归结原理 (The Resolution Principle)

张文生 研究员

中国科学院自动化研究所

一. 起因;

二. 命题逻辑的归结原理;

三. 置换与合一;

四.一阶谓词的归结原理;

五. 归结原理的完备性;

六. 效率的提高

Davis-Putnam的工作

- 预备知识:
- 空子句永假; (注: 空子句是指集合中有一个空子句);
- 空集合永真; (空集合是指没有元素的集合);
- 重言式子句:包含互补对的子句。

■ 四条规则:

注意:下面规则的应用不改变子句集的不相容性。

■ 规则一: 重言式规则

■ **S**中的重言式子句,不会为**S**的不可满足提供任何信息,应该删除。

- 例如: S={P\/~P, Q, R\/P}
 S的逻辑含义是(P\/~P) \ (Q\(R\/P)=
 Q\(R\/P), 从而删去重言式P\/~P, 不影响S的真值。
- $S'=\{Q, R \lor P\}$

- 规则二:单文字规则(one-literal rule)
 - 如果在S中存在只有一个文字的基础子句L, 消去在S中带有这个文字L的所有子句得到S', 如果S'为空, 则S是相容的;

否则,从S'中删去~L,得到S'',则 S''不可满足当且仅 当S不可满足。

- 单文字: 在S中存在只有一个文字的基础子句L.
- 例子: S={L, L∨P, ~L∨Q, S∨~R}

•
$$S' = \{ \sim L \lor Q, S \lor \sim R \}$$
 $S'' = \{ Q, S \lor \sim R \}$

- S不可满足,则在所有解释下S都为假;
 - L=F;
 - L=T;
 - ~L=F.

- 规则三: 纯文字规则
 - L是S的纯文字. 从S中删除含L的子句得S',如果S'为空集,那么S是可满足的; 否则, S'不可满足当且仅当S不可满足.
 - 纯文字: 如果文字L出现于S中,而~L不出现于S中,L 称为S的纯文字.
 - 例子: S={A∨B, A∨~B, ~B, B} ■ S'= {~B, B};
 - S不可满足, 在A为真的情况下不可满足;
 - \blacksquare A=1 \rightarrow A \vee B=1, A \vee ~B=1;
 - S'不可满足, 当然S不可满足;

规则四

■ 分裂规则

■ $S=(L\vee A_1)\wedge...\wedge(L\vee A_m)\wedge(\sim L\vee B_1)\wedge...\wedge(\sim L\vee B_n)\wedge R$

其中: A_{i} , B_{i} , R中不含L和~L(自由)。 令S'= $\{A_{1} \land \land A_{m} \land R\}$, S''= $\{B_{1} \land \land B_{n} \land R\}$ 则S不可满足 当且仅当 S'和S''同时是不可满足,即: S' \lor S''同时是不可满足。

例1. S={P\Q\~R, P\~Q, ~P, R, U}

- 对U使用纯文字: {P\Q\~R, P\~Q, ~P, R}
- 对~P使用单文字: {Q∨~R, ~Q, R}
- 对~Q使用单文字: {~R, R}
- 对R 使用单文字: {□}
- S不可满足;
- 注意:如果~ L是单文字基础子句,当~L从这个子句集 合中被删去后,则这个子句为空子句。

例2. S={P\Q, ~Q, ~P\Q\~R}

- 对~Q使用单文字: {P, ~P∨~R}
- 对P使用单文字: {~R}
- 对~R使用纯文字: {□}
- S可满足;

例3. S={P\/~Q, ~P\/Q, Q\/~R, ~Q\/~R}

■ 用规则4:
$$S_1 = \{ \sim Q, Q \lor \sim R, \sim Q \lor \sim R \}$$

 $S_2 = \{ Q, Q \lor \sim R, \sim Q \lor \sim R \}$

- 在S₁中,对~Q使用单文字: {~R}
- 在S₂中,对Q使用单文字: {~R}
- 则得到: $S_1 \vee S_2 = \{\sim R\}$
- 对~R 使用纯文字: {}
- S可满足;

- 用规则3: {Q∨~R, ~Q∨~R}
- 用规则3: {}

S可满足;

