

Comparando médias de 2 grupos Intervalos de Confiança da diferença entre as médias

Felipe Figueiredo

Discussão da aula passada Comparando médias de 2 grupos Felipe Figueiredo Discussão da aula passada Discussão da leitura obrigatória da aula passada t de Student 1 de Student 1 de Student 1 de Student 2 médias Aprofundame

Sumário Discussão da aula passada Discussão da aula passada Discussão da aula passada A distribuição t de Student A distribuição t de Student Intervalo de Confiança da diferença entre duas médias Interpretação Participantes: pareados ou não pareados? Aprofundamento Aprofundamento Aprofundamento

Recapitulando

INTO

Comparando médias de 2 grupos

> Felipe Figueiredo

aula passada

A distribuição t de

IC diferença 2 médias

Aprofundamento

- Vimos que o IC (da média) é composto por 3 componentes
 - a média \bar{X} (centro)
 - o erro padrão da média SEM (incerteza)
 - um tal de t*, que depende de n
- Quando n era grande, utilizamos $t^* \approx 2$
- Mas de onde vem esse *t**? Qual seria o valor correto?

A distribuição t de Student

Comparando médias de 2 grupos

> Felipe Figueiredo

Discussão da

t de Student

Student
IC diferença 2

Aprofundamen

A distribuição t de Student

INTO

Comparando médias de 2 grupos

Felipe Figueiredo

Discussão da aula passada

de Student A distribuição t de

IC diferença 2

Aprofundamento

A distribuição t de Student

- Student (pseudônimo de W. S. Gossett [1876-1937]¹)
- Distribuição t (baseada na distribuição Normal)
- Melhor se aproxima dos dados de amostras pequenas
- 3º parâmetro graus de liberdade² vinculado ao tamanho da amostra *n*.

Comparando médias de 2 grupos

Felipe Figueiredo

Discussão da

t de Student A distribuição t de

C diferença 2

¹trabalhando para a cervejaria Guiness

²df em inglês

Propriedades da distribuição t

- A distribuição tem forma de sino (simétrica, como a Normal)
- Reflete a maior variabilidade inerente às amostras pequenas³
- Formato *depende* do tamanho da amostra (*n*)

Isto é

Quanto mais graus de liberdade, mais a distribuição t se parece com a distribuição Normal (Z)

Pense...

O que deve acontecer com menos graus de liberdade?

A distribuição t de Student

Figura: Duas distribuições t de Student, e a Normal padrão

Felipe Figueiredo

A distribuição t de

IC da média (aula passada)

ICs dos exemplos

- IC do ex. 5.1 (PS de 100 alunos): [120.6, 126.2] mmHg
- IC do ex. 5.2 (PS de 5 alunos): [79.2, 118.8] mmHg

Pense...

Observe os tamanhos dos ICs.

Lembrete

Para o 5.1, usamos $t^* \approx 2$.

Vimos que esta aproximação não era apropriada no 5.2

Comparando médias de 2 grupos

Felipe Figueiredo

A distribuição t de

Alguns valores de t^* , para diferentes graus de liberdade

médias de 2

grupos

Felipe

Figueiredo

Comparando médias de 2 grupos

Felipe Figueiredo

A distribuição t de

Pense...

Qual é a relação entre n e o tamanho do IC?

• $n = 5 (df = 4) \Rightarrow t^* = 2.776$

• $n = 10 (df = 9) \Rightarrow t^* = 2.262$

• $n = 15 (df = 14) \Rightarrow t^* = 2.145$ • $n = 20 (df = 19) \Rightarrow t^* = 2.093$

• $n = 30 (df = 29) \Rightarrow t^* = 2.045$

$$IC = [\bar{x} - t^*SEM, \ \bar{x} + t^*SEM]$$

³graus de liberdade (df) $\approx n$

Alguns valores de t^* , para diferentes graus de liberdade

• $n = 5 (df = 4) \Rightarrow t^* = 2.776$

• $n = 10 (df = 9) \Rightarrow t^* = 2.262$

• $n = 15 (df = 14) \Rightarrow t^* = 2.145$

• $n = 20 (df = 19) \Rightarrow t^* = 2.093$

• $n = 30 (df = 29) \Rightarrow t^* = 2.045$

Observe que...

• df = n - 1

• Para *n* grande, $t^* \rightarrow 1.960$

Por isso usamos o valor aproximado 2 no primeiro exemplo.

Comparando médias de 2 grupos

> Felipe Figueiredo

A distribuição t de

Exercício 4 (cap 5)

Exercício 4 do cap 5

Os níveis séricos de um hormônio (fator Y) foram medidos em 100 mulheres não grávidas, e em 100 mulheres com até 3 meses de gravidez. Os ICs dos valores dos soros em ambos os grupos são:

• Grávidas: [105.4, 114.6]

• Não grávidas: [90.0, 96.0]

O fator Y médio é diferente em mulheres grávidas e não grávidas?

