

Speech home

【语音之家】走进企业系列沙龙

语音技术在 50000 的应用

2021/8/31 18:30-20:30 沙龙形式:线上直播

简介: 近年来, AI智能语音应用在58同城广泛落地, 从2018年开始, 58同城AI Lab 先后研发了语音对话机器人、语音内容分析平台,在销售、客服、产品、运营场景广 泛使用,打造了多款AI应用,如销售智能外呼助手、呼叫中心语音质检系统、招聘面 试机器人等。其中,语音对话机器人、语音内容分析平台底层依赖语音识别技术,初 期由第三方语音厂商提供服务,但在2020年7月,58自主研发的语音识别引擎正式上 线,替换了第三方语音厂商。当前已接入了数十个不同业务场景,日均转写语音量达 数万小时。

本次沙龙将分享58同城AI Lab自研语音识别引擎的历程,包括数据、算法和工程架构 ,以及在58同城本地服务(黄页)业务中落地的一款智能语音应用——销售智能外呼 助手。

沙龙议程

分享内容:58同城语音识别自研之路

李咏泽 | 58同城TEG-AI Lab算法资深工程师

王 焱 | 58同城TEG-AI Lab后端架构师

19:30

分享内容:电销场景下智能外呼语音机器人落地实践

20:30

李 忠 | 58同城TEG-AI Lab智能语音部负责人

主持人: 詹坤林 58同城TEG AI Lab负责人 算法资深架构师,技术委员会AI分会主席

嘉宾: 李咏泽 58同城TEG-AI Lab算法资深工程师 分享内容: 58同城语音识别自研之路

嘉宾:王焱 58同城TEG-AI Lab后端架构师

嘉宾: 李忠 58同城TEG-Al Lab智能语音部负责人,算法高级架构师 分享内容: 电销场景下智能外呼语音机器人落地实践

主办单位

CCF语音对话与听觉专委会 中国人工智能产业发展联盟(AIIA)评估组 58同城AI Lab 语音之家(北京)科技有限公司 北京希尔贝壳科技有限公司

合作社区

CSDM Speechhome segmentfault ※掘金 COSCHINA

58AILab公众号

语音之家公众号

让 生 活 简 单 美 妓

- 2015年5月加入58同城,现任TEG AI Lab负责人、算法资深 架构师,兼任技术委员会 AI分会主席
- · 加入58前任腾讯高级工程师,从事推荐算法研发

个人介绍 – 詹坤林

· 2012年硕士毕业于中国科学院大学,研究方向为数据挖掘

推动AI技术在58同城的落地,打造AI中台能力,以提升前台业务人效、收入和用户体验

58同城生活服务平台

上生活简单美好58

四大业务线: 房产(安居客)、招聘、车、本地服务(黄页)

公司方向:全面拥抱产业互联网,在58主要领域里,努力成为全球第一家完成产业化升级的分类信息平台。

58同城语音语义中台

2018年10月上线语音机器人, 2019年5月上线语音分析平台, 2020年7月上线自研语音识别引擎。

58同城语音识别自研之路

语音算法

主讲人: 李咏泽

工程架构

主讲人: 王 焱

. 0 0 0 0 C 0 .

语音算法部分

李咏泽

• 工作经历

- 2019年11月~至今58同城语音识别算法
- 2018年10月~2019年10月 Rokid 声纹识别算法

• 教育背景

- 2016年9月~2018年9月 硕士 巴黎第六大学
- 2012年9月~2016年9月本科武汉大学

目录

- 一、智能语音在58的应用背景
- 二、自研语音识别引擎数据算法模块介绍

58同城生活服务平台

让 生 活 简 单 美 好

呼叫中心销售客服质检

语音质检是什么

传统语音质检通常是指质检员听取一定比例的 电话录音进行人工质检,检测坐席在通话过程 中是否有违规或非标准话术的行为

58同城呼叫中心简介

- 支撑数千名销售、客服人员工作
- 年通话数 1亿+,通话时长数百万小时
- 采用传统方式开展质检
- 纯人工抽检录音,覆盖率低
- 人工质检效率低,人均单日可听3小时录音