注意:

这些规则对于命题逻辑是十分有效的,但是,对于一阶为词逻辑则需要寻找基础实例集。

■ Davis的工作在理论上是十分重要的,它对于后来的归结原理的证明方法起了重要的作用。

回顾/起因

- ■自动定理证明
- 定理: (F₁ ∧ F₂ ∧ ... ∧ F_n)→G
- 证明公式永真
- 证明公式的非永假
- 化为前束合取范式
- 化为Skolem范式
- 化为子句集
- 子句集不可满足

- Herbrand定理(Version 1)
 - 子句集S是不可满足的,当且仅当对应于S的任一棵完备语义树,都存在一棵有限的封闭语义树。
- Herbrand定理(Version 2)
 - 子句集S是不可满足的,当且仅当存在一个有限不可满足的S的基础实例集合S'。
- Gilmore的方法(1960)
- Davis-Putnam: 提高效率

- 困难:
 - 生成基础实例集合是指数复杂性的...
- 例子

例子

- S={P(x,g(x),y,h(x,y),z,k(x,y,z)), ~P(u,v,e(v),w,f(v,w),x)}
 - $H_0 = \{a\}$
 - $H_1 = \{a,g(a),h(a,a),k(a,a,a),e(a),f(a,a)\}$
- 基础实例集:
 - $S_0 = \{ P(a,g(a),a,h(a,a),a,k(a,a,a)), \\ \sim P(a,a,e(a),a,f(a,a),a) \}$
 - S₁有6*6*6 + 6*6*6*6 = 1512个元素;
 - H_5 有10⁶⁴数量级的元素, S_5 有10²⁵⁶数量级的元素.

- 如果可以不从基础实例出发,而直接从**S**出发,则可以避免大的计算量。
- 归结原理:
 - 检查子句集**S**中是否含有空子句,或者能*推导*出空 子句。
- 推导不是任意定义的,必须保证推导出的结果 是原来子句集合(逻辑公式)的逻辑结论。
- 例如,证明**C**₁->~**C**₂永真.

■ 归结原理是J.A.Robinson在1965年提出的,被认为是定理机器证明的重大突破。

一. 起因;

二. 命题逻辑的归结原理;

三. 置换与合一;

四.一阶谓词的归结原理;

五. 归结原理的完备性;

六.效率的提高:

二。命题逻辑的归结原理

- 归结原理是Davis-Putnam单文字规则的扩展;
 - 如果在S中存在只有一个文字的基础子句L, 消去在S中带有这个文字L的所有子句得到S', 如果S'为空, 则S是相容的; 否则, 从S'中删去~L, 得到S''. S''不可满足当且仅当S不可满足.

■ 例:

- C₁: P
- C_2 : $\sim P \lor Q$
- C₃: Q
- 互补对: 原子与原子的非构成互补对;

- ■扩展
 - 例子:
 - \bullet C₁: P \lor Q
 - ${lue C_2}$: $\sim P \lor R$
 - \bullet C₃: Q \vee R

- **■**C₁: 打伞 ∨ 不下雨
- ■C2: 不打伞 ∨ 不被淋湿
- ■C3: 不下雨 ∨ 不被淋湿

■ 归结原理:

■ 对任何两个子句 C_1 和 C_2 ,如果一个在 C_1 中的文字 L_1 和一个在 C_2 中的文字 L_2 构成互补对,则分别从 C_1 和 C_2 中删除 L_1 和 L_2 ,并将 C_1 和 C_2 的剩余部分构成析取式C,则C称为 C_1 和 C_2 的归结式。

■ 例:

- C_1 : $P \lor Q \lor \sim T$
- \bullet C₂: \sim P \vee R
- C: Q∨~T∨R (C₁与C₂的归结式)

- 例:
 - \bullet C₁: \sim P \vee Q
 - \mathbf{C}_2 : $\sim P \vee R$
 - C₁与C₂没有互补对,所以没有归结式!
- 互补对每次只能取一对:
 - \bullet C₁: P \lor Q
 - \bullet C₂: \sim P \vee \sim Q
 - \bullet C₃: Q \lor ~Q / P \lor ~P
 - C₃不能为空!

