Climate Change Project

Christian Chimezie

ATM 320

Tables

1980 - 1999

Local temperature:

T_{avg} (°F)	σT (°F)	T_{max} (°F)	T_{min} (°F)
47.435	18.869	72.2	14.0

Global temperature:

SOI index:

2000 - 2019

Local temperature:

$$T_{avg}$$
 (°F) | σT (°F) | T_{max} (°F) | T_{min} (°F) | 48.621 | 17.288 | 76.5 | 12.7

Global temperature:

SOI index:

1980 - 2019

Local temperature:

$$\frac{T_{avg} (^{\circ}F) | \sigma T (^{\circ}F) | T_{max} (^{\circ}F) | T_{min} (^{\circ}F)}{48.571 | 17.359 | 76.5 | 12.7}$$

Global temperature:

SOI index:

Correlation Coefficient

The correlation coefficient is a quantification of the strength of the linear relationship between two variables. Correlations of -1 or +1 imply an exact linear relationship, while 0 implies no correlation. The Pearson correlation coefficient is calculated using the equation 1.

$$r = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sqrt{\sum (x - \overline{x})^2 \sum (y - \overline{y})^2}}$$
(1)

The statistical significance of the correlation coefficient can be interpreted using the p-value method. The p-value P is calculated using a t-distribution with n-2 degrees of freedom as shown in equation 2.

$$t = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}\tag{2}$$

We use $\alpha = 0.05$ as the threshold significance level.

- If $P < \alpha$, the variables are linear because r is sufficiently different from zero.
- If $P > \alpha$, the variables are not linear because r is not sufficiently different from zero.