiberby CVD-C. SiC coating)日本セラミックス協会学術論文誌(Journal of Ceram. Soc. Japan)99 1207-1211(1991)に述べられている。

【0005】このCVDによって、SiC含有複合体上に炭素質皮膜を形成するためには、通常略1100℃の高温の下で、長時間かけて行われる。しかしながら、この方法を実施するためには高価な設備を使用する必要があり、その上、工程は複雑で、さらには、得られた炭素質皮膜も強度上も劣ったものである。

【0006】また、繊維と基材の間に存在する100nm以下の炭素質の層は、ガラスーセラミックスの基材の複合体の機械的な動態を大きく改善することが報告されている。また、炭素層の存在は、1200℃~1300℃、さらには、それ以上の温度の使用の際のSiC繊維の分離を緩和する機能があることも報告されている。近年、水熱反応が粉末、単結晶、さらには被覆皮膜の形成のための新規な手段として成功裏に使用されるようになった。例えば、900℃と1000MPaの水圧の下での水熱処理は、炭素の黒鉛化の手段として利用できると

いう報告もある。しかしながら粉体あるいは、焼結され たSiCの300℃~800℃、100MPaまでの加 圧条件で水熱条件での態様として、単に、シリカとガス 状のCO、CH、が形成されたことのみが報告されてい るだけで、炭素の形成についての報告はない。

[0007]

【発明が解決しようとする課題】本発明の目的は、かか る複合物として、最も普通に用いられて来た炭化珪素の ような炭化物表面に形成された炭素質皮膜と、同炭素質 皮膜を、簡単に、且つ安価に得ることができる新規な方 10 法を提供することにある。

[0008]

【課題を解決するための手段】本発明は、従来は、Si Cの水熱処理は、腐食をもたらすものと認識されていた が、炭化物基材を加圧状態の100~900℃に加熱さ れた水媒体によって水熱処理するすることによって、炭 素質皮膜材料が得られるという知見の下で完成した。

【0009】本発明において、炭素質膜とは炭素の含有 量が50重量%の膜をいう。ここで、炭化物基材とは、 炭素を少なくとも1%以上含むものを言い炭素を含有す *2*0 ればよいことを意味し、炭素の単体、ほとんど100 %、Cからなるものでもよい。

【0010】炭化物基体とは、ある基材の上に炭化物が 被覆された構造のものでもよい。例えば、カーボンの基 材の表面にCVD法によりSiC膜を被覆したものでも よい。

【0011】すなわち、本発明のダイアモンドライクカ ーポン膜を被覆した材料は、炭化物基体の表面にダイア モンドライクカーボン膜を被覆した材料であって、同膜 と前記基体の境界部が膜表面側から基体内部側に向かっ 30 パルク状の多結晶焼結体または単結晶体でもよい。 て徐々に減少する炭素濃度分布を有する。

【0012】また、本発明のダイアモンドライクカーポ ン膜を被覆した材料は、炭化物基体の表面にダイアモン ドライクカーボン膜を被覆した材料であって、膜のラマ ン分光スペクトルがダイアモンドライクとグラファイト のラマンシフトの位置に明確なピークが存在する。

【0013】炭化物基材としては、SICのみならず、 TIC、NbC、TaC、WCのような炭化物を板状、 小片状、粉体、針状、ウイスカー状、マトリックス相と しては勿論、ウイスカー、板状、小片状、粒状、針状の 40 多結晶体、焼結助剤を含む多結晶焼結体、単結晶体が形 成基材として用いられる。また、プラスチック、セラミ ック、合金等の基材の上に炭化物が被覆された構造のも のでもよい。

【0014】本発明のダイヤモンドライクカーポン膜を 被覆した材料は、炭化物基体を100~900℃の水性 媒体中で1~300MPaの圧力で1~500時間で水 熱処理することによって得られる。

