LIMITY:	$\lim_{x \to +\infty} \log_a(x) = -\infty$	$\lim_{x \to \infty} \operatorname{tg}(x) = +\infty$	SLABIKÁŘ PRO LIMITY:	$\lim_{x \to a} f(x) = +\infty ; k = \text{konst.}$
$\lim_{x \to a} c = c$		$\lim_{x \to \frac{1}{2}\pi} \operatorname{tg}(x) = -\infty$	$\lim_{x \to a} f(x) = +\infty ;$	$\lim_{x \to a} k \cdot f(x) = +\infty ; k > 0$
$\lim_{x \to a} x = a$	$\operatorname{pro} a \in (1, +\infty)$ $\lim_{x \to 0} a^{x} = 0$	$x \to \frac{1}{2}\pi^+$	$\lim_{x \to a} g(x) = +\infty$	$\lim_{n \to \infty} k \cdot f(x) = -\infty ; k < 0$
$\lim_{x\to 0^+} \frac{1}{x} = -\infty$	$\lim_{x \to -\infty} a^x = +\infty$	$\lim_{x\to 0^-} \cot g(x) = -\infty$	$\lim_{x \to a} [f(x) + g(x)] = +\infty$	1,→u
$\lim_{x\to 0} \frac{1}{x} = \infty$	$x \rightarrow +\infty$	$\lim_{x\to 0^+} \cot g(x) = +\infty$	$\lim_{x \to a} [f(x) \cdot g(x)] = +\infty$	$\lim_{x \to a} f(x) = -\infty ; k = \text{konst.}$
$_{x\rightarrow0^{+}}$ X	$\lim_{x \to 0^+} \log_a(x) = -\infty$	$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$	$\lim f(x) = -\infty ;$	$\lim_{x \to a} k \cdot f(x) = -\infty ; k > 0$
$\lim_{x \to +\infty} \frac{1}{x} = 0$	$\lim_{x \to +\infty} \log_a(x) = +\infty$		$\lim_{x \to a} f(x) = -\infty$	$\lim_{x \to a} k \cdot f(x) = +\infty ; k < 0$
$\lim_{x \to -\infty} \frac{1}{x} = 0$	$\lim \ln(x) = -\infty$	$\lim_{x\to 0}\frac{\operatorname{tg}(x)}{x}=1$	$\lim_{x \to a} g(x)$ $\lim_{x \to a} [f(x) + g(x)] = -\infty$	známé limity:
$\lim_{x \to -\infty} \frac{1}{x} = \text{neex.}$	$\lim_{x\to 0^+} \ln(x) = +\infty$	$\lim_{x\to 0}\frac{\mathrm{e}^x-1}{x}=1$	v → a	/ \"
$\lim_{x\to 0} x$	$x \rightarrow +\infty$	$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$	$\lim_{x \to a} [f(x) \cdot g(x)] = -\infty ???$, ,
$\operatorname{pro} a \in (0,1)$	$\lim_{x \to +\infty} \sin(x) = \text{neex.}$	L'HOSPITALOVO PRAVID	PLO: $\lim_{x \to a} f(x) = +\infty ;$	$\lim_{x \to +\infty} \left(1 + \frac{c}{x} \right)^x = e^c$
$\lim_{x \to -\infty} a^x = +\infty$	$\lim_{x \to -\infty} \sin(x) = \text{neex.}$	$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{0}{0} \lor \frac{\infty}{\infty} \Rightarrow \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$	$\lim_{x \to a} g(x) = -\infty$	$\lim_{x \to -\infty} \left(1 + \frac{1}{x} \right)^x = e$
