

信息安全数学基础

一 同余(1)

信数课题组

北京邮电大学

上次课回顾

目录

- 同余的概念及基本性质
 - 同余的概念
 - 同余的基本性质
- ② 剩余类
 - 剩余及剩余类
 - 完全剩余系

目录

- 同余的概念及基本性质
 - 同余的概念
 - 同余的基本性质
- 2 剩余类
 - 剩余及剩余类
 - 完全剩余系

给定一个正整数 m, 设 a,b 是两个整数. 若 a-b 被 m 整除, 或 $m \mid a-b$, 则称 a,b 模 m 同余, 记作 $a \equiv b \mod m$. 否则, 称 a,b 模 m 不同余, 记作 $a \not\equiv b \mod m$.

给定一个正整数 m, 设 a,b 是两个整数. 若 a-b 被 m 整除, 或 $m \mid a-b$, 则称 a,b 模 m 同余, 记作 $a \equiv b \mod m$. 否则, 称 a,b 模 m 不同余, 记作 $a \not\equiv b \mod m$.

注 1: 同余是数论中的一个十分重要的概念, 也常常出现于日常生活中. 同余理论在密码学, 特别是公钥密码学中有着非常重要的应用.

给定一个正整数 m, 设 a,b 是两个整数. 若 a-b 被 m 整除, 或 $m \mid a-b$, 则称 a,b 模 m 同余, 记作 $a \equiv b \mod m$. 否则, 称 a,b 模 m 不同余, 记作 $a \not\equiv b \mod m$.

注 1: 同余是数论中的一个十分重要的概念, 也常常出现于日常生活中. 同余理论在密码学, 特别是公钥密码学中有着非常重要的应用.

注: 最先引用同余概念与 ≡ 符号者是 Gauss (高斯).

给定一个正整数 m, 设 a,b 是两个整数. 若 a-b 被 m 整除, 或 $m \mid a-b$, 则称 a,b 模 m 同余, 记作 $a \equiv b \mod m$. 否则, 称 a,b 模 m 不同余, 记作 $a \not\equiv b \mod m$.

注 1: 同余是数论中的一个十分重要的概念, 也常常出现于日常生活中. 同余理论在密码学, 特别是公钥密码学中有着非常重要的应用.

注: 最先引用同余概念与 ≡ 符号者是 Gauss (高斯).

约翰・卡尔・弗里德里希・高斯

(Johann Carl Friedrich Gauss, 1777.4.30 — 1855.2.23) 德国数学家、物理学家、天文学家、大地测量学家,近代数学奠基者之一. 17 岁发现了素数分布定理和最小二乘法,成功得到后人熟知的正态分布 (高斯分布). 次年,证明出仅用尺规便可以构造出 17 边形. 在著作《算术研究》中,证明了二次互反律,成为数论继续发展的重要基础. 因其卓越的数学成就,被认为是世界上最重要的数学家之一,并享有"数学王子"的美誉.

例 2.1.1 (1) $100 \equiv 2 \mod 7$, 因为 $7 \mid 100 - 2$.

(2) $1000 \equiv -1 \mod 7 \not\equiv 10000 \equiv 4 \mod 7$.

- 例 2.1.1 (1) $100 \equiv 2 \mod 7$, 因为 $7 \mid 100 2$.
 - (2) $1000 \equiv -1 \mod 7 \pmod{10000} \equiv 4 \mod 7$.

如何判断两个整数 a,b 模 m 同余呢?

定理 2.1.1

设 m 是一个正整数, a, b 是两个整数, 则 $a \equiv b \mod m$ 的充要条件是存在一个整数 k 使得 $a = b + k \cdot m$.

- 例 2.1.1 (1) $100 \equiv 2 \mod 7$, 因为 $7 \mid 100 2$.
 - (2) $1000 \equiv -1 \mod 7 \pmod{10000} \equiv 4 \mod 7$.

如何判断两个整数 a,b 模 m 同余呢?

定理 2.1.1

设 m 是一个正整数, a, b 是两个整数, 则 $a \equiv b \mod m$ 的充要条件是存在一个整数 k 使得 $a = b + k \cdot m$.

证: 如果 $a \equiv b \mod m$, 根据同余的定义有 $m \mid a - b$. 又根据整除的定义, 存在一个整数 k 使得 $a - b = k \cdot m$, 即 $a = b + k \cdot m$.

反过来, 如果存在一个整数 k 使得 $a = b + k \cdot m$, 则有 $a - b = k \cdot m$. 根据整除的定义有, $m \mid a - b$. 再根据同余的定义知, $a \equiv b \mod m$.

- 例 2.1.1 (1) $100 \equiv 2 \mod 7$, 因为 $7 \mid 100 2$.
 - (2) $1000 \equiv -1 \mod 7 \pmod{10000} \equiv 4 \mod 7$.

如何判断两个整数 a,b 模 m 同余呢?

定理 2.1.1

设 m 是一个正整数, a, b 是两个整数, 则 $a \equiv b \mod m$ 的充要条件是存在一个整数 k 使得 $a = b + k \cdot m$.

证: 如果 $a \equiv b \mod m$, 根据同余的定义有 $m \mid a - b$. 又根据整除的定义, 存在一个整数 k 使得 $a - b = k \cdot m$, 即 $a = b + k \cdot m$.

反过来, 如果存在一个整数 k 使得 $a = b + k \cdot m$, 则有 $a - b = k \cdot m$. 根据整除的定义有, $m \mid a - b$. 再根据同余的定义知, $a \equiv b \mod m$.

例 2.1.2 我们有 $2024 \equiv 1 \mod 7$, 因为 $2024 = 289 \cdot 7 + 1$.

←□ → ←□ → ← = → ← = → へ ○

定理 2.1.2

设 m 是一个正整数, 则整数 $a \equiv b \mod m$ 的充要条件是 a, b 被 m 除的余数相同.

定理 2.1.2

设 m 是一个正整数, 则整数 $a \equiv b \mod m$ 的充要条件是 a, b m 除的余数相同.

证:根据欧几里德除法,分别存在整数 q,r 和 q',r' 使得

$$a = q \cdot m + r, 0 \le r < m; \ b = q' \cdot m + r', 0 \le r' < m.$$

两式相减, 得到 $a - b = (q - q') \cdot m + (r - r')$,

或者
$$(r-r') = (a-b) - (q-q') \cdot m.$$

因此, $m \mid a - b$ 的充要条件是 $m \mid r - r'$.

但因为 $0 \le |r - r'| < m$, 则 $m \mid r - r'$ 的充要条件是 r - r' = 0,

所以 $m \mid a - b$ 的充要条件是 r - r' = 0.

