Graph Algorithms

Amrita Kaur

August 10, 2023

Announcements

- Assignment 6 (last assignment!) has been released
 - No late days beyond the grace period (next Thursday 11:59pm)
 - YEAH hours on Canvas
- Assignment Retroactive Citation Form will be released tomorrow
 - Due by Friday, August 18th at 11:59pm
- No attendance tickets next week
- Slightly personal note: My last lecture for the quarter and last lecture at Stanford (ever?), so let's have fun!

Roadmap

Stanford University

Graphs

A Social Network

Molecules

Interstate Highway System

Flowcharts

The Internet (1971)

The Internet (2023)

What is a graph?

graph

a structured way to represent relationships between different entities

Graph Terminology

graph

a structured way to represent relationships between different entities

A graph consists of a set of **nodes** connected by **edges**.

Graph Terminology

graph

a structured way to represent relationships between different **entities**

A graph consists of a set of **nodes** connected by edges.

Graph Terminology

graph

a structured way to represent relationships between different entities

A graph consists of a set of nodes connected by **edges**.

- Directed: unidirectional relationships between nodes
 - Represented by a pointed arrow
 - An action/verb that implies only one direction
 - Ex: I follow Dwayne "The Rock" Johnson on Instagram, but he doesn't follow me back

- Directed: unidirectional relationships between nodes
 - Represented by a pointed arrow
 - An action/verb that implies only one direction
 - Ex: I follow Dwayne "The Rock" Johnson on Instagram, but he doesn't follow me back

- Undirected: bidirectional relationships between nodes
 - Represented with an arrow-less line
 - An action/verb that inherently applies to both entities
 - Ex: I am related to my sister and she is related to me

- Weighted: not all relationships between entities are equal
 - Each edge is assigned a numerical "weight" representing its relative significance/strength.
 - Ex: Different airports are different distances from each other

- Unweighted: all relationships between entities are equal
 - Each edge has equal significance and no label
 - Ex: All connected words in a word ladder are one letter apart

Social Network

Nodes: ?

Edges: ?

Directed or undirected?

Weighted or unweighted?

Social Network

Nodes: People

Edges: Friendships/Following

Directed (Instagram) or undirected (Facebook)

Unweighted

Molecules

Nodes: ?

Edges: ?

Directed or undirected?

Weighted or unweighted?

Molecules

Nodes: Atoms

Edges: Bonds

Undirected

Weighted

Interstate Highway System

Nodes: ?

Edges: ?

Directed or undirected?

Weighted or unweighted?

Interstate Highway System

Nodes: Cities

Edges: Roads

Undirected

Weighted

Internet

Nodes: ?

Edges: ?

Directed or undirected?

Weighted or unweighted?

Internet

Nodes: Devices (phones, computers, etc)

Edges: Connection Pathways (Bluetooth, Wifi, Ethernet, cables)

Undirected

Unweighted

Linked Data Structures

- We've already seen nodes connected by edges before when discussing linked lists and trees
- What differentiates these linked data structures?
 - **Linked lists**: Linear structure, each node connected to at most one other node
 - Trees: Nodes can connect to multiple other nodes, no cycles, parent/child relationship and a single, special root node.
 - **Graphs**: No restrictions. It's the wild, wild west of the node-based world!

Can have cycles

- Can have cycles
- No notion of a parent-child relationship between nodes

- Can have cycles
- No notion of a parent-child relationship between nodes
- No root node

- Can have cycles
- No notion of a parent-child relationship between nodes
- No root node
- Most powerful, flexible, and expressive abstraction that we can use to model relationships between different distributed entities

Representing Graphs

Approach 1: Adjacency List

 We can represent a graph as a map from nodes to the collection of nodes that each node is adjacent to.

Map<Node, Set<Node>>

Node	Set <node>></node>
Node	Adjacent to

Approach 1: Adjacency List

 We can represent a graph as a map from nodes to the collection of nodes that each node is adjacent to.

Map<Node, Set<Node>>

Approach 1: Adjacency List

 We can represent a graph as a map from nodes to the collection of nodes that each node is adjacent to.

Map<Node, Set<Node>>

 We can represent a graph as a map from nodes to the collection of nodes that each node is adjacent to.

Map<Node, Set<Node>>

 We can represent a graph as a map from nodes to the collection of nodes that each node is adjacent to.

Map<Node, Set<Node>>

- An adjacency list can come in a number of different forms:
 - Map<Node, Set<Node>>
 - Map<Node, Vector<Node>>
 - Vector<Vector<Node>>

- An adjacency list can come in a number of different forms:
 - Map<Node, Set<Node>>
 - Map<Node, Vector<Node>>
 - Vector<Vector<Node>>
- The core idea is that we have some kind of mapping associating each node with its outgoing edges (or neighboring nodes)

- An adjacency list can come in a number of different forms:
 - Map<Node, Set<Node>>
 - Map<Node, Vector<Node>>
 - Vector<Vector<Node>>
- The core idea is that we have some kind of mapping associating each node with its outgoing edges (or neighboring nodes)
- How might you incorporate weights?

- An adjacency list can come in a number of different forms:
 - Map<Node, Set<Edge>>
 - Map<Node, Vector<Edge>>
 - Vector<Vector<Edge>>
- The core idea is that we have some kind of mapping associating each node with its outgoing edges (or neighboring nodes)
- How might you incorporate weights?
 - Create an Edge struct that holds both a Node and a weight!

