

infoShareAcademy.com

- 1 Bias-variance tradeoff
- 2 Overfitting, underfitting
- 3 Cross-validation
- 4 Struktura algorytmu drzewa decyzyjnego i lasów losowych
- Parametry uczenia drzewa decyzyjnego i lasów losowych

- 1 Bias-variance tradeoff
- 2 Overfitting, underfitting
- 3 Cross-validation
- 4 Struktura algorytmu drzewa decyzyjnego i lasów losowych
- Parametry uczenia drzewa decyzyjnego i lasów losowych

- 1 Bias-variance tradeoff
- 2 Overfitting, underfitting
- 3 Cross-validation
- 4 Struktura algorytmu drzewa decyzyjnego i lasów losowych
- Parametry uczenia drzewa decyzyjnego i lasów losowych

- 1 Bias-variance tradeoff
- 2 Overfitting, underfitting
- 3 Cross-validation
- Struktura algorytmu drzewa decyzyjnego i lasów losowych
- Parametry uczenia drzewa decyzyjnego i lasów losowych

- 1 Bias-variance tradeoff
- 2 Overfitting, underfitting
- 3 Cross-validation
- 4 Struktura algorytmu drzewa decyzyjnego i lasów losowych
- Parametry uczenia drzewa decyzyjnego i lasów losowych

Model jest odwzorowaniem X \rightarrow Y otrzymanym na podstawie danych. Jest to estymator f(x) odwzorowania f(x) dla, którego zachodzi

$$Y = f(X) + \varepsilon$$

X – predykatory (wejście, zmienne objaśniające, zmienne niezależne), Y – odpowiedź (wyjście, zmienna objaśniana, zmienna zależna), ε – oznacza błąd losowy.

Obciążenie modelu oznacza różnicę (błąd) między wartością oczekiwaną predykcji E f(x), a prawdziwą (nieznaną) wartością funkcji f(x).

$$Bias \ f(x) = E[f(x)] - f(x)$$

W praktyce obciążenie modelu oznacza, że model zawsze dokonuje predykcji z nadmiarem (niedomiarem).

Obciążenie powinno być jak najmniejsze.

Wariancja modelu opisuje dyspersję predykcji.

$$Var(f(x)) = E[(f(x)-E[f(x)])^{2}]$$

Duża wariancja oznacza, że predykcje dla nieodległych od siebie wartości x będą mocno zróżnicowane, "rozstrzelone".

Wariancja powinna być jak najmniejsza.

Błąd, wariancja, obciążenie

$$E(MSE) = Var(f(x)) + [Bias(f(x))]^{2} + Var(\varepsilon)$$

$$\begin{pmatrix} Wartość \\ oczekiwana \\ błędu \\ kwadratowego \end{pmatrix} = \begin{pmatrix} Wariancja \\ modelu \end{pmatrix} + \begin{pmatrix} Obciążenie \\ modelu \end{pmatrix}^2 + \begin{pmatrix} Wariancja \\ błędu \\ losowego \end{pmatrix}$$

Czyli z czym i o co walczymy?

Błąd predykcji.

info Share

Wygląd predykcji.

infoShareAcademy.com

Cechy charakterystyczne:

- 1. Doskonałe dopasowanie do danych treningowych
- 2. Słaba generalizacja
- 3. Wzrost błędu na danych testowych

Przyczyny overfittingu:

- 1. Zbyt skomplikowany model
- 2. Niewystarczająco duże dane treningowe
- 3. Brak regularyzacji

Cechy charakterystyczne:

- 1. Słabe dopasowanie do danych treningowych
- 2. Wysoki błąd na danych treningowych
- 3. Podobny błąd na danych testowych

Przyczyny underfittingu:

- 1. Zbyt prosty model
- 2. Brak danych treningowych
- 3. Brak dostosowania parametrów

Walidacja krzyżowa (ang. cross-validation, CV) polega na wielokrotnym trenowaniu modelu na wybranym podzbiorze zbioru treningowego i testowaniu na pozostałej części zbioru treningowego.

