Exercise 1. If A, B are two local subrings of a given field, with respective maximal ideals \mathfrak{m}_A and \mathfrak{m}_B , we say that B dominates A if $A \subset B$ and $\mathfrak{m}_A \subset \mathfrak{m}_B$.

Let R be a local domain with fraction field K, and X a scheme. Show that to give a morphism Spec $R \to X$ is equivalent to giving:

- a pair of points z, y such that y is in the (reduced) closure Z of $\{z\}$,
- and an inclusion $k(z) \subset K$ such that R dominates $\mathcal{O}_{Z,y}$ (as subrings of K).

Exercise 2. Show that a morphism $X \to S$ of schemes is separated if and only if the subset $\Delta_{X/S}(X)$ is closed in $X \times_S X$.

- **Exercise 3.** (i) Let $R \to S$ be an injective ring morphism. Show that every minimal prime of R is in the image of Spec $S \to \operatorname{Spec} R$.
 - (ii) Let $f: X \to Y$ be a quasi-compact morphism of schemes. Assume that the closure of every point of f(X) is contained in f(X). Show that f(X) is closed in Y.

Exercise 4. Prove the valuative criterion of separatedness. You may use without proof the following result:

Let A be a local domain with fraction field K. Then there is a valuation ring R of K which dominates A.

Exercise 1. Let X be a scheme and n an integer. Let \mathcal{E} be a locally free \mathcal{O}_{X} -module of rank n.

- (i) Let \mathcal{F} be an \mathcal{O}_X -module. Show that $\mathcal{H}om_{\mathcal{O}_X}(\mathcal{E},\mathcal{F}) \simeq \mathcal{E}^{\vee} \otimes_{\mathcal{O}_X} \mathcal{F}$.
- (ii) Let $f: Y \to X$ be a morphism of schemes and \mathcal{G} an \mathcal{O}_Y -module. Show that $f_*(\mathcal{G} \otimes_{\mathcal{O}_Y} f^*\mathcal{E}) \simeq (f_*\mathcal{G}) \otimes_{\mathcal{O}_X} \mathcal{E}$.
- **Exercise 2.** (i) Let A be a noetherian ring, and M an A-module of finite type. Let r be an integer. Assume that the $A_{\mathfrak{p}}$ -module $M_{\mathfrak{p}}$ is free of rank r for every $\mathfrak{p} \in \operatorname{Spec}(A)$. Show that the A-module M is locally free of rank r.
 - (ii) Let X be a regular curve over a field, and Z a closed subscheme of X satisfying $Z \neq X$. Show that the sheaf of ideals \mathcal{I}_Z is a locally free \mathcal{O}_{X} -module of rank one.

Exercise 3. Let X be a scheme and \mathcal{L} a locally free \mathcal{O}_X -module of rank one. Let $s \in H^0(X, \mathcal{L})$, and consider the set X_s consisting of those points $x \in X$ such that s_x generates the $\mathcal{O}_{X,x}$ -module \mathcal{L}_x .

- (i) Show that X_s is an open subset of X.
- (ii) Show that the induced open immersion of schemes $X_s \to X$ is an affine morphism.

Exercise 4. Let X be a scheme. Show that the morphisms $X \to \mathbb{P}^n$ are in bijective correspondence with the data of:

- a locally free \mathcal{O}_X -module of rank one \mathcal{L} ,
- sections $s_0, \ldots, s_n \in H^0(X, \mathcal{L})$ such that the induced morphism $\mathcal{O}_X^{n+1} \to \mathcal{L}$ is surjective,

where we identify $(\mathcal{L}, s_0, \ldots, s_n)$ and $(\mathcal{L}', s'_0, \ldots, s'_n)$ if there is an isomorphism of \mathcal{O}_X -modules $\mathcal{L} \to \mathcal{L}'$ mapping each s_i to s'_i .

