REPORT ME2400 Simulink Project

Name : Benny S L Roll no : ME19B087

Introduction

The task was to simulate the generalized axis model for a cnc machine using the information and data given in the paper "Identification of 5-Axis Machine Tools Feed Drive Systems for Contouring Simulation".

From the paper, the equation of the model obtained is:

$$(s^2 + a_1^* s + a_2 + a_3/s)^* x(s) = (b_0^* s^2 + b_1 s + b_2 + a_3/s)^* x_r(s) - \operatorname{sgn}(dx/dt)^* d_c$$

Where a_1 , a_2 , a_3 , b_0 , b_1 , b_2 , b_3 and d_c are the model parameters. Actual Values of which are provided in the paper.

Model Parame- ters	Actual	PSO Estimate
a_1	238.4335	226.94681
a_2	48421.5859	49915.0545
a_3	2.487140.30	2778130.868
b_0	0	-0.05340
b_1	117.5424	104.366781
b_2	37258.9796	37446.2295
d_{c}	2.6815	585.31

Closed loop transfer function obtained between commanded $(x_r mm)$ and actual position (x mm) is:

$$x(s) = \underbrace{\frac{(b_0^* s^2 + b_1 s + b_2 + a_3/s)}{(s^2 + a_1^* s + a_2 + a_3/s)}}_{tf_1 \{G_{track}(s)\}} * x_r(s) - \underbrace{\frac{1}{(s^2 + a_1^* s + a_2 + a_3/s)}}_{tf_2} * sgn(dx/dt) * d_c$$
----- equation(1)

This function is used to simulate the model in Simulink.

Simulation

Block diagram for simulations:

The model parameters are stored in model workspace in Simulink file and is used in tf_1 and tf_2 blocks.

Steps in simulation:

The input signal (commanded axis position) x_r is obtained in the form of <u>ramp block</u>. It is then passed through the <u>transfer fcn block</u>, which multiplies x_r with tf_1 . Thus we obtain the first part of RHS of the equation 1.

This modified x_r signal is then passed via <u>sum block</u> (sign of 2^{nd} terminal changed for subtraction). The output obtained from this block is the x signal (actual axis position).

A branch of the x signal is passed via derivative block (Dx/Dt) to obtain x_{dot} . It is then passed via <u>signum block</u> (Sgn) and <u>transfer fcn block</u> (tf_2) to obtain the second part of RHS of the equation 1. This obtained signal is connected to the negative terminal of <u>sum block</u> to complete the loop.

The output signal x and input signal xr is then compared using <u>scope</u> <u>block</u>.

Results & Conclusion

Equation 1 is simulated using Simulink, where a ramp of slope 1 is used as input. Simulation time was limited to 5s. The following result is obtained from scope.

 x_r is the input and x output.

The generalized axis model for a cnc machine is simulated and the results are obtained. From the results, the commanded and the actual axis positions are identical.