- Adjacency matrices are beneficial when our graph isn't sparse, i.e.
 there aren't a lot of 0s
 - Otherwise, storing a mostly-0s matrix is not space efficient

- Adjacency matrices are beneficial when our graph isn't sparse, i.e.
 there aren't a lot of 0s
 - Otherwise, storing a mostly-0s matrix is not space efficient
- Other benefits:
 - Grid lookup is super fast!
 - Computer hardware has been optimized for matrix math so using a grid can help us perform complex matrix operations for data analysis

- Adjacency matrices are beneficial when our graph isn't sparse, i.e.
 there aren't a lot of 0s
 - Otherwise, storing a mostly-0s matrix is not space efficient
- Other benefits:
 - Grid lookup is super fast!
 - Computer hardware has been optimized for matrix math so using a grid can help us perform complex matrix operations for data analysis
- How might you incorporate weights?

- Adjacency matrices are beneficial when our graph isn't sparse, i.e.
 there aren't a lot of 0s
 - Otherwise, storing a mostly-0s matrix is not space efficient
- Other benefits:
 - Grid lookup is super fast!
 - Computer hardware has been optimized for matrix math so using a grid can help us perform complex matrix operations for data analysis
- How might you incorporate weights?
 - Store other numbers besides 1 in the matrix

- Adjacency matrices are beneficial when our graph isn't sparse, i.e. there aren't a lot of 0s
 - Otherwise, storing a mostly-0s matrix is not space efficient
- Other benefits:
 - Grid lookup is super fast!
 - Computer hardware has been optimized for matrix math so using a grid can help us perform complex matrix operations for data analysis
 - Storing weights is more straightforward than in the adjacency list
- How might you incorporate weights?
 - Store other numbers besides 1 in the matrix

Graph Algorithms

Motivation

Use DFS to find a path between **F** and **G**

TO START:

1. Mark all nodes as unvisited

TO START:

1. Mark all nodes as unvisited

TO START:

- 1. Mark all nodes as unvisited
 - 2. Make an empty stack

TO START:

- 1. Mark all nodes as unvisited
 - 2. Make an empty stack

TO START:

- 1. Mark all nodes as unvisited
 - 2. Make an empty stack
- 3. Push the desired start node and mark it as visited

LOOP PROCEDURE:

- 1. Pop a node
- 2. For each adjacent node, if that node has never been pushed, then push

DFS Algorithm

```
dfs-from(node v) {
 make a stack of nodes, initially seeded with v.
 while the stack isn't empty:
     pop a node curr.
     process the node curr.
     for each node adjacent to curr:
         if that node has never been pushed:
             push that node.
```


Use BFS to find the shortest path between **F** and **G**

TO START:

1. Mark all nodes as unvisited

TO START:

1. Mark all nodes as unvisited

TO START:

- 1. Mark all nodes as unvisited
 - 2. Make an empty queue

TO START:

- 1. Mark all nodes as unvisited
 - 2. Make an empty queue

•

TO START:

- 1. Mark all nodes as unvisited
 - 2. Make an empty queue
- 3. Enqueue the desired start node and mark it as visited

LOOP PROCEDURE:

- 1. Dequeue a node
- 2. For each adjacent node, if that node has never been enqueued, then enqueue

BFS Algorithm

```
bfs-from(node v) {
 make a queue of nodes, initially seeded with v.
 while the queue isn't empty:
     dequeue a node curr.
     process the node curr.
     for each node adjacent to curr:
         if that node has never been enqueued:
             enqueue that node.
```

BFS vs DFS

- Running BFS or DFS from a node in a graph will visit the same set of nodes, but probably in a different order
- BFS will visit nodes in increasing order of distance
 - Will give you the shortest path
- DFS does visit nodes in some interesting order, but not order of distance
 - Take CS161 for more info

Shortest Path

What is the shortest path from A to B?

Shortest Path

What is the shortest path from A to B?

• Use BFS!

Shortest Weighted Path

What is the shortest **weighted** path from A to B?

Shortest Weighted Path

What is the shortest **weighted** path from A to B?

BFS doesn't work here

• Finds the shortest weighted path from one node to another

- Finds the shortest weighted path from one node to another
- Greedy algorithm
 - Prioritizes finding a solution by what is "best right now"
 - Looks at its options and always chooses whatever gets it closer to a solution in the best possible way given the current situation
 - Ex: Change We Can Believe In (Section 4, Problem 2)

- Finds the shortest weighted path from one node to another
- Greedy algorithm
 - Prioritizes finding a solution by what is "best right now"
 - Looks at its options and always chooses whatever gets it closer to a solution in the best possible way given the current situation
 - Ex: Change We Can Believe In (Section 4, Problem 2)
- Many different ways to model this
 - Can use a priority queue, where weights become priorities
 - Can use a table of nodes

- Finds the shortest weighted path from one node to another
- Greedy algorithm
 - Prioritizes finding a solution by what is "best right now"
 - Looks at its options and always chooses whatever gets it closer to a solution in the best possible way given the current situation
 - Ex: Change We Can Believe In (Section 4, Problem 2)
- Many different ways to model this
 - Can use a priority queue, where weights become priorities
 - Can use a table of nodes
- Real world uses: shortest paths on maps (Ethiopia), tracks of electricity lines and oil pipelines, network routing protocols

Algorithm:

- 1. Of the unseen nodes, find the node that currently has the shortest distance from the start
- 2. Look at this node's neighbors, and update the total distance to the neighbors based on their distance and the distance already to this node.
- 3. If the node visited is the destination, stop
- 4. Repeat from step 1

	SJ	Α	В	С	D	E	F	G	SF
Distance from start									
Previous									
Seen?									

