

CSCE 590B: Big Data Analytics

John R. Rose

Computer Science and Engineering

University of South Carolina

Overview

- Big Data Analytics: What is it?
- First, what do we mean by data?
- Second what do we mean by analytics?
- Third what do we mean by big?

What do we mean by "data"?

- In principal, any kind of data:
 - Corporate sales
 - Email
 - Tweets
 - Sensor output
 - Video
 - Photos
 - Omics
 - Website click streams

What do we mean by "data"?

- What is the structure of this data:
 - Corporate sales structured (tables in a DB)
 - Email unstructured (free text)
 - Tweets unstructured (free text)
 - Sensor output structured (DB or stream)
 - Video unstructured
 - Photos unstructured
 - Omics semi-structured (XML-like DB)
 - Website click streams quasi-structured

What do we mean by "analytics"?

- Broadly refers to the method of analysis
- Depends on what we want to learn from the data.
- method/model used to make sense of the data.
- Depends on the nature of the data.

What do we mean by "analytics"?

- Example: When will social security go broke?
 - Data: Historical data over 50 years
 - Yearly balance
 - Payments in
 - Payments out
 - Size of working population
 - Size of retired population
 - Life expectancy
 - Analytical method: ?

What do we mean by "big"?

- Any thoughts on what we might mean by "big"?

What do we mean by "big"?

Examples:

- Genomics data: human genome is 3 billion basepairs
 - "mapping" of human genome exceeds 8 petabytes.
- New York Times public archive consists of millions of pdf files.
- Chemical reaction databases containing millions of reactions.
- Library of Congress collection of tweets: 170 billion tweets (as of January 8, 2013)
- Others?

What are we actually going to do?

- Depends on your background.
- What do you know about SQL?
- What about NoSQL?
- What do you know about statistical analysis?
 - Regression
 - Clustering
 - Association rules
 - Decision trees
 - Neural networks
 - Support vector machines
 - Hidden Markov models

Plan 0

- Introduce SQL or refresh your SQL memory
- Introduce R in the context of RStudio
- Review basic statistical methods
- Investigate advanced data mining techniques
- Investigate "Big Data" techniques

Plan 0

- Introduce SQL or refresh your SQL memory
 - Next lecture or two will cover SQL
 - · Will do more if needed.
- Introduce R in the context of RStudio
 - Instructions for downloading R & RStudio on class webpage
 - Install on your own machine to work at home
- Review basic statistical methods
 - Will use RStudio for hands-on in class

Plan 0

- Investigate advanced data mining techniques
 - Will use methods implemented in R packages
 - No need to rewrite existing tools
 - More important to understand use and limitation of tools
- Investigate "Big Data" techniques
 - Hadoop
 - HDFS
 - PIG
 - HIVE

