Valuing American Options by Simulation

Least Square and Machine learning Approaches

12/2/19

Presented by: Jinyang Li

ACTSC 906 Final Project

• A general class of continuous-time American option pricing problems can be formulated by specifying a process U(t), 0 < t < T, representing the discounted payoff from exercise at time t, and a class of admissible stopping times τ_0 with values in [0,T]. The problem, then, is to find the optimal expected discounted payoff

$$sup_{\{\tau \in \tau_0\}}E[U(\tau)]$$

• We focus on American put options. In this case, consider a put with strike price K on a single underlying asset S(t). The risk-neutral dynamics of S are modeled as geometric Brownian motion $GBM(r, \sigma^2)$, with r a constant risk-free interest rate. Suppose the option expires at T, its value at time 0 is then

$$sup_{\{\tau \in \tau_0\}} E[e^{-r\tau} \left(K - S(\tau) \right)^+]$$

- Traditional ways:
 - 1. Black-Scholes: Due to the optimal stopping problem, this is technically impossible.
 - 2. Lattice Tree
 - 3. Finite difference
 - 4. Monte Carlo
- Machine Learning methods:
 - 1. Gaussian Process Regression
 - 2. Lease Square Policy Iteration
 - 3. Fitted Q-iteration

• Optimal Stopping problem for Stochastic Process X_t

$$V(x) = \sup_{\tau \in \tau_0} E[U(X_\tau)|X_0 = x]$$

- Where τ is a set of stopping times of X_t , V_t is called the Value function, and G is the Reward function.
- American option pricing is an optimal stopping problem.
 - X_t is the stochastic process for underlying security's price
 - *x* is underlying security's current price
 - τ is set of exercise times corresponding to various stopping policies
 - $V(\cdot)$ is American option price as function of underlying current price
 - $U(\cdot)$ is the discounted option payoff.

American Option Pricing is Optimal Stopping, and hence an MDP, So can be tackled with Dynamic Programming or RL algorithms.

- We formulate Stopping Time problems as Markov Decision Processes
- State is a suitable function of the history of Stochastic Process X_t
- Action is Boolean: Stop or Continue
- Reward always 0, except upon Stopping (when it is = $G(X_\tau)$)
- State-transitions governed by Underlying Price Stochastic Process

INGREDIENTS FOR APPROACHES

Before showing the pseudo-codes, below are the symbols used:

- m Monte-Carlo paths indexed i = 0, 1, ..., m-1
- n+1 time steps indexed $j=n,n-1,\ldots,1,0$
- Infinitesimal risk-free rate at time t_j denoted r_{t_i}
- Simulation paths of prices of underlying as input 2-dim array SP[i,j]
- At each time step, CF[i] is PV of current+future cashflow for path i
- $s_{i,j}$ denotes state for $(i,j) := (\text{time } t_j, \text{ price history } SP[i,:(j+1)])$
- $Payoff(s_{i,j})$ denotes Option payoff at (i,j)
- $\phi_0(s_{i,j}), \ldots, \phi_{r-1}(s_{i,j})$ represents feature functions (of state $s_{i,j}$)
- w_0, \ldots, w_{r-1} are the regression weights
- Regression function $f(s_{i,j}) = w \cdot \phi(s_{i,j}) = \sum_{I=0}^{r-1} w_I \cdot \phi_I(s_{i,j})$
- $f(\cdot)$ is estimate of continuation value for in-the-money states

