Week 2 Notes: Basics of Generalized Linear Models

Antonio R. Linero University of Texas at Austin

Historical Motivation: Linear Model

Ordinary Linear Regression:

$$Y_i = X_i^{\top} \beta + \epsilon_i, \quad \epsilon_i \sim \text{Normal}(0, \sigma^2).$$

Strengths and limitations?

Historical Motivation: Linear Model

Ordinary Linear Regression:

$$Y_i = X_i^{\top} \beta + \epsilon_i, \quad \epsilon_i \sim \text{Normal}(0, \sigma^2).$$

Strengths and limitations?

- Computationally simple
- Mostly effective
- Cannot handle non-numeric data, which is usually heteroskedastic! (Why important?)

Transformation Models

Exercise: Variance Stabilizing Transformations

Suppose that $Y \sim \text{Poisson}(\lambda)$. Using the expansion

$$g(y) \approx g(\lambda) + (y - \lambda) g'(\lambda)$$

find a transformation $g(\cdot)$ such that the variance of g(Y) is approximately constant.

Transformation Models

Exercise: Variance Stabilizing Transformations

Suppose that $Y \sim \text{Poisson}(\lambda)$. Using the expansion

$$g(y) \approx g(\lambda) + (y - \lambda) g'(\lambda)$$

find a transformation $g(\cdot)$ such that the variance of g(Y) is approximately constant.

Old people model: $\sqrt{Y_i} = X_i^{\top} \beta + \epsilon_i$ when Y_i is count valued. Limitations?

Overall Goal:

GLMs are a computationally tractable generalization of the linear model to new outcomes!

1. The *stochastic component:* a choice of model for Y_i (e.g., binomial, normal, gamma, Poisson)

Overall Goal:

GLMs are a computationally tractable generalization of the linear model to new outcomes!

- 1. The *stochastic component:* a choice of model for Y_i (e.g., binomial, normal, gamma, Poisson)
- 2. The systematic component: $\eta_i = X_i^{\top} \beta$, quantifying the effect of predictors.

Overall Goal:

GLMs are a computationally tractable generalization of the linear model to new outcomes!

- 1. The *stochastic component:* a choice of model for Y_i (e.g., binomial, normal, gamma, Poisson)
- 2. The systematic component: $\eta_i = X_i^{\top} \beta$, quantifying the effect of predictors.
- 3. The *link function:* tells the model how the previous two components talk to each other by setting $g(\mathbb{E}(Y_i \mid X_i)) = \eta_i$.

Exponential Dispersion Families

Definition (Exponential Dispersion Family)

A family of distributions $\{f(\cdot;\theta,\phi):\theta\in\Theta,\phi\in\Phi\}$ is an exponential dispersion family if we can write

$$f(y; \theta, \phi) = \exp\left\{\frac{y\theta - b(\theta)}{\phi} + c(y; \phi)\right\},$$

for some known functions $b(\cdot)$ and $c(\cdot,\cdot)$. The parameter θ is referred to as the *canonical parameter* of the family and ϕ is referred to as the *dispersion parameter*.

Examples

Exercise: Examples of Exponential Dispersion Families

Show that the following families are types of exponential dispersion families, and find the corresponding b, c, θ, ϕ .

- 1. $Y \sim \text{Normal}(\mu, \sigma^2)$
- 2. Y = Z/N where $Z \sim \text{Binomial}(N, p)$
- 3. $Y \sim \text{Poisson}(\lambda)$
- 4. $Y \sim \text{Gam}(\alpha, \beta)$ (parameterized so that $\mathbb{E}(Y) = \alpha/\beta$).

GLMs

Definition: Generalized Linear Models

Suppose that we have $\mathcal{D} = \{(Y_i, x_i) : i = 1, ..., N\}$ (with the x_i 's regarded as fixed constants). We say that the Y_i 's follow a generalized linear model if:

1. Y_i has density/mass function

$$f(y_i \mid \theta_i, \phi/\omega_i) = \exp\left\{\frac{y_i \theta_i - b(\theta_i)}{\phi/\omega_i} + c(y_i; \phi/\omega_i)\right\}$$

where the coefficients $\omega_1, \ldots, \omega_N$ are known. This is referred to as the *stochastic component* of the model.

2. For some known (invertible) link function $g(\mu)$ we have

$$g(\mu_i) = x_i^{\top} \beta$$

where $\mu_i = \mathbb{E}(Y_i \mid \theta_i, \phi/\omega_i)$. This is referred to as the *systematic* component of the model. The term $\eta_i = x_i^{\mathsf{T}} \beta$ is known as the linear predictor.

