Wydział Geodezji i Kartografii

Przedmiot: Wybrane zagadnienia geodezji wyższej

Prowadzący: mgr inż. Viktor Szabó

Projekt: Ćwiczenie 5: transformacja współrzędnych

Kierunek: Geoinformatyka

Semestr 7

Student: Patrycja Tatar Numer indeksu: 291578

1) Cel ćwiczenia

Celem ćwiczenia jest transformacja współrzędnych z ćwiczenia 3 z elipsoidy GRS-80 na elipsoidę Krasowskiego. Kolejnym etapem będzie przedstawienie różnic pomiędzy tymi elipsoidami.

2) Wyjaśnienie problemu

Problemem w tym ćwiczeniu jest brak możliwości bezpośredniego przeliczenia współrzędnych geodezyjnych (fi, lambda, h) pomiędzy dwoma różnymi elipsoidami.

Przeliczenie współrzędnych geodezyjnych z elipsoidy GRS-80 na elipsoidę Krasowskiego trzeba podzielić na 3 etapy:

- przelicznie współrzędnych geodezyjnych (fi, lambda, h) elipsoidy GRS-80 na współrzędne kartezjańskie (x, y, z) elipsoidy GRS-80
- transformacje współrzędnych kartezjańskich (x, y, z) elipsoidy GRS-80 na współrzędne kartezjańskie (x, y, z) elipsoidy Krasowskiego
- -przeliczenie współrzędnych kartezjańskich (x, y, z) elipsoidy Krasowskiego na współrzędne geodezyjne (fi, lambda, h) elipsoidy Krasowskiego.

Poniższy rysunek przedstawia wizualizacje etapów transformacji

3) Dane początkowe

Współrzędne punktów, które będą potrzebne w ćwiczeniu są z ostatniego projektu 3. Poniżej jest przedstawiona tabela przedstawiająca te współrzędne.

punkty	fi [rad]	lambda [rad]
P_A	0,93375114982	0,36215581979
P_B	0,92938782669	0,36215581979
P_C	0,93375114982	0,37088246605
P_D	0,92938782669	0,37088246605
P_SRED	0,93156948825	0,36651914292
P_SROD	0,93157407986	0,36650636795

```
P_B – punkt B, P_C – punkt C, P_D – punkt D,
P_ SRED – punkt średniej szerokości, P_ SROD – punkt środkowy
```

Wysokość h przyjmuje wartość 100 metrów dla wszystkich punktów.

4) Etapy ćwiczenia

I. Przeliczenie fi, lambda, h GRS-80 na x, v, z GRS-80

Wzory:

```
N = a/(sqrt(1-e2*sin(m_fi)^2));
xGK = (N+h)*cos(m_fi)*cos(m_lambda)
yGK = (N+h).*cos(m_fi)*sin(m_lambda)
zGK = (N*(1-e2)+h)*sin(m_fi)
```

II. <u>Transformacja x ,y, z GRS-80 na x, y, z Krasowskiego</u>

Wykonana transformacja jest transformacją trójwymiarową przez podobieństwo z 7 parametrami: **3 przesunięcia** (x0, y0, z0), **3 obrotu** osi (εx, εy, εz) oraz **1 skali** (m). Przy obliczeniach współrzędnych elipsoidy Krasowskiego użyto poniższych stałych:

```
c11 = 0.84076440*10^(-6);

c12 = 4.08960694*10^(-6);

c13 = 0.25613907*10^(-6);

c21 = -4.08960650*10^(-6);

c22 = 0.84076292*10^(-6);

c23 = -1.73888787*10^(-6);

c31 = -0.25614618*10^(-6);

c32 = 1.73888682*10^(-6);

c33 = 0.84077125*10^(-6);
```

```
Tx = -33.4297;
Ty = 146.5746;
Tz = 76.2865;
```

Wzory:

```
xK = xGK+c11*xGK+c12*yGK+c13*zGK+Tx
yK = yGK+c21*xGK+c22*yGK+c23*zGK+Ty
zK = zGK+c31*xGK+c32*yGK+c33*zGK+Tz
```

III. <u>Przeliczenie x, y, z Krasowskiego na fi, lambda, h Krasowskiego</u>

W tym etapie posłużono się **algorytmem Hirvonena**. Polega on na przeliczeniu współrzędnych kartezjańskich na współrzędne geodezyjne za pomocą iteracyjnego obliczenia szerokości geodezyjnej i wysokości elipsoidalnej. Danymi początkowymi są współrzędne kartezjańskie oraz parametry elipsoidy.

