Métodos Numéricos Interpolação Polinomial

Filomena Teodoro Departamento de Matemática Escola Superior de Tecnologia de Setúbal

Ano Lectivo 2003/2004

1 Introdução

Seja f(x) uma função real de variável real apenas conhecida em n+1 pontos $(x_i, f(x_i))$, $i=0,1,\ldots,n$. O problema genérico da interpolação de consiste em aproximar a função f(x) através de uma outra função

$$g(x) = a_0 b_0(x) + \dots + a_n b_n(x),$$

em que $b_0(x), b_1(x), \ldots, b_n(x)$ são funções pré-definidas e a_0, a_1, \ldots, a_n são constantes, de forma que g(x) e f(x) coincidam nos pontos $(x_i, f(x_i)), i = 0, 1, \ldots, n$.

Nada nos garante que este problema tenha solução evidente. Por exemplo, fazendo $b_0(x)=1$ e $b_1(x)=x^2$ não existe nenhuma função

$$g(x) = a_0 b_0(x) + a_1 b_1(x) = a_0 + a_1 x^2$$

que passe em (1,1) e (-1,0). Note-se que sendo $b_0(x)$ e $b_1(x)$ funções pares, g(x) também é uma função par e g(-1) = g(1).

A função g(x) designa-se habitualmente por **função interpoladora** de f(x) e o conjunto de pontos $\{(x_i, f(x_i)), 0 \le i \le n\}$ designa-se **suporte** de interpolação. As abcissas x_0, x_1, \ldots, x_n dizem-se os **nós de interpolação** e as ordenadas $y_0 = f(x_0), y_1 = f(x_1), \ldots, y_n = f(x_n)$ são os **valores nodais**. O tipo de interpolação depende da estrutura da família de funções $b_0(x), b_1(x), \ldots, b_n(x)$. Quando

$$g(x) = a_0 + a_1 e^{ix} + a_2 e^{2ix} + \dots + a_n e^{nix},$$

a interpolação denomina-se trigonométrica, se

$$g(x) = a_0 + a_1 e^x + a_2 e^{2x} + \dots + a_n e^{nx}$$

a interpolação denomina-se de exponencial. Se g(x) for um polinómio, isto é, se

$$g(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

estaremos no caso da interpolação polinomial.

A necessidade de fazer interpolação surge, por exemplo, quando a função f(x) se encontra tabelada para um certo conjunto de valores x_0, x_1, \ldots, x_n ,

$$\begin{array}{c|ccccc} x & x_0 & x_1 & x_2 & \cdots & x_n \\ \hline f(x) & f(x_0) & f(x_1) & f(x_2) & \cdots & f(x_n) \end{array},$$

e se pretende determinar um valor não tabelado f(x), com $x \neq x_i$, i = 0, ..., n. O erro na determinação do valor não tabelado através da função interpoladora deve-se ao facto de se estimar f(x) à custa de g(x) (excepto no caso da função tabelada ser a função interpoladora), aos erros de arredondamento e à propagação dos erros iniciais.

2 Definição de polinómio interpolador. Existência e Unicidade. Polinómio interpolador de Lagrange.

Passaremos a designar por $p_n(x)$ a função interpoladora g(x), uma vez que limitaremos o nosso estudo ao caso particular da interpolação polinomial. A interpolação polinomial é de grande interesse do ponto de teórico e prático em áreas como teoria da aproximação, equações não lineares, integração e derivação numéricas e solução numérica de equações diferenciais e integrais.

Dada uma função f(x) conhecida em n+1 pontos $(x_i, f(x_i))$, $i = 0, 1, \ldots, n$, o objectivo da interpolação polinomial consiste em determinar o polinómio de grau $\leq n$,

$$p_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n,$$

que coincide com f(x) naqueles pontos, isto é,

$$p_n(x_i) = f(x_i) = f_i, \quad \forall i = 0, \dots, n.$$

Exemplo 1 Determine o polinómio interpolador que aproxima a função f(x) dada natabela seguinte

$$\begin{array}{c|ccccc} x & -1 & 0 & 1 \\ \hline f(x) & 2 & 3 & 2 \end{array}$$
.

Neste caso tem-se que o suporte de interpolação é o conjunto $\{(-1,2), (0,3), (1,2)\}$. Procuramos o polinómio $p_2(x) = a_0 + a_1x + a_2x^2$ que satisfaz as igualdades $p_2(x_i) = f(x_i)$, i = 0, 1, 2. Ora,

$$\begin{cases} p_2(x_0) = f(x_0) \\ p_2(x_1) = f(x_1) \\ p_2(x_2) = f(x_2) \end{cases} \Leftrightarrow \begin{cases} a_0 + a_1 x_0 + a_2 x_0^2 = f(x_0) \\ a_0 + a_1 x_1 + a_2 x_1^2 = f(x_1) \\ a_0 + a_1 x_2 + a_2 x_2^2 = f(x_2) \end{cases},$$

ou seja,

$$\begin{cases} a_0 - a_1 + a_2 = 2 \\ a_0 = 3 \\ a_0 + a_1 + a_2 = 2 \end{cases} \Leftrightarrow \begin{cases} a_2 = -1 \\ a_0 = 3 \\ a_1 = 0 \end{cases}.$$

Consequentemente, o polinómio interpolador é $p_2(x) = 3 - x^2$.

Quando se consideram apenas 2, 3 e 4 pontos a interpolação polinomial denomina-se, respectivamente, interpolação linear, quadrática (ou parabólica) e cúbica.

O seguinte teorema mostra-nos que o polinómio interpolador existe e é único. Além disto, fornece uma forma explícita para o cálculo de $p_n(x)$.

Teorema 1 Seja \mathcal{P}_n o conjunto dos polinómios de grau menor ou igual n. Dada uma função f(x) e n+1 pontos distintos (x_i, f_i) , $i=1,\ldots,n$, tem-se:

(i) Existe um e um só polinómio $p_n(x) \in \mathcal{P}_n$, tal que

$$p_n(x_i) = f_i, \quad \forall i = 0, 1, \dots, n.$$

(ii) $p_n(x)$ pode ser dado explicitamente por

$$p_n(x) = \sum_{i=0}^{n} L_i(x) f_i$$
(1)

em que

$$L_{i}(x) = \prod_{j=0, j\neq i}^{n} \frac{(x-x_{j})}{(x_{i}-x_{j})}.$$

Quando escrito na forma (1), $p_n(x)$ denomina-se por **polinómio interpo**lador de Lagrange. As funções $L_i(x)$, i = 0, 1, ..., n, designam-se por **polinómios de Lagrange**.

Dem. (i) As condições

$$p_n(x_i) = a_0 + a_1 x_i + a_2 x_i^2 + \dots + a_n x_i^n = f_i, \quad i = 1, \dots, n,$$

conduzem ao seguinte sistema de equações linear nas incógnitas a_0, a_1, \dots, a_n ,

$$\begin{cases} a_0 + a_1 x_0 + a_2 x_0^2 + \dots + a_n x_0^n = f_0 \\ \vdots \\ a_0 + a_1 x_n + a_2 x_n^2 + \dots + a_n x_n^n = f_n \end{cases}$$

cuja forma matricial é

$$VA = F$$

em que

$$V = \begin{bmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n \\ 1 & x_1 & x_1^2 & \cdots & x_1^n \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^n \end{bmatrix}, \quad A = \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} \quad \text{e} \quad F = \begin{bmatrix} f_0 \\ f_1 \\ \vdots \\ f_n \end{bmatrix}.$$

A matriz de coeficientes V designa-se por matriz de Vandermonde. O sistema é possível e determinado (isto é, admite uma e uma só solução), se e só se det $V \neq 0$.

