32. Два сосуда с идеальным газом соединены трубкой, диаметр которой заметно меньше длины свободного пробега в обоих сосудах. Температура в сосудах поддерживается постоянной и равной соответственно T_1 и $T_2 = 2T_1$. Найти отношение давлений P_2/P_1 .

Ответ: $\sqrt{2}$.

Решение

При равновесии через трубку с обеих сторон проходит одина ковое комичество молекул!

$$\frac{dN}{Sdt} = \frac{H(X)}{4} \sim \frac{P}{T} \cdot \sqrt{T} = \frac{P}{T} = const$$

$$\frac{P_2}{P_1} = \sqrt{\frac{T_2}{T_1}} = \sqrt{2}$$

33. Оценить коэффициент диффузии сильно разреженного воздуха по длинной трубке диаметром 1 см при комнатной температуре. Считать, что разрежение таково, что длина пробега молекул ограничивается диаметром трубки (высокий вакуум).

Ответ: $1,6 \text{ M}^2/\text{c}$.

Bozgyx!
$$M = 29 \frac{2}{mon6}$$
, $T = 298 K$
 $\langle \sigma \rangle = \sqrt{\frac{8RT}{T_{M}}} = 466 \frac{M}{c}$
Bakyyu! $A = l = 1 cu$.
 $D = \frac{1}{3} \lambda \langle \sigma \rangle \approx 1.6 \frac{M^2}{c}$.

34. Оценить число Рейнольдса в водопроводной трубе диаметра d=2 см при расходе Q=30 л/мин. Вязкость холодной воды $\eta=1,5\cdot 10^{-3}$ Па · с. **Ответ**: 10^4 .

Решение

Unaro Perinonogea!
$$Re = \frac{90d}{1}$$

Объешний Расход пищкости:

$$Q = \frac{dAV}{\Delta t} = \frac{\Delta(SL)}{\Delta t} = SV \implies V = \frac{Q}{S} = \frac{4Q}{\pi d^2}$$

$$\Rightarrow Re = \frac{pd}{1} \cdot \frac{4Q}{\pi d^2} = \frac{4pQ}{\pi \eta d} =$$

$$= \frac{4 \cdot 10^{3} \frac{KZ}{M^{3}} \cdot 0.5 \cdot 10^{-3} \frac{M^{3}}{C}}{77 \cdot 1.5 \cdot 10^{-3} \Pi a \cdot C \cancel{4} \cdot 2 \cdot 10^{-2} M} \approx 10^{4}$$

! Re ≫1, T. T. NOTOK TYPδYNEHTKINŪ

- **10.82**. Определить, на какой угол φ повернется диск, подвешенный на упругой нити, если под ним на расстоянии h=1 см вращается с угловой скоростью $\omega=50$ рад/с второй такой же диск. Радиус дисков R=10 см, модуль кручения нити f=100 дин см/рад, вязкость воздуха считать равной $\eta=1,8\cdot10^{-4}$ дин с/см². Краевыми эффектами пренебречь. Движение воздуха между дисками считать ламинарным.
- **10.83.** Решить предыдущую задачу в предположении, что диски помещены в сильно разреженный воздух с давлением $P=10^{-4}$ Тор, когда длина свободного пробега молекул воздуха велика по сравнению с расстоянием между дисками. Для упрощения расчета считать, что все молекулы движутся с одинаковыми по абсолютному значению скоростями, равными средней скорости молекул воздуха $\upsilon = 450 \text{ м/c}$.

