Set 4: Polynomial Interpolation – Part 1

Kyle A. Gallivan Department of Mathematics

Florida State University

Foundations of Computational Math 1
Fall 2017

Interpolation Topics

- 1. Interpolation Overview
- 2. Lagrange Interpolation Section 8.1
- 3. Newton Interpolation Section 8.2
- 4. Complexity and Barycentric Forms Sections 8.1, 8.2 and 8.3
- 5. Conditioning, Errors, and Convergence Sections 8.1 and 8.2
- 6. Hermite Interpolation Section 8.5
- 7. Piecewise Interpolation and Splines Section 8.4 and 8.8
- 8. Multidimensional Interpolation Section 8.6
- 9. Rational Interpolation (notes)

References

In addition to the text, the following are useful references for this topic.

- 1. Isaacson and Keller, Analysis of Numerical Methods, Wiley Press, 1966.
- 2. Bartle, The Elements of Real Analysis, Wiley, Second Edition, 1976.
- 3. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Second Edition, 2002.
- 4. Dahlquist and Bjorck, Numerical Methods, Prentice-Hall, 1974.
- 5. Ueberhuber, Numerical Computation, Volume 1, Springer, 1995.

- Find $p_n(x) \in \mathbb{P}_n \mid y_i = p_n(x_i) \ 0 \le i \le n$.
- This is the simplest problem. Others are also of interest.
- n+1 parameters and n+1 constraints
- global, local/piecewise nonsmooth, or local/piecewise smooth polynomial interpolation
- polynomials and their derivatives are cheap to evaluate
- many representations of polynomials, i.e., parameterizations
- efficient interpolation algorithms exist and can be adapted to many circumstances: quadrature, differentiation, integration.
- accuracy achieved and achievable may be a problem
- accuracy considered in terms of the application of the polynomial

Lemma 4.1. Let x_i , $0 \le i \le n$, have distinct values. If $p_n(x) \in \mathbb{P}_n$ and $q_n(x) \in \mathbb{P}_n$ are polynomials of degree at most n such that $p_n(x_i) = q_n(x_i)$, $0 \le i \le n$, then $p_n(x) = q_n(x)$.

Proof. $d_n(x) = p_n(x) - q_n(x)$ is a polynomial of degree at most n such that $d_n(x_i) = 0$, $0 \le i \le n$, and so has n + 1 roots. It follows that $d_n(x) \equiv 0$.

- Find $p_n(x) \in \mathbb{P}_n \mid y_i = p_n(x_i) \ 0 \le i \le n$.
- Parameterization:

$$p_n(x) = \alpha_0 \beta_0(x) + \alpha_1 \beta_1(x) + \dots + \alpha_n \beta_n(x) \quad \alpha_i \in \mathbb{R} \quad \beta_i(x) \in \mathbb{P}_n$$

- $\{\beta_i(x)\}$ chosen to be a basis of \mathbb{P}_n and may or may not depend upon mesh points x_i , $i=0,\ldots,n$.
- Particular bases are often constructed using insights into polynomials that lend structure to the problem of determining the coefficients.
- The structure often allows the direct construction of the polynomial, i.e., a linear system of equations is not considered explicitly.

$$y_{0} = \alpha_{0}\beta_{0}(x_{0}) + \alpha_{1}\beta_{1}(x_{0}) + \dots + \alpha_{n}\beta_{n}(x_{0})$$

$$y_{1} = \alpha_{0}\beta_{0}(x_{1}) + \alpha_{1}\beta_{1}(x_{1}) + \dots + \alpha_{n}\beta_{n}(x_{1})$$

$$\vdots$$

$$y_{n} = \alpha_{0}\beta_{0}(x_{n}) + \alpha_{1}\beta_{1}(x_{n}) + \dots + \alpha_{n}\beta_{n}(x_{n})$$

$$\begin{pmatrix} \beta_0(x_0) & \beta_1(x_0) & \dots & \beta_n(x_0) \\ \beta_0(x_1) & \beta_1(x_1) & \dots & \beta_n(x_1) \\ \vdots & \vdots & & \vdots \\ \beta_0(x_n) & \beta_1(x_n) & \dots & \beta_n(x_n) \end{pmatrix} \begin{pmatrix} \alpha_0 \\ \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{pmatrix}$$

