MWGen: A Mini World Generator

Jianqiu Xu and Ralf Hartmut Güting

Database Systems for New Applications, Mathematics and Computer Science FernUniversität in Hagen, Germany

July, 2012

Outline

- Problem Description
- Method
- Conclusions

Problem Description

- Moving objects Databases
- Moving objects with transportation modes
 - Inferring outdoor transportation modes (e.g., cycling, walking, driving) from GPS data [1,2,3]: Geolife Project in Microsoft
 - ② Advanced trip planning [4], different modes (e.g., $Walk \rightarrow Bus$) and constraints (e.g., less than two bus transfers)
- [1] Y. Zheng, L. Liu, L. Wang, X. Xie: Learning transportation mode from raw gps data for geographic applications on the WWW, 2008.
- [2] Y. Zheng, Y. Chen, Q. Li, X. Xie, W.Y. Ma: Understanding transportation modes based on GPS data for web applications. ACM Transaction on the Web, 4(1), 2010.
- [3] L. Stenneth, O. Wolfson, P. S. Yu, B. Xu: Transportation mode detection using mobile phones and GIS information. GIS, 2011.
- [4] J. Booth, A. P. Sistla, O. Wolfson, I. F. Cruz: A data model for trip planning in multimodal transportation systems. EDBT, 2009.

Problem Description

- Example trips
 - **1** Indoor \rightarrow Walk \rightarrow Car
 - 2 Bus \rightarrow Walk \rightarrow Indoor
- Global Work: Represent and manage moving objects with different transportation modes in a database system and provide efficient query processing.
 - Data Model: J. Xu and R.H. Güting. A Generic Data Model for Moving Objects, Geoinformatica, 2012.
 - Data Generator: J. Xu and R.H. Güting. MWGen: A Mini World Generator, MDM, 2012.
 - Senchmark: J. Xu and R.H Güting. GMOBench: A Benchmark for Generic Moving Objects, Informatik-Report 362, FernUni in Hagen, Germany, 2012.

Problem Description

- The goal: Generating moving objects in different environments where (1) the precise location in each environment and (2) transportation modes are managed.
- Existing data generators for moving objects
 - free space: GSTD [1], BerlinMOD [2]
 - 2 road network: [3]
 - **1** indoor: [4]
- [1] Y. Theodoridis, J. R. O. Silva, M. A. Nascimento: On the Generation of Spatiotemporal Datasets. SSD, 1999.
- [2] C. Düntgen, T. Behr, R.H. Güting: BerlinMOD: a benchmark for moving object databases. VLDB J., 18(6):1335-1368, 2009.
- [3] T. Brinkhoff, A Framework for Generating Network-Based Moving Objects. GeoInformatica 6(2):153-180, 2002.
- [4] C. S. Jensen, H. Lu, B. Yang, Indexing the Trajectories of Moving Objects in Symbolic Indoor Space. SSTD, 2009.

Method

- Preliminary
- 2 Framework
- Trip plannings
- Moving objects generation
- Experimental results

Method - Preliminary

- Available environments
 - Road Network
 - Region-based Outdoor
 - Bus Network and Metro Network
 - Indoor
- Transportation modes

 $TM = \{Car, Taxi, Bike, Walk, Bus, Metro, Indoor\}$

Method - Preliminary

- Data representation (location and moving objects)
 - (1) $D_{\underline{genloc}} = \{(oid, (loc_1, loc_2)) | oid \in D_{\underline{int}}, loc_1, loc_2 \in D_{\underline{real}}\}$ (2) $mo = \langle u_1, u_2, ..., u_n \rangle$ where $u_i = (t, gl_1, gl_2, m), gl_1, gl_2 \in D_{\underline{genloc}}, m \in D_{TM}$

 $mo = \langle u_1(t_1, \text{Indoor_loc1}, \text{Indoor_loc2}, \text{Indoor}), \dots, u_i(t_i, \text{Pave_loc1}, \text{Pave_loc2}, Walk), \dots, u_n(t_n, \text{Road_loc1}, \text{Road_loc2}, Car) >$

