

Network Service Delivery and Throughput Optimization Via Software Defined Networking

Thesis Defense:

Aaron Rosen

Committee:

Kuang-Ching "KC" Wang Harlan Russell Sebastien Goasguen

Holcombe Department of Electrical & Computer Engineering

Overview

- Network Service Delivery and Throughput
 Optimization Via Software Defined Networking
 - Software Defined Networking (SDN)
 - Transmission Control Protocol (TCP)
 - Steroid OpenFlow Service (SOS)
 - GENI
 - Local Test bed

Software Defined Networking

- Network architecture which decouples control plane and forwarding plane of network devices
- Allows network devices to be programed via software API
- This allows new ideas to be quickly prototyped and tested at large scale
- OpenFlow is one example of SDN

The OpenFlow SDN Approach

- Switches connect to remote controllers
- Controllers install flow entries into switches to handle packets
- Packets not matching any flow entry are sent to the controller (via Packet_in)
- Controller decides how to handle packet
- Allows traffic to be manipulated easily

OpenFlow Tables

Transmission Control Protocol (TCP)

- De facto protocol for transmitting data reliably over the internet.
- Uses congestion control algorithms
- Performance degrades heavily with packet loss and high latency.
- High latency results in a higher Bandwidth Delay Product requiring a large buffer to store packets in flight before they are acknowledged

Transmission Control Protocol (TCP)

- Lots of past work has investigated and proposed solutions to these issues.
- Unfortunately, most of these solutions require modifications to end users machines.
- GridFTP is one example that is used to move terabytes of data across the globe each year generated by the Large Hadron Collider.
- Requiring specialized software adds complexity and cost for end users.

Can these complexities be removed with SDN?

Steroid OpenFlow Service

- SOS provides a seamless enhancement to end-to-end application throughput over long range networks.
- Decouples users protocol from network

SOS Overview

- Goal: no modifications to host, seamless improvement
- Solution:
 - OpenFlow network detects TCP connection (client-server)
 - OpenFlow network redirects connection to local SOS agent
 - SOS agent starts high throughput transport to SOS agent on destination site
 - Destination SOS agent starts TCP connection to server
 - OpenFlow network discovers all sites with SOS agents
 - OpenFlow network allows multiple path transport

Example Topology

Datapath Topology Discovery Controller Sends Packet_out

Discovery packets leave desired interface

Packets are returned to controller via Packet_in

Agent Discovery

SOS: Client Initiates TCP Connection

Packet Reaches First OpenFlow Datapath

Packet Forwarded to Controller

Controller Handles Packet

Controller Informs Agents

Redirecting traffic from Client to Agent 1

 $in_port=1, dl_vlan=0xffff, dl_vlan_pcp=0x00, dl_src=00:1f:29:32:91:99, dl_dst=00:1b:21:6a:85:88, nw_src=10.0.0.11, nw_dst=10.0.0.13, nw_tos=0x00, tp_src=41922, tp_dst=5003, actions=output:2$

More Flow Entries are installed

Flow Entry Modifies Packet Headers so Agent 1 can Accept Stream

in_port=1,vlan_tci=0x0000,dl_src=00:1f:29:32:91:99,dl_dst=00:1b:21:6a:85:88,nw_src=10.0.0.11,nw_dst=10.0.0.13,nw_tos=0,tp_src=41922,tp_dst=5003 actions=mod_dl_dst:00:1f:29:32:92:4d,mod_nw_dst:10.0.0.10,mod_tp_dst:9877,LOCAL

 $in_port=65534, dl_src=00:1f:29:32:92:4d, nw_src=10.0.0.10, nw_dst=10.0.0.11, tp_src=9877, tp_dst=41922\\ actions=mod_dl_src:00:1b:21:6a:85:88, mod_nw_src:10.0.0.13, mod_tp_src:5003, output:1\\$

Flow Entry Modifies Packet Headers for Server to Agent 2

Agent1 to Agent 2 flow entries using 4 streams and 2 different paths (see different mod_dl_src/dst)

