

(No Model.)

M. W. DEWEY.

METHOD OF UTILIZING NATURAL ELECTRIC ENERGY.

No. 414,943.

Patented Nov. 12, 1889.

WITNESSES:

C. L. Pendleton
A. F. Walz.

INVENTOR
Mark W. Dewey
BY
Swart, Laars & Gundl
ATTORNEYS

UNITED STATES PATENT OFFICE.

MARK W. DEWEY, OF SYRACUSE, NEW YORK, ASSIGNOR TO THE DEWEY CORPORATION, OF SAME PLACE.

METHOD OF UTILIZING NATURAL ELECTRIC ENERGY.

SPECIFICATION forming part of Letters Patent No. 414,943, dated November 12, 1889.

Application filed May 1, 1889. Serial No. 309,171. (No model.)

To all whom it may concern:

Be it known that I, MARK W. DEWEY, of Syracuse, in the county of Onondaga, in the State of New York, have invented new and useful Improvements in the Method of Utilizing Natural Electric Energy, of which the following, taken in connection with the accompanying drawings, is a full, clear, and exact description.

- 10 The object of this invention is to provide a method whereby natural electrical energy—such as the so-called “atmospheric electrical energy,” or electrical energy that may be derived from the difference of potential existing between two points, one being the earth and the other the atmosphere at an elevation above the earth—may be collected or utilized for the various uses to which electricity is applied.
- 15 It has been found that the presence of electricity in the upper regions of the atmosphere is not confined to thunder-clouds, but can be detected at all times and often in great quantities in different conditions of the atmosphere. In fine weather this electricity is mostly positive; but in showery or stormy weather negative electricity is as frequently met with as positive, and it is in such weather that the indications of electricity, whether positive or negative, are usually the strongest. It has also been found that as we proceed farther from the earth's surface, whether upward from a level plane thereof or horizontally from an elevation, the
- 20 potential of points in the air becomes more and more different from that of the earth, the difference being, in a broad sense, simply proportional to the distance; hence we can infer that there is electricity residing on the surface of the earth, the density of which at any moment in the locality of observation is measured by the difference of potential found to exist between the earth and a given point in the air near it. The results of observations show that the variations of the electricity residing in the atmosphere is the main cause of the variations of the electricity on the surface of the earth. A charged cloud or body of air induces electricity of the opposite kind to its own on the parts of the earth's surface over which it passes and pro-

duces such variations. The difference of potential in increasing the distance from the earth is due to electricity induced on the surface of the earth by opposite electricity in the air overhead, and the air being a non-conductor the electricities are unable to combine. As electrical density is greater on projecting parts of a surface than on those which are plane or concave, stronger indications are obtained on hills than in valleys, if the collecting apparatus be at the same distance from the ground in both cases. The average difference of potential is greater in the winter than in the summer. Little or no effects can be obtained within inclosures or under trees, as they tend to screen the apparatus.

Inasmuch as electricity travels in preference through the best conductors, it follows that if a path of low resistance is formed (such as the erection of a metal pole) to a sufficient elevation above the earth the electricities in the atmosphere and that on the surface of the earth will tend to combine and travel through the said path in a current or currents, and if this pole terminates in a metal point or a number of such points the earth and clouds exchange their opposite electricities without a disruptive discharge—as the lightning—but in a slow and gradual way through convection. Besides supplying the top of the pole with points, a metal plate to which the said points are fixed attracts the opposite electricity in the atmosphere. In order to obtain a greater and increased effect, a large metal plate is buried at the foot of the pole and electrically connected therewith, and is provided with points or branches extending in different directions in the ground. The plate and branches may be surrounded by metallic refuse, coke, or other good conducting substance. The metallic points on the top of the pole should be sharp, and preferably of copper, and may be platinized, gilded, or galvanized to prevent corrosion. It having been ascertained by practical experiments that either a flame or dropping water at an elevation above the surface of the earth produces convection of electricity, it is obvious that such means may be employed in place of the points hereinbefore referred to. As the electricity in the atmosphere is some-

times positive and other times negative, the direction of the currents is not always the same—that is, the atmospheric electrical energy is composed of a current of an alternating character, flowing in one direction on an average about as much of the time as in the opposite direction, but the length of the current in a certain direction, or the lengths of time between reversals or changes in the direction of its flow, is greatly varied. This and also the varied strength of the currents have prevented the utilization of atmospheric electrical energy in commercial quantities for the various purposes for which electricity is generally employed. In order to utilize such a current or currents, they should be transformed into a continuous direct current of uniform strength. The apparatus for accomplishing the transformation of atmospheric electricity into a direct current of uniform strength is susceptible of being greatly modified. The preferred form of apparatus, however, for carrying the invention practically into effect I will now proceed to describe to show that the method is capable of actual performance. Said apparatus is illustrated in the diagram accompanying this specification.

Referring specifically to said diagram, A represents a metallic pole, which is shown bare, but may be enveloped in suitable insulating material, if desirable. B is the base of the aforesaid pole, which base is of insulating material set in the ground E. C is a large metal plate beneath the said base, and has points or branches c' extending therefrom in different directions in the ground. C' is a metallic post extending from the said plate above the surface of the ground and having a terminal d of the circuit D. On the top of said pole is mounted a metallic cap F, consisting, preferably, of a convex disk provided with sharp iron or copper points p, which project in all directions from the same. As before mentioned, the said points may be plated with a suitable metal that forms a good conductor and prevents corrosion. Similar caps F' may be placed on other insulated poles, as A', in the vicinity, and connected with the main pole A by an electric conductor a, for increasing the effect. The pole A' may be of wood, and the pole A may also be of the same material if provided with a metal conductor within or on the outside, extending from the cap to the other terminal d' of the circuit D. The said circuit D leads from the terminal d through an automatic variable resistance G, thence to one of the poles of a secondary or storage battery H, and from the other pole of said battery through an automatic current-regulator to the terminal d'. An automatic current-reverser or pole-changer J is located in the said circuit for reversing the current whenever there is a change in its direction, so that it may be rectified or straightened during transit and caused to travel at all times whether its direction is toward or from the earth in one and the same direction

through a portion of the circuit containing the secondary battery. The reversals are accomplished automatically by means of a pivoted polarized armature b, located between two electro-magnets c c, having their coils included in a shunt-circuit between the leads of the circuit D. The magnets are wound so that a north pole will be presented to the armature on one side and a south pole on the other. When the current is flowing in a certain direction, the said polarized armature will be repelled by one magnet and attracted by the other, and thereby moved to one side. When the current changes its direction through the magnets, the poles of the said magnets are reversed and the armature is both repelled and attracted to the other side. An arm b', of diamagnetic material, is fixed to and extends from the armature and is moved by the same. Between a movable end of the arm and the said current-reverser is a pivoted connection or link e, by which the motion of the arm is conveyed to the reverser. Stops f are provided for limiting the movement of the said arm, and an adjustable resistance d' is included in the shunt d'' to regulate the current through the same.

The current-regulator hereinbefore referred to prevents short-circuiting or the rapid discharge of the secondary battery into the air and ground when the strength of said battery-current becomes greater than that passing to the battery. Said regulator is composed of an electro-magnet I, having its coil in the circuit D. A pivoted polarized armature g is connected at its pivot to one terminal of the coil of said magnet, and when the current is flowing to the battery said armature is attracted by the magnet I and held in contact with the stop h, to which the terminal of the secondary battery is connected. In the aforesaid condition a free or low-resistance path for the current is provided to the battery; but when the battery-current exceeds the charging-current the magnet-poles are reversed and the armature is repelled by the magnet, and the free path of the circuit is broken between the armature g and stop h. In order to maintain the armature in the latter position until the charging-current has been increased in strength above that of the battery-current or discharging-current, and so that the said regulator will automatically operate, a shunt path K of high resistance is provided around the armature g and stop h. The high resistance of the said shunt is obtained by including a rheostat m. This shunt path or circuit K, with the resistance, permits a small but sufficient amount of current to flow through the magnet I to hold the armature away from the stop h until the current is reversed, and then move the armature back to stop h to close the free or low-resistance path. A spring i is provided to assist the movement of the armature from the magnet when it is repelled by the same.

The electric current may be directly con-

ducted to translating devices—such as lamps or electromotors; but, as hereinbefore stated, said current is preferably employed to charge one or more cells of the secondary battery H,
 5 and this battery stores or accumulates the electrical energy and supplies the said translating devices. To illustrate the latter feature, leads or wires L and L' are extended from the poles or electrodes of said battery, and
 10 translating devices, in the shape of incandescent lamps l, are connected with the said wires in multiple arc. In the wire L is a common circuit maker and breaker n to close and open the circuit to the lamps. The said
 15 battery may be charged in series or parallel.

The automatic variable resistance G maintains the current flowing through the circuit D approximately uniform by increasing the resistance therein upon an increase of
 20 strength. Said resistance is not absolutely necessary and may be dispensed with.

The lightning-arrester M is to short-circuit a very heavy current to prevent the same from passing through the other parts of the
 25 apparatus and injuring it. A low-resistance shunt O, with a circuit maker and breaker therein, is connected between the leads of the circuit D, near the terminals d and d', to completely short-circuit the apparatus when desired.
 30

Having described my invention, what I claim as new, and desire to secure by Letters Patent, is—

1. The method of utilizing atmospheric electrical energy, consisting in conducting the electric current or currents between the earth and a point in the atmosphere at an elevation above the earth, rectifying or straightening the currents during transit, and storing or accumulating the electrical energy of said rectified current or currents.
 35
2. As preliminary steps in the method of utilizing atmospheric electrical energy, conducting the electric current or currents through a path of low resistance between the earth and the atmosphere at an elevation above the earth, maintaining an approximately uniform strength of current and rectifying or straightening the same during
 40 transit.
 45
3. As preliminary steps in the method of utilizing atmospheric electrical energy, conducting the electric current or currents through a path of low resistance between the earth and the atmosphere at an elevation above the earth, and rectifying or straightening said currents during transit.
 55
4. The method of utilizing atmospheric electrical energy or deriving energy from the difference of electrical potential existing between the earth and a point or points in the atmosphere at an elevation above the earth, consisting in conducting the current or currents between the two points through a path of low resistance, rectifying or straightening the said currents in a portion of the path during transit, and storing or accumulating the electrical energy thereof.
 60
5. The method of utilizing atmospheric electrical energy or deriving energy from the difference of electrical potential existing between the earth and a point or points in the atmosphere at an elevation above the earth, consisting in conducting the current or currents between the two points through a path of low resistance, maintaining an approximately uniform strength of current, rectifying or straightening the said currents in a portion of the path during transit, and storing or accumulating the electrical energy.
 65
6. The method of utilizing atmospheric electrical energy composed of a current of a varied alternating character, consisting in conducting the electric current or currents through a path of low resistance between the earth and the atmosphere at an elevation above the earth, and then accumulating the electrical energy of said current or currents while flowing in both directions in one or more cells of a secondary or storage battery, 90 as described.
 80

In testimony whereof I have hereunto signed my name this 29th day of April, 1889.

MARK W. DEWEY. [L. S.]

Witnesses:

C. H. DUELL,
C. L. BENDIXON.

June 9, 1925.

1,540,998

H. PLAUSON

CONVERSION OF ATMOSPHERIC ELECTRIC ENERGY

Filed Jan. 13, 1921

12 Sheets-Sheet 1

Fig. 1.

Fig. 2.

A
S

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

by Knight Bros
attorneys

for Hermann Plauson

June 9, 1925.

1,540,998

H. PLAUSON

CONVERSION OF ATMOSPHERIC ELECTRIC ENERGY

Filed Jan. 13, 1921

12 Sheets-Sheet 2

Normann Plauson

by Knight Bros., attorneys

June 9, 1925.

1,540,998

H. PLAUSON

CONVERSION OF ATMOSPHERIC ELECTRIC ENERGY

Filed Jan. 13, 1921

12 Sheets-Sheet 3

Hermann Plauson
by Knight, Drey & Attorneys

June 9, 1925.

