Student Information

Full Name : Onur Can Tırtır

Id Number: 2099380

Answer 1

р	q	r	$p \rightarrow q$	$q \rightarrow r$	$p \rightarrow r$	$(p\rightarrow q)\land (q\rightarrow r)$	$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$
T	Τ	Τ	Т	Т	Т	T	T
$\mid T \mid$	\mathbf{T}	\mathbf{F}	T	F	F	F	${ m T}$
T	F	Τ	F	Т	Т	F	${ m T}$
T	F	F	F	Т	F	F	${ m T}$
F	Τ	Τ	Т	Т	Γ	m T	T
F	\mathbf{T}	F	Т	F	T	F	${ m T}$
F	F	Τ	Т	Т	Γ	m T	${ m T}$
F	F	F	Γ	Т	Т	ho	T

Since for all possible p,q & r truth values $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$ evaluates to True; it is a **tautology**.

р	q	¬р	p∨q	$\neg p \land (p \lor q)$	$(\neg p \land (p \lor q)) \rightarrow q$	$\neg((\neg p \land (p \lor q)) \rightarrow q)$
T	Τ	F	Т	F	T	F
T	\mathbf{F}	F	Γ	F	m T	F
F	Τ	Τ	Γ	T	T	F
F	F	Τ	F	F	m T	F

Since for all possible p & q truth values $\neg((\neg p \land (p \lor q)) \rightarrow q)$ evaluates to False; it is a **contradiction**.

Answer 2

Hence $(\neg q \lor \neg r) \rightarrow \neg p \equiv (p \rightarrow q) \land (p \rightarrow r)$.

Answer 3

```
a)
a) \exists x(F(x) \land \forall yD(x,y))
b) \forall y \exists x(D(x,y) \rightarrow F(x))
c) \exists y \forall x(D(x,y) \rightarrow \neg F(x))
d) \exists y \exists x \exists z((D(x,y) \land D(z,y)) \rightarrow (x=z))
e) \exists y \forall x(D(x,y) \rightarrow F(x))
b)
a) teacher(Ahmet Metin) \rightarrow \forall y \neg teaches(Ahmet Metin,y)
b) \exists x \forall y((\text{teacher}(x) \land \text{enjoys}(x,y)) \rightarrow \text{teaches}(x,y))
c) \exists x(\text{teacher}(x) \land \exists y \neg \text{ teacher}(x,y))
d) \forall x \forall y(\text{takes}(x,y) \rightarrow \text{student}(x))
e) \forall x(\text{teacher}(x) \rightarrow \exists y \exists z \exists w((\text{teaches}(x,y) \land \text{ teacher}(x,x)) \rightarrow ((w \neq y) \land ((w = z) \lor x))
```

Answer 4

(y=z)))))

Answer 5

$$\begin{array}{c|cccc}
1 & \exists x.(p(x) \to q(a)) \\
2 & d & p(d) \to q(a) \\
3 & & & & \\
4 & & & & \\
5 & & & p(d) & & \\
& p(d) & & & \\
& p(d) &$$