Московский государственный технический университет им. Н.Э. Баумана

Факультет «Информатика и системы управления»

Кафедра «Системы обработки информации и управления»

"Методы машинного обучения"

ЛАБОРАТОРНАЯ РАБОТА № 2. «Изучение библиотек обработки данных»

Студент группы ИУ5-24М
Петропавлов Д.М.
Дата
Подпись

Часть 1. Выполните первое демонстрационное задание "demo assignment" под названием "Exploratory data analysis with Pandas" со страницы курса https://mlcourse.ai/assignments

Условие задания

import seaborn as sns

- https://nbviewer.jupyter.org/github/Yorko/mlcourse open/blob/master/jupyter english/assignments demo/assignment01_pandas_uci_adult.ipynb?flush_cache=true

Официальный датасет находится здесь, но данные и заголовки хранятся отдельно, что неудобно для анализа - https://archive.ics.uci.edu/ml/datasets/Adult

Поэтому готовый набор данных для лабораторной работы удобнее скачать здесь

- https://raw.githubusercontent.com/Yorko/mlcourse.ai/master/data/adult.data.csv (удобнее всего нажать на данной ссылке правую кнопку мыши и выбрать в контекстном меню пункт "сохранить ссылку", будет предложено сохранить файл в формате CSV)

Пример решения задания - https://www.kaggle.com/kashnitsky/a1-demo-pandas-and-uci-adult-dataset-solution

Объявление библиотек и настройка отображения:

import numpy as np
import pandas as pd
pd.set_option('display.max.columns', 100)
import matplotlib.pyplot as plt

Подключение предлагаемой выборки и проверка выводом первых 5ти:

data = pd.read_csv('C:/Dataset/adult.data.csv')
data.head()

In [2]:

In [1]:

Out[2]:

	ag e	workel ass	fnlw gt	educat ion	educati on- num	marit al- status	occupa tion	relation ship	rac e	sex	capit al- gain	capit al- loss	hou rs- per- wee k	nativ e- coun try	sala ry
0	39	State- gov	7751 6	Bachel ors	13	Never - marrie d	Adm- clerical	Not-in- family	Whi te	Male	2174	0	40	Unite d- State s	<=5 0K
1	50	Self- emp- not-inc	8331	Bachel ors	13	Marri ed- civ- spous e	Exec- manage rial	Husband	Whi te	Male	0	0	13	Unite d- State s	<=5 0K
2	38	Private	2156 46	HS- grad	9	Divor ced	Handler s- cleaners	Not-in- family	Whi te	Male	0	0	40	Unite d- State s	<=5 0K
3	53	Private	2347 21	11th	7	Marri ed- civ- spous e	Handler s- cleaners	Husband	Bla ck	Male	0	0	40	Unite d- State s	<=5 0K

	ag e	workel ass	fnlw gt	educat ion	educati on- num	marit al- status	occupa tion	relation ship	rac e	sex	capit al- gain	capit al- loss	hou rs- per- wee k	nativ e- coun try	sala ry
4	28	Private	3384 09	Bachel ors	13	Marri ed- civ- spous e	Prof- specialt y	Wife	Bla ck	Fem ale	0	0	40	Cuba	<=5 0K
Зад	ача 1	l .													
Ско	олько	мужчин	н и жен	нщин отс	ображен	ю в выб	орке							Tn	[3]:
data	ı[ˈsexˈ]].value_co	ounts()												
Má	ale	21	.790											Out	t[3]:
	emale ne: s	e 10 sex, dt	771 type:	int64											
Зад	ача 2	2.													
Hai	йти с	редний	возрас	ст женщі	ИΗ										
data	_fem.	= data[da .head() ['age'].me		==' Femal	le']									In	[4]:
36.	. 8582	2304335	7163											Out	t[4]:
Зад	ача З	3.													
Кан	ов пр	ооцент >	кителе	ей из Гер	мании?										
(da	ta[' <mark>nat</mark>	tive-count	try']=='	Germany')).sum() <mark>/</mark> da	ata[<mark>'age</mark> '].	count()*10	00							[5]:
0.4	12074	487485C	28101	.3										Out	t[5]:
Зад	ачи 4	1-5.													
Hai	йти с	реднее	и откл	онение в	возраста	а для бо	огатых (3	П>50к) и	беднь	ых (ЗП	<50к)				
age	s2 = d	ata.loc[da	ıta[ˈ <mark>sal</mark> aı	ry'] == ' >: ry'] == ' <= rs, \npoor:	=50K', 'ag	ge']	'.format(In	[6]:

Задача 6.

round(ages1.mean()), round(ages1.std(), 1), round(ages2.mean()), round(ages2.std(), 1)))

rich: 44.0 +- 10.5 years, poor: 37.0 +- 14.0 years.

Проверить, является ли правдой утверждение что те, кто зарабатывает 50к+ имеют образование как минимум выше старшей школы?

In [7]:

data.loc[(data['salary'] == '>50K') &

(~data['education'].isin(['Bachelors', 'Prof-school', 'Assoc-acdm',

'Assoc-voc', 'Masters', 'Doctorate feature']))]

Out[7]:

														Out	· [/] •
	a ge	workc lass	fnlw gt	educa tion	educat ion- num	marit al- statu s	occupa tion	relation ship	race	sex	capit al- gain	capit al- loss	hou rs- per- wee k	nativ e- coun try	sala ry
7	5 2	Self- emp- not-inc	2096 42	HS- grad	9	Marri ed- civ- spous e	Exec- manage rial	Husban d	Whit e	Mal e	0	0	45	Unite d- State s	>50 K
10	3 7	Private	2804 64	Some- colleg e	10	Marri ed- civ- spous e	Exec- manage rial	Husban d	Blac k	Mal e	0	0	80	Unite d- State s	>50 K
20	4 0	Private	1935 24	Doctor ate	16	Marri ed- civ- spous e	Prof- specialt y	Husban d	Whit e	Mal e	0	0	60	Unite d- State s	>50 K
27	5 4	?	1802 11	Some- colleg e	10	Marri ed- civ- spous e	?	Husban d	Asia n- Pac- Islan der	Mal e	0	0	60	Sout h	>50 K
38	3	Private	8415 4	Some- colleg e	10	Marri ed- civ- spous e	Sales	Husban d	Whit e	Mal e	0	0	38	?	>50 K
•••															
325 19	4 6	Private	3645 48	Some- colleg e	10	Marri ed- civ- spous e	Exec- manage rial	Husban d	Whit e	Mal e	0	0	48	Unite d- State s	>50 K
325 32	3 4	Private	2044 61	Doctor ate	16	Marri ed- civ- spous e	Prof- specialt y	Husban d	Whit e	Mal e	0	0	60	Unite d- State s	>50 K
325 39	7 1	?	2873 72	Doctor ate	16	Marri ed- civ- spous e	?	Husban d	Whit e	Mal e	0	0	10	Unite d- State s	>50 K

	a ge	workc lass	fnlw gt	educa tion	educat ion- num	marit al- statu s	occupa tion	relation ship	race	sex	capit al- gain	capit al- loss	hou rs- per- wee k	nativ e- coun try	sala ry
325 57	4 0	Private	1543 74	HS- grad	9	Marri ed- civ- spous e	Machin e-op- inspct	Husban d	Whit e	Mal e	0	0	40	Unite d- State s	>50 K
325 60	5 2	Self- emp- inc	2879 27	HS- grad	9	Marri ed- civ- spous e	Exec- manage rial	Wife	Whit e	Fem ale	1502 4	0	40	Unite d- State s	>50 K

3612 rows × 15 columns

Задача 7.

