Small RNAseq: Differential Expression Analysis

true

2022-09-27

Environment Setup

```
salloc -N 1 --exclusive -p amd -t 8:00:00
conda env create -f conda-env.yml
conda activate smallrna
```

Downloading datasets

Raw data

Raw data was downloaded from the sequencing facility using the secure link, with wget command. The downloaded files were checked for md5sum and compared against list of files expected as per the input samples provided.

```
wget https://oc1.rnet.missouri.edu/xyxz
# link masked
# GEO link will be included later
# merge files of same samples (technical replicates)
paste <(ls *_L001_R1_001.fastq.gz) <(ls *_L002_R1_001.fastq.gz) | \
    sed 's/\t//g' |\
    awk '{print "cat",$1,$2" > "$1}' |\
    sed 's/_L001_R1_001.fastq.gz/.fq.gz/2' > concatenate.sh
chmod +x concatenate.sh
sh concatenate.sh
```

Genome/annotation

Additional files required for the analyses were downloaded from GenCode. The downloaded files are as follows:

```
wget https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_mouse/release_M30/GRCm39.primary_assembly.genoweget https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_mouse/release_M30/gencode.vM30.annotation.gff3
wget https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_mouse/release_M30/gencode.vM30.annotation.gtf.gunzip GRCm39.primary_assembly.genome.fa.gz
gunzip gencode.vM30.annotation.gff3.gz
gunzip gencode.vM30.annotation.gtf.gz
```

FastQC (before processing)

```
for fq in *.fq.gz; do
   fastqc --threads $SLURM_JOB_CPUS_PER_NODE $fq;
done
mkdir -p fastqc_pre
mv *.zip *.html fastqc_pre/
```

Mapping

To index the genome, following command was run (in an interactive session).

Each fastq file was mapped to the indexed genome as using runSTAR_map.sh script shown below:

```
#!/bin/bash
read1=$1
out=$(basename ${read1\\\\.*})
STARgenomeDir=$(pwd)
# illumina adapter
adapterseq="AGATCGGAAGAGC"
STAR \
    --genomeDir ${STARgenomeDir} \
    --readFilesIn ${read1} \
   --outSAMunmapped Within \
   --readFilesCommand zcat \
    --outSAMtype BAM SortedByCoordinate \
    --quantMode GeneCounts \
   --outFilterMultimapNmax 20 \
    --clip3pAdapterSeq ${adapterseq} \
    --clip3pAdapterMMp 0.1 \
    --outFilterMismatchNoverLmax 0.03 \
   --outFilterScoreMinOverLread 0 \
    --outFilterMatchNminOverLread 0 \
    --outFilterMatchNmin 16 \
    --outFileNamePrefix ${out} \
   --alignSJDBoverhangMin 1000 \
    --alignIntronMax 1 \
    --runThreadN ${SLURM_JOB_CPUS_PER_NODE} \
   --genomeLoad LoadAndKeep \
    --limitBAMsortRAM 3000000000 \
    --outSAMheaderHD "@HD VN:1.4 SO:coordinate"
```

Mapping was run with a simple loop:

```
for fq in *.fq.gz; do
  runSTAR_map.sh $fq;
done
```

Counting Stats

Counts generated by STAR with option --quantMode GeneCounts were parsed to generate summary stats as well as to extract annotated small RNA feature counts.

```
mkdir -p counts_files
# copy counts for each sample
cp *ReadsPerGene.out.tab counts_files/
cd counts_files
# merge counts
join_files.sh *ReadsPerGene.out.tab |\
   sed 's/ReadsPerGene.out.tab//g' |\
   grep -v "^N_" > counts_star.tsv
# merge stats
join_files.sh *ReadsPerGene.out.tab |\
   sed 's/ReadsPerGene.out.tab//g' |\
  head -n 1 > summary_star.tsv
join_files.sh *ReadsPerGene.out.tab |\
   sed 's/ReadsPerGene.out.tab//g' |\
   grep "^N_" >> summary_star.tsv
# parse GTF to extact gene.id and its biotype:
gtf=gencode.vM30.annotation.gtf
awk 'BEGIN{OFS=FS="\t"} $3=="gene" {split($9,a,";"); print a[1],a[2]}' ${gtf} |\
   awk '{print $4"\t"$2}' |\
   sed 's/"//g' > GeneType_GeneID.tsv
cut -f 1 GeneType_GeneID.tsv | sort |uniq > features.txt
```

The information for biotype as provided by the gencodegenes were used for categorizing biotype.

