

West Bengal State Council of Technical Education (A Statutory Body under West Bengal Act XXI of 1995) Kolkata Karigori Bhavan, 2nd Floor, 110 S. N. Banerjee Road, Kolkata - 700 013.

	Course: Diploma in Mech. DESIGN OF MACHINE EL					
Course code		Semester : Sixth				
Duration: 17	-	Maximum Marks : 150				
Teaching Scl		Examination Scheme:				
Theory: 4 hrs		Internal Assessment: 20 Marks				
Tutorial: hrs/w		Teacher's assessment (Assignment & Quiz): 10) Marks			
	Practical: 2 hrs/week End Semester Exam: 70 Marks					
Credit: 5	. 6, 110 61.	Practical: Internal Sessional continuous evalu	ation:25 Marks			
		Practical: External Sessional Examination: 25 M				
Aim :-		Truction: Enter har best on at Enamenation 25	101110			
S.No						
1	medium scale industries. Funda Engineering Materials and Theory of	scale industries. Fundamental knowledge of Applied Mechanics, Strength of Materials,				
Objective :-						
S No	The student will able to	The student will able to				
1	Analyze the various modes of failure of machine components under different load patterns.					
2	Design and prepare part and assembly drawings.					
3	Use design data books	Use design data books and different codes of design.				
4	Select standard compo	Select standard components with their specifications from manufacturer's catalogue.				
5	Develop drawings on C	CAD software				
Pre-Requisite						
		Contents	Hrs/week			
Chapter	Name of the Topic		Hours			
GROUP:A 01	Introduction to Desig		T			
	1.2 General Considera 1.3 Fundamentals:- Ty Strain Diagram for Duc such as Tension, Com Crushing, bending and 1.4 Creep strain and C 1.5 Fatigue, S-N curve 1.6 Factor of Safety an 1.7 Stress Concentration 1.8 Converting actual in design factors like velo 1.9 Properties of Engin and introduction to Inter		10			

		T
s s	and preferred numbers series. standardization, use of design data book, use of standards in design and preferred numbers series. Theories of Elastic Failures – Principal normal stress theory, Maximum shear stress theory & maximum distortion energy theory. Theories of Elastic Failures – Principal normal stress theory, Maximum shear stress theory & maximum distortion energy theory.	
2	Design of simple machine parts 2.1 Cotter Joint, Knuckle Joint, 2.2 Design of Levers:- Hand/Foot Lever & Bell Crank Lever.	08
GROUP:B		
03	Design of Shafts, Keys and Couplings, Spur Gears and Pulley. 3.1 Types of Shafts, Shaft materials, Standard Sizes, Design of Shafts (Hollow and Solid) using strength and rigidity criteria, ASME code of design for line shafts supported between bearings with one or two pulleys in between or one overhung pulley 3.2 Design of Sunk Keys, Effect of Keyways on strength of shaft. 3.3 Design of Couplings – Protected type Flange Coupling, 3.4 Spur gear design considerations. Lewis equation for static beam strength of spur gear teeth. Power transmission capacity of spur gears in bending. 3.5 Design of C.I. Pulley.	14
4 4 4 s	Design of Fasteners 4.1 Stresses in Screwed fasteners, bolts of Uniform Strength. 4.2 Design of Bolted Joints subjected to eccentric loading. 4.3 Design of parallel and transverse fillet welds, axially loaded symmetrical section, Merits and demerits of screwed and welded oints	08
GROUP:C		
05 A 5 5	Antifriction Bearings 5.1 Classification of Bearings – Sliding contact & rolling contact. 5.2 Terminology of Ball bearings – life load relationship, basic static load rating and basic dynamic load rating, limiting speed. Selection of ball bearings using manufacturer's catalogue.	08
6 E	Ergonomics & Aesthetic consideration in design 6.1 Ergonomics of Design – Man –Machine relationship. Design of Equipment for control, environment & safety. 6.2 Aesthetic considerations regarding shape, size, color & surface finish.	04
7 7 p c 7	Estimating & Costing 7.1 Definition of estimating and costing, elements of costing, overhead 7.2 Determination of weight of various parts such as simple bush, flanged bipe, Lathe centre, Rivets, Bolts & Nuts, Simple spanner, Simple crank & connecting Rod. 7.3 Estimation of selling price of cast part such as C.I.pulley, Coupling, Wooden pattern of flange. 7.4 Estimation of fabricated job such as Simple chimney, Funnel, Cylindrical tank	08
Т	Total	60

Assignments:

Skills to be developed:

Intellectual skills:

- 1. Understand the basic philosophy and fundamentals of Machine Design.
- 2. Apply and use the basic knowledge of earlier subjects like mechanical Engineering. materials, strength of materials and theory of machines.
- 3. Analyse and evaluate the loads, forces, stresses involved in components and subassemblies and decide the dimensions.
- 4. Understand the modes of failures of m/c components and decide the design criteria and equations.
- 5. Understand the concept of standardization and selecting standard components.
- 6. Understand the methods of computer aided design practices.

Motor skills:

- 1. Draw the components assembly as per the designed dimensions.
- 2. Modify drawings and design as per requirement.
- 3. Use the different design software.
- 4. Use different design data books and IS codes.

1. IS/ International Codes

- a) IS 4218: 1967 ISO Metric Threads
- b) IS 2693: 1964 Cast Iron Flexible Couplings
- c) IS 2292: 1963 Taper keys & Keyways
- d) IS 2293: 1963 Gib Head Keys & Keyways
- e) IS 2389: 1963 Bolts, Screws, Nuts & Lock Nuts
- f) IS 4694: 1968 Square threads
- g) IS 808: 1967 Structural Steel
- h) SKF Catalogue for Bearings

2. SOFTWARE

- 1) Think 3 CAD Software developed by acebrain.
- 2) E-Yantra Software, developed by FEAST.

Suggested List of Laboratory Experiments: - Nil

Suggested List of Assignments/Tutorial:

S.No List of Assignments:

- 1 Assignment on selection of materials for given applications [at least five applications should be covered] using design data book. List the mechanical properties of material selected.
- 2 Problems on design of simple machine parts like Cotter Joint, Knuckle Joint, Bell Crank Lever, C.I. Pulley (One example on each component) with free hand sketches.
- 3 Design Project No. 1 Observe the system where transmission of power takes place through shaft, Keys, coupling, pulley and belt drive. Get the required information regarding power transmitted (power output by motor or engine etc.). By selecting suitable materials, design the shaft, key and coupling. Also select suitable Ball Bearing from Manufacture's catalogue. Prepare design report and assembly drawing indicating overall dimensions, tolerances, and surface finish. Also prepare bill of materials.(Activity should be completed in a group of five to six students)
- 4 Design Project No. 2 Observe the System where transmission of power takes place through power Screws.
- (e.g. Lead screw of lathe, feed screws of machine tools, Clamping screws, Toggle Jack screw, etc.) Get the required information regarding effort, clamping force, etc., and selecting suitable materials design screw, nut and different simple components in assembly. Prepare design report and assembly drawing indicating overall dimensions, tolerances and surface finish. Also prepare bill of materials. (Activity should be completed in a group of five to six students)
- 5 Assignments on overhead cost calculation, selling price calculation,
- 6. Assignments on weight and cost calculation of different parts.
- 6 CAD Drawing for project No 1 or 2 should be prepared in practical and print out should be attached along with respective drawing sheets
- 7 Survey of Prime movers Electric motors / I.C. Engines available in the market along with specifications suitable for your design project. Survey report should be prepared with the relevant catalogue.

