Working with CYCLeR

Stefan Stefanov

9/22/2021

Contents

Installation of CYCLeR
Command line tools needed
R packages installation
Pre-processing the data
Mapping with STAR
Processing the BAM info in R
Selecting a BSJ set
Transcript assembly
BSJ loci extraction
Feature identification with SGSeq
Re-couting and Processing the features
Transcript prediction
Output and Quantification
CYCLeR transcript output
CYCLeR quantification

CYCLeR is a pipeline for reconstruction of circRNA transcripts from RNA-seq data and their subsequent quantification. The algorithm relies on comparison between control total RNA-seq samples and circRNA enriched samples to identify circRNA specific features. Then the selected circRNA features are used to infer the transcripts through a graph-based algorithm. Once the predicted transcript set is assembled, the transcript abundances are estimated through an EM algorithm with kallisto [1]. CYCLeR takes as an input BAM files and back-splice junction (BSJ) files and outputs transcript infomation in different formats and a transcript abundance file.

Installation of CYCLeR

Command line tools needed

```
**STAR** - https://github.com/alexdobin/STAR

**samtools** - https://sourceforge.net/projects/samtools/files/samtools/

**kallisto** - http://pachterlab.github.io/kallisto/download

#We also suggest RStudio to supplement the interactive experience

**RStudio** - https://rstudio.com/products/rstudio/download/
```

R packages installation

```
library(devtools)
install_github("stiv1n/CYCLeR")
```

Pre-processing the data

Mapping with STAR

The STAR [2] mapping parameters are up to a personal preference. It is imperative to include the **intronMotif** tag. My suggestion would be 2-pass mapping with these parameters:

```
#first pass
STAR --alignSJoverhangMin 5 --outSAMstrandField intronMotif --outFilterMismatchNmax 3
--outFilterMismatchNoverLmax 0.1
--chimSegmentMin 15 --chimScoreMin 1 --chimJunctionOverhangMin 15
--outFilterMultimapNmax 50 --alignIntronMax 100000 --alignIntronMin 15
#second pass
STAR --outSAMstrandField intronMotif --outFilterMismatchNmax 7 --outFilterMismatchNoverLmax 0.3
--alignSJoverhangMin 15 --alignSJDBoverhangMin 3
--chimSegmentMin 15 --chimScoreMin 1 --chimJunctionOverhangMin 15
--outFilterMultimapNmax 50 --alignIntronMax 100000 --alignIntronMin 15
#converting to sorted BAM
samtools view -u -h Aligned.out.sam | samtools sort <name>_sorted.bam
```

Processing the BAM info in R

We need the information for read length, fragment length and library sizes from the BAM files.

```
#load the BSJ files
bam_file_prefix<-system.file("extdata", package = "CYCLeR")
filenames<-c("sample1_75", "sample2_75", "sample3_75", "sample4_75")
BSJ_files_ciri<-paste0(bam_file_prefix, "/", filenames)
bam_files<-paste0(bam_file_prefix, "/", filenames, ".bam")
#mark the samples control and enriched or bare the consequences
sample_table<-data.frame(filenames,c("control", "control", "enriched", "enriched"), bam_files,
stringsAsFactors = F)
colnames(sample_table)<-c("sample_name", "treatment", "file_bam")
si<- DataFrame(sample_table[,c("sample_name", "file_bam")])
si$file_bam <-BamFileList(si$file_bam, asMates = F)
#this holds all the needed info of the bam files for downstream processing
sc <- getBamInfo(si)
sample_table$lib_size<-sc@listData$lib_size
sample_table$read_len<-sc@listData$read_length</pre>
```

Use the provided sample table template.

```
##
     sample_name treatment
                                                                    file_bam
## 1 SRR1191323
                 control /home/sstefan/data/wt_vs_RR/SRR1191323_sorted.bam
## 2 SRR1191331
                  control /home/sstefan/data/wt_vs_RR/SRR1191331_sorted.bam
## 3 SRR1191327 enriched /home/sstefan/data/wt_vs_RR/SRR1191327_sorted.bam
## 4 SRR1191335 enriched /home/sstefan/data/wt_vs_RR/SRR1191335_sorted.bam
    lib size read len
## 1 19255420
                   101
## 2 15068605
                   101
## 3 17144585
                   101
## 4 18667943
                   101
```

