

EXAMENUL DE BACALAUREAT - 2007

Proba scrisă la Fizică

Proba E: Specializarea: matematică -informatică, stiinte ale naturii

Proba F: Profil: tehnic - toate specializările

♦ Sunt obligatorii toți itemii din două arii tematice dintre cele patru prevăzute în programă, adică: A.MECANICĂ, B.ELECTRICITATE ȘI MAGNETISM, C. ELEMENTE DE TERMODINAMICĂ ȘI FIZICĂ MOLECULARĂ, D. OPTICĂ

♦Se acordă 10 puncte din oficiu.

♦Timpul efectiv de lucru este de 3 ore.

Varianta 99

A.MECANICA

Accelerația gravitațională se consideră g = 10 m / s²

I. Pentru itemii 1-5 scrieți pe foaia de concurs litera corespunzătoare răspunsului considerat corect

15 puncte

1. Un camion de masă m = 10 t merge cu viteza v = 36 km / h pe un pod convex de rază R = 100 m. Forța de apăsare exercitată de camion asupra podului atunci când se află în punctului superior al acestuia este :

a. 90KN

b. 150 KN

c..245 KN

d. 556 KN

2. Un biciclist străbate prima jumătate din drumul pe care îl are de parcurs cu viteza 4 v, următorul sfert de drum cu viteza 3 v, iar ultimul sfert cu viteza 2 v. Viteza medie pe întreaga distanță are valoarea :

a.2.5 v

b.3 v

c. 4,5 v

d. 11,4v

3. Un corp de masă m se mișcă uniform accelerat pe un plan orizontal sub acțiunea unei forțe de tracațiune F dirijată sub unghiul a față de viteza corpului ca în figura alăturată. Considerând coeficientul de frecare µ la alunecarea corpului pe suprafață, forța de frecare are expresia:

a. µmg

b.μ Fsin α

c. μ F sin α

d. μ (mg – F sin α)

4. Un corp ciocnește plastic un alt corp identic aflat în repaus. Fracțiunea din energia cinetică inițială care se transformă în căldură este:

5. Lucrul mecanic este:

a. o mărime scalară și se măsoară în W

b. o mărime scalară și se măsoară în J

c. o mărime vectorială și se măsoară în J

d. mărime vectorială și se măsoară în N

II. Rezolvati următoarele probleme:

1. Din punctul cel mai înalt al unui plan înclinat cu înăltimea h = 3 m si înclinatie α = 30 °, este lăsat să alunece, din repaus, un corp de masă m₁ = 2 kg, coeficientul de frecare de alunecare al planului înclinat fiind μ = 0,1. După parcurgerea planului înclinat urmează o porțiune orizontală pe care corpul o parcurge fără frecare până când întâlnește un corp de masă m2 = 3 kg suspendat de un fir cu lungimea I = 2 m. Presupunând că la trecerea de pe planul înclinat pe planul orizontal, modulul vitezei corpului nu se modifică și că ciocnirea dintre cele două corpuri este perfect plastică centrală, determinati :

- a. energia cinetică la baza planului înclinat ;
- b. viteza corpurilor imediat după ciocnire ;
- c. tensiunea maximă care ia naștere în fir după ciocnire.

2. Un schior de masă m = 70 kg coboară pe o pârtie lungă de 200 m cu înclinația sin $\alpha_1 = 0.1$ pornind din repaus. El continuă cursa urcând pe o nouă pârtie cu înclinatia sin α₂ = 0 ,05 ca în figura alăturată. Considerați că viteza cu care schiorul începe să urce a doua pantă este egală cu viteza dobândită de acesta la baza primei pante. Neglijând frecarea determinati:

a. intervalul de timp de la pornirea cursei până când schiorul se va opri prima dată;

b. lungimea totală a pârtiei parcursă de schior de la pornire la prima oprire;

c. energia schiorului în momentul primei opriri, calculată în raport cu baza pârtiei .

