

🧲 Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE181205403

FCC REPORT

Applicant: Sun Cupid Technology (HK) Ltd.

Address of Applicant: 16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan,

Kowloon, Hong Kong.

Equipment Under Test (EUT)

Product Name: LTE Smart phone

Model No.: N6201L, G4

Trade mark: NUU

FCC ID: 2ADINN6201L

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 14 Dec., 2018

Date of Test: 14 Dec., to 22 Dec., 2018

Date of report issued: 25 Dec., 2018

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	25 Dec., 2018	Original

Tested by: Quen User Date: 25 Dec., 2018

Test Engineer

Reviewed by: Date: 25 Dec., 2018

Project Engineer

3 Contents

			Page
1	COV	ER PAGE	1
2	VER	SION	2
3		TENTS	3
4	TEST	SUMMARY	4
5	GEN	ERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	5
	5.3	TEST ENVIRONMENT AND TEST MODE	6
	5.4	DESCRIPTION OF SUPPORT UNITS	6
	5.5	MEASUREMENT UNCERTAINTY	6
		LABORATORY FACILITY	
		LABORATORY LOCATION	
	5.8	TEST INSTRUMENTS LIST	8
6	TES1	RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	13
		OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	21
	6.6	BAND EDGE	
	6.6.1	Conducted Emission Method	
	6.6.2	Radiated Emission Method	
		Spurious Emission	
	6.7.1	Conducted Emission Method	
	6.7.2	Radiated Emission Method	47
7	TEST	SETUP PHOTO	55
0	EUT	CONSTRUCTIONAL DETAILS	EC

4 Test Summary

15.203 & 15.247 (c)	Pass	
15.207	Pass	
15.247 (b)(3)	Pass	
15.247 (a)(2)	Pass	
15.247 (e)	Pass	
15.247 (d)	Pass	
15.205 & 15.209	Pass	
	15.207 15.247 (b)(3) 15.247 (a)(2) 15.247 (e) 15.247 (d)	

Pass: The EUT complies with the essential requirements in the standard.

N/A: N/A: Not Applicable.

5 General Information

5.1 Client Information

Applicant:	Sun Cupid Technology (HK) Ltd.
Address:	16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong.
Manufacturer:	Sun Cupid Technology (HK) Ltd.
Address:	16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong.
Factory:	SUNCUPID (ShenZhen) Electronic Ltd
Address:	Baolong Industrial City, Longgang District, Shenzhen Hi-Tech Road, Building 1, A 7, China.

5.2 General Description of E.U.T.

Product Name:	LTE Smart phone
Model No.:	N6201L, G4
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20) 7 for 802.11n(H40)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	2.0dBi
Power supply:	Rechargeable Li-ion Battery DC 3.85V, 3750mAh
AC adapter:	Model: HJ-FC001K7-US Input: AC100-240V, 50/60Hz, 0.6A Output: DC 5.0V, 2000mA / DC 9.0V, 2000mA
Test Sample Condition:	The test samples were provided in good working order with no visible defects.
Remark:	N6201L, G4 were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name and for different areas , They all have two memory configurations, 1:6G(RAM) + 64G(ROM); 2: 6G(RAM) + 128G(ROM).

Operation Frequency each of channel for 802.11b/g/n(H20)								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz	
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz	
3	2422MHz	6	2437MHz	9	2452MHz			

Note:

- For 802.11n-HT40 mode, the channel number is from 3 to 9;
- Channel 1, 6 & 11 selected for 802.11b/g/n-HT20 as Lowest, Middle and Highest channel, Channel; 3, 6 & 9 selected for 802.11n-HT40 as Lowest, Middle and Highest channel, Channel.

