41 Satz: Seien $U \in \mathbb{R}^n$ offen $x_0 \in U$ und $f: U \to \mathbb{R}$ eine k-mal stetig partiell differenzierbare Funktion. Für r > 0 gelte $B(x_0, r) \subset U$ Dann gibt es eine Funktion $\eta: B(x_0, r) \to \mathbb{R}$ mit $\eta(x_0) = 0$ und $\lim_{x \to x_0} \frac{\eta(x)}{|x - x_0|^k} = 0$. Sodass $\forall x \in B(x_0, r)$

$$f(x) = \sum_{l=0}^{n} \left(\sum_{\substack{|\alpha|=l\\ \alpha \in \mathbb{N}_{0}^{n}}} \frac{D^{\alpha} f(x_{0})}{\alpha!} \cdot (x - x_{0})^{\alpha} \right) \eta(x)$$

Spezialfall für k=2

Sei $U \in \mathbb{R}^n$ offen, $x_0 \in U$ und $f \in C^2(U)$ Dann gibt es $c \in \mathbb{R}$, $a \in \mathbb{R}^n$ $A \in \mathbb{R}^{n \times n}$ symmetrisch, sodass die durch

$$f(x) = c + \langle a, (x - x_0) \rangle + \frac{1}{2} \langle (x - x_0), A \cdot (x - x_0) \rangle + \eta(x) \ \forall x \in U$$

definierte Funktion $\eta:U\to\mathbb{R}$ die Eigenschaften

$$\eta(x_0) = 0, \lim_{\substack{x \to x_0 \\ x \neq x_0}} \frac{\eta(x)}{|x - x_0|^2} = 0$$

hat.

Hesse Matrix: Sind $U \subset \mathbb{R}^n$ offen, $x_0 \in U$ und $f: U \to \mathbb{R}$ ist 2-mal stetig partiell differenzierbare, so heißt die symmetrische Matrix:

$$\operatorname{Hess} f(x_0) := \begin{pmatrix} \frac{\partial^2 f}{\partial x_0 \partial x_1} (x_0) & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_1} (x_0) \\ \vdots & & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} (x_0) & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_n} (x_0) \end{pmatrix}$$

Hessesche Matrix von f in x_0

§9 Lokale Extrema

Definition: Seien $U \subset \mathbb{R}^n$ offen, $x_0 \in U$ und $f: U \to \mathbb{R}$ eine Funktion

a) f hat in x_0 eine lokales Minimum (bzw lokales Maximum), wenn es eine offene Umgebung $x_0 \in V \subset U$ gibt mit $\forall x \in V : f(x) \geq f(x_0)$ (bzw. \leq) Falls man sogar V so wählen dann, dass

$$\forall x \in V : f(x) > f(x_0) \text{ (bzw. <)}$$

so spricht man von einem isoliertes lokal Minimum (bzw. Maximum) von f

b) Die Bezeichnung *(isoliertes) lokales Extremum* bezeichnet sowohl Minima als auch Maxima

42 Satz: Sei $U \subset \mathbb{R}^n$ offen. Die Funktion $f: U \to \mathbb{R}$ habe in $x_0 \in U$ ein lokales Extremum und sei partiell differenzierbar in x_0 . Dann gilt grad $f(x_0) = \left(\frac{\partial f}{\partial x_1}(x_0), \cdots, \frac{\partial f}{\partial x_n}(x_0)\right) = 0$

Beweis. Sei r > 0 sodass $B(x_0, r) \subset U$ gilt. Sei ferner $\{e_1, \dots, e_n\}$ die Standardbasis. Dann sit für jedes $j \in \{1, \dots, n\}$ die Funktion $g_{ij} : (-r, r) \to \mathbb{R}, \ t \mapsto f(x_0 + t \cdot e_j)$ in der Stelle t = 0 durch $g'_j(0) = \frac{\partial f}{\partial x_j}(x_0)$ differenzierbar und nimmt dort ein Extremum an. Aus Analysis 1: $g'_j(0) = 0$

3 Lokale Extrema

Definition: Ist $A \in \mathbb{R}^{n \times n}$ eine symmetrische Matrix und Q_A die durch A gegebene quadratische Form auf \mathbb{R}^n so nennt man A:

a) **positiv definit** ($A \gg 0$), falls

$$Q_A(\zeta) := \langle \zeta, A \cdot \zeta \rangle > 0 \ \forall \zeta \in \mathbb{R}^n \ \{0\}$$

b) **positiv semidefinit**, falls

$$Q_A(\zeta) := \langle \zeta, A \cdot \zeta \rangle \ge 0 \ \forall \zeta \in \mathbb{R}^n \ \{0\}$$

c) negativ definit ($A \ll 0$), falls

$$Q_A(\zeta) := \langle \zeta, A \cdot \zeta \rangle < 0 \ \forall \zeta \in \mathbb{R}^n \ \{0\}$$

d) negativ semidefinit, falls

$$Q_A(\zeta) := \langle \zeta, A \cdot \zeta \rangle \le 0 \ \forall \zeta \in \mathbb{R}^n \ \{0\}$$

