### CS229 Fall 2017

# Problem Set #1: Supervised Learning

Author: LFhase rimemosa@163.com

#### Logistic regression

(a) Given that

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} log(1 + e^{-y^{(i)}\theta^{T}x^{(i)}})$$

we can get

$$\frac{\partial J(\theta)}{\partial \theta_i} = \frac{1}{m} \sum_{k=1}^{m} \frac{-y^{(k)} x_i^{(k)}}{1 + e^{y^{(k)} \theta^T x^{(k)}}}$$

then

$$\frac{\partial J(\theta)}{\partial \theta_i \partial \theta_j} = \frac{1}{m} \sum_{k=1}^m \frac{x_i^{(k)} x_j^{(k)} e^{y^{(k)} \theta^T x^{(k)}}}{(1 + e^{y^{(k)} \theta^T x^{(k)}})^2}$$

which is  $H_{ij}$  so

$$Z^{T}HZ = \sum_{i=1}^{n} \sum_{j=1}^{n} z_{i}H_{ij}z_{j}$$

$$= \frac{1}{m} \sum_{k=1}^{m} \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} z_{i}x_{i}^{(k)}x_{j}^{(k)}z_{j}e^{y^{(k)}\theta^{T}x^{(k)}}}{(1 + e^{y^{(k)}\theta^{T}x^{(k)}})^{2}}$$

known that

$$\sum_{i=1}^{n} \sum_{j=1}^{n} z_i x_i^{(k)} x_j^{(k)} z_j = (X^T Z)^2 \ge 0$$

$$\frac{e^{y^{(k)}\theta^T x^{(k)}}}{(1 + e^{y^{(k)}\theta^T x^{(k)}})^2} > 0$$

we can easily get

$$Z^T H Z \ge 0$$

(b) Firstly, we plot the original data



To implement Newton's Method, we calculate the value of

$$\frac{1}{m} \sum_{k=1}^{m} \frac{-y^{(k)} x_i^{(k)}}{1 + e^{y^{(k)} \theta^T x^{(k)}}}$$

and **Hessian** then using the **update rule** 

$$\theta := \theta - H^{-1} \nabla_{\theta} l(\theta)$$

#### (c) Through 6 iterations, we finally get the result



and the  $\theta$  is [-2.6205116, 0.76037154, 1.17194674].

#### Poisson regression and the exponential family

(a) Firstly, we get

$$p(y; \lambda) = \frac{e^{-\lambda} \lambda^y}{y!}$$

$$= \frac{1}{y!} exp(log \lambda^y - log e^{\lambda})$$

$$= \frac{1}{y!} exp(log \lambda y - \lambda)$$

It's easy to know that

$$log\lambda = \eta, \lambda = e^{\eta}$$

$$T(y) = y$$

$$a(\eta) = -e^{\eta}$$

$$b(y) = \frac{1}{y!}$$

and Poisson distribution is in the exponential family.

(b) Known that if  $Y \sim P(\lambda)$ , then  $E[Y] = \lambda$ ,

$$h_{\theta}(x) = E[y|x; \theta]$$
$$= \lambda$$
$$= e^{\eta} = e^{\theta^{T}x}$$

so the response function for the family is

$$g(\eta) = e^{\eta}$$

.

(c) Firstly, we can get likelihood function  $L(\theta)$ 

$$\begin{split} L(\theta) &= \Pi_{k=1}^m P(y^{(k)}|x^{(k)};\lambda) \\ &= \Pi_{k=1}^m \frac{e^{-\lambda} \lambda^{y^{(k)}}}{y^{(k)}!} \end{split}$$

Then, the log-likelihood function  $l(\theta)$ 

$$l(\theta) = \sum_{k=1}^{m} (-\log y^{(k)}!) + (-\lambda) + y^{(k)} \log \lambda$$
$$= \sum_{k=1}^{m} (-\log y^{(k)}!) + (-e^{\theta^{T} x^{(k)}}) + y^{(k)} \theta^{T} x^{(k)}$$

Then, we can get the derivative of the log-likelihood with respect to  $\theta_i$ 

$$\frac{\partial l(\theta)}{\partial \theta_i} = \sum_{k=1}^m (y^{(k)} - e^{\theta^T x^{(k)}}) x_i^{(k)}$$

So, the stochastic gradient ascent learning rule is

$$\theta_i = \theta_i + \alpha (y^{(k)} - e^{\theta^T x^{(k)}}) x_i^{(k)}$$

(d) Firstly, we can know that

$$p(y|x;\theta) = b(y)exp(\eta^T y - a(\eta))$$

then, for a simple training data (x, y) in stochastic gradient ascent,

$$\frac{\partial p(y|x;\theta)}{\partial \theta_i} = x_i \left(y - \frac{\partial a(\eta)}{\partial \eta}\right)$$

known that,

$$\int_{y} p(y|x;\eta) = 1$$

we can imply derivation in both sides, and get

$$\int_y p(y|x;\eta)(y-\frac{\partial a(\eta)}{\partial \eta})=0$$

finally, we get

$$\frac{\partial a(\eta)}{\partial \eta} = \int_{\mathcal{Y}} p(y|x;\eta)y = h_{\theta}(x)$$

so the gradient we get is

$$\frac{\partial p(y|x;\theta)}{\partial \theta_i} = x_i(y - h_{\theta}(x))$$

the update rule is

$$\theta_i = \theta_i - \alpha (h_\theta(x) - y) x_i$$

#### Gaussian discriminant analysis

(a) Firstly, we have

$$p(y = 1|x; \phi, \Sigma, \mu_1, \mu_{-}1) = \frac{p(x|y = 1)p(y = 1)}{p(x|y = 1)p(y = 1) + p(x|y = -1)p(y = -1)}$$
$$= \frac{1}{1 + \frac{p(x|y = -1)p(y = -1)}{p(x|y = 1)p(y = 1)}}$$

