09:00 hrs 8 / 11

the contribution made by this examination or test towards the year mark, if appropriate)

12019

Examinations and Graduation Office Central Block Exams Hall

Exams Office Use Only

Iniversity of the Witwatersrand, Johann	nesburg
Course or topic No(s)	MATH2001
Course or topic name(s) Paper number & title	BASIC ANALYSIS II
Examination/Test* to be held during month(s) of (*delete as applicable)	November Exam - 2019
Year of study (Art & Sciences leave blank)	2nd Year
Degrees/Diplomas for which this course is prescribed (BSc (Eng) should indicate which branch)	BSc, Bcom, BA
Faculty/ies presenting candidates	Science, Commerce, Humanities
Internal examiner(s) and telephone number(s)	Prof O Olele Otafudu 76216 Dr R Maartens 76232
External examiner(s)	Dr D Ralaivaosaona – Stellenbosch University
Calculator policy	
Time allowance	Course No's MATH2001 Hours 1h00
Instruction to candidates (Examiners may wish to use this space to indicate, inter alia, the contribution made by this	Answer all questions Total: 60 Duration: 1h00

First Examiner: Prof. O. Olela Otafudu Second Examiner: Mr. Ronnie Maartens Moderator: Dr Dimbinaina Ralaivaosaona

Answer all questions.

Time allowed: 60 minutes.

Maximum Marks 60.

Question 1

(1.1) Let f be a real function, $a; L \in \mathbb{R}$ and assume that the domain of f contains a deleted neighbourhood of a, that is, f(x) is defined for all x in a deleted neighbourhood of f. What does it mean $\lim_{x\to a} f(x) = L$? [3]

(1.2) Prove that if $\lim_{x\to a} f(x) = L$, then L is unique. [8]

(1.3) Prove that $\lim_{x\to 2} (x^2 - 3x) = -2$. [4]

[15 marks]

Question 2

(2.1) Let I and J be intervals, $g: J \to \mathbb{R}$ and $f: I \to \mathbb{R}$ with $f(I) \subseteq J$, and let $a \in I$. Assume that f is differentiable at a and g is differentiable at f(a). Prove that $g \circ f$ is differentiable at a and $(g \circ f)'(a) = g'(f(a))f'(a)$.

(2.2) Show that
$$f(x) = \sin x$$
 is continuous at any $a \in \mathbb{R}$. [5]

[10 marks]

Question 3 Determine if the following series is convergent or divergent:

(3.1)
$$\sum_{n=0}^{\infty} (-1)^n \left(\frac{4+n}{3+2n}\right)^n.$$
 [5]

$$(3.2) \sum_{n=1}^{\infty} \frac{2^n + 3^n}{5^n}.$$

$$(3.3) \sum_{n=1}^{\infty} \cos(n\pi).$$

$$(3.4) \sum_{n=1}^{\infty} n^2 e^{-n^3}.$$

[20 marks]

2 pages - page 2

MATH2001

Basic Analysis

Exam

November 2019

Question 4

(4.1) Let

$$f(x) = \begin{cases} \frac{|x| + x}{2x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0. \end{cases}$$

Determine the right and the left continuity of f(x) at x = 0.

[5]

(4.2) State and prove the First Mean Value Theorem.

[10]

[15 marks]

- E_ND -