DELTA TopGun

(09) Vyvážené stromy

Luboš Zápotočný, Tomáš Faltejsek, Michal Havelka

2022

Obsah

Definice pojmů a značení

Dokonale vyvážený strom

AVL stromy

Operace s AVL stromy

LL rotace

RR rotace

LR rotace

RL rotace

Časová složitost operací v AVL stromě

Binární strom

Binární strom

- je zakořeněný
- každý vrchol má maximálně 2 syny
- rozlišujeme levého a pravého syna

Binární strom

- je zakořeněný
- každý vrchol má maximálně 2 syny
- rozlišujeme levého a pravého syna

Levý a pravý syn

- I(v) označujeme levého syna vrcholu v
- ullet r(v) označujeme pravého syna vrcholu v

Binární strom

- je zakořeněný
- každý vrchol má maximálně 2 syny
- rozlišujeme levého a pravého syna

Levý a pravý syn

- I(v) označujeme levého syna vrcholu v
- ullet r(v) označujeme pravého syna vrcholu v

Otec

• p(v) označujeme otcovský vrchol vrcholu v

Levý a pravý podstrom

- L(v) označujeme podstrom, ve kterém je kořenem levý syn vrcholu v
- R(v) označujeme podstrom, ve kterém je kořenem pravý syn vrcholu v

Levý a pravý podstrom

- L(v) označujeme podstrom, ve kterém je kořenem levý syn vrcholu v
- R(v) označujeme podstrom, ve kterém je kořenem pravý syn vrcholu v

- h(T), h(L(v)) nebo h(R(v)) označujeme hloubku stromu
 - Jedná se o počet hladin daného stromu
- |T|, |L(v)| nebo |R(v)| označujeme počet vrcholů daného stromu

•
$$h(T) =$$

- h(T), h(L(v)) nebo h(R(v)) označujeme hloubku stromu
 - Jedná se o počet hladin daného stromu
- |T|, |L(v)| nebo |R(v)| označujeme počet vrcholů daného stromu

- h(T) = 3• |T| =

- h(T), h(L(v)) nebo h(R(v)) označujeme hloubku stromu
 - Jedná se o počet hladin daného stromu
- |T|, |L(v)| nebo |R(v)| označujeme počet vrcholů daného stromu

- h(T) = 3
- |*T*| = 5
- |*R*(*root*)| =

- h(T), h(L(v)) nebo h(R(v)) označujeme hloubku stromu
 - Jedná se o počet hladin daného stromu
- |T|, |L(v)| nebo |R(v)| označujeme počet vrcholů daného stromu

- h(T) = 3
- |*T*| = 5
- |R(root)| = 3
- h(R(r(r(p(l(root)))))) =

- h(T), h(L(v)) nebo h(R(v)) označujeme hloubku stromu
 - Jedná se o počet hladin daného stromu
- |T|, |L(v)| nebo |R(v)| označujeme počet vrcholů daného stromu

- h(T) = 3
- |*T*| = 5
- |R(root)| = 3
- h(R(r(r(p(I(root)))))) = 0

Dokonale vyvážený strom

Dokonale vyvážený strom

Binární vyhledávací strom je dokonale vyvážený, pokud pro každý jeho vrchol v platí:

 $\bullet \ \big| |L(v)| - |R(v)| \big| \leq 1$

Dokonale vyvážený strom

Dokonale vyvážený strom

Binární vyhledávací strom je dokonale vyvážený, pokud pro každý jeho vrchol v platí:

$$\bullet \ \big| |L(v)| - |R(v)| \big| \leq 1$$

Tento strom má vždy $1 + \log(n)$ hladin

Dokonale vyvážený strom

Dokonale vyvážený strom

Binární vyhledávací strom je dokonale vyvážený, pokud pro každý jeho vrchol v platí:

•
$$||L(v)| - |R(v)|| \le 1$$

Tento strom má vždy $1 + \log(n)$ hladin

Problém dokonale vyváženého stromu

Operace **Insert** nebo **Delete** mají vždy časovou složitost $\Omega(n)$ v závislosti na zvolené implementaci

