1.0 Question 1

This question will be using the Text Corpus data to demonstrate the manual calculation and the calculation using Python programming via Colab platform on unsmoothed unigram probabilities and smoothed unigram probabilities.

1.1 Unsmoothed Unigram Probabilities

Token	Frequency	Probability
Не	2	$P(He) = \frac{Count(He)}{Total\ Token}$ $= \frac{2}{15}$ ≈ 0.1333
read	3	$P(read) = \frac{Count(read)}{Total Token}$ $= \frac{3}{15}$ $= \frac{1}{5}$ $= 0.2$
a	3	$P(a) = \frac{Count(a)}{Total Token}$ $= \frac{3}{15}$ $= \frac{1}{5}$ $= 0.2$
book	3	$P(book) = \frac{Count(book)}{Total Token}$ $= \frac{3}{15}$ $= \frac{1}{5}$ $= 0.2$
Ι	1	$P(I) = \frac{Count(I)}{Total\ Token}$ $= \frac{1}{15}$ ≈ 0.0666

different	1	$P(different) = \frac{Count(different)}{Total Token}$ $= \frac{1}{15}$ ≈ 0.0666
my	1	$P(my) = \frac{Count(my)}{Total\ Token}$ $= \frac{1}{15}$ ≈ 0.0666
Danielle	1	$P(Danielle) = \frac{Count(Danielle)}{Total\ Token}$ $= \frac{1}{15}$ ≈ 0.0666

1.2 Smoothed Unigram Probabilities

Token	Frequency	Probability
Не	2	$P(He) = \frac{Count(He)+1}{Total Token+Unique Token+UNK}$ $= \frac{2+1}{15+8+1}$ $= \frac{3}{24}$ $= \frac{1}{8}$ $= 0.125$
read	3	$P(read) = \frac{Count(read)+1}{Total\ Token+Unique\ Token+UNK}$ $= \frac{3+1}{15+8+1}$ $= \frac{4}{24}$ $= \frac{1}{6}$ ≈ 0.1666
a	3	$P(a) = \frac{Count(a)+1}{Total Token+Unique Token+UNK}$ $= \frac{3+1}{15+8+1}$ $= \frac{4}{24}$

	1	
		$=\frac{1}{6}$
		≈ 0.1666
book	3	$P(book) = \frac{Count(book)+1}{}$
		$P(book) = \frac{Count(book)+1}{Total\ Token+Unique\ Token+UNK}$
		$=\frac{3+1}{15+8+1}$
		$=\frac{4}{24}$
		$=\frac{1}{6}$
		$-\frac{1}{6}$
		≈ 0.1666
I	1	$P(I) = \frac{Count(I)+1}{Total\ Token+Unique\ Token+UNK}$
		Total Token+onique Token+onk
		$=\frac{1+1}{15+8+1}$
		$=\frac{2}{24}$
		$=\frac{1}{12}$
		≈ 0.0833
different	1	$P(different) = \frac{Count(different) + 1}{Total\ Token + Unique\ Token + UNK}$
		$=\frac{1+1}{15+8+1}$
		$=\frac{2}{24}$
		_ 1
		$=\frac{1}{12}$
		≈ 0.0833
my	1	$P(my) = \frac{Count(my) + 1}{Total\ Token + Unique\ Token + UNK}$
		$=\frac{1+1}{15+8+1}$
		$=\frac{2}{24}$
		$=\frac{1}{12}$
		$-{12}$
		≈ 0.0833
Danielle	1	$P(Danielle) = \frac{Count(Danielle) + 1}{Total\ Token + Unique\ Token + UNK}$
		$=\frac{1+1}{15+8+1}$
		$=\frac{2}{24}$
	1	

	$=\frac{1}{12}$
	≈ 0.0833

1.3 Python Implementation

Reading Data

Data Cleaning

```
# Tokenize every word in the data and clean the data tokens = data.split()

cleannedTokens = [token for token in tokens if token != "<s>"]
cleannedTokens = [token for token in cleannedTokens if token != "</s>"]
print(cleannedTokens)

totalToken = len(cleannedTokens)

['He', 'read', 'a', 'book', 'I', 'read', 'a', 'different', 'book', 'He', 'read', 'a', 'book', 'my', 'Danielle']
```

Unique Tokens

```
# Create a list of unique token from the data
uniqueTokens = list(set(cleannedTokens))
print(uniqueTokens)

totalUniqueToken = len(uniqueTokens)

['my', 'Danielle', 'read', 'different', 'I', 'book', 'He', 'a']
```

Calculating Frequency

```
# Frequency for each unique token
frequencyResult = ""

for uniqueToken in uniqueTokens:
    frequency = cleannedTokens.count(uniqueToken)
    frequencyResult = frequencyResult + "Count(" + uniqueToken + ") = " + str(frequency) + "\n"
```

Calculating Unsmoothed Unigram Probabilities

```
# Unsmoothed Unigram Probabilities
unsmoothedResult = ""

for uniqueToken in uniqueTokens:
    probability = cleannedTokens.count(uniqueToken) / totalToken
    unsmoothedResult = unsmoothedResult + "P(" + uniqueToken + ") = " + str(probability) + "\n"
```

Calculating Smoothed Unigram Probabilities

```
# Smoothed Unigram Probabilities
smoothedResult = ""

for uniqueToken in uniqueTokens:
    probability = (cleannedTokens.count(uniqueToken) + 1) / (totalToken + totalUniqueToken + 1)
    smoothedResult = smoothedResult + "P(" + uniqueToken + ") = " + str(probability) + "\n"
```

Output for Summary of Unigram Probabilities

```
# Summary of unigram probabilities
   print("Number of Tokens: " + str(totalToken))
   print("Number of Unique Tokens: " + str(totalUniqueToken) + "\n")
   print("Frequency of Tokens:\n" + frequencyResult)
   print("Unsmoothed Probabilities of Tokens:\n" + unsmoothedResult)
   print("Smoothed Probabilities of Tokens:\n" + smoothedResult)
Number of Tokens: 15
Number of Unique Tokens: 8
   Frequency of Tokens:
Count(my) = 1
Count(Danielle) = 1
   Count(read) = 3
   Count(I) = 1
Count(book) = 3
   Unsmoothed Probabilities of Tokens:
   P(Danielle) = 0.06666666666666667
   Smoothed Probabilities of Tokens:
   P(book) = 0.166666666666666
```