1 Functional Analysis

Theorem 1.1 (Zorn's lemma). Let X be a nonenpty partially ordered set such that every linearly ordered (i.e. $x \prec y$ or $y \prec x$) subset has an upper bound in X. Then every linearly ordered set has some upper bound that is also maximal in X (i.e. for x maximal, $m \prec x$ implies x = m for all m).

Definition 1.2. A metric space is a set M with a real-valued function $d(\cdot, \cdot)$ on $M \times M$, called metric, such that

- 1. $d(x,y) \ge 0$
- 2. d(x, y) = 0 iff x = y
- 3. d(x, y) = d(y, x)
- 4. d(x,z) < d(x,y) + d(y,z) (triangle inequality)

The topology is generated by the base of open balls,

$$B_r(x) = \{ y \in M : d(x, y) < r \}.$$
 (1)

Definition 1.3. A sequence $\{x_n\}$ is called Cauchy if

$$\forall \epsilon > 0 \,\exists N : N < n, m \implies d(x_n, x_m) < \epsilon. \tag{2}$$

Proposition 1.4. Any convergent sequence is Cauchy.

Definition 1.5. A complex vector space V is called an inner product space with an inner product (\cdot, \cdot) on $V \times V$ such that for all $x, y, z \in V$, $a \in \mathbb{C}$:

- 1. $(x,x) \ge 0$, (x,x) = 0 iff x = 0
- 2. (x, y + z) = (x, y) + (x, z)
- 3. (x, ay) = a(x, y)
- 4. $(x,y) = \overline{(y,x)}$

Definition 1.6. Two vectors x, y are called orthogonal if (x,y)=0. An orthonormal set is a collection of vectors that are mutually orthogonal and such that $||x||:=\sqrt{(x,x)}=1$ for all x.

Theorem 1.7 (Pythagorean). Let $\{x_n\}_{n=1}^N$ be orthonormal, then for all $x \in V$

$$||x||^2 = \sum_{n=1}^{N} |(x, x_n)|^2 + \left| \left| x - \sum_{n=1}^{N} (x_n, x) x_n \right| \right|^2.$$
 (3)

Corollary 1.8 (Bessel's inequality). Let $\{x_n\}_{n=1}^N$ be orthonormal, then for all $x \in V$

$$||x||^2 \ge \sum_{n=1}^N |(x, x_n)|^2$$
. (4)

Corollary 1.9 (Schwarz inequality).

$$|(x,y)| \le ||x|| \, ||y|| \,. \tag{5}$$

Remark. Parallelogram law:

$$||x + y|| + ||x - y|| = 2 ||x||^2 + 2 ||y||^2$$
. (6)

Theorem 1.10. Every inner product space is a normed linear space with norm $||x|| := \sqrt{(x,x)}$.

Definition 1.11. A complete inner product space is called a Hilbert space, otherwise a pre-Hilbert space.

Definition 1.12. Two Hilbert spaces are called isomorphic if there is a linear operator U from \mathcal{H}_1 onto(i.e. surjective) \mathcal{H}_2 , called unitary, such that $(Ux, Uy)_{\mathcal{H}_2} = (x, y)_{\mathcal{H}_1}$.

Lemma 1.13. Let \mathcal{M} be a closed subspace of \mathcal{H} , $x \in \mathcal{H}$. Then there is a unique $z \in \mathcal{M}$ closest to x.

Theorem 1.14 (The projection theorem). Let \mathcal{M} be a closed subspace of \mathcal{H} , $x \in \mathcal{H}$. Then x can be uniquely written as x = z + w, where $z \in \mathcal{M}$ and $w \in \mathcal{M}^{\perp}$.