5.3 Test environment and test mode

Operating Environment:			
Temperature:	24.0 °C		
Humidity:	54 % RH		
Atmospheric Pressure:	1010 mbar		
Toot model			

Transmitting mode Keep the EUT in continuous transmitting with modulation

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate, the follow list were the worst case.				
Mode	Data rate			
802.11b	1Mbps			
802.11g	6Mbps			
802.11n(H20)	6.5Mbps			
802.11n(H40)	13.5Mbps			

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±2.22 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±2.76 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.28 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.72 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±2.88 dB (k=2)

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Report No: CCISE181205403

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.8 Test Instruments list

Radiated Emission:								
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)			
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020			
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-16-2018	03-15-2019			
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-16-2018	03-15-2019			
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-16-2018	03-15-2019			
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020			
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2018	11-20-2019			
EMI Test Software	AUDIX	E3	\	Version: 6.110919b				
Pre-amplifier	HP	8447D	2944A09358	03-07-2018	03-06-2019			
Pre-amplifier	CD	PAP-1G18	11804	03-07-2018	03-06-2019			
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-07-2018	03-06-2019			
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2018	11-20-2019			
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-07-2018	03-06-2019			
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2018	03-06-2019			
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2018	03-06-2019			
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2018	03-06-2019			
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A			
Test Software	MWRFTEST	MTS8200		Version: 2.0.0.0				

Conducted Emission:							
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-07-2018	03-06-2019		
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-07-2018	03-06-2019		
LISN	CHASE	MN2050D	1447	03-19-2018	03-18-2019		
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2019		
Cable	HP	10503A	N/A	03-07-2018	03-06-2019		
EMI Test Software	AUDIX	E3	\	/ersion: 6.110919	b		

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The WiFi antenna is an Inernal antenna which cannot replace by end-user, the best case gain of the antenna is 2.0 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 1	5.207					
Test Method:	ANSI C63.10: 2013	ANSI C63.10: 2013					
Test Frequency Range:	150 kHz to 30 MHz	150 kHz to 30 MHz					
Class / Severity:	Class B	Class B					
Receiver setup:	RBW=9 kHz, VBW=30 k	Hz					
Limit:	Frequency range	Frequency range Limit (dBuV)					
	(MHz)	Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	* Decreases with the log	arithm of the frequency.					
Test procedure	line impedance stab 50ohm/50uH coupling 2. The peripheral device a LISN that provides termination. (Please photographs). 3. Both sides of A.C. light interference. In order positions of equipments	a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs).					
Test setup:		Reference Plane					
	AUX Equipment Test table/Insula Remark: E.U.T. Equipment Under LISN: Line Impedence Sta	E.U.T EMI Receiver	ilter — AC power				
Test Instruments:	Test table height=0.8m Refer to section 5.8 for d	 Atails					
Test mode:	Refer to section 5.3 for d						
Test results:	Passed	otalis					
root roodito.	1. 30004						

Measurement Data:

Product name:	LTE Smart phone	Product model:	N6201L
Test by:	Carey	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

Remark

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	₫BuV	₫B	₫B	dBu∀	dBu∜	<u>d</u> B	
1	0.150	40.64	0.18	10.78	51.60	66.00	-14.40	QP
2	0.154	29.58	0.18	10.78	40.54	55.78	-15.24	Average
3	0.162	36.75	0.17	10.77	47.69	65.34	-17.65	QP
4	0.219	34.66	0.15	10.76	45.57	62.88	-17.31	QP
2 3 4 5 6	0.222	22.75	0.14	10.76	33.65	52.74	-19.09	Average
6	0.481	20.26	0.12	10.75	31.13	46.32	-15.19	Average
7	0.541	28.81	0.12	10.76	39.69	56.00	-16.31	QP
8	0.621	21.40	0.13	10.77	32.30	46.00	-13.70	Average
9	2.721	27.73	0.16	10.93	38.82	56.00	-17.18	QP
10	2.869	17.50	0.16	10.92	28.58	46.00	-17.42	Average
11	10.397	31.24	0.32	10.94	42.50	60.00	-17.50	QP
12	11.870	20.40	0.32	10.92	31.64	50.00	-18.36	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	LTE Smart phone	Product model:	N6201L
Test by:	Carey	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

