

We are working to bu

(This pages uses MathJax to express mathematical expressions requiring internet connection.)

Exercises for Quantum Operators on a Real-Valued Qubit

prepared by Abuzer Yakaryilmaz (OLatvia)

Convention: The default direction of the rotations is counter-clockwise.

1. The rotation on the unit circle with angle θ is denoted $R(\theta)$. What is the matrix form of $R(\theta)$?

(Hint: Apply each candidate matrix to states $|0\rangle$ and $|1\rangle$ to verify whether the result is the rotated state.)

a)
$$\begin{pmatrix} \sin \theta & -\cos \theta \\ \cos \theta & \sin \theta \end{pmatrix}$$
 b) $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ **c)** $\begin{pmatrix} \sin \theta & \cos \theta \\ -\cos \theta & \sin \theta \end{pmatrix}$ **d)** $\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$ **e)** $\begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}$

2. Which one of the following matrices represents the rotation with angle $\frac{\pi}{6}$ on the unit circle?

$$\textbf{a)} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \qquad \textbf{b)} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \textbf{c)} \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \qquad \textbf{d)} \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} \qquad \textbf{e)} \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}$$

3. If
$$R(\theta)=egin{pmatrix} -rac{1}{\sqrt{2}} & -rac{1}{\sqrt{2}} \ rac{1}{\sqrt{2}} & -rac{1}{\sqrt{2}} \end{pmatrix}$$
 , what is θ ?

a)
$$\frac{\pi}{4}$$
 b) $\frac{3\pi}{4}$ c) $\frac{5\pi}{4}$ d) $\frac{7\pi}{4}$ e) $\frac{-\pi}{4}$ correct

4. If
$$R(\theta)=egin{pmatrix} -rac{1}{\sqrt{2}} & rac{1}{\sqrt{2}} \ -rac{1}{\sqrt{2}} & -rac{1}{\sqrt{2}} \end{pmatrix}$$
 , what is θ ?

(a)
$$\frac{\pi}{4}$$
 (b) $\frac{3\pi}{4}$ (c) $\frac{5\pi}{4}$ (d) $\frac{7\pi}{4}$ (e) $\frac{-\pi}{4}$ [correct]

5. If $R(\theta)$ is applied to a qubit initially in state $|0\rangle$ three times, what is the final state?

a)
$$\binom{\cos(3\theta)}{\sin(3\theta)}$$
 b) $\binom{\cos(3\theta)}{-\sin(3\theta)}$ **c)** $\binom{\sin(3\theta)}{\cos(3\theta)}$ **d)** $\binom{\sin(3\theta)}{-\cos(3\theta)}$ **e)** $\binom{-\sin(3\theta)}{\cos(3\theta)}$ correct

6. If $R(-\theta)$ is applied to a qubit initially in state $|0\rangle$ three times, what is the final state?

a)
$$\binom{\cos(3\theta)}{\sin(3\theta)}$$
 b) $\binom{\cos(3\theta)}{-\sin(3\theta)}$
 c) $\binom{\sin(3\theta)}{\cos(3\theta)}$
 d) $\binom{\sin(3\theta)}{-\cos(3\theta)}$
 e) $\binom{-\sin(3\theta)}{\cos(3\theta)}$

7. If $R(\theta)$ is applied to a qubit initially in state $|1\rangle$ twice, what is the final state?

$$\text{ a) } \begin{pmatrix} \cos(2\theta) \\ \sin(2\theta) \end{pmatrix} \qquad \text{b) } \begin{pmatrix} \cos(2\theta) \\ -\sin(2\theta) \end{pmatrix} \qquad \text{c) } \begin{pmatrix} \sin(2\theta) \\ \cos(2\theta) \end{pmatrix} \qquad \text{d) } \begin{pmatrix} \sin(2\theta) \\ -\cos(2\theta) \end{pmatrix} \qquad \text{e) } \begin{pmatrix} -\sin(2\theta) \\ \cos(2\theta) \end{pmatrix} \qquad \text{correct}$$

8. The rotation operator $R(\frac{3\pi}{7})$ is applied to a qubit initially in state $|0\rangle$ n times. If the final state is $|0\rangle$, which one of the followings can be a value of n?