【0015】水熱反応の温度は100℃以上で900℃

進行せず、炭素質膜は得られない。また、900℃を越 えると炭素質膜形成反応より炭化物基体の酸化腐食反応 の方が優位となり、基体そのものが腐食してしまう。そ の為に本発明の炭素質膜形成のための温度は100℃以 上で900℃以下であることを要する。炭素質膜の成膜 速度等製造上の観点等から300℃~800℃の温度範 囲が好ましい。

【0016】また、圧力は1MPa以上300MPa以 下が必要で、1MPa未満では媒体が蒸発してしまうの で反応が実質上進行せず、300MPaを越えると、圧 力容器や配管に無理がかり好ましくない。成膜速度等を 考慮して、製造上10~100MPaの範囲が好まし

【0017】適用する加圧条件としては、1~300M Paの圧力が好適で、水熱反応の処理時間は1~500 時間が好適である。

【0018】水性媒体としては、蒸留水や一般の水は勿 輪、反応速度等を増加させる目的で無機の塩や酸、アル カリあるいは有機溶媒を添加することもできる。

【0019】さらに、処理時間は媒体の種類および量、 処理温度と圧力により異なるが、600℃、100MP aの場合4時間必要で、これ未満であると、水熱反応が 十分に進行せず表面に炭素膜が形成されなかったり、膜 ムラができる。

【0020】また、使用する炭化物粒子はその種類につ いては特に限定されないが、扱いやすさの点から平均粒 子径として0.01~100μm程度が望ましい。ま た、炭化物の形状は、微粒子状に限らず、小片状、針 状、板状、ウイスカー状あるいはその集合体又は一般の

[0021]

【作用】本発明は、炭化物と高温高圧の水性媒体との間 の反応によって起こるもので、炭化物基材上への非晶質 炭素、黒鉛状炭素、さらには、ダイヤモンド状の炭素質 皮膜が形成される。

【0022】従来、イオンプレーティング等で得られる ダイアモンドライクカーポン膜は、その基体と膜の境界 部で、殆ど物理的に付着している状態のもので、膜の成 分と基材成分とが化学的結合をしておらず、従来のダイ アモンドライクカーポンのコーティングした材料では基 体との境界部において、化学反応や拡散反応を伴うよう な、ある特定な元素が境界部で接合に関わるような働き をしていなかった。

【0023】本願では、SiCのような炭化物基材は水 熱処理時、基材表面で高温、高圧の水との反応によりS iは酸化され、SiO2を生成してケイ酸の形で水相に 溶解し、残った炭素成分が再構築されて、基体表面に連 **続的にダイアモンドライクカーポン膜が形成されてお** り、基材に対して傾斜機能的な膜となっている。そこ 以下であることが必要で、100℃未満では反応が殆ど 50 で、PVD法のような物理的な蒸着法で形成されるよう

な、基材と皮膜部とが成分的にも不連続なダイアモンド ライクカーボン膜と比較して、熱的、機械的に優れたコ 一ティング材料となっている。

【0024】また、イオンプレーティングのようなPV D法で形成したダイアモンドライクカーボン膜のラマン 分光スペクトルを見ると、ダイアモンドのシフトの位置 とグラファイトのシフトの位置でも殆どプロードでピー クらしきものが見られなかったが、本発明の水熱処理に より形成したダイアモンドライクコーティング膜では、 ダイアモンドライクのシフトの位置とグラファイトのシ 10 フトの位置で際立ったピークが見られ、カーボンのSP ³ 結合が従来のPVD法で形成したものより強いことを 示している。そのために出来たダイアモンドライクカー ボン膜の硬度は従来のものより高いものとなっている。 また、その特徴を裏付ける結果として、膜は従来と比較 してグラファイト成分が少ないため、白みを帯びたもの となっている。

【0025】本発明において重要なことは、水熱処理に よって、炭素質皮膜は溶液から形成されるものではな く、基体の表面層が炭素に転化する点である。そのた め、炭素質皮膜は密着強度の大きい膜となる。