R	em	ark	
	~~~	200	

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark	
	MHz	dBu∀	₫B	₫B	dBu₹	dBu∀	dB		-
1	0.154	40.30	0.98	10.78	52.06	65.78	-13.72	QP	
2	0.154	29.47	0.98	10.78	41.23	55.78	-14.55	Average	
3	0.222	35.84	0.93	10.76	47.53	62.74	-15.21	QP	
2 3 4 5 6 7	0.222	23.19	0.93	10.76	34.88	52.74	-17.86	Average	
5	0.555	20.98	0.97	10.76	32.71	46.00	-13.29	Average	
6	0.561	31.46	0.97	10.76	43.19	56.00	-12.81	QP	
7	0.614	19.76	0.97	10.77	31.50	46.00	-14.50	Average	
8	1.610	29.61	0.98	10.93	41.52	56.00	-14.48	QP	
9	2.540	28.15	0.99	10.94	40.08	56.00	-15.92	QP	
10	2.678	18.73	0.99	10.93	30.65	46.00	-15.35	Average	
11	10.733	33.08	1.00	10.93	45.01	60.00	-14.99	QP	
12	11.317	21.26	0.98	10.93	33.17	50.00	-16.83	Average	

### Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.



### **6.3 Conducted Output Power**

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)
Test Method:	ANSI C63.10:2013 and KDB 558074
Limit:	30dBm
Test setup:	Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

### **Measurement Data:**

Test CH	Max	ximum Conducte	d Output Power (d	Bm)	Limit(dDm)	Result
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBm)	Result
Lowest	14.16	13.80	13.16	12.66		
Middle	14.49	14.02	13.70	12.83	30.00	Pass
Highest	14.23	14.02	13.52	12.66		



### Test plot as follows:









## 6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)
Test Method:	ANSI C63.10:2013 and KDB 558074
Limit:	>500kHz
Test setup:	Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

### **Measurement Data:**

Test CH		6dB Emission B	Limit(k∐¬)	Result		
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result
Lowest	8.72	15.28	15.28	35.52		Pass
Middle	8.32	15.28	15.28	35.52	>500	
Highest	8.80	15.60	12.28	35.52		
Test CH		99% Occupy Ba	andwidth (MHz)		Limit(IrHz) Booult	Result
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result
Lowest	12.96	16.40	17.60	36.00		
Middle	12.88	16.40	17.52	35.68	N/A	N/A
Highest	12.88	16.40	17.52	35.52		



### Test plot as follows:

















### 6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)
Test Method:	ANSI C63.10:2013 and KDB 558074
Limit:	8dBm
Test setup:	Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

### **Measurement Data:**

Toot CU		Power Spectra	al Density (dBm)		Limit(dDm)	Dogult
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBm)	Result
Lowest	3.66	1.48	0.83	-1.13		
Middle	4.32	2.05	1.78	-0.45	8.00	Pass
Highest	3.95	1.85	0.45	-3.35		



### Test plot as follows:









### 6.6 Band Edge

### 6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)				
Test Method:	ANSI C63.10:2013 and KDB 558074				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane				
Test Instruments:	Refer to section 5.8 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				



### Test plot as follows:









### 6.6.2 Radiated Emission Method

0.0.2	Radiated Emission We	etnoa							
	Test Requirement:	FCC Part 15 C Section 15.209 and 15.205							
	Test Method:	ANSI C63.10: 2	2013 and	KDE	3 558074				
	Test Frequency Range:	2.3GHz to 2.5G	GHz						
	Test Distance:	3m							
	Receiver setup:	Frequency Detector RBW VBW Remark							
		Above 1GHz Peak 1MHz 3MHz Peak Value							
		Above 1GHz RMS 1MHz 3MHz Average Value							
	Limit:	Frequenc		LIN	nit (dBuV/m @ 54.00	3m)	Δν	Remark	
		Above 1G	Hz						
	Test Procedure:	Above 1GHz  54.00  Reak Value  1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.  2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.  3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.  4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.  5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.  6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data							