(a) 3 (b) 9 (c) 10 (d) 14 (e) 21 correct

9. We have a qubit in state $ 0\rangle$. The rotations $R(\frac{\pi}{3})$ and $R(\frac{\pi}{6})$) are applied m and n times,	respectively. If the final	state is $- 1 angle$, what
can be the values of (m, n) ?			

- \bigcirc a) (1,1)
- **b)** (2,2) **c)** (1,2) **d)** (2,1) **e)** (3,3)

- correct

10. We have a qubit in state $|0\rangle$. The rotations $R(\frac{\pi}{3})$ and $R(-\frac{\pi}{6})$ are applied m and n times, respectively. If the final state is $-|1\rangle$, what can be the values of (m, n)?

- \bigcirc a) (20, 11)
- **b)** (20,9)
- \bigcirc c) (20,7) \bigcirc d) (20,5)
- \bigcirc e) (20,3)

11. The reflection on the unit circle having the line of reflection with angle θ is denoted $Ref(\theta)$. What is the matrix form of $Ref(\theta)$?

(Hint: Apply each candidate matrix to the states $|0\rangle$ and $|1\rangle$ to verify whether the result is the reflected state.)

$$\begin{array}{cccc} \textbf{a)} \begin{pmatrix} \sin(2\theta) & -\cos(2\theta) \\ \cos(2\theta) & \sin(2\theta) \end{pmatrix} & \textbf{b)} \begin{pmatrix} \cos(2\theta) & -\sin(2\theta) \\ \sin(2\theta) & \cos(2\theta) \end{pmatrix} & \textbf{c)} \begin{pmatrix} \sin(2\theta) & \cos(2\theta) \\ -\cos(2\theta) & \sin(2\theta) \end{pmatrix} \\ \textbf{d)} \begin{pmatrix} \cos(2\theta) & \sin(2\theta) \\ -\sin(2\theta) & \cos(2\theta) \end{pmatrix} & \textbf{e)} \begin{pmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{pmatrix} & \text{correct} \end{array}$$

$$igcup_{m{b}} \left(egin{matrix} \cos(2 heta) & -\sin(2 heta) \ \sin(2 heta) & \cos(2 heta) \end{matrix}
ight)$$

c)
$$\begin{pmatrix} \sin(2\theta) & \cos(2\theta) \\ -\cos(2\theta) & \sin(2\theta) \end{pmatrix}$$

od)
$$egin{pmatrix} \cos(2 heta) & \sin(2 heta) \ -\sin(2 heta) & \cos(2 heta) \end{pmatrix}$$

e)
$$\begin{pmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{pmatrix}$$

12. If
$$Ref(heta)=egin{pmatrix} rac{1}{\sqrt{2}} & rac{1}{\sqrt{2}} \ rac{1}{\sqrt{2}} & -rac{1}{\sqrt{2}} \end{pmatrix}$$
 , what is $heta$?

(Hint: Apply each candidate matrix to the states $|0\rangle$ and $|1\rangle$ to verify whether the result is the reflected state.)

- **a)** π **b)** $\frac{\pi}{2}$ **c)** $\frac{\pi}{4}$ **d)** $\frac{\pi}{8}$ **e)** 0

13. If
$$Ref(heta) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, what is $heta$?

(Hint: Apply each candidate matrix to the states $|0\rangle$ and $|1\rangle$ to verify whether the result is the reflected state.)

14. If
$$Ref(\theta) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 , what is θ ?

(Hint: Apply each candidate matrix to the states $|0\rangle$ and $|1\rangle$ to verify whether the result is the reflected state.)

- Ob) $\frac{\pi}{3}$ Oc) $\frac{\pi}{4}$ Od) $\frac{\pi}{8}$

15. What is the matrix form of the reflection having the line of reflection y = -x?

- a) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ b) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ c) $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ d) $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$ e) $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$

16. Which of the followings is identical to $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$, where $Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$?

(Hint: Test each candidate whether it maps the state $\binom{x}{y}$ to the state $\binom{-x}{y}$.)

