SPIS TREŚCI

0.1.	Podsta	awy teoretyczne	1
	0.1.1.	Teoria grafów	1
	0.1.2.	Izomorfizm	4
	0.1.3.	Formy kanoniczne grafów	5
	0.1.4.	Kolorowanie grafu	5
0.2.	Twierd	Izenie Ramseya	7
	0.2.1.	Historia liczby i Twierdzenia Ramseya	8
	0.2.2.	Twierdzenie Van der Waerden's	8
	0.2.3.	Paul Erdös i Teoria Ramseya	8
	0.2.4.	Wartości liczb Ramseya	9
0.3.	Artykı	rł R(4,5)=25	12
0.4.	Genero	owanie grafów	12
	0.4.1.	Generowanie grafów nieizomorficznych	12
	0.4.2.	Generowanie grafów Ramseya	14
0.5.	Skleja	nie grafów	14
	0.5.1.	Dekompozycja problemu	14
	0.5.2.	Grafy potrzebne do sklejania	15
	0.5.3.	Idea sklejania	15
	0.5.4.	Algorytm sklejania	16
	0.5.5.	Zawężanie przedziałów - zasady A-D	16
	0.5.6.	Wynik sklejania	18
0.6	Impler	nentacia i eksperymenty	20

WYKAZ WANIEJSZYCH OZNACZERÓTÓW

PWM - Pulse Width Modulation

ADC - Analog-to-Digital Converter

SPI - Serial Pheripheral Interface

PCB - Printed Circuit Board

0.1. Podstawy teoretyczne

Przed omówieniem tematu naszej pracy, należy przedstawić kilka pojęć z teorii grafów, bez których zrozumienia, nie jest możliwe wyznaczanie liczb Ramseya.

0.1.1. Teoria grafów

Definicja 0.1.1. Graf nieskierowany to para G=(V, E), gdzie V to zbiór elementów nazywanych wierzchołkami a E to zbiór par wierzchołków, którego elementy są nazywane krawędziami.

Dla potrzeb naszej pracy, będziemy zakładać, że gdy mówimy o grafie, mamy na myśli graf nieskierowany i prosty (brak duplikatów par w zbiorze E).

Definicja 0.1.2. Liczbę elementów zbioru V w grafie G=(V, E) nazywamy rzędem grafu.

Rząd grafu to liczba jego wierzchołków.

Definicja 0.1.3. W grafie G (V, E) wierzchołki u, $v \in V$ sąsiadują wtedy i tylko wtedy gdy (u, v) $\in E$.

W grafach nieskierowanych sąsiedztwo jest relacją symetryczną. Jest nieprzechodnia - z sąsiedztwa u i w. i v oraz v i w nie wynika sąsiedztwo u i w.

Rysunek 1. Graf, w którym wierzchołek 1 sąsiaduje z 2 i 5; 2 z 1 i 5; 3 z 4 i 5; 4 z 3 i 5; 5 z 1, 2, 3 i 4

Definicja 0.1.4. Klika K w grafie G(V,E) jest takim podzbiorem wierzchołków V(G), że dla każdej pary wierzchołków

$$u, v \in K, (u, v) \in E(G)$$

W uproszczeniu, klika to podzbiór wierzchołków grafu, z których każdy jest połaczony z każdem innym wiechołkiem tego podzbioru.

Rysunek 2. Wierzchołki 1, 2, 3 tworzą klikę stopnia 3 - K_3

Znalezienie stopnia maksymalnej kliki w danym grafie jest trudne obliczeniowo. W ogólności jest to problem rozwiązywany w czasie niewielomianowym (chociaż dla niektórych grup grafów, takich jak grafy planarne, istnieją algorytmy wielomianowe), ale sprawdzenie czy w grafie istnieje klika z góry znanego stopnia, jest łatwe. Przykładowo istnienie K_3 możemy sprawdzić następującym algorytmem:

Algorithm 1 Sprawdzenie czy graf zawiera K_3

```
Require: G(V,E) for all vinV do for all uinV do if v \neq u \land v \in sasiedzi(u) \land sasiedzi(v) \cap sasiedzi(u) \neq \emptyset then return jest K3 end if end for end for
```

Definicja 0.1.5. Zbiór niezależny N w grafie G(V,E) to taki podzbiór wierzchołków G, że dla każdej pary wierzchołków

$$u, v \in N, (u, v) \notin E(V)$$

Rysunek 3. Wierzchołki 1, 2, 3, 5 tworzą zbiór niezależny 4 - N_4

Zbiór niezależny można również zdefiniować jako przeciwieństwo kliki, lub jako klikę w dopełnieniu grafu.

Definicja 0.1.6. Depełnieniem grafu G(V,E) nazywamy taki graf G'(V,E'), dla którego zachodzi

$$\forall u, v(u, v) \in E \iff (u, v) \notin E'$$

Na pierwszy rzut oka trudno zauważyć czy graf G posiada zbiór niezależny N_3 . Spójrzmy na jego dopełnienie:

Rysunek 5. Dopełnienie grafu G - graf G'

Natychmiast zauważamy, że graf G' posiada klikę K_3 : Oznacza to, że G ma N_3 na tych samych Wierzchołkach.

Rysunek 6. K_3 w $\overset{-}{G}{}'$ leży między tymi samymi Wierzchołkami co N_3 w G

Definicja 0.1.7. Dla grafu G(V,E) i podzbioru jego wierzchołków $S\subseteq V$, podgrafem indukowanym G[S] nazywamy taki graf, którego wszystkie wierzchołki zawierają się w S i którego zbiór krawędzi zawiera wszystkie krawędzie z E kończące się w S.

$$G[S] = H(S, E_2), \forall (v, u) \in E, (v, u) \ inE_2 \iff v \in S \land u \in S$$

0.1.2. Izomorfizm

Definicja 0.1.8. Izomorfizm grafów G i H to taka biekcja $f:V(G) \rightarrow V(H)$, że 2 wierchołki u i v sąsiadują w G tylko jeżeli f(u) i f(v) sąsiadują w H.

Innymi słowy, izomorfizm jest to takie przekształcenie grafu, które zachowuje wszystkie jego właściwości. Grafy, dla których można znaleźć izomorfizm są izomorficzne. Innymi słowy, dwa grafy są izomorficzne, jeżeli ich wierzchołki można nazwać w taki sposób, aby sąsiadami odpowiadających sobie wierzchołków w obu grafach miały dokładnie takie same zbiory sąsiadów.

Przekształćmy graf z rysunku 1 zamieniając wierzchołek 1 z 2 oraz 3 z 4:

Rysunek 7. Mimo przekształcenia graf zachował swoje własności

Jak widać, wierzchołki o tych samych numerach zachowały swoje zbiory sąsiadów.

Warto zauważyć, że na nasz użytek grafy izomorficzne nie są niezależnie użyteczne. Wszystkie własności opisane w tej pracy są przez izomorfizmy niezmienione, a więc na nasz użytek dwa grafy izomorficzne to efektywnie ten sam graf.

Definicja 0.1.9. Automorfizm grafu G to taka permutacja f zbioru wierzchołków G, że para wierzchołków u, v jest sąsiedująca tylko jeżeli f(u) i f(v) sąsiadują.

Automorfizm to izomorfizm z grafu początkowego do tego samego grafu. Złożenie automorfizmów również jest Automorfizmem.

Definicja 0.1.10. Grupa automorfizmów grafu G to zbiór składający się z wszystkich automorfizmów grafu G.