定理

- 子句 C_1 和 C_2 的归结式C是 C_1 和 C_2 的逻辑结论。
- 证明:

 - $C = C_1' \vee C_2'$.
 - 设C₁∧C₂为真, 证C为真。

■ 事实上:

$$C_1 = L \vee C_1' = \sim C_1' \rightarrow L$$

$$C_2 = \sim L \vee C_2' = L \rightarrow C_2'$$

■
$$C_1 \land C_2$$
为真, $\sim C_1' \rightarrow C_2' = C_1' \lor C_2'$ 为真.

■ C_2 : 不打伞 \vee 不被淋湿 = 打伞 \longrightarrow 不被淋湿

■ C_3 : 不下雨 ∨ 不被淋湿 = 下雨 → 不被淋湿

归结的例子

```
设公理集:
   (P \land Q) \rightarrow R
   (S \lor T) \to Q
求证: R
子句集:
   (1) P
   (2) \sim P \vee \sim Q \vee R
   (3) ~S<sub>V</sub>Q
   (4) ~T√Q
   (5) T
   (6) ~R(目标求反)
```

```
化子句集:
     (P \land Q) \rightarrow R
=> \sim (P \wedge Q) \vee R
=> \sim P \lor \sim Q \lor R
     (S \lor T) \rightarrow Q
=> \sim (S \lor T) \lor Q
=> (\sim S \land \sim T) \lor Q
=> (\sim S \vee Q) \wedge (\sim T \vee Q)
\Rightarrow \{\sim S \lor Q, \sim T \lor Q\}
```

子句集:

- (1) P
- (2) $\sim P \vee \sim Q \vee R$
- $(3) \sim S \vee Q$
- (4) ~T∨Q
- (5)T
- (6)~R(目标求反)

归结:

- $(7) \sim P \vee \sim Q \qquad (2, 6)$
- $(8) \sim Q \qquad (1, 7)$
- $(9) \sim T \qquad (4, 8)$
- $(10) \text{ nil} \qquad (5, 9)$

- 例2
 - $S=\{P\lor Q, \sim P\lor Q, P\lor \sim Q, \sim P\lor \sim Q\}$
 - (1) $P \lor Q$
 - $^{(2)}$ $\sim P \vee Q$
 - (3) $P \lor \sim Q$
 - $^{(4)}$ $\sim P \vee \sim Q$
 - (5) Q (1,2)
 - $^{(6)}$ ~Q (3,4)
 - (7) nil (5,6)

- 定义: 推演
 - 给定一个子句集合S,从S到子句C的一个推演是一个有限的子句序列 $C_1,...,C_k$,使得每个 C_i 或是S中的一个子句,或是 C_1 到 C_{i-1} 中的某些子句的一个归结式,而 C_k = C_i 。如果C=nil,则这个推演(推导)称为S的一个证明,或反演。

推演树(deduction tree)

 $S=\{P\lor Q, \sim P\lor Q, P\lor \sim Q, \sim P\lor \sim Q\}$

归结定理完备性

■ 如果S不相容,则一定存在一个S的反演。

三。置换与合一

- 例:
 - C_1 : $P(x) \vee Q(x)$
 - C_2 : $\sim P(f(x)) \vee R(x)$
- 没有互补对;
- 例:
 - C_1 : $P(y) \vee Q(y)$ {y/x}
 - C_1 : $P(f(x)) \vee Q(f(x)) \{f(x)/y\}$
 - C: R(x) ∨ Q(f(x))

置换(substitution)

- 定义: 置换是一个形如{t₁/v₁,..., t_n/v_n}的有限集,其中每个v_i是变量,t_i是不同于v_i的项(常量、变量或函数)(v_i≠t_i)。当i≠j时, V_i≠V_j。
 - 无元素组成的置换称为空置换,记为ε;
- 例子:
 - {a/x, w/y, f(s)/z}, {g(x)/x}是置换;
 - {x/x}, {y/f(x)}不是置换;

实例(instance)

