코로나 팬데믹 이후 국내 수입와인 시장의 수요예측 변화 연구

A Study on Demand Forecasting Change of Korea's Imported
Wine Market after COVID-19 Pandemic

김지형

한양여자대학교 외식산업과

요 약

COVID-19 팬데믹 초기에 한국의 와인시장은 다른 나라들과 마찬가지로 상당히 위축되어 있었다. 하지만 팬데믹 직후 한국의 수입 와인소비는 2020년 한 해 69.6%나 증가하였다. 이는 해외 여행금지로 와인이 국내에서만 소비되고 보복 소비와 홈술로 인해 고가 와인의 판매가 증가한 것에 기인한다. 그러나 코로나가 끝난 2022년부터 한국의 와인시장은 큰 폭으로 다시 위축되기 시작하였다. 그러므로 본 연구는 와인과 관련된 사업자들에게 향후 10년 뒤, 2032년까지 수입와인 시장의 수요예측을 통해 중장기 사업계획 수립에 유용한 정보를 제공하고자 한다. 본 연구는 2020년 1월부터 2023년 9월까지 한국무역협회가 제공한 95개의 시계열 데이터를 사용하였다. 모형의 정확도는 MAPE 값을 기초로 시험하였고, 수입와인의 전체 금액 예측은 ARIMA 모형, 전체 중량의 예측은 Winters 승법 모형을 사용해 계산하였다. 2032년까지 수입 와인시장의 전체 금액을 예측한 ARIMA 모형(MAPE=10.56%)은 와인시장 금액의 규모를 USD \$1,023,619, CAGR=6.22%로 예측하였으며, 이는 2023년 대비 101% 증가한 규모이다. 반면에 중량은 Winters 승법모형(MAPE=10.03%)을 사용하여 계산하였으며, 2032년 중량은 64,691,329톤으로 CAGR=-0.61% 하락할 것으로 예측하였고, 이는 2023년 대비 15.12% 성장한 것이다. 결론적으로 한국 수입와인 시장은 최근의 하락세에도 불구하고 꾸준히 성장할 것이며, 고급 와인시장이 이 증가의 대부분을 차지할 것으로 보인다.

■ 중심어 : 수입와인시장 수요예측, 시계열 예측모형, ARIMA 모형, Winters 승법 모형

Abstract

At the beginning of the COVID-19 pandemic, Korea's wine market had shrunk as other countries. However, right after the pandemic, Korea's imported wine consumption had been increased 69.6%. Because of the ban on overseas travel, wine was consumed in the domestic market. And consumption of high-end wines were increased significantly due to revenge spending and home drinking. However, from 2022 Korea's wine market has begun to shrink sharply again. Therefore this study forecasts the size of imported wine market by 2032 to provide useful information to wine related business entities. KITA(Korea International Trade Association)'s 95 time-series data per quarter from Q1 of 2001 to Q3 of 2023 was utilized in this research. The accuracy of model was tested based on value of MAPE. And ARIMA model was chosen to forecast the size of market value and Winter's multiplicative model was used for the size of market volume. The result of ARIMA model for the value (MAPE=10.56%) shows that the size of market value in 2032 will be increased up to USD \$1,023,619, CAGR=6.22% which is 101% bigger than its size of 2023.

On the other hand, the volume of imported wine market (MAPE=10.56%) will be increased up to 64,691,329 tons, CAGR=-0.61% which is only 15.12% bigger than its size of 2023. The result implies that the value of Korea's wine market will continue to grow despite the recent decline. And the high-end wine market will account for most of the increase.

■ Keyword : Imported Wine Demand Forecasting, Time Series Forecasting Model, ARIMA Model, Winters Multiplicative Model

Ⅰ. 서론

2010년부터 2019년까지 매해 평균 8.9% 성장했던 한국의 와인시장은 COVID-19가 시작된 2020년에는 27.29%, 2021년에는 69.63%까지 성장하였다. 팬데믹 초기 한국의 와인 시장이 급격히 성장한 배경에는 해외여행 금지와 코로나 방역으로 인한 외식업종의 영업 제한 등이 고가 와인의 보복 소비와 집에서 술을 마시는 '홈술'로나타난 결과로 보고 있다(International Wine Conference, 2023; MoneyS, 2021) 하지만 이러한성장세는 2022년에는 3.84%로 대폭 감소했으며, 2023년에는 -12.39%까지 감소할 것으로 예측된다.

김지형(2021)의 연구에 따르면, 한국의 와인시장은 COVID-19의 영향으로 2030년까지 수입와인의 전체 금액은 연평균 14.38%, 중량은 연평균 5.85% 성장할 것으로 예측했으며, 2030년에는 2021년 대비 수입금액만 117% 성장할 것으로 예측하였다. 그러나 이 연구의 예측 결과와는 달리 2022년의 실제 수입와인 총액은 USD \$592,921이 아닌 USD \$330,017로 예측 대비 ~44.34% 감소하였다. 코로나 팬데믹과 같은 대형 사건이 없었다면, 시계열 데이터로 인한 수요예측의 정확도가 더 높았을 수 있었겠지만, 한국의 와인시장은 코로나로 인해 2021년 한해 69.63%라는 놀라운 성장률을 보였고, 2023년부터는 최근 10년간 (2011년부터 2020년까지)의 연평균 성장률인 11.57%로 회귀하는 중이다.

가장 최근의 실제값을 추가하여 중장기 수요 예측을 업데이트하는 것은 변동 폭이 큰 한국의 와인시장에 중요한 자료가 될 수 있다. 예를 들어, 완제품이 한국에 도착하기 3년 전에 구매를 확정해야 하는 프랑스 보르도 그랑크뤼 와인의 엉 프리뫼르(En Primeur) 선물시장(future option)에서 정확한 수요예측은 구매에 따른 위험을 감소시키는 데 큰 도움을 줄 수 있다(김지형·고재윤, 2016).

