AD 668714

VOUGHT AERONAUTICS DIVISION LTV AEROSPACE CORPORATION

PO BOX 5907 DALLAS TEXAS 75222

Reproduced by the
CLEARINGHOUSE
for Federal Scientific & Technical
Information Springfield Va. 22151

241

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

Report No. 2-55400/8R-6140 April 1968

VTOL WATER HOVER EFFECTS, including THE EFFECTS OF WIND AND WAVES

Distribution of this Report is Unlimited

Reproduction in Whole or in Part Is Permitted For Any Purpose of the United States Government

The Work Research Reported Herein Has Been Sponsored by the Office of Naval Research Contract No. N00014-67-C-0488 ONR Contract Authority Identification Number NR212-167/11-1-66

TABLE OF CONTENTS

				,	Page
List	of I	llustra	tions		V
List	of T	ables .	• • • • • • • •		ix
1.0	Intr	oductio	n		1-1
2.0	Test	Facili	ties		2-1
	2.1	Aero-H	ydro Test	Facility	2-1
		2.1.1	Tank		2-1
		2.1.2	Wave Gen	erator	2-1
		2.1.3	Wind Gen	erator	2-2
	2.2	Model	and Model	Support System	2-2
	2.3	Test I	nstrument	ation	2-4
		2.3.1	Model In	strumentation	2-4
			2.3.1.1	Internal Balance	2-4
			2.3.1.2	Propeller Thrust Measurement	2-4
			2.3.1.3	Moisture Samples	2-5
			2.3.1.4	Data Recording System	2-5
		2.3.2	Test Fac	ility Instrumentation	2-5
			2.3.2.1	Photographic Data	2-5
			2.3.2.2	Electrical Depth Gages	2-6
			2.3.2.3	Wind Generator	2-6
			2.3.2.4	Ambient Data	2-7
		2.3.3	Data Reco	ording	2-7
		2.3.4	Data Red	uction	2-7
			2.3.4.1	Six-Component Force and Moment Data	2-7
			2.3.4.2	Thrust Data	2-8
			2.3.4.3	Data Reduction Factor	2-8
			2.3.4.4	Data Corrections	2-8
			2.3.4.5	Tabulated Data	2-8
3.0	Force	and Mo	oment Date	Results	3-1
	3.1	Normal	Force Dat	ta	3-2
	3.2	Drag De	ta		3-3
	3.3	Pitchir	ng Moment	Data	3-3
	3.4	Lateral	L-Directio	onal Data	3-4

TABLE OF CONTENTS (continued)

			Page	2
	3.5	Vertic	al Floats 3-4	+
	3.6	Dynami	c Characteristics 3-5	5
4.0	Down	wash En	vironment 4-1	L
	4.1	Introd	uction 4-1	L
	4.2	Data R	ecording Techniques 4-1	L
		4.2.1	Moisture 4-1	L
			4.2.1.1 Water Flow Rate 4-1	L
			4.2.1.2 Droplet Size 4-2	?
		4.2.2	Water Depression 4-3	}
		4.2.3	Qualitative Observations 4-4	
	4.3	Test R	esults 4-4	•
		4.3.1	Flow Field Description 4-5	;
		4.3.2	Repeatability and Sidewall Effects 4-8	}
		4.3.3	Effects of Important Parameters 4-9)
			4.3.3.1 Time 4-9)
			4.3.3.2 Model Height 4-1	.0
			4.3.3.3 Disc Loading 4-1	1
			4.3.3.4 Wing Angle 4-1	1
			4.3.3.5 Wind 4-1	2
			4.3.3.6 Waves 4-1	?
			4.3.3.7 Roll Angle 4-1	4
			4.3.3.8 Vertical Floats 4-1	.5
			Droplet Size Investigation 4-1	
			Effects of a Non-Newtonian Fluid 4-1	
			caling 4-1	
	4.5	Signif:	icance of Results 4-1	
		4.5.1	Spray Circulation 4-1	•
		4.5.2	Depression Shape 4-1	9
		, ,	Droplet Size 4-2	
			General Spray Patterns 4-2	
5.0	Conc	lusions		

TABLE OF CONTENTS (concluded)

		Page
6.0	Recommendations	6-1
7.0	References	7-1

LIST OF ILLUSTRATIONS

Figure	<u>Title</u>	Page
2-1	LTV Aero-Hydro Test Facility	2-84
2-2	LTV Aero-Hydro Test Facility	2-85
2-3	Water Tank and Wave Generator	2-86
2-4	Wave Generator Calibration	2-87
2-5	LTV Aero-Hydro Test Facility Wind Generator	2-88
2 - 6	LTV Aero-Hydro Test Facility Wind Generator Plenum	2-89
2 - 7	LTV Aero-Hydro Test Facility Wind Generator Diffuser Exit	2-90
2-8	LTV Aero-Hydro Test Facility, Wind, Waves, and Spray	2-91
2-9	Wind Generator Calibration	2-92
3-1	Effects of Model Height Ratio and Disc Loading on Longitudinal Characteristics	3-7
3-2	Effects of Model Height Ratio and Disc Loading on Longitudinal Characteristics	3-8
3-3	Effects of Model Height Ratio and Disc Loading on Longitudinal Characteristics	3-9
3-4	Effects of Model Height Ratio and Disc Loading on Lateral-Directional Characteristics	3-10
3-5	Time History of Model Normal Force and Propeller Thrust with Surface Winds On and Off	3-11
3-6	Time History of Waves Generated by Propellers with Wave-Maker Off	3-12
4-1	Moisture Meter Installation	4-27
4-2	Isokinetic Probe Installation	4-28
4-3	Positions of Moisture Meters and the Isokinetic Probe	4-29
4-4	Droplet Snatcher	4-30
4-5	Depth Gage Installation and Vertical Float Configuration	4-31
4-6	Depth Gage Pattern	4-32
4-7	Depression Beneath Model	4-33
4-8	Neoprene Coated Propeller Prior to Installation	4-34-
4-9	Uncoated Propeller after 21 Hours of Testing	4-35

LIST OF ILLUSTRATIONS (continued)

Figure	<u>Title</u>	Page
4-10	Coated Propeller after 21 Hours of Testing	. 4-36
4-11	Effect of Sidewall Deflection	. 4-37
4-12	Water Entering Propellers - Repeatability	. 4-38
4-13	Water Entering Propellers - Effects of Side Wall	. 4-39
4-14	Water Displacement Along Propeller Centerline - Repeatability and Effects of Side Wall	. 4-40
4-15	Water Displacement Fore and Aft Repeatability and Effects of Side Wall	. 4-41
4-16	Effects of Time	. 4-42
4-17	Water Entering Propellers - Effects of Model Height	. 4-43
4-18	Water Entering Propellers - Effects of Model Height	• 4-44
4-19	Water Entering Propellers - Effects of Model Height	. 4-45
4-20	Water Entering Propellers - Effects of Model Height	. 4-46
4-21	Water Displacement Along Propeller Centerline - Effects of Model Height	. 4-47
4-22	Water Displacement Fore and Aft - Effects of Model Height	. 4-48
4-23	Water Displacement Along Propeller Centerline - Effects of Model Height	. 4-49
4-24	Water Displacement Fore and Aft - Effects of Model Height	. 4-50
4-25	Water Displacement Along Propeller Centerline - Effects of Model Height	. 4-51
4-26	Water Displacement Fore and Aft - Effects of Model Height	. 4-52
4-27	Water Displacement Along Propeller Centerline - Effects of Model Height	. 4-53
4-28	Water Displacement Fore and Aft - Effects of Model Height	. 4-54
4-29	Model at 6.45 PSF Disc Loading	. 4-55
4-30	Model at 10.82 PSF Disc Loading	. 4-56
4-31	Model at 15.25 PSF Disc Loading	. 4-57
4-32	Water Entering Propellers - Effects of Disc Loading	. 4-58
4-33	Water Entering Propellers - Effects of Disc Loading	. 4-59

LIST OF ILLUSTRATIONS (continued)

Figure	<u>Title</u>	Page
4-34	Water Displacement Along Propeller Centerline- Effects of Disc Loading	4-60
4-35	Water Displacement Fore and Aft - Effects of Disc Loading	4-61
4-36	Water Entering Propellers - Effects of Wing Angle	
4-37	Water Displacement Alorg Propeller Centerline - Effects of Wing Angle	4-63
4-38	Water Displacement Fore and Aft - Effects of Wing Angle	4-64
4-39	Water Entering Propellers - Effects of Surface Winds	
4-40	Water Displacement Along Propeller Centerline - Effects of Wind	4-66
4-41	Water Displacement Fore and Aft - Effects of Wind	4-67
4-42	Water Entering Propellers - Effects of Wave Height	4-68
4-43	Water Entering Propellers - Effects of Wave Height	4-69
14-1114	Water Entering Propellers - Effects of Wave Length	4-70
4-45	Water Displacement Along Propeller Centerline - Effects of Waves	4-71
4-46	Water Displacement Along Propeller Centerline - Effects of Waves	4-72
4-47	Water Displacement Along Propeller Centerline - Effects of Waves	4-73
4-48	Water Displacement Along Propeller Centerline - Effects of Waves	
4-49	Water Displacement Fore and Aft - Effects of Waves	4-75
4-50	Water Displacement Fore and Aft - Effects of Waves	4-76
4-51	Effects of Waves	4-77
4-52	Effects of Waves	4-78
4-53	Effects of Waves	4-79
4-54	Effects of Waves	4-80
4-55	Water Entering Propellers - Effects of Roll Angle	4-81
4-56	Water Entering Propellers - Effects of Roll Angle	4-82
4-57	Water Displacement Along Propeller Centerline - Effects of Roll Angle	4-83

LIST OF ILLUSTRATIONS (continued)

Pigure	Title	Page
4-58	Water Displacement Fore and Aft - Effects of Roll Angle	4-84
4-59	Water Displacement Along Propeller Centerline - Effects of Roll Angle	4-85
4-60	Water Displacement Fore and Aft - Effects of Roll Angle	4-86
4-61	Water Displacement Topographical Plot - Effects of Roll Angle	4-87
4-62	Water Entering Propellers - Effects of Vertical Floats	4-88
4-63	Water Entering Propellers - Effects of Vertical Floats	4-89
4-64	Water Displacement Along Propeller Centerline - Effects of Vertical Floats	4-90
4-65	Water Displacement Fore and Aft - Effects of Vertical Floats	4-91
4-66	Maximum Droplet Size	4-92
4-67	Water Droplet Size	4-93
4-68	Water Droplet Size	4-94
4-69	Water Droplet Size	4-95
4-70	Water Droplet Size	4-96
4-71	Water Droplet Size	4-97
4-72	Typical Microphotograph of Glass Slide from Droplet Snatcher	4-98
4-73	Typical Photograph of Depth Gage Number 28 through 40-inch Lens	4-99
4-74	Water Droplet Size	4-100
4-75	Water Displacent Along Propeller Centerline - Effects of Polyethylene Oxide	4-101
4-76	Water Displacement Fore and Aft - Effects of Polyethylene Oxide	4-102
4-77	Effect of Froude Number on Average Moisture Circulation	. 4-103
4-78	Effect of Reynolds Number on Average Moisture Circulation	. 4-104

LIST OF ILLUSTRATIONS (concluded)

Figure	<u>Title</u>	Page
4-79	Effect of Weber Number on Average Moisture Circulation	4-105
4-80	Effect of Disc Loading on Depression Depth	4-106
4-81	Effect of Disc Loading on Depression Width/Depth	4-107
4-82	Variation of Maximum Dynamic Pressure of Ground Flow with Height for Propellers	4-108
4-83	Effect of Maximum Ground Dynamic Pressure on Depression Depth	4-109
4-84	Water Displacement Along Propeller Centerline — Predicted Full-Scale XC-142A Depression	4-110
4-85	Water Displacement Along Propeller Centerline - Predicted Full-Scale XC-142A Depression	4-111
4-86	Water Displacement Along Propeller Centerline - Predicted Full-Scale XC-142A Depression	4-112

LIST OF TABLES

Table	<u>Title</u>	Page
2-1	Water Hover Test Run Index	2-11
2-2	VAD Low Speed Wind Tunnel Test No. 266 - Balance Axes Data	. 2-18
4-1	Moisture Meter Data	. 4-22
4-2	Model to Full-Scale Conversions	. 4-25
4-3	Sea Conditions, U. S. Hydrographic Office Scale	. 4-26

1.0 INTRODUCTION

earth have closely paralleled the advances made in transportation and communications systems available to and used by these nations. An advance can be made in the transportation system by improving the flexibility of the system as well as the speed of the system. Just as the automotive vehicles added a large degree of flexibility to the rail system, V/STOL aircraft offers a comparable degree of flexibility to the air transportation systems of the post-1970 time period. By contrast, the ship offers a maximum of flexibility to water transportation systems; but it suffers from a slow speed potential. Some speed advances are being made for the speed potential of ships through the use of hydrofoils, but the potentials offered by these vehicles appear to be less than 100 miles per hour.

The use of seaplanes was examined extensively through the mid1950's as one potential method of providing a combination flexibility and
speed for water transportation systems. The seaplanes did offer the speed,
but the seaplane was found to be relatively inflexible with regard to its
ability to operate from water surfaces. The seaplane demanded relatively
calm water surfaces for takeoff and landing, and such surfaces were not
readily found in open ocean areas. Only under emergency conditions were
landing attemps made with operational seaplanes under sea conditions more
severe than a sea state two.

Recent interest in the ocean and potential advantages it offers to man if he becomes its master has caused a renewed interest in advances that might be made for water transportation systems. Just as the V/STOL

airplane has given a large degree of improvement in the flexibility for the land-based simplane, it may well be capable of providing a comparable degree of increased flexibility to a water transportation system that uses airplanes as the prime carrier. V/STOL aircraft, with slow takeoff and landing speeds, may well be able to permit the operation of air vehicles from open ocean surfaces in all but the most severe weather conditions.

The uses of water-based aircraft which could operate from open ocean surfaces under most weather conditions are many fold. Such vehicles would satisfy the need for many military operations as well as the needs of the civilian community. Some of the military needs that could be satisfied by such a vehicle include the rescue of crews of military aircraft that have gone down at sea, the conduct of anti-submarine warfare operations, and the retrieval of space exploration capsules and/or personnel. The definition of civilian applications are not as readily specified because the lack of a present capability has prevented the establishment of requirements. It is expected that recent interest in oceanographic basic research programs will shortly cause requirements to evolve that can be met by aircraft capable of operating from open ocean surfaces. In addition, VTOL aircraft (helicopters) are being used to transport personnel and equipment to and from offshore oil rigs in coastal areas, and the projected lower operating costs of V/STOL aircraft could make such operations more profitable.

The previous conjectures assume that providing a V/STOL capability to an airplane will permit it to operate from open ocean surfaces under rather severe sea state conditions. Although such an assumption is known to be under investigation, it has not as yet been proven valid.

The ability of V/STOL aircraft to operate from land surfaces has been proven by such test-bed and prototype aircraft as the LTV XC-142A, the Bell X-22A, the Ryan XV-5A, the Canadair CI-84 and the Hawker-Siddley XV-6A. Some very limited tests have been made with some of the aircraft hovering over water surfaces, but there have been no tests which would confirm or reject the possibility that vehicles of this type could operate from open ocean surfaces.

In order to provide a data base suitable for assessing the feasibility of V/STOL aircraft for operating from open ocean surfaces, a limited amount of testing of scale models has been performed (References 1-1, 1-2 and 1-3). Reference 1-1 reports on limited measurements that were made of the spray characteristics around a V/STOL aircraft during hover over a calm and a rough water surface. Reference 1-2 reports on additional qualitative and limited quantitative measurements that were made on a model simulating a V/STOL aircraft hovering over a calm water surface. Under the direction of Reference 1-3, additional quantitative measurements were made using the same model that was used for the tests reported in Reference 1-2. For the tests performed in response to Reference 1-3, measurements were made of the spray characteristics and the forces and moments felt by the model during hover. Again, a calm water surface was used.

As a result of the previous test programs, it was considered desirable to examine the spray characteristics and the forces and moments acting on the model which simulates the airplane hovering over a water surface with water and surface wind conditions varying from calm up to those representative of at least a sea state four condition. Such tests have been conducted in response to Reference 1-4 and the results of these tests are reported herein.

More specifically, the tests reported in this report include the measurement of the water spray passing through potential engine inlet areas behind the propeller at various blade radius stations away from the propeller rotational axis, qualitative evaluations of water spray patterns, and measurement of the forces and moments acting on the model all during simulated hover over a calm water surface with no surface winds, a calm water surface with simulated 40-knot surface winds, a rough water surface (waves with simulated heights of 4.5 and 9 feet) with no surface winds, and a rough water surface with the simulated 40-knot surface wind.

2.0 TEST FACILITIES

2.1 AERO-HYDRO TEST FACILITY

An Aero-Hydro Test Facility was constructed at the LTV Hover Site located adjacent to the LTV Low Speed Wind Tunnel. The facility consists of an open tank, a wave generator, and a wind generator. The existing model support, hydraulic power system for the model, and model instrumentation system were incorporated into the facility with minor modifications but without being relocated. Photographs of the facility are presented in Figures 2-1 and 2-2.

2.1.1 <u>Tank</u>

The tank is a welded structure, 20 feet wide, 75 feet long, and 8 feet high, constructed of 1/4-inch steel plate with external framing. A framework filled with rock and rubberized horsehair and covered with wire mesh is located at the downstream end of the tank to provide damping and to prevent the formation of reflected waves. A sketch of the tank and wave generator is shown in Figure 2-3.

2.1.2 Wave Generator

The wave generator is of the paddle type (i.e., a panel hinged at the bottom of the tank) and located at the upstream end of the tank. It is constructed of aluminum and extends the width of the tank. Rubber strips along the sides and across the bottom seal the edges of the paddle against the sides and bottom of the tank. A 60-gpm sump type water pump is used to pump any water leaking past the seals back into the main part of the tank forward of the paddle. An air spring consisting of an air cylinder and accumulator is used to counterbalance the paddle against the static force of the water against the paddle.

An electro-hydraulic servo-controlled system, programmed to generate a sinusoidal motion, is used to drive the paddle. With the system, it is possible to obtain any combination of amplitude and frequency up to 12 degrees of paddle motion at angular acceleration rates of 0.9 radians per second per second or less. Figure 2-4 is a plot of wave height and length versus paddle amplitude and frequency as calibrated with 7.5 feet of water in the tank.

For the subject test program, 6-inch and 12-inch wave heights were used. For reference to full-scale tests of the XC-142A airplane, these wave heights would represent wave heights of 4.5 and 9.0 feet, respectively.

2.1.3 Wind Generator

The wind generator consists of two Size 9, Class 1 Buffalo-Forge squirrel-cage blowers, each driven at 587 rpm by 50-horsepower electric motors. The blowers are ducted into a common plenum/diffuser having an exit opening 11 feet high by 14 feet wide. The blower exhausts its air due north. The entire assembly is mounted over the water tank on a frame which can be moved along the tank to position the exit face of the diffuser between 10 and 20 feet from the model support. Wind velocities ranging from 10 to 15 knots are obtained over an area 10 feet high by 10 feet wide at 20 feet from the diffuser exit. Photographs of the assembly are presented in Figures 2-5 through 2-8. A plot of air velocities obtained during calibration of the blowers is shown in Figure 2-9.

2.2 MODEL AND MODEL SUPPORT SYSTEM

The test vehicle used for this program was an 0.11-scale hydraulic powered low speed wind tunnel model of the XC-142A V/STOL aircraft. The

model has a wing span of approximately 7-1/2 feet and a body length of 5-1/2 feet.

The external fuselage skins were constructed from fiberglass and attached to a steel fuselage beam which housed a steel balance adapter to accept an internal six-component strain gage balance. The aft end of the strain gage balance was attached to a steel support which extended throughout the upper-aft fuselage skin. The steel support was constructed such that various pitch, yaw, and roll angles could be obtained. The support was suspended from a manually operated hoist to obtain various heights above the water tank.

The control surfaces of this model consist of a vertical tail constructed from steel and fiberglass, a horizontal tail fabricated from aluminum, and a steel wing. The trailing edge of the wing was provided with double-slotted flaps and ailerons. Four fiberglass nacelles were located on the leading edge of the wing which housed four 28-horsepower hydraulic motors. A scaled fiberglass propeller was attached to each of the four motor shafts capable of being rotated at velocities up to 11,000 RPM. The wing was attached to the fuselage beam such that wing incidence angles between 0 and 100 degrees could be obtained.

Additional accessories were fabricated for the model to measure moisture during the water hover test. Two solenoid-operated moisture meters of steel and aluminum construction were mounted on the underside of each wing behind the props during hover operations. An isokinetic probe, with cover attached to moisture meter cover, was fabricated from bent steel tubing containing a moisture filter housing of steel with an aluminum tube leading to a vacuum pump. A hand-operated drop snatcher was made from aluminum, steel, wood, and a glass slide for catching moisture samples. This unit is composed

of a shoulder stock and handgrip and is about 7 feet long. The moisture meters can be seen in Figure 4-1, the isokinetic probe in Figure 4-2, and the droplet snatcher in Figure 4-4.

()

- 2.3 TEST INSTRUMENTATION
- 2.3.1 Model Instrumentation
- 2.3.1.1 Internal Balance

The O.11-scale XC-142 model loads were measured by the LTV VTB-2 internal strain gage balance.

The VTB-2 is a six-component strain gage balance configured with a circular hollow along its longitudinal centerline. This hollow serves as a passage for supply and return hydraulic lines which power the four propellers. Corrections to the data were made for fluid tare effects, thermal expansion, and material modulus changes with temperature.

The model attitude (and configuration) remained fixed during a given run; therefore, no correction was necessary for model weight versus model attitude.

A complete bench balance calibration was performed prior to this test. The calibration was accomplished with deadweight loadings using Bureau of Standards class 3 certified weights. Balance output versus load was recorded to an accuracy of one microvolt. The overall balance accuracy (including nonlinearity, hysteresis, and scatter) was approximately 0.20% of full reals.

2.3.1.2 Propeller Thrust Measurement

Each of the four propellers was powered by a Vickers hydraulic motor capable of approximately 28 shaft horsepower per motor. The motor rpm could be varied from 0-11,000 and controlled within +2 rpm under ideal conditions and +6 rpm under test conditions. A five-component strain gage

thrust cowl was used to measure propeller thrust. The full-scale design thrust of each unit was 50 pounds.

The thrust units were deadweight calibrated with Bureau of Standards class 3 weights. The deadweight calibration outputs were recorded to an accuracy of one microvolt. The overall thrust accuracies (including non-linearity, hysteresis, and scatter) were approximately 0.1% full scale.

2.3.1.3 Moisture Samples

Moisture samples were obtained with two remotely controlled, solenoid-operated meters mounted on each wing between the inboard and outboard propellers and at engine inlet elevation. Each moisture meter contained four traps. A protective cover was rigged and electrically driven to close the traps. The traps remained uncovered for a specific period of time after test conditions were stabilized. The water collected in each trap was weighed with a microbalance to an accuracy of +1.0 milligram.

2.3.1.4 Data Recording System

The digital recording system was common for strain gage balance and component outputs, thrust outputs, and hydraulic supply pressure and return temperature. The digitizer control unit was connected to an electronic scanner, which in turn transmitted the raw data to an IBM card punch and typewriter. This system records data to an accuracy of approximately .1% of full scale. The propeller rpm was recorded by the use of magnetic pickups, and this pulse signal was displayed on an EFUT meter (frequency counter). A servo control was used to maintain plus or minus 6 rpm. The set point rpm was introduced as fixed data to the card punch and typewriter.

2.3.2 Test Facility Instrumentation

2.3.2.1 Photographic Data

Wave property instrumentation consisted primarily of photographic data.

Visual depth gages were used to measure wave height, period, and model downwash-induced local disturbances which defined the water contour beneath the model. Undisturbed wave shape and properties were monitored upstream of the model. Electrical output depth gages were also used during the test.

Movie cameras were placed around the model to record the visual depth sees data and spray patterns. One camera was mounted above the model to record the general spray patterns. Two additional cameras were positioned at an elevation which caused the camera to use a downward angle of approximately 15° with respect to the water surface and located approximately 80° and 30° to the left of the model heading.

During selected runs, two high speed movie cameras were used to record droplet trajectories, while a high speed still camera was used to photograph droplets in the spray area passing through the propellers.

For runs where the model was at a rolled attitude, two additional cameras were positioned approximately 30° and 90° to the right of the model heading.

2.3.2.2 Electrical Depth Gages

The electrical depth gages acted as potentiometers indexing water level as a function of resistance change. These gages had instantaneous response and a resolution of wave height to within 0.1 inch. The output of these gages was recorded with a light beam oscillograph.

2.3.2.3 Wind Generator

The wind generator was calibrated with an anemometer, which was positioned 20 feet from the wind generator at the model location. The average velocity at this location was 13 knots over an area 8 feet wide by 7 feet high.

2.3.2.4 Ambient Data

An anemometer, thermometer, and barometer were located at the hover facility to measure ambient conditions. These data are presented in the Run Index, Table 2-1.

2.3.3 Data Recording

The recorded data during this test was obtained in the following manner:

- a. A wind-off-zero was recorded with the digital data system.
- b. Hydraulic pressure was set at the desired level.
- c. The wind generator was started.
- d. Waves were set to the desired pattern.
- e. Propeller rpm was adjusted until the desired thrust level was obtained.
- f. When all of the above conditions were obtained and stabilized, the following data were recorded:
 - 1. Digital data
 - 2. Moisture samples
 - 3. Photographic data
 - 4. Wave pattern data
 - 5. Ambient conditions
- g. The point was terminated, and a final wind-off-zero was recorded with the digital data system.

2.3.4 Data Reduction

2.3.4.1 Six-Component Force and Moment Data

Data from the VTB-2 six-component internal balance were displayed on the digital data system and recorded with an IBM typewriter and card-punch

machine. Using the appropriate constarts, the data were reduced to balance axes data in units of pounds and inch-pounds, converted to coefficient data and transferred to the model center of gravity.

2.3.4.2 Thrust Data

The thrust data were displayed on the digital data system and recorded with an IBM typewriter and card-punch machine. Using the appropriate constant, the data were reduced to pounds of thrust.

2.3.4.3 Data Reduction Factor

S = 931.0896 sq in. (model wing area)

 $\ddot{c} = 10.6548$ in. (mean geometric chord)

b = 89.10 in. (model wing span)

Ap = 2.283 sq in. (propeller disc area)

C.G. Location: F.S. 29.132

W.L. 13.200 20% MGC

B.L. 0.000

Date Reduction Axes: Wind Axes

2.3.4.4 Data Corrections

All force and moment coefficients were corrected for balance interaction, pressure effects of the hydraulic lines, and for temperature effects. Thrust data were corrected for pressure and temperature effects.

