IE 525 - Numerical Methods in Finance

Monte Carlo simulation - Quasi-Monte Carlo

Liming Feng

Dept. of Industrial & Enterprise Systems Engineering University of Illinois at Urbana-Champaign

©Liming Feng. Do not distribute without permission of the author

Variance reduction vs QMC

- We want to estimate $\mathbb{E}[Y]$
- Standard error in a direct approach with sample size n $(\sigma^2 = \text{var}(Y))$

$$\frac{\sigma}{\sqrt{n}}$$

- Variance reduction techniques reduce the variance σ^2 to improve efficiency
- Quasi-Monte Carlo improves efficiency by speeding up the convergence from $1/\sqrt{n}$ to almost 1/n

Dimension

• Suppose Y can be generated from independent uniform random variables: $Y = f(U_1, \dots, U_d)$

$$\mathbb{E}[Y] = \mathbb{E}[f(U_1, \dots, U_d)] = \int_{[0,1)^d} f(x) dx \approx \frac{1}{n} \sum_{i=1}^n f(x_i)$$

for carefully chosen points $x_1, \dots, x_n \in [0, 1)^d$

 For quasi-Monte Carlo, the dimension d matters! The smaller the dimension, the better; for infinite d (e.g., acceptance-rejection method), it doesn't work

Low discrepancy

- Select x_1, \dots, x_n so that they fill $[0, 1)^d$ as uniformly as possible (low discrepancy)
- For a collection \mathcal{A} of subsets of $[0,1)^d$ and the set $\{x_1, \dots, x_n\}$, **discrepancy** is defined to be

$$D(x_1, \dots, x_n; A) = \sup_{A \in A} \left| \frac{\#\{x_i \in A\}}{n} - vol(A) \right|$$

$$\frac{\#\{x_i \in A\}}{n} - vol(A) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}_A(x_i) - \int_{[0,1)^d} \mathbf{1}_A(x) dx$$

• Discrepancy is maximal approximation error for indicator functions $\mathbf{1}_A(x)$

Ordinary and star discrepancies

- ullet Discrepancy depends on ${\cal A}$
- Ordinary discrepancy $D(x_1, \dots, x_n)$: A is collection of rectangles of the form

$$\Pi_{j=1}^d[u_j, v_j), \ 0 \le u_j < v_j \le 1$$

• Star discrepancy $D^*(x_1, \dots, x_n)$: \mathcal{A} is collection of rectangles of the form

$$\Pi_{j=1}^d[0,u_j)$$

Example: 1-d

• When d = 1, both ordinary and star discrepancies are minimized with

$$x_i = \frac{2i-1}{2n}, i = 1, \dots, n$$

The corresponding discrepancies are of the form $\frac{c}{n}$ for some c > 0

- When increasing n, x_i 's could be totally different and need be recomputed
- Prefer a long sequence: for any *n*, use the first *n* numbers and still achieve low discrepancy

• Can find infinite sequence $\{x_1, x_2, \dots\} \subset [0, 1)$ such that the discrepancies are of the form

$$O\left(\frac{\log n}{n}\right)$$

- Use a sequence that is computationally more convenient by sacrificing a little uniformity
- More generally, for d dimensional problems, can find infinite sequence $\{x_1, x_2, \dots\} \subset [0, 1)^d$ such that the discrepancies are of the form

$$O\left(\frac{(\log n)^d}{n}\right)$$

or slightly looser bound $O\left(\frac{1}{n^{1-\epsilon}}\right)$ for arbitrary small $\epsilon>0$

Koksma-Hlawka

Koksma-Hlawka bound for quasi-Monte Carlo estimation error

$$\left|\frac{1}{n}\sum_{i=1}^{n}f(x_{i})-\int_{[0,1)^{d}}f(x)dx\right|\leq cD^{*}(x_{1},\cdots,x_{n})$$

where c depends on f and d but not on n or $\{x_1, \dots, x_n\}$

 Quasi-Monte Carlo estimation error can be made of the following form by using low discrepancy sequences

$$O\left(\frac{(\log n)^d}{n}\right)$$
 or loosely $O\left(\frac{1}{n^{1-\epsilon}}\right)$

MC vs QMC

• In each case, we approximate $\mathbb{E}[f(U_1, \cdots, U_d)]$ by $\frac{1}{n} \sum_{i=1}^n f(x_i)$

MC	QMC		
simulate $x_i = (u_1^i, \dots, u_d^i)$, where u_k^i	determine x_i 's strategically, x_i 's are		
is from $U[0,1]$. We make x_i 's random	non-random		
estimation error bounded by	estimation error bounded by		
$z_{lpha/2}\sigma/\sqrt{n}$ with probability $1-lpha$	$c(\log n)^d/n$, strictly		
the above bound computable	difficult to compute c above		
performance doesn't depend on d	worse performance for larger d		
assume finite $\sigma^2 = \text{var}(f(U_1, \dots, U_d))$	assume finite variation for f		

Case of dimension 1

• Given an integer $b \ge 2$ (base), any integer k > 0 admits a unique representation

$$k = \sum_{j=0}^{\infty} a_j(k)b^j, \ 0 \le a_j(k) < b$$

- Define $\psi_b(k) = \sum_{j=0}^{\infty} \frac{a_j(k)}{b^{j+1}}$
- Example: with base b = 10,

$$k = 1234 = 10^{0} \times 4 + 10^{1} \times 3 + 10^{2} \times 2 + 10^{3} \times 1, \psi_{b}(k) = 0.4321$$

