Lesson Objectives

- 1. Zero Product Property
- 2. Solve by Factoring GCF
- 3. Solve by Factoring $x^2 + bx + c = 0$ into binomial factors
- 4. Solve by Square Root Method

- 5. Solve by the Quadratic Formula
- 6. Using the Discriminant
- 7. Solve by Graphing (find *x*-intercepts) on Calculator

A. Zero Product Property

If $a \cdot b = 0$, then either a = 0 or b = 0.

• **EXAMPLE:** Solve. (13s + 8)(5s - 15) = 0 [*Beecher 3.2.1]

By the Zero Product Property,

Set each factor (parentheses) equal to zero:
$$13s + 8 = 0$$
 or $5s - 15 = 0$
Solve each equation. $-8 - 8$ $+15 + 15$
 $13s = -8$ $5s = 15$
 $13s = -8$ $5s = 15$

(both are solutions) $\overline{13} = \overline{13}$ $\overline{5} = \overline{5}$ $\overline{5}$ $\overline{5}$ or s = 3

B. Solve by Factoring GCF

• **EXAMPLE:** Solve the quadratic equation. $9x^2 = 54x$ [3.2-1]

NEVER divide by a variable....ever! Don't do this: $\frac{9x^2}{9x} = \frac{54x}{9x}$ no, No, NO!!! Bad! Stop it! Very illegal!

Set your equation **EQUAL** to **ZERO**! $9x^2 = 54x$ (subtract 54x)

Then, you can **FACTOR out the GCF**: $9x^2 - 54x = 0$ (GCF is 9x)

9x(x-6) = 0 (GCF outside on the LEFT)

Now, use the **Zero Product Property**: 9x = 0 or x - 6 = 0Solve each equation: $\frac{9x}{0} = \frac{0}{0}$ +6 + 6

x = 0 or x = 6 (both are solutions)

C. Solve by Factoring $x^2 + bx + c = 0$ into Binomial Factors

 $x^2 = 3x + 40$ • **EXAMPLE:** Solve the equation by factoring. [*Blitzer 1.5.3-Setup & Solve]

Set your equation **EQUAL** to **ZERO**!

(subtract 3x and subtract 40)

$$x^2 = 3x + 40$$

$$\Rightarrow \quad x^2 - 3x - 40 = 0$$

Try to factor: $x^2 - 3x - 40$

$$x^2 - 3x - 40$$

Open 2 sets of parentheses with variable in the first position:

$$x^2 - 3x - 40$$

$$=$$
 $(x)(x)$

Next, we need 2 integers whose SUM is -3 and whose PRODUCT is -40

To finish factoring, we need 2 numbers:		
Product = -40	Sum = -3	Winner?
(opposite signs)	(opposite signs means SUBTRACT)	
$\pm 1 \cdot \mp 40 = -40$	$\pm 1 + (\mp 40) = \mp 39$	NO
$\pm 2 \cdot \mp 20 = -40$	$\pm 2 + (\mp 20) = \mp 18$	NO
$\pm 4 \cdot \mp 10 = -40$	$\pm 4 + (\mp 10) = \mp 6$	NO
$\pm 5 \cdot \mp 8 = -40$	$\pm 5 + (\mp 8) = \mp 3$	YES. Use + 5 – 8

$$x^2 - 3x - 40$$

factors into:
$$(x+5)(x-8)$$

Rewrite the equation in factored form

$$x^2 - 3x - 40 = 0$$

$$(x+5)(x-8)=0$$

By the Zero Product Property, set each factor (parentheses) equal to zero:

$$x + 5 = 0$$

$$x + 5 = 0$$
 or $x - 8 = 0$

So,
$$x = -5$$

or
$$x = 8$$

So. x = -5 or x = 8 (both are solutions)

The solution set is $\{-5, 8\}$.

D. Solve by the Square Root Method

The **Square Root Method** is used when only the **SQUARED** term and the **CONSTANT** term are present. That is, the **Square Root Method** is used when your equation is of the form: $ax^2 - c = 0$.

There is no x term – only an x^2 term and a constant term.

