Algebraic Reconstruction Techniques and its Variants

Huzefa Chasmai - 15D170013 Samarjeet Sahoo - 150100017

— CS 736 - Medical Image Computing ——

Problem Statement:

Aim of the project:

To implement, analyse and compare the different variants of the Algebraic Reconstruction Techniques :

- Additive ART
- Multiplicative ART
- Simultaneous Iterative RT

The Reconstruction Problem

CT Imaging as a linear system : Ax = b

- → x = unknown values of attenuation coefficients (vectorised lmage)
- → b = known data in Radon-transform domain (Vectorised Image)
- → A = imaging/acquisition matrix (also known)
 - Models the imaging process
 - ◆ Each row corresponds to an integral along a line

Algebraic Reconstruction Techniques

Iterative algebraic techniques used to solve the Reconstruction Problem

Notations:

- Let the size of the image of attenuation coefficients (I) be [m x n]
- We denote the rows of A matrix as a_i^T (i.e. transpose of a_i).

Additive ART - Update Step

Initialisation : $x_0 = [0]_{mn \times 1}$

Iterative Step:

$$x^{k+1} = x^k + \lambda_k \frac{b_i - \langle a_i, x^k \rangle}{\|a_i\|^2} a_i$$

- $-\lambda_{\nu}$ is a free ("relaxation") parameter
- Typically $0 < \lambda_k <= 1$ ($\lambda_k < 2$ ensures convergence)

The specific case of $lambda_k = 1$ is called the Kaczmarz Method.

Multiplicative ART - Update Step

Initialisation : $x_0 = [1]_{mnx1}$

Iterative Step:

$$x_j^{k+1} = x_j^k \left(\frac{b_i}{\langle a_i, x^k \rangle}\right)^{\lambda_1 a_{ij}}$$

where λ_1 is a relaxation parameter

Simultaneous IRT - Update Step

Initialisation : $x_0 = [0]_{mnx1}$

Iterative Step: It involves a cumulative update vector which accumulates the updates of the additive ART for all rows, without actually updating it and then takes a step in the average update direction.

AART vs SIRT - Update Step

Effective update - AART

Effective update - SIRT

Additive ART Solution Property

The Additive ART algorithm was proved to converge to the minimum norm solution, satisfying the constrained minimization problem:

$$\min_{x} ||x||_2^2$$
 such that $Ax = b$.

Multiplicative ART Solution Property

The Multiplicative ART algorithm was proved to converge to the maximum entropy solution, satisfying the constrained minimization problem:

$$\min_{x} \sum_{i} x_{i} \ln x_{i} \quad \text{that Ax = b.}$$

Datasets:

We used two images for our experiments, the standard phantom image and a more detailed Brain MRI image, and 2 real life CT images, downloaded from the internet. All the analyses have been performed on the phantom image, the Brain MRI image and the 2 CT images were used as a proof of concept

Phantom Image

Brain MRI Image

CT - 1

CT - 2

Additive ART Results

Additive ART Results

Original Image

Reconstructed Image

Additive ART - Reconstruction over time

Additive ART - Effect of changing Lambda

Multiplicative ART Results

Multiplicative ART Results

Original Image

Reconstructed Image

Multiplicative ART - Reconstruction over time

Multiplicative ART - Effect of changing Lambda

Simultaneous IRT Results

Simultaneous IRT Results

Original Image

Reconstructed Image

Simultaneous IRT - Reconstruction over time

Simultaneous IRT - Effect of changing Lambda

Comparisons between the algorithm

And then god said, let there be noise

Poisson Noise on the Radon Transform

Reconstructions:

Additive

Multiplicative

Simultaneous

Variation with lambda: Additive ART

Lambda = 0.5 Lambda = 1 Lambda = 1.5

Comparison among the variants

Real Life CT image slices - Reconstructions

Original CT image slice

Additive ART

Multiplicative ART

Simultaneous IRT

Real Life CT image slices - Reconstructions

Original CT image slice

Additive ART

Multiplicative ART

Simultaneous IRT

Conclusions

- 1) Since the simultaneous IRT takes a step in the average direction of updates without completely projecting on any one of the convex sets, it converges slower than the other 2 variants in general.
- 2) However, the average direction does help in case of noisy data, where a complete projection onto any of the convex sets means getting more influenced by noise. As a result, SIRT performs better on noisy data.
- 3) Decreasing the value of lambda in case of AART leads to slower convergence, because of incomplete projections onto the convex sets.
- 4) Decreasing the value of lambda in case of MART leads to slightly faster convergence, because the intensity values are between 0 and 1 and lower power implies higher magnitude of updates.
- 5) AART and MART behave similarly in the cases we experimented on.

Contribution:

We have worked on all the parts of the project together, including coding and report, just as we did for our assignments!

References:

[1]: https://crazybiocomputing.blogspot.com/2012/08/learning-tomography-toc.html

[2]: http://www.mers.byu.edu/docs/thesis/msthesis_willism_lib.pdf

Thank You