 $in_port=65534, nw_src=10.0.0.10, nw_dst=10.0.0.12, tp_dst=9881 actions=mod_dl_src:00:1f:29:32:92:4f, mod_dl_dst:00:1b:21:6b:50:e1, output:1in_port=65534, nw_src=10.0.0.10, nw_dst=10.0.0.12, tp_dst=9880 actions=mod_dl_src:00:1f:29:32:92:4e, mod_dl_dst:00:1b:21:6b:50:e0, output:1in_port=65534, nw_src=10.0.0.10, nw_dst=10.0.0.12, tp_dst=9879 actions=mod_dl_src:00:1f:29:32:92:4f, mod_dl_dst:00:1b:21:6b:50:e1, output:1in_port=65534, nw_src=10.0.0.10, nw_dst=10.0.0.12, tp_dst=9878 actions=mod_dl_src:00:1f:29:32:92:4e, mod_dl_dst:00:1b:21:6b:50:e0, output:1in_port=65534, nw_src=10.0.0.10, nw_dst=10.0.0.12, tp_dst=9878 actions=mod_dl_src:00:1f:29:32:4e, mod_dl_dst:00:1b:21:6b:50:e0, output:1in_port=65534, nw_src=10.0.0.12, tp_dst=10.0.0.12, tp_dst=10.0.0.12, tp_dst=10.0.0.12, tp_dst=10.0.0.$

Agent 2 to Agent 1 flow entry resetting the MAC addresses to be the correct values

in_port=1,nw_src=10.0.0.12,nw_dst=10.0.0.10 actions=mod_dl_src:00:1b:21:6b:50:df,mod_dl_dst:00:1f:29:32:92:4d,LOCAL

Agent 2 to Agent 1 flow entries using 4 streams and 2 different paths (see different mod_dl_dst)

 $in_port=65534, nw_src=10.0.0.12, nw_dst=10.0.0.10, tp_src=9880 actions=mod_dl_src:00:1b:21:6b:50:e0, mod_dl_dst:00:1f:29:32:92:4e, output:2in_port=65534, nw_src=10.0.0.12, nw_dst=10.0.0.10, tp_src=9878 actions=mod_dl_src:00:1b:21:6b:50:e0, mod_dl_dst:00:1f:29:32:92:4e, output:2in_port=65534, nw_src=10.0.0.12, nw_dst=10.0.0.10, tp_src=9881 actions=mod_dl_src:00:1b:21:6b:50:e1, mod_dl_dst:00:1f:29:32:92:4f, output:2in_port=65534, nw_src=10.0.0.12, nw_dst=10.0.0.10, tp_src=9879 actions=mod_dl_src:00:1b:21:6b:50:e1, mod_dl_dst:00:1f:29:32:92:4f, output:2in_port=65534, nw_src=10.0.0.12, nw_dst=10.0.0.10, nw_dst=10.0.0.10, nw_dst=10.0.0.10, nw_dst=10.0$

Agent 1 to Agent 2 flow entry resetting the MAC addresses to be the correct values

in_port=2,nw_src=10.0.0.10,nw_dst=10.0.0.12 actions=mod_dl_src:00:1f:29:32:92:4d,mod_dl_dst:00:1b:21:6b:50:df, LOCAL

Flow Entries to Forward Between Server and Agent 2

Agent 2 Initiates TCP connection to Server

Packet reaches OpenFlow Datapath

Forwarded to controller

Controller Handles packet

Installs Flow Entry

Last Flow Entry for Agent 2 to Server

in_port=65534,vlan_tci=0x0000,dl_src=00:1b:21:6b:50:df,dl_dst=00:1b:21:6a:85:88,nw_src=10.0.0.12,nw_dst=10.0.0.13,nw_tos=0, tp_src=47489,tp_dst=5003 actions=mod_dl_src:00:1f:29:32:91:99,mod_nw_src:10.0.0.11,output:2