	Test setup:	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	AE E	· .	Hor 3m Ground Reference Plane	n Antenna	Antenna Tox	wer	
	Test Instruments:	Refer to section	n 5.8 for c	detail	S				
	Test mode:	Refer to section	n 5.3 for c	detail	S				
	Test results:	Passed							



### 802.11b mode:

Product Name:	LTE Smart phone	Product Model:	N6201L
Test By:	Carey	Test mode:	802.11b Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%





#### Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



Product Name:	LTE Smart pl	hone		Pi	Product Model:			1L	
Test By:	Carey			Te	est mode:		802.1	1b Tx mo	de
Test Channel:	Lowest chann	nel		P	olarizatio	Horizo	Horizontal		
Test Voltage:	AC 120/60Hz	<u>z</u>		E	Environment:			Temp: 24℃ Huni: 57%	
110 Level (dBuV/r	n)								
100									
80							FCO	PART 15 (F	P(x)
60	00-00	~~~	an an	~~~~	3000000 A	<u></u>		PART 15 (/	AV)
40	140VQ (I	100	710 200 1NV	~~~~ ~ ·	44.00	~~ ₂ ·~·			
20									
02310 2320		2350		uency (MHz	)				2422
REMARK F1	: ReadA req Level	Intenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark	
Fı	ReadA	Antenna Factor dB/m	Cable Loss dB	Preamp Factor dB				Remark	

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



Product Name:	LTE Smart phone	Product Model:	N6201L
Test By:	Carey	Test mode:	802.11b Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%
110 Level (dBuV/	m)		





- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



Product Name:	LTE Smart phone	Product Model:	N6201L
Test By:	Carey	Test mode:	802.11b Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%



REMARI	к :	D J	A	C-11-	D		7	0	
	Freq				Preamp Factor	Level	Limit Line	Over Limit	Remark
-	MHz	dBm	dB/m	dB	āB	-dBm/m	-dBm/m	dB	
1	2483.500	18.36	27.57	4.81	0.00	52.44	74.00	-21.56	Peak
2	2483, 500	9.32	27, 57	4.81	0.00	43.40	54,00	-10.60	Average

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.





### 802.11g mode:

Product Name:	LTE Smart phone	Product Model:	N6201L
Test By:	Carey	Test mode:	802.11g Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%





#### Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



Product Name:	LTE	Smart ph	one		P	Product Model:			N6201L		
Test By:	Care	еу			Te	est mode:		802.1	802.11g Tx mode		
Test Channel:	Low	est chann	el		P	olarizatio	Horizo	Horizontal			
Test Voltage:	AC	120/60Hz			E	Environment:			: <b>24</b> ℃	Huni: 57%	
	_							•			
110 Level	(dBuV/m)										
100											
									· ww	2	
80								F.E.C	PART 15	(PK)	
								1	17441 10		
60								FCC	PART 15	(AV)	
							- 4 /	- 19		Victor A	
nm	www	m	and market	man	www.	monda	what	~ ~			
40	www		and and a	man	~~~~	manda	2 Samuel				
0.000	www		revent	www	www.	Manya	The state of the s				
0.000	www.		mondo	man	~~~~~	Mary		- V			
40	www			m	~~~~~	Mary	3				
40		****	235	50			3			2422	
20			235	50	uency (MH:		3			2422	
20		P - 10		50 Freq	uency (MHz	z)	2	~ · ·		2422	
20 0 2310	2320	ReadA Level	ntenna	50 Freq Cable	uency (MHz	z)	Limit	Over Limit	Remark		
20 0 2310	2320	ReadA Level	ntenna	50 Freq Cable	uency (MHz	z) Level	Limit		Remark		
20 0 2310 REMARK	2320 : Freq	Level	ntenna Factor ——dB/m 27.37	Freq Cable Loss	Preamp Factor dB	z) Level	Limit Line dBm/m	Limit 	 Peak		

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



Product Name:	LTE Smart phone	Product Model:	N6201L
Test By:	Carey	Test mode:	802.11g Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%



				Freq	uency (MH	(1)			
REMARK	:	Read	Antenna	Cable	Preamp		Limit	Over	
	Freq		Factor			Level	Line	Limit	Remark
