

sid.inpe.br/mtc-m21b/2014/04.14.18.08-PUD

INTRODUÇÃO AO CLIMATE DATA OPERATORS (CDO)

José Guilherme Martins dos Santos

 $\label{eq:url} \begin{tabular}{ll} URL do documento original: \\ &<& ttp://urlib.net/8JMKD3MGP5W34M/3G5LFGP> \end{tabular}$

 $\begin{array}{c} \text{INPE} \\ \text{São José dos Campos} \\ 2014 \end{array}$

PUBLICADO POR:

Instituto Nacional de Pesquisas Espaciais - INPE

Gabinete do Diretor (GB)

Serviço de Informação e Documentação (SID)

Caixa Postal 515 - CEP 12.245-970

São José dos Campos - SP - Brasil

Tel.:(012) 3208-6923/6921

Fax: (012) 3208-6919

E-mail: pubtc@sid.inpe.br

CONSELHO DE EDITORAÇÃO E PRESERVAÇÃO DA PRODUÇÃO INTELECTUAL DO INPE (RE/DIR-204):

Presidente:

Marciana Leite Ribeiro - Serviço de Informação e Documentação (SID)

Membros:

Dr. Antonio Fernando Bertachini de Almeida Prado - Coordenação Engenharia e Tecnologia Espacial (ETE)

Dr^a Inez Staciarini Batista - Coordenação Ciências Espaciais e Atmosféricas (CEA)

Dr. Gerald Jean Francis Banon - Coordenação Observação da Terra (OBT)

Dr. Germano de Souza Kienbaum - Centro de Tecnologias Especiais (CTE)

Dr. Manoel Alonso Gan - Centro de Previsão de Tempo e Estudos Climáticos (CPT)

Drª Maria do Carmo de Andrade Nono - Conselho de Pós-Graduação

Dr. Plínio Carlos Alvalá - Centro de Ciência do Sistema Terrestre (CST)

BIBLIOTECA DIGITAL:

Dr. Gerald Jean Francis Banon - Coordenação de Observação da Terra (OBT)

REVISÃO E NORMALIZAÇÃO DOCUMENTÁRIA:

Marciana Leite Ribeiro - Serviço de Informação e Documentação (SID)

Yolanda Ribeiro da Silva Souza - Serviço de Informação e Documentação (SID)

EDITORAÇÃO ELETRÔNICA:

Maria Tereza Smith de Brito - Serviço de Informação e Documentação (SID)

André Luis Dias Fernandes - Serviço de Informação e Documentação (SID)

sid.inpe.br/mtc-m21b/2014/04.14.18.08-PUD

INTRODUÇÃO AO CLIMATE DATA OPERATORS (CDO)

José Guilherme Martins dos Santos

 $\label{eq:url} \begin{tabular}{ll} URL do documento original: \\ &<& ttp://urlib.net/8JMKD3MGP5W34M/3G5LFGP> \end{tabular}$

 $\begin{array}{c} \text{INPE} \\ \text{São José dos Campos} \\ 2014 \end{array}$

Esta obra foi licenciada sob uma Licença Creative Commons Atribuição-NãoComercial 3.0 Não Adaptada.

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.

SUMÁRIO

	Pág.
1 INTRODUÇÃO	. 1
1.1 Instalação da biblioteca NetCDF	
1.2 Instalação do CDO com suporte a NetCDF clássico	
1.3 Instalação do CDO via apt-get install sem suporte a NetCDF	4
1.4 Instalação do CDO com suporte a NetCDF4 (HDF5) e GRIB2	4
1.4.1 Instalação da biblioteca zlib	5
1.4.2 Instalação da biblioteca szip	6
1.4.3 Instalação da biblioteca hdf5	6
1.4.4 Instalação da biblioteca jasper	6
1.4.5 Instalação da biblioteca NetCDF4	6
1.4.6 Instalação da biblioteca grib	7
1.4.7 Instalação do CDO	7
2 OPERADORES	. 9
2.1 Visualizar ajuda com o cdo	9
2.2 Encadeamento de operadores	
2.3 Informações sobre o arquivo	9
2.4 Manipulação de arquivos	11
2.4.1 Operador Copy	11
2.4.2 Operador merge	12
2.4.3 Operador split	12
2.4.4 Operador splityearmon	12
2.4.5 Operadores de seleção	13
$2.4.5.1 \text{Operador select} \; . \; . \; . \; . \; . \; . \; . \; . \; . \; $	13
2.4.5.2 Operador selname	14
2.4.5.3 Operador sellevel	14
2.4.5.4 Operadores selday, selmon e selyear	14
$2.4.5.5 \text{Operador sellonlatbox} \dots $	14
2.5 Operadores de comparação	15
2.6 Operadores de modificação de metadados e arquivos	16
2.6.1 Operador settaxis	16
2.6.2 Operador setcalendar	16

2.6.3 Operador chname	16
2.6.4 Operador inverlat	17
2.6.5 Operador para valores ausentes ou indefinidos	17
2.7 Operadores aritméticos	17
2.7.1 Operadores matemáticos	18
2.7.2 Operações com constantes	18
2.7.3 Operações usando dois conjunto de dados	19
2.8 Cálculos estatísticos	19
2.8.1 Média de vários arquivos (ensemble)	20
2.8.2 Campos bidimensionais	20
2.8.3 Cálculo estatístico zonal	21
2.8.4 Cálculo estatístico meridional	21
2.8.5 Cálculo estatístico vertical	22
2.8.6 Cálculo estatístico temporal	22
2.8.7 Cálculo estatístico com média móvel	23
2.8.8 Cálculo estatístico sobre todos os tempos	23
2.8.9 Cálculo estatístico diário	23
2.8.10 Cálculo estatístico mensal	24
2.8.11 Cálculo estatístico anual	24
2.8.12 Cálculo estatístico sazonal	25
2.8.13 Valor estatístico mensal de vários anos	26
2.8.14 Valor estatístico sazonal de vários anos	26
2.9 Interpolação	27
2.9.1 Operador remapbil	27
2.10 Importação e exportação	28
2.10.1 Importação de conjunto de dados binários	28
2.10.2 Conversão de arquivo texto para NetCDF	28
2.10.3 Extrair arquivos ASCII de NetCDF	29
2.10.4 Correlação	29
2.10.5 Correlação espacial	29
2.10.6 Correlação temporal	30
a MÁDIH O DDÁTHGO	0.1
3 MÓDULO PRÁTICO	
3.1 Criando climatologia	
3.2 Criando anomalias	
3.3 Calculando a velocidade do vento	
3.3.1 Método 1	
3.3.7 MATODO 7	3.7

3.3.3	Método 3	33
3.4	Anomalia climatológica zonal de altura geopotencial	33
3.5	Criando máscara	34
3.6	Mascarando regiões	34
3.7	Alterando valores do arquivo NetCDF	35
3.8	Extraindo apenas a série temporal de um ponto	36
3.9	Extraindo a série temporal de um ponto com diversas informações	36
3.10	Calculando "pentadas"	37
3.11	Mascarando valores de velocidade e vetor do vento $\dots \dots \dots$	38
3.12	Alterando a coordenada vertical	39
3.13	Preenchimento de dados ausentes	41
4 L	inks interesantes	43
REE	FERÊNCIAS BIBLIOGRÁFICAS	45

1 INTRODUÇÃO

O Climate Data Operators (CDO) representa um conjunto de comandos estatísticos e aritméticos úteis para processar dados meteorológicos no formato GRIB e NetCDF. A facilidade em usar essa ferramenta está no fato de que os comandos são executados diretamente no terminal do Linux. O usuário, posteriormente pode escrever um script utilizando a liguagem mais apropriada para automatizar suas tarefas utilizando o CDO.

Algumas das características do CDO são:

- Existem mais de 400 operadores que podem ser empregados para manipulação de arquivos;
- Interface amigável para usários Linux;
- Os dados podem ser processados por mais de um operador;
- Suporte a diferentes tipos de grades;
- Testado em sistemas UNIX/Linux, Cygwin e MacOS;
- Lista de discussão ativa.

IPC: Para usar o CDO com suporte aos arquivos que apresentam a extensão .nc ou NetCDF é recomendável a instalação da biblioteca NetCDF. Os passos a seguir mostrarão como instalar essa biblioteca.

Caso não seja instalada a biblioteca NetCDF o CDO terá suporte apenas a dados no formato grib (grb).

1.1 Instalação da biblioteca NetCDF

A biblioteca NetCDF e o CDO foram instalados no Linux Ubuntu 32 bits.

