Лабораторная работа 2.1.4. Определение теплоемкости твердых тел.

Радькин Кирилл, Б01-005

26 апреля 2021 г.

Цель работы: 1) измерение количества подведенного тепла и вызванного им нагрева твердого тела; 2) определение теплоемкости по экстраполяции отношения $\frac{\Delta Q}{\Delta T}$ к нулевым потерям тепла.

В работе используются: калориметр с нагревателем и термометром сопротивления; амперметр; вольтметр; мост постоянного тока; источник питания 36 В.

Теоретическая справка: В предлагаемой работе измерение теплоемкости твердых тел производится по обычной схеме. Исследуемое тело помещается в калориметр. Измеряется ΔQ — количество тепла, подведенного к телу, и ΔT — изменение температуры тела, произошедшее в результате подвода тепла. Теплоемкость определяется по формуле

$$C = \frac{\Delta Q}{\Delta T} \tag{1}$$

Температура исследуемого тела надежно измеряется термометром (в нашем случае — термометром сопротивления), а определение количества тепла, поглощенного телом, обычно вызывает затруднение. В реальных условиях не вся энергия $P\Delta T$, выделенная нагревателем, идет на нагревание исследуемого тела и калориметра, часть ее уходит из калориметра благодаря теплопроводности его стенок. Оставшееся в калориметре количество тепла ΔQ равно

$$\Delta Q = P\Delta t - \lambda (T - T_k) \Delta t \tag{2}$$

где Р — мощность нагревателя, λ — коэффициент теплоотдачи стенок калориметра, Т — температура тела, T_k — температура окружающего калориметр воздуха (комнатная), Δt — время, в течение которого идет нагревание.

Из уравнений (1) и (2) получаем

$$C = \frac{P - \lambda(T - T_k)}{\Delta T / \Delta t} \tag{3}$$

Формула (3) является основной расчетной формулой работы. Она определяет теплоемкость тела вместе с калориметром. Теплоемкость калориметра должна быть измерена отдельно и вычтена из результата.

С увеличением температуры исследуемого тела растет утечка энергии, связанная с теплопроводностью стенок калориметра. Из формулы (2) видно, что при постоянной мощности нагревателя по мере роста температуры количество тепла, передаваемое телу, уменьшается и, следовательно, понижается скорость изменения его температуры.

Погрешности, связанные с утечкой тепла, оказываются небольшими, если не давать телу заметных перегревов и производить все измерения при температурах, мало отличающихся от комнатной $(T \to T_k)$. Однако при небольших перегревах возникает большая ошибка в измерении $\Delta T = T - T_k$ и точность определения теплоемкости не возрастает. Чтобы избежать этой трудности, в работе предлагается следующая методика измерений. Зависимость скорости нагревания тела $\Delta T/\Delta t$ от температуры измеряется в широком интервале изменения температур. По полученным данным строится график

$$\frac{\Delta T}{\Delta t} = f(T)$$

Этот график экстраполируется к температуре $T=T_k$ и, таким образом, определяется скорость нагревания при комнатной температуре $\left(\frac{\Delta T}{\Delta t}\right)_{T=T_k}$. Подставляя полученное выражение в формулу (3) и замечая, что при $T=T_k$ член $\lambda(T-T_k)$ обращается в нуль, получаем

$$C = \frac{P}{(\Delta T/\Delta t)_{T=T_{\nu}}} \tag{4}$$

Температура измеряется термометром сопротивления, который представляет собой медную проволоку, намотанную на теплопроводящий каркас внутренней стенки калориметра (рис. 1). Известно, что сопротивление проводника изменяется с температурой по закону

$$R_{T} = R_{0}(1 + \alpha \Delta T) \tag{5}$$

где R_T — сопротивление термометра при T^0C , R_0 — его сопротивление при 0^0C , α — температурный коэффициент сопротивления. Дифференцируя (5) по времени, найдем

$$\frac{dR}{dt} = R_0 \alpha \frac{dT}{dt} \tag{6}$$

Выразим сопротивление R_0 через измеренное значение R_k — сопротивление термометра при комнатной температуре. Согласно (5), имеем

$$R_0 = \frac{R_k}{1 + \alpha \Delta T_k} \tag{7}$$

Подставляя (6) и (7) в (4), найдем

$$C = \frac{PR\alpha}{\left(\frac{dR}{dt}\right)_{T_{k}} (1 + \alpha\Delta T_{k})}$$
 (8)

Ход работы:

- 1. Ознакомимся с устройством калориметра и подготовим мост к измерениям.
- 2. Измерим сопротивление термометра при комнатной температуре: $R_k = 18.08~{\rm Om}$
- 3. Замкнем на короткое время ключом цепь нагревателя и подберем на реостатах такое сопроивление, при котором мощность нагревателя составляет $P=10.8~{\rm Br}$
- 4. При неизменной мощности нагревателя определим зависимость сопротивления термометра от времени для пустого калориметра $R_T=R(t)$. Для этого сначала проверим балансировку моста. Затем замкнем цепь нагревателя ключом K и одновременно включим секундомер. Установим на мосте постоянного тока сопротивление, немного большее (на $\sim 0.5\%$), чем это необходимо для балансировки (стрелка гальванометра при этом отклонится от нулевого значения), и следим за движением стрелки гальванометра. В тот момент, когда сопротивление термометра возрастет до значения, установленного на мосте, и балансировка восстановится, отметим показания секундомера. Затем вновь увеличим сопротивление на мосте и отметим время восстановления балансировки и т. д. Таким образом, получим 10-15 точек. Отобразим их в таблице.