(Hint: To construct $X \to \mathbb{P}^n$, let $i \in \{0, \ldots, n\}$. Consider the open subscheme X_{s_i} of X of the previous exercise, use the elements s_j for $j \neq i$ to define a morphism $X_{s_i} \to \mathbb{A}^n = \Omega_i \to \mathbb{P}^n$, and proceed with the glueing. Conversely given a morphism $X \to \mathbb{P}^n$, observe that the $\mathcal{O}_{\mathbb{P}^n}$ -module $\mathcal{O}(1)$ and its n+1 canonical sections pull back to an \mathcal{O}_X -module \mathcal{L} and n+1 sections of \mathcal{L} .)

- **Exercise 1.** (i) Let X be a noetherian scheme, and \mathcal{F} a coherent sheaf of \mathcal{O}_X -modules. Let \mathcal{F}_{α} , for $\alpha \in A$, be a collection of sheaves of \mathcal{O}_X -modules and $\bigoplus_{\alpha \in A} \mathcal{F}_{\alpha} \to \mathcal{F}$ a surjective morphism (i.e. surjective on stalks). Show that there is a finite subset B of A such that the induced morphism $\bigoplus_{\beta \in B} \mathcal{F}_{\beta} \to \mathcal{F}$ is surjective.
 - (ii) Let X be an affine scheme, and \mathcal{G} a quasi-coherent sheaf of \mathcal{O}_X -modules. Show that the natural morphism $\bigoplus_{\alpha \in A} \mathcal{G}_{\alpha} \to \mathcal{G}$ is surjective, where \mathcal{G}_{α} runs over the coherent sheaves of \mathcal{O}_X -submodules of \mathcal{G} .
- (iii) Let X be an affine noetherian scheme and U an open of X. Let \mathcal{F} be a coherent sheaf of \mathcal{O}_U -modules. Show that \mathcal{F} is the restriction to U of some coherent sheaf of \mathcal{O}_X -modules. (Hint: Let $j:U\to X$ be the open immersion. Apply (ii) with $\mathcal{G}=j_*\mathcal{F}$. Observe that the morphism $\mathcal{F}\to j^*j_*\mathcal{F}$ is an isomorphism, and use (i).)

Exercise 2. Let S be a graded ring, generated as an S_0 -algebra by S_1 . Let $d \ge 1$ be an integer, and consider the graded ring R such that $R_n = S_{nd}$ (with ring structure by that of S). Show that there is an isomorphism $\varphi \colon \operatorname{Proj}(S) \to \operatorname{Proj}(R)$ such that $\varphi^* \mathcal{O}_{\operatorname{Proj}(R)}(1) \simeq \mathcal{O}_{\operatorname{Proj}(S)}(d)$.

The letter k denotes a field.

Exercise 1. Let X be an irreducible separated k-scheme and U an open subscheme of X. Assume that U is proper over k. Show that $U = \emptyset$ or U = X.

Exercise 2. Give an example of a separated, finite type, closed morphism which is not proper.

Exercise 3. (i) Let A be a local ring. Show that any scheme morphism Spec $A \rightarrow Y$ factors through an affine open subscheme of Y.

(ii) Let X, Y be two k-schemes with Y of finite type. Let $x \in X$ and Spec $\mathcal{O}_{X,x} \to Y$ be a scheme morphism. Show that there exists an open subscheme U of X containing x, and a morphism $U \to Y$ such that the following diagram commutes:

[Hint: Reduce to the case when Y and X are affine. The special case of X integral is easier.]

Exercise 4. (i) Let $f, g: X \to Y$ be two k-morphisms. Assume that X is reduced and Y is separated over k. Let $h: T \to X$ be a k-morphism with dense set-theoretic image. If $g \circ h = f \circ h$, show that f = g.