The smallRNA group consists of following biotype:

```
miRNA
misc_RNA
scRNA
snRNA
snoRNA
sRNA
sRNA
```

The full table is as follows:

```
library(knitr)
setwd("/work/LAS/geetu-lab/arnstrm/mouse.trophoblast.smallRNAseq")
file1="assets/GeneType_Group.tsv"
info <-
    read.csv(</pre>
```

```
file1,
header = TRUE,
sep = "\t",
stringsAsFactors = TRUE
)
kable(info, caption = "Table 1: biotype and its groupings")
```

Table 1: Table 1: biotype and its groupings

-		
biotype	group	
protein_coding	coding_genes	
pseudogene	pseudogenes	
TR_C_gene	Ig_genes	
TR_D_gene	Ig_genes	
TR_J_gene	Ig_genes	
TR_V_gene	Ig_genes	
IG_C_gene	Ig_genes	
IG_D_gene	Ig_genes	
IG_J_gene	Ig_genes	
IG_LV_gene	Ig_genes	
IG_V_gene	Ig_genes	
TR_J_pseudogene	pseudogenes	
TR_V_pseudogene	pseudogenes	
IG_C_pseudogene	pseudogenes	
IG_D_pseudogene	pseudogenes	
IG_pseudogene	pseudogenes	
IG_V_pseudogene	pseudogenes	
lncRNA	long_non_conding_RNA	
miRNA	$non_conding_RNA$	
${ m misc_RNA}$	$non_conding_RNA$	
ribozyme	$non_conding_RNA$	
rRNA	$non_conding_RNA$	
scaRNA	$non_conding_RNA$	
scRNA	$non_conding_RNA$	
snoRNA	$non_conding_RNA$	
snRNA	$non_conding_RNA$	
sRNA	$non_conding_RNA$	
Mt_rRNA	$non_conding_RNA$	
Mt_tRNA	$non_conding_RNA$	
processed_pseudogene	pseudogenes	
unprocessed_pseudogene	pseudogenes	
$translated_unprocessed_pseudogene$	pseudogenes	
$transcribed_processed_pseudogene$	pseudogenes	
transcribed_unitary_pseudogene	pseudogenes	
$transcribed_unprocessed_pseudogene$	pseudogenes	
unitary_pseudogene	pseudogenes	
TEC	unconfirmed_genes	

A samples table (samples.tsv) categorizing samples to its condition were also generated:

```
file2="assets/samples.tsv"
samples <-
  read.csv(
    file2,
    header = TRUE,
    sep = "\t",
    stringsAsFactors = TRUE
)
kable(samples, caption = "Table 2: Samples in the study")</pre>
```

Table 2: Table 2: Samples in the study

Sample	Group
Dif_D6_1_S4	Diff
Dif_D6_2_S3	Diff
Dif_D6_3_S2	Diff
Dif_D6_4_S1	Diff
$Undif_D2_1_S8$	Undf
$Undif_D2_2_S7$	Undf
Undif_D2_3_S6	Undf
$Undif_D2_4_S5$	Undf

This information was then merged with counts table to generate QC plots:

```
awk 'BEGIN{OFS=FS="\t"}FNR==NR{a[$1]=$2;next}{ print $2,$1,a[$1]}' \
    GeneType_Group.tsv GeneType_GeneID.tsv > GeneID_GeneType_Group.tsv

awk 'BEGIN{OFS=FS="\t"}FNR==NR{a[$1]=$2"\t"$3;next}{print $1,a[$1],$0}' \
    GeneID_GeneType_Group.tsv counts_star.tsv |\
    cut -f 1-3,5- > processed_counts_star.tsv
```

