I./a Bevezető

Axiómák:

- (A) Archimédesz-féle: minden természetes számnál van nagyobb.
- (A) Cantor-féle: In = $\{x: a_n \le x \le b_n\}$ és $a_k \le a_{k+1}$ és $b_{k+1} \le b_k$. Ekkor az egymásba skatulyázott zárt interval.sorozat elemeinek metszete *nem üres*!

Fogalmak:

- (D) Korlátosság: H felülről / alulról korlátos, ha minden eleme kisebb / nagyobb egy fix számnál. H korlátos, ha mindkét irányból korlátos.
- (**D**) **Szuprémum** (felső *határ*): H legkisebb felső korlátja (sup*H*).
- (**D**) Infimum (alsó határ): H legnagyobb alsó korlátja (infH).
- (D) Dedekind folytonossági tétel: Felülről (alulról) korlátos nem üres számhalmaznak mindig van felső (alsó) határa.

I./b Számsorozatok

- (D) Számsorozat: A természetes számokon értelmezett valós értékű függvény (N → R). Jelölése: (a₀) vagy <a₀>
- (**D**) <u>Sorozat konvergenciája</u>: a_n konvergens és határértéke (limesze) A (lim $a_n = A$), ha minden $\epsilon > 0$ -hoz létezik N(ϵ) küszöbszám, amire $|a_n A| < \epsilon$, ha $n > N(\epsilon)$
 - (M1) A definícióval ekvivalens, hogy az $(A-\epsilon,A+\epsilon)$ intervallumban végtelen sok elem van, és rajta kívül véges sok.
 - (M2) A határérték egyértelmű.
- (D) Sorozat divergenciája: a nem konvergens sorozatok a divergens sorozatok.
 (P) Végtelenhez divergáló: minden P > 0-hoz létezik N(P), hogy a_n > P, ha n > P(n)
- (T) Konvergencia szükséges feltétele: a_n konvergens \Rightarrow a_n korlátos. (Tehát ha nem korlátos, nem is konvergens!)
 - (B) $(A-\epsilon, A+\epsilon)$ -n kívül csak véges sok elem eshet (konvergens), alsó / felső korlát ezek közül a legkisebb / legnagyobb \rightarrow korlátos.
 - (M) Visszafelé nem igaz!

Műveletek sorozatokkal:

- $(T_1) \ (a_n \mathop{\rightarrow} A) \ \acute{e}s \ (b_n \mathop{\rightarrow} B) \ \Longrightarrow (a_n + b_n \mathop{\rightarrow} A + B)$
- (B) $N_{1,2}(\epsilon/2)$. $||a_n + b_n| |A + B|| \le |a_n A| + |b_n B| \le \epsilon/2 + \epsilon/2 = \epsilon$.
- (\mathbf{T}_2) $(\mathbf{a}_n \rightarrow A) \Rightarrow (c\mathbf{a}_n \rightarrow cA)$
 - (B) $N_1(\epsilon/c)$.
- (T_3/i) $(a_n \rightarrow \theta)$ és $(b_n \rightarrow \theta) \Rightarrow (a_n + b_n \rightarrow \theta)$
- $(T_3/ii) (a_n \rightarrow A) \text{ \'es } (b_n \rightarrow B) \implies (a_n b_n \rightarrow AB)$
- **(B/i)** $N_1(\epsilon/2)$, $N_2(2)$
- $(\mathbf{B/ii})$ Az előzőt kell alkalmazni $(a_n A)$ és $(b_n B) \rightarrow 0$ -ra.
- $(T_4)\;(a_n\!\to\! A) \Rightarrow (|a_n|\!\to\! |A|)$
- **(B)** $||a_n| |A|| \le |a_n A|$
- (T_5/i) $(b_n \rightarrow B) \Rightarrow (1/b_n \rightarrow 1/B)$
- $(T_5/ii) (a_n \rightarrow A) \text{ \'es } (b_n \rightarrow B) \Rightarrow (a_n/b_n \rightarrow A/B)$
 - **(B)** Biz $N_1(|B|/2)$ és $N_2(\epsilon^*|B|^2/2)$

