Метод стрельбы решения краевой задачи для обыкновенного дифференциального уравнения второго порядка (линейного)

Теория для общего случая – см. Годунов, Рябенький, с. 166.

Рассмотрим краевую задачу для обыкновенного дифференциального уравнения второго порядка (линейного):

$$y'' + p(x)y' + q(x)y + r(x) = 0, x \in [a,b]$$

 $y(a) = \alpha, y(b) = \beta$

Рассмотрим теперь две задачи Коши

$$y'' + p(x)y' + q(x)y + r(x) = 0, x \in [a,b]$$

$$y(a) = \alpha, y'(a) = \gamma_1$$
(1)

И

$$y'' + p(x)y' + q(x)y + r(x) = 0, x \in [a,b]$$

$$y(a) = \alpha, y'(a) = \gamma_2$$
(2)

Обозначим через $y^* = y^*(x)$ решение задачи Коши (1), $y^{**} = y^{**}(x)$ - решение задачи Коши (2). В силу линейности дифференциального уравнения функция $\widetilde{y}(x) = \mu y^*(x) + (1-\mu)y^{**}(x)$ является его решением, причем $\widetilde{y}(a) = \alpha$. Из условия $\widetilde{y}(b) = \beta$ выразим μ (вывести формулу самостоятельно). Таким образом, решение краевой задачи с линейным дифференциальным уравнением свелось к решению двух задач Коши. В случае нелинейного дифференциального уравнения организуется итерационный процесс.

Для численного решения задач Коши методом конечных разностей область изменения переменной $x \in [0,1]$ разобьем на N отрезков с шагом h = 1/N, полагая $x_n = x_0 + nh$, n = 1,2,...N, x0 = a, значения искомой функции в узлах сетки обозначим $y_0, y_1, ... y_N$.

Составим разностную схему для уравнения в узлах сетки $x_2, ...x_N$, используя центральные разности второго порядка аппроксимации. Для аппроксимации производной во втором начальном условии используем правую разность. Обозначим через y_i^* численное решение задачи Коши (1), y_i^{**} - численное решение задачи Коши (2). В силу линейности разностного уравнения функция $\tilde{y}_i = \mu y_i^* + (1-\mu)y_i^{**}$ является его решением, причем $\tilde{y}_0 = \alpha$. Из условия $\tilde{y}_N = \mu y_N^* + (1-\mu)y_N^{**} = \beta$ выразим μ (вывести формулу самостоятельно).

Упражнение 1. Рассмотрим краевую задачу для обыкновенного дифференциального уравнения второго порядка (линейного): y'' - y' + 1 = 0, y(0) = 3, y(1) = 6, $x \in [0,1]$.

Вместо этой краевой задачи будем решать две задачи Коши с начальными условиями: y(0) = 3, y'(0) = 0 и y(0) = 3, y'(0) = 1.

Для численного решения задач Коши методом конечных разностей область изменения переменной $x \in [0,1]$ разобьем на N=10 отрезков с шагом h=1/N, полагая $x_n=x_0+nh$, n=1,2,...N, $x_0=0$, значения искомой функции в узлах сетки обозначим $y_0, y_1, ... y_N$.

Составим разностную схему для уравнения в узлах сетки x_1 , x_N , используя центральные разности второго порядка аппроксимации.

$$\frac{y_{n+1}-2y_n+y_{n-1}}{h^2}-\frac{y_{n+1}-y_{n-1}}{2h}+1=0.$$

Приведем подобные слагаемые:

$$y_{n+1} \left(\frac{1}{h^2} - \frac{1}{2h} \right) + y_n \left(-\frac{2}{h^2} \right) + y_{n-1} \left(\frac{1}{h^2} + \frac{1}{2h} \right) = -1, \ n = \overline{1, N}$$

Для второго начального условия:

$$\frac{y_1-y_0}{h}=0$$
 или $\frac{y_1-y_0}{h}=1$
Разностная схема первой задачи Коши:

$$y_{n+1} \left(\frac{1}{h^2} - \frac{1}{2h} \right) + y_n \left(-\frac{2}{h^2} \right) + y_{n-1} \left(\frac{1}{h^2} + \frac{1}{2h} \right) = -1, \ n = \overline{1, N}$$

$$y_0 = 3$$

$$y_1 - y_0 = 0$$

Разностная схема второй задачи Коши:

$$y_{n+1} \left(\frac{1}{h^2} - \frac{1}{2h} \right) + y_n \left(-\frac{2}{h^2} \right) + y_{n-1} \left(\frac{1}{h^2} + \frac{1}{2h} \right) = -1, \ n = \overline{1, N}$$

$$y_0 = 3$$

$$\frac{y_1 - y_0}{h} = 1$$

Решаем обе задачи Коши по полученным рекуррентным соотношениям. $\mu \approx -1.2236$. Точное решение краевой задачи $y = \frac{2}{e-1}e^x + x + \frac{3e-5}{e-1}$. В таблице приведены результаты расчетов с пятью знаками после запятой и абсолютная погрешность. На рисунке приведены графики полученных решений.

		-	_		Точное	Абсолютная
i	X	у*	y**	У	решение	погрешность
0	0	3	3	3	3	4,44E-16
1	0,1	3	3,1	3,22236	3,22241	5,43E-05
2	0,2	2,98947	3,2	3,45760	3,45770	1,03E-04
3	0,3	2,96731	3,3	3,70708	3,70722	1,44E-04
4	0,4	2,93229	3,4	3,97228	3,97246	1,76E-04
5	0,5	2,88306	3,5	4,25489	4,25508	1,96E-04
6	0,6	2,81812	3,6	4,55671	4,55691	2,01E-04
7	0,7	2,73582	3,7	4,87977	4,87996	1,89E-04
8	0,8	2,63432	3,8	5,22632	5,22647	1,54E-04
9	0,9	2,51162	3,9	5,59882	5,59891	9,27E-05
10	1	2,36548	4	6	6	0

Ответ: получено приближенное решение краевой задачи методом стрельбы.

