IPARI ROBOTOK KINEMATIKÁJA ÉS DINAMIKÁJA

I. ÁTTEKINTÉS

Összeállította: Dr. Kuti József Szerkesztette: Dr. Galambos Péter

2019. február 21. Budapest

Mi a robot?

- ipari robotkarok (szerelés, heggesztés, forrasztás, ragasztás, anyag/alkatrész mozgatás, palettázás, stb...)
- háztartási robotok (fűnyíró, medencetisztító, porszívó, stb..)
- exoskeletonok (lecsökkent mozgáskészségek pótlására, képességek kiterjesztésére: extrém teherhordóképesség, mozgékonyság, stb...)
- humanoid robotok (elsősorban szórakoztató céllal)
- androidok
- mezőgazdasági robotok (agrobotok): önálló, rajszerű kaszálás, aratás, stb...
- stb...

TÖRTÉNETI ÁTTEKINTÉS I

P

• ~1490: Leonardo da Vinci: Mechanical Knight

Lovagi páncél felsőteste, karjai mechanizmusokkal mozgathatók (a lábak és a törzs rögzített állapotban).

Szórakoztató céllal mutatták be Milán hercegének egy ünnepélyen 1495-ben.

• \sim 1920: Karel Čapek: Rossumovi Univerzální Roboti (Rossum's Universal Robots)

A drámában a "robotok" fellázadnak és a végére kihal az emberiség...

A robot itt "mesterséges ember" - klón/android értelemben, nem gép

Robot fogalma: dolgozó, munkás, szolga (cseh)

A "robot" szó bekerül a köznyelvbe

TÖRTÉNETI ÁTTEKINTÉS III

- ~1960: Unimate: az első ipari robot
 - Előzmény: numerikus vezérlések (szerszámgépek), teleoperátorkarok (nukleáris, vegyi kísérletek)
 - George Devol szabadalma alapján, kereskedelmi használatra (1956)
 - Első telepített ipari robot a General Motors összeszerelő üzemében, présöntvények mozgatására (nagy tömegű, toxikus gázok közötti szerelőmunka)
 - Az első robotgyártó: UNIMATION (<u>Uni</u>versal Auto<u>mation</u>)

~1970 Az első hattengelyű, elektromágnesesen hajtott robotkarok

I. ÁTTEKINTÉS

- elektromágneses hajtás
- microcomputer-es irányítás
- 6 mozgatott tengely (6 szabadságfok)
- Robotprogramozási nyelvek
- PUMA560

TÖRTÉNETI ÁTTEKINTÉS IV

COLLABORATIVE ROBOTS (COBOTS) TERJEDÉSE 2013-

Motiváció: a hagyományos robotikai alkalmazásokban a masszív robotkarok alacsony szintű szabályozása csak a kapott pozíció (esetleg sebesség/ gyorsulás) értékekre próbál beállni

→ a környezettel ütközve, azt félrelökve, törve (közben önmagát is, ha úgy alakul)

Emiatt: a hagyományos ipari robotkarok biztonsági kerítéssel elkerítve dolgozik, emberektől távol, pontosan leírt körülmények között

Nehézkes:

- pontosan ismert környezetben, pontosan megkonstruált koreográfiában dolgoznak együtt a robotok, egy ütközés komoly kárt okozhat
- ember a munkatérben: egyes mozzanatokban az operátor is dolgozik, vagy felügyel (nem teljesen automatizálható munkafolyamat) ?
- ember a munkatérben: orvosi alkalmazás ?
- biztonsági zóna helyigénye

Kollaboratív robot:

- legyen biztonságos a munkaterében tartózkodni (garancia az ütközések esetén gyors, biztonságos leállásra, mielőtt kárt okozna)
- ISO szabvány (2016): ISO/TS 15066:2016
- Mérve a csuklókban a motornyomaték (vagy a motoráramból közelítve - ez zajosabb, pontatlanabb) - ezáltal közvetlenül képes érzékelni az ütközéseket az alacsonyszintű irányításban, így gyorsan képes reagálni
- Rendszerint kis tömegű (kis lendületű), könnyen mozgatható, kisebb sebességtartomány, gyorsulások
- E.g.: Universal robots: UR3, UR5, UR10 széria, KUKA: LBR3, LBR 4, LBR IIWA, etc.

ALKALMAZÁSOK I ISMÉTLŐDŐ, MONOTON FELADATOK

No.

