In the Claims:

1. (Currently Amended) An electronic digital stethoscope comprising a <u>single</u> vibration transducer <u>for creating a single channel input signal</u>, an amplifier, a headphone arrangement, a pre-emphasis filter means for emphasizing high frequencies, and at least one digital filter means for establishing at least one impulse transfer function corresponding to at least one acoustic stethoscope type; wherein said pre-emphasis means comprises a high-pass shelving filter for increasing amplification prior to establishment of the at least one impulse transfer function by said at least one digital filter means, said shelving filter having a shelving limit at about 3,000 Hz.

2. (Canceled).

3. (Currently Amended) An electronic digital stethoscope comprising a vibration transducer, an amplifier, a headphone arrangement, a pre-emphasis filter means for emphasizing high frequencies, and at least one digital filter means for establishing at least one impulse transfer function corresponding to at least one acoustic stethoscope type; further comprising means for performing a comparison between the <u>unfiltered</u> linear sound before filtering and the sound after digital filtering.

4. (Canceled).

5. (Previously Presented) An electronic digital stethoscope comprising a vibration transducer, an amplifier, a headphone arrangement, a pre-emphasis filter means for emphasizing high frequencies up to about 3,000 Hz, and at least one digital filter means for establishing at least one impulse transfer function corresponding to at least one acoustic stethoscope type; wherein multiple sets of coefficients for producing multiple impulse transfer functions corresponding to multiple acoustic stethoscope types are stored in conjunction with the digital filter.

- 6. (Currently Amended) An electronic digital stethoscope comprising a vibration transducer, an amplifier, a headphone arrangement, a pre-emphasis filter means for emphasizing high frequencies, and at least one digital filter means for establishing at least one impulse transfer function corresponding to at least one acoustic stethoscope type and being located for receiving a signal after it has been processed by said pre-emphasis filter means; wherein said pre-emphasis means is operative for increasing amplification, wherein the at least one impulse transfer function of the digital filter means is obtained by measurement on a specific acoustic stethoscope type, the type categorized other than by noise reduction.
- 7. (Currently Amended) An electronic digital stethoscope comprising a <u>single</u> vibration transducer <u>for creating a single channel input signal</u>, an amplifier, a headphone arrangement, a pre-emphasis filter means for emphasizing high frequencies <u>of said single channel input signal</u>, and at least one digital filter means for establishing at least one impulse transfer function corresponding to at least one acoustic stethoscope type; wherein said pre-emphasis means is operative for increasing amplification, further comprising digital pattern recognition means for windowing the acoustic signal to adaptively remove noise from the surroundings and suppress repetitive signals in the observed signal.
- 8. (Original) A stethoscope according to claim 7, wherein the pattern recognition means is adapted to remove or enhance parts of repetitive signals in the observed signal.
- 9. (Original) A stethoscope according to claim 1, further comprising means for automatic control of amplification.
- 10. (Previously Presented) An electronic digital stethoscope comprising a vibration transducer, an amplifier, a headphone arrangement, a pre-emphasis filter means for emphasizing high frequencies by increasing amplification, and at least one digital filter means for establishing at least one impulse transfer function corresponding to at least one acoustic stethoscope type; wherein said pre-emphasis filter is located in the signal path before said at least one digital filter means, and for pre-emphasis of the high frequencies, acts in

dependence of the thickness of tissue which is present between an actual sound source and the transducer.

- 11. (Original) A stethoscope according to claim 1, wherein the headphone arrangement comprises transducers which are fitted in immediate proximity to the ear canal in each ear.
- 12. (Original) A stethoscope according to claim 11, wherein the signal to each ear is compensated with respect to the sensitivity of the particular earpiece.
- 13. (Previously Presented) An electronic digital stethoscope comprising a vibration transducer, an amplifier, a headphone arrangement, a pre-emphasis filter means for emphasizing high frequencies, and at least one digital filter means for establishing at least one impulse transfer function corresponding to at least one acoustic stethoscope type; further comprising signal processing means for producing a sound distribution to the headphone in which different sound signals are sent to each of left and right ears of a user.
- 14. (Original) A stethoscope according to claim 13, wherein said at least one filter means comprise plural filters which produce a spatial sound distribution based on frequency, a low frequency band being delivered to a first earpiece of the headphone and a high frequency band being delivered to a second earpiece of the headphone.
- 15. (Original) A stethoscope according to claim 13, wherein said signal processing means produces a temporal sound distribution, sound signals being first being delivered to a first earpiece of the headphone and then being delivered to a second earpiece of the headphone.
- 16. (Original) A stethoscope according to claim 13, wherein said signal processing means produces a temporal sound distribution, sound signals being alternately delivered to a first earpiece of the headphone and to a second earpiece of the headphone.

Application No. 09/688,216 Docket No. 742114-5

- 5 -
- 17. (Original) A stethoscope according to claim 13, wherein said at least one filter means comprise at least one Wiener filter.
- 18. (Original) A stethoscope according to claim 13, wherein balance control means is provided adjusting the relative volume of sound delivered to each ear of a user.
- 19. (Original) A stethoscope according to claim 18, wherein frequency-dependent amplification control means is provided for adjusting the volume of sound delivered to one ear of a user relative to that delivered to the other ear of the user.
- 20. (Original) A stethoscope according to claim 13, wherein amplification control means is provided adjusting the volume of sound delivered to one ear of a user relative to that delivered to the other ear of the user.

21-22. (Canceled).