Arborescences

« Un père, des fils. Une racine, des noeuds, des feuilles. »

1.1 Tas

Un arbre binaire complet est un graphe comme celui de la figure : tous les niveaux sont remplis de gauche à droite, sauf éventuellement le dernier niveau. On numérote les sommets de 1 à n, niveau par niveau, et pour chaque niveau, de gauche à droite. S'il y a une flèche de i vers j, on dit que i est le père de j, et que j est un fils de i. Le sommet d'en haut qui n'a pas de père (niveau 0), est la racine. Les sommets du dernier niveau, qui n'ont pas de fils, sont des feuilles. À chaque sommet numéro i, on associe un attribut entier. On représente alors un arbre binaire complet de taille n par un tableau de taille n+1 dont la première case contient le nombre d'éléments du tas.

Question 1

Pour i donné, $1 \le i \le n$, quel est son père, et quels sont ses fils (s'ils existent)? Un tas est un arbre binaire complet dans lequel tout père est plus petit que ses fils (comme

pour la figure). Le minimum est donc à la racine. Écrire une fonction OCaml qui vérifie si un arbre binaire complet est un tas.

Question 2

Écrire une fonction OCaml qui supprime la racine d'un tas à n sommets et qui renvoie un tas composé des n-1 sommets restants (indication : on pourra mettre la dernière feuille à la place de la racine et la faire descendre).

Question 3

Comment insérer un nouvel élément dans un tas à n sommets?

Question 1

Le père du sommet i est $\lfloor i/2 \rfloor$ pour $2 \leq i \leq n$ (le père du sommet 1 n'est pas défini). Les fils de i sont 2i et 2i+1 si ces valeurs sont $\leq n$. En particulier :

- si n est le nombre de sommets et 2i = n, alors i n'a qu'un fils, à savoir n
- si $i > \lfloor n/2 \rfloor$, alors i est une feuille

Pour la fonction demandée, on vérifie les attributs des fils des sommets qui ne sont pas des feuilles, et on sort dès qu'il y a un échec :

```
let verif (t:int array) : bool =
  let n = t.(0) in
  try
    for i=1 to n/2 do
       if t.(i) > t.(2*i) then raise Exit;
       if 2*i+1 <= n && t.(i) > t.(2*i+1) then raise Exit;
       done;
       true
  with Exit -> false
```

Question 2

Une idée naturelle serait d'essayer de remonter le plus petit des fils de la racine à sa place, puis de continuer ainsi... mais on aboutit à un déséquilibre de l'arbre, qui n'est plus complet. Comme l'indication le suggère, il est plus simple de placer le dernier élément à la racine puis de le descendre à la bonne place (percolation basse) :

```
let fils_min (t:int array) (i:int) : int =
  let n = t.(0) in
  let a_fils_droit = 2*i+1 <= n in
  if a_fils_droit then
    if t.(2*i) < t.(2*i+1) then
        2*i else 2*i+1
  else 2*i</pre>
```

Tas

```
let rec percolation basse (t:int array) (i:int) : unit =
  let n = t.(0) in
  let a_fils_gauche = 2*i <= n in</pre>
  if a_fils_gauche then
    let fils = fils min t i in
    if t.(fils) < t.(i) then (
      let tmp = t.(i) in
      t.(i) <- t.(fils);
      t.(fils) <- tmp;</pre>
      percolation basse t fils
    )
let supprimer_racine (t:int array) : int =
  let n = t.(0) and rac = t.(1) in
  t.(1) \leftarrow t.(n);
  t.(0) \leftarrow n-1;
  percolation basse t 1;
```

La procédure a une complexité au pire proportionnelle au nombre de niveaux de l'arbre soit $\lceil \log_2 n \rceil$.