Számsorozatok nagyságrendje:

 $\log_n < n < 2^n < n! < n^n$

 $\lim_{n \to \infty} n^k a^n = 0, \text{ ha } a < 1 \text{ \'es } k \in \mathbb{N}+.$

Egyszerűbb tételek:

- $(T) (a_n \to A) \Rightarrow (\sqrt{a_n} \to \sqrt{A})$
- (M) K-adik gyökre is igaz!
- $(T)\;(a_n\mathop{\rightarrow}\infty) \Rightarrow (1\,/\,a_n\mathop{\rightarrow}\theta)$
- $(T)\;(a_n \mathop{\rightarrow} \theta) \Rightarrow (1\,/\,|a_n| \mathop{\rightarrow} \infty)$
- (T) <u>Limesz monotonitása</u>: $(a_n \rightarrow A)$ és $(b_n \rightarrow B)$ és $(a_n < b_n) \Rightarrow (A \le B)$
 - (B) d/3-as indirekt bizonyítás.
- (T) Rendőrelv: $(a_n \rightarrow A)$ és $(b_n \rightarrow A)$ és $(a_n \le c_n \le b_n) \Rightarrow (c_n \rightarrow A)$
- (T) Elégséges tétel konvergenciára: Ha an monoton növekedő (csökkenő) és felülről (alulról) korlátos, akkor konvergens.
- **(B)** Cantor-axiómával. $(c_0 = a_1, d_0 = K_f)$. Felezzük az intervallumokat.
- (T) $(1 + 1/n)^n$ konvergens.
 - **(B)** Randa: $(1 + 1/n)^n = SZUMMA(n \text{ alatt } k)*(1/n)^k ...$
- (T) Minden sorozatnak van monoton részsorozata. (Segédtétel)
- (T) Bolzano-Weierstrass kiválasztási tétel: Minden korlátos sorozatnak van konvergens részsorozata. (Csak az R-ben igaz!)
- (T) Cauchy-féle konvergenciakritérium (szükséges és elégséges tétel sorozat konvergenciájára) ($\neg B$): Az a_n sorozat akkor és csak akkor konvergens, ha minden ϵ -hoz van $M(\epsilon)$, amire $|a_m a_n| < \epsilon$, ha n,m > M.
 - (M) Ennek segítségével a konvergencia a határérték ismerete nélkül meghatározható.
- (D) Az a $_{\rm n}$ sorozat $\it Cauchy\text{-}sorozat,$ ha igaz rá a Cauchy-féle konvergenciakritérium.
- (T) Cauchy-féle konvergenciatétel: Az a_n sorozat akkor és csak akkor konvergens, ha Cauchy-sorozat.

- (P) Biz szumma(1/k) divergens.
- (**D**) **Torlódási pont** (sűrűsödési pont): t a_n torlódási pontja, ha bármely környezete a sorozat végtelen sok elemét tartalmazza. (Van olyan részorozat, amelynek határértéke t).
- (T) Egy sorozat akkor és csak akkor konvergens, ha pontosan 1 véges torlódási pontja van.
- (D) S := a_n torlódási pontjainak halmaza.
- **(D)** Limesz szuperior: $\limsup a_n = \sup S$
- **(D) Limesz inferior:** $\liminf a_n = \inf S$

Valós egyváltozós függvények

- (D) Függvény: egyértékű reláció. Df → Rf. A Df minden pontjához hozzárendeli az Rf egy pontját.
- (D) Függvény határértéke:

 $\lim_{x\to x_0} f(x) = A$, ha:

- x₀ torlódási pontja Df-nek és
- Minden $\varepsilon > 0$ -hoz létezik olyan $\delta(\varepsilon) > 0$, hogy $|f(x) A| < \varepsilon$,

ha $0 < |x - x_0| < \delta(\varepsilon)$, x eleme Df-nek!