- (ii) Let A be a k-algebra. We assume that the ring A is a principal ideal domain, but not a field. Let U be the open complement of a closed point in $X = \operatorname{Spec} A$, and Y a proper k-scheme. Show that any k-morphism $U \to Y$ extends uniquely to a k-morphism $X \to Y$.
- (iii) Let U be a non-empty open subscheme of \mathbb{A}^1_k and Y a proper k-scheme. Show that any k-morphism $U \to Y$ extends uniquely to a k-morphism $\mathbb{A}^1_k \to Y$.
- (iv) Let U be a non-empty open subscheme of \mathbb{P}^1_k and Y a proper k-scheme. Show that any k-morphism $U \to Y$ extends uniquely to a k-morphism $\mathbb{P}^1_k \to Y$.

Exercise 1. Let L/K be a field extension of degree n. We assume that L/K is separable, which in this exercise means the following: there is an algebraically closed field Ω containing K and n distinct K-algebra morphisms $\sigma_i \colon L \to \Omega$. For an element $x \in L$, we denote by m_x the K-linear endomorphism of L induced by multiplication with x, by $\chi(m_x) \in K[X]$ its characteristic polynomial, and $\text{Tr}(m_x) \in K$ its trace.

- (i) Let $x \in L$. Show that the image of $\chi(m_x)$ in $\Omega[X]$ is $\prod_{i=1}^n (X \sigma_i(x))$. (Hint: Reduce to the case when the extension L/K is generated by x.)
- (ii) Show that a family $x_1, \ldots, x_n \in L$ is a K-basis if and only the matrix $(\operatorname{Tr}(m_{x_ix_j}))_{i,j}$ is invertible. (Hint: Use that the set of ring morphisms $L \to \Omega$ is linearly independent over Ω .)

Exercise 2. Let k be a field. Consider the polynomial ring $A = k[X_1, \ldots, X_n]$ and its fraction field $K = k(X_1, \ldots, X_n)$. Let L be a finite purely inseparable field extension of K. Show that the integral closure of A in L is an A-module of finite type. (Hint: find a finite purely inseparable extension k' of k such that L is a subfield of $k'(Y_1, \ldots, Y_n)$ where $Y_i^q = X_i$ for an appropriate p-th power q. Reduce to the case $L = k'(Y_1, \ldots, Y_n)$.)

Exercise 3. Let p be prime number and k a field. Consider an integer n > 1 prime to p, and let $R = k[X,Y]/(X^p - Y^n)$.

- (i) Let K be a field and $a \in K$. We assume that there is no $b \in K$ such that $a = b^p$. Show that the polynomial $X^p a \in K[X]$ is irreducible. (Hint: Let $Q \in K[X]$ be a non-trivial factor of $X^p a$, and consider the endomorphism α of the K-vector space K[X]/Q induced by multiplication with X. Compute $\det(\alpha)^p \in K$.)
- (ii) Show that the ring R is an integral domain.
- (iii) We consider the unique k-algebra morphism $\varphi \colon R \to k[T]$ such that $\varphi(X) = T^n$ and $\varphi(Y) = T^p$. Show that φ is injective (hint: Localise at the set of powers of X), and identifies k[T] with the integral closure of R in its fraction field.
- (iv) Show that there is a unique prime $\mathfrak{p} \in \operatorname{Spec} R$ such that $R_{\mathfrak{p}}$ is not a discrete valuation ring. (Hint: What is the normalisation of $\operatorname{Spec} R$?)

The letter k denotes a field. A curve is an integral finite type separated k-scheme of dimension one. A curve is regular if the local ring at each closed point is a discrete valuation ring.

Exercise 1. Let X and Y be two curves, with Y regular. Show that any birational k-morphism $X \to Y$ is an open immersion. (Hint: Use the valuative criterion of separatedness.)

Exercise 2. Let X and Y be two curves, with X regular. Show that any proper dominant k-morphism $X \to Y$ is finite.

Exercise 3. (i) Let $P \in k[X, Y]$ be an irreducible polynomial such that P(0, 0) = 0. We assume that

$$\frac{\partial P}{\partial X}(0,0) \neq 0$$
 or $\frac{\partial P}{\partial Y}(0,0) \neq 0$.

