## Zusatzaufgaben 7

## Aufgabe 1: Nichtdeterministische endliche Automaten

Gegeben seien das Alphabet  $\Sigma \triangleq \{ a, b \}$ , die NFAs  $M_1 \triangleq (Q, \Sigma, \Delta_1, \{ q_0, q_2 \}, \{ q_3 \})$  und  $M_2 \triangleq (Q, \Sigma, \Delta_2, \{ q_0, q_1 \}, \{ q_0, q_3 \})$  mit  $Q \triangleq \{ q_0, q_1, q_2, q_3 \}$  und



sowie die Sprachen:

$$A_4 \triangleq \{ xay \mid x \in \{ a, ab \}^* \land y \in \{ bb, ba \}^* \}$$

1.a) Gib alle Berechnungen von  $M_1$  für das Eingabewort ab an. Gehört ab zur Sprache von  $M_1$ ?

$$\begin{array}{l} (q_0,\ ab) \vdash_{M_1} (q_2,\ b) \nvdash_{M_1} \\ (q_2,\ ab) \vdash_{M_1} (q_1,\ b) \nvdash_{M_1} \\ (q_2,\ ab) \vdash_{M_1} (q_3,\ b) \vdash_{M_1} (q_1,\ \epsilon) \nvdash_{M_1} \\ (q_2,\ ab) \vdash_{M_1} (q_3,\ b) \vdash_{M_1} (q_3,\ \epsilon) \nvdash_{M_1} \\ ab \in L(M_1). \end{array}$$

/Lösung

1.b) Gib alle Berechnungen von  $M_2$  für das Eingabewort aaa an. Gehört aaa zur Sprache von  $M_2$ ?

 $(a_0, a_0, a_0) \vdash_{X_1} (a_1, a_0) \vdash_{X_2} (a_2, a_0) \vdash_{X_3} (a_3, a_0) \vdash_{X_4} (a_2, a_0) \vdash_{X_4} (a_3, a_0) \vdash_{X_4} (a_3,$ 

$$(q_0, aaa) \vdash_{M_2} (q_1, aa) \vdash_{M_2} (q_3, a) \nvdash_{M_2} (q_0, aaa) \vdash_{M_2} (q_2, aa) \nvdash_{M_2} (q_1, aaa) \vdash_{M_2} (q_3, aa) \nvdash_{M_2} aaa \notin L(M_2).$$

/Lösung

1.c) Gib einen NFA  $M_4$  so an, dass  $L(M_4) = A_4$ .

Lösung

NFA  $M_4 = (\{\ q_0,\ q_1,\ q_2,\ q_3\ \},\ \Sigma,\ \Delta_4,\ \{\ q_0\ \},\ \{\ q_2\ \})$  mit  $\Delta_4$ :



## Aufgabe 2: Untermengen-Konstruktion

2.a) Berechne: Konstruiere nur mit Hilfe der Untermenge-Konstruktion den DFA  $M'_3$  zu dem NFA  $M_3$ , der in Aufgabe 1.e) des Tutorienblattes angegeben wurde.

------Lösung)------

|   |                       | α                  | ь                     |       |
|---|-----------------------|--------------------|-----------------------|-------|
| S | $\{ q_0 \}$           | $\{ q_1, q_2 \}$   | Ø                     | $s_0$ |
| F | $\{ q_1, q_2 \}$      | Ø                  | $\{ q_0, q_2, q_3 \}$ | $s_1$ |
|   | Ø                     | Ø                  | Ø                     | $s_2$ |
| F | $\{ q_0, q_2, q_3 \}$ | $\{ q_1, q_2 \}$   | $\{ q_2, q_3 \}$      | $s_3$ |
| F | $\{ q_2, q_3 \}$      | { q <sub>2</sub> } | $\{ q_2, q_3 \}$      | $s_4$ |
| F | $\{ q_2 \}$           | Ø                  | $\{ q_2, q_3 \}$      | $s_5$ |

Damit ergibt sich der DFA  $M_3' = \{\{s_0, s_1, s_2, s_3, s_4, s_5\}, \Sigma, \delta_3', s_0, \{s_1, s_3, s_4, s_5\}\}$  mit  $\delta_3'$ :



2.b) Berechne: Konstruiere nur mit Hilfe der Untermenge-Konstruktion den DFA  $M_4'$  zu dem NFA  $M_4$ , der in Aufgabe 1.c) angegeben wurde.

----- Lösung

|   |                       |                       |                    | _              |
|---|-----------------------|-----------------------|--------------------|----------------|
|   |                       | а                     | ь                  |                |
| S | { q <sub>0</sub> }    | $\{ q_0, q_1, q_2 \}$ | Ø                  | $s_0$          |
| F | $\{ q_0, q_1, q_2 \}$ | $\{ q_0, q_1, q_2 \}$ | $\{ q_0, q_3 \}$   | $s_1$          |
|   | Ø                     | Ø                     | Ø                  | $s_2$          |
|   | $\{ q_0, q_3 \}$      | $\{ q_0, q_1, q_2 \}$ | $\{ q_2 \}$        | <b>s</b> 3     |
| F | $\{ q_2 \}$           | Ø                     | { q <sub>3</sub> } | $s_4$          |
|   | $\{ q_3 \}$           | { q <sub>2</sub> }    | $\{ q_2 \}$        | s <sub>5</sub> |