Plotting the mapping summary and count statistics for various biotypes:

```
library(scales)
library(tidyverse)
#library(plotly)
```

```
setwd("/work/LAS/geetu-lab/arnstrm/mouse.trophoblast.smallRNAseq")
file1="assets/processed_counts_star.tsv"
file2="assets/summary_stats_star.tsv"
counts <-
    read.csv(
    file1,
        sep = "\t",
        stringsAsFactors = TRUE
)
subread <-
    read.csv(
    file2,</pre>
```

```
sep = "\t",
    stringsAsFactors = TRUE
 )
# convert long format
counts.long <- gather(counts, Sample, Count, Dif_D6_1_S4:Undif_D2_4_S5, factor_key=TRUE)</pre>
subread.long <- gather(subread, Sample, Count, Dif_D6_1_S4:Undif_D2_4_S5, factor_key=TRUE)
# organize
counts.long$Group <-</pre>
 factor(
    counts.long$Group,
    levels = c(
      "coding_genes",
      "non_conding_RNA",
      "long_non_conding_RNA",
      "pseudogenes",
      "unconfirmed_genes",
      "Ig_genes"
    )
  )
subread.long$Assignments <-</pre>
  factor(
    subread.long$Assignments,
    levels = c(
      "N input",
      "N_unmapped",
      "N_multimapping",
      "N_unique",
      "N_ambiguous",
      "N_noFeature"
    )
 )
```

```
ggplot(subread.long, aes(x = Assignments, y = Count, fill = Assignments)) +
  geom_bar(stat = 'identity') +
  labs(x = "Subread assingments", y = "reads") + theme_minimal() +
  scale_y_continuous(labels = label_comma()) +
  theme(
   axis.text.x = element_text(
     angle = 45,
     vjust = 1,
     hjust = 1,
     size = 12
     ),
   strip.text = element_text(
     face = "bold",
     color = "gray35",
     hjust = 0,
     size = 10
   strip.background = element_rect(fill = "white", linetype = "blank"),
    legend.position = "none"
```


Figure 1: STAR read mapping and feature assignment. Here, N_input is total input reads, N_unmapped is reads that were either too short to map after adapter removal or had higher mismatch rate to place reliably on the genome, N_multimapping is reads mapped to multiple loci, N_unique is reads mapped to unique loci. A subset of N_unique reads that were unable to clearly assign to a feature or assign any feature at all are grouped as N_ambigious or N_noFeature, respectively

```
g <- ggplot(counts.long, aes(x = Group, y = Count, fill = Group)) +
geom_bar(stat = 'sum') +
labs(x = "biotype", y = "read counts") + theme_minimal() +
scale_y_continuous(labels = label_comma()) +
theme(
    axis.text.x = element_text(
    angle = 45,
    vjust = 1,
    hjust = 1,
    size = 12
),
strip.text = element_text(
    face = "bold",</pre>
```

```
color = "gray35",
   hjust = 0,
   size = 10
),
   strip.background = element_rect(fill = "white", linetype = "blank"),
   legend.position = "none"
) +
   facet_wrap("Sample", scales = "free_y", ncol = 4)
#ggplotly(g)
g
```


Figure 2: Figure 2: Features with read counts

```
counts.nc <- filter(counts.long, Group %in% "non_conding_RNA" )
counts.nc$GeneType <-
factor(
   counts.nc$GeneType,
   levels = c(
        "miRNA",
        "misc_RNA",
        "snoRNA",</pre>
```

```
"snRNA",
      "sRNA",
      "scRNA",
      "scaRNA",
      "Mt_tRNA",
      "Mt_rRNA",
      "rRNA",
      "ribozyme"
   )
  )
g <- ggplot(counts.nc, aes(x = GeneType, y = Count, fill = GeneType)) +
  geom_bar(stat = 'sum') +
  labs(x = "biotype", y = "read counts") + theme_minimal() +
  scale_y_continuous(labels = label_comma()) +
   axis.text.x = element_text(
     angle = 45,
     vjust = 1,
     hjust = 1,
     size = 12
   ),
   strip.text = element_text(
     face = "bold",
     color = "gray35",
     hjust = 0,
     size = 10
   ),
   strip.background = element_rect(fill = "white", linetype = "blank"),
   legend.position = "none"
 facet_wrap("Sample", scales = "free_y", ncol = 4)
#ggplotly(g)
```

subset the counts file to select only smallRNA genes

This noncoding_counts_star.tsv and samples.tsv file will be used for DESeq2 analyses.

Figure 3: Figure 3: non-coding biotype read counts

DESeq2

For the next steps, we used DESeq2 for performing the DE analyses. Results were visualized as volcano plots and tables were exported to excel.