A biblioteca NetCDF a ser instalada será a versão 4.3.3.1 sem suporte a NetCDF4 (HDF5) e GRIB2.

Para fazer o download do arquivo, acesse o endereço eletrônico http://www.unidata.ucar.edu/downloads/netcdf/index.jsp e vá em *NetCDF-C Releases*, e faça o download da versão mais recente, neste tutorial é utilizada

a versão 4.3.3.1 (Figura 1.1). Ao clicar em *The Latest Stable netCDF-C Release*, tar.gz form (The netCDF-C 4.3.3.1 release is the latest stable release, netcdf-4.3.3.1.tar.gz.) o arquivo será salvo no diretório Downloads do seu Linux.

NetCDF Downloads NetCDF (network Common Data Form) is a set of software libraries and machine-independent data formats that support the creation, access, and sharing of array-oriented scientific data. Distributions are provided for Java and C/C++/Fortran. See the netCDF web site and the FAQ answer to How do I get the netCDF software package? for more information. NetCDF-Java Stable Releases/releases Downloads of stable releases of netCDF-Java. The netCDF-Java library, version 4. The NetCDF-Java Library is a Java interface to "Common Data Model" files, using the netCDF API. The netCDF-Java library, version 2.2. Older, more limited version of the NetCDF-Java Library. NetCDF-C Releases Downloads of stable and beta releases of the netCDF C Library. The Latest Stable netCDF-C Release, tar.gz form The netCDF-C 4.3.3.1 release is the latest stable release, netcdf-4.3.3.1.tar.gz. The Latest Stable netCDF-C Release, .zip form \$\mathbb{R}\$ The netCDF-C 4.3.3.1 release is the latest stable release, netcdf-4.3.3.1.zip. Pre-built Windows Binaries for the latest version of NetCDF-C We currently provide binary distributions for Windows, only. More information can be found at the link above All netCDF-C library and utilities source code releases. All current and historic releases of the netCDF C library source code, including pre-release code. The netCDF-C development source repository The GitHub repository for the netCDF C source code. Unless you are interested in working with the development version of netCDF-C, you will want to use one of the releases linked above. If you choose work with the development branch, you will need to generate the 'configure' script using autoreconf -i

Figura 1.1 - Download da biblioteca NetCDF.

Para descompactar o arquivo **netcdf-4.3.3.1.tar.gz**, digite:

tar -zxvf netcdf-4.3.3.1.tar.gz

Será criado o diretório **netcdf-4.3.3.1**. Entre nesse diretório e digite o comando abaixo. Esse procedimento irá instalar as bibliotecas em /usr/local/lib e os executáveis em /usr/local/bin que é a instalação padrão.

Não copie e cole os comandos no seu terminal Linux porque isso vai gerar erro. Digite os comandos.

sudo ./configure --disable-netcdf-4

Caso apareça o erro abaixo após digitar o comando acima:

configure: error: Cannot find m4 utility. Install m4 and try again.

Digite o comando abaixo para instalar o m4:

sudo apt-get install m4

E depois:

sudo make && sudo make install

Aparecerá uma mensagem dizendo que o NetCDF foi instalado corretamente.

Digite no seu terminal Linux o comando **ncdump**, caso apareça o erro abaixo, proceda da seguinte forma:

gui@zeus: /Downloads/netcdf-4.2.1.1\$ ncdump ncdump: error while loading shared libraries: libnetcdf.so.7: cannot open shared object file: No such file or directory

Vá para o diretório **HOME** e adicione a linha abaixo no seu **.bashrc**. Para ver esse arquivo, digite **ls -a**, a opção **-a** é para visualizar arquivos ocultos do sistema no diretório corrente.

export LD LIBRARY PATH=/usr/local/lib:/usr/lib:/lib

Não esqueça de atualizar o seu .bashrc digitando no seu HOME:

source .bashrc

Em seguida, digite novamente **ncdump**. Se o erro desapareceu significa que o NetCDF foi instalando corretamente.

Dessa forma, a futura instalação do CDO terá suporte para dados NetCDF. Caso o usuário não faça isso, o CDO terá apenas suporte a dados GRIB1.

1.2 Instalação do CDO com suporte a NetCDF clássico

Para instalar o CDO com suporte a biblioteca NetCDF instalada no passo anterior, acesse o site:

https://code.zmaw.de/projects/cdo/files

e faça o download da última versão. Há versões para Windows e Linux.

E para quem deseja compilar o código (recomendável) usando o Ubuntu, realizar o

download no site acima da última versão do CDO. Este material utiliza a versão 1.6.8.

Ao clicar no arquivo **cdo-1.6.8.tar.gz**, ele será salvo no diretório Downloads. Vá para esse diretório e descompacte esse arquivo usando o comando

tar -zxvf cdo-1.6.8.tar.gz

Será criado o diretório cdo-1.6.8. Entre nesse diretório, e digite:

sudo ./configure --with-netcdf=/usr/local

E depois:

sudo make && sudo make install

Essa opção por padrão instalará o executável do CDO em: /usr/local/bin

Com esses passos, o CDO terá suporte a dados NetCDF e GRIB.

1.3 Instalação do CDO via apt-get install sem suporte a NetCDF

Para usuários Ubuntu, basta digitar no seu terminal:

sudo apt-get install cdo

Será solicitada sua senha, apenas digite-a.

Lembrando que a versão instalada por esse processo não é a versão mais nova do CDO, porém serve para processar seus dados apenas no formato GRIB.

Outra possibilidade de instalação do CDO com suporte a dados NetCDF4 (HDF5) e GRIB2 é apresentada abaixo. Essa instalação é opcional.

1.4 Instalação do CDO com suporte a NetCDF4 (HDF5) e GRIB2

IPC: Essa instalação é opcional, caso o usuário apenas utilize NetCDF clássico e GRIB1 não há necessidade de instalar essas bibliotecas. Utilize apenas o passo 1.2.

Algumas fontes de dados meteorológicos estão disponibilizando dados no formato NetCDF4 (HDF5) ou GRIB2 e o CDO tem suporte para essas extensões. Os procedimentos a seguir mostrarão como instalar as bibliotecas necessárias para que o CDO seja capaz de processar os dados com essas extensões.

Por padrão, todas as bibliotecas instaladas ficarão em: /usr/local/lib e os executáveis em /usr/local/bin.

Download das bibliotecas a serem instaladas. Utilize sempre a versão mais recente:

- CDO: https://code.zmaw.de/projects/cdo/files
- NETCDF: http://www.unidata.ucar.edu/downloads/netcdf/index.jsp
- GRIB: https://software.ecmwf.int/wiki/display/GRIB/Releases
- JASPER: http://www.ece.uvic.ca/~frodo/jasper/#download
- HDF5: ftp://ftp.unidata.ucar.edu/pub/netcdf/netcdf-4
- SZIP: ftp://ftp.unidata.ucar.edu/pub/netcdf/netcdf-4
- ZLIB: ftp://ftp.unidata.ucar.edu/pub/netcdf/netcdf-4

Ao realizar o download dos arquivos acima, descompacte-os.

```
gunzip jasper-1.900.1.zip
tar -zxvf netcdf-4.3.3.1.tar.gz
tar -zxvf hdf5-1.8.13.tar.gz
tar -zxvf szip-2.1.tar.gz
tar -zxvf zlib-1.2.8.tar.gz
tar -zxvf grib_api-1.13.0.tar.gz
tar -zxvf cdo-1.6.8.tar.gz
```

Ou clique com o botão direito do mouse sobre o arquivo e selecione a opção Extrair aqui.

IPC: NÃO COPIE E COLE OS COMANDOS ABAIXO, APENAS DIGITE-OS NO TERMINAL LINUX.

