Fonctions usuelles - TD2 Fonctions trigonométrique; Résoudre f(x) = 0

Exercice 1. Echauffement

- a) Simplifier $\sin(x + 2011\pi)$
- b) Simplifier $\sin(x + \frac{7\pi}{2})$
- c) Calculer la dérivée de $\cosh(x)\cos(x) + \sinh(x)\sin(x)$
- d) Simplifier $\cosh(x)^3 \sinh(x) + \cosh(x) \sinh(x)^3$

Exercice 2. Résolution d'équations trigonométriques

Résoudre dans \mathbb{R} les équations trigonométriques suivantes :

- a) $\sin(x) = 0$
- b) $\cos(2x^2) = 1$
- c) $\cos(x) = \frac{1}{2}$
- d) $\cos(x^2) = \cos(3x)$

Exercice 3. Résolution de f(x) = 0 par dichotomie

Soit $f: I \longrightarrow \mathbb{R}$ une fonction continue sur l'intervalle I. On suppose qu'il existe $a, b \in I$ tels que $f(a) \leq 0$ et $f(b) \geq 0$. On définit les suites $(a_n)_{n \in \mathbb{N}}$ et $(b_n)_{n \in \mathbb{N}}$ par $a_0 = a$, $b_0 = b$ et

$$a_n = \begin{cases} \frac{a_{n-1} + b_{n-1}}{2} & \text{si } f(\frac{a_{n-1} + b_{n-1}}{2}) \le 0 \\ a_{n-1} & \text{sinon} \end{cases}, \quad b_n = \begin{cases} \frac{a_{n-1} + b_{n-1}}{2} & \text{si } f(\frac{a_{n-1} + b_{n-1}}{2}) > 0 \\ b_{n-1} & \text{sinon} \end{cases}$$
(1)

- a) Montrer que $\forall n \in \mathbb{N}, |a_n b_n| = \frac{|a b|}{2^n}$
- b) Montrer que les suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ sont adjacentes.
- c) En déduire qu'il existe $\lambda \in I$ tel que $f(\lambda) = 0$ et que $\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} b_n = \lambda$

Exercice 4. Résolution de f(x) = 0 par la méthode de Newton

Soit $f: I \longrightarrow \mathbb{R}$ une fonction de classe \mathcal{C}^2 sur un intervalle ouvert I. On suppose que f s'annule en un unique point $a \in I$, et que f' ne s'annule pas sur I, et on définit $g: I \longrightarrow \mathbb{R}$ par g(x) = x - f(x)/f'(x). On suppose en outre qu'on peut trouver un intervalle compact $K \subset I$ contenant a et tel que $g(K) \subset K$. Enfin on fixe $x_0 \in K$ et on définit par récurrence la suite $(x_n)_{n \in \mathbb{N}}$ par $x_{n+1} = g(x_n)$.

- a) Montrer que si la suite $(x_n)_{n\in\mathbb{N}}$ converge, sa limite est nécessairement a.
- b) Justifier que f' et f'' sont bornées sur K. On note $M_2 = \max_{x \in K} |f''(x)|$ et $m_1 = \min_{x \in K} |f'(x)|$. Justifier que $m_1 \neq 0$.
- c) Montrer que

$$\forall x \in K, |g(x) - a| \le \frac{M_2}{2m_1}|x - a|^2$$

- d) En déduire une condition suffisante sur x_0 pour que la suite $(x_n)_{n\in\mathbb{N}}$ converge.
- e) Cet algorithme est-il plus rapide que la dichotomie ou plus lent?