Orders.

Exercice 1:

Let E be a set with a partial order \leq . Recall that an *antichain* is a subset of E in which all the elements are incomparable.

- 1. We consider \mathbb{N}^2 with the product order $((a,b) \leq (x,y) \iff a \leq x \land b \leq y)$
 - (a) Show an antichain of cardinality n, for any n > 1.
 - (b) Can we find an infinite antichain?
- 2. Show that the set Σ^* with the sub-string order $(w_1 < w_2 \text{ iff } \exists u, v \in \Sigma^* \text{ s.t. } w_2 = uw_1v)$, has an infinite chain.

Exercice 2:

Given $A, B \in \mathcal{P}([n])$ we say that A < B iff $A \subset B$.

1. Assume that n > 1. Show that :

$$1 < \binom{n}{1} < \binom{n}{2} < \dots < \binom{n}{\lfloor \frac{n}{2} \rfloor} \ge \dots > \binom{n}{n-2} > \binom{n}{n-1} > 1$$

- 2. For $k \in \{1, ..., \frac{n}{2}\}$ find an antichain of cardinality $\binom{n}{k}$ in $\mathcal{P}([n])$.
- 3. Let A be an anti chain in $\mathcal{P}([n])$. For k in [0, n], we denote by a_k the number of sets of cardinality k in A. We will now show the Lubell-Yamamoto-Meshalkin inequality:

$$\sum_{k=0}^{n} \frac{a_k}{\binom{n}{k}} \le 1$$

- (a) Demonstrate that there are exactly n! Strictly increasing chains in $\mathcal{P}([n])$, of the form $X_0 = \emptyset \subsetneq X_1 \subsetneq X_2 \subsetneq \cdots \subsetneq X_n = X$.
- (b) Let S be a subset of X of cardinality s. Show that there are exactly s!(n-s)! strictly increasing chains in $\mathcal{P}([n])$, of the form $X_0 = \emptyset \subsetneq X_1 \subsetneq X_2 \subsetneq \cdots \subsetneq X_n = X$, where $X_s = S$.
- (c) Let $X_1 \subsetneq X_2 \subsetneq \cdots \subsetneq X_r$ a strictly increasing chains in $\mathcal{P}([n])$. Then there is at most one X_i in A(the antichain). By partitioning all the strictly increasing sequences $X_0 = \emptyset \subsetneq X_1 \subsetneq X_2 \subsetneq \cdots \subsetneq X_n = X$, according to their possible intersection with A, demonstrate the Lubell-Yamamoto-Meshalkin inequality.
- 4. Deduce the maximal cardinality of an antichain in $\mathcal{P}([n])$.

Exercice 3:

Show 2 of the following:

Let $(R_i)_{i\in I}$ a family of binary relationships on the set E. Let $R = \cap_{i\in I} R_i$. In other words, xRy if xR_iy for all $i\in I$.

- If one of the R_i 's is irreflexive/asymmetric/antisymmetric, then R is too.
- If all R_i 's are reflexive/symmetric/transitives, then R is too
- The intersection does not preserve totality or trichotomy.

Exercice 4:

Show 2 of the following:

Let R be a relation on the set E, and $F \subseteq E$. If R is reflexive / symmetric / transitive / total / antisymmetric / irreflexive / asymmetric / trichotomous, then R_F is the same.

Exercice 5:

Show 2 of the following:

If R is reflexive / symmetric / transitive / total / antisymmetric / irreflexive / asymmetric / trichotomous, Then R^{-1} is the same.

Exercice 6:

Show the following propositions:

- If (E, \leq) is a finite ordered set and $x \in E$. There is a maximal element y in E s.t. $x \leq y$.
- If any finite part of an ordered set has a greatest element, then it is a total order.

Exercice 7:

Show that the lexicographic product of (total) orders is a (total) order.

For all $x, y \in \prod_{i \in I} (E_i, \leq_i)$, $x \leq_{lex} y$ iff given $k := \min\{j \in I \mid x_j \neq y_j\}$ we have $x_k \leq_k y_k$.

