Capstone Healthcare

November 7, 2022

DESCRIPTION NIDDK (National Institute of Diabetes and Digestive and Kidney Diseases) research creates knowledge about and treatments for the most chronic, costly, and consequential diseases. • The dataset used in this project is originally from NIDDK. The objective is to predict whether or not a patient has diabetes, based on certain diagnostic measurements included in the dataset. • Build a model to accurately predict whether the patients in the dataset have diabetes or not.

Dataset Description The datasets consists of several medical predictor variables and one target variable (Outcome). Predictor variables includes the number of pregnancies the patient has had, their BMI, insulin level, age, and more.

Variables Description Pregnancies Number of times pregnant Glucose Plasma glucose concentration in an oral glucose tolerance test BloodPressure Diastolic blood pressure (mm Hg) SkinThickness Triceps skinfold thickness (mm) Insulin Two hour serum insulin BMI Body Mass Index Diabetes-PedigreeFunction Diabetes pedigree function Age Age in years Outcome Class variable (either 0 or 1). 268 of 768 values are 1, and the others are 0

```
[2]: #Import the required libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
import warnings
warnings.filterwarnings('ignore')
```

```
[3]: #loading the data
diabetes = pd.read_csv('healthcare.csv')
diabetes.head()
```

[3]:	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	\
0	6	148	72	35	0	33.6	
1	1	85	66	29	0	26.6	
2	8	183	64	0	0	23.3	
3	1	89	66	23	94	28.1	
4	0	137	40	35	168	43.1	

```
DiabetesPedigreeFunction Age Outcome
0 0.627 50 1
```

```
0.351
                                               0
     1
                                     31
     2
                            0.672
                                     32
                                               1
     3
                            0.167
                                     21
                                               0
     4
                            2.288
                                     33
                                               1
[4]: diabetes.shape
```

[4]: (768, 9)

[5]: diabetes.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	int64
1	Glucose	768 non-null	int64
2	BloodPressure	768 non-null	int64
3	SkinThickness	768 non-null	int64
4	Insulin	768 non-null	int64
5	BMI	768 non-null	float64
6	${\tt DiabetesPedigreeFunction}$	768 non-null	float64
7	Age	768 non-null	int64
8	Outcome	768 non-null	int64

dtypes: float64(2), int64(7)
memory usage: 54.1 KB

[6]: #See columns in data diabetes.columns

[7]: diabetes.describe()

[7]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	\
	count	768.000000	768.000000	768.000000	768.000000	768.000000	
	mean	3.845052	120.894531	69.105469	20.536458	79.799479	
	std	3.369578	31.972618	19.355807	15.952218	115.244002	
	min	0.000000	0.000000	0.000000	0.000000	0.000000	
	25%	1.000000	99.000000	62.000000	0.000000	0.000000	
	50%	3.000000	117.000000	72.000000	23.000000	30.500000	
	75%	6.000000	140.250000	80.000000	32.000000	127.250000	
	max	17.000000	199.000000	122.000000	99.000000	846.000000	

	BMI	${\tt DiabetesPedigreeFunction}$	Age	Outcome
count	768.000000	768.000000	768.000000	768.000000
mean	31.992578	0.471876	33.240885	0.348958
std	7.884160	0.331329	11.760232	0.476951
min	0.000000	0.078000	21.000000	0.000000
25%	27.300000	0.243750	24.000000	0.000000
50%	32.000000	0.372500	29.000000	0.000000
75%	36.600000	0.626250	41.000000	1.000000
max	67.100000	2.420000	81.000000	1.000000

[8]: diabetes.isnull().sum()

```
[8]: Pregnancies
                                  0
     Glucose
                                  0
    BloodPressure
                                  0
                                  0
    SkinThickness
     Insulin
                                  0
    BMI
    DiabetesPedigreeFunction
    Age
                                  0
     Outcome
                                  0
    dtype: int64
```

There are no null values per say, however On the columns below, a value of zero does not make sense and thus indicates missing value: Glucose, BloodPressure, SkinThickness, Insulin, BMI

```
[10]: #Treating missing values in Glucose
sns.displot(diabetes.Glucose, kde = True);
```


The histogram for Glucose is negativaly skewed, We will replace the zeros with the median.

```
[12]: #replacing zeroes by median since histogram is skewed
diabetes['Glucose']=diabetes['Glucose'].replace(0,diabetes['Glucose'].median())
sns.displot(diabetes.Glucose, kde = True);
```


[13]: #Treating missing values in BloodPressure
sns.displot(diabetes.BloodPressure, kde = True);

