UNCLASSIFIED

ADI 429158

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

GED BY DDC 1 No. 429158

TECHNICAL MEMORANDUM 1291

APPLICATION AND EVALUATION OF A DIGITAL COMPUTER PROGRAM FOR INTERIOR BALLISTICS

STUART LEVY
FORREST MCMAINS

AMCMS 5023.11.18400

COPY $\frac{4}{7}$ OF $\frac{6}{6}$

JANUARY 1964

THOUSIN IE

PICATINNY ARSENAL DOVER, NEW JERSEY

The findings in this report are not to be construed as an official Department of the Army Position.

DISPOSITION

Destroy this report when it is no longer needed. Do not return.

DDC AVAILABILITY NOTICE

Qualified requesters may obtain copies of this report from DDC.

TECHNICAL MEMORANDUM 1291

APPLICATION AND EVALUATION
OF A
DIGITAL COMPUTER PROGRAM
FOR
INTERIOR BALLISTICS

BY

STUART LEVY FORREST MCMAINS

AMCMS 5023.11.18400

JANUARY 1964:

REVIEWED BY:

E. WURZEL Chief, Propellant

Application Section,

REVIEWED BY:

A. BERMAN

Chief, Special Ammunition and Analysis Section

APPROVED BY:

E. H. BUCHANAN

Chief, Artillery

Ammunition Laboratory

AMMUNITION ENGINEERING DIRECTORATE PICATINNY ARSENAL DOVER, NEW JERSEY

TABLE OF CONTENTS

Section		Page
I	INTRODUCTION	1
II	FIRING DATA STUDY OF BIGHT WEAPON SYSTEMS	
	75mm Howitzer, M1A1, M3	2
	76mm Gun, M1, M1A2	3
	90mm Gun, M41	4
	105mm Howitzer, XM103E3	5
	105mm Gun; M68	6
	155mm Howitzer, Ml	
	a. Single Perforated	7
	b. Multi-perforated	8
	175mm Gun, M113	9
	8-Inch Howitzer, M2	
	a. Single Perforated	10
	b. Multi-perforated	11
III	DISCUSSION OF RESULTS	12
IV	CONCLUSIONS	13
	REFERENCES	14
	APPENDICES	
	A. Chart	15
	B. Table	16
	ABSTRACT DATA	17
	TABLE OF DISTRIBUTION	18

ACKNOWLEDGEMENT

The authors are grateful to Sidney Kravitz of the Artillery Ammunition Laboratory, Ammunition Engineering Directorate, for his assistance in the use and evaluation of his program.

Also appreciated is the cooperation of Sidney Bernstein and Robert Garufi of the Artillery Ammunition Laboratory, Ammunition Engineering Directorate, who supplied some of the firing data used in this report.

SECTION I

INTRODUCTION

The object of this study is to compare simulated firing results -- obtained from a digital computer program -- with actual firing data.

"The Digital Computer Program for Interior Ballistics" by Sidney Kravitz (Reference 1) was used, and this program was restricted to Problem 2 and 3.

In Problem 1, burning rate divided by web (B/W) and charge weight are given and the computer will calculate maximum pressure and muzzle velocity.

In Problem 2, maximum pressure and charge are given and the computer will calculate muzzle velocity and B/W.

In Problem 3, maximum pressure and muzzle velocity are given and the computer will calculate charge and B/W.

A study of Problem 1 was omitted from this report because its solution depends on a B value which is not part of the firing data. A study is under preparation which will endeavor to calculate these B values and use them in Problem 1.

In Section II, simulated and actual firing data are tabulated for eight weapon systems. Also listed are percentage errors and the burning rate factor B for Problem 2 for various pressure ranges and propellants.

A discussion of the results is given in Section III.

