Disciplina: Lógica Matemática

Aula 06: Métodos de Provas(continuação)

Cleonice F. Bracciali

UNESP - Universidade Estadual Paulista Campus de São José do Rio Preto

Estamos estudando técnicas para mostrar que um argumento $P \Rightarrow Q$ é válido.

• Demonstração por Casos: Se o teorema $P\Rightarrow Q$ a ser provado é tal que

$$P = p_1 \lor p_2 \lor \ldots \lor p_n$$
, ou seja

$$(p_1 \lor p_2 \lor \ldots \lor p_n) \Rightarrow Q$$

podemos mostrar $p_i \Rightarrow Q$ individualmente, pois se mostramos que

$$(p_1 \to Q) \land (p_2 \to Q) \land \ldots \land (p_n \to Q)$$

então

$$(p_1 \lor p_2 \lor \ldots \lor p_n) \to Q$$

também vale.

Exemplo: Mostre que |x||y| = |xy|, onde $x \in y \in \mathbb{R}$.

Demonstração: hip.: $P: "x, y \in \mathbb{R}"$ e tese: Q: "|x||y| = |xy|".

Vamos demonstrar por casos, pois podemos dividir a hipótese $x,y\in\mathbb{R}$ em 4 casos.

Vamos demonstrar por casos, pois podemos dividir a hipótese $x,y\in\mathbb{R}$ em 4 casos:

```
\begin{split} p_1 : ``x &\geq 0 \text{ e } y \geq 0 ``, \\ p_2 : ``x &\geq 0 \text{ e } y < 0 ``, \\ p_3 : ``x &< 0 \text{ e } y \geq 0 ``, \\ p_4 : ``x &< 0 \text{ e } y < 0 ``, & \log p, \quad P : ``p_1 \lor p_2 \lor p_3 \lor p_4 ``. \end{split} Vamos mostrar que (p_1 \to Q) \land (p_2 \to Q) \land (p_3 \to Q) \land (p_4 \to Q).
```

De fato,

- suponhamos que p_1 vale, |x| = x, |y| = y e |xy| = xy. Então, |x| |y| = |xy|.
- suponhamos que p_2 vale, |x| = x, |y| = -y e |xy| = -xy. Então, |x||y| = |xy|.
- suponhamos que p_3 vale, |x| = -x, |y| = y e |xy| = -xy. Então, |x||y| = |xy|.
- suponhamos que p_4 vale, |x| = -x, |y| = -y e |xy| = xy. Então, |x||y| = |xy|.

• Demonstração por Vacuidade:

Dizemos que a demonstração é por vacuidade quando a hipótese P (da implicação $P \Rightarrow Q$) é falsa.

Como $F \to V$ ou $F \to F$ são verdadeiras, segue que $P \to Q$ é sempre verdadeira, para qualquer que seja o valor verdade da proposição Q.

Assim, se P é falsa, então a demonstração de $P \Rightarrow Q$ é chamada de Prova por Vacuidade.

Note que não estamos afirmando que Q é verdadeira, afirmamos apenas que $P \Rightarrow Q$.

```
Ex: Se 2 > 5 então 2^2 > 5^2. hipótese P: "2 > 5", tese Q: "2^2 > 5^2"
```

Como P é falsa, por vacuidade $P \Rightarrow Q$.

- Demonstração de Equivalência:
- Quando o teorema é do tipo $P \Leftrightarrow Q$, devemos demonstrar $P \Rightarrow Q$ e $Q \Rightarrow P$.

Exemplo: Mostre que "n é impar se, e somente se, n^2 é impar".

 $P\Rightarrow Q$, basta demonstrar que "n é ímpar $\Rightarrow n^2$ é ímpar" (feito anteriormente).

 $Q \Rightarrow P$, basta demonstrar que " n^2 é ímpar $\Rightarrow n$ é ímpar" (exercício).

Exercício: Mostre que "n é par se, e somente se, n^2 é par".

• Quando o teorema é do tipo $P_1 \Leftrightarrow P_2 \Leftrightarrow \cdots \Leftrightarrow P_n$, ou seja, P_i para i=1,2,...n, são equivalentes, podemos demonstrar

$$(P_1 \rightarrow P_2) \land (P_2 \rightarrow P_3) \land \cdots \land (P_n \rightarrow P_1).$$

Ou algum outro "ciclo" de equivalências como fizemos no Teorema 5.1.

Teoremas e Quantificadores:

- Demonstração Existencial: Quando o teorema afirma que existe (ou existe único) objeto que satisfaz determinada propriedade.
- Podemos usar a Prova Construtiva

Exemplo: Mostre que "existe um inteiro positivo que pode ser escrito de duas formas, como soma de dois quadrados".