定理 2.1.2

设 m 是一个正整数, 则整数 $a \equiv b \mod m$ 的充要条件是 a, b m 除的余数相同.

证:根据欧几里德除法,分别存在整数 q,r 和 q',r' 使得

$$a = q \cdot m + r, 0 \le r < m; \ b = q' \cdot m + r', 0 \le r' < m.$$

两式相减, 得到 $a - b = (q - q') \cdot m + (r - r')$,

或者
$$(r-r') = (a-b) - (q-q') \cdot m.$$

因此, $m \mid a - b$ 的充要条件是 $m \mid r - r'$.

但因为 $0 \le |r - r'| < m$, 则 $m \mid r - r'$ 的充要条件是 r - r' = 0,

所以 $m \mid a - b$ 的充要条件是 r - r' = 0.

例 2.1.3 $2024 \equiv 1485 \mod 7$,

因为 $2024 = 289 \cdot 7 + 1$, $1485 = 212 \cdot 7 + 1$.

表 2.1 英文字母和模 26 的剩余之间的对应关系.

a	b	c	d	е	f	g	h	i	j	k	l	m
0	1	2	3	4	5	6	7	8	9	10	11	12
n	О	p	q	r	S	t	u	v	w	X	у	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

表 2.1 英文字母和模 26 的剩余之间的对应关系.

a	b	c	d	e	f	g	h	i	j	k	1	m
0	1	2	3	4	5	6	7	8	9	10	11	12
n	О	p	q	r	S	t	u	v	w	X	у	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

1) 移位密码:

将每个字母对应的数字后移若干位作为密文字母对应的数字. 如凯撒 (Caesar) 密码, 将每个字母后移 3 位, 便可以将

thiscryptosystemisnotsecure 加密后为 wklvfubswrvbvwhplvqrwvhfxuh.

这相当于把每个字母对应的数字加 3 后取模数 26, 再将所有的余数对应回对应的字母. 用公式表达为 $E \equiv P+3 \mod 26$, 其中 P 为明文字母对应的数字. E 为密文字母对应的数字.

表 2.1 英文字母和模 26 的剩余之间的对应关系.

a	b	c	d	e	f	g	h	i	j	k	l	m
0	1	2	3	4	5	6	7	8	9	10	11	12
n	О	p	q	r	S	t	u	v	w	X	у	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

2) 仿射密码:

将每个字母对应的数字乘以 k 后再加 b 作为密文字母对应的数字. 如当 k=7, b=6 时,便可以将 thiscryptosystemisnotsecure 加密后为 jdkcuvshjacscjimkctajciuqvi.

这相当于把字母把每个字母对应的数字乘以 7 后加 6 并取模数 26, 再将所得的余数对应回字母.

目录

- 🕕 同余的概念及基本性质
 - 同余的概念
 - 同余的基本性质
- 2 剩余类
 - 剩余及剩余类
 - 完全剩余系

设 m 是一个正整数, 则模 m 同余是等价关系, 即

- (1) (自反性) 对任意整数 a, 有 $a \equiv a \mod m$.
- (2) (对称性) 若 $a \equiv b \mod m$, 则 $b \equiv a \mod m$.
- (3) (传递性) 若 $a \equiv b \mod m$, $b \equiv c \mod m$, 则 $a \equiv c \mod m$.

设 m 是一个正整数, 则模 m 同余是等价关系, 即

- (1) (自反性) 对任意整数 a, 有 $a \equiv a \mod m$.
- (2) (对称性) 若 $a \equiv b \mod m$, 则 $b \equiv a \mod m$.
- (3) (传递性) 若 $a \equiv b \mod m$, $b \equiv c \mod m$, 则 $a \equiv c \mod m$.

证: (1) (自反性) 对任意整数 a, 有 $a = a + 0 \cdot m$, 所以 $a \equiv a \mod m$.

设 m 是一个正整数, 则模 m 同余是等价关系, 即

- (1) (自反性) 对任意整数 a, 有 $a \equiv a \mod m$.
- (2) (对称性) 若 $a \equiv b \mod m$, 则 $b \equiv a \mod m$.
- (3) (传递性) 若 $a \equiv b \mod m$, $b \equiv c \mod m$, 则 $a \equiv c \mod m$.

证: (1) (自反性) 对任意整数 a, 有 $a = a + 0 \cdot m$, 所以 $a \equiv a \mod m$.

(2) (对称性) 若 $a \equiv b \mod m$, 则存在整数 k 使得 $a = b + k \cdot m$, 从而有 $b = a + (-k) \cdot m$. 因此, $b \equiv a \mod m$.

设 m 是一个正整数, 则模 m 同余是等价关系, 即

- (1) (自反性) 对任意整数 a, 有 $a \equiv a \mod m$.
- (2) (对称性) 若 $a \equiv b \mod m$, 则 $b \equiv a \mod m$.
- (3) (传递性) 若 $a \equiv b \mod m$, $b \equiv c \mod m$, 则 $a \equiv c \mod m$.
- 证: (1) (自反性) 对任意整数 a, 有 $a = a + 0 \cdot m$, 所以 $a \equiv a \mod m$.
- (2) (对称性) 若 $a \equiv b \mod m$, 则存在整数 k 使得 $a = b + k \cdot m$, 从而有 $b = a + (-k) \cdot m$. 因此, $b \equiv a \mod m$.
- (3) (传递性) 若 $a \equiv b \mod m$, $b \equiv c \mod m$, 则分别存在整数 k_1, k_2 使得 $a = b + k_1 \cdot m$, $b = c + k_2 \cdot m$, 从而 $a = c + (k_1 + k_2) \cdot m$. 因为 $k_1 + k_2$ 是整数, 所以 $a \equiv c \mod m$.

设m是一个正整数,设 a_1,a_2,b_1,b_2 是四个整数,如果

 $a_1 \equiv b_1 \mod m, \ a_2 \equiv b_2 \mod m, \ \mathbb{N}$

- (i) $a_1 + a_2 \equiv b_1 + b_2 \mod m$.
- (ii) $a_1 \cdot a_2 \equiv b_1 \cdot b_2 \mod m$.

设 m 是一个正整数, 设 a_1, a_2, b_1, b_2 是四个整数, 如果

 $a_1 \equiv b_1 \mod m, \ a_2 \equiv b_2 \mod m, \ \mathbb{N}$

- (i) $a_1 + a_2 \equiv b_1 + b_2 \mod m$.
- (ii) $a_1 \cdot a_2 \equiv b_1 \cdot b_2 \mod m$.

