

Technical Memorandum TRAC-F-TD-0190 January 1990

AD-A229 565

A BURST FIRE ALGORITHM

TRADOC ANALYSIS COMMAND

OPERATIONS ANALYSIS CENTER

MODEL DEVELOPMENT & MAINTENANCE DIRECTORATE

FORT LEAVENWORTH, KS 66027-5200

TRADOC Analysis Command-Fort Leavenworth (TRAC-FLVN)

Model Support Directorate

Fort Leavenworth, Kansas 66027-5200

A BURST FIRE ALGORITHM

bу

Marvin Methven

ACN 16306

CERTIFIED BY:

H. KENT PICKETT

Director, Model Support Directorate

APPROVED BY:

ROBERT LA ROCQUE V Director, TRAC-FLVN

Distribution Statement: Approved for public release; distribution is unlimited

SECURITY CLASSIFICATION OF THIS	PAGE						
F	REPORT	DOCUMENTATIO	N PAGE				Approved No. 0704-0188
1a. REPORT SECURITY CLASSIFICATION UNCLASSIFIED	ON		1b. RESTRICTIVE	MARKINGS			
2a. SECURITY CLASSIFICATION AUTH	ORITY		3. DISTRIBUTION	I/AVAILABILITY C	F REPO	RT	
2b. DECLASSIFICATION / DOWNGRAD	ING SCHED	ULE	Approved for public release; distribution unlimited				
4. PERFORMING ORGANIZATION REI	PORT NUMB	ER(S)	5. MONITORING	ORGANIZATION I	REPORT	NUMBER(S)
Technical Memorandum T	RAC-F-TD	0-0190					
6a. NAME OF PERFORMING ORGANI	IZATION	6b. OFFICE SYMBOL (If applicable)	7a. NAME OF M	ONITORING ORGA	NIZATIO	N	
TRADOC Analysis Comman	d	ATRC-FM					
6c. ADDRESS (City, State, and ZIP Co	ode)		7b. ADDRESS (Ci	ty, State, and ZIP	Code)		
ATTN: ATRC-FM							
Ft Leavenworth, KS 660	27-5200						
8a. NAME OF FUNDING / SPONSORIN ORGANIZATION	IG	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMEN	T INSTRUMENT ID	ENTIFIC	ATION NUI	MBER
8c. ADDRESS (City, State, and ZIP Coo	de)	<u> </u>	10. SOURCE OF I	FUNDING NUMBER	RS		
			PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.		WORK UNIT ACCESSION NO.
11 TITLE (Include Course Classic)			<u> </u>		<u>L</u>		<u> </u>
11. TITLE (Include Security Classificat	tion)						
A Burst Fire Algorithm							
12. PERSONAL AUTHOR(S) Mr. Marvin Methven							
	13b. TIME C	OVERED	14. DATE OF REPO	RT (Year, Month,	Day)	15. PAGE (COUNT
Final	FROM	to	January 19	90		46	
16. SUPPLEMENTARY NOTATION				•			
17. COSATI CODES		18. SUBJECT TERMS	(Continue on revers	e if necessary and	d identif	y by block	number)
FIELD GROUP SUB	-GROUP						
19. ABSTRACT (Continue on reverse				*			
This report describ	oes a me	thodology put in	nto a preproc	essor for c	omput	er warg	ame models.
The preprocessor comput	tes kill	rates or probab	oility of kil	ls (Pk) for	sele	cted di	rect fire
waepons against selecte	ed targe	ts. Inese are 1	input data us	ed by the w	argam	e model	s.
The methodology rep	laced a	methodology alm	eady in the	preprocesso	r. T	his met	hodology
computes probability of	t his (Pl	h) and probabili	lty of kill g	iven a hit	(Pk/h) for a	
particular type of weap number of rounds in bur	on lired	a against the ta is called a bur	irget. The war	eapon type on. Ph and	fires Pk/h	a desi	gnated
intermediate values use	ed in con	mputing the kill	rate of Pk.	one in and	1 8/11	arc	
The new methodology	Was ne	eded to reduce o	computer time	when proce	eeina	the h	wat fine
type weapons. The old other methods.	method1	logy was a Monte	Carlo proce	ss which ta	kes mo	ore tim	e than
20. DISTRIBUTION/AVAILABILITY OF			21. ABSTRACT SE	CHRITY CLASSISIC	ATION		
	SAME AS	RPT. DTIC USERS		COMIT COMPOSIFIC	MUUN		

Mr. H. Kent Pickett

22a. NAME OF RESPONSIBLE INDIVIDUAL

22b TELEPHONE (Include Area Code) | 22c. OFFICE SYMBOL

(913)684-4510

CONTENTS

	Page
TITLE PAGE	i
DD FORM 1473, Report Documentatio	n Page ii
TABLE OF CONTENTS	iii
ABSTRACT	iv
BURST FIRE	
Introduction	
Problem	
Assumptions	3
The old methodology	3
The new methodology	5
Computer program Burst_Ph -	6
APPENDIX A. BURST_PH OUTPUT	8
APPENDIX B. BURST_PH CODE	32
APPENDIX C. DISTRIBUTION LIST	
FIGU	JRES
No. Title	Page
l Target area	4
DTIG CONV MISPE ON 6	Accession For NTIS GRA&I DTIC TAB Unannounced Justification By Distribution/ Availability Codes Avail and/or Dist Special

ABSTRACT

This report describes a methodology put into a preprocessor for computer wargame models. The preprocessor computes kill rates or probability of kills (Pk) for selected direct fire weapons against selected targets. These are input data used by the wargame models.

The methodology replaced a methodology already in the preprocessor. This methodology computes probability of hit (Ph) and probability of kill given a hit (Pk/h) for a particular type of weapon fired against the target. The weapon type fires a designated number of rounds in bursts and is called a burst fire weapon. Ph and Pk/h are intermediate values used in computing the kill rate or Pk.

The new methodology was needed to reduce computer time when processing the burst fire type weapons. The old methodology was a Monte Carlo process which takes more time than other methods.

- 1. Introduction. TRADOC Analysis Command at White Sands Missile Range (TRAC-WSMR) has developed a program called Direct Fire Weapon Preprocessor (DFWP) which computes kill rates for Vector In Commander (VIC) and other computer wargame models. The kill rate data are for selected direct fire weapons against selected targets. TRAC at Fort Leavenworth (TRAC-FLVN) uses DFWP with modifications. F-DFWP shall refer to FLVN's DFWP and W-DFWP shall refer to WSMR's DFWP. Because of long computer time used for burst fire type weapons, a methodology for these weapons in W-DFWP was not adequate for F-DFWP. This report discusses the problem and defines the solution.
- 2. Problem. The methodologies for probability of hit (Ph) and probability of kill given a hit (Pk/h) needed to be changed.
 - a. Overview of Ph computation.
 - (1) DFWP uses two kinds of data.
- (a) One is the target dimensions. This is available from the Ballistic Research Laboratory (BRL).
- (b) The other is the probability data for round impacts of the weapon. This is available from the Army Materiel Systems Analysis Activity (AMSAA).
- (2) DFWP computes the Ph from the target dimensions and weapon probability data.
 - b. Overview of Pk/h computation.
 - (1) BRL provides the Pk/h data for a round.
- (2) DFWP uses the Pk/h data 'as is' for non burst fire weapons. DFWP recomputes the Pk/h data for burst fire weapons.
 - c. Ph computation for burst fire weapons.
- (1) Probability data. Burst fire weapons have a probability density function (pdf) $p\underline{b}(X,Y)$ for bursts centered at (X,Y) in addition to a pdf $p\underline{r}(x,y)$ for the round impacts. Pdf $p\underline{r}(x,y)$ is actually a conditional pdf for round impact at (x,y) given that the burst is centered at (X,Y). Pdf $p\underline{r}(x,y)$ may be written $p\underline{r}(x,y \mid X,Y)$.
- (2) Description. Ph for burst fire weapons is the probability that a burst will have at least one round hitting the target.

(3) Formulas.

$$Ph = \underbrace{i}_{b} \underbrace{pb}_{b}(X,Y) * Ph\underline{b}(X,Y) dY dX$$

$$\underbrace{i}_{b} \underbrace{i}_{b}$$

 $Ph\underline{b}(X,Y)$ is the Ph for a burst centered at (X,Y). $Ph\underline{b}(X,Y)$ may be found by the power-up formula:

$$Phb(X,Y) = 1 - (1 - Phr(X,Y)) ** Rnds$$

Rnds is the number of rounds in a burst. Phr(X,Y) is the Ph for a round in a burst centered at (X,Y). Phr(X,Y) is found by integrating pr(x,y) over the target area.