Selecting a BSJ set

Selecting a BSJ set is very important, because the algorithm assumes that the provided set of BSJ is *correct*. I suggest BSJ identification with CIRI2 [3] and CIRCexplorer2 [4], but the choice is up to a personal

preference. I have provided some useful functions for parsing the output from BSJ identification software.

```
#load the BSJ files
BSJ files prefix<-paste0(system.file("extdata", package = "CYCLeR"),"/ciri ")
ciri table <- parse. files (sample table sample name, BSJ files prefix, "CIRI")
colnames(ciri table)<-c("circ id", "sample1 75", "sample2 75", "sample3 75", "sample4 75")
ciri_bsjs<-process_BSJs(ciri_table,sample_table)</pre>
# i would suggest combine the output of pipelines using different mapping tools
BSJ_files_prefix_CE<-paste0(system.file("extdata", package = "CYCLeR"),"/CE_")
ce table <- parse. files (sample table $sample name, BSJ files prefix CE, "CE")
colnames(ce_table)<-c("circ_id", "sample1_75", "sample2_75", "sample3_75", "sample4_75")</pre>
ce_bsjs<-process_BSJs(ce_table,sample_table)</pre>
#we need to unify the results from the BSJ identification and counting
table_circ<-combine.two.BSJ.tables(ce_bsjs,ciri_bsjs)
#further downstream we need just the mean values for enriched samples
table_circ<-table_circ[,c("chr","start","end","meanRR")]</pre>
colnames(table_circ)<-c("chr", "start", "end", "count")</pre>
BSJ set<-union(ciri bsjs$circ id,ce bsjs$circ id)
BSJ_set<-BSJ_set[!grepl("caffold",BSJ_set)]</pre>
#just in case
BSJ set<-BSJ set[!grepl("mitochondrion",BSJ set)]</pre>
#converting the BSJ set into a GRanges object
BSJ_gr<-make.BSJ.gr(BSJ_set)</pre>
```

The parse files can work with **CIRI2**, **CIRCexplorer2** or **TSV** file. Naturally a person may have different criterion for *correct* BSJs based on different criteria. It is not an issue as long as the data is presented in the following template:

```
head(table_circ)
```

```
## # A tibble: 6 x 4
    chr start end
                           count
##
    <chr> <chr> <chr>
                           <dbl>
## 1 2L 10036818 10037279 1.18
## 2 2L
          10080375 10081946 0.923
## 3 2L
         10096914 10098010 0.332
## 4 2L 10096914 10137559 0.292
## 5 2L
          10104792 10114895 0.268
## 6 2L
          10120720 10122038 0.260
```

Transcript assembly

BSJ loci extraction

Prior to the feature detection the files need to be trimmed to speed up the process. Afterwards the transcript features (e.g. exons, junctions) are identified with **SGSeq** [5]. The files are convered with **samtools** [6].

Feature identification with SGSeq

```
sgfc_pred <- analyzeFeatures(sc, min_junction_count=2, beta =0.1 , min_n_sample=1,cores=1,verbose=F)
sgfc_pred <- SGSeq::annotate(sgfc_pred, txf)</pre>
```

SGSeq feature plotting function can be used for visual representation of the control VS enriched difference

```
plotFeatures(sgfc_pred, geneID = "1",assay = "counts",
color_novel = "red", include = "both",tx_view=F,Rowv=NA, square=T)
```