-	MHz	dBm			<u>d</u> B	_dBm/m	dBm/m	dB	
1 2	2483.500 2483.500	16.16 8.12	27.57 27.57	4.81 4.81	0.00 0.00			-23.76 -11.80	Peak Average

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



Product Name:	LTE Smart phone	Product Model:	N6201L
Test By:	Carey	Test mode:	802.11g Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%
	WO SO		



REMARK :

1 2

Freq		Antenna Factor						
MHz	dBm	<u>dB</u> /π	<u>d</u> B	<u>dB</u>	_dBm/m	_dBm/m	<u>d</u> B	 -
2483.500 2483.500								

### Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.





### 802.11n(HT20):

Product Name:	LTE Smart phone	Product Model:	N6201L	
Test By:	Carey	Test mode:	802.11n(HT20) Tx mode	
Test Channel:	Lowest channel	Polarization:	Vertical	
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%	





#### Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



Product Name	uct Name: LTE Smart phone			F	Product Mo	N6201	N6201L				
Test By:	Car	Carey			1	Test mode:	802.1	802.11n(HT20) Tx mode			
Test Channel:	Low	vest chanr	nel		F	Polarizatio	n:	Horizo	Horizontal		
Test Voltage:	AC	120/60Hz			E	Environme	nt:	Temp:	Temp: 24°C Huni: 57%		
	•				•						
110 L	evel (dBuV/m)										
100											
									~~~	~	
80								ECC.	PART 15 (F	DIC)	
								1	ANT TO D	189	
60								FCC	PART 15 (A	AV)	
•	mm	mand	when	man	who	marra	who	My			
40											
1-2											
20											
0 2	310 2320		23	50 Eroc	quency (Mi	U-7\				2422	
				1160	dericy (iiii	112)					
REMAI	KK :	ReadA	ıntenna	Cable	Preamp	8	Limit	Over			
	Freq					Level	Line	Limit	Remark		
	MHz	dBm	dB/m	<u>dB</u>	dE	dBm/m	_dBm/m	<u>dB</u>			
1	2390.000	15.40				49.14					
2	2390.000	6.53	27.37	4.69	0.00	40.27	54.00	-13.73	Averag	е	

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	LTE Smart phone	Product Model:	N6201L
Test By:	Carey	Test mode:	802.11n(HT20) Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%
	a. 45		

REMARI	К :								
		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq		Factor				Line	Limit	Remark
	MHz	dBm	<u>dB</u> /m	dB	dB	dBm/m	dBm/m	<u>dB</u>	
1	2483.500	17.11	27.57	4.81	0.00	51.19	74.00	-22.81	Peak
2	2483.500	8.11	27.57	4.81	0.00	42.19	54.00	-11.81	Average

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	LTE Smart phone	Product Model:	N6201L
Test By:	Carey	Test mode:	802.11n(HT20) Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%
110 Level (dBuV	/m)		

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n(HT40):

Product Name:	LTE Smart phone	Product Model:	N6201L
Test By:	Carey	Test mode:	802.11n(HT40) Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Product Name: LTE Smart phone			Product Model:		N6201L		
Test By:	: Carey			Te	Test mode:		802.11n(HT40) Tx mode	
Test Channel:	Lowest	t channel		Po	olarization	า:	Horizontal	
Test Voltage:	AC 120)/60Hz		Eı	nvironme	nt:	Temp: 24°C	Huni: 57%
	_			•				
110 Level (d	BuV/m)							
100								
417							morro	
80						moun	FCC PART 15 (P	7()
							100111111101	7
60					Man	mind	FCC PART 15 (A	V)
mund	Murrow	morning	money	mon	W f			
40								
20								
0 ² 23 1 0 23	20	2350	Fren	uency (MH:	7)			2442
			1100	deriej (iiii ii	-,			
REMARK	:	ReadAnt enn	a Cable	Preamp		Limit	Over	
	Freq L	evel Facto	r Loss	Factor	Level	Line	Limit Remark	
	MHz	dBm dB/	m dB	dB	dBm/m	dBm/m	dB	
1 239	90.000 2	7.33 27.3	7 4.69	0.00	61.07	74 00 -	-12.93 Peak	

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	LTE Smart phone	Product Model:	N6201L
Test By:	Carey	Test mode:	802.11n(HT40) Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

0.00

0.00

52.98 74.00 -21.02 Peak 43.97 54.00 -10.03 Average

Remark:

2

2483.500

2483.500

