MATH135 Factoring Polynomials

Andrew Codispoti

April 1, 2015

1 DAP proof

Induction on degree of f(x).

- 1. f(x) is 0 polynomial.
- 2. $\deg(g(\mathbf{x}))$ is zero. say $g(x) = \beta(constant)$ take $q(x) = \frac{f(x)}{\beta}, r(x) = 0$
- 3. $\deg g(x) > \deg f(x)$ Take q(x)=0 r(x)=f(x)

Assume $\deg g(x) = m > 0$

Strong Induction Hypothesis: For some $k \ge m$ assume result holds for all polynomials of f(x)of $deg < k_0$

Inductino Step consider $f(x) - \frac{a_k}{b_m} x^{k-m} g(x)$; this has degree < k. Therefore by Induction hypothesis, it can be written as:q(x)g(x) + r(x). Thus $f(x) = (\frac{a_k}{b_m} x^{k-m} + q(x))g(x) + r(x)$