$\lim_{x\to +\infty} a^x = 0$	$\lim_{x \to +\infty} \cos(x) = \text{neex.}$	$_{x\to x_0} g(x) 0 \infty _{x\to x_0} g'$	$\lim_{x \to a} [f(x) + g(x)] = \text{neex.}$	$\lim_{x \to -\infty} \left(\begin{array}{c} 1 + x \\ x \end{array} \right) = 0$
$\lim_{x\to 0^+}\log_a(x)=+\infty$	$\lim_{x \to -\infty} \cos(x) = \text{neex.}$		$\lim_{x\to a} [f(x)\cdot g(x)] = -\infty$	$\lim_{x\to 0} (1+x)^{\overline{x}} = e$
ÚPRAVY VZORCŮ:	$(\sqrt[n]{a})^m = \sqrt[n]{a^m}$; $a \ge 1$		<u>l</u>	$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$
$a\frac{1}{a}=1$; $a\neq 0$	$\sqrt[m]{\sqrt[n]{a}} = \sqrt[m \cdot n]{a}$; $a \ge a$			pravy zlomků:
$\frac{1}{\sqrt[n]{a}} = a^{-\frac{1}{n}} ; a \neq 0 ; n \neq 0$	$\sqrt[n]{a} = \sqrt[k-n]{a^k}$; $a \ge 0$ mocniny:	vu - vu		$\frac{p}{q} + \frac{r}{s} = \frac{p \cdot s + r \cdot q}{q \cdot s}$
V U	$a^r \cdot a^s = a^{r+s}$	rozklad tro $ax^2 + bx$	$c + c = a(x + x_1)(x - x_2)$???	$\frac{p}{q} - \frac{r}{s} = \frac{p \cdot s - r \cdot q}{q \cdot s}$
$\frac{a}{\sqrt{a}} = \sqrt{a}$; $a \neq 0$	$\frac{a^r}{a^s} = a^{r-s}$; $a \neq 0$		$+q = (x - x_1)(x - x_2)$	$\frac{q}{p} \cdot \frac{r}{r} = \frac{p \cdot r}{r}$
$1 + \left(\frac{1-a}{a}\right) = \frac{1}{a} ; a \neq 0$	a^{s} $(a^{r})^{s} = a^{r \cdot s}$	-p=x	$_1+x_2$; $q=x_1\cdot x_2$	q s q s
,	$(a \cdot b)^r = a^r \cdot b^r$	$(a+b)^2$	$=a^2+2ab+b^2$	$\frac{p}{q} \cdot \frac{r}{s} = \frac{p}{q} \cdot \frac{s}{r} = \frac{p \cdot s}{q \cdot r}$
odmocniny: $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$; $a \ge 0 \land b \ge 0$	$\left(\frac{a}{b}\right)^r = \frac{a^r}{b^r} ; b \neq 0$		$=a^2-2ab+b^2$	YTAGOROVA VĚTA: $a^2+b^2=c^2$
$a \cdot \sqrt[n]{b} = \sqrt[n]{a^n b}$; $a \ge 0 \land b \ge 0$	$\begin{pmatrix} b \end{pmatrix} b^r , \qquad b b^r , \qquad a \neq 0$	$(a+b)^3$	$= a^{3} + 3 a^{2} b + 3 a b^{2} + b^{3}$ = $a^{3} - 3 a^{2} b + 3 a b^{2} - b^{3}$	VADRATICK <u>Á</u> ROVNICE:
$\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}} ; a \ge 0 \land b \ge 0$	$a=1$, $a \neq 0$	$a^2-b^2=$	=(a+b)(a-b)	$x_1, x_2 = \frac{-b \pm \sqrt{D}}{2a}$ $D = b^2 - 4ac$
		$a^3 + b^3 =$	$=(a+b)(a^2-ab+b^2)$	
GONIOMETRICKÉ VZORCE: $\sin^2 x + \cos^2 x = 1$	$\cos x - \cos y = -2\sin x$	2 2	000 1	$\begin{array}{c cccc} 30^{\circ} & 45^{\circ} & 60^{\circ} & 90^{\circ} \\ \hline (\pi) & (\pi) & (\pi) & \pi \end{array}$
$\sin(x+y) = \sin x \cdot \cos y + \sin y \cdot \cos x$ $\sin(x-y) = \sin x \cdot \cos y - \sin y \cdot \cos x$	$tg x \cdot \cot g x = 1$	$\cot g x =$	$\frac{\cos x}{\sin x}$	$(\overline{6})$ $(\overline{4})$ $(\overline{3})$ $(\overline{2})$
