

Bayesian Learning

Instructor: Steven C.H. Hoi

School of Information Systems

Singapore Management University

Email: chhoi@smu.edu.sg

Outline

- Bayesian Learning
 - Maximum-Likelihood Estimation (MLE)
 - Bayes Theorem
 - Maximum A Posterior (MAP)
- Generative Models
 - Naïve Bayes Classifier
- Discriminative Models
 - Logistic Regression

Density Estimation

Density Estimation task

 To construct an estimate of an unobservable underlying probability density function, based on some observed data

Data

Data sample x drawn i.i.d. (independent identically distributed) from set X according to some distribution d,

$$x_1,\ldots,x_m\in X.$$

Problem

 To find a distribution p out of a set P that best estimates the true distribution d

Maximum-Likelihood Estimation (MLE)

• **Likelihood**: probability of observing sample under distribution d , which, given the independence assumption is $\Pr[x_1, \dots, x_m] = \prod^m p(x_i)$

 MLE Principle: select a distribution maximizing the sample probability

$$p_{\star} = \operatorname*{argmax}_{p \in \mathcal{P}} \prod_{i=1}^{m} p(x_i),$$
 Likelihood
$$p_{\star} = \operatorname*{argmax}_{p \in \mathcal{P}} \sum_{i=1}^{m} \log p(x_i).$$
 Log-likelihood

Example: Gaussian Distribution

 Problem: find most likely Gaussian distribution, given sequence of real-valued observations:

$$3.18, 2.35, .95, 1.175, \dots$$

• Solution:

Maximum-Likelihood Estimation (MLE)

 Given training data D, MLE is to find the best hypothesis h that maximizes the likelihood of the training data

$$h_{\mathrm{ML}} = \arg\max_{h \in \mathcal{H}} P(\mathcal{D}|h)$$

 What if you have some ideas about your hypothesis/parameters?

Bayes Theorem

Bayes Theorem/Rule

Posterior \propto Likelihood Prior $P(h|D) = \frac{P(D|h)P(h)}{P(D)}$

Thomas Bayes (1702-1761)

- P(h) = prior probability of hypothesis h (Prior)
- P(D) = prior probability of training data D (Evidence)
- P(h|D) = conditional probability of h given D (Posterior)
- P(D|h) = conditional probability of D given h (Likelihood)

Example: Disease Diagnosis

• Given:

- A doctor knows that meningitis causes stiff neck 50% of the time
- Prior probability of any patient having meningitis is 1/50,000
- Prior probability of any patient having stiff neck is 1/20
- If a patient has the Stiff neck symptom, what is the probability he/she has the Meningitis disease?

$$P(M \mid S) =$$

Maximum A Posterior (MAP)

- Maximum a Posterior (MAP)
 - Find the most probable hypothesis given the training data by maximizing the posterior prob.

$$h_{\text{MAP}} = \arg \max_{h \in \mathcal{H}} P(h|\mathcal{D})$$
$$= \arg \max_{h \in \mathcal{H}} \frac{P(\mathcal{D}|h)P(h)}{P(\mathcal{D})}$$

$$h_{\text{MAP}} = \arg \max_{h \in \mathcal{H}} P(\mathcal{D}|h) P(h)$$

Prior encodes the knowledge /preference

Maximum A Posterior (MAP)

For each hypothesis h in H, calculate the posterior probability

$$P(h|\mathcal{D}) \propto P(\mathcal{D}|h)P(h)$$

 Output the hypothesis h with the highest posterior probability:

$$h_{MAP} = \arg\max_{h \in \mathcal{H}} P(h|\mathcal{D})$$

- Comment:
 - Choosing P(h) reflects our prior knowledge about the learning task

MAP vs MLE

 MLE: Finding a hypothesis h that maximizes the likelihood of the training data

$$h_{\mathrm{ML}} = \arg \max_{h \in \mathcal{H}} P(\mathcal{D}|h)$$

 MAP: Finding a hypothesis h that maximizes the posterior probability given the training data

