

CS 4271 Abhik Roychoudhury National University of Singapore

Abhik Roychoudhury, CS4271 lectures

Background

- Kripke Structures as models
- Temporal Properties
 - LTL, CTL*, CTL
- This lecture
 - Explicit state model checking algorithm for Computation Tree Logic (CTL)

Abbit December of the Control of the

CTL Model Checking

- Given
 - Finite state Kripke Structure M = (S,S0,R,L)
 - · CTL formula f
- Check whether
 - · All initial states of M satisfy f, that is,
 - $S0 \subseteq \{ s \mid s \in S \land M, s \mid = f \}$
- Explicit-state MC in this lecture.
 - · Property checking by finite graph search.

Abhik Roychoudhury, CS4271 lectures

Checking M |= f

- Define $St_f = \{s \mid s \in S \text{ and } M, s \mid = f\}$
 - $\begin{tabular}{ll} \hline & Start with computing St_p for each atomic prop. p \\ & \cdot & St_p = \{\,s \mid \ s \in S \ and \ p \in L(s)\,\} \\ \hline \end{tabular}$
 - $^{\circ}$ Computation of $\,St_f$ proceeds by a bottom-up parse of the formula f
 - Compute $\operatorname{St}_{\operatorname{g}}$ for each sub-formula g of formula f
 - \circ Check whether S0 \in St_f
 - Details of counter-example construction are not discussed in this lecture.

Abhik Roychoudhury, CS4271 lectures

CTL syntax

- $f := p | f \wedge f | \neg f | AX f | EX f |$
- AG f | EG f | AF f | EF f |
- A(f U f) | E(f U f) | A(f R f) | E(f R f)
- \bullet The ten temporal operators can be expressed in terms of EX, EG, EU
 - We will justify this !
- So, our MC algorithm needs to consider only
 - \circ f := p | f \wedge f | \neg f | EX f | EG f | E(f U f)

Abbik Roychoudhury, CS4271 Jectures

CTL operators

- AX $\varphi = \neg \neg AX\varphi = \neg EX \neg \varphi$
- AGφ = ¬¬AGφ = ¬EF ¬φ
- EF ϕ = E (true U ϕ)
- AF ϕ = \neg EG $\neg \phi$
- $A(\phi R \Psi) = \neg \neg A(\phi R \Psi) = \neg E(\neg \phi U \neg \Psi)$
- Can you derive the above equivalences ?

Abhik Roychoudhury, CS4271 lectures

CTL operators

- $E(\phi R \Psi) = \neg A (\neg \phi U \neg \Psi)$
- What about A (φ U Ψ) ??
- ϕ R Ψ = (Ψ U (ϕ \land Ψ)) \lor G Ψ
 - Prove this result
 - $^{\circ}$ Use this result to define $\text{ E}(\phi \text{ R } \Psi)$ and hence $\text{A}(\phi \text{ U } \Psi)$

Abbik Pouchoudhuny CS4271 lactures

Structure of MC algorithm

- To check M = (S,S0,R,L) |= f
 - $^{\circ}$ 1. Rewrite f to an equivalent CTL formula f1 where f1 contains only the operators \neg, \land, EX, EG, EU
 - 2. Find(M,f1)
 - For all sub-formula gl of fl do{
 - if gI = atomic prop then $St_{gI} := ...$
 - else Find(M,g1)
 - }
 - Construct St_{f1} from St_{g1} computed above
 - · Return St_{fl}
 - $^{\circ}$ 3. If S0 \subseteq St_fl then return "yes" else return "no"

Abhik Rovchoudhury, CS4271 lectures

Computing St_f

- Kripke Structure M = (S, S0, R, L)
 - Case I: f = p
 - $St_p = \{s \mid s \in S \text{ and } p \in L(s) \}$
 - Case 2: f = ¬g
 - $St_{g} = S St_{g}$
 - Case 3: f = gI ∧ g2
 - $St_{g1 \wedge g2} = St_{g1} \cap St_{g2}$
 - Case 4: f = EX g
 - $\bullet \;\; \mathsf{St} \;_{\mathsf{EXg}} \; = \; \big\{ \mathsf{s} \; \big| \; \mathsf{s} \in \mathsf{S} \land \big(\mathsf{s},\mathsf{t}\big) \in \mathsf{R} \land \mathsf{t} \in \mathsf{St}_{\mathsf{g}} \, \big\}$

Abhik Roychoudhury, CS4271 lectures

Computing St_{fl}

- There are two more cases
 - Case 5: f = E(gI U g2)
 - · Case 6: f = EG fl
- We now give search algorithms for these two cases.
- So, the overall algorithm is

