Written Assignment 1 — Solutions

CS 440 September 16, 2025

Name: Yat Long Szeto BU ID: 90479281

Question 1: Shortest Path Composition

Answer

$$p^* = p_1 \cdot p_2$$
 split the $a \to b$ path at c (concatenation) $\cot(p^*) = \cot(p_1) + \cot(p_2)$ path cost additivity $\exists \tilde{p}_1 : \cot(\tilde{p}_1) < \cot(p_1) + \cot(p_2)$ assumption for contradiction $\cot(\tilde{p}_1 \cdot p_2) = \cot(\tilde{p}_1) + \cot(p_2)$ additivity $\cot(p_1) + \cot(p_2)$ by assumption $\cot(p_1) + \cot(p_2)$ from the first two lines

Since $cost(\tilde{p}_1 \cdot p_2) < cost(p^*)$, this contradicts that p^* is a shortest $a \to b$ path. Hence p_1 must be shortest $a \to c$. By the same argument, p_2 is shortest $c \to b$.

Question 2: Iterative Deepening returns shortest paths

Theorem 1. On an unweighted (unit-edge) graph, Iterative Deepening DFS with limits $1, 2, 3, \ldots$ from a source s returns, for any discovered vertex v, a path with the minimum number of edges.

Proof. Let $\ell(v)$ be the shortest-path distance (in edges) from s to v. For $d < \ell(v)$, depth-limited DFS cannot expose any s-v path. When $d = \ell(v)$, a shortest s-v path of length $\ell(v)$ is eligible and will be found during that pass; the procedure completes the whole $d = \ell(v)$ pass before running $d = \ell(v)+1$. Therefore the first time v is returned is at depth limit $\ell(v)$, with a shortest path.

Question 3: Diameter bound

Proof. For any $u \neq v$, any simple u-v path visits vertices at most once, hence uses at most |V|-1 edges. A shortest u-v path is simple (otherwise remove a cycle to shorten it). So $\operatorname{dist}(u,v) \leq |V|-1$ for all pairs, and the maximum over pairs is at most |V|-1. The diameter is at most |V|-1.

Question 4 — Dijkstra's Algorithm and Shortest Paths

Theorem 2. Let G = (V, E, w) be a directed graph with strictly positive edge weights w(e) > 0. When Dijkstra's algorithm is run from a source s and it returns a path to any vertex v, the returned path has length $\delta(s, v)$, the true shortest-path distance from s to v.

Proof. Assume for contradiction that some vertex is *settled* with an incorrect label. Let v be the first such vertex extracted from the priority queue with $d[v] > \delta(s, v)$; thus, every previously settled u satisfies $d[u] = \delta(s, u)$.

Consider a shortest $s \to v$ path P, and let y be the first vertex on P that is not yet settled just before v is extracted; let x be the predecessor of y on P. By choice of y, x is settled. By

the induction hypothesis for earlier settled vertices, $d[x] = \delta(s, x)$. When x was settled, the relaxation of edge (x, y) gave

$$d[y] \le d[x] + w(x,y) = \delta(s,x) + w(x,y) = \delta(s,y),$$

and since y lies on a shortest $s \to v$ path, we have $\delta(s,y) \le \delta(s,v)$. Hence

$$d[y] \leq \delta(s, v).$$

Because Dijkstra extracts the unsettled vertex with minimum key, it holds that

$$d[v] \le d[y] \le \delta(s, v),$$

contradicting the assumption $d[v] > \delta(s, v)$. Therefore no such v exists, and every vertex is settled with its true distance; in particular, the path returned to any v is a shortest path. \square