Autômato Finito Não-determinístico (AFND)

- Determinismo: quando uma máquina está em um estado, sabemos qual é o próximo estado.
- Não-determinismo: pode haver diversas opções na troca de estados e leitura do próximo símbolo.
 - É a generalização do determinismo.
 - Todo AFD é um AFND.

- Um AFD tem exatamente 1 transição para cada símbolo do alfabeto.
- AFND, não! Pode ter 0 ou mais transições para cada símbolo (inclusive ε)

- Ao receber 1 o AFND acima cria uma cópia de si para cada caminho em paralelo.
- Se ocorrerem outras situações iguais, repete a separação em cópias.
- Se &, sem ler nenhum símbolo a máquina se divide, seguindo para o próximo estado apontado e permanecendo no atual.

FIGURE 1.15

Deterministic and nondeterministic computations with an accepting branch

• Compute a sequência 010110 e 010:

• Compute a sequência 010110:

• Compute a sequência 010110 e 010:

• Compute as entradas 000100 e 0011:

- Quais strings são aceitas para o AFND?
 - -0
 - 00
 - 000
 - 0000
 - 00000
 - 000000
 - 3 -

- Quais strings são aceitas para o AFND?
 - 0
 - 00
 - 000
 - 0000
 - 00000
 - 000000
 - 3 -

Definição: Um AFND é uma 5-tupla na forma

$$M = (\Sigma, Q, \delta, q_0, F)$$

onde:

- Σ alfabeto de símbolos de entrada;
- Conjunto de estados possíveis do autômato o qual é finito;
- δ função programa ou função de transição:

$$\delta: Q \times \Sigma \to 2^Q$$

a qual é uma função parcial;

- q₀ estado inicial tal que q₀ é elemento de Q;
- F conjunto de estados finais tal que F está contido em Q.

Descrição formal:

$$\Sigma = \{a, b\}$$

$$Q = \{q_{0}, q_{1}, q_{2}, q_{f}\}$$

$$\delta : Q \times \Sigma \rightarrow Q$$

	а	b
q0	{q0,q1}	{q0,q2}
q1	qf	-
q2	-	qf
qf	qf	qf

$$\begin{split} q_0 &= q_0 \\ F &= q_f \\ M1 &= (\{a,b\}, \{q_{0,}q_{1,}q_{2,}q_f\}, \delta, \{q_0\}, \{q_f\}) \\ \text{L(M1)} &= \{\text{w} \mid \text{w possui aa e bb como subpalavras.} \end{split}$$

- Já foi dito que quando dois autômatos reconhecem a mesma liguagem, são equivalentes.
- Todo AFND possui um AFD equivalente

- Se um AFDN tem k estados, ele possui 2^k sub-conjuntos de estados (possibilidades).
- O AFD equivalente deve ter 2^k estados.
- PROVA:
 - Tome $N = (\Sigma, Q, \delta, q_0, F)$ como um AFND que reconhece a linguagem A.
 - Inicie desconsiderando entradas \mathcal{E} .
 - Construa o AFD que reconhece A:

$$M = (\Sigma, Q', \delta', q_0', F')$$

- Q' = P(Q): todo estado de M é um conjunto de estados N. P(Q) é o subconjunto de Q.
- 2. Para $R \in Q'$ e $a \in \Sigma$, tome $\delta'(R,a) = \{q \in Q | q \in \delta(r,a) \text{ para algum } r \in R\}$

$$\delta'(R,a) = \bigcup_{r \in R} \delta(r,a)$$
. União dos conjuntos $\delta(r,a)$ para cada r em R.

- $3.q0'=\{q0\}.$
- 4. F' = {R∈.Q' | R contém um estado aceito de N}.

- Agora considerando €
 - Para cada estado R em M, defina:
 E(R) ={q|q alcança R por 0 ou mais arestas ε}.
 - Modificando a função de transição para

$$\delta'(R,a) = \{q \in Q | q \in E(\delta(r,a)) \text{ para algum } r \in R\}$$

- Modifique também o estado inicial q0 para E({q0}).
- Pronto!!! :)
- Corolário: Uma liguagem é dita regular sse um AFND a reconhece.

- Exemplo:
 - Formalmente:

- Exemplo:
 - Formalmente:

$$M = (\{a,b\}, \{q_{1}, q_{2}, q_{3}\}, \delta', q_{1}, \{q_{1}\})$$

- Os estados:

Exemplo:

- Formalmente:

$$M = (\{a,b\}, \{q_{1}, q_{2}, q_{3}\}, \delta', q_{1}, \{q_{1}\})$$

- Os estados:

$$n=3; 2^3 = 8 \text{ estados}:$$

Estado incial

Estado inicial no AFND e conjuntos ligados por \mathcal{E}

e estados aceitos

Todos os estados que possuem o estado aceito q1.

• Exemplo:

- Formalmente:

$$M = (\{a,b\}, \{q_{1},q_{2},q_{3}\}, \delta', q_{1}, \{q_{1}\})$$

- Os estados:

$$n=3; 2^3 = 8 \text{ estados}:$$

Estado incial: E({q1}) e E({q1,q3})

e estados aceitos: {{1},{1,2},{1,3},{1,2,3}}

Exemplo:

- Função de transição:

encontre as ligações entre todos os estados do AFND.

	а	b	3
q1	-	q2	q3
q2	{q2,a3}	q3	-
q3	q1	-	-

	а	b
q1		
q2		
q3		
{q1,q2}		
{q1,q3}		
{q2,q3}		
{q1,q2,q3}		
\oslash	\oslash	0

- Exemplo:
 - Função de transição:

	а	b
q1	\bigcirc	q2
q2	{q2,q3}	q3
q3	{q1,q3}	\oslash
{q1,q2}	{q2,q3}	{q2,q3}
{q1,q3}	{q1,q3}	{q2}
{q2,q3}	{q1,q2,q3}	{q3}
{q1,q2,q3}	{q1,q2,q3}	{q2,q3}
0	\oslash	\oslash

- Exemplo:
 - Função de transição:

	а	b
q1	-	q2
q2	{q2,q3}	q3
q3	{q1,q3}	\oslash
{q1,q2}	{q2,q3}	{q2,q3 }
{q1,q3}	{q1,q3}	{q2}
{q2,q3}	{q1,q2,q3}	{q3}
{q1,q2,q3}	{q1,q2,q3}	{q2,q3}
\oslash	\oslash	\bigcirc

Figura 2.15 Grafo do Autômato Finito com Movimentos Vazios

Figura 2.16 Grafo do Autômato Finito Não-Determinístico equivalente

Exercício

- Encontre a linguagem do AFND acima.
- Dê a definição formal do AFND.
- Encontre o AFD equivalente.

Exercício

- Encontre a linguagem do AFND acima.
- De a definição formal do automato.
- Encontre o AFD equivalente.