18.90

9.89

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

27.57

27.57

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

4.81

4.81

Product Name:	LTE Smart phone	Product Model:	N6201L 802.11n(HT40) Tx mode		
Test By:	Carey	Test mode:			
Test Channel:	Highest channel	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		
110 Level (dE	BuV/m)				
100					
		m			
80			FCC PART 15 (PK)		
60		hand	FCC PART 15 (AV)		
		2			
40					
20					
2432	2450 Frequenc		2500		

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

0.7.1 Conducted Emission						
Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013 and KDB 558074					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table					
	Ground Reference Plane					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plot as follows:

6.7.2 Radiated Emission Method

6.7.2 Radiated Emission M	etilou								
Test Requirement:	FCC Part 15 C S	ection 15.20	9 and 15.205						
Test Method:	ANSI C63.10:2013								
Test Frequency Range:	9kHz to 25GHz								
Test Distance:	3m	3m							
Receiver setup:	Frequency	Detector	RBW	VE	3W	Remark			
· ·	30MHz-1GHz	Quasi-peak	120KHz	300	KHz	Quasi-peak Value			
	Above 1GHz	Peak	1MHz		1Hz	Peak Value			
		RMS	1MHz		1Hz	Average Value			
Limit:	Frequency 30MHz-88MH		nit (dBuV/m @3 40.0	sm)	0	Remark uasi-peak Value			
	88MHz-216MH		43.5			uasi-peak Value			
	216MHz-960M		46.0			uasi-peak Value			
	960MHz-1GH		54.0			uasi-peak Value			
			54.0			Average Value			
	Above 1GHz		74.0 the top of a rot			Peak Value			
	The table was highest radia? The EUT was antenna, who tower. The antenna the ground to Both horizon make the med. For each suscase and the meters and to find the med. The test-reconspecified Base. If the emission the limit spen of the EUT we have 10dB med.	as rotated 36 ation. Its set 3 meterich was mount height is van determine atal and vertice asurement. Spected emister the antenitation level of the cified, then to would be reparagin would	of degrees to of the saway from the top the maximum to the	Hetermiche interpretation of a value on sof the was a one ight of the was a control of the wa	erferent variable to four of the to ne ante trange hts fro degree tect Furde. was 1 ped and emissione us	re-height antenna meters above field strength. enna are set to ed to its worst m 1 meter to 4 is to 360 degrees inction and 10dB lower than d the peak values ions that did not sing peak, quasi-			
Test setup:	Below 1GHz EUT Turn Table Ground P Above 1GHz		m		_				

Measurement Data (worst case):

Below 1GHz:

Product Name:	LTE Smart phone	Product Model:	N6201L
Test By:	Carey	Test mode:	Wi-Fi Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

: Freq						Limit	Over Limit	Remark
rroq	Lover	ractor	1055	ractor	Level	Line	LIMIC	Romark
MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
45.535	48.29	13.74	1.29	29.86	33.46	40.00	-6.54	QP
82.938	51.95	8.68	1.76	29.62	32.77	40.00	-7.23	QP
155.364	53.65	8.87	2.55	29.17	35.90	43.50	-7.60	QP
195.137	45.18	11.36	2.84	28.86	30.52	43.50	-12.98	QP
207.850	46.63	11.81	2.86	28.78	32.52	43.50	-10.98	QP
480.528	37.35	16.97	3.46	28.92	28.86	46.00	-17.14	QP
