«Вариационный коллапс»

$$A(N_c + N_v) A^{N_c +}(N_v)$$

Оператор сдвига остовных уровней: $\sum_c B_c |arphi_c angle \langle arphi_c|$

- $\mathbf{c} + B_c$

____ a ____ a

Методы модельного потенциала Хузинаги

- Резюме предыдущих примеров Li (1s² 2s²) и Ве (1s² 2s²)
- «Замороженный остов» + сдвиг остовных уровней:

$$\hat{F}_{ps} \, \widetilde{\varphi}_{2s} = \widetilde{\varepsilon}_{2s} \, \widetilde{\varphi}_{2s}$$

$$\hat{F}_{ps}(\text{Li}) = \left[-\frac{1}{2} \Delta - \frac{3}{r} + \left(2\hat{J}_{1s}^f - \hat{K}_{1s}^f \right) + B \left| \varphi_{1s}^f \right\rangle \left\langle \varphi_{1s}^f \right| \right]$$

$$\hat{h}_{ps}(\text{Li})$$
(3.1)

$$\hat{F}_{ps}(\text{Be}) = \left[-\frac{1}{2} \Delta - \frac{4}{r} + \left(2\hat{J}_{1s}^f - \hat{K}_{1s}^f \right) + B \left| \varphi_{1s}^f \right\rangle \left\langle \varphi_{1s}^f \right| \right] + \left(2\hat{J}_{2s} - \hat{K}_{2s} \right)$$

$$\hat{h}_{ps}(\text{Be})$$

 $\hat{h}_{ps}(\mathbf{A})$ – остовный псевдооператор

$$B = 2|\varepsilon_{1s}| \implies \widetilde{\varphi}_{2s} \approx \varphi_{2s}; \ \widetilde{\varepsilon}_{2s} \approx \varepsilon_{2s}$$

• Обобщение на атомы второго периода (A = Li – Ne):

$$\hat{h}_{ps}(\mathbf{A}) = ?$$

• Обобщение на атомы второго периода (A = Li – Ne):

$$\hat{h}_{ps}(A) = -\frac{1}{2}\Delta - \frac{Z_A}{r} + \left(2\hat{J}_{1s}^f - \hat{K}_{1s}^f\right) + 2|\varepsilon_{1s}| \left|\varphi_{1s}^f\right\rangle \left\langle \varphi_{1s}^f\right|$$

- $oldsymbol{arphi}_{ps}(A)$ определяется только остовом атома A
- ⇒ Можно предполагать наличие переносимости

 (трансферабельности) ⇒ использование в молекулярных расчетах
- $oldsymbol{arphi}_{ps}(A)$ достаточно один раз выполнить полноэлектронный расчет атома в приближении Хартри–Фока.
- **Ш** Неудобство: наличие сложного по форме оператора $(2\hat{J}_{1s}^{\,f} \hat{K}_{1s}^{\,f})$

• Модельные аппроксимации для остовного потенциала:

$$-\frac{Z_A}{r} + \left(2\hat{J}_{1s}^f - \hat{K}_{1s}^f\right) \approx V_A^{\text{MP}} \quad (\text{MP - Model Potential})$$

• Существуют несколько версий метода модельных потенциалов:

I версия – локальная аппроксимация и для J, и для K

(модельный остовный потенциал – Model Core Potential, MCP)

II версия – локальная аппроксимация для J, нелокальная для K

(неэмпирический модельный потенциал – Ab Initio Model Potential, AIMP)

III версия– нелокальная аппроксимация и для J, и для K

• І версия – локальные аппроксимации остовного потенциала

F.Bonifacic, S.Huzinaga /Journal of Chemical Physics 60 (1974) 2779–2786 Y.Sakai, S.Huzinaga /Journal of Chemical Physics 76 (1982) 2537–2551

$$\varphi_{1s} = C e^{-\zeta r}$$
 – орбиталь слэтеровского типа

Кулоновский потенциал вычисляется в аналитическом виде:

$$\hat{J}_{1s}(r) = \int \frac{\varphi_{1s}^2(r')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}' = \frac{1}{r} \left[1 - (1 + \zeta r) e^{-2\zeta r} \right] \approx \frac{1}{r}, \quad r >> 1$$

Отсюда для кулоновского потенциала остова:

$$-\frac{Z}{r} + 2\hat{J}_{1s}(r) = -\frac{(Z-2)}{r} - \frac{2(1+\zeta r)}{r}e^{-2\zeta r}$$

Локальное приближение для обменного потенциала ("X-а")

$$\hat{K}_{1s} \approx \text{const } \rho_{1s}^{1/3} = \text{const' } e^{-2\zeta r/3}$$
 (J.C. Slater, 1951)

Возможная форма модельного представления остовного потенциала:

$$-rac{Z}{r}+2\hat{J}_{1s}-\hat{K}_{1s}pprox-rac{(Z-2)}{r}\Biggl(1+\sum_{i}A_{i}\,\exp(-\,lpha_{i}r)+r\sum_{j}B_{j}\,\exp(-\,eta_{j}r)\Biggr)$$
 $A_{i},B_{j},lpha_{i},eta_{j}$ — подгоночные параметры

