PROJEKTOWANIE EFEKTYWNYCH

ALGORYTMÓW

Data: 18.01.2019 r.

Projekt 3

Prowadzący:

Dr inż. Zbigniew Buchalski

Spis treści

1.	Wst	ęp	3
2.	Ana	liza Problemu	3
3.	Opis	s Algorytmu	3
3	3.1.	Algorytm genetyczny	3
4.	Wyr	niki	5
4	.1.	Dla 47 miast	5
4	.2.	Dla 170 miast	8
4	.3.	Dla 403 miast	11
5.	Wni	oski	14

1. Wstęp

Celem projektu było zaimplementowanie oraz dokonanie analizy efektowności działania algorytmu genetycznego dla problemu komiwojażera.

2. Analiza Problemu

Problem komiwojażera należy do klasy problemów NP-trudnych. Polega on na znalezieniu minimalnego cyklu Hamiltona w pełnym grafie. Każdy wierzchołek grafu reprezentuje miasto, które musi odwiedzić komiwojażer. Grupę n miast reprezentuje zbiór N = $\{1, ..., n\}$. Miasta są ze sobą połączone krawędziami d. Długość tych krawędzi zawiera macierz D = $\{d_{ij}, i \in N, j \in N, i \neq j\}$. Gdzie $d_{ij} \geq 0$ oznacza odległość między miastem i oraz j. W wersji asymetrycznej, odległość pomiędzy miastem i oraz j może być inna niż odległość miasta j od i: $d_{ij} \neq d_{ji}$ Główną trudnością w rozwiązaniu problemu jest znacząca liczba możliwych kombinacji.

3. Opis Algorytmu

3.1. Algorytm genetyczny

Podstawy działania algorytmów genetycznych wzorowane są na zjawisku doboru naturalnego. Ewolucja naturalna jest również pewnym procesem optymalizacyjnym - gatunki starają jak najlepiej "dopasować się" do środowiska, w jakim żyją, by optymalnie wykorzystać jego zasoby. Cechy pozwalające na skuteczną eksploatację danego środowiska powstają w sposób losowy - przez krzyżowanie się osobników i mutacje. To, że cechy korzystne mają szansę na szerokie rozpowszechnienie, jest zasługą zasady doboru naturalnego. Osobniki wyposażone w takie cechy mają większe szanse w walce o byt i szybciej się rozmnażają, co powoduje dalsze rozpowszechnianie się cechy. W końcu osobniki pozbawione cechy dającej przewagę zostaną wyparte przez inne i wyginą.

Załóżmy, że udało nam się zasymulować zjawisko ewolucji na osobnikach - komiwojażerach, przy czym osobniki przechodzące krótszą trasę mają większe szanse w walce o byt. Przez analogię do procesów naturalnych, po pewnym czasie w populacji złożonej z różnych komiwojażerów powinny zacząć dominować te osobniki, których trasy są jak najkrótsze. Przy odrobinie szczęścia powinniśmy doczekać się "wyhodowania" osobnika optymalnego - przechodzącego przez miasta po trasie globalnie najkrótszej. Taki osobnik powinien szybko opanować całą populację. Na takich właśnie założeniach działają algorytmy genetyczne.

Typowy schemat postępowania przedstawia się następująco:

- 1. Losowana jest pewna populacja początkowa.
- 2. Populacja poddawana jest ocenie (**selekcja**). Najlepiej przystosowane osobniki biorą udział w procesie reprodukcji .
- 3. Genotypy wybranych osobników poddawane są operatorom ewolucyjnym:
 - 1. są ze sobą kojarzone poprzez złączanie genotypów rodziców (krzyżowanie),
 - 2. przeprowadzana jest mutacja, czyli wprowadzenie drobnych losowych zmian.
- 4. Rodzi się drugie (kolejne) pokolenie i algorytm powraca do kroku drugiego, jeżeli nie znaleziono dostatecznie dobrego rozwiązania. W przeciwnym wypadku uzyskujemy wynik.

Wizualizacja algorytmu:

4. Wyniki

4.1. Dla 47 miast

Populacja 30

			Współczynnik	Wspołczynnik		Wartość	
Liczba iteracji	Średni czas [s]	Populacja	mutacji	krzyżowania	Koszt	optymalna	Błąd [%]
60	2,4939	30	0,01	0,8	3879	1776	118
120	3,5991	30	0,01	0,8	3856	1776	117
240	7,2218	30	0,01	0,8	3856	1776	117
480	13,3900	30	0,01	0,8	3797	1776	113
960	24,5659	30	0,01	0,8	3666	1776	106
1920	53,7093	30	0,01	0,8	3650	1776	105
3840	105,0321	30	0,01	0,8	3481	1776	96
7680	179,3289	30	0,01	0,8	3211	1776	80
15360	360,0030	30	0,01	0,8	3199	1776	80
30720	360,0270	30	0,01	0,8	2901	1776	63

