1	-	paces et sous-espaces vectoriels. Avent propos a combinaisona linéaires de pa \mathbb{R}^n	2
	1.0	Avant-propos : combinaisons linéaires dans \mathbb{K}^n	
	1.1	Structure de \mathbb{K} -espace vectoriel	
	1.2	Combinaisons linéaires	
	1.3	Sous-espaces vectoriels	7
	1.4	Application linéaire entre deux espaces vectoriels	9
	1.5	Sous-espace vectoriel engendré par une partie	12
	1.6	Somme de deux sous-espaces vectoriels	14
2	Fan	nilles de vecteurs.	18
	2.1	Familles génératrices	18
	2.2	Familles libres, liées.	
	2.3	Bases	
Ex	Exercices		

Mis à part le calcul booléien, on peut dire qu'il n'y a sans doute pas de théorie plus universellement utilisée en Mathématique que l'Algèbre linéaire; il n'y en a presque pas non plus qui soit plus élémentaire, bien que des générations de professeurs et de faiseurs de manuels se soient ingéniés à la compliquer à plaisir par de ridicules calculs de matrices.

Jean Dieudonné, Éléments d'Algèbre linéaire, Annexe aux Éléments d'Analyse. Dans ce cours, \mathbb{K} désigne \mathbb{R} ou \mathbb{C} , et sauf indication contraire, n et p sont des entiers naturels non nuls.

1 Espaces et sous-espaces vectoriels.

1.0 Avant-propos : combinaisons linéaires dans \mathbb{K}^n .

Définition 1 (Somme de *n*-uplets, multiplication d'un *n*-uplet par un scalaire).

Pour tous $x = (x_1, \ldots, x_n) \in \mathbb{K}^n$, $y = (y_1, \ldots, y_n) \in \mathbb{K}^n$, pour tout $\lambda \in \mathbb{K}$, on pose

$$x + y := (x_1 + y_1, \dots, x_n + y_n)$$
 et $\lambda \cdot x := (\lambda x_1, \dots, \lambda x_n)$.

Proposition 2 ((\mathbb{K}^n , +) est un groupe abélien).

Le neutre de ce groupe est le n-uplet $(0, \ldots, 0)$.

Le symétrique d'un *n*-uplet (x_1, \ldots, x_n) est le *n*-uplet $(-x_1, \ldots, -x_n)$.

Un calcul dans \mathbb{R}^3 :

$$3(0,1,2) - (0,2,1) = (0,3,6) - (0,2,1) = (0,1,5).$$

Définition 3 (Base canonique de \mathbb{K}^n).

Pour tout $i \in [1, n]$, on note

$$e_i = (0, \dots, 0, 1, 0, \dots, 0),$$

où le 1 est écrit sur la ième coordonnée.

La famille (e_1, \ldots, e_n) est appelée base canonique de \mathbb{K}^n .

La base canonique de \mathbb{R}^3 est (e_1, e_2, e_3) où

$$e_1 = (1, 0, 0),$$
 $e_2 = (0, 1, 0),$ $e_3 = (0, 0, 1).$

Proposition 4.

Tout vecteur de \mathbb{K}^n s'écrit de façon unique comme combinaison linéaire des vecteurs de (e_1, \ldots, e_n) , base canonique de \mathbb{K}^n :

$$\forall x \in \mathbb{K}^n \quad , \exists ! (x_1, \dots, x_n) \in \mathbb{K}^n \quad x = \sum_{i=1}^n x_i e_i.$$

Par exemple, voici l'unique décomposition de (1,2,3) sur la base canonique de \mathbb{R}^3 :

$$(1,2,3) = e_1 + 2e_2 + 3e_3.$$

1.1 Structure de K-espace vectoriel.

On appelle loi de composition externe sur un ensemble E à scalaires dans \mathbb{K} une application

$$\cdot : \left\{ \begin{array}{ccc} E \times \mathbb{K} & \to & E \\ (x, \lambda) & \mapsto & \lambda \cdot x \end{array} \right.$$

L'idée est que si x est un bidule et λ un scalaire, alors $\lambda \cdot x$ est un bidule.

Définition 5.

On appelle \mathbb{K} -espace vectoriel un triplet $(E, +, \cdot)$, où E est un ensemble, + une loi de composition interne, et \cdot une loi de composition externe, avec scalaires dans \mathbb{K} vérifiant

- 1. (E, +) est un groupe abélien, c'est-à-dire
 - (a) + est associative : $\forall x, y, z \in E \quad (x+y) + z = x + (y+z)$;
 - (b) + est commutative : $\forall x, y \in E \quad x + y = y + x$;
 - (c) Il existe dans E un unique élément neutre pour +, appelé "zéro" de E et noté 0_E :

$$\forall x \in E \quad x + 0_E = 0_E + x = x;$$

(d) Tout élément x de E admet un (unique) symétrique dans E, noté (-x), tel que

$$x + (-x) = -x + x = 0_E$$
.

- 2. Propriétés de ·
 - (a) $\forall x \in E \quad 1_{\mathbb{K}} \cdot x = x$;
 - (b) \cdot est distributive par rapport à l'addition dans E:

$$\forall (x,y) \in E^2 \quad \forall \lambda \in \mathbb{K} \quad \lambda \cdot (x+y) = \lambda \cdot x + \lambda \cdot y;$$

(c) \cdot est distributive par rapport à l'addition dans $\mathbb K$:

$$\forall x \in E \quad \forall (\lambda, \mu) \in \mathbb{K}^2 \quad (\lambda + \mu) \cdot x = \lambda \cdot x + \mu \cdot x;$$

(d) $\forall (\lambda, \mu) \in \mathbb{K}^2 \quad \forall x \in E \quad \lambda \cdot (\mu \cdot x) = (\lambda \mu) \cdot x.$

Les éléments de E sont appelés des **vecteurs**.

Un abus fréquent consiste à parler de "l'espace vectoriel E" en omettant de mentionner les lois + et \cdot .

Attention : dans un espace vectoriel, le produit de deux vecteurs n'a pas de sens a priori.

Proposition 6 (Autour de zéro et du symétrique).

Soit E un \mathbb{K} -espace vectoriel.

- (i) $\forall x \in E \quad 0_{\mathbb{K}} \cdot x = 0_E$.
- (ii) $\forall \lambda \in \mathbb{K} \quad \lambda \cdot 0_E = 0_E$.
- (iii) $\forall x \in E \quad (-x) = (-1) \cdot x$.
- (iv) $\forall \lambda \in \mathbb{K} \ \forall x \in E \ \lambda \cdot x = 0_E \implies (\lambda = 0_{\mathbb{K}} \text{ ou } x = 0_E).$

Preuve. Dans ce qui suit, lorsqu'on utilise une propriété de la définition 5, on signale son numéro.

(i) Soit $x \in E$. On peut écrire

$$0_{\mathbb{K}} \cdot x = (0_{\mathbb{K}} + 0_{\mathbb{K}}) \cdot x = 0_{\mathbb{K}} \cdot x + 0_{\mathbb{K}} \cdot x.$$

La propriété 1.(d) nous rappelle que le vecteur $0_{\mathbb{K}} \cdot x$ admet un symétrique dans le groupe (E,+) noté $-0_{\mathbb{K}} \cdot x$. On ajoute ce symétrique à l'égalité précédente :

$$\underbrace{0_{\mathbb{K}} \cdot x + (-0_{\mathbb{K}} \cdot x)}_{=0_E} = \left(0_{\mathbb{K}} \cdot x + 0_{\mathbb{K}} \cdot x\right) + \left(-0_{\mathbb{K}} \cdot x\right) = \underbrace{0_{\mathbb{K}} \cdot x + \underbrace{\left(0_{\mathbb{K}} \cdot x + (-0_{\mathbb{K}} \cdot x)\right)}_{=0_E}}_{1.(c)} = \underbrace{0_{\mathbb{K}} \cdot x + (-0_{\mathbb{K}} \cdot x)}_{1.(c)} = \underbrace{0_{\mathbb{K}} \cdot x + (-0_{\mathbb{K}$$

ce qui montre bien $0_{\mathbb{K}} \cdot x = 0_E$.

(ii) Soit $\lambda \in \mathbb{K}$. On a

$$\lambda \cdot 0_E = \lambda \cdot (0_{\mathbb{K}} \cdot 0_E) = (\lambda \cdot 0_{\mathbb{K}}) \cdot 0_E = 0_{\mathbb{K}} \cdot 0_E = 0_E.$$

(iii) Soit $x \in E$. On a

$$x + (-1) \cdot x = \underset{2.(c)}{=} (1 + (-1)) \cdot x = 0_{\mathbb{K}} \cdot x = 0_{E}.$$

On a montré que $(-1) \cdot x$ est un symétrique de x, donc <u>le</u> symétrique : $(-1) \cdot x = -x$.

