

1.5V 6Track Standard Cell Library for CSMC 0.11um e-FLASH 2P8M Salicide Process

User's Guide

Version 0.2

Sep. 30th, 2019

Notice

Copyright 2008-2019 CSMC Corporation.

All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without prior written permission from CSMC Corporation

Disclaimer

CSMC CORPORATION RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS DESCRIBED HEREIN. CSMC CORPORATION MAKES NO WARRANTY, REPRESENTATION, OR GUARANTEE REGARDING THE SUITABILITY OF ITS PRODUCTS FOR ANY PARTICULAR PURROSE, NOR DOES CSMC CORPORATION ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT, AND SPECIFICALLY DISCLAIMS ANY AND ALL LIABILITY, INCLUDING WITHOUT LIMITATION, CONSEQUENTIAL OR INCIDENTAL DAMAGES.

Table of Contents

Revision History	4
Introduction	
Product Description	5
Library Feature	5
Library Package Contents	5
EDA Tool Environment	5
Library Shipping Database	6
What is CSMC FB Library Installation Directory	6
FB Directory Major Structure Introduction	7
Library Cell List For STD	12
Library Cell List For PMK	17
Annendix A: Techfile Lavers	19

Revision History

Document Version	Date	Notes
1.0	Sep.25 ,2018	Production Build
2.0	Jan.2,2019	Improve pmk description
3.0	Sep.30,2019	EDR/Model updated ;1.2v corner Not provided ;

Introduction

This user'guide is intended to give users a general overview of the current 0.11um 1.5V Standard Cell Library for CSMC 0.11um Eflash Process details for the production release contents and structure.

Library Description

The 0.11um 1.5V Standard Cell Design Kit Library is for CSMC eFlash Process ,based on a 6 Track layout,including generic standard cell library. In order to satisfy the power and performance requirement,it also provides a set of power switch cells ,always on ,isolation ,retention cells and level shifters cells.

STD/PMK Library Operating Conditions

The recommended operating conditions for IC using the library as follows:

Recommended Operating Conditions 1				
Operating Conditions	TT	FF	FF	SS
Core DC supply Voltage	1.5V	1.65V	1.65V	1.35V
Junction Temperature	25℃	-40°C	125℃	125℃

Library Feature

- CSMC 0.11um EFLASH 2P8M Salicide 1.5V Process
- Support CSMC 0.11um e-FLASH 2P8M Salicide 1.5V process Version #:8A09 Design rule
 Note: when check lvs, MOS width property magin < 0.5%
- Support CSMC 0.11um e-FLASH 2P8M Salicide 1.5V process N1128X00V02 SPICE model
- 690 standard core cells:
 - STD:612
 - PMK:46
- Interval cells optimized for synthesis.
- Accurate timing characterization
- Support most of the EDA tools
- Optimized for Cadence and Synopsys place&route tools.
- High routing density, routability, high speed and low power.
- Routable for 4,5,6, 7, 8 metals
- Top metal thickness for 8K

Library Package Contents

Optimum Silicon standard core cell library : CSMC011EFLASH2P8M6T

EDA Tool Environment

The library has been designed under Cadence and Synopsys software environment that consists of the following tools:

- Cadence Abstract 5.7
- Cadence ICFB 51
- Synopsys Astro 2007.03-SP9
- Synopsys HSPICE 2012.06
- Mentor LibComp v8.2009_1.10
- Synopsys StarRCXT B-2008.06-SP1
- Synopsys Design Compiler B-2008.09-SP5
- Synopsys Hercules B-2008.09
- Synopsys Milkyway G-2012.06-SP3
- Cadence Verilog_XL LDV5.1-QSR3
- Cadence encounter 10.12.002
- Mentor Calibre v2006.3_21.18
- Cadence Techgen 17.10.000

Library Shipping Database

CSMC011EFLASH2P8M6T_FB --- Include GDSII and corresponding database.

