An Introduction to Radio Interferometry

1-3 Energy flux density

How can we observe? (again)

NSYSU EMI Online Lecture Series Hauyu Baobab Liu (呂浩宇),
Department of Physics

When the electromagnetic wave passes through a charged particle (e.g., electron or other ions), the charged particle is moved due to the Lorentz force (electromagnetic force).

The capability of moving a charged particle (i.e., doing work) means there is energy stored in the form of electric and magnetic field energy, which is propagated along with the EM waves.

EM waves propagate a certain amount of energy in the direction of $\vec{E} \times \vec{B}$, where \vec{E} and \vec{B} are the electric and magnetic field components of the propagating wave, respectively.

Energy Conservation

Current density

Power in a unit volume
$$\vec{J} \cdot \vec{E} \sim \frac{dQ}{dA} / dt E \sim \frac{1}{dAds} [(EdQ) \frac{ds}{dt}]$$

Work in a unit of time Volume

With the help of Maxwell's equations, we can re-expresss work in the following conservation law:

Locally, the change of energy density is balanced by the energy transportation and work.

Energy density $\frac{\partial u}{\partial t} + \nabla \cdot \vec{S} = -\vec{J} \cdot \vec{E}$ Poynting vector $\vec{S} = \vec{E} \times \vec{H}$, $\vec{H} = \frac{\vec{B}}{\mu}$, where μ is the permeability

NSYSU EMI Online Lecture Series Hauyu Baobab Liu (呂浩宇),
Department of Physics

Energy in Electric Field

Electric potential at location
$$\overrightarrow{x_i}$$
:

$$\Phi(\overrightarrow{x_i}) = \frac{1}{4\pi\epsilon_0} \sum_{j} \frac{q_j}{|\overrightarrow{x_j} - \overrightarrow{x_i}|}$$

Electric field:
$$\vec{E} = -\nabla \Phi$$

Energy in Electric Field

(Discrete charges)

Electric potential at location
$$\overrightarrow{x_i}$$
: $\Phi(\overrightarrow{x_i}) = \frac{1}{4\pi\epsilon_0} \sum_j \frac{q_j}{\left|\overrightarrow{x_j} - \overrightarrow{x_i}\right|}$

Electric field:

$$\vec{E} = -\nabla \Phi$$

Electric potential energy of charge
$$\overrightarrow{q_i}$$
: $W_i = q_i \Phi(\overrightarrow{x_i}) = \frac{q_i}{4\pi\epsilon_0} \sum_{j \neq i} \frac{q_j}{|\overrightarrow{x_i} - \overrightarrow{x_j}|}$

Total electric potential energy :
$$W = \frac{1}{2} \sum_{i} \sum_{j} \frac{1}{4\pi\epsilon_0} \frac{q_i q_j}{\left|\overrightarrow{x_i} - \overrightarrow{x_j}\right|}$$

Energy in Electric Field (Continuous charges)

Electric field:
$$\vec{E} = -\nabla \Phi$$

Total electric potential energy :
$$W = \frac{1}{2} \int \rho(\vec{x}) \Phi(\vec{x}) d^3x = \frac{1}{2} \frac{1}{4\pi\epsilon_0} \int \int \rho(\vec{x}) \frac{\rho(\overrightarrow{x'})}{|\vec{x} - \overrightarrow{x'}|} d^3x d^3x'$$

Energy in Electric Field

(Continuous charges)

Electric field:
$$\vec{E} = -\nabla \Phi$$

Total electric potential energy :
$$W = \frac{1}{2} \int \rho(\vec{x}) \Phi(\vec{x}) d^3x = \frac{1}{2} \frac{1}{4\pi\epsilon_0} \int \int \rho(\vec{x}) \frac{\rho(\vec{x}')}{|\vec{x} - \vec{x}'|} d^3x d^3x'$$

$$= \frac{1}{2} \frac{1}{4\pi\epsilon_0} \int \int \rho(\vec{x}) \frac{\rho(\vec{x}')}{|\vec{x} - \vec{x}'|} d^3x d^3x'$$
Gauss law: $\nabla \cdot \vec{E} = \frac{\rho}{\epsilon_0}$