Requisito

Pelas premissas do IC da média, você tem informações suficientes para calcular/interpretar cada um destes ICs?

Comparando médias de 2 grupos

Felipe Figueiredo

A distribuição t de

Na prática...

Distribuição Normal - Z

Gostaríamos de poder usar sempre Z como modelo para o formato dos nossos dados experimentais.

Distribuição t de Student

- t é uma aproximação da Normal (Z)
- apropriada para n pequeno
- Com *n* grande (df \geq 30) ela se confunde com Z.

Pense

Exercício 5.4

 Não grávidas: [90.0, 96.0] Grávidas: [105.4, 114.6]

Observações:

- O SEM informa quão bem você estimou a média de cada grupo
- Os ICs não tem sobreposição ⇒ 2 populações diferentes

Pense...

Como comparar estes dois grupos?

Comparando

médias de 2

grupos

Felipe

Figueiredo

A distribuição t de Student

Comparando médias de 2 grupos

Felipe Figueiredo

A distribuição t de

Comparações entre 2 médias

- Comparando médias de 2 grupos
- pareados ou não pareados?

Comparando

médias de 2

grupos

Felipe

Figueiredo

pareados ou não pareados?

- Frequentemente precisamos dividir os dados em dois grupos e comparar as médias.
- Isto pode ser usado para se estudar o efeito de um tratamento em relação a um grupo controle
- ou mesmo para se comparar dois tratamentos diferentes.

Quais são as variáveis?

- x₁ Hormônio não grávidas
- x₂ Hormônio grávidas (até 3 meses)
- Duas variáveis explícitas

Primeira alternativa

- **1** "Explicar" a "relação" entre o hormônio x_2 e o hormônio x_1
- 2 Comparar x_2 (grupo de interesse) com x_1 (referência)

Esta relação pode ser expressa como

 $X_2 \sim X_1$

Exercício 4 (cap 5)

Exercício 4 do cap 5

Os níveis séricos de um hormônio (fator Y) foram medidos em 100 mulheres não grávidas, e em 100 mulheres com até 3 meses de gravidez. Os ICs dos valores dos soros em ambos os grupos são:

Grávidas: [105.4, 114.6]

• Não grávidas: [90.0, 96.0]

O fator Y médio é diferente em mulheres grávidas e não grávidas?

Requisito

Pelas premissas do IC da média, você tem informações suficientes para calcular/interpretar cada um destes ICs?

Comparando médias de 2 grupos

> Felipe Figueiredo

Interpretação

pareados ou não pareados?

Uma breve interrupção para mini-pânico

Comparando médias de 2 grupos

Felipe Figueiredo

pareados ou nã pareados?

Suspense dramático...

Uma breve interrupção para mini-pânico

Comparando médias de 2 grupos

> Felipe Figueiredo

Discussão o aula passao

t de Studen

médias

pareados ou não pareados?

Mas também temos dois SEM!

Se você prestou atenção até aqui...

Portanto temos duas médias (trivial).

Esta relação pode ser expressa como

horm. grávidas \sim horm. não grávidas

Mais precisamente

Temos duas variáveis.

horm. grávid. = horm. não grávid. + Erro₁ + Erro₂

Uma breve interrupção para mini-pânico

Duas médias, e dois erros?

Duas opções

• Não grávidas: [90.0, 96.0]

• Grávidas: [105.4, 114.6]

Difícil

Calcular os dois ICs $(x_1 e x_2)$, e compará-los diretamente

Moleza

Calcular o IC da diferença (x_d) usando o método da aula passada Calcular o IC da diferença (x_d) usando o método da aula passada

Comparando médias de 2 grupos

Felipe Figueiredo

Discussão da aula passada

de Student

IC diferença

Interpretação Participantes: pareados ou não

Aprofundamento

Neste caso podemos usar um truque para trocar um problema de 2 variáveis por outro de 1 variável.

Comparando

médias de 2

grupos

Felipe

Figueiredo

Comparando médias de 2 grupos

Felipe Figueiredo

Discussão da aula passada

t de Studer

IC diferença 2

Interpretação

Participantes: pareados ou não pareados?

