Tjaša Vrhovnik

Mentor: akad. prof. dr. Franc Forstnerič Univerza v Ljubljani Fakulteta za matematiko in fiziko Matematika – 2. stopnja

januar 2022

Struktura magistrskega dela

- Uvod
- Osnovni pojmi
- Minimalne ploskve
- Izreki o aproksimaciji in interpolaciji minimalnih ploskev

Kratka zgodovina

- L. Euler opiše katenoido (l. 1744)
- J. L. Lagrange enačba za minimalne grafe (l. 1762)
- J. B. Meusnier ploskve z ničelno povprečno ukrivljenostjo lokalno minimizirajo površino
- J. Plateau poskusi z milnico
- Razvoj kompleksne analize in diferencialne geometrije reprezentacijska formula (l. 1866)
- T. Radó (l. 1930) in J. Douglas (l. 1931) rešita Plateaujev problem

Definicija

Riemannova ploskev je kompleksna mnogoterost kompleksne dimenzije 1.

Definicija

Gladka preslikava $f: M \to N$ med gladkima mnogoterostma se imenuje imerzija v točki $p \in M$, če je njen diferencial $df_p: T_pM \to T_{f(p)}N$ injektiven.

Konformne imerzije razreda \mathscr{C}^2 iz odprte Riemannove ploskve v Evklidski prostor

$$x: M \to \mathbb{R}^n, n \ge 3.$$

Definicija

Povprečna ukrivljenost ploskve S v točki p in normalni smeri N je povprečje glavnih ukrivljenosti,

$$H^{N}(p) = \frac{1}{2} \left(\kappa_1^{N}(p) + \kappa_2^{N}(p) \right). \tag{1}$$

Vektor povprečne ukrivljenosti v točki p je vektor \mathbf{H} , *ki zadošča* $H^N(p) = \mathbf{H} \cdot N$ *za vsak* $N \in N_D S$.

Definicija

Naj bo $x \colon M \to \mathbb{R}^n$ harmonična preslikava. Njen pretok je homomorfizem grup $\mathrm{Flux}_x \colon H_1(M,\mathbb{Z}) \to \mathbb{R}^n$, definiran s predpisom

$$\operatorname{Flux}_{X}([C]) = \int_{C} d^{C} x. \tag{2}$$

Definicija

Naj bo K kompaktna podmnožica Riemannove ploskve M. Njena holomorfna ogrinjača je množica

$$\widehat{K}_{\mathscr{O}(M)} = \{ p \in M; \ |f(p)| \le \max_{K} |f| \ \text{za vse } f \in \mathscr{O}(M) \}. \tag{3}$$

Če velja $K = \hat{K}_{\mathcal{O}(M)}$, potem K imenujemo Rungejeva množica.

Definicija

Naj bo $x \colon M \to \mathbb{R}^n$ harmonična preslikava. Njen pretok je homomorfizem grup $\mathrm{Flux}_x \colon H_1(M,\mathbb{Z}) \to \mathbb{R}^n$, definiran s predpisom

$$\operatorname{Flux}_{X}([C]) = \int_{C} d^{C} x. \tag{2}$$

Definicija

Naj bo K kompaktna podmnožica Riemannove ploskve M. Njena holomorfna ogrinjača je množica

$$\widehat{\mathcal{K}}_{\mathscr{O}(M)} = \{ p \in M; \ |f(p)| \le \max_{K} |f| \ \textit{za vse } f \in \mathscr{O}(M) \}. \tag{3}$$

Če velja $K = \widehat{K}_{\mathcal{O}(M)}$, potem K imenujemo Rungejeva množica.

Definicija

Naj bo M gladka kompaktna ploskev z robom, $n \ge 3$ in naj bo preslikava $x: M \to \mathbb{R}^n$ imerzija razreda \mathscr{C}^2 . Variacija preslikave x s fiksnim robom je 1-parametrična družina \mathscr{C}^2 preslikav

$$x^t : M \to \mathbb{R}^n, \quad t \in (-\varepsilon, \varepsilon) \subset \mathbb{R},$$
 (4)

če je $x^0 = x$ in za vse t z intervala velja $x^t = x$ na bM.

