# **Introductory Mathematics II (MTS 101) Trigonometry**

#### **Department of Mathematical Sciences**

Federal University of Technology, Akure

#### Introduction 1

#### **Definition**

The word 'trigonometry' suggests 'tri'-three, 'gono'-angle, 'metry'-measurement. As such, trigonometry is basically about triangles, most especially right-angled triangles.

#### 1.2 Revision **VOTE KONNECT FOR 006**

- Circular Measures
- Triangles
- Pythagoras' Theorem

#### **Trigonometric Ratios** 2

From the right-angled triangle shown in Figure 1, we have the following trigonometric ratios:

- $\sin \theta = \frac{a}{c}$
- $\cos \theta = \frac{1}{c}$
- $\tan \theta = \frac{a}{b}$

- $\csc \theta = \frac{1}{\sin \theta} = \frac{c}{a}$   $\sec \theta = \frac{c}{\cos \theta} = \frac{b}{a}$   $\cot \theta = \frac{1}{\tan \theta} = \frac{b}{a}$



Figure 1: A Right-Angled Triangle

# 3 Trigonometric Identities

#### 3.1 Basic Identities

$$\frac{\sin \theta}{\cos \theta} = \frac{\frac{a}{c}}{\frac{c}{c}} = \frac{a}{c} \times \frac{c}{b} = \frac{a}{b} = \tan \theta \tag{3.1}$$

$$\frac{\cos\theta}{\sin\theta} = \frac{\frac{c}{a}}{\frac{c}{b}} = \frac{c}{a} \times \frac{b}{c} = \frac{b}{a} = \cot\theta$$
 (3.2)

With reference to Figure 1, using Pythagoras' Theorem,

$$a^2 + b^2 = c^2 (3.3)$$

Dividing (3.3) through by  $c^2$ , we have

$$\frac{a^2}{c^2} + \frac{b^2}{c^2} = \frac{c^2}{c^2}$$

$$-\underline{a}^{\Sigma_2} - \underline{b}^{\Sigma_2}$$

$$c + \underline{b}^{\Sigma_2} = 1$$

$$c \quad c$$

$$\sin^2 \theta + \cos^2 \theta = 1$$
(3.4)

Dividing (3.3) through by  $b^2$ , we have

$$\frac{a^{2}}{b^{2}} + \frac{b^{2}}{b^{2}} = \frac{c^{2}}{b^{2}}$$

$$-\underline{a}^{\Sigma_{2}} - \underline{c}^{\Sigma_{2}}$$

$$+ 1 = \frac{b}{b}$$

$$\tan^{2}\theta + 1 = \sec^{2}\theta$$
(3.5)

Dividing (3.3) through by  $a^2$ , we have

$$\frac{a^2}{a^2} + \frac{b^2}{a^2} = \frac{c^2}{a^2}$$

$$1 + \frac{\underline{b}}{a} = \frac{\underline{c}}{a} \sum_{z=0}^{z=0} \Sigma_{z=0}$$

$$1 + \cot^2 \theta = \csc^2 \theta \tag{3.6}$$

## 3.2 Examples

#### 3.2.1 Example 1

To show that  $\sin^2 \theta + (1 + \cos \theta)^2 = 2(1 + \cos \theta)$ ,

$$\sin^2 \theta + (1 + \cos \theta)^2 = \sin^2 \theta + 1 + 2\cos \theta + \cos^2 \theta$$

$$= \sin^2 \theta + \cos^2 \theta + 1 + 2\cos \theta$$

$$= 1 + 1 + 2\cos \theta \quad \text{(Recall that } \sin^2 \theta + \cos^2 \theta = 1\text{)}$$

$$= 2 + 2\cos \theta$$

$$= 2(1 + \cos \theta)$$

To show that  $\frac{1+\sin\theta}{1+\cos\theta}$ ,  $\frac{1+\sec\theta}{1+\csc\theta}$  =  $\tan\theta$ ,

$$\frac{1+\sin\theta}{1+\cos\theta} \cdot \frac{1+\sec\theta}{1+\cos\theta} = \frac{1+\sin\theta}{1+\cos\theta} \cdot \frac{1+\frac{1}{\sin\theta}}{1+\frac{1}{\sin\theta}}$$

$$= \frac{1+\sin\theta}{1+\cos\theta} \cdot \frac{1+\frac{1}{\sin\theta}}{\frac{\cos\theta}{\sin\theta+1}}$$

$$= \frac{1+\sin\theta}{1+\cos\theta} \cdot \frac{\frac{\cos\theta+1}{\cos\theta}}{\frac{\sin\theta+1}{\sin\theta}}$$

$$= \frac{1+\sin\theta}{1+\cos\theta} \cdot \frac{\cos\theta+1}{\cos\theta} \div \frac{\sin\theta+1}{\sin\theta}$$

$$= \frac{1+\sin\theta}{1+\cos\theta} \cdot \frac{\cos\theta+1}{\cos\theta} \cdot \frac{\sin\theta+1}{\sin\theta}$$

$$= \frac{\sin\theta}{\cos\theta}$$

$$= \tan\theta$$

$$\therefore \frac{1+\sin\theta}{1+\cos\theta} \cdot \frac{1+\sec\theta}{1+\csc\theta} = \tan\theta$$