Twierdzenie 1. Dla grafu n-wierzchołkowego grupa automorfizmów może być określona przez nie więcej niż n-1 generatorów.

0.1.3. Formy kanoniczne grafów

Definicja 0.1.11. Forma kanoniczna C(G) grafu G to taki graf izomorficzny do G, że każdy graf izomorficzny do G ma taką samą formę kanoniczną. [14]

Canon:
$$G -> G/\simeq$$

$$G \simeq H \iff Canon(G) = Canon(H)$$

Forma kanoniczna grafu to takie pokrycie grafu G, które jest identyczne dla wszystkich grafów izomorficznych z G. Przykładowo, takie pokrycie można zaimplementować jako numerowanie wierzchołków począwszy od takich o najmniejszej liczbie sąsiadów. Jeżeli kilka wierzchołków ma taką samą liczbę sąsiadów to albo niższy numer otrzymuje wierzchołek, który ma sąsiada (sąsiadów) z najniższym numerem albo losowy.

Rzeczywiste algorytmy są dużo bardziej zoptymalizowane i Korzystają z heurystyk pozwalających zoptymalizować proces dla określonych przypadków. Sprowadzanie do formy kanonicznej jest kluczowe dla szybkiego wyszukiwania izomorfizmów.

Definicja 0.1.12. Orbita w grafie G to taki podzbiór jego wierzchołków, których wszystkie permutacje są izomorfizmami.

Algorithm 2 Sprowadzenie grafu do formy kanonicznej

Require: G(V, E)

tab = sort(V, iloscSasiadowRekurencyjnie)

 $\quad \text{for all } vinV \ \text{do}$

v.numer = tab.indeks(v)

end for

Wszystkie wierzchołki wewnątrz orbity mogą zostać dowolnie zamienione, nie zmieniając właściwości grafu. Ich zamiana jest automorfizmem. Przykład:

Rysunek 8. Orbita pierwsza: 1, 5 Orbita druga: 2, 3, 4

0.1.4. Kolorowanie grafu

Definicja 0.1.13. Dla grafu G=(V,E), wierzchołkowym oznakowaniem grafu nazywamy funkcję mapującą wierchołki do oznaczeń. Analogicznie, funkcję mapującą krawędzie do oznaczeń nazywamy krawędziowym oznakowaniem grafu.

Rysunek 9. Przykład wierzchołkowego oznakowania grafu G z rysunku

Rysunek 10. Przykład krawędziowego oznakowania grafu G

Oznakowywanie elementów grafów ma wiele zastosowań. Często nadaje się krawędziom wartości, mające reprezentować, np. koszt pokonania drogi między dwoma punktami. Innym często wykorzystywanym oznakowaniem grafów jest kolorowanie.

Definicja 0.1.14. Kolorowanie grafów jest szczególnym przypadkiem oznakowywania grafu, w którym oznaczenia są nazywane kolorami i mogą być przypisywane tylko zgodnie z określonymi o ogranczeniami.

Rysunek 11. Przykładowe kolorowanie wierzchołkowe grafu

Rysunek 12. Przykładowe kolorowanie krawędziowe grafu

Kolorowanie najczęściej idzie w parze z ograniczeniami, których należy przestrzegać przypisując elementom wartości. Najczęściej dotyczą one zakazu kolorowania sąsiadujących wierzchołków lub krawędzi tym samym kolorem.

Innym ograniczeniem dla kolorowania może być zakaz pomalowania kliki ustalonego stopnia n - K_n - tym samym kolorem. Dla n=2 otrzymamy zakaz sąsiedztwa wspomniany wcześniej.

0.2. Twierdzenie Ramseya

Twierdzenie Ramseya mówi o konieczności pojawienia się pewnych układów w pozornym chaosie co oznacza że każda większa struktura będzie zawierała jakąś podstrukturę. Zagadnienie można łatwo przedstawić posługując się teorią grafów, dla uproszczenia zostanie użyte kolorowanie dwoma kolorami.

Twierdzenie 2. Niech $r \in \mathbb{N}$. Istnieje takie $n \in \mathbb{N}$ gdzie dla każdego 2-kolorowego K_n grafu znajdzie się jednokolorowy podgraf K_r w K_n . [6]

Z powyższego twierdzenia wynika, że będziemy omawiać dwukolorowe struktury.

Definicja 0.2.1 (Liczba Ramseya). Niech $r \in \mathbb{N}$ i $b \in \mathbb{N}$. Liczba Ramseya, wyrażana jako n = R(r,b), jest najmniejszą liczbą całkowitą taka że 2-kolorowy graf K_n , używając koloru czerwonego i niebieskiego

do kolorowania krawędzi, implikuje czerwony monochromatyczny podgraf K_r lub niebieski monochromatyczny podgraf K_b [6]

Definicja 0.2.2 (Graf Ramseyowski). Niech $r \in \mathbb{N}$, $b \in \mathbb{N}$ i $n \in \mathbb{N}$. Graf Ramseyowski, zapisany jako R(r,b,n) oznacza graf mający n wierzchołków, nie zawierający kliki o rozmiarze r oraz nie zawierający zbioru niezależnego rozmiary b. [6]

W kontekście tej pracy, określamy graf jako ramseyowski jeżeli nie posiada on kolorowania określonego w twierdzeniu 2. Oznacza to, że graf spełniający R(4,5,6) to graf zbudowany na 6 wierzchołkach, który nie posiada kliki 4 rzędu ani zbioru niezależnego 5 rzędu. Przykładowy graf R(4,5,6) jest przedstawiony na rysunku poniżej

Celem tej pracy jest wykazanie, że stworzenie grafu R(4,5,25) jest niemożliwe, z czego wynika, że liczba Ramseya R(4,5)=25.

W celu ułatwienia obliczeń i umożliwienia użycia technik generacji grafów, używamy uproszczenia reprezentacji grafowej. Zamiast wyznaczać kolorowania grafu pełnego, używamy wszystkich grafów prostych gdzie kolor krawędzi zamieniony jest na istnienie lub brak istnienia krawędzi pomiędzy parą wierzchołków.

0.2.1. Historia liczby i Twierdzenia Ramseya

W 1930 roku zostało opublikowane działo Franka Plumptona Ramseya "On a Problem of Formal Logic" [10], które posłużyło jako podstawę do teorii którą dzisiaj znamy jak Teoria Ramseya.

0.2.2. Twierdzenie Van der Waerden's

Twierdzenie opublikowane przez Van der Waerdena w 1927 roku, przed powstaniem Twierdzenia Ramseya lecz uważana za jedną z jego gałęzi.

Twierdzenie 3. Dla dowolnych liczb naturalnych r oraz k istnieje taka liczba N która określa zbiór {1, 2, 3, ..., N} który jest pokolorowany na r różnych kolorów, z przynajmniej k liczbami naturalnymi w ciągu arytmetycznym które są tego samego koloru.[6]

Dla przykładu, W(2,3) = 9. Zbiór o ośmiu elementach można podzielić na następujące podzbiory aby w żadnym z podzbiorów nie wystąpił szereg arytmetyczny o trzech elementach, $\{1,2,3,4,5,6,7,8\}$ -> $\{1,2,5,6\},\{3,4,7,8\}$. W przypadku zbioru o dziewięciu elementach nie jest to możliwe. Dodając 9 do dowolnego podzbioru utworzony zostanie ciąg arytmetyczny o trzech elementach np. $\{1,5,9\}$ lub $\{7,8,9\}$. Podobna sytuacja zajdzie dla podziału $\{1,4,5,8\},\{2,3,6,7\}$

0.2.3. Paul Erdös i Teoria Ramseya

Happy Ending problem, czyli problem zaprezentowany przez Paula Erdösa w 1933 roku brzmi następująco.