Question 3

Comme précédemment, une idée simple est d'ajouter la nouvelle valeur en dernière position, puis de la remonter tant que besoin est (percolation haute) :

```
let rec percolation_haute (t:int array) (i:int) : unit =
  let parent = i/2 in
  if i <> 1 && t.(parent) > t.(i) then (
    let tmp = t.(i) in
    t.(i) <- t.(parent);
    t.(parent) <- tmp;
    percolation_haute t parent
)

let ajouter (t:int array) (e:int) : unit =
  assert(Array.length t > t.(0) + 1);
  t.(0) <- t.(0) + 1;
  let n = t.(0) in
  t.(n) <- e;
  percolation_haute t n</pre>
```

Ici encore, la fonction a une complexité proportionnelle au nombre de niveaux de l'arbre, donc en $O(\lceil \log_2 n \rceil)$.

Signalons que la structure de tas est à la base d'une méthode de tri très performante : le tri par tas. L'idée est simple : on part du tableau a de n éléments à trier, et on construit un tas par ajout successif des n éléments. On retire ensuite toutes les racines et on obtient ainsi les éléments dans l'ordre :

```
let tri_par_tas (a:int array) : unit =
  let n = Array.length a in
  let tas = Array.make (n+1) 0 in
  Array.iter (ajouter tas) a;
  for i=0 to n-1 do
    a.(i) <- supprimer_racine tas
  done</pre>
```

Le coût de chaque insertion ou suppression est proportionnel à la hauteur du tas courant ($\log_2 p$ pour p éléments), et donc le coût total est de l'ordre de :

$$\sum_{p=1}^{n} \log_2 p = \log_2 n! = O(n \log_2 n)$$

(d'après la formule de Stirling ou par comparaison avec $\int_1^n \log x \, dx$). Le tri par tas est donc asymptotiquement très rapide.

1.2 Arbre bicolore

Question 1

Un arbre binaire étiqueté est défini par une racine, des nœuds et des feuilles. Un nœud est défini par un père, un fils gauche, un fils droit, un étiquette (entier positif) et une couleur (noir ou rouge). La racine est un nœud sans père et une feuille est un nœud vide (autrement dit, fils vide d'un nœud interne).

Expliquer quelle structure de donnée utiliser pour représenter un arbre binaire étiqueté en OCaml.

Question 2

Un arbre binaire est de recherche (ABR) si chaque nœud est tel que : tout nœud de sa sous arborescence droite ne contient que des valeurs d'étiquettes supérieures et tout nœud de sa sous-arborescence gauche des valeurs d'étiquettes inférieures.

Donne une fonction permettant d'insérer une nouvelle valeur en conservant la structure d'ABR.

Question 3

Un arbre bicolore est un arbre binaire de recherche qui vérifie les propriétés suivantes : chaque nœud est soit noir, soit rouge, chaque feuille est considérée comme noire, si un nœud est rouge alors ses deux fils sont noirs et tous les chemins d'un nœud (x) à une feuille de sa descendance contiennent le même nombre $\mathbf{np}(x)$ de nœuds noirs (non-compris le nœud lui-même). Ce nombre est appelé la **noire-profondeur** du nœud.

Arbre bicolore 5

Nous définissons la **noire-profondeur d'un arbre bicolore** comme étant la noire-profondeur de sa racine.

Montrer que la profondeur (longueur de la plus longue branche, $racine \to feuille$) d'un arbre bicolore composé de n nœuds internes (i.e qui ne sont pas des feuilles) est d'au plus $2\log_2(n+1)$.

Question 4

Nous désirons effectuer les rotations suivantes, où T représente l'arbre :

Écrire la fonction rota_gauche.

Montrer que cette fonction préserve la structure d'arbre binaire de recherche. En est-il de même de la structure d'arbre rouge-noir?

Question 5

Comment insérer un nouvel élément dans un arbre bicolore en conservant sa structure?

Question 1

On représente un arbre bicolore avec le type récursif suivant :

Question 2

Pour insérer un nouvel élément dans un arbre binaire de recherche en conservant la propriété fondamentale des ABR, nous parcourons l'arborescence en partant de la racine avec comme critère de choix pour le nœud suivant le fils droit si l'étiquette du nouvel élément est plus grande que celle du nœud courant et le fils gauche sinon.

