FICHE 02-08: Les *p*-groupes: MET-1 1.2.10, ALG1-02 2.11

Yvann Le Fay

Juillet 2019

Enoncé

Soit G un groupe d'ordre p^m , avec p premier, montrer que $|Z(G)| = p^k$ avec $1 \le k \le m$. Soit G un groupe d'ordre p^2 , démontrer que G est abélien.

Solution

D'après l'équation aux classes, il existe une famille finie de sous groupes stricts de G, $(H_i)_{i\in I}$ tels que

$$p^m = |Z(G)| + \sum_{i \in I} \frac{p^m}{|H_i|}$$

D'après le théorème de Lagrange, pour tout $i \in I$, $\frac{p^m}{|H_i|} \in \{1, \dots, p^m\}$, le cas 1 est à exclure car H_i est un sous groupe strict, par l'équation aux classes, on en déduit que $p \mid |Z(G)|$, d'où le résultat. Dans le cas où m=2, supposons par l'absurde que |Z(G)|=p, il existe $x \in G \setminus Z(G)$, alors $N_x=\{g \in G: gx=xg\}$ est un sous-groupe strict de G. Aussi $Z(G) \subset N_x$ donc nécessairement $|N_x|=p$ puis $Z(G)=N_x$, ce qui est absurde. Une autre démonstration utilise le résultat suivant, soit G un groupe fini,

$$G/Z(G)$$
 cyclique $\Rightarrow G$ abélien

Ainsi, si |Z(G)|=p alors $G/Z(G)\cong \mathbb{Z}/p\mathbb{Z}$, il est donc cylique d'où G est abélien puis $|Z(G)|=p^2$, absurde.