Moments

Exercise: GLM Moments

Suppose that $Y \sim f(y; \theta, \phi/\omega)$ for some exponential dispersion family. Show that

- 1. $\mathbb{E}(Y \mid \theta, \phi/\omega) = b'(\theta)$; and 2. $\operatorname{Var}(Y \mid \theta, \phi/\omega) = \frac{\phi}{\omega}b''(\theta)$.

Moments

Exercise: GLM Moments

Suppose that $Y \sim f(y; \theta, \phi/\omega)$ for some exponential dispersion family. Show that

- 1. $\mathbb{E}(Y \mid \theta, \phi/\omega) = b'(\theta)$; and 2. $\operatorname{Var}(Y \mid \theta, \phi/\omega) = \frac{\phi}{\omega}b''(\theta)$.

The function $V(\mu) = b''\{(b')^{-1}(\mu)\}$ is called the variance function.

Moments

Exercise: GLM Moments

Suppose that $Y \sim f(y; \theta, \phi/\omega)$ for some exponential dispersion family. Show that

- 1. $\mathbb{E}(Y \mid \theta, \phi/\omega) = b'(\theta)$; and 2. $\operatorname{Var}(Y \mid \theta, \phi/\omega) = \frac{\phi}{\omega}b''(\theta)$.

The function $V(\mu) = b''\{(b')^{-1}(\mu)\}$ is called the variance function.

- Binomial: $V(\mu) = \mu(1-\mu)$
- Poisson: $V(\mu) = \mu$
- Gamma: $V(\mu) = \mu^2$

Definition: Canonical Link Function

The canonical link takes $g(\mu) = (b')^{-1}(\mu)$. By definition this gives the model

$$f(y_i \mid x_i, \omega_i, \theta, \phi) = \exp \left\{ \frac{y_i x_i^\top \beta - b(x_i^\top \beta)}{\phi/\omega_i} + c(y_i; \phi/\omega_i) \right\},\,$$

i.e., we use the exponential dispersion family with $\theta_i = x_i^{\top} \beta$.

Definition: Canonical Link Function

The canonical link takes $g(\mu) = (b')^{-1}(\mu)$. By definition this gives the model

$$f(y_i \mid x_i, \omega_i, \theta, \phi) = \exp \left\{ \frac{y_i x_i^\top \beta - b(x_i^\top \beta)}{\phi/\omega_i} + c(y_i; \phi/\omega_i) \right\},\,$$

i.e., we use the exponential dispersion family with $\theta_i = x_i^\top \beta$.

a. $Y \sim \text{Normal}(\mu, \sigma^2)$: $g(\mu) = \mu$.

Definition: Canonical Link Function

The canonical link takes $g(\mu) = (b')^{-1}(\mu)$. By definition this gives the model

$$f(y_i \mid x_i, \omega_i, \theta, \phi) = \exp \left\{ \frac{y_i x_i^\top \beta - b(x_i^\top \beta)}{\phi/\omega_i} + c(y_i; \phi/\omega_i) \right\},\,$$

i.e., we use the exponential dispersion family with $\theta_i = x_i^\top \beta$.

- a. $Y \sim \text{Normal}(\mu, \sigma^2)$: $g(\mu) = \mu$.
- b. $Y \sim \text{Poisson}(\lambda)$: $g(\mu) = \log \mu$.

Definition: Canonical Link Function

The canonical link takes $g(\mu) = (b')^{-1}(\mu)$. By definition this gives the model

$$f(y_i \mid x_i, \omega_i, \theta, \phi) = \exp \left\{ \frac{y_i x_i^\top \beta - b(x_i^\top \beta)}{\phi/\omega_i} + c(y_i; \phi/\omega_i) \right\},\,$$

i.e., we use the exponential dispersion family with $\theta_i = x_i^\top \beta$.

- a. $Y \sim \text{Normal}(\mu, \sigma^2)$: $g(\mu) = \mu$.
- b. $Y \sim \text{Poisson}(\lambda)$: $g(\mu) = \log \mu$. c. Y = Z/n with $Z \sim \text{Binomial}(n,p)$: $g(\mu) = \log\{\mu/(1-\mu)\}$.

