Feedback — Quiz 1

Help

You submitted this quiz on **Wed 7 May 2014 11:23 PM PDT**. You got a score of **8.00** out of **8.00**.

Question 1

Consider influenza epidemics for two parent heterosexual families. Suppose that the probability is 17% that at least one of the parents has contracted the disease. The probability that the father has contracted influenza is 12% while the probability that both the mother and father have contracted the disease is 6%. What is the probability that the mother has contracted influenza?

Express your answer as a percentage to the nearest percentage point.

You entered:

11

Your Answer		Score	Explanation
11	~	1.00	Correct!
Total		1.00 / 1.00	

Question Explanation

A=Mother, B = Father, $P(A \cup B) = 17\%$, P(B) = 12%, $P(A \cap B) = 6\%$. Since we know $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ we get 17% = P(A) + 12% - 6%.

Question 2

A random variable, X is uniform, a box from 0 to 1 of height 1. (So that it's density is f(x)=1 for $0\leq x\leq 1$.) What is it's 75th percentile?

Express your answer to two decimal places.

You entered:

0.75

Your Answer		Score	Explanation
0.75	~	1.00	Correct!
Total		1.00 / 1.00	

Question Explanation

This density looks like a box. The point so that the area below it is 0.75 is 0.75. Alternatively

qunif(0.75)

[1] 0.75

Question 3

You are playing a game with a friend where you flip a coin and if it comes up heads you give her X dollars and if it comes up tails she gives you Y dollars. The probability that the coin is heads in p (some number between 0 and 1.) What has to be true about X and Y to make so that both of your expected total earnings is 0. (The game would then be called "fair".)

Your Answer	Score	Explanation
$\bigcirc \frac{p}{1-p} = \frac{X}{Y}$		
$\bigcirc X = Y$		
$ \bullet \frac{p}{1-p} = \frac{Y}{X} \qquad \checkmark $	1.00	
$\bigcirc p = rac{X}{Y}$		
Total	1.00 / 1.00	

Question Explanation

Your expected earnings is -pX+(1-p)Y=0 Then it must be the case that p1-p=YX Or that the ratio of the payouts has to equal the odds. So consider, for example, if p1-p=2. The game is 2 to 1 against you, p=2/3; she is twice as likely to win as you. Then she will have to pay out twice as much if you win to make the game fair.

Question 4

You are playing a game with a friend where you flip a coin and if it comes up heads you give her 1 dollar and if it comes up tails she gives you one dollar. What would be the variance of your earnings?

Express your answer to two decimal places.

You entered:

1.00

Your Answer		Score	Explanation
1.00	~	1.00	
Total		1.00 / 1.00	

Question Explanation

Let X be random variables that take the value -1 with probability .5 and 1 with probability. Note that E[X]=0. Also notice that $Var(X)=.5(-1)^2+.5(1)^2=1$.

Question 5

Let X_1,\ldots,X_{n_1} be random variables independent of Y_1,\ldots,Y_{n_2} , where both groups are iid with associated population means μ_1 and μ_2 and population variances σ_1^2 and σ_2^2 , respectively. Let \bar{X} and \bar{Y} be their sample means. What is the variance of $\bar{X}+\bar{Y}$?

Your Answer		Score	Explanation
$\bigcirc \sigma_1^2 - \sigma_2^2$			
$\bigcirc \sigma_1^2 + \sigma_2^2$			
$\bigcirc rac{\sigma_1^2}{n_1} - rac{\sigma_2^2}{n_2}$			
$ \bullet \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} $	~	1.00	
Total		1.00 / 1.00	

Question Explanation

$$\mathrm{Var}(ar{X}+ar{Y})=\mathrm{Var}(ar{X})+\mathrm{Var}(ar{Y})=rac{\sigma_1^2}{n_1}+rac{\sigma_2^2}{n_2}$$
 .

Question 6

If a random variable, X, is so that $E[X]=\mu$ and $Var(X)=\sigma^2$ what is the mean and variance of $Z=\frac{X-\mu}{\sigma}$?

Your Answer		Score	Explanation
${\circ}Z$ has mean μ and variance 1			
ullet Z has mean 0 and variance 1	~	1.00	
${igcup} Z$ has mean μ and variance σ^2			
$\bigcirc Z$ has mean 0 and variance σ^2			
Total		1.00 / 1.00	

Question Explanation

$$E[Z] = rac{E[X] - \mu}{\sigma} = 0.$$

$$Var(Z) = \frac{1}{\sigma^2} Var(X) = 1.$$

Question 7

If a continuous density that never touches the horizontal axis is symmetric about zero, can we say that its associated median is zero?

Your Answer		Score	Explanation
●Yes, the median must be 0.	~	1.00	
○ No, the median is definitely not 0.			
○We can't conclude that the median is 0.			
Total		1.00 / 1.00	

Question Explanation

Yes, 50% of the mass is below zero.

Question 8

Consider the following PMF generated in R

```
x <- 1:4
p <- x/sum(x)
temp <- rbind(x, p)
rownames(temp) <- c("X", "Prob")
temp</pre>
```

```
## [,1] [,2] [,3] [,4]
## X 1.0 2.0 3.0 4.0
## Prob 0.1 0.2 0.3 0.4
```

What is the mean? Express your answer to one decimal place.

You entered:

3.0

Your Answer		Score	Explanation
3.0	~	1.00	
Total		1.00 / 1.00	

Question Explanation

```
sum(x * p)
```

[1] 3