Functions Test 1

December 14, 2021

1 Preamble

This is a test covering what we have learnt so far in lecture. Student's <u>must show all work</u> to receive full marks.

2 Allowed Aids

The following aids are allowed on the Test

- Pencil, Pen, Eraser, Highlighter, Ruler, Protractor, Spare sheets of blank paper.
- Reference sheet (Double sided paper preprepared by student)

3 Restrictions:

• NO calculator's.

4 Remarks:

- $\mathbb{N} = \{1, 2, 3, 4, 5, \dots\}.$
- rem(x, y) is the remainder when you divide x by y.

5 Name and Date:

Print your name and todays date below;	
Name	Date

Question 1. (10 marks) Answer the following True/False questions,

- 1. Let $\mathcal{R} = \{4, 5, 6, 7, 8\}$ and $\mathcal{H} = \emptyset$, then $\mathcal{R} + \mathcal{H} = \emptyset$. Circle the correct answer: **True False**
- 2. Let $S = \{3, 4, 5\}$, then S + S = S. Circle the correct answer: **True False**
- 3. $(\sqrt{4} + \pi) \in \mathbb{Z}$. Circle the correct answer: **True False**
- 4. The vertex of

$$f(x) = 3(x+\pi)^2 - \sqrt{16}$$

is $(-\pi, -8)$.

Circle the correct answer: True False

5. The centre of the circle,

$$(x-1)^2 + (y-2)^2 = 4$$

is (-1, -2).

Circle the correct answer: True False

6. The vertex of,

$$f(x) = -(x-3)^2 - 4.$$

represents a maximum.

Circle the correct answer: True False

7. The Domain and Range of,

$$f(x) = -\frac{4}{2x+1} + 8.$$

is $\mathcal{D} = \{x \in \mathbb{R} \mid x \neq \frac{1}{2}\}, \ \mathcal{R} = \{y \in \mathbb{R} \mid y \neq 8\}.$

Circle the correct answer: True False

- 8. If $\mathcal{V} = \{v \in \mathbb{N} \mid v^2 = -1\}$, then \mathcal{V} is the empty set. Circle the correct answer: **True False**
- 9. The x-intercepts of $f(x) = x^2 5x + 6$ are $x_1 = -2$ and $x_2 = -3$. Circle the correct answer: **True False**
- 10. The vertex of $f(x) = x^2 + 6x + 5$ is (-3, -4).

Circle the correct answer: True False

Hint: Save time by going from factored form to vertex

Question 2. (4 marks) Write down the elements of the following sets. (**Recall:** $\mathbb{N} = \{1, 2, 3, 4, \dots\}$)

(a)
$$\mathcal{T} = \{ a \in \mathbb{Z} \mid 3 < a < 7 \}.$$

(b)
$$\mathcal{X} = \{x \in \mathbb{N} \mid x \neq 1\}.$$

(c)
$$\mathcal{Z} = \{y \in \mathbb{Z} \mid -3 \le y \le 0\} + \{i \in \mathbb{Z} \mid -2 \le i \le 1\}$$

Hint: Add the two sets first.

(d)
$$\mathcal{B} = \{x \in \mathbb{N} \mid \text{rem}(x, 2) = 0\}.$$

Question 3. (8 marks) Determine the Domain and Range of the following functions, (a) $\mathcal{Y}(x) = -2\sqrt{5x-10} - 8$.

(b)
$$x^2 + (y+4)^2 = 16$$
.

(c)
$$\mathcal{L}(x) = -5|x+1| - 3$$
.

(d)
$$\mathcal{E}(x) = -\frac{5}{2x-10} + 5$$
.

Question 4. Lets define the following function,

$$f \colon \mathbb{R} \to \mathbb{R}$$
$$f(x) = -x^2 + 4x + 3$$

(a) (4 marks) Convert f(x) into vertex form by completing the square.

(b) (3 marks) Sketch the function on the plot below. (Label y-intercept and vertex)

Question 5. (2 marks) We call a function idempotent if f(f(x)) = f(x). Is the function f(x) = x idempotent? Justify your answer.

 ${\bf Question}$ 6. (7 marks) Factor the following quadratic functions,

(a)
$$f(x) = -x^2 + 9x - 20$$
.

(b)
$$f(x) = 4x^2 - 1$$
.

(c)
$$f(x) = 2x^2 - 4x - 16$$
.

Hint: This can be factored simply.

Question 7. (6 marks) Let $g(x) = 5x^2 + 14x - 3$,

(a) How many solutions will g(x) have? (Note: $14^2 = 196$)

(b) Factor g(x).

Question 8. (6 marks) Let $T(x) = -\frac{1}{2}(2x - 22)(x + 1)$. Convert T(x) into vertex form.

Question 9. (6 marks) A function is <u>nilpotent</u> if there exists some number t such that f(f(t)) = 0. Let $T(x) = x^2 - 1$.

(a) Determine T(T(1)).

(b) Determine T(T(0)).

(c) Is T(x) nilpotent? Justify your answer.

Question 10. (6 marks) Let f(x) = x - 1 and g(x) = x + 1. We call f and g mutual inverses of each other if **both** of the following conditions hold,

- For every number b, f(g(b)) = b.
- For every number a, g(f(a)) = a.
- (a) Determine f(g(1)).

(b) Determine g(f(2)).

(c) Based on your answers from part (a) and (b), do you think f and g are inverses of each other?

Question 11. (6 marks) Let $S = \{x \in \mathbb{R} \mid 8x^2 + 2x - 3 = 0\}$. Write down the elements of S. Hint: Try factoring first.