1.4.1 Instalação da biblioteca zlib

Entre no diretório zlib-1.2.8 e digite no terminal do Linux:

```
sudo ./configure --prefix=/usr/local
```

E depois,

sudo make && sudo make install

1.4.2 Instalação da biblioteca szip

Entre no diretório szip-2.1 e digite no terminal do Linux:

sudo ./configure --prefix=/usr/local

E depois,

sudo make && sudo make install

1.4.3 Instalação da biblioteca hdf5

Entre no diretório hdf5-1.8.13 e digite no terminal do Linux:

$$sudo ./configure --with-zlib=/usr/local --with-szlib=/usr/local \\ --prefix=/usr/local --enable-shared --enable-fortran --enable-cxx$$

E depois,

sudo make && sudo make install

1.4.4 Instalação da biblioteca jasper

Entre no diretório jasper-1.900.1 e digite no terminal do Linux:

E depois,

sudo make && sudo make install

1.4.5 Instalação da biblioteca NetCDF4

Entre no diretório netcdf-4.3.3.1 e digite as linhas abaixo no terminal do Linux:

sudo ./configure
$$--$$
enable-netcdf4 $--$ enable-shared $--$ prefix=/usr/local

E depois,

sudo make && sudo make install

1.4.6 Instalação da biblioteca grib

Entre no diretório grib_api-1.13.0 e digite no terminal do Linux:

E depois,

sudo make && sudo make install

1.4.7 Instalação do CDO

Entre no diretório cdo-1.6.8 e digite no terminal do Linux:

```
sudo ./configure --with-netcdf=/usr/local --with-jasper=/usr/local --with-hdf5=/usr/local --with-grib_api=/usr/local --prefix=/usr/local
```

E depois,

sudo make && sudo make install

Assim que acabar a instalação, digite no terminal Linux ${\bf cdo}$ -V, deverá aparecer as seguintes informações:

gui@curupira: /Downloads\$ cdo -V

Climate Data Operators version 1.6.8 (http://mpimet.mpg.de/cdo)

Compiled: by gui on curupira (i686-pc-linux-gnu) Mar 27 2015 14:32:25

Compiler: gcc -std=gnu99 -g -O2 -fopenmp

version: gcc (Ubuntu/Linaro 4.8.1-10ubuntu9) 4.8.1

Features: PTHREADS OpenMP NC4/HDF5 Z JASPER

Libraries:

Filetypes: srv ext ieg grb grb2 nc nc2 nc4 nc4c \Rightarrow CDO com NetCDF4 e GRIB2

CDI library version: 1.6.8 of Mar 27 2015 14:31:22

CGRIBEX library version: 1.7.1 of Mar 4 2015 13:33:34

GRIB_API library version: 1.13.0

netCDF library version: 4.3.3.1 of Mar 27 2015 13:58:42 \$

HDF5 library version: 1.8.13

SERVICE library version: 1.3.2 of Mar 27 2015 14:31:03 EXTRA library version: 1.3.2 of Mar 27 2015 14:30:56 IEG library version: 1.3.3 of Mar 27 2015 14:31:00

FILE library version : 1.8.2 of Mar 27 2015 14:30:56

Com todos esses passos, o CDO terá suporte a NetCDF4 (HDF5) e GRIB2. Como saber o formato do arquivo? Digite no terminal Linux o comando **cdo showformat nome_do_arquivo.nc**. O resultado será o tipo de arquivo, isto é, dependerá da extensão a ser utilizada.

A seguir, serão apresentados tópicos sobre a utilização dos operadores. Foram selecionados alguns operadores que considerei mais importantes. Para informações adicionais, por favor, leia o manual do CDO.

2 OPERADORES

Convenção utilizada neste tutorial:

if.nc representa o dado de entrada e of.nc é o arquivo de saída.

2.1 Visualizar ajuda com o cdo

Quando necessário o usuário pode digitar o comando --help ou -h para obter informações sobre algum operador.

Por exemplo:

cdo --help fillmiss

ou

cdo -h fillmiss

2.2 Encadeamento de operadores

Entende-se por encadeamento de operadores a utilização de vários operadores ao mesmo tempo. Isso reduz o espaço em disco e agiliza o processamento dos dados. Para utilizar essa funcionalidade deve-se utilizar o símbolo "-" antes de cada operador que somente funciona quando o operador tem um número fixo de entrada e saída.

Por exemplo:

cdo -selmon,1 -sellevel,1000 -sellonlatbox,-100,-20,-60,20 if.nc of.nc

O uso do encadeamento somente foi possível com o uso do símbolo "-". Os comandos são executados sempre da direita para a esquerda. Nessa caso o primeiro operador realizar um recorte do dado no domínio selecionado, em seguida seleciona o nível vertical de 1000 e por fim, seleciona o mês 1, ou seja, janeiro.

2.3 Informações sobre o arquivo

Como exemplo, será utilizado o arquivo mensal de precipitação do GPCP para o ano de 2012 que está disponível em https://db.tt/kLK41eKI. O arquivo desse link se chama gpcp.2012.nc. Outro arquivo utilizado é o de temperatura do ar em vários níveis verticais do NCEP que está disponível em https://db.tt/5DHR3foP.

Os operadores podem ser utilizados com arquivos NetCDF ou GRIB, além de outros

formatos (o link para o manual do CDO encontra-se no final deste tutorial).

• infon: informações sobre o conjunto de dados listado pelo nome da variável

Exemplo: cdo infon gpcp.2012.nc

• sinfon: informações sobre o conjunto de dados, porém de forma reduzida.

Exemplo: cdo sinfon gpcp.2012.nc

• pardes: descrição das váriáveis do arquivo

Exemplo: cdo pardes gpcp.2012.nc

• nlevel: número de níveis verticais

Exemplo: cdo nlevel temp.ar.2010.nc

• nyear: número de anos

Exemplo: cdo nyear gpcp.2012.nc

• nmon: número de meses

Exemplo: cdo nmon gpcp.2012.nc

• ndate: número de dias

Exemplo: cdo ndate gpcp.2012.nc

• ntime: número de timestep

Exemplo: cdo ntime gpcp.2012.nc

• showformat: mostra o formato do dado

Exemplo: cdo showformat temp.ar.2010.nc

• showname: mostra o nome da variável

Exemplo: cdo showname gpcp.2012.nc

• showlevel: mostra os níveis verticais

Exemplo: cdo showlevel temp.ar.2010.nc

• showyear: mostra os anos

Exemplo: cdo showyear gpcp.2012.nc

• griddes: mostra informações sobre o domínio

Exemplo: cdo griddes gpcp.2012.nc

• zaxisdes: mostra informações sobre a coordenada vertical

Exemplo: cdo zaxisdes temp.ar.2010.nc

Há outros comandos para obter informações sobre os arquivos. Não deixe de acessar o tutorial do CDO disponível no final deste material.

2.4 Manipulação de arquivos

2.4.1 Operador Copy

Muda a extensão ou duplica arquivos arquivos. Os arquivos devem possuir iguais em termos de dimensões.

Exemplo: Transformar de NetCDF para grib:

cdo -f grb copy gpcp.2012.nc gpcp.2012.grb

Em que: **gpcp.2012.nc** pode ser qualquer arquivo NetCDF e **gpcp.2012.grb** é o nome que o usuário escolhe para o arquivo de saída. O arquivo NetCDF não será apagado e nem alterado, apenas será criado um novo arquivo no formato grb.

-f grb: converte para grib

Para converter em NetCDF:

cdo -f nc copy if.grb of.nc

Exemplo - Juntar arquivos com diferentes tempos: Supondo que você tenha vários arquivos de uma mesma variável, por exemplo, temperatura em três arquivos com as mesmas dimensões, porém com número de tempos distintos. O arquivo1 apresenta 10 tempos, o arquivo2 20 tempos e o arquivo3 5 tempos, para juntar todos em um único arquivo basta fazer:

cdo copy y1980.nc y1981.nc y1982.nc temp.1980.1982.nc

y1980.nc y1981.nc y1982.nc: são os seus arquivos

temp.1980.1982.nc: arquivo que será gerado

IPC: Caso já exista um arquivo e você deseja aumentar o número de tempos, utilize o operador cat.

Exemplo: cdo cat if1.nc if2.nc if3.nc of.nc

2.4.2 Operador merge

Junta arquivos com diferentes variáveis. Lembrando que os arquivos devem possuir as mesmas dimensões.

Exemplo: Juntar os arquivos de temperatura e altura geopotencial.

Exemplo: cdo merge tar.nc alt.geo.nc tar.alt.geo.nc

tar.nc e alt.geo.nc são os arquivos de entrada e tar.alt.geo.nc é o arquivo de saída que conterá as duas variáveis.

2.4.3 Operador split

Separa o arquivo em horas, em dias, em meses ou em anos, isso dependerá do operador a ser empregado.

Operador: splitlevel, splithour, splitday, splitmon, splitseas e splityear

Exemplo: Separar o arquivo em meses:

cdo splitmon tar.nc mes.

Onde: mes. representa um prefixo qualquer e tar.nc é o arquivo de entrada.

