LINEAR REGRESSION MODEL ON STUDENTS PERFORMANCE The dataset was obtained from Kaggle platform. The purpose of this analysis was to predict Student's marks based on time of study and number of courses. Linear Regression had r2_squared score of 94% which is good prediction. This implies Marks are greatly affected by time of study and number of courses taken by a student. In [1]: #importing relevant libraries import pandas as pd import numpy as np import seaborn as sns from sklearn.linear_model import LinearRegression #loading dataset In [2]: data=pd.read_csv('Desktop/students_exam_marks.csv') In [3]: #head of data data.head() Out[3]: number_courses time_study Marks 0 3 4.508 19.202 1 0.096 7.734 2 4 3.133 13.811 3 6 7.909 53.018 8 4 7.811 55.299 In [4]: #descriptive statistics data.describe() Out[4]: number_courses time_study Marks count 100.000000 100.000000 100.000000 5.290000 4.077140 24.417690 mean std 1.799523 2.372914 14.326199 3.000000 0.096000 5.609000 min 4.000000 **25**% 2.058500 12.633000 5.000000 **50**% 4.022000 20.059500 **75**% 7.000000 6.179250 36.676250 8.000000 55.299000 7.957000 max #data info In [5]: data.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 100 entries, 0 to 99 Data columns (total 3 columns): # Column Non-Null Count Dtype -----0 number_courses 100 non-null int64 time_study 100 non-null float64 1 100 non-null float64 Marks dtypes: float64(2), int64(1) memory usage: 2.5 KB In [6]: #shape of data data.shape (100, 3)Out[6]: #checking null values data.isnull().sum() number_courses 0 time_study 0 Marks 0 dtype: int64 **EXPLONATORY DATA ANALYSIS** In [8]: #histplot on marks sns.histplot(data['Marks'],color='blue') <Axes: xlabel='Marks', ylabel='Count'> 20.0 17.5 15.0 12.5 10.0 7.5 5.0 2.5 0.0 10 40 50 20 30 Marks In [9]: #histplot on number of courses sns.histplot(data['number_courses'], color='purple') <Axes: xlabel='number_courses', ylabel='Count'> 20 15 Count 10 5 7 4 5 number_courses In [10]: #histplot on time of study sns.histplot(data['time_study'],color='green') <Axes: xlabel='time_study', ylabel='Count'> 14 12 10 Count 8 6 4 2 2 5 time_study In [11]: #boxplot on number_course against time of study sns.boxplot(x='number_courses', y='time_study', data=data) <Axes: xlabel='number_courses', ylabel='time_study'> 8 7 6 time_study 3 2 1 0 3 5 7 8 6 number_courses In [12]: #violinplot on number_course against time of study sns.violinplot(x='number_courses', y='Marks', data=data, color='purple') <Axes: xlabel='number_courses', ylabel='Marks'> 70 60 50 40 Marks 30 20 10 0 -103 7 4 5 6 8 number_courses In [13]: #correlation data.corr() Out[13]: number_courses time_study Marks 0.204844 0.417335 number_courses 1.000000 0.204844 1.000000 0.942254 time_study Marks 0.417335 0.942254 1.000000 In [14]: sns.heatmap(data.corr(),annot=True) Out[14]: - 1.0 number_courses - 0.9 1 0.2 0.42 - 0.8 - 0.7 time_study 0.2 0.94 0.6 0.5 0.4 Marks 0.42 0.94 1 0.3 number_courses Marks time_study In [15]: ## MODEL TRAINING In [16]: #declare variables X=data[['number_courses','time_study']] y=data['Marks'] In [17]: **from** sklearn.preprocessing **import** StandardScaler In [18]: # standardization # declaring standard scaler scaler.fit(X) Out[18]: ▼ StandardScaler StandardScaler() #scaling each feature In [19]: X_scaled=scaler.transform(X) **LINEAR REGRESSION MODEL** ##STATSMODELS In [20]: import statsmodels.api as sm x=sm.add_constant(X) In [22]: results=sm.OLS(y,x).fit() results.summary() **OLS Regression Results** Out[22]: 0.940 Dep. Variable: Marks R-squared: Model: OLS Adj. R-squared: 0.939 Method: F-statistic: Least Squares 764.8 **Date:** Thu, 14 Dec 2023 **Prob (F-statistic):** 4.09e-60 Log-Likelihood: -266.62 Time: 15:35:04 No. Observations: 100 AIC: 539.2 **Df Residuals:** 97 BIC: 547.1 Df Model: 2 **Covariance Type:** nonrobust t P>|t| [0.025 0.975] coef std err **const** -7.4563 1.174 -6.349 0.000 -9.787 -5.125 number_courses 1.8641 0.202 9.243 0.000 1.464 2.264 time_study 5.3992 0.153 35.303 0.000 5.096 5.703 **Omnibus:** 29.529 **Durbin-Watson:** 1.978 Prob(Omnibus): 0.000 Jarque-Bera (JB): 9.956 0.526 **Prob(JB):** 0.00689 Skew: 1.867 Cond. No. Kurtosis: 23.9 Notes: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. ##SKLEARN In [23]: In [24]: #regression with scaled features reg=LinearRegression() reg.fit(X,y) Out[24]: ▼ LinearRegression LinearRegression() reg.score(X,y) 0.9403656320238896 Out[25]: In [26]: #R squared value r_squared=reg.score(X,y) r_squared 0.9403656320238896 Out[26]: In [27]: #declaring number of observations and number of independent variables n=X.shape[0]k=x.shape[1]In [28]: #adjusted_r_squared $adjusted_r_squared=1-(1-r_squared)*((n-1)/(n-k-1))$ adjusted_r_squared 0.9385020580246362 Out[28]: # constant/y_intercept/biases In [29]: reg.intercept_ -7.456346231178355 Out[29]: In [30]: # coefficiencies(weights) reg.coef_ array([1.86405074, 5.39917879]) Out[30]: In [31]: #importing f_regression from sklearn.feature_selection import f_regression In [32]: # f_statistic values F_statistics=f_regression(X,y)[0] F_statistics array([20.66822463, 775.77043264]) Out[32]: In [33]: #p_values P_values=f_regression(X,y)[1].round(4) P_values array([0., 0.]) Out[33]: reg_summary=pd.DataFrame(['Intercept', 'number_courses', 'time_study'], columns=['Features']) In [34]: reg_summary['weights']=reg.intercept_, reg.coef_[0], reg.coef_[1] In [35]: reg_summary Out[35]: Features weights Intercept -7.456346 1 number_courses 1.864051 time_study 5.399179 In [36]: #creating columns name of summary table reg_summary=pd.DataFrame(data=X.columns.values,columns=['features']) #Table of summary statistics reg_summary['coefficies']=reg.coef_ reg_summary['intercept']=reg.intercept_ reg_summary['p_values']=f_regression(X,y)[1].round(4) reg_summary['F_statistics']=f_regression(X,y)[0] reg_summary['r_squared']=reg.score(X,y) reg_summary['adjusted_r_squared']=1-(1-r_squared)*((n-1)/(n-k-1)) reg_summary In [38]: Out[38]: features coefficies intercept p_values F_statistics r_squared adjusted_r_squared **0** number_courses 1.864051 -7.456346 20.668225 0.940366 0.938502 time_study 5.399179 -7.456346 0.0 775.770433 0.940366 0.938502 #predicted data using regression equation In [39]: data_predicted=reg.predict(X) In [40]: #Predicted_table Predicted_table=pd.DataFrame(columns=['predicted', 'Marks']) In [41]: #Table of original y_values against predicted Predicted_table['predicted']=data_predicted Predicted_table['Marks']=data['Marks'] In [42]: Predicted_table.head(10) predicted Marks Out[42]: **0** 22.475304 19.202 **1** 0.518178 7.734 **2** 16.915484 13.811 **3** 46.430063 53.018 **4** 49.629045 55.299 **5** 21.064721 17.822 **6** 30.871027 29.889 **7** 20.291305 17.264 **8** 23.810235 20.348 **9** 31.464937 30.862 In [43]: #predicting values using standardized coefficients Predicted=reg.predict(X) dataset_with_predictions = pd.concat([data, pd.Series(Predicted, name='Predicted_Values')], axis=1) In [44]: dataset_with_predictions #Model evaluation In [45]: from sklearn.metrics import mean_squared_error mse=mean_squared_error(y,Predicted) In [47]: mse 12.116962069108952 CONCLUSION Courses and time of study explained 94% of variability in Marks obtained by students in this analysis. Hence the linear regression the model was good in prediction.