Metodologias para edição de genomas (CRISPR-Cas9)

Profa. Dra. Chirlei Glienke BIOGEMM/UFPR

Origem do mecanismo de CRISPR

Figure 1 | The Discovery and Development of CRISPR and Cas9

DOI: 10.23861/EJBM201631754

Premio Nobel em química em 2020

Jennifer Doudna (<u>University of California Berkeley</u>) e Emmanuelle Charpentier (<u>Max Planck</u> <u>Unit for the Science of Pathogens</u>, Berlin)

Sistema CRISPR - Cas

- 1. Bactérias e archaea desenvolveram sistemas de defesa adaptativos mediados por RNA, chamados de repetições palindrômicas curtas regularmente intercaladas (CRISPR) que protegem os organismos de vírus e plasmídeos invasores
- 2. Esses sistemas de defesa dependem de pequenos RNAs para detecção específica de sequência e silenciamento de ácidos nucléicos exógenos
- 3. Os sistemas CRISPR / Cas são compostos por:
 - a) genes cas organizados em operon (s)
 - b) CRISPR que consiste em sequências de direcionamento de genoma (chamadas espaçadores) intercaladas com repetições idênticas

Biologia do sistema CRISPR / Cas tipo II

- (A) Representação genômica de CRISPR / Cas9 juntamente com produtos de transcrição / tradução relevantes.
- (B)CRISPR / Cas9
 projetado para edição de genes específicos do local (sgRNA: Cas9).
- Setas cinza indicam locais de quebras de nucleotídeo de fita simples.

Componentes do Sistema CRISPR-Cas9

- RNA guia:
 - Spacer (região que tem complementariedade com o DNA)
 - crRNA (Complementariedade com o tracrRNA - transactivating crRNA)
- PAM (protospacer adjacent motif):
 - NGG para a Cas9 nativa
 - Sequencia de reconhecimento da Cas9 (fita complementar)
 - Abertura da molécula

Biologia do sistema CRISPR / Cas tipo II

- (A) Representação genômica de CRISPR / Cas9 juntamente com produtos de transcrição / tradução relevantes.
- (B)CRISPR / Cas9
 projetado para edição de genes específicos do local (sgRNA: Cas9).
- Setas cinza indicam locais de quebras de nucleotídeo de fita simples.

Edição genética via CRISPR / Cas9

- Dois métodos tradicionais
 - transformação mediada por protoplasto (PMT)
 - transformação mediada por Agrobacterium (AMT)
 - Maior eficiência
 - CRISPR / Cas9: repetição palindrômica curta regularmente interespaçada agrupada (em tandem) / proteína associada (CRISPR / Cas9)
 - clustered regularly interspaced short palindromic repeat/associated protein system (CRISPR/Cas9)

CRISPR

- Ferramenta de edição de genomas descrita para:
 - Nocaute
 - inserção
 - substituição de genes
- CRISPR tipo II mais populares têm dois componentes:
 - (i) uma endonuclease Cas9 associada a CRISPR de Streptococcus pyrogenes e
 - (ii) um RNA guia único (sgRNA), que é a fusão de um RNA CRISPR precursor (precrRNA) e um RNA CRISPR transativador (tracrRNA) 19

Figure 3. Possible autoomes after genomic DNA cleavage. Cellular DNA repair pathways such as NHEJ can lead to deletions, changed aequences, and small insertions.

Mecanismos de reparo de dupla quebra de DNA

Reparo de dupla quebra de DNA e CRISPR Cas9

DOI: 10.23861/EJBM201631754

Figure 4. HDR can incorporate new sequences into genomic DNA. Small sequences can be changed for purposes of gene correction or modification (left), and large sequences such as whole genes can be added coincidentally (right).

https://go.idtdna.com/rs/400-UEU-432/images/IDT_The%20CRISPR%20basics%20handbook.pdf

Edição de DNA - CRISPR Cas9

Drug Deliv. 2018; 25(1): 1234-1257.