$\cos(x+y) = \cos x \cdot \cos y - \sin x \cdot \sin y$	$tg(x+y) = \frac{tg x + tg y}{1 - tg x \cdot tg}$	tgx·cot		$\frac{1}{2}$ $\frac{\sqrt{2}}{2}$ $\frac{\sqrt{3}}{2}$ 1
$\cos(x-y) = \cos x \cdot \cos y + \sin x \cdot \sin y$		10 Y=-	otg x	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\sin 2x = 2\sin x \cdot \cos x$ $\cos 2x = \cos^2 x - \sin^2 x$	$tg(x-y) = \frac{tg x - tg y}{1 + tg x \cdot tg}$		$\frac{1}{x}$ $\cos x$ 1	$\frac{\sqrt{3}}{2}$ $\frac{\sqrt{2}}{2}$ $\frac{1}{2}$ 0
$\cos 2x = \cos^2 x - \sin^2 x$	$\cot(x+y) = \frac{\cot x \cdot \cot x}{\cot x + \cot x}$	$\frac{\overline{y}}{y}$ $\cot y - 1$ $\cot y = 0$	$\frac{\operatorname{tg} x}{a}$ $\operatorname{tg} x$ 0	$\frac{\sqrt{3}}{2}$ 1 $\sqrt{3}$ neex.
$\sin x + \sin y = 2\sin \frac{x+y}{2} \cdot \cos \frac{x-y}{2}$	$\cot(x-y) = \frac{\cot x \cdot \cot x}{\cot x - \cot x}$	otg y+1		3
$\sin x - \sin y = 2\cos\frac{x+y}{2} \cdot \sin\frac{x-y}{2}$	$\cot g x - \cot g x$	$\cos y = \cos x = 0$	$\frac{b}{c}$ $\cot g x$ neex.	$\sqrt{3}$ 1 $\frac{\sqrt{3}}{3}$ 0
2 2	$tg 2 x = \frac{2 tg x}{1 - tg^2 x}$	$\operatorname{tg} x = \frac{a}{b}$		
$\cos x + \cos y = 2\cos\frac{x+y}{2} \cdot \cos\frac{x-y}{2}$	$\cot 2 x = \frac{\cot^2 x - 1}{2 \cot x}$	b $\cot g x =$	$sin^2x = \frac{1}{2}$	$\cos^2 x = \frac{1 + \cos(2x)}{2}$
DERIVACE:	y=e		u	$\cos k\pi = (-1)^k$
$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$	v=c	$v = 0 \qquad (-\infty, +\infty)$	$y = \operatorname{arctg} x$	$1 \pm \chi$
$\int_{x \to x_0}^{x_0} \frac{x - x_0}{x - x_0}$ funkce f má derivaci v x_0 pokud limita exi	y=s	$\sin x$ $y = \cos x$ $(-\infty; +\infty)$ $\cos x$ $y = -\sin x$ $(-\infty; +\infty)$	$y = \operatorname{arccotg} x$	$y' = -\frac{1}{1+x^2}$
derivace je směrnice tečny funkce		. /	π , $y = \sinh x$	
SLABIKAŘ PRO DERIVACE: (f+g)'(x)=f'(x)+g'(x)		$gx y' = \frac{1}{\cos^2 x} \left(-\frac{\pi}{2} + k\pi\right)$	- /	
$(c \cdot f)'(x) = c \cdot f'(x)$ - vytknutí	y=c	$\cot x \qquad y' = -\frac{1}{\sin^2 x} \qquad (k\pi; (k\pi))$	$(x+1)\pi$) $y = \operatorname{tgh} x$	$v' = \frac{1}{\cosh^x}$
$(f \cdot g)'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$ neboli $(a \cdot b)' = a' \cdot b + a \cdot b'$	y = a	$y' = a^x \ln a$ $a > 0$ $a > 0$	$\neq 1$ $(-\infty; +\infty)$ $y = \operatorname{cotgh} x$	$v' = -\frac{1}{v'}$
