

TENTAMEN

Kursnummer:	HF0024		
	Matematik för basår II		
Moment:	TENA		
Program:	Tekniskt basår		
Rättande lärare:	Staffan Linnaeus & Maria Shamoun		
Examinator:	Niclas Hjelm		
Datum:	2019-12-17		
Tid:	08:00-12:00		
Hjälpmedel:	Formelsamling: ISBN 978-91-27-72279-8 eller ISBN		
	978-91-27-42245-2 (utan anteckningar).		
	Inga andra formelsamlingar är tillåtna!		
	Miniräknare, penna, radergummi, linjal, gradskiva		
Omfattning och			
betygsgränser:	Poäng Betvg 11 Fx 12 – 14 E 15 – 17 D 18 – 20 C 21 – 23 B 24 – 26 A		
	Till samtliga uppgifter krävs fullständiga		
	lösningar. Lösningarna skall vara tydliga och lätta		
	att följa. Införda beteckningar skall definieras.		
	Uppställda samband skall motiveras.		
	Skriv helst med blyertspenna!		
	Svaret ska framgå tydligt och vara förenklat så		
	långt som möjligt. Svara med enhet och lämplig		
	avrundning på tillämpade uppgifter. Svara exakt på		
	övriga uppgifter, om inte annat anges. Lycka till!		

1. Bestäm derivatan till funktionerna

a.
$$f(x) = (\ln x)^3$$

b.
$$g(x) = \frac{\sqrt{x}}{\sin x}$$
. Svaret behöver ej anges på enklaste form.

- 2. För vinkeln v gäller $\cos^2 v = 1/3$. Bestäm $\sin v$ om $\pi \le v \le 2\pi$.
- 3. Beräkna integralerna

a.
$$\int_{0}^{1/2} \cos(\pi x) dx$$
 2p

b.
$$\int_{1}^{2} \frac{x^{2}+1}{x^{3}} dx$$
.

- 4. Visa att $cos(3x) = 4cos^3 x 3cos x$. Tips: 3x = x + 2x.
- 5. Bestäm arean av området som begränsas av kurvorna $y = 4\sqrt{x}$ och $y = \sqrt{2} \cdot x^2$. **3p**
- 6. Bestäm alla lösningar till ekvationen $2\cos(3x-1) = \sqrt{3}$.
- 7. Bestäm alla lösningar till ekvationen $\cos^2 x \frac{9}{2}\sin x 3 = 0$. **3p**
- 8. a) Bestäm konstanterna a och b så att funktionen $F(x) = e^{-x}(a\cos(2x) + b\sin(2x))$ blir en primitiv funktion till funktionen $f(x) = e^{-x}\sin(2x)$.
 - b) Beräkna $\int_0^{\pi} e^{-x} \sin(2x) dx$ med hjälp av primitiv funktion från a) **1p**
- 9. Låt funktionen f(x) ges av $f(x) = \frac{e^{x^2/2}}{x}$.

Bestäm f'(x) och f''(x). Bestäm även alla eventuella lokala maximi-, minimi- och terrasspunkter till f(x).

10. I figuren visas grafen till den dämpade harmoniska svängningen $y = 6\sin(ax)e^{-bx}$

I figuren är några punkter med heltalskoordinater markerade. Inga andra avläsningar kan göras exakt. Bestäm konstanterna a och b. 2p

Lösningsförslag

1. a. Kedjeregeln ger

$$f'(x) = 3(\ln x)^2 \cdot \frac{1}{x} = \frac{3(\ln x)^2}{x}.$$

Svar: $f'(x) = \frac{3(\ln x)^2}{x}$.

b. Kvotregeln ger

$$g'(x) = \frac{\frac{1}{2\sqrt{x}}\sin x - \sqrt{x}\cos x}{\sin^2 x} =$$

$$= \frac{\frac{\sqrt{x}}{2x}\sin x - \sqrt{x}\cos x}{\sin^2 x} =$$

$$= \frac{\sqrt{x}\sin x - 2x\sqrt{x}\cos x}{2x\sin^2 x}$$

$$= \frac{\sqrt{x}(\sin x - 2x\cos x)}{2x\sin^2 x}.$$

Svar:
$$g'(x) = \frac{\sqrt{x}(\sin x - 2x\cos x)}{2x\sin^2 x}$$
.