	SJ	A	В	С	D	E	F	G	SF
Distance from start	0	∞	8	∞	8	8	8	8	∞
Previous									
Seen?									

	SJ	A	В	С	D	E	F	G	SF
Distance from start	0	∞	∞	∞	∞	∞	∞	&	8
Previous	-								
Seen?									

	SJ	A	В	С	D	E	F	G	SF
Distance from start	0	∞	∞	∞	∞	∞	∞	∞	8
Previous	_								
Seen?	N	N	N	N	N	N	N	N	N

	SJ	A	В	С	D	E	F	G	SF
Distance from start	0	8	∞	∞	∞	∞	∞	∞	8
Previous	-								
Seen?	N	N	N	N	N	N	N	N	N

Step 1: Of the unseen nodes, find the node that currently has the shortest distance from the start

	SJ	Α	В	С	D	E	F	G	SF
Distance from start	0	∞	∞	8	∞	∞	∞	∞	8
Previous	-								
Seen?	N	N	N	N	N	N	N	N	N

Step 1: Of the unseen nodes, find the node that currently has the shortest distance from the start

	SJ	A	В	С	D	E	F	G	SF
Distance from start	0	∞	∞	8	8	&	∞	&	∞
Previous	-								
Seen?	N	N	N	N	N	N	N	N	N

Stanford University

	SJ	Α	В	С	D	E	F	G	SF
Distance from start	0	∞	∞						
Previous	-								
Seen?	N	N	N	N	N	N	N	N	N

Step 2: Look at this node's neighbors, and update the total distance to the neighbors based on their distance and the distance already to this node

	SJ	A	В	С	D	E	F	G	SF
Distance from start	0	5	10	8	8	∞	∞	8	∞
Previous	-								
Seen?	N	N	N	N	N	N	N	N	N

Step 2: Look at this node's neighbors, and update the total distance to the neighbors based on their distance and the distance already to this node

	SJ	A	В	С	D	E	F	G	SF
Distance from start	0	5	10	∞	∞	8	∞	&	∞
Previous	-	SJ	SJ						
Seen?	N	N	N	N	N	N	N	N	N

Step 2: Look at this node's neighbors, and update the total distance to the neighbors based on their distance and the distance already to this node

	SJ	Α	В	С	D	E	F	G	SF
Distance from start	0	5	10	∞	∞	8	∞	∞	&
Previous	-	SJ	SJ						
Seen?	Υ	N	N	N	N	N	N	N	N

Step 2: Look at this node's neighbors, and update the total distance to the neighbors based on their distance and the distance already to this node

	SJ	A	В	С	D	E	F	G	SF
Distance from start	0	5	10	∞	∞	∞	∞	∞	∞
Previous	-	SJ	SJ						
Seen?	Υ	N	N	N	N	N	N	N	N

Step 1: Of the unseen nodes, find the node that currently has the shortest distance from the start

	SJ	Α	В	С	D	E	F	G	SF
Distance from start	0	5	10	∞	∞	∞	∞	∞	∞
Previous	-	SJ	SJ						
Seen?	Υ	N	N	N	N	N	N	N	N

Step 1: Of the unseen nodes, find the node that currently has the shortest distance from the start

	SJ	Α	В	С	D	E	F	G	SF
Distance from start	0	5	10	∞	∞	∞	∞	∞	∞
Previous	-	SJ	SJ						
Seen?	Υ	N	N	N	N	N	N	N	N

Stanford University

	SJ	A	В	С	D	E	F	G	SF
Distance from start	0	5	10	∞	8	8	∞	∞	&
Previous	-	SJ	SJ						
Seen?	Υ	N	N	N	N	N	N	N	N

Stanford University

	SJ	A	В	С	D	E	F	G	SF
Distance from start	0	5	10	205	∞	45	∞	∞	∞
Previous	-	SJ	SJ						
Seen?	Υ	N	N	N	N	N	N	N	N

Step 2: Look at this node's neighbors, and update the total distance to the neighbors based on their distance and the distance already to this node

	SJ	A	В	С	D	E	F	G	SF
Distance from start	0	5	10	205	&	45	∞	8	∞
Previous	-	SJ	SJ	Α		Α			
Seen?	Υ	N	N	N	N	N	N	N	N

Step 2: Look at this node's neighbors, and update the total distance to the neighbors based on their distance and the distance already to this node

	SJ	A	В	С	D	E	F	G	SF
Distance from start	0	5	10	205	&	45	∞	8	∞
Previous	-	SJ	SJ	Α		Α			
Seen?	Υ	Υ	N	N	N	N	N	N	N

Step 2: Look at this node's neighbors, and update the total distance to the neighbors based on their distance and the distance already to this node

	SJ	Α	В	С	D	E	F	G	SF
Distance from start	0	5	10	205	∞	45	∞	&	&
Previous	-	SJ	SJ	Α		Α			
Seen?	Y	Υ	N	N	N	N	N	N	N

Step 1: Of the unseen nodes, find the node that currently has the shortest distance from the start

