A study of some practical impacts of twisted embeddings in lattice-based cryptography

Candidate: Laura Viglioni

Supervisor: Prof. Dr. Ricardo Dahab

March 12, 2021

Agenda for this presentation

Basic definitions

Learning problems

Twisted Ring-LWE cryptosystem

Objectives

Methodology and timeline

Basic definitions

Lattices

A lattice $\Lambda \subset \mathbb{R}^n$ is a subgroup of the additive group \mathbb{R}^n .

Lattices

In other words, given m linear independent vectors in \mathbb{R}^n , the set $\{v_1, v_2, ..., v_m\}$ is called a **basis** for Λ and the lattice may be defined by:

$$\Lambda := \left\{ x = \sum_{i=1}^m \lambda_i v_i \in \mathbb{R}^n \mid \lambda_i \in \mathbb{Z} \right\}.$$

That is, any $\lambda \in \Lambda$ can be written as $\lambda = Mv$, where M is the **generator matrix** of Λ where each row is a vector from the basis and $v \in \mathbb{Z}^n$.

3

Lattices and cryptography

In the last two decades, lattice-based cryptosystems have become an important field in the cryptography community, since these cryptosystems rely on mathematical problems we believe are hard and quantum-resistant, such as the Shortest Vector Problem and the Shortest Independent Vectors Problem.

Lattices problems

Gap Shortest Vector Problem

For an approximation factor $\gamma = \gamma(n) \ge 1$, the $GapSVP_{\gamma}$ is: given a lattice Λ and length d > 0, output **YES** if $\lambda_1(\Lambda) \le d$ and **NO** if $\lambda_1(L) > \gamma d$.

Shortest Independent Vectors Problem

For an approximation factor $\gamma = \gamma(n) \geq 1$, the $SIVP_{\gamma}$ is: given a lattice Λ , output n linearly independent lattice vectors of length at most $\gamma(n) \cdot \lambda_n(\Lambda)$.

5

The H space

Let $r, s, n \in \mathbb{Z}_+$ such that n = r + 2s > 0. The space $H \subset \mathbb{C}^n$ is defined as:

$$H=\{(a_1,\ldots,a_r,b_1,\ldots,b_s,\overline{b_1},\ldots,\overline{b_s})\in\mathbb{C}^n\},$$

where $a_i \in \mathbb{R}, \ \forall i \in \{1, \ldots, r\}$ and $b_j \in \mathbb{C}, \ \forall \ j \in \{1, \ldots, s\}.$

The *H* space

For all $x = (x_1, ..., x_n)$, $y = (y_1, ..., y_n) \in H$ the space H is endowed with inner product $\langle x, y \rangle_H$ defined as:

$$\langle x,y\rangle_H = \sum_{i=1}^n x_i \overline{y_i} = \sum_{i=1}^r x_i y_i + \sum_{i=1}^s x_{i+r} \overline{y_{i+r}} + \sum_{i=1}^s \overline{x_{i+r}} y_{i+r}.$$

The ℓ_2 -norm and infinity norm of any $x \in H$ are defined as $\|x\| = \sqrt{\langle x, x \rangle_H}$ and $\|x\|_{\infty} = \max\{|x_i|\}_{i=1}^n$.

7

Number Fields

For K, L two fields, we denote by L/K a **field extension** if $K \subseteq L$. Then L is said to be an **extension field** over K, or just an **extension** over K. In a field extension L/K, L has the structure of a vector space over K.

A field extension is called a **number field** when it is over the rational field \mathbb{Q} .

Twisted embeddings

Let K and L be two field extensions and a homomorphism $\phi: K \to L$. ϕ is said to be a \mathbb{Q} -homomorphism if $\phi(a) = a$, ; $\forall a \in \mathbb{Q}$.

A \mathbb{Q} -homomorphism $\phi: K \to \mathbb{C}$ is called an **embedding**.

Twisted embeddings

Theorem

If K is a number field with degree n then there are exactly n embeddings $\sigma_i: K \to \mathbb{C}$ where by $\sigma_i(\theta) = \theta_i$ where $\theta_i \in \mathbb{C}$ is a distinct zero of K's minimum polynomial.

Ian Stewart and David Tall. Algebraic number theory. A K Peters, 2002.