e) indefinit, falls Vektoren $\zeta, \overline{\zeta} \in \mathbb{R}^n$ {0} existieren mit:

$$Q_A(\zeta) < 0; \ Q_A(\overline{\zeta}) > 0$$

Zu jeder symmetrischen Matrix $A \in \mathbb{R}^{n \times n}$ gibt es $\lambda_1, \dots, \lambda_n \in \mathbb{R}$ und $v_1, \dots, v_n \in \mathbb{R}^n$ mit

a)
$$A \cdot v_j = \lambda_j \cdot v_j \ \forall j = 1, \dots, n$$

b)
$$\forall i, j = 1, \dots, n : \langle v_i, v_j \rangle = \delta_{ij}$$

Die Zahlen λ_j heißen Eigenwerte von A, die x_i sind Eigenvektoren von A zum Eigenwert λ_j . Bezüglich einer Orthonormalbasis hat, die durch A gegebene quadratische Form die Gestalt:

$$\zeta = \sum_{j=1}^{n} \alpha_{j} v_{j} \implies Q_{A}(\zeta) = \left\langle \sum_{i=1}^{n} \alpha_{i} v_{i}, A\left(\sum_{j=1}^{n} \alpha_{j} v_{j}\right) \right\rangle \\
= \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} \left\langle v_{i}, \underbrace{Av_{j}}_{=\lambda_{j} v_{j}} \right\rangle \\
= \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} \lambda_{j} \delta_{ij} \\
= \sum_{i=1}^{n} \lambda_{i} \alpha_{i}^{n}$$

Lemma

Sei $A \in \mathbb{R}^{n \times n}$ eine symmetrische Matrix mit Eigenwerten $\lambda_1, \dots, \lambda_n$. Dann gilt:

- a) A ist positiv definit genau dann, wenn $\lambda_j > 0 \ \forall j = 1, \dots, n$
- b) A ist positiv semidefinit genau dann, wenn $\lambda_j \geq 0 \ \forall j = 1, \cdots, n$

4 Lokale Extrema

- c) A ist negativ definit genau dann, wenn $\lambda_j < 0 \ \forall j = 1, \dots, n$
- d) A ist negativ semidefinit genau dann, wenn $\lambda_j \leq 0 \ \forall j = 1, \cdots, n$
- e) A ist indefinit genau dann, wenn es $i, j \in \{1, \dots, n\}$ gibt mit $\lambda_i, \dots, \lambda_j < 0$

43 Satz: Seien $U \in \mathbb{R}^n$ offen, $x_0 \in U$ und $f: U \to \mathbb{R}$ eine C^2 Funktion, also zwei Mal stetig differenzierbar mit grad $f(x_0) = 0$ Dann gilt:

- a) Ist $\operatorname{Hess} f(x_0) \gg 0$, so hat f an der Stelle x_0 ein isoliertes lokales Minimum
- b) Ist $\operatorname{Hess} f(x_0) \ll 0$, so hat f an der Stelle x_0 ein isoliertes lokales Maximum
- c) Ist $\operatorname{Hess} f(x_0)$ indefinit, so hat f an der Stelle x_0 kein lokales Maximum

Beweis. Sei $A := \operatorname{Hess} f(x_0) \in \mathbb{R}^{n \times n}$; $D_a f$ eine C^2 Funktion ist, ist A symmetrisch, welsche nach Voraussetzung ist A positiv definit.

Die durch A gegebene quadratische Form Q_A eine stetige Funktion auf \mathbb{R}^n . Nimmt also auf dem Kompaktum:

$$S := \partial B(0,1) = \{ \zeta \subset \mathbb{R}^n : |\zeta| = 1 \}$$

ein Minimum an. Es gibt also $\xi \in S$ mit $Q_A(\xi) \leq Q_A(\zeta) \ \forall \zeta \in S$, wobei positiv Definitheit bedeutet: $4\varepsilon = Q_A(xi) > 0$ Daraus folgt

$$Q_A(\zeta) \ge 4\varepsilon |\zeta|^2 \,\forall \zeta \in \mathbb{R}^n \tag{1}$$

da:

$$Q_A(S) = Q_A\left(\frac{|\zeta|}{|\zeta|}\zeta\right)$$
$$= |\zeta|^2 \underbrace{Q_A\left(\frac{\zeta}{|\zeta|}\right)}_{\geq 4\varepsilon} \geq |\zeta|^2 4\varepsilon$$

Aus dem Korollar zum Satz 4.1 folgt:

$$f(x) = f(x_0) + \langle \operatorname{grad} f(x_0), (x - x_0) \rangle + \frac{1}{2} \underbrace{\langle x - x_0, A(x - x_0) \rangle}_{=Q_A(x - x_0)} + \eta(x)$$

- a) Siehe oben
- b) Ist $\operatorname{Hess} f(x_0) \ll 0$, so ist

$$-\operatorname{Hess} f(x_0) = \operatorname{Hess} (-f)(x_0) \ll 0$$

Aus a folgt : -f hat in x_0 ein isoliertes lokales Minimum

c) Ist $A : \operatorname{Hess} f(x_0)$ indefinit, so gibt es $\zeta, \overline{\zeta} \in \mathbb{R}^n$ mit $|zeta| = |\overline{\zeta}| = 1$ und $Q_A(\zeta) =: \alpha > 0$ und $Q_A(\overline{\zeta}) =: \beta < 0$

