

VinMin = 14.0V VinMax = 22.0V Vout = 50.0V Iout = 20.0A Device = LM5175PWPR Topology = Buck_Boost Created = 7/27/16 9:48:22 AM BOM Cost = \$0.00 BOM Count = 63 Total Pd = 96.31W

WEBENCH® Design Report

Design : 4688446/16 LM5175PWPR LM5175PWPR 14.0V-22.0V to 50.00V @ 20.0A

Electrical BOM

#	Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
1.	Cbias	TDK	C3216X7R2A105M160AA Series= X7R	Cap= 1.0 uF ESR= 7.5 mOhm VDC= 100.0 V IRMS= 5.9235 A	1	\$0.11	1206 11 mm ²
2.	Cboot1	Kemet	C0603C104K3RACTU Series= X7R	Cap= 100.0 nF VDC= 25.0 V IRMS= 0.0 A	1	\$0.01	0603 5 mm ²
3.	Cboot2	Kemet	C0603C104K3RACTU Series= X7R	Cap= 100.0 nF VDC= 25.0 V IRMS= 0.0 A	1	\$0.01	0603 5 mm ²
4.	Cbulk	Nichicon	UUD1V680MCL1GS Series= uD	Cap= 68.0 uF ESR= 340.0 mOhm VDC= 35.0 V IRMS= 280.0 mA	1	\$0.11	SM_RADIAL_6.3BMM 80 mm ²
5.	Ccomp	MuRata	GRM216R71H103KA01D Series= X7R	Cap= 10.0 nF VDC= 50.0 V IRMS= 0.0 A	1	\$0.01	0805 7 mm ²
6.	Ccomp2	Kemet	C0805C470K5GACTU Series= C0G/NP0	Cap= 47.0 pF VDC= 50.0 V IRMS= 0.0 A	1	\$0.01	0805 7 mm ²
7.	Ccs	AVX	06035A470JAT2A Series= C0G/NP0	Cap= 47.0 pF ESR= 174.0 mOhm VDC= 50.0 V IRMS= 0.0 A	1	\$0.01	0603 5 mm ²
8.	Cf	Kemet	C0805C224K5RACTU Series= X7R	Cap= 220.0 nF ESR= 46.0 mOhm VDC= 50.0 V IRMS= 2.65 A	1	\$0.02	0805 7 mm ²
9.	Cin	Panasonic	35SVPF82M Series= ?	Cap= 82.0 uF ESR= 20.0 mOhm VDC= 35.0 V IRMS= 4.0 A	3	\$0.61	CAPSMT_62_E12 106 mi

# Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
10. Cout	Panasonic	63SXV33M Series= ?	Cap= 33.0 uF ESR= 25.0 mOhm VDC= 63.0 V IRMS= 2.95 A	11	\$1.25	CAPSMT_62_E12 106 mm ²
11. Coutx	TDK	C5750X5R2A475K Series= X5R	Cap= 4.7 uF ESR= 2.482 mOhm VDC= 100.0 V IRMS= 0.0 A	5	\$0.37	2220 54 mm ²
12. Coutx2	TDK	C5750X5R2A475K Series= X5R	Cap= 4.7 uF ESR= 2.482 mOhm VDC= 100.0 V IRMS= 0.0 A	5	\$0.37	2220 54 mm ²
13. Coutx3	TDK	C5750X5R2A475K Series= X5R	Cap= 4.7 uF ESR= 2.482 mOhm VDC= 100.0 V IRMS= 0.0 A	5	\$0.37	2220 54 mm ²
14. Cslope	Kemet	C0603C151K3GACTU Series= C0G/NP0	Cap= 150.0 pF VDC= 25.0 V IRMS= 0.0 A	1	\$0.01	0603 5 mm ²
15. Css	Kemet	C0603C223K3RACTU Series= X7R	Cap= 22.0 nF VDC= 25.0 V IRMS= 0.0 A	1	\$0.01	0603 5 mm ²
16. Cvcc	MuRata	GRM188R61C105KA93D Series= X5R	Cap= 1.0 uF ESR= 10.127 mOhm VDC= 16.0 V IRMS= 994.63 mA	1	\$0.01	0603 5 mm ²
17. D2	CUSTOM	CUSTOM	VF@Io= 500.0 mV VRRM= 27.5 V	1	NA	CUSTOM 0 mm ²
18. D3	CUSTOM	CUSTOM	VF@Io= 500.0 mV VRRM= 62.5 V	1	NA	CUSTOM 0 mm ²
19. Dboot1	CUSTOM	CUSTOM	VF@Io= 500.0 mV VRRM= 25.3 V	1	NA	CUSTOM 0 mm ²
20. Dboot2	CUSTOM	CUSTOM	VF@Io= 500.0 mV VRRM= 25.3 V	1	NA	CUSTOM 0 mm ²
21. Df	CUSTOM	CUSTOM	VF@Io= 500.0 mV VRRM= 28.6 V	1	NA	CUSTOM 0 mm ²
22. L1	CUSTOM	CUSTOM	L= 1.045 μH DCR= 12.5 mOhm	1	NA	CUSTOM 0 mm ²
23. M1	Texas Instruments	CSD17308Q3	VdsMax= 30.0 V IdsMax= 50.0 Amps	1	\$0.34	TRANS_NexFET_Q3 18 mm²
24. M2	Texas Instruments	CSD17304Q3	VdsMax= 30.0 V IdsMax= 56.0 Amps	1	\$0.36	TRANS_NexFET_Q3 18 mm²
25. M3	Texas Instruments	CSD19534Q5A	VdsMax= 100.0 V IdsMax= 50.0 Amps	1	\$0.68	TRANS_NexFET_Q5A 55 mm²
26. M4	Texas Instruments	CSD19533Q5A	VdsMax= 100.0 V IdsMax= 100.0 Amps	1	\$0.83	TRANS_NexFET_Q5A 55 mm²
27. Rcomp	Vishay-Dale	CRCW040219K1FKED Series= CRCWe3	Res= 19.1 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
28. Rcsg	Vishay-Dale	CRCW0603100RFKEA Series= CRCWe3	Res= 100.0 Ohm Power= 100.0 mW Tolerance= 1.0%	1	\$0.01	0603 5 mm ²

