Polynomial Regression (Handwriting Assignment)

Name: Lee (024)
Student ID: 2021 6744

Instructor: Professor Kyungjae Lee

October 9, 2021

Introduction

In the mid-term project, we will look at a polynomial regression algorithm which can be used to fit non-linear data by using a polynomial function. The polynomial Regression is a form of regression analysis in which the relationship between the independent variable x and the dependent variable y is modeled as an nth degree polynomial in x.

Figure 1: Example of Polynomial Regression

First, what is a regression? we can find a definition from the book as follows: Regression analysis is a form of predictive modelling technique which investigates the relationship between a dependent and independent variable. Actually, this definition is a bookish definition, in simple terms the regression can be defined as finding a function that best explain data which consists of input and output pairs. Let assume that we have 100 data points,

$$(x_1, y_1), (x_2, y_2), (x_3, y_3), \cdots (x_{98}, y_{98}), (x_{99}, y_{99}), (x_{100}, y_{100}).$$

The goal of regression is to find a function \hat{f} such that

$$\hat{f}(x_1) = y_1, \ \hat{f}(x_2) = y_2, \ \hat{f}(x_3) = y_3, \ \cdots, \ \hat{f}(x_{99}) = y_{100}, \ \hat{f}(x_{100}) = y_{100}.$$

This is the simplest definition of the regression problem. Note that many details about regression analysis are omitted here, but, you will learn more rigorous definition in other courses such as

Figure 2: Examples of polynomial functions

machine learning or statistics. Then, the polynomial regression is the regression framework that employs the polynomial function to fit the data.

So, what is the polynomial function? I guess you may remember, from high school, the following functions:

Degree of
$$0: f(x) = w_0$$

Degree of $1: f(x) = w_1 \cdot x + w_0$
Degree of $2: f(x) = w_2 \cdot x^2 + w_1 \cdot x + w_0$
Degree of $3: f(x) = w_3 \cdot x^3 + w_2 \cdot x^2 + w_1 \cdot x + w_0$
 \vdots
Degree of $d: f(x) = \sum_{i=0}^{d} w_i \cdot x^i$,

where w_0, w_1, \dots, w_d are a coefficient of polynomial and d is called a degree of a polynomial. So, we can determine a polynomial function f(x) by deciding its degree d and corresponding coefficients $\{w_0, w_1, \dots, w_d\}$. Figure 2 illustrates some examples of polynomial functions.

Then, the polynomial regression is a regression problem to find the best polynomial function to fit the given data points. Especially, the polynomial function is determined by coefficients (let just assume that d is fixed). We can restate the polynomial regression as finding coefficients of polynomials such that, for all data point, (x_i, y_i) , $y_i = \hat{f}(x_i)$ holds (if we have noise free data). Figure 1 shows the example of polynomial regression. In the following problems, you have to study how to compute the coefficients of the polynomial to fit the data points.

Problems

1. (80 pt. in total)

Assume that we have n data points, $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$. Let the degree of polynomial be d. Then, we want to find $w_0, w_1, w_2, \dots, w_d$ of the polynomial such that

$$\hat{f}(x_1) = w_0 + w_1 x_1 + w_2 x_1^2 + \dots + w_d x_1^d = y_1,$$

$$\hat{f}(x_2) = w_0 + w_1 x_2 + w_2 x_2^2 + \dots + w_d x_2^d = y_2,$$

$$\hat{f}(x_3) = w_0 + w_1 x_3 + w_2 x_3^2 + \dots + w_d x_3^d = y_3,$$

$$\hat{f}(x_4) = w_0 + w_1 x_4 + w_2 x_4^2 + \dots + w_d x_4^d = y_4,$$

$$\hat{f}(x_5) = w_0 + w_1 x_5 + w_2 x_5^2 + \dots + w_d x_5^d = y_5,$$

$$\vdots$$

$$\hat{f}(x_n) = w_0 + w_1 x_n + w_2 x_n^2 + \dots + w_d x_d^d = y_n.$$

Now, we reformulate the equations into the vector and matrix form. First, let $\mathbf{w} = [w_0, w_1, \cdots, w_d]^T$ and $\mathbf{y} = [y_1, y_2, \cdots, y_n]^T$. Then, the above equations can be rewritten as

$$\hat{f}(x_1) = [1, x_1, x_1^2, x_1^3, \cdots, x_1^d] \cdot \begin{bmatrix} w_0 \\ w_1 \\ w_2 \\ w_3 \\ \vdots \\ w_d \end{bmatrix} = [1, x_1, x_1^2, x_1^3, \cdots, x_1^d] \mathbf{w} = y_1$$