- d. Pk/h computation for burst fire weapons.
- (1) Description. Pk/h for burst fire weapons is the probability of kill (Pk) if there is at least one hit in a burst.
 - (2) Formulas.

$$Pk/h = Pk / Ph$$

$$| \infty | \infty |$$

$$Pk = | | p\underline{b}(X,Y) * Pk\underline{b}(X,Y) dY dX$$

$$| | | |$$

$$-\infty | -\infty$$

 $Pk\underline{b}(X,Y)$ is the Pk for a burst centered at (X,Y). $Pk\underline{b}(X,Y)$ may be found by the power-up formula.

$$Pkb(X,Y) = 1 - (1 - Pkhr * Phr(X,Y)) ** Rnds$$

Pkhr is the Pk/h data supplied by BRL.

e. Problem. DFWP computes Ph and Pk/h for about 1,000 combinations of range, aspect angle, posture, and movement condition. W-DFWP used a Monte Carlo process to compute Ph and Pk/h. It uses a significant amount of computer time. F-DFWP needed a more efficient methodology to compute Ph and Pk/h.

3. Assumptions.

- a. The DFWP assumes the targets to be a box or two boxes, one on top of the other. If two boxes are assumed, then the bottom box is called the hull, and the top box is called the turret. The turret is assumed to be exactly on the center of the hull. (See figure 1.) (This might change in the future.)
- b. The DFWP assumes $p\underline{b}(X,Y)$ to be normal and independent in the horizontal and vertical directions. Therefore, $p\underline{b}(X,Y)$ is an uncorrelated binormal pdf. The DFWP also assumes $p\underline{r}(x,y)$ to be normal and independent in the horizontal and vertical with mean given by the burst center (X,Y).
- c. The DFWP assumes the flight path to be parallel to the ground.
 - d. The DFWP assumes the aimpoint to be the center of target.
- 4. The old methodology. The W-DFWP methodology computes Ph and Pk (the integrals in paragraphs 2c(3) and 2d(2)) by a two stage simulation.
- a. First stage. 2,000 bursts are simulated. A table of normal random numbers supplies an X and a Y value for each burst center.
- b. Phr(X,Y) computation. A burst center, (X,Y), is the mean of pr(x,y). This mean and the round standard deviation data determine pr(x,y). W-DFWP computes Phr by integrating pr(x,y) over the hull and turret areas. (See figure 1.)

Pdf $p\underline{r}(x,y)$ equals the product of normal pdfs in X and Y directions.

$$pr(x,y) = f(x) * f(y)$$

(The X measurements are in units of round X standard deviation, and the Y measurements are in units of round Y standard deviation.) Each double integral can be changed into a product of two single integrals, thus:

Each integral can be evaluated from two lookups in the normal distribution table.

Figure 1. Target area

- c. Second stage. $Ph\underline{b}(X,Y)$ and $Pk\underline{b}(X,Y)$ are not computed by the power-up formulas (paragraphs 2c(3) and 2d(2)). Instead, a simulation is done which returns a value of one or zero, indicating whether a hit is made in the burst, and a value of one or zero, indicating whether a kill is made. The simulation is such that the probability of returning a one for a hit is $Ph\underline{b}(X,Y)$ and the probability of returning a one for a kill is $Pk\underline{b}(X,Y)$. The generator generates two random numbers in [0,1] for each round in the burst. It compares the first number to $Ph\underline{r}$ to determine if a hit is made, it compares the second number to Pkhr to determine if a kill is made.
- d. Ph and Pk computation. W-DFWP computes Ph as the number of burst hits divided by 2,000 and Pk as the number of burst kills divided by 2,000.
- e. Mathematical description. Pdf $p\underline{b}(X,Y)$ equals the product of normal pdfs in X and Y directions.

$$pb(X,Y) = f(X) * f(Y)$$

(The X measurements are in units of burst X standard deviation, and the Y measurements are in units of burst Y standard deviation.) The formulas in paragraphs 2c(3) and 2d(2) may be written:

$$Ph = \int_{0}^{\infty} f(X) * f(Y) * Phb(X,Y) dY dX$$

$$-\infty -\infty$$

$$Pk = \begin{matrix} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{pmatrix} & (X) * f(Y) * Pkb(X,Y) dY dX$$

Make the following substitutions:

$$U = F(X) = \begin{cases} f(T) & dT, & V = F(Y) = f(T) & dT \\ f(T) & dT, & dT = f(T) & dT \end{cases}$$

$$dU = f(X) & dX, & dV = f(Y) & dY.$$

This changes the formulas to:

The inverse normal table must compute X and Y from U and V.

$$X = F^{-1}(U), Y = F^{-1}(V)$$

The Monte Carlo process would use random numbers in [0,1] for U and V. Then the inverse normal table would compute X and Y from U and V. X and Y would be normal random numbers.

- 5. The new methodology. The F-DFWP methodology replaces the two stage simulation in the W-DFWP methodology by direct methods.
- a. First stage. Two direct methods were tried to replace the first stage simulation in the W-DFWP methodology. The methods use deterministic Us and Vs, instead of random Us and Vs. The inverse normal table then computes the Xs and Ys (as in paragraph 4e).

$$X = F^{-1}(U)$$
, $Y = F^{-1}(V)$

(1) Equally spaced method. The first direct method tried divides [0,1] into equal intervals. The Us and Vs are the midpoints of these intervals. Combinations of the Us and Vs are the midpoints of square intervals. These square intervals divide up the area of integration which is the unit square. If [0,1] is divided into 10 intervals, then values of U and V would be .05, .15, ..., .95, and there would be 100 combinations of Us and Vs or burst simulations.

- (2) Gauss method. The second direct method tried divides [0,1] into unequal intervals. A Gauss algorithm determines beforehand the Us and Vs. F-DFWP implements this method. (Numerical analysis books describe the Gauss method for numerical integration. See for example Schaum's Outline of Numerical Analysis.)
- b. Phr(X,Y) computation. The F-DFWP methodology computes Phr the same way as the W-DFWP methodology (paragraph 4b).
- c. Second stage. The F-DFWP methodology replaces the second stage simulation in W-DFWP by using the power-up formulas in paragraphs 2c(3) and 2d(2) to compute Phb and Pkb. The integrals for Ph and Pk in paragraph 4e may, therefore, be written as:

- d. Ph and Pk computation. Phb and Pkb (integrands of the integrals in paragraph 5c) are computed for all combinations of X and Y (paragraph 5a).
- (1) Equally spaced method. Ph is computed as the average of the Phbs and Pk is computed as the average of the Pkbs.
- (2) Gauss method. The Phbs and Pkbs are not averaged as in the equally spaced method but are weighted and summed. The weights are determined beforehand at the same time as the Us and Vs by the Gauss algorithm.

6. Computer program Burst_Ph.

a. Description. Program Burst_Ph compares the methodologies. Inputs to the program are the target dimensions. The program sets the X & Y burst dispersions to two. It computes for combinations of different burst bias, round dispersion, range, number of rounds in burst, and Pkhr. Output is labeled Monte Carlo, Summate, and Gauss. Monte Carlo is the old methodology, Summate is the equally spaced methodology, and Gauss is the Gauss methodology.

Appendix A contains output from the program. Hull length and height inputs are five and two and turret length and height inputs are two and one.

b. Conclusions. The difference between the Gauss values for the different number of iterations in the program outputs is usually much less than the difference between the Summate values for the different iterations. Also, as the iterations increase, in which case the accuracy increases, the Summate values appear to converge to the Gauss values. These observations indicate that the Gauss method is much more accurate than the Summate method.

The accuracy of the Monte_Carlo method varies. Usually it looks less accurate than the Summate method for 400 and 1,600 repetitions. It appears less accurate for PROB. of KILL/HIT than for PROB. of HIT.

It appears that the Gauss method using 400 or fewer iterations will give greater accuracy than the 2,000 repetition Monte Carlo method (the old methodology).

APPENDIX A

BURST_PH OUTPUT

HULL LENGTH AND HEIGHT? 5.000 2.000 TURRET LENGTH AND HEIGHT? 2.000 1.000

ROUND DISPERSION = 1.00 1.00 BURST BIAS = 0.00 0.00

ROUNDS = 5 RANGE = 200.

PROB. OI	HIT					
		Iterations				
	100	400	1600	2000		
MONTE_CAL			1000	1.00000		
SUMMATE	1.00000	1.00000	0.99999	1.00000		
GAUSS	0.99999	0.99991				
GROSS	0.99999	0.99991	0.99986			
PPOP of	KILL/HIT					
RND PKH	= 0.10					
	100	400	1600	2000		
MONTE_CA	RLO			0.40000		
SUMMATE	0.40912	0.40879	0.40854			
GAUSS	0.40846	0.40829	0.40820			
PROB. of	KILL/HIT					
RND PKH	= 0.50					
	100	400	1600	2000		
MONTE_CA	RLO			0.97100		
SUMMATE	0.96856	0.96836	0.96816			
GAUSS	0.96810	0.96790	0.96785			
PROB. of	KILL/HIT					
RND PKH	= 0.90					
	100	400	1600	2000		
MONTE_CAL			1000	0.99950		
SUMMATE	0.99999	0.99999	0.99998			
GAUSS	0.99997	0.99994	0.99994			
	******	3.00003	V. 00007			

			X	Y
ROUND	DISPERSION	=	1.00	1.00
BURST	BIAS	=	0.00	0.00

ROUNDS = 5 RANGE = 800.

