

Kai Zhu, Jianhua Feng and Yinxuan Lyu Institute of Microelectronics, Peking University, Beijing, P. R. China

2020 IEEE International Symposium on Circuits and Systems Virtual, October 10-21, 2020

Conventional GRO-TDC

Fig. 2. Timing diagram

Fig. 1. Block diagram

$$\begin{cases} T_{start}[k] = T_{GRO} - T_{stop}[k-1] \\ T_{in}[k] = T_{GRO} * (D_{out}[k] - 1) + T_{start}[k] + T_{stop}[k] \end{cases}$$

the quantization error of conventional GRO-TDC

$$T_{e,1st}[k] = T_{stop}[k] - T_{stop}[k-1]$$

Single-loop 2nd-order GRO-TDC

Fig. 1. Block diagram

Fig. 2. Timing diagram

Structure

- 1. GRO-TDC: achieve 1st-order noise shaping
- 2. Time-mode error-feedback loop: extract the quantization error and feedback to the input via time-mode filter

Single-loop 2nd-order GRO-TDC

GRO-TDC
$$\begin{cases} T_{start}[k] = T_{GRO} - T_{stop}[k-1] \\ T_{in}[k] = T_{GRO} * (D_{out}[k]-1) + T_{start}[k] + T_{stop}[k] \end{cases} T_{e,1st}[k] = T_{stop}[k] - T_{stop}[k-1]$$

The difference operation on T_{stop} results in the 1st-order noise shaping of quantization noise in the frequency domain.

Time-mode filter

$$T_F = T_{start}[k] - T_{start}[k-1] = T_{stop}[k-1] - T_{stop}[k-2]$$

Single-loop 2nd-order GRO-TDC

$$T_{e,2nd}[k] = T_{stop}[k] - 2T_{stop}[k-1] + T_{stop}[k-2]$$

The discrete-time second-order difference operation is obtained, corresponds with a second-order noise shaping in the frequency domain.

2-2 MASH $\Delta\Sigma$ TDC

The output $D_{out1}(z)$ of the first-stage can be expressed in z-domain as

$$D_{out1}(z) = T_{in}(z) + (1 - z^{-1})^2 Q_1(z)$$

The quantization error $-z^{-1}Q_1(z)$ of 1st-stage then feed to the input of 2nd-stage, thus the output $D_{out2}(z)$ of the 2nd-stage equals to

$$D_{out2}(z) = -z^{-1}Q_1(z) + (1 - z^{-1})^2Q_2(z)$$

Two stages are cascaded together with the help of noise cancellation filter N_1 and N_2

$$N_1(z) = z^{-1}$$

 $N_2(z) = (1 - z^{-1})^2$

Thus the output $D_{out}(z)$ of the proposed 2-2 MASH $\Delta\Sigma$ TDC can be expressed in z-domain as

$$D_{out}(z) = z^{-1}T_{in}(z) + (1 - z^{-1})^4 Q_2(z)$$

Time-mode arithmetic unit

The discharging time ΔT_{C1} of capacitor C1 during the duration of t_1 can be explained as follows

$$\Delta T_{C1} = t_1 + T_d + T_i - T_b$$

Note that the cross-connected input for the time variable t_2 makes the discharging time ΔT_{C2} of capacitor C2 to be

$$\Delta T_{C2} = T_d + T_i - T_b - t_2$$

The rising edge of ACK makes the capacitors C1 and C2 discharge again. The time interval between the OUT+ and OUT-, expressed T_{OUT} , will be equal to

$$T_{OUT} = (T_{FS} - \Delta T_{C2}) - (T_{FS} - \Delta T_{C1}) = t_1 + t_2$$

Fig. 1. (a) Symbol of the proposed time adder;

- (b) Schematic of the time adder;
- (c) Timing diagram of the time adder

Time Adder: $T_{OUT} = t_1 + t_2$

Fundamental Block for Time-Mode Signal Processing 2x Time Amplifier: $T_{OUT} = 2t_1$ Time Register: $T_{OUT} = t_1$

Time Subtractor: $T_{OUT} = t_1 - t_2$

Fig. 1. Simulation results of the time register under various PVT conditions

Fig. 2. one example of how to use a time adder and a time register to construct a time integrator

Multi-path Gated Ring Oscillator & Residue Generator

Fig. 1. Nine-stage multi-path GRO

Fig. 2. Residue Generator

Simulation Results of 2-2 MASH $\Delta\Sigma$ TDC

Process: SMIC 65nm 1.2V CMOS

Integrated Noise:

 $T_{int,rms} = 336 \text{fs}_{rms} @ 5 \text{MHz}$

 $T_{int,rms} = 812 \text{fs}_{rms} @ 10 \text{MHz}$

Equivalent Resolution:

Res. = 1.2ps @ 5MHz

Res. = 2.9ps @ 10MHz

Figure of Merit:

FoM = 210fJ/step @ 5MHz

FoM = 253fJ/step @ 10MHz

Fig. 1. Output spectrum for transistor-level simulation

TABLE I. PERFORMANCE COMPARISON WITH NOISE SHAPING TDCS

	JSSC'14	JSSC'15	ISCAS'16	Thisa	
Scheme	SRO	MASH	CP-SAR	MASH	
Order	1 st	4 th	1 st	4 th	
Tech. (nm)	90	65	65	65	
Sampling (MHz)	500	150	200	200	
Bandwidth (MHz)	1	15	5	5	10
Int. noise (fs _{rms})	315	760	269	336	812
Resolution (ps) ^b	1.09	2.64	0.63	1.2	2.9
Range (ns)	12.5	5.4	3	1	
Power (mW)	2	3.52	0.9	0.89	
FOM (fJ/step) ^c	860	190	99	210	253

^a Transistor-level simulation ^b Resolution= $\sqrt{12} \times Intergrated$ noise ^c FOM=Power/(2 $\times Bandwidth \times 2^{(SNDR-1.76)/6.02}$)

Thanks for your attention

