Approximations and Round-Off Errors

Chapter 3

Error Definitions

True error: E_t = True value – Approximation (+/-)

True percent relative error:
$$\varepsilon_{\rm t} = \left| \frac{\text{True value} - \text{Approximation}}{\text{True value}} \right| \times 100\%$$

Approximate Error

- For numerical methods, the true value will be known only when we deal with functions that can be solved *analytically*.
- In real world applications, we usually do not know the answer a priori.

Approximate Error = CurrentApproximation(i) - PreviousApproximation(i-1)

Approximate Relative Error:
$$\varepsilon_{a} = \frac{|\mathbf{Approximate\,error}|}{|\mathbf{Approximation}|} \times 100\%$$

Iterative approaches

Approx. Relative Error:
$$\varepsilon_{a} = \frac{|(Current Approx.) - (Previous Approx.)|}{Current Approx.} \times 100\%$$

Computations are repeated until stopping criterion is satisfied

$$|\mathcal{E}_a|$$
 \langle \mathcal{E}_s Pre-specified % tolerance based on your knowledge of the solution. (Use absolute value)

If
$$\varepsilon_s$$
 is chosen as:

$$\varepsilon_{\rm s} = (0.5 \times 10^{(2-n)})\%$$

Then the result is correct to at least n significant figures (Scarborough 1966)

EXAMPLE 3.2: Maclaurin series expansion

$$e^{x} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!}$$

Calculate $e^{0.5}$ (= 1.648721...) up to 3 significant figures. During the calculation process, compute the *true* and *approximate* percent relative errors at each step

Error tolerance
$$\mathcal{E}_{s} = (0.5 \times 10^{(2-3)})\% = 0.05\%$$

Terms			
1			
1+(0.5)			
1+(.5)+(.5) ² /2			
$1+(.5)+(.5)^2/2+(.5)^3/6$			

Count	Result	$\varepsilon_t(\%)$ True	ε_a (%) Approx.
1	1	39.3	
2	1.5	9.02	33.3
3	1.625	1.44	7.69
4	1.6458333	0.175	1.27
5	1.6484375	0.0172	0.158
6	1.648697917	0.00142	0.0158

Round-off and Chopping Errors

• Numbers such as π , e, or $\sqrt{7}$ cannot be expressed by a fixed number of significant figures. Therefore, they can not be represented exactly by a computer which has a **fixed word-length**

$$\pi = 3.1415926535...$$

- Discrepancy introduced by this omission of significant figures is called *round-off* or *chopping* errors.
- If π is to be stored on a base-10 system carrying 7 significant digits,

chopping: $\pi = 3.141592$ error: $\epsilon_t = 0.000000065$ **round-off**: $\pi = 3.141593$ error: $\epsilon_t = 0.000000035$

• Some machines use *chopping*, because *rounding* has additional computational overhead.

Number Representation

86409

in Base-10

in Base-2

The representation of -173 on a 16-bit computer using the *signed magnitude method*

Computer representation of a floating-point number

$$\frac{1}{34}$$
 = 0.029411765

Suppose only 4 decimal places to be stored

$$0.0294 \times 10^{0}$$

- Normalize remove the leading zeroes.
- Multiply the mantissa by 10 and lower the exponent by 1

• Due to *Normalization*, absolute value of m is limited:

$$\frac{1}{b} \le m < 1$$

for *base-10* system: $0.1 \le m < 1$

for **base-2** system: $0.5 \le m < 1$

- Floating point representation allows both fractions and very large numbers to be expressed on the computer. However,
 - Floating point numbers take up more room
 - Take longer to process than integer numbers.

Q: What is the smallest positive floating point number that can be represented using a 7-bit word (3-bits reserved for mantissa).

What is the

number?

Another Exercise: What is the largest positive floating point number that can be represented using a 7-bit word (3-bits reserved for mantissa).

IEEE 754 double-precision binary floating-point format: binary64

This is a commonly used format on PCs.

• Sign bit: 1 bit

Exponent width: 11 bits

<u>Significand precision</u>: 53 bits (52 explicitly stored)

This gives from 15–17 significant decimal digits precision. If a decimal string with at most 15 significant digits is converted to IEEE 754 double precision representation and then converted back to a string with the same number of significant digits, then the final string should match the original.

Notes on floating point numbers:

Overflow / Underflow

very small and very large numbers can not be represented using a fixed-length mantissa/exponent representation, therefore overflow and underflow can occur while doing arithmetic with these numbers.

 The interval between representable numbers increases as the numbers grow in magnitude and similarly, the round-off error.