#### **3.2.3** Example 3

To show that  $\frac{1+\cos\theta}{1-\cos\theta}$ ,  $\frac{\sec\theta-1}{\sec\theta+1}=1$ ,

$$\frac{1+\cos\theta}{1-\cos\theta} \cdot \frac{\sec\theta-1}{\sec\theta-1} = \frac{1+\cos\theta}{1-\cos\theta} \cdot \frac{\frac{1}{\cos\theta}-1}{1+1}$$

$$1-\cos\theta \quad \sec\theta+1 \qquad 1-\cos\theta \quad \frac{1}{\cos\theta}$$

$$= \frac{1+\cos\theta}{1-\cos\theta} \cdot \frac{\frac{1-\cos\theta}{1+\cos\theta}}{\frac{1-\cos\theta}{\cos\theta}}$$

$$= \frac{1+\cos\theta}{1-\cos\theta} \cdot \frac{1-\cos\theta}{\cos\theta} \cdot \frac{1+\cos\theta}{\cos\theta}$$

$$= \frac{1+\cos\theta}{1-\cos\theta} \cdot \frac{1-\cos\theta}{\cos\theta} \cdot \frac{\cos\theta}{1+\cos\theta}$$

$$= \frac{\cos\theta}{\cos\theta}$$

$$= 1$$

$$\therefore \frac{1+\cos\theta}{1-\cos\theta} \cdot \frac{\sec\theta-1}{\sec\theta+1} = 1$$

#### 3.2.4 Example 4

To show that  $(x^j)^2 + (y^j)^2 = x^2 + y^2$  if  $x^j = x \cos \theta + y \sin \theta$  and  $y^j = x \sin \theta - y \cos \theta$ ,

$$(x^{j})^{2} + (y^{j})^{2} = (x\cos\theta + y\sin\theta)^{2} + (x\sin\theta - y\cos\theta)^{2}$$

$$= x^{2}\cos^{2}\theta + 2xy\sin\theta\cos\theta + y^{2}\sin^{2}\theta + x^{2}\sin^{2}\theta - 2xy\sin\theta\cos\theta + y^{2}\cos^{2}\theta$$

$$= x^{2}\sin^{2}\theta + x^{2}\cos^{2}\theta + y^{2}\sin^{2}\theta + y^{2}\cos^{2}\theta$$

$$= x^{2}(\sin^{2}\theta + \cos^{2}\theta) + y^{2}(\sin^{2}\theta + \cos^{2}\theta)$$

$$= x^{2}(1) + y^{2}(1) \quad (\text{Recall that } \sin^{2}\theta + \cos^{2}\theta = 1)$$

$$= x^{2} + y^{2}$$

$$\therefore (x^j)^2 + (y^j)^2 = x^2 + y^2 \text{ if } x^j = x \cos \theta + y \sin \theta \text{ and } y^j = x \sin \theta - y \cos \theta$$

To show that  $x^2 + y^2 + z^2 = c^2$  if  $x = c \sin \theta \cos \varphi$ ,  $y = c \sin \theta \sin \varphi$  and  $z = c \cos \theta$ ,

$$x^{2} + y^{2} + z^{2} = (c \sin \theta \cos \varphi)^{2} + (c \sin \theta \sin \varphi)^{2} + (c \cos \theta)^{2}$$

$$= c^{2} \sin^{2} \theta \cos^{2} \varphi + c^{2} \sin^{2} \theta \sin^{2} \varphi + c^{2} \cos^{2} \theta$$

$$= c^{2} \sin^{2} \theta (\cos^{2} \varphi + \sin^{2} \varphi) + c^{2} \cos^{2} \theta$$

$$= c^{2} \sin^{2} \theta (1) + c^{2} \cos^{2} \theta$$

$$= c^{2} \sin^{2} \theta + c^{2} \cos^{2} \theta$$

$$= c^{2} (\sin^{2} \theta + \cos^{2} \theta)$$

$$= c^{2} (1)$$

$$= c^{2}$$

 $\therefore x^2 + y^2 + z^2 = c^2 \text{ if } x = c \sin \theta \cos \varphi, y = c \sin \theta \sin \varphi \text{ and } z = c \cos \theta$ 

## **The Addition Formulae**

#### **Basic Formulae** 4.1

$$\sin(A+B) = \sin A \cos B + \cos A \sin B \tag{4.1}$$

$$\sin(A - B) = \sin A \cos B - \cos A \sin B \tag{4.2}$$

$$\cos(A+B) = \cos A \cos B - \sin A \sin B \tag{4.3}$$

$$\cos(A - B) = \cos A \cos B + \sin A \sin B \tag{4.4}$$

$$\tan(A + B) = \frac{\sin(A + B)}{\cos(A + B)}$$

$$= \frac{\sin A \cos B + \cos A \sin B}{\cos A \cos B - \sin A \sin B}$$

$$= \frac{\frac{\sin A \cos B}{\cos A \cos B} + \frac{\cos A \sin B}{\cos A \cos B}}{\frac{\cos A \cos B}{\cos A \cos B} - \frac{\sin A \sin B}{\cos A \cos B}}$$