세수 확보를 위해 집계되는 와인 등 주류 분야의 데이터는 관세청이나 국세청, 그리고 무역협회 등 공공 기관을 통해 정확한 시계열 데이터를 죄공받을 수 있다. 하지만 이러한 데이터를 활용한 수요예측에 관한 주류분야의 연구는 다른 산업 분야에 비해 부족한 실정이다.

본 연구에 사용된 수입 와인의 금액과 물량에 대한 시계열 데이터는 2000년 1월부터 2023년 9월까지 총 23년 9개월 동안의 무역협회와 관세청에서 제공하는 통관자료를 활용하였다. 수입와인의 총금액과 수입와인의 총증량을 기준으로 2032년 12월까지 10년간의 한국 수입 와인시장의 수요를 예측하였으며, 정량적 시계열 수요 예측 모델 중 관측된 데이터가 계절성 패턴을 보이며, 시간의 지남에 따라 주기 내의 변동이 크지않고, 더욱 정확한 예측을 할 때 사용하기 적합한 Winters 지수평활 모델(이층기, 2011; Makridakis, Wheelwright & Hyndman, 1998)을 사용하였다.

본 연구에서는 여러 수요 예측기법의 MAPE (mean absolute percentage error) 값을 비교하여

예측의 정확도를 판단하였다. 한국 수입와인 시장의 전체 금액을 예측하는 데에는 정확도가 가장 높은 ARIMA(auto-regressive integrated moving average) 모형을 사용하였으며, 한국 수입와인 시장의 전체 중량의 규모를 예측하는 데에는 Winters 승법 모형을 사용하였다. 그러므로 본연구는 국내외 와인 업계 관계자들이 한국 수입와인 시장의 수요를 사전에 인지하여, 중장기 사업계획을 수립할 때 도움이 되고자 한다.

Ⅱ. 관련연구

2.1 한국 수입와인시장의 추세분석

민간 사업자의 와인 수입은 1988년 서울 올림 픽을 전후로 시작되었다. 이후, 2002년 월드컵을 계기로 2000년부터 2010년까지 매년 연평균성장률, CAGR(compound annual growth) 22.2%씩 큰 폭으로 성장하였다(KITA, 2023). <그림 1>에서 볼 수 있듯이, 한국의 수입 와인 시장은 2000년부터 2023년에 이르기까지 매우 큰 폭의 변동이 두 번 있었다. 첫 번째는 2007년 미국발경제위기였으며, 두 번째는 2020년 COVID-19

〈그림 1〉 한국 수입 와인의 금액 및 중량 변화추이 (단위: 천불(USD 1,000) / 톤(ton))

팬데믹이었다. 이러한 두 번의 큰 변동에도 불구하고 한국의 수입 와인시장은 23년간 무려 18.8%의 높은 연평균 성장률을 기록하고 있다.

<표 1>과 같이 2020년에 COVID-19로 인하여수입와인의 총금액은 27.3% 증가하였으며, 총중량은 24.4% 증가하였다. 또한 2021년에는 수입 금액은 69.6%, 수입 중량은 41.5%로 대폭 상승하였다. 엔데믹 시대로 접어든 2022년부터는 그 증가세가 대폭 줄어들었는데 수입 금액은 3.8% 증가하였지만, 수입 중량은 7.3% 감소하였다.

(표 1) 국내 수입와인의 금액 및 중량 변화추이 (단위: 천불(USD 1,000) / 톤(ton))

연도	금액	증감	중량	증감
2000	19,802		8,052,562	
2001	23,109	16.7%	8,861,609	10.0%
2002	29,432	27.4%	11,522,387	30.0%
2003	45,783	55.6%	13,979,720	21.3%
2004	57,979	26.6%	15,897,748	13.7%
2005	67,655	16.7%	18,984,127	19.4%
2006	88,607	31.0%	22,194,500	16.9%
2007	150,364	69.7%	31,810,196	43.3%
2008	166,512	10.7%	28,795,281	-9.5%
2009	112,450	-32.5%	23,009,429	-20.1%
2010	112,888	0.4%	24,568,118	6.8%
2011	132,079	17.0%	26,003,973	5.8%
2012	147,260	11.5%	28,083,744	8.0%
2013	171,840	16.7%	32,557,220	15.9%
2014	182,178	6.0%	33,100,434	1.7%
2015	189,805	4.2%	36,815,179	11.2%
2016	191,444	0.9%	37,383,757	1.5%
2017	210,038	9.7%	36,144,092	-3.3%
2018	244,001	16.2%	40,291,508	11.5%
2019	259,255	6.3%	43,495,258	8.0%
2020	330,017	27.3%	54,126,688	24.4%
2021	559,808	69.6%	76,575,195	41.5%
2022	581,282	3.8%	71,020,089	-7.3%

자료: 한국무역협회

2.2 수요예측에 관한 선행연구

경제학에서 수요란 특정 기간 안에 소비자가 소비하는 상품 또는 서비스의 양을 의미하는 용 어이며, 예측은 여러 가지 사건들이 실제 발생하 기 전에 먼저 예상하는 것으로 정의할 수 있다 (이층기, 2011; Archer, 1976). 그러므로 수요예측 을 통해 다가올 미래를 사전에 예상하여 경쟁 환 경에서 직접 또는 간접적으로 영향을 미치는 요 인들이 실제 일어나기 전 효율적인 전략을 수립 할 수 있어야 한다(안경모·이광우, 2005).

