Clustering

Automatic set grouping of objects (clusters)

September 2021 Thomas Corpetti

What is clustering?

From a dataset : group homogeneous sets of data : clusters

- Group them by their similarity with respect to a model (generative methods)
- Separate them with respect to their dissimilarity (discriminative GOPERNICUS MASTER

What is clustering?

From a dataset : group homogeneous sets of data : clusters

- Group them by their similarity with respect to a model (generative methods)
- Separate them with respect to their dissimilarity (discriminative GOVERNICUS MASTER

■ Inside a cluster :

■ Inside a cluster : high similarity

- Inside a cluster : high similarity
- Between clusters :

- Inside a cluster : high similarity
- Between clusters : low similarity (high dissimilarity)

- Inside a cluster : high similarity
- Between clusters : low similarity (high dissimilarity)
- ⇒ Distance/metric of prime importance

Applications

Large range of applications

- Web: similar web-pages
- Social-networks : group of users
- Bio-informatics : identify species
- Marketing : types of clients
- Climatology : types of weather
- Image processing : homogeneous areas
- **...**

- Centroid: create several clusters and evaluate their quality depending on some centroids (k-means, k-medoids, PAM, ...)
- Hierarchical: group in a hierarchical way data (AGNES, DIANA, ...)
- Density: rely on the adequacy of data with respect to a certain density (DBSCAN)
- Model-based : one model for each cluster
- Spectral : based on a graph-representation of data

- Centroid: create several clusters and evaluate their quality depending on some centroids (k-means, k-medoids, PAM, ...)
- Hierarchical: group in a hierarchical way data (AGNES, DIANA, ...)
- Density: rely on the adequacy of data with respect to a certain density (DBSCAN)
- Model-based : one model for each cluster
- Spectral : based on a graph-representation of data

- Centroid: create several clusters and evaluate their quality depending on some centroids (k-means, k-medoids, PAM, ...)
- Hierarchical: group in a hierarchical way data (AGNES, DIANA, ...)
- Density: rely on the adequacy of data with respect to a certain density (DBSCAN)
- Model-based : one model for each cluster
- Spectral : based on a graph-representation of data

- Centroid: create several clusters and evaluate their quality depending on some centroids (k-means, k-medoids, PAM, ...)
- Hierarchical: group in a hierarchical way data (AGNES, DIANA, ...)
- Density: rely on the adequacy of data with respect to a certain density (DBSCAN)
- Model-based : one model for each cluster
- Spectral : based on a graph-representation of data

- Centroid: create several clusters and evaluate their quality depending on some centroids (k-means, k-medoids, PAM, ...)
- Hierarchical: group in a hierarchical way data (AGNES, DIANA, ...)
- Density: rely on the adequacy of data with respect to a certain density (DBSCAN)
- Model-based : one model for each cluster
- Spectral : based on a graph-representation of data

Outline

- 2 Partitioning
 - K-means
 - Evaluation / Computations / Characterisation of clusters
 - K-medoids
- 3 Hierarchical Clustering
 - Principes
 - Agglomerative
 - Divisive
- - Principles
- - Principles
- 6 Spectral clustering (graph-based)
 - Principles

Centroid

- \blacksquare Construct k clusters from n objects
- Many criteria
 - k-means (MacQueen'67) : rely on the center to create clusters

Centroid

- lacktriangle Construct k clusters from n objects
- Many criteria
 - k-means (MacQueen'67) : rely on the center to create clusters
 - k-medoids or PAM (Partition around medoids) : rely on specific data to create clusters

Main idea

- Create k-partitions : each data is associated with the closest center of partition
- Also called quantification algorithm of Lloyd-Max
- We start from a data matrix X of dimension $N \times P$ (N points of
- \blacksquare Le number of clusters k is a hyperparameter, supposed to be known

Main idea

- Create k-partitions: each data is associated with the closest center of partition
- Also called quantification algorithm of Lloyd-Max
- We start from a data matrix X of dimension $N \times P$ (N points of
- \blacksquare Le number of clusters k is a hyperparameter, supposed to be known