Twierdzenie 4. Dowolny zbiór 5 punktów w przestrzeni zawiera podzbiór 4 punktów które formują wielokąt wypukły.

Twierdzenie to zostało uogólnione w 1935 roku przez George Szekeres oraz Paula Erdösa

Twierdzenie 5. Dla dowolnej liczby całkowitej N, każdy dowolnie duży i skończony zbiór punktów zawiera podzbiór składający się z N punktów który tworzy wielokąt wypukły. [11]

Prace nad Happy Ending problem sprawiły że Paul Erdös natrafił na publikacje Ramseya z 1928 roku. Spowodowało to że Erdös rozpoczął prace nad liczbami Raseya, co przyczyniło się do rozwoju tej teorii.

Party problem lub inaczej Theorem on Friends and Strangers, jest to problem dzięki któremu można przedstawić przykład zastosowania liczby Ramseya, brzmi on następująco: Jaka jest najmniejsza liczba osób jaką trzeba zaprosić na przyjęcie tak aby trójka z nich były wspólnymi znajomymi lub trójka z nich była dla siebie nieznajomymi[15]? Aby odpowiedzieć na to pytanie można zasięgnąć o pomoc do teorii Ramseya gdzie znajdziemy że odpowiedź na postawione pytanie stanowi liczba Ramseya R(3,3)=6 która jest opisana w dalszej części pracy. Powyższe pytanie można przedstawić w bardziej formalny sposób: Znajdź najmniejszą liczbę gości którzy muszą zostać zaproszeni tak aby przynajmniej m znało się wzajemnie a n była dla siebie obca [16], lub inaczej; Znajdź najmniejszą liczbę wierzchołków dla których klika będzie zawierać klikę stopnia n o kolorze czerwonym lub klikę stopnia m o kolorze niebieskim. Rozwiązaniem dla tego problemu to liczby Ramseya.

0.2.4. Wartości liczb Ramseya

1. R(1,k) = R(k,1) = 1

W przypadku gdy jeden z parametrów wynosi 1 aby spełnić warunek wystarczy jeden wierzchołek. Jednokolorowy graf K_1 jest pojedynczym wierzchołkiem i spełnia zarówno warunek dla R(1,b) oraz R(r,1).

2. R(2,k) = R(k,2) = k

W przypadku gdy jeden z parametrów wynosi 2 nie możemy postąpić analogicznie jak w poprzednim przykładzie, graf K_2 nie spełni warunku gdy k>2 dla kolorowania jednym kolorem. Tak samo każdy graf pełny o rozmiarze mniejszym niż k zostanie odrzucony w sytuacji gdy zostanie użyty k kolor aby pokolorować go w jednolity sposób. Dlatego też liczba wierzchołków w grafie musi wynosić k co zawsze spełni jeden z dwóch warunków, przypadek gdy wszystkie krawędzie zostaną pokolorowane jednym kolorem lub gdy chociaż jedna krawędź będzie drugiego koloru. Przykładowo dla R(2,4) gdzie pierwszy kolor (dla r=2) będzie oznaczony kolorem czerwonym a drugi (b=4) niebieskim.

Rysunek 15. R(2,4,4)

3. R(3,3)=6

R(3,3) jest pierwszym nietrywialnym przykładem liczby Ramseya, lecz nadal na tyle małą aby łatwo móc ją wyznaczyć. Łatwo można wykluczyć K_3 , K_4 oraz K_5 za pomocą następującego pokolorowania krawędzi.

Powyższy rysunek pokazuje sposób kolorowania dla grafu 5-wierzchołkowego, ale wykluczenie dowolnego wierzchołka daje poprawne kolorowanie dla grafu 4-wierzchołkowego, dowolnych dwóch dla grafu 3-wierzchołkowego itd.

Aby udowodnić że R(3,3) = 6 przeanalizujmy kolorowanie grafu pełnego o 6 wierzchołkach.

Po wybraniu dowolnego wierzchołka i pokolorowaniu wychodzących z niego krawędzie co najmniej trzy z nich będą miały wspólny kolor. Na rysunku przykładowym tym kolorem jest kolor czerwony, krawędzie tego koloru połączone są z trzema innymi wierzchołkami. Patrząc na trzy wierzchołki do których zostały poprowadzone krawędzie czerwone, łatwo zauważyć, że aby uniknąć powstania trójkąta czerwonego należy połączyć te wierzchołki kolorem niebieskim, lecz robiąc to powstanie klika o rozmiarze trzy koloru niebieskiego. Dowodzi to że R(3,3) = 6.

4. Inne liczby Ramseya

Udowodnienie wartości pozostałych liczb Ramseya zostanie pominięte, gdyż stopień skomplikowania dowodu rośnie wraz z ilością wierzchołków, nie istnieje żaden znany łatwy obliczeniowo sposób na określenie dokładnej wartości tej liczby, oraz wyznaczenie dokładnej wartości często jest na tyle trudne że istnieje jedynie jej bliższe oszacowanie. Poniższa tabela prezentuje dokładne wartości lub górne i dolne granice dla dwukolorowych liczb Ramseya R(k,l) k<10, l<10 (wartości dla k i l równego 2 albo 1 zostały opisane wcześniej). Jako że wartości dla liczb Ramseya są symetryczne, R(r,b) = R(b,r) wypełniony został jedynie górny trójkąt w tabeli.

Istnieją dwa główne podejścia na wyznaczanie liczb Ramseya. Pierwszym z nich gdy wyznaczenie dokładnej liczby nie jest możliwe wyznacza się górną oraz dolną granicę. Przykładową pracą gdzie udowadniane były granice dla liczb Ramseya $(R(5,5)\leqslant 49 \text{ oraz } R(4,6)\leqslant 41)$ jest praca Brendana D. McKaya oraz Stanisława P. Radziszowskiego "Subgraph Counting Identities and Ramsey Numbers" [17]. Drugim sposobem natomiast jest wyznaczenie dokładnej wartości tej liczby jest próba uzyskania dokładnej wartości. W tym przypadku bardzo często wykorzystywane są komputery z zaprojektowanymi do tego celu algorytmami. Przykładowymi pracami gdzie ta metoda została wykorzystana jest praca na której Brendana D. McKaya oraz Stanisława P. Radziszowskiego R(4,5)=25[1] oraz praca Charlesa M. Grinsteada i Sama M. Robertsa "On the Ramsey Numbers R(3,8) and R(3,9)" gdzie posłużyli się algorytmem do wyznaczenia R(3,9)=36 oraz ustalenia granic dla liczby R(3,8) $(28\leqslant R(3,8)\leqslant 29)[18]$.

Powodem dla podawania granicy dolnej oraz górnej jest, jak wspomniano wcześniej, brak uniwersalnej i opłacalnej formuły do określenia dokładnej wartości. Dla grafu pełnego K_n , który ma $\frac{n(n-1)}{2}$ krawędzi, istnieje c grafów które trzeba przeszukać (gdzie c oznacza liczbę kolorów). Oznacza to że złożoność przeszukiwania wszystkich możliwych grafów metoda naiwną to $O(c^{n^2})$ przy c kolorach i n wierzchołkach. Przykładowo dla R(4,6) gdybyśmy chcieli sprawdzić dolną granicę 36 [3], należałoby sprawdzić wszystkie dwukolorowania K_{36} , który ma $\binom{36}{2}=630$ krawędzi. Istnieje więc $2^{630}\approx 4,4555*10^{189}$ różnych sposobów na pokolorowanie tego grafu. Dlatego przy obecnych możliwościach obliczeniowych nie jest możliwe rozwiązanie tego problemu używając podejścia naiwnego.