	SJ	Α	В	С	D	E	F	G	SF
Distance from start	0	5	10	205	&	45	∞	∞	&
Previous	-	SJ	SJ	А		Α			
Seen?	Υ	Υ	N	N	N	N	N	N	N

Step 1: Of the unseen nodes, find the node that currently has the shortest distance from the start

	SJ	A	В	С	D	E	F	G	SF
Distance from start	0	5	10	205	∞	45	∞	∞	∞
Previous	-	SJ	SJ	Α		А			
Seen?	Υ	Υ	N	N	N	N	N	N	N

Step 2: Look at this node's neighbors, and update the total distance to the neighbors based on their distance and the distance already to this node

	SJ	Α	В	С	D	E	F	G	SF
Distance from start	0	5	10	205	&	45	∞	∞	&
Previous	-	SJ	SJ	А		Α			
Seen?	Υ	Υ	N	N	N	N	N	N	N

Which nodes' distances will be updated next in the table and what will those distances become?

	SJ	Α	В	С	D	E	F	G	SF
Distance from start	0	5	10	205	∞	45	∞	∞	&
Previous	_	SJ	SJ	Α		Α			
Seen?	Υ	Υ	N	N	N	N	N	N	N

Stanford University

	SJ	A	В	С	D	E	F	G	SF
Distance from start	0	5	10	18	∞	45	∞	30	&
Previous	-	SJ	SJ	Α		Α			
Seen?	Υ	Υ	N	N	N	N	N	N	N

Stanford University

	SJ	A	В	С	D	E	F	G	SF
Distance from start	0	5	10	18	∞	45	∞	30	&
Previous	-	SJ	SJ	В		Α		В	
Seen?	Υ	Υ	N	N	N	N	N	N	N

Stanford University

	SJ	A	В	С	D	E	F	G	SF
Distance from start	0	5	10	18	∞	45	∞	30	∞
Previous	-	SJ	SJ	В		А		В	
Seen?	Υ	Υ	Υ	N	N	N	N	N	N

Step 2: Look at this node's neighbors, and update the total distance to the neighbors based on their distance and the distance already to this node

	SJ	A	В	С	D	E	F	G	SF
Distance from start	0	5	10	18	∞	45	∞	30	&
Previous	-	SJ	SJ	В		Α		В	
Seen?	Υ	Υ	Υ	N	N	N	N	N	N

Step 1: Of the unseen nodes, find the node that currently has the shortest distance from the start

	SJ	A	В	С	D	E	F	G	SF
Distance from start	0	5	10	18	∞	45	∞	30	&
Previous	-	SJ	SJ	В		Α		В	
Seen?	Υ	Υ	Υ	N	N	N	N	N	N

Step 1: Of the unseen nodes, find the node that currently has the shortest distance from the start

	SJ	Α	В	С	D	E	F	G	SF
Distance from start	0	5	10	18	∞	45	∞	30	∞
Previous	-	SJ	SJ	В		Α		В	
Seen?	Υ	Υ	Υ	N	N	N	N	N	N

Stanford University

	SJ	Α	В	С	D	E	F	G	SF
Distance from start	0	5	10	18	∞	45	∞	30	∞
Previous	-	SJ	SJ	В		А		В	
Seen?	Υ	Υ	Υ	N	N	N	N	N	N

Step 2: Look at this node's neighbors, and update the total distance to the neighbors based on their distance and the distance already to this node

	SJ	A	В	С	D	E	F	G	SF
Distance from start	0	5	10	18	31	45	∞	30	∞
Previous	-	SJ	SJ	В		Α		В	
Seen?	Υ	Υ	Υ	N	N	N	N	N	N

Stanford University

	SJ	Α	В	С	D	E	F	G	SF
Distance from start	0	5	10	18	31	45	∞	30	∞
Previous	-	SJ	SJ	В	С	А		В	
Seen?	Υ	Υ	Υ	N	N	N	N	N	N

Stanford University

	SJ	A	В	С	D	E	F	G	SF
Distance from start	0	5	10	18	31	45	∞	30	∞
Previous	-	SJ	SJ	В	С	Α		В	
Seen?	Υ	Υ	Υ	Υ	N	N	N	N	N

Stanford University

	SJ	Α	В	С	D	E	F	G	SF
Distance from start	0	5	10	18	31	45	∞	30	∞
Previous	-	SJ	SJ	В	С	Α		В	
Seen?	Υ	Υ	Υ	Υ	N	N	N	N	N

Try to find the shortest weighted path from SJ

	SJ	A	В	С	D	E	F	G	SF
Distance from start	0	5	10	18	31	45	∞	30	∞
Previous	-	SJ	SJ	В	С	Α		В	
Seen?	Υ	Υ	Υ	Υ	N	N	N	N	N

Step 1: Of the unseen nodes, find the node that currently has the shortest distance from the start

	SJ	A	В	С	D	E	F	G	SF
Distance from start	0	5	10	18	31	45	∞	30	∞
Previous	-	SJ	SJ	В	С	Α		В	
Seen?	Υ	Υ	Υ	Υ	N	N	N	N	N

Step 1: Of the unseen nodes, find the node that currently has the shortest distance from the start

	SJ	Α	В	С	D	E	F	G	SF
Distance from start	0	5	10	18	31	45	∞	30	&
Previous	-	SJ	SJ	В	С	Α		В	
Seen?	Υ	Υ	Υ	Υ	N	N	N	N	N