15 puncte

15 puncte

Proba scrisă la Fizică Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic - toate specializările

EXAMENUL DE BACALAUREAT - 2007

Proba scrisă la Fizică

Proba E: Specializarea: matematică -informatică, stiinte ale naturii

Proba F: Profil: tehnic - toate specializările

- ◆ Sunt obligatorii toți itemii din două arii tematice dintre cele patru prevăzute în programă, adică: A.MECANICĂ, B.ELECTRICITATE ȘI MAGNETISM, C. ELEMENTE DE TERMODINAMICĂ ȘI FIZICĂ MOLECULARĂ, D. OPTICĂ
- ♦Se acordă 10 puncte din oficiu.

♦Timpul efectiv de lucru este de 3 ore.

Varianta 99

B. ELECTRICITATE ŞI MAGNETISM

Permeabilitatea magnetică a vidului are valoarea $\mu_0 = 4\pi \cdot 10^{-7} \text{ N} / \text{A}^2$

I. Pentru itemii 1-5 scrieți pe foaia de concurs litera corespunzătoare răspunsului considerat corect

15 puncte

- 1. O spiră de sectiune S = 10 cm ² este situată în interiorul unui solenoid bobinat cu n = 1000 spire pe metru ,coaxial cu acesta. Viteza de variație a intensității curentului prin solenoid, dacă t.e.m. indusă în spiră are valoarea e = 0,0314 mV, este :
- a. 10 A / s
- **b.** 20 A / s
- c. 25 A/s
- **d.** 30 A / s
- 2.Considerați două rezistoare confecționate din același material având rezistențele R₁ = 25 Ω, respectiv R₂ = 100 Ω . Rezistorul R₁ este confecționat din sârmă de secțiune S₁ = 1 mm ², iar rezistorul R₂ este de 10 ori mai lung decât R₁. Valoarea secțiunii sârmei din care este confectionat rezistorul R2 este :
- **a.** 2,5 mm ²
- **b.** 6,25 mm ²
- c. 1 cm 2
- d. 10 cm 2
- 3. În circuitul din figura alăturată toți rezistorii au aceeași rezistență R. Rezistența echivalentă a circuitului este :
- a.R
- b. $\frac{7}{6}R$
- **d.**2 R

- 4. Printr-un conductor trece un curent electric a cărui intensitate variază în timp după legea I = 0,2 + 0,01 t (A). Sarcina electrică transportată printr-o secțiune transversală a conductorului în intervalul de timp $t \in [80s;180s]$ este :
- a. 100C
- **b.** 150 C
- c. 200C
- d. 250 C
- 5. Un generator electric debitează aceeași putere pe rezistorii având rezistențele R1 și respectiv R2. Rezistența internă a generatorului este dată de relația :
- **a**. $R_1 + R_2$
- **b.** 2 R₁ R₂
- c. $\frac{R_1 R_2}{R_1 + R_2}$ d. $\sqrt{R_1 R_2}$

II.Rezolvați următoarele probleme :

- 1.În circuitul electric din figura alăturată, rezistoarele au rezistențele: R₁ = 8Ω, R₂ = 12Ω, R₃ = 2,2Ω, R₄ = 4Ω, iar bateria are t.e.m. E = 24 V și rezistența interioară $r = 1\Omega$. Determinați : R_3
- a. rezistenta circuitului exterior;
- **b.** intensitatea curentului prin rezistorul de rezistentă R₁;
- **c**. energia dezvoltată pe circuitul exterior în timpul t = 5 min.

- 2.La un acumulator cu t.e.m. E = 2 V şi rezistenţă internă r = 0,1Ω se leagă în serie un rezistor de rezistenţă R₁ = 4 Ω şi o bobină fără miez magnetic (μ aer $\cong \mu$ 0), cu rezistența R₂ = 2 Ω , care are N = 2000 spire ,secțiune S = 25 · 10 · 4 m ² și lungimea I = 0,314 m . Determinati:
- a. intensitatea curentului din circuit;
- b. inducția câmpului magnetic în interiorul bobinei ;
- c. t.e.m. autoindusă în bobină dacă se întrerupe curentul și intensitatea sa scade liniar în timp de 2 s.

