Quantum Mechanics

Problem Sheet 4

Transformations & Orbital Angular Momentum

Xin, Wenkang January 26, 2024

Transformations

4.1 Reflection symmetry around a point x_0

Let $|\mathbf{x}_0 + \mathbf{x}\rangle$ be a position eigenstate that yields $\mathbf{x}_0 + \mathbf{x}$ upon measurement of position. On physical grounds, reflecting the eigenstate about the point \mathbf{x}_0 should yield the eigenstate $|\mathbf{x}_0 - \mathbf{x}\rangle$:

$$\hat{P}_{\mathbf{x}_0} | \mathbf{x}_0 + \mathbf{x} \rangle = | \mathbf{x}_0 - \mathbf{x} \rangle \tag{1}$$

With this, consider the effect of $\hat{P}_{\mathbf{x}_0}\hat{x}\hat{P}_{\mathbf{x}_0}$ on a position eigenstate:

$$\hat{P}_{\mathbf{x}_{0}}\hat{x}\hat{P}_{\mathbf{x}_{0}}|\mathbf{x}_{0}+\mathbf{x}\rangle = \hat{P}_{\mathbf{x}_{0}}\hat{x}|\mathbf{x}_{0}-\mathbf{x}\rangle
= (\mathbf{x}_{0}-\mathbf{x})\hat{P}_{\mathbf{x}_{0}}|\mathbf{x}_{0}-\mathbf{x}\rangle
= (\mathbf{x}_{0}-\mathbf{x})|\mathbf{x}_{0}+\mathbf{x}\rangle
= (2\mathbf{x}_{0}-\mathbf{x}_{0}-\mathbf{x})|\mathbf{x}_{0}+\mathbf{x}\rangle
= (2\mathbf{x}_{0}\mathbb{I}-\hat{x})|\mathbf{x}_{0}+\mathbf{x}\rangle$$
(2)

Further consider $\hat{P}_{\mathbf{x}_0}\hat{p}\hat{P}_{\mathbf{x}_0}$. Apparently \hat{p} anticommutes with $\hat{P}_{\mathbf{x}_0}$ so that $\hat{p}\hat{P}_{\mathbf{x}_0} = -\hat{P}_{\mathbf{x}_0}\hat{p}$. Thus:

$$\hat{P}_{\mathbf{x}_0}\hat{p}\hat{P}_{\mathbf{x}_0} = -\hat{P}_{\mathbf{x}_0}\hat{P}_{\mathbf{x}_0}\hat{p}
= -\hat{p}$$
(3)

since two successive reflections about the same point is equivalent to no reflection at all.

Consider the position wave function after the reflection:

$$\psi'(\mathbf{x}) \equiv \langle \hat{x} | \hat{P}_{\mathbf{x}_0} | \psi \rangle$$

$$= \int \langle \hat{x} | \hat{P}_{\mathbf{x}_0} | \mathbf{x}_0 + \mathbf{x}' \rangle \langle \mathbf{x}_0 + \mathbf{x}' | \psi \rangle d^3 x'$$

$$= \int \langle \hat{x} | \mathbf{x}_0 - \mathbf{x}' \rangle \psi(\mathbf{x}_0 + \mathbf{x}') d^3 x'$$

$$= \int (\mathbf{x}_0 - \mathbf{x}') \psi(\mathbf{x}_0 + \mathbf{x}') d^3 x'$$
(4)

Consider the change of variable $\mathbf{x}' \to \mathbf{x}_0 - \mathbf{x}'$:

$$\psi'(\mathbf{x}) = \int \mathbf{x}' \psi(2\mathbf{x}_0 - \mathbf{x}') \, \mathrm{d}^3 x' = \psi(2\mathbf{x}_0 - \mathbf{x})$$
 (5)

4.2

For translation invariance, \hat{H} must commute with \hat{p} . Since \hat{x} and \hat{p} generally do not commute, the only form $V(\hat{x})$ can take is a constant.

4.3

We define the orbital angular momentum operator \hat{L}_i as:

$$\hat{L}_i \equiv \epsilon_{ijk} \hat{x}_j \hat{p}_k \tag{6}$$

Its Hermitian conjugate is:

$$\hat{L}_i^{\dagger} = \epsilon_{ijk} \hat{p}_k^{\dagger} \hat{x}_j^{\dagger} = \epsilon_{ijk} \hat{p}_k \hat{x}_j \tag{7}$$

On the other hand, from the canonical commutation relation:

$$[\hat{x}_j, \hat{p}_k] = i\hbar \delta_{jk} \mathbb{I} \tag{8}$$

which implies that \hat{x}_j and \hat{p}_k commute if $j \neq k$.

