Jumeau numérique dans l'environnement: Microclimat urbain

Hanna CHETOUANE, Narmimane ZAOUACHE October 7, 2025

UFR of Mathematics and Informatics - University of Strasbourg

Comment les jumeaux numériques aident-ils à comprendre les

effets des aménagements urbains sur le micro-climat ?

Plan

Contexte

- L'écologie et le climat sont devenus des enjeux majeurs, surtout dans les villes où se développent des îlots de chaleur
- Solutions: Végétalisation, choix de matériaux adaptés et aménagements urbains repensés
- Les collectiviités locales doivent ainsi prendre des décisions sur les stratégies d'aménagement à adopter et en évaluer l'impact environnemental et sanitaire
- ightarrow Simuler et prédire ces effets de ces choix sur le microclimat urbain et la santé publique \Rightarrow **Jumeau numérique**

Qu'est-ce qu'un jumeau numérique ?

- Réplique virtuelle et dynamique d'un système réel, qui, couplé à des outils de simulation, permet d'analyser et prédire son comportement dans différentes conditions
- S'appuie sur des données réelles (météorologiques et urbaines) issues de capteurs, d'observations ou de modèles physiques

Défi actuel en France: projet JNFT porté par l'IGN, le Cerema et l'Inria, qui vise à créer un jumeau numérique multithématique couvrant le territoire français

Fonctionnement d'un jumeau numérique

Méthodes

Physique:

- Données (météo, propriétés des matériaux, composition de l'air)
- Micro-climat

Numérique:

- Paramètres
- Maquette 3D maillée

Modèles physiques:

- Phénomènes physiques continus: PDEs (Navier-Stockes, chaleur, transport, diffusion)
- Interaction entre batiments, vent, végétation: Fluid-Structure Interaction (NS + Elasticity)
- Ecoulement d'air et échanges thermiques: Computational Fluid Dynamics (NS + Heat; Transport; transfert radiatif)

Utilisation ROM: Réduction de l'ordre des modèles physiques pour accélérer les simulations

- Offline: Préparation du modèle
 - Réduction de la dimension en capturant l'essentiel du système: Proper Orthogonal Decomposition (POD), Reduced Basis Method (RBM)
 - Hyper-réduction: Réduit temps de calcul des termes non-linéaires (DEIM: Discrete Empirical Interpolation Method, gappy POD: gappy Proper Orthogonal Decomposition)
- **Online:** Simulation du modèle réduit pour tester différents scénarios rapidement

Data-Driven Models: basé sur les données, prédiction rapide

 Régression: prédit des phénomènes (température, qualité de l'air, vent) à partir de variables (matériaux, végétation...)

 Gaussian Process: prédit et donne l'incertitude pour des zones avec peu de données

 Réseaux de Neuronnes: capture les relations complexes et non-linéaires entre les variables

 Modèles d'ensembles: amélioration de la précision et de la robustesse des prédictions, en combinant plusieurs modèles Data assimilation: Combinaison des modèles physiques et des données pour corriger les simulations, obtenir un maximum de précision et rendre ces simulations exploitables

- VAR: ajuste le modèle physique pour que les simulations collent aux observations (sur un ou plusieurs pas de temps)
- Filtre de Kalman: Mise à jour des prédictions en temps réel pour un suivi dynamique
- PBDW, GEIM: reconstruction du système avec peu de données, pour une vue d'ensemble
- Capteurs virtuels: estimation de variables où il n'y a pas de mesures, voir l'effet de nouveaux aménagements

Architecture and Pipeline

The digital twin architecture is divided into two main phases:

Offline: model construction, calibration, and reduction.

Online: real-time assimilation and decision support.

This structure ensures continuous synchronization between the physical and virtual environments.

Methods – Part 1: Physical and Reduced Models

1. Physical and Numerical Modeling

- Based on fundamental equations (CFD, thermal transfer, radiation).
- Represents airflow, heat diffusion, and the effect of urban materials.
- Provides detailed simulations but is computationally expensive.

2. Reduced Order Model (ROM / Surrogate Model)

- Built from the results of the high-fidelity physical model.
- Techniques: POD (Proper Orthogonal Decomposition), Reduced Basis Method (RBM), Hyper-reduction (DEIM).
- Enables calculations 100 to 1000 times faster while preserving accuracy.

Methods – Part 2: Data-driven and Data Assimilation

3. Data-driven Approaches (Machine Learning)

- Use sensor data to complement or correct physical models.
- Methods: regression models, neural networks (Neural-ODE), Gaussian Processes.
- Useful in areas with limited or missing physical data.