Monomial Form, Existence and Uniqueness

Assume the polynomial, $p_n(x)$, is represented uniquely in terms of monomials, x^i

$$p_n(x) = \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \dots + \alpha_n x^n$$

i.e., monomials are a basis for the vector space \mathbb{P}_n

Consider the constraints

$$y_{0} = \alpha_{0} + \alpha_{1}x_{0} + \alpha_{2}x_{0}^{2} + \dots + \alpha_{n}x_{0}^{n}$$

$$y_{1} = \alpha_{0} + \alpha_{1}x_{1} + \alpha_{2}x_{1}^{2} + \dots + \alpha_{n}x_{1}^{n}$$

$$\vdots$$

$$y_{n} = \alpha_{0} + \alpha_{1}x_{n} + \alpha_{2}x_{n}^{2} + \dots + \alpha_{n}x_{n}^{n}$$

Monomial Form, Existence and Uniqueness

$$\begin{pmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ \vdots & \vdots & & \vdots & & \\ 1 & x_{n-1} & x_{n-1}^2 & \dots & x_n^n \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{pmatrix} \begin{pmatrix} \alpha_0 \\ \alpha_1 \\ \vdots \\ \alpha_{n-1} \\ \alpha_n \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \\ \vdots \\ y_{n-1} \\ y_n \end{pmatrix}$$

$$V^T a = y$$

Example

$$(x,y) = \{(1,10) \ (2,26) \ (3,58) \ (4,112)\}$$
4 distinct x_i implies cubic $p_3(x) = \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \alpha_3 x^3$

$$\alpha_0 + \alpha_1 * 1 + \alpha_2 * 1 + \alpha_3 * 1 = 10$$

$$\alpha_0 + \alpha_1 * 2 + \alpha_2 * 4 + \alpha_3 * 8 = 26$$

$$\alpha_0 + \alpha_1 * 3 + \alpha_2 * 9 + \alpha_3 * 27 = 58$$

$$\alpha_0 + \alpha_1 * 4 + \alpha_2 * 16 + \alpha_3 * 64 = 112$$

Example

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \\ 1 & 4 & 16 & 64 \end{pmatrix} \begin{pmatrix} \alpha_0 \\ \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} = \begin{pmatrix} 10 \\ 26 \\ 58 \\ 112 \end{pmatrix} \rightarrow \begin{pmatrix} \alpha_0 \\ \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \\ 2 \\ 1 \end{pmatrix}$$

$$\det(V^T) = 12 \text{ and } \kappa_2(V^T) = 1.17 \times 10^3$$

Solution yields: the cubic $p_3(x) = 4 + 3x + 2x^2 + 1x^3$

Complexity: LU factorization $O(n^3)$, Bjorck and Pereyra $O(n^2)$

Monomial Form, Existence and Uniqueness

- The matrix V is called a Vandermonde matrix.
- The determinant has a known closed form

$$\det(V) = \det(V^T) = \prod_{j=0}^{n} \left\{ \prod_{i=j+1}^{n} (x_i - x_j) \right\}$$

• Therefore, if the x_i are n+1 distinct values there is a unique interpolating polynomial of degree n

Vandermonde Systems

- Vandermonde matrices appear in many numerical problems.
- V derived from $x_j = \omega^j$ for $0 \le j \le n-1$ where $\omega = exp(-2\pi i)/n$, i.e., an n-th root of unity, V/\sqrt{n} is a unitary matrix that defines the Discrete Fourier Transform. It is perfectly conditioned.
- Bjorck and Pereyra (Mathematics of Computation 24(112), 1970) have derived and analyzed algorithms to solve $V^Tb = c$ and Vb = c requiring $(5n^2)/2$ operations.
- These often produce accurate solutions despite ill-conditioning of V or V^T .
- For interpolation, the algorithm produces the Newton form polynomial as an intermediate result and then converts to the monomial form!

