Edited by Foxit PDF Editor BÅNG CÔNG THỰC ĐẠO HÀM - NGUYÊN | Copyright (c) by Foxit Corporation, 2003 - 2010 For Evaluation Only.

I. Các công thức tính đạo hàm.

1.
$$(u \pm v)' = u' \pm v'$$
 2. $(u.v)' = u'.v + u.v'$ 3. $\left(\frac{u}{v}\right)' = \frac{u'.v - u.v'}{v^2}$

1.
$$ku' = k.u'$$

$$\mathbf{2.} \left(\frac{1}{v} \right)' = \frac{-v'}{v^2}$$

II. Đạo hàm và nguyên hàm các hàm số sơ cấp.

Bảng đạo hàm		Bảng nguyên hàm	
$x^{\alpha} ' = \alpha x^{\alpha - 1}$	$\left(u^{\alpha}\right)' = \alpha.u'.u^{\alpha-1}$	$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + c, \ (\alpha \neq -1)$	$\int (ax+b)^{\alpha} dx = \frac{1}{a} \cdot \frac{(ax+b)^{\alpha+1}}{\alpha+1} + c$ $\int \sin(ax+b) dx = -\frac{1}{a} \cos(ax+b) + c$
$(\sin x)' = \cos x$	$(\sin u)' = u' \cdot \cos u$	$\int \sin x dx = -\cos x + c$	$\int \sin(ax+b)dx = -\frac{1}{a}\cos(ax+b)+c$
$(\cos x)' = -\sin x$	$(\cos u)' = -u' \cdot \sin u$	$\int \cos x dx = \sin x + c$	$\int \cos(ax+b)dx = \frac{1}{a}\sin(ax+b)+c$
$(\tan x)' = \frac{1}{\cos^2 x} = 1 + \tan^2 x$	$\left(\tan u\right)' = \frac{u'}{\cos^2 u} = u' \cdot \left(1 + \tan^2 u\right)$	$\int \frac{1}{\cos^2 x} dx = \tan x + c$	$\int \frac{1}{\cos^2(ax+b)} dx = \frac{1}{a} \tan(ax+b) + c$
$(\cot x)' = \frac{-1}{\sin^2 x} = -(1 + \cot^2 x)$	$(\cot u)' = \frac{-u'}{\sin^2 u} = -u' \cdot (1 + \cot^2 u)$	$\int \frac{1}{\sin^2 x} dx = -\cot x + c$	$\int \frac{1}{\sin^2(ax+b)} dx = -\frac{1}{a} \cot(ax+b) + c$
$\log_a x ' = \frac{1}{x \ln a}$	$\log_a u' = \frac{u'}{u \cdot \ln a}$	$\int \frac{1}{x} dx = \ln x + c$	$\int \frac{1}{ax+b} dx = \frac{1}{a} \ln ax+b + c$
$ \ln x ' = \frac{1}{x} $	$\ln u' = \frac{u'}{u}$		
a^x ' = $a^x \cdot \ln a$	a^u ' = $a^u \cdot u' \cdot \ln a$	$\int a^x dx = \frac{a^x}{\ln a} + c$	$\int a^{\alpha x + \beta} dx = \frac{a^{\alpha x + \beta}}{\alpha \cdot \ln a} + c$
e^x ' $= e^x$	$(e^u)'=u'.e^u$	$\int e^x dx = e^x + c$	$\int e^{ax+b} dx = \frac{1}{a} e^{ax+b} + c$

Bổ sung:

$$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \arctan \frac{x}{a} + C \left| \int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C \left| \int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C \left| \int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln \left| x + \sqrt{x^2 \pm a^2} \right| + C \right| \right|$$
III. Yi phân:
$$\boxed{dy = y' . dx}$$

YD:
$$d(ax + b) = adx \Rightarrow dx = \frac{1}{a}d(ax + b)$$
, $d(\sin x) = \cos x dx$, $d(\cos x) = -\sin x dx$, $d(\ln x) = \frac{dx}{x}$, $d(\tan x) = \frac{dx}{\cos^2 x}$, $d(\cot x) = -\frac{dx}{\sin^2 x}$...

I. Công thức hàm số Mũ và Logarit.

Hám số mũ	Hàm số Logarit
	$\log_a x = M \Leftrightarrow x = a^M 0 < x, 0 < a \neq 1$
	$\log_a 1 = 0$; $\log_a a = 1$; $\log_a b^{\alpha} = \alpha \log_a b$
$a^{-\alpha} = \frac{1}{a^{\alpha}}; a^{\frac{\alpha}{\beta}} = \sqrt[\beta]{a^{\alpha}}$	$\log_{a^{lpha}}b=rac{1}{lpha}\log_{a}b;\;\;\log_{a}a^{lpha}=lpha$
$a^{\alpha}.a^{\beta} = a^{\alpha+\beta} ; \frac{a^{\alpha}}{a^{\beta}} = a^{\alpha-\beta}$	$\log_a b.c = \log_a b + \log_a c$
$\begin{bmatrix} a & a & \beta \\ a^{\alpha.\beta} & a^{\alpha} & \beta \end{bmatrix} = a^{\beta} a^{\alpha}$	$\log_a \frac{b}{c} = \log_a b - \log_a c$
4 20	$a^{\log_b c} = c^{\log_b a}; a^{\log_a lpha} = lpha$
$a.b^{\alpha} = a^{\alpha}.b^{\alpha}; \left(\frac{a}{b}\right)^{\alpha} = \frac{a^{\alpha}}{b^{\alpha}}$	$\log_a b = \log_a c \cdot \log_c b = \frac{\log_c b}{\log_c a}$
	$\log_a b = \frac{1}{\log_b a}$
$a^{\alpha} = a^{\beta} \Leftrightarrow \alpha = \beta 0 < a \neq 1$	$\log_a lpha = \log_a eta \Leftrightarrow lpha = eta$
$a > 1: a^{\alpha} > a^{\beta} \Leftrightarrow \alpha > \beta$	$a > 1 : \log_a \alpha > \log_a \beta \Leftrightarrow \alpha > \beta$
$0 < a \neq 1 : a^{\alpha} > a^{\beta} \Leftrightarrow \alpha < \beta$	$0 < a \neq 1 : \log_a \alpha > \log_a \beta \Leftrightarrow \alpha < \beta$

II. Một số giới hạn thường gặp.

$$1.\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^{x} = e \qquad 3.\lim_{x \to 0} \frac{a^{x} - 1}{x} = \ln a \qquad 5.\lim_{x \to 0} \frac{\log_{a} (1 + x)}{x} = \log_{a} e$$

$$2.\lim_{x \to \infty} (1 + x)^{\frac{1}{x}} = e \qquad 4.\lim_{x \to 0} \frac{(1 + x)^{a}}{x} = a$$