Семинар 2

Введение в алгоритмы. Теория графов.

Бирюков Владимир

Updated: 2016/02/26

 ${\rm seminar3}$

МФТИ

Введение в теорию графов

Граф – это математический объект, совокупность:

- $\bigcirc V =$ вершины
- \bigcirc E= ребра

Обозначается как G = (V, E) n = |V| — число вершин m = |E| — число рёбер

Ориентированный

Неориентированный

- 1. связный граф если для любых вершин u,v есть путь из u в v.
- 2. взвешенный граф если каждому ребру графа поставлено в соответствие некоторое число, называемое весом ребра.
- 3. простой граф если он не имеет петель и кратных рёбер.
- 4. ациклический граф если он не имеет циклов.
- 5. дерево если он связный и ациклический.

смежности.

	1	2	3	4	5		
1	0	1	0	0	1		
2	1	0	1	1	1		
3	0	1	0	1	0		
4	0	1	1	0	1		
5	1	1	0	1	0		
	1 2 3 4 5 0 1 0 0 1 1 0 1 1 1 0 1 0 1 0 0 1 1 0 1 1 1 0 1 0						

смежности.

	1	2	3	4	5	6			
1	0	1	0	1	0	0			
2	0	0	0	0	1	0			
3	0	0	0	0	1	1			
4	0	1	0	0	0	0			
5	0	0	0	1	0	0			
6	0	0	0	0	0	1			
	1 2 3 4 5 6 1 0 1 0 1 0 0 2 0 0 0 0 1 0 3 0 0 0 0 1 1 4 0 1 0 0 0 0 5 0 0 0 1 0 0 6 0 0 0 0 0 1								
	(0)								

Поиск в ширину

BFS

Поиск в глубину

DFS

Граф. Псевдокод алгортма для BFS.

```
BFS(G,s)
      for (для) каждой вершины u \in V[G] - \{s\}
             do \ color[u] \leftarrow  БЕЛЫЙ
                  d[u] \leftarrow \infty
                  \pi[u] \leftarrow \text{NIL}
     color[s] \leftarrow СЕРЫЙ
 6 d[s] \leftarrow 0
 7 \pi[s] \leftarrow \text{NIL}
 8 Q \leftarrow \{s\}
     while Q \neq \emptyset
10
             do u \leftarrow head[Q]
11
                  for (для) всех v \in Adj[u]
12
                        do if color[v] = БЕЛЫЙ
13
                                then color[v] \leftarrow СЕРЫЙ
14
                                       d[v] \leftarrow d[u] + 1
15
                                       \pi[v] \leftarrow u
16
                                        \text{Enqueue}(Q, v)
17
                  Dequeue(Q)
18
                  color[u] \leftarrow ЧЁРНЫЙ
```

Граф. Алгортм BFS.

Граф. Кратчайшие пути из одной вершины.

Граф. Релаксация.

Граф. Алгоритм Дейкстры.

```
DIJKSTRA(G, w, s)
  INITIALIZE-SINGLE-SOURCE(G, s)
2 S \leftarrow \emptyset
3 \quad Q \leftarrow V[G]
   while Q \neq \emptyset
5
          do u \leftarrow \text{EXTRACT-MIN}(Q)
               S \leftarrow S \cup \{u\}
               for (для) всех вершин v \in Adj[u]
                     do RELAX(u, v, w)
```

Граф. Алгоритм Дейкстры.

Граф. Сложности работы алгоритмов.

- \bigcirc BFS O(|V| + |E|)
- \bigcirc DFS O(|V| + |E|)
- \bigcirc Алгоритм Дейкстры $O(|V|^2 + |E|)$
- О Алгоритм Беллмана-Форда O(|V|*|E|) (алгоритм нахождения кратчайших путей из одной вершины если есть отрицательные веса)
- О Алгоритм Флойда-Уоршолла $O(|V|^3)$ (алгоритм нахождения кратчайших путей для всех пар вершин)

Практическая часть