Systèmes dynamiques DM n°2

Pour après la Toussaint

On note $M_n(k)$ l'espace vectoriel des matrices carrées de taille n à coefficients dans $k = \mathbf{R}$ ou \mathbf{C} . Pour tout $A \in M_n(\mathbf{C})$, on note $\mathrm{sp}(M) \subset \mathbf{C}$ son spectre et

$$C_{\lambda,k} = \left\{ u \in k^n : \exists N \in \mathbf{N}, (A - \lambda)^N u = 0 \right\},$$

le k-espace propre généralisé de A associé à $\lambda \in \mathbf{C}$. Si $\lambda \in \mathbf{C} \setminus \mathbf{R}$, on définit aussi

$$C_{\lambda,\bar{\lambda}} = \left\{ u \in \mathbf{R}^n : \exists N \in \mathbf{N}, \ (A - \lambda)^N (A - \bar{\lambda})^N u = 0 \right\}$$

l'espace propre généralisé réel associé à λ et $\bar{\lambda}$. On note aussi $D(z,\rho)=\{\zeta\in \mathbf{C},\ |z-\zeta|<\rho\}$, sa fermeture $\bar{D}(z,\rho)=\overline{D(z,\rho)}$ et $\mathscr{C}_{\lambda,\rho}=\partial D(z,\rho)$ pour tout $z\in \mathbf{C}$ et $\rho>0$.

Le but du problème est de montrer le résultat suivant.

Proposition (Stabilité structurelle des flots linéaires hyperboliques). Soit $A \in M_n(\mathbf{R})$ une matrice dont toutes les valeurs propres ont une partie réelle non nulle. Alors il existe un voisinage \mathcal{U} de A dans $M_n(\mathbf{R})$ et une application continue $\Phi: \mathcal{U} \times \mathbf{R}^n \to \mathbf{R}^n$ telle que pour tout $M \in \mathcal{U}$, l'application $x \mapsto \Phi(M, x)$ est un homéomorphisme de \mathbf{R}^n et

$$\Phi(M, e^{tM}x) = e^{tA}\Phi(M, x), \quad t \in \mathbf{R}, \quad x \in \mathbf{R}^n.$$

Perturbation des valeurs propres

Soit $A \in M_n(\mathbf{C})$.

1. Montrer que pour tous $\lambda, \mu \in \mathbf{C} \setminus \mathrm{sp}(A)$, on a

$$(A - \lambda)^{-1}(A - \mu)^{-1} = \frac{(A - \lambda)^{-1} - (A - \mu)^{-1}}{\lambda - \mu}.$$

Soit $\lambda \in \operatorname{sp}(A)$. On fixe $\rho > 0$ tel que

$$\bar{D}(\lambda, \rho) \cap \operatorname{sp}(A) = \{\lambda\}. \tag{1}$$

On définit la matrice $\Pi_{\lambda} \in M_n(\mathbf{C})$ par

$$\Pi_{\lambda} = \frac{1}{2\pi i} \int_{\mathscr{C}_{\lambda}} (z - A)^{-1} \mathrm{d}z,$$

où l'on a intégré sur le contour $\mathcal{C}_{\lambda,\rho}$ dans le sens anti-horaire.

- **2.** Montrer que Π_{λ} ne dépend pas du choix de ρ vérifiant (1).
- **3.** En utilisant la question **1.**, montrer que $\Pi_{\lambda}^2 = \Pi_{\lambda}$.
- **4.** Soit $z \mapsto B(z) \in M_n(\mathbf{C})$ une application holomorphe sur un ouvert $U \subset \mathbf{C}$ et $d(z) = \det B(z)$. Montrer que pour tout $z \in U$ tel que $d(z) \neq 0$,

$$d'(z) = d(z) \operatorname{tr}(B(z)^{-1}B'(z)).$$

- 5. En déduire que tr $\Pi_{\lambda} = \dim_{\mathbf{C}} C_{\lambda,\mathbf{C}}$ et que l'application induite par Π_{λ} est un projecteur d'image $C_{\lambda,\mathbf{C}}$.
- 6. Montrer que les matrices $\{\Pi_{\mu}, \mu \in \operatorname{sp}(M)\}$ sont les matrices des projecteurs spectraux complexes associés à A, i.e. les projecteurs associés à la décomposition

