DANMARKS TEKNISKE UNIVERSITET

Side 1 af 4 sider

Skriftlig 2-timers prøve, 17. maj 2016

Kursus: Matematik 2 01035

Tilladte hjælpemidler: Alle af DTU tilladte.

Vægtning af opgaverne: Opgave 1: 30%, Opgave 2: 20%, Opgave 3: 30% og Opgave 4: 20%.

Vægtningen er kun vejledende. Sættet bedømmes som en helhed. For at opnå fuldt point i opgaverne 2, 3 og 4 kræves at mellemregninger medtages i rimeligt omfang. Alle svar i opgaverne 2, 3 og 4 skal begrundes, eventuelt med en henvisning til lærebogen.

NB. Opgave 1 er en multiple-choice opgave og svaret på hvert spørgsmål angives ved afkrydsning på det vedlagte løsningsark, der afleveres som en del af besvarelsen. Udregninger hørende til opgave 1 skal ikke afleveres og vil ikke kunne indgå i bedømmelsen. Ved svaret "ved ikke" gives 0%, ved korrekt svar gives +5%, og ved et forkert svar gives -2,5%.

Opgave 1

- (i) Den uendelige række $\sum_{n=0}^{\infty} (-1)^n \frac{2}{(n+3)^2}$ er:
 - a) divergent.
 - b) absolut konvergent.
 - c) betinget konvergent.
 - d) ved ikke.
- (ii) Det karakteristiske polynomium for differentialligningen

$$y'''(t) + 5y''(t) + 11y'(t) + 15y(t) = 0$$

er $P(\lambda) = (\lambda + 1 - 2i)(\lambda + 1 + 2i)(\lambda + 3)$. Den fuldstændige reelle løsning er:

a)
$$y(t) = c_1 e^{3t} + c_2 e^{-t} \cos(2t) + c_3 e^{-t} \sin(2t)$$
, $c_1, c_2, c_3 \in \mathbb{R}$

b)
$$y(t) = c_1 e^t \cos(2t) + c_2 e^t \sin(2t) + c_3 e^{3t}$$
, $c_1, c_2, c_3 \in \mathbb{R}$.

c)
$$y(t) = c_1 e^{-3t} + c_2 e^{-t} \cos(2t) + c_3 e^{-t} \sin(2t)$$
, $c_1, c_2, c_3 \in \mathbb{R}$.

d) ved ikke.

(iii) Fourierrækken for en 2π periodisk funktion f er

$$f(t) = 2 + \frac{1}{3}\sin(3t) + \frac{1}{4}\sin(4t) + \frac{3}{2\pi}\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}\cos(nt) . \tag{1}$$

Fourierkoefficienterne er:

- a) $a_0 = 4$, $a_n = \frac{3}{2\pi(n^2+1)}$, for n = 1, 2, ... og $b_n = 0$, for n = 1, 2, 5, 6, 7, 8... samt $b_3 = \frac{1}{3}, b_4 = \frac{1}{4}$.
- b) $a_0 = 2$, $a_n = \frac{3}{2\pi(n^2+1)}$, for $n = 1, 2, \dots$ og $b_n = \frac{1}{n}$, for $n = 1, 2, \dots$
- c) $a_0 = 2$, $a_n = \frac{1}{(n^2+1)}$, for $n = 1, 2, \ldots$ og $b_n = 0$, for $n = 1, 2, 5, 6, 7, 8 \ldots$ samt $b_3 = \frac{1}{3}, b_4 = \frac{1}{4}$.
- d) ved ikke.
- (iv) Konvergensradius ρ for potensrækken $\sum_{n=1}^{\infty} \frac{n+1}{3^n} x^n$ er:
 - a) $\rho = 3$.
 - b) $\rho = \frac{1}{3}$.
 - c) $\rho = \infty$.
 - d) ved ikke.
- (v) Sumfunktionen for den uendelige række $\sum_{n=2}^{\infty}\frac{1}{2^{n+1}}x^n$ er lig med:
 - a) $\frac{x^2}{4-2x}$ for |x| < 2.
 - b) $\frac{1}{2-x}$ for |x| < 2.
 - c) $\frac{x^2}{8-4x}$ for |x| < 2.
 - d) ved ikke.
- (vi) Et homogent lineært differentialligningssystem har det karakteristiske polynomium $P(\lambda) = \lambda^3 + (3-2a)\lambda^2 + 2\lambda + a$, hvor $a \in \mathbb{R}$. Systemet er asymptotisk stabilt for
 - a) 0 < a < 3/2.
 - b) 0 < a < 6/5.
 - c) a < 3/2.
 - d) ved ikke.

Opgave 2

Vi betragter den inhomogene differentialligning givet ved

$$\frac{d^4y}{dt^4} + \frac{d^2y}{dt^2} + y = u(t) , \qquad (2)$$

hvor y = y(t) og $t \in \mathbb{R}$.

- (i) Bestem overføringsfunktionen H(s) for ligning (2) med $u(t) = e^{st}$.
- (ii) Benyt overføringsfunktionen til at finde det stationære svar for $u(t) = 5\cos(t) + 2\sin(3t)$.

Opgave 3

Funktionen f er 2π -periodisk og i intervallet $[-\pi, \pi[$ er f givet ved

$$f(x) = \begin{cases} 0 & \text{for } -\pi \le x < 0, \\ 1 + \sin(x) & \text{for } 0 \le x < \pi. \end{cases}$$
 (3)

- (i) Skitser grafen for f, hvor $x \in [-\pi, \pi]$.
- (ii) Hvilken værdi konvergerer Fourierrækken for f mod i punktet x = 0?
- (iii) Fourierrækken for f på reel form er givet ved

$$f \sim k_0 + \sum_{n=1}^{\infty} \frac{2}{\pi} \frac{1}{1 - 4n^2} \cos(2nx) + \sum_{n=1}^{\infty} b_n \sin(nx)$$
 (4)

Bestem k_0 samt Fourierkoefficienterne b_n for $n = 1, 2, 3, \ldots$

Opgave 4

Vi betragter differentialligningen

$$t^2 \frac{d^3 y}{dt^3} + 2y = 3t {,} {(5)}$$

hvor $t \in \mathbb{R}$ og y = y(t).

- (i) Bestem en partikulær løsning $y=y_p(t)$ til (5) ved at gætte på et polynomium af passende grad.
- (ii) Den tilsvarende homogene ligning er

$$t^2 \frac{d^3 y}{dt^3} + 2y = 0. (6)$$

Antag, at løsningen y kan skrives på potensrækkeformen $y(t) = \sum_{n=1}^{\infty} a_n t^n$ og bestem ved indsættelse i ligning (6) rekursionsformler for a_n , $n = 1, 2, 3, \ldots$

Opgavesættet slut.