SOS Sockets

SOS Transmission Protocol

- SOS uses Parallel TCP in order to relay data between agents.
- Exploits buffer limits by using multiple sockets.
- Sending window grows much faster using multiple sockets.
- Improves throughput in scenarios:
 - Lossy network
 - High Bandwidth Delay Product
 - Multiple paths present

GENI

- Large multipath test bed across the US using Internet2 and National LamdbaRail.
- Equipped with OpenFlow at the edge and in the core of the network.
- Allows full network visibility and control in core network.
- Series of different compute resources (dedicated, shared).
- Allows experimenters to test ideas on a real network
- Uses network slicing to allow multiple users

GENI Results

Configuration	Latency (ms)	TCP (Mbps)	UDP (Mbps)	SOS (Mbps)
Path 1 (short)	54	295	952	869
Path 2 (long)	160	95	952	788
Multipath				703

^{*}Max average SOS throughput achieved when running for 3 minutes with varied number of sockets. (Could be better tuned to improve results)

Test network

 In order to accurately measure network traffic a separate network was created and to was used to emulate different network characteristics (latency, bandwidth, loss).

TCP Buffer Space

 Main limit to TCP throughput in large bandwidth delay product network is lack of buffer space. Test below shows that sending window grows exponentially until buffer limit is reached.

TCP Latency Throughput Growth Rate

 Latency affects the rate of which a TCP stream will grow since TCP window growth is updated based on RTT

Parallel TCP Solution

- Using multiple TCP sockets allows the buffer size limit to be exploited
- TCP slow-start is faster
- Graph shows linear growth until congestion occurs

Receiver Queue Benefits

- TCP suffers from head of line blocking
- Due to out of order arrivals at network layer
 - Retransmitted packets
 - Packet-level multipath routing
 - Route fluttering
 - And many other reasons
- Parallel TCP suffers from same issues in addition to at the application level
 - Out of order packet arrivals among TCP streams
- Receiver queue allows agent to receive data from streams while others are blocked
- Helps increase performance when:
 - Multiple paths of varied latency and bandwidth are used
 - Lossy network paths are present

Latency Effect on Throughput with Receiver Queue

- Network setup with two 300Mbit paths
- Latency was then varied on one path and kept constant on the other
- Queue size represents the number of application level packets that can be stored

Throughput (Mbps) vs Number of streams											
# Streams		1		2		4	6				
Queue Size	1	1000	1	1000	1	1000	1	1000			
25-25 (ms)	291	291	580	580	580	584	580	585			
50-25 (ms)	198	199	432	486	567	562	569	572			
100-25 (ms)	97	96	304	380	452	478	524	541			
200-25 (ms)	44	44	157	250	309	336	371	390			
400-25 (ms)	19	19	60	122	139	209	183	278			

Avei	Average Queue Length (Bytes) Comparing Paths of Varied Latency (2 Streams)												
25-25	25-25(ms) 50-25(ms)		5(ms)	100-2	.5(ms)	200-25(ms)		400-25(ms)					
.00176	.00142	.00101	.04039	.00115	.32321	.01184	.623	.1411	.4805				

Receiver Queue Provides Little Benefit using Paths of Same Latency

- Receiver queue helps increase performance when multiple paths of varied latency are used
- Need to have enough queue space to buffer the difference in bandwidth delay product of paths in order to avoid blocking

0% Performance Improvement

Throughput (Mbps) vs Number of streams											
# Streams		1	2		4		6				
Queue Size	1	1000	1	1000	1	1000	1	1000			
25-25 (ms)	291	291	580	580	580	584	580	585			
50-25 (ms)	198	199	432	486	567	562	569	572			
100-25 (ms)	97	96	304	380	452	478	524	541			
200-25 (ms)	44	44	157	250	309	336	371	390			
400-25 (ms)	19	19	60	122	139	209	183	278			

Avei	Average Queue Length (Bytes) Comparing Paths of Varied Latency (2 Streams)												
25-25(ms)		50-25(ms)		100-25(ms)		200-25(ms)		400-25(ms)					
.00176	.00142	.00101	.04039	.00115	.32321	.01184	.623	.1411	.4805				

- Receiver queue helps increase performance when multiple paths of varied latency are used.
- Need to have enough queue space to buffer the difference in bandwidth delay product of paths in order to avoid blocking.