2 grupos for dummies ®

Diferença entre 2 médias

• Comparar duas médias $\bar{x_1}$ e $\bar{x_2}$, consideramos a diferença média $\bar{x_d}=\bar{x_2}-\bar{x_1}$

• Se $\bar{x_2}$ for maior que $\bar{x_1} \Rightarrow$ diferença média é positiva

• Se $\bar{x_2}$ for menor que $\bar{x_1} \Rightarrow$ a diferença média é negativa

Intuição

Raciocínio: se as médias forem aproximadamente iguais, a diferença média ($\bar{x_d}$) será próxima de zero

Pense em saldo

omparando

médias de 2 grupos

> Felipe Figueiredo

Discussão da aula passada

IC diferença 2

Interpretação
Participantes:
pareados ou não
pareados?

Aprofundamento

Quais são as variáveis?

Estratégia proposta

Temos duas variáveis.

Calculamos a diferença entre as médias e aplicamos o método da aula passada – IC de **uma** média.

moleza!

O que falta?

O que falta?

... precisamos do SEM da diferença.

Ou seja...

d = 0 + Errod

Comparando médias de 2 grupos

> Felipe Figueiredo

Discussão da aula passada

de Studen

nédias

Participantes: pareados ou não pareados?

Aprofundamento

Quais são as variáveis?

- x₁ Hormônio não grávidas
- x₂ Hormônio grávidas (até 3 meses)
- $d = x_2 x_1$ (uma variável)

Segunda alternativa (método da aula passada)

"Explicar" a "relação" entre a diferença d e a referência (**zero**)

Esta relação pode ser expressa como

 $d \sim 0$

INTO

Comparando médias de 2 grupos

Felipe Figueiredo

Discussão da

t de Studer

IC diferença 2

Interpretação
Participantes:

pareados ou não pareados?

Aprofundamento

Uma breve interrupção para mini-pânico

SEM da diferença?

Comparando médias de 2 grupos

Felipe Figueiredo

Discussão da aula passada

t de Student

IC diferença 2 médias

Participantes:

Erro padrão da diferença

- INTO
- Comparando médias de 2 grupos
- Felipe Figueiredo
- Discussão d
-
- IC diferença 2
- Interpretação
 Participantes:
 pareados ou não
 pareados?
- Aprofundamento

- Lembre-se que para cada grupo: $SEM = \frac{s}{\sqrt{n}}$
- Para a diferença entre 2 grupos, "somamos" os SEM
- Mas esta "soma" não é direta!
- É preciso levar em conta o uso do quadrado/raiz quadrada do DP (aula de variabilidade⁴)

$$SE = \sqrt{SEM_1^2 + SEM_2^2}$$

Premissas

- As amostras foram selecionadas aleatoriamente das respectivas populações
- As populações são Normais (Gaussianas)
- As duas populações possuem DP idênticos
- Todos os indivíduos de cada grupo vêm da mesma população
- Cada indivíduo é independente de todos os outros

Comparando médias de 2 grupos

Felipe Figueiredo

Discussão da aula passada

t de Studer

médias

Interpretação

Participantes:
pareados ou não

Aprofundament

De volta à programação normal

Estratégia proposta

SEM da diferença.

Exercício 4 (cap 5)

Exercício 4 do cap 5

Os níveis séricos de um hormônio (fator Y) foram medidos em 100 mulheres não grávidas, e em 100 mulheres com até 3 meses de gravidez. Os ICs dos valores dos soros em ambos os grupos são:

Grávidas: [105.4, 114.6]Não grávidas: [90.0, 96.0]

O fator Y médio é diferente em mulheres grávidas e não grávidas?

Requisito

Pelas premissas do IC da média, você tem informações suficientes para calcular/interpretar cada um destes ICs?

Comparando médias de 2 grupos

Felipe Figueiredo

Discussão da

t de Stude

médias

Participantes: pareados ou não pareados?

Aprofundamento

Comparando médias de 2 grupos

Felipe Figueiredo

Discussão da

de Student

médias Interpretação

Participantes: pareados ou não pareados?

⁴não podemos somar DPs, mas podemos somar variâncias

Bastidores do exercício 5.4/7.1

INTO

Felipe

Figueiredo

Interpretação

pareados ou não pareados?

Diferenças: Exercício 5.4 (e 7.1)

• Média grávidas: $\bar{x_1} = 110 \text{ unidades/ml}$

• Média não grávidas: $\bar{x_2} = 93$ unidades/ml

• Diferença entre as médias: $\bar{x_d} = 17$ unidades/ml

• SEM da diferença: 2.75 unidades/ml

 $n_1 = 100, n_2 = 100$

• df = (100 - 1) + (100 - 1) = 198

• $t^* = 1.97$ (valor crítico tabelado)

Comparando médias de 2 grupos Postidoreos Exercísio E 4 (o.

