Chapter 5

Data Modeling with Entity-Relationship Diagram

Entities and Tables

- The principle difference between an entity and a table (relation) is that you can express a relationship between entities without using foreign keys.
- This makes it easier to work with entities in the early design process where the very existence of entities and the relationships between them is uncertain.

Chapter Objectives

- To understand the two-phase <u>data</u> <u>modeling/database design</u> process
- To understand the purpose of the data modeling process
- Logical/conceptual model vs. Physical model

Chapter Objectives

- To understand entity-relationship (E-R) diagrams
- To be able to determine entities, attributes, and relationships
- To be able to create entity identifiers
- To be able to determine **minimum and maximum** cardinalities
- To understand variations of the E-R model
- To understand and be able to use ID-dependent and other weak entities
- To understand and be able to use supertype/subtype entities

Chapter Objectives

- To understand and be able to use patterns
- strong entity patterns
- ID-dependent association pattern
- the ID-dependent multivalued attribute pattern
- the ID-dependent archetype/instance pattern
- the **line-item** pattern
- the for-use-by pattern
- the **recursive** pattern
 - the <u>iterative</u> nature of the data modeling process
 - the data modeling process

Data modeling is one of critical success factors for an information system project.

1. THE DATA MODEL

Definition

- A data model is a plan or blueprint for a database design.
- A data model is more generalized and abstract than a database design.
- It is easier to change a data model then it is to change a database design, so it is the appropriate place to work through conceptual database problems.

E-R Model

- Entity-Relationship model is a set of concepts and graphical symbols that can be used to create conceptual schemas.
- History of the E-R model
 - Original E-R model—by Peter Chen (1976)
 - Extended E-R model (subtypes)—extensions to the Chen model
 - Information Engineering (IE)—by James Martin (1990); it uses "crow's foot" notation, is easier to understand.
 - IDEF1X—a national standard developed by the National Institute of Standards and Technology [see Appendix C]
 - Unified Modeling Language (UML)—by the Object
 Management Group; it supports object-oriented methodologys
 [see Appendix D]

Entities

- Something that can be identified and the users want to track:
 - Entity class—a collection of entities of a given type
 - -Entity instance—the occurrence of a particular entity
- There are usually many instances of an entity in an entity class.

Example

The Entity Class CUSTOMER and Two Entity

Instances

CUSTOMER Entity

CUSTOMER

CustomerNumber
CustomerName
Street
City
State
Zip
ContactName
Email

Two CUSTOMER Instances

1234
Ajax Manufacturing
123 Elm Street
Memphis
TN
32455
P_Schwartz
P_S@Ajax.com

99890 Jones Brothers 434 10th Street Boston MA 01234 Fritz Billingsley Fritz@JB.com

Attributes

- Attributes describe an entity's characteristics.
 - -All entity instances of a given entity class have the same attributes, but vary in the values of those attributes.
- Originally shown in data models as ellipses.
- Data modeling products today commonly show attributes in rectangular form.

Lxampic

The EMPLOYEE Entity and its Attributes in Ellipses

Example

The EMPLOYEE Entity and its Attributes

EMPLOYEE

EmployeeNumber

EmployeeName

Phone

Email

HireDate

ReviewDate

Identifiers

- Identifiers are attributes that name, or identify, entity instances.
- The identifier of an entity instance consists of one or more attributes.
- Composite identifiers are identifiers that consist of two or more attributes.
- Identifiers in data models become keys in database designs.
 - Entities have identifiers.
 - Tables (or relations) have keys.

Weak Entities

- A weak entity is an entity whose existence depends upon another entity.
- All <u>ID-Dependent</u> entities are considered weak.
- Example: Employees and their dependents

Entity-Attribute Display in Data Models

EMPLOYEE

EmployeeNumber

EmployeeName

Phone

Email

HireDate

ReviewDate

(a) Entity with All Attributes **EMPLOYEE**

EmployeeNumber

EMPLOYEE

(b) Entity with Identifier Attribute Only (c) Entity with No Attributes

Relationships

- Entities can be associated with one another in relationships:
 - Relationship classes: associations among entity classes
 - Relationship instances: associations among entity instances

• In the original E-R model, <u>relationships could</u> <u>have attributes.</u>

5-17

A relationship class can involve two or more

Degree of the Relationship

- The degree of the relationship is the number of entity classes in the relationship:
 - Two entities have a binary relationship of degree two.
 - Three entities have a **ternary relationship** of degree three.

