Postupnosti a nekonečné rady

Oľga Stašová

Ústav informatiky a matematiky Fakulta elektrotechniky a informatiky Slovenská technická univerzita

letný semester 2023/2024

Postupnosti

Obsah prednášky:

- Postupnosti
- Nekonečné rady

Postupnosť komplexných čísel je zobrazenie z množiny prirodzených čísel **N** do množiny komplexných čísel **C**, $(f:N \to C)$.

Postupnosť komplexných čísel je zobrazenie z množiny prirodzených čísel **N** do množiny komplexných čísel **C**, (f:**N** \rightarrow **C**). Postupnosti komplexných čísel označujeme $\{z_n\}_{n=1}^{\infty}$,

$${z_n}_{n=1}^{\infty} = {z_1, z_2, z_3, ..., z_n, ...}.$$

Postupnosť komplexných čísel je zobrazenie z množiny prirodzených čísel **N** do množiny komplexných čísel **C**, (f:**N** \rightarrow **C**). Postupnosti komplexných čísel označujeme $\{z_n\}_{n=1}^{\infty}$,

$${z_n}_{n=1}^{\infty} = {z_1, z_2, z_3, ..., z_n, ...}.$$

Pozn. Postupnosti reálnych čísel označujeme $\{a_n\}_{n=1}^{\infty}$.

Postupnosť komplexných čísel je zobrazenie z množiny prirodzených čísel **N** do množiny komplexných čísel **C**, (f: $\mathbb{N} \to \mathbb{C}$). Postupnosti komplexných čísel označujeme $\{z_n\}_{n=1}^{\infty}$,

$${z_n}_{n=1}^{\infty} = {z_1, z_2, z_3, ..., z_n, ...}.$$

Pozn. Postupnosti reálnych čísel označujeme $\{a_n\}_{n=1}^{\infty}$.

Postupnosť reprezentuje **funkciu**, ktorej definičný obor je množina prirodzených čísel a jej funkčné hodnoty priradené prirodzeným číslam $1,2,\ldots,n$ nazývame **členy postupnosti**. n-tý člen postupnosti komplexných čísel označujeme z_n .

Pre každé $n \in N$ máme

$$z_n = x_n + iy_n,$$

t.j. definícia postupnosti komplexných čísel je ekvivalentná s definíciou dvojice postupností reálnych čísel $\{x_n\}_{n=1}^\infty$ a $\{y_n\}_{n=1}^\infty$.

Postupnosť reálnych čísel $\{a_n\}_{n=1}^\infty$ sa nazýva

• ohraničená zhora ak $\exists \alpha \in \mathbf{R}$ také, že $\forall n \in \mathbf{N} : a_n \leq \alpha$.

Postupnosť reálnych čísel $\{a_n\}_{n=1}^{\infty}$ sa nazýva

- ohraničená zhora ak $\exists \alpha \in \mathbf{R}$ také, že $\forall n \in \mathbf{N} : a_n \leq \alpha$.
- ohraničená zdola ak $\exists \beta \in \mathbf{R}$ také, že $\forall n \in \mathbf{N} : a_n \geq \beta$.

Postupnosť reálnych čísel $\{a_n\}_{n=1}^{\infty}$ sa nazýva

- ohraničená zhora ak $\exists \alpha \in \mathbf{R}$ také, že $\forall n \in \mathbf{N} : a_n \leq \alpha$.
- ohraničená zdola ak $\exists \beta \in \mathbf{R}$ také, že $\forall n \in \mathbf{N} : a_n \geq \beta$.
- ohraničená, ak je ohraničená zhora a ohraničená zdola, teda ak $\exists \alpha, \beta \in \mathbf{R}$ také, že $\forall n \in \mathbf{N} : \beta \leq a_n \leq \alpha$.

Postupnosť reálnych čísel $\{a_n\}_{n=1}^{\infty}$ sa nazýva

- ohraničená zhora ak $\exists \alpha \in \mathbf{R}$ také, že $\forall n \in \mathbf{N} : a_n \leq \alpha$.
- ohraničená zdola ak $\exists \beta \in \mathbf{R}$ také, že $\forall n \in \mathbf{N} : a_n \geq \beta$.
- ohraničená, ak je ohraničená zhora a ohraničená zdola, teda ak $\exists \alpha, \beta \in \mathbf{R}$ také, že $\forall n \in \mathbf{N} : \beta \leq a_n \leq \alpha$.
- neohraničená, ak nie je ohraničená zhora alebo zdola.