	y=1	$\int_{0}^{\infty} \frac{1}{x} = \frac{1}{x} \qquad (0; +\infty)$	LOGARITMICKÁ	SIIIII
$\left(\frac{f}{g}\right)(x) = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g^{2}(x)}$	v=1	$\log_a x \qquad y' = \frac{1}{x \ln a} \qquad (0; +\infty)$	$y=ax^{x}$	
neboli $\left(\frac{a}{b}\right)' = \frac{a' \cdot b - a \cdot b'}{b^2}$ $f(x)^{g(x)}$	$(x) = \ln f(x)g(x) = g(x) \cdot \ln f(x)$		$\ln y = \ln a + x \ln 1$	x
(uvw)' = u'vw + uv'w + uvw'	y=a	$resin x y' = \frac{1}{\sqrt{1 - x^2}} pro x $		
	y=a	$y' = -\frac{1}{\sqrt{1-x^2}}$ pro	$y' = ax^{x}(\ln x + 1)$)
$y=x^n$ $y'=n\cdot x^{n-1}$ $(-\infty; +\infty)$ INTEGRÁLY:	')	VI A		··*
integrační konstantu c nutno přičíst!	· · ·	$\frac{1}{\cos^2 x} dx = \operatorname{tg} x + c$	$\int \frac{1}{ax^2 + bx + c} dx$	_
$\int 0 dx = c \qquad x \in (-\infty; +\infty)$ $\int 1 dx = \int dx = x + c$	•	$dx = e^x + c$	a) D>0 *=	$= \frac{1}{\sqrt{D}} \ln \frac{2ax + b - \sqrt{D}}{2ax + b + \sqrt{D}} + c$
$\int k dx = k \int dx = kx + c \text{-vytknuti}$	$\int a^x$	$dx = \frac{a^x}{\ln a} + c$	b) D=0 *=	VD Zux (O) VD
$\int x^n dx = \frac{x^{n+1}}{n+1} + c \qquad n \in \mathbb{N} \qquad x \in \mathbb{N}$	[(-∞;+∞)	$\frac{1}{1+a^2}dx = \frac{1}{a}\arctan\frac{x}{a} + c$		
n+1	Α	τu	-l	$= \frac{2}{\sqrt{-D}} \operatorname{arctg} \frac{2ax+b}{\sqrt{-D}} + c$
$\int x^r dx = \frac{x^{r+1}}{r+1} + c \qquad n \in (-\infty, -1)$		$\frac{1}{1-a^2}dx = \frac{1}{2a}\ln\frac{x-a}{x+a} + c \qquad x \neq a $	$\int \frac{1}{\sqrt{ax^2 + bx + c}}$	dx = *
$x \in (0; +\infty)$ $\int \sin x dx = -\cos x + c$	$\int \frac{1}{\sqrt{2}}$	$\frac{1}{a^2 - x^2} dx = \arcsin \frac{x}{a} + c \qquad x \neq a$	a>0	$=\frac{1}{\sqrt{a}}\ln 2ax+b+2\sqrt{a(ax^2+bx+c)} +c$
$\int \cos x dx = \sin x + c$	$\int \frac{1}{\sqrt{2}}$	$\frac{1}{x^2+b}dx = \ln x+\sqrt{x^2+b} + c \qquad b \neq$		V 44
$\int \frac{1}{x} dx = \ln x + c \qquad x \neq 0$	٧.	λ + <i>υ</i>	0) u<0 D	$ > 0 \qquad * = \frac{1}{\sqrt{-a}} \arcsin \frac{-2ax - b}{\sqrt{D}} + c $
$\int \frac{1}{\sin^2 x} dx = -\cot x + c$	J	$\frac{(x)}{(x)}dx = \ln f(x) + c$	SLABIKÁŘ PRO 1 Per partes: $\int [f(x) \pm g(x)]$	INTEGROVANI: $dx = \int f(x) dx \pm \int g(x) dx$
$\sin^2 x$	$\int f$	$(ax+b)dx = \frac{1}{a}F(ax+b)+c$	Per partes: $\int uv' = uv - \int u'v \qquad \int [f(x) \pm g(x)] \int k \cdot f(x) dx = k$	$f \cdot \int f(x) dx \qquad k \in \mathbb{R} = \text{konst.}$
				