(iv) Soient $\lambda \in \mathbb{K}$ et $x \in E$ tels que $\lambda \cdot x = 0_E$. Supposons que $\lambda \neq 0_{\mathbb{K}}$. Alors λ possède un inverse λ^{-1} . En multipliant par ce scalaire,

$$\lambda^{-1}(\lambda \cdot x) = \lambda^{-1} \cdot 0_E \quad \text{d'où} \quad (\lambda^{-1}\lambda) \cdot x = 0_E \quad \text{d'où} \quad 1_{\mathbb{K}} \cdot x = 0_E.$$

D'après 2.(a), $1_{\mathbb{K}} \cdot x = x$, ce qui montre bien que $x = 0_E$.

Exemple 7 (L'espace vectoriel \mathbb{K}^n).

Muni des lois + et \cdot définies dans l'avant-propos, $(\mathbb{K}^n, +, \cdot)$ est un \mathbb{K} -espace vectoriel.

Le zéro de cet espace vectoriel est le n-uplet $(0, \ldots, 0)$.

Le symétrique du vecteur (x_1, \ldots, x_n) est le vecteur $(-x_1, \ldots, -x_n)$.

Exemples:

1. Le cas n=2 et $\mathbb{K}=\mathbb{R}$.

L'espace vectoriel \mathbb{R}^2 est le premier espace vectoriel dans lequel on a travaillé. Par définition, un vecteur u de \mathbb{R}^2 s'écrit u = (x, y), où x et y sont deux réels.

Les nostalgiques pourront écrire \overrightarrow{u} cet élément de \mathbb{R}^2 . L'ensemble \mathbb{R}^2 peut être identifié au plan en se donnant un repère orthonormé : \overrightarrow{u} est alors associé au point de coordonnées x et y.

2. Le cas n=3 et $\mathbb{K}=\mathbb{R}$.

L'espace \mathbb{R}^3 est celui de la mécanique newtonienne : il modélise l'espace en trois dimensions dans lequel nous vivons.

3. Le cas n = 1.

 \mathbb{R} est un \mathbb{R} -espace vectoriel. \mathbb{C} est un \mathbb{C} -espace vectoriel.

Exemple 8 (\mathbb{C} vu comme \mathbb{R} -espace vectoriel).

Si C est un C-espace vectoriel, comme on vient de le dire, c'est aussi un R-espace vectoriel.

On sait déjà identifier \mathbb{C} et \mathbb{R}^2 en associant à un nombre complexe a+ib son affixe $(a,b)\in\mathbb{R}^2$.

Exemple 9 (L'espace vectoriel $\mathbb{K}[X]$).

 $(\mathbb{K}[X], +, \cdot)$ est un \mathbb{K} -espace vectoriel.

Les lois + et \cdot sont l'addition et la multiplication par un scalaire pour les polynômes.

Le zéro de cet espace est le polynôme nul.

Exemple 10 (L'espace vectoriel $M_{n,p}(\mathbb{K})$).

 $(M_{n,p}(\mathbb{K}),+,\cdot)$, où $n,p\in\mathbb{N}^*$ est un \mathbb{K} -espace vectoriel.

Les lois + et \cdot sont l'addition et la multiplication par un scalaire pour les matrices de taille $n \times p$. Le zéro de cet espace est la matrice nulle $0_{n,p}$

Exemple 11 (Espace vectoriel des applications à valeurs dans K).

Soit Ω un ensemble non vide. L'ensemble \mathbb{K}^{Ω} des fonctions de Ω dans \mathbb{K} peut être muni des lois + et \cdot définies comme suit : pour toutes fonctions f et g de Ω vers \mathbb{K} et tout scalaire $\lambda \in \mathbb{K}$

$$f+g: \left\{ \begin{array}{ccc} \Omega & \to & \mathbb{K} \\ x & \mapsto & (f+g)(x) = f(x) + g(x) \end{array} \right. \quad \text{et} \quad \lambda \cdot f: \left\{ \begin{array}{ccc} \Omega & \to & \mathbb{K} \\ x & \mapsto & (\lambda \cdot f)(x) = \lambda \cdot f(x) \end{array} \right. .$$

 $(\mathbb{K}^{\Omega}, +, \cdot)$ est un \mathbb{K} -espace vectoriel de neutre la fonction nulle sur Ω .

Exemples:

- 1. Espaces de fonctions à valeurs réelles. Soit I un intervalle. L'ensemble \mathbb{R}^I , plutôt noté $\mathcal{F}(I,\mathbb{R})$, est un \mathbb{R} -espace vectoriel.
- 2. Espaces de suites.

 $\overline{\text{L'ensemble }\mathbb{K}^{\mathbb{N}}\text{ des suites à valeurs dans }\mathbb{K}\text{ est un }\mathbb{K}\text{-espace vectoriel. Son zéro est la suite nulle.}$

Proposition 12 (Produit d'un nombre fini de K-espaces vectoriels).

Soit $n \in \mathbb{N}^*$ et $n \mathbb{K}$ espaces vectoriels E_1, \ldots, E_n .

Pour tous $x = (x_1, \dots, x_n)$ et $y = (y_1, \dots, y_n)$ dans $E_1 \times \dots \times E_n$, pour tout $\lambda \in \mathbb{K}$, on pose

$$x + y := (x_1 + y_1, \dots, x_n + y_n)$$
 et $\lambda \cdot x := (\lambda \cdot x_1, \dots, \lambda \cdot x_n)$.

lire x_k+y_k comme une somme dans l'espace E_k et $\lambda \cdot x_k$ comme une multiplication par λ dans E_k

Muni des lois + et \cdot définies ci-dessus, $E_1 \times \cdots \times E_n$ est un \mathbb{K} -espace vectoriel de zéro $(0_{E_1}, \cdots, 0_{E_n})$.

1.2 Combinaisons linéaires.

Dans un espace vectoriel, on peut sommer des vecteurs, et multiplier ces derniers par des scalaires. En combinant ces deux opérations, on obtient la notion de combinaison linéaire.

Définition 13 (Combinaison linéaire d'un nombre fini de vecteurs).

Soit E un \mathbb{K} -espace vectoriel. Si x et x' sont deux vecteurs de E, on appelle **combinaison linéaire** de x et x' tout vecteur de la forme

$$\lambda x + \mu x'$$

où λ et μ sont des éléments de \mathbb{K} .

Plus généralement, pour $x_1, \ldots, x_n \in E$, on appelle combinaison linéaire de $x_1, \ldots x_n$ tout vecteur

$$\sum_{i=1}^{n} \lambda_i x_i = \lambda_1 x_1 + \ldots + \lambda_n x_n,$$

où $\lambda_1, \ldots, \lambda_n$ sont des scalaires de \mathbb{K} .

Une illustration dans \mathbb{R}^2 : pour $\overrightarrow{u} = (-1, 2)$, $\overrightarrow{v} = (3, 1)$, on représente $-\overline{v}$, $\overrightarrow{u} + \overrightarrow{v}$ et $\overrightarrow{u} + 2\overrightarrow{v}$.

Exemple 14 (dans \mathbb{R}^3).

Soient

$$x = (1, 1, 1)$$
 $u_1 = (0, 1, 1)$ $u_2 = (1, 0, 1)$ $u_3 = (1, 1, 0).$

Montrer que x est une combinaison linéaire de u_1, u_2 et u_3 .

Définition 15.

Soit I un ensemble non vide et $(\lambda_i)_{i\in I}$ une famille de scalaires de \mathbb{K} indexée par I. Elle est dite **presque nulle** (ou à support fini) si λ_i n'est différent de 0 que pour un nombre fini de vecteurs.

Plus précisément, $(\lambda_i)_{i\in I}$ est presque nulle s'il existe une partie finie J de I telle que

$$\forall i \in I \setminus J \quad \lambda_i = 0.$$

Définition 16 (Généralisation de la notion de combinaison linéaire).

Soit $(x_i)_{i\in I}$ une famille de vecteurs d'un espace vectoriel E et $(\lambda_i)_{i\in I}$ une famille de scalaires presque nulle. On note J une partie finie de I telle que $\forall i \in I \setminus J$ $\lambda_i = 0$. On note alors

$$\sum_{i \in I} \lambda_i x_i := \sum_{i \in J} \lambda_i x_i,$$

La somme de droite a un sens puisque J est finie, et sa valeur ne dépend pas de la partie J choisie. Un tel vecteur est appelé **combinaison linéaire** de la famille (x_i) .

