

QSPI PSRAM

Specifications

- Single Supply Voltage
 - o VDD=2.7 to 3.6V
- Interface: SPI/QPI with SDR mode
- Performance: Clock rate up to
 - o 133MHz at VDD=3.0V+/-10%
 - o 109MHz at VDD=3.3V+/-10%
- Organization: 64Mb, 8M x 8bits
- Addressable Bit Range: A[22:0]
- Page Size: 1024 bytesRefresh: Self-managed
- Operating Temperature Range:
 - \circ Tc = -40°C to +85°C (standard range)
 - o Tc = -40°C to +105°C (extended range)
- Maximum Standby Current:
 - o 350μA @ 105°C
 - o 250μA @ 85°C
 - o 140μA @ 25°C

Features

- 50Ω Output Drive Strength LVCMOS
- 1K Bytes Wrapped Burst or 32 Bytes Wrapped Burst via toggle command.
- 1K Bytes Wrapped Burst as long as tCEM is met
- Software Reset

Table of Contents

1 Table of Contents

1	Tabl	e of Contents	2
2	Intro	oduction	4
3	Pack	age Information	4
	3.1	Package Types : SOP / USON (SN, ZR) , not to scale, Top view	4
4	Pack	age Outline Drawing	5
	4.1	SOP-8L(150), package code SN	5
	4.2	USON-8L 3x2mm, package code ZR	6
5	Orde	ering Information	7
6	Sign	al Table	8
7	Pow	er-Up Initialization	8
8	Inte	face Description	9
	8.1	Address Space	9
	8.2	Page Size	9
	8.3	Drive Strength	9
	8.4	Power-on Status	9
	8.5	Command/Address Latching Truth Table	9
	8.6	Command Termination	. 10
9	Wra	p Boundary Toggle Operation	. 11
10	SPI N	Mode Operations	. 12
	10.1	SPI Read Operations	. 12
	10.2	SPI Write Operations	. 14
	10.3	SPI Quad Mode Enable Operation	. 15
	10.4	SPI Read ID Operation	. 15
11	QPI	Mode Operations	. 16
	11.1	QPI Read Operation	. 16
	11.2	QPI Write Operation(s)	. 17
	11.3	QPI Quad Mode Exit operation	. 17
12	Rese	et Operation	. 18

APS6404L-3SQN QSPI PSRAM

13	Inpu	t/Output Timing	19
14		rical Specifications:	
	14.1	Absolute Maximum Ratings	20
	14.2	Pin Capacitance	20
	14.3	Decoupling Capacitor Requirement	21
	14.4	Operating Conditions	21
	14.5	DC Characteristics	22
	14.6	AC Characteristics	23
15	Char	nge Log	24

2 Introduction

This Pseudo-SRAM device features a high speed, low pin count interface. It has 4 SDR I/O pins and operates in SPI(serial peripheral interface) or QPI (quad peripheral interface) mode with frequencies up to 133 MHz. The data input (A/DQ) to the memory relies on clock (CLK) to latch all instructions, addresses and data. It is most suitable for low-power and low cost portable applications. It incorporates a seamless self-managed refresh mechanism. Hence it does not require the support of DRAM refresh from system host. The self-refresh feature is a special design to maximize performance of memory read operation.

3 Package Information

The APS6404L-3SQN is available in standard package including 8-lead SOP-8L(150) and advanced package including 8-lead USON-8L 3x2mm.