12.5% Performance Improvement

Th	Throughput (Mbps) vs Number of streams												
# Streams		1		2		4		6					
Queue Size	1	1000	1	1000	1	1000	1	1000					
25-25 (ms)	291	291	580	580	580	584	580	585					
50-25 (ms)	198	199	432	486	567	562	569	572					
100-25 (ms)	97	96	304	380	452	478	524	541					
200-25 (ms)	44	44	157	250	309	336	371	390					
400-25 (ms)	19	19	60	122	139	209	183	278					

Avei	Average Queue Length (Bytes) Comparing Paths of Varied Latency (2 Streams)												
25-25(ms) 50-25(ms)				100-25(ms)		200-25(ms)		400-25(ms)					
.00176	.00142	.00101	.04039	.00115	.32321	.01184	.623	.1411	.4805				

- Receiver queue helps increase performance when multiple paths of varied latency are used.
- Need to have enough queue space to buffer the difference in bandwidth delay product of paths in order to avoid blocking.

25% Performance Improvement

Throughput (Mbps) vs Number of streams											
# Streams		1		2		4		6			
Queue Size	1	1000	1	1000	1	1000	1	1000			
25-25 (ms)	291	291	580	580	580	584	580	585			
50-25 (ms)	198	199	432	486	567	562	569	572			
100-25 (ms)	97	96	304	380	452	478	524	541			
200-25 (ms)	44	44	157	250	309	336	371	390			
400-25 (ms)	19	19	60	122	139	209	183	278			

Avei	Average Queue Length (Bytes) Comparing Paths of Varied Latency (2 Streams)											
25-25	25-25(ms) 50-25(ms)				100-25(ms)		200-25(ms)		400-25(ms)			
.00176	.00142	.00101	.04039	.00115	.32321	.01184	.623	.1411	.4805			

- Receiver queue helps increase performance when multiple paths of varied latency are used.
- Need to have enough queue space to buffer the difference in bandwidth delay product of paths in order to avoid blocking.

59.2% Performance Improvement

Th	Throughput (Mbps) vs Number of streams											
# Streams		1		2	4		6					
Queue Size	1	1000	1	1000	1	1000	1	1000				
25-25 (ms)	291	291	580	580	580	584	580	585				
50-25 (ms)	198	199	432	486	567	562	569	572				
100-25 (ms)	97	96	304	380	452	478	524	541				
200-25 (ms)	44	44	157	250	309	336	371	390				
400-25 (ms)	19	19	60	122	139	209	183	278				

Avei	Average Queue Length (Bytes) Comparing Paths of Varied Latency (2 Streams)												
25-25(ms) 50-25(ms)				100-25(ms)		200-25(ms)		400-25(ms)					
.00176	.00142	.00101	.04039	.00115	.32321	.01184	.623	.1411	.4805				

- Receiver queue helps increase performance when multiple paths of varied latency are used.
- Need to have enough queue space to buffer the difference in bandwidth delay product of paths in order to avoid blocking.

103.3% Performance Improvement

Throughput (Mbps) vs Number of streams											
# Streams		1		2		4	6				
Queue Size	1	1000	1	1000	1	1000	1	1000			
25-25 (ms)	291	291	580	580	580	584	580	585			
50-25 (:ms)	198	199	432	486	567	562	569	572			
100-25 (ms)	97	96	304	380	452	478	524	541			
200-25 (ms)	44	44	157	250	309	336	371	390			
400-25 (ms)	19	19	60	122	139	209	183	278			

Average Queue Length (Bytes) Comparing Paths of Varied Latency (2 Streams)										
25-25(ms) 50-25(ms)		5(ms)	100-25(ms)		200-25(ms)		400-25(ms)			
.00176	.00142	.00101	.04039	.00115	.32321	.01184	.623	.1411	.4805	

Low Queue Utilization with Similar Path Latency

- Receiver queue helps increase performance when multiple paths of varied latency are used.
- Need to have enough queue space to buffer the difference in bandwidth delay product of paths in order to avoid blocking.

