Binary Fuse Filters: Fast and Tiny Immutable Filters

Daniel Lemire

professor, Data Science Research Center

Université du Québec (TÉLUQ)

Montreal

blog: https://lemire.me

twitter: @lemire

GitHub: https://github.com/lemire/

Probabilistic filters?

- Is x in the set S?
- Maybe or *definitively not*

Usage scenario?

- We have this expensive database. Querying it cost you.
- Most queries should not end up in the data.
- We want a small 'filter' that can prune out queries.

Theoretical bound

- ullet Given N elements in the set
- Spend k bits per element
- ullet Get a false positive rate of $1/2^k$

Usual constraints

- Fixed initial capacity
- Difficult to update safely without access to the set
- To get a 1% false-positive rate: ≈ 8 bits?

Hash function

- From any objet in the *universe* to a *word* (e.g., 64-bit word)
- Result looks random

```
uint64_t murmur64(uint64_t h) {
  h ^= h >> 33;
  h *= UINT64_C(0xff51afd7ed558ccd);
  h ^= h >> 33;
  h *= UINT64_C(0xc4ceb9fe1a85ec53);
  h ^= h >> 33;
  return h;
}
```

Conventional Bloom filter

- Start with a bitset B.
- Using k hash functions f_1, f_2, \ldots

Adding an element

- ullet Given an object x from the set, set up to $\,{\bf k}\,$ bits to 1
- $B[f_1(x)] \leftarrow 1, B[f_2(x)] \leftarrow 1, \dots$

Checking an element

- Given an object x from the universe, set up to k bits to 1
- $(B[f_1(x)] = 1) \text{ AND } (B[f_2(x)] = 1) \text{ AND } \dots$

Checking an element: implementation

- Typical implementation is *branchy*
- If not $(B[f_1(x)]=1)$, return false
- If not $(B[f_2(x)]=1)$, return false
- ...
- return true

False positive rate

bits per element	hash functions	fpp
9	6	1.3%
10	7	0.8%
12	8	0.3%
13	9	0.2%
15	10	0.07%
16	11	0.04%

Bloom filters: upsides

- Fast construction
- Flexible: excess capacity translates into lower false positive rate
- Degrades smoothly to a useless but 'correct' filter

Bloom filters: downsides

- 44% above the theoretical minimum in storage
- Slower than alternatives (lots of memory accesses)

Memory accesses

number of hash functions	cache misses (miss)	cache misses (hit)
8	3.5	7.5
11	3.8	10.5

Mispredicted branches

number of hash functions	all out	all in
8	0.95	0.0
11	0.95	0.0

Performance

number of hash functions	always out (cycles/entry)	always in (cycles/entry)
8	135	170
11	140	230

Blocked Bloom filters

- Same as a Bloom filters, but for a given object, put all bits in one cache line
- Optional: Use SIMD instructions to reduce instruction count

Blocked Bloom filters: pros/cons

- Stupidly fast in both construction and queries
- ~56% above the theoretical minimum in storage

Binary fuse filters

- Based on theoretical work by Dietzfelbinger and Walzer
- Immutable datastructure: build it once
- Fill it to capacity
- Fast construction
- Fast and simple queries

Arity: 3-wise, 4-wise

- 3-wise version has three hits, 12% overhead
- 4-wise version has four hits, 8% overhead

Queries are silly

- Have an array of *fingerprints* (e.g., 8-bit words)
- Compute 3 (or 4) hash functions: $f_1(x), f_2(x), f_3(x)$
- Compute fingerprint function (f(x) o 8-bit word)
- Compute XOR and compare with fingerprint:

$$(B[f_1(x)] = 1) \text{ XOR } (B[f_2(x)] = 1) \text{ XOR } (B[f_3(x)] = 1) = f(x)$$

	cache misses	mispredictions
3-wise binary fuse	2.8	0.0
3-wise binary fuse	3.7	0.0

	always out (cycles/entry)	always in (cycles/entry)	bits per entry
$\operatorname{Bloom} k=8$	135	170	12
3-wise bin. fuse	85	85	9.0
4-wise bin. fuse	100	100	8.6

- Start with array for fingerprints containing slightly more fingerprints than you have elements in the set
- Divide the array into segments (e.g., 300 disjoint)
- Number of fingerprints in segment: power of two (hence binary)

- ullet Map each object x in set, to locations $B[f_1(x)]$, $B[f_2(x)]$, $B[f_3(x)]$
- The locations should be in three consecutive segments (so relatively nearby in memory).

ullet At the end, each location B[i] is associated with some number of objects from the set

- ullet Find a location mapped from a single set element x, e.g., $B[f_1(x)]$
- ullet Record this location which is owned by x
- ullet Remove the mapping of x to locations $B[f_1(x)]$, $B[f_2(x)]$, $B[f_3(x)]$
- Repeat

- Almost always, the construction terminates after one trial
- Go through the matched keys, in reverse order, adn set (e.,g.)

$$B[f_1(x)] = f(x) \text{ XOR } B[f_2(x)] \text{ XOR } B[f_3(x)]$$

Construction: Performance

- Implemented naively: terrible performance (random access!!!)
- Before the construction begins, sort the elements of the sets according to the segments they are mapped to.
- This greatly accelerates the construction

Compressibility

	bits per entry (raw)	bits per entry (zstd)
Bloom $k=8$	12.0	12.0
3-wise bin. fuse	9.0	8.59
4-wise bin. fuse	8.60	8.39
theory	8.0	8.0

Some links

- Bloom filters in Go: https://github.com/bits-and-blooms/bloom
- Binary fuse filters in Go: https://github.com/FastFilter/xorfilter
- Binary fuse filters in C: https://github.com/FastFilter/xor_singleheader
- Binary fuse filters in Java: https://github.com/FastFilter/fastfilter_java
- Giant benchmarking platform: https://github.com/FastFilter/fastfilter_cpp

Other Links

- Blog https://lemire.me/blog/
- Twitter: @lemire
- GitHub: https://github.com/lemire