15 puncte

EXAMENUL DE BACALAUREAT - 2007

Proba scrisă la Fizică

Proba E: Specializarea: matematică -informatică, stiinte ale naturii

Proba F: Profil: tehnic - toate specializările

- ♦ Sunt obligatorii toți itemii din două arii tematice dintre cele patru prevăzute în programă, adică: A.MECANICĂ, B.ELECTRICITATE ŞI MAGNETISM, C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ, D. OPTICĂ
- ♦Se acordă 10 puncte din oficiu.

♦Timpul efectiv de lucru este de 3 ore.

Varianta 99

C. ELEMENTE DE TERMODINAMICĂ ȘI FIZICĂ MOLECULARĂ

Se cunosc: R \cong 8,31 J / (mol K) , p₀ \cong 10 ⁵ N / m ² , g = 10 m / s ², pentru gazul monoatomic $C_V = 3R/2$, pentru gazul diatomic $C_V = 5R/2$ și $C_P = C_V + R$.

I. Pentru itemii 1-5 scrieți pe foaia de concurs litera corespunzătoare răspunsului considerat corect

15 nuncte

1. Variația energiei interne a unui gaz ideal reprezintă 60% din căldura primită de el într-un proces izobar. Lucrul mecanic efectuat de gaz reprezintă un procent din căldura primită egal cu:

a. 25%

b. 60%

c. 40%

d. 85%

2. Două recipiente sunt umplute cu aer la temperaturile $T_1 = 300 \text{ K}$ şi respectiv $T_2 = 400 \text{ K}$. Raportul presiunilor aerului din cele două compartimente este p₁ / p₂ = 3. Aerul din cele două compartimente este adus la aceeaşi temperatură printr-un proces izocor În aceste condiții raportul presiunilor devine :

a. 1

b. 4

c.7

d.14

3. Un gaz ideal este comprimat izoterm până când volumul variază cu 20 %. În aceast proces presiunea gazului :

a. scade cu 10 %

b. scade cu 20 %

c. crește cu 20 %

d. crește cu 25 %

4. Considerând că notațiile sunt cele utilizate în manualele de fizică, ecuația termică de stare are expresia :

a. $p = \frac{NkT}{V}$

b. p = NkT

c. $p = 3 N m_0 v_T^2$

dU = VRT

5. Un gaz ideal parcurge un ciclu Carnot astfel încât în timpul destinderii izoterme moleculele au viteza termică v_{T1} = 400 m/s, iar în timpul comprimării izoterme au viteza termică v_{T2} = 200 m/s. Randamentul motorului termic ce funcționează după acest ciclu este :

a. 50 %

b. 60 %

c. 75 %

d. 90 %

II. Rezolvati următoarele probleme :

- 1. Considerați un cilindru vertical cu secțiunea S =0,01 m 2 închis în partea superioară cu un piston mobil de masă M = 50 kg. În cilindru se află o masă m = 14 g de azot (μ = 28 g / mol) la temperatura t_1 = 27 $^{\circ}$ C. Azotul este încălzit printr-o transformare izobară până la temperatura T_2 = 400 K , după care pistonul este blocat și cilindrul este pus în legătură cu un vas de volum V_2 = 3 L în care se află azot având presiunea p_2 = 4 \cdot 10 5 N / m 2 și temperatura T_2 . Presiunea exterioară egală cu presiunea amosferică, p_0 , normală. Determinați:
- a. înălțimea la care se află pistonul față de baza cilindrului în starea inițială ;
- b. lucrul mecanic efectuat de azot în cursul încălzirii izobare ;
- c. presiunea finală după stabilirea legăturii între cilindru și vas .

15 puncte

- 2. O cantitate v=2 moli de gaz ideal monoatomic care parcurge ciclul din figura alăturată este format din două izobare corespunzătoare presiunilor p şi 3p, respectiv două izocore corespunzătoare volumelor V şi 3 V. Cunoscând $p=2\cdot10^5$ Pa şi V=10 L, determinați :
- ${f a}.$ temperatura maximă atinsă de gaz într-un ciclu ;
- b. căldura cedată de gaz într-un ciclu ;
- c. randamentul motorului care ar funcționa după acest ciclu.

