LIFLC – Logique classique

CM4 – Systèmes de déduction syntaxiques

Licence informatique UCBL - Automne 2018-2019

https://liris.cnrs.fr/ecoquery/dokuwiki/doku.php?id=enseignement:logique: start

Raisonnements & Déductions

Raisonner sur des objets?

Formaliser un raisonnement?

- Formaliser le résultat d'un raisonnement
- Comment déterminer si un raisonnement a du sens
 - Formaliser les étapes du raisonnement

Jugements

Affirmations composées :

- d'un objet syntaxique :
 e.g. une formule, une ensemble de formules, etc
- d'une notion de correction :
 e.g. la formule est satisfiable ou valide, etc

Un jugement représente le résultat d'un raisonnement, on adapte donc cette notion au type de raisonnement que l'on souhaite faire

Exemple de jugement

Formules satisfiables

Objet syntaxique une formule *A* **Correction** *A* est satisfiable

Avec cette notion de formule satisfiable comme jugement :

- $p \lor q$ est une formule satisfiable (jugement correct)
- $\neg p \land p$ est une formule non satisfiable (jugement incorrect)
- $\{p \land q, q \lor p\}$ n'est pas un jugement

Autres exemples de jugements

Il existe toute sortes de notions de jugement :

- pour représenter des conséquenses logiques $(p, p \Rightarrow q \vdash q)$
- le calcul des types dans un langage $(x : int, y : int \vdash x + y : int)$
- l'évaluation d'expressions $(1 + (2 + 3) \rightsquigarrow 1 + 5)$
- etc

Systèmes de règles syntaxiques

2 Déduction naturelle

Calculs & raisonnements : règles syntaxiques

Pour un être humain : raisonnement/calcul =

- une suite d'étapes
- dont on est convaincu que l'on peut passer de l'une à la suivante

Pour un ordinateur : calcul =

- une suite d'étape
- telle qu'une règle permet de passer de l'une à la suivante
 - un ordinateur n'interprète pas la signification des étapes
 - la règle de calcul est syntaxique

Pour un ordinateur, un raisonnement est un calcu

Calculs & raisonnements : règles syntaxiques

Pour un être humain : raisonnement/calcul =

- une suite d'étapes
- dont on est convaincu que l'on peut passer de l'une à la suivante

Pour un ordinateur : calcul =

- une suite d'étapes
- telle qu'une règle permet de passer de l'une à la suivante
 - un ordinateur n'interprète pas la signification des étapes
 - la règle de calcul est syntaxique

Pour un ordinateur, un raisonnement est un calcu

Calculs & raisonnements : règles syntaxiques

Pour un être humain : raisonnement/calcul =

- une suite d'étapes
- dont on est convaincu que l'on peut passer de l'une à la suivante

Pour un ordinateur : calcul =

- une suite d'étapes
- telle qu'une règle permet de passer de l'une à la suivante
 - un ordinateur n'interprète pas la signification des étapes
 - la règle de calcul est syntaxique

Pour un ordinateur, un raisonnement est un calcul

Règles

Représentation d'un calcul possible

Sous la forme

- d'un ensemble de jugements (les prémisses)
- à partir desquels on peut en déduire un autre (la conclusion)

Dans une règle on décrit la forme des prémisses

la conclusion reprend certains éléments des prémisses

Notation

$$\frac{pr\acute{e}misse_1}{conclusion} \dots \frac{pr\acute{e}misse_k}{(nom\ r\grave{e}gle)}$$

Règles

Représentation d'un calcul possible

Sous la forme

- d'un ensemble de jugements (les prémisses)
- à partir desquels on peut en déduire un autre (la conclusion)

Dans une règle on décrit la forme des prémisses

• la conclusion reprend certains éléments des prémisses

Notation

$$\frac{\textit{pr\'{e}misse}_1}{\textit{conclusion}} \cdot \dots \quad \textit{pr\'{e}misse}_k \quad (\textit{nom r\'{e}gle})$$

Règles

Représentation d'un calcul possible

Sous la forme

- d'un ensemble de jugements (les prémisses)
- à partir desquels on peut en déduire un autre (la conclusion)

