mk 27-07-2023

In [1]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns

In [67]: a=pd.read_csv(r"C:\Users\user\Downloads\11_winequality-red.csv")
a

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	a
0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	
1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68	
2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700	3.26	0.65	
3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800	3.16	0.58	
4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	
1594	6.2	0.600	80.0	2.0	0.090	32.0	44.0	0.99490	3.45	0.58	
1595	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.76	
1596	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.75	
1597	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71	•

```
In [68]: a=a.head(200)
a
```

Out[68]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcoh
0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9
1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9
2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9
3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9
4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9
195	7.8	0.590	0.33	2.0	0.074	24.0	120.0	0.9968	3.25	0.54	9
196	7.3	0.580	0.30	2.4	0.074	15.0	55.0	0.9968	3.46	0.59	10
197	11.5	0.300	0.60	2.0	0.067	12.0	27.0	0.9981	3.11	0.97	10
198	5.4	0.835	80.0	1.2	0.046	13.0	93.0	0.9924	3.57	0.85	13
199	6.9	1.090	0.06	2.1	0.061	12.0	31.0	0.9948	3.51	0.43	11

200 rows × 12 columns

In [69]: a.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype			
0	fixed acidity	200 non-null	float64			
1	volatile acidity	200 non-null	float64			
2	citric acid	200 non-null	float64			
3	residual sugar	200 non-null	float64			
4	chlorides	200 non-null	float64			
5	free sulfur dioxide	200 non-null	float64			
6	total sulfur dioxide	200 non-null	float64			
7	density	200 non-null	float64			
8	рН	200 non-null	float64			
9	sulphates	200 non-null	float64			
10	alcohol	200 non-null	float64			
11	quality	200 non-null	int64			
dtypes: float64(11), int64(1)						

memory usage: 18.9 KB

```
In [70]: a.columns
```

In [71]: a.head()

Out[71]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4
4											>

In [72]: a.describe()

Out[72]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	(
count	200.000000	200.000000	200.000000	200.000000	200.000000	200.000000	200.000000	200.
mean	7.594000	0.574350	0.215000	2.368000	0.098895	15.610000	60.530000	0.
std	1.013707	0.177606	0.182107	1.217441	0.072496	9.394102	38.097061	0.
min	4.600000	0.220000	0.000000	1.200000	0.045000	3.000000	8.000000	0.
25%	7.100000	0.450000	0.067500	1.800000	0.073000	9.000000	29.750000	0.
50%	7.650000	0.567500	0.180000	2.000000	0.081000	14.000000	52.000000	0.
75%	8.100000	0.662500	0.310000	2.300000	0.092000	19.250000	89.000000	0.
max	11.500000	1.330000	1.000000	10.700000	0.610000	52.000000	153.000000	0.
4								•

In [73]: sns.pairplot(a)

Out[73]: <seaborn.axisgrid.PairGrid at 0x25f082245b0>


```
In [78]: | sns.distplot(a['total sulfur dioxide'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for hi stograms).

warnings.warn(msg, FutureWarning)

Out[78]: <AxesSubplot:xlabel='total sulfur dioxide', ylabel='Density'>

In [80]: sns.heatmap(x1.corr())

Out[80]: <AxesSubplot:>


```
In [83]: x=a[['fixed acidity', 'volatile acidity', 'citric acid', 'residual sugar',
                 'chlorides', 'free sulfur dioxide', 'density',
                 'pH', 'sulphates', 'alcohol', 'quality']]
         y=a['total sulfur dioxide']
In [84]: from sklearn.model_selection import train_test_split
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [85]: from sklearn.linear_model import LinearRegression
         lr=LinearRegression()
         lr.fit(x_train,y_train)
Out[85]: LinearRegression()
In [86]: print(lr.intercept_)
         -1722.359468332406
         coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
In [87]:
         coeff
Out[87]:
```

	Co-efficient
fixed acidity	-13.753146
volatile acidity	33.001623
citric acid	69.518310
residual sugar	1.508975
chlorides	-189.985090
free sulfur dioxide	2.638808
density	2249.745157
рН	-141.080896
sulphates	-1.743660
alcohol	7.457486
quality	-3.065147

```
In [88]: prediction=lr.predict(x_test)
    plt.scatter(y_test,prediction)
```

Out[88]: <matplotlib.collections.PathCollection at 0x25f0f683f40>

In [89]: print(lr.score(x_test,y_test))

0.6430412535339495