

ABSTRACT OF THE DISCLOSURE

A fuel cell system calculates a water quantity Q_w produced by a fuel cell from an output current I of the fuel cell, and at the same time calculates saturated water vapor contents Q_{wa} and Q_{wc} in exhaust gases based on exhaust-gas flow rates Q_a and Q_c , exhaust-gas pressures P_a and P_c , and exhaust-gas temperatures T_a and T_c of the anode side and the cathode side, respectively. Then the system calculates a water quantity control ratio that is defined as $t = Q_w / (Q_{wa} + Q_{wc})$ and controls operation of the fuel cell by controlling one or more of the exhaust-gas flow rates Q_a and Q_c , the exhaust-gas pressures P_a and P_c , the exhaust-gas temperatures T_a and T_c , and a current I of the anode side and the cathode side in a direction such that a deviation Δt between the water quantity control ratio t and a value of one is canceled out. By this control, the fuel cell can be operated with excellent performance, without humidifying gases of the anode side and the cathode side.