Задача А. Код Хаффмана

Ограничение по времени: 1 секунда Ограничение по памяти: 512 мегабайт

Заданы числа p_1, p_2, \ldots, p_n .

Предположив, что имеется текст, содержащий p_1 символов c_1 , p_2 символов c_2 , и т. д., постройте код Хаффмана и найдите суммарное число битов, необходимое для кодирования такого текста.

Формат входных данных

Первая строка ввода содержит число $n\ (2\leqslant n\leqslant 1000)$. Вторая строка содержит n целых чисел $p_1,p_2,\ldots,p_n\ (1\leqslant p_i\leqslant 10^9)$.

Формат выходных данных

Выведите одно число — число битов, необходимое для кодирования текста с заданным во входном файле количеством вхождений каждого символа.

стандартный ввод	стандартный вывод
10	173
1 2 3 4 5 6 7 8 9 10	

Задача В. Преобразование Барроуза-Уиллера

Ограничение по времени: 1 секунда Ограничение по памяти: 512 мегабайт

Реализуйте преобразование Барроуза-Уиллера.

Рассмотрим строку s, состоящую из строчных латинских букв.

Отсортируем в лексикографическом порядке все ее циклические сдвиги. Выпишем последние буквы получившихся строк в порядке сортировки. Полученная строка называется преобразованием Барроуза-Уиллера заданной строки.

Формат входных данных

Ввод содержит строку, содержащую не более 1000 строчных букв латинского алфавита.

Формат выходных данных

Выведите результат преобразования Барроуза-Уиллера.

стандартный ввод	стандартный вывод
abacaba	bcabaaa

Дискретная математика, лабораторная работа по кодированию Университет ИТМО, 1 курс, 1 семестр

Задача С. Обратное преобразование Барроуза-Уиллера

Ограничение по времени: 1 секунда Ограничение по памяти: 512 мегабайт

Реализуйте обратное преобразование Барроуза-Уиллера.

Рассмотрим строку s, состоящую из строчных латинских букв.

Отсортируем в лексикографическом порядке все ее циклические сдвиги. Выпишем последние буквы получившихся строк в порядке сортировки. Полученная строка называется преобразованием Барроуза-Уиллера заданной строки.

Вам дано преобразование Барроуза-Уиллера некоторой строки. Найдите эту строку. Поскольку у строк, одна из которых является циклическим сдвигом другой, преобразование Барроуза-Уиллера совпадает, из всех возможных ответов выведите лексикографически минимальный.

Формат входных данных

Ввод содержит строку, содержащую не более 1000 строчных букв латинского алфавита. Гарантируется, что эта строка является преобразованием Барроуза-Уиллера некоторой строки.

Формат выходных данных

Выведите минимальную лексикографически строку, для которой заданная является результатом преобразования Барроуза-Уиллера.

стандартный ввод	стандартный вывод
bcabaaa	aabacab

Дискретная математика, лабораторная работа по кодированию Университет ИТМО, 1 курс, 1 семестр

Задача D. Move To Front

Ограничение по времени: 1 секунда Ограничение по памяти: 512 мегабайт

Реализуйте преобразование MTF.

Рассмотрим строку из строчных латинских букв.

Исходно буквы от 'a' до 'z' организованы в список в алфавитном порядке. По очереди рассматриваются буквы некоторого слова из латинских букв. Для каждой буквы кодируемой строки выполняется следующее:

- Выводится ее номер в списке (нумерация с 1).
- Она перемещается на первую позицию в списке.

Формат входных данных

Входной файл содержит строку, содержащую не более 1000 строчных букв латинского алфавита.

Формат выходных данных

Пусть длина строки во входном файле равна n. Выведите n чисел от 1 до 26, которые будут выведены при преобразовании Move To Front.

стандартный ввод	стандартный вывод
abacaba	1 2 2 3 2 3 2

Задача E. Алгоритм LZW

Ограничение по времени: 1 секунда Ограничение по памяти: 512 мегабайт

Реализуйте кодирование в алгоритме LZW.

Рассмотрим строку s, состоящую из строчных латинских букв.