PROB. OI	HIT			
		Iterat	cions	
	100	400	1600	2000
MONTE_CAL				0.73800
SUMMATE	0.75644	0.74284	0.73937	0.70000
GAUSS	0.73802	0.73876	0.73877	
GROSS	0.73802	0.73876	0.73877	
DDAD .4	V711 / 117 M			
	KILL/HIT			
RND PKH	= 0.10			
	100	400	1600	2000
MONTE_CAP				0.23645
SUMMATE	0.24965	0.25194	0.25269	
GAUSS	0.25301	0.25283	0.25282	
PROB. of	KILL/HIT			
RND PKH	= 0.50			
• • • • • • • • • • • • • • • • • • • •	100	400	1600	0000
MONTE_CAP		400	1000	2000
SUMMATE	0.78946	0 50550		0.80623
		0.79330	0.79475	
GAUSS	0.79539	0.79502	0.79502	
PROB. of	KILL/HIT			
RND PKH	= 0.90			
	100	400	1600	2000
MONTE CAP	RLO			0.97764
SUMMATE	0.97482	0.97562	0.97599	3.31104
GAUSS	0.97616	0.97606		
aronn	0.91010	0.9/000	0.97606	

ROUNDS = 5 RANGE = 3000.

I MOD. OI	HII			
		Iterat	ions	
	100	400	1600	2000
MONTE_CA	RLO	-		0.17300
SUMMATE	0.16825	0.16835	0.16836	
GAUSS	0.16835	0.16836	0.16835	
		0.1000	0.10005	
PROB. of	KILL/HIT			
RND PKH	= 0.10			
	100	400	1600	2000
MONTE_CA	RLO			0.14162
SUMMATE	0.12014	0.12013	0.12013	7.11102
GAUSS	0.12013	0.12013	0.12013	
PROB. of	KILL/HIT			
RND PKH	= 0.50			
	100	400	1600	2000
MONTE_CA	RLO			0.53468
SUMMATE	0.55297	0.55293	0.55293	******
GAUSS	0.55293	0.55293	0.55293	
			0.0000	•
PROB. of	KILL/HIT			
RND PKH	= 0.90			
	100	400	1600	2000
MONTE_CA	RLO			0.91329
SUMMATE	0.91806	0.91805	0.91805	3.010.00
GAUSS	0.91805	0.91805	0.91805	

ROUNDS = 20 RANGE = 200.

PROB. OI	HIT			
		Iterat	ions	
	100	400	1600	2000
MONTE_CA	RLO			1.00000
SUMMATE	1.00000	1.00000	1.00000	1.0000
GAUSS	1.00000	1.00000	0.99999	
		- 10000	0.33333	
PROB. of	KILL/HIT			
RND PKH	= 0.10			
	100	400	1600	2000
MONTE_CAL	RLO			0.87000
SUMMATE	0.87809	0.87780	0.87752	0.07000
GAUSS	0.87743	0.87714	0.87703	
PROB. of	KILL/HIT			
RND PKH	= 0.50			
	100	400	1600	0000
MONTE_CAP		400	1600	2000
SUMMATE	1.00000	1.00000	1 00000	1.00000
GAUSS	1.00000		1.00000	
GROSS	1.0000	0.99999	0.99996	
PROB. of	KILL/HIT			
RND PKH	= 0.90			
IIII	100	400		
MONTE_CAR	-	400	1600	2000
SUMMATE		1 00000		1.00000
_	1.00000	1.00000	1.00000	
GAUSS	1.00000	1.00000	1.00000	

ROUNDS = 20 RANGE = 800.

11102. 01	*** *			
		Iterat	ions	
	100	400	1600	2000
MONTE_CA	RLO			0.87250
SUMMATE	0.90618	0.88024	0.87243	0.0.200
GAUSS	0.87083	0.86932	0.86939	
	7.5.755	0.00902	0.00939	
PROB. of	KILL/HIT			
RND PKH	= 0.10			
	100	400	1600	2000
MONTE_CAL	RLO			0.55989
SUMMATE	0.56163	0.57100	0.57458	0.0000
GAUSS	0.57509	0.57637	0.57633	
	KILL/HIT			
RND PKH	= 0.50			
	100	400	1600	2000
MONTE_CA	RLO			0.93238
SUMMATE	0.92508	0.93135	0.93272	
GAUSS	0.93210	0.93443	0.93438	
2202	11 7 0 0 / 17 1 1 1 1			
	KILL/HIT			
RND PKH	= 0.90			
	100	400	1600	2000
MONTE_CA	RLO			0.99198
SUMMATE	0.99014	0.99147	0.99147	
GAUSS	0.99139	0.99183	0.99181	

ROUNDS = 20 RANGE = 3000.

11100. 01 1111	•			
		Iterat	ions	
	100	400	1600	2000
MONTE_CARLO				0.38100
SUMMATE	0.38640	0.38683	0.38686	0.56100
GAUSS				
GAUSS	0.38685	0.38686	0.38686	
PROB. of KIL				
RND PKH = 0	.10			
	100	400	1600	2000
MONTE_CARLO				0.19948
SUMMATE	0.19390	0.19379	0.19379	0.19910
GAUSS	0.19379	0.19379	0.19378	
0000	0.19079	0.19379	0.19376	
DDOD -4 UTI	1 /31 T M			
	L/HIT			
RND PKH = 0	.50			
	100	400	1600	2000
MONTE_CARLO				0.68635
SUMMATE	0.69213	0.69190	0.69189	
GAUSS	0.69189	0.69189	0.69188	
			0.00100	
PROB. of KIL	T. / 12 T TP			
	0.90			
ROUND PRH -			_	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	100	400	1600	2000
MONTE_CARLO				0.95538
SUMMATE	0.95372	0.95365	0.95365	
GAUSS	0.95365	0.95365	0.95364	

ROUNDS = 5 RANGE = 200.

		744		
	100	Iterat		
	100	400	1600	2000
MONTE_CARL				0.99750
SUMMATE	0.99996	0.99961	0.99901	
GAUSS	0.99882	0.99853	0.99835	
PROB. of K	ILL/HIT			
RND PKH =	0.10			
	100	400	1600	2000
MONTE_CARL	0			0.39599
SUMMATE	0.40541	0.40448	0.40409	0.39399
GAUSS	0.40396	0.40354	0.40345	
455	0.40090	0.40354	0.40345	
PROB. of K	ILL/HIT			
	0.50			
11112	100	400	1600	2222
MONTE CARL		400	1600	2000
MONTE_CARL				0.96742
SUMMATE	0.96601	0.96488	0.96450	
GAUSS	0.96434	0.96405	0.96384	
PROB. of K	TII /UTM			
	·			
RND PKH =	0.90			
	100	400	1600	2000
MONTE_CARL	0			0.99950
SUMMATE	0.99989	0.99973	0.99967	
GAUSS	0.99963	0.99964	0.99959	

			X	Y
ROUND	DISPERSION	=	1.00	1.00
BURST	BIAS	2	1.20	1.50

ROUNDS = 5 RANGE = 800.

PROB. of	HIT			
		Iterat	tions	
	100	400	1600	2000
MONTE_CAR			1000	0.58200
SUMMATE	0.58851	0.57904	0.57348	0.58200
GAUSS	0.57139	0.57099	0.57102	
3	0.37139	0.57099	0.5/102	
PROB. of	¥11.1./UTM			
RND PKH	= 0.10			
MAD FAM				
MONME GAT	100	400	1600	2000
MONTE_CAF				0.22079
SUMMATE	0.23464	0.23366	0.23444	
GAUSS	0.23476	0.23496	0.23495	
PROB. of	KILL/HIT			
RND PKH	= 0.50			
	100	400	1600	2000
MONTE_CAR	LO		1000	0.77406
SUMMATE	0.76656	0.76336	0.76449	0.77400
GAUSS	0.76494	0.76546	0.76545	
	0.70494	0.70540	0.70345	
PROB. of	KILL/HIT			
RND PKH	= 0.90			
IND I AH				
MONTE CAS	100	400	1600	2000
MONTE_CAR				0.97509
SUMMATE	0.97040	0.96932	0.96949	
GAUSS	0.96954	0.96973	0.96973	
			-	

ROUNDS = 5 RANGE = 3000.