2. Eftersom $\sin^2 v + \cos^2 v = 1$ får vi

$$\cos^2 v = \frac{1}{3}$$
$$1 - \sin^2 v = \frac{1}{3}$$
$$\sin^2 v = 1 - \frac{1}{3}$$
$$\sin^2 v = \frac{2}{3}$$
$$\sin v = \pm \sqrt{\frac{2}{3}}.$$

Eftersom $\pi \le v \le 2\pi \text{ så är } \sin v \le 0$, dvs $\sin v = -\sqrt{\frac{2}{3}} = -\frac{\sqrt{2}}{\sqrt{3}} = -\frac{\sqrt{2}\sqrt{3}}{\sqrt{3}\sqrt{3}} = -\frac{\sqrt{6}}{3}$.

Svar:
$$\sin v = -\frac{\sqrt{6}}{3}$$
.

3. a.

$$\int_0^{1/2} \cos(\pi x) dx = \left[\frac{\sin(\pi x)}{\pi} \right]_0^{1/2} = \frac{1}{\pi} \left(\sin(\pi / 2) - \sin(\pi \cdot 0) \right) =$$
$$= \frac{1}{\pi} (1 - 0) = \frac{1}{\pi}$$

b.

$$\int_{1}^{2} \frac{x^{2} + 1}{x^{3}} dx = \int_{1}^{2} \left(\frac{1}{x} + \frac{1}{x^{3}}\right) dx = \int_{1}^{2} \left(\frac{1}{x} + x^{-3}\right) dx =$$

$$= \left[\ln|x| - \frac{1}{2}x^{-2}\right]_{1}^{2} = \left[\ln|x| - \frac{1}{2x^{2}}\right]_{1}^{2} =$$

$$= \left(\ln|2| - \frac{1}{2 \cdot 2^{2}}\right) - \left(\ln|1| - \frac{1}{2 \cdot 1^{2}}\right) =$$

$$= \left(\ln|2 - \frac{1}{8}\right) - \left(\ln|1 - \frac{1}{2}\right) = \ln|2 - \frac{1}{8}| + \frac{1}{2}| =$$

$$= \ln|2 + \frac{3}{8}|.$$

4. Vi utnyttjar tipset och visar VL=HL

$$VL = \cos(3x) = \cos(x+2x)$$

$$=_{(a)} \cos x \cos(2x) - \sin x \sin(2x)$$

$$=_{(b)} \cos x (2\cos^2 x - 1) - \sin x (2\sin x \cos x)$$

$$= 2\cos^3 x - \cos x - 2\sin^2 x \cos x$$

$$=_{(c)} 2\cos^3 x - \cos x - 2(1-\cos^2 x)\cos x$$

$$= 2\cos^3 x - \cos x - 2\cos x - 2\cos^3 x$$

$$= 4\cos^3 x - 3\cos x = HL$$

Likheten vid (a) ges av formeln för cos(u+v).

Likheten vid (b) ges av formeln för cos(2u) respektive sin(2u).

Likheten vid (c) ges av $\sin^2 u = 1 - \cos^2 u$.

5. Vi ska bestämma arean av området mellan kurvorna i figuren nedan.

Vi bestämmer först för vilka x -värden kurvorna skär varandra

$$4\sqrt{x} = \sqrt{2}x^2$$

Både VL och HL är icke-negativa, så inga falska rötter fås vid kvadrering. Vi kvadrerar och får

$$16x = 2x^4 \iff x(8-x^3) = 0$$
,

så kurvorna skär varandra då x=0 och då $8-x^3=0$, dvs då x=0 och då x=2. För x=1 är $4\sqrt{1}=4>\sqrt{2}\cdot 1^2=\sqrt{2}$, så den övre kurvan är $y=4\sqrt{x}$.