Load packages

```
setwd("/work/LAS/geetu-lab/arnstrm/mouse.trophoblast.smallRNAseq")
library(DESeq2)
library(RColorBrewer)
library(pheatmap)
library(genefilter)
library(ggrepel)
```

Import counts and sample metadata

The counts data and its associated metadata (coldata) are imported for analyses.

```
counts = 'assets/noncoding_counts_star.tsv'
groupFile = 'assets/samples.tsv'
coldata <-
    read.csv(
        groupFile,
        row.names = 1,
        sep = "\t",
        stringsAsFactors = TRUE
    )
cts <- as.matrix(read.csv(counts, sep = "\t", row.names = "Geneid"))</pre>
```

Reorder columns of cts according to coldata rows. Check if samples in both files match.

```
colnames(cts)
#> [1] "Dif_D6_1_S4" "Dif_D6_2_S3" "Dif_D6_3_S2" "Dif_D6_4_S1"
#> [5] "Undif_D2_1_S8" "Undif_D2_2_S7" "Undif_D2_3_S6" "Undif_D2_4_S5"
all(rownames(coldata) %in% colnames(cts))
#> [1] TRUE
cts <- cts[, rownames(coldata)]</pre>
```

Normalize

The batch corrected read counts are then used for running DESeq2 analyses

```
dds <- DESeqDataSetFromMatrix(countData = cts,</pre>
                               colData = coldata,
                               design = ~ Group)
vsd <- vst(dds, blind = FALSE, nsub =500)</pre>
keep <- rowSums(counts(dds)) >= 5
dds <- dds[keep, ]</pre>
dds <- DESeq(dds)
dds
#> class: DESeqDataSet
#> dim: 1266 8
#> metadata(1): version
#> assays(4): counts mu H cooks
#> rownames(1266): ENSMUSG00000119106.1 ENSMUSG00000119589.1 ...
#> ENSMUSG00000065444.3 ENSMUSG00000077869.3
#> rowData names(22): baseMean baseVar ... deviance maxCooks
#> colnames(8): Dif_D6_1_S4_Dif_D6_2_S3 ... Undif_D2_3_S6_Undif_D2_4_S5
#> colData names(2): Group sizeFactor
vst <- assay(vst(dds, blind = FALSE, nsub = 500))</pre>
vsd <- vst(dds, blind = FALSE, nsub = 500)</pre>
pcaData <-
 plotPCA(vsd,
          intgroup = "Group",
          returnData = TRUE)
percentVar <- round(100 * attr(pcaData, "percentVar"))</pre>
```

PCA plot for QC

PCA plot for the dataset that includes all libraries.

```
rv <- rowVars(assay(vsd))
select <-
  order(rv, decreasing = TRUE)[seq_len(min(500, length(rv)))]
pca <- prcomp(t(assay(vsd)[select, ]))
percentVar <- pca$sdev ^ 2 / sum(pca$sdev ^ 2)
intgroup = "Group"
intgroup.df <- as.data.frame(colData(vsd)[, intgroup, drop = FALSE])
group <- if (length(intgroup) == 1) {</pre>
```

```
factor(apply(intgroup.df, 1, paste, collapse = " : "))
}
d <- data.frame(
   PC1 = pca$x[, 1],
   PC2 = pca$x[, 2],
   intgroup.df,
   name = colnames(vsd)
)</pre>
```

plot PCA for components 1 and 2

```
g <- ggplot(d, aes(PC1, PC2, color = Group)) +
    scale_shape_manual(values = 1:8) +
    theme_bw() +
    theme(legend.title = element_blank()) +
    geom_point(size = 2, stroke = 2) +
    xlab(paste("PC1", round(percentVar[1] * 100, 2), "% variance")) +
    ylab(paste("PC2", round(percentVar[2] * 100, 2), "% variance"))
#ggplotly(g)
g</pre>
```


Figure 4: Figure 4: PCA plot for the first 2 principal components

Sample distance for QC

Figure 5: Figure 5: Euclidean distance between samples

Set contrasts and find DE genes

```
res.UndfvsDiffdata <-
  merge(
    as.data.frame(res.UndfvsDiff),
    as.data.frame(counts(dds, normalized = TRUE)),
    by = "row.names",
    sort = FALSE
  )
names(res.UndfvsDiffdata)[1] <- "Gene"
write_delim(res.UndfvsDiffdata, file = "DESeq2results-UndfvsDiff_fc.tsv", delim = "\t")</pre>
```

