BIDERATZEA

SARRERA

- Router-a sare mailan konektibitatea eskaini.
 - o Azpisareak elkar konektatu, sare batetik bestera paketeak bidaliz.
- Ostalari batek sare berean EZ dagoen beste bati pakete bat bidali → Router ATEBIDE edo GATEWAY gisa helmugako sarera heltzeko.
 - o Jatorrizko ostalariak paketea sare lokalaren bidez bidali atebiderako routerari.
 - Router-ak paketearen helmugako helbidearen NetlDa aztertu + Paketea dagokion interfazera birbidali.
 - Helmuga sarea router honetara zuzenean konektatuta → Paketea helmugako ostalariari zuzenean.
 - \circ Helmugako sarea zuzenean konektatuta X \rightarrow Paketea bigarren router batera bidali (hurrengo hop router-era).
 - Paketea bigarren bideratzaile honen ardura bihurtu.

GATEWAY

- Pakete bat sare lokaletik kanpo bidaltzeko.
- Sare lokalera konektatutako router-ren interfazea da.
 - o Jatorri ostalarien sareari dagokion sare helbidea.
- Ostalariak (ordenagailuak, zerbitzariak, inprimagailuak, ...) helbide honekin konfiguratuta daude atebide gisa edo gateway.
- ipconfig edo route print.

BIDERATZEA

- Router-ak bere interfazeetako batera iritsitako pakete bakoitzerako birbidaltze erabakia hartu.
- Pakete bat helmuga sare batera birbidaltzeko, bideratzaileak sarerako ibilbidea jakin.
 - Helmugako sare batera biderik X, paketea ezin da birbidali.
 - Router bakoitzean, hurrengo saltoko router-a soilik adierazi.
- Ibilbideak erabili salto horren helmugako sareko helbidea esleitzeko + Paketea helbide honetara birbidaltzeko.
- Ibilbideak router-an definitu → BIDERATZE TAULAK.

BIDERATZE TAULAK

- Konektatutako eta urruneko sareei buruzko informazioa gorde.
- KONEXIONATUTAKO SAREAK router-aren interfaze batera zuzenean konektatuta.
 - Sare lokal desberdinetako ostalarien atebideak.
- URRUTIKO SAREAK router-era zuzenean konektatzen ez diren sareak.
- Sarera bideratutako ibilbideak ESKUZ konfigura daitezke router-ean edo automatikoki lor daitezke BIDERATZE PROTOKOLOEN bidez.

- netstat –r route print
 - Helmuga sarea
 - o Sareko maskarekin batera helmugako IP helbidearekin bat egiteko.
 - Sare maskara
 - Sarbide atea
 - Ostalari lokalak IP datagramak birbidaltzeko erabiltzen duen IP helbidea.
 - Interfazea
 - Ekipamenduaren interfazearen IP helbide bera, sarbide atetik iristsi.
 - Metrika
 - o Ibilbidea erabiltzearen kostua (IP helmugara heltzeko egindako salto kopurua).
 - Azpisare lokaleko edozein helmuga salto bakarrera.
 - Ibilbidean zeharkatutako router bakoitza salto osagarria.
 - o Metrika desberdinekin helmuga bererako ibilbide ugari → Baxuena duena.

BIDERATZE TAULEN ERABILERA- CDIR

- Router-ek eta host-ek
 - Konfiguratutako interfaze bakoitzaren IP helbidea dute.
 - Interfaze bakoitzak bere sarean erabilitako sare maskara konfiguratuta.
 - Bideratze Taula bat konfiguratuta.
 - Sarrera (Ilara) bakoitzak helmuga sare bat identifikatu → Sare helbidearekin + Sare maskara batekin.
 - Baliteke maskara azken helmugako sarearena ez izatea.
- Bideraketa paketez-pakete eta saltoz-salto egin.
 - o Pakete bakoitza router bakoitzak modu independentean kudeatu.
- Router-ak pakete goiburutik helmugako helbidea atera eta aztertu (ez du aldatzen).
- Router-ak HELMUGA SAREA eremuan tauletan, sare maskara erabiliz, helmugako sare helbidea bilatu.
 - Bat ez badator, paketea baztertu.
 - Baliagarri bat edo gehiago aurkituz:
 - Maskara luzeena duena aukeratu.
 - Paketea birbidaltzen du ibilbide honek adierazitako lekutik.
 - Birbidali hurrengo hop router-ari.

