

ME 397- ASBR Week 2-Lecture 1

a Curiosity NASA/JPLCaltech;b Savioke Relay;c self driving car, Oxford Univ.;d Cheetah legged robot, Boston Dynamics

FARSHID ALAMBEIGI, Ph.D.

Assistant Professor | Walker Department of Mechanical Engineering Cockrell School of Engineering | The University of Texas at Austin

Rigid Body Transformation

A mapping $g : \mathbb{R}^3 \to \mathbb{R}^3$ is a rigid body transformation if it satisfies the following properties:

1. (Necessary condition) Length is preserved for all points p and q:

$$||g(p) - g(q)|| = ||p - q||$$

2. (Sufficient Condition) The cross product (orientation) is preserved for all vectors \boldsymbol{v} and \boldsymbol{w}

$$g_*(v \times w) = g_*(v) \times g_*(w)$$

 \triangleright We may define the **space of rotation matrices** in $R^{n \times n}$ by

$$SO(n) = \{ R \in \mathbb{R}^{n \times n} : RR^T = I, \det R = +1 \}$$

$$ightharpoonup R^{-1} = R^{T}$$

Rotations are rigid body transformations

A rotation $\mathbb{R} \in SO(3)$ is a rigid body transformation; that is,

1. R preserves distance:

$$||Rq - Rp|| = ||q - p||$$
 for all $q, p \in \mathbb{R}^3$

2. R preserves orientation:

$$R(v \times w) = Rv \times Rw \text{ for all } v, w \in \mathbb{R}^3$$

i.e., the rotation of the cross product of two vectors is the cross product of the rotation of each of the vectors by \mathbf{R} .

❖ Proof in your **THA1**!

Physical Interpretation of Rotation Matrices

- Geometrically, determinant can be viewed as the volume scaling factor of the linear transformation described by the matrix.
- The determinant is **positive or negative** according to whether the linear mapping **preserves or reverses the orientation of** *n***-space**.
- ➤ det(R)=+1 means that it's a **rigid body transformation** that does not **change the length** and **orientation**!

https://www.youtube.com/watch?v=Ip3X9LOh2dk

- \triangleright There are **three** major uses for a rotation matrix **R**:
 - (a) To represent an orientation;
 - **(b)** To change the reference frame in which a vector or a frame is represented (Solved example);
 - (c) To rotate a vector or a frame.

- In (a), R is thought of as representing a frame;
- In (b) and (c), **R** is thought of as an <u>operator</u> that acts on a **vector or** frame (changing its reference frame or rotating it).

(a) To represent an orientation:

- ✓ Frames {a}, {b}, and {c} representing the same space with the same origin.
- ✓ <u>RGB color frame</u> is a **fixed space frame** {s}, which is <u>aligned with frame</u> {a}.
- ✓ The orientations of the three frames **relative to {s}** can be written as \mathbf{R}_f , which implicitly referring to the <u>orientation of frame {f}</u> relative to the fixed frame {s}, i.e., \mathbf{R}_{sf}

$$R_{a} = \begin{bmatrix} \hat{x} & \hat{y} & \hat{z} \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \quad R_{b} = \begin{bmatrix} \hat{x} & \hat{y} & \hat{z} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad R_{c} = \begin{bmatrix} \hat{x} & \hat{y} & \hat{z} \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

A rotation matrix is just a collection of three unit vectors!

