

GENERAL DESCRIPTION

74HC595 is fabricated with high-speed silicon gate CMOS technology. It contains an 8-bit serial-in, serial or parallel-out shift register and an 8-bit D-type storage register with parallel 3-state outputs. The shift and storage register have independent clock inputs. Both the shift register clock (SRCK) and storage register clock (RCK) are positive-edge triggered.

The shift register has a direct overriding clear input (SRCL), serial data input (SER), and serial outputs for cascading. When the output-enable (OE) input is high, the outputs are in the high-impedance state. If both clocks are connected together, the shift register always is one clock pulse ahead of the storage register.

FEATURES

- 8-bit serial-in, parallel-out shift register with storage
- · Shift register has direct clear
- 8-bit D-type storage register with parallel 3-state outputs
- · Two independent clocks for shift and storage register
- · Wide operating power supply voltage 2-6V
- Low input current < 1µA
- Low power consumption, Max. 80µA (74HC595)
- Output driving capacity ± 6 mA at 5V
- · Typical propagation delay 13nS

LOGIC DIAGRAM

FUNCTIONAL DESCRIPTION

1. Truth Table

		Inputs			Function
SER	SRCK	SRCL	RCK	$\overline{\text{OE}}$	
X	X	X	X	Н	Outputs Q1-Q8 are disabled.
X	X	X	X	L	Outputs Q1-Q8 are enabled.
X	X	L	X	X	Shift register is cleared.
L	↑	Н	X	X	First stage of the shift register goes low.
					Other stages store the data of previous stage, respectively.
Н	↑	Н	X	X	First stage of the shift register goes high.
					Other stages store the data of previous stage, respectively.
X	X	X	↑	X	Shift-register data is stored in the latch.

H = High Level (steady state). L= Low Level (steady state)

X = Irrelevant (don't care)

 \uparrow = Transition from low to high level.

2. Logic Waveform

Note: implies that the outputs are in 3-state mode.

ABSOLUTE MAXIMUM RATINGS

Parameter	Value	Unit
DC supply voltage Vcc	- 0.5 ~ + 7.0	V
DC input clamp current lik (Vi<0 or Vi>Vcc)	±20	mA
DC output clamp current lok (Vo<0 or Vo>Vcc)	±20	mA
DC Current Drain per pin, any output (lout)	±35	mA
DC supply Current, Vcc or GND (lcc)	±70	mA
Storage Temperature(TsTG)	-65 ~ +150	$^{\circ}$
Lead Temperature(TL) (Soldering, 10seconds)	260	$^{\circ}$

Note:

1. Absolute maximum ratings are those values beyond which the safety of the device cannot be guaranteed.

RECOMMENDED OPERATING CONDITONS

Parameter		Min.	Normal	Max.	Unit
Power Supply Voltage (Vcc)		2	5	6	V
	VCC=2.0V	1.5			
VIH High-level input voltage	VCC=4.5V	3.15			V
	VCC=6.0V	4.2			
	VCC=2.0V			0.5	
VIL Low-level Input Voltage	VCC=4.5V			1.35	V
	VCC=6.0V			1.8	
Vi Input Voltage	•	0		Vcc	V
Vo Output Voltage		0		Vcc	V
Operating Temperature (TA)	74HC595	-40		85	$^{\circ}$
Input Rise/Fall Times (tr, tf)	VCC=2.0V			1000	ns
	VCC=4.5V			500	
	VCC=6.0V			400	

Note:

- 2. All unused inputs of the device must be held at Vcc or GND to ensure proper device operation.
- 3. If this device is used in the threshold region (from $V_{IL}max = 0.5 \text{ V}$ to $V_{IH}min = 1.5 \text{ V}$), there is a potential to go into the wrong state from induced grounding, causing double clocking. Operating with the inputs at $t_t = 1000$ ns and Vcc = 2 V does not damage the device; however, functionally, the CLK inputs are not ensured while in the shift, count, or toggle operating modes.

3

DC ELECTRICAL CHARACTERISTICS

(Apply across temperature range unless otherwise specified)

					$TA = 25^{\circ}$	С	54HC595	74HC595	
PARAMETER	TEST CONDITIONS		Vcc	MIN	TYP	MAX	MIN	MAX	UNIT
			2 V	1.9	1.998		1.9		
		Iон = -20uA	4.5V	4.4	4. 499		4.4		
Vон	$V_{I}=V_{IH}$ or V_{IL}		6 V	5.9	5. 999		5. 9		V
		Iон = -6 mA	4.5V	3.98	4.3		3.84		
		Iон = -7.8mA	6 V	5.48	5.8		5. 34		
			2 V		0.002	0.1		0. 1	
		IoL =20uA	4.5V		0.001	0.1		0.1	
Vol	$V_{I} = V_{IH} \text{ or } V_{IL}$		6 V		0.001	0.1		0.1	V
		IoL = 6mA	4.5V		0.17	0. 26		0. 33	
		IoL=7.8mA	6 V		0.15	0.26		0. 33	
Iı	$V_I = V_{CC} \text{ or } 0$		6 V		± 0.1	± 100		± 1000	nA
Ioz	Vo = Vcc or 0,	Q1-Q8	6 V		± 0.01	± 0.5		±5	uA
Icc	$V_I = V_{CC} \text{ or } 0$	Io = 0	6 V			8		80	uA
Ci			2V ~ 6V		3	10		10	pF

TIMING REQUREMENTS OVER RECOMMENED OPERATING FREE-AIR TEMPERATURE RANGE (unless otherwise noted)