- Birbidali helmugako ostalariari (router-era konektatutako sarea bada).
- Router-ak paketea bideratu NEXT HOP router-ari.
- Metrika gutxieneko bidea → Konektatutako bidea edo urruneko sare baterako bidea
- Router-a LEHENETSITAKO IBILBIDEA izateko konfigura daiteke.
 - o IPv4 sareetan 0.0.0.0 helbidea erabiltzen da horretarako.
- Helmugako ibilbidea bideratze taulako beste ibilbide batek adierazi X → Lehenetsitako ibilbidea erabili.

TAULEN ERAIKUNTZA

ESTATIKO

- ESKUZ konfiguratu routerean.
- Sareen egitura ezagutu ibilbide onenak erabiltzeko.
- Aldaketa mantsoak. Sare egitura aldatu edo berriak gehitu → Aldaketak eskuz eguneratu bideratzaileetan.

DINAMIKO

- BIDERATZE PROTOKOLOAK erabiliz.
 - Bideratze informazioa dinamikoki partekatzeko aukera ematen duten arau multzoa.
- Eskalagarritasuna, moldagarritasuna, konplexutasuna.
- Aldatutako ibilbideei buruzko informazioa jaso → Bideratze taula eguneratu + informazioa beste router-ei pasatu.
 - Router guztiek dinamikoki eguneratu + Haraino iristeko salto ugari behar diren urruneko sareetarako ibilbideak ezagutu.

INFORMAZIO GLOBALA

- Router guztiek loturen topologiari eta kostuei buruzko informazioa.
- "Link-State" algoritmoak.

INFORMAZIO DESZENTRALIZATUA

- Routerrak auzokideak baino ez ditu ezagutzen.
- Prozesu errepikari baten bidez, informazio hori auzokideekin trukatu.
- "Distantzia bektore" algoritmoak.

BIDERATZE HIERARKIKO

- Routerrak eskualdeetan batu: "Sistema Autonomoak" (AS- Autonomous Systems).
 - AS routerrak administratzaile bakarra.
 - o AS bereko router-ek normalean protokolo bera bideratzeetarako.
 - o Barne Pista Protokoloa IGP (Interior Gateway Protocol)
 - AS mugako router-ek (border router) ASren arteko bideratze informazioa trukatu Kanpoko Pista Protokoloa erabiliz - EGP (Exterior Gateway Protocol).

- Mugako router-a (Border router)
 - o Bideratze-taula bi protokoloen bidez konfiguratu
 - IGP → bideak barne helmugentzat.
 - EGP → bideak kanpo helmugentzat.
 - o EGP-k jakinarazi zein helmugetara iritsi daitekeen bakoitzatik.

INTERIOR GATEWAY PROTOCOL (IGP)

- Karakterístikak:
 - o Sinpleak.
 - Metrikarekiko bide eraginkorrak kalkulatu.
 - Aldaketak gertatuz gero azkar birkalkulatu.
 - o Ez dira sare handietarako eskalagarriak.
- Ohikoenak:
 - o RIP: Routing Information Protocol
 - OSPF: Open Shortest Path First
 - EIGRP: Interior Gateway Routing Protocol (Cisco-k jabetasuna).

EXTERIOR GATEWAY PROTOCOL (EGP)

- Karakteristikak:
 - o Sistema autonomoen arteko bideratze informazioa trukatu.
 - Eskalagarritasun hobea.
 - Ibilbideak gehitzeko aukera.
 - Router-ean karga handiagoa.
- Ohikoenak:
 - BGP (Border Gateway Protocol):
 - Estandarra
 - Path-vector algoritmoa: bide osoa bidaltzen dute (AS sekuentzia gisa).
 - Mezuek router-en arteko TCP konexioak erabili.

INTERNET-AREN ARKITEKTURA

TIER-1 ISPAK EDO INTERNET BACKBONE NETWORKS.

