Homework for Friday, November 17.

1. Given two linear orderings $(A, <_A)$ and $(B, <_B)$ we may form an ordering A+B as follows: Let the universe of A+B consist of the set $\{(0,a):a\in A\}\cup\{(1,b):b\in B\}$ ordered by placing (0,a)<'(1,b) for all a and b, $(0,a_1)<'(0,a_2)$ whenever $a_1<_Aa_2$, and $(1,b_1)<'(1,b_2)$ whenever $b_1<_Bb_2$.

Now find a sentence φ that distinguishes $\mathbb{N} + \mathbb{N}$ from $(\mathbb{N}, <)$.

- 2. Find a sentence distinguishing $\mathbb{Z} + \mathbb{Z}$ from $(\mathbb{Z}, <)$.
- 3. Let m and n be two elements of bZ.
 - (a) Show that there is an automorphism h of $(\mathbb{Z}, <)$ (i.e., an isomorphism of $(\mathbb{Z}, <)$ to $(\mathbb{Z}, <)$) such that h(m) = n.
 - (b) Show that every automorphism of $(\mathbb{Z}, <)$ has this form.
 - (c) Use the first two parts of this problem to conclude that there is no definition of 0 in $(\mathbb{Z}, <)$.
- 4. It is shown in the text that any two countable dense linear orderings without endpoints are isomorphic. Here $(A, <_A)$ is a dense linear ordering without endpoints if it satisfies the sentences

$$\forall x \, \forall y (x < y \lor x \approx y \lor y < x)$$

$$\forall x \, \forall y (x < y \to y \not< x)$$

$$\forall x \, \forall y \, \forall z (x < y \to (y < z \to x < z))$$

$$\forall x \, \forall y (x < y \to \exists z (x < z \land z < y))$$

$$\forall x \, \exists y \, \exists z (y < x \land x < z)$$

(a) Using this information, show that if $(A, <_A)$ and $(B, <_B)$ are two countable dense linear orderings with endpoints (satisfying the first four axioms above and

$$\exists x \, \forall y (x < y \lor x \approx y) \land \exists x \, \forall y (y < x \lor y \approx x)$$

then they are isomorphic.

(b) Up to isomorphism, how many countable linear orderings are there there that satisfy the first four axioms?