Flexible Snow Model user guide

Richard Essery

2 January 2019

1 FSM2

The Flexible Snow Model (FSM2) is a multi-physics energy balance model of snow accumulation and melt, extending the Factorial Snow Model (FSM) with additional physics, driving and output options. FSM2 adds forest canopy model options and the possibility of running simulations for more than one point at the same time. For greater efficiency in long simulations than FSM, which selects physics options when it is run, FSM2 options are selected when the model is compiled. Otherwise, FSM2 is built and run in the same way as FSM.

2 Compiling the model

FSM2 is coded in Fortran and consists of subroutines and modules contained in the src directory. A linux executable FSM2 or a Windows executable FSM2.exe is produced by running script compil.sh or batch file compil.bat. Both use the gfortran compiler but could be edited for other compilers. Driving data, physics and output configurations are selected in the compilation script by defining option numbers that are copied to a preprocessor file src/OPTS.h before compilation.

2.1 Driving data compilation options

Option number	Description	Options
DRIV1D	1D driving data format	0 - FSM format
		1 - extended data format with SW components
		2 - ESM-SnowMIP format
DOWNSC	1D driving data downscaling	0 - no
		1 - yes
DEMHDR	Header information in DEM for downscaling	0 - none
		1 - ESRI format
SWPART	Shortwave radiation partition	0 - Total SW radiation used
		1 - Diffuse and direct SW calculated
		2 - Diffuse and direct SW in extended data
ZOFFST	Measurement height offset	0 - Height above ground
		1 - Height above canopy top

2.2 Physics compilation options

Option number	Description	Options
ALBEDO	Snow albedo	0 - diagnostic temperature function
		1 - prognostic age function
CANMOD	Forest canopy	0 - zero layer
		1 - one layer
CONDCT	Thermal conductivity of snow	0 - fixed
		1 - function of density
DENSTY	Snow density	0 - fixed
		1 - function of age

		2 - function of overburden
EXCHNG	Surface-atmosphere exchange	0 - fixed exchange coefficient
		1 - function of Richardson number
HYDROL	Snow hydrology	0 - free draining
		1 - bucket
SNFRAC	Snow cover fraction	$0 - f_s = h/(h + h_f)$
		$1 - f_s = \tanh(h/h_f)$

2.3 Output compilation options

Option number	Description	Options
TXTOUT	Text output format	0 - sample and average files
		1 - ESM-SnowMIP output tables

3 Running the model

FSM2 requires meteorological driving data and namelists to set options and parameters. The model is run with the commands ./FSM2 < nlst.txt or FSM2.exe < nlst.txt, where nlst.txt is a text file containing eight namelists described in tables below. All of the namelists have to be present in the order of the tables, but any or all of the variables listed in a namelist can be omitted; defaults are then used.

3.1 Grid dimensions namelist &gridpnts

FSM2 can be run at a point, at a sequence of points, with a range of surface characteristics or on a rectangular grid by selecting values for dimensions Nx and Ny.

Variable	Default	Description
Nsmax	3	Maximum number of snow layers
Nsoil	4	Number of soil layers
Nx	1	Number of grid points in x direction or in sequence
Ny	1	Number of grid points in y direction
ztop_file	none	DEM file name

A DEM file has to be specified if FSM2 is complied with DOWNSC=1. Files in the ESRI ASCII raster format (DEMHDR=1) have six header lines with grid information, e.g.

 ncols
 1000

 nrows
 1000

 xllcorner
 215000

 yllcorner
 770000

 cellsize
 5

 NODATA_value
 -9999

If provided, ncols and nrows overwrite Nx and Ny from &gridpnts.

3.2 Model levels namelist &gridlevs

Snow and soil layers are numbered and listed from the top downwards. If layer thicknesses are specified in &gridlevs, they must match the numbers of layers specified in &gridpnts.

Variable	Default	Description
Dzsnow	0.1, 0.2, snowdepth - 0.3 m	Snow layer thicknesses
Dzsoil	0.1, 0.2, 0.4, 0.8 m	Soil layer thicknesses

3.3 Driving data namelist &drive and driving data files

Variable	Default	Description	Used by
met_file	'met'	Driving data file name	
dt	$3600 { m \ s}$	Timestep	
zT	2 m	Temperature and humidity measurement height	
zU	10 m	Wind speed measurement height	
lat	0°	Latitude	SWPART=1
noon	12.00	Time of solar noon	SWPART=1
Pscl	$0.35 \; {\rm km^{-1}}$	Precipitation adjustment scale	DOWNSC=1
Tlps	$6.5 \; { m K} \; { m km}^{-1}$	Temperature lapse rate	DOWNSC=1
Tsnw	2°C	Snow threshold temperature	DOWNSC=1
zaws	0 m	Weather station elevation for downscaling	DOWNSC=1

Measurement heights are specified above the ground if FSM2 is compiled with ZOFFST=0 and above the canopy top if ZOFFST=1 (required for driving with reanalyses). For simulations at a point or for a set of nearby points with common meteorology, 1D driving data are read from the named text file. Driving variables are arranged in columns of the file and rows correspond with timesteps.