Obr.: Neohraničená postupnosť $\{n^2\}_{n=1}^{\infty}$.

Obr.: Ohraničená postupnosť $\{(1+\frac{1}{n})^n\}_{n=1}^{\infty}$.

Postupnosť komplexných čísel $\{z_n\}_{n=1}^{\infty}$ sa nazýva **ohraničená**, ak $\forall n \in \mathbf{N}$ platí: $|z_n| < M$, kde M > 0. $|z_n| = \sqrt{x_n^2 + y_n^2} > 0$.

Postupnosť $\{z_n\}_{n=1}^{\infty}\subset \mathbf{C}$ je ohraničená $\Leftrightarrow \{x_n\}_{n=1}^{\infty}\subset \mathbf{R},\ \{y_n\}_{n=1}^{\infty}\subset \mathbf{R}$ sú ohraničené.

$$\lim_{n \to \infty} z_n = z \in \mathbf{C} \Leftrightarrow \lim_{n \to \infty} \operatorname{Re} z_n = \operatorname{Re} z \bigwedge \lim_{n \to \infty} \operatorname{Im} z_n = \operatorname{Im}.$$

Pozn. $\lim_{n \to \infty} (-1)^n n = \infty$. **Pozor!** táto limita v **R** neexistuje.

7 / 35

Aritmetická postupnosť: $a_{n+1} = a_n + d$, kde d je diferencia.

$$a_{1} = a_{1}$$
 $a_{2} = a_{1} + d$
 $a_{3} = a_{1} + 2d$
 \vdots
 $a_{n} = a_{1} + (n-1)d$

Aritmetická postupnosť: $a_{n+1} = a_n + d$, kde d je diferencia.

$$a_1 = a_1$$
 $a_2 = a_1 + d$
 $a_3 = a_1 + 2d$
 \vdots
 $a_n = a_1 + (n-1)d$

Postupnosť čísel $a_1,a_2,...,a_n,...$ nazývame **aritmetická**, ak pre ľubovoľné dva po sebe nasledujúce členy postupnosti platí $a_{n+1}-a_n=d$.

Geometrická postupnosť: $a_{n+1} = a_n \cdot q$, kde q je quotient (kvocient).

$$a_{1} = a_{1}$$

$$a_{2} = a_{1} \cdot q$$

$$a_{3} = a_{1} \cdot q^{2}$$

$$\vdots$$

$$a_{n} = a_{1} \cdot q^{(n-1)}$$

Geometrická postupnosť: $a_{n+1} = a_n \cdot q$, kde q je quotient (kvocient).

$$a_{1} = a_{1}$$

$$a_{2} = a_{1} \cdot q$$

$$a_{3} = a_{1} \cdot q^{2}$$

$$\vdots$$

$$a_{n} = a_{1} \cdot q^{(n-1)}$$

Postupnosť čísel $a_1,a_2,...,a_n,...$ nazývame **geometrická**, ak pre ľubovoľné dva po sebe nasledujúce členy postupnosti platí $\frac{a_{n+1}}{a_n}=q$.

Definícia

Nech $\{a_n\}_{n=1}^\infty$ je daná nekonečná postupnosť reálnych čísel. Potom symbol

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \ldots + a_n + \ldots$$

nazývame nekonečný číselný rad, alebo skrátene nekonečný rad. Číslo a_n nazývame n-tý člen radu.

(pozn. Číselné rady - členmi radu sú čísla; Funkcionálne rady - členmi radu sú funkcie.)

Nekonečné rady v komplexnej analýze

Na komplexnej analýze sa budeme zaoberať: **radmi funkcií komplexnej premennej**.

Veta

Rad
$$\sum\limits_{n=1}^{\infty}z_n$$
, $z_n=x_n+iy_n$ konverguje \Leftrightarrow ak konvergujú obidva rady $\sum\limits_{n=1}^{\infty}x_n$ a $\sum\limits_{n=1}^{\infty}y_n$.