Re-couting and Processing the features

I prefer the **RSubread** [7] counting method, thus I re-count the identified exon features. I use the **SGseq** counted junctions. The features that are depleted in circRNA enriched samples need to be removed. **CYCLeR** provides 2 approaches for identifying depleted features: DEU strategy and simple comparison of normalized coverage values.

```
#extract BSJ-corrected splice graphs (sg)
full_sg<-overlap.SG.BSJ(sgfc_pred,BSJ_gr,sgf)#includes linear and circular features
# we have made new feature set so we need to recount
full fc<-recount.features(full sg, sample table) #fc==feature counts
#removing super low coverage features
full_sg<-full_sg[rowSums(as.data.frame(full_fc[,sample_table$treatment=="enriched"]))>15]
full_fc<-full_fc[rowSums(as.data.frame(full_fc[,sample_table$treatment=="enriched"]))>15,]
circ_sg<-full_sg[full_sg%over%BSJ_gr] #includes features within BSJ enclosed region
lin_sg<-full_sg[full_sg%outside%BSJ_gr] #includes features outside of BSJ enclosed region
#annotate the BSJ with the corresponding geneIDs
BSJ_sg<-make.BSJ.sg(circ_sg,BSJ_gr)</pre>
#full_fc<-count_matrix[full_sq@featureID,]
#qet the correct genome for sequence info
bs_genome=Dmelanogaster
#RPKM calculation for exons
seqs<-get.seqs(full_sg,bs_genome)</pre>
full_rpkm<-RPKM.calc(full_fc, full_sg, BSJ_gr, bs_genome=bs_genome , sample_table=sample_table,
                     feature_type = "e", gc_correction = T)
lin_rpkm<-full_rpkm[full_sg%outside%BSJ_gr,]</pre>
#extracting circ specific counts
circ_fc_adj<-full_rpkm[full_sg%over%BSJ_gr,]</pre>
depleted_exons<-find.depleted.features(circ_fc_adj,sample_table,circ_sg)</pre>
#making sure that the circ edge exons remian in the mix;
#they could be depleted in case of very low levels of the circle
edge_features<-union(full_sg@featureID[start(full_sg)%in%start(BSJ_gr)],
                     full_sg@featureID[end(full_sg)%in%end(BSJ_gr)])
depleted_exons<-setdiff(depleted_exons,edge_features)</pre>
circ_exons<-circ_sg[!circ_sg@featureID%in%depleted_exons] # the final set of circRNA exons
```

```
circ_exons_counts<-circ_fc_adj[!circ_sg@featureID%in%depleted_exons,]</pre>
#now for junctions
#we need to normalize the junction read counts to the exon counts
count_matrix<-as.data.frame(counts(sgfc_pred))</pre>
count_matrix <- apply (count_matrix, c (1, 2), function (x) {(as.integer(x))})</pre>
sg gr<-rowRanges(sgfc pred)</pre>
sg_gr_j<-sg_gr[sg_gr@type=="J"]
#circ_sg_j<-sg_gr_j[sg_gr_j%over%BSJ_gr]</pre>
circ_sg_j<-sg_gr_j[unique(queryHits(findOverlaps(sg_gr_j,BSJ_gr,type = "within")))]</pre>
count_matrix_j<-count_matrix[circ_sg_j@featureID,]</pre>
#get the relative sequences of around a junction
seqs_j<-paste0(seqs[match(start(circ_sg_j),end(full_sg))],</pre>
              seqs[match(end(circ_sg_j),start(full_sg))])
#calculate the scaled read count for junction
junc_rpkm<-RPKM.calc(count_matrix=count_matrix_j, sg=circ_sg_j, bsj_granges = BSJ_gr,</pre>
sample_table = sample_table, feature_type = "j")
deplted_j<-find.depleted.features(junc_rpkm,sample_table,circ_sg_j)</pre>
circ_junc<-circ_sg_j[!circ_sg_j@featureID%in%deplted_j]</pre>
circ_junc_counts<-junc_rpkm[!circ_sg_j@featureID%in%deplted_j,]</pre>
circ_junc_counts[circ_junc_counts==0]<-1</pre>
colnames(circ_junc_counts)<-sample_table$sample_name</pre>
```