$$\therefore \tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

$$(4.5)$$

$$\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B} \tag{4.6}$$

## 4.2 Examples

**4.2.1** Example 1 To calculate  $\sin 15^\circ$  given that  $\sin 45^\circ = \cos 45^\circ = \frac{\sqrt{3}}{2}$ ,  $\sin 30^\circ = \frac{1}{2}$  and  $\cos 30^\circ = \frac{\sqrt{3}}{2}$ ,  $\sin 15^{\circ} = \sin(45 - 30)^{\circ}$  $= \sin 45^{\circ} \cos 30^{\circ} - \cos 45^{\circ} \sin 30^{\circ}$  $= \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2} - \frac{1}{\sqrt{2}} \cdot \frac{1}{2}$ 

$$\sin 15^{\circ} = \frac{\sqrt{\frac{3}{2}} - \sqrt{\frac{1}{2}}}{\sqrt{\frac{2}{2}}}$$

$$= \frac{\sqrt{\frac{3}{2}} - \sqrt{\frac{1}{2}}}{\sqrt{\frac{3}{2}} - \sqrt{\frac{2}{2}}}$$

$$= \frac{\sqrt{\frac{3}{2}} - \sqrt{\frac{2}{2}}}{\sqrt{\frac{5}{2}} - \sqrt{\frac{2}{2}}}$$

$$= \frac{\sqrt{\frac{6}{2}} - \sqrt{\frac{2}{2}}}{\sqrt{\frac{3}{2}}}$$

To show that  $tan(45^{\circ} + A) = \frac{1 + tan A}{1 - tan A}$ 

Recall that 
$$tan(A + B) = \frac{tan A + tan B}{1 - tan A tan B}$$
, so

$$\tan(45^{\circ} + A) = \frac{\tan 45^{\circ} + \tan A}{1 - \tan 45^{\circ} \tan A}$$

$$= \frac{1 + \tan A}{1 - (1)\tan A} \quad (\text{Recall that } \tan 45^{\circ} = 1)$$

$$\therefore \tan(45^{\circ} + A) = \frac{1 + \tan A}{1 - \tan A}$$

#### **4.2.3** Example 3

To show that  $(\cos \theta + \cos \varphi)^2 + (\sin \theta + \sin \varphi)^2 = 2 + 2\cos(\theta - \varphi)$ ,

$$(\cos\theta + \cos\varphi)^{2} + (\sin\theta + \sin\varphi)^{2} = \cos^{2}\theta + 2\cos\theta\cos\varphi + \cos^{2}\varphi + \sin^{2}\theta + 2\sin\theta\sin\varphi + \sin^{2}\varphi$$
$$= (\cos^{2}\theta + \sin^{2}\theta) + (\cos^{2}\varphi + \sin^{2}\varphi) + (2\cos\theta\cos\varphi + 2\sin\theta\sin\varphi)$$
$$= 1 + 1 + 2(\cos\theta\cos\varphi + \sin\theta\sin\varphi)$$
$$= 2 + 2\cos(\theta - \varphi) \quad [\text{Recall that } \cos(A - B) = \cos A\cos B + \sin A\sin B]$$

#### 4.2.4 Example 4

To show that  $\tan(A+B+C) = \frac{\tan A + \tan B + \tan C - \tan A \tan B \tan C}{1 - \tan A \tan B - \tan A \tan C - \tan B \tan C}$ ,

$$\tan(A + B + C) = \frac{\sin(A + B + C)}{\cos(A + B + C)}$$

$$= \frac{\sin[(A + B) + C]}{\cos[(A + B) + C]}$$

$$= \frac{\sin(A + B)\cos C + \cos(A + B)\sin C}{\cos(A + B)\cos C - \sin(A + B)\sin C}$$

$$= \frac{(\sin A\cos B + \cos A\sin B)\cos C + (\cos A\cos B - \sin A\sin B)\sin C}{(\cos A\cos B - \sin A\sin B)\cos C + (\sin A\cos B + \cos A\sin B)\sin C}$$

$$= \frac{\sin A\cos B\cos C + \cos A\sin B\cos C - (\sin A\cos B + \cos A\sin B)\sin C}{\cos A\cos B\cos C - \sin A\sin B\cos C - \sin A\cos B\sin C - \cos A\sin B\sin C}$$

$$= \frac{\sin A\cos B\cos C}{\cos A\cos B\cos C} + \frac{\cos A\sin B\cos C}{\cos A\cos B\cos C} + \frac{\cos A\cos B\sin C}{\cos A\cos B\cos C} - \frac{\sin A\sin B\sin C}{\cos A\cos B\cos C}$$

$$= \frac{\sin A\cos B\cos C}{\cos A\cos B\cos C} + \frac{\cos A\cos B\cos C}{\cos A\cos B\cos C} + \frac{\cos A\cos B\cos C}{\cos A\cos B\cos C}$$

$$= \frac{\tan A + \tan B + \tan C - \tan A \tan B \tan C}{1 - \tan A \tan B - \tan C}$$

 $\frac{1}{2} \tan(A + B + C) = \frac{\tan A + \tan B + \tan C - \tan A \tan B \tan C}{1 - \tan A \tan B - \tan A \tan C - \tan B \tan C}$ 