Отобразить возрастную статистику по каждой расе и полу. Использовать GROUPBY и DESCRIBE. Найти максимальный возраст мужчин Американско-Индийско-Эскимоской расы (?).

In [8]:

```
for (race, sex), sub_df in data.groupby(['race', 'sex']):
 print("Race: {0}, sex: {1}".format(race, sex))
 print(sub_df['age'].describe())
Race: Amer-Indian-Eskimo, sex: Female
         119.000000
count
mean
          37.117647
std
          13.114991
min
          17.000000
25%
          27.000000
50%
          36.000000
75%
          46.000000
          80.000000
max
Name: age, dtype: float64
Race: Amer-Indian-Eskimo, sex: Male
count
        192.000000
          37.208333
mean
std
          12.049563
min
          17.000000
25%
          28.000000
50%
          35.000000
75%
          45.000000
          82.000000
max
Name: age, dtype: float64
Race: Asian-Pac-Islander, sex: Female
         346.000000
count
          35.089595
mean
          12.300845
std
          17.000000
min
```

```
25%
         25.000000
50%
         33.000000
75%
         43.750000
         75.000000
max
Name: age, dtype: float64
Race: Asian-Pac-Islander, sex: Male
       693.000000
count
mean
        39.073593
        12.883944
std
min
        18.000000
25%
        29.000000
50%
         37.000000
75%
        46.000000
        90.000000
max
Name: age, dtype: float64
Race: Black, sex: Female
count
       1555.000000
         37.854019
mean
         12.637197
std
         17.000000
min
25%
         28.000000
50%
         37.000000
75%
         46.000000
         90.000000
max
Name: age, dtype: float64
Race: Black, sex: Male
count
       1569.000000
         37.682600
mean
         12.882612
std
min
         17.000000
25%
         27.000000
         36.000000
50%
75%
         46.000000
         90.000000
max
Name: age, dtype: float64
Race: Other, sex: Female
       109.000000
count
mean
        31.678899
        11.631599
std
        17.000000
min
25%
        23.000000
50%
        29.000000
75%
         39.000000
         74.000000
max
Name: age, dtype: float64
Race: Other, sex: Male
count 162.000000
mean
        34.654321
std
     11.355531
```

```
25%
           26.000000
50%
           32.000000
75%
           42.000000
           77.000000
max
Name: age, dtype: float64
Race: White, sex: Female
         8642.000000
count
            36.811618
mean
std
            14.329093
            17.000000
min
25%
            25.000000
50%
            35.000000
75%
            46.000000
            90.000000
Name: age, dtype: float64
Race: White, sex: Male
         19174.000000
count
             39.652498
mean
             13.436029
std
min
             17.000000
25%
             29.000000
50%
             38.000000
75%
             49.000000
             90.000000
max
Name: age, dtype: float64
Задача 8.
Найти кого больше среди тех кто получает 50к+: женатых или одиноких мужчин
                                                                                            In [9]:
data.loc[(data['sex'] == ' Male') &
  (data['marital-status'].isin([' Never-married', ' Separated', ' Divorced',
   'Widowed'])), 'salary'].value_counts()
                                                                                            Out[9]:
 <=50K
           7552
 >50K
            697
Name: salary, dtype: int64
Такое же сравнение но среди тех кто имеет в статусе "Семейное положение" статус начинающийся с
'married'
                                                                                           In [10]:
data.loc[(data['sex'] == ' Male') &
  (data['marital-status'].str.startswith('Married')), 'salary'].value_counts()
                                                                                           Out[10]:
 <=50K
           7576
 >50K
           5965
Name: salary, dtype: int64
Общая статистика по "Семейному положению"
                                                                                           In [11]:
```

17.000000

data['marital-status'].value counts()

min

```
Out[11]:
Married-civ-spouse
                        14976
Never-married
                          10683
 Divorced
                          4443
 Separated
                           1025
                            993
Widowed
Married-spouse-absent
                           418
Married-AF-spouse
                             23
Name: marital-status, dtype: int64
Задание 9.
Чему равно максимальное число отработанных в неделю часов? Сколько человек так живет и сколько из
```