Similarly, we have,

$$\begin{aligned} [1, x_2, x_2^2, x_2^3, \cdots, x_2^d] \mathbf{w} &= y_2, \\ [1, x_3, x_3^2, x_3^3, \cdots, x_3^d] \mathbf{w} &= y_3, \\ [1, x_4, x_4^2, x_4^3, \cdots, x_4^d] \mathbf{w} &= y_4, \\ [1, x_5, x_5^2, x_5^3, \cdots, x_5^d] \mathbf{w} &= y_5, \\ && \vdots \\ [1, x_n, x_n^2, x_n^3, \cdots, x_n^d] \mathbf{w} &= y_n. \end{aligned}$$

Then, all equations can be written as the form of linear equation,

$$A\mathbf{w} = \mathbf{y},$$

where A is the stack of $[1, x_i, x_i^2, x_i^3, \dots, x_i^d]$ for $i = 1, \dots, n$. Under this setting, answer the following questions.

1-(a) What is the size of vector w and y? (10pt)

1-(b) What is the size of matrix A? Write A. (10pt)

$$A = \begin{bmatrix} 1 & \chi_{1} & \chi_{1}^{2} & \chi_{1}^{3} & \cdots & \chi_{d}^{d} \\ 1 & \chi_{2} & \chi_{2}^{3} & \chi_{3}^{3} & \cdots & \chi_{d}^{d} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & \chi_{n} & \chi_{n}^{2} & \chi_{3}^{3} & \cdots & \chi_{n}^{d} \end{bmatrix}$$

The size of matrix A is (d+1) x N.

1-(c) Let d = n, then, A becomes a square matrix. Compute the determinant of A. (40pt in total, Perivation: 30pt, Answer: 10pt, Hint: Vandermonde Matrix.)

$$A = \begin{bmatrix} (x_1 & x_1^2 & \dots & x_n^{n-1} \\ (x_1 & x_2^2 & \dots & x_n^{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ (x_n & x_n^2 & \dots & x_n^{n-1} \end{bmatrix}$$

$$det(A) = \begin{bmatrix} (x_1 & x_1^2 & \dots & x_n^{n-1} \\ (x_2 & x_2^2 & \dots & x_n^{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ (x_n & x_n^2 & \dots & x_n^{n-1} \end{bmatrix}$$

Spertioning the elementary row operation by subtracting I row from the 2,3... It rows of the.

$$\Rightarrow det(A) = \begin{cases} |\chi_1 \chi_1^{\lambda_1} & \chi_1^{\lambda_1} \\ |\chi_1 \chi_1 \chi_1^{\lambda_1} & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} \\ |\chi_1 \chi_1 & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} \\ |\chi_1 \chi_1 & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} \\ |\chi_1 \chi_1 & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} \\ |\chi_1 \chi_1 & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} \\ |\chi_1 \chi_1 & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} \\ |\chi_1 \chi_1 & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} \\ |\chi_1 \chi_1 & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} \\ |\chi_1 \chi_1 & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} \\ |\chi_1 \chi_1 & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} \\ |\chi_1 \chi_1 & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} \\ |\chi_1 \chi_1 & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} \\ |\chi_1 \chi_1 & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} \\ |\chi_1 \chi_1 & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} \\ |\chi_1 \chi_1 & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} \\ |\chi_1 \chi_1 & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} \\ |\chi_1 \chi_1 & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} \\ |\chi_1 \chi_1 & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} \\ |\chi_1 \chi_1 & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} \\ |\chi_1 \chi_1 & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} \\ |\chi_1 \chi_1 & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} \\ |\chi_1 \chi_1 & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} \\ |\chi_1 \chi_1 & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} \\ |\chi_1 \chi_1 & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} \\ |\chi_1 \chi_1 & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} \\ |\chi_1 \chi_1 & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} \\ |\chi_1 \chi_1 & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} \\ |\chi_1 \chi_1 & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} \\ |\chi_1 \chi_1 & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} \\ |\chi_1 \chi_1 & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} \\ |\chi_1 \chi_1 & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} \\ |\chi_1 \chi_1 & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} \\ |\chi_1 \chi_1 & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} \\ |\chi_1 \chi_1 & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} & \chi_1^{\lambda_1} \\ |\chi_1 \chi_1 & \chi_1^{\lambda_1} &$$