PROB. of 1	HIT			
		Iterat	ions	
	100	400	1600	2000
MONTE_CAR				0.11250
SUMMATE	0.11640	0.11570	0.11569	0.11230
GAUSS	0.11570	0.11570	0.11569	
GRUSS	0.11570	0.11509	0.11509	
PROB. of I	KTLL/HTT			
ROUND PKH	= 0.10			
1100112 1 1111	100	400	1600	0000
MONTE CAD		400	1000	2000
MONTE_CAR				0.13778
SUMMATE	0.11884	0.11907	0.11908	
GAUSS	0.11907	0.11908	0.11908	
PROB. of 1				
RND PKH :	= 0.50			
	100	400	1600	2000
MONTE_CAR	LO			0.57333
SUMMATE	0.54958	0.55021	0.55023	
GAUSS	0.55021	0.55022	0.55023	
0000	0.00021	0.00022	0.55020	
PROB. of	KILL/HIT			
RND PKH	= 0.90			
	100	400	1600	2000
MONTE_CAR				0.93778
SUMMATE	0.91691	0.91714	0.91714	5.30770
GAUSS	0.91714			
GEURD	0.91714	0.91714	0.91714	

			X	Y
ROUND	DISPERSION	=	1.00	1.00
BURST	BIAS	=	1.20	1.50

ROUNDS = 20 RANGE = 200.

PROB. of	HIT			
		Iterat	ions	
	100	400	1600	2000
MONTE_CA			1000	0.99900
SUMMATE	1.00000	1.00000	0.99999	0.99900
GAUSS	0.99999	0.99975	0.99999	
41.000	0.39333	0.99975	0.999/4	
PROB. of	KILL/HIT			
RND PKH	= 0.10			
11112		400		
MONTE CA	100	400	1600	2000
MONTE_CA				0.86737
SUMMATE	0.87441	0.87285	0.87187	
GAUSS	0.87154	0.87107	0.87074	
2222				
	KILL/HIT			
RND PKH	= 0.50			
	100	400	1600	2000
MONTE_CA	RLO			1.00000
SUMMATE	1.00000	0.99996	0.99978	1.0000
GAUSS	0.99973	0.99958	0.99958	
		3.30000	0.99950	
PROB. of	KILL/HIT			
RND PKH	= 0.90			
	100	400	1600	
MONTE_CAL		400	1600	2000
SUMMATE	1.00000	1 00000		1.00000
GAUSS		1.00000	0.99999	
GRUSS	0.99999	0.99996	0.99996	

ROUNDS = 20 RANGE = 800.

		_		
		Iterat	ions	
	100	400	1600	2000
MONTE_CAR	RLO			0.72800
SUMMATE	0.73875	0.73209	0.72901	0.72000
GAUSS	0.72843	0.72392		
GROSS	0.72643	0.72392	0.72401	
PROB. of	KILL/HIT			
RND PKH	= 0.10			
	100	400	1600	2000
MONTE_CAR	=		1000	
SUMMATE	0.51729	0 61161	0 50067	0.49657
		0.51151	0.50967	
GAUSS	0.50860	0.51175	0.51172	
			•	
PROB. of	KILL/HIT			
RND PKH	= 0.50			
	100	400	1600	2000
MONTE_CAL				0.90934
SUMMATE	0.90412	0 00787	0.0000	0.90934
		0.90357	0.90007	
GAUSS	0.89859	0.90100	0.90096	
PROB. of	KILL/HIT			
RND PKH	= 0.90			
	100	400	1600	2000
MONTE_CAR		400	1000	
_		0.0000		0.98970
SUMMATE	0.98686	0.98724	0.98666	
GAUSS	0.98649	0.98671	0.98670	

ROUNDS = 20 RANGE = 3000.

11.02. 01	11.1.1			
		Iterat	tions	
	100	400	1600	2000
MONTE_CA	RLO			0.27800
SUMMATE	0.27822	0.27363	0.27351	0.27000
GAUSS	0.27366	0.27353	0.27353	
	0.2.000	0.2755	0.27353	
PROB. of	KILL/HIT			
RND PKH	= 0.10			
	100	400	1600	
MONTE_CA		400	1600	2000
SUMMATE	0.18509	0 10000		0.18345
GAUSS		0.18729	0.18736	
GAUSS	0.18727	0.18735	0.18736	
PROR of	KILL/HIT			
RND PKH				
NND PKH	= 0.50			
	100	400	1600	2000
MONTE_CA				0.68885
SUMMATE	0.67520	0.67997	0.68016	
GAUSS	0.67998	0.68014	0.68015	
	KILL/HIT			
RND PKH	= 0.90			
	100	400	1600	2000
MONTE_CA	RLO			0.95683
SUMMATE	0.94929	0.95064	0.95070	3.3000
GAUSS	0.95067	0.95070	0.95070	
· · · · · ·	3.24307	3.33070	0.95070	

ROUNDS = 5 RANGE = 200.

PRUB. OI	HIT			
		Iterat	ions	
	100	400	1600	2000
MONTE_CA				0.99850
SUMMATE	0.99921	0.99910	0.99901	0.30030
GAUSS	0.99899	0.99891	0.99888	
	0.33033	0.99091	0.99000	
PROB. of	KILL/HIT			
RND PKH	= 0.10			
	100	400	1000	
MONTE CA		400	1600	2000
MONTE_CA				0.32098
SUMMATE	0.33202	0.33116	0.33073	
GAUSS	0.33058	0.33038	0.33034	
2202				
	KILL/HIT			
RND PKH	≈ 0.50			
	100	400	1600	2000
MONTE_CA	RLO			0.91838
SUMMATE	0.91362	0.91263	0.91211	
GAUSS	0.91193	0.91166	0.91159	
PROB. of	KILL/HIT			
RND PKH	= 0.90			
	100	400	1600	2000
MONTE_CA		400	1000	0.99700
SUMMATE	0.99787	0 00776	0 00000	0.99700
		0.99776	0.99770	
GAUSS	0.99768	0.99764	0.99762	

ROUNDS = 5 RANGE = 800.

11.02. 01	*** *			
		Iterat	ions	
	100	400	1600	2000
MONTE_CA		100	1000	
SUMMATE		0 45500	0 45054	0.45350
	0.45708	0.45387	0.45234	
GAUSS	0.45182	0.45118	0.45103	
DD0D - 4	14.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.			
	KILL/HIT			
RND PKH	= 0.10			
	100	400	1600	2000
MONTE_CAL	=		1000	
SUMMATE		0 10000		0.11466
	0.12337	0.12326	0.12323	
GAUSS	0.12322	0.12322	0.12322	
DDOD of	KILL/HIT			
RND PKH	≈ 0.50			
	100	400	1600	2000
MONTE_CAL	RLO			0.57552
SUMMATE	0.56173	0.56145	0.56136	0.57552
GAUSS	- · · · · -			
GAUSS	0.56133	0.56133	0.56133	
PROB. of	KILL/HIT			
RND PKH				
RND PKH	= 0.90			
	100	400	1600	2000
MONTE_CAR	RLO			0.93826
SUMMATE	0.92113	0.92104	0.92101	3.22 23
GAUSS	0.92100	0.92100	0.92101	

			X	Y
ROUND	DISPERSION	=	4.00	5.00
BURST	BIAS	=	0.00	0.00

ROUNDS = 5 RANGE = 3000.

PROB. of	HIT			
		Iterat	ions	
	100	400	1600	2000
MONTE_CA	RLO			0.04300
SUMMATE	0.04367	0.04330	0.04314	0.04000
GAUSS	0.04308	0.04302	0.04300	
		*******	0.04000	
PROB. of	KILL/HIT			
RND PKH	= 0.10			
	100	400	1600	2000
MONTE_CA	RLO	•••	1000	0.10465
SUMMATE	0.10164	0.10164	0.10164	0.10405
GAUSS	0.10164	0.10164	0.10164	
			0.10104	
PROB. of	KILL/HIT			
RND PKH	= 0.50			
	100	400	1600	2000
MONTE_CA		*00	1000	0.46512
SUMMATE	0.50455	0.50453	0.50453	0.40512
GAUSS	0.50453	0.50453	0.50453	
	0.00100	0.30433	0.30433	
PROB. of	KILL/HIT			
RND PKH	= 0.90			
	100	400	1600	0000
MONTE_CA		400	1000	2000
SUMMATE	0.90163	0.90163	0.90162	0.91860
GAUSS	0.90163	0.90163		
GRODD	0.90102	0.90102	0.90162	

ROUNDS = 20 RANGE = 200.

PROB. of	HIT			
		Iterat	ions	
	100	400	1600	2000
MONTE_CA			2000	1.00000
SUMMATE	1.00000	1.00000	1.00000	1.00000
GAUSS	1.00000	1.00000	1.00000	
			1.00000	
PROB. of	KILL/HIT			
RND PKH	= 0.10			
	100	400	1600	2000
MONTE_CAL			1000	
SUMMATE	0.80008	0.79885	0.79820	0.79650
GAUSS	0.79798	0.79763	0.79753	
	41.5766	0.79700	0.19155	
PROB. of	KILL/HIT			
RND PKH	= 0.50			
	100	400	1600	2000
MONTE_CAP			1000	0.99950
SUMMATE	0.99993	0.99992	0.99992	0.99950
GAUSS	0.99991	0.99991	0.99990	
	7.00001	0.93331	0.99990	
PROB. of	KILL/HIT			
RND PKH	= 0.90			
	100	400	1600	0000
MONTE_CAP		400	1300	2000
SUMMATE	1.00000	1.00000	1 00000	1.00000
GAUSS	1.00000		1.00000	
GRODD	1.0000	1.00000	1.00000	

X Y ROUND DISPERSION = 4.00 5.00 = 0.00 0.00 BURST BIAS

ROUNDS = 20 RANGE = 800.

