1

SEQUENCE AND SERIES

EE23BTECH11011- Batchu Ishitha*

Q: Find the sum to n terms of the series whose n^{th} term is given by $(2n-1)^2$? **Solution:**

	Variable	Description	Value
ĺ	x(n)	n th term of sequence	$(2n+1)^2 u(n)$
	TABLE 0		
		INDIT DAD AMETED C	

Sum of *n* terms of AP is given by

$$y(n) = x(n) * u(n) \tag{1}$$

$$x(n) = (2n+1)^2 u(n) (2)$$

$$u(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{1}{(1-z^{-1})} \quad |z| > 1$$
 (3)

$$nu(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z^{-1}}{(1-z^{-1})^2} \quad |z| > 1 \tag{4}$$

$$n^2 u(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z^{-1}(1+z^{-1})}{(1-z^{-1})^3} \quad |z| > 1$$
 (5)

$$\implies X(z) = \frac{4z^{-1}(1+z^{-1})}{(1-z^{-1})^3} + \frac{1}{(1-z^{-1})} + \frac{4z^{-1}}{(1-z^{-1})^2} \quad |z| > 1$$
 (6)

$$Y(z) = X(z)U(z) \tag{7}$$

$$= \left(\frac{4z^{-1}(z^{-1}+1)}{(1-z^{-1})^3} + \frac{1}{(1-z^{-1})} + \frac{4z^{-1}}{(1-z^{-1})^2}\right) \left(\frac{1}{1-z^{-1}}\right)$$
(8)

$$= \frac{4z^{-1}(z^{-1}+1)}{(1-z^{-1})^4} + \frac{1}{(1-z^{-1})^2} + \frac{4z^{-1}}{(1-z^{-1})^3}$$
(9)

$$Y(Z) = \frac{1}{(1 - z^{-1})} + \frac{9z^{-1}}{(1 - z^{-1})} + \frac{25z^{-2}}{(1 - z^{-1})^2} + \frac{24z^{-3}}{(1 - z^{-1})^3} + \frac{8z^{-4}}{(1 - z^{-1})^4} \quad |z| > 1$$
 (10)

By using inverse Z-transform pairs,

$$Z^{-1} \left[\frac{z^{-1}}{1 - z^{-1}} \right] \to u(n - 1) \tag{11}$$

$$Z^{-1} \left[\frac{z^{-2}}{(1 - z^{-1})^2} \right] \to (n - 1)u(n - 2) \tag{12}$$

$$Z^{-1}\left[\frac{z^{-3}}{(1-z^{-1})^3}\right] \to \frac{(n-1)(n-2)}{2}u(n-3) \tag{13}$$

$$Z^{-1} \left[\frac{z^{-4}}{(1-z^{-1})^4} \right] \to \frac{(n-1)(n-2)(n-3)}{6} u(n-4)$$
 (14)

Now from (10)

$$y(n) = u(n) + 9u(n-1) + 25(n-1)u(n-2) + 24\frac{(n-1)(n-2)}{2}u(n-3) + 8\frac{(n-1)(n-2)(n-3)}{6}u(n-4)$$
(15)

$$\implies y(n) = \left(\frac{4n^3 + 12n^2 + 11n + 3}{3}\right)u(n) \tag{16}$$

:. Sum of *n* terms of the series whose n^{th} term is given by $(2n+1)^2$ is $\frac{4n^3+12n^2+11n+3}{3}$.

Fig. 0.