Casos de estudio, ejemplos de aplicación de ciencias de datos en agricultura

Hugo Andrés Dorado

Científico de datos

hugo.doradob@gmail.com

Caso de estudio 1- Plátano Colombia

Socios

Datos

Objetivo

Identificar el potencial de variedades en distintas zonas agroecológicas de Colombia.

Aplicación

Proveer información a productores sobre cultivares con mayor potencial según sus condiciones sitio especificas.

Caso de estudio Plátano en Colombia: Clima, Suelo y Manejo agronómico

Más de 800 lotes productivos – representando heterogeneidad de condiciones

Caso de estudio Plátano en Colombia: Clima, Suelo y Manejo agronómico

Análisis factoriales: PCA- CATPCA. Modelos mixtos y BLUPS

Suelo y manejo: Caracterizado directamente de los lotes.

Clima: Worldclime

Productores con **las mismas condiciones** tenían una gran variación en rendimiento

Caso de estudio Plátano en Colombia: Clima, Suelo y Manejo agronómico

Análisis factoriales: PCA- CATPCA. Modelos mixtos y BLUPS

Cultivo asociado

Efectos de las zonas homólogas en el modelo mixto

Caso de estudio Plátano en Colombia: Clima, Suelo y Manejo agronómico Cultivo asociado

Modelos mixtos estimación de modelos mixtos

Efectos de las variedades en las diferentes zonas homólogas

Casos de estudio 2. Arroz - Colombia

Proyecto.

Preguntas de investigación.

¿Que efecto tiene el clima sobre el rendimiento en arroz?

Fuente de datos

- Encuesta nacional de arroz.
- Registros de cosecha.
- Experimentos de fecha de siembra.
- Estaciones meteorológicas (IDEAM).

Observaciones

Efectos del clima sobre variedades de arroz

Unidad de observación – Ciclo de cultivo

Variables involucradas

- Fecha de siembra Cosecha
- Variedad (F733, F60, Lagunas y F174)
- Localidad (Saldaña, Villavicencio)
- Temperatura promedio
- Energía solar acumulada
- Precipitación acumulada

Variables climáticas por

etapa $(X_1, X_2, X$

>

- Número de días con precipitación mayor a 10 mm
- Promedio de humedad relativa
- Rendimiento en kg/ha

Efectos del clima sobre variedades de arroz

Metodología utilizada.

Random forest - importancia de variables (Breiman, 2001)

- ✓ Mejor desempeño en calidad de predicción (RMSE).
- ✓ Soportar relaciones no lineales.
- ✓ Equilibrar la influencia por correlación entre las variables.

Resultados.

			<u> </u>
Modelo	Observaciones I	Desempeño (R Cuadra	do) Variable mas relevante
Saldaña - F733	267	29.90%	Energia solar acumulada en fase de llenado de grano
Saldaña - F60	150	46.60%	Temperatura promedio en fase reproductiva
Saldaña -Lagunas	187	6.96%	Temperatura promedio en fase de llenado de grano
Villavicencio - F174	134	28.10%	Dias con lluvia en fase vegetativa

Efectos del clima sobre variedades de arroz

Dependencias parciales. – Condiciones climáticas asociadas a altos rendimientos

Precipitación en el **40%** de los **días** de la fase vegetativa

Radiación solar acumulada en todo el ciclo de llenado de grano mayor a 21.000 cal/cm²

Utilidad de información.

Productores: Plantear fechas de siembra estratégicamente en el año para acomodarse a las mejores condiciones según la variedad que se vaya a sembrar.

Mejoradores: Probar la efectividad y resistencia a factores climáticos de variedades desarrolladas a partir de datos de productores.

Perfiles históricos (Enfoque de clustering)

Perfiles históricos (Enfoque de clustering)

Region: Casanare: 2007 – 2014 – Irrigated
Weather stations from FEDEARROZ e IDEAM
(N= about 756 cropping events) – 17 clusters

Cluster	Number of cropping events	Productivity (kg/Ha)
1	18	5,354
2	238	5,653
3	51	5,821
4	9	4,913
5	148	4,946
6	30	5,557
7	15	6,041
8	10	5,174
9	60	6,000
10	6	5,726
11	42	5,898
12	65	4,688
13	18	5,469
14	33	5,222
15	1	5,312
16	15	5,521
17	6	5,053
Total	765	5,438

Yield associated with each historical profile (cluster) presented in the region

Perfiles históricos (Enfoque de clustering)

Performance of each variety within cluster 2 (seasonal forecast)

What to grow?

