

Sivaraman Eswaran Ph.D.

Department of Computer Science and Engineering

Application Layer

Sivaraman Eswaran Ph.D.

Department of Computer Science and Engineering

Unit – 2 Application Layer

- 2.1 Principles of Network Applications
- 2.2 Web, HTTP and HTTPS
- 2.3 The Domain Name System
- 2.4 P2P Applications
- 2.5 Socket Programming with TCP & UDP
- 2.6 Other Application Layer Protocols

DNS name resolution: iterated query

Example: host at engineering.nyu.edu wants IP address for gaia.cs.umass.edu

Iterated query:

- contacted server replies with name of server to contact
- "I don't know this name, but ask this server"

root DNS server

authoritative DNS server dns.cs.umass.edu

DNS name resolution: recursive query

Example: host at engineering.nyu.edu wants IP address for gaia.cs.umass.edu

Recursive query:

- puts burden of name resolution on contacted name server
- heavy load at upper levels of hierarchy?

root DNS server

dns.cs.umass.edu

Caching and Updating DNS Records

- Suppose that a host apricot.nyu.edu queries dns.nyu.edu for the IP address for the hostname cnn.com. After an hour later, another NYU host, say, kiwi.nyu.edu, also queries dns.nyu.edu.
- once (any) name server learns mapping, it caches mapping
 - cache entries timeout (disappear) after some time (TTL)
 - TLD servers typically cached in local name servers
 - thus root name servers not often visited
- cached entries may be out-of-date (best-effort name-to-address translation!)
 - if name host changes IP address, may not be known Internet-wide until all TTLs expire!
- update/notify mechanisms proposed IETF standard
 - RFC 2136

DNS Records

DNS: distributed database storing resource records (RR)

RR format: (name, value, type, ttl)

type=A

- name is hostname
- value is IP address

relayl.bar.foo.com, 145.37.93.126, A

type=NS

- name is domain (e.g., foo.com)
- value is hostname of authoritative name server for this domain

foo.com, dns.foo.com, NS

type=CNAME

- name is alias name for some "canonical" (the real) name
- www.ibm.com is really servereast.backup2.ibm.com
- value is canonical name

ibm.com, servereast.backup2.ibm.com, CNAME

type=MX

 value is canonical name of a mailserver associated with alias hostname name

example.com, mail.example.com, MX

DNS Protocol Messages

DNS query and reply messages, both have same format:

message header:

- identification: 16 bit # for query, reply to query uses same #
- flags:
 - query or reply (1-bit)
 - recursion desired
 - recursion available
 - reply is authoritative

DNS Protocol Messages

DNS query and reply messages, both have same format:

	2 bytes 2 bytes	
	identification	flags
	# questions	# answer RRs
	# authority RRs	# additional RRs
name, type fields for a query	questions (variable # of questions)	
RRs in response to query —————	answers (variable # of RRs)	
records for authoritative servers —	authority (variable # of RRs)	
additional " helpful" info that may be used	 additional info (variable # of RRs) 	

Type (for example, A, NS, CNAME, and MX), the Value, and the TTL.

Emulating Local DNS Server (Step 1: Ask Root)

Directly send the query to this server.

No answer (the root does not know the answer)

Go ask them!

Steps 2-3: Ask .net & example.net servers


```
seed@ubuntu: "$ dig @m.gtld-servers.net www.example.net
;; QUESTION SECTION:
; www.example.net.
                                 ΙN
;; AUTHORITY SECTION:
example.net.
                        172800
                                                 a.iana-servers.net.
example.net.
                                                 b.iana-servers.net.
                        172800
                                         NS
;; ADDITIONAL SECTION:
                                                 199.43.132.53
a.iana-servers.net.
                        172800 IN
b.iana-servers.net.
                        172800
                                                 199.43.133.53
```

♠ Ask a .net nameservers.

Go ask them!

```
seed@ubuntu:$ dig @a.iana-servers.net www.example.net

;; QUESTION SECTION:
;www.example.net. IN A

;; ANSWER SECTION:
www.example.net. 86400 IN A 93.184.216.34 —
```

Ask an example.net nameservers.

Finally got the answer

Summary

Inserting records into DNS

Example: new startup "Network Utopia"

- register name networkuptopia.com at DNS registrar (e.g., Network Solutions)
 - provide names, IP addresses of authoritative name server (primary and secondary)
 - registrar inserts NS, A RRs into .com TLD server: (networkutopia.com, dns1.networkutopia.com, NS) (dns1.networkutopia.com, 212.212.212.1, A)
- create authoritative server locally with IP address 212.212.212.1
 - type A record for www.networkuptopia.com
 - type MX record for networkutopia.com

DNS Request - Wireshark Packet Capture

DNS Response - Wireshark Packet Capture

Suggested Readings

- DNS (Domain Name System) Explained https://youtu.be/JkEYOt08-rU
- How a DNS Server (Domain Name System) works https://youtu.be/rdVPflECed8
- Wireshark Lab: DNS v7.0 http://www-net.cs.umass.edu/wireshark-
 labs/Wireshark DNS v7.0.pdf

THANK YOU

Sivaraman Eswaran Ph.D.

Department of Computer Science and Engineering

sivaramane@pes.edu

+91 80 6666 3333 Extn 834