Package 'ZIM'

October 12, 2022

Title Zero-Inflated Models (ZIM) for Count Time Series with Excess Zeros

Version 1.1.0

Description Analyze count time series with excess zeros.

Two types of statistical models are supported: Markov regression by Yang et al.

(2013) <doi:10.1016/j.stamet.2013.02.001> and state-space models by Yang et al.

(2015) <doi:10.1177/1471082X14535530>. They are also known as observation-driven and parameter-driven models respectively in the time series literature. The functions used for

Markov regression or observation-driven models can also be used to fit ordinary regression models

with independent data under the zero-inflated Poisson (ZIP) or zero-

inflated negative binomial (ZINB)

assumption. Besides, the package contains some miscellaneous functions to compute density, distribution,

quantile, and generate random numbers from ZIP and ZINB distributions.

License GPL-3

Encoding UTF-8

RoxygenNote 6.1.0

Imports MASS

Suggests pscl, TSA

URL https://github.com/biostatstudio/ZIM

BugReports https://github.com/biostatstudio/ZIM/issues

NeedsCompilation no

Author Ming Yang [aut, cre],

Gideon Zamba [aut], Joseph Cavanaugh [aut]

Maintainer Ming Yang <mingyang@biostatstudio.com>

Repository CRAN

Date/Publication 2018-08-28 13:04:25 UTC

2 ZIM-package

R topics documented:

	ZIM-package .	 	 	 . 2
	bshift	 	 	 . 3
	dzim	 	 	 . 4
	dzim.control	 	 	 . 4
	dzim.filter	 	 	 . 5
	dzim.fit	 	 	 . 6
	dzim.plot	 	 	 . 6
	dzim.sim	 	 	 . 7
	dzim.smooth	 	 	 . 7
	injury	 	 	 . 8
	pvalue	 	 	 . 8
	syph	 	 	 . 9
	zim	 	 	 . 11
	zim.control	 	 	 . 12
	zim.fit	 	 	 . 12
	ZINB	 	 	 . 13
	ZIP	 	 	 . 14
Index				16

ZIM-package

Zero-Inflated Models for Count Time Series with Excess Zeros

Description

Fits observation-driven and parameter-driven models for count time series with excess zeros.

Details

The package ZIM contains functions to fit statistical models for count time series with excess zeros (Yang et al., 2013, 2015). The main function for fitting observation-driven models is zim, and the main function for fitting parameter-driven models is dzim.

Note

The observation-driven models for zero-inflated count time series can also be fit using the function zeroinfl from the pscl package (Zeileis et al., 2008). Fitting parameter-driven models is based on sequential Monte Carlo (SMC) methods, which are computer intensive and could take several hours to estimate the model parameters.

bshift 3

References

Yang, M., Cavanaugh, J. E., and Zamba, G. K. D. (2015). State-space models for count time series with excess zeros. *Statistical Modelling*, **15**:70-90

Yang, M., Zamba, G. K. D., and Cavanaugh, J. E. (2013). Markov regression models for count time series with excess zeros: A partial likelihood approach. *Statistical Methodology*, **14**:26-38.

Zeileis, A., Kleiber, C., and Jackman, S. (2008). Regression models for count data in R. *Journal of Statistical Software*, **27**(8).

bshift

Backshift Operator

Description

Apply the backshift operator or lag operator to a time series objective.

Usage

```
bshift(x, k = 1)
```

Arguments

- x univariate or multivariate time series.
- k number of lags.

See Also

```
lag, zlag
```

Examples

```
x \leftarrow arima.sim(model = list(ar = 0.8, sd = 0.5), n = 120)
 bshift(x, k = 12)
```

4 dzim.control

Fitting Dynamic Zero-Inflated Models

Description

dzim is used to fit dynamic zero-inflated models.

Usage

```
dzim(formula, data, subset, na.action, weights = 1, offset = 0,
  control = dzim.control(...)
```

Arguments

formula	an objective of class "formula".
data	an optional dataframe, list or environment containing the variables in the model.
subset	an optional vector specifying a subset of observations to be used in the fitting process.
na.action	a function which indicates what should happen when the data contain NAs.
weights	an optional vector of 'prior weights' to be used in the fitting process.
offset	this can be used to specify a priori known component to be included in the linear predictor during fitting.
control	control arguments from dzim.control
	additional arguments

See Also

```
dzim.fit, dzim.filter, dzim.smooth, dzim.control, dzim.sim, dzim.plot
```

dzim.control

Auxiliary for Controlling DZIM Fitting

Description

Auxiliary function for dzim fitting. Typically only used internally by dzim. fit, but may be used to construct a control argument for either function.

