Unit 11

—Design Sequential Circuits with MSI blocks

张彦航

School of Computer Science Zhangyanhang@hit.edu.cn

Unit 11 利用中规模芯片设计 时序逻辑电路

■ 计数器芯片

■寄存器芯片

计数器芯片

- □ 同步十进制加法计数器: 74LS160(异步清零),74LS162(同步清零)
- □ 同步4位二进制加法计数器: 74LS161 (异步清零),74LS163 (同步清零)
- □ 异步二-五-十进制加法计数器: 74LS90 (异步清零),74LS290 (异步清零)
- □ 同步十进制加/减计数器: 74LS192(双时钟),74LS190(单时钟)
- ◘ 同步4位二进制加/减计数器:74LS193 (双时钟),74LS191(单时钟)

置数功能

时钟边沿到来时,且置数使能信号有效,向计数器装入用户指定的初始值

芯片型号	计数进制	输出特点 置数方式		清零方式
74LS160	十进制	8421BCD码	同步	异步
74LS161	十六进制	4位二进制码	同步	异步
74LS162	十进制	8421BCD码	同步	同步
74LS163	十六进制	4位二进制码	同步	同步

清零只需要1个条件:清零端给有效信号立即回零。

清零需要2个条件同时 具备:清零端给有效 信号+时钟边沿到来

异步清零只需要1

个条件:清零端给

有效信号立即回零

设计M进制计数器:

需要M+1个状态

1010

例1: 利用74LS161设计模10 计数器

① 清零法——利用清零端

す女!											
端给		输入						输出			
回零,	\sqrt{c}	P	CLRN	LDN	ENT	ENP	Q_{D}	Q c	Q_B	Q _A	
		X	0	Х	Х	Х	0	0	0	0	
		↑	1	0	Х	X	D	C	В	Α	
数器:) ;	X	1	1	0	X		侈	詩		
大态 大态		X	1	1	X	0		俘	耕		
/\/\.	기 :	1	1	1	1	1	计数	汝,计渍	时RC	0=1	
$0000 \rightarrow 0001 \rightarrow 0010 \rightarrow 0011 \rightarrow 0100$											
用74LS161实现											
(1001)											

1010只在极短的瞬态出现,不包括在稳定的循环中

例2: 利用74LS163 设计模10 计数器

① 清零法——利用清零端

<mark>同步清零</mark>需要2个条件 同时具备 : 清零端给有 效信号+时钟边沿到来

设计M进制计数器: 需要M个状态

芯片型号	计数进制	输出特点	置数方式	清零方式
74LS160	十进制	8421BCD码	同步	异步
74LS161	十六进制	4位二进制码	同步	异步
74LS162	十进制	8421BCD码	同步	同步
74LS163	十六进制	4位二进制码	同步	同步

74LS163/162功能表

输入						新	出	
СР	CLRN	LDN	ENT	ENP	\mathbf{Q}_{D}	Q _C	Q_B	Q_A
• 1	0	X	Х	Х	0	0	0	0
†	1	0	X	X	D	С	В	Α
Х	1	1	0	X	保持			
Х	1	1	X	0	保持			
<u>†</u>	1	1	1	1	│ │ 计数, 计满时RCO=1			

注意:同步清零和异步 清零在设计中的不同

74LS161/160功能表

输入							出	
СР	CLRN	LDN	ENT	ENP	Q_D	Q _C	Q _B	Q_A
Х	0	Х	Х	Х	0	0	0	0
†	1	0	1	0	D	С	В	Α
X	1	1	0	X	保持			
X	1	1	Х	0	保持			
↑	1	1	1	1	计数	仗, 计 滞	睛时 R(CO=1

74LS163/162功能表

输入						辅	出		
СР	CLRN	LDN	ENT	ENP	Q_D	Q _C	Q _B	Q _A	
†	0	Х	Χ	Х	0	0	0	0	
†	1	0	1	0	D	С	В	Α	
X	1	1	0	X	保持				
X	1	1	Х	0	保持				
1	1	1	1	1	计数, 计满时RCO=1				

芯片型号	计数进制	计数进制 输出特点		清零方式
74LS160	十进制	8421BCD码	同步	异步
74LS161	十六进制	4位二进制码	同步	异步
74LS162	十进制	8421BCD码	同步	同步
74LS163	十六进制	4位二进制码	同步	同步

例3: 利用74LS161(或74LS163) 设计模10计数器

② 置数法——利用置数端

设计M进制计数器:需要M个状态

设计M进制计数器总结

异步清零

设计M进制计数器: 需要M+1个状态

有毛刺

① 清零法

同步清零

设计M进制计数器: 需要M个状态

没有毛刺

② 置数法

设计M进制计数器: 需要M个状态

没有毛刺