$$h_{MAP} = \arg \max_{h \in \mathcal{H}} P(h|\mathcal{D})$$

For a uniform prior, MLE coincides with MAP

$$P(h|\mathcal{D}) \propto P(\mathcal{D}|h)P(h)$$

 $P(h_i) = P(h_j) \quad \forall h_i, h_j \in \mathcal{H}$

Generative Models: Naïve Bayes

Probabilistic Generative Models

Given training data sampled from K classes:

$$(\mathbf{x}_i, y_i), i = 1, \dots, n$$

Classify instance x into one of K classes

Probabilistic Generative Models

Classify instance x into one of K classes

$$p(C_k|\mathbf{x}) \propto p(\mathbf{x}|C_k) p(C_k)$$

Density function for class C_k

$$p(\mathbf{x}|\mathcal{C}_k) = \mathcal{N}(\mathbf{x}|\mu_k, \Sigma_k)$$

$$= \frac{1}{(2\pi)^{d/2}|\Sigma_k|} \exp\left(-\frac{1}{2}(\mathbf{x} - \mu_k)^{\top} \Sigma_k^{-1} (\mathbf{x} - \mu_k)\right)$$

$$\mathbf{x} \in \mathbb{R}^d, \, \mu_k \in \mathbb{R}^d, \, \Sigma_k \in S_{++}^{d \times d}$$

Classification by MAP

Making a classification decision by MAP

$$k^* = \arg \max_{1 \le k \le K} p(\mathbf{x}|\mathcal{C}_k) p(\mathcal{C}_k)$$

$$\mathcal{N}(\mathbf{x}|\mu_k, \Sigma_k)$$

The key is to estimate the parameters

$$\mu_k, \Sigma_k, p(\mathcal{C}_k)$$

Parameter Estimation

- Given training data $(\mathbf{x}_i, y_i), i = 1, \dots, n$
- Closed-form solutions by MLE:

$$\mu_k = \frac{\sum_{i=1}^n \delta(y_i, \mathcal{C}_k) \mathbf{x}_i}{\sum_{i=1}^n \delta(y_i, \mathcal{C}_k)} \qquad \delta(y_i, \mathcal{C}_k) = \begin{cases} 1 & \text{if } y_i = \mathcal{C}_k \\ 0 & \text{otherwise.} \end{cases}$$

$$\Sigma_k = \frac{\sum_{i=1}^n \delta(y_i, \mathcal{C}_k) (\mathbf{x}_i - \mu_k) (\mathbf{x}_i - \mu_k)^\top}{\sum_{i=1}^n \delta(y_i, \mathcal{C}_k)}$$

$$p(y = C_k) = \frac{1}{n} \sum_{i=1}^{n} \delta(y_i, C_k)$$

Probabilistic Generative Models

Two-class Gaussian generative models

class-conditional densities

$$p(\mathbf{x}|\mathcal{C}_k)$$

posterior probability

$$p(\mathcal{C}_k|\mathbf{x})$$

Probabilistic Generative Models

Three-class Gaussian generative models

posterior probabilities

$$p(\mathcal{C}_k|\mathbf{x})$$

Curse of Dimensionality

- One challenge of learning with high-dimensional data is insufficient data samples
- Suppose 5 samples/objects is considered enough in 1-D

-1D: 5 points

-2D:25 points

125 points -3D:

- 10D : 9 765 625 points

25 points

125 points

Probabilistic Generative Models

Singularity of covariance matrix

$$\Sigma_k = \frac{\sum_{i=1}^n \delta(y_i, \mathcal{C}_k) (\mathbf{x}_i - \mu_k) (\mathbf{x}_i - \mu_k)^\top}{\sum_{i=1}^n \delta(y_i, \mathcal{C}_k)}$$