Group	unit	Objective Questions		unit Objective Questions Subjective Questions			
		No. of questions to be set	Total marks	No. of questions to be set	To answer	Marks per question	Total marks
A	01,02,03	10		4	5, taking at least	-	
В	04,05	9	25	3	one from each	10	50
С	06,07	6		3	group		

List of Books:

Author	Title	Publication	
V.B.Bhandari	Introduction to Machine Design	n Tata Mc- Graw Hill	
R.K.Jain	Machine Design	Khanna Publication	
Pandya & Shah	Machine design	Dhanpat Rai & Son	
Joseph Edward Shigley	Mechanical Engg. Design	Mc- Graw Hill	
PSG Coimbtore	Design Data Book	PSG Coimbtore Mechanics	
Abdulla Shariff	Hand Book of Properties of Engineering Materials & Design Data for Machine Elements	Dhanpat Rai & Sons	
Hall, Holowenko, Laughlin	Theory and Problems of Machine Design	Mc- Graw Hill	

Reference books:

Author	Title	Publication
Robert L.Mott,Jong Tang	Machine Elements in Mechanical Design	Pearson
Jack A. Collins, Henry R. Busby	Mechanical Design of Machine Elements and Machines	Willey Publications

Internal Examination: Examiner- Lecturer in Mechanical Engg.					
Submission of Five No. of Assignments in due time. $5 \times 3 = 15$					
VIVA VOCE	10				
TOTAL 25					
External Examination: Examiner- Lecturer in Mechanical Engg.					

Submission of Signed Note Book	5 x 2 = 10		
VIVA VOCE	15		
TOTAL	25		
		I	

Course code: ME Semester: Sixth.						
Duration	n: 17 weeks	Maximum Marks: 150				
Teachin	g Scheme	Examination Scheme:				
Theory:	3 hrs/week	Internal Assessment: 20 Marks				
Tutorial:	hrs/week	Teacher's Assessment (Assignment & Quiz): 10 Marks				
Practical	: 2 hrs/week	End Semester Exam: 70 Marks				
Credit: 4	Practical: Internal Sessional continuous evaluation: 25 Marks					
	Practical: External Sessional examination: 25 marks					
Aim :-	Aim:-					
S. No.						
1	To impart the basic concept of Fluid power system.					
2	To understand the applications of Hydraulic and Pneumatic Systems in industries as clean source of motive					
	power, convenient way of power transmission and easer way of automation.					
3	To understand the limitations of Hydraulic and Pneumatic Systems.					
Objectiv	/e:-					
S. No.	The Students should be able to:					
1	Identify various components of Hydraulic & Pneumatic Systems.					
2	• Know the working principle of					
3	Select appropriate components					
4	• List probable causes of faults or defects in the components of Hydraulic & Pneumatic Circuits.					

rie-Kequisite. Elementary	knowledge on Filysics,	Thermal Engineering and Thuid I	viccinalities & iviacinitiery.

		Contents	Hr	rs/week
FLUID	POWER			
Ch	apter	Name of the Topic	Hours	Marks
		GROUP-A		
01	1.0	Introduction to Fluid Power Systems:	10	
	1.1	Introduction, Classification (Hydraulic & Pneumatic System) and General		
		layout of Fluid Power Systems.		
	1.2	Comparison of Hydraulic & Pneumatic System.		
	1.3	Practical applications of Fluid Power Systems.		
	1.4	Advantages and Limitations of Fluid Power Systems.		
02	2	Components of Hydraulic Systems:	13	
	2.0	Types, Construction, Working Principle and Symbols of the following		
		Components:		
	2.1	Pumps –		
	Vane pump, Gear pump, Lobe pump, Screw pump and Piston pump.			
	2.2	Valves –		
	2.2.1 Pressure control valves – Pressure relief valve, Pressure reducing valve,			
		Pressure unloading valve.		
	2.2.2	Direction control valves – Poppet valve, Spool valve, 3/2, 4/2 D.C.		
		valves, Sequence valves.		
	2.2.3	Flow control valves – Pressure compensated, Non Pressure compensated		
		flow control valve.		
	2.3	Actuators –		

	2.3.1	Rotary Actuators - Hydraulic motors		
	2.3.2	Linear Actuators – Cylinders - single acting, double acting.		
	2.4	Accessories –		
	2.4.1	Pipes, Hoses, fittings, Oil filters, Seals and gaskets, Intensifier,		
	2,	Accumulators.		
03	3.0	Hydraulic Circuits:	12	
	3.1	Meter in, Meter out circuits		
	3.2	Bleed off circuit		
	3.3	Sequencing circuit		
	3.4	Hydraulic circuits for Milling machine, Shaper machine, Motion		
		synchronization circuit.		
		GROUP-B		
04	4	Components of Pneumatic System:	10	
	4.0	Types, Construction, Working Principle and Symbols of the following		
		Components:		
	4.1	Compressor – Reciprocating & Rotary compressors.		
	4.2	Control Valves – Pressure regulating valves, Flow Control valves and		
		Direction Control Valves.		
	4.3	Actuators –		
	4.3.1	Rotary actuator - Air motors.		
	4.3.2	Linear actuator- Cylinders- single acting, double acting.		
	4.4	Accessories – Pipes, Hoses, Fittings, FRL unit.		
05	5.0	Pneumatic Circuits:	10	
	5.1	Speed control circuits.		
	5.2	Sequencing circuits.		
		Sub Total:	45	
	Int	ternal Assessment Examination & Preparation of Semester Examination	6	
		Total	51	

Practical:

Skills to be developed:

Intellectual Skill:

- 1. Prepare simple Hydraulic & Pneumatic Circuits.
- 2. Compare the performance of Hydraulic & Pneumatic Systems.
- 3. Identify the faults & suggest remedies in Hydraulic & Pneumatic Circuits.
- 4. Select proper Circuit considering its Application.

Motor Skills:

- 1. Connect different Components as per given Drawing.
- 2. Perform repairing and replacement of defective components in the Circuit.
- 3. Draw the Hydraulic and Pneumatic Circuits using Symbols.

List of Practical:

- 1. Study of Vane pump/ Gear pump / Lobe pump / Screw pump generally used in Hydraulic System.
- 2. Study of Direction Control Valve generally used in Hydraulic / Pneumatic System.
- 3. Study of Rotary / Linear (single acting / double acting) Actuator generally used in Hydraulic / Pneumatic System.
- 4. Study of FRL Unit generally used in Pneumatic System.

- 5. Demonstration of Meter in and Meter out Circuit.
- 6. Demonstration of Sequencing Circuit.
- 7. Demonstration of Hydraulic Circuit for Shaper Machine.
- 8. Demonstration of Pneumatic Circuit for Speed Control of Double Acting Cylinders.
- 9. Demonstration of Pneumatic Circuit for Speed Control of Pneumatic Motor.
- 10. Study of Trouble Shooting Procedures of various Hydraulic and Pneumatic Circuits.
- 11. Selection of Circuit Components for Simple Hydraulic and Pneumatic Circuits.

Note: At least FIVE (05) nos. of Practical / Study are to be conducted.

Text Books						
Name of Authors	Titles of the Book	Edition	Name of the Publisher			
Hicks Pippenger	Industrial Hydraulics		McGraw Hill International			
S.R. Majumdar	Oil Hydraulic System- Principle and		Tata McGraw Hill			
	maintenance					
S.R. Majumdar	Pneumatics Systems- Principles and		Tata McGraw Hill			
	Maintenance					
Stewart	Hydraulics and Pneumatics		Taraporewala Publication			
Farel Bradbury	Hydraulic System & Maintenance		ILIFFE Books, London			
Charles Hedges	Industrial Fluid Power		Womack Educational			

Publications

Prentice Hall

Pearson

Suggested List of Assignments / Tutorial :-

Peter Rhoner

A. Esposito

- 1. Draw Hydraulic Meter in and Meter out Circuits by using Symbols.
- 2. Draw Pneumatic Sequencing circuit by using Symbols.
- 3. Draw Hydraulic Circuit for Shaper Machine by using Symbols.
- 4. Draw Hydraulic Circuit for Speed Control of Hydraulic Motor by using Symbols.

