2 第三次上机作业

本次上机作业来自教材《数值线性代数》(第二版)第 99 页.

2.1 利用 QR 分解求解最小二乘问题

实现 QR 分解, 并编制基于 QR 分解的求解线性方程组和线性最小二乘问题的通用子程序, 并利用该通用子程序完成下面三个计算任务.

(1) 求解以下三个线性方程组,并将第一个方程组的计算结果与 Gauss 消去法和列主元 Gauss 消去法得到的计算结果进行对比,将后两个方程组的计算结果与平方根法和改进的平方根法进行对比.

$$\begin{bmatrix} 6 & 1 & & & & & \\ 8 & 6 & 1 & & & & \\ & 8 & 6 & 1 & & & \\ & & \ddots & \ddots & \ddots & & \\ & & 8 & 6 & 1 & & \\ & & & 8 & 6 & 1 & \\ & & & 8 & 6 & 1 & \\ & & & 8 & 6 & 1 & \\ & & & 8 & 6 & 1 & \\ & & & & 8 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_{82} \\ x_{83} \\ x_{84} \end{bmatrix} = \begin{bmatrix} 7 \\ 15 \\ 15 \\ \vdots \\ 15 \\ 14 \end{bmatrix};$$

$$\begin{bmatrix} 10 & 1 & & & & & & \\ 1 & 10 & 1 & & & & & \\ & 1 & 10 & 1 & & & & \\ & & \ddots & \ddots & \ddots & & & \\ & & & 1 & 10 & 1 & & \\ & & & & 1 & 10 & 1 & \\ & & & & & 1 & 10 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_{98} \end{bmatrix} = \begin{bmatrix} 11 \\ 12 \\ x_3 \\ \vdots \\ x_{98} \end{bmatrix};$$

$$\begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} & \cdots & \frac{1}{38} & \frac{1}{39} & \frac{1}{40} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \cdots & \frac{1}{39} & \frac{1}{40} & \frac{1}{41} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \cdots & \frac{1}{40} & \frac{1}{41} & \frac{1}{42} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{1}{38} & \frac{1}{39} & \frac{1}{40} & \cdots & \frac{1}{75} & \frac{1}{76} & \frac{1}{77} \\ \frac{1}{39} & \frac{1}{40} & \frac{1}{41} & \cdots & \frac{1}{76} & \frac{1}{77} & \frac{1}{78} \\ \frac{1}{40} & \frac{1}{41} & \frac{1}{42} & \cdots & \frac{1}{77} & \frac{1}{78} & \frac{1}{19} \\ \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_{38} \\ x_{39} \\ x_{40} \end{bmatrix} = \begin{bmatrix} \sum_{k=1}^{40} \frac{1}{k} \\ \sum_{k=2}^{41} \frac{1}{k} \\ \sum_{k=3}^{41} \frac{1}{k} \\ \sum_{k=3}^{42} \frac{1}{k} \\ \sum_{k=38}^{77} \frac{1}{k} \\ \sum_{k=39}^{78} \frac{1}{k} \\ \sum_{k=39}^{78} \frac{1}{k} \\ \sum_{k=40}^{79} \frac{1}{k} \end{bmatrix}$$

(2) 求一个二次多项式 $y = at^2 + bt + c$, 使得在残向量的 2 范数最小的意义下拟合表中数据

t_i	-1	-0.75	-0.5	0	0.25	0.5	0.75
y_i	1.00	0.8125	0.75	1.00	1.3125	1.75	2.3125

(3) 在房产股价的线性模型

$$y = x_0 + a_1 x_1 + a_2 x_2 + \dots + a_{11} x_{11}$$

中, a_1, a_2, \ldots, a_{11} 分别表示税、浴室数目、占地面积、车库数目、房屋数目、居室数目、房龄、建筑类型、户型及壁炉数目, y 代表房屋价格. 现根据表中给出的 28 组数据, 求出模型中参数的最小二乘结果.

			y			
25.9	29.5	27.9	25.9	29.9	29.9	30.9
28.9	84.9	82.9	35.9	31.5	31.0	30.9
30.0	28.9	36.9	41.9	40.5	43.9	37.5
37.9	44.5	37.9	38.9	36.9	45.8	41.0

截止时间为 10 月 29 日上午 10:00,需要同时提交代码和上机报告,上机报告需使用 LaTeX 或 Markdown 完成,并提交 PDF 文档,总页数不得超过 10 页. 在提交上机作业时,需将代码、上机报告源码、上机报告打包为 zip 压缩包,作为附件发送至邮箱 2501110054@stu.pku.edu.cn,其中邮件名、压缩包、上机报告需按"数值代数 + 第三次上机作业 + 姓名 + 学号(.zip/.pdf)"的格式命名,如:数值代数 + 第三次上机作业 + 许盛 飏 +2501110054(.zip/.pdf)"。

a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8	a_9	a_{10}	a_{11}
4.9176	1.0	3.4720	0.9980	1.0	7	4	42	3	1	0
5.0208	1.0	3.5310	1.5000	2.0	7	4	62	1	1	0
4.5429	1.0	2.2750	1.1750	1.0	6	3	40	2	1	0
4.5573	1.0	4.0500	1.2320	1.0	6	3	54	4	1	0
5.0597	1.0	4.4550	1.1210	1.0	6	3	42	3	1	0
3.8910	1.0	4.4550	0.9880	1.0	6	3	56	2	1	0
5.8980	1.0	5.8500	1.2400	1.0	7	3	51	2	1	1
5.6039	1.0	9.5200	1.5010	0.0	6	3	32	1	1	0
15.4202	2.5	9.800	3.4200	2.0	10	5	42	2	1	1
14.4598	2.5	12.8000	3.000	2.0	9	5	14	4	1	1
5.8282	1.0	6.4350	1.2250	2.0	6	3	32	1	1	0
5.3003	1.0	4.9883	1.5520	1.0	6	3	30	1	2	0
6.2712	1.0	5.5200	0.9750	1.0	5	2	30	1	2	0
5.9592	1.0	6.6660	1.1210	2.0	6	3	32	2	1	0
5.0500	1.0	5.0000	1.0200	0.0	5	2	46	4	1	1
5.6039	1.0	9.5200	1.5010	0.0	6	3	32	1	1	0
8.2464	1.5	5.1500	1.6640	2.0	8	4	50	4	1	0
6.6969	1.5	6.0920	1.4880	1.5	7	3	22	1	1	1
7.7841	1.5	7.1020	1.3760	1.0	6	3	17	2	1	0
9.0384	1.0	7.8000	1.5000	1.5	7	3	23	3	3	0
5.9894	1.0	5.5200	1.2560	2.0	6	3	40	4	1	1
7.5422	1.5	4.0000	1.6900	1.0	6	3	22	1	1	0
8.7951	1.5	9.8900	1.8200	2.0	8	4	50	1	1	1
6.0931	1.5	6.7265	1.6520	1.0	6	3	44	4	1	0
8.3607	1.5	9.1500	1.7770	2.0	8	4	48	1	1	1
8.1400	1.0	8.0000	1.5040	2.0	7	3	3	1	3	0
9.1416	1.5	7.3262	1.8310	1.5	8	4	31	4	1	0
12.0000	1.5	5.0000	1.2000	2.0	6	3	30	3	1	1