Stanford University

	SJ	A	В	С	D	E	F	G	SF
Distance from start	0	5	10	18	31	45	32	30	48
Previous	-	SJ	SJ	В	С	Α		В	
Seen?	Υ	Υ	Υ	Υ	N	N	N	N	N

Stanford University

	SJ	A	В	С	D	E	F	G	SF
Distance from start	0	5	10	18	31	45	32	30	48
Previous	-	SJ	SJ	В	С	Α	G	В	G
Seen?	Υ	Υ	Υ	Υ	N	N	N	N	N

Step 2: Look at this node's neighbors, and update the total distance to the neighbors based on their distance and the distance already to this node

	SJ	Α	В	С	D	E	F	G	SF
Distance from start	0	5	10	18	31	45	32	30	48
Previous	-	SJ	SJ	В	С	Α	G	В	G
Seen?	Υ	Υ	Υ	Υ	N	N	N	Υ	N

Stanford University

	SJ	Α	В	С	D	E	F	G	SF
Distance from start	0	5	10	18	31	45	32	30	48
Previous	-	SJ	SJ	В	С	Α	G	В	G
Seen?	Υ	Υ	Υ	Υ	N	N	N	Υ	N

Step 1: Of the unseen nodes, find the node that currently has the shortest distance from the start

	SJ	Α	В	С	D	E	F	G	SF
Distance from start	0	5	10	18	31	45	32	30	48
Previous	-	SJ	SJ	В	С	Α	G	В	G
Seen?	Υ	Υ	Υ	Υ	N	N	N	Υ	N

Step 1: Of the unseen nodes, find the node that currently has the shortest distance from the start

	SJ	Α	В	С	D	E	F	G	SF
Distance from start	0	5	10	18	31	45	32	30	48
Previous	-	SJ	SJ	В	С	Α	G	В	G
Seen?	Υ	Υ	Υ	Υ	N	N	N	Υ	N

Step 2: Look at this node's neighbors, and update the total distance to the neighbors based on their distance and the distance already to this node

	SJ	A	В	С	D	E	F	G	SF
Distance from start	0	5	10	18	31	32	32	30	48
Previous	-	SJ	SJ	В	С	Α	G	В	G
Seen?	Υ	Υ	Υ	Υ	N	N	N	Υ	N

Step 2: Look at this node's neighbors, and update the total distance to the neighbors based on their distance and the distance already to this node

	SJ	Α	В	С	D	E	F	G	SF
Distance from start	0	5	10	18	31	32	32	30	48
Previous	-	SJ	SJ	В	С	D	G	В	G
Seen?	Υ	Υ	Υ	Υ	N	N	N	Υ	N

Step 2: Look at this node's neighbors, and update the total distance to the neighbors based on their distance and the distance already to this node

	SJ	A	В	С	D	E	F	G	SF
Distance from start	0	5	10	18	31	32	32	30	48
Previous	-	SJ	SJ	В	С	D	G	В	G
Seen?	Υ	Υ	Υ	Υ	Υ	N	N	Υ	N

Step 2: Look at this node's neighbors, and update the total distance to the neighbors based on their distance and the distance already to this node

	SJ	Α	В	С	D	E	F	G	SF
Distance from start	0	5	10	18	31	32	32	30	48
Previous	-	SJ	SJ	В	С	D	G	В	G
Seen?	Υ	Υ	Υ	Υ	Υ	N	N	Υ	N

Step 1: Of the unseen nodes, find the node that currently has the shortest distance from the start

	SJ	Α	В	С	D	E	F	G	SF
Distance from start	0	5	10	18	31	32	32	30	48
Previous	-	SJ	SJ	В	С	D	G	В	G
Seen?	Υ	Υ	Υ	Υ	Υ	N	N	Υ	N

Step 1: Of the unseen nodes, find the node that currently has the shortest distance from the start

	SJ	Α	В	С	D	E	F	G	SF
Distance from start	0	5	10	18	31	32	32	30	48
Previous	-	SJ	SJ	В	С	D	G	В	G
Seen?	Y	Υ	Υ	Υ	Υ	N	N	Υ	N

Step 2: Look at this node's neighbors, and update the total distance to the neighbors based on their distance and the distance already to this node

	SJ	A	В	С	D	E	F	G	SF
Distance from start	0	5	10	18	31	32	32	30	48
Previous	-	SJ	SJ	В	С	D	G	В	G
Seen?	Υ	Υ	Υ	Υ	Υ	Υ	N	Υ	N

Step 2: Look at this node's neighbors, and update the total distance to the neighbors based on their distance and the distance already to this node

	SJ	Α	В	С	D	E	F	G	SF
Distance from start	0	5	10	18	31	32	32	30	48
Previous	-	SJ	SJ	В	С	D	G	В	G
Seen?	Υ	Υ	Υ	Y	Υ	Υ	N	Υ	N

Step 1: Of the unseen nodes, find the node that currently has the shortest distance from the start

	SJ	Α	В	С	D	E	F	G	SF
Distance from start	0	5	10	18	31	32	32	30	48
Previous	-	SJ	SJ	В	С	D	G	В	G
Seen?	Υ	Υ	Υ	Υ	Υ	Υ	N	Υ	N

Step 1: Of the unseen nodes, find the node that currently has the shortest distance from the start

