Stochastic processes and SDEs

Maksim Levental

May 2016

- Stochastic Processes
- 2 Brownian Motion
- S. Differential Equations
- 4 References
- 6 Appendix
 - Laplace De Moivre
 - Differentiable nowhere
 - Baby steps
 - Martingale

Stochastic Processes

A stochastic process is a collection of random variables $X_t \triangleq X(\omega,t)$ indexed by an index set T such that $|T| \geq |\mathbb{N}|$ such that every finite dimensional joint distribution is specified^a. For fixed ω , $X_t(\omega)$ is a sample path or realization .

^aAnd they obey some regularity conditions cf. Kolmogorov Extension thm.

- A finite collection of random variables is just a random vector
- T is typically called time but stochastic processes are not necessarily time series
- im (X_t) and T can both be either continuous or discrete

$\operatorname{im}(X_t) \setminus T$	cont.	disc.	
cont.	Brownian motion (particle	Rust models	
	motion), Cox process		
	(neuron spike trains)		
disc.	Contact process	Markov chain (noisy logic),	
	(epidemiology), Telegraph	Bernoulli process (gambling),	
	process (phase transitions)	Poisson process (queuing)	

• Other: Dirichlet process, Pitman-Yor process, Random field

A stochastic process is *Markov* if $P(X_t \in A | \mathcal{F}_s) = P(X_t \in A | X_s)$.

In particular, for a Markov chain

$$P\left(X_{n}=x_{n}\middle|X_{n-1}=x_{n-1},X_{n-2}=x_{n-2},\ldots,X_{0}=x_{0}\right)=P\left(X_{n}=x_{n}\middle|X_{n-1}=x_{n-1}\right)$$

i.e. only short term memory

Intuitively a DFA with probabilistic transition function (not NFA)

		Bull	Bear	Stag.
_	Bull	0.9	0.075	0.025
	Bear	0.15	0.8	0.05
	Stag.	0.25	0.25	0.5

Hidden Markov models (hierarchical model) great for speech recognition

A random variable N is distributed $Poisson(\lambda)$ on some unit interval u if at

$$P(N = n \text{ events in interval}) = \frac{\lambda^n e^{-\lambda}}{n!}$$

 λ is called the rate parameter.

- Intuitively "time" between events is exponentially distributed but independent
- Phone calls at an exchange, arrivals bank queue, train arrivals (on a bad day!)

Example

A Poisson process N_t on $[0,\infty)$ with rate λ is a stochastic process where the number of events in any interval of length t is distributed Poisson (λt) .

```
\label{eq:lambda} $$\lim \text{lambda} <-1 $$ \times 1 <- \text{cumsum}(\text{rexp}(50),\text{rate=lambda}) $$ y1 <- \text{cumsum}(c(0,\text{rep}(1,50))) $$ $$ \text{plot}(\text{stepfun}(\times 1, y1), \times \text{lim} = c(0,50), \text{do.points} = F) $$
```


Example

A random walk on $\mathbb Z$ is a stochastic process S_0, S_1, \ldots such that

$$S_n = \sum_{j=0}^n X_i$$

and X_i are iid Bernoulli $(\frac{1}{2})$ on $\{1, -1\}$.

- Flip a coin and go forward or backward one unit distance in dimension
- Extensions to higher dimensions (random walk on a lattice) involve discrete uniform distribution on directions
- Precursor to Brownian motion
- Drunk man, Drunk bird

Brownian Motion

"Rigorous" Brownian motion

Modify S_n such that $X_i \in \{0,1\}$ and suppose spatial increments are Δx and time increments Δt . Note that $E(S_n) = \frac{n}{2}$ and $Var(X_i) = \frac{1}{4}$. Then

$$X(t) := X(n\Delta t) := \underbrace{S_n \Delta x}_{\text{positive dist}} - \underbrace{(n - S_n)(-\Delta x)}_{\text{negative dist}} = (2S_n - n)\Delta x$$

is the position of the particle at time $n\Delta t$. To use Laplace - De Moivre¹ we need

$$Var(X(n\Delta t)) = (\Delta x)^2 n = \frac{(\Delta x)^2}{\Delta t} t = Dt$$

with, $D \triangleq \frac{(\Delta x)^2}{\Delta t}$. Then

$$X(n\Delta t) = \sqrt{Dt} \left[\left(\frac{S_n - \frac{n}{2}}{\sqrt{n/4}} \right) \right]$$

