mytests Software Documentation

April 1, 2019

Version 0.2

Date April 1, 2019

Title Multivariate Tests of Association for Multiple Phenotypes

Correspondence Debashree Ray, Ph.D. <dray@jhu.edu>

Description Currently, mytests package implements a single-variant genetic association test of multiple phenotypes using a proportional odds regression model of genotype on phenotypes.

Depends MASS, lmtest, R (>= 3.0.1)

pom

Genetic association test of multiple phenotypes using proportional odds model

Description

POM uses a proportional odds model for testing association between a genetic marker and multiple traits using individual-level genotype phenotype data. The traits may be continuous and/or binary, correlated and/or independent. One may use likelihood ratio test (LRT) or the Wald test. The R function pom implements this association test.

Usage

```
pom(Y, X, COV=NULL, test.method="LRT",
    msg.mute=FALSE, no.format.check=FALSE, ...)
```

Arguments

Y	The $n \times K$ phenotype matrix, where n is the number of individuals
	and K is the number of phenotypes. The joint association of all K
	phenotypes with the single marker will be tested. Y needs to be in R
	data frame format.
X	The $n \times 1$ column matrix for the single genetic marker, where n is
	the number of individuals. X needs to be in R data frame format.
COV	The $n \times q$ matrix of covariates that need to be adjusted in the model.
	\boldsymbol{q} is the number of such covariates. COV needs to be in R data frame
	format. The default value is ${\tt NULL}$ assuming there is no covariate in
	the model.
test.method	Either the likelihood ratio test (LRT) or the Wald test (Wald) is used
	for testing genetic association of the traits. Default value is LRT.
msg.mute	Default value is FALSE, which allows messages to print when the
	analysis is in progress.
no.format.check	Default value is FALSE, which allows the code to check if the input
	parameters conform to the required format.
• • •	Additional arguments to be passed to polr() (used when propor-
	tional odds model framework is used) or ${\tt glm} \mbox{()}$ (used when logistic
	model framework is used).

Details

For testing joint association of multiple phenotypes \boldsymbol{Y} ($n \times K$ matrix) and a single genetic marker \boldsymbol{X} ($n \times 1$ matrix), one can consider a reverse regression approach: regressing \boldsymbol{X} on \boldsymbol{Y} assuming a proportional odds model (POM). For a given individual with genotype X (taking values 0, 1 or 2) and phenotypes \boldsymbol{y} (binary and/or continuous) and no covariate (for simplicity), the assumed model is

logit
$$(\mathbb{P}(X \leq j|\boldsymbol{y})) = \alpha_j + \boldsymbol{\beta}'\boldsymbol{y}, \ j = 0, 1$$

where $\beta = (\beta_1, ..., \beta_K)'$ are the genetic effects of interest. This model can also be written as

$$\mathbb{P}(X=0|\boldsymbol{y}) = \frac{1}{1 + e^{-\alpha_0 - \sum_{k=1}^K \beta_k y_k}}$$

$$\mathbb{P}(X = 1|\mathbf{y}) = \frac{1}{1 + e^{-\alpha_1 - \sum_{k=1}^{K} \beta_k y_k}} - \frac{1}{1 + e^{-\alpha_0 - \sum_{k=1}^{K} \beta_k y_k}}$$

$$\mathbb{P}(X = 2|\mathbf{y}) = \frac{1}{1 + e^{\alpha_1 + \sum_{k=1}^{K} \beta_k y_k}}$$

For a genetic variant with low allele frequency, it is possible for X to take only 2 values (instead of 3). In that case, a logistic regression is used.

The null hypothesis of no association of the genetic marker (say, single nucleotide polymorphism or SNP) with the phenotypes is $H_0: \beta_1 = ... = \beta_K = 0$. The test.method="LRT" (default) implements likelihood ratio test to test H_0 against the alternative hypothesis $H_a: \beta_k \neq 0$ for at least one k. Under the null H_0 , the LRT statistic has an asymptotic chi-squared distribution with K degrees of freedom.

