Article Type: Letter

Article Title: Imperfect strategy transmission can reverse the role of population viscosity on the evolution of altruism .

Author: Florence Débarre – Centre Interdisciplinaire de Recherche en Biologie (CIRB), Collège de France, CNRS UMR 7241 - Inserm U1050, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France. florence.debarre@normalesup.org

Short Running Title: Mutation and altruism in subdivided populations.

Keywords: Altruism, Subdivided population, Mutation, Migration, Cooperation, Island model.

Word Count: Abstract 172

Impact summary 282 words
Total 4234 words

Check ω removes entirely + explain delta in table

Abstract

Population viscosity, *i.e.*, low emigration out of the natal deme, leads to high

within-deme relatedness, which is beneficial to the evolution of altruistic behav-

4 ior when social interactions take place among deme-mates. At the same time

5 however, it increases competition among related individuals. The evolution of

6 altruism depends on the balance between these opposite effects. This balance

is already known to be affected by details of the life-cycle; we show here that

8 it further depends on the fidelity of strategy transmission from parents to their

9 offspring. We consider different life-cycles (Wright-Fisher, with synchronous

o non-overlapping generations, Moran Death-Birth and Moran Birth-Death, both

with exactly one individual dying and reproducing at each time step) and we

identify thresholds of parent-offspring strategy transmission inaccuracy, above

which the effect of population viscosity on the frequency of altruists maintained

4 in the population qualitatively changes. Analytical predictions are first obtained

5 analytically under weak selection and equal deme sizes, then confirmed with

- 16 stochastic simulations relaxing these assumptions. This result challenges the
- $_{\rm 17}$ $\,$ notion that the evolution of altruism requires limited dispersal.

18 Impact Summary

The evolution of altruistic behavior has fascinated and puzzled evolutionary biologists for a long time: how can a strategy whereby individuals help others at their own cost be maintained in a population? One answer is the fact that altruists may interact with other altruists more often than non-altruists do, a situation made possible by spatial structure and low emigration. Low emigration indeed means that an individual is mostly surrounded by related individuals; when social strategies are faithfully transmitted from parents to offspring, and social interactions are local as well, then altruists interact mainly with other altruists. However, this also means that related individuals have to compete against each other. Whether altruism eventually evolves depends on the balance between these beneficial and detrimental consequences of low emigration. Previous work has shown that the balance depends on the life-cycle that the population undergoes; under nearly perfect strategy transmission, low emigration goes from be-31 ing neutral to the evolution of altruism (when generations are synchronous and non-overlapping) to favorable. In this work, we show that this conclusion qualitatively changes when offspring do not necessarily adopt their parent's strategy, that is, when strategy transmission is imperfect. This can be due to mutation when transmission is genetic, but also to imperfect vertical cultural transmission. We identify thresholds of strategy transmission infidelity, above which 37 higher emigration is more conducive to the evolution of altruism than low emigration. The predictions are first obtained mathematically under the restrictive assumptions that selection is weak and that all demes have the same size, but are then confirmed with computer simulations relaxing these assumptions. This work shows that the evolution of altruism does not require – and even can be hampered by – low emigration.

44 1 Introduction

In his pioneering work on the evolution of social behavior, Hamilton suggested that altruistic behavior would be associated to limited dispersal (Hamilton, 1964, p. 10). This notion, that tighter links between individuals favor the evolution of altruism, has been shown to hold in a number of population structures (see *e.g.* Ohtsuki et al., 2006; Taylor et al., 2007a; Lehmann et al., 2007). The rationale that altruism is favored when altruists interact more with altruists than defectors do (Hamilton, 1975, p. 141; Fletcher & Doebeli, 2009), a condition that is met in viscous populations, *i.e.*, populations with limited dispersal.

Yet, living next to your kin also implies competing against them (West et al.,

53 2002). The evolution of social traits hence depends on the balance between the positive effects of interactions with related individuals and the detrimental consequences of kin competition. Under specific conditions, the two effects can even compensate each other, thereby annihilating the impact of population vis-57 cosity on the evolution of altruism. First identified with computer simulations (Wilson et al., 1992), this cancellation result was analyzed by Taylor (1992a) in a model with synchronous generations (i.e., Wright-Fisher model) and a subdivided population of constant, infinite size. The cancellation result was later extended to heterogeneous populations (Rodrigues & Gardner, 2012, with synchronous generations and infinite population size), and other life-cycles, with generic regular population structures (Taylor et al., 2011, with synchronous generations but also with continuous generations and Birth-Death updating). However, small changes in the model's assumptions, such as overlapping generations (Taylor & Irwin, 2000) or the presence of empty sites (Alizon & Taylor, 2008) can 67 tip the balance back in the favor of altruism. This high dependence on lifecycle specificities highlights the difficulty of making general statements about the role of spatial structure on the evolution of altruism. In this study, we will

consider three different life-cycles: Wright-Fisher, where the whole population is renewed at each time step, and two Moran life-cycles (Birth-Death and Death-Birth), where a single individual dies and is replaced at each time step.

A large number of studies on the evolution of social behavior consider simple 74 population structures (typically, homogeneous populations sensu Taylor et al. (2007a)) and often also infinite population sizes (but see Allen et al., 2017, for results on any structure). These studies also make use of weak selection approximations, and commonly assume rare (e.g., Leturque & Rousset, 2002; Taylor et al., 2007b; Tarnita & Taylor, 2014) or absent mutation (for models assuming infinite population sizes, or models concentrating on fixation probabilities Lehmann & Rousset, 2014; Van Cleve, 2015, for recent reviews). Often, these simplifying assumptions are a necessary step towards obtaining explicit analytical results. Although artificial, simple population structures (e.g., regular graphs, or subdivided populations with demes of equal sizes) help reduce the dimensionality of the system under study, in particular when the structure of the population displays symmetries such that all sites behave the same way in expectation. Weak selection approximations are crucial for disentangling spatial moments (Lion, 2016), that is, changes in global vs. local frequencies (though they can in some cases be relaxed, as in Mullon & Lehmann, 2014). Mutation, however, is usually ignored by classical models of inclusive fitness because these models assume infinite population sizes, so that there is no need to add mechanisms that restore genetic diversity (Tarnita & Taylor, 2014). In populations of finite size, this diversifying effect can be obtained thanks to mutation.

When strategy transmission is purely genetic, it makes sense to assume that mutation is relatively weak. A social strategy can however also be culturally transmitted from parent to offspring, in which case "rebellion" (as in Frank's Rebellious Child Model (Frank, 1997)) does not have to be rare. Imperfect strategy transmission can alter evolutionary dynamics, in particular in spatially struc-

tured populations (see e.g., Allen et al., 2012; Débarre, 2017, for graph-structured populations). Here, we want to explore the consequences of imperfect strategy 100 transmission from parents to their offspring on the evolution of altruistic behav-101 ior in subdivided populations. For the sake of concision, we use the word "mu-102 tation" throughout the paper, keeping in mind that strategy transmission does 103 not have to be genetic. 104 For each of the three life-cycles that we consider, we compute the expected 105 (i.e., long-term) frequency of altruists maintained in a subdivided population, 106 and investigate how it is affected by mutation and emigration. We find that, con-107 trary to what happens with perfect strategy transmission, higher emigration can 108

increase the expected frequency of altruists in the population.

10 2 Model and methods

11 2.1 Assumptions

109

We consider a population of size N, subdivided into N_D demes, each hosting 112 exactly n individuals (i.e., each deme contains n sites, each of which is occupied by exactly one individual; we have $nN_D = N$). Each site has a unique label i, 114 $1 \le i \le N$. There are two types of individuals in the population, altruists and 115 defectors. The type of the individual living at site i $(1 \le i \le N)$ is given by an indicator variable X_i , equal to 1 if the individual is an altruist, and to 0 if it is a 117 defector. The state of the entire population is given by a N-long vector **X**. For a 118 given population state **X**, the proportion of altruists is $\overline{X} = \sum_{i=1}^{N} X_i$. All symbols 119 are summarized in table S1. 120 Reproduction is asexual. Parents transmit their strategy to their offspring 121 with probability $1 - \mu$; this transmission can be genetic or cultural (vertical cul-122 tural transmission), but for simplicity, we refer to the parameter μ as a mutation probability. With probability μ , offspring do not inherit their strategy from their

parent but instead get one randomly: with probability v, they become altruists, with probability 1-v they become defectors. We call the parameter v the mutation bias.

An individual of type X_k expresses a social phenotype $\phi_k = \delta X_k$, where δ is assumed to be small ($\delta \ll 1$). Social interactions take place within each deme, benefits are shared with the n-1 other deme-mates. We assume that social interactions affect individual fecundity; f_k denotes the fecundity of the individual at site k. We denote by b the marginal effect of a deme-mate's phenotype on the fecundity of a focal individual, and by -c the marginal effect of a focal individual ual's phenotype on its own fecundity ($c \le b$).

Offspring remain in the parental deme with probability 1-m; when they do, they land on any site of the deme with equal probability (including the very site of their parent). With probability m, offspring emigrate to a different deme, chosen uniformly at random among the other demes. Denoting by d_{ij} the probability of moving from site i to site j, we have

$$d_{ij} = \begin{cases} d_{\text{in}} = \frac{1-m}{n} & \text{if both sites are in the same deme;} \\ d_{\text{out}} = \frac{m}{(N_D - 1)n} & \text{if the two sites are in different demes,} \end{cases}$$
 (1) {eq:defD}

with $0 < m < 1 - \frac{1}{N_D}$ (the upper bound implies $d_{\rm in} > d_{\rm out}$).