Vandermonde Matrix Conditioning

- Higham (2002) presents a detailed analysis of the conditioning of Vandermonde matrices and the stability of solving related systems.
- V and V^T can be very ill-conditioned.
- The ∞ -norm conditioning for $x_i = 1/(i+1)$ increases faster than n!, i.e., $\kappa_{\infty} > n^{n+1}$
- for any real choice of x_i , κ_2 increases at least exponentially and

$$\kappa_2 \ge \left(\frac{2}{n+1}\right)^{1/2} \left(1 + \sqrt{2}\right)^{n-1}$$

with equality using equally spaced points on [0, 1].

Vandermonde Matrix Conditioning

- complex roots of unity, i.e., the Fourier matrix V/\sqrt{n} , is the only choice that is perfectly conditioned.
- If $0 \le x_0 \le x_1 \le \cdots \le x_n$ then the computed solution, \hat{a} to $V^T a = y$ using a generalization of Bjorck and Pereyra's algorithm satisfies the (amazing) component-wise bound

$$|y - V^T \hat{a}| \le (n(n+4)u + O(u^2))|V^T||\hat{a}|$$

where u is unit roundoff. (Higham 2002)

• So the ill-conditioning does not necessarily preclude an accurate solution when the correct algorithm is chosen and there are some constraints on the x_i .

Alternative Forms

- $p_n(x)$ is unique for distinct x_i
- V^T tends to get increasingly ill-conditioned, $\kappa \sim 10^n$
- other representations can be chosen to construct $p_n(x)$
- Two use a basis that depends on the mesh and yields significant structure in the construction/linear system:
 - 1. Lagrange form
 - 2. Newton form
- As noted, using Bjorck and Pereyra yields the Newton form as an intermediate step so the Vandermonde approach and the monomial form are of limited practical use.

Lagrange Form

Given (x_i, y_i) $0 \le i \le n$ with distinct x_i values.

Consider a polynomial $m_0(x) \in \mathbb{P}_n$ defined by

$$m_0(x) = (x - x_1)(x - x_2) \cdots (x - x_{n-1})(x - x_n)$$

$$m_0(x_0) = (x_0 - x_1)(x_0 - x_2) \cdots (x_0 - x_{n-1})(x_0 - x_n)$$

$$\ell_0(x) = \frac{m_0(x)}{m_0(x_0)} = \begin{cases} 1 & \text{if } x = x_0 \\ 0 & \text{if } x = x_i \end{cases}$$

Lagrange Form

Define

$$m_i(x) = \prod_{j=0, j \neq i}^n (x - x_j) \text{ and } \ell_i(x) = \frac{m_i(x)}{m_i(x_i)} = \begin{cases} 1 & \text{if } x = x_i \\ 0 & \text{if } x = x_j \end{cases}$$

Each $m_i(x)$ solves a very simple and fundamental interpolation problem on the given mesh.

Lagrange Form

The solutions to the simple interpolation problems are easily combined to solve the interpolation problem that defines $p_n(x)$.

Define

$$p_n(x) = \sum_{i=0}^n y_i \ \ell_i(x) \to p_n(x_i) = y_i \ 0 \le i \le n$$

Since the interpolating polynomial is unique this is the same $p_n(x)$ as before.

