PCA, kernel PCA, Laplacian eigenmaps

Feature selection / generation without using labels

PCA.

(Karhunen-Loève transform)

Normalize the samples and write the covariance matrix $y_i = x_i - \mu_i$

$$y_i = x_i - \mu_i$$

$$yy^T = \Sigma$$

Diagonalize the covariance matrix

$$\Sigma = UDU^{-1}$$

Note: no label information used

PCA $yy^T = \Sigma$ $\Sigma = UDU^{-1}$ Samples Features Approximate the large matrix (MSE) Largest => eigenvectors Samples New Features Projection

$$Y = A^T X$$

Maximizing the covariance

$$YY^T = \Sigma_v = A^T XX^T A = A^T \Sigma_x A$$

If
$$A=U$$
 Matrix of eigenvectors, $\Sigma_y =$

- Zero covariance,
- maximal variance with largest eigenvalues

Note:
$$argmax \frac{w^T M w}{w^T w}$$

Note: $\underset{w}{argmax} \frac{w^T M w}{w^T w}$ Solution: w eigenvector of M with largest eigenvalue

Min-max (Courant-Fisher-Weyl) theorem

PCA

Some visual examples

LDA & PCA

- Remarks: complex mix of initial features, can loose interpretability / explainability
 what the important features? Difficult to answer
- Only linear separability

Kernel PCA

Data not linearly separable:
Send the data in a higher dimensional space, nonlinearly

Kernel PCA

$$Y = A^T X$$

Matrix, linear transformation: Rotation, translation, reflection, shear

Nonlinear transformation + high dimensional

$$\phi: \mathbb{R}^n \to \mathbb{R}^d$$

$$\phi: x \to \phi(x)$$

PCA in the high dimensional space ? \rightarrow No, untractable

Going in high dimension

Singular Value Decomposition (SVD):

Same non-zero eigenvalues

$$X = U \wedge V^H$$

Going in high dimension

Eigenvector v

$$X^T X v = \lambda v$$

$$XX^T Xv = \lambda Xv$$

Eigenvector u = Xv of the covariance matrix!

$$XX^T u = \lambda u$$

Covariance matrix, Correlation matrix, Gram matrix In high dim space

The kernel trick!

Examples: Gaussian kernel (RBF) $K(\mathbf{x}, \mathbf{y}) = \exp\left(-\frac{\|\mathbf{x} - \mathbf{y}\|^2}{2\sigma^2}\right)$.

$$K(x,y) = (x^{\mathsf{T}}y + c)^d$$

Polynomial kernel

See Moore-Aronszajn theorem for conditions on k

The kernel trick!

$$\phi(x)^{T} \phi(x) = \begin{vmatrix} k(x_{1}, x_{1}) & k(x_{1}, x_{2}) & \dots \\ k(x_{2}, x_{1}) & k(x_{2}, x_{2}) & \dots \\ \vdots & \ddots & \ddots \\ \vdots & \ddots & k(x_{N}, x_{N}) \end{vmatrix}$$

Let us diagonalize this matrix!

Largest eigenvectors

$$\phi(x)^T \phi(x) v_k = \lambda_k v_k$$

$$u_k = \phi(x) v_k$$

BUT: we cannot directly project, we have to pass through the high dim. space

The kernel trick!

$$(u_{k},\phi(x_{1})) = (\phi(x)v_{k},\phi(x_{1})) = v_{k}^{T}\phi(x)^{T}\phi(x_{1}) = \sum_{i=1}^{N} v_{k}(i)k(x_{i},x_{1})$$
In the high dim space Replace by kernel In the original space

Projection
$$k(x_{i},x_{j}) = \sum_{i=1}^{N} v_{k}(i)k(x_{i},x_{1})$$

$$k(x_{i},x_{j}) = \sum_{i=1}^{N} v_{k}(i)k(x_{i},x_{1})$$

Kernel PCA

Data not linearly separable:
Send the data in a higher dimensional space, nonlinearly

