Transformer: Intuition

We try to briefly explain what each the "moving parts" of the Encoder-Decoder style Transformer is doing.

At the highest level: we have the Encoder and the Decoder.

In the Encoder-Decoder architecture

• the Encoder completes before the Decoder starts

Encoder

The role of the Encoder is

• to create a Context Sensitive Representation

$$ar{\mathbf{h}}_{(1:ar{T}]}$$

• of each of the Encoder's input tokens

$$\mathbf{x}_{(1:ar{T})}$$

It accomplishes this by the direct function approach

- unlike an RNN, it does not process each input token $\mathbf{x}_{(t)}$ sequentially it computes $\bar{\mathbf{h}}_{(t)}$ as a function of the entire input $\mathbf{x}_{(1:\bar{T})}$

Encoder Self-Attention is used in the direct function.

By making the meaning dependent on the full context, we can disambiguate the meaning of the world "it"

 $Picture from: https://1.bp.blogspot.com/-AVGK0ApREtk/WaiAuzddKVI/AAAAAAAB_A/WPV5ropBU-cxrcMpqJBFHg73K9NX4vywwCLcBGAs/s1600/image2.png$

Decoder

The Decoder works in auto-regressive mode

- predicts one output token at a time
- the current output $\hat{\mathbf{y}}_{(t)}$ token is appended to the input for the next position
 - lacksquare so the input at time step t is

$$\hat{\mathbf{y}}_{(1\ldots t-1)}$$

Encoder/Decoder transformer Decoder: Cross-Attention, Auto-regressive mode

It has two inputs at step t

ullet the previously-generated output tokens t is

$$\hat{\mathbf{y}}_{(1\ldots t-1)}$$

ullet the Encoder output $ar{\mathbf{h}}_{(1:ar{T})}$

$$ar{\mathbf{h}}_{(1:ar{T})}$$

Self-attention is used on $\hat{\mathbf{y}}_{(1\dots t-1)}$

Cross-Attention is used on $ar{\mathbf{h}}_{(1:ar{T})}$

At step t, the Decoder

- ullet uses Self-Attention on $\hat{\mathbf{y}}_{(1\dots t-1)}$
- to create a *query* that is used to attend to $ar{\mathbf{h}}_{(1:\bar{T})}$

We can think of this use of Self-Attention

- as being a replacement for the "latent" state of an RNN
 - rather than using the latent state to record
 - o what has already been done
 - what is the next step to perform
 - Self-Attention allows direct access to what has already been done:

$$\hat{\mathbf{y}}_{(1\ldots t-1)}$$

The query is used in Cross-Attention

• to attend to the Context Sensitive Representation of the input sequence **x**

Whatever is returned by Cross-Attention

• is input into the Feed Forward Network (FFN)

Think of the FFN

- as a repository of "world knowledge" accumulated by processing the training data
- "facts"

The FFN produces an output

- which is processed by a Classifier (Linear layer)
- to produce a token in the vocabulary of tokens

That is

- ullet if the vocabulary has |V| tokens
- ullet the Classifier produces a probability distribution vector ${f p}$ of length |V|)
 - $\, \blacksquare \,$ such that ${f p}_j$ is the probability that the output token should be V_j

The exact mechanics of this multi-step process

- are controlled by the weights
- that are learned during training

General

Here is the detailed architecture of the Encoder-Decoder Transformer.

We will review each of the pieces.

Each of the paths in the Transformer is a vector of length $d_{ m model}$

ullet sometimes just referred to as d

Having a common length simplifies the architecture

- can stack Transformer blocks (since input and output are same size)
- Self-Attention and Cross-Attention:
 - lacktriangle map a query of size d to an output of size d
- Needed for the Residual Connection (Add and Norm)
 - adding the input of Attention to the output of Attention
 - o need to be same length

Residual connections

• Residual connections from Intro course (RNN Residual Networks.ipynb)

