第三章 一阶微分方程的解的存在定理

§ 3.3 解对初值的连续性和可微性定理

问题提出

多家
$$\begin{cases} \frac{dy}{dx} = f(x, y), & (3.1) \\ \varphi(x_0) = y_0 \end{cases}$$

$$\begin{cases} \frac{dy}{dx} = y \\ \varphi(x_0) = y_0 \end{cases} \Rightarrow y = y_0 e^{x - x_0}$$

的解 $y = \varphi(x, x_0, y_0)$ 对初值的一些基本性质.

解可看成是关于x, x_0 , y_0 的三元函数 $y = \varphi(x, x_0, y_0)$ 满足 $y_0 = \varphi(x_0, x_0, y_0)$.

内容:

- >解对初值的对称性、连续性
- >解对初值和参数的连续性
- >解对初值的可微性

一、解关于初值的对称性

3.3.1 解关于初值的对称性

设f(x,y)于域D内连续且关于y满足利普希茨条件,

$$(x_0, y_0) \in D, \quad y = \varphi(x, x_0, y_0)$$

是初值问题

$$\begin{cases} \frac{dy}{dx} = f(x, y), \\ \varphi(x_0) = y_0 \end{cases}$$

的唯一解,则在此表达式中, (x,y) 与 (x_0,y_0) 可以调换其相对位置,即在解的存在范围内成立着关系式

$$y_0 = \varphi(x_0, x, y).$$

二、解对初值的连续依赖性——引理

3.3.2 解对初值的连续依赖性

Q: 当初值发生变化时,对应的解是如何变化的? 当初始值微小变动时,方程的解变化是否也是很小呢?

引理 如果 f(x,y)在某域 D 内连续, 且关于y满足利普希茨条件(利普希茨常数为L),则对方程(3.1)任意两个解 $\varphi(x)$ 及 $\psi(x)$,在它们公共存在的区间内成立不等式

$$|\varphi(x) - \psi(x)| \le |\varphi(x_0) - \psi(x_0)| e^{L|x - x_0|},$$

其中 x₀ 为所考虑区间内的某一值.

$$\left|\varphi(x)-\psi(x)\right| \leq \left|\varphi(x_0)-\psi(x_0)\right| e^{L|x-x_0|}$$

证明设 $\varphi(x)$, $\psi(x)$ 在区间 $a \le x \le b$ 均有定义,令

$$V(x) = [\varphi(x) - \psi(x)]^2, a \le x \le b,$$

則
$$V'(x) = 2[\varphi(x) - \psi(x)][\varphi'(x) - \psi'(x)] = 2[\varphi(x) - \psi(x)][f(x,\varphi) - f(x,\psi)]$$

$$|V'(x)| = 2|\varphi(x) - \psi(x)||f(x,\varphi) - f(x,\psi)| \le 2L|\varphi(x) - \psi(x)||\varphi(x) - \psi(x)| = 2LV(x)$$

于是 $-2LV(x) \le V'(x) \le 2LV(x), a \le x \le b.$

$$V'(x) \le 2LV(x)$$

$$V'(x)e^{-2Lx} - 2LV(x)e^{-2Lx} \le 0$$

$$\frac{d}{dx}(V(x)e^{-2Lx}) \le 0$$

因此, 在区间 [a,b] 上 $V(x)e^{-2Lx}$ 为减函数, 有

$$V(x)e^{-2Lx} \le V(x_0)e^{-2Lx_0}, x_0 \le x \le b$$

$$V(x) \le V(x_0)e^{2L(x-x_0)}, x_0 \le x \le b$$

$$-2LV(x) \le V'(x)$$

$$V'(x)e^{2Lx} + 2LV(x)e^{2Lx} \ge 0$$

$$\frac{d}{dx}(V(x)e^{2Lx}) \ge 0$$

因此, $V(x)e^{2Lx}$ 为增函数,有

$$V(x)e^{2Lx} \le V(x_0)e^{2Lx_0}, a \le x \le x_0$$

$$V(x) \le V(x_0)e^{-2L(x-x_0)}, a \le x \le x_0$$

$$V(x) = [\varphi(x) - \psi(x)]^2$$

因此,
$$V(x) \le V(x_0)e^{2L|x-x_0|}$$
, $a \le x \le b$, $a \le x_0 \le b$.

