

Analysis & Segmentation of Natural Catastrophe Events

James Lunt

Part 1:

Task 1: Exploratory Data Analysis

Overview: An initial inspection to understand the structure and content of the dataset.

From reviewing the dataset 'Nat Cat Events.csv', 91,479 rows are present with 8 fields, namely:

url	url_mobile	title	seendate	socialimage	domain	language	sourcecountry
-----	------------	-------	----------	-------------	--------	----------	---------------

The following preliminary analysis tasks are performed:

- Dataset structure summary
- Null count & percentage per column
- Uniqueness percentage per column
- o Range & distribution of publication dates
- Title length distribution (characters & words)
- Source country distribution (Top 15)
- o URL length distribution
- Domain distribution (Top 30)

Some key findings:

- Title is missing 0.1% values (This will be important for Task 2).
- > Title has 71.23% unique values (This will also be important for Task 2).
- ▶ Publication dates range from 00:00 January 1st, 2024 00:15 January 1st, 2025.
- > There is an even distribution of publications throughout the year
- > The hour of day with typically the most publications is midnight.
- The average number of words in a title is 12.01 (This will be important for tokenisation in Task 2 and Part 2).

Please see <u>1_Exploratory_Data_Analysis.ipynb</u> for code and output of this analysis. See plots in Appendix section.

Task 2: Data Cleaning

Overview: Clean the data of articles where the title is not relevant to the following criteria:

- They must contain a location
- o They must represent a natural catastrophe event that has occurred

Data Cleaning is broken into four steps:

- 1. Remove duplicates, null values & whitespaces
- 2. Find articles containing a location in the title using Named Entity Recognition (NER)
- 3. Use a Zero-Shot Classifier to capture titles implying a natural catastrophe event
- 4. Build a Supervised Model to refine less confident Zero-Shot classifications

Details of each step:

Step 1: Remove Duplicates, Null Values & Whitespace

 Use Pandas function to remove duplicate titles, drop any rows with empty titles and strip leading and trailing whitespaces

Step 2: Use NER to find articles containing a location in the title.

- o Uses SpaCy (a fast-industrial strength NLP library).
- Selects a SpaCy NER pipeline depending on GPU availability. The pipeline can be set in the configuration file.
 - o CPU pipeline en_core_web_sm
 - o GPU pipeline en_core_web_trf
- o Pipeline structure:

- The main difference between the CPU & GPU pipeline is the Word Embeddings.
 en_core_web_trf is a transformer-based embedding while en_core_web_trf uses tok2vec.
- Locations are found using <u>OntoNotes5</u> dataset entities:
 - o GPE: geopolitical entity like a country, city or state
 - o LOC: Non-GPE location like a mountain or body of water
- o Dataset saved at this point to titles_containing_locations.csv

Step 3: Use Zero-Shot-Classifier to capture titles implying a natural catastrophe event has occurred

- To label the titles as a natural catastrophe event that has occurred use a Natural Inference Model to decide if a piece of text implies the label:
 - 'natural catastrophe event has occurred'
- $\circ \quad \text{A Zero-classification model is downloaded from } \underline{\text{Hugging Face}}.$
 - o In the current execution, facebook/bart-large-mnli is used for optimal accuracy.
 - This model has 400M+ parameters and is not recommended for CPU users, instead use a smaller model such as typeform/distilbert-base-uncased-mnli.
 - o The model can be set in the configuration file.
- o The model produces prediction propensities that the title implies the label.
- o Dataset saved at this point to tiles zero shot.csv

Step 4: Build a Supervised Model to refine less confident Zero-Shot classifications.