Variable	Units	Description	Used by
year	years	Year	
month	months	Month of the year	
day	days	Day of the month	
hour	years	Hour of the day	
LW	$ m W~m^{-2}$	Incoming longwave radiation	
Ps	Pa	Surface air pressure	
Rf	${\rm kg} \ {\rm m}^{-2} \ {\rm s}^{-1}$	Rainfall rate	
RH	%	Relative humidity	
Sf	${\rm kg} \ {\rm m}^{-2} \ {\rm s}^{-1}$	Snowfall rate	
Ta	K	Air temperature	
Ua	$\mathrm{m}\;\mathrm{s}^{-1}$	Wind speed	
SW	$ m W~m^{-2}$	Incoming shortwave radiation	DRIV1D=0,2
Sdif	$ m W~m^{-2}$	Diffuse shortwave radiation	DRIV1D=1
Sdir	$ m W~m^{-2}$	Direct-beam shortwave radiation	DRIV1D=1
Qa	$kg kg^{-1}$	Specific humidity	DRIV1D=2

The columns in a 1D driving data file are:

```
year month day hour SW LW Sf Rf Ta RH Ua Ps for DRIV1D=0 year month day hour Sdif Sdir LW Sf Rf Ta RH Ua Ps for DRIV1D=1 year month day hour SW LW Rf Sf Ta Qa RH Ua Ps for DRIV1D=2
```

3.4 Parameters namelist ¶ms

The parameters used depend on which options are selected and whether a forest canopy is specified.

Parameter	Default	Description	Used by	
		Snow albedo parameters		
asmx	0.8	Maximum albedo for fresh snow		
asmn	0.5	Minimum albedo for melting snow		
hfsn	0.1 m	Snow cover fraction depth scale		
Talb	-2°C	Snow albedo decay temperature threshold	ALBEDO=0	
Salb	$10 {\rm \ kg \ m^{-2}}$	Snowfall to refresh albedo	ALBEDO=1	
tcld	1000 h	Cold snow albedo decay time scale	ALBEDO=1	
tcld	100 h	Melting snow albedo decay time scale	ALBEDO=1	
	Snow thermal conductivity parameters			
kfix	$0.24~{ m W}~{ m m}^{-1}~{ m K}^{-1}$	Fixed thermal conductivity	CONDCT=0	
bthr	2	Thermal conductivity exponent	CONDCT=1	

	Snow density parameters			
rho0	300 kg m^{-3}	Fixed snow density	DENSTY=0	
rhof	100 kg m^{-3}	Fresh snow density	DENSTY=1,2	
rcld	300 kg m^{-3}	Maximum density for cold snow	DENSTY=1	
rmlt	500 kg m^{-3}	Maximum density for melting snow	DENSTY=1	
trho	200 h	Snow compaction time scale	DENSTY=1	
eta0	$3.7 \times 10^{7} \text{ Pa s}$	Reference snow viscosity	DENSTY=2	
snda	$2.8 \times 10^{-6} \text{ s}^{-1}$	Thermal metamorphism parameter	DENSTY=2	
	Turbulent exchange parameters			
z0sn	0.01 m	Snow surface roughness length		
bstb	5	Atmospheric stability parameter	EXCHNG=1	
	Snow hydraulics parameters			
Wirr	0.03	Irreducible liquid water content of snow	HYDROL=1	
Soil parameters				
gsat	0.01 m s^{-1}	Surface conductance for saturated soil		
	Solver parameters			
Nitr	4	Number of iterations in energy balance calculation		

Canopy parameters			
Parameter	Default	Description	
avg0	0.1	Snow-free vegetation albedo	
avgs	0.4	Snow-covered vegetation albedo	
cden	0.004	Dense canopy turbulent transfer coefficient	
cvai	4.4 kg m^{-2}	Canopy snow capacity per unit VAI	
cveg	20	Vegetation turbulent transfer coefficient	
Gcn1	0.5	Leaf angle distribution parameter	
Gcn2	0	Leaf angle distribution parameter	
gsnf	0 m s^{-1}	Snow-free vegetation moisture conductance	
kdif	0.5	Diffuse radiation extinction coefficient	
kveg	1.0	Canopy cover coefficient	
rchd	0.67	Displacement height to canopy height ratio	
rchz	0.1	Roughness length to canopy height ratio	
tcnc	240 h	Canopy unloading time scale for cold snow	
tcnm	2.4 h	Canopy unloading time scale for melting snow	

3.5 Site characteristics namelist &maps and map files

Parameter	Default	Description
alb0	0.2	Snow-free ground albedo
canh	2500 VAI	Canopy heat capacity (J K^{-1} m^{-2})
fcly	0.3	Soil clay fraction
fsnd	0.6	Soil sand fraction
fsky	1	Sky view fraction
fveg	1 - exp(-kveg VAI)	Canopy cover fraction
hcan	0	Canopy height (m)
trcn	exp(-kdif VAI)	Canopy transmissivity
VAI	0	Vegetation area index
z0sf	0.1	Snow-free ground roughness length

Site characteristics can either be left as default values, set to a sequence of $Nx \times Ny$ values in the namelist or read from a named map file. e.g. for a simulation with 10 points, the snow-free ground albedo can be reset to a constant value of 0.1 in &maps by including

```
or set to a sequence (with spaces or commas) by including alb0 = 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 or read from a file albedo.txt containing 10 values by including alb0_file = 'albedo.txt'
```

Sky view can be set independently of vegetation cover to allow for grid cells shaded by topography or vegetation in neighbouring cells.