What is CSMC FB Library Installation Directory

Figure 1 FB directory structure of CSMC library

FB Directory Major Structure Introduction

1. Astro

Content	Description
csmc011	CSMC 0.11um e-FLASH 1P8M standard CORE and
(Milkyway:std/pmk)	PMK cells' FRAM, CELL, LM
tf	CSMC 0.11um e-FLASH 1P8M process Apollo and Astro technology file
clf(std/pmk)	CSMC 0.11um e-FLASH 1P8M standard CORE cells' timing model, including antenna information
tcl	Antenna tcl for icc

2. cdl

Content	Description
csmc011.cdl	CSMC 0.11um e-FLASH standard CORE cells' cdl netlist. It can be included to do lvs checking.
csmc011_pmk.cdl	CSMC 0.11um e-FLASH standard PMK cells' cdl netlist. It can be included to do lvs checking

3. doc

Content	Description	
CSMC0111P8M6T_DATASHEET	0.11um e-FLASH 1P8M Salicide 1.5V Process standard CORE cells' descriptions.	
CSMC011_library_user_guide	0.11um e-FLASH 1P8M Salicide 1.5V Process standard CORE cell library user guide	
libCellDataSheet	0.11um e-FLASH1P8M Salicide 1.5V Process standard CORE cells' datasheet.	
DATASHEET/*	0.11um e-FLASH1P8M Salicide 1.5V Process PMK/STD cells' details.	

4. fastscan

Content	Description		
csmc011_ull_6T.atpglib	0.11um e-FLASH 1P8M Salicide 1.5V Process standard CORE cells' ATPG library		
csmc011_ull_pmk.atpglib	0.11um e-FLASH 1P8M Salicide 1.5V Process		

standard PMK cells' ATPG library

5. gds

Content	Description	
csmc011.gds	0.11um e-FLASH 1P8M Salicide 1.5V process standard core cells' gds2 database	
csmc011_pmk.gds	0.11um e-FLASH 1P8M Salicide 1.5V process standard PMK cells' gds2 database	

6. symbols

Content	Description
cadence	0.11um e-FLASH 1P8M Salicide 1.5V process standard core cells' cadence symbol library
	0.11um e-FLASH 1P8M Salicide 1.5V process standard PMK cells' cadence symbol library
edif	0.11um e-FLASH 1P8M Salicide 1.5V process standard core cells' edif library
	0.11um e-FLASH 1P8M Salicide 1.5V process standard PMK cells' edif library
Synopsys	Core std cells'Synopsys symbol library
	PMK cells 'Synopsys symbol library

7. lef (8k)

Content	Description
csmc011_ull_4lm.lef	0.11um e-FLASH 1P8M Salicide 1.5V process 4 metal technology lef file
csmc011_ull_5lm.lef	0.11um e-FLASH 1P8M Salicide 1.5V process 5 metal technology lef file
csmc011_ull_6lm.lef	0.11um e-FLASH 1P8M Salicide 1.5V process 6 metal technology lef file
csmc011_ull_7lm.lef	0.11um e-FLASH 1P8M Salicide 1.5V process 7 metal technology lef file
csmc011_ull_8lm.lef	0.11um e-FLASH 1P8M Salicide 1.5V process 8 metal technology lef file

agm of 11 will los	0.11um e-FLASH 1P8M Salicide 1.5V process standard
csmc011_ull.lef	core cells' Library Exchange Format description files
csmc011_ull_pmk.lef	0.11um e-FLASH 1P8M Salicide 1.5V process standard
	PMK cells' Library Exchange Format description files

8. spice (std/pmk)

Content	Description
*.pex.netlist *.pex.netlist.*.pxi *.pex.netlist.pex	0.11um e-FLASH 1P8M Salicide 1.5V process standard core and PMK cells' Hspice netlist

9. Starrc(8k)

Content	Description
a4/a5/a6/a7/a8_gt_cell_8k_max.nxtgrd a4/a5/a6/a7/a8_gt_cell_8k_min.nxtgrd a4/a5/a6/a7/a8_gt_cell_8k_typ.nxtgrd	0.11um e-FLASH 1P8M Salicide1.5Vprocess Star_RCXT technology files for TT, SS, FF corner
a4/a5/a6/a7/a8_gt_cell_8k_max.itf a4/a5/a6/a7/a8_gt_cell_8k_min.itf a4/a5/a6/a7/a8_gt_cell_8k_typ.itf	0.11um e-FLASH 1P8M Salicide 1.5V process itf files for TT, SS, FF corner
a4/a5/a6/a7/a8_gt_cell_8k_max.tluplus a4/a5/a6/a7/a8_gt_cell_8k_min.tluplus a4/a5/a6/a7/a8_gt_cell_8k_typ.tluplus	0.11um e-FLASH 1P8M Salicide 1.5V process TLUPlus files for TT, SS, FF corner

10. synopsys (std/pmk)