2.3.4.5 Tabulated Data

All tabulated balance and thrust data are presented in Table 2-2. The nomenclature and symbols used in the Run Index and Tabulated Data are as follows:

Aerodynamic
Symbol

Definition

AF Axial force, 1b

ALPHA Model angle of attack, deg

AVET Average thrust, 1b

C_D Drag coefficient

C_L Lift coefficient

C_M Pitching moment coefficient

CRM Rolling moment coefficient

CTS_{1-h} Thrust coefficient (subscript denotes position)

CTST Average thrust coefficient

C_y Side force coefficient

CYM Yawing moment coefficient

D_p Propeller diameter, inches

H/DP Ratio of model height to propeller diameter. H is the

average distance between the water surface and the two

outboard propeller planes at shaft centerline

IW Wing incidence angle, deg

J₁₋₄ Propeller advance ratio (subscript denotes position)

NF Normal force, 1b

PM Pitching moment, in-1b

PSI Model angle of yaw, deg

Pt Data point number

QS Slipstream dynamic pressure

Aerodynamic Symbol

Definition

RM

i alling moment, in-1b

RPM₁₋₄

Propeller speed, revolutions per minute (subscript de-

notes position)

SF

Side force, lb

T₁₋₄

Thrust, 1b (subscript denotes position)

T/A

Ratio of thrust to propeller disc area

YM

Yawing moment, in-1b

TABLE NO. WATER HOVEL RUN II

R	M	H/D _P	T/A	WAVE HEIGHT	WAVE LENGTH	BLOWER	q	•	'w	Dp	FLOATS	MOISTURE SAMPLE	SIDE-
100.	PT.			(IN.)	(F T.)	ON/OFF	(PSF)	(DEG)	(DEG)	(IN.)	ON/OFF	(SEC)	WALL H
1	1	3.7	6.45	0	0	OFF	0	0	. 90	20.46	OFF	0_	0
	2		10.32								1	60	
	3		15.25								i i	60	
2	1	2.5	6.45									0	
			10, 32									60	
	3		15.25									60	
	1	1,6	6,45									0	
		ı	10, 32									. 60 _	
	3		15.25									60	
	1	1.4	6.45									60	
	8		10,32									60	
	•		15.25									60	
5	1	27	6.45									0	6.0
	2		10.32									60	
	3		16.25									60	1
6	1		6.45			COST	•59					0	İ
	•		10.32			L.				1.0		60	
	1	1 1	15.25									60	
7	1		6.45	6.0	5,0	077	0					0	
-			10.32									60	
	3		15.25									60	
8	1		6.45		7.5						Ì	0	
			10.32									60	
	•	1 I :	5.25	1								60	*
9	1		6.45		5.0	OM	-59			7.		0	
	2		0.32								0.0	60	
,	3		15.25				1	1				60	į
					•	· · · · · · · · · · · · · · · · · · ·	737	,			•		
								•				2_11	

A

TABLE NO. 2-1 ATER HOVER TEST RUN INDEX

TANK SIDE- WALL HT	AMBIENT TEMP	BARO	AMBIENT WINDS	REMARKS	DATE
(IN)		(11 Hg)	NOIS / VEL.) '	1967
. 0	78	29.93	. •		12/19
	- 1 -			10 0000	
45 H	1			·	
	72 	·- =		le de la maria esta esta esta esta esta esta esta est	
•				· · · · · · · · · · · · · · · · · · ·	
	70.			·	
	1				
			•	• • • • • • • • • • • • • • • • • • • •	
	68	S: (e)e		•	
4					
T	Y	3	8/10-20	te com to testes -	L.,
, 6.0 .	74	•	, 10 -2 0	;	75/50
• 1	-			· · · · · · · · · · · · · · · · · · ·	
		51 13			
500					
	ŧ	,	. 🕴		1_
. .	54 I	29.95	NW/5	•	15/57
	1				
	¥2	. V 30.55	N/4-10		
.	1	30.55			-
		'		•	
		n 23		•	15/55
	†	V	. *	·	
		1			
				$^{\prime}\mathcal{Y}$	

RI	UN	H/Dp	T/A	WAVE HEIGHT	WAVE LENGTH	BLOWER	q	¢		D _O	FLOATS	SAMPLE	SIDU-	1
NO.	PT.			(IN.)	(F T.)	(ON/OFIT	(PSF)	(DEG)	' L(D£ G)	N)	(, N/OFF)		WALL H	T
مد	1	3.7	6.45	12.0	15	OFF	0	0	90	20.46	OFF	0	6.0	
	2		10.32							. 1 .		60		
	3		15.25							,] ,		60		1
11	1		6.45	6.0	7.5		-5 9	. 0						
	2		10.32					1				60		
12	1		6,45	0	0	ON	• 59_		85			0	7.0	
	2		10.32							, ,		0		,
	3		15.25									60		
13	1		6,45					!	. 80			•	()- ·	-
			10.32									· · · · · · · · · · · · · · · · · · ·		
	3		15.25						1			60		
14	1		6.45						75	i •		0	-	
-	9		10.32									o		
	3		15.25									60		
15	1		6.45						70			Ο.		
	8	+	m.32									0	10	i
	3		15.25			= = =				, -		60		
16	-	Ш	15.25	<u> </u>	1		Ì		70/0			0	.	
17	1		6,45	12,0	_15	OFF	. 0		90		•	0		
_18	1	2.5	6.45	0	0	OFF	<u>0</u> .	****	90	20.46	OFF	0	7.0	
	2		10.33		1		_ !			1.	•	60		
	3		15.25				.					60		
70	1		6.45			ON	59		55 a			0		
	2		D.32				1					60 .		
	3		15.25			t	•				.ll a	60		
90	1	2.0	6.45	0	. • 1	OFF	0	Ξ.				0		
	٥		10.32									60		
	3		15.25		+	•	ł	+	+	•	+	3 0	+	
A												2-	12	

MER HOVER TEST RUN INDEX

	M THEFT					
	SIDE -	AMPIENT TEMP	BARO PRESS.	AMBIENT WIND:	REMARKS	DATE
	WALL HI		المناداة.	i (Dis. · VEC	7: V:	2065
	(1!v)					1967
7 5	6.0	. 444 - 1	30.55	NW/6-10		75/55
		i	u = ~		52 b) -	
•				N/4-10		•
		, - 1				_ 1_
	7.0	39	30.14	CALM	Y s realise re	12/28
•	e i				d	4 11
i					il	
-	-	. 39				= = = = = = = = = = = = = = = = = = = =
+						
		. 🛊		. =		
		39	30,10			
- •	- L				· · · · · · · · · · · · · · · · · · ·	
-						
- •		12	:	72		
1						
-						
		44			No Balance Data Taken- Photos Only	
1		42				12/29
,	7.0	44	30.22	CALM		
•	1	•			R.H. moisture tray failed to close completely	
6						1
		46	30.17	E/4		
ı			1		* ** ** = 1.	
51					T T T T T T T T T T T T T T T T T T T	
٠				CALM		
					•	myere:
					R.H. moisture tray inoperative this pnt	
-]	.2	4	7	•		

RU	IN	H/D _P	T/A	WAVE HEIGHT	WAVE LENGTH	BLOWER	q	•	iw	D.F.	FLOATS	MOISTURI SAMPLE	SID
NO.	PT.			(IN:)	(F T.)	(ON/OFF	(PSF)	(DEG)	(DEG)	(1(v.)	(ON/OFF	(SEC)) .!AW.)
21	1	2.0	6.45	0	0	QN_	. 59	0	90	20.46	OFF	30	7.0
	2		10.32										1
			15.25										
22	1		6.45		7.5	OFF	0					0	
	9		10, 32									30	
	3		15,25										3
	1		6.45			O#	,59					0	
	9		io. 32									0	
	3											15	
	4		15.25									15	
24	1	3.7	6.45	0.0	0.0	OFF	0					0	
	2		10,32									60	
	3		15.25									60	
25	1		6.45	8,0	10	COS	•59					0	
	2		10.32				1					60	
*	1	1.6	6.45	0.0	0.0	OFF	0					60	
	2		0.32				1				444	30	
n	1		6,45			OM	.59					60	
	2		10.32				1					30	
.00	1		6.45	6.0	7-5	OFF.	_0					60	
	2		10.32	1			1	_				60	
29	1		6.45			CONT	•59					60	
	2		10.32									3 0	
30	1	2,4	6,45	0.0	C.D	OFT	0					60	
	2		10.32	1			Δ.,	_				30	
n	1	1.4	6.45	6.0	7.5	ON .	•59					30	
	2		10.32								•	3 0	
		<u></u>				.23		(-			

	TANK SIDE - WALL HI	AMRIENT TEMP	BARO PRESS	AMBIENT WINDS	REMARKS	SATE
- -	(IN)	(91)	(14 Hg)	(CIR, VEL)		1968
= 1	7.0	50	30,05	s/5.0		1/2
1		1	Ea			
1	-		30.00	s /8-12		
			1	1000		•
- 5		· j -		s/ 6-8		
		. Y		5/ 0-0		
		52_				
	12 m			SE/4		
			† 1	CALM		72.000
		46	30.10	R/5		1/15
•					AND THE RESERVE OF THE PERSON	
•					en 1911 - State (1911) - 1911	
		48	30.08	NE/6	(a) ((((((((((((((((((
	10) 1 1 1 1	1				
		47	30.09	NE/7		
		46		NE/6-8		
,			1			
		36	30.25	CALM		1/16
		•				1
		. 40		7		
		43		1		•
	12	51	30.18			
		51	+			
		54	30.16		•	
ľ		49	30.12	8/10		1/17
2-	13					1

RI	UN	H/D _P	T/A	WAVE HEIGHT	WAVE LENGTH	BLOWER	1	ij.	₩.	190	12021	MONTUS SAMPLE	× 196
NO.	PT.			(IN)	(FT)	(ON/OFF	(PSF)	DEC)	(DEG)	(114)	"ON/Or•	(SEC)	V.A. L.
30	1	1.3	-6.45	0		ON	.5 9	0	90	20.46	OFF	. 60	7.0
	8		10.32	L ±	1	₩	•		10			30	
33	1	 	6.45	6.0	7.5	OFF	0					60	V
	8		10.32								-	30	
34	1	2.5	6.45					,				60	ı
	2		10.32			-			3			60	
	3		10.32						4			. 60	10
			15.25				1					60	
35	1		6.45			0#	_59		3			60	:
	2		10.32				1	1.				, 60	
	3		15.25	1				9				60	1
36	1		6.45	0	0	OFF	0					60	.
37	1					CORT	.59	_				60	
36	,	3.7	6.45	6.0	7.5	_077	٥				OM	. 60	
	2		10.32	1	1		11	1.				, 60	1
	3		15.25									60	i
39	1		6,45			ON	•59					· o	
	5		10,32				1					60	
	3		15.25		•							60	1
b Q	1		6.45		0	OFF	0					0	
	2		10,32			. 1	1.					60	2)
	. 3 .		15.25									60	1
41	1		6,45	1	0	ON	•59					0	
	2		10.32	1 1		1	ĺ	1		·		. 60	1
	3		15,25				8	1				60	
42	1		6.45			OFF	0					0	
	2		10,32			1	1	1			1	60	
1			15.25		1		1	1		1:	1	60	1

WATER HOVER TEST RUN INDEX

	SDE WALL HI		PRESS	ANDERS	REMARKS	De. **
	(111)	(01)		(CIR / VE)		1968
1	7 . 0	55	30.14	CALM	•	.1/16
		49	30,12	8/12		1/17
1		50		s/10		1
		54	30.10	l		
		62	30,06	5/10-18		
1		50	29.95	8/1		1/24
		45	29.75			0-0
!		62	30.06		•	1/17
		45	29.75	5/4		1/25
		. 47		s/2		
		60	30.04	8/12	Repeat of Run 18 Pnt 1	1/17
=	2.1	. 61	. 30.04	8/10		
	-	52	30.02	8W/2		1/55
			30.02		•	
			. •	sw/6		
	-	54 	30.01			
!	20	•	. 1	V2	II	
		. 56 1	29.96	N/2		=.
		V			-	
		57 . 59	29.95	NW/3		1
1			27.37			-
			in Si			
21		56		NW/2		
	į					
(A
2-	-14	•	•	•	· ·	1

* H/Dp Measured From Avg. Distance Between CL of O.B. Props

RUM

2-15

RL	JN	H/D _P	T/A	WAVE HEIGHT	WAVE LENGTH	BLOWER	q	4			FLOATS	MOISTURE	SIDI
NO.	PT.			(IN.)	 (FT)	ON/OFF	(PSF)	(DE 51	(LEG)	(1%.)	(ON/OFF)	(amc)	MALL (IN
43	1	2.5	6.45	0	0	ON	. 59	0	90	20.46	ON	0	7
	2		20.32			N .			1.	. 1		60	1
	3		15.25									60	
44	1		6.45	15	15						OFF	60	I
	2		10.32									60	
	3		15.25									60	
45	1		6.45			OFF	0_					0	
	2		10, 32									60	
	3		15.25									60	
16	1		10.32	0	0							60	
47	1											60	
48	1							_				60	
49	1	2.0	6.49	19	15							60	
	8		10.32								_	60	
50	1		6.45				.59			_ []		60 .	
	2		10.32					,				60	
2	1	3.7	6.45	_6	7.5			-10				0	
	2		10.8e					1				60	
	3		15.25									60	
90	1		6.45			077	0 .					0	
	3		10.82									60	
	3		15.25									60	
.53_	1		6.45								OR	. 0	
	8		10.82								1	60	
	3		15.25									60	
	_1		6.45		. 0 ,							0	
	2		10.82									60 ,	
	3		15.25									60	

TABLE NO. 2-1
WATER HOVER TEST
RUN INDEX

TABLE NO WATER HOVE RUN INDI

RU	IN	H/D _P		WAVE HEIGHT	WAVE LENGTH	BLOWER	q	¢ :	114	ე <mark>ნ</mark>	FLOATS	MOISTUR SAMPLE	SIDE
NO.	PT.			(IN.)	(F T.)	(ON/OFF	(PSF)	(DEG)	(DEG)	(IN)	ON/OFF	1	MALL
55	1	3.7	6,45	6	7.5	OFF	0	-10	90	20.46	OFF	0	7
	8		10.80						1			60	1
	3		15.25									60	
%	1		6.45	0	0							0	
	8		10,80									60	
	3		15.25								-		i
57	1		6.45			ON	.59					0	;
	2		10.80				Ī					60	
	3		15,25									0	
4	1	2.5				077	٥					0	
	2	Ī	10.82			Ī	Ī					60	
	3		15.25								1	60	
59	1		6.45		7.5	077	0		9			9	
	2		10.82		i	Ī	Ī					60	
	,		15,25							1		60	
60	1		6.45		15.0		1:					0	
	8		10.82									60	
	3		15.25				7				-	60	
61	1		6,45		0	ON	.59	1				0	!
-	2		10.82			Ī	Ĭ.			•		60	. 1
	3		15.25				+:			1		60	
6e	,		6.45		7.5		1			ď		•	
-	2		10.82		i ii			8		•		60	1
	3		15.25				1 '	1		, =,	***	60	
63	-		6.45		15.0		1 :			E. E.			
-	2		10.82		15.0		1				틴	. 0 60	
	3		15.25	1	1	1	1.	1				60	
								٠.	•		▼		. 1

ABLE NO. 2-1 ER HOVER TEST

UN INDEX

TANK SIDE- ALL HT	TEMP	PRESS	WINDS	REMARKS] TAG
(11+)	(°F)	(IN Hg)	(DIR / VEL.)		1968
7	56	30,29	8-SW/6		2/2
	60		W/5		
				en 1875 e Sant e especial de la literatura de Companya e Colon de Companya e Colon de Companya e Colon de Colon	
	62	30.28	W/4	SEE (F 4(4- 1) # (5- 3)	
			0	getaan ka a la si aaa ya aa aa ka a 1984 aa).	
			SW/4		
		-	0		
100			NOR/5		1
			E-NE/3		
			0		
		-	.0		
	_ 1	-	9		
E 42 .	46	30.20			2/5
	46		WW/5		
1	50	1 4	N-WW/8		
	<u>56</u>	+ -	mw/8		
			JI/10		
	58	+-1			
	59				-
7.	56	30.18	VAR/2		-
	V .	. Y	YAD (O. 5.	55 TO 1 TO 1 TO 1 TO 1	
=	58 	30,16	VAR/2-5	er ·	p - d
S 1		- =	NE/10 NW/8		
E .	**		YAR/2		
335.	45	30.31	14V/4		2/6
	Ī				

WATER H

RUN

RI	UN	H/Dp	T/A	WAVE HEIGHT	WAVE LENGTH	BLOWER	q	•	!w	i Db	FLOATS	SAMPLE	1 510E-
NO.	PT.			(IN.)	(F T.)	(ON/OFF	(PSF)	(DEG)	(DEG)	(IN.)	ON/OFF	(am)	(IN)
64	1	2,5	6,45	0	0	OFF	0	-5	.90	20,46	OFF	60	7.0
			10.80			-= ==						60	
	3		15.25	1						-		60	Ė
65	1		6.45	6.00	7.5			0			l 11 - 12 - 1	0	
	5		10.80									60	
1	1		15.25	<u> </u>					=, =			60	
66	1		6.45	12.00	15.0						- 1	, ,,,0	1
	2		0.82									60	-
	3		15.25		<u> </u>							60	
67	1		6,45	0	0	Off	.5 9					0	•
	2		10.82				-			esec 1	1 1	60	
	3		15.25								i	<u>6</u> 0	
64	1		6,45	6.0	7.5			:- -			-	_0	
	2		10.80						-	- L.H		60	h 121 2
	3		15.25	I	•							60	
69	1			12.0	15.0							0	
	8		10.82						-			_60	ă
	3		15,25				1	. =				60	5 E
70	1		15.25		0	OFF	Ω.	 ,	. † .	<u> </u>		120	e , 🔻
				NO N	LANCE DAT	A HERE OF		-	!				
72	1			0	0	OFT	<u>o</u>	-5	90	20.46	OFF	0	7.0
	2	- -						- !		-		. =	_
	3	-									-		
	•										red as		
	5					All the state of t					. ,		
	6				- 1								
	7							. •	†	•	•	2-	

TABLE NO. 2-1 WATER HOVER TEST

RUN INDEX

EMARKS DAT	REMAR	AMMENT WINDS	SARO	AMPIENT TEMP	SIDE-
196		(DIR TYPE)	('N Hg)	1	WALL HT
2/8		VAR/2	30.30	36	7.0
	<u> </u>	NE/4		40	4
		0	,	43	i
- 1 E. 1		0		. 49	,
(0		52	-
g - 1		NE/5	. ♦	52	-
		VAR/2	30.25	50	
·	11.000	0		:e=== ==	- :-
		0	1		,
		NW/7		50	
· · · · · · · · · · · · · · · · · · ·	v. = (990)=	VAR/3-4		*	i
	1. (**)	NE/4	,		
		0	30.23	5 0	
	a	_N/4 .	.		1
		O .	. 🕴 .	•	
		0 .	30.21	54 I	
= x			; 11		
sture sampler 2/2	ing 150-Kinetic moisture		ible Sign	No Percept of Moistur	
X E-PUT POLYOX	RUST/cts APPROX E-				
1220	90 No. 3 N. P.	VAR/2-4	30.08	58	7.0
1770	185		4		
2180	280			,	
5450	375				
2720	470	1		,	
2930	565	19	,		
3220	660				17

TABLE NO. 2-2 VAD LDW SPEEJ WIND. TUNNEL TEST NO. 264 EALANCE AKES CATA

> TUNNEL G. C.-S. PRESS TANE I STATIC TANE

ALPHA TARLE 11

89/70/2

TEMP TARE

		41.66.0 41.66.0 53.86.0			
		74.14.14.14.14.14.14.14.14.14.14.14.14.14			
			65 6.45 6.39 10.81 15.21		0.5 6.45 6.35 10.81
NC. 1	47.982 36.922 -40.406	13 Kfm3 14.36 4614.2 14.88 4614.2 25.41 4614.2 34.58 6942.2	CTS4 1.0094 0.9815 0.9761 1.0:42		CV# C.013C C.0103C -0.0069
FUN NO.	-2.623 -6.627 -17.117	30000 30000	CTS3 1.0829 1.0198 1.0315 0.996		-0.00005 -0.0025 -0.0025 -0.0025
	20.292 3.166 -0.910	4204.0 4204.0 5442.0	CTS2 1.0073 1.0227 1.0064 1.0015		0.0040 0.0130
ر. د • ن	Ph 34.798 36.483 72.828 129.162	12 14.71 14.92 24.70 34.79	CTS1 1.3063 0.9761 0.9920	S DATA	0.0093 0.0093 0.0033 0.1112
PHI -	1.931 2.673 4.906 5.725	182.0 C.0 182.0 C.0 172.0 C.0	CTST 1.0063 1.0060 1.0000 1.0003	BING AKES DATA	C. 0467 C. 0447 O. 0702
	54.057 53.545 92.529 136.875	11 14-61 415 14-24 415 24-45 547 34-69 650	AVE 1 14-667 14-593 24-689 34-736		CL 1.366 1.2956 1.3234 1.3414
8. JC	#0000 #0000 0000 \$000	**************************************	00 00 00 00 00 00 00 00 00 00 00 00 00		10000 10000 10000
EMP 7	\$ 3.75 by	30000 30000 30000	3000		70000
TUNEL TEMP 78.30	4.7.4 C. C. C		40000 30000		40000
		£ ~ ~ ~ 4	2-004		

TABLE NO. 2-8 VAJ LGH SPEED WIND TUNNEL TEST NO. 266 BALANCE AKES DATA

					666			
					22.24.2 24.00.0 24.00.0			
					14.90 24.84 35.15			
					9000	847 27		05 6-47 IC-83 15-27
	=				85 96.0 5958.0 7010.0	05 6.47 10.83 15.27		972
4/68	ALPHA TABLE	TEMP TARE	HUN ND. 2	23.923 -14.562 42.962	13 APH3 14-67 4596-0 24-73 5958-0 34-90 7010-0	0134 1.0004 1.0004 0.0004		0.00.23 0.00.23 0.0049
89/40/60	AP	164	25	-18.282 -17.508 -28.409	0000 0000	CTS3 C-9937 1.0036	~	-0.005c -0.005c -0.005c
				56 6.695 6.507 -0.259	RPM2 42C2.U 5470.0 6392.0	CTS2 1.00.72 0.9971 0.9947	•	0.0023 0.0073 0.0073
			ن د •	46.287 76.980 77.611	12 14.87 24.65 34.66	CTS1 0.9896 0.9973 0.9964	DATA	54 976 923 719
			- IHd	1.278 3.768 0.895	000	1.0000 1.0000 1.0000	NINO AXES DATA	0.0306 0.0306 0.0530
					RPRI 11 4178-0 15 5414-0 14 6368-0	AVE 1 14.765 24.717 34.667		1.3692 U
				57.759 95.463 135.001	11.61 24.65 34.74	4444		
		0	12.00	\$0.00 \$0.00 \$0.00 \$0.00	30°06	00.00	•	3000 1000 000 000
0.0	IAE 1	TARE		NO 00	4000	N		4000 4000
TUBREL O	PRESS TARE	STATIC TARE	TURNEL TENP	4000	4000	4000	•	4000
		J ,	-	2-77	nn.			

VAD LOW SPEEU BING TUNNEL TEST NO. 200 BALANCE AKES DATA

TURNEL 0	0.0	•					03/0	03/04/68				
PRESS TARE	TARE	1					×	APHA TABLE				
STATIC TARE	TARE	•					121	TENP TARE 1				
TUMBEL TERP		30.00		-	G 3		5	PUN NO. 3				
 4000	3000	-000	55.661 162.414 145.84	2.398 2.963	41.633 55.34C	SF -0.139 -1.442 5.062	-27.896 -99.680	- 36.049				
 1000	2000	1000	71 14.77 410 24.39 536 34.74 630	100000000000000000000000000000000000000	12 14.06 24.06 35.05	4204.6 5460.0 6474.0	3000	13 PPH3 14-67 4554-0 25-36 5890-0 34-74 6966-0	9000	24:38 24:38 34:73	\$3.00 \$3.00 \$3.00 \$3.00	1000
 1000	4000	000 000 000 000 000	AVE 1 14.792 24.035 34.014	C151 1.0000 1.0000	1.33)2 0.9620 0.9979	CTS2 0.9939 1.0009 1.0068	CTS3 0.9946 1.5212 0.9979	CTS4 1.0103 0.9959 0.9954	05 6.46 10.00			
				WIND AKES DATA	S DATA							
•				SLIPSTREAM	7 47							
 4000	2000 2000	20000	10.4281 10.4281 10.4381	CC 0.0574 0.0421 0.0494	0.0652	CV -0.0033 -0.205 0.0006	47.00.01 47.00.01	CYN -0.0096 -0.0096	6.46			

VAD LOW SPEED WIND TUNNEL TEST NO. 266 BALANCE AKES DATA

G-G 1 10 11 12 14 14 15 15 16 16 16 16 16 16 16 16
ALPHA TABLE 11 TEMP TARE 1 TEMP TARE 1 TEMP TARE 1 TEMP TARE 11 TEMP TARE 11 TEMP TARE 11 TEMP TARE 11 AF PN SF RNH VN 1.763 31.929 0.0043 -15.252 27.135 1.916 50.766 -1.634 -22.941 19.0077 4.411 88.139 -2.521 -47.345 24.583 1.916 50.766 -1.634 -22.941 19.0077 150.00 0.0 14.77 4168.0 0.0 24.94 990.0 150.00 0.0 14.77 4168.0 0.0 24.94 990.0 150.00 0.0 1.000 0.0 34.47 6374.0 0.0 24.94 990.0 1.000 0.0 990 0.0 9943 1.6 C21 1.0107 15. MIND AKES DATA SLIPSTMEAN Q COUNTY 0.0003 0.0013 0.0013 0.0073
ALPHA TABLE 11 TEMP TARE 1 TE
1.929
O3/C4/68 ALPHA TABLE 11 TEMP TARE 1 TEMP
ALPHA TABLE 11 TEMP TARE 1 RUN MG. 4 RW VM -255 27.135 -941 19.007 -345 29.583 24.94 5904.0 24.9
ABLE 111 ABL
14 RPH 14.87 4184.9 24.63 9380.0 35.0 6358.0

VAU LGE SPEED WIND TURNEL TEST NO. 266 BALANCE AKES DATA

	266	
	3	
	EST	<
2. 2-2	ON SPEED BIND TUNNEL 1	E AKES DATA
	217	DALANCE A
	SPEED	DAL
	707	
	240	

	TUBBEL O		6.59					03/0	03/04/60				
	PRESS TARE	TARE	-					¥	APHA TABLE	11			
	STATIC TARE	TARE	•					TEM	TENP TARE 1				
	TURREL	1Enp	74,66		- 114	0.0		5	. MO. 6				
	4	¥ 000	# 000 C	62.290 100.809 141.826	21.223 31.401 35.113	226.394 345.241 425.832	SF -1.055 -0.752	-9.91¢	19.135 14.020 46.062				
	1000	4000	-000	11.45 42.24.81 550.85 650	4200.0 0.1001 5562.0 0.1435 6560.0 0.1435	1 T2 061 14.92 435 24.91 215 34.50	8 4254.0 1 5554.0 6576.0	0.1676 C.1437 O.1214	13 RPH3 14-72 4718-0 24-79 6178-0 34-79 7430-0	3 0.1691 .0 0.1691 .0 0.1074	14.25 24.25 35.25	***	9-19-5
•					MINO AX	IND AKES DATA							
.5 ~ ~ ~	4000	7	# 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CL 16.3281 26.4254 37.1770	5.5433 6.2522 9.2041	4.4201 6.7890 6.5759	CV -0.2767 -0.1972	-0-0223 0-0249 -0-1541	CVN 0.0563 0.0412 0.1335				
	iogo.	2000	-000	AVE 1 14.725 24.841 34.815	C151 C.9162 0.9486 0.9427	CTS1 0.0993 0.9470 0.9570	CTS2 0.9286 0.9509 6.9562	CTS3 3.9161 0.9662	CTS4 0.92C7 0.95C2 0.0746	68. 11.07. 19.04.			
			•		SLIPSTREAN O	ES DATA							
2-00	1000	7	0000	CL 1.3665 1.3589 1.369	C. 4469	CH 0.3705 0.3492 0.3195	CV -0.0232 -0.0101	0.0019 0.0019 0.0019	0.0047 0.0021 0.0050	7.04			

TABLE BO. 2-2 VAD LGH SPEEC AIND TURNEL TEST NO. 266 BALANCE LEES DATA

	Tubble o	6.0	•					03/2	03/24/00				
	PAESS TAME	TARE	4					40	ALPHA TABLE 1	11			
	STATIC TARE	TARE	2					160	TENP TAKE 1				
	TUMBEL TENP	16.00	94.00		- I	6.3		2	HUN NO. 7				
	4000	3000	9999	57.050	-2.399 -2.970 -7.043	7.902 -19.841 20.244	SF -1.620 -2.020 -3.627	AP -35.834 -43.566	-3,595 -35,946 -40,62-				
	4000	4000	4.00 4.00 4.00 4.00 4.00	11 14.61 24.23 35.22 6	110.0 110.0 110.0 110.0 10.0	1 14.98 24.59 34.42	4154.0 5264.0 5364.0	7000	13 APH3 14-00 4626-0 24-21 5058-0 35-32 7536-0	# 000 000	74 14.80 24.42 35.04	4106. F 9224. 7 6262. 3	000
2400	4000	**************************************	2000	AVE 1 14.617 24.362 34.998	C151 1.0000 1.0000	CTS1 0.9961 C.9964 1.0062	CT. 1-0108 1-0065 0.9835	CTS3 1.00.44 0.9937 1.0091	CTS4 C-9987 1-0022 1-0012	65 6.49 17.67 15.33			
	•				HIND AKES DATA	ES DATA	,						
					SLIPSTREAM Q	EAM Q							
	4000	4	*0000 0000 0000	CL 1.3751 1.3666 1.4245	0.0572 -0.1010 -0.0711	0.0295	40.00-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	-3.6386 -0.0086 -0.0088	CYN -0.0010 -0.0056	0.00 10.64 15.93			

TABLE NO. 2-2 VAL LGH SPEED WING TUNNEL TEST NO. 266 EALANGE AKES JATA

					8984 5334 5334 5131 5131 5131 5131 5131 513				
					15.6 25.26 34.25				
	11				13 0 ° 1872 1 ° 1625 1 ° 1139			7 C C C C C C C C C C C C C C C C C C C	
89/4./2	ALPHA TABLE 1	FEST TAKE 1	FUN NO. 5	41.445 -13.531 26.297	13 RP43 14-51 4678-5 24-63 5363-3 35-37 6762-3		CV# 6-1219 ->-3-7398	CTS4 .9387 6.9650 1	
. 12	44	<u> </u>	5	-37-113	100100 00100 00100		CF 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	CTS.	
				\$6 -1.024 -2.125	4.256. 5.266. 5.266.		CV -V-1368 -V-4-7-	C152 0.9202 0.5382 0.9382	
			5 • • • • • • • • • • • • • • • • • • •	211.455 339.946 458.554		SCATA	8507.6 9.0354 0.2058	CTS1 0.90c8 0.9464 0.4662	S DATA
			# 1 H	AF 22.4: 7 23.197 37.295	#PPE Ji \$040.0 .1808 \$400.0 .1413 \$364.0 .124	PINC AKES	6.1357 7.3686 9.7762	C151 C.9161 C.9465	BIND AKES DATA
				NF e2.152 1022.46 1452.54	11 14-45 400 24-81 540 34-80 540		CL 16.3426 26.4109 38.575	AVE 1 14.695 24.810 34.721	
ø		Ú	44.00		0 % 0 0 1 0 2 0 0 0 0 0 0 0 0		00°06 00°06	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	٠
. 5.59	ike 1			1000 1000 1000 1000 1000 1000 1000 100	7,000 2,000		8	#730 9111 6000	
TUNNEL C	PRESS TAKE	STATIC TARE	TUNNEL TENP	ALPHA C.C.	4,00		440000	40000 0000	
	_	••					# ~ ~ ~ ~		

TALL LOW SPEED WIND TUNNEL TEST NO. 200 BALANCE AKES DATA

TENEL L C.O		•				(i)		03/0					
PRESS TAKE 1	TAKE 1	-						ž	APHA TARE 11				
STATIC TARE C		J						TEN	TENP TARE 1				
TUBBEL TERP 44.CO		03***			- 144	3.0		3	AUN NO. 1C				
ALPMA PSI IN MF C.C G.C 90.00 98.492 -2 C.0 6.0 90.00 57.439 -2 C.0 90.00 139.113 -4	6.C 4C.00 50.402 C.0 4C.00 50.403 0.0 90.00 134.439	16.00 50.492 90.00 57.439 90.00 139.113	98.492 57.439 39.113	777	-2.422 -2.344 -9.947	17.06.2 36.001 -10.610	SF -0.051 -2.340 -5.372	6.497 -9.920 -191.732	7H -27.337 -51.049 -29.278				
ALPMA PS1 1W T1 APPN 0.C 0.C 50.CO 14.77 4120.0 6.C 0.O 90.CO 25.C7 5276.0 6.C 0.U 50.00 34.37 6246.0	0.0 50.00 14.77 412 0.0 90.00 25.07 527 0.0 90.00 35.07 527	14 11 AF 50.CG 14.77 412 90.GG 29.C7 527 50.GG 34.37 624	77 412 67 527 87 624	1000	7000	12 14.92 25.22 34.21	4116.0 5256.0 6170.0	2000	13 RPH3 14.88 4164.0 24.58 5326.0 34.16 6682.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	14.69 24.47 35.67	6728.0 5142.0 6216.7	\$000
ALPMA PSI IL AVE T CI 6.0 9.0 90.00 14.817 1.0 6.0 9.0 90.00 24.835 1.0 6.0 9.0 90.00 14.806 1.0	9.6 96.00 14.817 3.0 90.00 24.835 0.3 96.00 34.606	1b AVE 7 96.00 24.837 96.00 24.835	2224		CTST 1.0006 1.0000 1.0000	CTS1 0.9968 1.0095 0.9933	CTS2 1.0072 1.0157 0.986	C153 1.004 0.989	CTS4 0.9916 0.9853 1 1.0309 1	05 6-49 19-86 15-16			
175		19 TS		3 3	bing axes ca slipstneam q	LING AKES CATA	•						
ALPHA PS1 18 CL CD CO. CD C. C	AA PS1 11 CL 0.0 50.00 1.3950 0.0 50.00 1.3954 0.0 50.00 1.3954	\$614-1 05-06 450E-1 05-05 50-05 13846	0 4 0	900	174	0.0519 0.0519 0.0051	CV -0.0012 -0.0338	0.0218 -C.C236 -C.C236	CVA -0.0073 -0.0081	6.69 10.00			

