

Statistics Ex 7.1 Q3

Answer:

Given:

x_i	10	15	p	25	35
f.	3	10	25	7	5

Also, mean = 20.6

First of all prepare the frequency table in such a way that its first column consist of the values of the variate (x_i) and the second column the corresponding frequencies (f_i) .

Thereafter multiply the frequency of each row with corresponding values of variable to obtain third column containing $(f_i x_i)$.

Then, sum of all entries in the column second and denoted by $\sum f_i$ and in the third column to obtain $\sum f_i x_i$.

x_i	f_{i}	$f_i x_i$
10	3	30
15	10	150
p	25	25p
25	7	175
35	5	175
100	$\sum_{i} f_{i} = 50$	- FSSS

We know that mean,
$$\overline{X} = \frac{\sum f_i x_i}{\sum f_i}$$

$$20.6 = \frac{530 + 25p}{50}$$

By using cross multiplication method,

$$530 + 25p = 20.6 \times 50$$

 $25p = 1030 - 530$
 $p = \frac{500}{25}$
 $= 20$
Hence, $p = \boxed{20}$

Statistics Ex 7.1 Q4

Answer:

Given:

x_i	5	10	15	20	25
f_i	6	p	6	10	5

Also, mean = 15

First of all prepare the frequency table in such a way that its first column consist of the values of the variate (x_i) and the second column the corresponding frequencies (f_i) .

Thereafter multiply the frequency of each row with corresponding values of variable to obtain third column containing $(f_i x_i)$.

Then, sum of all entries in the column second and denoted by $\sum f_i$ and in the third column to obtain $\sum f_i x_i$.

x_i	f_{i}	$f_i x_i$
5	6	30
10	p	10 <i>p</i>
15	6	90
20	10	200
25	5	125
5	$f_i = 27 + p$	$\sum f_i x_i = 445 + 10p$

We know that mean,
$$\overline{X} = \frac{\sum f_i x_i}{\sum f_i}$$

$$15 = \frac{445 + 10p}{27 + p}$$

By using cross multiplication method

$$405 + 15p = 445 + 10p$$

$$15p - 10p = 445 - 405$$

$$5p = 40$$

$$p = \frac{40}{5}$$

$$= 8$$

Hence,
$$p = 8$$

********* END *******