Implémentations efficaces de calculs sur les polynômes à une variable : FFT

Pierre Lin, Enzo Roaldes

L2 DM-IM 2022, Sorbonne Université

13 Juillet 2022

Introduction

Les polynômes sont :

- un objet mathématique fondamental
- omniprésents dans notre quotidien

Plan de la soutenance :

- Algorithme Naïf & de Karatsuba
- Fast Fourier Transform (FFT)
- Vectorisation avec AVX2

Langage utilisé : C

Algorithme Naïf

Les polynômes sont représentés par des tableaux contenant leurs coefficients.

L'algorithme naïf est basé sur la formule :

$$R(X) = PQ(X) = \sum_{i=0}^{n} \sum_{j=0}^{n} p_i q_j X^{i+j}$$

Complexité = nombre d'opérations élémentaires.

Complexité de l'algorithme na $\ddot{i}f: O(n^2)$

Algorithme de Karatsuba

Principe de l'algorithme de Karatsuba :

- Décomposition récursive de P et Q : $P = P_1 + X^{n/2}P_2$ $Q = Q_1 + X^{n/2}Q_2$
- Reconstruction du résultat R : $R = E_1 + X^{n/2}(E_3 E_2 E_1) + X^n E_2$ avec $E_1 = P_1 Q_1$; $E_2 = P_2 Q_2$ et $E_3 = (P_1 + P_2)(Q_1 + Q_2)$

Complexité : $O(n^{1.58})$

Degré de P et Q	Naïf	Karatsuba
2 ¹⁵	0.429183	0.085549
2 ¹⁶	1.761229	0.242966
2 ¹⁷	6.875559	0.645986
2 ¹⁸	28.165627	2.023236

Tableau - Temps de l'algorithme naïf et de l'algorithme de Karatsuba.

I $n=2^k$ sera la taille du tableau du polynôme final R=PQ

- \mathbf{I} $n=2^k$ sera la taille du tableau du polynôme final R=PQ
- **2** Le corps $\mathbb{Z}/p\mathbb{Z}$

- \mathbf{I} $n=2^k$ sera la taille du tableau du polynôme final R=PQ
- **2** Le corps $\mathbb{Z}/p\mathbb{Z}$
- Racine primitive p-1-ième de l'unité $r: r^{p-1} \% p = 1$ et que $r^k \% p \neq 1$ pour tout k dans $\{1, \ldots, p-2\}$

- I $n=2^k$ sera la taille du tableau du polynôme final R=PQ
- **2** Le corps $\mathbb{Z}/p\mathbb{Z}$
- Racine primitive p-1-ième de l'unité $r: r^{p-1} \% p = 1$ et que $r^k \% p \neq 1$ pour tout k dans $\{1, \ldots, p-2\}$
- Racine principale n-ième de l'unité : r_principale = $r^{\frac{p-1}{n}}$ % p $\Rightarrow p-1$ doit être divisible par n

- \mathbf{I} $n=2^k$ sera la taille du tableau du polynôme final R=PQ
- **2** Le corps $\mathbb{Z}/p\mathbb{Z}$
- Racine primitive p-1-ième de l'unité $r: r^{p-1} \% p=1$ et que $r^k \% p \neq 1$ pour tout k dans $\{1, \ldots, p-2\}$
- Racine principale *n*-ième de l'unité : r_{-} principale = $r^{\frac{p-1}{n}}$ % p $\Rightarrow p-1$ doit être divisible par n
- Choix du nombre premier $p = 754974721 = 1 + 2^{24} * 3^2 * 5$ $\Rightarrow deg_{max}(R) = 2^{24}$ racine primitive p - 1-ième de l'unité : r = 11

Algorithme de multiplication par FFT

Théorème (Interpolation de Lagrange)

Soient a_1, \ldots, a_n et b_1, \ldots, b_n dans $\mathbb{Z}/p\mathbb{Z}$ (avec les a_i deux à deux distincts). Alors il existe un unique polynôme P de degré < n tel que :

$$\forall i \in \{1,...,n\}, P(a_i) = b_i.$$

Algorithme de multiplication par FFT

Entrée. P et Q deux polynômes, n une puissance de 2 avec n>deg(PQ) et ω une racine principale n-ième de l'unité.