- Overfitting problem
 - Sample size too small for high-dimensional data
- Solutions
 - Diagonalize the covariance matrix
 - Smoothing/regularization

Naïve Bayes Classifier

- Hard to estimate $p(\mathbf{x}|\mathcal{C}_k)$ for high dimensional data \mathbf{x}
- Conditional Independence assumption
 - All attributes are conditionally independent
- Naïve Bayes approximation

distribution of 1 D
$$p(\mathbf{x}|\mathcal{C}_k) pprox \prod_{j=1}^d p(x_j|\mathcal{C}_k)$$

Gaussian distribution for Gaussian Naïve Bayes

$$p(\mathbf{x}|\mathcal{C}_k) = \mathcal{N}(\mathbf{x}|\mu, \Sigma) \approx \prod_{j=1}^d p(x_j|\mathcal{C}_k) = \prod_{j=1}^d \mathcal{N}(x_j|\mu_j, \sigma_j^2)$$

Diagonalize the covariance matrix

Naïve Bayes Classifier

• For classification task, we are interested in $p(C_k|\mathbf{x})$ not $p(\mathbf{x}|C_k)$

$$P(C_k|\mathbf{x}) = \frac{P(\mathbf{x}|C_k)P(C_k)}{P(\mathbf{x})} \propto p(\mathbf{x}|C_k)p(C_k)$$

Naïve Bayes (NB) Classifier:

$$C_{NB} = \arg \max_{C_k} P(C_k) \prod_j P(x_j | C_k)$$

Parameter Estimate for Discrete-Valued Inputs

 Previously we assume Gaussian distribution for continuous-valued inputs

$$p(\mathbf{x}|\mathcal{C}_k) = \mathcal{N}(\mathbf{x}|\mu, \Sigma) \approx \prod_{j=1}^d p(x_j|\mathcal{C}_k) = \prod_{j=1}^d \mathcal{N}(x_j|\mu_j, \sigma_j^2)$$

Parameter estimate for discrete-valued inputs

$$P(x_j = v | \mathcal{C}_k) = \frac{\sum_{i=1}^n \delta(x_{ij}, v) \delta(y_i, \mathcal{C}_k)}{\sum_{i=1}^n \delta(y_i, \mathcal{C}_k)}$$

$$\delta(y_i, \mathcal{C}_k) = \begin{cases} 1 & \text{if } y_i = \mathcal{C}_k \\ 0 & \text{otherwise.} \end{cases} \quad \delta(x_{ij}, v) = \begin{cases} 1 & \text{if } x_{ij} = v \\ 0 & \text{otherwise.} \end{cases}$$

Example: "Play Tennis or Not"

Based on the examples in the table, classify the following test sample:
 x=(Outl=Sunny, Temp=Cool, Hum=High, Wind=strong)

Day	Outlook	Temperature	Humidity	Wind	Play Tennis
Day1	Sunny	Hot	High	Weak	No
Day2	Sunny	Hot	High	Strong	No
Day3	Overcast	Hot	High	Weak	Yes
Day4	Rain	Mild	High	Weak	Yes
Day5	Rain	Cool	Normal	Weak	Yes
Day6	Rain	Cool	Normal	Strong	No
Day7	Overcast	Cool	Normal	Strong	Yes
Day8	Sunny	Mild	High	Weak	No
Day9	Sunny	Cool	Normal	Weak	Yes
Day10	Rain	Mild	Normal	Weak	Yes
Day11	Sunny	Mild	Normal	Strong	Yes
Day12	Overcast	Mild	High	Strong	Yes
Day13	Overcast	Hot	Normal	Weak	Yes
Day14	Rain	Mild	High	Strong	No