- 置换的结果称为实例;
- **■** 定义: $令\theta = \{t_1/v_1,...,t_n/v_n\}$ 是一个置换。E是一个表达式。则 $E\theta$ 是一个同时用项 t_i 代替E中变量 v_i 所得到的表达式($1 \le i \le n$)。 $E\theta$ 称为E的实例。
- 表达式:
 - 不一定是公式;
 - 项, 项集, 原子, 原子集, 文字, 子句, 子句集。
- 例子:
 - $E=P(x, y, z), \theta = \{a/x, f(b)/y, c/z\}$
 - Eθ=P(a, f(b), c)
 - $E=P(x, y, z), \theta = \{y/x, z/y\}$
 - Eθ=P(y, z, z). Eθ≠P(z, z, z). (同时)

■ 例子:

•
$$E=P(x, y, z),$$
 $\theta=\{a/x, f(b)/y, c/z\}$
• $E\theta=P(a, f(b), c)$

- E=P(x, g(y), h(x,z)), θ={a/x, f(b)/y, g(w)/z}
 Eθ=P(a, g(f(b)), h(a,g(w)))
- E=P(x, y, z), θ={y/x, z/y}
 Eθ=P(y, z, z). Εθ≠P(z, z, z). (同时)

置换的复合(composition)

- 例子:
 - E=P(x, y, z)
 - $\theta = \{a/x, f(z)/y, w/z\}$
 - Eθ=P(a, f(z), w)

- $\lambda = \{t/z, g(b)/w\}$
- $E\theta\lambda = P(a, f(t), g(b))$
- $\theta \lambda = \{a/x, f(t)/y, g(b)/z\}$

复合置换

- **定义**: $\phi\theta = \{t_1/x_1,...,t_n/x_n\}, \lambda = \{u_1/y_1,...,u_m/y_m\}$ 是 两个置换。则θ与λ的复合是一个置换,记为θ°λ。(先θ后λ)
 - 构成 $\{t_1\lambda/x_1,...,t_n\lambda/x_n,u_1/y_1,...,u_m/y_m\};$
 - 如果y_j∈{x₁,..., x_n}, 则删除u_j/y_j;
 - 如果 $t_k \lambda = x_k$ 则删除 $t_k \lambda / x_k$;
- 例子:
 - $\theta = \{t_1/x_1, t_2/x_2\} = \{f(y)/x, z/y\}$
 - $\lambda = \{u_1/y_1, u_2/y_2, u_3/y_3\} = \{a/x, b/y, y/z\}$
 - $\theta^{\circ}\lambda = \{t_1\lambda/x_1, t_2\lambda/x_2, u_1/y_1, u_2/y_2, u_3/y_3\}$ = $\{f(b)/x, y/y, a/x, b/y, y/z\}$
 - 删除{a/x, b/y};
 - 删除{y/y};

- 置换的复合满足结合律;
 - $(\theta^{\circ}\lambda)^{\circ}\mu = \theta^{\circ}(\lambda^{\circ}\mu)$
- 但一般不满足交换律;
 - $\theta = \{a/x\}, \lambda = \{b/x\}$
 - θ ° λ ={a/x}
 - $\lambda^{\circ}\theta = \{b/x\}$
 - $\theta^{\circ}\lambda \neq \lambda^{\circ}\theta$

合一(unification)

- $\mathbf{E_1}\theta = \mathbf{E_2}\theta$?
- 定义:如果 $E_1\theta=...=E_n\theta$,则称置换 θ 为 $\{E_1,...,E_n\}$ 的合一子(unifier).
- 定义:如果对 $\{E_1, ..., E_n\}$ 存在这样的合一子,则称集合 $\{E_1, ..., E_n\}$ 是可合一的.
- 例1:
 - $E = \{P(a,y), P(x, f(b))\}, \theta = \{a/x, f(b)/y\}.$
 - $E = \{P(a,b), P(x, f(b))\}$

■ 合一子不一定唯一

- E={P(a,y), P(x, f(b))}
- θ_1 ={a/x, f(b)/y} (唯一)
- E={P(x,y), P(x,f(b))}
- $\theta_1 = \{a/x, f(b)/y\}$ (不唯一)
- $\theta_2 = \{b/x, f(b)/y\}$

最一般合一子

mgu(most general unifier)

■ 定义: 如果对E的每个合一子 θ , 都存在一个置换 λ , 使得 θ = γ ° λ ,则称合一子 γ 是集合{ $E_1,...,E_n$ }的最一般合一子.