#### 4.2.5 Example 5

To show that  $P + Q + R = 45^{\circ}$  if  $\tan P = \frac{1}{2}$ ,  $\tan Q = \frac{1}{5}$  and  $\tan R = \frac{1}{8}$ ,  $\tan(P + Q + R) = \frac{\tan P + \tan Q + \tan R - \tan P \tan Q \tan R}{1 - \tan P \tan Q - \tan P \tan R - \tan Q \tan R}$   $= \frac{\frac{1 + 1 + 1 - 1 \cdot 1 \cdot 1}{2 \cdot 5 \cdot 8 \cdot 2 \cdot 5 \cdot 8} - \frac{1 - \frac{1}{2} \cdot \frac{1}{5} - \frac{1}{2} \cdot \frac{1}{8} - \frac{1}{5} \cdot \frac{1}{8}}{1 - \frac{1}{2} \cdot \frac{1}{5} - \frac{1}{2} \cdot \frac{1}{8} - \frac{1}{5} \cdot \frac{1}{8}}$   $= \frac{\frac{65}{80}}{\frac{65}{80}}$   $= \frac{\frac{65}{80}}{\frac{65}{80}} \div \frac{65}{80}$   $= \frac{65}{80} \cdot \frac{80}{65}$  = 1  $P + Q + R = \tan^{-1} 1$   $= 45^{\circ}$ 

 $\therefore$   $P + Q + R = 45^{\circ}$  if  $\tan P = \frac{1}{2}$ ,  $\tan Q = \frac{1}{5}$  and  $\tan R = \frac{1}{8}$ 

VOTE KONNECT FOR ALTRUISTIC INFORMATION WITH CLEAR DISTINCT

# 5 Multiple Angles

## **5.1** Double Angles

$$\sin 2A = \sin(A + A)$$

$$= \sin A \cos A + \cos A \sin A$$

$$= 2 \sin A \cos A$$

$$\cos 2A = \cos(A + A)$$

$$= \cos A \cos A - \sin A \sin A$$

$$= \cos^2 A - \sin^2 A$$

$$= \cos^2 A - (1 - \cos^2 A)$$

$$= \cos^2 A - 1 + \cos^2 A$$

$$= 2\cos^2 A - 1$$

$$\tan 2A = \tan(A + A)$$

$$= \frac{\tan A + \tan A}{1 - \tan A \tan A}$$

$$= \frac{2 \tan A}{1 - \tan^2 A}$$

#### **5.2** Triple Angles

$$\sin 3A = \sin(A + 2A)$$

$$= \sin A \cos 2A + \cos A \sin 2A$$

$$= \sin A \cos(A + A) + \cos A \sin(A + A)$$

$$= \sin A(\cos A \cos A - \sin A \sin A) + \cos A(\sin A \cos A + \cos A \sin A)$$

$$= \sin A(\cos^2 A - \sin^2 A) + \cos A(2 \sin A \cos A)$$

$$= \sin A \cos^2 A - \sin^3 A + 2 \sin A \cos^2 A$$

$$= 3 \sin A \cos^2 A - \sin^3 A$$

$$= 3 \sin A (1 - \sin^2 A) - \sin^3 A$$

$$= 3 \sin A - 3 \sin^3 A - \sin^3 A$$

$$= 3 \sin A - 4 \sin^3 A$$

$$\cos 3A = \cos(A + 2A)$$
=  $\cos A \cos 2A - \sin A \sin 2A$ 
=  $\cos A \cos(A + A) - \sin A \sin(A + A)$ 
=  $\cos A(\cos A \cos A - \sin A \sin A) - \sin A(\sin A \cos A + \cos A \sin A)$ 
=  $\cos A(\cos^2 A - \sin^2 A) - \sin A(2 \sin A \cos A)$ 
=  $\cos^3 A - \sin^2 A \cos A - 2 \sin^2 A \cos A$ 
=  $\cos^3 A - 3 \sin^2 A \cos A$ 
=  $\cos^3 A - 3 \cos A + 3 \cos^3 A$ 
=  $4 \cos^3 A - 3 \cos A$ 

**VOTE KONNECT** 

$$\tan 3A = \tan(A + 2A)$$

$$= \frac{\tan A + \tan 2A}{1 - \tan A \tan 2A}$$

$$= \frac{\tan A + (\frac{\tan A + \tan A}{1})}{1 - \tan A \tan(A + A)}$$

$$= \frac{\tan A + (\frac{\tan A + \tan A}{1 - \tan A \tan A})}{1 - \tan A (\frac{\tan A + \tan A}{1 - \tan A})}$$

$$= \frac{\tan A + \frac{2\tan A}{1 - \tan A \tan A}}{1 - \tan A (\frac{2\tan A}{1})}$$

$$= \frac{\tan A + \frac{2\tan A}{1 - \tan^2 A}}{1 - \tan A (\frac{2\tan A}{1})}$$

$$= \frac{\tan A - 2\tan^2 A}{1 - \tan^2 A - 2\tan^2 A}$$

$$= \frac{3\tan A - \tan^3 A}{1 - 3\tan^2 A}$$
(Multiplying through by 1 - tan A)

