Propiedades

Dados tres sucesos A,B y C de un espacio muestral S

Conmutativa :
$$\begin{cases} A \cup B = B \cup A \\ A \cap B = B \cap A \end{cases}$$

Asociativa:
$$\begin{cases} A \cup (B \cup C) = (A \cup B) \cup C \\ A \cap (B \cap C) = (A \cap B) \cap C \end{cases}$$

Distributiva:
$$\begin{cases} A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \\ A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \end{cases}$$

Leyes de Morgan :
$$\begin{cases}
\overline{A \cup B} = \overline{A} \cap \overline{B} \\
\overline{A \cap B} = \overline{A} \cup \overline{B}
\end{cases}$$

Propiedades de las operaciones con sucesos:

Las operaciones con sucesos tienen las siguientes propiedades, la mayoría de ellas bien conocidas:

	Intersección	Unión
Conmutativa	$A \cap B = B \cap A$	$A \cup B = B \cup A$
Asociativa	$A \cap (B \cap C) = (A \cap B) \cap C$	$A \cup (B \cup C) = (A \cup B) \cup C$
Idempotente	$A \cap A = A$	$A \cup A = A$
Simplificación	$A \cap (A \cup B) = A$	$A \cup (A \cap B) = A$
Distributiva	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
Elemento neutro	$A \cap E = A$	$A \cup \varnothing = A$
Absorción	$A \cup \varnothing = A$	$A \cup E = A$

Además de estas sencillas propiedades (que se demuestran fácilmente mediante un diagrama de Venn), las operaciones con sucesos tienen otras dos propiedades muy importantes:

Leyes de De Morgan: Si A y B son dos sucesos, se verifican:

$$\overline{(A \cup B)} = \bar{A} \cap \bar{B}$$

$$\overline{(A \cap B)} = \bar{A} \cup \bar{B}$$

$$\overline{(A\cap B)}=\bar{A}\cup\bar{B}$$

Demostración: Demostraremos la primera de las igualdades.

En primer lugar, representemos en un diagrama de Venn $\overline{(A \cup B)}$. Para ello, primero representamos $A \cup B$, y luego su contrario $\overline{(A \cup B)}$:

Figura 2.7: Imagen 1 corresponde a $A \cup B$. Imagen 2 corresponde a $\overline{A \cup B}$

Ahora, representaremos en otro diagrama el otro miembro, es decir $\bar{A} \cap \bar{B}$. En primer lugar, representaremos \bar{A} , luego \bar{B} y luego su intersección:

Figura 2.8: Imagen 1 corresponde a \bar{A} . Imagen 2 corresponde a \bar{B} . Imagen 3 corresponde a $\bar{A} \cap \bar{B}$.

Problema fundamental

Dado un espacio muestral discreto con resultados
 A₁, A₂, ..., A_n, el experimento aleatorio queda
 caracterizado si asignamos un valor P(A_i) no
 negativo a cada resultado A_i que verifique

$$P(A_1)+P(A_2)+...+P(A_n)=1.$$

• Ejemplo. Se lanza dos veces una moneda.

Se asigna probabilidad 1/4 a cada uno de los cuatro resultados.

¿ Es una asignación correcta?

Propiedades elementales

- 1. $P(\emptyset) = 0$.
- 2. $P(\overline{A}) = 1 P(A)$.
- 3. Si $A \subset B$ entonces $P(A) \leq P(B)$.
- 4. Para dos sucesos cualesquiera $A, B \subset S$,

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

5. Para *n* sucesos $A_1, A_2, ..., A_n \subset S$,

$$P(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i) - \sum_{i=1}^{n} \sum_{j>i}^{n} P(A_i \cap A_j) +$$

$$\sum_{i=1}^n \sum_{j>i}^n \sum_{k>j}^n P(A_i \cap A_j \cap A_k) + \dots + (-1)^{n+1} P(A_1 \cap A_2 \cap \dots \cap A_n)$$

Asignación de probabilidades

- 1. Clásica (Laplace): Equiprobabilidad
- 2. Frecuencialista (von Mises, 1931)
- 3. Subjetiva

Clásica: sucesos equiprobables

Sea un experimento con un número finito de resultados excluyentes y equiprobables, la probabilidad del suceso A es

$$P(A) = \frac{N(A)}{N},$$

donde N es el número de resultados posibles del experimento y N(A) el número de resultados favorables al suceso A.