1.3 Sous-espaces vectoriels.

Soit $(E, +, \cdot)$ un K-espace vectoriel et F une partie de E. On rappelle que F est stable par la loi + si

$$\forall (x,y) \in F^2 \quad x+y \in F.$$

On dira que F est **stable par** \cdot si

$$\forall x \in F \ \forall \lambda \in \mathbb{K} \ \lambda \cdot x \in F.$$

On peut alors considérer les restrictions des lois + et \cdot à l'ensemble F: ce sont bien respectivement une loi de composition interne et une loi de composition externe à scalaires dans \mathbb{K} . Notons-les encore + et \cdot :

$$+: \left\{ \begin{array}{ccc} F \times F & \to & F \\ (x,y) & \mapsto & x+y \end{array} \right. \quad \text{et} \quad \cdot: \left\{ \begin{array}{ccc} F \times \mathbb{K} & \to & F \\ (x,\lambda) & \mapsto & \lambda \cdot x \end{array} \right..$$

On les appelle **lois induites** sur F par les lois + et \cdot sur E.

Définition 17.

Soit $(E, +, \cdot)$ un K-espace vectoriel et F une partie de E.

On dit que F est un sous-espace vectoriel de E si

- -F est stable par + et \cdot
- $(F,+,\cdot)$ est un espace vectoriel (ou + et · sont les lois induites sur F par celles de E).

Exemple 18.

Soit E un \mathbb{K} -espace vectoriel.

- E est un sous-espace vectoriel de E.
- Le singleton $\{0_E\}$ est un sous-espace vectoriel de E: clairement stable par + et \cdot , il est, muni des lois induites, un espace vectoriel. On l'appellera sous-espace vectoriel nul, ou encore sous-espace vectoriel trivial.

Méthode.

Pour montrer qu'un ensemble $(E, +, \cdot)$ est un \mathbb{K} -espace vectoriel, il suffira souvent de prouver que c'est un sous-espace vectoriel d'un espace vectoriel connu.

La caractérisation ci-dessous sera à privilégier en pratique pour prouver qu'une partie d'un espace vectoriel en est un sous-espace vectoriel.

Proposition 19 (Caractérisation des sous-espaces vectoriels parmi les parties de E).

Soit $(E, +, \cdot)$ un K-espace vectoriel et $F \subset E$. Il y a équivalence des deux assertions suivantes.

- 1. F est un sous-espace vectoriel de E.
- 2. F satisfait les deux propriétés suivantes :
 - $0_E \in F$,
 - \bullet F est stable par combinaison linéaire de deux vecteurs, c'est à dire

$$\forall x, y \in F \quad \forall \lambda, \mu \in \mathbb{K} \quad \lambda x + \mu y \in F.$$

Exemple 20 (Des sous-espaces vectoriels de \mathbb{K}^p).

Soit $A = (a_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}} \in M_{n,p}(\mathbb{K})$. Notons S_0 l'ensemble des solutions du système linéaire <u>homogène</u>

 $AX = 0_{n,1}$, d'inconnue $X = \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix} \in M_{p,1}(\mathbb{K})$ ou $(x_1, \dots, x_p) \in \mathbb{K}^p$ (on confond $M_{p,1}(\mathbb{K})$ et \mathbb{K}^p). On a prouvé dans le cours sur les matrices que S_0 est un sous-espace vectoriel de \mathbb{K}^p .

- · Cas particulier 1. n = 1, p = 2: équation du type ax + by = 0. Dans le cas non dégénéré $(a, b) \neq (0, 0)$, l'ensemble des solutions est une droite vectorielle de \mathbb{R}^2 .
- · Cas particulier 2. n = 1, p = 3: équation du type ax + by + cz = 0. Dans le cas non dégénéré $(a, b, c) \neq (0, 0, 0)$, l'ensemble des solutions est un plan vectoriel de \mathbb{R}^3 .
- · Cas particulier 3. Le cas n=2, p=3: deux équations de plans vectoriels dans \mathbb{R}^3 . Dans le cas non dégénéré (deux plans, non confondus) les solutions sont les vecteurs d'une droite vectorielle de \mathbb{R}^3 .

Contre-exemple. Une droite affine de \mathbb{R}^2 ne passant pas par (0,0) n'est <u>pas</u> un s.e.v. de \mathbb{R}^2 . Contre-exemple. Un demi-plan : $\{(x,y) \in \mathbb{R}^2 : 2x - y \ge 0\}$ n'est <u>pas</u> un s.e.v. de \mathbb{R}^2 : il contient (0,0) mais n'est pas stable par combinaison linéaire. En effet, (1,2) est dans le demi-plan mais pas son opposé.

Exemple 21 (Des sous-espaces vectoriels de $\mathbb{K}[X]$).

On rappelle que pour tout entier $n \in \mathbb{N}$, l'ensemble $\mathbb{K}_n[X]$ est celui des polynômes de degré inférieur à n, à coefficients dans \mathbb{K} . C'est un sous-espace vectoriel de $\mathbb{K}[X]$ (donc un espace vectoriel).

Pour tous entiers $n, p \in \mathbb{N}$ avec $p \leq n$, $\mathbb{K}_p[X]$ est un sous-espace vectoriel de $\mathbb{K}_n[X]$.

Exemple. Un autre bon exemple de s.e.v. de $\mathbb{K}[X]$.

Soit $a \in \mathbb{K}$. L'ensemble $F_a = \{P \in \mathbb{K}[X] : P(a) = 0\}$ est un sous-espace vectoriel de $\mathbb{K}[X]$.

L'ensemble des polynômes de degré égal à n n'est pas un sous-espace vectoriel de $\mathbb{K}[X]$.

Exemple 22 (Des sous-espaces de $M_n(\mathbb{K})$).

Les ensembles $S_n(\mathbb{K})$ et $A_n(\mathbb{K})$ sont des sous-espaces vectoriels de $M_n(\mathbb{K})$.

L'ensemble des matrice diagonales, celui des triangulaires supérieures et celui des triangulaires inférieures sont aussi des sous-espaces vectoriels de $M_n(\mathbb{K})$.

 $GL_n(\mathbb{K})$ n'est pas un sous-espace vectoriel de $M_n(\mathbb{K})$.

Exemple 23 (Des sous-espaces de $\mathcal{F}(I,\mathbb{R})$).

L'ensemble $\mathcal{C}(I,\mathbb{R})$ des fonctions continues sur I est un s.e.v. de $\mathcal{F}(I,\mathbb{R})$.

L'ensemble $\mathcal{D}(I,\mathbb{R})$ des fonctions dérivables sur I est un s.e.v. de $\mathcal{F}(I,\mathbb{R})$.

C'est donc un espace vectoriel, inclus dans $\mathcal{C}(I,\mathbb{R})$: c'est un sous-espace vectoriel de $\mathcal{C}(I,\mathbb{R})$.

Pour tout $n \in \mathbb{N} \cup \{\infty\}$, $C^n(I, \mathbb{R})$ est un sous-espace vectoriel de $\mathcal{F}(I, \mathbb{R})$.

Pour tous $n, p \in \mathbb{N} \cup \{\infty\}$ avec $p \geq n$, $C^p(I, \mathbb{R})$ est un s.e.v. de $C^n(I, \mathbb{R})$.

L'ensemble des fonctions monotones n'est <u>pas</u> un sous-espace vectoriel de $\mathcal{F}(I,\mathbb{R})$. On pourra néanmoins jeter un oeil à l'exercice de TD sur l'ensemble des fonctions "à variations bornées".

Proposition 24 (Intersection de s.e.v.).

Soit E un \mathbb{K} -espace vectoriel et $(F_i)_{i\in I}$ une famille de sous-espaces vectoriels de E. Alors

 $\bigcap_{i \in I} F_i$ est un sous-espace vectoriel de E.

La réunion de deux sous-espaces vectoriels n'est pas, en général, un sous-espace vectoriel (\longrightarrow TD).

1.4 Application linéaire entre deux espaces vectoriels.

Définition 25.

Soient $(E, +, \cdot)$ et $(F, +, \cdot)$ deux \mathbb{K} -espaces vectoriels.