Sortie. R = PQ

Algorithme.

- 1. *Pré-calcul*. Calculer les puissances $\omega^0, \omega^1, \omega^2, \dots, \omega^{n-1} \to O(n)$
- 2. Évaluation (DFT). Calculer les valeurs :

$$Eval(P) = (P(\omega^0), ..., P(\omega^{n-1})); Eval(Q) = (Q(\omega^0), ..., Q(\omega^{n-1})).$$

- 3. Produit point à point. Eval $(R) = (PQ(\omega^0), \dots, PQ(\omega^{n-1})) \rightarrow O(n)$
- 4. Interpolation. Retrouver R grâce à Eval(R).

990

Discrete Fourier Transform (DFT)

Principe de la DFT (diviser pour régner) :

Soient
$$n=2^k$$
 et $P(X)=p_nX^n+\cdots+p_1X+p_0$.

Soient P_0 , P_1 les polynômes composés des coefficients de rang respectivement pair et impair de P:

$$P_0(X) = p_n X^{n/2} + \dots + p_2 X + p_0$$
 et $P_1(X) = p_{n-1} X^{(n-2)/2} + \dots + p_3 X + p_1$.

Nous avons alors que $P(X) = P_0(X^2) + XP_1(X^2)$.

 \rightarrow Algorithme récursif où nous divisons n par 2

DFT

Algorithme DFT

Entrée. $P=p_0+\cdots+p_{n-1}X^{n-1}$, n une puissance de 2 et le tableau $racines=[1,\omega,\ldots,\omega^{n-1}]$ où ω est une racine n-ième principale de l'unité.

Sortie. $P(1), ..., P(\omega^{n-1}).$

Algorithme.

- 1. Si n = 1, renvoyer p_0 .
- 2. Sinon, soit k = n/2. Calculer:

$$R_0(X) = \sum_{i=0}^{k-1} (p_i + p_{i+k}) X^i$$

$$R_1(X) = \sum_{i=0}^{k-1} (p_i - p_{i+k}) \omega^i X^i$$

- 3. Calculer récursivement $R_0(1), R_0(\omega^2), \dots, R_0((\omega^2)^{k-1})$
- et $R_1(1), R_1(\omega^2), \ldots, R_1((\omega^2)^{k-1})$.
- 4. Renvoyer $R_0(1), R_1(1), R_0(\omega^2), R_1(\omega^2), \dots, R_0((\omega^2)^{k-1}), R_1((\omega^2)^{k-1}).$

Opérations modulo p

Opération % beaucoup plus lente que les opérations +, -, *.

Addition modulo p:

$$(a+b) \% p = \begin{cases} a+b-p & \text{si } a+b \ge p \\ a+b & \text{sinon} \end{cases}$$

Soustraction modulo p:

$$(a-b) \% p = \begin{cases} p - (b-a) & \text{si } b > a \\ a-b & \text{sinon} \end{cases}$$

Multiplication modulo p: cast en *long* puis utilisation de l'opérateur %.

Première version DFT

Malloc des tableaux R_0 , R_1 et racines à chaque récursion.

- → Utilisation d'un pas pour le tableau racines.
- \rightarrow Utilisation du tableau des coefficients de P pour R_0 et R_1 .

DFT

Algorithme DFT

Entrée. $P = p_0 + \cdots + p_{n-1}X^{n-1}$, n une puissance de 2 et le tableau $racines = [1, \omega, \dots, \omega^{n-1}]$ où ω est une racine n-ième principale de l'unité.

Sortie. $P(1), ..., P(\omega^{n-1}).$

Algorithme.

- 1. Si n = 1, renvoyer p_0 .
- 2. Sinon, soit k = n/2. Calculer:

$$R_0(X) = \sum_{i=0}^{k-1} (p_i + p_{i+k}) X^i$$

$$R_1(X) = \sum_{i=0}^{k-1} (p_i - p_{i+k}) \omega^i X^i$$

- 3. Calculer récursivement $R_0(1), R_0(\omega^2), \dots, R_0((\omega^2)^{k-1})$
- et $R_1(1), R_1(\omega^2), \ldots, R_1((\omega^2)^{k-1})$.
- 4. Renvoyer $R_0(1), R_1(1), R_0(\omega^2), R_1(\omega^2), \dots, R_0((\omega^2)^{k-1}), R_1((\omega^2)^{k-1}).$

AVX2

Vectorisation avec AVX2 :

- opérations élémentaires (+, -, *, ...) sur des "vecteurs" de données similaires à des tableaux.
- type $_mm256i$: stock 256 bits d'entiers \rightarrow stockage de 8 entiers de 32 bits.
- opérations sur deux __mm256i aussi rapide que sur deux entiers int.
 → possibilité d'un gain de temps fois 8 en utilisant AVX2.

