List of Symbols

Version: December 1, 2022

1 Font notation

$a, b, c, \ldots, A, B, C, \ldots$	Scalars
a, b, c, \dots	Vectors
A, B, C, \dots	Matrices
$\mathcal{A},\mathcal{B},\mathcal{C},\dots$	Tensors
$A, B, C, \ldots, A, B, C, \ldots$	Sets

2 Common symbols

∇f , \mathbf{g}	Gradient vector
$\nabla_x f, \mathbf{g}_x$	Gradient vector with respect x
\mathbf{g} (or $\hat{\mathbf{g}}$ if the gradient vector is \mathbf{g})	Stochastic approximation of the gra-
	dient vector
$\mathcal{F}\left\{ \cdot ight\}$	Fourier transform
$\mathcal{L}\left\{ \cdot ight\}$	Laplace transform
$\mathcal{Z}\left\{ \cdot ight\}$	Z-transform
$J(\cdot)$	Cost-function or objective function
$\Lambda(\cdot)$	Likelihood function
$\Lambda_l(\cdot)$	Log-likelihood function
$\mathcal{O}(\cdot), O(\cdot)$	big-O notation
$\mathbf{\mu}_{_{X}},\mathbf{m}_{_{X}}$	Mean vector
$\hat{\boldsymbol{\mu}}_{\scriptscriptstyle X}^{},\hat{\mathbf{m}}_{\scriptscriptstyle X}$	Sample mean vector
$r_{x}(\tau), R_{x}(\tau)$	Autocorrelation function of the signal
	x(t) or $x[n]$
$\hat{r}_x(au), \hat{R}_x(au)$	Estimated autocorrelation function
	of the signal $x(t)$ or $x[n]$
R_x	(Auto)correlation matrix of x
$\hat{\mathbf{R}}_{\mathbf{x}}$	Sample (auto)correlation matrix
$r_{x,d}(\tau), R_{x,d}(\tau)$	Cross-correlation between $x[n]$ and
' x,u (·); · · x,u (·)	d[n] or $x(t)$ and $d(t)$
	a[n] or $x(i)$ and $a(i)$

$\hat{r}_{x,d}(au),\hat{R}_{x,d}(au)$	Estimated cross-correlation between
D	x[n] and $d[n]$ or $x(t)$ and $d(t)$
$\mathbf{R}_{\mathbf{x}\mathbf{y}}$	Cross-correlation matrix of x and y
$\mathbf{R}_{\mathbf{x}\mathbf{y}}$	Sample cross-correlation matrix of
n ,	R_{xy} Cross-correlation vector
$\mathbf{p}_{\mathbf{x}d}$ $\rho_{x,y}$	Pearson correlation coefficient be-
Px,y	tween x and y
$\hat{ ho}_{x,y}$	Estimated Pearson correlation coeffi-
F A, y	cient between x and y
$c_x(\tau), C_x(\tau)$	Autocovariance function of the signal
	x(t) or $x[n]$
$\hat{c}_x(au), \hat{C}_x(au)$	Estimated autocovariance function of
	the signal $x(t)$ or $x[n]$
$\mathrm{C_x}, \mathrm{K_x}, \Sigma_{\mathrm{x}}$	(Auto)covariance matrix of \mathbf{x}
$\hat{\mathbf{C}}_{\mathbf{x}},\hat{\mathbf{K}}_{\mathbf{x}},\hat{\mathbf{\Sigma}}_{\mathbf{x}}$	Sample (auto)covariance matrix
$c_{xy}(\tau), C_{xy}(\tau)$	Cross-covariance function of the sig-
	$\operatorname{nal} x(t) \text{ or } x[n]$
$\hat{c}_{xy}(au), \hat{C}_{xy}(au)$	Estimated cross-covariance function
	of the signal $x(t)$ or $x[n]$
$\mathrm{C}_{\mathrm{xy}}, \mathrm{K}_{\mathrm{xy}}, \Sigma_{\mathrm{xy}}$	Cross-covariance matrix of ${\bf x}$
$\hat{\mathbf{C}}_{\mathbf{x}\mathbf{y}},\hat{\mathbf{K}}_{\mathbf{x}\mathbf{y}},\hat{\mathbf{\Sigma}}_{\mathbf{x}\mathbf{y}}$	Sample cross-covariance matrix
$\delta(t)$	Delta function
$\delta[n]$	Kronecker function
h(t), h[n]	Impulse response (continuous and
~	discrete time)
C	Cofactor matrix
W, D	Diagonal matrix
w, θ	Parameters, coefficients, or weights vector
$\mathbf{w}_o, \mathbf{w}^{\star}, \mathbf{\theta}_o, \mathbf{\theta}^{\star}$	Optimum value of the parameters,
,,,	coefficients, or weights vector
\mathbf{W}	Matrix of the weights
P	Projection matrix; Permutation ma-
	trix
Λ	Eigenvalue matrix
${f L}$	Lower matrix
U	Upper matrix; Left singular vectors
\mathbf{U}_r	Left singular nondegenerated vectors
Σ	Singular value matrix
Σ_r	Singular value matrix with nonzero
	singular values in the main diagonal
Σ^+	Singular value matrix of the pseu-
	doinverse