Example: "Play Tennis or Not"

$$\begin{split} h_{NB} &= \underset{h \in [yes, no]}{\text{max}} \ P(h)P(\mathbf{x} \mid h) = \underset{h \in [yes, no]}{\text{max}} \ P(h) \prod_{t} P(a_{t} \mid h) \\ &= \underset{h \in [yes, no]}{\text{max}} \ P(h)P(Outlook = sunny \mid h)P(Temp = cool \mid h)P(Humidity = high \mid h)P(Wind = strong \mid h) \\ &\underset{h \in [yes, no]}{\text{max}} \ P(h)P(Outlook = sunny \mid h)P(Temp = cool \mid h)P(Humidity = high \mid h)P(Wind = strong \mid h) \end{split}$$

P(h=Yes|x=(sunny, cool, high, strong))|P(h=No|x=(sunny, cool, high, strong))

 \propto

 $P(yes)P(sunny|y)P(cool|y)P(high|y)P(strong|y) \\ \boxed{P(no)P(sunny|n)P(cool|n)P(high|n)P(strong|n)}$

 \propto

```
P(yes)
P(sunny|yes)
P(cool|yes)
P(high|yes)
P(strong|yes)
```

```
P(no)
P(sunny|no)
P(cool|no)
P(high | no)
P(strong|no)
```


The Independence Assumption

- Makes computation possible
- Yields optimal classifiers when satisfied
- Fairly good empirical results
- But is seldom satisfied in practice, as attributes (variables) are often correlated
- Attempts to overcome this limitation:
 - Bayesian networks, that combine Bayesian reasoning with causal relationships between attributes

Discriminative Models: Logistic Regression

Discriminative Models

- Generative models
 - First need to estimate $p(\mathbf{x}|\mathcal{C}_k)$ and $p(\mathcal{C}_k)$
 - Then apply Bayes Theorem to predict

$$p(C_k|\mathbf{x}) \propto p(\mathbf{x}|C_k)p(C_k)$$

- Discriminative models
 - Why not directly model $p(\mathcal{C}_k|\mathbf{x})$

Logistic Regression

- How to model the distribution $p(\mathcal{C}_k|\mathbf{x})$
- Logistic Regression assumes a parametric form for the distribution:

$$p(y|\mathbf{x}) = \frac{1}{\exp(-y\mathbf{w}^{\top}\mathbf{x}) + 1}$$
$$= \sigma(y\mathbf{w}^{\top}\mathbf{x})$$

logistic / sigmoid function

Logistic / Sigmoid Function

• The *logistic / sigmoid* function $\sigma(a)$

$$\sigma(a) = \frac{1}{1 + \exp(-a)}$$

Property

$$\sigma(-a) = 1 - \sigma(a)$$

$$\frac{d\sigma}{da} = \sigma(1 - \sigma)$$

30

Decision boundary of Logistic Regression

Consider two-class classification

$$p(y=1|\mathbf{x}) > p(y=-1|\mathbf{x}) \Leftrightarrow \frac{p(y=1|\mathbf{x})}{p(y=-1|\mathbf{x})} > 1$$

For logistic function

$$\ln \frac{p(y=1|\mathbf{x})}{p(y=-1|\mathbf{x})} = \mathbf{w}^{\top} \mathbf{x} + b \to \mathbf{w}^{\top} \mathbf{x}$$

Decision boundary is linear

$$\mathbf{w}^{\top}\mathbf{x} + b = 0$$

$$y = \begin{cases} +1 & \text{if } \mathbf{w}^{\top}\mathbf{x} + b > 0 \\ -1 & \text{otherwise} \end{cases}$$

Logistic Regression: Optimization

How to learn the optimal parameters w:

$$y = \begin{cases} +1 & \text{if } \mathbf{w}^{\top} \mathbf{x} + b > 0 \quad p(y|\mathbf{x}) = \frac{1}{\exp(-y\mathbf{w}^{\top} \mathbf{x}) + 1} \\ -1 & \text{otherwise} = \sigma(y\mathbf{w}^{\top} \mathbf{x}) \end{cases}$$

