Análisis de Componentes Independientes Lección 23

Dr. Pablo Alvarado Moya

CE5506 Introducción al reconocimiento de patrones Área de Ingeniería en Computadores Tecnológico de Costa Rica

II Semestre, 2019

Contenido

- Introducción
- 2 Ambiguedades
- 3 Densidades y transformaciones lineales
- Derivación ICA

Introducción

- El Análisis de Componentes Independientes (ACI, o ICA) es similar a PCA en cuanto a que busca una nueva base para los datos.
- Ambos métodos son no supervisados.
- La meta final es muy diferente.
- El PCA busca datos decorrelados, el ICA busca datos independientes.

Independencia estadística

- Sean s_1 y s_2 dos variables aleatorias
- Hay independencia estadística si probabilidad conjunta es igual al producto de marginales:

$$p(s_1,s_2) = p(s_1)p(s_2)$$

o también si probabilidad de un marginal no depende del otro

$$p(s_1|s_2)=p(s_1)$$

- En el problema de la fiesta de cocktail n fuentes acústicas independientes se capturan con n micrófonos distribuidos en un cuarto.
- Cada micrófono captura combinación lineal de n fuentes.
- Por estar los micrófonos en posiciones espaciales distintas, la combinación de fuentes en cada micrófono es distinta.
- El problema es entonces encontrar la señal de las n fuentes a partir de las señales capturadas con los micrófonos.
- Este es un caso particular de la **separación ciega de fuentes** (*BSS*, *blind source separation*).
- Aquí asumimos que las grabaciones tienen retardo cero.

• Sea $\underline{\mathbf{s}} \in \mathbb{R}^n$ la señal generada por las n fuentes. La señal observada es entonces

$$\underline{\mathbf{x}} = \mathbf{A}\underline{\mathbf{s}}$$

con $\mathbf{A} \in \mathbb{R}^{n \times n}$ la matriz de mezcla.

- Tenemos m observaciones $\underline{\mathbf{x}}^{(i)}$ y queremos recuperar las fuentes $\underline{\mathbf{s}}^{(i)}$ que dieron origen a los datos.
- En otros términos, queremos encontrar $\mathbf{W} = \mathbf{A}^{-1}$ (matriz de segregación o *unmixing*) tal que

$$\underline{\mathbf{s}}^{(i)} = \mathbf{W}\underline{\mathbf{x}}^{(i)}$$

a pesar de que desconocemos A.

• Denotaremos con $\underline{\mathbf{w}}_{j}^{T}$ la j-ésima fila de \mathbf{W} , encargada de recuperar la j-esima fuente $s_{i}^{(i)} = \underline{\mathbf{w}}_{i}^{T}\underline{\mathbf{x}}^{(i)}$

Ambigüedad de permutación

- Puesto que no tenemos información a priori de las fuentes ni de la matriz de mezcla, el ICA encontrará alguna permutación de las fuentes.
- Sea **P** una matriz $n \times n$ de permutación.
- Esto implica que cada fila y columna de P tienen un único 1:

$$\mathbf{P} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

• Dados solo $\underline{\mathbf{x}}^{(i)}$ es imposible distinguir \mathbf{W} de \mathbf{PW}

Ambigüedad de escalamiento

- Dados $\underline{\mathbf{x}}^{(i)} = \mathbf{A}\underline{\mathbf{s}}^{(i)}$, nótese que observaríamos los mismos valores con la matriz de mezcla $\alpha \mathbf{A}$ si las fuentes son ahora $\underline{\mathbf{s}}^{(i)}/\alpha$.
- Más aún, si solo escalamos una columna <u>a</u>: j de A, basta con escalar la fuente j con el recíproco del factor de escala para obtener lo mismo.
- Nótese que estos cambios de escala solo implicarían un cambio de "volumen" acústico en las señales, y por tanto no son importantes en la aplicación.

¿Otras fuentes de ambigüedad?