TABLE NO. 2-2

VAU LOW SPEED WIND TUNNEL TEST NO. 200 BALANCE AKES CATA

	TUNNEL Q		65.5					(16)	89/10/63				
	FRESS TARE	ARE	-					d Te	ALPHA TABLE				
	STATIC TARE	TARE	ં					TEM	TEMP TARE	~4			
	TUNNEL TEMP 44.CG	JENS	94.00		-	Ç.•.;		NO.4	AUN NO. 11				
	6.0 (.0	0.0	\$0.03 \$0.03	MF 04-370	19-774 31-60	23452 374.466	SF 0-022 0-01	RA -25.994 -49.487	7K-365				
~	4000	130. 300.	90.00 90.00 90.00	T1 RP 14-61 410 24-65 536	APRI JI 4100-0 (-1866 5360-0 (-1427	72 t6 14.67 27 25.01	3996-12 3996-12 5202-0	92 9-1915 0-1454	T3 RPH3 14-78 4176-7 24-79 4076-7	60 (1832 60 (1832 60 (1847)	14.75	6 PM4 41 2 B. T 53 7C. C	0.1853 0.1425
					BIND AXE	D AKES CATA							
. = ~ ~	ALP10.0	30.0	400	27.7119	5.1833 5.3383	CA 4.5954 7.4910	CY 0.0057 0.0027	CAM -0.0766	CVH 0.1599 0.1189				
	A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		03.00	AVE T 14.751 24.835	CTST 3.9163 0.9486	CTS1 0.9078 0.9415	C152 0.9238 C.9554	9179	CTS4 7.9159 9.95.7	1.05 1.05			
					BIND AKES DATA	S OATA							
	ALPHA (.0	800	47 00.05	1-4119	0.4337	C 3649	\$637.*c	4903°5-	WAU WAU	7.05			
~		3.0		1.4258	0.4290	3.3854	0.3901	-1.00.73	190000	11.47			

TABLE NO. 8-E VAD LOW SPEED WIND TUNNEL TEST NO. 266 BALANCE AKES DATA

					0.1946 0.1510 0.1277						
					4116.0 5396.0 6270.0						
					14.85 24.63 35.15						
					23 0.1948 0.1561			05 7-03 5-89			05 7.73 11.38 15.89
	=======================================	-	•		4112.0 5336.0						
03/04/68	MPHA TABLE	TENP TARE	FUN NO. 12	YN -169.027 41.723 91.871	73 14.72 41 24.98 53 34.50 66		CVM -0.4973 9.1227 0.2703	CTS4 0.9240 0.9470			CVR -0.0417 0.0764
03/0	*	164	3	RA -396.064 3.415	0.1988 0.1981 0.1511		CHM C.4629 C.C.111 -5-1893	C1S3 C.9169 U.9458			0.03888 0.0376 0.0376
				-108.506 -0.158	RPM2 1 4028.0 5300.0 6378.0		-28.4428 -0.0414 0.07414	CTS2 0.9162 0.9464 0.9632			CV -2.3858 -0.0021 0.9026
			0.0	PH 165.468 - 274.672 304.278	12 45 14,71 07 24.59 61 34.95	O AXES DATA	3.0894 - 5.5393	CTS1 0.9066 0.9527 0.9576	S DATA	-	CM 0.2591 6.2872 7.2368
			=	AF 18-133 22-509 23-455	4118.0 0.1945 5386.0 0.1487 6350.0 0.1261	MIND AXE	6.1403	C151 C-9161 C-9482 0-9629	WIND AKES DATA	SLIPSTAEAP	C.3967 J.3059
				59.101 101.22 139.959	11 14-56 4118 24-76 5386 34-76 6350		15.4922 26.5351 36.6876	AVE 1 14.712 24.638 34.933			Ct 1.2995 1.3756 1.3622
35	-	3	95.30	88. 89.00 89.00	8 % 00 8 % 00 8 % 00 8 % 00		200 000 000 000 000 000 000				
3		AAE		NO00			4	8000 8000			000 No.30
TUBREL U C.55	PRESS TAKE	STATIC TARE	TUNNEL TENP	4000	4000		4 9 9 9 9	4000			\$
						•	E-44m				
							2-28				

VAL LOW SPEED "IND TUNNEL TEST NO. 200 BALANCE AXES CATA

ALPHA	19/c+/PB	ALPHA, TABLE !!	TEAD TAKE :	PHI - 0.0	AF AF PP SF PM YE 362 12.557 156.689 -0.549 -8.437 17.679 9.557 156.689 -0.549 -8.437 17.679 9.557 9.577 9.5	NPML JI T2 HPM4 J2 T3 KPM3 J3 T4 RPM4 J4 18.12.0 0.1939 14.75 4114.7 0.1938 14.55 414.7 0.1938 14.75 4114.7 0.1938 14.55 414.7 0.1938 14.75 4114.7 0.1938 14.55 414.7 0.1938 14.55 414.7 0.1938 14.55 414.7 0.1938 14.55 414.7 0.1248 34.43 6399.0 0.1271 34.83 6294.0 0.1267	DIND AXES DATA	CL CD CM CY CAM CYM CYM CAM CAM CAM CAM CAM CAM CAM CAM CAM CA	16 F CIST CISI CISS CISS CISA QS -659 C-9150 0-9050 '-9127 2-4159 2-5212 7-01 -770 0-9464 0-94799457 0-9450 0-9511 11-44 -565 C-9625 G-9580 0-9629 7-4586 0-9658 15-73	SIND AKES DATA	000
TURNEL O STAILC TARE O STAILC					63.962 106.291 143.809	222		CL 16.7665 27.8621 37.6970	AVE 1 14.659 24.770 34.565		1.4371 1.4371 1.4371
STAIL OF STA	•		v	30.01	# 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0	0000			2000		# U U U U
					2000 2000			NO 000	4000		2000
•	TUNNEL G	PRESS 14	STATIC 1	TUNNEL 1	40000	4000		4000	4000		4 0000
		_	•	•	£ - ~ ~		•	4-7-			

TABLE NO. 2-2 VAG LOW SPEED WIND TUNNEL TEST NO. 260 WALANCE AKES DATA

					0.1479						
					41.60.7 53.68.0 6308.0						
					14.69 24.73 39.04						
					0.1903			45 7.01 11.41 15.82			95 7-61 11-41 15-82
	=				4172.0 5404.0			715			
101	ALPHA TABLE	TEMP TARE	HUN NG. 14	26.970 54.472 40.468	73 nv 24.67 417 24.79 54		CVM 0.0793 0.1603 0.1191	0.9179 0.9494 0.9494			0.0064
03/07/08	44	1691	252	-16.523 -22.960 -64.299	0.1952 0.1492 0.1253		CBM -0.0497 -0.0658 -0.1873	CTS3 G-9166 G-9474 C-9636			0.00.042 -0.00.34
				SF -0.745 -0.275	4368.0 5322.0 6336.0		CV -0.1953 -0.0722 -0.0769	CTS2 0.9160 0.9461 0.9590			0.0164 -0.0037 -0.0029
			0.0	PH 138.453 189.321 200.199	72 30 14.06 76 24.65 51 34.63	S DATA	2.9462 4.3150 4.8481	CTS1 0.0129 0.9503 0.9503	S DATA	9 44	0.2479
			- - -	AF 8.500 6.333 1.428	#1 J1 4.0 C.1930 0.0 0.1476 C.3 C.1251	BIND AKES	2.22.0 2.22.0 1.00.0 0.9743	C1ST 0.9198 0.9483 0.4627	BIND AXES	SLIPSTAEAN	0.1075 7.6456 2.0142
				NF 04.969 107.851 145.092	11 RPH1 14-61 4114-0 24-76 5360-0 34-53 6350-0		17.6305 20.2713 30.6332	AVE 1 14-65 24-704 34-762			1.4333 1.4619 1.4100
•		U	19.66	75.00 75.00 75.00	15.00 15.00 15.00		19.00 19.00	15.00		•	35.00 39.00 39.00
0.54	RE 1	AAE	TENP 7	2000	-000 -000		2000	8000			8000
TUBBEL Q	PRESS TARE	STATIC TARE	TUBBEL 1	4000	4000		4	1000			4
<u> </u>	•	•				•	£-~~				2-77

TABLE NO. 2-2
VAU LOW SPEEL WIND TUNNEL TEST NO. 266
BALANCE AKES GATA

	TUNNEL	,	55.7					/i i	99/7 /65				
	PHESS TANE	TARE	-					d7	APHA TAELE	=			
	STATIC	TAKE	.3					TEN	TEMP TARE 1				
	TUNNEL TENP	TENO	10.00		114	3		201	7 P. NO . 15				
2-77	1000	3000	400000000000000000000000000000000000000	NF 60.955 1(0.130 146.213	A. 1.15 -2.520 -8.369	121.450 143.538 160.176	2.00 -0.00 -0.126 0.0126	-26.121 -25.729 -65.129	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				
	4	4000 4000	10° CC 10° CC 30° CC	11 R 14-72 41 24-76 54 34-79 63	RPF1 J1 4186-0 C-1851 5465-0 C-1851 6156-0 C-1254	1 12 851 14-92 464 24-66 244 34-58	APR2 4120.1 5 5334.2	2000 2000 2000 2000 2000 2000 2000 200	13 KPM3 13-67 4241-3 24-73 5434-3 34-85 6556-0	13 10 0 12 1864 30 0 1453 50 0 1276	14.85 4 24.99 3	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	14 (*189) (*1469)
					WING AKES DATA	ES DATA							
F 4 8 "	4	8000	1000	CL 17.5511 28.3444 38.4513	1.3409 -0.6621 -2.1939	CM 2.7111 3.6061 4.3930	CV -0.0252 -0.0332	4000 N	CY				
	4.0000	8000 8000	70°00	AVE T 14.791 24.805 34.748	CTST 5.5165 7.9465 0.9627	CTS1 0.9119 0.9465 0.9665	CTSI 0.9240 0.95.7 0.95.7		CTS4 1.9272 7.9517 5.9517	7.7 11.45 15.81			
					BIND AKES CATA	ES CATA							
6 ~ ∨ M	ALPHA	5000	# 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.4650	61811-C-	7 C 0 4 E 0 4	A 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	45.11 746 15.41			

TABLE BO. 2-2 VAD LOW SPEED WIND TUNNEL TEST NO. 266 BALANCE AKES GATA

	TUNEL C		2.5					3/63	C3/C4/61				
	PRESS TARE	TARE	~					47	CLPHA TABLE	11			
	STATIC	STATIC TARE	0					TEM	TEMP TARE !				
	TURNEL	TURNEL TERP	44.60			0.0		3	RUN NO. 19				
E"	4000	******	**************************************	95.108 53.522 138.579	AF -1.477 -2.808	1.679 6.463 83.139	0.170 -0.194 -0.194	-5-132 12-412 -160-607	18.064 39.146				
	4000	2000	2000 2000 2000 2000 2000 2000	71 14-61 40 24-49 53 34-01 62	150.0 0.0 42.0 0.0	12 14-50 24-75 33-53	4088.0 5322.0 6294.0	7 0 0 0 0	13 MPH3 14.72 4196.0 24.58 5436.0 35.06 6870.0		74.85 24.68 35.15	8056.7 5224.7 6230.0	000
	4000	2000 2000	200	AVE 1 14.673 24.625 34.434	CTST 1.0000 1.0000	CTS1 0.9998 U.9946 0.9946	CTS2 0.9885 1.0051 0.9737	CTS3 1.0039 6.9980 1.0181	CTS4 1.0121 1.0623 1.0207	05 6-43 10-79 15-0			
					bing ares data	S DATA							
	1000	4	40°00 60°00 60°00	1.3261 1.3261 1.3410 1.4211	0.0356 -0.0356 -0.0403	0.0107 0.0197 0.0813	0.0020 -0.0028	CRM -0.0013 3.0021 -5.0183	0.0050 0.0063 -0.0011	05 6.43 17.79 15.79			

VAL LEW SPEED WIND FUNNEL TEST NO. 266 BALANCE AKES DATA

VAD LOS SPEED BING TUNNEL TEST NG. 206 BALANCE AKES DATA

		~						2	•
TUBAEL O	PRESS TAKE	STATIC TANE	Tunnet Teno	4000	4000	1000		ALPHA	
	TARE	TANE	14.80	4	4000	2000		184)
0.0	~	0	00.44	20.00		100		1000	
				90.020 97.524	11 14.51 24.70 34.53 63	AVE 1 14.680 24.770 34.696		3	
			- 144	-0.722 -2.003 -1.352	24.0 0.0	C157 1.6000 1.0000	WIND AKES GATA SLIPSTNEAM G	3	
			0.0	25.310 35.607 50.080	14.56 24.28 35.05	CTS1 0.9878 0.9973 0.9953	ES CATA		
				SF -1.120 -0.754 -2.983	4140.C 5362.C 6356.0	CTS2 0.9912 0.9001 1.0102		5	7
03/3	*	TEM	3	44 -20.511 -20.974 -125.222	7000	CIS3 1-169 1-0370 0-9922		Car	
03/04/66	APHA TABLE	TEMP TARE 1	FUN NO. 20	9.163 33.492 -39.643	T3 RPM3 14-93 4230-0 24-94 9494-0 34-43 6666-0	CTS4 1.0541 1.0156 1.0023		CV	C 7 3 0 0
	11	22			9000 000 000	05 6.43 10.85 15.20		80	
					14.75 25.16 34.78				
					4062.0 5240.0 6158.0				
					000				

VAL LOW SFEEL WIND TUNNEL TEST NG. 206 BALANCE AKES LATA

Ξ	TUNNEL L		55.7					76.	3734/68				
1	FRESS TANE	TARE	-					914	ALPHA TABLE	i1			
~	STATIC TARE	TARE	2					101	THUP TARE 1				
=	JUNNEL I	TEMP	26.16		-	•		253	"UN NO. 21				
	4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1000 1000 1000 1000 1000	44 00 00 00 00 00 00 00 00 00 00 00 00 0	31.298 56.774 150.22	17.337 10.01 10.661	PH 103-664 215-544 243-475	5.253 1.253 6.116	-2, -741 -1,177 -71,410	48 -14.25 6.442				
-	4.000	8000	200 200 200 4720 666	11 14.00 24.05 34.05	#PP1 J1 T 42124 14 5456-0 C-1422 24 6442-0 C-1205 35 6442-0 F-1205 35	1 T2 842 14-71 822 24-71 205 35-16 ES CATA	86#2 11 4760.0 11 5570.0 6 6578.0	0.1611 0.1393 0.1136	13 RPH3 14-62 4144.7 24-73 9924-0 34-53 7148-0	18 1873 - 1873 - 0 1874 - 0 1878	74. 84. 84. 34. 34. 34. 34.	** *** *** *** *** *** *** *** *** ***	4015
	11.44 6.6 6.6 6.6	7 (1) J	00005 00005	CL 10. C642 25.8516 35.3765	6.3515 4.3515 4.3535	0.00 mm	CV -0 - 764 0 - 3283	CNN -C - 562 -20:110	01700 -01710 -01				
	¥	8003 8003	0 0 0 0 0 0 0 0 0 0 0 0	AVE 1 14.699 24.736. 34.656	1417	CTS1 0.9139 0.9453	CTS2 C-9170 0-9471	CTS3 C-9111 C-9404 C-5404	CTS4 0.9222 0.9525 0.9525	05 7-7 11:4-2			
					SLIPSTALAM G	EAM G							
	4 3 5 5 5	2000 2000	# 0 0 0 0 0 0 0 0 0 0 0 0	CL 1.3489 1.3375 1.4734	CC 0.3415 0.2248	CB 3-2592 5-2275 5-2272	70 0 C-	64000000000000000000000000000000000000	CYN 	65. 7.11 15.77			

VAD LOW SPEED WIND TURNEL TEST NO. 266 BALANCE AKES DATA

	TOPPEL C		0.0					C3/E3	63/34/68				
	PRESS TARE	TARE	-					94	ALPHA TABLE	11			
	STATIC TARE	TARE	0					TEM	TEMP TARE 1				
	TUNNEL	TUNNEL TEMP	SC-00		ING	0.0		5	HUN NO. 22				
19				7	V.	Ĭ	SF	2	ž.				
→ (y		30	20.00	55.711	2.234	70.939	-1.336	-50.600 -98.896	-35.590				
m	0.0	0.0	-	145.400	-1.055	59.854	0.468	-69-752	23.797				
-		P S I		•	ור ואפו	12	RPM2	27	T3 KPM3		=	7 8 0 8	7
-	0.0	0.3	20.00	16 54	Š		•	, • 0	4		14.53	41 36.	C.
r v	U . U	0.0		53		24.33		0.3			25.37	5330.0	0
m	J•,	0.0	90.00	34.79 63	48.0 0.0	34.45		ن			34.35	6232.0	C
	ALPMA	154	=	AVE 1	1213	CTS1	CT 5.2	CTS3	CTS4	98			
)•J	0.0		14.567	1.0000	0.9922	1.0965	1.0036	_	8: 9			
~	ن د	0.0		24.731	1.0000	0.9670	0.5830	1.234	1.0258	10.43			
14)	0.5	S	90.00	34.237	1.0000	1.0163	1.0054	0.9749	1.0034	19.00			
					NIND AKES DATA	S DATA							
					SLIPSTREAM	0 44							
2.	ALPHA	154 V		. 10	00	5	5	C	CA	So			
- ~	2 0	9 0	00.00	1-5504	2 C C C C C C C C C C C C C C C C C C C	400000	-0.0324	940 L 0 L	8600.01	0.00			
· ~	5-0	6.5		1.4687	-0.0109	C.000.0	0.0048	-0.5081	0.0520	15.00			

TABLE BO. 2-2
VAD LGW SPEED WING TURNEL TEST NG. 266
UALANCE AKES DATA

					14 RPM4 J4 64 14.64 4194.0 A.1855 86 25.75 5454.7 A.1857 71 24.57 5436.7 C.1433 45 35.15 6434.6 A.1279					
					13 0 0.1364 0 0.1364 0 0.1371			65 7-7-2 111-49 111-35 13-92		65 7-52 11.48 11.35
89/41/6.	ALPHA TABLE	TEMP TARE !	FUN NO. 23	1 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	13 RPM3 14-62 4174-C 24-54 5616-7 24-63 5980-3 17-61 6798-0		CVR -0.015t -1.1265 -0.0125	CT34 0.9134 0.9538 0.9466		8 4 9 4 9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
li.	416	18.	3	4F -23.986 -45.418 -77.746 -52.129	0.1403 0.1403 0.11403 0.11403		CR4 -7.675 -7.1373 -7.21/5	CTS3 0.5126 0.4517 0.9507 0.5541		0.00 ST -0.00 ST -0.0
				10.471 0.6471 0.6475 0.6475	5536.0 5472.0 5472.0		CV -0-1234 0-1507 0-1547	CTSS 0.4283 0.9484 0.9484 0.9484 1.138		\$10°00 \$1
			ر. ٠,	207-222 352-399 314-122	12 354 14-87 33: 24-86 53 24-59 215 35-60	NO AXES CATA	CA 4.1054 6.3042 6.5583 6.6893	CTS1 C.9088 C.9385 C.9484 L.0484	NO AKES DATA	CA C.3456 C.3271 C.3431
			-	18.266 19.870 29.875 16.2(5	921 (1854 93.0 (1854 90.0 (1843) 60.0 (1843)	BIND AX	CE 4.7967 5.2367 5.4719 4.2478		SLIPSTALAM G	00 0.4927 0.2677 0.2645
				NF e3-114 105-333 107-452 142-729	11 14.56 4198 24.50 5440 24.49 5440 24.49 5440		CL 16.5462 27.6110 28.1666 37.4136	AVE 1 14.672 24.862 24.559		CL 1.3912 1.4191 1.4090 1.5000
3.59	4	n	\$? • C °	10000000000000000000000000000000000000	\$ - 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		2000 2000 2000 2000 2000 2000 2000 200	0000 0000 0000 0000 0000		# 3 0 0 0 # 0 0 0 0 • • • • • • • • • • • • • • • • • • •
	ARE	TAKE		2000 2000 2000	#0000 #0000		W (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	60.00 8 40.000		N 2000
TUNKEL G	FRESS TARE	STATIC TAKE	TUNNEL TEPP	40000	¥3330		40000	¥,,,,,,,		40.300 40.300 4
				F 4 14 W 4	F-0-4					H-4484

VAD LGW SPEED THEN TURNEL TEST NG. 266

						1	60	6				
							4130.0 5300.0	6262-0				
							14.11	34. 72				
		11					E7 0 000		05 6.37 10.94 16.13		98	6.37 10.94 16.13
	8*/	ALPHA TABLE 1	TENP TARE 1	PUN NO. 24		25.879 63.598 -60.473	T3 KPH3	25.52 3412.0 42.34 6786.0	CTS4 0.9705 0.9986 0.9427			000
	03/04/68	APH	TENP	2		6.306 -7.203 -115.243	۵.	000	CTS3 1.0451 1.216 1.1495		9	-0.0017
						2.439 1.0042 -1.398	APM2		CTS2 0.9939 0.9909		į	0.0106 0.0232 0.0232
					0.0	PM 6.326 61.260		24-75	CTS1 0.9905 0.9889	-	E D M C	0.0265 0.0766 0.0123
ME MAES OF					7 ING	AF -2.462 1.616 -6.307		5320.0 0.0 5340.0 0.0	1.0000 1.0000 1.0000	WIND AKES	SLIPSTREAM	0.0220
-						57.559 97.849	11	14.40 370 24.70 532 35.16 634	F227			CL 1.3979 1.3032 1.3651
				2	46.00	2000		00.00				* 000 * 000 * 000 * 000
		0.3	-4			300	9.0	000	N 100			NO00
		TURNEL O	PRESS TARE	STATIC TARE	TLANEL TENP			00	0 4 000			ALPA 6.6 6.0
		=	•	S	-	- E=~	~ ;	-~	n [- 7 7	•		6 ~ ~ ~ ~
											0	

TABLE NO. 2-2 VAU LGW SPEEU WINC FUNNEL TEST NU. .ee WALANCE AKES DATA

FRESS TAKE 1 STATIC TAME 0 TUMNEL TEMP 48.CO		_	TUBREL O		65.59					3/60	03/04/68			
STATIC TAME 1		_	PRESS T	AKE	-					ALP				
Number		-	S 7 A 1 1C	TARE	٥					164	P TARE !			
ALPMA PSI IN NF AF PP SF HM VM C.O C.C GCC 106.5CE 22.03C 230.325 -1.249 -24.123 37.8C4 G.C G.C GCC 106.5CE 30.805 354.536 -1.157 -71.638 15.496 ALPMA PSI IM TI MPPI JI T2 RPM2 J2 T3 RPM3 J3 T4 C.O 3.3 90.00 24.49 5413.0 C.1647 14.61 4100.0 C.1846 15.14 4162.0 D.1866 14.75 C.O 3.5 90.00 24.49 5413.0 C.1431 24.75 5392.0 C.1436 25.78 5414.0 C.1431 24.89 C.C C.3 90.00 16.5034 5.7659 4.6233 -0.3274 -0.0622 9.1112 C.C C.3 90.00 18.5034 5.7659 4.6233 -0.3274 -0.0622 9.1112 C.C C.0 90.00 27.5150 8.0735 7.5554 -7.3714 -0.2733 C.1574 ALPMA PSI IM AVE I CTSI CTSI CTS2 CTS3 CTS74 C.O G.O 90.00 24.975 0.9468 0.9037 0.9068 0.9152 7.066 0.9152 7.066 0.9055 1.553		_	TUNNEL	1cmp	48.00		* THA	£.0		3 3				
PSI IN TI MPPI JI T2 NPR2 J2 T3 KPH3 J3 T4 3-J 9C-C 14-54 4190-0 C-1647 14-61 4100-0 C-1686 15-14 4162-0 0-104-75 0-C 50-0C 24-49 5410-0 C-1647 14-61 4100-0 C-1686 15-14 4162-0 0-104-75 NIND AXES DATA PSI IN CL CC CM CV CRM CVM C-O 9C-C 10-5634 5-76-9 4-6233 -0-3274 -0-6622 0-1112 C-O 9C-C 10-5634 5-76-9 4-6233 -0-3274 -0-6523 C-1574 PSI IN AVE I CTSI CTS2 CTS3 CTS4 QS C-O 9C-C 24-975 0-9468 C-9164 0-9672 (-9793 0-9152 7-0-666 0-9399 0-9152 11-53			6 . 0 . 0				22.30c	233.325 354.536	26 -1.249 -1.150		YM 37.854 15.496			
A PSI IN CL CC CM CY CRM CYKK C-0 90-02 50-03 50-05 50		277	430	200		11 14-54 24-49			1 4100.0 9-0314 1 5-5988-5	13 0.1886 0.1436	13 RPM3 15.14 4162.4 25.78 5414.7		14.75 4224.7 24.89 5472.0	
A PSI IN CL CC CM CY CRM CYK C-3 9G-CG 10-5C34 5-70-9 4-0-233 -0-3274 -0-0-622 9-1112 C-0 9G-GC 27-515C 8-0735 7-0554 -0-37142733 0-1574 PSI IN AVE I CTSI CFSI CTS2 CTS3 CTS4 C-0 5G-G0 14-704 C-9104 0-9037 9-90-00 6-9399 9-9152 C-0 90-C- 24-975 0-9468 0-9304 0-9472 (-9793 0-9455 1							"INO AXI	S CATA						
PSI IN AVE I CIST CTS1 CTS2 CTS3 CTS4 C+0 5C+C C+0 5C+C I4-764 C-9164 0.9037 0.9068 C-9399 0.9152 C+0 90-C 24-975 0.9488 C-93C4 0.94672 (-9793 0.9455 1	_	~	400				5.7603 8.0735	CA 1-6233	CY -0.3274 -0.3714	CRM -0.628	CYR 0.1112			
6.0 56.60 14.764 C.9164 0.9037 0.9668 6.9399 0.9152 6.0 90.6. 24.975 0.9488 0.9364 0.9462 (.9793 0.9455 1	_		ALPHA	154		AVE	C151	CISI	CLC	213		9		
		-~	20	30	90.62	14-764	0.9164 0.9488	0.9037	0.9668	6.9399 (.9793	~	5 K		
							SLIPSTRE) #F:						
SLIPSTREAM G	_		ALPHA C.C		1 SC - 05	CL 1.3799	C.6 0.000	0.3866	CV -0.0274	C6N -0.0753	C 4 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	95		
SLIPSTREAM G A PSI IN CL CG CM CY CHM CVM 6-U 5C-0G 1-3799 0-+822 U-3866 -0-0274 -0-055 0-0093 7		~	J. J				3.4131		-3.7154	4.1J.		11.53		

TABLE NO. 2-2
VAD LGW SPEED WIND TUNNEL TEST NO. 260
WALANCE AXES DATA

	TURKEL O	ن •	6. 2					ú3/0	13/04/68			
	PRESS TARE	TARE	-					ALP	ALPHA TABLE 11			
	STATIC TARE	TARE	0					TEM	TEMP TARE 1			
	TURNEL TERP	TEAP	41.00		- 114	0.0		5	PUN NO. 26			
	ALPHA 1 6.0	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	18 90.06 00.06	89.298 161.314	AF -5.235 -5.149	-32.269 -40.501	SF 1-171 5-828	33.917 24.624	YN 19.685 64.052			
•	44000	200	90°05	11 A 14-61 41 24-76 53	26.0 0.0 26.0 0.0		T2 RPH? 14.66 4168.0 24.86 5370.0	7 0 0 0	T3 RPM3 15.67 4162.0 23.68 5414.0	£ 0°0	T4 RPH4 14.75 3976.0 24.79 5288.0	400
•	ALPHA C.0 C.0	800 100	40°00°00°00°00°00°00°00°00°00°00°00°00°0	AVE T 14.521 24.521	CTST 1.3000 1.0000	CTS1 C.9792 1.0096	CT52 C-9826 I-5137	CTS3 1.4563 0.9659	CTS4 QS 0.9882 6.54 1.0108 10.74	28. 4.		
					WIND AKES GATA	S DATA						
					SLIPSTREAN Q	D WE						
•	1 0.0 2.0 2.0	4	90-06	1.4533	-0-1239 -0-6741	0.0401 -0.0401 -0.0394	CV 0.0277 0.0839	CRN 0.0382 0.0019	CVN 0.0052 0.0104	05 6-54 10-74		

VAD LCH SPEED WIND TUNNEL TEST NO. 260 BALANCE AKES DATA

						0.1983 0.1384					
						25 4102. n					
						14. 75 25. Ph					
						J3 0.1856 /.1427			80.4 0.4		us 7.19 11.41
		11	-			4162.3 5414.0			7.09		- =
	03/14/60	ALPHA TABLE	TENP TARE	KUN NO. 37	2.586 -27.629	T3 RP 15-14 41 24-68 54		0.0076 0.0819	CTS4 0.9115 J.950b		6 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	03/3	A P	TEM	KCA	97 -51 -51 -540 -640 -640 -640 -640 -640 -640 -640 -6	32 0.1861 0.1437		CAN -2.1611 -:-1159	CTS3 7.5 36 1		0900°3- 4610°0- 880
					SF 1.484 -0.563	PPR2 4150.0 5402.0		0.3889 -0.1477	CTS2 0.9096 0.942.		CY 0324 -0.0676
AKES CATA					PA 170.573 184.777	12 14 14-71 85 24-54	S DATA	3.2791 4.1013	CTS1 0.9097 5.5442	S CATA	C# 3-2734 0-2121
BALANCE AKES				- 144	AF 10.947 0.215	2.0 5.1874 5.0 0.1365	BIND AKES DATA	CC 4-4424 2-1535	C151 0.9167 0.9483	BING AKES CATA	C. 3699 0-1114
246					nf 65.765 165.517	11 RPF1 14.72 4122.0 24.60 5576.0		Ct 17.2391 27.6593	AVE 1 14.83C 24.704		CL 1-4395 1-4302
	•		·)	46.60	96.00 96.00	3 C C C C C C C C C C C C C C C C C C C		# 00° 00°	30°08		#C- C3
	65-7 6	1AE 1	IARE		870 870	100 100 100 100		0 0 0 0 0 0 0 0	2000		3000
	TUNNEL G	PAESS TARE	STATIC TARE	TUANEL TEMP	4430	A 200		ALPHA C.C	4440		ALPHA C.0 0.0
		_			1-1	0					

TAND LOW SPEED WIND TUNNEL TEST NO. 266

ALPHA TABLE 11 TEMP TAME 1 TE
APPLIES DATA PMI = 0.0 APPLIES PM SF RM -1.001 11.169 -1.498 -25.226 -1.163 49.425 0.459 -10.089 ETEM SF RM
03/C 0.0 RUM 11.169 -1.498 -25.226 49.425 0.459 -10.089 14.71 4130.0 0.0 24.75 5320.0 0.0 24.75 5320.0 0.0 24.75 5320.0 0.0
APP TEN
APP TEN
4/68 HA TABLE 11 P TARE 1 20.628 34.490 T3 RPM3 J3 14.78 4112.0 0.0 24.89 5250.0 0.0 CTS4 QS 0.9951 6.42 1.0039 10.98
74 RPM J4 14-59 4116-0 0-0 24-95 5296-5 0-0