Demonstração: Neste caso temos que testar os inteiros positivos e encontramos, por exemplo, $50 = 1^2 + 7^2 = 5^2 + 5^2$

Como o teorema é existencial, basta um exemplo para mostrar que vale. Temos ainda outros exemplos, $65 = 1^2 + 8^2 = 4^2 + 7^2$.

• Dizemos que a prova é construtiva, pois exibimos um objeto (ou objetos) que satisfazem a propriedade.

6

Podemos usar a Prova N\u00e3o Construtiva

Exemplo: Mostre que "existem números irracionais x e y tais que x^y é racional".

Demonstração: Sabemos que $\sqrt{2}$ é irracional (já provamos). Podemos ter dois casos

- Se $\sqrt{2}^{\sqrt{2}}$ racional, neste caso escolhendo $x = \sqrt{2}$ e $y = \sqrt{2}$, o teorema já está provado.
- Se $\sqrt{2}^{\sqrt{2}}$ irracional, neste caso escolhendo $x=\sqrt{2}^{\sqrt{2}}$ e $y=\sqrt{2}$, temos $\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}}=\sqrt{2}^{\sqrt{2}\sqrt{2}}=\sqrt{2}^2=2$, e o teorema já está provado.

Dizemos que a prova é não construtiva, pois não exibimos um objeto que satisfaz a propriedade. Veja que do raciocínio acima, exibimos dois pares $(x,y)=(\sqrt{2},\sqrt{2})$ ou $(x,y)=(\sqrt{2}^{\sqrt{2}},\sqrt{2})$ tal que apenas um deles satisfaz a propriedade.

ullet Existência e Unicidade: Quando o teorema afirma que existe um único objeto que satisfaz determinada propriedade $\exists !\ x, P(x).$

Temos que provar que um objeto existe (existência) e que ele é único (unicidade).

Exemplo: Mostre que "dados $a,b \in \mathbb{Z}$ com $a \neq 0, \exists ! x$ tal que ax + b = 0". Demonstração:

- Existência: se tomarmos $x = -\frac{b}{a}$, temos $ax + b = a(-\frac{b}{a}) + b = 0$.
- Assim, por prova construtiva exibimos que existe $x = -\frac{b}{a}$ que satisfaz a propriedade.
- Unicidade: Vamos supor por contradição que existem x e y, com $y \neq x$, que satisfazem a propriedade, ou seja, ax + b = 0 e ay + b = 0. Mas

$$ax + b = 0$$
 \Rightarrow $x = -\frac{b}{a}$
 $ay + b = 0$ \Rightarrow $y = -\frac{b}{a}$, ou seja $y = x$. Portanto, $x = -\frac{b}{a}$ é único.

• Contra exemplo: Quando o teorema é do tipo $\forall x, P(x)$. Porém, P(x) é falsa para algum elemento (exemplo) a do universo.

Neste caso, exibimos a tal que P(a) é falsa e esta técnica é chamada de contra-exemplo.

Exemplo: Mostre que " $\forall n \in \mathbb{N}, \ n=a^2+b^2+c^2, \text{ com } \forall a,b,c \in \mathbb{N}$ ", ou dê um contra-exemplo que mostre que a proposição não vale.

Demonstração: Contra-exemplo: $7 \neq a^2+b^2+c^2, \forall a,b,c \in \mathbb{N}$, pois observando a soma $a^2+b^2+c^2$ vemos que

$$0^{2} + 0^{2} + 0^{2} = 0,$$
 $0^{2} + 0^{2} + 1^{2} = 1,$ $0^{2} + 1^{2} + 1^{2} = 2,$ $1^{2} + 1^{2} + 1^{2} = 3,$ $0^{2} + 0^{2} + 2^{2} = 4,$ $0^{2} + 1^{2} + 2^{2} = 5,$ $1^{2} + 1^{2} + 2^{2} = 6,$ $0^{2} + 2^{2} + 2^{2} = 8,$ $1^{2} + 2^{2} + 2^{2} = 9,$

e todas as outras combinações produzem números maiores do que 7. Logo, a afirmação é falsa, pois existe o elemento 7, tal que P(7) é falsa.

Exercícios: Encontre outros contra-exemplos para o exemplo acima.

Predicado e Quantificadores

Exercícios:

Faça todos os exercícios das páginas 76 e 77 do Livro

A.F. da Silva e C.M. dos Santos, "Aspectos Formais da Computação".