-FED-	PAUL SCHERRER INSTITUT	Registrierung TM-44-03-04
Titel	Nagra/PSI Chemical Thermodynamic Data Base 01/01 for the GEM-Selektor (V.2-PSI) Geochemical Modeling Code: Release 28-02-03	Ersetzt TM-44-02-09
Autoren	Tres Thoenen and Dmitrii Kulik	Erstellt 28.2.2003/TT44

Abstract:

This report documents how the Nagra/PSI Chemical Thermodynamic Data Base 01/01 (Nagra/PSI TDB 01/01) was adjusted in order to use it with the GEM-Selektor (V.2-PSI) geochemical modeling code. The resulting version of the Nagra/PSI TDB 01/01 is called Nagra/PSI TDB 01/01 GEMS.

The original Nagra/PSI TDB 01/01 was designed to be used with geochemical modeling codes that apply the law of mass action algorithm. The essential thermodynamic data at standard conditions (1 bar, 25°C) are equilibrium constants ($\log_{10}K^{\circ}$) for the formation reactions of product species from master species. GEM-Selektor is a geochemical modeling code based on a Gibbs energy minimization algorithm. The essential thermodynamic data are molar Gibbs energies of formation from the elements ($\Delta_f G^{\circ}$) for all chemical species.

The main task in porting the Nagra/PSI TDB 01/01 to GEMS was to derive $\Delta_f G^{\circ}$ of each aqueous species, solid, and gas from the equilibrium constant of its formation reaction and $\Delta_f G^{\circ}$ of all master species taking part in that reaction.

Thus, any $\log_{10}K^{\circ}$ contained in the Nagra/PSI TDB 01/01 is perfectly reproducible at 1 bar and 25°C by using the appropriate values of $\Delta_f G^{\circ}$ derived in this report.

Additional data given in order to extend calculation of chemical equilibria to elevated temperatures should not be considered as part of the official Nagra/PSI TDB 01/01 GEMS. The official data are restricted to the minimal set required for the calculation of chemical equilibria at standard conditions (25°C and 1 bar). These are the $\Delta_f G^{\circ}$ values for DComp records and the $\log_{10} K^{\circ}$ and $\Delta_f G^{\circ}$ values for ReacDC records.

Web-Version

http://les.web.psi.ch/Software/GEMS-PSI

1 Introduction

This report documents how the Nagra/PSI Chemical Thermodynamic Data Base 01/01 (Nagra/PSI TDB 01/01, [2002HUM/BER]) was adjusted in order to use it as a built-in default database for the GEM-Selektor (V.2-PSI) geochemical modeling code (both database and modeling code are available for download at http://les.web.psi.ch/Software/GEMS-PSI), referred to as GEMS below. The resulting version of the database is called Nagra/PSI TDB 01/01 GEMS.

The original Nagra/PSI TDB 01/01 was designed to be used with geochemical modeling codes that apply the **law of mass action (LMA) algorithm**. The essential thermodynamic data at 1 bar and 25°C are equilibrium constants ($\log_{10}K^{\circ}$) for the formation reactions of product species, which comprise aqueous product species, solids, and gases. Each formation reaction involves a single product species which is related to at least one of the aqueous master species. Two types of such master species can be distinguished: The *primary master species* are the basic building blocks for setting up reactions, while the *secondary master species* themselves are related to *primary master species* by means of formation reactions. In addition, the Nagra/PSI TDB 01/01 also contains data for chemical elements.

With this database structure, the minimal dataset required to calculate geochemical equilibria at 1 bar and 25° C consists of a $\log_{10}K^{\circ}$ for the formation reaction of each secondary master species and of each product species, whereas no thermodynamic data are required for the primary master species.

GEMS is a geochemical modeling code based on a **Gibbs energy minimization** (**GEM**) **algorithm**. The essential thermodynamic data are Gibbs energies of formation from the elements ($\Delta_f G^\circ$) for each chemical entity (aqueous species, solid, and gas) available in the GEMS database. There are two kinds of record formats for chemical entities: DComp format contains "directly provided" standard-state molar thermodynamic properties such as $\Delta_f G^\circ$, S° C_p° , and V° (at P_\circ , T_\circ), plus necessary parameters for temperature/pressure corrections. ReacDC format defines $\Delta_f G^\circ$, S° , etc. of a chemical entity through $\log_{10} K^\circ$ (or $\Delta_r G^\circ$), $\Delta_r S^\circ$, $\Delta_r C_p^\circ$, and $\Delta_r V^\circ$ of a reaction and standard molar properties of other entities involved in the reaction.