Com isso, serão criados 12 arquivos do tipo: mes.01.nc, mes.02.nc, ..., mes.12.nc. Por exemplo, o arquivo mes.01.nc contém todos os janeiros do seu arquivo, o mesmo raciocínio é válido para os demais arquivos.

2.4.4 Operador splityearmon

Separa o arquivo em anos e meses. Faça o download do arquivo que está disponível em https://db.tt/nEPxD9Uh. O arquivo tem o nome de gpcp.as.2000.2001.nc, é um dado de precipitação sobre a América do Sul para os anos de 2000 e 2001.

Exemplo: cdo splityearmon gpcp.as.2000.2001.nc prec.

Em que **prec.** é um apenas um prefixo escolhido pelo usuário, ele servirá para nomear

os arquivos que serão gerados.

Serão gerados vários arquivos com os seguintes nomes:

```
prec.200001.nc, prec.200002.nc, prec.200003.nc, prec.200004.nc, prec.200005.nc, prec.200006.nc, prec.200007.nc, prec.200008.nc, prec.200009.nc, prec.200010.nc, prec.200011.nc, prec.200112.nc, prec.200101.nc, prec.200102.nc, prec.200103.nc, prec.200104.nc, prec.200105.nc, prec.200106.nc, prec.200107.nc, prec.200108.nc, prec.200109.nc, prec.200110.nc, prec.200111.nc e prec.200112.nc
```

Observe que são dois anos (2000 e 2001) separados por meses (01, 02, 03, ..., 12).

2.4.5 Operadores de seleção

2.4.5.1 Operador select

Seleciona campos do arquivo de entrada. Faça o download do arquivo que está disponível em https://db.tt/6wBZn6ji. O arquivo possui o nome de ur.tar.as.2008.2010.nc. Nesse arquivo há duas variáveis, isto é, umidade relativa (rhum) e temperatura do ar (air) em vários níveis verticais para os anos de 2008 a 2010.

Será selecionada apenas a variável **air** para o nível de 1000hpa para os meses de junho (6), julho (7) e agosto (8).

Exemplo: cdo select,name=air,level=1000,month=6,7,8 ur.tar.as.2008.2010.nc air.1000hpa.jja.nc

Será gerado o arquivo air.1000hpa.jja.nc com todos os meses 6,7,8 para 2008, 6,7,8 para 2009 e 6,7,8 para 2010 apenas para o nível de 1000hpa.

Em vez de utilizar 6,7,8 há possibilidade de utilizar a "/" para expandir os números, por exemplo, 6/7 é o mesmo que 6,7,8. Outro exemplo, 2/6 é o mesmo que 2,3,4,5,6,7,8.

Os compos que podem ser selecionados com este operador são: **name** (string), **param** (string), **code** (integer ou inteiro), **ltype** (integer ou inteiro), **levidx** (integer ou inteiro), **level** (float ou real), **minute** (integer ou inteiro), **hour** (integer ou inteiro), **day** (integer ou inteiro), **month** (integer ou inteiro), **year** (integer ou inteiro), **timestep**, (integer ou inteiro) e **timestep_of_year** (integer ou inteiro).

2.4.5.2Operador selname

Seleciona variáveis dentro do arquivo e os salva em um novo arquivo.

Exemplo: cdo selname,air if.nc of.nc

air: é o nome da variável que existe dentro de if.nc e of.nc é o arquivo de saída que

contém o nome da variável air.

2.4.5.3 Operador sellevel

O mesmo pode ser feito para selecionar um ou mais níveis verticais de um arquivo,

para isso, usa-se o sellevel. No exemplo abaixo, foi extraído o nível de 200 hPa do

if.nc, e posteriormente foi criado o novo arquivo of.nc.

Exemplo: cdo sellevel,200 if.nc of.nc

2.4.5.4Operadores selday, selmon e selyear

Para selecionar tempos específicos, usa-se o selday, selmon e selyear. Há outros

operadores disponíveis. O usuário deve selecionar o melhor para sua aplicação (veja

o link para o manual do CDO no final deste tutorial).

Usando o operador selday para seleciona dias específicos dado uma lista de dias.

Exemplo: cdo selday,1,4,7 if.nc of.nc

Com o comando acima, foram selecionados os dias 1, 4 e 7. A vírgula separa a lista

de dias que deve ser um valor inteiro.

Para selecionar os meses deve-se utilizar o mesmo raciocínio, isto é:

Exemplo: cdo selmon,2,4 if.nc of.nc

Foram selecionados apenas os meses 2 e 4 e esses meses foram salvos no arquivo de

saída **of.nc**.

2.4.5.5Operador sellonlatbox

Recorta o dado em uma área selecionada.

Exemplo: cdo sellonlatbox,-90,-30,-50,10 if.nc of.nc

14

A conveção será sempre: longitude oeste, longitude leste, latitude sul e latitude norte.

2.5 Operadores de comparação

Esses operadores quando utilizados atribuem o valor 1 (um) quando a condição for verdadeira e 0 (zero) quando for falsa.

- eq \Rightarrow igual
- ne \Rightarrow diferente
- le \Rightarrow menor igual
- $lt \Rightarrow menor que$
- $ge \Rightarrow maior igual$
- $gt \Rightarrow maior que$

Exemplo: cdo eq if1.nc if2.nc of.nc

Quando a variável do if1.nc for igual a variável do if2.nc receberão o valor 1, caso contrário, receberão o valor 0 e o resultado será gravado no of.nc.

Caso o usuário queira comparar a sua variável com uma constante, utilizam-se os operadores abaixo, a diferença em relação ao operador anterior é o acréscimo da letra ${\bf c}$ ao operador.

- eqc \Rightarrow igual a contante
- \bullet nec \Rightarrow diferente da constante
- $lec \Rightarrow menor igual a constante$
- $ltc \Rightarrow menor que a constante$
- $gec \Rightarrow maior igual a constante$
- gtc \Rightarrow maior que a constante

Exemplo: cdo eqc,2 if.nc of.nc

Todos os valores da variável if.nc igual a 2 receberá o valor 1, e no caso contrário, receberá 0.

Operadores de modificação de metadados e arquivos 2.6

2.6.1Operador settaxis

Fixa uma data de referência para a dimensão tempo.

Exemplo: cdo -r settaxis,2000-01-01,00:00:00,1mon if.nc of.nc

 $-\mathbf{r}$ = adiciona um eixo de tempo relativo. **2000-01-01** = defina conforme seu arquivo.

00:00:00 = uma hora qualquer, poderia ser 06:00:00, 12:00:00 ou 18:00:00. **1mon**

= intervalo de tempo do arquivo (dt). Algumas possibilidades de incremento: hour,

day, mon e year

IPC: Sabe aquele arquivo que você tenta abrir no GrADS que mostra o seguinte

erro:

ga-> sdfopen output.nc Scanning self-describing file: output.nc SDF file

has no discernable time coordinate – using default values. gadsdf: SDF

file does not have any non-coordinate variables.

Pois é, seus problemas acabaram! Basta usar esse comando para fixar um eixo de

tempo.

2.6.2 Operador setcalendar

Este operador é útil quando se deseja definir o calendário para o seu arquivo. O

GrADS sempre apresenta problemas de calendário, e esse operador é a solução para

resolver isso.

As possibilidades são: standard, proleptic gregorian, 360 day, 365 day e

 $366 \, \mathrm{day}$

Exemplo: cdo setcalendar, standard if.nc of.nc

Operador chname 2.6.3

Muda o nome da variável do arquivo.

Exemplo: cdo chname,air,temp if.nc of.nc

Muda o nome da váriavel air para temp e cria um novo arquivo of.nc.

16

2.6.4 Operador inverlat

Inverte a latitude. Se o seu dado está na forma N->S, este operador muda-o de S->N.

Exemplo: cdo invertlat if.nc of.nc

2.6.5 Operador para valores ausentes ou indefinidos

Fixa um novo valor ausente.

cdo setmissval, valor indefinido if.nc of.nc

Em que valor_indefinido é o novo valor escolhido pelo usuário.

Exemplo: cdo setmissval,-9999 if.nc of.nc

O novo valor ausente/indefinido é -9999.

Fixa um intervalo de valores da variável para valores ausentes.

cdo setrtomiss,rmin,rmax if.nc of.nc

Não serão plotados os valores entre rmin e rmax porque eles são definidos como valores ausentes.

Exemplo: cdo setrtomiss,0,5 if.nc of.nc

O intervalo entre 0 e 5 não será plotado.