Veta

$$Rad\sum_{n=1}^{\infty}z_n$$
, $z_n=x_n+iy_n$ absolútne konverguje \Leftrightarrow ak absolútne konvergujú obidva rady $\sum_{n=1}^{\infty}x_n$ a $\sum_{n=1}^{\infty}y_n$.

Nekonečné rady v komplexnej analýze

Rad

$$u_1(z) + u_2(z) + ... + u_n(z) + ...,$$

kde $u_k:A\to \mathbf{C}$ sú funkcie komplexnej premennej sa nazýva rad funkcií komplexnej premennej.

Pre pevnú hodnotu $z=z_0\in A$ z vyššie uvedeného radu dostaneme **rad komplexných čísel**

$$u_1(z_0) + u_2(z_0) + \dots + u_n(z_0) + \dots$$

Ak je 2. rad konvergentný, tak bod $z=z_0$ nazývame **bodom konvergencie** 1. radu. A množinu všetkých bodov konvergencie nazývame **obor konvergencie** 1. radu a označujeme ho **K**.

Definícia

K radu $\sum\limits_{n=1}^{\infty}a_n$ je priradená taká postupnosť $\{s_n\}_{n=1}^{\infty}$, že platí

$$s_n = a_1 + a_2 + \ldots + a_n$$

pre každé $n \in \mathbf{N}^+$. Postupnosť $\{s_n\}_{n=1}^\infty$ nazývame **postupnosť** čiastočných súčtov k radu $\sum\limits_{n=1}^\infty a_n$.

Definícia

Nech postupnosť čiastočných súčtov $\{s_n\}_{n=1}^{\infty}$ má vlastnú limitu

$$\lim_{n \to \infty} s_n = s$$

potom číslo s nazývame súčtom radu a rad nazývame **konvergentný**. Ak limita $\lim_{n\to\infty} s_n$ neexistuje alebo je nevlastná, potom hovoríme, že rad je **divergentný**.

Vzťah medzi
$$\sum\limits_{n=1}^\infty a_n$$
 a $\{s_n\}_{n=1}^\infty$:
$$s_1 = a_1$$

$$s_2 = a_1 + a_2$$

$$\cdots$$

$$s_n = a_1 + a_2 + \cdots + a_{n-1} + a_n$$

$$s_1 = a_1$$

$$s_2 = s_1 + a_2$$

$$\dots$$

$$s_n = s_{n-1} + a_n$$

Ešte pár poznámok, ktoré je dobré si uvedomiť:

• V čom je rozdiel medzi postupnosťou a radom? Nekonečný číselný rad predstavuje súčet prvkov postupnosti.

Ešte pár poznámok, ktoré je dobré si uvedomiť:

- V čom je rozdiel medzi postupnosťou a radom? Nekonečný číselný rad predstavuje súčet prvkov postupnosti.
- Z definície je zrejmé, že o tom, či rad má alebo nemá súčet rozhoduje to, či postupnosť $\{s_n\}_{n=1}^{\infty}$ je konvergentná alebo divergentná

Ešte pár poznámok, ktoré je dobré si uvedomiť:

- V čom je rozdiel medzi postupnosťou a radom? Nekonečný číselný rad predstavuje súčet prvkov postupnosti.
- Z definície je zrejmé, že o tom, či rad má alebo nemá súčet rozhoduje to, či postupnosť $\{s_n\}_{n=1}^{\infty}$ je konvergentná alebo divergentná
- Rad je konvergentný
 ⇔ má súčet; rad je divergentný
 ⇔ nemá súčet

Ešte pár poznámok, ktoré je dobré si uvedomiť:

- V čom je rozdiel medzi postupnosťou a radom? Nekonečný číselný rad predstavuje súčet prvkov postupnosti.
- Z definície je zrejmé, že o tom, či rad má alebo nemá súčet rozhoduje to, či postupnosť $\{s_n\}_{n=1}^{\infty}$ je konvergentná alebo divergentná
- Rad je konvergentný

 má súčet; rad je divergentný

 nemá súčet
- O súčte radu hovoríme teda iba pri konvergentných radoch.