LONGSTAFF-SCHWARTZ ALGORITHM

```
input : SP[0:m,0:n+1]
    output: option price at t = 0
 1 \mathsf{CF}[0:m] \leftarrow [Payof f(s_{i,n}) \text{ for } i \text{ in range}(m)];
 2 for j \leftarrow n-1 to 1 do
        \mathsf{CF}[0:m] \leftarrow CF[0:m] * e^{-r_{t_j}(t_{j+1}-t_j)};
        X \leftarrow [\phi(s_{i,j}) \text{ for } i \text{ in range}(m) \text{ if } Payoff(s_{i,j}) > 0];
        Y \leftarrow [\mathsf{CF}[i] \text{ for } i \text{ in range}(m) \text{ if } Payoff(s_{i,j}) > 0];
        w \leftarrow (X^T \cdot X)^{-1} \cdot X^T \cdot Y;
        for i \leftarrow 0 to m-1 do
             if Payoff(s_{i,j}) > w \cdot \phi(s_{i,j}) then
                  \mathsf{CF}[i] \leftarrow Payoff(s_{i,j})
              end
10
         end
11
         Return e^{-r_{t_0}}(t_1 - t_0) \cdot \text{mean}(CF[0:M])
13 end
```

Algorithm 1: Least Square Approach

GAUSSIAN PROCESS REGRESSION

```
input : SP[0:m,0:n+1]
     output: option price at t=0
 1 \mathsf{CF}[0:m] \leftarrow [Payoff(s_{i,n}) \text{ for } i \text{ in range}(m)];
 2 for j \leftarrow n-1 to 1 do
          \mathsf{CF}[0:m] \leftarrow CF[0:m] * e^{-r_{t_j}(t_{j+1}-t_j)};
          X \leftarrow [\phi(s_{i,j}) \text{ for } i \text{ in } \text{range}(m) \text{ if } Payof f(s_{i,j}) > 0];
          Y \leftarrow [\mathsf{CF}[i] \text{ for } i \text{ in range}(m) \text{ if } Payoff(s_{i,j}) > 0];
         \underbrace{GPR \leftarrow \mathsf{fit}(X,Y);}_{\mathbf{for}\ i \leftarrow 0\ \mathbf{to}\ m-1} \mathbf{do} \mathbf{different} \ \mathbf{from} \ \mathsf{LS}\ \mathcal{U}
               \begin{array}{c|c} \textbf{if } Payoff(s_{i,j}) > GPR(s_{i,j}) \textbf{ then} \\ \mid \mathsf{CF}[i] \leftarrow Payoff(s_{i,j}) \end{array} \quad \begin{array}{c} \textbf{\textit{Can use control}} \\ \textbf{\textit{voriate here}} \end{array}
                  end
10
            end
11
            Return e^{-r_{t_0}}(t_1-t_0)\cdot \operatorname{mean}(CF[0:M])
12
                      - (Simulated-European - BS-Furgeon)
Algorithm 2: Kriging Approach
13 end
```

LEAST SQUARES POLICY ITERATION APPROACH

```
input : SP[0:m,0:n+1]
    output: option price at t = 0
    Comment: s_{i,j} is short-hand for state at (i,j);
    Comment: A is an r \times r matrix, b and w are r-length vectors;
    Comment: A \leftarrow \phi(s_{i,j}) \cdot (\phi(s_{i,j}) - \gamma \mathbb{1}_{w \cdot \phi(s_{i,j+1}) \geq Payoff(s_{i,j+1})} * \phi(s_{i,j+1}))^T;
    Comment: b_{i,j} \leftarrow \gamma \mathbb{1}_{w \cdot \phi(s_{i,j+1}) < Payoff(s_{i,j+1})} * Payoff(s_{i,j+1}) * \phi(s_{i,j});
 1 A \leftarrow 0, B \leftarrow 0, w \leftarrow 0:
 2 for i \leftarrow 0 to m-1 do
         for j \leftarrow 0 to n-1 do
             Q \leftarrow Payoff(s_{i,j+1});
             if j < n-1 \& Q \le w \cdot \phi(s_{i,j+1}) then
              P \leftarrow \phi(s_{i,j+1});
              _{
m else}
               P \leftarrow 0;
              end
              if Q > w \cdot P then
10
              R \leftarrow Q;
12
              _{
m else}
              R \leftarrow 0;
14
            A \leftarrow A + \phi(s_{i,j}) \cdot (\phi(s_{i,j}) - e^{-r_{t_j}(t_{j+1} - t_j)} * P);
             B \leftarrow B + e^{-r_{t_j}(t_{j+1}-t_j)} * R * \phi(s_{i,j})
         end
17
         if (i+1) % Batch Size == 0 then
             w \leftarrow A^{-1} \cdot b, A \leftarrow 0, b \leftarrow 0
         end
20
21 end
```