En OCaml, on peut écrire :

L'arbre bicolore minimal pour une noire-profondeur np donnée n'est composé que de nœuds noirs. Comme chaque branche partant de la racine a exactement np nœuds noirs, nous avons un arbre complet équilibré de profondeur np. Chaque niveau i de cet arbre avant tout binaire contient 2^i nœuds.

Ainsi, un arbre bicolore de noire-profondeur np est composé d'au moins $2^{np} - 1$ nœuds noirs.

Si n est le nombre de nœuds d'un arbre bicolore de noire-profondeur np, nous avons

$$n \ge 2^{np} - 1$$

autrement dit,

$$\log_2(n+1) \ge np$$

Si l'on tient compte du fait que, sur une branche, au plus un nœud sur deux est rouge, la profondeur d'un arbre bicolore de noire-profondeur np est au plus $2\log_2(n+1)$.

Question 4

Pour alléger les fonctions et puisque la coloration n'apporte rien ici, on définit un type d'arbre binaire sans couleurs :

```
type abr = Nil | Noeud of abr * int * abr
```

On propose les fonctions de rotations gauche et droite autour de la racine de t (la transformation n'est pas effectuée si elle est impossible) :

```
let rotate_right (t:abr) : abr = match t with
    | Noeud(Noeud(t1, u, t2), v, t3) -> Noeud(t1, u , Noeud(t2, v, t3))
    | _ -> t

let rotate_left (t:abr) : abr = match t with
    | Noeud(t1, u, Noeud(t2, v, t3)) -> Noeud (Noeud(t1, u, t2), v, t3)
    | _ -> t
```

Si l'on souhaite effectuer une rotation autour d'un nœud en particulier, il suffit de descendre jusqu'à celui-ci de manière récursive puis de le remplacer, similairement à ce qui est fait pour l'insertion :

```
let rec rotate_node_left (t:abr) (x:int) : abr = match t with
  | Noeud(t1, y, t2) -> if y = x then rotate_left t
    else if x < y then Noeud(rotate_node_left t1 x, y, t2)
    else Noeud(t1, y, rotate_node_left t2 x)
    | _ -> t
```

La fonction rotate_node_right s'écrit de manière analogue.

La structure d'arbre binaire de recherche est conservée : x et y sont du même côté par rapport au père de x et les étiquettes de la sous-arborescence gauche de y sont supérieures à celle de x et inférieures à celle de y, elle peut devenir la sous-arborescence droite de x sans que l'arbre ne perde sa propriété d'arbre binaire de recherche.

Arbre bicolore 7

En revanche, la propriété d'arbre bicolore n'est pas forcément conservée. Si nous appliquons l'algorithme précédent à l'arbre ci-dessous où les nœuds noirs sont colorés en noir et les nœuds rouges sont représentés en blanc :

Nous obtenons l'arbre suivant :

Cet arbre ne vérifie plus la propriété d'arbre bicolore, le nombre de nœuds noirs n'est plus le même sur toutes les branches partant de la racine.

Question 5

L'insertion dans un arbre bicolore peut se faire selon le schéma suivant :

On insère le nouvel élément dans l'ABR en utilisant la fonction de la question 2; on obtient donc un arbre binaire de recherche.

Pour que cet arbre vérifie la propriété de bicolore, nous donnons à ce nouveau nœud la couleur rouge. Il devient le nœud courant. Si son père est noir, l'arbre est bicolore et c'est terminé. Sinon, si le frère de ce père est rouge, ce père et son frère deviennent noirs et leur père devient rouge. On recommence avec le père commun. Par contre, si le

frère du père du nœud courant est noir, il y a au moins un élément de plus du côté du nœud courant. Dans ce cas, nous plaçons le nœud courant et son père suivant le même type de filiation que le père et le grand-père : le père devient noir et le grand-père rouge puis nous effectuons une rotation dans le sens du père vers son grand père.

