Queueing Network Controls via Deep Reinforcement Learning

Model: Discrete-time MDP with Long-run Average Cost Objective

- an MDP with countable state space X, finite action space A, one-step cost $g(x) \ge 0$ and the transition function P(y|x,a)
- Consider a class of randomized Markovian policies π_{θ} , $\theta \in \Theta$. Under the policy π_{θ} , the transition matrix $P_{\theta}(y \mid x) = \sum_{a \in \mathcal{A}} \pi_{\theta}(a \mid x) P(y \mid x, a)$ for $x, y \in \mathcal{X}$
- Assume each Markov chain P_{θ} is irreducible and aperiodic
- Find θ to minimise the long-run average cost

$$\lim_{N \to \infty} \sup \frac{1}{N} \mathbb{E}_{\pi_{\theta}} \left[\sum_{k=0}^{N-1} g\left(x^{(k)}\right) \right]$$

Which is independent of the initial state, $x^{(k)}$ is the state of the Markov chain P_{θ} after k time steps

Remark

- 1. On going operations: long-run average cost is appropriate while most algorithm focus on discount
- 2. System load can be high, leading to large or infinite state space
- 3. One-step cost function g can be unbounded, leading to many complexity analyses invalid
- 4. Heavy load leads to long regenerative cycles, variance reduction techniques are required

Contributions

- 1. The Lyapunov function theory of Meyn-Tweedie is an important tool to justify the PPO algorithm for long-run
- 2. average cost problems with infinite state space and unbounded one-step cost

Poisson equation

- Assume that the Markov chain P_{θ} has the stationary distribution, which is denoted by μ_{θ}
- Long-run average cost is $\mu_{\theta}^T g$
- Assume that Poisson equation has a solution $h_{\theta} = h$

$$g(x) - \mu_{\theta}^T g + \sum_{y \in \mathcal{X}} P_{\theta}(y \mid x) h(y) - h(x) = 0$$
 for each $x \in \mathcal{X}$

- In discount setting, this is just Bellman equation
- An advantage function $A_{\theta}: \mathcal{X} \times \mathcal{A} \to \mathbb{R}$ of policy π_{θ}

$$A_{\theta}(x, a) := \mathbb{E}_{y \sim P(\cdot | x, a)} \left[\underbrace{g(x) - \mu_{\theta}^T g + h_{\theta}(y) - h_{\theta}(x)}_{Q(x, a)} - \underbrace{h_{\theta}(x)}_{V(x)} \right]$$

• When X is finite, both assumptions are satisfied.

Trust region policy optimisation (Shulman et al., 2015)

Kakade-Langform (2001): discount factor $\gamma \in [0,1)$

$$egin{aligned} c_{\gamma}\left(\pi_{ heta}
ight) - c_{\gamma}\left(\pi_{\eta}
ight) &= rac{1}{\left(1-\gamma
ight)^{2}}\mathbb{E}_{x\in d_{\pi_{ heta}},a\sim\pi_{ heta}\left(\cdot|x
ight)}\left[A_{\pi_{\eta}}(x,a)
ight] \ &= rac{1}{\left(1-\gamma
ight)^{2}}\mathbb{E}_{x\sim d_{\pi\eta},a\sim\pi_{\eta}\left(\cdot|x
ight)}\left[rac{\pi_{ heta}(x,a)}{\pi_{\eta}(x,a)}A_{\pi_{\eta}}(x,a)
ight] + \Delta\left(\pi_{\eta},\pi_{ heta}
ight) \ &\equiv L\left(\pi_{\eta},\pi_{ heta}
ight) + \Delta\left(\pi_{\eta},\pi_{ heta}
ight) \end{aligned}$$

Schulman et al. (2015)

$$c_{\gamma}\left(\pi_{\theta}, s\right) - c_{\gamma}\left(\pi_{\eta}, s\right) \leq L\left(\pi_{\eta}, \pi_{\theta}\right) + \frac{4\epsilon}{(1 - \gamma)^{2}}\alpha^{2}$$

$$\text{surrogate objective}$$

$$\text{where } \epsilon = \max_{(x, a) \in \mathcal{X} \times \mathcal{A}} \left| A_{\pi_{\eta}}(x, a) \right| \text{ and } \alpha = d_{\text{TV}}^{\text{max}}\left(\pi_{\eta}, \pi_{\theta}\right)$$

Remark:

- Although long-run problem can be approximate by discount one, the coefficient $\frac{4\epsilon}{(1-\gamma)^2}$ would become extreme large and force the update to be small
- When the one-step cost function g is unbounded, ϵ would be problematic
- Trust region algorithm: minimise $L(\eta, \theta)$ subject to $d_{KL}^{max}(\eta, \theta) \le \delta$, where $\delta > 0$ is a hyper-parameter

When the state space is infinite: drift condition

Lemma 1. Consider an irreducible Markov chain on a countable state space \mathcal{X} with a transition matrix P on $\mathcal{X} \times \mathcal{X}$. Assume there exists a vector $\mathcal{V} : \mathcal{X} \to [1, \infty)$ such that the following drift condition holds for some constants $b \in (0,1)$ and $d \geq 0$, and a finite subset $C \subset \mathcal{X}$:

$$\sum_{y \in \mathcal{X}} P(y|x)\mathcal{V}(y) \le b\mathcal{V}(x) + d\mathbb{I}_C(x), \quad \text{for each } x \in \mathcal{X},$$
(3.1)

where $\mathbb{I}_C(x) = 1$ if $x \in C$ and $\mathbb{I}_C(x) = 0$ otherwise. Here, P(y|x) = P(x,y) is the transition probability from state $x \in \mathcal{X}$ to state $y \in \mathcal{X}$. Then (a) the Markov chain with the transition matrix P is positive recurrent with a unique stationary distribution μ ; and (b) $\mu^T \mathcal{V} < \infty$, where for any function $f : \mathcal{X} \to \mathbb{R}$ we define $\mu^T f$ as

$$\mu^T f := \sum_{x \in \mathcal{X}} \mu(x) f(x).$$

(Meyn-Tweedie) Assume policy π_n is such that P satisfies the drift condition with Lyapunov function $V \ge 1$.

Lemma 2. Consider a V-uniformly ergodic Markov chain with transition matrix P and the stationary distribution μ . For any cost function $g: \mathcal{X} \to \mathbb{R}$ satisfying $|g| \leq \mathcal{V}$, Poisson equation (3.3) admits a fundamental solution

$$h^{(f)}(x) := \mathbb{E}\left[\sum_{k=0}^{\infty} \left(g(x^{(k)}) - \mu^T g\right) \mid x^{(0)} = x\right] \text{ for each } x \in \mathcal{X}, \tag{3.4}$$

where $x^{(k)}$ is the state of the Markov chain after k timesteps.

The drift condition (3.1) is sufficient and necessary for an irreducible, aperiodic Markov chain to be V-uniformly ergodic for any $g: X \to R$ with $|g(x)| \le V(x)$ for $x \in X$, there exist constants $R < \infty$ and r < 1 such that

$$\left| \sum_{y \in \mathcal{X}} P^n(y \mid x) g(y) - \mu^T g \right| \le R \mathcal{V}(x) r^n \quad \text{for any } x \in X \text{ and } n \ge 0;$$

Main Results

Lemma 4. Fix an $\eta \in \Theta$. We assume that drift condition (3.1) holds for P_{η} . Let some $\theta \in \Theta$ satisfies,

$$||(P_{\theta}-P_{\eta})Z_{\eta}||_{\mathcal{V}}<1,$$

then the Markov chain with transition matrix P_{θ} has a unique stationary distribution μ_{θ} .

Theorem 1. Suppose that the Markov chain with transition matrix P_{η} is an irreducible chain such that the drift condition (3.1) holds for some function $\mathcal{V} \geq 1$ and the cost function satisfies $|g| < \mathcal{V}$.

For any $\theta \in \Theta$ such that

$$D_{\theta,\eta} := \|(P_{\theta} - P_{\eta})Z_{\eta}\|_{\mathcal{V}} < 1 \tag{3.8}$$

the difference of long-run average costs of policies π_{θ} and π_{η} is bounded by:

$$\mu_{\theta}^{T}g - \mu_{\eta}^{T}g \leq N_{1}(\theta, \eta) + N_{2}(\theta, \eta),$$
(3.9)

where $N_1(\theta, \eta)$, $N_2(\theta, \eta)$ are finite and equal to

$$N_1(\theta, \eta) := \mu_{\eta}^T (g - (\mu_{\eta}^T g)e + P_{\theta} h_{\eta} - h_{\eta}), \tag{3.10}$$

