Docket No.:

DONORS

$$R = 0$$
 $R = 0$
 $R =$

FIGURE 1

BRIDGES

1. Polyene Examples

2. Fused Thiophene Examples

3. Monothiophene Examples

| ACCEPTORS

HE HALL THE STATE OF THE STATE

Inventors:

L.R. Dalton et al.

Docket No.:

UOFW117403

Inventors: Docket No.:

L.R. Dalton et al. UOFW117403

a) nBuLi, -100°C

CO₂R

b) R¹COR²

HO

R²

NaOAc, ROH, CO

Tet. Lett. 1987, 28, 1857

J. Am. Chem. Soc 1986, 108, 800

J. Org. Chem. Hetero. Cmpds. (NY) 2000 35(10) 1150

Synthesis 1977, 12, 869

Mendel. Comm. 2001, 1, 17

Tet. Lett. 1988, 29(13), 1489

FIGURE 3

J. Chem. Soc. Perk. Trans. 1 1997, 22, 3465 Heterocycles 1994, 38(1), 143 J. Organomet. Chem. 1973, 50, C12 Pure Appl. Chem. 1980, 52, 669 Tet. Lett. 1981, 22, 4449

Inventors: Docket No.: L.R. Dalton et al. UOFW117403

1) 1 equiv. R⁵MgX Ni(acac)₂ 1) Br₂ 2) 2 equiv. nBuLi 2) 1 equiv. R⁶MgX Ni(acac)₂ 1a) 2 equiv. nBuLı b) 2 equiv DMF 2) donor Wittig couling acceptor coupling

- J Org. Chem. 1971, 36(12), 1645 J. Chem. Soc. Perk. Trans. 2 1992, 5, 765
- J. Mater. Chem. 1999, 9(9), 2227

FIGURE 6

THE STATE OF THE S

L.R. Dalton et al. UOFW117403

J. Am. Chem. Soc. 2001, 123(19), 4643 Chem. Mater. 1996, 8(11), 2659 J. Chem. Soc. Perkins Trans. I 1997, 1957

Inventors:

L.R. Dalton et al.

Docket No.:

UOFW117403

H ₃ C CH ₃	+ 2 CN	NaOEt/EtOH	H ₃ C O	CN	9
----------------------------------	--------	------------	--------------------	----	---

FIGURE 11

Inventors:
Docket No.:

L.R. Dalton et al. UOFW117403

Inventors:
Docket No.:

L.R. Dalton et al. UOFW117403

FIGURE 13

Inventors: Docket No.: L.R. Dalton et al. UOFW117403

K tert-butoxide 18-crown-6 CH₂Cl₂ 11 cat. TEA, piperidine

Inventors:
Docket No.:

L.R. Dalton et al. UOFW117403

FIGURE 15

L.R. Dalton et al. UOFW117403

$$\frac{\text{(EtO)}_{2}\text{F}(\text{O})\text{IT}}{\text{t-BuOK, DMF}} \text{(EtO)}_{2}\text{P}$$

R=SO₂CF₃

t-BuOK

THF

TBDMSO

TBDMSO

TBDMSO

$$C_6H_{13}$$
 C_6H_{13}

TBDMSO

 C_6H_{13}

TBDMSO

 C_6H_{13}

TBDMSO

 C_6H_{13}

TBDMSO

 C_6H_{13}

TBDMSO

TBDMSQ

TBDMSO

TBDMSO

$$C_6H_{13}$$
 C_6H_{13}
 C_6H_{13}

FIGURE 17

Inventors: L.R. Dalton et al. Docket No.: UOFW117403

FIGURE 18

Inventors: Docket No.:

L.R. Dalton et al. UOFW117403

 $\mathsf{F_3C} = \mathsf{S-OH} + \mathsf{OH} = \mathsf{Br} = \mathsf{AcNMe_2} = \mathsf{OH} = \mathsf{SO_2CF_3} = \mathsf{OH} = \mathsf{SO_2CF_3} = \mathsf{OH} = \mathsf{SO_2CF_3} = \mathsf{OH} = \mathsf{SO_2CF_3} = \mathsf{S$

$$F_3CO_2S$$
 SO_2CF_3
 F_3CO_2S
 SO_2CF_3

FIGURE 19

Inventors: Docket No.:

L.R. Dalton et al. UOFW117403

 F_3CO_2S F_3CO_2S

Electro-Optic Activity vs. Loading Density Weight % of chromophore r₃₃ (pm/V) Title: HYPERPOLARIZABLE ORGANIC CHROMOPHORES

EIGNKE 72

Inventors:
Docket No.:

L.R. Dalton et al. UOFW117403

Inventors: L.R. Dalton et al. Docket No.: UOFW117403

FIGURE 28

Title: HYPERPOLARIZABLE ORGANIC CHROMOPHORES Inventors: L.R. Dalton et al. Docket No.: UOFW117403

15(a) HCI 24 25 Tetracyanoethylene CHCl₃ 26

Inventors: L.R. Dalton et al. Docket No.: UOFW117403

Title: HYPERPOLARIZABLE ORGANIC CHROMOPHORES Inventors: L.R. Dalton et al. Docket No.: UOFW117403

Inventors: L.R. Dalton et al. Docket No.: UOFW117403

Inventors: Docket No.:

L.R. Dalton et al. UOFW117403

OTBDMS OH TBDMSO HO AcO. OAc AcO. ОН TBDMSCI POCI₃ DMF imidazole СН₃ОН, Н₂О DMF 5 **7** TBDMS= 6 8

FIGURE 36

FIGURE 37

Inventors: L.R. Dalton et al. Docket No.: UOFW117403

(i) NBS, DMF, RT;(ii) acetic anhydride, 60°C; (iii) (CH₂O)n, 45% HBr/HOAc, HOAc, 50°C;

(iv) P(OEt)3, DMF, 120°C.

Inventors: Docket No.:

TBDMSO. TBDMSO. (iii) (ii) 30 отвомѕ 29 (iv) TBDMSO. TBDMSO. (v)

отвомѕ

13

(i) 11, KOtBu, THF, 0°C; (ii) K2CO3, CH3OH, H2O, RT; (iii) (CH3)3CSi(CH3)2Cl, imidazole, DMF, 50°C; (iv) a. nBu-Li, THF, -78°C; b. DMF, RT; (v) a. 4, KOtBu, THF, 0°C; b. K_2CO_3 , CH₃OH, H₂O, RT; c. (CH₃)₃CSi(CH₃)₂Cl, imidazole, DMF, 50°C.

OTBDMS

31

FIGURE 39

TBDMSO

Inventors:

L.R. Dalton et al.

Docket No.:

UOFW117403

13(a, b) BuLi, l₂
THF
-76°C

R
14a: OTBDMS
15a: H

Inventors: Docket No.:

L.R. Dalton et al. UOFW117403

Large Angle Laser Beam Scanner

EO waveguide prism introduces a small deflection angle to initialize the beam scanning. The half-circle 2-D photonic crystal region is imbedded into the waveguide, so that the deflection angle is "amplified" as the light pass through the crystal region. 3D scanning can also be provided if a 3-D structure is built

Mach Zehnder Modulator

Birefringent Modulator

Directional Coupler

FIGURE 42

Inventors: Docket No.:

L.R. Dalton et al. UOFW117403

FIGURE 43

Inventors: Docket No.:

L.R. Dalton et al. UOFW117403

FIGURE 44

THE REPORT OF THE PROPERTY OF

L.R. Dalton et al.

Docket No.:

UOFW117403

NaOEt **EtOH** PPh₃Br U W 1 tBuLı 2 DMF сно piperidine chloroform X CN

FIGURE 45

ĊΝ

Z

THE STATE OF THE S

L.R. Dalton et al. UOFW117403

Docket No.:

TBDMSO. OTBDMS TBDMSO. OTBDMS NaOEt EtOH PPh₃Br 2 TBDMSO OTBDMS TBDMSO OTBDMS 3 tBuLi THF 3 OTBDMS TBDMSO. OTBDMS TBDMSO. Piperidine CHCl₃ 4

FIGURE 46

6

THE RESIDENCE OF THE STATE OF T

Docket No.:

to the training of the second of the second

D