Support Vector Machines

Maximal Margin Classifier

allow "soft margin"

Support Vector Classifier

use "kernels"

Support Vector Machine

Hyperplanes

In p-dimensional space, a flat affine subspace of dimension p-1

Generally, a hyperplane in p-dimensional space can be defined as

$$\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p = 0$$

Hyperplanes

Can think of hyperplane as dividing p-dimensional space into two halves

Separating Hyperplane

Suppose we code...

If
$$y_i$$
 = Blue $\implies y_i$ = +1

If
$$y_i = \text{Red} \implies y_i = -1$$

We have a *separating hyperplane*, if for *all points*, we have...

$$\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} > 0 \text{ when } y_i = +1$$

$$\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} < 0 \text{ when } y_i = -1$$

In particular, we fit...

hmm....

need some sort of budget

each point subject to $\sum \beta_j^2 = 1$, $y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_p x_{ip}) \ge M(1 - \epsilon_i)$

Slack from

 $\varepsilon_i = 0$ for being on correct side of margin

 $\varepsilon_i > 0$ for violating the margin

 $\varepsilon_i > 1$ for being on wrong side of hyperplane

need some sort of budget

 $\varepsilon_i = 0$ for being on correct side of margin $\varepsilon_i > 0$ for violating the margin

 $\epsilon_i > 1$ for being on wrong side of hyperplane

Budget that we can tune

Bias Variance Tradeoff

- C small ⇔ Low bias, High Variance
- C large ⇔ High bias, Low Variance (not quite as clear cut)

Afternoon

hmm....

Cool video.

https://www.youtube.com/watch?v=3liCbRZPrZA

Maximal Margin Classifier

allow "soft margin"

Support Vector Classifier

use "kernels"

Support Vector Machine

So what are SVMs again?

 Hyperplane that separates data as well as possible, while allowing some room for error ("soft margin")

 Kernels are powerful way to accommodate non-linear class boundaries.

$$f(x) = \beta_0 + \sum_{i \in \mathcal{S}} \alpha_i K(x, x_i)$$

Kernels

Solution to SVC only involves inner product of observations

$$\begin{split} \langle x_i, x_{i'} \rangle &= \sum_{i=1}^p x_{ij} x_{i'j} \\ f(x) &= \beta_0 + \sum_{i=1}^n \alpha_i \langle x, x_i \rangle \quad \leftarrow \text{SVC} \\ f(x) &= \beta_0 + \sum_{i \in \mathcal{S}} \alpha_i \langle x, x_i \rangle \quad \leftarrow \text{Only requires support vectors} \end{split}$$

More generally, instead of just taking inner product, we can use *Kernels*

$$f(x) = \beta_0 + \sum_{i \in \mathcal{S}} \alpha_i K(x, x_i) \qquad \textbf{ \ } \textbf{ \ } \textbf{ SVM, since using Kernels now}$$

$$K(x_i, x_{i'}) = \sum_{j=1}^p x_{ij} x_{i'j} \qquad \textbf{ Linear Kernel}$$

$$K(x_i, x_{i'}) = (1 + \sum_{j=1}^p x_{ij} x_{i'j})^d \qquad \textbf{ Polynomial Kernel}$$

$$K(x_i, x_{i'}) = \exp(-\gamma \sum_{j=1}^p (x_{ij} - x_{i'j})^2) \quad \textbf{ Radial Basis Function Kernel ("Gaussian")}$$

Radial Basis Kernel (Gaussian)

$$K(x_i, x_{i'}) = \exp(-\gamma \sum_{j=1}^{p} (x_{ij} - x_{i'j})^2)$$
 $f(x) = \beta_0 + \sum_{i \in \mathcal{S}} \hat{\alpha}_i K(x, x_i)$

$$f(x) = \beta_0 + \sum_{i \in \mathcal{S}} \hat{\alpha}_i K(x, x_i)$$

Polynomial Kernel

Expand feature space by simply creating new features

$$(X_1, X_2) \longrightarrow (X_1, X_2, X_1^2, X_2^2, X_1X_2)$$

• Same idea of hyperplane decision boundary, but it is nonlinear when projected down to X1 vs. X2 space

$$\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1^2 + \beta_4 X_2^2 + \beta_5 X_1 X_2 = 0$$

