James B. Scoggins, Ph.D.

Postdoctoral Researcher Center for Applied Mathematics École Polytechnique

Aerospace Engineer (on temporary leave) Aerothermodynamics Branch NASA Langley Research Center

james-brice.scoggins@polytechnique.edu www.jbscoggins.com

EDUCATION

Ph.D. Energy Sciences 2017 Degree obtained jointly between CentraleSupélec, Gif-sur-Yvette Cedex, France von Karman Institute for Fluid Dynamics, Rhode-Saint-Genese, Belgium M.Sc. Aerospace Engineering and Graduate Minor in Mathematics 2011 North Carolina State University, Raleigh, NC 2009 B.Sc. Aerospace Engineering Magna Cum Laude North Carolina State University, Raleigh, NC RESEARCH AND WORK EXPERIENCE Aerospace Engineer (currently on temporary leave) 2020 - present Aerothermodynamics Branch, NASA Langley Research Center **Postdoctoral Researcher** 2018 - present Center for Applied Mathematics, Ecole Polytechnique Investigated the solution of multi-scale PDEs with neural networks Developed machine learning moment methods for polydisperse spray modeling Research Associate 2018

Advanced Supercomputing Division, NASA Ames Research Center

- Applied deep learning for emergent sun spot and porous media property prediction
- Supported several active projects as main developer of the Mutation++ library

Postdoctoral Researcher

2017

von Karman Institute for Fluid Dynamics

- Developed narrow band radiation model for meteor physics
- Developed kinetic theory of magnetized plasmas in collaboration with Dr. Vincent Giovangigli at École Polytechnique

Doctoral Student 2012 - 2017

Thesis: Development of numerical methods and study of coupled flow, radiation, and ablation phenomena for atmospheric entry. Advisors: Dr. Thierry Magin and Dr. Anouar Soufiani

Jointly at CentraleSupélec and von Karman Institute for Fluid Dynamics

James B. Scoggins 1 of 4

Graduate Student Thesis: The development of a thermochemical nonequilibrium ablation and pyrolysis model for carbon-phenolic thermal protection systems. Advisor: Dr. Hassan A. Hassan. Department of Mechanical and Aerospace Engineering, North Carolina State University	2009 - 2011
 NASA Ames Research Center Summer Intern Technical Monitor: Dr. Nagi N. Mansour Carbon-phenolic thermal protection system modeling Arc-jet radiation and flow modeling 	2009 - 2012
HONORS AND AWARDS	
Fondation Mathématique Jacques Hadamard Postdoctoral Fellowship	2019
NASA Graduate Student Research Program NASA Ames Research Center	2009
North Carolina Space Grant	2009
NOAA Ernest F. Hollings Scholarship	2007
 Undergraduate Honor Societies Sigma Gamma Tau National Aerospace Engineering Honor Society Phi Eta Sigma National Honor Society National Society of Collegiate Scholars 	2005 - 2009
TEACHING ACTIVITIES	
Introduction to Machine Learning, Lab Director Batchelor Program in Mathematics and Engineering Computer Science Department, École Polytechnique	2019 - 2020
AI and Data Science Summer School, Lecturer Aimed at graduate students in various backgrounds École Polytechnique	2019
Deep Learning, Teaching Coordinator Masters Program in Mathematics Applied Mathematics Department, École Polytechnique	2018 - 2019
VKI Programming Seminars, Lecturer and Organizer von Karman Institute for Fluid Dynamics	2015 - 2016
Introduction to Fortran, Teaching Assistant Computer Science Department, North Carolina State University	2006
 Student Mentoring Mentored 3 Ph.D. students (2 are now postdocs and 1 is in final year) 	2016 - present

James B. Scoggins 2 of 4

- Co-supervised 4 Master students (1 at NCSU and 3 at VKI)
- Supervised 6 student interns (5 at VKI and 1 at NASA ARC)

SERVICE TO SCIENTIFIC COMMUNITY

Referee of Scientific Journals

2017 - present

- Carbon
- Computer Physics Communications
- International Journal of Heat and Mass Transfer
- Journal of Quantitative Spectroscopy and Radiative Transfer
- Journal of Thermophysics and Heat Transfer
- SoftwareX

Organization of Scientific Forums

 Mini-symposium: Breaking the Mesh: Solving PDEs with Deep Learning SMAI Congress

• École Polytechnique working group on solving PDEs with Deep Learning 2018 - 2019

Development of Open-Source Software

• Creator of Mutation⁺⁺: MUlticomponent Thermodynamic And Transport properties for IONized gases in C++. https://github.com/mutationpp/Mutationpp

PUBLICATIONS

- 1. **J.B. Scoggins**, V. Leroy, G. Bellas-Chatzigeorgis, B. Dias, T.E. Magin. Mutation++: Multicomponent thermodynamic and transport properties for ionized gases in C++. *SoftwareX* 12, 2020.
- 2. B. Dias, **J.B. Scoggins**, T.E. Magin. Luminosity calculation of meteor entry based on detailed flow simulations in the continuum regime. *Astronomy and Astrophysics* 635:A184, 2020.
- 3. Q. Wargnier, A. Alvarez Laguna, **J.B. Scoggins**, N.N. Mansour, M. Massot, T.E. Magin. Consistent transport properties in a two temperature multicomponent plasma model. *Astronomy and Astrophysics* 635:A87, 2020.
- 4. A. Bellemans, **J.B. Scoggins**, R.L. Jaffe, T.E. Magin. Transport properties of carbon-phenolic gas mixtures. *Physics of Fluids* 31:096102, 2019.
- 5. M. Fossati, A. Mogavero, J. Herrera-Montojo, **J.B. Scoggins**, T.E. Magin. A kinetic BGK edge-based scheme including vibrational and electronic energy modes for high-Mach flows. *Computers and Fluids* 185:1-12, 2019.
- 6. **J. B. Scoggins**, J. Rabinovitch, B. Barros-Fernandez, A. Martin, J. Lachaud, R.L. Jaffe, N.N. Mansour, G. Blanquart, T.E. Magin. Thermodynamic properties of equilibrium carbon-phenolic gas mixtures. *Aerospace Science and Technology* 66:177-192, 2017.
- 7. J. Lachaud, **J.B. Scoggins**, T.E. Magin, M.G. Meyer, N.N. Mansour. A generic local thermal equilibrium model for porous reactive materials submitted to high temperatures. *International Journal of Heat and Mass Transfer* 108:1406-1417, 2017.

James B. Scoggins 3 of 4

- 8. B. Helber, A. Turchi, **J.B. Scoggins**, A. Hubin, T.E. Magin. Experimental investigation of ablation and pyrolysis processes of carbon-phenolic ablators in atmospheric entry plasmas. *International Journal of Heat and Mass Transfer* 100:810-824, 2016.
- 9. L. Soucasse, **J.B. Scoggins**, P. Rivière, T.E. Magin, A. Soufiani. Flow-radiation coupling for atmospheric entries using a Hybrid Statistical Narrow Band model. *Journal of Quantitative Spectroscopy and Radiative Transfer* 180:55-56, 2016.
- 10. **J.B. Scoggins**, T.E. Magin. Gibbs function continuation for linearly constrained multiphase equilibria. *Combustion and Flame* 162(12):4514-4522, 2015.
- 11. J. Lachaud, T. van Eekelen, **J.B. Scoggins**, T.E. Magin, N.N. Mansour. Detailed chemical equilibrium model for porous ablative materials. *International Journal of Heat and Mass Transfer* 90:1034-1045, 2015.

James B. Scoggins 4 of 4