PROB. of H	TIH			
	100	400	1600	2000
MONTE_CARI	20			0.90200
SUMMATE	0.90946	0.90612	0.90427	
GAUSS	0.90365	0.90259	0.90230	
PROB. of h	KILL/HIT			
RND PKH =	= 0.10			
	100	400	1600	2000
MONTE_CARI	70			0.22118
SUMMATE	0.22754	0.22666	0.22632	
GAUSS	0.22620	0.22614	0.22614	
PROB. of F	KILL/HIT			
ROUND PKH	= 0.50			
	100	400	1600	2000
MONTE_CARI	70			0.77661
SUMMATE	0.76103	0.75943	0.75877	•••••
GAUSS	0.75855	0.75840	0.75839	
PROB. of I	KILL/HIT			
RND PKH =	= 0.90			
	100	400	1600	2000
MONTE_CAR			-	0.97506
SUMMATE	0.97194	0.97156	0.97140	
GAUSS	0.97134	0.97129	0.97129	
	-	-		

ROUNDS = 20 RANGE = 3000.

PROB. of	HIT					
		Iterations				
	100	400	1600	2000		
MONTE_CA				0.15350		
SUMMATE	0.16339	0.16204	0.16143	0.15550		
GAUSS	0.16122	0.16099	0.16094			
	***************************************	0.1000	0.10094			
PROB. of	KILL/HIT					
RND PKH	= 0.10					
	100	400	1600	0000		
MONTE_CA		400	1000	2000		
SUMMATE	0.10794	0.10791	0.10790	0.09121		
GAUSS	0.10799	0.10791				
4055	0.10790	0.10790	0.10790			
PROB of	KILL/HIT					
RND PKH	= 0.50					
100 1 KH	- -	400	•	_		
MONTHE CAT	100	400	1600	2000		
MONTE_CAL				0.51792		
SUMMATE	0.52157	0.52149	0.52147			
GAUSS	0.52146	0.52146	0.52147			
PPOP of	KILL/HIT					
RND PKH						
RND PKH	= 0.90					
WOMEN CA	100	400	1600	2000		
MONTE_CAI				0.91531		
SUMMATE	0.90760	0.90757	0.90756			
GAUSS	0.90756	0.90756	0.90756			

			X	Y
ROUND	DISPERSION	=	4.00	5.00
BURST	BIAS	=	1.20	1.50

ROUNDS = 5 RANGE = 200.

•				
Iterations				
100			2000	
	400	1000		
0.00750	0 00700	0.00700	0.99650	
		-		
0.99703	0.99688	0.99683		
- · -				
10				
100	400	1600	2000	
			0.30858	
0.31903	0.31823	0.31785		
	0.01/00	0.01/31		
፣ / ይተጥ				
L/HIT				
.50				
	400	1600	2000	
.50		1600	2000 0.90567	
.50	4 00 0.89820	1600 0.89768		
100		0.89768		
0.50 100 0.89923	0.89820			
0.50 100 0.89923	0.89820	0.89768		
0.50 100 0.89923 0.89750	0.89820	0.89768		
0.50 100 0.89923 0.89750	0.89820	0.89768		
0.89923 0.89750 L/HIT	0.89820 0.89726	0.89768 0,89720	0.90567	
0.50 100 0.89923 0.89750	0.89820	0.89768	2000	
0.50 100 0.89923 0.89750 L/HIT	0.89820 0.89726	0.89768 0.89720	0.90567	
0.89923 0.89750 L/HIT	0.89820 0.89726	0.89768 0,89720	2000	
	100 0.99759 0.99703 0.1/HIT 0.10 100 0.31903 0.31772	100 400 0.99759 0.99728 0.99703 0.99688 SL/HIT 0.10 100 400 0.31903 0.31823	0.99759 0.99728 0.99709 0.99703 0.99688 0.99683 SL/HIT 100 400 1600 0.31903 0.31823 0.31785	

			X	Y
ROUND	DISPERSION	=	4.00	5.00
BURST	BIAS	=	1.20	1.50

ROUNDS = 5 RANGE = 800.

FRUB. OI	utt			
		Iterations		
	100	400	1600	2000
MONTE_CA				0.42500
SUMMATE	0.42602	0.42319	0.42184	0.42500
GAUSS	0.42138	0.42081		
GROSS	0.42136	0.42081	0.42069	
PROB. of	KILL/HIT			
RND PKH	= 0.10			
	100	400	1600	0000
MONTE_CAL		400	1000	2000
SUMMATE	0.12178	0 10160	0 10100	0.10941
GAUSS		0.12169	0.12166	
GAUSS	0.12165	0.12165	0.12165	
BBOB - 6	W717 / ******			
	KILL/HIT			•
RND PKH	= 0.50		•	
	100	400	1600	2000
MONTE_CAR	RLO			0.56353
SUMMATE	0.55766	0.55744	0.55736	***************************************
GAUSS	0.55733	0.55732	0.55732	

PROB. of	KILL/HIT			
RND PKH	= 0.90			
	100	400	1600	2000
MONTE_CAL		300	1000	2000
SUMMATE	0.91979	0.01071		0.93647
		0.91971	0.91969	
GAUSS	0.91968	0.91967	0.91967	

ROUND DISPERSION = 4.00 5.00 BURST BIAS = 1.20 1.50

ROUNDS = 5 RANGE = 3000.

I MOB. OI	nii			
		Iterations		
	100	400	1600	2000
MONTE_CAR				0.04000
SUMMATE	0.04038	0.04006	0.03991	0.01000
GAUSS	0.03986	0.03980	0.03979	
	***************************************	0.00300	0.00979	
PROB. of	KILL/HIT			
RND PKH	= 0.10			
	100	400	1600	2000
MONTE_CAR			2000	0.10000
SUMMATE	0.10155	0.10155	0.10155	0.10000
GAUSS	0.10155	0.10155	0.10155	
		0.10133	0.10155	
PROB. of	KILL/HIT			
RND PKH	= 0.50			
	100	400	1600	2000
MONTE_CAP	-		2000	0.46250
SUMMATE	0.50430	0.50428	0.50428	0.40250
GAUSS	0.50428	0.50428	0.50428	
41.020	7.30120	0.30426	0.50426	
PROB. of	KILL/HIT			
RND PKH	= 0.90			
	100	400	1600	2000
MONTE_CAP		***	1000	0.90000
SUMMATE	0.90154	0.90154	0.90154	0.90000
GAUSS	0.90153			
COUDD	0.90133	0.90153	0.90153	

X Y ROUND DISPERSION = 4.00 5.00 BURST BIAS 1.20 1.50

ROUNDS = 20 **RANGE** = 200.

PROB. of HIT				
		Iterat	ions	
	100	400	1600	2000
MONTE_CARLO				1.00000
SUMMATE	1.00000	1.00000	1.00000	
GAUSS	1.00000	1.00000	1.00000	
PROB. of KIL	L/HIT			
RND PKH = 0	. 10			
	100	400	1600	2000
MONTE_CARLO				0.77850
SUMMATE	0.78209	0.78073	0.78002	
GAUSS	0.77978	0.77942	0.77932	
PROB. of KILI ROUND PKH =	L/HIT 0.50			
MONTE CARLO	100	400	1600	2000
MONTE_CARLO SUMMATE	0.99980	0.000		1.00000
GAUSS	0.99973	0.99977	0.99974	
GROOD	0.99973	0.99971	0.99970	
PROB. of KILI				
	100	400	1600	2000
MONTE_CARLO				1.00000
SUMMATE	1.00000	1.00000	1.00000	3.2.2. 4
GAUSS	1.00000	1.00000	1.00000	

Y 5.00 X ROUND DISPERSION = 4.00 BURST BIAS 1.20 1.50

ROUNDS = 20 RANGE = 800.

PROB. of	HIT				
	Iterations				
	100	400	1600	2000	
MONTE_CAR	RLO			0.87850	
SUMMATE	0.88154	0.87795	0.87605	-	
GAUSS	0.87540	0.87441	0.87416		
DDOD -4	V** * /****				
PROB. of					
RND PKH	= 0.10				
	100	400	1600	2000	
MONTE_CAR				0.20888	
SUMMATE	0.21710	0.21644	0.21619		
GAUSS	0.21610	0.21605	0.21605		
PROB. of	KILL/HIT				
RND PKH	= 0.50				
MAD INE		400	1000		
MONTE CAT	100	400	1600	2000	
MONTE_CAR				0.76039	
SUMMATE	0.74378	0.74258	0.74209		
GAUSS	0.74192	0.74181	0.74180		
PROB. of	KILL/HIT				
RND PKH	= 0.90				
	100	400	1600	0000	
MONTE_CAR		*****	1600	2000	
		0 00000		0.97382	
SUMMATE	0.96815	0.96786	0.96774		
GAUSS	0.96770	0.96766	0.96766		

			X	Y
ROUND	DISPERSION	=	4.00	5.00
BURST	BIAS	=	1.20	1.50

ROUNDS = 20 RANGE = 3000.