Dans une règle on décrit la forme des prémisses

• la conclusion reprend certains éléments des prémisses

Notation

$$\frac{\textit{pr\'{e}misse}_1 \quad ... \quad \textit{pr\'{e}misse}_k}{\textit{conclusion}} (\textit{nom r\'{e}gle})$$

Axiomes

Certaines règles, les axiomes n'ont pas de prémisses

Notation:

_____ (nom axiome)

Exemple

$$\frac{A}{A \vee B} \left(ou_{SAT}^{1} \right) \qquad \qquad p \in \mathcal{V} \frac{}{p} \left(var \right)$$

$$\frac{B}{A \vee B} \left(ou_{SAT}^{2} \right) \qquad \qquad \frac{A}{A \wedge B} \left(et_{SAT} \right)$$

Exemples de règles pour les formules satisfiables

Comment les utiliser? Ces règles sont-elles de *bonnes* règles?

Exemple

$$\frac{A}{A \vee B} (ou_{SAT}^{1}) \qquad p \in \mathcal{V} \frac{}{p} (var)$$

$$\frac{B}{A \vee B} (ou_{SAT}^{2}) \qquad \frac{A}{A \wedge B} (et_{SAT})$$

Exemples de règles pour les formules satisfiables

Comment les utiliser? Ces règles sont-elles de *bonnes* règles?

Instance d'une règle

Instance

Soit une règle

$$\frac{J_1 \quad \dots \quad J_k}{J} \ (R)$$

et soient j_1, \ldots, j_k et j des jugements qui correspondent aux formes J_1, \ldots, J_k et J alors

$$\frac{j_1 \dots j_k}{j}$$

est une instance de R

Dérivation

Definition

Une dérivation est un arbre :

- dont les nœuds sont des jugements
- un noeud j a pour fils $j_1, ..., j_k$, si

$$\frac{j_1 \quad \cdots \quad j_k}{j}$$

est une instance d'une règle

La racine est appelée conclusion de la dérivation

Les feuilles correspondent à des axiomes

Exemple de dérivation

Notation utilisant les règles :

$$\frac{\frac{q}{q \vee p} \binom{var}{ou_{SAT}^1} - \binom{var}{r}}{p \wedge (q \vee p) \wedge r} \binom{(var)}{(et_{SAT})}$$

Exemple de dérivation

Notation utilisant les règles :

$$\frac{-p}{p} \; (\textit{var}) \; \frac{\frac{-q}{q \vee p} \; (\textit{var})}{(\textit{ou}_{\textit{SAT}}^1) \; -\frac{r}{r} \; (\textit{var})} \\ \frac{-p}{p \wedge (q \vee p) \wedge r} \; (\textit{et}_{\textit{SAT}})$$

Dérivations - version inductive

Definition

L'ensemble des dérivation est le plus petit ensemble défini inductivement par :

Si

- D_1, \ldots, D_k sont des dérivations de conclusions j_1, \ldots, j_k
- $\frac{j_1 \quad ... \quad j_k}{j}$ est une instance d'une règle de déduction

alors

$$\frac{D_1 \dots D_k}{i}$$

est une dérivation de conclusion j

Jugements prouvables

Definition (Jugements prouvables)

Un jugement est prouvable s'il est conclusion d'une dérivation

Definition (Jugements prouvables - par induction)

L'ensemble des jugement prouvable est le plus petit ensemble de jugements stable par les règles de déduction, i.e.:

Si j_1, \ldots, j_k sont prouvables, et si

$$\frac{j_1 \quad \cdots \quad j_k}{j}$$

est une instance de règle, alors j est prouvable.

Correction et complétude

Definition (Correction)

Un système de règles est correct si toute conclusion d'une dérivation est un jugement correct

Definition (Complétude)

Un système de règles est complet si tout jugement correct est prouvable

Illustration de la correction / complétude

Le système montré en exemple :

- est correct
- n'est pas complet (e.g. pas de négation)

Si on ajoute l'axiome :

si
$$p \in \mathcal{V}$$
 $\neg p$ $(\neg var)$

Le système devient incorrect :

$$\frac{p}{p \wedge \neg p}$$
 (var) $\frac{\neg p}{p \wedge \neg p}$ (et_{SAT})