Main idea

- Create k-partitions: each data is associated with the closest center of partition
- Also called quantification algorithm of Lloyd-Max
- We start from a **data matrix** X of dimension $N \times P$ (N points of dimension P)
- \blacksquare Le number of clusters k is a hyperparameter, supposed to be known

K-means

■ Formalisation : find the partition $S^* = \{S1, ..., S_k\}$ such that

$$S^* = \arg\min_{S} \sum_{i=1}^{k} \sum_{x_j \in S_i} ||x_j - \mu_i||^2$$

with μ_i the average of points in S_i

■ → Tricky optimization problem

K-means

■ Formalisation : find the partition $S^* = \{S1, ..., S_k\}$ such that

$$S^* = \arg\min_{S} \sum_{i=1}^{k} \sum_{x_j \in S_i} ||x_j - \mu_i||^2$$

with μ_i the average of points in S_i

■ → Tricky optimization problem

Standard algorithm

- 1 Iteration p=0: find k initial means $\mu_i^p, \forall i=1...k$ (usually randomly)
- **2** For each iteration p, until convergence
 - **1** Each point x_j is assigned to partition S_i^p if its distance with center μ_i^p is minimal :

$$S_i^p = \left\{ x_j : \|x_j - \mu_i^p\| \leqslant \|x_j - \mu_{i^*}^p\|, \ \forall i^* = 1...k \right\}$$

2 Update the mean of each partition

$$\mu_{i^*}^{p+1} = \frac{1}{\operatorname{card}(S_i^p)} \sum_{x_i \in S_i^p} x_j$$

3
$$p = p + 1$$

Note: the convergence can be low \Longrightarrow find some heuristics

Standard algorithm

- 1 Iteration p=0: find k initial means $\mu_i^p, \forall i=1...k$ (usually randomly)
- **2** For each iteration p, until convergence
 - **1** Each point x_j is assigned to partition S_i^p if its distance with center μ_i^p is minimal :

$$S_i^p = \left\{ x_j : \|x_j - \mu_i^p\| \leqslant \|x_j - \mu_{i^*}^p\|, \ \forall i^* = 1...k \right\}$$

2 Update the mean of each partition

$$\mu_{i^*}^{p+1} = \frac{1}{\operatorname{card}(S_i^p)} \sum_{x_i \in S_i^p} x_j$$

3
$$p = p + 1$$

Note: the convergence can be low \Longrightarrow find some heuristics

K-means: some notes

Pros

- Cost-function always decreasing along iterations
- Simple and efficient

- Discontinuous data (what is a "centroid" in this case)?
- How to fix the number of clusters?

- Monte-Carlo
- Fix k with cross validation

Pros

- Cost-function always decreasing along iterations
- Simple and efficient

Coins

- Discontinuous data (what is a "centroid" in this case)?
- How to fix the number of clusters?

- Monte-Carlo
- Fix k with cross validation

Pros

- Cost-function always decreasing along iterations
- Simple and efficient

Coins

- Discontinuous data (what is a "centroid" in this case)?
- How to fix the number of clusters?

Variations, alternative approaches

- Monte-Carlo
- \blacksquare Fix k with cross validation

K-means: some notes

Pros

- Cost-function always decreasing along iterations
- Simple and efficient

Coins

- Discontinuous data (what is a "centroid" in this case)?
- How to fix the number of clusters?

Variations, alternative approaches

- Monte-Carlo
- Fix k with cross validation

In each case: centers are not guarantee to be part of the dataset

K-means: exercice

Apply a k-mean with 3 clusters for the 1D dataset :

$$P = \{1, 2, 3, 6, 8, 9, 13, 14, 16\}$$

With initial means

$$\mu_1^0 = 1, \mu_2^0 = 2, \mu_3^0 = 3$$

Uniform random set: 2 partitions

Uniform random set: 5 partitions

Point cloud with 5 clusters

Point cloud with 3 clusters

Point cloud with 3 clusters

What about images

create a point cloud with R, G, B coef, and may be spatial coordinates

- \blacksquare one can add X, Y coordinates:
- one can also filter images

What about images

create a point cloud with R, G, B coef, and may be spatial coordinates

To impose spatial consistency

- \blacksquare one can add X, Y coordinates;
- one can also filter images

How to characterise a cluster? How to compare partitions?