Not very utilized with similar latency

Throughput (Mbps) vs Number of streams									
# Streams	1		2		4		6		
Queue Size	1	1000	1	1000	1	1000	1	1000	
25-25 (ms)	291	291	580	580	580	584	580	585	
50-25 (ms)	198	199	432	486	567	562	569	572	
100-25 (ms)	97	96	304	380	452	478	524	541	
200-25 (ms)	44	44	157	250	309	336	371	390	
400-25 (ms)	19	19	60	122	139	209	183	278	

Average Queue Utilization(Bytes) Comparing Paths of Varied Latency (2 Streams)									
25-25(ms)		50-25	5(ms)	100-25(ms)		200-25(ms)		400-25(ms)	
.00176	.00142	.00101	.04039	.00115	.32321	.01184	.623	.1411	.4805

High Queue Utilization with Varied Path Latency

- Receiver queue helps increase performance when multiple paths of varied latency are used.
- Need to have enough queue space to buffer the difference in bandwidth delay product of paths in order to avoid blocking.

	Throughput (Mbps) vs Number of streams										
# Stream	าร		1	2		4		6			
Queue Si	ze	1	1000	1	1000	1	1000	1	1000		
25-25 (m	ıs)	291	291	580	580	580	584	580	585		
50-25 (m	s)	198	199	432	486	567	562	569	572		
100-25 (n	ns)	97	96	304	380	452	478	524	541		
200-25 (n	ns)	44	44	157	250	309	336	371	390		
400-25 (n	ns)	19	19	60	122	139	209	183	278		

More utilized when varied path latency

Avera	Average Queue Utilization(Bytes) Comparing Paths of Varied Latency (2 Streams)										
25-25(ms) 50-25(m		5(ms)	100-25(ms)		200-25(ms)		400-25(ms)				
.00176	.00142	.00101	.04039	.00115	.32321	.01184	.623	.1411	.4805		

Queue Size Effect with Multiple Paths of Varied Bandwidth

Throughput (Mbps) vs Number of Sockets Queue length 1										
	Path Bandwidth (Mbit)									
# Streams	100-100	100-100 200-100 300-100 400-100 500-100								
1	95	190	199	198	199					
2	190	240	240	238	238					
4	192	267	268	272	267					
6	193	261	230	198	279					
8	171	221	230	260	239					
10	195	200	194	236	204					

Throughput (Mbps) vs Number of Sockets Queue length 10,000										
	Path Bandwidth (Mbit)									
# Streams	100-100	100-100 200-100 300-100 400-100 500-100								
1	96	190	198	199	199					
2	191	286	293	293	293					
4	193	288	376	413	425					
6	194	289	382	460	499					
8	195	290	382	472	547					
10	196	294	385	469	521					

^{*} When 1 stream is used, it runs over the path of higher available bandwidth.

.51% Performance Improvement

Throughput (Mbps) vs Number of Sockets Queue length 1										
	Path Bandwidth (Mbit)									
# Streams	100-100	100-100 200-100 300-100 400-100 500-100								
1	95	190	199	198	199					
2	190	240	240	238	238					
4	192	267	268	272	267					
6	193	261	230	198	279					
8	171	221	230	260	239					
10	195	200	194	236	204					

Throughput (Mbps) vs Number of Sockets Queue length 10,000										
	Path Bandwidth (Mbit)									
# Streams	100-100	100-100 200-100 300-100 400-100 500-100								
1	96	190	198	199	199					
2	191	286	293	293	293					
4	193	288	376	413	425					
6	194	289	382	460	499					
8	195	290	382	472	547					
10	196	294	385	469	521					

^{*} When 1 stream is used, it runs over the path of higher available bandwidth.