We denote by $B_i = B_i(\mathbf{X}, \delta)$ the expected number of successful offspring of the 141 individual living at site i (successful means alive at the next time step), and by 142 $D_i = D_i(\mathbf{X}, \delta)$ the probability that the individual living at site *i* dies. Both depend 143 on the state of the population **X**, but also on the way the population is updated 144 from one time step to the next, i.e., on the chosen life-cycle (also called updating 145 rule). We will specifically explore three different life-cycles. At the beginning of 146 each step of each life-cycle, all individuals produce offspring, that can be mu-147 tated; then these juveniles move, within the parental deme or outside of it, and land on a site. The next events occurring during the time step depend on the

150 life-cycle:

Moran Birth-Death: One of the newly created juveniles is chosen at random; it
kills the adult who was living at the site, and replaces it; all other juveniles
die.

Moran Death-Birth: One of the adults is chosen to die (uniformly at random among all adults). It is replaced by one of the juveniles who had landed in its site. All other juveniles die.

Wright-Fisher: All the adults die. At each site of the entire population, one of
the juveniles that landed there is chosen and establishes at the site.

59 2.2 Methods

60 2.2.1 Analytical part

The calculation steps to obtain the expected (*i.e.*, long-term) proportion of altruists are given in Appendix A. They go as follows: first, we write an equation for the expected frequency of altruists in the population at time t+1, conditional on the composition of the population at time t; we then take the expectation of this quantity and consider large times t. After this, we write a first order expansion for phenotypic differences δ close to 0 (this corresponds to weak selection approximation).

The formula involves quantities that can be identified as neutral probabilities of identity by descent Q_{ij} , *i.e.*, the probability that individuals living at site i and j share a common ancestor and that no mutation occurred on either lineage since that ancestor, in a model with no selection ($\omega = 0$; this is the "mutation definition" of identity by descent (Rousset & Billiard, 2000).)

These neutral probabilities of identity by descent depend on the chosen lifecycle, and are also computed by taking the long-term expectation of conditional expectations after one time step (see Appendix A.2 and B.2).

All the results obtained analytically were checked numerically using specific population structures (see supplementary Mathematica file (Wolfram Research, Inc., 2017).)

179 2.2.2 Stochastic simulations

We also ran stochastic simulations (coded in C). The simulations were run for 10^8 generations (one generation is one time step for the Wright-Fisher life-cycle, and N time steps for the Moran life-cycles). For each set of parameters and life-cycle, using R (R Core Team, 2015), we estimated the long-term frequency of altruists by sampling the population every 10^3 generations and computing the average frequency of altruists.

All scripts are available at

https://github.com/flodebarre/SocEvolSubdivPop/tree/master/Programs

Results

187

3.1 Probabilities of identity by descent

As we will see later, the expected frequencies of altruists in the population depend on probabilities of identity by descent of pairs of sites, Q_{ij} . Two individuals are said to be identical by descent if there has not been any mutation on either lineage since their common ancestor. Because of the structure of the population, there are only three types of pairs of individuals, and hence three different values of the probabilities of identity by descent of pairs of sites Q_{ij} :

$$Q_{ij} = \begin{cases} 1 & \text{when } i = j; \\ Q_{\text{in}} & \text{when } i \neq j \text{ and both sites are in the same deme;} \\ Q_{\text{out}} & \text{when sites } i \text{ and } j \text{ are in different demes.} \end{cases}$$
 (2)

The values of $Q_{\rm in}$ and $Q_{\rm out}$ depend on the type of life-cycle that we consider.

7 3.1.1 Moran updating

Under the Moran life-cycles, probabilities of identity by descent satisfy, for any pair of sites i and $j \neq i$,

$$Q_{ij}^{M} = \frac{1-\mu}{2} \sum_{k=1}^{N} \left(d_{kj} Q_{ki}^{M} + d_{ki} Q_{kj}^{M} \right).$$
 (3)

Given the law of total probabilities, we first consider the site that was last updated (1/2 chance that it was j rather than i); then we consider each potential
parent k, weighted by the dispersal probabilities d_{kj} . Then the individuals at
sites i and j are identical by descent (IBD) if i and j's parent were IBD ($Q_{ki}^{\rm M}$) and
if no mutation occurred $(1-\mu)$. Replacing the dispersal probabilities d_{ij} by their
values (given in eq. (1)), we eventually obtain (see Appendix A.2 for calculation
steps):

{eq:QM}

$$Q_{\rm in}^{\rm M} = \frac{(1-\mu)\left(m+\mu(N_D(1-m)-1)\right)}{(1-\mu)m(N_D\mu(n-1)+1)+(N_D-1)\mu(\mu(n-1)+1)},\tag{4a}$$

$$Q_{\text{out}}^{\text{M}} = \frac{(1-\mu)m}{(1-\mu)m(N_D\mu(n-1)+1) + (N_D-1)\mu(\mu(n-1)+1)}.$$
 (4b)

The probability that two different deme-mates are identical by descent, $Q_{\rm in}^{\rm M}$, decreases monotonically with the emigration probability m, while $Q_{\rm out}^{\rm M}$ monotonically increases with m (see figure 1(a)).

When the mutation probability μ is vanishingly small ($\mu \to 0$), both $Q_{\rm in}^{\rm M}$ and $Q_{\rm out}^{\rm M}$ are equal to 1: in the absence of mutation indeed, the population ends up fixed for one of the two types, and all individuals are identical by descent. Note that we obtain a different result if we first assumed that the size of the population is infinite ($N_D \to \infty$), because the order of limits matters; for instance, $\lim_{d\to\infty} Q_{\rm out}^M = 0$.

216 3.1.2 Wright-Fisher updating

Under a Wright-Fisher life-cycle, generations are synchronous: all individuals are replaced at each time step. Probabilities of identity by descent satisfy, for any pair of sites i and $j \neq i$

$$Q_{ij}^{\text{WF}} = (1 - \mu)^2 \sum_{k,\ell=1}^{N} d_{ki} d_{\ell j} Q_{kl}^{\text{WF}}.$$
 (5)

The sum is over all possible parents k and ℓ of i and j, weighted by the dispersal probabilities to sites i and j; the individuals at sites i and j are identical by descent if their parents were $(Q_{k\ell})$ and if neither mutated $((1-\mu)^2)$.

Replacing the dispersal probabilities d_{ij} by their values (given in eq. (1)) and skipping calculation steps (but see Appendix A.2 for details), we obtain: $\{eq:QWF\}$

$$Q_{\rm in}^{\rm WF} = \frac{-N_D + M_1 + M_2}{(n-1)N_D + M_1 + M_2},\tag{6a}$$

$$Q_{\text{out}}^{\text{WF}} = \frac{-\frac{1}{N_D - 1} M_1 + M_2}{(n - 1)N_D + M_1 + M_2},$$
(6b)

225 with

235 0.

$$M_1 = \frac{N_D - 1}{1 - \frac{(1 - \mu)^2 (N_D (1 - m) - 1)^2}{(N_D - 1)^2}}$$
 and $M_2 = \frac{1}{1 - (1 - \mu)^2}$.

(These formulas are compatible with, e.g., results presented by Cockerham & Weir (1987), adapted for haploid individuals). 227 In the Wright-Fisher life-cycle, $Q_{\rm in}^{\rm WF}$ decreases until $m=m_c^{\rm WF}=\frac{d-1}{d}$, then in-228 creases again, while Q_{out}^{WF} follows the opposite pattern. The threshold value m_c^{WF} 229 corresponds to an emigration probability so high that an individual's offspring is 230 as likely to land in its parent's deme as in any other deme (*i.e.*, $d_{in} = d_{out}$). 231 The two probabilities of identity by descent go to 1 when the mutation prob-232 ability μ is very small ($\mu \to 0$), except if we first assume that the number of demes 233 is very large $(N_D \to \infty)$; for instance, with this life-cycle as well, $\lim_{N_D \to \infty} Q_{\rm out}^{\rm WF} =$ Also, because more sites (all of them, actually) are updated at each time step, $Q_{\rm in}$ is lower for the Wright-Fisher updating than for a Moran updating, under
which only one site is updated at each time step (compare figure 1(a) and 1(b)).

3.2 Expected frequencies of altruists for each life-cycle

For each of the life-cycles that we consider, the expected frequency of altruists in the population, $\mathbb{E}[\overline{X}]$, can be approximated as

$$\mathbb{E}\left[\overline{X}\right] \approx \nu + \omega \frac{\nu(1-\nu)}{\mu} \left[b \left(\beta_{\mathrm{D}} - \beta_{\mathrm{I}}\right) - c \left(\gamma_{\mathrm{D}} - \gamma_{\mathrm{I}}\right) \right]. \tag{7} \quad \{\mathrm{eq}: \mathtt{EXapprox}\}$$

(Calculations leading to eq. (7) are presented in Appendix A.)

The mutation bias v corresponds to the expected proportion of altruists in the 243 population in the absence of selection (*i.e.*, when $\omega = 0$); ω is the parameter 244 that scales the effects of interactions between individuals, which is assumed to 245 be small. The subscript D refers to "direct" effects, and the subscript I to "indirect" effects. "Direct" effects involve effects on primary beneficiaries of the 247 benefits (b) and costs (c) of social interactions (West & Gardner, 2010), i.e., so-248 cial interactants (for the benefits b) and the focal individuals themselves (for the costs c). "Indirect" effects corresponds to effects on secondary interactants, i.e., 250 to (kin) competition. By providing a benefit to a deme-mate and thereby in-251 creasing its fecundity, a focal altruist indirectly harms others by reducing their 252 relative fecundity ($\beta_{\rm I}$ term in eq. (7)); by having a reduced fecundity due to the 253 cost of altruism, a focal altruist indirectly favors others by increasing their rela-254 tive fecundity ($\gamma_{\rm I}$ term). 255 We now present the values of these different terms for the three life-cycles 256

8 3.2.1 Direct effects

under study.