VAU LCH SPEEC MINE TURNEL TEST NG. 266 BALANCE AKES DATA

		3.1832 7.1477					
		€. 0					
		-					
		14.85 25.00					
		J3 C.1897 .1465			95 7-56 1-47		45 7.76 11.47
11		4036.5 5452.0			12.56 11.47		- =
3/.4/68 ALPHA TABLE TEMP TAKE FUN HG. 29	98 5.193 -37.221	13 R1 14.78 40 24.63 54		CVM 3.156 -0.1095	CTS4 7.9210 0.9543		CVM 0.07.13
ALPHA TO TEMP TA	-35.472 18.183	0.1862 0.1381		CKM -0.1.29	CTS3 0.9164 0.9401		CRN -0.0086
	5.6 -0.228 -0.444	4768.0 5546.0		CV -1,5597 -0.1176	CTS2 0.9223 0.9529		0.000 0.000 0.000 0.000
3.	PP 177.681 251.285	12 8 14.87 24.96	CATA	CM 3.4888 5.5724	CTS1 0.9062 0.9470	0ATA P. C.	CH 0.2915
ī	AF 16.3f.6 1 11.267 2	J1 0 0 1848 0 0 1430	HING AKES GATA	C6 4-2742 3-5534	C1ST C.\$165 C.9486	WINC AKES DATA SLIPSTHEAP G	0.1519
	NF 65.235 1	RPP1 61 4144-0 81 5354-0	•	LL 17.2456 4 27.8855 ?	AVE 1 14-778 C 24-845 C	3 V	CL 1-441C 5 1-4335 0
	106.	71 14:61 24:01		27.	442		11
36 0 56	90.00	30 - 36 50 - 36 41		11 20.05 20.00	\$0.00 96.00		50.00 50.00 50.00
· · · · · · · · · · · · · · · · · · ·	184	8 · · ·		300	N 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TUNNEL 4 FRESS TAKE STATIC TAKE TUNNEL TEMF	ALBA A	ALPHA C.5 L.C		ALPHA C.C. C.C.	ALPHA C.C C.C		A
		~			~		F - 17

VAD LOG SPEED WIND TUNNEL TEST NG. 266 BALANCE AKES CATA

TURNEL Q	0.0	•					03/6	03/14/60				
PAESS TARE	TARE						ALP	ALPHA TABLE 11	11			
STATIC TARE	TARE	0					TEM	TEMP TARE 1				
TURNEL TERP		31.66		1144	0.0		NO.	AUN NO. 35				
 A. 0.00	4 0 0 0 0 0	12.05 00.05	59.589 104.176	AF -0.819 0.118	PM 10.725 49.234	5F 0.310 -1.360	ки -10.928 -35.367	22.557 -2.013				
 4440	% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	41.00	11 R 14-51 41 24-55 53-53	11 RPN1 J1 14-51 4132-J 0-O 24-55 5344-O 0-J		T2 KPM2 14-35 4192-0 24-70 5398-0	20.00	T3 HPH3 14-57 4170-0 24-84 5348-0	000	14.75 14.75 24.73	190.7	400
 400	NO 9	90.00	AVE 1 14.541 24.764	C1ST 1.0000 1.0000	CTS1 0.9976 0.9936	CTS2 0.9866 5.9958	CTS3 1.0018 1.0054	CTS4 1.9140 1.0912	0.5 6.37 10.62			
				LING AXES DATA	S DATA							
				SLIPSTREAM O	0 44							
 0.00	1000	90.00	1.4476	CC -0.0195	CM 0.0286 0.0657	0.0075 -0.0196	CRM -0.0032 -0.0052	6 0000 C	05 6.37 IC.82			

TABLE NO. 2-2
VAU LGM SPEEU MIND TUNNEL TEST NO. 266
BALANCE AKLS DATA

					0,1634 0,1434						
					14 RPH4 14-16 4156-U C 24-95 5416-U C						
					0.1851 0.1417			05 6.49 11.46			05 6.99 11.46
63/14/68	ALPHA TABLE 11	TEMP TARE !	PUN NO. 31	78 -4-817 5-492	13 PPM3 14-93 420 -7 24-68 5488-0		CVA -0.0143	CTS4 0.8878 0.9532 11			-9.0012 0.0010
(3/7)	4	T E M	202	68 - 38.841 -48.39	3.1859 C-1389		CRM -0-1356 -5-1362	CTS3 C-9361 2-9431			CRM -0.0093
				SF -:- 723	4182.C		CY -0-1496 -0-1675	CTS2 0.4355 0.5578			0.016c
			•	PH 134-949 186-764	74 14.92 38 25.07	S LATA	CF 2.8355 4.4364	CTS1 C.9027 O.94CC	S DATA) #4	CM 3.2394 5.2268
			i i	AF 10.773 3.461	RPP1 J1 15500 (01874 140800 01438	NIND AXES LATA	CL 2.0232 0.9125	C1ST 0.9156 6.9485	BIND AXES DATA	SLIPSTREAM G	C.2384 J.C479
				64.35e 167.953	71 RPF1 14-+C 415C-C 24-6G 5408-3		16.8698 28.2980	AVE T 14.606 24.822			1.4245
5 4		Ç	29.66	00000	73 • 05 41 6		90°06	73°05			00°05
56.5		AHE	LAP	184	N		75				4000
ILMEL .	PRESS TARE	STATIC TARE	JUNEL 1	ALP TA	A 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		ALPHA C.C.	A1914 0.0 0.0			ALPHA 0.0
	_			E - 1 V			1 - 10	1			

VAD LOW SPEED WIND TUNNEL TEST NO. 266 BALABCE AKES DATA

	Themse	•	•					ļ.				
		3	2					03/0	03/04/40			
	PALSS 1AAE	7	-					7	APHA TABLE 11			
	STATIC TARE	1446	•					164	TEND TORE 1			
	Jesep 1	mal Tens	99.66		- 126	0.0		3	PUN NO. 32			
	4000	****	19	****	12.26	145.941	5¢ -0.671 -1.927	-36.277 -59.001	11.131			
	100	304	-43	11 14.00 29.02 29.03	4220.0 0.1	0.1845 14.98 4194.0 0.1430 24.99 9970.0		3.1874 0.1398	3.1874 . 14.08 4120.0 0.1398 24.58 9474.0		0.100 17.30 4.00.0 0.1422 24.03 9500.0	42.3
					NING AX	BING AKES DATA						
5~~	400		222	17.010 20.7379	3.4073 1.2170	2.671	CV -0-1759 -0-6002	CBM -0.1083	6.0327 0.0148			
	3::	200	=======================================	14: 77. 24: 78:	C1ST 0.9165 0.9463	CTS1	CTS2 0.9288 0.9441	C153 0.9229 0.9434	0.9946 7	30.1		
					BING AKES DATES DATES	BIND AKES DATA						
5-"	400		===	12421	0.200 0.000 000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.	0.2404	0.0147 -0.0267	0.00.0 0.00.0	CV# 0.0027 0.0000	1.00		

TANKE DO. 2-2 VAL LUM SPEEU MIND TUNNEL TEST NC. 266 EALANCE AKES CATA

		TUNNEL C		0.0					(3/6)	13/14/68				
		PRESS TANE	TAKE						A P	ALPHA TABLE	11			
		STATIC TAKE	TAKE	o o					7.	TEMP TARE	_			
		TUNNEL TENP	TE NP	63.50		-	•		27.	HLN NO. 33				
		A1914 C.C.	3000	40°00	61.01	AF 7.496 -9.224	57.37. 44.050	SF 176 -2.544	139.43	-16.136				
	~	400	500	1. 900 500	11 14-45 4 24-49 5	134.0)		14.92 4266.0 24.65 5426.0	7	13 FPN3 14-88 4142-0 24-89 5349-0	7 6 C C C C C C C C C C C C C C C C C C	14.85	14.85 4088.0 24.89 5347.0	300 00
		400	₩ O	90°00 40°00	AVE 1 14-770 24-730	C151	CTS1 0.9781 0.9964	CTS2 1.3599 7.9966	1.753 1.74 1.61 65	1.0754	6.47 10.63			
						BIND AKES DATA	S DATA							
9						SLIPSTREAP C	2 44							
_ <u>h</u> 7		ALP 10	4 30	***************************************	1.4596	CM CM CM CV CMM CMM CMM CMM CMM CMM CMM	2100	C 4 (10) (1)	#.1	CV# -0.011	6.47			

TABLE BD. 2-2 VAD LOW SPEED WIND TURNEL TEST NO. 266 BALANCE ARES DATA

								4		٠	c	9. 0												
									41 80.9															
												_												
								2	14.69	24.50	24.95	34.43												
								5	2.0	0.0		6		•	•	•	=			50	6.48	1 74	12.84	5
	11												80	7	13.74	15.0	15.21			•	4	_	-	15.21
		-	*			3	20		C.0614	9398	54.00	0.296.C	•	33						z	96	=	0	4
03/04/00	ALPHA TABLE	TENP TARE	FUR NO.	2	- 30-00	2005	-46.270	13	14.70	23.74	24.73	34.69	CTS4	0.9933	1.0022	1.00	1.0001			CVR	9610-6-	-U-U: U-	0.30	A . 0 - 0 -
03/60	7	164	5	2	17.077	-107-972	-34.303	77					CTS3	1066-7	1996-0	9666	0666°C			CR	-0.9052	3.6 325	-0.0157	-0-037
				•	7 -	-10	ř		0	ċ	0.0	0.0		3	C	0	C				Ŷ	ر.	1	1
				25	-2.7.		-	200	4276.0	5548.0	5400.C	0.0040	CT 52	1.0090	1.0244	1.0003	0.9973			5	-0.0541	-0.05.26	-0.5661	-0-097
								~				34.63		_	•	.								
			9.0	2	5.6	01-10	57.377	12	-	52	**	34	CTS1	0.0	1.25	0.992	0.4475	S DATA	3 44	5	0.0775	6.1129	46C · O	
				1	1 =		~	Ŧ	0	0.0	0.0	0.0	_	0	0	0	C	BIND AKES	SLIPSTREAP	4.	=	~	13	
			E	AF		4.70	0.272					•	C151	1.0000	900	200	1.0002	3		3	8	2.0782		3.66.28
								1	172.	232.	360.	.358.							*274		•			
				*	5.202	500	935		-		_		16.1	3	326	7	. 723			7	1.3774	.371C	1637	. 3275
				;		3	130	=	14.7	24.	24.	34.	=	=	Ž	24.	ř				-	-	1.	-
					9 6	3	00		90	S	20	CO		00	00	90	8			=	9	9	23	00
		•	94.06			5	9	=	J	50.		•	=	10.00	5	10.	90				Š	90.00	10	205
0.0	-			15.0	ģ	ú	0	~	0	9	0	0	=	9	Ų	9	•			150		ပ္	0	
3	315	TAR	16 11 9		; a	ن	0		Ö	Š	ö	ú		ö	ö	•	ó					0	ŏ	ٽ
TUNNEL G	PAESS TABE	STATIC TARE	TLABEL	4404		9	0.0	3	0.0	•	ů	J.	4	0.0	0	•	•			MOT	.	v	9	,
2	3	\$14	3										1	J	J	J	J			•	U	J	J	J
				5	• ~	7	•	-	~	~	~	•	2		~	_	•				~	~	~	•

TABLE NO. 2-2

VAU LOW SPEED AIND TUNNEL TEST NG. 200
BALANCE AKES DATA

					7.1837 0.11447					
					\$4274.0 \$426.0					
					14.9° 24.63 34.72					
					13.19.6 0.19.6 0.1439					N 4 K
	11							7.1° 11.06 15.75		7.1. 11.66 15.75
89/- /63	MPHA TAELE	TEMP TARE	HUN NU. 35	18.64 5.576 3.279	13 FPM3 14.93 4122.5 24.99 5454.0 34.22 6582.3		2 4 4 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	CTS4 7.9198 7.9411		3 d 4
(3)	7	Ĭ.	3	-32.09; -37.874 -41.674			CFR	C153 C-921¢ C-9551		# 50 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
				5.6.24 	1 5534.0		CY -0.1112 -0.0461 0.2315	CTS2 :-9146 :-92559 :-97:6		500000 500000 500000
			. • (1	224-853 346-76U	12 144 14.82 N.2 25.01 215 34.89	NO AXES CATA	CM 4.39f7 7.2261 9.0154	CTS1 0.9115 0.9420 0.9620	NO AXES DATA	C. 3650 . 3720 . 5378
			I	21.055 24.111 22.613	KPPI J1 4246.01447 5598.0144.2 6460.0 C.1215	BING AX	5.5271 6.3202 5.9269		NING AKES SELIPSINEAR	CL C.4595 C.3253
				N6 00 001	1; kp 14.77 42 24.65 55 34.58 C40		CL 17.4293 27.3936 37.6571	AVE 1 14.657 24.622 34.604		1.4+90 1.34+7 1.3685
54	-4	J	دة. ان	90°06	200 200 200 200 200 200 200 200 200 200		07 05 05 05 05 05 05 05 05 05 05 05 05 05	00°00°00°00°00°00°00°00°00°00°00°00°00°		9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
55°0 6		TARE		7100	# 300 # 300			8000 8000 1000		8000
TUNNEL O	PHESS TARE	STATIC TARE	TUNNEL TEMP	44 9 9 9 9	A		4000	\$ 000		4
										~
							- 1			

VAD LUM SPEEU MIND TUNNEL TEST MO. 260 OALANCE AKES DATA

	TUNNEL Q C.O		0					C /E 0	19/10/60		
	PAESS TARE	ARE						4	ALPHA TABLE 11		
	STATIC TARE	TARE	' 2					IEM	TEMP TARE 1		
	TUNNEL TENP		40.00		C*G = INd	Ç.		5	RUN NO. 36		
-	PT ALPHA PSI	2.2	30.00	NF 58.774	AF 1.465	PH 63.140	SF C.322	PH -6.471	FR YE - 124.8-		
	ALPIA C.C	0.0		15 11 KPM1 J1 96.00 14.56 4176.0 0.3	10 0.0		12 RPH2 J2 14.56 4260.0 0.0		13 FPM3 J3	14.64 4164." G.C.	70
	PT ALPMA 1 0.0	N 0	30.00	AVE 1	1.0000	CTS1 1.0003	CTS2 1.0001	CTS3 C.9937	1.0056 6.37		
					WING AXES DATA	S DATA					
					SLIPSTREAM Q	7					
-	ALPHA C.0	0.0	1 C-0 0-C 30-00	1.4259	0.036	C# 0.1363	0.0c76	CRN -L.CG25	CV CRM CVM QS		

	PRESS TAKE	ARE	· · · ·						137.	03/.4/68 ALPHA TABLE 11			
123	2	STATIC TARE	c						TEM	TEMP TARE 1			
3	NEL	TEMP	TUNNEL TEMP 61.00			1	C		* C.	HUN NO. 37			
10	PI ALPHA	25.3	1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	# 3	100.40	NF AF PM 64.181 21.052 223.985	PH 223.985	SF 6.258	£₩ -29.636	4F 4F 4F -29.65-			
4	PT ALPHA	8 S B		5.	1m 71 MPM1 9C-00 14-81 423C-0	180 (30)	1 72	APM2 4180.0	1.1677	T3 RPM3	0.1691	J1 T2 RPM2 J2 T3 RPM3 J3 T4 RPM4 J4	7.1838
						NE ONI	WIND AXES DATA						
	PT ALPM 1 C.G	25.0		30.06	16.7970	2505°5	CF +-3736	3.0675	U.C675 -0.0889 -0.0124	CVN -0.01.24			
•	PT ALPMA	98.0		3.00 \$6.00	AVE !	CTST 0.9145	CTS1 0.9662	C152	C153	0.9210	95 7.06		
						BIND AK	WIND AKES DATA						
						SLIPSTA	PSTAEAN U						
	ALPHA C.C	2.0	•	19	PI ALPMA PSI IM CL 1 C.C C.C 90.00 1.4333	0.4599	CD CP C-3654	C. 0056	CV CFH CYM	CYM -5-75-2	7		

TAND BO SPEED WIND TUNNEL TEST NO. 266 8A.ANCE AKES DATA

TUNNEL G	0.0	0					03/60					
_	PRESS TAKE	-					3	ALPHA TABLE 11				
	STATIG TARE	9					164	TENP TARE !				
	TUNNEL TENP	27.00		ING	0.0		2	RUN NO. 36				
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NO00	2000	92.369 90.513 126.556	AF -2.268 -2.770 -1.979	PN -23-433 11-066 20-616	SF -2.297 -3.415 -5.570	-83.C78 -117.332 -153.649	4M - 1.609 - 18.102 - 5.409				
	8000	00000000000000000000000000000000000000	11.72.24.60	######################################	12 14.61 24.54 34.64	RPM2 4200.0 5418.0 6398.0	3000	13 RPM3 14.62 4120.0 24.68 5260.0 34.53 6224.0	9000 000	14 14.75 4 25.00 5 34.78 6	8886 5340.0 6320.0	\$1.00
	8000 4000	40.00	AVE T 14.673 24.704 34.749	1.0000 1.0000 1.0000	1.003C 0.9957 1.0028	CTS2 0.9957 0.9934 1.0026	CTS3 C.9964 0.999C	CTS4 QS 1.0049 6.43 1.0119 10.82 1.0008 15.22	. £ 2 2			
				MIND AXES DATA SLIPSTREAN Q	S CATA							
\$ 000	2000 2000	# 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.2603 1.2937 1.2937	0.0346	C. 0230	CV -0.0553 -0.0468	CKM -0.(211 -0.176 -0.176	CYM -0.0004 -0.0029 -0.0006	0.5 6.43 10.82 15.22			

TABLE MO. 2-2
VAU LOM SPEED MIND TUNNEL TEST NU. 166
BALANCE AKES DATA

					0.1894 14.59 4154.0 0.1876 1468 25.05 5470.0 0.1425 C.1271 34.72 6412.0 C.1216				
•	ALPHA TABLE 11	TARE :	0. 30	VM 0.4(7 -12.152 134.345	13 FPH3 14-36 4116-3 0. 24-52 5312-7 . 34-43 6366-0 7		C. 0012 C. 0012 -0.0358	CTS4 QS 0.9181 6.96 0.9577 11.46	
80/4. /60	A PHA	TEMP TARE	-CM NO.	7.178 -53.902 -56.445	0.1263 0.1263		CRM 0.6329 -6.1556	CTS3 0.4037 0.6376 0.9590	
) • C	152.277 -1.757 419.055 -0.461 386.040 0.213	12 PPR2 14-50 4184-C 25 24-8C 5396-C	DATA	2.9460 -0.46% 8.6266 -0.1216 7.7549).6558	CTS1 CTS2 0.6263 0.9129 0.9505 0.9483 0.9634 0.9653	S DATA
			- 144	57.249 14.898 126.498 11.40.923 31.303	11 RPR1 J1 14-72 4224-0 0-1845 24-86 5476-0 1-1425 34-58 6446-0 0-1209	BIND AXES DATA	15.6069 3.9052 33.1986 d.1592 37.5488 d.2212	AVE T CIST 14.541 C.9152 24.610 J.5465 34.552 0.9625	BIND AXES DATA
55.0	-	5	94.€€	00.06	30.00 30.00 60.00		30°06	20°00 00°00 00°00	
TURNEL G	PRESS TANE	STATIC TARE	TUNNEL TEMP	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4444 6.00 0.00 0.00 0.00		4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	7.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	
					F-10m		E-78		

TABLE NO. 2-2 VAD LOW SPEED WIND TUNNEL TEST NO. 266 BALANCE AKES DATA

99/20/66	ALPHA TABLE 11	TEMP TARE :	AUN NO. 40	-1:439 -63:083 -24:191 -2:393 -66:664 -12:161 -3:523 -140:126 -60:561	APM2 J2 T3 RPM3 J3 4196.0 0.0 14.08 4160.0 U.C 5442.0 C.O 24.04 5538.0 J.O 6300.0 C.C 34.64 6258.0 D.O	1.0028 1.0038 1.0014 6.50 0.9903 0.9980 1.0108 10.90 0.9928 0.9990 1.0001 15.18		CY CAM CYM QS 3443 -0.0180 -0.0065 6.50 346 -0.0189 -0.0019 10.90
			PHI - 0.0	-117 -4-277 -1: -1423 10-298 -2: -7-078 -23-502 -3-	11 12 2.0 24.65 C.0 34.42	1.0500 0.9923 1.0 1.0000 1.0010 0.9 1.0000 1.0021 0.9	WIND AKES DATA	CA 303 -0.0
		•	20.06	90.00 55.415 90.00 95.415 90.00 128.998	16 14-72 4194-0 90-80 24-91 5438-0 90-80 34-74 6400-0	1		1
TURNEL G C.O	PAESS TAKE 1	STATIC TARE	TUNNEL TENP 5	1 C C C C C C C C C C C C C C C C C C C	1 AL C. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 C.C. 0.0.0		2 C.0 0.0 2 0.0 0.0

TANK NO. 2-2
VAU LUM SPEED BIND FUNNEL TEST NO. 206
WALANCE AKES DATA

	KE 11	•1	7	\$12 215 8A	4112.7 1967 5376-2 1459 6390-9 1227	0 C 4 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2	54 65 159 7.05 566 11.42 653 15.84		CVA CS - 75 700 - 754 11.42 - 755 11.42
337:4768	ALPHA TABLE	IFAP TARE	- DE HO4	-15-175 32-016 -61-776 38-609 -26-519 71-215	J: T3 1886 14.72 1453 24.84 0.121 34.57	CAM CVM -2-14-9 -19-42 18-4 -113-0 18-4 -113-0	0.51% CTS4 0.51% C.9159 0.5552 0.9566 0.9651 1.9653		PS
				2.(37 -15 -1.21: -61 -1.922 -26	4156108693990.0 0.121	# 1	C152 C-3238 00 00.9411 00 C-3562 00		- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
			; ;	192.450 302.496 354.946	12 14.87 24.54 34.58	5.0935 -	CTS1 C.91C9 C.4833 C.98C7	NO AKES DATA	CP 3.291c 5.2941 - 2534
				23.225 23.393 32.393 35.445	A126-0 0-1948 9486-3 0-1429 0440-0 0-1218	C.0 6.0861 8.4926 9.2915	C151 (.916) (.646) (.668)	SLIPSTAEAP	######################################
				63.534 102.975 133.791	11 14.06 24.05 34.74	16.6464 20.7576 35.6739	AME 1 14.751 24.751 34.814		1.3929 1.3824 1.3004
55.0	1	J	29.00	90°00 90°00 90°00	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2000	200 200 200 200 200 200 200 200 200 200		# 000 000 000 000 000 000
	AAE	TARE	16.00	\$ 0.3.3 \$ 2.3.3	0000	2000 2000	Ø 100 N • • •		2000 2000
TUBBEL C	PALSS TARE	STATIC TARE	TURBEL TERP	A 9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1000	4000	4300		ALPHA 6.0000
3	4	7	=						

TABCE BO. 2-2
VAD LCW SPEEU WING TUNNEL TEST NU. 26F
WALANCE AKES DATA

		JUNNEL C		 					.31.	.3/~*/66			
		PAESS TANE	IANE	-					र्व	ALPHA TAFLE !	1.1		
		STATIC TARE	TARE	ر،					164	TEMP TARE			
		ICANEL	1EMP	20.06		114	3		Mila	PUN NJ. 42			
		4555	N 0 0 0 0	90.00	90.333 131.C.4	-4-677 -4-414 2-377	-37.1r4 -33.829 56.875	56 -4.237 -5.467 -1.952	-63.768 -126.768	-6.360 -37.079 62.169			
		1000	#000 #100 #200	3000 3000 4000	11.17 24.70 34.58	4174-0 1-1 5428-0 (-1	1 15 14.82 25.01 34.68	5.00 cc 5.00 c	, c	13 FPM3 14-72 4144	700	16.1 75.1 34.67	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
		4000	# 7 0 0 # 7 0 0	3000 3000 3000 4000	AVE T 14.831 24.993	C751 1.6063 1.6663 1.0663	CTS1 0.9959 0.9965 0.9983	C152 C-5992 1.0038 1.0038	CT S is a 4 4 2 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CTS4 1 - : 121 1 - 3 (86 1 1 2) - 9992 1	0.5 6.5 10.95 15.17		
2-56						MIND ALES DATA	ES DATA						
	2-0-	4000	¥ 000	#0°00 #0°00 #0°00	CL 1.3600 1.3610	C0.1161 -0.0624 0624	CN -3.0569 -0.0320	04 -0-100 -0-0 -0	24 C C C C C C C C C C C C C C C C C C C	CVF 	6.5° 10.05 15.17		

TABLE NO. 2-2
VAC LCM SPLEG MINU TUNNEL TEST NO. 266
dalance axes data

	TUNNEL L		65.					137	37 4/68			
	FRESS TARE	IAKE	=					त	JEPHA TANLE	::		
	STATIC TARE	IARE	٠,					T. F.	TEMP TARE	-•		
	JUMBEL TERP	TENP	73.34		- Ind	ij		5	FUN NO. +3			
•	1 C.C. 2 C.C. 3 C.C. 2	•	20 00 00 00 00 00 00 00 00 00 00 00 00 0	61-169 102-242 143-110	20.912 26.073 29.609	167.880 342.302 411.137	-1-864 0-130	15.455 -48.188 -65.147	26.296 3.994 -20.645			
•	4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	8.300 10.000	900 00 900 00 900 00 900 00	11 14.61 24.45	MPH JI 4120-0 C-1864 5348-0 C-1436	JI 12 1864 14-61 1436 24-59 1217 35-6	8 4028 0 0 9 5 4 4 8 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12 (•1937 (•141°)	T3 RP43 14-88 4012-3 24-73 5434-5 34-85 633 -0	######################################	14. 14. 14. 14. 14.	4112.7 4112.7 5366.
					AL ONI	MIND AKES DATA						
	1 ALPHA 1 C.C	4	90.00	CL 16.0343 26.009	C0 9.4816 5.6346 7.7771	CA 2.9984 7.0102 8.5091	CV -7.4887 0.0356	CER 0.0575 -0.1426 -0.206	CYN 0.0832 0.0116 0.0017			
•	40000	W		AVE 1 14.685 24.704 34.906	CTST 2.916 J C.9483 0.9628	CTS1 C.4114 C.4563 C.4641	CTS2 C.9112 C.9440 C.9640	C153 C.5282 C.9694 C.9612	CTS4 0.9131 0.9494 0.967	20 K M 1 C C C C C C C C C C C C C C C C C C		
					SLIPSTALAN	BING AXES DATA						
•	7 C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.	*****	10000	CL 1.3472 1.3454 1.3939	CD C. 46 CS C. 3534	CA 0.3625 0.3625	04.000 910000 000000	0.046 0.046 0.046	0.00 PE	20.7 11.0.2 14.21		

TANTE NO. 2-2
VAD LOW SPEED WIND TUNNEL TEST NO. 266
BALANCE AKES CATA

TEMP TABLE : TEMP TAME : TEMP TAME : TEMP TAME : 189,766 -1,146 -40,074 2,579 306,629 -6,362 -26,741 -15,141 326,937 1,126 -58,016 -50,142 1434 24,59 5442,0 0,1904 14,47 4034 1434 24,59 5442,0 0,1904 14,47 4034 1434 24,59 5442,0 0,1904 14,47 4034 1434 24,59 5442,0 0,1904 14,47 4034 1434 24,59 5442,0 0,1904 14,47 4034 1435 34,79 6494,0 0,1188 34,85 6418 5,0044 -7,304 -7,11,5 0,774 5,0044 -7,304 -7,11,5 0,774 6,0292 0,2951 -0,1780 -0,1475 0,9096 0,9127 0,916 0,9245 0,9993 0,9952 0,9963 0,9726 1 ES DATA ES DATA ES DATA EN CYPT C
##################################
CV CMM CVM CVM CVM CVM CVM CVM CVM CVM C
-1.148 -40.074 -15.141 -1.148 -40.074 -5.509 -0.362 -26.741 -15.141 1.126 -58.018 -50.142 8PR2 J2 T3 RPR3 4042.0 0.1904 14.07 4034.07 5442.0 0.1918 34.85 6418.0 CV CMM CVP -0.3009 -5.11.5 7.00.445 0.2951 -5.753 -0.7645 0.9452 0.9463 0.9249 11.0 CV CMM CVP -0.30951 -5.780 -0.1475 0.9452 0.9463 0.9464 11.0 CV CMM CVP -0.9452 0.9463 0.9464 11.0 CV CMM CVP -0.9452 0.9463 0.9464 11.0 CV CMM CVP -0.9452 0.9463 0.9464 11.0
A / C B TAF TABLE 111 2 - 5 - 142 T 3 - 4 + 4 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 +
ABLE 111 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
J • • •
53 80

VAU LUM SPEEU MIND TUNNEL TEST NO. 266 BALANCE AKES GATA

TEMP TABLE 111 TEMP TABLE 111 TEMP TABLE 111 TEMP TABLE 111 ST.JCI
10.00 FHI: () 10.00 FHI: () 10.00 FHI: () 10.00 JJ6.04 J. () 10.00 JJ6.04 J
##############################
TEMP TABLE 11 APPROXIMATION 45-717 APPROXIMATION 110-717 APPROXIMATION 110-7
2 RPH2 J2 T3 RPH3 CTS2 OS CTS2 CTS3 CTS4 OS CTS2 CTS3 CTS4 CTS3 CTS4 OS CTS5 CTS4 CTS4 OS CTS5 CTS4 CTS4 OS CTS5 CTS4 CTS4 CTS4 CTS4 CTS4 CTS4 CTS4 CTS4
27 4/0E ALPHA TABLE 11 TEMP TARE ' PUM NO. 45 396 -16.103 49.717 J. 4296.0 5.0 6296.0 6.1 57.6 6.0 6396.0 6.1 64296.0 6.1 64296.0 6.1 64396.0 6.1
ALPHA TABLE 11 TEMP TARE " RUM NU. 45 RUM NU. 45 RM VR -103 45.717 -507 55.524 -109 59.171 24.52 5498
#E , 11
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

VAC LCH SPEED THE PORTEL TEST MC. 266 BALANCE AKES DATA

					4.				
					74 RPH4 J4 25.17 5422.0 C.F				
	NE 11		;		73 FP43 J3 25.15 5464.C 7.0	CTS3 CTS4 QS			96°.1 (25°°) 6560°C A7 A7 B7 03
13/ 1/06	ALPHA TABLE 11	TEMP TARE 1	PUN NO. 46	8H 49.018	73	CTS			\$0.00 6.00
E :	•	-	•		77.3				CRR
				\$ 5 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	12 FPH2 257 5474.0	CTS2 1.6619			V 2 V 3.9-
			0.0	PH 37.513		CTS1 3.9895	S DATA	7 84	0.0510
			PHI - 3.7	AF-0-4-8	71 RPF1 J1 24-76 5410-U 5-0	C15T CTS1 1.0000 0.9895	.IND AXES DATA	SLIPSTREAM	0.000-0-
				* 3		AVE 25.019			14 CL 90.60 1.3333
o	-	0	00.40	10°05	90.00	00.00			
3	ARE	TARE	TENP	0.0	6.0				0.0
TURNEL 9 C.C	PHESS TARE	STATIC TARE	TUNNEL TEMP 64.CO	ALP MA	ALPRA C.0	PT ALPHA 1 G.C			PT ALPHA
				-	57	-			-