Iterations			
100	400	1600	2000
			0.14450
0.15161	0.15044	0 14990	0.1110
	0.14930	0.14940	
/HIT			
10			
100	400	1600	2000
			0.08304
0.10749	0.10746	0.10746	0.00004
0.10745			
		0110110	
/HIT			
50			
100	400	1600	2000
			0.50865
0.52037	0.52030	0.52027	0.0000
0.52026			
		0.02020	
/HIT			
90			
100	400	1600	2000
			0.92042
0.90718	0.90715	0.90715	
0.90714	0.90714	0.90714	
	0.15161 0.14971 /HIT 10 100 0.10749 0.10745 /HIT 50 100 0.52037 0.52026 /HIT 90 100 0.90718	100 400 0.15161 0.15044 0.14971 0.14950 /HIT 10 100 400 0.10749 0.10746 0.10745 0.10745 /HIT 50 100 400 0.52037 0.52030 0.52026 /HIT 90 100 400 0.90718 0.90715	100 400 1600 0.15161 0.15044 0.14990 0.14971 0.14950 0.14946 /HIT 10

APPENDIX B

BURST_PH CODE

```
PROGRAM BURST PH
      CHARACTER ANS
      REAL
            PKH_CARLO(3)
      REAL
            PH SUMMATE(3), PKH SUMMATE(3,3)
      REAL
            PH_GAUSS(3), PKH_GAUSS(3,3)
            X_BURST_DISPERSION /2./, Y_BURST_DISPERSION /2./
      REAL
      REAL
            XDISP (2) /1., 4./, YDISP (2) /1., 5./
             XBIAS (2) /0., 1.2/, YBIAS (2) /0., 1.5/
       INTEGER
                RNDS (2) /5, 20/, ROUNDS
      REAL
            PKH_RND(3) /.1, .5, .9/
             RANGE (3) /200., 800., 3000./
      REAL
      COMMON
               X_BURST BIAS, X BURST DISPERSION,
       1Y_BURST_BIAS, Y_BURST_DISPERSION,
       2X DISPERSION, Y DISPERSION,
       3X_HULL, Y_HULL, X_TURR, Y_TURR, ROUNDS, PKH_RND
      OPEN (1, FILE='BURST PH', STATUS='NEW',
       1 CARRIAGECONTROL='LIST')
100
       WRITE (*,'(A)') ' HULL LENGTH AND HEIGHT?'
       WRITE (1, '(A)') ' HULL LENGTH AND HEIGHT?'
       READ (*,'(2F6.0)') XHULL, YHULL
       WRITE (1,'(2F7.3)') XHULL, YHULL
       WRITE (*,'(A)') ' TURRET LENGTH AND HEIGHT?'
       WRITE (1,'(A)') ' TURRET LENGTH AND HEIGHT?'
       READ (*,'(2F6.0)') XTURR, YTURR
       WRITE (1,'(2F7.3)') XTURR, YTURR
       DO IDISP = 1, 2
           X_DISPERSION = XDISP(IDISP)
           Y DISPERSION = YDISP(IDISP)
       DO IBIAS = 1.2
           X_BURST_BIAS = XBIAS(IBIAS)
           Y_BURST_BIAS = YBIAS(IBIAS)
       DO IRNDS = 1, 2
           ROUNDS = RNDS(IRNDS)
       DO IRNG = 1, 3
           X_HULL = XHULL * 1000. / RANGE(IRNG)
           Y_HULL = YHULL * 1000. / RANGE(IRNG)
           X_TURR = XTURR * 1000. / RANGE(IRNG)
           Y TURR = YTURR * 1000. / RANGE(IRNG)
                 MONTE_CARLO (PH_CARLO, PKH_CARLO)
           CALL
                 SUMMATE (PH_SUMMATE, PKH_SUMMATE)
           CALL
                 GAUSS (PH_GAUSS, PKH_GAUSS)
           CALL
3
           FORMAT (A, 2F7.2)
4
           FORMAT (/A, I5)
5
           FORMAT (A, F6.0)
1
           FORMAT (A, F5.2)
```

```
FORMAT (/18X, A)
2
           FORMAT (A, F40.5)
11
12
           FORMAT (A, 4X, 3F10.5)
                                                             Y'
                                                      X
           WRITE (1,'(//A)') '
           WRITE (1.3) ' ROUND DISPERSION =',
           XDISP(IDISP), YDISP(IDISP)
                        ' BURST BIAS
           WRITE (1.3)
           XBIAS(IBIAS), YBIAS(IBIAS)
       1
           WRITE (1,4) 'ROUNDS =', ROUNDS WRITE (1,5) 'RANGE =', RANGE(IRNG)
C *** PH output
            WRITE (1,*)
            WRITE (1,*)
           WRITE (1,1) ' PROB. of HIT'
            WRITE (1,1) '
                                     Iterations'
                                                         2000'
           WRITE (1,2) '100
                                    400
                                              1600
           WRITE (1,11) ' MONTE CARLO', PH_CARLO
           WRITE (1,12) 'SUMMATE', (PH_SUMMATE(K), K = 1, 3)
           WRITE (1,12) ' GAUSS', (PH_GAUSS(K), K = 1, 3)
C *** PKH output
           DO J = 1, 3
            WRITE (1,*)
            WRITE (1,*)
           WRITE (1,1) ' PROB. of KILL/HIT'
            WRITE (1,1) ' RND PKH =', PKH_RND(J)
           WRITE (1,2) '100
                                  400
                                           1600
                                                      2000'
           WRITE (1,11) ' MONTE_CARLO', PKH_CARLO(J)
           WRITE (1,12) 'SUMMATE', (PKH_SUMMATE(K,J), K = 1, 3)
           WRITE (1,12) ' GAUSS', (PKH\_GAUSS(K,J), K = 1, 3)
           END DO ! J
       END DO ! IRNG
       END DO ! IRNDS
              ! IBIAS
       END DO
       END DO
              ! IDISP
       WRITE (*.'(A)') ' CONTINUE?'
       READ (*,'(A1)') ANS
       IF (ANS .NE. 'Y') STOP
       WRITE (*,'(///)')
       WRITE (1,'(///)')
       GO TO 100
       END
       FUNCTION DFN (X)
       FROM HASTINGS APPROXIMATIONS FOR DIGITAL COMPUTERS
       F = 0.
       AX = ABS (X)
       IF (AX .GE. 5.) GO TO 1
       F = (((((.5383E-5 * AX + .488906E-4) * AX)
           + .380036E-4) * AX 1 + .0032776263) * AX
```

```
+ .0211410061) * AX + .0498673469) * AX + 1.
       F = .5 / ((F**8)**2)
1
       IF (X . GE. 0.) F = 1. - F
       DFN = F
       END
       SUBROUTINE MONTE CARLO (PH, PKH)
       PARAMETER REPS = 2000
       REAL PKH(3), KILL(3), KILLS(3)
             XXPH(50), XXPK(50)
       REAL
       INTEGER REP, RND, RNDS
       COMMON X_BURST_BIAS, X_BURST_DISPERSION.
       IY_BURST_BIAS, Y_BURST_DISPERSION, 2X_DISPERSION, Y_DISPERSION,
       3X_HULL, Y_HULL, X_TURR, Y_TURR, RNDS, PKH_RND(3)
                'RANDOM_NUMBERS'! Data for
       INCLUDE
       ! NRANDOM(2000), DEVIATE(2000,2)
 *** Initialize
       HITS = 0.
       KILL3(1) = 0.
       KILLS(2) = 0.
       KILLS(3) = 0.
 *** Calculate target boundaries.
       X2TURR = X_TURR / 2.
       X1TURR = -X2TURR
       X2HULL = X_HULL /2.
       X1HULL = -X2HULL
       Y2TURR = (Y_HULL + Y_TURR) / 2.
       YITURR = Y2TURR - Y_TURR
       Y2HULL = Y1TURR
       YIHULL = -Y2TURR
!
       DO REP = 1, REPS
       ISEED = NRANDM (REP)
 *** Draw random numbers for PH, PK for each round in burst.
           RND = 1, RNDS
           XXPH(RND) = BARN(ISEED)
           XXPK(RND) = BARN(ISEED)
        END DO
       X_BIAS = X_BURST_BIAS + X_BURST_DISPERSION *
2
           DEVIATE (REP, 1)
       Y_BIAS = Y_BURST_BIAS + Y_BURST_DISPERSION *
           DEVIATE (REP. 2)
C *** Prob. of hit on hull in X-direction
       T2 = (X2HULL - X_BIAS) / X_DISPERSION
       T1 = (X1HULL - X_BIAS) / X_DISPERSION
       X_PH_HULL = DFN(T2) - DFN(T1)
C *** Prob. of hit on hull in Y-direction
```

```
T2 = (Y2HULL - Y_BIAS) / Y_DISPERSION
       T1 = (Y1HULL - Y BIAS) / Y DISPERSION
       Y_PH_HULL = DFN(T2) - DFN(T1)
C *** Prob. of hit on turret in X-direction
       T2 = (X2TURR - X_BIAS) / X_DISPERSION
       T1 = (X1TURR - X_BIAS) / X_DISPERSION
       X_PH_TURR = DFN(T2) - DFN(T1)
C *** Prob. of hit on turret in Y-direction
       T2 = (Y2TURR - Y_BIAS) / Y_DISPERSION
       T1 = (Y1TURR - Y_BIAS) / Y_DISPERSION
       Y_PH_TURR = DFN(T2) - DFN(T1)
C *** Prob. of hit on target
       PH_TGT = X_PH_HULL * Y_PH_HULL + X_PH_TURR * Y_PH_TURR
C *** Simulate
       HIT = 0.
       KILL(1) = 0.
       KILL(2) = 0.
       KILL(3) = 0.
       DO RND = 1, RNDS
       IF (XXPH(RND) .LE. PH_TGT) THEN
           HIT = 1.
           IF (XXPK(RND) . LE. PKH_RND(1)) KILL(1) = 1.
           IF (XXPK(RND) . LE. PKH_RND(2)) KILL(2) = 1.
           IF (XXPK(RND) .LE. PKH_RND(3)) KILL(3) = 1.
       ENDIF
       END DO
       HITS = HITS + HIT
       KILLS(1) = KILLS(1) + KILL(1)
       KILLS(2) = KILLS(2) + KILL(2)
       KILLS(3) = KILLS(3) + KILL(3)
       END DO ! REP
       PH = HITS / REPS
       IF (HITS .GT. O.) THEN
           PKH(1) = KILLS(1) / HITS
           PKH(2) = KILLS(2) / HITS
           PKH(3) = KILLS(3) / HITS
       ELSE
           PKH(1) = PKH_RND(1)
           PKH(2) = PKH_RND(2)
           PKH(3) = PKH_RND(3)
       ENDIF
       END
1
      FUNCTION BARN (ISEED)
      INTEGER ABARN ,
     1
              B15
     2
              B16
     3
              FHI
```

```
LEFTLO.
              PBARN .
              XALO
     6
     7
              XHI
     DATA
              ABARN
                            16807/.
                            32768/.
              B15
     1
                     1
                            65536/.
     2
              B16
     3
              PBARN
                     / 2147483647/
C****THIS RANDOM NUMBER GENERATOR WAS DEVELOPED BY THE
C****ASSOCIATION OF COMPUTING MACHINERY.INC., COPYRIGHT 1979.
C****AND PRESENTED IN THE TEXT BOOK "SIMULATION MODELING AND
C****ANALYSIS" BY AVERILL M. LAW AND W. DAVID KELTON, COPYRIGHT
C*****1982, CHAPTER 6, PAGE 227.
             = ISEED/B16
      XHI
             = (ISEED-XHI*B16)*ABARN
      XALO
      LEFTLO = XALO/B16
      FHI
             = XHI*ABARN + LEFTLO
      K
             = FHI/B15
      ISEED = (((XALO-LEFTLO*B16)-PBARN)+(FHI-K*B15)*B16)+K
      IF (ISEED .LT. 0) ISEED=ISEED+PBARN
            = FLOAT(ISEED) *4.656612875E-10
      BARN
C*****PRINT IF RANDOM NO. IS ZERO
C****ERROR
      IF (BARN, LT.O.O .OR. BARN, GT.1.0) THEN
        PRINT *. ' *** INVALID RANDOM NUMBER: ', BARN
        STOP
      ENDIF
      RETURN
      END
                   SUMMATE (PH. PKH)
       SUBROUTINE
       REAL PH(3), PKH(3,3)
               XREP, YREP, RNDS
       INTEGER
       INTEGER
                REPS(3) /10, 20, 40/
       REAL
             XPK(3), YPK(3)
       REAL DEVIATE (40,3)
            (DEVIATE(J,1), J = 1, 10) /
                                          -0.38532,
                                                     -0.12566.
        -1.64486,
                              -0.67449,