Exercice 8:

Let E be a set with a prtial order denoted by \leq . We say that \leq is a well quasi-order (wqo) if from any sequence of elements of E, we can extract an infinite monotone increasing sequence. I.e. $\forall (x_i)_{i\in\mathbb{N}} \in E^{\mathbb{N}}$, there exists an increasing sub-sequence of indexes : $i_0 < i_1 < \cdots < i_n < \cdots$ for which the sequence $(x_{i_n})_{n\in\mathbb{N}}$ is increasing : $x_{i_0} \leq x_{i_1} \leq \cdots \leq x_{i_n} \leq \cdots$.

- 1. Show that if the order \leq is total, then it is wow iff any non-empty subset of E has a least element.
- 2. Give an example of a total ordered set which is not wgo.
- 3. Show that the following are equivalent:
- (def1) The ordered set (E, \preceq) , is wqo.
- (def2) For any sequence $(x_i)_{i \in \mathbb{N}}$, we can find i < j s.t. $x_i \leq x_j$.
- (def3) (i) There is no infinite sequence strictly decreasing in E,
 - (ii) There is no infinite antichain.
- 4. Let E, \leq be an ordered set, we call it well founded if there is no infinite decreasing sequence. Assume that E is countable and show that the order is wqo iff the set of all antichains is countable.
- 5. Dickson's Lemma: Let (E_1, \preccurlyeq_1) and (E_2, \preccurlyeq_2) be a wqo set. Show that $(\preccurlyeq_1, \preccurlyeq_2)$ is a wqo on the product $E_1 \times E_2$.
- 6. Higman's Lemma : Let \leq be a wqo on Σ . Define a relationship on Σ^* as follows :

$$a_1...a_m \leq_{sw} b_1b_2...b_n \Leftrightarrow \begin{cases} \exists 1 \leq i_1 < i_2 < \dots < i_m \leq n \\ a_1 \preccurlyeq b_{i_1} \land a_2 \preccurlyeq b_{i_2} \cdots a_m \preccurlyeq b_{i_m} \end{cases}$$

- (a) Show that \leq_{sw} is an order
- (b) Show that \leq_{sw} is wqo.
- 7. Let E, \leq be an ordered set, and $F \subset E$ s.t. : $\forall y \in E$, if there exists $x \in F$ s.t $x \leq y$, then $y \in F$ (we say that the set F is upward closed or upper).
 - (a) Let E, \leq be wqo. Show that a that any increasing sequence of upward closed sets is stationary, i.e. $F_1 \subseteq F_2 \subseteq \cdots$ there exists i such that for any j > i $F_i = F_j$.
 - (b) Show that if F is an upward closed set, there exists a finte set of elements $x_1, ..., x_n$ in F s.t. $F = \bigcup_i \{ y \in E, x_i \leq y \}$.

Exercice 9 (Dilworth's theorem):

Let (E, \leq) be a finite ordered set..

Let F be a non-empty subset of E. Denote by Max(F) all of its maximal elements.

- 1. if F is a non-empty subset of E, show that Max(F) is a non-empty subset of F.
- 2. If F is a non-empty subset of E, show that Max(F) is an antichain and that it is maximal(inclusion-wise) of the antichains in F

We now show by induction on |E|, **Dilworth's theorem**:

Let k be the maximal cardinality of an antichain in E. Then E is a disjoint union of k chains (a set of comparable elements).

- 3. Demonstrate the result when k = 1.
- 4. Suppose that k > 1. Let $z \in \text{Max}(E)$ and $F = E \setminus \{z\}$. Let l the maximal cardinality of an antichain in F; by induction assumption F is a disjoint union of chains $C_1, ..., C_l$.
 - (a) Give a bound on k as a function of l.
 - (b) Let \mathcal{C} be an antichain of E. What can we say about $\mathcal{C} \cap C_i$, for $i \in [l]$?
 - (c) Let $i \in [l]$. We denote by D_i the set of elements of C_i that are in an antichain of cardinality l in F.
 - i. Show that D_i isn't empty. Denote by y_i the maximal element of D_i .
 - ii. Show that $\{y_1, ..., y_l\}$ is an antichain of F.
 - iii. Assume that for every i, z is incomparable to y_i . Conclude Dilworth's theorem for this case.
 - iv. Assume that there exists an i s.t. z is comperable to y_i . Let $C' = \{z\} \cup \{x \in C_i \mid x \leq y_i\}$. Show that C' is a chain and that $F \setminus C'$ does not contain an antichain of cardinality l. Conclude Dilworth's theorem.