Σ_r^+	Singular value matrix of the pseudoinverse with nonzero singular val-
	ues in the main diagonal
V	Right singular vectors
\mathbf{V}_r	Right singular nondegenerated vec-
	tors
J	Jordan matrix; Jacobian matrix
\mathbf{S}	Symmetric matrix
Q	Orthogonal matrix
\mathbf{I}_N	$N \times N$ -dimensional identity matrix
$0_{M imes N}$	$M \times N$ -dimensional null matrix
0_N	N-dimensional null vector
0	Null matrix, vector, or tensor (di-
	mensionality understood by context)
$1_{M imes N}$	$M \times N$ -dimensional ones matrix
1_N	N-dimensional ones vector
1	Ones matrix, vector, or tensor (di-
	mensionality understood by context)
j	$\sqrt{-1}$

3 Linear Algebra operations

\mathbf{A}^{-1}	Inverse matrix
${f A}^+,{f A}^\dagger$	Moore-Penrose pseudoinverse
\mathbf{A}^{\top}	Transpose
\mathbf{A}^*	Complex conjugate
\mathbf{A}^H	Hermitian
$\ \mathbf{A}\ _{\mathrm{F}}$	Frobenius norm
$\ \mathbf{A}\ $	Matrix norm
$\ \mathbf{a}\ $	l_1 norm, 1-norm, or Manhatan norm
$\ \mathbf{a}\ , \ \mathbf{a}\ _2$	l_2 norm, 2-norm, or Euclidean norm
$\ \mathbf{a}\ _p$	l_p norm, p -norm, or Minkowski norm
$\ \mathbf{a}\ _{\infty}^{'}$	l_{∞} norm, ∞ -norm, or Chebyshev
	norm
$ \mathbf{A} , \det{(\mathbf{A})}$	Determinant
$\operatorname{diag}\left(\mathbf{a}\right),\operatorname{diag}\left(\mathbf{A}\right)$	Diagonalization: a square, diagonal
	matrix with entries given by the vec-
	tor ${\bf a}$ or the elements in the diagonal
	of A
$\text{vec}\left(\mathbf{A}\right)$	Vectorization: stacks the columns of
	the matrix A into a long column vec-
	tor

