Statistical Inference and Multivariate Analysis (MA324)

Lecture SLIDES
Lecture 06

Bivariate Normal Distribution

Indian Institute of Technology Guwahati

Jan-May 2023

Bivariate normal

Def: A two dimensional random vector $\boldsymbol{X} = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$ is said to have a bivariate normal distribution if $aX_1 + bX_2$ is a univariate normal for all $(a,b) \in \mathbb{R}^2 \setminus (0,0)$.

Theorem: If X has bivariate normal distribution, then each of X_1 and X_2 is univariate normal. Hence, $E(X_1)$, $E(X_2)$, $Var(X_1)$, $Var(X_2)$, and $Cov(X_1, X_2)$ exist.

Let us denote $\boldsymbol{\mu}=E(\boldsymbol{X})=\begin{pmatrix} \mu_1\\ \mu_2 \end{pmatrix}$ and $\boldsymbol{\Sigma}=Var(\boldsymbol{X})=\begin{pmatrix} \sigma_{11}&\sigma_{12}\\ \sigma_{21}&\sigma_{22} \end{pmatrix}$, where $\mu_1=E(X_1),\,\mu_2=E(X_2),\,\sigma_{11}=Var(X_1),\,\sigma_{22}=Var(X_2),$ and $\sigma_{12}=\sigma_{21}=Cov(X_1,\,X_2).$

MA324 Jan-May 2023

Bivariate normal

Theorem: Let X be a bivariate normal random vector. If $\mu = E(X)$ and $\Sigma = Var(X)$, then for any fixed $u = (a, b) \in \mathbb{R}^2 \setminus (0, 0)$,

$$\boldsymbol{u}'\boldsymbol{X} \sim N(\boldsymbol{u}'\boldsymbol{\mu}, \boldsymbol{u}'\boldsymbol{\Sigma}\boldsymbol{u}).$$

Theorem: Let X be a bivariate normal random vector, then $M_X(t) = e^{t'\mu + \frac{1}{2}t'\Sigma t}$ for all $t \in \mathbb{R}^2$.

Remark: Thus the bivariate normal distribution is completely specified by the mean vector μ and the variance-covariance matrix Σ . We may therefore denote a bivariate normal distribution by $N_2(\mu, \Sigma)$.

MA324

3/5

Def: A two dimensional random vector \boldsymbol{X} is said to have a bivariate normal distribution if it can be expressed in the form $\boldsymbol{X} = \boldsymbol{\mu} + A\boldsymbol{Y}$, where A is a 2×2 matrix of real numbers, $\boldsymbol{Y} = (Y_1,\,Y_2)$ and Y_1 and Y_2 are i.i.d $N(0,\,1)$. In this case $E(\boldsymbol{X}) = \boldsymbol{\mu}$ and $\Sigma = AA'$.

Theorem: If $X \sim N_2(\mu, \Sigma)$, then $X_1 \sim N(\mu_1, \sigma_{11})$ and $X_2 \sim N(\mu_2, \sigma_{22})$.

Remark: The converse of the above theorem is not true.

Remark: If $X \sim N_2(\mu, \Sigma)$ and $Cov(X_1, X_2) = 0$, then X_1 and X_2 are independent.

4/5

MA324 Jan-May 2023

Theorem: Let $X \sim N_2(\mu, \Sigma)$ be such that Σ is invertible, then, for all $x \in \mathbb{R}^2$, X has a joint PDF given by

$$\begin{split} f(\boldsymbol{x}) &= \frac{1}{2\pi |\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})'\boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right\} \\ &= \frac{1}{2\pi \sigma_x \sigma_y \sqrt{1-\rho^2}} e^{A(\boldsymbol{x},\,\boldsymbol{y},\,\boldsymbol{\mu}_x,\,\boldsymbol{\mu}_y,\,\sigma_x,\,\sigma_y,\,\rho)}, \end{split}$$

where

$$A = -\frac{1}{2(1-\rho^2)} \left\{ \left(\frac{x-\mu_x}{\sigma_x}\right)^2 - 2\rho \left(\frac{x-\mu_x}{\sigma_x}\right) \left(\frac{y-\mu_y}{\sigma_y}\right) + \left(\frac{y-\mu_y}{\sigma_y}\right)^2 \right\}.$$

◆ロ > ◆昼 > ◆ 種 > ■ り へ ○

MA324 Jan-May 2023 5 /