证: 依题设, 根据定理 2.1.1, 分别存在整数 k_1, k_2 使得 $a_1 = b_1 + k_1 \cdot m$, $a_2 = b_2 + k_2 \cdot m$, 从而

$$a_1 + a_2 = b_1 + b_2 + (k_1 + k_2) \cdot m,$$

$$a_1 \cdot a_2 = b_1 \cdot b_2 + (k_1 \cdot m) \cdot b_2 + b_1 \cdot (k_2 \cdot m) + (k_1 \cdot m)(k_2 \cdot m)$$

$$= b_1 \cdot b_2 + (k_1 \cdot b_2 + b_1 \cdot k_2 + k_1 \cdot k_2 \cdot m) \cdot m.$$

因为 $k_1 + k_2, k_1 \cdot b_2 + b_1 \cdot k_2 + k_1 \cdot k_2 \cdot m$ 都是整数, 所以根据定理 2.1.1 知, $a_1 + a_2 \equiv b_1 + b_2 \mod m$, $a_1 \cdot a_2 \equiv b_1 \cdot b_2 \mod m$.

例 2.1.5 因为 2024 = 1485 mod 7, 1485 = 715 mod 7, 所以 2024 = 715 mod 7.

传递性

同时, 我们有

 $2024 \equiv 2024 \mod 7, 1485 \equiv 1485 \mod 7, 715 \equiv 715 \mod 7.$ 自反性以及

 $1485 \equiv 2024 \mod 7, 715 \equiv 1485 \mod 7.$

对称性

例 2.1.5 因为 2024 = 1485 mod 7, 1485 = 715 mod 7, 所以 2024 = 715 mod 7.

传递性

同时, 我们有

 $2024 \equiv 2024 \mod 7, 1485 \equiv 1485 \mod 7, 715 \equiv 715 \mod 7.$ 自反性以及

 $1485 \equiv 2024 \mod 7, 715 \equiv 1485 \mod 7.$

对称性

例
$$2.1.6$$
 已知 $2024 \equiv 1 \mod 7$, $1000 \equiv -1 \mod 7$, 所以 $3024 = 2024 + 1000 \equiv 1 + (-1) \equiv 0 \mod 7$, $1024 = 2024 - 1000 \equiv 1 - (-1) \equiv 2 \mod 7$, $2024000 = 2024 \cdot 1000 \equiv 1 \cdot (-1) \equiv -1 \mod 7$, $4096576 = 2024^2 \equiv 1^2 \equiv 1 \mod 7$, $1000000 = 1000^2 \equiv (-1)^2 \equiv 1 \mod 7$.

◆ロト ◆園 > ◆夏 > ◆夏 > 夏 のQで

解: 因为 $2^1 \equiv 2 \mod 7, 2^2 \equiv 4 \mod 7, 2^3 = 8 \equiv 1 \mod 7,$

又 $2024 = 674 \cdot 3 + 2$, 所以

$$2^{2024} = (2^3)^{674} \cdot 2^2 \equiv 1 \cdot 4 \equiv 4 \mod 7.$$

故 2²⁰²⁴ 天后是星期四.

解: 因为 $2^1 \equiv 2 \mod 7, 2^2 \equiv 4 \mod 7, 2^3 = 8 \equiv 1 \mod 7,$

又 $2024 = 674 \cdot 3 + 2$, 所以

$$2^{2024} = (2^3)^{674} \cdot 2^2 \equiv 1 \cdot 4 \equiv 4 \mod 7.$$

故 2²⁰²⁴ 天后是星期四.

推论 2.1.1

若
$$x \equiv y \mod m, a_i \equiv b_i \mod m, 0 \leqslant i \leqslant k, 则$$

$$a_0 + a_1 x + \dots + a_k x^k \equiv b_0 + b_1 y + \dots + b_k y^k \mod m.$$

解: 因为 $2^1 \equiv 2 \mod 7, 2^2 \equiv 4 \mod 7, 2^3 = 8 \equiv 1 \mod 7,$

又 $2024 = 674 \cdot 3 + 2$, 所以

$$2^{2024} = (2^3)^{674} \cdot 2^2 \equiv 1 \cdot 4 \equiv 4 \mod 7.$$

故 2²⁰²⁴ 天后是星期四.

推论 2.1.1

若
$$x \equiv y \mod m, a_i \equiv b_i \mod m, 0 \leqslant i \leqslant k, 则$$

$$a_0 + a_1 x + \dots + a_k x^k \equiv b_0 + b_1 y + \dots + b_k y^k \mod m.$$

证: 由 $x \equiv y \mod m$, 根据性质 2.1.2, 有 $x^i \equiv y^i \mod m$, $0 \le i \le k$. 又 $a_i \equiv b_i \mod m$, $0 \le i \le k$, 将它们对应相乘, 得

$$a_i x^i \equiv b_i y^i \mod m, 0 \leqslant i \leqslant k.$$

最后,将这些式子左右对应相加,得到

$$a_0 + a_1 x + \dots + a_k x^k \equiv b_0 + b_1 y + \dots + b_k y^k \mod m.$$

设整数 n 有十进制表示式

$$n = a_k 10^k + a_{k-1} 10^{k-1} + \dots + a_1 10 + a_0, 0 \le a_i \le 10.$$

则(i)3|n的充要条件是

$$3 \mid a_k + \cdots + a_0$$
.

(ii) 9 | n 的充要条件是

$$9 \mid a_k + \cdots + a_0.$$

设整数 n 有十进制表示式

$$n = a_k 10^k + a_{k-1} 10^{k-1} + \dots + a_1 10 + a_0, 0 \le a_i \le 10.$$

则 (i) $3 \mid n$ 的充要条件是

$$3 \mid a_k + \cdots + a_0.$$

(ii) 9 | n 的充要条件是

$$9 \mid a_k + \cdots + a_0.$$

证: 因为
$$10 \equiv 1 \mod 3$$
, 又 $1^i = 1, 0 \leqslant i \leqslant k$, 根据推论 $2.1.1$, 有 $a_k 10^k + a_{k-1} 10^{k-1} + \dots + a_1 10 + a_0 \equiv a_k + \dots + a_0 \mod 3$.

因此,

$$a_k 10^k + a_{k-1} 10^{k-1} + \dots + a_1 10 + a_0 \equiv 0 \mod 3$$

的充要条件是

$$a_k + \cdots + a_0 \equiv 0 \mod 3$$
.

即结论 (i) 成立.

同理, 结论 (ii) 也成立.

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ りへ○

设整数n有一千进制表示式

$$n = a_k 1000^k + \dots + a_1 1000 + a_0, 0 \le a_i \le 1000.$$

则 7 (或 11, 或 13) 整除 n 的充要条件是 7 (或 11, 或 13) 整除整数 $(a_0+a_2+\cdots)-(a_1+a_3+\cdots)$.

