Submodular Function Optimization

AU4606: Network Optimization

Xiaoming Duan
Department of Automation
Shanghai Jiao Tong University

December 11, 2023

Last few lectures

- Minimum spanning tree problems
 - Optimality conditions
 - Algorithms
 - 1 Kruskal's algorithm
 - 2 Prim's algorithm
 - 3 Sollin's algorithm
 - Matroids and greedy algorithms

Today

Submodular functions

2 Monotone submodular maximization

3 Unconstrained submodular minimization

Today

Submodular functions

2 Monotone submodular maximization

3 Unconstrained submodular minimization

Greedy works for matroid optimization

An optimization problem over matroids

Let (E, \mathcal{I}) be a matroid and $w : E \to \mathbb{R}$ be a function that assigns a cost to each element of E.

Define $w(X) = \sum_{x \in X} w(x)$ for any nonempty subset $X \subseteq E$.

Find a maximal independent set that has the minimum cost.

Greedy works

If (E, \mathcal{I}) is a matroid, then greedy algorithm finds a maximal independent set that has the minimum cost.

For problems with special structure, they may be solved efficiently.

Greedy can fail

Problem setup

- Let $\{1, 2, ..., 2k + 1\}$ be a ground set
- The function value
 - **1** $f({e}) = 1$ for $e \in {1, ..., k}$
 - **2** $f({e}) = \epsilon$ for $e \in {k + 1, ..., 2k}$
 - **3** $f({2k+1}) = 1 + \epsilon$
 - **4** For $S_1 \subseteq \{1, \ldots, k\}$ and $S_2 \subseteq \{k+1, \ldots, 2k\}$, we have $f(S_1 \cup S_2) = |S_1| + \epsilon |S_2|$
 - **5** For $S_1 \subseteq \{1, ..., k\}$ and $S_2 \subseteq \{k+1, ..., 2k\}$, we have $f(S_1 \cup S_2 \cup \{2k+1\}) = \max\{|S_1|, 1+\epsilon\} + \epsilon |S_2|$

Pick a k-element set S to maximize f(S)?

Greedy can fail

Problem setup

- Let $\{1, 2, ..., 2k + 1\}$ be a ground set
- The function value
 - **1** $f({e}) = 1$ for $e \in {1, ..., k}$
 - **2** $f({e}) = \epsilon$ for $e \in {k + 1, ..., 2k}$
 - **3** $f({2k+1}) = 1 + \epsilon$
 - **4** For $S_1 \subseteq \{1, \ldots, k\}$ and $S_2 \subseteq \{k+1, \ldots, 2k\}$, we have $f(S_1 \cup S_2) = |S_1| + \epsilon |S_2|$
 - **5** For $S_1 \subseteq \{1, ..., k\}$ and $S_2 \subseteq \{k+1, ..., 2k\}$, we have $f(S_1 \cup S_2 \cup \{2k+1\}) = \max\{|S_1|, 1+\epsilon\} + \epsilon |S_2|$

Pick a k-element set S to maximize f(S)? Pick $\{1, \ldots, k\}$ and obtain k

Greedy can fail

Problem setup

- Let $\{1, 2, ..., 2k + 1\}$ be a ground set
- The function value
 - **1** $f({e}) = 1$ for $e \in {1, ..., k}$
 - 2 $f({e}) = \epsilon$ for $e \in {k + 1, ..., 2k}$
 - 3 $f({2k+1}) = 1 + \epsilon$
 - 4 For $S_1 \subseteq \{1, \dots, k\}$ and $S_2 \subseteq \{k+1, \dots, 2k\}$, we have $f(S_1 \cup S_2) = |S_1| + \epsilon |S_2|$
 - **5** For $S_1 \subseteq \{1, ..., k\}$ and $S_2 \subseteq \{k+1, ..., 2k\}$, we have $f(S_1 \cup S_2 \cup \{2k+1\}) = \max\{|S_1|, 1+\epsilon\} + \epsilon |S_2|$

Pick a k-element set S to maximize f(S)? Pick $\{1, \ldots, k\}$ and obtain k

Greedy works as follows

- Pick $\{2k+1\}$ in the first iteration
- Pick k-1 elements from $\{k+1,\ldots,2k\}$
- Obtain a function value of $\epsilon(k-1)+1+\epsilon=1+\epsilon k$

Set function optimization

We are often interested in problems of the following form

$$\max\{f(S):S\in\mathcal{F}\}\$$

 $\min\{f(S):S\in\mathcal{F}\}\$

where $\mathcal{F} \subseteq 2^N$ is a collection of feasible subsets

Examples

- **1** min/max cut: f(S) is cut value of cut set (S, \overline{S}) (N is node set)
- 2 min/max spanning tree: f(S) is total arc weights (\mathcal{F} : spanning trees)

What properties should f have so that the problem is tractable?

