Exerciții LP1 - Semantică și forme normale

December 5, 2016

Fie structura S = (U, I), unde;

- 1. $U = \mathbb{Z}$;
- 2. $I_x = 7$, $I_y = 5$, $I_z = 0$ pentru orice $z \in \mathcal{X} \setminus \{x, y\}$;
- 3. $I_c = 3$;
- 4. $I_d = 0;$
- 5. pentru orice $u \in U$, $I_P(u) = 1$ ddacă u este par;
- 6. pentru orice $u \in U$, $I_Q(u) = 1$ ddacă u este impar;
- 7. pentru orice $u, v \in U$, $I_R(u, v) = 1$ ddacă u este mai mic sau egal ca v;
- 8. pentru orice $u, v \in U$, $I_T(u, v) = 1$ ddacă u este mai mic strict decât v;
- 9. $I_f(u,v) = u + v$, pentru orice $u, v \in U$;
- 10. $I_h(u) = u + 1$, pentru orice $u \in U$;
- 11. $I_g(u) = 2 * u$, pentru orice $u \in U$.
- 1. Calculați interpretarea următorilor termeni în structura S de mai sus:
 - (a) c
 - (b) x
 - (c) y
 - (d) f(x,y)
 - (e) f(y,x)
 - (f) h(z)
 - (g) g(h(c))
 - (h) h(g(c))
 - (i) (f(x,h(z)))
 - (j) f(f(x,d), f(y,z))

2. (Calculați interpretarea umătorilor termeni în structura $S[x \mapsto 8]$:
	(a) c (b) x (c) y (d) $f(x,y)$ (e) $f(y,x)$ (f) $h(z)$ (g) $g(h(c))$ (h) $h(g(c))$ (i) $(f(x,h(z)))$ (j) $f(f(x,d),f(y,z))$
3. (Calculați interpretarea următoarelor formule în structura S de mai sus:
	(a) $P(x)$ (b) $Q(x)$ (c) $Q(y)$ (d) $P(c)$ (e) $R(c,x)$
4. (Calculați interpretarea următoarelor formule în structura $S[x \mapsto 8]$:
	(a) $P(x)$ (b) $Q(x)$ (c) $Q(y)$ (d) $P(c)$ (e) $R(c,x)$
5. (Calculați interpretarea următoarelor formule în structura S de mai sus:
	(a) $P(x) \vee Q(x)$ (b) $\neg P(d)$ (c) $P(x) \rightarrow Q(h(x))$ (d) $P(d) \rightarrow Q(h(d))$ (e) $P(d) \wedge \neg Q(d)$ Calculați interpretarea următoarelor formule în structura S de mai sus:
	(a) $\forall z. \Big(P\big(h(z)\big)\Big)$

- (b) $\forall z.Q(x)$
- (c) $\forall z.Q(z)$
- (d) $\forall z.(Q(z) \lor P(z))$
- (e) $\forall z.(Q(z) \rightarrow P(h(z)))$
- (f) $\forall x.(Q(x) \lor P(x))$
- (g) $\forall x.(Q(x) \land P(x))$
- (h) $\forall x.(Q(g(h(x))))$
- 7. Calculați interpretarea următoarelor formule în structura S de mai sus:
 - (a) $\exists x.(Q(x))$
 - (b) $\exists y.(P(y))$
 - (c) $\exists x.(P(y))$
 - (d) $\exists x.(Q(y))$
 - (e) $\exists x. (Q(y) \lor P(y))$
- 8. Calculați interpretarea următoarelor formule în structura S de mai sus:
 - (a) R(y,x)
 - (b) R(x,y)
 - (c) $\forall z.R(x,z)$
 - (d) $\exists z.R(x,z)$
 - (e) $\forall x.R(x,h(x))$
 - (f) $\exists x.R(x,g(x))$
 - (g) $\exists x.R(h(x),x)$
 - (h) $\exists x.R(x,y)$
- 9. Calculați interpretarea următoarelor formule în structura S de mai sus:
 - (a) $\forall x. \forall y. R(x,y)$
 - (b) $\forall x. \exists y. R(x,y)$
 - (c) $\exists x. \exists y. R(x,y)$
 - (d) $\exists x. \forall y. R(x, y)$
 - (e) $\forall x. \exists y. R(f(x,y), x)$
 - (f) $\forall x. \exists y. R(f(x,y), x)$
- 10. Calculați interpretarea următoarelor formule în structura S de mai sus:
 - (a) $\forall x. \forall y. T(x, y)$
 - (b) $\forall x. \exists y. T(x, y)$