1,540,998

H. PLAUSON

CONVERSION OF ATMOSPHERIC ELECTRIC ENERGY

Filed Jan. 13, 1921

12 Sheets-Sheet 4

Fig. 21. *Fig. 22.*

Fig. 23.

IgVegtoY

Hermann Planion

Very Knight *Bra*
Attorneys

June 9, 1925.

1,540,998

H. PLAUSON

CONVERSION OF ATMOSPHERIC ELECTRIC ENERGY

Filed Jan. 13, 1921

12 Sheets-Sheet 5

June 9, 1925.

1,540,998

H. PLAUSON

CONVERSION OF ATMOSPHERIC ELECTRIC ENERGY

Filed Jan. 13, 1921

12 Sheets-Sheet 6

Fig. 25.

THE VELVET FOX

Hermann Planson

by
Knight Bros
attorneys

June 9, 1925.

1,540,998

H. PLAUSON

CONVERSION OF ATMOSPHERIC ELECTRIC ENERGY

Filed Jan. 13, 1921. 12 Sheets-Sheet 7

Fig. 26.

Igveglor
Hermann Blanson

Knight Bros
Attorneys

June 9, 1925.

1,540,998

H. PLAUSON

CONVERSION OF ATMOSPHERIC ELECTRIC ENERGY

Filed Jan. 13, 1921.

12 Sheets-Sheet 8

Inventor

Hermann Plauson

Knight Bros

attorneys

June 9, 1925.

1,540,998

H. PLAUSON

CONVERSION OF ATMOSPHERIC ELECTRIC ENERGY

Filed Jan. 13, 1921

12 Sheets-Sheet 9

Igvegor

Nermann Plauson

by

Knight Bros
attorneys

June 9, 1925.

1,540,998

H. PLAUSON

CONVERSION OF ATMOSPHERIC ELECTRIC ENERGY

Filed Jan. 13, 1921. 12 Sheets-Sheet 10

Fig. 29.

Fig. 30.

LogVegFor
Hermann Plauson

by
Knight Bros
attorneys

June 9, 1925.

1,540,998

H. PLAUSON

CONVERSION OF ATMOSPHERIC ELECTRIC ENERGY

Filed Jan 13 1921. 12 Sheets-Sheet 11.

Fig. 31.

L Fig. 32.

Fig. 33.

IgVegFor
Nermann Plauson

by Knight Bros
Attorneys

June 9, 1925.

1,540,998

H. PLAUSON

CONVERSION OF ATMOSPHERIC ELECTRIC ENERGY

Filed Jan. 13, 1921

12 Sheets-Sheet 12

Igvegfor

Hermann Pearson

by
Knight & Son
attorneys

Patented June 9, 1925.

1,540,998

UNITED STATES PATENT OFFICE.

HERMANN PLAUSON, OF HAMBURG, GERMANY.

CONVERSION OF ATMOSPHERIC ELECTRIC ENERGY.

Application filed January 13, 1921. Serial No. 437,107.

To all whom it may concern:

Be it known that I, HERMANN PLAUSON, Estonian subject, residing in Hamburg, Germany, have invented certain new and useful Improvements in the Conversion of Atmospheric Electric Energy, of which the following is a specification.

Methods of obtaining atmospheric electricity by means of metallic nettings set with spikes which are held by means of ordinary or anchored kite balloons made of fabrics and filled with hydrogen, are in theory already known. Atmospheric electricity obtained in this way has been suggested to be used in the form of direct current for the charging of accumulators. This knowledge however is at present only theoretical as the conversion in practice has hitherto been a failure. No means are known of protecting the apparatus from destruction by lightning. The balloons used for collecting the charge must also be made of very large size in order to be able to support the weight of the metallic netting and the heavy cable connections.

Instead of using heavy metallic netting as collectors attached to single air balloons of non-conducting materials which are liable to be torn and are permeable to the gas, it is proposed to use metallic balloon collectors which have the following important advantages—

(a) The metallic cases are impenetrable to helium and hydrogen; they also represent large metallic weather-proof collecting surfaces.

(b) Radio active means and the like may be easily applied internally or externally; whereby the ionization is considerably increased and therewith also the quantity of atmospheric electricity capable of being collected.

(c) Such balloon collectors of light metal do not require to be of large size as they have to carry only their own moderate weight, and that of the conducting cable or wire.

(d) The entire system therefore offers little surface for the action of storm and wind and is resistant and stable.

(e) Each balloon can be easily raised and lowered by means of a winch so that all repairs, recharging and the like can be carried out without danger during the operation.

It is further proposed to use a collecting aerial network of several separate collectors spread out in the air above the earth, which collectors are interconnected by electrical conductors.

According to this invention charges of atmospheric electricity are not directly converted into mechanical energy, and this forms the main difference from previous inventions, but the static electricity which runs to earth through aerial conductors in the form of direct current of very high voltage and low current strength is converted into electro-dynamic energy in the form of high frequency vibrations. Many advantages are thereby obtained and all disadvantages avoided.

The very high voltage of static electricity of a low current strength can be converted by this invention to voltages more suitable for technical purposes and of greater current strength. By the use of closed oscillatory circuits it is possible to obtain electro-magnetic waves of various amplitude and thereby to increase the degree of resonance of such current. Such resonance allows various values of inductance to be chosen whereby again the governing of the starting and stopping of machines driven thereby by simply tuning the resonance between coils of the machine and the transformer circuit forming the resonance can easily be obtained. Further, such currents have the property of being directly available for various uses, even without employing them for driving motors, of which there may be particularly mentioned, lighting, production of heat and use in electro-chemistry.

Further, with such currents a series of apparatus may be fed without direct current supply through conductors and also the electro-magnetic high frequency currents may be converted by means of special motors adapted for electro-magnetic oscillations into mechanical energy, or finally converted by special machines into alternating current of low frequency or even into direct current of high potential.

The invention is more particularly described with reference to the accompanying diagrams in which:

Figure 1 is an explanatory figure.

Figure 2 is a diagrammatic view of the simplest form.

Figure 3 shows a method of converting atmospheric electrical energy for use with motors.

Figure 4 is a diagram showing the use of protective means.

Figure 5 is a diagram of an arrangement for converting large current strengths.

Figure 6 is a diagram of an arrangement including controlling means.

Figure 7 shows means whereby the spark gap length can be adjusted.

Figure 8 shows a unipolar connection for the motor.

Figure 9 shows a weak coupled system suitable for use with small power motors.

Figures 10, 11 and 12 show modified arrangements.

Figure 13 shows a form of inductive coupling for the motor circuit.

Figure 14 is a modified form of Figure 13 with inductive coupling.

Figure 15 is an arrangement with non-inductive motor.

Figure 16 is an arrangement with coupling by condenser.

Figures 17, 18 and 19 are diagrams of further modifications.

Figure 20 shows a simple form in which the aerial network is combined with special collectors.

Figure 21 shows diagrammatically an arrangement suitable for collecting large quantities of energy.

Figure 22 is a modified arrangement having two rings of collectors.

Figure 23 shows the connections for three rings of collectors.

Figure 24 shows a collecting balloon and diagram of its connection of condenser batteries.

Figures 25 and 26 show modified collector balloon arrangements.

Figure 27 shows a second method of connecting conductor for the balloon aerials.

Figure 28 shows an auto-transformer method of connection.

Figure 29 shows the simplest form of construction with incandescent cathode.

Figure 30 shows a form with cigar shaped balloon.

Figure 31 is a modified arrangement.

Figure 32 shows a form with cathode and electrode enclosed in a vacuum chamber.

Figure 33 is a modified form of Figure 32.

Figure 34 shows an arc light collector.

Figure 35 shows such an arrangement for alternating current.

Figure 36 shows an incandescent collector with Nernst lamp.

Figure 37 shows a form with a gas flame.

Figure 1 illustrates a simple diagram for converting static electricity into dynamic energy of a high number of oscillations. For the sake of clearness in the drawings an influence machine is assumed to be employed

and not an aerial antenna. 13 and 14 are combs for collecting the static electricity of the influence machine. 7 and 8 are spark discharging electrodes, 6 and 5 condensers, 9 an inductive primary coil, 10 secondary coil, 11 and 12 ends of conductors of the secondary coil 10. When the disc of the static influence machine is rotated by mechanical means, the combs collect the electric charges one the positive and the other the negative, and charge the condensers 5 and 6 until such a high potential is formed across the spark gap 7—8, that the spark gap is jumped. As the spark gap 7—8 forms a closed circuit with condensers 6 and 5, and inductive resistance 9, as is well known, waves of high frequency electromagnetic oscillations will pass in this circuit.

The high frequency of the oscillations produced in the primary circuit induces waves of the same periodicity in the secondary circuit. Thus in the primary circuit electromagnetic oscillations are formed by the passage of the spark over the spark gap and these waves are maintained by fresh charges of static electricity.

By suitably selecting the ratio between the number of the coils in the primary and secondary circuits with regard to a correct application of the co-efficients of resonance (capacity, inductance, and resistance) the high voltage of the primary circuit may be suitably converted into low voltage and high current strength.

When the oscillatory discharges in the primary circuit becomes weaker or entirely cease, the condensers are charged again by the static electricity until the accumulated charge again breaks down the spark gap. All this is repeated as long as electricity is produced by the static machine by employing mechanical energy.

An elementary form of the invention is shown in Figure 2 in which two spark gaps in parallel are used one of which may be termed the working gap 7 in Figure 2, whilst the second serves as a safety device for excess voltage and consists of a larger number of spark gaps than the working section, which gaps are arranged in series and are bridged by very small capacities as is illustrated in a_1, b_1, c_1 , Figure 2 which allow of uniform sparking in the safety section.

In Figure 2 A is the aerial antenna for collecting charges of atmospheric electricity. 13 is the earth connection of the second part of the spark gap, 5 and 6 are condensers, 9 a primary coil. Now when through the aerial A the positive atmospheric electricity seeks to combine with the negative charge to earth, this is prevented by (the air gap between) the spark gaps. The resistance of the spark gap 7 is, as shown in the drawings, lower than that of the other safety section which consists of three spark gaps connected in

series, and consequently a three times greater air resistance is offered by the latter.

So long therefore, as the resistance of the spark gap 7 is not overloaded, so that the other spark gaps have an equal resistance with it the discharges take place only over spark gap 7. Should however the voltage be increased by any influences so that it might be dangerous for charging 10 the condensers 5 and 6 or for the coil insulation 9 and 10 in consequence of break down, by a correct regulation of this spark gap the second spark gap can discharge free from inductive effects direct to earth without endangering the machine.

Without this second spark gap, arranged in parallel having a higher resistance than the working spark gap, it is impossible to collect and render available large quantities 20 of electrical energy.

The action of this closed oscillation circuit consisting of spark gap 7, two condensers 5 and 6, primary coil 9, and also secondary coil 10 is exactly the same as the one described in Figure 1 with the arrangement of the static induction machine with the only difference that here the second spark gap is provided. The electromagnetic high frequency alternating current obtained 30 can be tapped off from the conductors 11 and 12 for lighting and heating purposes. Special kinds of motors adapted for working with these peculiar electrical charges may be connected at 14 and 15 which can work with static electricity charges or with high frequency oscillations.

In addition to the use of spark gaps in parallel a second measure of security is also necessary for taking off the current. 40 This precaution consists according to this invention, in the introduction of and method of connecting certain protective electromagnets or choking coils in the aerial circuit as shown by S in Figure 3.

A single electromagnet only having a core of the thinnest possible separate laminations is connected with the aerial.

In the case of high voltages in the aerial network or at places where there are frequent thunder storms, several such magnets may however be connected in series.

In the case of large units or plants several electromagnets can be employed in parallel or in series parallel.

The windings of these electromagnets may be simply connected in series with the aerials. In this case the winding preferably consists of several thin parallel wires, which make up together, the necessary section.