Illustration de la correction / complétude

Le système montré en exemple :

- est correct
- n'est pas complet (e.g. pas de négation)

Si on ajoute l'axiome :

si
$$p \in \mathcal{V}$$
 $\neg p$ $(\neg var)$

Le système devient incorrect :

$$\frac{-p \quad (var) \quad \neg p}{p \land \neg p} \begin{pmatrix} \neg var \end{pmatrix}$$

Systèmes de règles syntaxiques

Déduction naturelle

Retour sur les formules

Ensemble infini dénombrable $\mathcal V$ de variables propositionnelles notées $p,\,q,\,p',\,p_1,\,\dots$

Ensemble des formules ${\cal F}$

Le plus petit ensemble stable par les règles suivantes

- Si $p \in \mathcal{V}$, p est une formule
- \bullet \perp est une formule
- Si A est une formule, alors $(\neg A)$ est une formule
- Si A et B sont des formules, alors $(A \vee B)$, $(A \wedge B)$ et $(A \Rightarrow B)$ sont des formules

On étend les définitions du cours précédent en ajoutant le fait que :

• $eval(\bot, I) = 0$ (i.e. $\bot \equiv p \land \neg p$)

Système pour le raisonnement en logique propositionnelle

Objectif : déterminer si des formules sont

- valides
- (in)satisfiables
- conséquences logique d'un ensemble de formules

Remarques

- A est valide si et seulement si $\emptyset \models A$
- A est insatisfiable si et seulement si $A \models \bot$

Il suffit d'avoir un système qui décide des conséquences logiques

Système pour le raisonnement en logique propositionnelle

Objectif : déterminer si des formules sont

- valides
- (in)satisfiables
- conséquences logique d'un ensemble de formules

Remarques:

- A est valide si et seulement si $\emptyset \models A$
- ullet A est insatisfiable si et seulement si $A \models \bot$

Il suffit d'avoir un système qui décide des conséquences logiques

Séquents : jugements en déduction naturelle

Definition (Séquent)

Un séquent est de la forme

$$\Gamma \vdash A$$

où Γ est un ensemble de formules et A est une formule

$$\Gamma \vdash A \text{ est correct si } \Gamma \models A$$

Notations dans les séquents :

- $\Gamma_1, \Gamma_2 \leftrightarrow \Gamma_1 \cup \Gamma_2$
- A ← {A}

par exemple, on note Γ , A, B l'ensemble $\Gamma \cup \{A, B\}$

Règles de la déduction naturelle - 1

Axiome

$$\overline{\Gamma, A \vdash A}$$
 (ax)

Affaiblissement

$$\frac{\Gamma \vdash A}{\Gamma, B \vdash A}$$
 (aff)

Règles pour ⇒

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \Rightarrow B} \ (\Rightarrow_i)$$

$$\frac{\Gamma \vdash A \Rightarrow B \quad \Gamma \vdash A}{\Gamma \vdash B} \ (\Rightarrow_e)$$

Règles pour ¬

$$\frac{\Gamma \vdash A \Rightarrow \bot}{\Gamma \vdash \neg A} \ (\neg_i)$$

$$\frac{\Gamma \vdash A \quad \Gamma \vdash \neg A}{\Gamma \vdash \bot} \ (\neg_e)$$

$$\frac{\Gamma, \neg A \vdash \bot}{\Gamma \vdash A} \ (\neg_c)$$

Règles de la déduction naturelle - 2

règles pour ∧

$$\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \land B} \ (\land_i)$$

$$\frac{\Gamma \vdash A \land B}{\Gamma \vdash A} \ (\land_e^g)$$

$$\frac{\Gamma \vdash A \land B}{\Gamma \vdash B} \ (\land_e^d)$$

$$\frac{\Gamma \vdash A}{\Gamma \vdash A \lor B} (\lor_i^g) \qquad \qquad \frac{\Gamma \vdash B}{\Gamma \vdash A \lor B} (\lor_i^d)$$

$$\frac{\Gamma \vdash A \lor B \quad \Gamma, A \vdash C \quad \Gamma, B \vdash C}{\Gamma \vdash C} (\lor_e)$$

