TD8: Logique Propositionnelle

28 mars 2024

Exercice 1

Donner les tables de vérités des fonctions suivantes :

- 1. $f_1(x, y, z) = (x + \overline{z}) \times (x \times y)$
- 2. $f_2(x,y) = (\overline{x} + y)$
- 3. $f_3(x,y) = (x \times y) + (\overline{x} \times \overline{y})$
- 4. $f_2(x_1, x_2, x_3, x_4) = (\overline{x_1} + x_2) \times (\overline{x_3} + x_4)$

Exercice 2

- 1) Montrer que + et \times sont associatives et commutatives, et que \times est distributive par rapport à +.
- 2) En déduire que pour des formules ϕ_1 , ϕ_2 et ϕ_3 , $(\phi_1 \wedge \phi_2) \wedge \phi_3$ et $\phi_1 \wedge (\phi_2 \wedge \phi_3)$ sont équivalentes (idem pour $(\phi_1 \vee \phi_2) \vee \phi_3$ et $\phi_1 \vee (\phi_2 \vee \phi_3)$).

Exercice 3

Calculer les valeurs de vérité des formules suivantes pour la valuation $[x \leftarrow 1, y \leftarrow 0, z \leftarrow 1]$:

- 1. $x \land \neg x$
- $2. x \wedge \top$
- 3. $x \wedge (y \wedge z)$
- 4. $(x \wedge y) \wedge z$
- 5. $(x \to y) \to z$
- 6. $x \to (y \to z)$
- 7. $x \leftrightarrow (y \leftrightarrow z)$

Exercice 4

Dire pour chacune des propositions suivantes s'il s'agit d'une formule satisfiable, d'une tautologie ou d'une antilogie.

- 1. $x_1 \vee \neg x_1$
- $2. x_1 \lor \bot$
- 3. $x_1 \wedge \bot$
- 4. $x_1 \vee \top$

- 5. $x_1 \wedge \bot$
- $6. \perp \rightarrow x$
- 7. $(\bot \to x_1) \land (\neg x_1 \lor x_2)$
- 8. $(x_1 \wedge x_2) \vee (\neg x_1 \wedge \neg x_2)$
- 9. $(x_1 \wedge x_2) \vee (x_3 \wedge \neg x_2)$

Exercice 5

Soit \mathcal{V} un ensemble de symboles de variables et \mathcal{F} l'ensemble des formules du calcul propositionnel sur \mathcal{V} . Montrer que la relation \equiv est une relation d'équivalence sur \mathcal{F} .

Exercice 6

Soient ϕ_1 et ϕ_2 deux formules du calcul propositionnel.

- 1) Montrer que $\phi_1 \vDash \phi_2$ si et seulement si $\phi_1 \to \phi_2$ est une tautologie.
- 2) Montrer que $\phi_1 \equiv \phi_2$ si et seulement si $\phi_1 \leftrightarrow \phi_2$ est une tautologie.

Exercice 7

Montrer les équivalences suivantes :

- 1. $\neg \neg x \equiv x$ (Double Négation)
- 2. $\neg(x_1 \land x_2) \equiv (\neg x_1 \lor \neg x_2)$ (Loi de De Morgan)
- 3. $\neg(x_1 \lor x_2) \equiv (\neg x_1 \land \neg x_2)$ (Loi de De Morgan)
- 4. $x_1 \rightarrow (x_2 \rightarrow x_3) \equiv (x_1 \land x_2) \rightarrow x_3$ (Curryfication)