AMS Monograph Series Sample

Author One

Author Two

Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803

 $\it Current\ address$: Department of Mathematics and Statistics, Case Western Reserve University, Cleveland, Ohio 43403

 $E ext{-}mail\ address: xyz@math.university.edu}$

MATHEMATICAL RESEARCH SECTION, SCHOOL OF MATHEMATICAL SCIENCES, AUSTRALIAN NATIONAL UNIVERSITY, CANBERRA ACT 2601, AUSTRALIA *E-mail address*: two@maths.univ.edu.au

2010 Mathematics Subject Classification. Primary 54C40, 14E20; Secondary 46E25, 20C20

Key words and phrases. amsbook, AMS-IATEX

The first author was supported in part by NSF Grant #000000.

Contents

Preface	vii
Part 1. This is a Part Title Sample	1
Chapter 1. AMS Monograph Series Sample	3
This is an unnumbered first-level section head	3
This is a Special Section Head	3
1.1. This is a numbered first-level section head	3
Exercises	4
1.2. Some more list types	5
Bibliography	7
Index	Q

Preface

This document is a sample prepared to illustrate the use of the American Mathematical Society's LaTeX document class amsbook and publication-specific variants of that class.

This is an example of an unnumbered chapter which can be used for a Preface or Foreword.

The purpose of this paper is to establish a relationship between an infinite-dimensional Grassmannian and arbitrary algebraic vector bundles of any rank defined over an arbitrary complete irreducible algebraic curve, which generalizes the known connection between the Grassmannian and line bundles on algebraic curves.

Author Name

Part 1 This is a Part Title Sample

CHAPTER 1

AMS Monograph Series Sample

This is an unnumbered first-level section head

This is an example of an unnumbered first-level heading.

THIS IS A SPECIAL SECTION HEAD

This is an example of a special section head¹.

1.1. This is a numbered first-level section head

This is an example of a numbered first-level heading.

1.1.1. This is a numbered second-level section head. This is an example of a numbered second-level heading.

This is an unnumbered second-level section head. This is an example of an unnumbered second-level heading.

1.1.1.1. This is a numbered third-level section head. This is an example of a numbered third-level heading.

This is an unnumbered third-level section head. This is an example of an unnumbered third-level heading.

LEMMA 1.1. Let $f, g \in A(X)$ and let E, F be cozero sets in X.

- (1) If f is E-regular and $F \subseteq E$, then f is F-regular.
- (2) If f is E-regular and F-regular, then f is $E \cup F$ -regular.
- (3) If $f(x) \ge c > 0$ for all $x \in E$, then f is E-regular.

The following is an example of a proof.

PROOF. Set $j(\nu) = \max(I \setminus a(\nu)) - 1$. Then we have

$$\sum_{i \notin a(\nu)} t_i \sim t_{j(\nu)+1} = \prod_{j=0}^{j(\nu)} (t_{j+1}/t_j).$$

¹Here is an example of a footnote. Notice that this footnote text is running on so that it can stand as an example of how a footnote with separate paragraphs should be written.

And here is the beginning of the second paragraph.

Hence we have

(1.1)
$$\prod_{\nu} \left(\sum_{i \notin a(\nu)} t_i \right)^{|a(\nu-1)| - |a(\nu)|} \sim \prod_{\nu} \prod_{j=0}^{j(\nu)} (t_{j+1}/t_j)^{|a(\nu-1)| - |a(\nu)|} \\ = \prod_{j>0} (t_{j+1}/t_j)^{\sum_{j(\nu) \ge j} (|a(\nu-1)| - |a(\nu)|)}.$$

By definition, we have $a(\nu(j)) \supset c(j)$. Hence, |c(j)| = n - j implies (5.4). If $c(j) \notin a, \ a(\nu(j))c(j)$ and hence we have (5.5).

This is an example of an 'extract'. The magnetization M_0 of the Ising model is related to the local state probability $P(a): M_0 = P(1) - P(-1)$. The equivalences are shown in Table 1.

Table 1

	$-\infty$	+∞
$f_+(x,k)$	$e^{\sqrt{-1}kx} + s_{12}(k)e^{-\sqrt{-1}kx}$	$s_{11}(k)e^{\sqrt{-1}kx}$
$f_{-}(x,k)$	$s_{22}(k)e^{-\sqrt{-1}kx}$	$e^{-\sqrt{-1}kx} + s_{21}(k)e^{\sqrt{-1}kx}$

DEFINITION 1.2. This is an example of a 'definition' element. For $f \in A(X)$, we define

(1.2)
$$\mathcal{Z}(f) = \{ E \in Z[X] : f \text{ is } E^c\text{-regular} \}.$$

Remark 1.3. This is an example of a 'remark' element. For $f \in A(X)$, we define

(1.3)
$$\mathcal{Z}(f) = \{ E \in Z[X] : f \text{ is } E^c\text{-regular} \}.$$

Example 1.4. This is an example of an 'example' element. For $f \in A(X)$, we define

(1.4)
$$\mathcal{Z}(f) = \{ E \in Z[X] : f \text{ is } E^c\text{-regular} \}.$$

EXERCISE 1.5. This is an example of the xca environment. This environment is used for exercises which occur within a section.

Some extra text before the xcb head. The xcb environment is used for exercises that occur at the end of a chapter. Here it contains an example of a numbered list.