Direct (/primary) effects are similar for the three life-cycles; the only difference is the value of probabilities of identity by descent Q (as seen in the previous sec-

tion, they differ between Moran and Wright-Fisher life-cycles):

$$\beta_{\mathrm{D}}^{\mathrm{BD}} = \beta_{\mathrm{D}}^{\mathrm{DB}} = (1 - \mu) Q_{\mathrm{in}}^{\mathrm{M}}, \tag{8a} \quad \{\mathrm{eq:bBDD}\}$$

$$\beta_{\mathrm{D}}^{\mathrm{WF}} = \left(1 - \mu\right) Q_{\mathrm{in}}^{\mathrm{WF}}; \tag{8b} \quad \{\mathrm{eq:bWFD}\}$$

$$\gamma_{\mathrm{D}}^{\mathrm{BD}} = \gamma_{\mathrm{D}}^{\mathrm{BD}} = \gamma_{\mathrm{D}}^{\mathrm{WF}} = 1 - \mu. \tag{8c}$$

(hence the $(1 - \mu)$ factors). Direct effects of benefits b (eq. (8a) and eq. (8b)) only 263 count if the interaction takes place with an individual who is identical by de-264 scent. With the population structure that we consider, social interactions only 265 occur within demes, so only $Q_{\rm in}$ is present in eq. (8a) and eq. (8b). On the other 266 hand, the direct effect of the fecundity cost c (eq. (8c)) does not depend on the 267 type of interactant, since the same cost c is paid by altruists irrespective of the 268 interactant's identity. 269 As seen in the previous section, Q_{in}^{M} and Q_{in}^{WF} decrease with the emigration 270 probability m (actually only until $m = \frac{d-1}{d}$ for the latter). Consequently, the mag-271 nitude of the direct (beneficial) effects of benefits b provided by altruists (β_D) 272 decreases when the emigration probability m increases, while the direct (detri-273 mental) effects (γ_D) due to the direct cost of altruism c are constant. As a result, 274 if we only considered direct effects, we would conclude that more emigration m275 is detrimental to the evolution of altruistic behaviour. However, there are also 276 indirect effects at play. 277

For both benefits and costs, direct effects only count when there is no mutation

278 3.2.2 Indirect effects

Indirect (/secondary) effects are collateral effects on other individuals; they depend on the type of life-cycle, and always involve individuals who are identical by descent.

Moran Birth-Death Changing the fecundity of a focal individual has two kinds
of indirect effects on others: *i*) it changes their probability of being the one chosen to reproduce – this affects all individuals in the population who are identical
by descent to the focal, and *ii*) it changes their probability of dying because the
number of offspring landing in their site changes – this affects individuals in the
population who can send offspring at the same locations as the focal and are
identical-by-descent to it. For this life-cycle, the indirect effects are:

$$\begin{split} \beta_{\rm I}^{\rm BD} &= (1-m) \left(\frac{n-1}{n} Q_{\rm in}^{\rm M} + \frac{1}{n} \right) + m \, Q_{\rm out}^{\rm M} - \mu \frac{1 + (n-1) Q_{\rm in}^{\rm M} + n (d-1) Q_{\rm out}^{\rm M}}{n d} \\ &= \gamma_{\rm I}^{\rm BD}. \end{split} \tag{9a} \quad \{ \text{eq:bBDI} \}$$

(Calculation details are presented in Appendix A.)

The formulas are the same for the indirect effects associated to b and to c; in other words, the balance between the two indirect effects remains the same when the emigration probability changes. The term $\left(\frac{n-1}{n}Q_{\rm in}^{\rm M}+\frac{1}{n}\right)$, which will appear again later, corresponds to the probability that two individuals sampled with replacement from the same deme are identical by descent. Indirect effects are indeed also felt by the focal individual itself (*e.g.*, increasing the fecundity of another individual implies decreasing one's own relative fecundity).

Replacing $Q_{\rm in}$ and $Q_{\rm out}$ by their formula for the Moran life-cycle (eq. (4)), we conclude that $\beta_{\rm I}^{\rm BD}=\gamma_{\rm I}^{\rm BD}$ are decreasing functions of the emigration probability m (calculations in the supplementary Mathematica file).

Moran Death-Birth With this life-cycle, death comes first and every individual in the population has the same survival probability (1/N). The indirect consequences of changing a focal individual's fecundity affect all individuals who can send their offspring to the same locations as the focal, and who are identical by

descent to it. We obtain

305

315

$$\begin{split} \beta_{\rm I}^{\rm DB} &= (1-\mu) \left[\left(\frac{1}{n} + \frac{(n-1)Q_{\rm in}^{\rm M}}{n} \right) \left((1-m)^2 + \frac{m^2}{(d-1)} \right) \right. \\ &+ Q_{\rm out}^{\rm M} \left(2m(1-m) + (d-2)\frac{m^2}{(d-1)} \right) \right] \\ &= \gamma_{\rm I}^{\rm DB} \end{split} \tag{9b} \quad \{ \rm eq:bDBI \} \end{split}$$

two individuals from the same deme (with replacement) whose offspring either 306 do not emigrate, or emigrate together to the same deme. The second term cor-307 responds to individuals initially from different demes who end up in the same 308 deme (either one of their home demes, or a third deme). 309 Here again, $\beta_I = \gamma_I$, so the balance between indirect benefits and indirect 310 costs does not change when the emigration probability *m* increases. 311 Replacing Q_{in} and Q_{out} by their formulas given in eq. (4), we can conclude 312 that $eta_{
m I}^{
m DB}=\gamma_{
m I}^{
m DB}$ first decreases with the emigration probability m, and increases 313 again after a threshold value m'_c , which is smaller than $m_c^{WF} = (d-1)/d$) (calcu-314

lation details are presented in the supplementary Mathematica file).

The brackets in eq. (9b) contain a sum of two terms. The first term corresponds

Wright-Fisher With this life-cycle, generations are synchronous and all indi-316 viduals again all have the same survival probability (now equal to 0 at all sites). 317 As a result, the formulas for $eta_{
m I}^{
m WF}$ and $\gamma_{
m I}^{
m WF}$ are the same as $eta_{
m I}^{
m DB}$ and $\gamma_{
m I}^{
m WF}$, except 318 that instead of $Q_{\rm in}^{\rm M}$ and $Q_{\rm out}^{\rm M}$, we need to use $Q_{\rm in}^{\rm WF}$ and $Q_{\rm out}^{\rm WF}$ (given in eq. (6)). Once 319 this is done, we see that $\beta_{\rm I}^{\rm WF} = \gamma_{\rm I}^{\rm WF}$ first decreases with the emigration probabil-320 ity m, and increases again after the threshold value $m_c^{\mathrm{WF}} = (d-1)/d$. This em-321 igration threshold was identified above as the emigration probability such that 322 offspring have an equal chance of landing in their natal deme or in any other 323 deme, i.e., $d_{\rm in} = d_{\rm out}$ (calculation details are presented in the supplementary Mathematica file.)

$_{6}$ 3.3 Identifying threshold values of the mutation probability μ

In the previous section, we investigated the impact of changes in the emigration probability m on each of the terms that make up the expected frequency of altruists $\mathbb{E}[\overline{X}]$. Now we need to combine these different terms to focus on the quantity we are eventually interested in, $\mathbb{E}[\overline{X}]$. The rather lengthy formulas that we obtain are relegated to the Appendixand supplementary Mathematica file, and we concentrate here on the results.

333 3.3.1 Moran Birth-Death

For this life-cycle, we find that the expected frequency of altruists $\mathbb{E}[\overline{X}]$ is a monotonic function of the emigration probability m; the direction of the change depends on the value of the mutation probability μ compared to a threshold value μ_c^{BD} . When $\mu < \mu_c^{\mathrm{BD}}$, $\mathbb{E}[\overline{X}]$ decreases with m, while when $\mu > \mu_c^{\mathrm{BD}}$, $\mathbb{E}[\overline{X}]$ increases with m. The critical value μ_c^{BD} is given by

$$\mu_c^{\text{BD}} = 1 - \frac{b - c + \sqrt{(b - c) \left(4b(nd)^2 + b - c\right)}}{2bnd}$$
 (10) {eq:mucBD}

This result is illustrated in figure 2(b); with the parameters of the figure, $\mu_c^{\rm BD} \approx$ 0.026.

41 3.3.2 Moran Death-Birth

The relationship between $\mathbb{E}[\overline{X}]$ and m is a bit more complicated for this lifecycle. For simplicity, we concentrate on what happens starting from low emigration probabilities (*i.e.*, the sign of the slope of $\mathbb{E}[\overline{X}]$ as a function of m when $m \to 0$). If the benefits b provided by altruists are relatively low (b < c(n + 1)), $\mathbb{E}[\overline{X}]$ initially increases with m provided the mutation probability μ is greater than a threshold value μ_c^{DB} given in eq. (11) below; otherwise, when the benefits are high enough, $\mathbb{E}[\overline{X}]$ initially increases with m for any value of μ . Combining

349 these results, we write

$$\mu_c^{\text{DB}} = \begin{cases} \frac{(n+1)c - b}{(2n-1)b - (n-1)c} & \text{if } b < c(n+1), \\ 0 & \text{otherwise.} \end{cases}$$
 (11) {eq:mucDB}

In figure 2(a), the parameters are such that $\mu_c^{\mathrm{DB}} = 0$.

The expected frequency of altruists $\mathbb{E}[\overline{X}]$ then reaches a maximum at an emigration probability m_c^{DB} (whose complicated equation is given in the supplementary Mathematica file), as can be seen in figure 2(a). When the mutation probability gets close to 0 ($\mu \to 0$), m_c^{DB} also gets close to 0,

355 3.3.3 Wright-Fisher

The expected frequency of altruists in the population reaches an extremum when $m=m_c^{\rm WF}=\frac{d-1}{d}$. This extremum is a maximum when the mutation probability is higher than a threshold value $\mu_c^{\rm WF}$ given by

$$\mu_c^{\text{WF}} = 1 - \sqrt{1 - \frac{c}{b}},$$
 (12)

and it is a minimum otherwise. With the parameters of figure 2(c), $\mu_c^{
m WF}$ = 0.034.

