Boletín 2

Ejercicio 1:

Resuelve utilizando el método gráfico y el método del símplex el siguiente problema de programación lineal.

$$\begin{array}{lll} \text{Max} & z = x_1 + 3x_2 \\ \text{S.a.} & x_1 & \leq & 5 \\ & x_1 + 2x_2 \leq 10 \\ & x_2 \leq & 4 \\ & x_j \geq 0, j = 1, 2. \end{array}$$

Solución ejercicio 1:

• Método gráfico:

Como vemos, después de dibujar varias curvas de nivel para la función objetivo $z=x_1+3x_2$ se obtiene que el óptimo se encuentra en el punto $(x_1,x_2)=(2,4)$ en el cual la función objetivo vale z=14.

• Símplex:

En primer lugar, tenemos que poner el problema en forma estándar:

$$\begin{array}{lll} \text{Max} & z=x_1+3x_2\\ \text{S.a.} & x_1 & +h_1 & =5\\ & x_1+2x_2 & +h_2 & =10\\ & x_2 & +h_3=4\\ & x_i\geq 0, i=1,2.\\ & h_j\geq 0, j=1,2,3. \end{array}$$

Seleccionamos las variables de holgura h_j como básicas para realizar la primera iteración del símplex.

	c_i	1	3	0	0	0	
c_B		x_1	x_2	h_1	h_2	h_3	x_B
0	h_1	1	0	1	0	0	5
0	h_2	1	2	0	1	0	10
0	h_3	0	1*	0	0	1	4
	\bar{c}_i	1	3	0	0	0	z = 0
		x_1	x_2	h_1	h_2	h_3	
0	h_1	1	0	1	0	0	5
0	h_2	1*	0	0	1	-2	2
3	x_2	0	1	0	0	1	4
	\bar{c}_i	1	0	0	0	-3	z = 12
		x_1	x_2	h_1	h_2	h_3	
0	h_1	0	0	1	-1	2	3
1	x_1	1	0	0	1	-2	2
3	x_2	0	1	0	0	1	4
	\bar{c}_i	0	0	0	-1	-1	z = 14

Como el beneficio relativo $\bar{c}_i \leq 0$ para todas las variables no básicas, estamos en una solución básica óptima.

La solución óptima es $(x_1, x_2) = (2, 4)$ obteniendo un valor de la función objetivo de z = 14.

Ejercicio 2

Usando el método símplex, obtén tres soluciones óptimas del siguiente problema de programación lineal.

$$\begin{aligned} \text{Min} \quad z &= 3x_1 + x_2 + x_3 + x_4 \\ \text{S.a.} \quad -2x_1 + 2x_2 + x_3 &= 4 \\ 3x_1 + x_2 + x_4 &= 6 \\ x_j &\geq 0, j = 1, 2, 3, 4 \end{aligned}$$

Solución ejercicio 2:

En primer lugar, tenemos que poner el problema en forma estándar:

Max
$$z = -3x_1 - x_2 - x_3 - x_4$$

S.a. $-2x_1 + 2x_2 + x_3 = 4$
 $3x_1 + x_2 + x_4 = 6$
 $x_j \ge 0, j = 1, 2, 3, 4$

Seleccionamos las variables x_3, x_4 como variables básicas para realizar la primera iteración del símplex.

	c_i	-3	-1	-1	-1	
c_B		x_1	x_2	x_3	x_4	x_B
-1	x_3	-2	2^*	1	0	4
-1	x_4	3	1	0	1	6
	\bar{c}_i	-2	2	0	0	z = -10
		x_1	x_2	x_3	x_4	
-1	x_2	-1	1	1/2	0	2
-1	x_4	4*	0	-1/2	1	4
	\bar{c}_i	0	0	-1	0	z = -6
		x_1	x_2	x_3	x_4	
-1	x_2	0	1	3/8	1/4	3
-3	x_1	1	0	-1/8	1/4	1
	\bar{c}_i	0	0	-1	0	z = -6

 $(x_1, x_2, x_3, x_4) = (0, 2, 0, 4)$ y $(x_1, x_2, x_3, x_4) = (1, 3, 0, 0)$ son soluciones óptimas.

Cualquier combinación convexa de esas soluciones es solución óptima, por tanto $\frac{1}{2}(0,2,0,4)+\frac{1}{2}(1,3,0,0)=(\frac{1}{2},\frac{5}{2},0,2)$ también es solución óptima.

Ejercicio 3(a):

Resuelve el siguiente problema de programación lineal.

$$\label{eq:second-equation} \begin{aligned} \text{Min} \quad & z = 2x_1 - x_2 + 2x_3 \\ \text{S.a.} \quad & -x_1 + x_2 + x_3 = 4 \\ & -x_1 + x_2 - x_3 \leq 6 \\ & x_1 \leq \ 0, \quad x_2 \geq 0 \end{aligned}$$

Solución ejercicio 3(a):

En primer lugar, tenemos que poner el problema en forma estándar, para eso definimos $y_1 = -x_1$ y $x_3 = y_2 - y_3$.