R(k,l)	3	4	5	6	7	8	9	10
3	6	9	14	18	23	28	36	40
3								42
4		18	25	36	49	59	73	92
T				41	61	84	115	149
5			43	58	80	101	133	143
]			49	87	143	216	316	442
6				102	115	134	183	204
0				165	298	495	780	1171
7					205	217	252	292
'					540	1031	1713	2826
8						282	329	343
0						1870	3583	6090
9							565	581
9							6588	12677
10								798
								23556

Rysunek 19. Wartości liczb ramseya dla $3 \le k \le 10$ i $3 \le l \le 10$. Górny wiersz odpowiada wartością k a boczny wartością l. Dwie liczby zapisane w jednej komórce oznaczają granicę dla danej liczby: najpierw zapisana jest dolna a następnie górna granica

Aby podsumować problem znajdowania dokładnych warości liczb Ramseya można posłużyć się słowami Paula Erdősa: Jeżeli kosmici najechaliby ziemię i postawili ultimatum, że jeżeli ludzkość nie znajdzie R(5,5) w ciągu roku, to zniszczą ziemię, najlepszym wyborem byłoby zebranie całej mocy obliczeniowej jaką aktualnie dysponuje ludzkość w celu pozyskania tej liczby. Jednak w przypadku gdy kosmici zażądali by R(6,6) najlepszym wyborem było by wypowiedzenie im wojny.[12]

5. Granice liczby Ramseya

Granica górna może być łatwo wyliczona stosując nierówność $R(r,b)\leqslant R(r-1,b)+R(r,b-1)$ [9]. Nie jest to jednak zadowalający wynik, ani sposób na wyznaczanie górnego limitu. Poprzednie wartości liczb Ramseya mogą nie być znane oraz sama granica przy znanych wcześniejszych wartościach nie jest najbardziej optymalną. Wzór jawny który opisuje wcześniej podany przypadek to: $R(r,b)\leqslant {r+b-2\choose r-1}$. Przytoczona górna granica jest granicą naiwną. Granica dolna jest wyznaczana z użyciem metod probabilistycznych. Paul Erdős jako pierwszy w 1947 roku zaprezentował dowód z użyciem metod probabilistycznych na granicę dolną dla liczb R(k,k)[8, 9]. Metoda ta opierała się na wykazaniu że w losowo pokolorowanym grafie K_n prawdopodobieństwo znalezienia jednokolorowego grafu K_k jest mniejsza od 1 dla pewnej wartości.

0.3. Artykuł R(4,5)=25

Głównym źródłem wymagań naszej pracy jest publikacja R(4,5)=25 wydana w 1995 przez Brendana D. McKaya oraz Stanisława P. Radziszowskiego [1]. Motywacją do sporządzenia tej pracy było udowodnienie, że dokładna wartość liczby Ramseya R(4,5) wynosi 25, z wykorzystaniem nowych technologii. Prace nad wyznaczeniem wartości R(4,5) zaczęły się w 1955 wraz z wydaniem przez Greenwooda oraz Gleasona artykułu w którym wyznaczyli oni górną granicę $R(4,5) \leqslant 31$. W kolejnych latach granica ta była zawężana aż do $25 \leqslant R(4,5) \leqslant 27$.

Jak pokazano wcześniej, wygenerowanie wszystkich możliwych dwukolorowych grafów a następnie sprawdzenie ich poprawności byłoby zbyt czasochłonne więc wymagane było inne podejście do problemu. Wykorzystano jedynie wyselekcjonowane grafy (s,t,n) gdzie s oznacza rozmiar maksymalnej kliki która znajduje się w grafie, t oznacza wielkość maksymalnego zbioru niezależnego który należy do grafu, a n oznacza liczbę wierzchołków na których zbudowany jest graf. Celem było skonstruowanie rodziny grafów R(4,5,24) z grafów R(3,5,d) oraz R(4,4,24-d) gdzie R(4,5,24) gdzie R(4,5,24) o jeden wierzchołek.

0.4. Generowanie grafów

0.4.1. Generowanie grafów nieizomorficznych

Algorithm 3 Generowanie grafów nieizomorficznych

 $\begin{array}{ll} \textbf{Require:} & n>0 \\ & \texttt{grafy[]} <- \ \texttt{graf} \ \texttt{jednowierzchołkowy} \\ & \textbf{while} \ iloWierzchokw(grafy) < n \ \textbf{do} \\ & \texttt{dodajWierzchołek(grafy)} \\ & \texttt{usunlzomorfizmy(grafy)} \\ & \textbf{end while} \\ \end{array}$

W uproszczeniu: generowanie grafów rozpoczynamy od pojedynczego wierzchołka. Następnie powtarzamy następujące kroki dopóki nie osiągniemy docelowej liczby wierzchołków:

- 1. Generowanie grafów nieizomorficznych
 - Dodanie nowego wierzchołka
 - Utworzenie wszystkich możliwych zestawów krawędzi zawierających ten wierzchołek. Przy dodawaniu n-tego wierzchołka mamy
 - Sprawdzenie izomorfizmów jeżeli wygenerowany graf jest izomorficzny z innym wygenerowanym grafem, to pozostawiamy tylko jeden z nich

Zaczynamy od pojedynczego wierzchołka.

W pierwszym kroku dodajemy drugi wierzchołek i otrzymujemy dwa różne grafy - jeden, w którym wierzchołki sąsiadują, drugi, w którym nie.

Rysunek 22. Grafy wygenerowane z pierwszego grafu z poprzedniego kroku

Następnie bierzemy pierwszy z grafów i dodajemy do niego kolejny wierzchołek, ponownie generując wszystkie możliwości.

Rysunek 23. Grafy wygenerowane z drugiego grafu z poprzedniego kroku

To samo powtarzamy dla grafu drugiego.

Jak łatwo zauważyć graf 1 i graf 5 oraz graf 2 i graf 6 są parami izomorficzne, więc możne odrzucić po jednym z każdej pary, zmniejszając liczbę grafów rozważanych w kolejnych krokach.

Rysunek 24. Wszystkie nieizomorficzne grafy 3-wierzchołkowe

W celu uniknięcia porównywania wszystkich grafów, do nowo dodanego grafu wyznaczane są orbity - tylko jeden sposób generacji każdego grafu spowoduje sytuację, gdzie nowo dodany wierzchołek znajduje się w pierwszej orbicie, co pozwala łatwo odrzucać izomorfizmy.

0.4.2. Generowanie grafów Ramseya

Generowanie grafów obarczonych ograniczeniami co do rozmiarów klik oraz zbiorów niezależnych wygląda niemal tak samo jak generowanie grafów dowolnych, ale zawiera dodatkowy krok - sprawdzenie czy graf nie zawiera kliki lub zbioru niezależnego stopnia który zaburzyłby jego ramseyowskość. Takie grafy można odrzucać, ze względu na następujące twierdzenie:

Twierdzenie 6. Jeżeli graf G posiada klikę stopnia n, oraz istnieje graf H taki że G jest podgrafem H, to H również posiada klikę stopnia n.

