IIITDM KANCHEEPURAM

MA1001 Differential Equations

Problem Set 5

1. Solve the following differential equations:

(a)
$$\frac{d^4y}{dx^4} + m^4y = 0$$

(b)
$$x \frac{d^2y}{dx^2} - (2x - 1)\frac{dy}{dx} + (x - 1)y = 0$$

(c)
$$\sin^2 x \frac{d^2 y}{dx^2} = 2y$$
 if $y = \cot x$ is one solution.

- 2. Let y_1 and y_2 be two solution of the differential equation $\frac{d^2y}{dz^2} + P(x)\frac{dy}{dz} + Q(x)y = R(x)$. Find the condition on c_1 and c_2 such that $c_1y_1 + c_2y_2$ is also a solution of the differential equation.
- 3. Let $y = 3e^{2x} + e^{-2x} \alpha x$ be a solution of the initial value problem

$$\frac{d^2y}{dx^2} + \beta y = 4\alpha \ x, \quad y(0) = 4, \quad \text{and} \quad \frac{dy}{dx}(0) = 1, \quad \text{where} \quad \alpha, \ \beta \ \in R.$$

Find the value of α and β .

- 4. Let $y_1(x) = x$ be a solution of the differential equation $(1 x^2) \frac{d^2y}{dx^2} 2x \frac{dy}{dx} + 2y = 0$. Find the general solution of differential equation.
- 5. Let $W(y_1, y_2)$ be the Wronskian of two linearly independent solutions y_1 and y_2 of the equation y'' + P(x)y' + Q(x)y = 0.
 - (i) Calculate product $W(y_1, y_2)P(x)$
 - (ii) If $y_1 = e^{2x}$ and $y_2 = xe^{2x}$, then find P(0).
- 6. Find the set of all linearly independent solutions of the differential equation

$$\frac{d^4y}{dx^4} - \frac{d^2y}{dx^2} = 0.$$

7. Let f(x) and xf(x) be solutions of the differential equation

$$y'' + P(x)y' + Q(x)y = 0.$$

Then find the solution of the differential equation y'' + P(x)y' + Q(x)y = f(x).