On appelle **application linéaire** entre E et F une application $u: E \to F$ telle que

$$\forall x, y \in E \quad \forall \lambda, \mu \in \mathbb{K} \qquad u(\lambda x + \mu y) = \lambda u(x) + \mu u(y).$$

(l'image de la combinaison linéaire, c'est la combinaison linéaire des images)

Une application linéaire de E dans E est appelée **endomorphisme** de E.

Une application linéaire de E dans \mathbb{K} (vu comme \mathbb{K} -espace vectoriel) est une forme linéaire.

Remarque. Il est équivalent de définir la linéarité d'une application $u: E \to F$ à l'aide des propriétés

- 1. $\forall x, y \in E \quad u(x+y) = u(x) + u(y)$ (propriété de morphisme de groupes additifs)
- 2. $\forall x \in E \ \forall \lambda \in \mathbb{K} \ u(\lambda \cdot x) = \lambda \cdot u(x)$ (propriété d'homogénéité).

Certains auteurs préfèrent n'utiliser qu'un scalaire dans leur définition de la linéarité. On peut en effet démontrer que si $u: E \to F$ est une application entre deux K-espaces vectoriels,

 $u: E \to F$ est linéaire si et seulement si $\forall x, y \in E \ \forall \lambda \in \mathbb{K} \ u(\lambda x + y) = \lambda u(x) + u(y)$.

Exemples.

1. La transposition:

$$u: \left\{ \begin{array}{ccc} M_{n,p}(\mathbb{K}) & \to & M_{p,n}(\mathbb{K}) \\ M & \mapsto & M^{\top} \end{array} \right.,$$

est une application linéaire.

2. La dérivation sur $\mathbb{K}[X]$

$$D: \left\{ \begin{array}{ccc} \mathbb{K}[X] & \to & \mathbb{K}[X] \\ P & \mapsto & P' \end{array} \right.$$

est un endomorphisme de $\mathbb{K}[X]$.

On peut de même définir une application de dérivation définie sur $\mathcal{D}(I,\mathbb{R})$:

$$\widetilde{D}: \left\{ \begin{array}{ccc} \mathcal{D}(I,\mathbb{R}) & \to & \mathcal{F}(I,\mathbb{R}) \\ f & \mapsto & f' \end{array} \right.$$

 \widetilde{D} n'est pas un endomorphisme : une dérivée n'est pas toujours dérivable elle-même !

3. La trace est une forme linéaire :

$$\operatorname{tr}: \left\{ \begin{array}{ccc} M_n(\mathbb{K}) & \to & \mathbb{K} \\ M & \mapsto & \operatorname{tr}(M) \end{array} \right..$$

4. L'évaluation des polynômes (ou des fonctions) est une opération linéaire.

Plus précisément, Φ_a et Ψ_b , définies ci-dessous à l'aide de $a \in \mathbb{K}$ et $b \in \Omega$ fixés, sont des formes linéaires.

$$\Phi_a: \left\{ \begin{array}{ccc} \mathbb{K}[X] & \to & \mathbb{K} \\ P & \mapsto & P(a) \end{array} \right. \quad \text{ et } \quad \Psi_b: \left\{ \begin{array}{ccc} \mathbb{K}^\Omega & \to & \mathbb{K} \\ f & \mapsto & f(b) \end{array} \right..$$

5. Soit I un intervalle et $a, b \in I$. L'application

$$\varphi: \left\{ \begin{array}{ccc} \mathcal{C}(I,\mathbb{R}) & \to & \mathbb{R} \\ f & \mapsto & \int_a^b f(x) \mathrm{d}x \end{array} \right.$$

est une forme linéaire.

- 6. Pour tout espace vectoriel E, Id_E est un endomorphisme de E.
- 7. Pour tous E et F espaces vectoriels, l'application nulle ci-dessous est linéaire.

$$N: \left\{ \begin{array}{ccc} E & \to & F \\ x & \mapsto & 0_F \end{array} \right.,$$

On fait remarquer que dans le titre de ce paragraphe, "application linéaire" est écrit au singulier... Mentionnons ici que dans le cours Applications linéaires, l'ensemble des applications linéaires de E vers F sera noté $\mathcal{L}(E,F)$ et muni (lui aussi!) d'une structure de \mathbb{K} -espace vectoriel. On pourra donc écrire des combinaisons linéaires d'applications linéaires... mais patience!

Proposition 26 (Image directe/réciproque d'un s.e.v. par une application linéaire).

Soient E et F deux \mathbb{K} -espaces vectoriels et $u: E \to F$ une application linéaire.

- 1. Si G est un sous-espace vectoriel de E, alors u(G) est un sous-espace vectoriel de F.
- 2. Si H est un sous-espace vectoriel de F, alors $u^{-1}(H)$ est un sous-espace vectoriel de E.

En particulier, on définit ci-dessous l'image et le noyau d'une application linéaire, deux sous-espaces vectoriels qui seront importants.

Définition 27.

Soient E et F deux \mathbb{K} -espaces vectoriels et $u:E\to F$ une application linéaire.

1. On appelle **image** de u, et on note $\operatorname{Im} u$ la partie de F définie par :

$$\operatorname{Im} u = \{u(x), \ x \in E\} = \{y \in F : \exists x \in E \ y = u(x)\}.$$

2. On appelle **noyau** de u et on note $\operatorname{Ker} u$ la partie de E définie par :

$$\text{Ker } u = \{x \in E : u(x) = 0_F\}.$$

Proposition 28.

Soient E et F deux \mathbb{K} -espaces vectoriels et $u: E \to F$ une application linéaire.

1. Ker u est un sous-espace vectoriel de E et

$$u \text{ est injective} \iff \text{Ker} u = \{0_E\}.$$

2. Im u est un sous-espace vectoriel de F et

$$u$$
 est surjective \iff Im $u = F$.

Exemple 29 (Reconnaître un Ker).

À l'aide de la notion de noyau, retrouver que l'ensemble

$$F_a = \{ P \in \mathbb{K}[X] : P(a) = 0 \} \quad (a \in \mathbb{K})$$

est un sous-espace vectoriel de $\mathbb{K}[X]$.

De la même façon, redémontrer que $S_n(\mathbb{R})$ est un s.e.v. de $M_n(\mathbb{K})$.

Exemple 30.

Soit $B \in \mathbb{K}[X]$ un polynôme non nul.

On considère $\rho: \left\{ \begin{array}{ccc} \mathbb{K}[X] & \to & \mathbb{K}[X] \\ P & \mapsto & R \end{array} \right.$, où R est le reste dans la division euclidienne de P par B.

- 1. Prouver que ρ est un endomorphisme de $\mathbb{K}[X]$.
- 2. Exprimer Im ρ à l'aide de $b = \deg B$.
- 3. Décrire Ker ρ .

1.5 Sous-espace vectoriel engendré par une partie.

Proposition-Définition 31 (S.e.v. engendré par une famille finie de vecteurs).

Soit E un \mathbb{K} -espace vectoriel, $p \in \mathbb{N}$ et $(x_1, \ldots, x_p) \in E^p$.

On note Vect (x_1, \ldots, x_p) l'ensemble des combinaisons linéaires de x_1, \ldots, x_p .

$$Vect(x_1, ..., x_p) = \left\{ \sum_{k=1}^p \lambda_k x_k, \quad \lambda_1, ..., \lambda_p \in \mathbb{K} \right\}.$$

Il s'agit d'un sous-espace vectoriel de E.

On l'appelle sous-espace vectoriel engendré par (x_1, \ldots, x_p) (ou par l'ensemble $\{x_1, \ldots, x_p\}$).

En particulier, pour x, y deux vecteurs d'un espace vectoriel E,

$$\operatorname{Vect}(x) = \{\lambda x, \ \lambda \in \mathbb{K}\}\$$
, et $\operatorname{Vect}(x, y) = \{\lambda x + \mu y, \ \lambda, \mu \in \mathbb{K}\}\$.

Exemple 32 (et image mentale 🕙).

 $E = \mathbb{R}^3$ et $F = \{(x, y, z) : x - 2y - z = 0\}$. On prouve que $F = \text{Vect}(\overrightarrow{u}, \overrightarrow{v})$, où $\overrightarrow{u} = (2, 1, 0)$ et $\overrightarrow{v} = (1, 0, 1)$.

Exemple 33 (Ensemble des solutions d'une EDL2 homogène).

Écrire à l'aide d'un Vect l'ensemble des solutions de y'' + y = 0. On montre ainsi qu'il s'agit d'un sous-espace de l'espace des fonctions deux fois dérivables.

Proposition-Définition 34 (Sous-espace vectoriel engendré par une partie/famille quelconque).