Twisted embeddings

The homomorphism $\sigma: K \to \mathbb{R}^r \times \mathbb{C}^s$, where (r, s) is the signature of K, is the **canonical embedding** and is defined by:

$$\sigma(x) = (\sigma_1(x), \ldots, \sigma_r(x), \sigma_{r+1}(x), \ldots, \sigma_{r+s}(x)).$$

Note that we could rewrite the canonical embedding as $\sigma: K \to \mathbb{R}^n$,

$$\sigma(x) = (\sigma_1(x), \dots, \sigma_r(x), \\ \Re(\sigma_{r+1}(x)), \Im(\sigma_{r+1}(x)), \dots, \Re(\sigma_{r+s}(x)), \Im(\sigma_{r+s}(x))).$$

Algebraic lattices

Let $\{\omega_1, ..., \omega_n\}$ be an integral basis of K. The n vectors $v_i = \sigma(\omega_i) \in \mathbb{R}^n$ are linearly independent, so they define a full rank algebraic lattice $\Lambda = \Lambda(\mathcal{O}_K) = \sigma(\mathcal{O}_K)$.

The generator matrix of $\Lambda = \sigma(\mathcal{O}_K)$ is defined by

$$\begin{pmatrix} \sigma_1(\omega_1) & \dots & \sigma_{r+2s}(\omega_1) \\ & \vdots & \\ \sigma_1(\omega_n) & \dots & \sigma_{r+2s}(\omega_n) \end{pmatrix}.$$

Twisted embeddings and number fields

An embedding creates the correspondence between a point $\lambda \in \Lambda \subset \mathbb{R}^n$ of an algebraic lattice.

$$\lambda = (\lambda_1, \dots, \lambda_{r+2s}) \in \Lambda$$

$$= \left(\sum_{i=1}^n z_i \sigma_1(\omega_i), \dots, \sum_{i=1}^n z_i \sigma_{r+2s}(\omega_i)\right)$$

$$= \left(\sigma_1 \left(\sum_{i=1}^n z_i \omega_i\right), \dots, \sigma_{r+2s} \left(\sum_{i=1}^n z_i \omega_i\right)\right),$$

where $z_i \in \mathbb{Z}$. Since any element $x \in \mathcal{O}_K$ has the form $x = \sum_{i=1}^n \lambda_i \omega_i$, we can conclude that

$$\lambda = (\sigma_1(x), \ldots, \sigma_{r+2s}(x)) = \sigma(x).$$

Learning problems

Learning from Parity

Given m vectors uniformly chosen $a_i \leftarrow \mathbb{Z}_2^n$ and some $\epsilon \in [0, 1]$, we define the problem Learning from Parity (LFP) as:

Find $s \in \mathbb{Z}_2^n$ such that, for $i \in \{1, \dots, m\}$

$$\langle s, a_i \rangle \approx_{\epsilon} b_i \pmod{2}$$
.

In other words, the equality holds with probability $1-\epsilon$.

Learning with Errors

Learning with Errors (LWE) is a generalization of LFP with two new parameters $p \in \mathbb{P}$ and χ a probability distribution on \mathbb{Z}_p so that we have:

$$< s, a_i > \approx_{\chi} b_i \pmod{p}$$
 or $< s, a_i > + e_i = b_i \pmod{p}$,

where $a_i \leftarrow \mathbb{Z}_p^n$ uniformly and $e_i \leftarrow \mathbb{Z}$ according to χ .

Ring-LWE search

Let K be a number field, $R = \mathcal{O}_K$ its ring of integers and R^{\vee} the codifferent ideal of K. Also let $K_{\mathbb{R}}$ be the tensor product $K \otimes_{\mathbb{Q}} \mathbb{R}$.

Let Ψ be a family of distributions over $K_{\mathbb{R}}$. The search version of the ring-LWE problem, denoted $R-LWE_{q,\Psi}$, is defined as follows: given access to arbitrarily many independent samples from $A_{s,\psi}$ for some arbitrary $s \in R_q^{\vee}$ and $\psi \in \Psi$, find s.

Ring-LWE hardness

Theorem

Let K be the m^{th} cyclotomic number field having dimension $n=\phi(m)$ and $R=\mathcal{O}_K$ be its ring of integers. Let $\alpha<\sqrt{(\log n)/n}$, and let $q=q(n)\geq 2,\ q=1\ (mod\ m)$ be a poly(n)-bounded prime such that $\alpha q\geq \omega(\sqrt{\log n})$. Then there is a polynomial-time quantum reduction from $\tilde{O}(n/\alpha)$ -approximate SIVP (or SVP) on ideal lattices in K to $R-DLWE_{q,\Upsilon_{\alpha}}$.

Lyubashevsky, Peikert, and Regev. On ideal lattices and learning with errors over rings.

Twisted Ring-LWE

For a totally positive element $\tau \in F$, let ψ_{τ} denote an error distribution over the inner product $\langle \cdot, \cdot \rangle_{\tau}$ and $s \in R_q^{\vee}$ (the "secret") be an uniformly randomized element. The *Twisted Ring-LWE distribution* $\mathcal{A}_{s,\psi_{\tau}}$ produces samples of the form

$$a,b=a\cdot s+e\pmod{qR^\vee}\in R_q imes \mathcal{K}_\mathbb{R}/qR^\vee.$$

Twisted Ring-LWE hardness

Solving the Twisted Ring-LWE is as hard as solving the usual Ring-LWE.

