

¿Qué estructuras son?

¿Qué regiones tienen?

¿Qué función tiene cada región?

¿Qué aplicaciones tienen?

Observa las secuencias y el proceso que está ocurriendo De las siguientes figuras cuál es **correcta**.

Diseño de Primers

Diseño y construcción de Vectores de Expresión

Forward primer	5' GCTAAATGTTCAGGCTGTGG 3'
Reverse primer	5' GGAATCAAACGGAATGACCG 3'

- ✓ Length: ~20 nucleotides
- ✓ GC content: ~50%
- GC clamp: primers end in at least two G or C nucleotides
- ✓ No complementary regions between primer pairs
- ✓ Melting temperature (T_m): ~55-65°C

- Formación de homodímeros
- Formación de heterodímeros

Adición de sitios de corte a los productos de PCR

Extremos generados por enzimas de restricción

5'

Actividad 1 en clase.

Diseñar un par de oligos (F y R) para amplificar el ORF a partir de la siguiente secuencia.

- 1) Identifica el ORF de mayor longitud.
- 2) Insertar un sitio Ndel en el extremo 5' del oligo
- 3) Insertar un sitio HindIII en el extremo 3' del oligo
- 4) Después validar la Tm y el contenido de GC en el sitio T_m Calculator para evaluar su compatibilidad.

Ndel 5'...CATATG...3' HindIII 5'...AAGCTT...3' TAA 3'...GTATAC...5' 3'...TTCGAA...5' TAG TGA

ATGACATGACGGATCAGCCGCAGATACGAATTGGCGTTTAAGGCGGATGCGCCG

TACTGTACTGCCTAGTCGGCGTCTATGCTTAACCGCAAATTCCGCCTACGCGGC

Actividad 1 en clase.

Diseñar un par de primers (F y R) para amplificar el ORF en la siguiente secuencia.

- 1) Identifica el ORF.
- 2) Insertar un sitio Ndel en el extremo 5' del oligo
- 3) Inserta un sitio HindIII en el extremo 3' del oligo
- 4) Después validar la Tm y el contenido de GC en el sitio $T_{\rm m}$ Calculator para evaluar su compatibilidad.

ATGAC<mark>ATGACGGATCAGCCGCAGATACGAATTGGCGTTTAA</mark>3GCGGATGCGCCG

Actividad 2 en clase.

Diseñar un par de primers (F y R) para fusionar el ORF a myc epitope/His Tag.

Debes eliminar el codón de Stop.

Insertar el sitio de corte para EcoRI en el 5', y para Apal en el 3'.

Actividad 3 en clase. Diseñar un par de primers (F y R) para fusionar el ORF a myc epitope/His Tag. Debes eliminar el codón de Stop.

Insertar el sitio de corte para Xhol en el 5', y para Notl en el 3'.

Actividad 4 en clase.

- Diseñar un par de oligos (F y R) para fusionar un péptido señal en el N-Ter y una etiqueta FLAG en el C-Ter del ORF.
- Elegir un par de sitios de restricción para insertar en los oligos.

Available online at www.sciencedirect.com

Protein Expression **P**urification www.elsevier.com/locate/yprep

Novel plasmid-based expression vectors for intra- and extracellular production of recombinant proteins in Bacillus subtilis

Trang Thi Phuong Phan, Hoang Duc Nguyen, Wolfgang Schumann *

Institute of Genetics, University of Bayreuth, D-95440 Bayreuth, Germany

GCGGATAACAATTcccaattaaaggaggaaggatca lacO RBS atgattcaaaaacgaaagcggacagtttcgttcagacttgtgctta tocacoctottatttotcaotttoccoattacaaaaacatcaoc taggatectetagagtegaegteeeeggggeagee BamHI AatII

ATGACGGATCAGCCGCAGATACGAATTGGCGTTTAA TACTGCCTAGTCGGCGTCTATGCTTAACCGCAAATT

ggAATTGTGAGCGGATAACAATTcccaatt lacO

 <u>aaaggagg</u>aaggatcctctagagtcgacgtccccggggcagcc

 RBS
 BamHI
 Xbal
 AadII
 Smal

BamHI XbaI 5'... GGATCC ATGACGGATCA ATTGGCGTT TCTAGA...3' 3'... CCTAGG TACTGCCTAGT TAACCGCAAAGATCT...5' Digestión 🚚

GATCC ATGACGGATCA ATTGGCGTT T'

G TACTGCCTAGT TAACCGCAA AGATC

Actividad

Gen de interés

Gel de agarosa

TECHNOLOGY AND CODE published: 04 February 2022 doi: 10.3389/lbinf.2022.818619

ApE, A Plasmid Editor: A Freely Available DNA Manipulation and Visualization Program

M. Wayne Davis and Erik M. Jorgensen*

Howard Hughes Medical Institute and School of Biological Sciences, University of Utah, Salt Lake City, UT, United States

Vectores

pTW_6His

pTW_SP_X_6His

pTW_6His

Promotor T7: 3188 - 3205 Operador: 3207 – 3231 RBS: 3246 - 3253 6His: ??? Terminador T7: 3389 - 3436 bla: 3601 - 4461 lacl: 922 - 2004

Ejercicio 5: actividad en clase

Identifica a qué proteína codifica la secuencia del archivo problema1.txt

Construcción de un vector para expresar _____ en *E. coli* BL21 (DE3). El diseño del sistema es el siguiente (el gen debe tener una etiqueta de His en su extremo C-Terminal), se usará el vector pTW_6His.

Puedes usar alguno de los siguientes sitios de restricción: Ncol, Notl, EcoRl y Xhol.

Validar el ORF de la secuencia.

Realiza un análisis de restricción para los vectores con y sin inserto.

P O Insulina His T

pTW_SP_X_6His

Promotor T7: 3188 - 3205 Operador: 3207 - 3231

RBS: 3246 – 3253 PS: 3261 - 3353

6His: ??? Terminador T7: 3492 - 3539 bla: 3704 - 4564 lacl: 922 - 2004

Ejercicio 6: actividad en clase

Construcción de un vector para expresar ______ en *E. coli* BL21 (DE3). El diseño del sistema es el siguiente (el gen debe tener una etiqueta de His en su extremo C-Terminal), se usará el vector pTW_SP_X_6His.

Puedes usar alguno de los siguientes sitios de restricción: Ncol, Notl, EcoRl y Xhol.

Validar el ORF de la secuencia.

Realiza un análisis de restricción para los vectores con y sin inserto.

P O PS Insulina His T