$$\mathbf{C}^n = \bigoplus_{\mu \in \mathrm{sp}(M)} C_{\mu,\mathbf{C}}.$$

7. Soit $U \subset \mathbf{C}$ un ouvert borné tel que $\partial U \cap \operatorname{sp}(A) = \emptyset$. Montrer qu'il existe un voisinage \mathcal{U} de A dans $M_n(\mathbf{C})$ tel que l'application $\Pi_U : \mathcal{U} \to M_n(\mathbf{C})$ définie par

$$\Pi_U(M) = \sum_{\lambda \in \operatorname{sp}(M) \cap U} \Pi_{\lambda}(M), \quad M \in \mathcal{U},$$

où $\Pi_{\lambda}(M)$ est le projecteur spectral sur l'espace caractéristique de M associé à λ , est holomorphe en chaque coefficient de M.

On suppose maintenant que $A \in M_n(\mathbf{R})$.

- 8. On suppose que $\lambda \in \mathbf{R}$. Montrer que Π_{λ} est à coefficients réels.
- **9.** On suppose que $\lambda \in \mathbb{C} \setminus \mathbb{R}$. Montrer que

$$\Pi_{\lambda,\bar{\lambda}} = \Pi_{\lambda} + \Pi_{\bar{\lambda}}.$$

est à coefficients réels et que $\Pi^2_{\lambda,\bar{\lambda}} = \Pi_{\lambda,\bar{\lambda}}$.

10. Montrer que les matrices $\{\Pi_{\mu}\}\cup\{\Pi_{\mu,\bar{\mu}}\}$ sont les matrices des projecteurs spectraux réels associés à A, i.e. les projecteurs associés à la décomposition

$$\mathbf{R}^n = \left(\bigoplus_{\mu \in \mathbf{R}} C_{\mu}\right) \oplus \left(\bigoplus_{\Im \mu > 0} C_{\mu,\bar{\mu}}\right).$$

Classification topologique des flots contractants

Soit $M_n^-(\mathbf{R}) = \{ A \in M_n(\mathbf{R}), \operatorname{sp}(A) \subset \mathbf{R}_{<0} \}$. Pour $A \in M_n^-(\mathbf{R})$ on note

$$\alpha(A) = -\sup_{\lambda \in \operatorname{sp}(A)} \Re \lambda > 0.$$

Soit $f: \mathbf{R}_{>0} \to \mathbf{R}_{>0}$ une fonction continue telle que f(t) < t pour tout t > 0. On note $\beta = f \circ \alpha : M_n^-(\mathbf{R}) \to \mathbf{R}_{>0}$.

- 11. Montrer que $A \mapsto \alpha(A)$ est continue $M_n^-(\mathbf{R}) \to \mathbf{R}_{>0}$.
- 12. Montrer que l'on peut trouver une famille de normes $\{\|\cdot\|_A, A \in M_n^-(\mathbf{R})\}$ telle que l'application $(A, x) \mapsto \|x\|_A$ est continue $M_n^-(\mathbf{R}) \times \mathbf{R}^n \to \mathbf{R}_{\geq 0}$ et

$$\left\| e^{tA} x \right\|_A \leqslant e^{-t\beta(A)} \|x\|_A, \quad t \geqslant 0.$$

Pour tout $A \in M_n^-(\mathbf{R})$ on note $S_A = \{x \in \mathbf{R}^n, \|x\|_A = 1\}.$

13. Montrer que pour tout $A \in M_n^-(\mathbf{R})$ et tout $x \in \mathbf{R}^n \setminus \{0\}$, il existe un unique $\tau_A(x) \in \mathbf{R}$ tel que $e^{\tau_A(x)A}x \in S_A$.

Pour $A \in M_n^-(\mathbf{R})$ on définit $\varphi(A) : \mathbf{R}^n \to \mathbf{R}^n$ par $\varphi(A)(0) = 0$ et

$$\varphi(A)(x) = e^{\tau_A(x)} \left(e^{\tau_A(x)A} x \right), \quad x \in \mathbf{R}^n \setminus \{0\}.$$