47% Performance Improvement

Throughput (Mbps) vs Number of Sockets Queue length 1										
	Path Bandwidth (Mbit)									
# Streams	100-100	100-100 200-100 300-100 400-100 500-100								
1	95	190	199	198	199					
2	190	240	240	238	238					
4	192	267	268	272	267					
b	193	261	230	198	279					
8	171	221	230	260	239					
10	195	200	194	236	204					

Throug	Throughput (Mbps) vs Number of Sockets Queue length 10,000									
	Path Bandwidth (Mbit)									
# Streams	100-100	100-100 200-100 300-100 400-100 500-100								
1	96	190	198	199	199					
2	191	286	293	293	293					
4	193	288	376	413	425					
6	194	289	382	460	499					
8	195	290	382	472	547					
10	196	294	385	469	521					

^{*} When 1 stream is used, it runs over the path of higher available bandwidth.

98.45% Performance Improvement

Throughput (Mbps) vs Number of Sockets Queue length 1										
	Path Bandwidth (Mbit)									
# Streams	100-100	200-100	300-100	400-100	500-100					
1	95	190	199	198	199					
2	190	240	240	238	238					
4	192	267	268	272	267					
6	193	261	230	198	279					
8	171	221	230	260	239					
10	195	200	194	236	204					

Throughput (Mbps) vs Number of Sockets Queue length 10,000								
		Path Bandwidth (Mbit)						
# Streams	120-100	200-100	300-100	400-100	500-100			
1	96	190	198	199	199			
2	191	286	293	293	293			
4	193	288	376	413	425			
6	194	289	382	460	499			
8	195	290	382	472	547			
10	196	294	385	469	521			

^{*} When 1 stream is used, it runs over the path of higher available bandwidth.

98.73% Performance Improvement

Throughput (Mbps) vs Number of Sockets Queue length 1							
		Path Bandwidth (Mbit)					
# Streams	100-100	200-100	300-100	400-100	500-100		
1	95	190	199	198	199		
2	190	240	240	238	238		
4	192	267	268	272	267		
6	193	261	230	198	279		
8	171	221	230	260	239		
10	195	200	194	236	204		

Throughput (Mbps) vs Number of Sockets Queue length 10,000							
		Path	Bandwidth (I	Mbit)			
# Streams	100-100	200-100	300-100	400-100	500-100		
1	96	190	198	199	199		
2	191	286	293	293	293		
4	193	288	376	413	425		
6	194	289	382	460	499		
8	195	290	382	472	547		
10	196	294	385	469	521		

^{*} When 1 stream is used, it runs over the path of higher available bandwidth.

155.4% Performance Improvement

Throughput (Mbps) vs Number of Sockets Queue length 1							
		Path	Bandwidth (I	Mbit)			
# Streams	100-100	200-100	300-100	400-100	500-100		
1	95	190	199	198	199		
2	190	240	240	238	238		
1	192	267	268	272	267		
6	193	261	230	198	279		
3	171	221	230	260	239		
10	195	200	194	236	204		

Throughput (Nibos) vs Number of Sockets Queue length 10,000							
		Path	Bandwidth (I	Mbit)			
# Streams	100-100	200-100	300-100	400-100	500-100		
1	96	190	198	199	199		
2	191	286	293	293	293		
4	193	288	376	413	425		
6	194	289	382	460	499		
8	195	290	382	472	547		
10	196	294	385	469	521		

^{*} When 1 stream is used, it runs over the path of higher available bandwidth.

Lossy Link

 SOS is able to overcome a lossy link using multiple streams coupled with user space Queuing.

