## **Tetragonal Distortion of Octahedral Complexes**

The shapes of the transition metal complexes are affected by whether the *d*-orbitals are symmetrically or asymmetrically filled

Symmetrical electronic configuration:  $d^0$ ,  $d^3$ ,  $d^5$  (weak field),  $d^6$  (strong field),  $d^8$ ,  $d^{10}$ . d-electrons repel electrons of ligands equally

Asymmetrical electronic configuration:  $d^4$ ,  $d^7$  (strong field),  $d^9$  (in weak and strong field) d-electrons repel electrons of ligands unequally and the structure gets distorted

The effect is more for  $e_g$  orbitals (as they are directly facing ligands) than  $t_{2g}$  orbitals.

The distortion caused by asymmetric  $t_{2g}$  orbitals is usually small.

# Symmetrical electronic arrangement

| Electronic configuration | 12#      | e <sub>g</sub> | Nature of ligand field | Examples                                                                                                                                |  |
|--------------------------|----------|----------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|
| ď                        |          |                | Strong or weak         | Ti <sup>IV</sup> O <sub>2</sub> , [Ti <sup>IV</sup> F <sub>6</sub> ] <sup>2-</sup><br>[Ti <sup>IV</sup> Cl <sub>6</sub> ] <sup>2-</sup> |  |
| d³                       | † † †    |                | Strong or weak         | [Cr <sup>III</sup> (oxalate) <sub>3</sub> ] <sup>3-</sup><br>[Cr <sup>III</sup> (H <sub>2</sub> O) <sub>6</sub> ] <sup>3+</sup>         |  |
| d <sup>5</sup>           | 1 1 1    | 1 1            | Weak                   | [Mn <sup>II</sup> F <sub>6</sub> ] <sup>4-</sup><br>[Fe <sup>III</sup> F <sub>6</sub> ] <sup>3-</sup>                                   |  |
| d <sup>6</sup>           | 11 11 11 |                | Strong                 | [Fe <sup>II</sup> (CN) <sub>6</sub> ] <sup>4-</sup><br>[Co <sup>III</sup> (NH <sub>3</sub> ) <sub>6</sub> ] <sup>3+</sup>               |  |
| ď <sup>8</sup>           | 11 11 11 | 1 1            | Weak                   | [Ni <sup>H</sup> F <sub>6</sub> ] <sup>4-</sup><br>[Ni <sup>H</sup> (H <sub>2</sub> O) <sub>6</sub> ] <sup>2+</sup>                     |  |
| d <sup>to</sup>          | 11 11 11 | tt tt          | Strong or weak         | $[Zn^{11}(NH_6)_6]^{2+}$<br>$[Zn^{12}(H_2O)_6]^{2+}$                                                                                    |  |

## Asymmetrical electronic arrangement

| Electronic configuration | 124      | e,   | Nature of ligand field             | Examples          |
|--------------------------|----------|------|------------------------------------|-------------------|
| d¹                       | f [t]    | 1    | Weak field<br>(high-spin complex)  | Cr(+11). Mn(+111) |
| d <sup>7</sup>           | 11 11 11 | 1    | Strong field<br>(low-spin complex) | Co(+11), Ni(+111) |
| ď⁴                       | ți ți ți | 11 1 | Either strong<br>or weak           | Cu(+11)           |

# Tetragonal Distortion contd...

e<sub>a</sub> orbitals if asymmetrically filled no longer remain degenerate

If  $d_{z^2}$  is filled, two ligands feel greater repulsion than the other four ligands. As a result these two bonds get elongated causing *tetragonal distortion* (Z-out)



If  $d_{x^2-y^2}$  is filled, four ligands feel greater repulsion than the other two ligands. As a result these four bonds get elongated and two bonds get shortened causing **Z**-in *distortion*; less stable condition and such cases are rare

## Jahn-Teller Theorem

Hermann Arther Jahn and Edward Teller stated that for a nonlinear molecule in an electronically degenerate ground state distortion must occur to lower the symmetry, remove degeneracy and lower energy– known as Jahn-Teller Theorem