Show that the localisation of the ring k[X,Y]/P at the maximal ideal generated by (the images modulo P of) X and Y is a discrete valuation ring (use the Taylor expansion).

- (ii) Let n be an integer prime to the characteristic of k. Show that the polynomial $X^n + Y^n 1$ is irreducible.
- (iii) Assume that k is algebraically closed and let n be an integer prime to the characteristic of k. Let $Z = V(X^n + Y^n 1) \subset \mathbb{A}^2_k = \operatorname{Spec} k[X, Y]$. Show that Z is a regular curve.
- **Exercise 4.** (i) Let X be a regular curve and U a non-empty open subscheme of X. Let Y be a proper k-scheme. Show that any k-morphism $U \to Y$ is the restriction of a unique k-morphism $X \to Y$.
- (ii) Let X be a regular curve. Assume that there are two open immersions $X \to X_1$ and $X \to X_2$ where X_1 and X_2 are regular curves. We assume that X_1 and X_2 are proper over k. Show that X_1 and X_2 are k-isomorphic.

The letter k denotes a field.

Exercise 1. Let $k \subset K$ be a field extension of finite type and of transcendence degree one. Let A be a valuation ring of K containing k. Show that if $A \neq K$, then A is a discrete valuation ring.

Exercise 2. Let $k \subset K$ be a field extension of finite type and of transcendence degree one, and X_K the curve constructed in the lecture (closed points of X_K correspond to valuation rings of K containing k). Show that X_K is proper over k using the valuative criterion.

Exercise 3. We consider the category \mathcal{B} whose objects are finite type integral schemes over k, and morphisms are dominant rational maps. Show that \mathcal{B} is equivalent to the opposite of the category of finite type field extensions of k.

- **Exercise 4.** (i) Let X be an integral scheme, proper over k. Show that the ring extension $k \to \mathcal{O}_X(X)$ is integral (hint: for $f \in \mathcal{O}_X(X)$, what can be the image of the composite morphism $X \xrightarrow{\varphi_f} \mathbb{A}^1_k \to \mathbb{P}^1_k$?).
 - (ii) Show that k is algebraically closed in k(T).
- (iii) Deduce that $\mathcal{O}_{\mathbb{P}^1_k}(\mathbb{P}^1_k) = k$.
- (iv) (optional) Show that $\mathcal{O}_{\mathbb{P}^n_k}(\mathbb{P}^n_k) = k$.

The letter k denotes a field. When Z is a closed subscheme of a separated scheme X, we denote by \widetilde{X}_Z the blow-up of Z in X.

Exercise 1. Let X be a reduced separated scheme, and Z a closed subscheme of X. Show that \widetilde{X}_Z is reduced.

Exercise 2. Let R = k[x,y]/(xy), and $E = \operatorname{Spec} R$.

- (i) Show that the scheme E is reduced, and has exactly two irreducible components X, Y, both isomorphic to \mathbb{A}^1_k . Show that the scheme $X \cap Y$ (defined as $X \times_E Y$) is isomorphic to Spec k.
- (ii) Show the blow-up morphism $\widetilde{E}_X \to E$ coincides with the closed immersion $Y \to E$. (Hint: use the functoriality of the blow-up to construct a morphism $Y \to \widetilde{E}_X$; compute the fiber of $\widetilde{E}_X \to E$ over $X \cap Y$.)
- (iii) Describe the blow-up of $X \cap Y$ in E.

Exercise 3. Let X be a curve over k, and Z a closed subscheme of X such that $Z \neq X$. Let $b: \widetilde{X}_Z \to X$ be the blow-up morphism, and $n: \widetilde{X} \to X$ the normalisation morphism (of X in its own function field).