них получает много?

```
In [12]:
maxh = data['hours-per-week'].max()
num = data[data['hours-per-week'] == maxh].shape[0]
pers = float(data['hours-per-week'] == maxh)
         & (data['salary'] == '>50K')].shape[0]) / num
print("There are {a} men with {b} hpw and there is a percentage of rich among them {c}%".format(a=num,b=maxh,c=int(100 * p
ers)))
There are 85 men with 99 hpw and there is a percentage of rich among them 29%
```

Залание 10.

Найти среднее рабочее время относительно получающих больше/меньше 50к по каждой стране

```
In [13]:
```

for (country, salary), sub_df in data.groupby(['native-country', 'salary']): print(country, salary, round(sub_df['hours-per-week'].mean(), 2))

```
? <=50K 40.16
? >50K 45.55
Cambodia <=50K 41.42
Cambodia >50K 40.0
Canada <=50K 37.91
Canada >50K 45.64
China <=50K 37.38
China >50K 38.9
Columbia <=50K 38.68
Columbia >50K 50.0
Cuba <=50K 37.99
Cuba >50K 42.44
Dominican-Republic <=50K 42.34
Dominican-Republic >50K 47.0
Ecuador <=50K 38.04
Ecuador >50K 48.75
El-Salvador <=50K 36.03
El-Salvador >50K 45.0
England <=50K 40.48
England >50K 44.53
```

France <=50K 41.06

France >50K 50.75

Germany <=50K 39.14

Germany >50K 44.98

Greece <=50K 41.81

Greece >50K 50.62

Guatemala <=50K 39.36

Guatemala >50K 36.67

Haiti <=50K 36.33

Haiti >50K 42.75

Holand-Netherlands <=50K 40.0

Honduras <=50K 34.33

Honduras >50K 60.0

Hong <=50K 39.14

Hong >50K 45.0

Hungary <=50K 31.3

Hungary >50K 50.0

India <=50K 38.23

India >50K 46.48

Iran <=50K 41.44

Iran >50K 47.5

Ireland <=50K 40.95

Ireland >50K 48.0

Italy <=50K 39.62

Italy >50K 45.4

Jamaica <=50K 38.24

Jamaica >50K 41.1

Japan <=50K 41.0

Japan >50K 47.96

Laos <=50K 40.38

Laos >50K 40.0

Mexico <=50K 40.0

Mexico >50K 46.58

Nicaragua <=50K 36.09

Nicaragua >50K 37.5

Outlying-US(Guam-USVI-etc) <=50K 41.86

Peru <=50K 35.07

Peru >50K 40.0

Philippines <=50K 38.07

Philippines >50K 43.03

Poland <=50K 38.17

Poland >50K 39.0

Portugal <=50K 41.94

Portugal >50K 41.5

Puerto-Rico <=50K 38.47

Puerto-Rico >50K 39.42

Scotland <=50K 39.44

Scotland >50K 46.67

South <=50K 40.16

South >50K 51.44

Taiwan <=50K 33.77

Taiwan >50K 46.8

Thailand <=50K 42.87

Thailand >50K 58.33

Trinadad&Tobago <=50K 37.06

Trinadad&Tobago >50K 40.0

United-States <=50K 38.8

United-States >50K 45.51

Vietnam <=50K 37.19

Vietnam >50K 39.2

Yugoslavia <=50K 41.6

Yugoslavia >50K 49.5

Часть 2. Выполните следующие запросы с использованием двух различных библиотек - Pandas и PandaSQL:

один произвольный запрос на соединение двух наборов данных один произвольный запрос на группировку набора данных с использованием функций агрегирования Сравните время выполнения каждого запроса в Pandas и PandaSQL.