3.1 Package Types: SOP / USON (SN, ZR), not to scale, Top view

4 Package Outline Drawing

4.1 SOP-8L(150), package code SN

SYMBOL	Ι	IMENSION (MM)		DIMENSION (MIL)			
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
A	1,35	1.60	1.75	53	63	69	
A1	0.10	0.15	0,25	4	6	10	
A2	1,35	1.45	1,55	53	57	61	
ь	0.31	-	0.51	12	-	20	
ь1	0.28	0.40	0.48	11	16	19	
С	0.17	-	0,25	7	-	10	
c1	0.17	0,20	0,23	7	8	9	
D	4.80	4.80 4.90		189	193	197	
Е	(6.00 BSC		236 BSC			
E1	3,80	3.90	4.00	150	154	157	
е	1	1.27 BSC		50 BSC			
L	0.40	0.66	1.27	16	26	50	
L1		1.05 REF			41 REF		
ZD		0.55 REF			22 REF		
h	0.25	0.38	0.50	10	15	20	
Y	-	-	0.10	-	-	4	
0	0°	-	8°	0°	-	8°	
91	0°	-	-	0°	-	-	

NOTE :

- 1, REPER TO JEDEC STD: NOS-012 AA,
- DIMENSION *D* DOES NOT INCLUDE MOLD FLASH, PROTRUSION OR GATE BURRS, MOLD FLASH, PROTRUSION AND GATE BURRS SHALL NOT EXCEED 0.15mm PER SIDE.

DIMENSION "E1" DOES NOT INCLUDE INTERLEAD MOLD FLASH OR PROTRUSION, INTERLEAD MOLD FLASH OR PROTRUSION SHALL NOT EXCEED 0,25mm PER SIDE,

- 'D' AND 'E1' DIMENSIONS ARE DETERMIND AT DATUM H .
- DIMENSION '5' DOES NOT INCLUDE DAMBAR PROTRUSION, ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.10mm TOTAL IN EXCESS OF THE '5' DIMENSION AT MAXIMUM MATERIAL CONDITION,
 - THE DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE POOT,

4.2 USON-8L 3x2mm, package code ZR

	MILLIMETERS					
Symbol	MIN.	NOM.	MAX.			
A	0.40	0.45	0.50			
A1	0.00		0.05			
D	2.90	3.00	3.10			
D1	0.10	0.20	0.30			
E	1.90	2.00	2.10			
E1	1.50	1.60	1.70			
L	0.40	0.45	0.50			
L1	0.30					
L2			0.15			
b	0.20	0.25	0.30			
e	0.50 BSC					

NOTE:

- 1. Scale 1:4
- 2. ALL DIMENSIONS AND TOLERANCES TAKE REFERANCE TO JEDEC MO-229
- 3. DIMENSION "b" APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.15MM AND 0.30MM FROM THE TERMINAL TIP. IF THE TERMINAL HAS OPTIONAL RADIUS ON THE OTHER END OF THE TERMINAL, THE DIMENSION B SHOULD NOT BE MEASURED IN THAT RADIUS AREA.

5 Ordering Information

Table 1: Ordering Information

Part Number	Temperature Range	Max	Note
APS6404L-3SQN-ZR	Tc = -25°C to +85°C	133 MHz*	USON-8
APS6404L-3SQN-SN	Tc = -40°C to +85°C	133 MHz*	SOP-8
APS6404L-3SQNX-SN	Tc = -40°C to +105°C	133 MHz*	SOP-8

Note *: 133MHz at VDD=3.0V+/-10% 109MHz at VDD=3.3V+/-10%

6 Signal Table

All signals are listed in Table 2.

Table 2: Signals Table

Symbol	Туре	SPI Mode	Comments						
VDD	Power								
VSS	Ground								
CE#	Input	Chip select,	Chip select, active low. When CE#=1, chip is in standby state						
CLK	Input								
SI/SIO[0]	Ю	Serial Input							
SO/SIO[1]	Ю	Serial Output	Serial Output IO[1] * IO[1]						
SIO[2]	Ю								
SIO[3]	10		IO[3] * IO[3]						

Note *: SPI Quad mode

7 Power-Up Initialization

SPI/QPI products include an on-chip voltage sensor used to start the self-initialization process. When VDD reaches a stable level at or above minimum VDD, the device will require 150µs and user-issued RESET Operation (see section 12) to complete its self-initialization process. From the beginning of power ramp to the end of the 150µs period, CLK should remain LOW, CE# should remain HIGH (track VDD within 200mV) and SI/SO/SIO[3:0] should remain LOW.