$$N_2(\theta, \eta) := \frac{D_{\theta, \eta}^2}{1 - D_{\theta, \eta}} \left(1 + \frac{D_{\theta, \eta}}{(1 - D_{\theta, \eta})} (\mu_{\eta}^T \mathcal{V}) \|I - \Pi_{\eta} + P_{\eta}\|_{\mathcal{V}} \|Z_{\eta}\|_{\mathcal{V}} \right) \|g - (\mu_{\eta}^T g) e\|_{\infty, \mathcal{V}} (\mu_{\eta}^T \mathcal{V}), \quad (3.11)$$

where, for a vector ν on \mathcal{X} , \mathcal{V} -norm is defined as

$$\|\nu\|_{\infty,\mathcal{V}} := \sup_{x \in \mathcal{X}} \frac{|\nu(x)|}{\mathcal{V}(x)}.$$
 (3.12)

- Denote: $H(\theta) = N_1(\theta, \eta) + N_2(\theta, \eta)$, If $H(\theta) < 0$, π_{θ} is a strict improvement over policy π_{η}
- Minimization of $H(\theta)$ is difficult
- When $D_{\theta,\eta}$ is small, $L(\theta,\eta) = O(D_{\theta,\eta})$ and $\delta(\theta,\eta) = O(D_{\theta,\eta}^2)$. Thus, if $L(\theta,\eta) < 0$, the surrogate function is likely negative
- Conservative update: minimise $L(\theta, \eta)$ while keeping $D_{\theta, \eta}$ is small

• When $D_{\theta,\eta}$ is small, $L(\theta,\eta) = O(D_{\theta,\eta})$ and $\delta(\theta,\eta) = O(D_{\theta,\eta}^2)$. Thus, if $L(\theta,\eta) < 0$, the surrogate function is likely negative

$$|N_{1}(\theta, \eta)| := \left| \mu_{\eta}^{T}(g - (\mu_{\eta}^{T}g)e + P_{\theta}h_{\eta} - h_{\eta}) \right|$$

$$\leq (\mu_{\eta}^{T}\mathcal{V}) \|g - (\mu_{\eta}^{T}g)e + P_{\theta}h_{\eta} - h_{\eta}\|_{\infty, \mathcal{V}}$$

$$= (\mu_{\eta}^{T}\mathcal{V}) \|(P_{\theta} - P_{\eta})h_{\eta}\|_{\infty, \mathcal{V}}$$

$$= (\mu_{\eta}^{T}\mathcal{V}) \|(P_{\theta} - P_{\eta})Z_{\eta} \left(g - (\mu_{\eta}^{T}g)e\right)\|_{\infty, \mathcal{V}}$$

$$\leq (\mu_{\eta}^{T}\mathcal{V}) \|g - (\mu_{\eta}^{T}g)e\|_{\infty, \mathcal{V}} D_{\theta, \eta}.$$

Lemma 5.

$$D_{\theta,\eta} \le \|Z_{\eta}\|_{\mathcal{V}} \sup_{x \in \mathcal{X}} \sum_{a \in \mathcal{A}} |r_{\theta,\eta}(a|x) - 1| G_{\eta}(x,a),$$

where
$$G_{\eta}(x, a) := \frac{1}{\mathcal{V}(x)} \sum_{y \in \mathcal{X}} \pi_{\eta}(a|x) P(y|x, a) \mathcal{V}(y)$$
.

The lemma says that $D_{\theta,\eta}$ is small when the ratio $r_{\theta,\eta}(a|x)$ is close to 1

$$\begin{split} N_1(\theta,\eta) &= \mu_\eta^T (g - (\mu_\eta^T g) e + P_\theta h_\eta - h_\eta) \\ &= \underset{\substack{a \sim \pi_\theta(\cdot \mid x) \\ y \sim P(\cdot \mid x, a)}}{\mathbb{E}} \left[g(x) - (\mu_\eta^T g) e + h_\eta(y) - h_\eta(x) \right] \\ &= \underset{\substack{a \sim \pi_\theta(\cdot \mid x) \\ a \sim \pi_\theta(\cdot \mid x)}}{\mathbb{E}} A_\eta(x,a) \\ &= \underset{\substack{x \sim \mu_\eta \\ a \sim \pi_\eta(\cdot \mid x)}}{\mathbb{E}} \left[\frac{\pi_\theta(a \mid x)}{\pi_\eta(a \mid x)} A_\eta(x,a) \right] = \underset{\substack{x \sim \mu_\eta \\ a \sim \pi_\eta(\cdot \mid x)}}{\mathbb{E}} \left[r_{\theta,\eta}(a \mid x) A_\eta(x,a) \right], \end{split}$$