让 生 活 简 单 美

C端用户与B端商家隐私通话、微聊

让 生 活 简 单 美 妓

电话音频 8K

网络音频 16K

0

让 生 活 简 单 美 好 🍹

自研语音识别背景

58同城语音识别任务复杂

2. 复杂的通话环境

自研语音识别的价值

更好的识别效果

节省成本

比采购第三方节省 数百万元/年

快速定制能力

BadCase修复 新场景支持 热词增强

数据隐私

自研语音识别引擎主要工作 证 生 酒 單 菓 類

语音数据标注

数据特点

▶ 业务场景繁多:近30种不同业务场景

➤ 数据来源复杂: 电话信道(8k)网络平台(16k)

标注数据选取原则

- > 重要业务场景多标注
- > 线上效果差的场景多标注

标注流程

语音标注系统

0

VAD应用场景及功能

流式场景中的VAD

离线场景中的VAD

VAD模块结构

基于神经网络的决策模块

基于滑动窗的平滑模块

参数: {N,T1,T2}

规则: N个label的滑动窗中,超过T1 个label是1,表示句子开始,超过T2

是0, 表示句子结束

1:speech 0: non speech

[0,0,0,1,0,0,0,0,0,1,1,0,1,1,1,1,0,1,0,0,0]

[0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,0,0,0]

- ➢ 流式场景使用的模型在训练时LSTM的输入为整条音频
- ➢ 离线场景使用的模型在训练时LSTM的输入为变长音频
- ➤ VAD模型同样存在domain mismatch的情况,例如用网络音频数据训练的模型在电话场景中效果就很差

流式场景调用关系

模型历史信息记忆

切片并行处理

模型短时音频适应

训练样本随机切为3-10秒的片段

录音文件识别中VAD和Speaker Diarization部署

耗时优化

VAD: <u>24小时</u> 录音/每小时 → <u>402小时</u> 录音/每小时

SD: 264.54小时 录音/每小时 → 402.57小时 录音/每小时

ASR声学模型

Hybrid ASR System-Chain Model

HMM拓扑结构

Chain Model的训练

- > 数据方向
 - 训练数据由所有场景数据混合而成。
 - 单个场景需要至少100h的in-domain data, 重点场景300h。
 - 变速、加噪声(场景匹配的噪声)、specaugmentation均有提升。
- ▶ 输入特征方向
 - 使用80维fbank,根据训练数据采样率(8k/16k)来灵活调整mel滤波器的上界频率。
 - 全局特征归一化在多场景训练集上表现不好,对单一场景效果好一些,直接用volume perturbation替代归一化操作。
 - 80维fbank的基础上增加100维ivector说话人特征有好处。
- ▶ 模型方向
 - cnn+tdnnf的结构好于tdnn。
 - 增加模型的上下文宽度会提升性能。

ASR声学模型

	训练数据量	声学特征维度	Ivector-dim	模型版本	数据增强方式	实验测试集CER
1	200小时	40	0	TDNN	古 皇 日里	12.53%
2	200小时	40	100	CNN-TDNNF	变速、音量	12.13%
3	200小时	80	100	CNN-TDNNF	变速、音量	11.99%
4	200小时	80	0	CNN-TDNNF	变速、音量、谱增强	11.74%
5	200小时	80	100	CNN-TDNNF	变速、音量、谱增强	11.60%
6	348小时	80	100	CNN-TDNNF	变速、音量、谱增强	11.25%
7	348小时	80	100	CNN-TDNNF	变速、音量、谱增强 、加噪声	11.12%

ASR声学模型

Chain Model的训练

➤ 新训练方式的尝试: E2E Chain Model

- 训练流程简单,直接GPU。
- 训练数据需要统一变速到固定的几个长度。
- 建模单元以及决策树最好使用常规Chain Model生成好的。
- 模型效果(CER)差于常规Chain Model 1%。

序号	建模单元	决策树	数据增强	实验测试集CER
	11.12%			
1	monophone	无	变速	12.58%
2	biphone	穷举	变速	12.86%
3	biphone	使用常规模型决策树	变速	12.03%
4	biphone	使用常规模型决策树	变速、音量扰动	11.84%

Chain Model的训练

- >新训练方式的尝试: 迁移学习
 - 需要用target domain data重新训练hmm-gmm,直接用原来的hmm-gmm对齐效果比较差。
 - 在source domain和target domain差异不大时,NN模型不需要在seed model上添加新的层。
 - Source domain -> target domain迁移学习效果还是不如两组数据加一起从头训练