Soit E un \mathbb{K} -espace vectoriel et A une partie de E non vide. On note $\operatorname{Vect}(A)$ l'ensemble des combinaisons linéaires de vecteurs de A:

$$\operatorname{Vect}(A) = \left\{ y \in E \mid \exists n \in \mathbb{N}^* \ \exists (x_1, \dots, x_n) \in A^n \ \exists (\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n, \ y = \sum_{i=1}^n \lambda_i x_i \right\}.$$

Il s'agit d'un sous-espace vectoriel de E. On l'appelle **sous-espace vectoriel engendré** par A. On conviendra en outre que $\text{Vect}(\emptyset) = \{0_E\}$.

En particulier, si $(x_i)_{i\in I}$ est une famille de vecteurs de E, on note $\text{Vect}\,(x_i)_{i\in I}$ le sous-espace vectoriel engendré par l'ensemble $\{x_i, i\in I\}$:

$$\operatorname{Vect}(x_i)_{i \in I} = \left\{ \sum_{i \in I} \lambda_i x_i, \quad (\lambda_i)_{i \in I} \in \mathbb{K}^I \text{ presque nulle} \right\}.$$

Dans la définition précédente, on voit qu'à une famille $(x_i)_{i\in I}$ de vecteurs, indexée par un ensemble I, est naturellement associé la partie de E contenant tous les vecteurs de la famille.

Réciproquement, si on se donne une partie A non vide dans E, il est possible de lui associer la famille de vecteurs $(x_a)_{a\in A}$, où pour tout $a\in A$, $x_a=a$.

Exemple 35.

- 1. Dans le \mathbb{R} -espace vectoriel \mathbb{C} , que vaut $\text{Vect}(\mathbb{U})$?
- 2. Soit E un K-e.v. et $F \in \mathcal{P}(E)$. Montrer que F est un s.e.v. de E ssi Vect(F) = F.

Proposition 36 (Une autre vision du Vect).

Soit E un \mathbb{K} -espace vectoriel et A une partie de E.

Vect(A) est le plus petit sous-espace vectoriel qui contient $A \mid (plus petit au sens de l'inclusion)$:

$$\forall F \in \mathcal{P}(E) \qquad \left\{ \begin{array}{cc} F & \text{s.e.v. de} & E \\ A \subset F \end{array} \right\} \implies \operatorname{Vect}(A) \subset F.$$

On pourra se convaincre (exercice) que $Vect(A) = \bigcap_{\substack{F \text{ s.e.v. d} \\ A \subset F}}$

Proposition 37 (Propriétés du Vect).

Soit E un \mathbb{K} -espace vectoriel, et A, A', B trois parties de E, et $x, y \in E$.

1. Croissance du Vect :

$$A \subset B \implies \operatorname{Vect}(A) \subset \operatorname{Vect}(B)$$
.

2. Ajout ou élimination de vecteurs superflus :

$$A' \subset \operatorname{Vect}(A) \implies \operatorname{Vect}(A \cup A') = \operatorname{Vect}(A).$$

En particulier,

$$x \in \operatorname{Vect}(A) \implies \operatorname{Vect}(A \cup \{x\}) = \operatorname{Vect}(A).$$

3. Remplacement d'un vecteur : Si $y \in \text{Vect}(A \cup \{x\})$ avec un scalaire non nul sur x, alors

$$\operatorname{Vect}(A \cup \{x\}) = \operatorname{Vect}(A \cup \{y\}).$$

Corollaire 38 (Cas d'une famille finie : invariance du Vect par opérations élémentaires).

Soit E un espace vectoriel et $(x_1, \ldots, x_p) \in E^p$ une famille de vecteurs. Les trois opérations élémentaires standard ne modifient pas le s.e.v. engendré par (x_1, \ldots, x_p) .

• Échange de x_i avec x_j , où $1 \le i < j \le p$:

$$\operatorname{Vect}(x_1, \dots, x_i, \dots, x_j, \dots, x_p) = \operatorname{Vect}(x_1, \dots, x_j, \dots, x_i, \dots, x_p).$$

• Dilatation : remplacement de x_i par λx_i , avec $\lambda \in \mathbb{K}^*$:

$$\operatorname{Vect}(x_1, x_2 \cdots, x_i, \cdots, x_p) = \operatorname{Vect}(x_1, x_2, \cdots, \lambda x_i, \cdots, x_p).$$

• Transvection: pour i et j distincts dans [1, p] et $\lambda \in \mathbb{K}$, remplacement de x_i par $x_i := x_i + \lambda x_j$

$$\operatorname{Vect}(x_1, x_2 \cdots, x_i, \cdots, x_p) = \operatorname{Vect}(x_1, x_2, \cdots, x_i + \lambda x_j, \cdots, x_p).$$

1.6 Somme de deux sous-espaces vectoriels.

Proposition-Définition 39 (Somme des deux s.e.v.).

Soit E un \mathbb{K} -espace vectoriel et F et G deux sous-espaces vectoriels de E.

On appelle **somme** de F et de G, et on note F+G l'ensemble

$$F + G = \{x_F + x_G \mid x_F \in F, x_G \in G\},\$$

ensemble qui peut être écrit aussi

$$F + G = \{x \in E \mid \exists x_F \in F \exists x_G \in G \mid x = x_F + x_G\}.$$

Il s'agit d'un sous-espace vectoriel de E.

La somme de deux s.e.v. n'est pas leur réunion!

Proposition 40 (Évidences).

Soit E un \mathbb{K} -espace vectoriel et F et G deux sous-espaces vectoriels.

- 1. F + G = G + F.
- 2. $F \subset F + G$ et $G \subset F + G$.
- 3. $F + \{0_E\} = F$ et $\{0_E\} + G = G$.
- 4. E + E = E.

Exemple 41.

Soit E un \mathbb{K} -espace vectoriel et F et G deux sous-espaces vectoriels de E. Démontrer que

$$F + G = \text{Vect}(F \cup G).$$

L'écriture d'un vecteur sur une somme n'est pas unique a priori. Prenons l'exemple trivial d'un espace vectoriel non réduit à $\{0_E\}$ et d'un vecteur x non nul de cet espace. Voici deux écritures distinctes d'un même vecteur x sur E+E:

$$x = \underbrace{x}_{\in E} + \underbrace{0_E}_{\in E}$$
 et $x = \underbrace{\frac{1}{2}x}_{\in E} + \underbrace{\frac{1}{2}x}_{\in E}$.

Définition 42 (Somme directe).

Soit E un \mathbb{K} -espace vectoriel et F et G deux sous-espaces vectoriels de E.

On dit que F et G sont en **somme directe** si pour tout élément de F+G, son écriture comme somme d'un élément de F et d'un élément de G est unique :

$$\forall x \in F + G \quad \exists! (x_F, x_G) \in F \times G \quad x = x_F + x_G.$$

On pourra dire que x_F est la **composante** de x sur F et x_G la composante de x sur G.

<u>Notation</u>: lorsque F et G sont en somme directe, on note $F + G = F \oplus G$.

Proposition 43 (Caractérisation d'une somme directe).

Soit E un \mathbb{K} -espace vectoriel et F et G deux sous-espaces vectoriels de E. Alors

$$F + G = F \oplus G \iff F \cap G = \{0_E\}.$$

Définition 44 (Supplémentaires).

Soit E un \mathbb{K} -espace vectoriel et F et G deux sous-espaces vectoriels de E.

On dit que F et G sont supplémentaires dans E, et on note $E = F \oplus G$, si tout élément de E s'écrit de manière unique comme somme d'un élément de F et d'un élément de G:

$$\forall x \in E \quad \exists! (x_F, x_G) \in F \times G \quad x = x_F + x_G.$$

Proposition 45 (Caractérisation des supplémentaires).

Soit E un \mathbb{K} -espace vectoriel et F et G deux sous-espaces vectoriels de E.

$$E = F \oplus G \iff \begin{cases} E = F + G \\ F \cap G = \{0_E\}. \end{cases}$$

Somme, somme directe, supplémentaires... pour s'y retrouver, rien de tel que quelques $^{\bigotimes}$ dans \mathbb{R}^3 :

Voici d'abord deux droites vectorielles F et G de \mathbb{R}^3 (non confondues)

leur somme est directe mais $F + G \neq \mathbb{R}^3$.

