Suppose X is a set and S is a set of subsets of X. We say that a set $Z \subseteq X$ is a lower bound for S provided that $Z \subseteq S$ for all $S \in S$. Prove that for any set X and any collection S of subsets of X, there is a unique set T with the following two properties:
(a) T is a lower bound for S.

Suppose X is a set and S is a collection of subsets of X. We must show that there exist a set T that is a lower bound for S. By the definition of lower bound we must show that there exist a set T such that for all $S \in \mathcal{S}$, $T \subseteq S$. Let T be given by $T = \bigcap_{S \in \mathcal{S}} S$. Suppose $S^* \in \mathcal{S}$.

We must show that $T \subseteq S^*$. Suppose $x \in T$. By the definition of subset we must show that $x \in S^*$. By definition of $x \in T$, $x \in \bigcap_{S \in \mathcal{S}} S$, therefore since $S^* \in \mathcal{S}$, by the definition of set intersection $x \in S^*$

(b) For any set Z that is a lower bound for S we have $Z \subseteq T$. Suppose Z is a lower bound for S. We must show that $Z \subseteq T$. By definition of lower bound for all $S \in S$ $Z \subseteq S$. Suppose $S = \{S_1, \dots, S_n\}$ Therefore $Z \subseteq S_1$ and $Z \subseteq S_2 \dots$ and $Z \subseteq S_n$. Therefore by definition of intersection $Z \subseteq \bigcap_{S \in S} S$. Since by definition $\bigcap_{S \in S} S = T$, then $Z \subseteq T$.