两边取平方根,得 $|\varphi(x)-\psi(x)| \leq |\varphi(x_0)-\psi(x_0)|e^{L|x-x_0|}$.

二、解对初值的连续依赖性——连续依赖定理

解对初值的连续依赖定理

假设f(x,y)于域G内连续且关于y满足局部利普希茨条件,

$$(x_0, y_0) \in G$$
, $y = \varphi(x, x_0, y_0)$ 是初值问题

$$\begin{cases} \frac{dy}{dx} = f(x, y), & \varphi(x_0) = y_0 \end{cases}$$

的解,它于区间 $a \le x \le b$ 有定义 $(a \le x_0 \le b)$,那么,对任 意给定的 $\varepsilon > 0$,必存在正数 $\delta = \delta(\varepsilon, a, b)$,使得当

$$(\overline{x}_0 - x_0)^2 + (\overline{y}_0 - y_0)^2 \le \delta^2$$

时,方程满足条件 $\varphi(\overline{x}_0) = \overline{y}_0$ 的解 $y = \varphi(x, \overline{x}_0, \overline{y}_0)$ 在区间 $a \le x \le b$ 上也有定义, 并且

$$\left| \varphi(x, \overline{x}_0, \overline{y}_0) - \varphi(x, x_0, y_0) \right| < \varepsilon, \quad a \le x \le b.$$

定理(解对初值的连续依赖定理)

方程:
$$\frac{dy}{dx} = f(x,y), \quad (x,y) \in G \subset \mathbb{R}^2$$
 (1)

条件: I. f(x,y) 在G内连续且关于Y满足局部利普希茨条件; II. $y = \varphi(x,x_0,y_0)$ 是(1)过点 $(x_0,y_0) \in G$ 的解,定义区间为[a,b].

结论: 对
$$\forall \varepsilon > 0$$
, $\exists \delta = \delta(\varepsilon, a, b) > 0$ 使得当 $(\overline{x}_0 - x_0)^2 + (\overline{y}_0 - y_0)^2 \leq \delta^2$ 时, 方程(1)过点($\overline{x}_0, \overline{y}_0$) 的解 $y = \varphi(x, \overline{x}_0, \overline{y}_0)$ 在区间上也有定义,且 $|\varphi(x, \overline{x}_0, \overline{y}_0) - \varphi(x, x_0, y_0)| < \varepsilon$, $a \leq x \leq b$.

二、解对初值的连续依赖性——思路示意图

记积分曲线段 $S: y = \varphi(x, x_0, y_0) \equiv \varphi(x), x \in [a, b]$ 显然 $S = \mathbb{E}[x] \times \mathbb{E}[x]$ 是 $S = \mathbb{E}[$

第一步:找区域D,使 $S \subset D$,且 f(x,y) 在D上满足Lips.条件.

対 $\forall \varepsilon > 0$,记 $\rho = d(\partial \tilde{G}, S), \eta = \min \left\{ \varepsilon, \rho \mid 2 \right\}$ $L = \max \left\{ L_1, \cdots, L_N \right\}$

则以 为半径的圆, 当其圆心从S的 左端点沿S 运动到右端点时, 扫过 的区域即为符合条件的要找区域D

 $\forall (x, y_1) \in D, (x, y_2) \in D,$ 必落在某个圆 C_i 内 $|f(x, y_1) - f(x, y_2)|$ $\leq L_i |y_1 - y_2|$ $\leq L |y_1 - y_2|$

f(x,y)在D上关于 y 满足 利普希茨条件, 利普希茨常数为L.

断言,必存在这样的正数 $\delta = \delta(\varepsilon, a, b)$ ($\delta < \eta$),

使得只要 \bar{x}_0, \bar{y}_0 满足不等式

$$(\overline{x}_0 - x_0)^2 + (\overline{y}_0 - y_0)^2 \le \delta^2,$$

则解 $y = \varphi(x, \bar{x}_0, \bar{y}_0) \equiv \psi(x)$ 必然在区间 $a \le x \le b$ 也有定义.