Industrial Hydraulic Control

Fluid Power with Application

EXAMINATION SCHEME: END SEMESTER EXAMINATION

GROUP	MODULE		OBJECTIVE QUESTIONS			SUBJECTIVE QUESTION			
	OR CHAPTER	TO BE SET	TO BE ANSWERED	MARKS PER QUESTION	TOTAL MARKS	TO BE SET	TO BE ANSWERED	MARKS PER QUESTION	TOTAL MARKS
A	1,2,3	12	ANY 20	1	20	7	FIVE, (AT LEAST ONE FROM EACH	10	50
В	4,5	08	711(120	1	20	3	GROUP)	10	30

Internal Examination: Examiner- Lecturer in Mechanical Engg. / Jr. Lecturer						
Five No. of Experiments / Study attended & $5 \times 3 = 15$						
respective lab note submitted in due time.	respective lab note submitted in due time.					
VIVA VOCE	10					
TOTAL 25						
External Examination: Examiner- Lecturer in	Mechanical Engg. / Ju	r. Lecturer				

Submission of Signed Lab Note Book (for five experiments / study)	5 x 2 = 10	
On spot experiment / study (one for each group consisting 15 students / explanation on study item)	10	
VIVA VOCE	5	
TOTAL	25	

Course		SY SOURCES AND MANAGEMENT (ELECTIVE II) Semester: Sixth					
Duration : 17 weeks		Maximum Marks: 100					
	g Scheme	Examination Scheme:					
· ·	3 hrs/week	Internal Assessment: 10Marks					
Tutorial:		Teacher's Assessment (Assignment & Quiz): 5 Marks					
	: 2 hrs/week	End Semester Exam: 35 Marks					
Credit: 4		Practical: Internal Sessional continuous evaluation: 25	5 Marks				
		Practical: External Sessional examination: 25 Marks					
Aim :-							
S.No							
1		maintain alternative energy sources systems. It is therefore enversion, conservation, energy audit and waste heat recove					
Objectiv							
S No	The student will able to						
1	Develop awareness for e	ffective utilization of alternative energy sources.					
2	Identify different component	ents of solar energy and wind energy devices.					
3	Identify and analyze biomass plant.						
4		conservation techniques for commonly used power absorbi	ng and				
generating devices.							
Dro Dog		y conservation and energy management techniques.					
Pre-Req	Nil						
	INII	Contents	Hrs/week				
Chapter	Name of the Topic	Contents	Hours				
Group:A			1110010				
	Introduction to Energy Sc	ources					
01	1.1 Introduction.						
		rgy: Renewable and Non-renewable.	02				
	1.3 Primary and seconda	ry energy sources.					
	1.4 Energy Scenario:Prospects of alternate e	neray sources					
	- Need of Alternate energ						
	Solar Energy	y 					
	2.1 Principle of conversio	n of solar energy into heat and electricity					
	2.2 Solar Radiation: Solar Radiations at earth's surface						
		y: Declination, hour angle, altitude angle,					
00	incident angle, zenith ang		08				
02	2.3 Applications of Solar	energy ng of typical flat plate collector and solar	00				
	concentrating collectors a						
	advantages and limitation						
	- Space heating and cooling.						
	- Photovoltaic electric conversion.						
	- Solar distillation, Solar o						
	- Solar pumping and Gree						
	Agriculture and Industrial (no derivations and nume						
Group:B		πισαισμ	L				
3.0ap.D	Wind Energy						
	3.1 Basic Principle of win	d energy conversion.					
	O. I Babie I III biple of Will						

	Maximum power	05
03	3.3 Main considerations in selecting a site for wind mills.	
	3.4 Advantages and limitations of wind energy conversion.	
	3.5 Classification of wind mills	
	3.6 Construction and working of horizontal and vertical axis wind mills,	
	their comparison	
	3.7 Main applications of wind energy for power generation and pumping.	
04	Energy from Biomass	
	4.1 Common species recommended for biomass.	
	4.2 Methods for obtaining energy from biomass	
	4.3 Thermal classification of biomass	0.5
	a) Gasified, b) Fixed bed and fluidized	05
	4.4 Application of gasifier	
	4.5 Biodiesel production and application	
	4.6 Agriculture waste as a biomass	
	4.7 Biomass digester	
	4.8 Comparison of Biomass with conventional fuels	
Group:C	4.0 Comparison of Biomass with conventional rucis	
	Energy Conservation & Management:-	
	5.1 Global and Indian energy market	
	5.2 Energy scenario in various sectors and Indian economy	05
05	5.3 Need and importance of energy conservation and management	
	5.4 Concept of Payback period, Return on investment (ROI), Life cycle	
	cost, Sankey diagrams, specific energy consumption.	
06	Energy Conservation Techniques	
	6.1 Distribution of energy consumption	
	6.2 Principles of energy conservation.	
	6.3 Energy audit	08
	6.4 Types of audit	00
	6.5 Methods of energy conservation	
	6.6 Cogeneration and its application	
	6.7 Combined cycle system	
	6.8 Concept of energy management	
	6.9 Study of different energy management	
	techniques like	
	- Analysis of input	
	- Reuse and recycling of waste	
	- Energy education	
	- Conservative technique and energy audit	
07	Economic approach of Energy Conservation	
0,	7.1 Costing of utilities like steam, compressed air, electricity and water.	
	7.2 Ways of improving boiler efficiency	
	7.3 Thermal insulation, Critical thickness of insulation	
	7.4 Waste heat recovery systems, their applications, criteria for installing	08
	unit.	
	7.5 An introductory approach of energy conservation in compressed air,	
	refrigeration, air conditioning, pumps and	
	fans.	
	Total	41

Skills to be developed:

Intellectual skills:

- Understand working of various power plants.
 Understand constructional features and working of devices used in non conventional energy sources.
 Understand economical and operational aspects of power plants.

4. Calculate the efficiency of power generation cycles.

Motor skills:

GROUP

1. List technical details of components and subsystems of power plants.

OBJECTIVE QUESTIONS

MARKS PER

- a) HP & LP Heater feed cycle
- b)Condenser Cooling System including Cooling Tower.

TO BE

- c)Generator Cooling System.
- d)HP & LP Bypass system.
- e)Turbine sealing system.
- 2. Draw layouts of different power plants

MODULE

3. Operate devices using solar energy inputs

EXAMINATION SCHEME

TOTAL

SUBJECTIVE QUESTION

MARKS PER

TOTAL

TO BE ANSWERED

		BE SET	ANSWERED	QUESTION	MARKS	BE SET	TO BE ANSWERED	QUESTION	MARKS
A B C	1,2 3,4 5,6,7	3 4 3	10	1	10	3 4 4	FIVE AT LEAST ONE FROM EACH GROUP	5	25
Name of Author		Titles	of the Book		Edition	1		Name of the F	Publisher
Dr B.H.Khan			conventional urces	energy				Tata Mcgraw	hill
G. D. Rai		Non o	conventional ces	energy				Khanna public	cation
S. P. Sukhatm	ie	Solar	energy					Tata McGraw	Hill
H. P. Garg		Solar	energy					Tata Mcgraw	hill
P.H. Henderso	on	India-	- The energy	sector				Oxford Univer Press	sity
D. A. Ray			strial energy ervation					Pergaman Pro	ess
W. C. Turner		Enero handl	gy managem book	nent				Wiley Press	
K. M. Mittal		Non-o	conventional ce -	energy					
Krupal Singh J	Jogi		gy resource agement					Sarup and so	ns
Ghosh, Tusha Prelas, Mark A		Energ Syste	gy Resource ems	s and				Springer	
2 Cassattas/	CD/wa	haitaa	•		•				

2. Cassettes/CD/websites:

- 1. CDs developed by National Power Training Institute, (Under the ministry of Power, Government of India) Opposite VNIT, South Ambazari road, Nagpur
- 2. Website of Bureau of Energy and Efficiency. (www.bee-india.nic.in)
- 3. Website for Akshay Urja News Bulletin. (www.mnes.nic.in)

Reference books :- Nil

Visit to steam power plants/nuclear power plants/wind power plants/ Hydro power plants and prepare a report. (Any one Plant).

To collect information about global and Indian energy market.

To perform an experiment on solar flat plate collector used for water heating.

To study construction and working of photo voltaic cell.