	1% Lossy Path vs Nonlossy Path Throughput (Mbps)								
# Sockets	Lossy Path Throughput (Queue Size 1)	Lossy Path Throughput (Queue Size 1,000)	Nonlossy Path Throughput Mbps (Queue Size 1)	Nonlossy Path Throughput Mbps (Queue Size 1,000)					
1	16	29	805	897					
2	30	32	902	877					
4	51	90	900	904					
6	93	110	884	899					
8	93	124	902	902					
10	121	136	883	888					
20	135	149	902	904					
30	213	316	905	906					
40	251	484	902	904					
50	334	632	903	902					
60	348	740	905	901					
70	392	796	906	897					
80	415	865	905	897					
90	404	867	902	894					
100	448	874	902	892					

Lossy Link Obtains High Throughput using Many Streams

• SOS is able to overcome a lossy link using multiple streams coupled with user space Queuing.

2,913.8% Performance Improvement

	1% Lossy Path vs Nonlossy Path Throughput (Mbps)								
# Sockets	Lossy Path Throughput	Lossy Path Throughput	Nonlossy Path Throughput Mbps	Nonlossy Path Throughput Mbps					
	(Queue Size 1)	(Queue Size 1,000)	(Queue Size 1)	(Queue Size 1,000)					
1	16	29	805	897					
2	30	32	902	877					
4	51	90	900	904					
6	93	110	884	899					
8	93	124	902	902					
10	121	136	883	888					
20	135	149	902	904					
30	213	316	905	906					
40	251	484	902	904					
50	334	632	903	902					
60	348	740	905	901					
70	392	796	906	897					
80	415	865	905	897					
90	404	867	902	894					
100	448	874	902	892					

Lossy Link Achieves Similar throughput as Nonlossy Link

• SOS is able to overcome a lossy link using multiple streams coupled with user space Queuing.

2.6%
Performance
Difference

	1% Lossy Path vs Nonlossy Path Throughput (Mbps)							
# Sockets	Lossy Path Throughput	Lossy Path Throughput	Nonlossy Path Throughput Mbps	Nonlossy Path Throughput Mbps				
	(Queue Size 1)	(Queue Size 1,000)	(Queue Size 1)	(Queue Size 1,000)				
1	16	29	805	897				
2	30	32	902	877				
4	51	90	900	904				
6	93	110	884	899				
8	93	124	902	902				
10	121	136	883	888				
20	135	149	902	904				
30	213	316	905	906				
40	251	484	902	904				
50	334	632	903	902				
60	348	740	905	901				
70	392	796	906	897				
80	415	865	905	897				
90	404	867	902	894				
100	448	874	902	892				

Sending/Receiving Buffer Size Effect

- The number of bytes agent should try to send/receive each time was found to greatly affect performance.
 - Send(fd, buf, sizeof(buf), 0);
- Initial thought was due to overhead added by additional headers.

27.7% Performance Improvement

	Varying Buffer Size Results (100ms RTT)							
Buffer Size (Bytes)	512	1024	2048	4096	8192			
Throughput (Mbps)	155	156	169	188	198			
# Application Level Packets	2311930	1152818	622046	345238	182105			
% Overhead	1.56	0.78	0.39	0.195	0.097			
Average Packet Size Send/Received (Bytes)	511.99	1023.99	2047.99	4095.97	8195.92			

SOS Overhead

- Addition 8 bytes was added in order to breakup and reassemble data
- Size of packet and sequence number
- 8/512 = 1.56%
- 8/8196 = .0976%
- Not always true do to amount available to read

Accounting for overhead:

Sends Block size – Header packets (2311930*(511.99 -8)*8)/(60*10^6) : **155.35Mbps**

Assuming no overhead (2311930*(511.99)*8)/(60*10^6): **157.82Mbps**

: 2.46Mbps Lost due to overhead

	Varying Block Size Results (100ms RTT)								
Block Size (Bytes)	512	1024	2048	4096	8192				
Throughput (Mbps)	155	156	169	188	198				
# Application Level Packets	2311930	1152818	622046	345238	182105				
% Overhead	1.56	0.78	0.39	0.195	0.098				
Average Packet Size Send/Received (Bytes)	511.99	1023.99	2047.99	4095.97	8195.92				

Missing Throughput

- 2.46Mbps Lost due to overhead
- Though, 198-157.82 = 40.18Mbps Where did this go?