Fixa um intervalo de valores válido.

cdo setvrange,rmin,rmax if.nc of.nc

Esse operador apenas plota valores entre rmin e rmax.

Exemplo: cdo setvrange,2,5 if.nc of.nc

Apenas os valores entre 2 e 5 serão visualizados, os valores abaixo e acima desses limiares são indefinidos.

2.7 Operadores aritméticos

Avaliando expressões com o operador expr.

Esse operador é útil quando se deseja realizar algum cálculo, por exemplo, corventer a temperatura de Kelvin para Celsius.

Exemplo: cdo expr, 'tc=air-273.15;' if.nc of.nc

Em que **tc** (nome qualquer) é o nome da variável do arquivo que será criado (of.nc) e **air** é a variável do arquivo if.nc.

2.7.1 Operadores matemáticos

- abs (valor absoluto)
- int (apenas o valor inteiro)
- nint (inteiro mais próximo, faz arredondamento do valor)
- pow (potência, cdo pow,2 if.nc of.nc)
- sqr (eleva ao quadrado)
- sqrt (raiz quadrada)
- exp (exponencial)
- ln (log natural)
- log10 (log na base 10)
- sin (seno)
- cos (cosseno)
- tan (tangente)
- asin (arco seno)
- acos (arco cosseno)

Exemplo: cdo nint if.nc of.nc

2.7.2 Operações com constantes

- addc (soma a uma constante)
- subc (subtraí de uma constante)

- mulc (multiplica por uma constante)
- divc (divide por uma constante).

Exemplo: Converter a temperatura em Kelvin para Celsius.

cdo addc,-273.15 if.nc of.nc

ou

cdo subc,273.15 if.nc of.nc

2.7.3 Operações usando dois conjunto de dados

Esses operadores realizam cálculos utilizando dados espaciais com as mesmas dimensões.

- add (soma dois campos)
- sub (subtrai dois campos)
- mul (multiplica dois campos)
- div (divide dois campos)
- min (mínimo de dois campos)
- max (máximo de dois campos)

Exemplo: cdo add if1.nc if2.nc of.nc

Soma os dois campos e guarda o resultado em of.nc

2.8 Cálculos estatísticos

IPC1: Caso seu arquivo possua dados indefinidos é melhor usar o mean (fldmean, timmean, dentre outros), caso contrário, use avg (fldavg, timavg, dentre outros). Se o dado não tem indefinido, a função mean é igual ao avg.

IPC2: Exemplo: Vamos usar os valores 2, 8, -999 e 4. Lembrando que -999 é um valor indefinido. Ao fazer a média usando o mean, o resultado será de 4,7, porque ele não considera o valor -999, o cálculo é feito apenas

com (2+8+4)/3 = 4,7. Ao usar a avg, o resultado será -999, aqui será considerado o indefinido (2+8+(-999)+4=-999). O que isso significa? Caso a sua série de dados possua dados indefinidos, a sua série resultante terá valores indefinidos, por isso é importante ter informações sobre o dado para usar a função corretamente sem perda de informações.

IPC3: Como eu sei se o dado possui valores indefinidos? Basta usar o operador infon (cdo infon if.nc) e verificar a coluna onde tem Miss (quinta coluna do comando). O valor zero quer dizer que não há dados indefinidos.

2.8.1 Média de vários arquivos (ensemble)

Esse operador é útil quando se deseja realizar a média de vários arquivos ou ensemble.

Exemplo: cdo ensmean if1.nc if2.nc if3.nc if4.nc if5.nc if6.nc of.nc

ou

Exemplo: cdo ensmean if[1-6].nc of.nc

O CDO permite o uso de metacaracteres, por exemplo, *, ? e [] dentre outros.

2.8.2 Campos bidimensionais

- fldmin (retorna o valor mínimo do domínio)
- fldmax (retorna o valor máximo do domínio)
- fldsum (retorna a soma do domínio)
- fldmean (retorna o valor médio do domínio)
- fldavg (retorna o valor médio do domínio)
- fldvar (retorna o valor da variância do domínio)
- flstd (retorna o valor do desvio padrão do domínio).

Exemplo: cdo fldmean if.nc of.nc

Esse exemplo realiza a média espacial ou média na área do arquivo if.nc.

2.8.3 Cálculo estatístico zonal

• zonmin (para cada latitude o mínimo sobre todas as longitudes é calculado)

• zonmax (para cada latitude o máximo sobre todas as longitudes é calcu-

lado)

• zonsum (para cada latitude a soma sobre todas as longitudes é calculada)

• zonmean (para cada latitude a média sobre todas as longitudes é calculada)

• zonavg (para cada latitude a média sobre todas as longitudes é calculada)

• zonvar (para cada latitude a variância sobre todas as longitudes é calcu-

lada)

• zonstd (para cada latitude o desvio padrão sobre todas as longitudes é

calculado)

Exemplo: cdo zonmean if.nc of.nc

Cálculo estatístico meridional 2.8.4

• mermin (para cada longitude o mínimo sobre todas as latitudes é calculado)

• mermax (para cada longitude o máximo sobre todas as latitudes é calcu-

lado)

• mersum (para cada longitude a soma sobre todas as latitudes é calculada)

• mermean (para cada longitude a média sobre todas as latitudes é calculada)

• meravg (para cada longitude a média sobre todas as latitudes é calculada)

• mervar (para cada longitude a variância sobre todas as latitudes é calcu-

lada)

• merstd (para cada longitude o desvio padrão sobre todas as latitudes é

calculado)

Exemplo: cdo mermean if.nc of.nc

21

2.8.5 Cálculo estatístico vertical

- vertmin (extraí o valor mínimo de todos os níveis verticais)
- vertmax (extraí o valor máximo de todos os níveis verticais)
- vertsum (soma o valor de todos os níveis verticais)
- vertmean (média de todos os níveis verticais)
- vertavg (média de todos os níveis verticais)
- vertvar (variância de todos os níveis verticais)
- vertstd (desvio padrão de todos os níveis verticais)

Exemplo: cdo vertmean if.nc of.nc

2.8.6 Cálculo estatístico temporal

- timselmin (mínimo temporal)
- timselmax (máximo temporal)
- timselsum (soma temporal)
- timselmean (média temporal)
- timselavg (média temporal)
- timselvar (variância temporal)
- timselstd (desvio padrão temporal)

Supondo que seu arquivo apresenta resolução temporal de meses com vários anos, para realizar uma média sazonal (MMA, JJA, SON e DJF), basta fazer de acordo com o comando abaixo. O número 3 significa fazer a média a cada três meses e o número 2 diz para pular apenas no início do sua série, ou seja, os meses de janeiro e fevereiro caso eles existam. Como esse comando, o resultado será uma média espacial ou temporal sazonal.

Exemplo: cdo timselmean,3,2 if.nc of.nc

2.8.7 Cálculo estatístico com média móvel

- runmin (média móvel mínima)
- runmax (média móvel máxima)
- runsum (média móvel soma)
- runmean (média móvel média)
- runavg (média móvel média)
- runvar (média móvel variância)
- runstd (média móvel desvio padrão)

Exemplo: cdo runmean,9 if.nc of.nc

2.8.8 Cálculo estatístico sobre todos os tempos

- timmin (valor mínimo)
- timmax (valor máximo)
- timsum (soma)
- timmean (média)
- timavg (média)
- timvar (variância)
- timstd (desvio padrão)

Exemplo: cdo timmean if.nc of.nc

Esse operador realiza a média temporal do arquivo if.nc, o resultado será apenas um tempo.

2.8.9 Cálculo estatístico diário

Converte dados para a resolução temporal diária.

• daymin (mínimo diário)

- daymax (máximo diário)
- daysum (soma diária)
- daymean (média diária)
- dayavg (média diária)
- dayvar (variância diária)
- daystd (desvio padrão diário)

Exemplo: cdo daymean if.nc of.nc

2.8.10 Cálculo estatístico mensal

Converte dados para a resolução temporal mensal.

- monmin (mínimo mensal)
- monmax (máximo mensal)
- monsum (soma mensal)
- monmean (média mensal)
- monavg (média mensal)
- monvar (variância mensal)
- monstd (desvio padrão mensal)

Exemplo: cdo monmean if.nc of.nc

2.8.11 Cálculo estatístico anual

Converte dados para a resolução temporal anual.

- yearmin (mínimo anual)
- yearmax (máximo anual)
- yearsum (soma anual)
- yearmean (média anual)

- yearavg (média anual)
- yearvar (variância anual)
- yearstd (desvio padrão anual)

Exemplo: cdo yearmean if.nc of.nc

2.8.12 Cálculo estatístico sazonal

Cálcula os valores sazonais do arquivo de entrada.

