Pregled sadržaja

Fizičke veličine

- Fizičke veličine opisuju svojstva materije i fizičkih pojava
- Postoje osnovne fizičke veličine (dužina, masa, vreme, električna struja, temperatura, količina supstance i jačina svetlosti) i izvedene fizičke veličine
- One mogu biti skalarne (temperatura vazduha, vlažnost vazduha, vazdušni pritisak), vektorske (pozicija, brzina, ubrzanje), itd.

 Senzor je uređaj koji pretvara jednu fizičku veličinu u drugu fizičku veličinu koju čovek može neposredno da opazi (ili koju računar može da očita)

Digitalizacija

Slika 3: Digitalizacija.

- uzorkovanje (očitavanje vrednosti analognog signala (obično sa konstantnom frekvencijom)
- kvantizacija (aproksimacija očitane vrednosti sa vrednostima iz konačnog skupa)

Senzorski koordinatni sistem

- x osa (horizontalna, od levo prema desno)
- y osa (vertikalna, od dole prema gore)
- z osa (od uređaja)

Slika 4: Senzorski koordinatni sistem.

Tip	Opis
TYPE_ACCELEROMETER	Meri ubrzanje uređaja (sa g)
TYPE_AMBIENT_TEMPERATURE	Meri temperaturu vazduha
TYPE_GRAVITY	Meri g
TYPE_GYROSCOPE	Meri ugaonu brzinu uređaja
TYPE_LIGHT	Meri jačinu svetlosti
TYPE_LINEAR_ACCELERATION	Meri uprzanje uređaja (bez g)

Tabela 1: Tipovi senzora.

Tip	Opis
TYPE_MAGNETIC_FIELD	Meri jačinu magnetnog polja
TYPE_PRESSURE	Meri vazdušni pritisak
TYPE_PROXIMITY	Meri udaljenost objekta od ekrana
TYPE_RELATIVE_HUMIDITY	Meri relativnu vlažnost vazduha
TYPE_ROTATION_VECTOR	Meri orijantaciju uređaja

Tabela 2: Tipovi senzora.

Tipovi senzora

- Senzori pozicije (TYPE_MAGNETIC_FIELD, TYPE_PROXIMITY)
- Senzori pokreta (ACCELEROMETER, GRAVITY, GYROSCOPE, LINEAR_ACCELERATION, ROTATION_VECTOR)
- Senzori okruženja (TYPE_AMBIENT_TEMPERATURE, TYPE_LIGHT, TYPE_PRESSURE, TYPE_RELATIVE_HUMIDITY)

Tipovi senzora

- Hardverski senzori (TYPE_ACCELEROMETER, TYPE_AMBIENT_TEMPERATURE, TYPE_GYROSCOPE, TYPE_LIGHT, TYPE_MAGNETIC_FIELD, TYPE_PRESSURE, TYPE_PROXIMITY, TYPE_RELATIVE_HUMIDITY)
- Softverski ili hardverski senzori (TYPE_GRAVITY, TYPE_LINEAR_ACCELERATION, TYPE_ROTATION_VECTOR)

Klasa/Interfejs	Opis
SensorManager	Omogućava pristup senzorima
Sensor	Sadrži informacije o svojstvima
	određenog senzora
SensorEvent	Događaj koji sadrži informacije
	o određenom merenju
SensorEventListener	Sadrži obrađivače SensorEvent
	događaja

Tabela 3: Sensors API.

- Odrediti koji senzori su dostupni na uređaju
- Odrediti mogućnosti dostupnih senzora
- Napisati obrađivače događaja koji reaguju na promenu fizičke veličine ili tačnosti merenja
- Registrovati i odregistrovati obrađivače događaja

ExampleActivity.java

```
public class ExampleActivity extends Activity, implements SensorEventListener {
2
     private SensorManager sensorManager:
3
4
     public onCreate() {
5
       // ...
6
7
       sensorManager = (SensorManager) getSystemService(Context.SENSOR_SERVICE);
       // Lists all sensors on a device
10
       List<Sensor> sensors = sensorManager.getSensorList(Sensor.TYPE_ALL);
11
12
       // Lists all sensors of a given type
13
       List<Sensor> sensors = sensorManager.getSensorList(Sensor.TYPE_MAGNETIC_FIELD);
       // Determines whether a specific type of sensor exists
       if (sensorManager.getDefaultSensor(Sensor.TYPE_MAGNETIC_FIELD) != null) {
         // Success! There's a magnetometer.
       } else {
         // Failure! No magnetometer.
21
22
23
     // ...
24
25
26
```

Metoda	Opis
float getMaximumRange()	maksimalan domet senzora
int getMinDelay()	minimalan period između dva merenja
float getResolution()	rezolucija senzora
float getPower()	potrošnja

Tabela 4: Metode klase Sensor.

Metoda	Opis
String getName()	ime senzora
<pre>int getType()</pre>	generički tip senzora
String getVendor()	proizvođač senzora
<pre>int getVersion()</pre>	verzija senzora

Tabela 5: Metode klase Sensor.

ExampleActivity.java

```
public class ExampleActivity extends Activity, implements SensorEventListener {
     private final SensorManager sensorManager;
3
     private Sensor sensor;
5
     // ...
     protected void onResume() {
8
        super.onResume();
        sensorManager.registerListener(
10
          this, sensor, SensorManager.SENSOR_DELAY_NORMAL);
11
12
13
     protected void onPause() {
14
        super.onPause();
15
        sensorManager.unregisterListener(this);
16
17
18
     // ...
19
```

Parametar	Opis
listener	obrađivač događaja
sensor	senzor
samplingPeriodUs	period uzorkovanja

Tabela 6: Parametri metode registerListener.

ExampleActivity.java

```
public class ExampleActivity extends Activity, implements SensorEventListener {
     private final SensorManager sensorManager;
3
     private Sensor sensor;
4
5
     // ...
     public void onAccuracyChanged(Sensor sensor, int accuracy) {
8
       // Called when the accuracy of a sensor has changed.
10
11
     public void onSensorChanged(SensorEvent event) {
12
       // Called when sensor values have changed.
13
14
15
```

Metoda	Opis
onSensorChanged(SensorEven	tObađuje promenu fizičke
event)	veličine
onAccuracyChanged(Sensor	Obrađuje promenu tačnosti me-
sensor, int accuracy)	renja

Tabela 7: Metode interfejsa SensorEventListener.

Atribut	Opis
float[] values	izmerena vrednost (skalar ili
	vektor)
long timestamp	vreme merenja [ns]
int accuracy	tačnost merenja
Sensor sensor	korišćen senzor

Tabela 8: Atributi klase SensorEvent.

Dobra praksa

- Koristiti Google Play filtere za izbor uređaja sa odgovarajućim tipovima senzora
- Detektovati senzore u toku izvršavanja aplikacije i po potrebi o(ne)mogućiti određene funkcije
- Odregistrovati obrađivač događaja kada senzor više nije potreban (štedi struju)

All images copyrighted by Android Open Source Project (CC BY)