- 1.mailako sareak → 2+ kontinenteetan zuntz optikoko lineak (hornitzaile handien sareak).
- Loturak eta router-ak ditu, eta beste sare batzuetara konektatuta dago.
 - o Datu kopuru oso handia aldi berean transmititzeko gai.
- 1. mailako sare batetik posible da Interneteko edozein puntutara sarbidea izatea → Guztiak elkarren artean konektatuta.
 - o Interneten bizkarrezurra edo enborra (backbone) osatu.
- Nazioarteko hornitzaile handiak (AT&T, BBN, BT, Cable & Wireless, Sprint, UUNET, etab.).
- 2. mailako ISP kopuru handi batera konektatuta.
- "Lehenetsitako ibilbidea" X → Sare guztietara ibilbideak.

TIER-2 ISPAK

- Nazio mailako operadoreak.
- Interneteko puntu guztietara iritsi X → 1. mailako sare batera konektatu.
- Funtzio nagusia Tier 3 operadoreei konektibitate zerbitzuak eskaintzea.
- Tier-1 batzuekin konektatzen dira (peering agreement). ISPak haien bezeroak dira.
- Adibideak: Cable & Wireless, British Telecom.
- Tier-2 sare arteko konexioa posiblea → Trafikoa bi sareen artean joan daiteke Tier-1 sare batetik igaro gabe.

TIER-3 ISPAK

- Etxe-erabiltzaileei eta enpresa askori Interneteko konexio zerbitzua eskaintzen duten operadoreak.
- ISP (Internet zerbitzu hornitzailea) edo Interneteko sarbide hornitzaile.
- Adibideak: Espainian: Movistar, Vodafone, Orange, Ono ...
- Sarbide lokaleko ISPak.
- Tier-2 bat edo gehiagorekin eta elkarren artean konektatzen dira.

OPERADOREEN ARTEKO KONEXIO MOTAK

Operadore desberdinen sareen arteko konexioa bi modutan:

IGAROTZE KONEXIOAK

- Hierarkia desberdinetako operadoreen arteko konexioa.
 - Goi mailako operadoreak (hornitzaileak) konexioa saldu maila baxuagoko operadoreari (bezeroa).
- Hornitzaileak bezeroari bere ibilbide guztietarako sarbidea eman.
 - Bezeroak hornitzailearen saretik zein beste sare batzuetarako bideak jaso.
 - Bezeroak hornitzaileari bere ibilbideak soilik argitaratzen dizkio eta ez beste hornitzaile batzuekin izan ditzakeenak.
- Tier-1 sareak igarotze konexioak erabiltzen ez dituzten bakarrak.

PEERING KONEXIOAK

- Bi operadoreen artean trafikoa kosturik gabe trukatzeko.
- Operadore bakoitzak bere ibilbideak soilik argitaratu eta ez beste hornitzaile batzuekin edo beste peering bide batzuekin dituen beste ibilbideak.
 - o Peering operadoretik beste operadorearen IP helbideen tartera sartzeko erabili.

- Ez du balio helbideen beste tarte batzuetara iristeko.
- o Bi motatakoa:
 - Publikoa: IXP bat erabiliz (ikusi hurrengo atala)
 - Pribatua: bi hornitzaileen arteko lotura zuzena.

INTERNETEKO TRAFIKOA TRUKATZEKO PUNTUAK (IXP)

- Internet eXchange Point edo Interneteko trafikoa trukatzeko puntua azpiegitura fisikoa.
 - ISP ezberdinek Interneteko trafikoa beren sareen artean trukatzeko aukera eman.
 - Peering konexioen bidez burutu.
 - ISP batekin parekatze konexio publikoa ezarri nahi duen edozein enpresak IXP bat erabil dezake.
- Normalean, enpresen arteko peering akordioek bere sareen arteko datuen truke eraginkorrena erraztu → IXPek onuragarria Interneten hazkundean.
- Europan Euro-IX izeneko IXP elkartea, Europako IXP guztiak eta Japoniako eta Estatu Batuetako IXP batzuk bildu.
- Azpiegituren kostua.
- Aurreko izena: NAPs (Network Access Points).

