

Matemática Discreta - 03

Prof. Jorge Cavalcanti
jorge.cavalcanti@univasf.edu.br
www.univasf.edu.br/~jorge.cavalcanti
www.twitter.com/jorgecav

- Fbfs proposicionais tem uma possibilidade limitada de expressão.
 - A expressão "Para todo x, x>0" pode ser considerada uma proposição verdadeira sobre os inteiros positivos.
 - Porém ela não pode ser simbolizada adequadamente usando apenas letras, parênteses e conectivos lógicos.
- Para expressões desse tipo, é necessário o uso de quantificadores e predicados.
 - Quantificadores são representações de expressões do tipo "para todo", "para cada", isto é frases que dizem quantos objetos tem determinada propriedade.
 - O quantificador universal (para todo, para cada etc.) é representado por ∀.
 - A sentença acima ficaria $(\forall x)(x>0)$.
 - O quantificador age sobre a expressão dentro do segundo parênteses.

- A frase "x>0" descreve uma propriedade da variável x de ser positiva.
 - Uma propriedade é chamada de predicado.
 - A notação P(x) é usada para representar alguma propriedade ou predicado, não explicitada, que a variável x possa ter.
 - A expressão anterior assume a seguinte forma geral: $(\forall x)P(x)$
- O valor lógico da expressão depende do domínio dos objetos que estamos referenciando.
 - Se o domínio for o conjunto dos inteiros positivos, a expressão tem valor lógico verdadeiro.
 - Caso contrário, por exemplo, todos os inteiros, a expressão teria valor falso.

- O quantificador existencial é simbolizado por ∃ e se lê "existe", "há pelo menos um".
 - Assim, a expressão

$$(\exists x)(x > 0)$$

- Pode ser lida "existe um x tal que x é maior que zero".
- Generalizando a expressão anterior:

$$(\exists x)P(x)$$

- O valor lógico da expressão depende do domínio dos objetos que estamos referenciando.
 - Se o domínio contiver um número inteiro positivo, a expressão tem valor lógico verdadeiro.
 - Caso contrário, a expressão terá valor falso.

- Os predicados vistos até agora, que envolvem apenas uma variável, são chamados de unários.
 - Os predicados também podem ser binários, ternários e n-ários.
- A expressão $(\forall x)(\exists y)Q(x,y)$, lida como "para todo x existe um y tal que Q(x,y)", contém dois quantificadores para as duas variáveis da propriedade binária.
 - A ordem dos quantificadores é importante.
- Podemos ter constantes nas expressões (qualquer que seja o número de variáveis), como objeto específico do domínio. Ex. $(\forall x)Q(x,a)$.

Quantificadores, predicados e validade

Observações:

- A ordem dos quantificadores é importante:
 - $(\forall x)(\forall y)$ é o mesmo que $(\forall y)(\forall x)$
 - $(\exists x)(\exists y)$ é o mesmo que $(\exists y)(\exists x)$
 - $(\exists x)(\forall y)$ NÃO é o mesmo que $(\forall y)(\exists x)$
 - (∃x)(∀y) ama (x, y)
 - Existe alguém que ama todo mundo
 - (∀y)(∃x) ama (x, y)
 - Todo mundo é amado por pelo menos uma pessoa.
- Seja Q(x,y) a propriedade x < y, para todos os inteiros:
 - $(\forall x)(\exists y)Q(x,y)$ Para todo inteiro x, existe um y maior que ele.
 - $(\exists y)(\forall x)Q(x,y)$ Existe um inteiro y que é maior que todo x.

Interpretação

- Uma interpretação para uma expressão envolvendo predicados consiste em:
 - Uma coleção de objetos, chamada de conjunto universo ou domínio da interpretação, incluindo pelo menos 01 objeto.
 - A especificação de uma propriedade dos objetos do domínio para cada predicado da expressão.
 - A atribuição de um objeto particular no conjunto universo para cada símbolo constante na expressão.
- Ex.01 Dê uma interpretação (isto é, o conjunto universo e o significado de P(x)) para qual (∀x)P(x) tem o valor verdadeiro.
- Ex.02 Dê uma interpretação para qual (∀x)P(x) tem o valor falso.
- Ex.03 É possível encontrar uma interpretação na qual, ao mesmo tempo, $(\forall x)P(x)$ seja V e $(\exists x)P(x)$ seja F?

- Assim com temos as fbfs proposicionais, que agrupam colchetes, parênteses, letras e conectivos, temos as fórmulas que agrupam predicados e quantificadores.
 - Essas fórmulas são chamadas de fbfs predicadas.
 - Seguem regras de sintaxe para ser considerada fbfs.
 - 1. $P(x) \vee Q(y)$
 - 2. $(\forall x)[P(x)\rightarrow Q(x)]$
 - 3. $(\forall x)((\exists y)[P(x,y) \land Q(x,y)] \rightarrow R(x))$
 - 4. $(\exists x)S(x) \lor (\forall x)T(y)$
 - Os símbolos entre colchetes e parênteses identificam o escopo de um quantificador, isto é, a parte da fbf onde o quantificador se aplica.
 - Em 1, não existe escopo. Em 2, o escopo de $(\forall x)$ é $[P(x)\rightarrow Q(x)]$.
 - Em 3, o escopo de $(\exists y)$ é $P(x,y) \land Q(x,y)$ e o de $(\forall x)$ é a expressão inteira que o segue.