PWP0028F_N 98 mm²

# Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
9. Rcsp	Vishay-Dale	CRCW0603100RFKEA Series= CRCWe3	Res= 100.0 Ohm Power= 100.0 mW Tolerance= 1.0%	1	\$0.01	0603 5 mm ²
0. Rf	Vishay-Dale	CRCW060310R0FKEA Series= CRCWe3	Res= 10.0 Ohm Power= 100.0 mW Tolerance= 1.0%	1	\$0.01	0603 5 mm ²
I. Rfbb	Vishay-Dale	CRCW060320K0FKEA Series= CRCWe3	Res= 20.0 kOhm Power= 100.0 mW Tolerance= 1.0%	1	\$0.01	0603 5 mm ²
2. Rfbt	Vishay-Dale	CRCW06031M24FKEA Series= CRCWe3	Res= 1.24 MOhm Power= 100.0 mW Tolerance= 1.0%	1	\$0.01	0603 5 mm ²
3. Rmode	Vishay-Dale	CRCW060393K1FKEA Series= CRCWe3	Res= 93.1 kOhm Power= 100.0 mW Tolerance= 1.0%	1	\$0.01	0603 5 mm ²
I. Rpg	Vishay-Dale	CRCW060320K0FKEA Series= CRCWe3	Res= 20.0 kOhm Power= 100.0 mW Tolerance= 1.0%	1	\$0.01	0603 5 mm ²
i. Rsense	CUSTOM	CUSTOM Series= ?	Res= 817.31 uOhm Power= 0.0 W Tolerance= 0.0%	1	NA	CUSTOM 0 mm ²
. Rt	Vishay-Dale	CRCW040268K1FKED Series= CRCWe3	Res= 68.1 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
7. Ruvb	Vishay-Dale	CRCW040224K3FKED Series= CRCWe3	Res= 24.3 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
3. Ruvt	Vishay-Dale	CRCW0402249KFKED Series= CRCWe3	Res= 249.0 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
9. U1	Texas Instruments	LM5175PWPR	Switcher	1	\$3.10	