设整数n有一千进制表示式

$$n = a_k 1000^k + \dots + a_1 1000 + a_0, 0 \le a_i \le 1000.$$

则 7 (或 11, 或 13) 整除 n 的充要条件是 7 (或 11, 或 13) 整除整数 $(a_0+a_2+\cdots)-(a_1+a_3+\cdots)$.

证: 因为
$$1000 = 7 \cdot 11 \cdot 13 - 1 \equiv -1 \mod 7$$
, 所以有
$$1000 \equiv 1000^3 \equiv 1000^5 \equiv \cdots \equiv -1 \mod 7.$$

$$1000^2 \equiv 1000^4 \equiv 1000^6 \equiv \cdots \equiv 1 \mod 7.$$

根据推论 2.1.1, 可立即得到

$$a_k 1000^k + a_{k-1} 1000^{k-1} + \dots + a_1 1000 + a_0$$

$$\equiv a_k (-1)^k + a_{k-1} (-1)^{k-1} + \dots + a_1 (-1) + a_0$$

$$\equiv (a_0 + a_2 + \dots) - (a_1 + a_3 + \dots) \mod 7.$$

因此, m = 7 整除 n 的充要条件是 $7 \mid (a_0 + a_2 + \cdots) - (a_1 + a_3 + \cdots)$.

同理, 结论对于 m = 11 或 13 也成立.

4□ > 4□ > 4□ > 4□ > 4□ > 900

解: 因为 $a_k + \cdots + a_0 = 2 + 2 + 4 + 9 + 1 = 18$.

又 3 | 18, 9 | 18, 根据推论 2.1.2, 我们有 3 | n, 9 | n.

解: 因为 $a_k + \cdots + a_0 = 2 + 2 + 4 + 9 + 1 = 18$.

又 3 | 18, 9 | 18, 根据推论 2.1.2, 我们有 3 | n, 9 | n.

例 2.1.9 设 n = 20240922, 则 n 被 3 整除, 但不能被 9 整除.

解: 因为 $a_k + \cdots + a_0 = 2 + 2 + 4 + 9 + 2 + 2 = 21 = 3 \cdot 7$.

又 $3 \mid 3 \cdot 7, 9 \nmid 3 \cdot 7$, 根据推论 2.1.2, 我们有 $3 \mid n, 9 \nmid n$.

解: 因为 $a_k + \cdots + a_0 = 2 + 2 + 4 + 9 + 1 = 18$.

又 3 | 18, 9 | 18, 根据推论 2.1.2, 我们有 3 | n, 9 | n.

例 2.1.9 设 n = 20240922, 则 n 被 3 整除, 但不能被 9 整除.

解: 因为 $a_k + \cdots + a_0 = 2 + 2 + 4 + 9 + 2 + 2 = 21 = 3 \cdot 7$.

又 $3 \mid 3 \cdot 7, 9 \nmid 3 \cdot 7$, 根据推论 2.1.2, 我们有 $3 \mid n, 9 \nmid n$.

例 2.1.10 设 n = 20240920, 则 n 被 7 整除, 但不能被 11, 13 整除.

解: 因为 $n = 20 \cdot 1000^2 + 240 \cdot 1000 + 920$, 又 $(a_0 + a_2 + \cdots) - (a_1 + a_3 + \cdots) = 920 + 20 - 240 = 700 = 2^2 \cdot 5^2 \cdot 7$, 所以 $7 \mid n$, $11 \nmid n$, $13 \nmid n$.

解: 因为 $a_k + \cdots + a_0 = 2 + 2 + 4 + 9 + 1 = 18$.

又 3 | 18, 9 | 18, 根据推论 2.1.2, 我们有 3 | n, 9 | n.

例 2.1.9 设 n = 20240922, 则 n 被 3 整除, 但不能被 9 整除.

解: 因为 $a_k + \cdots + a_0 = 2 + 2 + 4 + 9 + 2 + 2 = 21 = 3 \cdot 7$.

又 $3 \mid 3 \cdot 7, 9 \nmid 3 \cdot 7$, 根据推论 2.1.2, 我们有 $3 \mid n, 9 \nmid n$.

例 2.1.10 设 n = 20240920, 则 n 被 7 整除, 但不能被 11, 13 整除.

解: 因为 $n = 20 \cdot 1000^2 + 240 \cdot 1000 + 920$, 又 $(a_0 + a_2 + \cdots) - (a_1 + a_3 + \cdots) = 920 + 20 - 240 = 700 = 2^2 \cdot 5^2 \cdot 7$, 所以 $7 \mid n$, $11 \nmid n$, $13 \nmid n$.

例 2.1.11 设 n = 20240922, 则 n 被 13 整除, 但不能被 7, 11 整除.

解: 因为 $n = 20 \cdot 1000^2 + 240 \cdot 1000 + 922$, 又 $(a_0 + a_2 + \cdots) - (a_1 + a_3 + \cdots) = 922 + 20 - 240 = 702 = 2 \cdot 3^3 \cdot 13$, 所以 $13 \mid n, 7 \nmid n, 11 \nmid n$.

设 m 是一个正整数,设 $d \cdot a \equiv d \cdot b \mod m$. 如果 (d,m) = 1,则 $a \equiv b \mod m$.

设 m 是一个正整数,设 $d \cdot a \equiv d \cdot b \mod m$. 如果 (d,m) = 1,则 $a \equiv b \mod m$.

证: 由 $d \cdot a \equiv d \cdot b \mod m$ 知, $m \mid d \cdot a - d \cdot b$, 即 $m \mid d \cdot (a - b)$. 因为 (d, m) = 1, 根据定理 1.2.8, 我们有 $m \mid a - b$, 故结论成立.

设 m 是一个正整数,设 $d \cdot a \equiv d \cdot b \mod m$. 如果 (d, m) = 1,则 $a \equiv b \mod m$.

证: 由 $d \cdot a \equiv d \cdot b \mod m$ 知, $m \mid d \cdot a - d \cdot b$, 即 $m \mid d \cdot (a - b)$. 因为 (d, m) = 1, 根据定理 1.2.8, 我们有 $m \mid a - b$, 故结论成立.

例 2.1.12 因为 $1485 \equiv 715 \mod 7$, (5,7) = 1, 所以 $297 \equiv 143 \mod 7$.

设 m 是一个正整数,设 $d \cdot a \equiv d \cdot b \mod m$. 如果 (d, m) = 1,则 $a \equiv b \mod m$.

