John Mark Mehlhaff 💿

Curriculum Vitae

Postdoctoral Fellow Washington University in St. Louis Department of Physics One Brookings Drive 242 Compton Hall St. Louis, MO 63130 USA

Home Address*
John Mehlhaff
11 Square le Périer
38400 Saint-Martin-d'Hères
France

Personal U.S. Citizen

Contact

USA: +1 (206) 962-9335 France: +33 7 67 17 45 29 mehlhaff@wustl.edu

EDUCATION

University of Colorado, Boulder, CO

M.S. Physics, 2019 Ph.D. Physics, 2021

> Thesis: Magnetic Reconnection and the Extreme Plasmas of Blazar Jets Advisor: Dmitri Uzdensky; Co-advisors: Mitchell Begelman & Gregory Werner

University of Washington, Seattle, WA

B.S. Physics, Computer Science, 2016

Summa cum laude

Research Interests

- Black hole magnetospheres, jets (esp. blazars), accretion disks, coronae
- Connecting first-principles plasma processes to black hole observations
- Compact-object binaries and their multi-messenger signals
- High-energy astrophysical plasmas
 - * Kinetic aspects of particle acceleration and angular momentum transport
 - * Regimes of strong gravity and radiation (involving GR and QED)
- Computational methods
 - * Electromagnetic particle-in-cell codes and their algorithms
 - ★ Methods for massively parallel high-performance computing

EMPLOYMENT HISTORY

Dates	Institution; Location	Description
2025-now	Washington University in St. Louis; St. Louis, MO, USA	SCEECS Postdoctoral Fellow in the Y. Yuan and A. Chen group.
2021-2025	Univ. Grenoble Alpes, CNRS, IPAG; Grenoble, France	Postdoctoral Researcher in the group of B. Cerutti.
2017-2021	University of Colorado; Boulder, CO, USA	Ph.D. student of D. A. Uzdensky. Co-advised by M.C. Begelman and G. R. Werner.
2014-2015	University of Washington; Seattle, WA, USA	Research assistant to G. F. Bertsch.
2014	Jet Propulsion Laboratory; Pasadena, CA, USA	Intern to A. Romero-Wolf.
2011-2013	· · · · · · · · · · · · · · · · · · ·	Research assistant to E. Agol and A. Becker. Wrote software to detect new exoplanets in Kepler Space Telescope data.

^{*}Electronic communication preferred, but if mail is necessary, please use home address.

SEMINARS, CONFERENCES, AND WORKSHOPS (RECENT EXAMPLES)

Date	Contribution	Location	Conference Name
AugSep. 2025	Program participant	KITP; Santa Barbara, CA, US	Relativistic Plasma Physics: From the Lab to the Cosmos
June 2025	Invited review	Sorbonne University; Paris, France	Kinetic Physics of Astrophysical Plasmas
May 2025	Invited seminar	Oxford University; Oxford, UK	Oxford Plasma Theory Group Seminar
Apr. 2025	Contributed talk	Les Houches Physics School; Les Houches, France	Feeling the Pull and the Pulse of Relativistic Magnetospheres
Feb. 2025	Contributed poster	Flatiron Institute; New York, NY, US	SCEECS Annual Meeting

COMPUTING PROPOSALS

Date	Awarded Allocation	Description
Aug. 2025	25000 node-hours	Led OLCF Director's Discretion allocation on kinetic black hole accretion
July 2024	7 million core-hours	Co-PI of ACCESS allocation on radiative magnetic reconnection
June 2023	5 million core-hours	Co-PI of ACCESS allocation on radiative magnetic reconnection
June 2022	8 million core-hours	Co-PI of XSEDE allocation on radiative magnetic reconnection

TEACHING

Course (Course Level: $\underline{\mathbf{U}}$ ndergraduate/ $\underline{\mathbf{G}}$ raduate)	Role	Number of student-facing hours (Rounded to nearest 10)
Plasma Physics (G) Mathematical Methods (G)	Grader Grader	N/A N/A
Mechanics (U) E&M (U)	Teaching Assistant Teaching Assistant	50 60

SERVICE AND OUTREACH

Dates	Description
2020-now	Referee for The Astrophysical Journal.
Oct. 2025	Public astrophysics outreach (in French) at a local Science Festival (Fête de la Science).
2023 - 2024	Part of the IPAG colloquium organizing team.
Dec. 2022	Mentored middle school students (in French) during a week-long internship where the students
	explored careers in astrophysics and conducted scientific projects.
Nov. 2022	Part of the scientific organizing committee for the annual IPAG high-energy astrophysics retreat.

AWARDS

Award Years	Award Title	Awarding Body
2014-2015	Astronaut Scholarship	Astronaut Scholarship Foundation
2015	Andersen Scholarship	University of Washington Physics Department
2011-2015	Space Grant Scholarship	Washington NASA Space Grant Consortium

SKILLS

PIC Codes: ZELTRON, APERTURE

Computer Languages: Python, Fortran 90, LATEX, C/C++, Java

Human Languages: English (native), French (estimated CEFR level C1)

- Mehlhaff J., Crinquand B., Cerutti B., A kinetic model of jet-corona coupling in accreting black holes, A&A, 701, A62
- Mehlhaff J., Zhou M., Zhdankin V., Radiative Relativistic Turbulence as an In Situ Pair-plasma Source in Blazar Jets, ApJ, 987, 159
- Figueiredo E., Cerutti B., Mehlhaff J., Scepi N., 2024, Composition-asymmetric and sheared relativistic magnetic reconnection, A&A, 690, A389
- Mehlhaff J., Werner G., Cerutti B., Uzdensky D., Begelman M., 2024, Kinetic simulations and gamma-ray signatures of Klein-Nishina relativistic magnetic reconnection, MNRAS, 527, 11587
- Mehlhaff J. M., Werner G. R., Uzdensky D. A., Begelman M. C., 2021, Pair-Regulated Klein-Nishina Relativistic Magnetic Reconnection with Applications to Blazars and Accreting Black Holes, MNRAS, 508, 4532
- Mehlhaff J. M., Werner G. R., Uzdensky D. A., Begelman M. C., 2020, Kinetic Beaming in Radiative Relativistic Magnetic Reconnection: A Mechanism for Rapid Gamma-Ray Flares in Jets, MNRAS, 498, 799
- Bertsch G. F., Mehlhaff J. M., 2016, A Finite-Temperature Hartree-Fock Code for Shell-Model Hamiltonians, Comput. Phys. Commun., 207, 518