To study const	To study construction, working and maintenance of solar cooker.					
To study const	truction and working of horizontal axis wind mill or to visit a nearest wind farm.					
To visit a biom	lass/ biogas plant of municipal waste or else where.					
To perform en	ergy audit for workshop/Office/Home/SSI unit.					
To study of var	To study of various waste heat recovery devices.					
Suggested List	of Laboratory Experiments :- Nil					
Suggested List of Assignments/Tutorial :- Nil						

Internal Examination: Examiner- Lecturer in Mechanical Engg. / Jr. Lecturer						
Five No. of Experiments / Study attended						
& respective lab note submitted in due	$5 \times 3 = 15$					
time.						
VIVA VOCE	10					
TOTAL	25					
External Examination: Examiner- Lecture	er in Mechanical H	Engg. / Jr. Lecturer				
Submission of Signed Lab Note Book (for	$5 \times 2 = 10$					
five experiments / study)	3 X 2 - 10					
On spot experiment / study (one for each						
group consisting 15 students / explanation	10					
on study item)						
VIVA VOCE	5					
TOTAL	25					

West Bengal State Council of Technical Education
(A Statutory Body under West Bengal Act XXI of 1995)
Kolkata Karigori Bhavan, 2nd Floor, 110 S. N. Banerjee Road, Kolkata - 700 013.

	ourse : Diploma in Mechanical Enginee CAD-CAM & AUTOMATION	ering			
Course code:		Semester : sixth			
Duration: 17		Maximum Marks : 100			
Teaching Sch		Examination Scheme:			
Theory: 3 hrs/		nternal Assessment: 10 Marks			
Tutorial: hrs/we	Γeacher's assessment (Assignment &	Ouiz): 05 Marks			
Practical: 2 hr		End Semester Exam: 35 Marks	Quizj. 05 Marks		
Tractical . 2 III	I	Practical: Internal Sessional continuo evaluation:25 Marks	ous		
Credit: 4	Practical: External Sessional Examina	ation:25 Marks			
Aim :-		Tactical. External Sessional Examina	ition.25 Marks		
S.No					
1	The need of today's manufac	cturing industrial world is based on best	quality & precision		
'	•	-			
		ele time .To satisfy this need the use			
	automation is inevitable. To satisfy in	ndustrial need, diploma engineer should b	e able to cope with		
	CAD/CAM technology. With this int	ention this subject is introduced in the cur	riculum.		
S No	The student will able to				
1	Understand the fundament	ntals & use CAD.			
	2. Conceptualize drafting an	nd modelling in CAD.			
	3. Prepare CNC part programming.				
	4. Operate CNC machines.				
	5. Conceptualize automation	n and FMS.			
Pre-Requisite	-				
S.No					
1		engineering drawing, mechanical engineering transducer & sensor, fluid power.	ering drawing,		
	Contents		Hrs/week		
Chapter	Name of the Topic		Hours		
Group A					
Group A 01	1		05		
01	Introduction to CAD/CAM		05		
	Computers in industrial manufacturing. Product Cycle, CAD/CAM				
	CAD/CAM hardware:- basic structure, CPU, Memory, I/O devices, Storage devices and system configuration.				
02	devices and system configuration.		10		
	Geometric Modelling		10		
	Requirement of geometric modelling	. Types of geometric models			
		veep, solid modelling- Primitives &			
		aces (Classification of surface only) (No			
		area (Stabbilleadon of Ballace Only) (110			

	numerical treatment)	
	Group B	
03	Introduction to computer numerical Control	05
	Introduction - NC, CNC, DNC, Advantages of CNC,	
	The coordinate system in CNC,	
	Motion control system - point to point, straight line, Continuous path	
	(Contouring). Application of CNC.	
04		12
	Part programming	
	Fundamentals, manual part programming, NC –Words, Programming format,	
	part programming, use of subroutines and do loops, computer aided part	
	programming (APT).	
0E	Group C	Λο
05	Industrial Robotics	08
	Introduction, physical configuration, basic robot motions, technical features	
	such as - work volume, precision and speed of movement, weight carrying	
	capacity, drive system, End effectors, robot sensors.	
	Application - Material transfer, machine loading, welding, spray coating,	
	processing operation, assembly, inspection.	
06	A-A	05
06	Automation	05
06	Basic elements of automated system, advanced automation functions, levels	05
06	Basic elements of automated system, advanced automation functions, levels of automation.	05
06	Basic elements of automated system, advanced automation functions, levels	05

Practical:

Skills to be developed:

Intellectual Skills:

- 1. Interpret the various features in the menu of solid modeling package.
- 2. Synthesize various parts or components in an assembly.
- 3. Prepare cnc programmes for various jobs.
- 4. Understand the concept of finite element method.
- 5. Prepare a report of visits.

Motor skills:

- 1. Operate a turning center and a machining center.
- 2. Operate and use solid modeling packages for drawing of assemblies.
- 3. Draw sketches of assemblies for converting into solid models.
- 4. Handle various tools used in cnc.

List of Practical: ((Any five)

- 1. Two assignments on CAD for 2D drafting (Using AutoCAD)
- 2. Two assignments on CAD for 3D Modelling. (Using any 3-D Modelling software like CATIA, ProE, Solidworks, Solid Edge etc.)
- 3. Two assignments on CAM Software.

- 4. Manufacturing one turning and one Milling component on CNC.
- 5. At least four assignments on part programming using subroutines do loops for turning and milling component.
- 6. Report writing on visit to industry having CNC machine.
- 7. Report writing on visit to industry having robot Application.
- 8. Report writing on visit to Industry having Automation in manufacturing.

Examination Schedule Internal practical Sessional:

	iterriai practicai sessioni	aı.	
Attending classes,		20	
practicing programs /			
practical task &			
submitting respective			
assignment in time			
Viva - voce		5	
Total:		25	
Examination Schedule:	External practical Sessi	onal examination	
Examiner: Lecturer			
For submission of		10	
assignment in			
scheduled time			
On spot activity		10	
viva voce		05	
Total		25	

Suggested List of Laborator	v Experiments :- I	Nil
-----------------------------	--------------------	-----

Suggested List of Assignments/Tutorial:- as mentioned in list of practical

List of Books:

Sr. No	Author	Title	Publication
01	P.N.Rao	CAD/CAM Principles and Applications	Tata McGraw-Hill
02	RadhaKrishna P. & Subramanyam	CAD/CAM/CIM	Wiley EasternLtd
03	B.S.Pabla and M.Adithan	CNC Machine	New age International(P)Ltd
	H.K.SHIVANANDA, M.M.BENAL	Flexible Manufacturing System	New age International(P)Ltd

04	Groover M.P. & Zimmers Jr	Prentice hall of India			
	K. Sareen C. Grewal	CAD & CAM Theory and Concepts	S. Chand		
	J.S.Narang	CNC Machine & Automation	Dhanpat Rai & C0		

G R	Chapter	ONE OR TWO SENTENCE ANSWER QUESTIONS				G R	Chapter		SUBJECTIVE	QUESTIONS	
0		TO	TO BE	MARKS	TO	O		TO BE		MARKS	TOTA
U		BE	ANSWERED	PER	TA	U		SET	TO BE	PER	L
P		SET		QUESTIO	L	P				QUESTIO	MARK
				N	MA				ANSWERED	N	S
					RK						
					S						
A	1,2	3				Α	1,2	3	FIVE,		
В	3,4	4	10	1	1 X	В	3,4	5	TAKING AT	5	5 X 5
					10 =		σ,.		LEAST ONE		= 25
C	5,6	3			100	C	5,6	2	FROM EACH		
									GROUP		

West Bengal State Council of Technical Education
(A Statutory Body under West Bengal Act XXI of 1995)
Kolkata Karigori Bhavan, 2nd Floor, 110 S. N. Banerjee Road, Kolkata - 700 013.

Course code	e: ME/	Semester : Sixth			
Duration: 1	7 weeks	Maximum Marks : 100			
Teaching So		Examination Scheme:			
Theory: 3 hr		Internal Assessment: 10 Marks			
Tutorial: hrs/		Teacher's assessment (Assignment & Quiz): 05 Marks			
Practical: 2 l	nrs/week	End Semester Exam: 35 Marks			
		Practical: Internal Sessional continuous evaluation :25 Marks			
		Practical: External Sessional Examination:25 Marks			
Credit: 4					
Aim :-					
S.No	This subject is	s classified as an Applied Technology. The 21 st century predicts			
	revolutionary develop	ments in Refrigeration and Air Conditioning. Refrigeration and			
	Air conditioning is o	one of the most meaningful job areas for diploma holders in			
	Mechanical Engineeri	ing. Considering the wide and increasing use of Refrigeration			
		for domestic, commercial and industrial applications and the			
	challenges put by the	use of Refrigeration and air conditioning equipments in existing			
	stage, it is absolutely	necessary that Diploma Engineers should learn this subject			
	They should know t	the processes, equipments, systems of Refrigeration and Air			
	Conditioning with the	eir functioning, maintenance, repairs and measures to meet the			
		•			
	challenges of the near	Tuture in this area.			
S No	The student will able t				
<u> </u>		ypes, working principles and construction of Refrigeration and			
	Air Condit	ioning systems.			
		performance of refrigeration and air conditioning system.			
		us charts and tables used in refrigeration and air conditioning.			
	4. Enlist pro	operties of refrigerants, their applications and effects or			
	environme	nt.			
	5. Identify v	various components and controls used in refrigeration and air			
		•			
	conditionir				
	6. Describe v	arious air conditioning systems and their applications.			
	7. Estimate co	ooling and heating loads.			