- (i) Show that $X (Z \cup X_{Sing})$ is an open subscheme of \widetilde{X} and \widetilde{X}_Z , and deduce the existence of a birational morphism $\widetilde{X} \to \widetilde{X}_Z$ over X.
- (ii) Let $z \in \mathbb{Z}$. Denote by #E the cardinality of a set E. Show that $1 < \#(b^{-1}\{z\}) < \#(n^{-1}\{z\})$.

(iii) Let
$$X = \operatorname{Spec} k[x, y]/(x^2 - y^3)$$
 and Z be the closed subscheme of X defined

by the ideal (x, y). Show that the morphism $\widetilde{X}_Z \to X$ induces a bijection on the underlying sets.

Exercise 4. Consider the graded k-algebra $S_* = k[T_0, \dots, T_n]$ where T_i has degree 1.

- (i) Show that the set Spec S_* Spec S_0 consists of those primes $\mathfrak{p} \subset S_*$ such that $S_+ \not\subset \mathfrak{p}$.
- (ii) For a prime $\mathfrak{p} \subset S_*$, let us denote by \mathfrak{p}^h the ideal of S_* generated by the homogeneous elements of \mathfrak{p} . Observe that $\mathfrak{p}^h \subset \mathfrak{p}$ (in particular $S_+ \not\subset \mathfrak{p}^h$ if $S_+ \not\subset \mathfrak{p}$). Show that \mathfrak{p}^h is a homogeneous prime ideal of S_* . Show that if I is a homogeneous ideal of S_* such that $\mathfrak{p}^h \subset I \subset \mathfrak{p}$, then $I = \mathfrak{p}^h$.
- (iii) Show that the set map underlying the canonical morphism $\mathbb{A}_k^{n+1} 0 \to \mathbb{P}_k^n$ is defined by $\mathfrak{p} \mapsto \mathfrak{p}^h$.

The letter k denotes a field. When n is an integer, we denote by $\mathbb{A}^n = \operatorname{Spec} k[X_1, \ldots, X_n]$ the affine space, and write \times instead of $\times_{\operatorname{Spec} k}$ for the fiber product of k-schemes.

- **Exercise 1.** (i) Let R be a commutative ring and $f \in R$. Assume that f is a nonzerodivisor, i.e. for all $a \in R \{0\}$ we have $fa \neq 0$. Show that the open subscheme D(f) is dense in Spec R.
 - (ii) Let $X = \operatorname{Spec} A$ be an affine scheme, and $Z = \operatorname{Spec} A/I$ a closed subscheme. Let $\pi \colon \widetilde{X}_Z \to X$ be the blow-up morphism. Show that the open subscheme $X - Z \simeq \widetilde{X}_Z - \pi^{-1}(Z)$ is dense in \widetilde{X}_Z . (Hint: \widetilde{X}_Z is covered by the open affine subschemes $D_h(f_i) = \operatorname{Spec} A_i$, where (f_i) is a generating set of the ideal I; use the first question for the ring A_i .)

Exercise 2. We consider the \mathbb{G}_m -action on $\mathbb{A}^n \times \mathbb{A}^n = \operatorname{Spec} k[T_1, \dots, T_n, X_1, \dots, X_n]$ given by letting T_i be of degree 1 and X_i of degree 0 (canonical action on the first factor and trivial action on the second factor). Let Y be the \mathbb{G}_m -invariant open subscheme $(\mathbb{A}^n - 0) \times \mathbb{A}^n$.

- (i) Show that the \mathbb{G}_m -action on Y is locally free.
- (ii) Let Z be the closed subscheme of Y defined by the equations $T_iX_j = T_jX_i$ for $1 \leq i, j \leq n$. Show that Z is \mathbb{G}_m -equivariantly isomorphic to $(\mathbb{A}^n 0) \times \mathbb{A}^1$, where \mathbb{G}_m acts on $\mathbb{A}^1 = \operatorname{Spec} k[X]$ by letting X be of degree -1 (and canonically on the first factor). Deduce that the blow-up of \mathbb{A}^n at the closed subscheme 0 may be identified with the quotient scheme Z/\mathbb{G}_m .

