

TD7 - Automates et Langages

novembre 2018

Exercice 1: Minimisation

Donner l'automate minimal déterministe équivalent à l'automate non déterministe suivant :

L'algorithme de minimalisation vu en cours ne peut s'appliquer qu'à un automate déterministe complet. Cet automate n'est ni complet, ni déterministe. Avant de le rendre minimal, il faut donc le rendre complet et déterministe. L'algorithme de déterminisation aboutit au tableau situé à droite :

	a	D
{0}	{1}	{2}
{1}	{3}	$\{1,2\}$
{2}	$\{2,3\}$	{2}
{3}	Ø	{3}
{1,2}	$\{2,3\}$	{1,2}
$\{2,3\}$	$\{2,3\}$	$\{2,3\}$
Ø	Ø	Ø

L'automate est maintenant déterministe et complet.

Pour des raisons de commodité, il est préférable de renommer les états :

	a	b
$q_0 = \{0\}$	q_1	q_2
$q_1 = \{1\}$	q_3	q_4
$q_2 = \{2\}$	q_5	q_2
$q_3 = \{3\}$	q_6	q_3
$q_4 = \{1, 2\}$	q_5	q_4
$q_5 = \{2, 3\}$	q_5	q_5
$q_6 = \emptyset$	q_6	q_6

On peut désormais appliquer l'algorithme de minimalisation.

Étape 0:

Les états sont partitionnés entre états acceptants et non acceptants :

$$-A = \{q_1, q_3, q_4, q_5\}$$
 (acceptants)

$$-B = \{q_0, q_2, q_6\} \text{ (non acceptants)}$$

	a	Ъ
$rac{q_0}{\mathrm{B}}$	$egin{array}{c} q_1 \ \mathrm{A} \end{array}$	$rac{q_2}{\mathrm{B}}$
$egin{array}{c} q_1 \ { m A} \end{array}$	$egin{array}{c} q_3 \ A \end{array}$	$rac{q_4}{ m A}$
$\frac{q_2}{\mathrm{B}}$	$q_5 \ { m A}$	q_2 B
$egin{array}{c} q_3 \ A \end{array}$	q_6 B	q_3 A
$egin{array}{c} q_4 \ \mathrm{A} \end{array}$	$egin{array}{c} q_5 \ \mathrm{A} \end{array}$	$q_4 \ { m A}$
$q_5 \ {f A}$	$egin{array}{c} q_5 \ \mathrm{A} \end{array}$	$q_5 \ { m A}$
q_6 B	$rac{q_6}{\mathrm{B}}$	$rac{q_6}{\mathrm{B}}$

Étape 1 :

- L'ensemble A doit être partitionné en deux sous-ensembles : $AA = \{q_1, q_4, q_5\}$ et $AB = \{q_3\}$
- L'ensemble A doit être partitionné en deux sous-ensembles : $BA = \{q_0, q_2\}$ et $BB = \{q_6\}$

	a	b
$egin{array}{c} q_0 \ \mathrm{BA} \end{array}$	$q_1 \ \Lambda\Lambda$	$q_2 \\ { m BA}$
$egin{array}{c} q_1 \ \mathrm{AA} \end{array}$	$q_3 \ { m AB}$	$q_4 \\ { m AA}$
q_2 BA	$egin{array}{c} q_5 \ { m AA} \end{array}$	$q_2 \\ \mathrm{BA}$
q_3 AB	$q_6 \ \mathrm{BB}$	$q_3 \ { m AB}$
$q_4 \ \mathrm{AA}$	$q_5 \ { m AA}$	$q_4 \ \Lambda \Lambda$
$q_5 \ { m AA}$	$q_5 \ { m AA}$	$q_5 \ { m AA}$
$egin{array}{c} q_6 \ \mathrm{BB} \end{array}$	q_6 BB	q_6 BB

Étape 2:

- L'ensemble AA doit être partitionné : $AAA = \{q_1\}$ et $AAB = \{q_4, q_5\}$
- L'ensemble BA ne doit pas être partitionné à cette étape.
- Les autres ensembles sont des singletons

	a	b
$q_0 \ \mathrm{BA}$	$q_1 \\ { m AAA}$	$rac{q_2}{\mathrm{BA}}$
$q_1 \\ { m AAA}$	q_3 AB	$q_4 \\ { m AAB}$
q_2 BA	$q_5 \ { m AAB}$	q_2 BA
q_3 AB	$q_6 \ { m BB}$	q_3 AB
q_4 AAB	$q_5 \\ { m AAB}$	$q_4 \\ { m AAB}$
$q_5 \\ { m AAB}$	$q_5 \\ { m AAB}$	$q_5 \ { m AAB}$
q_6 BB	$q_6 \ \mathrm{BB}$	$rac{q_6}{\mathrm{BB}}$

Étape 3:

- L'ensemble AAB ne doit pas être partitionné :
- L'ensemble BA doit être partitionné : $BA_A = \{q_0\}$ et $BA_B = \{q_2\}$
- Les autres ensembles sont des singletons

	a	b
$egin{array}{c} q_0 \ \mathrm{BA_A} \end{array}$	$q_1 \\ { m AAA}$	$egin{array}{c} q_2 \ \mathrm{BA_B} \end{array}$
$q_1 \\ { m AAA}$	q_3 AB	$q_4 \\ { m AAB}$
$egin{array}{c} q_2 \ \mathrm{BA_B} \end{array}$	$q_5 \ { m AAB}$	$egin{array}{c} q_2 \ \mathrm{BA_B} \end{array}$
$egin{array}{c} q_3 \ \mathrm{AB} \end{array}$	$q_6 \ { m BB}$	$q_3 \ { m AB}$
$q_4 \\ { m AAB}$	$q_5 \\ { m AAB}$	$^{q_4}_{\rm AAB}$
$q_5 \ { m AAB}$	$q_5 \ { m AAB}$	$q_5 \ { m A}\Lambda { m B}$
q ₆ BB	$rac{q_6}{\mathrm{BB}}$	$rac{q_6}{\mathrm{BB}}$

Étape 4:

- L'ensemble AAB ne doit pas être partitionné :
- Les autres ensembles sont des singletons Le tableau précédent a donc établi la congruence de Nérode. L'automate minimal regroupe les états q_4 et q_5 .

Pour établir et résoudre le système d'équations associé à un automate, il n'est pas nécessaire que ce dernier soit déterministe.

${f Q}$ 1 . Trouvez une expression rationnelle pour le langage reconnu par l'automate suivant :

On pose le système d'équations suivant :

$$R_0 = aR_1 + aR_2 + \varepsilon$$

système d'équations consiste à exprimer R_0 uniquement en fonction de lettres de l'alphabet et ε . Il faut y éliminer toutes les occurrences de R_0 , R_1 et R_2 .

Nous choisissons de commencer la résolution par l'équation :

$$- R_1 = bR_1 + aR_2$$

Cette équation est de la forme $R_1 = A.R_1 + B$, avec A = b et $B = aR_2$. Le lemme d'Arden ne peut être appliqué que si $\varepsilon \notin A$. Ici, A=b et par conséquent $\varepsilon \notin A$. On peut donc appliquer le lemme d'Arden. On a donc $R_1 = A^*.B = b^*.a.R_2$

En remplaçant
$$R_1$$
, on obtient ainsi le système :
$$\begin{cases} R_0 = a.b^*.a.R_2 + aR_2 + \varepsilon = (a.b^* + \varepsilon).a.R_2 + \varepsilon \\ R_1 = b^*.a.R_2 \\ R_2 = bR_0 + bR_2 + \varepsilon \end{cases}$$

Considérons maintenant l'équation :

$$-R_2 = bR_0 + bR_2 + \varepsilon$$

Cette équation est de la forme $R_2 = A.R_2 + B$, avec A = b et $B = bR_0 + \varepsilon$. Le lemme d'Arden ne peut être appliqué que si $\varepsilon \not\in A$. Ici, A=b et par conséquent $\varepsilon \not\in A$. On peut donc appliquer le lemme d'Arden. On a donc $R_2 = A^*.B = b^*.(bR_0 + \varepsilon).$

En remplaçant
$$R_2$$
, on obtient ainsi le système :
$$\begin{cases} R_0 &= (a.b^* + \varepsilon).a.b^*.(bR_0 + \varepsilon) + \varepsilon \\ R_1 &= b^*.a.R_2 \\ R_2 &= b^*.(bR_0 + \varepsilon) \end{cases}$$

Considérons maintenant l'équation :

$$-R_0 = (a.b^* + \varepsilon).a.b^*.(bR_0 + \varepsilon) + \varepsilon$$

Par distribution par rapport à $(bR_0 + \varepsilon)$, cette équation est équivalente à :

$$-R_0 = (a.b^* + \varepsilon).a.b^*.b.R_0 + (a.b^* + \varepsilon).a.b^* + \varepsilon$$

Cette équation est de la forme $R_0 = A.R_0 + B$, avec $A = (a.b^* + \varepsilon).a.b^*.b$ et $B = (a.b^* + \varepsilon).a.b^* + \varepsilon$. Le lemme d'Arden ne peut être appliqué que si $\varepsilon \not\in A$. Ici, les mots de A commencent nécessairement par un a. Par conséquent $\varepsilon \notin A$. On peut donc appliquer le lemme d'Arden. On a donc $R_0 = A^*.B = (a.b^* +$ $(\varepsilon).a.b^*.b^*.((a.b^*+\varepsilon).a.b^*+\varepsilon).$

${f Q}$ 2. Même question pour cet automate :

	$\mathcal{L}(A) =$	$L_0 = aL_1 + bL_2 + \epsilon$	(e_0)
		$L_1 = bL_0$	(e_1)
		$L_2 = aL_3$	(e_2)
		$L_3 = bL_1 + aL_3$	(e_3)
*		$L_3 = a^*bL_1$	(1)
6 - 17		$L_3 = a^*bbL_0$	(2)
		$L_2 = aa^*bbL_0$	(3)
		$L_0 = abL_0 + baa^*bbL_0 + \epsilon$	(4)
		$L_0 = (a + baa^*b)bL_0 + \epsilon$	(5)
		$L_0 = ((a + baa^*b)b)^*$	(6)