Solución

Esta trayectoria no es suave, porque x(t)=|t| no es diferenciable en t=0, como tampoco $y(t)=|t-\frac{1}{2}|$ es diferenciable en $t=\frac{1}{2}$. Sin embargo, si dividimos el intervalo [-1,1] en los trozos $[-1,0],[0,\frac{1}{2}]$ y $[\frac{1}{2},1]$, vemos que x(t) e y(t) tienen derivadas continuas en cada uno de los intervalos $[-1,0],[0,\frac{1}{2}]$ y $[\frac{1}{2},1]$. (Véase la Figura 4.2.2.)

Figura 4.2.2 Una trayectoria suave a trozos.

En el intervalo $[-1,0], x(t)=-t, y(t)=-t+\frac{1}{2},$ de modo que $\|\mathbf{c}'(t)\|=\sqrt{2}.$ Por tanto, la longitud de arco de \mathbf{c} entre -1 y 0 es $\int_{-1}^{0}\sqrt{2}\ dt=\sqrt{2}.$ Análogamente, en $[0,\frac{1}{2}], x(t)=t, y(t)=-t+\frac{1}{2},$ y de nuevo $\|\mathbf{c}'(t)\|=\sqrt{2},$ de manera que la longitud de arco de \mathbf{c} entre 0 y $\frac{1}{2}$ es $\frac{1}{2}\sqrt{2}.$ Finalmente, en $[\frac{1}{2},1]$ tenemos $x(t)=t,y(t)=t-\frac{1}{2},$ y la longitud de arco de \mathbf{c} entre $\frac{1}{2}$ y 1 es $\frac{1}{2}\sqrt{2}.$ Por tanto, la longitud de arco total de \mathbf{c} es $2\sqrt{2}.$ Por supuesto, también podríamos haber calculado la respuesta como la suma de las distancias desde $\mathbf{c}(-1)$ a $\mathbf{c}(0)$, desde $\mathbf{c}(0)$ a $\mathbf{c}(\frac{1}{2})$ y desde $\mathbf{c}(\frac{1}{2})$ a $\mathbf{c}(1).$

Ejemplo 4

Hallar la longitud de arco de $(\cos t, \sin t, t^2), 0 \le t \le \pi$.

Solución

La trayectoria $\mathbf{c}(t) = (\cos t, \sin t, t^2)$ tiene como vector velocidad $\mathbf{v} = (-\sin t, \cos t, 2t)$. Puesto que

$$\|\mathbf{v}\| = \sqrt{\sin^2 t + \cos^2 t + 4t^2} = \sqrt{1 + 4t^2} = 2\sqrt{t^2 + \left(\frac{1}{2}\right)^2},$$

la longitud de arco es

$$L(\mathbf{c}) = \int_0^{\pi} 2\sqrt{t^2 + \left(\frac{1}{2}\right)^2} dt.$$

Esta integral puede evaluarse usando la siguiente fórmula de la tabla de integrales:

$$\int \sqrt{x^2 + a^2} \, dx = \frac{1}{2} \left[x \sqrt{x^2 + a^2} + a^2 \, \log \left(x + \sqrt{x^2 + a^2} \right) \right] + C.$$

Por tanto,

$$L(\mathbf{c}) = 2 \cdot \frac{1}{2} \left[t \sqrt{t^2 + \left(\frac{1}{2}\right)^2} + \left(\frac{1}{2}\right)^2 \log\left(t + \sqrt{t^2 + \left(\frac{1}{2}\right)^2}\right) \right] \Big|_{t=0}^{\pi}$$

$$= \pi \sqrt{\pi^2 + \frac{1}{4}} + \frac{1}{4} \log\left(\pi + \sqrt{\pi^2 + \frac{1}{4}}\right) - \frac{1}{4} \log\left(\sqrt{\frac{1}{4}}\right)$$