PORTFOLIO

문지현, Jihyun Moon

Github: github.com/solidcellaMoon 개인 블로그: star-crab.tistory.com

1

PORTFOLIO

프로그래밍 프로젝트

001 자연어 처리와 기계학습을 통한 우울 감정 분석과 인식 (3~11p)

002 다양한 기술 스택을 활용한 웹사이트 구현 (12~19p)

003 데이터 분석과 머신러닝을 위한 스터디 (20~22p)

PORTFOLIO

001 자연어 처리와 머신러닝을 통한 우울 감정 분석과 인식

프로젝트 개요

사용자가 한글 자연어 텍스트를 작성하면 글 속에 우울한 감정이 있는지 없는지 여부를 판단합니다. 이 때 Python을 활용하여 텍스트를 분석 및 예측하고, 가장 높은 정확도를 보인 예측모델을 바탕으로 사용자가 텍스트를 입력하면 예측결과를 알 수 있는 일기장 데모사이트를 제작했습니다.

주요 특징

- 한글 텍스트 데이터 사용
- SNS에서 자연어 데이터를 크롤링한 후, 학습에 용이한 형태로 전처리 및 정제하여 사용
- 긍/부정이 아닌, "우울함"이라는 특정 감정을 기준으로 분류하는 예측모델 구현
- 프로젝트 진행 과정과 최종 결과를 정리하여 논문으로 발표

자연어처리와 기계학습을 통한 우울 감정 분석과 인식

이화여자대학교 캡스톤디자인 수업에서 진행한 졸업 프로젝트 주제 2020년 IPACT JCCT 5월호 논문 게재

팀원구성: 2인

진행기간: 2019.07.21 ~ 2020.06.10

기술 스택

프로젝트 내의 역할

- 1. SNS 웹크롤링을 통한 텍스트 데이터셋 수집
- 2. 데이터셋 전처리 및 분류 작업
- 3. 최종 데이터셋 개요와 예측모델 성능을 시각화

자연어처리와 기계학습을 통한 우울 감정 분석과 인식

이화여자대학교 캡스톤디자인 수업에서 진행한 졸업 프로젝트 주제 2020년 IPACT JCCT 5월호 논문 게재

팀원구성: 2인

진행기간: 2019.07.21 ~ 2020.06.10

SNS 웹크롤링 - 검색

start_time = time.time()

tweet = got.manager.TweetManager.getTweets(tweetCriteria)
print("=== 전체 수집 트윗 개수: {} ===".format(len(tweet)))

```
GetOldTweet3 패기지사용
🖢# 가져올 범위를 정의
days_range = []
start = datetime.datetime.strptime("2019-03-01", "%Y-%m-%d")
end = datetime.datetime.strptime("2020-07-01","%Y-%m-%d")
date_generated = [start + datetime.timedelta(days=x) for x in range(0,(end-start).days)]
for date in date_generated:
    days_range.append(date.strftime("%Y-%m-%d"))
print("설정된 트윗 수집 기간: {} ~ {}".format(days_range[0],days_range[-1]))
print("총 {}일간의 데이터 수집중!".format(len(days range)))
# 특정 검색어가 포함된 트윗 검색! (quary search)
# str에 검색어 입력
str = "우울"
print("검색 단어: [ %s ]" %str)
#수집 기간 맞추기
start_date = days_range[0]
end_date = (datetime.datetime.strptime(days_range[-1], "%Y-%m-%d")
           + datetime.timedelta(days=1)).strftime("%Y-%m-%d")
# setUntil이 끝을 포함하지 않으므로, day + 1
#트윗 수집 기준 정의
tweetCriteria = got.manager.TweetCriteria().setQuerySearch(str)\
    .setSince(start_date)\
    .setUntil(end date)\
    .setMaxTweets(-1)
#수집 작업
print("{} 에서 {} 까지 검색 시작".format(days_range[0], days_range[-1]))
```

---> 검색할 기간의 범위를 설정

"우울" 감정과 관련된 단어를 검색어로 설정

수집 단계가 다소 시간이 걸리는 작업이기에 특정 기간의 트윗 수가 5000개 이상일 경우 더 짧은 기간으로 검색한 뒤 수집합니다.