수요예측의 방법은 양적 기법(quantitative method)과 질적 기법(qualitative method)으로 양분 된다. 양적 기법(quantitative method)은 시계열 모 델(time series model)과 인과 모델(causal model) 로 나눌 수 있다(이충기, 2011). 시계열 모델은 연속성을 보이는 과거의 자료가 충분히 있을 때, 단기와 중기 예측에 주로 활용되며, 예측하는 기 간이 늘어날수록 정확도가 떨어지는 문제를 가 지고 있다(송근석ㆍ이충기, 2009). 질적 기법 (qualitative method)은 기존 자료의 신뢰성이 낮 거나 그 양이 충분하지 않아, 양적 기법을 사용 하기 어려울 때 활용할 수 있는 기법으로 대체로 중기 및 장기 수요를 예측하기 위해 사용된다(이 충기·송학준, 2007). 질적 기법에는 주로 델파 이(delphi) 기법이 많이 사용되고 있지만(Archer, 1980; Liu, 1988), 연구자의 주관적 판단으로 예 측값을 정하기 때문에 신뢰도의 문제가 나타날 수 있으며, 정확도의 평가가 힘든 단점이 존재한 다(송근석·이충기, 2009).

양적 기법 중 인과모델은 독립변수와 종속변수 사이에서 인과관계를 검증하여 미래를 예측하는 방법으로 한은진 · 선종갑 · 민혜선(2013)이와인 소비자 수요의 결정요인을 연구하였다. 지수평활 모델은 마케팅 실무자들이 이용하기 어렵지 않으면서 예측력이 높은 장점이 있다(이충기 · 송학준, 2007; Chu, 2004; Lim & McAleer, 2002). 시계열 수요예측 모형을 이용한 선행연구

에 따르면, ARIMA 모형을 이용해 높은 예측력을 확보한 인바운드 관광객 수요에 관한 연구 (Chu, 1998)가 있다. 그러나 연도별 입국객의 숫자를 비교한 연구에서는(Cho, 2003) 지수평활 모형이 ARIMA 모형보다 더 높은 정확도를 보이기도 하였다. 비교적 복잡한 모형으로 알려진 ARIMA 모형을 활용한 수요예측 연구가 호텔의 객실과식음료 매출, 관광 및 항공 수요, 국립공원의 탐방객수요 등을 예측하는 데 활용되고 있다(김재석·손은호, 2006; 민경창·전영인·하헌구, 2013; 배준호·김용순, 2011; 송준모, 2016; 심규원·권현교, 2011).

본 연구에서 사용한 Winters 모형은 BIE Expo 방문객 수요를 예측하는데 사용되었으며(이충기 · 송학준 · 신창열, 2007), 서울지역 호텔의 객실 매출액을 예측하는 연구(윤설민·황순애·이충 기, 2009)에서도 활용되었고, Winters 지수평활 모델이 단순성과 정확성에 있어서 수요를 예측할 때 가장 적합한 모형임을 확인하였다. 또한, 호텔 F&B 매출의 실제값과 예측값을 비교한 연구에 서도 Winters 모델이 가장 정확한 수요예측 모형 임을 확인하였다(배준호・김용순, 2011). 김지형 •고재윤(2016)은 우리나라 와인 시장의 최적 수 요예측법에 관한 연구에서 2000년 1분기부터 2021 년 4분기까지 수입 와인 금액의 관측치를 토대로 향후 5년간의 수입와인 시장 금액의 크기를 Holt, Winters 승법, Winters 가법, ARIMA, 1차, 2차, 3차 회귀모형을 이용해 비교 예측하였다. 이 연구에 서 수요예측의 정확도를 MAPE 값으로 비교한 결과, Winters 가법 모형의 MAPE 값이 가장 낮아, Winters 가법 모형이 한국의 수입 와인의 수요를 예측하는데 가장 적합한 모형임을 제시하였다. 김지형(2021)은 2030년까지 한국 수입와인 시장 의 수요예측 연구에서 Winters 가법 모델만을 사 용하여 향후 10년간 수입와인의 총금액과 총중 량의 수요를 예측하였는데, 2030년의 수입 총금액 은 2021년 대비 116.87% 증가한 USD \$1,165,728

〈표 2〉국내 수입와인의 금액 및 중량의 연도별 변화추이

(단위: 천불(USD 1,000) / 톤(ton))

