Τεχνικές Βελτιστοποίησης

Project: Γενετικοί Αλγόριθμοι

Fotis Alexandridis 5 February 2023

Εισαγωγή και Μαθηματική Περιγραφή του προβλήματος

Το πρόβλημα αποτελεί μια ειδικευμένη μορφή προβλήματος ροής. Για την ευκολότερη μαθηματική διατύπωση των εξισώσεων, στην εικόνα του οδικού δικτύου με πράσινους αριθμούς έχει γίνει η αρίθμηση των κόμβων:

Έτσι, η μαθηματική περιγραφή του προβλήματος δίνεται από τις ακόλουθες εξισώσεις:

Συνάρτηση προς ελαχιστοποίηση: $f(x) = \frac{\sum x_i T_i(x_i)}{V}, \forall i$. Επιπρόσθετα

ισχύει:

• V = 100[vehicles/min]

•
$$a_i = 1.25, i = 1..5$$

•
$$a_i = 1.5, i = 6...10$$

•
$$a_i = 1, i = 11...17$$

- $x_i c_i < 0, \forall i$ (μέγιστη χωρητικότητα του δρόμου)
- $-x_i \leq 0$ (μη αρνητική ροή στους δρόμους)
- $t_i = const$, $\forall i$ (σταθερές του προβλήματος)

•
$$h1(x) = V - (x_1 + x_2 + x_3 + x_4) = 0$$

•
$$h_2(x) = x_2 - (x_7 + x_8) = 0$$

•
$$h_3(x) = x_4 - (x_9 + x_{10}) = 0$$

•
$$h_4(x) = x_1 - (x_5 + x_6) = 0$$

•
$$h_5(x) = (x_3 + x_8 + x_9) - (x_{11} + x_{12} + x_{13}) = 0$$

•
$$h_6(x) = (x_6 + x_7 + x_{13}) - (x_{14} + x_{15}) = 0$$

•
$$h_7(x) = (x_{10} + x_{11}) - x_{17} = 0$$

•
$$h_8(x) = (x_5 + x_{14}) - x_{16} = 0$$

•
$$h_9(x) = (x_{12} + x_{15} + x_{16} + x_{17}) - V = 0$$

Οι περιορισμοί της μορφής $h_i(x)=0$ απορρέουν από τον μη συνωστισμό σε κόμβους (ρυθμός εισόδου = ρυθμός εξόδου)

Επίλυση του προβλήματος με την χρήση γενετικών αλγορίθμων για σταθερή ροή εισόδου

Για να επιλύσουμε το πρόβλημα με την χρήση γενετικών αλγορίθμων, χρησιμοποιούμε την συνάρτηση ga του Matlab, η οποία μας επιλύει ένα πρόβλημα με την χρήση γενετικών αλγορίθμων. Για να την χρησιμοποιήσουμε, έχουμε 2 αρχεία, τα objective_function.m, το οποίο περιέχει την συνάρτηση κόστους μας, και το αρχείο solve_problem_const_V.m, το οποίο επιλύει το πρόβλημα. Παραθέτουμε στην συνάρτηση τους περιορισμούς που αναφέραμε παραπάνω (τους ισοτικούς με την μορφή πινάκων, δίνουμε τους πίνακες A_{eq}, b_{eq} για τους οποίους ισχύει $A_{eq}x=b_{eq}$) και τους ανισοτικούς για τα x_i με την μορφή κατώτερων (0) και ανώτερων ορίων (c_i) . Ακόμη, θεωρούμε κατα την εκφώνηση της άσκησης V=100, και από default επιλογές έχουμε πληθυσμό 200 ατόμων.

Στα πλαίσια αυτής της εργασίας, θεωρήθηκε δίχως βλάβη της γενικότητας ότι $t_i=5, \forall i$. Βρέθηκε βέλτιστος χρόνος 189.05 λεπτά, με τον αλγόριθμο να τρέχει για 514 γενιές, και να τερματίζει για πολύ μικρή μέση αλλαγή στην συνάρτηση ικανότητας. Το διάγραμμα που παρουσιάζει τον χρόνο του καλύτερου και του μέσου ατόμου κάθε πληθυσμού (παραλείπονται μερικοί αρχικοί πληθυσμοί λόγω αστρονομικά μεγάλου χρόνου) φαίνεται παρακάτω:

Μπορούμε να δούμε πως ο αλγόριθμος κατάφερε να βρει λύση στο $\piρόβλημά μας. Οι βέλτιστες τιμές για τα <math>x_i$ μπορούν να βρεθούν με την εκτέλεση του αρχείου solve_problem_const_V.m

Επίλυση του προβλήματος με την χρήση γενετικών αλγορίθμων για μεταβλητή ροή εισόδου

Για το τελευταίο ερώτημα, δίνεται ότι το V μπορεί να πάρει τιμές από 85 έως 115 vehicles/min. Λύνουμε το πρόβλημα (με τις ίδιες υποθέσεις που κάναμε και στην προηγούμενη ερώτηση) για κάθε πιθανή ακέραια τιμή του V στο επιτρεπτό διάστημα. Τα αποτελέσματα φαίνονται παρακάτω:

V	# Generations	Best time
85	503	137.243242389986
86	590	140.130335177174
87	537	143.085026699582
88	534	146.110034486862
89	537	149.210677843688
90	564	152.383847476252
91	516	155.637267555057
92	514	158.975910706364
93	581	162.398834722474
94	578	165.911901126976
95	526	169.513255792205
96	528	173.215548502983
97	506	177.020515771439
98	489	180.928647996629
99	499	184.950450105908
100	491	189.084967055900
101	475	193.341557795113
102	460	197.728217694318
103	440	202.243335580773
104	506	206.902641429228

V	# Generations	Best time
105	449	211.699581316761
106	448	216.655638228028
107	418	221.780842608394
108	478	227.069897670115
109	442	232.538314458061
110	549	238.199761225718
111	412	244.052504033767
112	516	250.132985514994
113	546	256.433678666917
114	459	262.978961365735
115	439	269.773864907083

Οι βέλτιστες τιμές για τα x_i , καθώς και τυχόν περαιτέρω πληροφορίες για κάθε σενάριο, μπορούν να βρεθούν με την εκτέλεση του αρχείου solve_problem_variable_V.m

Σα συμπέρασμα, βλέπουμε πως όσο το V αυξάνει, τόσο αυξάνει και ο χρόνος διάσχισης του οδικού δικτύου. Αυτό βγάζει νόημα, καθώς εισαγάγουμε σε ένα οδικό δίκτυο σταθερής πεπερασμένης χωρητικότητας μεγαλύτερο ρυθμό οχημάτων, και γνωρίζουμε από την υπόσταση του προβλήματος για έναν οποιονδήποτε δρόμο πως όσο αυξάνει ο ρυθμός διέλευσης οχημάτων αυξάνεται και ο χρόνος διάσχισής του.