- seasmin (mínimo sazonal)
- seasmax (máximo sazonal)
- seassum (soma sazonal)
- seasmean (média sazonal)
- seasavg (média sazonal)
- seasvar (variância sazonal)
- seasstd (desvio padrão sazonal)

Baixe o arquivo que está disponível em https://db.tt/nEPxD9Uh e digite o comando abaixo:

Exemplo: cdo seasmean gpcp.as.2000.2001.nc sazonal.nc

Ao utilizar este operador considerando que o seu arquivo gpcp.as.2000.2001.nc possua todos os meses (jan, ..., dez) aparecerão as seguintes mensagens de aviso, não precisa de preocupar porque o cálculo foi feito corretamente:

```
cdo seasmean (Warning): Season 1 (2000-01-01) has only 2 input time steps! cdo seasmean (Warning): Season 9 (2001-12-01) has only 1 input time step!
```

Faz todo o sentido porque ele tenta fazer a média do mês de dezembro de 1999 (que não existe), janeiro e fevereiro de 2000, por isso ele diz que a primeira estação tem apenas dois tempos (média de janeiro e fevereiro de 2000). Para a última estação, o raciocinio é o mesmo, ou seja, somente há o mês de dezembro, logo não é possível realizar a média, por isso, esse valor é repetido.

2.8.13 Valor estatístico mensal de vários anos

Este módulo cria climatologia. O arquivo de saída contém 12 tempos (jan, fev, ..., dez). Válido para dados horários, diários e mensais. Aqui está sendo mostrado apenas o mensal. Para os demais casos, consulte o link para o manual do CDO no final deste tutorial.

- ymonmin (mínimo mensal)
- ymonmax (máximo mensal)
- ymonsum (soma mensal)
- ymonmean (média mensal)
- ymonavg (média mensal)
- ymonvar (variância mensal)
- ymonstd (desvio padrão mensal)

Exemplo: cdo ymonmean if.nc of.nc

2.8.14 Valor estatístico sazonal de vários anos

Este módulo cria climatologia sazonal. O arquivo de saída contém 4 tempos (DJF, MAM, JJA e SON). O primeiro tempo corresponde ao verão (DJF), o segundo ao outono (MAM), o terceiro ao inverno (JJA) e o quarto a primavera (SON).

- yseasmin (mínimo sazonal)
- yseasmax (máximo sazonal)
- yseassum (soma sazonal)
- yseasmean (média sazonal)
- yseasavg (média sazonal)
- yseasvar (variância sazonal)
- yseasstd (desvio padrão sazonal)

Exemplo: cdo yseasmean if.nc of.nc

2.9 Interpolação

2.9.1 Operador remapbil

Realiza interpolação bilinear. Há outros operadores, não deixe de consultar o link para o manual do CDO no final deste tutorial.

Para descobrir o número exato de pontos em x e y, basta realizar o cálculo abaixo:

Para longitude $\Rightarrow nx = 360/\Delta x$

Em que nx representa o número de pontos de longitude e Δx é o espaçamento em graus do seu dado.

Para latitude $\Rightarrow ny = 180/\Delta y$

Em que ny representa o número de pontos de latitude e Δy é o espaçamento em graus do seu dado.

Para descobrir o nx e o ny do **NCEP**, procedemos da seguinte forma: O NCEP apresenta resolução de $2.5^{\circ} \times 2.5^{\circ}$ (latxlon):

Para longitude $\Rightarrow nx = 360/2.5 = 144$

Para latitude $\Rightarrow ny = 180/2.5 = 72$

No caso do **ERA-INTERIM** (**ERAI**) que apresenta resolução de 1.5^{o} x 1.5^{o} (latxlon):

Para longitude $\Rightarrow nx = 360/1.5 = 240$

Para latitude $\Rightarrow ny = 180/1.5 = 120$

Exemplo: Interpolar para resolução do NCEP (2.5°x2.5°).

cdo remapbil,r144x72 if.nc of.nc

 $\mathbf{r} = \text{grade regular}$

144 = número de pontos em x

72 = número de pontos em y

Caso seu dado seja regional, com esse operador será criado um arquivo global (144x72). Use o operador **sellonlatbox** para cortar o dado na sua área original.

Exemplo: Interpolar para resolução do ERA-INTERIM (1.5°x1.5°).

cdo remapbil,r240x120 if.nc of.nc

 $\mathbf{r} = \text{grade regular}$

240 = número de pontos em x

120 = número de pontos em y

2.10 Importação e exportação

2.10.1 Importação de conjunto de dados binários

Converte um arquivo binário para NetCDF dado o arquivo descritor (.ctl) do binário.

Exemplo: cdo -f nc import_binary if.ctl of.nc

-f nc = converte para NetCDF

if.ctl = arquivo descritor do arquivo binário

2.10.2 Conversão de arquivo texto para NetCDF

Converte um arquivo ASCII em NetCDF.

cdo -f nc input,r1x1 of.nc < arquivo.txt

 $\mathbf{r1x1} = 0$ arquivo $\mathbf{arquivo.txt}$ contém 12 linhas, isto é, 12 meses para um dado pontual (NX x NY). Esse arquivo poderia ser horário, diário, mensal ou anual.

of.nc = nome do arquivo de saída

Ao gerar o arquivo **of.nc** abra-o no GrADS.

ga-> sdfopen of.nc Scanning self-describing file: of.nc SDF file has no discernable time coordinate – using default values. gadsdf: SDF file does not have any non-coordinate variables.

O GrADS dirá que o dado não tem coordenada de tempo associada ao arquivo, e para resolver isso, basta fazer:

cdo -r settaxis,2000-01-01,12:00:00,1mon if.nc of1.nc

 $-\mathbf{r}$ = adiciona um eixo de tempo relativo.

2000-01-01,12:00:00 = data que você escolhe com base no seu arquivo 1mon = o dado é mensal, isso corresponde ao intervalo de tempo (dt)

2.10.3 Extrair arquivos ASCII de NetCDF

- a) Exemplo a): Saída bruta, sem formatação
 cdo output if.nc > output.txt
- b) Exemplo b): Saída processada, com formatação

cdo outputf,%6.2f,10 if.nc > output.txt

%6.2f = 6 elementos, incluindo ponto e sinal (+ ou -) com duas casas decimais

10 = número de elementos por linha

2.10.4 Correlação

O CDO possui dois operadores para calcular a correlação, são eles: fldcor (correlação espacial) e o timcor (correlação temporal). Os arquivos tem que possuir as mesmas dimensões para utilizar esses operadores.

2.10.5 Correlação espacial

O operador fidor correlaciona todos os pontos de grade para cada tempo das duas variáveis. O resultado é uma série temporal da correlação entre elas.

Exemplo prático deste operador:

Será feita a correlação entre a precipitação e a temperatura do ar em 1000hPa. Os dados mensais correspondem ao período de 2005 a 2007 sobre América do Sul.

Dado de precipitação: https://db.tt/ljsos1gw

Dado de temperatura do ar em 1000hPa: https://db.tt/dvX5dfDg

E finalmente, basta digitar o comando abaixo:

${\tt cdo~fldcor~prec.2005.2007.nc~tar.1000hpa.2005.2007.nc~corr.prec.temp.nc}$

A variável do arquivo corr.prec.temp.nc se chama precip porque o CDO guarda a informação do nome da variável do arquivo prec.2005.2007.nc.

Para mudar esse nome, basta utilizar o operador chname.

cdo chname,precip,corr corr.prec.temp.nc correlacao.nc

Agora, o arquivo correlacao.nc tem como nome a variável corr segundo o operador chname.

2.10.6 Correlação temporal

Diferente do operador fldcor, o timcor realiza a correlação em cada ponto de grade para todos os tempos das duas variáveis. O resultado é um arquivo espacial da correlação com apenas um tempo.

Utilizando os arquivos de precipitação e temperatura do ar, será calculada a correlação no tempo da seguinte maneira:

cdo timcor prec.2005.2007.nc tar.1000hpa.2005.2007.nc corr.nc

A variável do arquivo corr.prec.temp.nc se chama precip, para alterar o nome da variável caso seja necessário, utilize o operador chname.

cdo chname,precip,corr corr.nc correlacao.tempo.nc

Com esse operador será gerado um mapa espacial da correlação entre as duas variáveis.