		수입	수입			수입	수입			수입	수입
연도	분기	금액	중량	연도	분기	금액	중량	연도	분기	금액	중량
	Q1	5,569	2,198		Q1	5,319	2,223		Q1	7,451	3,698
	Q2	4,186	2,102		Q2	4,623	2,223		Q2	6,066	2,435
2000	2000 Q3 Q4	4,261	1,627	2001	Q2 Q3	6,937	1,941	2002	Q2 Q3	6,594	2,377
2000		5,786	2,124		Q3 Q4	6,230	2,484		Q3 Q4	9,320	3,011
	 합계	19,802	8,051		<u></u> 합계	23,109	8,860		합계	29,431	11,521
	Q1	9,832	3,266		Q1	14,144	4,116		Q1	17,340	5,083
	Q1 Q2	8,729	2,502		Q1 Q2	12,620	3,453		Q1 Q2	14,530	4,080
2003	Q2 Q3	9,255	3,001	2004	Q2 Q3	14,121	4,026	2005	Q2 Q3	17,501	4,899
2003		17,966	5,209	2004		17,093	4,301	2003		18,284	
	Q4 합계	45,782	13,978		Q4 합계	57,978	15,896		Q4 합계		4,920 18,982
			5,708							67,655	
	Q1	20,684			Q1	36,963	8,131		Q1	46,497	7,877
2006	Q2	19,139	4,796	2005	Q2	32,798	7,152	2000	Q2	43,922	6,735
2006	Q3	24,485	6,372	2007	Q3	37,887	8,896	2008	Q3	44,014	7,845
	Q4	24,299	5,316		Q4	42,716	7,629		Q4	32,080	6,336
	합계	88,607	22,192		합계	150,364	31,808		합계	166,513	28,793
	Q1	28,902	5,353		Q1	28,104	6,206		Q1	30,954	6,639
2000	Q2	25,691	5,471	2010	Q2	25,404	5,568	2011	Q2	29,292	5,544
2009	Q3	30,674	6,425		Q3	26,615	6,124		Q3	36,757	6,914
	Q4	27,183	5,759		Q4	32,766	6,668		Q4	35,076	6,905
	합계	112,450	23,008		합계	112,889	24,566		합계	132,079	26,002
	Q1	31,020	6,365		Q1	42,001	8,297	2014	Q1	45,588	8,162
2012	Q2	36,604	6,432	2012	Q2	43,171	8,045		Q2	43,929	7,976
2012	Q3	37,987	7,589	2013	Q3	38,550	7,808		Q3	44,164	8,344
	Q4	41,649	7,696		Q4	48,118	8,405		Q4	48,497	8,616
	합계	147,260	28,082		합계	171,840	32,555		합계	182,178	33,098
	Q1	49,683	9,387		Q1	48,854	10,016		Q1	47,681	8,399
2015	Q2	44,801	8,534	2016	Q2	44,828	9,506	2017	Q2	49,486	8,739
2015	Q3	44,576	8,605	2016	Q3	45,884	8,815	2017	Q3	51,600	9,041
	Q4	50,744	10,287		Q4	51,878	9,045		Q4	61,271	9,962
	합계	189,804	36,813		합계	191,444	37,382		합계	210,038	36,141
	Q1	60,977	10,133		Q1	64,092	10,732		Q1	62,824	10,698
2010	Q2	60,430	9,853	2010	Q2	64,542	10,253	2020	Q2	71,853	12,310
2018	Q3	57,388	9,716	2019	Q3	62,742	11,624	2020	Q3	85,844	14,036
	Q4	65,207	10,587		Q4	67,880	10,883		Q4	109,496	17,081
	합계	244,002	40,289		합계	259,256	43,492		합계	330,017	54,125
	Q1	127,938	17,945		Q1	140,086	17,401		Q1	138,606	15,832
2021	Q2	152,060	22,426	2022	Q2	157,391	17,703	2022	Q2	135,290	15,477
2021	Q3	129,368	16,894	2022	Q3	139,209	17,751	2023	Q3	116,166	11,537
	Q4	150,436	19,310		Q4	144,596	18,165		Q4	N/A	N/A
	합계	559,802	76,575		합계	581,282	71,020		합계	N/A	N/A

로 예측하였으며 연평균 성장률은 14.38%로 예측하였다. 또한, 충중량은 2021년 대비 26.22% 늘어난 92,151,662톤으로 총중량의 연평균 성장률은 5.85%로 예측하였다. 총금액의 수요예측 모형의 MAPE 값은 10.135%였으며, 총중량의 수요예측 모형의 MAPE 값은 9.99%로 매우 정확한 예측으로 평가하였다(Lewis, 1982). 이러한 결과는 한국의 와인시장이 설날과 추석, 크리스마스를 기준으로 성수기와 비수기로 뚜렷하게 구분되는 계절성을 보이기 때문에 Winters 지수평활 모형을 최적의 수요예측 모형으로 사용하기에 적합하다는 기존 연구의 설명과도 일맥상통 한다(이충기, 2011; Makridakis, Wheelwright & Hyndman, 1998).

Ⅲ. 연구 설계

3.1 분석자료 및 선택배경

본 연구에서는 KITA(한국무역협회)가 제공하는 수출입통관 자료를 기초로 2000년 1분기부터 2023년 3분기까지, 23년 9개월의 총 95개의 분기단위 관측값을 시계열 자료로 활용하였다. ARIMA 수요예측 모델을 이용하기 위해서는 관측된 값이최소 50개 이상이어야 한다(McCleary and Hay, 1980). 더불어 비연속된 관측치가 없는 최소 30개이상이 데이터가 확보되어야 시계열 예측이 가능하다(송근원, 2013).

시계열 수요예측에 사용된 95개의 관측치는 한국무역협회가 제공한 시계열 데이터이며, HS 코는 HS2204이다. 관세청에 의하면 HS2204는 '포도주(생포도로 제조한 것으로 한정하며, 알코올로 강화한 포도주를 포함한다)와 포도즙'이다. 국내에 정상적으로 유통되는 수입 와인은 모두 통관 시 반드시 관세청에 신고하게 된다. 이때 CIF 가격의 30%를 주세로 납부하며, 주세의 10%를 교육세로 납부한다. 이후 제품 원가와 주세 그리고 교육세의 10%를 부가세로 다시 납부

하게 된다. 그러므로, 관세청과 무역협회에서 제 공하는 통관자료의 신뢰성은 상당히 높다고 할 수 있다. 다만 소비자가 인터넷을 통해 직접 구매하 거나, 신고 없이 불법 수입 및 유통되는 소수의 물량은 본 관측치에 포함되지 않았다.

3.2 연구모형

김지형(2021)의 연구에서는 비교적 단순하고 실용적이며 한국 수입와인 시장의 최적 수요예측 모형으로 확인된 Winters 가법 모형만을 사용하였으나, 코로나 팬데믹 이후 예상치 못하게 급감한 수입와인의 변동성을 고려하여 본 연구에서는 <표 3>과 같이 여러 시계열 예측 모형을 테스트하였다. 그 결과 MAPE 값이 가장 작은 ARIMA 모형과 Winters 승법 모형을 수입 와인의금액과 중량에 구분해 사용하였다.

