Diszkrét matematika II.: 5. feladatlap 2 a, b, c, d és e feladatainak megoldása

Szoftverfejlesztő szakirány, 2019 ősz

- (a) $(\mathbb{Z}, +, \cdot)$. [Megjegyzés: Ebben feladatban igazából nem bizonyítjuk be a + és · műveletek olyan alaptulajdonságait \mathbb{Z} -n mint például az asszociativitás, hanem ezeket ismertnek tételezzük fel (mivel e tulajdonságok bizonyításához az egész számok és a +, · műveletek axiomatikus felépítésére lenne szükség). Ehelyett sorra vesszük a bizonyítandó tulajdonságokat, és eddigi tudásunk alapján megállapítjuk, hogy ezek teljesülnek-e.]
 - (i) + binér művelet ℤ-n, mert egész számok összege mindig egész szám.
 - + asszociatív \mathbb{Z} -n, mert $\forall a, b, c \in \mathbb{Z} : (a+b) + c = a + (b+c)$.
 - $0 \in \mathbb{Z}$ semleges elem, mert $\forall a \in \mathbb{Z} : a + 0 = 0 + a = a$.
 - Minden egésznek létezik additív inverze: $\forall a \in \mathbb{Z} : -a \in \mathbb{Z}$ és a + (-a) = (-a) + a = 0.
 - $\Rightarrow (\mathbb{Z}, +)$ Abel-csoport.
 - (ii) · binér művelet ℤ-n, mert egész számok szorzata mindig egész szám.
 - · asszociatív \mathbb{Z} -n, mert $\forall a, b, c \in \mathbb{Z} : (a \cdot b) \cdot c = a \cdot (b \cdot c)$.
 - $\Rightarrow (\mathbb{Z}, \cdot)$ félcsoport.
 - (iii) Teljesül· mindkét oldali disztributivitása + felett, mert $\forall a,b,c\in\mathbb{Z}: a\cdot(b+c)=a\cdot b+a\cdot c \text{ \'es } (a+b)\cdot c=a\cdot c+b\cdot c\\ \Rightarrow (\mathbb{Z},+,\cdot) \text{ gyűrű}.$
 - (iv) Abel-coport-e ($\mathbb{Z} \setminus \{0\}, \cdot$)?
 - · művelet $(\mathbb{Z} \setminus \{0\})$ -n, mert nemnulla egészek szorzata mindig nemnulla egész.
 - ullet asszociativitását fent már "beláttuk" (azaz említettük).
 - $1 \in \mathbb{Z} \setminus \{0\}$ egységelem, mert $\forall a \in \mathbb{Z} \setminus \{0\} : 1 \cdot a = a \cdot 1 = a$.
 - Nincs minden elemnek multiplikatív inverze: pl. $2 \in \mathbb{Z} \setminus \{0\}$ -höz nem létezik olyan $x \in \mathbb{Z} \setminus \{0\}$, melyre $2 \cdot x = 1$.
 - $\Rightarrow (\mathbb{Z} \setminus \{0\}, \cdot)$ nem csoport, így $(\mathbb{Z}, +, \cdot)$ nem test.

(b) $(2\mathbb{Z}, +, \cdot)$

[Megjegyzés: Ebben a bizonyításban felhasználhatjuk a + és a \cdot műveletek tulajdonságait \mathbb{Z} -n és hivatkozhatunk ezekre.]

- (i) + binér művelet $2\mathbb{Z}$ -n, mert páros számok összege mindig páros szám, hiszen $\forall 2m, 2n \in \mathbb{Z}$: $2m + 2n = 2(m + n) \in 2\mathbb{Z}$.
 - + asszociatív \mathbb{Z} -n, így $2\mathbb{Z} \subseteq \mathbb{Z}$ miatt + asszociatív $2\mathbb{Z}$ -n is (más szóval az asszociativitás öröklődik \mathbb{Z} -rél $2\mathbb{Z}$ -re).
 - $0 \in 2\mathbb{Z}$ semleges elem, mert $\forall a \in 2\mathbb{Z} : a + 0 = 0 + a = a$.
 - Tetszőleges $\forall 2m \in 2\mathbb{Z}$ inverze -2m, mert $-2m = 2(-m) \in 2\mathbb{Z}$ és 2m + (-2m) = (-2m) + 2m = 0.
 - + kommutatív \mathbb{Z} -n, így $2\mathbb{Z} \subseteq \mathbb{Z}$ miatt + kommutatív $2\mathbb{Z}$ -n is (más szóval a kommutativitás öröklődik \mathbb{Z} -ről $2\mathbb{Z}$ -re).
 - \Rightarrow (2 \mathbb{Z} , +) Abel-cooport.
- (ii) binér művelet $2\mathbb{Z}$ -n, mert páros számok szorzata mindig páros szám, hiszen $\forall 2m, 2n \in 2\mathbb{Z} : (2m)(2n) = 2(m2n) = 2(2mn) \in 2\mathbb{Z}$.