序号	HMM-GMM方案	神经网络fine-tuning方案	测试集CER
baseline	source domain data混合target domain data直接训练		15.20%
1	不训练HMM-GMM	seed model直接finetuning	17.42%
2	重新训练HMM-GMM	seed model直接finetuning	15.85%
3	重新训练HMM-GMM	seed model新加入输出层	19.56%

自有发音词典构建

语言模型优化流程

ASR语言模型

语言模型语料业务数据扩充

实验序号	声学模型 训练数据	语言模型 训练数据	电话租房测试 集字错误率	二手房测试集 字错误率
1	电话租房	电话租房	24.60%	38.00%
2	电话租房	电话租房 微聊房产文本	23.82%	33.47%

RNNLM Rescore

	场景A测试集	场景B测试集
4-gram—遍解码	13.48%	15.36%
Nbest重打分	12.78%	14.53%
Lattice重打分	12.56%	14.22%

热词功能背景

通用语言模型对细分场景具有业务特点的词识别率不高

基于WFST的解码器热词增强功能

当某条解码路径的弧,其输出词属于热词时,修改这条路径的得分

效果展示

No.	标注文本	热词增强前识别文本	热词	热词增强后识别文本
1	我 没有 招聘 的 需求 我们 现在 人员 饱和	我 没有 消息 需求 我们 现在 人员 饱和	招聘	我 没有 招聘 需求 我们 现在 人员 饱和
2	一七款 英朗	一七款 应 了	英朗	一七款 英朗
3	回访 我 车辆 的 还是 干什么	回访 我 撤掉 了 还是 干什么	车辆	回访 我 车辆 的 还是 干嘛

端到端ASR的探索

效果迭代

- ▶ 数据增强:变速+加噪均有效,字准率1-2%提升
- ▶ ckpt-average后,效果更好,字准率1-3%提升

解码效率优化

- ▶ 批量推理, 动态batch_size优化
- ▶ 跳帧,更大stride或者更多层的卷积
- > 减小beamsize

在测试集上比Chain Model方案的字准率整体高2.25%

标点识别的作用

- ▶ 增加人工质检可读性
- > 方便使用规则

标点识别作为NER任务

加标点前	加标点后
哦现在不要嘛我有个专门的人事在搞这个事情	哦,现在不要嘛,我有个专门的人事在搞这个事情。
好吧唉那咱们年前这段时间会不会加一些人手什么的	好吧,唉那咱们年前这段时间会不会加一些人手什么的?
噢对对对我说这个就是说这边正正好有这个活动嘛哥	噢,对对对,我说这个就是说这边正正好有这个活动嘛哥。

ASR效果

数据	自研ASR字准率	合作第三方	互联网大厂A	互联网大厂B
所有离线场景汇总	base	-3.01%	-11.46%	-14.82%

▶ 呼叫中心(电话录音):招聘客服场景,用户侧字准率81.70%,客服侧字准率91.12%

▶ 隐私通话(电话录音): 二手房隐私通话场景字准率91.09%

数据	自研ASR字准率	互联网大厂A	互联网大厂B
流式场景A	base	-2.55%	-1.35%
流式场景B	base	-4.52%	-4.3%
流式场景C	base	-2.88%	-0.02%

▶ 神奇面试间(网络音视频),字准率91.12%

数据标注

- > 持续观察线上效果
- ▶ 标注资源向重点场景倾斜

算法

- ➤ 拥有语音全链路处理能力: VAD->SD->ASR->加标点
- ▶ 拥有个性化定制能力:
 - ▶ 重要场景独立优化声学语言模型
 - > 解码器热词定制

工程架构部分

王焱

. 0 0

 王焱,58同城AI Lab后端架构师,2017年2月加入58同城,目前主要负责 语音识别引擎后端架构设计和开发工作,曾先后负责过推荐系统、智能语音 机器人系统的后端架构与开发工作。2012年硕士毕业于华北计算机系统工程 研究所,曾就职于Thomson Reuters、H3C等。