TABLE BO. 2-2 VAD LOW SPEED WIND FUNNEL TEST NO. 200 WALANCE AKES DATA

	TUNNEL G C.O	•	0					.76.	37/80				
	PRESS TARE	TARE	~					44	ALPHA TABLE 11	1			
	STATIC TARE	TANE	J					Í	TENE TARE 1				
	TUBNEL TENP 76.CO	1640	16.00			6.0		3	ALM NO. 47				
	ALPHA C. C	0.0	***************************************	N5 95.129	AF -3-746	***	SF-U-955	-4.962	-4.5°2 10.249				
-	ALFNA		90.06	24.26 54	16.0 0.07		72 APM2 J2 24-65 953C-0 0-7		13 RPH3 13 24.63 5460.0 0.0	60.0	7. 24. 92	74 RPB4 JA	70
57	ALPHA	# · ·	90.00	AVE 1	1.0050	1.0000	C152	CTS3	CTS4 QS	\$0.0			
					BING ARES DATA	S DATA							
					SLIPSTAEAN G	9 14							
=-	PT ALPM PS. 1 6.0 0.0	9.0	100.00	1.3019	-0.0107	5000	CV -0.0137	CH CY CAN 0.0642 -0.00137 -0.0012	0.001	98 10.00			

TABLE TO SPEED WIND TUNNEL TEST NC. 200 BALANCE AKES DATA

					4.				
					T4 BPH4 J4				
					74.34				
	ALPHA TABLE 11	1	4	47	T2 RPM2 J2 T5 KPM3 J3 23.24.86 55922.0 0.0 24.69 5520.0 7.0	C152 C152 C154 G5 1.0051 C.9980 1.0544 1.683			3.00:42 1C.83
3/10/08	LPHA TA	TEMP TARE	FUR NU. 48	. 26.	T 5 24.69	53			
ř.	- - -	-	ī	2F +33.9C: 26.466	~	CT 2 3			C. C
				1000	8942.	1.0051			6500°6- 8000°6
			\$ 0	53.594	7.2	CTS1 0.9925	S DATA	9 4	3.0762
			PHI - 0.0	AF PF 0.529 53.594	18 11 APRI JI 90.00 24.55 5420.0	CTST CTST 1.0000 0.9929	WIND AXES DATA	SLIPSTREAM G	CC CR C.0076 J.07C2
				95.761	11 AP	AVE T 24.730			CL 1.3676
		5	12-00	20.00	30.06	90.30			1 C.C G.C 50.00
3	IRE 1	IAKE	ILMP 1	250	0.0	100			9.0
TUNNEL Q C.3	PRESS TARE	STATIC TAKE	TUNNEL TEMP 72.00	6.0 6.0	ALPHA C.3	ALPHA C.0			A1916
				-	-	5 -			5 -

TABLE NO. 2-2 VAU LUB SPEEU BING TUBACE TEST NG. 200 BALANCE AKES DATA

137: 4/6	ALPHA TABLE	TEMP TA-F	FMI = C.O. SUM NO. 49	2.484 56.644 C.469 -36.645 -36.487 5.147 1U3.6fc 1.646 -32.65, -28.342	ul 12 apm2 ul 14.99 4342.0 c.u 24.75 5570.0 0.0 24.08 5524.0	CTST CTSL CTS2 CTS3 CTS4 1.000. 0.9010 1.0120 1.037 1.0305 1.000. 2.9025 1.130 1.101 1.014	bing arts date	SLIPSTREAM G	CU CM CM CV CMM CVW CCM CVW CV
				14 SC.CJ. 55.587 2	12 T1 RPP1 90-00 14-01 4206-0 90-00 24-49 5500-0	16 AVE 7 C 96.00 14.683 1. 90.60 24.678 1.	7	SL	13 CL 5c.60 1.4137 3. 5c.60 1.4162 C.
TUNNEL G	PRESS JANK 1	STATIC TAKE 0	TUNNEL TEMP 72.CO	PT ALPha PS1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1 C.C C.C 9.5 2 C.U 9.0 9.0	1 6.0 0.0 5.0 5.0 5.0 0.0 5.0 5.0 5.0 5.0 5			PT ALPHA PS1 1 C.C C.C S.C S1

4c:

VAD LON SPEEU BIND TURNEL TEST NG. 246 BALANCE AKES DATA

	L 6 11		· v·	VF 387 74.7	13 RPM3 J? T4 RPM4 J4 14.57 4254.0 (.1875 14.48 4340.0 0.1837 24.58 5678.0 '.1404 24.89 5628.0 1.1417		2 41	4 QS 22 6.95 41 11.43		M GS 73 6-95 74 11-63
09/50/65	APHA TABLE	TENP TARE	FUN NO.	-1.387	13 14.97 24.90		CVH -C-0641 -0-1652	CTS4 0.9122 .9941		6707.6-
0360	4	154	3	FR -44.462	12 0.1876 C.1423		CAP -0-120 -0-1218	CTS3 0.9176 0.9419		111C- 211C-
				SF -0.131 10.90	4252.0		CY -0- 344 0-2858	CTS2 0.9136 0.9426		6277°3- 6277°3-
			j• ;	215.56£ 246.139	12 62 14.90 28 24.59	NO AKES DATA	CP 4.40f1 5.1421	CTS1 C.9171 O.9549	NC AKES DATA	CP 0.3734 0.2655
			- 144	18.505 16.878	4282.0 0.1862 5584.3 C.1428	DING AKE	CC 4.85c7 4.4241	0.9444	LING AKES DATES OF SELPSTREAM G	0.4116 0.2284
				61.30C	11 14.56 42 24.91 55		CL 16. Code 26. 2705	AVE T 14.528 24.744		1.3635 1.3635 1.3564
56	-	.,	23.55	20°05	20.00		300.00	000 000 000 000 000		2000 2000 2000 2000
1 6.59	346	TARE			430 430		18000	200		NOO.
TUBBLE &	PHESS TANE	STATIC TARE	TUNALL TEMP	4 9 9	4000		44000	A 2000		4000
				2						
								0 CL		

TABLE NO. 2-2 VAU LCH SPEEC WIND TUNNEL TEST NO. 26C EALANCE AKES UATA

					2.1419					
					4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4					
					A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4					
					4144			S # 0		5.5 7 . 4 11 . 30 15 . 73
	::				7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			45.4 11.34 15.70		
30/~/65	ALPHE TANIE	TEMP TARE	1.04 +03 F.1	\$ (10 mm)	13 24 88 42 34 98 85		25 K	4517 44.5. 44.65		CV#
180	4 17	164	2 2	-21.91c			\$ 600 \$ br>600 \$ 600 \$ 600 \$ 600 \$ 600 \$ 600 \$ 600 \$ 600 \$ 600 \$ 600 \$ 600	1885 1885 1885 1885 1885		3
				2. 10 6 1 7 - 11 9 0 . 14 - 12 3 0 6 3 2	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		CV -3-755 -3-214	CFS2 7-9188 3-954: 3-9637		7. 000 7 -0.00 7
			-17.00	23.245 175.242 113.454	12 12 15 14 17 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17	NC AKES CATA	C = 2 C E = 2	C121 C-9167 C-9462	O AKES CATA PSTALAP C	# # # # # # # # # # # # # # # # # # #
			" " " " " " " " " " " " " " " " " " " "	4.52.1 31.52.1	APRI Ji 4242-0 1469 5488-0 (-1445	BINC AK	CL 627: 6.20:0	. 916.2 . 9481	BIND AKES	CL 0.4243 0.4243
				48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11 A 12 424 546 546 546 546 546 546 546 546 546 54		16.8637 27.1337	14-125 24-594 34-696		1000 1000 1000 1000 1000 1000 1000 100
50	4	n	36.46	# 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000000000000000000000000000000000000		90°03 80°03 80°03	40° CO		1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
\$6.5		AXC		A	2000		2	2103		1
TUBBEL .	PRESS TAKE	STATIC TANG	TURNEL TEMP	4	4 4 9 9 9 9 9 9		A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	# 1000 # 1000 # 1000		App.
				Ø						# ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
							2.4	55		

MAD LEW SPEEL THE PONREL TEST NO. 200

TAME 1	TURNEE G
2.0 2.0 2.0 1 1 1 1 1 1 1 1 1 1 1 1 1	2.0 1. APPROVED TABLE 11 E J. TEMP TABLE 11 P SEC. 55.817 -6.553 -5.4747 -13.364 -70.105 5.896 2. 50.600 99.257 -13.935 -81.276 -70.105 5.896 2. 50.600 99.257 -13.935 -81.276 -70.105 5.896 2. 50.600 99.257 -13.935 -81.276 -70.105 5.896 2. 50.600 99.257 -13.935 -91.276 -70.105 5.896 2. 50.600 99.257 -13.935 -91.276 -70.105 5.896 2. 50.600 99.257 -13.935 -91.276 -70.105 5.896 2. 50.600 99.257 -13.935 -91.276 -70.105 5.896 2. 50.600 99.257 -13.935 -91.276 -70.105 5.896 2. 50.600 99.257 -13.935 -91.276 -70.105 2. 50.600 99.257 -13.935 -91.276 -70.105 2. 50.600 99.200 0 1.0000 1.0000 1.0019 0.9975 0.9973 6.48 2. 50.600 99.200 1.0000 1.0000 1.0019 0.9975 0.9973 6.48 2. 50.600 99.200 99.200 0 1.0000 1.0000 1.0000 0.9975 0.9973 1.0000 0.997
2.0 2.0 2.0 1 1 1 1 1 1 1 1 1 1 1 1 1	2.0 1. APPLATABLE III E. J. TEMP TAME I F. S.
11 TEMP TABLE 11 2 TEMP TABLE 12 2 TEMP TABLE 12 2 TEMP TABLE 12 2 TEMP TABLE 12 2 TEMP TABLE 13 2 TEM	1 TEMP TAME 11 1 TEMP TAME 1 1 TEMP TAME 11
### ### ##############################	### PM = -1C.0C
### ##################################	## Phi = -10.00 RUN NU. 52 ## Phi = -10.00 SF RW Phi ## Phi = -10.00 RUN NU. 52 ## Phi = -10.00 RUN NU. 54 ## Phi = -10.00 ##
### ##################################	### ### ##############################
37 4/08 # PHA TABLE 11 TEMP TAME 1 # PHA SF MM VM S2 -94.747 -13.364 -76.109 5.896 -91.276 -22.690 -146.183 24.212 -07.466 -15.172 -65.251 -43.833 JI TZ MPM2 JS T3 PPM3 JI TZ MPM2 JS T3 PPM3 JI TZ MPM2 JS T3 PPM3 CTS1 CTS2 CTS3 CTS4 QS 1.0092 1.0019 C.9955 3.9933 6.4 CTS1 CTS2 CTS3 1.0097 10.8 L0092 1.0019 C.9955 3.9933 6.4 CTS1 CTS CTS4 CSTS 1.0077 10.8 L0054 CM CM CM CM CM CM -0.0946 -0.0826 -0.0717 5.2 -0.0946 -0.0826 -0.0733 1.0718 10.8	37 4768 APHA TABLE 11 TEMP TAME 1 FMP T
37 4/68 ALPHA TABLE 11 TEMP TAME 1 KUM NU. 52 KUM NU. 52 E-22.690 -146.183 24.212 -15.172 -65.251 -43.833 2	37 4768 AM PHA TABLE 11 TEMP TAME 1 RUM NU. 52 RUM NU. 54 RUM
37 4/68 ALPHA TABLE 11 TEMP TAME 1 KUM NU. 52 13.364 -76.105 -22.693 -146.183 24.212 -15.172 -65.251 -43.833 4342.0 0. 146.72 4232.0 5514.0 0. 146.72 12.0 5514.0 0. 146.72	37 4768 ALPHA TABLE 11 TEMP TAME 1 KUM NU 52 13.364 -76.109 5.896 13.364 -76.109 5.896 15.172 -65.251 -63.833 15.172 -65.251 -63.833 15.172 -65.251 -63.833 15.172 -65.251 -63.833 15.172 -65.251 -63.833 15.172 -65.251 -63.833 15.172 -65.251 -63.833 15.172 -65.251 -63.833 15.172 -65.251 -63.833 15.172 -65.251 -63.833 15.172 -65.251 -63.833 15.172 -65.251 -65.833 15.173 -65.833 15.174 -65.833 15.175 -65.833
ALPHA TABLE 11 TEMP TAME 1 KUN NU. 52 HM YM -76-105 5-896 -146-183 24-212 -65-251 -43-83 -65-251 -43-83 -65-251 -43-83 -65-251 -43-83 -65-251 -43-83 -65-251 -43-83 -65-251 -43-83 -65-251 -43-83 -65-251 -43-83 -65-251 -43-83 -65-251 -43-83 -65-251 -43-83 -65-251 -43-83 -65-251 -65-31 -65-253 1-65-97 -65-125 -7-5-11	## PHA TABLE 11 TEMP TAHE 1 *** *** *** *** *** *** *** *** ***
4/68 PHA TABLE 11 NO. 52 NO. 52 -43.833 14.72 4232.0 24.212 -43.833 14.72 4232.0 24.212 -43.833 14.72 4232.0 24.212 -43.833 14.72 4232.0 24.212 -43.833 14.72 4232.0 24.212 -43.833 14.72 4232.0 24.212 -43.833 14.72 4232.0 24.212 -43.833 14.72 4232.0 24.212 24.21	4768 PHA TABLE 11 NO. 52 NO. 52 -43.83 TA-72 4232.0) 14.69 24.212 -43.83 TA-72 4232.0) 14.69 24.84 5902.0) 25.00 24.84 5902.0) 25.00 24.84 5902.0) 34.72 CTS4 05 34.72 CTS4 05 1.0008 15.2
	11 12 13 13 13 13 13 13 13 13 13 13
	14.00 25.00 34.72
14.09 25.00 34.72	

TARE NO. 8-8 VAO LOW SPEED WING TUNNEL TEST MG. 200 BALANCE AXES DATA

	TURNEL 0	0.0	9					03/60	03/04/60				
	PRESS TARE	ARE	-					4	ALPHA TABLE 11				
	STATIC TARE	1446	•					4	TENP TARE 1				
	TUBER TERF	16.00	90.00		Ē	PHI10.00		3	RUN NO. 53				
	4000	2000		\$2.124 88.286 126.202	4.423 -1.989 -3.314	-37.772 4.767 1.424	SF -12.830 -17.628 -2508	109.44C -142.44C -213.976	-22.099 -27.373 -97.362				
	1000	**************************************		11 14.98 40 24.95 52 35.00 62	1000.0 0.0 5230.0 0.0 5200.0 0.0	12 15.03 24.69 34.95	4342.0 4342.0 5232.0	2000	13 RPH3 14-72 4166-0 24-63 5270-0 24-90 6226-0	5000 600	7.12 24.12 34.12	4130.0 5242.0 6306.0	000
	1000	7000 		AVE 1 14.063 24.670 34.093	C151 1.0000 1.0000	CTS1 1.0092 0.9946 1.0032	CTS2 1.0125 0.9987 1.0015	CTS3 0.9920 0.9990 1.0002	C754 0.9863 1.0087 0.9991	6.50 10.01 15.20			
					LINO AKES DATA	ES DATA							
					SLIPSTACAN Q	0 473							
~	1000	4000	-000	CL 1.2741 1.2879 1.3029	CD -0.1052 -0.0285 -0.0335	CA 0.0528 0.0186	0.03%6 0.03%6 0.03%6	CBM -0.0271 -0.0222 -0.0222	C #4 -0.00.42 -0.00.42	45° 6.5° 10.61 15.28			

TABLE NO. 2-2
val LUm SPeil alnu fünnét ifst At. 100
kaldnit at 5 Ustr

VAD LOW SPEED WIND TURNEL TEST NO. 266 BALANCE AKES DATA

TURBEL O		0.0					03/0	03/04/00				
PAESS TARE	TARE	-					**	ALPHA TABLE	11			
STATIC TARE	TARE	•					164	TEMP TARE 1				
TUMBEL	TUMBEL TEMP	90.00		-	PHI10.00		5	AUN 110. 55				
 1000	3000	2000	94.515 93.653 133.963	1.002 5.051 6.906	59.775 100.466 131.049	-2.309 -19.750 -24.122	AR -48.531 -57.949	77.102 -5.907 61.152				
 1000	2000	-000	71 14.72 24.70 30.53	110000 10000 1000000	12 15.03 24.75 34.42	RPR2 9 4280.0 5 5422.0	7000	13 RPR3 14-67 4122-0 24-52 9320-3 35-06 6354-0	#C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	14.00 24.73 34.90	2222	52.50
 3000	4000	-999	AVE 1 14.776 24.691 34.749	CTST 1.0000 1.0000 1.0000	CTS1 0.9959 1.0026 0.9938	CTS2 1.017C 1.0024 0.9406	CTS? 0.9929 0.9932 1.0048	0.9942 1.0017 1.0069	05 6.47 10.81 19.22			
				BIND AKES DATA	ES DATA							
				SL I PS TRE AN	EAM Q							
 4000	3000	-000	CL 1.3395 1.3680 1.3682	0.0402	CA 0-1171 0-1192 0-1027	0.0450 -0.0450 -0.0450	CBM -0-1175 -C-0002	0.0013 0.0013 0.0019	05 6.47 10.01			

TANKE BO. 2-2 VAU LCH SPLEL HIAD TUNNEL TEST NG. 266 EALANCE AKES CATA

ILANEL & C.L	;	•					. 37	37.4/68				
PAESS TANE	ARE	-					ALP	ALPHA TABLE	11			
STATIC TANE	TARE	o					15.	TEMP TAPE				
TUANEL TEMP	TEMP	•2.03		-	PMI = -13.00		NO.	HUN NG. 56				
 4	7,000 1,000 1,000	\$0.00 \$0.00 \$0.00	37.954 95.577 132.160	AF -3.797 J.413 7.419	2.451 49.730 159.328	5F -1C-443 -15-938	FM -34.854 -25.344 -112.715	78 -12.369 10.769 5.568	·			
 # 0000 0000	4000	**************************************	11 R1 14.77 414 24.60 532 34.79 639	2000 C.0086	12 14-77 24-80 34-63	4204°C 94114°C	3 0 C	13 RPH1 14-83 41746-0 24-79 5364-0 34-56 6266-0		14.87 24.89 34.88	4220. 4220. 5420. 6386.	UCC
 4000	 	2000	AVE 1 14.791 24.770 34.723	C1ST 1.60C7 1.0003 1.63C3	CTS1 0.9986 0.9931 1.6321	C152 0.9984 1.0014 0.9973	CTS3 1.0726 1.3576 3.5965	CTS4 1 -000 5 1 -00 49	0.5 6.48 165 15.21			
				BIND AKES DATA	S DATA							
 1000	2000	-000 -000 -000 -000 -000 -000 -000 -00	1. 465 0 1. 3013 1. 375 (0.00%	0.020		C	##30.5 ##30.5 ##30.5	6.5 1.085 15.21			

VAD LOW SPEED WIND TUNNEL TEST NO. 266 BALANCE AKES DATA

				BACANCE ARES UNIA							
TUBBEL O		0.59					03/0	03/04/00			
PRESS TARE	TARE	~					*	APHA TABLE	11		
STATIC TARE	TARE	•					TEM	TENP TARE 1			
TURNEL TERP	1680	•2.00		=	-10.00		5	NO. 57			
 1000	N 0 0 0	**************************************	62.959 102.562 136.786	22.398 33.189 37.129	249.072 379.642 404.662	SF -10.727 -18.468 1.424	FM -35.417 -35.452 -42.477	VN 22.858 3.055 14.250			
 4000	4000	-000	14. 72 4204 24. 76 5420 34.69 6356	681 J1 04-0 C-1860 20-0 C-1443 56-0 C-1230	1 72 860 19.08 443 24.44 230 34.42	414 414 644 644 644 644	12 0-1864 0-1456 0-1216	13 RPN3 14-83 4200-0 24-84 5432-0 35-00 6439-0	3 13 .0 0.1059 .0 0.1447	74 RPM 14-59 4322.0 24-00 5512.0 34-67 6470.0	000
				DING AKES DATA	ES DATA						
 1000	3000	9000	CL 16.741C 27.5170 35.2473	5.0712 6.7000 9.7328	CA 4.9201 7.3990 7.7347	0.0043 0.1025 0.5003	CAM -0.1049 -0.1016	CVM C.C609 0.2027 0.2479			
 1000	4000	- 000 - 000	AVE 1 14.804 24.618	C151 0.9166 0.9626	CTS1 0.9112 0.9512 0.9625	CTS2 0.9338 0.9389 0.9590	CTS3 G-9182 0-9544 C-9712	CTS4 0.9032 0.9484 0.9484	05 7.57 11.40 15.79		
				NIND AKES DAT	ES DATA						
				SLIPSTREAM	E AM Q						
 1000	3000	2000	CL 1.3963 1.9160 1.3173	0.4563	C# 0.4104 0.3625 0.2691	0.0079	CBM -0.0009 -0.0053	0 .00 68 to 0 .00	10.5 11.67 15.40		

TARES NO. 2-2
VAU LGS SPEED SING TURNEL TEST NG. 366
BALANCE AKES DATA

					\$ 000			
					\$2.50 \$4.50			

	1.1					05 0.90 10.00 15.27		6.80 11.00 19.27
13/24/68	APHA TAME	TEMP TAKE 1	PLM NO. 58	26.362 - 2.864 39.927	13 MPR3 14.40 4210.0 24.89 5410.0 34.85 6406.0	CTS4 0.0794 1.0071 1.0096		0.0003 -0.0003 -0.0003
13/20	4 7	164	5	NA -0.729 -30.426 -10.179	7:07	CTS3 1.0001 1.0001 0.000		CO C
				SF -1.467 -7.603	4280.0 5452.0 6436.0	CTS2 1.C161 C.0907 0.9966		0.2619 0.1290
			-11.30	25.444 5.046 5.046	12 15.08 24.44 34.74	C151 0.9990 0.9930 C.9999	S DATA	CB 0.3502 0.0160
			PN15-30	-0.914 -2.947 -2.967	1116.0 0.0 1326.0 0.0	1.00cm 1.00cm 1.00cm	BIND AXES DATA	CD C
				97.134 95.398 133.144	11 14-82 411 24-49 532 34-85 627	AVE 1 10.003 20.005 30.005		CL 1.3447 1.3597 1.3651
		C	3.66	-300		30000		-000
3.3	1 100	TARE	TUNNEL TEMP 42.CG	7000	2000	#U00		3000
TURNEL 4	PRESS TARE	STATIC TAME	TORREL	4000	1000	4.00		1000

YAD LOW SPEED WING TUNNEL TEST NO. 266 BALANCE AKES DATA

	TURNEL Q		0. 0					03/6	03/04/00				
	PRESS TARE	AAE	-					7	ALPHA TABLE	111			
	STATIC TARE	TARE	J					TEM	TENP TARE 1				
	TURNEL TERP	16 110	••• 00		Ī	PHI1C.00		3	RUN NO. 59				
	4000	N 000	2000	56.319 45.443 131.744	AF -6.034 -2.568	-37-641	5F -11.577 -16.019 -25.493	AM -57.905	-32.380 7.197 22.349				
	4000	6000	-000	13.35 25.35 25.35 25.35	5320-0 C-0 6280-0 C-0 6280-0 C-0	1 12 14.71 24.86 34.86	1 4176.0 5 5406.0 6 5392.0	2000	13 RPB3 14.72 4168.0 24.73 59CO.0 34.58 6288.0	2000 2000 2000 2000	74 14.85 24.68 34.72	4162.9 5314.0 6386.0	600
E-14M	1000	N 0 0 0		AVE 1 14.770 24.756 34.749	1.0000 1.0000 1.0000	CTS1 1.0030 1.0000 1.0020	CTS2 0.9957 1.0040 1.6026	CTS3 C.9964 O.9990 0.9993	CTS+ 1.0049 0.9970 0.9992	95 6.47 10.84 15.22			
					BIND AKES DATA	ES DATA							
					SLIPSTAEAN Q								
	44000	2000	20000	CL 1.3733 1.3542 1.3634	CD -0.1442 -0.0363 -0.0263	C# -0.0400 0.0312 0.03547	CV -0.3369 -0.0050 -0.5228	0.0144 -0.0080 -0.0080	-0.0103 0.0011	05 6.47 10.04 15.22			

MADE LON SPEED WIND TUNNEL TEST NO. 266 BALANCE AKES GATA

		TUNNEL G		• • • • • • • • • • • • • • • • • • • •					13/	13/14/63				
	_	PAESS TAKE	AKE	-					4	A PhA TILLE	::			
		STATIC TARE	TARE						-	TENE TARE 1				
		Tuesde Tene	16.40	30.66		1	PH110.00		5	FUN NO. 65				
		4.000	*****	40000	57.372 90.147 112.562	-3.802 -6.743 -7.776	-1.313 -10.246 -18.576	5. -12.060 -14.529 -26.065	-67.136 7.671	46.501 20.722 -94.136				
		1000	8999	- 000 000 000 000	11 14.51 41 25.07 53 34.79 £3	######################################	14.07 24.75 34.95	4240.5 4240.5 5920.0	7000	13 RPR3 14-67 4176-3 24-94 5380-7 34-90 5906-0	7000 000 000	16.43 29.00 35.04	5246 5446 5446 5446 5446 5446 5446 5446	c' c' c'
		1000	**************************************	100 100 100 100 100 100 100 100 100 100	AVE T 14.620 24.961 34.920	CTST 1.0000 1.0000	CTS1 0.4923 1.0092	CTS2 1.0172 0.9924 1.0007	CTS3 1.0 36 1.0 1 0.0994	CTS4 -9869 1-3023 1-9034	65 10.62 15.29			
2-76						LIND AXES GATA	ES DATA							
	2	1000	2000	# 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.4178 1.6642 1.3659	CC -0.0918	00000 00100 00100 00100	0.0012	CAN 0.0002 0.0002	CVN 0.0CN 0.0CN	05 0.4: 17.92 15.29			

TABLE BO. 2-P VAD LUM SPEED BING TUNNEL TEST NO. 266 BALANCE AXES DATA

				135 132 105						
				0.1821 0.1432 0.1432						
				424C.0						
				74 14.60 24.89 35.09						
				3.1879 3.1372 (.1171						\$ (4 F
:	: .			RPH3 4156.0 5692.0 6672.0			65 7-06 11-42 15.79			7.76
03/04/68	TEMP TARE	KUN NO. 61	-27.0CC -158.964 -225.003	13 RP 14.67 419 24.63 569 34.32 667		0.0564 -0.3691 -0.4664	CTS4 0.0119 0.9946 0.9736			0.0042 -0.0160 -0.0160
03/0		2	-30.435 -21.491 -39.400	0.1396 0.1396 0.1193		CRM -0-1009 -0-0695 -7-1159	C153 0.91C7 0.9544 0.9522			4800°01
			5F -9.640 -16.669 -24.06U	4152.0 4152.0 1 5594.0		CV 0.4001 0.2520 -0.0004	CTS2 0.9296 0.9552 0.9564			0.0338 0.133
		20°01- = 1H	251.955 296.746 363.018	12 64 14-98 52 24-91 24 34-47	NO AKES DATA	4.9578 6.2412 6.0653	CTS1 0.9134 0.9392 0.9683	NO AKES DATA	9 14	CM C-6145 C-3224 C-3224
		7	AF 23.310 30.065 31.240	4190.0 C.1864 5380.0 C.1452 6380.0 C.1224	BIND AKE	CG 6-1125 7-8811 8-1889	CTST 0.9164 0.9463 0.9626	WIND AKE	SLIPSTAEAN	Co Co S 111 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
			63.558 100.279 136.540	11 14.72 41 24.49 53 34.50 63		CL 16.0467 26.6460 36.3449	AVE 1 14.764 24-730 34.697			CL 1.4085 1.3765 1.3583
•	•	29.00	50.00 50.00 50.00	00.00		00.06 00.06	000 000 000 000			# 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(. S1	•		2000 2000	3000		2000	W 1 1 1 1 0 0 0			*****
TUNNEL Q	STATIC TARE	TUNNEL TENP	4000	3 000		4000	1000			4000
				5 -~~		E-00				

VÁG LUM SPÉLU MING PUNNEL TEST NG. 266 BALANCE AKLA GATA

					0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0				
					4304.3 54 94.0 54 94.0				
					14.85 24.92 34.72				
					3.1792 0.1462 0.1162		NE 7.0		2.5 11.4 15.93
	11	g ud	~		4996.1 5966.0 6723.3		7.77		
39/77/5	APHA TABLE	TEMP TARE	FUN NO. 62	-23.018 -51.334	13.63.43 24.63.43 34.93.43	CYM 0.0063 0.01663	CTS4 C-92C3 C-9423 C-96C9		# 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13.	व	141	3	-23.496 6.366 -21.445	32 :-1861 :-1435 0-1190	に	CTS3 0.9256 f.9566 C.9666		627 Je D-
				56 -9.927 -14.529 -24.274	4194.0 5440.0	0.3403 0.7700	CTS2 0.9215 0.9491 0.9642		16: 100 987:00 987:00
			11 - :	Fn 240.852 313.748 329.199	12 14-87 19-24-70 25-34-64	CH C	CTS1 0.8989 0.9492 0.9600	S DATA	C. 3934 C. 3434 C. 3646 U. 2646
			· Ind	22.583 28.346 26.781	APP1 J1 4178-0 0-1868 5388-0 0-1449 6370-0 0-1229	6.0 CM	C757 3.9169 5.9982 C.9627	bind axes data	CC 0.4541 0.3848
				63.826 55.358 135.961	11 87 11 25 417 25 417 34 55 417 34 55 417	CL 16. 52.05 26.3102 36.2031	AVE T 14.791 24.677 34.700		10.01 10.01 10.01 10.01 10.00
5		:	26.16	4000	2000 2000 2000 2000 2000 2000	# 3 1 1 0 # 3 1 0 # 9 0	2000 2000 2000 2000		# 10 0 0 # 10 0 0 # 10 0 0 # 10 0 0
55.0		ARE		20.00	#UU0 #U0 #U0	#U.J.	8000 -020		N
TUNNEL C	FRESS TANE	STATIC TARE	TUNNEL TENP	¥	4300	4000	4000		4300
	_						_		