	_					
	$\int P(x) \ln x dx$	$\int_{-\ln x}$	Gon.fce	$\int R(\sin^2 x;\cos^2 x)$	Integral	Subs.
	$\left\{ \begin{array}{l} \int P(x) \ln x dx \\ \int P(x) \operatorname{arctg} x dx \\ \int P(x) \operatorname{arcsin} x dx \\ \end{array} \right\} u = 0$ $\left\{ \begin{array}{l} \int P(x) \operatorname{arcsin} x dx \\ \int P(x) \operatorname{cos} x dx \\ \int P(x) \operatorname{sin} x dx \\ \int P(x) \operatorname{a}^x dx \end{array} \right\} u = 1$	111.0	univerzalna subs.	$tg \frac{x}{2} = t$	$R((ax+b);(ax+b)^{\frac{1}{k_1}};)$	$x = t^{k (NSN)}$
	$ a \int P(x) \operatorname{arctg} x dx$ $u = 4$	arctg x	$tg \frac{x}{2} = t$		$P(x, \sqrt{a^2-x^2})$	x = asint acost
	$\int P(x) \arcsin x dx$	$\arcsin x$	2	$dx = \frac{2}{1-x^2} dt$	$R(x, \sqrt{x^2 + a^2})$	x = a t g t
	$\frac{G}{D} \int P(x) \cos x dx$	`	$dx = \frac{2}{1+t^2} dt$ $\sin x = \frac{2t}{1+t^2}$ $\cos x = \frac{1-t^2}{1+t^2}$	$\begin{vmatrix} 1+t^2 \\ 2t \end{vmatrix}$	$R(x, \sqrt{x^2 - a^2})$	$x = a/_{sint}; a/_{cos}$
	a j i (x) cos x ax		$\sin x = \frac{2t}{}$	$\sin x = \frac{2t}{1+t^2}$		
	$\int P(x) \sin x dx u = 1$	P(x)	$1 + t^2$	$1-t^2$	sin z = sin	x cosh y + j cos x sinh s x cosh y + j sin x sinh
	$\int P(x) a^x dx$		$\cos x = \frac{1-t^2}{1-t^2}$	$\cos x = \frac{1}{1 + t^2}$	2 - 2 000 2 2	$(-1)^n \frac{z^{2n+1}}{(2n+1)!}$
					n=c	
$\int \frac{Ax+B}{x^2+px+q} dx = \frac{A}{2} \ln x^2+px+q + \frac{B-A^p/2}{\sqrt{q-p^2/4}} \operatorname{arctg} \frac{x+p^2/2}{\sqrt{q-p^2/4}} + c$ nerozlozitelny polynom D<0				$\cos z = \sum_{i=1}^{\infty}$	$(-1)^n \frac{z^{2n}}{(2n)!}$	
	$\int x^2 + px + q$ 2	$a - p^2$	$a = \frac{p^2}{4}$		n=	0 (2n):
nerozlozitelny polynom D<0			$e^z \equiv \exp($	$(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$		
, ,					_	$_{n=0}$ $n!$
$\int \sqrt{x^2 + b} dx = \frac{x}{2} \sqrt{x^2 + b} + \frac{b}{2} \ln \left x + \sqrt{x^2 + b} \right + c$				$\cos z = \frac{ex}{}$	p(jz)+exp(-jz)	
	$\int \frac{A}{(x-a)^n} dx = \frac{A}{(1-n)(x-a)^{n-1}} + c n > 1 x \neq a$ $\sin z = \frac{\exp(iz) - \exp(-iz)}{2i}$					n(iz)-exp(-iz)
$\int \frac{A}{(x-a)^n} dx = \frac{A}{(1-n)(x-a)^{n-1}} + c n > 1 \ x \neq a$				$\sin z = \frac{\sin z}{z}$	2j	
	<i>f</i> 1				C.R.podr	ninky
	$\int t \sin(at) dt = \frac{1}{a^2} (\sin(at) - at)$	$\cos(at)) + c$			$u_x' = v_y'$	$ u_{v}' = -v_{x}'$
					f(z) = 1	u + iv
_	$e^{jt} = \cos t + j\sin t$, (-)	