Rice variety	Number of cropping events	Productivity (Kg/Ha)
F2000	39	6,717
F174	27	5,979
COPROSEM 304	25	4,973
F733	23	5,981
F50	22	5,922
FORTALEZA	21	4,641
F369	18	5,244
INPROARROZ 1550	16	5,180
F60	12	5,189
INPROARROZ 216	9	4,104
LAGUNAS	7	6,598
Total	219	5,653

Entrega de resultados a productores y técnicos

Giras técnicas con productores

Reuniones y discusión con extensionistas y técnicos locales

Publish About Brov

Preprint Propriet P

Un paper para la comunidad científica

https://journals.plos.org/plosone/article?id=10.13 71/journal.pone.0161620

El caso de Maíz en Córdoba – Productividad- FENALCE; Cómo sembrar?

238 eventos ciclos de producción en dos años Tiempo de datos (2014-2015)

Cómo sembrar? El caso de Maíz en Córdoba - Productividad

Arboles condicionales

 $R^2 = 45.79$

Los factores más importantes asociados con la variación en rendimiento de maíz en Córdoba

2014-2015 238

Cómo sembrar ? El caso de Maiz en Córdoba - Productividad

25 – 30 kg P /ha cantidad apropiada para maiz en Córdoba.

Población a los 20 dias, al menos 65000 plantas/ha in Córdoba

Una agricultura climáticamente inteligente guiada por datos y que complementa conocimiento tradicional

El caso de Maíz Córdoba

Conocimiento tradicional – Paquete tecnológico

Profundidad efectiva suelo > 30 cm

pH 5.5-6.5

Distancia entre plantas 0.17m – 0.2m

Nutrientes requeridos N, P, K, Mg, S

Población a los 20 d: 50000 - 70000 DDE

Control arvenses: al menos 1 control (8 DAS

-2DDS

Control enfermedades: Al menos 1 (10 Días

antes de floración)

Agricultura climáticamente inteligente guiada por datos (Big Data -minería de datos, aprendizaje automático y profundo)

Fósforo total aplicado: 25 - 30 kg/ha

Ploblación a los 20 d: Al menos 65000 DDE

Ambos acercamientos con base en observasiones, el Big Data revela cosas que desconociamos

Cómo sembrar ? El caso de Maiz en Córdoba - Productividad

Distribuciones de rendimientos observados par los tres subgrupos de manejo enCórdoba- Colombia

Caso de estudio 3 - Maíz Chiapas México

Socios:

Datos:

Daymet, Registros de Masagro (8 años,
 4500 observaciones)

Objetivo:

• Identificar los factores que afectan los rendimientos de maíz temporal.

Aplicación:

 Proveer información sitio especifica a productores para mejorar rendimientos.

Maíz sistema temporal

Exploratory data analysis

- Outliers identification
- Variables distribution
- Correlations and associations

Crop-System

Feature selection

Removing non-informative and redundant variables

Transforming variables

- Group or remove observations poorly-represented in the dataset.
- Build variables based on indicators.
- Dimensionality reduction

Tidy dataset

Weather (W)	Soil (S)	Crop management (M)	
 Average minimum temperature Average diurnal range Accumulated solar energy Frequency of days with maximum temperature above 34°C Accumulated precipitation Frequency of days with minimum temperature below 8°C Average relative humidity Standard deviation of the relative humidity 	 Clay content Silt content Soil organic content Cationic exchange capacity Basis saturation 	 Infiltration Cultivar Seed treatment Type of tillage Number of mechanical weeding Number of applications of (fertilizations, foliar fertilizers, bio fertilizers, post-sowing herbicides, insecticides) Total amount of nitrogen applied Total amount of phosphorus applied Total amount of potassium applied . 	Yield/Profitability (Y, P)

Training ML models

Clustering

Principal components analysis

Predictive models per location

Regression based on random forest

10 – Folds cross validation

Model by region	R-squared (YIELD)	R-squared (PROFITABILITY)
Chiapas rainfed maize	75%	78%
Sonora irrigated wheat	65%	64%
Guanajuato irrigated maize	60%	77%
Guanajuato rainfed maize	81%	70%

Training models (Explanatory)

Beyond the black box,...

Maíz Chiapas México - Modelo predictivo junto al pronóstico climático

Parcelas cercanas a la estación

Total 93 ciclos de cosecha

Variedad	Frecuencia
P4082W	20
DEKALB 390	13
OTRA (ESPECIFIQUE)	13
DEKALB 7500	7
DEKALB 380	6
P30F32	6
Otras	28

Pronóstico climático 100 simulaciones

Modelo predictivo junto al pronóstico climático para un productor

Gracias!

Hugo Andrés Dorado.

Científico de datos

hugo.doradob@gmail.com

Conocimiento generado a partir de proyectos de:

Preguntas

- ¿Qué datos logra identificar en su área aplicación?
- ¿Qué ideas se le ocurre inspirado en estos ejemplos?