Assignment 3

Week 1

1.1 (2pts)

1.1 Addition and Subtraction

Input file: standard input Output file: standard output

Time limit: 2 seconds Memory limit: 512 megabytes

Given two integers x and y, construct an infinite sequence of integers $A = \{a_0, a_1, a_2, ...\}$ as follows: $a_0 = 0$ and for every $i \ge 1$, $a_{2i-1} = a_{2i-2} + x$ and $a_{2i} = a_{2i-1} - y$.

Given three integers x, y and z, find the index of the first occurrence of z in A or report that z does not appear in A.

For example, if x=2, y=1 and z=3, then A=(0,2,1,3,2,4,3,...) and the answer is 3 $(a_3=3$ and this is the first occurrence of 3 in A). If x=2, y=0 and z=3, then A=(0,2,2,4,4,6,6,...) and the answer is -1 (there is no occurrence of 3 in A).

Input

Three integers x, y and z ($0 \le x, y, z \le 1000$) separated by spaces.

Output

The first position of z in A or -1, if there is no occurrence of z in A.

Examples

standard input	standard output
2 1 3	3
2 0 3	-1

1.2 (2 pts)

1.2 Erasing Maximum

Input file: standard input
Output file: standard output

Time limit: 2 seconds Memory limit: 512 megabytes

Let A[1..n] be an array of integers. Output the same array without its maximum element. If there are several maximum elements, get rid of the third. It is guaranteed that the input array A has either a unique maximum element or at least three maximum elements.

Input

The first line contains an integer n ($2 \le n \le 100$), the length of the array. The second line contains integers $A[1], A[2], \ldots, A[n]$ ($1 \le A[i] \le 100, 1 \le i \le n$).

Output

Output n-1 integers separated by spaces.

Examples

standard input	standard output
3	1 2
1 3 2	
7	4 1 4 2 3 4
4 1 4 2 4 3 4	

1.3 (2 pts)

1.3 Increment

Input file: standard input Output file: standard output

Time limit: 2 seconds Memory limit: 512 megabytes

Given a large non-negative integer x, find the number of decimal digits in x + 1.

Input

A non-negative integer x ($0 \le x \le 10^{1000000}$) with no leading zeroes.

Output

The number of decimal digits in x + 1.

Examples

standard input	standard output
1	1
9	2

1.4 (2 pts)

1.4 Straight Flush

Input file: standard input
Output file: standard output

Time limit: 2 seconds Memory limit: 512 megabytes

The deck of 52 French playing cards is the most common deck of playing cards used today. It includes thirteen ranks of each of the four French suits: clubs (C), diamonds (D), hearts (H), and spades (S). Each suit includes an ace (A), a king (K), a queen (Q), and a jack (J), each depicted with a symbol of its suit; and ranks two (2) through ten (T), with each card depicting that many symbols (pips) of its suit.

A straight flush is a poker hand containing five cards of sequential rank, all of the same suit, such as QH JH TH 9H 8H (a "queen-high straight flush"). As part of a straight flush, an ace (A) can rank either above a king or below a two. So an ace can rank either high (e.g., AH KH QH JH TH is an ace-high straight flush) or low (e.g., 5D 4D 3D 2D AD is a five-high straight flush), but cannot rank both high and low in the same hand (e.g. QS KS AS 2S 3S is not a straight flush). Thus, there are 40 possible straight flush hands when using a standard 52-card deck.

Given 5 different cards, check whether they constitute a straight flush.

Input

Output

Output YES, if the given cards form a straight flush, otherwise output NO.

Examples

standard input	standard output
2D 5D 3D 4D 6D	YES
AD KH QH JS TC	NO