## Octahedral Energy Level Diagram in a Tetragonal Field

# Structural effects of Jahn-Teller distortion



# Square planar complexes

 $d^8$  configuration ( $t_{2g}^6 e_g^2$ ) - the arrangement is symmetrical BUT this is applicable only for weak field cases e.g. [Ni(H<sub>2</sub>O)<sub>6</sub>]<sup>2+</sup> or [Ni(NH<sub>3</sub>)<sub>6</sub>]<sup>2+</sup>

In strong field: An electron in  $d_{x^2-y^2}$  gets repelled by four ligands whereas an electron in  $d_{z^2}$  gets repelled by only two ligands Thus  $e_q$  orbitals do not remain degenerate (Jahn-Teller distortion)

When the splitting of  $d_z 2$  and  $d_x 2_{--y} 2$  is more than the pairing energy of electrons, two electrons occupy  $d_z 2$  orbital and the  $d_x 2_{--y} 2$  will be empty.



The ligands along z-axis will experience more repulsion by two electrons.

These two ligands will not come to bonding distance with the metal — *leading to square planar complex* 

# Square planar arrangement



# Square planar complexes contd...

#### Square planar complexes are formed

- ✓ With strong field ligands for 1<sup>st</sup> and other row elements
- ✓ Metals at higher oxidation state
- ✓ Even with weak field ligands for 2<sup>nd</sup> and 3<sup>rd</sup> row elements

Mainly  $d^8$  and  $d^9$  systems form square planar complexes (e.g. Pt(II), Au(III))

# Tetrahedral complexes





# Tetrahedral complexes





 $\Delta_{\rm t}$  = (4/9)  $\Delta_{\rm o}$  (each point contribute 2/3 factor to tetrahedral field)

# CFSE and electronic arrangement of tetrahedral complexes

| Number of d electrons   | Arrangement of electrons |          | Spin only<br>magnetic | Tetrahedral<br>CFSE | Tetrahedral<br>CFSE scaled                                                       | Octahedral<br>CFSE Δ <sub>o</sub> |                 |
|-------------------------|--------------------------|----------|-----------------------|---------------------|----------------------------------------------------------------------------------|-----------------------------------|-----------------|
| electrons               |                          |          | moment<br>μ(D)        | . Δ <sub>1</sub>    | for comparison with octahedral values, assuming $\Delta_1 = \frac{4}{9}\Delta_0$ | Weak<br>field                     | Strong<br>field |
| d¹                      | †                        |          | 1.73                  | -0.6                | -0.27                                                                            | -0.4                              | -0.4            |
| d²                      | 1 1                      |          | 2.83                  | -1.2                | -0.53                                                                            | -0.8                              | -0.8            |
| d³                      | 1 1                      | †        | 3.87                  | -1.2 + 0.4 = -0.8   | -0.36                                                                            | -1.2                              | -1.2            |
| d*                      | 11                       | † †      | 4.90                  | -1.2 + 0.8 = -0.4   | -0.18                                                                            | -0.6                              | -1.6            |
| . <b>d</b> <sub>5</sub> | <u>t 1</u>               | 111      | 5.92                  | -1.2 + 1.2 = 0.0    | 0.00                                                                             | 0.0                               | -2.0            |
| ď                       | 11 1                     | 1 1 1    | 4.90                  | -1.8 + 1.2 = -0.6   | -0.27                                                                            | -0.4                              | -2.4            |
| d <sub>7</sub>          | 11 11                    | 1 1 1    | 3.87                  | -2.4 + 1.2 = -1.2   | -0.53                                                                            | -0.8                              | -1.8            |
| ď×                      | 11 11                    | 11 1 1   | 2.83                  | -2.4 + 1.6 = -0.8   | -0.36                                                                            | -1.2                              | -1.2            |
| ď                       | 11 11                    | 11 11 1  | 1.73                  | -2.4 + 2.0 = -0.4   | -0.18                                                                            | -0.6                              | -0.6            |
| d <sup>io</sup>         | 11 11                    | 11 11 11 | 0.00                  | -2.4 + 2.4 = 0.0    | 0.00                                                                             | 0.0                               | 0.0             |