- Characterisation:
 - Inertia inside a cluster S_i composed of points $x_1, ..., x_M$ of M:

$$\mathcal{I}_i = \sum_{k=1}^{M} p(x_k) d(x_k, \mu_i)$$

with

 \blacksquare d(.,.): a distance function;

 $\blacksquare \mu_i$: center of the cluster;

 $p(x_k)$: probability of point x_k

Note: If all points have similar probability, $p(x_k) = 1/M$

How to characterise a cluster?

- Characterisation :
 - Inertia inside a cluster S_i composed of points $x_1, ..., x_M$ of M:

$$\mathcal{I}_i = \sum_{k=1}^{M} p(x_k) d(x_k, \mu_i)$$

- \blacksquare d(.,.): a distance function;
- \blacksquare μ_i : center of the cluster;
- $p(x_k)$: probability of point x_k

Note: If all points have similar probability, $p(x_k) = 1/M$

- Characterisation :
 - "Intra-class" intertia (of all clusters S):

$$\mathcal{I}ntra = \sum_{k=1}^{|S|} \mathcal{I}_k$$

⇒ sum of all cluster intertia

 \blacksquare "Inter-class" intertia (between all clusters S):

$$\mathcal{I}nter = \sum_{k=1}^{|S|} \frac{1}{|\mathsf{card}(S_k)|} d(\mu_k, \mu_k)$$

with

 μ : global average of points

- Characterisation :
 - \blacksquare "Intra-class" intertia (of all clusters S):

$$\mathcal{I}ntra = \sum_{k=1}^{|S|} \mathcal{I}_k$$

- ⇒ sum of all cluster intertia
- \blacksquare "Inter-class" intertia (between all clusters S):

$$\mathcal{I}nter = \sum_{k=1}^{|S|} \frac{1}{|\mathsf{card}(S_k)|} d(\mu_k, \mu)$$

with

 \blacksquare μ : global average of points

How to compare partitions

■ Let's take all pair of points (x_m, x_n) and let's have a look of their partitions with two methods. Four possibilities :

Class with method 2 Class with method 1	same	different
same	а	b
different	С	d

Rand index :

$$R = \frac{a+d}{a+b+c+d} = \frac{a+d}{C_2^N}$$

How to compare partitions

■ Let's take all pair of points (x_m, x_n) and let's have a look of their partitions with two methods. Four possibilities :

Class with method 2 Class with method 1	same	different
same	a	b
different	С	d

Rand index :

$$R = \frac{a+d}{a+b+c+d} = \frac{a+d}{C_2^N}$$

Exercise

lacktriangle We have a set of 5 points $\{x_1,x_2,x_3,x_4,x_5\}$, and 2 clustering methods gave the following partitions:

$$S_1 = \{1, 1, 2, 2, 2\}$$

$$S_2 = \{1, 2, 2, 1, 2\}$$

■ What is the Rand index?

General ideas

- Find most representative centroids (medoids) in the cluster
- Principle: iteratively replace medoids if the global distance is reduced
- More robust with respect to outliers

General ideas

- Find most representative centroids (medoids) in the cluster
- Principle : iteratively replace medoids if the global distance is reduced
- More robust with respect to outliers

Standard algorithm

- 1 Iteration p=0: select k initial centroids $\mu_i^p, \forall i=1...k$ (for example randomly inside the dataset)
- 2 For each iteration p, until convergence
 - **1** Each point is assigned to partition S_i^p if its distance with medoid μ_i^p is minimal:

$$S_i^p = \left\{ x_j : \|x_j - \mu_i^p\| \leqslant \|x_j - \mu_{i^*}^p\|, \ \forall i^* = 1...k \right\}$$

Note: exactly the same than k-means

- **2** For each class i, choose randomly some non-medoids (or all) μ_i^p
 - Compute the replace cost of μ_i^p by μ_i^p
 - If the cost is lower, μ_i^p is replaced by μ_i^p