Exemple:

Opérations modulo p avec AVX2

Pas d'opération modulo en AVX2!

Comment faire le modulo sur des vecteurs?

Soient
$$p = 7$$
, $\overrightarrow{a} = [6,2]$, $\overrightarrow{b} = [4,1]$ et $\overrightarrow{x} = \overrightarrow{a} + \overrightarrow{b} = [10,3]$. Problème!

Opérations modulo p avec AVX2

Pas d'opération modulo en AVX2!

Comment faire le modulo sur des vecteurs?

Soient
$$p = 7$$
, $\overrightarrow{a} = [6,2]$, $\overrightarrow{b} = [4,1]$ et $\overrightarrow{x} = \overrightarrow{a} + \overrightarrow{b} = [10,3]$. Problème!

 \rightarrow Fonction AVX2 $_mm256_min_epu32(\overrightarrow{a},\overrightarrow{b})$: permet de prendre le minimum "positif" entre chaque élément de \overrightarrow{a} et \overrightarrow{b} .

Exemple

$$min_pos([1,4], [0,-10]) = min([1,4], [0, UINT_MAX-10]) = [0,4].$$

Pour l'addition, avec $\overrightarrow{x} = \overrightarrow{a} + \overrightarrow{b}$, on a \overrightarrow{x} % $\overrightarrow{p} = min_pos(\overrightarrow{x}, \overrightarrow{x} - \overrightarrow{p})$.

Preuve

$$Si \overrightarrow{x}[i] \ge p$$
, alors l'appel retourne $\overrightarrow{x}[i] - p$.

Sinon, $\overrightarrow{x}[i] < p$, donc $\overrightarrow{x}[i] - p < 0$, et après conversion en Uint : $\overrightarrow{x}[i] - p > \overrightarrow{x}[i]$ et donc l'appel retourne $\overrightarrow{x}[i]$.

De même, pour la soustraction, avec $\overrightarrow{x} = \overrightarrow{a} - \overrightarrow{b}$, on a : $\overrightarrow{x} \% \overrightarrow{p} = min_pos(\overrightarrow{x}, \overrightarrow{x} + \overrightarrow{p})$.

Opérations modulo p avec AVX2

```
void vect_mod_add(Uint *res1, Uint *tab1, Uint *tab2) {
    __m256i p = _mm256_set1_epi32(NB_P);
    __m256i a = _mm256_loadu_si256((__m256i *) tab1);
    __m256i b = _mm256_loadu_si256((__m256i *) tab2);
    __m256i x = _mm256_add_epi32(a, b);
    __m256i result = _mm256_min_epu32(x, _mm256_sub_epi32(x, p));
    __mm256_storeu_si256((__m256i *) res1, result);
}
```

Multiplication : Algorithme de réduction de Barrett

Opération	Sans AVX2	Avec AVX2
Addition	0.012610	0.006697
Soustraction	0.014247	0.007139
Multiplication	0.015053	0.007497

Tableau - Temps des opérations d'addition, soustraction et multiplication sans et avec AVX2.

DFT

Algorithme DFT

Entrée. $P=p_0+\cdots+p_{n-1}X^{n-1}$, n une puissance de 2 et le tableau racines = $[1,\omega,\ldots,\omega^{n-1}]$ où ω est une racine n-ième principale de l'unité.

Sortie. $P(1), ..., P(\omega^{n-1}).$

Algorithme.

