Seung Jun Baek

Topics: DFT and FFT.

- 1. compute the DFT of each the following finite-length sequence considered to be of length N(where N is even):
 - (a) $x[n] = \delta[n]$
 - (b) $x[n] = \delta[n n_0], \quad 0 \le n_0 \le N-1$

$$\begin{aligned} & \text{(c)} \ \ x[n] = \begin{cases} 1, & n \quad even, & 0 \leq n \leq N-1, \\ 0, & n \quad odd, & 0 \leq n \leq N-1, \end{cases} \\ & \text{(d)} \ \ x[n] = \begin{cases} 1, & 0 \leq n \leq N/2-1, \\ 0, & N/2 \leq n \leq N-1, \end{cases} \\ \end{aligned}$$

(d)
$$x[n] = \begin{cases} 1, & 0 \le n \le N/2 - 1, \\ 0, & N/2 \le n \le N - 1 \end{cases}$$

(e)
$$x[n] = \begin{cases} a^n, & 0 \le n \le N-1, \\ 0, & \text{otherwise,} \end{cases}$$

- 2. Let $X(e^{jw})$ denote the Fourier transform of the sequence $x[n] = (0.5)^n u[n]$. Let y[n] denote a finite-duration sequence of length 10; i.e., y[n] = 0, n < 0, and y[n] = 0, $n \ge 10$. The 10- point DFT of y[n], denoted by Y[k], corresponds to 10 equally spaced samples of $X(e^{jw})$; i.e., $Y[k] = X(e^{j2\pi k/10})$. Determine y[n].
- 3. The two eight-point sequences $x_1[n]$ and $x_2[n]$ shown in Figure P8.10 have DFTs $X_1[k]$ and $X_2[k]$, respectively. Determine the relationship between $X_1[k]$ and $X_2[k]$.

Figure 1: P8.10

4. Suppose we have two four-point sequences x[n] and h[n] as follows:

$$x[n] = \cos(\frac{\pi n}{2})$$
 $n = 0, 1, 2, 3$
 $h[n] = 2^n$ $n = 0, 1, 2, 3$

- (a) Calculate the four-point DFT X[k].
- (b) Calculate the four-point DFT H[k].
- (c) Calculate y[n] = x[n] (4) h[n] by doing the circular convolution directly.

- (d) Calculate y[n] of part (c) by multiplying the DFTs of x[n] and h[n] and performing an inverse DFT.
- 5. Consider the finite-length sequence x[n] in Figure P8.13. The five-point DFT of x[n] is denoted by X[k]. Plot the sequence y[n] whose DFT is

$$Y[k] = W_5^{-2k} X[k].$$

Figure 2: P8.13

6. Figure P8.17 shows two finite-length sequences $x_1[n]$ and $x_2[n]$. What is the smallest N such that the N-point circular convolution of $x_1[n]$ and $x_2[n]$ are equal to the linear convolution of these sequences, i.e., such that $x_1[n](N)x_2[n]$ $= x_1[n] * x_2[n]$?

Figure 3: P8.17

- 7. Consider the finite-length sequence x[n] in Fig P8.26. The four-point DFT of x[n] is denoted X[k]. Plot the sequence y[n] whose DFT is 4 $Y[k] = W_4^{3k} X[k].$
- 8. Fig. 5 shows two sequences,

$$x_1[n] = \begin{cases} 1, & 0 \le n \le 99, \\ 0, & \text{otherwise,} \end{cases}$$

and

$$x_2[n] = \begin{cases} 1, & 0 \le n \le 9, \\ 0, & \text{otherwise,} \end{cases}$$

Fig 4: P8.26

Fig 5: P8.31

- (a) Determine and sketch the linear convolution $x_1[n] * x_2[n]$.
- (b) Determine and sketch the 100-point circular convolution $x_1[n] \bigcirc x_2[n]$.
- (c) Determine and sketch the 110-point circular convolution $x_1[n]$ $(10)x_2[n]$.
- 9. Consider two finite-length sequences x[n] and h[n] for which x[n]=0 outside the interval $0 \le n \le 49$ and h[n] outside the interval $0 \le n \le 9$.
 - (a) What is the maximum possible number of nonzero values in the *linear* convolution of x[n] and h[n]?
 - (b) The 50-point *circular* convolution of x[n] and h[n] is

$$x[n]$$
 $50h[n] = 10, 0 \le n \le 49.$

The first points of the *linear* convolution of x[n] and h[n] are

$$x[n] * h[n] = 5, \quad 0 \le n \le 4.$$

Determine as many points as possible of the linear convolution of x[n] * h[n].

10. Suppose $x_1[n]$ is an infinite-length, stable (i.e., absolutely summable) sequence with DTFT given by

$$X_1(e^{j\omega}) = \frac{1}{1 - \frac{1}{3}e^{-j\omega}}.$$

Suppose $x_2[n]$ is a finite-length sequence of length N, and the N-point DFT of $x_2[n]$ is

$$X_2[m] = X_1(e^{j\omega})|_{\omega=2\pi m/N}, \quad m = 0, 1, \dots, N-1.$$

Determine $x_2[n]$.

- 11. Construct a flow graph for a 16-point radix-2 decimation-in-time FFT algorithm. Label all multipliers in terms of powers of W_{16} , and also label any branch transmittances that are equal to -1. Label the input and output nodes with the appropriate values of the input and DFT sequences, respectively. Determine the number of real multiplications and the number of real additions required to implement the flow graph.
- 12. (programming) In this exercise we will practice filtering via DFT using either Python or MATLAB choose your preferred language.
 - (a) Create a random discrete signal of length 500 where each sample is a normally distributed random variable with mean 0 and variance 1. Let this signal x[n]. Plot its spectrum using freqz function for MATLAB, or scipy.signal.freqz in Python. (Hint: randn MATLAB function or numpy.random.randn for Python may be useful.)
 - (b) Create a lowpass FIR filter with cutoff at $\pi/4$ using Hamming window of length 2M+1 where M=250. Let this impulse response be h[n]. Plot the spectrum of h[n] using freqz.
 - (c) Filter x[n] in part (a) using your Hamming filter h[n]. Use plain linear convolution (conv function) for filtering. Let the filtered output be y[n]. Plot the spectrum of y[n] using freqz function.
 - (d) Now let's use DFT to see the spectrums. Namely use fft function in MATLAB (for Python put from scipy.fftpack import fft, ifft to use FFT or inverse FFT) to first calculate DFT of the signal created in part (a) and plot its magnitude response. Similarly apply fft function to calculate DFT of your filter and plot its magnitude response. Use the length of 1024-point FFT in your fft function. Use the log scale when you plot these magnitudes (function semilogy may be useful). Do these plots match the magnitude plots from (a) and (b)?
 - (e) Using the results from (d), perform the filtering x[n] * h[n] in *computationally efficient way*. In the class I have emphasized several times on the efficient filtering using DFT. Plot the spectrum of the filtered output y[n] with freqz after applying this efficient method. Does this match with the plot you obtained in part (c)? (Hint: Use ifft function.)