Algorithm 3: Least Squares Policy Iteration Approach

ALGORITHMS

FITTED Q-ITERATION APPROACH

```
input : SP[0:m,0:n+1]
   output: option price at t = 0
   Comment: s_{i,j} is short-hand for state at (i,j);
   Comment: A is an r \times r matrix, b and w are r-length vectors;
   Comment: A \leftarrow \phi(s_{i,j}) \cdot (\phi(s_{i,j}))^T;
   Comment: b_{i,j} \leftarrow \gamma \max(Payoff(s_{i,j+1}), w \cdot \phi(s_{i,j+1})) * \phi(s_{i,j}));
 1 A \leftarrow 0, B \leftarrow 0, w \leftarrow 0:
 2 for i \leftarrow 0 to m-1 do
        for j \leftarrow 0 to n-1 do
            Q \leftarrow Payoff(s_{i,i+1});
            if j < n-1 then
                 P \leftarrow \phi(s_{i,j+1});
             _{
m else}
                P \leftarrow 0;
            A \leftarrow A + \phi(s_{i,j}) \cdot (\phi(s_{i,j}))^T;
            B \leftarrow B + \max(Payoff(s_{i,j+1}), w \cdot P) * \phi(s_{i,j})
11
        \operatorname{end}
12
        if (i+1) % Batch Size == 0 then
            w \leftarrow A^{-1} \cdot b, A \leftarrow 0, b \leftarrow 0
14
        end
16 end
```

Algorithm 4: Fitted Q-Iteration Approach

NUMERICAL EXAMPLES

- Simple American Put
- Heston Model

In the pricing framework, we will be using Heston 2-dimensional model to depart from Black-Scholes 1-dimensional dynamics and to show the performance the Kriging method on a multidimensional asset. Heston model is a mathematical model which assumes a non-constant volatility of an underlying asset and was first introduced by Heston [6]. Let S_t be the underlying asset under risk neutral measure with variance v_t that follows a CIR process:

$$d \ln S_{t} = (r - \frac{1}{2}v_{t})dt + \sqrt{v_{t}}dW_{1,t}^{Q}$$

$$dv_{t} = \kappa(\theta - v_{t})dt + \sigma\sqrt{v_{t}}dW_{2,t}^{Q}$$

$$< dW_{1,t}^{Q}, dW_{2,t}^{Q} > = \rho dt$$
(1)

where $S_0 \geq 0, v_0 > 0$ are initial value of the asset and its variance and $W_{1,t}^Q$, $W_{2,t}^Q$ are standard Wiener process with the following parameters: r- risk free rate, $|\rho| < 1$ -correlation of $W_{1,t}^Q$ and $W_{2,t}^Q$, $\kappa > 0$ - mean reverting rate of variance, $\theta > 0$ - long run variance, and $\sigma > 0$ - volatility of variance.

