```
import pandas as pd
pd.options.display.float_format = '{:,.2f}'.format
import numpy as np
{\tt import\ matplotlib.pyplot\ as\ plt}
import seaborn as sns
from IPython.display import Image
from \ sklearn.tree \ import \ Decision Tree Classifier
+ Code - + Text
df = pd.read_csv("/content/shopping_trends_updated.csv")
```

df.head(10)

	Customer ID	Age	Gender	Item Purchased	Category	Purchase Amount (USD)	Location	Size	Color	Season	Review Rating	Subscription Status	Shipping Type	Dis Ap
0	1	55	Male	Blouse	Clothing	53	Kentucky	L	Gray	Winter	3.10	Yes	Express	
1	2	19	Male	Sweater	Clothing	64	Maine	L	Maroon	Winter	3.10	Yes	Express	
2	3	50	Male	Jeans	Clothing	73	Massachusetts	S	Maroon	Spring	3.10	Yes	Free Shipping	
3	4	21	Male	Sandals	Footwear	90	Rhode Island	М	Maroon	Spring	3.50	Yes	Next Day Air	
4	5	45	Male	Blouse	Clothing	49	Oregon	М	Turquoise	Spring	2.70	Yes	Free Shipping	
5	6	46	Male	Sneakers	Footwear	20	Wyoming	M	White	Summer	2.90	Yes	Standard	
6	7	63	Male	Shirt	Clothing	85	Montana	М	Gray	Fall	3.20	Yes	Free Shipping	
7	8	27	Male	Shorts	Clothing	34	Louisiana	L	Charcoal	Winter	3.20	Yes	Free Shipping	
8	9	26	Male	Coat	Outerwear	97	West Virginia	L	Silver	Summer	2.60	Yes	Express	
9	10	57	Male	Handbag	Accessories	31	Missouri	М	Pink	Spring	4.80	Yes	2-Day Shipping	>

```
df.shape
```

(3900, 18)

df.columns

```
Index(['Customer ID', 'Age', 'Gender', 'Item Purchased', 'Category',
              'Purchase Amount (USD)', 'Location', 'Size', 'Color', 'Season', 'Review Rating', 'Subscription Status', 'Shipping Type', 'Discount Applied', 'Promo Code Used', 'Previous Purchases', 'Payment Method', 'Frequency of Purchases'],
            dtype='object')
```

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 3900 entries, 0 to 3899

Jata	columns (total 18 colum	ns):	
#	Column	Non-Null Count	Dtype
0	Customer ID	3900 non-null	int64
1	Age	3900 non-null	int64
2	Gender	3900 non-null	object
3	Item Purchased	3900 non-null	object
4	Category	3900 non-null	object
5	Purchase Amount (USD)	3900 non-null	int64
6	Location	3900 non-null	object
7	Size	3900 non-null	object
8	Color	3900 non-null	object
9	Season	3900 non-null	object
10	Review Rating	3900 non-null	float64
11	Subscription Status	3900 non-null	object
12	Shipping Type	3900 non-null	object
13	Discount Applied	3900 non-null	object
14	Promo Code Used	3900 non-null	object
15	Previous Purchases	3900 non-null	int64
16	Payment Method	3900 non-null	object

...

17 Frequency of Purchases 3900 non-null object dtypes: float64(1), int64(4), object(13)

memory usage: 548.6+ KB

df.describe()

		Customer ID	Age	Purchase Amount (USD)	Review Rating	Previous Purchases	
c	ount	3,900.00	3,900.00	3,900.00	3,900.00	3,900.00	11.
r	nean	1,950.50	44.07	59.76	3.75	25.35	
	std	1,125.98	15.21	23.69	0.72	14.45	
	min	1.00	18.00	20.00	2.50	1.00	
	25%	975.75	31.00	39.00	3.10	13.00	
	50%	1,950.50	44.00	60.00	3.70	25.00	
	75%	2,925.25	57.00	81.00	4.40	38.00	
	max	3,900.00	70.00	100.00	5.00	50.00	

df.describe()