Energy in Electric Field (Continuous charges)

Electric field:
$$\vec{E} = -\nabla \Phi$$

Total electric potential energy :
$$W = \frac{1}{2} \int \rho(\vec{x}) \Phi(\vec{x}) d^3x = \frac{\epsilon_0}{2} \int (\nabla \cdot \vec{E}) \Phi(\vec{x}) d^3x$$
 Gauss law:
$$\nabla \cdot \vec{E} = \frac{\rho}{\epsilon_0}$$

NSYSU EMI Online Lecture Series Hauyu Baobab Liu (呂浩宇), Department of Physics

Energy in Electric Field

(Continuous charges)

Total electric potential energy :
$$W = \frac{1}{2} \int \rho(\vec{x}) \Phi(\vec{x}) d^3x = \frac{\epsilon_0}{2} \int (\nabla \cdot \vec{E}) \Phi(\vec{x}) d^3x$$
 Integration by part
$$= \frac{\epsilon_0}{2} \int \vec{E} \cdot (-\nabla \Phi(\vec{x})) d^3x = \frac{\epsilon_0}{2} \int |E|^2 d^3x$$

Energy in Electric Field

(Continuous charges)

Electric field:
$$\vec{E} = -\nabla \Phi$$

Total electric potential energy :
$$W_E = \frac{1}{2} \int \rho(\vec{x}) \Phi(\vec{x}) d^3x = \frac{\epsilon_0}{2} \int (\nabla \cdot \vec{E}) \Phi(\vec{x}) d^3x$$

Integration by part
$$= \frac{\epsilon_0}{2} \int \vec{E} \cdot (-\nabla \Phi(\vec{x})) d^3 x = \frac{\epsilon_0}{2} \int |E|^2 d^3 x$$

From the symmetry of Maxwell's equations we expect magnetic field energy to have a similar form $W_B = \frac{1}{2\mu_0} \int |B|^2 d^3x$

Energy in Electric Field

(Continuous charges)

Electric field:
$$\vec{E} = -\nabla \Phi$$

Total electric potential energy :
$$W_E = \frac{1}{2} \int \rho(\vec{x}) \Phi(\vec{x}) d^3x = \frac{\epsilon_0}{2} \int (\nabla \cdot \vec{E}) \Phi(\vec{x}) d^3x$$

Integration by part
$$= \frac{\epsilon_0}{2} \int \vec{E} \cdot (-\nabla \Phi(\vec{x})) d^3 x = \frac{\epsilon_0}{2} \int |E|^2 d^3 x$$

In EM wave

 $W_B = \frac{1}{2\mu_0} \int |B|^2 d^3x$ $\frac{E_m}{B_m} = \frac{1}{\mu_0 \epsilon_0 c}$ From the symmetry of Maxwell's equations we expect magnetic field energy to have a similar form

$$\frac{E_m}{B_m} = \frac{1}{\mu_0 \epsilon_0 \alpha}$$

Flux density

Energy is proportional to the square of electric or magnetic field strength.

The energy flux density, which is the amount of energy passing a unit area in a unit of frequency and time, Is also proportional to the square of electric and/or magnetic field strength.

Electric field:
$$\vec{E} = -\nabla \Phi$$

Total electric potential energy :
$$W_E = \frac{1}{2} \int \rho(\vec{x}) \Phi(\vec{x}) d^3x = \frac{\epsilon_0}{2} \int (\nabla \cdot \vec{E}) \Phi(\vec{x}) d^3x$$

$$= \frac{\epsilon_0}{2} \int \vec{E} \cdot (-\nabla \Phi(\vec{x})) d^3 x = \frac{\epsilon_0}{2} \int |E|^2 d^3 x$$

In EM wave

From the symmetry of Maxwell's equations we expect magnetic field energy to have a similar form

$$W_B = \frac{1}{2\mu_0} \int |B|^2 d^3x \qquad \frac{E_m}{B_m} = \frac{1}{\mu_0 \epsilon_0 c}$$

$$\frac{E_m}{B_m} = \frac{1}{\mu_0 \epsilon_0 c}$$

Flux density

Energy is proportional to the square of electric or magnetic field strength.