【0026】その用途として、その優れた特性から技術 的な面からの種々の可能性をもたらすものである。

【0027】このような水熱反応によって、いかにして 炭化物粒子表面に炭素質膜が形成されるかについての理 論的な解明は今後の研究に待たねばならないが、炭化物 からの炭素成分の水性媒体中への溶解と再析出、基体表 面上での炭素成分の再配列、あるいは金属炭化物と水性 媒体との反応により生成した金属酸化物や金属水酸化物 の選択的溶解を伴う水熱反応によって炭素含有率の高い 30 炭素皮膜が生成するものと推察される。

【0028】このようにして生成された炭素質皮膜は、 CVD等によって得られた炭素膜と異なり、その炭素膜 の厚さと組織が一様であり、炭化物基体と炭素質皮膜と の界面近傍で炭素成分が表面側から内側に向かって徐々 に減少する濃度分布を有し、炭化物粒子からなる基体と 表面の炭素質皮膜とが一体で耐剥離性に優れたものとな る。

【0029】SICの水熱腐食において、炭化物基体が SiCの場合、

 $SiC+4H_2O=SiO_2+CO_2+2H_2$

SiC+2H2 O=SiO2 +CH4

の反応が、水熱反応の熱力学的な見地から提案されてい るが、水が大過剰にある場合は、これとは異なる。

【0030】すなわち、本発明においては、

SiC+2H2 O=SiO2 +C+2H2

 $S i O_2 + n H_2 O = S i O_2 \cdot n H_2 O$

によって、非晶質の炭素質皮膜が形成しているものと考 えられる.

比(s p² /s p³)に依存するが、酸、アルカリの両 方へは化学的には不活性であり、磁性に対する影響はな く、そのオプティカルパンドギャップは0から数 e V程 度と光学的にも優れ、さらに熱伝導性も高いなど優れた 特性を持っている。

[0032]

【実施例】

実施例1

平均粒子径が 0. 6 5 μmのSiC粉末(シュタルク社 製A-10、α-SiC)を用い、この炭化物1gを蒸 留水からなる水性媒体中に浸渍し、これを600℃~9 00℃、圧力10~100MPaで1~24時間水熱処 理した。比較例として300℃で水熱処理した。生成さ れた粒子の組成をX線回析、SEM、ラマン分光分析、 オージェ分光分析によって調査した。

[0033] 1例として、800℃、100MPa、8 時間水熱処理後の試料について上記調査を行なった。C 粉末のX線回析を行ったが、X線回析では皮膜はアモル ファスであることがわかった。ラマン分光分析では、ダ イアモンドライクシフト (1300~1370 c m^{-1}) 20 とグラファイトシフト位置(1570~1620c \mathbf{m}^{-1})に明確な、ピークを有する炭素膜、いわゆるダイ アモンドライクカーボン膜であることがわかった。図1 に800℃、100MPa、8時間水熱処理後のラマン 分光分析のデータと、図2に未処理の粉末のラマン分光 分析のデータを示す。この結果から分かるように、処理 前にはSIC粒子表面に炭素膜が形成されていなかった が、水熱処理後SiC粒子表面にいわゆるダイアモンド ライクカーポン膜が形成されていることがわかった。 尚、水熱処理の時間の経過と共にラマンシフトの強度が 増加する傾向にあった。オージェ分光分析によって膜と 基材との境界部で表面に形成された炭素質皮膜の炭素成 分が表面例から内側に向かって徐々に減少する濃度分布 を有することがわかった。

【0034】生成した炭素被覆炭化物粒子の断面のSE Mでの観察では炭素質膜は平滑で緻密で均一組織で均一 な厚さの膜であることがわかった。形成される炭素質皮 膜の厚みは、その処理温度、圧力およ \mho 時間に応じ、10 n mから 2 µ mの範囲で変化した。 3 0 0 ℃の水熱処 理では、上記各種調査の結果、どの条件でもダイアモン ドライクカーボン膜は形成されていないことがわかっ た。

【0035】尚、上記実施例では、SiC粉末を使用し た例について述べたが、TiC、ZrC、NbC、Ta C、WC等あらゆる炭化物でも同様にしてその表面に炭 素質皮膜を形成することを確認した。