 $det(A) = \begin{cases} 12, & 2^{n-1} \\ 0 & x = 2^{n-1} \\ 0$

()
$$\det(A) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & \lambda_0 - \lambda_1 & \lambda_2(\lambda_1 - \lambda_1) \end{pmatrix} = \prod_{i=2}^{n} \left(\lambda_i - \lambda_1 \right) \begin{pmatrix} 1 & \lambda_2 & \cdots & \lambda_n - \lambda_n \\ 1 & \lambda_1 & \cdots & \lambda_n - \lambda_n \end{pmatrix}$$

By reflecting the above (a)culation process, the determinant of A can be a superior of A can be a super

Answer:
$$\det(A) = \prod_{k=1}^{n} \left(\prod_{i=k+1}^{n} (x_i - \lambda_k) \right) = \prod_{i \leq j \leq i \leq n} \left(x_i - x_j \right) = (x_n - x_1)(x_n - x_2) \times \dots \times (x_n - x_{n-1}) \wedge (x_{n-1} - x_1)(x_{n-1} - x_2) \times \dots \times (x_n - x_{n-1}) \wedge (x_n - x_n)(x_{n-1} - x_n)$$

1-(d) What is the condition that makes the determinant of A non-zero? (10pt)

The condition for making the determinant of A non-zero com be seen as all conditions other than the and this for making the determinant of A zero.

The condition for marks the determinant zero is if the determinant contains a row or column full of zeros, or if there are two identical rows or two rows proportinal to each other. This is it is 1-(e) Assume that the determinant of A is non-zero, then, what is the solution of (i) is in a column of A is non-zero, then, what is the solution of (i) is in a column of A is non-zero, then, what is the solution of (i) is in a column of A is non-zero, then, what is the solution of (i) is in a column of A is non-zero, then, what is the solution of (i) is in a column of A is non-zero, then, what is the solution of (i) is in a column of A is non-zero, then, what is the solution of (i) is in a column of A is non-zero, then, what is the solution of (i) is in a column of A is non-zero, then, what is the solution of (i) is in a column of A is non-zero, then, what is the solution of (i) is in a column of A is non-zero, then, what is the solution of (i) is in a column of A is non-zero, then, what is the solution of (i) is in a column of A is non-zero, then, what is the solution of (i) is in a column of A is non-zero, then, what is the solution of (i) is in a column of A is non-zero, then, where is the column of (i) is in a column of A is non-zero, then is the column of (i) is in a column of A is non-zero, then is the column of A is non-zero, then is the column of (i) is in a column of A is non-zero, then is the column of (i) is in a column of A is non-zero, then is the column of A is non-zero, then is the column of A is non-zero, then is non-zero, the column of A is non-zero, then is non-zero, the column of A is non-zero, then is non-zero, the column of A is non-zero, then is non-zero, the column of A is non-zero, linear equation, Aw = y, with respect to w? (10pt)

If the determinant of A is non-zero, it means that it is an invertible matrix

 $A\dot{w}=Y$ $A\dot{w}=A'Y$] multiply both sides by A^{-1} ... $(A^{-1}A=I)$ = Finally, the unknown vector W can be obtained by multiplying the inverse of A by the vector Y. Answer: W= ATM

2. (20pt)

Suppose that n > d+ Then, we cannot compute the inverse of A since A is not a square matrix. In this case, how can we solve the linear equation $A\mathbf{w} = \mathbf{y}$? (Hint: Pseudo Inverse)

To tind the unknown vector W, we can employ a pseudo inverse of A.

Let At be a Pseudo inverse of A.

The following equation is established by the pseudo-inverse nation

 $AA^{\dagger}A = A$, $A^{\dagger}AA^{\dagger} = A^{\dagger}$

A has linearly independent columns and the motive ATA is invertible

A = (ATA) - AT

ATAW= ATY

ATAW= ATY

(A'A)'ATAW= WAN'ATY

[ATA]'ATA = I

[ATA]'ATA = I

[ATA]'ATA = I

[ATA]'ATA = I

W=(ATA-)ATY

The solution of linear equation, Aw= y, is. W= (ATA) TAT y

Acher: W= (ATA) - AT Y