Problemes de Càlcul amb Vàries Variables. Full 6

Integrals dobles i triples

- 1. Trobeu l'àrea de les següents regions:
 - (a) $x^2 \le y \le x$;
 - (b) $x + y \ge 1, x^2 + y^2 \le 1;$
 - (c) Un pètal de la corba $r = \sin 3\theta$.;
- 2. Verifiqueu el teorema de Green sobre la circumferència $\mathbf{r}(t) = (\cos t, \sin t), \ 0 \le t \le 2\pi$ per al camp $\mathbf{v}(x,y) = (y,2x)$.
- 3. Comproveu que el teorema de Green és aparenment violat al llarg de la circumferència $x^2 + y^2 = 1$ per al camp vectorial

$$\mathbf{v}(x,y) = (\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2})$$

Expliqueu que realment no hi ha cap contradicció.

- 4. Verifiqueu el teorema de Green per al camp vectorial $f(x, y) = (2xy x^2, x + y^2)$ sobre el contorn tancat que determinen les corbes $y^2 = x$ i $y = x^2$.
- 5. Calculeu la integral de línia del camp $\mathbf{v} = (x y, 1/x)$ sobre una el·lipse de semieix major a i semieix menor b. Penseu en un camp adient per a calcular l'àrea de l'el·lipse utilitzant el teorema de Green.
- 6. Determineu el volum comprès entre els plans $x=1,\ x=-1,\ y=0,\ y=1$ i el paraboloide $z=x^2+y^2.$
- 7. Calculeu mitjançant una integral doble el volum d'un el·lipsoide d'equació $(x/a)^2 + (y/b)^2 + (z/c)^2 = 1$.
- 8. Suposeu que U es la regió del pla (x,y) on $x\geq 0,\ y\geq 0$ i $x^2+y^2\leq 5$. Utilitzeu coordenades polars per a avaluar

$$\int \int_{U} \sqrt{x^2 + y^2} \, dx dy$$

- 9. Utilitzeu una integral doble per a trobar el volum del tetrà
edre amb vèrtexs a (0,0,0), (1,0,0), (0,3,0) i (0,0,2).
- 10. Avalueu les integrals següents:

$$\int_{0}^{1} dx \int_{0}^{3} dy \int_{0}^{5} dz (x + yz)$$

$$\int \int \int_{V} dx dy dz \qquad V = \{(x, y, z) | 1 \le x \le 2, 0 \le y \le 4, 0 \le z \le 10\}$$

11. Avalue
u $\int\int\int_V\,dx\,dy\,dz$ si Vés el volum finit limitat pels plan
s $z=0,\,y=0,\,x=0$ i x+2y+3z=6.