After the 150µs period the device is ready for normal operation.

Figure 1. Power-Up Initialization Timing

8 Interface Description

8.1 Address Space

SPI/QPI PSRAM device is byte-addressable. 64M device is addressed with A[22:0].

8.2 Page Size

Page size is 1K (CA[9:0]). The device operates in a bursting address sequence back to starting address of same page in a wrap manner.

8.3 Drive Strength

The device powers up in 50Ω .

8.4 Power-on Status

The device powers up in SPI Mode. It is required to have CE# high before beginning any operations.

8.5 Command/Address Latching Truth Table

The device recognizes the following commands specified by the various input methods.

			SPI Mode (QE=0)					QPI Mode (QE=1)				
Command	Code	Cmd	Addr	Wait Cycle	DIO	Max Freq.	Cmd	Addr	Wait Cycle	DIO	Max Freq.	
Read	'h03	S	S	0	S	33			N/A			
Fast Read	'h0B	S	S	8	S	133*	Q Q 4 Q 66			66		
Fast Read Quad	'hEB	S	Q	6	Q	133*	Q	Q	6	Q	133*	
Write	'h02	S	S	0	S	133*	Q	Q	0	Q	133*	
Quad Write 'h3		S	Q	0	Q	133*	same as 'h02					
Enter Quad Mode	'h35	S	S 133		N/A	N/A						
Exit Quad Mode	'hF5			N/A			Q	-	-	-	133	
Reset Enable	'h66	S	-	-	-	133	Q	-	-	-	133	
Reset	'h99	S	-	1	-	133	Q	-	-	-	133	
Wrap Boundary Toggle	'hC0	S	-	ı	-	133	Q	-	-	-	133	
Read ID 'h9F			S	0	S	33	N/A					
Remark: S = S	Remark: S = Serial IO, Q = Quad IO											

Note *: Max Freq. would be 133MHz at VDD=3.0V+/-10% and 109MHz at VDD= 3.3V+/-10%)

8.6 Command Termination

All Reads & Writes must be completed by raising CE# high immediately afterwards in order to terminate the active command and set the device into standby. Not doing so will block internal refresh operations and cause memory failure.

Figure 2: Write Command Termination

For a memory controller to correctly latch the last piece of data prior to read termination, it is recommended to provide a longer CE# hold time (tCHD > tACLK+tCLK) for a sufficient data window.

Figure 3: Read Command Termination

9 Wrap Boundary Toggle Operation

The Wrap Boundary Toggle Operation switches the device's wrapped boundary between 1K Bytes Wrapped Burst or 32 Bytes Wrapped Burst. Note that the default setting is 1K Bytes Wrapped.

Figure 4: SPI Wrap Boundary Toggle 'hCO

Figure 5: QPI Wrap Boundary Toggle 'hCO

10 SPI Mode Operations

The device powers up into SPI mode by default but can also be switched into QPI mode.

10.1 SPI Read Operations

For all reads, data will be available ^tACLK after the falling edge of CLK.

SPI Reads can be done in three ways:

- 1. 'h03: Serial CMD, Serial Addr/IO, slow frequency.
- 2. 'hOB: Serial CMD, Serial Addr/IO, fast frequency.
- 3. 'hEB: Serial CMD, Quad Addr/IO, fast frequency.

Figure 6: SPI Read 'h03 (max freq 33MHz)

Figure 7: SPI Fast Read 'h0B (max freq 133 MHz)

Figure 8: SPI Fast Quad Read 'hEB (max freq 133 MHz)

10.2 SPI Write Operations

SPI write command can be input as 'h02 or 'h38.

Figure 9: SPI Write 'h02

Figure 10: SPI Quad Write 'h38

10.3 SPI Quad Mode Enable Operation

This command switches the device into quad IO mode.

