Robust Machine-Learning Approaches for Efficient Functional Dependency Approximation

Philipp Jung

Beuth University of Applied Sciences philippjung@posteo.de

November 27, 2019

Motivation

Objectives

Overview

- 1 Motivation
- **Objectives**
- 3 FD Imputer
- DepDetector
- **Prospects**

Motivation

Example of an FD

Motivation 0 • 0 0 0 0 0 0 0 0

left hand side				right hand side
Id	First Name	Surname	Zip	Town
1	Alice	Smith	19139	Munich
2	Peter	Meyer	19139	Munich
3	Ana	Parker	19139	Munich
4	John	Pick	12055	Berlin
5	John	Pick	19139	Munich

Table: Example of the non-minimal FD $\{ \text{Id, First Name, Surname, Zip} \} \rightarrow \text{Town.}$

References

Additional Slides

FD Fields of Application

FDs are constraints on a relational scheme commonly used for

- schema normalization of relational databases
- data cleaning, e.g. HoloClean¹
- data exploration

Motivation

00000000

¹Heidari et al. 2019.

Challenges of FD Detection

Remark

Motivation

FD detection is a particularly complex problem to solve.

FD Detection Search Space Size

The number of FD candidates for m attributes is $\mathcal{O}(\frac{m}{2} \cdot 2^m)$.

¹Image from Abedjan et al. 2019

Learned Algorithms

Motivation

00000000

Kraska et al. showed in 2018 that a Binary Tree can be interpreted as a learned index structure.²

²Kraska et al. 2018.

BTree as a Learned Model

(a) B-Tree Index

(b) Learned Index

Motivation 000000●0

²Image from Kraska et al. 2018

Learning FDs

Motivation 0000000

Remark

Learned algorithms offer a new research-directory when solving old algorithmic problems.

Objectives

Research Objectives

- Interpret FDs as learned constraints
- Detect FDs with machine-learning techniques
- Compare results to existing algorithms

DataWig

- DataWig is a framework for learning models to impute missing values in tables
- Data imputation: Replace missing or faulty data
- Models trained by DataWig use either regression or multi-label classification
- DataWig models can be benchmarked against FD Imputer

FD Imputer

FD Imputer: FDs as Models

Objectives

- Interpret FDs as rules for data imputation
- Write FD Imputer: An imputation model entirely based on FDs
- Measure Robustness: Either the F1-Score or the MSE that FD Imputer obtains for a FD

Motivation

How FD Imputer works

- Split dataset in train-set and test-set
- Detect FDs on train-set using HyFD³
- 3 For each FD, impute the right hand side for each tuple in the test-set by looking for a tuple with an identical left hand side in the train-set
- 4 Compute Robustness by evaluating FD Imputer's performance for each FD (F1-Score or Mean Squared Error)

Motivation

³Papenbrock and Naumann 2016.

FD Imputer Functionality Example

(a) Train set

Α	В	С	D
Yellow Blue	Bus Bus	Spain Portugal	?

(b) Test set

In this example, FD Imputer uses the FD C \rightarrow D.

Motivation

Objectives

FD Imputer Functionality Example

(a) Train set

	Α	В	С	D
•	Yellow Blue		Spain Portugal	- Lisbon

(b) Test set

In this example, FD Imputer uses the FD C \rightarrow D.

Motivation

Dataset	#FDs _{train}	#FD (F1 = 0)	F1 _{mean}	$F1_{max}$
Abalone	193	45	0.0008	0.0048
Adult	88	10	0.0669	1.0000
Balance S.	7	6	0.0000	0.0000
Breast C. W.	77	10	0.2198	0.7539
Chess	9	8	0.0000	0.0000
Iris	8	1	0.1274	0.2252
Letter	80	17	0.2347	0.3737
Nursery	11	10	0.0000	0.0000

Table: Performance of the FD Imputer on a selection of UCI datasets.

Motivation

Benchmarking FD Imputer: Ranking for Robustness

Benchmarking FD Imputer

- Some FDs are more robust than others.
- FD Imputer performs generally worse than the model trained with DataWig
- This concerns only classifiable data it is generally impossible to impute continuous numerical data with FD Imputer

FD Imputer is Overfitting

Haykin 2008

Motivation

"[Overfitting] is essentially a 'look-up table', which implies that the input-output mapping [...] is not smooth."⁴

⁴Haykin 2008, p. 165.

FD Imputer is Overfitting

Haykin 2008

Motivation

"[Overfitting] is essentially a 'look-up table', which implies that the input-output mapping [...] is not smooth."

- Due to the implementation of FD Imputer, the train-set is merely a table to look up imputation values
- No generalization takes place whatsoever
- No empirical risk minimization (ERM) is applied!

⁴Haykin 2008, p. 165.

When overfitting DataWig models, one cannot ensure that overfitting takes place on FD-attributes. Thus, it does not appear to be possible to derive FDs with trained models based on empirical risk minimization (ERM).

- It does not appear to be possible to derive FDs with ERM-based imputation models
- But what about Relaxed Functional Dependencies (RFDs)?

Motivation

Objectives

RFDs as Models

Objectives

Motivation

- An RFD is based on the definition of an FD
- It alters that definition to serve a specific purpose
- There are many RFDs defined, such as Metric Functional Dependencies, Conditional Functional Dependencies or Approximate Functional Dependencies.

Additional Slides

Example of an RFD

Example

Motivation

Koudas et al. introduce Metric Functional Dependencies (MFDs) to find constraints on tables that contain rows with slightly different formatting or slightly deviating values.⁵

⁵Koudas et al. 2009.

