

EEE204 Continuous and Discrete Time Signals and Systems II

2018-2019 Semester 2

Electrical and Electronic Engineering

Xi'an Jiaotong-Liverpool University

Feb. 18, 2019

Something in EEE203 Final Exam

EEE203 Final Exam

Q2. Determine if the following Continuous Time signals are energy or power signals or neither. Calculate the energy and power of the signals in each case. (10')

a)
$$x_1(t) = \cos(\pi t)\sin(3\pi t)$$
 (5')

b)
$$x_2(t) = \exp(-2t)u(t)$$
 (5')

EEE203 Final Exam

Q7. The Fourier transform of x(t) is shown in the figure as $X(\omega)$. Compute the following items without explicitly computing x(t). (10')

- a) Compute quantities of $\int_{-\infty}^{\infty} |x(t)|^2 dt$ (5')
- b) Computer quantities of x(0) (5')

Q8. Simplify the block diagram to find the transfer function H(s). (15')

Module Information

Module Information

- Classes
 - ✓ Lectures: Monday 14:00–16:00, SD114 (Week 1–6, 8–14).
 - ✓ Lab: Thursday 11:00–13:00, 14:00–18:00, HS102, HS103 (Week 12).
- Instructor: Dr. Jimin Xiao
 - ✓ Office: EB312.
 - ✓ Office hours: Thursday 15:00–17:00.
 - ✓ Office landline: 0512-81883209.
 - ✓ Email: Jimin.Xiao@xjtlu.edu.cn

Assessments

Grading

- Mid-term Exam: (10%)
 - ✓ Closed book exam in week 7.
- Lab: (10%)
 - ✓ Individual work (discussion allowed, plagiarism strictly prohibited).
 - ✓ Writing report, and submit the e-copy to ICE.
 - ✓ Due date TBD.

- Final Exam: (80%)
 - Closed book exam during examination days (June, TBD).

Revision class will be provided.

Module Overview

- Pre-requisites:
 - ✓ MTH013 Calculus (Science and Engineering).
 - ✓ MTH008 Multivariable Calculus (Science and Engineering).
 - ✓ EEE203 Continuous and Discrete Time Signals and Systems I.
 - ✓ Basic programming skills (Matlab, C, C++, Python, JAVA etc)
- Aims: Present the concepts involved with discrete-time or discrete-space signal and systems:
 - ✓ Discrete time signals and systems (p.1).
 - ✓ Sampling of continuous signals (p.514).
 - ✓ Time-domain analysis of discrete time signals and systems (p.74).
 - ✓ Discrete time Fourier transform (DTFT) (p.358).
 - ✓ Discrete Fourier transform (DFT) (Supplementary material).
 - ✓ z-transform (p.741).

Recommended Texts and References

Text Book:

Oppenheim, Alan V., Willsky, Alan S. and Hamid, S. *Signals and systems*. Publishing House of Electronics Industry, 2015.

Recommended Texts and References

Previous Text Book:

Mandal, Mrinal Kr, and Asif, Amir *Continuous and discrete time signals and systems*. Cambridge University Press, 2007.

Recommended Texts and References

Additional Reference 1:

Kamen, Edward W. and Heck, Bonnie S. *Fundamentals of signals* and systems using the web and matlab. 3rd Edtion. Prentice-Hall, 2006.

Learning Outcome

- After successful completion of the module, you should have
 - ✓ an understanding of the sampling process to generate a discrete version of the signals.
 - ✓ an understanding of linear time-invariant systems in the discrete-time domain.
 - ✓ an understanding of the use of discrete-time Fourier transform (DTFT) to represent discretetime signals.
 - an understanding of the use of discrete Fourier transform (DFT) and the differences with DTFT and CT-Fourier transform.
 - ✓ an understanding of the use of z-transform in circuit and system analysis.

Introduction and Review

Signal

A signal can be broadly defined as any quantity that varies as a function of time and/or space and has the ability to convey information about a certain physical phenomenon.

CT vs. DT Signals

- ► Continuous signal: $t \in \mathbb{R} \to x(t) \in \mathbb{R}$ or \mathbb{C}
- ▶ Discrete signal: $n \in \mathbb{Z} \to x[n] \in \mathbb{R}$ or \mathbb{C}
- ▶ Digital signal: $n \in \mathbb{Z} \to x[n] \in \mathbb{A}$ where $\mathbb{A} = \{a_1, \cdots, a_L\}$ is a finite set of L signal levels.

CT vs. DT Signals

Discrete-time Signals

- ✓ A discrete-time signal is represented by a series of values, each of which has an index indicating the corresponding time ordering of the values: $x[n] = \{x[0], x[1], x[2], \dots\}$.
- ✓ Note that the square brackets represent the <u>index</u> of the independent variable.

