12 Bij luchtdruk is het vaak handiger om te werken met dichtheid, in plaats van volume en hoeveelheid gas.

In deze opgave mag je aannemen dat lucht bestaat uit 78 vol.-% stikstof, 21 vol.-% zuurstof en 1 vol.-% argon. Daarbij heeft 1,00 mol stikstof een massa van 28,0 g en 1,00 mol zuurstof een massa van 32,0 g en 1,00 mol argon een massa van 39,9 g. De gemiddelde massa van 1,00 mol lucht is 29,0 g.

a Toon dit aan.

De molaire massa M is de massa van 1 mol lucht uitgedrukt in kg. Voor de dichtheid van lucht geldt nu $\rho = \frac{n \cdot M}{V}$.

b Leid dit af.

De algemene gaswet voor lucht kun je dan herleiden tot $\frac{p}{\rho \cdot T} = \frac{R}{M}$.

c Laat dat zien.

Omdat R en M constanten zijn geldt ook $\frac{p}{\rho \cdot T}$ = constant.

d Bepaal de waarde en de eenheid van de constante.

Opgave 12

- a In 1,00 mol lucht bevindt zich 0,78 mol stikstof, 0,21 mol zuurstof en 0,01 mol argon. De massa hiervan is $0.78 \times 28.00 + 0.21 \times 32.00 + 0.01 \times 39.948 = 28.959$ g. Afgerond: 29,0 g.
- b Voor de dichtheid geldt $\rho = \frac{m}{V}$

Voor de massa van een hoeveelheid lucht geldt $m = n \times M$ met M de massa van een mol lucht uitgedrukt in kg mol⁻¹

Dus voor de dichtheid geldt $\rho = \frac{n \cdot M}{V}$.

c De algemene gaswet luidt $\frac{p \cdot V}{n \cdot T} = R$

Dit kun je herschrijven tot $\frac{p}{r} = R \cdot \frac{n}{v}$.

De formule bij vraag b herschrijf je tot $\frac{\rho}{M} = \frac{n}{v}$ Combineren van de twee formules levert $\frac{p}{r} = R \cdot \frac{\rho}{M}$.

Dit herschrijf je tot $\frac{p}{\rho \cdot T} = \frac{R}{M}$.

d De waarde van de constante bereken je met de waarde van R en M.

De eenheid van de constante leid je af met de eenheid van R en de eenheid van M.

constante =
$$\frac{R}{M}$$
 met $R = 8,3144621$ J mol K⁻¹ en $M = 29,0$ g mol⁻¹ = $29,0\cdot10^{-3}$ kg mol⁻¹.
constante = $\frac{8,3144621}{29,0\cdot10^{-3}}$
constante = $2,867\cdot10^2$
Afgerond: $2,87\cdot10^2$.

[constante] =
$$\frac{|K|}{|M|}$$

[constante] = $\frac{\text{J mol}^{-1} \text{K}^{-1}}{\text{Impl}^{-1} \text{K}^{-1}}$

De eenheid van de constante is dus J kg-1 K-1.