Regardons ensuite deux plans vectoriels F et G de \mathbb{R}^3 (non confondus)

 $\mathbb{R}^3 = F + G$ mais la somme n'est pas directe

Enfin, considérons dans \mathbb{R}^3 un plan vectoriel F et une droite vectorielle G non incluse dans F:

F et G sont supplémentaires dans \mathbb{R}^3 : $\boxed{\mathbb{R}^3 = F \oplus G}$ (*)

(*) Cela reste à prouver! On attendra pour ça d'avoir les outils en lien avec la dimension.

Méthode (Montrer que deux s.e.v. F et G sont supplémentaires par analyse synthèse).

- On considère un vecteur $x \in E$.
- Analyse.
 On suppose l'existence d'un couple de vecteurs (x_F, x_G) ∈ F × G tel que x = x_F + x_G.
 On tâche d'exprimer x_F et x_G à l'aide de x. On trouve un unique couple candidat (x_F, x_G).
 L'unicité de la décomposition est alors prouvée : on sait en fin d'analyse que F et G sont en
- Synthèse. On définit le couple (x_F, x_G) conformément à l'analyse et on vérifie qu'il convient. Plus précisément, on vérifie que $x_F \in F$, que $x_G \in G$, et enfin que $x = x_F + x_G$.

Exemple 46.

Montrer que $M_n(\mathbb{K}) = S_n(\mathbb{K}) \oplus A_n(\mathbb{K})$.

2 Familles de vecteurs.

somme directe.

2.1 Familles génératrices.

Définition 47 (Famille génératrice (cas d'une famille finie)).

On dit qu'une famille $(x_1, ..., x_p) \in E^p$ engendre \mathbb{K} -espace vectoriel E (ou encore qu'elle est génératrice) si tout vecteur de E s'écrit comme combinaison linéaire des vecteurs de la famille :

$$\forall y \in E \quad \exists (\lambda_1, \dots, \lambda_p) \in \mathbb{K}^p \quad y = \sum_{i=1}^p \lambda_i x_i.$$

De façon équivalente, (x_1, \ldots, x_p) engendre E si

$$E = \operatorname{Vect}(x_1, \dots, x_p).$$

Remarque. Si F est un s.e.v. d'un espace vectoriel E, parler de famille génératrice de F, c'est bien sûr parler d'une famille de vecteurs de F qui engendre l'espace vectoriel F.

Définition 48 (Partie/famille génératrice quelconque).

Soit E un \mathbb{K} -espace vectoriel.

- 1. Soit A une partie de E. Elle engendre E si E = Vect(A).
- 2. Soit $(x_i)_{i \in I}$ une famille de vecteurs de E. Elle engendre E si $E = \text{Vect}(x_i)_{i \in I}$.

Exemple 49 (Écrire un Vect, c'est trouver une famille génératrice).

Donner une famille génératrice de $S_2(\mathbb{R})$.

Proposition 50 (Sur-famille d'une famille génératrice).

Toute sur-famille d'une famille génératrice est une famille génératrice.

Preuve. Soient deux familles de vecteurs d'un espace E, notées $(x_i)_{i \in I}$ et $(x_i')_{i \in I'}$ telles que

$$\{x_i \mid i \in I\} \subset \{x_i' \mid i \in I'\}$$
.

Par croissance du Vect, on obtient que

$$\operatorname{Vect}(x_i)_{i \in I} \subset \operatorname{Vect}(x_i)_{i \in I'}$$
.

Si $(x_i)_{i\in I}$ est génératrice, alors le sous-espace de gauche vaut E. On a donc

$$E \subset \operatorname{Vect}(x_i)_{i \in I'},$$

ce qui donne que $E = \text{Vect}(x_i)_{i \in I'}$.

Par exemple, (ch, sh, exp) est aussi une famille génératrice du sous-espace $F = \{y \in \mathcal{D}^2(\mathbb{R}) : y'' - y = 0\}$. Sur cette famille génératrice, il n'y a pas unicité de l'écriture d'un vecteur de F. Par exemple,

$$\exp = 1 \cdot \operatorname{ch} + 1 \cdot \operatorname{sh} + 0 \cdot \exp$$
 et $\exp = 0 \cdot \operatorname{ch} + 0 \cdot \operatorname{sh} + 1 \cdot \exp$.

La question de l'unicité de la décomposition d'un vecteur sur une famille donnée va être au coeur du paragraphe suivant, consacré à la notion de famille libre.

2.2 Familles libres, liées.

Définition 51 (Famille libre, famille liée (cas d'une famille finie)).

Soit E un \mathbb{K} -espace vectoriel et $p \in \mathbb{N}^*$. On dit qu'une famille $(x_1, \ldots, x_p) \in E^p$ est **libre** si

$$\forall (\lambda_1, \dots, \lambda_p) \in \mathbb{K}^p \qquad \sum_{i=1}^p \lambda_i x_i = 0_E \quad \Longrightarrow \quad \forall i \in [1, p] \ \lambda_i = 0.$$

Une famille qui n'est pas libre est dite liée.

En français : (x_1, \ldots, x_p) est libre si la seule combinaison linéaire nulle des vecteurs x_1, \ldots, x_p est celle avec scalaires nuls. On dit aussi parfois des vecteurs d'une famille libre qu'ils sont **linéairement indépendants**.

Proposition 52 (Unicité de la décomposition sur une famille libre/Identifier les coefficients).

Soit E un K-espace vectoriel et (x_1, \ldots, x_p) une famille libre de E. Alors

$$\forall (\lambda_1, \dots, \lambda_p) \in \mathbb{K}^p \quad \forall (\mu_1, \dots, \mu_p) \in \mathbb{K}^p \qquad \sum_{i=1}^p \lambda_i x_i = \sum_{i=1}^p \mu_i x_i \implies \begin{cases} \lambda_1 & = & \mu_1 \\ \lambda_2 & = & \mu_2 \\ & \dots \\ \lambda_p & = & \mu_p. \end{cases}$$

Exemples 53 (Familles libres).

- 1. Dans l'espace $E = \mathcal{D}^2(\mathbb{R})$, montrer que (ch, sh) est libre, et que (ch, sh, exp) est liée.
- 2. On considère dans \mathbb{R}^3 les vecteurs

$$\overrightarrow{u_1} = (0, 1, 1)$$
 $\overrightarrow{u_2} = (1, 0, 1)$ $\overrightarrow{u_3} = (1, 1, 0)$

Montrer que $(\overrightarrow{u_1}, \overrightarrow{u_2}, \overrightarrow{u_3})$ est une famille libre de \mathbb{R}^3 .

${\bf Proposition~54~(Caract\'erisation~des~familles~li\'ees).}$

Une famille de vecteurs est liée ssi l'un des vecteurs s'écrit comme combinaison linéaire des autres.

Proposition 55 (Deux cas particuliers simples et courants).

- 1. Une famille composée d'un seul élément <u>non nul</u> est toujours libre.
- 2. Une famille contenant le vecteur nul est toujours liée.

Preuve de 1). Soit x un vecteur non nul dans E (à supposer qu'il en existe un!) Montrons que (x) est libre. On considère $\lambda \in \mathbb{K}$ tel que $\lambda x = 0_E$. Puisque $x \neq 0$, on a nécessairement $\lambda = 0$.

Preuve de 2) Soit une famille $(x_1, \ldots, x_p) \in E^p$ qui contient le vecteur nul : $\exists i_0 \in [1, p] : x_{i_0} = 0_E$. Alors

$$666 \cdot x_{i_0} + \sum_{i \neq i_0} 0 \cdot x_i = 0_E.$$

La famille est liée.

Proposition 56.

Toute sous-famille d'une famille libre est une famille libre.

Toute sur-famille d'une famille liée est liée.

Preuve. Soit une famille libre $(x_1, \ldots, x_p) \in E^p$ d'un espace vectoriel E. On peut aussi noter $(x_i)_{i \in I}$ en notant $I = [\![1,p]\!]$. On considère J une partie non vide de $[\![1,p]\!]$. Montrons que $(x_j)_{j \in J}$ est libre. Soit $(\lambda_j)_{j \in J}$ une famille de scalaires telles que

$$\sum_{j \in I} \lambda_j x_j = 0_E.$$

On peut écrire ce qui précède sous la forme

$$\sum_{j \in J} \lambda_j x_j + \sum_{i \in I \setminus J} 0 \cdot x_i = 0_E.$$

On a sous les yeux une combinaison linéaire nulle de $(x_i)_{i\in I}$ qui est <u>libre</u>. Tous les scalaires sont nuls, en particulier :

$$\forall j \in J \quad \lambda_i = 0.$$

Ceci achève de démontrer que notre sous-famille est libre.

Par contraposée, toute sur-famille d'une famille liée est liée.