Unalmas, stresszt okozó, nagy fizikai igénybevételt jelentő munkák

- Gyártórendszerekbeli munkák: szerelés, ív/pontheggesztés, anyagmozgatás, logisztika, lézer/láng/plazmavágás, mérőeszköz mozgatás, pakolás, palettázás, festés, csiszolás
- Háztartásban, a ház körüli munkák: fűnyírórobot, porszívórobot, medencetisztító
- Mezőgazdaságban (agrobot):
 - elsősorban aratás (vezető nélküli, követő irányítás)
 - felmérés, megfigyelés (drónok)
 - gyom, gaz szabályozás (felmérés, permetezés drónok)
 - felhők permetése (drónok)
 - ültetés, palántázás
 - fejőrobotok, stb...
- Közlekedés: önvezető autók (robot? programozható, mobil, beavatkozik...)
- Egyéb

ALKALMAZÁSOK II Veszélyes feladatok

Munkavégzés nukleárisan, vegyileg, biológiailag, fizikailag fenyegetést jelentő terepen

- Sugárzó köryezetben: atomerőművek reaktorterében, sugárszennyezett területen, stb...
- Gyártórendszerekben: a nehézfémeket tartalmaző gőzök, festőműhely, forró alkatrészek szerelése, nagy tömegek emelése, csiszolás
- Mentőrobotok, drónok
- Undorító feladatok
- Harctéri alkalmazások
 Drónok (Predator, split strike, etc...)
- Űrállomások munkái

ALKALMAZÁSOK III

NEM HOZZÁFÉRHETŐ, TÁVOLI MUNKAVÉGZÉS

- sebészrobotika (feltárás nélküli műtétek), távsebészet
 - Da Vinci Surgical system 2000-
 - neuroArmTM 2004-
 - idegsebészetnek megfelelő precizitás
 - operáció MRI alatt
- Űrállomás kültéri munkái
- Csővezetétek, csatorna, szűk helyek felderítése, tisztítása, ott beavatkozás
- Teleoperáció, telemanipuláció

ALKALMAZÁSOK IV KÉPESSÉGJAVÍTÁS/REHABILITÁCIÓ

- rehabilitáció: segített/nehezített mozgás gyakorlatok játékos formában
- aszisztens hétközapi mozgások segítése (átülés)
- exoskeleton: képesség helyreállítás/kiterjesztés
- gyógytornáztatás, masszázs
- stb.

I. ÁTTEKINTÉS

ALKALMAZÁSOK V Szórakoztatás

- "kisállat", "lakótárs"
- show elem
- humanoid robotok: látványos technológiai verseny

IPARI ROBOTIKA (INDUSTRIAL ROBOTICS) ↔ SZOLGÁLTATÓ ROBOTIKA (SERVICE ROB.)

Def.: Robot (ISO)

ISO 8373:2012:

"actuated mechanism programmable in two or more axes with a degree of autonomy, moving within its environment, to perform intended tasks"

IEC 60601-4-1:2017:

"programmed actuated mechanism with a degree of autonomy, moving within its environment, to perform intended tasks"

Egyre általánosabb definíció – az egyre általánosabb alkalmazásoknak megfelelően

Def.: Ipari robot (ISO 8373:2012)

K

"automatically controlled, <u>reprogrammable</u>, <u>multipurpose</u> manipulator, programmable <u>in three or more axes</u>, which can be either fixed in place or mobile for use in <u>industrial automation</u> applications"

Def.: Ipari robot (industrial definition of Robotic Institute of America)

"re-programmable multi-functional manipulator designed to move materials, parts, tools, or specialized devices through variable programmed motions for the performance of a variety of tasks, which also acquire information from the environment and move intelligently in response"

- Újraprogramozható: a programozott mozgás fizikai módosítások nélkül változtatható
- Többcélú: fizikai változtatásokkal különböző alkalmazásokban is használható
- Fizikai változtatás: a mechanikai struktúra illetve a vezérlőrendszer módosítása (pl.: szerszámcsere)

Def: Szolgáltató robot (ISO 8373:2012)

"robot that performs useful tasks for humans or equipment excluding industrial automation applications"

Egyéb: Orvosi rehabilitáció, sebészrobotika, személyi asszisztens, harctéri alkalmazás, logisztika, humanoid robotok, exoskeleton, mentőrobotok, telerobotika, telemanipuláció, telesebészet, fűnyíró, takarítórobotok.

