Solutions to Test 2

- 1. Note that $495 = 3^2 \times 5 \times 11$. Therefore, $\phi(495) = \phi(3^2) \times \phi(5) \times \phi(11) = 3 \times (3-1) \times 4 \times 10 = 240$.
- 2. Simplifying the equation, we obtain $16x \equiv -5 \equiv 38 \pmod{43}$. Next, we apply extended Euclidean algorithm.

43	16		
1	0	43	а
0	1	16	b
1	-2	11	c = a - 2b
-1	3	5	d = b - c
3	-8	1	e = c - 2d

Therefore,
$$16^{-1} \equiv -8 \equiv 35 \pmod{43}$$

 $x \equiv (35)(38) \equiv 40 \pmod{43}$.

3.

a)
$$f \circ g = f(g(x)) = 3(4x + 7) \pmod{13} = 12x + 8 \pmod{13}$$
.

b) Let
$$y = 4x + 7 \pmod{13}$$
.
Then $x = 4^{-1}(y - 7) = 10(y + 6) = 10y + 8 \pmod{13}$.
Hence, $g^{-1}(y) = 10y + 8 \pmod{13}$.

- 4. Substitute each possible value to the equation and check whether the equation holds. It is straightforward to check that x = 0, 1, 3, or 4.
- 5. By Fermat's Little Theorem, $x^6 \equiv 1 \pmod{7}$. Therefore, the given equation can be simplified as $(x^6)^{337} \times x^2 \equiv x^2 \equiv 4 \pmod{7}$. Trying all values from 0 to 6, we obtain x = 2 or 5.

6. Use the following table:

a_i	m_i	M_i	α_i
2	3	20	$20^{-1} \equiv 2^{-1} \equiv 2 \pmod{3}$
1	4	15	$15^{-1} \equiv 3^{-1} \equiv 3 \pmod{4}$
3	5	12	$12^{-1} \equiv 2^{-1} \equiv 3 \pmod{5}$

$$x = 2(20)(2) + 1(15)(3) + 3(12)(3) \pmod{60}$$

= 233 (mod 60)
= 53

7.

a)
$$a = -1$$
.

b) Let the number be x and write it as $a_n 10^n + a_{n-1} 10^{n-1} + \dots + a_1 10 + a_0$. Then $x \equiv a_n 10^n + a_{n-1} 10^{n-1} + \dots + a_1 10 + a_0 \pmod{11}$ $\equiv a_n (-1)^n + a_{n-1} (-1)^{n-1} + \dots + a_1 (-1) + a_0 \pmod{11}$ Hence, the rule is to shack whether the alternating sum

Hence, the rule is to check whether the alternating sum $% \left(\mathbf{r}\right) =\mathbf{r}^{\prime }$

$$a_0 - a_1 + a_2 - a_3 + \dots + (-1)^n a_n$$

is divisible by 11.

8.
$$50 x + 30 y = 1490$$
.

50	30		
1	0	50	а
0	1	30	b
1	-1	20	c = a - b
-1	2	10	d = b - c = -a + 2b

$$50(-1) + 30(2) = 10$$

Multiplying both sides by 149, we obtain 50(-149) + 30(298) = 1490.

The general solution is given by

$$x = -149 + 3t.$$

$$y = 298 - 5t$$
.

Since x, y must be non-negative, we obtain $50 \le t \le 59$, so there are 10 combinations.

a) Since
$$N = 37 \times 47$$
, which implies $\phi(N) = (p-1)(q-1) = 36 \times 46 = 1656$. and $25d \equiv 1 \pmod{1656}$.

1656	25		
1	0	1656	а
0	1	25	b
1	-66	6	c = a - 66b
-4	265	1	d = b - 4c

Hence, $d \equiv 265 \pmod{1656}$.

b) The ciphertext is given by
$$c = 314^{25} \pmod{N} = 314^{25} \pmod{1739}$$
. $314^2 \pmod{1739} = 1212 \mod 1739$

$$314^4 \mod 1739 = 1228 \mod 1739$$

$$314^8 \mod 1739 = 271 \mod 1739$$

$$314^{16} \mod 1739 = 403 \mod 1739$$

$$314^{25} \pmod{1739} = 314^{16+8+1} \mod{899} = 403 \times 271 \times 314 \mod{1739}$$

= 1541 mod 1739

Hence, c = 1541.