• **EXAMPLE:** Solve the quadratic equation. Check the answer. [3.2.5]

 $4x^2 - 256 = 0$

Because no "x" term, **ISOLATE** the **SQUARED** part: $4x^2 = 256$ (add 256)

Continue to **ISOLATE** the **SQUARED** part: $\frac{4x^2}{4} = \frac{256}{4}$ (divide by 4)

 $x^2 = 64$ (take square root)

(What number could you square to get 64?) $\sqrt{x^2} = \sqrt{64}$

REALLY IMPORTANT! Don't forget the \pm symbol! $x = \pm 8$ or $\{-8, 8\}$

• **EXAMPLE:** Solve the following equation. $(x + 21)^2 = 11$ [3.2.29]

First, **ISOLATE** the **SQUARED** part. (DONE!) $(x + 21)^2 = 11$

Take the **SQUARE ROOT** both sides: $\sqrt{(x+21)^2} = \sqrt{11}$

Simplify square root, if needed. Don't forget the "plus or minus" $x + 21 = \pm \sqrt{11}$

Solve for x by subtracting 21: -21 - 21

 $x = -21 \pm \sqrt{11}$

(proper format is rational part first, followed by the irrational part)

Can also be written as: $\{-21 - \sqrt{11}, -21 + \sqrt{11}\}$

E. Solve by the Quadratic Formula

The **Quadratic Formula:** Given $ax^2 + bx + c = 0$ (with $a \ne 0$)

the solutions are: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ or $x = \frac{-(b) \pm \sqrt{(b)^2 - 4 \cdot a \cdot c}}{(2 \cdot a)}$

Make sure you do the following:

- 1. Set your equation **EQUAL** to **ZERO**, if needed.
- 2. Correctly identify the values for *a*, *b*, and *c*.
- 3. Watch out for negatives! (Use parentheses)
- **EXAMPLE:** Solve the quadratic equation. $x^2 + 6x + 9 = 14$ [3.2-4]

Set your equation **EQUAL** to **ZERO**! $x^2 + 6x - 5 = 0$ (subtracted 14) You can try to factor first. If it doesn't factor, use the **Quadratic Formula**.

NOTE: You can ALWAYS use Q.F. for ANY quadratic equation, even if other methods do (or don't) work.

Use **Quadratic Formula**: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ with a = 1, b = 6, c = -5

Plug in your values: $x = \frac{-(6) \pm \sqrt{(6)^2 - 4 \cdot 1 \cdot -5}}{(2*1)}$

Simplify inside the square root (no decimals!) $x = \frac{-6 \pm \sqrt{36 + 20}}{2} = \frac{-6 \pm \sqrt{56}}{2}$

Simplify the square root itself: $\sqrt{56} = \sqrt{2 \cdot 28} = \sqrt{2 \cdot 4 \cdot 7} = \sqrt{2 \cdot 2 \cdot 2 \cdot 7} = 2\sqrt{2 \cdot 7} = 2\sqrt{14}$ (pairs and spares, Section R.7)

Now update the solution above: $x = \frac{-6 \pm \sqrt{56}}{2} = \frac{-6 \pm 2\sqrt{14}}{2}$

The common denominator is 2. **PULL them APART!** $x = \frac{-6 \pm 2\sqrt{14}}{2} = \frac{-6}{2} \pm \frac{2\sqrt{14}}{2}$

Reduce each fraction (ignore square root part) $x = \frac{-6}{2} \pm \frac{2\sqrt{14}}{2} = -3 \pm \sqrt{14}$

The solutions are: $\boldsymbol{x} = -\mathbf{3} \pm \sqrt{\mathbf{14}}$ or $\{-3 - \sqrt{\mathbf{14}}, -3 + \sqrt{\mathbf{14}}\}$

Mrs. E! Is there...maybe...an EASIER way to do that last example? Let's revisit it:

• **EXAMPLE:** Solve the quadratic equation. $x^2 + 6x + 9 = 14$ [3.2-4]

There is an interesting opportunity here! Look at just the LEFT side of the equation – do NOT set it equal to zero.

$$x^2 + 6x + 9$$

Let's **factor** that. $x^2 + 6x + 9 = (x + 3)(x + 3) = (x + 3)^2$

Revisit the equation: $x^2 + 6x + 9 = 14$

Put factored form on the LEFT. $(x + 3)^2 = 14$ Use **square root** property.

$$\sqrt{(x+3)^2} = \sqrt{14}$$

Simplify. Don't forget the \pm symbol. $x + 3 = \pm \sqrt{14}$ Subtract 3.

