12.8 CHANGE OF VARIABLES IN MULTIPLE INTEGRALS

Find the Jacobian of the transformation. x = u + 4v, y = 3u - 2v Find the Jacobian of the transformation.

 $\alpha = 10000$, $\alpha = 1000$

$$\frac{g(\lambda, q)}{2\pi} = \frac{g(\lambda, q)}{g(\lambda, q)} = \frac{g(\lambda, q)}{g(\lambda, q)} = \frac{g(\lambda, q)}{g(\lambda, q)}$$

DC,
$$y = 2$$
 $0 \le u \le 3$
 $x = 2u + 6$ $y = \frac{2}{2} - 5$
 $y = u - 2$

strategy: for line AB, BC, CD, DA

start with equ in no variables & convert the
egn from no to my

for line AB, BC, CD, DA Start with 29 in no variables t

S is the square bounded by the lines u = 0, u = 1, v = 0, v = 1; x = v, $y = u(1 + v^2)$

$$A = 0$$

BC:
$$N=1$$
 05051
 $x=9$ $y=1+n^2$
 $y=1+9$ $05n51$

S is the disk given by $u^2 + v^2 \le 1$; x = au, y = bv

for simplicity, assume a=3, b=2

Use the given transformation to evaluate the integral.

$$\iint_R (4x + 8y) dA$$
, where *R* is the parallelogram with vertices $(-1, 3)$, $(1, -3)$, $(3, -1)$, and $(1, 5)$; $x = \frac{1}{4}(u + v)$, $y = \frac{1}{4}(v - 3u)$

Use the given transformation to evaluate the integral.

$$\iint_R x^2 dA$$
, where R is the region bounded by the ellipse $9x^2 + 4y^2 = 36$; $x = 2u$, $y = 3v$

Use the given transformation to evaluate the integral.

 $\iint_R (x - 3y) dA$, where R is the triangular region with vertices (0, 0), (2, 1), and (1, 2); x = 2u + v, y = u + 2v

Evaluate the integral by making an appropriate change of variables.

$$\iint_{R} \frac{x - 2y}{3x - y} dA$$
, where R is the parallelogram enclosed by the lines $x - 2y = 0$, $x - 2y = 4$, $3x - y = 1$, and $3x - y = 8$

Evaluate the integral by making an appropriate change of variables.

 $\iint_R e^{x+y} dA$, where *R* is given by the inequality $|x| + |y| \le 1$