【0036】実施例2

同様にしてβ-SiCウイスカー(東海カーポン製、ト ーカイウイスカー、TWS-X50);0.2grを蒸 【0031】非晶質の炭素の薄い皮膜は、化学的な結合 50 留水中600℃、100MPaの条件で24時間水熱処

理をすると、図3に示すように、SiC表面に炭素質皮膜が形成されることがわかった。図4に示す処理前のラマン分析のデータと比較すると、原料のピークに炭素の2本のピークが重なっているのがわかる。原料でカーボンのラマンシフトのピークがみられるが、これは原料にフリーカーボンがあったためと考えられる。しかし、水熱処理することにより、SiCウイスカー表面に明らかにダイアモンドライクカーボン膜が形成されていることがわかる。

【0037】実施例3

97wt%のβ-SiC (平均粒径0.1μm)、1.0wt%のEr2O3、2.0wt%のAl2O3の組成の混合粉末を2050℃で加圧焼成した試料を10×10×5mmの形状に切り出した。そしてこの試料を800℃、100MPaの条件で8時間水熱処理した。

【0038】この試料について、小角入射X線回析、ラ マン分光分析、オージェ分光分析、SEM(走査型電子 顕微鏡)による断面観察、薄膜の硬さの測定調査を行な った。X線回析の結果、試料表面に形成された薄膜はア モルファスであることがわかった。また、ラマン分析の 結果、実施例1と同様なダイアモンドライクとグラファ イトの位置で明確なラマンシフトのピークが観察され た。いわゆるダイアモンドライクカーボンが形成されて いることがわかった。これは従来のイオンプレーティン グ等で見られるようなラマンシフトが不明確な膜と異な り、カーボンのSP³ の結合が強い膜が得られているこ とを示している。尚、水熱処理の時間の経過と共にラマ ンシフトの強度が増加する傾向があった。硬度を測定し てみると、ピッカース硬さで約1000~4000 (K g/cm²) あり、ラマンのデータと一致している。ま た、オージェ分光分析の結果、薄膜は殆どが炭素からな る膜で、基材と薄膜の境界部で炭素の濃度が基材側から 薄膜側に向かって徐々に増加する膜であることがわかっ た。そして、断面をSEMにより観察したが、膜厚は1 μmであった。そしてその膜は、実施例1と同様に平滑 で緻密で均一組織で均一な厚さの膜であることがわかっ た。

【0039】実施例4

95wt%のWCと5wt%のCoからなる混合粉末をプレス成形し、1400℃、0.1MPaで水素雰囲気 40で焼成した材料を10×10×5mmの形状に切出し、表面に付着したCoを5%HNO,水溶液中で処理して除去し、800℃、100MPaの水性媒体中で8時間水熱処理をした。そして、この処理をした試料について、小角入射X線回析、ラマン分光分析、オージェ分光分析、SEMによる断面観察、表面硬度測定を行なった。X線回析の結果、試料表面に形成された薄膜はアモルファスであることがわかった。また、ラマン分光分析の結果、実施例1と同様にダイアモンドライクとグラファイトの位置で明確なラマンシフトのピークが観察され 50

た。これも同様にいわゆるダイアモンドライクカーボン 膜が形成されていることがわかった。これは従来のイオ ンプレーティング等で形成されたダイアモンドライクカ ーポン膜のラマン分光分析で得られるラマンパターンが 極めてプロードなものであるのと較べると、対照的であ った。実施例1~3と同様に、カーポンのSPュ 結合が 強い膜が得られていることがわかる。尚、水熱処理の時 間の経過と共にラマンシフトの強度が増加する傾向があ った。硬度を測定してみると、実施例3と同様、ビッカ 10 ース硬さで約1000~4000(Kg/cm²)あ り、ラマンのデータと一致している。また、オージェ分 光分析の結果も、実施例3と同様、薄膜は殆ど炭素から なる膜で、基材と薄膜の境界部で炭素の濃度が基材側か ら薄膜側に向かって徐々に増加する膜であることがわか った。そして、断面をSEMにより観察したが、薄膜は 2μmであった。そしてその膜は実施例3と同様に平滑 で緻密で均一な組織を有し、均一な膜厚を有することが わかった。