Definition: Canonical Link Function

The canonical link takes $g(\mu) = (b')^{-1}(\mu)$. By definition this gives the model

$$f(y_i \mid x_i, \omega_i, \theta, \phi) = \exp \left\{ \frac{y_i x_i^\top \beta - b(x_i^\top \beta)}{\phi/\omega_i} + c(y_i; \phi/\omega_i) \right\},\,$$

i.e., we use the exponential dispersion family with $\theta_i = x_i^\top \beta$.

- a. $Y \sim \text{Normal}(\mu, \sigma^2)$: $g(\mu) = \mu$.
- b. $Y \sim \text{Poisson}(\lambda)$: $g(\mu) = \log \mu$.
- c. Y = Z/n with $Z \sim \text{Binomial}(n, p)$: $g(\mu) = \log{\{\mu/(1-\mu)\}}$.
- d. $Y \sim \operatorname{Gam}(\alpha, \beta)$: $g(\mu) = -1/\mu$.

Fitting GLMs in R

```
my_glm <- glm(
  response ~ predictor_1 + predictor_2 + and_so_forth,
  data = my_data,
  family = my_family
)</pre>
```

- family: what type of GLM? (poisson, binomial, gamma, binomial("probit"))
- **data**: what dataset?
- Uses R formula specification syntax (see reference material or Google)

Fitting Bayesian GLMs in R

```
library(rstanarm)
my_glm <- stan_glm(
  response ~ predictor_1 + predictor_2 + and_so_forth,
  data = my_data,
  family = my_family
)</pre>
```

- Same syntax, more-or-less
- Uses "default" priors! I guess you might want to change these...

Logistic Regression

Logistic regression:

$$Y_i = Z_i/n_i$$
 where $Z_i \sim \text{Binomial}(n_i, p_i)$.

with the canonical link

$$p_i = \frac{\exp(x_i^{\top} \beta)}{1 + \exp(x_i^{\top} \beta)} \iff \operatorname{logit}(p_i) = X_i^{\top} \beta$$

What the Coefficients Represent

If

$$\frac{\mathrm{Odds}(Y_i = 1 \mid X_i)}{\mathrm{Odds}(Y_{i'} = 1 \mid X_{i'})} = \frac{\Pr(Y_i = 1 \mid X_i) \ \Pr(Y_{i'} = 0 \mid X_{i'})}{\Pr(Y_i = 0 \mid X_i) \ \Pr(Y_{i'} = 1 \mid X_{i'})}$$

then the odds ratio is given by $e^{\beta_2 \delta}$ if X_i and $X_{i'}$ are identical except that $X_{i2} = X_{i'2} + \delta$.

Challenger

FlightNumber	Temperature	Pressure	Fail	nFailures	Damage
1	66	50	0	0	0
2	70	50	1	1	4
3	69	50	0	0	0
5	68	50	0	0	0
6	67	50	0	0	0
7	72	50	0	0	0

Goal: should stakeholders have been able to predict the failure of the O-rings on the challenger? If we repeated the Challenger launch under similar conditions, what would the probability of O-ring failure be?

Model

Simple logistic regression model:

$$logit(p_i) = \beta_0 + \beta_{temp} \times temp_i.$$

In R we can fit the this model by maximum likelihood as follows.

```
challenger_fit <- glm(
  Fail ~ Temperature,
  data = challenger,
  family = binomial
)</pre>
```

Summary

```
summary(challenger_fit)
##
## Call:
## glm(formula = Fail ~ Temperature, family = binomial, data = challenger)
##
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) 15.0429 7.3786
                                   2.039 0.0415 *
## Temperature -0.2322 0.1082 -2.145 0.0320 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 28.267 on 22 degrees of freedom
## Residual deviance: 20.315 on 21 degrees of freedom
## ATC: 24.315
##
## Number of Fisher Scoring iterations: 5
```

How do we interpret the output here?

Other Functions

coef(challenger_fit)

```
## (Intercept) Temperature
## 15.0429016 -0.2321627
```

Other Functions

```
## (Intercept) Temperature
## 15.0429016 -0.2321627
confint(challenger_fit)

## Waiting for profiling to be done...
## 2.5 % 97.5 %
## (Intercept) 3.3305848 34.34215133
## Temperature -0.5154718 -0.06082076
```

Other Functions

```
coef(challenger_fit)
## (Intercept) Temperature
## 15.0429016 -0.2321627
confint(challenger_fit)
## Waiting for profiling to be done...
##
                   2.5 %
                           97.5 %
## (Intercept) 3.3305848 34.34215133
## Temperature -0.5154718 -0.06082076
vcov(challenger_fit)
##
               (Intercept) Temperature
## (Intercept) 54.4441826 -0.79638547
## Temperature -0.7963855 0.01171512
```