- \bigcirc a) ZZ

- **b)** ZX **c)** XZ **d)** XZX **e)** ZXZ

17. What is $Ref(\theta) \cdot \begin{pmatrix} \cos \theta' \\ \sin \theta' \end{pmatrix}$?

- $\textbf{a)} \begin{pmatrix} \cos(\theta+\theta') \\ \sin(\theta+\theta') \end{pmatrix} \qquad \textbf{b)} \begin{pmatrix} \cos(\theta-\theta') \\ \sin(\theta-\theta') \end{pmatrix} \qquad \textbf{c)} \begin{pmatrix} \cos(2\theta-\theta') \\ \sin(2\theta-\theta') \end{pmatrix} \qquad \textbf{d)} \begin{pmatrix} \cos(-\theta+\theta') \\ \sin(-\theta+\theta') \end{pmatrix} \qquad \textbf{e)} \begin{pmatrix} \cos(-2\theta+\theta') \\ \sin(-2\theta+\theta') \end{pmatrix}$

18. Let $|u\rangle$ be a quantum state on the unit circle with angle θ' . If we apply the operators $Ref(\theta_1)$ and $Ref(\theta_2)$ in order, what is the angle of the final state?

- $lacksymbol{\circ}$ a) $heta_1+ heta_2- heta'$ $lacksymbol{\circ}$ b) $-2 heta_1+2 heta_2+ heta'$ $lacksymbol{\circ}$ c) $2 heta_1+2 heta_2- heta'$ $lacksymbol{\circ}$ d) $-2 heta_1-2 heta_2+ heta'$ $lacksymbol{\circ}$ e) $2 heta_1+2 heta_2+ heta'$

19. Which one of the following operators maps the state $\begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$ to the state $\begin{pmatrix} \cos(-\theta) \\ \sin(-\theta) \end{pmatrix}$?

(Hint: Determine (i) whether $\sin\theta = \sin(-\theta)$ or not and (ii) whether $\cos\theta = \cos(-\theta)$ or not.)

- ullet b) H ullet c) X ullet d) -X ullet e) -H

20. Which one of the following operators is identical to $Ref(\theta)$?

(Hint: Any arbitrary state, say $|u\rangle$, on the unit circle is represented by its angle, say θ' . Find the angle of $Ref(\theta)|u\rangle$ and compare it with the angle of each quantum state obtained by applying the candidate operators.)

- ullet b) R(heta)R(- heta) ullet c) R(heta)R(heta)Z ullet d) R(heta)R(heta)X ullet e) XR(heta)X

correct

21. Let $|u_1
angle=egin{pmatrix}\cos heta_1\ \sin heta_1\end{pmatrix}$ and $|u_2
angle=egin{pmatrix}\cos heta_2\ \sin heta_2\end{pmatrix}$ be two different quantum states, where $heta 1, heta_2\in(0,\pi)$. If the probabilities of being in states $|0\rangle$ for $|u_1\rangle$ and $|u_2\rangle$ are the same, what is the relation between θ_1 and θ_2 ?

- $oxed{egin{array}{c} oldsymbol{a}oldsymbol{b}} | heta_1- heta_2|=rac{\pi}{2} & oxed{eta}oldsymbol{b}eta_1+ heta_2=rac{\pi}{2} & oxed{eta}oldsymbol{c}eta_1+ heta_2=\pi & oxed{eta}oldsymbol{b}eta_1- heta_2|=rac{\pi}{4} & oxed{eta}eta_1+ heta_2=rac{3\pi}{2} & oxed{eta}eta_1+oldsymbol{d}_2=rac{3\pi}{2} & oxed{eta}eta_1+oxed{eta}eta_2=rac{3\pi}{2} & oxed{eta}eta_2=rac{3\pi}{2} & oxed{eta}eta_1+oxed{eta}_2=rac{3\pi}{2} & oxed{eta}_1+oxed{eta}_2=rac{3\pi}{2} & oxed{eta}_1+oxeta_2=rac{3\pi}{2} & oxed{eta}_1+oxed{eta}_2=rac{3\pi}{2} & oxed{eta}_1+oxed{eta}_2=rac{3\pi}{2} & oxed{eta}_1+oxeta_2=rac{3\pi}{2} & oxed{eta}_2+oxed{eta}_1+oxed{eta}_2=rac{3\pi}{2} & oxed{eta}_1+oxed{eta}_2=rac{3\pi}{2} & oxed{eta}_1+oxed{eta}_2+ox$

correct

22. Which one of the following pairs of quantum states is perfectly distinguishable?

- **a)** $\begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix}$ and $\begin{pmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$ **b)** $\begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$ and $\begin{pmatrix} -\frac{\sqrt{2}}{\sqrt{3}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix}$ and $\begin{pmatrix} -\frac{\sqrt{2}}{\sqrt{3}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix}$

