Fonctions

(trois semaines)

(du lundi 18 septembre 2017 au vendredi 6 octobre 2017)

Exercice 1

Montrer que l'équation $x^{17} = x^{11} + 1$ admet au moins une solution dans \mathbb{R}^+ .

Exercice 2

Soient f et g deux fonctions continues sur [a,b] telles que g(a)=f(b) et g(b)=f(a). Montrer qu'il existe $c \in [a,b]$ tel que g(c)=f(c).

Exercice 3

Soient f et g continues sur [0,1] telles que f(0)=g(1)=0 et f(1)=g(0)=1.

Montrer que

$$\forall \lambda \in \mathbb{R}^+ \quad \exists x \in [0,1], \ f(x) = \lambda g(x)$$

Exercice 4

Soit $f \ : \ [a,b] \to [a,b]$ continue telle que $f \big([a,b] \big) \subset [a,b].$

Montrer que f admet un point fixe c'est-à-dire qu'il existe $\alpha \in [a,b]$ tel que $f(\alpha) = \alpha$.

Exercice 5

Soient a et b deux réels et $n \in \mathbb{N}$ tel que $n \ge 2$. Montrer que le polynôme $X^n + aX + b$ admet au plus trois racines réelles.

Exercice 6

Soit f dérivable sur un intervalle ouvert I.

- 1. Montrer que si f s'annule en n points de I alors sa dérivée f' s'annule en au moins (n-1) points de I.
- 2. Soit P un polynôme à coefficients réels. Montrer que l'équation $P(x)=e^x$ n'admet qu'un nombre fini de racines réelles.

Exercice 7

Soient $n \in \mathbb{N}^*$, I un intervalle de \mathbb{R} et soit $f: I \to \mathbb{R}$ n fois dérivable.

Montrer que si f admet au moins n+1 racines distinctes, alors $f^{(n)}$ possède au moins une racine.

Exercice 8

Soient f et g continues sur [a, b], dérivables sur [a, b] telles que pour tout $x \in]a, b[, g'(x) \neq 0$.

Montrer que $g(b) - g(a) \neq 0$ et qu'il existe $c \in [a, b]$ tel que

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$$

Exercice 9

Soit $f:[a,b]\to\mathbb{R}^+_*$ continue sur [a,b] et dérivable sur]a,b[.

1. Soit
$$g: \left\{ \begin{array}{ccc} [a,b] & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & \ln(f(x)) \end{array} \right.$$

Montrer que g vérifie les hypothèses du théorème des accroissements finis et montrer à l'aide de ce dernier qu'il existe $c \in]a,b[$ tel que

$$\ln(f(b)) - \ln(f(a)) = (b-a)\frac{f'(c)}{f(c)}$$

2. En déduire qu'il existe $c \in]a, b[$ tel que

$$\frac{f(b)}{f(a)} = e^{\left(b-a\right)\frac{f'(c)}{f(c)}}$$

Exercice 10

Soit f une fonction continue sur \mathbb{R}^+ , dérivable sur \mathbb{R}^+_* telle que f(0)=0 et f' croissante sur \mathbb{R}^+_* .

Via le théorème des accroissements finis, montrer que pour tout $x \in \mathbb{R}_{*}^{+}$,

$$\frac{f(x)}{x} \leqslant f'(x)$$

Exercice 11

Soit f strictement décroissante et continue sur \mathbb{R} .

Montrer que f admet un unique point fixe.

Exercice 12

Soit f une fonction continue sur \mathbb{R}^+ et dérivable sur \mathbb{R}^+_* .

- 1. Montrer que si $\lim_{x \to +\infty} f'(x) = +\infty$ alors $\lim_{x \to +\infty} f(x) = +\infty$.
- 2. Montrer que si $\lim_{x \to +\infty} f'(x) = 0$ alors $\lim_{x \to +\infty} \frac{f(x)}{x} = 0$.

Exercice 13

Soient $a \in \mathbb{R} \cup \{\pm \infty\}$, f et g deux fonctions définies au voisinage de a. On dit que f est négligeable devant g au voisinage de a, et on note $f = o_a(g)$, si, au voisinage de a,

$$f(x) = g(x)\varepsilon(x)$$
 avec $\lim_{x\to a} \varepsilon(x) = 0$

On dit que f est équivalente à g au voisinage de a, et on note $f \sim g$, si, au voisinage de a,

$$f(x) = g(x) (1 + \varepsilon(x))$$
 avec $\lim_{x \to a} \varepsilon(x) = 0$

- 1. Comparer les fonctions f et g dans les cas suivants :
 - a. $f: x \longmapsto x^2, g: x \longmapsto x, a = +\infty \text{ et } a = 0.$
 - b. $f: x \longmapsto 3x^2 + x 8$ et $g: x \longmapsto 3x^2$ pour $a = +\infty$.

Quel est l'équivalent de la fonction f en 0?

- c. $f: x \longmapsto e^x, g: x \longmapsto x^\alpha \ (\alpha > 0)$ et $a = +\infty$.
- 2. Que signifie $f \sim 0$? Quels sont les équivalents en 0 de $x \mapsto \sin(x)$, $x \mapsto e^x$ et $x \mapsto e^x 1$?
- 3. Soient f, g, h et k quatre fonctions définies au voisinage de a telles que $f \sim g$ et $h \sim k$. On suppose de plus que h et k ne s'annulent pas au voisinage de a.

Montrer qu'au voisinage de a, on a $fh \underset{a}{\sim} gk$ et $\frac{f}{h} \underset{a}{\sim} \frac{g}{k}$. A-t-on $f+h \underset{a}{\sim} g+k$?

4. Trouver les équivalents en $+\infty$ et en 0 de $x \longmapsto \frac{7x^3 - 8x}{1 - x^2}, x \longmapsto \frac{3x^2 + \ln x}{e^x + e^{-x}}$

Exercice 14

Rappeler les développements limités au voisinage de 0 à l'ordre 6 des fonctions suivantes :

- $1. \ f(x) = e^x.$
- 2. $g(x) = \ln(1+x)$.
- 3. $h(x) = (1+x)^{\alpha}$ où $\alpha \in \mathbb{R}^*$.
- 4. $i(x) = \sin(x)$.
- $5. \ j(x) = \cos(x).$

Exercice 15

Déterminer, au voisinage de 0, les développements limités des fonctions suivantes :

- 1. $f(x) = \cos(x)e^x$ à l'ordre 4.
- 2. $g(x) = e^{\cos(x)}$ à l'ordre 3.

- 3. $h(x) = \sqrt{1+2x}$ à l'ordre 4.
- 4. $i(x) = \ln(1 + e^x)$ à l'ordre 2.
- 5. $j(x) = (1+x)^{\frac{1}{x}}$ à l'ordre 2.
- 6. $k(x) = \ln(2+x)$ à l'ordre 3.
- 7. $l(x) = (\ln(1+x))^2$ à l'ordre 4.
- 8. $m(x) = (\cos(x))^{\sin(x)}$ à l'ordre 4.

Exercice 16

Déterminer les limites suivantes :

- 1. $\lim_{x \to +\infty} \left(\frac{x}{x 42} \right)^x.$
- 2. $\lim_{x \to 0} \frac{(1+x)^{\frac{1}{x}} e}{x}$.
- $3. \lim_{x \to +\infty} \left(\cos \left(\frac{1}{x} \right) \right)^{x^2}.$
- 4. $\lim_{x \to +\infty} x^3 \sin\left(\frac{1}{x}\right) x^2$.
- 5. $\lim_{x \to 0} \frac{e^x \cos(x) x}{x \ln(1+x)}$
- 6. $\lim_{x \to 0} \frac{e^x e^{-x}}{\ln(1+x)}$.
- 7. $\lim_{x\to 0} \frac{\ln(1+\sin(x)) \sin(\ln(1+x))}{x^2\sin(x^2)}$
- 8. $\lim_{x \to 0} \frac{\sin^2(x) x \ln(1+x)}{e^x + \cos(x) \sin(x) 2}$