Dzięki powyższemu twierdzeniu wiemy, że wszelkie próby rozszerzenia grafu posiadającego klikę stopnia n powodują powstanie grafów z kliką przynajmniej tak wielkiego stopnia. Analogiczne rozumowanie można przeprowadzić wobec rozszerzania grafów ze zbiorem niezależnym o określonym stopniu. Dzięki temu odrzucanie grafów nieramseyowskich na wczesnym etapie generacji nie powoduje wykluczenia żadnych pożądanych grafów wyższych rzędów. Takie odrzucanie znacznie zmniejsza ilość grafów powstających na kolejnych etapach generacji, zwłaszcza dla grafów wyższego rzędu, bez czego wygenerowanie nawet grafów wymaganych do sklejania byłoby trudne. Nieizomorficznych grafów 17-wierzchołkowych jest ponad $10^{26}[13]$. Dzięki wczesnym wykluczaniu dla R(4,4) generowany jest tylko jeden taki graf.

Odrzucanie grafów nieramseyowskich przy każdym rozszerzeniu pozwala wprowadzić dodatkową optymalizację. Jeżeli rozszerzymy graf o ograniczonym stopniu kliki lub zbioru niezależnego, to nowopowstały graf może mieć jedynie klikę lub zbiór niezależny łamiący ograniczenia jeżeli nowo dodany wierzchołek jest ich częścią. Wynikająca z tego mniejsza liczba wymaganych kontroli ramseyowośći uzyskać dalsze przyspieszenie algorytmu generacji grafów.

0.5. Sklejanie grafów

Generowanie grafów wysokiego rzędu jest bardzo wymagające zarówno czasowo jak i pamięciowo. Dlatego stosujemy technikę nazywaną sklejaniem grafów.

0.5.1. Dekompozycja problemu

Definicja 0.5.1. Niech F jest grafem, $v \in V(F)$, $W \subseteq V(F)$. Funkcja $N_F(v,W)$ będzie zwracać podzbiór wierzchołków W, które sąsiadują z v:

$$N_F(v, W) = \{ w \in W | (v, w) \in E(F) \}$$

Definicja 0.5.2. F[V(F) - v] będziemy zapisywać jako F - v.

Twierdzenie 7. Weźmy $x \in V(F)$. Niech podgraf indukowany $G_x = F[N_F(x, V(F))]$ oraz $H_x = F[V(X) - N_F(x, V(F) - x)]$. Jeśli F jest R(4, 5, 25) to G_x jest R(3, 5, d) a F_x jest R(4, 4, 24 - d).

Powyższe twierdzenie jest nieoczywiste, dlatego przeprowadzimy krótki dowód.

Niech graf F zawiera przynajmniej jedną klikę K_3 oraz przynajmniej jeden zbiór niezależny N_4 . Zauważmy że dla każdej kilki K_3 zachodzi jedna z sytuacji:

- 1. $x \in K3$
- 2. $\exists v \in K_3, (v, x) \in E(F) \land \ \ \forall u \in K_3, (u, x) \in E(F)$
- 3. $\not\exists v \in K_3, (v, x) \in E(F)$

W przypadku pierwszym klika zostanie rozbita, 2 wierczhołki będą w G_x a x nie będzie w żadnym. W przypadku drugim wierzchołki tworzące K_3 , które są połączone z x trafią do G_x , niepołączone trafią do H_x .

W przypadku trzecim całość K_3 trafi do grafu H_x , gdzie klika K3 może się pojawić, nie łamiąc R(3,5).

Z kolei dla każdego zbioru N_4 musi zachodzić jedna z sytuacji:

- 1. $x \in N_4$
- 2. $\exists v \in N_4, (v, x) \in E(F) \land \not \forall u \in N_4, (u, x) \in E(F)$
- 3. $\not\exists v \in N_4, (v, x) \in E(F)$

W przypadku pierwszym zbiór niezależny zostanie rozbity, 3 wierczhołki będą w H_x a x nie będzie w żadnym.

W przypadku drugim wierzchołki tworzące N_4 , które są połączone z x trafią do G_x , niepołączone trafią do H_x .

W przypadku trzecim całość N_4 trafi do grafu G_x , gdzie zbiór niezależny może się pojawić, nie łamiąc R(4,4).

0.5.2. Grafy potrzebne do sklejania

Korzystając z wiedzy z poprzedniego podrozdziału możemy stwierdzić, że do utworzenia wszystkich grafów R(4,5,24) wystarczy połączenie na wszystkie możliwe sposoby wszystkich nieizomorficznych

grafów R(3,5,d) z wszystkimi nieizomorficznymi grafami R(4,4,24-d). Warto zauważyć, że liczby R(3,5) oraz R(4,4) są znane i wynoszą odpowiednio 14 i 18. Oznacza to, że nasze grafy G będą maksymalnie rzędu 13 a grafy H rzędu 17. Co za tym idzie, możemy też wskaząć ograniczenia dolne: minimalny rząd G to 24-17=7 a minimalny rząd H to 24-13=11.

0.5.3. Idea sklejania

Zbiór danych wymagany do poprawnego sklejania jest uzyskany poprzez wygenerowanie wszystkich nieizomorficznych grafów G rzędów 7-13 spełniających R(3,5), oraz wszystkich nieizomorficznych grafów H rzędów 11-17 spełniających R(4, 4).

Grafy dzielone są na grupy zgodnie z ich rzędem. Dalsze sklejanie przeprowadzone jest na parze grup grafów G i H. Celem sklejania jest uzyskanie grafów rzędu 24 poprzez połączenie grafów G oraz H, a więc suma rzędów grafów G oraz H w grupach branych pod uwagę musi być równa 24. Ze względu na R(3,5)=14 największy rząd grupy grafów G to 13, a ze względu na R(4,4)=18 grafy H są ograniczone do 17 wierzchołków. Oznacza to, że istnieje 6 par grup spełniających wymagania.

Potencjalne krawędzie między grafami G oraz H są grupowane w stożki.

Definicja 0.5.3. Prawdopodobny stożek (ang. feasible cone) to podzbiór wszystkich wierzchołków grafu H, który nie tworzy kliki $K_3[1]$.

Podzbiór wierzchołków grafu H o którym jeszcze nie wiemy, czy jest prawdopodobnym stożkiem będziemy określać mianem stożka.

Dla przeciętnego grafu R(4, 4, 14) znajdziemy około 4000 prawdopodobnych stożków. Jeżeli do każdego z wierzchołków grafu G przypiszemy stożek, uzyskamy takie połączenie grafów G oraz H gdzie każdy wierzchołek grafu G jest sąsiadem wszystkich wierzchołków w przypisanym mu stożku. Główna część algorytmu sklejania polega na eliminacji wszystkich kombinacji stożków, które prowadzą do powstania kilki stopnia 4 lub zbioru niezależnego rzędu 5. Każdy taki zbiór prawdopodobnych stożków jest poprawnym połączeniem grafów G oraz H. Taki algorytm sklejania pozwala uzyskać grafy R(4,5) o różnych rzędach (poprzez inne parowanie grup grafów G i H), ale w tej pracy zajmujemy się jedynie grafami 24-wierzchołkowymi.

0.5.4. Algorytm sklejania

Pierwszym etapem sklejania grafów jest stworzenie dla danego grafu H zbioru prawdopodobnych stożków przed wybraniem grafu G do sklejenia. Należy odrzucić wszystkie stożki które obejmują klikę trzeciego rzędu. Takie stożki eliminują wszystkie grafy wynikowe ponieważ połączenie kliki trzeciego rzędu z dowolnym wierzchołkiem powoduje wystąpienie kliki czwartego rzędu. Podejście naiwne, czyli pojedyncze sprawdzenie wszystkich potencjalnie prawdopodobnych stożków nie jest jednak opłacalne ze względu na że ilość stożków dla grafu n wierzchołkowego, która jest równa 2^n . W celu przyspieszenia obliczeń stożki grupowane są w przedziały.