- (a) $\begin{pmatrix} \frac{1}{\sqrt{3}} \\ \frac{\sqrt{2}}{2} \end{pmatrix}$ and $\begin{pmatrix} \frac{1}{\sqrt{3}} \\ -\frac{\sqrt{2}}{2} \end{pmatrix}$ (b) $\begin{pmatrix} \frac{1}{\sqrt{3}} \\ \frac{\sqrt{2}}{2} \end{pmatrix}$ and $\begin{pmatrix} -\frac{\sqrt{2}}{\sqrt{3}} \\ -\frac{1}{2} \end{pmatrix}$

23. Which one of the following pairs of quantum states is perfectly distinguishable?

- ullet a) $\left(\sqrt{rac{5}{7}}|0
 angle-\sqrt{rac{2}{7}}|1
 angle,-\sqrt{rac{2}{7}}|0
 angle-\sqrt{rac{5}{7}}|1
 angle
 ight)$
- igcirc igcept igc
- \bigcirc c) $\left(\sqrt{rac{5}{7}}|0
 angle+\sqrt{rac{2}{7}}|1
 angle,-\sqrt{rac{2}{7}}|0
 angle-\sqrt{rac{5}{7}}|1
 angle
 ight)$
- igcirc d) $igg(\sqrt{rac{5}{7}}|0
 angle+\sqrt{rac{2}{7}}|1
 angle,-\sqrt{rac{5}{7}}|0
 angle-\sqrt{rac{2}{7}}|1
 angle$
- $igcolone{}igcolone{}ig(\sqrt{rac{5}{7}}|0
 angle+\sqrt{rac{2}{7}}|1
 angle,\sqrt{rac{5}{7}}|0
 angle-\sqrt{rac{2}{7}}|1
 angle$

correct

24. Which one of the following pairs of quantum states cannot be distinguishable?

- \bigcirc **a)** $|0\rangle$ and $|1\rangle$

- **b)** $|0\rangle$ and $-|1\rangle$ **c)** $-|1\rangle$ and $|1\rangle$ **d)** $|+\rangle$ and $|-\rangle$ **e)** $-|+\rangle$ and $|-\rangle$

correct

25. Which one of the following pairs of quantum states cannot be distinguishable?

- igcap a) $igg(\sqrt{rac{5}{7}}|0
 angle-\sqrt{rac{2}{7}}|1
 angle,-\sqrt{rac{2}{7}}|0
 angle-\sqrt{rac{5}{7}}|1
 angle$
- igcirc $igcup \left(\sqrt{rac{5}{7}}|0
 angle-\sqrt{rac{2}{7}}|1
 angle,-\sqrt{rac{5}{7}}|0
 angle-\sqrt{rac{2}{7}}|1
 angle
 ight)$

c)
$$\left(\sqrt{\frac{5}{7}}|0\rangle + \sqrt{\frac{2}{7}}|1\rangle, -\sqrt{\frac{2}{7}}|0\rangle - \sqrt{\frac{5}{7}}|1\rangle\right)$$
d) $\left(\sqrt{\frac{5}{7}}|0\rangle + \sqrt{\frac{2}{7}}|1\rangle, -\sqrt{\frac{5}{7}}|0\rangle - \sqrt{\frac{2}{7}}|1\rangle\right)$
e) $\left(\sqrt{\frac{5}{7}}|0\rangle + \sqrt{\frac{2}{7}}|1\rangle, \sqrt{\frac{5}{7}}|0\rangle - \sqrt{\frac{2}{7}}|1\rangle\right)$
correct

check all answers

Score: 25 correct answer(s), **0** incorrect answer(s), and **0** no answer(s).