SYDNEY GIRLS HIGH SCHOOL

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

1996

MATHEMATICS

3 UNIT (ADDITIONAL) AND 3/4 UNIT (COMMON)

Time allowed - Two hours (Plus 5 minutes' reading time)

DIRECTIONS TO CANDIDATES

Name _____

- Attempt ALL questions.
- ALL questions are of equal value.
- All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work.
- Standard integrals are printed on the last page.
- Board-approved calculators may be used.
- Each question attempted should be started on a new sheet. Write on one side of the paper only.

This is a trial paper ONLY. It does not necessarily reflect the format or the contents of the 1996 HSC examination paper in this subject.

QUESTION 1 (start a new page)

a) Solve
$$\frac{2x+5}{x+1} < 1$$

- b) Find the co ordinates of the point that divides the interval joining A(-1, 4) to B(7, 12) externally in the ratio 1:2
- c) Differentiate with respect to x;

i)
$$y = \sqrt{\sin x}$$

ii)
$$y = \sin^{-1}(1-x)$$

d) Evaluate
$$\int_{0.1}^{0.4} \sec^2 3x \ dx$$
 correct to 3dp

QUESTION 2 (start a new page)

- a) Find the exact value of $\sin^{-1}\left(\frac{1}{2}\right) \tan^{-1}\left(-\sqrt{3}\right)$
- b) For the polynomial $P(x) = x^3 + x 1$

i) show that a root exists between x = 0 and x = 1

- ii) use one approximation of Newtons' method to achieve a better estimate of this root which lies near 0.5 correct to 2 decimal places.
- c) Find the equation of the tangent to $y = \tan 3x$ at the point where $x = \frac{\pi}{3}$
- d) The figure below is a cube.

Calculate the angle between CE and the plane EFGH (answer to the nearest minute).

QUESTION 3 (start a new page)

- a) Given the function $y = 3\sin(2x + \pi)$;
 - i) state the period and amplitude
 - ii) sketch the graph for $0 \le x \le 2\pi$
- b) Using the substitution $u = 1 + x^2$ find $\int x(1 + x^2)^7 dx$
- c) Use mathematical induction to show that $3^{2n} 1$ is divisible by 8

QUESTION 4 (start a new page)

- a) i) For what value of k is the polynomial $Q(x) = 4x^3 x + k$ divisible by 2x + 3?
 - ii) Use your answer from i) to fully factorise Q(x)
- b) P is a point on the parabola $x^2 = 4y$. Show the normal to the curve at $P(2p, p^2)$ has equation $x = -py + 2p + p^3$
- c) Given the function $6\cos^2\theta + 8\sin\theta\cos\theta$
 - i) Express the function in terms of $\cos 2\theta$ and $\sin 2\theta$
 - ii) Hence deduce an expression for the function in the form $A + 5\cos(2\theta \alpha)$ where A and α are constants.
 - iii) Solve the equation $6\cos^2\theta + 8\sin\theta\cos\theta = 4$ for $0^0 \le \theta \le 360^0$

QUESTION 5 (start a new page)

- a) i) Show that $P = P_0 e^{kt}$ satisfies the equation $\frac{dP}{dt} = kP$
 - ii) In a culture of bacteria the number present P, is given by the formula $P = P_0 e^{k}$ where P_0 is the initial population of bacteria and k is a constant. If between lam and lam the population doubles, at what time would you expect the population to be ten times the lam population?
- b) The velocity of a particle is given by v = 2x + 1 cms⁻¹. If the initial displacement is 1 cm to the right of the origin, find the displacement as a function of time.

c)

PX and PY are tangents, $\angle YXZ = \angle XPY = 2a^0$, prove XZ = XY giving reasons.

QUESTION 6 (start a new page)

a) Find the volume of the solid of revolution generated by rotating $y = \sin x$ around the X axis from x = 0 to $x = \pi$

b)

i) A particle is projected with a velocity $V ms^{-1}$ at an angle α to the horizontal. Show that the projectiles trajectory is defined by the equations

$$x = Vt \cos \alpha$$
$$y = -\frac{1}{2}gt^2 + Vt \sin \alpha$$

ii) A plane is flying horizontally at $400 ms^{-1}$ at a height of 1280m above the ocean. It releases a survival package from a point O towards the centre of a small island Q

- α) How far before Q should the package be released so that it falls on the centre of the island? (use $g = 10ms^{-2}$)
- β) Show that the speed of the package on impact is approximately $431 ms^{-1}$

QUESTION 7 (start a new page)

