Università degli Studi Roma Tre Anno Accademico 2008/2009 AL1 - Algebra 1

Correzione della prima prova in itinere

Esercizio 1. $U:=\cup_{n\in\mathbb{N}_+}A_n=(0,+\infty)$. Lo dimostreremo per doppia inclusione: per ogni $n\in\mathbb{N}_+,\ A_n\subseteq(0,+\infty)$ quindi $\cup_{n\in\mathbb{N}_+}A_n\subseteq(0,+\infty)$. Occupiamoci del viceversa: notiamo, prima di tutto, che per ogni $n\in\mathbb{N}_+$ $\frac{1}{n}\leq 1\leq n$, quindi $[1,n]\subseteq A_n$ e $[\frac{1}{n},1]\subseteq A_n$. Sia ora $x\in\mathbb{R},x\geq 1$: allora, data l'osservazione e il fatto che $[x]+1\geq x$ si ha che $x\in A_{[x]+1}\Rightarrow x\in U$. Sia ora $x\in\mathbb{R},x<1$: dato che $[1/x]+1\geq 1/x$ allora $x\geq 1/([1/x]+1)$ da cui, per l'osservazione, si ha che $x\in A_{[1/x]+1}\Rightarrow x\in U$.

 $\bigcap_{n\in\mathbb{N}_+}\mathbb{R}\setminus A_n=(\text{legge di De Morgan})\ \mathbb{R}\setminus \bigcup_{n\in\mathbb{N}_+}A_n=\mathbb{R}\setminus (0,+\infty)=(-\infty,0].$

Esercizio 2. Per la nozione di partizione di un insieme si consulti il libro di testo.

Tutte le possibili partizioni di X sono cinque: $P_1 := \{X\}, P_2 := \{\{\alpha\}, \{\beta, \gamma\}\}, P_3 := \{\{\beta\}, \{\alpha, \gamma\}\}, P_4 := \{\{\gamma\}, \{\alpha, \beta\}\}, P_5 := \{\{\alpha\}, \{\beta\}, \{\gamma\}\}.$

- Esercizio 3. i. Ad esempio si definisca $f: Y \to X$ così: f(1) := a, f(2) := b, f(3) := c. f è iniettiva ma non è suriettiva dato che $d \notin f(Y)$.
 - ii. Ad esempio si definisca $f: X \to Y$ così: f(a) := 1, f(b) := 1, f(c) := 2, f(d) = 3. f è suriettiva ma non è iniettiva dato che f(a) = f(b).
 - iii. Ad esempio si definisca $f: X \to X$ così: f(a) := a, f(b) := a, f(c) := a, f(d) := a. f non è suriettiva, dato che ad esempio $b \notin f(X)$, e non è iniettiva, dato che, ad esempio, f(a) = f(b).
- Esercizio 4. Chiaramente $f = f \circ id_X = id_X \circ f$.

Se f è iniettiva è cancellabile a sinistra, quindi $f \circ f \circ f = f \circ id_X \Rightarrow f \circ f = id_X$ e perciò f è invertibile. Una funzione è invertibile se e solo se è biiettiva, quindi in particolare f è suriettiva.

Se f è suriettiva è cancellabile a destra, quindi $f \circ f \circ f = id_X \circ f \Rightarrow f \circ f = id_X$ e perciò f è invertibile. Una funzione è invertibile se e solo se è biiettiva, quindi in particolare f è iniettiva.

Attenzione! in generale non è vero che $f \circ f \circ f = f \Rightarrow f \circ f = id$. Si prenda ad esempio un insieme con più di un elemento e una funzione costante su tale insieme.

- Esercizio 5. Base dell'induzione: per n=0 si ha 10+3+5=18 che è divisibile per 9. Supponiamo allora l'asserto vero per n e dimostriamolo per n+1: $10^{n+2}+3\cdot 10^{n+1}+5=10(10^{n+1}+3\cdot 10^n+5)-50+5=10(10^{n+1}+3\cdot 10^n+5)-45$ che è divisibile per 9 dato che lo sono sia $10^{n+1}+3\cdot 10^n+5$ (per l'ipotesi induttiva) che 45.
- Esercizio 6. Per gli enunciati degli assiomi di Peano si consulti il libro di testo. Verifichiamo che (A,0,s) è un sistema di Peano:

- (P1) $0 \in A$;
- (P2) s è un'applicazione da A in sé;
- (P3) $0 \notin s(A)$: infatti se, per assurdo, 0 = s(a) con $a \in A$, allora $\exists k \in \mathbb{N}$ tale che 0 = 3k + 3, il che non è possibile;
- (P4) s è iniettiva: infatti sia s(a) = s(b) con $a, b \in A$. Dato che $\exists h, k \in \mathbb{N}$ tali che a = 3h, b = 3k, si ha 3h + 3 = 3k + 3, da cui h = k che implica a = b;
- (P5) vale il principio di induzione: infatti sia $E \subseteq A$ tale che $0 \in E$ e $s(E) \subseteq E$. Consideriamo l'insieme $I := \{h \in \mathbb{N} \text{ t.c. } 3h \in E\}$: dato che $0 \in E$ allora $0 \in I$. Inoltre se $n \in I$ allora $3n \in E$, perciò, per l'ipotesi su E, $3n + 3 = 3(n + 1) \in E$ da cui $n + 1 \in I$. Quindi per il principio di induzione del sistema di Peano \mathbb{N} , $I = \mathbb{N}$, da cui E = A.
- Esercizio 7. Per le definizioni di infinito si consulti il libro di testo.