 $^{{}^1}X_i \sim \text{Bernoulli}(p) \Rightarrow \lim_{n \to \infty} P(a \le \sum X_i - np/\sqrt{np(1-p)}) \le b = (2\pi)^{-1/2} \int_2^b e^{-\frac{x^2}{2}} dx$

and finally

$$\lim_{\substack{n \to \infty \\ t = n\Delta t \\ , \Delta tD = (\Delta x)^2}} P\left(a \le \sqrt{Dt}X(t) \le b\right) = \lim_{\substack{n \to \infty \\ t = n\Delta t \\ , \Delta tD = (\Delta x)^2}} P\left(\sqrt{Dt}a \le X(t) \le \sqrt{Dt}b\right)$$

$$= \frac{1}{\sqrt{2\pi}} \int_{\frac{a}{\sqrt{Dt}}}^{\frac{b}{\sqrt{Dt}}} e^{-\frac{x^2}{2Dt}} dx$$

$$= \frac{1}{\sqrt{2\pi Dt}} \int_{a}^{b} e^{-\frac{x^2}{2Dt}} dx$$

So
$$X(t) \sim N(0, Dt)$$

Rigorous Brownian motion

Due to Hida². For $s \in \mathscr{S}_{\mathbb{R}}$ the Schwartz space of rapidly decreasing functions and its topological dual³ $\mathscr{S}'_{\mathbb{R}}$ let

$$e^{-\frac{1}{2}\left\|s\right\|_{L_{2}(\mathbb{R})}^{2}} = \int_{\mathscr{S}_{\mathbb{R}}'} e^{\langle s', s \rangle} dP\left(s'\right)$$

Defining $\Omega := \mathscr{S}_{\mathbb{R}}'$ we have $\left(\Omega, \mathcal{B}\left(\mathscr{S}_{\mathbb{R}}'\right), P\right)$ the white noise space and $L_2\left(\Omega\right) \triangleq L_2\left(\Omega, \mathcal{B}\left(\mathscr{S}_{\mathbb{R}}'\right), P\right)$. The measure P is the *white noise* measure. By taking power series of the integrand above we get a definition of $\langle \omega, f \rangle$. Then

$$B(t) \triangleq B(\omega, t) \triangleq \langle \omega, \mathbf{1}_{[0,t]} \rangle$$

²T. Hida. *Analysis of Brownian functionals*. Carleton Univ., Ottawa, Ont., 1975. Carleton Mathematical Lecture Notes, No. 13.

³Space of tempered distributions (all distributions whose Fourier transforms exist).

A stochastic process B(t) is a Brownian motion if

- **1** B(0) = 0 almost surely, i.e. P(B(0) = 0) = 1
- **2** $B(t) B(s) \sim N(0, t s)$ for $t \ge s \ge 0$
- **3** For all $0 < t_1 < t_2 < \cdots < t_n$ it's the case that $B(t_1) \perp B(t_2) B(t_1) \perp \cdots \perp B(t_n) B(t_{n-1})$

Interesting facts

- $X_{\omega}\left(t\right) \triangleq X\left(\omega_{0},t\right)$ as a sample path is a continuous function from $\mathbb{R}^{+} \to \mathbb{R}$
- ullet Brownian motion "induces" a measure on functions $\mathbb{R}^+ o \mathbb{R}$
- Concentrated on continuous but nowhere differentiable functions (i.e. probability of "drawing" a differentiable function is 0)

Stochastic Differential Equations

Two problems

• Charge Q(t) in a capacitor an LRC circuit

$$LQ''(t) + RQ'(t) + \frac{1}{C}Q(t) = F(t), \ Q(0) = Q_0, \ Q'(0) = I_0$$
 (1)

If $F(t) = \cos(\omega t)$ and $F(0) = F_0$ the solution is simple:

$$Q(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t} + A \sin(\omega t - \phi)$$

for some constants⁴ c_1 , r_1 , c_2 , r_2 , A, ϕ . But what if F(t) = G(t) + "noise"?

ullet Consider taking noisy measurements Z(t) where

$$Z(t) = Q(t) + \text{"noise"}$$

What is the best estimate of Q(t) satisfying eqn 1 based on Z(t)? Kalman Filter.