Standard algorithm

- 1 Iteration p=0: select k initial centroids $\mu_i^p, \forall i=1...k$ (for example randomly inside the dataset)
- 2 For each iteration p, until convergence
 - **1** Each point is assigned to partition S_i^p if its distance with medoid μ_i^p is minimal:

$$S_i^p = \left\{ x_j : \|x_j - \mu_i^p\| \le \|x_j - \mu_{i^*}^p\|, \ \forall i^* = 1...k \right\}$$

Note: exactly the same than k-means

- **2** For each class i, choose randomly some non-medoids (or all) μ_i^p
 - Compute the replace cost of μ_i^p by μ_i^p
 - If the cost is lower, μ_i^p is replaced by μ_i^p

Note: the convergence can be low \Longrightarrow find some heuristics

Pros

- Cost-function always decreasing along iterations
- Simple and efficient
- The cluster centroids (medoids) are interpretable

■ How to fix the number of clusters?

- Monte-Carlo
- Fix k with cross validation

Pros

- Cost-function always decreasing along iterations
- Simple and efficient
- The cluster centroids (medoids) are interpretable

Coins

■ How to fix the number of clusters?

- Monte-Carlo
- Fix k with cross validation

K-medoids: some notes

Pros

- Cost-function always decreasing along iterations
- Simple and efficient
- The cluster centroids (medoids) are interpretable

Coins

■ How to fix the number of clusters?

Variations, alternative approaches

- Monte-Carlo
- Fix k with cross validation

K-medoids: exercise

Apply the K-medoids method with 2 clusters on the 1D dataset :

$$P = \{1, 3, 4, 5, 8, 9\}$$

With initial medoids

$$\mu_1^0=1, \mu_2^0=8$$

Outline

- 2 Partitioning
 - K-means
 - Evaluation / Computations / Characterisation of clusters
 - K-medoids
- 3 Hierarchical Clustering
 - Principes
 - Agglomerative
 - Divisive
- - Principles
- - Principles
- 6 Spectral clustering (graph-based)
 - Principles

Hierarchical Clustering

Two main types:

- 1 Clustering agglomerative (bottom-up): all points are in distincts clusters that are merged based on some criteria
- 2 Clustering divisive : all points are in a single cluster which is split depending on some criteria
- - The smallest distance between points of each clusters

 - The distance between the mean of each cluster
 - The average between all pairwise distances
 -

Two main types:

- Clustering agglomerative (bottom-up): all points are in distincts clusters that are merged based on some criteria
- 2 Clustering divisive: all points are in a single cluster which is split depending on some criteria

⇒ Important question : what is the distance between two clusters. Is it :

- The smallest distance between points of each clusters
- The largest distance between points of each clusters
- The distance between the mean of each cluster
- The average between all pairwise distances
- ...

Hierarchical Agglomerative Clustering

Starting point : distance matrix

■ From a set of N points of dimension P, the (symmetric) distance matrix is:

$$M = \begin{bmatrix} 0 & D(1,2) & . & D(1,N) \\ D(2,1) & 0 & . & D(2,N) \\ . & . & 0 & . \\ D(N,1) & D(N,2) & . & 0 \end{bmatrix}$$

Algorithm

- 1 Group all distances lower than a given threshold together
- 2 Recompute a distance matrix with the new dataset

Stop criteria to define

Main family: AGNES (AGglomerative NESting)

Hierarchical Agglomerative Clustering

Starting point : distance matrix

 \blacksquare From a set of N points of dimension P, the (symmetric) distance matrix is:

$$M = \begin{bmatrix} 0 & D(1,2) & . & D(1,N) \\ D(2,1) & 0 & . & D(2,N) \\ . & . & 0 & . \\ D(N,1) & D(N,2) & . & 0 \end{bmatrix}$$

Algorithm

- 1 Group all distances lower than a given threshold together
- 2 Recompute a distance matrix with the new dataset

Stop criteria to define

Hierarchical Agglomerative Clustering

Starting point : distance matrix

 \blacksquare From a set of N points of dimension P, the (symmetric) distance matrix is :

$$M = \begin{bmatrix} 0 & D(1,2) & . & D(1,N) \\ D(2,1) & 0 & . & D(2,N) \\ . & . & 0 & . \\ D(N,1) & D(N,2) & . & 0 \end{bmatrix}$$