# **6 Submultiple Angles**

$$\sin A = \sin^{2} \frac{A}{2} + \frac{A}{2}$$

$$= \sin \frac{A}{2} \cos \frac{A}{2} + \cos \frac{A}{2} \sin \frac{A}{2}$$

$$= 2 \sin \frac{A}{2} \cos \frac{A}{2}$$

$$\cos A = \cos \frac{A}{2} + \frac{A}{2}$$

$$= \cos \frac{A}{2} \cos \frac{A}{2} - \sin \frac{A}{2} \sin \frac{A}{2}$$

$$= \cos^2 \frac{A}{2} - \sin^2 \frac{A}{2} \sum_{= \cos^2 \frac{A}{2} - 1 - \cos^2 \frac{A}{2}}$$

$$= \cos^2 \frac{A}{2} - 1 + \cos^2 \frac{A}{2}$$

$$= 2\cos^2 \frac{A}{2} - 1$$

$$\tan A = \tan \frac{A}{2} + \frac{A}{2}$$

$$= \frac{\tan \frac{A}{2} + \tan \frac{A}{2}}{1 - \tan \frac{A}{2} \tan \frac{A}{2}}$$

$$= \frac{2 \tan \frac{A}{2}}{1 - \tan^2 \frac{A}{2}}$$

## 7 Product and Sum Formulae

#### 7.1 Derivation of the Formulae

Recall the following:

$$\sin(A+B) = \sin A \cos B + \cos A \sin B \tag{7.1}$$

$$\sin(A - B) = \sin A \cos B - \cos A \sin B \tag{7.2}$$

$$\cos(A+B) = \cos A \cos B - \sin A \sin B \tag{7.3}$$

$$\cos(A - B) = \cos A \cos B + \sin A \sin B \tag{7.4}$$

$$(7.1) + (7.2)$$
 gives

$$\sin(A+B) + \sin(A-B) = 2\sin A \cos B \tag{7.5}$$

$$(7.1)$$
 -  $(7.2)$  gives

$$\sin(A+B) - \sin(A-B) = 2\cos A \sin B \tag{7.6}$$

$$(7.3) + (7.4)$$
 gives

$$\cos(A+B) + \cos(A-B) = 2\cos A\cos B \tag{7.7}$$

(7.3) - (7.4) gives

$$\cos(A+B) - \cos(A-B) = -2\sin A \sin B \tag{7.8}$$

$$\cos(A - B) - \cos(A + B) = 2\sin A \sin B \tag{7.9}$$

Given that

$$A + B = C \tag{7.10}$$

$$A - B = D \tag{7.11}$$

We have

$$A = \frac{C+D}{2} \tag{7.12}$$

$$B = \frac{C - D}{2} \tag{7.13}$$

Substituting (7.10)-(7.13) into (7.5)-(7.9), we have

$$\sin C + \sin D = 2 \sin^{2} \frac{C + D}{2} \cos^{2} \frac{C - D}{2}$$

$$(7.14)$$

$$\sin C - \sin D = 2\cos^{2} \frac{C + D}{2} \sin^{2} \frac{C - D}{2}$$

$$(7.15)$$

$$\cos C + \cos D = 2\cos^{2} \frac{C+D}{2} \cos^{2} \frac{C-D}{2}$$
 (7.16)

$$\cos D - \cos C = 2\sin^{2}\frac{C+D}{2}\sin^{2}\frac{C-D}{2}$$
(7.17)

## 7.2 Examples

#### 7.2.1 Example 1

To express  $\sin 5x + \sin x$  as a product of trigonometric ratios,

Comparing

with

$$\sin 5x + \sin x$$

$$\sin C + \sin D = 2\sin^{2} \frac{C + D}{2} \cos^{2} \frac{C - D}{2}$$

It is clear that C = 5x and D = x, so

$$\sin 5x + \sin x = 2 \sin \frac{5x + x}{2} \cos \frac{5x - x}{2}$$

$$= 2 \sin \frac{6x}{2} \cos \frac{4x}{2}$$

$$= 2 \sin 3x \cos 2x$$

To express  $2 \sin 3x \cos 2x$  as a sum of trigonometric ratios,

Comparing

with

$$2 \sin^{2} \frac{2 \sin 3x \cos 2x}{\sum_{0}^{\infty} \frac{C - D}{2}} = \sin C + \sin D$$

We see that,

$$\frac{C+D}{2} = 3x$$

$$C+D=6x$$
(7.18)

Also,

$$\frac{C-D}{2} = 2x$$

$$C-D=4x \tag{7.19}$$

(7.18)+(7.19) gives

$$2C = 10x$$
$$C = 5x$$

(7.18)-(7.19) gives

$$2D = 2x$$
$$D = x$$

 $2\sin 3x\cos 2x = \sin 5x + \sin x$ 

#### **7.2.3** Example 3

To show that  $\sin 2A \cos 4A + \sin 3A \cos 9A = \frac{1}{2} (\sin 12A - \sin 2A)$ ,

From

$$\sin C + \sin D = 2 \sin^{2} \frac{C + D}{\cos^{2}} + \frac{C - D}{\cos^{2}} = \frac{1}{2} (\sin C + \sin D)$$

We have

For  $\sin 2A \cos 4A$ ,

$$\frac{C+D}{2} = 2A$$

$$C+D=4A \tag{7.20}$$

$$\frac{C - D}{2} = 4A$$

$$C - D = 8A \tag{7.21}$$

(7.20)+(7.21) gives

$$2C = 12A$$
$$C = 6A$$

(7.20)-(7.21) gives

$$2D = -4A$$
$$D = -2A$$

 $\sin 2A \cos 4A = \frac{1}{2} (\sin 6A + \sin(-2A)) = \frac{1}{2} (\sin 6A - \sin 2A)$ <br/>For  $\sin 3A \cos 9A$ ,

$$\frac{C+D}{2} = 3A$$

$$C+D = 6A \tag{7.22}$$

$$\frac{C - D}{2} = 9A$$

$$C - D = 18A \tag{7.23}$$

(7.22)+(7.23) gives

$$2C = 24A$$
$$C = 12A$$

(7.22)-(7.23) gives

$$2D = -12A$$
$$D = -6A$$

 $\therefore \sin 3A \cos 9A = \frac{1}{2} (\sin 12A + \sin(-6A)) = \frac{1}{2} (\sin 12A - \sin 6A)$ 

Now,

$$\sin 2A \cos 4A + \sin 3A \cos 9A = \frac{1}{2} (\sin 6A - \sin 2A) + \frac{1}{2} (\sin 12A - \sin 6A)$$

$$= \frac{1}{2} [(\sin 6A - \sin 2A) + (\sin 12A - \sin 6A)]$$

$$= \frac{1}{2} (\sin 6A - \sin 2A + \sin 12A - \sin 6A)$$

$$= \frac{1}{2} (\sin 12A - \sin 2A)$$

 $\sin 2A \cos 4A + \sin 3A \cos 9A_{2} = \frac{1}{2} (\sin 12A - \sin 2A)$ 

To show that  $\sin 7x + \sin x - 2\sin 2x \cos 3x = 4\cos^2 3x \sin x$ .

Since  $\sin C + \sin D = 2 \sin \frac{\sum_{C+D} \sum_{C=D} \sum_{C$ 

$$\sin 7x + \sin x - 2\sin 2x \cos 3x = 2\sin \frac{7x + x}{2} \cos \frac{7x - x}{2} - 2\sin 2x \cos 3x$$

$$= 2\sin \frac{8x}{2} \cos \frac{6x}{2} - 2\sin 2x \cos 3x$$

$$= 2\sin 4x \cos 3x - 2\sin 2x \cos 3x$$

$$= 2\cos 3x(\sin 4x - \sin 2x)$$

Since 
$$\sin C - \sin D = 2\cos\frac{C+D}{2}\sum \sin\frac{C-D}{2}$$
, we have
$$\sin 7x + \sin x - 2\sin 2x \cos 3x = 2\cos 3x + 2\cos \frac{4x + 2x}{\sin \frac{4x - 2x}{2}}\sum \frac{4x - 2x}{\sin \frac{4x - 2x}{2}}$$

$$= 2\cos 3x + 2\cos \frac{2x}{2} + \frac{2x}{2}\sum \frac{2x}{2}$$

$$= 2\cos 3x(2\cos 3x \sin x)$$

$$= 4\cos^2 3x \sin x$$

 $\sin 7x + \sin x - 2\sin 2x \cos 3x = 4\cos^2 3x \sin x$ 

#### **7.2.5** Example 5

If  $\sin \theta + \sin \varphi = a$  and  $\cos \theta + \cos \varphi = b$ , to show that  $\cos^2 \frac{1}{2}(\theta - \varphi) = \frac{1}{4}(a^2 + b^2)$ ,

Since  $\sin C + \sin D = 2 \sin \frac{C+D}{2} \cos \frac{C-D}{2}$ ,

$$2\sin^{2}\frac{\theta+\varphi}{\cos^{2}}\sum_{\cos^{2}\frac{\theta-\varphi}{2}}\sin^{2}\theta+\sin^{2}\varphi=a$$

$$2\sin^{2}\frac{\theta-\varphi}{\cos^{2}}=a$$
(7.24)
Since  $\cos C + \cos D = 2\cos^{2}\frac{C+D}{2}\sum_{\cos^{2}\frac{C-D}{2}}$ ,

$$2\cos^{2}\frac{1}{2}\frac{1}{2}\cos\frac{\theta + \cos \varphi}{\cos^{2}} = b$$

$$2\cos^{2}\frac{\theta + \varphi}{2}\cos\frac{\theta - \varphi}{2} = b$$
(7.25)

Squaring (7.24) and (7.25),

$$4\sin^{2} - \frac{\theta + \varphi}{2} \cos^{2} - \frac{\theta - \varphi}{2} = a^{2}$$

$$4\cos^{2} - \frac{\theta + \varphi}{2} \cos^{2} - \frac{\theta - \varphi}{2} = b^{2}$$

$$(7.26)$$

$$4\cos^2\frac{\theta+\varphi}{2}\cos^2\frac{\theta-\varphi}{2} = b^2 \tag{7.27}$$

Adding (7.26) and (7.27),

$$4\sin^{2} \frac{\theta + \varphi}{2} \cos^{2} \frac{\theta - \varphi}{\cos^{2}} + 4\cos^{2} \frac{\theta + \varphi}{2} \cos^{2} \frac{\theta - \varphi}{2} = a^{2} + b^{2}$$

$$4\cos^{2} \frac{\theta - \varphi}{2} \sin^{2} \frac{\theta + \varphi}{2} + \cos^{2} \frac{\theta - \varphi}{2} = a^{2} + b^{2}$$

$$4\cos^{2} \frac{\theta - \varphi}{2} (1) = a^{2} + b^{2}$$

$$\cos^{2} \frac{\theta - \varphi}{2} = \frac{1}{4}(a^{2} + b^{2})$$

$$\cos^{2} \frac{1}{2}(\theta - \varphi) = \frac{1}{4}(a^{2} + b^{2})$$

 $\div \cos^2 \frac{1}{2} (\theta - \varphi) = \frac{1}{4} (a^2 + b^2) \text{ given that } \sin \theta + \sin \varphi = a \text{ and } \cos \theta + \cos \varphi = b$ 

# 8 A Revisit to Sub-Multiple Angles

#### 8.1 A Transformation of the Sub-Multiple Angles

Recall that

$$\tan x = \frac{2 \tan \frac{x}{2}}{1 - \tan^2 \frac{x}{2}}$$

If  $\tan \frac{x}{2} = t$ , then

$$\tan x = \frac{2t}{1 - t^2} \tag{8.1}$$

For  $\sin x$ , we proceed as follows

$$\sin x = 2 \sin \frac{x}{2} \cos \frac{x}{2}$$

$$= \frac{2 \sin \frac{x}{2} \cos \frac{x}{2}}{1}$$

$$= \frac{2 \sin \frac{x}{2} \cos \frac{x}{2}}{\cos^2 \frac{x}{2} + \sin^2 x}$$

$$= \frac{\frac{2 \sin \frac{x}{2} \cos \frac{x}{2}}{\cos^2 \frac{x}{2} + \sin^2 x}}{\frac{\cos^2 \frac{x}{2}}{\cos \frac{x}{2}} + \frac{\sin^2 x}{\cos \frac{x}{2}}}$$

$$= \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}$$

$$\therefore \sin x = \frac{2t}{1 + t^2}$$
(8.2)

For  $\cos x$ , we have

$$\cos x = \cos^{2} \frac{x}{2} - \sin^{2} \frac{x}{2}$$

$$= \frac{\cos^{2} \frac{x}{2} - \sin^{2} \frac{x}{2}}{\cos^{2} \frac{x}{2} - \sin^{2} \frac{x}{2}}$$

$$= \frac{\cos^{2} \frac{x}{2} + \sin^{2} \frac{x}{2}}{\cos^{2} \frac{x}{2} - \frac{\sin^{2} \frac{x}{2}}{\cos^{2} \frac{x}{2}}}$$

$$= \frac{\cos^{2} \frac{x}{2} - \sin^{2} \frac{x}{2}}{\cos^{2} \frac{x}{2} - \frac{\sin^{2} \frac{x}{2}}{\cos^{2} \frac{x}{2}}}$$

$$= \frac{\cos^{2} \frac{x}{2} + \sin^{2} \frac{x}{2}}{\cos^{2} \frac{x}{2} + \frac{\sin^{2} \frac{x}{2}}{\cos^{2} \frac{x}{2}}}$$

$$= \frac{1 - \tan^{2} \frac{x}{2}}{1 + \tan^{2} \frac{x}{2}}$$

$$\therefore \cos x = \frac{1 - t^{2}}{1 + t^{2}}$$
(8.3)

#### 8.2 Examples

#### 8.2.1 Example 1

To calculate  $\tan \frac{1}{2}\theta$ , if  $\tan \theta = \frac{24}{7}$  and  $\theta$  is acute,

$$\tan \theta = \frac{2 \tan \frac{1}{2} \theta}{1 - \tan^2 \frac{1}{2} \theta}$$

$$\tan \theta = \frac{2t}{1 - t^2} \quad \text{(Since } \tan \frac{1}{2} \theta = t\text{)}$$

$$\frac{24}{7} = \frac{2t}{1 - t^2}$$

$$7(2t) = 24(1 - t^2)$$

$$14t = 24 - 24t^2$$

$$24t^2 + 14t - 24 = 0$$

$$12t^2 + 7t - 12 = 0$$

$$12t^2 + 16t - 9t - 12 = 0$$

$$(12t^2 + 16t) - (9t + 12) = 0$$

$$4t(3t + 4) - 3(3t + 4) = 0$$

$$(3t + 4)(4t - 3) = 0$$

$$t = -\frac{4}{3} \text{ or } \frac{3}{4}$$

#### 8.2.2 Example 2

Given that  $\sec \theta - \tan \theta = x$ . Show that  $t = \frac{1-x}{1+x}$  where  $t = \tan(\frac{\theta}{2})$ . (This is left as an exercise for students).

# 9 Trigonometric Equations

#### 9.1 Overview

Trigonometric equations are equations which involve the six trigonometric ratios.

In solving trigonometric equations, we get the values of the angles in the four quadrants from  $0^{\circ} - 360^{\circ}$  that satisfy the equations.

We recall the following about the four quadrants:



Figure 2: The Four Quadrants

In the first quadrant,

$$\sin \theta = \sin \theta$$

$$\cos \theta = \cos \theta$$

$$\tan \theta = \tan \theta$$

In the second quadrant,

$$\sin \theta = \sin(180 - \theta)^{\circ}$$

$$\cos \theta = -\cos(180 - \theta)^{\circ}$$

$$\tan \theta = -\tan(180 - \theta)^{\circ}$$

In the third quadrant,

$$\sin \theta = -\sin(\theta - 180)^{\circ}$$

$$\cos \theta = -\cos(\theta - 180)^{\circ}$$

$$\tan \theta = \tan(\theta - 180)^{\circ}$$

In the fourth quadrant,

$$\sin \theta = -\sin(360 - \theta)^{\circ}$$

$$\cos \theta = \cos(360 - \theta)^{\circ}$$

$$\tan \theta = -\tan(360 - \theta)^{\circ}$$

## 9.2 Examples

## **9.2.1** Example 1

To find the angles less than 360° which satisfy 6 sin  $\theta = \tan \theta$ ,

$$6\sin\theta = \tan\theta \\ 6\sin\theta = \frac{\sin\theta}{\cos\theta}$$

$$6\sin\theta\cos\theta = \sin\theta$$

$$6\cos\theta = 1 \\ 1 \\ \cos\theta = 6$$

$$\theta = \cos^{-1}\frac{1}{6}$$

$$\theta = \cos^{-1}(0.1667)$$

$$\theta = 80.4^{\circ}, 279.6^{\circ}$$

To find the angles less than  $360^{\circ}$  which satisfy  $3\cos^2\theta + 5\sin^2\theta = 4$ ,

$$3\cos^{2}\theta + 5\sin^{2}\theta = 4$$

$$3\cos^{2}\theta + 5(1 - \cos^{2}\theta) = 4$$

$$3\cos^{2}\theta + 5 - 5\cos^{2}\theta = 4$$

$$3\cos^{2}\theta - 5\cos^{2}\theta = 4 - 5$$

$$-2\cos^{2}\theta = -1$$

$$2\cos^{2}\theta = \frac{1}{2}$$

$$\cos^{2}\theta = \frac{1}{2}$$

$$\cos^{2}\theta = \frac{1}{2}$$

$$\cos^{2}\theta = \frac{1}{2}$$

$$\cos^{2}\theta = \frac{1}{2}$$

$$\theta = \cos^{-1}\frac{1}{\sqrt{-}} \text{ or } \theta = \cos^{-1}\frac{1}{-\sqrt{2}}$$

$$\theta = 45^{\circ}, 315^{\circ} \text{ or } \theta = 135^{\circ}, 225^{\circ}$$

$$\theta = 45^{\circ}, 315^{\circ}, 135^{\circ}, 225^{\circ}$$

#### 9.2.3 Example 3

To solve  $5 \tan^2 \theta - \sec^2 \theta = 11$  for  $0^\circ \le \theta \le 360^\circ$ ,

$$5 \tan^{2} \theta - \sec^{2} \theta = 11$$

$$5 \tan^{2} \theta - (1 + \tan^{2} \theta) = 11$$

$$5 \tan^{2} \theta - 1 - \tan^{2} \theta = 11$$

$$5 \tan^{2} \theta - \tan^{2} \theta = 11 + 1$$

$$4 \tan^{2} \theta = 12$$

$$\tan^2 \theta \sqrt{3}$$

$$\tan \theta = \pm 3$$

$$\theta = \tan^{-1} 3 \text{ or } \theta = \tan^{-1}(-3)$$

$$\theta = 60^\circ, 240^\circ \text{ or } \theta = 120^\circ, 300^\circ$$

$$\theta = 60^\circ, 240^\circ, 120^\circ, 300^\circ$$

To solve  $6\cos^2\theta + \sin\theta - 5 = 0$  for  $0^\circ \le \theta \le 360^\circ$ ,

$$6\cos^{2}\theta + \sin\theta - 5 = 0$$

$$6(1 - \sin^{2}\theta) + \sin\theta - 5 = 0$$

$$6 - 6\sin^{2}\theta + \sin\theta - 5 = 0$$

$$-6\sin^{2}\theta + \sin\theta + 1 = 0$$

$$6\sin^{2}\theta - \sin\theta - 1 = 0$$
(Let  $\sin\theta = x$ )  $6x^{2} - x - 1 = 0$ 

$$6x^{2} - 3x + 2x - 1 = 0$$

$$(6x^{2} - 3x) + (2x - 1) = 0$$

$$3x(2x - 1) + 1(2x - 1) = 0$$

$$2x - 1 = 0 \text{ or } 3x + 1 = 0$$

$$1 \quad 1$$

$$x = 2 \text{ or } x = -\frac{1}{3}$$
(Recall that  $x = \sin\theta$ )  $\sin\theta = \frac{1}{2} \text{ or } \sin\theta = -\frac{1}{2}$ 

$$\theta = \sin^{-1}\frac{1}{2} \text{ or } \theta = \sin^{-1}\frac{1}{2}$$

$$\theta = 30^{\circ}, 150^{\circ} \text{ or } \theta = 340.5^{\circ}, 119.5^{\circ}$$

## 9.3 Exercise

Solve the following for  $0^{\circ} \le \theta \le 360^{\circ}$ :

1. 
$$4\cos 2\theta - 3 = 0$$

2. 
$$3 \sin 2\theta = 18$$

3. 
$$4\cos\theta = 3\tan\theta$$

4. 
$$2 \tan^2 \theta - 3 \tan \theta + 1 = 0$$

5. 
$$\sin \theta + \sin^2 \theta = 0$$

#### Reference

B.D. Bunday and H. Mulholland, "Pure Mathematics for Advanced Level". Heinemann Educational Books Ltd, Halley Court Jordan Hill, Oxford OX2 8EJ, P.M.B. 5205, Ibadan. P.O. Box 45314, Nairobi, 2004.

#### Compiled by:

- Afolabi, Ayodeji Sunday (asafolabi@futa.edu.ng)
- Dansu, Emmanuel Jesuyon (ejdansu@futa.edu.ng)

# VOTE KONNECT FOR ALTRUISTIC INFORMATION WITH CLEAR DISTINCT

**KONNECT'18** 

**KONNECT'18**