Characteristic Polynomials

n=6 on [-1,1], equidistant, $\ell_2(x)$ – black, $\ell_3(x)$ – blue, $\ell_4(x)$ – red

Characteristic Polynomials

- basis for \mathbb{P}_n , i.e., given distinct x_i , $\forall p_n(x) \in \mathbb{P}_n, \ p_n(x) = \sum_{i=0}^n \alpha_i \ell_i(x)$ with unique $\alpha_0, \ldots, \alpha_n$.
- note asymmetric forms
- magnitude is not bounded by 1
- $\ell'_i(x_i)$ is not necessarily 0 (compare location of peak of $\ell_i(x)$ to x_i where $\ell_i(x_i) = 1$)
- matrix form of the interpolation problem is trivial, i.e., $\alpha_i = y_i$ is easily seen.

Example

Let
$$n = 3$$
, $(x, y) = \{(1, 10) (2, 26) (3, 58) (4, 112)\}$

$$p_3(x) = 4 + 3x + 2x^2 + 1x^3$$

$$p_3(x) = 10 \times \frac{(x-2)(x-3)(x-4)}{(1-2)(1-3)(1-4)} + 26 \times \frac{(x-1)(x-3)(x-4)}{(2-1)(2-3)(2-4)}$$

$$+ 58 \times \frac{(x-1)(x-2)(x-4)}{(3-1)(3-2)(3-4)} + 112 \times \frac{(x-1)(x-2)(x-3)}{(4-1)(4-2)(4-3)}$$

$$= -\frac{5}{3}(x-2)(x-3)(x-4) + 13(x-1)(x-3)(x-4)$$

$$-29(x-1)(x-2)(x-4) + \frac{56}{3}(x-1)(x-2)(x-3)$$

Newton Form of Polynomial

Constant: $p_0(x) = y_0$

Point–slope form of line:

$$y(x) = y_0 + m(x - x_0)$$

$$y(x_1) = y_1 = y_0 + m(x_1 - x_0)$$

$$m = \frac{y_1 - y_0}{x_1 - x_0}$$

$$\downarrow \downarrow$$

$$p_1(x) = y_0 + \frac{y_1 - y_0}{x_1 - x_0}(x - x_0)$$

$$p_1(x_0) = y_0 \text{ and } p_1(x_1) = y_1$$

Newton Form of Polynomial

Define the first divided difference:

$$y[x_0, x_1] = \frac{y_1 - y_0}{x_1 - x_0}$$

The Netwon polynomial of degree 1 is then defined as:

$$p_1(x) = y_0 + y[x_0, x_1](x - x_0)$$

Note the form

$$p_1(x) = p_0(x) + q_1(x)$$

Consider the general case of increasing degree of interpolating $p_{n-1}(x)$:

$$p_n(x) = p_{n-1}(x) + q_n(x)$$

Incrementing Newton Form of Polynomial

$$p_n(x) = p_{n-1}(x) + q_n(x) \to q_n(x) = p_n(x) - p_{n-1}(x)$$

$$q_n(x_i) = p_n(x_i) - p_{n-1}(x_i) = 0 \text{ for } 0 \le i \le n-1$$

$$\therefore q_n(x) = \alpha_n(x - x_0)(x - x_1) \cdots (x - x_{n-1}) = \alpha_n \omega_n(x)$$

$$p_n(x_n) = y_n = p_{n-1}(x_n) + \alpha_n \omega_n(x_n)$$

$$\downarrow \downarrow$$

$$\alpha_n = \frac{y_n - p_{n-1}(x_n)}{\omega_n(x_n)} \equiv y[x_0, \dots, x_n]$$

