

Why don't we see the changes?

We don't really see the whole image

We only focus on small specific regions: the **salient** parts

Human beings reliably attend to the same regions of images when shown

What we perceive

Where we look

What we actually see

Saliency prediction

Produce a computational model of visual attention: predict where humans will look.

Often want to map an image to a **heatmap** (saliency map).

Datasets

MIT 300

300 natural indoor and outdoor scenes.

39 observers. 3 sec free view.

ETL 400 ISCAN eye tracker

Test set only: no training data or public ground truth

http://saliency.mit.edu/results _mit300.html

Fixations and saliency maps

Raw eye tracker data needs to be processed to produce saliency maps

iSUN

Large scale dataset of natural scenes

20,608 images with avg. 3 observers each

Collected using webcams and Amazon Mechanical Turk

Used in <u>LSUN challenge</u> 2015/2016

Typically, superior performance to unsupervised models

Large-scale proxy datasets have enabled effective supervised learning

Key considerations:

- Network architecture
- Incorporation of prior cues
- Supervision mechanism
- Loss function

New large-scale datasets with proxy eye-fixation data

→ Training all features of larger networks

Still small-scale compared to networks designed for semantics prediction

SalNet: deep visual saliency model

Predict map of visual attention from image pixels (find the parts of the image that stand out)

- Feedforward 8 layer "fully convolutional" architecture
- Transfer learning in bottom 3 layers from pretrained VGG-M model on ImageNet
- Trained on SALICON dataset

eDN model:

SalGAN $\log D(I, \hat{S}),$ $lpha \cdot \mathcal{L}_{BCE}$ -Adversarial loss Image Stimuli + Predicted Saliency Map Generator Discriminator Adversarial **BCE Cost** Cost Conv-VGG Max Pooling Upsampling Sigmoid Conv-Scratch Fully Connected Image Stimuli

Data loss

+ Ground Truth Saliency Map

SalNet and SalGAN benchmarks

SALICON (test)	AUC-J↑	Sim ↑	$EMD \downarrow$	AUC-B↑	sAUC \uparrow	CC ↑	NSS ↑	$KL\downarrow$
DSCLRCN [24](*)	-	-	-	0.884	0.776	0.831	3.157	-
SalGAN	<u>u</u>	-	-	0.884	0.772	0.781	2.459	_
ML-NET [5]	-	-	-	(0.866)	(0.768)	(0.743)	2.789	-
SalNet [25]	=			(0.858)	(0.724)	(0.609)	(1.859)	~
MIT300	AUC-J↑	Sim ↑	EMD↓	AUC-B↑	sAUC ↑	CC ↑	NSS ↑	$KL \downarrow$
Humans	0.92	1.00	0.00	0.88	0.81	1.0	3.29	0.00
Deep Gaze II [21](*)	0.88	(0.46)	(3.98)	0.86	0.72	(0.52)	(1.29)	(0.96)
DSCLRCN [24](*)	0.87	0.68	2.17	(0.79)	0.72	0.80	2.35	0.95
DeepFix [17](*)	0.87	0.67	2.04	(0.80)	(0.71)	0.78	2.26	0.63
SALICON [9]	0.87	(0.60)	(2.62)	0.85	0.74	0.74	2.12	0.54
SalGAN	0.86	0.63	2.29	0.81	0.72	0.73	2.04	1.07
PDP [11]	(0.85)	(0.60)	(2.58)	(0.80)	0.73	(0.70)	2.05	0.92
ML-NET [5]	(0.85)	(0.59)	(2.63)	(0.75)	(0.70)	(0.67)	2.05	(1.10)
Deep Gaze I [19]	(0.84)	(0.39)	(4.97)	0.83	(0.66)	(0.48)	(1.22)	(1.23)
iSEEL [29](*)	(0.84)	(0.57)	(2.72)	0.81	(0.68)	(0.65)	(1.78)	0.65
SalNet [25]	(0.83)	(0.52)	(3.31)	0.82	(0.69)	(0.58)	(1.51)	0.81
BMS [31]	(0.83)	(0.51)	(3.35)	0.82	(0.65)	(0.55)	(1.41)	0.81

Deep Gaze

Simple linear model trained on activations of all conv layers (upsampled) from AlexNet

Softmax output over full image, categorical cross entropy.

 L_1 regularization used to encourage sparsity.

MLNet

SALICON

Human Fixation Maps

DeepFix

Kruthiventi et al. **DeepFix: A Fully Convolutional Neural Network for predicting Human Eye Fixations**https://arxiv.org/abs/1510.02927

Dilated convolutions

Inception layers

Weights initialized from VGG16 trained on ImageNet

Fig. 6: Gaussian blobs with different horizontal and vertical variances concatenated to the input blob of LBC layers to make the layer's response location specific.

Location biased convolutions

- Sample fixated and non-fixated patches
- Train end-to-end binary classifier
- At testing time, composite maps from local regions to construct global map

Dense prediction problem - which loss functions to use?

- Euclidean / Huber loss
- Losses based on probability distance measures:

Probability distances	$L(oldsymbol{p},oldsymbol{g})$	$rac{\partial L(oldsymbol{p},oldsymbol{g})}{\partial x_i^p}$
χ^2 divergence	$\sum_{j} \frac{(g_j)^2}{p_j} - 1$	$p_i \sum_{j \neq i} \frac{g_j^2}{p_j} - \frac{g_i^2}{p_i} (1 - p_i)$
Total Variation distance	$\frac{1}{2}\sum_{j} g_{j}-p_{j} $	$\frac{1}{2} \left[p_i \sum_{j \neq i} \frac{g_j - p_j}{ g_j - p_j } p_j - p_i \frac{g_i - p_i}{ g_i - p_i } (1 - p_i) \right]$
Cosine distance	$1 - \frac{\sum_j p_j g_j}{\sqrt{\sum_j p_j^2} \sqrt{\sum_j g_j^2}}$	$\frac{1}{C} \left[p_i \sum_{j \neq i} p_j (g_j - p_i \frac{\sqrt{\sum_i g_i^2}}{\sqrt{\sum_i p_i^2}} R) - p_i (g_i - p_i R) (1 - p_i) \right];$ where $R = \frac{\sum_i p_i g_i}{C}$ and $C = \sqrt{\sum_i p_i^2} \sqrt{\sum_i g_i^2}.$
Bhattacharyya distance	$-\ln\sum_{j}(p_{j}g_{j})^{0.5}$	$\frac{-1}{2\sum_{j}(p_{j}g_{j})^{0.5}} \left[p_{i} \sum_{j \neq i} (p_{j}g_{j})^{0.5} - (p_{i}g_{i})^{0.5} (1 - p_{i}) \right]$
KL divergence	$\sum_{j} g_{j} \log \frac{g_{j}}{p_{j}}$	$p_i \sum_{j \neq i} g_j - g_i (1 - p_i)$

Convergence of AUC using different loss functions

From image to video saliency?

Thanks!