$\mathrm{vec_{d}}\left(\mathbf{A}\right)$	Extracts the diagonal elements of a
	square matrix and returns them in a
(1)	column vector
$\operatorname{vec}_{\operatorname{l}}\left(\mathbf{A}\right)$	Extracts the elements strictly below
	the main diagonal of a square matrix in a column-wise manner and returns
	them into a column vector
$\mathrm{vec_u}\left(\mathbf{A}\right)$	Extracts the elements strictly above
voca (11)	the main diagonal of a square matrix
	in a column-wise manner and returns
	them into a column vector
$\operatorname{vec}_{\operatorname{b}}\left(\mathbf{A}\right)$	Block vectorization operator: stacks
	square block matrices of the input
	into a long block column matrix
$\operatorname{unvec}\left(\mathbf{A}\right)$	Reshapes a column vector into a ma-
	trix
$cof(\mathbf{A})$	Cofactor matrix of A
$\operatorname{eig}\left(\mathbf{A} ight) \ \left[\mathbf{A},\mathbf{B},\mathbf{C},\dots ight]$	Set of the eigenvalues of A CANDECOMP/PARAFAC (CP) de-
$[\mathbf{A}, \mathbf{D}, \mathbf{C}, \dots]$	composition of the tensor \mathcal{X} from the
	outer product of column vectors of A ,
	$\mathbf{B}, \mathbf{C}, \dots$ (TODO: change the square
	brackets to the double one by using
	the commented commands)
$[\lambda; A, B, C, \dots]$	Normalized CANDE-
	COMP/PARAFAC (CP) decom-
	position of the tensor \mathcal{X} from the
	outer product of column vectors of
	A, B, C, (TODO: change the
	square brackets to the double one by using the commented commands)
$N(\mathbf{A})$, $nullspace(\mathbf{A})$, $kernel(\mathbf{A})$	Nullspace (or kernel)
$C(\mathbf{A})$, range (\mathbf{A}) , range (\mathbf{A})	Columnspace (or range), i.e., the
c (12), coramispace (12), raise (12)	space span $(\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n)$, where \mathbf{a}_i is
	the ith column vector of the matrix
	A
$\mathrm{span}\left(\mathbf{a}_{1},\mathbf{a}_{2},\ldots,\mathbf{a}_{n}\right)$	Vector space spanned by the argu-
	ment vectors
$\operatorname{span}\left(\mathbf{A}\right)$	Vector space spanned by the col-
	umn vectors of \mathbf{A} , which gives the
$\operatorname{rank}\left(\mathbf{A} ight)$	columnspace of \mathbf{A} Rank, that is, $\dim(\operatorname{span}(\mathbf{A})) =$
Tolla (A)	dim $(C(\mathbf{A}))$
nullity (A)	Nullity of \mathbf{A} , i.e., dim (N (\mathbf{A}))
$\operatorname{tr}(\mathbf{A})$	trace
$\mathbf{a}\perp \mathbf{b}$	${f a}$ is orthogonal to ${f b}$

/ 1	
a ≠ b	a is not orthogonal to b
$\langle \mathbf{a}, \mathbf{b} \rangle$	Inner product, i.e., $\mathbf{a}^{T}\mathbf{b}$
$\mathbf{a} \circ \mathbf{b}$	Outer product, i.e., $\mathbf{a}\mathbf{b}^{T}$
\otimes	Kronecker product
\odot	Hadamard (elementwise) product
♦	Khatri-Rao product
\otimes	Kronecker Product
\times_n	<i>n</i> -mode product
$\mathbf{X}_{(n)}$	n -mode matricization of the tensor ${\cal X}$
$\mathcal{X} \leq 0$	Nonnegative tensor
$\mathbf{a} \leq_K \mathbf{b}$	Generalized inequality meaning that
	$\mathbf{b} - \mathbf{a}$ belongs to the conic subset K in
	the space \mathbb{R}^n
$\mathbf{a} \prec_K \mathbf{b}$	Strict generalized inequality meaning
	that $\mathbf{b} - \mathbf{a}$ belongs to the interior of
	the conic subset K in the space \mathbb{R}^n
$\mathbf{a} \leq \mathbf{b}$	Generalized inequality meaning that
	$\mathbf{b} - \mathbf{a}$ belongs to the nonnegative or-
	thant conic subset, \mathbb{R}^n_+ , in the space
	\mathbb{R}^n
$\mathbf{a} \prec \mathbf{b}$	Strict generalized inequality meaning
	that $\mathbf{b} - \mathbf{a}$ belongs to the positive or-
	thant conic subset, \mathbb{R}^n_{++} , in the space
	\mathbb{R}^n
$\mathbf{A} \leq_K \mathbf{B}$	Generalized inequality meaning that
	$\mathbf{B} - \mathbf{A}$ belongs to the conic subset K
	in the space S^n
$\mathbf{A} \prec_K \mathbf{B}$	Strict generalized inequality meaning
	that $\mathbf{B} - \mathbf{A}$ belongs to the interior of
	the conic subset K in the space S^n
$\mathbf{A} \leq \mathbf{B}$	Generalized inequality meaning that
	B - A belongs to the positive semidef-
	inite conic subset, S_+^n , in the space S^n
A < B	Strict generalized inequality meaning
	that $\mathbf{B} - \mathbf{A}$ belongs to the positive or-
	thant conic subset, \mathcal{S}_{++}^n , in the space
	\mathcal{S}^n

3.1 Indexing

x_{i_1,i_2,\ldots,i_N}	Element in the position (i_1, i_2, \ldots, i_N) of the tensor \mathcal{X}
$\mathcal{X}^{(n)}$	nth tensor in a nontemporal sequence
$[\mathcal{X}]_{i_1,i_2,,i_N}$	Element $x_{i_1,i_2,,i_N}$
$\mathbf{x}_n, \mathbf{x}_{:n}$	nth column of the matrix X