由于D是有界闭区域,且f(x,y)在其内关于y满足利普希茨条件,由延拓性定理知,解 $y = \varphi(x, \bar{x}_0, \bar{y}_0)$ 必能延拓到区域D的边界上。设它在D的边界上的点为 $(c,\psi(c))$ 和 $(d,\psi(d)),c < d$,这时必然有 $c \le a,d \ge b$. 因为否则设c > a,d < b,则由引理

$$|\varphi(x)-\psi(x)| \le |\varphi(\overline{x}_0)-\psi(\overline{x}_0)|e^{L|x-\overline{x}_0|}, c \le x \le d.$$

由
$$\varphi(x)$$
 的连续性,对 $\delta_1 = \frac{1}{2} \eta e^{-L(b-a)}$,必存在 $\delta_2 > 0$,

使得当 $|x-x_0| \le \delta_2$ 时有 $|\varphi(x)-\varphi(x_0)| < \delta_1$.

取
$$\delta = \min(\delta_1, \delta_2)$$
, 则当 $(\overline{x}_0 - x_0)^2 + (\overline{y}_0 - y_0)^2 \le \delta^2$,

$$\left| \varphi(x) - \psi(x) \right| \le \left| \varphi(\overline{x}_0) - \psi(\overline{x}_0) \right| e^{L|x - \overline{x}_0|} \qquad \left| \overline{y}_0 - y_0 \right|$$

$$\leq \left(\left| \varphi(\overline{x}_0) - \varphi(x_0) \right| + \left| \varphi(x_0) - \psi(\overline{x}_0) \right| \right) e^{L|x - \overline{x}_0|} < 2\delta_1 e^{L|x - \overline{x}_0|} \leq 2\delta_1 e^{L(b - a)} = \eta, c \leq x \leq d.$$

于是 $|\varphi(x)-\psi(x)| < \eta$ 对一切 $x \in [c,d]$ 成立, 特别地有

$$|\varphi(c)-\psi(c)|<\eta, \quad |\varphi(d)-\psi(d)|<\eta,$$

即点 $(c,\psi(c))$ 和 $(d,\psi(d))$ 均落在D的内部, 而不可能位于D的边界上.

这与假设矛盾, 因此, 解 $\psi(x)$ 在区间[a,b]上有定义.

第三步:证明
$$|\psi(x)-\varphi(x)|<\varepsilon,a\leq x\leq b$$

在不等式
$$|\varphi(x)-\psi(x)| \le \eta, c \le x \le d$$
中,

将区间[c, d]换为[a,b], 可知: 当

$$(\bar{x}_0 - x_0)^2 + (\bar{y}_0 - y_0)^2 \le \delta^2$$
 时,有

$$\left| \varphi(x, \overline{x}_0, \overline{y}_0) - \varphi(x, x_0, y_0) \right| < \eta \le \varepsilon, \quad a \le x \le b$$

定理得证.

证明思路

- 1 构造满足利普希茨条件的有界闭区域
- 2 确定过初值邻域内的点的解的存在区间

3 证明解对初值的连续依赖性

二、解对初值的连续依赖性——说明

当把 $y = \varphi(x, x_0, y_0)$ 作为 x, x_0, y_0 的三元函数时, 它是三元连续函数。

$$(\overline{x} - x)^2 + (\overline{x}_0 - x_0)^2 + (\overline{y}_0 - y_0)^2 \le \delta^2$$

$$\left| \varphi(\overline{x}, \overline{x}_0, \overline{y}_0) - \varphi(x, x_0, y_0) \right| < \varepsilon$$

证明:由于解 $y = \varphi(x, x_0, y_0)$ 对 x 在闭区间[a,b]上连续,

 $\forall \varepsilon > 0, \exists \delta_1, \quad$ 使得当 $|\overline{x} - x| \leq \delta_1$ 时,有

$$|\varphi(\overline{x}, x_0, y_0) - \varphi(x, x_0, y_0)| < \frac{\varepsilon}{2}, \quad \overline{x}, x_0 \in [a, b]$$

又由解对初值的连续依赖定理,总存在 δ_2 ,使得当

$$(\overline{x}_0 - x_0)^2 + (\overline{y}_0 - y_0)^2 \le \delta_2^2 \quad \text{时, 有}$$

$$\left| \varphi(x, \overline{x}_0, \overline{y}_0) - \varphi(x, x_0, y_0) \right| < \frac{\varepsilon}{2} \quad a \le x \le b$$