2D Rotation Matrix

- \triangleright Goal: Given known position **P** in the rotated frame $\{B\}$, find its position wrt fixed frame {V}.
- The point **P** can be considered with respect to the 2D red (Rotated) or blue coordinate frame with the same origin: i.e., $^{\mathbf{V}}\mathbf{p} = ^{\mathbf{B}}\mathbf{p}$

$$\begin{pmatrix} v_{x} \\ v_{y} \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} b_{x} \\ b_{y} \end{pmatrix} \qquad \begin{pmatrix} v_{x} \\ v_{y} \end{pmatrix} = \begin{pmatrix} v_{R} \\ b_{y} \end{pmatrix}$$

$$\begin{pmatrix} {}^{V}_{x} \\ {}^{V}_{y} \end{pmatrix} = \begin{pmatrix} {}^{W}_{x} \\ {}^{B}_{y} \end{pmatrix}$$

(b) Changing the reference frame

If the rotation matrix R_{ab} represents the <u>orientation of</u> $\{b\}$ in $\{a\}$ and R_{bc} represents the <u>orientation of</u> $\{c\}$ in $\{b\}$, then we have:

$$R_{ac} = R_{ab}R_{bc}.$$

Notation: $R_{ab} = {}^{a}R_{b}$ both represents the orientation of $\{b\}$ in $\{a\}$.

(b) Changing the reference frame

If the rotation matrix \mathbf{R}_{ab} represents the <u>orientation of $\{b\}$ in $\{a\}$ </u> and \mathbf{R}_{bc} represents the <u>orientation of $\{c\}$ in $\{b\}$,</u> then we have:

$$R_{ac} = R_{ab}R_{bc}.$$

- $ightharpoonup \mathbf{R}_{bc}$ can be viewed as a representation of the orientation of $\{c\}$.
- While \mathbf{R}_{ab} can be viewed as a mathematical operator that changes the reference frame from $\{b\}$ to $\{a\}$.
- A <u>subscript cancellation rule</u> helps us to remember this property:

$$R_{ab}R_{bc} = R_{ab}R_{bc} = R_{ac}$$

The <u>reference frame of a vector</u> can also be changed by a rotation matrix:

$$R_{ab}p_b = R_{ab}p_b = p_a$$

(c) Rotating a vector or a frame

- We rotate the frame $\{c\}$ about a unit axis $\widehat{\omega}$ by an amount \emptyset , the new frame is $\{c'\}$ and can define it by $\mathbf{R}_{Sc'}$.
- We can also see **R** as a **rotation operator**, instead of as an orientation, i.e., $R = \text{Rot}(\hat{\omega}, \theta)$

$$\operatorname{Rot}(\hat{\mathbf{x}}, \theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}, \quad \operatorname{Rot}(\hat{\mathbf{y}}, \theta) = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}$$

$$\operatorname{Rot}(\hat{\mathbf{z}}, \theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

- **Rot** is an independent-to-frame operation that rotates the orientation represented by the Identity matrix to the orientation represented by R.
- We have to specify whether the axis of rotation $\widehat{\omega}$ is expressed in $\{S\}$ or body frame $\{b\}$, (e.g., $\{c\}$ in the figure).
- Depending on our choice, the same numerical $\widehat{\boldsymbol{\omega}}$ (and therefore the same numerical R) corresponds to different rotation axes in the underlying space!!!

The independent rotation operator $R = Rot(z^{\circ}; 90)$ gives the orientation of the right-hand frame in the left-hand frame.

√5 90°

- \triangleright The quantity RR_{sb} rotates {b} by 90 degree about the **fixed-frame axis z^s** to {b'}.
- The quantity $R_{sb}R$ rotates {b} by 90 degree about the **body-frame axis z^{h}** to {b"}.

$$R_{sb'}$$
 = rotate_by_ R_{in}_{sb} frame $(R_{sb}) = R_{sb}$
 $R_{sb''}$ = rotate_by_ R_{in}_{sb} frame $(R_{sb}) = R_{sb}$.