Abhik Roychoudhury, CS4271 lectures

$Find(M,\phi)$

- Let M = (S, S0, R, L)
- If ϕ is true then return S
- Else if $\boldsymbol{\phi}$ is false then return null-set;
- Else if ϕ is $\neg \Psi$ then return S Find(M, $\Psi)$
- Else if ϕ is $\Psi1 \land \Psi2$ then return Find(M, $\Psi1$) \cap Find(M, $\Psi2$)
- Else if ϕ is AXY then return Find(M, $\neg \text{EX} \neg \Psi)$
- Else if ϕ is EXY then call EX algorithm and return results;
- Else if ϕ is E(Y IUY2) then call EU algorithm and return results;
- Else if ϕ is A(Y1UY2) then return $\ref{eq:property}$ [do it yourself now]
- Else if ϕ is EGY then call EG algorithm and return results;
- Else if [fill up the rest of the cases yourself]

Abhik Roychoudhury, CS4271 lectures

Computing $St_{E(gl Ug2)}$ • We assume that St_x has been computed for all subformula X of E(gl Ug2)• Thus, St_{gl} and St_{g2} must have been computed. • Need to find states from which a state in St_{g2} is forward reachable using only state in St_{gl} • Accomplished by • Start from states in St_{g2} • Perform backwards reachability analysis using only states in St_{gl} . All these states are in $St_{E(gl Ug2)}$

Case 6: f = EG fI

- Inputs:
 - Kripke Structure M = (S, S0, R, L).
 - CTL formula to be checked EG fl
 - \circ St_{fl}, set of states satisfying fI in M.
- Output:
 - Set of states satisfying EG fl in M.
- Technique:
 - Traversing the states (and transitions) of M.

Abhik Roychoudhury, CS4271 lectures

EG fl :Algorithm

- Result := St_{f1};
- repeat
- Temp := $\{ s \mid s \in Result, and \}$
- ∀sl.s R sl ⇒ sl ∉ Result };
- Result := Result Temp;
- until Temp = empty;
- return Result;

Abhik Rovchoudhurv, CS4271 lectures

How to make it more efficient

- We initialize $St_{EGfI} = St_{fI}$
 - $^\circ$ For each state in St_{fl} , we check the out-edges. Many of the destination states are not in St_{fl} , so cannot satisfy EGf1
- It suffices to consider a reduced Kripke Structure M' constructed from M such that
 - · All states of M which satisfy fl are retained.
 - All other states and transitions are deleted.
- For any s, M,s |= EG fl if and only if
 - s is a state in M'
 - s reaches a state s' in M' where s' loops back to itself.

Abhik Roychoudhury, CS4271 lectures

Strongly Connected Components Strongly connected components of a graph G are maximal subgraphs {C₁,...,C₄} of G, such that every node in C₁ has a path to any other node in C₄

Efficiently computing EG fl

- Input: M = (S,S0,R,L) , St_{fl}
- Output: St_{EGfI}
- Technique:
- Compute M'=(S',SO',R',L') from M by keeping only nodes in St_{fl}
- Temp := St_{EGfI} := All nodes in nontrivial SCCs of M'
- while Temp ≠ empty do
- pick $s \in Temp; Temp := Temp \{s\};$
- $\mathsf{St}_{\mathsf{EGfI}} \coloneqq \mathsf{St}_{\mathsf{EGfI}} \, \cup \, \{\, t \mid \, t \; \mathsf{R'} \; \mathsf{s} \wedge \mathsf{t} \not \in \mathsf{St}_{\mathsf{EGfI}} \, \};$
- Temp := Temp $\cup \{t \mid t \mid R' \mid s \land t \notin St_{EGfl} \}$;
- endwhile

Abbik Roychoudhury, CS4271 Jectures

Complexity of Model Checking

- In terms of
 - |φ| size of formula
 - |S| number of states in M
 - |R| number of transitions
- At each level of nesting of φ
- Employ the EG, EU,EX algorithms
- \circ Efficient EG algorithm is O(|S| + |R|)
- Similarly for EU, EX algorithms
- Complexity is $O(|\phi| * (|S| + |R|))$

Abhik Roychoudhury, CS4271 lectures

Exercise

- The previous slides give iterative algorithms for computing ${\rm St}_{\rm EGf}$ and ${\rm St}_{\rm E(f\ U\ g)}$
- These algorithms can be used to indirectly compute $_{\circ}$ St $_{\text{EFF}}$ St $_{\text{AFF}}$ St $_{\text{AGF}}$
- Construct iterative algorithms for directly computing St $_{\rm Eff}$, St $_{\rm AFf}$ St $_{\rm AGf}$ without exploiting the translation of CTL formulae.

Abbile Doughoudhum: CC4371 Instrume

Example AG (start ⇒ AF heat) For any reachable state, if start holds, then along all outgoing paths, heat eventually holds. Can be Violated if: ∃ a reachable state s where start holds ∃ an acyclic path from s to s' in which heat does not hold in any state And there is a cycle containing s' such that heat does not hold in all states of the cycle.

Summary In this class: Explicit –state Model Checking Algorithm for Computation Tree Logic (CTL). In Future: Symbolic model checking for space efficiency.

