First SEMESTER 2021-2022 Course Handout (Part II)

Date: 20/08/2021

In addition to part I (General Handout for all courses appended to the time table) this portion gives further specific details regarding this course.

Course No. : CHEM F325

Course Title : POLYMER CHEMISTRY
Instructor-in-charge : Dr. Chanchal Chakraborty

- 1. Scope and Objective of the course: The objective of the present course is to introduce the foundation of the subject by studying types and structures of polymers, molecular weight of polymers, kinetics of polymerization, thermodynamics of polymer solutions, thermal and mechanical properties of solid polymers, polymer's viscoelasticity and rubber elasticity, commodity, network, engineering and specialty polymers and applications for polymers in separations, biotechnology and electronics.
- 2. **Text Book (TB):** Fried, Joel R., Polymer Science and Technology, 2nd Edition, Prentice-Hall of India Pvt. Ltd. New Delhi, 2005.
- 3. Reference Books (RB): (a) Bahadur, P. and Sastry, N.V., Principles of polymer Science, Narosa Publishing House, New Delhi, 2002. (b) V R Gowarikar, NV Vishwanathan, Jayadev Sreedhar, First Edition 1986, Polymer Science, Reprint 2009. New age International limited (p).

The syllabus also includes lectures class notes.

4. Course Plan:

Lecture No.	Learning objectives	Topics to be covered	Chapter in the Text Book	Learning Outcomes	
1	Classification of polymers, structure of polymers, molecular weights and chemical structure	(i) Classification of polymers	TB 1.1, RB(a) 1.2	Recognize various types of polymers based or their chemical structures, calculation of molecula weight of the polymers and analysis	
2		(ii) Polymer structure and isomerism	TB 1.2, RB(a) 1.4		
3-4		(iii) Molecular weight and chemical structure and thermal transitions	TB 1.3 & 1.4, RB(a) 3.3.1		
5	Synthesis and kinetics of different types of polymerization	(i) Step-growth polymerization	TB 2.1, RB(a) 2.2	Demonstrate techniques and methodologies adopted in polymers synthesis	
6-7		(ii) Chain-growth polymerization	TB 2.2, RB(a)2.1		
8-9	The different techniques of polymerization and the reactions of synthetic polymers	Polymerization techniques, reactions of synthetic polymers and special topic in polymer synthesis	TB 2.3-2.5	Envisage reactions of synthetic polymers and outline special topics encountered in polymers synthesis	
10	Different model to explain conformations and chain dimensions	Polymer conformation and chain dimension	TB 3.1	Comprehensive study of polymer conformations and their chain dimensions	
11	How thermodynamics of polymers	(i) Flory-Huggins theory and Flory-Krigbaum and modified Flory-Huggins theory	TB 3.2.1 & 3.2.2, RB (a) 4.3	Recognize the need of Flory- Huggins and relate modified theories to outline the thermodynamic of polymer solutions. Interpret interactio	
12	solutions differs from the	(ii) phase equilibria	TB 3.2.4	parameter and also to predict the solubility of	
13	thermodynamics of ordinary solutions	(iii) Determination of interaction parameter and prediction of solubilities	TB 3.2.5 & 3.2.6 RB (a) 4.3	polymers in various solvents	
14	The principles behind both primary and secondary methods for molecularweight determination	(i) Osmometry	TB 3.3.1, RB (a) 3.3.3	Types of experimental methodology from simple laboratory to high end gel permeation techniques	
15		(ii) Light-Scattering method	TB 3.3.2, RB (a) 3.3.3	involved to determine the molecular weight of polymers	
16		(iii) Intrinsic-Viscosity	TB 3.3.3		
		measurement	RB (a) 3.3.3	_	
17		(iv) Gel-Permeation Chromatography	TB 3.3.4		
18		(i) Amorphous state	TB 4.1.1-4.1.3		