Published online 2018 May 25. doi: 10.1080/10717544.2018.1474964

PMCID: PMC6058482

PMID: 29801422

Delivering CRISPR: a review of the challenges and approaches

Christopher A. Lino, Jason C. Harper, James P. Carney, and Jerilyn A. Timlin

One-vector CRISPR/Cas9 - edição genética do fungo Ashbya gossypii

One-vector CRISPR/Cas9 - edição genética do fungo

Ashbya gossypii

Genetic Modification	Application	Nuclease Activity	gRNA
Knock-out	Permanently remove gene function	Cas or Cas9n	gRNA targeting 5′ exon or essential protein domains
Knock-in	Generate a specific sequence change	Cas or Cas9n	gRNA targeting region of interest
Interference	Reduce gene expression	dCas-repressor	gRNA targeting gene promoter elements
Activation	Increase gene expression	dCas-activator	gRNA targeting gene promoter elements

CRISPR-Cas9

- O sgRNA (RNA guia) reconhece a sequência de DNA alvo e forma um duplex de DNA / RNA no local de reconhecimento.
- 2. A endonuclease Cas9 então cliva esse duplex de DNA / RNA.
- 3. As quebras de DNA de fita dupla resultantes são reparadas por união de extremidade não homóloga ou por reparo dirigido por homologia (HDR), se um molde de DNA para o reparo for cotransformado nas células.
- 4. O sistema de reparo de HDR é particularmente eficaz para knockouts completos de genes quando acoplado a ribonucleoproteínas Cas9 (RNPs) duplas montadas in vitro que têm como alvo as extremidades 5 'e 3' da região de codificação do gene.

Edição de DNA - CRISPR Cas9

Sistema CRISPR / Cas feito sob medida para substituição dirigida de genes altamente eficiente no fungo brusone do arroz

Edição de DNA - CRISPR Cas9

Edição de DNA - CRISPR Cas9

- DOI: 10.1002/bab.2077
- Published online 29 November 2020

Edição genética via CRISPR Cas9 e Cas12a (Cpf1) (nucleases)

- Nuclease Cas9 de Streptococcus piogenes (SpCas9)
- Nucleases Cpf1 de *Francisella novicida* (FnCpf1) e *Acidaminococcus* sp. (AsCpf1)
- Em comparação com Cas9, Cpf1 reconhece sequências PAM ricas em T e não precisa de um crRNA de ação trans (tracrRNA) devido à atividade única de nuclease dupla que cliva não apenas o DNA alvo, mas também seu próprio CRISPR-RNA (crRNA)
- A sequência de reconhecimento:
 - SpCas9 é 5' NGG 3'
 - FnCpf1 é 5' TTN 3 '
 - AsCpf1 é 5' TTTN 3'

Linhagens modelo de fungos filamentosos para as quais as ferramentas de edição de genes CRISPR já foram estabelecidas

Species	CRISPR protein	Nuclease delivery	References
Aspergillus fumigatus	Cas9	Plasmid-based and RNP-based	[36, 37]
A. nidulans	Cas9, Cpf1	Plasmid-based	[9]
A. niger	Cas9, Cpf1	Plasmid-based and RNP-based	[5, 9]
A. oryzae	Cas9	Plasmid-based	[38]
Neurospora crassa	Cas9	Plasmid-based	[39]
Penicillium chrysogenum	Cas9	Plasmid- based and RNP-based	[33]
Thermothelomyces thermophilus	Cas9	Plasmid-based	[12]
Trichoderma reesei	Cas9	Plasmid-based	[40]

Note that the nuclease can be delivered to the cell either plasmid encoded or as a purified protein, which has to be preassembled with in vitro transcribed gRNA to

form ribonucleoproteins (RNPs)

Reduzindo a escala do procedimento de transformação

Fig. 4 Downscaling the transformation procedure. **a** Comparison of medium- and small-scale transformation, details on the methodology can be found in "Methods" section. **b** Table comparing the genome editing efficiency of small-scale transformation between the RNP- and plasmid-based approach, n = number of transformations performed. **c** Backside of four transformation plates from small-scale transformations are shown, which demonstrate that a reduced number of transformants will be gained with the small-scale protocol when compared to the medium-scale protocol (see Fig. 3b)

Sistema CRISPR-Cas9 para edição genética do fungo Fusarium proliferatum

ID	Protospacer sequence 5'→3'	PAM site
sgRNA1175	TCACCCCGAGTACCGCTGT	AGG
sgRNA9269	TGATGCGTATCTGGAAATGA	AGG