The winding may be made of primary and secondary windings in the form of a transformer. The primary winding will be then connected in series with the aerial network, and the secondary winding more or less short-circuited over a regulating resist-

ance or an induction coil. In the latter case it is possible to regulate to a certain extent the effect of the choking coils. In the further description of the connecting and constructional diagrams the aerial electromagnet choke coil is indicated by a simple ring S.

Figure 3 shows the simplest way of converting atmospheric electricity into electromagnetic wave energy by the use of special 70 motors adapted for high oscillatory currents or static charges of electrical energy. Recent improvements in motors for working with static charges and motors working by resonance, that is to say, having groups 75 of tuned electromagnetic cooperating circuits render this possible but such do not form part of the present invention.

A motor adapted to operate with static charges will for the sake of simplicity be 80 diagrammatically indicated by two semi-circles 1 and 2 and the rotor of the motor by a ring M. (Figure 3.) A is a vertical aerial or aerial network. S the safety choke or electromagnet with coil O as may 85 be seen is connected with the aerial A. Adjacent the electromagnet S the aerial conductor is divided into three circuits, the circuit 8 giving the safety spark gap, the circuit 7 with the working spark gap, and then a circuit including the stator terminal 1, the rotor and stator terminal 2 at which a connection is made to the earth wire. The two spark gaps are also connected 90 metallically with the earth wire. The method of 95 working these diagrams is as follows:

The positive atmospheric electric charge collected tends to combine with the negative electricity (or earth electricity) connected with the earth wire. It travels along the 100 aerial A through the electromagnet S without being checked as it flows in the same direction as the direct current. Further, its progress is arrested by two sparks gaps placed in the way and the stator condenser 105 surfaces. The stator condenser surfaces are charged until the charge is greater than the resistance of the spark gap 7, whereupon a spark springs over the spark gap 7 and an oscillatory charge is obtained as by means 110 of the motor M, stator surfaces 1 and 2, and spark gap 7, a closed oscillation circuit is obtained for producing the electromagnetic oscillations. The motor here forms the capacity and the necessary inductance and resistance, which, as is well known, are necessary 115 for converting static electricity into electromagnetic wave energy.

The discharges formed are converted into 120 mechanical energy in special motors and can not reach the aerial network by reason of the electromagnet or choke. If, however, when a spark springs over the spark gap 7, a greater quantity of atmospheric electricity 125 tends to flow to earth, a counter voltage is 130

induced in the electromagnet, which is greater the more rapidly and strongly the flow of current direct to the earth is. By the formation of this opposing voltage a sufficiently high resistance is offered to the flow of atmospheric electricity direct to earth to prevent a short circuit with the earth.

The circuit containing spark gap 8 having a different wave length which is not in resonance with the natural frequency of the motor, does not endanger the motor and serves as security against excess voltage, which, as practical experiments have shown, may still arise in certain cases, but can be conducted direct to earth through this spark gap.

In the diagram illustrated in Figure 4 the spark gap 7 is shunted across condensers 5 and 6 from the motor M. This construction affords mainly a better insulation of the motor against excess voltage and a uniform excitation through the spark gap 7.

In Figure 5 a diagram is illustrated for transforming large current strengths which may be employed direct without motors, for example, for lighting or heating purposes. The main difference is that here the spark gap consists of a star shaped disc 7 which can rotate on its own axis and is rotated by a motor opposite similarly fitted electrodes 7^a. When separate points of stars face one another, discharges take place, thus forming an oscillation circuit over condensers 5 and 6 and inductance 9 for oscillatory discharges. It is evident that a motor may also be directly connected to the ends of the spiral 9.

The construction of the diagram shown in Figure 6 permits of the oscillation circuit of the motor being connected with an induction coil. Here a regulating inductive resistance is introduced for counter-acting excess voltages in the motor. By cutting the separate coils 9 (coupled inductively to the aerial) in or out the inductive action on the motor may be more or less increased or variable aerial action may be exerted on the oscillation circuit.

In Figure 7 the oscillation circuit is closed through the earth (E and E₁). The spark gap 7 may be prolonged or shortened by more or fewer spark gaps being successively connected by means of a contact arm 7^b.

Diagram 8 shows a unipolar connection of the motor with the aerial network. Here two oscillation circuits are closed through the same motor. The first oscillation circuit passes from aerial A through electromagnet S, point x, inductance 9^a to the earth condenser 6 and further, over spark gap 7 to the aerial condenser 5 and back to x. The second oscillation circuit starts from the aerial condenser 5 at the point x¹ over the inductance 9 to the earth condenser 6 at the point x² and through the condenser 6 over

the spark gap 7 back to x¹. The motor itself is inserted between the two points of the spark gap 7. From this arrangement slightly damped oscillation wave currents are produced.

In the diagram illustrated in Figure 9 a loosely coupled system of connections is illustrated which is assumed to be for small motors for measuring purposes. A indicates the aerial conductor, S the electromagnet in the aerial conductor, 9 the inductance, 7 the spark gap, 5 and 6 condensers, E the earth, M the motor, and 1 and 2 stator connections of the motor. The motor is directly metallically connected with the oscillation circuit.

In Figure 10 a purely inductive coupling is employed for the motor circuit. The motor is connected with the secondary wire 10 as may be seen in Figure 11 in a somewhat modified diagram connection. The same applies to the diagram of Figure 12.

The diagrams hitherto described preferably allow of motors of small and medium strength to be operated. For large aggregates, however, they are too inconvenient as the construction of two or more oscillation circuits for large amounts of energy is difficult; the governing is still more difficult and the danger in switching on or off is greater.

A means of overcoming such difficulties is shown in Figure 13. The oscillation circuit here runs starting from the point x over condenser 5, variable inductance 9, spark gap 7 and the two segments (3^a and 4^a) forming arms of a Wheatstone bridge, back to x. If the motor is connected by brushes 3 and 4 transversely to the two arms of the bridge as shown in the drawings, electromagnetic oscillations of equal sign are induced in the stator surfaces 1 and 2 and the motor does not revolve. If however, the brushes 3 and 4 are moved in common with the conducting wires 1 and 2 which connect the brushes with the stator poles a certain alteration or displacement of the polarity is obtained and the motor commences to revolve.

The maximum action will result if one brush 3 comes on the central sparking contact 7 and the other brush 4 on the part x. They are however, usually in practice not brought on to the central contact 7 but only held in the path of the bridge segments 4^a and 3^a in order not to connect the spark gaps with the motor oscillation circuit.

As however, the entire oscillation energy can thereby not act on the motor it is better to carry out the same system according to the diagram 14. The diagram 14 differs from the foregoing only by the motor not being directly metallically connected with the segments of the commutator, but only a primary coil 9 which induces in a secondary coil 10, current which feeds the motor M and takes the place of the rotor. By this

arrangement a good transforming action is obtained, a loose coupling and also an oscillation circuit without a spark gap.

In Figure 15 the motor is not purely inductively as in 14, but directly metallically branched off from the primary coil (at α and α') after the principle of the auto-transformer.

In Figure 16 instead of an inductance a condenser 6 is in similar manner, and for the same object inserted between the segments 3^a and 4^a. This has the advantage that the segments 3^a and 4^a need not be made of solid metal but may consist of spiral coils whereby a more exact regulation is possible and further motors of high inductance may be employed.

The arrangements of Figures 17, 18 and 19 may be employed for use with resonance and particularly with induction condenser motors; between the large stator induction condenser surfaces, small reversing pole condensers are connected, which, as may be seen from Figures 17, 18 and 19 are led together to earth. Such reversing poles have the advantage that with large quantities of electrical energy the spark formation between the separate oscillation circuits ceases.

Figure 19 shows a further method which prevents electromagnetic oscillations of high number of alternations formed in the oscillation circuit striking back to the aerial conductor. It is based on the well known principle that a mercury lamp, one electrode of which is formed of mercury, the other of solid metal such as steel allows an electric charge to pass in only one direction from the mercury to the steel and not vice versa. The mercury electrode of the vacuum tube N is therefore connected with the aerial conductor and the steel electrode with the oscillation circuit. From this it results that charges can pass only from the aerial through the vacuum tube to the oscillation circuit, but not vice versa. Oscillations which are formed on being transformed in the oscillation circuit cannot pass to the aerial conductor.

In practice these vacuum tubes must be connected behind an electromagnet as the latter alone affords no protection against the danger of lightning.

As regards the use of spark gaps, all arrangements as used for wireless telegraphy may be used. Of course the spark gaps in large machines must have a sufficiently large surface. In very large stations they are cooled in liquid carbonic acid or better still in liquid nitrogen or hydrogen; in most cases the cooling may also take place by means of liquefied low homologues of the metal series or by means of hydrocarbons the freezing point of which lies at between -90° C. and -40° C. The spark gap casing must also be insulated and be of

sufficient strength to be able to resist any pressure which may arise. Any undesirable excess super-pressure which may be formed must be automatically let off. I have employed with very good results mercury electrodes which were frozen in liquid carbonic acid, the cooling being maintained during the operation from the outside through the walls.

Figure 20 is one of the simplest forms of construction of an aerial network in combination with collectors, transformers and the like illustrated diagrammatically. E is here the earth wire, 8 the safety spark gap, 7 the working spark gap, 1 and 2 the stator surfaces of the motor, 5 a condenser battery, S the protective magnet which is connected with the coil in the aerial conductor, A¹ to A¹⁰ aerial antennae with collecting balloons, N horizontal collecting or connecting wires from which, to the centre a number of connections run.

The actual collectors consist of metal sheaths preferably made of an aluminium magnesium alloy, and are filled with hydrogen or helium and are attached to copper plated steel wires. The size of the balloon is selected so that the actual weight of the balloon and the weight of the conducting wire is supported thereby. On the top of the balloon aluminium spikes, made and gilded in a special manner hereinafter described, are arranged in order to produce a conductor action. Small quantities of radium preparations, more particularly polonium-ionium or mesothorium preparations considerably increase the ionization, and therewith the action of these collectors.

In addition to metal balloons, fabric balloons which are superficially metal coated according to Schoop's metal spraying process, may however also be employed. A metallic surface may also be produced by lacquering with metallic bronzes, preferably according to Schoop's spraying process or lacquering with metallic bronze powders in two electrical series of widely different metals, because thereby the collecting effect is considerably increased.

Instead of the ordinary round balloons, elongated cigar shaped ones may be employed. In order also to utilize the frictional energy of the wind, patches or strips of non-conducting substances which produce electricity by friction, may be attached to the metallized balloon surfaces. The wind will impart a portion of its energy in the form of frictional electricity, to the balloon casing, and thereby the collecting effect is substantially increased.

In practice however, very high towers (up to 300 metres is fully admissible) may be employed as antennæ. In these towers copper tubes rise freely further above the top of the tower. A gas lamp secured

against the wind is then lit at the point of the copper tube and a netting is secured to the copper tube over the flame of this lamp to form a collector. The gas is conveyed 5 through the interior of the tube up to the summit. The copper tube must be absolutely protected from moisture at the place at which it enters the tower and also rain must be prevented running down the walls 10 of the tower which might lead to a bad catastrophe. This is done by bell shaped enlargements which expand downwards, being arranged in the tower in the form of high voltage insulators of Siamese pagodas.

15 Special attention must be devoted to the foundations of such towers. They must be well insulated from the ground, which may be obtained by first embedding a layer of concrete in a box form to a sufficient depth 20 in the ground and inserting in this an asphalt lining and then glass bricks cast about 1 or 2 metres in thickness. Over this in turn there is a ferro-concrete layer in which alone the metal foot of the tube is 25 secured. This concrete block must be at least 2 metres from the ground and be fully protected at the sides by a wooden covering, from moisture. In the lower part of the 30 tower a wood or glass house for the large condenser batteries or for the motors may be constructed. In order to lead the earth connection to the ground water, a well insulated pit constructed of vitreous bricks, must be provided. Several such towers are 35 erected at equal distances apart and connected with a horizontal conductor. The horizontal connecting wires may either run directly from tower to tower or be carried on bell shaped insulators similar to those in 40 use for high voltage conductors. The width of the network may be of any suitable size and the connection of the motors can take place at any suitable places.