Sia A un insieme infinito secondo Cantor, ovvero esiste una funzione $f:A\to A$ iniettiva ma non suriettiva. Allora $f:A\to f(A)$ è una biiezione e $f(A)\subsetneq A$ dato che f non è suriettiva. Viceversa: supponiamo esista $B\subsetneq A$ e una biiezione $g:A\to B$. Allora, chiamata $i:B\hookrightarrow A$ l'inclusione di B in A, è chiaro che $i\circ g:A\to A$ è una funzione iniettiva (perché composizione di funzioni iniettive) e non suriettiva (perché, essendo $B\subsetneq A$, i non è suriettiva).

Esercizio 8. R_1 non è simmetrica, infatti $(a,b) \in R_1$ ma $(b,a) \notin R_1$. R_1 è riflessiva: $(a,a),(b,b),(c,c) \in R_1$. R_1 è antisimmetrica: né (b,a) né (c,a) appartengono a R_1 . R_1 è transitiva: bisogna unicamente controllare che $(a,a) \in R_1,(a,b) \in R_1 \Rightarrow (a,b) \in R_1$ (vero) e che $(a,b) \in R_1,(b,b) \in R_1 \Rightarrow (a,b) \in R_1$ (vero).

 R_2 è antisimmetrica: né (b,a), né (c,b), né (c,a) appartengono, infatti, a R_2 . R_2 è transitiva: bisogna unicamente controllare che $(a,b) \in R_2, (b,c) \in R_2 \Rightarrow (a,c) \in R_2$ (vero) . R_2 non è simmetrica: ad esempio $(a,b) \in R_2$ ma $(b,a) \notin R_2$. R_2 non è riflessiva: ad esempio $(a,a) \notin R_2$.

 R_3 è simmetrica: infatti sia (a,b) che (b,a) appartengono a R_3 . R_3 non è riflessiva: ad esempio $(a,a) \notin R_3$. R_3 non è antisimmetrica: infatti $a \neq b$ ma sia (a,b) che (b,a) appartengono a R_3 . R_3 non è transitiva: $(a,b),(b,a) \in R_3$ ma $(a,a) \notin R_3$.

Esercizio 9. Per dimostrare che \leq è un ordine parziale basta verificare che esso gode delle proprietà riflessiva, antisimmetrica e transitiva:

riflessiva: per ogni $a \in \mathbb{N}_+$, $a/a = 1 \in \mathbb{N}$, quindi per ogni $a \in \mathbb{N}_+$, $a \leq a$; antisimmetrica: se $a \leq b$ e $b \leq a$ allora esistono $h, k \in \mathbb{N}$ tali che a/b = h e $b/a = k \Rightarrow 1 = hk \Rightarrow h = k = 1 \Rightarrow a = b$;

transitiva: se $a \leq b$ e $b \leq c$ allora, per definizione, $a/b \in \mathbb{N}$ e $b/c \in \mathbb{N}$ da cui $a/c = (a/b) \cdot (b/c) \in \mathbb{N}$, cioè $a \leq c$.

L'ordine non è totale: ad esempio 2 e 3 non sono confrontabili dato che né 2/3 né 3/2 sono numeri interi.

1 è un massimo per \leq : infatti $\forall a \in \mathbb{N}_+, a \leq 1$ dato che $a/1 = a \in \mathbb{N}$. Non esiste minimo: infatti sia per assurdo $a \neq 0$ minimo per \leq ; allora in particolare $a \leq 2a$ per definizione di minimo, cioè $1/2 = a/(2a) \in \mathbb{N}$, assurdo.

Una catena è un sottoinsieme di \mathbb{N}_+ totalmente ordinato. Un esempio di catena con 7 elementi è la seguente: $C:=\{2^i|i=0,\dots,6\}=\{1,2,4,8,16,32,64\}$. Chiaramente dati due elementi dell'insieme, 2^h e 2^k , o $h\geq k$ o $k\geq h$, quindi o $2^h/2^k\in\mathbb{N}$ oppure $2^k/2^h\in\mathbb{N}$ cioè o $2^h\preceq 2^k$ oppure $2^k\preceq 2^h$, quindi effettivamente (C,\preceq) è totalmente ordinato.