Timer and I/O

Chapter 4

Embedded System Architecture

- von Neumann
 - A processing unit
 - A memory to hold both instructions and data
 - CPU can either read an instruction or access data from the memory, but not at the same time

Harvard

- A processing unit
- Two memories to hold instructions and data separately
- CPU can both read an instruction and access data at the same time

10 Architecture

- Port IO
 - IO address is not memory address
 - IO data path is separated from memory data path
 - Special IO instructions
 - Simultaneous access to IO and memory

- Memory mapped IO
 - IO address is a part of memory address
 - IO and memory share the same data path
 - No special IO instructions
 - Exclusive access to IO or memory

Example: ATmega128

- CPU architecture
- page 3, datasheet

- IO architecture
 - Both port and memory IO spaces
 - page 18, 20, datasheet

Example: Pic24ep

• Page 38, datasheet

10/11/18

I/O Pins

- Bidirectional (in and out)
- Digital or analog
- Programmable
- Registers
 - Direction control
 - Data
 - Input
 - Output
 - Data change interrupt
 - D/A selection

Example: Atmega128

Page 66, datasheet

Example: Pic24ep

Page 205, datasheet

Output (Atmega128)

- LEDs (case 12)
 - From schematic: Port D0..2
 - Three register bits of Port D
 - Table 25, page 67, datasheet
 - DDRD : direction control
 - 0 : input, 1 : output
 - PORTD : data output
 - 0: off, 1: on
 - PIND : data input

Table 25. Port Pin Configurations

DDxn	PORTxn	PUD (in SFIOR)	I/O	Pull-up	Comment
0	0	X	Input	No	Tri-state (Hi-Z)
0	1	0	Input	Yes	Pxn will source current if ext. pulled low.
0	1	1	Input	No	Tri-state (Hi-Z)
1	0	X	Output	No	Output Low (Sink)
1	1	Х	Output	No	Output High (Source)

Output (Atmega128)

- Debug
 - IO View
 - Debug/Windows/IO
 - Observe in debug
 - DDRA (direction)
 - PORTA (output)
 - PINA (input)
 - IO functions
 - Init
 - Toggle
 - Set
 - On/off

Output (Pic24ep)

- LEDs (case 12)
 - From schematic: Port D1..3
 - Addition doc on IO: S10-IO
 - Eight registers of Port D
 - ANSEL: analog/digianl section

 - By default 1: analogPage of 206 of datasheet
 - TRISĎ: direction control
 - 1 : input, 0 : output
 - Page 3 of S10-IO
 - LATD : data output
 - PORTD: data input

Output (Pic24ep)

- Debug
 - IO View
 - Window/PIC Memory Views/SFRs
 - Memory:SFR, Format:Peripherals
 - Observe in debug
 - ANSELD (analog/debug)
 TRISD (direction)

 - PORTD (input)
 - LATD (oùtput)
 - IO functions
 - Init
 - Toggle
 - Set
 - On/off

Timer (Case 13)

Delay

- <util/delay.h>: https://www.nongnu.org/avr-libc/user-manual/group__util__delay.html

- Define cpu frequency

• Example: #define F CPU 400000UL // 4MHz

_delay_ms()

• Atmega128's max delay is 262.14ms/f cpu in MHz.

• Example: f_cpu=4MHz, max delay is 262.14/4=65.535ms

_delay_us()

• Max delay is 768us/f_cpu in MHz.

Compile: only work with optimization -Os or -O3

Debug: Processor/Stopwatch

Timer (Case13)

Interrupt

- <avr/interrupt.h>: https://www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html
- Interrupt service routine
 - ISR(TIMER1_COMPA_vect)
- Configure timer interrupt
- Timer interrupt
 - Set timerFired
- Timer task
 - Clear timerFired
 - Usually, do not execute big tasks in the interrupt.