Pre-Requis	te:-	
S.No	Elementary knowledge on thermal engineering & Power engineering	
	, 3 3 3 3	
1		
	Contents	Hrs/w
		eek
Chapter	Name of the Topic	Hours
	Group A	
0.4	Basics of Refrigeration	03
01	1.1 Definition of refrigeration.	
	1.2 Necessity of refrigeration	
	1.3 Concept of heat engine, heat pump and refrigerator.	
	1.5 Unit of refrigeration, C.O.P. and refrigerating effect.	
02	1.6 Major application areas of R.A.C. like domestic, commercial and industrial.	
02	Refrigeration Cycles 2.1 Reversed Carnot Cycle and its representation on PV and TS diagram &	14
	2.1 Reversed Carnot Cycle and its representation on PV and TS diagram & determination of COP.	
	2.2 Air Refrigeration Cycles: -	
	- Bell Coleman air refrigerator, it's representation on PV and TS	
	diagram, types and applications like air craft refrigeration using	
	simple air cooling system.	
	- (Simple numerical on Reversed Carnot cycle.)	
	2.3 Vapour Compression Cycle (V.C.C): -	
	- Principle, Components, Representation on P-H and T-S diagram,	
	COP, , Effect of superheating, under cooling, suction pressure and	
	discharge pressure, (simple numerical), Actual V.C.C.	
	- Introduction to multistage V.C.C., its necessity, advantages.	
	2.4 Vapour Absorption system : -	
	- Flow diagram and working principle of aqua- ammonia system	
	(simple & practical)	
	- Flow diagram and working principle of Electrolux Refrigeration	
	System,	
	- Desirable properties of Refrigerant and absorbent used in Vapour	
	Absorption System.	
00	- Comparison of above Refrigeration Cycles.	
03	Refrigerants 2.1 Classification of refrigerants	06
	3.1 Classification of refrigerants.3.2 Desirable properties of refrigerants.	
	3.3 Nomenclature of refrigerants.	
	3.4 Selection of refrigerant for specific applications.	
	3.5 Concept of Green House Effect, Ozone depletion, Global warming.	
	3.6 Eco-friendly refrigerants like R-134a, hydrocarbon refrigerants.	
04	Equipment selection	10
	4.1 Components of Vapour Compression Refrigeration System	10
	4.1.1 Compressors:	
	- Classification, Construction and working of open type, hermetic,	
	centrifugal, rotary, screw and scroll compressor and their applications.	
	4.1.2 Condensers:	
	- Classification, description of air cooled and water cooled condensers,	

Water coolers, ice plants, cold storage, domestic refrigerator Group B Psychrometry 5.1 Definition and necessity of air conditioning.	8
Psychrometry	8
	8
 5.2 Properties of Air, Dalton's law of partial pressure 5.3 Psychrometric chart 5.4 Discussion on Psychrometric processes using Psychrometric chart & flow diagram, Concept of Bypass Factor, ADP, SHF, RSHF, ERSHF, and GSHF. 5.5 Adiabatic mixing of Air streams 5.6 Simple numerical using Psychrometric chart 5.7 Equipments used for Air- conditioning like humidifier, dehumidifier, filter, heating and cooling coils 	04
Air- conditioning systems 7.1 Classification of A.C. systems 7.2 Industrial and commercial A.C. systems 7.3 Summer, winter and year round A.C. systems 7.4 Central and unitary A.C. systems 7.5 Application areas of A.C. systems	45
	 5.4 Discussion on Psychrometric processes using Psychrometric chart & flow diagram, Concept of Bypass Factor, ADP, SHF, RSHF, ERSHF, and GSHF. 5.5 Adiabatic mixing of Air streams 5.6 Simple numerical using Psychrometric chart 5.7 Equipments used for Air- conditioning like humidifier, dehumidifier, filter, heating and cooling coils Air- conditioning systems 7.1 Classification of A.C. systems 7.2 Industrial and commercial A.C. systems 7.3 Summer, winter and year round A.C. systems 7.4 Central and unitary A.C. systems

Practical:

Skills to be developed:

Intellectual skills:

- 1. Identify various components of refrigeration and air conditioning equipment
- 2. Analyse cooling load based on application.
- 3. Interpret psychometric chart to find various properties of air.
- 4. Observe working of test rigs and calculate coefficient of performance.

Motor skills:

- 1. Handle various tools used for refrigeration and air conditioning plant maintenance
- 2. Use of temperature, pressure, energy measuring devices
- 3. Draw the layout of central Air conditioning plant

List of Practical:

Group A: (Any five)

- 1. Trial on water cooler test rig.
- 3. Visit to cold storage
- 4. Demonstration of domestic refrigerator in View of construction, operation and controls used.
- 5. Demonstration of various controls like L.P./H.P. cut outs, thermostat, overload protector, solenoid valve used in RAC.
- 6. Identification of components of 'hermetically sealed compressor'.
- 7. Visit to repair and maintenance workshop in view of use of various tools and charging procedure.
- 8. Cooling load calculations for cabin, classrooms, laboratory, canteen and dairy plant, milk storage, small freezers (minimum one).
- 9. Trial on A.C. test rig.
- 10. Visit to central A.C. plant in view of ducting system and Air distribution system (e.g. frozen food industry/ice- cream industry/mushroom plants/textile industries).

Assignments:

- 1. Prepare a chart mentioning name VCC equipments and their applications.
- 2. Prepare a chart mentioning different Refrigerants & their specific application.
- 3. Prepare Air distribution system of central air conditioning system.
- 4. Two problems on VCC.
- 5. Two problems on Air refrigeration cycle.
- 6. One problem on each Psychrometric process using Psychrometric chart.
- 7. Flow diagram of simple air craft cooling system

Attending classes,	4x5 =20	
practicing programs &		
submitting respective		
assignment in time		
(both groups)		
Viva - voce	5	
Total:	25	
Examination Schedule: External practices	actical Sessional examination	•
Examiner: Lecturer / Jr. Lecturer		
For submission of	2x5= 10	
assignment in		
scheduled time		
On spot activity	10	
viva voce	05	
Total	25	
		1
Attending classes,	2x10 =20	

practicing programs &		
submitting respective		
assignment in time		
(both groups)		
Viva - voce	5	
Total:	25	
Examination Schedule: External	practical Sessional examination	
Examiner: Lecturer / Jr. Lecturer	-	
For submission of	10	
assignment in		
scheduled time		
On spot activity	10	
viva voce	05	
Total	25	
Reference books :- Nil		
Occupated Historia hands 5	All	
Suggested List of Laboratory Experi	ments :- NII	
Suggested List of Assignments/Tuto	rial :- as mentioned in list of practical	
Cayyostea List of Assignments/Tuto	ina - as mentioned in list of practical	

List of Books:

Sr. No	Author	Tit;e	Publisher
01	R.S.Khurmi	Refrigeration and Air Conditioning	S.Chand and Co
02	R.K. Rajput	Refrigeration and Air Conditioning	S.K.KATARIA
03	Arrora and Domkundwar	Refrigeration and Air Conditioning	Dhanpat Rai and Sons
04	Manohar Prasad	Refrigeration and Air Conditioning	New Age Publications
05	P.N.Ananthanarayanan	Refrigeration and Air Conditioning	Tata McGraw Hill
06	Roy Dossat	Principles of Refrigeration	Pearson Education
07	Edwin P. Anderson	Commercial Refrigeration	Taraporevala Sons & Co