Definicija (Minimalna ploskev)

Naj bo $x \colon M \to \mathbb{R}^n$ imerzija razreda \mathscr{C}^2 . Sliko x(M) imenujemo minimalna ploskev, če za vsako kompaktno domeno $D \subset M$ z gladkim robom bD in vsako gladko variacijo x^t preslikave x s fiksnim robom velja

$$\frac{d}{dt}\Big|_{t=0} \operatorname{Area}\left(x^t(D)\right) = 0.$$
 (5)

Ekvivalentno pravimo, da je minimalna ploskev stacionarna točka ploskovnega funkcionala Area.

Definicija

Naj bo M gladka kompaktna ploskev z robom, $n \ge 3$ in naj bo preslikava $x \colon M \to \mathbb{R}^n$ imerzija razreda \mathscr{C}^2 . Variacija preslikave x s fiksnim robom je 1-parametrična družina \mathscr{C}^2 preslikav

$$x^t : M \to \mathbb{R}^n, \quad t \in (-\varepsilon, \varepsilon) \subset \mathbb{R},$$
 (4)

če je $x^0 = x$ in za vse t z intervala velja $x^t = x$ na bM.

Definicija (Minimalna ploskev)

Naj bo $x: M \to \mathbb{R}^n$ imerzija razreda \mathscr{C}^2 . Sliko x(M) imenujemo minimalna ploskev, če za vsako kompaktno domeno $D \subset M$ z gladkim robom bD in vsako gladko variacijo x^t preslikave x s fiksnim robom velja

$$\frac{d}{dt}\Big|_{t=0} \text{Area}\left(x^t(D)\right) = 0. \tag{5}$$

Ekvivalentno pravimo, da je minimalna ploskev stacionarna točka ploskovnega funkcionala Area.

Izrek

Naj bo M odprta Riemannova ploskev, $n \ge 3$ in $x = (x_1, ..., x_n) \colon M \to \mathbb{R}^n$ konformna imerzija razreda \mathscr{C}^2 . Naslednje trditve so ekvivalentne.

- x je minimalna ploskev.
- ② Vektorsko polje povprečne ukrivljenosti preslikave x je ničelno, tj. $\mathbf{H} = 0$.
- x je harmonična.
- **1**-forma $\partial x = (\partial x_1, \dots, \partial x_n)$ z vrednostmi v \mathbb{C}^n je holomorfna in velja

$$(\partial x_1)^2 + \dots + (\partial x_n)^2 = 0.$$
 (6)

3 Naj bo θ holomorfna 1-forma na M, ki ni nikjer enaka 0. Potem je preslikava $f = 2\partial x/\theta : M \to \mathbb{C}^n$ holomorfna z vrednostmi v punktirani ničelni kvadriki

$$\mathbf{A}_* = \{ (z_1, \dots, z_n) \in \mathbb{C}_*^n; \ z_1^2 + \dots + z_n^2 = 0 \}.$$
 (7)

Nadalje je Riemannova metrika na M, inducirana s konformno imerzijo x, enaka

$$g = x^* ds^2 = |dx_1|^2 + \dots + |dx_n|^2 = 2(|\partial x_1|^2 + \dots + |\partial x_n|^2).$$
 (8)

Izrek (Enneper-Weierstrassova formula)

Naj bo $n \ge 3$ in M odprta Riemannova ploskev. Na njej izberimo holomorfno 1-formo $\phi = (\phi_1, \dots, \phi_n)$ z vrednostmi v \mathbb{C}^n , ki je povsod neničelna in zadošča

$$\sum_{j=1}^{n} \phi_j^2 = 0,$$

2 $\Re \int_C \phi = 0$ *za vse* $[C] \in H_1(M, \mathbb{Z})$.

