

Álgebra Superior I Semestre 2020-2

Prof. Alejandro Dorantes Aldama Ayud. Elmer Enrique Tovar Acosta Avud. Alejandro Ríos Herrejón Tarea II

Kevin Ariel Merino Peña

3. Demuestre que toda función $f: \mathbb{R} \to \mathbb{R}$ lineal

$$f(x) = ax + b$$

Es bivectiva siempre que $a \neq 0$

Sean f(x) y $f(z) \in \mathbb{R}$ entonces,

$$f(x) = f(z)$$

$$ax + b = az + b$$

$$ax = az$$

$$x = z$$

Tomemos estas dos imágenes

Por la regla de correspondencia de f

Sumando el inverso aditivo de b en ambos miembros

porque $a \neq 0$

 $\therefore f$ es inyectiva

Luego, sea $x \in \mathbb{R}$

$$x = r + b$$
$$x = rn + b$$

Esto puede ocurrir para todo número real, con $r, b \in \mathbb{R}$

Además podemos ver a cualquier real como el producto de dos reales $n \in \mathbb{R}$

 $\therefore x \in Img(f) \implies \mathbb{R} \subseteq Img(f)$

La otra contención está dada por definición de la imagen de una función

$$\therefore Img(f) = \mathbb{R} \implies f \text{ es suprayectiva.}$$

 $\therefore f \text{ es biyectiva.}$

Además, si q(x) = cx + d es otra función lineal, demuestre que

$$f = g$$

si y sólo si a = c, b = d si y sólo si

$$f(0) = g(0)$$
 y $f(1) = g(1)$

 \implies 1

$$f(0) = g(0) \implies a(0) + b = c(0) + d$$
$$b = d$$

Por regla de correspondecia de f, q

Porque $a \cdot 0 = 0 \forall a \in \mathbb{R}$

$$f(1) = g(1) \implies a(1) + b = c(1) + d$$

$$a+b=c+d$$

$$a + b = c + b$$
$$a = c$$

Por regla de correspondecia de f, g

Porque $x \cdot 1 = 0 \forall x \in \mathbb{R}$

Porque de lo anterior dedcimos que b = d

Sumando en ambos miembros el inverso aditivo de b

 \leftarrow 1

$$a = c$$

$$ax = cx$$

$$ax + b = cx + d$$

$$a(1) + b = c(1) + d$$

a(0) + b = c(0) + d

Por hipótesis

multiplicando ambos miembros por x

Pues por hipótesis b = d

Sustituyendo x = 1

Evalando en x=0

De lo anterior tenemos que

$$a = c \wedge b = d \iff f(0) = g(0) \wedge f(1) = g(1)$$

 $\implies 2$

$$f=g \implies f(1)=a(1)+b$$
 Por regla de corespondencia de f
$$=c(1)+d$$
 por la regla de correspondencia de g
$$=g(1)$$
 pues suponemos que $f=g$

$$f=g \implies f(0)=a(0)+b$$
 Por regla de corespondencia de f por propiedades de los reales
$$=c(0)+d$$
 por la regla de correspondencia de g por la regla de correspondencia de g pues suponemos que $f=g$

 \iff 2 (Emplearemos la transitividad de \iff)

$$a=c \wedge b=d \implies f(x)=a(x)+b$$
Por regla de correspondencia de f
$$\implies =c(x)+d$$
Sutituyendo lo que estamos suponiendo
$$\implies =g(x)$$
Por la regla de correspondencia de g

$$\therefore \quad f = g \iff a = c \land b = d \iff f(0) = g(0) \land f(1) = g(1)$$

8. Sea $X=\{f:\mathbb{N}\to\{1,0\}\mid f$ es función }. Dé una biyección entre X y $\mathcal{P}(\mathbb{N})$

12. Sea X un conjunto. Defina una relación R en $\mathcal{P}(\mathbb{N})$ como sigue

$$(U,V) \in R \iff |U| = |V|$$

Demuestre que R es reflexiva, transitiva y simétrica.

20. Demuestre por inducción:

$$1 + r + r^2 + r^3 + \dots + r^n = \frac{1 - r^{n+1}}{1 - r}$$

Caso base

n=1, El primer sumando del primer miembro es 1 el último es r^1 , así tenemos

$$1+r$$

El segundo miembro de la igualdad, queda

$$\frac{1-r^2}{1-r} = \frac{(1+r)(1-r)}{1-r}$$

entonces

$$1+r=1+r$$

 \therefore Se cumple para n=1

Hipótesis de inducción

Suponemos que la proposición es válida para $n \in \mathbb{N}$.

$$1 + r + r^2 + r^3 + \ldots + r^n = \frac{1 - r^{n+1}}{1 - r}$$

Paso inductivo

P.d. Se cumple para n = n + 1

$$1+r+r^2+r^3+\ldots+r^n+r^{n+1}=\frac{1-r^{n+1}}{1-r}+r^{n+1}\ldots \qquad \qquad \text{Por hipótesis de inducción}$$

$$=\frac{1-r^{n+1}+r^{n+1}-r^{n+2}}{1-r} \qquad \qquad \text{Operando suma de fracciones}$$

$$=\frac{1-r^{(n+1)+1}}{1-r} \qquad \qquad \text{Reduciendo términos}$$

 \therefore Se cumple $\forall n \in \mathbb{N}$

Dado $A \subseteq \mathbb{N}$, decimos que $x \in A$ es el máximo de A si para todo $y \in A$, se cumple $y \le x$. Demuestree que todo subconjunto finito de números naturales tiene máximo usando inducción sobre la cardinalidad del conjunto. 24. Usando el ejercicio anterior, demuestre que \mathbb{N} no es finito.

Procederemos por contradicción, suponiendo que \mathbb{N} es finito, entonces por el ejercicio anterior podemos hallar un máximo.

Sea x el elemento máximo, entonces se cumple que

$$\forall y \in \mathbb{N}, \quad y \leq x$$

Ahora veamos al sucesor de x, pues por un axioma de Peano sabemos todos los elementos de $\mathbb N$ tienen un sucesor, así que

$$\exists x + 1 \in \mathbb{N}$$

luego

$$x \le x + 1!$$

entonces x ya no sería elemento máximo, esta contradicción vino de suponer que $\mathbb N$ es finito

 \therefore N tiene una cantidad infinita de elementos.