PadhAl: The Convolution Operation

One Fourth Labs

Terminology

Let's look at some terminology

1. Consider the following 3D convolution operation and look at the terminology associated with it

2. Terminology:

- a. Input Width (W_i), Height (H_i) and Depth (D_i)
- b. Output Width (W₀), Height (H₀) and Depth (D₀)
- c. The spatial extent of a filter (F), a single number to denote width and height as they are equal
- d. Filter depth is always the same as the Input Depth (D_I)
- e. The number of filters (K)
- f. Padding (P) and Stride (S)
- 3. **Question**: Given W_1 , H_1 , D_1 , F, K, S and P how do you compute W_0 , H_0 , and D_0 ?

PadhAl: The Convolution Operation

One Fourth Labs

4. To answer that, let us look at a sample 3x3 kernel passing over a 7x7 image

- a. Here, we can see that by running the 3x3 kernel over a 7x7 image, we get a smaller 5x5 image.
- b. This is because we can't place the kernel at the corners as it will cross the input boundaries
- c. This is true of all the shaded points.
- d. Hence the size of the output will be smaller than that of the input
- 5. Let's see another example with a 5x5 kernel

- a. Here, we can see that by running a 5x5 kernel over a 7x7 input, we get a smaller 3x3 image
- b. Here, the out-of-bounds regions are larger.
- c. Thus the output is much smaller.
- 6. We can see that the reduction in size can be given by the following equations
 - a. $W_O = W_I F + 1$
 - b. $H = H_I F + 1$
- 7. However in practice, we could still place the kernel on the boundary and take only the valid neighbors. This is roughly what is being done.