В качестве примеров можно использовать следующие статьи:

https://www.shanelynn.ie/summarising-aggregation-and-grouping-data-in-python-pandas/ https://www.shanelynn.ie/merge-join-dataframes-python-pandas-index-1/ (в разделе "Example data" данной статьи содержится рекомендуемый набор данных для проведения экспериментов). Пример сравнения Pandas и PandaSQL

- https://github.com/miptgirl/udacity_engagement_analysis/blob/master/pandasgl_example.ipynb

Набор упражнений по Pandas с решениями - https://github.com/guipsamora/pandas_exercises Подключаем библиотеки:

import numpy as np

import pandas as pd

import pandasql as ps

from timeit import default_timer as timer

Датафреймы для двух выборок:

fd = pd.read_csv('C:/Dataset/user_device.csv')

sd = pd.read_csv('C:/Dataset/user_usage.csv')

Часть выборки User_device:

fd.head()

	use_id	user_id	platform	platform_version	device	use_type_id
0	22782	26980	ios	10.2	iPhone7,2	2
1	22783	29628	android	6.0	Nexus 5	3
2	22784	28473	android	5.1	SM-G903F	1
3	22785	15200	ios	10.2	iPhone7,2	3
4	22786	28239	android	6.0	ONE E1003	1

Часть выборки User usege:

sd.head()

	outgoing_mins_per_month	outgoing_sms_per_month	monthly_mb	use_id
0	21.97	4.82	1557.33	22787
1	1710.08	136.88	7267.55	22788
2	1710.08	136.88	7267.55	22789
3	94.46	35.17	519.12	22790
4	71.59	79.26	1557.33	22792

In [1]:

In [2]:

In [3]:

Out[3]:

In [4]:

Out[4]:

Как видно выше, имеется общее поле use_id. Реализуем соединение двух таблиц по этому полю с использованием PandaSQL:

 $\textbf{def}\ example 1_pand a sql (fd, sd):$

simple_query = ""

SELECT *

FROM fd JOIN sd

WHERE fd.use_id==sd.use_id
""

return ps.sqldf(simple_query, locals())

 $example 1_pandasql(fd,sd)$

In [6]:

In [5]:

									Ou	t[6]:
	use_ id	user_ id	platfo rm	platform_ve rsion	device	use_type _id	outgoing_mins_per _month	outgoing_sms_per _month	monthly_ mb	use_ id
0	2278 7	1292 1	androi d	4.3	GT- 19505	1	21.97	4.82	1557.33	2278 7
1	2278 8	2871 4	androi d	6.0	SM- G930F	1	1710.08	136.88	7267.55	2278 8
2	2278 9	2871 4	androi d	6.0	SM- G930F	1	1710.08	136.88	7267.55	2278 9
3	2279 0	2959 2	androi d	5.1	D2303	1	94.46	35.17	519.12	2279 0
4	2279 2	2821 7	androi d	5.1	SM- G361F	1	71.59	79.26	1557.33	2279 2
•••										
15 4	2304	2895 3	androi d	6.0	SM- G900F	1	198.59	90.49	5191.12	2304
15 5	2304 4	2895 3	androi d	6.0	SM- G900F	1	198.59	90.49	3114.67	2304 4
15 6	2304 6	2945 4	androi d	6.0	Moto G (4)	1	106.65	82.13	5191.12	2304 6
15 7	2304 9	2972 5	androi d	6.0	SM- G900F	1	344.53	20.53	519.12	2304 9
15 8	2305	2025 7	androi d	5.1	Vodaf one Smart ultra 6	1	42.75	46.83	5191.12	2305

159 rows × 10 columns

И Pandas. Замерим время выполнения каждого:

t1 = timer()
example1_pandasql(fd,sd)
elapsed1 = timer() - t1
t2 = timer()

