

正难则反,对立事件法

【对立事件】如果一件事情发生的概率为 P,那么这件事情不发生就叫作与之对立的 事件,它不发生的概率为1-P.

破题标志词 -

正难则反,对立事件法.

直接[至多/至少]问题

10	【模拟题】某公司有 9		、 1. 11 4 14 金井 18 4	1 7H 4F 4F 34 1 7H BIL
IV		- /Y. I 7字 IIII 6 里 ·		V 2H PA IV IV III IIII

- (1)恰好包含一名女工程师的概率为 . (用组合数表示)
- (2)至少包含一名女工程师的概率为 . (用组合数表示)
- ▶20 【2021.14】从装有1个红球,2个白球,3个黑球的袋中随机取出3个球,则这3个 球的颜色至多有两种的概率().
 - A. 0. 3
- B. 0. 4
- C. 0. 5
- D. 0. 6
- E. 0. 7

现实场景中的「至多/至少]问题

常见至少问题现实场景:

多次射击后击中⇔至少有一次击中

多个警报器有效报警⇔至少有一个警报器有效报警

多次抽奖后中奖⇔至少有一次中奖

并联电路电流通过⇔至少有一路电流通过

【拓展】串联电路电流通过⇔每一个元器件均通过,乘法公式.

- ▶21 【2013. 01. 20】(条件充分性判断)档案馆在一个库房中安装了 n 个烟火感应报警 器,每个报警器遇到烟火发出警报的概率均为 p. 则该库房遇烟火发出警报的概率 达到 0.999.()
 - $(1)_{n}=3, p=0.9.$
 - (2)n=2, p=0.97.

「非〕的问题

▶22 【模拟题】有三人在一座7层大楼的底层进入电梯,假设每一个人自第二层开始在 每一层离开电梯是等可能的,则这三人不全在同一层离开的概率为(

A. $\frac{1}{36}$

B. $\frac{48}{40}$

C. $\frac{1}{49}$ D. $\frac{35}{36}$

几何概型

如果每个事件发生的概率只与构成该事件区域的长度(面积或体积或度数)成比例, 则称这样的概率模型为几何概率模型,简称为几何概型.

在这个模型下, 随机实验所有可能的结果是无限的, 并且每个基本结果发生的概率 是相同的. 例如一个人到单位的时间可能是8:00~9:00 之间的任意一个时刻、往一个方 格中投一个石子,石子落在方格中任何一点上……这些试验出现的结果都是无限多个, 属于几何概型,一个试验是否为几何概型在于这个试验是否具有两个特征——无限性和 等可能性,只有同时具备这两个特点的概型才是几何概型.

古典概型与几何概型的主要区别在于:几何概型是另一类等可能概型,它与古典概 型的区别在于试验的结果是无限个.

几何概型中事件 A 的概率计算公式为:

 $P(A) = \frac{$ 构成事件 A 的区域长度(面积或体积等) 试验的全部结果所构成的区域长度(面积或体积等).

▶23 【模拟题】在区间[-2,12]中任取一个数 $x, y \in [8,13]$ 的概率为(

A. $\frac{5}{14}$

B. $\frac{2}{7}$ C. $\frac{2}{5}$ D. $\frac{3}{5}$ E. $\frac{3}{7}$

▶ **24** 【 2021.09 改编】如图,正六边形边长为 1,分别以正六边形的顶点 O、P、Q 为圆心, 以1为半径作圆弧形成阴影.将一枚飞镖投掷到正六边形上,若飞镖落在各点机会 相等,则飞镖恰好落在阴影部分区域的概率为

排列组合与概率中的逆推

▶25 【2013.10.14】福彩中心发行彩票的目的是为了筹措资金资助福利事业,现在福彩 中心准备发行一种面值为 5 元的福利彩票刮刮卡,方案设计如下:(1)该福利彩票 的中奖率为50%;(2)每张中奖彩票的中奖奖金有5元和50元两种,假设购买一张 彩票获得50元奖金的概率为力,且福彩中心筹得资金不少于发行彩票面值总和的 32%,则().