Definicja 0.5.4. Przedział [B,T] to zbiór stożków, ograniczony przez stożek górny T i stożek dolny B, który zawiera wszystkie stożki spełniające zależność:

$$X:B\subseteq X\subseteq T$$

Znajdowanie prawdopodobnych stożków rozpoczynamy od pojedynczego przedziału gdzie $B=\emptyset$, a T zawiera wszystkie wierzchołki H. Taki przedział zawiera wszystkie możliwe stożki. W celu wyodrębnienia prawdopodobnych stożków korzystamy z poniższych własności:

- 1. Dla wierzchołka w, który spełnia $w \notin B$ oraz $w \in T$ prawdą jest, że $[B,T] = [B+\{w\},T] \cup [B,T-\{w\}]$ oraz $[B+\{w\},T] \cap [B,T-\{w\}] = \emptyset$
- 2. Jeżeli stożek B zawiera klikę stopnia 3, to wszystkie stożki w przedziale również ją zawierają.
- 3. Jeżeli stożek T nie zawiera kliki stopnia 3, to wszystkie stożki w przedziale jej nie zawierają. Korzystając z własności 2 i 3 jako warunku odpowiednio odrzucenia lub zaakceptowania przedziału można skorzystać z algorytmu rekurencyjnego dzielącego interwały wzdłuż wierzchołków należących do kliki 3 oraz stożka B, dzięki czemu uzyskujemy zbiór przedziałów dla grafu H zawierający jedynie stożki

kliki 3 oraz stożka B, dzięki czemu uzyskujemy zbiór przedziałów dla grafu H zawierający jedynie stożki prawdopodobne. Z tego zbioru korzystamy w następnym etapie algorytmu. Dalsze odrzucanie stożków musi odbyć się już w kontekście grafu G.

0.5.5. Zawężanie przedziałów - zasady A-D

Zdefiniujmy 3 funkcje pomocnicze działające na podzbiorze wierzchołków grafu H oznaczonym jako X, generujące podzbiór wierzchołków grafu H. Funkcja H_1 będzie wybierała wszystkich sąsiadów wierzchołków ze zbioru X. H_2 wybiera wszystkie wierzchołki, które nie sąsiadują z jednym lub większą ilością wierzchołków spoza X. H_3 wybiera wszystkie wierzchołki, które nie sąsiadują z dwoma lub większą ilością wierzchołków spoza X.

$$H_i: X \subseteq V(G) \to Y \subseteq V(G)$$

- $H_1(X) \to X = w \in V(H) | vw \in E(X)$ dla jakiegoś $v \in X$
- $H_2(X) \to X = w \in V(H) | vw \notin E(X)$ dla jakiegoś $v \notin X$
- $H_3(X) \to X = w \in V(H) | u, v, w$ jest zbiorem niezależnym dla jakichś $v, u \notin X$

Kolejny etap zawężania zbioru potencjalnych krawędzi pomiędzy grafami G oraz H odbywa się już w kontekście konkretnego grafu G. Każda możliwa kombinacja wygenerowanych przedziałów jest przydzielana do wierzchołków należących do G, dzięki czemu rozważone są wszystkie możliwe sposoby połączenia tych grafów. Dla każdego zbioru przedziałów łączących grafy G oraz H wykonywany jest poniższy zbiór reguł działających na wierzchołki i przedziały stożków im przypisane:

A - stosowana do 2 wierzchołków $u,v\in G$ sąsiadujących ze sobą Jeśli $B_u\cap B_v\cap H_1(B_u\cap B_v)$ nie jest zbiorem pustym to nie da się poprawnie skleić tej pary grafów.

W innym wypadku z T_u usuwamy $H_1(B_u \cap B_v) \cap B_v$

- B stosowana do 2 wierzchołków $u,v\in G$ nie sąsiadujących ze sobą Jeśli $H_3(T_u\cup T_v)\not\subseteq (T_u\cup T_v)$ to nie da się poprawnie skleić tej pary grafów. W innym wypadku B_u rozszerzamy do $B_u\cup (H_3(T_u\cup T_v)-T_v)$
- C stosowana do 3 wierzchołków $u,v,w\in G$ tworzących zbiór niezależny N_3 Jeśli $H_2(T_u\cup T_v\cup T_w)\not\subseteq (T_u\cup T_v\cup T_w)$ to nie da się poprawnie skleić tej pary grafów. W innym wypadku B_u rozszerzamy do $B_u\cup (H_2(T_u\cup T_v\cup T_w)-(T_v\cup T_w))$
- D stosowana do 4 wierzchołków $u,v,w,z\in G$ tworzących zbiór niezależny N_4 Jeśli $T_u\cup T_v\cup T_w\cup \neq VH$ to nie da się poprawnie skleić tej pary grafów. W innym wypadku B_u rozszerzamy do $B_u\cup (VH-(T_v\cup T_w\cup T_z))$

Zasada A sprawdza czy sąsiednie wierzchołki u,v mają jakąkolwiek parę wspólnych potencjalnych sąsiadów, którzy są sąsiedni względem siebie. W takiej sytuacji powstałaby klika K_4 , więc nie uda się utworzyć grafu.

Jeżeli tak nie jest, musimy usunąć z T_u niezbędnych sąsiadówv, którzy sąsiadują z przynajmniej jednym z niezbędnych sąsiadów u.

Zasada B sprawdza czy istnieją w grafie H zbiory niezależne N_3 , z których wierzchołkami żaden z wierzchołków u,v nie może zostać połączony. W takim wypadku nie da się skleić grafów bez utworzenia zbioru niezależnego N_5 .

W przeciwnym razie musimy do zbioru B_u dodać wszystkie wierzchołki, z którymi przynajmniej 2 wierzchołki spoza zbioru $T_u \cup T_v$ nie sąsiadują. Wyjątkiem są te, z którymi można połączyć v.

Zasada C sprawdza czy istnieją w grafie H dwa niesąsiadujące wierzchołki, z którymi żaden z wierzchołków zbioru niezależnego u,v,w nie może zostać połączony. Oznaczałoby to, że musi powstać zbiór niezależny N_5 , a grafów nie można skleić.

W innym wypadku do B_u trzeba dodać wierzchołki które nie sąsiadują z wierzchołkiem, z którym żaden z wierzchołków u,v,w nie może zostać połączony, z wyjątkiem tych z którymi może sąsiadować v lub w.

Zasada D sprawdza czy graf H zawiera wierzchołek, z którym żaden z niesąsiadujących wierzchołków u,v,w,z nie może sąsiadować. Ponownie, w takim przypadku powstałby zbiór niezależny N_5 .

Jeżeli powyższe nie zajdzie, musimy dodać do B_u wszystkie wierzchołki, z którymi v, w, z nie mogą sąsiadować.

Warto zauważyć, że wynikiem zastosowania dowolnej reguły jest zawsze odrzucenie zestawu przedziałów, zawężenie przedziału lub brak zmian. Reguły są więc aplikowane do momentu, w którym ponowne zaaplikowanie dowolnej reguły dla dowolnych wierzchołków nie powoduje już dalszych zmian. Wynikowy zbiór przedziałów daje sposób lub sposoby połączenia grafów G oraz H w graf 24 wierzchołkowy z spełniający wymagania pod względem ramseyowskości.