On représente ici l'une des quatre situations où une rotation est nécessaire :

Nous obtenons ainsi les fonctions OCaml suivantes où l'on n'effectue pas de rotation de manière « explicite » mais où on utilise une fonction de *pattern-matching* pour gérer les cas où deux nœuds rouges se suivent :

```
let corrige_rouge (t:arn) : arn = match t with
  | N (R (R (a, x, b), y, c), z, d)
  | N (R (a, x, R (b, y, c)), z, d)
  | N (a, x, R (R (b, y, c), z, d))
  | N (a, x, R (b, y, R (c, z, d)))
   -> R (N (a, x, b), y, N (c, z, d))
  | t -> t
let rec insere aux (t:arn) (x:int) : arn =
 match t with
  | Nil -> R (Nil, x, Nil)
  | R (fg, y, fd) ->
   if x = y then t
   else if x > y then corrige_rouge (R(fg, y, insere_aux fd x))
   else corrige_rouge (R(insere_aux fg x, y, fd))
  | N (fg, y, fd) ->
   if x = y then t
   else if x > y then corrige_rouge (N(fg, y, insere_aux fd x))
   else corrige_rouge (N(insere_aux fg x, y, fd))
```

Notons que pour éviter de répéter deux fois la même chose, on pourrait définir une fonction constructeur comme suit :

Nous disposons d'un arbre binaire de recherche dont la profondeur est d'au plus $2\log_2(n+1)$, avec des algorithmes d'insertion et de suppression qui parcourent un nombre donné de fois une branche de l'arborescence. Nous disposons ainsi d'une structure de données où toutes les opérations peuvent se faire en un temps logarithmique suivant la taille de cette base de données.

1.3 Code préfixé : codage-décodage

Le code est stocké dans un arbre binaire de la manière suivante :

- on marque les arc « fils gauche » avec des 0 et les arcs « fils droit » avec des 1.
- le chemin de la racine au caractère nous donne une suite de 0 et de 1 qui définit le code du caractère.

Exemple:

Question 1

Décoder le message suivant : 0100001110000010110.

Quelle est la particularité de ce codage?

Question 2

On suppose l'arbre de codage connu. Les messages codés sont stockés dans des listes.

Écrire une fonction de décodage en précisant les structures de données utilisées.

Question 3

Encoder le mot « difficile ».

Écrire une fonction d'encodage en précisant les structures de données utilisées.

Question 4

Quel est l'intérêt de ce type de codage par rapport aux codages à longueur fixe comme le code ASCII ?

----- CORRIGÉ -----

Question 1

Nous constatons que les codes associés aux caractères n'ont pas tous la même longueur. Or, nous sommes capables de décoder un mot sans aucune ambiguïté, sans nous soucier de la longueur de chaque code. Aucun code n'est préfixe de l'autre, aucun caractère ne se trouve sur un nœud interne de l'arborescence, ils sont tous placés sur une feuille. Si l'on considère un code à longueur fixe comme le code ASCII, nous obtenons un arbre binaire complet équilibré.

Question 2

```
On peut représenter un arbre binaire par le type :
```

```
type arbre = Noeud of arbre * arbre | Feuille of char
```

Ce qui donne l'arbre suivant pour l'exemple :

```
let arbre1 =
Noeud(
   Noeud(Feuille 'i', Feuille 'a'),
   Noeud(
       Noeud(Feuille 'f', Feuille 'l'),
       Feuille 'b'
   )
),
Noeud(
   Feuille 'e',
   Noeud(Feuille 'c', Feuille 'd')
)
```

Pour décoder le message, on parcourt l'arbre en lisant le message encodé caractère par caractère :

```
let decode (message:string) (a:arbre) : string =
  let n = String.length message in
  (* le message contient au plus n caractères *)
  let buf = Buffer.create n in

let rec parcours i noeud =
  match noeud with
  | Feuille x -> Buffer.add_char buf x;
  if i < n then parcours i a else Buffer.contents buf
  | Noeud (fg, fd) -> if message.[i] = '0' then
    parcours (i+1) fg else parcours (i+1) fd
in parcours 0 a
```

