1. Implementation of ID3 algorithm using iris dataset and the parameter for attribute selection is set to Gini index.

```
import pandas as pd
import numpy as np
data = pd.read_csv('iris.data.csv')
data
```

	sepal_length	sepal_width	petal_length	petal_width	Class_name
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa
145	6.7	3.0	5.2	2.3	Iris-virginica
146	6.3	2.5	5.0	1.9	Iris-virginica
147	6.5	3.0	5.2	2.0	Iris-virginica
148	6.2	3.4	5.4	2.3	Iris-virginica
149	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 5 columns

```
from sklearn import tree
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt

X = data.iloc[:, :-1]
y = data.iloc[:, -1]

datasets = train_test_split(X, y,test_size=0.2)

X_train, X_test, y_train, y_test = datasets

model = DecisionTreeClassifier(criterion="gini")
model.fit(X_train, y_train)

plt.figure(figsize=(12,12))
tree.plot_tree(model)
plt.show()
```



```
y pred = model.predict(X test)
from sklearn.metrics import confusion matrix
from sklearn.metrics impoM classification report
{rom sklearn.metrics import accuracy score
y true = ytest
priut('Accuracy : ',accuracy scOre(y pred, y test))
print('\nConfusion Matrix: \n', confusion matrix(y true, y pred))
matrix = classification report(y_true,ypred)
print('\nClassification report : \n', matrix)
Accuracy: 0.966666666666667
Confusion Matrix:
[[10 0 0]
[ 0 0 10]]
ClassifICatiDn report'
                 precision
                           recall f1-score support
                    1.00
                              1.00
   Iris-setDsa
                                       1.00
Iris-versicolor
                    1.00
                              0.90
                                        0.95
 Iris-virginica
                     0.91
                              1.00
                                        0.95
                                        0.97
                    0.97
                              0.97
                                       0.97
     macro avg
```

8.97

0.97

0.97

weighted avg

2. Implementation of ID3 algorithm using party dataset and the parameter for attribute selection is set to Gini index.

```
import pandas as pd
from sklearn import metrics
df = pd.read_csv('party.csv')
df
```

	Deadline	Party	Lazy	Activity
0	Urgent	Yes	Yes	Party
1	Urgent	No	Yes	Study
2	Near	Yes	Yes	Party
3	None	Yes	No	Party
4	None	No	Yes	Pub
5	None	Yes	No	Party
6	Near	No	No	Study
7	Near	No	Yes	TV
8	Near	Yes	Yes	Party
9	Urgent	No	No	Study

```
from sklearn import tree
from sklearn.tree import DecisionTreeClassifier
import matplotlib.pyplot as plt

from sklearn import preprocessing
le = preprocessing.LabelEncoder()

df = df.apply(le.fit_transform)

X = df.iloc[:, :-1]
y = df.iloc[:, -1]
```

```
model = DecisionTreeClassifier(criterion="gini")
model.fit(X, y)

plt.figure(figsize=(12,12))
tree.plot_tree(model)
plt.show()
```



```
y pred = model. pred1ct (X)

from sklearn.metrics import confusion matrix
from sklearn.metrics import classification report
from sklearn.metrics import accuracy score

y true = y

pr1nt (Ac c uracy:', accuracy score (y pred, y))

print('.,nConfusion Matrix: \n', confusion matrix(y true, y pred))

matrix = classification report (y true, y pred)
print('.,nClassification report : \n',matrix)
```

```
Acc uracy: 1. e
```

Confusion latrix: [[5 0 00j

[0 0 3 0) [0 0 0 1)j

Classification recort :

	precision	recall	f1-score	support
0	1.00	1.00	1.00	5
1	1. <i>88</i>	1. <i>88</i>	1.00	1
2	1.00	1.00	1.00	3
3	1.00	1.00	1.00	1
accuracy			1.00	10
macro avg	1.00	1.00	1.00	10
weighted avg	1.00	1.00	1.00	10