                   -1.03643.
                                           1.03643.
                                                     1.64486 /
                    0.38532,
                               0.67449,
         0.12566.
             (DEVIATE(J,2), J = 1, 20) /
       DATA
                                         -0.93459,
                                                     -0.75541.
        -1.95997,
                   -1.43954.
                              -1.15035,
                              -0.31864.
                                          -0.18913,
                                                     -0.06271,
        -0.59776,
                   -0.45376,
                                          0.45376,
                                                    0.59776.
                              0.31864.
                    0.18913,
         0.06271.
                                          1.43954.
                                                     1.95997 /
         0.75541.
                    0.93459,
                              1.15035,
       DATA (DEVIATE(J,3), J = 1, 40) /
                                          -1.35632,
                                                     -1.21334,
        -2.24140, -1.78046, -1.53413,
                              -0.88715, -0.79778, -0.71436,
        -1.09162, -0.98423,
        -0.63566, -0.56071, -0.48878,
                                         -0.41929,
                                                     -0.35178,
```

```
-0.28584,
                  -0.22112, -0.15731,
                                         -0.09414, -0.03133,
                    0.09414,
         0.03133.
                               0.15731,
                                         0.22112.
                                                     0.28584,
         0.35178,
                   0.41929,
                              0.48878,
                                         0.56071,
                                                      0.63566,
         0.71436,
                    0.79778, 0.88715.
                                           0.98423,
                                                     1.09162,
         1.21334.
                   1.35632.
                              1.53413,
                                          1.78046,
                                                      2.24140 /
ı
       COMMON X_BURST_BIAS, X_BURST_DISPERSION.
       1Y_BURST_BIAS, Y BURST DISPERSION.
       2X_DISPERSION, Y_DISPERSION,
       3X_HULL, Y_HULL, X_TURR, Y_TURR, RNDS, PKH_RND(3)
C *** Calculate target boundaries.
       X2TURR = X TURR / 2.
       XITURR = -X2TURR
       X2HULL = X_HULL /2.
       X1HULL = -X2HULL
       Y2TURR = (Y_HULL + Y_TURR) / 2.
       YITURR = Y2TURR - Y_TURR
       Y2HULL = Y1TURR
       Y1HULL = -Y2TURR
       DO K = 1, 3
       XPH = 0.
       XPK(1) = 0.
       XPK(2) = 0.
       XPK(3) = 0.
       DO XREP = 1, REPS(K)
       X_BIAS = X_BURST_BIAS + X_BURST_DISPERSION *
           DEVIATE (XREP.K)
C *** Prob. of hit on hull in X-direction
       T2 = (X2HULL - X_BIAS) / X_DISPERSION
       T1 = (X1HULL - X_BIAS) / X_DISPERSION
       X_PH_HULL = DFN(T2) - DFN(T1)
C *** Prob. of hit on turret in X-direction
       T2 = (X2TURR - X_BIAS) / X_DISPERSION
       T1 = (XITURR - X_BIAS) / X_DISPERSION
       X_PH_TURR = DFN(T2) - DFN(T1)
       YPH = 0.
       YPK(1) = 0.
       YPK(2) = 0.
       YPK(3) = 0.
       DO YREP = 1, REPS(K)
       Y_BIAS = Y_BURST_BIAS + Y_BURST_DISPERSION *
          DEVIATE (YREP, K)
C *** Prob. of hit on hull in Y-direction
       T2 = (Y2HULL - Y_BIAS) / Y_DISPERSION
       T1 = (Y1HULL - Y_BIAS) / Y_DISPERSION
       Y_PH_HULL = DFN(T2) - DFN(T1)
C *** Prob. of hit on turret in Y-direction
       T2 = (Y2TURR - Y_BIAS) / Y_DISPERSION
       T1 = (YITURR - Y_BIAS) / Y_DISPERSION
```

```
Y_PH_TURR = DFN(T2) - DFN(T1)
C *** Prob. of hit for a round
       PH_RND = X_PH_HULL * Y_PH_HULL + X_PH_TURR * Y_PH_TURR
      Prob. of hit for the burst
       YPH = 1. - (1. - PH_RND) **RNDS + YPH
C **
      Prob. of kill for the burst
       YPK(1) = 1. - (1. - PH_RND * PKH_RND(1)) **RNDS + YPK(1)
       YPK(2) = 1. - (1. - PH_RND * PKH_RND(2)) **RNDS + YPK(2)
       YPK(3) = 1. - (1. - PH_RND * PKH_RND(3)) **RNDS + YPK(3)
       END DO ! YREP
ļ
       XPH = YPH + XPH
       XPK(1) = YPK(1) + XPK(1)
       XPK(2) = YPK(2) + XPK(2)
       XPK(3) = YPK(3) + XPK(3)
       END DO ! XREP
ļ
       PH(K) = XPH / REPS(K) **2
       PKH(K,1) = XPK(1) / XPH
       PKH(K,2) = XPK(2) / XPH
       PKH(K,3) = XPK(3) / XPH
       END DO ! K
       END
       SUBROUTINE GAUSS (PH, PKH)
       REAL
             PH(3), PKH(3,3)
                XREP, YREP, RNDS
       INTEGER
       INTEGER REPS(3) /10, 20, 40/
       REAL
            XPK(3), YPK(3)
       REAL DEVIATE(40,3), WT(40,3)
ļ
       DATA
             (DEVIATE(J,1), J = 1, 10) /
     * -2.22482, -1.49490, -0.99326, -0.57309, -0.18765,
       0.18765, 0.57309, 0.99326,
                                      1.49490,
                                                 2.22482 /
             (WT(J,1), J = 1, 10) /
       DATA
        .0333357, .0747257, .1095432, .1346334, .1477621,
        .1477621, .1346334, .1095432, .0747257, .0333357 /
ļ
             (DEVIATE(J,2), J = 1, 20) /
     * -2.70303, -2.09659, -1.70731, -1.40213, -1.14151,
     * -0.90787, -0.69168, -0.48697, -0.28946, -0.09604,
        0.09604.
                  0.28946, 0.48697, 0.69168,
                                                 0.90787.
        1.14151.
                 1.40213,
                           1.70731,
                                      2.09659.
       DATA
             (WT(J,2), J = 1, 20) /
        .0088070, .0203007, .0313360, .0416384, .0509651,
        .0590973, .0658443, .0710481, .0745865, .0763767,
        .0763767, .0745865, .0710481, .0658443, .0590973,
        .0509651, .0416384, .0313360, .0203007, .0088070 /
       DATA (DEVIATE(J,3), J = 1, 40) /
```

```
* -3.12759, -2.60178, -2.27780, -2.03268, -1.83041,
     * -1.65512, -1.49838, -1.35507, -1.22202, -1.09689,
     * -0.97806, -0.86429, -0.75455, -0.64810, -0.54434,
     * -0.44266, -0.34268, -0.24393, -0.14603, -0.04861,
                0.14603, 0.24393, 0.34268, 0.44266,
        0.04861,
        0.54434,
                 0.64810,
                            0.75455,
                                      0.86429,
                                                 0.97806.
                            1.35507,
        1.09689.
                  1.22202,
                                      1.49838, 1.65512,
                  2.03268,
        1.83041,
                            2.27780,
                                      2.60178,
                                                3.12759 /
       DATA (WT(J,3), J = 1, 40) /
        .0022606, .0052491, .0082105, .0111229, .0139685,
        .0167301, .0193911, .0219355, .0243479, .0266139,
        .0287199, .0306531, .0324020, .0339560, .0353058,
        .0364433, .0373616, .0380552, .0385199, .0387530,
        .0387530, .0385199, .0380552, .0373616, .0364433,
        .0353058, .0339560, .0324020, .0306531, .0287199,
        .0266139, .0243479, .0219355, .0193911, .0167301,
        .0139685, .0111229, .0082105, .0052491, .0022606 /
       COMMON X_BURST_BIAS, X_BURST_DISPERSION,
       1Y_BURST_BIAS, Y_BURST_DISPERSION,
       2X_DISPERSION, Y_DISPERSION,
       3X_HULL, Y_HULL, X_TURR, Y_TURR, RNDS, PKH_RND(3)
C *** Calculate target boundaries.
       X2TURR = X_TURR / 2.
       X1TURR = -X2TURR
       X2HULL = X_HULL /2.
      X1HULL = -X2HULL
       Y2TURR = (Y_HULL + Y_TURR) / 2.
       Y1TURR = Y2TURR - Y_TURR
       Y2HULL = Y1TURR
       Y1HULL = -Y2TURR
       DO K = 1.3
       XPH = 0.
       XPK(1) = 0.
       XPK(2) = 0.
       XPK(3) = 0.
       DO KREP = 1, REPS(K)
       X_BIAS = X_BURST_BIAS + X_BURST_DISPERSION *
          DEVIATE (XREP, K)
C *** Prob. of hit on hull in X-direction
       T2 = (X2HULL - X_BIAS) / X_DISPERSION
       T1 = (X1HULL - X_BIAS) / X_DISPERSION
       X_PH_HULL = DFN(T2) - DFN(T1)
C *** Prob. of hit on turret in X-direction
       T2 = (X2TURR - X_BIAS) / X_DISPERSION
       T1 = (XITURR - X_BIAS) / X_DISPERSION
       X_{PH}_{TURR} = DFN(T2) - DFN(T1)
       YPH = 0.
       YPK(1) = 0.
```

```
YPK(2) = 0.
       YPK(3) = 0.
       DO YREP = 1. REPS(K)
       Y_BIAS = Y_BURST_BIAS + Y_BURST_DISPERSION *
           DEVIATE (YREP, K)
C *** Prob. of hit on hull in Y-direction
       T2 = (Y2HULL - Y_BIAS) / Y_DISPERSION
       T1 = (Y1HULL - Y BIAS) / Y DISPERSION
       Y_PH_HULL = DFN(T2) - DFN(T1)
C *** Prob. of hit on turret in Y-direction
       T2 = (Y2TURR - Y_BIAS) / Y DISPERSION
       T1 = (YITURR - Y_BIAS) / Y DISPERSION
       Y_PH_TURR = DFN(T2) - DFN(T1)
C *** Prob. of hit for a round
       PH_RND = X_PH_HULL * Y_PH_HULL + X_PH_TURR * Y_PH_TURR
      Prob. of hit for the burst
       YPH = (1. - (1. - PH_RND) **RNDS) * WT(YREP,K) + YPH
      Prob. of kill for the burst
       DO J = 1, 3
           YPK(J) = (1. - (1. - PH_RND * PKH_RND(J)) **RNDS)
             * WT(YREP,K) + YPK(J)
       END DO
       END DO ! YREP
       XPH = YPH * WT(XREP,K) + XPH
       XPK(1) = YPK(1) * WT(XREP,K) + XPK(1)
       XPK(2) = YPK(2) * WT(XREP,K) + XPK(2)
       XPK(3) = YPK(3) * WT(XREP,K) + XPK(3)
       END DO ! XREP.
       PH(K) = XPH
       PKH(K,1) = XPK(1) / XPH
       PKH(K,2) = XPK(2) / XPH
       PKH(K,3) = XPK(3) / XPH
       END DO ! K
       END
```