자연어처리와 기계학습을 통한 우울 감정 분석과 인식

이화여자대학교 캡스톤디자인 수업에서 진행한 졸업 프로젝트 주제 2020년 IPACT JCCT 5월호 논문 게재

팀원구성: 2인

진행기간: 2019.07.21 ~ 2020.06.10

SNS 웹크롤링 - 수집

```
GetOldTweet3패키지시용
# 트윗에서 원하는 정보를 골라서 저장한다.
from random import uniform
from tqdm import notebook
# 초기화
tweet data = []
for index in notebook.tqdm(tweet):
                                            트윗에서 수집할 정보를 설정
   # 수집 데이터 목록
   # 순서대로 유저이름, 트윗내용, RT수, 마음수, 작성날짜, 작성시간
   username = index.username
   content = index.text
   #retweets = index.retweets
   #favorites = index.favorites
   tweet date = index.date.strftime("%Y-%m-%d")
   tweet_time = index.date.strftime("%H:%M:%S")
   # 결과 함치기
   data_list = [username, content, tweet_date, tweet_time]
   tweet data.append(data list)
   # 과도한 수집 방지를 위한 휴식 (1~2초)
   time.sleep(uniform(1, 2))
                                   DataFrame으로 변환 후 csv로 저장
#pandas DataFrame으로 변환
import pandas as pd
twitter_df = pd.DataFrame(tweet_data, columns=["user_name","text","date","time"])
#csv 파일 만들기
twitter_df.to_csv("Twt_{}_to_{}.csv".format(days_range[0],days_range[-1]), index=False)
print("=== {} 개의 트윗 저장 완료 ===".format(len(tweet_data)))
```

자연어처리와 기계학습을 통한 우울 감정 분석과 인식

이화여자대학교 캡스톤디자인 수업에서 진행한 졸업 프로젝트 주제 2020년 IPACT JCCT 5월호 논문 게재

팀원구성: 2인

진행기간: 2019.07.21 ~ 2020.06.10

전처리 및 분류 ~ 예측모델 구현 과정

자연어처리와 기계학습을 통한 우울 감정 분석과 인식

이화여자대학교 캡스톤디자인 수업에서 진행한 졸업 프로젝트 주제 2020년 IPACT JCCT 5월호 논문 게재

팀원구성: 2인

진행기간: 2019.07.21 ~ 2020.06.10

데이터셋 전처리 및 분류

- 1. KONLPy를 활용하여 형태소, 명사, 어간 등을 추출하고 품사 태깅
- 2. wordCloud를 만들어 학습 데이터셋의 개요 확인

주요 특징

- 광고, 외부 링크, 외국어, 심한 욕설, 장기간 반복되는 트윗 제외
- KONLPy를 이용하여 형태소, 명사, 어간 등을 추출하고 품사 태깅
- 9만개의 문장에서, 최종 정제 후 총 2232개 문장의 학습 데이터셋 완성

우울함을 나타내는 문장: 1200개

우울함과 반대되는 문장: 1032개

자연어처리와 기계학습을 통한 우울 감정 분석과 인식

이화여자대학교 캡스톤디자인 수업에서 진행한 졸업 프로젝트 주제 2020년 IPACT JCCT 5월호 논문 게재

팀원구성: 2인

진행기간: 2019.07.21 ~ 2020.06.10

형태소 추출 및 품사 태깅

```
#csv는 ANSI로 저장해야함.
#형태소 추출
def extractMorph(text list):
      tokens = []
      search = Okt()
      print('형태소 추출 시작')
      for 1 in text list:
             word = search.morphs(i, stem=True) #stem=True 하면 어간 추출 (ex: 해서 -> 하다)
             for j in word:
                   if j in stopwords:
                                                                                   . . . . .
                         #stopwords = 제외할 단어 리스트
                         continue
                   else:
                         tokens.append(j)
      print('형태소 추출 완료!')
      return tokens
#명사 추출
def extractNoun(text list):...
#어간 추출
def extractPhrase(text list):...
#용언 추출
def extractPRD(text list):...
# 품사 태깅 후 해당 품사만 저장 ----- (현재 용언에만 맞춰짐)
def tokenTagging(tokens, word_type):
      pos_arr = []
      print('태강 시작')
      for i in tokens: # 품사를 붙여서 튜플형태로 저장
            list = [t[0] for t in search.pos(i) if t[1] == word_type]
            if len(list) != 0:
                   str = " ".join(list)
                   pos_arr.append(str)
      print('태깅 완료!\n',word type,"만 저장함.")
      return pos arr
```

