Cautious label-wise ranking with constraint satisfaction

29èmes rencontres francophones sur la logique Floue et ses applications

CARRANZA-ALARCÓN Yonatan-Carlos

Ph.D. Candidate

MESSOUDI Soundouss
Ph.D. Candidate

DESTERCKE Sébastien
Ph.D Director

15 Oct 2020 to 16 Oct 2020

Our approach in a nutshell

What?

Cautious label-ranking by rank-wise decomposition

How?

- Rank-wise decomposition
- For each decomposition, predict a set of ranks using IP.
- Use Constraint Satisfaction (CSP) to :
 - resolve inconsistencies
 - remove impossible assignments

Why?

- Recognizing hard instances to predict in order to avoid making mistakes
 ⇒ Making a cautious decision.
- few rank-wise approaches (except score-based) for this problem

- Introduction to Label ranking problem
- Our proposal in details
- Evaluation
 - Settings and Datasets
 - Experimental results
- Conclusions

Label ranking problem

Problem statement :

Let $\mathcal{K} = \{m_1, ..., m_K\}$ be a set of objects equipped with an order relation.

i.e.: ranked from "not relevant" → "relevant"

e.g. : Set of books ranked in order of preference (easy → hard)

A complete order relation on $\mathcal{K} \to \Lambda(\mathcal{K}) \subseteq \mathcal{K} \times \mathcal{K}$

 $\Lambda(\mathcal{K})$: Set of complete rankings, $|\Lambda(\mathcal{K})| = K!$ (set of all permutations)

Label ranking problem

The goal of label ranking problem:

Given a training data : $\mathcal{D} = \{ \boldsymbol{x}_i, Y_i \}_{i=0}^N \subseteq \mathbb{R}^p \times \Lambda(\mathcal{K})$

Learning a complete ranking rule : $\varphi : \mathbb{R}^p \to \Lambda(\mathcal{K})$

Example of training data :

X_1	X_2	Y
107.1	Blue	$m_1 > m_4 > m_2 > m_3$
-50	Red	$m_2 > m_3 > m_1 > m_4$
200	Green	$m_1 > m_4 > m_2 > m_3$ $m_2 > m_3 > m_1 > m_4$ $m_1 > m_3 > m_4 > m_2$
		•••

- Introduction to Label ranking problem
- Our proposal in details
- Evaluation
 - Settings and Datasets
 - Experimental results
- Conclusions

Cautious label-wise ranking with constraint satisfaction

Our proposal

- Step 1 Rank-wise decomposition
 - o for each label $m_i \in \mathcal{K}$, create a new data set \mathbb{D}_{m_i}
- Step 2 Cautious ordinal regression
 - o for each label $m_i \in \mathcal{K}$, predict a set of ranks using imprecise probabilities
- Step 3 Global inference with constraint satisfaction problem
 - resolve inconsistencies
 - remove impossibles assignments

Step **0**: Rank-wise decomposition

FIGURE - Label-wise decomposition

For each data set \mathbb{D}_i , solve an ordinal regression problem.

Step 2: Precise ordinal regression

D	1	
<i>X</i> ₁	<i>X</i> ₂	Y
107.1	Blue	1
-50	Red	3

D	0	
X ₁	X_2	Y
07.1	Blue	3
-50	Red	1
		l

\mathbb{D}	4	
<i>X</i> ₁	<i>X</i> ₂	Y
107.1	Blue	4
-50	Red	4
•••		

Learning with an estimated probability	P	
--	---	--

Given a training data :
$$\mathcal{D} = \{x_i, y_i\}_{i=0}^N \subseteq \mathbb{R}^p \times \mathcal{H}$$
, where $\mathcal{H} = \{1, 2, 3, ..., K\}$.

$$\widehat{\varphi} := \arg\min_{\varphi(X) \in \Phi} \mathbb{E}_{\widehat{\mathbb{P}}} \left[\ell(Y, \varphi(X)) \right]$$

Ordinal regression

$$\widehat{\varphi}: \mathbb{R}^p \to \mathcal{K}$$

But, how can we do that with a set of probabilities $\widehat{\mathscr{P}}$?