取
$$\delta = \min(\delta_1, \delta_2)$$
,

则只要
$$(\overline{x}-x)^2 + (\overline{x}_0 - x_0)^2 + (\overline{y}_0 - y_0)^2 < \delta^2$$

$$\left| \varphi(\overline{x}, \overline{x}_0, \overline{y}_0) - \varphi(x, x_0, y_0) \right|$$

$$= \left| \varphi(\overline{x}, \overline{x}_0, \overline{y}_0) - \varphi(\overline{x}, x_0, y_0) + \varphi(\overline{x}, x_0, y_0) - \varphi(x, x_0, y_0) \right|$$

$$\leq \left| \varphi(\overline{x}, \overline{x}_0, \overline{y}_0) - \varphi(\overline{x}, x_0, y_0) \right| + \left| \varphi(\overline{x}, x_0, y_0) - \varphi(x, x_0, y_0) \right|$$

$$<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$$

证明了 $y = \varphi(x, x_0, y_0)$ 在 x, x_0, y_0 连续。

解对初值的连续性定理

推广解对初值的连续依赖定理

假设f(x,y) 在区域G内连续,且关于y满足局部利普希茨条件,则方程

$$\frac{dy}{dx} = f(x, y)$$

的解 $y = \varphi(x, x_0, y_0)$ 作为 x, x_0, y_0 的函数在它的存在范围内是连续的.

$$\forall (x_0, y_0) \in G$$
 $y = \varphi(x, x_0, y_0)$ 存在唯一且可以延拓,饱和区间为 $\alpha(x_0, y_0) < x < \beta(x_0, y_0)$

存在范围
$$V = \{(x, x_0, y_0) | \alpha(x_0, y_0) < x < \beta(x_0, y_0), (x_0, y_0) \in G \}$$

二、解对初值的连续依赖性——解对初值和参数的连续依赖性

含参数的一阶方程

$$\frac{dy}{dx} = f(x, y, \lambda) \quad \dots \quad (3.1_{\lambda})$$

$$G_{\lambda}$$
: $(x, y) \in G$, $\alpha < \lambda < \beta$

含参数的局部利普希茨条件

设函数 $f(x, y, \lambda)$ 在 G_{λ} 内连续, 且在 G_{λ} 内 一致地关于 y 满足局部利普希茨条件,

即对 G_{λ} 内的每一点 (x,y,λ) 都存在以 (x,y,λ) 为中心的球 $C \subset G_{\lambda}$,使得对任何

 $(x, y_1, \lambda), (x, y_2, \lambda)$ 成立不等式

$$|f(x, y_1, \lambda) - f(x, y_2, \lambda)| \le L|y_1 - y_2|,$$

其中L是与 λ 无关的正数.

由解的存在唯一性定理, 对每一 $\lambda_0 \in (\alpha, \beta)$,

方程(3.1)₃过初值的解唯一确定. 记为 $y = \varphi(x, x_0, y_0, \lambda_0)$.

二、解对初值的连续依赖性——解对初值和参数的连续依赖定理

解对初值和参数的连续依赖定理

设 $f(x,y,\lambda)$ 在 G_{λ} 内连续,且在 G_{λ} 内关于y一致地满足局部利普希茨条件,

$$(x_0, y_0, \lambda_0) \in G_{\lambda}, y = \varphi(x, x_0, y_0, \lambda_0)$$

是方程(3.1)_{λ}通过点(x_0, y_0)的解,在区间 $a \le x \le b$ 上有定义,其中 $a \le x_0 \le b$,

那么,对任意给定的 $\varepsilon > 0$,必存在正数 $\delta = \delta(\varepsilon, a, b)$,使得当

$$(\overline{x}_0 - x_0)^2 + (\overline{y}_0 - y_0)^2 + (\lambda - \lambda_0)^2 \le \delta^2$$

