CS201c: Quiz 2 solutions

<u>Ans 1.</u>

H[0]	H[1]	H[2]	H[3]	H[4]	H[5]	H[6]
16	3	-1	2	9	1	8

Key Partial probe sequence till successful insert operation
1 5
2 3
3 1
8 5, 6
9 3, 4
16 3, 4, 5, 6, 0

<u>Ans 2.</u>

Probability that pivot rank is equal to i is exactly 1/(2z+1) for every 1<=i<=(2z+1). (Pivot rank i means that pivot is the i-th smallest element in the array A.)

Pivot rank 1 2	Size of B 2z 2z-1
_	
	-
•	•
	· - · 4
Z	z+1
z+1	0
z+2	z+1
z+3	z+2
z+4	z+3
2z+1	2z

Thus, expected value of |B|

```
= (2[(z+1) + (z+2) + ... + (2z)])/(2z+1)

= [(2*z*z) + (z*(z+1))]/(2z+1)

= [z*(3z+1)]/(2z+1)
```

Ans 3.

Remark. We can get a representative node of rank r with {1, 2, ..., 2^r} in its subtree as follows:

- (i) Recursively get a representative node v1 of rank r-1 with {1, 2, ..., 2^{r-1}} in its subtree.
- (ii) Recursively get a representative node v2 of rank r-1 with {2^{r-1}+1, 2^{r-1}+2, ..., 2^{r}} in its subtree.
- (iii) Do Union(v1, v2).

Sequence of union operations achieving a rank r (1 \leq r \leq k) node with all n=2^k nodes in its subtree:

- Make union operations on first 2^r keys to get a set with 2^r nodes such that its representative node v has rank r (see Remark above).
- Do union(v, j) where (2^r+1) <= j <= n.
 [Since rank(v)=r and rank(j)=0 < r, j becomes a child of v and v's rank does not change.]
- Finally, v will be the root node of a single set, and rank of v will be r.