- Given training data $\mathcal{D} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}$
- Likelihood or the Log-Likelihood:

$$\mathcal{L}(\mathbf{w}) = \prod_{i=1}^{N} p(y_i | \mathbf{x}_i; \mathbf{w}) \iff \ln \mathcal{L}(\mathbf{w}; \mathcal{D}) = \sum_{i=1}^{N} \ln p(y_i | \mathbf{x}_i; \mathbf{w})$$

Optimization

Maximum Likelihood Estimation:

$$\mathbf{w}^* = \max_{\mathbf{w}} \mathcal{L}(\mathbf{w}) = \sum_{i=1}^N \ln p(y_i | \mathbf{x}_i)$$

$$\mathbf{w}^* = \min_{\mathbf{w}} \sum_{i=1}^N \ln \left(1 + \exp(-y_i \mathbf{w}^\top \mathbf{x}_i) \right)$$

The objective function is convex!

Optimization: Gradient Descent

Convex objective function: global optima

$$\mathbf{w}^* = \min_{\mathbf{w}} \mathcal{L}(\mathbf{w}) = \sum_{i=1}^{N} \ln \left(1 + \exp(-y_i \mathbf{w}^{\top} \mathbf{x}_i) \right)$$

- No closed-form solution!
- (Batch) Gradient Descent:

$$\mathbf{w}_{t+1} = \mathbf{w}_{t} - \eta_{t} \nabla \mathcal{L}(\mathbf{w}) \qquad \eta_{t} \propto 1/\sqrt{t}$$

$$\nabla \mathcal{L}(\mathbf{w}) = \sum_{i=1}^{N} \frac{-y_{i} \mathbf{x}_{i} \exp(-y_{i} \mathbf{w}^{\top} \mathbf{x}_{i})}{1 + \exp(-y_{i} \mathbf{w}^{\top} \mathbf{x}_{i})} = -\sum_{i=1}^{N} y_{i} \mathbf{x}_{i} (1 - p(y_{i} | \mathbf{x}_{i}))$$

$$-\sum_{i=1}^{N} y_{i} \mathbf{x}_{i} (1 - \sigma(y_{i} \mathbf{w}^{\top} \mathbf{x}))$$
Classification error

Example: Heart Disease

- 1: 25-29
- 2: 30-34
- 3: 35-39
- 4: 40-44
- 5: 45-49
- 6: 50-54
- 7: 55-59
- 8: 60-64

- Input feature x: age group id
- Output *y*: if having heart disease
 - y=+1: having heart disease
 - y=-1: no heart disease

Example: Heart Disease

• Logistic Regression

$$p(y \mid x) = \frac{1}{1 + \exp[-y(xw + c)]}$$
$$\theta = \{w, c\}$$

Learning w and c: MLE approach

$$l(D_{train}) = \sum_{i=1}^{8} \left\{ n_i(+) \log p(+|i) + n_i(-) \log p(-|i) \right\}$$

$$= \sum_{i=1}^{8} \left\{ n_i(+) \log \frac{1}{1 + \exp[-iw - c]} + n_i(-) \log \frac{1}{1 + \exp[iw + c]} \right\}$$

Numerical optimization: w = 0.58, c = -3.34

Example: Heart Disease

$$p(+ \mid x; \theta) = \frac{1}{1 + \exp[-xw - c]}; p(- \mid x; \theta) = \frac{1}{1 + \exp[xw + c]}$$

- w = 0.58
 - An old person is more likely to have heart disease
- c = -3.34
 - $xw+c < 0 \rightarrow p(+|x) < p(-|x)$
 - $xw+c > 0 \rightarrow p(+|x) > p(-|x)$
 - xw+c = 0 → decision boundary
 - $x^* = 5.78 \rightarrow 53$ year old