Content	Description
csmc011_ull_6T_ff_1p65v40c.lib	
csmc011_ull_6T_ff_1p65v_125c.lib	
csmc011_ull_6T_ff_1p65v_0c.lib	
csmc011_ull_6T_ss_1p35v_125c.lib	0.11um e-FLASH 1P8M
csmc011_ull_6T_ss_1p35v_85c.lib	Salicide process standard core
csmc011_ull_6T_tt_1p5v_25c.lib	cells' synopsys timing models
csmc011_ull_6T_ff_1p65v40c.db	on 1.5V TT, SS125 $\mathcal C$,
csmc011_ull_6T_ff_1p65v_125c.db	SS85 \mathcal{C} ,FF40 \mathcal{C} , FF_0 \mathcal{C} ,
csmc011_ull_6T_ff_1p65v_0c.db	FF_125 °C corner
csmc011_ull_6T_ff_1p35v_125c.db	
csmc011_ull_6T_ff_1p35v_85c.db	
csmc011_ull_6T_tt_1p5v_25c.db	
csmc011_ull_6T_pmk_ff_1p65v40c.lib	0.11um e-FLASH 1P8M
csmc011_ull_6T_pmk_ff_1p65v_125c.lib	Salicide process PMK cells'

csmc011_ull_6T_pmk_ff_1p65v_0c.lib	synopsys timing models on
csmc011_ull_6T_pmk_ss_1p35v_125c.lib	1.5V TT, SS125 \mathcal{C} ,
csmc011_ull_6T_pmk_ss_1p35v_85c.lib	SS85 $\mathcal C$,FF40 $\mathcal C$,
csmc011_ull_6T_pmk_tt_1p5v_25c.lib	FF_0 C,FF125 C corner
csmc011_ull_6T_pmk_ff_1p65v40c.db	
csmc011_ull_6T_pmk_ff_1p65v_125c.db	
csmc011_ull_6T_pmk_ff_1p65v_0c.db	
csmc011_ull_6T_pmk_ss_1p35v_125c.db	
csmc011_ull_6T_pmk_ss_1p35v_85c.db	
csmc011_ull_6T_pmk_tt_1p5v_25c.db	

11. Verilog

std

Content	Description	
csmc011_ull_6T.v	0.11um e-FLASH 1P8M Salicide 1.5V process standard CORE cells' verilog format behavior model of Version 2.1	

pmk

Content	Description
csmc011_ull_6T_pmk.v	0.11um e-FLASH 1P8M Salicide 1.5V process standard CORE cells' verilog format behavior model
csmc011_ull_6T_pmk_be.v	0.11um e-FLASH 1P8M Salicide 1.5V process standard CORE cells' verilog format behavior model with power information;

12. vhdl

Content	Description	
*.vhd	0.11um e-FLASH 1P8M Salicide 1.5V process standard core and PMK cells' VHDL format behavior models on TT, SS, FF40 C, FF_0 C, FF125 C corner	

13. qrc(8k)

Content	Description
a4/a5/a6/a7/a8_gt_cell_8k_max.ict	CSMC 0.11um e-FLASH Mixed
a4/a5/a6/a7/a8_gt_cell_8k_min.ict	Signal Salicide process 8K 4/5/6/7/8
a4/a5/a6/a7/a8_gt_cell_8k_typ.ict	metal qrc_RCXT gate level
a4/a5/a6/a7/a8_gt_cell_8k_max_captbl	extraction technoMixed Signal files

a4/a5/a6/a7/a8_gt_cell_8k_min_captbl
a4/a5/a6/a7/a8_gt_cell_8k_typ_captbl
*/max/qrcTechFile
*/min/qrcTechFile
*/typ/qrcTechFile

Library Cell List For STD

The CSMC011 internal library supports a rich set of variable functions. It includes the following types of function cells:

ad Full Adder GATES ah Half Adder GATES an.....AND GATES antenna......ANTENNA-Fix CELL aoi AND-NOR GATES aor..... AND-OR GATES bh..... BUS HOLD CELL buff.....Buffer GATES buft.....TRI-STATE BUFFER ckan.....Clock AND GATES ckbuf......Clock BUFFER GATES ckinv......Clock INVERT GATES ckmx.....Clock Multiplexer cknd......Clock NAND GATES cknr.....Clock NOR GATES ckor.....Clock OR GATES ckxn.....Clock XNOR GATES ckxr.....Clock Exclusive OR GATES df/dm.....D Flip-Flop dl.....Delay GATES fillcap.....Decoupling CELL filler Filler CELL GATES inv0.....INVERTER GATES invt......TRI-STATE INVERTER GATES la.....LATCH GATES mi.....Inverting MUX GATES mx.....MUX GATES nd.....NAND GATES