Figure 11: Quad Mode Enable 'h35 (available only in SPI mode)

10.4 SPI Read ID Operation

This command is similar to Fast Read, but without the wait cycles and the device outputs EID value instead of data.

Figure 12: SPI Read ID 'h9F (available only in SPI mode)

Table 3: Known Good Die (KGD)

KGD[7:0]	Known Good Die
'b0101_0101	FAIL
'b0101_1101	PASS

^{*}Note: Default is FAIL die, and only mark PASS after all tests passed.

11 QPI Mode Operations

11.1 QPI Read Operation

For all reads, data will be available ^tACLK after the falling edge of CLK.

QPI Reads can be done in one of two ways:

- 1. 'h0B: Quad CMD, Quad Addr/IO, slow frequency
- 2. 'hEB: Quad CMD, Quad Addr/IO, fast frequency

Figure 13: QPI Fast Read 'h0B (max freq 66 MHz)

Figure 14: QPI Fast Quad Read 'hEB (max freq 133 MHz)

11.2 QPI Write Operation(s)

QPI write command can be input as 'h02 or 'h38.

Figure 15: QPI Write 'h02 or 'h38

11.3 QPI Quad Mode Exit operation

This command will switch the device back into serial IO mode.

Figure 16: Quad Mode Exit 'hF5 (only available in QPI mode)

12 Reset Operation

The Reset operation is used as a system (software) reset that puts the device in SPI standby mode which is also the default mode after power-up. This operation consists of two commands: Reset-Enable (RSTEN) and Reset (RST).

Figure 17: SPI Reset

Figure 18: QPI Reset

Reset command has to immediately follow the Reset-Enable command in order for the reset operation to take effect. Any command other than the Reset command after the Reset-Enable command will cause the device to exit Reset-Enable state and abandon reset operation.

13 Input/Output Timing

Figure 19: Input Timing

Figure 20: Output Timing

14 Electrical Specifications:

14.1 Absolute Maximum Ratings

Table 4: Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit	Notes
Voltage to any ball except V _{DD} relative to V _{SS}	VT	-0.4 to V _{DD} +0.4	V	
Voltage on V _{DD} supply relative to V _{SS}	V_{DD}	-0.4 to +4.0	V	2
Storage Temperature	T _{STG}	-55 to +150	°C	1

Notes 1: Storage temperature refers to the case surface temperature on the center/top side of the PSRAM.

Notes 2: During voltage transitions, all pins may overshoot to -0.5V or VCC+0.5V for period up to 20ns.

Caution:

Exposing the device to stress above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

14.2 Pin Capacitance

Table 5: Package Pin Capacitance

Parameter	Symbol	Min	Max	Unit	Notes
Input Pin Capacitance	CIN		6	pF	VIN=0V
Output Pin Capacitance	COUT		8	pF	VOUT=0V

Note 1: spec'd at 25°C.

Table 6: Load Capacitance

Parameter	Symbol	Min	Max	Unit	Notes
Load Capacitance	CL		15	pF	

Note 1: System C_L for the use of package

14.3 Decoupling Capacitor Requirement

It is required to have a decoupling capacitor on VDD pin for IO switchings and psram internal transient events. A low ESR $1\mu F$ ceramic cap is recommended. To minimize parasitic inductance, place the cap as close to VDD pin as possible. An optional $0.1\mu F$ can further improve high frequency transient response.

14.4 Operating Conditions

Table 7: Operating Characteristics

Parameter	Min	Max	Unit	Notes
Operating Temperature (extended)	-40	105	°C	1
Operating Temperature (standard)	-40(-25*)	85	°C	*USON package ZR

Note 1: spec'd temp range of -40 to 105°C is only characterized; test condition will be -32 to 105°C.