Potem za poljuben izbor točk $p_0 \in M$ in $x_0 \in \mathbb{R}^n$ predpis $x \colon M \to \mathbb{R}^n$,

$$x(p) = x_0 + \Re \int_{p_0}^{p} \phi, \quad p \in M,$$
(9)

podaja dobro definirano konformno minimalno imerzijo. Zanjo velja

$$2\partial x = \phi$$
 in $g = x^* ds^2 = |dx|^2 = \frac{1}{2}|\phi|^2$. (10)

Minimalne ploskve in holomorfne ničelne krivulje

Definicija

Naj bo M odprta Riemannova ploskev in $n \ge 3$. Holomorfno imerzijo $z = (z_1, \ldots, z_n) \colon M \to \mathbb{C}^n$, za katero velja $(\partial z_1)^2 + \cdots + (\partial z_n)^2 = 0$, imenujemo holomorfna ničelna krivulja v \mathbb{C}^n .

Če v Enneper-Weierstrassovi formuli velja še $\int_C \phi = 0$ za vse $[C] \in H_1(M, \mathbb{Z})$, potem za poljuben izbor točk $p_0 \in M$ in $z_0 \in \mathbb{C}^n$ predpis $z \colon M \to \mathbb{C}^n$,

$$z(p) = z_0 + \int_{\rho_0}^{\rho} \phi, \quad \rho \in M, \tag{11}$$

podaja dobro definirano holomorfno ničelno krivuljo. Zanjo velja

$$\partial z = \phi$$
 in $z^* ds^2 = |dz|^2 = |\partial z|^2 = |\phi|^2$. (12)

Minimalne ploskve in holomorfne ničelne krivulje

Definicija

Naj bo M odprta Riemannova ploskev in $n \ge 3$. Holomorfno imerzijo $z = (z_1, \ldots, z_n) \colon M \to \mathbb{C}^n$, za katero velja $(\partial z_1)^2 + \cdots + (\partial z_n)^2 = 0$, imenujemo holomorfna ničelna krivulja v \mathbb{C}^n .

Če v Enneper-Weierstrassovi formuli velja še $\int_C \phi = 0$ za vse $[C] \in H_1(M, \mathbb{Z})$, potem za poljuben izbor točk $p_0 \in M$ in $z_0 \in \mathbb{C}^n$ predpis $z \colon M \to \mathbb{C}^n$,

$$z(p) = z_0 + \int_{p_0}^{p} \phi, \quad p \in M, \tag{11}$$

podaja dobro definirano holomorfno ničelno krivuljo. Zanjo velja

$$\partial z = \phi$$
 in $z^* ds^2 = |dz|^2 = |\partial z|^2 = |\phi|^2$. (12)

Cilj: dokazati aproksimacijski in interpolacijski izrek tipa Mergelyana in Weierstrassa za konformne minimalne ploskve in holomorfne ničelne krivulje

- klasični izreki za holomorfne funkcije
- Morsejeva teorija
- konstrukcija poti s predpisanimi integrali (Gromov)

Načrt

- aproksimacija in interpolacija preslikav v punktirano ničelno kvadriko
- nekritičen primer
- splošen primer

Cilj: dokazati aproksimacijski in interpolacijski izrek tipa Mergelyana in Weierstrassa za konformne minimalne ploskve in holomorfne ničelne krivulje

- klasični izreki za holomorfne funkcije
- Morsejeva teorija
- konstrukcija poti s predpisanimi integrali (Gromov)

Načrt:

- aproksimacija in interpolacija preslikav v punktirano ničelno kvadriko
- nekritičen primer
- splošen primer

Definicija

Naj bo M gladka ploskev. Kompaktno podmnožico v M oblike $S=K\cup E$ imenujemo dopustna množica, kjer je K končna unija paroma disjunktnih kompaktnih domen s kosoma zvezno odvedljivimi robovi v M ter $E=S\setminus K^\circ$ unija končno mnogo paroma disjunktnih gladkih Jordanovih lokov in zaprtih Jordanovih krivulj, ki se dotikajo K kvečjemu v svojih krajiščih in sekajo rob K transverzalno.