Compte tenu du codage donné dans l'énoncé, le mot « difficile » devient :

d	i	f	f	i	С	i	1	е
111	000	0100	0100	000	110	000	0101	10

Une possibilité est de parcourir l'arbre et d'ajouter tous les codes à une table de hachage puis de parcourir le mot à encoder en cherchant les codes correspondants aux caractères dans la table :

```
let list_to_string (l:string list) : string =
  let n = List.length l in
  let buf = Buffer.create n in
  List.iter (Buffer.add_string buf) 1;
  Buffer.contents buf
let encode (message:string) (a:arbre) : string =
  let h = Hashtbl.create 8 in
  let rec remplir a acc = match a with
    | Feuille x -> let code = list_to_string (List.rev acc) in
        Hashtbl.add h x code
    | Noeud (fg, fd) -> remplir fg ("0"::acc); remplir fd ("1"::acc)
  in remplir a [];
  let n = String.length message in
  let rec construire i acc =
    if i = n then list_to_string (List.rev acc)
    else let code = Hashtbl.find h message.[i] in
      construire (i+1) (code::acc)
  in construire 0 []
```

Ce type d'encodage est très intéressant pour la compression sans perte d'information. Dans la plupart des fichiers, le nombre d'occurrences de chaque caractère très variable : certains caractères sont plus fréquents que d'autres. Il est donc intéressant de donner aux plus fréquents les codes les plus courts afin de réduire la taille du fichier. Le code de Huffman (voir exercice sur le sujet) entre dans cette catégorie; il est même optimal en ce qui concerne la compression par un code préfixé.

Pour stocker de la façon la plus compacte possible un message codé avec un code préfixé, nous pouvons découper le message en morceaux de 32 bits (en admettant que les entiers sont codés sur 32 bits) et stocker les entiers correspondants dans un tableau :

```
let string_to_int (message:string) : int =
  let k = ref (Int.shift_left 1 31) in (* 2^31 *)
  let n= String.length message in

let s = ref 0 in
  for i=0 to n-1 do
    if message.[i] = '1' then s := !s + !k;
    k := !k /2
  done;!s
```

```
let compact (message:string) : int list =
  let n = String.length message in

let rec aux i acc =
   let len = if i=n/32 then n mod 32 else 32 in
  let s = String.sub message (32*i) len in
  let num = string_to_int s in
  if i=n/32 then num::acc else aux (i+1) (num::acc)
  in List.rev (aux 0 [])
```

1.4 Génération d'un code de Huffman

En machine, à chaque caractère correspond un code binaire formé de 0 et de 1. Notre but est de construire une table de codage. Le codage de Huffman prend en compte les fréquences d'apparition des caractères. Nous allons étudier ici comment ce code est construit.

La structure de données utilisée pour la construction d'un tel code est celle d'arbre binaire : une feuille représente un caractère et à chaque sous-arbre est associé un poids correspondant à la somme des fréquences de ses feuilles.

Question 1

On désire fusionner deux arbres binaires en un seul de la manière suivante : on crée un nouvel arbre, de poids la somme des poids des deux arbres et dont la racine a pour fils gauche l'arbre de poids le plus faible et pour fils droit l'autre arbre.

Écrire une fonction de fusion des deux arbres binaires. Préciser la structure de données adoptée.

Question 2

Après l'analyse d'un texte écrit avec l'alphabet {a, b, c, d, e, f, g, h}, nous obtenons pour chaque lettre une fréquence d'apparition. À partir de ces fréquences, nous construisons 8 arbres correspondant aux 8 caractères de l'alphabet; chaque arbre correspond à une feuille avec comme poids la fréquence de chaque caractère.

Nous fusionnons ensuite successivement les arbres de poids les plus faibles jusqu'à n'obtenir qu'un seul arbre.

Illustrer le fonctionnement de cet algorithme avec l'exemple suivant :

ĺ	lettre	a	b	c	d	е	f	g	h
	fréquence	25	12	10	8	27	10	5	3

Question 3

Nous déduisons un codage pour chaque caractère avec l'arbre obtenu : on marque les branches gauches avec des 0 et les branches droites avec des 1. Le chemin de la racine

à la feuille correspondant à un caractère nous donne une suite de 0 et de 1 qui définit le code du caractère.

Quelle est, dans le pire cas, la plus grande longueur possible pour le code d'un caractère? Quelle structure de données peut-on utiliser pour stocker ces codes?

Écrire une fonction OCaml permettant de construire le code correspondant pour chaque caractère.

Question 1

On représente un arbre binaire avec le type :

```
type arbre =
    | Noeud of arbre * int * arbre
    | Feuille of char
```

On propose la fonction de fusion suivante, où occ est un tableau des occurrences des lettres dans l'ordre et où on suppose que a1 est de poids plus petit que a2 :

Question 2

Notons qu'une manière efficace de construire un tel arbre à partir de l'ensemble de feuilles est d'utiliser un tas et de successivement fusionner les deux éléments les plus petits (situés à la racine) puis de réinsérer l'arbre obtenu dans le tas. On pourra se référer au premier exercice de ce chapitre pour l'implémentation en OCaml.

Le pire cas se présente lorsque l'arborescence obtenue est composée d'une seule branche portant tous les caractères. La longueur du plus grand code possible pour un caractère est égale au cardinal de l'alphabet -1.

Une manière efficace de stocker les codes pour faciliter l'encodage de messages est d'utiliser une table de hachage.

De manière analogue à ce qui a été fait dans l'exercice précédent, on peut parcourir l'arbre et ajouter tous les codes à la table :

Tas binomial 15

1.5 Tas binomial

Un arbre étiqueté est défini par une racine, des nœuds et des feuilles. Un nœud est défini par un père, un fils aîné, un frère, une étiquette (entier positif). La racine est un nœud sans père et une feuille un nœud sans fils.

Question 1

Expliquer comment représenter un arbre étiqueté en OCaml.

Question 2

Un arbre binomial est défini par récurrence : l'arbre binomial d'ordre 0 ne contient qu'un seul nœud, l'arbre binomial d'ordre k est construit à partir de deux arbres binomiaux d'ordre k-1 en plaçant la racine de l'un comme fils aîné de la racine de l'autre et l'ancien fils aîné devant le frère.

Montrer que la racine d'un arbre binomial est de degré k (nombre de fils).

Montrer que si les fils de la racine d'un arbre binomial sont numérotés de k-1 à 0 en partant du fils aîné alors le fils i est un arbre binomial d'ordre i.

Montrer enfin qu'un arbre binomial d'ordre k possède 2^k nœuds et que la plus longue branche contient k nœuds.

Question 3

Donner une fonction de fusion de deux arbres binomiaux d'ordre k en un seul d'ordre k+1.

Question 4

Un tas binomial est une liste d'arbres binomiaux telle que : il y a au plus un arbre binomial d'un degré donné et dans chaque arbre l'étiquette d'un nœud est supérieure ou égale aux étiquettes de ses parents.

Comment stocker un tas binomial?

Combien d'arbres binomiaux composent un tas binomial de n étiquettes?

Donner une fonction unifiant deux tas binomiaux en une liste ordonnée par ordre croissant (il peut y avoir deux arbres binomiaux de même ordre).

Question 5

Donner une fonction de fusion de deux tas binomiaux en un seul.

Donner une fonction permettant d'extraire la plus petite étiquette d'un tas binomial.

On représente chaque nœud de l'arbre par un tuple contenant l'ordre de l'arbre dont le nœud est racine, l'étiquette du nœud et une liste de tous ses fils directs :

```
type arbre = Noeud of int * int * arbre list
```

Question 2

Le fait que la racine d'un arbre binomial d'ordre k soit de degré k se montre par récurrence directement à partir de la définition donnée dans l'énoncé.