R, O _M	18.08	18.18	18.28	18.38	18.48	18.58	18.68	
t, c	0.0	92.0	187.0	289.0	398.0	513.0	638.0	
R, om	18.78	18.88	18.98	19.08	19.18	19.28	19.38	19.48
t, c	766.0	904.0	1049.0	1202.0	1362.0	1538.0	1723.0	1914.0

5. Используем полученную зависимость $R_T=R(t)$ для построения графика, выражающего зависимость dR/dt=f(R). Для этого кривую графика $R_T=R(t)$ разделим на 10–15 отрезков и для каждого из них определим наклон dR/dt. По полученным значениям построим новый график, откладывая по оси абсцисс сопротивление, а по оси ординат — величину dR/dt.

6. Измеренные таким образом значения $(dR/dt)_{R=R_\kappa}$ и R_κ подставим в формулу (8) и вычислим теплоемкость пустого калориметра C_0 .

$$\begin{split} (dR/dt)_{R=R_k} &= 14.24 \cdot 10^{-4} \text{ Om/c}, \ R_k = 18.08 \text{ Om, P} = 10.8 \text{ Bt} \\ C_k &= \frac{P \cdot R_k \cdot \alpha}{\left(\frac{dR}{dt}\right)_{T_k} \left(1 + \alpha \cdot \Delta T_k\right)} = 538.5 \pm 17.8 \text{ Дж/K} \end{split}$$

7. Откроем калориметр и поместим в него исследуемое тело(алюминий, латунь). Подождем, пока температура калориметра с телом стабилизируется. Так как точность измерений возрастает при совпадении диапазонов изменения температуры калориметра с телом и без тела,после стабилизации температуры извлечем тело из калориметра и охладим его под струей водопроводной воды. Затем тело вытрем сухой тряпкой и дополнительно просушим его под струей сжатого воздуха из воздухопроводной сети. После этого рабочее тело вновь вставим в калориметр и, дождавшись стабилизации температуры, приступим к измерениям. Нагревание образца произведем в течение 15-20 минут. По полученным результатам определим величину теплоемкости образца вместе с калориметром C_1 . Теплоемкость исследуемого тела $C_{\rm T}$ определяется как разность теплоемкостей: $C_{\rm T}=C_1-C_0$.

• Алюминий:

R, O _M	18.08	18.18	18.28	18.38	18.48	18.58	18.68	
t, c	0.0	108.0	224.0	348.0	481.0	619.0	772.0	
R, om	18.78	18.88	18.98	19.08	19.18	19.28	19.38	19.48
t, c	935.0	1112.0	1294.0	1488.0	1701.0	1927.0	2157.0	2389.0

$$\begin{split} (dR/dt)_{R=R_k} &= 9.58 \cdot 10^{-4} \text{ Om/c, } R_k = 18.08 \text{ Om, } P = 10.8 \text{ Bt} \\ C_{\alpha l} &= \frac{P \cdot R_k \cdot \alpha}{\left(\frac{dR}{dt}\right)_{T_k} (1 + \alpha \cdot \Delta T_k)} = 261.6 \pm 30.4 \text{ Дж/K} \end{split}$$

Тогда, удельная и молярная теплоемкости алюминия (масса алюминия: m=294 г, молярная масса алюминия: 27 г/моль):

$$C_{yz}^{al} = 889.8 \pm 103.6 \; Дж/кг \cdot K$$

$$C_{
m v}^{
m al}=24.0\pm2.8$$
 Дж/моль \cdot К

• Латунь:

R, O _M	18.08	18.18	18.28	18.38	18.48	18.58	18.68	
t, c	0.0	135.0	274.0	421.0	576.0	741.0	913.0	
R, om	18.78	18.88	18.98	19.08	19.18	19.28	19.38	19.48
t, c	1094.0	1285.0	1483.0	1693.0	1909.0	2135.0	2371.0	2619.0

$$\begin{array}{l} (dR/dt)_{R=R_k} = 8.89 \cdot 10^{-4} \text{ Om/c, } R_k = 18.08 \text{ Om, } P = 10.8 \text{ Bt} \\ C_{l\alpha} = \frac{P \cdot R_k \cdot \alpha}{\left(\frac{dR}{dt}\right)_{T_k} (1 + \alpha \cdot \Delta T_k)} = 323.3 \pm 28.6 \text{ Дж/K} \end{array}$$

Тогда, удельная и молярная теплоемкости латуни (масса латуни: m=875.5 г, молярная масса латуни: 64.3 г/моль):

$$C_{
m yg}^{
m la}=369.3\pm32.7$$
 Дж/кг \cdot К

$$C_{
m v}^{
m la}=23.7\pm2.1$$
 Дж/моль \cdot К

8. Также на отдельном графике отобразим измеренные нами зависимости:

Вывод: В ходе работы мною были измерены удельные теплоемкости алюминия ($C=889.8~\Delta \text{ж/кг·K}$) и латуни ($C=369.3~\Delta \text{ж/кг·K}$). Табличные значения составляют $C_{al}=920~\Delta \text{ж/кг·K}$ и $C_{la}=380~\Delta \text{ж/кг·K}$. Таким образом, для алюминия ошибка составила $\mu_{al}=3.3\%$, для латуни — $\mu_{la}=2.8\%$