ÁLGEBRA III - 2023 Práctico 6

Forma racional y forma de Jordan de un operador lineal.

- 1. Sea T un operador lineal en \mathbb{F}^2 . Probar que todo vector no nulo que no sea un vector propio de T, es un vector cíclico de T. Concluir que o bien T tiene un vector cíclico o bien T es un múltiplo escalar de la identidad.
- 2. Sea T el operador lineal de \mathbb{R}^3 representado en la base canónica por la matriz

$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

Probar que T no tiene vectores cíclicos. ¿Cuál es el subespacio T-cíclico generado por el vector $(1,-1,3)^t$? Hallar el T-anulador del vector $(1,-1,3)^t$.

3. Sea T el operador lineal de \mathbb{C}^3 representado en la base canónica por la matriz

$$\begin{pmatrix} 1 & i & 0 \\ -1 & 2 & -i \\ 0 & 1 & 1 \end{pmatrix}.$$

Hallar el T-anulador del vector $\alpha = (1,0,0)^t$ y del vector $\alpha' = (1,0,i)^t$.

- 4. Probar que si T^2 tiene un vector cíclico, entonces T tiene un vector cíclico. ¿Es cierta la recíproca?
- 5. Sea V un \mathbb{F} -espacio vectorial de dimensión n, y sea N un operador lineal nilpotente sobre V. Supongamos que $N^{n-1} \neq 0$, y sea $\alpha \in V$ tal que $N^{n-1}\alpha \neq 0$. Probar que α es un vector cíclico de N. Dar la matriz de N en la base ordenada $\{\alpha, N\alpha, \dots, N^{n-1}\alpha\}$.
- 6. Sea T un operador diagonalizable sobre un espacio vectorial de dimensión n.
 - (a) Probar que si T tiene un vector cíclico, entonces T tiene n autovalores distintos.
 - (b) Supongamos que T tiene n autovalores distintos y que $\{v_1, \ldots, v_n\}$ es una base de autovectores de T. Probar que $v = v_1 + \cdots + v_n$ es un vector cíclico de T.
- 7. Encontrar el polinomio minimal y la forma racional de cada una de las siguientes matrices reales.

$$A = \begin{pmatrix} 0 & -1 & -1 \\ 1 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}, \qquad B = \begin{pmatrix} c & 0 & -1 \\ 0 & c & 1 \\ -1 & 1 & c \end{pmatrix}, \qquad C = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}.$$

8. Sea T el operador lineal de \mathbb{R}^3 representado en la base canónica por la matriz

$$A = \begin{pmatrix} 3 & -4 & -4 \\ -1 & 3 & 2 \\ 2 & -4 & -3 \end{pmatrix}.$$

Hallar vectores no nulos $\alpha_1, \ldots, \alpha_r$ que satisfagan las condiciones del *Teorema de descomposición cíclica*. Hallar una matriz real P inversible tal que $P^{-1}AP$ esté en forma racional.

- 9. Sea A la matriz real $A = \begin{pmatrix} 1 & 3 & 3 \\ 3 & 1 & 3 \\ -3 & -3 & -5 \end{pmatrix}$. Hallar una matriz real P inversible tal que $P^{-1}AP$ esté en forma racional.
- 10. Sea T un operador lineal, con polinomio característico $f(x) = (x^2 + 1)(x 1)^3$. Dar todas las posibles formas racionales de T.
- 11. Clasificar por semejanza todas las matrices $A \in M_5(\mathbb{R})$ tales que

$$(A^2 + I)(A - I) = 0.$$

- 12. Probar que si $A, B \in M_3(\mathbb{F})$, con \mathbb{F} cuerpo, una condición necesaria y suficiente para que A y B sean semejantes es que tengan el mismo polinomio característico y el mismo polinomio minimal. ¿Es esto cierto para matrices 4×4 ?
- 13. Sea A una matriz $n \times n$ compleja, tal que todos sus valores propios son reales. Probar que A es semejante a una matriz con coeficientes reales.
- 14. Sea T un operador lineal en un espacio vectorial V de dimensión finita. Probar que T tiene un vector cíclico si y sólo si todo operador lineal U que conmuta con T es un polinomio en T.
- 15. Sea \mathbb{F} un cuerpo.
 - (a) Sean $N_1, N_2 \in M_3(\mathbb{F})$ nilpotentes. Demostrar que N_1 y N_2 son semejantes si y sólo si tienen el mismo polinomio minimal.
 - (b) Usar la parte (a) y la forma de Jordan para probar que si $A,B\in M_n(\mathbb{F})$ con el mismo polinomio característico

$$f(x) = (x - c_1)^{d_1} \cdots (x - c_k)^{d_k},$$

el mismo polinomio minimal y ningún d_i es mayor que 3 entonces A y B son semejantes.

16. Sea A una matriz compleja con polinomio característico

$$p_A(x) = (x-2)^3(x+7)^2$$

y polinomio minimal $m_A(x) = (x-2)^2(x+7)$. Encontrar la forma de Jordan de A.

- 17. ¿Cuántas posibles formas de Jordan hay para una matriz compleja 6×6 con polinomio característico $f = (x+2)^4(x-1)^2$?
- 18. Encontrar la forma de Jordan de la siguiente matriz

$$\begin{pmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 & 0 & 0 \\ -1 & 0 & 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 2 & 0 & 0 \\ 1 & 1 & 1 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 & -1 \end{pmatrix}.$$

- 19. Clasificar, salvo semejanza, las matrices 3×3 complejas tales que $A^3 = I$.
- 20. Sea $n \in \mathbb{N}$, n > 1, y sea N una matriz $n \times n$ sobre el cuerpo \mathbb{F} tal que $N^n = 0$, pero $N^{n-1} \neq 0$. Probar que N no tiene una raíz cuadrada; es decir, que no existe una matriz A, $n \times n$, tal que $A^2 = N$. Más aún, si $\ell > 2$, entonces N no tiene una raíz ℓ -ésima.

- 21. Sean $N_1, N_2 \in M_6(\mathbb{F})$ matrices nilpotentes, que tienen el mismo polinomio minimal y la misma nulidad. Probar que N_1 y N_2 son semejantes. Muestre que esto no es cierto para el caso 7×7 .
- 22. Sea N una matriz nilpotente elemental $k \times k$, es decir, $N^k = 0$ y $N^{k-1} \neq 0$. Probar que N^t es semejante a N. Demostrar que toda matriz compleja $n \times n$ es semejante a su transpuesta (ayuda: usar la forma de Jordan y el resultado anterior).