Damit ergibt sich der DFA  $M_4' = (\{ s_0, s_1, s_2, s_3, s_4, s_5 \}, \Sigma, \delta_4', s_0, \{ s_1, s_4 \})$  mit  $\delta_4'$ :



2.c) Berechne: Konstruiere nur mit Hilfe der Untermenge-Konstruktion den DFA  $M_5'$  zu dem NFA  $M_4$ , der in Aufgabe 1.f) des Tutorienblattes angegeben wurde.

| Lösung |                            |                                     |                       |                               |
|--------|----------------------------|-------------------------------------|-----------------------|-------------------------------|
|        |                            | а                                   | ь                     | b                             |
| S      | $\{ q_0 \}$                | { q <sub>0</sub> , q <sub>1</sub> } | $\{ q_0 \}$           | $\{\ q_0\ \}$                 |
|        | $\{ q_0, q_1 \}$           | $\{ q_0, q_1, q_2 \}$               | $\{ q_0, q_3 \}$      | $\{ q_0, q_3 \}$              |
|        | $\{ q_0, q_1, q_2 \}$      | $\{ q_0, q_1, q_2, q_4 \}$          | $\{ q_0, q_3, q_4 \}$ | $\{\;q_0,\;q_3,\;q_4\;\}$     |
|        | $\{ q_0, q_3 \}$           | $\{ q_0, q_1, q_4 \}$               | $\{ q_0 \}$           | $\{\ q_0\ \}$                 |
| F      | $\{ q_0, q_1, q_2, q_4 \}$ | $\{ q_0, q_1, q_2, q_4 \}$          | $\{ q_0, q_3, q_4 \}$ | $\{\; q_0,\; q_3,\; q_4\; \}$ |
| F      | $\{ q_0, q_3, q_4 \}$      | $\{ q_0, q_1, q_4 \}$               | $\{ q_0, q_4 \}$      | $\{\ q_0,\ q_4\ \}$           |
| F      | $\{ q_0, q_1, q_4 \}$      | $\{ q_0, q_1, q_2, q_4 \}$          | $\{ q_0, q_3, q_4 \}$ | $\{\;q_0,\;q_3,\;q_4\;\}$     |
| F      | $\{ q_0, q_4 \}$           | $\{ q_0, q_1, q_4 \}$               | $\{ q_0, q_4 \}$      | $\{\ q_0,\ q_4\ \}$           |

Damit ergibt sich der DFA  $M_5'=(Q,\ \Sigma,\ \delta_5',\ s_0,\ \{\ s_4,\ s_5,\ s_6,\ s_7\ \})$  mit der Menge  $Q=\{\ s_0,\ s_1,\ s_2,\ s_3,\ s_4,\ s_5,\ s_6,\ s_7\ \}$  und  $\delta_5'$ :



## Aufgabe 3: DFAs und reguläre Grammatiken

Gegeben seien  $\Sigma \triangleq \{ a, b, c \}$  und die reguläre Grammatik  $G_6 \triangleq (\{ S, T, U \}, \Sigma, P_6, S)$  mit:

$$\begin{array}{ccc} P_6: & S & \rightarrow & \epsilon \mid \alpha T \mid \alpha U \\ & T & \rightarrow & c \mid \alpha U \mid b T \\ & U & \rightarrow & \alpha \mid b T \end{array}$$

3.a) Berechne: Konstruiere einen DFA  $M_6$  mit  $L(M_6) = L(\mathsf{G}_6)$ .

------(Lösung)-----

NFA  $M_6' = (\{\ s_0,\ s_1,\ s_2,\ s_3\ \},\ \Sigma,\ \Delta_{6'}'\ \{\ s_0\ \},\ \{\ s_0,\ s_3\ \})$  mit  $\Delta_6'$ :



|    |                  | a                | ь         | c           |       |
|----|------------------|------------------|-----------|-------------|-------|
| SF | $\{ s_0 \}$      | $\{ s_1, s_2 \}$ | Ø         | Ø           | $q_0$ |
|    | $\{ s_1, s_2 \}$ | $\{ s_2, s_3 \}$ | $\{s_1\}$ | $\{ s_3 \}$ | $q_1$ |
|    | Ø                | Ø                | Ø         | Ø           | $q_2$ |
| F  | $\{ s_2, s_3 \}$ | $\{ s_3 \}$      | $\{s_1\}$ | Ø           | $q_3$ |
|    | $\{\ s_1\ \}$    | $\{ s_2 \}$      | $\{s_1\}$ | $\{ s_3 \}$ | $q_4$ |
| F  | $\{ s_3 \}$      | Ø                | Ø         | Ø           | $q_5$ |
|    | $\{\ s_2\ \}$    | $\{ s_3 \}$      | $\{s_1\}$ | Ø           | $q_6$ |

Damit ergibt sich der DFA  $M_6 = (\{ q_0, q_1, q_2, q_3, q_4, q_5, q_6 \}, \Sigma, \delta_6, q_0, \{ q_0, q_3, q_5 \})$  mit  $\delta_6$ :



3.b) Gib an:  $L(G_6)$ 

------(Lösung)-----

 $L(G_6) = \{ \epsilon, aa, axaa, axc, abxaa, abxc \mid x \in \{b, ab\}^* \}$