■ 例子:

- $E = \{P(x,y), P(x,f(b))\}$
 - $\theta_1 = \{a/x, f(b)/y\}$
 - $\theta_2 = \{b/x, f(b)/y\}$
 - $\gamma = \{f(b)/y\}$
 - $\bullet \theta_1 = \gamma \circ \{a/x\}$
 - $\bullet \theta_2 = \gamma \circ \{b/x\}$

- 是否存在寻找E的mgu的一般算法?
- 如何寻找E的mgu?
- 合一算法的考虑:
 - 消除两个谓词之间项的差别. {P(x,...), P(a,...)}
- 非空表达式集W的差别集:
 - 从左向右,在W中的所有表达式,遇到第一个不相同符号, 提取从这个符号开始的<u>子表达式</u>,由此构成一个集合,称 为W的差别集,记为D。
- 例子:
 - $W = \{P(x,f(y,z),z, w), P(x,a), P(x,g(z),z,b)\}$
 - D={f(y,z), a, g(z)}

合一算法

W的合一算法:

- 1. K=0, $W_k=W$, $\gamma_k=\varepsilon$.
- 2. 如果W_k是单一的, 停机, γ_k是W的mgu.
 否则, 求出W_k的差别集D_k.
- 3. 如果在D_k中存在元素v_k与t_k, 使v_k是一个未出现在t_k中的变量, 转4; 否则,停机, W是不可合一的。
- 4. $\Leftrightarrow \gamma_{k+1} = \gamma_k^{\circ} \{ t_k / v_k \}$, $W_{k+1} = W_k^{\circ} \gamma_{k+1}$
- 5. K=K+1. 转2.

- 换名:
 - {P(f(x), x), P(x, a)};
 - $D = \{f(x), x\}.$
 - 换名: {P(f(y), y), P(x, a)};
 - mgu: {f(a)/x, a/y}

例1:

- 求W={P(a,x,f(g(y))), P(z,f(z),f(u))}的mgu.
 - $D_0 = \{a,z\}$. $\gamma_1 = \varepsilon^{\circ}\{a/z\} = \{a/z\}$.
 - $W_1 = W_0 \cdot \gamma_1 = \{P(a, x, f(g(y))), P(a, f(a), f(u))\}$
 - $D_1 = \{x, f(a)\}. \gamma_2 = \gamma_1^{\circ} \{f(a)/x\} = \{a/z, f(a)/x\}.$
 - $W_2 = W_1 \cdot \gamma_2 = \{P(a,f(a),f(g(y))), P(a,f(a),f(u))\}$
 - $D_2 = \{g(y), u\}. \gamma_3 = \gamma_2^\circ \{g(y)/u\} = \{a/z, f(a)/x, g(y)/u\}$
 - $W_3 = W_2 \cdot \gamma_3 = \{P(a,f(a),f(g(y)))\}$
 - γ₃是mgu.

例2:

- 求W={Q(f(a), g(x)), Q(y, y)}的mgu.
 - $D_0 = \{f(a), y\}.$ $\gamma_1 = \varepsilon^{\circ}\{f(a)/y\} = \{f(a)/y\}.$
 - $W_1 = W_0 \cdot \gamma_1 = \{Q(f(a), g(x)), Q(f(a), f(a))\}$

- $D_1 = \{g(x), f(a)\}.$
- 不可合一, 没有mgu.