360 3.4 Relaxing key assumptions

To derive our analytical results, we had to make a number of simplifying assump-361 tions, such as the fact that selection is weak ($\omega \ll 1$), and the fact that the struc-362 ture of the population is regular (all demes have the same size n). We explored 363 with numerical simulations the effect of relaxing these key assumptions. When 364 selection is strong, the patterns that we identified not only still hold but are even 365 more marked, as shown on figure S1. 366 To relax the assumption of equal deme sizes, we randomly drew deme sizes 367 at the beginning of simulations, with sizes ranging from 2 to 6 individuals and 368

on average $\overline{n}=4$ individuals per deme as previously. As shown in figure S2, the patterns initially obtained with a homogeneous population structure are robust when the structure is heterogeneous.

For the Moran model, it may seem odd that an offspring can replace its own parent (which can occur since $d_{ii} \neq 0$). Figure S3, plotted with dispersal probabilities preventing immediate replacement of one's own parent (for all sites i, $d_{ii}=d_{\mathrm{self}}=0$; $d_{\mathrm{in}}=(1-m)/(n-1)$ for two different sites in the same deme, d_{out} remaining unchanged), confirms that this does affect our conclusions.

7 4 Discussion

The expected frequency of altruists in a subdivided population can increase with the probability of emigration

Assuming that the transmission of a social strategy (being an altruist or a defec-380 tor) from a parent to its offspring could be imperfect, we found that the expected 381 frequency of altruists maintained in a population could increase with the prob-382 ability m of emigration out of the parental deme, a parameter tuning population 383 viscosity. This result can seem surprising, because it contradicts the conclusions 384 obtained under the assumption of nearly perfect strategy transmission (i.e., in 385 the case of genetic transmission, when mutation is very weak or absent). Under 386 nearly perfect strategy transmission indeed, increased population viscosity (i.e., 387 decreased emigration probability) is either neutral (Taylor, 1992a, and dashed 388 lines in figures 2(b)-(c)) or favorable (Taylor et al., 2007a, and dashed lines in 389 figure 2(a)) to the evolution of altruistic behavior. 390

Quantitative vs. qualitative measures

We used a quantitative measure, the expected frequency of altruists in the population ($\mathbb{E}[\overline{X}]$), to explore how non-zero mutation probabilities altered the impact

of population viscosity. Often however, evolutionary success is measured qualitatively, by comparing a quantity (an expected frequency, or, in models with no 395 mutation, a probability of fixation) to the value it would have in the absence of 396 selection. In our model, this amounts to saying that altruism is favored whenever 397 $\mathbb{E}[\overline{X}] > v$ (v is plotted as a horizontal dashed line in figure 2). Some of our con-398 clusions change if we switch to this qualitative measure of evolutionary success: 399 Under the Moran Birth-Death and Wright-Fisher life-cycles, population viscosity 400 does not promote the evolution of altruism - actually, these two life-cycles can-401 not ever promote altruistic behavior for any regular population structure (Taylor 402 et al., 2011), whichever the probability of mutation (Débarre, 2017). However, 403 under a Moran Death-Birth life-cycle, altruism can be favored only at interme-404 diate emigration probabilities (figure 2(a)): increased emigration can still favor the evolution of altruism under this qualitative criterion. 406

The result is due to indirect (/secondary) effects

To explain how the frequency of altruists can increase with the emigration prob-408 ability m, let us go back to the decomposition of the expected frequency of al-409 truists in the population $\mathbb{E}[\overline{X}]$ into different terms (eq. (7)). For all the life-cycles 410 that we consider, the direct effect of helping others (β_D) decreases with emigra-411 tion m, while the direct effect of the cost of helping (γ_D) does not change with 412 m. If we (erroneously) considered only direct effects, we would conclude that 413 the expected proportion of altruists decreases with the emigration probability 414 m, because an increase in m reduces the probability that two interactants (two 415 deme-mates in this model) are identical by descent. But this explanation ignores indirect, competitive, effects. In the three life-cycles that we considered, $\beta_I = \gamma_I$, 417 so the overall indirect effects are given by $(-(b-c)\beta_I)$. Hence, any increase of 418 $\mathbb{E}[\overline{X}]$ with m is driven by $\beta_{\mathbb{I}}$. Indirect effects correspond to competition: helping another individual indirectly harms others - even the individual who is provid-

emigration probability m. The overall effect of m on the expected frequency of 422 altruists depends on the balance between direct and indirect effects. This bal-423 ance depends on the fidelity of parent-offspring transmission (μ) , in particular 424 because probabilities of identity by descent depend on μ . 425 Indirect (secondary) effects are less straightforward to understand than di-426 rect (/primary) effects, yet they play a crucial role for social evolution in spatially 427 structured populations. Competition among relatives is for instance behind Tay-428 lor (1992b)'s cancellation result; similarly, the qualitative differences between 429 the Moran Birth-Death and Moran Death-Birth life-cycles is explained by the dif-430 ferent scales of competition that the two life-cycle produce (Grafen & Archetti, 431 2008; Débarre et al., 2014). Secondary effects are also behind the evolution of 432 social behaviors such as spite (West & Gardner, 2010). 433

ing help is indirectly harmed. This competition can be diluted by increasing the

434 How small is small and how large is large?

421

Our results were derived under the assumption of weak selection, assuming that 435 the phenotypic difference between altruists and defectors is small ($\delta \ll 0$). We 436 considered any fidelity of transmission (any μ between 0 and 1) and population 437 size. However, most models considering subdivided populations assume nearly 438 perfect strategy transmission ($\mu \rightarrow 0$) and infinite population sizes (number of 439 demes $N_D \to \infty$). The order in which these limits are taken matters, *i.e.*, one 440 needs to specify how small μ , but also ω , are compared to the inverse size of 441 the population. This remark complements findings by Sample & Allen (2017), 442 who highlighted the quantitative differences between different orders of weak selection and large population limits.

Imperfect transmission and Rebellious Children

Our model bears resemblance to the Rebellious Child Model by Frank (1997), who studied the evolution of a vertically transmitted cultural trait in an asexually reproducing population. In Frank's model, however, relatedness r is treated as a fixed parameter (as acknowledged in the legend of Figure 7 in Frank (1997)). Our model is mechanistic; relatedness r necessarily depends on the mutation probability μ , because probabilities of identity by descent do.

Mutation was also previously included in models investigating the maintenance of cooperative microorganisms in the presence of cheaters (Brockhurst et al., 2007; Frank, 2010). In both of these models however, only loss-of-function mutation was considered, which corresponds to setting the mutation bias at v = 0 in our model. This means that the all-cheaters state is absorbing; no matter how favored cooperators may otherwise be, in the long run, a finite population will only consist of cheaters.

459 Interactions and dispersal graphs

Compared to graphs classically used in evolutionary graph theory (e.g., regular 460 random graphs, grids), the island model is particular because the interaction 461 graph and the dispersal graph are different: interactions take place only within 462 demes ($e_{\text{out}} = 0$), while offspring can disperse out of their natal deme ($d_{\text{out}} > 0$). 463 One may wonder whether our result depends on this difference between the two 464 graphs. Figure S4 shows that the result still holds when the dispersal and inter-465 action graphs are the same. In this figure indeed, we let a proportion m (equal 466 to the dispersal probability) of interactions occur outside of the deme where the 467 individuals live, and set d_{self} , the probability of self replacement, equal to 0, so 468 that the dispersal and interactions graphs are the same.

470 Coevolution of dispersal and social behavior

This work also raises the question of what would happen if dispersal (e.g., the 471 emigration probability m) could evolve as well. Recent work on the topic has 472 shown that under some conditions disruptive selection could take place, lead-473 ing to a polymorphism between sessile altruists and mobile defectors (Parvinen, 474 2013; Mullon et al., 2017). The assumptions of these studies however differ from 475 ours in important ways, in that they consider continuous traits and use an adap-476 tive dynamics framework, where, notably, mutations are assumed to be very 477 rare. It remains to be investigated how non-rare and potentially large mutations 478 would affect their result.

References

- Alizon, S. & Taylor, P. 2008: Empty sites can promote altruistic behavior. Evolution 62(6):1335–1344.
- Allen, B.; Lippner, G.; Chen, Y.-T.; Fotouhi, B.; Momeni, N.; Yau, S.-T. & Nowak, M. A. 2017: Evolutionary dynamics on any population structure. Nature
- 485 544(7649):227–230.
- 486 Allen, B.; Traulsen, A.; Tarnita, C. E. & Nowak, M. A. 2012: How mutation affects
- evolutionary games on graphs. Journal of Theoretical Biology 299:97 105.
- Evolution of Cooperation.
- Brockhurst, M. A.; Buckling, A. & Gardner, A. 2007: Cooperation peaks at intermediate disturbance. Current Biology 17(9):761–765.
- Cockerham, C. C. & Weir, B. 1987: Correlations, descent measures: drift with migration and mutation. Proceedings of the National Academy of Sciences 84(23):8512–8514.
- Débarre, F. 2017: Fidelity of parent-offspring transmission and the evolution of social behavior in structured populations. Journal of Theoretical Biology 420:26 35.
- Débarre, F.; Hauert, C. & Doebeli, M. 2014: Social evolution in structured populations. Nature Communications 5.
- Fletcher, J. A. & Doebeli, M. 2009: A simple and general explanation for the evolution of altruism. Proceedings of the Royal Society B: Biological Sciences 276(1654):13–19.
- Frank, S. A. 1997: The Price equation, Fisher's fundamental theorem, kin selection, and causal analysis. Evolution 51(6):1712–1729.
- Frank, S. A. 2010: Microbial secretor–cheater dynamics. Philosophical Transactions of the Royal Society of London B: Biological Sciences 365(1552):2515–2522.
- Grafen, A. & Archetti, M. 2008: Natural selection of altruism in inelastic viscous
 homogeneous populations. Journal of Theoretical Biology 252(4):694 710.
- Hamilton, W. 1964: The genetical evolution of social behaviour. i. Journal of Theoretical Biology 7(1):1 16.
- Hamilton, W. D. 1975: Innate social aptitudes of man: an approach from evolutionary genetics. Biosocial anthropology 53:133–55.
- Lehmann, L.; Keller, L. & Sumpter, D. J. T. 2007: The evolution of helping and harming on graphs: the return of the inclusive fitness effect. Journal of Evolutionary Biology 20(6):2284–2295.

