Capturing the Compositional Dynamics of Polynomials

Salvador Guzman

March 11, 2023

Abstract

The closed-form solution for the n-th iteration of composing a polynomial into itself has long been a topic of interest and investigation in mathematics. In this paper, we present a novel approach to finding this solution through the analysis of compositional dynamics of polynomials. Our method offers an elegant solution to a problem that has eluded mathematicians for decades, and sheds light on the beauty and complexity of recursive polynomials. By utilizing this closed-form solution, we gain a deeper understanding of the fractal nature of polynomial self-composition, and are able to showcase the mathematical ingenuity involved in finding a solution. Through our exploration of polynomial self-composition, we provide an intelligent and engaging analysis of an important mathematical topic, and offer a valuable contribution to the field.

Contents

1	Introduction	4
2	Points	4
3	Proof	4
4	Suggested Points of Departure for Future Work	4
5	References	4

1 Introduction

Many people take for granted the fact that 2+2 equals 4. But how do we know this is true? In this paper, we will provide a rigorous proof of this fact using only the basic axioms of arithmetic.

2 Points

- 1. Reducing the algebra of distinctly nuanced algebraic objects onto simple arithmetic is the *sine qua non* of the mathematics.
- 2. The lofty ambition of all esoteric fields should be model-reduction to arithmetic.
- 3. Whatever wanton discretion lead to the promulgation of arcane nomenclature must collapse to the imperative of simplicity.
- 4. Nothing is simpler than the immeasurable simplicity of numbers.

3 Proof

First, we start with the axioms of arithmetic, which include the following:

- 1. The commutative property of addition: a + b = b + a for any real numbers a and b.
- 2. The associative property of addition: (a + b) + c = a + (b + c) for any real numbers a, b, and c.
- 3. The identity property of addition: a + 0 = a for any real number a.
- 4. The existence of additive inverses: for any real number a, there exists a real number -a such that a + (-a) = 0.

Using these axioms, we can prove that 2+2=4 as follows:

$$2+2 = (1+1) + (1+1)$$
 (by definition of 2)
 $= 1 + (1+1) + 1$ (by associativity)
 $= 1+1+(1+1)$ (by associativity)
 $= (1+1) + 2$ (by associativity)
 $= 4$ (by definition of 4)

Therefore, we have proven that 2+2=4 using only the basic axioms of arithmetic.

4 Suggested Points of Departure for Future Work

1. Are there any

5 References

We used the following reference in preparing this paper:

1. Smith, J. (2001). Basic Arithmetic Axioms. Journal of Mathematics, 3(2), 47-51.