Volcano plots

```
first,
       second,
       color1,
       color2,
       color3,
       ChartTitle) {
res.se <- res.se[order(res.se$padj), ]
res.se <-
  rownames_to_column(as.data.frame(res.se[order(res.se$padj), ]))
names(res.se)[1] <- "Gene"</pre>
res.data <-
  merge(res.se,
        mart,
        by.x = "Gene",
        by.y = "geneid.version")
res.data <- res.data %>% mutate_all(na_if, "")
res.data <- res.data %>% mutate_all(na_if, " ")
res.data <-
  res.data %>% mutate(gene_symbol = coalesce(gene.symbol, Gene))
res.data$diffexpressed <- "other.genes"
res.data$diffexpressed[res.data$log2FoldChange >= 1 &
                         res.data$padj <= 0.05] <-
  paste("Higher expression in", first)
res.data$diffexpressed[res.data$log2FoldChange <= -1 &
                         res.data$padj <= 0.05] <-
  paste("Higher expression in", second)
res.data$delabel <- ""
res.data$delabel[res.data$log2FoldChange >= 1
```

```
!is.na(res.data$padj)] <-</pre>
      res.data$gene_symbol[res.data$log2FoldChange >= 1
                             res.data$padj <= 0.05
                              !is.na(res.data$padj)]
    res.data$delabel[res.data$log2FoldChange <= -1
                     & res.data$padj <= 0.05
                        !is.na(res.data$padj)] <-</pre>
      res.data$gene_symbol[res.data$log2FoldChange <= -1
                             res.data$padj <= 0.05
                              !is.na(res.data$padj)]
    ggplot(res.data,
             aes(
               x = log2FoldChange,
               y = -log10(padj),
              col = diffexpressed,
              label = delabel
             )) +
      geom_point(alpha = 0.5) +
      xlim(-20, 20) +
      theme_classic() +
      scale_color_manual(name = "Expression", values = c(color1, color2, color3)) +
      # geom_text_repel(
      # data = subset(res.data, padj <= 0.05),</pre>
      # max.overlaps = 15,
      # show.legend = F,
      # min.segment.length = Inf,
      # seed = 42,
      # box.padding = 0.5
      # ) +
      ggtitle(ChartTitle) +
      xlab(paste("log2 fold change")) +
      ylab("-log10 pvalue (adjusted)") +
      theme(legend.text.align = 0)
}
g <- volcanoPlots2(</pre>
  res.UndfvsDiff,
  "UndfvsDiff",
  "Undf",
  "Diff",
  "green",
  "blue",
  ChartTitle = "Undifferentiated vs. Differentiated"
```

& res.data\$padj <= 0.05

#ggplotly(g)

Heatmap

Heatmap for the top 30 variable genes:

```
topVarGenes <- head(order(rowVars(assay(vsd)), decreasing = TRUE), 30)</pre>
mat <- assay(vsd)[ topVarGenes, ]</pre>
mat <- mat - rowMeans(mat)</pre>
mat2 <-
            merge(mat,
           by.x = 'row.names',
           by.y = "geneid.version")
rownames(mat2) <- mat2[,10]</pre>
mat2 <- mat2[2:9]</pre>
heat_colors <- brewer.pal(9, "YlOrRd")</pre>
g <- pheatmap(</pre>
      mat2,
      color = heat_colors,
      main = "Top 30 variable small RNA genes",
      cluster_rows = F,
      cluster_cols = T,
      show_rownames = T,
      border_color = NA,
      fontsize = 10,
      scale = "row",
      fontsize_row = 10
    )
```


##

MultiQC report:

MultiQC report is available at this link

Session Information

```
options(max.print=999999)
sessionInfo()
#> R version 4.2.1 (2022-06-23)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: Ubuntu 20.04.4 LTS
#> Matrix products: default
#> BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
#> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/liblapack.so.3
#>
#> locale:
#> [1] LC_CTYPE=en_US.UTF-8
                                  LC NUMERIC=C
#> [3] LC_TIME=en_US.UTF-8
                                 LC COLLATE=en US.UTF-8
#> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
#> [7] LC_PAPER=en_US.UTF-8
                                LC NAME=C
#> [9] LC ADDRESS=C
                                  LC TELEPHONE=C
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
#> attached base packages:
#> [1] stats4
                stats
                        graphics grDevices utils
                                                        datasets methods
#> [8] base
#>
#> other attached packages:
#> [1] ggrepel_0.9.1
                                   genefilter_1.78.0
#> [3] pheatmap_1.0.12
                                   RColorBrewer_1.1-3
#> [5] DESeq2_1.36.0
                                   SummarizedExperiment_1.26.1
#> [7] Biobase_2.56.0
                                   MatrixGenerics_1.8.1
#> [9] matrixStats 0.62.0
                                   GenomicRanges 1.48.0
#> [11] GenomeInfoDb_1.32.2
                                   IRanges 2.30.0
#> [13] S4Vectors_0.34.0
                                   BiocGenerics_0.42.0
#> [15] forcats_0.5.1
                                   stringr_1.4.0
                                  purrr_0.3.4
#> [17] dplyr_1.0.9
#> [19] readr_2.1.2
                                  tidyr_1.2.0
#> [21] tibble 3.1.8
                                   ggplot2_3.3.6
#> [23] tidyverse_1.3.2
                                   scales_1.2.0
#> [25] knitr_1.39
#> loaded via a namespace (and not attached):
                            fs_1.5.2
#> [1] bitops_1.0-7
                                                     lubridate\_1.8.0
#> [4] bit64_4.0.5
                             httr_1.4.3
                                                     tools_4.2.1
#> [7] backports_1.4.1
                            utf8\_1.2.2
                                                     R6_2.5.1
#> [10] DBI_1.1.3
                              colorspace_2.0-3
                                                     withr_2.5.0
#> [13] tidyselect_1.1.2
                                                     compiler_4.2.1
                              bit_4.0.4
#> [16] cli_3.3.0
                            rvest\_1.0.2
                                                     xml2_1.3.3
#> [19] DelayedArray_0.22.0 labeling_0.4.2
                                                    digest 0.6.29
#> [22] rmarkdown_2.14
                         XVector\_0.36.0
                                                  pkgconfig_2.0.3
```

```
#> [25] htmltools_0.5.3
                               dbplyr_2.2.1
                                                       fastmap_1.1.0
#> [28] highr_0.9
                                                       readxl_1.4.0
                               rlang_1.0.4
                               rstudioapi\_0.13
#> [31] RSQLite_2.2.15
                                                       farver_2.1.1
#> [34] generics_0.1.3
                               jsonlite_1.8.0
                                                       BiocParallel\_1.30.3
                                                       RCurl_1.98-1.8
#> [37] vroom_1.5.7
                               googlesheets4_1.0.0
#> [40] magrittr_2.0.3
                               GenomeInfoDbData_1.2.8 Matrix_1.4-1
#> [43] Rcpp_1.0.9
                               munsell_0.5.0
                                                       fansi_1.0.3
#> [46] lifecycle_1.0.1
                               stringi 1.7.8
                                                       yaml 2.3.5
#> [49] zlibbioc_1.42.0
                                                       grid_4.2.1
                               blob_1.2.3
#> [52] parallel_4.2.1
                               crayon_1.5.1
                                                       lattice\_0.20-45
#> [55] splines_4.2.1
                               Biostrings_2.64.0
                                                       haven_2.5.0
#> [58] annotate_1.74.0
                               KEGGREST_1.36.3
                                                       hms_1.1.1
#> [61] locfit_1.5-9.6
                               pillar_1.8.0
                                                       geneplotter_1.74.0
#> [64] codetools_0.2-18
                               XML_3.99-0.10
                                                       reprex_2.0.1
#> [67] qlue_1.6.2
                               evaluate_0.15
                                                       modelr_0.1.8
#> [70] png_0.1-7
                               vctrs_0.4.1
                                                       tzdb\_0.3.0
#> [73] cellranger_1.1.0
                               gtable_0.3.0
                                                       assertthat\_0.2.1
#> [76] cachem_1.0.6
                               xfun_0.31
                                                       xtable_1.8-4
                               survival_3.3-1
                                                       googledrive_2.0.0
#> [79] broom_1.0.0
#> [82] gargle_1.2.0
                               memoise\_2.0.1
                                                       AnnotationDbi\_1.58.0
#> [85] ellipsis_0.3.2
```