3.6 Initial values namelist &initial and start files

Variable	Default	Description
start_file	'none'	Start file name
fsat	4*0.5	Initial moisture content of soil layers as fractions of saturation
Tsoil	4*285	Initial temperature of soil layers

Soil temperature and moisture content are taken from the namelist and FSM2 is initialized in a snow-free state by default. If a start file is named, it should be a text file containing initial values for each of the state variables in order:

Variable Units		Description
albs(Nx,Ny)	-	Albedo of snow
Ds(Nsmax,Nx,Ny)	m	Thickness of snow layers
Nsnow(Nx,Ny)	-	Number of snow layers
Qcan(Nx,Ny)	$\rm kg~kg^{-1}$	Canopy air space specific humidity
Sice(Nsmax,Nx,Ny)	${\rm kg~m^{-2}}$	Ice content of snow layers
Sliq(Nsmax,Nx,Ny)	${ m kg~m^{-2}}$	Liquid content of snow layers
Sveg(Nx,Ny)	$ m W~m^{-2}$	Snow mass on canopy
Tcan(Nx,Ny)	K	Canopy air space temperature
theta(Nsoil,Nx,Ny)	-	Volumetric moisture content of soil layers
Tsnow(Nsmax,Nx,Ny)	K	Temperature of snow layers
Tsoil(Nsoil,Nx,Ny)	K	Temperature of soil layers
Tsrf(Nx,Ny)	K	Surface skin temperature
Tveg(Nx,Ny)	K	Vegetation temperature

The easiest way to generate a start file is to spin up the model by running it for a whole number of years without a start file and then rename the dump file produced at the end of the run as a start file for a new run.

3.7 Output namelist &outputs and text output files

Variable	Default	Description
Nave	24	Number of timesteps in averaged outputs
Nsmp	12	Timestep of sample outputs, \leq Nave
runid	none	Run identifier string
dump_file	'dump'	Dump file name

A run identifier, if specified, is prefixed on all output file names. If the run identifier includes a directory name (e.g. runid = 'output/'), the directory has to exist before the model is run. A metadata file runid+'runifo' containing copies of all the namelists and compilation options is written at the start of a run, and the state variables are written to a dump file runid+dump_file with the same format as the start file at the end of a run. There are two options for plain text outputs

3.7.1 Text output option TXTOUT=0

Flux variable are averaged over Nave timesteps and written to file runid+'ave', and state variables are written to file runid+'smp' at timestep number Nsmp during every averaging period. For the default output frequencies, daily averages and samples at noon will be produced if the driving data has a one-hour timestep and starts at 01:00. Full

timeseries are written if Nave=1 and Nsmp=1. The sample file has $4 + 3 \times Nx \times Ny$ columns:

Variable	Units	Description
year	years	Year
month	months	Month of the year
day	days	Day of the month
hour	hours	Hour of the day
<pre>snd(Nx*Ny)</pre>	m	Snow depth
SWE(Nx*Ny)	${ m kg~m^{-2}}$	Snow water equivalent
Sveg(Nx*Ny)	${\rm kg}~{\rm m}^{-2}$	Canopy snow mass

The average file has $3 + 12 \times Nx \times Ny$ columns:

Variable	Units	Description
year	years	Year
month	months	Month of the year
day	days	Day of the month
alb(Nx*Ny)	_	Flux-weighted albedo
G(Nx*Ny)	$ m W~m^{-2}$	Ground heat flux
H(Nx*Ny)	$ m W~m^{-2}$	Sensible heat flux to the atmosphere
Hsrf(Nx*Ny)	$ m W~m^{-2}$	Sensible heat flux from the surface
LE(Nx*Ny)	$ m W~m^{-2}$	Latent heat flux to the atmosphere
LEsrf(Nx*Ny)	$ m W~m^{-2}$	Latent heat flux from the surface
Melt(Nx*Ny)	${\rm kg}~{\rm m}^{-2}$	Cumulated melt
<pre>Rnet(Nx*Ny)</pre>	$ m W~m^{-2}$	Net radiation
Roff(Nx*Ny)	${ m kg~m^{-2}}$	Cumulated runoff
Rsrf(Nx*Ny)	$ m W~m^{-2}$	Net radiation absorbed by the surface
Tsrf(Nx*Ny)	$^{\circ}\mathrm{C}$	Surface temperature
Tsoil(Nx*Ny)	$^{\circ}\mathrm{C}$	20 cm soil temperature

3.7.2 Text output option TXTOUT=1

Energy fluxes, water fluxes and state variables are written on the Nsmp timesteps to files runid+'ebal', runid+'wbal' and runid+'svar' with the formats of ESM-SnowMIP output tables. This option is only available for simulations at a single point (Nx=Ny=1).