Out[3]:

	AAPL	GOOGL	IBM	KO
Date				
2010-12-15	9.711447	14.772272	87.241577	21.828802
2010-12-16	9.738425	14.807558	87.139114	22.031120
2010-12-17	9.719026	14.784785	87.410385	22.152498
2010-12-20	9.767528	14.891391	87.114998	22.021002
2010-12-21	9.827853	15.091842	87.856468	22.081684
2020-12-08	122.382462	90.566498	105.037552	48.928303
2020-12-09	119.824226	88.892998	105.939934	49.066311
2020-12-10	121.260780	88.382500	104.410881	48.808697
2020-12-11	120.444107	88.739998	103.834335	49.084717
2020-12-14	119.824226	87.612999	103.216019	49.011108

2517 rows × 4 columns

```
In [4]:
          1 plt.figure(num=1,figsize=(12,8))
          plt.plot(portfolio_stocks.AAPL.values)
          3 plt.title('This plot is not time series')
          4 plt.xlabel('days')
          5 plt.ylabel('price')
          6 plt.show()
                                                         This plot is not time series
            120
            100
             80
          price
            # haracter description
             '-' solid line style
                     dashed line style
                     dash-dot line style
             ':' dotted line style
                point marker
             ',' pixel marker
            'o' circle marker
             'v' triangle_down marker
            '^' triangle_up marker
         11 '<' triangle_left marker</pre>
         12 '>' triangle_right marker
            '1' tri_down marker
         14 '2' tri up marker
```

```
15 '3' tri left marker
16 '4' tri right marker
17 's' square marker
18 'p' pentagon marker
19 '*' star marker
20 'h' hexagon1 marker
21 'H' hexagon2 marker
22 '+' plus marker
23 'x' x marker
24 'D' diamond marker
25 'd' thin_diamond marker
26 '|' vline marker
27 '_' hline marker
28 The following color abbreviations are supported:
29
30 character
               color
31 'b' blue
32 'g' green
33 'r' red
34 'c' cyan
35 'm' magenta
36 'y' yellow
37 'k' black
38 'w' white
```


Apple stock price

Apple & Google stock price


```
In [13]:
          1 # if we want to add grid space to subplots
          2 fig = plt.figure(figsize=(12, 8), constrained layout=True)
          3 spec = fig.add gridspec(2, 2, hspace=0.025, wspace=0)
          5 ax0 = fig.add subplot(spec[0, :])
          6 ax0.plot(portfolio stocks.loc['2020':,'AAPL'],marker="o",linestyle="--",color="r")
          7 ax0.set title("aapl Stocks Price")
          8 ax0.set xlabel("Time")
          9 ax0.set vlabel("Price")
         10 ax10 = fig.add subplot(spec[1, 0])
         11 ax10.plot(portfolio stocks.loc['2019':,'GOOGL'],marker="v",linestyle="--",color="g")
         12 ax10.set title("googl Stocks Price")
         13 ax10.set xlabel("Time")
         14 ax10.set ylabel("Price")
         15
         16 ax11 = fig.add subplot(spec[1, 1])
         17 ax11.plot(portfolio stocks.loc['2019':,'IBM'],color="0")
         18 ax11.set title("ibm Stocks Price")
         19 ax11.set xlabel("Time")
         20 ax11.set_ylabel("Price")
          21 plt.show()
```

aapl Stocks Price


```
In [16]:

# We can share x axis in 2 rows charts, and y axis in 2 columns charts
fig, ax = plt.subplots(2, 1, sharex=True,figsize=(12,8))
ax[0].plot(portfolio_stocks.loc['2019':,'AAPL'],marker="o",linestyle="--",color="r")
ax[0].plot(portfolio_stocks.loc['2020':,'GOOGL'],marker="v",linestyle="--",color="g");
ax[1].plot(portfolio_stocks.loc['2020':,'K0'],marker="*",linestyle="--",color="r")
ax[1].plot(portfolio_stocks.loc['2019':,'IBM'],color="0")
ax[0].set_title("aapl & google Stocks Price")
ax[1].set_title("ko & ibm Stocks Price")
ax[0].set_xlabel("Time")
ax[1].set_ylabel("Price")
fig.tight_layout() # it places chart more visiable
plt.show()
```


In [17]: | 1 #Using twin axes and annotation

AAPL

Date

2020-03-16 -0.128647

AAPL

Date

2020-03-13 0.119808

```
In [19]:
           1 #Using twin axes
           2 fig, ax = plt.subplots(figsize=(12,8))
           3 ax.plot(portfolio stocks.index, portfolio stocks['AAPL'],'blue')
           4 ax.set xlabel('Time')
           5 ax.set ylabel('Price ($)',color='b')
           6 ax.tick params('y', colors='blue')
           7 \text{ ax2} = \text{ax.twinx()}
           8 ax2.plot(portfolio stocks.index,portfolio stocks['AAPL'].pct change(),'red')
           9 ax2.set xlabel('Time')
          10 ax2.set ylabel('Daily Return (%)',color='r')
          11 ax2.tick params('y', colors='red')
          12 fig.tight layout()
          13 ax2.annotate("The highest drop -0.128647 ",xy=(pd.Timestamp('2020-03-16'), -0.128647),arrowprops={})
          14 ax2.annotate("The highest increase 0.119808 ",xy=(pd.Timestamp('2020-03-13'), 0.119808),arrowprops={})
          15 plt.show()
          16
```


In []: 1
In []: 1
In [23]: 1 df = pd.read_csv("House_Rent_Dataset.csv")
In [24]: 1 df