[15]: #Treating missing values in SkinThickness
sns.displot(diabetes.SkinThickness, kde = True);


```
[16]: #replacing zeroes by median since histogram is skewed diabetes['SkinThickness']=diabetes['SkinThickness'].

→replace(0,diabetes['SkinThickness'].median())
sns.displot(diabetes.SkinThickness, kde = True);
```



```
[17]: #Treating missing values in Insulin
sns.displot(diabetes.Insulin, kde = True);
```



```
[20]: #replacing zeroes by median since histogram is skewed
diabetes['Insulin']=diabetes['Insulin'].replace(0,diabetes['Insulin'].median())
sns.displot(diabetes.Insulin, kde = True);
```



```
[21]: #Treating missing values in BMI
sns.displot(diabetes.BMI, kde = True);
```



```
[24]: #replacing zeroes by median since histogram is skewed
diabetes['BMI']=diabetes['BMI'].replace(0,diabetes['BMI'].median())
sns.displot(diabetes.BMI, kde = True);
```


[26]:	diabet	es.describe())					
[26]:		Pregnancies	Glucose	BloodPressure	SkinThick	ness	Insulin	\
	count	768.000000	768.000000	768.000000	768.000	0000	768.000000	
	mean	3.845052	121.656250	72.386719	27.334	4635	94.652344	
	std	3.369578	30.438286	12.096642	9.229	9014	105.547598	
	min	0.000000	44.000000	24.000000	7.000	0000	14.000000	
	25%	1.000000	99.750000	64.000000	23.000	0000	30.500000	
	50%	3.000000	117.000000	72.000000	23.000	0000	31.250000	
	75%	6.000000	140.250000	80.000000	32.000	0000	127.250000	
	max	17.000000	199.000000	122.000000	99.000	0000	846.000000	
		BMI	DiabetesPedi	greeFunction	Age	0 1	ıtcome	
	count	768.000000		768.000000	768.000000	768.0	000000	
	mean	32.450911		0.471876	33.240885	0.3	348958	
	std	6.875366		0.331329	11.760232	0.4	176951	
	min	18.200000		0.078000	21.000000	0.0	000000	
	25%	27.500000		0.243750	24.000000	0.0	00000	

50%	32.000000	0.372500	29.000000	0.000000
75%	36.600000	0.626250	41.000000	1.000000
max	67.100000	2.420000	81.000000	1.000000

VISUALIZATION

[9]: sns.countplot(diabetes['Pregnancies'])

[9]: <AxesSubplot:xlabel='Pregnancies', ylabel='count'>


```
[28]: #Create a count (frequency) plot describing the data types and the count of → variables.

diabetes.apply(lambda x: x.value_counts()).T.stack().plot(kind='bar')
```

[28]: <AxesSubplot:>

DATA EXPLORATION

```
[29]: #Visualisation of target column relative frequency
diabetes['Outcome'].value_counts().plot(kind='pie',autopct='%1.2f%%',

→title='Proportion of Diabetes')
```

[29]: <AxesSubplot:title={'center':'Proportion of Diabetes'}, ylabel='Outcome'>

Proportion of Diabetes

The dataset is not highly imbalanced but it is not balanced either. We will balance the dataset before modeling.

```
[30]: #Pairplot, scatterplots of all the variables
plt.figure(figsize=(10,10))
sns.pairplot(diabetes)
```

[30]: <seaborn.axisgrid.PairGrid at 0x7ff3ed30b790>

<Figure size 720x720 with 0 Axes>


```
[31]: #Heatmap (negative values are darker, positive values are lighter)
plt.figure(figsize=(20,10))
sns.heatmap(diabetes.corr(),annot=True)
```

[31]: <AxesSubplot:>

: diabetes.corr()						
:	Pregnanci	.es	Glucose	BloodPressure	SkinThickness	
Pregnancies	1.0000	000	0.128213	0.208615	0.032568	
Glucose	0.1282	213	1.000000	0.218937	0.172143	
BloodPressure	0.2086	315	0.218937	1.000000	0.147809	
SkinThickness	0.0325	68	0.172143	0.147809	1.000000	
Insulin	-0.0556	97	0.357573	-0.028721	0.238188	
BMI	0.0215	546	0.231400	0.281132	0.546951	
DiabetesPedigreeFunction	-0.0335	23	0.137327	-0.002378	0.142977	
Age	0.5443	341	0.266909	0.324915	0.054514	
Outcome	0.2218	898	0.492782	0.165723	0.189065	
	Insulin		BMI D	iabetesPedigreeF	unction \	
Pregnancies	-0.055697	0.0	21546	-0	.033523	
Glucose	0.357573	0.2	31400	0	.137327	
BloodPressure	-0.028721	0.2	81132	-0	0.002378	
SkinThickness	0.238188	0.5	46951	0	.142977	
Insulin	1.000000	0.1	.89022	0	.178029	
BMI	0.189022	1.0	00000	0	.153506	
DiabetesPedigreeFunction	0.178029	0.1	.53506	1	.000000	
Age	-0.015413	0.0	25744	0	.033561	
Outcome	0.148457	0.3	312249	0	.173844	
	Age	Ou	tcome			
Pregnancies	0.544341	0.2	21898			
Glucose	0.266909	0.4	92782			
BloodPressure	0.324915	0.1	65723			

```
      SkinThickness
      0.054514
      0.189065

      Insulin
      -0.015413
      0.148457

      BMI
      0.025744
      0.312249

      DiabetesPedigreeFunction
      0.033561
      0.173844

      Age
      1.000000
      0.238356

      Outcome
      0.238356
      1.000000
```

There is no multicollinearity.