Parameter	Symbol Unit Guaranteed Limit			eed Limit		Test Condition
			TA=25°C	-40~+85		
Clock frequency	fclock	MHz	6	5	Vcc=2.0V	
			31	25	Vcc=4.5V	
			36	29	Vcc=6.0V	
Pulse duration	tw	ns	80	100	Vcc=2.0V	SRCK or LCK high or low
			16	20	Vcc=4.5V	
			14	17	Vcc=6.0V	
			80	100	Vcc=2.0V	SRCL low
			16	20	Vcc=4.5V	
			14	17	Vcc=6.0V	
			100	125	Vcc=2.0V	
			20	25	Vcc=4.5V	SER before SRCK †
			17	21	Vcc=6.0V	
1		l l	75	94	Vcc=2.0V	
	tsu	ns	15	19	Vcc=4.5V	SRCK ↑ before LCK ↑
Setup time			13	16	Vcc=6.0V	(Note 4)
			50	65	Vcc=2.0V	
			10	13	Vcc=4.5V	SRCL low before RCK ↑
			9	11	Vcc=6.0V	
]		50	60	Vcc=2.0V	
			10	12	Vcc=4.5V	SRCL high(inactive)
			9	11	Vcc=6.0V	before SRCK ↑
Hold time,	th	ns	0	0	Vcc=2~6V	SER after SRCK †

Note: . 4. This setup time allows the latch to receive stable data from the shift register. The clock can be connected together, in this case the shift register is one clock pulse ahead of the latch.

4

AC ELECTRICAL CHARACTERISTICS (unless otherwise noted)

Parameter	Symbol	From	То	Unit	Vcc	Ta	= 25°C	2	74F	IC595		Parameter
		(Input)	(Output)			Min	Typ	Max	Min		Max	
Maximum	fmax			MHz	2V	6	26		5			
clock					4.5V	31	38		25			CL=50pF
frequency					6V	36	42		29			
					2V		50	160			200	
		SRCK	Q8'	ns	4.5V		17	32			40	
					6V		14	27			34	CL=50pF
Maximum	t m al				2V		50	150			187	
Propagation	tpd	LCK	Q1-Q8	ns	4.5V		17	30			37	
Delay					6V		14	26			32	
(Clock to Q)					2V		60	200			250	
		LCK	Q1-Q8	ns	4.5V		22	40			50	C _L =150pF
					6V		19	34			43	
Maximum	t PHL				2V		51	175			219	
Propagation Delay (SRCL		SRCL	QH'	ns	4.5V		18	35			44	CL=50pF
to Q8'					6V		15	30			37	
					2V		40	150			187	
					4.5V		15	30			37	CL=50pF
Maximum					6V		13	26			32	
Propagation	ten	$\overline{\text{OE}}$	Q1-Q8	ns	2V		70	200			250	
Delay (OE to Q)					4.5V		23	40			50	C _L =150pF
(OL to Q)					6V		19	34			43	
					2V		42	200			250	
	tdis	\overline{OE}	Q1-Q8	ns	4.5V		23	40			50	CL=50pF
					6V		20	34			43]
					2V		28	60			75	
			Q1-Q8		4.5V		8	12			15	
Maximum					6V		6	10			13]
Output					2V		28	75			95	C _L =50pF
Rising and	t t		Q8'	ns	4.5V		8	15			19	
Falling Time					6V		6	13			16	
C					2V		45	210			265	
			Q1-Q8		4.5V		17	42			53	CL=150pF
					6V		13	36			45	
Power Dissipation Capacitance	Срд			pF			400		_		_	

PARAMETER MEASUREMENT INFORMATION

PARA	PARAMETER RL		CL	S 1	S2
	t pzh	1 k Ω	50 pF or	Open	Closed
ten	t pzl		150 pF	Closed	Open
	t PHZ	1kΩ	50 pF	Open	Closed
tdis	t PLZ			Closed	Open
tpd	or tt	-	50 pF or 150 pF	Open	Open

AC SWITCHING WAVEFORM AND AC TEST CIRCUIT

Voltage Waveforms 1. Propagation Delay and Output Transition Times

Voltage waveforms 2. Enable And Disable Times For 3-State Outputs

Voltage waveforms 3. Setup And Hold and Input Rise And Fall Times

Voltage waveforms 4. Pulse Durations

Note:

- 5. CL includes probe and test-fixture capacitance.
- 6. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, ZO = 50 Ω , tr = 6 ns, tf = 6 ns.
- 7. For clock inputs, fmax is measured when the input duty cycle is 50%.
- 8. The outputs are measured one at a time, with one input transition per measurement.
- 9. tPLZ and tPHZ are the same as tdis.
- 10. tPZL and tPZH are the same as ten.
- 11. tPLH and tPHL are the same as tpd.

PIN DESCRIPTION

PIN NO.	SYMBOL	DESCRIPTION
15, 1, 2, 3, 4, 5, 6, 7	Q1 – Q8	Parallel data outputs
9	Q8'	Serial data output
10	SRCL	Shift register reset input (active low)
11, 12	SRCK, RCK	Shift and storage register clock inputs
		(triggered at positive edge)
13	<u>OE</u>	Output enable input (active low)
14	SER	Serial data input
8	GND	Ground (0V)
16	VCC	Positive power supply

Logic Symbol

PAD DIAGRAM

The Coordinate of Each Pad

OE (-615.1, -748.2)	Q6 (479.8, 185.0)
SER (-398.1, -748.2)	Q7 (479.8, 379.6)
Q1 (-243.3, -762.4)	Q8 (479.8, 635.4)
VCC (118.3, -789.2)	GND (105.8, 683.3)
Q2 (479.8, -714.6)	Q8' (-199.4, 683.3)
Q3 (479.8, -520.6)	SRCL (-359.7, 673.2)
Q4 (479.8, -264.8)	SRCK (-581.0, 689.2)
Q5 (479.8, -70.2)	RCK (-600.9, 534.4)

Note: Substrate should be connected to Vcc or left it open.