- (c) $\exists x. \exists y. T(x,y)$
- (d) $\exists x. \forall y. T(x,y)$
- (e) $\forall x. \exists y. T(f(x,y), x)$
- (f) $\forall x. \exists y. T(f(x,y), x)$
- 11. Arătați că următoarea formulă este adevărată în structura S:

$$F = \forall x. \forall y. \Big(R(x,y) \to \exists z. \big(R(x,z) \land R(z,y) \big) \Big)$$

12. Arătați că următoarea formulă nu este adevărată în structura S:

$$F = \forall x. \forall y. \Big(T(x, y) \to \exists z. \big(T(x, z) \land T(z, y) \big) \Big)$$

- 13. Fie structura $S_1 = (U, I)$ astfel încât:
 - (a) $U = \mathbb{R}$;
 - (b) $I_x = 7, I_y = \pi = 3.1415..., I_z = 0$ pentru orice $z \in \mathcal{X} \setminus \{x, y\}$;
 - (c) $I_c = 3.1415;$
 - (d) $I_d = 0$;
 - (e) pentru orice $u \in U$, $I_P(u) = 1$ ddacă u este par;
 - (f) pentru orice $u \in U$, $I_Q(u) = 1$ ddacă u este impar;
 - (g) pentru orice $u, v \in U$, $I_R(u, v) = 1$ ddacă u este mai mic sau egal ca v;
 - (h) pentru orice $u, v \in U$, $I_T(u, v) = 1$ ddacă u este mai mic strict decât v;
 - (i) $I_f(u, v) = u + v$, pentru orice $u, v \in U$;
 - (j) $I_{f'}(u,v) = u \times v$, pentru orice $u,v \in U$;
 - (k) $I_h(u) = u + 1$, pentru orice $u \in U$;
 - (1) $I_g(u) = 2 * u$, pentru orice $u \in U$.
- 14. Calculați valorile de adevăr ale formulelor din exercițiile de mai sus în structura S_1 .
- 15. Arătați că următoarea formulă este adevărată în structura S_1 :

$$F = \forall x. \forall y. \Big(R(x,y) \to \exists z. \big(R(x,z) \land R(z,y) \big) \Big)$$

16. Arătați că și următoarea formulă este adevărată în structura S_1 :

$$F = \forall x. \forall y. \Big(T(x,y) \to \exists z. \big(T(x,z) \land T(z,y) \big) \Big)$$

- 17. Arătați că S și S_1 sunt model pentru următoarele formule:
 - (a) $F_1 = \forall x. \forall y. (T(x,y) \rightarrow R(x,y))$
 - (b) $F_2 = \forall x. \forall y. \forall z. (R(x,y) \land R(y,z) \rightarrow R(x,z))$
 - (c) $F_3 = \forall x. \forall y. \forall z. (R(x,y) \land R(y,x) \rightarrow (R(x,g(x)) \land R(g(x),x)))$
- 18. Arătați că S este model pentru următoarele formule:
 - (a) $\forall x.(P(x) \to \exists y.(R(x,y) \land Q(y)))$
 - (b) $\forall x.(P(x) \rightarrow \exists y.(R(x,y) \land P(y)))$
- 19. Găsiți câte un model pentru fiecare din următoarele formule:
 - (a) $\forall x.P(x)$
 - (b) $\exists x.P(x)$
 - (c) $\exists x.P(x) \land \exists x.Q(x)$
 - (d) $\exists x. (P(x) \land Q(x))$
 - (e) $\forall x. (P(x) \to Q(x))$
 - (f) $\forall x. \Big(\big(P(x) \to Q(x) \big) \land \big(Q(x) \to P(x) \big) \Big)$
 - (g) $\forall x.(P(x) \to R(c,x))$
 - (h) $\forall x.(P(x) \rightarrow \exists y.R(x,y))$
 - (i) $\forall x.(P(x) \rightarrow \forall y.R(x,y))$
- 20. Găsiți câte o structură în care următoarele formule să nu fie adevărate:
 - (a) $\exists x.P(x)$
 - (b) $\exists x.R(x,y)$
 - (c) $\exists x. \exists y. R(x,y)$
 - (d) $\forall x.P(x)$
 - (e) $\forall x.P(y)$
 - (f) $\forall x.(P(x) \rightarrow Q(x))$
 - (g) $\exists x. (P(x) \land Q(x))$
 - (h) $\exists x. (P(x) \lor Q(x))$
- 21. Arătați că următoarele formule sunt satisfiabile:
 - (a) P(x)
 - (b) $P(x) \wedge Q(x)$
 - (c) $P(x) \wedge Q(c)$
 - (d) $\exists x. (P(x) \land Q(c))$

