MATEMATIKA

7. razred – osnovna šola

Jan Kastelic

Fakulteta za matematiko in fiziko, Univerza v Ljubljani

15. december 2023

Vsebina

Računanje z ulomki

2/17

15. december 2023

Jan Kastelic (FMF) MATEMATIKA

Section 1

Računanje z ulomki

Jan Kastelic (FMF)

- 🚺 Računanje z ulomki
 - Ulomki z enakimi imenovalci
 - Seštevanje ulomkov
 - Odštevanje ulomkov
 - Množenje ulomka z naravnim številom
 - Množenje ulomka z ulomkom
 - Deljenje ulomka z naravnim številom
 - Deljenje ulomka z ulomkom
 - Številski izrazi
 - Naloge z besedilo
 - Izrazi s spremenljivkami
 - Enačbe in neenačbe

4 / 17

Ulomki z enakimi imenovalci

Ulomke z enakimi imenovalci **seštevamo** tako, da **seštejemo števce**, **imenovalce** pa **prepišemo**.

$$\frac{\mathbf{a}}{\mathbf{c}} + \frac{\mathbf{b}}{\mathbf{c}} = \frac{\mathbf{a} + \mathbf{b}}{\mathbf{c}},$$

pri pogoju, da $c \neq 0$.

Ulomke z enakimi imenovalci **odštevamo** tako, da **imenovalec prepišemo**, števec pa izračunamo tako, da **od števca prvega ulomka odštejemo števec drugega ulomka**.

$$\frac{\mathbf{a}}{\mathbf{c}} - \frac{\mathbf{b}}{\mathbf{c}} = \frac{\mathbf{a} - \mathbf{b}}{\mathbf{c}},$$

pri pogoju, da $a \le b$ in $c \ne 0$.

5 / 17

Seštevanje ulomkov

Seštevanje ulomkov z različnimi imenovalci

Ulomke z različnimi imenovalci seštevamo tako, da jih najprej razširimo na skupni imenovalec, imenovalec prepišemo, števce pa seštejemo.

POMNI

Dobljeni rezultat zapišemo s celim delom in delom, manjšim od 1.

POMNI

Rezultat vedno zapišemo kot okrajšan ulomek.

6 / 17

Odštevanje ulomkov

Odštevanje ulomkov z različnimi imenovalci

Ulomke z **različnimi imenovalci odštevamo** tako, da jih najprej **razširimo na skupni imenovalec**, imenovalec prepišemo, od števca zmanjševanca (prvega ulomka) pa odštejemo števec odštevanca (drugega ulomka).

POMNI

Če moramo zaporedoma odšteti več odštevancev, odštevance seštejemo in nato odštejemo njihovo vsoto.

7 / 17

Množenje ulomka z naravnim številom

Ulomek množimo z naravnim številom tako, da števec pomnožimo z naravnim številom, imenovalec pa prepišemo.

$$\mathbf{n} \cdot \frac{\mathbf{a}}{\mathbf{b}} = \frac{\mathbf{n} \cdot \mathbf{a}}{\mathbf{b}},$$

pri pogoju, da $b \neq 0$.

POZOR

$$n \cdot \frac{a}{b} \neq n \frac{a}{b}$$

Množenje ulomka z ulomkom

Ulomek **množimo** z ulomkom tako, da **pomnožimo števec s števcem** in **imenovalec z imenovalcem**.

$$\frac{\mathbf{a}}{\mathbf{b}} \cdot \frac{\mathbf{c}}{\mathbf{d}} = \frac{\mathbf{a} \cdot \mathbf{c}}{\mathbf{b} \cdot \mathbf{d}},$$

pri pogoju, da $b \neq 0, d \neq 0$.

PO70R

$$m\frac{a}{b} \cdot n\frac{c}{d} \neq m \cdot n\frac{a \cdot c}{b \cdot d}$$

POMNI

Rezultat naj bo vedno okrajšani ulomek. Če je mogoče, naj bo zapisan s celim delom in ulomkom, manjšim od 1.

10 / 17

Deljenje ulomka z naravnim številom

Ulomek delimo z naravnim številom na dva načina:

• števec ulomka delimo z naravnim številom:

$$\frac{\mathbf{a}}{\mathbf{b}}:\mathbf{n}=\frac{\mathbf{a}:\mathbf{n}}{\mathbf{b}};$$

imenovalec ulomka pomnožimo z naravnim številom:

$$\frac{\mathbf{a}}{\mathbf{b}} : \mathbf{n} = \frac{\mathbf{a}}{\mathbf{b} \cdot \mathbf{n}}.$$

POZOR

Drugi način je vedno mogoč, prvi pa le, če je števec ulomka deljiv z danim naravnim številom.