- · asszociatív \mathbb{Z} -n, és $2\mathbb{Z} \subseteq \mathbb{Z}$ miatt · asszociatív $2\mathbb{Z}$ -n is.
- $\Rightarrow (\mathbb{Z}, \cdot)$ félcsoport.
- (iii) \mathbb{Z} -ben teljesül· mindkét oldali disztributivitása + felett, és $2\mathbb{Z} \subseteq \mathbb{Z}$ miatt ez öröklődik $2\mathbb{Z}$ -re.

Tehát $(2\mathbb{Z}, +, \cdot)$ gyűrű.

- (iv) Abel-csoport-e $(2\mathbb{Z} \setminus \{0\}, \cdot)$?
 - · művelet $(2\mathbb{Z} \setminus \{0\})$ -n: nemnulla páros számok szorzata mindig nemnulla páros szám.
 - · asszociativitását fent már beláttuk.
 - Nincs egységelem $2\mathbb{Z} \setminus \{0\}$ -ben, mert $\nexists e \in 2\mathbb{Z}$, melyre teljesülne, hogy $\forall a \in 2\mathbb{Z}$: ea = ae = 1. (Ugyanis ha lenne ilyen $e \in 2\mathbb{Z}$ egységelem, akkor például $a = 2 \in 2\mathbb{Z}$ esetén 2e = 1, azaz $e = \frac{1}{2} \notin 2\mathbb{Z}$ következne, ami ellentmondás.)
 - \Rightarrow $(2\mathbb{Z}\setminus\{0\},\cdot)$ nem monoid, így nem is Abel-csoport. Tehát $(2\mathbb{Z},+,\cdot)$ nem test.
- (c) $(n\mathbb{Z}, +, \cdot)$, ahol $n \in \mathbb{Z}$ rögzített.

1. eset: $n \neq 0$

- (i) + binér művelet $n\mathbb{Z}$ -n, mert $\forall nm, nk \in \mathbb{Z} : nk + nm = n(k+m) \in n\mathbb{Z}$.
 - + asszociatív \mathbb{Z} -n, így $n\mathbb{Z} \subseteq \mathbb{Z}$ miatt + asszociatív \mathbb{Z} -n is.
 - $0 = n0 \in n\mathbb{Z}$ semleges elem, mert $\forall a \in n\mathbb{Z} : a + 0 = 0 + a = a$.
 - Tetszőleges $nk \in n\mathbb{Z}$ (additív) inverze -nk, mert $-nk = n(-k) \in n\mathbb{Z}$ és nk + (-nk) = (-nk) + nk = 0.
 - Mivel + kommutatív \mathbb{Z} -n így $n\mathbb{Z} \subseteq \mathbb{Z}$ miatt + kommutatív $n\mathbb{Z}$ -n is.
 - $\Rightarrow (n\mathbb{Z}, +)$ Abel-cooport.
- (ii) · binér művelet $n\mathbb{Z}$ -n, mert $\forall nk, nm \in n\mathbb{Z} : (nk)(nm) = n(knm) \in n\mathbb{Z}$.
 - · asszociatív \mathbb{Z} -n, így $n\mathbb{Z} \subseteq \mathbb{Z}$ miatt · asszociatív $n\mathbb{Z}$ -n is.
 - $\Rightarrow (n\mathbb{Z}, \cdot)$ félcsoport.
- (iii) \mathbb{Z} -ben teljesül·mindkét oldali disztributivitása + felett, és $n\mathbb{Z} \subseteq \mathbb{Z}$ miatt ezek teljesülnek $n\mathbb{Z}$ -ben is.

Tehát $(n\mathbb{Z}, +, \cdot)$ gyűrű.

- (iv) Ha n=1, akkor $n\mathbb{Z}=\mathbb{Z}$, amiről az (a) részben már beláttuk, hogy nem test. Ha $n\neq 1$, akkor:
 - · művelet $(n\mathbb{Z} \setminus \{0\})$ -n: $\forall nk, nm \in n\mathbb{Z} \setminus \{0\} : (nk)(nm) = n(knm) \in \mathbb{Z} \setminus \{0\}$, mert $knm \in n\mathbb{Z}$ és nemnulla egészek szorzata is nemnulla.
 - · asszociativitását fent már beláttuk.
 - Mivel $n \neq 1$, így $1 \notin n\mathbb{Z} \setminus \{0\}$, így $n\mathbb{Z} \setminus \{0\}$ -ben nincs egységelem.