Therefore:

$$\hat{L}_i^{\dagger} = \epsilon_{ijk} \hat{p}_k \hat{x}_j = \epsilon_{ijk} \hat{x}_j \hat{p}_k = \hat{L}_i \tag{9}$$

4.4

For a central potential, we write the Hamiltonian as:

$$\hat{H} = \frac{\hat{p}^2}{2m} + V(\hat{r}^2) \tag{10}$$

where we define the radial position operator \hat{r}^2 as:

$$\hat{r}^2 \equiv \hat{x}_1^2 + \hat{x}_2^2 + \hat{x}_3^2 \tag{11}$$

Tim, Weineng

Let us write the potential as an expansion in terms of \hat{r}^2 :

$$V(\hat{r}^2) = \sum_{n=0}^{\infty} a_n \hat{r}^{2n}$$
 (12)

Consider the commutator $[\hat{H}, \hat{L}_i]$:

$$[\hat{H}, \hat{L}_{i}] = \frac{1}{2m} [\hat{p}^{2}, \hat{L}_{i}] + \sum_{n=0}^{\infty} a_{n} [\hat{r}^{2n}, \hat{L}_{i}]$$

$$= \frac{1}{2m} \sum_{j=1,2,3} [\hat{p}_{j}^{2}, \hat{L}_{i}] + \sum_{n=0}^{\infty} a_{n} \sum_{j=1,2,3} [\hat{x}_{j}^{2n}, \hat{L}_{i}]$$

$$= \frac{1}{2m} \epsilon_{ikl} \sum_{j=1,2,3} [\hat{p}_{j}^{2}, \hat{x}_{k} \hat{p}_{l}] + \sum_{n=0}^{\infty} a_{n} \epsilon_{ikl} \sum_{j=1,2,3} [\hat{x}_{j}^{2n}, \hat{x}_{k} \hat{p}_{l}]$$

$$(13)$$

Let us consider the commutators separately. Note the following commutation relations:

$$[AB, C] = A[B, C] + [A, C]B$$

 $[A, BC] = [A, B]C + B[A, C]$
(14)

For $[\hat{p}_i^2, \hat{x}_k \hat{p}_l]$:

$$\begin{aligned} [\hat{p}_{j}^{2}, \hat{x}_{k} \hat{p}_{l}] &= \hat{p}_{j} [\hat{p}_{j}, \hat{x}_{k} \hat{p}_{l}] + [\hat{p}_{j}, \hat{x}_{k} \hat{p}_{l}] \hat{p}_{j} \\ &= \hat{p}_{j} [\hat{p}_{j}, \hat{x}_{k}] \hat{p}_{l} + \hat{p}_{j} \hat{x}_{k} [\hat{p}_{j}, \hat{p}_{l}] + [\hat{p}_{j}, \hat{x}_{k}] \hat{p}_{l} \hat{p}_{j} + \hat{x}_{k} [\hat{p}_{j}, \hat{p}_{l}] \hat{p}_{j} \\ &= \hat{p}_{i} [\hat{p}_{i}, \hat{x}_{k}] \hat{p}_{l} + [\hat{p}_{i}, \hat{x}_{k}] \hat{p}_{l} \hat{p}_{j} \end{aligned}$$
(15)

where we have used the fact that \hat{p}_j and \hat{p}_l commute.

This commutator is nonzero only when k = j, in which case:

$$[\hat{p}_j^2, \hat{x}_k \hat{p}_l] = -2i\hbar \hat{p}_j \hat{p}_l \tag{16}$$

Then the first term in the commutator $[\hat{H}, \hat{L}_i]$ becomes:

$$\frac{1}{2m}\epsilon_{ijl}\sum_{j=1,2,3}(-2i\hbar\hat{p}_j\hat{p}_l) = \frac{1}{im}\epsilon_{ijl}\hat{p}_j\hat{p}_l$$
(17)