- 1) Eau f mogyne $kpyrenug \Rightarrow \varphi = M/f$ Cura na koneyeboū $thousagke! T = -\eta \frac{dv}{dy} \approx \eta \frac{v}{h}$ $dF = T \cdot dS = \eta \frac{v}{h} \cdot 2\pi r dr$, $v = \omega r$ Moment cur! $dM = r \cdot dF = 2\pi \eta \omega r^3 \frac{dr}{h}$ $M = \int dM = \pi \eta \omega \frac{R^4}{2h} \Rightarrow \varphi = \frac{M}{f} = \frac{\pi \eta \omega R^4}{2hf}$
- 2) Bakyyu \rightarrow other unique and of the net morega Ha pacetogram $r \rightarrow unique C$ mv = mwr Konbyo pazuyca r u unique dr: $2\pi r dr$. $\frac{nv}{4}$ universely $dF = \pi mnw r^2 \frac{dr}{2}$ dM = r dF $M = \int dM = \frac{\pi}{2} mnw \langle v \rangle \int_{r}^{r} r^3 dr = \frac{\pi}{8} mnw \langle v \rangle R^4$ $\text{Yion } 3akpyrubanug! \quad \varphi = \frac{M}{f} = \frac{\pi mnw \langle v \rangle R^4}{8f}$

10.68. Камера объема V=100 л откачивается в помощью идеального насоса (т. е. улавливающего весь попадающий в него газ) через трубу радиуса r=2 см, длины L=1 м. Оценить, сколько времени должна длиться откачка камеры от начального давления $P_1=1$ атм до давления $P_2=10^{-1}$ мм рт. ст. Коэффициент вязкости воздуха считать равным $\eta=1,8\cdot10^{-4}$ П.

Thu 1 « l uenous zyew coopway Jiyazew
$$q$$
!

$$Q_{V} = \frac{\pi r^{4}}{8 \eta L} (P_{2} - P_{2}) = \frac{\pi r^{4}}{8 \eta} \frac{dp}{dx} \quad (g_{A}g_{1} + 2a_{3}o_{6})$$

$$P = \frac{up}{RT} \Rightarrow Q_{m} = PQ_{V} = \frac{up}{RT} \cdot \frac{\pi r^{4}}{8 \eta} \frac{dp}{dx} = \frac{dp}{16 \eta RT} \cdot \frac{dp}{dx} \approx \frac{\pi u r^{4}}{16 \eta RT} \cdot \frac{P_{1}^{2} - P_{2}^{2}}{L}$$

Thu $p_{1} \gg p_{2}$ coutaew $p_{2} \approx 0$, $p_{1} = p$.

$$-\frac{dm}{dt} = Q_{m} = \frac{\pi u r^{4}}{16 \eta RT} \cdot \frac{p^{2}}{L} \quad (1)$$

$$m = \frac{pV_{U}}{RT} \Rightarrow -\frac{oim}{at} = -\frac{V_{U}}{RT} \cdot \frac{dp}{ct} \quad (2)$$

$$\Rightarrow -\frac{dp}{dt} = \frac{\pi r^{4}}{16 \eta L V} p^{2} ; \quad \frac{1}{P_{2}} - \frac{1}{P_{1}} = \frac{\pi r^{4}}{16 \eta L V} \cdot t$$

$$\Rightarrow t = \frac{16 \eta l V}{\pi r^{4}} \left(\frac{1}{P_{2}} - \frac{1}{P_{1}} \right) \approx 4 \cdot 3 c.$$

10.69. Камера объема V = 100 л откачивается при комнатной температуре с помощью идеального насоса (т. е. улавливающего все попадающие в него молекулы воздуха) через трубку радиуса r = 2 см и длины L = 1 м. Оценить время откачки от давления $P_1 = 10^{-4}$ Тор до давления $P_2 = 10^{-7}$ Тор.

Jipu bakyywe
$$(1 \gg L)$$
 ucnowszyew popu. Knggcera! $Q_m = \frac{4}{3} \left(\frac{2\pi_{IM}}{RT} \right)^{1/2} \frac{r^3}{L} (p_1 - p_2) \approx \frac{4}{3} \left(\frac{2\pi_{IM}}{RT} \right)^{1/2} \frac{r^3}{L} p$.

$$\frac{dm}{dt} = -Q_m \quad (1)$$

$$\frac{dm}{dt} = \frac{V_{IJ}}{V_{IJ}} \frac{dp}{dt} \quad (2)$$

$$\Rightarrow \frac{dp}{p} = -\frac{4}{3} \left(\frac{2\pi RT}{U} \right)^{1/2} \frac{r^3}{V_L} dt$$

$$\ln \frac{p_1}{p_2} = \frac{4}{3} \left(\frac{2\pi RT}{U} \right)^{1/2} \frac{r^3}{V_L} \cdot t$$

$$t = \frac{3}{4} \left(\frac{U}{2\pi RT} \right)^{1/2} \frac{V_L}{r^3} \ln \frac{p_1}{p_2} \approx 88 c.$$