Prova-se facilmente que se os nós de interpolação x_0, x_1, \ldots, x_n são distintos, então det $V \neq 0$. Com efeito, para $i = 1, 2, \ldots, n-1$, subtraindo à coluna i + 1 a coluna i multiplicada por x_0 , obtém-se

$$\det V = D_{n+1} = \begin{vmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n \\ 1 & x_1 & x_1^2 & \cdots & x_1^n \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^n \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 0 & 0 & \cdots & 0 \\ 1 & x_1 - x_0 & x_1 (x_1 - x_0) & \cdots & x_1^{n-1} (x_1 - x_0) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_n - x_0 & x_n (x_n - x_0) & \cdots & x_n^{n-1} (x_n - x_0) \end{vmatrix}.$$

Pelo teorema de Laplace, desenvolvendo a primeira linha, vem

$$\det V = D_{n+1} = (-1)^{n+1} \begin{vmatrix} x_1 - x_0 & x_1 (x_1 - x_0) & \cdots & x_1^{n-1} (x_1 - x_0) \\ \vdots & \vdots & \vdots & \vdots \\ x_n - x_0 & x_n (x_n - x_0) & \cdots & x_n^{n-1} (x_n - x_0) \end{vmatrix}.$$

Cada elemento da linha i (i = 1, ..., n) contém o factor $(x_i - x_0)$, pelo que

$$\det V = D_{n+1} = (x_1 - x_0)(x_2 - x_0) \cdots (x_n - x_0) D_n,$$

em que

$$D_n = \begin{vmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{vmatrix}$$

é o determinante de Vandermonde de ordem n. Repetindo o raciocínio o número suficiente de vezes obtém-se a relação geral

$$D_{n-k+1} = \left[\prod_{j=k+1}^{n} (x_j - x_k) \right] D_{n-k}, \quad 0 \le k \le n-1.$$

Como os nós são distintos, $x_j \neq x_i, (j \neq k)$ então

$$(x_i - x_k) \neq 0, \quad 0 \leq k \leq n - 1, \quad k + 1 \leq j \leq n$$

com

$$D_1 = 1 \neq 0.$$

Assim, os determinantes de Vandermonde são não nulos. Logo, o sistema VA = F admite solução única, o que equivale a dizer que o polinómio interpolador $p_n(x)$ existe e é único.

A unicidade pode ser verificada de uma maneira alternativa, significativamente menos trabalhosa. Basta supor que existe um outro polinómio interpolador $q_n(x) \in \mathcal{P}_n$, que verifica

$$q_n(x_i) = p_n(x_i) = f_i, \quad 0 \le i \le n.$$

Então, $q_n(x) - p_n(x) \in \mathcal{P}_n$ e anula-se nos n+1 pontos x_i . Pelo Teorema Fundamental da Álgebra, um polinómio de grau n não tem mais de n raízes. Como $q_n(x) - p_n(x)$ tem n+1 raízes, $q_n(x) - p_n(x) = 0$, isto é, $q_n(x) = p_n(x)$.

(ii) Consideremos os n+1 polinómios de Lagrange de grau n,

$$L_{i}(x) = \prod_{j=0, j\neq i}^{n} \frac{(x-x_{j})}{(x_{i}-x_{j})} = \frac{(x-x_{0})\cdots(x-x_{i-1})(x-x_{i+1})\cdots(x-x_{n})}{(x_{i}-x_{0})\cdots(x_{i}-x_{i-1})(x_{i}-x_{i+1})\cdots(x_{i}-x_{n})}.$$

Ora,

$$L_i(x) = \delta_{ij} = \begin{cases} 1, & j = i \\ 0, & j \neq i \end{cases}$$

pelo que

$$p_n(x) = \sum_{i=0}^{n} L_i(x) f_i$$

é tal que

$$p_n(x_i) = f_i, \quad \forall i = 0, 1, \dots, n. \blacksquare$$

Exemplo 2 Dada a tabela da função $f(x) = \sqrt{x}$,

obtenha o polinómio interpolador de Lagrange e o seu valor em x = 3. Procuramos $p_2(x) = a_0 + a_1x + a_2x^2$ tal que

$$p_2(x) = \sum_{i=0}^{2} L_i(x) f_i$$

com os polinómios de Lagrange dados por

$$L_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} = \frac{(x - 2)(x - 4)}{(1 - 2)(1 - 4)}$$
$$= \frac{1}{3}(x - 2)(x - 4) = \frac{8}{3} - 2x + \frac{1}{3}x^2,$$

$$L_1(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} = \frac{(x - 1)(x - 4)}{(2 - 1)(2 - 4)}$$
$$= -\frac{1}{2}(x - 1)(x - 4) = -2 + \frac{5}{2}x - \frac{1}{2}x^2$$

e

$$L_2(x) = \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} = \frac{(x - 1)(x - 2)}{(4 - 1)(4 - 2)}$$
$$= \frac{1}{6}(x - 1)(x - 2) = \frac{1}{3} - \frac{1}{2}x + \frac{1}{6}x^2.$$

Então,

$$p_{2}(x) = L_{0}(x) f_{0} + L_{1}(x) f_{1} + L_{2}(x) f_{2}$$

$$= \frac{1}{3} (x - 2) (x - 4) \times 1 - \frac{1}{2} (x - 1) (x - 4) \times 1.41$$

$$+ \frac{1}{6} (x - 1) (x - 2) \times 2$$

$$= \frac{1.54}{3} + \frac{1.05}{2} x - \frac{0.23}{6} x^{2}.$$

O valor do polinómio em x=3 é

$$p_2(3) = \frac{1.54}{3} + \frac{1.05}{2} \times 3 - \frac{0.23}{6} \times 3^2 = 1.7433.$$

O erro cometido quando se considera $p_{2}\left(3\right)$ como valor aproximado de $f(3)=\sqrt{3}$ é dado por

$$|f(3) - p_2(3)| = |\sqrt{3} - 1.7433| = |1.73205... - 1.7433| \le 0.012.$$

O erro é menor que 12 milésimas. De notar, no entanto, que os valores tabelados estão arredondados às centésimas. ■

Pode ser útil recorrer à forma matricial para obtenção dos polinómios de Lagrange e do polinómio interpolador. Basta lembrar que procuramos

$$p_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

tal que

$$p_n(x_i) = a_0 + a_1 x_i + a_2 x_i^2 + \dots + a_n x_i^n = f(x_i) = f_i, \quad 0 \le i \le n.$$

Como vimos acima, estas condições podem representar-se matricialmente por VA = F. Como a matriz de Vandermonde V é invertível, o vector das incógnitas A vem dado por $A = V^{-1}F$. Sendo

$$p_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n = \underbrace{\begin{bmatrix} 1 & x & \dots & x^n \end{bmatrix}}_{X} \underbrace{\begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix}}_{A},$$

tem-se

$$p_n(x) = XA = XV^{-1}F.$$

Por outro lado.

$$p_n(x) = \sum_{i=0}^n L_i(x) f_i = \underbrace{\begin{bmatrix} L_0(x) & L_1(x) & \cdots & L_n(x) \end{bmatrix}}_{L} \underbrace{\begin{bmatrix} f_0 \\ f_1 \\ \vdots \\ f_n \end{bmatrix}}_{F} = LF,$$

pelo que

$$L = XV^{-1}$$
.

Sistematizando, o processo matricial para a determinação do polinómio interpolador de Lagrange pode ser resumido em três etapas:

- 1. Cálculo de $V \in V^{-1}$.
- 2. Cálculo de $L = XV^{-1}$,
- 3. Cálculo do polinómio interpolador $p_n(x) = LF$.

