Inteligência **Artificial** e **Aprendizagem:** aplicabilidade de **ferramentas** educacionais no contexto acadêmico Como essa tecnologia auxilia no diagnóstico de doenças

Clésio Gonçalves

Mestre em Engenharia Elétrica e Doutorando em Ciência da Computação - UFPI. Professor de Informática do IFSertãoPE -Campus Ouricuri

Repositório do minicurso

https://github.com/clesio-goncalves/MinicursoUFPI2024

Conteúdo

Inteligência Artificial

Conceito

- A Inteligência Artificial (IA) refere-se à capacidade de máquinas aprenderem e tomarem decisões de maneira autônoma
 - Algoritmos inteligentes;
 - Dados.
 - Uso de GPU para treinamento

Inteligência Artificial

000

Dados são o principal insumo da Inteligência Artificial

Em julho de 2020, a OpenAl revelou o GPT-3, o maior modelo de linguagem então conhecido.

O GPT-3 possui **175 bilhões de parâmetros** e foi treinado em **570 gigabytes de texto**. Para efeito de comparação, seu antecessor, **GPT-2, era 100 vezes menor**, com **1,5 bilhão de parâmetros**.

Fonte: THE AI INDEX REPORT 2024

O GPT-4 da OpenAI usou cerca de **US\$ 78 milhões** em computação para treinar,
enquanto o Gemini Ultra do Google custou **US\$ 191 milhões** em computação.

Fonte: THE AI INDEX REPORT 2024

Visão Computacional

Visão Computacional

 A Visão Computacional tem por objetivo final simular o olho humano para realizar análises e aprender padrões a partir de entradas visuais

Visão Computacional

Modelagem e replicação da visão humana usando software e hardware

analisar, interpretar e extrair informações relevantes de imagens e/ou vídeos

Principais tarefas realizadas utilizando a Visão Computacional

Principais desafios

Necessidade de grandes volumes de dados rotulados para treinamento

Risco de overfitting (ajuste excessivo) em modelos muito complexos

Alto custo computacional associado ao treinamento de redes profundas

Anotação das imagens para treinamento

Falta de interpretabilidade em modelos complexos (redes neurais profundas)

Grad-CAM: aplicação em imagens

PAVIC

Laboratório de Pesquisas Aplicadas à Visão e Inteligência Computacional - PAVIC UFPI

Detecção de doenças de pele

Classificação das doenças pelas manifestações na pele

Segmentação de deformações na próstata

Detecção de doenças oculares

Detecção de doenças pulmonares

Detecção de bacilos da Tuberculose

Segmentação de células cervicais

Geração **Automatizada** de Relatórios Médicos a partir de **Imagens de** Raio-X

BLEU-1: 0.80

BLEU-2: 0.78

BLEU-3: 0.77 BLEU-4: 0.76

METEOR: 0.50

ROUGE-L: 0.81

Detecção de Leishmaniose Visceral Humana

Aquisição das Imagens

Aquisição das Imagens

Resultados

- Melhor dissertação da UFPI de 2022

97,3%

Classificação

Kappa superior a 97% e F1-Score superior a 98% utilizando os modelos InceptionV3 e InceptionResNetV2

80,4

O Segmentação

Dice superior a 80%, utilizando recortes RGB com dimensões 96x96 em uma U-Net

Anotação Manual vs Modelo Desenvolvido

Nova parceria com o LAPEDONE

LV Canina 30 animais

crista ilíaca

úmero

esterno

fêmur

Automação na captura das imagens

Agora vamos ao estudo de caso!