In order to collect large quantities of 45 electricity with few aerials it is well to provide the aerial conductor with batteries of condensers as shown in two methods of construction in Figures 21 and 22. In Figure 21 the batteries of condensers 5 are connected on the one hand with the aerial electricity collectors Z by the aerial conductor A, and on the other hand interconnected in series with an annular conductor from 50 which horizontal conductors run to the connecting points C to which the earth wire is 55 connected.

Figure 22 shows a similar arrangement. Should two such series of antennae rings be 60 shown by a voltmeter to have a large difference of potential (for example, one in the mountains and one in the plain) or even of different polarity these differences may be compensated for by connecting sufficiently large condenser batteries (5, 5^a, 5^b) by means 65 of Maji star conductors D and D'. In Fig-

ure 23 a connection of three such rings of collectors to form a triangle with a central condenser battery is illustrated.

The condenser batteries of such large installations must be embedded in liquefied 70 gases or in liquids freezing at very low temperatures. In such cases a portion of the atmospheric energy must be employed for liquefying these gases. It is also preferable to employ pressure. By this means the condenser surfaces may be diminished, and still allow for large quantities of energy to be stored, secure against breakdown. For smaller installations the immersing of the condensers in well insulated oil or the like, suffices. Solid substances on the other hand 75 cannot be employed as insulators.

The arrangement in the diagrams hitherto described was always such that the condenser batteries were connected with both poles directly to the aerial conductors. An improved diagram of the connections for obtaining atmospheric electricity for the condenser batteries has however, been found 80 to be very advantageous, this arrangement 85 consists in that they are connected by only one pole (unipolar) to the collecting network. Such a method of arrangement is 90 very important, as by means of it a constant current and an increase of the normal working 95 pressure or voltage is obtained. If for 100 example a collecting balloon aerial which is allowed to rise to a height of 300 metres, shows 40,000 volts above earth voltage, in practice it has been found that the working voltage (with a withdrawal of the power according to the method hereinbefore described by means of oscillating spark gaps and the like) is only about 400 volts. If 105 however, the capacity of the condenser surfaces be increased, which capacity in the above mentioned case was equal to that of the collecting surface of the balloon aerials, to double the amount, by connecting the 110 condenser batteries with only one pole, the voltage rises under an equal withdrawal of current up to and beyond 500 volts. This can only be ascribed to the favourable action 115 of the connecting method.

In addition to this substantial improvement it has also been found preferable to insert double inductances with electromagnets and to place the capacities preferably between two such electromagnets. It has also been found that the useful action of 120 such condensers can be further increased if an induction coil be connected as inductive resistance to the unconnected pole of the condenser, or still better if the condenser itself be made as an induction condenser. Such a condenser may be compared with a spring which when compressed carries in 125 itself accumulated force, which it again gives off when released. In charging, a charge with reversed sign is formed at the 130

other free condenser pole, and if through the spark gap a short circuit results, the accumulated energy is again given back since now new quantities of energy are induced 5 at the condenser pole connected with the conductor network, which in fact charges with opposite signs to that at the free condenser pole. The new induced charges have of course the same sign as the collector net- 10 work. The whole voltage energy in the aerial is thereby however increased. In the same space of time larger quantities of energy are accumulated than is the case without such inserted condenser batteries.

15 In Figures 24 and 25 two different diagrams of connections are more exactly illustrated, Figure 24 shows a collecting balloon and the diagram of the connections to earth. Figure 25 four collecting balloons and the 20 parallel connection of the condenser batteries belonging thereto.

A is the collecting balloon made of an aluminium magnesium alloy (electron metal, magnalium) of a specific gravity of 1.8 and 25 a thickness of plate 0.1 to 0.2 mm. Inside there are eight strong vertical ribs of T shaped section about 10 to 20 mm. in height and about 3 mm. in thickness with the projecting part directed inwards (indicated by 30 a, b, c, d and so forth); they are riveted together to form a firm skeleton and are stiffened in a horizontal direction by two cross ribs. The ribs are further connected with one another internally and transversely by 35 means of thin steel wires, whereby the balloon obtains great power of resistance and elasticity. Rolled plates of 0.1 to 0.2 mm. in thickness made of magnalium alloy are then either soldered or riveted on this skeleton 40 so that a fully metallic casing with smooth external surface is obtained. Well silvered or coppered aluminium plated steel wires run from each rib to the fastening ring 2. Further, the coppered steel hawser L preferably 45 twisted out of separate thin wires (shown in dotted lines in Figure 24) and which must be long enough to allow the balloon to rise in the desired height, leads to a metal roller or pulley 3 and from thence to a winch W, well insulated from the earth. By means of 50 this winch, the balloon, which is filled with hydrogen, or helium, can be allowed to rise to a suitable height (300 to 5,000 metres) and brought to the ground for recharging 55 or repairs.

The actual current is taken directly 60 through a friction contact from the metal roller 3 or from the wire, or even from the winch or simultaneously from all three by means of brushes (3, 3^a and 3^b). Beyond 65 the brushes the conductor is divided, the paths being:—firstly over 12 to the safety spark gap 8, from thence to the earth conductor E¹, and secondly over electromagnet S¹, point 13, to a second loose electromagnet

having an adjustable coil S², then to the spark gap 7 and to the second earth conductor E². The actual working circuit is formed through the spark gap 7, condensers 5 and 6, and through the primary coil 9; 70 here the static electricity formed by oscillatory discharges is accumulated and converted into high frequency electromagnetic oscillations. Between the electromagnets S¹ and S² at the crossing point 13, four condenser batteries are introduced which are only indicated diagrammatically in the drawings each by one condenser. Two of these batteries (16 and 18) are made as plate 75 condensers and prolonged by regulating induction coils or spirals 17 and 19 while the two others (21 and 23) are induction condensers. As may be seen from the drawings each of the four condenser batteries 16, 18, 21, 23 is connected only by one pole to the aerial or to the collector conductor. The 80 second poles 17, 19, 22, 24 are open. In the case of plate condensers having no inductive resistance an induction coil is inserted. The object of such a spiral or coil is the displacement 85 of phase of the induction current by $\frac{1}{4}$ periods, whilst the charging current of the condenser poles which lie free in the air, works back to the collector aerial. The consequence of this is that in discharges in the 90 collector aerial the back inductive action of the free poles allows a higher voltage to be maintained in the aerial collecting conductor than would otherwise be the case. It has also been found that such a back action 95 has an extremely favourable effect on the wear of the contacts. Of course the inductive effect may be regulated at will within the limits of the size of the induction coil, the length of the coil in action being adjustable by means of wire connection without induction (see Fig. 24, No. 20).

S¹ and S² may also be provided with such 100 regulating devices in the case of S² (illustrated by 11). If excess voltage be formed 110 it is conducted to earth through the wire 12 and spark gap 8 or through any other suitable apparatus, since this formation would be dangerous for the other apparatus.

The action of these condenser batteries has 115 already been hereinbefore described.

The small circles on the collector balloon indicate places at which zinc amalgam or gold amalgam or other photoelectric acting metals in the form of small patches in extremely thin layers (.01 to .05 mm. in thickness) are applied to the balloon casing of light metal. Such metallic patches may also be applied to the entire balloon as well as in greater thickness to the conducting 120 network. The capacity of the collector is thereby considerably strengthened at the surface. The greatest possible effect in collecting may be obtained by polonium amalgams and the like. On the surface of the 125

collector balloon metal points or spikes are also fixed along the ribs, which spikes serve particularly for collecting the collector charge. Since it is well known that the resistance of the spikes is less the sharper the spike is, for this purpose it is therefore extremely important to employ as sharp spikes as possible. Experiments made as regards these have shown that the formation of the body of the spike or point also plays a large part, for example, spikes made of bars or rollers with smooth surfaces, have a many times greater point resistance as collector accumulator spikes than those with rough surfaces. Various kinds of spike bodies have been experimented with for the collector balloons hereinbefore mentioned. The best results were given by spikes which were made in the following way. Fine points made of steel, copper, nickel, or copper and nickel alloys, were fastened together in bundles and then placed as anode with the points in a suitable electrolyte (preferably in hydrochloric acid or muriate of iron solutions) and so treated with weak current at 2 to 3 volts pressure. After 2 to 3 hours according to the thickness of the spikes or pins the points become extremely sharp and the bodies of the spikes have a rough surface. The bundle can then be removed and the acid washed off with water. The spikes are then placed as cathode in a bath consisting of solution of gold, platinum, iridium, palladium or wolfram salts or their compounds and coated at the cathode galvanically with a thin layer of precious metal, which must however be sufficiently firm to protect them from atmospheric oxidation.

Such spikes act at a 20 fold lower voltage almost as well as the best and finest points made by mechanical means. Still better results are obtained if polonium or radium salts are added to the galvanic bath when forming the protective layer or coating. Such pins have a low resistance at their points and even at one volt and still lower pressures have an excellent collector action.

In Figure 24 the three unconnected poles are not connected with one another in parallel. That is quite possible in practice without altering the principle of the free pole. It is also preferable to interconnect in parallel to a common collector network, a series of collecting aerials.

Figure 25 shows a diagram for such an installation. A¹, A², A³, A⁴ are four metal collector balloons with gold or platinum coated spikes which are electrolytically made in the presence of polonium emanations or radium salts, which spikes or needles are connected over four electro-magnets S¹, S², S³, S⁴, through an annular conductor R. From this annular conductor four wires run over four further electromagnets S^a,

S^b, S^c, S^d, to the connecting point 13. There the conductor is divided, one branch passing over 12 and the safety spark gap 8 to the earth at E¹, the other over inductive resistance J and working spark gap 7 to the earth at E². The working circuit, consisting of the condenser 5 and 6 and a resonance motor or a condenser motor M, such as hereinbefore described, is connected in proximity round the sparking gap section 7.

Instead of directly connecting the condenser motor of course the primary circuit for high frequency oscillatory current may also be inserted.

The condenser batteries are connected by one pole to the annular conductor R and can be either inductionless (16 and 18) or made as induction condensers as shown by 21 and 23. The free poles of the inductionless condensers are indicated by 17 and 19, those of the induction condensers by 22 and 24. As may be seen from the drawings all these poles 17, 22, 19, 24 may be interconnected in parallel through a second annular conductor without any fear that thereby the principle of the free pole connection will be injured. In addition to the advantages already set forth the parallel connection also allows of an equalization of the working pressure in the entire collector network. Suitably constructed and calculated induction coils 25 and 26 may also be inserted in the annular conductor of the free poles, by means of which a circuit may be formed in the secondary coils 27 and 28 which allows current produced in this annular conductor by fluctuations of the charges or the like appearances to be measured or otherwise utilized.

According to what has been hereinbefore stated separate collector balloons may be connected at equidistant stations distributed over the entire country, either connected directly with one another metallically or by means of intermediate suitably connected condenser batteries through high voltage conductors insulated from earth. The static electricity is converted through a spark gap into dynamic energy of a high number of oscillations and may in such form be coupled as a source of energy by means of a suitable method of connecting, various precautions being observed, and with special regulations. The wires leading from the collector balloons have hitherto been connected through an annular conductor without this endless connection, which can be regarded as an endless induction coil, being able to exert any action on the whole conductor system.

It has now been found that if the network conductor connecting the aerial collector balloons with one another is not made as a simple annular conductor, but preferably short circuited in the form of coils over a

condenser battery or spark gap or through thermionic tubes or valves or audions, then the total collecting network exhibits quite new properties. The collection of atmospheric electricity is thereby not only increased but an alternating field may be easily produced in the collector network. Further, the atmospheric electrical forces showing themselves in the higher regions 5 may also be directly obtained by induction. In Figures 26 and 28 a form of construction is shown on the basis of which the further foundations of the method will be more particularly explained.

