

Lean Manufacturing – VSM4 – Solution support

PhD, Ing. Federica Costa— Prof. Alberto Portioli-Staudacher Dipartimento Ing. Gestionale Politecnico di Milano Dep. Management, Economics and Industrial Engineering Federica.costa@polimi.it

	Drilling	Milling	Surface Finishing	Testing
Cycle time (sec/piece)	15	60	18	20
Setup time (min/setup)	10	10 (shape) 10 (material) 10 (size)	6	8
Availability	90%	95%	95%	95%
Available time (min)	480	1440	480	480

Current state

Q1: Calculate the minimum EPE for each stage in the current situation.

Q2: Propose a future state solution for the company, identifying minimal intervention so that the company may be able to deliver batch of 20 units to the warehouse before the assembly department.

Q1: Calculate the minimum EPE for each stage in the current situation.

EPE (every part ever) = time required to sort the whole product range

$$EPE*Tp + Ts \le EPE*Ta$$

$$EPE \ge \frac{Ts}{Ta - Tp}$$

Stage Drilling:

- EPE $(15/0,9*1200*X) + (10*10*60) \le 480*60 * X$ $X \ge 0,682 \text{ days}$

Stage Milling:

- EPE $(60/0.95*1200*X) + (60*10*60) \le 1440*60 * X$ $X \ge 3,4 \text{ days}$

Stage Surface Finishing:

- EPE $[18/0.95*1200*X] + [3*6*60] \le 480*60 * X$ $X \ge 0.18 \text{ days}$

Stage Testing:

- EPE $[15/0.95*1200*X] + [2*8*60] \le 480*60 * X$ $X \ge 0.27 \text{ days}$

Q2: Propose a future state solution for the company, identifying minimal intervention so that the company may be able to deliver batch of 20 units to the warehouse before the assembly department.

FROM PRESENT STATE TO FUTURE STATE STATE THE 8 QUESTIONS

1. What is the takt time of the production family?

2. Produce for supermarkets or for shipping?

<u>From the text:</u> the goal is to produce for a finished good warehouse with a batch of 20 units

3. Where to put the flow?

General methodology

- Start from the **final stage and go upstream** thinking stage by stage where to put CONTINUOUS FLOW and where to decouple (with SUPERMARKET or FIFO).
- Verify **DECAF Conditions**.
- Fix intermediate targets (not necessarily all at once in a continuous flow, but also FIFO and supermarket).

Start from department 4 then move upstream

- Milling works on 3 shifts, while all other stages works on 1 shifts.
- It is therefore not possible to introduce a complete continuous flow.
- We can propose to couple stages Finishing and Testing.

Stage Finishing + Testing

DeCAF condition

Dedicated

Capable

Available

Flexible

- Dedicated: yes
- Capable: CT<TT 20 sec/u < 24 sec/u yes
- **Available**: CT/A < TT 20 sec/u /0,9025 < 24 sec/u yes

Stage Finishing + Testing

Flexible

In order to reach the target of 20 units per batch, 60 setups per day are required.

Target to deliver 20 units/batch #Setups = 60 setups per day

$$Tp + Ts \le Ta$$
 $Ts \le (Ta-Tp) = 480 - 1200 * 20/(60 * 0,9025) = 36,79$
 min/day
This is the time available to do setups.

We need to set an improvement target (reduce C/O)

$$C/O = Ts/\#setups = 36,79/60 = 0,61 min/setup$$

If the setup time is reduced to 0,61 min/setup it is possible to couple the departments in a continous flow.

4. Where to put the pull-supermarket?

There will be a finished good supermarket.

All the upstream stages are decoupled by supermarkets.

Supermarket size (if internal): $\mathbf{1.5}^*$ $EPE_{upstream}$ * $\mathbf{D_{dd}}$ [for the exam only]

For the raw-materials supermarket, you must consider the interarrival times between two supplier deliveries.

For this situation there is the opportunity to insert a **FIFO line** between Drilling and Milling. Indeed, Drilling is decoupled from Milling only because of different shifts.

Drilling is very flexible (EPE=0,682 days) resulting in a very little supermarket (around 1 day).

FIFO size = Δ shifts*D*1,5 = 1200 pcs

Please note that 400 pc is the demand for the single shift of the slowest stage

- 5. Where is the company single scheduling point?
- 6. How should the company level the product mix to pacemaker process?

- 5. The company schedules the production only for the **cell**.
- 6. Hejunka box and Batching level the mix for the cell and drilling system.