时, 方程满足条件 $\varphi(\overline{x}_0) = \overline{y}_0$ 的解 $y = \varphi(x, \overline{x}_0, \overline{y}_0, \lambda)$ 在区间 $a \le x \le b$ 也有定义, 并且

$$\left| \varphi(x, \overline{x}_0, \overline{y}_0, \lambda) - \varphi(x, x_0, y_0, \lambda_0) \right| < \varepsilon, \quad a \le x \le b.$$

二、解对初值的连续依赖性——解对初值和参数的连续性定理

解对初值和参数的连续性定理

设 $f(x,y,\lambda)$ 在 G_{λ} 内连续,且在 G_{λ} 内关于y一致地满足局部利普希茨条件,则方程

$$\frac{dy}{dx} = f(x, y, \lambda),$$

的解 $y = \varphi(x, x_0, y_0, \lambda)$ 作为 x, x_0, y_0, λ 的函数在它的存在范围内是连续的.

3.3.3 解对初值的可微性定理

若函数f(x,y) 以及 $\frac{\partial f}{\partial v}$ 都在区域 G 内连续, 则方程 $\frac{dy}{dx} = f(x,y)$

的解 $y = \varphi(x, x_0, y_0)$ 作为 x, x_0, y_0 的函数在它的存在范围内是连续可微的.

 $\frac{\partial \varphi}{\partial x_0}$, $\frac{\partial \varphi}{\partial v_0}$ 分别是下列初值问题的解:

$$\begin{cases} \frac{dz}{dx} = \frac{\partial f(x, \varphi)}{\partial y} z \\ z(x_0) = -f(x_0, y_0) \end{cases}$$

$$\frac{\partial \varphi}{\partial x_0} = -f(x_0, y_0) \exp\left(\int_{x_0}^x \frac{\partial f(x, \varphi)}{\partial y} dx\right)$$

$$\begin{cases} \frac{dz}{dx} = \frac{\partial f(x, \varphi)}{\partial y} z \\ z(x_0) = 1 \end{cases}$$

$$\frac{\partial \varphi}{\partial y_0} = \exp\left(\int_{x_0}^x \frac{\partial f(x,\varphi)}{\partial y} dx\right) \qquad \frac{\partial \varphi}{\partial x} = f(x,\varphi(x,x_0,y_0))$$

$$\frac{\partial \varphi}{\partial x} = f(x, \varphi(x, x_0, y_0))$$

证明 由 $\frac{\partial f}{\partial y}$ 在区域 G 内连续, 推知 f(x,y) 在G 内关于 y 满足局部利普希茨条件.

因此,解对初值的连续性定理成立,即

$$y = \varphi(x, x_0, y_0)$$

在它的存在范围内关于x,x0,y0是连续的.

下面进一步证明对于函数 $y = \varphi(x, x_0, y_0)$ 的存在范围内任一点的偏导数

$$\frac{\partial \varphi}{\partial x}$$
, $\frac{\partial \varphi}{\partial x_0}$, $\frac{\partial \varphi}{\partial y_0}$

存在且连续.

 $\frac{\partial \varphi}{\partial x}$ 的存在及连续性

 $y = \varphi(x, x_0, y_0)$ 是方程的解, 因而 $\frac{\partial \varphi}{\partial x} = f(x, \varphi(x, x_0, y_0))$, 由 f 及 φ 的连续性即证.

 $\frac{\partial \varphi}{\partial x_0}$ 的存在及连续性

设由初值 (x_0, y_0) 和 $(x_0 + \Delta x_0, y_0)(|\Delta x_0| \le \alpha, \alpha$ 为足够小的正数)所确定的方程的解分别为:

$$y = \varphi(x, x_0, y_0) = \varphi$$
 $\text{ for } y = \varphi(x, x_0 + \Delta x_0, y_0) = \psi,$

即

$$\varphi = y_0 + \int_{x_0}^x f(x, \varphi) dx \not= \psi = y_0 + \int_{x_0 + \Delta x_0}^x f(x, \psi) dx.$$

