ALGORITHMICS \$ APPLIED

APPLIEDALGORITHMICS \$

CS\$ APPLIEDALGORITHMI

DALGORITHMICS \$ APPLIE

EDALGORITHMICS \$ APPLIE

GORITHMICS \$ APPLIEDAL

HMICS \$ APPLIEDALGORITHMICS \$ APPLIEDAL

4

String Matching – What's behind Ctrl+F?

28 February 2022

Sebastian Wild

Learning Outcomes

- **1.** Know and use typical notions for *strings* (substring, prefix, suffix, etc.).
- **2.** Understand principles and implementation of the *KMP*, *BM*, and *RK* algorithms.
- **3.** Know the *performance characteristics* of the KMP, BM, and RK algorithms.
- **4.** Be able to solve simple *stringology problems* using the *KMP failure function*.

Unit 4: String Matching

Outline

4 String Matching

- 4.1 Introduction
- 4.2 Brute Force
- 4.3 String Matching with Finite Automata
- 4.4 Constructing String Matching Automata
- 4.5 The Knuth-Morris-Pratt algorithm
- 4.6 Beyond Optimal? The Boyer-Moore Algorithm
- 4.7 The Rabin-Karp Algorithm

Ubiquitous strings

string = sequence of characters

- ▶ universal data type for . . . everything!
 - natural language texts
 - programs (source code)
 - websites
 - XML documents
 - DNA sequences
 - bitstrings
 - ▶ ... a computer's memory → ultimately any data is a string
- → many different tasks and algorithms

Ubiquitous strings

string = sequence of characters

- universal data type for . . . everything!
 - natural language texts
 - programs (source code)
 - websites
 - XML documents
 - DNA sequences
 - bitstrings
 - ▶ ... a computer's memory → ultimately any data is a string
- → many different tasks and algorithms
- ► This unit: finding (exact) occurrences of a pattern text.
 - ► Ctrl+F
 - ▶ grep
 - computer forensics (e. g. find signature of file on disk)
 - virus scanner
- basis for many advanced applications

Notations

- ▶ *alphabet* Σ : finite set of allowed **characters**; $\sigma = |\Sigma|$ "a string over alphabet Σ "
 - letters (Latin, Greek, Arabic, Cyrillic, Asian scripts, . . .)
 - "what you can type on a keyboard", Unicode characters
 - \blacktriangleright {0,1}; nucleotides {A, C, G, T};...

comprehensive standard character set including emoji and all known symbols

Notations

- ▶ *alphabet* Σ : finite set of allowed **characters**; $\sigma = |\Sigma|$ "a string over alphabet Σ "
 - letters (Latin, Greek, Arabic, Cyrillic, Asian scripts, . . .)
 - "what you can type on a keyboard", Unicode characters
- ▶ $\Sigma^n = \Sigma \times \cdots \times \Sigma$: strings of **length** $n \in \mathbb{N}_0$ (n-tuples)
- ▶ $\Sigma^* = \bigcup_{n \ge 0} \Sigma^n$: set of **all** (finite) strings over Σ
- $ightharpoonup \Sigma^+ = \bigcup_{n \geq 1} \Sigma^n$: set of **all** (finite) **nonempty** strings over Σ
- $\varepsilon \in \Sigma^0$: the *empty* string (same for all alphabets)

Notations

- ▶ *alphabet* Σ : finite set of allowed **characters**; $\sigma = |\Sigma|$ "a string over alphabet Σ "
 - letters (Latin, Greek, Arabic, Cyrillic, Asian scripts, . . .)
 - "what you can type on a keyboard", Unicode characters
- ▶ $\Sigma^n = \Sigma \times \cdots \times \Sigma$: strings of **length** $n \in \mathbb{N}_0$ (n-tuples)
- $ightharpoonup \Sigma^* = \bigcup_{n \geq 0} \Sigma^n$: set of **all** (finite) strings over Σ
- ▶ $\Sigma^+ = \bigcup_{n \ge 1} \Sigma^n$: set of **all** (finite) **nonempty** strings over Σ
- \triangleright $\varepsilon \in \Sigma^0$: the *empty* string (same for all alphabets)
- zero-based (like arrays)!
- ▶ for $S \in \Sigma^n$, write $\underline{S[i]}$ (other sources: S_i) for ith character $(0 \le i < n)$
- ▶ for $S, T \in \Sigma^*$, write $ST = S \cdot T$ for **concatenation** of S and T
- ▶ for $S \in \Sigma^n$, write $\underline{S[i..j]}$ or $S_{i,j}$ for the **substring** $S[i] \cdot S[i+1] \cdots S[j]$ $(0 \le i \le j < n)$
 - ► S[0..j] is a **prefix** of S; S[i..n-1] is a **suffix** of S
 - ► S[i..j] = S[i..j 1] (endpoint exclusive) \rightsquigarrow S = S[0..n)