G R	Chapter	ONI	E OR TWO SEN QUEST		/ER	G R	Chapter		SUBJECTIVE (QUESTIONS	
О		TO	TO BE	MARKS	TOT	O		TO BE		MARKS	TOTAL
UP		BE	ANSWERED	PER	AL	U		SET	TO BE	PER	MARK
		SET		QUESTION	MA	P				QUESTION	S
					RKS				ANSWERED		
	1,2,3,4	6				A	1,2,3,4	6	FIVE, TAKING		
Α			10	1	1 x				AT LEAST	5	5 X 5 =
					10 =				TWO FROM		25
В	5,6	4			10	В	5,6	4	EACH GROUP		

Name of the Course : Mechanical Engineering				
Subject: 1	MATERIAL HANDLING SYSTEM (ELECT	TIVE II)		
Course co	ode: ME	Semester: Sixth.		
Duration	17 weeks	Maximum Marks: 100		
Teaching		Examination Scheme:		
	3 hrs/week	Internal Assessment: 10Marks		
Tutorial:	hrs/week	Teacher's Assessment (Assignment & Quiz): 5 Marks		
	2 hrs/week	End Semester Exam: 35 Marks		
Credit: 4		Practical: Internal Sessional continuous evaluation: 25 Marks		
		Practical: External Sessional examination: 25 Marks		
Aim :-	-			
S. No.				
1	To know the operational features of the material handling equipment & its practical application, carrying parts & products in a shop from one work station to another and from shop to another shop or taking care of stockpiling and reclaiming operations, material handling equipment/systems enable the process to go on without interruptions & at a predetermined space. To understand, select, operate and			
	maintain the material handling equipn	nents.		
Objective				
S. No.	The Students should be able to:			
1	Understand constructional & operational features of various materials handling systems.			
2	Identify, compare & select proper material handling equipment for specified applications.			
3	Know the controls & safety measures incorporated on material handling equipment.			
4	Understand different material handling processes used in industries.			
5	Appreciate the role of material handling devices in mechanization & automation of industrial process.			
Pre-Requ	isite: Nil			

		Contents	Hrs/week	
MATEI	RIAL HAND	LING SYSTEM (ELECTIVE II)		
Cl	hapter	Name of the Topic	Hours	Marks
		GROUP-A		
01	1.0	Introduction to Material Handling System	6	
	1.1	Over view of basic principles, equipments and operations, importance of		
		material handling equipments in relation to productivity and cost of		
		production.		
	1.2	Principle groups of equipment. Unit load, bulk load and their designation		
		by code, various load handling attachments		
02	2.0	Hoisting Machinery & Equipments	12	
	2.1	Construction, working principle and application of Hand Operated		
		Hoists, Electric Hoists and Winch.		
	2.2	Essential parts, operating principle of EOT Cranes. Long travel &		
		cross travel mechanisms, break arrangement and safety arrangement		
		of EOT Cranes.		
	2.3	Essential parts, operating principle of Jib Crane, portal, semi-portal		
		and mobile Crane. Basic principle of level lifting mechanism, luffing		
		gear hoisting mechanism and slewing gear mechanism of Crane.		
		Constructional details and applications of Bucket Elevator.		

	•	GROUP-B		
03	3.0 3.1	Conveying Machinery: Essential components, operating principle and applications of Belt Conveyors, Roller Conveyors, Screw Conveyors, Pneumatic Conveyors and Hydraulic Conveyors.	12	
04	4.0 4.1	Surface Transportation Equipment: Construction, working principle and application of trackless equipment such as Hand Operated Trucks, Powered Trucks, Tractors, AGV- Automatic Guided Vehicle and Industrial Trailers.	10	
05	5.0 5.1	Selection of Material Handling Equipment: Factors affecting choice of material handling equipment such as type of loads, hourly capacity of the unit, direction & length of travel, methods of stocking at initial, final & intermediate points, nature of production process involved, specific load conditions & economics of material handling system.	5	
	1	Sub Total:	45	
	In	ternal Assessment Examination & Preparation of Semester Examination	6	
		Total	51	

Practical:

Skills to be developed:

Intellectual Skill:

- 1. Understand the working principle of equipment/devices.
- 2. Identify & name major component of material handling device.
- 3. Understand role of material handling equipment in the industrial process.
- 4. Understand & appreciate safety instrumentation for equipment.

Motor Skills:

- 1. Identify & select the material handling devices for a given application.
- 2. Operate the working model of material handling equipment.
- 3. Ability to implement preventive maintenance schedule of material handling devices.

List of Practical:

- 1. Study & demonstration of Hand Operated Hoists / Electric Hoists / Winch.
- 2. Study & demonstration of any one type of conveyor belt, Screw, pneumatic, hydraulic.
- 3. Study and demonstration of any one type of crane (working model or actual).
- 4. Study and demonstration of fork lift truck (using electric drive or diesel engine).
- 5. Study and demonstration of Bucket Elevator.
- 6. Study of preventive maintenance schedule of any one major material handling equipment using operation manual.
- 7. Visit to coal handling plant of thermal power plant or cement industry to observe working of different types of bulk material handling devices (at least three equipments). Write report of the visit.
- 8. Collect and write detail specifications of any two major material handling devices.
- 9. Collect photographs of ten different types of cranes used in industries. Write name and specific utility of each.
- 10. Collect photographs of ten different types of conveyers used in industries. Write name and specific utility of each.

Note: At least FIVE (05) nos. of Practical / Study are to be conducted.

Name of Authors	Titles of the Book	Edition	Name of the Publisher
Name of Authors	Titles of the book	Edition	rame of the Lubisher
N. Rundenko	Material Handling Equipment		Peace Publisher, Moscow
M. P. Alexandrov	Material Handling Equipment		MIR Publisher, Moscow
Y. I. Oberman	Material Handling		MIR Publisher, Moscow
R. B. Chowdary &	Material Handling Equipment		Khanna Publisher, Delhi
G. R. N. Tagore			
T. H. Allegri	Material Handling (Principles & Practice)		CBS Publisher, Delhi
J. M. Apple	Plant Layout & Materials Handling		John Wiley Publishers.
J. R. Immer	Material Handling		Mc Graw Hill, New York
T.K. Ray	Mechanical Handling of Materials		Asian Books Pvt. Ltd.
S. Ray	Introduction to Materials Handling		New Age international (P) L

Suggested List of Assignments / Tutorial :-

- 1. Write with suitable diagram the essential parts and their function of Bucket Elevator.
- 2. Write with suitable diagram the essential parts and their function of a Fork Lift Truck.
- 3. Write with suitable diagram the essential parts and their function of a Screw Conveyor.
- 4. Write the names and their specific use of different Hand Operated Trucks used in actual industries.

EXAMINATION SCHEME: END SEMESTER EXAMINATION

GROUP	MODULE		OBJECTIV	E QUESTIONS			SUBJECTIVE	QUESTION	
	OR CHAPTER	TO BE SET	TO BE ANSWERED	MARKS PER QUESTION	TOTAL MARKS	TO BE SET	TO BE ANSWERED	MARKS PER QUESTION	TOTAL MARKS
A	1,2,	5	10	1	10	5	FIVE, (AT LEAST TWO FROM EACH	5	25
В	3,4,5	5				5	GROUP)		

Internal Examination: Examiner- Lecturer in Mechanical Engg. / Jr. Lecturer					
Five No. of Experiments / Study attended & respective lab note submitted in due time.	5 x 3 = 15				
VIVA VOCE	10				
TOTAL	25				
External Examination: Examiner- Lecturer in M	External Examination: Examiner- Lecturer in Mechanical Engg. / Jr. Lecturer				
Submission of Signed Lab Note Book (for five experiments / study)	5 x 2 = 10				
On spot experiment / study (one for each group consisting 15 students / explanation on study item)	10				
VIVA VOCE	5				
TOTAL	25				