R

【0040】実施例5

カーポンの焼結体(10×10×5mm)に、SiCl 4 とCH。とH2 との混合ガスを用い、1380℃、 0. 013MPaの条件でCVD法でSiCを被覆した 試料を作製した。そして実施例4と同様に800℃、1 00MPaの水性媒体中で8時間水熱処理をした。そし て、この処理をした試料について、小角入射X線回折、 ラマン分光分析、オージェ分光分析、SEMによる断面 観察、表面硬度測定を行なった。X線回折の結果、試料 表面に形成された薄膜はアモルファスであることがわか った。また、ラマン分光分析の結果、実施例1と同様に ダイアモンドライクとグラファイトの位置で明確なラマ ンシフトのピークが観察された。ダイアモンドライクカ ーポン膜が試料表面に形成されていることがわかった。 これは従来のイオンプレーティング等で形成されたダイ アモンドライクカーポン膜のラマン分光分析で得られる ラマンパターンが極めてブロードなものであるのと較べ ると対照的であった。実施例1~4と同様に、カーボン のSP³結合が強い膜が得られていることがわかった。 前配実施例と同様に水熱処理の時間の経過と共にラマン シフトの強度が増加する傾向があった。硬度を測定して みると、実施例3、4と同様にピッカース硬さで約10 00~4000(kg/cm²)であり、ラマンのデー 夕の結果と硬さのデータが符合している。また、オージ エ分光分析の結果も、実施例3、4と同様、薄膜は殆ど 炭素からなる膜で、基材と薄膜の境界部で炭素の濃度が 基材側から薄膜側に向かって徐々に増加する膜であるこ とがわかった。そして断面をSEMにより観察したが薄 膜の膜厚は1. 5 μmであった。 そして、 その膜は実施 例3、4と同様に平滑で緻密で均一な組織を有し、均一 な膜厚を有することがわかった。

[0041]

【発明の効果】本発明によって以下の効果を奏する。

【0042】(1) SiCを主体とする種々の形状を 持つ基体上に緻密な非晶質炭素あるいは黒鉛皮膜あるい はダイアモンドライクカーボン膜が簡単に形成できる。

【0043】(2) TiC、TaC、NbC、WCのような多くの炭化物およびその複合体に適用できる。

【0044】(3) 本発明によって得た炭素質皮膜は、物理的、化学的、熱的さらには機械的に優れた特性を有し、多くの産業分野で適用できる。

【0045】(4) 被覆基体が如何なる形状のもので 10 あっても、また、大きさに関係なく適用でき、また、粉状SiCのような粒状基体にも適用できる。この際には、表面酸化膜の事前の除去によるのがよい。

【0046】(5) ウイスカー、小片体等への適用は、その破壊靭性を改善し、とくに、セラミックス複合体への適用は破壊強度を改善する。

【0047】(6) SiC焼結体、SiC粒子のような電気絶縁体表面に導電性を付与する。

【0048】(7)本発明の方法により、表面に炭素質

膜を形成したSiC粒子の焼結特性が向上する。

【0049】(8)基材との密着強度が大きい膜が得られる。

10

【0050】(9)複合体作製時には、粉体として分散性が向上する。

【0051】(10) 炭化物基材と炭素皮膜の境界近傍で表面から基材にかけて炭素成分の濃度が除々に減少する分布を有するので熱衝撃に強い膜が得られる。

【図面の簡単な説明】

【図1】 SiC粒子の800℃、100MPaの8時間水熱処理後のラマン分光スペクトル。

【図2】 処理前のSiC粒子のラマン分光スペクトル。

【図3】 SiCウイスカーの600℃、100MPa の条件で24時間水熱処理後のラマン分光スペクトル処 理前のSiCウイスカーのラマン分光スピクトル。

【図4】 供試材であるSIC粉末の水熱処理前後のそれぞれのラマンスペクトルを示す。

【図1】

1500.00

160000

1700.00

