Computer Intensive Statistics in Ecology HW4

黃梓育

2018.03.28

http://140.119.65.88/hw4/#1

Computer Intensive Statistics in Ecology HW4

黃梓育

2018.03.28

Compute the mean and stand error of the mean for the fish and copepod density (all data points) respectively using Jackknife. Plot the histogram of Jackknife means.

```
library(knitr) # plot table
library(readxl) # read excel
library(ggplot2) # plot figure
df <- data.frame(read_excel("./enviANDdensity.xls"))</pre>
```

DT::datatable(df[,11:12],fillContainer = F, options = list(

Show 5 centries

	FishDensityind1000m3.	CopepodDensity.indm3.
1	137.3233973	1119
2	20.96762377	1153
3	0	1719
4	0	855
5	180.7135569	1246

Showing 1 to 5 of 34 entries

Previous 1 2 3 4 5 6 7

Next

```
DT::datatable(df[,11:12],fillContainer = F, options = list(
```

Show 5 centries

	FishDensityind1000m3.	CopepodDensity.indm3.
1	137.3233973	1119
2	20.96762377	1153
3	0	1719
4	0	855
5	180.7135569	1246

Showing 1 to 5 of 34 entries

Previous 1 2 3 4 5 6 7

Next

So, we load these column

```
fish <- df$FishDensity..ind..1000m3.
cope <- df$CopepodDensity.ind..m3.</pre>
```

```
# resample the original sample by Jackknife
jackknife.resample <- function(data){
  return(t(sapply(1:length(data), function(i) data[-i])))
}</pre>
```

```
# resample the original sample by Jackknife
jackknife.resample <- function(data){
  return(t(sapply(1:length(data), function(i) data[-i])))
}</pre>
```

Calculate Jackknife of mean of resample data

$$\hat{ heta}_{(.)} = rac{\sum\limits_{j=1}^{n} \hat{ heta}_{-j}}{n}$$

```
# calculate mean of Jackknife of resample data
jackknife.mean <- function(data){
   return(sum(data)/dim(data)[1]/dim(data)[2])
}</pre>
```

```
# resample the original sample by Jackknife
jackknife.resample <- function(data){
  return(t(sapply(1:length(data), function(i) data[-i])))
}</pre>
```

Calculate Jackknife of mean of resample data

$$\hat{ heta}_{(.)} = rac{\sum\limits_{j=1}^{n} \hat{ heta}_{-j}}{n}$$

```
# calculate mean of Jackknife of resample data
jackknife.mean <- function(data){
  return(sum(data)/dim(data)[1]/dim(data)[2])
}</pre>
```

Calculate Jackknife of stand error of resample data

$$S.\,R.\,(\hat{ heta}) = egin{array}{c} \overline{n-1} & n \ n & j=1 \end{array}$$

```
jackknife.se <- function(data){
  m <- jackknife.mean(data)
  n <- dim(data)[1]
  return(sqrt(sum(sapply(1:n, function(i) (mean(data[i,])-m)))</pre>
```

```
fish.jackknife.sample <- jackknife.resample(fish)
cope.jackknife.sample <- jackknife.resample(cope)
fish.sample.mean <- data.frame(x=apply(fish.jackknife.sampl
cope.sample.mean <- data.frame(x=apply(cope.jackknife.sampl</pre>
```

Jackknife sample of fish

Mean	SE_of_Mean
322.4516	61.23107

Jackknife sample of copepod

Mean	SE_of_Mean
1972.374	342.5549

```
ggplot(fish.sample.mean,aes(x)) +
  geom_histogram(aes(y=..density..), bins = 30, col="black"
  labs(title="Density of means of each fish jackknife sampl
```

Density of means of each fish jackknife sample


```
ggplot(cope.sample.mean,aes(x)) +
  geom_histogram(aes(y=..density..), bins = 30, col="black"
  labs(title="Density of means of each copepod jackknife sa
```

Density of means of each copepod jackknife sample

Compute the regression coefficients for fish = \$0 + \$1* copepod and Jackknife SE of \$0 and \$1. Plot the histogram of Jackknife \$0 and \$1.

Compute the regression coefficients for fish = &0 + &1 * copepod and Jackknife SE of &0 and &1. Plot the histogram of Jackknife &0 and &1.

$$solution)\ Calculate\ \hat{eta}=[eta_0\ eta_1]'\ as\ following:$$
 $\hat{eta}=(X'X)^{-1}X'Y$

Compute the regression coefficients for fish = ß0 + ß1 * copepod and Jackknife SE of ß0 and ß1. Plot the histogram of Jackknife ß0 and ß1.

```
solution) \ Calculate \ \hat{eta} = [eta_0 \ eta_1]' \ as \ following:
```

$$\hat{\beta} = (X'X)^{-1}X'Y$$

```
coeff.OLS <- function(X,Y){
    # Y is dependent variable
    # X is independent variable and intercept
    X <- cbind(rep(1,length(X)),X)
    return(solve(t(X) %*% X) %*% (t(X) %*% Y))
}
# compute coefficients of original sample
b <- coeff.OLS(cope,fish)
cat("Regression line : ","B0 is", b[1], ", and B1 is", b[2]</pre>
```