例3:

- 求W={P(f(y), y), P(x, a)}的mgu.
 - $D_0 = \{f(y), x\}.$
 - $\gamma_1 = \varepsilon^{\circ} \{f(y)/x\} = \{f(y)/x\}.$
 - $W_1 = W_0 \cdot \gamma_1 = \{P(f(y), y), P(f(y), a)\}$
 - $D_1 = \{y, a\}.$
 - $\gamma_2 = \gamma_1^{\circ} \{a/y\} = \{f(y)/x\}^{\circ} \{a/y\} = \{f(a)/x, a/y\}.$
 - $W_2 = W_1 \cdot \gamma_2 = \{P(f(a),a)\}$
 - γ₂是mgu.

定理

■ 如果W是一个有限非空的可合一的表达式集合,则合一算法一定终止在第二步,并且最后一个γ_k是W的mgu。

一. 起因;

二. 命题逻辑的归结原理;

三. 置换与合一;

四.一阶谓词的归结原理;

五. 归结原理的完备性;

六.效率的提高:

四.一阶谓词的归结原理

- 定义: (因子)
 - 如果一个子句C中,两个或更多的文字有相同的谓词符号,且它们有mgu λ,则Cλ称为C的因子。
 - 如果Cλ是单元子句,则称Cλ为C的单元因子。
- 例子:

 - P(x)和P(f(y)), $\lambda = \{f(y)/x\}$
 - $C\lambda = P(f(y)) \vee \sim Q(f(y))$

一阶谓词的归结

- 定义: (一阶谓词的归结)
 - 令 C_1 与 C_2 是两个子句,它们没有共同的变量。设 L_1 与 L_2 分别是 C_1 与 C_2 的两个文字,如果 L_1 与 $\sim L_2$ 有 mgu λ ,则子句

$$(C_1\lambda - L_1\lambda) \cup (C_2\lambda - L_2\lambda)$$

称为 C_1 与 C_2 的二元归结式;

 L_1 与 L_2 称为被归结文字。

```
例子:
```

- $\mathbf{C_1}$: $\mathbf{P}(\mathbf{x}) \vee \mathbf{Q}(\mathbf{x})$
- C₂: ~P(a) ∨ R(x)
- 重命名C₂: ~P(a) ∨ R(y)
- $L_1 = P(x), L_2 = \sim P(a)$
- L₁与~L₂有mgu λ={a/x}
- $(C_1\lambda L_1\lambda) \cup (C_2\lambda L_2\lambda)$ = $(\{P(a),Q(a)\} - \{P(a)\}) \cup (\{\sim P(a), R(y)\} - \{\sim P(a)\})$ = $\{Q(a)\} \cup \{R(y)\}$
 - $={Q(a), R(y)}$
- $Q(a) \vee R(y)$ 是 C_1 与 C_2 的二元归结式.

归结式

- 定义:子句C₁与C₂的<u>归结式</u>包括:
 - C₁与C₂的二元归结式;
 - C₁的因子与C₂的二元归结式;
 - C₁与C₂的因子的二元归结式;
 - C₁的因子与C₂的因子的二元归结式;

■ 例子:

- $C_1=P(x) \vee P(f(y)) \vee R(g(y))$
- $C_2 = \sim P(f(g(a))) \vee Q(b)$
- C₁的因子C₁'是P(f(y)) ∨ R(g(y))
- C₁'与C₂的二元归结式是 R(g(g(a))) ∨ Q(b)

例1

- $F_1: (\forall x)(C(x) \rightarrow (W(x) \land R(x)))$
- F_2 : $(\exists x)(C(x) \land O(x))$
- G: $(\exists x)(O(x) \land R(x))$
- 证明G是F₁与F₂的逻辑结论.
- 化成标准式:

■归结:

例2

- 1. 能阅读的都是有文化的. R(x), L(x)
- 2. 海豚是没有文化的. D(y),~L(y)
- 3. 某些海豚是有智能的. D(z), I(z)

证明:某些有智能的并不能阅读。 I(w),~R(w)

将文字叙述变成逻辑公式表达:

$$(\forall x) (R (x) \rightarrow L (x))$$

$$(\forall y) (D (y) \rightarrow \sim L (y))$$

(
$$\exists z$$
) (D (z) \land I (z))

$$(\exists w) (I (w) \land \sim R(w))$$

```
 \begin{array}{l} (\forall x) (R (x) \rightarrow L (x)) \\ (\forall y) (D (y) \rightarrow \sim L (y)) \\ (\exists z) (D (z) \wedge I (z)) \\ (\exists w) (I (w) \wedge \sim R(w)) \end{array}
```

