$H(\omega) = K_0 F(\omega)$ $K_0 = 1$ $F(\omega) = 1$ $\chi \omega + \sqrt{z}$ $\frac{1}{j\omega+\sqrt{2}} = \frac{1}{j\omega(j\omega+\sqrt{2})+1} = \frac{1}{1+\sqrt{2}j\omega-\omega^2}$ b) $E(\omega) = j\omega \Theta(\omega) = j\omega \cdot /j\omega = j\omega + /2$ $j\omega + K_0 F(\omega) \qquad j\omega + /\sqrt{2}$ $j\omega + \sqrt{2}$ lim E(W) = fim jw fw + \frac{1}{2} = \frac{1}{2} = 0 c) $\Theta(\omega) = (\omega)^2 \Rightarrow \lim_{N \to 0} E(\omega) = \lim_{N \to \infty} \frac{1}{1 + \sqrt{2} |\omega - \omega|^2}$

2.
$$V = mG$$
 $G = [P I_m]$ $P = [10 11]$

vérification:

 $[m, m_1, m_3]$ $[10 117 = [m, + m_2, -1] = [P_1]$
 $[0 111]$ $[m_1 + m_2 + m_3]$ $[n_1 + m_2]$ $[n_2 + m_3]$ $[n_3 + m_3]$ $[n_4 + m_3]$ $[n_$

d	$H = I_4 P^7 = \begin{bmatrix} 1000 & 110 \\ 0100 & 011 \\ 0010 & 111 \end{bmatrix} \qquad \begin{bmatrix} 17 & 000 \\ 010 & 011 \\ 0001 & 011 \end{bmatrix}$
4)	S=et/= 0000001 0111
	0000100 1011
	0001000 0001
	0010000 6010
	0 100000 0 100
	1000000 1000
e	0010
	1011
	m=r+e= 1101011 + [0100000]
	< 1001011

Problème 3 (10 points sur 100)

Voici le diagramme de l'état d'un code convolutif avec longueur de contrainte quatre. Les mots de codes sont indiqués à côté de chaque transition possible. L'état initial est « a », l'état où tous les registres contiennent zéro.

4. délaso: -1 111-1-11 donnée × -1 -1 1 -1 1 / 1 1, -1, 1 -1 -1 1 2 = -1 dé lai 1 -/ (1) -/ -/ / délai 2 -1 1 1 1 -1 -1 1 délai 3 -1: 1 1 1 -1 -1 1 x 1 1 1 -1 -1 1-1 -1 4/ 4/ -/ +/ -/ -/ 2 -/ delai 4 -1 / / / -1 -1 X-1/1/1/1/2-7/pic d'autocorrelation Bonne rotation -/ / -/ -/ -/ ou un peut le line directement des données!!

-1 -1 -1 -1 -1 = -7 = bit 3 = -1 C) défair = 2 chips = ISI rejeté

par 1/9 G = largeur de code

- expansion spectrale

- gain d'étalement

- gain de fraitement 1/6=1/7 => 10 log 1/7=8,45dB Nous poulons 10dB donc encore 1,55dB -1.55dB => 10-,155 = .7 X < . 7 => ISI rejetion > 10dB

Page 6