Usage

```
dzim.control(dist = c("poisson", "nb", "zip", "zinb"), trace = FALSE,
  start = NULL, order = 1, mu0 = rep(0, order), Sigma0 = diag(1,
  order), N = 1000, R = 1000, niter = 500)
```

dzim.filter 5

Arguments

dist	count model family
trace	logical; if TRUE, display iteration history.
start	initial parameter values.
order	autoregressive order.
mu0	mean vector for initial state.
Sigma0	covariance matrix for initial state.
N	number of particiles in particle filtering.
R	number of replications in particle smoothing.
niter	number of iterations.

Note

The default values of N, R, and niter are chosen based on our experience. In some cases, N = 500, R = 500, and niter = 200 might be sufficient. The dzim.plot function should always be used for convergence diagnostics.

See Also

```
dzim, dzim.fit, dzim.filter, dzim.smooth, dzim.sim, dzim.plot
```

dzim.filter	Particle Filtering for DZIM	

Description

Function to implement the particle filtering method proposed by Gordsill et al. (1993).

Usage

```
dzim.filter(y, X, w, para, control)
```

Arguments

У	response variable.
Χ	design matrix.

w log(w) is used as an offset variable in the linear predictor.

para model parameters. control control arguments.

References

Gordon, N. J., Salmond, D. J., and Smith, A. F. M. (1993). Novel approach to nonlinear/non-Gaussian Bayesian state estimation. *IEEE Proceedings*, **140**, 107-113.

6 dzim.plot

See Also

dzim, dzim. fit, dzim. smooth, dzim. control, dzim. sim, dzim.plot

dzim.fit

Fitter Function for Dynamic Zero-Inflated Models

Description

dzim. fit is the basic computing engine called by dzim used to fit dynamic zero-inflated models. This should usually *not* be used directly unless by experienced users.

Usage

```
dzim.fit(y, X, offset = rep(0, n), control = dzim.control(...), ...)
```

Arguments

```
y response variable.

X design matrix.

offset offset variable.

control control arguments.

... additional arguments.
```

See Also

dzim, dzim.control, dzim.filter, dzim.smooth, dzim.sim, dzim.plot

dzim.plot

Trace Plots from DZIM

Description

Function to display trace plots from a dynamic zero-inflated model.

Usage

```
dzim.plot(object, k.inv = FALSE, sigma.sq = FALSE, ...)
```

Arguments

object	objective from dzim or dzim. fit.
k.inv	logical; indicating whether an inverse transformation is needed for the dispersion parameter.
sigma.sq	logical; indicating whether a square transformation is needed for the standard deviation parameter.
	additional arguments.

dzim.sim 7

dzim.sim S	Simulate Data from DZIM
------------	-------------------------

Description

Simulate data from a dynamic zero-inflated model.

Usage

```
dzim.sim(X, w, omega, k, beta, phi, sigma, mu0, Sigma0)
```

Arguments

X design matrix.

w log(w) is used as an offset variable in the linear predictor.

omega zero-inflation parameter.
k dispersion parameter.
beta regression coefficients.
phi autoregressive coefficients.

sigma standard deviation.

mu0 mean vector of initial state.
Sigma0 covariance matrix of initial state.

See Also

```
dzim, dzim.fit, dzim.filter, dzim.smooth, dzim.control, dzim.plot
```

dzim smooth	Particle Smoothing for DZIM	

Description

Function to implement the particle smoothing method proposed by Gordsill et al. (2004).

Usage

```
dzim.smooth(y, X, w, para, control)
```

Arguments

У	response variable.
Χ	design matrix.

w log(w) is used as an offset variable in the linear predictor.

para model parameters. control control arguments. 8 pvalue

References

Gordsill, S. J., Doucet, A., and West, M. (2004). Monte Carlo smoothing for nonlinear time series. *Journal of the American Statistical Association*, **99**, 156-168.

See Also

```
dzim, dzim.fit, dzim.filter, dzim.control, dzim.sim, dzim.plot
```

injury

Example: Injury Series from Occupational Health

Description

Monthly number of injuries in hospitals from July 1988 to October 1995.

Source

Numbers from Figure 1 of Yau et al. (2004).

References

Yau, K. K. W., Lee, A. H. and Carrivick, P. J. W. (2004). Modeling zero-inflated count series with application to occupational health. *Computer Methods and Programs in Biomedicine*, **74**, 47-52.