15 In Figure 26 1, 2, 3, 4 are metal collector balloons, 5, 6, 7, 8 their metallic aerial conductors and I the actual collector network. This consists of five coils and is mounted on high voltage insulators in the air, on high 20 voltage masts (or with a suitable construction of cable embedded in the earth). One coil has a diameter of 1 to 100 km. or more. S and S' are two protective electromagnets, F the second safety section against excess 25 voltage, E its earth conductor and E' the earth conductor of the working section. When an absorption of static atmospheric electricity is effected through the four balloon collectors, the current in order to reach 30 the earth connection E' must flow spirally through the collector network over the electromagnet S, primary induction coil 9, conductor 14, anode A of the audion tube, incandescent cathode K, as the way over the 35 electromagnet and safety spark gap F offers considerably greater resistance. Owing to the fact that the accumulated current flows in one direction, an electromagnetic alternating field is produced in the interior of 40 the collector network coil, whereby the whole free electrons are directed more or less into the interior of the coil. An increased ionization of the atmosphere is therefore produced. In consequence of this the points 45 mounted on the collector balloon show a considerably reduced resistance and therefore increased static charges between the points on the balloon and the surrounding atmosphere are produced. The result of 50 this is a considerably increased collector effect.

A second effect which could not be obtained otherwise is obtained by the electromagnetic alternating field which running 55 parallel to the earth surface, acts more or less with a diminishing or increasing effect on the earth magnetic field, whereby in the case of fluctuations in the current a return induction current of reversed sign is always 60 produced in the collector coil by earth magnetism. Now if, however, a constantly pulsating continuous alternating field is produced as stated in the above collector network I, an alternating current of the same 65 periodicity is produced also in the collecting

network coil. As the same alternating field is further transmitted to the aerial balloon, the resistance of its points is thereby considerably reduced, whilst the collector action is considerably increased. A further 70 advantage is that positive electrons which collect on the metal surfaces during the conversion into dynamic current produce a so-called drop of potential of the collector area. As an alternating field is present, the 75 negative ions surrounding the collector surfaces, when discharge of the collector surfaces takes place produce by the law of induction, an induction of reversed sign on the collector surface and so forth (that is 80 to say again a positive charge). In addition to the advantages hereinbefore set forth, the construction of connecting conductors in coil form when of sufficiently large diameter, allows of a utilization of energy arising 85 in higher regions also in the simplest way. As is well known electric discharges frequently take place at very great elevations which may be observed, such as St. Elmo's fires or northern lights. These 90 energy quantities have not been able to be utilized up to now. By this invention all these kinds of energy, as they are of an electromagnetic nature and the direction of the axis of the collector coils stands at right 95 angles to the earth's surface, can be more or less absorbed in the same way as a receiver in wireless telegraphy absorbs waves coming from a far distance. With a large diameter of the spiral it is possible to connect large 100 surfaces and thereby to take up also large quantities of energy.

It is well known that large wireless stations in the summer months, and also in the tropics are very frequently unable to 105 receive the signals in consequence of interruptions which are caused by atmospheric electricity, and this takes place with vertical coils of only 40 to 100 m. diameter. If on the contrary horizontal coils of 1 to 100 km. 110 diameter be employed very strong currents may be obtained through discharges which are constantly taking place in the atmosphere. Particularly in the tropics or still better in the polar regions where the 115 northern lights are constantly present, large quantities of energy may probably be obtained in this way. A coil with several windings should act the best. In similar manner any alteration of the earth magnetism should act inductively on such a coil.

It is not at all unlikely that earthquakes 120 and spots on the sun will also produce an induction in such collector coils of sufficient size. In similar manner this collector conductor will react on earth currents more particularly when they are near the surface of the earth or even embedded in the earth. By combining the previous kind of current collectors so far as they are adapted for 125 130

the improved system with the improved possibilities of obtaining current the quantities of free natural energy which are to be obtained in the form of electricity are considerably increased.

In order to produce in the improved collector coil uniform current oscillations of an undamped nature so-called audion high vacuum or thermionic tubes of suitable connection are employed instead of the previously known spark gaps (Fig. 26, Nos. 9-18). The main aerial current flows through electromagnet S (which in the case of a high number of alternations is not connected here but in the earth conductor E¹) and may be conveyed over the primary coils in the induction winding through wire 14 to the anode A of the high vacuum grid tube. Parallel with the induction resistance 9 a regulating capacity of suitable size, such as condenser 11 is inserted. In the lower part of the vacuum grid tube is arranged the incandescent filament or the cathode K which is fed through a battery B. From the battery B two branches run, one to the earth conductor E¹ and the other through battery B¹ and secondary coil 10 to the grid anode g in the vacuum tube. By the method of connections shown in dotted lines, a desired voltage at the grid electrode g may also be produced through the wire 17 which is branched off from the main current conductor through switches 16 and some small condensers (a, b, c, d) connected in series, and conductor 18, without the battery B¹ being required.

The action of the entire system is somewhat as follows:—

On the connecting conductor of the aerial collector network being short circuited to earth, the condenser pole 11 is charged and slightly damped oscillations are formed in the short circuited existing oscillation circuit formed of the condenser 11 and self inductance 9. In consequence of the coupling through coil 10, fluctuations of voltage take place in the grid circuit 15 with the same frequency, which, fluctuations in turn influence the strength of the electrode current passing through the high vacuum amplifying tube and thus produce current fluctuations of the same frequency in the anode circuit. A permanent supply of energy to the oscillation circuits 9 and 10 consequently takes place, until a condition of balance is set up, in which the consumed oscillation energy is equal to that absorbed. Thereby constant undamped oscillations are now produced in the oscillation circuits 9-11.

For regular working of such oscillation producers high vacuum strengthening tubes are necessary and it is also necessary that the grid and anode voltages shall have a phase difference of 180° so that if the grid is negatively charged, then the anode is

positively charged and vice versa. This necessary difference of phase may be obtained by most varied connections, for example, by placing the oscillation circuit in the grid circuit or by separating the oscillation circuit and inductive coupling from the anodes and the grid circuit and so forth.

A second important factor in this way of converting static atmospheric electricity into undamped oscillations is that care must be taken that the grid and anode voltages have a certain relation to one another; the latter may be obtained by altering the coupling and a suitable selection of the self induction in the grid circuit, or as shown by dotted lines 18, 17, 16 by means of a larger or smaller number of condensers of suitable size connected in series; in this case the battery B¹ may be omitted. With a suitable selection of the grid potential a glow discharge takes place between the grid g and the anode A, and accordingly at the grid there is a cathode drop and a dark space is formed. The size of this cathode drop is influenced by the ions which are emitted in the lower space in consequence of shock ionization of the incandescent cathodes K and pass through the grid in the upper space. On the other hand the number of the ions passing through the grid is dependent on the voltage between the grid and the cathode. Thus if the grid voltage undergoes periodic fluctuations (as in the present case) the amount of the cathode drop at the grid fluctuates and consequently the internal resistance of the tube correspondingly fluctuates, so that when a back coupling of the feed circuit with the grid circuit takes place, the necessary means are afforded for producing undamped oscillations and of taking current, according to requirements from the collecting conductor.

The frequency of the undamped oscillations produced is with a suitably loose coupling equal to the self frequency of the oscillation circuits 9 and 10. By a suitable selection of the self induction of the coil 9 and capacity 11 it is possible to extend from frequencies which produce electromagnetic oscillations of only a few metres wave length down to the lowest practical alternating current frequency. For large installations a suitable number of frequency producing tubes in the form of the well known high vacuum transmission tubes of .5 to 2 kw. in size may be connected in parallel so that in this respect no difficulty exists.

The use of such tubes for producing undamped oscillations, and also the construction and method of inserting such transmission tubes in an accumulator or dynamo circuit is known and also that such oscillation producing tubes only work well at voltages of 1,000 up to 4,000 volts, so that on the contrary their use at lower voltages is

considerably more difficult. By the use of high voltage static electricity this method of producing undamped oscillations as compared with that through spark gaps must be regarded as an ideal solution particularly for small installations of outputs of from 1 to 100 kw.

By the application of safety spark gaps, with interpolation of electro-magnets, not only is short circuiting avoided but also the taking up of current is regulated. Oscillation producers inserted in the above way form a constantly acting electromagnetic alternating field in the collector coil, where by as already stated, a considerable accumulating effect takes place. The withdrawal wire or working wire is connected at 12 and 13, but current may be taken by means of a secondary coil which is firmly or movably mounted in any suitable way inside the large collector coil, i. e. in its electromagnetic alternating field, so long as the direction of its axis runs parallel with that of the main current collecting coil.

In producing undamped oscillations of a high frequency (50,000 per second and more) in the oscillation circuits 9 and 11, electromagnets S and S¹ must be inserted if the high frequency oscillations are not to penetrate the collector coil, between the oscillation producers and the collector coil. In all other cases they are connected shortly before the earthing (as in Figs. 27 and 28).

In Figure 27 a second method of construction of the connecting conductor of the balloon aerials is illustrated in the form of a coil. The main difference consists in that in addition to the connecting conductor I another annular conductor II is inserted parallel to the former on the high voltage masts in the air (or embedded as a cable in the earth) but both in the form of a coil. The connecting wire of the balloon aerials is indicated as a primary conductor and also as a current producing network; the other is the consumption network and is not in unipolar connection with the current producing network.

In Figure 27 the current producing network I is shown with three balloon collectors 1, 2, 3 and aerial conductors 4, 5, 6; it is short circuited through condenser 19 and inductance 9. The oscillation forming circuit consists in this diagram of spark gap f, inductance 10, and condenser 11; the earth wire E, is connected to earth over electromagnet S¹. F is the safety spark gap which is also connected to earth through a second electromagnet S at E. On connecting up the condenser circuit 11 this is charged over the spark gap f whereby an oscillatory discharge is formed. This discharging current acts through inductance 10 on the inductively coupled secondary 9, whereby in the producing network a modi-

fication of the potential of the condenser 19 is produced. The consequence of this is that oscillations arise in the coil shaped producer network. These oscillations induce a current in the secondary circuit II, which has a smaller number of windings and a less resistance, the voltage of which, according to the proportion of the number of windings and of the ohmic resistance, is considerably lower whilst the current strength is greater.

In order to convert the current thus obtained into current of an undamped character, and to tune its wave lengths, a sufficiently large regulatable capacity 20 is inserted between the ends 12 and 13 of the secondary conductor II. Here also current may be taken without an earth conductor, but it is advisable to insert a safety spark gap E¹ and to connect this with the earth over an electromagnet S².

The producer network may be connected with the working network II over an inductionless condenser 21 or over an induction condenser 22, 23. In this case the secondary conductor is unipolarly connected with the energy conductor.

In Figure 28 the connecting conductor between the separate accumulator balloons is carried out according to the autotransformer principle. The collecting coil connects four aerial balloons 1, 2, 3, 4, the windings of which are not made side by side but one above the other. In Figure 28 the collector coil I is shown with a thin line, the metallically connected prolongation coils II with a thick line. Between the ends I¹ and II¹ of the energy network I a regulating capacity 19 is inserted. The wire I¹ is connected with the output wire and with the spark gap F.

As transformer of the atmospheric electricity an arrangement is employed which consists in using rotary pairs of condensers in which the one stator surface B is connected with the main current, whilst the other A is connected with the earth pole. Between these pairs of short circuited condensers are caused to rotate from which the converted current can be taken by means of two collector rings and brushes, in the form of an alternating current, the frequency of which is dependent on the number of balloons and the revolutions of the rotor. As the alternating current formed in the rotor can act, in this improved method of connection described in this invention, through coils 10 on the inductance 9, an increase or diminution of the feed current in I can be obtained according to the direction of the current by back induction. Current oscillations of uniform rhythm thereby result in the coil shaped windings of the producer network.