- (e) $\forall x.P(x)$
- 22. Arătați că următoarele formule sunt valide:
 - (a) $P(x) \vee \neg P(x)$
 - (b) $P(x) \rightarrow P(x)$
 - (c) $(\forall x.P(x)) \rightarrow (\exists x.P(x))$
 - (d) $\forall x.(P(x) \rightarrow \exists x.P(x))$
 - (e) $\forall x. (P(x) \to Q(x)) \land P(c) \to Q(c)$
 - (f) $(\forall x. \forall y. (R(x,y) \to R(y,x))) \land R(x,y) \to R(y,x)$
- 23. Arătați că, pentru orice formule $F_1, F_2, F_3 \in \mathtt{LP1},$ următoarele echivalențe au loc:
 - (a) $F_1 \vee F_2 \equiv F_2 \vee F_1$
 - (b) $F_1 \wedge F_2 \equiv F_2 \wedge F_1$
 - (c) $(F_1 \vee F_2) \vee F_3 \equiv F_1 \vee (F_2 \vee F_3)$
 - (d) $(F_1 \wedge F_2) \wedge F_3 \equiv F_1 \wedge (F_2 \wedge F_3)$
 - (e) $F_1 \rightarrow F_2 \equiv \neg F_1 \lor F_2$
 - (f) $\neg (F_1 \land F_2) \equiv \neg F_1 \lor \neg F_2$
 - (g) $\neg (F_1 \lor F_2) \equiv \neg F_1 \land \neg F_2$
 - (h) $F_1 \rightarrow F_2 \equiv \neg F_1 \vee F_2$
- 24. Arătați că, pentru orice formulă $F \in \mathtt{LP1},$ pentru orice $x \in \mathcal{X},$ următoarele echivalențe au loc:
 - (a) $\forall x.F \equiv \neg(\exists x.(\neg F))$
 - (b) $\exists x.F \equiv \neg(\forall x.(\neg F))$
- 25. Arătați că, pentru orice formule $F, G \in LP1$, pentru orice $x \in \mathcal{X}$, dacă $x \notin free(G)$, atunci următoarele echivalențe au loc:
 - (a) $\forall x.(F \land G) \equiv \forall x.F \land G$
 - (b) $\forall x.(F \lor G) \equiv \forall x.F \lor G$
 - (c) $\exists x.(F \land G) \equiv \exists x.F \land G$
 - (d) $\exists x.(F \lor G) \equiv \exists x.F \lor G$
- 26. Arătați că, pentru orice formule $F,G\in \mathtt{LP1},$ următoarele echivalențe au loc:
 - (a) $\forall x.(F \land G) \equiv \forall x.F \land \forall x.G$
 - (b) $\exists x.(F \lor G) \equiv \exists x.F \lor \exists x.G$

