CONCORDIA UNIVERSITY

Department of Mathematics & Statistics

Course	Number	Sections
Mathematics	205	All
Examination	Date	Pages
Final	April 2011	2
Instructors:	F. Balogh, A. Boyarsky, J. Brody,	Course Examiners
	M. Girotti, N. Hardy, H. Proppe	A. Atoyan & H. Proppe
Special	Only Sharp EL 531 or Casio FX-300MS	
Instructions:	calculators are allowed	

MARKS

[8] 1. (a) Sketch the graph of the function

$$f(x) = \begin{cases} |x| - 2 & \text{if } |x| \ge 2 \\ -\sqrt{4 - x^2} & \text{if } |x| < 2 \end{cases}$$

on the interval $-3 \le x \le 3$ and calculate the definite integral $\int_{-3}^{3} f(x) dx$ as the signed area between the graph of f and the x-axis (do not antidifferentiate).

- (b) Use the Fundamental Theorem of Calculus to calculate the derivative of the function $F(x) = \int_{0}^{x^2+1} t^2 e^{-t^2} dt$ and find the point(s) of local maximum and/or local minimum of F(x).
- [10] 2. Calculate the following indefinite integrals:

(a)
$$\int \frac{(x-\sqrt{x})^2}{x^{3/2}} \, \mathrm{d}x$$

(b)
$$\int (x^2+1)\,\sin(2x)\,\mathrm{d}x$$

[10] 3. Find the antiderivative F(t) of the function f(t) that satisfies the given condition:

(a)
$$f(t) = \frac{t-1}{t^2-2t+5}$$
, $F(3) = 0$. $f(t) = \sin^3 t \cos^5 t$, $F\left(\frac{\pi}{2}\right) = 0$.

$$f(t) = \sin^3 t \cos^5 t$$
, $F\left(\frac{\pi}{2}\right)$

[12] 4. Evaluate the following definite integrals (give the exact answers):

(a)
$$\int_{1}^{e} \ln^{2} x \, \mathrm{d}x$$

(b)
$$\int_{0}^{3} x \sqrt{9 - x^2} \, \mathrm{d}x$$

[8] 5. Evaluate the given improper integral or show that it diverges:

(a)
$$\int_{0}^{\infty} x^{2}e^{-x^{3}} dx$$
 (b) $\int_{0}^{1} \frac{x}{x^{2}-1} dx$

- [17] 6. (a) Sketch the curves $y = \sqrt{x+2}$ and y = x and find the area enclosed.
 - (b) Sketch the region enclosed by $f(x) = \sin(2x)$ and the x-axes on the interval $[0, \frac{\pi}{2}]$ and find the volume of revolution of this region about the axis y = -1.
 - (c) Find the average value of the function $f(x) = \tan^2 x$ on the interval $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$.
- [9] 7. Find the limit of the sequence $\{a_n\}$ or prove that the limit does not exist:

(a)
$$a_n = \frac{e^n - n}{(-2)^n}$$
 (b) $a_n = \frac{\ln(n^2)}{n+1}$ (c) $a_n = \sqrt{n+100} - \sqrt{n}$

[8] 8. Determine whether the series is divergent or convergent, and if convergent, then absolutely or conditionally:

(a)
$$\sum_{n=2}^{\infty} \frac{2 \ln n}{n^2}$$
 (b) $\sum_{n=0}^{\infty} \frac{(-1)^n}{(5n+1)^{1/3}}$

[10] 9. Find the interval of convergence of the following series

(a)
$$\sum_{1}^{\infty} \frac{(3x)^n}{n!}$$
 (b) $\sum_{n=1}^{\infty} \frac{(x+1)^{3n}}{n \, 8^n}$

- [8] 10. (a) Find the radius of convergence of the power series $F(x) = \sum_{n=1}^{\infty} \frac{x^n}{n \cdot 3^n}$.
 - (b) Use differentiability of power series to express the derivative F'(x) of F(x) as an elementary function (i.e. sum the derivative series).
- [5] Bonus Question. Find the values of p for which the following series is convergent

$$\sum_{n=1}^{\infty} \frac{1}{n(1+\ln n)^p}$$