Exemplo 3 Considerando novamente a tabela da função $f(x) = \sqrt{x}$,

$$\begin{array}{c|ccccc} x & 1 & 2 & 4 \\ \hline f(x) & 1 & 1.41 & 2 \end{array}$$

determinemos, recorrendo ao processo matricial, o polinómio interpolador de Lagrange. Com efeito, para determinar os polinómios de Lagrange, basta identificar a matriz de Vandermonde

$$V = \begin{bmatrix} 1 & 1 & 1^2 \\ 1 & 2 & 2^2 \\ 1 & 4 & 4^2 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 4 & 16 \end{bmatrix},$$

obter a sua inversa

$$V^{-1} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 4 & 16 \end{bmatrix}^{-1} = \begin{bmatrix} \frac{8}{3} & -2 & \frac{1}{3} \\ -2 & \frac{5}{2} & -\frac{1}{2} \\ \frac{1}{3} & -\frac{1}{2} & \frac{1}{6} \end{bmatrix}$$

e calcular

$$L = XV^{-1} = \begin{bmatrix} 1 & x & x^2 \end{bmatrix} \begin{bmatrix} \frac{8}{3} & -2 & \frac{1}{3} \\ -2 & \frac{5}{2} & -\frac{1}{2} \\ \frac{1}{3} & -\frac{1}{2} & \frac{1}{6} \end{bmatrix}$$
$$= \underbrace{\begin{bmatrix} \frac{8}{3} - 2x + \frac{1}{3}x^2 \\ \frac{1}{2} - \frac{1}{2}x^2 \end{bmatrix}}_{L_0(x)} \underbrace{\frac{1}{3} - \frac{1}{2}x + \frac{1}{6}x^2}_{L_2(x)} \right].$$

O polinómio interpolador de Lagrange vem então dado por

$$\begin{split} p_2\left(x\right) &= LF \\ &= \left[\frac{8}{3} - 2x + \frac{1}{3}x^2 - 2 + \frac{5}{2}x - \frac{1}{2}x^2 \quad \frac{1}{3} - \frac{1}{2}x + \frac{1}{6}x^2\right] \left[\begin{array}{c} 1\\ 1.41\\ 2 \end{array}\right] \\ &= \frac{1.54}{3} + \frac{1.05}{2}x - \frac{0.23}{6}x^2. \ \blacksquare \end{split}$$

3 Erro de Interpolação

Para estimar a diferença $|f(x) - p_n(x)|$, isto é, o erro com que o polinómio interpolador $p_n(x)$ aproxima f(x) em $x \in I_x$, com I_x o menor intervalo que contém x, x_0, x_1, \ldots, x_n , não é suficiente conhecer o domínio de f(x) e os nós de interpolação x_0, x_1, \ldots, x_n . Basta lembrar que a qualquer função que assuma os mesmos valores tabelados está associado o mesmo polinómio interpolador, podendo a diferença $|f(x) - p_n(x)|$ tornar-se arbitrariamente diferente em qualquer $x \in I_x$. Todavia o conhecimento da derivada de ordem n+1 de f(x) pode levar-nos a uma estimativa do erro. No seguinte teorema é apresentada uma fórmula explícita para o cálculo do erro de interpolação.

Teorema 2 Seja $p_n(x)$ o polinómio de grau $\leq n$ interpolador da função f(x) nos nós de interpolação distintos $x_0, x_1, \ldots, x_n \in [a, b]$. Se f(x) tiver derivadas contínuas até à ordem n+1 em [a,b] então, para cada $x \in [a,b]$ existe $\xi \in I_x$ (com I_x o menor intervalo que contém x, x_0, x_1, \ldots, x_n), tal que

$$f(x) - p_n(x) = \prod_{j=0}^{n} (x - x_j) \frac{f^{(n+1)}(\xi)}{(n+1)!}.$$

Dem. O resultado é imediato se $x = x_i$, i = 0, ..., n, e nesse caso o erro é obviamente nulo.

Seja então $x \neq x_i, i = 0, \dots, n$. Considerando

$$\theta(t) = \prod_{j=0}^{n} (t - x_j)$$

defina-se a função auxiliar

$$F(t) = f(t) - p_n(t) - c\theta(t), \tag{2}$$

onde

$$c = \frac{f(x) - p_n(x)}{\theta(x)}. (3)$$

A função F(t) está definida em I_x e é tal que

$$F(x) = 0$$
 e $F(x_i) = 0, \forall i = 0, 1, \dots, n,$

isto é, F(t) tem pelo menos n+2 zeros em I_x . Pelo teorema de Rolle, F'(t) tem pelo menos n+1 zeros em I_x , F''(t) tem pelo menos n zeros em I_x , etc., $F^{(n+1)}(t)$ tem pelo menos 1 zero em I_x . Sendo ξ esse zero de $F^{(n+1)}(t)$, derivando (2) n+1 vezes obtém-se

$$F^{(n+1)}(\xi) = f^{(n+1)}(\xi) - p_n^{(n+1)}(\xi) - c\theta^{(n+1)}(\xi) = 0.$$

Mas $p_n^{(n+1)}(\xi) = 0$, pois o polinómio $p_n(t)$ é de grau menor ou igual a n. Como o coeficiente do termo de maior grau do produto $\theta(t)$ é igual a 1 tem-se $\theta^{(n+1)}(\xi) = (n+1)!$. Então

$$c = \frac{f^{(n+1)}(\xi)}{\theta^{(n+1)}(\xi)} = \frac{f^{(n+1)}(\xi)}{(n+1)!}$$

e, atendendo a (3), vem

$$f(x) - p_n(x) = \theta(x) \frac{f^{(n+1)}(\xi)}{(n+1)!} = \prod_{j=0}^{n} (x - x_j) \frac{f^{(n+1)}(\xi)}{(n+1)!},$$

como se queria. ■

Note-se que:

- Com um só ponto de interpolação $(x_0, f(x_0))$ o polinómio interpolador é de grau zero e $p_n(x) = f(x_0)$. O erro vem $f(x) p_n(x) = f(x) f(x_0) = f'(\xi)$, com $\xi \in I_x$.
- Com dois pontos de interpolação $(x_0, f(x_0), x_1, f(x_1))$ o polinómio interpolador é de grau 1 (interpolação linear). O erro vem $f(x) p_n(x) = \frac{f''(\xi)}{2!}(x-x_0)(x-x_1)$, com $\xi \in I_x$.

Exemplo 4 Suponhamos que a função

$$f(x) = \log_{10} x = \frac{\ln x}{\ln 10}$$

se encontra tabelada e se efectua a interpolação linear nos pontos x_0, x_1 tais que $x_1-x_0=0.01$ e $x_0\geq 1$. Para tal, utiliza-se o polinómio interpolador

$$p_1(x) = L_0(x) f_0 + L_1(x) f_1$$

= $\frac{x - x_1}{x_0 - x_1} \log_{10} x_0 + \frac{x - x_0}{x_1 - x_0} \log_{10} x_1.$

O erro da interpolação, para cada x > 0, é dado por

$$f(x) - p_1(x) = \frac{f''(\xi)}{2!}(x - x_0)(x - x_1), \quad \text{com } \xi \in I_x,$$

sendo I_x o menor intervalo que contém x, x_0 e x_1 .

Atendendo a que

$$f'(x) = \frac{1}{x \ln 10}$$
 e $f''(x) = -\frac{1}{x^2 \ln 10} \approx -\frac{0.434}{x^2}$,

tem-se

$$|f(x) - p_1(x)| = \left| \frac{0.434}{2!\xi^2} (x - x_0)(x - x_1) \right|, \quad \text{com } \xi \in I_x.$$

Admitindo que $x \in [x_0, x_1]$ vem

$$|f(x) - p_1(x)| \le \max_{x_0 \le x \le x_1} \left| \frac{0.434}{2!\xi^2} (x - x_0)(x - x_1) \right|$$

$$= \left| \frac{(x_1 - x_0)}{2} \right| \left| \frac{(x_0 - x_1)}{2} \right| \times \frac{0.217}{x_0^2}$$

$$= |(x_1 - x_0)|^2 \frac{0.217}{4x_0^2}$$

$$\le 0.01^2 \times \frac{0.217}{4 \times 1^2} = 5.425 \times 10^{-6}.$$

Assim, quando $x \in [x_0, x_1]$, o erro de interpolação é da ordem de 0.6×10^{-5} . Note-se que não se consideraram os erros de arredondamento dos valores tabelados $f(x_0)$ e $f(x_1)$.