	SJ	A	В	С	D	E	F	G	SF
Distance from start	0	5	10	18	31	32	32	30	48
Previous	-	SJ	SJ	В	С	D	G	В	G
Seen?	Υ	Υ	Υ	Υ	Υ	Υ	N	Υ	N

Step 2: Look at this node's neighbors, and update the total distance to the neighbors based on their distance and the distance already to this node

	SJ	Α	В	С	D	E	F	G	SF
Distance from start	0	5	10	18	31	32	32	30	33
Previous	-	SJ	SJ	В	С	D	G	В	G
Seen?	Υ	Υ	Υ	Υ	Υ	Υ	N	Υ	N

Step 2: Look at this node's neighbors, and update the total distance to the neighbors based on their distance and the distance already to this node

	SJ	A	В	С	D	E	F	G	SF
Distance from start	0	5	10	18	31	32	32	30	33
Previous	-	SJ	SJ	В	С	D	G	В	F
Seen?	Υ	Υ	Υ	Υ	Υ	Υ	N	Υ	N

Step 2: Look at this node's neighbors, and update the total distance to the neighbors based on their distance and the distance already to this node

	SJ	Α	В	С	D	E	F	G	SF
Distance from start	0	5	10	18	31	32	32	30	33
Previous	-	SJ	SJ	В	С	D	G	В	F
Seen?	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	N

Step 2: Look at this node's neighbors, and update the total distance to the neighbors based on their distance and the distance already to this node

	SJ	Α	В	С	D	E	F	G	SF
Distance from start	0	5	10	18	31	32	32	30	33
Previous	-	SJ	SJ	В	С	D	G	В	F
Seen?	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	N

Step 1: Of the unseen nodes, find the node that currently has the shortest distance from the start

	SJ	A	В	С	D	E	F	G	SF
Distance from start	0	5	10	18	31	32	32	30	33
Previous	-	SJ	SJ	В	С	D	G	В	F
Seen?	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	N

Step 1: Of the unseen nodes, find the node that currently has the shortest distance from the start

	SJ	A	В	С	D	E	F	G	SF
Distance from start	0	5	10	18	31	32	32	30	33
Previous	-	SJ	SJ	В	С	D	G	В	F
Seen?	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	N

We're done! Shortest weighted path is of length **33** with a path of ??

	SJ	A	В	С	D	E	F	G	SF
Distance from start	0	5	10	18	31	32	32	30	33
Previous	-	SJ	SJ	В	С	D	G	В	F
Seen?	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	N

We're done! Shortest weighted path is of length 33

with a path of $SJ \rightarrow B \rightarrow G \rightarrow F \rightarrow SF$

Demo

https://bit.ly/graph_demo

	A	В	С	D	E	F	G	Н		J
Distance from start	0	8	8	8	∞	8	8	∞	8	8
Previous	-									
Seen?	N	N	N	N	N	N	N	N	N	N

	Α	В	С	D	E	F	G	Н	ı	J
Distance from start	0	8	∞	8	∞	8	∞	∞	&	8
Previous	-									
Seen?	N	N	N	N	N	N	N	N	N	N

	A	В	С	D	E	F	G	Н		J
Distance from start	0	8	8	8	∞	8	8	∞	8	8
Previous	-									
Seen?	N	N	N	N	N	N	N	N	N	N

	Α	В	С	D	E	F	G	Н		J
Distance from start	0	12	8	8	2	7	6	8	8	8
Previous	-	Α	Α		А	Α	А			
Seen?	Υ	N	N	N	N	N	N	N	N	N

	Α	В	С	D	E	F	G	Н		J
Distance from start	0	12	8	&	2	7	6	∞	∞	8
Previous	_	А	Α		А	Α	А			
Seen?	Υ	N	N	N	N	N	N	N	N	N

	Α	В	С	D	E	F	G	Н	ı	J
Distance from start	0	12	8	8	2	7	6	8	8	8
Previous	-	А	Α		А	А	Α			
Seen?	Υ	N	N	N	N	N	N	N	N	N

	Α	В	С	D	E	F	G	Н		J
Distance from start	0	12	8	8	2	7	6	8	8	8
Previous	-	Α	Α		А	Α	А			
Seen?	Υ	N	N	N	N	N	N	N	N	N

	Α	В	С	D	E	F	G	Н	ı	J
Distance from start	0	12	8	8	2	7	6	8	8	&
Previous	-	Α	Α		А	Α	А			
Seen?	Υ	N	N	N	Υ	N	N	N	N	N

	Α	В	С	D	E	F	G	Н		J
Distance from start	0	12	8	8	2	7	6	8	8	8
Previous	-	Α	Α		А	Α	А			
Seen?	Υ	N	N	N	Υ	N	N	N	N	N

	Α	В	С	D	E	F	G	Н		J
Distance from start	0	12	8	8	2	7	6	8	8	8
Previous	-	Α	Α		А	Α	А			
Seen?	Υ	N	N	N	Υ	N	N	N	N	N

	Α	В	С	D	E	F	G	Н	ı	J
Distance from start	0	12	8	8	2	7	6	8	8	8
Previous	-	А	Α		А	А	Α			
Seen?	Υ	N	N	N	Υ	N	N	N	N	N

	Α	В	С	D	E	F	G	Н		J
Distance from start	0	12	8	8	2	7	6	9	8	8
Previous	-	А	Α		А	Α	А	G		
Seen?	Υ	N	N	N	Υ	N	Υ	N	N	N