The main task in porting the Nagra/PSI TDB 01/01 to GEMS was to derive $\Delta_f G^{\circ}$ of each aqueous species, solid, and gas from its formation constant and from $\Delta_f G^{\circ}$ of the master species taking part in the corresponding formation reaction. Thus, any $\log_{10} K^{\circ}$ contained in the Nagra/PSI TDB 01/01 is perfectly reproducible at 1 bar and 25°C by using the appropriate values of $\Delta_f G^{\circ}$ derived in this report and listed in Table A1 in the Appendix.

In addition to these $\Delta_f G^\circ$ and $\log_{10} K^\circ$ data, the Nagra/PSI TDB 01/01 GEMS also includes some data for the extrapolation of $\Delta_f G^\circ$ and $\log_{10} K^\circ$ to temperatures above 25°C. The revised HKF (Helgeson-Kirkham-Flowers) equation of state [1988TAN/HEL] is used for calculating the change in the partial molal Gibbs energy of aqueous species as a function of pressure and temperature. [1988TAN/HEL], [1995HAA/SHO], [1995POK/HEL], [1997SHO/SAS], [1997SHO/SAS2], [1997SVE/SHO], [1998SAS/SHO] and [1999MUR/SHO] published HKF parameters for numerous aqueous species. We decided to adopt these parameters, if available, for aqueous species in the Nagra/PSI TDB 01/01 GEMS. Thus, the corresponding DComp records contain $\Delta_f G^\circ$, as derived from the Nagra/PSI TDB 01/01, and the HKF parameters taken from the sources listed above. Note that these parameters were adopted without a critical evaluation.

If HKF parameters were not available, reaction properties allowing temperature extrapolations like $\Delta_r H^{\circ}$, $\Delta_r S^{\circ}$, or $\Delta_r C_p^{\circ}$ were taken form the Nagra/PSI TDB 01/01, together with $\log_{10} K^{\circ}$, and stored in ReacDC records.

Note: The Nagra/PSI TDB 01/01 GEMS contains numerous thermodynamic data that were taken from the literature without being critically reviewed. The only data that have gone through a thorough review and evaluation process (as described in [2002HUM/BER]) are (1) the $\log_{10}K^{\circ}$ values directly taken from the Nagra/PSI TDB 01/01 for ReacDC records and (2) the $\Delta_f G^{\circ}$ values for DComp records of secondary master species and product species, which were all derived from reviewed $\log_{10}K^{\circ}$ values taken from the Nagra/PSI TDB 01/01. Note, however, that the derived values for $\Delta_f G^{\circ}$ depend upon the choice of $\Delta_f G^{\circ}$ for the primary master species (which have not been reviewed by us).

2 Basic Procedure

The Nagra/PSI TDB 01/01 was ported to GEMS in five steps.