Deljenje ulomka z ulomkom

Obratni ulomek

Obratna ulomka sta ulomka, katerih produkt je enak 1.

$$\frac{a}{b} \cdot \frac{b}{a} = 1$$

Deljenje ulomkov

Ulomek delimo z drugim ulomkom tako, da ga pomnožimo z obratno vrednostjo drugega ulomka.

$$\frac{\mathbf{a}}{\mathbf{b}} : \frac{\mathbf{c}}{\mathbf{d}} = \frac{\mathbf{a}}{\mathbf{b}} \cdot \frac{\mathbf{d}}{\mathbf{c}} = \frac{\mathbf{a} \cdot \mathbf{d}}{\mathbf{b} \cdot \mathbf{c}}$$

<ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 る の の ○ □ < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > <

11 / 17

Številski izrazi

Vrstni red operacij

Pri številskih izrazih z oklepaji **izračunamo najprej računske operacije v oklepaju**.

Vedno najprej v najbolj notranjem oklepaju.

Pri številskih izrazih brez oklepajev upoštevamo običajni vrstni red, po katerem množimo in delimo pred seštevanjem in odštevanjem.

12 / 17

Naloge z besedilom

DOGOVOR

Vsaka naloga z besedilom zahteva tudi zapisan odgovor.

POMNI

operacija	rezultat	
+ seštevanje	vsota	
odštevanje	razlika	
· množenje	produkt	
: deljenje	kvocient	

Jan Kastelic (FMF) MATEMATIKA 15. december 2023 13 / 17

Neenakost je izjava, v kateri nastopajo znaki <, >, \le ali \ge .

14 / 17

Neenakost je izjava, v kateri nastopajo znaki <, >, \le ali \ge .

<	manjše	
>	večje	
<	manjše ali enako	
<u>></u>	večje ali enako	

14 / 17

Neenakost je izjava, v kateri nastopajo znaki <, >, \le ali \ge .

$$12.5 - 2 > 8$$

 $3 + 6 < 9$

<	manjše	
>	večje	
<u> </u>	manjše ali enako	
>	večje ali enako	

15. december 2023

Jan Kastelic (FMF)

Neenakost je izjava, v kateri nastopajo znaki <, >, \le ali \ge .

$$12.5 - 2 > 8$$

 $3 + 6 < 9$

<	manjše	
>	večje	
<u> </u>	manjše ali enako	
<u>></u>	večje ali enako	

Neenačba je neenakost, v kateri nastopa neznanka.

Jan Kastelic (FMF)

Neenakost je izjava, v kateri nastopajo znaki <, >, < ali >.

$$12.5 - 2 > 8$$

 $3 + 6 < 9$

<	manjše	
>	večje	
<u> </u>	manjše ali enako	
<u>></u>	≥ večje ali enako	

Neenačba je neenakost, v kateri nastopa neznanka.

$$0.7 + x \ge 4$$

$$3 \cdot x + 5 < 17.6$$

15. december 2023

Osnovna množica \mathcal{U} je množica števil, ki jih smemo uporabiti pri reševanju neenačbe. Če osnovna množica ni posebej izbrana, je $\mathcal{U} = \mathbb{N}_0$ (naravna števila skupaj s številom 0).

<ロ > ← □ > ← □ > ← □ > ← □ = − の へ ⊙

15 / 17

Osnovna množica \mathcal{U} je množica števil, ki jih smemo uporabiti pri reševanju neenačbe. Če osnovna množica ni posebej izbrana, je $\mathcal{U} = \mathbb{N}_0$ (naravna števila skupaj s številom 0).

Rešitev neenačbe je vsako število, za katero dobimo iz izjavne oblike pravilno izjavo. Zapišemo množico rešitev, ki jo označimo z \mathcal{R} .

15 / 17

Osnovna množica \mathcal{U} je množica števil, ki jih smemo uporabiti pri reševanju neenačbe. Če osnovna množica ni posebej izbrana, je $\mathcal{U}=\mathbb{N}_0$ (naravna števila skupaj s številom 0).