DATA MODELING

```
[47]: #Importing Logistic Regression model
from sklearn.linear_model import LogisticRegression
lr= LogisticRegression(random_state=0, solver="liblinear")
```

```
[48]: #Importing "train_test-split" function to test the model from sklearn.model_selection import train_test_split
```

```
[49]: #Splitting the data
X=diabetes.drop(['Outcome'],axis=1)
y=diabetes['Outcome']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
```

```
[50]: #Feature scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
```

```
[51]: #balancing the dataset
from imblearn.over_sampling import SMOTE
oversample = SMOTE()
X_train, y_train = oversample.fit_resample(X_train, y_train)

y_train.value_counts().plot(kind='pie',autopct="%1.1f%%", title='Proportion of_U

→Diabetes after oversampling')
```

[51]: <AxesSubplot:title={'center':'Proportion of Diabetes after oversampling'},
 ylabel='Outcome'>

Proportion of Diabetes after oversampling


```
[52]: #Fit the model in train and test data
lr.fit(X_train,y_train).score(X_train,y_train)
```

[52]: 0.769774011299435

```
[69]: #Now fitting the model in test set
y_pred=lr.predict(X_test)
y_pred_prob=lr.predict_proba(X_test)
```

[[110 36] [33 52]]

Accuracy score: 0.7012987012987013 Precision score: 0.5909090909090909 Recall score: 0.611764705882353 The model has a 70 % accuracy score, an 59 % precision score, and an 61 % recall score, indicating that it doesn't really work effectively.

ROC CURVE

```
[73]: #Preparing ROC Curve (Receiver Operating Characteristics Curve)

# predict probabilities
probs = lr.predict_proba(X)
# keep probabilities for the positive outcome only
probs = probs[:, 1]
# calculate AUC
auc = roc_auc_score(y, probs)
print('AUC: %.3f' % auc)
# calculate roc curve
fpr, tpr, thresholds = roc_curve(y, probs)
# plot no skill
plt.plot([0, 1], [0, 1], linestyle='--')
# plot the roc curve for the model
plt.plot(fpr, tpr, marker='.')
```

AUC: 0.839

[73]: [<matplotlib.lines.Line2D at 0x7ff3dfe31e90>]


```
[58]: #Feature scaling on X
X = sc.fit_transform(X)
```

Model Comparison

```
[59]: # Compare classification algorithms
      from sklearn.model_selection import KFold
      from sklearn.model_selection import cross_val_score
      from sklearn.linear_model import LogisticRegression
      from sklearn.tree import DecisionTreeClassifier
      from sklearn.neighbors import KNeighborsClassifier
      from sklearn.ensemble import RandomForestClassifier
      from sklearn.naive_bayes import GaussianNB
      from sklearn.svm import SVC
[77]: classification_models = []
      classification_models.append(('Logistic Regression', __
       →LogisticRegression(solver="liblinear")))
      classification_models.append(('K Nearest Neighbor', __
       →KNeighborsClassifier(n_neighbors=7, metric="minkowski",p=2)))
      classification_models.append(('Kernel SVM', SVC(kernel = 'rbf',gamma='auto')))
      classification_models.append(('Naive Bayes', GaussianNB()))
      classification_models.append(('Decision Tree', ___
       →DecisionTreeClassifier(max_depth=5)))
      classification_models.append(('Random Forest', __
       →RandomForestClassifier(n estimators=100,criterion="entropy")))
[78]: for name, model in classification_models:
          kfold = KFold(n_splits=10, random_state=(7), shuffle=(True))
          result = cross_val_score(model, X, y, cv=kfold, scoring='accuracy')
          print("%s: Mean Accuracy = %.2f%% - SD Accuracy = %.2f%%" % (name, result.
       \rightarrowmean()*100,result.std()*100))
     Logistic Regression: Mean Accuracy = 76.57% - SD Accuracy = 4.80%
     K Nearest Neighbor: Mean Accuracy = 75.92% - SD Accuracy = 5.18%
     Kernel SVM: Mean Accuracy = 76.30% - SD Accuracy = 6.42%
     Naive Bayes: Mean Accuracy = 74.88% - SD Accuracy = 3.39%
     Decision Tree: Mean Accuracy = 73.19% - SD Accuracy = 4.06%
     Random Forest: Mean Accuracy = 76.83% - SD Accuracy = 4.92%
     From the results we can see that the most accurate model is Random Forest, followed by Logistic
     Regression and Kernel SVM.
 []:
```