Timer (Atmega128)

- Interrupt
 - Three timer control registers
 - Compare mode
 - Clock select and prescaler
 - Timer counter register
 - Store the counter incremented per prescaled clock tick
 - Output compare register
 - Store the value to be compared
 - Interrupt mask register
 - Enable the interrupt
 - 16-bit counter
 - Max delay: 2^16*1024/f

Timer

Formula

- Max delay
 - Fcpu=4MHz
 - Scaler=256
 - Count=65536
 - Max delay is 4.19s
- Specifiy count
 - Fcpu=4MHz
 - Scaler=256
 - Delay=0.5s
 - Count is 7812

$$Delay_{Max} = \frac{Count_{Max} \times Scaler}{F_{CPU}}$$

$$Count = \frac{Delay \times F_{CPU}}{Scaler}$$

Timer (Pic24ep)

- Interrupt
 - #define PIC24E to enable timer functions
 - Single or combination mode
 - Timer control register
 - Compare mode
 - Clock select and prescaler
 - Timer counter register
 - Store the counter incremented per prescaled clock tick
 - Interrupt mask register
 - Enable the interrupt
 - 16 or 32-bit counter
 - Max delay: 2^32*256/f

Input

- Polling
 - When an input does not trigger an interrupt
 - Configure IO pin as input
 - Case 15, atmega128
- Interrupt
 - When an input change triggers an interrupt
 - Configure IO pin as input
 - Enable interrupt
 - Case 15, pic24ep
- Two states are needed for bouncing button.
- Stimulus is needed for simulating button.

Input Simulation

AVR Tool

- Debug/Simulator/Stimuli
- Break, then Debug/Execute Stimulifile
- Stimuli file format
 #delay_cycles
 assignment (e.g. PINA |= 0x80)
- 4MHz CPU clock
- MPLab X
 - Window/Simulator/Stimulus
 - Pin/Register Actions
 - Time/Pin/Value

```
#0
PINA = 00
#1000
PINA |= 0x80
#10000
PINA = 00
#20000
PINA |= 0x80
#100000
PINA = 00
#150000
PINA |= 0x80
#10000
PINA |= 0x80
```

Bouncing Button

Applications

- Basic application needs
 - Clock (timer)
 - Input (digital/analog)
 - Output (digital/analog)
- Applications
 - Blinking/flashing (output)
 - Pulse Width Modulation (PWM) (output)
 - LED dimmer
 - Motor control
 - RPM control (rotation per minute)
 - Direction control
- Debug: logic analyzer
 - MPLab: Window/Simulator/Analyzer

Blinking Leds

- Case 14
- Modularize program
- Led module
 - Led.c
 - Led.h
- Timer module
 - Timer.c
 - Timer.h
- Interrupt or delay based

Pulse Width Modulation (PWM)

- LED brightness control
- Motor speed and direction control
- Two timing signals
 - One interrupt-based timer for period: 20ms
 - Delay for duty cycle: 0% to 100% of period
 - Approaches
 - Two timers (not very accurate due to timer overhead)
 - PWM module (bettér than two timers)

PWM Applications (Case31)

- LED dimmer (video)
 - Provide level's of brightness
 - Short duty of brightness
 - Longer duty means brighter
- Motor speed controller (video)
 - Reduce speed from 5000rpm to 5rpm
 - Short duty of rotation
 - Longer duty means faster
- Servo (video, pdf)
 - Control directions (-90 to 90)
 - Ratio of duty to period (5%-10%)
 - Longer duty means clockwise

LED Brightness

- Logarithmic dimmer curve
 - Non-linear brightness perception
 - PWM table of discrete brightness levels
- PWM parameters
 - 20 ms periodic duration
 - 200 us pwm step size
 - 100 pwm steps

Brightness	255 240 225 210 180 180 150 19										
	15	10	 20	30	 40 相对	50 灯光电	60 平/% 0 /0)	 70	80	90 90	100

PWM	Bright
100	10
71	9
58	8
42	7
30	6
21	5
14	4
9	3
4	2
1	1
0	0

Motor Control

- Very low RPM (rotation per minute) motor
 https://www.youtube.com/watch?v=H36oAtkAb7w

 - A normal motor has >1000rpm
 - PWM: motor rotates only in duty cycles
- Servo motor
 - https://www.youtube.com/watch?v=KDfhXd2kell
 - 180 degree, bidirectional, direction control
 - Direction = -90+(duty-1)*180
 - If accuracy is 1 degree,
 - Then duty step size is 1/180ms or 5.556us

10/11/18