10.120. Между двумя бесконечными непроницаемыми пластинами, параллельными друг другу и имеющими разные температуры T_1 и T_2 , находится разреженный одноатомный газ, так что длина свободного пробега значительно больше расстояния между пластинами. Концентрация молекул газа n, масса атома m. Определить плотность теплового потока q между пластинами. Предполагается, что атомы газа в пространстве между пластинами имеют максвелловские распределения по скоростям с температурами T_1 и T_2 .

Uz равенства потоков кастиу!

$$\frac{M_1 \langle U_1 \rangle}{4} = \frac{M_2 \langle U_2 \rangle}{4} \Rightarrow M_1 V T_1' = M_2 V T_2'$$
 (1)

 $M_1 + M_2 = M$ (2)

 $\Rightarrow M_1 = M \frac{V T_2}{V T_1 + V T_2}; \quad M_2 = M \frac{V T_4}{V T_1 + V T_2}.$

Для паралленьпого потока кастиу!

Число соударений! $\langle H E \rangle G H \langle U \rangle$

Средядя кинетикеская энериця! $2 KT$
 $\Rightarrow Q = M_1 \langle U_1 \rangle \cdot 2 K T_1 - M_2 \langle U_2 \rangle \cdot 2 K T_2 =$
 $= 2 K \left(M \frac{V T_2}{V T_1 + V T_2} \cdot \sqrt{\frac{8 K T_1'}{\pi m}} \cdot T_1 - M \frac{V T_1}{V T_1 + V T_2} \cdot \sqrt{\frac{8 K T_2'}{\pi m}} \cdot T_2 \right) =$
 $= 2 K M \sqrt{\frac{8 K'}{\pi m}} \cdot \sqrt{T_1 T_2'} \frac{T_1 - T_2}{V T_1 + V T_2} =$
 $= 4 K M \sqrt{\frac{2 K'}{\pi m}} \sqrt{T_1 T_2'} \left(\sqrt{T_1} - \sqrt{T_2} \right)$

14.27м. Однородный по высоте сосуд с площадью сечения S=100 см 2 залит водой до уровня H=10 см (рис.). Вблизи дна вода отводится трубочкой диаметра 2r=2 мм и длины l=1 м. Трубочка открывается в атмосферу. По какому закону h(t) вода вытекает из сосуда? Оценить также время, за которое вода вытечет из сосуда. Предполагается известной вязкость воды $\eta=10^{-2}$ П.

Решение

Если трубка данная, то устанавливается

$$Q_{V} = \frac{\pi r^{4}}{8 \eta \ell} (P_{1} - P_{2}) = \frac{\pi r^{4}}{8 \eta \ell} \cdot ggh$$

$$1ge h - Teryygag borcota ypobrg mugkoctu.$$

$$Q_{V} = -\frac{glv}{glt} = -\frac{glh}{glt} = \frac{\pi r^{4}pg}{8\eta \ell} \cdot h$$

$$\frac{glh}{h} = -\frac{\pi pgr^{4}}{8\eta \ell} \cdot glt = -\frac{glt}{t}, h(0) = H$$

$$\Rightarrow h(t) = H \cdot e^{-t/t}, t = \frac{8 s\eta \ell}{\pi r^{2} \cdot pgr^{2}} \approx 0.72 \, \text{T}.$$

$$Bpeng botekang! h \approx r$$

$$\Rightarrow t_{bot} \approx t \ell h \frac{H}{r} \approx 3.3 \, \text{T}.$$

! Nanunaphin i notok ycranabnubaerca Ha

paccroquiu $a \approx 0.2 \,\mathrm{r} \cdot \mathrm{Re}$ Tipu $\ell < a$ notok cruraeu Typōynentninu! $p + \frac{\rho v^2}{2} + \rho g h = const \implies v = \sqrt{2g H}$