Clicker Question

Clicker Question

String matching – Definition

Search for a string (pattern) in a large body of text

- ► Input:
 - ► $T \in \Sigma^n$: The <u>text</u> (haystack) being searched within
 - ▶ $P \in \Sigma^m$: The *pattern* (needle) being searched for; typically $n \gg m$
- ► Output:
 - ▶ the *first occurrence (match)* of *P* in *T*: $\min\{i \in [0..n m) : T[i..i + m) = P\}$
 - or NO_MATCH if there is no such i ("P does not occur in T")
- ▶ Variant: Find **all** occurrences of *P* in *T*.
 - \rightarrow Can do that iteratively (update T to T[i+1..n) after match at i)
- Example:
 - ightharpoonup T = "Where is he?"
 - $ightharpoonup P_1 = "he" \iff i = 1$
 - $ightharpoonup P_2 = \text{"who"} \leadsto \text{NO_MATCH}$
- ▶ string matching is implemented in Java in String.indexOf, in Python as str.find

Clicker Question

Let $T = COMP526_is_ifun$. What is T[3..7)?

Clicker Question

Let $T = COMP526_{\tt uis_ufun}$. What is T[3..7)?

012<mark>3456</mark>78901234 COMP526_is_fun.

sli.do/comp526

4.2 Brute Force

Abstract idea of algorithms

Pattern matching algorithms consist of guesses and checks:

- ▶ A **guess** is a position i such that P might start at T[i]. Possible guesses (initially) are $0 \le i \le n m$.
- ► A **check** of a guess is a pair (i, j) where we compare T[i + j] to P[j].

Abstract idea of algorithms

Pattern matching algorithms consist of guesses and checks:

- ▶ A **guess** is a position i such that P might start at T[i]. Possible guesses (initially) are $0 \le i \le n m$.
- ▶ A **check** of a guess is a pair (i, j) where we compare T[i + j] to P[j].
- ▶ Note: need all *m* checks to verify a single correct guess *i*, but it may take (many) fewer checks to recognize an incorrect guess.
- ► Cost measure: #character comparisons(= #checks)
- \rightarrow cost $\leq n \cdot m$ (number of possible checks)

Brute-force method

```
procedure bruteForceSM(T[0..n), P[0..m))

for i := 0, ..., n-m-1 do

for j := 0, ..., m-1 do

if T[i+j] \neq P[j] then break inner loop

if j == m then return i

return NO_MATCH
```

- ▶ try all guesses *i*
- check each guess (left to right); stop early on mismatch
- essentially the implementation in Java!

► Example:

T = abbbababbab P = abba

Brute-force method

```
procedure bruteForceSM(T[0..n), P[0..m))

for i := 0, ..., n-m-1 do

for j := 0, ..., m-1 do

if T[i+j] \neq P[j] then break inner loop

if j == m then return i

return NO_MATCH
```

- ▶ try all guesses *i*
- check each guess (left to right); stop early on mismatch
- essentially the implementation in Java!

\blacktriangleright	Example:
	$T={\sf abbbababbab}$
	P = abba
~ →	15 char cmps (vs $n \cdot m = 44$) not too bad!

	а	b	b	b	а	b	а	b	b	а	b
	а	b	b	а							
		а									
			а								
				а							
ĺ					а	b	b				
ĺ						а					
Ì							а	b	b	а	
Ì											

Brute-force method – Discussion

Brute-force method can be good enough

- typically works well for natural language text
- ▶ also for random strings

but: can be as bad as it gets!