Max
$$z = -2y_1 + x_2 - 2y_2 + 2y_3$$

S.a. $y_1 + x_2 + y_2 - y_3 = 4$
 $y_1 + x_2 - y_2 + y_3 + h_1 = 6$
 $x_2; h_1; y_i \ge 0, j = 1, 2, 3.$

Para construir una solución básica inicial, utilizamos el método de las dos fases, y para iniciarlo es necesario incluir una variable artificial a_1 en la primera restricción y resolver el problema que minimiza la suma de estas variables artificiales.

Por tanto, en primer lugar, es necesario resolver el siguiente problema *artificial* en forma estándar:

$$\begin{aligned} \text{Max} \quad & z^a = -a_1 \\ \text{S.a.} \quad & y_1 + x_2 + y_2 - y_3 + a_1 &= 4 \\ & y_1 + x_2 - y_2 + y_3 & + h_1 = 6 \\ & a_1; x_2; h_1; y_j \geq 0, j = 1, 2, 3. \end{aligned}$$

Si encontramos una solución básica factible para este problema en la cual no está la variable artificial a_1 entonces hemos encontrado una solución básica factible para el problema original.

	c_i	0	0	0	0 y_3	-1	0	
c_B		y_1	x_2	y_2	y_3	a_1	h_1	x_B
-1	a_1	1*	1	1	-1	1	0	4
0	h_1	1	1	-1	-1 1	0	1	6
					-1			

	c_i	0	0	$0 \\ y_2$	0	-1	0	
c_B		y_1	x_2	y_2	y_3	a_1	h_1	x_B
0	y_1	1	1	1	-1	1	0	4
0	h_1	0	0	1 -2	2	-1	1	2
	\bar{c}_i	0	0	0	0	-1	0	$z^a = 0$

Por tanto, tomando $y_1=4$ y $h_1=2$ como variables básicas obtenemos una solución básica factible para el problema en forma estándar original. A partir de ahora, podemos seguir iterando partiendo de esta base.

	c_i	2	1	-2	2	0	
c_B		y_1	x_2	y_2	y_3	h_1	x_B
2	y_1	1	1	1	-1	0	4
0	h_1	0	0	-2	2^*	1	2
	\bar{c}_i	0	-1	-4	4	0	z = 8
		y_1	x_2	y_2	y_3	h_1	
2	y_1	1	1	0	0	1/2	5
2	y_3	0	0	-1	1	1/2	1
	\bar{c}_i	0	-1	0	0	-2	z = 12

La solución óptima del problema en forma estándar es $(y_1, x_2, y_2, y_3, h_1) = (5, 0, 0, 1, 0)$, deshaciendo los cambios, la solución óptima del problema original es $(x_1, x_2, x_3) = (-5, 0, -1)$.

Ejercicio 3(b):

Resuelve el siguiente problema de programación lineal.

$$\begin{aligned} & \text{Min} & z = 4x_1 + 4x_2 + x_3 \\ & \text{S.a.} & x_1 + x_2 + x_3 \leq 2 \\ & 2x_1 + x_2 & \leq 3 \\ & 2x_1 + x_2 + 3x_3 \geq 3 \\ & x_j \geq 0, j = 1, 2, 3. \end{aligned}$$

Solución ejercicio 3(b):

En primer lugar, tenemos que poner el problema en forma estándar añadiendo variables de holgura h_i y de exceso e_i :

$$\begin{array}{lll} \text{Max} & z=-4x_1-4x_2-x_3\\ \text{S.a.} & x_1+x_2+\ x_3+h_1 & =2\\ & 2x_1+x_2 & +h_2 & =3\\ & 2x_1+x_2+3x_3 & -e_1=3\\ & h_1;h_2;e_1;x_j\geq 0, j=1,2,3. \end{array}$$

Para construir una solución básica inicial, utilizamos el método de las dos fases añadiendo una variable artificial a_1 en la última restricción y resolver el siguiente problema artificial en forma estándar:

$$\begin{array}{lll} \text{Max} & z^a = -a_1 \\ \text{S.a.} & x_1 + x_2 + \ x_3 + h_1 & = 2 \\ & 2x_1 + x_2 & + h_2 & = 3 \\ & 2x_1 + x_2 + 3x_3 & -e_1 + a_1 = 3 \\ & a_1; h_1; h_2; e_1; x_i \geq 0, j = 1, 2, 3. \end{array}$$

Seleccionamos las variables de holgura h_i y la variable artificial a_1 como básicas para la primera iteración:

	c_i	0	0	0	0	0	0 e_1	-1	
c_B		x_1	x_2	x_3	h_1	h_2	e_1	a_1	x_B
0	h_1	1	1	1	1	0	0	0	2
0	h_2	2	1	0	0	1	0	0	2
-1	a_1	2	1	3*	0	0	-1	1	3
	\bar{c}_i	2	1	3	0	0	-1	0	$z^a = -3$

	c_i	0	0	0	0	0	0	-1	
c_B		x_1	x_2	x_3	h_1	h_2	e_1	a_1	x_B
0	h_1	1/3	2/3	0	1	0	1/3	-1/3	1
0	h_2	2	1	0	0	1	$0 \\ -1/3$	0	3
0	x_3	2/3	1/3	1	0	0	-1/3	1/3	1
	\bar{c}_i	2	1	3	0	0	-1	0	$z^a = 0$

Seleccionando $h_1 = 1$, $h_2 = 3$ y $x_3 = 3$ como variables básicas del problema artificial obtenemos una solución óptima de éste. En esta base no aparece la variable artificial a_1 , por tanto el problema de partida era factible.