What we know from continuous optimization

A function $g: \mathbb{R}^n \to \mathbb{R}$ can be minimized efficiently, if it is convex A function $g: \mathbb{R}^n \to \mathbb{R}$ can be maximized efficiently, if it is concave

What we know from continuous optimization

A function $g: \mathbb{R}^n \to \mathbb{R}$ can be minimized efficiently, if it is convex A function $g: \mathbb{R}^n \to \mathbb{R}$ can be maximized efficiently, if it is concave

Can we have analogs in discrete optimization with $f:\{0,1\}^n \to \mathbb{R}$?

From concavity to submodularity

$$g'(x) = \lim_{\Delta x \to 0} \frac{g(x + \Delta x) - g(x)}{\Delta x}$$
 is non-increasing in x

Let $f: 2^N \to \mathbb{R}$ and define

$$\Delta_e f(S) = f(S \cup \{e\}) - f(S)$$

Submodularity: we require that $\Delta_e f(S)$ is non-increasing in S

Submodularity: we require that $\Delta_e f(S)$ is non-increasing in S

Submodular functions I

A function $f: 2^N \to \mathbb{R}$ is submodular if for every $A \subseteq B \subseteq N$ and $e \notin B$, it holds that

$$\Delta_e f(A) \ge \Delta_e f(B) \quad \Longleftrightarrow \quad f(A \cup \{e\}) - f(A) \ge f(B \cup \{e\}) - f(B)$$

Submodularity: we require that $\Delta_e f(S)$ is non-increasing in S

Submodular functions I

A function $f: 2^N \to \mathbb{R}$ is submodular if for every $A \subseteq B \subseteq N$ and $e \notin B$, it holds that

$$\Delta_e f(A) \ge \Delta_e f(B) \quad \Longleftrightarrow \quad f(A \cup \{e\}) - f(A) \ge f(B \cup \{e\}) - f(B)$$

Submodular functions II

A function $f: 2^N \to \mathbb{R}$ is submodular if for every $A, B \subseteq N$, it holds that

$$f(A \cap B) + f(A \cup B) \le f(A) + f(B)$$

Submodularity: we require that $\Delta_e f(S)$ is non-increasing in S

Submodular functions I

A function $f: 2^N \to \mathbb{R}$ is submodular if for every $A \subseteq B \subseteq N$ and $e \notin B$, it holds that

$$\Delta_e f(A) \ge \Delta_e f(B) \quad \Longleftrightarrow \quad f(A \cup \{e\}) - f(A) \ge f(B \cup \{e\}) - f(B)$$

Submodular functions II

A function $f: 2^N \to \mathbb{R}$ is submodular if for every $A, B \subseteq N$, it holds that

$$f(A \cap B) + f(A \cup B) \le f(A) + f(B)$$

Why "submodular"?

Submodularity: we require that $\Delta_e f(S)$ is non-increasing in S

Submodular functions I

A function $f: 2^N \to \mathbb{R}$ is submodular if for every $A \subseteq B \subseteq N$ and $e \notin B$, it holds that

$$\Delta_e f(A) \ge \Delta_e f(B) \quad \Longleftrightarrow \quad f(A \cup \{e\}) - f(A) \ge f(B \cup \{e\}) - f(B)$$

Submodular functions II

A function $f: 2^N \to \mathbb{R}$ is submodular if for every $A, B \subseteq N$, it holds that

$$f(A \cap B) + f(A \cup B) \le f(A) + f(B)$$

Why "submodular"? A function $f: 2^N \to \mathbb{R}$ is modular if

$$f(A \cup \{e\}) - f(A) = f(B \cup \{e\}) - f(B) \implies f(A) = \sum_{i \in A} f(\{i\}) + (|A| - 1)f(\emptyset)$$

Submodular functions: examples

Adding additional sensors has diminishing returns

A sensor coverage example

 $f:S\mapsto\mathbb{R}$ computes the area that sensors in set S cover

Submodular functions: examples

Including more nodes in a cut has diminishing returns

Cut function
$$f(S) = u(S, \bar{S}) = \sum_{i \in S, j \in \bar{S}} u_{ij}$$

Today

Submodular functions

2 Monotone submodular maximization

3 Unconstrained submodular minimization

Monotone function

A function $f: 2^N \to \mathbb{R}$ is monotone if for every $A \subseteq B \subseteq N$, $f(A) \le f(B)$.