	se : DIPLOMA IN MECHANICAL ENG TION MANAGEMENT	INEERING			
Course code:		nester : Sixth			
Duration : 17 week		kimum Marks : 100			
Teaching Scheme		Examination Scheme			
Theory: 3 hrs/weel		Semester Exam: 70 Marks			
Tutorial: hrs/week		Teacher's Assessment (Assignment & Quiz): 10 Marks			
Practical: hrs/week		rnal Assessment: 20 Marks	Quiz). 10 Marks		
Credit: 3	III(e	mai Assessment. 20 Mains			
Aim :-					
	To study the techniques for improver the production schedule accordingly orgaminimize the direct and indirect cost accounting process, inventory control employ techniques such as JIT, TPM, FMS,	anize material supply for the manufable optimizing the use of resources and process planning. Modern ma	acturing activities. To available. To learn anufacturing system		
Objective :-					
S No	The student will able to				
1	Understand importance of productivity and factors for improvement of productivity.				
2	Know different production systems and modern trends in manufacturing systems.				
3	Find the break even point for manufacturing a product.				
4	Prepare / modify layout of production system.				
5	Select suitable material handling dev	rices and plant facilities.			
	Prepare process plan and specify too				
	Prepare process chart for analysis of				
	Use pert & cpm techniques for scheduling and controlling the manufacturing activities.				
	Apply techniques of method study ar	nd work measurement for improvem	ent of existing		
	manufacturing methods.				
	Find the economic order quantity (ec	q) for given situation.			
Pre-Requisite:-Nil					
	Contents		Hrs/week		
Chapter	Name of the Topic		Hours		
GROUP:A					
01	Production System Production - Definition, Types of pr Productivity - Importance, Measure Techniques of improving productivity Elements of cost- Fixed cost, Varial Break even analysis, Calculation of E	ement of Productivity , ble Cost.	05		
02	Break even analysis, Calculation of Break even point. Plant location, Plant layout and Material Handling Plant Location - Importance of Site Selection, Factors affecting Site Selection, Government Policies, and relaxation for Backward Areas.				
	Plant Layout - Objectives, types, de Plant Layout, Symptoms of Bad Plant Layout, Group technology, Cellular layout, Material handling – Need, Principle devices – conveyors, Hoist & cranes Automated Guided Vehicles (AGV's) Selection of Material Handling system	sign principles, characteristics of put. s and Types of material handling s, forklift truck, trolleys, Pipes,			
GROUP:B	<u> </u>				

03	Process Planning Planning of Processes from raw material to finished product, Factors affecting Process Planning, Deciding sequence of operations, Operation Sheet, Combined operations, Determination of Inspection Stages. Selection of Machine Techniques of assembly planning, Types of assembly. Plant Capacity, Machine Capacity, Plant Efficiency. Numerical not to be asked,	05
04	Production Planning and Control Routing, Sequencing [n job 2 machines], Scheduling, Dispatching, Meaning of Control, Progressive Control, Gantt chart. Concept of Line balancing,	03
GROUP:C 05	Work Study Method Study- Objectives, Procedure, Selection of work. Recording Techniques - Process Charts – Outline process chart, Flow process chart, Two Hand process chart, Multiple activity chart, Flow diagram, String diagram, Travel chart. Micro motion study-Critical Examination, Principles of Motion Economy. Concept of ergonomics and workplace layout. Work Measurement - Objectives, procedure, Time Study, Time Study Equipments. Stop Watch Time Study, Standard Time, Work Sampling, Analytical Estimating, Predetermined Motion Time Study, Allowances, Calculation of Standard Time, Concept of Merit Rating.	08
06	Maintenance of machine Tools: Types of maintenance, repair cycle analysis, repair complexity, maintenance manual, maintenance records, housekeeping, Introduction to total production maintenance(TPM).	04
07	Quality Control: A) Quality: Definitions, meaning of quality of product and services, quality characteristics, quality of design, quality of conformance, quality of performance, concept of reliability, cost, quantity assurance, cost of rework and repair, quality and inspection, inspection stage. B) Total Quality Management(TQM): 1. Principles of total quantity management. i) customer focus. ii) Commitment by top management. iii) Continuous improvement-PDCA, Quality Circles. iv) Employee empowerment(JIDOKA)Quality Audit: Concept of audit practices, lead assessor certificationSix sigma: Statistical meaning, methodology of system improvement, DMAIC cycle, yellow belt, green belt, black belt certification. C) ISO 9000 Series & other standards:	09

	Concept, ISO 9000 series qualit certification, other Quality system		Standards		
08	Modern Trends Just In Time manufacturing – Pusystems, Waste reduction, 5'S', inventory systems. Concept of continuous improven storming. Poka Yoke. Concept of Rapid Prototyping Concept of Flexible manufacturing	reduction, single piece p	production	06	
	Total			45	
Name of Authors	Titles of the Book	Edition	Name	of the Publisher	
Kanishka Bedi	Bedi Production & Operations Oxford Univ		d University Press		
L.C. Jhamb	Industrial Management		Evere	st	
James C. Rigs	Production System, Planning, Analysis & Control		N.Y.W	N.Y.Wiley & Sons	
O.P. Khanna	Industrial Engineering and Management		Dhan	oat Rai & Sons	
ILO	Work Study		ILO G	Geneva	
P. H. Joshi	Jigs & Fixtures				
P.C. Sharma	Production Engineering				
Kempster	Introduction to Jigs and Fixtures Design				
Baffna , Sarin	Modern Production and Operations Management				
Terry Wireman	Total productive maintenance		Indus	trial press inc.	
Taiichi ohno	Toyota production		Produ	ctivity Press	

Reference books :- Nil

Suggested List of Assignments/Tutorial :-

- Making a conceptual layout of an Engg. Industry conforming ISO 9000 series.
 Preparation of EOQ model.
- 3. Preparation of a flow process and operation process chart.4. Preparation of a chart of Total Quality Management.

system

Group	unit	Objective (Questions	Subjective Questions			
		No. of questions to be set	Total marks	No. of questions to be set	To answer	Marks per question	Total marks
Α	01,02	4		2	5, taking at least one from		
В	03,04	6	20	4	each group	10	50
С	05,06,07	10		4			

Suggested List of Laboratory Experiments :- Nil

Name of t	Name of the Course: DIPLOMA IN MECHANICAL ENGINEERING (INDUSTRIAL PROJECT)				
Course co	de: ME	Semester: Sixth.			
Duration:	17 weeks	Maximum Marks: 100			
Teaching	Scheme	Examination Scheme:			
Theory:	hrs/week	Practical: Internal Sessional continuous evaluation: 50 Marks			
Tutorial:	hrs/week	Practical: External Sessional examination: 50 Marks			
Practical:	6 hrs/week				
Credit: 3					
Aim :-					
S. No.					
1	To solve the problems involving drawings, designs, manufacturing, installation, testing and				
	maintenance of machines. In order to cultivate the systematic methodology for problem solving using				
	acquired technical knowledge & skills,	and to enhance the generic skills & professional skills.			
Objective	:-				
	The Students should be able to:				
	1. Identify, analyze & define the problem.				
	2. Generate alternative solutions to the problem identified.				
	3. Compare & select feasible solutions from alternatives generated.				
	4. Design, develop, manufacture & operate equipment/program.				
	5. Acquire higher-level technical knowledge by studying recent development in mechanical				
	engineering field.				
	6. Compare machines/devices/appara	tus for performance practices.			
	7. Work effectively in a team.	-			

Pre-Requisite: Nil

Contents:

Part A-Project

A batch of maximum 4 students will select a problem and then plan, organize & execute the project work of solving the problem in a specified duration. Student is expected to apply the knowledge & skills acquired. Batch may select any one problem/project work from following categories.

