KEY RESUME ATTRIBUTES IMPACTING JOB CALLBACKS

Presenter: Kejing Yan

Brown University Data Science Institute

Oct 21st, 2024

https://github.com/anyfruit/Key-Resume-Attributes-Impacting-Job-Callbacks.git

INTRO

Problem to Solve

- Objective: Attributes influential in determining job application callback rates
- **Key Question**: Can we predict factors increase the likelihood of receiving callback?

Why This is Important

- Guiding applicants in optimizing their resumes
- Beneficial to help addressing bias in hiring practices
- Improving fairness and transparency in hiring processes

Type of Problem

• Binary classification problem; target variable is either 1 or 0

Data Collection

- Kaggle Site: https://www.kaggle.com/datasets/utkarshx27/which-resume-attributes-drive-job-callbacks
- Monitored job postings in Boston and Chicago

Callback Rate by Job City and Job Type

EDA

VISUALIZATION 1 (HEATMAP)

- Significant geographic and job-specific disparities
- Boston shows higher callback rates across most jobs

Received Callback Rate by Years of College

EDA

VISUALIZATION 2 (HISTOGRAM)

- Unexpected trend with college experience
- Candidates with 2 years of college experience have highest callback rate
- Surprisingly, those with 4 years show lower callback rates

Callback Rate Distribution for Computer Skills

EDA

VISUALIZATION 3 (PIE CHART)

- 55.9% of callbacks are for applicants without listed computer skills
- 44.1% of callbacks are for those with computer skills

SPLITTING

Features excluded:

firstname

*not relevant for predicting callbacks

job_ad_id

*not relevant for predicting callbacks

PREPROCESSING

For Handling Missing Data

• Missing values in 3 categorical columns 'UNK', 'Unknown', and NaN were standardized to "unknown" to maintain consistency

Feature Name	Missing Values	Count	%
job_fed_contractor	NA	1768	36.3
job_ownership	Unknown	1992	40.9
job_req_min_experience	NaN	2746	56.4

Renamed Values		
1768	unknown	
1992	unknown	
2746	unknown	

FEATURE ENCODING

Ordinal Encoding

- Applied to features with a natural order
- Example: years_college:
 - 0 1 2 3 4

One-Hot Encoding

- Used for categorical features with no inherent order
- Example: job_ownership
 - unknown
 - nonprofit
 - private
 - public

PREPROCESSING

- Before Preprocessing
 - 27 features
- After Preprocessing
 - 60 features (one-hot encoding expansion)
- Final Training Dataset
 - Contains 2922 data points with 60 features

