Instructions: Please **show all work** (partial credit may be awarded for correct work, even if your answer is wrong).

1. (15 points) Evaluate the **indefinite** integral using *u*-substitution. **You** must show the steps of using *u*-substitution to get credit.

(a)
$$\int \cos(2\theta + 4)d\theta$$

(b)
$$\int \frac{x}{1 - 25x^2} dx$$

(c)
$$\int x \cdot e^{x^2} dx$$

2. (10 points) Evaluate the **definite** integral using *u*-substitution. **You must** show the steps of using *u*-substitution to get credit.

(a)
$$\int_{1}^{2} x^{2}(x^{3}-1)^{4}dx$$

(b)
$$\int_0^1 \ln(2) \cdot 2^{x+3} dx$$

3. (10 points) Find the average value of $f(x) = x^3$ between x = 0 and x = 2

4. (10 points) Let f(x) be a differentiable function for which f'(x) = 3f(x).

- (a) f(x) is which kind of function? (choose one)
 - i. Quadratic
 - ii. Exponential
 - iii. Cosine
- (b) Write an equation for f(x), if f(0) = 5.

5. (15 points) Write an expression for the gray area below between $y = \frac{1}{x}$ and $y = \frac{1}{2}$ from x = 1 to x = 3. Write your answer using integrals, you do not need to solve the integrals.

Area= _____

- 6. (20 points) Answer each of the following questions by writing the correct integral. You **do** need to find the endpoints a and b for each integral \int_a^b . You **do not** need to solve the integrals.
 - (a) What is the area of the gray region between the functions below?
 - (b) What is the volume of the object made by rotating the gray area around the x-axis?
 - (c) What is the volume of the object made by rotating the gray area around the line x = 1?

7. (Extra Credit: 10 points) A solid has a base inside the circle $x^2 + y^2 = 16$. The cross sections perpendicular to the x-axis are triangles with height equal to 3 times the base. Write an integral for the volume of the solid and solve to find this volume.