0.5.6. Wynik sklejania

Po zakończeniu procesu sklejania uzyskujemy zbiór grafów R(4,5,24). W dalszej części pracy graf z tego zbioru będzie oznaczany jako graf \mathcal{F} . Jeżeli zbiór R(4,5,25) $\neq \emptyset$ to w wyniku rozszerzenia przynajmniej jednego z grafów \mathcal{F} o jeden wierzchołek powinniśmy uzyskać przynajmniej jeden graf 25 wierzchołkowy spełniający wymagania. Rozszerzanie o jeden wierzchołek zostaje w tym wypadku wykonane metodą podobną do wcześniejszego tworzenia przedziałów stożków, choć w tym wypadku mamy tylko jeden wierzchołek, do którego przypisywane są stożki rozszerzające.

Definicja 0.5.5. Stożek rozszerzający to podzbiór wierzchołków grafu \mathcal{F} symbolizujący możliwe połączenia pomiędzy grafem \mathcal{F} a wierzchołkiem do niego dodawanym.

Po raz kolejny, wszystkie możliwe stożki rozszerzające są grupowane w przedział, który w trakcie działania algorytmu jest zawężany. Przedziały stożków rozszerzających mają te same własności, co przedziały stożków prawdopodobnych, w tym wypadku mają jednak znaczenie dwie dodatkowe własności:

- 1. Dla wierzchołka w, który spełnia $w \notin B$ oraz $w \in T$ prawdą jest, że $[B,T] = [B+\{w\},T] \cup [B,T-\{w\}]$ oraz $[B+\{w\},T] \cap [B,T-\{w\}] = \emptyset$
- 2. Jeżeli stożek B zawiera klikę stopnia 3, to wszystkie stożki w przedziale również ją zawierają.
- 3. Jeżeli stożek T nie zawiera kliki stopnia 3, wszystkie stożki w przedziale jej nie zawierają.
- 4. Jeżeli zbiór B zawiera przynajmniej jeden wierzchołek ze zbioru niezależnego stopnia 4, to wszystkie zbiory w przedziale również go zawierają.
- 5. Jeżeli zbiór T nie zawiera żadnego wierzchołka ze zbioru niezależnego stopnia 4, wszystkie stożki w przedziale ich nie zawierają.

Etapem przygotowawczym do rozszerzania jest stworzenie listy podzbiorów wierzchołków $\mathcal F$ które tworzą kliki lub zbiory niezależne. Takie podzbiory nazywamy dalej strukturami.

Definicja 0.5.6. Struktura to podzbiór wierzchołków grafu \mathcal{F} który nakłada ograniczenia na sposoby rozszerzenia go o wierzchołek.

Celem powstania listy struktur jest przyspieszenie znajdywania stożków rozszerzających, które prowadzą do zaburzenia ramseyowskości grafu wynikowego. Jeżeli nowy wierzchołek zostałby połączony ze wszystkimi wierzchołkami K_3 , to powstające K_4 dyskwalifikuje graf. Podobna sytuacja występuje w przypadku braku połączenia do któregokolwiek z wierzchołków N_4 gdzie w wyniku otrzymujemy niedozwolone N_5 . Mając listę wszystkich struktur, można przystąpić do zawężania przedziału stożków rozszerzających. Rozpoczynamy ponownie od przedziału $[B=\emptyset,T=\{V(F)\}]$ który obejmuje wszystkie możliwe stożki dla grafu $\mathcal F$, a więc również wszystkie możliwe rozszerzenia. Dla każdej struktury S, których listę utworzyliśmy wcześniej dokonujemy porównania przedziałów. Porównywanie odbywa się w następujące sposoby, zależne od tego, czy obecnie rozważana struktura opisuję klikę, czy zbiór niezależny.

Rozumowanie dla ograniczenia wynikającego z kliki przebiega następująco:

Algorithm 4 Porównanie przedziału P do struktury S opisującej klikę

```
\begin{array}{l} \text{if } S\subseteq T_P \text{ then} \\ \text{if } S\subseteq B_P \text{ then} \\ \text{Usu\'n} \ P \text{ z listy przedział\'ow} \\ \text{else} \\ \text{Podziel przedział } P \text{ wzdłuż } S\setminus B_P \\ \text{end if} \\ \text{end if} \end{array}
```

Rozumowanie dla ograniczenia wynikającego ze zbioru niezależnego przebiega z kluczowymi różnicami w warunkach oraz sposobie podziału:

Algorithm 5 Porównanie przedziału P do struktury S opisującej zbiór niezależny

```
\begin{array}{l} \textbf{if } S \not\subseteq B_P \textbf{ then} \\ \textbf{if } S \not\subseteq T_P \textbf{ then} \\ \textbf{Usu\'n } P \textbf{ z listy przedział\'ow} \\ \textbf{else} \\ \textbf{Podziel przedział } P \textbf{ wzdłuż } S \cap T_P \\ \textbf{end if} \\ \\ \textbf{end if} \end{array}
```

W powyższych algorytmach zostaje użyte pojęcie podziału przedziałów. Podział przedziału polega na użyciu własności 1 dla podanego zbioru wierzchołków w celu wielokrotnego rozdzielenia przedziału na dwie części a następnie odrzucenia tego z nich, który zawiera wszystkie stożki łączące sprawdzaną strukturę w niepoprawny sposób. Pozostałe przedziały wynikowe są dodawane do listy przedziałów do sprawdzenia, ponieważ nie łamią obecnie analizowanego ograniczenia.

Dla przykładu załóżmy, że dla grafu G, który próbujemy rozszerzyć o wierzchołek v na rysunku poniżej przekształcamy przedział $P = [\{5\}, \{1, 2, 3, 4, 5\}]$ przy pomocy kliki $S = \{1, 2, 3\}$.

Rysunek 25. Graf G wraz z zaznaczoną strukturą S oraz wierzchołkiem v

Zaaplikowanie własności 1 dla przedziału P i pierwszego wierzchołka ze struktury czyli $\{1\}$ daje nam

$$[\{5\},\{1,2,3,4,5\}] = [\{1,5\},\{1,2,3,4,5\}] \cup [\{5\},\{2,3,4,5\}]$$

Warto zauważyć, że drugi z wynikowych przedziałów nie łamie już ograniczenia narzuconego przez strukturę P, a więc można dodać go do listy przedziałów i kontynuować podział jedynie na pierwszym z przedziałów wynikowych. Analogiczna sytuacja zachodzi na każdym etapie podziału, ze względu na naturę ograniczenia wypływającego z kliki, gdzie usunięcie jednego z wierzchołków kliki powoduje akceptacje połączenia do reszty z nich.

Kontynuujemy podział pozostałego przedziału dla kolejnego wierzchołka ze zbioru {2}

$$[\{1,5\},\{1,2,3,4,5\}] = [\{1,2,5\},\{1,2,3,4,5\}] \cup [\{1,5\},\{1,3,4,5\}]$$

Po raz kolejny można zaakceptować drugi z przedziałów i kontynuować podział pierwszego przez kolejny i ostatni wierzchołek $\{3\}$:

$$[\{1,2,5\},\{1,2,3,4,5\}] = [\{1,2,3,5\},\{1,2,3,4,5\}] \cup [\{1,2,5\},\{1,2,4,5\}]$$

Po podziale przez ostatni z wierzchołków można, jak po każdym kroku zaakceptować drugi z wynikowych przedziałów. Pierwszy z nich natomiast zawiera w stożku ograniczającym dolnym strukturę. Dzięki temu można go odrzucić ze względu na to, że wszystkie stożki takiego przedziału powodują niedozwolone rozszerzenie grafu \mathcal{F} .