Out[24]:

	Posted On	внк	Rent	Size	Floor	Area Type	Area Locality	City	Furnishing Status	Tenant Preferred	Bathroom	Point of Contact
0	5/18/2022	2.0	10000.0	1100	Ground out of 2	Super Area	Bandel	Kolkata	Unfurnished	Bachelors/Family	2.0	Contact Owner
1	5/13/2022	2.0	20000.0	800	1 out of 3	Super Area	Phool Bagan, Kankurgachi	Kolkata	Semi- Furnished	Bachelors/Family	1.0	Contact Owner
2	5/16/2022	2.0	17000.0	1000	1 out of 3	Super Area	Salt Lake City Sector 2	Kolkata	Semi- Furnished	Bachelors/Family	1.0	Contact Owner
3	7/4/2022	2.0	10000.0	800	1 out of 2	Super Area	Dumdum Park	Kolkata	Unfurnished	Bachelors/Family	1.0	Contact Owner
4	5/9/2022	2.0	7500.0	850	1 out of 2	Carpet Area	South Dum Dum	Kolkata	Unfurnished	Bachelors	1.0	Contact Owner
						•••						
4744	5/18/2022	2.0	15000.0	1000	3 out of 5	Carpet Area	Bandam Kommu	Hyderabad	Semi- Furnished	Bachelors/Family	2.0	Contact Owner
4745	5/15/2022	3.0	29000.0	2000	1 out of 4	Super Area	Manikonda, Hyderabad	Hyderabad	Semi- Furnished	Bachelors/Family	3.0	Contact Owner
4746	7/10/2022	3.0	35000.0	1750	3 out of 5	Carpet Area	Himayath Nagar, NH 7	Hyderabad	Semi- Furnished	Bachelors/Family	3.0	Contact Agent
4747	7/6/2022	3.0	45000.0	1500	23 out of 34	Carpet Area	Gachibowli	Hyderabad	Semi- Furnished	Family	2.0	Contact Agent
4748	5/4/2022	2.0	15000.0	1000	4 out of 5	Carpet Area	Suchitra Circle	Hyderabad	Unfurnished	Bachelors	2.0	Contact Owner

```
1 df.columns
In [25]:
Out[25]: Index(['Posted On', 'BHK', 'Rent', 'Size', 'Floor', 'Area Type',
                 'Area Locality', 'City', 'Furnishing Status', 'Tenant Preferred',
                 'Bathroom', 'Point of Contact'],
               dtvpe='object')
In [26]:
           1 df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 4749 entries, 0 to 4748
         Data columns (total 12 columns):
              Column
                                 Non-Null Count Dtype
              _____
          0
              Posted On
                                 4749 non-null
                                                 obiect
                                 4748 non-null
                                                float64
          1
              BHK
                                 4748 non-null
                                                float64
              Rent
```

4749 non-null

4747 non-null

4747 non-null

4746 non-null

4748 non-null

4746 non-null

4746 non-null

Furnishing Status 4746 non-null

11 Point of Contact 4746 non-null

dtypes: float64(3), int64(1), object(8)

Size Floor

City

10 Bathroom

Area Type

Area Locality

memory usage: 445.3+ KB

Tenant Preferred

int64

obiect

object

object

object

obiect

object

float64

obiect

In [27]: 1 df.describe()

Out[27]:

	ВНК	Rent	Size	Bathroom
count	4748.000000	4.748000e+03	4749.000000	4746.000000
mean	2.084246	3.504221e+04	967.428722	1.965866
std	0.832546	7.818612e+04	634.523031	0.884532
min	1.000000	1.200000e+03	10.000000	1.000000
25%	2.000000	1.000000e+04	550.000000	1.000000
50%	2.000000	1.600000e+04	850.000000	2.000000
75%	3.000000	3.300000e+04	1200.000000	2.000000
max	6.000000	3.500000e+06	8000.000000	10.000000

```
In [28]: 1 df.isnull().sum()
```

Out[28]: Posted On 0 BHK 1 Rent 1 Size 0 Floor Area Type Area Locality 3 City 1 Furnishing Status 3 Tenant Preferred Bathroom 3 Point of Contact 3 dtype: int64

```
In [29]: 1 df.duplicated().sum()
```

Out[29]: 0

```
In [30]: 1    number_of_posted_ad_by_cities = df.groupby('City').count()[['Rent']]
2    number_of_posted_ad_by_cities.columns = ['number_of_posted_ad']
3    number_of_posted_ad_by_cities
```

Out[30]:

number_of_posted_ad

City	
Bangalore	886
Chennai	891
Delhi	605
Hyderabad	868
Kolkata	524
Mumbai	973


```
In [32]: 1 average_rent_by_cities = df.groupby('City').mean()[['Rent']]
2 average_rent_by_cities.columns =['average_rent']
3 average_rent_by_cities = average_rent_by_cities/1000
4 average_rent_by_cities
```

Out[32]:

average_rent

City			
Bangalore	24.966366		
Chennai	21.614092		
Delhi	29.461983		
Hyderabad	20.555048		
Kolkata	11.645174		
Mumbai	85.235058		

In [34]: 1 | average_rent_by_cities.loc['Delhi']

Out[34]: average_rent 29.461983

Name: Delhi, dtype: float64

In [36]: 1 df[df['City']=='Delhi'][['Size']]

Out[36]:

	Size
2385	800
2386	200
2387	1800
2388	400
2389	600
2985	1200
2986	250
2987	700
2988	1050
2989	500

605 rows × 1 columns

In []:

1