Monotone function

A function $f: 2^N \to \mathbb{R}$ is monotone if for every $A \subseteq B \subseteq N$, $f(A) \le f(B)$.

$$\max\{f(S):|S|\leq k\}\tag{1}$$

Monotone function

A function $f: 2^N \to \mathbb{R}$ is monotone if for every $A \subseteq B \subseteq N$, $f(A) \le f(B)$.

$$\max\{f(S): |S| \le k\} \tag{1}$$

Algorithm Greedy algorithm

- 1: $S \leftarrow \emptyset$
- 2: while |S| < k do
- 3: Pick $i^* \in \operatorname{argmax}_{i \in N \setminus S} f(S \cup \{i\}) f(S)$
- 4: $S \leftarrow S \cup \{i^*\}$
- 5: end while

Monotone function

A function $f: 2^N \to \mathbb{R}$ is monotone if for every $A \subseteq B \subseteq N$, $f(A) \le f(B)$.

$$\max\{f(S):|S|\leq k\}\tag{1}$$

Algorithm Greedy algorithm

- 1: *S* ← ∅
- 2: while |S| < k do
- 3: Pick $i^* \in \operatorname{argmax}_{i \in N \setminus S} f(S \cup \{i\}) f(S)$
- 4: $S \leftarrow S \cup \{i^*\}$
- 5: end while

Greedy is "good enough"

Suppose f in (1) is nonnegative, monotone submodular, then the greedy algorithm finds a solution S to (1) such that

$$f(S) \ge (1 - e^{-1})f(S^*),$$

where S^* is an optimal solution.

Submodular maximization: more settings

Monotone maximization

- (1978) Under intersection of k matroids $(\frac{1}{k+1})$
- (2004) Under knapsack constraint $(1 e^{-1})$

$$\max\{f(S): \sum_{i\in S} c_i \leq B\}$$

where c_i 's are nonnegative integers

- (2007) Under a matroid constraint $(1 e^{-1})$
- ...

Non-monotone maximization

- (2007) Unconstrained $(\frac{1}{2})$
- (2011) Under cardinality or matroid constraint (e^{-1})
- . . .

Today

Submodular functions

2 Monotone submodular maximization

3 Unconstrained submodular minimization

From discrete optimization to continuous optimization

$$\min\{f(S):S\subseteq N\}$$

- $f: \{0,1\}^n \to \mathbb{R}$ is a function whose domain contains 2^n points
- Can we define a continuous extension $f^{\mathsf{E}}:[0,1]^n \to \mathbb{R}$?
- Hopefully
 - **1** f^{E} coincides with f at $\{0,1\}^{n}$
 - $2 f^{E}$ can be easily evaluated
 - $\mathbf{3}$ f^{E} can be efficiently optimized
 - 4 An optimizer S^* of f can be recovered from an optimizer x^* of f^E

From discrete optimization to continuous optimization

$$\min\{f(S):S\subseteq N\}$$

- $f: \{0,1\}^n \to \mathbb{R}$ is a function whose domain contains 2^n points
- Can we define a continuous extension $f^{\mathsf{E}}:[0,1]^n\to\mathbb{R}$?
- Hopefully
 - **1** f^{E} coincides with f at $\{0,1\}^n$
 - $2 f^{E}$ can be easily evaluated
 - $\mathbf{3}$ f^{E} can be efficiently optimized
 - 4 An optimizer S^* of f can be recovered from an optimizer x^* of f^E

Extension of a set function

Given a set function $f: \{0,1\}^n \to \mathbb{R}$, an extension of f to $[0,1]^n$ is a function $f^{\mathsf{E}}: [0,1]^n \to \mathbb{R}$ satisfying $f^{\mathsf{E}}(x) = f(x)$ for $x \in \{0,1\}^n$.

Solve a continuous optimization problem with the extension of f.

