Nombre: Hilda Beltrán

Matrícula: A01251916

```
from google.colab import drive
drive.mount('/content/drive')
```

Mounted at /content/drive

```
# Carga las librerías necesarias.
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

Carga el archivo bestsellers with categories.csv
from google.colab import files

```
uploaded = files.upload()
```

- Choose Files bestsellers ...tegories.csv
 - bestsellers with categories.csv(text/csv) 51161 bytes, last modified: 5/11/2022 100% done Saving bestsellers with categories.csv to bestsellers with categories.csv User uploaded file "bestsellers with categories.csv" with length 51161 bytes

```
# Carga el conjunto de datos al ambiente de Google Colab y muestra los primeros
# 6 renglones.
df = pd.read_csv('bestsellers with categories.csv')
df.head(6)
```

	Name	Author	User Rating	Reviews	Price	Year	Genre
0	10-Day Green Smoothie Cleanse	JJ Smith	4.7	17350	8	2016	Non Fiction
1	11/22/63: A Novel	Stephen King	4.6	2052	22	2011	Fiction
2	12 Rules for Life: An Antidote to Chaos	Jordan B. Peterson	4.7	18979	15	2018	Non Fiction
3	1984 (Signet Classics)	George Orwell	4.7	21424	6	2017	Fiction
	5,000 Awesome Facts (About	National	4.0	7005	40	0040	Non

Crea una tabla resumen con los estadísticas generales de las variables
numéricas.
df.describe()

	User Rating	Reviews	Price	Year
count	550.000000	550.000000	550.000000	550.000000
mean	4.618364	11953.281818	13.100000	2014.000000
std	0.226980	11731.132017	10.842262	3.165156
min	3.300000	37.000000	0.000000	2009.000000
25%	4.500000	4058.000000	7.000000	2011.000000
50%	4.700000	8580.000000	11.000000	2014.000000
75%	4.800000	17253.250000	16.000000	2017.000000
max	4.900000	87841.000000	105.000000	2019.000000

¿Cuál es el género con más publicaciones? Muéstralo en un gráfico.
fig = plt.figure(figsize=(6,4))
sns.countplot(data=df, y = 'Genre')
El género con más publicaciones es Non Fiction

<matplotlib.axes. subplots.AxesSubplot at 0x7f7309add990>

¿Cuántos libros del top 50 se publicaron por género en cada año? ¿Hay algún
año donde hubo más libros de ficción en el top 50?. Muéstralo en un gráfico.
df1 = pd.crosstab(df['Year'], df['Genre'])
df1

Genre	Fiction	Non Fiction
Year		
2009	24	26
2010	20	30
2011	21	29
2012	21	29
2013	24	26
2014	29	21
2015	17	33
2016	19	31
2017	24	26
2018	21	29

df1.plot(kind='bar')

En el 2014 hubo más libros de ficción en el top 50

<matplotlib.axes._subplots.AxesSubplot at 0x7f72f71ba390>

¿Cómo se distribuye la variable Review? Muéstra el histografa. sns.histplot(data=df, x ='Reviews')

<matplotlib.axes._subplots.AxesSubplot at 0x7f72f74c43d0>

Ahora muéstralo en un gráfico de caja y bigote.
fig = plt.figure(figsize=(8,5))
sns.boxplot(data=df, y = 'Reviews')

<matplotlib.axes._subplots.AxesSubplot at 0x7f72f747f250>

¿Cómo se compara la evaluación del libro por género? ¿Qué genero es mejor
evaluado por los lectores? Muéstralo en un solo gráfico de caja y bigote.
fig1 = plt.figure(figsize=(8,5))
sns.boxplot(data=df, x = 'Genre', y = 'User Rating')
El mejor evaluado es el de Fiction, tiene algunas evaluaciones dispersas que
son los puntos que están por debajo

<matplotlib.axes._subplots.AxesSubplot at 0x7f72f715f7d0>

¿Cuál es la relación entre el número de reseñas y precios? Muéstralo en un # gráfico de dispersión.

```
fig2 = plt.figure(figsize=(6, 4))
sns.scatterplot(data=df, x = 'Reviews', y='Price')
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f72f7478f50>

De la pregunta anterior, ¿influye algo el año de publicación? ¿Cuál es la
relación entre el número de reseñar, el precio y el año de publicación?
IMPORTANTE: Selecciona una paleta de colores adecuada.
fig3 = plt.figure(figsize=(6, 4))
sns.scatterplot(data=df, x = 'Reviews', y='Price', hue='Year')

<matplotlib.axes._subplots.AxesSubplot at 0x7f72f7402550>

¿Cuál es la correlación entre las variables numéricas? Muéstralo en un # gráfico. La variable año, a pesar de ser numérica, la vamos a considerar como # cualitativa, así que la eliminaremos del análisis.

```
fig4 = plt.figure(figsize=(6, 4))
sns.scatterplot(data=df, x = 'User Rating', y='Reviews', hue='Price')
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f72f720c910>

✓ 0s completed at 10:22 PM

×