pre: y' + f(x)y = g(x) $y(x,c) = ce^{-\int f(x)dx} + e^{-\int f(x)dx} \int (g(x)e^{\int f(x)dx})dx$ $\begin{cases} f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos n\omega t + b_n \sin n\omega t) = \frac{1}{2} [f(t^+) + f(t^-)] \\ \omega = \frac{2\pi}{T} \qquad a_0 = \frac{2}{T} \int_a^{a+T} f(t) dt \\ a_n = \frac{2}{T} \int_a^{a+T} f(t) \cos n\omega t dt \end{cases}$ $b_n = \frac{2}{T} \int_a^{a+T} f(t) \sin n\omega t \ dt$ $sud\acute{a} - \boldsymbol{b_n} = 0, \boldsymbol{a_n} = \frac{4}{T} \int_0^{T/2} f(t) \cos n\omega t \ dt, \boldsymbol{a_0} = \cdots$

 $\tau: f'_x(T)(x - x_0) + f'_y(T)(y - y_0) - (z - z_0) = 0 \rightarrow explicitne$ $\tau \colon F_x'(T)(x-x_0) + F_y'(T)(y-y_0) + F_z'(T)(z-z_0) = 0 \to implicitnes$

Z - transformace:

Rada Z(f(n)) konverguje, da sa integrovat a der. clen po clenu, je holomorfni |z|>R, kde $R=\overline{lim}_{n\to\infty}\sqrt[n]{|f(n)|}$.

Zpetna Z-tr. (zk su poly)

$$f(n) = \mathcal{Z}^{-1}\{F(z)\} = \sum_{z=z_k} \operatorname{res}_{z=z_k} \left[F(z) \ z^{n-1} \right], \quad n = 0, 1, 2, \dots$$

	z_k	-2 _k	
Číslo vzorce	$f(n), n = 0, 1, 2, \dots$	$Z{f(n)} = F(z) = \sum_{n=0}^{\infty} f(n)z^{-n}$	
1.	1	$\frac{z}{z-1}$	
2.	a^n	$\frac{z}{z-a}$	
3.	n	$\frac{z}{(z-1)^2}$	
4.	n^2	$\frac{z(z+1)}{(z-1)^3}$	
5.	na^n	$\frac{az}{(z-a)^2}$	
6.	n^2a^n	$\frac{az(z+a)}{(z-a)^3}$	
7.	$\cos \omega n$	$\frac{z(z-\cos\omega)}{z^2 - 2z\cos\omega + 1}$	
8.	$\sin \omega n$	$\frac{z\sin\omega}{z^2 - 2z\cos\omega + 1}$	
9.	$\delta_0(n)$		
10. $\delta_m(n)$		z^{-m}	
11.	f(n+1)	zF(z) - zf(0)	
12.	f(n+2)	$z^2F(z) - z^2f(0) - zf(1)$	
13.	f(n+k)	$z^k F(z) - \Sigma_{j=0}^{k-1} f(j) z^{k-j}$	
14. $f(n-k)$		$z^{-k}F(z)$	

Laplaceova transformace: $F(p) = \int_{-\infty}^{\infty} f(t) e^{-pt} dt$

'	va transion	J_0
Číslo vzorce	f(t)	$\mathcal{L}{f(t)} = F(p) = \int_0^\infty f(t)e^{-pt} dt$
1.	c	$\frac{c}{p}$
2.	$t^n, n \in \mathbb{N}$	$\frac{n!}{p^{n+1}}$
3.	e^{at}	$\frac{1}{p-a}$
4.	$t^n e^{at}, n \in \mathbb{N}$	$\frac{n!}{(p-a)^{n+1}}$
5.	$\cos \omega t$	$\frac{p}{p^2+\omega^2}$
6.	$\sin \omega t$	$\frac{\omega}{p^2 + \omega^2}$
7.	$e^{at}\cos\omega t$	$\frac{p-a}{(p-a)^2+\omega^2}$
8.	$e^{at}\sin\omega t$	$\frac{\omega}{(p-a)^2 + \omega^2}$
9.	f'(t)	pF(p) - f(0)
10.	f''(t)	$p^2F(p) - pf(0) - f'(0)$
11.	f'''(t)	$p^{3}F(p) - p^{2}f(0) - pf'(0) - f''(0)$
12.	$f^{(n)}(t)$	$p^{n}F(p) - p^{n-1}f(0) - p^{n-2}f'(0) - \dots - f^{(n-1)}(0)$
13.	$\int_0^t f(u) \mathrm{d}u$	$\frac{F(p)}{p}$
14.	$f(t-a), a \ge 0$	$e^{-ap}F(p)$

Obraz ryze rac.fce (stM<stN)

$$F(p) = \frac{M(p)}{N(p)}, \qquad f(t) = \mathcal{L}^{-1}\{F(p)\} = \sum_{p_k} \underset{p = p_k}{\text{res}} \left[F(p) \ e^{pt} \right], \quad t > 0$$