5 Lokale Extrema

Für genügende kleine $|t|\ll 1$ liegen die die Punkte $x_0+t\zeta_1x_0+t\overline{\zeta}\in U$ und es gilt:

$$\left|\eta\left(x_0+t\zeta\right)\right|$$

§10 Implizite Funktionen

Die zentrale Fragestellung dieses Paragraphen ist Folgende: Gegeben sei eine Gleichung (bzw. ein System von m Gleichung) F(x,y)=0 durch die Abbildung $F:U_1\times U_2\subset \mathbb{R}^k\times \mathbb{R}^m\to \mathbb{R}^m$ sowie eine Lösung $(a,b)\colon F(a,b)=0$ Gibt es dann eine Umgebung $V_1\times V_2\ni (a,b)$ in $U_1\times U_2$ und eine Abbildung $g:V_1\to V_2$ mit F(x,g(x))=0 $\forall x\in V_1$? Und wenn ja, ist dieses g eindeutig? In diesem Fall sagen wir, dass die Abbildung g durch die Gleichung F(x,y)=0 implizit definiert ist.

44 Satz: Seien $U_1 \subset \mathbb{R}^k$, $U_2 \subset \mathbb{R}$ offene Mengen, $a \in U_1, b \in U_2$ und sei $F: U_1 \times U_2 \to \mathbb{R}$ $(x,y) \mapsto F(x,y)$ eine differenzierbar Funktion mit

$$\frac{\partial F}{\partial y}(a,b) = 0$$

Es gebe eine differenzierbare Funktion $g: U_1 \to U_2$ mit g(a) = b und F(x, g(x)) = 0 $x \in U_1$ Dann gilt: $\forall j = 1, \dots, k$

$$\frac{\partial g}{\partial x_j}(a) = \frac{-\frac{\partial F}{\partial x_j}(a, b)}{\frac{\partial F}{\partial y}(a, b)}$$

Beweis. Bezeichne mit ϕ die differenzierbare Funktion

$$\phi: U_1 \to U_1 \times U_2$$
$$x \mapsto (x, q(x))$$

So ist die Verkettung $F \circ \phi$ die konstante Nullfunktion ist. Aus der Kettenregel:

$$\begin{split} 0 &= D\left(F \circ \phi\right)(x) \\ &= DF(\phi(x)) \cdot D\phi\left(x\right) \\ &= \left(\frac{\partial F}{\partial x_1}(x,g(x)), \cdots, \frac{\partial F}{\partial x_k}(x,g(x)), \frac{\partial F}{\partial g}(x,g(x))\right) \cdot \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & & \ddots & \cdots & 0 \\ \frac{\partial g}{\partial x_1}(x) & \frac{\partial g}{\partial x_2}(x) & \cdots & \frac{\partial g}{\partial x_k}(x) \end{pmatrix} \\ &= \left(\frac{\partial F}{\partial x_1}(x,g(x)) + \frac{\partial F}{\partial g}(x,g(x)) \cdot \frac{\partial g}{\partial x_1}(x), \cdots, \frac{\partial F}{\partial x_k}(x,g(x)) + \frac{\partial F}{\partial g}(x,g(x)) \cdot \frac{\partial g}{\partial x_k}(x), \right) \end{split}$$

Für x=a hat man aus g(a)=b und $\frac{\partial F}{\partial y}(a,b)\neq 0$ also: $\forall j=1,\cdots,k$

$$\frac{\partial g}{\partial x_j}(a) = -\frac{\frac{\partial F}{\partial x_j}(a,b)}{\frac{\partial F}{\partial y}(a,b)} \cdot (\text{die obige Matrix})$$

In Verbindung mit der nicht-Entartungsbedingung $\frac{\partial F}{\partial g}(a,b) \neq 0$, kann man bereits aus der Stetigkeit der impliziert definition Funktion g auf f die Differenzierbarkeit schließen. Denn es gilt:

45 Satz: Seien $a \in \mathbb{R}^k, b \in \mathbb{R}, a, r_2 > 0$ sowie $U_1 = B(a, r_1) \subset \mathbb{R}^k, U_2 := B(b, r_2)$ Sei ferner $F: U_1 \times U_2 \to \mathbb{R}$ eine in (a, b) differenzierbare Funktion mit $F(a, b) = 0, \frac{\partial F}{\partial y}(a, b) \neq 0$ Ist dann $g: U_1 \to \mathbb{R}$ ein stetige Funktion mit g(a) = b $g(U_1) \subset U_2: F(x, g(x)) = 0$ so folgt: g ist an der Stelle g differenzierbar und es gilt: $\forall j = 1, \dots, k$

$$\frac{\partial g}{\partial x_j}\left(a\right) = -\frac{\frac{\partial F}{\partial x_j}(a,b)}{\frac{\partial F}{\partial y}(a,b)}$$