Instruction: You must show your tree clearly after each insertion/deletion/modification for credit. No credit will be given if you do not show all your trees/work.

1. (15) Construct a Binomial Queue Q by inserting <2, 1, 4, 5, 9, 3, 6, 7, 8, 12, 11, 10>, in the given order, into an initially empty queue. When done, illustrate the data structure used in implementing the resulting Binomial queue.

Solution:

Final BQ:

Data structure for Q:

2. (15) Perform deleteMin(Q) operation on the following Binomial Queue Q. When done, illustrate the data structure used in implementing the resulting binomial queue.

Solution:

deleteMin(Q):

Data structure:

3. (10) Perform concate(H1,H2) on the following two Fibonacci heaps H1 and H2, where • is a marked node.

Solution:

concate(H1,H2):

4. (10) Show the data structure used in implementing the following Fibonacci heap H, where is a marked node.

Solution:

Implementation of H with degree information:

Remark: Each node will have a parent pointer pointing to its parent. For simplicity, the parent pointer of each node is omitted.

5. (15) Perform deleteMin(H) on the following Fibonacci heap H, where is a marked node. *Remark:* you must show all steps clearly for credit.

Solution:

deleteMin(H):

Trees consolidation:

Final Fibonacci heap:

6. (15) Perform delete(q,H) on the following Fibonacci heap H, where is a marked node. *Remark:* you must show all steps clearly for credit.

Solution:

$decreaseKey(q,-\infty,H)$:

deleteMin(H):

Tree consolidation:

Final FH:

- 7. (20) Given a set of 8 records with priorities $S = \{12, 14, 16, 9, 7, 13, 10, 15\}$.
 - (a) Construct an AVL tree for S by inserting the records, in the given order, into an initially empty AVL tree.
 - (b) Construct an AVL tree for S by inserting the records, in the reversed given order, into an initially empty AVL tree.

Remark: You must show your tree and indicate the type of rotation performed, if any, after each insert operation.

Solution:

(a) Insert in the given order:

Insert(12):

12

Insert(14):

Insert(16):

Insert(7):

Insert(13):

Insert(10) and Insert(15):

Examples of delete(x):

Delete(9):

Remark: No rotation required.

Delete(12):

(b) Insert in the reversed given order: Insert(15):

Insert(10):

Insert(13):

Insert(7):

Insert(9):

Insert(16):

Insert(14) and Insert(12):

11/27/2018