Definícia

Nech sú dané rady $\sum_{n=1}^{\infty} a_n$ a $\sum_{n=1}^{\infty} b_n$. Potom rad

$$\sum_{n=1}^{\infty} (a_n + b_n)$$

nazývame súčtom radov $\sum_{n=1}^{\infty} a_n$ a $\sum_{n=1}^{\infty} b_n$.

Definícia

Nech sú dané rady $\sum_{n=1}^{\infty} a_n$ a $\sum_{n=1}^{\infty} b_n$. Potom rad

$$\sum_{n=1}^{\infty} (a_n + b_n)$$

nazývame súčtom radov $\sum_{n=1}^{\infty} a_n$ a $\sum_{n=1}^{\infty} b_n$.

Ak $c \in \mathbf{R}$, tak rad

$$\sum_{n=1}^{\infty} (c \cdot a_n)$$

nazývame súčin radu $\sum_{n=1}^{\infty} a_n$ a konštanty c.

Veta

Nech rad $\sum_{n=1}^{\infty}(a_n+b_n)$ je súčtom radov $\sum_{n=1}^{\infty}a_n$ a $\sum_{n=1}^{\infty}b_n$. Nech tieto rady sú konvergentné a platí $\sum_{n=1}^{\infty}a_n=s_1$ a $\sum_{n=1}^{\infty}b_n=s_2$. Potom aj rad $\sum_{n=1}^{\infty}(a_n+b_n)$ je konvergentný a platí

$$\sum_{n=1}^{\infty} (a_n + b_n) = s_1 + s_2.$$

Veta

Nech $c \in \mathbf{R}$ a $c \neq 0$. Potom rad $\sum_{n=1}^{\infty} (c \cdot a_n)$ je konvergentný práve vtedy, keď je konvergentný rad $\sum_{n=1}^{\infty} a_n$. V prípade konvergencie, ak $\sum_{n=1}^{\infty} a_n = s$, tak

$$\sum_{n=1}^{\infty} (c \cdot a_n) = c \cdot s = c \sum_{n=1}^{\infty} a_n.$$

Nekonečné rady - nutná podmienka konvergencie radu

Veta

Nutná podmienka konvergencie radu:

Ak rad
$$\sum_{n=1}^{\infty} a_n$$
 konverguje, tak $\lim_{n \to \infty} a_n = 0$.

Ak $\lim_{n\to\infty}a_n\neq 0$, potom rad $\sum_{n=1}^{\infty}a_n$ diverguje.

Ak $\lim_{n\to\infty}a_n=0$, potom rad $\sum_{n=1}^{\infty}a_n$ môže ale nemusí konvergovať.

Nekonečné rady - geometrický rad

Definícia

Rad

$$\sum_{n=1}^{\infty} a_1 q^{n-1} = a_1 + a_1 q + a_1 q^2 + \dots + a_1 q^{n-1} + \dots = a_1 (1 + q + \dots + q^{n-1} + \dots)$$

nazývame **geometrický rad**. Číslo q nazývame **kvocient** geometrického radu.

Nekonečné rady - geometrický rad

 $\operatorname{\mathsf{Pre}}\, n$ -tý čiastočný súčet s_n platí

$$s_n = a_1 + a_1 q + a_1 q^2 + \dots + a_1 q^{n-1} + \dots = a_1 \frac{q^n - 1}{q - 1}, \text{ ak } q \neq 1,$$

 $s_n = n \cdot a_1, \text{ ak } q = 1.$

Dá sa dokázať, že

- pre $|q| \ge 1$ postupnosť $\{s_n\}_{n=1}^{\infty}$ diverguje,
- \bullet pre |q|<1 postupnosť $\{s_n\}_{n=1}^{\infty}$ konverguje a platí

$$\lim_{n \to \infty} s_n = \lim_{n \to \infty} a_1 \frac{q^n - 1}{q - 1} = \frac{a_1}{q - 1} \lim_{n \to \infty} (q^n - 1) = \frac{a_1}{q - 1} (0 - 1) = \frac{a_1}{1 - q}.$$