Binary Relationship

Ternary Relationship

How many instances can/must participate in a relationship?

2. CARDINALITY (MULTIPLICITY)

Cardinality / Multiplicity

- Cardinality means "count," and is expressed as a number.
- Maximum cardinality is the maximum number of entity instances that *can* participate in a relationship.
- Minimum cardinality is the minimum number of entity instances that *must* participate in a relationship.

Maximum Cardinality

- Maximum cardinality is the maximum number of entity instances that *can* participate in a relationship.
- There are three types of maximum cardinality:
 - -One-to-One [1:1]
 - -One-to-Many [1:N]
 - -Many-to-Many [N:M]

Three Types of Maximum Cardinality

Parent and Child Entities

- In a one-to-many relationship:
 - The entity on the one side of the relationship is called the parent entity or just the parent.
 - The entity on the many side of the relationship is called the child entity or just the child.
- In the figure below, EMPLOYEE is the parent and COMPUTER is the child:

HAS-A Relationships

- The relationships we have been discussing are known as HAS-A relationships:
 - -Each entity instance *has a* relationship with another entity instance.
 - An EMPLOYEE *has one or more* COMPUTERs.
 - A COMPUTER *has one* assigned EMPLOYEE.

Minimum Cardinality

- Minimum cardinality is the minimum number of entity instances that *must* participate in a relationship.
- Minimums are generally stated as <u>either zero</u> or one:
 - IF zero [0] THEN participation in the relationship by the entity is **optional**, and **no** entity instance must participate in the relationship.
 - IF **one** [1] THEN participation in the relationship by the entity is **mandatory**, and *at least one* entity instance must participate in the relationship.

Data Modeling Notation- IE Crow's Foot I

Symbol	Meaning
	Mandatory – One
	Mandatory—Many
	Optional—One
	Optional—Many

Reading Minimum Cardinality

- Look toward the entity in question:
 - -IF you see an **oval** THEN that entity is **optional** (minimum cardinality of zero [0]).
 - -IF you see a **vertical hash mark**THEN that entity is **mandatory**(required) (minimum cardinality of one [1]).

Three Types of Minimum Cardinality

(a) Mandatory-to-Mandatory (M-M) Relationship

(b) Optional-to-Optional (O-O) Relationship

(c) Optional-to-Mandatory Relationship

Diagramming your data model

3. DATA MODELING NOTATIONS

Data Modeling Notation-IE Crow's Foot 1:N

Data Modeling Notation: IE Crow's Foot N:M

4. TYPES OF ENTITIES

ID-Dependent Entities

- An ID-dependent entity is an entity (child) whose identifier includes the identifier of another entity (parent).
- The ID-dependent entity is a logical extension or subunit of the parent:
 - BUILDING : APARTMENT
 - PAINTING: PRINT
- The minimum cardinality from the ID-dependent entity to the parent is always *one*.

ID-Dependent Entities

Weak Entities

Subtype Entities

- A subtype entity is a special case of a supertype entity:
 - -STUDENT: UNDERGRADATE or GRADUATE
- The *supertype* contains all common attributes, while the subtypes contain specific attributes.
- The *supertype* may have a **discriminator** attribute which indicates the subtype

Subtypes with a Discriminator

Subtypes: Exclusive or Inclusive

- If subtypes are **exclusive**, one supertype relates to at most one subtype.
- If subtypes are inclusive, one supertype can relate to one or more subtypes.

Subtypes: Exclusive or Inclusive

Subtypes: IS-A Relationships

- Relationships connecting supertypes and subtypes are called **IS-A relationships**, because a subtype *is a* supertype.
- The identifier of the supertype and all of its subtypes must be *identical*; i.e., the identifier of the supertype becomes the identifier of the related subtype(s).
- Subtypes are used to avoid valueinappropriate nulls.

