Задача 1. Спидометр на велосипеде считывает время, за которое колесо совершает один оборот. Какую величину в действительности он показывает и какую стремится показать? Зависит ли от скорости точность спидометра?

Задача 2. На координатной плоскости дан единичный отрезок AB. Для каждого α из промежутка $[0;\pi]$ пусть $f(\alpha)$ — длина проекции отрезка AB на прямую, выходящую из начала координат под углом α к оси абцисс. Bapuaque'u AB называется среднее значение проекций AB по всем направлениям, то есть число

$$K = \frac{1}{\pi} \int_0^{\pi} f(\alpha) \, d\alpha.$$

Найдите K.

Задача 3. а) Пусть точка движется по прямой так, что в момент времени t она имеет координату x(t). Определите скорость и ускорение точки в момент времени t_0 . Какой должна быть функция x(t)?

- **б)** Шпанская мушка летает по комнате так, что расстояние от неё до двух соседних стен и пола в момент времени t с это x(t) м, y(t) м и z(t) м соответственно. Найдите скорость мушки.
- в) Пусть мушка летает по окружности радиуса R со скоростью v. Найдите её ускорение.
- г) Пусть x(t) = 4t м, $y(t) = 2t^2$ м, $z(t) = \frac{2t^3}{3}$ м. Найти расстояние, которое пролетит мушка за минуту.
- д) Найти длину произвольного куска параболы $y = x^2$.
- е) Определите длину произвольной кривой $\gamma \colon [a,b] \to \mathbb{R}^n, \ t \to (x_1(t),\dots,x_n(t)),$ где функции x_i дифференцируемы. Проверьте, что для отрезка получается обычная длина.

Задача 4. Найти площадь фигуры, ограниченной кривыми $ax = y^2$, $ay = x^2$.

Задача 5. Пусть пара дифференцируемых функций $(x(t), y(t)), 0 \le t \le T$ задаёт замкнутую несамопересекающуюся кривую, причём для любого x_0 существуют не более 100 чисел t_i , таких что $x(t_i) = x_0$. Кривая ограничивает область площади S. Доказать, что

$$S = \left| \int_{0}^{T} y(t)x'(t)dt \right|$$

Задача 6. Окружность радиуса R катится по прямой с угловой скоростью ω . На окружности зафиксировали точку. Кривая, по которой движется эта точка, называется $uu\kappa noudoù$. Задайте кривую параметрически (то есть в виде (x(t),y(t))) и найдите площадь одной арки циклоиды.

Задача 7. Найти массу проволоки длиной 100 м, если известно что плотность проволоки на расстоянии x м от конца равна $\varrho(x)$ кг/м.

Задача 8. Пусть на прямой установлено несколько точечных весов с массами m_i и координатами x_i . Найти центр масс этой системы.

Задача 9. Найти центр масс стержня длины 10 м, если его плотность изменяется по закону $\varrho(x) = 6+0, 3x$ (кг/м), где x — расстояние до одного из его концов.

Задача 10. Суточные расходы при плавании судна состоят из двух частей: постоянной, равной a р., и переменной, возрастающей пропорционально кубу скорости с коэффициентом пропорциональность α . При какой скорости v плавание судна будет наиболее экономичным, то есть затраты на один километр пути будут минимальными?

Определение 1. Пусть для каждой пары $(x,p) \in \Omega \subset \mathbb{R}^2$ определено число f(x,p). Тогда говорят, что на множестве Ω задана функция двух переменных x и p.

Задача 11. Определите непрерывность в точке для функций двух переменных.

1	2	3 a	3 6	3 B	3 Г	3	3 e	4	5	6	7	8	9	10	11

Листок №МА-2

Определение 2. Пусть на множестве $\{(x,p) \in \mathbb{R}^2 \mid x \in [a,b], p \in [\varphi(x),\psi(x)]\}$ задана непрерывная ограниченная функция f(x,p). Тогда можно определить интеграл с параметром:

$$F(x) := \int_{\varphi(x)}^{\psi(x)} f(x, p) \, dp$$

Задача 12. Найти массу квадратной пластины размера 1×1 , если её плотность на расстоянии x и y от соседних сторон равна $x^2y + y^2x + x^3\cos y$.

Задача 13. Найти объём тела, ограниченного поверхностями $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, z = c^2 x, z = 0.$

Задача 14. Доказать, что объём тела, образованного вращением вокруг оси Oy плоской фигуры, заданной условием $0 \leqslant a \leqslant x \leqslant b, \ 0 \leqslant y \leqslant y(x),$ где y(x) — непрерывная функция, равен $V = 2\pi \int\limits_{a}^{b} xy(x) \, dx.$

Задача 15. а) Найти объём шара радиуса R.

- **б)** Определить центр масс однородного полушария радиуса R.
- в) Найти площадь сферы радиуса R.
- \mathbf{r})* Найти объём четырёхмерного шара радиуса R (фигуры, заданной уравнением $x_1^2 + x_2^2 + x_3^2 + x_4^2 \leqslant R^2$).
- \mathbf{J})* Найти объём пятимерного шара радиуса R.
- $e)^*$ Найти объём шестимерного шара радиуса R.

Задача 16*. С какой силой материальная бесконечная прямая постоянной плотности μ_0 притягивает материальную точку массы m, находящуюся на расстоянии a от этой прямой?

Задача 17*. Найти кинетическую энергию цилиндра высоты h радиуса R постоянной плотности ϱ , вращающегося вокруг своей оси с угловой скоростью ω .

Определение 3. Функция $(\ln|f(x)|)' = \frac{f'(x)}{f(x)}$ называется логарифмической производной функции f.

Задача 18. Найти все решения дифференциального уравнения f'(x) = f(x).

Задача 19*. Скорость распада радия в каждый момент времени пропорциональна его наличному количеству. В начальный момент был 1 кг радия. Найти с точностью до 50 лет время, за которое распадётся 0,999 кг радия, если известно, что через 1600 лет его количество уменьшится в два раза.

Задача 20*. Для остановки речных судов у пристани с них бросают канат, который наматывают на столб, стоящий на пристани. Какая сила будет тормозить судно, если канат делает три витка вокруг столба, коэффициент трения каната о столб равен $\frac{1}{3}$, и рабочий на пристани тянет за свободный конец каната с силой $10 \cdot g$ H? (g — ускорение свободного падения) Скорость верёвки считать постоянной. (Указание: Сила трения $F_{mp} = \mu \cdot N$, N можно найти для куска каната радианной меры $\Delta \varphi$, а силу можно выразить как функцию радианной меры угла φ .)

Задача 21.** В ванну площади 1 м^2 со скоростью 0, 25 л/c течёт вода. В стенке ванной сделано сливное отверстие радиуса 2, 3 см. Расстояние от края борта до середины отверстия равно 10 см. Пренебрегая различием уровня воды внизу и вверху отверстия найти, через какое время зальёт соседей, если вначале вода уже у середины отверстия?

(Напоминание: Согласно закону Торричелли скорость истечения жидкости из сосуда равна $v=c\sqrt{2gh}$, где g — ускорение свободного падения, h — высота уровня жидкости над отверстием, c=0,6 — опытный коэффициент.)

12	13	14	15 a	15 б	15 B	15 г	15 д	15 e	16	17	18	19	20	21