Investigating periods of increasing interest rates for the S&P 1500

by Luca Reichelt, 999786

Università Ca'Foscari Venezia

Table of Contents

- 1. Outline
- 2. Data
- 3. Machine Learning
- 4. Results
- 5. Sources

- central banks aim to keep inflation at a stable rate of approx. 2% per year
- economic shocks often lead to unexpected hikes in consumer prices and therefore inflation
- central banks decrease the incentives for banks and companies to borrow money by steadily increasing their rates, aiming to stabilize inflation

"[Gold is generally assumed to be a great hedge against (long-term) inflation.]"

- see Ghosh, Dipak, et al. "Gold as an inflation hedge?." Studies in Economics and Finance 22.1 (2004): 1-25.

"In terms of investment policy implication, our results suggest that US investors will have a good hedge against inflation by holding stock asset and real estate, and not by holding gold."

- see Salisu, Afees A., Ibrahim D. Raheem, and Umar B. Ndako. "The inflation hedging properties of gold, companies and real estate: A comparative analysis." Resources Policy 66 (2020): 101605.

"[C]orporate profitability is the highest when inflation is modest (0-4 percent), and it is very low when inflation is very low (deflation) or very high (over 10 percent)."

- see Park, Sangkyun. "companies as a Hedge against Inflation: Does Corporate Profitability Keep Up with Inflation?."

"[There is e]vidence of a positive relationship between current stock market returns and current inflation. This result confirms that stock returns act as a hedge against inflation."

- see Choudhry, Taufiq. "Inflation and rates of return on stocks: evidence from high inflation countries." Journal of International Financial Markets, Institutions and Money 11.1 (2001): 75-96.

"[I]nvestors are better off by holding a portfolio of stocks with higher long-run betas as part of asset selection and allocation strategy. Stocks that outperform inflation tend to be drawn from the energy and industrial sectors."

- see Bampinas, Georgios, and Theodore Panagiotidis. "Hedging inflation with individual US companies: A long-run portfolio analysis." The North American Journal of Economics and Finance 37 (2016): 374-392.

Findings

- gold seen as good long-term investment, but not short-term
- profits in general lower for higher rates
- evidence of positive relationship between inflation and stock returns
- risky assets and those of energy/industry sector seem to be better

Resulting research questions

- → Do companies with certain features perform better?
- → Can those better performing companies be predicted?

Basics

- S&P 1500 members included at start of period
- Start: first effective fed rate increase
- End: first effective fed rate stagnant/decrease

Comparative Data (monthly):

- S&P 500
- Nasdaq
- Gold
- Crude Oil
- CPI (Consumer Price Index)
- Rate of Unemployment

Periods

	Name	Start	Last	Duration
0	Period 1	2004-04-01	2006-08-01	27
1	Period 2	2016-09-01	2017-08-01	10
2	Period 3	2017-09-01	2018-07-01	9
3	Period 4	2022-01-01	2023-03-01	13

Weaknesses

- rather short periods (9 months minimum)
- rather few periods
- current period hasn't concluded
- no comparison of results to random timeframes (stocks always performing better?)
- no consideration of initial crisis or crisis within period

Indices/Assets monthly change in %

Total performance to FED/CPI/Unemployment Rate

Target & Features

Target:

Performance of company by change in Market Cap:

- "Outperformed" for higher than mean
- "Not Outperformed"

Features:

- Market Cap Size by market valuation
- Sector
- Revenue T12M
- Number of Employees
- Profitability Ratios
 - EPS T12M Profit per Share
 - P/E Price to EPS

Risk Ratios

- Net Debt Ability to pay off debt
- Sharpe M Return to Risk
- Beta M Compared
 Volatility
- Revenue per Employee

Cleaning & Preprocessing

- transforming to correct data-types
- dropping all observations with nan values
- creating dummies (one-hot encoding) for the sector feature
- adding a new feature: Revenue per Employee
- adding the base for the target feature: Market Cap_perf
- dropping Price and Market Cap_last

ALL DATA: Risk/Compared Volatility to SP1500 compared to Return/Performance by GICS Sector

2. Data: "Top 10"

- Top10 performing companies for all concluded periods
- Energy sector strongly overrepresented
- Real Estate and Utilities are both not once in Top10

