

Applied Bioinformatics

Variant Calling October 2015, Belgrade

Goran Rakočević, PhD goran.rakocevic@sbgenomics.com

Today's agenda

- 1. Overview of variant calling strategies
 - a. Simple binomial model
 - b. Additional information available
 - c. Bayesian approaches
 - d. Haplotype-based approaches
 - e. Multisample calling
- 2. Using GATK Variant callers
 - a. Exercise with the UnifedGenotyper
- 3. Variant filtration
 - a. Hard filtering
 - b. Variant Quality Score Recalibration

DNA Sequencing - Reminder

We got a FASTQ file with the "reads" - little pieces of the genome

Looking at a pileup

 Pileup is the set of bases aligned to a single position on the genome

Examining a pileup

- Two possible cases:
 - All of the bases are the same nucleotide [A,T,C,G]
 - Different nucleotides exist in the pileup
- In the simplest case, assume diploidy
 - There can be only two alleles at a site
 - If there are more than two different letters in the pileup we will only consider the most common two (assume others are errors and discard them)

Case 1: All bases are the same

- Once again, two options:
 - All bases are the same and match the reference
 - Consider the site to be homozygous reference
 - All bases are the same and do not match the reference
 - Consider the site to be homozygous variant
 - But what if the pileup contains only one or two bases?
 - Probably an error, but still make the call and leave it to filtering
- Making the call looks fairly simple

Case 2: Two "letters" in the pileup

- If we have 15 As and 15 Ts, it's a heterozygote!
- If we have 29 As and 1 T, the T is an error, previous slide!
- What about 5 Ts? Or 7?

 - What happens with more or less than 30 bases?
- For this case we will need to use statistics
- We will look at the simplest model that was actually used

Binomial distribution

- Models the number of successes in a sequence of yes/no experiments
- Parameters:
 - n number of trials
 - p probability of a success in a single trial

$$f(k; n, p) = \Pr(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

Binomial distribution

Back to "two-letter" pileup

- Let's call the two "letters" **b** and **b'** (b, b' \in [A, C, T, G])
- Let **n** be the total number of bases, and **k** number of b' bases
- Three possible explanations for the pileup:
 - Genotype is bb; k bases are errors, n-k are correct
 - Genotype is b'b'; n-k bases are errors, k are correct
 - Genotype is bb'; all n bases are correct
- Now we need to find the probabilities of these three cases
 - Will pick the most probable one!

Probabilities for different options

- Genotype is bb; k bases are errors, n-k are correct
 - Let ε be the probability of a sequencing error
 - What is the probability we draw n bases, and get k errors?

$$P(D|bb) = \binom{n}{k} \varepsilon^k (1-\varepsilon)^{n-k}$$

Probabilities for different options (2)

- Genotype is b'b'; n-k bases are errors, k are correct
 - Let ε be the probability of a sequencing error
 - What is the probability we draw n bases, get n-k errors?
 - It's binomial!

$$P(D|b'b') = {n \choose n-k} (1-\varepsilon)^k \varepsilon^{n-k}$$

Probabilities for different options (3)

- Genotype is bb'; n-k bases are errors, k are correct
 - Probability of drawing b or b' is equal, and 0.5
 - What is the probability we draw n bases, k bs (or b's)?
 - It's binomial!

$$P(D|bb') = \binom{n}{k} \frac{1}{2^n}$$

Putting it together

- We now have P(D|bb), P(D|b'b'), and P(D|b'b)
- What about P(bb|D), P(b'b'|D), and P(b'b|D)?
- Bayes' theorem:

$$P(A|B) = \frac{P(A)P(B|A)}{P(B)}$$

- P(D) is always the same
- P(b'b) fixed to 0.001 (or 0.2 for known variants)
- P(bb) = P(bb) = (1-r)/2
- Now we can pick max(P(bb|D), P(b'b'|D), and P(b'b|D))

Advanced stuff

- We assumed a flat error rate
 - But we have Base qualities from the sequencer
 - Machine-specific error profiles
- We can look at mapping qualities
 - Mapping errors are a big source of errors
- We can look at haplotypes
 - Errors don't segregate nicely
- Population-based methods
 - Separate variant calling from genotyping

Genome Analysis Toolkit (GATK)

- A collection of tools for NGS analyses
- Two variant Caller (de-facto standard)
 - UnifedGenotyper a Bayesian model
 - HaplotypeCaller
- GATK Also includes tool for filtering variants
- ...as well as many other things
- Written in Java
- https://www.broadinstitute.org/gatk/

GATK UnifiedGenotyper

A Bayesian genotype likelihood model model

- Uses a platform-specific confusion matrix
- Can do joint calling on multiple samples
- Can call both SNP and Indels

Exercise 1: Calling variants

- Use UnifiedGenotyper to call variants on the small example BAM
- GATK jar file is located in the /opt folder
- All of the input files are located in the ../data folder
- Examine the produced variants in the VCF file
 - VCF files are in a plain text format

Filtering variants

- Many Variant callers are designed for sensitivity
 - Call everything that looks plausible
- High sensitivity comes at expense of specificity
 - Some of the called stuff are false positives
- Filtering steps are used to reduce the false positives
 - Hard filtering (GATK VariantFiltration)
 - Machine learning (VQSR)
- http://gatkforums.broadinstitute.org/discussion/2806/howto-apply-hard-filters-to-a-callset
- http://gatkforums.broadinstitute.org/discussion/39/variant-quality-score-recalibration-

VCF file format

- A plain text file format for storing variant data
- A number of line starting with ## -the header
- Main header line:
 #CHROM POS ID REF ALT QUAL FILTER INFO FORMAT SAMPLE1
- This is followed by the actual variant data, one entry per line
 22 10001 . A C 40 PASS DP=14 GT 0/1
- More than one sample can be in one line
- For details: http://samtools.github.io/hts-specs/VCFv4.2.pdf

Bgzip and Tabix

- Bgzip block zip format
 - Break the VCF into blocks of several lines
 - Compress each block separately
- Tabix indexing tools
 - Makes and index on a bgzipped files
 - Allows a genomic range to fetched
- Not only VCF files can be indexed!
 - As long as there are columns with coordinates

Pysam - Python interface for VCFs

- Pysam can be used to process VCF files
- pysam.VariantFile
 - VariantFile(path_to_file)
 - o for read in VariantFile(path_to_file):
- Reads are wrapped in VariantRecord objects
 - VariantRecord gives access to all of the data
- pysam.VariantFile supports fetching regions
 - The VCF file needs to be bgziped and tabix indexed!

Pysam VCF -exercise 2

- Create an VariantFile object
 - Use SRS000638.vcf.gz from the data folder
 - How many samples are there
- Take the first record from the VariantFile
 - What is the variant quality? Is the read filtered?
 - What INFO fields are present? What are the values?
 - O What is the genotype of the first variant?
- How many unmapped reads are there in the file?
- Create a BedTool with the exome.bed from the ../data folder
- Get the regions from the BedTool that cover BRCA1 gene
- Fetch all of the variants from the BAM file mapped to BRCA1
 - Are any known? Check OMIM and DbSnp for associations

Questions?