4 Diferenças Divididas. Polinómio interpolador de Newton

No cálculo do polinómio interpolador de Lagrange, a adição de mais um ponto (x_{n+1}, y_{n+1}) ao suporte de interpolação obriga a que se refaçam todos os cálculos dos novos polinómios $L_i(x)$, $i=0,\ldots,n+1$. É muito frequente que se testem diferentes suportes de interpolação, variando o número de pontos considerado, de forma a obedecer a condições de limite do erro de interpolação, $|f(x) - p_n(x)| \leq M$, com M constante positiva. O polinómio interpolador de Newton com diferenças divididas permite contornar esse problema.

Este polinómio interpolador surge de uma construção recursiva, extremamente simples, a partir da definição de diferença dividida.

Definição 1 Chama-se diferença dividida de primeira ordem de f(x), relativamente aos argumentos x_i , x_{i+1} , à seguinte quantidade

$$f[x_i, x_{i+1}] = \frac{f_{i+1} - f_i}{x_{i+1} - x_i}.$$

De um modo geral, a **diferença dividida de ordem** k $(k \ge 2)$ de f(x), relativamente aos argumentos $x_i, x_{i+1}, \ldots, x_{i+k}$, é a quantidade

$$f[x_{i}, x_{i+1}, x_{i+2}] = \frac{f[x_{i+1}, x_{i+2}] - f[x_{i}, x_{i+1}]}{x_{i+2} - x_{i}} (2^{a} \text{ ordem})$$

$$\vdots$$

$$f[x_{i}, \dots, x_{i+k}] = \frac{f[x_{i+1}, \dots, x_{i+k}] - f[x_{i}, \dots, x_{i+k-1}]}{x_{i+k} - x_{i}} (\text{ordem } k)$$

As diferenças divididas localizam-se na tabela da seguinte forma:

Indicamos seguidamente algumas propriedades das diferenças divididas:

- 1. As diferenças divididas $f[x_0, x_1, x_2, \ldots, x_n]$ são invariantes para qualquer variação dos índices de suporte, isto é, são funções simétricas nos seus argumentos: qualquer que seja a ordem dos x_i o valor de $f[x_0, x_1, x_2, \ldots, x_n]$ mantém-se.
- 2. Tem-se

$$f[x_0, x_1, x_2, \dots, x_n] = \sum_{i=0}^n \frac{f_i}{\prod_{j=0, j\neq i}^n (x_i - x_j)}.$$

3. Dado um polinómio de grau $\leq n$, $p_n(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$, vem que

$$p_n [x_0, x] = p_{n-1} (x),$$

$$p_n [x_0, x_1, x_2, \dots, x_n] = a_n,$$

$$p_n [x_0, x_1, x_2, \dots, x_n, x_{n+1}] = 0.$$

4. Sendo f(x) uma função n vezes diferenciável num intervalo [a,b] que contém n+1 pontos distintos x_0,x_1,x_2,\ldots,x_n , então

$$f[x_0, x_1, x_2, \dots, x_n] = \frac{f^{(n)}(\xi)}{n!}$$
, para algum $\xi \in]a, b[$.

Vejamos como se obtém o polinómio interpolador de Newton. Das diferenças divididas

$$f[x, x_0] = \frac{f(x) - f(x_0)}{x - x_0}$$
 e $f[x, x_0, x_1] = \frac{f[x, x_0] - f[x_0, x_1]}{x - x_1}$

sai que

$$f(x) = f(x_0) + (x - x_0) f[x_0, x]$$
(4)

e

$$f[x, x_0] = f[x_0, x_1] + (x - x_1) f[x, x_0, x_1],$$
(5)

respectivamente. Então, substituindo (5) em (4), vem

$$f(x) = f(x_0) + (x - x_0) f[x_0, x]$$

$$= f(x_0) + (x - x_0) (f[x_0, x_1] + (x - x_1) f[x, x_0, x_1])$$

$$= f(x_0) + (x - x_0) f[x_0, x_1] + (x - x_0) (x - x_1) f[x, x_0, x_1].$$

Procedendo sucessivamente deste modo, utilizando o facto que da diferença de ordem k + 1,

$$f[x, x_0, \dots, x_k] = \frac{f[x, x_0, \dots, x_{k-1}] - f[x_0, x_1, \dots, x_k]}{x - x_k},$$

se conclui que

$$f[x, x_0, \dots, x_{k-1}] = f[x_0, x_1, \dots, x_k] + (x - x_k) f[x, x_0, \dots, x_k],$$

facilmente se obtém

$$f(x) = f(x_0) + (x - x_0) f[x_0, x_1] + (x - x_0) (x - x_1) f[x_0, x_1, x_2] + \dots + (x - x_0) (x - x_1) \dots (x - x_{n-1}) f[x_0, \dots, x_n] + (x - x_0) (x - x_1) \dots (x - x_n) f[x, x_0, \dots, x_n].$$

Isto é,

$$f(x) = p_n(x) + R_n(x) \tag{6}$$

onde

$$p_n(x) = f(x_0) + \sum_{i=0}^{n-1} (x - x_0) \cdots (x - x_i) f[x_0, \dots, x_{i+1}]$$

é o polinómio interpolador de Newton com diferenças divididas e

$$R_n(x) = (x - x_0)(x - x_1) \cdots (x - x_n) f[x, x_0, \dots, x_n].$$

De notar que

$$p_n(x) = f(x_0) + \sum_{i=0}^{n-2} (x - x_0) \cdots (x - x_i) f[x_0, \dots, x_{i+1}] + (x - x_0) \cdots (x - x_{n-1}) f[x_0, \dots, x_n],$$

ou seja,

$$p_n(x) = p_{n-1}(x) + (x - x_0)(x - x_1) \cdots (x - x_{n-1}) f[x_0, \dots, x_n].$$

O interesse prático desta fórmula resulta de possibilitar a construção recursiva do polinómio interpolador. De facto, quando se acrescenta um ponto ao suporte de interpolação, há somente que adicionar uma parcela ao polinómio obtido anteriormente.

O erro de interpolação obtém-se da igualdade (6):

$$f(x) - p_n(x) = R_n(x) = (x - x_0)(x - x_1) \cdots (x - x_n) f[x, x_0, x_1, x_2, \dots, x_n].$$

No caso de f(x) ser n+1 vezes diferenciável no intervalo [a,b], em que [a,b] é o menor intervalo que contém x,x_0,x_1,x_2,\ldots,x_n , pode-se aplicar a propriedade 4 acima. Para algum ξ tal que $a<\xi< b$ verifica-se que

$$|f(x) - p_n(x)| = \left| (x - x_0) (x - x_1) \cdots (x - x_n) \frac{f^{(n+1)}(\xi)}{(n+1)!} \right|$$

$$\leq |(x - x_0) (x - x_1) \cdots (x - x_n)| \max_{\substack{a < x < b}} \left| \frac{f^{(n+1)}(x)}{(n+1)!} \right|$$

$$= |(x - x_0) (x - x_1) \cdots (x - x_n)| M.$$

Exemplo 5 Consideremos a função $f(x) = \sqrt{x}$ nos pontos

$$(1,1),(3,1.732),(4,2) \in (5,2.236).$$

Construa-se a tabela das diferenças divididas

Pretende-se calcular aproximadamente f(2) pela fórmula interpoladora. O polinómio interpolador é

$$p_3(x) = 1 + (x - 1) \times 0.366 + (x - 1)(x - 3) \times (-0.0327)$$
$$+ (x - 1)(x - 3)(x - 4) \times 0.0042$$
$$= 0.4855 + 0.5766x - 0.0663x^2 + 0.0042x^3$$

O valor aproximado de f(2) é

$$f(2) \approx p_3(2) = 0.4855 + 0.5766 \times 2 - 0.0663 \times 2^2 + 0.0042 \times 2^3 = 1.4071$$

O erro cometido vem

$$|f(2) - p_3(2)| = \left|\sqrt{2} - 1.4071\right| = 0.0071$$

correspondendo a uma percentagem de erro da ordem dos 5%. ■

5 Diferenças finitas

A introdução de operadores de diferenças finitas permite obter resultados vantajosos. Conhecida uma função f(x) nos pontos $(x_i, f(x_i))$, i = 1, ..., n, definiremos as diferenças descendentes (ou progressivas) e ascendentes (ou regressivas).