<i>X</i> ₁	<i>X</i> ₂	Ŷ
107.1	Blue	{1,2}
-50	Red	{3 }

D4

(1)

Ш		
<i>X</i> ₁	X_2	Ŷ
107.1	Blue	{1,2,3}
-50	Red	{1 }
•••		

D		
X_1	X_2	Ŷ
107.1	Blue	{2}
-50	Red	{1,2}

Ш		
<i>X</i> ₁	<i>X</i> ₂	Ŷ
107.1	Blue	{1,2,3,4}
-50	Red	{3,4}

Step 2: Cautious ordinal regression

D	1	
<i>X</i> ₁	<i>X</i> ₂	Y
107.1	Blue	1
-50	Red	3

D	2	
<i>X</i> ₁	- X ₂	Y
107.1	Blue	3
-50	Red	1

D	4	
<i>X</i> ₁	. X ₂	Y
107.1	Blue	4
-50	Red	4

Learning with a set of probabilities $\widehat{\mathscr{P}}$

Maximality criterion

$$m > m' \iff \inf_{P \in \mathcal{P}_{Y|X}} \sum_{y \in \mathcal{X}} P(y|x) (\ell_{m'}(y) - \ell_m(y)) \ge 0$$
Loss functions of choice $m \in \mathcal{K}$

$$\ell_{m} : \mathcal{K} \to \mathbb{R}$$

D ₂	2	
<i>X</i> ₁	X_2	Ŷ
107.1	Blue	{1,2,3}
-50	Red	{1 }
	• • • •	

D	3	
<i>X</i> ₁	X ₂	Ŷ
107.1	Blue	{2}
-50	Red	{1,2}

- 4		
<i>X</i> ₁	<i>X</i> ₂	Ŷ
107.1	Blue	{1,2,3,4}
-50	Red	{3,4}

m.

Step 2: Cautious ordinal regression

\mathbb{D}	1	
<i>X</i> ₁	<i>X</i> ₂	Y
107.1	Blue	1
-50	Red	3
•••	•••	•••
D	2	

 $X_2 \mid Y$

Blue

Red

 X_2

Blue

Red

Blue

Red

 X_1

107.1

-50

 X_1

107.1

-50

 X_1

107.1

-50

 \mathbb{D}_4

Learning with a set of probabilities $\widehat{\mathscr{P}}$

Loss functions of choice
$$m \in \mathcal{K}$$

$$\ell_m : \mathcal{K} \to \mathbb{R}$$

But, what loss? \mathbb{D}_3

On the median in imprecise ordinal problems [3]

 $\ell = L_1$ norm between ranks, loss of predicting rank i if k is true

$$\ell_j(k) = |j - k|$$

described by lower/upper cumulative distributions F, \overline{F}

D	2	
<i>X</i> ₁	X ₂	Ŷ
107.1	Blue	{1,2,3}
-50	Red	{1 }
_		

Red

-50

D:	3	
<i>X</i> ₁	<i>X</i> ₂	Ŷ
107.1	Blue	{2}
-50	Red	{1,2}

 \mathbb{D}_{4}

₽4		
<i>X</i> ₁	X_2	Ŷ
107.1	Blue	{1,2,3,4}
-50	Red	{3,4}

Step 2: Cautious ordinal regression Why L_1 ?