Arean mellan kurvorna ges därför av

$$A = \int_0^2 \left(4\sqrt{x} - \sqrt{2}x^2\right) dx$$

$$= \int_0^2 \left(4x^{1/2} - \sqrt{2}x^2\right) dx$$

$$= \left[\frac{4x^{3/2}}{3/2} - \frac{\sqrt{2}x^3}{3}\right]_0^2$$

$$= \left[\frac{8x\sqrt{x} - \sqrt{2}x^3}{3}\right]_0^2$$

$$= \frac{8 \cdot 2\sqrt{2} - \sqrt{2} \cdot 2^3}{3} - 0 = \frac{8\sqrt{2}}{3}$$

Svar: Arean av området som begränsas av kurvorna är $\frac{8\sqrt{2}}{3}$.

6. Vi har

$$2\cos(3x-1) = \sqrt{3}$$
$$\cos(3x-1) = \frac{\sqrt{3}}{2}.$$

Vi får två alternativ.

Alternativ 1:

$$3x - 1 = \frac{\pi}{6} + k \cdot 2\pi$$
$$3x = 1 + \frac{\pi}{6} + k \cdot 2\pi$$
$$x = \frac{1}{3} + \frac{\pi}{18} + k \cdot \frac{2\pi}{3},$$

där k är ett heltal.

Alternativ 2:

$$3x - 1 = -\frac{\pi}{6} + k \cdot 2\pi$$
$$3x = 1 - \frac{\pi}{6} + k \cdot 2\pi$$
$$x = \frac{1}{3} - \frac{\pi}{18} + k \cdot \frac{2\pi}{3},$$

där k är ett heltal.

Svar: Lösningarna till ekvationen ges av $x = \frac{1}{3} + \frac{\pi}{18} + k \cdot \frac{2\pi}{3}$ och av $x = \frac{1}{3} - \frac{\pi}{18} + k \cdot \frac{2\pi}{3}$, där k är ett heltal.

7. Vi använder $\cos^2 x = 1 - \sin^2 x$ och får

$$\cos^2 x - \frac{9}{2}\sin x - 3 = 0$$
$$1 - \sin^2 x - \frac{9}{2}\sin x - 3 = 0$$
$$\sin^2 x + \frac{9}{2}\sin x + 2 = 0.$$

Substitutionen $t = \sin x$ ger ekvationen $t^2 + \frac{9}{2}t + 2 = 0$ som har lösningarna

$$t = -\frac{9}{4} \pm \sqrt{\left(\frac{9}{4}\right)^2 - 2}$$

$$t = -\frac{9}{4} \pm \sqrt{\frac{81 - 32}{16}}$$

$$t = -\frac{9}{4} \pm \sqrt{\frac{49}{16}}$$

$$t = -\frac{9}{4} \pm \frac{7}{4},$$

dvs t = -4 (falsk rot eftersom $-1 \le \sin x \le 1$) och $t = -\frac{1}{2}$. Detta ger

$$\sin x = -\frac{1}{2}$$

som har lösningarna

$$x = -\frac{\pi}{6} + k \cdot 2\pi$$

och

$$x = \pi - \left(-\frac{\pi}{6}\right) + k \cdot 2\pi = \frac{7\pi}{6} + k \cdot 2\pi,$$

där k är ett heltal.

Svar: Ekvationen har lösningarna $x = -\frac{\pi}{6} + k \cdot 2\pi$ och $x = \frac{7\pi}{6} + k \cdot 2\pi$, där k är ett heltal.