You will see these symbols in many of database diagrams.

5. CROW'S FOOT SYMBOL

IE Crow's Foot Symbol Summary I

IE Crow's Foot Symbol Summary II

Common patterns existing among entities

6. DESIGN PATTERNS

Strong Entity Patterns

Strong Entity Patterns-1:1 Strong Entity Relationships

(a) Club Membership Data Entry Form

(b) Club Locker Report

Strong Entity Patterns-1:1 Strong Entity Relationships

Strong Entity Patterns: 1:N Strong Entity Relationships

Strong Entity Patterns: 1:N Strong Entity Relationships

Strong Entity Patterns: N:M Strong Entity Relationships

(a) SUPPLIERS Form

(b) PART Report

RT							
Part Number	Part Name	Sales Price	ROQ	QOH	Company Name	City	Country
1000	Cedar Shakes	\$22.00	100	200			
					Bristol Systems	Manchester	England
					ERS Systems	Vancouver	Canada
					Forrest Supplies	Denver	US
2000	Garage Heater	\$1,750.00	3	4			
					Bristol Systems	Manchester	England
					ERS Systems	Vancouver	Canada
					Forrest Supplies	Denver	US
					Kyoto Importers	Kyoto	Japan
3000	Utility Cabinet	\$55.00	7	3			
					Ajax Manufacturing	Sydney	Australia
					Forrest Supplies	Denver	US

Strong Entity Patterns: N:M Strong Entity Relationships

ID-Dependent Patterns

- The Association Pattern
- The Multivalued Attribute Pattern
- The Composite Multivalued Attributes Pattern
- The Archetype/Instance Pattern

ID-Dependent Relationships: The Association Pattern

PartNumber	PartName	SalesPrice	ROQ	QOH	CompanyName	City	Country	Price
1000	Cedar Shakes	\$22.00	100	200				
					Bristol Systems	Manchester	England	\$14.0
					ERS Systems	Vancouver	Canada	\$12.
					Forrest Supplies	Denver	US	\$15.
2000	Garage Heater	\$1,750.00	3	4				
					Bristol Systems	Manchester	England	\$950.
					ERS Systems	Vancouver	Canada	\$875.
					Forrest Supplies	Denver	US	\$915.0
					Kyoto Importers	Kyoto	Japan	\$1,100.
3000	Utility Cabinet	\$55.00	7	3				
					Ajax Manufacturing	Sydney	Australia	\$37.
					Forrest Supplies	Denver	US	\$42.

ID-Dependent Relationships: The Association Pattern

In database design, a table pattern where an intersection table contains additional attributes beyond the attributes that make up the composite primary key.

ID-Dependent Relationships: Composite Multivalued Attributes

ID-Dependent Relationships: Composite Multivalued Attributes

ID-Dependent Relationships: The Archetype/Instance Pattern

- The archetype/instance pattern occurs when the ID-dependent child entity is the physical manifestation (instance) of an abstract or logical parent.
 - -PAINTING: PRINT
 - -CLASS: SECTION
 - -YACHT DESIGN: YACHT
 - -HOUSE_MODEL: HOUSE

ID-Dependent Relationships: The Archetype/Instance Pattern

Mixed Patterns

- The Line-Item Pattern
- Other Patterns
- The For-Use-By Pattern
- Recursive Patterns

The Line-Item Pattern

The Line-Item Pattern

Other Mixed Patterns

- Look for a mixed pattern where:
 - -A strong entity has a multivalued composite group
 - One of the elements of the composite group is an identifier of another strong entity.

Other Mixed Patterns

The For-Use-By Pattern

Resident Fishing Lices 2011 Season State of Washington						se		License No: 03-1123432		
Name:										
Street:										
City:						State:		Zip:		
For Use by Commercial Fishers Only						For Use by Sport Fishers Only				
Vessel Number:				Number Years at This Address:						
Vessel Name:				Prior Year License Number:						
Vessel T	Гуре:									
Tax ID:										

The For-Use-By Pattern

Recursive Relationships

• A recursive relationship occurs when an entity has a

1:N Recursive Relationship

N:M Recursive Relationship