因为 (d, m) = 1, 根据定理 1.2.8, 我们有 $m \mid a - b$, 故结论成立.

证: 由 $d \cdot a \equiv d \cdot b \mod m$ 知, $m \mid d \cdot a - d \cdot b$, 即 $m \mid d \cdot (a - b)$.

例 2.1.12 因为 $1485 \equiv 715 \mod 7$, (5,7) = 1, 所以 $297 \equiv 143 \mod 7$.

性质 2.1.4

设 m 是一个正整数, 如果 $a \equiv b \mod m$, k > 0, 则 $k \cdot a \equiv k \cdot b \mod (k \cdot m)$.

设 m 是一个正整数,设 $d \cdot a \equiv d \cdot b \mod m$. 如果 (d, m) = 1,则 $a \equiv b \mod m$.

因为 (d, m) = 1, 根据定理 1.2.8, 我们有 $m \mid a - b$, 故结论成立.

证: 由 $d \cdot a \equiv d \cdot b \mod m$ 知, $m \mid d \cdot a - d \cdot b$, 即 $m \mid d \cdot (a - b)$.

例 2.1.12 因为 $1485 \equiv 715 \mod 7$, (5,7) = 1, 所以 $297 \equiv 143 \mod 7$.

性质 2.1.4

设 m 是一个正整数, 如果 $a \equiv b \mod m$, k > 0, 则 $k \cdot a \equiv k \cdot b \mod (k \cdot m)$.

证: 由 $a \equiv b \mod m$, 根据定理 2.1.1, 存在整数 q 使得 $a = b + q \cdot m$. 进而, $k \cdot a = k \cdot b + q \cdot (k \cdot m)$. 因此, $k \cdot a \equiv k \cdot b \mod (k \cdot m)$.

设 m 是一个正整数,设 $d \cdot a \equiv d \cdot b \mod m$. 如果 (d,m) = 1,则 $a \equiv b \mod m$.

证: 由 $d \cdot a \equiv d \cdot b \mod m$ 知, $m \mid d \cdot a - d \cdot b$, 即 $m \mid d \cdot (a - b)$. 因为 (d, m) = 1, 根据定理 1.2.8, 我们有 $m \mid a - b$, 故结论成立.

例 2.1.12 因为 $1485 \equiv 715 \mod 7$, (5,7) = 1, 所以 $297 \equiv 143 \mod 7$.

性质 2.1.4

设 m 是一个正整数, 如果 $a \equiv b \mod m$, k > 0, 则 $k \cdot a \equiv k \cdot b \mod (k \cdot m).$

证: 由 $a \equiv b \mod m$,根据定理 2.1.1,存在整数 q 使得 $a = b + q \cdot m$.

进而, $k \cdot a = k \cdot b + q \cdot (k \cdot m)$. 因此, $k \cdot a \equiv k \cdot b \mod (k \cdot m)$.

例 2.1.13 因为 $31 \equiv 3 \mod 7$, k = 5 > 0, 所以 $155 \equiv 15 \mod 35$.

设
$$m$$
 是一个正整数, $a \equiv b \mod m$, 如果整数 $d \mid (a, b, m)$, 则
$$\frac{a}{d} \equiv \frac{b}{d} \mod \frac{m}{d}.$$

设 m 是一个正整数, $a \equiv b \mod m$, 如果整数 $d \mid (a, b, m)$, 则 $\frac{a}{d} \equiv \frac{b}{d} \mod \frac{m}{d}.$

证: 因为 $d \mid (a,b,m)$, 所以存在整数 a',b',m' 使得

$$a = a' \cdot d, b = b' \cdot d, m = m' \cdot d.$$

而 $a \equiv b \mod m$, 所以存在整数 k 使得 $a = b + k \cdot m$, 即

$$a' \cdot d = b' \cdot d + k \cdot m' \cdot d.$$

又因
$$d \mid (a, b, m)$$
, 则 $d \neq 0$, 故 $a' = b' + k \cdot m'$, 也就是 $a' \equiv b' \mod m'$ 或者 $\frac{a}{d} \equiv \frac{b}{d} \mod \frac{m}{d}$.

◆ロト ◆問 > ◆ き > ◆ き > り へ で

设 m 是一个正整数, $a \equiv b \mod m$, 如果整数 $d \mid (a, b, m)$, 则 $\frac{a}{d} \equiv \frac{b}{d} \mod \frac{m}{d}.$

证: 因为 $d \mid (a,b,m)$, 所以存在整数 a',b',m' 使得

$$a = a' \cdot d, b = b' \cdot d, m = m' \cdot d.$$

而 $a \equiv b \mod m$, 所以存在整数 k 使得 $a = b + k \cdot m$, 即

$$a' \cdot d = b' \cdot d + k \cdot m' \cdot d.$$

又因 $d \mid (a, b, m)$, 则 $d \neq 0$, 故 $a' = b' + k \cdot m'$, 也就是 $a' \equiv b' \mod m'$ 或者 $\frac{a}{d} \equiv \frac{b}{d} \mod \frac{m}{d}$.

例 2.1.14 因为 $155 \equiv 15 \mod 35$, 所以取 d = 5, 得到 $31 \equiv 3 \mod 7$.

设 m 是一个正整数, $a \equiv b \mod m$, 如果 $d \mid m$, 则 $a \equiv b \mod d$.

设 m 是一个正整数, $a \equiv b \mod m$, 如果 $d \mid m$, 则 $a \equiv b \mod d$.

证: 因为 $d \mid m$, 所以存在整数 m' 使得 $m = m' \cdot d$. 又因为 $a \equiv b \mod m$, 所以存在整数 k 使得 $a = b + k \cdot m$, 即 $a = b + (k \cdot m') \cdot d$.

故 $a \equiv b \mod d$.

设 m 是一个正整数, $a \equiv b \mod m$, 如果 $d \mid m$, 则 $a \equiv b \mod d$.

证: 因为 $d \mid m$, 所以存在整数 m' 使得 $m = m' \cdot d$. 又因为 $a \equiv b \mod m$, 所以存在整数 k 使得 $a = b + k \cdot m$, 即 $a = b + (k \cdot m') \cdot d$.

故 $a \equiv b \mod d$.

例 2.1.15 因为 $169 \equiv 29 \mod 35$, 所以取 d = 7, 得 $169 \equiv 29 \mod 7$.

设 m 是一个正整数, $a \equiv b \mod m$, 如果 $d \mid m$, 则 $a \equiv b \mod d$.

证: 因为 $d \mid m$, 所以存在整数 m' 使得 $m = m' \cdot d$. 又因为 $a \equiv b \mod m$, 所以存在整数 k 使得 $a = b + k \cdot m$, 即 $a = b + (k \cdot m') \cdot d$.