Base 2

• Example: with base b = 2,

k	a _j 's	$\psi_b(k)$	k	$\psi_b(k)$
1	1	1/2	8	1/16
2	10	1/4	9	9/16
3	11	3/4	10	5/16
4	100	1/8	11	13/16
5	101	5/8	12	3/16
6	110	3/8	13	11/16
7	111	7/8	14	7/16

- The corresponding base 2 sequence is $\{\frac{1}{2}, \frac{1}{4}, \frac{3}{4}, \frac{1}{8}, \frac{5}{8}, \frac{3}{8}, \cdots\}$
- Such sequences are called **Van der Corput sequences**; they are low discrepancy for any $b \ge 2$

Extensions to dimension d

- Halton sequence in $[0,1)^d$ is obtained by using a Van der Corput sequence with base b_i along ith dimension, where b_1, \dots, b_d are relatively prime (performance deteriorates fast as d increases)
- Faure sequence in $[0,1)^d$ is obtained by using a permuted Van der Corput sequence with prime base $b \ge d$ along each dimension (base becomes large as d increases)
- Sobol' sequence in $[0,1)^d$ is obtained by using a permuted Van der Corput sequence with base 2 along each dimension

Randomized QMC

- Quasi-Monte Carlo gives estimates with strictly bounded error;
 but the exact bound is difficult to compute
- Monte Carlo provides confidence intervals, but converges slowly
- Randomization of quasi-Monte Carlo combines (1) better accuracy of quasi-Monte Carlo (2) easiness for computing confidence intervals of Monte Carlo

Random shift

- Denote $P_n = \{x_1, \dots, x_n\}$, a low discrepancy sequence of size n
- Random shift: simulate a random vector $U = (U_1, \dots, U_d)$, where U_1, \dots, U_d are i.i.d and uniform on (0, 1); define

$$P_n(U) = \{x_i + U \mod 1, 1 \le i \le n\}$$

- $x \mod 1 = x floor(x)$: e.g., 1.3 mod 1 = 0.3; 0.8 mod 1 = 0.8
- The kth entry of each x_i is shifted by $U_k \mod 1$
- Randomized quasi-Monte Carlo estimate

$$I_f(U) = \frac{1}{n} \sum_{i=1}^n f(x_i + U \mod 1)$$

Confidence interval from random shift

- Any $x_i + U \mod 1$ is uniform on $[0,1)^d$. $I_f(U)$ is thus unbiased estimate of $I_f = \int_{[0,1)^d} f(x) dx$
- Repeating the above randomization for L times (e.g., L=10 or 20) generates L i.i.d. estimates $I_f(U^1), \dots, I_f(U^L)$
- Report the average of the L estimates
- Confidence intervals can be constructed using the L estimates
- f is evaluated for a total of nL times. Compare to Monte Carlo with sample size nL.
- Efficiency measure:

 $(standard\ error)^2 \times total\ computational\ time$

Example: multi-asset options

 Consider a call option with maturity T, strike price K and payoff

$$(\bar{S} - K)^+, \ \ \bar{S} = \prod_{i=1}^d S_i(T)^{1/d},$$

where $S_1(T), \dots, S_d(T)$ are the prices of d stocks at maturity

- Assume BSM model for the stock prices. \bar{S} is lognormal. The option price admits closed-form expressions similar to Black-Scholes formula
- When \bar{S} is arithmetic average, it's known as a basket option. No closed form solution
- Use geometric average with closed form solution to evaluate effectiveness of quasi-Monte Carlo

- Suppose the stocks are independent. Consider 500 options with: $T=0.15, 0.25, 0.5, 1, 2, \sigma=0.21:0.05:0.66,$ $K=94:1:103, S_i(0)=100, i=1,\cdots,5, r=5\%$
- The average pricing error below compares average performance of various different methods

$$RMSE(n) = \left(\frac{1}{500} \sum_{k=1}^{500} (\hat{C}_k(n) - C_k)^2\right)^{1/2}$$

 C_k is the true price of kth option. $\hat{C}_k(n)$ is the estimate of kth option price using sample of size n

- Sobol' sequence outperforms Faure sequence in the example; both outperform Monte Carlo
- Slope of Monte Carlo -1/2; slopes of quasi-Monte Carlo methods close to -1
- If more points were added, the quasi-Monte Carlo graphs may appear more erratic. But the trend remains the same

Example: geometric Asian call

ullet Consider a geometric Asian call with maturity ${\cal T}$, strike price ${\cal K}$ and payoff

$$(\bar{S} - K)^+, \quad \bar{S} = \prod_{i=1}^d S_{i\delta}^{1/d}, \quad \delta = T/d$$

where $S_{i\delta}$'s are the prices of a stock at times $i\delta$, $i=1,\cdots,d$

- Closed form solution for the option price available in the BSM
- Consider the average pricing error of 50 options with $T=0.25, K=96:2:104, \sigma=0.21:0.05:0.66, S_0=100, r=5\%$

- Performance of Monte Carlo remains nearly constant across dimensions
- Quasi-Monte Carlo generally gets worse when dimension increases
- Sobol' sequence remains competitive for high dimensions in this example

Final remarks

- Monte Carlo is slow convergent; but provides measure of precision; can be more efficient when combined with appropriate variance reduction techniques
- To determine necessary sample size for desired precision, first do a pilot run (with several hundred or thousand replicates) to determine variance
- Quasi-Monte Carlo converges faster; but difficult to know what sample size is sufficient
- Sobol' sequence often performs better in financial applications
- Randomization helps produce measure of precision; can be combined with variance reduction techniques as well

