Difference Equasions

Linear Difference Equasion

The linear difference equation has the form:

$$y_{n+1} = ay_n + b$$

The general solution for y_n is:

$$y_n = \frac{b}{1-a} + (y_0 - \frac{b}{1-a})a^n$$

Long term behaviour

Type of behaviour	Indicator	Condition	Behavior
Vertical behavior	Sign of a	a > 0	Solution monotone
		a < 0	Solution oscillating
Long term behavior	Sign of a	lal < 1	Attracted to equilibrium
		lal > 1	Repelled by equilibrium

Logistic Difference Equation

The logistic difference equasion has the form:

Theorem 2

$$y_{n+1} = y_n + r y_n (M - y_n)$$

so...

$$\Delta y = r y_n (M-y_0) \ rac{\Delta y}{y_n} = r (M-y_0) = r M - r y_0 \$$

but...

$$rac{\Delta y}{y_n} = a y_n + b$$

so...

$$a=-r, \ \ b=rm$$

Theorem 3

$$Let \ \frac{1}{r} < M < \frac{2}{r}$$

- 1. There exists 2 equilibria y = 0 and y = m.
- 2. If $y_0 \ge M + 1/r$, then $y_1 \le 0$.
- 3. If $0 < y_0 < M + 1/r$, then y_n tends to equilibrium M as n increases.
- 4. The population will start oscillating as soon as y > 1/r