а	а	а	а	а	а	а	а	а	а	а
а	а	а	b							
	а	а	а	b						
		а	а	а	b					
			а	а	а	b				
				а	а	а	b			
					а	а	а	b		
						а	а	а	b	
							а	а	а	b

- ▶ Worst possible input: $P = a^{m-1}b$, $T = a^n$
- ▶ Worst-case performance: $(n m + 1) \cdot m$
- \rightsquigarrow for $m \le n/2$ that is $\Theta(mn)$

Brute-force method – Discussion

- Brute-force method can be good enough
 - ▶ typically works well for natural language text
 - also for random strings

- ► Worst possible input: $P = a^{m-1}b$, $T = a^n$
- ▶ Worst-case performance: $(n m + 1) \cdot m$
- \rightsquigarrow for $m \le n/2$ that is $\Theta(mn)$

- ▶ Bad input: lots of self-similarity in $T! \rightsquigarrow$ can we exploit that?
- ▶ brute force does 'obviously' stupid repetitive comparisons → can we avoid that?

Roadmap

- ► **Approach 1** (this week): Use *preprocessing* on the **pattern** *P* to eliminate guesses (avoid 'obvious' redundant work)
 - ► Deterministic finite automata (**DFA**)
 - ► Knuth-Morris-Pratt algorithm
 - **▶ Boyer-Moore** algorithm
 - ► Rabin-Karp algorithm
- ► **Approach 2** (¬¬ Unit 6): Do *preprocessing* on the **text** *T*Can find matches in time *independent of text size(!)*
 - inverted indices
 - Suffix trees
 - ► Suffix arrays

4.3 String Matching with Finite Automata

Clicker Question

Do you know what regular expressions, NFAs and DFAs are, and how to convert between them?

- A Never heard of this; are these new emoji?
- **B** Heard the terms, but don't remember conversion methods.
- C Had that in my undergrad course (memories fading a bit).
- D Sure, I could do that blindfolded!

sli.do/comp526

- ▶ string matching = deciding whether $T \in \Sigma^* \cdot P \cdot \Sigma^*$
- $ightharpoonup \Sigma^* \cdot P \cdot \Sigma^*$ is *regular* formal language
- \rightarrow \exists *deterministic finite automaton* (DFA) to recognize $\Sigma^* \cdot P \cdot \Sigma^*$
- \rightsquigarrow can check for occurrence of P in |T| = n steps!

- ▶ string matching = deciding whether $T \in \Sigma^{\star} \cdot P \cdot \Sigma^{\star}$
- ▶ $\Sigma^* \cdot P \cdot \Sigma^*$ is *regular* formal language
- \rightarrow \exists deterministic finite automaton (DFA) to recognize $\Sigma^* \cdot P \cdot \Sigma^*$
- \rightarrow can check for occurrence of *P* in |T| = n steps!

Job done!

- ▶ string matching = deciding whether $T \in \Sigma^* \cdot P \cdot \Sigma^*$
- ▶ $\Sigma^* \cdot P \cdot \Sigma^*$ is *regular* formal language
- \rightarrow \exists deterministic finite automaton (DFA) to recognize $\Sigma^* \cdot P \cdot \Sigma^*$
- \rightarrow can check for occurrence of *P* in |T| = n steps!

Job done!

WTF!?

- ▶ string matching = deciding whether $T \in \Sigma^* \cdot P \cdot \Sigma^*$
- ▶ $\Sigma^* \cdot P \cdot \Sigma^*$ is *regular* formal language
- \rightarrow \exists deterministic finite automaton (DFA) to recognize $\Sigma^* \cdot P \cdot \Sigma^*$
- \rightarrow can check for occurrence of *P* in |T| = n steps!

Job done!

WTF!?

We are not quite done yet.

- ▶ (Problem 0: programmer might not know automata and formal languages . . .)
- ▶ Problem 1: existence alone does not give an algorithm!
- ▶ Problem 2: automaton could be very big!

String matching with **DFA**

- ▶ Assume first, we already have a deterministic automaton
- ► How does string matching work?

Example:

String matching with DFA

- ▶ Assume first, we already have a deterministic automaton
- ► How does string matching work?

text:		а	а	b	а	С	а	а	b	a	b	а	С	а	а
state:	0	1	1	2	3	0	1	1	2	3	4	5	6	7	7

String matching DFA – Intuition

Why does this work?