Example

Let
$$n = 3$$
, $(x, y) = \{(1, 10) (2, 26) (3, 58) (4, 112)\}$

Recall the monomial form $p_3(x) = 4 + 3x + 2x^2 + 1x^3$

$$p_0(x) = y_0 = 10$$

$$p_1(x) = y_0 + \frac{26 - p_0(2)}{(2 - 1)}(x - 1) = 10 + 16(x - 1)$$

$$p_2(x) = p_1(x) + \frac{58 - p_1(3)}{(3 - 2)(3 - 1)}(x - 1)(x - 2)$$

$$= 10 + 16(x - 1) + 8(x - 1)(x - 2)$$

$$p_3(x) = p_2(x) + \frac{112 - p_2(4)}{(4 - 3)(4 - 2)(4 - 1)}(x - 1)(x - 2)(x - 3)$$

$$= 10 + 16(x - 1) + 8(x - 1)(x - 2) + 1(x - 1)(x - 2)(x - 3)$$

Given (x_i, y_i) , for $0 \le i \le n$, let

- $\omega_{k:k+s}(x) = (x x_k)(x x_{k+1}) \cdots (x x_{k+s})$
- $p_{n-1}(x)$ interpolates y_0, \ldots, y_{n-1} and $q_{n-1}(x)$ interpolates y_1, \ldots, y_n
- $p_n(x)$ interpolates y_0, \ldots, y_n

Lemma.

$$p_n(x) = q_{n-1}(x) + \frac{x - x_n}{x_n - x_0} \left[q_{n-1}(x) - p_{n-1}(x) \right]$$

Proof. Check interpolation conditions for $1 \le i \le n-1$ and the endpoints.

$$p_n(x_i) = q_{n-1}(x_i) + \frac{x_i - x_n}{x_n - x_0} \left[q_{n-1}(x_i) - p_{n-1}(x_i) \right]$$

$$= q_{n-1}(x_i) + \frac{x_i - x_n}{x_n - x_0} \times 0 = y_i$$

$$p_n(x_n) = q_{n-1}(x_n) + \frac{x_n - x_n}{x_n - x_0} \left[q_{n-1}(x_n) - p_{n-1}(x_n) \right]$$

$$= q_{n-1}(x_n) + 0 = y_n$$

$$p_n(x_0) = q_{n-1}(x_0) + \frac{x_0 - x_n}{x_n - x_0} \left[q_{n-1}(x_0) - p_{n-1}(x_0) \right]$$

$$= q_{n-1}(x_0) - q_{n-1}(x_0) + p_{n-1}(x_0) = y_0$$

$$p_{n-1}(x) = \sum_{i=0}^{n-1} \omega_{0:i-1}(x) y[x_0, \dots, x_i]$$

$$= y[x_0, \dots, x_{n-1}] x^{n-1} + r_{n-2}(x)$$

$$q_{n-1}(x) = \sum_{i=1}^{n} \omega_{1:i-1}(x) y[x_1, \dots, x_i]$$

$$= y[x_1, \dots, x_n] x^{n-1} + \tilde{r}_{n-2}(x)$$

$$p_n(x) = \sum_{i=0}^{n} \omega_{0:i-1}(x) y[x_0, \dots, x_i]$$

$$= y[x_0, \dots, x_n] x^n + \hat{r}_{n-1}(x)$$

Compare leading term coefficients:

$$p_{n-1}(x) = y[x_0, \dots, x_{n-1}]x^{n-1} + r_{n-2}(x)$$

$$q_{n-1}(x) = y[x_1, \dots, x_n]x^{n-1} + \tilde{r}_{n-2}(x)$$

$$p_n(x) = y[x_0, \dots, x_n]x^n + \hat{r}_{n-1}(x)$$

$$p_n(x) = q_{n-1}(x) + \frac{x - x_n}{x_n - x_0} \Big[q_{n-1}(x) - p_{n-1}(x) \Big]$$

$$= \frac{x^n}{x_n - x_0} \Big[y[x_1, \dots, x_n] - y[x_0, \dots, x_{n-1}] \Big] + \text{lower order terms}$$

$$\therefore y[x_0, \dots, x_n] = \frac{y[x_1, \dots, x_n] - y[x_0, \dots, x_{n-1}]}{x_n - x_0}$$