apply such calculattion, we can get

$$p(y=1|x;\phi,\Sigma,\mu_{1},\mu_{-}1) = \frac{1}{1 + exp(-y(\ln\frac{\phi}{1-\phi} + \frac{1}{2}((x-\mu_{-1})^{T}\Sigma^{-1}(x-\mu_{-1}) - (x-\mu_{1})^{T}\Sigma^{-1}(x-\mu_{1})))}$$

$$= \frac{1}{1 + exp(-y(\ln\frac{\phi}{1-\phi} + (\mu_{1}-\mu_{-1})\Sigma^{-1}x + \frac{1}{2}(\mu_{-1}\Sigma^{-1}\mu_{-1} - \mu_{1}\Sigma^{-1}\mu_{1})))}$$

It's the same when y = -1. They can be written in the form of a logistic function where

$$\theta = (\mu_1 - \mu_{-1})\Sigma^{-1}$$

$$\theta_0 = \ln \frac{\phi}{1 - \phi} + 1/2(\mu_{-1}\Sigma^{-1}\mu_{-1} - \mu_1\Sigma^{-1}\mu_1)$$

(b) Let  $m_1$  be the number of samples with label y = 1, and  $m_{-1}$  be the number of samples with label y = -1. The log-likelihood function is

$$l(\theta,\mu_{-1},\mu_{1},\Sigma) = mlog(\frac{1}{(2\pi)^{n/2}|\Sigma|^{1/2}}) + m_{1}log\phi + m_{-1}log(1-\phi) + \sum_{i=1}^{m} (-\frac{1}{2})(x^{(i)} - \mu_{y^{(i)}})^{T} \Sigma^{-1}(x^{(i)} - \mu_{y^{(i)}})$$

so we can derive the partial derivate of each parameter,

$$\frac{\partial l}{\partial \phi} = \frac{m_1 - m\phi}{\phi(1 - \phi)}$$

$$\frac{\partial l}{\partial \mu_1} = \frac{\sum_{i=1}^{m_1} (x^{(i)} - \mu_1)}{\Sigma}$$

$$\frac{\partial l}{\partial \mu_{-1}} = \frac{\sum_{j=1}^{m_1} (x^{(j)} - \mu_{-1})}{\Sigma}$$

$$\frac{\partial l}{\partial \Sigma} = \frac{-\frac{1}{2} (m\Sigma - \sum_{i=1}^{m} (x^{(i)} - \mu_{y^{(i)}})^T (x^{(i)} - \mu_{y^{(i)}}))}{\Sigma^2}$$

let these partial derivates to be zero, we can get the maximum likelihood estimates the same as problem statement.

(c) As shown in (b)

## Linear invariance of optimization algorithms

(a) According to Newton's Method, we know that

$$x^{(i+1)} = x^{(i)} - \frac{f(x^{(i)})}{f'(x^i)}$$

So

$$z^{(i+1)} = z^{(i)} - \frac{g(z^{(i)})}{g'(z^{(i)})}$$

$$= z^{(i)} - \frac{f(Az^{(i)})}{f'(Az^{(i)})}$$

$$= A^{(-1)}x^{(i)} - A^{(-1)}(x^{(i)} - x^{(i+1)})$$

$$= A^{(-1)}x^{(i+1)}$$

so that Newton's Method is invariant to linear reparameterizations.

(b) In gradient descent algorithm

$$z^{(i+1)} = z^{(i)} - \alpha g'(z^{(i)})$$

$$= A^{(-1)}x^{(i)} - A(x^{(i)} - x^{(i+1)})$$

$$\neq A^{(-1)}x^{(i+1)}$$

#### Regression for denoising quasar spectra

(a) (i) We know that the form can be written in

$$\sum_{i,j} W_{ij} (\Theta^T x^{(i)} - y^i) (\Theta^T x^{(j)} - y^j)$$

to let them fit, just let  $W_{ii} = \frac{1}{2}w^{(i)}$ 

(ii) Firstly, we get the derivative

$$\nabla_{\theta} J(\theta) = 2(W(X\theta - \vec{y})^T X)$$

let the derivative be zero, we get

$$\theta = (X^T W X)^{-1} X^T W \vec{y}$$

since W is normal,  $\theta$  is what we want.

(iii) Write the log-likelihood function

$$l = \sum_{i=1}^{m} log \frac{1}{\sqrt{2\pi}\sigma^{(i)}} - \sum_{i=1}^{m} \frac{(y^{(i)} - \theta^{T}x^{(i)})^{2}}{2(\sigma^{(i)})^{2}}$$

The left part is a constant, and the right part need to be minimized. Let  $w_i = \frac{1}{2(\sigma^{(i)})^2}$ , we get a form same as the weight linear regression.

(b) (i) Let  $\theta = (X^T X)^{-1} X^T \vec{y}$ , we can get the result





(ii) Let  $\theta = (X^T W X)^{-1} X^T W \vec{y}$ , we can get the result



(iii) let  $\tau$  be different value, we can get different fitting result.



From the figure above, we know that, when  $\tau = 1$ , we get a perfect fitting result, but it's likely to be overfitting.

As  $\tau$  grows, the fitting gets worse and worse. So if we want to get a good result, we'd better trade off and select  $\tau=10$  (just an example) to get a balanced performance.

(c) (i) Just apply locally weighted linear regression to all 200 samples

(ii)