

Use of Wavelet Transformation to Identify Longitudinal Trends of Time-Frequency Components in Visual Learning Paradigm

By Cameron S. Goldbeck

UCLA Fielding School of Public Health
Department of Biostatistics
cgoldbeck@ucla.edu
Advisor: Damla Senturk

Outline

- Background
 - Functional Data
 - Experimental Conditions
 - Previous Works
- Mathematical Introduction
 - Inner Product
 - Wavelet Transformation
- Algorithm
- Results
 - Next Steps

Introduction to Functional Data

A Single Event Related Potential (ERP)

ERPs Collected Across a Scalp

Repeated Over Trials

Functional x Spatial x Longitudinal

EEG Data

- HIGH temporal resolution
 - LOW spatial
- Low Signal-to-Noise Ratio (SNR)
 - Average over trials
 - Loss of longitudinal dimension
- Analyzed in Time or Frequency domains

Experimental Conditions

- Dr. Shafali Jeste from UCLA SEMEL Institute
 - Study Implicit Learning
 - 37 Autism Spectrum Disorder (ASD)
 - 34 Typically Developing (TD)
 - Age-matched
- Continuous stream of colored imaged
 - Paired shapes Expected transition
 - Unpaired shapes Unexpected transition
 - 120 trials per condition

Previous Work

- Time domain window average
 - Boosts SNR
 - Damping of signal
- Kernel smoothing of Fourier Transform
 - Frequency power and coherence
 - Not good for short signals
- Wavelet Transforms
 - Time-Frequency representation
 - Yay!

Wavelet Transformation

Review of Inner Product

The inner product $\langle \cdot, \cdot \rangle : V \times V \to F$ for vector space V and field F. It must allows satisfy three condition for all vectors $x, y, z \in V$ and scalars $a \in F$:

(i) Conjugate Symmetry

$$\langle x, y \rangle = \overline{\langle x, y \rangle}$$

(ii) Linearity in first argument

$$\langle ax, y \rangle = a \langle x, y \rangle$$

 $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$

(iii) Positive-definiteness

$$\langle x, x \rangle \ge 0 \ \langle x, x \rangle = 0 \Leftrightarrow x = 0$$

The Wavelet Transformation

Let x(t) be signal we wish to transform. Let $\psi(t)$ be a complex valued Mother Wavelet of our choice. For a given scale parameter a > 0 and translation parameter $b \in \mathbb{R}$, the wavelet transformation coefficient at scale a and time b is

$$W(a,b) = \frac{1}{\sqrt{a}} \int_{-\infty}^{\infty} x(t) \overline{\psi}\left(\frac{t-b}{a}\right) dt$$

The Wavelet Transformation

The Wavelet Transformation

Algorithm

- 1. Filter signal.
- 2. Apply Wavelet Transformation chosen time and frequency parameters.
- 3. Collected vectorized TF surfaces for all subjects and electrodes in a given group, condition, and trial window.
- 4. Perform PCA and extract principal (column) vector and value.
- 5. Repeat for each trial window, condition, and group.

Results

Theta Band: 4Hz - 8Hz

Theta Band: 4Hz - 8Hz

Delta Band: .5Hz - 4Hz (ASD)

Delta Band: .5Hz - 4Hz (TD)

Remarks

- Theta band contributes to shape of N1-P3 response.
- Delta band contributes to the difference in magnitude
 - Associated attention-tasks
- Evolving process over trials
 - Different between ASD and TD

Next Steps

- Examine more trials
- Compare direction of variation
- Make a model!
 - Use principal component and single trial waveforms to form score
 - Add random effects for individual
 - Maybe electrode

Recap

- EEG data is noisy, we need lots of it!
- Wavelet Transformations have the best of both worlds, high time AND frequency resolution.
- We can analyze concurrent temporal frequency learning behavior in kids with autism.
- Lots of colorful graphs

Thanks!

Any questions?

Cameron S. Goldbeck cgoldbeck@ucla.edu (925)-548-5431;)