Il en est de même pour le fait que si les fils de la racine d'un arbre binomial sont numérotés de k-1 à 0 en partant du fils aîné alors le fils i est un arbre binomial d'ordre i. On ajoute un arbre d'ordre k-1 en fils aîné d'un arbre d'ordre k-1 pour construire un arbre d'ordre k.

Enfin, il est aisé de voir que si un arbre d'ordre k-1 possède 2^{k-1} nœuds alors un arbre d'ordre k en possède $2^{k-1} + 2^{k-1} = 2^k$.

Le fait que la plus longue branche contienne k nœuds se montre aussi par récurrence.

Question 3

On donne la fonction de fusion suivante :

```
let fusion (a:arbre) (b:arbre) : arbre =
  let Noeud(ordre_a, val_a, fils_a) = a in
  let Noeud(ordre_b, val_b, fils_b) = b in
  if val_a > val_b then Noeud(ordre_b+1, val_b, a::fils_b)
  else Noeud(ordre_a+1, val_a, b::fils_a)
```

Question 4

Il suffit de considérer une liste d'arbres binomiaux.

Un arbre binomial possède une puissance de deux comme nombre d'étiquettes. La décomposition de n sous la forme d'une somme de puissances de deux est unique, c'est son écriture binaire.

Le nombre d'arbres binomiaux d'un tas binomial de n étiquettes est donc égal au nombre de 1 dans l'écriture binaire de n.

La fonction demandée requiert simplement de parcourir les deux listes (supposées ordonnées) simultanément.

On commence par définir une fonction utilitaire :

```
let ordre (a:arbre) : int =
  let Noeud(ordre, _, _) = a in
  ordre
```

Tas binomial 17

```
let union_tas (11:arbre list) (12:arbre list) : arbre list =
  let rec aux acc 11 12 = match 11, 12 with
    | a1::q1, a2::q2 -> let Noeud(ordre1, _, _) = a1 in
      let Noeud(ordre2, _, _) = a2 in
      if ordre1 < ordre2 then aux (a1::acc) q1 12
      else aux (a2::acc) 11 q2
      | x::q, [] | [], x::q -> aux (x::acc) q []
      | _ -> acc
  in List.rev (aux [] 11 12)
```

Question 5

On utilise ici la fonction précédente pour obtenir une unique liste (contenant éventuellement des arbres de même ordre) et on transforme cette liste, union de deux tas en un tas (sans arbres de même ordre) :

```
let fusion_tas (t1:arbre list) (t2:arbre list) : arbre list =
  let tas = union_tas t1 t2 in

(* on fusionne tous les arbres de même ordre *)
  let rec aux acc tas = match tas with
    | a1::a2::q -> if ordre a1 = ordre a2
      then let fus = fusion a1 a2 in
          aux acc (fus::q)
      else
          aux (a1::acc) (a2::q)
      | [x] -> x::acc
      | [] -> acc
      in List.rev (aux [] tas)
```

Pour extraire le plus petit, il suffit, vue la structure d'un tas binomial, de parcourir les racines en recherchant le minimum.

En supprimant le minimum, on transforme un tas binomial en deux tas binomiaux : l'ancien privé de l'arbre binomial de plus petite étiquette et du tas créé par la suppression de la racine de l'arbre cité que l'on ordonne suivant les ordres croissants. On reforme le tas en fusionnant ces deux tas.

La structure de tas binomial permet donc d'effectuer toutes les actions suivantes en $O(\log_2 n)$: l'insertion d'un nouvel élément, la recherche du plus petit élément, la suppression du plus petit élément, la fusion de deux tas en un seul.

Notons qu'il est également possible de décrémenter ou de supprimer un élément donné du tas en $O(\log_2 n)$ en utilisant les opérations précédentes.