15 puncte

Proba scrisă la Fizică
Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba F: Profil: tehnic - toate specializările

EXAMENUL DE BACALAUREAT - 2007 Proba scrisă la Fizică

Proba E: Specializarea: matematică -informatică, stiinte ale naturii

Proba F: Profil: tehnic - toate specializările

♦ Sunt obligatorii toţi itemii din două arii tematice dintre cele patru prevăzute în programă, adică: A.MECANICĂ, B.ELECTRICITATE ŞI MAGNETISM, C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ, D. OPTICĂ

♦Se acordă 10 puncte din oficiu.

♦Timpul efectiv de lucru este de 3 ore.

Varianta 99

D. OPTICĂ

I. Pentru itemii 1-5 scrieți pe foaia de concurs litera corespunzătoare răspunsului considerat corect

1.O lentilă plan concavă se introduce într-un lichid cu indicele de refracție mai mare decât al lentilei. În acest caz lentila va avea :

a. focare reale **b**. focare virtuale

c. un focar la infinit și unul real

d.convergență negativă

2. Un dispozitiv Young are distanța dintre fante de 5 mm, iar fantele se află la distanța de 1 m de ecran. Se iluminează dispozitivul cu două radiații având lungimile de undă $\lambda_1 = 480$ nm şi respectiv $\lambda_2 = 600$ nm. Distanța de pe ecran dintre franjele de interferență de ordinul trei, ob'inute pe ecran pentru cele două radiații, este

a. 0,058 mm

b. 0,072 mm

c. 0,089 mm

d. 0,095 mm

3. Un fascicul luminos paralel este incident din aer (n aer = 1) pe suprafața apei sub un unghi de incidență de 30 º.Dacă lărgimea fasciculului în apă este de 5,35 cm (n apă = 4 / 3) atunci lărgimea fasciculului în aer este :

a. 2,6 cm

b. 4,2 cm

c. 5 cm

d. 8 cm

4. O oglindă plană dă pentru un obiect real o imagine :

a. răsturnată egală cu obiectul

b. reală mai mare ca obiectul

c. virtuală mai mică decât obiectul

d. virtuală egală cu obiectul

5.Considerați două lentile având convergențele C 1, respectiv C 2. Convergența C a sistemului format din cele două lentile alipite este dată de relatia :

a. $C = C_1 + C_2$

b. $C = C_1 - C_2$

c. $C = C_1 C_2$

d. $C = 2 C_1 - C_2$

II. Rezolvați următoarele probleme :

- 1. Un obiect liniar cu înălțimea $y_1 = 7$ cm, este așezat perpendicular pe axul optic principal al unei lentile L $_1$ plan convexă, la distanța de 42 cm de aceasta. Imaginea prin lentila L $_1$ se formează pe un ecran și este de două ori mai mare decât obiectul. Lentila L $_1$ este confecționată din sticlă cu indicele de refracție n = 1,4 și este plasată în aer (n $_{aer} = 1$). Dacă se introduce lentila în apă, distanța focală devine f $_a = 224$ cm. Determinați :
- a. distanța focală a lentilei L 1 în aer;
- b. indicele de refracție al apei;
- c. convergența unei alte lentile subțiri L 2 care alipită la lentila L 1 aflată în aer, formează un sistem optic cu distanța focală egală cu f a.

15 puncte

- **2.** O rețea de difracție plană cu constanta rețelei egală cu 10 ⁻⁶ m este iluminată sub un unghi de incidență constant , cu radiație monocromatică a cărei lungime de undă este egală cu 500 nm . Maximul luminos de ordinul al doilea .se obține sub unghiul de difracție numeric egal cu unghiul de incidență . Determinați :
- a. unghiul de incidență;
- **b.** numărul total al maximelor luminoase care se formează ;
- c. ordinul maxim de difracție care se poate forma dacă rețeaua de difracție este iluminată normal cu aceeași radiație monocromatică.

15 puncte

4

Proba scrisă la Fizică Varianta 99
Proba E: Specializarea : matematică –informatică, ştiințe ale naturii

Proba F: Profil: tehnic - toate specializările