Continuous extensions

Note $f: \{0,1\}^n \to \mathbb{R}$ is defined only at 2^n locations, for $x \in [0,1]^n$:

- **1** Find coefficients α_i 's such that $x = \sum_i \alpha_i \mathbb{1}_{S_i}$
- **2** Define $f^{\mathsf{E}}(x) = \sum_{i} \alpha_{i} f(S_{i})$

Continuous extensions

Note $f: \{0,1\}^n \to \mathbb{R}$ is defined only at 2^n locations, for $x \in [0,1]^n$:

- **1** Find coefficients α_i 's such that $x = \sum_i \alpha_i \mathbb{1}_{S_i}$
- **2** Define $f^{\mathsf{E}}(x) = \sum_{i} \alpha_{i} f(S_{i})$
- The combinations may not be unique

$$x = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Continuous extensions

Note $f: \{0,1\}^n \to \mathbb{R}$ is defined only at 2^n locations, for $x \in [0,1]^n$:

- **1** Find coefficients α_i 's such that $x = \sum_i \alpha_i \mathbb{1}_{S_i}$
- **2** Define $f^{\mathsf{E}}(x) = \sum_{i} \alpha_{i} f(S_{i})$
- The combinations may not be unique

$$x = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

• If every $S_i \subseteq N$ appears in the sum, then exponentially many terms

The Lovász extension: definition

The Lovász extension: definition

Given $f:\{0,1\}^n \to \mathbb{R}^n$, its Lovász extension $f^{\mathsf{L}}:[0,1]^n \to \mathbb{R}$ is defined by

$$f^{\mathsf{L}}(x) = \mathbb{E}_{\theta}[f(\{i : x_i \geq \theta\})]$$

where θ is a random variable following a uniform distribution over [0,1].

The Lovász extension: definition

The Lovász extension: definition

Given $f:\{0,1\}^n \to \mathbb{R}^n$, its Lovász extension $f^{\mathsf{L}}:[0,1]^n \to \mathbb{R}$ is defined by

$$f^{\mathsf{L}}(x) = \mathbb{E}_{\theta}[f(\{i : x_i \geq \theta\})]$$

where θ is a random variable following a uniform distribution over [0,1].

Let $\pi:\{1,\ldots,n\} o \{1,\ldots,n\}$ be a permutation of x such that

$$x_{\pi(0)} = 1 \ge x_{\pi(1)} \ge \cdots \ge x_{\pi(n)} \ge 0 = x_{\pi(n+1)}$$

- When $x_{\pi(i+1)} < \theta \le x_{\pi(i)}$, we have $\{i : x_i \ge \theta\} = \{\pi(1), \dots, \pi(i)\}$
- The expectation defining $f^{L}(x)$ is then a sum of n+1 terms
- f^{L} and f coincide at $x \in \{0,1\}^{n}$

The Lovász extension as a continuous extension

Note $f: \{0,1\}^n \to \mathbb{R}$ is defined only at 2^n locations, for $x \in [0,1]^n$:

- **1** Find coefficients α_i 's such that $x = \sum_i \alpha_i \mathbb{1}_{S_i}$
- **2** Define $f^{\mathsf{E}}(x) = \sum_{i} \alpha_{i} f(S_{i})$

Let $x \in [0,1]^n$, suppose $x_1 \le x_2 \le \cdots \le x_n$, note

$$x = x_1 \begin{bmatrix} 1 \\ 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} + (x_2 - x_1) \begin{bmatrix} 0 \\ 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} + (x_3 - x_2) \begin{bmatrix} 0 \\ 0 \\ 1 \\ \vdots \\ 1 \end{bmatrix} + \cdots + (x_n - x_{n-1}) \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix} + (1 - x_n) \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Thus,

$$f^{L}(x) = x_{1}f(S) + (x_{2} - x_{1})f(S \setminus \{1\}) + \dots + (x_{n} - x_{n-1})f(\{n\}) + (1 - x_{n})f(\emptyset)$$

• $f(S) = \min\{1, |S|\}$, that is $f(\emptyset) = 0$ and f(S) = 1 elsewhere

• $f(S)=\min\{1,|S|\}$, that is $f(\emptyset)=0$ and f(S)=1 elsewhere $f^{\mathsf{L}}(x)=\mathbb{E}_{\theta}[f(\{i:x_i\geq\theta\})]=\max_i\{x_i\}$