Populacja 60

Liczha iteracii	Średni czas [s]	Populacja	Współczynnik mutacji	Wspołczynnik krzyżowania	Koszt	Wartość optymalna	Błąd [%]
_			_	-	3143		
60	10,1228	60	0,01	0,8		_	76
120	14,5965	60	0,01	0,8	3139	1776	76
240	26,5070	60	0,01	0,8	3071	1776	72
480	48,4215	60	0,01	0,8	3007	1776	69
960	90,8625	60	0,01	0,8	2974	1776	67
1920	195,0846	60	0,01	0,8	2877	1776	61
3840	361,1280	60	0,01	0,8	2864	1776	61
7680	480,0420	60	0,01	0,8	2796	1776	57
15360	480,0570	60	0,01	0,8	2796	1776	57
30720	480,0300	60	0,01	0,8	2741	1776	54

Populacja 90

Liczba iteracji	Średni czas [s]	Populacja	Współczynnik mutacji	Wspołczynnik krzyżowania	Koszt	Wartość optymalna	Błąd [%]
60	21,4037	90	0,01	0,8	3035	1776	70
120	34,4928	90	0,01	0,8	2948	1776	65
240	62,1003	90	0,01	0,8	2899	1776	63
480	110,0022	90	0,01	0,8	2880	1776	62
960	237,3714	90	0,01	0,8	2862	1776	61
1920	471,6570	90	0,01	0,8	2817	1776	58
3840	480,2100	90	0,01	0,8	2811	1776	58
7680	480,0240	90	0,01	0,8	2803	1776	57
15360	480,0630	90	0,01	0,8	2797	1776	57
30720	480,2100	90	0,01	0,8	2615	1776	47,

Porównanie algorytmu Tabu Search z Genetycznym

	Najkrótsza ście	Błąd [%]			
Liczba iteracji	Algorytm Genetyczny	Tabu Search	Algorytm Genetyczny	Tabu Search	
60	3035	2402	70	35	
120	2948	2386	65	34	
240	2899	2282	63	28	
480	2880	2254	62	26	
960	2862	2235	61	25	
1920	2817	2203	58	24	
3840	2811	2191	58	23	
7680	2803	2160	57	21	
15360	2797	2119	57	19	
30720	2615	2086	47	17	

4.2. Dla 170 miast

Populacja 30

			Współczynnik	Wspołczynnik		Wartość	
Liczba iteracji	Średni czas [s]	Populacja	mutacji	krzyżowania	Koszt	optymalna	Błąd [%]
60	10,9195	30	0,01	0,8	16066	1776	804
120	15,9052	30	0,01	0,8	15927	1776	796
240	27,5669	30	0,01	0,8	15655	1776	781
480	49,1447	30	0,01	0,8	15246	1776	758
960	92,2293	30	0,01	0,8	15132	1776	752
1920	179,8210	30	0,01	0,8	15081	1776	749
3840	351,2690	30	0,01	0,8	13932	1776	684
7680	480,0490	30	0,01	0,8	13166	1776	641
15360	480,0670	30	0,01	0,8	12883	1776	625
30720	480,0370	30	0,01	0,8	12651	1776	612

Populacja 60

			Współczynnik	Wspołczynnik		Wartość	
Liczba iteracji	Średni czas [s]	Populacja	mutacji	krzyżowania	Koszt	optymalna	Błąd [%]
60	48,5702	60	0,01	0,8	13025	1776	633
120	69,6861	60	0,01	0,8	13006	1776	632
240	107,3480	60	0,01	0,8	12644	1776	611
480	187,3020	60	0,01	0,8	12617	1776	610
960	358,6210	60	0,01	0,8	12471	1776	602
1920	480,2060	60	0,01	0,8	12375	1776	596
3840	480,1420	60	0,01	0,8	11708	1776	559
7680	480,1400	60	0,01	0,8	11576	1776	551
15360	480,1160	60	0,01	0,8	11218	1776	531
30720	480,3190	60	0,01	0,8	11195	1776	530

Populacja 90

			Współczynnik	Wspołczynnik		Wartość	
Liczba iteracji	Średni czas [s]	Populacja	mutacji	krzyżowania	Koszt	optymalna	Błąd [%]
60	114,8580	90	0,01	0,8	12425	1776	599
120	152,3450	90	0,01	0,8	11831	1776	566
240	243,5780	90	0,01	0,8	11751	1776	561
480	480,4650	90	0,01	0,8	11569	1776	551
960	480,5050	90	0,01	0,8	11368	1776	540
1920	480,3720	90	0,01	0,8	10990	1776	518
3840	480,6480	90	0,01	0,8	10956	1776	516
7680	480,3260	90	0,01	0,8	10695	1776	502
15360	480,4970	90	0,01	0,8	10669	1776	500
30720	480,2690	90	0,01	0,8	10642	1776	499