A. $p \le 0.005$ B. $p \le 0.01$ C. $p \le 0.015$ D. $p \le 0.02$ E. $p \le 0.025$

▶26 【模拟题】袋中有 10 个球,分别为红球、黄球和蓝球,现从中任取两球,至少有一球 为黄球或蓝球的概率为 $\frac{13}{15}$,则袋中红球个数为().

A. 2

B. 3 C. 4

D. 5

E. 6

- ▶27 【2020.19】(条件充分性判断)甲、乙两种品牌的手机共 20 部,任取 2 部.则恰有 1 部甲品牌的概率为 p. 则 $p > \frac{1}{2}$. ()
 - (1)甲品牌手机不少于8部.
 - (2) 乙品牌手机多于7部.

隐隐自隐息

模块化解题方法

四大代数式求最值方法

代数式求最值方法	适用题目特征	说明
凑配完全平方求最值	无取值范围限制的多元代数式, 且在形态上符合乘法公式	①变形为[常数+()²]求最小值 ②变形为[常数-()²]求最大值
利用二次函数求最值	直接给定一元二次代数式,或可 消元处理变形为一元二次代数 式的算式	结合抛物线图形可求变量在任何范 围内的最值
均值定理求最值	变量限制为正	几项相加或相乘可得常数(消去未知量)
线性规划求最值(选修)	二元不等式,规定可行域与目标 函数	截距型、距离性、斜率型、乘积型

凑配完全平方求最值

凑配完全平方求最值的核心在于多项式配平方:

$$x^{2} + bx = x^{2} + 2 \cdot \frac{b}{2} \cdot x + \left(\frac{b}{2}\right)^{2} - \left(\frac{b}{2}\right)^{2} = \left(x + \frac{b}{2}\right)^{2} - \frac{b^{2}}{4}$$

配方方法:加上一次项系数 6 一半的平方后,再减去一次项系数一半的平方.

- ▶ 1 【2022.03】设 x,y 为实数,则 $f(x,y)=x^2+4xy+5y^2-2y+2$ 的最小值为(
 - A. 1
- B. $\frac{1}{2}$ C. 2 D. $\frac{3}{2}$
- E. 3

二次函数求最值

抛物线顶点纵坐标即为二次函数最值,当 $x=-\frac{b}{2a}$ 时,二次函数可取到最值,即

▶ 2 【2012.10.02】设实数 x,y 满足 x+2y=3,则 x^2+y^2+2y 的最小值为().

B. 5

C. 6

D. $\sqrt{5} - 1$ E. $\sqrt{5} + 1$

注:同型题目有【2016.23】【2007.10.06】

均值定理求最值

▶基础知识

【算术平均值】设 x_1, x_2, \dots, x_n 为n个数,称 $\frac{x_1 + x_2 + \dots + x_n}{n}$ 为这n个数的算术平均 值,记为: $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$.

【几何平均值】设 x_1, x_2, \dots, x_n 为n个正实数,称 $\sqrt[n]{x_1 \cdot x_2 \cdot \dots \cdot x_n}$ 为这n个数的几 何平均值,记为: $x_g = \sqrt[n]{\prod_{i=1}^n x_i}$.

【均值定理】对于任意n个正实数 $x_1, x_2, \dots, x_n, 则有:$

$$\frac{x_1 + x_2 + \cdots + x_n}{n} \geqslant \sqrt[n]{x_1 x_2 \cdots x_n}$$

当且仅当 $x_1 = x_2 = \cdots = x_n$ 时,等号成立. $(x_i > 0, i = 1, \cdots, n)$

即:n个正实数的算术平均值大于等于它们的几何平均值, 当这些数全部相等时,它 们的算数平均值与几何平均值相等.

不同形态的均值定理

	和的最小值	乘积的最大值	取等号条件
两项时	$a+b\geqslant 2\sqrt{ab}$	$ab \leqslant \left(\frac{a+b}{2}\right)^2$	a = b
三项时	$a+b+c\geqslant 3 \cdot \sqrt[3]{abc}$	$abc \leqslant \left(\frac{a+b+c}{3}\right)^3$	a=b=c

破题标志词 ————

「限制为正]+「求最值]⇒均值定理

▶均值定理直接求代数式最值

- ▶ 3 【2020.24】(条件充分性判断)设 a,b 为正实数.则 $\frac{1}{a} + \frac{1}{b}$ 存在最小值.(
 - (1)已知 ab 的值.
 - (2)已知 a,b 是方程 $x^2-(a+b)x+2=0$ 的不同实根.