Tehát $(n\mathbb{Z}, +, \cdot)$ nem test

- 2. eset: n=0. Ekkor $n\mathbb{Z}=0\mathbb{Z}=\{0\}$ egyelemű halmaz, amely csak a 0-t tartalmazza.
 - (i) + művelet $0\mathbb{Z} = \{0\}$ -n, mert $0 + 0 = 0 \in \{0\}$.
 - + asszociatív, mert: (0+0)+0=0=0+(0+0).
 - a 0 semleges elem, mert 0 + 0 = 0.

.

- 0-nak önmaga az additív inverze, mert 0 + 0 = 0.
- + kommutatív, mert 0 + 0 = 0 + 0.
- $\Rightarrow (0\mathbb{Z}, +)$ Abel-cooport.
- (ii) \cdot művelet, mert $0 \cdot 0 = 0 \in \{0\}$.
 - · asszociatív, mert $(0 \cdot 0) \cdot 0 = 0 = 0 \cdot (0 \cdot 0)$.
 - $\Rightarrow (0\mathbb{Z}, \cdot)$ félcsoport.
- (iii) \mathbb{Z} -ben teljesül·mindkét oldali disztributivitása + felett, és $0\mathbb{Z} \subseteq \mathbb{Z}$ miatt ezek teljesülnek $0\mathbb{Z}$ -ben is.
 - Tehát $(0\mathbb{Z}, +, \cdot)$ gyűrű.
- (iv) $0\mathbb{Z} \setminus \{0\} = \emptyset$, így $(0\mathbb{Z} \setminus \{0\}, \cdot)$ nem lehet Abel-csoport, mert nincs eleme, így egységeleme sincs. Tehát $(0\mathbb{Z}, +, \cdot)$ nem test.
- (d) $(A, +, \cdot)$, ahol $A = \{a + b\sqrt{2} : a, b \in \mathbb{Z}\}.$

[Megjegyzés: A + és · műveletek tulajdonságait \mathbb{R} -en ismertnek tekinthetjük, ezekre hivatkozhatunk.]

- (i) \bullet + művelet A-n, mert $\forall a, b, c, d \in \mathbb{Z}$: $(a+b\sqrt{2})+(c+d\sqrt{2})=a+c+(b+d)\sqrt{2} \in A$, mivel $(a+c) \in A$ és $(b+d) \in A$.
 - + asszociatív, mert: $\forall a,b,c,d,e,f\in\mathbb{Z}:[(a+b\sqrt{2})+(c+d\sqrt{2})]+(e+f\sqrt{2})=[a+c+(b+d)\sqrt{2}]+(e+f\sqrt{2})=(a+c)+e+((b+d)+f)\sqrt{2}=a+(c+e)+(b+(d+f))\sqrt{2}=a+b\sqrt{2}+[c+e+(d+f)\sqrt{2}]=a+b\sqrt{2}+[c+d\sqrt{2}+e+f\sqrt{2}].$ (Másik, rövidebb indoklás: Mivel + asszociatív \mathbb{R} -en és $A\subseteq\mathbb{R}$, így + asszociatív A-n is.)
 - $0 = 0 + 0\sqrt{2} \in A$ semleges elem, mert $\forall a + b\sqrt{2} \in A : 0 + 0\sqrt{2} + a + b\sqrt{2} = a + b\sqrt{2} + 0 + 0\sqrt{2} = a + b\sqrt{2}$.
 - Tetszőleges $a+b\sqrt{2} \in A$ esetén $a+b\sqrt{2} \in A$ additív inverze $-a-b\sqrt{2}$, mert $-a-b\sqrt{2} \in A$ és $a+b\sqrt{2}+(-a-b\sqrt{2})=a-a+(b-b)\sqrt{2}=0$.
 - + kommutatív, mert $\forall a+b\sqrt{2}, c+d\sqrt{2} \in A: a+b\sqrt{2}+c+d\sqrt{2}=a+c+(b+d)\sqrt{2}=c+a+(d+b)\sqrt{2}=c+d\sqrt{2}+a+b\sqrt{2}.$ (Másik, rövidebb indoklás: Mivel + kommutatív \mathbb{R} -en és $A\subseteq\mathbb{R}$, így + kommutatív A-n is.)
 - $\Rightarrow (A, +)$ Abel-coopert.
- (ii) művelet A-n, mert $\forall a + b\sqrt{2}, c + d\sqrt{2} \in A : (a + b\sqrt{2}) \cdot (c + d\sqrt{2}) = ac + 2bd + (ad + bc)\sqrt{2} \in A$, mivel $ac + 2bd \in \mathbb{Z}$ és $ad + bc \in \mathbb{Z}$.
 - Mivel · asszociatív \mathbb{R} -en és $A\subseteq\mathbb{R}$, így · asszociatív A-n is.
 - $\Rightarrow (A, \cdot)$ félcsoport.
- (iii) Mivel \mathbb{R} -ben · mindkét oldali disztributivitása teljesül + felett és $A \subseteq \mathbb{R}$, így ezek teljesülnek A-n is.
 - $\Rightarrow (A, +, \cdot) \underline{\text{gyűrű}}.$
- (iv) Legyenek $a+b\sqrt{2}, c+d\sqrt{2} \in A$ tetszőlegesek. A fentiek alapján A zárt a szorzásra, így $a+b\sqrt{2}, c+d\sqrt{2} \in A\setminus\{0\}$ esetén $(a+b\sqrt{2})\cdot(c+d\sqrt{2})\in A$. Másrészt nemnulla valós számok szorzata is nemnulla, így $(a+b\sqrt{2})\cdot(c+d\sqrt{2})\in A\setminus\{0\}$. Tehát · művelet $A\setminus\{0\}$ -n.
 - · asszociativitását korábban beláttuk.
 - $1 = 1 + 0\sqrt{2} \in A \setminus \{0\}$, és mivel 1 egyégeleme $A \setminus A$, így $A \setminus \{0\}$ -nak is az.