SECTION II

FIRING DATA STUDY OF RIGHT WEAPON SYSTEMS

1. 75M HOWITZER, M3, MAI

Gun Constants

•					Burning Rate Factor B	0.00436		Burning Rate Factor B	0,00407
					Z Brror	0.19		j ght % — <u>Brror</u>	87.4
lbs.	in.	.P.)	in.		Simulated Velocity (ft/sec)	980.9		Simulated Charge Weight (1bs)	0,431
13.1 lbs.	59.0 in.	M2 (S.P.)	39.3 in.		Firing Velocity (ft/sec)	1,000		Firing Charge Weight (1bs)	0,4125
Projectile Weight	Chamber Volume	Type		Problem 2	Charge Weight (1bs)	0.4125	Problem 3	Velocity (ft/sec)	1,000
Projectile	Chamber Vol	Propellant Type	Total Travel		Maximum Pressure (psi)	24,100		Maximum Pressure (ps1)	24,100
					Web (in.)	0.0148		Web.; (in.)	0.0148
	-				Starting Pressure (psi)	2,000		Starting Pressure (ps1)	2,000

- 2-

2. 75NM GUN, MI, MIA2

8
ü
d
æ
ũ
W
ä
ō
Ö
_
ď
3
Ō

9.3 lbs.	200 in. ³	M2 (M.P.)	156 in.
Projectile Weight 9.3 lbs.	Chamber Volume 200 in.	Propellant Type M2 (M.P.)	Total Travel 156 in

roblem 2

Burning Rate Factor B	0.0039		Burning Rate Factor	0.00417
Z Brror	2.2		ed Krror	5.51
Simulated Velocity (ft/sec)	3,475		Simulated Charge Weight (1bs)	3,647
Firing Velocity (ft/sec)	3,400	Problem 3	Firing Charge Weight (1bs)	3.86
Charge Weight (1bs.)	3.86	A. S.	Velocity (ft/sec)	3,400
Maximum Pressure (psi)	76,900		Maximum Pressure (psi)	46,900
Web (in.)	0.0598		We b (in.)	0.0598
Starting Pressure (psi)	2,000		Starting Pressure (psi)	2,000
-3-	•			

Gun Constants

Projectile Weight 12.65 lbs.	Chamber Volume 300 in.	Propellant Type M17 (M.P.)	Total Travel 155 in.
Project	Chamber	Propell	Total T

Problem 2

Burning Rate Factor B	0.0103
A. Error	1.35
Simulated Velocity (ft/sec)	3,946
Firing Velocity (ft/sec)	4,000
Charge Weight (1bs.)	8.58
Maximum Pressure (psi)	50,500
He b (4n.)	0.052
Starting Pressure (psi)	2,000

Problem 3

DID NOT RUN

5. 105MM GUN, 1968

Gun Constants

Projectile Weight 12.8 lbs,	Chamber Volume 384 in.	Propellant Type T36 (M.P.)	Total Travel 178 in.
-----------------------------	------------------------	----------------------------	----------------------

Problem 2

Burning % Rate Kror Factor B	1.69 0.00829
Simulated Velocity (Et/sec)	4,768
Firing Velocity (ft/sec)	4,850
Charge Weight (1bs)	12.09
Maximum Pressure (ps1)	58,500
Web (1n.)	970.0
Starting Pressure (ps1)	2,000

-6-

Problem 3 DID NOT RUN

H
COLLTZER,
155M
•

The second secon

A. Single Perforated

100
ü
4
a
-
-
2
5
3
_
~
=
ベ
J

Problem 2

Maxim Meb (in.) (psi) 0.0165 5,520 0.0165 7,130 0.0165 13,800 0.0165 21,735 Maximum Meb Meb Pressure (in.) (psi)	The Charge Height (1bs)	Firing Velocity (ff/sec) (680 770 880 1,020 1,220 Problem 3 Firing Charge Weight (1bs)	Simulated % Velocity Erry (ft/sec) Erry 694 2.775 0.879 0.1,008 0.1,200 1.200 1.300	2.05 0.01 0.01 1.64 Extor	Burning Rate 0.00413 0.00421 0.00439 0.00465 0.00495 Burning Rate Factor B
520	089 880	1.95 3.0875	1.854 3.085	4.92	0.00437

6. 155MM HOWITZER, M.1 (Continued)

B. Multi-perforated

80	
u	
a	
8	
1	
8	
Ö	
O	
_	
₫	
3	
O	

Projectile Weight 95 lbs. Chamber Volume 795 in. Propellant Type		m	•	n.
Projectile Weight	95 lbs.	795 tn.	М (м.Р	115.5 1
	Projectile Weight	Chamber Volume	Propellant Type	Total Travel

Problem 2

Starting Pressure (ps1)	Ke b (4n.)	Maximum Pressure (psi)	Charge Weight (1bs)	Firing Velocity (ft/sec)	Simulated Velocity (ft/sec)	ed **	Pac Pac	Mrning Late
2,000	0.0334	9,000	4.156	880	890	1.13		0.00300
2,000	0.0334	8,050	5.319	1,020	1,024	0.39		0324
2,000	0.0334	11,730	7.500	1,220	1,229	0.74		0312
2,000	0.0334	20,125	9.810	1,520	1,497	1.51		0349
2,000	0.0334	35,650	13.188	1,850	1,820	1.62		6980
			Problem 3	_				
Starting Pressure (psi)	Web (in.)	Maximum Pressure (ps1)	Velocity (ft/sec)	Firing Charge Weight (1bs.)	Charge ght	Simulated Charge Weight (1bs.)	Krtor	Burning Late Factor B
2,000	0.0334	6,000 11,730	880 1,220	4.156 7.500	95 00	3.819 7.179	8.11	0.00340

8	١
ü	
4	
*	
Q	
Q	
O	
_	
Ħ	
×	

					Burning Rate Factor B	0.0052 0.00449 0.00498		N Rate Error Factor B	16.26 0.00678 4.94 0.00534
					~ ~ ~ ~			M [8	16.
147.75 lbs.	i in. 3	(.P.)	n.		Z Error	6.75 2.73 2.33		Simulated Charge Weight (lbs.)	17.234 52.513
147.7	2,898 in.	M6 (M.P.)	352 in.		Simulated Velocity (ft/sec)	1,788 2,373 3,070		_	1.0
					S & S	H 04 60		ng Charg eight (1bs.)	8,8
: 1 1 1 1	1 1 1 1 1	1			Firing Velocity (ft/sec)	1,675 2,310 3,000	•	Firing Charge Weight (1bs.)	20.58 55.56
Projectile Weight	Chamber Volume	9	0 0 0 0 0 0 0	Problem 2	Charge Weight (1bs.)	20.58 37.75 55.56	Problem 3	Velocity (ft/sec)	1,675 3,000
le Wei	/olume	at Typ	avel -		O (#)			>	
Projecti]	Chamber	Propellant Type	Total Travel		Maximum Pressure (psi)	13,000 21,700 50,100	•	Maximum Pressure (psi)	13,000 50,100
					Web (in.)	0.069		Web (in.)	0.069
					terting ressure (psi)	2,000 2,000 2,000		certing ressure (ps1)	2,000

8. 8-INCH HOWITZER, M2

A. Single Perforated

Gun Constants

200 lbs.	1,485 in.	M (S.P.)	164 in.
Projectile Weight 200 lbs.	Chamber Volume 1,485 in.	Propellant Type M1 (S.P.)	Total Travel

Burning Rate Factor B	0.00396 0.00413 0.00427 0.00428 0.00448
Krror	1.95 1.78 0.50 0.87 1.45
Simulated Velocity (ft/sec)	836 916 1,005 1,140 1,360
Firing Velocity (ft/sec)	820 900 1,000 1,150 1,380
Charge Weight (1bs.)	5.33 6.28 7.52 9.54 13.16
Maximum Pressure (psi)	9,300 11,600 14,800 20,000 31,800
Web (in.)	0.0161 0.0161 0.0161 0.0161 0.0161
03 M 1	000000000000000000000000000000000000000

	Burning Rate Factor B	0.00430 0.00439 0.00436 0.00416 0.00419
	Brror	5.38 3.89 1.68 3.11
	Simulated Charge Weight (1bs.)	5.043 6.036 7.394 9.686 13.57
roblem 3	Firing Charge Weight (1bs.)	5.33 6.28 7.52 9.54 13.16
Pro	চব	820 900 1,000 1,150
	Maximum Pressure (psi)	9,300 11,600 14,800 20,000 31,800
	teb (fn.)	0.0161 0.0161 0.0161 0.0161 0.0161
	Starting Pressure (psi)	2,000 2,000 2,000 2,000 2,000

8. 8-INCH HOWITZER, M2 (Continued)

B. Multi-perforated

Gun Constants

		Project1]	Projectile Weight	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20	200 lbs.	
		Chamber V	Chamber Volume	• • • • • • • • • • • • • • • • • • •	1,	- 1,485 in. ³	
		Propellar	Propellant Type		IX	M1 (M.P.)	
		Total Tra	Total Travel	; ; ; ; ; ;	164	164 in.	
			Problem 2	2			
Starting	497	Meximum	Charge	Firing	Simulated		Burning
(ps1)	(tu:)	(pst)	(1bs.)	(ft/sec)	(ft/sec)	A Brror	Factor
2,000	0.0414	15,400	16.63	1,380	1,384	0.29	0.0034
2,000	0.0414	23, 200	21.84	1,640	1,628	0.73	0.00357
2,000	0.0414	37,500	28.05	1,950	1,917	1.69	0.00358
			Problem 3	<u> </u>			
Starting Pressure (psi)	He b (4n.)	Maximum Pressure (psf)	Velocity (ft/sec)	Firing Charge Weight		Simulated Charge Weight	*
2,000 2,000	0.0414	15,400	1,380	16.63		16.36 22.16	1.62
2,000	0.0414	37,500	1,950	28.03		29.20	4.10

Burning Rate Factor B

0.00353 0.00343 0.00343

SECTION III

DISCUSSION OF RESULTS

Most of the velocity variations for Problem 2 $\frac{V_{firing} - V_{firing}}{V_{firing}}$ were about 2% or less.

In some instances, although an answer was obtained from Problem 2, the same data in Problem 3 gave no solution. This occurred in the M68 105mm Gun and the M41 90mm Gun. Problem 2 seems to be the most reliable of the two types of problems and B values for Type 2 problems were calculated for all weapon systems.

B is defined as the burning constant, dependent on the chemical properties of the propellant. In the equation of the assumed rate of burning, R is the rate of burning, B is the burning constant, P the pressure of the gas surrounding the burning grains and n an exponent near unity. This equation is given by $R = BP^n$.

Generally an experimental B is determined from closed bomb firings, in which the volume is constant. This B usually differs from experimental Bs from field tests in which the volume is constantly changing as the propellant burns.

The assumptions upon which the ballistic calculations are based do not accurately account for energy losses and inefficiences in the actual ballistic systems. Therefore, when calculations are made from actual ballistic firings the effect of these factors are accumulated in the B; and it is found that for a given propellant, B varies with the weapon system, the ammunition and pressure level with which it is fired. Appendix A, "B versus Pressure," illustrates this dependency. If B were independent of pressure, the graph of the 8-Inch or 155mm Howitzer would be a vertical line of constant B for varying pressure. Instead it is parabolic in shape. If B were independent of the weapon system, the graphs of the 8-Inch and 155mm Howitzer would coincide. This is to be expected since the propellants used in both systems were of identical chemical composition and granulation. However, they do not coincide -- the B value for the 8-Inch Howitzer is always less than the 155mm Howitzer.

Typical values of B are tabulated in Appendix B. These values were calculated from actual test data, and will be useful for predicting a rough estimate of web size from the output of Type 2 problems. In selecting a B value from the list in Appendix B for a given propellant, use the value of B closest to the weapon system and pressure level. It is expected that as more data is gained from different weapon systems, propellant compositions and pressure levels, the table of Bs will be expanded.

SECTION IV

CONCLUSIONS

The Digital Computer Program for Interior Ballistics was found most useful in doing Case 2 problems where maximum operating pressure and charge are given and velocity is to be calculated. Reliability in reproducing field data is good -- within 2% in most cases.

This program will be valuable in estimating charges and velocities for new weapon systems. Web size for propellant granulation may be estimated, also using the B values in Appendix B. Other B values for different propellants and weapon systems not given in the table may be easily calculated with this program and sufficient field data.

Each calculation requires two IBM Data Cards and about two minutes of machine time. Thus, many hours of laborious written calculations may be eliminated and many solutions obtained in a materially shorter time.

REFERENCES

- 1. S. Kravitz, A Digital Computer Program for Interior Ballistics, Picatinny Arsenal Technical Memorandum 1127, August 1963.
- 2. A. O. Edwards and C. R. Grandee, Simulation of the 155mm Howitzer, with Standard Charges, Engineering Sciences Laboratory Information Report, Picatinny Arsenal, October 1962.
- 3. H. B. Anderson, <u>Master Standard Propellant Calibration Chart for Artillery Ammunition</u>, D&PS Report 825, January 1963.

APPENDICES

APPENDIX A

CHART

APPENDIX B

TABLE

TYPICAL VALUES OF B
(Burning Rate Factor)

Weapon	Pressure (psi)	Propellant	<u>B</u>
75mm Howitzer	25,000	M2 SP	0.00436
76mm Gun	50,000	M2 MP	0.0039
90mm Gun	50,000	M17 MP	0.0103
105mm Howitzer	6,500	T36E1 SP	0.0144
105mm Gun	60,000	T36 MP	0.00829
155mm Howitzer	10,000	M1 SP	0.00440
155mm Howitzer	20,000	M1 MP	0.00350
175mm Gun	20,000	M6 MP	0.00450
175mm Gun	50,000	M6 MP	0.00500
8-Inch Howitzer	15,000	M1 SP	0.00430

ABSTRACT DATA

Accession No.

Picatinny Arsenal, Dover, New Jersey

APPLICATION AND EVALUATION OF A DIGITAL COMPUTER PROGRAM FOR INTERIOR BALLISTICS

Stuart Levy, Forrest McMains

Technical Memorandum 1291, January 1964, 19 pp, tables. Unclassified report from the Artillery Ammunition Laboratory, Ammunition Engineering Directorate.

A study was made to compare simulated firing results -- obtained from a digital computer program -- with actual firing data from eight weapon systems, the 75mm Howitzer, M1A1, M3; 76mm Gun, M1, M1A2; 90mm Gun, M41; 105mm Howitzer, XM103E; 105mm Gun, M68; 155mm Howitzer, M2; 175mm Gun, M113 and 8-Inch Howitzer, M2.

This program will be valuable in estimating charges and velocities for new weapon systems.

Many hours of laborious written calculations may be eliminated and solutions obtained in a shorter time by using two IBM Data Cards and about two minutes of machine time.

UNCLASSIFIED

- 1. Digital Computers -Interior Ballistics
- I. Levy, Stuart
- II. McMains, Forrest
- III. Interior ballistics computer study

UNITERMS

Actual firing
Simulated firing
Digital computer program
Interior ballistics
75mm Howitzer, MiA1, M3
76mm Gun, M1, MiA2
90mm Gun, M41
105mm Howitzer, XM103E
105mm Gun, M68
155mm Howitzer, M2
175mm Gun, M13
8-Inch Howitzer, M2
Levy, S.
McMains, F.

APPLICATION AND EVALUATION OF A DIGITAL COMPUTER PROCRAM FOR INTERIOR BALLISTICS obtained from a digital computer program - with actual liring data from eight weapon systems, the 75 mm Howitzer, MIA1, M3, 76 mm Gun, M1, MIA2, 90 mm Gun, M41; 105 mm Howitzer, XM103E; 105 mm Gun, M68; 155 mm Technical Memorandum 1291, January 1964, 19 pp, tables. A study was made to compare simulated firing results -Unclassified report from the Artillery Ammunition Labora-Howitzer, M2; 175 mm Cun, M113 and 8-Inch Howitzer, tory, Ammunition Engineering Directorate. Picatinny Arsenal, Dover, New Jersey (over) Stuart Levy, Forrest McMains Accession No. Digital computer program 75 mm Howitzer, M1A1, 76 mm Gur, M1, M1A2 1. Digital Computers Interior Ballistics II. McMains, Forrest UNCLASSIFIED UNCLASSIFIED III. Interior ballistics computer study UNITERMS Actual firing Simulated firing Interior ballistics Levy, Stuart APPLICATION AND EVALUATION OF A DIGITAL COMPUTER PROGRAM FOR INTERIOR BALLISTICS Technical Memorandum 1291, January 1964, 19 pp, tables. obtained from a digital computer program - with actual firing data from eight weapon systems, the 75 mm Howitzer, MIAI, M3, 76 mm Gun, M1, MIA2, 90 mm Gun, M41; 105 mm Howitzer, XM103E; 105 mm Cun, M68; 155 mm Unclassified report from the Artillery Ammunition Labora-Howitzer, M2, 175 mm Cun, M113 and 8-Inch Howitzer A study was made to compare simulated firing results tory, Ammunition Engineering Directorate. P Picatinny Arsenal, Dover, New Jersey (Septe Stuart Levy, Forrest McMains Accession No.

UNCLASSIFIED

Digital computer program

Simulated firing Interior ballistics

Actual firing

1. Digital Computers Interior Ballistics

McMains, Forrest

I. Levy, Stuart

III. Interior ballistics

computer study

UNITERMS

UNCLASSIFIED

75 mm Howitzer, MIAI,

76 mm Gun, MI, MIA2

UNCLASSIFIED

P

Picatinny Arsenal, Dover, New Jersey

Accession No.

1. Digital Computers Interior Ballistics

II. McMains, Forrest Interior ballistics computer study I. Levy, Stuart

UNITERMS

Digital computer program Interior ballistics 75 mm Howitzer, MIA1, Actual firing Simulated firing

76 mm Gun, MI, MIA2 UNCLASSIFIED

Digital Computers -UNCLASSIFIED APPLICATION AND EVALUATION OF A DIGITAL COMPUTER PROGRAM FOR INTERIOR BALLISTICS

4

Picatinny Arsenal, Dover, New Jersey

Accession No.

1. Levy, Stuart

computer study

Digital computer program Interior ballistics 75 mm Howitzer, M1A1, Actual firing Simulated firing

> obtained from a digital computer program – with actual firing data from eight weapon systems, the 75 mm Howitzer, MIAI, M3; 76 mm Cun, M1, M1A2; 90 mm Cun, M4I; 105 mm Howitzer, XM103E; 105 mm Cun, M68; 155 mm

Howitzer, M2, 175 mm Cun, M113 and 8-Inch Howitzer

: :

A study was made to compare simulated firing results -

Unclassified report from the Artillery Ammunition Labora-

tory, Ammunition Engineering Directorate.

Technical Memorandum 1291, January 1964, 19 pp. tables.

Stuart Levy, Forrest McMains

76 mm Gun, M1, M1A2

APPLICATION AND EVALUATION OF A DIGITAL COMPUTER PROCRAM FOR INTERIOR BALLISTICS 105 mm Howitzer, XM103E: 105 mm Gun, M68; 155 mm Howitzer, M2; 175 mm Gun, M113 and 8-Inch Howitzer, APPLICATION AND EVALUATION OF II. McMains, Forrest III. Interior ballistics Interior Bullistics UNITERMS

UNCLASSIFIED

Technical Memorandum 1291, January 1964, 19 pp, tables. obtained from a digital computer program - with actual MIA1, M3; 76 mm Cun, M1, MIA2; 90 mm Gun, M41; A study was made to compare simulated firing results -Unclassified report from the Artillery Ammunition Laborafiring data from eight weapon systems, the 75 mm Howitzer, tory, Ammunition Engineering Directorate. Stuart Levy, Forrest McMains

(over)

UNCLASSIFIED UNITERMS 90 mm Cun, M41 105 mm Cun, M68 155 mn Howitzer, M2 175 mn Cun, M113 8-Inch Howitzer, M2 Levy, S. McMains, F.	UNCLASSIFIED UNITERMS 90 mm Gun, M41 105 mm Gun, M68 155 mm Howitzer, M2 175 mm Cun, M113 8-Inch Howitzer, M2 Levy, S. McMains, F.	UNCLASSIFIED	
This program will be valuable in estimating charges and velocities for the new weapon systems. Many hours of laborious written calculations may be eliminated and solutions obtained in a shorter time by using two IBM Data Cards and about two minutes of machine time.	This program will be valuable in estimating charges and velocities for the new weapon systems. Many hours of laborious written calculations may be eliminated and solutions obtained in a shorter time by using two IBM Data Cards and about two minutes of machine time.		
UNCLASSIFIED UNITERMS 90 mm Cun, M41 105 mm Cun, M68 155 mm Howitzer, M2 175 mm Cun, M13 8-Inch Howitzer, M2 Levy, S. McMains, F.	UNCLASSIFIED UNITERMS 90 mm Gun, M41 105 mm Gun, M68 155 mm Howitzer, M2 175 mm Gun, M113 8-Inch Howitzer, M2 Levy, S. McMains, F.	UNCLASSIFIED	
This program will be valuable in estimating charges and velocities for the new weapon systems. Many hours of laborious written calculations may be eliminated and solutions obtained in a shorter time by using two IBM Data Cards and about two minutes of machine time.	This program will be valuable in estimating charges and velocities for the new weapon systems. Many hours of laborious written calculations may be eliminated and solutions obtained in a shorter time by using two IBM Data Cards and about two minutes of machine time.		

:

ŧ

TABLE OF DISTRIBUTION

TABLE OF DISTRIBUTION

		Copy No.
1.	Commanding General	
1.	U. S. Army Materiel Command	
	Washington 25, D. C.	
	ATTN: AMCRD-RD, Ballistics	1
	ATIN: AREAD-ED, DETITECTE	4
2.	Commanding General	
	U. S. Army Munitions Command	
	Dover, New Jersey	
	ATTN: AMSMU-AA	2
3.	Commanding Officer	
	Picatinny Arsenal	
	Dover, New Jersey	
	ATTN: SMUPA-VA6	3-7
	SMUPA-DX1	8-9
	SMUPA-DR3	10-19
	SMUPA-DR6	20-26
4.	Harry Diamond Laboratories	
	Van Ness and Connecticut Avenues	
	Washington 25, D. C.	
	ATTN: Technical Library	27-28
5.	Defense Documentation Center	
	Cameron Station	
	Alexandria, Virginia	29-48
6.	Commanding General	
•	U. S. Army Missile Command	
	Huntsville, Alabama	
	ATTN: MTP	49
	TRT	50
	Technical Library	51
	·	
7.	Commanding General	
	U. S. Army Test & Evaluation Command	
	Aberdeen Proving Ground, Maryland	
	ATTN: BRL, Interior Ballistic Laboratory	52-53
	OTIO	54
	D&PS	55
	Technical Library	56
8.	Commanding Officer	
	Naval Proving Ground	
	Dahlgren, Virginia	57

TABLE OF DISTRIBUTION (CONT'D)

		Сору	No.
8.	Commander		
	U. S. Navy Ordnance Laboratory		
	8050 Georgia Avenue		
	White Oak		
	Silver Spring 19, Maryland	58	
9.	Commanding General		
	Air Development Command		
	Wright Patterson Air Force Base		
	Dayton, Ohio	59	
10.	Department of Ordnance and Gunnery		
	U. S. Military Academy		
	West Point, New York	60	
11.	Commanding Officer		
	Frankford Arsenal		
	Bridge and Tacony Streets		
	Philadelphia 37, Pennsylvania	61	
12.	Commanding Officer		
	Watertown Arsenal		
	Watertown 72, Massachusetts	62	
13.	Catholic University		
	Washington, D. C.		
	ATTN: K. J. Laidler	63	
14.	Canadian Armaments		
	Research & Development Establishment		
	Valcartier, Quebec		
	Canada	64	
15.	Commanding Officer		
	Ammunition Procurement & Supply Agency		
	Joliet, Illinois		
	ATTN: SMUAP-AE	65	
16.	Commandant		
	U. S. Army Ordnance Center and School		
	Aberdeen Proving Ground, Maryland		
	ATTN · ATSO ST	66	