Motivation

Example for Noisy Data

Id	First name	Last name	Zip	Town
1	Alice	Smith	19139	Munich
2	Peter	Meyer	19139	Muinch
3	Ana	Parker	19139	Munich
4	John	Pick	12055	Berlin

The FD Zip \rightarrow Town is violated by the second row. A MFD that considers the Levenshtein distance between two entries rather than exact equality can still detect the constraint.

- Due to their their training being ERM-based, DataWig models are capable of learning constraints on noisy data as well
- During training, DataWig models "learn" relaxations there is no need to manually set up a threshold of a Levenshtein distance as in the previous example

RFDs as Models

- Due to their their training being ERM-based, DataWig models are capable of learning constraints on noisy data as well
- During training, DataWig models "learn" relaxations there is no need to manually set up a threshold of a Levenshtein distance as in the previous example

Question

How does one find a *minimal* dependency with this approach?

Functionality of DepDetector

DepDetector

Functionality of DepDetector

Functionality of DepDetector

DepDetector

Functionality of DepDetector

DepDetector

0000000000000000

DepDetector Properties

Objectives

- DepDetector solves an optimization problem on a directed graph, whereas in FD detection, tuple-comparison is performed
- DepDetector depends on one threshold for classifiable data and continous numerical data respectively
- Machine learning classifier/regressor models have the potential to unify RFDs

DepDetector Dependency Results

FD Imputer

Dataset	Cols	Rows	# FDs	Greedy dependencies	Complete dependencies
Abalone	10	4177	175	7 (42 min)	TL
Adult	16	32561	93	TL	TL
Balance-S.	6	625	7	3 (67 s)	3 (80 s)
Chess	8	28056	9	1 (117 min)	1 (340 min)
Iris	6	150	9	5 (38 s)	8 (43s)
Letter	18	20000	78	TL	TL
Nursery	11	12960	11	3 (110 min)	TL

^{&#}x27;TL' indicates a time limit of 350 min.

Additional Slides

Prospects

Motivation

References

- Minimal dependency detection algorithms for learned relaxations can be further optimized (Concurrency, applying Graph-Theory)
- A complexity analysis for the for such algorithms can be performed
- Approaches to calculate thresholds from the data can be introduced

References I

Motivation

Ziawasch Abedjan et al. Data Profiling. 2019. isbn: 9781681734477. doi: https: //doi.org/10.2200/S00878ED1V01Y201810DTM052.

Simon Haykin. Neural Networks and Learning Machines Third Edition, Pearson Prentice Hall, 2008, isbn: 9780131471399.

Objectives

Motivation

Alireza Heidari et al. "HoloDetect: Few-Shot Learning for Error Detection". In: Proceedings of the 2019 International Conference on Management of Data. SIGMOD '19. ACM, 2019, pp. 829–846. isbn: 978-1-4503-5643-5. doi: 10.1145/3299869.3319888. url: http://doi.acm.org/10.1145/3299869.3319888.

N. Koudas et al. "Metric Functional Dependencies". In: (Mar. 2009), pp. 1275–1278. issn: 1063-6382. doi: 10.1109/ICDE.2009.219.

References III

Objectives

Motivation

Tim Kraska et al. "The Case for Learned Index Structures". In: *Proceedings of the 2018 International Conference on Management of Data.* SIGMOD '18. Houston, TX, USA: ACM, 2018, pp. 489–504. isbn: 978-1-4503-4703-7. doi: 10.1145/3183713.3196909. url:

http://doi.acm.org/10.1145/3183713.3196909.

Thorsten Papenbrock and Felix Naumann. "A Hybrid Approach to Functional Dependency Discovery". In: SIGMOD '16 (2016), pp. 821–833. doi: 10.1145/2882903.2915203. url: http://doi.acm.org/10.1145/2882903.2915203.

Motivation

Benchmarking FD Imputer Continuous Data

Dataset	# cFDs _{train}	# 0-Coverage cFDs	Coverage (%)
Abalone	139	84	0.1277
Adult	11	5	0.1217
Balance S.	1	1	0.0000
Breast C. W.	1	1	0.0000
Chess	1	1	0.0000
Iris	4	4	0.0000
Letter	0	0	-
Nursery	1	1	0.0000

Table: Imputation coverage of FD Imputer on all UCI datasets for which FDs with continuous data in the RHS were detected.

$$\begin{aligned} \text{mean missing values per cFD} &= \sum_i \frac{\text{missing imputations}}{\text{cFD}_i} \cdot (\text{\# cFDs})^{-1} \\ \text{mean coverage} &= \left(1 - \frac{\text{mean missing values per cFD}}{\text{\# rows in } r_{test}}\right) \cdot 100 \end{aligned}$$

Motivation

Objectives

Machine Learning Models

⁵Image from Prof. Obermeyer, Neural Information Processing Group TU
Berlin

Motivation

Motivation

Definition Robustness Continous Data

If A contains continuous numerical data, the MSE is determined to measure robustness:

robustness_{MSE} =
$$\frac{1}{p-m} \sum_{i=m+1}^{p} (t_i^*[A] - t_i'[A])^2$$
. (1)

Here, $p \in \mathbb{N}$ denotes the number of tuples in a relational instance and m is the number of imputed tuples.

Definition Robustness Classifiable Data

If A contains classifiable data, the F1-Score is calculated to measure robustness:

robustness:
$$robustness_{\mathsf{F1-Score}} = \left(\frac{Recall(r_{imp}, r_{test})^{-1} + Precision(r_{imp}, r_{test})^{-1}}{2}\right)^{-1}$$
(2)

Motivation

Objectives