This is zero since \hat{p}_j and \hat{p}_l commute. We then consider the second commutator $[\hat{x}_j^{2n}, \hat{x}_k \hat{p}_l]$:

$$[\hat{x}_j^{2n}, \hat{x}_k \hat{p}_l] = [\hat{x}_j^{2n}, \hat{x}_k] \hat{p}_l + \hat{x}_k [\hat{x}_j^{2n}, \hat{p}_l]$$
(18)

where the first term is always zero since \hat{x}_j^{2n} and \hat{x}_k commute and the second term is nonzero only when l = j, in which case:

$$\begin{aligned} [\hat{x}_{j}^{2n}, \hat{p}_{l}] &= \hat{x}_{k} [\hat{x}_{j}^{2n}, \hat{p}_{j}] \\ &= \hat{x}_{k} \{ \hat{x}_{j}^{2n-1} [\hat{x}_{j}, \hat{p}_{j}] + [\hat{x}_{j}^{2n-1}, \hat{p}_{j}] \hat{x}_{j} \} \\ &= \hat{x}_{k} \{ \hat{x}_{j}^{2n-1} [\hat{x}_{j}, \hat{p}_{j}] + x_{j}^{2n-2} [\hat{x}_{j}, \hat{p}_{j}] \hat{x}_{j} + \dots + [\hat{x}_{j}, \hat{p}_{j}] \hat{x}_{j}^{2n-1} \} \\ &= i \hbar (2n) \hat{x}_{k} \hat{x}_{j}^{2n-1} \end{aligned}$$
(19)

Therefore the second term in the commutator $[\hat{H}, \hat{L}_i]$ becomes:

$$\sum_{n=0}^{\infty} a_n \epsilon_{ikj} \sum_{j=1,2,3} i\hbar(2n)\hat{x}_k \hat{x}_j^{2n-1}$$
(20)

which is always zero since \hat{x}_k and \hat{x}_i^{2n-1} commute.

Therefore $[\hat{H}, \hat{L}_i] = 0$ for a central potential and the angular momentum is conserved.

Furthermore, consider a potential that has azimuthal symmetry, i.e. $V(\mathbf{x}) = V(\hat{x}_1^2 + \hat{x}_2^2)$. In this case, we can write the potential as:

$$V = \sum_{n=0}^{\infty} a_n (\hat{x}_1^2 + \hat{x}_2^2)^n \tag{21}$$

The change from previous results occurs on the second term, where we only let j run over 1 and 2. Due to the presence of the ϵ_{ikj} term, the sum is zero only for i=3, since for the other two cases we will miss one term in the sum due to j=3 missing. Therefore, the Hamiltonian only commutes with \hat{L}_3 , which is the z-component of the angular momentum. The x- and y-components of the angular momentum are not conserved.

4.5

Let us expand the expression using binomial theorem:

$$\lim_{N \to \infty} \left(1 + \frac{x}{N} \right)^N = \lim_{N \to \infty} \sum_{n=0}^N \binom{N}{n} \left(\frac{x}{N} \right)^n$$

$$= \lim_{N \to \infty} \sum_{n=0}^N \frac{N!}{n!(N-n)!} \frac{1}{N^n} x^n$$

$$= \lim_{N \to \infty} \sum_{n=0}^N \frac{N(N-1)(N-2)\cdots(N-n+1)}{N^n} \frac{1}{n!} x^n$$

$$= \lim_{N \to \infty} \sum_{n=0}^N \frac{1}{n!} x^n$$

$$= e^x$$

$$(22)$$

where at the last step we have used the fact that the sum is the Taylor series of e^x .

This can in some way be viewed as a definition of e^x . Indeed, the definition of exponential for an operator is just this limit:

$$\exp\left(\hat{A}\right) \equiv \lim_{N \to \infty} \left(1 + \frac{\hat{A}}{N}\right)^N = \left(1 + \frac{\hat{A}}{N}\right) \left(1 + \frac{\hat{A}}{N}\right) \cdots \left(1 + \frac{\hat{A}}{N}\right)$$
(23)

which can be viewed as applying the operator $(1 + \hat{A}/N)$ to the state N times.

4.6 Heisenberg equations of motion for the SHO

Orbital Angular Momentum

4.7

(a)

$$\begin{aligned} [\hat{L}_{i}, \hat{x}_{j}] &= \epsilon_{ikl} [\hat{x}_{k} \hat{p}_{l}, \hat{x}_{j}] \\ &= \epsilon_{ikl} \hat{x}_{k} [\hat{p}_{l}, \hat{x}_{j}] + \epsilon_{ikl} [\hat{x}_{k}, \hat{x}_{j}] \hat{p}_{l} \\ &= -i \hbar \epsilon_{ikl} \hat{x}_{k} \\ &= i \hbar \epsilon_{ijk} \hat{x}_{k} \end{aligned}$$

$$(24)$$

$$[\hat{L}_{i}, \hat{p}_{j}] = \epsilon_{ikl}[\hat{x}_{k}\hat{p}_{l}, \hat{p}_{j}]$$

$$= \epsilon_{ikl}\hat{x}_{k}[\hat{p}_{l}, \hat{p}_{j}] + \epsilon_{ikl}[\hat{x}_{k}, \hat{p}_{j}]\hat{p}_{l}$$

$$= i\hbar\epsilon_{ijl}\hat{p}_{l}$$

$$= i\hbar\epsilon_{ijk}\hat{p}_{k}$$
(25)