Suppose we wanted the two networks to compute the same mapping from input $\mathbf{y}_{(l-1)}$ to output

$$\mathbf{y}_{(l+1)} = \mathbf{y}_{(l)}$$

Then

$$\mathbf{y}_{(l+1)} = \mathbf{y}_{(l')} + \mathbf{y}_{(l-1)}$$

 $\mathbf{y}_{(l+1)} = \mathbf{y}_{(l')} + \mathbf{y}_{(l-1)}$ definition of $\mathbf{y}_{(l+1)}$ in last layer of residual network

$$\mathbf{y}_{(l)} = \mathbf{y}_{(l')} + \mathbf{y}_{(l-1)}$$

 $\mathbf{y}_{(l)} = \mathbf{y}_{(l')} + \mathbf{y}_{(l-1)}$ requiring equality of outputs of the two networks \mathbf{y}

$$\mathbf{y}_{(l')} = \mathbf{y}_{(l)} - \mathbf{y}_{(l-1)}$$
 re-arranging terms

The intermediate layer l' we introduced in the Residual network computes

• the residual: of the original networks layer l output wrt to its' input: (l-1) output

Embedding

Words (really: tokens) are categorical variables.

Categorical variables are usually encoded as long vectors via One Hot Encoding (OHE)

- very long: number of distinct elements in class
 - e.g., number of words in vocabulary
- sparse: only a single non-zero element in the vector

Biggest issue with OHE:

- the similarity (e.g., dot product) of two related words (e.g., "cat", "cats") is zero!
 - same as for two unrelated words (e.g., "cat", "car")

	word	rep(word)	Similarity to "dog"	
	dog	[1,0,0,0]	$rep(word) \cdot rep(dog) = 1$	
	dogs	[0,1,0,0]	$rep(word) \cdot rep(dog) = 0$	
cat		[0,0,1,0]	$rep(word) \cdot rep(dog) = 0$	
	apple	[0,0,0,1]	$rep(word) \cdot rep(dog) = 0$	

An Embedding is a a short and dense vector representation of words (tokens).

In addition to being shorter (and dense: many non-zero elements possible) their construction results in

• the similarity of embeddings for two related words being non-zero

This makes Embeddings much more valuable for NLP.

\boldsymbol{w}	\mathbf{v}_w		
cat	[.7, .5, .01]		
cats	[.7, .5, .95]		
dog	[.7, .2, .01]		
dogs	[.7, .2, .95]		
apple	[.1, .4, .01]		
apples	[.1, .4, .95]		

The Embedding Layer converts the OHE representation to an Embedding.

See the <u>module from the Intro course (NLP Embeddings.ipynb)</u> for details.

Positional Encoding

The Transformer input is a sequence

• there is a total ordering between elements based on absolute position

The Transformer needs to be able to discern

• at least: the *relative* ordering of two elements in different positions in the sequence

The Positional Encoding layer

- adds a vector that encodes position
- to the Embedding
- such that the Transformer has a representation with both meaning and positions

This is much more involved than simply using an integer to encode the position.

The fundamental operation of a Neural Network is matrix multiplication

• the positional encoding needs to be preserved as it traverses the layers

The details are not trivial.

See the module on <u>Positional Embeddings (Transformer_PositionalEmbedding.ipynb)</u> if you are interested.

Feed Forward Network (FFN)

Maps the output of the Decoder-Encoder Attention into the "next output token".

- actually: it is still an embedding of the next token, rather than the true next token
 - that way: it can be appended to the already-generated output to become the Decoder input for next position

This acts as a Classifier

- mapping the input
- to a vector of logits
 - one element per possible element of the Output Vocabulary

There is some evidence that

- the parameters of the FFN are where "world knowledge" is stored
 - every "fact" learned during training

Linear

This layer is append only to the final block in the stacked Transformer blocks.

It acts as a typical Classifier

- ullet "classifies" the final block's output of length d
- returning a vector
 - whose length is equal to number of elements of the Vocabulary
 - each element is a logit
 - $\circ~$ to be converted into probability distribution over elements of the Vocabulary

Softmax

Converts the logit for each possible element of the Vocabulary

• into Probability that the element is the next Decoder Output

```
In [2]: print("Done")
```

Done