	Freq MHz 45.535 82.938 155.364 195.137 207.850	Read. Freq Level MHz dBuV 45.535 48.29 82.938 51.95 155.364 53.65 195.137 45.18 207.850 46.63	ReadAntenna Freq Level Factor MHz dBuV dB/m 45.535 48.29 13.74 82.938 51.95 8.68 155.364 53.65 8.87 195.137 45.18 11.36 207.850 46.63 11.81	ReadAntenna Cable Freq Level Factor Loss MHz dBuV dB/m dB 45.535 48.29 13.74 1.29 82.938 51.95 8.68 1.76 155.364 53.65 8.87 2.55 195.137 45.18 11.36 2.84 207.850 46.63 11.81 2.86	ReadAntenna Cable Preamp Freq Level Factor Loss Factor MHz dBuV dB/m dB dB 45.535 48.29 13.74 1.29 29.86 82.938 51.95 8.68 1.76 29.62 155.364 53.65 8.87 2.55 29.17 195.137 45.18 11.36 2.84 28.86 207.850 46.63 11.81 2.86 28.78	ReadAntenna Cable Preamp Freq Level Factor Loss Factor Level MHz dBuV dB/m dB dB dBuV/m 45.535 48.29 13.74 1.29 29.86 33.46 82.938 51.95 8.68 1.76 29.62 32.77 155.364 53.65 8.87 2.55 29.17 35.90 195.137 45.18 11.36 2.84 28.86 30.52 207.850 46.63 11.81 2.86 28.78 32.52	ReadAntenna Cable Preamp Limit	ReadAntenna Cable Preamp Limit Over Freq Level Factor Level Limit Limit MHz dBuV dB/m dB dB dBuV/m dBuV/m dBuV/m dB 45.535 48.29 13.74 1.29 29.86 33.46 40.00 -6.54 82.938 51.95 8.68 1.76 29.62 32.77 40.00 -7.23 155.364 53.65 8.87 2.55 29.17 35.90 43.50 -7.60 195.137 45.18 11.36 2.84 28.86 30.52 43.50 -12.98 207.850 46.63 11.81 2.86 28.78 32.52 43.50 -10.98

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	LTE Smart phone	Product Model:	N6201L
Test By:	Carey	Test mode:	Wi-Fi Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%
	<u> </u>	·	_

REMARK	:		Antenna		Preamp	, ,	Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
_	MHz	dBu∜	dB/m	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	dBu∀/m	<u>dB</u>	
1	30.424	43.76	10.70	0.78	29.98	25.26	40.00	-14.74	QP
2	82.648	44.28	8.63	1.76	29.62	25.05	40.00	-14.95	QP
3	185.138	47.87	10.53	2.77	28.93	32.24	43.50	-11.26	QP
4	207.123	46.87	11.78	2.86	28.78	32.73	43.50	-10.77	QP
1 2 3 4 5 6	400.432	42.91	15.51	3.08	28.78	32.72	46.00	-13.28	QP
6	480.528	44.87	16.97	3.46	28.92	36.38	46.00	-9.62	QP

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz

				802.11b				
			Test ch	annel: Lowe				
				tector: Peak				
T	Deed	Antonno		1	value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4824.00	48.44	36.06	6.81	41.82	49.49	74.00	-24.51	Vertical
4824.00	47.73	36.06	6.81	41.82	48.78	74.00	-25.22	Horizontal
			Dete	ctor: Averag	ge Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4824.00	37.88	36.06	6.81	41.82	38.93	54.00	-15.07	Vertical
4824.00	37.83	36.06	6.81	41.82	38.88	54.00	-15.12	Horizontal
				annel: Mido				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4874.00	47.86	36.32	6.85	41.84	49.19	74.00	-24.81	Vertical
4874.00	47.27	36.32	6.85	41.84	48.60	74.00	-25.40	Horizontal
			Dete	ctor: Averaç	ge Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4874.00	37.46	36.32	6.85	41.84	38.79	54.00	-15.21	Vertical
4874.00	37.17	36.32	6.85	41.84	38.50	54.00	-15.50	Horizontal
			Test ch	annel: Highe	est channel			
				tector: Peak				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4924.00	47.97	36.58	6.89	41.86	49.58	74.00	-24.42	Vertical
4924.00	47.35	36.58	6.89	41.86	48.96	74.00	-25.04	Horizontal
			Dete	ctor: Averaç	ge Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
` ,	` ,							
4924.00	37.35	36.58	6.89	41.86	38.96	54.00	-15.04	Vertical

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

				802.11g						
Test channel: Lowest channel										
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4824.00	47.45	36.06	6.81	41.82	48.50	74.00	-25.50	Vertical		
4824.00	47.48	36.06	6.81	41.82	48.53	74.00	-25.47	Horizontal		
	Detector: Average Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4824.00	37.28	36.06	6.81	41.82	38.33	54.00	-15.67	Vertical		
4824.00	37.63	36.06	6.81	41.82	38.68	54.00	-15.32	Horizontal		
			Test ch	annel: Midd	lle channel					
				tector: Peak						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	47.52	36.32	6.85	41.84	48.85	74.00	-25.15	Vertical		
4874.00	47.12	36.32	6.85	41.84	48.45	74.00	-25.55	Horizontal		