Jest to sposób trenowania modelu minimalizujący wariancję modelu oraz jego obciążenie.

Example: k-Fold Cross-Validation

infoShareAcademy.com

- 1. Lepsza ocena generalizacji
- 2. Unikanie wpływu losowego podziału danych
- 3. Lepsze wykrywanie overfittingu

k-fold cross-validation

k-fold cross validation oznacza walidację krzyżową przy podziale zbioru na k podzbiorów, a następnie k-krotne trenowanie.

Ensemble voting system using fivefold cross-validation.

info Share

Leave One Out (LOO CV) oznacza walidację krzyżową przy k=n, gdzie n jest równe liczbie elementów zbioru testowego.

Leave-One-Out Cross Validation

from sklearn.model_selection import KFold from sklearn.linear_model import LogisticRegression from sklearn.datasets import load_iris from sklearn.metrics import accuracy_score import numpy as np

data = load_iris()

X, y = data.data, data.target

num_folds = 5

kf = KFold(n_splits=num_folds, shuffle=True, random_state=42)

model = LogisticRegression()

k-fold cross-validation - (implementacja sklearn)

```
for train_index, test_index in kf.split(X):
    X_train, X_test = X[train_index], X[test_index]
    y_train, y_test = y[train_index], y[test_index]
```

```
model.fit(X_train, y_train)
```

```
predictions = model.predict(X_test)
```

accuracy = accuracy_score(y_test, predictions)

Accuracy: 1.0
Accuracy: 1.0
Accuracy: 0.9

Accuracy: 0.93333333333333333

Accuracy: 0.966666666666667

Accuracy: 0.966666666666667

infoShareAcademy.com

Zastosuj metodę LeaveOneOut cross validation do zbioru Iris, analogicznie do przeprowadzonej analizy podczas lekcji używając do tego pętli.

Cross Validation

dataaspirant.com

- Metoda wspomagania procesów decyzji.
- Model używany do zadań regresji i klasyfikacji.
- Intuicyjny model opierający się na podziale danych przez serię porównań.

infoShareAcademy.com

info Share

Classification and Regression Trees:

info Share

Podział polega na jak najlepszym rozdzieleniu podgrupy na części tak aby w węzłach dzieci różnorodność była jak najmniejsza.

Miara różnorodności:

- 0 wszystkie obserwacje należą do tej samej klasy,
- wartość maksymalna rozkład przynależności do klas jest jednostajny.

Indeks Giniego:

$$I_G = 1 - \sum_{j=1}^{c} p_j^2$$

p; część próbek należąca do klasy c dla danego węzła

Entropia:

$$I_H = -\sum_{j=1}^c p_j log_2(p_j)$$

p_i: część próbek należąca do klasy c dla danego węzła.

*To jest definicja entropii dla wszystkich niepustych klas (p ≠ 0). Entropia wynosi 0, jeśli wszystkie próbki w węźle należą do tej samej klasy.

Funkcja kosztu dla algorytmu CART

$$\begin{split} J(k,t_k) &= \frac{m_{\text{left}}}{m} G_{\text{left}} + \frac{m_{\text{right}}}{m} G_{\text{right}} \\ \text{where} & \begin{cases} G_{\text{left/right}} \text{ measures the impurity of the left/right subset,} \\ m_{\text{left/right}} \text{ is the number of instances in the left/right subset.} \end{cases} \end{split}$$

Information Gain:

różnica miary nieczystości rodzica i funkcji J, mówi o przyroście informacji po dodaniu kolejnego węzła. Pozwala na dokonanie doboru warunków kolejnych podziałów.

Gdy osiągniemy maksymalną głębokość drzewa (max_depth) albo nie można znaleźć podziału, który zlikwiduje nieczystość (impurity).

Regresja przy użyciu drzew decyzyjnych

Drzewa decyzyjne możemy również stosować dla problemów regresji. Wówczas jako kryterium stosujemy zwykle MSE (Mean square error).