Nekonečné rady - geometrický rad

Veta

Geometrický rad $\sum_{n=1}^{\infty}a_1q^{n-1}$ je konvergentný práve vtedy, keď |q|<1. V prípade konvergencie platí

$$\sum_{n=1}^{\infty} q^{n-1} = a_1(1+q+q^2+\ldots+q^{n-1}+\ldots) = \frac{a_1}{1-q}.$$

Nekonečné rady - rad so striedavými znamienkami

Definícia

Nech $a_n > 0$ pre každé $n \in \mathbf{N}^+$. Potom rad

$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n = a_1 - a_2 + a_3 - a_4 + \dots + (-1)^{n+1} a_n + \dots$$

nazývame radom so striedavými znamienkami.

Nekonečné rady - rad so striedavými znamienkami

Veta

Leibnizovo kritérium konvergencie radu

Nech $a_n>0$ pre každé $n\in \mathbf{N}^+$ a postupnosť $\{s_n\}_{n=1}^\infty$ je nerastúca. Ak

$$\lim_{n\to\infty}a_n=0$$
, tak rad $\sum_{n=1}^{\infty}(-1)^{n+1}a_n$ je konvergentný.

(pozn. Nerastúca postupnosť:
$$a_n \ge a_{n+1}$$
, pre $n = 1, 2, ...$)

To znamená, že podmienka $\lim_{n \to \infty} a_n = 0$ je:

- pre nekonečný rad len nutnou podmienkou konvergencie,
- pre nekonečný rad so striedavými znamienkami postačujúcou podmienkou konvergencie.

Nekonečné rady - rad so striedavými znamienkami

- Nutná podmienka.
 - Ak nie je splnená, neplatí tvrdenie (napr. konvergencia).
 - Ak je splnená, tvrdenie môže ale nemusí platiť.
- Postačujúca podmienka.
 - Ak je splnená, tvrdenie platí.

Nekonečné rady - Cauchyho odmocninové kritérium

Cauchyho odmocninové kritérium

Nech $\sum\limits_{n=1}^{\infty}a_n$ je nekonečný rad. Ak

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = L < 1,$$

potom nekonečný rad $\sum\limits_{n=1}^{\infty}a_n$ konverguje.

Nekonečné rady - Cauchyho odmocninové kritérium

Cauchyho odmocninové kritérium

Nech $\sum\limits_{n=1}^{\infty}a_n$ je nekonečný rad. Ak

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = L < 1,$$

potom nekonečný rad $\sum\limits_{n=1}^{\infty}a_n$ konverguje.

• Ak L>1, rad $\sum\limits_{n=1}^{\infty}a_{n}$ diverguje.

Nekonečné rady - Cauchyho odmocninové kritérium

Cauchyho odmocninové kritérium

Nech $\sum\limits_{n=1}^{\infty}a_n$ je nekonečný rad. Ak

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = L < 1,$$

potom nekonečný rad $\sum\limits_{n=1}^{\infty}a_n$ konverguje.

- Ak L>1, rad $\sum\limits_{n=1}^{\infty}a_{n}$ diverguje.
- Ak L=1, podľa tohto kritéria o konvergencii (divergencii) radu $\sum_{n=1}^{\infty} a_n$ nevieme rozhodnúť.

Nekonečné rady - D'Alambertovo podielové kritérium

D'Alambertovo podielové kritérium

Nech $\sum\limits_{n=1}^{\infty}a_n$ je nekonečný rad. Ak

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=L<1,$$

potom nekonečný rad $\sum\limits_{n=1}^{\infty}a_n$ konverguje.

Nekonečné rady - D'Alambertovo podielové kritérium

D'Alambertovo podielové kritérium

Nech $\sum\limits_{n=1}^{\infty}a_n$ je nekonečný rad. Ak

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=L<1,$$

potom nekonečný rad $\sum_{n=1}^{\infty} a_n$ konverguje.

• Ak L>1, rad $\sum\limits_{n=1}^{\infty}a_{n}$ diverguje.

Nekonečné rady - D'Alambertovo podielové kritérium

D'Alambertovo podielové kritérium

Nech $\sum\limits_{n=1}^{\infty}a_n$ je nekonečný rad. Ak

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1,$$

potom nekonečný rad $\sum_{n=1}^{\infty} a_n$ konverguje.