Bastidores: Exercício 5.4 (e 7.1)

Média grávidas: x̄₁ = 110 unidades/ml
 Média não grávidas: x̄₂ = 93 unidades/ml

Diferença entre as médias: $\bar{x_d} = 17$ unidades/ml

SEM da diferença: 2.75 unidades/ml

 $n_1 = 100, n_2 = 100$

 \bullet df = (100 -1) + (100 - 1) = 198

Solução do exercício 5.4/7.1

• $t^* = 1.97$ (valor crítico tabelado)

Resultado: IC da diferença

[11.6, 22.4] unidades/ml

E o que isso significa?

Solução

Interpretação

Estamos 95% *confiantes* que a diferença real entre os grupos está entre 11,6 e 22,4.

Conclusão ("nossos dados indicam que...")

o (...) fator Y de uma (...) grávida é (...) 17 unidades/ml maior que uma (...) não grávida (variando entre 11,6 e 22,4 unidades/ml).

Pense...

Preencha as lacunas acima.

Comparando médias de 2 grupos

Felipe Figueiredo

Discussão da aula passada

de Studer

nédias

Interpretação
Participantes:
pareados ou não
pareados?

Aprofundamento

Grupos não pareados x pareados

Grupos não pareados

- Até agora assumimos que os grupos e participantes são independentes
- A única coisa que podemos fazer: comparação global
- ... a média do grupo A × a média do grupo B

Grupos pareados

- Existe um caso importante em que pode-se considerar que eles são dependentes: quando são pareados
- Isto é: cada participante de um grupo tem um correspondente no outro
- ... diferença entre cada par ⇒ média das diferenças

Comparando médias de 2 grupos Felipe

Figueiredo

Discussão da aula passada

t de Student

IC diferença 2 médias

Interpretação Participantes:

pareados ou não pareados?

Aprofundamento

Comparando médias de 2 grupos

Felipe Figueiredo

Discussão da

t de Student

IC diferença 2 médias Interpretação Participantes:

pareados ou não pareados?

Grupos pareados

INTO

Quando faz sentido parear indivíduos de dois grupos?

- Mensurar o mesmo individuo antes e depois do procedimento (baseline x intervenção)
- Recrutamento aos pares, quando o par tem a(o) mesma(o)
 - idade/faixas etária
 - região demográfica
 - diagnóstico
- irmãos, pai/filho
- lateralidade (tratamento = lado E, controle = lado D)

Comparando médias de 2 grupos

Felipe Figueiredo

Discussão d aula passad

t do Ctudont

IC diferença 2 médias

Participantes: pareados ou não pareados?

Aprofundamento

IPC

Comparando médias de 2 grupos

Felipe Figueiredo

Discussão da aula passada

de Student

IC diferença 2 médias

Participantes: pareados ou não pareados?

Aprofundamento

Qual das estimativas é mais precisa?

Ye e Grantham (1993) estudaram o mecanismo de absorção de fluido em cistos renais removidos de pacientes com doença renal policística. Incubaram os cistos em meio de cultura celular e mediram a diferença de peso em cada cisto (antes e depois da incubação).

Não pareado

Exemplo 7.2

- peso médio (todos, antes) = 6.51g (SEM 2.26g)
- 2 peso médio (todos, depois) = 7.02g (SEM 2.40g)
- **3** IC 95% [-6.48, 7.50]

Pareado

- ganho em cada cisto ⇒ depois antes
- 2 ganho médio dos cistos = 0.50g (SEM 0.23g).
- 3 IC 95% [-0.03, 1.04]

Comparando médias de 2 grupos

Felipe Figueiredo

Discussão da

t do Ctudout

IC diferença 2 médias Interpretação Participantes: pareados ou não pareados?

Aprofundamento

Aprofundamento

Comparando médias de 2 grupos

Felipe Figueiredo

Discussão da aula passada

t de Student

médias

Aprofundamento
Aprofundamento

Leitura recomendada

ICH - E10 Choice of Control Group in Clinical Trials

- Seção 2.1 (Placebo Control)
- Cap. 3 (CHOOSING THE CONCURRENT CONTROL GROUP)

http://www.ich.org (este link é clicável)

Aprofundamento

Leitura obrigatória

Capítulo 5. Seção: A distribuição *t* Capítulo 7: Pular as seções

- Cálculo do IC de grupos independentes
- Cálculo do IC de grupos pareados

Exercícios de fixação

Interprete explicitamente todas as suas respostas.

- Cap 5: Exercício 4, 5 itens:
 - A (IC = [1200.7, 1205.3])
 - D (IC =[1201.1, 1204.9]).
- Cap 7: exercícios 1, 2 (IC = [5.271, 10.129]).

Comparando médias de 2 grupos

Felipe Figueiredo

Discussão da

t de Studer

IC diferença 2 médias

Aprofundamento

Aprofundamento