VAU LOW SPEED WING TUNNEL TEST NC. 266 WALANCE AXES DATA

					4300.7 9430.7 6424.7				
					13 T4 1-1771 14-90 1-1406 24-75 1-1179 34-56				£ 78
	=======================================	-	_	.	APM3 4342.0 7 5470.0 4	ā., .a.	15.00		11.41
19/96/80	APHA TABLE	TEMP TARE	FUN NO. 63	-7.263 -106.799 -200.605	13 R 14-72 43 24-56 54 35-06 69	CV# 0.1036 -7.1650 -7.3650	0.922 0.922 0.9915 0.9915		
23/2	44	#31	3	-27.489 -33.011	0.1832 0.1413 0.1160	CER 	CT53 5-5117 C-9434 5-566		4 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
				SF -10-709 -16-770 -26-147	4190.0 5440.0 6514.0	CY 0-1354 0-1269 1-1-658	C.92C8 0.9541 0.9723		\$ 5 C - 3 C
			-10-50	244.079 294.357 399.857	12 36 14.87 52 24.86 17 35.26	CB 4.7450 6.0796	C151 0.9112 0.9942 0.9994	S DATA	3998 3998 3144
			-	22.167 24.025 27.859	6PM JL 1834 1452 2463C-0 3-1217 35		L151 C.9166 U.9483 O.5629	WIND AKES DATA SLIPSTAFAM C	0.4846 0.3769
				NF 63.756 98.007 136.365	Ti 6P 14.72 418 24.60 529 34.75 632	LL 10.9461 26.0641 36.483	AVE 1 14.804 24.704 34.515		CL 1-4134 1-3477 1-3552
16		, •	45.66	40000	00°00°06°00°00°00°00°00°00°00°00°00°00°0	# 00° 00° 00° 00° 00° 00° 00° 00° 00° 00	10 - 15 50 - 05 50 - 05 50 - 05		#1 00°05 00°05
	AKE 1		TEMP 4	8000 0000	MUND	3 000	N. 1. 0		N 000
TUNNEL .	PHESS TAME	STATIC TARE	TURNEL	4	4000	4 3 9 9 9	¥0000		A 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
				M M M M	F				a ~ ~ ~ ~

TABLE BO. 2-2
VAC LLM SFEED WING TURNEL TEST NO. 266
BALANCE AXES DATA

					4			
					3, , ,			
					1 96 5334			
					16.00 26.00 36.00			
					5,00	29E		C. S.
	=				(() () () () ()	6.48 1.48 15.2		2
2 7	A FHA TABLE		FUR NO.	7M - 3.362 36.104 39.709	F F F F F F F F F F F F F F F F F F F	(154 10)367 1000 1000 1000		64:00-0-
3017 161	4	TEMP TAKE	5		13			9
151	¥	164	5	7.66 3 38.413 -3.27 5		1833 1847 1877 1878 1878		2.C.11 2.C.11 2.C.71 -C.1.376
				1.661 -2.630	24 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1.00.01 1.00.01 1.00.70		CA 0-0-0-11 0-0-0-376
			٠,٠٠٠	41.723 23.533 71.656	12 14.92 24.91 34.47	CTS1 0.997e 0.9952 1.69e3	CATA	C# C.0971 0.0458
			- I	AP -(.75) -6.414 -1.862	\$ 200	C151 1-006.) 1-200.0	SELPSTAEAM U	C.0173
					# # # # # # # # # # # # # # # # # # #	=	A •	
				54. 33C 58. 33C 58. 136 135. 839	24.77	AVE 1 14.834 24.717 34.096		CL 1-3513 1-5623 1-3825
		و	34.66	56.00 96.00 96.00		1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		10°06
,	,			4 1 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0000 0000	2000		4000 1000
TUBBEL C	PRESS TANE	STATIC TARE	TUNNEL TEMP	4 000	4000	A 7 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		40000
=	2	S	ī					

VAU LUM SPEED BIND PUREL TEST NO. 266 BALANCE AKES DATA

	TURNEL G		;					(3/	c3/ 4/ce			
	PAESS TABL	TARE						A TV	ALPHA TABLE	.1		
	STATIC TARE	TAKE	ø:					1.5	TEMP TARE	••		
	TURNEL TEAP	TEMP	33.64			-5.30		201	PUN NO. n5			
	4	3000	# 30 .00	59.231 56.482 135.594	0.155 -3.750	56.083 12.21 2.436	56 994 1.291 1.772	6.923 23.760 14.078	2000 2000 2000 2000 2000 2000			
F-7m	1000	8000 8000	# 70 CC	11.02.02.03.03.03.03.03.03.03.03.03.03.03.03.03.	# C700 C C C C C C C C C C C C C C C C C	14.87 24.07 34.47	6 90 c. 6 90 c. 6 90 c. c.	ရှိ(၉၀ (၈)	T3 PPM3 14-89 4194-5 24-56 5312-1 34-64 6283-5		7. 16.7. 24.6.	4227. 5364.
	A	W 3 3 0	# U U U	AVE 1 14.63 24.64 34.630	CTST 1.6000 1.6001 1.0001	CTS1 C-4964 L-0998 1-0998	CTS2 1-202e 0-9992 0-9992	115.	CTS4 0.9965 1.0 42	6.5 10.4 19.12		
					bing axes data	ES DATA						
E - ~ M	4 3 3 U	× 5000	# 000000000000000000000000000000000000	CL 1.4163 1.3013	0.019.0 0.0537 0.0537	C+1261 0-1275 U-3192	CV CV-237 C-6185	4.01°	18. C	N S G -		

TABLE BO. 2-2 VAU LCM SPELD MING TUNNEL TEST NO. 264 BALANLE AKES DATA

		TLANEL L	•	.,					.37	9414 18.			
	_	Patss Take	AKE	-					व	MPHA TABLE	=		
		STATIC TAKE	TAKE	7					11.1	TEMP TARE	_		
		TUMBEL TENP	16 NP	37.75		- 114	-5.31		**	10 MG. 66			
		40000	23303	40000	56.795 96.735 136.928 -0.867	AF -0.197 -0.702 -7.606	**************************************	55 0.541 1.578 -0.724	13.512 13.512 -170.601	VB C.714 37.924 -4.792			
		10000	60007	000000 0000000000000000000000000000000	11 14.55 24.75 24.53 24.53 -C.32	22666 0.0 22666 0.0 22666 0.0 22666 0.0 22666 0.0	12 24-22 24-24 24-24 24-24	4200.0 5400.0 5400.0 5400.0	30000	13 RPH3 14.93 4134.7 24.64 5324.7 34.69 5266.0 31 2.0	- C - C - C - C - C - C - C - C - C - C	14.4. 14.6. 14.6. 14.6.	
2-80		1000	0000 0000	2000 2000 2000 2000 2000 2000 2000 200	AVE 1 14-777 24-809 34-735 -C-408	1.0003 1.0000 1.0000 1.0000	CTS1 0.9923 0.9957 0.9941	CTS2 1.5620 0.9950 1.0308	C153 1.156 1.071 1.0932 (.7779	CTS+ 0.05+2 1.1.03+ 1.2.03+ 1.2.03+	05 0.47 117.87 15.21 -C.18		
						SLIPSTREAP G	ES CATA						
		40000	W 10 10 0	900000	1.1649	C 3.1481 - 3.2954 - 0.0759	CM -0.0320	C4 C-0129 D-1225 U-029	CER 2.0000 0.0000 0.0000 0.0000 0.0000 0.0000	#AU	24621		

TABLE NO. 2-2 VAL LUM SPEED BIND TUNNEL TEST NO. 200 BALANCE AKES GATA

					11411						
					14 CC 4290						
					13 0.187 0.167 0.197			05 7.06 11.447			2
/6 E	ALPHA TACLE 11	TINP TARE 1	HUN NO. 17	37.761 -51.218 -116.536	13 FPA3 14.88 4136.7 25.75 5514.0 34.64 6467.0		CYM 0.1111 -0.1507 -0.3428	CTS4 C.922L 7 7.9557 11 0.9656 15			CV# 0.00093 -1.00178 1
39/5./63	ALPH	1649	3	HM -23.976 -42.953 -19.246 -	C.16.1		CAM -0.574 -0.1171 -C.577	C153 C.52C7 O.456e C.96C3			\$ 6000 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
				5. -0.490 -1.659 0.164	4200.0 4200.0 5508.0 6572.0		CV -0.1284 -C.3812	CTS2 C.9168 C.9433 D.96C1			-0.0104 -0.0109 -0.0109
)(;•ç-	236.892 326.619 322.814	12 66 14-62 43 24-70 23 34-63	S CATA	6.6176 6.551C 6.6196	CTS1 0.9072 0.5435 C.9647	AD AKES LATA	9 44	0.3646
			- Ird	23.295 28.337 24.431		NIND AKES CATA	CL 6-0459 7-4260 6-4343	C-9167 C-9167 C-967 C-9627	SINO AKE	SLIFSTALAN G	0.0 0.5683 0.23622 0.2392
				63.735 101.416 138.285	11 AP 14.66 415 24.70 536 34.79 632		CL 16.7070 24.5645 36.2488	AVE T 14.817 24.835 34.722			1.3523 1.3578 1.3578
5		ຕ	22.06		20 - 76 20 - 76 20 - 26		20°00 20°00 20°00	20°00			#U 30 0 0 0 0 0 0 0 0
\$5.7	1 14	IARE		0000 0000 0000	#000 #000		2000 2000	4000			00°
TUNNEL L	FRESS TAME	STATIC JAKE	TUNEL TENP	44 0000 0000	4 000		4694	1 3000			4 0 10
	_			-			E-100				E ~ 0 m

DANCE NO 2-2 DATE NO 2-2 DATE NO 2000 DATE N

					424. 7.1802 5490.7 7.1802 5480.7 7.1802						
					14.90 24.00 34.72						
					0.1419 0.1419 0.1197			65 1.12 1.44 1.44			2.5 1.1.7 1.0.4 1.0.4 1.0.4
	=	e 4		***	9416.3 9416.3 9523.1		~~~	~~			211
19/1 /6	ALPHA TABLE	TEMP TARE	108 NO . 08	78 16.039 -70.592 -36.441	13 26.63 36.48		CVN C.0472 -0.2077 -0.1374	C754 0.9168 C.9446 0.9630			0.0.39
*	16	16.4	5	AM -27.753 -4.011	5. C.1995 0.1174		CB3 -0-: 792 -0-0-193	CTS1 9107 C-9429 O-9963			62.1°0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-
				SF -0.373 -1.000	4248.C 9548.C 9548.C		CV -0.0978 C-2345 -3.4323	C152 0.9213 0.9573 0.9609			CV -C.2C81 0.C1C5 -0.C101
			-5.60	234.734 316.356 350.409	72 14.90 18.25.01 34.03	DATA :	CB 4.6478 6.2951 7.2229	C751 0.0110 0.0404 0.0700	DATA	•	0.3051 0.3051 0.3245
			- 114	AP 21.735 24.764 3	4184.0 0.1849 5380.3 0.1438 6360.0 0.1216	WIND AKES DATA	5.6974 6.4919 6.4919	C151 0.9171 0.9484 6.9626	bing ares	SLIPSTREAM	0.4721 0.4721 0.3347
				N6 65. 820 101. 700 137. 100	11 82 41 82 41 82 41 83 84 61 84 61		26-6819 0 35-9399	14-509 24-703 34-705			Ct 1.4514 1.3755 1.3427
<u>,</u>		J	36.66	#0000 0000 0000	90.06 90.06 90.06		1000	30000			# 0 0 0 # 0 0 0 # 0 0 0 # 0 0 0
¥ 00 • 00	3	AME		W 300	7000 7000		2000	**************************************			2000
TOPPEL C	PRESS TAKE	STATIC TANE	TUMEL TENP	4	1000		4000	4000			4000
-		-•	_								

TABLE NO. 2-2 VAL LCH SPEED "IND TURNEL TEST NO. 260 BALANCE AKES DATA

4	TLANEL L	6.58	,						31 4/68			
~	PRESS TANE	ć 1						477	SLPMA TAELE	1.1		
-	STATIC TARE	Ä	S					1+1	TEMP TALE			
-	ILANEL TEMP		34. CC		- 114			2	FUN NO. 04			
- C	\$	15.0	# 1 9 C • C O	N. 63.657	AF 22.510	202.202	56.419	## -21-726	250.71			
-); ;	3.0	\$C. 20	134.200	27.691	326-950	5.243 -1.33	-26.514	154.987			
	2 333		2000 2000 2000 2000 2000 2000 2000 200	11 RP 11 14.45 411 24.61 535 34.64 6346	4112- 0-1639 5352-0 -1452 6346-0 -1224	1 T2 689 14-96 452 24-44 224 35-05	4232°° 4 5518°°° 5 6572°°	1636 11636 1163	13 FP43 14-78 4118-0 24-59 5474-0 34-0 650-0	3 J3 64 61887 6 61616	14	1.0
					BIND ARES CATA	ES CATA						
	4000	M D 3 3	30000 0000 0000 0000 0000 0000	16.0866 25.3570 36.2267	5.9162 7.2587 5.8589	4.3 386 6.3 3483 6.3 3483	CV -0-1:58 (-0:636 -0-2701	456	CVR - 25:7 - 1:1515 - 1:25:7			
	4	4000 M • • • •	00°06 00°06 00°06	AVE 1 14.751 24.764 34.614	. 9469	6.8956 1.4523 2.9579	1257 1258 1258 1258 1258 1258 1258 1258 1258		. 956¢ . 956¢ . 956¢	0.5 10.07 10.03 10.03		
					SLIPSTHEAP .	ES CATA						
	4 E	W(15)		1. 1925 1. 3925 1. 3655	CC 538 0.3753 0.2183	# S S S S S S S S S S S S S S S S S S S	19 mm	3000		2		

Pigure 2-1 LTV Aero-Hydro Test Facility

Figure 2-2 LTV Aero-Hydro Test Facility

Figure 2-3 Water Tank and Wave Generator

. ,

1

TOTAL PADDLE THROW (DEGREES) & FREQUENCY (CPS)

Plane 2-k Maye Generator Calibration

Figure 2-5 LTV Aero-Hydro Test Facility Wind Generator

Pigure 2-6 LTV Aero-Hydro Test Pacility Wind Generator Plenum

Figure 2-7 LTV Aero-Hydro Test Facility Wind Generator Diffuser Exit

•

Figure 2-9 Wind Generator Calibration

3.0 FORCE AND MOMENT DATA RESULTS

The model forces and moments were measured by an internal sixcomponent balance, and the thrust of each propeller was measured by a separate
thrust cowl. The complete tabulated data are presented in Section 2.3.

The objectives of this phase of the test program were to:

- a. Obtain model force and moment data while hovering at different heights over a water surface with and without waves and a stead; surface wind.
- b. Determine the effects of height, water surface, and surface wind on a rolled model.

Model force and moment data presented in this report have been nondimensionalized by the wing area and the slipstream dynamic pressure. The slipstream dynamic pressure is defined as the freestream dynamic pressure plus the average of the four propeller disc loadings. These data are presented as a function of model height to propeller diameter ratio for various propeller disc loadings and model roll angles with and without waves and surface winds. The model height was measured from the water surface to the propeller plane of the outboard propellers; for the rolled model, the model height is the average height to the outboard propellers measured at the propeller shafts.

The propeller disc loadings used in this test were approximately 6.5, 10.8, and 15.2 pounds per square foot. The basis for these loadings is discussed in Section 4.0.

The propeller thrust was measured with a five-component thrust cowl behind each propeller, but only the thrust component was recorded. These

thrust cowls have an accuracy of approximately ±0.25-pound thrust when the temperature tares are neglected, as was done in this test due to the wide range of ambient conditions. Thrust can be measured within ±0.1 pound under controlled conditions. Propeller rpm was measured to ±2; but under slightly gusty ambient wind conditions, the servo control system could only hold the rpm within ±6. These thrust and rpm variations represent good control of the model propeller, considering the wide range of uncontrolled ambient conditions; and only a small amount of scatter was seen in the thrust readings during the test. Model propeller controllability problems are not applicable to the full-scale airplane.

3.1 NORMAL FORCE DATA

Figures 3-1, 3-2, and 3-3 show the change in the model normal force or lift coefficient with model height ratio as a function of propeller disc loading. These data were first examined to determine the effects of various wave heights. Within the scatter of the data, the normal force coefficient was independent of wave height and surface wind. The data for 0-, 6-, and 12-inch waves were averaged together and are presented in Figures 3-1 through 3-4. The data of Figures 3-1 and 3-2 indicate that there is a small increase of the normal force coefficient as the disc loading increases and the normal force coefficient decreases with increasing model height above the water.

The variation of normal force coefficient with model height ratio for the model rolled 10 degrees is presented in Figure 3-3. At the model height ratios of 2.5 and 3.7, there is no significant change from the previous data of Figures 3-1 and 3-2. A model height ratio (2.5) was tested with the model rolled 5 degrees; and the results showed no significant differences from the data of Figure 3-3 and, therefore, have not been presented.

3.2 DRAG DATA

The change in drag coefficient with model height ratio is presented in Figures 3-1, 3-2, and 3-3. Figure 3-1 shows that, with no surface wind, there is a small effect on drag with the drag coefficient decreasing with increasing height ratios. No distinct effects of disk loading are apparent, possibly due to the scatter of the data. With the blower on, creating a steady surface wind, the data show a large increase in drag coefficient with increasing height ratio (Figure 3-2). These data also show that drag coefficient decreases with increasing disc loading. Part of the drag with surface winds shown in Figure 3-2 is the result of the propeller normal force. As the disc loading is increased, the surface wind becomes a smaller component relative to the velocity normal to the propeller disc, and the propeller normal force decreases. With the model rolled 10 degrees, the drag coefficient data of Figure 3-3 shows no significant changes from the data of Figures 3-1 and 3-2. No differences were seen at the model height ratio (2.5) with the model rolled 5 degrees, and the data are not presented.

3.3 PITCHING MOMENT DATA

The pitching moment coefficient data variations with model height ratio are presented in Figures 3-1, 3-2, and 3-3. The data of Figure 3-1 show that with no surface winds there is a small positive pitching moment acting about the center of gravity at the 20 percent MGC position that appears to be independent of model height ratio and disc loading within the scatter of the data available. With a surface wind, there is a large increase in positive pitching moment shown in Figures 3-2 and 3-3 that increases with

increasing model height ratio and decreases with increasing disc loading.

This pitching moment is primarily the propeller hub pitching moment resulting from the surface wind. As was the case with the drag coefficient, as the disc loading is increased, the surface wind is a smaller component relative to the velocity normal to the propeller disc; therefore, the propeller hub pitching moment is decreased with increasing disc loading.

3.4 IATERAL-DIRECTIONAL DATA

Figure 3-4 presents the yawing moment, rolling moment, and side force coefficients with the surface wind on and off at average model height ratios of 2.5 and 3.7 for three disc loadings with XC-142A model rolled 10 degrees. The surface waves of 6 and 12 inches had no apparent effect on the data, and these points have been averaged together with the smooth surface data. Within the scatter of the data, no consistent variations with surface winds, disc loading, or model height ratio are apparent. The mean value for the yawing moment and side force coefficients appears to be zero, while the rolling moment coefficient (C_{115}) has a mean value of -.0075 for the left wing down 10 degrees.

3.5 VERTICAL FLOATS

The XC-142A model was tested with vertical floats replacing the landing gear wheel pods as shown in Figure 4-5 at model height ratios of 2.5 and 3.7 with and without 6-inch waves and surface winds. Within the scutter of the data, no significant differences from landing gear pods on data were seen; therefore, the float data are omitted from this report.

3.6 DYNAMIC CHARACTERISTICS

The dynamic characteristics of the No. 1 propeller thrust and the two normal force elements of the model internal balance (R_1 and R_2) were recorded on a 6-inch light beam oscillograph. These signals were picked off before they were filtered by the low speed wind tunnel data system.

Only the natural frequencies of the thrust cowl and the model were observed from these data. The frequency of the thrust element signal of the thrust cowl was observed to be from 220 to 280 cycles per second for all rpm's, model heights, and water conditions and is the approximate natural frequency of the thrust cowl (250 cycles per second). Superimposed on this thrust frequency of 250 cycles per second was an approximate eight-cycle-per-second frequency, which was also observed in the normal force gage output of the main balance. The natural frequency of the model on its hover mounting is approximately eight cycles per second in the vertical plane. These frequencies are all well within the capability of the light beam oscillograph which can record frequencies from zero to in excess of 900 cycles per second.

The amplitude of the 8 cps thrust oscillation was very large and was affected by the surface winds. Figure 3-5 presents a typical oscillograph trace for the condition of surface winds on and off. For all three disc loadings, the amplitude of the thrust oscillation varied plus and minus 10 to 15 pounds with no surface winds and plus and minus 20 to 25 pounds with the surface winds (q = 0.59). Although the surface winds approximately

doubled the amplitude of the propeller thrust oscillation, the frequencies were so high that the model data was not affected. These frequencies and amplitudes only affect the mechanical life of the thrust cowls. The various sea states simulated by the wave-maker had no apparent effect on the propeller thrust amplitude or frequency.

Six electric depth gages were positioned in the water under the model as shown in Figure 4-6 to record the amplitude and frequency of the water surface disturbances on a 6-inch light beam oscillograph. These data indicate that with the wave maker on and off the propellers generate waves with a frequency of approximately three cycles per second that move out from the model with an amplitude that is dependent on model height and disk loading. These data are presented in detail in Section 4. A typical time history of waves generated by the propellers with the wave maker off is presented in Figure 3-6. Data obtained with the wave maker on showed the three cycles per second frequency superimposed on the wave pattern.

Figure 3-1 Effects of Model Height Ratio and Disc Loading on Longitudinal Characteristics

Figure 3-2 Effects of Model Height Ratio and Disc Loading on Longitudinal Characteristics

Figure 3-3 Effects of Model Height Ratio and Disc Loading on Longitudinal Characteristics

Figure 3-4 Effects of Model Height Ratio and Disc Loading on Lateral-Directional Characteristics

Figure 3-5 Time History of Model Normal Force and Propeller
Thrust with Surface Winds On and Off

Figure: 3-6 Time History of Waves Generated by Propellers with Wave-Maker Off

4.0 DOWNWASH ENVIRONMENT

4.1 INTRODUCTION

One of the objectives of this test program was the definition of environmental conditions generated by a four-engined tilt-wing vehicle using a powered .ll-scale model of the XC-142 hovering over water. Primary emphasis was placed on determining the following:

- a. Amount of spray passing through the propellers.
- b. Shape of the depression formed by the slipstream ' the water beneath the model.
- c. Size of the spray droplets.
- d. General spray patterns.

For each of the above, the effects of model height, roll angle, wing angle, disc loading, wave height, wave length, ambient winds, and vertical floats were determined. The results of this test have been compared with those of other tests, some of which were with full-scale vehicles.

- 4.2 DATA RECORDING TECHNIQUES
- 4.2.1 Moisture
- 4.2.1.1 Water Flow Rate

Experience with seaplanes and helicopters operating near the water surface indicates that water ingestion (particularly salt water) is sufficient to be detrimental to gas turbine engine operation and life. Engine flameout occurs over fresh water with concentrations of 5%-10% by weight of water-in-air; however, salt water can cause unacceptable corrosion with concentration of one part per million (ppm) of salt-in-air (Reference 4-1). Water measurement accuracy requirements were set by the salt water criteria; individual measurements were accurate to ±.00002 lb/min-in. (2 ppm salt-in-air).

Two methods were attempted to record the quantity of water passing through the model propellers. The primary method was the moisture meter shown in Figure 4-1. For the previous test, conducted under contract No. NOO014-66-COO95 (Reference 4-2), a single moisture meter was mounted on the left wing; for this test a moisture meter was mounted on each wing to record the unsymmetrical spray pattern created by the model in roll. The meters opened for a specified time exposing sponge-filled trays. Analytical balances, providing measurement accuracies to +.002 grams, were used to determine the amount of water collected. As a check for the moisture meters, the isokinetic probe shown in Figure 4-2 was used to sample the moisture behind the propellers. The velocity into the probe was maintained equal to the surrounding slipstream velocity by a vacuum pump. Thus an undisturbed stream of air entered the probe and was filtered for analysis. The filter portion of the isokinetic probe weighed over a pound, and, as a consequence, was too heavy to weigh on available scales having sufficient accuracy. As a result, no useful data was acquired from the isokinetic probe. The locations of the moisture meter trays and the isokinetic probe are shown in Figure 4-3.

4.2.1.2 Droplet Size

The size of the droplets in a flow field determines the ability of the spray to follow air currents; light spray and aerosols follow the air-stream, while larger droplets tend to precipitate. Previous investigations with various size models with scaled disc loadings (References 4-3 and 4-4) indicated that a finer mist was generated by the larger models. Droplet sizes were recorded to determine if the droplets created by the present test were too large to follow the airstream and to provide a base for comparison with full-scale tests.

Two types of instrumentation were used to determine droplet sizes for this test. Pictures of droplets down to 40 microns in diameter were taken from 13 feet away using the 40-inch lens mounted on a camera. Another method using a device known as a droplet snatcher (Figure 4-4) was also employed to measure droplet size. Glass slides coated with light (SG = .972) over heavy (SG = 1.11) silicone fluids were inserted in the droplet snatcher, exposed to the spray for 1 to 2 seconds, and photographed under a microscope. The droplets were suspended at the interface between the two fluids. The smallest droplets that could be detected were 9 microns in diameter, while the largest that could be captured without shattering were 1,250 microns.

4.2.2 Water Depression

The slope of the depression formed by the slipstream in the water beneath the model influences the amount of spray circulation. The vertical component of the spray leaving the water is determined by the slope of the water near the depression lip. The amount of spray generated is determined by the size of the wavelets formed in the depression.

Two methods of recording depression characteristics were employed:

(a) motion pictures of the visual depth gages shown in Figure 4-5; and (b)
oscillograph traces from electrical depth gages. An instantaneous depression
contour was obtained from a given movie frame; time variations at a given
point were obtained from the electrical depth gages. Visual depth gage readings were checked for accuracy by comparisons between various readings for
still water and comparisons of these readings with actual measurements of the
gages. These comparisons indicated that the average reading was within .3
inch of the actual depth. The accuracy of the electrical depth gages was
within .1 inch, except where limited by the small scale require record

16-inch waves on 6-inch oscillograph paper. The depth gage pattern presented in Figure 4-6 shows the following types of depth gages:

- a. Visual depth gages from the previous test (Reference 4-2).
- b. Redesigned visual depth gages constructed for this test.
- c. Electrical depth gages.

4.2.3 Qualitative Observations

Observations of flow patterns and related data were made visually during the test and recorded with standard and high speed movie cameras. A Photosonics movie camera at 500 frames per second and a Milliken movie camera at 100 and 400 frames per second provided high speed motion picture coverage.

4.3 TEST RESULTS

The following range of parameters were investigated in the test:

Disc Loading = 6.45, 10.8, and 15.45 PSF

Model Height = 1.4, 1.6, 2.0, 2.5, and 3.7 propeller diameters

Wing Incidence Angle = 70, 75, 80, 85, and 90 degrees

Model Roll Angle = 0, 5, and 10 degrees

Vertical Floats: on and off

Wave Height = 0, 6, and 12 inches

Wave Length-to-Height Ratio = 10 and 15

Wind: off and on (13 knot headwind)

An additional test parameter was ambient winds. The wind generator was directly in front and due south of the model as shown in Figure 4-7; consequently, wind-on runs were usually conducted when the wind exceeded 8 knots only if the wind was from the south, since a south wind was found to have a minimum effect on wind generator flow characteristics. Testing was generally terminated when the wind exceeded 8 knots from any other direction.

A standard format has been adapted for each of the four types of data presented in the following sections:

- a. The moisture meter data, tabulated in terms of lb/min-in.², is presented in Table 4-1. This information is presented graphically in terms of spray circulation profiles along the wing and comparisons between averages of all the moisture trays for a given condition.
- b. Contours beneath the wings, fore and aft beneath each nacelle, and topographical maps of the water depression have been prepared from visual depth gage data.
- c. Depth variation with time at a given point is recorded by the electrical depth gages.
- d. Droplet photographs were used to prepare droplet size distribution curves.

4.3.1 Flow Field Description

Wind and waves complicate the already complex flow field generated by a tilt-wing aircraft with four propellers hovering over water. There are interactions between neighboring propeller slipstreams, and between individual propeller slipstreams and the wind, the waves, and the fuselage. These interactions over deep water generate a flow field that never reaches a steady state.

The basic flow pattern without waves beneath the model is shown in Figure 4-7. The two propeller slipstreams on each wing coalesce to form a single depression beneath each wing. The two coalesced jets of air met beneath the fuselage to produce a "fountain effect," which was responsible for the majority of spray generated at any test condition. This reinforced flow

area carried the spray fors and aft beneath the fuselage and up onto the bottom of fuselage. Movies from the previous test (Reference 4-2) indicate that, when fuselage blockage is not available, the spray is carried into the area of the propellers. There is virtually no additional spray formed between adjacent propellers due to their overlap.

In still water, wavelets are formed at the bottom of each depression and increase in amplitude as they progress up the sides of the depression. For mild spray conditions, spray is formed along the rim of the depression as each wavelet reaches the rim (Figure 4-7). Spray is formed on the crest of each wavelet at severe spray conditions. The depression shape and location varies continuously in a random manner.

The wave-slipstream interactions with 6-inch wave patterns as a function of slowly increasing model disc loading at a given model height lead to the following four observations:

- a. Below 6.4 psf, the wave velocity decreases at the center of the wave forcing the wave crestline into an arc.
- b. Increasing the disc loading forces the wave crest into a chevron with the peak upstream of the model. This creates essentially two wave patterns that meet and form 10- to 12-inch unstable mounds of water immediately forward of the fuselage.

 The tops of these mounds are carried away, creating dense spray. Only near the tank sidewalls did the wave pattern pass the model. There is a 2- to 4-inch high wave pattern aft of the model.
- c. Still further increases in disc loading transformed the area forward of the model into a confused sea with waves 12 to 14

inches high. The slipstream completely destroys the wave pattern, leaving only ripples downstream of the model.

d. Because of the cross waves set up by the model, an acceptable wave train could not be established in less than 5 minutes after termination.

The 12-inch waves contained more energy; consequently, they were not destroyed by the slipstream. A depression was formed, and, at high disc loadings, spray was driven up the advancing side of the wave; and the wave crest was transformed into spray.

Actuation of the wind generator forced the forward-driven spray to form a vertical wall, and then rolled it back toward the model. Since the model support system was stiffened prior to this test, the model did not sway as it did in the previous test with the wind off. However, the wind generator and model dynamics were sufficient to cause sway in the stiffened support system with the wind on.

The intermediate disc loading of 10.82 psf was equal to the highest disc loading on the previous test. The highest disc loading (15.45 psf) run in this test was responsible for considerable propeller damage. The right inboard propeller (No. 3) was subject to most of the damage, with the right outboard propeller (No. 4) a close second. After 49 runs, two propellers had eroded severely in the No. 3 position. Because of this problem, the high disc loading testing at low heights was minimized because of possible propeller damage. In addition, one propeller was coated with a VAD-developed neoprene coating and installed in the No. 3 position. A photograph of this propeller is shown in Figure 4-8 prior to installation. A short time later, a new uncoated propeller was installed in the No. 4 position and at the end of the test, approximately 21 hours of running time for each propeller, the new

propeller was severely damaged (Figure 4-9) while the coated propeller was only slightly pitted (Figure 4-10). This coating is thus considered very effective in protecting surfaces from water erosion under conditions similar to those experienced by a propeller blade.

