

Monitoring of the GEMS characteristics

M.H. Ahn¹, Mina Kang¹, Mijin Eo¹, Yeeun Lee¹, Kyung-Jung Moon², Dai Ho Ko³, Jhoon Kim⁴, Dongwon Lee²

Ewha Womans University¹
National Institute of Environmental Research²
Korea Aerospace Research Institute³
Yonsei University⁴

Contents

- **❖**Any significant trend in the GEMS?
 - L0 digital count and L1 irradiances
 - LED measurement
 - Dark current
 - Bad pixels
 - Telemetries
- Comparison with imagers onboard GK2-A/B
 - AMI and GOCI-II
- **❖Summary**

L0 Digital Counts

❖ Daily variation of L0 digital counts and ratio

L1 Irradiances

Spatio-spectral variation are there even after radiometric calibration

 Minimum variation is shown at nadir position with a significant degradation of irradiances at shorter wavelengths

Trends in L0 and L1

❖Any trends in the integrated L0 & L1 over all detectors?

 Decrease of 4.3% and 4% of total digital count and irradiance, respectively

Trends in L1

Shorter wavelengths show the largest degradation

- Compared to the reference solar diffuser, shorter wavelengths show
 15% decrease since the operation
- The degradation seems to continue (need a continuous monitoring)

LED measurements

Linearity of CCD is not significantly altered

- Different integration times of LED simulate different input signal
- Increasing trend for the longer exposure time (and vice verse), although the magnitude is smaller than 0.4% for 2-1/2 yrs

GEMS dark currents

Slow increase of the dark currents

- The frequency distribution shifts toward higher current values
 - ✓ About 5.3% increase in the mean value (over about 3 yrs.)
 - ✓ Averaged dark signals show an increase of 0.01%/day in average

GEMS bad pixels

Slow increase of the hot pixels

- The number of hot pixels* has been increasing slowly
 - ✓ At quadrant A, C, and D, the number show a slow but a steady increase, while in quadrant B, a strong variation is shown (root cause is not yet identified)
 - ✓ The number of cold pixels are not showing any significant variation

GEMS CCD	prelaunch	On-orbit	
	Mean	Mean	STD
Quad A	96.90	72.63	22.32
Quad B	113.99	90.40	68.27
Quad C	102.62	79.12	18.32
Quad D	95.67	70.66	18.75

GEMS CCD averaged dark rate [E-/s]

^{*} a pixel having the dark current above the quadrant mean plus 8-sigma (using the initial dark current in orbit)

Trends in telemetries

Stable at most telemetries

- CCD temperature varies within about 0.3 K all year long
- The temperature of focal plane electronics (FPE) shows a slight increasing trend although it is under the specification

CCD Temperature [WSD]

FPE Temperature [WSD]

Inter-comparison with GK-2A/B imagers

Collocation and spectral matching

• Nov 2020 – Oct 2021, 01-06 UTC (a year long data, 5-days interval)

Sensor	AMI	GEMS	GOCI-2
Spectral range [nm]	470	300-500 (Δλ=0.2)	380, 412, 443
Time interval	Every 10 min.	hh:45 (00-08 UTC)	hh:15 (00-08 UTC)
SZA & VZA	<i>θ</i> < 40°		

Inter-comparison with GK-2A/B imagers

❖Comparison with GOCI-II

Without any filtering process, correlation is about 0.91 (although there is time difference between the two measurements)

 380 nm
 443 n

Num. = 433434= 3.358RMSE = 13.385= 0.919GEMS Radiance [W cm⁻³ sr⁻¹] 100 200 GOCI-2 Radiance [W cm⁻³ sr⁻¹] 179 352 526 700 Frequency

Inter-comparison with GK-2A/B imagers

Comparison with AMI

GEMS shows slightly higher radiance/reflectivity compared to AMI

Summary and future works

- GEMS is slowly aging with an expected degradation
 - BTDF irregularity is mitigated with empirical correction, while the stray light and absolute calibration issues are still there
 - Dark current and FPE temperature are slowly increasing, while the other spectral and radiometric characteristics are quite stable
 - Spectral characteristics are quite stable (see Mina's talk)
 - Comparison with the collocated GK-2A/B imagers shows a good agreement with the systematic differences in both radiance and reflectivity

❖ Near future activities

- Finalizing the empirical BTDF approach with the release of new irradiance dataset
- Improve stray correction, especially at the shorter end of spectrum
- Continuous monitoring of the GEMS health conditions

Thank you

