基于网络模型的心理学研究

主讲人: 杜新楷

自我介绍

- 背景
 - ➤Modum Bad 精神科医院
 - ▶奥斯陆大学博士生
- 研究兴趣
 - ➤心理测量(psychometrics)
 - ▶时间序列和面板数据分析(time-series and panel data analysis)
 - ▶动态网络的估计(estimation), 评估(evaluation)和比较(comparison)
 - >在精神疾病分析中的运用

今天

- 背景
 - ▶基于潜变量模型的心理学研究
 - ▶为什么要使用网络模型
- 基于网络的心理学理论
- 网络模型的估计
 - ▶有向无环图Directed Acyclic Graph (DAG)
 - ▶高斯图模型Gaussian Graphical Model (GGM)
- 网络模型的模型选择
- 结语: 网络模型的发展下潜变量的意义

基于潜变量的心理学研究

- 心理学一个很稳定的现象是特征之间的相关
 - ➤ g factor; positive manifold
 - **>** commorbidity
- 使用共因解释可观测特征之间的相关,可观测特征是潜变量的结果
- 可观测特征之间的相关是潜变量造成的,控制潜变量后可观测特征之间的相关消失
 - ▶共因原则
- 对可观测特征的干预无法改变潜变量的值
 - ▶止痛药,止咳药都无法治感冒
 - ▶抗病毒/消炎/其他原因

潜变量模型在心理学的困境

- 研究概念而难以找到客观实体
- 可观测特征之间实际存在因果 关系
 - ▶睡不着→没精神-→注意力不集 中→自责

基于网络的心理学视角

- 可观测特征之间的关系是有意义的,对可观测特征的干预也是有效果的
 - ▶睡不着→没精神-→注意力不集中→自责
 - ▶睡眠的改善可以显著改善抑郁
 - ➤ 喜欢与人交流→参与社交场合→朋友多
 - ▶帮助重建交流的勇气和完善沟通模式 鼓励尝试 可以改善社交状况
- 探索可观测特征之间的因果, 关注可观测特征之间的相互作用
- 复杂系统的视角
 - ▶心理学现象是可观测特征之间相互作用的浮现(emergence)
 - ▶特征 **→**心理学现象而不是现象**→**特征

如何寻找可观测特征间的因果关系?

- d-separation rule
 - ➤Infer causation from conditional relations
 - Three causal prototypes
 - ▶共因 Common cause
 - ➤链 Chain (mediation)
 - ▶ 对撞因子Collider

Judea Pearl (1936 -)

d-separation

DAG (贝叶斯网络)

- 寻找变量间的因果图式并拼接
 - ▶通过collider来识别因果的方向
- E.g., 使用bnlearn
 - ➤ PC-algorithm, hill-climbing, grow-shrink, hybrid
 - ➤ Bootstrap + thresholding or model averaging to account for uncertainty
 - ▶估计方法结果相似
 - ➤ Briganti, G., Scutari, M., & McNally, R. J. (2023). A tutorial on bayesian networks for psychopathology researchers. *Psychological Methods*, 28(4), 947–961. https://doi.org/10.1037/met0000479

DAG (贝叶斯网络)

- 贝叶斯网络的问题
 - ▶引入双向因果会导致模型无法识别
 - ▶必须引入无环假设,对探索性研究不利

DAG (贝叶斯网络)

- 贝叶斯网络的问题
 - ▶必须引入无环假设,对探索 性研究不利
 - >等价模型
 - ➤ 只能通过collider确定因果方 向
 - ▶剩下的完全无法统计上区分
 - ▶数量随节点增多指数增长
 - > 通过理论区分难度同样很高
 - ▶ 如果目的是理论验证,更加 槽心...

Equivalent?