• Метод модельного остовного потенциала (МСР)

Y.Sakai, S.Huzinaga /Journal of Chemical Physics 76 (1982) 2537–2551

$$V^{\text{MCP}} = -\frac{(Z - N_c)}{r} \left(1 + \sum_{i} A_i \exp\left(-\alpha_i r^2\right) + r \sum_{j} B_j \exp\left(-\beta_j r^2\right) \right)$$

Критерий аппроксимации:

$$\Delta(A_i, B_j, \alpha_i, \beta_j) = \sum_{p=1}^{N_v} w_p \left| \widetilde{\varepsilon}_p - \varepsilon_p^{AE} \right| + \sum_{p=1}^{N_v} W_p \sum_k \left(\widetilde{R}_p(r_k) - R_p^{AE}(r_k) \right)^2 \Rightarrow \min$$

	Li(² S)	Be (¹ S)	B (² P)	C (³ P)	N (⁴ S)	$F(^2P)$	Ne _. (¹ S)
$\overline{A_1}$	1,3345	0.6669	0.4655	0.3625	0,2930	0.2157	0,1999
A_2	0.1974	0.1023	0.0704	0.0508	0.0448	0.0352	0.0249
α_1	2.7897	5.3063	10.8802	18,4834	27,6393	52,9462	70.4399
α_2	1.0771	2.0686	2.8435	3, 4580	5,0221	8,7557	8,8792
B_{1s}	4.941	9,443	15,357	22,602	31, 191	52,650	65,400

Пример: стандартный ввод данных параметров MCP в GAMESS-US

```
MCP-dzp
Be
2 1 7
   2.00(5F14.7)
   .6986059
             .1061102
  5.1889921 2.0239798
0 0
  9.4653380
 1311.6155000
              191.3860500 45.2788330
                                       13.5973200 4.7197013
  1.8173441
              .7340121
   .0019699
              .0145197
                         .0653428
                                    .1982694
                                               .3835307
   .3845043
              .1096769
```

Y.Sakai, E.Miyoshi, M.Klobukowski, S.Huzinaga /J. Chem. Phys. 106 (1997) 8084–8092

Общий случай: молекула из нескольких атомов

$$H_{\text{MCP}} = \sum_{i=1}^{N_{v}} \left[\frac{1}{2} p_{i}^{2} + \sum_{A} V_{\text{MCP}}^{A}(i) + \sum_{A} \sum_{c \in A} B_{c} |\varphi_{c}\rangle \langle \varphi_{c}| \right] + \sum_{i < j}^{N_{v}} \frac{1}{r_{ij}}$$

$$V^{\text{MCP}} = -\frac{(Z - N_c)}{r} \left(1 + \sum_{i} A_i \exp(-\alpha_i r^2) + r \sum_{j} B_j \exp(-\beta_j r^2) \right)$$

Задача: расписать явным образом $\sum_c B_c |arphi_c
angle \langle arphi_c|$ для атомов Na–Ar

Аналог межъядерного отталкивания – отталкивание остовов:

$$V_{core-core} = \sum_{A < B} \frac{(Z_A - N_{c,A})(Z_B - N_{c,B})}{R_{AB}}$$

Y.Sakai, E.Miyoshi, M.Klobukowski, S.Huzinaga/J. Chem. Phys. 106 (1997) 8084–8092

TABLE I. Valence and core electrons in the MP method.

Atom	Valence e	lectrons	Core electrons			
Second series	(Li, Be)	2 <i>s</i> ⁿ	K(2)			
	(B-Ne)	$2s^n2p^m$	K(2)			
Third series	(Na, Mg)	$2p^{6}3s^{n}$	$K(2) 2s^2$			
	(A1-Ar)	$3s^n3p^m$	K(2)L(8)			
Fourth series	(K, Ca)	$3p^64s^n$	$K(2)L(8) 3s^2$			
	(Ga-Kr)	$4s^n4p^m$	K(2)L(8)M(18)			
Fifth series	(Rb, Sr)	4p ⁶ 5s ⁿ	$K(2)L(8)M(18) 4s^2$			
	(In-Xe)	5s ⁿ 5p ^m	$K(2)L(8)M(18) 4s^24p^64d^{10}$			
Sixth series	(Cs, Ba)	5p ⁶ 6s ⁿ	$K(2)L(8)M(18) 4s^24p^64d^{10}5s^2$			
	(T1-Rn)	$6s^n6p^m$	$K(2)L(8)M(18) N(32)5s^25p^65d^{10}$			

Atoms	Valence b	oasis sets ^a	Core basis sets ^b					
Reference=Nonrelativistic numerical HF								
Second series	(Li, Be)	(4s)	(7)					
	(B-Ne)	(4s/4p)	(7)					
Third series	(Na, Mg)	(4s/4p)	(7,7)					
	(Al-Ar)	(4s/4p)	(7,7/5)					
Fourth series	(K, Ca)	(6s/4p)	(10,10,10/7)					
	(Ga-Kr)	(5s/5p)	(12,12,12/9,9/4)					
Reference=Cov	van and Griffi	n's quasi-rela	tivistic HF (QRHF)					
Fifth series	(Rb, Sr)	(7s/5p)	(13,13,13,13/10,10/4)					
	(In-Xe)	(6s/5p)	(13,13,13,13/10,10,10/7,7)					
Sixth series	(Cs, Ba)	(8s/6p)	(14,14,14,14,14/10,10,10/7,7)					
	(T1-Rn)	(7s/5p)	(14,14,14,14,14/10,10,10,10/					
			10,10,10/4)					

^aFor example, (5s/5p) indicates that 5s-type and 5p-type primitive GTFs are used to describe the s and p valence orbitals, respectively.