nr.....NOR GATES

oai.....OR-NAND GATES

or.....OR GATES

ora.....OR-AND GATES

sd.....Scan D Flip-Flop

se.....Scan Enable D Flip-Flop

tie.....Drive Output to A Fixed State

tlat......Clock Gating CELL

xn.....XNOR GATES

xr.....XOR GATES

STD Cells listed below:

Drive CAPABILITY:0<M<1<2<4<P.. etc

Arithmetic Gates	
ad01dN	1-bit FULL ADDER (0,1,2,3,m)
adfh01dN	1-bit High-speed FULL ADDER (0,1,2)
ah01dN	1-bit Half Adder (0,1,2,3,m)

Buffers Gates

buffdN	Non Inverting(0,1,2,3,4,5,6,7,8,12,16,20,m)
buftdN	Non-inverting 3-state Buffer with active low enable (0,1,2,3,4,6,8,12,16,20,m)
ckbufdN	Clock Non Inverting (0,1,2,3,4,5,6,7,8,10,12,14,16,20,30,40,80,m)
ckanddN	Clock nand2 (0,1,2,4)
ckinvdN	Clock Inverting (0,1,2,3,4,5,6,7,8,10,12,14,16,20,30,40,80)
inv0dN	Inverter (0,1,2,3,4,5,6,7,8, 12, 16, 20,m,p)
invtldN	Inverter 3-state Buffer with active high enable (0,1,2,3,4,6,8,12,16,20,m)
dl01dN	Delay Gate(1,2,m)
dl02dN	Delay Gate(1,2)

COMPLEX Gates

aoi21dN	AND-NOR 2,1 (0,1,2,4,m)
aoi2m1dN	AND-NOR 2,1 1 inv(0,1,2,4)
aoi21mdN	AND-NOR 2,1 NOR1inv (0,1,2,4)
aoi31dN	AND-NOR 3,1 (0,1,2,4,m)
aoi32dN	AND-NOR 3,2 (0,1,2,4,m)
aoi33dN	AND-NOR 3,3 (0,1,2,4)
aoi22dN	AND-NOR2,2 (0,1,2,4,m)

可必防于 以又工店	
aoi211dN	AND-NOR 2,1,1 (0,1,2,4)
aoi221dN	AND-NOR 2,2,1 (0,1,2,4)
aoi222dN	AND-NOR 2,2,2 (0,1,2,4)
aoim21dN	AND-NOR2,1 2 invt (0,1,2,3,m)
aoim22dN	AND-NOR2,2 2 invt (0,1,2,4,m)
oai21dN	OR-NAND2,1 (0,1,2,4,m)
oai2m1d0	OR-NAND2,1 or 1 inv(0,1,2,4)
oai21md0	OR-NAND2,1 nand 1inv (0,1,2,4)
oai31dN	OR-NAND3,1 (0,1,2,4)
oai32dN	OR-NAND3,2 (0,1,2,4)
oai33dN	OR-NAND3,3 (0,1,2,4)
oai22dN	OR-NAND2,2 (0,1,2,4,m)
oai211dN	OR-NAND2,1,1 (0,1,2,4)
oai221dN	OR-NAND2,2,1 (0,1,2,4)
oai222dN	OR-NAND2,2,2 (0,1,2,4)
oaim21dN	OR-NAND2,1 2 invt (0,1,2,4,m)
oaim22dN	OR-NAND2,2 2 invt (0,1,2,4,m)
aor21dN	AND-OR 2,1 (0,1,2,4)
aor22dN	AND-OR 2,2 (0,1,2,4)
aor211dN	AND-OR 2,1,1(0,1,2,4)
aor221dN	AND-OR 2,2,1 (0,1,2,4)
aor222dN	AND-OR 2,2,2(0,1,2,4)
aor31dN	AND-OR 3,1 (0,1,2,4)
ora211dN	OR -AND 2,1,1 (0,1,2,4)
ora221dN	OR -AND 2,2,1 (0,1,2,4)
ora222dN	OR -AND 2,2,2 (0,1,2,4)
ora21dN	OR -AND 2,1 (0,1,2,4)
ora22dN	OR -AND 2,2 (0,1,2,4)
ora31dN	OR -AND 3,1 (0,1,2,4)
L	·