Porównanie algorytmu Tabu Search z Genetycznym

	Najkrótsza	Błąd [%] Algorytm			
	Algorytm				
Liczba iteracji	Genetyczny	Tabu Search	Genetyczny	Tabu Search	
60	12425	10110	599	264	
120	11831	7116	566	156	
240	11751	6974	561	151	
480	11569	6877	551	147	
960	11368	6528	540	135	
1920	10990	6836	518	146	
3840	10956	6237	516	124	
7680	10695	6128	502	120	
15360	10669	6267	500	125	
30720	10642		499	17	

4.3. Dla 403 miast

Populacja 30

			Współczynnik	Wspołczynnik		Wartość	
Liczba iteracji	Średni czas [s]	Populacja	mutacji	krzyżowania	Koszt	optymalna	Błąd [%]
60	31,6480	30	0,01	0,8	5491	1776	209
120	51,6626	30	0,01	0,8	5378	1776	202
240	84,6478	30	0,01	0,8	5356	1776	201
480	123,4420	30	0,01	0,8	5292	1776	197
960	223,4130	30	0,01	0,8	5263	1776	196
1920	433,6290	30	0,01	0,8	5219	1776	193
3840	848,7300	30	0,01	0,8	5216	1776	193
7680	1020,1100	30	0,01	0,8	5192	1776	192
15360	1020,1600	30	0,01	0,8	5165	1776	190
30720	1020,0200	30	0,01	0,8	5088	1776	186

Populacja 60

Lianha itawasii	Średni czas [s]	Donulacia	Współczynnik	Wspołczynnik	Vocat	Wartość	Dlad [0/]
Liczba iteracji	Sreum czas [s]	Populacja	mutacji	krzyżowania	Koszt	optymalna	Błąd [%]
60	111,6200	60	0,01	0,8	4986	1776	180
120	180,1270	60	0,01	0,8	4767	1776	168
240	289,9240	60	0,01	0,8	4675	1776	163
480	498,9530	60	0,01	0,8	4623	1776	160
960	894,3600	60	0,01	0,8	4758	1776	167
1920	1020,3100	60	0,01	0,8	4629	1776	160
3840	1020,3400	60	0,01	0,8	4708	1776	165
7680	1020,3600	60	0,01	0,8	4652	1776	161
15360	1020,2700	60	0,01	0,8	4742	1776	167
30720	1020,3500	60	0,01	0,8	4745	1776	167

Populacja 90

			Współczynnik	Wspołczynnik		Wartość	
Liczba iteracji	Średni czas [s]	Populacja	mutacji	krzyżowania	Koszt	optymalna	Błąd [%]
60	258,7630	90	0,01	0,8	4649	1776	161
120	415,0820	90	0,01	0,8	4407	1776	148
240	666,4700	90	0,01	0,8	4513	1776	154
480	1021,0900	90	0,01	0,8	4528	1776	154
960	1022,0000	90	0,01	0,8	4406	1776	148
1920	1020,8200	90	0,01	0,8	4221	1776	137
3840	1020,7100	90	0,01	0,8	4451	1776	150
7680	1021,0600	90	0,01	0,8	4548	1776	156
15360	1021,0300	90	0,01	0,8	4563	1776	156
30720	1021,0000	90	0,01	0,8	4453	1776	150

Porównanie algorytmu Tabu Search z Genetycznym

	Najkrótsza ścieżka		Błąd [%]	
	Algorytm		Algorytm	
Liczba iteracji	Genetyczny	Tabu Search	Genetyczny	Tabu Search
60	4649	4470	161	81
120	4407	3495	148	41
240	4513	2756	154	11
480	4528	2716	154	10
960	4406	2685	148	8
1920	4221	2696	137	9
3840	4451	2709	150	9
7680	4548		156	
15360	4563		156	
30720	4453		150	

5. Wnioski

Rozwiązanie problemu komiwojażera za pomocą algorytmu genetycznego jest obarczone dużym błędem. Liczba mutacji ma wpływ na znalezienie optymalnego rozwiązania, jednak rozbieżność między wynikami nie jest duża. Porównanie algorytmu genetycznego z algorytmem tabu search wykazało że algorytm genetyczny nie jest szybszy oraz daje mniej optymalne rozwiązania. W algorytmie genetycznym błąd jest utrzymywany na stałym poziomie, natomiast w tabu search błąd maleje w czasie.