- Lehmann, L. & Rousset, F. 2014: The genetical theory of social behaviour. Philosophical Transactions of the Royal Society of London B: Biological Sciences
 369(1642).
- Leturque, H. & Rousset, F. 2002: Dispersal, kin competition, and the ideal free
 distribution in a spatially heterogeneous population. Theoretical Population
 Biology 62(2):169 180.
- Lion, S. 2016: Moment equations in spatial evolutionary ecology. Journal of theoretical biology 405:46–57.
- Mullon, C.; Keller, L. & Lehmann, L. 2017: Co-evolution of dispersal with behaviour favours social polymorphism. bioRxiv.
- Mullon, C. & Lehmann, L. 2014: The robustness of the weak selection approximation for the evolution of altruism against strong selection. Journal of evolutionary biology 27(10):2272–2282.
- Ohtsuki, H.; Hauert, C.; Lieberman, E. & Nowak, M. A. 2006: A simple rule for the evolution of cooperation on graphs and social networks. Nature 441(7092):502–505.
- Parvinen, K. 2013: Joint evolution of altruistic cooperation and dispersal in a metapopulation of small local populations. Theoretical population biology 85:12–19.
- R Core Team. 2015: R: A Language and Environment for Statistical Computing.
 R Foundation for Statistical Computing, Vienna, Austria.
- Rodrigues, A. M. M. & Gardner, A. 2012: Evolution of helping and harming in heterogeneous populations. Evolution 66(7):2065–2079.
- Rousset, F. & Billiard, S. 2000: A theoretical basis for measures of kin selection in subdivided populations: finite populations and localized dispersal. Journal of Evolutionary Biology 13(5):814–825.
- Sample, C. & Allen, B. 2017: The limits of weak selection and large population
 size in evolutionary game theory. Journal of mathematical biology pages 1–
 33.
- Tarnita, C. E. & Taylor, P. D. 2014: Measures of relative fitness of social behaviors
 in finite structured population models. The American Naturalist 184(4):477–488.
- Taylor, P. 1992a: Altruism in viscous populations—an inclusive fitness model. Evolutionary ecology 6(4):352–356.
- Taylor, P.; Lillicrap, T. & Cownden, D. 2011: Inclusive fitness analysis on mathematical groups. Evolution 65(3):849–859.

- Taylor, P. D. 1992b: Inclusive fitness in a homogeneous environment. Pro-
- ceedings of the Royal Society of London. Series B: Biological Sciences
- 554 249(1326):299-302.
- Taylor, P. D.; Day, T. & Wild, G. 2007a: Evolution of cooperation in a finite homogeneous graph. Nature 447(7143):469–472.
- Taylor, P. D.; Day, T. & Wild, G. 2007b: From inclusive fitness to fixation proba-
- bility in homogeneous structured populations. Journal of Theoretical Biology
- 559 249(1):101 110.
- Taylor, P. D. & Irwin, A. J. 2000: Overlapping generations can promote altruistic behavior. Evolution 54(4):1135–1141.
- Van Cleve, J. 2015: Social evolution and genetic interactions in the short and long
 term. Theoretical Population Biology 103:2 26.
- West, S. A. & Gardner, A. 2010: Altruism, spite, and greenbeards. Science 327(5971):1341–1344.
- West, S. A.; Pen, I. & Griffin, A. S. 2002: Cooperation and competition between relatives. Science 296(5565):72–75.
- Wilson, D. S.; Pollock, G. B. & Dugatkin, L. A. 1992: Can altruism evolve in purely
 viscous populations? Evolutionary Ecology 6(4):331–341.
- Wolfram Research, Inc. 2017: Mathematica, Version 11.1. Champaign, IL, 2017.

Figures Figures

Figure 1: Probabilities of identity by descent, for two different individuals within the same deme ($Q_{\rm in}$, full curves) and two individuals in different demes ($Q_{\rm out}$, dashed curves), as a function of the emigration probability m, for different values of the mutation probability μ (0.001, 0.01, 0.1), and for the two types of life-cycles ((a): Moran, (b): Wright-Fisher). Other parameters: n=4 individuals per deme, $N_D=15$ demes.

Figure 2: Expected proportion of altruists under weak selection, as a function of the emigration probability m, for different mutation values ($\mu=0.001$ (blue, dots), 0.01 (purple, squares), 0.1 (brown, diamonds), 0.25 (orange, triangles); the dashed blue lines correspond to $\mu=0$) and different life-cycles ((a) Moran Death-Birth, (b) Moran Birth Death, (c) Wright-Fisher). The curves are the analytical results, the points are the output of numerical simulations. Parameters: $\omega=0.005$, $\nu=0.45$, b=15, c=1, n=4 individuals per deme, $N_D=15$ demes.

572 Supplementary figures

Figure S1: Equivalent of figure 2 (simulations only) but with strong selection ($\omega = 0.1$); please note the change of scale on the vertical axis. All other parameters and legends are identical to those of figure 2 (increasing mutation probabilities from blue dots to orange triangles).

Figure S2: Equivalent of figure 2 (simulations only) but with a heterogeneous population structure: deme sizes range form 1 to 5 individuals per deme, the average deme size is 4 as in figure 2; all other parameters and legend are identical to those of figure 2.

Figure S3: Equivalent of figure 2 (analysis only), with no self-replacement ($d_{ii} = d_{self} = 0$ for all sites).

Figure S4: Equivalent of figure 2 (analysis only), with equal dispersal and interaction graphs (*i.e.*, no self-replacement [$d_{ii} = d_{\text{self}} = 0$ for all sites], and a proportion m of the interactions occurring outside of the home deme).

573 Supplementary Table

h Fecundity benefit given by altruists to social interactants С Fecundity cost paid by altruists Dispersal probability from site i to site j d_{ii} Interaction probability from site i to site j $e_{i\,i}$ Deme size n N_D Number of demes Total population size $(N = N_D n)$ m**Emigration probability** (Long-term) Probability of identity by descent of individuals at sites i and j Q_{ii} X_i Indicator variable, equal to 1 if site *i* is occupied by an altruist, to 0 otherwise (r.v.) \overline{X} Frequency of altruists in the population (r.v.) Term associated to the benefits b Term associated to the costs c γ Mutation probability μ Mutation bias: probability that mutant is altruist ν ω Parameter scaling the relative effect of social interactions on fecundity D Subscript corresponding to direct/primary effects Subscript corresponding to indirect/secondary effects Ι in Subscript used when $i \neq j$ and the two sites are in the same deme Subscript used when the two sites *i* and *j* are in different demes out self Subscript used when i = jBD Superscript corresponding to the Moran Birth-Death model Superscript corresponding to the Moran Death-Birth model DΒ Μ Superscript corresponding to a Moran model WF Superscript corresponding to the Wright-Fisher model {tab:symbols}

Table S1: List of symbols. "r.v." means random variable.

Appendix

Expected frequency of altruists

{sec:app:EX}

A.1 For a generic life-cycle

574

576

581

591

{sec:app:generic}

We want to compute the expected proportion of altruists in the population. We 577 represent the state of the population at a given time t using indicator variables 578 $X_i(t)$, $1 \le i \le N$, equal to 1 if the individual living at site i at time t is an altru-579 ist, and equal to 0 if it is a defector; these indicator variables are gathered in a 580 *N*-long vector $\mathbf{X}(t)$. The set of all possible population states is $\Omega = \{0,1\}^N$. The proportion of altruists in the population is written $\overline{X}(t) = \sum_{i=1}^{N} X_i(t)$. We denote 582 by $B_{ii}(X(t),\delta)$, written B_{ii} for simplicity, the probability that the individual at 583 site j at time t+1 is the newly established offspring of the individual living at site 584 i at time t. The expected number of successful offspring produced by the individual living at site i at time t is given by $B_i = \sum_{j=1}^{N} B_{ji}$. We denote by $D_i(X(t), \delta)$ 586 (D_i for simplicity) the probability that the individual living at site i at time t has 587 been replaced (i.e., died) at time t + 1. These quantities depend on the chosen 588 life-cycle and on the state of the population; they are given in table S2 for each of the life-cycles that we consider.

Life-cycle	B_{ji}	D_i
Moran Birth-Death	$d_{ij}\frac{f_i}{\sum_{k=1}^N f_k}$	$\frac{\sum_{j=1}^{N} d_{ji} f_j}{\sum_{k=1}^{N} f_k}$
Moran Death-Birth	$\frac{1}{N} \frac{d_{ij} f_i}{\sum_{k=1}^N d_{kj} f_k}$	$\frac{1}{N}$
Wright-Fisher	$\frac{d_{ij}f_i}{\sum_{k=1}^N d_{kj}f_k}$	1

{tab:BD}

Table S2: Formulas of B_{ii} and D_i for each of the life-cycles that we consider; f_i (shorthand notation for $f_i(X,\delta)$) is the fecundity of the individual living at site i, and d_{ii} is a dispersal probability, given in eq. (1).

