Exercice 158 - Système EPAS ★

8 CHS

On s'intéresse à l'échelle pivotante équipant un camion de pompier. On donne un schéma cinématique du système de manoeuvre du parc échelle.

Question 1 Réaliser le graphe des liaisons.

Question 2 Déterminer le degré d'hyperstatisme de ce mécanisme.

Question 3 Proposer des modifications qui permettraient de le rendre isostatique.

Corrigé voir.

Exercice 157 – Exercice ★

On donne le système suivant dont la la FTBF est donnée par $G(p) = \frac{\Theta_S(p)}{\Theta_C(p)} =$

8 PERF Corrigé à vérfier.

 $\frac{3,24}{p^2+3,24p+3,24}.$ Le retard du système est de 0,2 s. L'asservissement est donné par le schéma-blocs suivant.

Question 1 En considérant le retard nul, déterminer l'écart statique.

Question 2 En considérant le retard nul, déterminer l'expression de la boucle ouverte $H_{BO}(p)$.

Question 3 Déterminer l'expression de $G_r(p)$, transmittance en boucle fermée du système avec retard de 0,2 s.

Question 4 Donner la valeur de l'écart statique du système avec retard.

Le système est soumis à une rampe de 0.1 rad s^{-1} .

Question 5 Donner la valeur de l'erreur de traînage correspondant à cette entrée.

Corrigé voir 3.

Exercice 156 – Pince Robovolc **

On donne le schéma cinématique partiel de la pince équipant le Robovolc.

FIGURE 2 – Pince utilisée sur le système ROBOVOLC et schéma cinématique associé

Corrigé voir 5.

Question 1 Calculer l'hyperstatisme du mécanisme global de la pince (figure 2).

Exercice 155 – Banc hydraulique *

Pour limiter l'erreur statique due aux fuites, on envisage d'asservir la pression d'eau dans le tube. La pression d'eau à l'intérieur du tube est mesurée par un capteur de pression.

 $P_{con}(p)$: pression de consigne d'eau dans le tube (Pa)

 $P_e(p)$: pression d'eau dans le tube (Pa)

 $U_c(p)$: tension de commande du régulateur de pression

(V) $P_r(p)$: pression d'huile régulée (Pa)

 $\Delta Q_e(p)$: débit de fuite (m³s⁻¹) $U_m(p)$: tension de mesure du capteur (V) Hypothèses:

- ► L'ensemble de mise sous pression tube + distributeur + multiplicateur de pression est défini par les transmittances suivantes : $H_{\text{pre}}(p) = \frac{K_m}{1 + T_1 p}$ et $H_{\text{fui}}(p) = \frac{K_f}{1 + T_1 p}$ avec $K_m = 3,24$; $K_f = 2,55 \times 10^{10} \, \text{Pa m}^{-3} \, \text{s}$; $T_1 = 10 \, \text{s}$.
- $H_{\mathrm{fui}}(p) = \frac{K_f}{1 + T_1 p}$ avec $K_m = 3,24$; $K_f = 2,55 \times 10^{10} \, \mathrm{Pa \, m^{-3} \, s}$; $T_1 = 10 \, \mathrm{s}$. L'ensemble pompe+régulateur de pression est modélisé par la fonction de transfert : $H_{\mathrm{pom}}(p) = \frac{K_{\mathrm{pom}}}{1 + T_2 p}$ avec $K_{\mathrm{pom}} = 1,234 \times 10^7 \, \mathrm{Pa/V}$; $T_2 = 5 \, \mathrm{s}$.
- ► Le capteur est modélisé par un gain pur : $K_{\text{cap}} = 2.5 \times 10^{-8} \text{ V/Pa}$.

La pression de consigne est de $P_{\rm con}=800\,{\rm bars}$ et les débits de fuite sont estimés à $\Delta Q_e=5\times 10^{-4}\,{\rm m3/s}.$

Le cahier des charges concernant le réglage de la pression de test est le suivant.

Stabilité :	marge de phase de 60°
	marge de gain de 12 dB
Rapidité :	temps d'établissement te < 40 s
Précision :	erreur statique < 5% soit pour une consigne de 800
	bars:
	erreur statique due à la consigne : $\varepsilon_{\rm con} < 5\%$
	erreur statique due à la perturbation $\varepsilon_{\mathrm{pert}} < 40\mathrm{bars}$
Amortissement:	pas de dépassement

Dans le cas d'un système bouclé convenablement amorti, on pourra utiliser, sans aucune justification, la relation : $t_e \cdot \omega_{0\,\mathrm{dB}} = 3$ où $\omega_{0\,\mathrm{dB}}$ désigne la pulsation de coupure à $0\,\mathrm{dB}$ en boucle ouverte et t_e le temps d'établissement en boucle fermée vis-à-vis d'un échelon de consigne :

- $ightharpoonup t_e = t_m$, temps du 1er maximum si le dépassement est supérieur à 5 %,
- ▶ $t_e = t_R$, temps de réponse à 5 % si le dépassement est nul ou inférieur à 5 %.