												0-000 0-000 0-000 0-000	0.000.00	
00000					000 000 000 000 000 000					000 000 0000 000 0000				
			00 000 000 000		0.00 0.00 0.00 0.00	00 000 000 000 000			0.000 000	00 000 0 000 0 000	000 000 000 000			
0 000 00 000 000	0.000.00	8000000 800000000000000000000000000000					000 000 000 000		0.000	00000	000 000 000000 000000	000 000 000000	868888 868888 868	
0000000 000000000000000000000000000000	0.000.00		00 00 00 00 00 00 00 00 00 00 00 00 00		0 000 0 0 000 0 0 000 0	00 000 000000							0 000 0 000 0 000 0 000	
		0.000 000												
									988 888 888			98 88 88 88	2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
											0000 0000			

高斯图模型 (GGM)

- 无向网络
 - ▶使用偏相关矩阵代表网络(这也是 PC-algorithm的起点)
 - ▶放弃因果的方向
 - ▶模型有唯一解,无等价模型问题
 - ▶没有无环假设,适合探索性研究
- 马克夫随机场(Markov random field)
 - ➤ Markov property
 - Any two nodes / sets of nodes that are not connected on the graph are conditionally independent given other sets of nodes in the graph

- The MRF model:
 - Concentration Fatigue Insomnia
- Is equivalent to three causal structures:
 - 1. Concentration → Fatigue → Insomnia
 - 2. Concentration \leftarrow Fatigue \rightarrow Insomnia
 - 3. Concentration ← Fatigue ← Insomnia

易辛模型Ising model

易辛模型

• FYI: 与IRT模型等价(可以复现同样的数据,无需潜变量假设)

Marsman, M., Borsboom, D., Kruis, J., Epskamp, S., van Bork, R., Waldorp, L. J., Maas, H. L. J. van der, & Maris, G. (2018). An Introduction to Network Psychometrics: Relating Ising Network Models to Item Response Theory Models. *Multivariate Behavioral Research*, 53(1), 15–35. https://doi.org/10/gfj8tt

心理网络的估计

高斯图模型

- Multivariate estimation 多元估计
 - ▶同时估计所有参数 (edge weights)
 - ➤ Typically rely on (pseudo) likelihood
 - E.g., qgraph, psychonetrics, BGGM, glasso, huge
- Univariate (nodewise) estimation 一元(单节点)估计
 - ▶多个多元回归,一次使用一个node作为DV
 - And / or rule
 - ▶结果取平均数
 - >Connection between β and partial correlation (Meinshausen & Bühlmann, 2006)

多元估计

- 最大似然法
 - >找到能够最大化数据似然的参数集合
 - ▶拟合函数(的对数)一阶导数为0的时候
 - >GGM
 - \triangleright 当数据遵循方差矩阵为 Σ 的多元正态分布时,我们可以得到拟合函数为

$$\triangleright K = \Sigma^{-1}$$

$$f(\mathbf{y}) = \frac{1}{\sqrt{(2\pi)^k |\mathbf{K}|^{-1}}} e^{-\frac{1}{2}(\mathbf{y} - \mathbf{\mu})^T \mathbf{K} (\mathbf{y} - \mathbf{\mu})}$$

$$\Sigma = \Delta (I - \Omega)^{-1} \Delta$$

多元估计

- 最大似然法
 - ▶优点
 - ▶Full information maximum likelihood可以 处理缺失数据,无需删除样本
 - ▶不需要先验分布

多元估计

- 贝叶斯估计
 - ▶使用MCMC对参数的后验分布取样来得到后验分布

$$f(\boldsymbol{\theta} \mid \boldsymbol{y}) \propto f(\boldsymbol{y} \mid \boldsymbol{\theta}) f(\boldsymbol{\theta})$$

- ▶优点
 - ▶很快
 - ▶可以使用先验分布
 - ▶运用贝叶斯进行多样的假设检验
- ▶很多教程
 - https://donaldrwilliams.github.io/BGGM/

$$y_1 = \tau_1 + \gamma_{12}y_2 + \gamma_{13}y_3 + \gamma_{14}y_4 + \varepsilon_1$$