As the ends of this conductor are short cir-

cuted through the regulatable condenser 19 these rhythms produce short circuited undamped oscillations in the energy conductor, the periodicity and wave lengths of which 5 oscillations can be adjusted according to desire by altering the capacity 19 to a given wave length and therewith also to a given frequency. These currents may also be employed in this form directly as working current 10 through the conductors II¹ and III. By inserting the condenser 20 a connection between these conductors may also be made, whereby harmonic oscillations of desired wave length are formed. By this means 15 quite new effects as regards current distribution are obtained. The withdrawal of current can even take place without direct wire connection if, at a suitable point in the interior of the producing network (quite im- 20 materially whether this has a diameter of 1 or 100 km.) a coil tuned to these wave lengths and of the desired capacity is firmly or movably mounted in the aerial conductor in such a way that its axial direction is in 25 parallel with that of the collector coil. In this case a current is induced in the producing network, the size of which is dependent on the total capacity and resistance and also on the periodicity employed. A possi- 30 bility is thereby afforded in future, of taking energy from the producer network by wireless means. As thereby in addition to atmospheric electricity also magnetic earth currents and the energy from the higher atmosphere (at least partially) may be simultaneously obtained, this last system for collecting the atmospheric energy is of partic- 35 ular importance for the future.

Of course everywhere instead of spark 40 gaps suitable grid vacuum tubes may be employed as producers for undamped oscillations. The separate coils of the producer net-work with large diameters may be connected with one another through separate 45 conductors all in parallel or all in series or in groups in series. By regulating the number of oscillations and also the extent of the voltage more or less large collector coils of this kind may be employed. The coils may 50 also be divided spirally over the entire section. The coils may be carried out in annular form or also in triangular, quadrangular, hexagonal or octagonal form.

Of course wires may be carried from a suitable 55 place to the centre or also laterally which serve the current waves as guides. This is necessary when the currents have to be conducted over mountains and valleys and so forth. In all these cases the current 60 must be converted into a current of suitable periodicity.

As already hereinbefore mentioned sepa- 65 rate collecting balloons may be directly metal- 70 lically interconnected at equidistant sta-

tions distributed over the entire country or 65 may be connected by interpolation of suitable condenser batteries by means of high voltage conductors. The static electricity is converted through a spark gap into dynamic 70 energy of a high number of oscillations, and could then in such form, with a suitable arrangement of the connections, observing various measures of precaution, be employed 75 as source of energy after separate or special regulation.

According to this invention in order to increase the collecting effect of the balloon in the aerial collector conductor or in the earth wire, radiating collectors are employed. These consist either of incandescent metal 80 or oxide electrodes in the form of vacuum grid tubes, or electric arcs (mercury and the like electrodes) Nernst lamps, or finally flames of various kinds may be simply connected with the respective conductor.

It is well known that energy can be drawn off from a cathode consisting of an incandescent body opposite an anode charged with positive electricity (vacuum grid tube). Hitherto however, a cathode was always first 90 directly placed opposite an anode, and secondly the system always consisted of a closed circuit.

Now if we dispense with the ordinary ideas in forming light or flame arcs in which 95 a cathode must always stand directly opposite an anode, and if we place an incandescent cathode opposite an anode charged to a high potential or another body freely floating in the air, or regard the incandescent cathode 100 only as a source of unipolar discharge (which represent group and point discharges in electro-static machines similar to unipolar discharges), it may be ascertained that incandescent cathodes and less perfectly all incandescent radiators, flames and the like admit of relatively large current densities and allow large quantities of electric energy to radiate into the open space in the form of electron streams as transmitters.

The object of this invention is as described below, if such incandescent oxide electrodes or other incandescent radiators or flames are not freely suspended in space but connected 115 metallically with the earth so that they can be charged with negative terrestrial electricity, these radiators possess the property of absorbing the free positive electrical charges contained in the air space surrounding them (that is to say of collecting them and conducting them to earth). They can therefore, serve as collectors and have, in comparison to the action of the spikes, or points, a very large radius of action R; the effective capacity of these collector 120 is much greater than the geometrical capacity (R_o) calculated in an electro-static sense.

Now as our earth is surrounded as is well

known, with an electro-static field and the difference of potential

$$\frac{\delta V}{\delta h}$$

of the earth field according to the latest investigations, is in summer about 60 to 100 volts and in winter 300 to 500 volts per metre of difference in height (δh), a simple calculation gives the result that when such a radiation collector or flame collector is arranged for example on the ground, and a second one is mounted vertically over it at a distance of 2,000 metres and both are connected by a conducting cable, there is a difference of potential in summer of about 2,000,000 volts and in winter even of 6,000,000 volts and more.

According to Stefan Boltzmann's law of radiation, the quantity of energy which an incandescent surface (temperature T) of 1 sq. cm. radiates in a unit of time into the open air (temperature T_0) is expressed by the following formula:

$$S = \sigma (T^4 - T_0^4) \text{ watt/sq. cm.}$$

and the universal radiation constant σ is according to the latest researches of Ferry (Annales de Chimie et de physique 17 page 267 (1909)) equal to 6.30×10^{-12} watt/sq. cm.

Now if an incandescent surface of 1 sq. cm. shows, as compared with the surrounding space a periodic fall of potential δV it radiates (independent of the current direction, that is to say of the sign) in accordance with the above formula, for example at a temperature of 3725°C . an energy of 1.6 kw. per sq. cm. per second. As for the radiation the same value can be calculated for the collection of energy, but reversed. Now as carbon electrodes at the temperature of the electric arc support on the current basis a current density up to from 60 to 65 amperes per sq. cm. no difficulties will result in this direction in employing radiating collectors as accumulators.

If the earth be regarded as a cosmically insulated condenser in the sense of geometrical electro-statics α there results from the geometric (compare Ewald Rasch, "das elektrische Bogenlicht" (The electric arc light) page 169) capacity of the earth according to Chwolson:

For negative charging 1.3×10^6 Coulomb
For negative potential $V = 10 \times 10^8$ volts.
From this there results however, $EJT \approx 24.7 \times 10^{24}$ watt/Sec. Now if it is desired to make a theoretic short circuit through an earthed flame collector this would represent an electric total work of about $79,500 \times 10^{10}$ kilowatt years. As the earth must be regarded as a rotating mechanism which is thermo-dynamically, electromagnetically, and also kinematically coupled with the sun and stars system by cosmic radiations and

gravitation a diminution of the electric energy of the earth field is not to be feared. The energies which the incandescent collectors would withdraw from the earth field can only cause by the withdrawal of motor work a lowering of the earth temperature (temperature $T_E = 300$) and reduce this to that of the world space ($T = 0$) by using the entire energy. This is however not the case as the earth does not represent a cosmically entirely insulated system. On the contrary there is conveyed to the same according to the recent value corrected by Ferry for the solar constants through the radiation from the sun an energy of $18,500 \times 10^{10}$ kw. Accordingly any lowering of the earth temperature (T_E) without a simultaneous lowering of the sun's temperature (T_s) would contradict Stefan Boltzmann's law of radiation.

$$S = \sigma (T_s^4 - T_E^4).$$

From this it must be concluded that if the earth temperature (T_E) sinks, the total radiation S absorbed by the earth increases, and further also that the secular speed of cooling of the earth is directly dependent on that of the sun and the other radiators cosmically coupled with the sun and is connected most closely with these.

The incandescent radiation collectors may, according to this invention, be employed for collecting atmospheric electricity if they (1) are charged with the negative earth electricity (that is to say when they are directly connected by means of a metallic conductor with the earth) and (2) if large capacities (metal surfaces) charged with electricity are mounted opposite them as positive poles in the air. This is regarded as the main feature of the present invention as without these inventive ideas it would not be possible to collect with an incandescent collector, sufficiently large quantities of the electrical charges contained in the atmosphere as technology requires; the radius of action of the flame collectors would also be too small, especially if it be considered that the very small surface density (energy density) (σ about $= 2 \times 7 \cdot 10^9$ St. E. per sq. cm.) does not allow of large quantities of charge being absorbed from the atmosphere.

α) Calculated according to Poisson's calculation;

$\Delta V = -4\pi\sigma$; as here the alteration of the potential or potential gradients only takes place in the direction of the normal, this calculation assumes the simple form

$$\sigma = \frac{1}{4\pi} \times \frac{\delta V}{\delta n^2}$$

It has indeed already been proposed to employ flame collectors for collecting atmospheric electricity and it is known that

their collecting effect is substantially greater opposite the points. It is however, not known that the quantities of current which could hitherto be obtained are too small for technical purposes. According to my experiments the reason for this is to be found in the too small capacities of the collector conductor poles. If such flame or radiating collectors have no or only small positive surfaces, their radius of action for large technical purposes is too small. If the incandescent collectors be constantly kept in movement in the air they may collect more according to the speed of the movement, but this is again not capable of being carried out in practice.

By this invention the collector effect is considerably increased by a body charged with a positive potential and of the best possible capacity being also held floating (without direct earth connection) opposite such an incandescent collector which is held floating in the air at a desired height. If for example, a collecting balloon of sheet metal or of metalized balloon fabric be caused to mount to 300 up to 3,000 metres in the air and as positive pole it is brought opposite such a radiating collector connected by a conductor to earth, quite different results are obtained.

The metallic balloon shell (with a large surface) is charged to a high potential by the atmospheric electricity. This potential is greater the higher the collecting balloon is above the incandescent collector. The positive electricity acts concentratedly on the anode floating in the air as it is attracted through the radiation shock ionization, proceeding from the incandescent cathode. The consequence of this is that the radius of action of the incandescent cathode collector is considerably increased and thereby also the collecting effect of the collecting balloon surface. Further the large capacity of the anode floating in the air plays therefore an important part because it allows of the taking of large charges, and thereby a more uniform current is obtained even when there is a large consumption; this cannot be the case with small surfaces.

In the present case the metallic collecting balloon is a positive anode floating in the air and the end of the earth conductor of this balloon serves as positive pole surface opposite the surface of the radiating incandescent cathode, which in turn is charged with negative earth electricity being conductively connected to earth.

The process may be carried out by two such contacts (negative incandescent cathode and anode end of a capacity floating in the air) a condenser and an inductive resistance being switched on in parallel, whereby simultaneously undamped oscillations may be formed.

In very large installations it is advisable to connect two such radiating collectors in series. Thus an arc light incandescent cathode may be placed below on the open ground and an incandescent cathode which is heated by special electro-magnetic currents be located high in the air. Of course for this the special vacuum Liebig tubes with or without grids may also be employed. An ordinary arc lamp with oxide electrodes may be introduced on the ground and the positive pole is not directly connected with the collecting balloon, but through the upper incandescent cathode or over a condenser. The method of connecting the incandescent cathode floating in the air may be seen in Figs. 29-33.

B is the air balloon, K a Cardan ring (connection with the hawser) C the balloon, L a good conducting cable, P a positive pole, N negative incandescent cathode, and E earth conductor.

Fig. 29 represents the simplest form of construction. If electric oscillations are produced below on the ground by means of a carbon arc lamp or in other suitable way a considerably greater electric resistance is opposed to that in the direct way by inserting an electrical inductive resistance. Consequently between P and N a voltage is formed, and as, over N and P only an inductionless ohmic resistance is present, a spark will spring over so long as the separate induction co-efficients and the like are correctly calculated. The consequence of this is that the oxide electrode (carbon or the like) is rendered incandescent and then shows as incandescent cathode an increased collecting effect. The positive poles must be substantially larger than the negative in order that they may not also become incandescent. As they are further connected with the large balloon area which has a large capacity and is charged at high voltage, an incandescent body which is held floating in the air and a positive pole which can collect large capacities is thereby obtained in the simplest way. The incandescent cathode is first caused to become incandescent by means of separate energy produced on the earth, and then maintained by the energy collected from the atmosphere.

Fig. 30 only shows the difference that instead of a round balloon a cigar shaped one (of metal or metalized fabric) may be employed and also a condenser 5 is inserted between the incandescent cathode and the earth conductor so that a short circuited oscillation circuit over P, N 5 and 9 is obtained. This has the advantage that quite small quantities of electricity cause the cathode to become incandescent and much larger cathode bodies may be rendered incandescent.

