DS 3500: Advanced Programming with Data Prof. Rachlin, Northeastern University

Fox vs. Rabbit:

A multi-species ecological simulation

Description

In class this week we created an animated simulation of rabbits grazing in a field of grass and roaming from patch to patch. It was an idyllic world with no inter-species competition. Now let's increase the complexity by introducing foxes which feed on rabbits but leave the grass alone.

Our two competitors are the Cotton Tail Rabbit (*Sylvilagus floridanus*) and the common Red Fox (Vulpes vulpes). In this simulation, rabbits must east continuously, and if they find grass, they give birth to 1 or 2 offspring. The fox moves faster, reproduces less frequently, has at most one offspring (in this model) and can go without finding food for a while, but not too long or else it will starve! Will our foxes and rabbits find harmony within a stable symbiotic ecosystem? Only a robust simulation will reveal the answer!

Species Comparison (These animal features are *entirely* made up!)

		Move	Pixel	Food	
Species	Offspring	Distance	Color	Consumption	Image
				Frequency	
Red Fox (Vulpes vulpes)	1 only	0 to 2 (random)	Red	1+ rabbits per k=10 cycles (Try other k.)	
CottonTail Rabbit (Sylvilagus floridanus)	1 to 2	0 to 1 (random)	Blue	1 grass every cycle.	

Directions

- 1. Modify the artificial life rabbits-in-a-field simulation presented in class to foxes eating rabbits. Foxes can go without food for up to k=10 cycles. When they eat, they reproduce and both parent and child are now hungry. If they don't eat, they starve.
- 2. Visualize the field using a custom color map (look up how to do this). Use the following color scheme:
 - a. Grass (Green)
 - b. Unoccupied (a neutral color of your choice white or tan might look good i.e., bare ground)
 - c. Cottontail rabbits (Blue)
 - d. Foxes (Red)
- 3. Animate your simulation with support for user-defined field sizes, initial rabbit populations, and simulation speed adjustments. Your code should support a variety of *documented* command-line options so that the TAs can test your code. Use the argparse library for defining command-line arguments. At minimum, arguments should include: a) the grass growth rate, b) The fox *k* value, c) the field size, and d) the number of initial foxes and rabbits in the field.
- 4. After, say, 1000 cycles (generations), plot the population of rabbits vs foxes vs grass.
- 5. Report your conclusions.
 - a. Which species is better able to survive?
 - b. Does your outcome depend on the size of the field or the rate at which grass grow or the fox *k* value? If so, how?

Submit

- Code (.py)
- Visualizations (.png)
- Insights, conclusions 1-page (.pdf)