Suponhamos que os nós de interpolação x_0, x_1, \ldots, x_n se encontram ordenados na forma $x_0 < x_1 < \cdots < x_n$. As diferenças descendentes e ascendentes são usadas quando os nós de interpolação são equidistantes, isto é, quando

$$x_{i+1} = x_i + h, \quad 0 \le i \le n - 1$$

ou, de forma equivalente,

$$x_{i+1} = x_0 + ih$$
, $0 \le i \le n - 1$,

sendo h o passo (distância entre quaisquer dois nós consecutivos).

De notar que as diferenças divididas se usam quer os nós de interpolação sejam ou não equidistantes.

Definição 2 Designa-se, respectivamente, diferença descendente (ou progressiva) de primeira ordem de f(x), para $x = x_i$, à seguinte quantidade:

$$\triangle f(x_i) = \triangle f_i = f(x_{i+1}) - f(x_i).$$

De um modo geral, a diferença descendente de ordem $k \ (k \ge 2)$ de f(x), para $x = x_i$, define-se por

$$\triangle^{2} f_{i} = \triangle^{2} f_{i} = \triangle f_{i+1} - \triangle f_{i},$$

$$\vdots$$

$$\triangle^{k} f_{i} = \triangle \left(\triangle^{k-1} f_{i}\right) = \triangle^{k-1} f_{i+1} - \triangle^{k-1} f_{i}.$$

Por exemplo,

$$\triangle^2 f_i = \triangle f_{i+1} - \triangle f_i = f_{i+2} - f_{i+1} - (f_{i+1} - f_i) = f_{i+2} - 2f_{i+1} + f_i$$

е

$$\Delta^{3} f_{i} = \Delta^{2} f_{i+1} - \Delta^{2} f_{i} = \Delta f_{i+2} - \Delta f_{i+1} - (\Delta f_{i+1} - \Delta f_{i})$$

$$= (f_{i+3} - 2f_{i+2} + f_{i+1}) - (f_{i+2} - 2f_{i+1} + f_{i})$$

$$= f_{i+3} - 3f_{i+2} + 3f_{i+1} - f_{i}.$$

Prova-se, em geral, que

$$\triangle^{k} f_{i} = \triangle^{k-1} f_{i+1} - \triangle^{k-1} f_{i} = \sum_{j=0}^{k} (-1)^{j} {k \choose j} f_{i+k-j}.$$

Denominam-se diferenças descendentes pois diferenças do mesmo índice, de ordem superior, encontram-se em posição descendente na tabela

	f(m)	Λ	\wedge^2	\triangle^3	
\underline{x}	f(x)	Δ	Δ-	Δ	• • • •
$\overline{x_0}$	$f(x_0)$				
		$\triangle f_0$			
x_1	$f(x_1)$		$\triangle^2 f_0$		
		$\triangle f_1$		$\triangle^3 f_0$	
x_2	$f(x_2)$		$\triangle^2 f_1$:	
~ 2	$J(\omega_2)$		— <i>J</i> 1	•	
		$\triangle f_2$:		
x_3	$f(x_3)$	÷			
:	÷				

Definição 3 Designa-se, respectivamente, diferença ascendente (ou regressiva) de primeira ordem de f(x), para $x = x_i$, à seguinte quantidade

$$\nabla f(x_i) = \nabla f_i = f(x_i) - f(x_{i-1}).$$

De um modo geral, a diferença ascendente de ordem $k \ (k \ge 2)$ de f(x), para $x = x_i$, define-se por

$$\nabla^2 f_i = \nabla^2 f_i = \nabla f_i - \nabla f_{i-1},$$

$$\vdots$$

$$\nabla^k f_i = \nabla \left(\nabla^{k-1} f_i\right) = \nabla^{k-1} f_i - \nabla^{k-1} f_{i-1}.$$

Por exemplo,

$$\nabla^2 f_i = \nabla f_i - \nabla f_{i-1} = f_i - f_{i-1} - (f_{i-1} - f_{i-2}) = f_i - 2f_{i-1} + f_{i-2}$$

e

$$\nabla^3 f_i = \nabla^2 f_i - \nabla^2 f_{i-1} = (f_i - 2f_{i-1} + f_{i-2}) - (f_{i-1} - 2f_{i-21} + f_{i-3})$$

= $f_i - 3f_{i-1} + 3f_{i-2} - f_{i-3}$.

Prova-se, em geral, que

$$\nabla^k f_i = \nabla^{k-1} f_{i+1} - \nabla^{k-1} f_i = \sum_{j=0}^k (-1)^j \binom{k}{j} f_{i-j}.$$

Denominam-se diferenças ascendentes ou regressivas pois diferenças do mesmo índice, de ordem superior encontram-se em posição ascendente na tabela:

Podem-se estabelecer algumas propriedades das diferenças finitas, relacionálas com as diferenças divididas e realçar algumas das propriedades das diferenças de um polinómio. Com efeito, verifica-se:

1.
$$\triangle f_i = \nabla f_{i+1}$$

2.
$$\triangle^n f_i = \nabla^n f_{i+n}$$
.

3.
$$f_n = f_0 + \sum_{i=0}^{n-1} \triangle f_i$$
.

4. Quando os nós de interpolação são equidistantes de passo h,

$$\Delta^n f_i = n! h^n f \left[x_i, x_{i+1}, x_{i+2}, \dots, x_{i+n} \right],$$

$$\nabla^n f_i = n! h^n f \left[x_i, x_{i-1}, x_{i-2}, \dots, x_{i-n} \right], \quad i \ge 0$$

5. Se f(x) é uma função com derivada de ordem n contínua num intervalo [a, b] que contém n + 1 nós de interpolação distintos $x_0, x_1, x_2, \ldots, x_n$, de passo h, então, para $x \in [a, b]$,

$$\triangle^n f(x) = \frac{f^{(n)}(\xi)}{n!}$$
, para algum $\xi \in]a, b[$.

- 6. A diferença de 1^a ordem de um polinómio de grau n é um polinómio de grau n-1.
- 7. A diferença de ordem n de um polinómio de grau n, $p_n(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n$, é uma constante dada por

$$\triangle^n p_n(x) = a_n n! h^n.$$

8. Se as diferenças de ordem k de uma função f(x) são iguais e não nulas, então existe um e um só polinómio de grau k que toma os mesmos valores tabelados ($k \le n$).

Exemplo 6 Construa-se a tabela de diferenças divididas de $f(x) = \log_{10} x$, para os seguintes valores de argumento 1, 3, 5, 7, 9.