• obliczenie promieni równoleżnika

$$r = (xK^2+yK^2)^(0.5)$$

• obliczenie pierwszego przybliżenia fiK

$$fiK = atan((zK/r)*(1/(1-e2)))$$

• w pętli obliczamy N i h dla aktualnej wartości fiK

$$NK = a/(sqrt(1-e2*(sin(fiK))^2))$$
$$hK = r/(cos(fiK))-NK$$

obliczenie kolejnych przybliżeń fiK+1

$$fiK1 = arctan((zK/r)*((1-e2*(NK/(NK+hK)))^{(-1)))$$

• Sprawdzenie, czy spełniony jest warunek

• Jeśli warunek niespełniony to następuje powrót na początek pętli, w przeciwnym wypadku następuje obliczenie ostatecznych wartości lambda_o, fi_o, h_o

• kontrola poprawności obliczeń

5) Wyniki oraz wnioski

• Poniższa tabela prezentuje współrzędne geodezyjne (fi, lambda, h) elipsoidy Krasowskiego:

punkty	fiK [rad]	lambdaK [rad]
P_A	0,93375603262	0,36218859023
P_B	0,92939276003	0,36218838247
P_C	0,93375588385	0,37091519205
P_D	0,92939261178	0,37091498453
P_SS	0,93157432206	0,36655178728
P_SR	0,93157891383	0,36653901259

• Poniższa tabela prezentuje współrzędne kartezjańskie (xK, yK, zK) elipsoidy Krasowskiego (które są danymi wejściowymi do algorytmu Hirvonena) oraz współrzędne kontrolne (x_o, y_o, z_o):

			xK - x_o			yK - y_o			zK - z_o
punkty	xK [m]	x_o [m]	[m]	yK [m]	y_o [m]	[m]	zK [m]	z_o [m]	[m]
P_A	3555503,700	3555503,700	0,000	1347193,093	1347193,093	0,000	5103999,852	5103999,848	0,004
P_B	3576385,453	3576385,453	0,000	1355104,414	1355104,414	0,000	5087400,894	5087400,890	0,004
P_C	3543613,190	3543613,190	0,000	1378169,311	1378169,311	0,000	5103999,909	5103999,905	0,004
P_D	3564425,109	3564425,109	0,000	1386262,556	1386262,556	0,000	5087400,951	5087400,947	0,004
P_SS	3560024,314	3560024,314	0,000	1366698,639	1366698,639	0,000	5095712,494	5095712,489	0,004
P_SR	3560019,833	3560019,833	0,000	1366644,738	1366644,738	0,000	5095729,961	5095729,957	0,004

Różnice pomiędzy danymi wejściowymi a danymi kontrolnymi są zerowe lub są bliskie zeru. Dzięki temu można wywnioskować, że algorytm Hirvonena został poprawnie zaimplementowany i uzyskane współrzędne geodezyjne (fi, lambda, h) dla elipsoidy Krasowskiego są dobrze obliczone.

• Poniższa tabela prezentuje różnice współrzędnych kartezjańskich (xK, yK, zK) elipsoidy Krasowskiego i współrzędnych kartezjańskich (xGK, yGK, zGK) elipsoidy GRS-80:

			xK - xGK			yK - yGK			zK - zGK
punkty	xK [m]	xGK [m]	[m]	yK [m]	yGK [m]	[m]	zK [m]	zGK [m]	[m]
P_A	3555503,700	3555527,324	-23,624	1347193,093	1347068,802	124,291	5103999,852	5103917,843	82,009
P_B	3576385,453	3576409,031	-23,578	1355104,414	1354980,173	124,241	5087400,894	5087318,890	82,004
P_C	3543613,190	3543636,697	-23,507	1378169,311	1378044,945	124,366	5103999,909	5103917,843	82,066
P_D	3564425,109	3564448,570	-23,461	1386262,556	1386138,240	124,317	5087400,951	5087318,890	82,061
P_SS	3560024,314	3560047,856	-23,543	1366698,639	1366574,335	124,304	5095712,494	5095630,458	82,035
P_SR	3560019,833	3560043,376	-23,543	1366644,738	1366520,435	124,304	5095729,961	5095647,926	82,035

• Poniższa tabela prezentuje różnice wysokości hK elipsoidy Krasowskiego i wysokości h elipsoidy GRS-80:

punkty	hK [m]	h [m]	hK - h [m]
P_A	179,755	100,000	79,755
P_B	179,624	100,000	79,624
P_C	180,531	100,000	80,531
P_D	180,404	100,000	80,404
P_SS	180,079	100,000	80,079
P_SR	180,078	100,000	80,078

Różnice, które wystąpiły pomiędzy współrzędnymi i wysokościami są spowodowane różnymi własnościami elipsoid tj.: kształt, rozmiar czy lokalizacja elipsoidy.