Note: 此处回归系数标记有误 应为γ

- AND / OR rule
 - ➤OR-rule 取平均数
 - ➤AND-rule 该连结的所有估计 都不为0时取平均数,任一估 计为0则该连结设置为0

Time for some coding

• Open R and install bootnet, psychonetrics, BGGM, and qgraph

Time for some coding

- 更多教程:
 - ▶R包手册
 - ▶R包官网
 - ▶作者个人主页
 - ▶R包如果发表在Journal of statistical software上也会有教程(e.g., mgm)

心理网络的模型选择

模型选择

最简单的独立模型

最复杂的饱和模型

模型选择

模型选择的缺失极易导致 虚假结果false discovery

True model

Estimated models at different N

模型选择

- 奥卡姆剃刀
 - ▶在拟合相似的模型中选择最简单的
- 在网络估计中,模型选择是必须的
 - ▶简化模型,留下有解释意义的参数
 - ➤ At least, so we hope
- 模型选择的方式有许多种,根据具体情况选择

模型选择的方式

- 阈值法(thresholding)
- 剪枝法(pruning)
- 正则法(regularization)
- 模型搜索(model search)

阈值&剪枝法

- 阈值法
 - ➤隐藏不符合标准的连结(e.g., α > .05), 但不重新估计模型
- 剪枝法
 - ▶预测饱和模型(最复杂模型)后把不符合标准(e.g., α > .05)的连结设置为0后 重新估计模型(可反复)
- 显著性可以是 (bootstrapped) p值,false discovery rates(FDR),或者贝叶斯因子
- 在一元估计中的AND / OR rule也是模型选择

Time for coding

阈值&剪枝法

- 优点
 - ▶快速
 - ▶固定的假阳性率
 - ▶非偏估计
 - ▶比较保守
- 缺点
 - ▶阈值法不选择模型
 - ▶小样本时不稳定

正则法

- Lasso regularization
 - ▶多元估计
 - ▶最大化被惩罚的似然(maximize the penalized likelihood)

$$\triangleright \lambda$$
 log det(K) – trace(SK) – $\lambda \sum_{\langle i,j \rangle} |\kappa_{ij}|$

- ▶使用EBIC来选择 λ, γ越大模型复杂度惩罚越大
- EBIC = $-2L + E \log(N) + 4\gamma E \log(P)$
 - ➤在每一个multiple regression的时候使用lasso

$$\min_{eta \in \mathbb{R}^p} \left\{ rac{1}{N} \|y - Xeta\|_2^2 + \lambda \|eta\|_1
ight\}$$

- ▶也可以使用交叉验证法(cross-validation)
 - ▶ 推荐阅读mgm的manual

Coding time

正则法

- 优点
 - ▶快速
 - ▶非常适合小样本
 - ▶结果清晰
- 缺点
 - ▶大样本下表现差
 - ▶依赖稀疏假设
 - ▶没有固定的假阳性率

模型搜索

- 最强大的方法
 - ▶也最慢
- 使用无正则的(最大似然)估计不停地调整并重新估计模型,直到最优解
- 较简单的
 - ➤ Step-up approach in psychonetrics
- 较复杂的
 - ➤ggmModSelect in qgraph
 - >modelsearch in psychonetrics

psychonetrics: step-up

- 从空模型(或剪枝过的模型)开始
- 添加modification index(MI)最大的edge
- 重新估计模型
- 查看MI并再添加MI最大的edge
- 重复直到BIC不再下降

mod <- ggm(bfi_na.rm, omega = "empty") %>%
runmodel %>% stepup
net <- getmatrix(mod, "omega")</pre>

mod <- ggm(bfiSub) %>% runmodel %>% prune(alpha = 0.01) %>% stepup net <- getmatrix(mod, "omega")

psychonetrics: modelsearch

- 先估计一个饱和模型
- 剪枝并重新估计模型M_cur
- 查看所有M_cur中不显著的edge以及MI 显著的edge,将他们存进集合E_sub
- 将E_sub中的每一个edge依次在M_cur添加或删除,每次都重新估计模型,并查看BIC和MI
- 重复直到BIC不再下降,或者E_sub不再 更新