En ôtant des vecteurs à une famille libre, on garde donc une famille libre. Et lorsqu'on en ajoute?

Proposition 57 (Ajout d'un vecteur à une famille libre).

Soit (x_1, \ldots, x_p) est une famille <u>libre</u> dans un K-espace vectoriel E, et y un vecteur de E.

$$(x_1, \ldots, x_p, y)$$
 est liée $\iff y \in \text{Vect}(x_1, \ldots x_p)$.

$$(x_1, \ldots, x_p, y)$$
 est libre $\iff y \notin \text{Vect}(x_1, \ldots x_p).$

Corollaire 58 (Cas particulier de deux vecteurs).

Dans un K-espace vectoriel E, une famille de deux vecteurs est liée si et seulement si ces vecteurs sont *colinéaires*. Plus précisément, si $(x, y) \in E^2$,

$$(x,y)$$
 est liée \iff $(x=0_E \text{ ou } \exists \alpha \in \mathbb{K} \ y=\alpha x)$.

Définition 59 (Famille libre, liée (cas d'une famille quelconque)).

Soit E un \mathbb{K} -espace vectoriel. On dit qu'une famille $(x_i)_{i\in I}\in E^I$ est **libre** si

$$\forall (\lambda_i)_{i \in I} \in \mathbb{K}^I \text{ presque nulle } \sum_{i \in I} \lambda_i x_i = 0_E \implies \forall i \in I \ \lambda_i = 0.$$

Une famille qui n'est pas libre est dite liée. Par convention la famille vide est libre.

Soit A une partie de E. Il est facile de créer une famille de vecteurs où l'on met tous les vecteurs de A : c'est la famille $(x_a)_{a\in A}$, où on note $x_a=a$ pour tout $a\in A$. On dit que la partie A est **libre** si $(x_a)_{a\in A}$ l'est.

Méthode (Montrer qu'une famille de vecteurs quelconque est libre (rare!)).

Soit $(x_i)_{i\in I}$ une famille de vecteurs quelconque d'un espace vectoriel E.

Manipuler des familles de scalaires presque nulles revient à regarder des sous-familles **finies**. Ainsi, pour prouver que $(x_i)_{i\in I}$ est libre,

- on se donne J une partie finie de I,
- on prouve que $(x_j)_{j\in J}$ est libre.

La proposition suivante sert d'exemple.

Proposition 60 (Condition suffisante pour qu'une famille de polynômes soit libre).

Une famille de polynômes non nuls et de degrés deux à deux distincts est une famille libre.

Bien entendu, il existe des familles libres de polynômes où les degrés ne sont pas deux à deux distincts. Par exemple il est facile de voir que la famille (X, X + 1) est libre.

Preuve. Soit $(P_i)_{i\in I}$ une famille de polynômes de $\mathbb{K}[X]$ telle que

$$\forall i \in I \quad P_i \neq 0 \quad \text{et } \forall (i,j) \in I^2 \quad i \neq j \implies \deg P_i \neq \deg P_j.$$

Soit J une partie finie de I. Montrons que $(P_j)_{j\in J}$ est libre. Pour cela, on considère $(\lambda_j)_{j\in J}$ une famille de scalaires telle que

$$\sum_{j \in J} \lambda_j P_j = 0.$$

On souhaite montrer que tous les scalaires de la famille sont nuls. Pour cela on introduit l'ensemble

$$J' = \{ j \in J \mid \lambda_i \neq 0 \}.$$

On raisonne par l'absurde et on suppose que J' est <u>non vide</u>. L'ensemble $\{\deg P_j, j \in J'\}$ est un ensemble non vide d'entiers naturels (les polynômes étant non nuls) : il a un maximum. Notons $j_0 \in J'$ tel que

$$\deg P_{i_0} = \max\{\deg P_i \mid j \in J'\}.$$

Ce maximum n'est atteint qu'une fois, les degrés étant deux à deux distincts par hypothèse, donc

$$\forall j \in J' \setminus \{j_0\} \quad \deg P_j < \deg P_{j_0}.$$

Pour obtenir une contradiction, isolons le polynôme P_{j_0} :

$$\underbrace{\lambda_{j_0}}_{\neq 0} P_{j_0} + \sum_{j \in J' \setminus \{j_0\}} \lambda_j P_j + \sum_{j \in J \setminus J'} \underbrace{\lambda_j}_{=0} P_j = 0 \quad \text{donc} \quad P_{j_0} = -\sum_{j \in J' \setminus \{j_0\}} \frac{\lambda_j}{\lambda_{j_0}} P_j.$$

Passons au degré:

$$\deg P_{j_0} \le \max\{\deg P_j \mid j \in J' \setminus \{j_0\}\} < \deg P_{j_0}.$$

Cette absurdité prouve que J' ne peut être que vide : tous les scalaires sont non nuls.

Les résultats démontrés pour les familles libres finies se généralisent à des parties/familles quelconques de vecteurs.

- On peut « identifier » les scalaires face à l'égalité de deux combinaisons linéaires, pour une famille libre quelconque.
- Si A et B sont deux parties d'un espace vectoriel E telles que $B \subset A$,
 - si A est libre, B est libre;
 - si B est liée, A est liée.
- Si A est libre et alors $A \cup \{x\}$ est libre ssi $x \notin \text{Vect}(A)$.

2.3 Bases.

Définition 61 (Base (cas d'une famille finie)).

Soit E un \mathbb{K} -espace vectoriel. On dit qu'une famille $(x_1, \ldots, x_p) \in E^p$ est une **base** de E si tout vecteur de E s'écrit de manière unique comme combinaison linéaire des vecteurs de la famille :

$$\forall y \in E \quad \exists! \ (\lambda_1, \dots, \lambda_p) \in \mathbb{K}^p \quad y = \sum_{i=1}^p \lambda_i x_i.$$

On dit alors que $(\lambda_1, \ldots, \lambda_p)$ est le *p*-uplet de **coordonnées** de *y* dans la base (x_1, \ldots, x_p) .

Définition 62 (Base (cas d'une famille quelconque)).

Soit E un \mathbb{K} -espace vectoriel. On dit qu'une famille $(x_i)_{i\in I}\in E^I$ est une base de E si

$$\forall y \in E \quad \exists! \ (\lambda_i) \in \mathbb{K}^I \text{ presque nulle} \quad y = \sum_{i \in I} \lambda_i x_i.$$

Exemple 63 (Base canonique de \mathbb{K}^n).

Pour tout $i \in [1, n]$, on note $e_i = (0, \dots, 0, 1, 0, \dots, 0)$, où le 1 est écrit sur la *i*ème coordonnée. Tout n-uplet (x_1, \dots, x_n) s'écrit

$$(x_1, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, 0, \dots, 0) + \dots + x_n(0, \dots, 0, 1) = \sum_{i=1}^n x_i e_i.$$

et cette décomposition est unique. La famille (e_1, \ldots, e_n) est appelée **base canonique** de \mathbb{K}^n . Les coordonnées d'un n-uplet dans cette base sont tout simplement les coordonnées du n-uplet.

Exemple 64 (Base canonique de $\mathbb{K}_n[X]$, de $\mathbb{K}[X]$).

Tout polynôme $P \in \mathbb{K}_n[X]$ s'écrit de manière unique $P = \sum_{k=0}^n a_k X^k$, avec $a_0, \dots, a_n \in \mathbb{K}$.

La famille de monômes $(1, X, X^2, ..., X^n)$ est appelée base canonique de $\mathbb{K}_n[X]$. Les coordonnées d'un polynôme dans cette base sont tout simplement ses coefficients. La famille $(X^k)_{k\in\mathbb{N}}$ est la base canonique de $\mathbb{K}[X]$.

Exemple 65 (Base canonique de $M_{n,p}(\mathbb{K})$).

Pour tout couple $(i, j) \in [1, n] \times [1, p]$, on note $E_{i,j}$ la matrice de $M_{n,p}(\mathbb{K})$ dont tous les coefficients sont nuls sauf celui à la ligne i et à la colonne j qui vaut 1. La famille $(E_{i,j}, i \in [1, n], j \in [1, p])$ est une base de $M_{n,p}(\mathbb{K})$, dite **base canonique** de cet espace.

Les coordonnées d'une matrice dans cette base sont tout simplement ses coefficients.

Proposition 66 (Caractérisation des bases).

Dans un e.v., une famille de vecteurs est une base si et seulement si elle est libre et génératrice.

Exemple 67.

