El número PI π =3.1415...

Zoilo González García Técnicas Experimentales Práctica de Laboratorio #10

11 de abril de 2014

1. Resumen

El objetivo de esta práctica es entregar un programa escrito en Python [1] en el que se aproxime el valor de pi con un una precision dada.

2. Motivación y Objetivos

2.1. Motivación

 \widehat{A} lo largo de la historia han sido muchas las formas utilizadas por el ser humano para calcular aproximaciones cada vez más exactas del número π . [2]

2.2. Objetivos

El objetivo de esta práctica de laboratorio es implementar el código Python que permita aproximar el número π con una cierta precisión. π se puede calcular mediante integración:

$$\int_0^1 \frac{4}{1+x^2} \, dx = 4(atan(1) - atan(0)) = \pi$$

Esta integral se puede aproximar numéricamente con una fórmula de cuadratura. Si se utiliza la regla del punto medio se obtiene:

$$\pi \approx \frac{1}{n} \sum_{i=1}^{n} f(x_i)$$
, con $f(x) = \frac{4}{(1+x^2)}$, $x_i = \frac{i-\frac{1}{2}}{n}$, para $i = 1, \dots, n$

3. Ejercicios propuestos

Escriba un programa que reciba como entrada el número de subintervalos con los que se desea abordar la aproximación de π . A partir de él se deben calcular y mostrar por la consola:

- 1. Los extremos de los subintervalos.
- 2. El punto x_i .
- 3. El valor de de la función de aproximación de pi, $f(x_i)$.
- 4. El resultado de la aproximación.
- 5. La constante pi con treinta y cinco decimales.

Por ejemplo, si se utilizan 4 subintervalos, la salida debería ser:

```
Introduzca el número de intervalos (n > 0): 4
Subintervalo: [0 , 0.25] x_i: 0.125 fx_i: 3.93846
Subintervalo: [0.25, 0.5 ] x_i: 0.375 fx_i: 3.50685
Subintervalo: [0.5 , 0.75] x_i: 0.625 fx_i: 2.8764
Subintervalo: [0.75, 1 ] x_i: 0.875 fx_i: 2.26549

El valor aproximado de PI es: 3.14680051839
El valor de PI con 35 decimales: 3.1415926535897931159979634685441852
```

4. Entregable

En la tarea habilitada para esta práctica en el Aula Virtual, se subirá la dirección del repositorio *github* donde se ha almacenado la práctica.

5. Para saber más...

Amplíe el programa Python que ha desarrollado para que el número de subintervalos se pueda obtener también desde la línea de comandos.

Referencias

- [1] ACM LaTeX Style. http://www.acm.org/publications/latex_style/.
- [2] Wikipedia. http://es.wikipedia.org/wiki/N