- 1. **Atomic weights,** S° and C_p° for the elements: The Nagra/PSI TDB 01/01 contains atomic weights, standard molar third-law entropies S° and standard molar heat capacities C_p° for the elements. All values for S° and C_p° were adopted for GEMS. Some of the atomic weights were slightly adjusted to conform to the IUPAC recommendations [1999IUPAC]. In addition, values for C_p° that are missing in the Nagra/PSI TDB 01/01 were added.
- 2. $\Delta_f G^\circ$ and S° for the *primary master species*¹: For most of the *primary master species* data for $\Delta_f G^\circ$ and S° were selected not from the Nagra/PSI TDB 01/01 but from other sources. This is perfectly permissible, since the primary purpose of the Nagra/PSI TDB 01/01 GEMS is to reproduce the $\log_{10} K^\circ$ from the Nagra/PSI TDB 01/01.
- 3. $\Delta_f G^\circ$ and S° for the secondary master species: Values of $\Delta_f G^\circ$ for the secondary master species were calculated from the $\log_{10} K^\circ$ values of the Nagra/PSI TDB 01/01 and the values derived in step 2 for $\Delta_f G^\circ$ of the corresponding primary master species. Thus the values of $\log_{10} K^\circ$ listed in the Nagra/PSI TDB 01/01 for the secondary master species can be faithfully reproduced with the appropriate $\Delta_f G^\circ$ values given in this report. Values for S° were selected from other sources, as they are relevant for temperature corrections only.
- 4. $\Delta_f G^\circ$ for product species: Values of $\Delta_f G^\circ$ for the product species were calculated from the $\log_{10} K^\circ$ values of the Nagra/PSI TDB 01/01 and from the values derived in step 2 and step 3 for $\Delta_f G^\circ$ of the corresponding primary and secondary master species. These calculations, as well as those in step 3, were carried out with the database management program PMATCHC [2001PEA/THO].
- 5. **Additional thermodynamic data**: For the charged aqueous species, extended Debye-Hückel or WATEQ a parameters and WATEQ b parameters were adopted from the Nagra/PSI TDB 01/01. These data, together with the $\Delta_f G^{\circ}$ values derived in steps 2 to 4

The GEMS database structure does not distinguish between master species and product species, only between independent components (IC) and dependent components (DC). IC are the chemical elements and DC comprise aqueous species, solids, and gases. In the following, *primary master species*, *secondary master species*, and (*aqueous*) *product species* are written in italics, as a reminder that they refer to the Nagra/PSI TDB 01/01 database structure.

are sufficient to calculate thermodynamic equilibria at standard pressure and temperature. Additional data are needed for calculations at elevated pressures and temperatures. These were added, if available, in the last step. However, the quality of these data was not reviewed.

The data records of Nagra/PSI TDB 01/01 GEMS are distributed among several GEMS database files. Their organization is shown in Table 1.

2.1 Thermodynamic Data for the Elements

The selected values for the atomic weights, S° , and C_p° of the elements are listed in Table 2. S° and C_p° were adopted from the Nagra/PSI TDB 01/01. The atomic weights were also taken from the Nagra/PSI TDB 01/01, but some of them were slightly adjusted to conform to the IUPAC recommendations [1999IUPAC]. In addition, values for C_p° that are missing in the Nagra/PSI TDB 01/01 were selected. This concerns Am(cr), Ba(cr), Eu(cr), Ni(cr), Ra(cr), Sn(cr), Th(cr), and Zr(cr).

2.2 Thermodynamic Data for *Primary Master Species*

The values for $\Delta_f G^{\circ}$ and S° were selected independently from the Nagra/PSI TDB 01/01. They are listed in Table 3. Most of the values were taken from [1997SHO/SAS], the sources are indicated in Table A2 (see Appendix).

 $\Delta_f G^\circ$ values were found for all *primary master species*, except for Sn(OH)₄(aq).

For further calculations with the database management program PMATCHC, the database backup file AUG20_GEMS.BAC was prepared, which is identical with AUG20.BAC, the backup file representing the Nagra/PSI TDB 01/01, except for the values of $\Delta_f G^{\circ}$ and S° of the *primary master species*, which are replaced by those given in Table 3.

In Nagra/PSI TDB 01/01 GEMS the *primary master species* $Si(OH)_4(aq)$ and $Sn(OH)_4(aq)$ are formulated in non-conventional form as $SiO_2(aq)$ and $SnO_2(aq)$, resp., see the discussion in Chapter 3.

All *primary master species* are kept in GEMS DComp records. Note that GEMS calculations do not require the electron as a separate species, which is therefore not included in Nagra/PSI TDB 01/01 GEMS.

Table 1:	Onconization	of Magney/DCI TDD	$\Omega 1/\Omega 1$	CEMC database	files	* stands for pdb or ndx.
rabie r.	Organization	OF Magra/Pol Tide	0.01/0.1	CIENIS database	mes.	" Stands for bub of flux.