⁴Each are constant functions of boundary values Q_0 , I_0 , F_0 .

Baby steps

Consider the problem of finding an interpretation of

$$\frac{dx}{dt} = b(t, x) + \sigma(t, x) \cdot \text{"noise"}$$

It turns out it's reasonable to model "noise" as some stochastic process \mathcal{W}_t and so

$$\frac{dX_t}{dt} = b(t, X_t) + \sigma(t, X_t) \cdot W_t$$

 $x \to X$ a random variable because noise is stochastic. Empirical fact (experience) suggests W_t should have three properties

- ② $\{W_t\}$ is stationary, i.e. the joint distribution of $\{W_{t_1+\tau},\ldots,W_{t_k+\tau}\}$ does not depend on τ .
- **3** $E[W_t] = 0$ for all t.

Unfortunately property 1 not possible for continuous processes⁵. What to do? Discretize, require independent increments, take averages, redefine, and voila

$$X_{k} = X_{0} + \int_{0}^{t} b(s, X_{s}) ds + \int_{0}^{t} \sigma(s, X_{s}) dB_{s}$$
 (2)

But this begs the question; we still haven't defined " $\int_0^t \sigma\left(s,X_s\right)dB_s$ ". Let $0 \leq Q < T$ and start by defining $\int_Q^T \left\{\cdot\right\}dB_s\left(\omega\right)$ for simple processes $S_n\left(t,\omega\right) = \sum_{j=0}^\infty a_j\left(\omega\right) 1_{\left[j\cdot 2^{-n},(j+1)\cdot 2^{-n}\right)}\left(t\right)$

$$\int_{Q}^{T} S_{n}(s,\omega) dB_{s} \triangleq \sum_{j=0}^{\infty} a_{j}(\omega) \left[B_{s_{j+1}^{(n)}}(\omega) - B_{s_{j}^{(n)}}(\omega) \right]$$

Then extend by taking limits (which exist because Cauchy) under $\mathbf{L}_2(P)$ norm

$$\mathcal{I}[f](\omega) \triangleq \int_{O}^{T} f(s,\omega) dB_{s} \triangleq \lim_{n \to \infty} \int_{O}^{T} S_{n}(s,\omega) dB_{s}$$

⁵It is possible to represent W_t as a *generalized* process, meaning it can be constructed as a measure on the space of tempered distributions

Theorem

Some properties of the Ito integral: let $f,g\in\mathcal{V}\left(0,T\right)$ and

- $0 \le Q < U < T$. Then

 - ② For $c \in \mathbb{R}$: $P\left(\int_Q^T (cf+g) dB = \int_Q^T cfdB + \int_Q^T gdB\right) = 1$

Property 3 is related to the fact that Ito integrals are martingales.

Definition

A stochastic process X_t is a martingale if for $s \leq t$

$$E(X_t|X_s) = X_s$$

i.e. "fair"; $E(X_t - X_s | X_s) = 0$, so $E(X_t) = E(X_0)$ for all t.

Theorem (Ito formula)

Let X_t be an Ito process and $g(t,x) \in C^2([0,\infty) \times \mathbb{R})$ then

$$Y_t = g(t, X_t)$$

is again an Ito process and

$$dY_t = \frac{\partial g}{\partial t}dt + \frac{\partial g}{\partial x}dX_t + \frac{1}{2}\frac{\partial^2 g}{\partial x^2} \cdot (dX_t)^2$$
 (3)

where $(dX_t)^2 = (dX_t) \cdot (dX_t)$ is computed according to

$$dt \cdot dt = dt \cdot dB_t = dB_t \cdot dt = 0$$
 $dB_t \cdot dB_t = dt$

Kind of like change of variables from single variable calculus.