Исходно имеется словарь, содержащий символы от 'a' до 'z' с кодами от 0 до 25, соответственно. Алгоритм поддерживает текущий буфер t, исходно инициализированный пустой строкой. Последовательно рассматриваются символы строки s. Пусть очередной символ строки равен c.

Если строка t есть в словаре, то t присваивается tc и обработка символа завершается.

Иначе выводится код t и строка tc помещается в словарь с минимальным свободным кодом. После этого t присваивается значение c и обработка символа завершается.

После просмотра всех символов код оставшегося t также выводится.

Формат входных данных

Входной файл содержит строку, содержащую не более 1000 строчных букв латинского алфавита.

Формат выходных данных

Выведите коды, которые выводятся по мере выполнения алгоритма.

стандартный ввод	стандартный вывод
abacaba	0 1 0 2 26 0

Задача F. Раскодирование LZW

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Реализуйте декодирование в алгоритме LZW.

Напомним алгоритм LZW.

Рассмотрим строку s, состоящую из строчных латинских букв.

Исходно имеется словарь, содержащий символы от 'a' до 'z' с кодами от 0 до 25, соответственно. Алгоритм поддерживает текущий буфер t, исходно инициализированный пустой строкой. Последовательно рассматриваются символы строки s. Пусть очередной символ строки равен c.

Если строка t есть в словаре, то t присваивается tc и обработка символа завершается.

Иначе выводится код t и строка tc помещается в словарь с минимальным свободным кодом. После этого t присваивается значение c и обработка символа завершается.

После просмотра всех символов код оставшегося t также выводится.

Формат входных данных

Первая строка ввода содержит число n — количество кодов LZW-кодировании ($1 \le n \le 1000$). Вторая строка содержит n чисел — вывод алгоритма LZW. Гарантируется, что ввод является корректным LZW-кодом некоторой строки длины не больше 1000.

Формат выходных данных

Выведите раскодированную строку.

стандартный ввод	стандартный вывод
6	abacaba
0 1 0 2 26 0	

Задача G. Арифметическое кодирование

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дана строка над алфавитом, состоящим из первых n букв английского алфавита. Закодируйте ее с помощью арифметического кодирования.

При арифметическом кодировании отрезки при разбиении идут в порядке их следования в алфавите: сначала отрезок для буквы a, за ним отрезок для буквы b, и так далее. При нахождении дроби $\frac{p}{2^q}$, выбирается дробь с минимальным q, принадлежащая полуинтервалу [l,r), полученному после обработки строки.

Формат входных данных

В первой строке содержится число n — размер алфавита ($1 \le n \le 26$). Во второй строке находится строка S, состоящая из первых n букв английского алфавита ($1 \le |S| \le 100$). Некоторые из букв могут не присутствовать в S.

Формат выходных данных

В первой строке выведите число n. Во второй строке выведите n чисел c_a, c_b, \ldots — количество раз, которое в строке встречается каждая из n букв. В третьей строке выведите двоичное представление числителя p дроби $\frac{p}{2q}$, ровно из q ($q \ge 1$) нулей и единиц, при необходимости, с ведущими нулями.

стандартный ввод	стандартный вывод
3	3
abacaba	4 2 1
	0110100101
2	2
bbb	0 3
	0

Дискретная математика, лабораторная работа по кодированию Университет ИТМО, 1 курс, 1 семестр

Задача Н. Арифметическое декодирование

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дан результат применения арифметического кодирования к некоторой строке s, состоящей из маленьких букв английского алфавита. Декодируйте и восстановите исходную строку.

Формат входных данных

В первой строке содержится число n ($1 \le n \le 26$), обозначающее, что в исходной строке присутствовали только первые n букв английского алфавита. Во второй строке содержатся n чисел c_a, c_b, \ldots — количество раз, которое в строке встречается каждая из n букв ($1 \le \sum c_i \le 100$). Во третьей строке содержится строка из q ($1 \le q \le 1000$) нулей и единиц — двоичное представление числителя p дроби $\frac{p}{2q}$, возможно, с ведущими нулями.

Формат выходных данных

Выведите одну строку длины $\sum c_i$ — результат декодирования.

стандартный вывод
abacaba
bbb