In this form of construction both the in-

candescent cathode and also the positive electrode may be enclosed in a vacuum chamber as may be seen in Fig. 32. A cable L is carried well insulated through the cover of a vessel and ends in a condenser disc 5. The cover is arched in order to keep off the rain. The vessel is entirely or partially made of magnetic metal and well insulated inside and outside. Opposite the disc 5 another disc 6 and on this again a metallic positive pole of the vacuum tube g with the incandescent cathode (oxide electrode) N is arranged. The negative electrode is on the one hand connected with the earth conductor E, and on the other hand with the inductive resistance 9 which is also connected with the cable L with the positive pole and wound round the vessel in coils. The action is exactly the same as that in Fig. 29 only instead of an open incandescent cathode one enclosed in vacuo is employed. As in such collectors only small bodies can be brought to incandescence in large installations a plurality of such vacuum tubes must be inserted in proximity to one another. According to the previous constructions Figs. 31 and 33 are quite self evident without further explanations.

Figs. 34-37 represent further diagrams 30 of connections over radiating and flame collectors, and in fact, how they are to be arranged on the ground.

Fig. 34 shows an arc light collector with oxide electrodes for direct current and its connection; Fig. 35 a similar one for alternating current, Fig. 36 an incandescent collector with a Nernst lamp and Fig. 37 a similar one with a gas flame.

The positive pole 1 of the radiating collectors is always directly connected to the aerial collecting conductor A. In Fig. 34 this is further connected over the condenser battery 5 with a second positive electrode 3. The direct current dynamo b produces current which flows over between the electrodes 3 and 2 as an arc light. On the formation of an arc the negative incandescent electrode 2 absorbs electricity from the positive poles standing opposite it and highly charged with atmospheric electricity and conveys the same to the working circuit. The spark gap 7, inductive resistance 9 and induction coil 10 are like the ones previously described. The protective electromagnet S guards the installation against earth circuiting, the safety spark gap 8 from excess voltage or overcharging.

In Fig. 35 the connection is so far altered that the alternating current dynamo feeds 60 the exciting coil 11 of the induction condenser. 12 is its negative and 13 its positive pole; if the coil 3 on the magnet core of the dynamo is correctly calculated and the periodicity of the alternating current is sufficiently high an arc light can be formed

between the two poles 1 and 2. As the cathode 2 is connected with the negatively charged earth, and therefore always acts as a negative pole, a form of rectification of the alternating current produced by the 70 dynamo 3 is obtained, the second half of the period is always suppressed. The working circuit may be carried out in the same way as in Fig. 34; the working spark gap 7 may however be dispensed with, and instead thereof between the points n and m a condenser 5 and an induction resistance 9 may be inserted from which the current is taken inductively.

Fig. 36 represents a form of construction 80 similar to Fig. 34 only that here instead of an arc lamp a Nernst incandescent body is employed. The Nernst lamp is fed through the battery 3. The working section is connected with the negative pole, the 85 safety spark gap with the + poles. The working spark gap 7 may also be dispensed with and the current for it taken at 12 over the oscillation circuit 5, 11 (shown in dotted lines).

Flame collectors (Fig. 37) may also be employed according to this invention. The wire network 1 is connected with the aerial collector conductor A and the burner with the earth. At the upper end of the latter, long points are provided which project into the flame. The positive electrode is connected with the negative over a condenser 5 and the induction coil 9 with the earth.

The novelty in this invention is firstly, 100 the use of incandescent cathodes opposite positive poles which are connected with large metallic capacities as automatic collecting surfaces, (2) the connection of the incandescent cathodes with the earth whereby, in addition to the electricity conveyed to them from the battery or machine which causes the incandescing, also the negative charge of the earth potential is conveyed, 105 and (3) the connection of the positive and negative poles of the radiating collectors over a condenser circuit alone or with the introduction of a suitable inductive resistance, whereby simultaneously an oscillatory 110 oscillation circuit may be obtained. The collecting effect is by these methods quite 115 considerably increased.

I declare that what I claim is:

1. An electrical energy generating system, comprising a conducting surface for static charges, means to support same at a distance above the earth, a conductor leading to the earth level, a spark gap associated with said conductor to convert electrostatic charges into electromagnetic high frequency oscillations means to supply said electromagnetic energy to a net work, and a spark gap of greatly increased relative resistance in parallel therewith.
2. An electrical energy generating system 130

comprising a conductor, means to support same above the earth level, an inductance therein, a spark gap associated with said conductor, a second spark gap of much higher relative resistance in parallel therewith and an energy receiving circuit coupled with the spark gap of lesser resistance.

3. An electrical energy generating system comprising a collecting surface, means to support same above the earth level, a conductor connecting said collecting surface with the earth level, a choke in said conductor, an electromagnetic resistance converting electrostatic energy to electromagnetic energy, a safety higher resistance in parallel therewith and a net work coupled with the conversion resistance of lesser value.

4. An electrical energy generating system comprising electric conductors spaced above the earth to form electromagnetic oscillating circuits, conductors connecting to earth level, electrostatic to electromagnetic energy conversion means therein, a safety high electrostatic resistance in parallel therewith and means to alter the electromagnetic characteristic of the circuits.

5. An electrical energy generating system comprising in combination a static collecting surface arranged above the earth, conductors connecting to earth level, a pair of

spark gaps in parallel of different electrostatic resistance, a utilization net work shunted across the spark gap of lesser resistance and an electromagnetic choke in said conductors.

6. An electrical energy generating system comprising an open circuit energy collecting aerial, a pair of sparking gaps in parallel of widely different resistance, connected thereto and a closed electric oscillation circuit in shunt across the gap of lesser resistance.

7. An electrical energy generating system comprising an open circuit energy collecting aerial, a pair of sparking gaps in parallel of widely different resistance connected thereto, a closed electric oscillation circuit in shunt across the gap of lesser resistance, a plurality of electrostatic collecting surfaces, means to connect said collecting surfaces in parallel in groups and means to connect said groups symmetrically with said aerial.

In witness whereof, I have hereunto signed my name this 30 day of Dec., 1920, in the presence of two subscribing witnesses.

HERMANN PLAUSON.

Witnesses:

H. F. ARMSTRONG,
W. H. BEESTON.

WILLIAM H. WARD.
Improvement in Collecting Electricity for Telegraphing, &c.
No. 126,356.

Patented April 30, 1872.

UNITED STATES PATENT OFFICE.

WILLIAM HENRY WARD, OF AUBURN, NEW YORK.

IMPROVEMENT IN COLLECTING ELECTRICITY FOR TELEGRAPHING, &c.

Specification forming part of Letters Patent No. 126,356, dated April 30, 1872.

I, WILLIAM HENRY WARD, of Auburn, in the county of Cayuga and State of New York, have invented an Electrical Tower for Accumulating Natural Electricity for Telegraphic Purposes, of which the following is a specification:

My invention consists of a tower for the purpose of receiving and imparting natural electricity, so as to be in constant contact with that upper stratum of electricity which surrounds the earth, by tapping which a never-failing supply is formed when brought into contact with the earth, as will be more fully explained hereinafter.

In the accompanying drawing, Figure 1 represents a side elevation of my improved electrical tower. Fig. 2 is a vertical central section of the upper part of the same. Figs. 3, 4, 5, 6, and 7 are detached views of several parts of the same.

The tower is constructed in three separate sections, a lower, a middle, and an upper one, and is placed on elevated mountain tops or peaks. The lower one, A, is a mere shell, having a door, a, and is constructed of any material suitable for the purpose. It is insulated from the middle portion B by means of a glass diaphragm, c, held between similar diaphragms of rubber, d, and of gutta-percha, e, by means of flanges a' and b', formed on the upper end of the lower portion and the lower end of the middle portion of the tower respectively. These flanges are secured to each other by insulated bolts f. The middle portion B is provided with suitable openings or windows, G, having shutters or slats g pivoted in them, so that, by means of raising or lowering rods h, suitably connected to said shutters, the openings G may be shut or opened. A projecting roof, H, is formed on or secured to the middle portion B just over the openings G, and which serves the double purpose of protecting the said openings from the effects of the weather, such as rain or snow, and also for receiving the aerial electricity, which may be drawn from it by wires i, for land-line purposes. Above this roof H the middle portion of the tower is again insulated by diaphragms of glass, rubber, and gutta-percha from the upper portion I of the tower in the same manner as it is insulated from its lower portion. A circular plate, j, secured on the inside of this upper

portion, bears a short tube, J, which is surrounded by the tube K of the ventilator L, from which latter the vane M extends; or the tube J may be held by rods extending from the side of the tower centrally. This ventilator is supported by a rod or shaft, k, firmly attached to the tube K, and having its lower bearing in a step, l, on a brace, m, crossing the middle portion B of the tower just above the openings G. This rod or shaft k is formed in two parts, insulated from each other, as shown at k'. On the lower portion of this shaft k is keyed or otherwise secured a sleeve, n, from which a horizontal serpentine cam-plate, o, shown in detail in Figs. 4 and 5, extends, over the rim of which the forked ends p of rods h seize, and which is so arranged relatively to the vane M and the shutters or slats g that the revolution of the vane by the wind will open the windward and close the leeward shutters or slats g and openings G by means of the rods h. Guide-plates or their equivalents N, provided with suitable openings, through which the rods h pass, keep the upper forked ends h of the latter in constant contact with the cam-plate o, which raises or lowers the rods, and consequently opens or closes the openings G as it revolves. A circular roof, O, extends from the tube K of the ventilator so as to cover and protect the open upper end of the tower. The upper portion I of the tower is provided with an insulating-tube, p', through which a copper wire, q, enters the portion I of the tower, and is coiled around the tube J just under the tube K, which wire may connect that upper portion of the tower with any land line of wires. The upper portion I of the tower, as well as the tubes J K, may be constructed of zinc, while the vane may be made of zinc, copper, or any equivalent material, which, with the zinc and the moisture of the atmosphere, would form an electrical current. As the vane revolves it opens the openings to windward and closes those to leeward, thus helping to drive an aerial current of electricity into the insulated middle portion of the tower, which current passes upwardly through the upper portion of the tower and out through the ventilator or the top, which is swung around by the wind or aerial electrical current, thus forming a draught in addition to the closing of the shutters or openings to leeward, by means

of which draught the electrical current is forced upwardly and out at the vane. The top portion of the tower is of course completely insulated from all below it, including the revolving central ventilator-shaft. As the middle portion of the tower allows the electrical current of atmosphere, wind, &c., to pass within, up, and out at the top it forms a continuous current, whereby the tower is receiving continually fresh and new supplies of electricity, which can be drawn from the projecting roof H by the wires i for the use of land lines of telegraphs or for other purposes, such as light, heat, &c. By the use of aerial electricity I entirely dispense with artificial batteries, forming my circuit merely by connecting the aerial current with the earth current. For instance, to bring Buenos Ayres, in South America, into direct connection with New York, the following plan would be pursued: One electrical tower is erected on Pike's Peak or any other suitable high mountain in North America, and another similar tower on some suitable peak of the Andes in South America. The former would, by means of land-lines, be connected directly with Denver, which place is again connected with all the prominent cities of the States. In a similar manner the southern tower is connected by land-lines with the prominent cities via Quito. New York telegraphs to the tower on Pike's Peak, and the operator having connected the land-line with the aerial current, the signals are transmitted through the aerial current to the tower in the Andes in South America; and from there—the land-lines being suitably connected with the aerial current—to Quito and Buenos Ayres. In this manner a message would be sent entirely by natural electricity in place of artificial. In the same manner a message may be sent across the ocean by having a high tower on each continent, each of which towers would have to be, of course, through land-lines connected with the earth to enable the ground current with the aerial current to form a circuit. Different towers may be erected on the different continents, and if they are all what is technically

called hooked on—that is to say, connected to the earth—a signal given at one tower will be repeated at all the towers, they being connected with each other by the aerial current. If the earth-connection is severed, or the insulation with the tower destroyed, there is no power; but by insulating the tower and concentrating its force to a point, bringing the same corresponding effect from the earth current in connection, an exceedingly powerful electrical force is created.

Having described my invention, I claim—

1. A tower constructed so as to collect, hold, distribute, and utilize aerial currents of natural electricity for telegraphic and other purposes, essentially as described.

