Conjuntos

Un conjunto puede ser visto como una colección de objetos. A los objetos que forman parte del conjunto los denominaremos **elementos** del conjunto.

Obs. • En Teoría de Conjuntos la noción de elemeto y conjunto no está definida, son objetos primitivos.

- En general notaremos:
 - a los conjuntos con letras mayúsculas: A, B, C, etc.
 - a los elementos de un conjunto con letras minúsculas: a, b, c, etc.

Si a es un elemento del conjunto A, diremos que a **pertenece** a A y escribimos $a \in A$.

Si a no es un elemento del conjunto A, diremos que a no pertenece a A y escribimos $a \notin A$.

Obs. $\sim (a \in A) \Leftrightarrow a \notin A$.

Formas de definir un conjunto:

• <u>Por extensión</u>: se nombran uno por uno los elementos del conjunto y se los encierra entre llaves. No importa el orden en que se los nombra.

Ejemplo:
$$A = \{do, re, mi, fa, sol, la, si\}$$
 A tiene 7 elementos $B = \{2, -2\}$ B tiene 2 elementos

• Por comprensión: se nombran la o las propiedades que caracterizan a los elementos del conjunto. $A = \{x : P(x)\}.$

Tenemos:

$$re \in A$$

$$10004 \in C$$

$$-28 \not\in C$$

$$elemento conjunto$$

Se pueden utilizar diagramas de Venn para representar a conjuntos.

Ejemplo:

$$A = \{2, 4, 8\}$$

= $\{x \in \mathbb{Z} : x = 2^n, n \in \mathbb{N} \text{ y } 1 \le n \le 3\}$

Conjuntos especiales:.

ullet Conjunto vacío:. Aquel que no tiene elementos. Simbólicamente: \emptyset ó $\{\}$

Ejemplo: $A = \{x \in \mathbb{R} : x^2 < 0\} = \emptyset$

Obs: $\emptyset \neq \{\emptyset\}$

• Conjunto universal: Está formado por todos los eltos, que intervienen en el tema en cuestión Simbólicamente: U

Relaciones entre conjuntos:

Def. Dados don conjuntos A y B diremos que A está **incluido** en B si todo elemento de A lo es también de B. Escribimos: $A \subseteq B$.

$$A \subseteq B \Leftrightarrow \forall x : x \in A \Rightarrow x \in B.$$

Obs. \bullet Si $A \subseteq B$ también diremos que A es subconjunto de B ó B incluye a A.

$$\bullet \ A \not\subseteq B \quad \Leftrightarrow \quad \sim (\forall x : x \in A \Rightarrow x \in B) \ \Leftrightarrow \quad \exists x / \sim (x \in A \Rightarrow x \in B) \Leftrightarrow \quad \exists x : x \in A \land x \not\in B$$

Diremos que dos conjuntos A y B son iguales y escribimos A=B si $A\subseteq B$ y $B\subseteq A$.

Propiedades de la inclusión: Cualquiera sean los conjuntos A, B y C se verifican:

- 1) $\emptyset \subseteq A$.
- 2) $A \subseteq A$.
- 3) Si $A \subseteq B$ y $B \subseteq C$ entonces $A \subseteq C$.

Operaciones entre conjuntos:

Def. Dados dos conjuntos A y B llamaremos:

1) Intersección de A y B: al conjunto formado por los elementos comunes de A y B.

$$A \cap B = \{x : x \in A \ y \ x \in B\}$$

2) Unión de A y B: al conjunto formado por los elementos que están en A ó en B.

$$A \cup B = \{x : x \in A \text{ \'o } x \in B\}$$

Gráficamente

Obs.
$$\bullet \ x \in A \cap B \quad \Leftrightarrow \ (x \in A \land x \in B)$$

•
$$x \in A \cup B \Leftrightarrow (x \in A \lor x \in B)$$

Obs. • $x \notin A \cap B \Leftrightarrow \sim (x \in A \cap B) \Leftrightarrow \sim (x \in A \land x \in B) \Leftrightarrow x \notin A \lor x \notin B$

• $x \notin A \cup B \Leftrightarrow x \notin A \land x \notin B$

Obs. Si $A \cap B = \emptyset$, es decir A y B no tienen elementos en común diremos que A y B son **disjuntos**.

Propiedades de la unión e intersección:

1. Conmutativas:

a)
$$A \cup B = B \cup A$$

b)
$$A \cap B = B \cap A$$

3. Distributivas:

a)
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

b)
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Leyes de idempotencia:

a)
$$A \cup A = A$$

b)
$$A \cap A = A$$

2. Asociativas:

a)
$$(A \cup B) \cup C = A \cup (B \cup C)$$

b)
$$(A \cap B) \cap C = A \cap (B \cap C)$$

4. Leyes de absorción:

a)
$$A \cup (A \cap B) = A$$

b)
$$A \cap (A \cup B) = A$$

6. Leyes de identidad:

a)
$$A \cup \emptyset = A$$

b)
$$A \cup U = U$$

c)
$$A \cap \emptyset = \emptyset$$

d)
$$A \cap U = A$$

Teorema. Dados dos conjuntos A y B:

- 1) $A \subseteq B$ si y sólo si $A \cap B = A$.
- 1) $A \subseteq B$ si y sólo si $A \cup B = B$.

3) Complemento de A:

llamaremos complemento de A al conjunto formado por los elementos que están en el el conjunto universal \mathcal{U} pero que no están en A.

$$A' = \{x \in \mathcal{U} : x \not\in A\}$$

Gráficamente

Obs. También se puede notar por \overline{A} ó A^c .

Propiedades del complemento:

7. Complementación doble

$$(A')' = A$$

b)
$$\emptyset$$
' = U

8. a)
$$A \cup A' = U$$

b)
$$A \cap A' = \emptyset$$

10. Leyes de De Morgan:

a)
$$(A \cup B)' = A' \cap B'$$

b) (
$$A \cap B$$
)' = $A' \cup B'$

3) Diferencia de conjuntos:

llamaremos diferencia entre los conjuntos A y B (en ese orden) al conjunto formado por todoso los elementos que están en A pero no en B.

$$A - B = \{x : x \in A \ y \ x \notin B\}$$

Gráficamente

Cardinal de un conjunto:

Sea A un conjunto finito. Llamaremos **cardinal** de A y lo notaremos por |A| al número de elementos del conjunto A.

- Si A tiene n elementos, escribimos |A| = n
- Si $A = \emptyset$ entonces |A| = 0.
- También se puede notar al cardinal de A por #A.

Cardinal de la unión de 2 conjuntos.

$$\bullet \ |A \cup B| = |A| \ + |B| - |A \cap B|$$