8. a) $F'(x) = -e^{-x} (a\cos 2x + b\sin 2x) + e^{-x} (-2a\sin 2x + 2b\cos 2x)$ $= (2b - a)e^{-x} \cos 2x - (2a + b)e^{-x} \sin 2x.$

Här ser man att F'(x) blir detsamma som f(x) om a och b uppfyller ekvationssystemet

$$\begin{cases} 2b - a = 0 \\ 2a + b = -1 \end{cases}.$$

Den övre ekvationen ger a=2b. Insättning i den undre ekvationen ger $5b=-1 \Leftrightarrow b=-\frac{1}{5}$.

Återsubstitution ger $a = -\frac{2}{5}$.

Svar:
$$a = -\frac{2}{5}, b = -\frac{1}{5}$$
.

b)
$$\int_0^{\pi} e^{-x} \sin 2x dx = \left[-\frac{2\cos 2x + \sin 2x}{5} e^{-x} \right]_0^{\pi} = -\frac{2}{5} e^{-\pi} + \frac{2}{5}$$

$$\underline{\text{Svar:}} \int_0^{\pi} e^{-x} \sin 2x dx = \frac{2(1 - e^{-\pi})}{5}$$

9. Kvotregeln ger (där täljaren deriveras mha kedjeregeln)

$$f'(x) = \frac{e^{x^2/2} \frac{2x}{2} \cdot x - e^{x^2/2} \cdot 1}{x^2} = \frac{(x^2 - 1)e^{x^2/2}}{x^2}.$$

Vi skriver om f'(x) som $f'(x) = \frac{(x^2 - 1)e^{x^2/2}}{x^2} = e^{x^2/2} - \frac{1}{x^2}e^{x^2/2} = e^{x^2/2} - x^{-2}e^{x^2/2}$. för att bestämma f''(x). Kedjeregeln och produktregeln ger

$$f''(x) = xe^{x^2/2} + 2x^{-3}e^{x^2/2} - x^{-2} \cdot \frac{2x}{2}e^{x^2/2}$$
$$= \left(x + \frac{2}{x^3} - \frac{1}{x}\right)e^{x^2/2}$$
$$= \frac{x^4 - x^2 + 2}{x^3}e^{x^2/2}.$$

Lokala extempunkter fås då

$$f'(x) = 0$$

$$\frac{(x^2 - 1)e^{x^2/2}}{x^2} = 0$$

$$x^2 - 1 = 0 \text{ (Eftersom } e^{x^2/2} \neq 0)$$

$$x^2 = 1$$

$$x = \pm 1.$$

x = 1 ger $y = f(1) = \frac{e^{1^2/2}}{1} = e^{1/2}$. Eftersom $f''(1) = \frac{(1^4 - 1^2 + 2)e^{1^2/2}}{1^3} = 2e^{1/2} > 0$ är $(1, e^{1/2})$ en lokal minimipunkt.

$$x = -1 \text{ ger } y = f(-1) = \frac{e^{(-1)^2/2}}{-1} = -e^{1/2}. \text{ Eftersom}$$

$$f''(-1) = \frac{((-1)^4 - (-1)^2 + 2)e^{(-1)^2/2}}{(-1)^3} = -2e^{1/2} < 0 \text{ är } (-1, -e^{1/2}) \text{ en lokal maximipunkt.}$$

Svar:

$$f'(x) = \frac{(x^2 - 1)e^{x^2/2}}{x^2},$$
$$f''(x) = \frac{(x^4 - x^2 + 2)e^{x^2/2}}{x^3},$$

 $(1,e^{1/2})$ en lokal minimipunkt.

 $(-1, -e^{1/2})$ en lokal maximipunkt.

10. I figuren ser vi att y(x) har nollställen vid x = 0, x = 2 och x = 4. Eftersom $e^{-bx} > 0$ för alla x så måste sin ax ha period 4. Därför är $4 \cdot a = \pm 2\pi$, dvs $a = \pm \pi/2$. I figuren ser vi att y(x) > 0 för 0 < x < 2, så a > 0 dvs $a = \pi/2$.