- a) i) Show that $\frac{5}{(x-2)(x+3)}$ can be expressed in the form $\frac{A}{x-2} + \frac{B}{x+3}$
 - ii) Hence or otherwise find $\int \frac{5 dx}{(x-2)(x+3)}$
- b) On a certain day in Fremantle Harbour the depth of high tide is 32 metres. At low tide $6\frac{1}{2}$ hrs later the depth of water is 21 metres. If faight tide is 12.10am, what is the earliest time at which a ship needing 28.5 metres of water can enter the harbour. (Assume rise and fall of tide in SHM)

c)

Two equal circles of radius r are drawn passing through the centre of each other. Show that the common area is $r^2 \left(\frac{2\pi}{3} - \frac{\sqrt{3}}{2} \right)$ units²

Stephanie SIM.

8/7/02

Sydney airls High School 1996 3/4 U.

QUESTION !

$$\frac{2n+5-n-1}{n+1} < 0$$
; $\frac{n+4}{n+1} < 0$

no solution

B) let point be P(p,q)

$$\rho = \left(\frac{1(1) - 2(4)}{1 - 2}, \frac{1(12) - 2(4)}{1 - 2}\right)$$

$$=\left(\frac{7+2}{-1},\frac{(2-8)}{-1}\right)$$

c) i.)
$$y = \sqrt{\sin x} = (\sin x)^{\frac{1}{2}}$$

$$\frac{dy}{dx} = \frac{1}{2}(\sin x)^{-\frac{1}{2}} \times \cos x$$

$$= \frac{\cos x}{2\sqrt{\sin x}} \times \frac{\sqrt{\sin x}}{\sqrt{\sin x}} = \frac{\sqrt{\sin x} \cos x}{2\sqrt{\sin x}} = \frac{\sqrt{\sin x} \cot x}{2\sin x}$$

ii.)
$$y = \sin^{-1}(1-x)$$

$$\frac{dy}{dx} = \frac{1}{\sqrt{1-(1-x)^2}} \times -1$$

$$= \frac{-1}{\sqrt{1-(1-2)(1+x^2)}} = \frac{-1}{\sqrt{2x-x^2}}$$

QUESTION 2

A.)
$$Sin^{-1}(\frac{1}{2}) - tan^{-1}(-\sqrt{3})$$

$$= Sin^{-1}(\frac{1}{2}) + tan^{-1}(\sqrt{3})$$

$$= \frac{1}{6} + \frac{1}{3} = \frac{1}{6} + \frac{1}{2}$$

B)
$$P(n) = \chi^3 + \chi - 1$$

y = tan3n.
when
$$x = \frac{\pi}{3}$$
 y = tanT = 0
 \therefore ($\frac{\pi}{3}$,0) here on the curve $y = tan3y$.

$$\frac{dy}{dx} = 3 \sec^2 3x.$$

When $x = \frac{\pi}{3}$, $\frac{dy}{dx} = 3 \sec^2 \pi = \frac{3}{3}$

Eat of tgt is $(y-0) = 3(x-\frac{\pi}{3})$

$$(EG)^2 = (EF)^2 + (FG)^2$$

 $(EG)^2 = \chi^2 + \chi^2$
 $(EG)^2 = 2\chi^2$
 $EG = \sqrt{2}\chi / (EG70 became it is a length)$

$$tan \angle CEG = \frac{1}{\sqrt{2}} \frac{5 | AJ}{\sqrt{1}|c}$$

$$\angle CEG = \frac{35°16'}{\sqrt{2}} \text{ or } 215°16'$$

But angle is a certe as shown in diagram.

QUESTION 3

$$y = 3\sin(2x+\pi)$$

i) Period = $\frac{2\pi}{n} = \frac{2\pi}{2} = \pi$

Ampitude = 3

$$= \int \frac{1}{2} u^7 du$$

$$= \frac{1}{2} \int u^7 c du = \frac{1}{2} \left(\frac{u^8}{8} \right) + c$$

$$= \frac{u^8 + c}{16} = \frac{(1+x)^2}{16} + c$$

(c) Step 1

Let
$$n=1$$
:

 $3^{2n}-1=3^{2}-1=8$ which is divisible by 8

 $5=1$ the for $n=1$

LHS
$$3^{2k+2}-1 = 3^2(3^{2k}-1)+8$$

$$= 9(8M)+8 = 8(9M+1)$$

$$= 8N = RHS$$

Step 3

If n=k is true and n=kti is true, and n=1 is also true, then n=1+1=2 is true, n=2+1=3 is true and so on. -.

by TPOM1, it is true for all positive integers n>1.