〈표 3〉 시계열 수요예측 모형별 MAPE값 비교

연도	Holt	Winters 승법	Winters 가법	ARIMA
금액	12.409	13.775	10.636	10.555
중량	11.144	10.03	10.063	11.28

3.2.1 아리마 모형(ARIMA model)

ARIMA는 자기회귀, 총합, 이동평균을 지칭하는 말로 다른 시계열 모델과 비교하면 상대적으로 복잡한 산술적, 통계적 과정을 거치게 된다. ARIMA 모형은 AR(자기회귀)모델, MA(이동평균)모델, 정상성(stationarity) 차분(differencing)의세 부분으로 구성된다(이충기・송학준, 2007). ARIMA는 일반적으로 ARIMA(p, d, q)로 사용하며, 계절의 변동성을 표현하는 경우에는 ARIMA(p, d, q)(P, D, Q)S로 사용한다. (p, d, q)는 모형의비계절 부분을 표현하고, (P, D, Q)는 모형의계절 부분, S는 모형의계절 주기를 나타낸다. 그리고 p와 P는 계절 및 비계절적 AR 차수를, d와 D

는 각각 계절 및 비계절적 차분차수를 의미하며, q와 Q는 계절 및 비계절적 MA 차수를 표현한다. 결론적으로 ARIMA 모형의 추정은 시계열 주기 를 잘 나타낼 수 있는 차수 p, d, q 또는 P, D, Q를 찾아가는 절차이다(최영문·김사헌, 1998). 아래 는 앞서 설명한 개념을 수식으로 나타낸 것이다 (Makridakis, Wheelwright & Hyndman, 1998).

$$\begin{split} &\phi\left(B\right)\!\Phi\left(B^s\right)\!(1-B^s)^{\!D}\!(1-B)^d\!\hat{y_t} = \theta\left(B\right)\!\Theta\left(B^s\right)\!e_t\\ &,~\hat{y_t} = y_t - \mu \end{split}$$

주) t=시차, y_t =종속변수 또는 차분변수, μ = 종속변수의 평균, d=비계절적 차분횟수, D=계 절적 차분횟수, B=후향 연산자, $BX_t = X_{t-1}$,

 $\phi(B)$ =비계절적 AR모델,

$$\phi(B) = 1 - \phi_1 B - \dots - \phi_n B^p$$

 $\Phi(B)$ =계절적 AR모델,

$$\Phi(B) = 1 - \Phi_1 B^s - \Phi_2 B^{2s} \dots - \Phi_P B^{PS}$$

 $\theta(B)$ =비계절적 MA모델,

$$\theta(B) = 1 - \theta_1 - \dots - \theta_q B^q$$

 $\Theta(B)$ =계절적 MA모델,

$$\Theta\left(B\right) = 1 - \Theta_{1}B^{s} - \Theta_{2}B^{2s}..... - \Theta_{O}B^{QS}$$

 e_t =오차항(백색잡음)

즉, AIRMA 모형의 추정은 시계열 자료가 정 상성(stationarity)을 띠고 있는지를 확인 후 정상 성이 나타나지 않을 때에 차분한다. 그 후 정상 화된 시계열의 추정된 모형에 대한 잔차의 편자 기상관함수(PACF: partial autocorrelation function)와 자기상관함수(ACF: autocorrelation function)가 모든 시차에서 신뢰임계구간 내에 들어 가 있는지를 확인한다. 또한, Ljung-Box의 Q통 계값(Box & Pierre, 1970)이 95% 신뢰수준에서 유의하지 않고 추정된 모형의 잔차는 백색잡음 의 성질을 만족해야 한다(이충기, 2011).

3.2.2 윈터스 지수평활 모형(Winters exponential smoothing model)

윈터스 지수평활 모형은 시계열 자료가 계절 적인 형태를 보일 때 사용하기 가장 적절한 기 법으로 Holt 모형을 확장한 개념이다(이충기, 2011). 각각 3개의 평활상수와 평활 방정식으로 $(0 \le \alpha \le 1, 0 \le \gamma \le 1, 0 \le \beta \le 1)$ 이루어지는데, 추 세, 계절, 수평 형식의 3가지 평활식으로 나타낸 다(Makridakis, Wheelwright & Hyndman,1998). Winters 승법 모형은 주기 내에 변동의 폭이 점 차 확대될 때 사용하는 것이 적합하며, Winters 가법 모형은 시간이 흘러감에 따라 계절적 주기 내 변동의 폭이 확대되지 않고 지속적일 때 사 용할 수 있다(정동빈, 2009).

1) 윈터스 승법(Winters multiplicative seasonality) 모델

수평패턴 평활식:

$$S_{t} = \alpha \frac{X_{t}}{I_{t-1}} + (1-\alpha)(S_{t-1} + b_{t-1})$$

추세패턴 평활식:

$$b_{t} = \chi(S_{t} - S_{t-1}) + (1 - \chi)b_{t-1}$$

계절패턴 평활식: $I_t = \beta \frac{X_t}{S_t} + (1-\beta)I_{t-L}$ 예측모델:

$$F_{t+m} = (S_t + b_t m) I_{L+m}$$

주) Xt=실제값(관측값), m=예측기간, L=계절 성 주기

윈터스 지수평활 모형은 관측된 데이터가 계절 성을 보이고 시간의 흐름에 따라 계절적 주기 내 의 변동 폭이 크지 않아 정확한 예측을 할 때 사 용하기 적합하다(윤설민・황순애・이충기, 2009; 정동빈, 2009; 배준호·김용순, 2011).