- Take the rows that the model is extremely confident. Using these titles and propensities, a training set is created where the target variable is:
 - o 1 where propensity > 0.99
 - o 0 where propensity is < 0.01
- o The titles are vectorised using TF-IDF
- A logistic regression model is tuned, calibrated and evaluated on the vectorised titles with the following specifications:
 - o 80-20 train-test split
 - Hyperparameter tuning of the TF-IDF vectorisation and the logistic regression regularisation parameters.
 - 5-Fold cross-validation during tuning with the training set
 - o Calibrate the model with an Isotonic Calibrator.
 - o Infer on the test set to produce:
 - ROC plot
 - Classification report
- Given the supervised model performs well on the test set, use this model to infer on the less confident predictions. I.e. predictions a propensity:
 - o < 0.99 and > 0.01
- Take the average of the Zero-Shot classification propensity and the supervised model propensity.
- Use a decision threshold on this average propensity to include/exclude titles from the final pre-processed dataset. (In the current execution, decision threshold is 0.85).
- In effect, the supervised model acts as a second opinion to the Zero-Shot-Classification model for less confident predictions.

Final pre-processed dataset saved to: preprocessed df.csv

In the current execution, this data cleaning reduces the dataset size as follows:

Initial Size	Step 1	Step 2	Step 3/4
91,479	65,158	40,989	27,533

Please see <u>2 Data Cleaning.ipynb</u> for code and output of this analysis. See plots in Appendix section.

Part 2:

Overview: Using the pre-processed dataset from Part1, Task 2, categorise each title into 1 of 5 categories.

- o Earthquake
- o Floods
- Volcano
- o Tornado
- Wildfire

For this segmentation. Again, a Zero-Shot-Classification model is used with the same details as in Step 3 in the previous section. Only this time:

- o The model is *multi-label* where a probability is given for each category above.
- o Each title is then categorised into its label with the highest probability.
- o For example:

Title: 'DSWD DROMIC Report on the Tornado Incident in Brgy . Rizal , Anao , Tarlac , 30

December 2023, 6PM - Philippines',

Tornado: 0.984 Volcano: 0.004 Floods: 0.003 Wildfire: 0.003 Earthquake: 0.003 Category = Tornado

- Post-analysis is then performed on the categorised date set. Here are some of the key findings:
 - o 'Floods' has the most titles
 - Floods and Volcano have the greatest number of uncertain predictions while the other categories have quite confident predictions
 - 'Storm', 'Weather', 'hit', 'New', 'Florida', 'County' are words that appear most frequently among the less confident predictions (Zero-shot probability <0.5 for all categories).

Final segmented dataset saved to segmented results.csv.

Please see <u>3_Data_Segmentation.ipynb</u> for code and output of this analysis. See plots in Appendix section.

Appendix

Repository:

james-lunt/Nat_Cat_Events: Analysis & Segmentation of Natural Catastrophe Events

Current Execution spec details:

The Jupyter Notebook code execution uses the following:

- Hardware specs:
 - o CUDA device: Quadro P2000 with Max-Q Design
- Software specs:
 - o PyTorch version: 2.7.1+cu118
 - o A list of <u>requirements</u> to be installed with pip.

The code can be executed with CPU or GPU availability. See Usage section in ReadMe file for more details.

Plots & Figures

Data Analysis

Dataset structure:

<class 'pandas.core.frame.DataFrame'> RangeIndex: 91479 entries, 0 to 91478 Data columns (total 8 columns):

Column Non-Null Count Dtype

--- -----

0 url 91479 non-null object

1 url_mobile 25383 non-null object

2 title 91384 non-null object

3 seendate 91479 non-null object

4 socialimage 79390 non-null object

5 domain 91479 non-null object

6 language 91479 non-null object

7 sourcecountry 89958 non-null object

dtypes: object(8)

memory usage: 5.6+ MB

URL Length Distribution

Characters in Title

Data Cleaning:

Distribution of Zero-Shot-Scores

Supervised model best parameters:

Best Parameters: {'clf_C': 10, 'clf_penalty': 'l2', 'tfidf_min_df': 1, 'tfidf_ngram_range': (1, 1)}

Supervised model classification report:

	precision	recall	f1-score	support
0	0.98	0.99	0.99	722
1	1.00	0.99	0.99	1109
accuracy			0.99	1831
macro avg	0.99	0.99	0.99	1831
weighted avg	0.99	0.99	0.99	1831

ROC Curve (Calibrated)

Distribution of zero-shot and supervised model propensities:

