Math 351 DNHI 2

Mario L. Gutierrez Abed

- (1) Check that the relation "is equivalent to" defines an equivalence relation. That is, show that
- (i) $A \sim A$

Solution:

Let $\zeta: A \longrightarrow A$ be defined by $\zeta(x) = x$. Then clearly ζ is bijective. Hence $A \sim A$.

(ii) $A \sim B$ iff $B \sim A$

Solution:

Suppose $A \sim B$. Then, by hypothesis, there is some $f: A \longrightarrow B$ that is bijective. Thus f is invertible and $f^{-1}: B \longrightarrow A$ is also necessarily bijective. In particular $B \sim A$.

(iii) if $A \sim B$ and $B \sim C$, then $A \sim C$.

Solution:

If $A \sim B$ and $B \sim C$, then by hypothesis, there are functions $f: A \longrightarrow B$ and $g: B \longrightarrow C$ that are both bijective. Clearly the function $h: A \longrightarrow C$ defined by h(x) = g(f(x)) (or $(g \circ f) x$) is also a bijection. Hence $A \sim C$, as desired.

- (2) Given finitely many countable sets $A_1, ..., A_n$, show that
- a) $A_1 \cup ... \cup A_n$ is countable.

Proof:

First observe that for any countable sets A and B, $A \cup B$ is countable. To show this, we arrange A and B into an array

and then we define $f: \mathbb{N} \longrightarrow A \bigcup B$ by

$$f(n) = \begin{cases} a_k & \text{if } n = 2k - 1 \\ b_k & \text{if } n = 2k \end{cases}.$$

Observe now that f is bijective. Hence $\mathbb{N} \sim A \cup B$ and the result follows.

We will now use induction to prove that $A_1 \cup ... \cup A_n$ is countable. Clearly, by the argument we just proved, $A_1 \cup A_2$ is countable, so assume $A_1 \cup ... \cup A_{n-1}$ is countable. Let $A = A_1 \cup ... \cup A_{n-1}$ and $B = A_n$. Then, A and B are countable, from which follows that $A \cup B = (A_1 \cup ... \cup A_{n-1}) \cup A_n = A_1 \cup ... \cup A_n$ is countable as well.

b) $A_1 \times ... \times A_n$ is countable.

Proof:

First observe that if A and B are countable, then so is $A \times B$. To show this, we arrange $A \times B$ into an array

$$(a_1, b_1)$$
 (a_1, b_2) (a_1, b_3) ...
 (a_2, b_1) (a_2, b_2) (a_2, b_3) ...
 (a_3, b_1) (a_3, b_2) (a_3, b_3) ...

Clearly $A \times B$ is equivalent to $\mathbb{N} \times \mathbb{N}$. Then, since $\mathbb{N} \times \mathbb{N} \sim \mathbb{N}$, it follows that $A \times B \sim \mathbb{N}$ and thus $A \times B$ is countable.

We will now prove by induction that $A_1 \times ... \times A_n$ is countable. Clearly, by the argument we just proved, $A_1 \times A_2$ is countable, so assume $A_1 \times ... \times A_{n-1}$ is countable. Let $A = A_1 \times ... \times A_{n-1}$ and $B = A_n$. Then, A and B are countable, from which follows that $A \times B = (A_1 \times ... \times A_{n-1}) \times A_n = A_1 \times ... \times A_n$ is countable.

(3) Prove that a set is infinite iff it is equivalent to a proper subset of itself. (Hint: If A is infinite and $x \in A$, show that A is equivalent to $A \setminus \{x\}$)

Proof:

 (\Leftarrow)

Suppose A is finite and $B \subset A$. We can write $A = \{x_1, ..., x_n\}$, where, WLOG, $x_1 \notin B$. Therefore $B \subseteq A \setminus \{x_1\}$. It is easily seen from the pigeonhole principle that no map from $A \setminus \{x_1\}$ to A can be onto. Hence, no map from B to A is onto. In other words, A is not equivalent to any of its proper subsets.

 (\Rightarrow)

Suppose on the other hand that A is infinite. Then, for some $x \in A$, $A \setminus \{x\}$ is infinite as well. Now, since every infinite set contains a countable subset, it follows that there is a sequence of distinct elements $\{y_n\}_{n=1}^{\infty} \subset A \setminus \{x\}$.

Define $f: A \setminus \{x\} \longrightarrow A$ by

$$f(y) = \begin{cases} x & \text{if } y = y_1 \\ y_{n-1} & \text{if } y = y_n ; n \ge 2 \\ y & \text{otherwise} \end{cases}$$

It's easy to verify that f is bijective.

We can therefore conclude that $A \sim A \setminus \{x\}$.

(4) If A is infinite and B is countable, show that A and $A \cup B$ are equivalent. (Hint: No containment relation between A and B is assumed here.)

Proof:

Suppose A is infinite and B is countable. Then A contains a countably infinite subset that we can list in sequential order $\{a_n\}_{n=1}^{\infty}$. Since B is countable, we can list its elements in a sequence $\{b_n\}_{n=1}^{\infty}$. Now let's define $f: A \longrightarrow A \bigcup B$ by

$$f(x) = \begin{cases} a_n & \text{if } x = a_{2n} \\ b_n & \text{if } x = a_{2n-1} \\ x & \text{otherwise} \end{cases}$$

Clearly, f is bijective. Thus, $A \sim A \cup B$ as desired.

(5) Let A be countable. If $f: A \longrightarrow B$ is onto, show that B is countable. If $g: C \longrightarrow A$ is one-to-one, show that C is countable. [Hint: Be careful!]

Proof:

Let A be countable and suppose $f: A \longrightarrow B$ is onto. Then $A = f^{-1}(B) = \bigcup_{b \in B} A_b$ where

 $A_b = \{x \in A : f(x) = b\}$. Notice that since f is a function, $A_{b_1} \cap A_{b_2} = \emptyset$ whenever $b_1 \neq b_2$. Furthermore, since f is onto B, each $A_b \neq \emptyset$. By the axiom of choice, we get a subset $K \subset A$ that contains one element from each A_b . Clearly the restricted function $\gamma: K \longrightarrow B$ is bijective. Therefore $K \sim B$. Since A is countable, every subset of A is at most countable. It follows that K and therefore B are at most countable.

Now suppose $g: C \longrightarrow A$ is injective. Then $g: C \longrightarrow g(C)$ is bijective. It follows that $C \sim g(C) \subset A$. This implies that g(C) is at most countable. Therefore C is at most countable.

(6) Show that (0, 1) is equivalent to [0, 1] and to \mathbb{R} .

Proof:

To see that $\mathbb{R} \sim (0, 1)$, observe that $f : \mathbb{R} \longrightarrow (0, 1)$ given by $f(x) = \frac{\tan^{-1}(x) + \frac{\pi}{2}}{\pi}$ is bijective. To prove that $(0, 1) \sim [0, 1]$, we take $\left\{\frac{1}{n+1}\right\}_{n=1}^{\infty} \subset (0, 1)$ and then define $g : (0, 1) \longrightarrow [0, 1]$ by

$$g(x) = \begin{cases} 0 & \text{if } x = \frac{1}{2} \\ 1 & \text{if } x = \frac{1}{3} \\ \frac{1}{n-1} & \text{if } x = \frac{1}{n+1} : n \ge 3 \\ x & \text{otherwise} \end{cases}$$

Then g is bijective and the result $(0, 1) \sim [0, 1]$ follows.

(7) Show that (0, 1) is equivalent to the unit square $(0, 1) \times (0, 1)$. (Hint: "Interlace" decimals—but carefully!)

Proof:

Let $y \in (0, 1) \times (0, 1)$. Then $y = (y_1, y_2)$ where $y_1 = 0$. $a_1 a_2 a_3 \dots$ and $y_2 = 0$. $b_1 b_2 b_3 \dots$ are the unique infinite base-10 decimal representations of y_1 and y_2 .

Now we define $f:(0, 1) \longrightarrow (0, 1) \times (0, 1)$ by

$$f(x) = (0. \ x_1 \ x_2 \ x_3 \ x_5 \ \dots \ x_{2\,n-1} \ \dots, \ 0. \ x_2 \ x_4 \ x_6 \ \dots \ x_{2\,n} \ \dots)$$

whenever x = 0. $x_1 x_2 x_3 x_4 x_5 x_6 \dots x_{2n-1} x_{2n} \dots$ is the unique infinite base-10 representation of x. To see that f is onto, observe that if $y = (0, a_1 a_2 a_3 \dots, 0, b_1 b_2 b_3 \dots)$, then $x = 0, a_1 b_1 a_2 b_2 a_3 b_3 \dots$ will be mapped by f to g (i.e. f(x) = g). And since we can recover the input g from the output g, we see that g is invertible and therefore 1-1. We have thus shown that g (0, 1) \sim (0, 1) \sim (0, 1).

(8) Prove that (0, 1) can be put into one-to-one correspondence with the set of all functions $f: \mathbb{N} \longrightarrow \{0, 1\}$.

Proof:

Let $L_{\infty}\{0, 1\}$ be the set of all functions $f: \mathbb{N} \longrightarrow \{0, 1\}$. Since the set of all functions from \mathbb{N} to any set M is just the set of sequences with range in M, we see that each f can be uniquely represented by a string of 0's and 1's. For example, (0, 0, 1, 1, 0, 0, 1, 1, ...) refers to the function $f \in L_{\infty}\{0, 1\}$ defined by f(1) = 0, f(2) = 0, f(3) = 1, etc. In general, f(n) = 1 whenever n = 3k

or 4k and f(n) = 0 otherwise.

Notice that each $x \in (0, 1)$ has a unique infinite base-2 decimal approximation. In other words, we can write x = 0. $x_1 x_2 x_3 ...$ (base 2) where each $x_i = 0$ or 1.

Now we define $\varphi:(0, 1) \longrightarrow L_{\infty}\{0, 1\}$ by $\varphi(x) = f_x$, where $f_x(n) = x_n$. In other words, if x = 0. $x_1 x_2 x_3$... (base 2), then $f_x = (x_1, x_2, x_3, ...)$.

Clearly φ is bijective. Thus $(0, 1) \sim L_{\infty} \{0, 1\}$ as desired.

(9) Show that the set of all functions $f: A \longrightarrow \{0, 1\}$ is equivalent to $\mathcal{P}(A)$, the power set of A.

Proof:

Define $L_A\{0, 1\}$ to be the set of all functions $f: A \longrightarrow \{0, 1\}$. Now we define $\varphi: \mathcal{P}(A) \longrightarrow L_A\{0, 1\}$ by $\varphi(S) = f_S$, where

$$f_S(x) = \left\{ \begin{array}{ll} 0 & \text{if } x \notin S \\ 1 & \text{if } x \in S \end{array} \right.$$

To see that φ is onto, pick any $f: A \longrightarrow \{0, 1\}$ and set $S = f^{-1}\{1\}$. Then clearly $\varphi(S) = f_S = f$. In particular, each $f \in L_A\{0, 1\}$ can be identified with the set $f^{-1}\{1\}$. Now to see that φ is 1-1, notice that if $\varphi(S) = \varphi(T)$, then $f_S = f_T$. In other words, $f_S(x) = f_T(x) \ \forall x \in A$. This means that $S = \{x \in A : f_S(x) = 1\} = \{x \in A : f_T(x) = 1\} = T.$

Hence, we conclude that $\mathcal{P}(A) \sim L_A \{0, 1\}$.

(10) Show that \mathbb{N} contains infinitely many pairwise disjoint infinite subsets.

Proof:

Let p_n be the n^{th} prime. Then we define $\mathbb{N}_{p_n} = \{m \in \mathbb{N} : m = p_n^k \ \forall \ k \in \mathbb{N}\}$. Thus, for example $\mathbb{N}_{p_1} = \mathbb{N}_2 = \{2, 4, 8, 16, 32, \ldots\}.$

Clearly, each \mathbb{N}_{p_n} is infinite and $\mathbb{N}_{p_n} \cap \mathbb{N}_{p_t} = \emptyset$ whenever $n \neq t$. Thus, the sequence of sets $\{\mathbb{N}_{p_n}\}_{n=1}^{\infty}$ consists of infinite pairwise disjoint subsets of N.