• Cool Video: https://www.youtube.com/watch?v=3liCbRZPrZA

Turns out, we can rewrite the optimization

Relation to Logistic Regression

$$\sum_{i=1}^{n} \max \left[0, 1 - y_i (\beta_0 + \beta_1 x_{i1} + \ldots + \beta_p x_{ip}) \right]$$

- Often results similar to logistic regression
- Robust to observations far from hyperplane

Dealing with Unbalanced Classes

- Suppose 10% Red
- Can adjust weights inversely proportional to class frequencies

Questions

- What's a hyperplane? Specify equation
- How does a Support Vector Classifier work?
 - Describe the "soft margin" aspect
 - Describe the "hinge loss" aspect Slide 16
 - Contrast with Logistic Regression (as compared to hinge loss)
- How to handle unbalanced classes?
- How to tune?

Appendix

Rewriting the optimization

$$\frac{\underset{\beta_{0},\beta_{1},\ldots,\beta_{p},\epsilon_{1},\ldots,\epsilon_{n}}{\operatorname{maximize}} M}{\sup \text{subject to } \sum_{j=1}^{p} \beta_{j}^{2} = 1,} \\
\frac{y_{i}(\beta_{0} + \beta_{1}x_{i1} + \beta_{2}x_{i2} + \ldots + \beta_{p}x_{ip}) \geq M(1 - \epsilon_{i})}{\epsilon_{i} \geq 0, \sum_{i=1}^{n} \epsilon_{i} \leq \underline{C},}$$

$$\frac{\min \sum_{j=1}^{p} \beta_{j}^{2}}{\sum_{i=1}^{n} \max \left[0, 1 - y_{i}f(x_{i})\right] + \underline{\lambda} \sum_{j=1}^{p} \beta_{j}^{2}}}$$

The idea is to take a certain budget, C, and find the optimal β vector that achieves the maximum margin possible, M.

- C $\rightarrow \lambda$, both tuning parameters
- ε_i = 0 for being on correct side of margin
 ε_i > 0 for violating the margin
 ε_i > 1 for being on wrong side of hyperplane

More details on SVM vs. Logistic Regression

For
$$Y = -1$$
 or $Y = +1$

Logistic Regression

Loss Function, or "binomial Log Likelihood"*

$$L[Y, f(X)] = \log\left(1 + e^{-Yf(X)}\right)$$

• Which estimates the logit

$$f(X) = \log \frac{\Pr(Y = 1|X)}{\Pr(Y = -1|X)}$$

SVMs vs. Logistic Regression

- When classes nearly separable, SVM tends to do better than Logistic Regression
- Otherwise, Logistic Regression (with Ridge) and SVMs are similar
- However, if you want to estimate probabilities, Logistic Regression is the choice.
- With kernels, SVMs work well. Logistic Regression works fine with kernels but can get computationally too expensive

SVM and other Loss functions

- Can consider training model using different loss functions and scoring each one
- In scikit-learn, SVC unfortunately does not have a loss function parameter but LinearSVC does!

SVM and Multiple Classes

Doesn't extend so nicely. Still, we can do...

- One vs. One classification
 - If K > 2 classes, simply compute $\binom{K}{2}$ classifiers
 - Take test observation and tally up times assigned to each of K classes
 → Most frequent class assigned
- One vs. All classification
 - Fit K classifiers, each comparing one class to (K-1) classes
 - Take test observation and assign to each class we have highest confidence in \Leftrightarrow class for which $\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_p x_{ip}$ is highest