Algorithm

- 1 Group all distances lower than a given threshold together
- 2 Recompute a distance matrix with the new dataset

Stop criteria to define

Main family: AGNES (AGglomerative NESting)

Hierarchical Divisive Clustering

Algorithm

- 1 Start from a large cluster that embeds all data
- 2 Divise it if not consistent

How to divise it? ⇒ Less used algorithm

Hierarchical Divisive Clustering

Algorithm

- 1 Start from a large cluster that embeds all data
- 2 Divise it if not consistent

How to divise it? ⇒ Less used algorithm

Main family: DIANA (DIvise ANAlysis)

Outline

- 2 Partitioning
 - K-means
 - Evaluation / Computations / Characterisation of clusters
 - K-medoids
- 3 Hierarchical Clustering
 - Principes
 - Agglomerative
 - Divisive
- 4 Density based clustering
 - Principles
- - Principles
- 6 Spectral clustering (graph-based)
 - Principles

Density based clustering

Basic assumptions

- 1 A cluster is a "dense" area
- 2 Data are composed of various clusters separated by less-dense areas

Basic assumptions

- 1 A cluster is a "dense" area
- 2 Data are composed of various clusters separated by less-dense areas

Principles

- 1 Two points are potentially in the same cluster if the are separated by a distance less than a radius fixed by the user
- 2 Each cluster has a minimal size

Main problem : in case of too much noise : all points in the same cluster

Pros: no need to compute means

Density based clustering

Basic assumptions

- 1 A cluster is a "dense" area
- 2 Data are composed of various clusters separated by less-dense areas

Principles

- 1 Two points are potentially in the same cluster if the are separated by a distance less than a radius fixed by the user
- 2 Each cluster has a minimal size

Main problem : in case of too much noise : all points in the same cluster

Pros: no need to compute means

Density based clustering

Basic assumptions

- 1 A cluster is a "dense" area
- 2 Data are composed of various clusters separated by less-dense areas

Principles

- 1 Two points are potentially in the same cluster if the are separated by a distance less than a radius fixed by the user
- 2 Each cluster has a minimal size

Main problem : in case of too much noise : all points in the same cluster

Pros: no need to compute means

Outline

- 2 Partitioning
 - K-means
 - Evaluation / Computations / Characterisation of clusters
 - K-medoids
- 3 Hierarchical Clustering
 - Principes
 - Agglomerative
 - Divisive
- - Principles
- Model based clustering
 - Principles
- 6 Spectral clustering (graph-based)
 - Principles

Model based clustering

Basic assumptions

- **1** We know the number k of clusters
- 2 Each er has a model

■ Each point is associated with the most likely model

Model based clustering

Basic assumptions

- **1** We know the number k of clusters
- 2 Each er has a model

Principles

■ Each point is associated with the most likely model

Basic assumptions

- 1 We know the number k of clusters
- 2 Each er has a model

Principles

■ Each point is associated with the most likely model

Main difficulty: get such models

Outline

- 2 Partitioning
 - K-means
 - Evaluation / Computations / Characterisation of clusters
 - K-medoids
- 3 Hierarchical Clustering
 - Principes
 - Agglomerative
 - Divisive
- - Principles
- - Principles
- 6 Spectral clustering (graph-based)
 - Principles

Spectral clustering

Data are represented on graphes

- The distance between each vertices is computed based on the similarity between points
- Perform "cut" on graphes

Spectral clustering

Data are represented on graphes

- The distance between each vertices is computed based on the similarity between points
- Perform "cut" on graphes

Data are represented on graphes

- The distance between each vertices is computed based on the similarity between points
- Perform "cut" on graphes

Graph theory

source : Wikipedia

Graphe	Représentation par une matrice d'adjacence	Représentation par une matrice laplacienne (non normalisée)
6 4 5 1	$\begin{pmatrix} 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 2 & -1 & 0 & 0 & -1 & 0 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 \\ -1 & -1 & 0 & -1 & 3 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \end{pmatrix}$

■ Based on Adjency and Laplacian matrix, one can characterise the structure of data

