

Course Review

Probability review

- Quantify uncertainty using probability theory
- Discussed sigma-algebras and probability measures
- Discussed random variables as functions of event-space
- Discussed relationships between random variables, including (in)dependence and conditional independence (belief network)
- Discussed operations, like expected value, marginalization, Bayes rule, chain rule

Exercise understanding MAP

- For MAP, our goal is to maximize the posterior: p(M I D)
 - M is the model
 - D is the data
- Is p(M I D) a PMF or a PDF?
- Example: Let p(x | M) be a Gaussian distribution
 - case 1: assume picking mean M, from R
 - case 2: assume picking mean M in set {-1, 0, 1}
 - case 3: assume picking mean M from set [-5, 5]

Exercise: probability

- Suppose that we have created a machine learning algorithm that predicts whether a link will be clicked with 99% sensitivity (TPR) and 99% specificity (FPR). The rate the link is actually clicked is 1/1000 visits to a website. If we predict the link will be clicked on a specific visit, what is the probability it will actually be clicked?
- Let C be binary RV, with C = 1 indicating predict click
- p(C = 1 | y = 1) = TPR
- p(C = 1 | y = 0) = 1-FPR

Linear regression

 Assume p(y | x) is Gaussian distributed with a fixed variance for the noise term epsilon

$$\nabla E(\mathbf{w}) = \mathbf{0}$$
 we find that

$$\mathbf{w}^* = (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{y}.$$

Learning the variance

- What if we now also wanted to learn the variance? How does the problem formulation change?
- Let's do an exercise!

Regularization

- MAP for linear regression with
- Gaussian prior on weights: I2 regularization
- Laplace prior on weights: I1 regularization
- What does it mean to put a distribution over our parameters?
 - a constraint region, w in [-5, 5], specifies must come from that set, but does not encode a preference or likelihood
 - a distribution encodes a preference for particular values

Regularization intuition

Figure 4.5: A comparison between Gaussian and Laplace priors. The Gaussian prior prefers the values to be near zero, whereas the Laplace prior more strongly prefers the values to equal zero.

11 regularization

Feature selection, as well as preventing large weight

How do we solve this optimization?

$$\min_{\mathbf{w} \in \mathbb{R}^d} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|_2^2 + \lambda \|\mathbf{w}\|_1$$

Gradient descent

Multivariate optimization

Convex versus nonconvex

Convex function

Non-convex function

First-order conditions

$$\nabla f = \left[\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_d} \right]$$

- Gradient = 0 provides a minimum, maximum or saddle point
- Gradient gives direction of steepest ascent
 - gives slope of tangent line

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

First-order and second-order

We took the second-order Taylor series expansion

$$f(x) \approx f(x_0) + (x - x_0)f'(x_0) + \frac{1}{2}(x - x_0)^2 f''(x_0).$$
$$f'(x) \approx f'(x_0) + (x - x_0)f''(x_0) = 0.$$

 For second-order gradient descent, we find a stationary point of this approximation to get our new point

$$x = x_0 - \frac{f'(x_0)}{f''(x_0)}.$$

 For first-order, we replace the second-derivative with an approximation (which corresponds to the step-size)

$$x = x_0 - \eta f'(x_0)$$

Multivariate case

- Similar approach, but second-order approximation includes
 - gradient (generalization of first derivative) and
 - Hessian (generalization of second derivative)

$$f(\mathbf{x}) \approx f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^T \cdot (\mathbf{x} - \mathbf{x}_0) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_0)^T \cdot H_{f(\mathbf{x}_0)} \cdot (\mathbf{x} - \mathbf{x}_0),$$

$$\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} - \left(H_{f(\mathbf{x}^{(i)})}\right)^{-1} \cdot \nabla f(\mathbf{x}^{(i)}),$$

$$\nabla f(\mathbf{x}) = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_k}\right) \qquad H_{f(\mathbf{x})} = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \dots & \frac{\partial^2 f}{\partial x_1 \partial x_k} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \dots & \vdots \\ \frac{\partial^2 f}{\partial x_k \partial x_1} & & \frac{\partial^2 f}{\partial x_k^2} \end{bmatrix}$$