- \triangleright In other words, <u>pre-multiplying</u> by $\mathbf{R} = \mathbf{Rot}(\widehat{\boldsymbol{\omega}}; \boldsymbol{\theta})$ yields a rotation about an axis $\widehat{\boldsymbol{\omega}}$ considered to be in the <u>fixed frame</u>, and <u>post-multiplying</u> by \mathbf{R} yields a rotation about $\widehat{\boldsymbol{\omega}}$ considered as being in the <u>body frame</u>.
- ightharpoonup The quantity RR_{sb} rotates {b} by 90 degree about the **fixed-frame axis z^s** to {b'}.
- The quantity $R_{sb}R$ rotates {b} by 90 degree about the **body-frame axis z^{\wedge}_{b}** to {b"}.

$$R_{sb'}$$
 = rotate_by_ $R_{in}_{sb'}$ = rotate_by_ $R_{in}_{sb''}$ = rotate_by_ $R_{in}_{sb''}$ = R_{sb} .

Skew Symmetric matrices

- Figure 3 Given a vector $\mathbf{x} = [\mathbf{x}_1 \, \mathbf{x}_2 \, \mathbf{x}_3]^{\mathrm{T}} \in \mathbb{R}^3$, define: $[x] = \begin{bmatrix} 0 & -x_3 & x_2 \\ x_3 & 0 & -x_1 \\ -x_2 & x_1 & 0 \end{bmatrix}$
- The matrix [x] or also sometime shown by \hat{x} is a 3×3 skew-symmetric matrix representation of vector x; that is $[x] = -[x]^T$
- \triangleright The set of all 3×3 real skew-symmetric matrices is called so(3).
- The set of skew-symmetric matrices so(3) is called the Lie algebra of the Lie group SO(3).
- The space of $\underline{n \times n}$ skew-symmetric matrices S is: $so(n) = \{S \in \mathbb{R}^{n \times n} : S^T = -S\}$
- \triangleright We can write the **cross product of two vectors** as: $a \times b = (a)^{\wedge}b$.
- ightharpoonup The <u>sum</u> of two skew-symmetric matrices is skew-symmetric $(v+w)^{\wedge} = \widehat{v} + \widehat{w}$.
- The <u>scalar multiple</u> of any element of so(3) is an element of so(3)
- The <u>elements on the diagonal</u> of a skew-symmetric matrix are <u>zero</u>, and therefore its <u>trace equals zero</u>.
- If A is a real skew-symmetric matrix and λ is a real eigenvalue, then $\lambda=0$ i.e. the nonzero eigenvalues of a skew-symmetric matrix are purely imaginary.
- **Determinant** of an n×n skew-symmetric matrix is **zero** if **n is odd**.

Vector linear differential equation

The linear differential equation $\dot{x}(t) = Ax(t)$ with initial condition $x(0) = x_0$, where $A \in \mathbb{R}^{n \times n}$ is constant and $x(t) \in \mathbb{R}^n$, has solution

$$x(t) = e^{At}x_0$$

where

$$e^{At} = I + tA + \frac{t^2}{2!}A^2 + \frac{t^3}{3!}A^3 + \cdots$$

The matrix exponential e^{At} further satisfies the following properties:

- (a) $d(e^{At})/dt = Ae^{At} = e^{At}A$.
- (b) If $A = PDP^{-1}$ for some $D \in \mathbb{R}^{n \times n}$ and invertible $P \in \mathbb{R}^{n \times n}$ then $e^{At} = Pe^{Dt}P^{-1}$.
- (c) If AB = BA then $e^A e^B = e^{A+B}$.
- (d) $(e^A)^{-1} = e^{-A}$.

Exponential coordinates for rotation

Let's rotate the rigid body at <u>constant unit velocity</u> <u>about the axis ω </u>, the velocity of the point, \dot{q} , may be written as the following linear differential equation:

$$\dot{q}(t) = \omega \times q(t) = \widehat{\omega}q(t)$$
 $q(t) = e^{\widehat{\omega}t}q(0)$

where q(0) is the initial (t = 0) position of the point and $e^{\widehat{\omega}t}$ is the matrix exponential:

$$e^{\widehat{\omega}t} = I + \widehat{\omega}t + \frac{(\widehat{\omega}t)^2}{2!} + \frac{(\widehat{\omega}t)^3}{3!} + \cdots$$