In [7]:

```
fsd = fd.merge(sd)
elapsed2 = timer() - t2
print("PandasSQL: {a} \nPandas: {b} ".format(a=elapsed1,b=elapsed2))
PandasSQL: 0.0464314
Pandas: 0.013121500000000001
Для полученной соединенной таблице попробуем провести агрегирование с группировкой и так же
замерим время выполнения: PandaSQL:
                                                                                                      In [8]:
def example2_pandasql(sd):
  aggr_query = "
    SELECT distinct
      device, avg(monthly_mb) as avg_mb
    FROM sd
    GROUP BY device
  return ps.sqldf(aggr_query, locals())
                                                                                                      In [9]:
example2_pandasql(fsd)
                                                                                                      Out[9]:
                  device
                              avg_mb
  0
                  A0001
                          15573.330000
  1
                  C6603
                           1557.330000
  2
                  D2303
                            519.120000
  3
                  D5503
                           1557.330000
  4
                  D5803
                           1557.330000
  5
                  D6603
                           7267.550000
                  E6653
                           5191.120000
  6
  7
                EVA-L09
                           1557.330000
```

8

9

10

11

12

13

14

15

16

17

F3111

GT-I8190N

GT-I9195

GT-I9300

GT-I9505

GT-I9506

GT-I9515

GT-N7100

HTC Desire 510

HTC Desire 530

2076.450000

407.010000

1211.260000

464.185000

5564.726364

803.240000

1557.330000

11939.560000

12562.488000

1557.330000

	device	avg_mb
18	HTC Desire 620	74.400000
19	HTC Desire 626	519.120000
20	HTC Desire 825	5498.970000
21	HTC One M9	2362.070000
22	HTC One S	1038.210000
23	HTC One mini 2	13842.956667
24	HTC One_M8	6577.120000
25	HUAWEI CUN-L01	11.680000
26	HUAWEI VNS-L31	3114.670000
27	LG-H815	1557.330000
28	Lenovo K51c78	1557.330000
29	Moto G (4)	5191.120000
30	MotoE2(4G-LTE)	212.640000
31	Nexus 5X	1557.330000
32	ONE A2003	2076.450000
33	ONEPLUS A3003	3823.610000
34	SM-A300FU	1687.112500
35	SM-A310F	1557.330000
36	SM-A500FU	1557.330000
37	SM-G360F	1557.330000
38	SM-G361F	934.404000
39	SM-G531F	2076.450000
40	SM-G800F	1557.330000
41	SM-G900F	3841.427333
42	SM-G903F	1557.330000
43	SM-G920F	1985.168000
44	SM-G925F	3633.775000
45	SM-G930F	7959.700000
46	SM-G935F	4568.182000
47	SM-J320FN	830.574000

	device	avg_mb
48	SM-N9005	16611.550000
49	SM-N910F	8038.370000
50	VF-795	1557.330000
51	Vodafone Smart ultra 6	5191.120000
52	X11	12458.670000
53	iPhone6,2	650.920000
54	iPhone7,2	1271.390000

Аналогичная функция на Pandas и подсчет времени выполнения.

```
t1 = timer()
example2_pandasql(fsd)
elapsed1 = timer() - t1
t2 = timer()
fsd.groupby('device').monthly_mb.mean()
elapsed2 = timer() - t2
print("PandasSQL: {a} \nPandas: {b} ".format(a=elapsed1,b=elapsed2))
PandasSQL: 0.025918899999998857
Pandas: 0.0099070999999999502
```

Как можно видель в обоих случаях Pandas превосходит PandaSQL почти на порядок. Несмотря на то что цифры в данном примере выглядят незначительными, для огромных датасетов параметр времени может стать значительным. Так же видно еще одно преимущество Pandas - размеры кода. То что реализовано на PandaSQL полноцененным функцией-запросом пишется на Pandas в одну строчку. Таким образом за исключением совсем сложных SQL-запросов Pandas будет и быстрее, и короче.

In [10]: