Polar Coordinates, Cauchy Riemann Equations, and Integration

Matthew Seguin

24.1

d. Let
$$f(z) = e^{\overline{z}} = e^x e^{-iy} = e^x (\cos(-y) + i \sin(-y)) = e^x (\cos(y) - i \sin(y))$$
 when $z = x + iy$.

Recall that if a function g(z) = u(x,y) + iv(x,y) is differentiable at $z_0 = x_0 + iy_0$ then we must have:

$$u_x = v_y$$
 and $u_y = -v_x$ at the point (x_0, y_0) .

Now we know
$$f(z) = e^{\overline{z}} = e^x(\cos(y) - i\sin(y)) = e^x\cos(y) - ie^x\sin(y)$$
.

So we can write $f(z) = e^{\overline{z}} = u(x,y) + iv(x,y)$ where $u(x,y) = e^x \cos(y)$ and $v(x,y) = -e^x \sin(y)$.

From this we get $u_x = \frac{\partial}{\partial x}u = e^x cos(y)$, $u_y = \frac{\partial}{\partial y}u = -e^x sin(y)$, $v_x = \frac{\partial}{\partial x}v = -e^x sin(y)$, and $v_y = \frac{\partial}{\partial y}v = -e^x cos(y)$.

When we take the derivative with respect to only one variable (partial derivative) the other variable acts as a constant.

So we have from above that $u_x = e^x cos(y)$ while $v_y = -e^x cos(y)$.

If we want $u_x = v_y$ then $e^x cos(y) = -e^x cos(y)$. Since $e^x \neq 0$ we get cos(y) = -cos(y) and 2cos(y) = 0 i.e. cos(y) = 0. So $u_x(x,y) = v_y(x,y)$ only if $y = \frac{\pi}{2} + n\pi$ for some $n \in \mathbb{Z}$.

We also have $u_y = -e^x \sin(y)$ and $v_x = -e^x \sin(y)$.

If we want $u_y = -v_x$ then $-e^x sin(y) = e^x sin(y)$. Since $e^x \neq 0$ we get -sin(y) = sin(y) and 2sin(y) = 0 i.e. sin(y) = 0. So $u_y(x,y) = -v_x(x,y)$ only if $y = m\pi$ for some $m \in \mathbb{Z}$.

It is not possible for $y = m\pi$ and $y = \frac{\pi}{2} + n\pi$ where $m, n \in \mathbb{Z}$ simultaneously.

Proof:

Assume $y = \frac{\pi}{2} + n\pi$ and $y = m\pi$ for some $m, n \in \mathbb{Z}$. Then $\frac{\pi}{2} + n\pi = m\pi$ and $\frac{1}{2} + n = m$.

This is a contradiction because by assumption $m, n \in \mathbb{Z}$.

Therefore it is not possible for $y=m\pi$ and $y=\frac{\pi}{2}+n\pi$ where $m,n\in\mathbb{Z}$ simultaneously.

So the Cauchy Riemann equations $(u_x = v_y \text{ and } u_y = -v_x)$ are not satisfied anywhere.

Consequently, we know that $f(z) = e^{\overline{z}}$ is not differentiable for any $z \in \mathbb{C}$

24.4

Recall that if a function $g(z) = u(r,\theta) + iv(r,\theta)$ is defined in a neighborhood of a point $z_0 = r_0 e^{i\theta_0}$. Then if the partial derivatives of the component functions exist in that neighborhood, are continuous at z_0 , and satisfy the polar Cauchy Riemann equations $(ru_r = v_\theta \text{ and } u_\theta = -rv_r)$ at z_0 then g(z) is differentiable at z_0 and $g'(z_0) = e^{-i\theta}(u_r + iv_r)\Big|_{(r_0,\theta_0)}$

a. Let $f(z) = \frac{1}{z^4}$. Then if we write $z = re^{i\theta}$ we have $f(z) = \frac{1}{(re^{i\theta})^4} = \frac{1}{r^4}e^{-4i\theta}$.

We have that $f(z) = \frac{1}{z^4} = \frac{1}{r^4}e^{-4i\theta} = \frac{1}{r^4}(\cos(-4\theta) + i\sin(-4\theta)) = \frac{1}{r^4}(\cos(4\theta) - i\sin(4\theta)) = \frac{1}{r^4}\cos(4\theta) - i\frac{1}{r^4}\sin(4\theta)$. So we can write $f(z) = u(r,\theta) + iv(r,\theta)$ where $u(r,\theta) = r^{-4}\cos(4\theta)$ and $v(r,\theta) = -r^{-4}\sin(4\theta)$.

Therefore $u_r = \frac{\partial}{\partial r}u = -4r^{-5}cos(4\theta)$, $u_\theta = \frac{\partial}{\partial \theta}u = -4r^{-4}sin(4\theta)$, $v_r = \frac{\partial}{\partial r}v = 4r^{-5}sin(4\theta)$, and $v_\theta = \frac{\partial}{\partial \theta}v = -4r^{-4}cos(4\theta)$.

These are all continuous if $r \neq 0$ because the product of continuous functions is continuous.

We also have that $ru_r = r(-4r^{-5}cos(4\theta)) = -4r^{-4}cos(4\theta) = v_\theta$ and $u_\theta = -4r^{-4}sin(4\theta) = -r(4r^{-5}sin(4\theta)) = -rv_r$.

So partial derivatives of the component functions exist and are continuous when $z \neq 0$ and the Cauchy Riemann equations satisfied for $z \neq 0$, therefore f(z) is differentiable for $z \neq 0$ and

$$f'(z) = e^{-i\theta}(u_r + iv_r) = e^{-i\theta}(-4r^{-5}cos(4\theta) + 4ir^{-5}sin(4\theta)) = \frac{-4}{r^5}e^{-i\theta}(cos(4\theta) - isin(4\theta)) = \frac{-4}{r^5}e^{-i\theta}(cos(-4\theta) + isin(-4\theta)) = \frac{-4}{r^5}e^{-i\theta}e^{-4i\theta} = \frac{-4}{r^5e^{5i\theta}} = \frac{-4}{(re^{i\theta})^5} = \frac{-4}{z^5} \square$$

b. Let $f(z) = e^{-\theta}cos(ln(r)) + ie^{-\theta}sin(ln(r))$ where $z = re^{i\theta}$ and r > 0, $\theta \in (0, 2\pi)$.

So we can write $f(z) = u(r,\theta) + iv(r,\theta)$ where $u(r,\theta) = e^{-\theta}cos(ln(r))$ and $v(r,\theta) = e^{-\theta}sin(ln(r))$.

Therefore
$$u_r = \frac{\partial}{\partial r}u = -e^{-\theta}sin(ln(r))\frac{1}{r}$$
, $u_{\theta} = \frac{\partial}{\partial \theta}u = -e^{-\theta}cos(ln(r))$, $v_r = \frac{\partial}{\partial r}v = e^{-\theta}cos(ln(r))\frac{1}{r}$, and $v_{\theta} = \frac{\partial}{\partial \theta}v = -e^{-\theta}sin(ln(r))$.

These are all continuous for r > 0 because the product of continuous functions is continuous.

We also have that
$$ru_r = r(-e^{-\theta}sin(ln(r))\frac{1}{r}) = -e^{-\theta}sin(ln(r)) = v_{\theta}$$
 and
$$u_{\theta} = -e^{-\theta}cos(ln(r)) = -r(e^{-\theta}cos(ln(r))\frac{1}{r}) = -rv_r.$$

So partial derivatives of the component functions exist and are continuous when r > 0 and the Cauchy Riemann equations satisfied for r > 0, therefore f(z) is differentiable for $z \neq 0$ and

$$f'(z) = e^{-i\theta}(u_r + iv_r) = e^{-i\theta}(-e^{-\theta}\sin(\ln(r))\frac{1}{r} + ie^{-\theta}\cos(\ln(r))\frac{1}{r}) = \frac{1}{r}e^{-\theta}e^{-i\theta}(i^2\sin(\ln(r)) + i\cos(\ln(r))) = \frac{i}{re^{i\theta}}e^{-\theta}(i\sin(\ln(r)) + \cos(\ln(r))) = \frac{i}{re^{i\theta}}(e^{-\theta}\cos(\ln(r)) + ie^{-\theta}\sin(\ln(r))) = \frac{if(z)}{z}$$

24.8

b. The operator $\frac{\partial}{\partial \overline{z}} = \frac{1}{2}(\frac{\partial}{\partial x} + i\frac{\partial}{\partial y})$ is given in the question. Now let f(z) = u(x,y) + iv(x,y) where z = x + iy.

Fix some point $z_0 = x_0 + iy_0$ and assume that f(z) satisfies the Cauchy Riemann equations at z_0 .

That is assume
$$u_x = v_y$$
 and $u_y = -v_x$ at (x_0, y_0) .

Then we have:

$$\frac{\partial}{\partial \overline{z}} f(z) = \frac{1}{2} \Big(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \Big) f(z) = \frac{1}{2} \Big(\frac{\partial}{\partial x} f(z) + i \frac{\partial}{\partial y} f(z) \Big) = \frac{1}{2} \Big(\frac{\partial}{\partial x} (u(x,y) + iv(x,y)) + i \frac{\partial}{\partial y} (u(x,y) + iv(x,y)) \Big) = \frac{1}{2} \Big(\frac{\partial}{\partial x} f(z) + i \frac{\partial}{\partial y} f(z) \Big) = \frac{1}{2} \Big(\frac{\partial}{\partial x} f(z) + i \frac{\partial}{\partial y} f(z) \Big) = \frac{1}{2} \Big(\frac{\partial}{\partial x} f(z) + i \frac{\partial}{\partial y} f(z) \Big) = \frac{1}{2} \Big(\frac{\partial}{\partial x} f(z) + i \frac{\partial}{\partial y} f(z) \Big) = \frac{1}{2} \Big(\frac{\partial}{\partial x} f(z) + i \frac{\partial}{\partial y} f(z) \Big) = \frac{1}{2} \Big(\frac{\partial}{\partial x} f(z) + i \frac{\partial}{\partial y} f(z) \Big) = \frac{1}{2} \Big(\frac{\partial}{\partial x} f(z) + i \frac{\partial}{\partial y} f(z) \Big) = \frac{1}{2} \Big(\frac{\partial}{\partial x} f(z) + i \frac{\partial}{\partial y} f(z) \Big) = \frac{1}{2} \Big(\frac{\partial}{\partial x} f(z) + i \frac{\partial}{\partial y} f(z) \Big) = \frac{1}{2} \Big(\frac{\partial}{\partial x} f(z) + i \frac{\partial}{\partial y} f(z) \Big) = \frac{1}{2} \Big(\frac{\partial}{\partial x} f(z) + i \frac{\partial}{\partial y} f(z) \Big) = \frac{1}{2} \Big(\frac{\partial}{\partial x} f(z) + i \frac{\partial}{\partial y} f(z) \Big) = \frac{1}{2} \Big(\frac{\partial}{\partial x} f(z) + i \frac{\partial}{\partial y} f(z) \Big) = \frac{1}{2} \Big(\frac{\partial}{\partial x} f(z) + i \frac{\partial}{\partial y} f(z) \Big) = \frac{1}{2} \Big(\frac{\partial}{\partial x} f(z) + i \frac{\partial}{\partial y} f(z) \Big) = \frac{1}{2} \Big(\frac{\partial}{\partial x} f(z) + i \frac{\partial}{\partial y} f(z) \Big) = \frac{1}{2} \Big(\frac{\partial}{\partial x} f(z) + i \frac{\partial}{\partial y} f(z) \Big) = \frac{1}{2} \Big(\frac{\partial}{\partial x} f(z) + i \frac{\partial}{\partial y} f(z) \Big) = \frac{1}{2} \Big(\frac{\partial}{\partial x} f(z) + i \frac{\partial}{\partial y} f(z) \Big) = \frac{1}{2} \Big(\frac{\partial}{\partial x} f(z) + i \frac{\partial}{\partial y} f(z) \Big) = \frac{1}{2} \Big(\frac{\partial}{\partial x} f(z) + i \frac{\partial}{\partial y} f(z) \Big) = \frac{1}{2} \Big(\frac{\partial}{\partial x} f(z) + i \frac{\partial}{\partial y} f(z) \Big) = \frac{1}{2} \Big(\frac{\partial}{\partial x} f(z) + i \frac{\partial}{\partial y} f(z) \Big) = \frac{1}{2} \Big(\frac{\partial}{\partial x} f(z) + i \frac{\partial}{\partial y} f(z) \Big) = \frac{1}{2} \Big(\frac{\partial}{\partial x} f(z) + i \frac{\partial}{\partial y} f(z) \Big) = \frac{1}{2} \Big(\frac{\partial}{\partial x} f(z) + i \frac{\partial}{\partial y} f(z) \Big) = \frac{1}{2} \Big(\frac{\partial}{\partial x} f(z) + i \frac{\partial}{\partial y} f(z) \Big) = \frac{1}{2} \Big(\frac{\partial}{\partial x} f(z) + i \frac{\partial}{\partial y} f(z) \Big) = \frac{1}{2} \Big(\frac{\partial}{\partial x} f(z) + i \frac{\partial}{\partial y} f(z) \Big) = \frac{1}{2} \Big(\frac{\partial}{\partial x} f(z) + i \frac{\partial}{\partial y} f(z) \Big) = \frac{1}{2} \Big(\frac{\partial}{\partial x} f(z) + i \frac{\partial}{\partial y} f(z) \Big) = \frac{1}{2} \Big(\frac{\partial}{\partial x} f(z) + i \frac{\partial}{\partial y} f(z) \Big) = \frac{1}{2} \Big(\frac{\partial}{\partial x} f(z) + i \frac{\partial}{\partial y} f(z) \Big) = \frac{1}{2} \Big(\frac{\partial}{\partial x} f(z) + i \frac{\partial}{\partial y} f(z) \Big) = \frac{1}{2} \Big(\frac{\partial}{\partial x} f(z) + i \frac{\partial}{\partial y} f(z) \Big) = \frac{1}{2} \Big(\frac{\partial}{\partial x} f(z) + i \frac{\partial}{\partial y} f(z) \Big) = \frac{1}{2} \Big(\frac{\partial}{\partial x} f(z) + i \frac{\partial}{\partial y} f(z) \Big) = \frac$$

$$\frac{1}{2} \Big(\frac{\partial}{\partial x} u(x,y) + i \frac{\partial}{\partial x} v(x,y) + i \frac{\partial}{\partial y} u(x,y) + i^2 \frac{\partial}{\partial y} v(x,y) \Big) = \frac{1}{2} \Big((u_x(x,y) - v_y(x,y)) + i (u_y(x,y) + v_x(x,y)) \Big)$$

Since we know that the Cauchy Riemann equations are satisfied at z_0 we know $u_x = v_y$ and $u_y = -v_x$ at (x_0, y_0) .

Therefore
$$\frac{\partial f}{\partial \overline{z}}\Big|_{z_0} = \frac{1}{2}\Big((u_x(x_0, y_0) - v_y(x_0, y_0)) + i(u_y(x_0, y_0) + v_x(x_0, y_0))\Big) = \frac{1}{2}\Big(0 + 0i\Big) = 0.$$

This was true for an arbitrary $z_0 \in \mathbb{C}$ and is therefore true for all $z_0 \in \mathbb{C}$.

So if the Cauchy Riemann equations are satisfied at z_0 then $\frac{\partial f}{\partial \overline{z}}\Big|_{z_0} = 0$, and clearly the reverse is true \Box

Recall that if a function g(z) = u(x, y) + iv(x, y) is differentiable at $z_0 = x_0 + iy_0$ then we must have:

$$u_x = v_y$$
 and $u_y = -v_x$ at the point (x_0, y_0) .

Further recall that in order for a function to be analytic at $z_0 \in \mathbb{C}$ it must be differentiable in some neighborhood of z_0 .

When x and y are used in this problem I am referring to the real and imaginary parts of a complex variable z = x + iy.

a. Let f(z) = xy + iy. Then f(z) = u(x,y) + iv(x,y) where u = xy and v = y.

We know that
$$u_x = \frac{\partial}{\partial x}u = y$$
, $u_y = \frac{\partial}{\partial y}u = x$, $v_x = \frac{\partial}{\partial x}v = 0$, and $v_y = \frac{\partial}{\partial y}v = 1$.

If we want
$$u_x = v_y$$
 then $y = 1$, and if we want $u_y = -v_x$ then $x = 0$.

So we have that f can not be differentiable at any point that is not 0 + 1i = i. Note that I am not stating that f is differentiable at i, I am just saying f can not be differentiable at any other point.

Clearly if $z_0 \neq i$ then f is not differentiable at z_0 and hence not differentiable in any neighborhood of z_0 .

If $z_0 = i$ then for any neighborhood of z_0 there exists some point $z \neq z_0$ in the neighborhood. Hence f is not differentiable at z and consequently not differentiable in any neighborhood of z_0 .

Therefore for any $z_0 \in \mathbb{C}$ there does not exist a neighborhood of z_0 where f is differentiable.

So
$$f(z) = xy + iy$$
 where $z = x + iy$ is nowhere analytic \square

b. Let
$$f(z) = 2xy + i(x^2 - y^2)$$
. Then $f(z) = u(x, y) + iv(x, y)$ where $u = 2xy$ and $v = x^2 - y^2$.

We know that
$$u_x = \frac{\partial}{\partial x}u = 2y$$
, $u_y = \frac{\partial}{\partial y}u = 2x$, $v_x = \frac{\partial}{\partial x}v = 2x$, and $v_y = \frac{\partial}{\partial y}v = -2y$.

If we want $u_x = v_y$ then 2y = -2y and hence y = 0, and if we want $u_y = -v_x$ then 2x = -2y and hence x = -y. If both of these are simultaneously true then we must have y = 0 and x = -y = 0.

So we have that f can not be differentiable at any point that is not 0 + 0i = 0. Note that I am not stating that f is differentiable at 0, I am just saying f can not be differentiable at any other point.

Clearly if $z_0 \neq 0$ then f is not differentiable at z_0 and hence not differentiable in any neighborhood of z_0 .

If $z_0 = 0$ then for any neighborhood of z_0 there exists some point $z \neq z_0$ in the neighborhood. Hence f is not differentiable at z and consequently not differentiable in any neighborhood of z_0 .

Therefore for any $z_0 \in \mathbb{C}$ there does not exist a neighborhood of z_0 where f is differentiable.

So
$$f(z)=2xy+i(x^2-y^2)$$
 where $z=x+iy$ is nowhere analytic \square

b. Let
$$f(z) = e^y e^{ix} = e^y (\cos(x) + i\sin(x))$$
. Then $f(z) = u(x,y) + iv(x,y)$ where $u = e^y \cos(x)$ and $v = e^y \sin(x)$.

We know that
$$u_x = \frac{\partial}{\partial x}u = -e^y sin(x)$$
, $u_y = \frac{\partial}{\partial y}u = e^y cos(x)$, $v_x = \frac{\partial}{\partial x}v = e^y cos(x)$, and $v_y = \frac{\partial}{\partial y}v = e^y sin(x)$.

If we want $u_x = v_y$ then $-e^y \sin(x) = e^y \sin(x)$ and hence $\sin(x) = 0$, and if we want $u_y = -v_x$ then

$$e^y cos(x) = -e^y cos(x)$$
 and hence $cos(x) = 0$.

I showed earlier in this sample work that these equations can not be simultaneously true.

So we have that f can not be differentiable at any point.

Clearly if $z_0 \in \mathbb{C}$ then f is not differentiable at z_0 and hence not differentiable in any neighborhood of z_0 .

Therefore for any $z_0 \in \mathbb{C}$ there does not exist a neighborhood of z_0 where f is differentiable.

So
$$f(z) = e^y e^{ix}$$
 where $z = x + iy$ is nowhere analytic \square

26.4

Recall that a point z_0 is a singular point of f if f fails to be analytic at z_0 but is analytic at some point for every neighborhood of z_0 .

C. Let
$$f(z) = \frac{z^2+1}{(z+2)(z^2+2z+2)}$$
.

The roots of a complex polynomial P(z) can be found with the quadratic equation as shown in a previous sample work.

So
$$z = \frac{-2 \pm \sqrt{2^2 - 4(1)(2)}}{2} = \frac{-2 \pm \sqrt{-4}}{2} = -1 \pm i$$
 are the roots of $z^2 + 2z + 2$

Therefore $z^2 + 2z + 2 = (z - (-1 - i))(z - (-1 + i))$ and consequently $f(z) = \frac{z^2 + 1}{(z + 2)(z - (-1 - i))(z - (-1 + i))}$.

Clearly if $z_0 = -2$ or $z_0 = -1 - i$ or $z_0 = -1 + i$ then $f(z_0)$ does not exist and hence f is not continuous at z_0 and can not be differentiable at z_0 . Consequently f is not differentiable in any neighborhood of -2, -1 - i, and -1 + i.

So f is not analytic at
$$-2$$
, $-1 - i$, and $-1 + i$.

However, if $z_0 \notin \{-2, -1 - i, -1 + i\}$ then there exists some neighborhood of z_0 that contains none of these points. Simply let $\epsilon < min\{|z_0 - (-2)|, |z_0 - (-1 - i)|, |z_0 - (-1 + i)|\}$, that is let ϵ be less than the minimum distance to any of the points -2, -1 - i, and -1 + i.

Then the neighborhood $\{z \in \mathbb{C} : |z_0 - z| < \epsilon\}$ of z_0 won't contain any of the points -2, -1 - i, and -1 + i since they are more than a distance of ϵ away from z_0 .

The numerator of f(z) is a complex polynomial and hence is differentiable at all $z_0 \in \mathbb{C}$.

Similarly the denominator of f(z) is a complex polynomial and hence is differentiable at all $z_0 \in \mathbb{C}$.

Therefore for any $z_0 \notin \{-2, -1 - i, -1 + i\}$ we have that the denominator of f evaluated at z_0 is not 0.

Then since the quotient of differentiable functions is differentiable when the denominator is not 0, we have that f(z) is differentiable at z_0 when $z_0 \notin \{-2, -1 - i, -1 + i\}$.

Now we know for any neighborhood of any of any the points -2, -1-i, and -1+i we can find a $z_0 \notin \{-2, -1-i, -1+i\}$ in that neighborhood.

For such a z_0 we know that we can find a neighborhood of z_0 that does not contain any of the points -2, -1 - i, and -1 + i. Hence we can find a neighborhood of z_0 where f is differentiable since its denominator is nonzero.

Similarly if we just start with a $z \notin \{-2, -1 - i, -1 + i\}$ then we know there exists a neighborhood of z that does not contain any of the points -2, -1 - i, and -1 + i. Hence there exists a neighborhood of z where f is differentiable since its denominator is nonzero.

Therefore f fails to be analytic at each of the points -2, -1-i, and -1+i, but is analytic at some point in every neighborhood of each of these points. Also, f is analytic at every $z \notin \{-2, -1-i, -1+i\}$.

Therefore -2, -1-i, and -1+i are the singular points of f and f is analytic everywhere else. \Box

Recall that two lines are perpendicular in \mathbb{R}^2 if their slopes m_1, m_2 satisfy $m_1 = -\frac{1}{m_2}$.

Proof

Let L_1 and L_2 be two lines in \mathbb{R}^2 with slopes $m_1 \neq 0$ and $m_2 \neq 0$ respectively.

Then the coordinate rates of change are given by $(1, m_1)$ and $(1, m_2)$ for lines one and two respectively.

Taking the dot product we get $1 + m_1 m_2$, if we want this to be equal to 0 (meaning the lines are perpendicular we get):

$$1 + m_1 m_2 = 0$$
 and $1 = -m_1 m_2$ and finally $m_1 = -\frac{1}{m_2}$.

Let f(z) = u(x,y) + iv(x,y) be analytic over some domain D. Let $c_1, c_2 \in \mathbb{R}$ be arbitrary.

Consider the level curves $u(x,y) = c_1$ and $v(x,y) = c_2$.

Fix some $z_0 = x_0 + iy_0$ that is common to both curves.

Further assume that $f'(z_0) \neq 0$.

Then by differentiating the equations $u(x,y) = c_1$ and $v(x,y) = c_2$ with respect to x we get:

$$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} \frac{dy}{dx} = \frac{d}{dx} c_1 = 0 \text{ and } \frac{\partial v}{\partial x} + \frac{\partial v}{\partial y} \frac{dy}{dx} = \frac{d}{dx} c_2 = 0.$$

We also know that $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$ since f is analytic over D and hence the Cauchy Riemann equations must be satisfied over D.

Furthermore we know that $\frac{\partial v}{\partial y} = \frac{\partial u}{\partial x} \neq 0$ and $-\frac{\partial u}{\partial y} = \frac{\partial v}{\partial x} \neq 0$ at (x_0, y_0) by our assumption that $f'(z_0) \neq 0$.

Therefore for the first curve, $u(x,y) = c_1$, we have:

$$\frac{\partial u}{\partial x} - \frac{\partial v}{\partial x} \frac{dy}{dx} = 0$$
 and $\frac{\partial v}{\partial x} \frac{dy}{dx} = \frac{\partial u}{\partial x}$.

Finally since $v_x = \frac{\partial v}{\partial x} \neq 0$ at (x_0, y_0) we have $\frac{dy}{dx} = \frac{u_x}{v_x}$ at (x_0, y_0) .

Similarly for the second curve, $v(x,y) = c_2$, we have:

$$\frac{\partial v}{\partial x} + \frac{\partial u}{\partial x} \frac{dy}{dx} = 0$$
 and $\frac{\partial u}{\partial x} \frac{dy}{dx} = -\frac{\partial v}{\partial x}$.

Finally since $u_x = \frac{\partial u}{\partial x} \neq 0$ at (x_0, y_0) we have $\frac{dy}{dx} = -\frac{v_x}{u_x}$ at (x_0, y_0) .

Let m_1 be the rate of change of the line tangent to the first curve $(u(x,y)=c_1)$ at (x_0,y_0) , then $m_1=\frac{u_x}{v_x}\Big|_{(x_0,y_0)}$

Let m_2 be the rate of change of the line tangent to the second curve $(v(x,y)=c_2)$ at (x_0,y_0) , then $m_2=-\frac{v_x}{u_x}\Big|_{(x_0,y_0)}$

Therefore we have that:

$$m_1 = \frac{u_x}{v_x} = -(-\frac{u_x}{v_x}) = -(\frac{1}{-\frac{v_x}{u_x}}) = -\frac{1}{m_2}$$

By the proof at the start of this problem we have shown that $u(x,y)=c_1$ is perpendicular to $v(x,y)=c_2$ at (x_0,y_0)

Problem 2

Let
$$f(z) = z^2$$
 if $z \in \mathbb{R}$ and $f(z) = z^3$ otherwise.

• Showing f is differentiable at $z_0 = 0$:

Let
$$\epsilon>0$$
 then let $\delta<\min\{\epsilon,1\}$. Then $\delta<\epsilon$. We know that $|\frac{f(z)-f(0)}{z-0}|=|\frac{f(z)}{z}|$ for $z\neq 0$. Therefore $|\frac{f(z)-f(0)}{z-0}-0|=|\frac{f(z)}{z}|=|\frac{z^2}{z}|=|z|$ for all nonzero $z\in\mathbb{R}$. Similarly $|\frac{f(z)-f(0)}{z-0}-0|=|\frac{f(z)}{z}|=|\frac{z^3}{z}|=|z^2|$ for all nonzero $z\in\mathbb{C}\cap\mathbb{R}^c$. Now if $|z-0|=|z|<\delta$ we have that $|z|<\delta<1$ and therefore $|z^2|=|z|^2<|z|$. Therefore we have that if $|z-0|<\delta$ then $|\frac{f(z)-f(0)}{z-0}-0|=|\frac{f(z)}{z}|<|z|<\delta<\epsilon$. This was true for arbitrary $\epsilon>0$ and is therefore true for all $\epsilon>0$. Therefore $f'(0)=\lim_{z\to 0}\frac{f(z)-f(0)}{z-0}=0$, so f is differentiable at 0 .

• Showing f is not analytic at 0:

When $z \notin \mathbb{R}$ clearly $f(z) = z^3$ is differentiable because it is a complex polynomial, but that is not what we are looking at.

We will now look at $\lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$ from the vertical direction when $z_0 \in \mathbb{R} \setminus \{0, 1\}$.

By taking the vertical approach we have $\Delta z = \Delta x + i \Delta y = i \Delta y$ since we take $\Delta x = 0$.

So
$$z_0 + \Delta z = z_0 + i\Delta y \notin \mathbb{R}$$
 since $z_0 \in \mathbb{R}$ and $i\Delta y \notin \mathbb{R}$, and $f(z_0 + \Delta z) = f(z_0 + i\Delta y) = (z_0 + i\Delta y)^3$.

I claim that for
$$z_0 \in \mathbb{R} \setminus \{0,1\}$$
 from the vertical approach $\lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} = \lim_{\Delta y \to 0} \frac{f(z_0 + i\Delta y) - f(z_0)}{i\Delta y} = \infty$.

I am excluding the point 1 for reasons that will be obvious when taking the limit, but since we are only removing a finite number of points we will still get the desired result.

$$lim_{\Delta y \to 0} \frac{1}{\frac{f(z_0 + i\Delta y) - f(z_0)}{i\Delta y}} = lim_{\Delta y \to 0} \frac{i\Delta y}{f(z_0 + i\Delta y) - f(z_0)} = lim_{\Delta y \to 0} \frac{i\Delta y}{(z_0 + i\Delta y)^3 - z_0^2} = lim_{\Delta y \to 0} \frac{i\Delta y}{z_0^3 + 3iz_0^2 \Delta y - 3z_0(\Delta y)^2 - i(\Delta y)^3 - z_0^2}$$

We know that clearly
$$\lim_{\Delta y \to 0} (z_0^3 + 3iz_0^2 \Delta y - 3z_0(\Delta y)^2 - i(\Delta y)^3 - z_0^2) = z_0^3 - z_0^2 = z_0^2(z_0 - 1)$$
 and $\lim_{\Delta y \to 0} i\Delta y = 0$.
Assume $z_0 \notin \{0, 1\}$. Then $\lim_{\Delta y \to 0} (z_0^3 + 3iz_0^2 \Delta y - 3z_0(\Delta y)^2 - i(\Delta y)^3 - z_0^2) = z_0^3 - z_0^2 = z_0^2(z_0 - 1) \neq 0$.
Therefore if $z_0 \in \mathbb{R} \setminus \{0, 1\}$ we have $\lim_{\Delta y \to 0} \frac{i\Delta y}{f(z_0 + i\Delta y) - f(z_0)} = 0$ and consequently, $\lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} = \lim_{\Delta y \to 0} \frac{f(z_0 + i\Delta y) - f(z_0)}{i\Delta y} = \infty$ from the vertical approach.

So for $z_0 \in \mathbb{R} \setminus \{0,1\}$ the derivative of f does not exist since the limit approaching vertically is not finite.

Now consider an arbitrary neighborhood of 0, then you will always be able to find a point $z_0 \in \mathbb{R} \setminus \{0, 1\}$ and hence in any neighborhood of 0 you will always be able to find a point where f is not differentiable.

Therefore f can not be differentiable in any neighborhood of 0 and so f is not analytic at 0 \square It is actually the case that f is not analytic at any $z_0 \in \mathbb{R}$ by similar reasoning.

Problem 3

Let h(z) be a function such that both h(z) and zh(z) solve the Laplace equation over a domain D.

Then if we write
$$h(z) = u(x, y) + iv(x, y)$$
 we know that

$$zh(z) = (x+iy)(u(x,y)+iv(x,y)) = xu(x,y) - yv(x,y) + i(yu(x,y)+xv(x,y)).$$

So let
$$zh(z) = s(x,y) + it(x,y)$$
 where $s(x,y) = xu(x,y) - yv(x,y)$ and $t(x,y) = yu(x,y) + xv(x,y)$.

We also know $u_{xx} + u_{yy} = 0$ and $v_{xx} + v_{yy} = 0$ over D. Similarly we know $s_{xx} + s_{yy} = 0$ and $t_{xx} + t_{yy} = 0$ over D.

Let's actually find s_{xx} , s_{yy} , t_{xx} , and t_{yy} in terms of u and v:

For
$$s(x, y)$$
:

To start
$$\frac{\partial s}{\partial x} = \frac{\partial}{\partial x}(xu - yv) = u + xu_x - yv_x$$
.

So
$$s_{xx} = \frac{\partial^2 s}{\partial x^2} = \frac{\partial}{\partial x}(u + xu_x - yv_x) = u_x + u_x + xu_{xx} - yv_{xx} = 2u_x + xu_{xx} - yv_{xx}$$
.

Similarly
$$\frac{\partial s}{\partial y} = \frac{\partial}{\partial y}(xu - yv) = xu_y - v - yv_y$$
.

So
$$s_{yy} = \frac{\partial^2 s}{\partial y^2} = \frac{\partial}{\partial y}(xu_y - v - yv_y) = xu_{yy} - v_y - v_y - yv_{yy} = xu_{yy} - 2v_y - yv_{yy}$$
.

For
$$t(x, y)$$
:

To start
$$\frac{\partial t}{\partial x} = \frac{\partial}{\partial x}(yu + xv) = yu_x + v + xv_x$$
.

So
$$t_{xx} = \frac{\partial^2 t}{\partial x^2} = \frac{\partial}{\partial x}(yu_x + v + xv_x) = yu_{xx} + v_x + v_x + xv_{xx} = yu_{xx} + 2v_x + xv_{xx}$$
.

Similarly
$$\frac{\partial t}{\partial y} = \frac{\partial}{\partial y}(yu + xv) = u + yu_y + xv_y$$
.

So
$$t_{yy} = \frac{\partial^2 t}{\partial y^2} = \frac{\partial}{\partial y}(u + yu_y + xv_y) = u_y + u_y + yu_{yy} + xv_{yy} = 2u_y + yu_{yy} + xv_{yy}$$
.

Now lets plug these into the equations $s_{xx} + s_{yy} = 0$ and $t_{xx} + t_{yy} = 0$:

Keep in mind that $u_{xx} + u_{yy} = 0$ and $v_{xx} + v_{yy} = 0$.

For
$$s(x, y)$$
:

$$s_{xx} + s_{yy} = 2u_x + xu_{xx} - yv_{xx} + xu_{yy} - 2v_y - yv_{yy} = x(u_{xx} + u_{yy}) - y(v_{xx} + v_{yy}) + 2(u_x - v_y) = 2(u_x - v_y) = 0.$$

Therefore we have that $u_x = v_y$ over D.

For
$$t(x, y)$$
:

$$t_{xx} + t_{yy} = yu_{xx} + 2v_x + xv_{xx} + 2u_y + yu_{yy} + xv_{yy} = y(u_{xx} + u_{yy}) + x(v_{xx} + v_{yy}) + 2(u_y + v_x) = 2(u_y + v_x) = 0.$$

Therefore we have that $u_y = -v_x$ over D.

The professor said that we may assume u and v are twice differentiable with continuous derivatives therefore we know that the first order partial derivatives of u and v are continuous.

Therefore Cauchy Riemann equations are satisfied over D and the first order partial derivatives of the component

functions are continuous over D.

So h(z) is analytic over $D \square$

Bonus

Let h(t) be a complex valued function continuous on [0, 1].

Then define a new function for $z \in \mathbb{C} \setminus [0, 1]$:

$$f(z) = \int_0^1 \frac{h(t)}{z - t} dt$$

Then we want to find f'(z):

Let $z_0 \in \mathbb{C} \setminus [0, 1]$ be arbitrary, then for $z \neq z_0$:

$$\frac{f(z) - f(z_0)}{z - z_0} = \frac{1}{z - z_0} \int_0^1 \frac{h(t)}{z - t} dt - \frac{1}{z - z_0} \int_0^1 \frac{h(t)}{z_0 - t} dt = \frac{1}{z - z_0} \int_0^1 \frac{h(t)}{z - t} - \frac{h(t)}{z_0 - t} dt = \frac{1}{z - z_0} \int_0^1 \frac{h(t)(z_0 - t) - h(t)(z - t)}{(z - t)(z_0 - t)} dt = \frac{1}{z - z_0} \int_0^1 \frac{z_0 h(t) - z h(t)}{(z - t)(z_0 - t)} dt = \frac{1}{z - z_0} \int_0^1 \frac{(z_0 - z)h(t)}{(z - t)(z_0 - t)} dt = \frac{1}{z - z_0} \int_0^1 \frac{h(t)}{(z - t)(z_0 - t)} dt$$

Therefore:

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{z \to z_0} \int_0^1 \frac{h(t)}{(z - t)(z_0 - t)} dt = \int_0^1 \lim_{z \to z_0} \frac{h(t)}{(z - t)(z_0 - t)} dt = \int_0^1 \frac{h(t)}{(z - t)^2} dt$$

Since we know $z_0 \notin [0,1]$ we know that the limit of the denominator inside the integral is not 0 for any $t \in [0,1]$ and hence the limit is straightforward since it is the limit of a constant function (with respect to z) divided by a polynomial.

This was true for arbitrary $z_0 \in \mathbb{C} \setminus [0,1]$ and therefore true for all $z_0 \in \mathbb{C} \setminus [0,1]$.

So f is analytic since it is differentiable at every $z_0 \in \mathbb{C} \setminus [0,1]$, and:

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \int_0^1 \frac{h(t)}{(z_0 - t)^2} dt$$