	Customer ID	Age	Purchase Amount (USD)	Review Rating	Previous Purchases
count	3,900.00	3,900.00	3,900.00	3,900.00	3,900.00
mean	1,950.50	44.07	59.76	3.75	25.35
std	1,125.98	15.21	23.69	0.72	14.45
min	1.00	18.00	20.00	2.50	1.00
25%	975.75	31.00	39.00	3.10	13.00
50%	1,950.50	44.00	60.00	3.70	25.00
75%	2,925.25	57.00	81.00	4.40	38.00
max	3,900.00	70.00	100.00	5.00	50.00

df.isnull().sum()

Customer ID 0 Age Gender Item Purchased 0 Category Purchase Amount (USD) 0 Location Size 0 Color Season 0 Review Rating 0 Subscription Status 0 0 Shipping Type Discount Applied 0 Promo Code Used 0 Previous Purchases 0 Payment Method 0 Frequency of Purchases dtype: int64

df.duplicated().sum()

0

Visualization

```
fig, ax = plt.subplots(figsize = (15, 5))
ax.hist(df['Age'], bins = 26, edgecolor = 'black', color = 'lightblue', density = True)
df['Age'].plot(kind = 'kde', color = 'red', ax = ax)
ax.set_xlabel('Age')
ax.set_ylabel('Density')
ax.set_title('Age Distribution Histogram with Density Curve')
ax.legend(['Density Curve', 'Histogram'])
step = 4
plt.xticks(range(int(df['Age'].min()), int(df['Age'].max()) + 1, step))
plt.show()
```


1.GENDER

Gender

```
plt.figure(figsize = (8, 4))
counts = df["Gender"].value_counts()
explode = (0, 0.05)

counts.plot(kind = 'pie', fontsize = 14, colors = colors, explode = explode, autopct = '%1.1f%%')
plt.xlabel('Gender', weight = "bold", fontsize = 14, labelpad = 20)
plt.axis('equal')
plt.legend(labels = counts.index, loc = "best")
plt.show()
```


Gender

2. Category

df["Category"].value_counts()

```
Clothing 1737
Accessories 1240
Footwear 599
Outerwear 324
Name: Category, dtype: int64
```

```
ax = df["Category"].value_counts().plot(kind = 'bar',color = colors, rot = 0)
ax.set_xticklabels(('Clothing', 'Accessories', 'Footwear', 'Outerwear'))

for p in ax.patches:
    ax.annotate(int(p.get_height()), (p.get_x() + 0.25, p.get_height() + 1), ha = 'center', va = 'bottom', color = 'black')
    ax.tick_params(axis = 'both', labelsize = 15)
plt.xlabel('Category', weight = "bold", fontsize = 14, labelpad = 20)
plt.ylabel('Number of Occurrences', weight = "bold", fontsize = 14, labelpad = 20);
```



```
plt.figure(figsize = (8, 4))
counts = df["Category"].value_counts()

counts.plot(kind='pie', fontsize=12, colors=colors, explode=(0.01, 0.01, 0.01, 0.01), autopct='%1.1f%%')
plt.xlabel('Category', weight="bold", fontsize=14, labelpad=20)
plt.axis('equal')
plt.legend(labels=counts.index, loc="best")
plt.show()
```