	Α	В	С	D	E	F	G	Н		J
Distance from start	0	12	8	8	2	7	6	9	8	8
Previous	-	А	Α		А	Α	А	G		
Seen?	Υ	N	N	N	Υ	N	Υ	N	N	N

	Α	В	С	D	E	F	G	Н	ı	J
Distance from start	0	12	8	8	2	7	6	9	8	8
Previous	-	Α	Α		А	Α	А	G		
Seen?	Υ	N	N	N	Υ	N	Υ	N	N	N

Doesn't seem very efficient

- Finds the shortest weighted path from one node to another
- Uses external information about the graph
- Heuristic: estimates the cost of the cheapest path to the goal
 - Should always underestimate the distance to the goal, because if it overestimates, it could find a non-optimal solution
- If the distance to the destination is closer, weight the nodes in that direction to be preferable
 - priority(u) = weight(s, u) + heuristic(u, d)

What is the shortest weighted path from $A \rightarrow J$?

	A	В	С	D	E	F	G	Н		J
Distance from start	0	8	8	8	8	∞	8	∞	8	8
Distance + future										
Previous	-									
Seen?	N	N	N	N	N	N	N	N	N	N

What is the shortest weighted path from $A \rightarrow J$?

Node	Distance to J	Dist/Smallest Dist
A	301	2.6
В	232	2
С	180	1.6
D	116	1
E	400	3.4
F	441	3.8
G	425	3.7
Н	386	3.3
ı	154	1.3
J	0	0

What is the shortest weighted path from $A \rightarrow J$?

	Α	В	С	D	E	F	G	Н		J
Distance from start	0	∞	∞	∞	∞	∞	∞	∞	∞	∞
Distance + future										
Previous	-									
Seen?	N	N	N	N	N	N	N	N	N	N

	A	В	С	D	E	F	G	Н		J
Distance from start	0	8	8	8	8	8	8	8	8	8
Distance + future	2.6									
Previous	-									
Seen?	N	N	N	N	N	N	N	N	N	N

	A	В	С	D	E	F	G	Н		J
Distance from start	0	8	8	8	8	8	8	8	8	8
Distance + future	2.6									
Previous	-									
Seen?	N	N	N	N	N	N	N	N	N	N

	A	В	С	D	E	F	G	Н	ı	J
Distance from start	0	12	8	8	2	7	6	8	8	8
Distance + future	2.6									
Previous	-	Α	Α		Α	Α	Α			
Seen?	N	N	N	N	N	N	N	N	N	N

	A	В	С	D	E	F	G	Н		J
Distance from start	0	12	8	8	2	7	6	8	8	8
Distance + future	2.6	14								
Previous	-	А	А		Α	Α	Α			
Seen?	N	N	N	N	N	N	N	N	N	N

	A	В	С	D	E	F	G	Н		J
Distance from start	0	12	8	8	2	7	6	8	8	8
Distance + future	2.6	14	9.6							
Previous	-	А	Α		Α	Α	Α			
Seen?	N	N	N	N	N	N	N	N	N	N

	A	В	С	D	E	F	G	Н	ı	J
Distance from start	0	12	8	8	2	7	6	8	8	8
Distance + future	2.6	14	9.6		5.4	11. 8	9.7			
Previous	-	Α	Α		А	А	А			
Seen?	N	N	N	N	N	N	N	N	N	N

	A	В	С	D	E	F	G	Н	ı	J
Distance from start	0	12	8	8	2	7	6	8	8	8
Distance + future	2.6	14	9.6		5.4	11. 8	9.7			
Previous	-	Α	Α		А	А	А			
Seen?	Υ	N	N	N	N	N	N	N	N	N

	A	В	С	D	E	F	G	Н		J
Distance from start	0	12	8	8	2	7	6	8	8	8
Distance + future	2.6	14	9.6		5.4	11. 8	9.7			
Previous	-	Α	А		А	Α	А			
Seen?	Υ	N	N	N	N	N	N	N	N	N

	A	В	С	D	E	F	G	Н	ı	J
Distance from start	0	12	8	8	2	7	6	8	8	8
Distance + future	2.6	14	9.6		5.4	11. 8	9.7			
Previous	-	Α	А		А	Α	А			
Seen?	Υ	N	N	N	Υ	N	N	N	N	N

	A	В	С	D	E	F	G	Н	ı	J
Distance from start	0	12	8	8	2	7	6	8	8	8
Distance + future	2.6	14	9.6		5.4	11. 8	9.7			
Previous	-	А	А		А	А	А			
Seen?	Υ	N	N	N	Υ	N	N	N	N	N

	A	В	С	D	E	F	G	Н	ı	J
Distance from start	0	12	8	8	2	7	6	8	8	8
Distance + future	2.6	14	9.6		5.4	11. 8	9.7			
Previous	-	А	А		А	А	А			
Seen?	Υ	N	N	N	Y	N	N	N	N	N

	A	В	С	D	E	F	G	Н		J
Distance from start	0	12	8	9	2	7	6	8	8	8
Distance + future	2.6	14	9.6		5.4	11. 8	9.7			
Previous	-	А	А		А	А	А			
Seen?	Υ	N	N	N	Υ	N	N	N	N	N