Operating Values

#	Name	Value	Category	Description
1.	Cin IRMS	12.075 A	Current	Input capacitor RMS ripple current
2.	Cout IRMS	21.387 A	Current	Output capacitor RMS ripple current
3.	Coutx IRMS	2.57 A	Current	Output capacitor_x RMS ripple current
4.	lin Avg	78.308 A	Current	Average input current
5.	L Ipp	41.827 A	Current	Peak-to-peak inductor ripple current
6.	L1 Irms	83.503 A	Current	Inductor ripple current
7.	M3 Irms	62.768 A	Current	MOSFET RMS ripple current
8.	M4 Irms	24.383 A	Current	MOSFET RMS ripple current
9.	SW lpk	66.405 A	Current	Peak switch current
10.	BOM Count	63	General	Total Design BOM count
11.	FootPrint	3.743 k mm ²	General	Total Foot Print Area of BOM components
12.	Frequency	367.688 kHz	General	Switching frequency
	IC Tolerance	0.0 V	General	IC Feedback Tolerance
	Pout	1,000.0 W	General	Total output power
	Total BOM	\$0.0	General	Total BOM Cost
	Low Freq Gain	60.651 dB	Op_Point	Gain at 10Hz
	M3 TiOP	41.079 degC	Op_Point	MOSFET junction temperature
	M4 TjOP	53.032 degC	Op_Point	MOSFET junction temperature
19.	Vout Actual	50.4 V	Op_Point	Vout Actual calculated based on selected voltage divider resistors
20.		50.4 V 50.0 V	Op_Point	Operational Output Voltage
	Cross Freq	11.399 kHz	Op_point	Bode plot crossover frequency
	•	56.036 %		• • •
	Duty Cycle		Op_point	Duty cycle
	Efficiency	91.215 %	Op_point	Steady state efficiency
	Gain Marg	-10.641 dB	Op_point	Bode Plot Gain Margin
25.	IC Tj	37.24 degC	Op_point	IC junction temperature
	ICThetaJA	30.5 degC/W	Op_point	IC junction-to-ambient thermal resistance
27.	_	20.0 A	Op_point	lout operating point
	Phase Marg	52.235 deg	Op_point	Bode Plot Phase Margin
	VIN_OP	14.0 V	Op_point	Vin operating point
	Vout p-p	162.607 mV	Op_point	Peak-to-peak output ripple voltage
-	Cin Pd	971.962 mW	Power	Input capacitor power dissipation
32.	Cout Pd	1.04 W	Power	Output capacitor power dissipation
33.	Coutx Pd	3.278 mW	Power	Output capacitor_x power loss
	D2 Pd	0.0 W	Power	Diode power dissipation
	D3 Pd	0.0 W	Power	Diode power dissipation
36.	IC Pd	237.363 mW	Power	IC power dissipation
37.	L Pd	87.16 W	Power	Inductor power dissipation
38.	M1 Pd	0.0 W	Power	M1 MOSFET total power dissipation
39.	M1 PdCond	0.0 W	Power	M1 MOSFET conduction losses
40.	M2 Pd	0.0 W	Power	M2 MOSFET total power dissipation
41.	M3 Pd	786.007 mW	Power	MOSFET power dissipation
42.	M3 PdCond	0.0 W	Power	M1 MOSFET conduction losses
43.	M3 PdSw	786.007 mW	Power	M1 MOSFET switching losses
44.	M3 Rdson	0.0 Ohm	Power	Drain-Source On-resistance
45.	M4 Pd	2.889 W	Power	MOSFET power dissipation
46.	M4 PdCond	0.0 W	Power	M2 MOSFET conduction losses
47.	M4 PdSw	0.0 W	Power	M2 MOSFET switching losses
48.	M4 Rdson	0.0 Ohm	Power	Drain-Source On-resistance
49.	Rsense Pd	3.22 W	Power	LED Current Rsns Power Dissipation
5 0.	Total Pd	96.311 W	Power	Total Power Dissipation
	M3 ThetaJA	55.0 degC/W	I OWEI	MOSFET junction-to-ambient thermal resistance
51.				

#	Name	Value	Category	Description
53.	Vout Tolerance	1.988 %		Vout Tolerance based on IC Tolerance (no load) and voltage divider resistors if applicable

Design Inputs

#	Name	Value	Description
1.	lout	20.0	Maximum Output Current
2.	VinMax	22.0	Maximum input voltage
3.	VinMin	14.0	Minimum input voltage
4.	Vout	50.0	Output Voltage
5.	base_pn	LM5175	Base Product Number
6.	source	DC	Input Source Type
7.	Та	30.0	Ambient temperature

Design Assistance

- 1. Tip: Snubbers and/or gate resistors may be required to limit the SW1,2 node switching spikes below the IC and FET abs max ratings.
- 2. Tip: Slope Capacitor: smaller slope capacitors provide better transition region behavior.
- 3. LM5175 Product Folder: http://www.ti.com/product/LM5175: contains the data sheet and other resources.

Texas Instruments' WEBENCH simulation tools attempt to recreate the performance of a substantially equivalent physical implementation of the design. Simulations are created using Texas Instruments' published specifications as well as the published specifications of other device manufacturers. While Texas Instruments does update this information periodically, this information may not be current at the time the simulation is built. Texas Instruments does not warrant the accuracy or completeness of the specifications or any information contained therein. Texas Instruments does not warrant that any designs or recommended parts will meet the specifications you entered, will be suitable for your application or fit for any particular purpose, or will operate as shown in the simulation in a physical implementation. Texas Instruments does not warrant that the designs are production worthy.

You should completely validate and test your design implementation to confirm the system functionality for your application prior to production.

Use of Texas Instruments' WEBENCH simulation tools is subject to Texas Instruments' Site Terms and Conditions of Use. Prototype boards based on WEBENCH created designs are provided AS IS without warranty of any kind for evaluation and testing purposes and are subject to the terms of the Evaluation License Agreement.