Challenger Predictions

What is the MLE of the probability of failure at different temperatures?

```
predict(challenger_fit,
        newdata = data.frame(Temperature = c(40, 50, 60)),
        type = 'response',
        se.fit = TRUE)
## $fit
##
           1
## 0.9968475 0.9687735 0.7527135
##
## $se.fit
##
## 0.009674669 0.061205420 0.190948130
##
## $residual.scale
## [1] 1
```

Fitting the Bayesian Version

A Bayesian version can also be fit as follows.

```
challenger_bayes <- rstanarm::stan_glm(
  Fail ~ Temperature,
  data = challenger,
  family = binomial
)</pre>
```

Fitting the Bayesian Version

A Bayesian version can also be fit as follows.

```
challenger_bayes <- rstanarm::stan_glm(
  Fail ~ Temperature,
  data = challenger,
  family = binomial
)</pre>
```

Using the Bayesian version, let's plot the samples of the function

$$f(\texttt{temp}) = \{1 + \exp(-\beta_0 - \beta_1 \texttt{temp})\}^{-1}.$$

```
## For Reproducibility
set.seed(271985)
## Converts the rstanarm object to a matrix
beta samples <- as.matrix(challenger bayes)
## Some Colors
pal <- ggthemes::colorblind_pal()(8)
## Set up plotting region
plot(
 x = challenger$Temperature,
 v = challenger$Fail,
 vlab = "Failure?".
 xlab = "Temperature",
 type = 'n'
## A function for adding estimate
plot_line <- function(beta, col = 'gray') {
 plot(function(x) 1 / (1 + exp(-beta[1] - beta[2] * x)),
       col = col, add = TRUE, xlim = c(40, 90), n = 200)
## Apply plot line for a random collection of betas
tmpf <- function(i) plot line(beta samples[i,])</pre>
tmp <- sample(1:4000, 200) %>% lapply(tmpf)
## Get the Bayes estimate of the probability
tempgrid <- seq(from = 40, to = 90, length = 200)
bayes_est <- predict(challenger_bayes,
 type = 'response',
 newdata = data.frame(Temperature = tempgrid)
lines(tempgrid, bayes_est, col = pal[3], lwd = 4)
```

Results

Figure 1: Posterior samples of the probability of failure.

Predictions

1 ## 0.9857381

Bayesian believes that the shuttle will experience an O-ring failure with probability roughly 98%.

Poisson Log-Linear Models

For count data:

$$Y_i \sim \text{Poisson}(\mu_i)$$
 where $\log(\mu_i) = x_i^{\top} \beta$.

This is referred to as a *Poisson log-linear model*. Equivalently, we have $\mu_i = \exp(x_i^{\top} \beta)$.

Poisson Log-Linear Models

For count data:

$$Y_i \sim \text{Poisson}(\mu_i)$$
 where $\log(\mu_i) = x_i^{\top} \beta$.

This is referred to as a *Poisson log-linear model*. Equivalently, we have $\mu_i = \exp(x_i^{\top} \beta)$.

Poisson distribution models the number of times an event occurs in a given time, or within a given space.

- Number of homicides in a city
- Number of goals scored in a soccer game
- Take values $0, 1, 2, \ldots$ with no obvious upper bound.

For example, it might be used to model the

Coefficients

Exercise: Coefficients in a Poisson Regression

Suppose we fit a Poisson log-linear model $\log(\mu_i) = \beta_0 + \beta_{i1}X_{i1} + \beta_{i2}X_{i2}$. Show that a change in X_{i2} by δ units, holding X_{i1} fixed, results in a multiplicative effect on the mean:

$$\mu_{\text{new}} = e^{\beta_2 \delta} \mu_{\text{old}}$$

Ships Dataset (McCullaugh and Nelder)

```
ships <- MASS::ships
head(ships)</pre>
```

##		type	year	period	service	incidents
##	1	A	60	60	127	0
##	2	Α	60	75	63	0
##	3	Α	65	60	1095	3
##	4	Α	65	75	1095	4
##	5	A	70	60	1512	6
##	6	A	70	75	3353	18

- type: type of vessel
- year: year the vessel was constructed
- period: time period vessel is operating other
- **service**: number of months of service of ships of this type
- incidents: total number of incidents

Questions

- 1. Do certain types of ships tends to have higher numbers of incidents, after controlling for other factors?
- 2. Were some periods more prone to other incidents, after controlling for other factors?
- 3. Did ships built in certain years have more accidents than others?