Funkcja kosztu:

$$J(k, t_k) = \frac{m_{\text{left}}}{m} \text{MSE}_{\text{left}} + \frac{m_{\text{right}}}{m} \text{MSE}_{\text{right}} \quad \text{where} \begin{cases} \text{MSE}_{\text{node}} = \sum_{i \in \text{node}} (\hat{y}_{\text{node}} - y^{(i)})^2 \\ \hat{y}_{\text{node}} = \frac{1}{m_{\text{node}}} \sum_{i \in \text{node}} y^{(i)} \end{cases}$$

Drzewa dążą do tego, by rozrastać się aż do uzyskania czystych podzbiorów w liściach. Często wiąże się to z tym, że w praktyce takie drzewo "zapamiętuje" zbiór treningowy.

Aby zredukować efekty overfittingu możemy manipulować parametrami modelu.

sklearn.tree.DecisionTreeClassifier

class sklearn.tree.DecisionTreeClassifier(*, criterion='gini', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, class_weight=None, ccp_alpha=0.0)

[source]

sklearn.tree.DecisionTreeRegressor

class sklearn.tree.DecisionTreeRegressor(*, criterion='mse', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, ccp_alpha=0.0)

[source]

- max_depth głębokość drzewa
- min_samples_leaf minimalna liczba obserwacji w liściu
- max_leaf_nodes maksymalna liczba liści w drzewie
- **max_features** maksymalna liczba zmiennych rozważanych w podziale
- ccp_alpha jak mocno przycinane są drzewa
- **criterion -** kryterium nieczystości `gini`, `entropy`
- random_state algorytm stochastyczny (!)
- **class_weight -** ważenie klas przy niezbalansowaniu

Minimum samples per leaf = 1

Minimum samples per leaf = 5

ML Drzewa i Lasy

max_leaf_nodes

ML Drzewa i Lasy

ccp_alpha

random_state=42

- Łatwa wizualizacja i prosta interpretacja.
- Odpowiedni do problemów klasyfikacji i regresji.
- Niewrażliwość na monotoniczne przekształcenia zmiennych.
- Niewrażliwość na istnienie w algorytmie nieistotnych atrybutów.
- Prosty w obsłudze można używać cech kategorycznych i liczbowych (uwaga! Sklearn nie obsługuje kategorycznych).

- Niestabilność algorytmu.
- Podatność na overfitting.
- Regresja nie przewiduje danych spoza zakresów, które widziała.
- Podziały ortogonalne (prostopadłe do osi).

Drzewa decyzyjne import:

```
from sklearn.datasets import load_iris
```

```
from sklearn.tree import (
DecisionTreeClassifier,
plot_tree
)
```

import matplotlib.pyplot as plt

from mlxtend import plotting

info Share

Problem klasyfikacji:

iris = load_iris()

X = iris.data[:, 2:]

y = iris.target

tree_clf = DecisionTreeClassifier(random_state=0) #z domyślnymi parametrami

tree_clf.fit(X, y)

ML Drzewa i Lasy

Implementacja (sklearn)

plt.figure(figsize = (12, 8))

plot_tree(tree_clf, feature_names = iris.feature_names, sepal width (cm) <= 0.8 aini = 0.667 class_names = iris.target_names, samples = 150 value = [50, 50, 50] class = setosa filled=True); sepal width (cm) <= 1.75 gini = 0.5 samples = 50 samples = 100 alue = [50, 0, 0 value = [0, 50, 50] class = versicolor gini = 0.168 gini = 0.043 samples = 54 value = [0, 49, 5] value = [0, 1, 45] class = versicolor sepal width (cm) <= 1.55 gini = 0.444 gini = 0.444 gini = 0.041 samples = 3 samples = 48 samples = 6 value = [0, 1, 2]value = [0, 47, 1]value = [0, 2, 4]class = virginica class = versicolor class = virginica sepal length (cm) <= 5.45 gini = 0.444 samples = 47 samples = 3 alue = [0, 47, 0] Wizualizacja: value = [0, 2, 1]class = versicolor samples = 2 value = [0, 2, 0]

info Share ACADEMY

Przytnijmy trochę drzewo, żeby łatwiej interpretować wyniki.