14.5 DC Characteristics

Table 8: DC Characteristics

Symbol	Parameter	Min	Max	Unit	Notes
V _{DD}	Supply Voltage	2.7	3.6	V	
V _{IH}	Input high voltage	V _{DD} -0.4	V _{DD} +0.2	V	
VIL	Input low voltage	-0.2	0.4	V	
V _{OH}	Output high voltage (I _{OH} =-0.2mA)	0.8 V _{DD}		V	
VoL	Output low voltage (I _{OL} =+0.2mA)		0.2 V _{DD}	V	
ILI	Input leakage current		1	μΑ	
I _{LO}	Output leakage current		1	μΑ	
Icc	Read/Write		7	mA	1,2
ISB _{EXT}	Standby current (extended temp)		350	μΑ	3
ISB _{STD}	Standby current (standard temp)		250	μΑ	3
ISB _{STDroom}	Standby current (standard room temp)		140	μΑ	3,4

Note

- 1: Output load current not included.
- 2. Typical Icc 5.5mA at 133MHz
- 3. Standby current is measured when CLK is in DC low state.
- 4. Typical ISB_{STDroom} 100uA

14.6 AC Characteristics

Table 9: READ/WRITE Timing

Symbol	Parameter	Min	Max	Unit	Notes
	CLK period - SPI Read ('h03)	30.3			33MHz
	CLK period - QPI Read ('h0B)	15.1			66MHz
^t CLK	CLK period - all other operations PKG 3V	7.5		ns	133MHz*1,2,3
CER	CLK period - all other operations PKG 3.3V	9.17			109MHz*2,3
tCH/tCL	Clock high/low width	0.45	0.55	^t CLK(min)	
tKHKL	CLK rise or fall time		1.5	ns	4
^t CPH	CE# HIGH between subsequent burst	18		ns	
	operations				
^t CEM	CE# low pulse width		4	μs	Extended grade
			8		Standard grade
tCSP	CE# setup time to CLK rising edge PKG	2.5		ns	
^t CHD	CE# hold time from CLK rising edge PKG	3.0		ns	2
tSP	Setup time to active CLK edge	2		ns	
tHD	Hold time from active CLK edge	2		ns	
tHZ	Chip disable to DQ output high-Z		5.5	ns	
^t ACLK	CLK to output delay	2	5.5	ns	
^t KOH	Data hold time from clock falling edge	1.5		ns	
^t RST	Time between end of RST CMD to next	50		ns	
	valid CMD				

Note

- 1: Frequency limits are therefore 133MHz (PKG VDD= 3.3V+-10%) max for Wrap 32 Bytes.
- 2: System max C_L 15pF for the use of package.
- 3: For operating frequencies >84MHz, it is highly recommended to utilize CLK falling edge to sample read data or align sampling clock via data pattern tuning (refer to JEDEC JESD84-B50 for an example).
- 4: Measured from 20% to 80% of VDD

15 Change Log

Version	Date	Description
1.0	Jul 13, 2017	Initial Version
1.1	Jul 25, 2017	Revised package code and ordering information
1.2	Aug 24, 2017	Corrected package code; Added system max C _L for the use of package & related tCK and tCHD
1.3	Sep 04, 2017	Added ISBstdroom
1.5	Oct 30, 2017	Enabled QPI Read 'h0B support; changed Min/Max absolute voltage, Vil_min and Vih_max,; defined tCEM for different temperature grade; corrected speed typo. Added USON package ZR
1.6	Nov 13, 2017	Modified spec of ICC & ISB
1.7	Mar 19, 2018	Revised part# of RBX. Temperature -40C
1.8	Jan 07, 2019	Remove WSON and updated POD of USON, add tRST
1.9	Sep 06, 2019	Updated Figure 10, Table 6 and Table 8; added table for Change Log; updated section 8.5 and 14.6; added section 14.3
2.0a	Oct 02, 2019	Updated header, page 1 and Table 1
2.1	Oct 25, 2019	Revised the typo in Page 12, 16 and Table 9; Updated Figure 17 and Figure 18; add section 9
2.2	Nov 21, 2019	Update Table 2, Figure 10 and Figure 13
2.3	Apr 30, 2020	Modify VDD's description of Table 2

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

APS6404L-3SQN-SN