Definicija

Naj bo $S=K\cup E$ dopustna podmnožica Riemannove ploskve M in θ povsod neničelna holomorfna 1-forma, definirana v okolici $S\subset M$. Naj bosta $n\geq 3$ in $r\in \mathbb{N}$. Posplošena konformna minimalna imerzija $S\to \mathbb{R}^n$ razreda \mathscr{C}^r je par $(x,f\theta)$, kjer je $x\colon S\to \mathbb{R}^n$ preslikava razreda \mathscr{C}^r , njena zožitev na $S^\circ=K^\circ$ je konformna minimalna imerzija in preslikava $f\in \mathscr{A}^{r-1}(S,\mathbf{A}_*)$ zadošča naslednjima pogojema:

- ① na množici K velja $f\theta = 2\partial x$;
- ② za vsako gladko pot α v M, ki parametrizira povezano komponento množice $E = \overline{S \setminus K}$, velja $\Re(\alpha^*(f\theta)) = \alpha^*(dx) = d(x \circ \alpha)$.

Definicija

Naj bo M gladka ploskev. Kompaktno podmnožico v M oblike $S=K\cup E$ imenujemo dopustna množica, kjer je K končna unija paroma disjunktnih kompaktnih domen s kosoma zvezno odvedljivimi robovi v M ter $E=S\setminus K^\circ$ unija končno mnogo paroma disjunktnih gladkih Jordanovih lokov in zaprtih Jordanovih krivulj, ki se dotikajo K kvečjemu v svojih krajiščih in sekajo rob K transverzalno.

Definicija

Naj bo $S=K\cup E$ dopustna podmnožica Riemannove ploskve M in θ povsod neničelna holomorfna 1-forma, definirana v okolici $S\subset M$. Naj bosta $n\geq 3$ in $r\in \mathbb{N}$. Posplošena konformna minimalna imerzija $S\to \mathbb{R}^n$ razreda \mathscr{C}^r je par $(x,f\theta)$, kjer je $x\colon S\to \mathbb{R}^n$ preslikava razreda \mathscr{C}^r , njena zožitev na $S^\circ=K^\circ$ je konformna minimalna imerzija in preslikava $f\in \mathscr{A}^{r-1}(S,\mathbf{A}_*)$ zadošča naslednjima pogojema:

- **1** na množici K velja $f\theta = 2\partial x$;
- ② za vsako gladko pot α v M, ki parametrizira povezano komponento množice $E = \overline{S \setminus K}$, velja $\Re(\alpha^*(f\theta)) = \alpha^*(dx) = d(x \circ \alpha)$.

Trditev (Nekritičen primer glavnega izreka)

Naj bo M odprta Riemannova ploskev in θ povsod neničelna holomorfna 1-forma na M. Predpostavimo, da je S taka povezana dopustna množica v M, da inkluzija $S \hookrightarrow M$ porodi izomorfizem $H_1(S,\mathbb{Z}) \stackrel{\cong}{\longrightarrow} H_1(M,\mathbb{Z})$ prvih homoloških grup. Naj bo $A = \{a_1, \ldots, a_k\} \subset S$ končna množica točk in $r, s \in \mathbb{N}$. Tedaj velja naslednje:

- **○** Vsako posplošeno konformno minimalno imerzijo $(x, f\theta) \in GCMI^r(S, \mathbb{R}^n)$ lahko $v \mathscr{C}^r(S)$ aproksimiramo s polnimi konformnimi minimalnimi imerzijami $X : M \to \mathbb{R}^n$, za katere je $Flux_X = Flux_X$.
- ② Vsako posplošeno ničelno krivuljo $(z, f\theta) \in GNC^r(S, \mathbb{C}^n)$ lahko $v \mathscr{C}^r(S)$ aproksimiramo s polnimi holomorfnimi ničelnimi krivuljami $Z \colon M \to \mathbb{C}^n$.