3 MÓDULO PRÁTICO

3.1 Criando climatologia

Vamos usar o operador **ymonmean**.

cdo ymonmean air.mon.mean.1986.2005.nc climatologia.nc

Com isso, será gerado o arquivo **climatologia.nc** com 12 tempos (use o ntime para ver o total de tempos desse arquivo).

3.2 Criando anomalias

Para o cálculo de anomalia, utilize o comando abaixo:

cdo -ymonsub if.nc -ymonmean if.nc of.nc

Exemplo: Anomalia mensal de Temperatura da Superfície do Mar (TSM). Proceda da seguinte forma:

cdo -ymonsub sst.nc -ymonmean sst.nc anom.sst.nc

Com o comando acima, será criado o arquivo de anomalia mensal anom.sst.nc.

3.3 Calculando a velocidade do vento

A velocidade a partir das componentes do vento é calculada da seguinte maneira:

$$velocidade = \sqrt{u^2 + v^2}$$

3.3.1 Método 1

Elevando a componente zonal (u) ao quadrado

cdo sqr uwnd.1000hpa.2010.nc u2.nc

Elevando a componente meridional (v) ao quadrado

cdo sqr vwnd.1000hpa.2010.nc v2.nc

Somando as componentes:

cdo add u2.nc v2.nc soma.nc

Calculando a raiz quadrada da soma

cdo sqrt soma.nc velocidade.nc

Foi gerado o arquivo velocidade.nc.

3.3.2 Método 2

Outra forma de realizar essa tarefa é usando o piping para fazer tudo de uma vez só:

cdo -s -O -sqrt -add -sqr uwnd.1000hpa.2010.nc -sqr vwnd.1000hpa.2010.nc velocidade.nc

Caso você deseje alterar o nome da variável do arquivo **velocidade.nc**, faça da seguinte forma:

cdo chname,uwnd,vel velocidade.nc nova.velocidade.nc

chname altera o nome uwnd para vel.

A opção -s não mostra as mensagens de processamento e -O sobreescreve o arquivo caso o mesmo já exista.

Primeiro é resolvido:

-sqr vwnd.1000hpa.2010.nc

Depois

-sqr uwnd.1000hpa.2010.nc

e

-add

E finalmente,

-sqrt

Com isso, será gerado o arquivo velocidade.nc

3.3.3 Método 3

Outra forma mais fácil de realizar esse cálculo é utilizando o operador **expr**.

cdo -setunit,'m/s' -expr,'vel=sqrt(u*u+v*v)' if.nc of.nc

Em que:

setunit cria a unidade (m/s)

vel é o nome da nova variável que será criada dentro do arquivo de saída of.nc.

 ${\bf u}$ e ${\bf v}$ são as componentes zonal e meridional do vento do seu arquivo de entrada ${\bf if.nc.}$

As variáveis u e v precisam estar no mesmo arquivo, não podem estar em arquivos separados. Caso isso ocorra, utilize o operador merge para juntá-los.

3.4 Anomalia climatológica zonal de altura geopotencial

Para quem quiser saber o que isso representa, veja o artigo (Figuras 8 e 9) de Cavalcanti et al. (2002).

Removendo a média zonal do dado:

cdo zonmean hgt.200hpa.1991.2005.nc tmp.01.nc

Foi gerado o arquivo tmp.01.nc.

Deixando o dado de média zonal compatível (operador enlarge) com o dado espacial de altura geopotencial:

cdo enlarge,hgt.200hpa.1991.2005.nc tmp.01.nc tmp.02.nc

O arquivo **tmp.01.nc** será "expandido" para ter as mesmas dimensões de **hgt.200hpa.1991.2005.nc**, e finalmente será gerado o arquivo **tmp.02.nc**.

Calculando a anomalia zonal de altura geopotencial. A saída será mensal.

cdo sub hgt.200hpa.1991.2005.nc tmp.02.nc tmp.03.nc

Calculando a média sazonal caso queira a saída por estações do ano:

cdo yseasmean tmp.03.nc anomalia.zonal.sazonal.ncep.nc

3.5 Criando máscara

Será criado o arquivo **of.nc** e a variável desse arquivo chama-se **topo**. O operador **remapnn** converte em valores positivos e negativos. O operador **gtc** atribui o valor 1 quando maior que zero, e no caso contrário, atribui 0.

cdo -f nc -remapnn,if.nc -gtc,0 -topo of.nc

Adicionando um eixo de tempo ao arquivo. Caso isso não seja feito, o GrADS não abrirá seu arquivo. Fixou-se o ano de 1990 porque nesse exemplo foi usado um arquivo mensal (1mon) para esse ano em particular. Mude conforme a data do seu arquivo.

cdo -r -settaxis,1990-01-01,00:00:00,1mon of.nc mascara.nc

Visualizando o arquivo no GrADS:

Primeiro abre o arquivo de máscara e posteriormente, o arquivo da sua variável.

Para mascarar o oceano:

d maskout(shum.
$$2(z=1)$$
,topo. $1(t=1)-1$)

Para mascarar o continente:

d maskout(shum.
$$2(z=1)$$
,-topo. $1(t=1)+0.1$)

O z=1 diz para fixar o primeiro nível da variável **shum** (umidade específica neste caso). O t=1 diz para fixar o primeiro tempo da máscara. A máscara não varia com o tempo, mas a variável do seu arquivo sim. Caso o tempo não seja fixado, isso ocasionará problemas no GrADS.

3.6 Mascarando regiões

Pode-se mascarar regiões usando operador maskregion, como no exemplo abaixo:

Primeiro, deve-se criar um arquivo texto com o domínio a ser mascarado. Por exemplo, vamos mascarar o domínio entre as longitude -80 e -40 e latitude entre -10 e +10. O arquivo texto deverá conter as seguintes informações:

-80 10

-80 -10

-40 -10

-40 10

Salve o arquivo com o nome de mask com as informações acima.

Em seguida, use o comando abaixo:

cdo maskregion, mask seu.arquivo.nc saida.nc

Em que:

seu.arquivo.nc é o arquivo da entrada e **saida.nc** é o arquivo de saída com a região mascarada.

Ou simplemente,

Use o comando:

cdo masklonlatbox,-80,-40,10,-10 seu.arquivo.nc saida.nc

3.7 Alterando valores do arquivo NetCDF

Supondo que o usuário tenha um mapa de vegetação com diversas classes, e o mesmo deseja alterar algumas dessas classes. Isso pode ser feito com o comando abaixo:

cdo setvals,1,6 vegetacao.nc vegetacao.alterado.nc

Em que 1 é a classe antiga e 6 é a classe nova. Todos os **pontos de grade do arquivo** com a classe 1 serão substituídos pelo valor 6.

vegetacao.nc é o arquivo de entrada e vegetacao.alterado.nc é o arquivo de saída.

Caso seja necessário alterar mais de uma classe, continue com o mesmo raciocínio da linha acima:

cdo setvals,1,6,3,7,8,12 vegetacao.nc vegetacao.alterado.nc

Nessa caso em particular, 1 será trocado pelo valor 6, 3 será trocado pelo 7 e 8 pelo 12.

Para alterar um intervalo de valores para um único valor:

Por exemplo, fixar o intervalo de valores entre 16 e 18 para 20. Proceda da seguinte forma:

cdo setrtoc,16,18,20 if.nc of.nc

Entendendo o comando, 16 e 18 é o intervalo que será substituído pelo valor 20. Isso dependerá da variável utilizada. Altere de acordo com suas necessidades.

if.nc é o arquivo de entrada e of.nc é o arquivo de saída.

3.8 Extraindo apenas a série temporal de um ponto

cdo -output -remapnn,lon=-60_lat=-10 if.nc > serie.txt

lon=-60 e lat=-10 representam a longitude e latitude de interesse, respectivamente.

if.nc é o arquivo de entrada.

serie.txt é o arquivo com a série temporal.

3.9 Extraindo a série temporal de um ponto com diversas informações

cdo -outputtab,
date,lat,lon,value -remapnn,lon=270_lat=-2 seu.arquivo.nc > serie.txt

Em que:

date, lat, lon, value referem-se as colunas de data, valor da latitude, valor da longitude, valor da variável nesse ponto de latitude e longitude.

O valor **270** (longitude) e **-2** (latitude) são as coordenadas desejadas para extrair a série.

O **seu.arquivo.nc** corresponde ao arquivo de entrada e **serie.txt** é o arquivo texto que armazenará os valores.