Theorem

Let K be an arbitrary number field, and let $\tau \in F$ be totally positive. Also, let (s, ψ) be randomly chosen from $(U(R_q^{\vee}) \times \Psi)$ in $(K_{\mathbb{R}}, \langle \cdot, \cdot \rangle_{\tau=1})$. Then there is a polynomial-time reduction from Ring-LWE $_{q,\psi}$ to Ring-LWE $_{q,\psi}^{\tau}$.

Ortiz, Araujo, Aranha, Costa, and Dahab. The Ring-LWE problem in lattice-based cryptography: in praise of the twisted embeddings.

Twisted Ring-LWE

cryptosystem

Cryptosystem presented by Ortiz et al.

- Let R be an m-th cyclotomic ring and $p, q \in \mathbb{Z}$ coprime numbers.
- The message space is defined as R_p .
- Consider that ϕ_{τ} is an error distribution over $(K_{\mathbb{R}}, \langle \cdot, \cdot \rangle_{\tau})$ and $\lfloor \cdot \rfloor$ denotes a valid discretization to (cosets) of R^{\vee} or pR^{\vee} .
- $\hat{m} = m/2$ if m is even, otherwise $\hat{m} = m$.
- For any $\overline{a} \in \mathbb{Z}_q$, let $[[\overline{a}]]$ denote the unique representative $a \in (\overline{a} + q\mathbb{Z}) \cap [-q/2, q/2)$, which is entry-wise extended to polynomials.

Cryptosystem presented by Ortiz et al.

- Key generation: choose a uniformly random $a \in R_q$. Choose $x \longleftarrow \lfloor \phi_\tau \rceil$ and $e \longleftarrow \lfloor p \cdot \phi_\tau \rceil_{pR^\vee}$. Output $(a, b = \hat{m} \cdot (a \cdot x + e) \mod qR) \in R_q \times R_q$ as the public key and x as the secret key.
- Encryption: choose $z \leftarrow \lfloor \phi_{\tau} \rceil_{R}^{\vee}$, $e' \leftarrow \lfloor p \cdot \phi_{\tau} \rceil_{pR^{\vee}}$ and $e'' \leftarrow \lfloor p \cdot \phi_{\tau} \rceil_{t^{-1}\mu+pR^{\vee}}$, where $\mu \in R_{p}$ is the word to be encrypted. Let $u = \hat{m} \cdot (a \cdot z + e') \mod qR$ and $v = z \cdot b + e'' \in R_{q}^{\vee}$. Output $(u, v) \in R_{q} \times R_{q}^{\vee}$.
- **Decryption**: Given the encrypted message (u, v), compute $v u \cdot x \mod qR^{\vee}$, and decode it to $d = [[v u \cdot x]] \in R^{\vee}$. Output $\mu = t \cdot d \mod pR$.

Objectives

Main goal

- Validate the idea of using twisted embeddings in cryptography
- Explore the theoretical and the practical aspects of this proposal

Practical aspects

- Compare implementations and instances of the Twisted Ring-LWE and Ring-LWE
- Maximum real subfield versus the cyclotomic power-of-two
- Search for proper sizes of keys and messages

Theoretical aspects

- Study the polynomial arithmetic of the maximal real subfield
- Study the relation between the orthonormal basis and the efficient conversion between lattice points and elements of number field
- Examine if it is possible to achieve a satisfactory efficiency with non-orthonormal basis

Methodology and timeline

Methodology

- Literature Review: review proposals of new cryptosystems, such as *NTTRU*.
- Theoretical experiments: perform experiments using algebra libraries to discover twist factors and to discover orthonormal bases.
- Experimental outcome: to calculate the expansion factor of the polynomial f(x) that defines the ring $\mathbb{Z}[x]/f(x)$. Adapt or develop algorithms for polynomial multiplication.
- Implementation: implement a Twisted Ring-LWE based cryptosystem.
- Practical experiments: to estimate the cost in terms of clock cycles, also key and message sizes.

Timeline

- First and second semesters of 2021
 - Study the Twisted Ring LWE problem and implementation.
 - Perform theoretical experiments with number fields, twist factors and lattices.
 - Calculate the expansion factor and adapt/develop algorithms for polynomial multiplication.
- First and second semesters of 2022
 - Implement a Twisted Ring-LWE based cryptosystem.
 - Compare instances of Ring LWE and Twisted Ring LWE, i.e., analyze the cryptosystem in both terms of clock cycles and key sizes.
 - Defense of dissertation.

Thank you!