2. A tower for collecting aerial currents of natural electricity, constructed of three sections, insulated from each other and the earth, or their equivalents, substantially in the manner described.

3. In an electrical tower, the combination of the shutters or slats g with the ventilator-vane in such a manner that the vane, through suitable mechanism, always opens the shutters to windward and closes them to leeward, substantially as described.

4. In an electrical tower, the collecting, distributing, and protecting roof H, substantially as and for the purpose described.

5. The combination of the tube J and ventilator L with its vane M and the coiled wire or small cable q, substantially as and for the purpose set forth.

6. The combination of the insulated shaft k and rods h having forked upper ends k' with the shutters or blinds g, serpentine cam-plate o, and ventilator L, substantially as and for the purpose described.

The above specification of my improvement, being a tower for accumulating natural electricity for telegraphic purposes, signed this 29th day of June, A. D. 1871.

W. H. WARD.

Witnesses:

A. L. PALMER,
J. H. STARIN.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
28 August 2008 (28.08.2008)

PCT

(10) International Publication Number
WO 2008/103129 A1

(51) International Patent Classification:
H02M 11/00 (2006.01) **H02N 11/00** (2006.01)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(21) International Application Number:
PCT/TR2007/000050

(22) International Filing Date: 8 June 2007 (08.06.2007)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
u 2007/00996 20 February 2007 (20.02.2007) TR

(71) Applicant (for all designated States except US): **TURK, Metin** [TR/TR]; Ayten Sokak 30/4 Mebusvleri, Tandoğan, 06510 Ankara (TR).

(71) Applicant and

(72) Inventor: **KAPANADZE, Tariel** [GE/GE]; Tzkaltubo Sokak, No:9, Tbilisi (GE).

(74) Agent: **YALCINER, Ugur G. (YALCINER DANISMANLIK VE DIS TICARET LTD. STL)**; Tunus Caddesi No:85/8, Kavaklıdere, 06680 Ankara (TR).

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report

(54) Title: INDEPENDENT ENERGY DEVICE

Figure -1

(57) Abstract: The independent energy device improved with this invention, starts operation with the initial electric energy received from the initial energy supply (15) and afterwards generates energy consistently and is characterized to include power switch (1), capacitor (2), points (3), high frequency generator (4), first filter (5), first bobbin (6), first frequency adjuster (7), second filter (8), frequency stabilizer (adjuster) (9), second bobbin (10), second frequency adjuster (11), exit (phase) (positive) (12), positive self feeding cable (12a), exit (neutral) (13), negative self feeding cable (13a), neutral (grounding) (14), initial power supply (15).

WO 2008/103129 A1

INDEPENDENT ENERGY DEVICE

The present invention is a device both self sufficient (self feeding) and producing ready to use electric energy, starts to operate with the initial electrical energy received from accumulator or similar source of energy, transferring the magnetic field generated in first 5 bobbin to second bobbin through a frequency stabilizer, after rhythmically stabilizing the magnetic field occurred between the bobbins; converts the independent energy -received by the second bobbin from the air- to electric energy.

Today electric energy can be generated by using various kinds of technologies. In order to summarize some of them; electric energy can be generated through dams, from the 10 motion of waves, by nuclear power plants, by using solar energy, fuel oil, hydroelectric power plants and similar areas through using various technologies. There are different advantages and disadvantages among these various techniques used for generating electric energy. The general purpose of all these techniques is to generate energy cheaper and faster by providing high efficiency.

15 The present invention is improved through using different technologies of today, by less costly way and without harming the nature, and using a very different technique from the above mentioned (present techniques used today).

The present invention receives energy externally only at first starting phase. This mentioned energy can be easily generated from a small accumulator or chargeable battery or 20 similar sources. 1 -2 seconds after the device is started, the power switch at the energy input of the device cuts the external electric (from accumulator or similar source of energy) off by generating electric energy. A very few part of this electric energy generated is used by the device to feed itself and the most part is discharged ready to be used. As long as the device is not shut down or no problem occurred inside, the device generates energy consistently. By 25 recent technology, there is no device similar to the present invention producing energy consistently by feeding itself.

In order to maintain the device to generate electric energy consistently, two circuits are designed inside the device.

First circuit; consists of time relay switch, capacitor, points, high frequency generator, 30 first filter, first bobbin, first frequency adjuster (this circuit is displayed with bold line on the figure)

Second circuit; consists of second filter, frequency stabilizer, second bobbin, second frequency adjuster.

First circuit is designed for generating electricity by transferring the electro magnetic field occurred at the first bobbin with the electric energy received from the independent initial

5 power supply, to second bobbin. And as the second circuit; Due to the high magnetic field received from the first bobbin, there occurs a magnetic field difference between the bobbins. The magnetic field difference occurred between the second bobbin and first bobbin stabilized by the help of frequency stabilizer within this circuit line. As stabilizing the magnetic field difference by the help of frequency stabilizer, this circuit line also converts the energy which
10 is moving independently in the air at the second bobbin designed within this line to electric energy. This electric energy formed by the second bobbin adjusts the necessary frequency (220 V - 50 Hz or 110 V - 60 Hz) for use, by the help of second frequency adjuster designed at the bobbin output. This generated electric energy is transferred to the intended usage area via exit points. Through the circuit cables connected to the exit points, the device feeds itself
15 with the generated electric energy. This mentioned process eventuates 1 -2 seconds after the device is got started. After this process, the time relay power switch designed at the input of the device breaks the initial energy supply. After this stage, the device generates the energy independently.

The present invention is designed as single phase and as the phase number is desired
20 to be increased, the bobbin number shall also be increased for each phase. Depending on the number of bobbins, the capacities of other parts used in the device are increased symmetrically.

It is possible to obtain energy in desired amounts of KW from the device. It is necessary to increase the capacity of the parts depending on the value of the electric energy.

25 The figures related to the invention are given enclosed; from the related figures:

Figure 1- Schematic view of the present invention

The parts related to the invention are given numbers and the explanations responding these numbers are as follows:

1- Power switch

30 2 - Capacitor

3- Points (as distributor of an engine)

- 4- High frequency generator
- 5- First filter
- 6- First bobbin
- 7- First frequency adjuster
- 5 8- Second filter
- 9- Frequency stabilizer (adjuster)
- 10- Second bobbin
- 11- Second frequency adjuster
- 12- Exit (phase) (positive)
- 10 12a- Positive transformation cable
- 13- Exit (neutral)
- 13a- Negative transformation cable
- 14- Neutral (grounding)
- 15- Initial power supply
- 15 A- First circuit cable
- B- Second circuit cable

The operation of the present device is explained as below, giving reference to the parts' numbers through the figure enclosed.

Energy and frequency circuit on the first circuit (A)

20 Opening the power switch, the user gives the electric energy received from the initial energy supply (15) to the first circuit cable (A). Being loaded with the electric energy received from the energy supply (15) the capacitor (2) serves as a pump, and provides the points (3) to give electric to the high frequency generator (4). High frequency generator (4) transfers the high amount of frequency it generated to the first filter (5). First filter (5) stabilizes the frequency received from the high frequency generator (4) and regularly transfers to the first bobbin (6). Creating a magnetic field around itself with the high frequency regularly received from the first filter (5); first bobbin (6) transfers it to the second bobbin (10). Subsequently, following the first circuit cable (A), the high frequency passing from the

first bobbin (6) passes to the first frequency adjuster (7). The first frequency adjuster (7) stabilizes the received high frequency in accordance with the need and arranges without causing any harm to the parts at its exit.

5 **Energy and frequency circuit on the second circuit (B)**

The high frequency rised from the first bobbin (6) enters to the second filter through the second circuit (B). Second filter (8) transfers the frequency received from the first bobbin (6) to the frequency stabilizer (9). The electromagnetic fields occurred at the bobbins (6, 10) are different and the magnetic field at the first bobbin (6) is higher than the second bobbin 10 (10). At this stage the frequency stabilizer (9) stabilizes the different electromagnetic fields occurred at the first and the second bobbins (6, 10). This stabilized high frequency exits from the second bobbin (10) and is adjusted for the required (necessary for the use) frequency degree by the help of the second frequency adjuster (11). The user uses the electric energy generated in the device by the help of exit (phase) (positive) (12) and exit (neutral) cable (13).

15 The positive transformation cable (12a) at the exit of the device and the negative transformation cable (13a) are connected to the power switch. 1-2 seconds after the device starts to generate electric, the electric energy generated is transmitted to the power switch (1) via positive transformation cable (12a) and negative transformation cable (13a). The time relay at the power switch (1) breaks the energy received from the initial power supply (15).
20 After this stage, the device continues to generate electric energy feeding itself with the self generated energy and independently without depending to any energy from outside. The device continues to generate unlimited energy as long as it is not closed via the power switch (1) or no problem occurred within the system.

CLAIMS

- 1- An independent energy device, starting to operate with the initial electric energy received from the independent initial power supply (15), transferring the electro magnetic field occurred at the first bobbin (6) to second bobbin (10), stabilizing the magnetic field occurred between the bobbins (6, 10) with the help of frequency stabilizer (9), afterwards converting the independent energy received from the air by the second bobbin (10) to electric energy, both self feeding and generating ready to use electric energy; composed of following parts; power switch (1), capacitor (2), points (3), high frequency generator (4), first filter(5), first bobbin (6), first frequency adjuster (7), second filter (8), frequency stabilizer (adjuster) (9), second bobbin (10), second frequency adjuster (11), Exit (phase) (positive) (12), positive self feeding cable (12a), exit (neutral) (13), negative self feeding cable (13a), neutral (grounding) (14), initial power supply (15).
5
- 2- An independent energy device of Claim 1 wherein characterized to include capacitor (2) to transfer the electric received from the initial power supply (15) to points (3).
- 15 3- An independent energy device of Claim 1 wherein characterized to include points (3) to transfer the frequency that the high frequency generator (4) needs.
- 4- An independent energy device of Claim 1 wherein characterized to include the high frequency generator (4) to transfer the high frequency occurred within itself to the first filter (5).
- 20 5- An independent energy device of Claim 1 wherein characterized to include the first filter (5) to order the frequency received from the high frequency generator (4) and transfer to the first bobbin (6).
- 6- An independent energy device of Claim 1 wherein characterized to include the first bobbin (5); providing a high electro magnetic field around itself to transfer the high and regular frequency received from the first filter (5) to the second bobbin (10) and the electric energy received from the initial power supply (15) both to the first circuit cable (A) and to the second circuit cable (B).
25
- 7- An independent energy device of Claim 1 wherein characterized to include first frequency adjuster (7) to stabilize the normal frequency received from the initial power supply (15) with the high frequency received from the first bobbin (6).
30

- 8- An independent energy device of Claim 1 wherein characterized to include the second filter (8) to order the high frequency received from the first bobbin (6) and transfer to the frequency stabilizer (adjuster) (9).
- 9- An independent energy device of Claim 1 wherein characterized to include frequency stabilizer (adjuster) (9) to stabilize the electro magnetic field differences occurred between the first bobbin (6) and second bobbin (10).
5
- 10- An independent energy device of Claim 1 wherein characterized to include the second bobbin (10) to generate electric energy combining the electro magnetic field received from the first bobbin (6) and the independent energy received from the air, after the frequency stabilizer (adjuster) (9) orders the electro magnetic field between the bobbins (6, 10).
10
- 11- An independent energy device of Claim 1 wherein characterized to include the second frequency adjuster (11) to stabilize the high frequency received from the second bobbin (10) in accordance with the need to be used.
15. 12- An independent energy device of Claim 1 wherein characterized to include Exit (phase) (positive) (12) and Exit (neutral) (13) designed in order to enable the device to use the electric energy generated.
- 13- An independent energy device of Claim 1 wherein characterized to include positive transformation cable (12a) and negative transformation cable (13a) designed in order to enable the device to feed itself with the electric energy generated.
20
- 14- An independent energy device of Claim 1 wherein characterized to include the initial power supply (15) to provide the device operates at the first time.

Figure -1