On considère les sous-espaces vectoriels de $\mathcal{D}^2(\mathbb{R})$ ci-dessous :

$$F = \{ y \in \mathcal{D}^2(\mathbb{R}) \mid y'' + y = 0 \}$$
 et $G = \{ y \in \mathcal{D}^2(\mathbb{R}) \mid y'' - y = 0 \}$

Donner une base de F et deux bases de G.

Exemple 68.

Soit $a \in \mathbb{K}$ et $n \in \mathbb{N}$.

Justifier que la famille $((X-a)^k)_{k\in \llbracket 0,n\rrbracket}$ est une base de de l'espace $\mathbb{K}_n[X]$.

Le petit résultat suivant, qui fait un lien entre les notions de bases et de supplémentaires, servira dans le cours sur la dimension finie.

Lemme 69 (Construction de deux supplémentaires à partir d'une base).

Soit E un espace vectoriel admettant une base (e_1, \ldots, e_n) , avec $n \in \mathbb{N}^*$. Soit $p \in [1, n]$. Alors

$$E = \operatorname{Vect}(e_1, \dots, e_p) \oplus \operatorname{Vect}(e_{p+1}, \dots, e_n).$$

Exercices

Espaces vectoriels, sous-espaces vectoriels.

Notons F l'ensemble des suites bornées et G l'ensemble des suites qui tendent vers 0.

- 1. Démontrer que G est un sous-espace vectoriel de E.
- 2. Démontrer que F est un sous-espace vectoriel de E.
- 3. Pourquoi peut-on dire que G est un s.e.v. de F?

25.2 $[\phi \Diamond \Diamond]$ Être ou ne pas être un sous-espace vectoriel.

Dans chacun des cas suivants, justifier que l'ensemble F_i donné est un s.e.v. de l'espace vectoriel E_i donné.

- 1. $E_1 = \mathbb{R}^3$ et $F_1 = \{(x, y, x + y), x, y \in \mathbb{R}\}.$
- 2. $E_2 = M_n(\mathbb{R})$ et $F_2 = \{M \in E_2 : \operatorname{Tr}(M) = 0\}.$
- 3. $E_3 = M_n(\mathbb{R})$. On fixe $A \in M_n(\mathbb{R})$ et on définit $F_3 = \{M \in M_n(\mathbb{R}) : AM = MA\}$ (l'ensemble des matrices commutant avec la matrice A).

25.3 $[\spadesuit \spadesuit \diamondsuit]$ Fonctions à variations bornées.

Soit $E = \mathcal{F}(I, \mathbb{R})$ l'ensemble des fonctions définies sur un intervalle I de \mathbb{R} et

$$V = \{f - g, f \text{ et } g \text{ croissantes sur } I\}.$$

Montrer que V est un sous-espace vectoriel de E.

$$u = (1, j, j^2),$$
 $v = (1, j^2, j),$ $w = (j, j^2, 1).$

Démontrer que

$$Vect(u, v, w) = \{(x, y, z) \in \mathbb{C}^3 \mid x + y + z = 0\}.$$

25.5 $[\blacklozenge \blacklozenge \blacklozenge]$ Soit E un \mathbb{K} -espace vectoriel, et F et G deux s.e.v. de E. Montrer :

$$F \cup G$$
 est un sous-espace vectoriel de $E \iff F \subset G$ ou $G \subset F$.

Sommes.

25.6 $[\phi \phi \diamondsuit]$ Soit $E = \mathbb{R}^{\mathbb{R}}$ l'ensemble des fonctions de \mathbb{R} dans \mathbb{R} . Notons P l'ensemble des fonctions paires sur \mathbb{R} et I celui des fonctions impaires.

- 1. Justifier que P et I sont deux sous-espaces vectoriels de E.
- 2. Par analyse-synthèse, démontrer que $E = P \oplus I$.

25.7 $[\blacklozenge \blacklozenge \diamondsuit]$ Soit E l'ensemble des suites réelles convergentes et F celui des suites réelles de limite nulle.

- 1. Démontrer que E est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$. On admettra que de la même façon, F est un sous-espace vectoriel de E.
- 2. Soit c la suite constante égale à 1. Prouver que

$$E = F \oplus \operatorname{Vect}(c)$$
.

25.8 [♦♦♦]

 $\overline{\text{Soit }P} \in \mathbb{K}[X]$ de degré $n \in \mathbb{N}$. On note $P\mathbb{K}[X]$ l'ensemble des polynômes de $\mathbb{K}[X]$ divisibles par P.

- 1. Justifier que $P\mathbb{K}[X]$ est un sous-espace vectoriel de E.
- 2. Démontrer que $\mathbb{K}[X] = \mathbb{K}_{n-1}[X] \oplus P\mathbb{K}[X]$.

25.9 $[\blacklozenge \blacklozenge \blacklozenge]$ Soit E un K-espace vectoriel et F, G, H trois sous-espaces vectoriels de E tels que

$$\left\{ \begin{array}{l} F+G=F+H=F+(G\cap H) \\ F\cap G=F\cap H \end{array} \right.$$

Montrer que G = H.

Familles de vecteurs.

25.10 $[\blacklozenge \diamondsuit \diamondsuit]$ Montrer les vecteurs (1,0,1,0), (0,1,0,1) et (1,2,3,4) forment une famille libre de \mathbb{R}^4 .

25.11 $[\blacklozenge \diamondsuit \diamondsuit]$ Montrer que les suites $u = (1)_{n \in \mathbb{N}}, v = (n)_{n \in \mathbb{N}}, w = (2^n)_{n \in \mathbb{N}}$ forment une famille libre de $\mathbb{R}^{\mathbb{N}}$.

25.12 $[\blacklozenge \blacklozenge \diamondsuit]$ Soit $p \in \mathbb{N}^*$ et $q_1 < q_2 \cdots < q_p \ p$ réels strictement positifs.

 $\overline{\text{Pour }k} \in [1,p]$, on note $a^{(k)}$ la suite géométrique de raison q_k et de premier terme 1.

Montrer que $(a^{(1)}, \ldots, a^{(p)})$ est libre.

25.13 $[\spadesuit \spadesuit \diamondsuit]$ Pour tout $k \in [0, n]$, on pose $P_k = X^k (1 - X)^{n-k}$.

Démontrer que (P_0, P_1, \ldots, P_n) est une famille libre de $\mathbb{K}_n[X]$.

25.14 $[\blacklozenge \blacklozenge \blacklozenge]$ Déterminer les fonctions $f \in \mathbb{R}^{\mathbb{R}}$ telles que :

- 1. f est dérivable et (f, f') est une famille liée;
- 2. f est deux fois dérivable et (f, f', f'') est une famille liée.

25.15 $[\spadesuit \spadesuit \lozenge]$ Soit $u : E \to F$ une application <u>linéaire</u> et $(e_i)_{i \in I} \in E^I$.

- 1. Montrer que si u est injective et si $(e_i)_{i\in I}$ est libre, la famille $(u(e_i))_{i\in I}$ est libre.
- 2. Montrer que si u est surjective et si $(e_i)_{i\in I}$ engendre E, la famille $(u(e_i))_{i\in I}$ engendre F.

25.16 $[\phi \diamondsuit \diamondsuit]$ Pour chacun des ensembles ci-dessous, prouver qu'il s'agit d'un espace vectoriel et en donner une base.

$$F = \{\alpha X^3 + \beta X + \alpha + \beta, \quad (\alpha, \beta) \in \mathbb{R}^2\}.$$

$$G = \{(x, y, z, t) \in \mathbb{R}^4 : x + 2y + z - t = 0 \quad \text{et} \quad 2x + 4y + z + 3t = 0\}.$$

On pourra commencer par écrire chacun des ensembles comme un Vect.

25.17 $[\phi \diamondsuit \diamondsuit]$ Soit $n \in \mathbb{N}$. On définit, pour tout $k \in [0, n]$, $P_k = \sum_{i=0}^k X^i$.

Démontrer que $(P_k)_{0 \le k \le n}$ est une base de $\mathbb{R}_n[X]$.

Quelles sont les coordonnées de $1_{\mathbb{R}[X]}$ dans cette base? et celles de X^n ?

25.18 $[\blacklozenge \blacklozenge \diamondsuit]$ Interpolation de Lagrange

Soit (x_1, \ldots, x_n) un n-uplet de réels deux à deux distincts et (L_1, \ldots, L_n) la famille des polynômes de Lagrange associés.

Montrer que cette famille est une base de $\mathbb{R}_{n-1}[X]$.

Donner les coordonnées d'un polynôme P sur cette base.