품사 추출 시, 필요 없는 특정 단어는 제외

각 품사별로 추출하는 함수 생성

자연어처리와 기계학습을 통한 우울 감정 분석과 인식

이화여자대학교 캡스톤디자인 수업에서 진행한 졸업 프로젝트 주제 2020년 IPACT JCCT 5월호 논문 게재

팀원구성: 2인

진행기간: 2019.07.21 ~ 2020.06.10

예측 모델 구현 및 시각화 코드

1. 수집한 데이터셋에 0 또는 1의 label 부여

```
labels = []
# 우울 0 우울아님 1
for i in range(len(Data)):
    labels.append(0)
for i in range(len(Data2)):
    labels.append(1)
```

2. RNN, LSTM, GRU 총 3가지 모델로 예측, 배치사이즈를 조정하며 정확도 비교

```
from keras.models import Sequential
from keras.layers import Embedding, Flatten, Dense
from keras.layers import SimpleRNN

model = Sequential()
model.add(Embedding(max_words, embedding_dim, input_length=maxlen))
model.add(SimpleRNN(32, input_shape=(3,1)))
model.add(Dense(1, activation='sigmoid'))
model.summary()
```

3. 모델의 정확도 확인을 위한 그래프 표시

```
##### 그래프 #####
import matplotlib.pyplot as plt
acc = history.history['acc']
val acc = history.history['val acc']
loss = history.history['loss']
val loss = history.history['val loss']
epochs = range(1, len(acc) + 1)
                                         정확도 그래프
plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val acc, 'b', label='Validation acc')
plt.title('RNN : Training and validation accuracy')
plt.legend()
plt.figure()
                                          손실 그래프
plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val loss, 'b', label='Validation loss')
plt.title('RNN : Training and validation loss')
plt.legend()
plt.show()
```

자연어처리와 기계학습을 통한 우울 감정 분석과 인식

이화여자대학교 캡스톤디자인 수업에서 진행한 졸업 프로젝트 주제 2020년 IPACT JCCT 5월호 논문 게재

팀원구성: 2인

진행기간: 2019.07.21~2020.06.10

논문 발표

프로젝트 진행 과정과 모델링 결과를 정리하여 논문으로 작성했습니다. 지도교수님의 검토 후 2020년 IPACT JCCT 5월호에 게재되었습니다.

논문 링크: https://doi.org/10.17703/JCCT.2020.6.2.449

자연어처리와 기계학습을 통한 우울 감정 분석과 인식 Analysis and Recognition of Depressive Emotion through NLP and Machine Learning

001

002 다양한 기술 스택을 활용한 웹사이트 구현

프로젝트 개요

고학번 대상 전공 수업인 "빅데이터 응용" 과목에서 진행한 2인 소규모 프로젝트입니다. 사용자가 영화 데이터를 검색, 분석하고 새로운 데이터를 생성할 수 있는 php 기반 웹사이트를 제작합니다. 필요한 영화 데이터셋을 캐글에서 가져온 뒤, 검색 및 분석이 용이한 형태로 전처리를 진행합니다. 최종 전처리가 끝난 데이터는 phpmyadmin을 통해 사이트DB에 저장합니다.

주요 특징

- Pandas와 Jupyter Notebook을 사용한 빠른 데이터 전처리 및 재구성
- 캐글에서 받은 초기 데이터는 csv파일안에 json 형식이 포함됨

다양한 기술 스택을 활용한 웹사이트 구현

Python, PHP, MySQL, JavaScript를 활용한 데이터 분석 웹사이트 구현

팀원구성: 2인

진행기간: 2020.09.28~ 2020.11.23

기술 스택

프로젝트 내의 역할

- 1. 초기 csv 내부의 json 형식을 DataFrame으로 변환
- 2. 결측치 제거 등 데이터 전처리
- 3. DB 설계도에 맞춰 최종 csv파일 생성 후 DB에 삽입
- 4. 페이지 로그인/회원가입/검색기능 구현

다양한 기술 스택을 활용한 웹사이트 구현

Python, PHP, MySQL, JavaScript를 활용한 데이터 분석 웹사이트 구현

팀원구성: 2인

진행기간: 2020.09.28~ 2020.11.23

ER Diagram for DB

기획 단계에 작성한 데이터베이스의 ER 다이어그램

최종 데이터 파일이 위 구조도와 동일하도록 초기 데이터셋 전처리 진행

다양한 기술 스택을 활용한 웹사이트 구현

Python, PHP, MySQL, JavaScript를 활용한 데이터 분석 웹사이트 구현

팀원구성: 2인

진행기간: 2020.09.28~ 2020.11.23

전처리 코드 일부 - json 형식 변환

내용을 정리한 블로그 글: https://star-crab.tistory.com/18

다양한 기술 스택을 활용한 웹사이트 구현

Python, PHP, MySQL, JavaScript를 활용한 데이터 분석 웹사이트 구현

팀원구성: 2인

진행기간: 2020.09.28~ 2020.11.23

로그인, 회원가입 페이지 구현

사용자에게 입력 받은 insert를 통해 pw값과 id값을 저장합니다. 가입 여부를 결정할 때 PHP-MySQL 트랜잭션을 사용했습니다.

다양한 기술 스택을 활용한 웹사이트 구현

Python, PHP, MySQL, JavaScript를 활용한 데이터 분석 웹사이트 구현

팀원구성: 2인

진행기간: 2020.09.28~ 2020.11.23

회원 정보 수정 페이지 구현

\$id = \$ SESSION['userid'];

\$result = \$connect->query(\$id);

\$query = "delete from user where id=\$id";

Update Information 가입 후, 회원 정보 수정 페이지를 통해 회원의 개인 정보를 수정할 수 있습니다. 정보를 update/delete 하는 코드는 (ii) Country 아래와 같습니다. session start(); \$connect = mysqli_connect('localhost', 'team21', 'team21', 'team21') or die ("connect fail"); \$id = \$ SESSION['userid']; pw = POST['pw'];\$query = "update user set id='\$id',pw='\$pw'"; update action.php - UPDATE 기능 \$result = \$connect >query(\$query) session start(); \$connect = mysqli_connect('localhost', 'team21', 'team21', 'team21') or die ("connect fail");

signout- action.php - DELETE 기능

다양한 기술 스택을 활용한 웹사이트 구현

Python, PHP, MySQL, JavaScript를 활용한 데이터 분석 웹사이트 구현

팀원구성: 2인

진행기간: 2020.09.28~ 2020.11.23

다양한 검색 기능 구현 (일부)

MySQL 쿼리를 PHP 코드에 삽입하여, 사이트 내에 다양한 검색을 구현합니다. 아래는 SQL문을 활용하여 연도별 데이터 개수를 구현한 내용입니다.

```
$connect = mysqli_connect('localhost', 'team21', 'team21', 'team21') or die ("connect fail");
$query = "SELECT year(release_date) as yeardate, COUNT(release_date) AS cnt FROM movie_info GROUP BY Year(release_date) desc;";
$result = $connect->query($query);
$total = mysqli_num_rows($result);
```

index	year	count
11	2016	1
10	2015	2
9	2014	1
8	2013	페이지내결과

다양한 기술 스택을 활용한 웹사이트 구현

Python, PHP, MySQL, JavaScript를 활용한 데이터 분석 웹사이트 구현

팀원구성: 2인

진행기간: 2020.09.28~ 2020.11.23

다양한 검색 기능 구현 (일부)

MySQL 쿼리를 PHP 코드에 삽입하여, 사이트 내에 다양한 검색을 구현합니다. 아래는 SQL문을 활용하여 인기도별 랭킹을 구현한 내용입니다.

```
      <?php</td>

      while($rows = mysqli_fetch_assoc($result)){ //DB에 저장된 데이터 수 (열 기준)

      ?>

      <?php echo ($all-$total+1)?>
      >

      <</td>
      ?php echo $rows['movie_name']?>

      <?php echo $rows['popularity']?>

      <?php</td>
      $total--;

      }
      }
```

rank	title	popularity		
1	Batman v Superman: Dawn of Justice	155.790452		
2	Avatar	150.437577		
3	Pirates of the Caribbean: Dead Man's Chest	145.847379		
4	The Avengers	144.448633		
5	Pirates of the Caribbean: At World's End	페이지 내결과		

003 데이터 분석과 머신러닝을 위한 스터디

프로젝트 개요 및 주요 활동 요약

평소 데이터 분석과 머신러닝 관련으로 여러 자료를 찾아보며 개인 스터디를 진행했습니다.

- Pandas, Numpy의 기초를 챕터 단위로 정리
- 영문 자료와 공식 사이트를 참고하며 Pycaret 라이브러리 사용법 공부
- 그 외에도 관련 분야의 개인 혹은 팀 스터디를 진행하고 기록

스터디 Github 링크: https://github.com/solidcellaMoon/studynote

개인 블로그 링크: https://star-crab.tistory.com/

데이터 분석과 머신러닝을 위한 스터디

평소 다양한 자료를 찾아보면서 진행한 데이터 관련 개인 스터디

- Pandas, Numpy 기초 정리
- Pycaret 사용법 공부

Pandas, Numpy 기초 정리

Pandas와 Numpy 기초를 익힐 때 작성한 코드입니다. 언제든지 빠르게 복습, 참고할 수 있도록 정리하고 Github에 올렸습니다.

Pandas 정리 폴더:

https://github.com/solidcellaMoon/studynote/tree/master/memo/pandas

Numpy 정리 폴더:

https://github.com/solidcellaMoon/studynote/tree/master/memo/numpy

데이터 분석과 머신러닝을 위한 스터디

평소 다양한 자료를 찾아보면서 진행한 데이터 관련 개인 스터디

- Pandas, Numpy 기초 정리
- Pycaret 사용법 공부

Pycaret 사용법 공부

스터디용 자료를 찾아보던 도중 새로운 라이브러리를 알게 되어 영문 블로그와 공식 사이트 자료를 참고하며 사용법을 익혔습니다. 다양한 예측모델의 성능을 한번에 확인할 수 있는게 인상적이었습니다.

	Model	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC	TT (Sec)
catboost	CatBoost Classifier	0.8363	0.8588	0.6795	0.8506	0.7531	0.6333	0.6440	0.6870
gbc	Gradient Boosting Classifier	0.8331	0.8571	0.6882	0.8363	0.7525	0.6287	0.6374	0.0140
Ir	Logistic Regression	0.8282	0.8511	0.7274	0.7922	0.7575	0.6251	0.6271	0.4770
ridge	Ridge Classifier	0.8218	0.0000	0.7275	0.7763	0.7505	0.6123	0.6136	0.0050
Ida	Linear Discriminant Analysis	0.8186	0.8526	0.7275	0.7696	0.7472	0.6061	0.6074	0.0060
lightgbm	Light Gradient Boosting Machine	0.8123	0.8534	0.7060	0.7698	0.7347	0.5902	0.5932	0.0120
ada	Ada Boost Classifier	0.8105	0.8395	0.7406	0.7471	0.7427	0.5929	0.5940	0.0150
xgboost	Extreme Gradient Boosting	0.8059	0.8551	0.7190	0.7531	0.7329	0.5810	0.5840	0.2280
rf	Random Forest Classifier	0.8042	0.8450	0.7100	0.7568	0.7282	0.5761	0.5806	0.0380
et	Extra Trees Classifier	0.7834	0.8164	0.6926	0.7167	0.7015	0.5321	0.5348	0.0340
dt	Decision Tree Classifier	0.7705	0.7496	0.6837	0.7040	0.6875	0.5072	0.5127	0.0050
knn	K Neighbors Classifier	0.7094	0.7080	0.5286	0.6249	0.5681	0.3539	0.3589	0.2900
svm	SVM - Linear Kernel	0.6872	0.0000	0.4835	0.5824	0.4688	0.2910	0.3257	0.0060
nb	Naive Bayes	0.4014	0.8043	0.9870	0.3814	0.5501	0.0326	0.1043	0.0050
qda	Quadratic Discriminant Analysis	0.3978	0 0000	0.9000	0.3343	0 4875	0 0000	0 0000	0.0110
<catboost< th=""><th>.core.CatBoostCI Pycar</th><th>et으로</th><th>티</th><th>타닉</th><th>생존</th><th>자예</th><th>측정</th><th>확도</th><th>확인</th></catboost<>	.core.CatBoostCI Pycar	et으로	티	타닉	생존	자예	측정	확도	확인

관련 블로그 글 1: https://star-crab.tistory.com/13
관련 블로그 글 2: https://star-crab.tistory.com/14

Github 업로드:

감사합니다

문지현, Jihyun Moon