QUESTION 4

A) i.) For
$$Q(\pi)$$
 to be divisible by $2\pi + 3$, $Q(-1.5) = 0$. $Q(-1.5) = 4(-\frac{3}{2})^3 + \frac{3}{2} + K = 0$

$$4(-\frac{27}{8}) + \frac{3}{2} + K = 0$$

$$2\chi^{2} - 3\chi + 4$$

$$2\chi + 3 \qquad \sqrt{4\chi^{3} + 0\chi^{2} - \chi + 12}$$

$$4\chi^{3} + 6\chi^{2}$$

$$-6\chi^{2} - \chi$$

$$-6\chi^{2} - \chi$$

$$8\chi + 12$$

$$8\chi + 12$$

$$8\chi + 12$$

$$00$$

$$(2\chi + 3)(2\chi^{2} - 3\chi + 4)$$

(B)
$$\chi^2 = 44$$

 $4 = \frac{\chi^2}{4}$; $\frac{dy}{dx} = \frac{\chi}{2}$.

Eqt of normal at
$$p = -\frac{1}{p}$$
 ($m_1 m_2 = -1$ for ± 1 (ines)
Eqt of normal at P is $= (y-p^2) = -\frac{1}{p}(x-2p)$

$$p(y-p^2) + x - 2p = 0$$

 $py - p^3 + x - 2p = 0$; $x = -py + 2p + p^3$

i.)
$$6\cos^2\theta + 8\cos\theta\sin\theta$$

= $3(a\cos^2\theta - 1) + 3 + 4\sin^2\theta$

$$= 3\cos 20 + 4\sin 20 + 3$$

$$C_{0}SZ_{0} = 2C_{0}SZ_{0} - 1$$

 $Sinz_{0} = 2Sin_{0}C_{0}SQ_{-}$

ii)
$$[3\cos 20 + H\sin 20] + 3 = R\cos(20 - x) + 3$$

= $R(\cos 20\cos x) + \sin 20\sin x) + 3$

$$\frac{-8^{-}}{5\cos 20 + 4\sin 20 + 3} = 5\cos (20 - 53°8') + 3$$

$$= 5\cos (20 - 53°8') + A$$

$$= 5\cos (20 - 53°8') + A$$

QUESTION S

A.) i.)
$$p = p_0 e^{kt}$$

$$\frac{dP}{dt} = k p_0 e^{kt} = k P_0 . /$$

ii) when t=0, P=Po : Po is initial population. when t=3, P= 3Po.

$$2P_0 = P_0 e^{3K}$$
; $e^{3K} = 2$
 $3K = \ln 2$
 $K = \frac{\ln 2}{3}$

$$\int_{-\infty}^{\infty} P = P_0 e$$
 $\int_{-\infty}^{\infty} \frac{\ln 2 t}{3} t$

$$e^{\frac{\ln 2t}{3}} = 10$$
; $\frac{\ln 2t}{3} = \ln 10$
 $t = \frac{\ln 10 \times 3}{\ln 2} = 9 \text{ hrs.} 58 \text{ min}$
 $t = \frac{\ln 10 \times 3}{\ln 2} = 9 \text{ hrs.} 58 \text{ min}$

B)
$$V = (2x+1) \text{ cm/s}$$
 $\frac{dx}{dt} = 2x+1$
 $\frac{dt}{dt} = \frac{1}{2x+1}$
 $t = \frac{1}{2} \ln (2x+1) + C$

when $t = 0$, $x = 1$
 $0 = \frac{1}{2} \ln 3 + C$; $C = -\frac{1}{2} \ln 3 = -\ln \sqrt{3}$.

 $t = \frac{1}{2} \ln (2x+1) - \ln \sqrt{3}$
 $t + \ln \sqrt{3} = \frac{1}{2} \ln (2x+1)$
 $2t + 2 \ln \sqrt{3} = \ln (2x+1)$
 $2x + 2 \ln \sqrt{3} = \ln (2x+1)$
 $2x + 2 \ln \sqrt{3} = \frac{2x+2 \ln \sqrt{3}}{2}$
 $x = \frac{2x+2 \ln \sqrt{3}}{2} - 1$
 $x = \frac{2x+2 \ln \sqrt{3}}{2} - 1$

PX = PY (Tangents, from are pt outside a cincle drawn are equal)

∴ ΔPXY is an isos Δ (2 sides equal)

∴ ∠PXY = ∠PYX (base ∠ of isos Δ are equal)

Let ∠ PXY = X

∠ PXY = X (angle in alt- segment theorem).

