

Analytical Geometry and Linear Algebra 1

Introduction Vector + Operations of vectors Basis Subspace

About me (1)

Bachelor in BMSTU

"CAD developer" track

ДИЧь / RAGE (Древнерусские Игры и чай) club leader

Channel

Finished PhD in Inno Research Fellow

About me (2)

Research interest - Multilegged biomimetic robots

Dissertation title: Perception method development for a mobile multilegged robot in a cave environment

Where did I use linear algebra (1): Research

Multilegged robot StriRus

Where did I use linear algebra (2): CAD

Image compression

<u>Task</u>: We want to compress our image for reducing the size

<u>Solution</u>: We can represent our picture as a matrix.

Next step is using SVD for reducing matrix rank.

More details in matlab code (pdf)

Computer vision

<u>Task</u>: we want to know the orientation of the object

Needed terms: Centroid, Image moments

<u>Solution</u>: use equivalent ellipse method. We consider an ellipse, witch:

- centred at the object's centroid
- same moments of inertia about centroid.

Afterwards, we find an ellipse using eigenvalues and eigenvectors

Equivalent ellipse for several objects

An ellipse with the inertia matrix

$$\mathbf{J} = \begin{pmatrix} \mu_{20} & \mu 11 \\ \mu 11 & \mu_{02} \end{pmatrix}$$

has radii

$$a = 2\sqrt{\frac{\lambda_1}{m_{00}}}, \ b = 2\sqrt{\frac{\lambda_2}{m_{00}}}$$

where $\lambda_1 > \lambda_2$ are the eigenvalues of **J**

Orientation is
$$\theta = \tan^{-1} \frac{v_y}{v_x}$$

Where V is the eigenvector corresponding to the largest eigenvalue

major axis length a minor axis length b

Feature extraction masterclass video

Where did I use linear algebra (3): Mechanics

Short summary

- 1. I used to use the course knowledge in my research career
- 2. It's not a useless course and I'll try to show it (practical cases) (not only from robotics)
- 3. I will give you an intuition of some basics

Pretest

Vector

Span

Linear combination

Linear independence

Length

Subspace

Vector

Column vectors. Examples

$$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
, $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$ — we will use **this notation!** We represent vectors as **columns!**

Basis

Basis in \mathbb{R}^2

A set of vectors is a *basis* of \mathbb{R}^2 if it spans \mathbb{R}^2 and this set is linearly independent.

Standard basis in \mathbb{R}^2

 $\{\hat{\mathbf{i}}, \hat{\mathbf{j}}\} = \{(1, 0), (0, 1)\}$ is a basis of \mathbb{R}^2 . They are the standard basis in \mathbb{R}^2 .

Standard basis in \mathbb{R}^3

 $\{\hat{\mathbf{i}}, \hat{\mathbf{j}}, \hat{\mathbf{k}}\} = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$ is a basis of \mathbb{R}^2 . They are the standard (canonical) basis in \mathbb{R}^3 .

Linear Independence

Linearly independent vectors in \mathbb{R}^2

Two vectors \mathbf{a} and \mathbf{b} are *linearly independent* if for $\alpha_1, \alpha_2 \in \mathbb{R}$, $\alpha_1 \mathbf{a} + \alpha_2 \mathbf{b} = \mathbf{0}$ if and only if $\alpha_1 = \alpha_2 = 0$.

Linearly independent vectors in \mathbb{R}^3

Vectors a, b and c are linearly independent

if for $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$, $\alpha_1 \mathbf{a} + \alpha_2 \mathbf{b} + \alpha_3 \mathbf{c} = \mathbf{0}$ if and only if $\alpha_1 = \alpha_2 = \alpha_3 = 0$.

Span

Span

Let
$$S = \{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}\} \subset V$$
.

$$span(S) \equiv \left\{ \mathbf{w} \in V : \mathbf{w} = \sum_{k=1}^{n} c_k \mathbf{v_k}, \quad \forall c_k \in \mathbb{R} \right\}$$

In words, W = span(S) is the set of all (possible) linear combinations of the vectors $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}$.

Note that W is a subspace of V.

Subspace

Definition

W is a subspace of V if

- a) $W \subset V$ (subset)
- b) $\mathbf{u}, \mathbf{v} \in W \Rightarrow \mathbf{u} + \mathbf{v} \in W$ (closure under addition)
- c) $\mathbf{u} \in W, \lambda \in \mathbb{R} \Rightarrow \lambda \mathbf{u} \in W$ (closure under scalar multiplication)

Three vectors are given
$$\mathbf{a} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
, $\mathbf{b} \begin{bmatrix} -5 \\ -1 \end{bmatrix}$, $\mathbf{c} \begin{bmatrix} -1 \\ 3 \end{bmatrix}$.

Find the vectors $2\mathbf{a} + 3\mathbf{b} - \mathbf{c}$ and $16\mathbf{a} + 5\mathbf{b} - 9\mathbf{c}$.

Check if the result of each of the following operations is a vector or not. Explain your answer.

- 1. $\mathbf{a} + \mathbf{b}$, if \mathbf{a} and \mathbf{b} are vectors
- 2. $\mathbf{a} \mathbf{a}$, if \mathbf{a} is a vector

3.
$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \end{bmatrix}$$

- 4. $\begin{bmatrix} 2x + 15 4y \\ y x \end{bmatrix}$, if x and y are integer numbers
- 5. $\begin{bmatrix} x+y \\ 2y+122-3x \end{bmatrix} \begin{bmatrix} x+y \\ 2y+122-3x \end{bmatrix}$, i if x and y are real numbers

Check for each case if the following set of vectors is a basis or not. Explain your answer.

$$1. \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \end{bmatrix}$$

2.
$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} 0 \\ 2 \end{bmatrix}$

3.
$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

4.
$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 3 \end{bmatrix}$

5.
$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}$$

6.
$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$

Task 3: answers

Basis in \mathbb{R}^2

A set of vectors is a *basis* of \mathbb{R}^2 if it spans \mathbb{R}^2 and this set is **linearly independent**.

Check for each case if the following set of vectors is a basis or not. Explain your answer.

1.
$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \end{bmatrix}$$
 —

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \end{bmatrix}$$

3.
$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 —

4.
$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 3 \end{bmatrix}$

5.
$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}$ —

6.
$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ —

Points A(3, -2) and B(1,4) are given. The M point is on the line AB in the way that |AM| = 3 |AB|. Find coordinates of the M point, if:

- 1. The points M and B are from the same side from A.
- 2. The points M and B are from the different sides from A.

Possible tool for simulation

Geogebra

Task 4 (1 of possible solutions)

- Find the distance between points A and B
- Find the equation for the line | AB |
- Find 2 points on the line with distance $3 | \mathbf{AB} |$ from A.

Task 5 + 6

Find the coordinates of the gravity center of a triangular plate \mathbf{ABC} with vertices in points $\mathbf{A}(3,1)$, $\mathbf{B}(6,3)$, $\mathbf{C}(0,2)$.

In the plane of the triangle **ABC** find the point **O** such that

$$\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \mathbf{0}$$
. Are there such points outside of the triangle?

Note: 0 is a zero-vector.

Center of gravity VS Center of mass

For classical mechanics - it's the same. More info here

Where a center of mass can be used?

How to find the center of mass in real life

Task 5 + 6 sol

Check for each case if the following set of vectors is a coplanar or not. Explain your answer.

1.
$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, $\begin{bmatrix} 4 \\ 1 \\ 5 \end{bmatrix}$, $\begin{bmatrix} -1 \\ 3 \\ 2 \end{bmatrix}$

$$2. \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \\ 4 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \\ 3 \end{bmatrix}$$

3.
$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
, $\begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}$, $\begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix}$

Check for each case if the following set of vectors is a subspace or not. Explain your answer.

- 1. Part of the plane x > 0
- 2. Entire plane
- 3. Part of the plane y < 0
- 4. Part of the plane x > 0, y > 0
- 5. Inner circle with the radius r = 5

Subspace

Definition

W is a subspace of V if

- a) $W \subset V$ (subset)
- b) $\mathbf{u}, \mathbf{v} \in W \Rightarrow \mathbf{u} + \mathbf{v} \in W$ (closure under addition)
- c) $\mathbf{u} \in W, \lambda \in \mathbb{R} \Rightarrow \lambda \mathbf{u} \in W$ (closure under scalar multiplication)

Extra material (3bluebrown)

Vectors

Basis, linear independence

Best extra extra materials

- 1) RUS <u>Матпрофи</u>
- 2) ENG OnlineMSchool not only explanation, but also online calculators
- 3) ENG Videos 3Blue1Brown
- 4) ENG Lectures Gilbert Strang AGLA2 based on the course