▶均值定理凑配定值

【举例】求下列代数式的最大值或最小值

$$x + \frac{1}{x}, x > 0$$
 $x + \frac{1}{x-2}, x > 2$
 $x + \frac{1}{x^2}, x > 0$ $x + \frac{1}{(x-2)^3}, x > 2$
 $x + \frac{1}{x^3}, x > 0$ $x^2 (1-x), x \in (0,1)$

$> t + \frac{C}{t}$ 型最值

天然满足乘积为定值的均值定理求最值模型:已知代数式 t 取值为正,求 $t+\frac{C}{t}$ 的 最值.

说明:①以上 C 为正常数, t 可代表任何正的代数式.

②当常数 C=1 时有 $t+\frac{1}{t}\geqslant 2$,此即互为倒数的两正项之和大于等于 2(t=1) 时取等号).

- ③扩展形式: $\frac{ay}{bx} + \frac{cx}{dy}$ (其中系数 a,b,c,d 和变量 x,y 均为正).
- ▶ 4 【2019.02】设函数 $f(x) = 2x + \frac{a}{x^2} (a > 0)$ 在 $(0, +\infty)$ 内的最小值为 $f(x_0) = 12$,则 $x_0 = ($ C. 3 **A.** 5 D. 2 E. 1 B. 4

▶分式型代数式最值

适配形式	处理方式	举例
<u>二次</u> 一次	以分母为最小单元,将分子向 其凑配,除后转化为 $t+\frac{a}{t}$ 型	$\frac{x^2 + 4}{x} = x + \frac{4}{x} \ge 2\sqrt{4} = 4(x > 0)$ $\frac{x^2 + 2x + 4}{x} = x + \frac{4}{x} + 2 \ge 2\sqrt{4} + 2 = 6(x > 0)$
<u>一次</u> 二次	以分子为最小单元,将分母向分子凑配,之后同除分子,分子变为 1 ,分母变为 $t+\frac{a}{t}$ 型	$\frac{x}{x^{2}+4} = \frac{1}{x+\frac{4}{x}} \leqslant \frac{1}{2\sqrt{4}} = \frac{1}{4}(x>0)$ $\frac{x}{x^{2}+2x+4} = \frac{1}{x+\frac{4}{x}+2} \leqslant \frac{1}{2\sqrt{4}+2} = \frac{1}{6}(x>0)$ $\frac{x+1}{x^{2}+2x+5} = \frac{x+1}{(x+1)^{2}+4}$ $= \frac{1}{x+1+\frac{4}{x+1}} \leqslant \frac{1}{2\sqrt{4}} = \frac{1}{4}(x>-1)$

▶ 5 【模拟题】函数 $y = \frac{x^2 + 7x + 10}{x + 1}$ 在 $(-1, +\infty)$ 内的最小值为_____.

▶利用常值代换求最值

套路一:已知 ax+by=C,求 $\frac{m}{x}+\frac{n}{y}$ 的最小值.

套路二:已知 $\frac{a}{x} + \frac{b}{v} = C$,求 mx + ny 的最小值.

说明:以上系数a,b,m,n,C均为正常数,x,y为正变量).

- ▶ 6 【模拟题】已知 x>0,y>0,且 $\frac{1}{x}+\frac{9}{y}=1$,则 x+y 的最小值为_____.
- ▶ 7 【模拟题】已知 x,y>0,且 x+2y=1,则 $\frac{1}{x}+\frac{8}{y}$ 的最小值为_____.

▶二元函数消元法求最值

限制变量为正的二元(两个变量)函数求最值时,若可以直接用均值定理,则直接套

用;若不可,则可通过消元转化为一元函数问题,再套用均值定理.

▶ 8 【模拟题】已知 a>0, b>0,且 ab=4+2b,则 a+b 的最小值为 .

