$\begin{array}{c} {\rm KOC\ UNIVERSITY} \\ \\ {\rm COLLEGE\ OF\ ENGINEERING} \end{array}$

ENG 200 - PROBABILITY AND STATISTICAL METHODS FOR ENGINEERS

FALL 2022

MIDTERM EXAM 2

TIME ALLOWED: 120 MINUTES

MAKE SURE THAT YOU JUSTIFY ALL STEPS IN YOUR ANSWERS.

1	\T	٠,	n	_	

Student Number:

I PLEDGE ON MY HONOR THAT I HAVE NEITHER GIVEN NOR RECEIVED UNAUTHORIZED ASSISTANCE OF THE EXAM.

SIGNATURE:

Question	Maximum points	Grade
1	25	
2	25	
3	25	
4	25	
Total	100	

ENGR 200: Probability and Random Variables for Engineers

Fall 2022

Instructors: Lerzan Örmeci and Sinem Çöleri

TAs: R. Sayyari, N. Khan, A. Mozaffari, B. Gunes, C. ÖMER VEYSEL

Question 1 (25 points) Let X and Y be two independent discrete random variables with the following PMFs:

$$P_X(k) = \begin{cases} 1/4, & \text{for } k = 1\\ 1/8, & \text{for } k = 2\\ 1/8, & \text{for } k = 3\\ 1/2, & \text{for } k = 4\\ 0, & \text{otherwise} \end{cases} \qquad P_Y(k) = \begin{cases} 1/6, & \text{for } k = 1\\ 1/6, & \text{for } k = 2\\ 1/3, & \text{for } k = 3\\ 1/3, & \text{for } k = 4\\ 0, & \text{otherwise} \end{cases}$$

(a) (5 points) Find P(X > 2|Y > 2).

Answer:	

Answer:				
(10 points)	Find $Var(2)$	X+Y).		
Answer:				
III5WCI.				

(d) (5 points) Let event A be the event when the sum of X and Y is less than or equal to 3, so $A = \{X + Y \leq 3\}$. Are X and Y independent conditional on event A ? Prove your claim.
Answer:

Question 2 (25 points) The life time, X, in days, of a battery has a pdf f(x) given by:

$$f(x) = \begin{cases} \alpha(2x - x^2) & 0 \le x \le 2\\ 0 & \text{otherwise} \end{cases}$$

	(a)	oints) Find	α .
--	-----	-------------	------------

(a) (b points) I ind a.
Answer:
(b) (4 points) Find the CDF of X , $F_X(x)$.
(b) (1 points) 1 ind the CD1 of Π , $\Pi_{X}(w)$.
Answer:
(c) (3 points) Find the following probabilities: (i) $P(X \ge 1.2)$, (ii) $P(0.5 < X \le 1.5)$,
(iii) $P(X=1)$.
Answer:

	Find $E[X]$.				
Answer:					
e) (5 points)	Find $Var(X)$.				
Answer:					
	A camping lantern ru				
atteries are p .2 days.	ut into the lantern fi	nd the probabil	ity that the lan	ntern will still b	e working aft
Answer:					
11110 1101 .					

Question 3 (25 points) A transmitter broadcasts a constant signal X to two faulty recipients, Recipient A and B, which receive the signal with an added random noise. More explicitly, the received signal at Recipient A and B are $Y_1 = X + N_1$ and $Y_2 = X + N_2$, respectively, where N_1 and N_2 are normally distributed random variables with zero mean ($\mu_1 = \mu_2 = 0$) and variances $\sigma_1 = 1.5$ and $\sigma_2 = 2$, respectively.

(a) (5)	points)	Find t	the value	of X ,	if Recipie	nt A	receives	a	signal	of	${\rm greater}$	than	1	with	a
probab	oility of	0.25, i.e	e., $P(Y_1 >$	> 1) =	0.25.										

nswer:	

(b) (5 points) The probability that the Recipient A receives a signal of less than 1 is equal to the probability that Recipient B receives a signal of less than 2, i.e., $P(Y_1 < 1) = P(Y_2 < 2)$. Find the value of X.

Answer:		

) (8 points) ad 2.	If $X = 1$, find the	ne probability	that only one of	of the received	l signals is be	tween
Answer:						

Question 4 (25 points)

Let X and Y be jointly distributed random variables whose joint probability density function is given by:

$$f_{X,Y}(x,y) = \begin{cases} \frac{x}{4}, & 1 < x < 2, 0 < xy < 4, \\ 0, & \text{otherwise.} \end{cases}$$

(a) (3 points) Draw the region where $f_{X,Y}(x,y) > 0$

nswer:	

(b) (7 points) Find P(Y > X). Hint: Drawing will help.

Answer:

Answer:				
) / -	1 Division of			
	$\text{ and } E[Y \mid Y < 2].$			
Answer:				