Pros and Cons

- First-order uses a much more significant approximation, and selecting step-size can be difficult
- Second-order is much more expensive, but Hessian provides curvature information a so a very good descent direction
- Quasi-second order methods: try to balance between the two, by approximating some of this curvature information
 - e.g., approximate only the diagonal of the Hessian matrix
 - e.g., Adadelta

First-order conditions

$$\nabla f = \left[\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_d} \right]$$

- Gradient = 0 provides a minimum, maximum or saddle point
- Gradient gives direction of steepest ascent

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Second derivative test

- If f''(x) < 0 then f has a local maximum at x.
- If f''(x) > 0 then f has a local minimum at x.
- If f''(x) = 0, the test is inconclusive.

Directional second derivative

At stationary point
$$\mathbf{w}^*, \nabla f(\mathbf{w}) = \mathbf{0}$$

 $\mathbf{w}(t) = \mathbf{w}^* + t\mathbf{w}$
 $g(t) = f(\mathbf{w}(t))$
 $g'(0) = \nabla f(\mathbf{w}(t))^{\top}\mathbf{w} = 0$
 $g''(0) = \mathbf{w}^{\top}\nabla^2 f(\mathbf{w}(t))^{\top}\mathbf{w}$

Intuition for second derivative test in univariate setting

$$0 < f''(x) = \lim_{h \to 0} \frac{f'(x+h) - f'(x)}{h} = \lim_{h \to 0} \frac{f'(x+h) - 0}{h} = \lim_{h \to 0} \frac{f'(x+h)}{h}.$$

Thus, for h sufficiently small we get

$$\frac{f'(x+h)}{h} > 0$$

Hessian intuition

Hessian

- If f''(x) < 0 then f has a local maximum at x.
- If f''(x) > 0 then f has a local minimum at x.
- If f''(x) = 0, the test is inconclusive.

$$g''(0) = \mathbf{w}^{\top} \nabla^2 f(\mathbf{w}(t))^{\top} \mathbf{w}$$

$$\nabla^2 f = \mathbf{H} = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}.$$

Hessian

- If f''(x) < 0 then f has a local maximum at x.
- If f''(x) > 0 then f has a local minimum at x.
 If f''(x) = 0, the test is inconclusive.

$$g''(0) = \mathbf{w}^{\top} \nabla^2 f(\mathbf{w}(t))^{\top} \mathbf{w}$$

Positive definite: $\mathbf{w}^{\top} \mathbf{H} \mathbf{w} > 0$ for all $\mathbf{w} \neq \mathbf{0}$

Negative definite: $\mathbf{w}^{\top}\mathbf{H}\mathbf{w} < 0$ for all $\mathbf{w} \neq \mathbf{0}$

- If H is positive definite at x, then local minimum at x
- If H is negative definite at x, then local maximum at x
- If H has both positive and negative eigenvalues at x, then a saddle point at x

Stochastic gradient descent

- Batch gradient descent uses a batch of samples to compute a sample average, i.e., an estimate of the true expected error
- Stochastic gradient descent only uses 1 instance to obtain an (unbiased) estimate of the true expected error
- For mini-batch, we use a small random subset of points, e.g. 10 points out of 10k. Why is this ok?
- Can you have first & second-order stochastic gradient descent?

11 regularization

How do we solve this optimization?

$$\min_{\mathbf{w} \in \mathbb{R}^d} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|_2^2 + \lambda \|\mathbf{w}\|_1$$

What is the issue?

Constrained optimization

- Do not expect you to know how to do this for the final
- Idea: introduce Lagrange multipliers to bring up constraints into the objective function (like regularizers)
- Solve for Lagrange multipliers as well

Classification

- Logistic regression
- Multinomial logistic regression
- Support vector machine (SVMs)
- Naive Bayes

Generalized linear models

- Can pick any exponential family distribution for p(y | x)
- If p(y | x) is Gaussian, then we get linear regression with <x, w> approximating E[y | x]
- If p(y | x) is Bernoulli, then we get logistic regression with sigmoid(<x, w>) approximating E[y | x]
- If p(y | x) is Poisson, then we get Poisson regression with exp(<x, w>) approximating E[y | x]
- If p(y | x) is a Multinomial (multiclass), then we get multinomial logistic regression with softmax(<x, w>) approximating E[y | x]
- For all of these, just estimating w to get this dot product

Exercise

- What model might you use if
 - we have binary features and targets?
 - binary targets and continuous features?
 - positive targets?
 - categorical features with a large number of categories?
 - multi-class targets, with continuous features?
- When might logistic regression do better than linear regression?
- When might Poisson regression do better than linear regression?

Representation learning

Convert linear predictors into non-linear predictors, e.g.

$$\mathbf{x} \to 2$$
nd-order polynomial $(\mathbf{x}) = w_6 x_1^2 + w_5 x_2^2 + w_4 x_1 x_2 + w_2 x_2 + w_1 x_1 + w_0$

Probabilistic assumption after transformation:

$$f(\text{polynomial}(\mathbf{x})^{\top}\mathbf{w}) = \mathbb{E}[Y|\mathbf{x}]$$

Radial basis function network

Figure 7.1: Radial basis function network.

$$\mathbf{\Phi} = \begin{bmatrix} \phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_1) & \cdots & \phi_p(\mathbf{x}_1) \\ \phi_0(\mathbf{x}_2) & \phi_1(\mathbf{x}_2) & & & \\ \vdots & & \ddots & & \\ \phi_0(\mathbf{x}_n) & & & \phi_p(\mathbf{x}_n) \end{bmatrix}$$

e.g.,
$$\phi_j(\mathbf{x}) = e^{-\frac{\left\|\mathbf{x} - \mathbf{c}_j\right\|^2}{2\sigma_j^2}}$$

$$f(\mathbf{x}) = w_0 + \sum_{j=1}^{p} w_j \phi_j(\mathbf{x})$$
$$= \sum_{j=0}^{p} w_j \phi_j(\mathbf{x})$$

RBF and Kernel representation

$$k(\mathbf{x}, \mathbf{x}') = \exp\left(\frac{-\|\mathbf{x} - \mathbf{x}'\|_2^2}{\sigma^2}\right)$$
 $f(\mathbf{x}) = \sum_{i=1}^{\kappa} w_i k(\mathbf{x}, \mathbf{x}_i)$

$$f(\mathbf{x}) = \sum_{i=1}^{k} w_i k(\mathbf{x}, \mathbf{x}_i)$$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \to \begin{bmatrix} k(\mathbf{x}, \mathbf{x}_1) \\ \vdots \\ k(\mathbf{x}, \mathbf{x}_k) \end{bmatrix}$$

Exercise

- Imagine you wanted to learn to predict if a patient has a certain genetic disease
- Your input data is a string, corresponding to a part of their DNA (e.g., ACCGGGTA)
- This data is not numeric. How might you learn on this data?

Neural networks for representation learning

- Goal is to learn this representation phi
- The hidden layer(s) produce phi
- The last layer corresponds to any generalized linear model
- What is the probabilistic assumption using
 - one hidden layer with a ReLu activation on the first layer
 - a sigmoid activation on the last layer, with cross-entropy?

$$\sigma(\mathbf{h}\mathbf{w}) = \mathbb{E}[Y|\mathbf{x}] = p(y = 1|\mathbf{x})$$
$$\sigma(\text{relu}(\mathbf{x}\mathbf{W}^{(2)})\mathbf{w}) = \mathbb{E}[Y|\mathbf{x}]$$

Exercise

- You want to train a neural network on a small training data set.
 Discuss two strategies that would prevent or reduce overfitting of such a network.
- What can you do to be more confident about if your strategies properly protected against overfitting?