

Modul M1 – Allgemeine Psychologie Vorlesung

Prof. Dr. Florian Kattner
Professur für Allgemeine Psychologie
Health and Medical University
Olympischer Weg 1
14471 Potsdam

Plan der Vorlesung

Nr.	Datum	Thema
1	12.10.2021 (Di)	Einführung: Was ist Allgemeine Psychologie?
2	19.10.2021 (Di)	Psychophysik I: Schwellenmessung
3	26.10.2021 (Di)	Psychophysik II: Skalierung, adaptive Verfahren und Signalentdeckungstheorie
4	02.11.2021 (Di)	Visuelle Wahrnehmung I: Grundlagen des Sehens
5	09.11.2021 (Di)	Visuelle Wahrnehmung II: Neuronale Verarbeitung (Retina)
6	16.11.2021 (Di)	Visuelle Wahrnehmung III: Kortikale Organisation
7	23.11.2021 (Di)	Visuelle Wahrnehmung IV: Farbwahrnehmung
8	07.12.2021 (Di)	Visuelle Wahrnehmung V: Farb-, Tiefen- und Größenwahrnehmung
9	07.12.2021 (Di)	Auditive Wahrnehmung I: Grundlagen des Hörens
10	14.12.2021 (Di)	Auditive Wahrnehmung II: Richtungshören und auditive Szenenanalyse
11	11.01.2022 (Di)	Aufmerksamkeit
12	18.01.2022 (Di)	Gedächtnis I: Gedächtnissysteme und Arbeitsgedächtnis
13	25.01.2022 (Di)	Gedächtnis II: Langzeitgedächtnis
14	01.02.2022 (Di)	Gedächtnis III und Sprache
15	08.02.2022 (Di)	Wiederholung und Fragestunde

Mentimeter

- Was kennzeichnet einen komplexen Ton?
- https://www.menti.com/u7q26tizrb

https://www.mentimeter.com/s/31609f0b8f6e1d9084b4f08d42f34297/3a924cf44ad4

Tonhöhe und Frequenz

- Phänomen des fehlenden Grundtons:
 Bei komplexen Tönen bleibt die Tonhöhe erhalten, auch wenn die Grundfrequenz selbst im Ton nicht enthalten ist.
- → Tonhöhe muss aus Periodizität (rote gestrichelte Linie) erschlossen werden!

Harmonische 1-4

Harmonische 4-10

Wissen sie noch, wie wir Farbe definiert haben?

Klangfarbe (timbre)

- = Eigenschaft eines Höreindrucks, mit der sich Töne gleicher Lautheit, Tonhöhe, Dauer und Richtung unterscheiden lassen.
- hängt ab von:
 - Obertonstruktur: Frequenzspektren verschiedener Musikinstrumente
 - Ein- und Ausschwingzeit (fade-in/fade-out): Flöte und Klarinette unterscheiden sich v.a. beim "Anblasen" und Verklingen des Tons

Klavierton vorwärts/rückwärts (Grundton und Spektrum werden nicht verändert!)

Physiologie des Hörens

- Außenohr (Ohrmuschel): Schutzfunktion und Verstärkung bestimmter Frequenzen
- Mittelohr: Mechanische Verstärkung des Drucks durch Gehörknöchelchen zwischen Trommelfell und ovalem Fenster
 - Konzentration der Schwingungen des großen
 Trommelfells auf kleines ovales Fenster (Faktor 20)
 - Hebelwirkung durch Gehörknöchelchen
- Innenohr: Druckausbreitung in Flüssigkeit der Hörschnecke (Cochlea)
 - → Auslenkung von Haarzellen
 - → Aktionspotential im Hörnerv

Innenohr

- Cochlea (Schnecke): Gefüllt mit Flüssigkeit (höhere Dichte als Luft im Außen- und Mittelohr), 2 mm Durchmesser, 35 mm lang
- Druckausbreitung vom ovalen zum runden Fenster.
- Cochleare Trennwand zwischen Scala vestibuli und Scala tympani enthält das Corti'sche Organ.
- Bewegung der Basilar- und Tektorialmembran führt zur Auslenkung der dazwischen liegenden Haarzellen.
 - o ca. 3500 innere Haarzellen
 - o ca. 12000 äußere Haarzellen

Ortstheorie der Tonhöhenwahrnehmung

- Békésy (1960): Schwingung der Basilarmembran kann als
 Wanderwelle (traveling envelope) beschrieben werden.
 - Ort der maximalen Auslenkung der Basilarmembran abhängig von Frequenz: hohe Frequenzen landen näher an der Basis der Cochlea (ovales Fenster).
- Je größer die Auslenkung, desto stärker auch die neuronale Antwort im Hörnerven → Tonhöhe kann durch Ort entlang des Corti'schen Organs kodiert werden.