Gates

an02dN	AND 2 input (0,1,1p5,2,2p5,3p5,4,m)
an03dN	AND 3 input (0,1,2,4,m)
an04dN	AND 4 input (0,1,2,4,m)
ckanddN	CLOCK AND 2 input (0,1,2,4)
cknd02dN	CLOCK NAND 2 input (0,1,2,4)
cknr02dN	CLOCK NOR 2 input (0,1,2,4)

1

MULTIPLEXERS

ckmx02dN	CLOCK Mux 2-to-1 (0,1,2,4)
mx02dN	Mux 2-to-1 (0,1,2,3,m)
mi02dN	Inverting Mux 2-to-1 (0,1,2,3,m)
mx03dN	Mux 3-to-1 (0,1,2,3)
mx04dN	Mux 4-to-1 (0,1,2,3,m)

FLIP FLOPS

denrqN	Pos. Edge Enable DFF, active-high enable, Q only (0,1,2)
dfanrq0	With input NAND2 D0,D1 Pos. Edge DFF, Q only(0,1,2)
dfbfbN	Neg. Edge DFF, preset & clear (0,1,2)
dfbrbN	Pos. Edge DFF, preset & clear (0,1,2,m)

dfbrqN	Pos. Edge DFF, preset & clear, Q only (0,1,2)
dfcfbN	Neg. Edge DFF, clear (0,1,2)
dfcrbN	Pos. Edge DFF, clear (0,1,2,m)
dfcrqN	Pos. Edge DFF, clear, Q only (0,1,2,m)
dfnfbN	Neg. Edge DFF(0,1,2)
dfnfqN	Neg. Edge DFF,Q only (0,1,2)
dfnrbN	Pos. Edge DFF(0,1,2)
dfnrqN	Pos. Edge DFF, Q only(0,1,2)
dfpfbN	Neg. Edge DFF, active-low preset(0,1,2)
dfprbN	Pos. Edge DFF, active-low preset(0,1,2)
dfprqN	Pos. Edge DFF, active-low preset,Q only(0,1,2,m)
dfscrqN	Pos. Edge synchronous DFF, clear, Q only (0,1,2)
dmnrqN	Pos. Edge DFF, Q only (0,1,2) with selected INPUT data D0,D1

LATCHES

labhbN	D latch, active-high enable, preset & clear (0,1,2,3)
lablbN	D latch, active-low enable, preset & clear (0,1,2,3)
lanhbN	D latch, active-high enable (0,1,2,3)
lanlbN	D latch, active-low enable (0,1,2,3)
lachbN	D latch, active-high enable, clear (0,1,2,3)
laclbN	D latch, active-low enable, clear (0,1,2,3)
laphbN	D latch, active-high enable, preset (0,1,2,3)
laplbN	D latch, active-low enable, preset (0,1,2,3)

SCAN FLIP FLOPS

sdanrqN	Pos.Edge Scan DFF, Q only (0,1,2,4,8) with NAND D0,D1 input data
sdbrbN	Pos.Edge Scan DFF, active-low set and clear (0,1,2,m)
sdbfbN	Neg.Edge Scan DFF, active-low set and clear (0,1,2)
sdbrqN	Pos.Edge Scan DFF, active-low set and clear, Q only (0,1,2)
sdcfbN	Neg.Edge Scan DFF, active-low clear (0,1,2)
sdcrbN	Pos.Edge Scan DFF, active-low clear (0,1,2,m)
sdcrqN	Pos.Edge Scan DFF, active-low clear, Q only (0,1,2,m)
sdmnrqN	Pos.Edge Scan DFF, Q only (0,1,2,4,8) With selected input Data D0,D1
sdnfbN	Neg.Edge Scan DFF(0,1,2)
sdnfqN	Neg.Edge Scan DFF, Q only (0,1,2)
sdnrbN	Pos.Edge Scan DFF (0,1,2)
sdnrqN	Pos.Edge Scan DFF, Q only (0,1,2)

sdpfbN	Neg.Edge Scan DFF, active-low preset (0,1,2)
sdprbN	Pos.Edge Scan DFF, active-low preset (0,1,2)
sdprqN	Pos.Edge Scan DFF, active-low preset ,Q only(0,1,2,m)
sdscrqN	Pos.Edge Scan synchronous DFF, clear, Q only (0,1,2)
senrqN	Pos.Edge Scan DFF, active-high enable ,Q only (0,1,2)