故 $a \equiv b \mod d$.

例 2.1.15 因为 $169 \equiv 29 \mod 35$, 所以取 d = 7, 得 $169 \equiv 29 \mod 7$.

性质 2.1.7

设 m_1, \dots, m_k 是 k 个正整数, $a \equiv b \mod m_i$, $i = 1, \dots, k$, 则 $a \equiv b \mod [m_1, \dots, m_k].$

设 m 是一个正整数, $a \equiv b \mod m$, 如果 $d \mid m$, 则 $a \equiv b \mod d$.

证: 因为 $d \mid m$, 所以存在整数 m' 使得 $m = m' \cdot d$. 又因为 $a \equiv b \mod m$, 所以存在整数 k 使得 $a = b + k \cdot m$, 即 $a = b + (k \cdot m') \cdot d$.

故 $a \equiv b \mod d$.

例 2.1.15 因为 $169 \equiv 29 \mod 35$, 所以取 d = 7, 得 $169 \equiv 29 \mod 7$.

性质 2.1.7

设 m_1, \dots, m_k 是 k 个正整数, $a \equiv b \mod m_i$, $i = 1, \dots, k$, 则 $a \equiv b \mod [m_1, \dots, m_k].$

证: 由 $a \equiv b \mod m_i$, $i = 1, \dots, k$ 知, $m_i \mid a - b$, $i = 1, \dots, k$. 根据定理 1.2.14, 有 $[m_1, \dots, m_k] \mid a - b$, 即 $a \equiv b \mod [m_1, \dots, m_k]$.

例 2.1.16 因为 $155 \equiv 15 \mod 5$, $155 \equiv 15 \mod 7$, (5,7) = 1, [5,7] = 35, 所以 $155 \equiv 15 \mod 35$.

例 2.1.16 因为 $155 \equiv 15 \mod 5$, $155 \equiv 15 \mod 7$, (5,7) = 1, [5,7] = 35, 所以 $155 \equiv 15 \mod 35$.

性质 2.1.8

设 $a \equiv b \mod m$, 则 (a, m) = (b, m).

例 2.1.16 因为 $155 \equiv 15 \mod 5$, $155 \equiv 15 \mod 7$, (5,7) = 1, [5,7] = 35, 所以 $155 \equiv 15 \mod 35$.

性质 2.1.8

设 $a \equiv b \mod m$, 则 (a, m) = (b, m).

证: 由 $a \equiv b \mod m$ 知, 存在整数 k 使得

$$a = b + k \cdot m$$
.

根据定理 1.2.2, 有

$$(a,m)=(b,m).$$

目录

- □ 同余的概念及基本性质
 - 同余的概念
 - 同余的基本性质
- ② 剩余类
 - 剩余及剩余类
 - 完全剩余系

同余是一种等价关系, 因此借助同余对全体整数进行分类, 并将每类 作为一个"数"来看待, 进而得到一些新性质.

设 m 是一个正整数. 对任意整数 a, 令

$$C_a = \{ c \in \mathbb{Z} \mid c \equiv a \mod m \}. \tag{2.2.1}$$

 C_a 是非空集合, 因为 $a \in C_a$.

同余是一种等价关系, 因此借助同余对全体整数进行分类, 并将每类 作为一个"数"来看待, 进而得到一些新性质.

设 m 是一个正整数. 对任意整数 a, 令

$$C_a = \{ c \in \mathbb{Z} \mid c \equiv a \mod m \}. \tag{2.2.1}$$

 C_a 是非空集合, 因为 $a \in C_a$.

定义 2.2.1

 C_a 叫做模 m 的 a 的剩余类. 一个剩余类中的任一数叫做该类的剩余 (或代表元).

同余是一种等价关系, 因此借助同余对全体整数进行分类, 并将每类 作为一个"数"来看待, 进而得到一些新性质.

设 m 是一个正整数. 对任意整数 a, 令

$$C_a = \{ c \in \mathbb{Z} \mid c \equiv a \mod m \}. \tag{2.2.1}$$

 C_a 是非空集合, 因为 $a \in C_a$.

定义 2.2.1

 C_a 叫做模 m 的 a 的剩余类. 一个剩余类中的任一数叫做该类的剩余 (或代表元).

定理 2.2.1

设 m 是一个正整数,则

- (i) 任一整数必包含再一个 C_r 中, $0 \le r \le m-1$.
- (ii) $C_a = C_b$ 的充要条件是 $a \equiv b \mod m$.
- (iii) C_a 与 C_b 的交集为空集的充要条件是 $a \not\equiv b \mod m$.

证: (i) 设 a 是任一整数, 根据欧几里德除法, 存在唯一的整数 q,r 使得 $a = q \cdot m + r$, $0 \le r < m$. 因此, 有 $a \equiv r \mod m$, a 包含在 C_r 中.

证: (i) 设 a 是任一整数,根据欧几里德除法,存在唯一的整数 q,r 使得 $a = q \cdot m + r$, $0 \le r < m$. 因此,有 $a \equiv r \mod m$, a 包含在 C_r 中.

(ii) 因为 $b \in C_b = C_a$, 所以必要性成立.

证: (i) 设 a 是任一整数, 根据欧几里德除法, 存在唯一的整数 q,r 使得 $a=q\cdot m+r,\ 0\leqslant r< m$. 因此, 有 $a\equiv r\mod m,a$ 包含在 C_r 中.

(ii) 因为 $b \in C_b = C_a$, 所以必要性成立.

充分性. 若 $a \equiv b \mod m$, 则对任意整数 $c \in C_a$, 即 $c \equiv a \mod m$, 由性质 2.1.1 (iii) (传递性) 得, $c \equiv b \mod m$, 即 $c \in C_b$, 故得 $C_a \subset C_b$. 同理, 可得 $C_b \subset C_a$. 故 $C_a = C_b$.

证: (i) 设 a 是任一整数, 根据欧几里德除法, 存在唯一的整数 q,r 使得 $a=q\cdot m+r,\ 0\leqslant r< m$. 因此, 有 $a\equiv r\mod m,a$ 包含在 C_r 中.

(ii) 因为 $b \in C_b = C_a$, 所以必要性成立.

充分性. 若 $a \equiv b \mod m$, 则对任意整数 $c \in C_a$, 即 $c \equiv a \mod m$, 由性质 2.1.1 (iii) (传递性) 得, $c \equiv b \mod m$, 即 $c \in C_b$, 故得 $C_a \subset C_b$. 同理, 可得 $C_b \subset C_a$. 故 $C_a = C_b$.

