Zadanie: PER Permutacja

Potyczki Algorytmiczne 2009, runda 5B.

25.04.2009

Dostępna pamięć: 32 MB. Maksymalny czas działania: 5 s.

Dany jest ciąg liczb naturalnych (dodatnich) a_1, a_2, \ldots, a_n . Chcielibyśmy ustawić liczby od 1 do n w ciąg w takiej kolejności, żeby i-ta liczba w ciągu była nie większa niż a_i (dla każdego i). Innymi słowy, szukamy permutacji p liczb od 1 do n, która spełnia warunek $p_i \leqslant a_i$ dla każdego $1 \leqslant i \leqslant n$. Jest jeszcze jeden problem; otóż ciąg a_i może zmieniać się w czasie...

Wejście

Pierwszy wiersz standardowego wejścia zawiera jedną liczbę całkowitą n ($1 \le n \le 200\,000$), oznaczającą liczbę elementów ciągu a_i . Drugi wiersz zawiera ciąg n liczb naturalnych a_i ($1 \le a_i \le n$), pooddzielanych pojedynczymi odstępami. Trzeci wiersz zawiera jedną liczbę całkowitą m ($0 \le m \le 500\,000$), oznaczającą liczbę modyfikacji, jakim ma zostać poddany ciąg a_i . Następne m wierszy zawiera opisy kolejnych modyfikacji ciągu; każdy z nich składa się z dwóch liczb całkowitych j_i oraz w_i ($1 \le j_i, w_i \le n$ dla $1 \le i \le m$), oddzielonych pojedynczym odstępem i oznaczających, że j_i -ty wyraz ciągu uzyskuje nową wartość w_i . Uwaga: zmiany wartości w ciągu następują kolejno, czyli i-ta zmiana wykonywana jest w ciągu, który uległ już modyfikacjom od pierwszej do (i-1)-szej.

Wyjście

Twój program powinien wypisać na standardowe wyjście m+1 wierszy. Każdy z nich powinien zawierać jedno słowo TAK lub NIE. Słowo znajdujące się w pierwszym wierszu powinno oznaczać, czy istnieje jakaś permutacja spełniająca dla każdego i nierówność $p_i \leq a_i$ dla początkowej postaci ciągu a_i , natomiast słowa z wierszy od drugiego do (m+1)-szego — czy istnieją jakieś (potencjalnie różne) permutacje spełniające podane nierówności dla ciągów powstałych po kolejnych modyfikacjach.

Przykład

Dla danych wejściowych:	poprawnym wynikiem jest:
5	TAK
3 4 3 2 5	NIE
2	TAK
5 4	
1.5	

Wyjaśnienie do przykładu. Dla początkowej postaci ciągu a_i wymagane nierówności spełnia m.in. permutacja 2, 4, 3, 1, 5. Po pierwszej modyfikacji ciąg a_i ma postać 3, 4, 3, 2, 4 — dla takiego ciągu szukana permutacja nie istnieje. Po drugiej modyfikacji ciąg a_i ma postać 5, 4, 3, 2, 4. Przykładem permutacji spełniającej podane nierówności dla tego ciągu jest 5, 1, 3, 2, 4.