Method - Framework

Framework

- Input:
 - 1 a set of roads represented by lines
 - 4 floor plans
 - parameters such as road width
- Output:
 - Environments: Road Network, Region-based Outdoor, Bus Network, Metro Network, and Indoor
 - ② Moving objects with multiple transportation modes such as $Indoor \rightarrow Walk \rightarrow Bus \rightarrow Walk$

Method - Framework

```
roads 
ightarrow \qquad \qquad Road \ Network \ Region - based \ Outdoor \ roads + parameters <math>\Rightarrow \qquad \qquad Bus \ Network \ Metro \ Network \ floor \ plans 
ightarrow \qquad \qquad Indoor \ \end{pmatrix} Space
```

- Road Network: roads and junctions
- Region-based Outdoor: pavements and zebra crossings
- 3 Bus and Metro Network: routes, stops and moving buses (metros)
- Indoor: rooms, corridors, staircases and doors.

Method - Framework

$$roads
ightarrow \qquad \qquad Road \ Network \ Region - based \ Outdoor \ roads + parameters $\Rightarrow \qquad \qquad Bus \ Network \ Metro \ Network \ floor \ plans
ightarrow \qquad \qquad Indoor \ \end{pmatrix}$$$

- An Environment
 - the object set
 - indices (B-tree and R-tree)
 - a graph for routing
- Space
 - managing each environment
 - 2 location mapping (e.g., bus stop)
 - 3 an interface between moving objects and underlying geographic objects such as roads, bus routes and rooms

Method - Trip Planning

- Trip Planning
 - One environment
 - shortest path searching in a road network
 - shortest path searching for pedestrians (a large polygon with obstacles)
 - routing in a bus network (combine bus and walk movements);
 routing in a metro network
 - indoor navigation (precise path inside a building)
 - Time Complexity Analysis
 - Multiple environments (graphs and location mapping):
 - **1** Indoor \rightarrow Walk \rightarrow Car \rightarrow Walk
 - 2 Walk \rightarrow Bus \rightarrow Walk \rightarrow Indoor

Method - Moving Objects Generation

• Moving Objects Generation: paths + speed values

Method - Experimental Results

Results

Input

Roads	Berlin (3,250); Houston (4,575)	
Floor plans	office building, shopping mall, university (8 in total)	
Parameters	road width, pavement width, etc.	

Output

	Berlin	Houston
X Range	[0, 44411]	[0, 133573]
Y Range	[0, 34781]	[0, 163280]
No. Vertices in P	116,516	437,279
Bus Routes	89	92
Metro Routes	10	16
Buildings	4,996	5,992

ч	atpat						
	Trip No.	Berlin		Houston			
		Time (h)	Size (GB)	Time (h)	Size (GB)		
	4k	0.32	0.052	0.57	0.038		
	•	•	•	•			
	· · · ·						
	500k	39.75	6.35	74.06	4.95		

Moving objects with different transportation modes: Walk + Indoor + Car(Taxi, Bus, Metro)

Methods and Solutions – MWGen

Time Cost (sec) for Outdoor Trip Planning

	Berlin	Houston
Region-based Outdoor	0.78	2.4
Bus Network	0.13	0.23
Metro Network	< 0.1	< 0.1

Time Cost (sec) for Indoor Navigation

officeA	0.25	officeB	0.27
mall	0.37	cinema	0.32
hotel	1.57	hospital	0.35
university	0.123	trains station	0.1

Method - Experimental Results

Methods and Solutions – MWGen

Berlin: Roads + Bus Routes

Methods and Solutions – MWGen

Berlin: Roads + Metro Routes

Methods – MWGen

Berlin: A Close View (pavements, zebra crossings, bus routes, roads)

Method - Experimental Results

Conclusions

- Conclusion
 - We developed a tool called MWGen that can
 - create the following environments road network, region-based outdoor, bus network, metro network, and indoor based on roads and floor plans;
 - provide trip plannings in one environment and multiple environments;
 - generate moving objects with multiple transportation modes based on the result of trip plannings.
- Future Work
 - ① Creating moving objects by considering human movement patterns such as home↔work, work↔work, nearest neighbor searching.
- Transportation Mode Web Page: http://dna.fernuni-hagen.de/secondo/TransportationMode/TM.html

Thank you!