Abstract

Resumo

Contents

A۱	bstract	i
\mathbf{R}_{0}	esumo	iii
Co	ontents	vi
Li	ist of Tables	vii
Li	ist of Figures	ix
Li	istings	xi
Li	ist of Algorithms	xiii
A	cronyms	$\mathbf{x}\mathbf{v}$
1	Introduction	1
	1.1 Context	1
	1.2 Motivation	1
	1.3 Contribution	1
	1.4 Structure of the Dissertation	1
2	Background	3
3	High Assurance Cryptography	5
1	Issmin	7

5	Implementation	9
6	Conclusion & Future Work	11
A	Notation	13
В	Benchmarks	15
Bi	bliography	17

List of Tables

List of Figures

Listings

List of Algorithms

Acronyms

Introduction

- 1.1 Context
- 1.2 Motivation
- 1.3 Contribution
- 1.4 Structure of the Dissertation

Background

This chapter introduces various concepts that are essential for understanding the later sections of this dissertation.

High Assurance Cryptography

Jasmin

This chapter provides an overview of the most relevant features of the Jasmin framework. Jasmin [1, 2] is a vertication-friendly, low-level framework suitable for writing high-assurance and high-speed cryptographic implementations.

Implementation

In this chapter, we describe the Jasmin implementation of a type-checked big number library which is proven to be resistant against Spectre v1 attacks.

Conclusion & Future Work

This chapter provides a succinct summary and draws conclusions based on the work done.

Future Work

Appendix A

Notation

 $\begin{array}{ll} \mathbb{Z}_n^* & \text{Multiplicative group of integers modulo } n \\ \mathbb{F}_q & \text{Finite field with } q \text{ elements} \\ E(\mathbb{F}_p) & \text{Elliptic curve defined over the prime field } \mathbb{F}_p \\ \mathcal{O} & \text{The point at infinity of an elliptic curve} \\ \end{array}$

Appendix B

Benchmarks

Bibliography

- [1] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot, Benjamin Grégoire, Vincent Laporte, Tiago Oliveira, Hugo Pacheco, Benedikt Schmidt, and Pierre-Yves Strub. Jasmin: High-Assurance and High-Speed Cryptography. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS '17, page 18071823, New York, NY, USA, 2017. Association for Computing Machinery. ISBN: 9781450349468. doi:10.1145/3133956.3134078.
- [2] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Benjamin Grégoire, Adrien Koutsos, Vincent Laporte, Tiago Oliveira, and Pierre-Yves Strub. The last mile: High-assurance and high-speed cryptographic implementations. In 2020 IEEE Symposium on Security and Privacy (SP), pages 965–982. IEEE, 2020.