Table 1. sgRNAs used in this study

- 1. Deleção de gene clusiter (8000bp) em um único evento de transformação
- 2. Sistema CRISPR-Cas9 acoplando um sitio específico de quebra de DNA de fita dupla mediada por duas ribonucleoproteínas Cas9 (recombinação em microhomologia requerendo apenas regiões de 50 pb que flanqueiam o gene alvo)
- 3. Este sistema reduz o risco de mutações fora do alvo e minimiza o risco de alterar qualquer gene adjacente à região alvo

Figure 1. Schematic representation of the *FUM1* gene deletion by *in vitro*-assembled dual Cas9 ribonucleoproteins coupled with homology directed repair (HDR). The cleavage sites of the *in vitro*-assembled Cas9 RNP1175 and RNP9269 (\downarrow), the 50 bp microhomology regions for HDR (orange segment), the *Eco*RI cut sites, and the pks*FUM1*-specific probe ($\bullet \bullet$) are represented for the genomic locus of the wild-type ITEM 7595 and $\Delta FUM1$ deletion strain.

(2019) 9:19836 | https://doi.org/10.1038/541598-019-56270-9

Passo a passo da Edição via CRISPR Cas9

• <u>Biomolecules.</u> 2020 Jun; 10(6): 839. doi: <u>10.3390/biom10060839</u>

Orientação prática para a implementação da tecnologia CRISPR em fungos filamentosos com base nos dados obtidos para *Thermothelomyces thermophilus*

	Plasmid-based approach	RNP-based approach
Preparation of nuclease	Cloning of the nuclease into a plasmid prior transformation is mandatory. When constitutively expressed, risk of off-targets should be considered. When present on AMA-plasmid, the risk should be lower but still present	Cloning of the nuclease into a plasmid allowing heterologous expression, e.g. in <i>E. coli</i> , is a prerequisite. Once established and purified, the nuclease can be aliquoted and stored prior to use. As the protein does not become expressed in the targeted fungus, the risk of off-targets should be very small
Preparation of guide RNA	Plasmid-based, thus more stable during handling and storage	Involves in vitro transcription, hence potentially sensi- tive to handling errors
Transformation procedure	Easy	Easy but requires preassembly of RNPs
Transformation rate	Very high also with four targets	Very high for single and double targets Low for three and four targets
Single-targeting efficiency of FnCpf1, AsCpf1, SpCas9	Locus-dependent	Locus-dependent
Multiplex-targeting efficiency of FnCpf1	High (34 % \pm 6 % in this study)	Low (13 % \pm 2 % in this study)
MTP-based down-scaling for FnCpf1	Possible with no loss in efficiency with respect to single and double targeting	Possible with no loss in efficiency with respect to single targeting*

Endonucleases Cas9 e Cas12a (Cpf1)

https://www.idtdna.com/pages/products/crispr-genome-editing?utm_source=google&utm_medium=cpc&utm_campaign=ga_crispr_cas&utm_content=ad_group_cas9&gclid=Cjw KCAjwtJ2FBhAuEiwAlKu19m1SCZSmhNJ8ykolMbomT3zKjsJOzEYHKb3yhk4ePHNbtBciTPXpzxoCZpkQAvD_BwE

Endonucleases Cas9 e Cas12a (Cpf1)

	Cas9 system	Cas12a system
Applications	General genome editing	 For species with AT-rich genomes For regions with limiting design space for use of the CRISPR-Cas9 system
Ribonucleoprotein components	gRNA options:crRNA and tracrRNAsgRNACas9 endonuclease	•crRNA •Cas12a endonuclease
PAM sequence [†]	NGG	•TTTV for Cas12a V3 •TTTN for Cas12a <i>Ultra</i>

https://www.idtdna.com/pages/products/crispr-genome-editing?utm_source=google&utm_medium=cpc&utm_campaign=ga_crispr_cas&utm_content=ad_group_cas9&gclid=CjwKCAjwtJ2FBhAuEiwAlKu19m1SCZSmhNJ8ykolMbomT3zKjsJOzEYHKb3yhk4ePHNbtBciTPXpzxoCZpkQAvD_BwE

Esquema de ribonucleoproteínas ativas contendo enzimas Cas ligadas a RNAs guia

A. Cas9 and 2-part gRNA B. Cas9 and sgRNA

C. Cas12a and crRNA

(A) Cas9 with 2-part guide RNA, comprising crRNA and tracrRNA. (B) Cas9 with single-guide RNA. (C) Cas12a with crRNA (gRNA).

https://www.idtdna.com/pages/technology/crispr/crispr-genome-editing