Dodatno, preslikave X oz. Z lahko izberemo tako, da se s preslikavama x oz. z ujemajo v točkah množice A ter do danega končnega reda v točkah množice $A \cap S^{\circ}$.

Izrek

Naj bo M odprta Riemannova ploskev, θ povsod neničelna holomorfna 1-forma na M, $n \geq 3$ in $r \geq 1$. Naj bo S dopustna Rungejeva množica v M in $\Lambda \subset M$ zaprta diskretna podmnožica. Naj bo $x \colon S \to \mathbb{R}^n$ posplošena konformna minimalna imerzija razreda $\mathscr{C}^r(S,\mathbb{R}^n)$, ki je konformna minimalna imerzija v okolici vsake točke iz Λ .

Za izbrane $\varepsilon > 0$, preslikavo $k \colon \Lambda \to \mathbb{N}$ in homomorfizem grup $\mathfrak{p} \colon H_1(M,\mathbb{Z}) \to \mathbb{R}^n$, $\mathfrak{p}|_{H_1(S,\mathbb{Z})} = \operatorname{Flux}_X$ obstaja konformna minimalna imerzija $\tilde{x} \colon M \to \mathbb{R}^n$, za katero velja:

- ② razlika $\tilde{x} x$ je ničelna do reda k(p) v vsaki točki $p \in \Lambda$;
- **①** če je $n \ge 5$ in je $x : \Lambda \to \mathbb{R}^n$ injektivna preslikava, potem je \tilde{x} injektivna imerzija;
- če je n = 4 in ima x enostavne dvojne točke na množici Λ, potem je x̃ imerzija z enostavnimi dvojnimi točkami na Λ.

Izrek (Mittag-Lefflerjev izrek za konformne minimalne imerzije)

Naj bo M odprta Riemannova ploskev, $A \subset M$ njena zaprta diskretna podmnožica, $U \subset M$ okolica množice A, ki je Rungejeva v M, in $n \geq 3$. Predpostavimo, da je $x: U \setminus A \to \mathbb{R}^n$ konformna minimalna imerzija, pripadajočo 1-formo ∂x pa lahko meromorfno razširimo na U s poli v točkah množice A. Tedaj obstaja taka polna konformna minimalna imerzija $\tilde{x}: M \setminus A \to \mathbb{R}^n$, da je razlika $\tilde{x} - x$ harmonična na množici A. Natančneje, 1-formo $\partial \tilde{x}$ lahko meromorfno razširimo na M s poli v točkah množice A.

Primeri minimalnih ploskev – katenoida

$$x \colon \mathbb{R}^2 \to \mathbb{R}^3$$
$$x(u, v) = (\cos u \cdot \cosh v, \sin u \cdot \cosh v, v)$$

Primeri minimalnih ploskev – helikoid

$$x: \mathbb{R}^2 \to \mathbb{R}^3$$
$$x(u, v) = (\sin u \cdot \sinh v, -\cos u \cdot \sinh v, u)$$

Primeri minimalnih ploskev – Scherkovi ploskvi

$$e^z \cos y = \cos x$$

 $\sin z = \sinh x \sinh y$

Definicija (Periodna preslikava)

Naj bo M povezana odprta Riemannova ploskev in θ povsod neničelna holomorfna 1-forma na M. Naj bo $\mathscr{C} = \{C_1, \ldots, C_l\}$ družina gladkih orientiranih vloženih lokov in zaprtih Jordanovih krivulj v M ter $C = \cup_{i=1}^l C_i$. Družini $\mathscr C$ in številu $n \in \mathbb N$ priredimo periodno preslikavo

$$\mathscr{P} = (\mathscr{P}_1, \dots, \mathscr{P}_I) \colon \mathscr{C}(C, \mathbb{C}^n) \to (\mathbb{C}^n)^I,$$

$$\mathscr{P}_i(f) = \int_{C_i} f\theta, \quad i = 1, \dots, I.$$
(13)

Tu je $f \in \mathscr{C}(C, \mathbb{C}^n)$ in $\mathscr{P}_i(f) \in \mathbb{C}^n$.

