4. 设以 2 为周期的函数 f(x) 在 $(-\infty,+\infty)$ 内可导,又 $\lim_{x\to 0} \frac{f(1-x)-f(1)}{4x} = 1$,则曲线 y = f(x) 在点

(3, f(3)) 处的切线斜率为_____.

分析: 由周期性知, f'(3) = f'(1), 故只需求 f'(1)。又已知 f(x) 在 $(-\infty, +\infty)$ 可导, 所以利用导数定义求极限。

解: $\lim_{x \to 0} \frac{f(1-x) - f(1)}{4x} = 1$

$$-\frac{1}{4}\lim_{x\to 0}\frac{f(1-x)-f(1)}{-x}=1$$

$$-\frac{1}{4}f'(1) = 1 \Rightarrow f'(1) = -4$$

M: $y = \frac{x^2}{x+1} = x - 1 + \frac{1}{x+1}$

故,
$$y^{(n)} = (\frac{1}{x+1})^{(n)} = \frac{(-1)^n n!}{(x+1)^{n+1}}$$

10. 设函数 $f(x) = (x-a)^n \varphi(x)$, 其中 $\varphi(x)$ 在点 a 的某邻域内具有 n-1 阶导数,则 $f^{(n)}(a) =$ ______

解 由莱布尼茨公式,可得

$$f^{(n-1)}(x) = (x-a)^{n} \varphi^{(n-1)}(x) + C_{n-1}^{1} n(x-a)^{n-1} \varphi^{(n-2)}(x) + \cdots + C_{n-1}^{n-2} n(n-1) \cdots 3(x-a)^{2} \varphi'(x) + n! (x-a) \varphi(x).$$

因此 $f^{(n-1)}(a) = 0.$ 于是

$$f^{(n)}(a) = \lim_{x \to a} \frac{f^{(n-1)}(x) - f^{(n-1)}(a)}{x - a} = n! \varphi(a).$$

【注】 由于 $\varphi(x)$ 在点 a 的邻域内具有 n-1 阶导数,未必具有 n 阶导数,因此不能直接 求 f(x) 的 n 阶导数,只能利用定义来求 $f^{(n)}(a)$.

4. 函数
$$f(x) = \frac{e^x - b}{(x - a)(x - 1)}$$
 有无穷间断点 $x = 0$,可去间断点 $x = 1$,则().

A. a = 0, b = e; B. a = 0, b = 1; C. a = 1, b = e; D. a = 1, b = 1. 分析: 考查间断点的定义和分类

解: x=0 为无穷间断点,即 $\lim_{x\to 0} f(x) = \infty$,则

$$\lim_{x \to 0} \frac{1}{f(x)} = \lim_{x \to 0} \frac{(x-a)(x-1)}{e^x - b} = \frac{a}{1-b} = 0 \implies a = 0$$

x=1 为可去间断点,即 $\lim_{x\to 1} f(x)$ 存在。

x-1 位于分母上,且 $\lim_{x\to 1}(x-a)(x-1)=0$,要 $\lim_{x\to 1}f(x)$ 存在,则有

$$\lim_{x \to 1} (e^x - b) = e - b = 0 \Rightarrow b = e$$

- 下列结论中正确的是().
- A. 若 f(x) 在点 x_0 连续,则 $f'(x_0)$ 存在; B. 若 $f'(x_0)$ 存在,则 f(x) 在点 x_0 连续;
- C. 若 $f'(x_0)$ 存在,则 f'(x) 在点 x_0 连续;
- D. 若 $f'(x_0)$ 存在,则 f(x) 在点 x_0 的某邻域内连续.

分析:函数在一点可导仅仅是个局部概念, $f'(x_0)$ 存在,只能得出以下结论:

- ① f(x)在 x_0 有定义,某 x_0 邻域有定义;
- ② f(x)在 **x**₀ 连续;
- ③ f(x)在 x₀ 可微, 因可微和可导等价

在 x_0 可导,函数y=f(x)在 x_0 的任意邻域内未必处处可导,甚至未必连续; 例如:

$$f(x) = \begin{cases} x^2 & x \text{为有理数} \\ -x^2 & x \text{为无理数} \end{cases}$$

此函数仅在x=0处连续、可导,但是在 $x\neq 0$ 的个点处处不连续、处处不可导。

解: A. 连续不一定可导, ×

B.可导必连续, √

C. 一点可导和导函数 f'(x)的连续性没有任何关系, \times

D. 一点可导, 得不到在此点邻域连续的结论, ×

A.
$$e^{x-1}$$
:

B.
$$e^x$$
:

C.
$$e^{x+1}$$
: D. e^{x+2} .

D.
$$e^{x+2}$$

 $分析: 1^{\infty}$ 极限,利用第二个重要极限

解:
$$f(x+1) = \lim_{n \to \infty} \left(\frac{n+x}{n-2}\right)^n = \lim_{n \to \infty} \left(1 + \frac{x+2}{n-2}\right)^{\frac{n-2}{x+2} \cdot \frac{n(x+2)}{n-2}}$$
$$= e^{\lim_{n \to \infty} \frac{n(x+2)}{n-2}} = e^{x+2}$$

故 $f(x) = e^{x+1}$

8. 设 $f(x) = g(x^2)$, 其中函数 g(t) 可导,则 d f(x) = ().

A.
$$2xg'(x^2)$$
; B. $2x[g(x^2)]'$; C. $2xg'(x^2)dx$; D. $2x[g(x^2)]'dx$.

C.
$$2xg'(x^2)dx$$
:

D.
$$2x[g(x^2)]' dx$$

解:

$$f'(x) = g'(x^2) \cdot 2x$$

$$\therefore df(x) = 2x g'(x^2) dx$$

$$\therefore df(x) = 2x g'(x^2) dx$$

- 9. 设函数 f(x) 具有任意阶导数,且 $f'(x) = [f(x)]^2$,则 $f^{(n)}(x) = ($).
- A. $n![f(x)]^{n+1}$; B. $n[f(x)]^{n+1}$; C. $(n+1)![f(x)]^{n+1}$; D. $(n+1)[f(x)]^{n+1}$.

解: 利用归纳法求高阶导数

$$f'(x) = [f(x)]^2$$

$$f''(x) = 2f(x)f'(x) = 2![f(x)]^3$$

$$f'''(x) = 2\{[f'(x)]^2 + f(x)f''(x)\} = 2\{[f(x)]^4 + 2[f(x)]^4\}$$
$$= 2 \cdot 3[f(x)]^4 = 3! \cdot [f(x)]^4$$

:
$$f^{(n)}(x) = n![f(x)]^{n+1}$$

10. 设函数 f(x) 可导,且曲线 y = f(x) 在点 $(x_0, f(x_0))$ 处的切线与直线 y = 2 - x 垂直,则当 $\Delta x \rightarrow 0$ 时,该函数在点 x_0 处的微分dy是().

A. 比 Δx 高阶的无穷小;

B. 比 Δx 低阶的无穷小;

C. 与 Δx 同阶但不等价的无穷小; D. 与 Δx 等价的无穷小.

解: 由题目条件可知, $f'(x_0)=1$, 故

$$dy\big|_{x=x_0}=f'(x_0)\Delta x=\Delta x$$

 $dy|_{x=x_0}$ 是 $\triangle x$ 的等价无穷小。