where we define an advantage function $A_{\eta}: \mathcal{X} \times \mathcal{A} \to \mathbb{R}$ of policy $\pi_{\eta}, \eta \in \Theta$ as:

$$A_{\eta}(x,a) := \underset{y \sim P(\cdot|x,a)}{\mathbb{E}} \left[g(x) - \mu_{\eta}^T g + h_{\eta}(y) - h_{\eta}(x) \right].$$

Following Schulman et al., solve an unconstrained optimisation problem by minimising the clipped surrogate objective over θ

$$L^{\epsilon}(\theta, \eta) := \underset{x \sim \mu_{\eta}(\cdot \mid x), a \sim \pi_{\eta}(\cdot \mid x)}{\mathbb{E}} \max \left[r_{\theta, \eta}(a \mid x) A_{\eta}(x, a), \operatorname{clip}\left(r_{\theta, \eta}(a \mid x), 1 - \epsilon, 1 + \epsilon\right) A_{\eta}(x, a) \right]$$

where $\epsilon > 0$ is a hyper-parameter

$$\operatorname{clip}(c, 1 - \epsilon, 1 + \epsilon) := egin{cases} 1 - \epsilon, & \text{if } c < 1 - \epsilon, \ 1 + \epsilon, & \text{if } c > 1 + \epsilon, \ c, & \text{otherwise,} \end{cases}$$

PPO: Markov Chain Monte Carlo

Under policy π_{η} an episode is generated:

$$E = \{x^0, a^0, x^1, a^1, \dots, x^{K-1}, a^{K-1}\}$$

Based on the generated episode, the Monte-Carlo estimate of $L^{\epsilon}(\theta, \eta)$ is

$$\begin{split} \hat{L}\left(\theta, \eta, D^{(0:N-1)}\right) &= \frac{1}{N} \sum_{k=0}^{N-1} \max \left[\frac{\pi_{\theta}\left(a^{(k)} \mid x^{(k)}\right)}{\pi_{\eta}\left(a^{(k)} \mid x^{(k)}\right)} \hat{A}_{\eta}\left(x^{(k)}, a^{(k)}\right), \operatorname{clip}\left(\frac{\pi_{\theta}\left(a^{(k)} \mid x^{(k)}\right)}{\pi_{\eta}\left(a^{(k)} \mid x^{(k)}\right)}, 1 - \epsilon, 1 + \epsilon\right) \hat{A}_{\eta}\left(x^{(k)}, a^{(k)}\right) \right] \\ A_{\eta}(x, a) &:= \underset{y \sim P(\cdot \mid x, a)}{\mathbb{E}} \left[g(x) - \mu_{\eta}^{T} g + h_{\eta}(y) - h_{\eta}(x) \right] \end{split}$$

- Use neural network to parametrised the policy π_{θ} .
- Use neural network to approximate advantage function (actor-critic framework)
- Use pytorch/tensorflow to solve the optimisation problem and update the policy
- The key is to estimate the advance function, i.e., h(x)
- Assume the MDP is known, so the expectation can be computed exactly (Model-based)
- Requires one to estimate h(y) for some states that have not been visited in the simulation
- Use Monte Carlo method to estimate h(y) at a selected subset of y's, and then use an approximate f(y) to replace h(y). The latter is standard in learning

Variance reduction in value function estimation

Several variance reduction techniques to estimate h:

- Regenerative simulation
- Discounting
- Approximate martingale process (AMP) control variate, Henderson-Glynn(2002)

Regenerative simulation

$$h^{(f)}(x) := \mathbb{E}\left[\sum_{k=0}^{\infty} \left(g\left(x^{(k)}\right) - \mu^T g\right) \mid x^{(0)} = x\right] \text{ for each } x \in \mathcal{X}$$

where $x^{(k)}$ is the state of the Markov chain after k timesteps.

