- 4.22 Using the GUI module f_correlate select the white noise input. Set the scale factor for y to c = 0.
 - (a) Plot x(k) and y(k). What is the range of values over which the uniform white noise is distributed?
 - (b) Verify that $r_{xx}(k) \approx P_x \delta(k)$ by plotting the auto-correlation of x(k).
 - (c) Use the Caliper option to estimate P_x .
 - (d) Verify that this estimate of P_x is consistent with the theoretical value, P_u , in (3.6.7).

Solution

(a) The noise is distributed over [-1, 1].

(c) From the Caliper measurement in part (b), the estimated average power of the white noise input x(k) is

$$P_x \approx 0.33$$

(d) From (3.6.7) and the results from part (a), the predicted average power of the uniformly distributed white noise is

$$P_{u} = \frac{b^{3} - a^{2}}{3(b - a)}$$

$$= \frac{(1)^{3} - (-1)^{3}}{3[1 - (-1)]}$$

$$= \frac{1}{3}$$