4.3.2 Repeatability and Sidewall Effects

test. For the remaining runs, the water level was maintained 7 inches below the tank low point (the tank low point was 2 inches below the sides of the test section) to provide sufficient room to generate 12-inch waves. These four initial runs provide a comparison with the previous test (Reference 4-2) and show sidewall effects when compared with later runs. The tank sidewalls were close enough to the model to provide some flow blockage (Figure 4-11) that slightly increased the depression depth and the amount of spray circulation. However, since 20 minutes are required to change the water level 1 inch, it was not considered worthwhile to change water level between runs to minimize this interference effect.

The ability to repeat a given result is very important for this type of test. Figure 4-12 shows data from four separate runs from this test and one from the previous test. Movies of the earlier test indicate that the fountain effect was allowed to periodically escape fuselage blockage at this height by the swaying motion of the model. This probably accounts for the larger spray circulation for the previous test. From Figure 4-12, it appears that the moisture meter data for this test can be repeated within .0005 lb/min par sq inch.

Moisture meter data and propeller erosion indicated that the right wing of the model experienced more spray recirculation than the left.

This may have been caused by a camera platform (Figure 2-2) some distance above the left wing.

The importance of tank sidewall blockage at high disc loadings is shown in Figure 4-13, where approximately seven times as much water was trapped at the lower water level as with the tank full. While Figure 4-13 shows a small increase in spray circulation at the intermediate disc loading, the influence of the sidewalls became more pronounced as the model was lowered. At the lowest model height tested (H/D=1.4), the intermediate disc loading also shows a sevenfold increase in spray circulation with sidewalls (Table 4-1).

The shape of the water depressions for this test is compared with similar data from the previous test in Figures 4-14 and 4-15. Reasonable agreement was shown with the tank full. Complete agreement could not be expected, since depth is a function of time (Figure 4-16), and there is no way to synchronize the two tests. The effects of sidewalls on depression shape are presented in Figures 4-14 and 4-15. The sidewall blockage apparently gives deeper depressions beneath the propellers. The data presented in the following sections include the effects of the 7-inch sidewalls.

4.3.3 Effects of Important Parameters

4.3.3.1 Time

When an air mass, accelerated by a propeller, strikes the water surface, an inherently unstable condition is the result. Electrical depth gages were used to measure the time variations of the water surface beneath the model. A number of typical electric depth gage traces are presented in Figure 4-16. The axis of abscissa was arbitrarily placed in the center of the trace to provide a direct comparison between disc loadings and reflects depth

variations about a given point and not the absolute displacement. The smallest wavelets at each disc loading were recorded on gages 18 and 22 located near the center of the depression and directly beneath the propellers (Figure 4-6). The growth of the wavelets as they move up the sides of the depression can be determined by a comparison of gages 22, 35, and 32. The basic frequency of the wavelets is approximately three cycles per second. Some subsequent sections present water contours beneath the model at a given instant. It should be emphasized that these are subject to considerable variations with time.

4.3.3.2 Model Height

Model height was measured from the water surface to the average of the outboard propeller centerlines and expressed as height divided by propeller diameter (H/D). Table 4-2 presents the full-scale heights, disc loadings, wave heights, and wind speeds for the model conditions tested. These data can be compared with sea state definitions presented in Table 4-3 to obtain equivalent full-scale sea states.

Since air velocities near the water surface increase as the model is lowered (Reference 4-5), additional spray was formed and circulated. Figures 4-17 and 4-18 present the increased circulation with model height reduction for the intermediate and high disc loadings respectively. The effects of waves, wind, and height are presented in Figure 4-19 for the intermediate disc loading. The increase of spray circulation as height decreases is a minimum without wind or waves. It increases with the addition of 6-inch waves and no surface wind. It increases far more with the addition of the 13 knot surface wind and no waves. The spray circulation is most pronounced with both wind and waves. As shown by comparison of Figure 4-20 to Figure 4-19,

increasing the disc loading increased the amount of water flowing through the propellers at any given height.

Reducing model height increased depression depth, as seen in Figures 4-21 through 4-28, due to an increase in static pressure beneath the propellers (Reference 4-5). Figures 4-21 and 4-22 present complete sets of contours beneath the left wing at a given instant for a certain height. The following sets are taken at four frame intervals (1/6 second) to account for time variations. In the following sections only one set of typical data will be presented.

4.3.3.3 Disc Loading

Increasing disc loading increases the amount of spray for given test condition as shown in Figures 4-29, 4-30, and 4-31. Figure 4-32 presents the increased spray circulation caused by increased disc loading as measured by the individual trays. The interactions of wind, waves, and disc loading in relation to spray circulation are examined in Figure 4-33. It was found that the amount of water trapped increases much more rapidly with increasing disc loading when wind and/or waves are present. The destruction of 6-inch waves by the high disc loading in the presence of wind generated the most spray circulation.

Figures 4-34 and 4-35 present the change in depression shape and depth as the disc loading is increased. Only with the model in the highest position was it practical to read the visual depth gages for the 15.45 psf disc loading.

4.3.3.4 Wing Angle

A series of runs was conducted with the wind on and various wing positions at a model height (H/D) of 3.7. Previous tests (Reference 4-6)

indicated that a tilt wing, four-propeller STOL has much more water circulation than VTOL when they are waterborne. The STOL slipstream carried spray forward of the craft, and the propellers drew the spray back toward the craft. This series of runs was conducted to determine if this same principle would apply to a VTOL vehicle hovering in a headwind. At this height the headwind tends to blow the spray back beneath the model before it reaches the area of the propellers. Decreasing the wing angle below 80° helped the wind to blow the spray aft, giving a marked reduction in the amount of spray trapped (Figure 4-36). Contributing to this reduction of spray circulation was the movement of the depression to the rear as wing angle was reduced (Figures 4-37 and 4-38).

4.3.3.5 Wind

The dramatic increase in spray circulation, attributable to wind, has been discussed in the previous sections with relation to model height and disc loading. The wind does not generate spray; however, it will roll slipstream-generated spray back over the model. This effect is demonstrated in Figure 4-39 where more water is trapped at the lower model heights where more spray is generated. The effect of wind on spray circulation may have been influenced by the swaying of the model and sting during wind-on runs, although the magnitude of this effect could not be assessed.

The influence of wind on depression, presented in Figures 4-40 and 4-41, indicates that the primary effect of wind was to move the depression aft. As would be expected, the lower disc loading depressions were moved the farthest aft.

4.3.3.6 Waves

Wave heights of 6 and 12 inches were tested which, along with the still water data, present a three-point comparison. Scaled wave heights and lengths shown in Table 4-2 were determined by assuming that they were proportional to the propeller diameter. The effect of wave height on the amount of spray trapped is shown in Figure 4-42. Both wave heights increased spray circulation. The small waves probably increased the spray circulation by their instability, and the large ones probably because their tops pass closer to the model. The average of the moisture trapped at all stations shows interesting trends at various wave heights (Figure 4-43). With the wind off, the spray circulation was greatest with the 12-inch wave height; with the wind on, the unstable 6-inch waves caused the most spray circulation. Wave length-to-height ratios of 10 and 15 were tested; the shorter waves were less stable, causing an increased spray circulation as shown in Figure 4.44. The shorter wave length decreased the wave-maker reliability; therefore, the majority of the testing was conducted at the longer wave length.

Providing valid data when waves are present is a major problem in using visual depth gages. The source of the problem is the difficulty of stopping two moving waves in precisely the same phase for comparison. The available data was examined until frames with the waves in the same phase were found, and only then could such a comparison be made. A wave height comparison is presented in Figures 4-45 to 4-47. The instability of the 6-inch waves is highlighted by Figure 4-45, since the waves are in phase per Figures 4-46 and 4-47. Wind and model height effects are presented in the next three curves (Figures 4-48 to 4-50). The lower the model height, the greater the disruptive effects of the downwash on wave pattern.

Since visual depth gage data is not entirely satisfactory when waves were present, additional data from the electrical depth gages is presented in Figures 4-51 to 4-54. Information from rolled configurations is presented, since the electrical gages were not completely operational until late in the test program. Data for 6-inch waves are presented in Figures 4-51 and 4-52. Gage 28 is 40 inches forward of the model and, although it reflects some influence of the slipstream disturbance, the trace basically represents an undisturbed wave. The wave properties directly beneath the left inboard and outboard propellers are presented by gages 18 and 22 respectively; these traces show that the wave pattern has been depressed in this area. A comparison of gage 44, which is forward of the depression, and gage 35, which is aft of the depression, shows increased wave destruction as disc loading is increased. Twelve-inch wave properties for a typical run are presented in Figures 4-53 and 4-54. Gages 18 and 22 show the basic depressed wave shape in the stagnation region directly beneath the propellers. In the flow turning region, approximately one propeller diameter from the stagnation point, the flow velocity increases as the static pressure decreases. The increasing wave disturbance, as the velocity increases, is shown by a comparison of gage 32 with gages 35 and 44.

4.3.3.7 Roll Angle

The model was rolled with the left wing down to determine the effects of this configuration on spray circulation. Previous tests (Reference 4-2) indicated that severe spray circulation could be generated with a 10° roll and a model height (H/D) of one. During this earlier test, roll and model sway allowed the fountain effect to periodically escape fuselage blockage and enter the region of the right-hand propellers. However, it was shown that spray circulation dropped off rapidly as the model was raised.

This test covered the higher model positions ($2 \le H/D \le 3.7$) and showed that rolling the model at these conditions dropped spray circulation (Figures 4-55 and 4-56). The model did not generate a strong fountain effect at the heights tested; consequently, rolling the model had the same effect as decreasing wing incidence angle; i.e., the spray was blown away from the model by the slipstream. Even at the highest disc loading, the slipstream struck the right tank sidewall with insufficient force to carry the spray back into the propeller region.

The depression beneath the left wing becomes deeper as roll angle is increased since the effective height of this wing is reduced (Figures 4-57 and 4-58). Rolling the model raises the right wing; therefore, the depression for the left wing is deep—than for the right as shown in Figures 4-59 and 4-60. A topographic p'—of the water contours beneath the model at each roll condition is pressed in Figure 4-61.

4.3.3.8 Vertical Floats

Vertical floats (Figure 4.5) combined with a VTOL cap bility present great promise for a practical seaplane having an open ocean operational capability. The vertical floats provide a more stable platform at sea than does a flying boat configuration. The sea that were mounted on the model approximately where the heavy splay for the originate from the fore and aft ends of the depression. Thus, the floats served as spray deflectors, reducing spray circulation for the majority of the cases shown in Figures 4-62 and 4-63. The floats also block the slipstream and force the water depression to become deeper, according to Figures 4-64 and 4-65.

4.3.4 Droplet Size Investigation

The size of droplets entrained in an airstream determines the droplet trajectory. Previous investigators (References 4-3 and 4-4) have indicated that the droplets created by small-scale devices are actually larger

than their full-scale counterparts when a scaled disc loading is used.

Reference 4-7 used a shock tube with a velocity peak to determine the maximum droplet size that can exist in a flow field with a given velocity. The largest droplets photographed during this test compare favorably (Figure 4-66) with results from Reference 4-7 when the maximum velocity across the water is used. The same trend is evident from Figures 4-67 and 4-68, since more of the droplets are in the larger size ranges for the lower disc loading. The introduction of wind apparently changes this trend (Figures 4-69 and 4-70). The preceding samples were obtained about 10 feet aft, 8 feet to the left of model

shown in Figure 4-71 was taken aft of the model beside the tank approximately 4 feet below water level and 12 feet to the left of the model. A typical mic- notograph of a droplet snatcher slide is shown in Figure 4-72.

Photographs through a 40-inch lens system were taken of the area near depth gage No. 28. The depth of field was very shallow; thus droplets that are in focus are in the same plane as the depth gage, which provides a method of scaling. A typical photograph is presented in Figure 4-73. Only a small amount of data was successfully recorded with this method; consequently, the data from all three disc loadings here combined and are presented in Figure 4-74. These data also indicate that most of the droplets are below 100 microns in diameter. However, since the 6.45 disc loading was included and the droplets were not subject to shattering, more droplets in the larger size bands were detected.

4.3.5 Effects of a Non-Newtonian Fluid

Approximately two pounds of polyethylene oxide (poly-ox) were sprinkled on the water beneath the model. This compound has a molecular weight of approximately six million and forms a heavy gelatinlike coating on

water. This coating slowly dissolved as the poly-ox increased the surface tension of the water, causing noticeably larger droplets to be formed at the same test condition. These larger droplets had a tendency to precipitate, giving an overall reduction in spray.

After the poly-ox was spread, it was discovered that a foreign object had been dropped on the left side. Retrieving this object disturbed the poly-ox coating, causing the coating to sink a few inches below the surface of the water. This, perhaps, explains the deep depression with poly-ox shown in Figures 4-75 and 4-76.

Application of the poly-ox was rendered difficult by a slight breeze wafting the light powder away. Larger grain size would ease application but would probably increase the time required for the pad to dissolve.

A more buoyant form would also be advantageous. A number of similar compounds are available, and tests of each might lead to the discovery of a spray inhibitor in a most useful form.

4.4 DATA SCALING

Considerations of dynamic similarity between fluid motions on the model scale and full scale are extremely important in acquiring representative and meaningful results in any experiment. For the present problem, the forces which appear to predominate are inertial, gravitational, viscous, and surface tension (Reference 4-2). Dividing the last three by the inertial force yields the Froude, Reynolds, and Weber numbers, respectively. These three ratios cannot be satisfied simultaneously; consequently, complete dynamic similarity is not possible. The ratio having the strongest influence must be satisfied, realizing that other effects may be distorted.

If viscous and surface tension effects are ignored, the resulting flow, including the cavity shape and air velocity field, depends only upon the Froude number which is defined by:

$$Fr = {q_n/gD}$$

Where:

q = Disc loading of the propulsive unit

g = Gravitational constant

D = Diameter of propulsive unit

The spray cloud height was used in Reference 4-4 as a criterion to make the following modification to the Froude number:

P_{CW} =
$$\frac{q_n - q_0}{gD}$$

Where ^qo is the dynamic pressure across the water required to initiate spray (approximately 2 psf). The full-scale disc loadings presented in Table 4-2 were derived from this relationship. Comparisons of motion pictures of the model and the XC-142A actual airplane under similar conditions indicate that the wave patterns and heavy spray characteristics are better represented by a model disc loading approximately 50% higher than that derived from the relationship used in Reference 4-4. This agrees with the conclusions reached in Reference 4-8.

The effect of viscosity, or Reynolds number, would be expected to affect two areas: mixing at the jet boundary and shear at the air/water interface. The effects of mixing at the jet boundary are currently undefined.although they are believed to be small.

No only viscosity but also surface tension, or Weber number, plays a significant role in spray formation at the air/water interface. This

portion of the flow was studied using comparisons of full-scale and model motion pictures. The pictures indicated that more light spray was present for the XC-142A airplane than for the model tests. This is directly attributable to the inability to scale Weber number.

Increasing Froude, Reynolds, and Weber numbers increased the spray recirculation for a given test condition as shown in Figures 4-77 to 4-89. Since each of these parameters is directly proportional to disc loading, the result was to be expected.

4.5 SIGNIFICANCE OF RESULTS

The results of this test have been compared with other tests to improve the applicability of the data. Comparisons for each type of downwash environment measurement are presented in the following sections.

4.5.1 Spray Circulation

The majority of the spray circulation measurements recorded in the literature have been concerned with salt ingestion by gas turbine helicopter engines. The salt ingestion rate for helicopters hovering in zero wind conditions generally falls below 1 ppm salt-in-air (Reference 4-1). Limited data for the P6M and XF2Y while waterborne indicates that aircraft ingested 2,000 to 4,000 ppm salt-in-air in some conditions. The amount of water trapped in the moisture meters was scaled to a full-scale XC-142A by assuming that the same quantity of water would pass through a given flow area in a unit time. The results, presented in Table 4-1, indicate that salt ingestion for the XC-142A will be slightly greater than for a helicopter at the same conditions.

4.5.2 Depression Shape

Another report in the area of depression depth and shape is

Reference 4-9, which presents a wealth of test data for isolated uniform jets

of various sizes over water. Various depression parameters were carefully measured and correlations were prepared. Although the present test used over-lapping propellers which created a vortex-filled slipstream with a fountain effect beneath the fuselage, the data from this test correlates well with the data from Reference 4-9, as shown in Figures 4-80 and 4-81.

The discrepancies in depression depth shown in Figure 4-80 are apparently the result of model height effects as shown by the points at low heights (H/D < 12) presented by Reference 4-9. Figure 4-81 shows that the depression diameter (measured fore and aft for this test) agrees very well with Reference 4-9.

An alternate method of predicting depression depth was also considered. The maximum dynamic pressure moving across the ground as a function of propeller height was obtained from Reference 4-3 and presented in Figure 4-82. These data were used to determine the maximum dynamic pressure over the water for this test. This term gave an excellent correlation with depression depth for the present test at various conditions as shown in Figure 4-83.

To predict the depth and diameter of the depression beneath the full-scale XC-142, two methods have been employed. A typical movie frame from the model data was increased ninefold to represent a full-scale depression. Predictions of the depression depth and diameter of the depression were prepared for the same conditions using Figures 4-81 and 4-83. The predicted contours for the full-scale XC-142 and the predicted depth and diameter of the depression are compared in Figures 4-84 to 4-86. The results show good agreement when the time variation of the contour is considered; apparently either method can be used to predict full-scale depression characteristics.

4.5.3 Droplet Size

From Figures 4-67 through 4-71 it can be seen that the majority of the droplets recorded during this test fell between 0 and 100 microns. This agrees very well with similar data for a helicopter (Reference 4-10), which hovered at a disc loading of approximately 6.2 psf. The maximum droplet size recorded beneath the helicopter compares well with this test and Reference 4-7 as shown in Figure 4-66. Additional testing would be required to determine if the droplets in spray from a full-scale airplane are appreciably smaller than the model droplets.

4.5.4 General Spray Patterns

most notable spray pattern characteristic of the full-scale XC-142A hovering over water was the spray donut formed in the flow field by the rollup of the airflow. The outside of this pattern is nearly vertical and the inside is sloping, which give the spray the appearance of a football stadium. Although the tank was too small to reproduce this pattern, a similar pattern was formed in front of the model when the wind generator was operating.

Examination of motion pictures of the model test and full-scale test of the XC-142A and the XV-5A hovering over water revealed that spray is generated as the wavelets in the depression reach the lip of the depression and break. The frequency of this spray generation is apparently related to the size of the depression made by the aircraft slipstream since the frequency for the XC-142 model was about 4 per second, the XV-5A was about 1.8 per second, and the full-scale XC-142A was about 1.1 per second. These frequencies were obtained with each vehicle at about the same height-to-diameter ratio.

*Wave Length-To-Height Ratio of These Waves is 10:1. Wave Length-To-Height Ratio of All Other Waves is 15:1.

Tenk	Rell	Wine	Wing		Wing	FLOATS	S H/D	WIND	Wave	Disc It Loading	Ambient	Model Water Flo			
81 4e		Height	Loading	Winds	Left Hand Meters										
Wall Height Inches					3	Inches	PST	Direction/ Knots	1	2	3				
777776676666666666777777777777777777777	0	70 75 80 85 90	CFT*	3.7 3.7 2.5 1.6 1.4 1.4 1.4 2.5	0 07	0000066611100666800000666111000	10.82 15.25 10.82 15.25 10.82 15.25 10.82 15.25 15.25 15.25 10.82 10.82	-/0 -/0 -/0 -/0 -/0 -/0 -/0 -/0 -/0 -/0	00002624 .0000591 .00001312 .000321 .000505 0000787 000623 .000643 .00059 .0001312 .000736 .00177 0 .0000524 - 0 .0001835 .00001312 .000774 .000439 0 .001462 .0059 0 .001462 .0059 0 .000656 .000459 000459 000459 0004395 0 .000459	.00002624 .00003936 .00001968 .0001246 .000459 .001265 .000328 .000164 .00151 0 .000492 .000616 .000721 .000164 .000984 .000413 .00179 0 .000348 .000695 0 .000105 .0000656 .000478 .000557 0 .000181 .000144 .000328 .0001181 .00001968 .000394 .001212					

lo	Rate ~L	B/IN ² - MI				Average	Average	Average	Run	Peint
			Hand Mete	r.s			Full	Full Scale	Rumber	
	ţţ	1	2	3	ſţ	Water Flow	Scale Water Plow Rate~lb/ -Min	Dry Salt-In		
	.00001312	_	.00002624	.0000328	.00002624	.0000197	.003845	.08192	1	2
12	.00004592	.0000328	1.00002624	.00003936	.00005248	.000034	.00663	. 14144	1	3 .
9	.00002624	.00002624	.00008 53	.00003936	.000059	.000045	.00878	.18656	2	2
5	.000236	.0000656	.000419	.0004	.0001968	.0001916	.0374	.7968	2	3
l	.000354	.000059	.000249	.000177	.000315	.000027125		.1129	3	2
	.001153	.00059	.0019 3	.0014	.00644	.000018261	.00356	.07584	3	3
1	.0000131	0	0	0	0	.0000656	.00128	.02736	4	1
5	.000269	-	.0000131	0	0	.000089	.0177	.3776	4	2
I	.00253	.0000262	.000151	.0008	.000675	.001351	.264	5.632	4	3
	0	.000164	0	.000164	.0000656	.000076	.0148	.31552	15	3
	.000492	.000689	.000249	.000538	.000656	.00005428	.0106	.17856	14	3
	.000787	.000853	-	.000414	.00111	.00007611	.01483	.31552	13	3
1	.00118	.00105	.000426	.000689	.000669	.00007804	.01521	.3248	12	اعًا
5	.000328	.000275	.000538	.000288	.0005/2	.00030238	.059	1.2576	24	ž
5	.00000656	0	0	0	0	.0000376	.00734	.15616	5	2
j	.000295	.000518	.000643	.0012136	.001758	.0007375	. 1439	3.0528	ś	1 3 1
1	.00210	.001377	.00272	.002145	.003096	.00001994	.003894	.08288	24	3
1	0	0	0	0	0	0	0	0	7	9 1
1	.000242	.0001248	.000774	•	.000426	.0003231	.063	1.344	7	
{	-	-	.0001968	.000328	.000446	.0004164	.0813	1.728	8	
55	.0000393	0	0	0	.0000656	0	0	0	10	
	.000557	.00017	.000164	.0000656	.0001965	.0002072	.04045	.8628	10	1 1
6	.00001312	0	0	.00001312	.00001968	.00000901	.001759	.03744	6	
	.000524	.003011	.00023	.000328	.000512	.0007935	.15485	3.492	6	1 2
ł	.000629	.000059	.00019	.000242	.000,22	.000375	.0731	1.5552	9	2
1	0	-	0	0	0		_			
ı	.00176	.000905	.000721	.000754	.000557	0	0 .18 8 1	0	11	1 2
8	.000262	.0002296	.000164			.0009657		8.0100H	• 9	3
	.000202	.0002290	.000164	.000374	.0001968	.00025571	.0498	1.0622	25	2
ł	0	~~~	0	2000200	-	.0000082	.0016	.034128	1 30	1 1
, 1	.00021	.0001115	0	.0000328	0		.01405	.29989	18	2
' 【		.0000722	.0002428	.000341	.00059	.0002464	.0481	1.026	46	2
, 1	.000728	.000433	.000886	0	.0004265	.0004407	.086	1.8344	47	2
'	.000164	.0000394	.000151	.000151	.000223	.0001157	.02275	.4809	48	2
	.0017	.00177	.00326	.00116	.000/146	.001389	.271 0	5.78 0	18 34	3
1	.00105	.000754	.000787	.000328	.000964	.00086675	.169	3.605	34 34	
1	.0007216	.000354		.001207	.000904		.73067	15.592	34	2
,	.0012136	.0024731	.0036146	.0029979	.004428	.002141	.13001	8.9053	45	3 2 3
	.0005116	.0002755	.0012792	.0009708	.0002427		.11661	2.4871	45	1
	.0000328	.0000328	0	.0000328	0	.0000141	.0027495	.05868		13
	.000721	.000446	.0000656	.0000984	.000459	.0008341	.1616495		37	
	.00567	.0057	00344	66381	-000-79 -00-25	: 2043156		3.438	19	2
	.3021	•••	, 55			• 1475170	-UNITED	75.0041	19	3 ~
							•			
1		,							l _	/ 1
		·						•	R	

.22

4.5.3 Droplet Size

From Figures 4-67 through 4-71 it can be seen that the majority of the droplets recorded during this test fell between 0 and 100 microns. This agrees very well with similar data for a helicopter (Reference 4-10), which hovered at a disc loading of approximately 6.2 psf. The maximum droplet size recorded beneath the helicopter compares well with this test and Reference 4-7 as shown in Figure 4-66. Additional testing would be required to determine if the droplets in spray from a full-scale airplane are appreciably smaller than the model droplets.

4.5.4 General Spray Patterns

From motion pictures and visual observations it was found that the most notable spray pattern characteristic of the full-scale XC-142A hovering over water was the spray donut formed in the flow field by the rolling of the airflow. The outside of this pattern is nearly vertical and the inside is sloping, which give the spray the appearance of a football stadium. Although the tank was too small to reproduce this pattern, a similar pattern was formed in front of the model when the wind generator was operating.

Examination of motion pictures of the model test and full-scale test of the XC-142A and the XV-5A hovering over water revealed that spray is generated as the wavelets in the depression reach the lip of the depression and break. The frequency of this spray generation is apparently related to the size of the depression made by the aircraft slipstream since the frequency for the XC-142 model was about 4 per second, the XV-5A was about 1.8 per second, and the full-scale XC-142A was about 1.1 per second. These frequencies were obtained with each vehicle at about the same height-to-diameter ratio.

											
Noll	Wing	FLOATS	н,	MIND	Wave	Disc	Ambient		Model Wate	er Flow Re	te~
Angle	Angle		D		Height	Loading	Winds	Left H			
					Inches	PSF	Direction/ Knots	1	2	3	7
o	90	077	2.5	OM	6	6.45	s/16	.0000984	•	.0000328	0
				1 1 1						_	.00201
								,	.010489	.00990	.00970
									ייסוארעיי	0007544	.00205
						•					.00801
			2.0	OFF	0	10.82				.0001968	.0000€
					0	15.25	-/0	.0013776	.00282	.00249	.00492
					6	10.82	3/8-12	.0003936	.0000656	.0002624	.00013
					6	15.25	s/6- 8	.01647	.01685	.01870	.01935
70	40				12	6.45				.0000328	.00007
				1				1		2016	.00116
				CN		1				•	.00242
			1 1	1							.0117 .011
			!		6			.000/9			.01863
			1					.0000262			.00000
			+	1				1			.01381
	!		1.6	OFF	0			•	-	-	-
					0	10.82	RE/7	.0000656	-) -	-
				1	6	6.45	-/0	.000243	.000413	.00061	.00074
1	1			1 1			-/0	1			.00829
1	{ }			OH	•						.00001
			1								.004.52
			!					.0000459			.00015
							-/0				.01725
			1.4				1-/0				.00002
								.000492			.00032
				1	ě						.00104
	1			ON	0	6.45	-/0	.00807	.00758	.00538	.00587
	, ,				0	10.82	-/0	.02538	.022	.01364	.02132
					6	6.45	-/0	.00368	-	-	.00000€
		1 1	1								.0000€
		OR .	3.7	OPP							00000
					0						.00036
					2						.0000€ 0
				1 +	1 6						.00013
	1			104						0	.0000
										•	.00072
								.000131	.00131	.000656	.00065
			†	11	6	15.25	sw/6	.001738	.0010168	•	.00124
1			2.5	OFF	0	10.82	MM/2	.0001312	.000328	.000328	.00042
	1	[+	1	1 1	0	15.25	MM/2	.000328	.000623	.000754	.00095
•	1	'		1	1	(1	•		ı	1
	Angle	Angle Angle	Angle Angle	Angle Angle D	Angle Angle D O 90 OFF 2.5 OFF CN 1.6 OFF OFF OFF OFF OFF OFF OFF OFF	Angle Angle D Height Inches 0 90 077 2.5 0 6 6 6 12 12 12 12 12 12 12 12 12 12 12 12 12	Angle Angle D Height Inches PSF 0 90 077 2.5 08 6 6.45 6 10.82 6 15.25 12 10.82 15.25 6 10.82 6 15.25 12 10.82 15.25 12 10.82 15.25 12 10.82 15.25 10.82 6 15.25 10.82 6 15.25 10.82 6 10.82 6 15.25 10.82 6 6.45 10.82 6 6.45 10.82 6 6.45 10.82 6 6.45 10.82 6 6.45 10.82 6 6.45 10.82 6 6.45 10.82 6 6.45 10.82 6 6.45 10.82 6 6.45 10.82 6 6.45 10.82 6 6.45 10.82 6 6.45 10.82 6 6.45 10.82 6 6.45 10.82 6 6.45 10.82 6 6.45 10.82 6 6.45 10.82 6 6.45 10.82	Angle Angle D Height Inches PSF Spr	Angle Angle D	Angle	Angle Angle D

