Grid Game II

Input file: standard input
Output file: standard output

Time limit: 3 seconds
Memory limit: 256 megabytes

The puzzle club at your university is working on a new word association game. The game consists of sixteen words, arranged in a four-by-four grid. To win the game, a player has to categorise the words into four groups of four words each, so that each pair of words in the same group is related.

Consider the example below.

UNIVERSITY	C	WALNUT	PEANUT
OF	MARSDEN	PARK	PISTACHIO
JAVA	ALMOND	WALES	PYTHON
KENSINGTON	SOUTH	HASKELL	RANDWICK

A player would be expected to know many pairs of related words:

- all pairs of words in "University of New South Wales" are related to each other,
- all pairs of words in suburb names (Kingsford, Randwick, Kensington and Marsden Park) are related to each other,
- all pairs of programming languages (C, C++, Python, Haskell and Java) are related to each other, and
- all pairs of nuts (peanut, walnut, cashew, almond and pistachio) are related to each other.

There is only one way to group these words into four groups of four. This is displayed below by colouring the grid using yellow, green, blue and purple, but the particular colour assigned to a group holds no significance.

UNIVERSITY	С	WALNUT	PEANUT
OF	MARSDEN	PARK	PISTACHIO
JAVA	ALMOND	WALES	PYTHON
KENSINGTON	SOUTH	HASKELL	RANDWICK

The club needs your help to check whether a given puzzle can be solved or not! Given a grid of words, and a list of pairs of related words from the grid, report whether the puzzle can be solved, and if so, find a valid grouping.

Input

The first four lines of input each contain four words, and each word comprises up to 15 uppercase English letters. All sixteen words are distinct.

The next line contains a single integer m ($24 \le m \le 120$), which is the number of pairs of related words.

The next m lines each represent a pair of related words. Each such line contains two distinct words out of the sixteen listed in the first three lines. No pair of related words appears more than once (in either ordering). So if a b appears, then b a does not.

Output

If there is no valid grouping, display Impossible.

Otherwise, display Possible, then four lines each containing four words. Each of these lines must correspond to a group, so the first four words must be pairwise related, as well as the next four, the next four and the final four. If there are multiple solutions, you can output any.

Example

standard input	standard output		
UNIVERSITY C WALNUT PEANUT	Possible		
OF MARSDEN PARK PISTACHIO	UNIVERSITY OF SOUTH WALES		
JAVA ALMOND WALES PYTHON	KENSINGTON RANDWICK MARSDEN PARK		
KENSINGTON SOUTH HASKELL RANDWICK	C PYTHON HASKELL JAVA		
24	WALNUT PEANUT ALMOND PISTACHIO		
UNIVERSITY OF			
UNIVERSITY SOUTH			
UNIVERSITY WALES			
OF SOUTH			
OF WALES			
SOUTH WALES			
RANDWICK KENSINGTON			
RANDWICK MARSDEN			
RANDWICK PARK			
KENSINGTON MARSDEN			
KENSINGTON PARK			
MARSDEN PARK			
C PYTHON			
C HASKELL			
C JAVA			
PYTHON HASKELL			
PYTHON JAVA			
HASKELL JAVA			
WALNUT PEANUT			
WALNUT ALMOND			
WALNUT PISTACHIO			
PEANUT ALMOND			
PEANUT PISTACHIO			
ALMOND PISTACHIO			