A Simple Loglinear Model

Set $incidents_i \sim Poisson(\mu_i)$ with

 $\log \mu_i = \beta_0 + \beta_{\texttt{service}} \cdot \texttt{service}_i + \beta_{\texttt{type}} \cdot \texttt{type}_i + \beta_{\texttt{period}} \cdot \texttt{period}_i + \beta_{\texttt{year}} \cdot \texttt{year}_i.$

A Simple Loglinear Model

Set $incidents_i \sim Poisson(\mu_i)$ with

$$\log \mu_i = \beta_0 + \beta_{\texttt{service}} \cdot \texttt{service}_i + \beta_{\texttt{type}} \cdot \texttt{type}_i + \beta_{\texttt{period}} \cdot \texttt{period}_i + \beta_{\texttt{year}} \cdot \texttt{year}_i.$$

Slightly better model:

$$\log \mu_i = \beta_0 + \log(\mathtt{service}_i) + \beta_{\mathtt{type}} \cdot \mathtt{type}_i + \beta_{\mathtt{period}} \cdot \mathtt{period}_i + \beta_{\mathtt{year}} \cdot \mathtt{year}_i.$$

Term $log(service_i)$ is called an *offset*. Why is this better?

Fitting Ships

```
ships_glm <- glm(
  incidents ~ type + factor(period) + factor(year),
  family = poisson,
  offset = log(service),
  data = dplyr::filter(ships, service > 0)
)
print(summary(ships_glm))
```

Fitting Ships

```
##
## Call:
## glm(formula = incidents ~ type + factor(period) + factor(year),
      family = poisson, data = dplyr::filter(ships, service > 0),
##
      offset = log(service))
##
##
## Coefficients:
##
                  Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                 -6.40590 0.21744 -29.460 < 2e-16 ***
## typeB
                  -0.54334 0.17759 -3.060 0.00222 **
## typeC
                 -0.68740 0.32904 -2.089 0.03670 *
## typeD
                 -0.07596 0.29058 -0.261 0.79377
## typeE
                  0.32558 0.23588 1.380 0.16750
## factor(period)75 0.38447 0.11827 3.251 0.00115 **
## factor(vear)65
                  ## factor(vear)70 0.81843 0.16977 4.821 1.43e-06 ***
## factor(year)75  0.45343  0.23317  1.945  0.05182 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
##
      Null deviance: 146.328 on 33 degrees of freedom
## Residual deviance: 38.695 on 25 degrees of freedom
## ATC: 154.56
##
## Number of Fisher Scoring iterations: 5
```

Discuss identifiability of coefficients.

Conclusions

- Strong evidence for effects of period: period75 has more incidents per month of service.
- Incidents in year 60 seem relatively low (quite different from 65 and 70, some evidence of fewer incidents in 75 as well), all other things being equal.
- Evidence for differences across types of ships, with (for example) B having fewer incidents than A.

Exercises

Exercise: Bayesian Poisson Loglinear Model

Fit this function using stan_glm, then try out the plot function for stanreg objects. Describe your results.

Exercise: Overdispersion

A problem with Poisson log-linear models is that they impose the restriction $\mathbb{E}(Y_i) = \text{Var}(Y_i)$ so that the variance is completely constrained by the mean. Count data is referred to as overdispersed if $\text{Var}(Y_i) > \mathbb{E}(Y_i)$.

- a. Consider the model $Y \sim \text{Poisson}(\lambda)$ (given λ) and $\lambda \sim \text{Gam}(k, k/\mu)$. Find the mean and variance of Y. Is Y overdispersed?
- b. Show that Y marginally has a negative binomial distribution with k failures and success probability $\mu/(k+\mu)$; recall that the negative binomial distribution has mass function

$$f(y \mid k, p) = {k + y - 1 \choose y} p^{y} (1 - p)^{k}.$$

c. The following data is taken from Table 14.6 in Categorical Data Analysis, 3rd edition, by Alan Agresti.

```
poisson_data <- data.frame(
    Response = 0:6,
    Black = c(119,16,12,7,3,2,0),
    White = c(1070,60,14,4,0,0,1)
)
knitr::kable(poisson_data, booktabs = TRUE)</pre>
```

Response	Black	White
	119	1070
1	16	60
2 3	12	14
3	7	4
4	3	0
5	2	0
6	0	1