Sparse clustering for multi-way array data

Miaoyan Wang, Feb 9, 2019

1 Theory

Definition 1 (Rank- (r_1, \ldots, r_K) approximation). Let $\mathcal{A} \in \mathbb{R}^{d_1 \times \cdots \times d_K}$ be an order-K tensor and r_1, \ldots, r_K be a set of integers satisfying $1 \leq r_k \leq d_k$ for $k \in [K]$. The best rank- (r_1, \ldots, r_K) approximation problem is to find a set of d_k -by- r_k matrices $\{\hat{U}^{(k)}\}$ with orthogonal columns and an $r_1 \times r_2 \times \cdots \times r_K$ core tensor $\hat{\mathcal{B}}$ such that

$$(\hat{\mathcal{B}}, \hat{U}^{(k)}) \in \underset{\mathcal{B}, U^{(k)} \in \mathcal{O}(d_k, r_k), k \in [K]}{\operatorname{arg min}} \left\| \mathcal{A} - \mathcal{B} \times_1 \left(U^{(1)} \right)^T \times_2 \cdots \times_K \left(U^{(K)} \right)^T \right\|_F.$$

It can be shown that the optimal $\hat{\mathcal{B}}$ is given by $\hat{\mathcal{B}} = \mathcal{A} \times_1 \hat{U}^{(1)} \times_2 \cdots \times_K \hat{U}^{(K)}$.

Definition 2 (Scaled Membership Matrix). A matrix $U \in \mathbb{R}^{d \times r}$ is called a scaled membership matrix if the following two conditions hold:

- 1. All columns of U are orthonormal.
- 2. The elements of the *i*-th column of U are 0 or $\frac{1}{\sqrt{n_i}}$, where $n_i \in \mathbb{Z}^+$ for all $i \in [r]$ and $\sum_{i=1}^r n_i = d$.

We denote by $\mathcal{M}(d,r)$ the family of scaled membership matrices.

Theorem 1.1. The optimization (??) subject to the constraints $\{U^{(k)} \in \mathcal{M}(r,d) : k = 1,\ldots,K\}$ is equivalent to the multi-way clustering problem with = 0.

2 Algorithm sketch

Algorithm for three-way sparse clustering:

Input: a tensor $\mathcal{A} \in \mathbb{R}^{d_1 \times d_2 \times d_3}$; the number of clusters (r_1, r_2, r_3) (i.e., there are r_1 clusters in the first mode, r_2 clusters in the second mode, and r_3 clusters in the third mode); sparse parameter λ .

Output: three membership matrices $\tilde{U}^{(1)}$, $\tilde{U}^{(2)}$, $\tilde{U}^{(3)}$.

1. **Initialize membership matrix.** Perform the k-mean clustering on the unfolded matrix $\mathcal{A}_{(1)} \in \mathbb{R}^{d_1 \times (d_2 d_3)}$. Store the resulting clustering of $\{1, \ldots, d_1\}$ into a unscaled membership matrix $\tilde{U}^{(1)} = [\tilde{U}^{(1)}(i, a)] \in \{0, 1\}^{d_1 \times r_1}$; that is,

$$\tilde{U}^{(1)}(i,a) = \begin{cases} 1 & \text{if index } i \text{ is in cluster } a, \\ 0 & \text{otherwise.} \end{cases}$$

In other words, $\tilde{U}^{(1)}$ is a dummy variable encoding a factor with r_1 levels (Recall what we have learned in STAT601).

Repeat the above procedure for $A_{(2)}$ and $A_{(3)}$ and record the resulting clustering into $\tilde{U}^{(2)}$ and $\tilde{U}^{(3)}$, respectively.

2. Update cluster mean.

$$\hat{\mathcal{B}} = \mathcal{A} \times_1 \tilde{U}^{(1)} \times_2 \tilde{U}^{(2)} \times_3 \tilde{U}^{(3)}.$$

Note that we use the unscaled version of the membership matrix $\tilde{U}^{(1)}$, not the scaled membership matrix $\hat{U}^{(1)}$!

Then perform **Soft-thresholding** on $\hat{\mathcal{B}}$.

$$\hat{\mathcal{B}}_{abc} \leftarrow \frac{\text{Soft-thresholding}(\hat{\mathcal{B}}_{abc}, \lambda)}{|\tilde{U}^{(1)}(:,a)||\tilde{U}^{(2)}(:,b)||\tilde{U}^{(3)}(:,c)|}, \quad \text{for all } (a,b,c) \in [r_1] \times [r_2] \times [r_3],$$

where $|\tilde{U}^{(1)}(:,a)|$ denotes the sum of the *i*-th column in $\tilde{U}^{(1)}$ (or equivalently, the number of non-zero entries in the vector $\tilde{U}^{(1)}(:,a)$).