Ortstheorie der Tonhöhenwahrnehmung

- Tonotope Karten in der Cochlea von Meerschweinchen:
 Neuronen antworten auf bestimmte Frequenzen (Culler, 1943)
- Frequenz-Tuningkurven von Neuronen des Hörnerven von Katzen (Palmer, 1987) → niedrigste Schwellen bei bestimmten Frequenzen, abhängig vom Ort entlang der Cochlea

Ortstheorie der Tonhöhenwahrnehmung

Praktische Anwendung: Cochlea-Implantate

 bei zerstörten Haarzellen (vollständiger Hörverlust): direkte elektrische Reizung des Hörnerven an unterschiedlichen Orten durch bis zu 22 Elektroden

→ Künstliche Transduktion

Äußere und innere Haarzellen intakt

Zerstörte Haarzellen

Grenzen der Ortstheorie

- Feine Frequenzunterscheidung kaum erklärbar (nur ca. 3500 Nervenfasern der inneren Haarzellen)
- Tonhöhe komplexer Töne nicht unmittelbar erklärbar:
 - → Bei fehlendem Grundton fehlt Maximum am Ort der Grundfrequenz.
 - → Periodizität muss kodiert werden!

Alternative: Zeittheorie der Tonhöhe

- zeitliches Muster des Feuerns von Neuronen im Hörnerv ist entscheidend
- funktioniert für Frequenzen bis ca. 5000 Hz (oberhalb werden auch keine Tonhöhen oder Melodien mehr wahrgenommen!)

Schwingung der Basilarmembran enthält alle Harmonischen!

Zeitliche Codierung von Tonhöhe

- Phase Locking: Haarzellen feuern synchron mit Schalldruckschwankungen
 - Auslenkung der Stereozilien bei Druckanstieg (Haarzelle feuert), Auslenkung in Gegenrichtung bei Druckabsinken (kein Feuern)

- Problem: Einzelne Neuronen verpassen manche Druckmaxima (aufgrund der Refraktärzeit → max. 500 Impulse/Sekunde)
- Salvenprinzip: Aktivierungsmuster vieler
 Neurone spiegelt Frequenz des Schalls wider
 (bis 5000 Hz)

Die Hörbahn

Ipsi- und kontralaterale Verschaltung

- Innere Haarzellen → Hörnerv (Nervus vestibulocochlearis)
- 2. subkortikale Strukturen:
 - Nuclei cochleares
 - Obere Olivenkerne (Hirnstamm)
 - →binaurale Lokalisation
 - Colliculus inferior (Mittelhirn)
 - →binaurale Verarbeitung
 - Corpus geniculatum mediale (Thalamus)
- Primärer auditorischer Kortex (A1) im Temporallappen
- Sekundärer (Gürtel) und assoziativer auditiver
 Kortex → Identifizierung von Schallen

Tonotope Organisation im auditiven Kortex

- Primärer auditiver Kortex (A1) von Japanmakaken (Kosaki et al., 1997)
 - Tiefe Frequenzen liegen anterior (vorne), hohe Frequenzen posterior (hinten)

o Wie kann man zeigen, dass das auch etwas mit Tonhöhenwahrnehmung zu tun hat?

Tonhöhe im Gehirn

- Tonhöhenneuronen im auditiven Kortex des Zwergseidenaffen (Bendor & Wang, 2005):
 - → feuern bei bestimmtem Sinuston (182 Hz) und komplexen Töner die mit derselben Grundfrequenz (f₀=182 Hz) verbunden sind
 - → auch wenn Grundfrequenz nicht vorhanden!
 - → feuern nicht bei einzelnen Harmonischen (z.B. 364 oder 546 Hz)

Diese komplexen Töne werden von Menschen als gleich hoch wahrgenommen!