\overline{x}	f(x)	$f\left[,\right]$	f[,,]	f[,,,]	f[,,,,]
1	0				
		0.23856			
3	0.47712		-0.03191		
		0.11093		0.00374	
5	0.69897		-0.00947		-0.00037
		0.07307		0.00081	
7	0.84510		-0.00463		
		0.05457			
9	0.95424				

Pela tabela, $f\left[1,3,5,7,9\right]=-0.00037.$ Pela 4^a propriedade anterior tem de se verificar que

$$\triangle^4 f_1 = 4! h^4 f[x_0, x_1, x_2, x_3, x_4] = 4! 2^4 f[1, 3, 5, 7, 9].$$

Construa-se a tabela das diferenças não divididas

\overline{x}	f(x)	$\triangle \times 10^{-5}$	$\triangle^2 \times 10^{-5}$	$\triangle^3 \times 10^{-5}$	$\triangle^4 \times 10^{-5}$
1	0				
		47712			
3	0.47712		-25527		
		22185		17955	
5	0.69897		-7572		-14082
		14613		3873	
7	0.84510		-3699		
		10914			
9	0.95424				

Como
$$\triangle^4 f_1 = -14082 \times 10^{-5} = -0.14082$$
, tem-se

$$\frac{\triangle^4 f_1}{4!h^4} = \frac{-0.14082}{24 \times 16} = -0.0003.6672 \approx -0.00037 = f[1, 3, 5, 7, 9].$$

Devemo-nos lembrar, no entanto, que os valores tabelados não são exactos mas sim arredondados à 5^a casa décimal.

Exemplo 7 Seja $p_3(x) = x^3$. A diferença de primeira ordem do polinómio vem

$$\Delta p_3(x) = p_3(x+h) - p_3(x)$$

$$= (x+h)^3 - x^3$$

$$= x^3 + h^3 + 3x^2h + 3xh^2 - x^3$$

$$= h^3 + 3x^2h + 3xh^2$$

que é um polinómio de grau 2 como seria de esperar pela 4^a propriedade.

Exemplo 8 Se considerarmos a tabela da função

\overline{x}	f(x)	Δ	\triangle^2	\triangle^3	\triangle^4
$\overline{-2}$	-7				
		8			
0	1		0		
		8		96	
2	9		96		0
		104		96	
4	113		192		
		296			
6	409				

as diferenças de 3^a ordem são constantes. Então as diferenças de ordem superior são nulas. O polinómio p(x) de grau 3 que toma os mesmos valores nos pontos tabelados é tal que o coeficiente do termo de maior grau vem

$$\triangle^3 = 96 = a_3 \times 3! \times 2^3 \Longrightarrow a_3 = 2 \Longrightarrow p(x) = 2x^3 + \cdots$$

6 Fórmulas interpoladoras de Gregory-Newton

Quando os nós de interpolação x_0, x_1, \ldots, x_n , estão igualmente espaçados, pode-se usar a relação

$$\triangle^n f_i = n! h^n f[x_i, x_{i+1}, x_{i+2}, \dots, x_{i+n}]$$

de forma a simplificar o polinómio interpolador. Substituindo $f[x_0, x_1, x_2, \dots, x_i]$ por $\frac{\triangle^i f_0}{i!h^i}$ no polinómio interpolador de Newton com diferenças divididas obtemos a fórmula interpoladora de Gregory-Newton progressiva:

$$p_n(x) = f(x_0) + \sum_{i=1}^{n} (x - x_0) \cdots (x - x_{i-1}) \frac{\triangle^i f_0}{i! h^i}$$

Fazendo a mudança de variável

$$x = x_0 + \theta h \Rightarrow \theta = \frac{x - x_0}{h}$$

e, lembrando que os nós de interpolação estão igualmente espaçados, surge a **fórmula interpoladora de Gregory-Newton progressiva** na versão mais usual:

$$p_{n}(x) = f_{0} + \theta \triangle f_{0} + \theta (\theta - 1) \frac{\triangle^{2} f_{0}}{2!} + \theta (\theta - 1) (\theta - 2) \frac{\triangle^{3} f_{0}}{3!} + \cdots + \theta (\theta - 1) (\theta - 2) \cdots (\theta - (n - 1)) \frac{\triangle^{n} f_{0}}{n!}$$

Pode-se obter um polinómio interpolador semelhante mas usando diferenças ascendentes ou regressivas. Para isso basta usar a relação

$$\nabla^n f_i = n! h^n f[x_i, x_{i-1}, x_{i-2}, \dots, x_{i-n}]$$

de forma a simplificar o polinómio interpolador de Newton às diferenças divididas. Substituindo agora $f[x_0, x_1, x_2, \dots, x_n]$ por $\frac{\nabla^i f_n}{n!h^n}$ no polinómio interpolador de Newton com diferenças divididas obtemos a fórmula interpoladora de Gregory-Newton regressiva

$$p_n(x) = f(x_n) + \sum_{i=1}^n (x - x_n) \cdots (x - x_{n-(i-1)}) \frac{\nabla^i f_n}{i! h^i}.$$

Por mudança de variável

$$x = x_n + \theta h \Rightarrow \theta = \frac{x - x_n}{h}$$

e, lembrando que os nós de interpolação estão igualmente espaçados, surge a **fórmula interpoladora de Gregory-Newton regressiva** na forma mais utilizada:

$$p_n(x) = f_n + \theta \nabla f_n + \theta (\theta + 1) \frac{\nabla^2 f_n}{2!} + \theta (\theta + 1) (\theta + 2) \frac{\nabla^3 f_n}{3!} + \cdots + \theta (\theta + 1) (\theta + 2) \cdots (\theta + (n - 1)) \frac{\nabla^n f_n}{n!}.$$

Exemplo 9 Considerando o suporte de interpolação

$$\{(-2,25),(0,3),(2,7),(4,83),(6,327)\}$$

calcule-se o valor aproximado de f(-1) e de f(4.5). Construa-se a tabela de diferenças não divididas

\overline{x}	f(x)	$\triangle ackslash abla$	$\triangle^2 \backslash \nabla^2$	$\triangle^3 \backslash \nabla^3$	$\triangle^4 \backslash \nabla^4$
$\overline{-2}$	-25				
		28			
0	3		-24		
		4		96	
2	7		72		0
		76		96	
4	83		168		
		244			
6	327				

Note-se que, para obter o polinómio interpolador, usando Gregory-Newton progressiva, a escolha entre -2 ou 0 para x_0 é indiferente pois as diferenças de 4^a ordem são nulas e o polinómio interpolador é de 3^o grau. Seja $x_0 = -2$. Então

$$\theta = \frac{x - x_0}{h} = \frac{x + 2}{2}$$

e

$$p_3(x) = -25 + \theta \times 28 + \theta (\theta - 1) \times \frac{(-24)}{2!} + \theta (\theta - 1) (\theta - 2) \times \frac{96}{3!}$$

Para obter os valores aproximados de f(-1) e f(4.5) basta calcular o valor de θ para cada caso. Para x=-1 vem

$$x = -1 \Rightarrow \theta = \frac{x - x_0}{h} = \frac{-1 + 2}{2} = 0.5$$

$$f(-1) \approx p_3(-1) = -25 + 0.5 \times 28 + 0.5(0.5 - 1) \times \frac{-24}{2!}$$

$$+ 0.5(0.5 - 1)(0.5 - 2) \times \frac{96}{3!}$$

$$= -2.$$

Para x = 4.5 vem

$$x = 4.5 \Rightarrow \theta = \frac{x - x_0}{h} = \frac{4.5 + 2}{2} = 3.25$$

$$f(4.5) \approx p_3(4.5) = -25 + 3.25 \times 28 + 3.25(3.25 - 1) \times \frac{-24}{2!}$$

$$+ 3.25(3.25 - 1)(3.25 - 2) \times \frac{96}{3!}$$

$$= 124.5.$$

Vamos obter exactamente os mesmos resultados ao usarmos a fórmula de Gregory-Newton regressiva. Basta lembrar que o polinómio interpolador é único. A escolha de 4 ou 6 para x_n é indiferente pois as diferenças de 4^a ordem são nulas e o polinómio interpolador é de 3^o grau. Seja $x_n = 6$. Então

$$\theta = \frac{x - x_n}{h} = \frac{x - 6}{2}$$

e

$$p_3(x) = 327 + \theta \times 244 + \theta(\theta + 1) \times \frac{(168)}{2!} + \theta(\theta + 1)(\theta + 2) \times \frac{96}{3!}$$