	Α	В	С	D	E	F	G	Н	ı	J
Distance from start	0	12	8	9	2	7	6	8	8	8
Distance + future	2.6	14	9.6	10	5.4	11. 8	9.7			
Previous	-	А	Α	С	А	Α	А			
Seen?	Υ	N	Υ	N	Υ	N	N	N	N	N

	A	В	С	D	E	F	G	Н		J
Distance from start	0	12	8	9	2	7	6	8	8	8
Distance + future	2.6	14	9.6	10	5.4	11. 8	9.7			
Previous	-	Α	А	С	А	А	А			
Seen?	Υ	N	Υ	N	Υ	N	N	N	N	N

	A	В	С	D	E	F	G	Н	ı	J
Distance from start	0	12	8	9	2	7	6	∞	8	8
Distance + future	2.6	14	9.6	10	5.4	11. 8	9.7			
Previous	-	А	А	С	А	А	А			
Seen?	Υ	N	Υ	N	Υ	N	N	N	N	N

	A	В	С	D	E	F	G	Н		J
Distance from start	0	12	8	9	2	7	6	8	8	8
Distance + future	2.6	14	9.6	10	5.4	11. 8	9.7			
Previous	-	Α	А	С	А	А	А			
Seen?	Υ	N	Υ	N	Υ	N	N	N	N	N

	A	В	С	D	E	F	G	Н	ı	J
Distance from start	0	12	8	9	2	7	6	9	8	8
Distance + future	2.6	14	9.6	10	5.4	11. 8	9.7			
Previous	-	А	А	С	А	А	А			
Seen?	Υ	N	Υ	N	Υ	N	N	N	N	N

	A	В	С	D	E	F	G	Н		J
Distance from start	0	12	8	9	2	7	6	9	8	8
Distance + future	2.6	14	9.6	10	5.4	11. 8	9.7	12. 3		
Previous	-	А	А	С	А	А	А	G		
Seen?	Υ	N	Υ	N	Υ	N	Υ	N	N	N

	A	В	С	D	E	F	G	Н	ı	J
Distance from start	0	12	8	9	2	7	6	9	8	8
Distance + future	2.6	14	9.6	10	5.4	11. 8	9.7	12. 3		
Previous	-	А	А	С	А	А	А	G		
Seen?	Υ	N	Υ	N	Υ	N	Υ	N	N	N

	A	В	С	D	E	F	G	Н	ı	J
Distance from start	0	12	8	9	2	7	6	9	8	8
Distance + future	2.6	14	9.6	10	5.4	11. 8	9.7	12. 3		
Previous	-	А	А	С	А	А	А	G		
Seen?	Υ	N	Υ	N	Υ	N	Υ	N	N	N

	A	В	С	D	E	F	G	Н	ı	J
Distance from start	0	12	8	9	2	7	6	9	8	8
Distance + future	2.6	14	9.6	10	5.4	11. 8	9.7	12. 3		
Previous	-	А	А	С	А	А	А	G		
Seen?	Υ	N	Υ	N	Υ	N	Υ	N	N	N

	A	В	С	D	E	F	G	Н	ı	J
Distance from start	0	12	8	9	2	7	6	9	12	
Distance + future	2.6	14	9.6	10	5.4	11. 8	9.7	12. 3		
Previous	-	А	А	С	А	А	А	G		
Seen?	Υ	N	Υ	N	Υ	N	Υ	N	N	N

	A	В	С	D	E	F	G	Н	ı	J
Distance from start	0	12	8	9	2	7	6	9	12	
Distance + future	2.6	14	9.6	10	5.4	11. 8	9.7	12. 3	4	
Previous	-	Α	Α	С	А	Α	Α	G	D	
Seen?	Υ	N	Υ	N	Υ	N	Υ	N	N	N

	A	В	С	D	E	F	G	Н	ı	J
Distance from start	0	12	8	9	2	7	6	9	12	11
Distance + future	2.6	14	9.6	10	5.4	11. 8	9.7	12. 3	4	11
Previous	-	Α	Α	С	А	Α	Α	G	D	D
Seen?	Υ	N	Υ	Υ	Υ	N	Υ	N	N	N

	A	В	С	D	E	F	G	Н	ı	J
Distance from start	0	12	8	9	2	7	6	9	12	11
Distance + future	2.6	14	9.6	10	5.4	11. 8	9.7	12. 3	4	11
Previous	-	А	А	С	А	Α	А	G	D	D
Seen?	Υ	N	Υ	Υ	Υ	N	Υ	N	N	N

We're done! Shortest weighted path is of length 11 from $A \rightarrow C \rightarrow D \rightarrow J$

Extensions

- There are many, many different graph algorithms out there
- Other famous graph algorithms:
 - Kruskal's Algorithm: Find a minimum spanning tree from a given graph.
 - Topological Sort: "Sort" the nodes in a dependency graph in such a way that traversing the nodes in order results in all dependencies being fulfilled at each point in time.
 - Traveling salesman: Given a map of cities and the distances between them, find the shortest path that traverses all cities in the map.

Recap

- Graphs are a linked data structure with almost no rules
 - Represent in code with either an adjacency list or matrix
- Depth-First Search: does not always return the shortest path, though it may be faster in some cases
- Breadth-First Search: returns the shortest path, but it only works on unweighted graphs
- Dijkstra's Algorithm: returns the shortest weighted path, but not necessarily the most efficient
- A* Algorithm: returns the shortest weighted path using heuristics, and is often thought of as gold standard

Have a great weekend! 🌺