Empezamos la segunda fase partiendo de esta base, considerando como función objetivo la del problema en forma estándar original y eliminando la variable artificial a_1 .

	c_i	-4	-4	-1	0	0	0	
c_B		x_1	x_2	x_3	h_1	h_2	e_1	x_B
0	h_1	1/3	2/3	0	1	0	1/3	1
0	h_2	2	1	0	0	1	0	3
-1	x_3	2/3	1/3	1	0	0	-1/3	1
	\bar{c}_i	-10/3	-11/3	0	0	0	-1/3	z = -1

La solución óptima del problema es $(x_1, x_2, x_3) = (0, 0, 1)$.

Ejercicio 3(c):

Resuelve el siguiente problema de programación lineal.

Min
$$z = x_1 + x_2$$

S.a. $x_1 + x_2 \le 1$
 $4x_1 + 2x_2 \ge 6$
 $x_j \ge 0, j = 1, 2.$

Solución ejercicio 3(c):

Partimos del problema artificial en forma estándar:

Max
$$z^a = -a_1$$

S.a. $x_1 + x_2 + h_1 = 1$
 $4x_1 + 2x_2 - e_1 + a_1 = 6$
 $h_1; e_1; a_1x_j \ge 0, j = 1, 2.$

Tomamos h_1 y a_1 como variables básicas para iniciar el símplex

	c_i	2	1	-2	2	0	
c_B		x_1	x_2	h_1	e_1	a_1	x_B
0	h_1	1*	1	1	0	0	4
-1	a_1	4	2	0	-1	1	6
	\bar{c}_i	4	2	0	-1	0	$z^a = -6$
		x_1	x_2	h_1	e_1	a_1	
0	x_1	1	1	1	0	0	1
-1	a_1	0	-2	-4	-1	1	2
	\bar{c}_i	0	-2	-4	-1	0	$z^a = -2$

Vemos que en el problema artificial hemos llegado al óptimo (todas las variables no básicas tienen $\bar{c}_i \leq 0$).

En este óptimo, la variable artificial a_1 aparece en la base por tanto el problema original es infactible.

 $\operatorname{Gráficamente},$ podemos comprobar fácilmente que el problema de partida es infactible.

Ejercicio 3(d):

Resuelve el siguiente problema de programación lineal.

$$\begin{array}{ll} \text{Max} & z = 2x_1 + 5x_2 \\ \text{S.a.} & x_1 + x_2 \geq 4 \\ & x_1 & \geq 2 \\ & x_j \geq 0, j = 1, 2. \end{array}$$

Solución ejercicio 3(d):

Partimos del problema artificial en forma estándar después de añadir las variables de exceso e_i y la variable artificial a_1 :

Max
$$z^a = -a_1$$

S.a. $x_1 + x_2 - e_1 = 4$
 $x_1 - e_2 + a_1 = 2$
 $x_j \ge 0, j = 1, 2.$

Escogemos x_2 y a_1 como variables básicas.

	c_i	0	0	0	0	-1	
c_B		x_1	x_2	e_1	e_2	a_1	x_B
0	x_2	1	1	-1	0	0	4
-1	a_1	1*	0	0	-1	1	2
	\bar{c}_i	1	0	0	-1	0	$z^a = -2$
		x_1	x_2	e_1	e_2	a_1	
0	x_2	0	1	1	1	-1	2
0	x_1	1	0	0	-1	1	2
	\bar{c}_i	0	0	0	0	-1	$z^a = 0$

Obtenemos que $x_1 = 2$ y $x_2 = 2$ es una solución óptima para el problema artificial, y, como en esta solución óptima la variable a_1 es no básica se tiene que el problema original es factible.

Por tanto, partimos de esta base para la tabla símplex del problema original.

		c_i	2	5	0	0	
c_E	3		x_1	x_2	e_1	e_2	x_B
Ę	5	x_2	0	1	-1	1	2
2	2	x_1	1	0	0	-1	2
		\bar{c}_i	0	0	5	-3	z = 14

En este caso, los coeficientes de la variable básica candidata a entrar en la base (e_1) son todos menores o iguales que cero. Por tanto, se trata de un problema no acotado.

Gráficamente, vemos que podemos incrementar el valor de la función objetivo z tanto como queramos sin salirnos de la región factible.