Examples

```
data(injury)
plot(injury, type = "o", pch = 20, xaxt = "n", yaxt = "n", ylab = "Injury Count")
  axis(side = 1, at = seq(1, 96, 8))
  axis(side = 2, at = 0:9)
  abline(v = 57, lty = 2)
  mtext("Pre-intervention", line = 1, at = 25, cex = 1.5)
  mtext("Post-intervention", line = 1, at = 80, cex = 1.5)
```

pvalue

Function to Compute P-value.

Description

Function to compute p-value based on a t-statistic.

Usage

```
pvalue(t, df = Inf, alternative = c("two.sided", "less", "greater"))
```

syph 9

Arguments

t t-statistic.

df degree of freedoms. alternative type of alternatives.

Examples

```
pvalue(1.96, alternative = "greater")
```

syph

Example: Syphilis Series

Description

Weekly number of syphilis cases in the United States from 2007 to 2010.

Format

A data frame with 209 observations on the following 69 variables.

year	Year
week	Week
a1	United States
a2	New England
a3	Connecticut
a4	Maine
a5	Massachusetts
a6	New Hampshire
a7	Rhode Island
a8	Vermont
a9	Mid. Atlantic
a10	New Jersey
a11	New York (Upstate)
a12	New York City
a13	Pennsylvania
a14	E.N. Central
a15	Illinois
a16	Indiana
a17	Michigan
a18	Ohio
a19	Wisconsin
a20	W.N. Central
a21	Iowa
a22	Kansas
a23	Minnesota
a24	Missouri

10 syph

- a25 Nebraska
- a26 North Dakota
- South Dakota a27
- S. Atlantic a28
- a29 Delaware
- District of Columbia a30
- Florida a31
- Georgia a32
- Maryland a33
- North Carolina a34
- a35 South Carolina
- Virginia a36
- West Virginia a37
- E.S. Central a38
- a39 Alabama
- a40 Kentucky
- a41 Mississippi
- Tennessee a42
- W.S. Central a43
- Arkansas a44
- a45 Louisana
- a46 Oklahoma
- a47 Texas
- Moutain a48
- Arizona a49
- Colorado a50
- a51 Idaho
- a52 Montana
- Nevada a53
- a54 New Mexico
- Utah a55
- Wyoming a56
- **Pacific** a57
- a58 Alaska
- California a59
- Hawaii a60
- a61 Oregon
- a62 Washington
- a63 American Samoa
- a64 C.N.M.I.
- Guam a65
- Peurto Rico a66
- a67 U.S. Virgin Islands

Note

C.N.M.I.: Commonwealth of Northern Mariana Islands.

zim 11

Source

CDC Morbidity and Mortality Weekly Report (http://www.cdc.gov/MMWR/).

Examples

```
data(syph)
plot(ts(syph$a33), main = "Maryland")
```

zim

Fitting Zero-Inflated Models

Description

zim is used to fit zero-inflated models.

Usage

```
zim(formula, data, subset, na.action, weights = 1, offset = 0,
control = zim.control(...), ...)
```

Arguments

formula	an objective of class "formula".
data	an optional dataframe, list or environment containing the variables in the model.
subset	an optional vector specifying a subset of observations to be used in the fitting process.
na.action	a function which indicates what should happen when the data contain NAs.
weights	an optional vector of 'prior weights' to be used in the fitting process.
offset	this can be used to specify a priori known component to be included in the linear predictor during fitting.
control	control arguments.
	additional arguments.

Note

zim is very similar to zeroinfl from the pscl package. Both functions can be used to fit observation-driven models for zero-inflated time series.

See Also

```
zim.fit,zim.control
```

12 zim.fit

					-
ziı	m	\sim	nt	rn	ч
	ш.	CU	111	LU	_

Auxiliary for Controlling ZIM Fitting

Description

Auxiliary function for zim fitting. Typically only used internally by zim.fit, but may be used to construct a control argument for either function.

Usage

```
zim.control(dist = c("zip", "zinb"), method = c("EM-NR", "EM-FS"),
type = c("solve", "ginv"), robust = FALSE, trace = FALSE,
start = NULL, minit = 10, maxit = 10000, epsilon = 1e-08)
```

Arguments

dist	count model family.
method	algorithm for parameter estimation.
type	type of matrix inverse.
robust	logical; if TRUE, robust standard errors will be calculated.
trace	logical; if TRUE, display iteration history.
start	initial parameter values.
minit	minimum number of iterations.
maxit	maximum number of iterations.
epsilon	positive convergence tolerance.

