Benchmarking Cell Typing Methods in Spatial Transcriptomics

- Howard Baek
- Eliza Chai
- Alexis Harris
- Ingrid Luo
- Makayla Tang

This Photo by Unknown author is licensed under CC BY-NC-N

Meet the Team

Alexis Harris

Eliza Chai

Ingrid Luo

Howard Baek

Makayla Tang

Acknowledgements

Patrick Danaher

Edward Zhao

Ronalyn Vitancol

Sangsoon Woo

Lloyd Mancl

Patrick Heagerty

Spatial Transcriptomics and Cell Typing

Spatial transcriptomics technologies measure single cell gene expression while recording cells' positions within a tissue

- detect individual RNA molecules where they lie on tissue slides
- produce datasets of single-cell gene expression data while preserving cells' location data

Cell typing is a classification used to identify cells that share features

supervised and unsupervised methods

Single Cell Spatial Imager Localizes RNA at Subcellular Scale

Thousands of RNA transcripts

(represented as different colored single pixel in the image)
detected per single cell UNIVERSITY of WASHINGTON

InSituType Cell Typing

- in situ "in the original place"
- Likelihood model for spatial transcriptomics data
- Supervised cell typing from reference datasets via a Bayes classifier
- Unsupervised and semi-supervised cell typing via an Expectation Maximization (EM)
 algorithm

Dataset - Supervised

Training set: Kidney Single Cell Atlas.

- scRNA study that makes an analysis of all the cell types
- 40,268 mature kidney cells, consisting of 33 cell types

Test set: Kidney core biopsy from a lupus nephritis patient profiled using the CosMx[™] Spatial Molecular Imager

- scRNA dataset with 61,073 mature kidney cells
- No cell type data
- Have a priori about whether the cells are located within the glomerulus or not

Dataset - Unsupervised

- Unsupervised method can train on any tissue
- Cell pellet array (CPA) profiled using the CosMx™ Spatial Molecular Imager
- Dataset of 52,518 cells
- 13 known clusters
- Benchmarking is performed on the full dataset and two downsampled datasets containing a random sample of 50% of the genes and the 10% most highly variable genes

Objectives

Objective 1 – Supervised Cell Typing

Benchmark InSituType supervised against established cell typing methods: SingleR, CHETAH, SeuratV3, SingleCellNet, scPred and SVM

- Evaluate the accuracy of the results using known kidney biology
- Compare running time

Objective 2 – Unsupervised Cell Typing

Optimize the performance of InSituType unsupervised method by tuning parameters

Methods

Supervised Cell Typing

- Score cell typing results based on the distribution of distinct cell types in substructures called "glomeruli"
- Record the intensity of specific marker proteins (PanCK and CD45) that are highly informative of cell types (cytokeratin and immune cells)

Unsupervised Cell Typing

Modify tuning parameters (# of clusters, iterations, Subsample size, number of cohorts)
Metrics: Bayesian information criteria (BIC), Adjusted rand index (ARI), Computation time

Results – Accuracy of glomerular cell assignments

All genes

Note that scPred has 98% unassigned cells; CHETAH has 50% unassigned cells

Results – Accuracy of glomerular cell assignments

All genes

Results – Accuracy of glomerular cell assignments

All genes

Results – Difference in PanCK intensity

- Cytokeratin+ cells show strong PanCK staining; Cytokeratin- cells do not show PanCK staining
- Significant difference in PanCK intensity between cytokeratin+ and cytokeratin-cells
 - -> cell typing is accurate

All genes

Transcripts

Best: **SVM**

Worst: CHETAH

Cytokeratin + cell types:

epithelial cell of proximal tubule, kidney connecting tubule epithelial cell, kidney loop of Henle thick ascending limb epithelial cell, kidney epithelial cell, renal alpha-intercalated cell.

renal **alpha-intercalated** cell, renal **beta-intercalated** cell, renal **intercalated** cell, renal principal cell

Results – Difference in CD45 intensity

- Immune cells express high levels of CD45; Non-immune cells express low levels of CD45
- Significant difference in CD45 intensity between immune and non-immune cells
 - -> cell typing is accurate

All genes

Best: CHETAH

Worst: **Seurat**

Immune cell types:

B cell, CD4-positive alpha-beta T cell, CD8-positive alpha-beta T cell, classical monocyte, dendritic cell, kidney resident macrophage, mature NK T cell, natural killer cell, neutrophil, non-classical monocyte, plasmacytoid dendritic cell

Results – Summary

- No method that outperforms all others in every aspect
- InSituType performs relatively well
- Consistent accuracy rates across cells with different transcript numbers
- Inconsistent accuracy rates across all genes, half genes, and 10% highly variable genes (not displayed in the slides, but will be included in the final report)
- Running time: SingleR and InSituType are the fastest (<1 min), SingleCellNet is the slowest (~1.5 hrs)

Results – Number of iterations

All genes

Results – Number of cells in phase 1

All genes

Results – Number of clusters

All genes

Results – Summary

- Default parameters perform reasonably well regarding ARI, BIC, and computation time
 - Variability in accuracy for cells in phase 1 parameter
- Computation time increases relatively linear as parameter values increase

Future Work

Supervised Methods

• Experiment with different tuning parameters for SingleCellNet

Unsupervised Methods

- Benchmark different combinations of parameters
- Utilize parallel computation and run all models on the same computing environment such as Amazon EC2

Thank you!

Any Questions?

Appendix

UNIVERSITY of WASHINGTON

Appendix

	InSituType (no cohort)	InSituType (if cohort)	SingleR	Seurat	СНЕТАН	SVM	SingleCellNet
All genes	31.25 sec	33.0 sec	1.18 min	2.99 min	26.11 min	6.48 min	~1.5 hr
Halfgenes	15.65 sec	15.73 sec	44.07 sec	3.99 min	34.27 min	3.55 min	64.13 min
10% hvg	5.24 sec	5.06 sec	3.93 sec	5.93 min	NA	1.79 min	39.58 min

Appendix-

unsupervised cell typing performance (number of cohorts in fastCohorting())

Full gene data set

Results – unsupervised cell typing performance (number of iterations)

Half gene data set

Results – unsupervised cell typing performance (number of iterations)

10% Highly Variable Gene

Results – unsupervised cell typing performance (number of clusters)

Half gene data set

Results – unsupervised cell typing performance (number of clusters)

10% Highly Variable Gene