- 27. Arătați că, pentru orice formulă $F \in LP1$, următoarele echivalențe au loc:
 - (a) $\forall x. \forall .y. F \equiv \forall y. \forall x. F$
 - (b) $\exists x. \exists .y. F \equiv \exists y. \exists x. F$
- 28. Arătați că, pentru orice formulă $F \in LP1$, dacă $x \notin free(F)$, atunci următoarele echivalențe au loc:
 - (a) $\forall x.F \equiv F$
 - (b) $\exists x.F \equiv F$
- 29. Arătați că o formulă F este validă dacă și numai dacă închiderea ei universală este validă.
- 30. Arătați că o formulă F este satisfiabilă dacă și numai dacă închiderea ei existențială este satisfiabilă.
- 31. Arătati că:
 - (a) $\forall x.P(x) \models P(c)$
 - (b) $\forall x.P(x) \models P(x)$
 - (c) $\forall x.P(x) \models \exists x.P(x)$
 - (d) $\forall x.(P(x) \land Q(x)) \models \forall x.P(x)$
 - (e) $P(x), P(x) \rightarrow Q(x) \models Q(x)$
 - (f) $F, F \to G \models G$ pentru orice $F, G \in LP1$
 - (g) $P(c), \forall x. (P(x) \rightarrow Q(x)) \models Q(c)$
- 32. Arătați că $F \equiv G$ ddacă $F \models G$ și $G \models F$.
- 33. Arătați că $\forall x.P(x) \equiv \forall y.P(y)$.
- 34. Arătați că, pentru orice $F,G,H\in \mathtt{LP1},$ următoarele echivalențe au loc:
 - (a) $F \wedge G \equiv G \wedge F$ (comutativitatea lui \wedge)
 - (b) $F \vee G \equiv G \vee F$ (comutativitatea lui \vee)
 - (c) $F \wedge (G \wedge H) \equiv (F \wedge G) \wedge H$ (associativitatea lui \wedge)
 - (d) $F \vee (G \vee H) \equiv (F \vee G) \vee H$ (asociativitatea lui \vee)
- 35. Arătați că, pentru orice $F, G, H \in \mathsf{LP1},$ următoarele echivalențe au loc:
 - (a) $\neg \neg F \equiv F$
 - (b) $F \vee (G \wedge H) \equiv (F \vee G) \wedge (F \vee H)$ (distributivitatea lui \vee față de \wedge)
 - (c) $F \wedge (G \vee H) \equiv (F \wedge G) \vee (F \wedge H)$ (distributivitatea lui \wedge fată de \vee)
 - (d) $\neg (F \land G) \equiv \neg F \lor \neg G$ (legea 1 a lui de Morgan)

(e)
$$\neg (F \lor G) \equiv \neg F \land \neg G$$
 (legea 2 a lui de Morgan)

- 36. Arătați că, pentru orice $F,G\in \mathsf{LP1}$ și pentru orice variabilă $x\in \mathcal{X}$ care nu apare liber în G, următoarele echivalențe au loc:
 - (a) $\forall x.F \land G \equiv \forall x.(F \land G)$
 - (b) $\forall x.F \lor G \equiv \forall x.(F \lor G)$
 - (c) $\exists x.F \land G \equiv \exists x.(F \land G)$
 - (d) $\exists x. F \lor G \equiv \exists x. (F \lor G)$
- 37. Calculați:

(a)
$$(\forall x. \forall y. ((P(x) \lor \neg Q(x,y)) \land (Q(a,y) \lor \neg P(a))))|_{1\cdot 1\cdot 2}$$

(b)
$$(\forall x. \forall y. ((P(x) \lor \neg Q(x,y)) \land (Q(a,y) \lor \neg P(a))))|_{1\cdot 1\cdot 1\cdot 2}$$

(c)
$$\Big(\forall x. \forall y. \big((P(x) \lor \neg Q(x,y)) \land (Q(a,y) \lor \neg P(a)) \big) \Big) [R(a)]_{1\cdot 1\cdot 2}$$

$$(\mathrm{d}) \ \Big(\forall x. \forall y. \big((P(x) \vee \neg Q(x,y)) \wedge \big(Q(a,y) \vee \neg P(a) \big) \big) \Big) [\forall z. Q(z)]_{1\cdot 1\cdot 1\cdot 2}$$

- 38. Folosiți teorema de substituție și câte una din echivalențele demonstrate mai sus pentru a arăta că:
 - (a) $P(x) \wedge (Q(a) \wedge Q(b)) \equiv P(x) \wedge (Q(b) \wedge Q(a))$
 - (b) $\neg \neg R(x, y) \lor P(x) \equiv R(x, y) \lor P(x)$
 - (c) $\forall x. \forall y. (\neg (R(x,y) \land P(x))) \equiv \forall x. \forall y. (\neg R(x,y) \lor \neg P(x))$
 - (d) $\forall x.(\forall y.P(x) \land Q(x)) \equiv \forall x.\forall y.(P(x) \land Q(x))$
 - (e) $\forall x. \neg (\exists y. P(x)) \equiv \forall x. \forall y. \neg P(x)$
- 39. Folosiți lema de redenumire (și eventual teorema de substituție) pentru a demonstra următoarele echivalențe:
 - (a) $\forall x.P(x) \equiv \forall y.P(y)$
 - (b) $\forall x. P(x) \land P(x) \equiv \forall y. P(y) \land P(x)$
 - (c) $\forall x.(\forall x.P(x) \land P(x)) \equiv \forall x.(\forall y.P(y) \land P(x))$
 - (d) $\forall x.(\forall x.P(x) \land P(x)) \land P(x) \equiv \forall y.(\forall x.P(x) \land P(y)) \land P(x)$
 - (e) $\forall x. \exists x. P(x) \equiv \forall y. \exists x. P(x)$
 - (f) $\forall x. \exists x. P(x) \equiv \forall x. \exists z. P(z)$
- 40. Aduceți următoarele formule în FNP:
 - (a) $\forall x.(P(x) \land \exists x.Q(x,y)) \land Q(x,x)$
 - (b) $Q(x,x) \wedge \forall x. (P(x) \wedge \exists x. Q(x,y)) \wedge \exists x. Q(x,x)$

- (c) $Q(x, y, z) \wedge \forall x. (P(x) \wedge \exists z. Q(x, y)) \wedge \forall z. Q(x, x)$
- (d) $\forall y.(Q(x,y,z) \land \forall x.(P(x) \land \exists z.Q(x,y)) \land \forall z.Q(x,x))$
- (e) $\forall x. \exists x. \forall x. (Q(x,y,z) \land \forall x. (P(x) \land \exists z. Q(x,y)) \land \forall z. Q(x,x))$
- (f) $\forall x.(P(x) \land \exists y.Q(x,y))$
- (g) $\neg \forall x. (P(x) \land \exists y. Q(x,y))$
- (h) $\neg \forall x. (P(x) \land \neg \forall y. Q(x, y))$
- (i) $\neg \forall x. (P(x) \land \neg (\forall y. Q(x, y)) \land Q(x, y))$
- (j) $\neg \forall x. \exists y. \forall z. \neg P(x, y, z)$
- 41. Arătați că:
 - (a) $\exists x. P(x) \equiv_s P(a)$
 - (b) $\forall y. \exists x. P(x,y) \equiv_s \forall y. P(f(y),y)$
 - (c) $\exists y. \forall x. P(x, y) \equiv_s \forall x. P(x, c)$
- 42. Demonstrați lema de Skolem-izare.
- 43. Aduceți următoarele formule (care se află deja în FNP), în FNS:
 - (a) $\forall x. \forall y. \forall z. P(x, y, z)$
 - (b) $\forall x. \exists y. \forall z. P(x, y, z)$
 - (c) $\forall x. \exists y. \exists z. P(x, y, z)$
 - (d) $\exists y. P(a, y, b)$
 - (e) $\exists y. \exists z. P(x, y, z)$
 - (f) $\forall x. \exists y. \forall z. \exists y'. (P(x, y, z, y') \land \neg (Q(x) \lor R(y, y')))$

Ce relație există între formule de la care am plecat și formula la care am ajuns?

- 44. Aduceți următoarele formule, aflate deja în FNS, în FNSC:
 - (a) $\forall x. \forall y. (P(x) \lor (Q(x) \land R(y)))$
 - (b) $\forall x. \forall y. \forall z. (Q(x) \lor \neg (P(x) \lor (Q(x) \land R(y))))$
 - (c) $\forall x. \forall y. \forall z. \neg (Q(z) \lor \neg (P(x) \lor (Q(x) \land R(y))))$
 - (d) $\forall x. \forall y. \forall z. \neg (\neg Q(z) \lor \neg (\neg P(x) \lor (Q(x) \land R(y))))$
 - (e) $\forall x. \forall y. \forall z. \neg (\neg (Q(x) \land R(z)) \lor \neg (\neg P(x) \lor (Q(x) \land R(y))))$
- 45. Aduceți următoarele formule în FNSC (trecând pe rând prin FNP, FNS):
 - (a) $\forall x. \exists y. P(x, y)$
 - (b) $\forall x.(P(x) \rightarrow \exists y.R(x,y))$
 - (c) $\forall x.(P(x) \rightarrow \exists y.(R(x,y) \land P(y)))$

- (d) $\exists x. P(x)$
- (e) $\exists x. (P(x) \land \forall x. P(x))$
- (f) $\exists x. (P(x) \to \forall x. P(x))$
- (g) $\forall x.(P(x) \to \exists x.P(x))$
- (h) $\forall x. P(x) \to \exists x. P(x)$
- (i) $\forall x. \neg (\forall y. (P(x,y) \lor \exists z. (P(x,z) \land P(y,z))))$
- 46. Rezolvați exercițiile propuse în suportul de curs care nu sunt cuprinse în documentul acesta.