tree_clf = DecisionTreeClassifier(max_depth=2, random_state=99)
tree_clf.fit(X, y)

Istotność zmiennych:

- Ocenia, jak ważna jest każda zmienna dla decyzji podejmowanej przez drzewo.
- Jest to liczba z przedziału od 0 do 1 dla każdej cechy, gdzie 0 oznacza "w ogóle nie używana", a 1 oznacza "doskonale przewiduje target".
- Istotności cech zawsze sumują się do 1.

Istotność zmiennych:

tree_clf.feature_importances_

array([0.56199095, 0.43800905])

sepal length (cm): 0.5619909502262443

sepal width (cm): 0.4380090497737556

Granice decyzyjne:

```
def decision_regions(data, target, classifier, figsize=(12, 8)):

plt.figure(figsize=figsize)

plotting.plot_decision_regions(X=data, y=target, clf=classifier, legend=2)

plt.scatter(data[:, 0], data[:, 1], c=["brg"[x] for x in target])
```


infoShareAcademy.com

Interpretacja modelu: White Box Models.

Interpretacja modelu: White Box Models.

Predykcja: $new_obs = [5, 1.5]$

tree_clf.predict_proba([new_obs])

array([[0., 0.90740741, 0.09259259]])

tree_clf.predict([[5, 1.5]])

array([1])

iris.target_names[1]

'versicolor'

Zadanie 13.2 (instrukcja)

- I. Dla całości danych Iris (4 featury) zbadaj jak na model wpłynie zmiana kryterium nieczystości z gini na entropy (criterion).
- 2. Narysuj drzewa.
- 3. Oblicz samodzielnie wartości gini i entropy w wybranym węźle.
- Narysuj granice decyzyjne dla drzewa decyzyjnego i regresji logistycznej - w tym celu wybierz podzbiór danych iris iris.data[:,:2].

Problem regresji:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.tree import (
    DecisionTreeRegressor,
    plot_tree
)
from sklearn.linear_model import LinearRegression
```


Import danych:

url =

'https://raw.githubusercontent.com/justmarkham/scikit-learn-v ideos/master/data/Advertising.csv' advertising = pd.read_csv(url, index_col=0) advertising.head()

	TV	Radio	News	paper	Sales
1	230.1	37.8	69.2	22.1	
2	44.5	39.3	45.1	10.4	
3	17.2	45.9	69.3	9.3	
4	151.5	41.3	58.5	18.5	
5	180.8	10.8	58.4	12.9	

info Share ACADEMY

Wizualizacja danych:

info Share

sns.heatmap(advertising.corr(), cmap="YIGnBu", annot = True)
plt.show()

feature_names = ['TV','Radio','Newspaper']
model_reg=DecisionTreeRegressor(max_depth=2).fit(advertising[feature_names],
advertising['Sales'])

plt.figure(figsize = (10, 8))
plot_tree(model_reg, feature_names = feature_names);

Potencjalny problem:

url =

https://raw.githubusercontent.com/amueller/introduction_to_m l_with_python/master/data/ram_price.csv' ram_prices = pd.read_csv(url, index_col=0)

date price

0	1957.0	411041792.0
1	1959.0	67947725.0
2	1960.0	5242880.0
3	1965.0	2642412.0
4	1970.0	734003.0

info Share ACADEMY

plt.semilogy(ram_prices.date, ram_prices.price)
plt.xlabel("Year")
plt.ylabel("Price in \$/Mbyte");

data_train = ram_prices[ram_prices.date < 2000] dane historyczne data_test = ram_prices[ram_prices.date >= 2000]

Porównanie regresji liniowej i drzewa regresyjnego:

tree = DecisionTreeRegressor().fit(X_train, y_train)
linear_reg = LinearRegression().fit(X_train, y_train)

Predykcja na całym zbiorze:

X_all = np.array(ram_prices.date).reshape(-1, 1)
pred_tree = tree.predict(X_all)
pred_lr = linear_reg.predict(X_all)

Porównanie regresji liniowej i drzewa regresyjnego:

Modelowaliśmy transformację logarytmiczną. Funkcja odwracająca - wykładnicza.

price_tree = np.exp(pred_tree)
price_Ir = np.exp(pred_Ir)

Porównanie regresji liniowej i drzewa regresyjnego:

plt.semilogy(data_train.date, data_train.price, label="Training data")
plt.semilogy(data_test.date, data_test.price, label="Test data")
plt.semilogy(ram_prices.date, price_tree, label="Tree prediction")
plt.semilogy(ram_prices.date, price_lr, label="Linear prediction")
plt.legend()

infoShareAcademy.com

Overfitting:

from sklearn.datasets import load_iris