One example

Does

$$\int_{0}^{T}B\left(t\right) dB_{t}=\frac{1}{2}\left(B\left(t\right) \right) ^{2}$$

If this were regular calculus it would but we're not in Kansas anymore; using Ito's formula with $Y(t) = \frac{1}{2} (B(t))^2$ we get that

$$d(Y(t)) = d\left(\frac{1}{2}(B(t))^{2}\right) = \frac{\partial g}{\partial t}dt + \frac{\partial g}{\partial x}dB_{t} + \frac{1}{2}\frac{\partial^{2}g}{\partial x^{2}}(dB_{t})^{2}$$
$$= B(t)dB_{t} + \frac{1}{2}(dB_{t})^{2} = B(t)dB_{t} + \frac{1}{2}dt$$

and so

$$\int d\left(\frac{1}{2}\left(B\left(t\right)\right)^{2}\right) = \int_{0}^{T} B\left(t\right) dB_{t} + \int_{0}^{T} \frac{1}{2} dt$$

implies

$$\int_{0}^{T} B(t) dB_{t} = \frac{1}{2} \left((B(t))^{2} - T \right)$$

Two more problems

• Equity price X_t obeys SDE with known r drift, α volatility (and discount rate ρ)

$$\frac{dX_t}{dt} = rX_t + \alpha X_t \cdot \text{"noise"}$$

Know X_s up to present t - when to sell? Since noisy, optimal stopping strategy maximizes expected returns. Can be solved by solving a corresponding semi-elliptic second order PDE with Dirichlet boundary conditions.

• Suppose at some time t the person in problem 3 is offered the right (without obligation) to buy one unit of the risky asset at a specified price K at a specified future date t=T. Such a right/asset is called a *European call option*. How much should they be willing to pay for the option? Problem solved by Fischer Black and Myron Scholes - called the Black-Scholes equation for option pricing

$$\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + rS \frac{\partial V}{\partial S} - rV = 0$$

where V is the price of the option as a function of the price of the asset, r is the risk-free interest rate, and σ is the volatility of the stock.

References

- Probability/Measure theory
 - Schilling Measures, Integrals, and Martingales
 - Resnick A Probability Path
 - Pollard A User's Guide to Measure Theoretic Probability
 - Billingsley Probability and Measure
- Stochastic processes
 - Ross Introduction to Probability Models
 - Lawler Introduction to Stochastic Processes
- Stochastic Differential Equations
 - Klebaner Introduction to Stochastic Calculus with Applications
 - Shreve Stochastic Calculus for Finance II: Continuous-Time Models
 - Oksendal Stochastic Differential Equations
- SDE Numerics
 - lacus Simulation and Inference for Stochastic Differential Equations

Appendix

Laplace - De Moivre

$$Var(X(n\Delta t)) = Var((2S_n - n)\Delta x) = (\Delta x)^2 Var((2S_n - n))$$

$$= 4(\Delta x)^2 Var(S_n) = 4(\Delta x)^2 Var\left(\sum_{i=1}^n X_i\right)$$

$$= 4(\Delta x)^2 n Var(X_i) = (\Delta x)^2 n = \frac{(\Delta x)^2}{\Delta t} t = Dt$$

$$X(n\Delta t) = (2S_n - n) \Delta x = \sqrt{n} \Delta x \left(\frac{S_n - \frac{n}{2}}{\sqrt{n/4}}\right)$$

$$= \sqrt{Dt} \left(\frac{\left(\sum_{i=1}^n X_i\right) - \frac{n}{2}}{\sqrt{n/4}}\right) = \sqrt{Dt} n \left(\frac{\frac{1}{n} \left(\sum_{i=1}^n X_i\right) - \frac{1}{2}}{\sqrt{n/4}}\right)$$

$$= \sqrt{Dt} \left[\left(\frac{\frac{1}{n} \left(\sum_{i=1}^n X_i\right) - \frac{1}{2}}{\sqrt{1/4}/\sqrt{n}}\right)\right]$$

Differentiable nowhere

 $B_t(\omega)$ has infinite total variation;

$$TV(f) := \lim_{n \to \infty} \sum_{i=1}^{m} \left| f\left(t_{j}^{(n)}\right) - f\left(t_{j-1}^{(n)}\right) \right|$$

over some $[Q, T]^6$. Here's a short proof of this: first define quadratic variation

$$QV(f) := \lim_{n \to \infty} \sum_{j=1}^{m} \left| f\left(t_{j}^{(n)}\right) - f\left(t_{j-1}^{(n)}\right) \right|^{2}$$

and notice that if f is continuous then

$$\sum_{j=1}^{m} \left| f\left(t_{j}^{(n)}\right) - f\left(t_{j-1}^{(n)}\right) \right|^{2} \leq \left(\max_{1 \leq j \leq m} \left| f\left(t_{j}^{(n)}\right) - f\left(t_{j-1}^{(n)}\right) \right| \right) \sum_{j=1}^{m} \left| f\left(t_{j}^{(n)}\right) - f\left(t_{j-1}^{(n)}\right) \right|$$

and so

$$\frac{\sum_{j=1}^{m}\left|f\left(t_{j}^{(n)}\right)-f\left(t_{j-1}^{(n)}\right)\right|^{2}}{\max_{1\leq j\leq m}\left|f\left(t_{j}^{(n)}\right)-f\left(t_{j-1}^{(n)}\right)\right|}\leq \sum_{j=1}^{m}\left|f\left(t_{j}^{(n)}\right)-f\left(t_{j-1}^{(n)}\right)\right|$$

⁶Recall that $T - Q = m \cdot 2^{-n}$.

and hence any continuous f that has non-zero quadratic variation has infinite total variation 7 . So all we need to prove is that $B_{\rm s}$ has non-zero quadratic variation. First some lemmas.

Fact

lf

$$\lim_{n\to\infty} Var\left[\sum_{j=1}^m \left(B_{t_j^{(n)}} - B_{t_{j-1}^{(n)}}\right)^2\right] = 0$$

then $\lim_{n\to\infty} QV(f) = T - Q$ in L^2 .

Proof: Let
$$\Delta B_j^2 = \left(B_{t_j^{(n)}} - B_{t_{j-1}^{(n)}}\right)^2$$
. Then if the variance goes to 0 8

$$\lim_{n \to \infty} E\left[\left(\sum_{j=1}^{m} \Delta B_{j}^{2}\right)^{2}\right] = \lim_{n \to \infty} \left(E\left[\sum_{j=1}^{m} \Delta B_{j}^{2}\right]\right)^{2} = \lim_{n \to \infty} \left(\sum_{j=1}^{m} E\left[\Delta B_{j}^{2}\right]\right)^{2}$$

$$= \lim_{n \to \infty} \left(\sum_{j=1}^{m} \left(t_{j}^{(n)} - t_{j-1}^{(n)}\right)\right)^{2} = \lim_{n \to \infty} (T - Q)^{2}$$

⁷Since $\max_{1 \le j \le m} \left| f\left(t_j^{(n)}\right) - f\left(t_{j-1}^{(n)}\right) \right| \to 0$ as $|\Pi| \to \infty$ for any continuous f and your only hope for the left side of the inequality not blowing up is if the numerator, QV(f), is 0.

⁸SinceVar(X) = $EX^2 - (EX)^2$.

and so

$$0 = \lim_{n \to \infty} \left(E\left[\left(\sum_{j=1}^{m} \Delta B_{j}^{2} \right)^{2} \right] - (T - Q)^{2} \right)$$

$$= \lim_{n \to \infty} \left(E\left[\left(\sum_{j=1}^{m} \Delta B_{j}^{2} \right)^{2} \right] - 2(T - Q)^{2} + (T - Q)^{2} \right)$$

$$= \lim_{n \to \infty} \left(E\left[\left(\sum_{j=1}^{m} \Delta B_{j}^{2} \right)^{2} \right] - 2(T - Q)E\left[\left(\sum_{j=1}^{m} \Delta B_{j}^{2} \right) \right] + (T - Q)^{2} \right)$$

$$= \lim_{n \to \infty} \left(E\left[\left(\sum_{j=1}^{m} \Delta B_{j}^{2} - (T - Q) \right)^{2} \right] \right)$$

which is the definition of convergence in L^2 .