O resultado de um exemplo está logo abaixo:

cdo -outputtab,date,lat,lon,value -remapnn,lon=270_lat=-2 ps.nc > psfc.txt

1979-01-15 -2 270 1010.48 1979-02-13 -2 270 1010.12 1979-03-16 -2 270 1009.87

Em que a coluna 1 = data, coluna 2 = latitude, coluna 3 = longitude e coluna 4 = valor no ponto -2 (lat) e 270 (lon).

3.10 Calculando "pentadas"

Agradecimentos ao Rômulo Oliveira (rom.aug9@gmail.com) pela versão original do script. A ideia original é dele, apenas fiz algumas adaptações.

Para calcular pentadas, utilize o script abaixo. Para torná-lo executável, utilize o comando **chmod** +**x** script.sh. E para executar, basta digitar ./script.sh.

Esse script a partir de uma determinada data calcula a pentada, somente isso.

O arquivo prec.sa.2010.nc pode ser baixado em: https://db.tt/BOQGSvCx.

#!/bin/bash

dt=4 # comprimento da "pentada".

fin="prec.sa.2010.nc" # nome do arquivo de entrada

lon="-55" # longitude

lat="-5" # latitude

rm -f pentada.txt # removo o arquivo de saída caso ele exista

for i in "2010-10-01" "2010-12-10" ; do # datas para calcular a pentada

diai=\$(date --date="\$i -\$dt days" +%Y-%m-%d) # dia inicial

diaf=\$i # dia final

fout="lixo.\$diai.\$diaf.txt" # nome do arquivo de saída

echo \$diai \$diaf

cdo -s -O -outputcenter -remapnn,lon="\$lon"_lat="\$lat" -timsum -seldate,\$diai"T00:00:00,"\$diaf"T00:00:00" \$fin > \$fout

```
sed -i '13!d' $fout  
echo $diai $diaf > tmp1.txt  
paste tmp1.txt $fout >> tmp2.txt  
cat tmp2.txt | sed 's/[/t]/ /g' | tr -s ' ' | sed 's/ /;/g' > pentada.txt  
rm -f $fout tmp1.txt tmp2.txt  
done
```

Fim do script

O arquivo de saída **pentada.txt** tem o formato abaixo que corresponde a data inicial e final, longitude, latitude e precipitação. O separador utilizado é o ponto e vírgula.

```
2010-09-27;2010-10-01;-55;-5;9.06667
2010-12-06;2010-12-10;-55;-5;45.52
```

Outra forma de calcular pentadas pode ser feita com o operador timselmean. O comando abaixo gera um arquivo com 73 tempos (01 janeiro a 31 de dezembro = 365 dias/5 = 73 pentadas ou tempos).

Fazer o download do arquivo que está disponível em https://db.tt/PweEoFMn. Ele se chama prec.2009.nc.

Exemplo: cdo timselmean,5 prec.2009.nc pentada.nc

A diferença entre o script que foi feito e o operador timselmean é que no script é passado um dia qualquer e assim é feita a média. Por outro lado, o operador timselmean calcula a pentada a cada 5 dias (neste exemplo) independente do dia selecionado.

3.11 Mascarando valores de velocidade e vetor do vento

A sugestão foi proposta pelo Cristiano Prestelo (http://prestrelocristiano.blogspot.com.br).

Fazer o download dos arquivos abaixo que estão disponíveis em:

componente zonal: https://db.tt/Z8dBk92i

componente meridional: https://db.tt/Q8gf26Jo

Supondo que as variáveis da componente zonal (u) e meridional (v) estão em arquivos separados. Inicialmente, vamos juntá-las em um único arquivo para calcular a velocidade do vento.

cdo merge uwnd.nc vwnd.nc uv.nc

O próximo passo é calcular a velocidade do vento. Será gerado um novo arquivo em que a variável se chamará **vel**.

cdo expr,'vel=sqrt(uwnd*uwnd+vwnd*vwnd);' uv.nc vel.nc

Agora, será criada a máscara de velocidade. Basta definir o intervalo da velocidade para o seu interesse, aqui vamos usar o limiar entre 0 e 4 m s⁻¹. Em seguida, utilizaremos o operador **setrtomiss** que defini valores ausentes ou indefinidos para um dado intervalo de valores, neste caso, entre 0 e 4.

cdo setrtomiss,0,4 vel.nc mascara.nc

Com o arquivo de máscara criado, ele será aplicado aos arquivos da componente zonal (u) e meridional (v) do vento. Será utilizado o operador **ifthen**.

cdo if then mascara.nc uwnd.nc vento.u.nc \Rightarrow mascarando valores da componente zonal

cdo if then mascara.nc vwnd.nc vento.v.nc \Rightarrow mascarando valores da componente meridional

E finalmente, basta visualizar a velocidade e o vetor do vento (arquivos vento.u.nc e vento.v.nc) que eles apresentarão somente valores acima de 4 m s^{-1} .

3.12 Alterando a coordenada vertical

A dica abaixo serve para qualquer situação em que a coordenada vertical do dado esteja em Pa.

Os níveis verticais dos modelos do CMIP5 estão em Pa, e normalmente utilizamos em hPa. Vamos utilizar o operador **setzaxis** para realizar essa alteração de Pa para hPa.

Faça o download do arquivo que está disponível em https://db.tt/NCRYDgqI. O

arquivo se chama **exemplo.nc**.

Digite o comando abaixo no seu terminal Linux para ver a descrição da coordenada vertical do arquivo exemplo.nc.

cdo zaxisdes exemplo.nc

O resultado será:

```
# zaxisID 1
# zaxistype = pressure
size = 8 \Rightarrow o arquivo possui 8 níveis verticais
name = plev
longname = pressure
units = Pa \Rightarrow a unidade do nível vertical está em Pa
levels = 100000 \ 85000 \ 70000 \ 50000 \ 25000 \ 10000 \ 5000 \ 10000 \Rightarrow os níveis verticais em
Pa, são 8 no total
bounds = 107500-92500 \ 92500-77500 \ 77500-60000 \ 60000-37500 \ 37500-17500 \ 17500-7500 \ 7500-3000 \ 3000-1000
```

Segue a dica:

Crie um arquivo texto chamado nivel, e adicione as 6 linhas abaixo. Esse arquivo será lido pelo operador setzaxis. A unidade e a coordenada vertical está em hPa.

```
\begin{aligned} & zaxistype = pressure \\ & size = 8 \\ & name = lev \\ & longname = pressure \\ & units = hPa \\ & levels = 1000 \ 850 \ 700 \ 500 \ 250 \ 100 \ 50 \ 10 \end{aligned}
```

Utilize o comando abaixo:

cdo setzaxis, nivel exemplo.nc saida.nc

Esse comando **altera a estrutura** do arquivo exemplo.nc e salva as alterações em saida.nc.

Ao digitar o comando

cdo zaxisdes saida.nc

As novas alterações são visualizadas logo abaixo. Agora, o arquivo saida.nc apresenta a unidade e a coordenada vertical em hPa.

```
#
# zaxisID 1
#
zaxistype = pressure
size = 8
name = lev
longname = pressure
units = hPa
levels = 1000 850 700 500 250 100 50 10
```

3.13 Preenchimento de dados ausentes

Essa dica foi proposta pelo Augusto Veiga (https://scientificmet.wordpress.com).

Fazer o download do dado que está disponível em https://db.tt/Fajw2LMj. O arquivo se chama zg_hadgem2_200501.nc

Será utilizado o operador fillmiss. Com ele é possível realizar uma interpolação bilinear dos vizinhos mais próximos e assim fazer o preenchimento dos dados indefinidos.

cdo fillmiss zg_hadgem2_200501.nc geo.nc

Os dados que antes eram ausentes, agora foram preenchidos com esse operador.

4 Links interesantes

- Página que contém esse tutorial: https://sites.google.com/site/jgmsantos/tutoriais/cdo
- Página oficial do CDO: https://code.zmaw.de/projects/cdo
- $\bullet \ \ Manual \ do \ CDO: \ https://code.zmaw.de/projects/cdo/wiki/Cdo\#Documentation$
- Lista de discussão: https://code.zmaw.de/projects/cdo/boards

REFERÊNCIAS BIBLIOGRÁFICAS

MAX-PLANCK-INSTITU FÜR METEOROLOGIE. Climate Data Operators.

 $Disponível\ em:\ < https://code.zmaw.de/projects/cdo/wiki/Cdo\#Documentation>.$

Acesso em: 02 de abr. 2014.