于是
$$\psi - \varphi = \int_{x_0 + \Delta x_0}^{x} f(x, \psi) dx - \int_{x_0}^{x} f(x, \varphi) dx$$
$$= -\int_{x_0}^{x_0 + \Delta x_0} f(x, \psi) dx + \int_{x_0}^{x} \frac{\partial f(x, \varphi + \theta(\psi - \varphi))}{\partial y} (\psi - \varphi) dx, 0 < \theta < 1.$$

$$\psi - \varphi = -\int_{x_0}^{x_0 + \Delta x_0} f(x, \psi) dx + \int_{x_0}^{x} \frac{\partial f(x, \varphi + \theta(\psi - \varphi))}{\partial y} (\psi - \varphi) dx, \quad 0 < \theta < 1.$$

注意到 $\frac{\partial f}{\partial y}$ 及 ψ , φ 的连续性,有

$$\frac{\partial f(x, \varphi + \theta(\psi - \varphi))}{\partial y} = \frac{\partial f(x, \varphi)}{\partial y} + r_1,$$

其中 / 具有性质

类似地,有

$$-\frac{1}{\Delta x_0} \int_{x_0}^{x_0 + \Delta x_0} f(x, \psi) dx = -f(x_0, y_0) + r_2,$$

其中 12 具有性质

当
$$\Delta x_0 \rightarrow 0$$
时 $r_2 \rightarrow 0$,且当 $\Delta x_0 = 0$ 时 $r_2 = 0$.

$$\psi - \varphi = -\int_{x_0}^{x_0 + \Delta x_0} f(x, \psi) dx + \int_{x_0}^{x} \frac{\partial f(x, \varphi + \theta(\psi - \varphi))}{\partial y} (\psi - \varphi) dx, 0 < \theta < 1.$$

$$\frac{\partial f(x, \varphi + \theta(\psi - \varphi))}{\partial y} = \frac{\partial f(x, \varphi)}{\partial y} + r_1$$

$$-\frac{1}{\Delta x_0} \int_{x_0}^{x_0 + \Delta x_0} f(x, \psi) dx = -f(x_0, y_0) + r_2$$
因此对 $\Delta x_0 \neq 0$ 时,有 $\frac{\psi - \varphi}{\Delta x_0} \equiv [-f(x_0, y_0) + r_2] + \int_{x_0}^{x} \left[\frac{\partial f(x, \varphi)}{\partial y} + r_1 \right] \frac{\psi - \varphi}{\Delta x_0} dx$
即 $z = \frac{\psi - \varphi}{\Delta x_0}$ 是初值问题
$$\begin{cases} \frac{dz}{dx} = \left[\frac{\partial f(x, \varphi)}{\partial y} + r_1 \right] z, \\ z(x_0) = -f(x_0, y_0) + r_2 = z_0 \end{cases}$$

的解, 在这里 $\Delta x_0 \neq 0$ 被视为参数. 显然, 当 $\Delta x_0 = 0$ 时上述初值问题仍然有解.

$$z = \frac{\psi - \varphi}{\Delta x_0} \qquad \begin{cases} \frac{dz}{dx} = \left[\frac{\partial f(x, \varphi)}{\partial y} + r_1 \right] z, \\ z(x_0) = -f(x_0, y_0) + r_2 = z_0 \end{cases}$$

根据解对初值和参数的连续性定理, 知 $\frac{\psi-\varphi}{\Delta x_0}$ 是 $x, x_0, z_0, \Delta x_0$ 的连续函数. 从而

$$\lim_{\Delta x_0 \to 0} \frac{\psi - \varphi}{\Delta x_0} = \frac{\partial \varphi}{\partial x_0}.$$

而
$$\frac{\partial \varphi}{\partial x_0}$$
 是初值问题
$$\begin{cases} \frac{dz}{dx} = \frac{\partial f(x,\varphi)}{\partial y} z, \\ z(x_0) = -f(x_0, y_0) \end{cases}$$
 的解.

$$\frac{\partial \varphi}{\partial x_0} = -f(x_0, y_0) \exp\left(\int_{x_0}^x \frac{\partial f(x, \varphi)}{\partial y} dx\right) \quad \text{ask, } \forall x_0, y_0 \text{ bis in } \Delta x.$$

$\frac{\partial \varphi}{\partial y_0}$ 的存在及连续性

设由初值 (x_0, y_0) 和 $(x_0, y_0 + \Delta y_0)(|\Delta y_0| \le \alpha, \alpha$ 足够小)所确定的解分别为

$$y = \varphi(x, x_0, y_0) = \varphi, y = \varphi(x, x_0, y_0 + \Delta y_0) = \psi,$$