▶均值定理求几何问题最值

- ▶ 9 【模拟题】一长方体的体积为 60,其中一个面的面积为 10,求长方体表面积的最 小值.
- 绝对值相关问题

基础知识

- (1) 若 |x| = a(a > 0),则 $x = \pm a$.
- (2) $|a| \ge a$,即一个数的绝对值大于等于它本身.
- $(3)\sqrt{a^2} = |a|$.
- $(4) |a|^2 = |a^2| = a^2$.
- (5)|a|=|-a|,即互为相反数的两个数的绝对值相等.
- (6) 若 a 为正数,则满足|x|=a 的 x 的值有两个,即 $\pm a$. 如若|x|=3,则有 x=3 或 x = -3.
 - (7) 自比性:对于非零实数 a,有 $\frac{|a|}{a} = \frac{a}{|a|} = \begin{cases} 1(a>0) \\ -1(a<0) \end{cases}$.
 - (8)非负性:一个数 a 的绝对值永远是非负数,即有 $|a| \ge 0$ 恒成立.

说明:联考中需要掌握的具有非负性的算式有三种,它们分别是:绝对值,二次根式 和平方,即 $|a| \ge 0$, $\sqrt{a} \ge 0$ ($a \ge 0$), $a^2 \ge 0$.

破题标志词 ————

多个未知量,一个等式且带有根号、绝对值、完全平方⇒非负性

- ▶10 【2024.19】(条件充分性判断)设 a,b,c 为实数.则 $a^2+b^2+c^2 \le 1$.(
 - (1) $|a| + |b| + |c| \leq 1$.
 - (2)ab+bc+ac=0.

绝对值的非负性

- ▶11 【模拟题】已知实数 x,y,z 满足条件 $|x^2+4xy+5y^2|+\sqrt{z+\frac{1}{2}}=-2y-1$,则 $(4x-10y)^z = ($).

- A. $\frac{\sqrt{6}}{2}$ B. $-\frac{\sqrt{6}}{2}$ C. $\frac{\sqrt{2}}{2}$ D. $-\frac{\sqrt{2}}{6}$

根据定义去掉绝对值

根据绝对值定义,有:若|x|=a(a>0),则 $x=\pm a$,据此可解决经典的嵌套绝对值 问题.

▶12 【模拟题】绝对值方程|1-|x-215||=1有多少个不同的解?

根据定义夫掉绝对值的最常见应用为零点分段法, 题目中使绝对值内代数式为零的 x 值即为一个零点,若有多个绝对值则可能产生多个零点. 在数轴上标出零点,n 个零点 将数轴划分为 n+1 个区域,在各个区域内分别讨论,用定义去掉绝对值,得到一个分段 函数. 此即零点分段法.

▶13 【模拟题】用零点分段法去绝对值|x-1|+|x-2|.

说明:绝对值函数是连续函数,因此分段函数中等号可以标在任意区间端点,亦可以 全带等号,一般习惯统一写在较大或较小区间端点处,

带绝对值的函数/不等式

- ▶14 【2012.10.25】(条件充分性判断) $x^2-x-5>|2x-1|$.()
 - (1)x > 4.
 - (2)x < -1.
- ▶15 【2014.01.17】(条件充分性判断)不等式 $|x^2+2x+a| \le 1$ 的解集为空集.(
 - (1)a < 0.
 - (2)a > 2.

▶16 【改编自 2018.16】设x,y为实数,求 $|x+y| \le 2$ 在坐标平面表示的范围.

绝对值函数图形

破题标志词

形如|x-a|+|x-b|的两绝对值之和

当 x 在 $\lceil a,b \rceil$ 之内的任意位置时, $\lceil x-a \rceil + \lceil x-b \rceil =$ |a-b||恒成立.

这也是两绝对值之和能取到的最小值.

有无数个 x 可以今两绝对值之和取到最小值:它无最 大值.

方程有解可以数形结合解读为等号左右两边所代表的两 函数图象有交点.

破题标志词

形如 $|x-a|+|x-b|+|x-c|+\cdots$ 的多个绝对值之和

$$y = |x-1| + |x-2| + |x-3|$$

$$y = |x-1| + |x-2| + |x-3| + |x-4|$$

▶17 【2013.10.25】(条件充分性判断)方程|x+1|+|x+3|+|x-5|=9存在唯一解.

()

- $(1) |x-2| \leq 3.$
- $(2) |x-2| \ge 2.$