Discriminative vs. Generative

Discriminative Models

Model P(y|x) directly

Pros

- Usually better performance (with small training data)
- Robust to noise data

Cons

- Slow convergence (e.g., LR by gradient descent)
- Expensive computation

Generative Models

Model P(x|y) directly

Pros

- Usually fast convergence
- Cheap computation (easier to learn, e.g. NB)

Cons

- Sensitive to noise data
- Usually performs worse (with small training data)

One more thing

Probabilistic Graphical Model (PGM)

Undirected, may be Cyclic

Adapted from C. Sutton, A. McCallum, "An Introduction to Conditional Random Fields", ArXiv, November 2010

Summary

- Bayesian Learning
 - Bayes Theorem
 - MAP vs. MLE
- Generative Models
 - Naïve Bayes Classifier
- Discriminative Models
 - Logistic Regression

Appendix

- Naïve Bayes for Text Classification
- Logistic Regression for Text Classification
- Naïve Bayes vs Logistic Regression

Naïve Bayes for Text Classification

 Text document represented by the Bag of Words (word histogram of a document)

$$\mathbf{x} = (x_1, x_2, \dots, x_d)$$

- Multinomial Naive Bayes Classifier
 - Conditional independence: word in one position in the document tells us nothing about words in other positions

$$p(\mathbf{x}|\mathcal{C}_k) = \prod_{j=1}^d p(x_j|\mathcal{C}_k) \propto \prod_{j=1}^d [p(w_j|\mathcal{C}_k)]^{x_j} \stackrel{\text{Occuring times of word } w_j \text{ in document } \mathbf{x}}{}$$

How to compute $p(w_j|\mathcal{C}_k)$?

Probability of observing word w_j from documents in class C_k

Parameter Estimation

- Learning by Maximum Likelihood Estimate
 - Simply count the frequencies in the data

$$P(w_j|\mathcal{C}_k) = \frac{count(w_j, \mathcal{C}_k)}{\sum_{w \in \mathcal{V}} count(w_j, \mathcal{C}_k)}$$

- Create a mega-document for topic k by concatenating all the docs in this topic
- Compute frequency of w in the mega-document

Problem with Maximum Likelihood

 What if there is a new word (e.g., any novel words created in internet) in a test document which never appears in the training data

$$\forall \mathcal{C}_k, \quad P(\text{``newword''}|\mathcal{C}_k) = 0$$

$$p(\mathbf{x}|\mathcal{C}_k) = \prod_{j=1}^d p(x_j|\mathcal{C}_k) \propto \prod_{j=1}^d [p(w_j|\mathcal{C}_k)]^{x_j} = 0$$

Smoothing to Avoid Overfitting

Smoothing to avoid Zero Probability

$$P(w_j|\mathcal{C}_k) = \frac{count(w_j, \mathcal{C}_k) + 1}{\sum_{w \in \mathcal{V}} (count(w_j, \mathcal{C}_k) + 1)}$$
$$= \frac{count(w_j, \mathcal{C}_k) + 1}{|\mathcal{V}| + \sum_{w \in \mathcal{V}} count(w, \mathcal{C}_k)}$$

Example

Apply NB classifier to predict the test document:

	docID	words in documents	c= China?
Training set	1	Chinese Beijing Chinese	Yes
	2	Chinese Chinese Shanghai	Yes
	3	Chinese Macau	Yes
	4	Tokyo Japan Chinese	No
Test set	5	Chinese Chinese Tokyo Japan	?

Ans:

$$P(Y) = 3/4$$

P(Chinese | Y)

P(Japan | Y)=P(Tokyo | Y)

P(N) = 1/4

P(Chinese | N)

P(Japan | N)=P(Tokyo | N)

P(Y|d5)

 $\propto P(Y)P(Chinese|Y)^{3}P(Tokyo|Y)P(Japan|Y)$

P(N | d5)

 $\propto P(N)P(Chinese|N)^3P(Tokyo|N)P(Japan|N)$

Naïve Bayes Classifier

Bad approximation

$$p(\mathbf{x}|\mathcal{C}_k) \approx \prod_{j=1}^d p(x_j|\mathcal{C}_k)$$

 Good classification accuracy

NB is not naïve!