- Any series of measurements of a physical quantity is a discrete signal.
- The one-dimensional hourly measurements of the temperature x[k] made with an electronic thermometer.
- Although many signals in the real world are continuous, for some practical applications we can only measure and save discrete values.

Example of Discrete-Space Signals

digital grey images: are 2-D discrete-space signals

- ✓ The intensity of the image at location p[x, y].
- ✓ Stored images are made up of a discrete number of points → discretespace signals.

black Gray White i=0 i=128 i=255

There are many important advantages with digital signal processing such as:

- ✓ Flexibility: the system can be reprogrammed such that the same hardware can be used in a variety of different applications.
- ✓ Self-calibration: the digital hardware used to implement DT systems does not drift with age or with changes in the operating conditions and can be self-calibrated easily.

There are many important advantages with digital signal processing such as (cont.):

- ✓ Digital signals are less sensitive to noise and interference than analog signals →are widely used in communication systems.
- ✓ Data-logging (saving): the data available from the DT systems can be stored in a digital server so that the performance of the system can be monitored over a long period of time.

The primary advantage of CT signal processing is its higher speed. This is due to limits on the sampling rate of the A/D converter and the clock rate of the processor used to implement the DT systems.

Energy and Power of Signals

Energy

ullet The energy of CT signal x(t) is

$$\epsilon(x) = \int_{-\infty}^{+\infty} |x(t)|^2 dt.$$

The energy of DT signal x[n] is.

$$\epsilon(x) = \sum_{n = -\infty}^{+\infty} |x[n]|^2.$$

Energy and Power of Signals

Power

Power is a time average of energy (energy per unit time)

$$\begin{array}{ll} \text{CT signal } x(t) & p(x) \triangleq \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} \lvert x(t) \rvert^2 \; \mathrm{d}t \\ \\ \text{DT signal } x[n] & p(x) \triangleq \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{+N} \lvert x[n] \rvert^2 \\ \\ \text{DT periodic signal} & p(x) \triangleq \frac{1}{N_0} \sum_{n=n_1}^{n_1+N_0-1} \lvert x[n] \rvert^2 \end{array}$$

 n_1 is an arbitrary integer and N_0 is the fundamental period.

Energy and Power Signals

Example:

Find the energy of:

$$x[n] = \begin{cases} n, & 0 \le n < 5\\ 10 - n, & 5 \le n < 10\\ 0, & \text{otherwise} \end{cases}$$

$$E = \sum_{n=-\infty}^{+\infty} |x[n]|^2, \left(\sum_{i=1}^n i^2 = \frac{1}{6}n(n+1)(2n+1).\right)$$
$$= 1^2 + 2^2 + 3^2 + 4^2 + 5^2 + 4^2 + 3^2 + 2^2 + 1^2,$$

 $= 2 \times 5 \times 6 \times 11 \div 6 - 25 = 85$.

Elementary Sequences

Elementary Sequences

The DT impulse function (Kronecker Impulse)

$$\delta[n] = \begin{cases} 1 & n = 0 \\ 0 & n \neq 0 \end{cases}$$

Can you write the expression for $\delta[n + 2]$?

$$\delta[n+2] = \left\{ \begin{array}{ll} 1 & n=-2 \\ 0 & n \neq -2 \end{array} \right.$$

Multiplying a DT signal with a Kronecker Impulse

$$x[k]\delta[2-k] = x[k]\delta[k-2] = \begin{cases} x[2] & k=2\\ 0 & k\neq 2 \end{cases}$$

Why is $\delta[2-k] = \delta[k-2]$?

Elementary Sequences

Any DT signal x[n] can be represented by the infinite sum of the multiplication of a sample and a Kronecker Impulse

Proof:

$$\sum_{k=-\infty}^{+\infty} x[k]\delta[n-k] = \cdots x[-1]\delta[n+1] + x[0]\delta[n] + x[1]\delta[n-1], + x[2]\delta[n-2] + \cdots, = x[n].$$

Elementary Sequences

$$u[n] = \begin{cases} 1 & n \geqslant 0 \\ 0 & n < 0 \end{cases}$$

$$u[n] = \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \cdots,$$

$$= \sum_{k=0} \delta[n-k],$$

$$= \sum_{k=0}^{\infty} u[k]\delta[n-k] = \sum_{k=0}^{\infty} u[k]\delta[n-k].$$

 $k=-\infty$

Real-valued exponential sequence

$$x[n] = a^n u[n]$$

- Page 6–7, read content about energy and power of discrete-time signals
- Page 21–25 read section 1.3.2
- Page 30–32, read section 1.4.1
- Page 57, Q1.4, all.
- Page 59, Q1.22, all.

Thank you for your attention.