모형	예측변수 수	정상 <i>R</i> ²	Ljung-Box Q(18)			人しょしつし人
			통계량	자유도	유의확률	이상값수
$(0,1,0)(1,0,0)_4$	0	.408	16.604	15	.343	0

〈표 4〉 ARIMA 모델 통계량

3.3 정확도 평가방법

수요예측의 정확도는 예측의 오차값(forecast error)으로 구해질 수 있으며, 예측의 오차값이 하향할수록 정확도는 높아지게 된다. 정확도를 측정하는 방법에는 평균오차제곱근(RMSE: root mean square error), 테일계수(Theil-U coefficient), 평균오차제곱근비율(RMSPE: root mean squared percentage error), 절대평균오차비율(MAPE: mean absolute percentage error) 등이 있다(이충기・송 학준, 2007). 이 중 마지막의 절대평균오차비율, MAPE 값은 예측모형 사이에서 예측의 오차값을 비교하기가 쉽고 신뢰도 또한 높아 주로 사용된다(이충기, 2011).

$$MAPE = \frac{1}{n} \sum \mid \frac{X_t - F_t}{X_t} \mid$$

X=관측치(실제값), F=예측치, n=관측치의 기 간수

위와 같이 계산된 MAPE값은 아래와 같이 해석할 수 있다(Lewis, 1982).

0% ≦ MAPE < 10%: 매우 정확한 예측, 10% ≦ MAPE < 20%: 비교적 정확한 예측, 20% ≦ MAPE < 50%: 비교적 합리적 예측, MAPE ≧ 50%: 부정확한 예측.

Ⅳ. 실증분석

4.1 예측모형의 추정결과 및 정확도 분석 본 연구에서는 SPSS 18.0을 사용하여 ARIMA 모형과 Winters 승법 모형으로 예측값을 추정하였다. <표 3>의 MAPE 값에 따라 가장 작은 MAPE 값을 기준으로, 수입 금액을 ARIMA 모형으로 예측하였다. <표 5>의 모형 모수를 살펴보면 계절과 비계절 MA시차들이 1% 유의수준에서 통계적으로 유의하다는 것을 알 수 있으며, <표 6>의 MAPE 값을 보면 10.555%로 $10\% \leq MAPE < 20\%에 속하므로 비교적 정확한 예측으로 평가된다(Lewis, 1982).$

수입 중량을 Winters 승법모형을 사용해 예측 한 결과, 평활계수 α=0.783, γ=0.01, 그리고 δ= 0.999에서 최적 모형이 결정되었고, MAPE 값은 <표 6>과 같이 10.030%로 10% ≤ MAPE < 20% 에 속하므로 비교적 정확한 예측으로 평가된다

 \langle 그림 2 \rangle ARIMA $(0,1,0)(1,0,0)_4$

모형			추정값	SE	t	유의확률
人01 701	A DIN (A	차분	1.000			
수입 금액 ARIMA	AKIMA	AR, 계절	.395	.095	4.150	.000
		알파 (수준)	.738	.098	7.537	.000
수입 중량 Winters 승	Winters 승법	감마 (추세)	.001	.035	.028	.978
		델타 (계절)	.999	.406	2.460	.016

〈표 5〉 모형 모수

〈표 6〉 모형적합도 값

적합 통계량 수입 금액				수입 중량				
의업 중세당 	평균	SE	최소값	최대값	평균	SE	최소값	최대값
정상 R제곱	.106		.106	.106	.369		.369	.369
R제곱	.967		.967	.967	.927		.927	.927
RMSE	7124.985		7124.985	7124.985	1225238.261		1225238.261	1225238.261
MAPE	10.555		10.555	10.555	10.030		10.030	10.030
Max APE	45.407		45.407	45.407	48.119		48.119	48.119
MAE	4406.263		4406.263	4406.263	808087.059		808087.059	808087.059
MaxAE	35524.716		35524.716	35524.716	4762678.526		4762678.526	4762678.526
정규화된 BIC	17.791		17.791	17.791	28.181		28.181	28.181

(Lewis, 1982).

<표 6>과 같은 결과에서 수입 중량의 모형적 합도 값을 보면 Winters 지수평활 모델이 계절 적인 양상을 보일 때 사용하기에 적절한 시계열 수요예측 모형이라는 설명을 뒷받침한다(이충기, 2011; Makridakis, Wheelwright & Hyndman, 1998). 그러나 수입 와인의 총금액을 김지형(2021)의 연 구에서와 같이 Winters 가법모형을 사용해 예측 하지 못한 이유는 코로나 팬데믹 전후로 국내 수 입 와인 시장에서 총금액의 증가와 하락이 기존의 예측을 뛰어넘는 폭으로 변동했기 때문이다.

4.2 예측 값의 비교

<그림 3>은 2000년 1분기부터 2023년 3분기 까지의 관측값과 본 연구에서 사용한 ARIMA 모 형을 이용해 추정한 수입금액과 Winters 승법 모 형을 이용해 추정한 수입 중량의 예측값을 연결

〈그림 3〉 2032년까지 한국 수입와인 예측 (단위: 천불(USD 1,000) / 톤(ton))

하여 연도별로 나타낸 그래프이며, <표 7>은 위 두 모형으로 수입 금액과 수입 중량을 구분하여 예측한 값을 2023년부터 2032년까지 증감률과 함께 나타낸 것이다.