(b)

$$[\hat{L}_{x}, \hat{L}_{y}] = [\hat{L}_{x}, \hat{z}\hat{p}_{x} - \hat{x}\hat{p}_{z}]$$

$$= [\hat{L}_{x}, \hat{z}\hat{p}_{x}] - [\hat{L}_{x}, \hat{x}\hat{p}_{z}]$$

$$= [\hat{L}_{x}, \hat{z}]\hat{p}_{x} + \hat{z}[\hat{L}_{x}, \hat{p}_{x}] - [\hat{L}_{x}, \hat{x}]\hat{p}_{z} - \hat{x}[\hat{L}_{x}, \hat{p}_{z}]$$

$$= i\hbar(\hat{x}\hat{p}_{y} - \hat{y}\hat{p}_{x})$$

$$= i\hbar\hat{L}_{z}$$
(26)

which can be generalised to:

$$[\hat{L}_i, \hat{L}_j] = i\hbar \epsilon_{ijk} \hat{L}_k \tag{27}$$

(c) In position representation, the angular momentum operator have the form:

$$\langle \mathbf{x} | \hat{L}_{i} | \psi \rangle = \epsilon_{ijk} \langle \mathbf{x} | \hat{x}_{j} \hat{p}_{k} | \psi \rangle$$

$$= \epsilon_{ijk} x_{j} \langle \mathbf{x} | \hat{p}_{k} | \psi \rangle$$

$$= -i\hbar \epsilon_{ijk} x_{j} \frac{\partial}{\partial x_{k}} \psi(\mathbf{x})$$
(28)

(d) Consider the commutator $[\hat{L}_i, \hat{L}^2]$:

$$[\hat{L}_{i}, \hat{L}^{2}] = \sum_{r=1,2,3} [\hat{L}_{i}, \hat{L}_{r}^{2}]$$

$$= \sum_{r=1,2,3} ([\hat{L}_{i}, \hat{L}_{r}]\hat{L}_{r} + \hat{L}_{r}[\hat{L}_{i}, \hat{L}_{r}])$$

$$= i\hbar\epsilon_{jir}(\hat{L}_{j}\hat{L}_{r} + \hat{L}_{r}\hat{L}_{j})$$

$$= 0$$
(29)

4.8

We have the expression of \hat{L}^2 in spherical coordinates:

$$\hat{L}^2 = -\hbar^2 \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right]$$
 (30)

(a) The following calculations follow:

$$\hat{L}^{2}(\cos\theta) = -\hbar^{2} \frac{1}{\sin\theta} \frac{\partial}{\partial\theta} \left(-\sin^{2}\theta \right)$$

$$= 2\hbar^{2} \cos\theta$$

$$\hat{L}^{2} \left(\sin\theta e^{\pm i\phi} \right) = -\hbar^{2} \left[\frac{e^{\pm i\phi}}{\sin\theta} \frac{\partial}{\partial\theta} \left(\sin\theta \frac{\partial}{\partial\theta} \sin\theta \right) + \frac{1}{\sin\theta} \frac{\partial}{\partial\phi} \left(\frac{\partial}{\partial\phi} e^{\pm i\phi} \right) \right]$$

$$= -\hbar^{2} \left[\frac{e^{\pm i\phi}}{\sin\theta} \frac{\partial}{\partial\theta} \left(\sin\theta \cos\theta \right) + \frac{1}{\sin\theta} \frac{\partial}{\partial\phi} \left(\pm ie^{\pm i\phi} \right) \right]$$

$$= -\hbar^{2} \left[\frac{e^{\pm i\phi}}{\sin\theta} \left(\cos^{2}\theta - \sin^{2}\theta \right) - \frac{1}{\sin\theta} e^{\pm i\phi} \right]$$

$$= 2\hbar^{2} e^{\pm i\phi}$$
(31)

$$\hat{L}_z(\cos\theta) = -i\cos\theta$$

$$\hat{L}_z(\sin\theta e^{\pm i\phi}) = \mp i\sin\theta e^{\pm i\phi}$$
(32)

(b) For Y_1^0 , the normalisation condition is:

$$|N|^2 \int_0^{2\pi} \int_0^{\pi} \cos^2 \theta \sin \theta \, d\theta \, d\phi = 1 \tag{33}$$

which gives $N = \pm \sqrt{3/4\pi}$.

