Natural Deduction in QL=

LOGIC I Benjamin Brast-McKie November 30, 2023

Substitution

Free For: β is FREE FOR α in φ just in case there is no free occurrence of α in φ in the scope of a quantifier that binds β .

Substitution: If β is free for α in φ , then the SUBSTITUTION $\varphi[\beta/\alpha]$ is the result of replacing all free occurrences of α in φ with β .

Quantifier Rules

- $(\forall E) \ \forall \alpha \varphi \vdash \varphi[\beta/\alpha]$ where β is a constant and α is a variable.
- $(\exists I) \varphi[\beta/\alpha] \vdash \exists \alpha \varphi$ where β is a constant and α is a variable.
- (\forall I) $\varphi[\beta/\alpha] \vdash \forall \alpha \varphi$ where β is a constant, α is a variable, and β does not occur in $\forall \alpha \varphi$ or in any undischarged assumption.
- (\exists E) If $\exists \alpha \varphi$, $\varphi[\beta/\alpha] \vdash \psi$ where β is a constant that does not occur in $\exists \alpha \varphi$, ψ , or in any undischarged assumption, then $\exists \alpha \varphi \vdash \psi$.

Identity Rules

(=I) $\vdash \alpha = \alpha$ for any constant α .

Axiom: This rule is better referred to as an axiom schema.

Note: Easy to use, but not always obvious when to use.

Task 1: Derive the following in QD:

- $\forall x(x = x \supset \exists y F y x) \vdash \exists y (F y y)$.
- Everything is something.
- Something exists.

(=E)
$$\varphi[\alpha/\gamma], \alpha = \beta \vdash \varphi[\beta/\gamma].$$

Note: Also easy to use, but not always obvious how to use.

Task 2: Derive the following in QD:

- $m = n \lor n = o$, $An \vdash Am \lor Ao$
- Every symmetric antisymmetric relation is lonely.
- Every irreflexive antisymmetric relation is asymmetric.

Relations

- **Task 4:** Regiment and derive the following in QD.
 - 1. Every transitive symmetric relation is left and right euclidean.
 - 2. Every nonempty transitive and symmetric relation is reflexive.
 - 3. Only the empty relation is symmetric and asymmetric.
 - 4. Every intransitive relation is irreflexive.
 - 5. Every intransitive relation is asymmetric.

Further Examples

- Task 3: Regiment and derive the following in QD.
 - 1. $\forall x(x = m), Rma \vdash \exists xRxx$
 - 2. $\forall x(x=n \equiv Mx), \forall x(Ox \lor \neg Mx) \vdash On$
 - 3. $\exists x(Kx \land \forall y(Kyx=y) \land Bx), Kd \vdash Bd$
 - 4. $\vdash Pa \supset \forall x (Px \lor x \neq a)$