- Nincs minden $A \setminus \{0\}$ -beli elemnek multiplikatív inverze. Például $1 + 2\sqrt{2} \in A \setminus \{0\}$ -nek nincs, mert ha lenne $a + b\sqrt{2} \in A \setminus \{0\}$ inverze, akkor $(1 + 2\sqrt{2})(a + b\sqrt{2}) = a + 4b + (2a + b)\sqrt{2} = 1$ miatt a + 4b = 1 és 2a + b = 0, ahonnan $a = -\frac{1}{7}$ és így $a + b\sqrt{2} \notin A \setminus \{0\}$ következik, ami ellentmondás.
- \Rightarrow $(A \setminus \{0\}, \cdot)$ nem csoport (így nem is Abel-csoport). Tehát $(A, +, \cdot)$ nem test.
- (e) $(A, +, \cdot)$, ahol $A = \{a + bi : a, b \in \mathbb{Z}\}.$

[Megjegyzés: A + és · műveletek tulajdonságait \mathbb{C} -n ismertnek tekinthetjük, ezekre hivatkozhatunk.]

- (i) $\forall a+bi, c+di \in A: a+bi+c+di=a+c+(b+d)i \in A, \text{ mert } a+c,b+d \in \mathbb{Z}, \text{ fgy } + \text{művelet } A\text{-n.}$
 - Mivel komplex számok öszeadása asszociatív és $A \subseteq \mathbb{C}$, ezért + asszociativitása öröklődik A-ra.
 - $0 = 0 + 0i \in A$ semleges elem A-ban, mert 0 semleges elem C-ben, és $A \subseteq \mathbb{C}$.
 - Tetszőleges $a+bi \in A$ inverze $-a-bi \in A$, mert a+bi+(-a-bi)=a-a+(b-b)i=0.
 - \bullet Mivel komplex számok ösze
adása kommutatív és $A\subseteq \mathbb{C},$ ezért + kommutativitása öröklődi
kA-ra.
 - $\Rightarrow (A, +)$ Abel-cooport.
- (ii) művelet A-n, mert $\forall a+bi, c+di \in A: (a+bi) \cdot (c+di) = ac-bd + (ad+bc)i \in A$, hiszen $ac-bd, ad+bc \in \mathbb{Z}$.
 - · asszociatív, mert · asszociatív \mathbb{C} -n és $A\subseteq\mathbb{C}$ miatt az asszociativitás öröklődik A-ra. $\Rightarrow (A,\cdot)$ félcsoport.
- (iii) Mivel· művelet A-n, így tetszőleges $a+bi, c+di \in A \setminus \{0\}$ esetén $(a+bi)(c+di) \in A$. Tudjuk, hogy nemnulla komplex számok szorzata nem nulla, ezért $(a+bi)(c+di) \in A \setminus \{0\}$ következik, így · művelet $A \setminus \{0\}$ -n.
 - · asszociativitását fentebb már igazoltuk.
 - Mivel $1 = 1 + 0i \in A \setminus \{0\}$ és 1 egységelem (A, \cdot) -ban, így $(A \setminus \{0\}, \cdot)$ -ban is az.
 - Nincs minden $A \setminus \{0\}$ -beli számnak multiplikatív inverze $A \setminus \{0\}$ -ban. Például $2 \in A \setminus \{0\}$ multiplikatív inverze \mathbb{C} -ben $\frac{1}{2}$, de $\frac{1}{2} \notin A \setminus \{0\}$.
 - $\Rightarrow (A \setminus \{0\}, \cdot)$ nem csoport (így nem is Abel-csoport) Tehát $(A, +, \cdot)$ nem test.