3.LOCATION

plt.figure(figsize=(10, 20))
df.Location.value_counts(ascending=True).plot(kind='barh',color=colors)
plt.show()

```
Illinois
           Alabama
          Minnesota
           New York
            Nevada
           Nebraska
           Maryland
           Vermont
           Louisiana
        North Dakota
        West Virginia
          Mississippi
            Indiana
           Arkansas
            Georgia
         Connecticut
       North Carolina
              Ohio
            Virginia
             Maine
              Texas
       South Carolina
           Colorado
          Wisconsin
            Oregon
        Pennsylvania
         Washington
           Michigan
            Alaska
       Massachusetts
4.Size
df["Size"].value_counts()
     Μ
            1755
     L
            1053
     S
             663
     XL
             429
     Name: Size, dtype: int64
ax = df["Size"].value\_counts().plot(kind = 'bar', color = colors, rot = 0)
ax.set_xticklabels(('M', 'L', 'S', 'XL'))
for p in ax.patches:
    ax.annotate(int(p.get\_height()), (p.get\_x() + 0.25, p.get\_height() + 1), ha = 'center', va = 'bottom', color = 'black')
    ax.tick_params(axis = 'both', labelsize = 15)
plt.xlabel('Size', weight = "bold", fontsize = 14, labelpad = 20)
plt.ylabel('Number of Occurrences', weight = "bold", fontsize = 14, labelpad = 20);
```

```
plt.figure(figsize = (8, 4))

counts = df["Size"].value_counts()

counts.plot(kind = 'pie', fontsize = 12, colors = colors, explode = (0.01, 0.01, 0.01, 0.01), autopct = '%1.1f%%')
plt.xlabel('Size', weight = "bold", fontsize = 14, labelpad = 20)
plt.axis('equal')
plt.legend(labels = counts.index, loc = "best")
plt.show()
```


5.Seasons

sns.pairplot(df,hue='Gender')

Size

```
df["Season"].value_counts()
     Spring
               999
     Fall
               975
     Winter
               955
     Summer
     Name: Season, dtype: int64
Analyse
average_age = df['Age'].mean()
print("Average age:", average_age)
     Average age: 44.06846153846154
total_purchase_by_category = df.groupby('Category')['Purchase Amount (USD)'].sum()
print("total purchaseby categories:")
print(total_purchase_by_category)
     total purchaseby categories:
     Category
     Accessories
                     74200
                    104264
     Clothing
     Footwear
                     36093
     Outerwear
                     18524
     Name: Purchase Amount (USD), dtype: int64
most_common_payment_method = df['Payment Method'].mode()[0]
print("most common payement method:", most_common_payment_method)
     most common payement method: PayPal
```


Analyse

```
average_age = df['Age'].mean()
print("Average Age:", average_age)

   Average Age: 44.06846153846154

most_common_payment_method = df['Payment Method'].mode()[0]
print("Most common payement method:", most_common_payment_method)
   Most common payement method: PayPal
sns.pairplot(df,hue='Gender')
```


df_item = df['Item Purchased'].groupby(df['Gender']).value_counts(normalize= True).rename('frequency').to_frame().reset_index()
df_item

	Gender	Item Purchased	frequency	⊞
0	Female	Blouse	0.05	ıl.
1	Female	Sandals	0.05	
2	Female	Shirt	0.05	
3	Female	Handbag	0.05	
4	Female	Socks	0.05	
5	Female	Sunglasses	0.04	
6	Female	Belt	0.04	
7	Female	Jacket	0.04	
8	Female	Dress	0.04	
9	Female	Hat	0.04	
10	Female	Jewelry	0.04	
11	Female	Hoodie	0.04	
12	Female	Boots	0.04	
13	Female	Sweater	0.04	
14	Female	Skirt	0.04	
15	Female	Pants	0.04	
16	Female	Shoes	0.04	
17	Female	Shorts	0.04	
18	Female	Coat	0.04	
19	Female	T-shirt	0.04	
20	Female	Scarf	0.04	
21	Female	Sneakers	0.03	
22	Female	Backpack	0.03	
23	Female	Gloves	0.03	
24	Female	Jeans	0.02	
25	Male	Pants	0.05	
26	Male	Jewelry	0.04	
27	Male	Coat	0.04	
28	Male	Dress	0.04	
29	Male	Sweater	0.04	
30	Male	Scarf	0.04	
31	Male	Shirt	0.04	
32	Male	Jacket	0.04	
33	Male	Shorts	0.04	
34	Male	Skirt	0.04	
35	Male	Backpack	0.04	
36	Male	Belt	0.04	
37	Male	Blouse	0.04	
figur	e(figsiz	re = (25, 6))		
barpl	lot(data	= df_item,x='Ite	em Purchased	d',y='fr
хтаре	:т(тсеш	Purchased')		

```
plt.f
                                                                                               ')
sns.b
plt.xlabel('Item Purchased')
plt.ylabel('Frequenncy')
plt.title("Item Purchased Distribution");
```


sns.countplot(x='Category', hue='Size', data=df)

cross_tab = pd.crosstab(df['Payment Method'], df['Age'])
print(cross_tab)