D	1	
K ₁	<i>X</i> ₂	Y
7.1	Blue	1
50	Red	3

 X_2

Blue

Red

Blue

Red

Blue

Red

 X_1

107.1

-50

107.1

-50

 X_1

107.1

-50

 \mathbb{D}_3

 \mathbb{D}_4

prediction is guaranteed to be an "interval" of ranks.

it corresponds to the set of possible medians, i.e:

$$\widehat{R}_i = \left\{ j \in K : \underline{F}_{i(j-1)} \le 0.5 \le \overline{F}_{ij}, \ \underline{F}_{i(0)} = 0 \right\}, \tag{1}$$

An example of rank prediction

Rank j

3 Predicted rank for label: $\{2, 3, 4\}$

\mathbb{D}	1	
X_1	X_2	Ŷ
107.1	Blue	{1,2}
-50	Red	{3 }

\mathbb{D}_2		
<i>X</i> ₁	- X ₂	Ŷ
107.1	Blue	{1,2,3}
-50	Red	{1 }
•••	• • • •	

• • •	• • • •	
D:	3	
<i>X</i> ₁	X_2	Ŷ
107.1	Blue	{2}
-50	Red	{1,2}
	•••	

D.	4	
<i>X</i> ₁	. X ₂	Ŷ
107.1	Blue	{1,2,3,4}
-50	Red	{3,4}

2

0.5

0.25

Step **②** : Global inference with constraint satisfaction problem (CSP)

Removal of impossible solutions

Consider the rank-wise $\mathcal{R}_i(\mathbf{x})$ cautious prediction of the first observation

$$\widehat{\mathcal{R}}_{m_1} = \{1,2\}, \ \widehat{\mathcal{R}}_{m_2} = \{1,2,3\}, \ \widehat{\mathcal{R}}_{m_3} = \{2\}, \ \widehat{\mathcal{R}}_{m_4} = \{1,2,3,4\}$$

As $\mathcal{R}_{m_3}(\mathbf{x})$ has to take the single value {2}, then the others should not retain it:

$$\widehat{\mathcal{R}}_{m_1}^* = \{1\}, \ \widehat{\mathcal{R}}_{m_2}^* = \{1,3\}, \ \widehat{\mathcal{R}}_{m_3}^* = \{2\}, \ \widehat{\mathcal{R}}_{m_4}^* = \{1,3,4\},$$

....until removing all inconsistencies, we get :

$$\widehat{\mathcal{R}}'_{m_1} = \{1\}, \ \widehat{\mathcal{R}}'_{m_2} = \{3\}, \ \widehat{\mathcal{R}}'_{m_3} = \{2\}, \ \widehat{\mathcal{R}}'_{m_4} = \{4\}$$

It is well-known as the *all different constraint* which forces every labelwise prediction to assume a value different from the value of every other.

- Introduction to Label ranking problem
- Our proposal in details
- Evaluation
 - Settings and Datasets
 - Experimental results
- Conclusions

Datasets and experimental setting

Material and method

- 14 data sets issued from UCI repository [2].
- 10×10-fold cross-validation procedure.
- Binary decomposition + Naive imprecise classifier (NCC)
- \square Adaptive method to obtain the "optimal" value the hyper-parameter s
- Comparing with other precise approachs (LRT, RPC, SVM-LR)

Measuring results quality

Completeness (CP)

Correctness (CR)

$$CP(\widehat{R}) = \frac{k^2 - \sum_{i=1}^k |\widehat{R}_i|}{k^2 - k}$$

$$CR(\widehat{R}) = 1 - \frac{\sum_{i=1}^{k} \min_{\widehat{r}_i \in \widehat{R}_i} |\widehat{r}_i - r_i|}{0.5k^2}$$

Max if one ranking possible Min if all rankings possible

Equivalent to Spearman footrule if one ranking predicted

Completeness/Correctness trade-off

FIGURE – Evolution of the hyper-parameter s on alass

#	Data set	Type	#Inst	#Attributes	#Labels
а	authorship	classification	841	70	4
b	bodyfat	regression	252	7	7
С	calhousing	regression	20640	4	4
d	cpu-small	regression	8192	6	5
е	fried	regression	40768	9	5
f	glass	classification	214	9	6
g	housing	regression	506	6	6
h	iris	classification	150	4	3
i	pendigits	classification	10992	16	10
j	segment	classification	2310	18	7
k	stock	regression	950	5	5
1	vehicle	classification	846	18	4
m	vowel	classification	528	10	11
n	wine	classification	178	13	3

TABLE - Experimental data sets

Example: Inconsistency prediction:

$$\widehat{\mathcal{R}}'_{m_1} = \{1\}, \ \widehat{\mathcal{R}}'_{m_2} = \{3\}, \ \widehat{\mathcal{R}}'_{m_3} = \emptyset, \ \widehat{\mathcal{R}}'_{m_4} = \{4\}$$

Global solution is empty $\mathcal{R} = \emptyset$.