The circRNA exon features are stored in SGRanges format with a corresponding matrix

```
circ_exons[geneID(circ_exons)==1]
```

```
## SGFeatures object with 2 ranges and 0 metadata columns:
##
         segnames
                       ranges strand
                                          type splice5p splice3p featureID
                    <IRanges> <Rle> <factor> <logical> <logical> <integer>
##
            <Rle>
##
     [1]
               2L 74903-75018
                                             Ε
                                                   FALSE
                                                             FALSE
                                                                        70542
                                                                        70543
##
     [2]
               2L 75078-75366
                                             Ε
                                                   FALSE
                                                             FALSE
            geneID
##
                                                     txName
                                                                    geneName
##
                                            <CharacterList> <CharacterList>
         <integer>
                 1 FBtr0306540,FBtr0078101,FBtr0302164,...
##
     [1]
                                                                 FBgn0031213
                 1 FBtr0306540,FBtr0078101,FBtr0302164,...
     [2]
                                                                 FBgn0031213
##
##
     seqinfo: 1870 sequences from an unspecified genome
circ_exons_counts[geneID(circ_exons)==1,]
```

```
## SRR1191323 SRR1191331 SRR1191327 SRR1191335
## 70542 31 29 19 9
## 70543 23 16 8 6
```

Transcript prediction

Transcript prediction is processed one samples at a time. The transcript sets from different samples are then merged.

```
qics_out1<-transcripts.per.sample("sample3_75")
qics_out2<-transcripts.per.sample("sample4_75")
qics_out_final<-merge_qics(qics_out1,qics_out2)</pre>
```

Output and Quantification

CYCLeR transcript output

CYCLeR provides 3 forms of output of the annotated transcript: a comprehensive flat file, a GTF-like file, and FASTA file.

```
gtf.table<-prep.output.gtf(qics_out_final,circ_exons)
write.table(qics_out_final[,-9],file = "dm_circles.txt",
sep = "\t",row.names = F, col.names = T,quote=F)
qics_out_fa<-DNAStringSet(qics_out_final$seq)
names(qics_out_fa)<-qics_out_final$circID
#if you have a known set of circRNA in FASTA format the CYCLeR output can be combined
fasta_circ<-readDNAStringSet("...")
final_ref_fa<-merge_fasta(qics_out_fa,fasta_circ)
writeXStringSet(qics_out_fa,'...')</pre>
```

CYCLeR quantification

The final transcript abundance estimation is performed with **kallisto**. An extended and padded circRNA reference sequences are build and combined with linear RNA sequences *kallisto index* is created to be used for any desired sample quantification.

```
extended_seq<-paste0(qics_out_final$seq,substr(qics_out_final$seq,1,30),
strrep("N",mean(sc@listData$frag_length[sample_table$treatment=="enriched"])))
qics_out_fa<-DNAStringSet(extended_seq)
names(qics_out_fa)<-qics_out_final$circID
writeXStringSet(qics_out_fa,'circles_seq_extended_padded.fa')
#merging linear and circular sequences
cat linear_transcripts.fa circles_seq_extended_padded.fa > for_kallisto.fa
#Kallisto comands
kallisto index -i kallisto_index -k 31 for_kallisto.fa
kallisto quant -i kallisto_index -o ./ sample_1.fastq sample_2.fastq
```

- 1. Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nature Biotechnology. 2016;34:525–7. doi:10.1038/nbt.3519.
- 2. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.
- 3. Gao Y, Zhang J, Zhao F. Circular RNA identification based on multiple seed matching. Briefings in bioinformatics. 2018;19:803–10.
- 4. Zhang X-o, Dong R, Zhang Y, Zhang J-l, Luo Z, Zhang J, et al. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Research. 2016;1277–87.
- 5. Goldstein LD, Cao Y, Pau G, Lawrence M, Wu TD, Seshagiri S, et al. Prediction and quantification of splice events from RNA-seq data. PLoS ONE. 2016;11:1–18.
- 6. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–9.
- 7. Liao Y, Smyth GK, Shi W. The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Research. 2019;47.