Ejemplos (equiprobabilidad)

• Lanzamiento de una moneda. $S=\{C,X\}$

$$P(C) = \frac{1}{2}$$

• Lanzamiento de un dado. S={1,2,3,4,5,6}

$$P("N\'umero par") = \frac{3}{6} = \frac{1}{2}.$$

 Extracción de una de las 40 cartas de la baraja, S={1 Oros,2 Oros,...., Rey Bastos}

$$P(Bastos) = \frac{10}{40} = \frac{1}{4}.$$

Lanzamiento de dos dados

		1er Dado						
		1	2	3	4	5	6	
2º Dado ≺	<u> </u>	(1,1)	(2,1)	(3,1)	(4,1)	(5,1)	(6,1)	
	2	(1,2)	(2,2)	(3,2)	(4,2)	(5,2)	(6,2)	
	3	(1,3)	(2,3)	(3,3)	(4,3)	(5,3)	(6,3)	
	4	(1,4)	(2,4)	(3,4)	(4,4)	(5,4)	(6,4)	
	5	(1,5)	(2,5)	(3,5)	(4,5)	(5,5)	(6,5)	
	6	(1,6)	(2,6)	(3,6)	(4,6)	(5,6)	(6,6)	

P("suma 7") = 6/36 = 1/6

Urna: 2 Negras y 3 Blancas

Se extraen dos bolas al azar, una detrás de otra, sin reposición.

P("1" Blanca y 2" Negra") =
$$6/20 = 3/10$$

Urna: 2 Negras y 3 Blancas

a Bola

 B1
 B2
 B3
 N1
 N2

 B1
 B1,B1
 B2,B1
 B3,B1
 N1,B1
 N2,B1

 B2
 B1,B2
 B2,B2
 B3,B2
 N1,B2
 N2,B2

 B3
 B1,B3
 B2,B3
 B3,B3
 N1,B3
 N2,B3

 N1
 B1,N1
 B2,N1
 B3,N1
 N1,N1
 N2,N1

1^a Bola

Se extraen dos bolas al azar, una detrás de otra, con reposición.

P("1^a Blanca y 2^a Negra") = 6/25

Combinatoria: 5 objetos tomados de dos en dos

Combinatoria: Número posible de reordenaciones de *n* objetos tomados de *r* en *r*

	SIN REEMPLAZAM IENTO	CON REEMPLAZAM IENTO
IMPORTA ELORDEN	$\frac{n!}{(n-r)!}$	n^r
NO IMPORTA EL ORDEN	$\binom{n}{r}$	$\binom{n+r-1}{r}$

La primitiva. Se eligen 6 números distintos del 1 al 49, ambos inclusive.

- Probabilidad de acertar los 6.
- Probabilidad de acertar 5.
- Probabilidad de acertar 4.
- Probabilidad de no acertar ninguno.
- Probabilidad de que salga un número concreto, por ejemplo el número 1.

Primitiva

$$P(Acertar 6) = \frac{1}{\binom{49}{6}} = \frac{1}{13.983.816} = 0,000000072$$

$$P(\text{Acertar 6}) = \frac{1}{\binom{49}{6}} = \frac{1}{13.983.816} = 0,0000000072 \qquad P(\text{Acertar 5}) = \frac{\binom{6}{5} \times \binom{43}{1}}{\binom{49}{6}} = \frac{258}{13.983.816} = 0,000018$$

$$P(\text{Acertar 4}) = \frac{\binom{6}{4} \times \binom{43}{2}}{\binom{49}{6}} = \frac{13.545}{13.983.816} = 0,00097 \qquad P(\text{Ninguno}) = \frac{\binom{43}{6}}{\binom{49}{6}} = \frac{6.096.454}{13.983.816} = 0,44$$

$$P(\text{Ninguno}) = \frac{\binom{43}{6}}{\binom{49}{6}} = \frac{6.096.454}{13.983.816} = 0.44$$

$$P(\text{Salga el 1}) = \frac{\binom{48}{5}}{\binom{49}{6}} = \frac{6}{49} = 0,1224$$

• En una estación de metro hay 5 pasajeros esperando a un tren con 10 vagones, si cada pasajero elige un vagón al azar, ¿cuál es la probabilidad de que todos elijan un vagón diferente?

$$P(A) = \frac{N(A)}{N} = \frac{10 \times 9 \times 8 \times 7 \times 6}{10^5} = 0.3024$$

• De un lote con 100 piezas se toman al azar 10, si todas las piezas elegidas son buenas se acepta el lote y se rechaza en caso contrario. ¿Cuál es la probabilidad de aceptar un lote con 10 piezas defectuosas?

$$N = {100 \choose 10} = \frac{100!}{10! \, 90!}; \quad N(A) = {90 \choose 10} = \frac{90!}{80! \, 10!}$$
$$P(A) = \frac{N(A)}{N} = \frac{90!}{80!} \frac{90!}{100!} = \frac{90 \times 89 \times \dots \times 81}{100 \times 99 \times \dots \times 91} = 0.330$$

Cumpleaños

Probabilidad de que en un grupo de r = 25 personas haya al menos dos con el mismo cumpleaños.

A = "No haya ninguna coincidencia"

$$P(A) = \frac{365 \times (365 - 1) \times \dots \times (365 - r + 1)}{365^{r}}$$

$$P(\overline{A}) = 1 - P(A), \qquad r = 25 \rightarrow P(\overline{A}) = 0.578$$

Probabilidad y Frecuencia Relativa

La probabilidad P(A) de un suceso A es el límite

$$P(A) = \lim_{n \to \infty} \frac{n_A}{n}$$

dónde n_A es el número de veces que ha ocurrido A al repetir el experimento n veces en idénticas condiciones.