- (D) H halmazra szorítkozó határérték (jobb/baloldali): Df helyett Df metszet H-t kell behelyettesíteni.
 - (M) $\lim_{x\to 0} f(x)$ akkor és csak akkor létezik, ha létezik $f(x_0-0)$, $f(x_0+0)$ és ezek megegyeznek.
- (T) Cauchy-kritérium (\neg B): $\lim_{n \to \infty} f(x) = A$, ha minden ϵ -hoz van $\delta(\epsilon)$, a mire minden $x_1, x_2 \in K_{x_0, \delta}$ esetén $|f(x_1) f(x_2)| < \epsilon$.
- (T) Átviteli elv (szükséges és elégséges tétel határérték létezésére): $\lim \mathbf{f}(\mathbf{x}) = \mathbf{A} \Leftrightarrow \min \mathbf{den} \ \mathbf{x}_n \to \mathbf{x}_0\text{-ra} \ \mathbf{f}(\mathbf{x}_n) \to \mathbf{A} \ (\mathbf{x}_n \in \mathrm{Df} \ \acute{e}s \ \mathbf{x}_n \neq \mathbf{x}_0)$
 - **(B)** 1) ... 2) Indirekten (tfh. van olyan ε , amihez nincs $d(\varepsilon)$
- (D) Végesben és végtelenben vett határértékek definíciói.

Műveletek függvények körében:

- (T) Ugyanazok a tételek igazak, amik a számsorozatokra igazak voltak, és ezek alapján lehet őket bebizni az átviteli elv segítségével:
- **(B)** Összegre vonatkozó feltétel: minden $x_n \to x_0$ sorozatra $f(x_n) \to A$, $g(x_n) \to B$, ezért minden ilyen $x_n \to x_0$ -ra: $(f+g)(x_n) = f(x_n) + g(x_n) \to A + B$.

Folytonosság:

(D) Függvény folytonossága:

f folytonos x_0 -ban, ha: létezik $f(x_0)$ és minden ϵ -hoz van $\delta(\epsilon)$, amire $|f(x)-f(x_0)|<\epsilon$, ha $|x-x_0|<\delta(\epsilon)$.

- (M) Ezzel egyenértékű, hogy létezik a pontban a függvény határértéke, és az megegyezik a helyettesítési értékkel.
- (T) Ha f és g folytonos x_0 -ban, akkor cf, f + g, fg és f/g ($g \ne 0$) is folytonos.
- (T) Ha g folytonos x_0 -ban és f folytonos $g(x_0)$ -ban, akkor $f(g(x_0))$ is folytonos.

Szakadási helyek:

Elsőfajú szakadás:

Megszüntethető szakadás: a jobb és baloldali határérték létezik, véges és egyenlő, de ez nem egyenlő a helyettesítési értékkel (vagy az nem létezik)

Véges ugrás: léteznek a véges határértékek, de azok nem egyeznek meg.

Másodfajú szakadás:

Minden, ami nem az előző (pl. végtelen határérték)

(T) $\lim_{x\to x\theta} \sin(x)/x = 1$:

(B) Háromszöges módszer (OAP 3szög, OAP ív és OAB háromszög területét hasonlítani, utána rendőrelv)

Folytonos függvények tulajdonságai:

- **(D)** f folytonos (a,b)-n, ha minden $x \in (a,b)$ -ben folytonos
- (**D**) f folytonos [a,b]-n, ha folytonos (a,b)-n és a-ban jobbról, b-ben balról folytonos.
- **(D)** b ∈ H belső pont, ha minden Kb-re Kb eleme H-nak.
- (D) h határpont, ha minden Kh-ra Kh metszet H nem üres halmaz, és Kh metszet H komplementer nem üres halmaz.
- (D) Nyılt halmaz: minden pontja belső pont
- (D) Zárt halmaz: a nyílt halmaz komplementere
- (D) Kompakt halmaz: korlátos és zárt halmaz.
- (T) Ha f folytonos x_0 -ban és $f(x_0) > c$, akkor létezik olyan $\delta > 0$, amire f(x) > c, ha $x \in K_{x_0,\delta}$.
 - (B) g(x) := f(x) − c; A := g(x₀). A g függvény A/2-es környezetét kell nézni, majd visszatolni az eredeti f(x)-be.
- (T) <u>Bolzano tétel</u>: ha f folytonos [a,b]-ben és f(a) < c < f(b), akkor létezik $\xi \in (a,b)$, amire $f(\xi) = c$.
- (B) Cantor axiómás biz, finomítani kell az intervallumokat: f ((a + b) / 2)-t kell vizsgálni, hogy kisebb/nagyobb-e c-nél. A c végig az intervallumban marad. Cantor miatt létezik ξ , ami az összes metszetében benne van, és az intervallum hossza $(a_n b_n)$ tart 0-hoz. Ezért rendőrelvvel $(0 < a_n \xi < a_n b_n)$ a_n és b_n is

tart 0-hoz. A folytonosság és az átviteli elv alapján: $f(a_n)=f(\xi)=f(b_n)$ Mivel $f(a_n)< c >> \lim f(a_n) \leq c;$ mivel $f(b_n)> c >> \lim f(b_n) \geq c.$ Így $f(\xi)=c.$

(**K1**) Ha f folytonos [a,b]-ben, és f(a) < 0 és f(b) > 0, akkor az egyenletnek legalább egy gyöke van (a,b)-ben.

(K2) Páratlan fokszámú polinomnak legalább egy valós gyöke van. (Egyik végen plusz, másik végen -∞-hez tart)

(T) Weierstrass I. tétele: Ha f folytonos az [a,b] intervallumon, akkor ott f korlátos.

(T) Weierstrass II. tétele: Ha f folytonos az [a,b] intervallumon, akkor ott felveszi infimumát, ill. szuprémumát, tehát van minimuma és maximuma.

(B) Weierstrass **I.** bizonyítása: Indirekten, tfh. nem korlátos felülről. létezik $x_{1..n}$ sorozat, amelyeknek elemei nagyobbak 1..n-nél. Mivel a sorozat korlátos, a BW-kiv.tétel miatt van konv részsorozat: $x_{ni} \rightarrow x_0$. a $\leq \lim x_{ni} = x_0 \leq b$. Tehát $x_{ni} \rightarrow x_0$, de mivel $f(x_{ni}) \rightarrow$ végtelen, ami ellentmondás, mert f x_0 -ban folytonos, tehát oda kéne tartania.

(**D**) **Egyenletes folytonosság:** Az f függvény egyenletesen folytonos az A halmazon, ha minden $\varepsilon > 0$ -hoz van $\delta(\varepsilon)$ (A-ban $k\ddot{o}z\ddot{o}s!$): $|f(x_1) - f(x_2)| < \varepsilon$, ha $|x_1 - x_2| < \delta(\varepsilon)$ $(x_1, x_2 \text{ eleme A})$

(M) Nem egyenletes folytonosság bizonyításához olyan $x_{n(1)}$, $x_{n(2)}$ sorozatokat kell keresni, amik különbsége (x_1-x_2) tart 0-hoz, de a függvénybe behelyettesítva $f(x_1)-f(x_2)$ mindig egy bizonyos érték fölött van (így nem szorítható ϵ alá).

(T) Ha f folytonos az [a,b] zárt intervallumon, akkor ott egyenletesen folytonos. (¬B)

(T) Ha f folytonos [a,∞)-en, és végtelenben vett határértéke véges, akkor f egyenletesen folytonos [a,∞)-en. (¬B)

Differenciálszámítás

(D) Differenciahányados: $\Delta f / \Delta x = (f(x_0 + \Delta x) - f(x_0)) / \Delta x$

(D) Differenciá/hányados: f ' $(x_0) = \lim_{h\to 0} (f(x_0 + h) - f(x_0)) / h (K_{x0,d} \in Df)$ Jobb / baloldali derivált

(D) f differenciálható (a,b)-ben, ha minden $x \in (a,b)$ -re létezik a diffhányados.