APPENDIX C

DISTRIBUTION LIST

•	No. Copies
Commander	NO. COPIES
U.S. Army Training and Doctrine Command	•
ATTN: ATCD	
Fort Monroe, Virginia 23651-5000	
HQDA	1
Deputy Under Secretary of the Army	•
for Operations Research	
ATTN: Mr. Walter W. Hollis	
Room 2E660, The Pentagon	
Washington, D.C. 20310-0102	
Deputy Director for Force Structure	1
R&A, J-8	•
Office of the Joint Chiefs of Staff	
Room 1E965, The Pentagon	
Washington, D.C. 20301-5000	
5 W. 4144 Back	
HQDA	1
Office of the Technical Advisor	1
Deputy Chief of Staff for Operations and Plans	•
ATTN: DAMO-ZD	
Room 3A538, The Pentagon	
Washington, D.C. 20310-0401	
2010 0401	
COMMANDER	,
U.S. Army TRADOC Analysis Command	1
ATTN: ATRC	
Fort Leavenworth, Kansas 66027-5200	
-010 20000	
Director	
U.S. Army TRADOC Analysis Command-Fort Leavenworth	
ATTN: ATRC-F	_
ATRC-FOQ (Document Control)	1
Fort Leavenworth, Kansas 66027-5200	1
1010 Edwidiwordi, Raileas 0002/-5200	
Director	
U.S. Army TRADOC Analysis Command-White Sands	
Missile Range	
ATTN: ATRC-W	
ATRC-WSL (Technical Library)	_
ATRC-WFC (Mr. David Durda)	1
White Sands Missile Range, NM 88002-5502	1
miles missife mange, NM 88007-2207	

Director	L
TRADOC Analysis Command	
Requirements & Programs Directorate	
ATTN: ATRC-RP	
Fort Monroe, Virginia 23651-5143	
Director	1
U.S. Army Concepts Analysis Agency	
8120 Woodmont Avenue	
Bethesda, Maryland 20814-2797	
Director	1
U.S. Army Materiel Systems Analysis Activity	
ATTN: AMXSY	
Aberdeen Proving Ground, Maryland 21005-5071	
U.S. Army Combined Arms Research Library (CARL)	1
ATTN: ATZL-SWS-L	
Fort Leavenworth, Kansas 66027	
Defense Technical Information Center	2
ATTN: DTIC, FDAC	
Building 5, Cameron Station	
Alexandria, Virginia 22304-6145	
US Army Library	. 1
Army Study Documentation and Information	
Retrieval System (ASDIRS)	
ANRAL-RS	
ATTN: ASDIRS	
Room 1A518, The Pentagon	
Washington, D.C. 20310	