When test .method="Wald", the test statistic is $\hat{\beta}'\hat{\Sigma}_{\beta}\hat{\beta}$, where $\hat{\beta}$ is the maximum likelihood estimate (MLE) of β and $\hat{\Sigma}_{\beta}$ is the estimated variance-covariance matrix of estimates $\hat{\beta}$. Under the null H_0 , the Wald test statistic, too, has an asymptotic chi-squared distribution with K degrees of freedom. Additionally, a version of the Wald test using F distribution is implemented using the lmtest R package, which requires fitting the full model as well as the null model (model under H_0).

We request that the reference for Ray and Chatterjee (2019+) be cited if this software is used in any publication. In the Ray and Chatterjee (2019+) article, we explored advantages and pitfalls of some of the currently used single-variant cross-phenotype methods in genome-wide analysis of rare, low-frequency and common variants when the basic assumption of multivariate normality is not satisfied. Based on our findings, we recommend extra caution when applying cross-phenotype association tests in GWAS with low-frequency or rare variants due to possible violation of multivariate normality assumption. However, we found that robust association testing is still possible for variants with minor allele count (MAC) > 30 by applying the POM-LRT approach (pom() with test.method="LRT") when individual-level data are available. Our recommendation is based on an MAC threshold (instead of an minor allele frequency - MAF - threshold as is commonly used) because we found consistent type I error calibration of methods when the MAC is kept constant.

Value

coef	The estimated coefficients in the model (e.g., α_0 , α_1 , β_1 ,, β_K).
	If COV is not NULL, estimated coefficients for covariates are also
	included.
SE.coef	The estimated standard errors of the coefficient estimates.
stat.lrt	(If test.method="LRT") The LRT statistic for testing the null
	hypothesis H_0 .
df.lrt	(If test.method="LRT") The degrees of freedom of the
	asymptotic null distribution of the LRT statistic.
pvalue.lrt	(If test.method="LRT") The p-value from testing H_0 using
	LRT.
stat.wald.chisq	(If test.method="Wald") The Wald test statistic for testing the
	null hypothesis H_0 .
df.wald.chisq	(If test.method="Wald") The degrees of freedom of the
	asymptotic chi-squared distribution of the Wald test statistic un-
	$\det H_0$.
pvalue.wald.chisq	(If test.method="Wald") The p-value from testing H_0 using
	Wald test assuming chi-squared distribution.
stat.wald.F	(If test.method="Wald") The Wald test statistic for testing the
	null hypothesis H_0 using the F distribution approximation.
pvalue.wald.F	(If test.method="Wald") The p-value from testing H_0 using
	Wald test assuming F distribution.
n.obs	Number of individuals used for testing association. Individuals
	with missing observations in Y, X or COV are removed.
error.msg	Saves any error message that arises during the analysis. If no
	error is encountered, message "OK" is returned.

Reference

Ray, D., Chatterjee, N. Effect of Non-Normality and Low Count Variants on Cross-Phenotype Association Tests in GWAS. *In revision*. 2019.

(Contact dray@jhu.edu for updated citation)

Example

```
source("mvtests_v0.2.R")
set.seed(1)
# simulate 2 phenotypes on 1000 individuals
Y < -mvrnorm(n=1000, mu=c(0,0), Sigma=matrix(c(1,0.2,0.2,1),2,2))
# simulate a single marker for 1000 individuals
X<-matrix(rbinom(n=1000, size=2, prob=0.2), ncol=1) # additive model
# required data-frame formats
Y<-as.data.frame(Y)
X<-as.data.frame(X)</pre>
# unique column names for the data-frames
colnames(Y) <-paste("Y", 1:2, sep="")</pre>
colnames(X)<-"X"
## apply POM to test association of X with Y1 and Y2
out1<-pom(Y=Y, X=X, COV=NULL, test.method="LRT")</pre>
out1
out2<-pom(Y=Y, X=X, COV=NULL, test.method="Wald")</pre>
out2
## optimization parameters may be changed
## (e.g., when convergence issues come up)
out3<-pom(X=X, Y=Y, test.method="Wald", control=list(maxit=1000))</pre>
out3
```