Rešitev neenačbe je vsako število, za katero dobimo iz izjavne oblike pravilno izjavo. Zapišemo množico rešitev, ki jo označimo z \mathcal{R} .

$$x+3\frac{1}{4}<9$$

$$\mathcal{R} = \{1, 2, 3, 4, 5\}$$

15 / 17

Osnovna množica \mathcal{U} je množica števil, ki jih smemo uporabiti pri reševanju neenačbe. Če osnovna množica ni posebej izbrana, je $\mathcal{U}=\mathbb{N}_0$ (naravna števila skupaj s številom 0).

Rešitev neenačbe je vsako število, za katero dobimo iz izjavne oblike pravilno izjavo. Zapišemo množico rešitev, ki jo označimo z \mathcal{R} .

$$x+3rac{1}{4} < 9$$
 $\mathcal{R} = \{1,2,3,4,5\}$ $\mathcal{U} = \{2,3,4\}$ $x+3rac{1}{4} < 9$ $\mathcal{R} = \{2,3,4\}$

15 / 17

Osnovna množica \mathcal{U} je množica števil, ki jih smemo uporabiti pri reševanju neenačbe. Če osnovna množica ni posebej izbrana, je $\mathcal{U} = \mathbb{N}_0$ (naravna števila skupaj s številom 0).

Rešitev neenačbe je vsako število, za katero dobimo iz izjavne oblike pravilno izjavo. Zapišemo množico rešitev, ki jo označimo z \mathcal{R} .

$$x + 3\frac{1}{4} < 9$$
 $\mathcal{R} = \{1, 2, 3, 4, 5\}$

$$U = \{2, 3, 4\}$$
$$x + 3\frac{1}{4} < 9$$
$$R = \{2, 3, 4\}$$

$$\mathcal{U} = \{10, 11, 12, 13, 14, 15\}$$
 $x + 3\frac{1}{4} < 9$ $\mathcal{R} = \{\}$

15 / 17

Osnovna množica \mathcal{U} je množica števil, ki jih smemo uporabiti pri reševanju neenačbe. Če osnovna množica ni posebej izbrana, je $\mathcal{U} = \mathbb{N}_0$ (naravna števila skupaj s številom 0).

Rešitev neenačbe je vsako število, za katero dobimo iz izjavne oblike pravilno izjavo. Zapišemo množico rešitev, ki jo označimo z \mathcal{R} .

$$\begin{array}{c} x+3\frac{1}{4}<9 \\ \mathcal{R}=\{1,2,3,4,5\} \end{array} \qquad \begin{array}{c} \mathcal{U}=\{2,3,4\} \\ x+3\frac{1}{4}<9 \\ \mathcal{R}=\{2,3,4\} \end{array} \qquad \begin{array}{c} \mathcal{U}=\{10,11,12,13,14,15\} \\ x+3\frac{1}{4}<9 \\ \mathcal{R}=\{2,3,4\} \end{array}$$

Množica rešitev je odvisna od osnovne množice. Kadar v osnovni množici ni števila, ki reši neenačbo, je množica rešitev prazna, kar zapišemo $\mathcal{R} = \emptyset$ ali $\mathcal{R} = \{\}$.

Naj bo $\mathcal{U}=\mathbb{N}_0$.

Poiskati želimo števila, ki ustrezajo neenačbi $2\frac{5}{7} < x \leq 8\frac{1}{3}.$

16 / 17

Naj bo $\mathcal{U} = \mathbb{N}_0$.

Poiskati želimo števila, ki ustrezajo neenačbi $2\frac{5}{7} < x \leq 8\frac{1}{3}$.

Razmislimo, katera izmed naravnih števil lahko vstavimo namesto x-a, da bo izjava pravilna.

16 / 17

Naj bo $\mathcal{U} = \mathbb{N}_0$.

Poiskati želimo števila, ki ustrezajo neenačbi $2\frac{5}{7} < x \leq 8\frac{1}{3}.$

Razmislimo, katera izmed naravnih števil lahko vstavimo namesto x-a, da bo izjava pravilna.

Takšna števila so: $x \in \{3, 4, 5, 6, 7, 8\}$.

16 / 17

Naj bo $\mathcal{U} = \mathbb{N}_0$.

Poiskati želimo števila, ki ustrezajo neenačbi $2\frac{5}{7} < x \leq 8\frac{1}{3}$.

Razmislimo, katera izmed naravnih števil lahko vstavimo namesto x-a, da bo izjava pravilna.

Takšna števila so: $x \in \{3, 4, 5, 6, 7, 8\}$.

Zapišemo še množico rešitev: $\mathcal{R} = \{3, 4, 5, 6, 7, 8\}$.

16 / 17

Naj bo $\mathcal{U} = \mathbb{N}_0$.