- 1. Si n = 1, renvoyer p_0 .
- 2. Sinon, soit k = n/2. Calculer:

$$R_0(X) = \sum_{i=0}^{k-1} (p_i + p_{i+k}) X^i$$

$$R_1(X) = \sum_{i=0}^{k-1} (p_i - p_{i+k}) \omega^i X^i$$

- 3. Calculer récursivement $R_0(1), R_0(\omega^2), \dots, R_0((\omega^2)^{k-1})$
- et $R_1(1), R_1(\omega^2), \ldots, R_1((\omega^2)^{k-1})$.
- 4. Renvoyer $R_0(1), R_1(1), R_0(\omega^2), R_1(\omega^2), \dots, R_0((\omega^2)^{k-1}), R_1((\omega^2)^{k-1}).$

Suite de la multiplication par FFT

L'étape d'interpolation dans la multiplication par FFT :

- Calculer les puissances successives de l'inverse de la racine principale : $\omega^0, \omega^{-1}, \omega^{-2}, \dots, \omega^{-(n-1)}$.
- 2 Appliquer la DFT à Eval(R) avec ces inverses.
- Diviser les coefficients obtenus suite à la DFT par n (c'est-à-dire multiplier par l'inverse de n dans $\mathbb{Z}/p\mathbb{Z}$).

Comment calculer ω^{-1} et n^{-1} dans $\mathbb{Z}/p\mathbb{Z}$?

ightarrow Algorithme d'Euclide étendu appliqué à l'équation au+pv=1.

Théorème de Bézout

Soient a et b deux entiers naturels non nuls. a et b sont premiers entre eux si et seulement si il existe deux entiers relatifs u et v tels que au + bv = 1.

Preuve que u est l'inverse de a

- **1** a et p sont premiers entre eux donc $\exists u, v \in \mathbb{Z}$ tels que au + pv = 1
- Si au + pv = 1, alors dans $\mathbb{Z}/p\mathbb{Z}$: au + pv = (au + pv)%p = (au)%p + (pv)%p = (au)%p = 1.
- Begin{align*} Donc au = 1 dans $\mathbb{Z}/p\mathbb{Z}$ et u est l'inverse de a dans $\mathbb{Z}/p\mathbb{Z}$.

Améliorations

n	FFT Sans AVX2	FFT Avec AVX2
2 ²⁰	0.158404	0.150727
2 ²¹	0.503089	0.437402
2 ²²	1.240285	1.075995
2 ²³	3.028623	2.317684
2 ²⁴	7.108149	5.847869

Rechercher les cases désirées dans racines avec AVX2 prend trop de temps.

- Réutilisation du malloc pour le tableau racines.
- Gain de temps sur les polynômes de degré > 20.

I	n	FFT Sans AVX2	FFT Avec AVX2 (Version 2)
T	2^{20}	0.158404	0.180472
	2^{21}	0.503089	0.355293
T	2^{22}	1.240285	0.706925
Ī	2^{23}	3.028623	1.504402
T	2^{24}	7.108149	2.939824

La bibliothèque NTL

Meilleure bibliothèque pour la FFT dans $\mathbb{Z}/p\mathbb{Z}$: NTL

Comparaison des temps obtenus :

n	No AVX2 (NTL)	No AVX2	AVX2 (NTL)	AVX2
2 ¹⁸	0.00291	0.01017	0.00182	0.00944
220	0.01517	0.06008	0.01113	0.06168
222	0.08613	0.38058	0.07253	0.21169

NTL est 3 à 5 fois plus rapide que nous!

Temps finaux et Conclusion

n	Naïf	Karatsuba	FFT Sans AVX2	FFT Avec AVX2 V2
2 ¹⁸	28.17	2.02	0.037	0.045
2 ¹⁹	2 m	6.07	0.085	0.094
2 ²⁰	7.5 m	18.21	0.16	0.18
2 ²¹	30 m	54.63	0.50	0.36
2 ²²	2 h	2.7 m	1.24	0.71
2 ²³	8 h	8.1 m	3.03	1.50
224	32 h	24.5 m	7.11	2.94

Tableau – Comparaison finale des algorithmes implémentés

Attention! Le degré des polynômes multipliés par FFT est limité par le choix de p. D'un autre côté : Karatsuba et Naïf peuvent multiplier n'importe quoi!

Temps de nos algorithmes ≈ 5 fois le temps sur NTL

Algorithmes plus performants d'ici là? Dépassé par de nouvelles technologies?