			Dete	ctor: Averag	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	37.16	36.32	6.85	41.84	38.49	54.00	-15.51	Vertical		
4874.00	37.74	36.32	6.85	41.84	39.07	54.00	-14.93	Horizontal		
			Tost ch	annel: Highe	est channel					
				tector: Peak						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4924.00	47.53	36.58	6.89	41.86	49.14	74.00	-24.86	Vertical		
4924.00	47.85	36.58	6.89	41.86	49.46	74.00	-24.54	Horizontal		
				ctor: Averag						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4924.00	37.86	36.58	6.89	41.86	39.47	54.00	-14.53	Vertical		
4924.00	37.48	36.58	6.89	41.86	39.09	54.00	-14.91	Horizontal		
Remark: 1. Final Lev	vel = Receive	r Read level +	- Antenna Fa	nctor + Cable	Loss – Pream	nplifier Factor.				

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

				802.11n(HT	20)					
Test channel: Lowest channel										
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4824.00	47.28	36.06	6.81	41.82	48.33	74.00	-25.67	Vertical		
4824.00	46.86	36.06	6.81	41.82	47.91	74.00	-26.09	Horizontal		
	Detector: Average Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4824.00	37.33	36.06	6.81	41.82	38.38	54.00	-15.62	Vertical		
4824.00	37.06	36.06	6.81	41.82	38.11	54.00	-15.89	Horizontal		
				annel: Midd						
		T T		ector: Peak	Value		T			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	47.97	36.32	6.85	41.84	49.30	74.00	-24.70	Vertical		
4874.00	47.12	36.32	6.85	41.84	48.45	74.00	-25.55	Horizontal		
			Dete	ctor: Averaç	je Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	37.82	36.32	6.85	41.84	39.15	54.00	-14.85	Vertical		
4874.00	37.64	36.32	6.85	41.84	38.97	54.00	-15.03	Horizontal		
			- · ·							
				annel: Highe						
T	Dand	A		ector: Peak	value		l			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4924.00	47.11	36.58	6.89	41.86	48.72	74.00	-25.28	Vertical		
4924.00	47.16	36.58	6.89	41.86	48.77	74.00	-25.23	Horizontal		
			Dete	ctor: Averaç	je Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4924.00	37.21	36.58	6.89	41.86	38.82	54.00	-15.18	Vertical		
4924.00	36.85	36.58	6.89	41.86	38.46	54.00	-15.54	Horizontal		
Remark:										

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

				802.11n(HT	(40)					
				annel: Lowe						
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4844.00	46.98	36.06	6.81	41.82	48.03	74.00	-25.97	Vertical		
4844.00	46.71	36.06	6.81	41.82	47.76	74.00	-26.24	Horizontal		
	Detector: Average Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4844.00	36.92	36.06	6.81	41.82	37.97	54.00	-16.03	Vertical		
4844.00	36.84	36.06	6.81	41.82	37.89	54.00	-16.11	Horizontal		
			Test ch	annel: Midd	lle channel					
				tector: Peak						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	47.13	36.32	6.85	41.84	48.46	74.00	-25.54	Vertical		
4874.00	46.72	36.32	6.85	41.84	48.05	74.00	-25.95	Horizontal		
			Dete	ctor: Averaç	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	37.34	36.32	6.85	41.84	38.67	54.00	-15.33	Vertical		
4874.00	37.46	36.32	6.85	41.84	38.79	54.00	-15.21	Horizontal		
			Test cha	annel: Highe	est channel					
			Det	tector: Peak	Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4904.00	47.37	36.45	6.87	41.85	48.84	74.00	-25.16	Vertical		
4904.00	47.29	36.45	6.87	41.85	48.76	74.00	-25.24	Horizontal		
		,	Dete	ctor: Averag	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4904.00	37.17	36.45	6.87	41.85	38.64	54.00	-15.36	Vertical		
4904.00 Remark:	37.14	36.45	6.87	41.85	38.61	54.00	-15.39	Horizontal		

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

2. The emission levels of other frequencies are very lower than the limit and not show in test report.