- It follows that if we <u>rotate</u> about the <u>axis ω at unit velocity</u> for <u>θ units of time (t = θ)</u>, then the **net rotation** is given by: $R(ω, θ) = e^{\widehat{ω}θ}$
- Figure 3 Given a matrix $\widehat{\omega} \in so(3)$, $\|\omega\| = 1$, and a real number $\theta \in \mathbb{R}$, we write the exponential $\widehat{\omega}\theta$ as $\exp(\widehat{\omega}\theta) = e^{\widehat{\omega}\theta} = I + \theta\widehat{\omega} + \frac{\theta^2}{2!}\widehat{\omega}^2 + \frac{\theta^3}{2!}\widehat{\omega}^3 + \dots$
- This is an **infinite series** and, hence, <u>not useful from a computational standpoint</u>.
- It can be shown that if **the matrix is constant** and **finite** then this series is always guaranteed **to converge to a finite limit**.

Exponential coordinates for rotation

ightharpoonup Given $\widehat{a} \in so(3)$, the following relations hold:

$$\widehat{a}^2 = aa^T - ||a||^2 I$$

$$\widehat{a}^3 = -||a||^2 \widehat{a}$$

and higher powers can be calculated recursively.

 $\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots$ $\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots$

$$\blacktriangleright$$
 Utilizing this with $a = \omega \theta$, $\|\omega\| = 1$, we have:

$$\exp(\widehat{\omega}\theta) = e^{\widehat{\omega}\theta} = I + \theta\widehat{\omega} + \frac{\theta^2}{2!}\widehat{\omega}^2 + \frac{\theta^3}{3!}\widehat{\omega}^3 + \dots$$

$$e^{\widehat{\omega}\theta} = I + \left(\theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \cdots\right) \widehat{\omega} + \left(\frac{\theta^2}{2!} - \frac{\theta^4}{4!} + \frac{\theta^6}{6!} - \cdots\right) \widehat{\omega}^2$$

Mhen
$$\|\omega\| \neq 1$$
, it may be verified:

$$e^{\widehat{\omega}\theta} = I + \frac{\widehat{\omega}}{\|\omega\|} \sin(\|\omega\|\theta) + \frac{\widehat{\omega}^2}{\|\omega\|^2} (1 - \cos(\|\omega\|\theta)).$$

Exponential coordinates for rotation

- The quantity $e^{\hat{\omega}\theta} q$ has the effect of rotating q about the fixed-frame axis $\underline{\omega}$ by an angle $\underline{\theta}$.
- Similarly, considering that a rotation matrix **R** consists of three column vectors, the rotation matrix $R' = \text{Rot}(\hat{\omega}, \theta)R$ is the orientation achieved by rotating R by an angle $\underline{\theta}$ about **axis** $\underline{\omega}$ in the fixed frame.

Reversing the order of matrix multiplication, $R'' = R \operatorname{Rot}(\hat{\omega}, \theta)$ is the orientation achieved by rotating R in the body frame.

$$R'' = Re^{[\hat{\omega}_2]\theta_2} \neq R' = e^{[\hat{\omega}_2]\theta_2}R.$$

- Exponentials of skew symmetric matrices are orthogonal!
- \triangleright Given a skew-symmetric matrix $\widehat{\omega} \in so(3)$ and $\theta \in \mathbb{R}$ \Longrightarrow $e^{\widehat{\omega}\theta} \in SO(3)$.
- Secondarically, the skew symmetric matrix corresponds to an axis of rotation and the exponential map generates the rotation corresponding to rotation about the axis by a specified amount θ .

References

- Murray, R.M., Li, Z., Sastry, S.S., "A Mathematical Introduction to Robotic Manipulation.", Chapter 2.
- Corke, Peter. "Robotics, vision and control: fundamental algorithms in MATLAB®" second, completely revised. Vol. 118. Springer, 2017, **Chapter 2.**
- Lynch and Park, "Modern Robotics," Cambridge U. Press, 2017, Chapter 3.