4. Data Assimilation

- Continuously adjusts the model parameters using real-time measurements.
- Common methods: EnKF (Ensemble Kalman Filter), 4D-VAR, PBDW/GEIM.
- Keeps the digital twin consistent with the real environment in real time.

Data & Instrumentation — Data Budget (Urban Microclimate)

Goal: quantify sensor data rates and daily volumes to size network & storage for real-time operation.

Sensor	#	Freq (Hz)	sample	Throughput (kB/s)	Vol/day (GB)	Comments
Air thermometer (T)	20	1.00	8	0.16	0.014	Ambient temperature
Hygrometer (RH)	10	1.00	8	0.08	0.007	Relative humidity
Anemometer (3-axis)	5	1.00	12	0.06	0.005	Wind speed & direction
Pyranometer (solar)	5	0.20	16	0.016	0.0014	Global irradiance
Thermal camera*	2	0.033	500,000	33.0	2.85	H.264, store temperature maps

Formulas:

Throughput (kB/s) & Volume/day (GB)

$$\begin{split} \textit{Throughput}(\textit{kB/s}): & = \frac{\# \times \mathsf{sample} \times \mathsf{Freq}}{1000} \\ \textit{Volume/day}(\textit{GB}): & = \frac{\mathsf{Throughput}\; (\mathsf{kB/s}) \times 86\,400}{10^6} \end{split}$$

Protocols/latency (summary): LoRaWAN for low-rate sensors (2–5 s latency); Wi-Fi/4G for cameras (< 0.5 s).

Privacy: camera streams anonymized on edge; only thermal maps stored.

V&V & UQ — Verification, Validation & Uncertainty Quantification

Goal

Goal: ensure accuracy, reliability, and safety of decisions in the urban microclimate digital twin.

Step	Purpose	Methods / Indicators
1 Verification	Check model implementation and nu-	Compare the Reduced Order Model (ROM)
	merical stability.	with the full CFD model. Ensure no numerical
		or stability errors.
2 Validation	Evaluate how well the model matches	Compare predictions with sensor measure-
	real-world data.	ments (T°, wind, humidity). Metrics: MAE,
		RMSE, R ² .
3 Uncertainty Quantifica-	Estimate the confidence level of model	Methods: Monte Carlo, sensitivity analysis,
tion (UQ)	predictions.	Bayesian estimation. Example: $T=32\pm1.5^{\circ}$ C.
4 Veto / Alert Mechanism	Prevent wrong or unsafe decisions	If variance or RMSE $>$ threshold \rightarrow trigger
	when uncertainty is too high.	alert or model recalibration.

Outcome: a validated, uncertainty-aware model ensuring trustworthy real-time decisions.

Transfer & Deployment — CI/CD, Edge vs Cloud, Observability, Risks

Goal

ensure a smooth transition from R&D to real-time operation of the urban microclimate digital twin.

Aspect	Description	Tools / Key Points	
CI/CD (Continuous Inte-	Automate the update cycle for models	GitHub Actions, Docker, unit tests for	
gration & Deployment)	and data.	ROM/data, dashboard updates.	
Containers & Orchestra- tion	Ensure portability and scalability of digital twin services.	Docker / Kubernetes: deployment of ROM model, APIs, dashboards.	
Edge vs Cloud Computing	Balance local computing (edge) and centralized storage (cloud).	Edge: low latency (cameras, sensors). Cloud: heavy computations (assimilation, ROM training).	
Observability & Monitor- ing	Track performance, errors, and model drifts.	Logs, metrics, and alerts through Grafana / Prometheus.	
Costs & Risks (CAPEX/OPEX)	Optimize hardware resources and min- imize downtime.	CAPEX: servers / sensors. OPEX: mainte- nance, energy, network. Risk: failure, model drift.	

Outcome: a reliable, automated, and maintainable digital twin for long-term operation.

Perspectives & Limitations — Toward a Sustainable Digital Twin

- **Scalability:** adapt the model to larger urban areas (optimized ROM, cloud computation).
- Robustness: handle sensor failures or noisy data (redundancy, adaptive models).
- Bias: avoid overfitting to one district (multi-scenario validation).
- Privacy: ensure GDPR compliance and anonymization of visual data.
- Ethics: promote transparency, explainable AI, and citizen involvement.

Thank you for your attention!

Any questions?

University of Strasbourg – 2025

Bibliographie