

CSC3100 Data Structures Lecture 13: Sorting algorithms

Yixiang Fang
School of Data Science (SDS)
The Chinese University of Hong Kong, Shenzhen

- Comparison-based sorting algorithms
 - ShellSort
- Non-comparison-based sorting algorithms
 - CountingSort
 - BucketSort
 - RadixSort
- ▶ A summary of 10 classic sorting algorithms
- External sorting

- Break the quadratic time barrier by comparing elements that are distant
- The distance between comparisons decreases as the algorithm runs until the last phase, in which adjacent elements are compared (diminishing increment sort)
- An increment sequence h_1 , h_2 , h_3 , ..., h_t , used in reverse order with $h_1=1$

- After a phase, with an increment h_k , A [i] <= A [i + h_k]. All elements spaced h_k apart are sorted (insertion sort)
- Example (1,3,5)

Standard insertion sort

ShellSort with {1,2,4,8,...,n/2}

```
public static void shellSort(int[] a) {
    int j;
   for (int gap = a.length/2; gap > 0; gap /=2)
        for (int i = gap; i < a.length; i++) {
            int tmp = a[i];
           for (j = i; j >= gap && tmp < a[j-gap]; j-= gap)
                a[j] = a[j-gap];
            a[i] = tmp;
```


- Analysis of Shellsort
 - It is very hard (average-case is a long-standing open problem);
 - Results depend on the selection of an increment sequence;
 - Theorem:
 - The worst-case running time of Shellsort, using some increment, is $\Theta(N^2)$

Theorem:

• The worst-case running time of Shellsort, using some increments, is $\Theta(N^2)$

Proof (for some cases):

- Put the largest N/2 numbers in the even positions.
 e.g., 4,12,1,10,3,11,2,9
- Using the increments {..., 8,4,2,1}
- Before the last sort, the N/2 largest numbers are still in the even positions. {e.g., 1,9,2,10,3,11,4,12}
- The numbers of inversions is $1+2+...+(N-1)/2 = \Theta(N^2)$

- Hibbard's increment 1, 3, 7, .., 2^k-1
 (consecutive increments have no common factors)
 - Worst-case running time: $\Theta(N^{3/2})$
 - Average-case running time: $O(N^{5/4})$
- Sedgewick's increment 1, 5, 19, 41, 109, ...
 (each term is either 9*4i-9*2i+1 or 4i-3*2i+1)
 - Worst-case running time: $O(N^{4/3})$
 - Average-case running time: $O(N^{7/6})$

Non-comparison-based sorting algorithms

- ▶ Idea: suppose the values are integers in [0, m-1]
- Steps
 - Start with m empty buckets numbered 0 to m-1
 - Scan the list and place element s[i] in bucket s[i]
 - Output the buckets in order
- Will need an array of buckets, and the values in the list to be sorted will be the indexes to the buckets
 - No comparisons will be necessary

CountingSort

Algorithm BucketSort(5) (values in 5 are between 0 and m-1)

```
for j \leftarrow 0 to m-1 do // initialize m buckets b[j] \leftarrow 0 for i \leftarrow 0 to n-1 do // place elements in their appropriate buckets b[S[i]] \leftarrow b[S[i]] + 1 i \leftarrow 0 for j \leftarrow 0 to m-1 do // place elements in buckets for r \leftarrow 1 to b[j] do // back in S[i] \leftarrow j i \leftarrow i + 1
```


Use CountingSort to sort the following sequence of integer values

- How to process the case that the minimum value in the input sequence of integers is very large?
- How to process the case that the values in the sequence vary greatly (i.e., 1, 10, 101, 1000, 100001)?

Assumption:

 The input is generated by a random process that distributes elements uniformly over [0, 1)

▶ Idea:

- Divide [0, 1) into n equal-sized buckets
- Distribute the n input values into the buckets
- Sort each bucket (e.g., using QuickSort)
- Go through the buckets in order, listing elements in each one
- ▶ Input: A[1..n], where $0 \le A[i] < 1$ for all i
- Output: elements A[i] sorted
- ▶ Extra array: B[0 . . n 1] of <u>linked lists</u>, each list initially empty

BucketSort

BucketSort

BucketSort

BUCKET-SORT(A, n)

for $i \leftarrow 1$ to n do insert A[i] into list B[\nA[i]] for $i \leftarrow 0$ to n - 1do sort list B[i] with quicksort sort concatenate lists B[O], B[1], ..., B[n-1] together in order return the concatenated lists

 $\Theta(n)$

Stable Sort

 Definition: A stable sorting algorithm is one that preserves the original relative order of elements with equal key

▶ E.g., suppose the left attribute is the key

attribute

Using Stable Sort (1/4)