^bFor example, (12,12,12/9,9/4) indicates that 12 s-type and 9 p-type and 4 d-type primitive GTFs are used to describe the s-, p-, and d-type core orbitals, respectively.

Y.Sakai, E.Miyoshi, M.Klobukowski, S.Huzinaga/J. Chem. Phys. 106 (1997) 8084–8092

TABLE III. Valence orbital energies, excitation energies, ionization energies, and electron affinities for Br, I, and At atoms.

		ε ₅ (a.u.)	ϵ_p (a.u.)	Energy ^a (eV)	ε _s (a.u.)	ϵ_p (a.u.)	Energy ^a (eV)	$\epsilon_{\mathfrak{s}}$ (a.u.)	ϵ_p (a.u.)	Energy ^a (eV)
			Br (Z=35)			I (Z=53)			At (Z=85)	
$s^2p^5(^2P)$	NRHF/QRHF	-0.9927	-0.4571	0.0	-0.8768	-0.4021	0.0	-0.9393	-0.3785	0.0
	MP	-0.9927	-0.4571	0.0	-0.8763	-0.4016	0.0	-0.9392	-0.3785	0.0
$sp^6(^2S)$	NRHF/QRHF	-1.0899	-0.4550	14.42	-0.9622	-0.4020	12.70	-1.0292	-0.3842	14.88
	MP	-1.0895	-0.4548	14.42	-0.9652	-0.4014	12.71	-1.0342	-0.3845	14.82
			Br^+			I ⁺			At+	
$s^2p^4(^3P)$	NRHF/QRHF	-1.3467	-0.8379	10.78	-1.1830	-0.7286	9.57	-1.2352	-0.6878	8.99
	MP	-1.3509	-0.8401	10.85	-1.1893	-0.7340	9.58	-1.2383	-0.6906	9.05
$sp^{5}(^{3}P)$	NRHF/QRHF	-1.4960	-0.8272	24.36	-1.3124	-0.7216	21.64	-1.3913	-0.6922	23.40
•	MP	-1.5002	-0.8306	24.46	-1.3236	-0.7278	21.66	-1.3751	-0.6915	23.51
			Br ⁻			I-			At-	
$s^2p^6(^1S)$	NRHF/QRHF	-0.6860	-0.1393	-2.58	-0.6080	-0.1262	-2.48	-0.6794	-0.1164	-2.32
,	MP	-0.6864	-0.1398	-2.61	-0.6049	-0.1228	-2.39	-0.6783	-0.1154	-2.30

^aTotal energies relative to that of the ground state of each atom are given.

Валентный базис AO: Br-(311/311); I-(411/311); At-(511/311)

+ 1 диффузная *p*-оболочка для анионов Br⁻ At⁻

Y.Sakai, E.Miyoshi, M.Klobukowski, S.Huzinaga/J. Chem. Phys. 106 (1997) 8084–8092

TABLE IV. Correlation energies (E_{corr}), ionization energies (IP), and electron affinities (EA) given by the SDCI+Q calculations for Cl and Br atoms (in eV).

	$E_{\rm corr}(X^-)$	$E_{\rm corr}(X)$	$E_{corr}(X^+)$	IP	EA
X=C1					
$AE-WT^{**a,d}$	5.10	4.32	3.61	12.50	3.33
MP**/full ^{b,d}	5.18	4.38	3.67	12.45	3.30
MP**/trun. ^{c,d}	4.83	4.00	3.30	12.44	3.32
Exptl.e				12.91	3.62
X = Br					
$AE-WT^{**a,d}$	4.21	3.52	2.91	11.38	3.26
MP**/full ^{b,d}	4.20	3.50	2.89	11.45	3.31
MP**/trun. ^{c,d}	4.03	3.34	2.76	11.43	3.30
Expt. ^e				11.81	3.36

^aAE-WT**: C1—(58881111/3661111/1*1*); Br—(6,10,10,10,10,1111/10,10,10,1111/91*1*).

^bMP**/full: C—(211/211/1*1*); Br—(311/311/1*1*).

^cMP**/trun.: Basis set is same as above. Virtual space is truncated. See text for detail.

 $^{^{}d}1^{*}$ indicates a d-type polarization function. For X^{-} ions, one diffuse p-type function is added to each of the basis sets.

^eSee A. A. Radzig and B. M. Smirnov, Reference Data on Atoms, Molecules, and Ions (Springer, Berlin, 1985).