Simplification

A very useful, machine independent simplification:

Basic steps take the same amount of time

Look at the growth of running time instead of absolute time.

Complexity

Asymptotic analysis

The rate at which the storage or time grows as a function of the problem size.

O-notation (big-Oh)

 $O(f(n)) = {T(n) : there exist positive constants c and n₀ such that 0<= T(n) <= cf(n) for all n >= n₀}$

Constant time : O(1)

Logarithms and polynomials

For every a > 1 and d > 0, $\log_a n$ is $O(n^d)$.

Exponentials and polynomials

For every r > 1 and every d > 0, n^d is $O(r^n)$.