(iii) 由(ii)立得必要性.

证: (i) 设 a 是任一整数, 根据欧几里德除法, 存在唯一的整数 q,r 使得 $a=q\cdot m+r,\ 0\leqslant r< m$. 因此, 有 $a\equiv r\mod m,a$ 包含在 C_r 中.

(ii) 因为 $b \in C_b = C_a$, 所以必要性成立.

充分性. 若 $a \equiv b \mod m$, 则对任意整数 $c \in C_a$, 即 $c \equiv a \mod m$, 由性质 2.1.1 (iii) (传递性) 得, $c \equiv b \mod m$, 即 $c \in C_b$, 故得 $C_a \subset C_b$. 同理, 可得 $C_b \subset C_a$. 故 $C_a = C_b$.

(iii) 由(ii)立得必要性.

充分性 (反证法). 若 $a \not\equiv b \mod m$, 假设 $C_a \ni C_b$ 的交集非空, 即存在整数 c 满足 $c \in C_a$ 且 $c \in C_b$, 则有

 $c \equiv a \mod m \ \not \supseteq c \equiv b \mod m$.

对于 $c \equiv a \mod m$, 根据性质 2.1.1 (ii) (对称性) 知, $a \equiv c \mod m$. 再根据性质 2.1.1 (iii) (传递性) 及 $c \equiv b \mod m$ 得, $a \equiv b \mod m$. 这与假设矛盾, 故 C_a 与 C_b 的交集为空集.

目录

- □ 同余的概念及基本性质
 - 同余的概念
 - 同余的基本性质
- 2 剩余类
 - 剩余及剩余类
 - 完全剩余系

定义 2.2.2

若 $r_0, r_1, \cdots, r_{m-1}$ 是 m 个整数, 并且其中任何两个数都不在同一个剩余类里, 则 $r_0, r_1, \cdots, r_{m-1}$ 叫做模 m 的一个完全剩余系.

定义 2.2.2

若 $r_0, r_1, \cdots, r_{m-1}$ 是 m 个整数, 并且其中任何两个数都不在同一个剩余类里, 则 $r_0, r_1, \cdots, r_{m-1}$ 叫做模 m 的一个完全剩余系.

注: 根据定义, 模 m 的剩余类有 m 个, 即 C_0, C_1, \dots, C_{m-1} .

定义 2.2.2

若 r_0, r_1, \dots, r_{m-1} 是 m 个整数, 并且其中任何两个数都不在同一个剩余类里, 则 r_0, r_1, \dots, r_{m-1} 叫做模 m 的一个完全剩余系.

注: 根据定义, 模 m 的剩余类有 m 个, 即 $C_0, C_1, \cdots, C_{m-1}$.

例 2.2.1 设正整数 m = 12. 对任意整数 a, 集合 $C_a = \{a + 12k | k \in \mathbb{Z}\}$ 是模 m = 12 的剩余类. 则完全剩余系为:

0,1,2,3,4,5,6,7,8,9,10,11 为模 12 的一个完全剩余系.

1,2,3,4,5,6,7,8,9,10,11,12 为模 12 的一个完全剩余系.

0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11 为模 12 的一个完全剩余系.

0,5,10,15,20,25,30,35,40,45,50,55 为模 12 的一个完全剩余系.

12, 13, 26, 39, 52, 65, 78, 91, 104, 117, 130, 143 为模 12 的一个完全剩余系.

定理 2.2.2

设 m 是一个正整数,则 m 个整数 $r_0, r_1, \cdots, r_{m-1}$ 为模 m 的一个完全剩余系的充要条件是它们模 m 两两不同余.

定理 2.2.2

设 m 是一个正整数,则 m 个整数 $r_0, r_1, \cdots, r_{m-1}$ 为模 m 的一个完全剩余系的充要条件是它们模 m 两两不同余.

证: 设 $r_0, r_1, \cdots, r_{m-1}$ 是模 m 的一个完全剩余系,

根据定理 2.2.1 (ii),

它们模 m 两两不同余.

反过来, 设 $r_0, r_1, \cdots, r_{m-1}$ 模 m 两两不同余.

根据定理 2.2.1 (iii),

这 m 个整数中的任何两个整数都不在同一个剩余类里.

因此, 它们成为模 m 的一个完全剩余系.

定义 2.2.3

设 m 是一个正整数, 则

- (i) $0,1,\dots,m-1$ 是模 m 的一个完全剩余系, 叫做模 m 的最小非负完全剩余系.
- (ii) $1, \dots, m-1, m$ 是模 m 的一个完全剩余系, 叫做模 m 的最小正完全剩余系.
- (iii) $-(m-1), \dots, -1, 0$ 是模 m 的一个完全剩余系, 叫做模 m 的最大非正完全剩余系.
- (iv) -m, -(m-1), \cdots , -1 是模 m 的一个完全剩余系, 叫做模 m 的最大 负完全剩余系.

定义 2.2.3 (续)

(v) 当 m 为偶数时,

$$-\frac{m}{2}, -\frac{m-2}{2}, \cdots, -1, 0, 1, \cdots, \frac{m-2}{2}$$

或

$$-\frac{m-2}{2}, \cdots, -1, 0, 1, \cdots, \frac{m-2}{2}, \frac{m}{2}$$

是模 m 的一个完全剩余系;

当 m 为奇数时,

$$-\frac{m-1}{2}, \cdots, -1, 0, 1, \cdots, \frac{m-1}{2}$$

是模m的一个完全剩余系.

上述两个完全剩余系统称为模 m 的一个绝对值最小完全剩余系.

- 《□》《圖》《意》《意》 (意) ぞく

设 m 是正整数, a 是满足 (a,m)=1 的整数, b 是任意整数. 若 x 遍历模 m 的一个完全剩余系, 则 $a \cdot x + b$ 也遍历模 m 的一个完全剩余系.

设 m 是正整数, a 是满足 (a,m)=1 的整数, b 是任意整数. 若 x 遍历模 m 的一个完全剩余系, 则 $a\cdot x+b$ 也遍历模 m 的一个完全剩余系.

证:根据定理 2.2.2, 只需证明:

当 a_0, a_1, \dots, a_{m-1} 是模 m 的一个完全剩余系时, m 个整数 $a \cdot a_0 + b, a \cdot a_1 + b, \dots, a \cdot a_{m-1} + b$ 模 m 两两不同余.

事实上, 若存在 a_i 和 a_j ($i \neq j$) 使得 $a \cdot a_i + b \equiv a \cdot a_j + b \mod m$, 则 $m \mid a \cdot (a_i - a_j)$. 因为 (a, m) = 1, 我们有 $m \mid a_i - a_j$, 这说明 a_i 和 a_j 模 m 同余, 与假设矛盾.