• 化为子句集:

```
(1) {~R (x) \left\( L \) (x) }
(2) {~D (y) \left\~L (y) }
```

 $(3) \{D(A), I(A)\}$

■ 目标的否定

(∀w) [~I (w) ∨R (w)] (4) {~I (w) ∨R (w) }

子句集:

 \sim R (x) \vee L (x)

 $\sim D (y) \vee \sim L (y)$

D(A)

I(**A**)

 $\sim I(w) \ \forall R(w)$

- 一. 起因;
- 二. 命题逻辑的归结原理;
- 三. 置换与合一;
- 四.一阶谓词的归结原理;
- 五. 归结原理的完备性;
- 六. 效率的提高:

五』归结原理完备性

- 定理:
 - 一个子句集合S是不相容的,当且仅当存在一个从S到nil的反演。

- 难点: 存在性.
 - ■构造性
 - C₁,..., C_k
 - 语义树

语义树与归结原理

- 子句集合S不相容/封闭语义树/推理节点
- 例子:

 $\{P, \sim P \lor Q, \sim P \lor \sim Q\}$

 $\{P, \sim P \lor Q, \sim P \lor \sim Q, \sim P\}$

 $\{P, \sim P \lor Q, \sim P \lor \sim Q, \sim P, nil\}$

语义树的倒塌

提升引理

- 引理:
 - 如果 C_1 '和 C_2 '是子句 C_1 和 C_2 的实例, C_2 是 C_1 '和 C_2 '的归结式,则存在 C_1 和 C_2 的 归结式C,使C'是C的实例•

例子

- $\mathbf{C_1}: \mathbf{P(x)} \vee \mathbf{Q(f(x))}$
- $\mathbf{C}_2: \sim \mathbf{Q}(\mathbf{y}) \vee \mathbf{R}(\mathbf{y})$
- C_1 ': $P(a) \vee Q(f(a))$ {a/x}
- C_2 : $\sim Q(f(a)) \vee R(f(a)) \{f(a)/y\}$
- C': P(a) \times R(f(a))
- ullet C: P(x) \vee R(f(x))

归结原理完备性

■ 定理: 一个子句集合S是不相容的,当且 仅当存在一个从S到nil的反演。

■设子句集合S不相容。

■设存在一个从S到nil的反演。

一. 起因;

二. 命题逻辑的归结原理;

三. 置换与合一;

四.一阶谓词的归结原理;

五. 归结原理的完备性;

六.效率的提高;

效率的问题

- 归结原理比Herbrand定理有了明显的进步;
- 盲目的归结会产生组合爆炸问题;
- 不必要的归结式 → 不必要的归结式;

■ 例子:

例子

- S={P\Q, \propto P\Q, P\propto Q, \propto P\propto Q}
- 盲目归结过程:
- $S_0 = S$
- S_i={C₁, C₂的归结式 | C₁∈S₀∪S₁∪… ∪S_{i-1}, C₂∈S_{i-1}}
- 具体过程:
 - S_0 : (1)P \vee Q (2) \sim P \vee Q (3)P \vee \sim Q (4) \sim P \vee \sim Q
 - S_1 : (5)Q (1)(2) (6)P (1)(3)
 - (7)Q∨~Q(1)(4) (8)P∨~P(1)(4)...... (12)~Q
 - S_2 : (13) $P \lor Q$ (1)(7) (14) $P \lor Q$ (1)(8)
 - •••••
 - (39) nil (5)(12)

效率的提高

- 1965: Wos, G.A.Robinson, Curson, 支持集归结;
- 1967: Slagle, 语义归结;
- 1970: Loveland, Luckham, 线性归结;
- 1971: Boyer, 锁归结;
- 1978: 刘叙华, 锁语义归结;
- 1979: 王湘浩,刘叙华,广义归结;

分类

- 限制参加归结的子句;
- 限制子句中被归结的文字;
- 限制归结的方式;