- Ak L > 1, rad $\sum_{n=1}^{\infty} a_n$ diverguje.
- Ak L=1, podľa tohto kritéria o konvergencii (divergencii) radu $\sum_{n=1}^{\infty} a_n \text{ nevieme rozhodnúť}.$

Weierstrassovo porovnávacie kritérium

Nech sú dané rady $\sum\limits_{n=1}^{\infty}a_n$ a $\sum\limits_{n=1}^{\infty}b_n$. Nech pre každé $n\in \mathbf{N}$, $b_n\geq 0$ a nech pre každé $n\geq k$ platí, že $|a_n|\leq b_n$.

Weierstrassovo porovnávacie kritérium

Nech sú dané rady $\sum\limits_{n=1}^{\infty}a_n$ a $\sum\limits_{n=1}^{\infty}b_n$. Nech pre každé $n\in \mathbf{N}$, $b_n\geq 0$ a nech pre každé $n\geq k$ platí, že $|a_n|\leq b_n$. Potom platí:

29 / 35

Weierstrassovo porovnávacie kritérium

Nech sú dané rady $\sum\limits_{n=1}^{\infty}a_n$ a $\sum\limits_{n=1}^{\infty}b_n$. Nech pre každé $n\in \mathbf{N}$, $b_n\geq 0$ a nech pre každé $n\geq k$ platí, že $|a_n|\leq b_n$. Potom platí:

• Ak konverguje rad $\sum\limits_{n=1}^{\infty}b_n$, tak konverguje aj rad $\sum\limits_{n=1}^{\infty}a_n$.

Weierstrassovo porovnávacie kritérium

Nech sú dané rady $\sum\limits_{n=1}^{\infty}a_n$ a $\sum\limits_{n=1}^{\infty}b_n$. Nech pre každé $n\in \mathbf{N}$, $b_n\geq 0$ a nech pre každé $n\geq k$ platí, že $|a_n|\leq b_n$. Potom platí:

- \bullet Ak konverguje rad $\sum\limits_{n=1}^{\infty}b_{n}$, tak konverguje aj rad $\sum\limits_{n=1}^{\infty}a_{n}.$
- ullet Ak diverguje rad $\sum\limits_{n=1}^{\infty}a_n$, tak diverguje aj rad $\sum\limits_{n=1}^{\infty}b_n$.

Weierstrassovo porovnávacie kritérium

Nech sú dané rady $\sum\limits_{n=1}^{\infty}a_n$ a $\sum\limits_{n=1}^{\infty}b_n$. Nech pre každé $n\in \mathbf{N}$, $b_n\geq 0$ a nech pre každé $n\geq k$ platí, že $|a_n|\leq b_n$. Potom platí:

- \bullet Ak konverguje rad $\sum\limits_{n=1}^{\infty}b_{n}$, tak konverguje aj rad $\sum\limits_{n=1}^{\infty}a_{n}.$
- Ak diverguje rad $\sum\limits_{n=1}^{\infty}a_n$, tak diverguje aj rad $\sum\limits_{n=1}^{\infty}b_n$.

Hovoríme, že rad

 \bullet $\sum\limits_{n=1}^{\infty}b_n$ je majorantný k radu $\sum\limits_{n=1}^{\infty}a_n$.

Zapisujeme to: $\sum\limits_{n=1}^{\infty}a_n<<\sum\limits_{n=1}^{\infty}b_n.$

Ako postupujeme pri určovaní konvergencie?

Ako postupujeme pri určovaní konvergencie?

 Ak predpokladáme konvergenciu daného radu, hľadáme k nemu majorantný konvergentný rad.

Ako postupujeme pri určovaní konvergencie?

- Ak predpokladáme konvergenciu daného radu, hľadáme k nemu majorantný konvergentný rad.
 - Používame na to konvergentné geometrické rady (s kvocientom |q|<1) a rad $\sum\limits_{n=1}^{\infty}\frac{1}{n^2}$ a rady z neho odvodené.
- Ak naopak predpokladáme divergenciu radu, hľadáme divergentný rad, ku ktorému je daný rad majorantný.