For $Y_1^{\pm 1}$, the normalisation condition is:

$$|N|^2 \int_0^{2\pi} \int_0^{\pi} \sin^2 \theta \sin \theta \, d\theta \, d\phi = 1 \tag{34}$$

which gives $N = \pm \sqrt{3/8\pi}$.

(c) In Cartesian coordinates, the above spherical harmonics are:

$$Y_1^0 = \sqrt{\frac{3}{4\pi}} \frac{z}{\sqrt{x^2 + y^2 + z^2}}$$

$$Y_1^{\pm 1} = \mp \sqrt{\frac{3}{8\pi}} \frac{\sqrt{x^2 + y^2} + z^2}{\sqrt{x^2 + y^2 + z^2}} \exp\left[\pm i \tan^{-1}\left(\frac{y}{x}\right)\right]$$
(35)

4.9

The wave function can be identified as:

$$\langle \theta, \phi | \psi \rangle \propto \sqrt{2} \sqrt{\frac{4\pi}{3}} Y_1^0 + \sqrt{\frac{8\pi}{3}} Y_1^1 + \sqrt{\frac{8\pi}{3}} Y_1^{-1}$$
 (36)

so that \hat{L}^2 always yields $2\hbar^2$ and \hat{L}_z yields zero with probability 1/3 and $\pm\hbar$ with probability 1/3.

The expectation of \hat{L}_z is zero.

4.10

We recognise $\sin^2 \theta e^{2i\phi}$ as Y_2^2 up to a constant factor. Therefore, \hat{L}^2 yields $6\hbar^2$ and \hat{L}_z yields $2\hbar$ each with probability 1.

4.11

Consider the the wave function $\langle \theta, \phi | \psi \rangle = A \sin^2 \theta$:

$$\langle \theta, \phi | \psi \rangle = A \sin^2 \theta$$

$$= A(1 - \cos^2 \theta)$$

$$= A\left(1 - \frac{\sqrt{16\pi/5}Y_2^0 + 1}{3}\right)$$

$$= A\left(-\sqrt{\frac{16\pi}{45}}Y_2^0 + \frac{2}{3}\right)$$

$$= A\left(-\sqrt{\frac{16\pi}{45}}Y_2^0 + \frac{2\sqrt{4\pi}}{3}Y_0^0\right)$$
(37)

where we have made use of the following spherical harmonics:

$$Y_2^0 = \sqrt{\frac{5}{16\pi}} (3\cos^2\theta - 1)$$

$$Y_0^0 = \frac{1}{\sqrt{4\pi}}$$
(38)

Therefore, measurement with \hat{L}_z always yields 0 and measurement with \hat{L}^2 yields $6\hbar^2$ with probability 1.

4.12

- (a) The term $-e\varepsilon\hat{x}$ in the Hamiltonian suggests some kind of position dependent (linear) potential. In light of the charge factor, this can be interpreted as the potential due to a uniform electric field of strength ε in the x-direction.
- (b) The Hamiltonian of the form:

$$\hat{H} = -\frac{\hbar^2}{2m} \nabla^2 - \frac{e^2}{4\pi\epsilon_0 r} - e\varepsilon\hat{x}$$
(39)

is spherically symmetrical if $\varepsilon = 0$ and symmetrical only about the x-axis if $\varepsilon \neq 0$.

Therefore, in the case of $\varepsilon = 0$, \hat{L}^2 and \hat{L}_i are conserved. In the case of $\varepsilon \neq 0$, only \hat{L}_x is conserved.

4.13

$$[\hat{L}_i, \hat{x} \cdot \hat{p}] = \sum_{r=1,2,3} [\hat{L}_i, \hat{x}_r \hat{p}_r]$$

$$= \sum_{r=1,2,3} \left([\hat{L}_i, \hat{x}_r] \hat{p}_r + \hat{x}_r [\hat{L}_i, \hat{p}_r] \right)$$

$$= i\hbar \sum_{r=1,2,3} \left(\epsilon_{irl} \hat{x}_l \hat{p}_r + \epsilon_{irl} \hat{x}_r \hat{p}_l \right)$$

$$= 0$$

$$(40)$$