\mathbf{x}_{n} :	nth row of the matrix X
$\mathbf{X}_{i_1,,i_{n-1},:,i_{n+1},,i_N}$	Mode- n fiber of the tensor $\boldsymbol{\mathcal{X}}$
$\mathbf{x}_{:,i_2,i_3}$	Column fiber (mode-1 fiber) of the
	thrid-order tensor $\boldsymbol{\mathcal{X}}$
$\mathbf{x}_{i_1,:,i_3}$	Row fiber (mode-2 fiber) of the thrid-
	order tensor \mathcal{X}
$\mathbf{x}_{i_1,i_2,:}$	Tube fiber (mode-3 fiber) of the
	thrid-order tensor \mathcal{X}
$\mathbf{X}_{i_1,:,:}$	Horizontal slice of the thrid-order
	tensor $\boldsymbol{\mathcal{X}}$
$\mathbf{X}_{:,i_2,:}$	Lateral slices slice of the thrid-order
	tensor $\boldsymbol{\mathcal{X}}$
$\mathbf{X}_{i_3}, \mathbf{X}_{:,:,i_3}$	Frontal slices slice of the thrid-order
	tensor \mathcal{X}

4 Sets

4 \ D	Cot out to the out out in
$A\setminus B$	Set subtraction, i.e., the set contain-
	ing the elements of A that are not in
	B
$A \cup B$	Set of union
$A \cap B$	Set of intersection
$A \times B$	Cartesian product
A^{\perp}	Orthogonal complement of A , e.g.,
	$N(\mathbf{A}) = C(\mathbf{A}^{T})^{\perp}$
$A \oplus B$	Direct sum, e.g., $C(\mathbf{A}^{\top}) \oplus C(\mathbf{A}^{\top})^{\perp} =$
	\mathbb{R}^n
A^c	Complement
#A	Cardinality
$a \in A$	a is element of A
$a \notin A$	a is not element of A
$\{1,2,\ldots,n\}$	Discrete set containing the integer el-
	ements $1, 2, \ldots, n$
\mathbb{R}	Set of real numbers
\mathbb{C}	Set of complex numbers
$\mathbb Z$	Set of integer number
$\mathbb{B} = \{0, 1\}$	Boolean set
Ø	Empty set
N	Set of natural numbers
$\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$???
$\mathbb{K}^{I_1 \times I_2 \times \cdots \times I_N}$	$I_1 \times I_2 \times \cdots \times I_N$ -dimensional real (or
wz	$r_1 \wedge r_2 \wedge \cdots \wedge r_N$ -difficulties (of complex) space
K.+	- , -
+211	Nonnegative real (or complex) space

\mathbb{K}_{++}	Positive real (or complex) space, i.e.,
	$\mathbb{K}_{++} = \mathbb{K}_+ \setminus \{0\}$
$\mathbb{S}^n, \mathcal{S}^n$	Conic set of the symmetric matrices
	in $\mathbb{R}^{n \times n}$
$\mathbb{S}^n_+, \mathcal{S}^n_+$	Conic set of the symmetric positive
	semidefinite matrices in $\mathbb{R}^{n \times n}$
$\mathbb{S}^n_{++}, \mathcal{S}^n_{++}$	Conic set of the symmetric positive
	definite matrices in $\mathbb{R}^{n\times n}$, i.e., \mathbb{S}^n_{++}
	$\mathbb{S}^n_+\setminus\{0\}$
\mathbb{H}^n	Set of all hermitian matrices in $\mathbb{C}^{n\times n}$
[a,b]	Closed interval of a real set from a to
	b
(a,b)	Opened interval of a real set from a
	to b
[a,b),(a,b]	Half-opened intervals of a real set
	from a to b

