1

Q:Without repetition of the numbers, four digit numbers are formed with the numbers 0,2,3,5. The probability of such a number divisible by 5 is

$$(A)^{\frac{1}{5}} (B)^{\frac{4}{5}} (C)^{\frac{1}{30}} (D)^{\frac{5}{9}}$$

(A) $\frac{1}{5}$ (B) $\frac{4}{5}$ (C) $\frac{1}{30}$ (D) $\frac{5}{9}$ **Solution:** Number of four digit numbers possible are $3 \times 3 \times 2 \times 1 = 18$

Random Variable	Values	Description
X	0	first digit
	1	fourth digit
Y	0	0 as digit
	1	5 as digit

TABLE 0 Table 1

As number of four digit numbers with fourth digit being 0 is $3 \times 2 \times 1 = 6$

$$p(Y = 0, X = 1) = \frac{3 \times 2 \times 1}{3 \times 3 \times 2 \times 1}$$
(1)

$$=\frac{1}{3}\tag{2}$$

(3)

As number of four digit numbers with fourth digit being 5 and first digit not being 0 is $2 \times 2 \times 1 = 4$

$$p(Y = 1, X = 1 | Y = 0', X = 0) = \frac{2 \times 2 \times 1}{3 \times 3 \times 2 \times 1}$$

$$= \frac{2}{9}$$
(4)

$$=\frac{2}{9}\tag{5}$$

(6)

Probability of forming four digit number divisible by 5, without repetition,

$$p = p(Y = 0, X = 1) + p(Y = 1, X = 1 | Y = 0', X = 0)$$
(7)

$$=\frac{5}{9}\tag{8}$$

Hence, option $(D)^{\frac{5}{9}}$ is the correct option.