Poisson equation admits infinitely many solutions. Let x^* be a recurrent state. Then Poisson's equation

$$g(x) - \mu^T g + \sum_{y \in \mathcal{X}} P(y \mid x) h(y) - h(x) = 0$$
 for each $x \in \mathcal{X}$

admits a solution

$$h^{(x^*)}(x) := \mathbb{E}\left[\sum_{k=0}^{\sigma(x^*)-1} \left(g\left(x^{(k)}\right) - \mu^T g\right) \mid x^{(0)} = x\right] \text{ for each } x \in \mathcal{X}$$

assume that an episode consisting of N regenerative cycles, has been generated under policy $\pi \eta$, where x (0)= x^*

$$\left\{x^{(0)}, x^{(1)}, \dots, x^{(\sigma_1)}, \dots, x^{(\sigma_N-1)}\right\}$$

$$\begin{split} A_{\eta}(x,a) &:= \underset{y \sim P(\cdot|x,a)}{\mathbb{E}} \left[g(x) - \mu_{\eta}^{T} g + h_{\eta}(y) - h_{\eta}(x) \right] \\ \hat{A}_{\eta} \left(x^{(k)}, a^{(k)} \right) &:= g \left(x^{(k)} \right) - \widehat{\mu_{\eta}^{T} g} + \sum_{y \in \mathcal{X}} P \left(y \mid x^{(k)}, a^{(k)} \right) f_{\psi^{*}}(y) - f_{\psi^{*}} \left(x^{(k)} \right) \\ \widehat{\mu_{\eta}^{T} g} &:= \frac{1}{\sigma(N)} \sum_{k=0}^{\sigma(N)-1} g \left(x^{(k)} \right) \end{split}$$

where $\sigma(n)$ is the nth time when regeneration state x^* is visited.

$$\hat{h}_k := \sum_{t=k}^{\sigma_k - 1} \left(g\left(x^{(t)} \right) - \widehat{\mu_{\eta}^T g} \right)$$

where $\sigma(k) = \min \{ t > k \mid x(t) = x^* \}$ is the first time when the regeneration state x^* is visited after time k

$$\psi^* = \arg\min_{\psi \in \Psi} \sum_{k=0}^{\sigma(N)-1} \left(f_{\psi} \left(x^{(k)} \right) - \hat{h}_k \right)^2$$

where $x^{(k)}$ is the state of the Markov chain P after k timesteps

and $\sigma(x^*) = \min\{k > 0 \mid x^{(k)} = x^*\}$ is the first future time when state x^* is visited

Regenerative simulation (parallel version)

$$\left\{x^{(0,q)}, a^{(0,q)}, x^{(1,q)}, a^{(1,q)}, \cdots, x^{(k,q)}, a^{(k,q)}, \cdots, x^{\left(\sigma^{q}(N)-1,q\right)}, a^{\left(\sigma^{q}(N)-1,q\right)}\right\}$$

$$egin{aligned} \hat{L}\left(heta, heta_i,D^{(1:Q),(0:\sigma^q(N)-1)}
ight) &= \sum_{q=1}^Q \sum_{k=0}^{\sigma^q(N)-1} \max\left[rac{\pi_{ heta}\left(a^{(k,q)}|x^{(k,q)}
ight)}{\pi_{ heta_i}\left(a^{(k,q)}|x^{(k,q)}
ight)} \hat{A}_{ heta_i}\left(x^{(k,q)},a^{(k,q)}
ight), &\mathbf{4} \end{aligned}
ight. \ \left. ext{clip}\left(rac{\pi_{ heta}\left(a^{(k,q)}|x^{(k,q)}
ight)}{\pi_{ heta_i}\left(a^{(k,q)}|x^{(k,q)}
ight)}, 1-\epsilon, 1+\epsilon
ight) \hat{A}_{ heta_i}\left(x^{(k,q)},a^{(k,q)}
ight)
ight] &\mathbf{5} \\ \mathbf{6} &\mathbf{6} &$$

Algorithm 1: Base proximal policy optimization algorithm for long-run average cost problems

Result: policy π_{θ_I} 1 Initialize policy π_{θ_0} ;

2 for policy iteration i = 0, 1, ..., I-1 do

for actor q = 1, 2, ..., Q do

Run policy π_{θ_i} until it reaches Nth regeneration time on $\sigma^q(N)$ step: collect an episode $\{x^{(0,q)}, a^{(0,q)}, x^{(1,q)}, a^{(1,q)}, \cdots, x^{(\sigma^q(N)-1,q)}, a^{(\sigma^q(N)-1,q)}, x^{(\sigma^q(N),q)}\};$