The **energy flux density**, which is the <u>amount of energy passing a unit area in a unit of frequency and time</u>, Is also proportional to the **square of electric and/or magnetic field strength**.

Flux density F_{ν} :

SI unit: Joul s⁻¹ m⁻² Hz⁻¹ = W m⁻² Hz⁻¹
Often used in astronomical studies: 1 Jy = 10^{-26} W m⁻² Hz⁻¹

Jansky (the name of the first radio astronomer, Karl Jansky)

Flux density

(Illustrated, transportation of stational electric field)

$$W_E = \frac{\epsilon_0}{2} \int |E|^2 d^3x$$

$$\Delta t = \frac{\Delta \ell}{c}$$

Initial total energy in box 1 $\sim \frac{\epsilon_0}{2} E^2 A \Delta \ell \equiv W$

Flux density:
$$\frac{W}{A\Delta t} = \frac{cW}{A\Delta \ell} = \frac{1}{2} \epsilon_0 c E^2 = \frac{1}{2} \sqrt{\frac{\epsilon_0}{\mu_0}} |E|^2$$

Flux density in plane EM Wave

Monochromatic plane wave
$$\begin{cases} E = E_m \sin(kx - \omega t) \\ B = B_m \sin(kx - \omega t) \end{cases} c = \frac{\omega}{k} = \frac{1}{\sqrt{\mu_0 \epsilon_0}}$$

$$\frac{E_m}{B_m} = \frac{1}{\mu_0 \epsilon_0 c}$$

(time-averaged) Flux density (i.e., time-averaged amplitude of Poynting vector):

$$F = \frac{1}{2} \sqrt{\frac{\epsilon_0}{\mu_0}} |E_m|^2$$

Photons

Max Born's hypothesis

- 1. A photon has energy $h\nu$, and a photon is indivisible.
- 2. A single photon may be described by the one-photon electric field $\vec{e}(\vec{r},t)$. The probability of this photon to be found at location \vec{r} and time t is proportional to $[\vec{e}(\vec{r},t)]^2 d^3 \vec{r}$. $\vec{e}(\vec{r},t)$ satisfies a linear equation of motion.
- 3. When many photons are involved, the individual one-photon fields somehow combine to create the classical electric field \vec{E} .

(time-averaged) number of incoming photons in a unit of time and area (monochromatic wave):

$$F/h\nu = \frac{1}{2h\nu} \sqrt{\frac{\epsilon_0}{\mu_0}} |E_m|^2$$

Photons

Max Born's hypothesis

- 1. A photon has energy $h\nu$, and a photon is indivisible.
- 2. A single photon may be described by the one-photon electric field $\vec{e}(\vec{r},t)$. The probability of this photon to be found at location \vec{r} and time t is proportional to $[\vec{e}(\vec{r},t)]^2 d^3 \vec{r}$. $\vec{e}(\vec{r},t)$ satisfies a linear equation of motion.
- 3. When many photons are involved, the individual one-photon fields somehow combine to create the classical electric field \vec{E} .

(time-averaged) number of incoming photons in a unit of time and area (monochromatic wave):

1. The (plane) EM waves have a sinusoidal form: $E = E_m \sin(kx - \omega t)$ $B = B_m \sin(kx - \omega t)$ EM wave can transports energy. $\frac{E_m}{B_m} = \frac{1}{\mu_0 \epsilon_0 c}$

2. The time-averaged flux density (energy in a unit time, unit area, and unit

frequency) is
$$F = \frac{1}{2} \sqrt{\frac{\epsilon_0}{\mu_0}} |E_m|^2$$