5 Signals and functions operations and indexing

$f:A\to B$	A function f whose domain is A and codomain is B
$f^{(n)}$	nth derivative of the function f
$f \circ g$	Composition of the functions f and
	g
$\inf_{\mathbf{y}\in\mathcal{A}}g(\mathbf{x},\mathbf{y})$	Infimum
$\sup g(\mathbf{x},\mathbf{y})$	Supremum
y∈A *	Convolution
$\circledast,\widehat{\mathrm{N}}$	Circular convolution
x(t)	Continuous-time t
$x[n],x[k],x[m],x[i],\ldots$	Discrete-time n, k, m, i, \ldots
$x(n), x(k), x(m), x(i), \dots$	Discrete-time n, k, m, i, \ldots (it should
	be used only if there are no
	continuous-time signals in the con-
	text to avoid ambiguity)
$\hat{x}(t) \text{ or } \hat{x}[n]$	Estimate of $x(t)$ or $x[n]$; the Hilbert
	transform of $x(t)$ or $x[n]$
$\tilde{x}[n]$	Periodic discrete-time signal
$x\left[\left(\left(n-m\right)\right)_{N}\right],x\left(\left(n-m\right)\right)_{N}$	Circular shift in m samples within a
	N-samples window
$x_I(t)$ or $x_I[n]$	Real or in-phase part of $x(t)$ or $x[n]$
$x_Q(t)$ or $x_Q[n]$	Imaginary or quadrature part of $x(t)$
	or $x[n]$
X(s)	Laplace transform of $x(t)$

X(f)	Fourier transform (FT) (in linear fre-
***	quency, Hz) of $x(t)$
$X(j\omega)$	Fourier transform (FT) (in angular
	frequency, rad/sec) of $x(t)$
$X(e^{j\omega})$	Discrete-time Fourier transform
	(DTFT) of $x[n]$
X[k], X(k)	Discrete Fourier transform (DFT) or
	fast Fourier transform (FFT) of $x[n]$,
	or even the Fourier series (FS) of the
	periodic signal $x(t)$
$\tilde{X}[k], \tilde{X}(k)$	Discrete Fourier series (DFS) of $\tilde{x}[n]$
X(z)	Z-transform of $x[n]$
$S_x(f)$	Power spectral density of $x(t)$ in lin-
	ear frequency
$S_x(j\omega)$	Power spectral density of $x(t)$ in an-
	gular frequency

6 Probability and stochastic processes

$E\left[\cdot ight]$	Statistical expectation
$E_u\left[\cdot\right]$	Statistical expectation with respect
	to u
var(x)	Variance of the random variable x
$\operatorname{erfc}(\cdot)$	Complementary error function
P(A)	Probability of the event or set A
$p(\cdot)$	Probability density function
$p(x \mid A)$	Conditional probability density func-
	tion
$a \sim P$	Random variable a with distribution
	P
$\mathcal{N}(\mu,\sigma^2)$ $\mathcal{C}\mathcal{N}(\mu,\sigma^2)$	Gaussian distribution of a random
	variable with mean μ and variance σ^2
$\mathcal{CN}(\mu,\sigma^2)$	Complex Gaussian distribution of a
	random variable with mean μ and
	variance σ^2
$\mathcal{N}(oldsymbol{\mu},oldsymbol{\Sigma})$	Gaussian distribution of a vector ran-
	dom variable with mean μ and co-
	variance matrix Σ
$\mathcal{CN}(oldsymbol{\mu},oldsymbol{\Sigma})$	Complex Gaussian distribution of a
	vector random variable with mean μ
	and covariance matrix Σ
$\mathcal{U}(a,b)$	Uniform distribution from a to b

7 General notations

 $a \wedge b$ Logical AND of a and b $a \lor b$ Logical OR of a and bLogical negation of a $\neg a$ Ξ There exists ∄ There does not exist ∃! There exist an unique \forall For all Such that Therefore Logical equivalence ≜ Equal by definition # Not equal Infinity ∞ Absolute value of a|a|Base-10 logarithm or decimal logalog rithmln Natual logarithm $\text{Re}\left\{x\right\}$ Real part of x $\operatorname{Im}\left\{ x\right\}$ Imaginary part of x $\lceil \cdot \rceil$ Ceiling operation $\lfloor \cdot \rfloor$ Floor operation phase (complex argument) ∠. $x \mod y$ Remainder, i.e., $x - y \lfloor x/y \rfloor$ $\operatorname{frac}(x)$ Fractional part, i.e., $x \mod 1$

8 Abbreviations

 $\begin{array}{ccc} \text{wrt.} & \text{With respect to} \\ \text{st.} & \text{Subject to} \\ \text{iff.} & \text{If and only if} \\ \text{EVD} & \text{Eigenvalue decomposition, or eigendecomposition} \\ \text{SVD} & \text{Singular value decomposition} \\ \text{CP} & \text{CANDECOMP/PARAFAC} \end{array}$