Ako postupujeme pri určovaní konvergencie?

- Ak predpokladáme konvergenciu daného radu, hľadáme k nemu majorantný konvergentný rad.
 - Používame na to konvergentné geometrické rady (s kvocientom $\stackrel{\infty}{\longrightarrow} 1$
 - $|q|<1\big)$ a rad $\sum\limits_{n=1}^{\infty}\frac{1}{n^2}$ a rady z neho odvodené.
- Ak naopak predpokladáme divergenciu radu, hľadáme divergentný rad, ku ktorému je daný rad majorantný.

Používame na to divergentné geometrické rady (s kvocientom $|q| \geq 1$)

a rad
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 a rady z neho odvodené.

Porovnávacie kritérium v príkladoch - dôležité

Porovnávacie kritérium

Nech
$$\sum\limits_{n=1}^\infty a_n << \sum\limits_{n=1}^\infty b_n$$
. (čítaj rad $\sum\limits_{n=1}^\infty b_n$ je majorantný k radu $\sum\limits_{n=1}^\infty a_n$.) To znamená: Nech pre každé $n\in \mathbf{N}$, $b_n\geq 0$ a nech pre každé $n\geq k$ platí, že $|a_n|\leq b_n$.

Porovnávacie kritérium v príkladoch - dôležité

Porovnávacie kritérium

Nech $\sum\limits_{n=1}^\infty a_n << \sum\limits_{n=1}^\infty b_n.$ (čítaj rad $\sum\limits_{n=1}^\infty b_n$ **je majorantný k radu** $\sum\limits_{n=1}^\infty a_n.$) To znamená: Nech pre každé $n\in \mathbf{N}$, $b_n\geq 0$ a nech pre každé $n\geq k$ platí, že $|a_n|\leq b_n.$ Potom platí:

 \bullet Ak konverguje rad $\sum\limits_{n=1}^{\infty}b_{n}$, tak konverguje aj rad $\sum\limits_{n=1}^{\infty}a_{n}.$

V príkladoch budeme využívať nasledovné: $\sum\limits_{n=1}^{\infty}a_n<<\sum\limits_{n=1}^{\infty}|a_n|.$

To znamená, že ak ukážeme konvergenciu radu $\sum\limits_{n=1}^{\infty}|a_n|$,

tak podľa porovnávacieho kritéria je konvergentný aj rad $\sum\limits_{n=1}^{\infty}a_{n}.$

Cauchyho integrálne kritérium

Nech rad $\sum_{n=1}^{\infty} a_n$ má nezáporné členy

Cauchyho integrálne kritérium

Nech rad $\sum_{n=1}^{\infty} a_n$ má nezáporné členy a existuje k nemu funkcia f(x), ktorá je spojitá, nerastúca (a aj nezáporná) na nejakom intervale $\langle k, \infty \rangle$

Cauchyho integrálne kritérium

Nech rad $\sum\limits_{n=1}^{\infty}a_n$ má nezáporné členy a existuje k nemu funkcia f(x), ktorá je spojitá, nerastúca (a aj nezáporná) na nejakom intervale (k,∞) a pre každé $n\geq k$ platí $a_n=f(n)$.

Cauchyho integrálne kritérium

Nech rad $\sum\limits_{n=1}^\infty a_n$ má nezáporné členy a existuje k nemu funkcia f(x), ktorá je spojitá, nerastúca (a aj nezáporná) na nejakom intervale $\langle k,\infty\rangle$ a pre každé $n\geq k$ platí $a_n=f(n)$. Potom ak integrál

$$\int_{k}^{\infty} f(x) \, \mathrm{d}x$$

Cauchyho integrálne kritérium

Nech rad $\sum\limits_{n=1}^\infty a_n$ má nezáporné členy a existuje k nemu funkcia f(x), ktorá je spojitá, nerastúca (a aj nezáporná) na nejakom intervale $\langle k,\infty\rangle$ a pre každé $n\geq k$ platí $a_n=f(n)$. Potom ak integrál

$$\int_{k}^{\infty} f(x) \, \mathrm{d}x,$$

konverguje, konverguje aj rad $\sum_{n=k}^{\infty} a_n$.