Fő különbségek:

Szolgáltató robotika
Lakosság
Változó, ismeretlen környezet
Emberek között/együttes feladatvégzés

IPARI ROBOTIKAI ALKALMAZÁSOK

(Industrial and Service Robotics in Europe, 2011)

IPARI ROBOTIKAI ALKALMAZÁSOK

Global Industrial Robots Install Base

(Eladások gyártók szerint (Markets and industries, 2017))

IPARI ROBOTOK CSOPORTOSÍTÁSA

Struktúra:

- Soros kinematika
 - elágazás nélkül (/ elágazással)
 - nyílt láncú (/ zárt láncú)
- Párhuzamos kinematika

Rögzítés:

- Fix
- Mobil

ÁBRA: párhuzamos ↔ soros (nyílt láncú) kinematika

HAGYOMÁNYOS IPARI ROBOT

Szenzorok, aktuátorok, hálózati eszközök:

- alkatrész érzékelése
- biztonsági lézerkapu
- megfogó működtetése (nyitás, zárás) és szenzorai (végállás, erőmérő cella, hibadetektálás,...)

I. ÁTTEKINTÉS

- további, a robotprogramból vezérelt egységek, adagolók
- felügyeleti eszközök, log, központi vezérlés
- más robotok, cellák, stb.

Robotprogram (interpreter típusú, gyártónként más nyelv):

- mozgás robotkonfigurációk között (különböző opciók)
- mozgás bizonyos pozícióba, orientációba (különböző opciók):
 "Szabadon", egyenesen, köríven
- mozgás/forgás bizonyos irányba, bizonyos sebességgel (különböző opciók)
- kommunikáció
- általános logika
- (+ esetenként a konzol GUI definiálása)

- a működéshez real time körülmények szükségesek
- Hagyományos ipari alkalmazásokban:
 - nem hozzáférhető a robotalkalmazás fejlesztője számára
 - a robotprogram utasításait hajtja végre
 - a 3D mozgás és a csuklók mennyiségei között a robotmodell alapján teremt kapcsolatot (a gyártás minősége és a kalibráláció limitálhatja a pontosságot)
- Fejlesztési/kutatási státuszban:
 - beágyazott fejlesztés
 - aktívan kutatott terület (szűrési módszerek, erővisszacsatolt irányítások, ...)

Robotalkalmazás fejlesztése:

- Cella layout kialakítása
- Robot kiválasztása (teherbírás, sebesség, pontosság, vezérlő portjai, utasításkészlete, elérhető tartomány)
- Szükséges szenzorok, aktuátorok kiválasztása, mechanikai, hardveres és szoftveres illesztése
- Robotprogram fejlesztése

Összetett alkalmazásokhoz több részcsapat (hardver, szoftver, technológia,...)

ROBOTMODELLEZÉS TÁRGY CÉLJA

R

Nyílt láncú, elágazás nélküli ipari robotkarokhoz:

- Alapfogalmak, jellemző robotstruktúrák: a konzol felületének / a robotprogram utasításainak értelmezéséhez
- 3D geometriai fogalmak: a robotutasítások paraméterezéséhez, visszakapott értékek értelmezéséhez
- Geometriai modellezés: robot geometria leírása minimális paraméterrel / algoritmikus számítás komplex robotkarokhoz / sajátosságaik
- Kinematikai modellezés: sebesség, szögsebesség kapcsolata a geometriával, nem megvalósítható sebességek, szinguláris helyzetek
- Dinamikai modellezés: dinamikai modell alapú szabályozás / terhelések kompenzálása

Mivel NEM foglalkozik a tárgy:

- Aktuátor-, szenzortechnika, elektronika
- Robotprogramozási nyelvek, robotrendszerek programozása (lásd később: Robotrendszerek programozása tárgy)
- Szabályozási módszerek részletei (lásd később: Robotok irányítása tárgy)

AJÁNLOTT IRODALOM

- Lantos Béla: Robotok irányítása, Budapest: Akadémia kiadó (1991)
- SPONG, Mark W., et al. Robot modeling and control. New York: Wiley, (2006).

Köszönöm a figyelmet!

Óbudai Egyetem Pro Sciencia et Futuro

Bejczy Antal iRobottechnikai Központ