► Main insight:

State q means: "we have seen P[0..q) until here (but not any longer prefix of P)"

- \blacktriangleright If the next text character c does not match, we know:
 - (i) text seen so far ends with $P[0...q) \cdot c$
 - (ii) $P[0...q) \cdot c$ is not a prefix of P
 - (iii) without reading c, P[0..q) was the *longest* prefix of P that ends here.

String matching DFA – Intuition

Why does this work?

► Main insight:

State q means: "we have seen P[0..q) until here (but not any longer prefix of P)"

- \blacktriangleright If the next text character c does not match, we know:
 - (i) text seen so far ends with $P[0...q) \cdot c$
 - (ii) $P[0...q) \cdot c$ is not a prefix of P
 - (iii) without reading c, P[0..q) was the *longest* prefix of P that ends here.

- \rightarrow New longest matched prefix will be (weakly) shorter than q
- \rightarrow All information about the text needed to determine it is contained in $P[0...q) \cdot c!$

4.4 Constructing String Matching Automata

NFA instead of DFA?

It remains to *construct* the DFA.

NFA instead of DFA?

It remains to *construct* the DFA.

- ▶ that actually is a *nondeterministic finite automaton* (NFA) for Σ^*P Σ^*
- → We *could* use the NFA directly for string matching:
 - ▶ at any point in time, we are in a *set* of states
 - accept when one of them is final state

Example:

text:		a	а	b	а	С	а	а	b	a	b	a	С	a	a
state:	0	0,1	0,1	0,2	0,1,3	0	0,1	0,1	0,2	0,1,3	0,2,4	0,1,3,5	0,6	0,1,7	0,1,7

But maintaining a whole set makes this slow . . .

Computing DFA directly

You have an NFA and want a DFA? Simply apply the power-set construction (and maybe DFA minimization)!

The powerset method has exponential state blow up!

I guess I might as well use brute force ...

Computing DFA directly

You have an NFA and want a DFA? Simply apply the power-set construction (and maybe DFA minimization)!

The powerset method has exponential state blow up!

I guess I might as well use brute force ...

Ingenious algorithm by Knuth, Morris, and Pratt: construct DFA inductively:

Suppose we add character P[j] to automaton A_{j-1} for P[0..j)

- ▶ add new state and matching transition → easy
- for each $c \neq P[j]$, we need $\delta(j, c)$ (transition from j) when reading c)

Computing DFA directly

You have an NFA and want a DFA? Simply apply the power-set construction (and maybe DFA minimization)!

The powerset method has exponential state blow up!

I guess I might as well use brute force ...

Ingenious algorithm by Knuth, Morris, and Pratt: construct DFA *inductively*:

Suppose we add character P[j] to automaton A_{j-1} for P[0..j)

-> P((|) | C

- ▶ add new state and matching transition → easy
- ▶ for each $c \neq P[j]$, we need $\delta(j, c)$ (transition from (j) when reading c)
- \bullet $\delta(j,c) = \text{length of the longest prefix of } P[0..j)c \text{ that is a suffix of } P[1..j)c$
 - \Rightarrow = state of automaton after reading P[1..j)c

 $\leq j \rightsquigarrow \text{can use known automaton } A_{j-1} \text{ for that!}$

State q means: "we have seen P[0..q) until here (but not any longer prefix of P)"

 \rightarrow can directly compute A_j from A_{j-1} !

seems to require simulating automata $m \cdot \sigma$ times

PE:3

Computing DFA efficiently

- ▶ KMP's second insight: simulations in one step differ only in last symbol
- \rightarrow simply maintain state x, the state after reading P[1..j].
 - copy its transitions
 - update x by following transitions for P[j]

Demo: Algorithms videos of Sedgewick and Wayne

https://cuvids.io/app/video/194/watch

String matching with DFA – Discussion

► Time:

- ▶ Matching: *n* table lookups for DFA transitions
- ▶ building DFA: $\Theta(m\sigma)$ time (constant time per transition edge).
- \rightarrow $\Theta(m\sigma + n)$ time for string matching.

► Space:

- $\Theta(m\sigma)$ space for transition matrix.
- fast matching time actually: hard to beat!
- total time asymptotically optimal for small alphabet (for $\sigma = O(n/m)$)
- substantial **space overhead**, in particular for large alphabets