P

	7 10							Y		
low Ret	te ~ LB/					Average	Average	Average	Run	Point
	•	Right	Hand Mete	rs	· · · · · · · · · · · · · · · · · · ·	Model	Full	Pull Scale	Number	
3	L,	1	2	3	14	Water Flow Rate→lb/ In ² min	Scale Water Flow Rate lb/ -Min	Dry Salt-In Air Content PPM		
00328	0	.0000328	.0000656	-	.0000328	.0000437	.008547	.1835	35	1
0734	.002015	.00666	.003482	.0036	.00755	.003335	.65033	13.8715	35	2
998	.009702	.010332	.0090396	.010732	.010312	.0199	3.8805	82.7711	35	3
•	.00000656	.00001968	.0000328	.0000656		.000507	.098865	2.11	44	1
07544	.0020992	.0030832	.001148	.0006888	.0030837	.001701	.3317	7.07	لبل	2
31266	.0080163	.0101024	.0032013	.0097613	.0110405	.008654	1.68753	35.9	Ա	3
01968	.0000656	.00082	.0001968	.0001966	70000459	.0001968	.038376	.819	20	3 2 3
249	.00492	-	-	-	-	.0029	.5 655	12.08	20	3
02624	.000131	.0003936	.00131	.001115	.00109	.00059515		2.479	22	2
870	.01935	.00249	.004067	.004067	.000118	.01081667		42.7	22	3
00328	.00007216	.00004592	.00001968	.0001049	.0001443	.0000558	.010881	.232	49	1
- 164	.001167	.001469	.0031291	.00244	.0020795	.001705	.3325	7.09	49	5
164	.002427	.00787	.001246	.01213	.00262	.0040244	.78476	16.81	21	2
23	.0117	.01541	.009708	.009774	.00332	.0120365	2.3471175	50.	21	3
787 047	.011 .01863	.0042	.00223	.001837	.010758	.0079669	1.62033	34.4	23	2
00525	.00000656	.0000918	.0097 .0000328	.015 7 ½	.01338	.0000426	3.0 8 977 .008307	65.9 .178	2 3	3
656	.01381531	.009807	.006724	.010004	.0069216	.009426	1.83807	39.18	50 50	2
-	.01301)31	.009007	.000164	.010004	.009210	.000164	.03198	.6 92	26	
_		.0001968	.0000262	.0000656	.000262	.0001232	.024034	.512	26	1
061	.000741	.000131	.0004526	.0000328	.0000656	.0003361	.0653395	1.39	28	1
514	.008298	.0021189	.000774	.0013317	.0009184	.0027751	.5401445	11.53	28	2
00656	.00001968	.00001968		0	0	.00004756		.1975	27	1
6008	.001.526	.005471	.00316	.00236	.004526	.0049765	.9694175	20.62	27	2
02165	.000151	.007183	.0000918	.000984	.00421	.0016168	.315315	6.725	20	1
338	.017253	.00935	.02326	.00909	.01456	.0145275	2.83335	61. 5	29	2
	.0000196€	.000177	-	.000131	.00018368	.00009178	.017897	.3819	30	1
0262	.0000262	.00017	.00017	.001876	.001574	.0006107	.119087	2.54	30	2
0328	.000328	.000131	.0000328	.0000656	.0000131	.0001943	.03789	.807	33	1
236	.001049	.00059	.000692	.0001968	.0009184	.00147235		6.125	33	2
538	.00587	.00558	.00672	.0098	.00543	.0068	.1.326	28.25	32	1
364	.02132	.02289	.008	.00682	.01108	.0163925	3.198635	66.1	32	2
-	.0000656	.000656	.000262	.0001312	.0000656		.0157962	.3362	31	1
-	.0000656	.0001312	.0000787	.000105	.00003936	.00009934		.4125	31	2
001968	-	.0001312	.0001312	.0000984	.0000656	.0002137	.031672	.675	40	2
0328	.0003608	.000656	.0008856	.0008528	.0014104	.0006478 .0000287	.126331	2.69	40 38	3
00326	.0000656	0	0 .0000328	0 .00 00 656	0000328	.0000287	.005597	.1172	38	2
00656	0	.000164	.000262	.000229	.0001968	.0001433	.027944	.596	38	3
00328	.000131	.0000656	.000202	.001148	.0000984	.0001722	.03358	.716	41	2
0 0 4592	.0007216	.0019024	.0005248	. 2003936	.0006888	.0007995	.1559	3.325	41	3
0656	.000656	.000361	.00001312		.000656	.0002098	.040911	.872	39	2
•	.0012464		.0005248	.007872	.0013776	.0011513	.2244	4.79	39	3
0328	.0004265	.0001312	.0002295	.0005576	.0008525	.0003803	.0741585	1.58	142	2
0754	.0009512	.0003608	.0012792	.00164	.000246	.0011274	.225243	4.81	12	3
7,7	1.000) ==) = J			

Tank Side	Roll Wing FLOATS H/D WING		WIND	Weight Height	Disc Loading	Ambient Winds			l Water Fl	-		
Wall					1	Inches	PSF	_rection/		Hand Mete	rs	_
Height Inches								Knots	1	2	5	
777777777777777777777777777777777777777	-10	90	OF P	2.5	ON ON ON ON	0000066111006611100666006611100661110066	10.82 15.25 6.45 10.82 15.25 10.82 1	-/0 -/0 VAR/2 HE/4 -/0 -/0 NE/5 -/0 -/0 VAR./3-4 NE/4 N/4 -/0 -/0 -/0 -/0 -/0 -/0 -/0 -/0 -/0 -/0	.00005248 .00009184 .00046576 .00017712 .00005904 .0013185 .0048806 .0067568 .0073013 .0010496 .0062387 .00000656 .00002624 .00001312 .00064288	.00001312 .00007216 .00008528 .0002493 .00012464 .00064944 .00033653 .0014694 .0066518 .000326 .0049594 .00001968 .00001312 .00001312 .00001312 .00001968 .0007478 .0001312 .0001968 .0007478 .0001968 .0007478 .0001968 .0001968 .00046576 .0023813 .00264368 .00001968	.0000656 .000656 .00005904 .00007872 .00024272 .0001312 .00078064 .0036605 .00056416 .005143 .0004592 .0056744 .00132512 .00000656 .0001312 .00000656 .0001152 .0011283 .00015068 .00015068 .00015068 .00056912 .00033456 .00090528 .00090528 .00090528 .00090528 .00090528 .00090528 .00090528 .00090528 .00090528 .00090528	

h_2

w Ref	te ~ LB/	IN ² - MIN			Average	Average	Average	Rup	Point	
			Hand Meter	rs		Model	Full		Number	
	i,	1	2	3	i,	Water Flow Rate~lb/ In ² min	Scale Water Flow Rate 1b/ -Min	Dry Salt-In Air Content PPM		
328	0	.0000328	.0000656		.0000328	.0000437	.008547	.1835	35	1
34	.002015	.00666	.003482	.0036	.00755	.003335	.65033	13.8715	35	2
8	.009702	.010332	.0090396	.010732	.010312	.0199	3.8805	82.7711	35	3
	.00000656			.0000656	-	.000507	.098865	2.11	144	i
544	.0020992	.0030832	.001148	.0006888	.0030837	.001701	.3317	7.07	44	2
266	.0080163	.0101024	.0032013	.0097613	.0110405	.008654	1.68753	35.9	نبلب	3
968	.0000656	.00082	.0001968	.0001968	0000459	.0001968	.038376	.819	20	2
9	.00492	l -	-	-	-	.0029	.5655	12.08	20	
624	.000131	.0003936	.00131	.001115	.00109	.00059515		2.479	22	3 2
0	.01935	.00249	.004067	.004067	.000118	.01081667	2.0099	42.7	22	3
328	.00007216	.00004592	.00001968	.0001049	.0001443	.0000558	.010881	.232	49	1
	.001167	.001469	.0031291	.00244	.0020795	.001705	.3325	7.09	49	2
Ļ	.002427	.00787	.001246	.01213	.00262	.0040244	.78476	16.81	21	2
	.0117	.01541	.009708	.009774	.00332	.0120365	2.3471175	50.	21	3
7	.011	.0042	.00223	.001837	.010758	.0079669	1.62033	34.4	23	2
7	.01863	.0198	.0097	.01574	.01338	.0158457	3 .0897 7	65.9	23	3
525	.00000656		.0000328	0	-	.0000426	.008307	.178	50	1
6	.01381531	.009807	.006724	.010004	.0069216	.009426	1.83807	39.18	50	2
	-		.000164	-		.000164	.03198	.6 92	26	1
	-	.0001968	.0000262	.0000656	.000262	.0001232	.024034	.512	26	3
1	.000741	.000131	.0004526	.0000328	.0000656	.0003361	.0653395	1.39	28	1
ly Cerc	.008298	.0021189	.000774	.0013317	.0009184	.0027751	.5401445	11.53	28	5
5 56 08	.00001968			0.00236	0.004526	.00004756	.9694175	.1975 20.62	27	1
	.004526	.005471	.00316		.00421	.0016168			27	,
	.000151	.007183	.0000918	.000984	.01456	.0145275	.315315 2.83335	6.72 5 61. 5	29	5
-	.017253 .00001968	.00935 .000177	.02326	.000131	.00018368	.00009178		.3819	29 30	i
	.0000262	.00017	.00017	.001876	.001574	.0006107	.119087	2.54	30	2
52 28	.000328	.000131	.0000328	.0000656	.0000131	.0001943	.03789	.807	33	ì
6	.001049	.00059	.000692	.0001968	.0009184	.00147235		6.125	33	2
8	.00587	.00558	.00672	.0098	.00543	.0068	.1.326	28.25	32	ī
4	.02132	.02289	.008	.00682	.01108	.0163925		66.1	32	2
	.0000656	.000656	.000262	.0001312	.0000656		.0157962	.3362	31	1
	.0000656	.0001312	.0000767	.000105	.00003936	.00009934		.4125	31	2
1968		.0001312	.0001312	.0000984	.0000656	.0002137	.031672	.675	40	2
28	.0003608	.000656	.0008856	.0008528	.0014104	.0006478	.126331	2.69	40	3
328	.0000656	0	0	0	.0000328	.0000287	.005597	.1172	38	1
656	0	- 1	.0000328	.0000656	0	.0000287	.005597	.1172	3 8	2
328	.000131	.00164	.000262	.000229	.0001968	.0001433	.027944	.596	38	3
	.0000328	.0000656	-	.001148	.0000984	.0001722	.03358	.716	41	2
592	.0007216	.0019024	.0005248	.0003936	.0006888	.0007995	.1559	3.325	41	3
56	.000656	.000361	.00001312		.0000656	.0002098	.040911	.872	39	2
	.0012464	-	.0005248	.007872	.0013776	.0011513	.2244	4.79	39	3
58	.0004265	.0001312	.0002295	.0005576	.0008525	.0003803	.0741585	1.58	42	2
54	.0009512	.0003608	.0012792	.00164	.000246	.0011274	.225243	4.81	42	3
(1	į		T.	•			ī	•

TABLE 4-2 MODEL TO FULL-SCALE CONVERSIONS

	Disc Loading								
Full-Scale Disc Loading	Model Disc Loading	Full-Scale Gross Weight	Full-Scale Wind ₁ Speed						
42.5 lb/ft ²	6.45 lb/ft ²	32,000 lb	34 knots						
82.4 lb/ft ²	10.82 lb/ft ²	62,000 lb	36.8 knots						
125.3 lb/ft ²	15.25 lb/ft ²	94,000 16	38 knots						

Scale Conversions for a Full-Scale Aircraft with 15.6-Foot Diameter Propeller

	Vehicle Heigh	Wav	Wave Height			
H/D	Model Height	Full-Scale Height	Model	Full Scale		
1.4	2.39 ft	21.9 ft	6 inch	4.5 ft		
2.0	3.41 ft	31.25 ft	12 inch	9 ft		
2.5	4.26 ft	39.05 ft	ł			
3.7	6.31 ft	57.81 ft				

¹ qwindfull scale = qwindmodel (Full-Scale Disc Loading)

² Measured from water surface to plane of outboard propellers

Table 4-3 Sea Conditions, U. S. Hydrographic Office Scale

- * Wind Velocity is not included in the official definition of sea states
 ** Description of sea noise has been omitted

Sea State	Approx. Reight of Sea Pt	Wind Velocity* Range Kte	Seaman's Description **
0	•	0	Calm - Sea like mirror
1	Less than 1	0 - 3	Smooth - Small wavelets or ripples with the appearance of scales but without crests
2	1 - 3	3 - 6	Slight - The waves or small rollers are short and more pronounced, when capping the form is not white but more of a glossy appearance
3	3 - 5	6 - 10	Moderate - The waves or large rollers become longer and begin to show whitecaps occasionally
4	5 - 8	10 - 28	Rough - Medium waves that take a more pronounced long form with extensive whitecapping and white foam crests
5	8 - 12	26 - 40	Very rough - The medium waves become larger and begin to heap up, the whitecapping is continuous, and the seas break occasionally; the foum from the capping and breaking waves begins to be blown along in the direction of the wind.
5	12 - 20	40 - 50	High - Heavy, whitecapped waves that show a visible in- crease in height and are breaking extensively. The form is blown in dense streaks along in the direction of the wind.

4-27

Figure 4-2 Isokinetic Probe Installation

Figure 4-3 Positions of Moisture Meters and the Isokinetic Probe

Pigure 4-4 Droplet Snatcher

Figure 4-5 Depth Gage Installation and Vertical Float Configuration

Figure 4-6 Depth Gage Pattern

Figure 4-8 Neoprene Coated Propeller Prior to Installation 4-34

Figure 4-9 Uncoated Propeller after 21 Hours of Testing

Figure 4-10 Coated Propeller after 21 Hours of Testing 4-36

Figure 4-11 Effect of Sidewall Deflection

Pigure 4-12 Water Entering Propellers-Repeatability

Pigure 4-13 Water Entering Propellers -Effects of Side Wall

XC-1438 MODEL TEST DATA

Figure 4-14 Water Displacement Along Propeller Centerline Repeatability and Effects of Side Wall 4-40

XC-14ZA MODEL TEST DATA

416

Figure 4-15 Water Displacement Fore and Aft
Repeatability and Effects of Side Wall

WING TILT ANGLE 40" —— POINT 1 DISC LOADING 6 45

ROLL ANGLE 0" —— POINT 2 DISC LOADING 10.82

FLOATS: ON —— POINT 3 DISC LOADING 15.25 ROLL ANGLE . 0° FLOATS: ON 3 KNOT HEAD A NO WAVES: OFF MODEL HEIGHT : 2 5 I GAGE 44 TIME - SECONDS GAGE 18 TIME ~ SECONDS TIME ~ SECONDS GAGE 35 TIME - SECONDS GAGE 32

. JA MODEL TEST DATA

Figure 4-16 Effects of Time 4-42

Pigure 4-17 Water Entering Propellers -Effects of Model Height

Figure 4-18 Water Entering Propellers - Effects of Model Height

Figure 4-19 Water Entering Propellers - Effects of Model Height

Figure 4-20 Water Entering Propellers ... Effects of Model Height

Pigure 4-21 Water Displacement Along Propeller Centerline - Effects of Model Height

Figure 4-22 Water Displacement Fore and Aft-Effects of Model Height

Pigure 4-23 Water Displacement Along Propeller Centerline -Effects of Model Height

Pigure 4-24 Water Displacement Fore and Aft -Effects of Model Height

Figure 4-25 Water Displacement Along Propeller Centerline -Effects of Model Height

Figure 4-26 Water Displacement Fore and Aft - Effects of Model Height

Pigure 4-27 Water Displacement Along Propeller Centerline - Effects of Model Height .

Pigure 4-28 Water Displacement Fore and Aft -Effects of Model Height

Figure 4-30 Model at 10.82 PSF Disc Loading

Figure 4-31 Model at 15.25 PSF Disc Loading

Pigure 4-32 Water Entering Propellers - Effects of Disc Loading

Pigure 4-33 Water Extering Propellers - Effects of Disc Loading

Figure 4-34 Water Displacement Along Propeller Centerline - Effects of Disc Loading

Figure 4-35 Water Displacement Fore and Aft - Effects of Disc Loading

XC-142A MODEL HOYER TEST

Figure 4-36 Water Entering Propellers - Effects of Wing Angle

Figure 4-37 Water Displacement Along Propeller Centerline - Rffects of Wing Angle

Figure 4-38 Water Displacement Fore and Aft - Effects of Wing Angle

2

Pigure 4-40 Water Displacement Along Propeller Centerline - Effects of Wind

Figure 4-41 Water Displacement Fore and Aft - Effects of Wind

Pigure 4-42 Water Entering Propellers - Effects of Wave Height

Figure 4-43 Water Entering Propellers - Effects of Wave Height

Figure 4-44 Water Entering Propellers - Effects of Wave Length

Pigure 4-45 Water Displacement Along Propeller Centerline... Effects of Waves

DEPTH GAGE NUMBER

Figure 4-66 Water Displacement Along Propeller Centerline - Rffects of Waves

Figure 4-47 Water Displacement Along Propeller Centerline -Effects of Waves

Figure 4-48 Water Displacement Along Propeller Centerline - Effects of Waves

Figure 4-49 Water Displacement Fore and Aft - Effects of Waves

Pigure 4-50 Water Displacement Fore and Aft --Effects of Waves 4-76

WING TILT ANGLE = 90° —— POINT 1 DISC LOADING = 6.45

ROLL ANGLE = -10° —— POINT 2 DISC LOADING = 16.82

FLOATS: OFF —— POINT 3 DISC LOADING = 15.25

WIND OFF

0

WAVES: ON (hw= 6 INCHES)

MODEL HEIGHT = 3.7

Figure 4-51 Effects of Waves

WING TILT ANGLE = 90°

ROLL ANGLE = -10°

FLOATS: OFF

WIND: OFF

WAYES: ON (hw=GINCHES)

MODEL HEIGHT = 3.7

Figure 4-52 Effects of Waves

Figure 4-53 Effects of Waves 4-79

WING TILT ANGLE - 90° ROLL ANGLE : 0° FLOATS: OFF

-POINT 1, DISC LOADING = 6.45 -- POINT 2, DISC WADING: 10.82 -POINT 3, DISC LOADING = 15.25

13 KNOT HEADWIND

WAVES : ON (hu= 12 INCHES)

MODEL HEIGHT = 2.5

Figure 4-54 Effects of Waves

Pigure 4-55 Water Entering Propellers - Effects of Roll Angle

Pigure 4-56 Water Entering Propellers - Effects of Roll Angle

Figure 4-57 Water Displacement Along Propeller Centerline - Effects of Roll Angle

Figure 4-58 Water Displacement Fore and Aft - Effects of Roll Angle 4-84

Figure 4-59 Water Displacement Along Propeller Centerline - Effects of Roll Angle

Figure 4-60 Water Displacement Fore and Aft . _ Effects of Roll Angle

WING TILT ANGLE 90 MODEL HENNAT (WD) = 2.5
FLOATS: OFF DISC LOADING 4 G.45 WIND'S WAVES ! OFF ROLL ANGLE = 5° ROLL ANGLE 70° FRAME 72 6 47 FRAME 55 & 37

Figure 4-61 Water Displacement Topographical Plot - Effects of Roll Angle

lacement Topographical Plot -- 'ects of Roll Angle

4-87

Pigure 4-62 Water Entering Propellers - Effects of Vertical Floats

XC-142 MODEL TEST DATA
WING TILT ANGLE 90 MODEL HEIGHT (MD) # 2.5
FLOATS: OFF DISC LOADING # 6.45 WIND'S WAVES ! OFF ROLL ANGLE 70° ROLL ANGLE = 5° FRAME 72 & 47 FRAME 55 4 87

Figure 4-61 Water Displacement Topographical Plot -- Effects of Roll Angle

N

4-87

int Topographical Plot -- if Roll Angle

⊢87

Figure 4-62 Water Entering Propellers - Effects of Vertical Floats

Pigure 4-63 Water Entering Propellers - Effects of Vertical Floats

1)

Figure 4-64 Water Displacement Along Propeller Centerline - Effects of Vertical Floats

Pigure 4-65 Water Displacement Fore and Aft -Effects of Vertical Floats 4-91

THE DAYA MODEL THET DAYA

MODEL HEIGHT (H/D) + 3.7
DISC LOADING = 10.82
WAVE HEIGHT = GINCHES
WAVE LENGTH = 7.5 FEET

FLORITE 1 OFF FLORITE 1 OFF FROLL ANGLE = 10° WING THE ANGLE = 90°

Pigure 4-67 Water Droplet Size
4-93

4)

Figure 4-68 Water Droplet Size 4-94

Figure 4-69 Water Droplet Size

Figure 4-70 Water Droplet Size

REHIER MODEL TEST DRITH DROPLET ENATCHER

DROFLET SIZE ~ MICHONS

Figure 4-71 Water Droplet Size

Figure 4-72 Typical Microphotograph of Glass Slide from Droplet Snatcher 4-98

Figure 4-74 Water Droplet Size

Figure 4-75 Water Displacement Along Propeller Centerline Effects of Polyethylene Oxide
4-101

Figure 4-76 Water Displacement Fore and Aft -Effects of Polyethylene Oxide

Figure 4-77 Effect of Froude Number on Average Moisture Circulation

Figure 4-78 Effect of Reynolds Number on Average Moisture Circulation 4-104

ROLL ANGLE : 0° WING THE ANGLE : 90° FLOATS: OFF WINDS WAVES: OFF

OH/D=3.7

OH/D=2.5

OH/D=1.6

OH/D=1.4

Figure 4-79 Effect of Weber Number on Average Moisture Circulation

Pigure 4-80 Effect of Disc Loading on Depression Depth

WING TILT ANGLE = ROLL ANGLE = 0* FLOATS: OFF O 6.45 PSF 6.43 885 △ 10.82 PSF C MOMENTUM PARAMETA

M= MOMENTUMOR ANGSTRES

X=SPECIFIC WEIGHT OF WATE

14 = DEPRESSION DIAMETER

4-107

Pigure 4-81 Effect of Disc Loading on Depression Width/Depth

10000

Figure 4-83 Effect of Maximum Ground Dynamic Pressure on Depression Depth
4-109

Pigure 4-84 Water Displacement Along Propeller Centerline -Predicted Full-Scale EC-142A Depression

BASED ON KC-142A MODEL TEST PATA

WING TILT ANGLE = 90°
ROLL ANGLE = 0°
FLOATE: OFF
WIND AND WAVES ! OFF
MODEL HEIGHT (WD) = 3.7
DISC LOADING : 6.46

Figure 4-85 Water Displacement Along Propeller Centerline - Predicted Full-Scale XC-142A Depression

BAND MYC-HZA MOBIL TEST DATA

Pigure 4-86 Water Displacement Along Propeller Centerline - Predicted Pull-Scale XC-142A Degression

5.0 CONCLUSIONS

A series of tests have been performed with a model having a tiltwing configuration and four propellers simulating a hover over a calm water surface with and without a surface wind, and over a water surface having two wave heights both with and without a surface wind. These tests examined the forces and moments acting on the model and the environmental conditions generated by this model. As a result of these tests, the following conclusions are drawn:

- a. The forces and moments acting on the model were not affected by the waves on the water surface below the model.
- b. The addition of vertical floats to the model had a negligible effect on the forces and moments felt by the model in the hover mode.
- c. Rolling the model as much as 10 degrees had a negligible effect on the normal, drag and side forces and the pitching and directional moments.
- d. The addition of a surface wind had a negligible effect on the normal force, but the effects of the surface wind on the pitching moment were large. The pitching moment coefficient, based on the slipstream dynamic pressure, increases by a value of approximately 0.4 for the full-scale disc loading of 42.5 pounds per square foot; at a higher disc loading (125 pounds per square foot), the moment coefficient increase due to the surface wind was only 0.25.
- e. Wind had the largest effect on sprey circulation, forcing the spray on the windward side up and back over the model.
- f. Small waves can be destroyed by the slipstream and, in this case, more spray is generated than with larger waves which are not destroyed.

- g. The increases in spray circulation caused by wind and waves independently are approximately additive when encountered simultaneously.
- h. The correlation parameters presented in Reference 4-9 can be used to predict depression characteristics although better depth predictions can be made using Figure 4-84.
- i. The method outlined in Reference 4-7 is adequate for predicting maximum droplet size.
- j. The addition of vertical floats reduces the amount of spray circulation by spray deflection.
- k. The addition of polyethylene oxide to the water beneath the model showed some promise as a spray inhibitor by increasing the spray droplet size, and such an additive may prove useful for full-scale aircraft.
- 1. Based on model data, it is estimated that a full-scale tiltwing airplane with engines that require approximately 25 pounds of air per second and having a 50 psf disc loading would probably not ingest more than 2 ppm salt-in-air hovering near the water under zero sea state conditions, and not more than 100 ppm in a sea state 4.
- m. The majority of the spray droplets in the model flow field were less than 100 microns in diameter.
- n. Electrical depth gages can be used to determine the frequency of water motion in still water and to determine the wave/slipstream interactions.
- o. These tests have shown the developed test facility to be excellent for evaluating the characteristics of spray around a V/STOL aircraft hovering above a water surface. Good correlation has been found between the spray patterns formed beneath a full-scale airplane and tests at this facility of a model under comparable test conditions.

- p. During these tests it has been found that a coating of neoprene that is approximately 0.01 inches thick applied to the blades of the fiberglass propellers virtually eliminated the spray-caused erosion of these blades.
- q. There are certain disc loadings above which it will be impractical to operate V/STOL aircraft near a water surface. This maximum tolerable disc loading will reduce as the size of the waves and/or the magnitude of the surface wind increases.

6.0 RECOMMENDATIONS

As a result of these tests, the following recommendations are made:

- a. A series of tests should be performed using models of other types of V/STOL aircraft in this test facility in order to properly evaluate their compatibility with an open ocean type of environment.
- h. Areas such as the visibility available to the pilot of a V/STOL aircraft hovering over a water surface should be quantitatively measured.
- c. Additional tests of compounds similar to polyethylene oxide should be performed in an attempt to find an effective and prectical spray suppressant.

7.0 REFERENCES

- 1-1 "An Investigation of the Over Water Aspects of VTOL Airplanes at High Disc Loading," Final Report No. 012-26, Curtiss Wright Corp., December 1963.
- 1-2 "Feasibility Study, XC-142A Modified for Open Ocean Operation,"
 Report No. 2-55400/43-963, Vought Aeronautics Division, 9 February 1965.
- 1-3 "Research on VTOL Water Hover Effects," Report No. 2-55400/6R-6090, Vought Aeronautics Division, 30 September 1966.
- 1-4 Office of Naval Research Contract No. NOO014-67-C-0488, dated 5 May 1967.
- 4-1 "Engine/Airframe Interface Study for Open-Ocean ASW Air/Sea Craft,"
 Report No. 2-55400/7R-2419, Vought Aeronautics Division, 30 June 1967.
- 4-2 "Research on VTOL Water Hover Effects," Report No. 2-55400/6R-6090, Vought Aeronautics Division, 30 September 1966.
- "An Investigation to Determine Conditions Under Which Downwash from VTOL Aircraft Will Start Surface Erosion from Various Types of Terrain," NASA TND-56, September 1959.
- "An Investigation of the Over Water Aspects of VTOL Airplanes at High Disc Loading," Final Report No. 012-26, Curtiss Wright Corp., December 1963.
- 4-5 "Downwash Impingement Design Criteria for VTOL Aircraft," TRECOM Technical Report 64-48, U. S. Army Transportation Research Command, August 1961.
- 4-6 "Feasibility Study, XC-142A Modified for Open Ocean Operation,"
 Report No. 2-55400/4R-963, Vought Aeronautics Division, 9 February 1965.
- 4-7 "Shock Tube Investigation of the Breakup of Drops by Air Blast," The Physics of Fluids, Vol. 6, August 1963.
- 4-8 "Experimental Study of Pilot Visibility From a VTOL Air/Sea Craft Near the Ocean Surface," TAR-TR 6704, Therm Advanced Research, Inc., July 1967.
- 4-9 "Hydromechanics of a High Velocity Gas Jet Penetrating a Liquid Surface," Bureau of Ships Index No. SF013-02-07, Task 1714, March 1962.
- 4-10 "Salt Water Ingestion by Gas Turbine Engines," Conference on Environmental Effects on Aircraft Propulsion, June 1961.

DOCUMENT CONTROL DATA - R&D (Security classification of title hods of abstract and indexing annutative must be intered when the overall report is a lassified.)					
LTV Aerospace Corporation Vought Aeronautics Division P. O. Bex 2007, Dallas, Texas 75222					
ffects, Includi	ing the Effects of Wind and				
231	11				
	00/8R-6140				
the report	65 . S Ans there her that was eas after				
•					
Office of Department	Naval Research (Code 461) to of the Navy n, D. C. 20360				
	2-5540 SPONSORING Office of Denartment				

Very little is known about the problems associated with a VTOL aircraft hovering over a water surface. Some of the more important of these unknown effects app or to be the effects of surface winds and waves on the stability and control characteristics of the hovering airplane, the effects of the airplane's downwash on the water surface, and the effects of surface winds and waves on the spray generated by the airplane's downwash. In order to examine these seemingly more important effects, a special model testing facility has been built. This facility permits a model simulating a hovering sirplane to be tested as the facility generates waves of ariable heights and lengths on the water surface below the model test station. The facility can also generate a surface wind. During this test a model of a tiltwing VTOL airplane with four propellers was tested as it simulated hover at varying heights and disk loadings above the variable water surface conditions. The effects of water waves on the forces and moments felt by the hovering model were found to be negligible, and the effects of the surface wind on the forces and moments were found to be as would be predicted with a negligible effect of waves even with the surface wind. By contrast, it was found that the waves and the surface wind both had significant effects on the effects of the airplane's downwash on the water surface and the spray generated around the model. Comparison of some of the spray patterns found in this test program with results of full scale airplane tests indicate that these results of the model tests correlate well with the limited data available from the actual airplane tests.

DD FORM 1473

UNCLASSIFIED

Security Classification

14 KEY WORDS		LINK A		LINK B		LINK C	
	ROL	E	A 7	ROLE	• 1	ROLE	wT
Air/Sea Craft							
Open Ocean Operations							
Roll attitude		1					
Hover							
VTOL							
Tiltwing		1		11			
Surface winds				1			
Surface waves							
Forces				- 4			
Moments							
Downwash		- 4				1	
Spray							
Recirculation						1	
Edge effects							
Disk Loading							
Height above water		1					

INSTRUCTIONS

- 1. ORIGINATING ACTIVITY—Enter the name and address of the contractor, subcontractor—grantee, Department of Defense activity or other organization "corporate author) issuing the report.
- 2e REPORT SECURITY CLASSIFICATION. Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.
- 2h GROUP Automatic downgrading is specified in D-D Directive \$200.10 and Armed Forces Industrial Manual. Finter the group number. Also, when applicable, show that optimal markings have been used for Group 3 and Group 4 as authorized.
- 3. REPORT TITLE—Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.
- 4. DESCRIPTIVE NOTES. If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.
- 5. AUTHOR(S) Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.
- 6. REPORT DATE. Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of public at ion.
- 7a TOTAL NUMBER OF PAGES. The total page count should follow normal pagination procedures; i.e., enter the number of pages containing information.
- 26 NUMBER OF REFERENCES. Enter the total number of references cited in the report.
- 80 CONTRACT OR GRANT NUMBER. If appropriate, enter the applicable number of the contract or grant under which the report was written.
- 8b, & , & 8d PROJECT NUMBER. Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.
- 9a ORIGINATOR'S REPORT NUMBER(S) Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.
- 9b OTHER REPORT NUMBER(S). If the report has been assigned any other report numbers (either by the originator or by the spensor), also enter this number(s).
- 10. AVAILABILITY LIMITATION NOTICES. Enter any limitations on further dissemination of the report, other than those

imposed by security classification (a) of standard statements such as

- "Qualified requesters may shift in a gress of this report from DDC."
- (2) "Foreign ann university and dissemination of this report by DDC is not authorized."
- (3) "TUS Government agencies in a little accopies of this report directly from DIX". Other qualified DDC overs shall request through
- 141 ''I. Sometitary agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
- *** "All distribution of this report is controlled. Qualnied DDC users shall request it rough

If the region has been turnished to the Office of Technical Services, Department of Commerce, for sale to the public, indirate this fact and enter the price of known.

- 11. SUPPLEMENTARY NOTES. Use for additional explana-
- 12. SPONSORING MILLIARY ACTIVITY. Enter the name of the departmental project office or laboratory sponsoring (pasing for) the research and development. Include address,
- 13 ABSTRACT Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsowhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph represented as (75) with (C) with (C)

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

i.4 KEY WORDS. Key words are to innically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links roles, and weights is optional.

UNCLASSIFIED

Security Classification