Learn Physics with Functional Programming -Scott N. Walck - Chapter 4: Exercises

Graham Strickland

July 30, 2024

4.2 For $f(x) = x^3$, we have $f'(x) = 3x^2$, so that the relative error is defined by

$$\operatorname{err}(x,a) = \left| \frac{\frac{f(x+a/2) - f(x-a/2)}{a} - f'(x)}{f'(x)} \right|$$

$$= \left| \frac{\frac{(x+a/2)^3 - (x-a/2)^3}{a} - 3x^2}{3x^2} \right|$$

$$= \left| \frac{\frac{[x^3 + (3x^2a)/2 + (3xa^2)/4 + a^3/8]}{-[x^3 - (3x^2a)/2 + (3xa^2)/4 - a^3/8]} - 3x^2}{3x^2} \right|$$

$$= \left| \frac{\frac{3x^2a + a^3/4 - 3x^2a}{a}}{3x^2} \right|$$

$$= \left| \frac{\frac{a^2}{4}}{3x^2} \right|$$

$$= \left| \frac{a^2}{12x^2} \right|$$

$$= \frac{a^2}{12x^2},$$

since $a^2 \ge 0$ and $x^2 \ge 0$.

Thus we have an error of 1 percent if

$$\begin{aligned} & \operatorname{err}(x, a) = 0.01 \\ & \Leftrightarrow \frac{a^2}{12x^2} = 0.01 \\ & \Leftrightarrow a^2 = 0.12x^2 \\ & \Leftrightarrow a = |x|\sqrt{0.12} \end{aligned}$$

Then, for x = 4, we have

$$a = 4\sqrt{0.12}$$

$$\approx 1.3856406460551018$$

and for x = 0.1, we have

$$a = 0.1\sqrt{0.12}$$

 $\approx 3.4641016151377546 \times 10^{-2}$.

4.3 Suppose we have a function f and independent variable, say x, such that derivative 0.01 f x produces at least a 10 percent error, $\operatorname{err}(x,\epsilon)$, compared to the exact derivative, f'(x). Then, we have

$$\operatorname{err}(x,\epsilon) = \operatorname{err}(x,0.01)$$

$$= \left| \frac{\frac{f(x+\epsilon/2) - f(x-\epsilon/2)}{\epsilon} - f'(x)}{f'(x)} \right|$$

$$= \left| \frac{\frac{f(x+0.01/2) - f(x-0.01/2)}{0.01} - f'(x)}{f'(x)} \right|$$

$$= \left| \frac{\frac{f(x+0.005) - f(x-0.005)}{0.01} - f'(x)}{f'(x)} \right|$$

$$\geq 0.1$$

If we substitute $\epsilon = 0.01$, $x = \pi \approx 3.141592653589793$, and $f(x) = \cos x$ into the above, we have $f'(x) = -\sin x$, so that

$$\begin{aligned} \text{err}(x, \epsilon) &= \text{err}(\pi, 0.01) \\ &= \left| \frac{\cos (\pi + 0.005) - \cos (\pi - 0.005)}{0.01} + \sin \pi \right| \\ &\approx 1.0 \\ &\geq 0.1. \end{aligned}$$

4.4 We cannot apply our error function in 4.3 to derivative a cos, since it results in division by 0, but at values close to t = 0, we see an initial increase in the error as we move from small values of a which stop increasing as we increase a by multiples of 10 past a = 10.

For the following definition of the error function

err ::
$$(R \rightarrow R) \rightarrow (R \rightarrow R) \rightarrow R \rightarrow R \rightarrow R$$

err f df t a = abs ((derivative a f t - df t) / df t)

we have the following output from ghci:

```
ghci> err (\x -> \cos x) (\x -> -\sin x) 0.1 0.01
4.166661374023121e-6
ghci> err (\x -> \cos x) (\x -> -\sin x) 0.1 0.1
4.166145864253412e-4
ghci> err (x \rightarrow \cos x) (x \rightarrow -\sin x) 0.1 1
4.114892279159413e-2
ghci> err (\x -> \cos x) (\x -> -\sin x) 0.1 10
1.191784854932627
ghci> err (\x -> \cos x) (\x -> -\sin x) 0.1 100
1.0052474970740786
ghci> err (\x -> \cos x) (\x -> -\sin x) 0.1 1000
1.000935543610645
ghci> err (\x -> \cos x) (\x -> -\sin x) 0.1 10000
1.000197593287754
ghci> err (x \rightarrow \cos x) (x \rightarrow -\sin x) 0.1 100000
1.0000199968037815
ghci> err (\x -> \cos x) (\x -> -\sin x) 0.1 1000000
0.999999644337597
ghci> err (\x -> \cos x) (\x -> -\sin x) 0.1 10000000
1.000000195308493
```