Fact

On refinement of the mesh

$$\lim_{n \to \infty} Var \left[\sum_{i=1}^{m} \left(B_{t_j^{(n)}} - B_{t_{j-1}^{(n)}} \right)^2 \right] = 0$$

Proof:

$$\begin{aligned} \operatorname{Var} \left[\sum_{j=1}^{m} \left(B_{t_{j}^{(n)}} - B_{t_{j-1}^{(n)}} \right)^{2} \right] &= \sum_{j=1}^{m} \operatorname{Var} \left[\left(B_{t_{j}^{(n)}} - B_{t_{j-1}^{(n)}} \right)^{2} \right] \\ &= \sum_{j=1}^{m} \left(E \left[\left(B_{t_{j}^{(n)}} - B_{t_{j-1}^{(n)}} \right)^{2} \right] - \left(E \left[\left(B_{t_{j}^{(n)}} - B_{t_{j-1}^{(n)}} \right)^{2} \right] \right)^{2} \right) \\ &= \sum_{j=1}^{m} \left(E \left[\left(B_{t_{j}^{(n)}} - B_{t_{j-1}^{(n)}} \right)^{2} \right] - \left(t_{j}^{(n)} - t_{j-1}^{(n)} \right)^{2} \right) \\ &= \sum_{j=1}^{m} \left(1 \left(1 + 2 \right) \left(t_{j}^{(n)} - t_{j-1}^{(n)} \right)^{2} - \left(t_{j}^{(n)} - t_{j-1}^{(n)} \right)^{2} \right) \\ &= 2 \sum_{j=1}^{m} \left(t_{j}^{(n)} - t_{j-1}^{(n)} \right)^{2} \end{aligned}$$

which goes to 0 as the mesh is refined.

Theorem

For $f = B_t$ it's the case that $\lim_{n\to\infty} QV(f) = T - Q$ almost surely.

Proof: Let

$$X_i^{(n)} = \Delta B_j^2 - \left(t_j^{(n)} - t_{j-1}^{(n)}\right)$$

and

$$Y_n := \sum_{j=1}^m X_i^{(n)} = \sum_{j=1}^m \left(\Delta B_j^2 - \left(t_j^{(n)} - t_{j-1}^{(n)} \right) \right) = \sum_{j=1}^m \Delta B_j^2 - (T - Q)$$

Then

$$EY_n = E\left[\sum_{j=1}^m \left(B_{t_j^{(n)}} - B_{t_{j-1}^{(n)}}\right)^2\right] - E(T - Q)$$

= 0

and

$$EY_n^2 = E\left(\sum_{j=1}^m \left(X_i^{(n)}\right)^2 + \sum_{i < j} X_i^{(n)} X_j^{(n)}\right) = \sum_{j=1}^m E\left[\left(X_i^{(n)}\right)^2\right] + \sum_{i < j} E\left[X_i^{(n)} X_j^{(n)}\right]$$

but $E\left[X_i^{(n)}X_j^{(n)}\right]=0$ so

$$EY_n^2 = \sum_{i=1}^m E\left[\left(X_i^{(n)}\right)^2\right]$$

and so by Chebyshev's inequality 9

$$P(|Y_n| \ge \epsilon) \le \frac{E\left[(Y_n)^2\right]}{\epsilon^2}$$

$$= \frac{1}{\epsilon^2} \sum_{j=1}^m E\left[\left(X_i^{(n)}\right)^2\right]$$

$$= \frac{1}{\epsilon^2} \sum_{j=1}^m \left(t_j^{(n)} - t_{j-1}^{(n)}\right)^2$$

$$\le \frac{1}{\epsilon^2} \frac{1}{2^n} \sum_{j=1}^m \left(t_j^{(n)} - t_{j-1}^{(n)}\right)$$

$$= \frac{T - Q}{2^n \epsilon^2}$$

$${}^{9}P(|X-\mu| \geq \epsilon) \leq \frac{E[(X-\mu)^2]}{\epsilon^2}$$

and finally using Borel-Cantelli 10 with

$$\sum_{n=1}^{\infty} P(|Y_n| \ge \epsilon) \le \sum_{n=1}^{\infty} \frac{T - Q}{2^n \epsilon^2} = \frac{T - Q}{\epsilon^2}$$

which implies almost sure convergence 11 of $Y_n \rightarrow 0$.

