[2]

6.8 Do Now: Tangents, systems of equations, frequency tables Calculator practice ${\bf G}$

1. A cubic function $f(x) = x^3 - \frac{3}{2}x^2 - 6x + 3$ is shown on the axes below.

A tangent to the function at x = -2 is drawn with the point of tangency P.

- (a) Write down the derivative of the function, f'(x). [2]
- (b) Show that the gradient of the tangent line is 12. [1]
- (c) Find the equation of the tangent line. [2]
- (d) Write down the slope of the perpendicular to the tangent line (the "normal") [1]
- (e) Find the x values of
 - i. the local minimum and
 - ii. the local maximum of f.

2.	The function $\cos x$ equals $\frac{1}{2}$ twice in each period. Set your calculator for radians, and
	find the solutions for the system (x such that $f(x) = g(x)$) over the domain $0 \le x \le 2\pi$.
	Sketch the graph to show working.

$$f(x) = \cos x \qquad \qquad g(x) = \frac{1}{2} \tag{2}$$

Working:	
	Answers:
	(a)
	(b)

3. Apply the law of cosines, $c^2 = a^2 + b^2 - 2ab\cos\theta$.

(a)
$$a=17.3,\,b=11.6,\,\theta=48^{\circ}.$$
 Find the third side length, $c.$

(b)
$$a = 10.4, b = 13.1, c = 9.1$$
. Find \hat{C} (the angle opposite side c). [3]

Working:		
	Answers:	
	(a)	
	(b)	