Let $w > \omega(A)$, λ_1 . Then it follows from (4.9) that $\|(\lambda - w)^n R(\lambda, \overline{B})^n\|^{\frac{1}{2}} \le \|(\lambda - w)^n R(\lambda, A)^n\|$ for all $\lambda > w$, $n \in \mathbb{N}$. So by the Hille-Yosida theorem, $\bar{\,{\rm B}\,}$ is the generator of a semigroup $(S(t))_{t\geq 0}$. Finally, the domination of $(S(t))_{t\geq 0}$ by $(T(t))_{t\geq 0}$ follows from (4.8) and Prop.4.1.

Example 4.4. a) Let E be a σ -order complete complex Banach lattice and $(T(t))_{t\geq 0}$ be a positive semigroup with generator A . Let M ϵ Z(E) (the center of E (see C-I, Sec. 9). For example, if E = $L^p(X,\mu)$ (where (X,μ) is a σ -finite measure space and $1 \le p \le \infty$) then M is the multiplication operator defined by a function in

Let B = A + M. Then B generates a semigroup $(S(t))_{t \ge 0}$. Assume that ReM \leq 0 . Let f \in D(B) and $\phi \in$ D(A'), Then

 $Re<(sign \overline{f})Bf, \phi> = Re<(sign \overline{f})Af, \phi> + Re<(sign \overline{f})Mf, \phi>$ = Re<(sign \bar{f})Af, ϕ > + Re<M|f|, ϕ > $\leq \langle f | A' \phi \rangle$.

Thus, by Theorem 4.2, $(S(t))_{t>0}$ is dominated by $(T(t))_{t\geq0}$.

b) Let E be an order complete complex Banach lattice and B be a regular bounded operator on E . Then B can be written as $B = B_0 +$ M where M \in Z(E) and B \in L^r(E) such that inf $\{|B_0|, Id\} = 0$. Let A = $|B_0|$ + Re M . Then the semigroup $(e^{tB})_{t \ge 0}$ is dominated by $(e^{tA})_{t\geq 0}$.

In fact, let $f \in E$. Then $Re[(sign \overline{f})Bf] = Re[(sign \overline{f})B f] + ReM \cdot |f|$ $\leq |B_0||f| + ReM \cdot |f| = A|f|$. This implies condition (ii) in Thm. 4.2.

Domination and positivity are characterized simultaneously as follows.

Proposition 4.5. Let E be a σ-order complete real Banach lattice. Let $(T(t))_{t>0}$ be a positive semigroup with generator A and let $(S(t))_{t\geq 0}$ be a semigroup with generator B . The following are equivalent.

- (i) $0 \le S(t) \le T(t)$ for all $t \ge 0$.
- (ii) $<P_{(f^+)}Bf, \phi> \le <f^+, A'\phi>$ for all $f \in D(B)$, $\phi \in D(A')_+$. (iii) $<P_{(f^+)}Bf, \phi> \le <f^+, A'\phi>$ for all $f \in D_O$, $\phi \in D(A')_+$, where D is a core of B.

Remark 4.6. Condition (ii) implies (4.4) (cf. Remark 3.12).