Population Games and Normal Form Games Game Theory

Vincent Knight

Pairwise Contest Games

Population: χ .

Pairwise Contest Games

Population: χ .

$$u(\sigma,\chi) = \sum_{s,s' \in S} \sigma(s) \chi(s') u(s,s')$$

Pairwise Contest Games

Population: χ .

$$u(\sigma,\chi) = \sum_{s,s' \in S} \sigma(s) \chi(s') u(s,s')$$
 Prob of σ playing s Prob of meeting s'

$$\begin{pmatrix} u(s,s), u(s,s) & u(s,s'), u(s,s') \\ u(s',s), u(s',s) & u(s',s'), u(s',s') \end{pmatrix}$$

Theorem.

If σ^* is an ESS in a pairwise contest population game then for all $\sigma \neq \sigma^*$:

- 1. $u(\sigma^*, \sigma^*) > u(\sigma, \sigma^*)$ OR
- 2. $u(\sigma^*, \sigma^*) = u(\sigma, \sigma^*)$ and $u(\sigma^*, \sigma) > u(\sigma, \sigma)$

Conversely, if either (1) or (2) holds for all $\sigma \neq \sigma^*$ in a two player normal form game then σ is an ESS.