SIMPLE AMERICAN PUT mochine learning

machine larning

S0	sigma	Т	BS	LT	FD	LSM	GPR	FQI	LSPI
36	0.2	1	4.4840	4.48 (0.01%)	4.46 (-0.44%)	4.48 (0.02%)	4.38 (-2.38%)	4.38 (-2.37%)	4.37 (-2.53%)
36	0.2	2	4.8501	4.85 (-0.08%)	4.83 (-0.44%)	4.83 (-0.31%)	4.81 (-0.91%)	4.85 (0.01%)	4.79 (-1.15%)
36	0.4	1	7.1098	7.1 (-0.14%)	7.08 (-0.47%)	7.09 (-0.21%)	6.8 (-4.38%)	6.87 (-3.39%)	6.78 (-4.64%)
36	0.4	2	8.5195	8.51 (-0.14%)	8.49 (-0.40%)	8.51 (-0.13%)	8.2 (-3.70%)	7.94 (-6.77%)	8.22 (-3.56%)
38	0.2	1	3.2568	3.25 (-0.12%)	3.24 (-0.64%)	3.25 (-0.24%)	3.14 (-3.47%)	3.17 (-2.78%)	3.01 (-7.46%)
38	0.2	2	3.7540	3.75 (-0.15%)	3.73 (-0.54%)	3.74 (-0.26%)	3.65 (-2.90%)	3.57 (-4.90%)	3.67 (-2.17%)
38	0.4	1	6.1533	6.18 (0.44%)	6.12 (-0.51%)	6.13 (-0.30%)	5.87 (-4.66%)	5.89 (-4.28%)	5.86 (-4.73%)
38	0.4	2	7.6713	7.69 (0.23%)	7.65 (-0.34%)	7.69 (0.20%)	6.91 (-9.88%)	6.89 (-10.13%)	7.41 (-3.35%)
40	0.2	1	2.3245	2.31 (-0.49%)	2.3 (-1.03%)	2.31 (-0.58%)	2.21 (-4.77%)	2.25 (-3.08%)	2.21 (-4.84%)
40	0.2	2	2.8965	2.89 (-0.39%)	2.87 (-0.77%)	2.89 (-0.23%)	2.58 (-10.88%)	2.55 (-11.94%)	2.77 (-4.21%)
40	0.4	1	5.3260	5.3 (-0.44%)	5.29 (-0.74%)	5.32 (-0.21%)	5.1 (-4.32%)	5.08 (-4.68%)	5.1 (-4.30%)
40	0.4	2	6.9351	6.91 (-0.31%)	6.89 (-0.60%)	6.94 (0.04%)	7.05 (1.60%)	6.86 (-1.06%)	7.32 (5.51%)
42	0.2	1	1.6204	1.62 (0.22%)	1.61 (-0.94%)	1.62 (-0.10%)	1.59 (-1.94%)	1.59 (-1.94%)	1.6 (-1.13%)
42	0.2	2	2.2187	2.22 (-0.07%)	2.2 (-0.71%)	2.23 (0.31%)	1.86 (-16.38%)	1.85 (-16.70%)	2.06 (-7.24%)
42	0.4	1	4.5884	4.61 (0.55%)	4.56 (-0.67%)	4.59 (0.10%)	4.43 (-3.38%)	4.41 (-3.91%)	4.43 (-3.36%)
42	0.4	2	6.2464	6.26 (0.29%)	6.22 (-0.42%)	6.27 (0.38%)	5.65 (-9.60%)	5.3 (-15.17%)	5.96 (-4.63%)
44	0.2	1	1.1118	1.12 (0.84%)	1.1 (-1.02%)	1.12 (0.30%)	1.12 (0.65%)	1.13 (1.30%)	1.09 (-1.82%)
44	0.2	2	1.6921	1.7 (0.31%)	1.68 (-0.62%)	1.69 (0.17%)	1.43 (-15.38%)	1.33 (-21.44%)	1.47 (-13.36%)
44	0.4	1	3.9529	3.96 (0.22%)	3.92 (-0.72%)	3.96 (0.17%)	3.87 (-2.12%)	3.86 (-2.29%)	3.87 (-1.98%)
44	0.4	2	5.6511	5.65 (0.01%)	5.62 (-0.62%)	5.67 (0.26%)	4.93 (-12.76%)	4.64 (-17.83%)	5.29 (-6.41%)

SIMPLE AMERICAN PUT OPTION

Summary

- The non machine learning method is more stable and efficient in time.
- The machine learning method is fair enough but needs a lot of parameter tuning. Takes longer time and may result in fluctuated estimation.
- Machine learning performs better when it is in high-dimensional case, but still, much slower than the mainstream way.

THANKS FOR LISTENING