

Vidyavardhini's College of Engineering & Technology First Year Engineering

Lesson plan

Subject / Code: Applied Physics	/ (BSC 102)	Academic Year: 2024-25
---------------------------------	-------------	------------------------

Year/ Sem: FE I Faculty: _____ Div/Branch: ____

Lect. No.	Торіс	Planned date	Execution date	Modes of Content Delivery	Assessment Method	Remark
	PREREQUISITE - Basic k reflection and refraction, In Basics of vector algebra, po Matter waves, Davisson-Ge and conductivity concepts.	terference by artial differen	division of wave tiation concepts,	efront, refractive in dual nature of ra	ndex of material, diation, Photoele	Snell's law, ectric effect,
M1			LASERS			
1	Characteristics of Lasers, Spontaneous emission and stimulated emission; metastable state, population inversion, pumping mechanism. Active medium & Active			1, 3, 5	1, 3, 5, 11	
2	center, resonant cavity, coherence length and coherence time.					
3	Helium-Neon laser: construction and working.			1, 2, 3, 5	1, 3, 5, 11	
4	Application: Elementary Knowledge of LiDAR, Barcode Reader, Application of Laser in metal work.			1, 3, 5	1, 3, 5, 11	
M2			FIBER OPTI			
5	Optical Fiber: Critical angle; acceptance angle, Numerical Aperture, total internal reflection and propagation of light.			1, 3, 5	1, 3, 5, 11	

Vidyavardhini's College of Engineering & Technology

First Year Engineering

	Types of optical: Single			1, 3, 5	1, 3, 5, 11		
				1, 3, 5	1, 3, 5, 11		
6	mode & Multimode, Step						
	index & Graded index						
	fibers.			4 2 7	1071		
_	Attenuation, Attenuation			1, 3, 5	1, 3, 5, 11		
7	Coefficient and factors						
	affecting attenuation.						
	Fiber optic			1, 3, 5	1, 3, 5, 11		
8	communication system,						
	Advantages of optical						
	fiber.						
M3		INTER	FERENCE IN	THIN FILM			
	Interference in thin film of			1, 3, 5	1, 3, 5, 11		
	uniform thickness,						
9	conditions of maxima and						
	minima for reflected						
	system.						
	Conditions of maxima and			1, 3, 5	1, 3, 5, 11		
10	minima for wedge-shaped						
	film (qualitative).						
	Engineering Applications:			1, 3, 5	1, 3, 5, 11		
	- Newton's ring for the						
	determination of unknown						
11	monochromatic						
	wavelength and						
	Refractive index of						
	transparent liquid.						
12	Engineering Applications:			1, 3, 5	1, 3, 5, 11		
12	- Anti-reflecting coating.						
M4	ELECTRODYNAMICS						
	Vector calculus: Gradient,			1, 3, 5	1, 3, 5, 11		
13	Divergence and Curl with						
	Numericals.						
	Gauss's law for			1, 3, 5	1, 3, 5, 11		
14	electrostatics, Gauss's law						
	for magnetostatics.						
	Ampere's circuital Law			1, 3, 5	1, 3, 5, 11		
15	and Faraday's Law.						
15	Divergence theorem and						
	Stokes theorem.						

Vidyavardhini's College of Engineering & Technology First Year Engineering

	Maxwell's equations in			1, 3, 5	1, 3, 5, 11	
	point form, integral form			1,0,0	1,0,0,11	
16	and their significance.					
	and then significance.					
M5		(QUANTUM PI	HYSICS		
	De-Broglie hypothesis of			1, 3, 5	1, 3, 5, 11	
	matter waves; de-Broglie					
17	wavelength for electron,					
1,	properties of matter					
	waves, problems of de-					
	Broglie wavelength.					
	Heisenberg's Uncertainty			1, 3, 5	1, 3, 5, 11	
	Principle and its					
18	applications: Non-					
	existence of electron in					
	the nucleus.					
	Wave function and			1, 3, 5	1, 3, 5, 11	
10	probability density,					
19	mathematical conditions					
	for wave function, Need					
	and significance of					
	Schrodinger equations.					
	Schrodinger time			1, 3, 5	1, 3, 5, 11	
20	independent and time					
	dependent equation.					
	Energy of a particle			1, 3, 5	1, 3, 5, 11	
21	enclosed in rigid box and					
	related numerical					
	problems					
	Quantum mechanical			1, 3, 5	1, 3, 5, 11	
22	tunnelling and Principles					
	of quantum computing:					
	concept of Qubit					
M6	SEMICONDUCTOR PHYSICS					
	Direct & indirect band					
23	gap semiconductor,					
	Electrical conductivity of					
	semiconductors.					
	Drift velocity, Mobility					
24	and conductivity in					
	semiconductors.					

Vidyavardhini's College of Engineering & Technology

First Year Engineering

25	Fermi Dirac distribution			
	function.			
	Position of fermi level in			
	intrinsic semiconductors			
26	and Position of fermi level			
	in extrinsic			
	semiconductors.			