Cílem binárních vyhledávacích stromů je ale zajištění lepší než lineární složitosti

Proto je podmínka dokonalé vyváženosti mírně relaxována

AVL stromy

AVL strom

Binární vyhledávací strom je AVL stromem, pokud pro každý jeho vrchol \boldsymbol{v} platí:

 $\bullet |h(L(v)) - h(R(v))| \leq 1$

AVL stromy

AVL strom

Binární vyhledávací strom je AVL stromem, pokud pro každý jeho vrchol \boldsymbol{v} platí:

• $|h(L(v)) - h(R(v))| \leq 1$

Zároveň pro každý vrchol v urdžujeme hodnotu $\delta(v)$ definovanou:

•
$$\delta(v) = h(r(v)) - h(I(v))$$

AVL stromy

AVL strom

Binární vyhledávací strom je AVL stromem, pokud pro každý jeho vrchol *v* platí:

• $|h(L(v)) - h(R(v))| \leq 1$

Zároveň pro každý vrchol v urdžujeme hodnotu $\delta(v)$ definovanou:

• $\delta(v) = h(r(v)) - h(l(v))$

Správně vyvážený AVL strom nabývá těchto hodnot $\delta(v)$:

- $\delta(v) = 0$ pokud jsou oba podstromy stejně hluboké
- $\delta(\mathbf{v}) = -1$ pokud má levý podstrom o jedna větší hloubku než pravý podstrom
- $\delta(v)=+1$ pokud má pravý podstrom o jedna větší hloubku než levý podstrom

Operace s AVL stromy

Kdykoli se mění struktura stromu, je nutné provést kontrolu hodnoty $\delta(v)$ a provést některé z následujících rotací:

- Levá rotace
- Pravá rotace
- Levo-pravá rotace
- Pravo-levá rotace

Levá rotace

Pokud v některém rodičovském vrcholu nastane hodnota $\delta(v)=+2$ a zároveň pravý potomek má hodnotu $\delta(r(v))=+1$, provádíme rotaci doleva

Levá rotace

Pokud v některém rodičovském vrcholu nastane hodnota $\delta(v)=+2$ a zároveň pravý potomek má hodnotu $\delta(r(v))=+1$, provádíme rotaci doleva

Pravá rotace

Pokud v některém rodičovském vrcholu nastane hodnota $\delta(v)=-2$ a zároveň levý potomek má hodnotu $\delta(\mathit{I}(v))=-1$, provádíme rotaci doprava

Pravá rotace

Pokud v některém rodičovském vrcholu nastane hodnota $\delta(v)=-2$ a zároveň levý potomek má hodnotu $\delta(\mathit{I}(v))=-1$, provádíme rotaci doprava

Levo-pravá rotace

Pokud v některém rodičovském vrcholu nastane hodnota $\delta(v)=-2$ a zároveň levý potomek má hodnotu $\delta(\mathit{I}(v))=+1$, provádíme rotaci doleva a poté doprava

Levo-pravá rotace

Pokud v některém rodičovském vrcholu nastane hodnota $\delta(v)=-2$ a zároveň levý potomek má hodnotu $\delta(I(v))=+1$, provádíme rotaci doleva a poté doprava

Pravo-levá rotace

Pokud v některém rodičovském vrcholu nastane hodnota $\delta(v)=+2$ a zároveň pravý potomek má hodnotu $\delta(\mathit{I}(v))=-1$, provádíme rotaci doprava a poté doleva

Pravo-levá rotace

Pokud v některém rodičovském vrcholu nastane hodnota $\delta(v)=+2$ a zároveň pravý potomek má hodnotu $\delta(I(v))=-1$, provádíme rotaci doprava a poté doleva

Časová složitost operací v AVL stromě

Search	$\Theta(\log n)^{ extsf{[1]}}$	$\mathrm{O}(\log n)^{[1]}$
Insert	$\Theta(\log n)^{ extsf{[1]}}$	$\mathrm{O}(\log n)^{[1]}$
Delete	$\Theta(\log n)^{ extsf{[1]}}$	$\mathrm{O}(\log n)^{[1]}$