因此, $a \cdot x + b$ 也遍历模 m 的一个完全剩余系.

设 m 是正整数, a 是满足 (a,m)=1 的整数, b 是任意整数. 若 x 遍历模 m 的一个完全剩余系, 则 $a \cdot x + b$ 也遍历模 m 的一个完全剩余系.

证:根据定理 2.2.2, 只需证明:

当 a_0, a_1, \dots, a_{m-1} 是模 m 的一个完全剩余系时, m 个整数 $a \cdot a_0 + b, a \cdot a_1 + b, \dots, a \cdot a_{m-1} + b$ 模 m 两两不同余.

事实上, 若存在 a_i 和 a_j ($i \neq j$) 使得 $a \cdot a_i + b \equiv a \cdot a_j + b \mod m$, 则 $m \mid a \cdot (a_i - a_j)$. 因为 (a, m) = 1, 我们有 $m \mid a_i - a_j$, 这说明 a_i 和 a_j 模 m 同余, 与假设矛盾.

因此, $a \cdot x + b$ 也遍历模 m 的一个完全剩余系.

例 2.2.2 设 m = 12, a = 5, b = 3, 则形如 $a \cdot k + b$ 的 12 个数 3,8,13, 18,23,28,33,38,43,48,53,58 构成模 12 的一个完全剩余系.

设 m_1, m_2 是两个互素的正整数, 若 x_1, x_2 分别遍历模 m_1, m_2 的完全剩余系, 则 $m_2 \cdot x_1 + m_1 \cdot x_2$ 遍历模 $m_1 \cdot m_2$ 的完全剩余系.

设 m_1, m_2 是两个互素的正整数, 若 x_1, x_2 分别遍历模 m_1, m_2 的完全剩余系, 则 $m_2 \cdot x_1 + m_1 \cdot x_2$ 遍历模 $m_1 \cdot m_2$ 的完全剩余系.

证: 因为 x_1, x_2 分别遍历 m_1, m_2 个数时, $m_2 \cdot x_1 + m_1 \cdot x_2$ 遍历 $m_1 \cdot m_2$ 个数, 所以只需证明这 $m_1 \cdot m_2$ 个整数模 $m_1 \cdot m_2$ 两两不同余.

事实上, 若整数 x_1, x_2 和 y_1, y_2 满足

$$m_2 \cdot x_1 + m_1 \cdot x_2 \equiv m_2 \cdot y_1 + m_1 \cdot y_2 \mod (m_1 \cdot m_2),$$

则根据性质 2.1.6, 有

$$m_2 \cdot x_1 + m_1 \cdot x_2 \equiv m_2 \cdot y_1 + m_1 \cdot y_2 \mod m_1,$$

即

$$m_2 \cdot x_1 \equiv m_2 \cdot y_1 \mod m_1.$$

进而, $m_1 \mid m_2 \cdot (x_1 - y_1)$. 因为 $(m_1, m_2) = 1$, 所以 $m_1 \mid x_1 - y_1$. 故 x_1 与 y_1 模 m_1 同余.

同理, 可得 x_2 与 y_2 模 m_2 同余.

因此, 结论成立.

设 m_1, m_2 是两个互素的正整数, 若 x_1, x_2 分别遍历模 m_1, m_2 的完全剩余系, 则 $m_2 \cdot x_1 + m_1 \cdot x_2$ 遍历模 $m_1 \cdot m_2$ 的完全剩余系.

证: 因为 x_1, x_2 分别遍历 m_1, m_2 个数时, $m_2 \cdot x_1 + m_1 \cdot x_2$ 遍历 $m_1 \cdot m_2$ 个数, 所以只需证明这 $m_1 \cdot m_2$ 个整数模 $m_1 \cdot m_2$ 两两不同余.

事实上, 若整数 x_1, x_2 和 y_1, y_2 满足

$$m_2 \cdot x_1 + m_1 \cdot x_2 \equiv m_2 \cdot y_1 + m_1 \cdot y_2 \mod (m_1 \cdot m_2),$$

则根据性质 2.1.6, 有

$$m_2 \cdot x_1 + m_1 \cdot x_2 \equiv m_2 \cdot y_1 + m_1 \cdot y_2 \mod m_1,$$

即

$$m_2 \cdot x_1 \equiv m_2 \cdot y_1 \mod m_1$$
.

进而, $m_1 \mid m_2 \cdot (x_1 - y_1)$. 因为 $(m_1, m_2) = 1$, 所以 $m_1 \mid x_1 - y_1$. 故 x_1 与 y_1 模 m_1 同余.

同理, 可得 x_2 与 y_2 模 m_2 同余.

因此,结论成立. ——(为什么?)

例 2.2.3 设 p,q 是两个不同的素数, n 是它们的乘积,则对于任意的整数 c,存在唯一的一对整数 x,y 满足

$$q \cdot x + p \cdot y \equiv c \mod n, \ 0 \leqslant x < p, 0 \leqslant y < q.$$

例 2.2.3 设 p,q 是两个不同的素数, n 是它们的乘积, 则对于任意的整数 c, 存在唯一的一对整数 x,y 满足

$$q \cdot x + p \cdot y \equiv c \mod n, \ 0 \leqslant x < p, 0 \leqslant y < q.$$

证:因为p,q是两个不同的素数,所以p,q互素.

根据定理 2.2.4 及其证明知,

当 x,y 分别遍历模 p,q 的完全剩余系时, $q \cdot x + p \cdot y$ 遍历模 $n = p \cdot q$ 的完全剩余系.

因此, 对于任意的整数 c, 存在唯一的一对整数 x,y 满足

$$q \cdot x + p \cdot y \equiv c \mod n, \ 0 \leqslant x < p, 0 \leqslant y < q.$$

本课作业

- 1. 证明: 设 a = b 是整数, k = m 是正整数, 且 $a \equiv b \mod m$, 则 $a^k \equiv b^k \mod m$.
 - 2. 求十进制数 777777 的个位是几?
 - 3. 证明: 形如 8k+7 的正整数都不能表示为三个平方数之和.
- 4. 写出模 9 的两个完全剩余系. 要求: 其中一个完全剩余系中每个数均为奇数, 另一个中每个数均为偶数. 此外, 问对模 10 能否写出这样的两个完全剩余系?

交流与讨论

电子邮箱:

陈秀波: xb_chen@bupt.edu.cn

徐国胜: guoshengxu@bupt.edu.cn

金正平: zhpjin@bupt.edu.cn