(D) f differenciálható [a,b]-ben, ha diffható (a,b)-ben és a-ban jobbról, b-ben balról diffható.

(T) Szükséges és elégséges tétel diffhatóságra:

f akkor és csak akkor diffható x_0 -ban, ha $K_{x_0,\delta} \in Df$, $h < \delta$ -ra: $\Delta f = f(x_0 + h) - f(x_0) = A \cdot h + \epsilon(h) \cdot h$

A csak x_0 -tól függhet, és lim $\varepsilon(h) = 0$. (Itt $A = f'(x_0)$)

(B) Szükségesség: ha h nem nulla, akkor a diffhányados = $f'(x_0) + \epsilon$, átszorozni. Elégségesség: limeszt venni, $\epsilon(h)$ eltűnik.

(T) Ha f deriválható x₀-ban, akkor ott folytonos.

(B) Szüks/elégs tétel miatt. Átszorozni, határértéket venni.

(D) Differencial: $df = f'(x_0) \cdot h$

(D) Érintő egyenes egyenlete: $f(x_0) + f'(x_0)(x - x_0)$

(T) Differenciálási szabályok. (1/g)' = -(g'/g*g)

(T) <u>Láncszabály</u>: (összetett függvény deriválása) Ha f differenciálható $K_{x,\delta 1}$ -ben, és g differenciálható $K_{f(x),\delta 2}$ -ben, akkor g o f is deriválható x-ben és (g o f)' = $g(f(x))' = g'(f(x))^*f'(x)$ ($\neg B$)

Inverz függvény:

(T) f szig mon \Rightarrow invertálható $f^{-1} = 1 / (f'(f^{-1}(x_0)))$

 $f' = 1 / (f^{-1}(f(x_0)))$

Diffszámítás középértéktételei

(D) f-nek lokális maximuma van az értelmezési tartomány belső c pontjában, ha létezik olyan környezete, amiben $f(x) \le f(c)$, ha x ebben a környezetben van.

(T) Szükséges feltétel lokális szélsőérték létezésére: ha f a c helyen diffható és ott lokális szélsőértéke van, akkor f '(c) = 0

(T) Rolle-tétel: Ha f folytonos [a,b]-n, diffható (a,b)-n és f(a) = f(b), akkor létezik $\xi \in (a,b)$, amire f ' $(\xi) = 0$.

(B) W II miatt van minimuma és maximuma. Ha belül veszi fel, akkor az előző tétel miatt f'(c) = 0.

(T) <u>Lagrange-féle középértéktétel</u>: Ha f folytonos [a,b]-n és diffható (a,b)-n, akkor létezik $\xi \in (a,b)$, amire f ' $(\xi) = [f(b) - f(a)] / (b-a)$.

(B) h(x) = f(a) + [f(b) - f(a)] / (b - a) * (x - a) (húr egyenlete) $g(x) := f(x) - h(x) \Rightarrow g(a) = g(b) \Rightarrow$ Rolle t. miatt van olyan ξ , amire g ' $(\xi) = 0 = f$ ' $(\xi) - \dots$

(T) <u>Cauchy-féle középértéktétel</u>: Ha f és g folytonos [a,b]-n és diffható (a,b)-n, és g' (x) \neq 0, akkor létezik $\xi \in$ (a,b), amire f'(ξ) / g'(ξ) = [f(b) – f(a)] / [g(b) – g(a)]

(B) h(x) := [f(b) - f(a)]f(x) - [f(b) - f(a)]g(x)

Mivel $h(a) = h(b) \Rightarrow$ Rolle t. miatt van olyan ξ , ahol h ' $(\xi) = 0$, rendezni.

(T) Ha f folytonos [a,b]-n, diffható (a,b)-n és ott f'(x) \equiv 0, akkor f(x) \equiv c.

(B) Lagrange miatt minden $[x1,x2] \in (a,b)$ -re létezik ξ , amire $f'(\xi) = [f(x_2) - f(x_1)] / (x_2 - x_1)$. Mivel $f'(\xi) = 0$, $f(x_1) = f(x_2)$.

(T) Az integrálszámítás I. alaptétele. Ha f és g folytonos [a,b]-n, diffható (a,b)-n és ott f '(x) = g '(x), akkor létezik C eleme R, amire f (x) = g(x) + C. (Tehát csak egy állandóban különböznek).

(**B**) Lagrange miatt minden $[x_1,x_2] \in (a,b)$ -re létezik ξ , amire $f'(\xi) = [f(x_2) - f(x_2)] / (x_2 - x_1)$. Mivel $f'(\xi) = 0$, $f(x_1) = f(x_2)$.

L'Hospital szabály

(T) <u>L-Hospital szabály:</u> Legyen f és g differenciálható $K_{\alpha,\delta}$ -ban és itt $g(x) \neq 0$, $g'(x) \neq 0$ és $\lim_{x \to \alpha} f(x) = \lim_{x \to \alpha} g(x) = 0$. Ha $\lim_{x \to \alpha} f'(x) / g'(x) = \beta$, akkor $\lim_{x \to \alpha} f(x) / g(x) = \beta$ (Itt alfa $x_0, x_0, 0\pm, \pm\infty$ lehet, β pedig $b, \pm\infty$ lehet)

(B) f(x0) := 0 és g(x0) := 0. Ekkor a Cauchy-féle középértéktétel miatt: $f(x) / g(x) = \left[f(x) - f(x0) \right] / \left[g(x) - g(x0) \right] = f '(\xi) / g '(\xi). Határértéket kell venni mindkét oldalon.$

Nyílt intervallumon differenciálható függvények tulajdonságai:

(**D**) f alulról konvex I-n, ha minden $x_1,x_2\in I$ -re $f(x)\leq h_{x_1,x_2}(x)$, ha $x\in (x_1,x_2)$ (ahol a h az x_1,x_2 -n áthaladó húr)

(T1) f monoton nő \Leftrightarrow f '(x) \geq 0 (és ugyanez szig monra és csökkenésre)

(**B**) a) f monoton nő \Rightarrow a diffhányados +/+ vagy -/- alakú (pozitív) b) minden $x_1 < x_2$ -re alkalmazható a Lagrange-ktétel: $f(x_2) - f(x_1) / x_2 - x_1 =$

f '(ξ) > 0. Mivel $x_2 - x_1 > 0$, $f(x_2) - f(x_1)$ is nagyobb nullánál \Rightarrow monoton. (T2) f ' monoton nő \Leftrightarrow f konvex

(B) b) (csak viszafelé biz): ábrát fölrajzolni (m, m1, m2 meredekségű húrok). Mivel m1 < m < m2, $\lim m1 = f'(x_1) \le m \le f'(x_2) = \lim m2 \Rightarrow$ tehát f' monoton nő

Diffható függvények lokális tulajdonságai

(T1) Ha f diffható x_0 -ban és

1. **f lokálisan nő** x_0 -ban \Rightarrow $f'(x_0) \ge 0$.

2. f lokálisan nő x_0 -ban \Leftarrow f' $(x_0) > 0$.

(T2) Ha $K(x_0,\delta)\in D_f$ és $K(x_0,\delta)\in D_f$, akkor diffható függvény esetén **lokális** szélsőérték létezésének

1. szükséges feltétele $f'(x_0) = 0$

2. elégséges feltétele: $f'(x_0) = 0$ és vagy f' előjelet vált, vagy $f'' \Leftrightarrow 0$.

(T3) Ha $K(x_0,\delta) \in D_{f^{''}}$ akkor diffható függvény esetén **inflexiós pont** létezésének

3. szükséges feltétele f''(x_0) = 0

4. elégséges feltétele: $f''(x_0) = 0$ és vagy f'' előjelet vált, vagy $f''' \Leftrightarrow 0$.

Szélsőérték keresése: Zárt intervallumon szélsőérték lehet...

1. Az intervallum végpontjaiban

2. Ahol f nem diffható

3. Ahol f'(x) = 0

Integrálszámítás

(**D**) **Primitív függvény:** f-nek F az I intervallumon primitív függvénye, ha minden x e I-re F '(x) = f(x).

(T) <u>Integrálszámítás első főtétele</u>: Ha f-nek F és G primitív függvénye I-n, akkor létezik C, amire F(x) = G(x) + C (x e I). Tehát a prim fv-ek csak egy állandóban különböznek. (*Megj: csak intervallumra igaz!!!*)

(D) Határozatlan integrál: a primitív függvények összessége.

(T) Integrálási szabályok

(D) Alsó közelítő összeg: szumma $m_k \Delta x_k$ ($m_k = \inf f(x)$)

(D) Felső közelítő összeg: szumma $M_k \Delta x_k$ ($M_k = \sup f(x)$)

(D) Felosztás finomsága: $\Delta F = \max \Delta x_k$

Minden határon túl finomodó felosztások sorozata (m.h.t.f.f.s.): $\lim \Delta F = 0$.

(T) Összegek tulajdonságai:

- S_F ≤ S_F

- $s_F \le s_{F^*} \le S_{F^*} \le S_F$ (Az alsó közelítő összeg új osztópont elhelyezésével nem csökkenhet)

s_{F1} ≤ S_{F2} (bármely különböző felosztásokra)

- ∃ sup {s_F} = h (Darboux-féle alsó integrál)

- ∃ inf {S_F} = H (Darboux-féle felső integrál)

 $-h \leq H$

(D) <u>Határozott integrál definíciója</u>:

Legyen f: $[a,b] \Rightarrow R$ korlátos függvény. Azt mondjuk, hogy a függvény **Riemann-szerint integrálható**, ha h = H = I. Ezt az I számot a függvény [a,b]-beli határozott integráljának nevezzük és I = ... módon jelöljük.

- (T) Segédtétel: ha Fn mhtffs, akkor s_{Fn} és S_{Fn} konvergensek és lim s_{Fn} = h és lim S_{Fn} = H.
- (T1) 1. Ha $f \in R_{[a,b]}$, akkor minden mhtffs-ra $s_{Fn} = lim S_{Fn} = I$.
 - 2. Ha létezik mhtffs, amire $s_{Fn} = lim \ S_{Fn} = I$, akkor $f \in R_{[a,b]}$.
- (B) Segédtétellel
- (D) Oszcillációs összeg: $O_F = S_F s_F$.
- (T2) $f \in R_{[a,b]} \Leftrightarrow \text{minden } \epsilon > 0\text{-hoz létezik } F, \text{ amire } O_F < \epsilon.$
 - (B) ε/2 és előző tételekkel.
- (D) Integrálközelítő összeg: ua. mint S_F , csak reprezentáns pontokkal: $f(\xi_k)$.

Jele: σ_F

 $\textbf{(T3)} \; f \in R_{[a,b]} \Leftrightarrow lim \; \sigma_{Fn} \! = \! I$

Elégséges tételek Riemann-integrálhatóságra

- (T1) f korlátos és monoton \Rightarrow f \in R_[a,b]
- (B) Egyenletes felosztás, oszcillációs összegekkel
- (T2) $f \in C^0_{[a,b]} \Rightarrow f \in R_{[a,b]}$
 - (B) Oszcillációs összegekkel
- (T3) f korlátos és egy pont kivételével folytonos \Rightarrow $f \in R_{[a,b]}$
 - (B) Oszcillációs összegekkel, intervallumot három részre osztjuk
- (T4) f korlátos és véges sok pont kivételével folytonos \Rightarrow f \in R_[a,b]
- (T4) Egy Riemann-integrálható fv értékét véges sok pontban megváltoztatva a függvény integrálható marad, és az integrál értéke is ugyanaz.

Newton-Leibniz tétel

- (T) <u>Newton-Leibniz tétel</u>: Ha f Riemann-integrálható [a,b]-n és itt létezik primitív függvénye (F), (azaz minden x e [a,b]-re F '(x) = f(x)), akkor f(x)dx = F(b) F(a)
 - (B) mhtffs-re y irányú változások + Langrange.
- (M) Mindkét feltétel fontos a Newton Leibniz tételben!
- (M1) Nem integrálható, de van primitív függvény: $F = x^2 \sin(1/x^2)$ F' = f nem korlátos \Rightarrow nem integrálható.
- (M2) Integrálható, de nincs primitív függvény: f = sgn (...), mert a deriváltfüggvénynek nem lehet elsőfajú szakadása.

A Riemann-integrál tulajdonságai

- (T) Ha $f \in R_{[a,c]}$ és $f \in R_{[c,b]}$, akkor $f \in R_{[a,b]}$.
- (T) Ha $f \in R_{[a,b]}$, akkor $f \in R_{[a,c]}$, ha c e (a,b).
- (T) R_[a,b] lineáris tér (vektortér).
- (T) $f \in R_{[a,b]}$, és $f(x) \ge 0$, akkor a integrál is ≥ 0 .

Az integrálszámítás középértéktétele

- (D) Integrálközép: $\chi = \int f(x)dx / (b a)$
- (T) 1. Ha $f \in R_{[a,b]}$, $M = \sup \{f(x)\}$, $m = \inf \{f(x)\}$, akkor $m \le \chi \le M$.
 - 2. Ha $f \in C^0_{[a,b]}$, akkor létezik ξ , amire $f(\xi) = \chi$.
 - (B) 1. Integrál monotonitásával, m(b–a)
 - 2. WII miatt f felveszi m-et és M-et, és erre az intervallumra igaz Bolzano.
- (T) $|\int f(x)dx| \le \int |f(x)|dx$

Integrálfüggvény

(D) Integrálfüggvény: $f \in R_{[a,b]}$. Az $F(x) = \int_a^x f(t)dt$ az f függvény integrálfüggvénye $(x \in [a,b])$.

(T) Az integrálszámítás II. alaptétele:

 $f \in R_{[a,b]}$ $F(x) = \int_a^x f(t)dt$ $x \in [a,b]$

- 1. Az integrálfüggvény folytonos [a,b]-n.
- 2. Ha f folytonos $x \in (a,b)$ -ben, akkor F diffható x_0 -ban, és F' = f.

Improprius integrál

Ha az **intervallum nem korlátos** (végtelenig megy), vagy a **függvény nem korlátos** (Pl. 1 / x a 0-ban), akkor kell improprius integrált számítani. Fel kell venni egy változót, ami tart végtelenhez vagy a nem korlátos függvényérték helyéhez, és limest venni.

Ha –∞-től ∞-ig nézzük, két változó van.

Tulajdonságok:

- (T) Cauchy-kritérium: improprius integrál akkor és csak akkor konvergens, ha minden ϵ -hoz van $\Omega(\epsilon)$, hogy minden $\omega_1,\omega_2>\Omega$ -ra az ω_1 -től ω_1 -ig vett integrál kisebb mint ϵ .
- (T) Ha improprius integrál |f(x)| konvergens, akkor f(x) is konvergens.
- (T) Majoráns, minoráns kritériumok.

Készítette: Visontay Péter (sentinel@sch.bme.hu) Info99: http://info99.sch.bme.hu