Experimental results

	LR-CSP-6	LRT	RPC	SVM-LR
а	93.90 ± 0.69 (1)	91.53 ± 0.31 (3)	93.21 ± 0.23 (2)	64.42 ± 0.36 (4)
b	54.12 ± 3.73 (1)	41.70 ± 1.48 (4)	50.43 ± 0.39 (3)	51.10 ± 0.49 (2)
С	$61.05 \pm 0.80 (1)$	58.37 ± 0.28 (2)	51.85 ± 0.02 (3)	$38.45 \pm 0.02 (4)$
d	68.72 ± 1.42 (1)	60.76 ± 0.30 (3)	61.93 ± 0.04 (2)	46.71 ± 0.87 (4)
e	99.20 ± 0.07 (2)	91.26 ± 0.06 (3)	99.92 ± 0.01 (1)	84.18 ± 2.67 (4)
f	91.95 ± 2.90 (1)	91.59 ± 0.47 (2)	90.83 ± 0.24 (3)	85.68 ± 0.33 (4)
g	79.21 ± 3.37 (2)	$85.09 \pm 0.46 (1)$	74.86 ± 0.16 (3)	70.16 ± 0.46 (4)
h	99.36 ± 1.28 (1)	97.16 ± 0.55 (2)	92.75 ± 0.58 (3)	87.39 ± 0.37 (4)
i	91.31 ± 0.14 (3)	$95.14 \pm 0.05 (1)$	94.12 ± 0.01 (2)	58.75 ± 2.71 (4)
j	91.20 ± 0.85 (3)	96.11 ± 0.10 (1)	94.52 ± 0.03 (2)	66.25 ± 3.05 (4)
k	88.63 ± 1.53 (2)	91.64 ± 0.27 (1)	82.23 ± 0.08 (3)	75.20 ± 0.17 (4)
1	85.29 ± 1.91 (3)	88.03 ± 0.44 (2)	$89.24 \pm 0.14 (1)$	$81.93 \pm 1.00 (4)$
m	88.23 ± 1.00 (1)	84.40 ± 0.62 (2)	72.88 ± 0.06 (3)	65.41 ± 1.21 (4)
n	98.20 ± 1.19 (1)	91.80 ± 0.87 (4)	94.58 ± 0.61 (2)	94.56 ± 0.50 (3)
avg.	85.03 ± 1.49(1.64)	83.18 ± 0.45(2.21)	$81.67 \pm 0.19(2.36)$	69.30 ± 1.02(3.79)

TABLE - AVERAGE CORRECTNESS (%) COMPARED TO LR-CSP-6(%)

- Introduction to Label ranking problem
- Our proposal in details
- Evaluation
 - Settings and Datasets
 - Experimental results
- Conclusions

Conclusions and Perspectives

- Our proposal is competitive w.r.t. other precise ones.
- We can use any imprecise classifier producing a set of probabilities.

- Deal with inconsistent predictions (~10% test dataset).
- Adapt the hyper-parameter s_i by imprecise classifier \mathcal{R}_i .
- Use other imprecise classifier (eg. continuous classifier)

References

Jerome FRIEDMAN, Trevor HASTIE et Robert TIBSHIRANI. The elements of statistical learning. Springer New York Inc., 2001.

A. FRANK et A. ASUNCION. *UCI Machine Learning Repository*. 2010. URL: http://archive.ics.uci.edu/ml.

Sébastien DESTERCKE. "On the median in imprecise ordinal problems". In: Annals of Operations Research 256.2 (2017), p. 375-392.

