Digital Image Processing

Lecture # 3A
Image Transformations and Spatial Filtering

Contents

- Image Enhancement
- Types of Enhancement Operations
- Point Processing
 - Linear, Logarithmic & Power Law Transformations
 - Contrast Stretching
 - Gray Level Slicing
 - Bit-Plane Slicing

Process an image so that the result is more suitable than the original image for a specific application

- Image Enhancement Methods
 - Spatial Domain: Direct manipulation of pixels in an image
 - Frequency Domain: Process the image by modifying the Fourier transform of an image

This Chapter – Spatial Domain

Types of image enhancement operations

Point/Pixel operations

Output value at specific coordinates (x,y)is dependent only on the input value at (x,y)

Local operations

The output value at (x,y) is dependent on the input values in the neighborhood of (x,y)

Global operations

The output value at (x,y) is dependent on all the values in the input image

Basic Concepts

 Most spatial domain enhancement operations can be generalized as:

f(x, y) = the input image g(x, y) = the processed/output image T = some operator defined over some neighbourhood of (x, y)

Basic Concepts

A square or rectangular sub-image area centered at (x,y)

Point Processing

- ◆ In a digital image, point = pixel
- Point processing transforms a pixel's value as function of its value alone;
- It does not depend on the values of the pixel's neighbors.

Point Processing

- Neighborhood of size 1x1:
- g depends only on f at (x,y)
- ◆ *T*: Gray-level/intensity transformation/ mapping function

$$s = T(r)$$

- r = gray level of f at (x,y)
- s = gray level of g at (x,y)

Point Processing using Look-up Tables

A look-up table (LUT) implements a functional mapping.

<i>E.g.</i> :	index	value	
	• • •	• • •	
	101	64	
	102	68	
	103	69	
	104	70	
	105	70	
	106	71	
	•••	•••	

input output

Point Processing using Look-up Tables

Point Processing Transformations

- There are many different kinds of grey level transformations
- Three of the most common are shown here
 - Linear
 - Negative/Identity
 - Logarithmic
 - Log/Inverse log
 - Power law
 - nth power/nth root

Point Processing Example: Negative Images

- Reverses the gray level order
- For L gray levels, the transformation has the form:

$$S=(L-1)-r$$

 Negative images are useful for enhancing white or grey detail embedded in dark regions of an image

Point Processing Example: Negative Images

Input image (X-ray image) Output image (negative)

Point Processing Example: Intensity Scaling

$$S=T(r)=\alpha r$$

Original image

f(x,y)

Scaled image

 $a \cdot f(x,y)$

Point Processing Example: Thresholding

 Segmentation of an object of interest from a background

Point Processing Example: Thresholding

$$s = \begin{cases} 1.0 & r > threshold \\ 0.0 & r <= threshold \end{cases}$$

The general form of the log transformation is

$$s = c \times log(1+r)$$

- The log transformation maps a narrow range of low input grey level values into a wider range of output values
- The inverse log transformation performs the opposite transformation

Properties

- For lower amplitudes of input image the range of gray levels is expanded
- For higher amplitudes of input image the range of gray levels is compressed

Application

- This transformation is suitable for the case when the dynamic range of a processed image far exceeds the capability of the display device (e.g. display of the Fourier spectrum of an image)
- Also called "dynamic-range compression / expansion"

Fourier spectrum: image values ranging from 0 to 1.5x10⁶

The result of log transformation with c = 1

Power Law Transformations

Power law transformations have the following form

- Map a narrow range of dark input values into a wider range of output values or vice versa
- Varying γ gives a whole family of curves

$$S = C \times r^{\gamma}$$

Power Law Transformations

• For γ < 1:

Expands values of dark pixels, compress values of brighter pixels

• For $\gamma > 1$:

Compresses values of dark pixels, expand values of brighter pixels

• If $\gamma = 1 \& c = 1$:

Identity transformation (s = r)

• A variety of devices (image capture, printing, display) respond according to a power law and need to be corrected

Gamma (γ) correction

The process used to correct the power-law response phenomena

Power Law Transformations: Gamma Correction

a b c d

FIGURE 3.7

(a) Linear-wedge gray-scale image.(b) Response of monitor to linear wedge.

(c) Ğammacorrected wedge. (d) Output of

(d) Output of monitor.

The images to the right show a magnetic resonance (MR) image of a fractured human spine

$$\gamma = 0.6$$

$$\gamma = 0.4$$

$$\gamma = 0.3$$

MR image of fractured human spine

Result after
Power law
transformation

$$c = 1, \gamma = 0.6$$

Result after
Power law
transformation

$$c = 1, \gamma = 0.4$$

Result after
Power law
transformation

$$c = 1, \gamma = 0.3$$

When the γ is reduced too much, the image begins to reduce contrast to the point where the image started to have very slight "wash-out" look.

Image has a washed-out appearance – needs $\gamma > 1$

Aerial Image

Result of Power law transformation $c = 1, \gamma = 3.0$ (suitable)

Result of Power law transformation $c = 1, \gamma = 4.0$ (suitable)

Result of Power law transformation $c = 1, \gamma = 5.0$ (high contrast, some regions are too dark)

Piecewise Linear Transformation Functions

- Contrast stretching
- Intensity level slicing
- Bit-Plane slicing

Contrast Stretching

- Objective
 - Increase the dynamic range of the gray levels for low contrast images
- Rather than using a well defined mathematical function we can use arbitrary user-defined transforms

- If $r_1 = s_1 \& r_2 = s_2$, no change in gray levels
- If $r_1 = r_2$, $s_1 = 0$ & $s_2 = L-1$, then it is a threshold function. The resulting image is binary

Contrast Stretching

$$r_1 = r_{min} \& s_1 = 0$$

 $r_2 = r_{max} \& s_2 = L-1$

Contrast Stretching

a b c d

FIGURE 3.10 Contrast stretching. (a) Form of transformation function. (b) A low-contrast image. (c) Result of contrast stretching. (d) Result of thresholding. (Original image courtesy of Dr. Roger Heady, Research School of Biological Sciences, Australian National University, Canberra, Australia.)

Grey Level Slicing

- Highlights a specific range of gray levels in an image
 - Similar to thresholding
 - Other levels can be suppressed or maintained
 - Useful for highlighting features in an image

Grey Level Slicing

Grey Level Slicing

- Objective: Highlights the contribution made to the image appearance by specific bits
- Suppose an image is of 8 bits i.e. each pixel is represented by 8 bits
- Higher-order bits contain the majority of the visually significant data
- Useful for analyzing the relative importance played by each bit of the image. It is useful in compression

(MSB) | | | | | | | | (LSB)

250 (11111010)	126(01111110)	26 (00011010)	255 (11111111)
0 (00000000)	42 (00101010)	32 (00100000)	21 (00010101)
1 (0000001)	2 (00000010)	16 (00010000)	22 (00010110)
99 (01100011)	198 (11000110)	8 (00001000)	96 (01100000)

Bit planes 1 through 8

Reconstructed image using only bit planes 8 and 7

Reconstructed image using only bit planes 8, 7 and 6

Reconstructed image using only bit planes 7, 6 and 5

Acknowledgements

- Digital Image Processing", Rafael C. Gonzalez & Richard E. Woods, Addison-Wesley, 2002
- Peters, Richard Alan, II, Lectures on Image Processing, Vanderbilt University, Nashville, TN,
 April 2008
- Brian Mac Namee, Digitial Image Processing, School of Computing, Dublin Institute of Technology
- Computer Vision for Computer Graphics, Mark Borg