Since a dead individual is immediately replaced by one new individual,

$$D_i = \sum_{i=1}^{N} B_{ij}$$
 (A.1a) {eq:DBequiv}

holds for all sites i. The structure of the population is also such that in the absence of selection ($\delta = 0$, so that $f_i = 1$ for all sites $1 \le i \le N$), all individuals have

the same probability of dying and the same probability of having successful offspring (*i.e.*, of having offspring that become adults at the next time step), so that

$$D_i^0 = \sum_{i=1}^N B_{ji}^0 = B_i^0 =: B^*, \tag{A.1b}$$
 {eq:DBRV}

where the 0 subscript means that the quantities are evaluated for $\delta=0$. This also implies that B^0_{ij} and D^0_i do not depend on the state **X** of the population. For the Moran life-cycles, $B^*=1/N$, while for the Wright-Fisher life-cycle, $B^*=1$. (The difference between eq. (A.1b) and eq. (A.1a) is that we are now considering offspring produced by i landing on j).

Given that the population is in state $\mathbf{X}(t)$ at time t, the expected frequency of altruists at time t+1 is given by

$$\mathbb{E}\big[\overline{X}(t+1)|\mathbf{X}(t)\big] = \frac{1}{N} \sum_{i=1}^{N} \left[B_i(1-\mu)X_i + (1-D_i)X_i + B_i\mu\nu\right]. \tag{A.2a}$$
 (A.2a) {eq:conditionalchange}

The first term within the brackets corresponds to births of unmutated offspring from parents who are altruists (X_i) . The second term corresponds to the survival of altruists. The third term corresponds to the births of mutants who became altruists (which occurs with probability ν), which ever the type of the parent.

Given that there is no absorbing population state (a lost strategy can always be recreated by mutation), there is a stationary distribution of population states; the expected frequency of altruists does not change anymore for large times t (realized frequencies of course keep changing). We denote by $\xi(\mathbf{X}, \delta, \mu)$ the probability that the population is in state \mathbf{X} , given the strength of selection δ and the mutation probability μ . Taking the expectation of eq. (A.2a) ($\mathbb{E}[\overline{X}] = \sum_{X \in \Omega} \overline{X} \xi(\mathbf{X}, \delta, \mu)$), we obtain, after reorganizing:

$$0 = \frac{1}{N} \sum_{X \in \Omega} \left[\sum_{i=1}^{N} \left(B_i (1 - \mu) X_i - D_i X_i \right) + \sum_{i=1}^{N} B_i \mu \nu \right] \xi(\mathbf{X}, \delta, \mu). \tag{A.3}$$

Now, we use the assumption of weak selection ($\delta \ll 1$) and consider the first-order expansion of eq. (A.3) for δ close to 0. First, we note that in the absence of selection ($\delta = 0$), the population is at a mutation-drift balance; the expected state of every site i is then $\mathbb{E}_0[X_i] = \sum_{X \in \Omega} X_i \xi(X, 0, \mu) = v$ (recall that v is the mutation bias parameter). Secondly, we note that for all the life-cycles that we consider, the total number of deaths in the population during one time step does not depend on population composition (it is exactly 1 death for the Moran life-cycles, and exactly N for the Wright-Fisher life-cycle), so that $\sum_{i,j=1}^N B_{ij}$ does not depend on δ . Consequently, the last term of eq. (A.3) vanishes when we take its derivative with respect to δ , for the life-cycles that we consider.

The first order expansion of eq. (A.3) yields

$$0 = \frac{\delta}{N} \sum_{i=1}^{N} \left[\sum_{X \in \Omega} \left(\frac{\partial B_i}{\partial \delta} (1 - \mu) - \frac{\partial D_i}{\partial \delta} \right) X_i \xi(\mathbf{X}, 0, \mu) - \sum_{X \in \Omega} \mu B^* X_i \frac{\partial \xi}{\partial \delta} \right] + O\left(\delta^2\right), \quad (A.4) \quad \{\text{eq:weaksel0}\}$$

where the derivatives are evaluated at $\delta = 0$, and where we used eq. (A.1b) to simplify the second term. For conciseness, we define

$$W_i = (1 - \mu)B_i + (1 - D_i),$$
 (A.5) {eq:app:defW}

a measure of fitness counting offspring only when they are unmutated. With this, using the expectation notation, and denoting by $\mathbb{E}_0[]$ expectations under $\delta = 0$, we can rewrite and reorganize eq. (A.4) as

$$\delta \mu B^* \frac{\partial \mathbb{E}[\overline{X}]}{\partial \delta} = \frac{\delta}{N} \sum_{i=1}^{N} \mathbb{E}_0 \left[\frac{\partial W_i}{\partial \delta} X_i \right] + O(\delta^2). \tag{A.6}$$

Now, we use a first time the law of total probabilities, taking individual phenotypes ϕ_k are intermediate variables:

$$\begin{split} \frac{\partial W_i}{\partial \delta} &= \sum_{k=1}^N \frac{\partial W_i}{\partial \phi_k} \frac{\partial \phi_k}{\partial \delta} \\ &= \sum_{k=1}^N \frac{\partial W_i}{\partial \phi_k} X_k, \end{split} \tag{A.7} \quad \{eq:totalproba1\} \end{split}$$

by definition of ϕ_k , and where the first derivative is evaluated for all $\phi_i = 0$. With the notation $P_{ij} = \mathbb{E}_0[X_i X_j]$, eq. (A.6) becomes

$$\delta \mu B^* \frac{\partial \mathbb{E}[\overline{X}]}{\partial \delta} = \frac{\delta}{N} \sum_{i=1}^{N} \sum_{k=1}^{N} \frac{\partial W_i}{\partial \phi_k} P_{ik} + O(\delta^2). \tag{A.8}$$

So far, we have not used the specificities of the population structure that we consider. Once we have fixed a focal individual i, in expectation there are only three types of individuals: the focal itself, n-1 other individuals in the focal's deme (denoted by in), and N-n individuals in other demes (denoted by out). We note that since the size of the population is fixed $(\sum_{i=1}^{N}(B_i-D_i)=0)$, and since the total number of births does not depend on population composition in the lifecycles that we consider,

$$\sum_{i=1}^{N} \frac{\partial W_i}{\partial \delta} = 0,$$

which we can rewrite as (Rousset & Billiard, 2000)

$$\frac{\partial W_i}{\partial \phi_i} + (n-1)\frac{\partial W_i}{\partial \phi_{\text{in}}} + (N-n)\frac{\partial W_i}{\partial \phi_{\text{out}}} = 0. \tag{A.9} \quad \{\text{eq:derivsumW}\}$$

643 With this, eq. (A.8) becomes

$$\delta \mu B^* \frac{\partial \mathbb{E}[\overline{X}]}{\partial \delta} = \frac{\delta}{N} \sum_{i=1}^{N} \left(\frac{\partial W_i}{\partial \phi_i} + (n-1) \frac{\partial W_i}{\partial \phi_{\text{in}}} \frac{P_{\text{in}} - P_{\text{out}}}{P_{ii} - P_{\text{out}}} \right) (P_{ii} - P_{\text{out}}) + O(\delta^2). \quad (A.10) \quad \{\text{eq:weaksel1CBRP}\}$$

We can also replace the P terms by

644

$$P_{ij} = v^2 + v(1 - v)Q_{ij}.$$
 (A.11) {eq:QP}

In Appendix A.2, we will see that recursions on P_{ij} reveal that Q_{ij} can be interpreted as a probability of identity by descent, *i.e.*, the probability that the individuals at sites i and j have a common ancestor and that no mutation has occurred on either lineage since the ancestor. Eq. (A.10) becomes

$$\delta\mu B^* \frac{\partial \mathbb{E}\left[\overline{X}\right]}{\partial \delta} = \frac{\delta}{N} \sum_{i=1}^{N} \left(\underbrace{\frac{\partial W_i}{\partial \phi_i}}_{-\mathcal{C}} + \underbrace{(n-1)\frac{\partial W_i}{\partial \phi_{\text{in}}}}_{\mathcal{B}} \underbrace{\frac{Q_{\text{in}} - Q_{\text{out}}}{1 - Q_{\text{out}}}}_{R} \right) (1 - Q_{\text{out}}) \nu (1 - \nu) + O\left(\delta^2\right). \tag{A.12}$$

We can further decompose the derivatives, now using the fecundities f_{ℓ} as intermediate variables, *i.e.*,

$$\frac{\partial W_i}{\partial \phi_k} = \sum_{\ell=1}^N \frac{\partial W_i}{\partial f_\ell} \frac{\partial f_\ell}{\partial \phi_k}.$$
 (A.13)

With our notation, and given that social interactions take place within demes and affect fecundity, we have

{eq:derivf}

$$\left. \frac{\partial f_{\ell}}{\partial \phi_{\ell}} \right|_{\delta=0} = -\mathsf{c},\tag{A.14a}$$

$$\left. \frac{\partial f_{\ell}}{\partial \phi_{\rm in}} \right|_{\delta=0} = \frac{\mathsf{b}}{n-1},\tag{A.14b}$$

$$\frac{\partial f_{\ell}}{\partial \phi_{\text{out}}} \bigg|_{\delta=0} = 0.$$
 (A.14c)

Eq. (A.12) then becomes (using notation • to refer to the focal individual itself, and where $W = W_i$, since the derivatives are the same for all i):

$$\delta\mu B^* \frac{\partial \mathbb{E}\left[\overline{X}\right]}{\partial \delta} = \delta\nu (1-\nu)(1-Q_{\rm out}) \times \\ \left(\underbrace{\frac{\partial W}{\partial f_{\bullet}}(-c) + \frac{\partial W}{\partial f_{\rm in}}}_{-\mathcal{C}} b + \underbrace{\left(\frac{\partial W}{\partial f_{\bullet}}b + \frac{\partial W}{\partial f_{\rm in}}(-c) + (n-2)\frac{\partial W}{\partial f_{\rm in}}b\right)}_{\mathcal{B}} \underbrace{\frac{Q_{\rm in} - Q_{\rm out}}{1-Q_{\rm out}}}_{R}\right) + O\left(\delta^2\right).$$
(A.15) {eq:weakse12}

Finally, we obtain a first-order approximation of the expected frequency of altruists in the population with

$$\mathbb{E}\left[\overline{X}\right] = v + \delta \left. \frac{\partial \mathbb{E}\left[\overline{X}\right]}{\partial \delta} \right|_{\delta=0} + O\left(\delta^2\right), \tag{A.16} \quad \{\text{eq:EXgeneric}\}$$

where $\frac{\partial \mathbb{E}\left[\overline{X}\right]}{\partial \delta}\Big|_{\delta=0}$ is obtained from eq. (A.15). We then need to replace the B_i and D_i terms by their formulas for each life-cycle (given in table S2).

