Exchangeability

Gregory M. Shinault

The Big Idea

Shuffling and sampling problems can be much easier than they seem.

This material corresponds to Section 7.2 of the textbook

Permutation

Definition: A *permutation of the set* $S = \{1, 2, ..., n\}$ is a bijection $\gamma : S \to S$.

Intuition: A permutation of *S* is just a way to shuffle the elements of *S*.

$$\gamma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 4 & 1 \end{pmatrix}$$

So $\gamma_1 = 2$, $\gamma_2 = 3$, etc.

Exchangeability

Definition: (X_1, \ldots, X_n) are *exchangeable* if

$$\mathbb{P}((X_1,\ldots,X_n)\in B)=\mathbb{P}((X_{\gamma_1},\ldots,X_{\gamma_n})\in B)$$

for any permutation γ and subset $B \subset \mathbb{R}$.

Intuition: The joint PMF/PDF of exchangeable RVs is unchanged if you mix up the RVs.

Criteria for Exchangeability

Fact: Suppose $(X_1, ..., X_n)$ are discrete RVs. $(X_1, ..., X_n)$ are exchangeable if and only if

$$p_{X_1,\ldots,X_n}(k_1,\ldots,k_n)=p_{X_1,\ldots,X_n}(k_{\gamma_1},\ldots,k_{\gamma_n})$$

for any permutation γ .

Fact: Suppose $(X_1, ..., X_n)$ are continuous RVs. $(X_1, ..., X_n)$ are exchangeable if and only if

$$f_{X_1,\ldots,X_n}(x_1,\ldots,x_n)=f_{X_1,\ldots,X_n}(x_{\gamma_1},\ldots,x_{\gamma_n})$$

for any permutation γ .

Example | IID Sequences

Fact: Suppose X_1, \ldots, X_n are independent and have the same PMF/PDF (we call this independent and identically distributed (IID)). Then X_1, \ldots, X_n are exchangeable.

Special Example | Sample without Replacement

Let $k \leq n$. We take k samples without replacement from the set $\{1,2,\ldots,n\}.$

 X_1 denotes the first sample, X_2 denotes the second sample, and so on to X_k .

Are X_1, X_2, \ldots, X_k exchangeable?

Special Example | Sample without Replacement

Suppose you deal 7 cards from a standard deck. What is the probability the fourth card is a king and the seventh card is a 10?

Nonexample | Multinomial Distribution

Suppose $(X_1, \ldots, X_r) \sim \text{Mult}(n, p_1, \ldots, p_r)$. Are (X_1, \ldots, X_r) exchangeable?

Summary

Key Ideas

- 1. Exchangeability is the term for a distribution being unchanged by the permutation of random variables.
- 2. The most important use of exchangeability is for samples without replacement.
- 3. The multinomial distribution is not exchangeable.