The solutions are: $x=-3\pm\sqrt{14}$ or $\{-3-\sqrt{14},-3+\sqrt{14}\}$

F. Using the **Discriminant**

Recall the **Quadratic Formula**: Given $ax^2 + bx + c = 0$ (with $a \ne 0$)

the solutions are: $\chi = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

The expression inside the square root (the *radicand*), the $b^2 - 4ac$, is called the **discriminant**, which can determine the **number of solutions** to the quadratic equation.

QUADRATIC EQUATIONS AND THE DISCRIMINANT

To determine the number of real solutions to $ax^2 + bx + c = 0$ with $a \ne 0$, evaluate the discriminant $b^2 - 4ac$.

1. If $b^2 - 4ac > 0$, there are two real solutions.

2. If $b^2 - 4ac = 0$, there is one real solution.

3. If $b^2 - 4ac < 0$, there are no real solutions.

• **EXAMPLE:** Use the discriminant to determine the number of real solutions.

$$w^2 - 2w + 3 = 0$$

$$a = 1, b = -2, c = 3$$

$$b^2 - 4ac = (-2)^2 - 4 \cdot 1 \cdot 3 = 4 - 12 = -8$$

Since the discriminant $b^2-4ac<0$ (negative), the equation will have: NO real solutions.

Another (easier?) way: **GRAPH** the equation $w^2 - 2w + 3 = 0$ on calculator (use x as your variable)

(Put left side equation in Y1, right side in Y2)

(standard window Zoom 6)

Because the parabola does **NOT** have any *x*-intercepts, then that also means it only has **NO** real solutions.

G. Solve by **Graphing** (finding *x*-intercepts) on Calculator

To solve a quadratic equation by graphing:

- Put left side of equation into Y1 and right side (zero) into Y2 on calculator (use x as your variable).
- 3. Graph starting with standard window, ZOOM 6. You may need to Zoom In or Out (ENTER), if needed.
- Does your graph (parabola) cross or touch x-axis?
 If YES, go to STEP 5 to find x-intercepts.
 If NO, then stop your equation has no real solutions.

- 6. Press DOWN Arrow to switch to Y2=0 and move cursor to where the parabola is touching *x*-axis.
- 7. Press **ENTER** three times.
- 8. You should see the word INTERSECTION with x = some number and y = 0. This is an x-intercept.
- 9. The **solution** is the **x-coordinate** of that x-intercept (round the amount accordingly).
- 10. Repeat STEPS 5 through 9 if there is a second *x*-intercept. It will be the second **solution**.
- **EXAMPLE:** Use a calculator to find the graphical solution to the equation. Round to the nearest thousandth.

$$2n^2 = -8n - 5 ag{3.2-16}$$

Set your equation equal to zero (add 8n and add 5)

$$2n^2 + 8n + 5 = 0$$
 Go to Y= on calculator. Use x as your variable.

The solutions to the equation $2n^2 = -8n - 5$ are $n \approx -3.225$ or -0.775 (rounded)

Sources Used:

- 1. MyLab Math for College Algebra with Integrated Review, Beecher, Pearson Education Inc.
- 2. MyLab Math for College Algebra, 7th Edition, Blitzer, Pearson Education Inc.
- 3. MyLab Math for College Algebra with Modeling and Visualization, 6th Edition, Rockswold, Pearson Education Inc.
- 4. Wabbitemu calculator emulator version 1.9.5.21 by Revolution Software, BootFree ©2006-2014 Ben Moody, Rom8x ©2005-2014 Andree Chea. Website https://archive.codeplex.com/?p=wabbit