Question	Answer	Mark
Number		
17(a)(i)	• $E_{\text{el}} = \frac{1}{2} k \Delta x^2$ (1) Or Use of $E_{\text{el}} = \frac{1}{2} F \Delta x$ and use of $F = k \Delta x$.	
	• Elastic PE is transferred into kinetic energy Or E _{el} = E _k	
	(1)	
	• $\sqrt{2} m v^2 = \sqrt{2} k \Delta x^2$	
	• States that m and k are constant so $v \propto \Delta x$. (1)	
	Or States that $=\sqrt{\frac{k}{m}}\Delta x$.	(4)
17(a)(ii)	• Gradient calculated. (1) Or Use of a point on the line in a relevant equation.	
	• Use of $\frac{1}{2} k \Delta x^2 = \frac{1}{2} m v^2$ or gradient = $\sqrt{(k/m)}$ i.e. $k = m \times \text{gradient}^2$ (1)	
	• $k \text{ in range } 22 - 26 \text{ N m}^{-1}$ (1)	
	Example of calculation	
	Gradient $\frac{4.8 \text{ m s}^{-1} - 2.2 \text{ m s}^{-1}}{0.30 \text{ m}} = 8.67 \text{ (s}^{-1})$	
	$k = \text{mass} \times \text{gradient}^2$ $k = 3.0 \times 10^{-1} \text{ kg} \times (8.67 \text{ s}^{-1})^2$	
	$k = 22.6 \text{ N m}^{-1}$	
		(3)
17(b)	Limit of proportionality exceeded. (1)	
1,(~)	Or Extension no longer proportional to force.	
	• Range of Hooke's Law exceeded. (1)	
	Or Hooke's Law no longer applies.	(2)
	Total for question 17	9