 \mathbf{end}

Compute the average cost estimate $\widehat{\mu_{\theta_i}^T g}$ by (4.2) (utilizing Q episodes);

Compute $\hat{h}_{k,q}$, the estimate of $h_{\theta_i}(x^{(k,q)})$, by (4.3) for each $q=1,..,Q,\ k=0,..,\sigma^q(N)-1$;

Update $\psi_i := \psi$, where $\psi \in \Psi$ minimizes $\sum_{q=1}^{Q} \sum_{k=0}^{\sigma^q(N)-1} \left(f_{\psi}(x^{(k,q)}) - \hat{h}_{k,q} \right)^2$ following (4.4);

Estimate the advantage functions $\hat{A}_{\theta_i}\left(x^{(k,q)},a^{(k,q)}\right)$ using (4.5) for each $q=1,..,Q,\ k=0,..,\sigma^q(N)-1$:

$$D^{(1:Q),(0:\sigma^q(N)-1)} = \left\{ \left(x^{(0,q)}, a^{(0,q)}, \hat{A}_{0,q} \right), \cdots, \left(x^{(\sigma^q(N)-1,q)}, a^{(\sigma^q(N)-1,q)}, \hat{A}_{\sigma^q(N)-1,q} \right) \right\}_{q=1}^Q.$$

Minimize the surrogate objective function w.r.t. $\theta \in \Theta$:

$$\hat{L}\left(\theta, \theta_{i}, D^{(1:Q),(0:\sigma^{q}(N)-1)}\right) = \sum_{q=1}^{Q} \sum_{k=0}^{\sigma^{q}(N)-1} \max\left[\frac{\pi_{\theta}(a^{(k,q)}|x^{(k,q)})}{\pi_{\theta_{i}}(a^{(k,q)}|x^{(k,q)})} \hat{A}_{\theta_{i}}(x^{(k,q)}, a^{(k,q)}), \\ \operatorname{clip}\left(\frac{\pi_{\theta}(a^{(k,q)}|x^{(k,q)})}{\pi_{\theta_{i}}(a^{(k,q)}|x^{(k,q)})}, 1 - \epsilon, 1 + \epsilon\right) \hat{A}_{\theta_{i}}(x^{(k,q)}, a^{(k,q)})\right]$$

Update $\theta_{i+1} := \theta$.

12 end

10

Approximating martingale-process method

Intuition

From the definition of a solution to the Poisson equation

$$g\left(x^{(k)}\right) - \mu_{\eta}^{T}g = h_{\eta}\left(x^{(k)}\right) - \sum_{\mathbf{y} \in \mathcal{X}} P_{\eta}\left(\mathbf{y} \mid x^{(k)}\right) h_{\eta}(\mathbf{y})$$

If the approximation ζ is sufficiently close to h η , then the correlation between

$$g\left(x^{(k)}\right) - \widehat{\mu_{\eta}^T g}$$
 and $\zeta\left(x^{(k)}\right) - \sum_{y \in X} P_{\eta}\left(y \mid x^{(k)}\right) \zeta(y)$

is positive and we can use the control variate to reduce the variance

Consider the martingale process starting from an arbitrary state $x^{(k)}$ until the first regeneration time

$$M_{\sigma_k}\left(x^{(k)}\right) = \zeta\left(x^{(k)}\right) + \sum_{t=k}^{\sigma_k-1} \left[\sum_{y \in \mathcal{X}} P_{\eta}\left(y \mid x^{(t)}\right) \zeta(y) - \zeta\left(x^{(t)}\right)\right]$$

 $EM_n = 0$ for all $n \ge 0$

Adding
$$M_{\sigma_k}$$
 estimator to $\hat{h}_k := \sum_{t=k}^{\sigma_k-1} \left(g\left(x^{(t)}\right) - \widehat{\mu_{\eta}^T g} \right)$

$$\hat{h}_{\eta}^{AMP(\zeta)}\left(\boldsymbol{x}^{(k)}\right) := \zeta\left(\boldsymbol{x}^{(k)}\right) + \sum_{t=k}^{\sigma_{k}-1} \left(g\left(\boldsymbol{x}^{(t)}\right) - \widehat{\mu_{\eta}^{T}g}\right) + \sum_{\boldsymbol{y} \in \mathcal{X}} P_{\eta}\left(\boldsymbol{y} \mid \boldsymbol{x}^{(t)}\right) \zeta(\boldsymbol{y}) - \zeta\left(\boldsymbol{x}^{(t)}\right)\right)$$