```
from sklearn.tree import (
    DecisionTreeClassifier,
    DecisionTreeRegressor,
    plot_tree
)
```

from sklearn.model_selection import train_test_split

import matplotlib.pyplot as plt

from mlxtend import plotting


```
def decision_regions(data, target, classifier, figsize=(12, 8)):
    plt.figure(figsize=figsize)
    plotting.plot_decision_regions(X=data, y=target, clf=classifier,
legend=2)
    plt.scatter(data[:, 0], data[:, 1], c=["brg"[x] for x in target])
iris = load_iris()
X = iris.data[:,2:]
y = iris.target
```


X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5,
random_state=42)

tree_clf = DecisionTreeClassifier(random_state=0)
tree_clf.fit(X_train, y_train)

DecisionTreeClassifier(random_state=0)

print("Accuracy on training set: {:.2f}".format(tree_clf.score(X_train, y_train)))
print("Accuracy on test set: {:.2f}".format(tree_clf.score(X_test, y_test)))

Accuracy on training set: 0.99 Accuracy on test set: 0.95

plt.figure(figsize = (10, 8))

decision_regions(X_train, y_train, tree_clf)

Pruning (przycinanie drzewa):

tree_clf2 = DecisionTreeClassifier(max_depth=3, random_state=0)
tree_clf2.fit(X_train, y_train)

print("Accuracy on training set: {:.2f}".format(tree_clf2.score(X_train, y_train)))
print("Accuracy on test set: {:.2f}".format(tree_clf2.score(X_test, y_test)))

Accuracy on training set: 0.95

Accuracy on test set: 1.00