But : démontrer
$$\vdash p \Rightarrow (p \Rightarrow q) \Rightarrow q$$

$$\frac{p \vdash (p \Rightarrow q) \Rightarrow q}{\vdash p \Rightarrow (p \Rightarrow q) \Rightarrow q} \ (\Rightarrow i)$$

But : démontrer
$$\vdash p \Rightarrow (p \Rightarrow q) \Rightarrow q$$

$$\frac{\overline{p \vdash (p \Rightarrow q) \Rightarrow q}}{\vdash p \Rightarrow (p \Rightarrow q) \Rightarrow q} \ (\Rightarrow_i)$$

But : démontrer
$$\vdash p \Rightarrow (p \Rightarrow q) \Rightarrow q$$

 $p, p \Rightarrow q \vdash p \Rightarrow q$ $p, p \Rightarrow q \vdash p$

$$\frac{\frac{p,p\Rightarrow q\vdash q}{p\vdash (p\Rightarrow q)\Rightarrow q}(\Rightarrow_i)}{\vdash p\Rightarrow (p\Rightarrow q)\Rightarrow q}(\Rightarrow_i)$$

$$\frac{p, p \Rightarrow q \vdash p \Rightarrow q}{p, p \Rightarrow q \vdash p} \xrightarrow{p, p \Rightarrow q \vdash p} (\Rightarrow_e)$$

$$\frac{p, p \Rightarrow q \vdash q}{p \vdash (p \Rightarrow q) \Rightarrow q} \xrightarrow{(\Rightarrow_i)} (\Rightarrow_i)$$

$$\vdash p \Rightarrow (p \Rightarrow q) \Rightarrow q$$

$$\frac{p, p \Rightarrow q \vdash p \Rightarrow q \xrightarrow{(ax)} \overline{p, p \Rightarrow q \vdash p}}{p, p \Rightarrow q \vdash p \xrightarrow{(ax)}} \xrightarrow{(be)}
\frac{p, p \Rightarrow q \vdash q}{p \vdash (p \Rightarrow q) \Rightarrow q} \xrightarrow{(bi)}
\frac{p \vdash (p \Rightarrow q) \Rightarrow q}{p \vdash (p \Rightarrow q) \Rightarrow q} \xrightarrow{(bi)}$$

$$\frac{p, p \Rightarrow q \vdash p \Rightarrow q \quad (ax) \quad \overline{p, p \Rightarrow q \vdash p} \quad (\Rightarrow_e)}{\frac{p, p \Rightarrow q \vdash q}{p \vdash (p \Rightarrow q) \Rightarrow q} \quad (\Rightarrow_i)}$$

$$\frac{p, p \Rightarrow q \vdash q}{p \vdash (p \Rightarrow q) \Rightarrow q} \quad (\Rightarrow_i)$$

$$\frac{p, p \Rightarrow q \vdash p \Rightarrow q \quad (ax) \quad p, p \Rightarrow q \vdash p}{p, p \Rightarrow q \vdash q \quad (p \Rightarrow q) \Rightarrow q} \xrightarrow{(p, p \Rightarrow q \vdash q)} \xrightarrow{(p, p \Rightarrow q \vdash q)} \xrightarrow{(p, p \Rightarrow q \vdash q)} \xrightarrow{(p, p \Rightarrow q \vdash p)} \xrightarrow{(p, p \Rightarrow q$$

Correction & complétude

Théorème

La déduction naturelle pour le calcul propositionnel est correcte et complète :

Un séquent $\Gamma \vdash A$ est prouvable en déduction naturelle si et seulement si il est correct (i.e. $\Gamma \models A$)

Démo Coq

Règles supplémentaires utilisées par Coq

Pour
$$\Rightarrow$$

$$\frac{\Gamma, A \Rightarrow B \vdash A}{\Gamma, A \Rightarrow B \vdash B} (\Gamma \Rightarrow)$$

Pour V

$$\frac{\Gamma, A \vee B, A \vdash C \quad \Gamma, A \vee B, B \vdash C}{\Gamma, A \vee B \vdash C} (\Gamma \vee)$$

Pour ∧

$$\frac{\Gamma, A \wedge B, A, B \vdash C}{\Gamma, A \wedge B \vdash C} (\Gamma \wedge)$$