CFSE<sub>Td</sub> =  $(-n_{(e)} \times 0.6 + n_{(t2)} \times 0.4) \times \Delta_t$ 

Acetylacetonato ion



Oxalate ion



N,N'-Diethylthiocarbamate

Salicylaldehyde anion

2,2'-Dipyridyl



1,10-Phenanthroline (o-phenanthroline)

8-Hydroxyquinolinol io.
(oxine)

Dimethylglyoxime anion

 Phenylenebisdimethylarsine (diarsine)





#### Tetradentate ligand

#### Several chelate compounds are of biological importance

Hemoglobin — Fe complex

Chlorophyll - Mg complex

Vitamin B<sub>12</sub> - Co complex



Hexadentate ligand

## Isomerism



### Structural isomerism

Polymerization isomerism: They are not true isomers but have same empirical formula

 $[Pt(NH_3)_2Cl_2]$ ,  $[Pt(NH_3)_4][PtCl_4]$  and  $[Pt(NH_3)_4][Pt(NH_3)Cl_3]_2$ 

Ionization isomerism: This type of isomerism is due to the exchange of groups/ions between the complex ion and the ions outside it.

$$[Co(NH_3)_5Br]SO_4 \xrightarrow{BaCl_2} ppt of BaSO_4$$

$$ppt of AgBr \xrightarrow{AgNO_3} [Co(NH_3)_5SO_4]Br \xrightarrow{BaCl_2} no ppt of BaSO_4$$

Hydrate isomerism: When there is different number of water molecule stay inside the coordination sphere and outside the coordination sphere to give same chemical formula.

 $[Cr(H_2O)_6]Cl_3$ , violet  $[CrCl(H_2O)_5]Cl_2.H_2O$ , pale green  $[CrCl_2(H_2O)_4]Cl.2H_2O$ , dark green

### Structural isomerism

Linkage isomerism: when there are ligands contain more than one atom which could donate electron pair ----- linkage to central metal ion through different atom.

 $[Co(NO_2)(NH_3)_5]^{2+}$  and  $[Co(ONO)(NH_3)_5]^{2+}$ 

Coordination isomerism: Coordination compounds made up of cationic and anionic coordination entities show isomerism due to the interchange of ligands between the cation and anion entities.

 $[Co(NH_3)_6][Cr(CN)_6]$  and  $[Cr(NH_3)_6][Co(CN)_6]$ 

### Stereoisomerism

Geometrical isomerism (cis-trans)

[Pt(NH<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>]

Optical isomerism: the isomers have opposite effects on plane-polarized light

 $[Co(en)_3]$ 

# Geometrical isomerism in square planar complexes

 $MA_2B_2$ 



2 (cis- and trans-)



If the bidentate chelating ligand is not symmetrical, 2 isomers (cis and trans) can form

## Geometrical isomerism in Octahedral complexes

#### Compound type

 $Ma_2b_4$   $Ma_3b_3$   $M(aa)_2b_2$  $M(ab)_3$ 

#### No. of isomers

2 (cis- and trans-)

2 (fac- and mer-)

3 (2 cis- and 1 trans-)

2 (fac- and mer-)

#### $MA_2B_4$





## Geometrical isomerism in Octahedral complexes





 $MAA_2B_2$ [ $Co(en)_2Cl_2$ ]



Tetrahedral symmetry does not show geometrical isomerism

# Optical isomerism



d or  $\Delta$  – right hand rotation l or  $\Lambda$  – right hand rotation



# Optical isomerism in Octahedral complexes

#### $MAA_3$ e.g. $[Co(en)_3]$





 $MAA_2B_2$  e.g.  $[Co(en)_2Cl_2]$ 



MAA<sub>2</sub>BC e.g. [Co(en)<sub>2</sub>NH<sub>3</sub>Cl]