即

$$\varphi = y_0 + \int_{x_0}^x f(x, \varphi) dx, \psi = y_0 + \Delta y_0 + \int_{x_0}^x f(x, \psi) dx,$$

于是

$$\psi - \varphi = \Delta y_0 + \int_{x_0}^x (f(x, \psi) - f(x, \varphi)) dx$$

$$= \Delta y_0 + \int_{x_0}^x \frac{\partial f(x, \varphi + \theta(\psi - \varphi))}{\partial y} (\psi - \varphi) dx, 0 < \theta < 1.$$

$$\psi - \varphi = \Delta y_0 + \int_{x_0}^x (f(x, \psi) - f(x, \varphi)) dx$$

$$= \Delta y_0 + \int_{x_0}^x \frac{\partial f(x, \varphi + \theta(\psi - \varphi))}{\partial y} (\psi - \varphi) dx, 0 < \theta < 1.$$

注意到 $\frac{\partial f}{\partial y}$ 及 φ , ψ 的连续性,有

$$\frac{\partial f(x, \varphi + \theta(\psi - \varphi))}{\partial y} = \frac{\partial f(x, \varphi)}{\partial y} + r_1$$

这里当 $\Delta y_0 \rightarrow 0$ 时 $r_1 \rightarrow 0$,且 $\Delta y_0 = 0$ 时 $r_1 = 0$.

因此对 $\Delta y_0 \neq 0$ 有

$$\frac{\psi - \varphi}{\Delta y_0} = 1 + \int_{x_0}^{x} \left[\frac{\partial f(x, \varphi)}{\partial y} + r_1 \right] \frac{\psi - \varphi}{\Delta y_0} dx,$$

即
$$z = \frac{\psi - \varphi}{\Delta y_0} = 1 + \int_{x_0}^{x} \left[\frac{\partial f(x, \varphi)}{\partial y} + r_1 \right] \frac{\psi - \varphi}{\Delta y_0} dx,$$

即 $z = \frac{\psi - \varphi}{\Delta y_0}$ 是初值问题
$$\begin{cases} \frac{dz}{dx} = \left[\frac{\partial f(x, \varphi)}{\partial y} + r_1 \right] z, \\ z(x_0) = 1 \end{cases}$$

的解, $\Delta y_0 \neq 0$ 被看成参数.

显然当 $\Delta y_0 = 0$ 时,上述初值问题仍然有解.

根据解对初值和参数的连续性定理,知 $z = \frac{\psi - \varphi}{\Delta y_0}$ 是 $x, x_0, z_0, \Delta y_0$ 的连续函数,从而存在

$$\lim_{\Delta y_0 \to 0} \frac{\psi - \varphi}{\Delta y_0} = \frac{\partial \varphi}{\partial y_0}.$$

$$z = \frac{\psi - \varphi}{\Delta y_0} \qquad \begin{cases} \frac{dz}{dx} = \left[\frac{\partial f(x, \varphi)}{\partial y} + r_1 \right] z, & \lim_{\Delta y_0 \to 0} \frac{\psi - \varphi}{\Delta y_0} = \frac{\partial \varphi}{\partial y_0}. \\ z(x_0) = 1 \end{cases}$$

而
$$\frac{\partial \varphi}{\partial y_0}$$
 是 初 值 问 题
$$\begin{cases} \frac{dz}{dx} = \frac{\partial f(x, \varphi)}{\partial y} z \\ z(x_0) = 1 \end{cases}$$

的解.

$$\frac{\partial \varphi}{\partial y_0} = \exp\left(\int_{x_0}^x \frac{\partial f(x, \varphi)}{\partial y} dx\right)$$

显然它是 x, x_0, y_0 的连续函数.

定理证毕.