Exercise 3. Let Z and Y be two closed subschemes of X.

- (i) Show that the natural morphism $\widetilde{Y}_{Y \cap Z} \to \widetilde{X}_Z$ is a closed embedding.
- (ii) Let $\pi \colon \widetilde{X}_Z \to X$ be the blow-up morphism. Show that, as sets,

$$\pi^{-1}(Y) = \widetilde{Y}_{Y \cap Z} \cup \pi^{-1}(Y \cap Z),$$

and that $\pi^{-1}(Y)$ is the disjoint union of $Y - Y \cap Z$ and $\pi^{-1}(Y \cap Z)$.

(iii) For $i=1,\ldots,n$ we let L_i be the closed subscheme of $\mathbb{A}^n=k[X_1,\ldots,X_n]$ given by the ideal generated by the elements X_j for $j\neq i$. Describe the inverse image of $L_1\cup\cdots\cup L_n$ in the blow-up of 0 in \mathbb{A}^n .

Exercise 4. Let X be the blow-up of 0 in \mathbb{A}^n .

- (i) Show that X is covered by n open subschemes, each isomorphic to \mathbb{A}^n .
- (ii) Assume that n > 1. Let x be a closed point of X mapping to 0 in \mathbb{A}^n , and Y the blow-up of $\{x\}$ (with reduced structure) in X. Show that the natural open immersion $\mathbb{A}^n 0 \to Y$ does not extend to a morphism $X \to Y$.

All schemes are assumed to be noetherian.

Exercise 1. Let A be a discrete valuation ring and K its fraction field.

- (i) Show that the datum of a sheaf of \mathcal{O}_X -modules \mathcal{F} is equivalent to the data of an A-module M and a K-vector space V together with a morphism of A-modules $M \to V$.
- (ii) Show that the sheaf of \mathcal{O}_X -modules \mathcal{F} is quasi-coherent if and only if the corresponding morphism $M \otimes_A K \to V$ is an isomorphism.

Exercise 2. (i) Let $f: X \to Y$ be a morphism and \mathcal{F} a sheaf of \mathcal{O}_X -modules. Show that $f_*\mathcal{F}$ is naturally a sheaf of \mathcal{O}_Y -modules.

(ii) Let $\varphi \colon A \to B$ be a ring morphism, and $f \colon \operatorname{Spec} B \to \operatorname{Spec} A$ the induced scheme morphism. Let M be a B-module. We denote by M_{φ} the set M viewed as an A-module using φ and the B-module structure on M. Show that

$$f_*\widetilde{M} = \widetilde{M_{\varphi}}.$$

- (iii) Let $f: X \to Y$ be a finite morphism (of schemes) and \mathcal{F} a coherent sheaf of \mathcal{O}_X -modules. Show that the sheaf of \mathcal{O}_Y -modules $f_*\mathcal{F}$ is coherent. (Hint: Reduce to the case when Y is affine, and use the previous question.)
- (iv) Give an example of a morphism $f: X \to Y$ and a coherent sheaf of \mathcal{O}_X modules such that the sheaf of \mathcal{O}_Y -modules $f_*\mathcal{F}$ is not coherent.

Exercise 3. Let X be a scheme and \mathcal{J} be a sheaf of \mathcal{O}_X -ideals. We consider the subset $V(\mathcal{J}) \subset X$ consisting of those points x such that $\mathcal{J}_x \neq \mathcal{O}_{X,x}$, and denote by $j: V(\mathcal{J}) \to X$ the inclusion (of sets).