On envisage tout d'abord un correcteur de type proportionnel : $C(p) = K_p$.

Question 1 Déterminer, en fonction de K_p , ε_{con} définie comme l'erreur statique pour une entrée consigne P_{con} de type échelon, dans le cas où le débit de fuite est nul.

Question 2 Proposer un réglage de K_p pour limiter ε_{con} à la valeur spécifiée dans le cahier des charges.

Question 3 Dans le cas où la consigne de pression est nulle, déterminer en fonction de K_p la fonction de transfert en régulation définie par : $H_{\rm pert}(p) = \frac{P_e(p)}{\Delta Q_e(p)}$. En déduire, en fonction de K_p , $\varepsilon_{\rm pert}$ définie comme l'erreur statique pour une perturbation ΔQ_e de type échelon, dans le cas où la consigne de pression est nulle.

Question 4 Proposer un réglage de K_p pour limiter ε_{pert} à la valeur spécifiée au cahier des charges.

Question 5 Proposer un réglage de K_p pour vérifier le critère d'amortissement. Conclure quant au choix d'un correcteur proportionnel.

Corrigé voir 1.

g chs

Exercice 154 – Scooter Piaggio ★★

G₂ O₂ 2 D 3 0 4 G₁ O₁ D₁ Toue 7 roue 8

Question 1 Réaliser le graphe de liaisons du système de direction. On considèrera le sol comme une classe d'équivalence.

On s'intéresse au système direction du scooter Piaggio. La pièce 1 est composée des

segments $G_1 - O_1 - D_1$. La pièce 2 est composée des segments $G_2 - O_2 - D_2$.

Question 2 Calculer le degré d'hyperstatisme.

Question 3 Si le modèle est hyperstatique, modifier le modèle pour le rendre isostatique.

8 PERF

Pas de corrigé pour cet exercice.

Exercice 153 – Exercice ★

L'asservissement de vitesse est à présent modélisé par le schéma-blocs de la figure suivante à retour unitaire. Cet asservissement n'est valable que pour les petites variations de vitesse. H(p) correspond à la fonction de transfert en boucle ouverte naturelle (non corrigée), C(p) est le correcteur.

$$H(p) = \frac{K_N}{(1 + T_m p)(1 + T_e p)}$$
 avec $K_N = 20 \text{ ms}^{-1} \text{V}^{-1}$, $T_m = 5 \text{ s}$, $T_e = 0.5 \text{ s}$.

Objectif

- ► Exigence 1.2 : Garantir un déplacement du chariot de vitesse :
 - 1.2.3 Précision:
 - * Erreur statique pour une entrée $v_c(t) = V_0 u(t)$ avec $V_0 = 8 \,\mathrm{m \, s^{-1}}$: $E_S = 0 \,\mathrm{m \, s^{-1}}$.
 - * Erreur de trainage pour une entrée $v_c(t) = \gamma_0 t u(t)$ avec $\gamma_0 = 1.6 \,\mathrm{m\,s^{-2}}: E_T \le 0.16 \,\mathrm{m\,s^{-1}}.$

Le concepteur choisit un correcteur Proportionnel Intégral : $C_1(p) = \frac{C}{T_i p} (1 + T_i p)$ avec $T_i = T_m$.

Question 1 Déterminer les expressions littérales de l'erreur statique E_S (consigne : échelon d'amplitude V_0) et de l'erreur de trainage E_T (consigne : rampe de pente γ_0) de cet asservissement corrigé avec $C_1(p)$ en fonction de la consigne, du gain K_N et des paramètres du correcteur et C et T_m .

Question 2 En déduire la condition (notée C_{ε}) sur le gain C du correcteur permettant de satisfaire l'exigence 1.2.3 du cahier des charges.

On choisit finalement un correcteur PID : $C_2(p) = C\left(1 + \frac{1}{T_ip} + T_dp\right)$ avec $T_i = 2T_e$ et $T_d = \frac{T_e}{2}$.

Question 3 Montrer qu'on peut mettre ce correcteur sous la forme $C_2(p) = \frac{K}{p} (1 + Tp)^2$ et donner les expressions de K et de T en fonction de C et T_e .

Question 4 Donner l'expression de la fonction de transfert en boucle ouverte du système corrigé.

Question 5 Déterminer les expressions littérales de l'erreur statique E_S (consigne : échelon d'amplitude V_0) et de l'erreur de traînage E_T (consigne : rampe de pente γ_0) de cet asservissement corrigé.

Question 6 En déduire la condition sur la valeur du gain *K* du correcteur permettant de satisfaire l'exigence 1.2.3 du cahier des charges.

Corrigé voir 3.