A.2 Probabilities of identity by descent

{sec:app:IBD}

Here we show the link between the expected state of a pair of sites P_{ij} and probabilities of identity by descent Q_{ij} . In our derivation of $\mathbb{E}[\overline{X}]$, P_{ij} is the quantity that appears, but most studies use Q_{ij} . Both are evaluated in the absence of selection ($\omega = 0$).

664 A.2.1 Moran model

In a Moran model, exactly one individual dies and one individual reproduces during one time step. Given a state **X** at time t, at time t+1 both sites i and $j \neq i$ are occupied by altruists, if i) it was the case at time t and neither site was replaced by a non-altruist (first term in eq. (A.17)), or ii) if exactly one of the two sites was occupied by a non-altruist at time t, but the site was replaced by an altruist (second and third terms of eq. (A.17)):

$$\begin{split} \mathbb{E} \big[X_i X_j(t+1) | X(t) &= \mathbf{X} \big] = & X_i X_j \left(1 - \sum_{k=1}^N \frac{1}{N} \left(d_{ki} + d_{kj} \right) \left((1 - X_k) (1 - \mu) + \mu (1 - \nu) \right) \right) \\ &+ X_i (1 - X_j) \sum_{k=1}^N \frac{1}{N} d_{kj} \left(X_k (1 - \mu) + \mu \nu \right) \\ &+ X_j (1 - X_i) \sum_{k=1}^N \frac{1}{N} d_{ki} \left(X_k (1 - \mu) + \mu \nu \right). \end{split} \tag{A.17} \quad \{ \text{eq:app:PijM1} \}$$

We take the expectation of this quantity, and consider that the stationary distribution is reached $(t \to \infty)$; then $\mathbb{E}[X_i X_j(t+1)] = \mathbb{E}[X_i X_j(t)]$, and we obtain

$$P_{ij} = \frac{1}{2} \left(\sum_{k=1}^{N} (1 - \mu) \left(d_{kj} P_{ki} + d_{ki} P_{kj} \right) \right) + \mu v^2 \qquad (i \neq j), \tag{A.18} \quad \{eq:app:PijM\}$$

while $P_{ii} = v$.

Now we substitute $P_{ij} = v^2 + v(1 - v)Q_{ij}$ in eq. (A.18), we obtain

$$Q_{ij} = \frac{1}{2} \sum_{k=1}^{N} (1 - \mu) \left(d_{ki} Q_{kj} + d_{kj} Q_{ki} \right), \tag{A.19} \quad \{eq: app: QijM\}$$

and we realize that Q_{ij} is the probability that the individuals at sites i and $j \neq i$ are identical by descent. To compute it indeed, we need to pick which site was last updated (equal probabilities), then who was the parent (k); the other individual needs to be identical by descent to the parent, and no mutation should have occurred $(1 - \mu)$.

o A.2.2 Wright-Fisher model

In a Wright-Fisher model, all individuals are replaced at each time step, so we directly consider the state of the parents:

$$\begin{split} \mathbb{E} \big[X_i X_j(t+1) | X(t) &= \mathbf{X} \big] &= \sum_{k,\ell=1}^N d_{ki} d_{\ell j} \bigg(X_k X_\ell (1-\mu+\mu\nu)^2 \\ &\quad + (X_k (1-X_\ell) + (1-X_k) X_\ell) \, (1-\mu+\mu\nu) (\mu\nu) \\ &\quad + (1-X_k) (1-X_\ell) (\mu\nu)^2 \bigg) \\ &\quad + (\text{A.20}) \quad \{\text{eq:app:PijWF1}\} \end{split}$$

The first term of eq. (A.20) corresponds to both parents being altruists, and hav-

ing altruist offspring; the second line corresponds to exactly one parent being

altruist, and the third line to both parents being non-altruists (in this latter case,

the two offspring have to be both mutants to be altruists).

Taking the expectation and simplifying, we obtain

$$P_{ij} = \sum_{k,\ell=1}^{N} \left(P_{kl} (1 - \mu)^2 \right) + (2 - \mu) \mu v^2. \tag{A.21} \quad \{eq: app: PijWF\}$$

Replacing P_{ij} by $v^2 + v(1-v)Q_{ij}$, eq. (A.21) becomes

$$Q_{ij} = \sum_{k,\ell=1}^{N} d_{ki} d_{\ell j} Q_{k\ell} (1-\mu)^{2}.$$
 (A.22) {eq:app:QijWF}

Again, Q_{ij} corresponds to a probability of identity by descent: the individuals at sites i and j are identical by descent if their parents were and if neither mutated

691 $((1-\mu)^2)$.

B In a subdivided population

{sec:app:subdiv}

B.1 β and γ

692

693

703

716

{sec:app:bcsubdiv}

Now, we need to adapt the results presented in Appendix A to our structure of 694 interest, a subdivided population, with dispersal and interaction probabilities 695 given by eq. (1) and eq. (??). For the β and γ terms, we use a brute-force ap-696 proach, replacing d_{ij} and e_{ij} by their values in a subdivided population, and 697 simplifying the equations (for instance, there are 60 different cases to consider 698 for the four sums that appear in β_1^{DB} , shown in the table in section B.4 below). The calculations and subsequent simplifications are detailed in the supplemen-700 tary Mathematica file, and the results are presented in the main text (system (8), 701 eq. (9a), and eq. (9b)). 702

B.2 Probabilities of identity by descent

{sec:app:Qsubdiv}

For the probabilities of identity by descent, we could also use a brute-force ap-704 proach, but calculations are faster if we use formulas derived in Débarre (2017) 705 for "two-dimensional population structures". The name comes from the fact that 706 we only need two types of transformations to go from any site to any other site 707 in the population: permutations on the deme index, and permutations on the 708 within-deme index. 709 We rewrite site labels $(1 \le i \le N)$ as (ℓ_1, ℓ_2) , where ℓ_1 is the index of the deme $(1 \le \ell_1 \le N_D)$ and ℓ_2 the position of the site within the deme $(1 \le \ell_2 \le n)$. Then, we introduce notations $ilde{d}_{i_1}$ and $ilde{Q}_{i_1}$, that correspond to the dispersal probability and probability of identity by descent to a site at distances i_1 and i_2 in the among-demes and within-deme dimensions (e.g., $\tilde{d}_{i_1} = d_{j_1 \ j_1 + i_1}$.) Also, in this section, we distinguish between $d_{\text{self}} = d_{ii}$ and d_{in} (in the main 714 715

717 B.2.1 Moran model

text, $d_{\text{self}} = d_{\text{in}}$).

⁷¹⁸ In Débarre (2017), it was shown that

$$\tilde{\mathcal{Q}}_{r_{2}}^{r_{1}} = \frac{1}{N} \sum_{q_{1}=0}^{N_{1}-1} \sum_{q_{2}=0}^{N_{2}-1} \frac{\mu \lambda_{M}'}{1 - (1 - \mu) \tilde{\mathcal{D}}_{q_{1}}^{q_{1}}} \exp\left(i \frac{2\pi q_{1} r_{1}}{N_{1}}\right) \exp\left(i \frac{2\pi q_{2} r_{2}}{N_{2}}\right) \tag{B.23a} \quad \{\text{eq:app:Q2DM}}$$

719 with

$$\tilde{\mathcal{D}}_{q_{1}}^{q_{1}} = \sum_{\ell_{1}=0}^{N_{1}-1} \sum_{\ell_{2}=0}^{N_{2}-1} \tilde{d}_{\ell_{1}} \exp\left(-i\frac{2\pi q_{1}\ell_{1}}{N_{1}}\right) \exp\left(-i\frac{2\pi q_{2}\ell_{2}}{N_{2}}\right), \tag{B.23b}$$

and λ_M' such that $\tilde{\mathcal{Q}}_0 = 1$. Let us first compute $\tilde{\mathcal{D}}_{q_1}$ in the case of a subdivided population, with $N_1 = N_D$ and $N_2 = n$:

$$\tilde{\mathcal{D}}_{q_{1}}^{q_{1}} = d_{\text{self}} + \sum_{\ell_{2}=1}^{N_{2}-1} d_{\text{in}} \exp\left(-i\frac{2\pi q_{2}\ell_{2}}{N_{2}}\right) + \sum_{\ell_{1}=1}^{N_{1}-1} \sum_{\ell_{2}=0}^{N_{2}-1} d_{\text{out}} \exp\left(-i\frac{2\pi q_{1}\ell_{1}}{N_{1}}\right) \exp\left(-i\frac{2\pi q_{2}\ell_{2}}{N_{2}}\right) \\
= d_{\text{self}} + \left(\delta_{q_{2}}(N_{2}-1) + (1-\delta_{q_{2}})(-1)\right) d_{\text{in}} + \left(\delta_{q_{1}}(N_{1}-1) + (1-\delta_{q_{1}})(-1)\right) \left(\delta_{q_{2}}N_{2}\right) d_{\text{out}} \\
= d_{\text{self}} + \left(\delta_{q_{2}}N_{2}-1\right) d_{\text{in}} + \left(\delta_{q_{1}}N_{1}-1\right) \delta_{q_{2}}N_{2} d_{\text{out}}. \tag{B.24a}$$

 (δ_q) is equal to 1 when q is equal to 0 modulo the relevant dimension, and to 0 otherwise). So for the three types of distances that we need to consider (distance 0, distance to another deme-mate, distance to individual in another deme), and with $N_1 = N_D$ and $N_2 = n$, we obtain {eq:app:Dsystem}