- **14.** Montrer que l'application $(A, x) \mapsto \varphi(A)(x)$ est continue $M_n^-(\mathbf{R}) \times \mathbf{R}^n \to \mathbf{R}^n$.
- 15. Montrer que $\varphi(A)$ est un homéomorphisme de \mathbf{R}^n dans lui-même et que

$$e^{-t}\varphi(A) = \varphi(A) \circ e^{tA}, \quad t \in \mathbf{R}.$$

16. En déduire que pour toutes matrices $A, B \in M_n^-(\mathbf{R})$, les flots e^{tA} et e^{tB} sont conjugués.

Stabilité structurelle des flots linéaires hyperboliques

On note $\operatorname{Hyp}_n(\mathbf{R}) \subset \operatorname{GL}(n,\mathbf{R})$ les matrices réelles engendrant un flot hyperbolique, c'est-à-dire les matrices dont toutes les valeurs propres ont une partie réelle non nulle. Pour $A \in \operatorname{Hyp}_n(\mathbf{R})$ on note

$$m(A) = \sum_{\Re(\lambda) > 0} \dim_{\mathbf{C}} C_{\lambda, \mathbf{C}},$$

On note aussi

$$E^{s}(A) = \left\{ x \in \mathbf{R}^{n}, \ e^{tA}x \underset{t \to +\infty}{\longrightarrow} 0 \right\}, \quad E^{u}(A) = \left\{ x \in \mathbf{R}^{n}, \ e^{tA}x \underset{t \to -\infty}{\longrightarrow} 0 \right\}.$$

17. Montrer que $\mathrm{Hyp}_n(\mathbf{R})$ est ouvert dans $M_n(\mathbf{R})$ et que

$$\mathbf{R}^n = E^s(A) \oplus E^u(A)$$

pour tout $A \in \text{Hyp}_n(\mathbf{R})$. On notera $\pi_s(A)$ et $\pi_u(A)$ les projections associées à cette décomposition.

18. Montrer que $A \mapsto (\pi_s(A), \pi_u(A))$ est continue $\mathrm{Hyp}_n(\mathbf{R}) \to \mathcal{L}(\mathbf{R}^n)^2$.

On fixe dans la suite $A \in \mathrm{Hyp}_n(\mathbf{R})$.

19. Montrer qu'il existe un voisinage \mathcal{U} de A dans $\mathrm{Hyp}_n(\mathbf{R})$ tel que pour tout $M \in \mathcal{U}$, l'application

$$\pi_s(M)|_{E^s(A)}: E^s(A) \to E^s(M)$$

est un isomorphisme.

Pour $M \in \mathcal{U}$ on note $q_s(M) : E^s(M) \to E^s(A)$ l'inverse de $\pi_s(M)|_{E^s(A)}$ et

$$\widetilde{M} = q_s(M)M\pi_s(M)|_{E^s(A)} : E^s(A) \to E^s(A).$$

- **20.** Montrer que $M \mapsto \widetilde{M}$ est continue $\mathcal{U} \to \mathcal{L}(E^s(A))$.
- **21.** Montrer qu'il existe une application continue $\widetilde{\Phi}_s : \mathcal{U} \times E^s(A) \to E^s(A)$ telle que $\widetilde{\Phi}_s(M,\cdot)$ est un homéomorphisme de $E^s(A)$ et

$$e^{tA}\widetilde{\Phi}_s(M, x_s) = \widetilde{\Phi}_s(M, e^{t\widetilde{M}}x_s), \quad t \in \mathbf{R}, \quad x_s \in E^s(A).$$

22. Démontrer le résultat voulu.

Indication : on pourra considérer l'application Φ_s définie par

$$\Phi_s(M, x) = \widetilde{\Phi}_s(M, q_s(M)\pi_s(M)x).$$

Application: conjugaisons en famille

- **23.** Montrer que les composantes connexes de $\operatorname{Hyp}_n(\mathbf{R})$ sont exactement les ensembles $\mathcal{U}_i = \{A \in \operatorname{Hyp}_n(\mathbf{R}), \ m(A) = j\}$ pour $j = 0, \dots, n$.
- **24.** Soient $j \in \{0, ..., n\}$ et $A, B \in \mathcal{U}_j$; on se donne $M : [0, 1] \to \mathcal{U}_j$ une application continue telle que M(0) = A et M(1) = B. Montrer qu'il existe une application continue $\Psi : [0, 1] \times \mathbf{R}^n \to \mathbf{R}^n$ telle que $\Psi(s, \cdot)$ est un homéomorphisme de \mathbf{R}^n pour tout $s \in [0, 1]$ et

$$e^{tA}\Psi(s,x) = \Psi(s,e^{tM(s)}x), \quad t \in \mathbf{R}, \quad x \in \mathbf{R}^n.$$