I figuren ser vi att y(1) = 3. Insättning av $a = \pi/2$ och x = 1 ger därför

$$3 = y(1)$$

$$3 = 6\sin(\pi/2)e^{-b\cdot 1}$$

$$3 = 6e^{-b}$$

$$e^{-b} = \frac{1}{2}$$

$$-b = \ln \frac{1}{2}$$

$$-b = -\ln 2$$

$$b = \ln 2$$

Svar: $a = \pi / 2$ och $b = \ln 2$.

Generella riktlinjer för tentamensrättning

Generena rikumjer for tentamensratumig				
A. Varje beräkningsfel	-1 poäng			
(Därefter fortsatt rättning enligt nya förutsättningar)				
B. Beräkningsfel; allvarliga och/eller leder till förenkling	-2 poäng eller mer			
C. Prövning istället för generell metod	- samtliga poäng			
D. Felaktiga antaganden/ansatser	- samtliga poäng			
E. Antar numeriska värden	- samtliga poäng			
F. Lösning svår att följa och/eller Svaret framgår inte tydligt	-1 poäng eller mer			
(Vid flera svar väljs det minst gynnsamma. Svara antingen				
avrundat eller exakt, se nedan.)				
G. Matematiska symboler används felaktigt/saknas	-1poäng eller mer			
Bl.a.				
Om '=' saknas (t.ex. '=>' används istället)	-1 poäng/tenta			
Om '=' används felaktigt (t.ex. istället för '=>')	-1 poäng/tenta			
Teoretiska uppgifter:				
H. Avrundat svar	-1 poäng/tenta			
Tillämpade uppgifter:				
I. Enhet saknas/fel	-1 poäng/tenta			
J. Avrundningar i delberäkningar som ger fel svar	-1 poäng/tenta			
K. Svar med felaktigt antal värdesiffror (±1 värdesiffra ok)	-1 poäng/tenta			
L. Andra avrundningsfel	-1 poäng/tenta			
M. Exakt svar	-1 poäng/tenta			
	1 2			

Rättningsmall

	a. Rätt eller fel b. Rätt eller fel. Förenklar ej derivatan	-0p
2.	Fel tecken eller svarar med $\sin v = \pm \frac{\sqrt{6}}{3}$.	-2p
	Svarar $\sin v = -\sqrt{\frac{2}{3}}$.	OK
3.	a. Integrationsfel	-2p
	b. Integrationsfel	-2p
	b. Missar beloppstecken	-0p
	b. Inser ej att $\ln 1 = 0$	-1p
4.	Utgår från likheten och flyttar termer mellan leden	-2p
5.	Får även med -2 som skärningspunkt, godtagbar motivering till varför	4
	arean ges av integralen från 0 till 2 Präver ei lägningerne till retelyetionen	-1p
	Prövar ej lösningarna till rotekvationen Integrationsfel	-0p denna gång -2p
	Negativ area, eller trollar bort minustecken utan/med bristfällig motivering	_
6.	Varje saknad lösningsfamilj	-1p
	Saknad/felaktig period	-1p
7.	Korrekt andragradsekvation i t	+1p
	Varje saknad lösningsfamilj	-1p
	Saknad/felaktig period	-1p
8.	Anger enhet, t.ex. a.e.:	-1 p/uppgift
	a. Deriveringsfel	-2p
	Korrekt ekvationssystem för att bestämma a och b, sen felräknat b. Följdfel från a-delen ger fel i b men ingen förenkling: Inget ytterlig	+1p gare avdrag.
9.	f'(x) fel	-2p
	f''(x) fel	-1p
	Svarar med x – värden	-1p
	Påvisar ej maximipunkt	-1p
10.	Svarar med $a = \pm \pi / 2$	-1p
	a fel	-2p
	motiverar ej tecknet på a,	-0p
	b fel	-1p