Multivariate Analysis for the Behavioral Sciences, Second Edition (Chapman and Hall/CRC, 2019)

Exercises of Chapter 17: Cluster Analysis

19 December 2018

Exercises

Exercise 17.3

Use the matrix lowtemp below, modifying the related R code given in the Examples of Chapter 17.

##		January	April	July	October
##	Atlanta	-8	26	53	28
##	Baltimore	-7	20	51	25
##	Bismark	-44	-12	35	5
##	Boston	-12	16	54	28
##	Chicago	-27	7	40	17
##	Dallas	4	30	59	29
##	Denver	-25	-2	43	3
##	El Paso	-8	23	57	25
##	Honolulu	53	57	67	64
##	Houston	12	31	62	33
##	Juneau	-22	6	36	11
##	Los Angeles	23	39	49	41
##	Miami	30	46	69	51
##	Nashville	-17	23	51	26
##	New York	-6	12	52	28
##	Omaha	-23	5	44	13
##	Phoenix	17	32	61	34
##	Portland	-26	8	40	15
##	Reno	-16	13	33	8
##	${\tt San \ Francisco}$	24	31	43	34
##	Seattle	0	29	43	28
##	Washington	-5	24	55	29

Exercise 17.5

Use the protein data below, modifying the related R code given in the Examples of Chapter 17.

```
protein <- read.table("data/protein.txt", sep = '\t', header = TRUE)
protein</pre>
```

##		Rmeat	Wmeat	Eøøs	Milk	Fish	Cereals	Sfoods	Pulses	Fruitveg
	Albania	10.1		0.5		0.2	42.3	0.6	5.5	1.7
	Austria	8.9	14.0		19.9	2.1	28.0	3.6	1.3	4.3
	Belgium	13.5	9.3		17.5	4.5	26.6	5.7	2.1	4.0
	Bulgaria	7.8	6.0	1.6	8.3	1.2	56.7	1.1	3.7	4.2
	Czechoslovakia	9.7	11.4		12.5	2.0	34.3	5.0	1.1	4.0
	Denmark	10.6	10.8		25.0	9.9	21.9	4.8	0.7	2.4
	E.Germany	8.4	11.6		11.1	5.4	24.6	6.5	0.8	3.6
	Finland	9.5	4.9		33.7	5.8	26.3	5.1	1.0	1.4
	France	18.0	9.9		19.5	5.7	28.1	4.8	2.4	6.5
	Greece	10.2	3.0		17.6	5.9	41.7	2.2	7.8	6.5
	Hungary	5.3	12.4	2.9	9.7	0.3	40.1	4.0	5.4	4.2
	Ireland	13.9	10.0		25.8	2.2	24.0	6.2	1.6	2.9
	Italy	9.0	5.1		13.7	3.4	36.8	2.1	4.3	6.7
	Netherlands	9.5	13.6		23.4	2.5	22.4	4.2	1.8	3.7
	Norway	9.4	4.7		23.3	9.7	23.0	4.6	1.6	2.7
	Poland	6.9	10.2		19.3	3.0	36.1	5.9	2.0	6.6
##	Portugal	6.2	3.7	1.1	4.9	14.2	27.0	5.9	4.7	7.9
	Romania	6.2	6.3	1.5	11.1	1.0	49.6	3.1	5.3	2.8
##	Spain	7.1	3.4	3.1	8.6	7.0	29.2	5.7	5.9	7.2
	Sweden	9.9	7.8	3.5	24.7	7.5	19.5	3.7	1.4	2.0
##	Switzerland	13.1	10.1	3.1	23.8	2.3	25.6	2.8	2.4	4.9
##	UK	17.4	5.7	4.7	20.6	4.3	24.3	4.7	3.4	3.3
##	USSR	9.3	4.6	2.1	16.6	3.0	43.6	6.4	3.4	2.9
##	W.Germany	11.4	12.5	4.1	18.8	3.4	18.6	5.2	1.5	3.8
	Yugoslavia	4.4	5.0	1.2	9.5	0.6	55.9	3.0	5.7	3.2

Exercise 17.6

Use the W16F50 data below (the corresponding data of life expectancies at different ages for women), modifying the related R code given in the **Examples of Chapter 17**.

```
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
W16F50 <- read.csv("data/w16f50.csv")
countries <- W16F50$country
row.names(W16F50) <- countries</pre>
W16F50 <- W16F50 %>% select(-country)
W16F50[c("Japan", "Italy", "Spain", "United Kingdom", "Finland", "Cuba", "United States"), ]
##
                  birthF age25F age50F age75F age100F
## Japan
                    87.0
                            62.4
                                   38.1
                                          15.6
                                                    2.5
## Italy
                    85.0
                            60.4
                                   36.0
                                          14.0
                                                    2.1
                    85.6
                            61.0
                                   36.6
                                          14.4
                                                    3.1
## Spain
## United Kingdom
                    82.7
                            58.2
                                   34.0
                                          12.9
                                                    2.3
## Finland
                    84.1
                                   35.2
                            59.5
                                          13.4
                                                    1.7
## Cuba
                    80.4
                            56.2
                                   32.3
                                          12.4
                                                    2.1
## United States
                    81.2
                                                    2.3
                            57.0
                                   33.3
                                          13.0
var(W16F50)
##
               birthF
                          age25F
                                    age50F
                                             age75F
                                                       age100F
           10.5635454 9.3913946 8.2995102 5.059122 0.8793225
## birthF
## age25F
            9.3913946 8.4798194 7.5162856 4.615836 0.8733141
## age50F
            8.2995102 7.5162856 6.7220415 4.170408 0.8337958
            5.0591225 4.6158365 4.1704083 2.760918 0.6182040
## age75F
```