Diagnosis

- Introduction
- Logic Diagnosis
 - SSF diagnosis
 - Delay fault diagnosis
 - Unmodeled / multiple fault diagnosis *(not in exam)
- Scan Chain Diagnosis
- Failure Analysis
- Conclusions

Unmodeled Defects

- Cannot find simulation failures of single fault explain all test failures
- Possible reasons
 - 1. Defect behavior hard to predict
 - Example: Byzantine general's problem
 - 2. Multiple faults
 - Exhaustive search all multiple faults is impossible
 - 3. Many fault models
 - Exhaustive trial of all fault models is impossible
- Solution: heuristic methods
 - Single Location at a Time (SLAT) [Bartenstein 01]
 - Inject and Cure [Huang 97]

Byzantine Generals Problem

- Open or bridging faults on fanout stem
 - Faulty values on fanout branches may not be the same
- (WWW CH7), assume V_{DD}=5V
 - G2 and G3 have different threshold voltage

Single Location at a time, SLAT[Bartenstein 01]

- Diagnosis procedure
 - 1. For every failing pattern
 - * find a fault whose SF = TF
 - If succeed → SLAT pattern, insert fault to set U
 - Else → not SLAT pattern
 - 2. For all failing patterns
 - Find a minimum subset of U that covers all failing patterns
- Example:
 - pattern 1 and pattern 2 are SLAT pattern
 - Pattern 3 is not SLAT pattern

Example

- pattern 1: 1sa1, 4o sa0 → SLAT pattern
- pattern 3: 2 sa0 , 4o sa1 → SLAT pattern
- pattern 4: no SSF → not SLAT pattern
- U= {1sa1, 4o sa0, 2 sa0, 4o sa1}
- Diagnosed fault list = {1 sa1, 2 sa0}

	faults	pa	pattern1		pattern2		pattern3		pattern4	
		7	8	7	8	7	8	7	8	
1	1 sa1	X	X					X		
2	2 sa0					X	X		Х	
3	2 sa1			X	X					
4	3 sa1		Х							
5	4o sa0	X	Х	X	X			X		
6	4o sa1; 4i2 sa0; 1sa0					X	X			
7	4i2 sa1			X	X					
8	5o sa1; 3 sa0; 5i1 sa0								Х	
	Test Failures	X	X			X	X	X	X	

Diagnosis

- Introduction
- Logic Diagnosis
 - SSF diagnosis
 - Delay fault diagnosis
 - Unmodeled / multiple fault diagnosis
 - Diagnosis pattern generation *(not in exam)
- Scan Chain Diagnosis
- Failure Analysis
- Conclusions

Diagnosis Pattern Generation

- Diagnosis patterns are specific purpose patterns
 - To improve diagnosis resolution
- Iterative (aka. adaptive) diagnosis is some times required
 - Collect data, DPG, collect more data, DPG again ...
- DPG becomes popular only recently
 - Enabled by on-line pattern generation on ATE

Diagnosis Resolution

- Degree of accuracy to which faults can be distinguished
- Two faults α and β can be distinguished if
 - outputs with fault α ≠ outputs with fault β
- Two measures (ABF Ch 12)
 - Maximal fault resolution of a circuit
 - Partitions of equivalent fault classes
 - Limited by circuit structure
 - Fault resolution of a test set
 - Partition of distinguishable faults
 - Can be improved by generating test patterns for diagnosis purpose → diagnosis pattern generation

Diagnosis Pattern Gen. Example

- C₁/0 and C₂/0 are not equivalent
- DE-algorithm (ABF Example 12.3)
 - Assign A=1, B=1 \rightarrow C₁ = D, C₂ = E
 - Propagate D → assign F=0
 - Prevent E \rightarrow assign G=1 \rightarrow I = 0, J=0 \rightarrow D disappear
 - Backtrack, assign G=0 → I = E' → J = E'
 - Test generated ABFG = {1100}

OR

	E	E'	
D	1	D	
D'	Е	D',E'	

AND

	ш	E'		
D	D,E	E'		
D'	D'	0		

© National Taiwan university