Example

$$D^k f_i \quad 1 \le k \le n, \quad 0 \le i \le n - k$$

i	0	1	2	3
x_i	1	2	3	4
f_i	10	26	58	112
$D^1 f_{i-1}$	1	$D^1 f_0 = 16$	$D^1 f_1 = 32$	$D^1 f_2 = 54$
$D^2 f_{i-2}$	ı		$D^2 f_0 = 8$	$D^2 f_1 = 11$
$D^3 f_{i-3}$	_	_	_	$D^3 f_0 = 1$

where
$$D^k f_i = f[x_i, \dots, x_{i+k}] = \frac{D^{k-1} f_{i+1} - D^{k-1} f_i}{(x_{i+k} - x_i)}$$

 $p_3(x) = f_0 + D^1 f_0 \omega_1(x) + D^2 f_0 \omega_2(x) + D^3 f_0 \omega_3(x)$
 $p_3(x) = 10 + 16(x - 1) + 8(x - 1)(x - 2) + 1(x - 1)(x - 2)(x - 3)$

Newton and Lagrange Forms

- Assume the distinct meshpoints x_0, \ldots, x_n are given.
- The Lagrange polynomials $\ell_i(x)$, for $i=0,\ldots,n$, and the Newton polynomials $\omega_0(x)=1$ and $\omega_i(x)=(x-x_0)(x-x_1)\cdots(x-x_{i-1})$, for $i=1,\ldots,n$ are both bases for \mathbb{P}_n .
- Both bases yield linear equations that relate the data to the coefficients defining the interpolating polynomial $p_n(x)$.
- These equations are highly structured due to the constructions used in the derivations of the forms.

Equidistant Differences

Suppose $x_i = x_{i-1} + h$ for h > 0 and $i = 0, \ldots$

$$\Delta f(x) = f(x+h) - f(x)$$

$$\nabla f(x) = f(x) - f(x-h)$$

$$\Delta^{2} f(x) = \Delta f(x+h) - \Delta f(x)$$

$$\Delta^{m+1} f(x) = \Delta^{m} f(x+h) - \Delta^{m} f(x)$$

$$f[x_{0}, x_{1}] = \frac{\Delta f(x_{0})}{h}$$

$$f[x_{0}, \dots, x_{k}] = \frac{\Delta^{k} f(x_{0})}{k!h^{k}}$$

Equidistant Basic Formulae

$$x = x_0 + sh \to x - x_i = (s - i)h$$

$$\prod_{i=0}^{n} (x - x_i) = h^{n+1} \prod_{i=0}^{n} (s - i) = \pi_n(s)h^{n+1}$$

 $\pi_k(s)$ is called the factorial polynomial. We can therefore generalize the binomial coefficient:

$$\binom{s}{k} \equiv \frac{\prod_{i=0}^{k-1} (s-i)}{k!} = \frac{\pi_{k-1}(s)}{k!}$$

Equidistant Newton Polynomial

$$f_{0} + f[x_{0}, x_{1}](x - x_{0}) + \dots + f[x_{0}, \dots, x_{n}](x - x_{0}) \cdots (x - x_{n-1})$$

$$= f_{0} + \frac{\Delta f_{0}}{h}(x - x_{0}) + \dots + \frac{\Delta^{n} f_{0}}{n!h^{n}}(x - x_{0}) \cdots (x - x_{n-1})$$

$$= f_{0} + \frac{\Delta f_{0}}{h}\pi_{0}(s)h + \dots + \frac{\Delta^{n} f_{0}}{n!h^{n}}\pi_{n-1}(s)h^{n}$$

$$= f_{0} + \frac{\Delta f_{0}}{1!}\pi_{0}(s) + \dots + \frac{\Delta^{n} f_{0}}{n!}\pi_{n-1}(s)$$

$$= f_{0} + \binom{s}{1}\Delta f_{0} + \dots + \binom{s}{i}\Delta^{i} f_{0} + \dots + \binom{s}{n}\Delta^{n} f_{0}$$