

Lab 06

R. Ferrero, A. C. Marceddu Politecnico di Torino

Dipartimento di Automatica e Informatica (DAUIN)

Torino - Italy

This work is licensed under the Creative Commons (CC BY-SA) License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/

- Rename register r1 to single_value, r2 to double_value, r3 to triple_value, r4 to quadruple_value e r5 to quintuple value
- Assign some value to single value

- By only using MOV and ADD, assign these values to the registers:
 - double_value = single_value *2
 - triple value = single value *3
 - quadruple_value = single_value * 4
 - quintuple value = single value * 5
- Suggestion: exploit Inline Barrel Shifter with MOV

- Allocate 26 byte into a memory area DATA READWRITE, without initializing them
- Initialize r0 and r1 to 1
- Assign to registers r2-r12 the elements of Fibonacci sequence. For example:
 - r2 = r1 + r0
 - r3 = r2 + r1
- Assign to r14 the address of the first byte of memory area allocated before

- Using pre-indexed addressing, save the least significant byte of registers r0-r12, incrementing r14 at each assingment
- Using post-indexed addressing mode, save the least significant byte of registers r12-r0 (reverse order), incrementing r14 at each assignment.
- At the end, check that the content of the memory is the following:
- 01 01 02 03 05 08 0D 15 22 37 59 90 E9 E9 90 59 37 22 15 0D 08 05 03 02 01 01

Write a program in ARM assembly language executing this tasks:

Define the following constants in a code area

```
myConstants DCW 57721,56649, 15328, 60606, 51209, 8240, 24310, 42159
```

- Allocate 16 byte (4 word) in a data area
- Considering the constants into couples, write in the 4 word the sum of the 4 couples of constants.

 Cortex-M4 instruction set contains the following instruction:

- UADD8 sums corresponding bytes of Rn and Rm, storing the result in Rd.
- Example: Rn = 0x 7A 30 45 8D Rm = 0x C3 15 9E AARd = 0x 3D 45 E3 37
- Please note the absence of carry between bytes in Rd.

- UADD8 is not present in Cortex-M3 instruction set.
- Write instructions for Cortex-M3 equivalent to UADD8 r4, r0, r1.

 Cortex-M4 instruction set contains the following instruction:

```
USAD8 <Rd>, <Rn>, <Rm>
```

- Each byte of Rn and Rm is a pure binary number.
- USAD8 calculates the absolute value of the difference between each byte in Rn and Rm.
- After that, USAD8 sums the four absolute values, storing the result in in Rd.

• Example: Rn = 0x 7A 30 45 8D

Rm = 0x C3 15 9E AA

- 1. | 0x8D 0xAA | = 0x1D
- 2. |0x45 0x9E| = 0x59
- 3. |0x30 0x15| = 0x1B
- 4. | 0x7A 0xC3 | = 0x49

Rd = 0x1D + 0x59 + 0x1B + 0x49 = 0xDA

 Note: the value in Rd can be on more than 8 bit

 If you have a value stored in register r4, you can compute its absolute value with the following code:

```
• ASR r6, r4, #31
```

- ADD r4, r4, r6
- EOR r4, r4, r6
- Alternatively, it is possible to recur to conditional branches (not seen at lessons so far)

- USAD8 is not present in Cortex-M3 instruction set.
- Write instructions for Cortex-M3 equivalent to USAD8 r5, r0, r1.

 Cortex-M4 instruction set contains the following instructions:

```
SMUAD <Rd>, <Rn>, <Rm>
SMUSD <Rd>, <Rn>, <Rm>
```

 Both instructions multiply the lower halfword of Rn times the lower halfword of Rm, and the higher halfword of Rn times the higher halfword of Rm.

- Halfwords are considered in two's complement.
- SMUAD sums the two products and saves the result in Rd.
- SMUSD subtracts the product of the higher halfwords from the product of the lower halfwords, storing the result in Rd.

• Example: Rn = 0x7A30 458D

Rm = 0xC3159EAA

- 0x458D * 0x9EAA = 0xE58E35A2
- 0x7A30 * 0xC315 = 0xE2EC95F0
- With SMUAD, Rd = 0xC87ACB92
- With SMUSD, Rd = 0x02A19FB2

- SMUAD e SMUSD are not present in the Cortex-M3 instruction set.
- Write instructions for Cortex-M3 equivalent to

```
SMUAD r6, r0, r1
SMUSD r7, r0, r1
```

- The sign of halfwords has to be extended before multiplication.
- Example in pure binary:
 - \bullet 0x458D = 17805
 - 0x9EAA = 40618
 - 0x458D * 0x9EAA = 0x2B1B35A2 = 723.203.490
- In two's complement:
 - 0x9EAA = -24918
 - 0x458D * 0x9EAA = 0xE58235A2 = -443.664.990

Exercise 7 (optional)

 Create a new project by selecting a card with the Cortex-M4 core, for example NXP LPC4072. Write the instructions:

```
UADD8 r4, r0, r1
USAD8 r5, r0, r1
SMUAD r6, r0, r1
SMUSD r7, r0, r1
```

 Verify that results are coherent with the ones obtained in the previous exercises.