Richtungshören

- Wie kann eine Schallquelle im Raum lokalisiert werden?
 - Pegel → Entfernung
 - Binaurale Hinweisreize → Azimut
 - Interaurale Zeitdifferenz (ITD; interaural time difference)
 - Interaurale Pegeldifferenz (ILD; interaural level difference)
 - Monaurale Hinweisreize
 - Schallspektrum abhängig von Form der Pinna (Ohrmuschel) → Elevation

Binaurale Hinweisreize

- Interaurale Zeitdifferenz (ITD)
 - Schall von der Seite erreicht ein Ohr früher als das andere.
 - → Phasenverschiebung der Wellenformen
 - Koinzidenzdetektor feuert bei gleichzeitigem Eintreffen der Signale von rechts und links (Modell nach Jeffress, 1948):
 - Neuron 5 feuert bei Schallen, die von vorne kommen (ITD = 0)
 - Neuron 3 feuert bei Schallen, die von rechts kommen (ITD > 0)

Binaurale Hinweisreize

Interaurale Zeitdifferenz (ITD)

- Neuronen im inferioren Colliculus und der oberen Olive feuern abhängig von der ITD:
 Zeitdifferenz-Tuningkurven
- o Art der Enkodierung unterscheidet sich (z.B. McAlpine & Grothe, 2003):
 - Vögel: Einzelne Neuronen kodieren räumliche Position → passt zu Jeffress-Modell!
 - Säuger: Räumliche Position wird durch Verhältnis der Aktivierungen mehrerer Neuronen kodiert!

Breite Tuningkurven bei der Rennmaus (nur rechts/links Unterscheidung?)

Binaurale Hinweisreize

Interaurale Pegeldifferenz (ITD)

- Schallschatten entsteht bei hochfrequentem Schall, der von der Seite kommt → Pegel auf einem Ohr ist etwas höher!
- o ITD bei tiefen Frequenzen nicht nutzbar!

Amplitude

Monaurale Hinweisreize

- Form der Pinna als Akustisches Prisma: Frequenzen des Schalls werden an den Windungen der Ohrmuschel und im Gehörgang unterschiedlich stark reflektiert!
 - Hängt ab von der Elevation (Höhe) einer Schallquelle:

- Was passiert, wenn die Form der Pinna durch eine eingesetzte Füllung verändert wird?
 - → Elevation von Schallquellen kann nicht mehr wahrgenommen werden (Azimut wird aber noch korrekt eingeschätzt)

Auditive Lokalisation im Kortex

- Zerstörung bzw. Kühlung von A1 beeinträchtigt auditive Lokalisation (Malhotra et al., 2008; Nodal et al., 2010)
- Was-Strom (ventral): Vom anterioren
 Gürtel zum PFC → Identifikation von
 Schallereignissen
- Wo-Strom (dorsal): vom posterioren
 Gürtel zum PFC → Lokalisation von
 Schallquellen

Posteriorer Gürtel

→ Reagiert auf Schallpositionen

Temporal lobe: 'what'

Anteriorer Gürtel

→ Identifizierung und Wiedererkennung von Schallen (z.B. komplexe Geräusche)

Auditive Lokalisation im Kortex

- Neuropsychologische Befunde:
 - J.G. (45 Jahre, männlich): Schädigung des Temporallappens nach Kopfverletzung
 - E.S. (64 Jahre, weiblich): Schädigung parietaler und frontaler Regionen nach Schlaganfall
- Zwei Aufgaben:
 - Wiedererkennen: Probanden sollen 50 Umweltgeräusche den Zeichnungen der Schallquelle zuordnen.
 - Lokalisation: Schalle mit unterschiedlichen ITDs werden präsentiert und Probanden sollen in die Richtung der Schallquelle deuten.

Patient J.G. Patient E.S.

Auditive Szenenanalyse

- Wie lassen sich verschiedene Schallquellen in einem komplexen akustischen Signal trennen?
 - Herkunftsort (ITD, ILD)
 - Einsatzzeit: unterschiedliche Schallereignisse beginnen selten gleichzeitig
 - Tonhöhe und Klangfarbe (z.B. Tonleiterillusion)
 - Guter Verlauf: konstante oder sich langsam ändernde Schalle werden gruppiert
 - o Erfahrung und Gedächtnis: Melodische Schemata

Vielen Dank für Ihre Aufmerksamkeit!

Frohe Weihnachten!