All

Top 10

Industrials	505	Industrials	7
Consumer Discretionary	441	Energy	5
Financials	417	Consumer Discretionary	5
Information Technology	349		
Health Care	304	Materials	3
Materials	191	Information Technology	3
Real Estate	179	Financials	3
Consumer Staples	142	Health Care	2
Utilities	120		- 5
Communication Services	101	Communication Services	1
Energy	88	Consumer Staples	1

2. Data: "Top 10" vs. All

Top 10

	Market Cap_perf	Revenue per Employee								Number of Employees:Y
count	30.000000	3.000000e+01	3.000000e+01	30.000000	30.000000	3.000000e+01	3.000000e+01	30.000000	30.000000	30.000000
mean	1.954413	5.078052e+05	2.441349e+09	0.984556	35.399076	1.444729e+09	2.619570e+08	6.904675	0.993617	4609.333333
std	0.693458	4.032231e+05	6.085325e+09	1.919795	23.022050	1.550357e+09	1.138929e+09	30.388213	0.938778	5805.966499
min	1.304530	1.283391e+05	2.782508e+08	-6.720000	9.326661	2.055270e+08	-3.371000e+09	-2.827769	-1.657429	178.000000
25%	1.500476	1.768069e+05	5.714091e+08	0.405000	19.404363	3.251750e+08	-8.340650e+07	-1.973641	0.667566	922.250000
50%	1.862673	3.971350e+05	9.707596e+08	1.050000	28.241244	7.713390e+08	4.667550e+07	-0.880110	1.025435	1929.500000
75%	2.207235	6.760008e+05	1.644764e+09	1.735000	38.376455	2.016746e+09	3.241035e+08	1.632434	1.338787	6742.750000
max	5.033335	1.654904e+06	3.378525e+10	4.370000	100.730191	5.526000e+09	3.476000e+09	162.272899	3.457157	26000.0000000

	Market Cap_perf	Revenue per Employee	Market Cap	EPS T12M	P/E	Revenue T12M	Net Debt LF	Sharpe:M-1	Beta:M-1	Number of Employees:Y
count	2837.000000	2.837000e+03	2.837000e+03	2837.000000	2837.000000	2.837000e+03	2.837000e+03	2837.000000	2837.000000	2.837000e+03
mean	0.161105	8.693829e+05	1.766405e+10	12.960799	31.557441	9.433643e+09	2.782123e+09	2.127500	1.171152	2.410013e+04
std	0.357638	2.531066e+06	5.086190e+10	383.184299	52.917709	2.617835e+10	1.640547e+10	14.993197	0.639499	8.250902e+04
min	-0.756240	2.241154e+04	1.272757e+08	-28.993488	1.186686	6.438100e+07	-1.924410e+11	-6.599870	-5.586384	9.000000e+00
25%	-0.039069	2.413852e+05	1.384998e+09	0.960000	16.143771	8.185460e+08	8.842000e+06	-1.798663	0.800994	1.918000e+03
50%	0.123482	3.791714e+05	3.383413e+09	1.950000	20.998204	2.215573e+09	5.608190e+08	-0.024635	1.107392	6.100000e+03
/ 276	Ø.∠5 4 05Ø		1.242/105+10	3.320000			2.440245e+09	3.246132	1.439695	1./40000 c+ 04
max	5.033335	5.176925e+07	8.473556e+11	15514.000732	1232.898177	4.900120e+11	4.879700e+11	536.800751	6.549999	2.300000e+06

3. Machine Learning

3. Machine Learning

- **target** label is determined:
 - companies with a higher return than the mean are labeled "Outperformed"
 - companies with a lower return than the mean or an equal return are labeled "Not
 Outperformed"
- differentiation between three data cases:
 - a case where the data consists of only the former/ concluded periods
 - a case where the data consists of all data, including the ongoing period
 - a case where the training data consists of the former, concluded periods and the test data consists of the current, ongoing period
- the features will be evaluated using
 - simple **DecisionTree** with a max_depth of 3
 - RandomForest with hyperparameter-tuning using GridSearchCV

3. Machine Learning: DT former data


```
Train Accuracy: 0.5793890567304465
Train Confusion Matrix:
[[1726      0]
      [1253      0]]
Test Accuracy: 0.5891238670694864
Test Confusion Matrix:
[[195      0]
      [136      0]]
```


3. Machine Learning: DT former=train, current=test


```
Train Accuracy: 0.592749244712991
Train Confusion Matrix:
[[1565 356]
[ 992 397]]
Test Accuracy: 0.5090196078431373
Test Confusion Matrix:
[[567 75]
[551 82]]
```