Lecture No.	Learning objectives	Topics to be covered	Chapter in the Text Book	Learning Outcomes	
19	Thermal and mechanical properties of different solid states of polymers	(ii) Crystalline state	TB 4.2.1 - 4.2.4	Acquire knowledge on different phases of solid	
20		(iii) Thermal transitions and properties	TB 4.3.1 & 4.3.2	polymeric materials and their thermal transition: Glass transition temperature (Tg) and meltin temperature (Tm), get an idea about the variatio of Tg and Tm with polymer structure an functionalities. Importance of Tg regardin mechanical properties of polymers.	
21		(iv) Structure property relationships, effect of molecular weight, composition and pressure on Tg	TB 4.3.3 & 4.3.4		
22		(v) Mechanical properties	TB 4.4		
23	Introduction to viscoelasticity and rubber	(i) Introduction to viscoelasticity	TB 5.1.1, RB (a) 4.4	Experience the basic of viscoelasticity and rubber elasticity and will be able to describe a polymer's	
24	elasticity	(ii) Introduction to rubber elasticity	TB 5.2	elastic behavior in light of its structure	
25	Effects of environmental agents on polymers	Polymer degradation, stability and management	TB 6.1 & 6.2	Knowledge of basic principles and mechanisms of degradation of synthetic polymers and environmental impacts of synthetic polymer. Absorb the technical application capabilities of the most used commodity plastics	
26	Effect of additives, blends and composites on the properties of	(i) Additives and blends	TB 7.1.1 - 7.1.3,7.2.1	The role of additives in polymer blend. Methods of polymer composites preparation and their	
27-28	polymers	(iii) Polymer composites	TB 7.3.1	applications	
29	Polymers in biological systems and nature	Biopolymers and other naturally occurring polymers	TB 8.1	Acquire skill on the chemical structure and applications of naturally occurring biopolymers like proteins, polynucleotide and Polysaccharides and natural fibers.	
30	To know different types of	(i) Fibers	TB 8.2.1 – 8.2.3 RB 5.3	Discover the natural and synthetic fiber cellulosics and non-cellulosics etc. Idea abou	
31	thermoplastics and fibers and their properties	(ii) Thermoplastics	TB 9.1 RB (a) 5.2	commodity thermoplastics like polyolefins, vinyl polymers and thermoplastic polyesters.	
32		(i) Elastomers	TB 9.2, RB (a) 5.4	Interpretation of the basic of elastomers and	
	To know different types of network polymers and their properties	(ii) Thermosets	TB 9.3	thermosets. Idea about diene and non-dien elastomers and epoxy and phenol-formaldehyd resin type thermosets.	

Lecture No.	Learning objectives	Topics to be covered	Chapter in the Text Book	Learning Outcomes
33	Introduction to some outstanding polymers and their properties and comparison with commodity thermoplastics	(i) Engineering thermoplastics	TB 10.1	Apprehension about the engineering plastics like polyamides. ABS, polycarbonates, PE
34		(ii) Specialty polymers	TB 10.2, RB (a) Ch. 8	polysulfones etc. and polyimides and related specialty polymers and high-performance fibers
35-36	Applications for polymers in separations, biotechnology and electronics	(i) Membrane separations & preparation	TB 12.1.2	Recognize the membrane science and technology, barrier polymers etc. Awareness about biomedical
		Membrane separation, Biomedical applications, applications in electronics and photonic polymers	TB 12.2-12.4	
37-40	Online video tutorial of lab components and discussion for the experiences in linear (polyaniline) and cross-linked polymer synthesis, molecular weight measurement, applications etc.			Students will get some experiences on polymer synthesis, characterizations and their properties.

5. Evaluation Scheme:

Component	Duration	Weightage (%)	Date & Time	Nature of Component
Mid Semester Examination	90 Minutes	30	22/10/2021 9.00 - 10.30AM	OPEN BOOK
Online Lab component and quizzes/assignment on lab component	-	10	TBA	OPEN BOOK
Surprise tests/Quizzes	-	20	Continuous	OPEN BOOK
Comprehensive Examination	2 hours	40	22/12 FN	Closed Book

• Regular attendance in the class will be considered as a plus during the final evaluation.

- **6. Consultation Hour:** To be announced in the class
- **7. Notice:** Notices concerning this course will be displayed only on the CMS.
- **8. Make-up-policy**: Make up would be considered only for very genuine reasons (*such as institute deputation outside for sports/cultural fest, hospitalization (with appropriate documentary proof)* and in case of any other extreme emergency situations.
- **9. Academic Honesty and Integrity Policy**: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Dr. Chanchal Chakraborty

Instructor-in-charge, CHEM F325