• $f(S) = \min\{1, |S|\}$, that is $f(\emptyset) = 0$ and f(S) = 1 elsewhere

$$f^{L}(x) = \mathbb{E}_{\theta}[f(\{i : x_i \ge \theta\})] = \max_{i} \{x_i\}$$

• Let G = (N, E) be an undirected graph, for $A \subseteq V$, define

$$f(A) = |\{(i,j) \in E \mid i \in A, j \in \bar{A}\}|$$

• $f(S) = \min\{1, |S|\}$, that is $f(\emptyset) = 0$ and f(S) = 1 elsewhere

$$f^{L}(x) = \mathbb{E}_{\theta}[f(\{i : x_i \ge \theta\})] = \max_{i} \{x_i\}$$

• Let G = (N, E) be an undirected graph, for $A \subseteq V$, define

$$f(A) = |\{(i,j) \in E \mid i \in A, j \in \bar{A}\}|$$

Then the Lovász extension is given by

$$f^{\mathsf{L}}(x) = \sum_{(i,j)\in E} |x_i - x_j|$$

Submodular minimization: setups

$$\min\{f(S):S\subseteq N\}$$

- $f: \{0,1\}^n \to \mathbb{R}$ is submodular
- No monotonicity is assumed
- No constraint is imposed

Key idea: Lovász extension

Submodular function:

$$f:\{0,1\}^n\to\mathbb{R}$$

Convex continuous function:

$$f^{\mathsf{L}}:[0,1]^n \to \mathbb{R}$$

László Lovász (1948-)

- ullet If f^L is convex, then the extension can be solved efficiently
- A minimizer of f^L can be converted into a minimizer of f(S)

The Lovász extension: why useful

The Lovász extension: definition

Given $f:\{0,1\}^n \to \mathbb{R}^n$, its Lovász extension $f^L:[0,1]^n \to \mathbb{R}$ is defined by

$$f^{L}(x) = \sum_{i=0}^{n} \lambda_{i}(x) f(S_{i}(x))$$

$$= f(\emptyset) + \sum_{i=1}^{n} x_{\pi(i)} (f(S_{i}(x)) - f(S_{i-1}(x)))$$

- **1** $\lambda_i(x) = x_{\pi(i)} x_{\pi(i+1)}$
- **2** $S_{i+1} = S_i \cup \{\pi(i+1)\}$ with $S_0 = \emptyset$

The Lovász extension is a piece-wise linear function of x!

The Lovász extension: why useful

The Lovász extension: definition

Given $f:\{0,1\}^n\to\mathbb{R}^n$, its Lovász extension $f^L:[0,1]^n\to\mathbb{R}$ is defined by

$$f^{L}(x) = \sum_{i=0}^{n} \lambda_{i}(x) f(S_{i}(x))$$

$$= f(\emptyset) + \sum_{i=1}^{n} x_{\pi(i)} (f(S_{i}(x)) - f(S_{i-1}(x)))$$

- 1 $\lambda_i(x) = x_{\pi(i)} x_{\pi(i+1)}$
- **2** $S_{i+1} = S_i \cup \{\pi(i+1)\}$ with $S_0 = \emptyset$

The Lovász extension is a piece-wise linear function of x!

Convexity and submodularity

A function $f:\{0,1\}^n\to\mathbb{R}^n$ is submodular if and only if its Lovász extension $f^L:[0,1]^n\to\mathbb{R}$ is convex.

The Lovász extension: why useful

Convexity and submodularity

A function $f: \{0,1\}^n \to \mathbb{R}^n$ is submodular if and only if its Lovász extension $f^L: [0,1]^n \to \mathbb{R}$ is convex.

• We can recover an optimal set S^* from a minimizer x^* of $f^L(x)$

$$f^{L}(x^{*}) = \sum_{i=0}^{n} \lambda_{i}(x^{*}) f(S_{i}(x^{*}))$$

where
$$\sum_{i=0}^{n} \lambda_i(x^*) = 1$$

We did not discuss

- Why is $f^{L}(x)$ convex when f is submodular?
- How to solve the convex problem?

Upcoming

Week 1-8 (AU4606 & AI4702):

- Introduction (1 lecture)
- Preparations (3 lectures)
 - basics of graph theory
 - algorithm complexity and data structure
 - graph search algorithm
- Shortest path problems (3 lectures)
- Maximum flow problems (5 lectures)
- Minimum cost flow problems (3 lectures)
- Introduction to multi-agent systems (1 lecture)
- Introduction to cloud networks (1 lecture)

Week 9-16 (AU4606):

- Simplex and network simplex methods (1 lecture)
- Global minimum cut problems (1.5 lectures)
- Minimum spanning tree problems (1.5 lectures)
- Submodular function optimization (2 lectures)
- Optimal assignments and matching (2 lectures)