• 联系方式: wangyan45@58.com

目录

- 一、语音识别引擎的架构
- 二、语音识别引擎的实现与优化
 - 2.1 语音文件转写服务的实现与优化
 - 2.2 流式识别服务的实现与优化

语音识别引擎整体架构

让 生 活 简 单 美 好 🥊

语音文件转写服务

解码器和解码效率

让 生 活 简 单 美 好 58

- Tesla V100
- Quadro RTX 6000
- GeForce RTX 2080Ti
- GeForce RTX 2080super
- Tesla P40
- Tesla T4

• CPU解码器: nnet3-latgen-faster-parallel

• GPU解码器: batched-wav-nnet3-cuda

批量解码服务的实现

让 生 活 简 单 美 好

解码器服务化:

- 基于batched-wav-nnet3-cuda/nnet3-latgen-faster-parallel改造
- 单体应用,可扩展性、可维护性
- 灵活部署和扩展、便于监控
- 探索在细粒度的资源部署和运行
- 主要问题:编译问题/运行时问题/不同显卡运行模式下服务能力
- 测试结论:和离线对比,CER一致;耗时小于等于离线解码

服务优化实践

在全链路上降低耗时

- 并行处理
- 减少阻塞、等待时间

音频下载

音频转换

服务调用

消息分配

• 优化资源使用效率

- 资源隔离到资源共享
- 均衡、提高资源利用率
- 降低解码空闲等待时间

服务解耦

• 服务按功能横向拆分,独立迭代,独立优化

服务的应用

- 已经接入了30个业务场景,包括销售、客服、隐私通话、微聊等,日均处理近2万小时
- 部署GPU 31台机器(62张卡), CPU 32台机器
- 目前服务部署在docker里,自动化工具做部署,后续迁移到k8s平台统一管理

实时识别服务

实时语音识别的实现

实时解码服务的实现

让生活简单美好

原有问题:

- 原生解码器(online2-wav-nnet3-latgen-faster)并发能力很有限
- 单体应用,可扩展性差,可维护性差

优化方案:

服务化,使用多线程、多解码器,支持并发请求

效果:

• 提供并发解码能力,多节点部署和扩展的服务

并发的优化

原有问题:

耗时随并发升高,最高能接受16路并发

优化方案:

- 优化beam参数
- 优化内存

效果:

- 解码并发数和耗时没有关联
- 从最高16路并发,增加到32路并发
- 相同测试集下对比优化前后流式解码耗时,由567ms降低至97ms

并发数与耗时的关系

并发数与耗时的关系

网络收发包问题的优化

原有问题:

- 客户端sdk丢包、重复包问题
- 服务端收不到、延迟收到调用方发送的数据帧

解决方案:

- 发送队列引用的内存未发送的被覆盖(丢包、重复包)
- nginx收发包问题,临时使用VIP直连后端集群方案

效果:

问题解决,无异常,连接稳定

耗时的优化

原有问题:

- 解码服务,开启获取中间结果开关后,导致下一帧解码耗时累积增加
- 语音交互服务GC导致耗时高、客户端SDK耗时高

解决方案:

- 优化解码服务,从Lattice选取路径的逻辑
- 优化语音交互服务,优化代码逻辑,优化JVM参数

效果:

- 打开获取中间结果的开关,不影响下一帧的解码耗时
- 获取中间结果平均耗时从优化前104ms降低至18ms
- 语音交互服务, TP99耗时降低300ms+

一次发送时长与耗时的关系

- 数据采集
 - 持续观察线上效果
 - 标注资源向重点场景倾斜
- 算法模型
 - 拥有语音全链路处理能力: VAD->SD->ASR->加标点
 - 拥有个性化定制能力:
 - 重要场景独立优化声学语言模型
 - 解码器热词定制
- 工程架构
 - 语音识别的架构
 - 语音文件转写服务的实现与优化
 - 流式识别服务的实现与优化

欢迎关注 58AlLab 公众号

开源项目:

- > 《开源 | qa_match: 一款基于深度学习的问答匹配工具》
 - https://github.com/wuba/qa match
- ➢ 《开源 | dl_inference: 通用深度学习推理服务》 https://github.com/wuba/dl_inference

相关文章:

- ▶ 3人半年打造语音识别引擎——58同城语音识别自研之路
- > 流式和离线场景下VAD语音端点检测算法实践
- **〉 人物|王焱:58同城流式语音识别引擎应用实践**

招聘工程师

欢迎投递 zhankunlin@58.com

或加小秘书微信号咨询: WubaAlLab

Thanks!