∠ YXZ = ∠XPY = Da (quien)

In Δ PRY, 2a + x + x = 180° (∠ sum Δ = 180°)

M ΔXZY, 2a + x + ∠XYZ = 180° (``")

<XYZ= X

QUESTION 6

$$V = \pi \int_{0}^{\pi} \sin^{2}x \, dx$$

$$= \frac{\pi}{2} \int_{0}^{\pi} (-\mathbf{Z} \cos 2x) \, dx$$

$$= \frac{\pi}{2} \left(x - i \sin 2x \right)_{0}^{\pi}$$

$$= \frac{\pi}{2} \left(\pi - \frac{\sin 2\pi}{2} \right)$$

$$= \left(\pi^{2} \right) u^{3}$$

$$\chi = Vt Cosd$$

$$\chi = 400t CosO$$

$$\chi = 400t$$

$$\dot{y} = -g$$

 $\dot{y} = -gt + V \sin \alpha$
 $\dot{y} = -gt^2 + V t \sin \alpha$.

$$y = -\frac{10t^2 + 400t \sin 0 + 1280}{x^2}$$

$$y = -5t^2 + 1280$$

d) Find t when
$$y=0$$

 $1280-5t^2=0$; $5t^2=1280$
 $t^2=256$
 $t=16s(t>0)$
 $\pi=400(16)=6400 \text{ m}=6.4 \text{ cm}$ before Q.

Find trajectory of package.

$$n = 400t$$
; $t = \frac{x}{400}$
 $y = -5\left(\frac{\eta^2}{400}\right) + 1280$

$$y = -5\left(\frac{71^2}{160,000}\right) + 1280$$

$$y = 1280 - x^{2}$$
 $32,000$
 $dy = -2x = -x$

$$x = V_{3} = -gt$$
 1100 - 1100
AL $t = 16$ 6400

$$\dot{z} = 400, \ \dot{y} = -16 \times 10$$

Vel. on impace =
$$\sqrt{\dot{x}^2 + \dot{y}^2}$$

= $\sqrt{(400)^2 + (-160)^2}$

```
QUESTION 7
```

A)
$$\frac{5}{(7-2)(\chi+3)} = \frac{A}{\chi-2} + \frac{B}{\chi+3}$$

= $\frac{A(\chi+3) + B(\chi-2)}{(\chi-2)(\chi+3)}$

$$A(7/13) + B(7/2) = 5$$

 $(A+B)7/1 + 3A-2B = 5$
 $A+B=0; A=-B-0$

$$3A-2B=5$$
. Subin (1)
 $3(-B)-2B=5$; $-SB=5$; $B=-1$
 $A=1$

$$=\frac{5}{(7-2)(743)}=\frac{1}{7-2}-\frac{1}{7+3}$$

ii.)
$$\int \frac{5}{(\chi-2)(\chi+3)} d\chi = \int \frac{1}{\chi-2} - \frac{1}{\chi+3} d\chi$$

$$\chi = a \cos nt$$

$$\chi = \frac{11}{2} \cos \frac{2\pi}{13} t$$

$$2 = \frac{11}{2} \cos \frac{2\pi}{13} t \quad ; \quad \cos \frac{2\pi}{13} t = \frac{4}{11}$$

$$2\pi t = 1.198$$

= earliest time at which ship can enter the harbour = 12.10 am + 2hrs 29 min = 2.39 pm

In
$$\triangle ACD_3$$
 $AC^2 = r^2 - r^2$ (pythog. theorems)
$$AC^2 = \frac{3r^2}{4}$$

$$AC = \frac{\sqrt{3}r}{a}$$
 (AC>0)

$$= \frac{\sqrt{3}r^2u^2}{8}$$

$$\langle AOC : \overline{II} \rangle$$

Amen of Minor segment =
$$\left(\frac{2\pi}{3} \times \pi r^2\right) - 4\left(\frac{\sqrt{3}r^2}{8}\right)$$

$$= \frac{\pi r^2 - \sqrt{3}r^2}{8} /$$

Area of shaded part =
$$4\left(\frac{\sqrt{3}r^2}{8}\right) + 4\left(\frac{\pi r^2}{6} - \frac{\sqrt{3}r^2}{4}\right)$$

$$= \frac{\sqrt{3}r^2 + 2\pi r^2 - \sqrt{3}r^2}{3}$$

2

$$= \frac{\sqrt{3}r^2 - 2\sqrt{3}r^2 + 2\pi r^2}{2}$$

$$= r^2 \left(\frac{2\pi}{3} - \sqrt{3}\right) u^2$$