Universität Salzburg Florian Graf

Machine Learning

Übungsblatt 1 24 Punkte

Aufgabe 1. Beispiel: Würfel

4 P.

- (a) Gegeben sei ein 6-seitiger Würfel. Bestimmen Sie den Erwartungswert der gewürfelten Augenzahl unter der Annahme, dass jede Seite gleich wahrscheinlich gewürfelt wird.
- (b) Ein anderer Würfel ist möglicherweise gezinkt. Geben Sie ein Verfahren an, um den Erwartungswert experimentell zu bestimmen.

Aufgabe 2. Beispiel: Stetige Verteilung

6 P.

Gegeben sei eine Zufallsvariable X mit Dichtefunktion

$$f: [-2,2] \to [0,\infty), \quad x \mapsto \frac{3x^2}{16}$$
.

- (a) Bestimmen Sie die Wahrscheinlichkeit $\mathbb{P}[X \in (-1,1)]$.
- (b) Geben sie die kumulative Verteilungsfunktion von X an.
- (c) Berechnen Sie den Erwartungswert $\mathbb{E}[X]$.

Aufgabe 3. Eigenschaften von Erwartungswert und Varianz

6 P.

In der folgenden Aufgabe sei X eine diskrete oder stetige Zufallsvariable. Es genügt, wenn Sie einen der beiden Fälle betrachten.

(a) Es seien $a, b \in \mathbb{R}$ und Y = aX + b. Folgern Sie direkt aus der Definition des Erwartungswerts dass $a\mathbb{E}[X] + b = \mathbb{E}[Y]$.

Hinweis: Y ist eine Zufallsvariable mit Ereignismenge $\mathcal{Y} = \{ax + b : x \in \mathcal{X}\}$, wobei \mathcal{X} die Ereignismenge von X ist.

- (b) Die Varianz von X is definiert als $\mathbb{V}[x] = \mathbb{E}[(X \mathbb{E}[X])^2]$. Zeigen Sie mithilfe von Teil (a) dass $\mathbb{V}[aX + b] = a^2 \mathbb{V}[X]$.
- (c) Zeigen Sie dass $\mathbb{V}[X] = \mathbb{E}[X^2] \mathbb{E}[X]^2$.

Aufgabe 4. Normalverteilung

8 P.

Es sei $X \sim \mathcal{N}(0,1)$ eine standard normalverteilte Zufallsvariable, d.h., X hat die Wahrscheinlichkeitsdichte $f(x) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{x^2}{2})$ wobei $x \in \mathbb{R}$.

- (a) Zeichnen Sie den Funktionsgraphen der Wahrscheinlichkeitsdichte in ein Koordinatensystem ein.
- (b) Berechnen Sie den Erwartungswert von X.
- (c) Berechnen Sie die Varianz von X.

Hinweis. Der Erwartungswert einer Zufallsvariable $\phi(X)$ ist gegeben durch $\int_{-\infty}^{\infty} \phi(x) f(x) dx$. Um $\mathbb{E}[X^2]$ zu bestimmen, integrieren Sie beide Seiten der Gleichung $\frac{d(xf(x))}{x} = f(x) + x \frac{df(x)}{dx}$

Wir schreiben $Y \sim \mathcal{N}(\mu, \sigma^2)$ falls $Y = \sigma X + \mu$ wobei $\mu \in \mathbb{R}, \sigma > 0$ und $X \sim \mathcal{N}(0, 1)$.

- (d) Geben Sie den Erwartungswert und die Varianz von Y an.
- (e) Bestimmen Sie die Wahrscheinlichkeitsdichte von Y, d.h., finden Sie eine Funktion g, so dass für alle $t \in \mathbb{R}$ gilt $\mathbb{P}[Y < t] = \int_{-\infty}^{t} g(y) dy$.

Hinweis: Drücken Sie die Wahrscheinlichkeit $\mathbb{P}[Y < t]$ zunächst durch die Dichte f der Zufallsvariable X aus. Transformieren Sie dieses Integral dann durch eine Variablensubstitution.