PROBLEM SET 7

Reading: Kittel & Kroemer, Ch. 6

When to start which problems?

- Problems 1, 2, 6 and 7 immediately
- Problem 3 after class on Wednesday (Lecture 8A)
- Problems 4, 5, and 8 after Friday (Lecture 8B)
- 1. Adsorption. An adsorption site on the surface of a solid can bind two atoms of a noble gas A. Let $\varepsilon_0 = 0$ be the energy of the site when it is empty, and let $\varepsilon_2 < 0$ be the energy when two atoms of A are attached. Assume that there are no internal degrees of freedom for the complex of two atoms bound to the site, and assume that the energy when a single A atom is attached to the site is so high that this state can be neglected.
 - a. Suppose that the chemical potential μ and temperature τ of the gas of atoms are known. What is the probability P_2 that there are two atoms of A bound to the site, at a given moment?
 - b. If the site is in equilibrium with a dilute (ideal) gas of A atoms at temperature τ , how does the adsorption probability P_2 depend on the pressure p of atoms in the gas and the temperature τ ?
 - c. Sketch the adsorption probability P_2
 - i. vs. pressure p at fixed temperature τ
 - ii. vs. temperature τ at fixed pressure p
- 2. Hemoglobin (from K&K 5.14). A hemoglobin molecule can bind four O_2 molecules at distinct sites. Assume that ε is the energy of each bound O_2 , relative to O_2 at rest at infinite distance. Let $\phi = e^{\beta\mu}$ denote the activity (fugacity) of the free O_2 in solution.
 - a. What is the probability that one and only one O_2 is adsorbed on a hemoglobin molecule? Sketch the result qualitatively as a function of ϕ .
 - b. What is the probability that four and only four O_2 are adsorbed? Sketch this result also.
- 3. Kittel & Kroemer Problem 6.2 (Symmetry of filled and vacant orbitals).
- 4. Kittel & Kroemer Problem 6.11 (Convective isentropic equilibrium of the atmosphere.)
- 5. Kittel & Kroemer Problem 6.14 (*Ideal gas calculations.*)

- 6. Compressibility and density of states. Derive a relationship between the isothermal compressibility $\kappa_{\tau} = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_{\tau,N}$ and the thermodynamic density of states $\left(\frac{\partial n}{\partial \mu} \right)_{\tau}$.
 - a. First, give a physical interpretation of $(\partial n/\partial \mu)_{\tau}$ and explain why it should be related to the isothermal compressibility.
 - b. (Optional.) The temperature τ and chemical potential μ fully determine the density $n(\tau, \mu)$, so that $(\partial n/\partial \mu)_{\tau}$ is independent of whether we hold V or N fixed. Justify this statement by a physical argument. More generally, how many parameters are required for a complete specification of the intensive properties (τ, μ, n, p) of the system?
 - c. Derive a relationship between $(\partial n/\partial \mu)_{\tau}$ and κ_{τ} by the following steps:
 - i. Show that

$$\left(\frac{\partial n}{\partial \mu}\right)_{\tau} = -\frac{n}{V} \left(\frac{\partial V}{\partial \mu}\right)_{\tau,N}.\tag{1}$$

ii. Derive the Maxwell relation

$$\left(\frac{\partial V}{\partial \mu}\right)_{\tau,N} = -\left(\frac{\partial N}{\partial p}\right)_{\tau,V}.$$
 (2)

Hint: it is easier to calculate the inverse relation first, i.e. $(\partial \mu/\partial V)_{\tau,N} = -(\partial p/\partial N)_{\tau,V}$.

iii. Use the definition of κ_{τ} to show that

$$\left(\frac{\partial N}{\partial p}\right)_{\tau V} = nV\kappa_{\tau}.\tag{3}$$

- iv. Combine your results to relate the density of states to the compressibility.
- 7. Number fluctuations and compressibility. The statistical fluctuations of a thermodynamic system in equilibrium are related to the system's response functions by a powerful theorem called the *fluctuation-dissipation theorem*. One example that you have seen is the relationship between fluctuations in energy and the heat capacity. Here, we will derive a similar relationship between number fluctuations and compressibility.
 - a. Consider a generic system in thermal and diffusive equilibrium with a reservoir at temperature β^{-1} and chemical potential μ . Find an expression for the variance $(\Delta N)^2 \equiv \langle N^2 \rangle \langle N \rangle^2$ of the particle number N in terms of β , μ , and the Gibbs sum 3. Hint: find an expression for $\langle N^2 \rangle$ in terms of derivatives of β , similar to our expression for $\langle N \rangle$.
 - b. Express ΔN in terms of the temperature τ , V, and $(d\langle n \rangle/d\mu)_{\tau,V}$, where n = N/V.
 - c. What happens to the fractional fluctuations $(\Delta N)/N$ in the thermodynamic limit?
 - d. Determine the relationship between the fractional number fluctuations and the isothermal compressibility κ_{τ} , using your result from problem 6. This is a manifestation of a more general relation known as the fluctuation-dissipation theorem.
 - e. Simplify $(\Delta N)/N$ for the case of an ideal gas.

8. Sound waves. When a sound wave passes through a fluid (liquid or gas), the vibrations are fast compared to the time-scale for thermal equilibration via heat flow through the fluid. Hence, the local compressions of the fluid involved in the propagation of sound can be considered adiabatic.

FIG. 1. A slab of fluid perturbed by the propagation of sound. A denotes the cross-sectional area of the slab.

a. By analyzing one-dimensional compressions and rarefactions of the system of fluid contained in a slab of thickness dx, show that the pressure p(x,t) in the fluid depends on the position x and the time t so as to satisfy the wave equation

$$\frac{\partial^2 p}{\partial t^2} = u^2 \frac{\partial^2 p}{\partial x^2},\tag{4}$$

where the velocity of sound propagation u depends on the equilibrium density ρ and the adiabatic compressibility $\kappa_{\sigma} \equiv -V^{-1} \left(\partial V / \partial p \right)_{\sigma}$.

- b. Calculate the adiabatic compressibility κ_{σ} of an ideal gas in terms of its pressure p and its heat capacity ratio $\gamma = C_p/C_V$.
- c. Find expressions for the velocity of sound u in an ideal gas...
 - i. ... in terms of γ , the mass m per molecule, and the temperature τ .
 - ii. . . . in terms of γ and the rms velocity $v_x^{\rm rms}$ of the gas molecules in the direction of sound propagation.
- d. Calculate the velocity of sound in nitrogen gas (N_2) at room temperature and pressure.
 - i. Calculate the rms velocity $v_x^{\rm rms}$ in the direction of sound propagation.
 - ii. The specific heat of N_2 at room temperature is well described by accounting for its translational and rotational degrees of freedom. (Vibrational excitation requires an energy much higher than $k_B \times 300$ K.) Based on this information, determine the value of γ .
 - iii. Combine your results from i. and ii. to determine the sound velocity u.