Tradução

- Muitas declarações em português podem ser expressas como fbfs predicadas.
 - "Todo papagaio é feio", significa que "dada uma coisa, se é um papagaio, então é feio".
 - Usando P(x) para a frase "x é um papagaio" e por F(x) "é feio", a proposição pode ser simbolizada como

$$(\forall x)[P(x)\rightarrow F(x)]$$

- O quantificador ∀ e o conectivo → estão quase sempre juntos.
 - Analogamente, "Existe um papagaio feio" significa que "Existe alguma coisa que é, ao mesmo tempo, papagaio e feio", que pode ser representado por:

$$(\exists x)[P(x)\land F(x)]$$

 O quantificador ∃ e o conectivo ∧ estão quase sempre juntos.

Tradução

- Para traduzir uma declaração em português para uma fbf, pode ser útil escrever primeiro alguma proposição intermediária em português e depois simbolizar essa proposição.
- Advérbios "só", "somente", "apenas" podem confundir a tradução, pois sua colocação na sentença pode alterar completamente o significado.
 - João ama apenas Maria.
 - Apenas João ama Maria.
 - João apenas ama Maria.

Tradução

- Ex.: Usando os símbolos predicados abaixo, escreva as fbfs que representam as proposições logo a seguir (o domínio consiste em todas as pessoas):
 - E(x) é "x é um estudante"
 - I(x) é "x é inteligente"
 - M(x) é "x gosta de música"
- Proposições:
 - a. Todos os estudantes são inteligentes.
 - b. Alguns estudantes inteligentes gostam de música.
 - c. Todo mundo que gosta de música é um estudante não inteligente.
 - d. Apenas estudantes inteligentes gostam de música.

Tradução

Ex.: Usando os símbolos predicados indicados e quantificadores apropriados, escreva cada declaração em português como uma fbf predicada:

B(x): x é uma bola.

R(x): x é redondo.

S(x): x é uma bola de futebol

- a) Todas as bolas são redondas.
- b) Nem todas as bolas são bolas de futebol.
- c) Todas as bolas de futebol são redondas.
- d) Algumas bolas não são redondas.
- e) Toda bola redonda é uma bola de futebol.

- O valor lógico de uma fbf proposicional depende dos valores lógicos atribuídos às letras de proposição.
- O valor lógico de uma fbf predicada depende da interpretação.
- Escolher uma interpretação para uma fbf predicada é análogo a escolher valores lógicos para uma fbf proposicional.
 - Entretanto, existe uma infinidade de interpretações possíveis de uma fbf predicada e apenas 2ⁿ linhas possíveis em uma tabela verdade.
- Uma tautologia é uma fbf proposicional que assume o valor verdadeiro em todas as linhas da tabela verdade.
- O análogo de uma tautologia para uma fbf é a validade.

- Uma fbf predicada é válida se ela é verdadeira para todas as interpretações possíveis
 - A validade deve ser deduzida de sua forma, já que a validade é independente de qualquer interpretação particular.
 - Uma fbf válida é intrinsecamente verdadeira.
- Como definir a validade de uma fbf predicada?
 - Não existe algoritmo para definir a validade.
 - Necessidade de determinar se a forma de uma fbf tornaa verdadeira em todas as interpretações.
 - Não pode haver valor falso ou alguma proposição sem valor lógico.

Comparação entre Fbfs Proposicionais e Predicadas

	Fbfs proposicionais	Fbfs Predicadas
Valores Lógicos	V ou F, dependendo dos valores lógicos atribuídos às letras de proposição.	Verdadeiro, falso ou talvez (se a fbf tiver uma variável livre) sem valor lógico, dependendo da interpretação.
"Intrinsecamente verdadeiro"	Tautologia – Verdade para todas as atribuições de valores lógicos.	Fbf Válida – Verdade para todas as interpretações.
Metodologia	Tabela Verdade (algoritmo) para determinar de uma fbf é uma tautologia.	Não existe algoritmo para determinar se uma fbf é válida.

- Ex: Determine o valor lógico de cada uma das Fbfs a seguir, com a interpretação de que o conjunto universo consiste em todos os inteiros, I(x) significa "x é ímpar", L(x) que "x<0" e G(x) que "x >9".
 - 1. $(\exists x)(I(x))$
 - 2. $(\forall x)[L(x) \rightarrow I(x)]$
 - 3. $(\exists x)[L(x) \land G(x)]$
 - 4. $(\forall x)[L(x) \vee G(x)]$

- Ex: Verificar a validade das fbfs abaixo:
 - 1. $(\forall x)P(x) \rightarrow (\exists x)P(x)$
 - 2. $(\forall x)P(x) \rightarrow P(a)$
 - 3. $(\forall x) [P(x) \land Q(x)] \leftrightarrow (\forall x) P(x) \land (\forall x) Q(x)$
 - 4. $(\exists x) P(x) \rightarrow (\forall x) P(x)$
 - 5. $(\forall x) [P(x) \lor Q(x)] \leftrightarrow (\forall x) P(x) \lor (\forall x) Q(x)$
- Mais lógica??? Próximos semestres...