mod <- ggm(bfi_na.rm) %>%
runmodel %>% prune(alpha = 0.01)
%>% modelsearch

net <- getmatrix(mod, "omega")</pre>

The modelsearch algorithm (psychonetrics)

qgraph: ggmModSelect

- 与modelsearch相似,但是从正则化网络出发
- 先估计100个稀疏度不同的正则化网络
- •对每个正则化网络,用非正则方法重新估计一个网络,设置对应 正则网络中为0的edge为0
- 选择这100个非正则网络中BIC最低的作为M_cur
- 将M_cur中每一个edge依次在M_cur添加或删除,每次都重新估计模型,并查看BIC
- 重复直到BIC不再下降或者M_cur不再改变

net_ggmModSelect <- estimateNetwork(bfiSub, default = "ggmModSelect",
corMethod = "spearman")</pre>

总结

- 阈值/剪枝法
 - ➤将饱和模型中不合标准的edge隐藏/设置为0再重新估计 ➤好处:快速,有固定的假阳性率,无偏估计

 - ▶缺点:阈值法并不选择模型,小样本时不稳定,不一定能converge到真模型
- 正则法
 - ▶在最大似然中惩罚模型复杂度
 - ▶好处: 快速, 小样本时表现好, 结果更易解释
 - ▶缺点: 估计永远是biased的, 大样本下表现不好
- 模型搜索
 - ➤依次添加或去除edge来优化某项指标(e.g., BIC)
 - ▶好处:同时照顾power和假阳性,无偏估计,因为检查的模型多更可能converge 到真模型
 - ▶坏处: 很慢, 小样本时表现糟糕

用哪个方法?

- 小样本使用regularized methods, 大样本使用模型搜索
- Isvoranu, A.-M., & Epskamp, S. (2021). Which estimation method to choose in network psychometrics? Deriving guidelines for applied researchers. *Psychological Methods*.

https://doi.org/10.1037/met0000439

一些结语

心理网络的挑战

- 网络理论≠网络模型
 - ➤什么网络模型最符合网络理论is still a question ➤ DAG? GGM?
- Collider effect
 - ➤ Beware of the negative edges
 - ➤ Berkson's bias
- What centrality in psychological networks is really?
- Causal inference with GGM is problematic, the corresponding causal generating mechanism of GGM is unknown (Ryan et al., 2022)
 - Cher causal networks discovery algorithms without cyclic assumptions (Park et al., 2024)
 - Cyclic causal discovery (CCD) (Richardson, 1996b), fast causal inference(FCI) (Spirtes et al., 1995), and cyclic causal inference (CCI) (Strobl, 2019).

Endnote: 我们是否还需要潜变量模型

- 当然
 - ▶测量误差的估计无可替代
 - ▶需要更少的样本
 - >IRT evaluation of item properties, information, item fit and person fit
 - ➤ Computer adaptive testing
 - ▶Network模型仍在萌芽 功能尚不全面
 - ▶基于network的心理测量体系: Hudson Golino, Alexander P. Christensen
- 什么时候使用网络模型?
 - ▶无需潜变量假设的theory discovery tool
 - > 当研究对象是可观测特征之间的(动态)关系时
 - ▶当有理论支撑可观测特征之间的因果关系时

小广告

- Twitter: @XinkaiDu
- Bluesky: @xinkaidu.bsky.social
- xinkai.du.xd@gmail.com
- 动态网络的比较
 - Du, X., Epskamp, S. (2024) Network comparison in time-series and panel data: The invariance partial pruning test. [Working Paper]
- 验证性网络分析及(动态)网络模型的拟合评估
 - Du, X., Freichel, R., Ebrahimi, O. V., Hoekstra, R. H. A., Skjerdingstad, N., & Epskamp, S. (May, 2024). Moving from exploratory to confirmatory network analysis: An evaluation of SEM fit indices and cutoff values in network psychometrics. [Working paper].