Ak sú póly 2 komplexne zdruzene cisla, staci pocitat pre 1 koren
$$\underset{p=\alpha+\mathrm{j}\beta}{\mathrm{res}} \ \left[F(p) \ e^{pt} \right] + \underset{p=\alpha-\mathrm{j}\beta}{\mathrm{res}} \ \left[F(p) \ e^{pt} \right] = 2 \mathcal{R} e \ \underset{p=\alpha+\mathrm{j}\beta}{\mathrm{res}} \ \left[F(p) \ e^{pt} \right]$$

 $posun\ obr.: Lap\{e^{at}\ f(t)\} = F(p-a)$ zmena mer.: $Lap\{f(at)\}=\frac{1}{a}F(\frac{p}{a})$ spozdeni arg.: Lap $\{f(t-\tau)\}=e^{-\tau p}F(p)$

Rezidua:

Pól 1. rádu: $\underset{z=z_0}{\text{res}} f(z) = \lim_{z \to z_0} (z - z_0) f(z)$

$$\operatorname{res}_{z=z_0} f(z) = \frac{1}{(m-1)!} \lim_{z \to z_0} \frac{\mathrm{d}^{m-1}}{\mathrm{d}z^{m-1}} [(z-z_0)^m f(z)]$$

fce holomorfne, v nul. bode menovatela citatel nenulovy, derivacia fce holomortne, v nul. Dode meriovateia citater neriovy, some menovatela v tom bode nenulova $\underset{z=z_0}{\operatorname{res}} \ f(z) = \frac{\varphi(z_0)}{\psi'(z_0)}$ Reziduova veta (pocitam v sing. bodoch uvnitr krivky (nie na krivke)) $\int_{\Gamma} f(z) \ \mathrm{d}z = 2\pi \mathrm{j} \sum_{k=1}^n \underset{z=z_k}{\operatorname{res}} \ f(z)$ $| \text{lom.fce} \ \frac{1}{f(z)} = 0$ | riesenie su sing. body

$$\int_{\Gamma} f(z) dz = 2\pi i \sum_{k=1}^{n} \operatorname{res}_{z=z_{k}} f(z)$$

Integral komplexnej premennej:

$$\begin{split} \int_{\Gamma} f(z) \; \mathrm{d}z &= \int_{\alpha}^{\beta} f(z(t))z'(t) \; \mathrm{d}t. \\ \text{Parametrizace usecky o krajnich bodech z1, z2} \\ z(t) &= z_1 + (z_2 - z_1)t, \quad t \in \langle 0, 1 \rangle \end{split}$$

$$z(t) = z_1 + (z_2 - z_1)t, \quad t \in (0, 1)$$

OS X: $z_1 = \alpha, z_2 = \beta \text{ je } z(t) = t, \ t \in \langle \alpha, \beta \rangle$

$$z_1 = \alpha j, z_2 = \beta j$$
 $z(t) = jt, t \in \langle \alpha, \beta \rangle$

Kladne orientovana kruznica, stred z0, polomer r

$$z(t) = z_0 + r \cdot e^{jt}, \quad t \in \langle 0, 2\pi \rangle$$

$$\int_{\Gamma} \frac{f(z)}{z-z_0} \; \mathrm{d}z = \left\langle \begin{array}{ll} 2\pi\mathrm{j}\, f(z_0), & \text{jestliže} \ z_0 \; \mathrm{le}\check{z}\mathrm{i} \; \mathrm{uvnit\check{r}} \; \; \Gamma, \\ \\ 0, & \text{jestliže} \ z_0 \; \mathrm{le}\check{z}\mathrm{i} \; \mathrm{vn\check{e}} \; \; \Gamma. \end{array} \right.$$

Ak sa mocnina menovatela nerova 1 (=^2,^3..), alebo pol >1. radu treba pouzit (alebo rezidua):

$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_{\Gamma} \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta$$

Krivka holomorfna a v jednoducho. suv. oblasti (nezavisi na tvaru krivky)

$$\int_{\Gamma} f(z) \; \mathrm{d}z = F(z_2) - F(z_1)$$
 Uzavreta krivka
$$\int_{\Gamma} f(z) \; \mathrm{d}z = 0$$