 $\tilde{\mathcal{D}}_0 = 1, \tag{B.25a}$

$$\tilde{\mathcal{D}}_{q_1} = 1 - m - \frac{m}{d-1} \quad (q_1 \not\equiv 0 \pmod{N_1}),$$
 (B.25b)

$$\tilde{\mathcal{D}}_{q_1} = d_{\text{self}} - d_{\text{in}} \quad (q_2 \not\equiv 0 \pmod{N_2}).$$
 (B.25c)

So for $\tilde{\mathcal{Q}}$, using system (B.25) in eq. (B.23a),

$$\begin{split} \tilde{\mathcal{Q}}_{r_{2}}^{r_{1}} &= \frac{\mu \lambda_{M}^{\prime}}{N} \left[\frac{1}{1 - (1 - \mu) \tilde{\mathcal{D}}_{0}^{0}} + \sum_{q_{2}=1}^{N_{2}-1} \frac{1}{1 - (1 - \mu) \tilde{\mathcal{D}}_{0}^{0}} \exp\left(-i \frac{2\pi q_{2} r_{2}}{N_{2}}\right) \right. \\ &\quad + \sum_{q_{1}=1}^{N_{1}-1} \frac{1}{1 - (1 - \mu) \tilde{\mathcal{D}}_{q_{1}}^{1}} \exp\left(-i \frac{2\pi q_{1} r_{1}}{N_{1}}\right) \\ &\quad + \sum_{q_{1}=1}^{N_{1}-1} \sum_{q_{2}=1}^{N_{2}-1} \frac{1}{1 - (1 - \mu) \tilde{\mathcal{D}}_{q_{1}}^{1}} \exp\left(-i \frac{2\pi q_{1} r_{1}}{N_{1}}\right) \exp\left(-i \frac{2\pi q_{2} r_{2}}{N_{2}}\right) \right] \\ &\quad = \frac{\mu \lambda_{M}^{\prime}}{N} \left[\frac{1}{1 - (1 - \mu)} + \frac{1}{1 - (1 - \mu)(d_{\mathrm{self}} - d_{\mathrm{in}})} (\delta_{r_{2}} N_{2} - 1) \right. \\ &\quad + \frac{1}{1 - (1 - \mu)(1 - m - \frac{m}{d - 1})} (\delta_{r_{1}} N_{1} - 1) \\ &\quad + \frac{1}{1 - (1 - \mu)(d_{\mathrm{self}} - d_{\mathrm{in}})} (\delta_{r_{1}} N_{1} - 1) \left[\delta_{r_{2}} N_{2} - 1 \right]. \end{split} \tag{B.26} \quad \{ \mathrm{eq:app:Q2DMso1} \}$$

727 In particular,

$$\begin{split} \tilde{\mathcal{Q}}_0 &= \frac{\mu \lambda_M'}{N} \left[\frac{1}{\mu} + \frac{1}{1 - (1 - \mu)(d_{\text{self}} - d_{\text{in}})} (n - 1) + \frac{1}{1 - (1 - \mu)(1 - m - \frac{m}{d - 1})} (D - 1) \right. \\ &\quad + \frac{1}{1 - (1 - \mu)(d_{\text{self}} - d_{\text{in}})} (D - 1)(n - 1) \right] \\ &= 1. \end{split} \tag{B.27a} \quad \left\{ \text{eq:app:Q2D1} \right\}$$

We find λ'_M using the eq. (B.27a). Going back to eq. (B.26), when $r_1 = 0$, the two individuals are in the same deme. They are different when $r_2 \neq 0$, and so:

$$Q_{\rm in} = \frac{\mu \lambda_M'}{N} \left[\frac{1}{\mu} + \frac{1}{1 - (1 - \mu)(d_{\rm self} - d_{\rm in})} (-1) + \frac{1}{1 - (1 - \mu)(1 - m - \frac{m}{d - 1})} (D - 1) + \frac{1}{1 - (1 - \mu)(d_{\rm self} - d_{\rm in})} (D - 1) (-1) \right].$$
(B.27b)

And when $r_1 \not\equiv 0$, the two individuals are in different demes:

$$Q_{\text{out}} = \frac{\mu \lambda_M'}{N} \left[\frac{1}{\mu} + \frac{1}{1 - (1 - \mu)(d_{\text{self}} - d_{\text{in}})} (-1) + \frac{1}{1 - (1 - \mu)(1 - m - \frac{m}{d - 1})} (-1) + \frac{1}{1 - (1 - \mu)(d_{\text{self}} - d_{\text{in}})} \right].$$
(B.27c)

With $d_{\text{self}} = d_{\text{in}} = (1 - m)/n$, we recover the equations given in the main text (system (4)).

733 B.3 Wright-Fisher

For the Wright-Fisher updating, the equation for \tilde{Q} is different:

$$\tilde{Q}_{r_{1}}^{r_{1}} = \frac{1}{N} \sum_{q_{1}=0}^{N_{1}-1} \sum_{q_{2}=0}^{N_{2}-1} \frac{\mu \lambda'_{WF}}{1 - (1 - \mu)^{2} (\tilde{\mathcal{D}}_{q_{1}}^{q_{1}})^{2}} \exp\left(-i \frac{2\pi q_{1} r_{1}}{N_{1}}\right) \exp\left(-i \frac{2\pi q_{2} r_{2}}{N_{2}}\right), \quad (B.28)$$

with $\tilde{\mathcal{D}}$ given in eq. (B.23b). In a subdivided population, with $N_1=N_D$ and $N_2=n_0$, this becomes

$$\begin{split} \tilde{\mathcal{Q}}_{r_{2}}^{r_{1}} &= \frac{1}{N} \left[\frac{\mu \lambda_{WF}^{\prime}}{1 - (1 - \mu)^{2} (\tilde{\mathcal{D}}_{0})^{2}} + \sum_{q_{2}=1}^{N_{2}-1} \frac{\mu \lambda_{WF}^{\prime}}{1 - (1 - \mu)^{2} (\tilde{\mathcal{D}}_{0})^{2}} \exp\left(-i \frac{2\pi q_{2} r_{2}}{N_{2}}\right) \right. \\ &\quad + \sum_{q_{1}=1}^{N_{1}-1} \frac{\mu \lambda_{WF}^{\prime}}{1 - (1 - \mu)^{2} (\tilde{\mathcal{D}}_{q_{1}})^{2}} \exp\left(-i \frac{2\pi q_{1} r_{1}}{N_{1}}\right) \\ &\quad + \sum_{q_{1}=1}^{N_{1}-1} \sum_{q_{2}=1}^{N_{2}-1} \frac{\mu \lambda_{WF}^{\prime}}{1 - (1 - \mu)^{2} (\tilde{\mathcal{D}}_{q_{1}})^{2}} \exp\left(-i \frac{2\pi q_{1} r_{1}}{N_{1}}\right) \exp\left(-i \frac{2\pi q_{2} r_{2}}{N_{2}}\right) \right] \\ &\quad = \frac{\mu \lambda_{WF}^{\prime}}{N} \left[\frac{1}{1 - (1 - \mu)^{2}} + \frac{1}{1 - (1 - \mu)^{2} (d_{\text{self}} - d_{\text{in}})^{2}} (\delta_{q_{2}} N_{2} - 1) \right. \\ &\quad + \frac{1}{1 - (1 - \mu)^{2} (d_{\text{self}} - d_{\text{in}})^{2}} (\delta_{q_{1}} N_{1} - 1) \\ &\quad + \frac{1}{1 - (1 - \mu)^{2} (d_{\text{self}} - d_{\text{in}})^{2}} (\delta_{q_{1}} N_{1} - 1) (\delta_{q_{2}} N_{2} - 1) \right] \\ &\quad = \frac{\mu \lambda_{WF}^{\prime}}{N} \left[\frac{1}{1 - (1 - \mu)^{2}} + \frac{1}{1 - (1 - \mu)^{2} (d_{\text{self}} - d_{\text{in}})^{2}} (\delta_{q_{2}} N_{2} - 1) \delta_{q_{1}} N_{1} \right. \\ &\quad + \frac{1}{1 - (1 - \mu)^{2} (1 - m - \frac{m}{d-1})^{2}} (\delta_{q_{1}} N_{1} - 1) \right]. \tag{B.29} \quad \{ \text{eq:app: Q2DWFsol} \} \end{split}$$

To find λ'_{WF} , we solve $\tilde{\mathcal{Q}}_0 = 1$, *i.e.*,

$$1 = \frac{\mu \lambda_{WF}'}{N} \left[\frac{1}{1 - (1 - \mu)^2} + \frac{1}{1 - (1 - \mu)^2 (d_{\text{self}} - d_{\text{in}})^2} (N_2 - 1) N_1 + \frac{1}{1 - (1 - \mu)^2 (1 - m - \frac{m}{d - 1})^2} (N_1 - 1) \right]. \tag{B.30a}$$

738 Then from eq. (B.29) we deduce

$$Q_{\rm in} = \frac{\mu \lambda_{WF}'}{N} \left[\frac{1}{1 - (1 - \mu)^2} - \frac{1}{1 - (1 - \mu)^2 (d_{\rm self} - d_{\rm in})^2} N_1 + \frac{1}{1 - (1 - \mu)^2 (1 - m - \frac{m}{d - 1})^2} (N_1 - 1) \right].$$
(B 30b)

739 and

$$Q_{\text{out}} = \frac{\mu \lambda_{WF}'}{N} \left[\frac{1}{1 - (1 - \mu)^2} - \frac{1}{1 - (1 - \mu)^2 (1 - m - \frac{m}{d - 1})^2} \right].$$
 (B.30c)

With $d_{\text{self}} = d_{\text{in}} = (1 - m)/n$, we recover the equations given in the main text (sys-

741 tem (6)).