Task 1

代码基本架构

- layer. py: 代表的是神经网络的层,包含了该层线性变化和非线性变化(可以设置为没有)
- network. py: 根据输入的参数构建的神经网络, 包含backward forward方法
- sin
 - 。文件夹都是数据
 - 。 train_network_sin.py: 训练神经网络的程序
 - ∘ sin_data_model.py:数据加载器
 - 。 experiencescript. py: 实验脚本代码
 - 。 trained_network.py: 加载训练好的模型
- img
 - 。 文件夹都是数据
 - dataloader. py
 - imgdataset. py 以上为模仿pytorch 的dataset 和dataloader写的数据集处理机制
 - 。 train_network_img.py: 训练神经网络的程序
 - 。 experiencescript. py: 实验脚本代码
 - 。 trained_network=.py: 加载训练好的模型

实验

拟合 Sin

学习率对网络的影响

- 基于 单层 32unit sigmoid激活函数 实验
- 上图为Ir为0.001 下图为 0.01 的情况

可见 对于sigmoid函数而言

Ir太小的话, 在部分epoch之后, loss会开始慢速下降, 导致训练缓慢, 所以需要较大的Ir

Training and Test Loss

正则项对网络的影响

- 下面的两个网络在相同初始化情况下进行迭代
- 可见 正则项会惩罚过大的梯度,导致下降较慢,同时会防止过拟合

网络	L1误差	图像
正则项系数为0.01	Epoch 2900, Loss: 0.022429724348479462	Training and Test Loss Training Loss Test Loss 0.8 0.4 0.2 0.0 500 1000 1500 2000 2500 3000 Epochs

网络层数对网络的影响

- 实验:对两个不同网络同时进行十次测试 得到结果 取平均
- 可见单层网络收敛速度较快
- 双层网络更容易在不改变学习率的情况下不收敛

网络	3000epoch后的L1误差
sigmoid 单层网络	0.014551067166471124
sigmoid双层网络	0.02297293823671869

单层网络的神经元个数对网络的影响

- 实验:对两个不同单层网络同时进行十次测试 得到结果 取平均
- 可见在拟合任务上 单层情况下 越多的神经元数量会使得拟合的更快 且更准确
- 由于是拟合问题 所以神经元过多导致的过拟合问题就不会显现

网络	3000epoch后的L1误差
32个神经元	0.014551067166471124
128个神经元	0.006307620398259217

图像分类

激活函数对网路的影响

学习率对网络的影响

正则项对网络的影响

网络层数对网络的影响

单层网络的神经元个数对网络的影响

对反向传播算法的理解