$\langle \pm 7 \rangle$ 국내 수입와인의 금액 및 중량의 연도별 예측
(단위: 천불(USD 1,000) / 톤(ton))

연도	수입 금액	증감	수입 중량	증감
2023	509,253	-12.39%	56,195,130	-20.87%
2024	465,922	-8.51%	51,657,781	-8.07%
2025	479,203	2.85%	53,286,974	3.15%
2026	519,529	8.42%	54,916,167	3.06%
2027	575,627	10.80%	56,545,361	2.97%
2028	643,375	11.77%	58,174,555	2.88%
2029	721,596	12.16%	59,803,749	2.80%
2030	810,439	12.31%	61,432,942	2.72%
2031	910,715	12.37%	63,062,136	2.65%
2032	1,023,619	12.40%	64,691,329	2.58%

수입 금액은 2023년에는 2022년 대비 -12.39% 감소하며, 수입 중량은 2023년에는 2022년 대비 -20.87% 감소할 것으로 예측된다. 수입 금액과 중량의 증감 폭은 점차 늘어나 2032년에는 2023년 대비 수입 금액은 101.0%, 수입 중량은 15.12% 중가할 것으로 예측된다. 예측값을 정리하면, 한국의 수입와인 시장은 코로나 팬데믹의 영향으로 2020년과 2021년에 큰 폭으로 성장하였지만, 2023년과 2024년에는 상당한 폭의 감소가 예상되며, 2032년까지 수입 금액의 경우 CAGR(연평균 성장률) 6.22%. 수입 중량의 경우 CAGR(연평균 성장률) 0.61% 역성장할 것으로 예측된다.

Ⅴ. 결론

본 연구는 향후 10년간의 한국의 수입 와인시 장의 수요를 예측하여, 수입 와인시장에서 다양 한 업계 관계자들이 미래 와인 시장의 수요를 사 전에 인지하여 중장기 비즈니스 플랜을 만드는 데 있어 실질적인 도움이 될 수 있는 자료를 제 공코자 하였다.

기존 연구(김지형·고재윤, 2016; 김지형, 2021) 에서 한국 수입 와인시장의 수요를 예측하는 데 가장 적합한 수요예측 모형은 Winters 가법 모형이었지만, 본 연구에서는 코로나 팬데믹 전후의예상을 뛰어넘는 와인시장의 큰 변동성으로 인하여, 여러 시계열 수요예측 모형의 MAPE 값을비교 테스트하였다. 그 결과, 수입와인의 총금액예측에는 ARIMA 모형을 사용하였고, 수입와인의 총중량에 관한 예측에는 Winters 승법 모형을사용하였다.

김지형·고재윤(2016)은 2016년부터 2021년까지 연평균 성장률을 3.98%로 예측했으며, 수입 와인 시장의 수요가 급속한 성장보다는 성숙기에 들어갈 것으로 전망하였다. 대조적으로 김지형 (2021)은 코로나 팬데믹 이후 수입 와인 시장은 2030년까지 총금액은 연평균 14.38% 성장하며, 총중량은 연평균 5.85%로 고속 성장할 것을 예측하였다.

본 연구에서 2032년까지의 한국 수입 와인시 장의 총금액과 총중량을 예측한 결과, 2032년 한국 수입 와인시장의 총금액은 2023년 대비 101.0% (CAGR=6.22%) 늘어난 USD \$1,023,619로 예측하 였으며, 총중량은 2023년 대비 15.12% (CAGR= -0.61%) 늘어난 64,691,329톤으로 예측하였다. 즉, 본 연구에서는 코로나 엔대믹 시대의 큰 폭으로 감소한 신규 관측값을 반영하여, 김지형(2021)의 연구보다 2030년까지의 한국와인 시장의 총수입 금액은 30.48% 적게, 총수입 중량은 33.33% 적게 예측하였다. 본 연구의 수입 총금액 수요예측의 MAPE 값은 10.56%로, 10% ≤ MAPE < 20%에 속하므로 비교적 정확한 예측으로 평가되었고, 수입 총중량의 최적 모형의 MAPE 값은 10.03% 로, 10% ≤ MAPE < 20%에 속하여 총금액과 함 께 비교적 정확한 예측으로 평가될 수 있다(Lewis, 1982). 수입 총금액과 수입 총중량 예측모형의 MAPE 값에 차이가 나는 이유는 수입 총금액의 변동 폭이 수입 총중량의 그것보다 훨씬 컸기 때 문이다.

실무적 관점에서, 와인의 수요를 예측한다는

것은 수입사 입장에서는 와인의 원산지나, 가격 과 유통채널을 결정하고, 생산자 입장에서는 와 인의 품종과 숙성기간 등을 설정하는데 중요한 의사결정의 기초자료가 될 수 있다. 본 연구의 예측 결과가 기존의 예측(김지형, 2021)에 비하 여 성장폭은 줄었지만, 2023년부터 2032년까지 수입 총금액의 연평균 성장률(CAGR)은 6.22% 증 가하고, 수입 총중량의 연평균 성장률(CAGR)이 -0.61% 감소한다는 것은 한국 와인시장이 꾸준 히 성장한다는 것을 의미한다. 코로나로 인해 집 에서 술을 마시는 '홈술' 문화의 확산과 보복 소 비는 엔데믹으로 넘어가면서 코로나 이전으로 점 차 회귀되겠지만, 와인의 대중화는 코로나를 계 기로 더욱 확산될 것이다. 그러므로 2032년에는 한국의 수입 와인 시장은 전체 주류 시장의 20% 정도를 차지할 것으로 추정된다(International Wine Conference, 2023). 또한, 수입 총금액이 수 입 총중량보다 더욱 급속히 상승할 것이라는 본 연구의 결과를 볼 때, 국내 와인시장의 성장에서 고급 와인시장의 증가가 그 성장의 대부분을 차 지할 것으로 보인다.