- Suppose we sort some 2-digit integers
- Phase 1: Stable sort by the right digit (the least significant digit)

- Suppose we sort some 2-digit integers
- Phase 2: Stable sort by the left digit (the second least significant digit)

Using Stable Sort (3/4)

- Suppose we sort some 2-digit integers
- Phase 2: Stable sort by the left digit (the second least significant digit)

Using Stable Sort (4/4)

- Suppose we sort some 2-digit integers
- Phase 2: Stable sort by the left digit (the second least significant digit)

- BucketSort is not efficient if m is large
- The idea of radix sort:
 - Apply stable bucket sort on each digit (from Least Significant Digit to Most Significant Digit)
- A complication:
 - Just keeping the count is not enough
 - Need to keep the actual elements
 - Use a queue for each digit

RadixSort (Example) (1/3)

- Input: 170, 045, 075, 090, 002, 024, 802, 066
- The first pass
 - Consider the least significant digits as keys and move the keys into their buckets

0	17 <u>0</u> , 09 <u>0</u>
1	
2	00 <u>2</u> , 80 <u>2</u>
3	
4	02 <u>4</u>
5	04 <u>5</u> , 07 <u>5</u>
6	06 <u>6</u>
7	
8	
9	

Output: 170, 090, 002, 802, 024, 045, 075, 066

Radix Sort (Example) (2/3)

- The second pass
- Input: 170, 090, 002, 802, 024, 045, 075, 066
 - Consider the second least significant digits as keys and move the keys into their buckets

0	0 <u>0</u> 2, 8 <u>0</u> 2
1	
2	0 <u>2</u> 4
3	
4	0 <u>4</u> 5
5	
6	0 <u>6</u> 6
7	1 <u>7</u> 0, 0 <u>7</u> 5
8	
9	0 <u>9</u> 0

Output: 002, 802, 024, 045, 066, 170, 075, 090

RadixSort (Example) (3/3)

- The third pass
- Input: <u>0</u>02, <u>8</u>02, <u>0</u>24, <u>0</u>45, <u>0</u>66, <u>1</u>70, <u>0</u>75, <u>0</u>90
 - Consider the third least significant digits as keys and move the keys into their buckets

0	<u>0</u> 02, <u>0</u> 24, <u>0</u> 45, <u>0</u> 66, <u>0</u> 75, <u>0</u> 90
1	<u>1</u> 70
2	
3	
4	
5	
6	
7	
8	<u>8</u> 02
9	

Output: 002, 024, 045, 066, 075, 090, 170, 802 (Sorted)

Code (1/2)

```
// item is the type: \{0,...,10^{d}-1\},
// i.e., the type of d-digit integers
void radixsort(item A[], int n, int d)
   int i;
   for (i=0; i< d; i++)
      bucketsort(A, n, i);
// To extract d-th digit of x
int digit(item x, int d)
   int i;
   for (i=0; i< d; i++)
      x \neq 10; // integer division
   return x%10;
```


Code (2/2)

```
void bucketsort(item A[], int n, int d)
// stable-sort according to d-th digit
   int i, j;
   Queue *C = new Queue[10];
   for (i=0; i<10; i++) C[i].makeEmpty();
   for (i=0; i< n; i++)
      C[digit(A[i],d)].EnQueue(A[i]);
   for (i=0, j=0; i<10; i++)
      while (!C[i].empty())
      { // copy values from queues to A[]
         C[i].DeQueue(A[j]);
         j++;
```


Inductive Proof that RadixSort Works

- Keys: k-digit numbers, base B
 - (that wasn't hard!)
- Claim: after ith BucketSort, the least significant i digits are sorted
 - Base case: i=0. O digits are sorted.
 - Inductive step: Assume for i, prove for i+1
 Consider two numbers: X, Y. Say X_i is ith digit of X:
 - $X_{i+1} < Y_{i+1}$ then i+1th BucketSort will put them in order
 - X_{i+1} > Y_{i+1} , same thing
 - $X_{i+1} = Y_{i+1}$, order depends on last i digits. Induction hypothesis says already sorted for these digits because BucketSort is stable

Worst-case Time Complexity

- Assume k digits, each digit comes from {0,...,M-1}
- For each digit,
 - O(M) time to initialize M queues,
 - O(n) time to distribute n numbers into M queues
- Total time = O(k(M+n))
- When k is constant and M = O(n), we can make RadixSort run in linear time, i.e., O(n)

Can we start from the most significant digit?