三、解对初值的可微性——主要结果

解对初值的可微性定理

若函数f(x,y) 以及 $\frac{\partial f}{\partial y}$ 都在区域 G 内连续, 则方程 $\frac{dy}{dx} = f(x,y)$

的解 $y = \varphi(x, x_0, y_0)$ 作为 x, x_0, y_0 的函数在它的存在范围内是连续可微的.

$$\frac{\partial \varphi}{\partial x_0} = -f(x_0, y_0) \exp\left(\int_{x_0}^x \frac{\partial f(x, \varphi)}{\partial y} dx\right)$$
$$\frac{\partial \varphi}{\partial y_0} = \exp\left(\int_{x_0}^x \frac{\partial f(x, \varphi)}{\partial y} dx\right)$$

三、解对初值的可微性——例题

例 设 $\varphi(x, x_0, y_0)$ 是初值问题

$$\begin{cases} \frac{dy}{dx} = f(x, y), \\ \varphi(x_0) = y_0 \end{cases}$$

的解,试证明

$$\frac{\partial \varphi(x, x_0, y_0)}{\partial x_0} + \frac{\partial \varphi(x, x_0, y_0)}{\partial y_0} f(x_0, y_0) = 0.$$

三、解对初值的可微性——例题

解 因为 $f_{v}(x, y) = x \cos(xy)$,

所以方程的解 $y = \varphi(x, x_0, y_0)$ 作为 x, x_0, y_0 的函数,在xy平面上连续可微.

$$\left. \frac{\partial \varphi(x, x_0, y_0)}{\partial y_0} \right|_{\substack{x_0 = 0 \\ y_0 = 0}} = \exp\left[\int_{x_0}^x \frac{\partial f(x, \varphi)}{\partial y} dx \right]_{\substack{x_0 = 0 \\ y_0 = 0}}$$

易见y = 0是原方程的解,且满足y(0) = 0,故 $\varphi(x,0,0) = 0$.

$$\left. \frac{\partial \varphi(x, x_0, y_0)}{\partial y_0} \right|_{x_0=0} = \exp\left(\int_0^x x \cos(x\varphi(x, 0, 0)) dx\right) = \exp\left(\int_0^x x dx\right) = e^{\frac{1}{2}x^2}.$$

三、解对初值的可微性——例题

$$\frac{\partial \varphi(x, x_0, y_0)}{\partial x_0} \bigg|_{\substack{x_0 = 0 \\ y_0 = 0}} = -f(x_0, y_0) \exp\left(\int_{x_0}^x \frac{\partial f(x, \varphi)}{\partial y} dx\right) \bigg|_{\substack{x_0 = 0 \\ y_0 = 0}}$$

$$= -f(0, 0) \exp\left(\int_0^x x \cos(x\varphi(x, 0, 0)) dx\right)$$

$$= -f(0, 0) \exp\left(\int_0^x x dx\right)$$

$$= 0.$$

解对初值的可微性——主要结果

解对初值的可微性定理

若函数f(x,y) 以及 $\frac{\partial f}{\partial v}$ 都在区域 G 内连续, 则方程 $\frac{dy}{dx} = f(x,y)$

的解 $y = \varphi(x, x_0, y_0)$ 作为 x, x_0, y_0 的函数在它的存在范围内是连续可微的.

$$\frac{\partial \varphi}{\partial x_0} = -f(x_0, y_0) \exp\left(\int_{x_0}^x \frac{\partial f(x, \varphi)}{\partial y} dx\right)$$
$$\frac{\partial \varphi}{\partial y_0} = \exp\left(\int_{x_0}^x \frac{\partial f(x, \varphi)}{\partial y} dx\right)$$

$$\frac{\partial \varphi}{\partial x_0} = -f(x_0, y_0) \exp\left(\int_{x_0}^x \frac{\partial f(x, \varphi)}{\partial y} dx\right) \qquad \frac{\partial \varphi(x, x_0, y_0)}{\partial x_0} \bigg|_{x_0} = -f(x_0, y_0) \exp\left(\int_{x_0}^x \frac{\partial f(x, \varphi(x, x_0, y_0))}{\partial y} dx\right) \\
\frac{\partial \varphi}{\partial y_0} = \exp\left(\int_{x_0}^x \frac{\partial f(x, \varphi)}{\partial y} dx\right) \qquad \frac{\partial \varphi(x, x_0, y_0)}{\partial y_0} \bigg|_{x_0} = \exp\left(\int_{x_0}^x \frac{\partial f(x, \varphi(x, x_0, y_0))}{\partial y} dx\right)$$