

planetmath.org

Math for the people, by the people.

identity in a class

Canonical name IdentityInAClass
Date of creation 2013-03-22 16:48:05
Last modified on 2013-03-22 16:48:05

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 7

Author CWoo (3771)
Entry type Definition
Classification msc 08B99
Defines identity

Let K be a class of algebraic systems of the same type. An *identity* on K is an expression of the form p = q, where p and q are n-ary polynomial symbols of K, such that, for every algebra $A \in K$, we have

$$p_A(a_1,\ldots,a_n)=q_A(a_1,\ldots,a_n)$$
 for all $a_1,\ldots,a_n\in A$,

where p_A and q_A denote the induced polynomials of A by the corresponding polynomial symbols. An identity is also known sometimes as an *equation*.

Examples.

- Let K be a class of algebras of the type $\{e,^{-1},\cdot\}$, where e is nullary, $^{-1}$ unary, and \cdot binary. Then
 - 1. $x \cdot e = x$,
 - $2. e \cdot x = e$
 - 3. $(x \cdot y) \cdot z = x \cdot (y \cdot z)$,
 - 4. $x \cdot x^{-1} = e$,
 - 5. $x^{-1} \cdot x = e$, and
 - 6. $x \cdot y = y \cdot x$.

can all be considered identities on K. For example, in the fourth equation, the right hand side is the unary polynomial q(x) = e. Any algebraic system satisfying the first three identities is a monoid. If a monoid also satisfies identities 4 and 5, then it is a group. A group satisfying the last identity is an abelian group.

- Let L be a class of algebras of the type $\{\vee, \wedge\}$ where \vee and \wedge are both binary. Consider the following possible identities
 - 1. $x \lor x = x$,
 - $2. \ x \lor y = y \lor x,$
 - 3. $x \lor (y \lor z) = (x \lor y) \lor z$,
 - 4. $x \wedge x = x$,
 - 5. $x \wedge y = y \wedge x$,
 - 6. $x \wedge (y \wedge z) = (x \wedge y) \wedge z$,
 - 7. $x \lor (y \land x) = x$,

8.
$$x \wedge (y \vee x) = x$$
,

9.
$$x \lor (y \land (x \lor z)) = (x \lor y) \land (x \lor z),$$

10.
$$x \wedge (y \vee (x \wedge z)) = (x \wedge y) \vee (x \wedge z),$$

11.
$$x \lor (y \land z) = (x \lor y) \land (x \lor z)$$
, and

12.
$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$$
.

If algebras of K satisfy identities 1-8, then K is a class of lattices. If 9 and 10 are satisfied as well, then K is a class of modular lattices. If every identity is satisified by algebras of K, then K is a class of distributive lattices.