See Also

```
zim, zim. fit
```

zim.fit

Fitter Function for Zero-Inflated Models

Description

zim. fit is the basic computing engine called by zim used to fit zero-inflated models. This should usually *not* be used directly unless by experienced users.

Usage

```
zim.fit(y, X, Z, weights = rep(1, nobs), offset = rep(0, nobs),
control = zim.control(...)
```

ZINB 13

Arguments

У	response variable.
Χ	design matrix for log-linear part.
Z	design matrix for logistic part.
weights	an optional vector of 'prior weights' to be used in the fitting process.
offset	offset variable
control	control arguments from zim.control.
	additional argumetns.

See Also

```
zim, zim. control
```

Description

Density, distribution function, quantile function and random generation for the zero-inflated negative binomial (ZINB) distribution with parameters k, lambda, and omega.

Usage

```
dzinb(x, k, lambda, omega, log = FALSE)
pzinb(q, k, lambda, omega, lower.tail = TRUE, log.p = FALSE)
qzinb(p, k, lambda, omega, lower.tail = TRUE, log.p = FALSE)
rzinb(n, k, lambda, omega)
```

Arguments

```
x, q vector of quantiles.
p vector of probabilities.
n number of random values to return.
k dispersion parameter.
lambda vector of (non-negative) means.
omega zero-inflation parameter.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x].
```

Value

dzinb gives the density, pzinb gives the distribution function, qzinb gives the quantile function, and rzinb generates random deviates.

14 ZIP

See Also

dzip, pzip, qzip, and rzip for the zero-inflated Poisson (ZIP) distribution.

Examples

```
\label{eq:dzinb} \begin{split} & \text{dzinb}(x = 0:10, \ k = 1, \ lambda = 1, \ omega = 0.5) \\ & \text{pzinb}(q = c(1, \ 5, \ 9), \ k = 1, \ lambda = 1, \ omega = 0.5) \\ & \text{qzinb}(p = c(0.25, \ 0.50, \ 0.75), \ k = 1, \ lambda = 1, \ omega = 0.5) \\ & \text{set.seed}(123) \\ & \text{rzinb}(n = 100, \ k = 1, \ lambda = 1, \ omega = 0.5) \end{split}
```

ZIP

The Zero-Inflated Poisson Distribution

Description

Density, distribution function, quantile function and random generation for the zero-inflated Poisson (ZIP) distribution with parameters lambda and omega.

Usage

```
dzip(x, lambda, omega, log = FALSE)
pzip(q, lambda, omega, lower.tail = TRUE, log.p = FALSE)
qzip(p, lambda, omega, lower.tail = TRUE, log.p = FALSE)
rzip(n, lambda, omega)
```

Arguments

```
x, q vector of quantiles.
p vector of probabilities.
n number of random values to return.
lambda vector of (non-negative) means.
omega zero-inflation parameter.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x].
```

Value

dzip gives the density, pzip gives the distribution function, qzip gives the quantile function, and rzip generates random deviates.

See Also

dzinb, pzinb, qzinb, and rzinb for the zero-inflated negative binomial (ZINB) distribution.

ZIP 15

Examples

```
dzip(x = 0:10, lambda = 1, omega = 0.5)
pzip(q = c(1, 5, 9), lambda = 1, omega = 0.5)
qzip(p = c(0.25, 0.50, 0.75), lambda = 1, omega = 0.5)
set.seed(123)
rzip(n = 100, lambda = 1, omega = 0.5)
```

Index

* datasets injury, 8 syph, 9 * distribution ZINB, 13	pvalue, 8 pzinb, <i>14</i> pzinb (ZINB), 13 pzip, <i>14</i> pzip (ZIP), 14
<pre></pre>	qzinb, 14 qzinb (ZINB), 13 qzip, 14 qzip (ZIP), 14 rzinb, 14 rzinb (ZINB), 13 rzip, 14 rzip (ZIP), 14 syph, 9 zeroinfl, 2, 11 ZIM (ZIM-package), 2 zim, 2, 11, 11, 12, 13 ZIM-package, 2 zim.control, 11, 12, 13 zim.fit, 11, 12, 12 ZINB, 13 ZIP, 14 zlag, 3
dzinb, 14 dzinb (ZINB), 13 dzip, 14 dzip (ZIP), 14	
formula, <i>4</i> , <i>11</i>	
injury, 8	
lag, 3	