CLOCK GATE

tlatncadN	Positive edge-triggered clock-gating latch(0,1,2,4)
tlatnfcadN	Neg. edge-triggered clock-gating latch(0,1,2,4)
tlatntscadN	Positive edge-triggered clock-gating latch, with enable pin (0,1,2,4)
tlatnftscadN	Neg edge-triggered clock-gating latch, with enable pin (0,1,2,4)

MISCELLANEOUS

antenna	Antenna Diode
bh01dN	Three-state bus holder(1)
	``
fillerN	Filler cell(1,2,3,4,6,8,16,32,64)
tiehi	Drives the output (Y) to Logic High
tielo	Drives the output (Y) to Logic Low
fillcapN	Decoupling cell(1,2,3,4,6,8,16,32,64)
fillersub	Tap cell
invod8d1	inv with 8 open drain
nd02od	Nand2 with open drain
nd03od	Nand3 with open drain
or02od	Or2 with open drain
pullu	Internal pull up with enable input pin E
pulld	Internal pull down with enable input pin EN

Library Cell List For PMK

drf..... Retention DFF

gpg.....Always on

head.....Power switch

iso.....isolation cells

sdr.....Retention Scan DFF

PMK Cells listed below:

Power Gating

headN Power switch cells	headN
--------------------------	-------

Isolation cell

isohdN	h default "1" in isolation mode(1,2,4,m)
isoldN	l default "1" in isolation mode(1,2,4,m)

Always on

gpgbuffdN	Always on buffer (2,4,8,16,32)
gpgbuffdN	Always on inv (2,4,8,16,32)

Retention Flip Flop

drfcrbN	Pos. Edge retention DFF, with reset (0,1,2,m)		
drfnrbN	Pos. Edge retention DFF(0,1,2,m)		
drfprbN	Pos. Edge DFF, with set (0,1,2,m)		

Retention Flip Flop with Scan

sdrcrbN	Pos. Edge retention DFF, with reset (0,1,2,m)			
sdrnrbN	Pos. Edge retention DFF(0,1,2,m)			
sdrprbN	Pos. Edge DFF, with set (0,1,2,m)			

CSMC TECHNOLOGIES CORPORATION

华润上华科技有限公司

Appendix A: Techfile Layers

Layer Name	Cadence Layer Name	Cadence Purpose	GDS II Layer Number	GDS Data Type	Description				
ТВ	ТВ	drawing	1	0	P-channel LV device substrate and symmetric HVNMOS drift region, Nwell layer				
Active	TO	drawing	2	0	Diffusion and channel area				
Poly	GT	drawing	3	0	Poly1				
P+	SP	drawing	4	0	P+ implant				
N+	SN	drawing	5	0	N+ implant				
Contact	W1	drawing	6	0	Contact				
A1	A1	drawing	7	0	Metal 1				
W2	W2	drawing	8	0	Via1				
A2	A2	drawing	9	0	Metal 2				
W3	W3	drawing	40	0	Via2				
A3	A3	drawing	41	0	Metal 3				
W4	W4	drawing	61	0	Via3				
A4	A4	drawing	62	0	Metal 4				
W5	W5	drawing	91	0	Via4				
A5	A5	drawing	92	0	Metal 5				
Top Via	WT	drawing	93	0	Top via WT				
Top Metal	AT	drawing	94	0	Top metal				
VIA5	W6	drawing	95	0	VIA5				
Metal6	A6	drawing	96	0	Metal6				
VIA6	W7	drawing	97	0	VIA6				
Metal7	A7	drawing	98	0	Metal7				
DIODE	DIODE	mark	113	1	Diode marker				
A1TEXT	A1TEXT	drawing	121	0	Metal 1 text				
A2TEXT	A2TEXT	drawing	122	0	Metal 2 text				
A3TEXT	A3TEXT	drawing	123	0	Metal 3 text				
A4TEXT	A4TEXT	drawing	124	0	Metal 4 text				
A5TEXT	A5TEXT	drawing	125	0	Metal 5 text				
ATTEXT	ATTEXT	drawing	126	0	Top metal text				

CSMC TECHNOLOGIES CORPORATION

华润上华科技有限公司