- (i) Show that $V(\mathcal{J})$ is closed in X.
- (ii) Show that the natural morphism $\mathcal{O}_X/\mathcal{J} \to j_*j^{-1}(\mathcal{O}_X/\mathcal{J})$ is an isomorphism.
- (iii) Assume that $\mathcal{J} = \mathcal{I}_Z$ for a closed subscheme Z of X. Show that $Z = V(\mathcal{J})$ as subsets of X, and that $j^{-1}(\mathcal{O}_X/\mathcal{J}) \simeq \mathcal{O}_Z$.
- (iv) Assume that \mathcal{J} is quasi-coherent. Show that the ringed space $(V(\mathcal{J}), j^{-1}(\mathcal{O}_X/\mathcal{J}))$ is isomorphic to a closed subscheme of X.
- (v) Deduce a correspondence between closed subschemes of X and quasi-coherent sheaves of \mathcal{O}_X -ideals.

Exercise 1. Let X be a scheme, and consider a short exact sequence of quasi-coherent sheaves of \mathcal{O}_X -modules

$$0 \to \mathcal{M}' \to \mathcal{M} \to \mathcal{M}'' \to 0.$$

Assume that \mathcal{M}'' is locally free of finite type. Show that for any scheme morphism $f: Y \to X$ the sequence

$$0 \to f^* \mathcal{M}' \to f^* \mathcal{M} \to f^* \mathcal{M}'' \to 0$$

is exact. Deduce that $\mathcal{F} \mapsto f^*\mathcal{F}$ induces a group morphism $K_0(X) \to K_0(Y)$.

Exercise 2. Let k be a field, and $f: \mathbb{P}^1_k \to \mathbb{P}^1_k$ a dominant morphism. Recall that f is finite. Show that the $\mathcal{O}_{\mathbb{P}^1_k}$ -module $f_*\mathcal{O}_{\mathbb{P}^1_k}$ is locally free of finite type. (Hint: Use the covering of \mathbb{P}^1_k by two copies of \mathbb{A}^1_k .)

Exercise 3. Let A be a (not necessarily noetherian) commutative unital ring, and M a locally free A-module of finite type.

(i) Show that M is of finite presentation, i.e. there is an exact sequence

$$A^r \to A^s \to M \to 0$$

for some $r, s \in \mathbb{N}$. (Hint: Find a surjection $A^s \to M$, and let R be its kernel. Choose $f_1, \ldots, f_n \in A$ such that the A_{f_i} -modules M_{f_i} are free. Show that the A_{f_i} -module R_{f_i} is finitely generated, and deduce that R is finitely generated.)

- (ii) Let N be an A-module. Show that the natural morphism $\operatorname{Hom}_A(M,N) \to \operatorname{Hom}_A(M,N_f)$ induces an isomorphism $(\operatorname{Hom}_A(M,N))_f \simeq \operatorname{Hom}_A(M,N_f)$. (Hint: reduce to the case when M is free and finitely generated using the first question.)
- (iii) Show that there exists an A-module F such that $M \oplus F \simeq A^s$. (Hint: Show using (ii) that the morphism $\operatorname{Hom}_A(M, A^s) \to \operatorname{Hom}_A(M, M)$, induced by the morphism $A^s \to M$ of (i), is surjective.)

We now let P, Q be two A-modules such that $P \oplus Q \simeq A^t$ with $t \in \mathbb{N}$. Let $\mathfrak{p} \in \operatorname{Spec}(A)$.

- (iv) Show that the A-module P (and also Q) is projective.
- (v) Show that the $A_{\mathfrak{p}}$ -module $P_{\mathfrak{p}}$ (and also $Q_{\mathfrak{p}}$) is free (Hint: Use Nakayama's Lemma). Deduce the existence of a morphism of A-modules $\theta \colon A^m \to P$ for some $m \in \mathbb{N}$ such that $\theta_{\mathfrak{p}}$ is an isomorphism.
- (vi) Deduce that we may find $f \in A \mathfrak{p}$ such that θ_f is bijective. (Hint: Show first that we may find $g \in A \mathfrak{p}$ such that θ_g is surjective. Observe that the A_g -module P_g is projective.)
- (vii) Conclude that an A-module is locally free of finite type if and only if it is a direct summand of a free A-module of finite type.