Now let sort three 3-digit numbers? 478, 430, 356

1st digit:

4, **4**, **3** => **3**, **4**, **4** => **3**56, **4**78, **4**30 2nd digit:

5, **7**, **3** => **3**, **5**, **7** => 4**3**0, 3**5**6, 4**7**8 3rd digit:

0, 6, 8 => 0, 6, 8 => 430, 356, 478

- Since RadixSort is faster than QuickSort, why is QuickSort still preferable in many cases?
 - Although radix sort runs in $\Theta(n)$ while QuickSort $\Theta(n \mid g \mid n)$, quick sort has much smaller constant factor c
 - RadixSort requires external memory, whereas QuickSort works in place

Show how RadixSort sorts the following sequence of integer values 140, 121, 356, 801, 911, 109, 056, 631

10 classic sorting algorithms

Sorting			Extra		
algorithm	Stability	Best	Average	Worst	space cost
Bubble sort	$\sqrt{}$	O(n)	O(n ²)	$O(n^2)$	O(1)
Insertion sort	$\sqrt{}$	O(n)	O(n ²)	O(n ²)	O(1)
Selection sort	×	<i>O</i> (n)	O(n ²)	$O(n^2)$	O(1)
MergeSort	$\sqrt{}$	O(nlogn)	O(nlogn)	O(nlogn)	O(n)
HeapSort	×	O(nlogn)	O(nlogn)	O(nlogn)	O(1)
QuickSort	×	O(nlogn)	O(nlogn)	O(n ²)	O(logn)
ShellSort	×	O(n)	$O(n^{1.3})$	$O(n^2)$	O(1)
CountingSort	$\sqrt{}$	O(n+k)	O(n+k)	O(n+k)	O(k)
BucketSort	$\sqrt{}$	O(n)	O(n+k)	$O(n^2)$	O(k)
RadixSort	$\sqrt{}$	O(nk)	O(nk)	O(nk)	O(n)

- For the input on some sequential-access media like tapes and it is too large to be all incorporated into the memory
- Computing time becomes insignificant when compared with access time
- Merge routine from MergeSort is used

```
\begin{array}{ll} \operatorname{MERGE-SORT}(A,\,p,\,r) \\ & \text{ if } p < r & \rhd \operatorname{Check} \text{ for base case} \\ & \text{ then } q \leftarrow \lfloor (p+r)/2 \rfloor & \rhd \operatorname{Divide} \\ & \operatorname{MERGE-SORT}(A,\,p,\,q) & \rhd \operatorname{Conquer} \\ & \operatorname{MERGE-SORT}(A,\,q+1,r) & \rhd \operatorname{Conquer} \\ & \operatorname{MERGE}(A,\,p,\,q,r) & \rhd \operatorname{Combine} \end{array}
```


- Assume we have four tape drives and four tapes
- The data in Tape T_{a1} are to be sorted
- ▶ The memory can read at most M=3

T _{a1}	81	94	11	96	12	35	17	99	28	58	41	75	15
T _{a2}													
T _{b1}													
T _{b2}													

Read 3 data at a time from T_{a1} and write the sorted results into T_{b1} and T_{b2} alternatively

T_{a1}	81 94 11 96 12 35 17 99 28 58 41 75 15
T_{a2}	
T _{b1}	<u>11 81 94 17 28 99 15</u>
T _{b2}	<u>12 35 96</u> <u>41 58 75</u>

Merge sorted groups from T_{b1} and T_{b2} and write to T_{a1} and T_{a2} alternatively, and repeat this step

✓ T _{a1}	<u>11 12 35 81 94 96</u> <u>15</u>
T _{a2}	17 28 41 58 75 99
T _{b1}	<u>11 81 94 17 28 99 15</u>
T _{b2}	<u>12 35 96</u> <u>41 58 75</u>

T _{a1}	<u>11 12 35 81 94 96</u> <u>15</u>
T _{a2}	<u>17 28 41 58 75 99</u>
T _{b1}	11 12 17 28 35 41 58 75 81 94 96 99
T _{b2}	<u>15</u>

1	T_{a1}	11 12 15 17 28 35 41 58 75 81 94 96	99
	T_{a2}		
	T _{b1}	11 12 17 28 35 41 58 75 81 94 96 99	
	T _{b2}	<u>15</u>	misie

Recommended reading

- Reading this week
 - Chapters 7&8, textbook
- Next lecture:
 - Hashing, chapter 11

Complexity analysis

- Assumptions and notations
 - We use disk to do the external sorting
 - Disk page size: B data elements
 - Data file size: N data elements, n=N/B disk pages
 - Available main memory: M elements, m=M/B pages

Complexity analysis

Analysis

- Phase 1:
 - Read file, write file: 2n = O(n) I/Os
- Phase 2:
 - One iteration: read file, write file, taking 2n = O(n) I/Os
 - Number of iterations: $log_2N/M = log_2 n/m$
- Total running time: O(n log₂ n/m)

Can we do better?

- Phase 1: uses all available memory
- Phase 2: uses multi-way merge!