Exercises

(1) First item. In the case where in G there is a sequence of subgroups

$$G = G_0, G_1, G_2, \dots, G_k = e$$

such that each is an invariant subgroup of G_i .

(2) Second item. Its action on an arbitrary element $X = \lambda^{\alpha} X_{\alpha}$ has the form

$$[e^{\alpha}X_{\alpha}, X] = e^{\alpha}\lambda^{\beta}[X_{\alpha}X_{\beta}] = e^{\alpha}c_{\alpha\beta}^{\gamma}\lambda^{\beta}X_{\gamma},$$

(a) First subitem.

$$-2\psi_2(e) = c^{\delta}_{\alpha\gamma}c^{\gamma}_{\beta\delta}e^{\alpha}e^{\beta}.$$

FIGURE 1. This is an example of a figure caption with text.

Figure 2

- (b) Second subitem.
 - (i) First subsubitem. In the case where in G there is a sequence of subgroups

$$G = G_0, G_1, G_2, \dots, G_k = e$$

such that each subgroup G_{i+1} is an invariant subgroup of G_i and each quotient group G_{i+1}/G_i is abelian, the group G is called *solvable*.

- (ii) Second subsubitem.
- (c) Third subitem.
- (3) Third item.

Here is an example of a cite. See [A].

Theorem 1.6. This is an example of a theorem.

THEOREM 1.7 (Marcus Theorem). This is an example of a theorem with a parenthetical note in the heading.

1.2. Some more list types

This is an example of a bulleted list.

- \mathcal{J}_g of dimension 3g-3; $\mathcal{E}_g^2=\{\text{Pryms of double covers of }C=\square \text{ with normalization of }C \text{ hyper-}$ elliptic of genus g-1} of dimension 2g;
- $\mathcal{E}^2_{1,g-1} = \{\text{Pryms of double covers of } C = \square_{P^1}^H \text{ with } H \text{ hyperelliptic of }$ genus g-2} of dimension 2g-1;
- $\mathcal{P}^2_{t,g-t}$ for $2 \leq t \leq g/2 = \{\text{Pryms of double covers of } C = \square_{C''}^{C'} \text{ with } g(C') = t-1 \text{ and } g(C'') = g-t-1 \}$ of dimension 3g-4.

This is an example of a 'description' list.

Zero case: $\rho(\Phi) = \{0\}.$

Rational case: $\rho(\Phi) \neq \{0\}$ and $\rho(\Phi)$ is contained in a line through 0 with rational slope.

Irrational case: $\rho(\Phi) \neq \{0\}$ and $\rho(\Phi)$ is contained in a line through 0 with irrational slope.

Bibliography

- [A] T. Aoki, Calcul exponentiel des opérateurs microdifferentiels d'ordre infini. I, Ann. Inst. Fourier (Grenoble) 33 (1983), 227–250.
- [B] R. Brown, On a conjecture of Dirichlet, Amer. Math. Soc., Providence, RI, 1993.
- [D] R. A. DeVore, *Approximation of functions*, Proc. Sympos. Appl. Math., vol. 36, Amer. Math. Soc., Providence, RI, 1986, pp. 34–56.

\mathbf{Index}

Absorbing barrier, 4	Helmhotz decomposition, 214
Adjoint partial differential operator, 20	Hilbert-Schmidt expansion theorem, 120
A-harmonic function, 16, 182	
A^* -harmonic function, 182	Initial-boundary value problem, 22
D 1 1:1: 00.00	Initial condition, 22 Invariant measure (for the fundamental
Boundary condition, 20, 22	solution), 167
Dirichlet, 15	solution), 107
Neumann, 16 Boundary value problem	Maximum principle
the first, 16	for A -harmonic functions, 183
the mst, 10 the second, 16	for parabolic differential equations, 65
the second, 10 the third, 16	strong, 83
Bounded set, 19	N
Bounded Sot, 10	Neumann
Diffusion	boundary value problem 16
coefficient, 1	boundary value problem, 16 function, 179
equation, 3, 23	function, 179
Dirichlet	One-parameter semigroup, 113
boundary condition, 15	
boundary value problem, 16	Parabolic initial-boundary value problem,
Tall: 4:	22
Elliptic	Partial differential equation
boundary value problem, 14, 158	of elliptic type, 14
partial differential equation, 14	of parabolic type, 22 Positive definite kernel, 121
partial differential operator, 19	Positive definite kerner, 121
Fick's law, 1	Reflecting barrier, 4
Flux, 1	Regular (set), 19
Formally adjoint partial differential	Removable isolated singularity, 191
operator, 20	Robin problem, 16
Fundamental solution	Consimuous mananta (of fundamental
conceptional explanation, 12	Semigroup property (of fundamental solution), 64, 113
general definition, 23	Separation of variables, 131
temporally homogeneous case, 64, 112	Solenoidal (vector field), 209
G 1 1 1 1 100	Strong maximum principle, 83
Genuine solution, 196	Symmetry (of fundamental solution), 64,
Green function, 156	112
Green's formula, 21	112
Harnack theorems	Temporally homogeneous, 111
first theorem, 185	V + Cll + I + I 1 000
inequality, 186	Vector field with potential, 209
2 07	Weak solution
*	
third theorem, 187	· · · · · · · · · · · · · · · · · · ·
lemma, 186 second theorem, 187	Weak solution of elliptic equations, 195 of parabolic equation, 196

10 INDEX

associated with a boundary condition, $204\,$