Práctica Circuitos Electrónicos 7 Informe Prepráctica

Ejercicio 1:

Vemos que el valor Vout = 3.2Vin, aspecto que coincide con nuestros cálculos teóricos.

Ejercicio 2:

Se puede observar que es un filtro pasa baja.

Tras realizar la simulación obtenemos los siguientes valores teóricos:

$$|Av| = 20 \log_{10} \left(\frac{3.2}{\sqrt{1 + (4700 * 10^{-7} * 2 * \pi * f)^2}} \right)$$

$$Fase(\underline{\circ}) = -\arctan(4700 * 10^{-7} * 2 * \pi * f)$$

Frecuencia (Hz)	Av (dB)	Fase (º)
10	10.09	-1.69
100	9.74	-16.45
1K	0.23	-71.29
10K	-19.31	-88.06
100K	-39.30	-89.81

Vemos que los cálculos coinciden con los datos obtenidos en la simulación. En los cálculos teóricos obtenemos una frecuencia de corte de: 338.932Hz que coincide con el valor simulado.

Ejercicio 3:

Se puede observar que es un filtro pasa alta.

Tras realizar la simulación obtenemos los siguientes valores teóricos:

$$|Av| = 20 \log_{10} \left(3.2 * \frac{10^{-8} * 4700 * 2 * \pi * f}{\sqrt{1 + (10^{-8} * 4700 * 2 * \pi * f)^2}} \right)$$

$$Fase(^{\circ}) = 90^{\circ} - \arctan(4700 * 10^{-8} * 2 * \pi * f)$$

Frecuencia (Hz)	Av (dB)	Fase (º)
10	-40.49	89.83
100	-20.49	88.31
1K	-0.85	73.55
10K	9.63	18.71
100K	10.09	1.94

Vemos que los cálculos coinciden con los datos obtenidos en la simulación. En los cálculos teóricos obtenemos una frecuencia de corte de: 3386.27Hz que coincide con el valor simulado.