 $^{^{10}}$ lf $\sum_{n=1}^{\infty} P(E_n) < \infty$ for some sequence of events E_n then $P(\limsup_{n \to \infty} E_n) = 0$.

 $^{^{11}}P(\liminf_{n \to \infty} |X_n - X| < \epsilon) = 1$ for all ϵ . Naturally this is to equivalent

 $P\left(\liminf_{n\to\infty}|X_n-X|>\epsilon\right)=0$ for all ϵ . Why? \liminf is the set of points ω that is ultimately in all of the sets and \limsup is the set of points ω appear infinitely often. So if the set of ω for which $|Y_n|\geq \epsilon$ occur infinitely often has measure 0 then set of ω for which $|Y_n|\leq \epsilon$ eventually always is almost all of them (otherwise $|Y_n|\geq \epsilon$ would keep happening once in a while).

Motivation

$$\frac{dx}{dt} = b(t, x) + \sigma(t, x) \cdot \text{"noise"}$$

becomes

$$X_{k+1} - X_k = b(t_k, X_k) \Delta t_k + \sigma(t_k, X_k) W_k \Delta t_k$$

where $X_k := X_{t_k}$. Restated the question is: does there exist some V_t such that for $\Delta V_k := V_{k+1} - V_k := V_{t_{k+1}} - V_{t_k}$

$$X_{k+1} - X_k = b(t_k, X_k) \Delta t_k + \sigma(t_k, X_k) (V_{k+1} - V_k)$$

= $b(t_k, X_k) \Delta t_k + \sigma(t_k, X_k) \Delta V_k$

Assumptions 1,2,3 above suggest that stationary, independent, and mean 0 increments. Why? Because what appears in the discretized model are the increments. Turns out the only such process with continuous paths is Brownian motion B_t . Thus putting $V_t = B_t$ and taking sums we get

$$\sum_{i=0}^{k-1} (X_{k+1} - X_k) = X_k - X_0 = \sum_{i=0}^{k-1} (b(t_i, X_i) \Delta t_i + \sigma(t_i, X_i) \Delta B_i)$$

Martingale

First for
$$I_n(s,\omega)$$
 with $\phi_n(\omega,t) = \sum_j a_j^{(n)}(\omega) \mathbf{1}_{\left[t_j^{(n)},t_{j+1}^{(n)}\right)}(t)$:

$$E(I_{n}(\omega, s) | \mathcal{F}_{t}) = E\left(\int_{0}^{t} \phi_{n} dB + \int_{s}^{t} \phi_{n} dB | \mathcal{F}_{t}\right)$$

$$= \int_{0}^{t} \phi_{n} dB + E\left(\sum_{t \leq t_{j}^{(n)} \leq t_{j+1}^{(n)} \leq s} a_{j}^{(n)} \Delta B_{j} \middle| \mathcal{F}_{t}\right)$$

$$= \int_{0}^{t} \phi_{n} dB + \sum_{j} E\left(E\left(a_{j}^{(n)} \Delta B_{j} \middle| \mathcal{F}_{t_{j}^{(n)}}\right) \middle| \mathcal{F}_{t}\right)$$

$$= \int_{0}^{t} \phi_{n} dB + \sum_{j} E\left(a_{j}^{(n)} E\left(\Delta B_{j} \middle| \mathcal{F}_{t_{j}^{(n)}}\right) \middle| \mathcal{F}_{t}\right)$$

$$= I_{n}(\omega, t)$$

Then by convergence of a.s convergence of $I_n(\omega,t) \to I(\omega,t)$ we get that $I(\omega,t)$ is a martingale.