(11) Show that any collection of pairwise disjoint, nonempty open intervals in \mathbb{R} is at most countable. (Hint: Each one contains a rational!)

Proof:

The hint pretty much sums up the argument. Let $\{q_n\}$ be some list of all the rational numbers and let \mathcal{L} be a collection of pairwise disjoint, nonempty open intervals in \mathbb{R} . Then each $I \in \mathcal{L}$ contains some rational r_I that is not found in any other open interval $\mathfrak{F} \in \mathcal{L}$.

Let $K = \{r_I \in \mathbb{Q} : r_I \in I\}$ be a collection of rational representatives of the intervals of \mathcal{L} (one representative from each $I \in \mathcal{L}$). Then we can label $I = I_1$ if $r_I = q_{n_1}$, where n_1 is the smallest integer $n \in \mathbb{N}$

such that $q_n = r_I$ for any $I \in \mathcal{L}$.

More generally, $I = I_k$ if the rational chosen in I, r_I , is equal to q_{n_k} , where n_k is the k^{th} smallest integer $n \in \mathbb{N}$ for which q_n is among the elements of K.

(12) Prove that \mathbb{N} contains uncountably many infinite subsets $\{\mathbb{N}_{\alpha}\}_{{\alpha}\in\mathbb{R}}$ such that $\mathbb{N}_{\alpha}\cap\mathbb{N}_{\beta}$ is finite if $\alpha \neq \beta$.

(This problem appeared on the Putnam Mathematical Competition. It is considered very hard).

Proof:

Since $\mathbb{R} \sim (0, 1)$, we might as well show that a collection $\{\mathbb{N}_{\alpha}\}_{\alpha \in (0,1)}$ exists for which \mathbb{N}_{α} is infinite for each $\alpha \in (0, 1)$, but $\mathbb{N}_{\alpha} \cap \mathbb{N}_{\beta}$ is finite whenever $\alpha \neq \beta$. To do this, recall that each $\alpha \in (0, 1)$ can be written uniquely as an infinite binary (base-2) decimal expansion $\alpha = 0$. $a_1 a_2 a_3 ...$ where each $a_i = 0$ or 1. Now we let $P_0 = 2$ and $P_1 = 3$ and define

$$\mathbb{N}_{\alpha} = \left\{ P_{a_1}, P_{a_1}^{P_{a_2}}, P_{a_1}^{P_{a_2}^{P_{a_s}}}, P_{a_1}^{P_{a_2}^{P_{a_s}}}, \dots \right\}.$$

For example, if $\alpha = 0.010011$... then

$$\mathbb{N}_{\alpha} = \left\{2, 2^3, 2^{3^2}, 2^{3^{2^2}}, 2^{3^{2^{2^3}}}, 2^{3^{2^{2^{3^3}}}}, \ldots\right\} = \left\{2, 8, 512, \ldots\right\}.$$

Observe that the n^{th} largest number of \mathbb{N}_{α} encodes the first n terms of the binary expansion of α . Since we are using the unique infinite representation of α in binary code, \mathbb{N}_{α} is infinite.

If α , $\beta \in (0, 1)$ with $\alpha \neq \beta$, then WLOG, $\alpha < \beta$ and $\alpha = 0$. $a_1 a_2 a_3 \dots a_n \dots$ and $\beta = 0$. $b_1 b_2 b_3 \dots b_n \dots$ will first be the different in the n^{th} digit, where n = 1, 2, 3, ...

That is $a_i = b_i$ for i = 1, 2, 3, ..., n-1, while $a_n = 0$ and $b_n = 1$. Clearly then $\mathbb{N}_{\alpha} \cap \mathbb{N}_{\beta}$ have n-1terms in common.