Predicting the Level of Interest of a Rental Listing

Dane Noland

DS-SEA-06

The Company

RentHop

 Web and Mobile-based search engine that allows users to search for apartments in major cities

The Problem

Finding the right rental is difficult in a city

- Sometimes there are thousands of options to choose from
- Sometimes are there's little to no options
- Can you find the right setup (# bathrooms, # bedrooms)?

Listing a rental can be difficult

- Sometimes there are thousands of rentals to compete with
- Loss of income with empty units
- How can you make your listing "POP"

The Question

Can we predict the level of interest a rental posting will have?

 If we can predict how popular a rental will be, we can look at key items/attributes that draw renters in

The Data

Kaggle

- Data was obtained from a Kaggle Competition online and downloaded from their website
- Data was in JSON format, there were two (2) files
 - 1. Train.json model building data
 - 2. Test.json model testing data

The Data - Test.JSON

- bathrooms
- bedrooms
- building_id
- created
- description
- display_address
- features
- latitude
- listing_id
- longitude
- manager_id
- photos
- price
- interest_level

The Data - Test.JSON

Interest_level....that's the ticket!

- Defined: # of inquiries a listing has during the life of the post
- Categories: Low, Medium, High

How can we predict interest level?

This data set has 49,352 entries!

Key Findings

- Neighborhood/Location is important
 - Longitude and Latitude must be analyzed together
- Hour of Posting is important
 - Postings between 0200 0600 have greatest potential for interest
- Number of photos
 - Posting with 3 6 photos had most interest

Building a Model - KNN

KNN

- Can Use Latitude and Longitude together to predict interest level
- Define interest level as a numerical classification
 - Low = 0
 - Med = 1
 - High = 2

Building a Model - KNN

```
#STEP la: define X and y
X=pd.concat([train data['latitude'],train data['longitude']],axis=1)
y=train data['interest']
# STEP 1b: split X and y into training and testing sets (using random state for reproducibility)
from sklearn.model selection import train test split
import scipy as sp
X train, X test, y train, y test = train test split(X, y, random state=99)
#STEP 2: Choose and import the estimator
from sklearn.neighbors import KNeighborsClassifier
#STEP 3: Instantiate into a variable
# instantiate the estimator with K=68
knn = KNeighborsClassifier(n neighbors=68)
#STEP 4: Fit model
knn.fit(X train, y train)
# STEP 5: test the model on the testing set
y pred class = knn.predict(X test)
#STEP 6: Calculate the accuracy using the testing set predictions
print 'Testing Accuracy =', metrics.accuracy score(y test, y pred class)
# compute null accuracy
print 'Null Accuracy =' , y test.value counts().head(1) / len(y test)
Testing Accuracy = 0.701977630086
Null Accuracy = 0 	 0.699384
```

Name: interest, dtype: float64

Building a Model - KNN

min(zip(testing_error_rate, k_range))
(0.29802236991408659, 68)

Building a Model - Logistic Regression

LogReg

- Can use hour, photos, location, price, to predict interest level
- Define interest level as a numerical classification
 - Low = 0
 - Med = 1
 - High = 2

Building a Model - Logistic Regression

```
#STEP 1a: define X and y
feature_cols = ['hour', 'price', 'photos_number', 'latitude', 'longitude']
X = train data[feature cols]
y = train data.interest
# STEP 1b: split X and y into training and testing sets
from sklearn.cross validation import train test split
X train, X test, y train, y test = train test split(X, y, random state=99)
#STEP 2: Choose and import the estimator
from sklearn.linear model import LogisticRegression
#STEP 3: Instantiate into a variable
logreg = LogisticRegression(C=1e9)
#STEP 4: Fit model
logreg.fit(X train, y train)
# STEP 5: test the model on the testing set
y pred class = logreg.predict(X test)
#STEP 6: Calculate the accuracy using the testing set predictions
# compute testing accuracy
print 'Testing Accuracy =', metrics.accuracy score(y test, y pred class)
# compute null accuracy
print 'Null Accuracy =' , y test.value counts().head(1) / len(y test)
Testing Accuracy = 0.699465067272
Null Accuracy = 0 	 0.699384
Name: interest, dtype: float64
```

Building a Model -Ensembling

```
from sklearn.ensemble import VotingClassifier
from sklearn import model selection
# create the sub models
estimators = []
model1 = logreg
estimators.append(('logistic', model1))
model2 = knn
estimators.append(('KNN', model2))
# create the ensemble model
ensemble = VotingClassifier(estimators)
results = model selection.cross val score(ensemble, train data[feature cols], y, cv=99)
print 'Testing Accuracy =', metrics.accuracy score(y test, y pred class)
# compute null accuracy
print 'Null Accuracy =' , y test.value counts().head(1) / len(y test)
Testing Accuracy = 0.701977630086
Null Accuracy = 0 	 0.699384
```

Name: interest, dtype: float64

Building a Model - Comparison

Accuracy

Overall, how often the classifier is correct

Null Accuracy

 How often you would be correct if you predicted the majority class (low interest)

Conclusions

- KNN was the best predictor of interest
- Logistic Regression had no difference between accuracy and null accuracy
- Ensembling results were the same as KNN results.
 - Indicates accuracy is dependent on KNN
 - Much slower process, KNN is best estimator

Conclusions

- As a potential landlord, how can you increase interest levels (location not included)
 - Post in the morning
 - Posting early makes your show up during searches
 - Sweet Spot: 0200 0600
 - Post in the middle of the week
 - Most people search during work or during the workweek
 - Sweet Spot: Tuesday Thursday
 - Have photos, but not too much
 - Sweet Spot: 4 to 6 photos

QUESTIONS?