3. Update group membership matrix. Update $\tilde{U}^{(1)}$ using the following procedure:

(Outer loop) for i from 1 to d_1 :

(Inner loop) for a from 1 to r_1 :

Compute $f(a) = \sum_{jk} (A_{ijk} - \hat{\mathcal{B}}_{abc})^2$ where b is the cluster index that j belongs to (based on the clustering on the second mode), c is the cluster index that k belongs to (based on the clustering on the third mode).

(End of Inner loop) Find $a^* \in \{1, 2, ..., r_1\}$ which minimizes f(a). Assign the index i to the cluster a^* .

(End of Outer loop) Repeat the above procedure for all $i \in \{1, 2, ..., d_1\}$. Eventually, the output will be stored in a new membership matrix $\tilde{U}^{(1,\text{new})} \in \mathbb{R}^{d_1 \times r_1}$:

$$\tilde{U}^{(1,\text{new})}(i,a) = \begin{cases} 1 & \text{if the index } i \text{ is assigned to the cluster } a, \\ 0 & \text{otherwise.} \end{cases}$$

Overwrite the previous membership matrix $\tilde{U}^{(1)}$ using this new matrix $\tilde{U}^{(1,\text{new})}$.

- 4. Repeat Step 2.
- 5. Repeat Step 3, but this time for $\tilde{U}^{(2)}$.
- 6. Repeat Step 2.
- 7. Repeat Step 3, but this time for $\tilde{U}^{(3)}$.

8. Repeat Steps 2-7 until convergence.

In each of the above 8 steps, record the objective function value

$$Obj = \frac{1}{2} \sum_{ijk} (\mathcal{A}_{ijk} - \hat{\mathcal{B}}_{abc})^2 + \lambda \sum_{abc} |\hat{\mathcal{B}}_{abc}|,$$

where in the first summand, a is the cluster that i belongs to (based on the clustering in the first mode), b is the cluster that j belongs to (based on the clustering in the second mode), c is the cluster that i belongs to (based on the clustering in the third mode).

Observe the change of Obj over iterations.

3 Preliminaries

Mode is a generalization of "row", "column", etc. For example, the first mode of a tensor means the "row", the second "mode" means the column, and the third "mode" means the 3rd direction.

The subscripts (1), (2), (3) specifies the **mode**.

[n]: for any integer n, I use the short-hand notation [n] to represent the set $\{1,\ldots,n\}$.

i, j, k: index of the data entry.

a, b, c: index of the clusters.

 \mathcal{B}_{abc} : the (a, b, c) entry in the tensor \mathcal{B} .

Both $\tilde{U}^{(1)}(i,a)$ and $\tilde{U}^{(1)}_{ia}$ represent the (i,a) entry in the matrix $\tilde{U}^{(1)}$.

Tensor-matrix multiplication Suppose $\mathcal{B} \in \mathbb{R}^{r_1 \times r_2 \times r_3}$, $\mathcal{A} \in \mathbb{R}^{d_1 \times d_2 \times d_3}$, $U^{(1)} \in \mathbb{R}^{d_1 \times r_1}$, $U^{(2)} \in \mathbb{R}^{d_2 \times r_2}$, $U^{(3)} \in \mathbb{R}^{d_3 \times r_3}$. Then

$$\mathcal{B} = \mathcal{A} \times_1 U^{(1)} \times_2 U^{(2)} \times_3 U^{(3)}$$

means

$$\mathcal{B}_{abc} = \sum_{ijk} \mathcal{A}_{ijk} U_{ia}^{(1)} U_{jb}^{(2)} U_{kc}^{(3)}, \quad \text{for all } (a, b, c) \in [d_1] \times [d_2] \times [d_3].$$

Tensor unfolding. Check the R function unfold(..). Get a sense how the entries are re-arranged between $\mathcal{A}_{(1)}$, $\mathcal{A}_{(2)}$, $\mathcal{A}_{(3)}$ and \mathcal{A} .

Description of unfold(...):

Input: $A \in \mathbb{R}^{d_1 \times d_2 \times d_3}$, mode

Output: $\mathcal{A}_{(1)} \in \mathbb{R}^{d_1 \times (d_2 d_3)}$ (if mode=1); $\mathcal{A}_{(2)} \in \mathbb{R}^{d_2 \times (d_1 d_3)}$ (if mode=2); or $\mathcal{A}_{(3)} \in \mathbb{R}^{d_3 \times (d_1 d_2)}$ (if mode=3)