Cauchyho integrálne kritérium

Nech rad $\sum\limits_{n=1}^\infty a_n$ má nezáporné členy a existuje k nemu funkcia f(x), ktorá je spojitá, nerastúca (a aj nezáporná) na nejakom intervale $\langle k,\infty\rangle$ a pre každé $n\geq k$ platí $a_n=f(n)$. Potom ak integrál

$$\int_{k}^{\infty} f(x) \, \mathrm{d}x,$$

konverguje, konverguje aj rad $\sum\limits_{n=k}^{\infty}a_{n}$. Ak $\int\limits_{k}^{\infty}f(x)\,\mathrm{d}x$ diverguje,

Cauchyho integrálne kritérium

Nech rad $\sum\limits_{n=1}a_n$ má nezáporné členy a existuje k nemu funkcia f(x), ktorá je spojitá, nerastúca (a aj nezáporná) na nejakom intervale $\langle k,\infty\rangle$ a pre každé $n\geq k$ platí $a_n=f(n)$. Potom ak integrál

$$\int_{k}^{\infty} f(x) \, \mathrm{d}x,$$

konverguje, konverguje aj rad $\sum\limits_{n=k}^{\infty}a_n$. Ak $\int\limits_{k}^{\infty}f(x)\,\mathrm{d}x$ diverguje, aj rad $\sum\limits_{n=k}^{\infty}a_n$ diverguje.

Pozn. Konvergencia integrálu znamená, že jeho výsledok je rôzny od ∞ . Divergencia integrálu znamená, že jeho výsledok je rovný ∞ .

Definícia

Rad

$$\sum_{n=0}^{\infty} a_n (x-a)^n = a_0 + a_1 (x-a) + a_2 (x-a)^2 + \dots + a_n (x-a)^n + \dots$$

nazývame mocninovým radom. Číslo $a \in \mathbf{R}$ sa nazýva stred radu. Čísla a_n sa nazývajú koeficienty mocninového radu.

Mocninový rad je jednoznačne určený svojimi koeficientmi a stredom. Oborom konvergencie mocninového radu:

- jednobodová množina,
- (v R) interval,

Definícia

Rad

$$\sum_{n=0}^{\infty} a_n (x-a)^n = a_0 + a_1 (x-a) + a_2 (x-a)^2 + \dots + a_n (x-a)^n + \dots$$

nazývame mocninovým radom. Číslo $a \in \mathbf{R}$ sa nazýva stred radu. Čísla a_n sa nazývajú koeficienty mocninového radu.

Mocninový rad je jednoznačne určený svojimi koeficientmi a stredom. Oborom konvergencie mocninového radu:

- jednobodová množina,
- (v R) interval, (v C)

Definícia

Rad

$$\sum_{n=0}^{\infty} a_n (x-a)^n = a_0 + a_1 (x-a) + a_2 (x-a)^2 + \dots + a_n (x-a)^n + \dots$$

nazývame mocninovým radom. Číslo $a \in \mathbf{R}$ sa nazýva stred radu. Čísla a_n sa nazývajú koeficienty mocninového radu.

Mocninový rad je jednoznačne určený svojimi koeficientmi a stredom. Oborom konvergencie mocninového radu:

- jednobodová množina,
- (v R) interval, (v C) kruh.

Veta

Pre každý mocninový rad $\sum_{n=0}^{\infty} a_n (x-a)^n$ existuje $0 \le r \le \infty$ také, že daný rad konverguje:

- \mathbf{v} \mathbf{R} pre každé $x \in (a-r,a+r)$ a diverguje pre každé $x \in (-\infty,a-r) \cup (a+r,\infty)$.
- ullet v ${f C}$ pre každé $x\in K(a,r)$ a diverguje pre každé $x\in {f C}\setminus K(a,r).$

Hodnotu r nazývame polomer konvergencie mocninového radu.

Daný mocninový rad konverguje len pre x=a práve vtedy, keď r=0. Rad konverguje pre $x\in \mathbf{R}$ alebo pre $x\in \mathbf{C}$ práve vtedy, keď $r=\infty$.

Ďakujem za pozornosť.