3. Machine Learning: DT all data

3. Machine Learning: RF former data

```
Train Accuracy: 0.856327626720376
Train Confusion Matrix:
[[1667 59]
[ 369 884]]
Test Accuracy: 0.6374622356495468
Test Confusion Matrix:
[[159 36]
[ 84 52]]
```


3. Machine Learning: RF former=train, current=test

```
Train Accuracy: 0.6036253776435045
                                                                                                            Feature importance for performance result
                                                                              0.04
Train Confusion Matrix:
                                                                                               Outperformed
                                                                                               Not Outperformed
                                                                              0.02
                271]]
                                                                              0.00
Test Accuracy: 0.5086614173228347
Test Confusion Matrix:
                                                                             -0.02
[[615
               411
                                                                             -0.04
               31]]
                                                                                          per Employee
                                                                                                                                    Communication Services
                                                                                                                                                      GICS Sector_Financials
                                                                                                                                                           GICS Sector_Health Care
                                                                                                                                                                             GICS Sector_Real Estate
                                                                                                                                                                                  GICS Sector_Utilities
                                                                                                            Revenue T12M
                                                                                                                  Net Debt LF
                                                                                                                                                  GICS Sector_Energy
                                                                                                                                                                    GICS Sector_Information Technology
                                                                                                                      Sharpe:M-1
                                                                                                                                         Consumer Discretionary
                                                                                                                                    SICS Sector_
GridSearchCV(cv=4, estimator=RandomForestClassifier
                     verbose=3)
```

3. Machine Learning: RF all data

3. Machine Learning: best RF predictor implementation

Name	Start	Last	Duration	Gold	Nasdaq	Spot Crude Oil Price WTI	S&P 1500	all_Grid	former_Grid	current_test_Grid
Period 1	2004-04-01	2006-08-01	27	1.626804	1.047715	1.991006	1.148445	1.598761	1.733503	1.422722
Period 2	2016-09-01	2017-08-01	10	1.000984	1.201220	1.063302	1.135936	1.319970	1.383332	1.181492
Period 3	2017-09-01	2018-07-01	9	0.957095	1.206716	1,424729	1.124224	1.349438	1.436288	1.317974
Period 4	2022-01-01	2023-03-01	13	1.094375	0.788331	0.880558	0.874502	1.269982	0.846276	0.806864

4. Results

4. Results

- → Do companies with certain feature values perform better?
 - Kind off, certain features can be good indicators whether or not a company will perform better or worse during periods of inflation.
- → Therefore, can better performing companies be determined and predicted?
 - Yes, they can be approximately predicted based on the data from past periods.

4. Results

Potential further research questions:

How much more can the classifier be refined(label data more precisely to detect the very best)?

Can these better performing companies simply be explained by some kick-off event such as an energy crisis (energy companies profit/less energy dependent companies perform better in comparison)?

5. Sources

Data Sources

Bloomberg Finance L.P.

https://www.spglobal.com/spdji/en/indices/equity/sp-composite-1500/#overview

https://fred.stlouisfed.org/series/FEDFUNDS#

https://fred.stlouisfed.org/series/CORESTICKM159SFRBATL

https://fred.stlouisfed.org/series/UNRATE

https://fred.stlouisfed.org/series/WTISPLC

https://www.investing.com/commodities/gold-historical-data

Scientific Sources

- Bampinas, Georgios, and Theodore Panagiotidis. "Hedging inflation with individual US companies: A long-run portfolio analysis." The North American Journal of Economics and Finance 37 (2016): 374-392.
- 2. Choudhry, Taufiq. "Inflation and rates of return on stocks: evidence from high inflation countries." Journal of International Financial Markets, Institutions and Money 11.1 (2001): 75-96.
- 3. Ghosh, Dipak, et al. "Gold as an inflation hedge?." Studies in Economics and Finance 22.1 (2004): 1-25.
- 4. Salisu, Afees A., Ibrahim D. Raheem, and Umar B. Ndako. "The inflation hedging properties of gold, companies and real estate: A comparative analysis." Resources Policy 66 (2020): 101605.
- 5. Zaremba, Adam, Zaghum Umar, and Mateusz Mikutowski. "Inflation hedging with commodities: A wavelet analysis of seven centuries worth of data." Economics Letters 181 (2019): 90-94.

Thank you for your attention!