ADAMAS UNIVERSITY END-SEMESTER EXAMINATION: MAY 2021

UNIVERSITY PURSUE EXCELLENCE	(Academic Session: 2020 – 21)		
Name of the Program:	B. Tech.	Semester:	VIII
Paper Title :	Elective – VI (Modern Control Systems)	Paper Code:	EEE44114
Maximum Marks :	40	Time duration:	2 Hours
Total No of questions:	8	Total No of Pages:	2
(Any other information for the student may be mentioned here)	Read complete question paper before starting the examination.		

Answer all the Groups Group A

Answer all the questions of the following

 $5 \times 1 = 5$

- 1. a) State the advantages of modern control systems.
 - b) What are the basic elements required to construct a state diagram.
 - c) What are the limitations of transfer function analysis?
 - d) What do you mean by eigenvalues?
 - e) What is the importance of state transition matrix?

GROUP -B

Answer any three of the following

 $3 \times 5 = 15$

- Using Cayley-Hamilton theorem, determine the state transition matrix of $\mathbf{A} = \begin{bmatrix} 0 & 1 \\ -6 & -5 \end{bmatrix}$. 2.
- Find $f(\mathbf{A}) = \mathbf{A}^{10}$ for $\mathbf{A} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$. 3.
- The transfer function of a dynamical system is given by, $\frac{Y(s)}{U(s)} = \frac{2(s+5)}{(s+2)(s+3)(s+4)}.$ 4. Obtain the diagonal canonical state model of the system.
- For the system given by $\mathbf{A} = \begin{bmatrix} 0 & 2 & 0 \\ 4 & 0 & 1 \\ -48 & -34 & -9 \end{bmatrix}$, determine (a) eigenvalues and (b) eigen 5. vectors.

- **6.** Develop state space model of armature controlled separately excited DC motor. Also obtain its equivalent transfer function.
- 7. A system is described by $\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 \\ 9 & 0 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 9 \end{bmatrix} u$. Compute the state feedback gain matrix **K** so that control law u = -Kx places the closed loop poles at $-3 \pm j3$ by, (a) using direct substitution method, and (b) using Ackermann's formula.
- 8. A system is described by $\dot{\mathbf{x}}(t) = \begin{bmatrix} 0 & 1 \\ -8 & -6 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)$. The system is initially at $\mathbf{x}(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Determine $\mathbf{x}(t)$ (i) with no input, (ii) with unit step input.