Age	18	19	20	21	22	23	24	25	26	27	 61	62	63	64	\
Payment Method															
Bank Transfer	10	20	10	9	12	11	11	13	11	15	 5	12	7	11	
Cash	17	12	7	18	19	8	12	14	12	17	 17	13	12	14	
Credit Card	14	16	11	8	8	13	11	14	15	12	 11	12	21	13	
Debit Card	6	7	14	12	10	15	11	14	17	14	 12	8	12	15	
PayPal	11	13	10	8	13	12	10	18	8	13	 8	19	13	8	
Venmo	11	13	10	14	4	12	13	12	6	12	 12	19	10	12	
Age	65	66	67	68	69	70									
Payment Method															
Bank Transfer	11	15	7	14	18	15									
Cash	15	9	8	18	16	10									
Credit Card	16	17	14	9	14	12									
Debit Card	6	9	9	10	22	10									
PayPal	14	11	11	8	7	9									
Venmo	10	10	5	16	11	11									

[6 rows x 53 columns]

Prediction

```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy_score, classification_report

features = ["Age", "Gender", "Category", "Purchase Amount (USD)", "Location", "Shipping Type"]
X = df[features]
y = df["Discount Applied"]

X = pd.get_dummies(X, columns=["Age", "Gender", "Category", "Purchase Amount (USD)", "Location", "Shipping Type"], drop_first=True)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