본 연구는 시계열 데이터만을 가지고 미래 수 요를 예측하였기 때문에, 과거 연구(김지형·고 재윤, 2016; 김지형, 2021)와 같이 특정 이벤트로 인한 변동에 대해 과대 추정이 발생할 수 있고, 예상치 못한 외부충격에 취약하다는 한계가 있 다. 향후 연구에서는 위와 같이 시계열 데이터를 기반으로 한 수요예측 연구의 한계를 극복하기 위해, 질적 기법과 양적 기법을 결합한 종합적인 수요예측 연구가 필요하다(Archer,1980). 예를 들 어, 1인당 평균 와인 소비량, 환율, 산업연관분석, Delphi 기법과 같이 해당 분야 전문가들의 의견 을 수렴한 질적 연구와 인과관계 기법 등을 활용 한 종합적인 수요예측 연구가 필요하다. 또한, 수 입 와인의 총금액과 총물량에 대한 수요예측 외 와인의 생산국가와 지역별 수입 금액과 물량, 와 인의 색에 따른 예측과 같이 보다 세분된 수요예

측은 꾸준히 성장하는 국내 수입와인 시장에서 보다 세분화된 마케팅 전략을 기획하는 데 큰 도 움이 될 것으로 보인다.

참고문헌

- [1] 관세청. 무역통계. https://unipass.customs.go.kr: 38030/ets/
- [2] 김재석·손은호, "계절 ARIMA 모형을 이용한 호텔객실매출액의 예측", 관광연구, 30(2), pp. 381-398, 2006.
- [3] 김지형, "2030년까지 한국 수입와인 시장의 수 요예측-시계열 수요예측 모델을 중심으로", 호 텔리조트연구, 20(6), pp.451-466, 2021.
- [4] 김지형 · 고재윤, "한국 수입와인 시장의 최적 수요예측법에 관한 연구: 시계열 수요예측 모델 을 중심으로", 호텔관광연구, 18(5), pp.241-260, 2016.
- [5] 민경창·전영인·하헌구, "계절성 ARIMA 모 형을 이용한 항공화물 수요예측", 대한교통학회 지, 31(3), pp.3-18, 2013.
- [6] 배준호ㆍ김용순, "호텔 식음료 사업의 최적 수 요예측 방법에 관한 연구", 관광·레저연구, 23 (6), pp.119-135, 2011.
- [7] 송근원, 『회귀분석과 아리마시계열분석』, 한국 학술정보, 2013.
- [8] 송근석ㆍ이충기, "결합기법을 이용한 관광수요 예측", 관광·레저연구, 21(1), pp.183-202, 2009.
- [9] 송준모, "계절형 ARIMA-Intervention 모형을 이 용한 여행목적 별 제주 관광객 수 예측에 관한 연구", 한국데이터정보과학회지, 27(3), pp.725-732, 2016.
- [10] 심규원·권헌교, "계절 ARIMA 모형을 이용한 국립공원 탐방수요 예측", 한국임학회지, 100 (1), pp.124-130, 2011.
- [11] 안경모·이광우, "ARIMA Intervention을 이용

- 한 한국인 관광객의 태국관광수요예측에 관한 연구", 호텔경영학연구, 1(4), pp.273-288, 2005.
- [12] 윤설민·황순애·이충기, "호텔산업의 합리 적 수요예측 방법에 관한 연구", 호텔경영학연 구, 18(1), pp.1-16, 2009.
- [13] 이충기(2011), 『관광응용경제학』, 대왕사, 2011.
- [14] 이충기·송학준, "최적 시계열 수요예측 모델 선정에 관한 연구", 관광학연구, 31(6), pp.289-311, 2007.
- [15] 이충기·송학준·신창열, "BIE Expo 방문객수요예측", 관광·레저연구, 19(3), pp.263-281, 2007.
- [16] 정동빈(2009). SPSS(PASW) 『시계열 수요예측 I』, 한나래출판사, 2009.
- [17] 한국무역협회. 무역통계. http://www.kita.net/
- [18] 한은진·선종갑·민혜선, "와인소비자 수요 의 결정요인에 관한 연구" 관광연구, 28(3), pp. 59-73, 2013.
- [19] International Wine Conference, 2023.
- [20] BH Archer, Demand Forecasting in Tourism. Monograph. 1976.
- [21] V Cho, "A comparison of three different approaches to tourist arrival forecasting." Tourism Management, 24(3), pp.323-330, 2003.
- [22] FL Chu, "Forecasting tourism demand in Asian-Pacific countries." Annals of Tourism Research, 25(3), pp.597-615, 1998.
- [23] FL Chu, "Forecasting tourism demand: A cubic polynomial approach." Tourism Management, 25(2), pp.209-218, 2004.
- [24] CD Lewis, "Industrial and business forecasting methods: A practical guide to exponential smoothing and curve fitting." 1982.
- [25] C Lim and Mc Michael, "Time series forecasts of international travel demand for Australia." Tourism Management, 23(4), pp.389-396, 2002.
- [26] JC Liu, "Hawaii tourism to the year 2000: A

- Delphi forecast." Tourism Management 9(4), pp. 279-290, 1988.
- [27] S Makridakis, SC Wheelwright, and RJ Hyndman, Forecasting Methods and Applications. John wiley & Sons, 2008.
- [28] R McCleary et al., Applied Time Series Analysis for the Social Sciences, Beverly Hills, CA: Sage Publications, 1980.
- [29] https://moneys.mt.co.kr/news/mwView.php?no =2021081717108054975

저 자 소 개

김 지 형(Jihyung Kim)

- 2006년 2월: 경희대학교 호텔 관광대학 호텔경영학과 (경영 학사)
- · 2009년 10월: KEDGE Business School (Wine MBA)
- · 2018년 8월: 경희대학교 일반대 학원 조리외식경영학과 (조리외식경영학 박사)
- · 2020년 4월~현재: 한양여자대학교 외식산업과 조교수
- · 2015년 1월~2020년 3월: 르 꼬르동 블루-숙명 아카데미 총지배인
- · 2005년 1월~2015년 1월: 국순당 마케팅본부 브 랜드 매니저
- <관심분야> 와인 마케팅, 레스토랑 마케팅, 파인 다이닝, 고객서비스