Data Analytics Assessment #4 Beiming Zhang

Programming Part

Q1 a) Output:

- The decision tree is as above.
- ◆ The predictors used at the nodes of the tree are "Height", "Weight", "NumDoors", "Horsepower", "Price", "Length" and "EngineSize". The tree has 14 terminal nodes (leaves).

Q1 b)

Output:

\$size

[1] 14 11 8 6 4 2 1

\$dev

[1] 32 32 33 32 34 50 75

\$k

[1] -Inf 0.0 1.0 2.5 3.0 8.5 28.0

\$method

[1] "misclass"

attr(,"class")

[1]"prune" "tree.sequence"

- ♦ The deviance is smallest when size is 14, 11, and 6, which are all 6. According to Occam's razor principle, the **best tree size is 6**.
- The decision tree after pruning is as above.

Q1 c)

- ♦ Height=60, the condition Height<52.25 is false; NumDoors: Two, the condition NumDoors: Four is false; Length=160, the condition Length<160.75 is true, the decision tree returns "No".
- ♦ According to the best tree, his car will <u>not</u> incur a high loss.

Q2 a)Output:

	titanic_test_survived	
knn_k2	0	1
0	0.55605381	0.13901345
1	0.06278027	0.24215247

	titanic_test_survived	
knn_k4	0	1
0	0.55605381	0.14349776
1	0.06278027	0.23766816

	titanic_test_survived	
knn_k6	0	1

0	0.56950673	0.14573991
1	0.04932735	0.23542601

- 0.13901345+0.24215247=0.3812
- 0.06278027+0.24215247=0.3049
- 0.14349776+0.23766816=0.3812
- 0.06278027+0.23766816=0.3004
- 0.14573991+0.23542601=0.3812
- 0.04932735+0.23542601=0.2848
- ♦ When $\underline{K=2}$, the survival rate in the test data is $\underline{38.12\%}$ and the predicted survival rate is about 30.49%; when $\underline{K=4}$, the survival rate in the test data is $\underline{38.12\%}$ and the predicted survival rate is about 30.04%; when $\underline{K=6}$, the survival rate in the test data is $\underline{38.12\%}$ and the predicted survival rate is about 28.48%.

Q2 b)

Output:

k=2	k=4	k=6
0.7982063	0.7937220	0.8049327

- When <u>K=2</u>, the accuracy rate is about <u>79.82%</u>; when <u>K=4</u>, the accuracy rate is about <u>79.37%</u>; when <u>K=6</u>, the accuracy rate is about <u>80.49%</u> $_{\circ}$
- \bullet Therefore, when <u>K=6, it works best</u>.

Q1 a)

$$d = \sqrt{(x_1 - x_{i1})^2 + (x_2 - x_{i2})^2 + (x_3 - x_{i3})^2}$$

♦ Calculate the Euclidean distance as follows:

Obs.	1	2	3	4	5	6
Distance	6.16	5.92	5.20	<u>4.00</u>	2.83	<u>1.41</u>

◆ Since K=3, the decision is made here based on the three points <u>4, 5, and 6</u> with the closest Euclidean distance.

Q1 b)

- ♦ The most recent qualitative response of the three points 4, 5 and 6 are Medium, Medium and Low respectively.
- ◆ According to the principle of KNN, we choose <u>Medium</u>, which accounts for the majority, as the prediction of classification.

Q1 c)

- ◆ The most recent quantitative response of the three points 4, 5 and 6 are 110, 120 and 70 respectively.
- ◆ According to the principle of KNN, the average of Y values for the 3 nearest neighbors is <u>100</u>, which is our regression prediction.

Q2 a)

• For region R1, we have the following observations falling in this region:

Obs.	Y
3	Low
8	Low
10	Low
15	High

- ♦ Region R1 is labeled as "Low".
- For region R2, we have the following observations falling in this region:

Y
High
Low
High
High

- ♦ Region R2 is labeled as "High".
- For region R3, we have the following observations falling in this region:

Obs.	Y
4	Low
7	High
11	Low

♦ Region R3 is labeled as "Low".

• For region R4, we have the following observations falling in this region:

Obs.	Y
5	High
13	Low
14	High

- ♦ Region R4 is labeled as "High".
- For region R5, we have the following observations falling in this region:

Obs.	Y
9	Low

♦ Region R5 is labeled as "Low".

Q2 b)

Obs.	Actual	Predicted	Classification
1	High	High	TP
2	Low	High	FP
3	Low	Low	TN
4	Low	Low	TN
5	High	High	TP
6	High	High	TP
7	High	Low	FN
8	Low	Low	TN
9	Low	Low	TN
10	Low	Low	TN
11	Low	Low	TN
12	High	High	TP
13	Low	High	FP
14	High	High	TP
15	High	Low	FN

• The confusion for the training dataset matrix is below:

	Predicted: "High"	Predicted: "Low"
Actual: "High"	5	2
Actual: "Low"	2	6

• The accuracy for the training dataset is $(5+6)/15=\frac{73.33\%}{6}$

Q2 c)

Obs.	Actual	Region	Predicted	Classification
1	High	R3	Low	FN
2	Low	R4	High	FP
3	High	R2	High	TP
4	Low	R5	Low	TN
5	Low	R1	Low	TN

• The confusion for the training dataset matrix is below:

Predicted: "High"	Predicted: "Low"
-------------------	------------------

Actual: "High"	1	1
Actual: "Low"	1	2

• The accuracy for the training dataset is (1+2)/5 = 60.00%

Q3 a)

• For region R1, we have the following observations falling in this region:

Obs.	Y
3	1
8	9
10	1
15	13

- **♦** The average of the Y values within R1 is 6.
- For region R2, we have the following observations falling in this region:

Obs.	Y	
1	19	
2	6	
6	17	
12	18	

- **♦** The average of the Y values within R2 is 15.
- For region R3, we have the following observations falling in this region:

Obs.	Y
4	5
7	13
11	6

- **♦** The average of the Y values within R3 is 8.
- For region R4, we have the following observations falling in this region:

Obs.	Y
5	19
13	6
14	11

- **♦** The average of the Y values within R4 is 12.
- For region R5, we have the following observations falling in this region:

Obs.	Y
9	8

♦ The average of the Y values within R5 is 8.

Q2 b)

Obs.	Y	Region	Ŷ	$(Y - \hat{Y})^2$
1	11	R3	8	9
2	9	R4	12	9
3	15	R2	15	0
4	7	R5	8	1

5	7	R1	6	1
Total	49		50	20

- For 5 observations:
- ♦ <u>RSS=20</u>
- **♦** MSE=20/5=4