Задание для самостоятельной работы.

- 1. Повторить решение рассмотренной задачи в Excel.
- 2. Решить краевую задачу для обыкновенного дифференциального уравнения второго порядка (линейного) методом стрельбы. Для расчетов использовать Excel. Привести таблицу значений и построить графики. Проверить правильность приведенного аналитического решения.

3*. Провести вычисления при различном числе шагов и оценить порядок сходимости по величине погрешности.

1	Агаев Артём Низамиевич	y'' + 2xy' + 2y = 4x $y(0) = 1, y(0,5) = e^{-0.25} + 0.5$	Аналитическое p ешение: y = x + e x p (- x ²)
2	Аристов Сергей Антонович	$x^{2}y'' + xy' = 1$ $y(1) = 0, y(1,4) = \frac{1}{2} \ln^{2}(1,4) = 0,$	Аналитическое решение: $y = \frac{1}{2} \ln^2 x$
3	Бакулин Александр Сергеевич	$y'' + \frac{5}{x}y' + \frac{3}{x^2}y = 0,$ $y'(1) = 3, y(2) = -\frac{1}{8}$	Аналитическое решение: $y = -x^{-3}$
4	Белин Михаил Алексеевич	y'' - y = 2x, $y(0) = 0$, $y(1) = -1$	Аналитическое peшение: $y = \frac{shx}{sh1} - 2x$
5	Борисов Владислав Романович	$y'' - \frac{2}{x}y' + \frac{2}{x^2}y = 0$, $y(1) = 3$, $y(2) = 12$	Аналитическое $y = 3x^2$
6	ГребЕнникова Софья Максимовна	y'' - y' = 1, y(0) = 0, $y(1) = 1$	Аналитическое решение: $y = x + e^{-x} - e^{-1}$

		$y'' + \frac{1}{x+2}y' - \frac{1}{x}y = -x^2 + 9x + 6$	Аналитическое решение:
7	ДОлгих Данил Алексеевич	AIL	$y = x^3 - 12x$
8	Зиновьев Дмитрий Эдуардович	y(1) = -11, y(3) = -9 y'' - y' = 1, y(-1) = e - 1, y(0) = 0	Аналитическое $y = e^{-x} - 1$
9	Иванова Вероника Максимовна	<i>J</i> · · <i>J</i> · · · · · · · · · · · · · · · · · · ·	Аналитическое решение: y=1-sin x-cos x
10	Иващенко Родион Александров ич	$y'' + (x+1)y' - 2x^{2}y = -2x^{5} + 3x^{3} + 6x + y(0) = 1, y(1) = 2$	x^{2} , Аналитическое peшение: $y = x^{3} + 1$
11	Калинина Варвара Юрьевна	$x^{2}y'' + xy' = 1$ $y(1) = 0, y(1,4) = \frac{1}{2} \ln^{2}(1,4) = 0,$	Аналитическое решение: $y = \frac{1}{2} \ln^2 x$
12	Королева Мария Алексеевна	y'' - y = 2x, $y(0) = 0$, $y(1) = -1$	Аналитическое peшение: $y = \frac{shx}{sh1} - 2x$
13	Лебедев Леонид Владиславови ч	y'' - 2xy' - 2y = -4x y(0)=e y(1) = 1 + e	Аналитическое решение: $y = x + e^{x^2}$.
14	Минеев Иван Николаевич	$y'' - \frac{2}{x}y' + \frac{2}{x^2}y = 0$, $y(1) = 3$, $y(2) = 12$	Аналитическое $y = 3x^2$
15	Моржукова Ксения Васильевна	$y'' + \frac{5}{x}y' + \frac{3}{x^2}y = 0,$ $y'(1) = 3, y(2) = -\frac{1}{8}$	Аналитическое решение: $y = -x^{-3}$
16	Никитин Илья Иванович	y'' - y' = 1, y(-1) = e - 1, $y(0) = 0$	Аналитическое p ешение: $y = e^{-x} - 1$
17	Савельева Марина Викторовна	$y'' + \frac{1}{x+2}y' - \frac{1}{x}y = -x^2 + 9x + 6,$ y(1) = -11, y(3) = -9	Аналитическое $y = x^3 - 12x$
18	Сорокин Иван Александров ич	y'' - y' = 1, y(0) = 0, $y(1) = 1$	Аналитическое решение: $y = x + e^{-x} - e^{-1}$
19	Хавкина Дарья Викторовна	y'' + 2xy' + 2y = 4x $y(0) = 1, y(0,5) = e^{-0.25} + 0.5$	A налитическое p ешение: y = x + $exp(-x^2)$

20	Миронов Иван	y'' + y = 1, $y(0) = 0$, $y(\frac{\pi}{2}) = 0$	Аналитическое $y = 1 - \sin x - \cos x$
21	Половецкий	$y'' + (x+1)y' - 2x^{2}y = -2x^{5} + 3x^{3} + 6x + y(0) = 1, y(1) = 2$	x^{2} , Аналитическое решение: $y = x^{3} + 1$
22	Смирнов	y'' - 2xy' - 2y = -4x y(0)=e y(1) = 1 + e	Аналитическое решение: $y = x + e^{x^2}$.