	Varying Block Size Results (100ms RTT)							
Buffer Size (Bytes)	512	1024	2048	4096	8192			
Throughput (Mbps)	155	156	169	188	198			
# Application Level Packets	2311930	1152818	622046	345238	182105			
% Overhead	1.56	0.78	0.39	0.195	0.098			
Average Packet Size Send/Received (Bytes)	511.99	1023.99	2047.99	4095.97	8195.92			

Maybe due to TCP Overhead?

- Lower Average Segment Size when using smaller buffer
- Requires more packets (+54 Byte header per packet)
- Values obtained via tcptrace which analysis's the pcap trace

Average Segment Size vs Block Size (100ms RTT)								
Buffer Size (bytes)	512	512 1024 2048 4096 8192						
Average Segment Size (bytes)	1493	1494	2107	4193	8354			
# Packets Sent	792,416	789,710	604,612	337,199	178,640			

343.58% More packets sent, though 27.7% slower!

Maybe due to TCP Overhead?

- Lower Average Segment Size when using smaller buffer
- Requires more packets (+54 Byte header per packet)
- Values obtained via tcptrace which analysis's the pcap trace

Average Segment Size vs Block Size (100ms RTT)					
Buffer Size (bytes)	512	1024	2048	4096	8192
Average Segment Size (bytes)	1493	1494	2107	4193	8354
# Packets Sent	792,416	789,710	604,612	327,199	178,640

Why is this bigger than my 1500MTU?

TCP Segmentation Offload (TSO)

- Offload Segmentation to NIC
 - Can pass down 64KB of data to NIC which breaks into MTU chunks
 - Drastically reduces CPU time needed to transmit data
 - Segment Size does come into play with high throughput

Average Segment Size vs Block Size (100ms RTT)					
Block Size (bytes)	512	1024	2048	4096	8192
Thoughput (Mbps)	155	157	157	158	159
Average Segment Size (bytes)	1447	1447	1447	1447	1447

Average Segment Size vs Block Size (0ms RTT)					
Block Size (bytes)	512	1024	2048	4096	8192
Throughput (Mbps)	464 (816)	587 (824)	826 (852)	863 (893)	870 (909)
Average Segment Size (bytes)	1335	1392	1447	1447	1447

Improving Performance

- No one magic number for amount for number of sockets to use.
- What information can SOS use to improve performance?
- Queue Utilization, Average sent/received block size
- Rexmt is the number of retransmitted data

# Streams	Throughput (Mbps)	Average Received Block Size (Bytes)	Average Queue Utilization	Rexmt (MB)	Sent Data in 5 minutes (GB)
5	597	8180.2	.07026	0	20.78
100	512	7217.98	.62778	3.4	17.94

Improving Performance

 Using the average receive block size and average queue utilization agent could detect over utilization and disable sockets to improve performance

# Streams	Throughput (Mbps)	Average Received Block Size (Bytes)	Average Queue Utilization	Rexmt (MB)	Sent Data in 5 minutes (GB)
5	597	8180.2	.07026	0	20.78

Signs of over utilization

Improving Performance

- Multipath example with varied available bandwidth.
- 20 streams used which achieved throughput 111Mbps
- Agent spent most of time blocking on streams that traversed
 300Mbit path.

Path	Average Block Size(Bytes)	Average Queue Utilization	
20Mbit	8181.1	.13529	
300Mbit	8168.3	.92177	

- Agent could detect this and dynamically alter the number of steams that traversed each path to improve performance.
- Not Implemented nor evaluated.

Conclusion

- SOS shows how network providers can decouple users choice of protocols to network providers choice of protocols.
- Alleviates complexes for end user since no modifications are required.
- Throughput improvements are shown over high Delay Bandwidth Product Networks and Lossy links
- Receiver Queue significantly helps to improve throughput results in multipath scenarios.

Future Work

- Improve SOS to dynamically alter number of sockets used in order to optimize throughput
- Develop other services such as client mobility, delay tolerant network services, and increased security could be provided via similar methods