- a) Fabrication of small machine / devices/ test rigs/ material handling devices/ jig & fixtures/ demonstration models, etc. Report involving aspects of drawing, process sheets, costing, Installation, commissioning & testing should be prepared and submitted.
- b) Design & fabrication of mechanisms, machines, Devices, etc. Report involving aspects of designing & fabricating should be prepared & submitted
- c) Development of computer program for designing and /or drawing of machine components, Simulation of movement & operation, 3D modeling, pick & place robots etc.
- d) Industry sponsored projects- project related with solving the problems identified by industry should be selected. One person / engineer from industry is expected to work as co- guide along with guide from institution.
- e) Literature survey based projects: Project related with collection tabulation, classification, analysis & presentation of the information. Topic selected must be related with latest technological developments in mechanical or mechatronics field, and should not be a part of diploma curriculum. Report should be of min 60 pages.
- f) Investigative projects- Project related with investigations of causes for change in performance or structure of machine or component under different constraints through experimentation and data analysis.
- g) Maintenance based projects: The institute may have some machine/ equipment/ system which are lying idle due to lack of maintenance. Students may select the specific machines/equipment/system. Overhaul

- it, repair it and bring it to working condition. The systematic procedure for maintenance to be followed and the report of the activity are submitted.
- h) Industrial engineering based project: Project based on work study, method study, methods improvement, leading to productivity improvement, data collection, data analysis and data interpretation be undertaken.
- i) Low cost automation projects: Project based on hydraulic/pneumatic circuits resulting into low cost automated equipment useful in the identified areas.
- j) Innovative/ Creative projects Projects related with design, develop & implementation of new concept for some identified useful activity using PLC, robotics, non-conventional energy sources, CIM, mechatronics, etc.
- k) Environmental management systems projects: Projects related with pollution control, Solid waste management, liquid waste management, Industrial hygiene, etc, Working model or case study should be undertaken.
- l) Market research/ survey based projects: Projected related with identification of extent of demand, sales forecasting, Comparative study of marketing strategies, Comparative study of channels of distribution, Impact of variables on sales volume, etc. The project involves extensive survey & market research activities information to be collected through various mechanisms/tools & report is prepared.
- m) Project based on use of appropriate technology particularly benefiting rural society or economically weaker section.
- n) Project can be selected other than the area specified above. Project should provide viable and feasible solution to the problem identified. Report should be of min 50 pages.

Part B- Seminar

Every student will prepare & deliver the seminar. Evaluation of seminar will be carried out by panel of at least three teaching staff from mechanical/production/automobile department.

- 1. Selection of topic for the seminar should be finalized in consultation with teacher guide allotted for the batch to which student belongs.
- 2. Seminar report should be of min. 10 & max. 20 pages & it should be certified by guide teacher and head of the department
- 3. for presentation of seminar, following guide lines are expected to be followed:-
- a) Time for presentation of seminar: 7 to 10 minutes /student.
- b) Time for question/answer: 2 to 3 minutes /student
- c) use of audio visual aids or power point presentation is desirable.
- 4. Topic of the seminar should not be from diploma curriculum.
- 5. Seminar can be on project selected by batch.

Skills To Be Developed:

Intellectual Skills

- 1. Design the related machine components & mechanism.
- 2. Convert innovative or creative idea into reality.
- 3. Understand & interpret drawings & mechanisms
- 4. Select the viable, feasible & optimum alternative from different alternatives.

Motors skills

- 1. Use of skills learnt in workshop practical.
- 2. Assemble parts or components to form machine or mechanisms.
- 3. Classify & analyze the information collected.
- 4. Implement the solution of problem effectively.

Notes: 1) Project group size: Maximum 4 students

- 2) Project report will be of minimum 40 pages unless otherwise specified.
- 3) Project diary should be maintained by each student.

Text Books

Name of Authors	Titles of the Book	Edition	Name of the Publisher
Karl Smith	Project management & team work		Tata- Mc Graw Hill
Cliffored gray & Erik Lasson	Project management		Tata- Mc Graw Hill

Internal Examination: Examiner- Lecturer in Mechanical Engg.				
On Project Work & submission of project within schedule time.	30			
Seminar on Project Work	10			
Viva-voce	10			
TOTAL	50			
External Examination: Examiner- Lecturer in Mechanical Engg.				
On Project Work	20			
Viva-voce	30			
TOTAL	50			

Name of the Course Subject Title: Profes				
Course code: ME/	331011di i ractices	Semester : Fifth		
Duration :		Maximum Marks : 50		
Teaching Scheme		Examination Scheme		
Theory: hrs/week		Mid Semester Exam: Marks		
Tutorial: hrs/week		Assignment & Quiz: Marks		
Practical: 4 hrs/week		End Semester Exam: Marks		
Credit: 2	<u>`</u>	Practical: Internal Sessional continuous evaluation	n·25 Marks	
0.00.0.2		Practical: External Sessional Examination: 25 Mark		
Aim :-	1	1 Tactical. External Sessional Examination.25 Mark	79	
S.No				
3.NU 1	To develop sono	ual acustidanas abilitusta acumunui acto and attituda in additi	on to books	
1		develop general confidence, ability to communicate and attitude, in addition to basic hnological concepts through Industrial visits, expert lectures, seminars on technical topics		
Objective :-				
S No	The student will	able to		
1		tion from different sources.		
2	Prepare notes fo	or given topic.		
3	Present given to	opic in a seminar.		
4	Interact with pee	ers to share thoughts.		
5	Prepare a report	t on industrial visit, expert lecture		
Pre-Requisite:-Nil	Troparo a ropon	ton madema. Tion, export rectars		
1 10 Hoquionor IIII				
		Contents	Hrs/week	
Chapter		Name of the Topic		
•	Group Discussion	on : (Two topics)		
	_	all discuss in group of six to eight students and write a brief		
		ne as a part of term work. The topic for group discussions		
	may			
01	be selected by th	e faculty members. Some of the suggested topics are		
		/ Electric Vehicles.	10	
	ii) Auto Vehicles	– Comparison.		
	iii) Two stroke v	ersus four stroke engines		
	iv) Recycling of p	plastics and other waste material		
	v) Attributes of p	product design		
	vi) Creativity and	•		
	vii) Energy conse	ervation in institutes		
	viii) Value engine	eering		
	ix) Revolution in	communication technology		
	_	ols and equipments		
	xi) Wear mechan	isms		
02	Study of Open	Source Softwares:		
	1]LibreOffice		50	
	Unit:1 Installation	Of LibreOffice and Introduction to LibreOffice Writer		
	Unit:2 Introduction	on to LibreOffice Calc		
		n to LibreOffice Impress		
		ion to LibreOffice Base		
		on to LibreOffice Math		
	Introduction	on to LibreOffice Draw	<u> </u>	

02	2] LaTeX:	
	Unit:1 Introduction and Installation Of LaTeX and Compilation Unit:2 Letter Writing, Report Writing in LaTeX Unit:3 Maths, Equations, Tables and Figures in LaTeX documentation Unit:4 References and Beamer LaTeX documentation	
	3] Scilab	
	Unit:1 Introduction and Installation Of Scilab and Vector Operations Unit:2 Matrix Operations and Scripts and functions Unit:3 Conditional Branching and Iterations and Plotting in Scilab Unit: 4 ODES and Polynomials in Scilab Unit: 5 SBHS and Introduction to X-Cos in Scilab	
Pacammandad Tayt	Total	

Recommended Text Books:

It is alright to go ahead with teaching from the prescribed books as per the existing syllabus. Text books can be referred from the link given below.

Text Books link for LibreOffice:

• http://www.taming-libreoffice.com/category/books

Recommended Text Books:

LaTeX: A Document Preparation System by Leslie Lamport
The LaTeX Companion by Mittelbach and Goossens
More information about LaTeX can be found on moudgalya.org

Introduction to MATLAB & ITS Open Source Equivalent SCILAB and hands on demonstration:

- 1. Introduction and Installation Of MATLAB & SCILAB and Vector Operations
- 2. Matrix Operations and Scripts and functions
- 3. Conditional Branching and Iterations and Plotting in Scilab
- 4. SBHS and Introduction to X-Cos in Scilab
- 5. Matlab programming by Singh (PHI)

Internal Practical Sessional Examination			
Topic			
Perfomance on Group Discussion	05		
Practice on Open Source Software	15		
Viva - voce	5		
Total:	25		
External Practical Sessional Examination			
Examiner: Lecturer			
On spot assignment on Open	10		
Source Software			
Viva - voce	15		
Total:	25		

Name of the Course: I Subject: General Viv	•	hanical Engineering		
Course Code:	AE	Semester:	Sixth	
Duration:	N.A	Maximum Marks:	100	
Teaching Scheme :	N.A	Examination Scheme: viva-	voce	
Theory:	Nil	Continuous Internal Examination	: Nil	
Tutorial:	Nil	End Semester Exam.:	Nil	
Practical:	Nil	End Semester Examination (viva-	oce): 100	Marks
Credit: 3				

Aim:

The object of conducting Grand viva-voce is to assess out going students on their general understanding of all subjects (Theory, practical, laboratory etc.) taught and also on expected technical sense / ability developed being an engineer during this periods.

Examination Scheme (at semester end): Grand Viva-voce

Total Marks: 100

• End Semester Examination (viva-voce): - 100 marks. Examiner –Internal Lecturers headed by HOD