```
plt.figure(figsize = (10, 8))
```

```
plot_tree(tree_clf2,
feature_names = iris.feature_names,
```

class_names = iris.target_names,

filled=True);

decision_regions(X_train, y_train, tree_clf2)

Zadanie 13.3 (instrukcja)

- Wczytaj zbiór load_breast_cancer dostępny w sklearn.datasets.
 (UWAGA! w tym przypadku nie da się już zwizualizować za pomocą decision_regions).
- 2. Przeanalizuj dane.
- 3. Podziel zbiór na treningowy i testowy w proporcjach 7:3.
- 4. Wytrenuj model DecisionTreeClassifier bez przycinania.
- 5. Sprawdź accuracy na zbiorze treningowym i testowym.
- 6. Narysuj drzewo.
- Wytrenować 1 model. Sprawdź istotność zmiennych dla najlepszego modelu.

- Random Forest to model typu ensemble (komitet klasyfikatorów) czyli model składający się ze zbioru słabszych modeli, których wyniki są następnie przetwarzane (uśredniane lub przeliczane) w celu stworzenia modelu silnego.
- W przypadku Random Forest podstawowym modelem jest drzewo decyzyjne.

źródło: https://predictivesolutions.pl/jak-udoskonalic-algorytm-drzew-decyzyjnych

Bagging to sposób na zmniejszenie variance error. Zamiast uczyć jedno skomplikowane drzewo uczymy ich wiele wykorzystując technikę **bootstrap**.

Bootstrap polega na tym, że zamiast uczyć drzewo na danych treningowych uczymy je na tzw. **bootstrap sample**, czyli zestawie danych stworzonych przez losowanie ze zwracaniem z danych treningowych.

ML Drzewa i Lasy

Dlaczego bootstrapujemy?

- Ze względu na różne powtórzenia próbek w zbiorze treningowym oraz pominięcie innych próbek w każdej paczce danych powstałe modele będą skupiały się na różnych aspektach.
- Wartości miar nieczystości zbioru danych będą inne.
- Korzenie drzewa będą dzielić dataset od innych zmiennych.
- Niektóre problematyczne gałęzie będą nieobecne

 w piektórych drzewach

n_estimators

max_depth

min_samples_leaf

max_features

min_samples_split

criterion

bootstrap

- Efektywna metoda.
- Odpowiednia dla dużych zbiorów.
- Daje oszacowanie, które zmienne są ważne.
- Odpowiednia dla problemów klasyfikacji i regresji.

- Potrzebuje większych zasobów.
- Proces decyzyjny bardziej skomplikowany niż w przypadku pojedynczego drzewa - trudniejsze do wytłumaczenia.
- Trudniejsze do wizualizacji od pojedynczego drzewa.

ML Drzewa i Lasy

Implementacja (sklearn)

Problem klasyfikacji

sepal length(cm) sepal width(cm) petal length(cm) petal width(cm)

0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2

iris = load_iris()

pd.DataFrame(iris['data'], columns=iris.feature_names)

iris.target_names

array(['setosa', 'versicolor', 'virginica'], dtype='<U10')
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target)</pre>

rf_classifier = RandomForestClassifier(n_estimators = 5,
criterion = 'gini', max_depth=4, bootstrap=True,
random_state=1)
rf_classifier.fit(X_train, y_train)

rf_classifier.score(X_test, y_test)

0.9473684210526315

Parametrs estimators_ listuje drzewa decyzyjne, które są wykorzystywane w danym ensemblu. Można je zwizualizować jak każde inne drzewo decyzyjne.

rf_classifier.estimators_

[DecisionTreeClassifier(max_depth=4, max_features='sqrt', random_state=1791095845),

DecisionTreeClassifier(max_depth=4, max_features='sqrt', random_state=2135392491),

DecisionTreeClassifier(max_depth=4, max_features='sqrt', random_state=946286476),

DecisionTreeClassifier(max_depth=4, max_features='sqrt', random_state=1857819720),

DecisionTreeClassifier(max_depth=4, max_features='sqrt', random_state=491263)]

plt.figure(figsize = (15,12)) plot_tree(rf_classifier.estimators_[0], feature_names=iris.feature_names, sepal length (cm) <= 5.45 class_names=iris.target_names, aini = 0.634samples = 69 value = [48, 21, 43] class = setosa filled=True); petal length (cm) <= 4.75 gini = 0.088 aini = 0.524 samples = 28 samples = 41 value = [6, 20, 42] value = [42, 1, 1]class = setosa class = virginica petal length (cm) <= 2.6 gini = 0.045 gini = 0.355 samples = 1 samples = 27 samples = 17 value = [0, 1, 0]value = [42, 0, 1] value = [6, 20, 0] class = setosa class = versicolor petal length (cm) <= 2.9 gini = 0.0 gini = 0.5 samples = 25 samples = 3 samples = 14 samples = 2 value = [0, 20, 0 alue = [41, 0, 0 value = [6, 0, 0]value = [1, 0, 1]class = setosa class = setosa class = versicolo class = setosa samples = 1 infoShareAcademy.com

info Share

Lasy losowe pozwalają na uzyskanie oszacowania istotności każdej ze zmiennych.

eature_importances = pd.DataFrame(rf_classifier.feature_importances_, index=iris.feature_names, columns=['importance']).sort_values('importance', ascending=False)

importance

petal length (cm) 0.365004

petal width (cm) 0.297434

sepal length (cm) 0.239708

sepal width (cm) 0.097855

Porównanie lasów losowych z drzewami decyzyjnymi:

X, y = make_circles(100, noise=0.1, random_state=0, factor=0.6)

plt.figure(figsize=(6, 6)) plt.scatter(X[:, 0], X[:, 1], c=["brg"[x] for x in y])

Porównanie lasów losowych z drzewami decyzyjnymi:

```
def decision_regions(data, target, classifier, figsize=(15, 8)):
  plt.figure(figsize=figsize)
  plotting.plot_decision_regions(X=data, y=target, clf=classifier, legend=2)
  plt.scatter(data[:, 0], data[:, 1], c=["brg"[x] for x in target])
rf_classifier = RandomForestClassifier(n_estimators=10,
criterion='gini', max_depth=7, bootstrap=True,
random_state=1)
tree_classifier = DecisionTreeClassifier(criterion='gini',
max_depth=7
rf_classifier.fit(X, y)
tree\_classifier.fit(X, y)
```

info Share

Porównanie lasów losowych z drzewami decyzyjnymi:

Zarówno lasy jak i drzewa decyzyjne mają podobną, "kanciastą" granicę decyzyjną z pewną ilością wysp, próbującą się dopasować możliwie dobrze do zestawu treningowego.

digits = load_digits()

fig, axes = plt.subplots(1, 10)

for i in range(10):

axes[i].imshow(digits.data[i].reshape(8, 8))

ML Drzewa i Lasy

Implementacja (sklearn)

digits.data[1].reshape(8, 8)

info Share

digits.target

array([0, 1, 2, ..., 8, 9, 8])/

X_train, X_test, y_train, y_test = train_test_split(digits.data, digits.target, random_state=0)

rf_classifier = RandomForestClassifier(n_estimators=10, criterion='gini', max_depth=10, bootstrap=True, random_state=1)
tree_classifier = DecisionTreeClassifier(criterion='gini', max_depth=10)

rf_classifier.fit(X_train, y_train)
tree_classifier.fit(X_train, y_train);

tree_classifier.score(X_train, y_train),
tree_classifier.score(X_test, y_test)

(0.9784706755753526, 0.833333333333333333)

rf_classifier.score(X_train, y_train),
rf_classifier.score(X_test, y_test)

(0.9985152190051967, 0.9155555555555556)

ML Drzewa i Lasy

Implementacja (sklearn)

info Share ACADEMY

info Share

Zadanie 13.4 (instrukcja)

Wykreśl zależność między min_samples_leaf i max_depth a dokładnością na zbiorze testowym.

(Analogiczny wykres jak ten z max_leaf_nodes i n_estimators). Użyj poniższego zestawu danych generowanego przez funkcję datasets.make_moons.

Do oceny dokładności użyj metody .score().

X, y = make_moons(n_samples=500, noise=0.1)

%matplotlib inline
from sklearn.ensemble import RandomForestRegressor
from sklearn import tree
from sklearn.tree import plot_tree
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.datasets import load_boston

boston = load_boston()
all_x, all_y = boston.data, boston.target

rf_regressor = RandomForestRegressor() rf_regressor.fit(all_x, all_y)

rf_regressor.score(all_x, all_y)

0.9836237806157219

train_x, test_x, train_y, test_y = train_test_split(all_x, all_y, test_size=1/3, random_state=42)

rf_regressor = RandomForestRegressor()
rf_regressor.fit(train_x, train_y)

cross_val_score(rf_regressor, train_x, train_y, cv=5).mean()

0.8132878349182103


```
plt.figure(figsize = (15,12))
plot_tree(
  rf_regressor.estimators_[2],
  filled=True,
```

info Share