- Resulta que solo la permutación y el escalamiento son fuentes de ambigüedad en ICA, siempre y cuando la fuentes sean no gaussianas.
- Con fuentes gaussianas, el problema no es solucionable:
 - Si $\underline{\mathbf{s}} \sim \mathcal{N}(0,\mathbf{I})$ sus curvas equiprobables son círculos/esferoides centrados en cero (simetría rotacional)
 - Se cumple $Cov(\underline{s}) = E[\underline{ss}^T] = I$.
 - Si mezclamos $\underline{\mathbf{x}} = \mathbf{A}\underline{\mathbf{s}}$ entonces $\underline{\mathbf{x}} \sim \mathcal{N}(0, \mathbf{\Sigma})$ con $\mathbf{\Sigma} = \mathsf{E}[\mathbf{x}\mathbf{x}^T] = \mathsf{E}[\mathbf{A}\mathbf{s}\mathbf{s}^T\mathbf{A}^T] = \mathbf{A}\mathbf{A}^T$
 - Sea **R** una matriz de rotación, tal que $\mathbf{R}\mathbf{R}^T = \mathbf{R}^T\mathbf{R} = \mathbf{I}$.
 - Si mezclamos con $\mathbf{A}' = \mathbf{A}\mathbf{R}$ entonces tendremos observaciones $\mathbf{x}' \sim \mathcal{N}(0, \mathbf{\Sigma}')$
 - $\mathbf{\Sigma}' = \mathbf{E}[\underline{\mathbf{x}}'(\underline{\mathbf{x}}')^T] = \mathbf{E}[\mathbf{A}'\underline{\mathbf{s}}\underline{\mathbf{s}}^T\mathbf{A}'^T] = \mathbf{E}[\mathbf{A}\mathbf{R}\underline{\mathbf{s}}\underline{\mathbf{s}}^T(\mathbf{A}\mathbf{R})^T] = \mathbf{A}\mathbf{R}\mathbf{R}^T\mathbf{A}^T = \mathbf{A}\mathbf{A}^T = \mathbf{\Sigma}$
 - \Rightarrow Es imposible discernir si **A** o **A**' mezcló los datos.

Efecto de transformaciones lineales en densidades Caso de escalares

- Sea $s \in \mathbb{R}$ una variable aleatoria tomada de acuerdo a una densidad $p_s(s)$.
- Sea $x \in \mathbb{R}$ otra variable x = As con $A \in \mathbb{R}$.
- ¿Cuál es la densidad $p_x(x)$?
- Podríamos pensar que si calculamos $s = A^{-1}x$ y evaluamos $p_s(s)$ obtenemos p_x , pero ¡**no es cierto**!
- Por ejemplo, si $s \sim \text{Uniforme}[0,1]$ entonces $p_s(s) = 1 \{0 \le s \le 1\}.$
- Si elegimos A=2 entonces x=2s y x se distribuye uniformemente en [0,2] con densidad $p_x(x)=\frac{1}{2}1$ $\{0 \le x \le 2\}$, que **no** es igual a $p_s(A^{-1}x)=1$ $\{0 \le x \le 2\}$.
- La fórmula correcta es: $p_x(x) = |A^{-1}|p_s(A^{-1}x)$

Efecto de transformaciones lineales en densidades Caso vectorial

Si <u>s</u> tiene una distribución vectorial con densidad p_s(<u>s</u>) y
 <u>x</u> = A<u>s</u> con una matriz cuadrada, no singular A, entonces la densidad de x es

$$ho_{\underline{\mathbf{x}}}(\underline{\mathbf{x}}) = rac{1}{|\mathbf{A}|}
ho_{\underline{\mathbf{s}}}(\mathbf{A}^{-1}\underline{\mathbf{x}})$$

 Nótese que 1/|A| normaliza el (hiper)volumen de la distribución.

Distribución acumulativa

- Sea s una variable aleatoria con densidad $p_s(s)$
- La función de distribución acumulada (CDF) es

$$F(s) = P(S \le s) = \int_{-\infty}^{s} p_s(t) dt \quad \Rightarrow \quad p_s(s) = \frac{dF(s)}{ds}$$

Por ejemplo:

Especificación de variable aleatoria

- Si queremos especificar el comportamiento de una variable aleatoria s:
 - **1** podemos especificar $p_s(s)$ directamente
 - 2 podemos especificar F(s), pues $p_s(s) = F'(s)$

Derivación de ICA

• Supondremos que la distribución de cada fuente s_i está dada por una densidad p_s y que la distribución conjunta de las fuentes $\underline{\mathbf{s}} = [s_1, s_2, \dots, s_n]^T$ es

$$p(\underline{\mathbf{s}}) = \prod_{i=1}^n p_{\mathbf{s}}(s_i)$$

donde hemos asumido para el cálculo que todas las fuentes son independientes.