Text categorization for 20 Newsgroups

Given 1000 training documents from each group Learn to classify new documents according to which newsgroup it came from

comp.graphics comp.os.ms-windows.misc comp.sys.ibm.pc.hardware comp.sys.mac.hardware comp.windows.x

misc.forsale rec.autos rec.motorcycles rec.sport.baseball rec.sport.hockey

alt.atheism
soc.religion.christian
talk.religion.misc
talk.politics.mideast
talk.politics.misc
talk.politics.guns

sci.space
sci.crypt
sci.electronics
sci.med

Naive Bayes: 89% classification accuracy

Example 2: Text Categorization

• Training data $\mathcal{D} = \{(\mathbf{d}_1, y_1), \dots, (\mathbf{d}_N, y_N)\}$

$$\mathbf{d}_{i} = (d_{i,1}, \dots, d_{i,m}) \quad y_{i} \in \{-1, +1\}$$

$$p(y|\mathbf{d}) = \frac{1}{1 + \exp(-y[\mathbf{w}^{\top}\mathbf{d} + w_{0}])}$$

 w_j indicates the importance of word j

- Dataset: Reuter-21578
 - Political vs non-political
- Classfication accuracy
 - Naïve Bayes: 77%
 - Logistic regression: 88%

Naïve Bayes vs Logistic Regression

Both learn linear decision boundary

Decision Boundary of Naïve Beyes

- Consider text categorization of two classes
- The ratio determines the decision

$$\frac{P(\mathcal{C}_1|\mathbf{x})}{P(\mathcal{C}_2|\mathbf{x})} = \frac{P(\mathcal{C}_1)}{P(\mathcal{C}_2)} \times \frac{P(\mathbf{x}|\mathcal{C}_1)}{P(\mathbf{x}|\mathcal{C}_2)}$$

weight for word w_j

$$\ln \frac{p(\mathcal{C}_1|\mathbf{x})}{p(\mathcal{C}_2|\mathbf{x})} = \ln \frac{p(\mathcal{C}_1)}{p(\mathcal{C}_2)} + \sum_{j=1}^d x_j \ln \frac{p(w_j|\mathcal{C}_1)}{p(w_j|\mathcal{C}_2)}$$

Linear decision boundary

Decision Boundary of Naïve Beyes

- Consider two class classification
- Gaussian density function $p(\mathbf{x}|\mathcal{C}_k) = \mathcal{N}(\mathbf{x}|\mu_k, \Sigma_k)$
- Shared covariance matrix $\Sigma_1 = \Sigma_2 = \Sigma$

$$\ln \frac{p(\mathcal{C}_1|\mathbf{x})}{p(\mathcal{C}_2|\mathbf{x})} \propto \ln \frac{p(\mathcal{C}_1)}{p(\mathcal{C}_2)} - \mathbf{x}^{\top} \Sigma^{-1} (\mu_1 - \mu_2)$$

Linear decision boundary

Decision Boundary

- Generative models essentially create linear decision boundaries
- Why not directly model the linear decision boundary

$$\ln \frac{p(\mathcal{C}_1|\mathbf{x})}{p(\mathcal{C}_2|\mathbf{x})} = b + \mathbf{x}^\top \mathbf{w}$$

 $\mathbf{w} = (w_1, \dots, w_d)$ needs to be learned

Logistic Regression

- Generative models often lead to linear decision boundary
- Linear discriminatory model
 - Directly model the linear decision boundary

$$\ln \frac{p(y=1|\mathbf{x})}{p(y=-1|\mathbf{x})} = \mathbf{w}^{\top}\mathbf{x} + b \to \mathbf{w}^{\top}\mathbf{x}$$

w is the parameter to be decided

Logistic Regression

