Welcome...

Unsupervised Learning: Clustering

CS 797Q Fall 2024

10/30/2024

Supervised learning

Training set: $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), (x^{(3)}, y^{(3)}), \dots, (x^{(m)}, y^{(m)})$?

Unsupervised learning

Clustering

Training set: $\{x^{(1)}, x^{(2)}, x^{(3)}, ..., x^{(m)}\}$

Application of Clustering

Applications of clustering

Grouping similar news

- Growing skills
- Develop career
- Stay updated with AI, understand how it affects your field of work

DNA analysis

Market segmentation

Image credit: NASA/JPL-Calte ch/E. Churchwell (Univ. of Wisconsin, Madison)

Astronomical data analysis

K-mean Algorithm

K-means for clusters that are not well separated

K-mean optimization objectives

 $c^{(i)}$ = index of cluster (1, 2, ..., K) to which example $x^{(i)}$ is currently assigned

 μ_k = cluster centroid k

 $\mu_{c(i)}$ = cluster centroid of cluster to which example $x^{(i)}$ has been assigned • $\chi^{(10)}$ $c^{(10)}$ $\mathcal{M}_{0}^{(10)}$

Cost function

$$J(c^{(1)}, ..., c^{(m)}, \mu_1, ..., \mu_K) = \frac{1}{m} \sum_{i=1}^{m} ||x^{(i)} - \mu_{c^{(i)}}||^2$$

$$\min_{c^{(1)}, ..., c^{(m)}} J(c^{(1)}, ..., c^{(m)}, \mu_1, ..., \mu_K) \quad \text{distortion}$$

$$\mu_1, ..., \mu_K$$

K-mean optimization objectives

Initializing K-means

```
Step 0: Randomly initialize K cluster centroids μ<sub>1</sub>, μ<sub>1</sub>,..., μ<sub>k</sub>

Repeat {
Step 1: Assign points to cluster centroids
Step 2: Move cluster centroids
}
```

Initializing K-means

Random initialization

Choose K < m

Randomly pick K training examples.

Set μ_1 , μ_1 ,..., μ_k equal to these K examples.

Initializing K-means

Choosing Number of clusters

Choosing the value of K

Choosing Number of clusters

Choosing the value of K

Often, you want to get clusters for some later (downstream) purpose. Evaluate K-means based on how well it performs on that later purpose.