Adopting a biased estimator through discounting

Regenerative cycles can be long, leading to high variance in estimating h

E.g. cycle length of M/M/1 queue with server utilization $\rho = \lambda/\mu < 1$

$$\mathbb{E}\left[\sigma(x^* = 0)\right] = O\left(\frac{1}{1 - \rho}\right) \text{ as } \rho \uparrow 1$$

Replace

$$h^{(x^*)}(x) := \mathbb{E}\left[\sum_{k=0}^{\sigma(x^*)-1} \left(g\left(x^{(k)}\right) - \mu^T g\right) \mid x^{(0)} = x\right] \text{ for each } x \in \mathcal{X}$$

By

$$egin{aligned} r^{(\gamma)}\left(x^*
ight) &:= (1-\gamma)\mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^k g\left(x^{(k)}
ight) \mid x^{(0)} = x^*
ight] \ V^{(\gamma)}(x) &:= \mathbb{E}\left[\sum_{k=0}^{\sigma(x^*)-1} \gamma^k \left(g\left(x^{(k)}
ight) - r^{(\gamma)}\left(x^*
ight)
ight) \mid x^{(0)} = x
ight] ext{ for each } x \in \mathcal{X} \end{aligned}$$

Interpretation

Introducing the discount factor γ can be interpreted as a modification of the original transition dynamics

Consider a modified Markov reward process with transition kernel \tilde{P} , γ for each $x \in \mathcal{X}$

$$\left\{ egin{aligned} ilde{P}(y\mid x) &= \gamma P(y\mid x) & ext{for } y
eq x^* \ ilde{P}\left(x^*\mid x
ight) &= \gamma P\left(x^*\mid x
ight) + (1-\gamma) \end{aligned}
ight.$$

Therefore, discounting forces faster regeneration

Further variance reduction: T-step truncation

$$\hat{V}^{(\gamma)}(x) = \sum_{t=0}^{T-1} \gamma^t \left(g\left(x^{(t)} \right) - \widehat{r\left(x^* \right)} \right) + \gamma^T \underbrace{\sum_{t=0}^{\sigma(x^*)-1} \gamma^t \left(g\left(x^{(T+t)} \right) - \widehat{r\left(x^* \right)} \right)}_{\hat{V}^{(\gamma)}(x^T)}$$

Instead of estimating the value at state $x^{(T)}$ by a random roll-out, we can use the value of deterministic approximation function ζ at state $x^{(T)}$

The T-step truncation reduces the variance of the standard estimator but introduces bias unless the approximation

```
Algorithm 3: Proximal policy optimization with discounting
      Result: policy \pi_{\theta_I}
  1 Initialize policy \pi_{\theta_0} and value function f_{\psi_{-1}} \equiv 0 approximators;
  2 for policy iteration i = 0, 1, ..., I - 1 do
            for actor q = 1, 2, ..., Q do
                   Run policy \pi_{\theta_i} for N+L timesteps: collect an episode
                     \{x^{(0,q)}, a^{(0,q)}, x^{(1,q)}, a^{(1,q)}, ...., x^{(N+L-1,q)}, a^{(N+L-1,q)}\};
            end
            Estimate the average cost \widehat{\mu_{\theta_i}^T g} by (4.2), the present discounted value \widehat{r_{\theta_i}(x^*)} by (4.21) below;
            Compute \hat{V}_{k,q}^{AMP(f_{\psi_{i-1}}),(\gamma,\lambda)} estimates by (4.20) for each q = 1, ..., Q, k = 0, ..., N-1;
           Update \psi_i := \psi, where \psi \in \Psi minimizes \sum_{q=1}^{Q} \sum_{k=0}^{N-1} \left( f_{\psi} \left( x^{(k,q)} \right) - \hat{V}_{k,q}^{AMP(f_{\psi_{i-1}}),(\gamma,\lambda)} \right)^2 following (4.4);
            Estimate the advantage functions \hat{A}_{\theta_i} (x^{(k,q)}, a^{(k,q)}) using (4.5) for each q = 1, ..., Q, k = 0, ..., N-1:
             D^{(0:N-1)_{q=1}^{Q}} = \left\{ \left( x^{(0,q)}, a^{(0,q)}, \hat{A}_{\theta_i}^{(\gamma)}(x^{(0,q)}, a^{(0,q)}) \right), \cdots, \left( x^{(N-1,q)}, a^{(N-1,q)}, \hat{A}_{\theta_i}^{(\gamma)}(x^{(N-1,q)}, a^{(N-1,q)}) \right) \right\}_{q=1}^{Q}
            Minimize the surrogate objective function w.r.t. \theta \in \Theta:
10
                  \hat{L}^{(\gamma)}\left(\theta, \theta_{i}, D^{(0:N-1)_{q=1}^{Q}}\right) = \sum^{Q} \sum^{N-1} \max\left[\frac{\pi_{\theta}\left(a^{(k,q)}|x^{(k,q)}\right)}{\pi_{\theta}\left(a^{(k,q)}|x^{(k,q)}\right)} \hat{A}_{\theta_{i}}^{(\gamma)}\left(x^{(k,q)}, a^{(k,q)}\right),\right]
                                                                                           \operatorname{clip}\left(\frac{\pi_{\theta}\left(a^{(k,q)}|x^{(k,q)}\right)}{\pi_{\theta_{i}}\left(a^{(k,q)}|x^{(k,q)}\right)}, 1-\epsilon, 1+\epsilon\right) \hat{A}_{\theta_{i}}^{(\gamma)}\left(x^{(k,q)}, a^{(k,q)}\right) \right];
            Update \theta_{i+1} := \theta.
12 end
```

Experimental results for multiclass queueing networks: the optimality gap

Figure 1: The criss-cross network

Load regime	DP (optimal)	TP	threshold	FP	RFP	PPO (Algorithm 2) with CIs
I.L.	0.671	0.678	0.679	0.678	0.677	0.671 ± 0.001
B.L.	0.843	0.856	0.857	0.857	0.855	0.844 ± 0.004
I.M.	2.084	2.117	2.129	2.162	2.133	2.084 ± 0.011
B.M.	2.829	2.895	2.895	2.965	2.920	2.833 ± 0.010
I.H.	9.970	10.13	10.15	10.398	10.096	10.014 ± 0.055
B.H.	15.228	15.5	15.5	18.430	15.585	16.513 ± 0.140

Table 2: Average number of jobs per unit time in the criss-cross network under different policies. Column 1 reports the variances in the load regimes.

Experimental results for multiclass queueing networks: large state space

Figure 4: The extended six-class queueing network.

No. of classes 3L	LBFS	FCFS	FP	RFP	PPO (Algorithm 3) with CIs
6	15.749	40.173	15.422	15.286	14.130 ± 0.208
9	25.257	71.518	26.140	24.917	23.269 ± 0.251
12	34.660	114.860	38.085	36.857	32.171 ± 0.556
15	45.110	157.556	45.962	43.628	39.300 ± 0.612
18	55.724	203.418	56.857	52.980	51.472 ± 0.973
21	65.980	251.657	64.713	59.051	55.124 ± 1.807

Table 4: Numerical results for the extended six-class queueing network in Figure 4.

Experimental results for multiclass queueing networks: policy

- Feng, Jiekun, Mark Gluzman, and J. G. Dai. "Scalable Deep Reinforcement Learning for Ride-Hailing." *arXiv preprint arXiv:2009.14679* (2020).
- Oroojlooyjadid, Afshin, et al. "A Deep Q-Network for the Beer Game: A Deep Reinforcement Learning algorithm to Solve Inventory Optimization Problems." *arXiv preprint arXiv:1708.05924* (2017).
- Gijsbrechts, Joren and Boute, Robert N. and Van Mieghem, Jan Albert and Zhang, Dennis, Can Deep Reinforcement Learning Improve Inventory Management? Performance on Dual Sourcing, Lost Sales and Multi-Echelon Problems (October 6, 2020). Available at SSRN: https://ssrn.com/abstract=3302881 or https://ssrn.com/abstract=3302881 or http://dx.doi.org/10.2139/ssrn.3302881
- Chen, Xinyun, Yunan Liu, and Guiyu Hong. "An online learning approach to dynamic pricing and capacity sizing in service systems." *arXiv* preprint arXiv:2009.02911 (2020).

Math4DS 直播 NO.21 | 康奈尔大学运筹学与信息工程学院教授Jim Dai

https://www.bilibili.com/video/BV1mK4y1E7yC?from=search&seid=16562476630513160936