ALGORITMO MOTAK

- Topologia eta sare aldaketen berri eman.
 - Sailkapena informazioa nola pasatzen den arabera:
 - Link state:
 - Zein auzokide dituzten eta bakoitzaren kostua jakinarazi.
 - Sarea gainezka egiten dute.
 - Nodo bakoitzak sarearen topologia osoa ezagutu
 - Distance Vector:
 - Helmugetarako distantziaren kalkulua helarazi
 - Auzokideei jakinarazi.
 - Path Vector:
 - Helmugetara heltzeko lehentasunezko bideen estimazioa helarazi.

LINK STATE

- Hiru pausu:
 - 1. Auzokideak aurkitu.
 - 2. Loturei buruzko informazioa helarazi:
 - Uholde Algoritmoak (Flooding algorithm):
 - Nodo bakoitzak igorle eta hartzaile gisa jokatu.
 - Mezu bakoitza bere bizilagun bakoitzari birbidaltzen saiatu iturburuko nodoa izan ezik.
 - o Nodo guztiek topologia ezagutu.
 - 3. Ibilbideak kalkulatu
 - Koste gutxien bideak.
 - o Guztiek berberak kalkulatu.
 - O Dijkstra algoritmoa edo bide minimoen algoritmoa.

Algoritmo de Inundación

DISTANCE VECTOR

- Nodo bakoitzak bertatik helmuga guztietarako distantzia ezagutu.
- Hasieran nodo bakoitzak bizilagunekiko distantzia ezagutu.
- Aldian-aldian bizilagun guztiei komunikatu.
 - o Helmugako distantziekin bektore batekin informatu.
 - o Asinkronoa.
- Informazioa jaso ondoren, bere informazioa eguneratu.
 - Banatutako Bellman-Ford algoritmoa erabiliz: biderik laburrena grafiko zuzendu batean sortu.
- ARPANETen hasieratik lanean.

PATH VECTOR

- Distance Vector antzekoa
 - o Kalkulu banatua.
 - Auzolagunei kalkulatutako ideen berri eman.
 - o Bide bakoitzarako bide osoa helmugaraino
- BGP Border Gate Protocol erabili.

RIP PROTOKOLOA (ROUTING INFORMATION PROTOCOL)

KARAKTERISTIKAK

- Distance Vector erabill.
- Internal Gate Protocol- IGP router arteko informazio trukaketa egiteko.
- UDP erabili.
- Erabilitako metrika Salto Kopurua da, 16 eta ∞ baliokidetasuna, ezin lortzekoa.
- Distantzia bektorea 30 s-ro bidali.
- Topologia aldaketak:
 - N sarera G router-tik bidea, 180s ez bada G-ren bektorea jasotzen lor ezina bezala markatzen da (∞).
- Lotura homogeneoak dituzten sareentzat.
- Sinplea.
- Konbergentzia denbora txarrak.

FORMATUA

- Request
 - o Komandua=1
 - Kostea helmuga bati edo guztiei eskatu.
- Response
 - Komandua=2
 - o Next-hop-a PDU-a bidaltzen duen IP-a.
 - o Periodikoa request bati erantzuteko.

FUNTZIONAMENDUA

- Hasieraketa
 - o Request berezi bat bidali interfaze bakoitzerako.
 - o Broadcast helmuga IP
- Request jasotzen du
 - o Hasierakoa bada bektore osoa bidali
 - o Bestela, erantzuten du eskatutako balioekin.
- Aldian behin
 - o Timer 30 segundotan (25etik 35era)
 - o Response bat bidali interfaze bakoitzerako bektore osoarekin.
 - o Broadcast helmuga IP.
- Response jaso
 - o Eguneratu bektore eta ibilbide taula.
 - o Timer badu berrezarri.
- Ibilbidearen timer-a iraungitu.
 - o 180 segundoko timer bakoitzarentzat
 - o Kostua ∞ jarri.
 - o Timer hasten du ezabatzeko.
- Ezabatze timer-a
 - o 120 segundoko tenporizadorea baliogabeko ibilbide baterako.