```
scaler = StandardScaler()
      X_train = scaler.fit_transform(X_train)
X test = scaler.transform(X test)
   from sklearn.linear_model import LogisticRegression
      classifier = LogisticRegression(random_state = 0, solver='lbfgs', multi_class='auto')
   classifier.fit(X train, y train)
                                                                                                                                                                                                                                   LogisticRegression
                                                                                            LogisticRegression(random_state=0)
   y_pred = classifier.predict(X_test)
y_pred
                                                                            array(['Yes', 'Yes', 'No', 'No', 'Yes', 'Yes', 'Yes', 'Yes', 'No', 'No', 'No', 'Yes', 'Yes', 'No', 'No', 'No', 'No', 'No', 'Yes', 'No', 'Yes', 'No', 'Yes', 'Yes', 'Yes', 'Yes', 'No', 'Yes', 'No', 'Yes', 'No', 'No', 'No', 'No', 'No', 'No', 'Yes', '
                                                                                                                                                                                              No', 'Yes', 'No', 'Yes', 'Yes', 'Yes', 'No', 'No', 'Yes', 'No', 'No', 'No', 'No', 'No', 'Yes', 'No', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'No', 'No', 'No', 'Yes', 'Yes', 'No', 'No', 'Yes', 'No', 'Yes', 'No', 'Yes', 'Yes', 'No', 'Yes', 
                                                                                                                                                                                                 res , res , res , no , res , r
                                                                                                                                                                                              'Yes', 'Yes', 'No', 'Yes', 'Yes', 'No', 'No', 'Yes', 'No', 'No', 'Yes', 'No', 'No', 'Yes', 'No', 'Yes', 'Yes', 'No', 'Yes', 'Ye
                                                                                                                                                                                                 'No', 'Yes', 'Yes', 'No', 'No', 'Yes', 'No', 'Yes', 'Yes', 'Yes', 'No', 'Yes', 'No', 'No', 'No', 'No', 'Yes', 'No', 'Yes', 'No', 'Yes', 'Yes', 'No', 'Yes', 'Yes', 'Yes', 'No', 'Yes', 'No', 'Yes', 'Yes', 'Yes', 'No', 'Yes', 'Yes', 'No', 'Yes', 'No', 'Yes', 'No', 'Yes', 'Yes', 'Yes', 'No', 'Yes', 'Yes', 'Yes', 'No', 'Yes', 'Yes'
                                                                                                                                                                                                 'Yes', 'No', 'Yes', 'Yes', 'No', 'Yes', 'Yes', 'No', 'Yes', 'No', 'Yes', 'No', 'No', 'Yes', 'No', 'No
                                                                                                                                                                                                       'No', 'Yes', 'Yes', 'No', 'Yes', 'No', 'No',
                                                                                                                                                                                                 'No', 'Yes', 'Yes', 'No', 'Yes', 'No', 'No', 'Yes', 'No', 'No', 'Yes', 'No', 'No', 'No', 'Yes', 'Yes', 'No', 'No', 'No', 'No', 'No', 'Yes', 'No', 'Yes', 'No', 'Yes', 'No', 'Yes', 'Yes', 'No', 'No', 'Yes', 'No', 'No', 'Yes', 'No', 'No', 'Yes', 'No', 'Yes', 'No', 'No', 'Yes', 'No', 'No', 'Yes', 'No', 'No', 'Yes', 'No', 
                                                                                                                                                                                                    'No', 'Yes', 'No', 'No', 'Yes', 'Yes', 'No', 'Yes', 'No', 'Yes'
'Yes', 'Yes', 'Yes', 'No', 'Yes', 'Yes', 'No', 'Yes', 'Yes', 'No', 'Yes', 'No', 'Yes', 'Yes', 'No', 'Yes', 'Yes'
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Yes', Yes',
                                                                                                                                                                                                 Yes', 'Yes', 'No', 'No', 'No', 'Yes', 'No', 'No', 'No', 'No', 'Yes', 'No', 'Yes', 'No', 'Yes', 'No', 'Yes', 'No', 'Yes', 'No', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'No', 
                                                                                                                                                                                           'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'Yes', 'Yes', 'Yes', 'Yes', 'No', 'Yes', 'No', 'Yes', 'Yo', 'Yes', 'Yo', 'No', 'Yes', 
   probs_y=classifier.predict_proba(X_test)
   probs_y
                                                                                      array([[4.20313584e-01, 5.79686416e-01],
                                                                                                                                                                                                    [2.63196904e-01, 7.36803096e-01],
                                                                                                                                                                                                 [5.49545065e-01, 4.50454935e-01],
                                                                                                                                                                                                       [9.99681770e-01, 3.18230008e-04],
                                                                                                                                                                                                       [4.09163171e-01, 5.90836829e-01],
                                                                                                                                                                                                       [5.67828894e-01, 4.32171106e-01]])
```

```
probs_y = np.round(probs_y, 2)
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)
print(classification_report(y_test, y_pred))
          Accuracy: 0.68333333333333333
                                                                recall f1-score
                                                                                                        support
                                                 0.75
                                                                     0.62
                                                                                         0.68
                                                                                                                 422
                              No
                            Yes
                                                                     0.76
                                                                                         0.69
                                                                                                                358
                                                 0.63
                                                                                                                780
                                                                                         0.68
                 accuracy
                macro avg
                                                 0.69
                                                                     0.69
                                                                                          0.68
                                                                                                                780
          weighted avg
                                                 0.70
                                                                     0.68
                                                                                          0.68
                                                                                                                780
res += "-"*65+"\n"
res += "\n".join("{:<10} | {:<10} | {:<10} | {:<13} | {:<10}".format(x, y, a, b, c) for x, y, a, b, c in zip(y_test, y_pred, probs_y[:,6] for x, y, a, b, c in zip(y_test, y_pred, probs_y[:,6] for x, y, a, b, c in zip(y_test, y_pred, probs_y[:,6] for x, y, a, b, c in zip(y_test, y_pred, probs_y[:,6] for x, y, a, b, c in zip(y_test, y_pred, probs_y[:,6] for x, y, a, b, c in zip(y_test, y_pred, probs_y[:,6] for x, y, a, b, c in zip(y_test, y_pred, probs_y[:,6] for x, y, a, b, c in zip(y_test, y_pred, probs_y[:,6] for x, y, a, b, c in zip(y_test, y_pred, probs_y[:,6] for x, y, a, b, c in zip(y_test, y_pred, probs_y[:,6] for x, y, a, b, c in zip(y_test, y_pred, probs_y[:,6] for x, y, a, b, c in zip(y_test, y_pred, probs_y[:,6] for x, y, a, b, c in zip(y_test, y_pred, probs_y[:,6] for x, y, a, b, c in zip(y_test, y_pred, probs_y[:,6] for x, y, a, b, c in zip(y_test, y_pred, probs_y[:,6] for x, y, a, b, c in zip(y_test, y_pred, probs_y[:,6] for x, y, a, b, c in zip(y_test, y_pred, probs_y[:,6] for x, y, a, b, c in zip(y_test, y_pred, probs_y[:,6] for x, y, a, b, c in zip(y_test, y_pred, probs_y[:,6] for x, y, a, b, c in zip(y_test, y_pred, probs_y[:,6] for x, y, a, b, c in zip(y_test, y_pred, probs_y[:,6] for x, y, a, b, c in zip(y_test, y_pred, probs_y[:,6] for x, y, a, b, c in zip(y_test, y_pred, probs_y[:,6] for x, y, a, b, c in zip(y_test, y_pred, probs_y[:,6] for x, y, a, b, c in zip(y_test, y_pred, probs_y[:,6] for x, y, a, b, c in zip(y_test, y_pred, probs_y[:,6] for x, y, a, b, c in zip(y_test, y_pred, probs_y[:,6] for x, y, a, b, c in zip(y_test, y_pred, probs_y[:,6] for x, y, a, zip(y_test, y_pred, y_pred,
res += "\n"+"-"*65+"\n"
print(res)
                                                           1.0
                                                                                      0.0
                                                                                                                       1 0.0
          No
                                 l No
          Yes
                                    Yes
                                                               0.47
                                                                                         0.53
                                                                                                                          0.53
         No
                                   No
                                                              1.0
                                                                                       0.0
                                                                                                                          0.0
          Yes
                                    Yes
                                                               0.36
                                                                                         0.64
                                                                                                                          0.64
          Nο
                                   No
                                                               0.52
                                                                                         0.48
                                                                                                                          0.48
          Yes
                                    No
                                                               0.61
                                                                                         0.39
                                                                                                                          0.39
          Yes
                                    Yes
                                                               0.42
                                                                                         0.58
                                                                                                                          0.58
                                                               0.7
                                                                                         0.3
                                                                                                                          0.3
          No
                                    Yes
                                                               0.3
                                                                                         0.7
                                                                                                                          0.7
          Yes
                                    Yes
                                                               0.44
                                                                                         0.56
                                                                                                                          0.56
          Yes
                                                               0.35
                                                                                         0.65
                                                                                                                          0.65
                                    Yes
                                                               1.0
                                                                                       0.0
                                                                                                                          0.0
          No
                                 No
          No
                                    Yes
                                                               0.21
                                                                                         0.79
                                                                                                                          0.79
                                                                                         0.88
                                                                                                                          0.88
          No
                                   Yes
                                                               0.12
          Nο
                                    No
                                                               1.0
                                                                                         0.0
                                                                                                                          0.0
          Yes
                                    Yes
                                                               0.38
                                                                                         0.62
                                                                                                                          0.62
          No
                                                               1.0
                                                                                         0.0
                                                                                                                          0.0
          No
                                                               0.39
                                                                                         0.61
                                                                                                                          0.61
                                    Yes
                                                               1.0
                                                                                         0.0
                                                                                                                          0.0
          Yes
                                    Yes
                                                               0.44
                                                                                         0.56
                                                                                                                          0.56
          No
                                                               1.0
                                                                                       0.0
                                                                                                                          0.0
                                   No
          Yes
                                                               0.41
                                                                                         0.59
                                                                                                                          0.59
                                    Yes
                                                               0.31
                                                                                         0.69
                                                                                                                          0.69
          No
                                   Yes
                                                               0.55
                                                                                         0.45
                                                                                                                          0.45
          Yes
                                    No
         No
                                 l No
                                                               1.0
                                                                                       0.0
                                                                                                                          0.0
          Yes
                                    No
                                                               0.54
                                                                                         0.46
                                                                                                                          0.46
          Yes
                                    Yes
                                                               0.39
                                                                                         0.61
                                                                                                                          0.61
          No
                                                               0.64
                                                                                         0.36
                                                                                                                          0.36
          No
                                    Yes
                                                               0.38
                                                                                         0.62
                                                                                                                          0.62
                                                               0.41
                                                                                         0.59
                                                                                                                          0.59
                                    Yes
          No
                                                               1.0
                                                                                         0.0
                                                                                                                          0.0
                                    No
          Yes
                                   Yes
                                                               0.4
                                                                                         0.6
                                                                                                                          0.6
          No
                                                               1.0
                                                                                         0.0
                                                                                                                          0.0
                                    No
                                                               0.23
                                                                                         0.77
                                                                                                                          0.77
          Yes
                                    Yes
          No
                                    No
                                                               1.0
                                                                                         0.0
                                                                                                                          0.0
          Yes
                                   Yes
                                                               0.49
                                                                                        0.51
                                                                                                                          0.51
          No
                                    Yes
                                                               0.15
                                                                                         0.85
                                                                                                                          0.85
          Yes
                                    Yes
                                                               0.27
                                                                                         0.73
                                                                                                                          0.73
          Yes
                                    Yes
                                                               0.44
                                                                                         0.56
                                                                                                                          0.56
          No
                                                               0.24
                                                                                         0.76
                                                                                                                          0.76
                                    Yes
          No
                                    Yes
                                                               0.48
                                                                                         0.52
                                                                                                                          0.52
          Yes
                                    Yes
                                                               0.16
                                                                                         0.84
                                                                                                                          0.84
          No
                                                                                         0.0
                                                                                                                          0.0
                                    No
                                                               1.0
          Yes
                                                               0.21
                                                                                       0.79
                                                                                                                          0.79
                                   Yes
          Yes
                                    No
                                                               0.59
                                                                                         0.41
                                                                                                                          0.41
          Yes
                                 No
                                                               0.71
                                                                                         0.29
                                                                                                                          0.29
          No
                                    Yes
                                                               0.34
                                                                                         0.66
                                                                                                                          0.66
          No
                                   No
                                                               1.0
                                                                                         0.0
                                                                                                                          0.0
          No
                                   No
                                                               1.0
                                                                                         0.0
                                                                                                                          0.0
          Yes
                                                               0.43
                                                                                         0.57
                                                                                                                          0.57
                                    Yes
          No
                                    Yes
                                                               0.23
                                                                                         0.77
                                                                                                                          0.77
                                                                                         0.41
                                    No
          Yes
                                                               0.37
                                                                                                                          0.63
                                 Yes
                                                                                      0.63
          Yes
                                                               0.48
                                                                                         0.52
                                                                                                                          0.52
                                    Yes
```

Making the Confusion Matrix:

Yes

No

Yes

| Ves

No

No

Yes

Nο

0.43

1.0

0.39

1 0.48

0.57

0.61

1 0.52

0.0

1 0.57

0.0

0.61

1 0.52

```
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
print(cm)

[[261 161]
      [ 86 272]]
```

Plot confusion matrix:

```
import seaborn as sns
import pandas as pd
ax = plt.axes()
df_cm = cm
sns.heatmap(df_cm, annot=True, annot_kws={"size": 30}, fmt='d',cmap="Blues", ax = ax )
ax.set_title('Confusion Matrix')
plt.show()
```



```
y_prob = classifier.predict_proba(X_test)[:, 1]
```

```
plt.figure(figsize=(8, 6))

plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic')
plt.legend(loc="lower right")
plt.show()
```