Podział przedziału dla zbioru niezależnego przeprowadzany jest w bardzo podobny sposób. Na każdym etapie podziału akceptowany jest pierwszy przedział wynikowy zamiast drugiego. W ramach przykładu podziału dla zbioru niezależnego załóżmy, że $P=[\emptyset,\{1,2\}]$ oraz $S=\{1,2,3,4\}$ i S jest zbiorem niezależnym. Mamy również inny graf G.

Rysunek 26. Graf G wraz z zaznaczonymi wierzchołkami należącymi do struktury S oraz wierzchołkiem v

W takim wypadku zbiór wierzchołków, wzdłuż którego dokonujemy podziału nie obejmuje wszystkich wierzchołków należących do S. Jest tak dlatego, że część z nich należy już do T_P i nie ma potrzeby ani możliwości dzielić przedziału przy ich pomocy. Dla pomniejszego zbioru wierzchołków 1,2 pierwszym

etapem podziału będzie

$$[\emptyset, \{1, 2\}] = [\{1\}, \{1, 2\}] \cup [\emptyset, \{2\}]$$

Akceptujemy pierwszy przedział i przechodzimy do kolejnego kroku

$$[\emptyset, \{2\}] = [\{2\}, \{2\}] \cup [\emptyset, \emptyset]$$

Po przejściu wszystkich wierzchołków i zaakceptowaniu pierwszego przedziału można odrzucić drugi, ponieważ wszystkie stożki przez niego objęte łamią ograniczenie narzucone przez S.

Warto zauważyć, że w przypadku podziału przedziałów w taki sposób mamy gwarancje, że jeżeli przedział P spełnia ograniczenie, to wszystkie jego podprzedziały również je spełniają. Ze względu na to, po zaaplikowaniu wszystkich ograniczeń, pozostałe przedziały posiadają poprawne rozszerzenia grafu F o wierzchołek tak, że nie jest zaburzona jego ramseyowskość.

0.6. Implementacja i eksperymenty

Nasz program został zaimplementowany w języku C z wykorzystaniem biblioteki Nauty and Traces[2], która umożliwia łatwe obliczeniowo wykrywanie orbit, co znacznie przyspiesza proces generowania grafów. Autorem biblioteki jest profesor McKay.

Jednym z aspektów powyższego kodu, który wykorzystujemy jest sposób przechowywania grafów w pamięci komputerowej, który bazuje na macierzy sąsiedztwa. Macierz sąsiedztwa to sposób reprezentacji grafu o N wierzchołkach przy użyciu macierzy kwadratowej o wymiarach NxN. Wartość na pozycji (m, n) odpowiada krawędzi pomiędzy wierzchołkami m oraz n.

Rysunek 27. Graf wraz z odpowiadającą mu macierzą sąsiedztwa. W tej macierzy 0 odpowiada brakowi krawędzi, a 1 odpowiada jej istnieniu.

Warto zauważyć nadmiarowość macierzy, gdzie każdej krawędzi w grafie odpowiadają dwie wartości. Ta nadmiarowość okazjonalnie pozwala na przyspieszenie obliczeń w zmodyfikowanej wersji macierzy sąsiedztwa używanej w naszym kodzie. Modyfikacja metody macierzy sąsiedztwa polega na odejściu od zapisywania każdej liczby w macierzy jako osobnej wartości. Jako że zajmujemy się jedynie grafami prostymi i niekolorowanymi, to wartości w poszczególnych komórkach mogą wynosić jedynie 0 lub 1. W związku z tym wiersz macierzy można zapisać nie jako n wartości, a jako jedną wartość o odpowiedniej liczbie bitów. Ze względu na to, że największym grafem występującym w naszej pracy jest potencjalny graf 25 wierzchołkowy, 32 bitowa wartość jest wystarczająca żeby pomieścić wiersz macierzy reprezentujący wierzchołek dowolnego grafu który może zostać wygenerowany przez nasz program.

BIBLIOGRAFIA

- [1] Brendan D. McKay, Stanisław P. Radziszowski. R(4,5) = 25.
- [2] Brendan D. McKay. nauty user's guide (version 2.4). Department of Computer Science Australian National University Canberra ACT 0200, Australia November 4, 2009
- [3] Stanisław P. Radziszowski. Small Ramsey Numbers. Department of Computer Science Rochester Institute of Technology Rochester, NY 14623 June 11, 1994
- [4] Janusz Dybizbański. Liczby Ramseya z cyklem C4. Uniwersytet Warszawski Wydział Matematyki, Informatyki i Mechaniki Listopad 2013
- [5] Christos Nestor Chachamis. Ramsey Numbers. May 13, 2018
- [6] Lane Barton IV Ramsey Theory. May 13, 2016
- [7] Brendan D. McKay ISOMORPH-FREE EXHAUSTIVE GENERATION. May 13, 2016
- [8] P. Erdősa, Some Remarks on the Theory of Graphs, *Bulletin of the American Mathematical Society*, 53(4):292–294, 1947
- [9] Christos Nestor Chachamis Ramsey Numbers. May 13, 2018
- [10] Ramsey, F.P. (1930), *On a Problem of Formal Logic*. Proceedings of the London Mathematical Society, s2-30: 264-286. https://doi.org/10.1112/plms/s2-30.1.264
- [11] Erdős, P.; Szekeres, G. A combinatorial problem in geometry. Compositio Mathematica, Volume 2 (1935), pp. 463-470.
- [12] Ramsey Theory by Ronald L. Graham and Joel H. Spencer, in Scientific American (July 1990), p. 112-117
- [13] OEIS Foundation Inc. (2020), The On-Line Encyclopedia of Integer Sequences, http://oeis.org/A000088.
- [14] Nicolas Bloyet, Pierre-François Marteau, Emmanuel Frenod. Scott: A method for representing graphs as rooted trees for graph canonization. COMPLEX NETWORKS 2019, Springer, pp.578-590, 2019, Studies in Computational Intelligence Series, ff10.1007/978-3-030-36687-248ff.ffhal-02314658f
- [15] Rich Wolski ĆS290I Lecture notes Ramsey Numbers: Top Hits Played at Parties Thrown by Paul Erdos"https://sites.cs.ucsb.edu/ rich/class/cs293-cloud/notes/Ramsey/index.html
- [16] Weisstein, Eric W. "Party Problem."From MathWorld–A Wolfram Web Resource. https://mathworld.wolfram.com/PartyProblem.html
- [17] Brendan D McKay, Stanisław P Radziszowski, Subgraph Counting Identities and Ramsey Numbers, Journal of Combinatorial Theory, Series B, Volume 69, Issue 2, 1997, Pages 193-209, ISSN 0095-8956, https://doi.org/10.1006/jctb.1996.1741. (http://www.sciencedirect.com/science/article/pii/S0095895696917414)

[18] Charles M Grinstead, Sam M Roberts, On the Ramsey numbers R(3, 8) and R(3, 9), Journal of Combinatorial Theory, Series B, Volume 33, Issue 1, 1982, Pages 27-51, ISSN 0095-8956, https://doi.org/10.1016/0095-8956(82)90055-7. (http://www.sciencedirect.com/science/article/pii/0095895682900557)