Regression line : B0 is 93.06466 , and B1 is 0.1162999

beta0	beta1
96.81970	0.1157231
101.96731	0.1149709
103.09380	0.1157187
102.30830	0.1146001
95.45166	0.1159731
100.10574	0.1165966

```
ggplot(jackknife.Coeff,aes(beta0)) + theme(legend.position=
  geom_histogram(aes(y=..density..), bins = 15, col="black"
  labs(title="Density of B0 of each jackknife sample", x="B
```

Density of ß0 of each jackknife sample


```
ggplot(jackknife.Coeff,aes(beta1)) + theme(legend.position=
  geom_histogram(aes(y=..density..), bins = 15, col="black"
  labs(title="Density of B1 of each jackknife sample", x="B
```

Density of ß1 of each jackknife sample

Compare the estimates for Q1 and Q2 obtained from normal theory, bootstrap, and jackknife.

```
# normal theory
normal.se <- function(data){
  data <- matrix(data)
  n <- length(t(data))
  return(sqrt(sum((data-mean(data))^2)/(n*(n-1))))
}</pre>
```

Compare the estimates for Q1 and Q2 obtained from normal theory, bootstrap, and jackknife.

```
# normal theory
normal.se <- function(data){
  data <- matrix(data)
  n <- length(t(data))
  return(sqrt(sum((data-mean(data))^2)/(n*(n-1))))
}</pre>
```

```
# resample the original sample by bootstrap
bootstrap.resample <- function(data, times){
   n <- length(data)
   return(t(replicate(times, data[ceiling(runif(n,0,n))])))
}</pre>
```

Compare the estimates for Q1 and Q2 obtained from normal theory, bootstrap, and jackknife.

```
# normal theory
normal.se <- function(data){
  data <- matrix(data)
  n <- length(t(data))
  return(sqrt(sum((data-mean(data))^2)/(n*(n-1))))
}</pre>
```

```
# resample the original sample by bootstrap
bootstrap.resample <- function(data, times){
   n <- length(data)
   return(t(replicate(times, data[ceiling(runif(n,0,n))])))
}</pre>
```

```
# calculate bootstrap of stand error of resample data
bootstrap.se <- function(data){
  return(sd(apply(data, 1, mean)))
}</pre>
```

```
fish.bootstrap.sample <- bootstrap.resample(fish,1e3)
cope.bootstrap.sample <- bootstrap.resample(fish,1e3)</pre>
```

```
fish.bootstrap.sample <- bootstrap.resample(fish,1e3)
cope.bootstrap.sample <- bootstrap.resample(fish,1e3)</pre>
```

```
compare.fish <- data.frame(cbind(
   c(mean(fish),normal.se(fish)),
   c(mean(fish.bootstrap.sample), bootstrap.se(fish.bootstra
   c(jackknife.mean(fish.jackknife.sample), jackknife.se(fis
rownames(compare.fish) <- c("Mean", "S.E")
colnames(compare.fish) <- c("Normal_Theory", "Bootstrap", "
kable(compare.fish, caption="Comparison of fish", align="l"</pre>
```

Comparison of fish

	Normal_Theory	Bootstrap	Jackknife
Mean	322.45163	323.10264	322.45163
S.E	61.23107	57.18685	61.23107

```
compare.cope <- data.frame(cbind(
   c(mean(cope),normal.se(cope)),
   c(mean(cope.bootstrap.sample), bootstrap.se(cope.bootstra
   c(jackknife.mean(cope.jackknife.sample), jackknife.se(cop
   rownames(compare.cope) <- c("Mean", "S.E")
   colnames(compare.cope) <- c("Normal_Theory", "Bootstrap", "
   kable(compare.fish, caption="Comparison of copepod", align=</pre>
```

Comparison of copepod

	Normal_Theory	Bootstrap	Jackknife
Mean	322.45163	323.10264	322.45163
S.E	61.23107	57.18685	61.23107

```
n <- length(fish)
btIndex <- sapply(1:1e3,function(ignore) c(1:n)[ceiling(run
btCoeff <- apply(btIndex, 2, function(x) coeff.OLS(cope[x],

beta.cope <- data.frame(cbind(
    c(b),
    c(mean(jackknife.Coeff[,1]),mean(jackknife.Coeff[,2])),
    c(mean(btCoeff[1,]),mean(btCoeff[2,]))))
rownames(beta.cope) <- c("B0", "B1")
colnames(beta.cope) <- c("Normal_Theory", "Bootstrap", "Jackable(beta.cope, caption="Comparison of B", align="l", form</pre>
```

Comparison of ß

	Normal_Theory	Bootstrap	Jackknife
ßO	93.0646559	92.7309256	83.887058
ß1	0.1162999	0.1165492	0.123219

Thanks you