Para obter os valores aproximados de f(-1) e f(4.5) basta calcular o valor de θ para cada caso. Para x = -1 vem

$$x = -1 \Rightarrow \theta = \frac{x - x_n}{h} = \frac{-1 - 6}{2} = -3.5$$

$$f(-1) \approx p_3(-1) = 327 - 3.5 \times 244 - 3.5(-3.5 + 1) \times \frac{168}{2!}$$

$$-3.5(-3.5 + 1)(-3.5 + 2) \times \frac{96}{3!}$$

$$= -2.$$

Para x = 4.5 vem

$$x = 4.5 \Rightarrow \theta = \frac{x - x_n}{h} = \frac{4.5 - 6}{2} = -0.75$$

$$f(4.5) \approx p_3(4.5) = 327 - 0.75 \times 244 - 0.75(-0.75 + 1) \times \frac{168}{2!}$$

$$-0.75(-0.75 + 1)(-0.75 + 2) \times \frac{96}{3!}$$

$$= 124.5. \blacksquare$$

Note-se que, à semelhança das fórmulas de Gregory-Newton, também o polinómio interpolador de Lagrange pode ser obtido directamente do polinómio

interpolador de Newton para diferenças divididas recorrendo à propriedade já indicada atrás,

$$f[x_0, x_1, x_2, \dots, x_n] = \sum_{i=0}^n \frac{f_i}{\prod_{j=0, j\neq i}^n (x_i - x_j)}.$$

Sabendo que existem várias fórmulas para obter o polinómio interpolador, é importante relembrar que o polinómio interpolador é único, independentemente do método escolhido.

Antes de passarmos à interpolação inversa, urge colocar uma questão. Será que, ao aumentar o número de pontos do suporte de interpolação num certo intervalo, o polinómio interpolador obtido melhora as estimativas da função?

A resposta à questão é um pouco delicada. Para $x_0, x_1, x_2, \ldots, x_n$ escolhidos criteriosamente e funções f(x) regulares o erro de interpolação decresce à medida que n aumenta. Para algumas funções f(x) a sequência dos polinómios obtidos é convergente para todos os argumentos x. Para outras funções essa convergência é limitada a um intervalo restrito. Nesta situação, o erro de interpolação tende para zero na parte central do intervalo considerado e tende a oscilar fortemente nos extremos desse mesmo intervalo. Este comportamento é uma severa restrição ao uso de polinómios interpoladores com grau elevado.

7 Interpolação inversa

Dados os pontos $(x_i, y_i) = (x_i, f(x_i))$, $0 \le i \le n$, é frequente querermos calcular x dado $y = f(x) \ne y_i$. É o que acontece quando, por exemplo, queremos determinar uma raiz de f(x) a partir dos valores tabelados $(x_i, f(x_i))$, $0 \le i \le n$. Este problema denomina-se **interpolação inversa**. Como é óbvio, o problema da interpolação inversa exige que a função seja univocamente determinada para um certo intervalo de valores do argumento.

A maneira mais usual de resolução do problema da interpolação inversa é por **inversão de tabela**. Para o suporte $(y_i, x_i) = (y_i, f^{-1}(y_i))$, $0 \le i \le n$, com $y_i \ne y_j$ $(i \ne j)$ existirá um polinómio interpolador $p_n(y)$ que interpola a função inversa $x = f^{-1}(y) = g(y)$, caso ela exista obviamente. Para a obtenção do polinómio interpolador pode-se escolher qualquer dos métodos indicados sendo importante verificar se o argumento $y_0, y_1, y_2, \ldots, y_n$ são equidistantes. O mais usual é usar a fórmula interpoladora de Newton com diferenças divididas

$$p_n(y) = x_0 + (y - y_0) g[y_0, y_1] + \dots + (y - y_0) \dots (y - y_{n-1}) g[y_0, \dots, y_n].$$

Exemplo 10 Considere a tabela função da $f(x) = \operatorname{sen} x - \operatorname{cos} x$ e indique o valor da sua raiz:

$$\begin{array}{c|ccccc} x & 0.6 & 0.8 & 1.0 & 1.2 \\ \hline f(x) & -0.2607 & 0.0206 & 0.3012 & 0.5697 \end{array}$$

Estamos perante um problema de interpolação inversa. Admita-se que f(x) é contínua. Como muda de sinal quando passa de x=0.6 para x=0.8 a raiz está em (0.6,0.8). Sendo a função crescente para os valores tabelados, podemos admitir que é injectiva e invertível no intervalo (0.6,1.2). Numa primeira fase trocamos as colunas. Depois passamos ao cálculo das diferenças divididas pois y_0, y_1, y_2, y_3 não são equidistantes.

y	x = g(y)	$g\left[, ight]$	$g\left[,,\right]$	g[,,,]
-0.2607	0.6			
		0.7110		
0.0206	0.8		0.0032	
		0.7128		0.0666
0.3012	1		0.0585	
		0.7449		
0.5697	1.2			

O polinómio interpolador vem

$$p_3(y) = x_0 + (y - y_0) g[y_0, y_1] + (y - y_0) (y - y_1) g[y_0, y_1, y_2]$$

$$+ (y - y_0) (y - y_1) (y - y_2) g[y_0, y_1, y_2, y_3]$$

$$= 0.6 + [y - (-0.2607)] \times 0.7110$$

$$+ [y - (-0.2607)] (y - 0.0206) \times 0.0032$$

$$+ [y - (-0.2607)] (y - 0.0206) (y - 0.3012) \times 0.0666$$

$$= 0.78545 + 0.70659y - 8.6926 \times 10^{-4}y^2 + 0.0666y^3.$$

Como se pretende o valor aproximado da raiz então

$$\tilde{x} = p_3(0) = 0.78545.$$

Sabendo que função tabelada é $f(x) = \sin x - \cos x$, pode-se obter o valor exacto da raiz,

$$f(x) = 0 \Leftrightarrow \sin x - \cos x = 0 \Leftrightarrow \sin x = \cos x \Leftrightarrow x = k\pi + \frac{\pi}{4}, k \text{ inteiro.}$$

Ora x assume valores no primeiro quadrante

$$x = \frac{\pi}{4} = 0.7853981\dots$$

O erro cometido é

$$|0.7853981... - 0.78545| \le 5.2 \times 10^{-5}$$
.

Exemplo 11 Considere-se a tabela da função distribuição de probabilidade $y = f(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-x^2} dx$,

Para que quantil (valor de x), a função distribuição atinge 50%?

Efectue-se a interpolação quadrática inversa, recorrendo à fórmula interpoladora de Newton.

\overline{y}	x = g(y)	$g\left[, ight]$	$g\left[,,\right]$
0.4937452	0.47		
0.5027498	0.48	1.11054	0.59818
0.5116683	0.49	• • •	

$$p_{2}(y) = x_{0} + (y - y_{0}) g[y_{0}, y_{1}] + (y - y_{0}) (y - y_{1}) g[y_{0}, y_{1}, y_{2}]$$

$$= 0.47 + (y - 0.4937452) \times 1.11054$$

$$+ (y - 0.4937452)(y - 0.5027498) \times 0.59818$$

$$= 7.0163 \times 10^{-2} + 0.51446y + 0.59818y^{2}.$$

O quantil obtido para a acumulada correspodente ao valor 50% é

$$x = p_2(0.5) = 7.0163 \times 10^{-2} + 0.51446 \times 0.5 + 0.59818 \times 0.5^2$$

= 0.47694. \blacksquare

À semelhança da interpolação directa, pode-se obter a expressão para o majorante do erro de interpolação, com ξ pertencente ao menor intervalo que contenha y_0, \ldots, y_n ,

$$f^{-1}(y) - p_n(y) = g(y) - p_n(y) = \prod_{j=0}^{n} (y - y_j) \frac{g^{(n+1)}(\xi)}{(n+1)!}.$$

É necessário que se conheça g(x) e que as suas derivadas sejam bem comportadas.