Poiskati želimo števila, ki ustrezajo neenačbi $2\frac{5}{7} < x \leq 8\frac{1}{3}.$

Razmislimo, katera izmed naravnih števil lahko vstavimo namesto x-a, da bo izjava pravilna.

Takšna števila so: $x \in \{3, 4, 5, 6, 7, 8\}$.

Zapišemo še množico rešitev: $\mathcal{R} = \{3, 4, 5, 6, 7, 8\}$.

PREDSTAVITEV MNOŽICE REŠITEV NA ŠTEVILSKI PREMICI

Na številski premici želimo predstaviti zgornjo rešitev.

16 / 17

Naj bo $\mathcal{U} = \mathbb{N}_0$.

Poiskati želimo števila, ki ustrezajo neenačbi $2\frac{5}{7} < x \le 8\frac{1}{2}$.

Razmislimo, katera izmed naravnih števil lahko vstavimo namesto x-a, da bo izjava pravilna.

Takšna števila so: $x \in \{3, 4, 5, 6, 7, 8\}$.

Zapišemo še množico rešitev: $\mathcal{R} = \{3, 4, 5, 6, 7, 8\}$.

PREDSTAVITEV MNOŽICE REŠITEV NA ŠTEVIJSKI PREMICI

Na številski premici želimo predstaviti zgornjo rešitev.

16 / 17

REŠEVANJE NEENAČBE S PREGLEDNICO

Naj bo
$$\mathcal{U}=\left\{\frac{1}{3},\frac{2}{3},1,1\frac{1}{3}\right\}$$
.
Rešujemo enačbo $\mathbf{x}+\mathbf{2}\frac{1}{2}\leq\mathbf{3}\frac{1}{2}$.

17 / 17

REŠEVANJE NEENAČBE S PREGLEDNICO

Naj bo $\mathcal{U}=\left\{\frac{1}{3},\frac{2}{3},1,1\frac{1}{3}\right\}$. Rešujemo enačbo $\mathbf{x}+\mathbf{2}\frac{1}{2}\leq\mathbf{3}\frac{1}{2}$.

Х	leva stran neenačbe:	desna stran neenačbe:	pravilnost

REŠEVAN JE NFENAČBE S PREGLEDNICO

Naj bo $\mathcal{U}=\left\{\frac{1}{3},\frac{2}{3},1,1\frac{1}{3}\right\}$. Rešujemo enačbo $\mathbf{x}+\mathbf{2}\frac{1}{2}\leq\mathbf{3}\frac{1}{2}$.

X	leva stran neenačbe: $x + 2\frac{1}{2}$	desna stran neenačbe: $3\frac{1}{2}$	pravilnost
$\frac{1}{3}$	$\frac{1}{3} + 2\frac{1}{2} = 2\frac{5}{6}$	$3\frac{1}{2}$	Р
<u>2</u> 3	$\frac{2}{3} + 2\frac{1}{2} = 3\frac{1}{6}$	$3\frac{1}{2}$	Р
1	$1 + 2\frac{1}{2} = 3\frac{1}{2}$	$3\frac{1}{2}$	Р
$1\frac{1}{3}$	$1\frac{1}{3} + 2\frac{1}{2} = 3\frac{5}{6}$	$3\frac{1}{2}$	N

REŠEVANJE NEENAČBE S PREGLEDNICO

Naj bo $\mathcal{U}=\left\{\frac{1}{3},\frac{2}{3},1,1\frac{1}{3}\right\}$. Rešujemo enačbo $\mathbf{x}+\mathbf{2}\frac{1}{2}\leq\mathbf{3}\frac{1}{2}$.

X	leva stran neenačbe: $x + 2\frac{1}{2}$	desna stran neenačbe: $3\frac{1}{2}$	pravilnost
$\frac{1}{3}$	$\frac{1}{3} + 2\frac{1}{2} = 2\frac{5}{6}$	$3\frac{1}{2}$	Р
<u>2</u> 3	$\frac{2}{3} + 2\frac{1}{2} = 3\frac{1}{6}$	$3\frac{1}{2}$	Р
1	$1 + 2\frac{1}{2} = 3\frac{1}{2}$	$3\frac{1}{2}$	Р
$1\frac{1}{3}$	$1\frac{1}{3} + 2\frac{1}{2} = 3\frac{5}{6}$	$3\frac{1}{2}$	N

Zapišemo množico rešitev: $\mathcal{R} = \left\{\frac{1}{3}, \frac{2}{3}, 1\right\}$.

Jan Kastelic (FMF)