Dodatek – periodno dominantni sprej

Lema

Naj bo M odprta Riemannova ploskev in $S=K\cup E$ dopustna množica v M. Naj bo $\mathscr{C}=\{C_1,\ldots,C_l\}$ taka družina gladkih orientiranih Jordanovih krivulj in lokov v S, da je unija $C=\cup_{i=1}^l C_i$ Rungejeva v S. Naj za neko število $r\in \mathbb{Z}_+$ preslikava $f\colon S\to \mathbf{A}_*$ pripada razredu \mathscr{A}^r . Nadalje predpostavimo, da vsaka krivulja $C_i\in \mathscr{C}$ vsebuje netrivialen lok $I_i\subset C_i$, disjunkten $z\cup_{i\neq j} C_j$, preslikava $f\colon I_i\to \mathbf{A}_*$ pa je neravna.

Potem obstaja odprta okolica $U \subset \mathbb{C}^{ln}$ točke 0 in preslikava $\Phi_f \in \mathscr{A}^r(S \times U, \mathbf{A}_*)$, tako da velja $\Phi_f(\cdot, 0) = f$ in je preslikava

$$\frac{\partial}{\partial t}\Big|_{t=0}\mathscr{P}(\Phi_f(\cdot,t))\colon (\mathbb{C}^n)^I \to (\mathbb{C}^n)^I \text{ izomorfizem.}$$
 (14)

Nadalje, za končno podmnožico $P \subset S$ lahko preslikavo Φ_f izberemo tako, da se za $t \in U$ preslikave $\Phi_f(\cdot,t) \colon S \to \mathbf{A}_*$ ujemajo z f v vsaki točki $P \setminus S^\circ$, v točkah $P \cap S^\circ$ pa se z f ujemajo do danega končnega reda. Za vsako preslikavo $f_0 \in \mathscr{A}^r(S,\mathbf{A}_*)$, ki zadošča zgornjim predpostavkam, obstaja okolica $\Omega \subset \mathscr{A}^r(S,\mathbf{A}_*)$ in holomorfna preslikava $f \mapsto \Phi_f$, $f \in \Omega$, z zgornjimi lastnostmi.

Dodatek – Aproksimacija in interpolacija v A*

Lema

Naj bo M povezana odprta Riemannova ploskev in $S=K\cup E$ Rungejeva dopustna podmnožica v M. Izberimo tako družino gladkih orientiranih Jordanovih krivulj in lokov v $S, \mathscr{C}=\{C_1,\ldots,C_l\}$, da je unija $C=\cup_{i=1}^l C_i$ Rungejeva v M, vsaka krivulja C_i pa vsebuje netrivialen lok I_i , za katerega je $I_i\cap (\cup_{i\neq j}C_j)=\emptyset$. Naj bo $\mathscr P$ periodno dominantni sprej, ki pripada družini krivulj $\mathscr C$, $A=\{a_1,\ldots,a_m\}\subset S$ končna množica točk in $r\geq 1$. Tedaj lahko vsako preslikavo $f\in \mathscr A^r(S,\mathbf A_*)$ aproksimiramo v $\mathscr C^r(S)$ s polnimi holomorfnimi preslikavami $F\in \mathscr C(M,\mathbf A_*)$, pri čemer velja naslednje:

- ② preslikavi F in f se ujemata v točkah množice $A \cap S^{\circ}$ pa se ujemata do danega končnega reda.