A inversão de tabela não é a única abordagem possível para a interpolação inversa. Uma outra alternativa é o **método das aproximações sucessivas**. Consideremos que estamos a resolver a equação

$$f(x) = C \tag{7}$$

em que C é uma constante real e suponhamos que $f(x_0) - C$ e $f(x_1) - C$ têm sinais opostos e que f(x) é uma função contínua. Suponha-se também os nós de interpolação x_0, x_1, \ldots, x_n , são equidistantes de passo h.

Utilizando o polinómio interpolador de Gregory-Newton progressivo, resolver (7) equivale a determinar $\theta = (x - x_0)/h$ tal que,

$$p_n(x) = f_0 + \theta \triangle f_0 + \theta (\theta - 1) \frac{\triangle^2 f_0}{2!} + \theta (\theta - 1) (\theta - 2) \frac{\triangle^3 f_0}{3!} + \dots = C.$$

Esta igualdade pode ser reescrita na forma

$$\theta \triangle f_0 = C - f_0 - \theta \left(\theta - 1\right) \frac{\triangle^2 f_0}{2!} - \theta \left(\theta - 1\right) \left(\theta - 2\right) \frac{\triangle^3 f_0}{3!} - \cdots,$$

ou

$$\theta = \varphi(\theta)$$

onde

$$\varphi(\theta) = \frac{1}{\Delta f_0} \left(C - f_0 - \theta \left(\theta - 1 \right) \frac{\Delta^2 f_0}{2!} - \theta \left(\theta - 1 \right) \left(\theta - 2 \right) \frac{\Delta^3 f_0}{3!} - \cdots \right).$$

A equação $\theta = \varphi(\theta)$ sugere o processo iterativo

$$\theta_{i+1} = \varphi(\theta_i), \text{ com } \theta_0 = \frac{C - f_0}{\triangle f_0}.$$

Note-se que o valor inicial do processo iterativo corresponde à interpolação linear. As iteradas seguintes correspondem ao aparecimento de mais termos na função φ , normalmente mais um, calculados com o valor da iterada anterior. O processo pára quando algum critério de paragem pré-definido for verificado.

Exemplo 12 Considere novamente a tabela da função $f(x) = \sin x - \cos x$

$$\begin{array}{c|ccccc} x & 0.6 & 0.8 & 1.0 & 1.2 \\ \hline f(x) & -0.2607 & 0.0206 & 0.3012 & 0.5697 \end{array}$$

e obtenha uma aproximação para a raiz de forma que a diferença entre iteradas sucessivas seja inferior a uma milésima. Já se discutiu o facto da função ser univoca no intervalo dos argumentos. Como os nós de interpolação são equidistantes de passo h=0.2 pode-se obter o polinómio interpolador de Gregory-Newton. Construa-se a tabela de diferenças não divididas

\overline{x}	f(x)	$\triangle ackslash abla$	$\triangle^2 \backslash \nabla^2$	$\triangle^3 \backslash \nabla^3$
0.6	-0.2607			
		0.2813		
0.8	0.0206		-0.0007	
		0.2806		-0.114
1.0	0.3012		-0.0121	
		0.2685		
1.2	0.5697			

O polinómio interpolador vem

$$p_3(x) = f_0 + \theta \triangle f_0 + \theta (\theta - 1) \frac{\triangle^2 f_0}{2!} + \theta (\theta - 1) (\theta - 2) \frac{\triangle^3 f_0}{3!}.$$

Como se pretende obter a raiz do polinómio tem-se

$$p_3(x) = C = 0 \Rightarrow f_0 + \theta \triangle f_0 + \theta (\theta - 1) \frac{\triangle^2 f_0}{2!} + \theta (\theta - 1) (\theta - 2) \frac{\triangle^3 f_0}{3!} = 0.$$

A iterada inicial corresponde a interpolação linear, i.e.,

$$f_0 + \theta_0 \triangle f_0 = 0 \Rightarrow \theta_0 = \frac{-f_0}{\triangle f_0} = \frac{0.2607}{0.2813} = 0.92677$$

A segunda aproximação surge de

$$f_0 + \theta_1 \triangle f_0 + \theta_0 (\theta_0 - 1) \frac{\triangle^2 f_0}{2!} = 0$$

e

$$\theta_1 = \frac{1}{\Delta f_0} \left(-f_0 - \theta_0 \left(\theta_0 - 1 \right) \frac{\Delta^2 f_0}{2!} \right)$$

$$= \frac{1}{0.2813} \left(0.2607 - 0.92677 \left(0.92677 - 1 \right) \frac{-0.0007}{2!} \right)$$

$$= 0.92668.$$

O critério de paragem está verificado:

$$|\theta_1 - \theta_0| = |0.92668 - 0.92677| = 0.00009 < 10^{-3}.$$

O valor aproximado da raiz resulta de $x = x_0 + \theta h$, logo

$$\tilde{x} = x_0 + \theta_2 h = 0.6 + 0.92668 \times 0.2 = 0.78534.$$

Se o critério de paragem não fosse satisfeito, a segunda iterada correspondia a considerarmos mais um termo no polinómio interpolador, correspondente à diferença de 3^a ordem:

$$f_0 + \theta_2 \triangle f_0 + \theta_1 (\theta_1 - 1) \frac{\triangle^2 f_0}{2!} + \theta_1 (\theta_1 - 1) (\theta_1 - 2) \frac{\triangle^3 f_0}{3!} = 0$$

e

$$\theta_2 = \frac{1}{\triangle f_0} \left(-f_0 - \theta_1 (\theta_1 - 1) \frac{\triangle^2 f_0}{2!} - \theta_1 (\theta_1 - 1) (\theta_1 - 2) \frac{\triangle^3 f_0}{3!} \right). \blacksquare$$

Consegue-se igualmente deduzir um majorante do erro de interpolação para o método das aproximações sucessivas. No entanto, é mais importante realçar que os resultados obtidos pelos dois métodos são, em geral, diferentes. É natural que o sejam pois por inversão de tabela usa-se um polinómio em y e por aproximações sucessivas recorre-se a um polinómio em x. Os dois métodos são idênticos no caso da interpolação linear.

Referências

- [1] Carpentier, M. P. J., Análise Numérica-Teoria, Sebenta editada pela AEIST em Fev. 1993.
- [2] Rosa, M. & Graça, M., Tópicos de Análise Numérica, Universidade de Aveiro, 1992
- [3] Dahlquist & Bjork, Numerical Methods, Prentice Hall, 1974
- [4] Conte, S. D. & Boor, C., Elementary Numerical Analysis, McGraw-Hill, 1980.
- [5] Gerald, C. e Wheatley, P., Applied Numerical Analysis, Addison-Wesley, 1997.
- [6] Lindfield, G. e Penny, J., Numerical Methods Using Matlab. Ellis Horwood, 1995.
- [7] Kreyszig, Erwin., Advanced Engineering Mathematics (Cap. 17 e 18), Willey, 1999. (Livro de texto).
- [8] Pina, Heitor, Métodos Numéricos, McGraw-Hill, 1995.
- [9] Moreira, M., Apontamentos de Métodos Numéricos, EST, 2002.