• Esto implica que con $\underline{\mathbf{x}} = \mathbf{A}\underline{\mathbf{s}} = \mathbf{W}^{-1}\underline{\mathbf{s}}$:

$$p(\underline{\mathbf{x}}) = \prod_{i=1}^{n} p_{s}(\underline{\mathbf{w}}_{i}^{T}\underline{\mathbf{x}})|\mathbf{W}|$$

 Solo queda especificar qué es la densidad de las fuentes individuales p_s.

Definición de la densidad de fuente

- Definiremos las densidades a través de una CDF que no puede corresponder a una gaussiana.
- Si CDF se puede determinar experimentalmente o es conocida, pues se utiliza
- En caso contrario, usualmente se selecciona una función que pase lentamente de 0 a 1, tal como

$$g(s) = \frac{1}{1 + e^{-s}}$$

de modo que $p_s(s) = g'(s) = g(s)(1 - g(s))$.

- La PDF asociada a g(s) como CDF decae con e^{-s} , más lento que la gaussiana que decae con e^{-s^2}
- Buscamos entonces W.

Máxima verosimilitud

• Dado el conjunto de entrenamiento $\underline{\mathbf{x}}^{(i)}$; $i=1\ldots m$

$$\ell(\mathbf{W}) = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} \ln g' \left(\underline{\mathbf{w}}_{j}^{T} \underline{\mathbf{x}}^{(i)} \right) + \ln |\mathbf{W}| \right)$$

 Sabiendo que ∇_W|W| = |W|(W⁻¹)^T, entonces calculando el gradiente e igualándolo a cero se obtiene una regla de actualización de ascenso estocástico:

$$\mathbf{W} \leftarrow \mathbf{W} + \alpha \begin{pmatrix} \begin{bmatrix} 1 - 2g(\underline{\mathbf{w}}_{1}^{T}\underline{\mathbf{x}}^{(i)}) \\ 1 - 2g(\underline{\mathbf{w}}_{2}^{T}\underline{\mathbf{x}}^{(i)}) \\ \vdots \\ 1 - 2g(\underline{\mathbf{w}}_{n}^{T}\underline{\mathbf{x}}^{(i)}) \end{bmatrix} \underline{\mathbf{x}}^{(i)^{T}} + (\mathbf{W}^{T})^{-1} \end{pmatrix}$$

con α la tasa de aprendizaje

Curtosis

- Lo anterior no es la única técnica de solución
- Una técnica fácil de utilizar desde GNU/Octave usa una estimación de curtosis
- La curtosis es una medida de qué tan "puntiaguda" es una distribución probabilística.
- Hay varias definiciones. Por ejemplo (excess curtosis):

$$\operatorname{Curt}[X] = \operatorname{E}\left[\left(\frac{X - \mu}{\sigma}\right)^4\right] - 3$$

- La curtosis de una distribución gaussiana es 0 (mesocúrtica).
- Distribuciones más puntiagudas (como la laplaciana) tienen curtosis mayores a cero (leptocúrtica).
- Distribuciones más planas (como la uniforme) tiene curtosis menores a cero (platicúrtica).

17/23

 El siguiente ejemplo de Roweis, Weiss y Simoncelli muestra un concepto:

- X tiene las mediciones mezcladas (una por columna)
- W es la matriz de segregación.
- La primera línea hace el enblanquecimiento de los datos, que logra que la matriz de segregación sea ortogonal.
- La segunda línea produce una matriz tal que, si se multiplica por un vector unitario, produce una aproximación de la curtosis en esa dirección.

- Los eigenvectores más grandes de esa matriz son las direcciones (ortogonales) de curtosis máxima para fuentes super-gaussianas (más picudas) y son buenas estimaciones de las direcciones de segregación.
- Más detalles en el trabajo de Miettinen, Taskinen, Nordhausen y Oja

Aplicaciones

- Rescatando señales de EEG
- Análisis financieros
- Análisis de imágenes
- Análisis de datos astronómicos

Ejemplo

- Ver aquí
- Ver demo audio

Resumen

- Introducción
- 2 Ambiguedades
- 3 Densidades y transformaciones lineales
- Derivación ICA

Este documento ha sido elaborado con software libre incluyendo LATEX, Beamer, GNUPlot, GNU/Octave, XFig, Inkscape, GNU-Make y Subversion en GNU/Linux

Este trabajo se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-LicenciarIgual 3.0 Unported. Para ver una copia de esta Licencia, visite http://creativecommons.org/licenses/by-nc-sa/3.0/ o envíe una carta a Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

© 2017–2019 Pablo Alvarado-Moya Área de Ingeniería en Computadores Instituto Tecnológico de Costa Rica