Asymptotic Analysis

Anthony Ding, CS 61B

Why does runtime matter?

- Two programs
 - Program A: given x inputs, returns a result in x milliseconds
 - Program B: given x inputs, returns a result in x^2 milliseconds
- If we run both A and B on an array of size 1000 (number of inputs, x = 1000):
 - o Program A will take roughly 1 second
 - Program B will take 1000 seconds = roughly 17 min!
- In the real world, we care about **correctness**, but also **efficiency**

Informal Approaches

- Physically measuring with a stopwatch (can start your phone's stopwatch as soon as you press run and stop it)
 - Not very precise
- java.lang.System.currentTimeMillis(gives us a precise reference in milliseconds
- Drawbacks:
 - Different programs can run faster or slower on different computers
 - o If Program A on my CPU runs slower than Program B on yours, unclear if my program is simply worse, or if your computer is just faster
- We would like an abstract way of determining and modeling runtime

$O(n), O(n), \Omega(n)$

- Measure orders of growth in runtime, given an input n
- Abstractly, how does the runtime, as a function, grow as input size n gets bigger?
- O(n) = upper bound
- $\Omega(n) = lower bound$
- $\Theta(n)$ = combination of O and Ω , both upper and lower bounded

Green (x^4) , Blue (x^3) , Red (x^2) , Purple (x)

Mathematical Definition

- "For large n" is needed because at small values, even 2n can be greater than n^2 (n=1)
 - This isn't useful to us, as both will take minimal time to run
- Given two runtime functions f(n) and g(n), we say f = O(g) if for large n, f(n) <= g(n)
- We say $f = \Omega(g)$ if for large n, $f(n) \ge g(n)$
- $f = \Theta(g)$ when both O and Ω are satisfied
 - This means both f and g grow at roughly the same rate
 - As input n grows large, the derivatives of f and g (rate of growth) are roughly same

Solving for Runtime

- Drop constants and coefficients $(3x^2 + 4x \text{ can be simplified to } x^2 + x)$
- Any exponential dominates any polynomial (2^x grows faster than 1000000 * x⁵)
- Any polynomial dominates any logarithm
- Higher order polynomials beat lower order ones (x^3 beats x^2 , x^2 beats x, and so on)
- Therefore, we can rewrite any sum of terms by the term that dominates
 - \circ x⁵ + x³ + log x can be simplified to x⁵

Example #1

```
for (int i = 0; i < N; i += 1) {
    doSomething();
}</pre>
```

Assuming that doSomething() takes constant time, it is called exactly N times, whether N is 1 or a million. We can say this is $\Theta(n)$

Example #2

```
for (int i = 0; i < N; i += 1) {
    for (int j = 0; j < i; j += 1) {
        doSomethingElse();
    }
}</pre>
```

At each pass through the outer loop, we do a total of i calls to doSomethingElse(). This results in the sum 1 + 2 + 3 + ... + N = N(N+1)/2.

Now, we can simplify this expression to solve for our runtime. $N(N+1)/2 = 0.5N^2 + 0.5N$. Dropping constants, we get $N^2 + N$, which simplifies to N^2 .

Example #3

```
public void foo(int bar) {
    return 2 * foo (bar / 2);
}
```

Think of it as a tree. At each level, we have a total of bar. We split this into bar/2 but call it twice, so the level underneath will also have bar.

Every level up until the leaves will have bar. There are a total of log(bar) levels.

Therefore, the runtime is O(bar log bar) [we usually just say it is O(nlogn)]