4

5

6

7

8

2

WHAT IS CLAIMED IS:

1	1. A method	of inducing cardioplegic arrest in a heart of a patient, the heart ha	ving a
2	coronary vasc	ulature, comprising the steps of	

- a) introducing at least one distal end of at least one perfusion catheter into a peripheral artery of said patient;
- b) advancing said distal end of said perfusion catheter from said peripheral artery into at least one coronary ostium communicating with said coronary vasculature of said patient;
- c) occluding said coronary ostium with an occlusion device proximate said distal end of said perfusion catheter;
 - d) arresting the heart.
- 2. The method of claim 1, wherein step d) comprises the substep of infusing a cardioplegic agent through a lumen of said perfusion catheter into said coronary vasculature downstream of said occlusion device.
- 3. The method of claim 2 wherein said cardioplegic agent is infused through said lumen of said perfusion catheter at a rate of at least approximately 100 ml/min at a pump pressure not exceeding 350 mmHg.
- 1 4. The method of claim 1, wherein step d) comprises the substep of infusing a mixture of
- 2 oxygenated blood and a cardioplegic agent through a lumen of said perfusion catheter into
- 3 said coronary vasculature downstream of said occlusion device at a rate of at least
- 4 approximately 100 ml/min at a pump pressure not exceeding 350 mmHg.
- 1 5. The method of claim 1, further comprising the step of:
- e) isolating said coronary vasculature from systemic circulation of said patient by
- 3 continuing to occlude said coronary ostium with said occlusion device while the heart is
- 4 arrested.

1	6. The method of claim 5, further comprising the step of:	
2	f) maintaining systemic circulation of said patient with peripheral cardiopulmonary	
3	bypass.	
1	7. The method of claim 6, wherein step f) comprises:	
2	positioning an arterial cannula in a peripheral artery of said patient;	
3	positioning a venous cannula in a peripheral vein of said patient;	
4	withdrawing venous blood from said patient through a blood flow lumen in said	
5	venous cannula;	
6	infusing oxygenated blood into said patient through an infusion lumen in said arterial	
7	cannula.	
1	8. The method of claim 1, further comprising the steps of:	
2	g) introducing a third distal end of a catheter through an aortic valve of said heart of	
3	said patient;	
4	h) venting a left ventricle of said heart by withdrawing fluid through a venting lumen	
5	communicating with said third distal end of said catheter.	
. 1	9. The method of claim 1, wherein step a) comprises introducing a single perfusion catheter	
2	having at least two distal ends into said peripheral artery of said patient; step b) comprises	
3	advancing said at least two distal ends into at least two coronary ostia; step c) comprises	
4	occluding each of said at least two coronary ostia with an occlusion device proximate each of	
5	said at least two distal ends, respectively; and step d) comprises infusing a cardioplegic agent	
6	through at least one lumen communicating with said at least two distal ends of said perfusion	
7	catheter into said coronary vasculature downstream of said occlusion devices.	
1	10. The method of claim 9, further comprising the steps of:	

4

5

- g) introducing a third distal end of said perfusion catheter through an aortic valve of said heart of said patient;
- h) venting a left ventricle of said heart by withdrawing fluid through a venting lumen communicating with said third distal end of said catheter.
- 1 11. The method of claim 1, wherein step a) comprises introducing the distal ends of at least
- 2 two perfusion catheters into said peripheral artery of said patient; step b) comprises
- 3 advancing said distal ends of said at least two perfusion catheters into at least two coronary
- 4 ostia; step c) comprises occluding each of said at least two coronary ostia with an occlusion
- 5 device proximate each of said distal ends of said at least two perfusion catheters,
- 6 respectively; and step d) comprises infusing a cardioplegic agent through at least two lumina
- 7 communicating with said distal ends of said at least two perfusion catheters, respectively, into
- 8 said coronary vasculature downstream of said at least two occlusion devices.
 - 12. The method of claim 11, further comprising the steps of:
- g) introducing a distal end of a venting catheter through an aortic valve of said heart of said patient;
 - h) venting a left ventricle of said heart by withdrawing fluid through a venting lumen communicating with said distal end of said venting catheter.
- 1 13. The method of claim 1, wherein step c) comprises inflating an inflatable occlusion
- 2 device to occlude said coronary ostium.
- 1 14. The method of claim 1, wherein step a) comprises the substeps of:
- 2 introducing a guide catheter having at least one internal lumen into said peripheral
- 3 artery of said patient; and
- 4 introducing said at least one distal end of said at least one perfusion catheter through
- 5 said at least one internal lumen of said guide catheter.

1	15. The hethod of claim 11, wherein step a) comprises the substeps of:		
2	introducing a guide catheter having at least one internal lumen into said peripheral		
3	artery of said\patient; and		
4	introducing the distal ends of said at least two perfusion catheters through said at least		
5	one internal lumen of said guide catheter.		
1	16. The method of claim 11, wherein step a) comprises the substeps of:		
2	introducing a guide catheter having at least two internal lumina into said peripheral		
3	artery of said patient; and		
4	introducing the distal end of a first perfusion catheter through a first internal lumen in		
5	said guide catheter, and introducing the distal end of a second perfusion catheter through a		
6	second internal lumen in said guide catheter.		
1	17. The method of claim 1, further comprising the step of:		
2	i) performing coronary artery bypass graft surgery on the arrested heart of the patie		
1	18. A catheter system for inducing cardioplegic arrest in a heart of a patient, said catheter		
2	system comprising:		
3	an elongated catheter shaft, said catheter shaft having at least two distal branches,		
4	including:		
5	a first distal branch having a first distal end and a first occlusion device proximate		
6	said first distal end, said first distal branch having a first perfusion lumen which		
7	communicates with a first distal perfusion port distal to said first occlusion device, and		
8	a second distal branch having a second distal end and a second occlusion device		
9	proximate said second distal end, said second distal branch having a second perfusion lume		
10	which communicates with a second distal perfusion port distal to said second occlusion		
11	device.		

19. A catheter system for inducing cardioplegic arrest in a heart of a patient, said catheter system comprising:

a first perfusion catheter having a first elongated catheter shaft, said first catheter shaft having a first distal end and a first occlusion device proximate said first distal end, said first catheter shaft having a first perfusion lumen which communicates with a first distal perfusion port distal to said first occlusion device, and

a second perfusion catheter having a second elongated catheter shaft, said second catheter shaft having a second distal end and a second occlusion device proximate said second distal end, said second catheter shaft having a second perfusion lumen which communicates with a second distal perfusion port distal to said second occlusion device.