	GEMS Record Type	Filename
Elements	IComp	/icomp.kernel.nagra_psi.*
Primary Master Species	DComp	/dcomp.kernel.nagra_psi.ions.*
Secondary Master Species	DComp	/dcomp.kernel.nagra_psi.secms.*
Aqueous Product Species	DComp	/dcomp.kernel.nagra_psi.prods.*
	ReacDC	/reacdc.kernel.nagra_psi.prods.*
Solids	DComp	/dcomp.kernel.nagra_psi.solids.*
	ReacDC	/reacdc.kernel.nagra_psi.solids.*
Gases	DComp	/dcomp.kernel.nagra_psi.gases.*

Table 2: Thermodynamic data for the elements at 25°C and 1 bar. The thermodynamic properties refer to one mole of atoms.

NBS/NIST: [1982WAG/EVA] IUPAC: [1999IUPAC]
CODATA: [1989COX/WAG] NEA: [1999RAR/RAN]

slop98.dat: Datafile slop98.dat (version 30. Oct. 1998) for SUPCRT92 [1992JOH/OEL]

Stable	Atomic	Default	Atomic	Reference	S°	Reference	C_p °	Reference
Phase at	Number	Valence	Weight		[J/mol/K]		[J/mol/K]	
25°C								
Al(cr)	13	3	26.9815	IUPAC	28.3	NEA(CODATA)	24.2	NEA(CODATA)
Am(cr)	95	3	243.061*	IUPAC	55.4	NEA	25.5	NEA
As(cr)	33	2	74.9216	IUPAC	35.69	[1995ROB/HEM]	24.54	[1995ROB/HEM]
B(cr)	5	3	10.812	IUPAC	5.90	NEA(CODATA)	11.087	NEA(CODATA)
Ba(cr)	56	2	137.328	IUPAC	62.42	NEA	28.07	NBS/NIST
$Br_2(1)$	35	-1	79.904	IUPAC	76.105	NEA(CODATA)	37.845	NBS/NIST
C(cr)	6	4	12.0108	IUPAC	5.74	[1978HEL/DEL]	8.682	[1978HEL/DEL]
Ca(cr)	20	2	40.078	IUPAC	41.590	NEA(CODATA)	25.929	NEA(CODATA)
$Cl_2(g)$	17	-1	35.453	IUPAC	111.54	NEA(CODATA)	16.9745	NEA(CODATA)
Cs(cr)	55	1	132.905	IUPAC	85.230	NEA(CODATA)	32.210	NEA(CODATA)
Eu(cr)	63	3	151.964	IUPAC	77.78	NBS/NIST	27.66	NBS/NIST
$F_2(g)$	9	-1	18.9984	IUPAC	101.396	NEA(CODATA)	15.652	NEA(CODATA)
Fe(cr)	26	2	55.845	IUPAC	27.28	NBS/NIST	24.961	[1963KUB/ALC]
$H_2(g)$	1	1	1.00795	IUPAC	65.34	slop98.dat	14.409	slop98.dat
I ₂ (cr)	53	-1	126.904	IUPAC	58.07	NEA(CODATA)	27.219	NBS/NIST
K(cr)	19	1	39.0983	IUPAC	64.68	NEA(CODATA)	29.6	NEA(CODATA)
Li(cr)	3	1	6.941	IUPAC	29.12	NEA(CODATA)	24.86	NEA(CODATA)
Mg(cr)	12	2	24.305	IUPAC	32.67	NEA(CODATA)	24.869	NEA(CODATA)
Mn(cr)	25	2	54.938	IUPAC	32.01	NBS/NIST	26.32	NBS/NIST
Mo(cr)	42	4	95.94	IUPAC	28.66	[1995ROB//HEM]	23.900	[1995ROB//HEM]
$N_2(g)***$	7	5	14.0067	IUPAC	95.8045	slop98.dat	14.567	slop98.dat
Na(cr)	11	1	22.9898	IUPAC	51.3	NEA(CODATA)	28.23	NEA(CODATA)
Nb(cr)	41	5	92.906	IUPAC	36.40	NBS/NIST	24.60	NBS/NIST
Ni(cr)	28	2	58.693	IUPAC	29.87	NBS/NIST	26.07	NBS/NIST
Np(cr)	93	5	237.048*	IUPAC	50.46	NEA	29.62	NEA
$O_2(g)$	8	-2	15.9994	IUPAC	102.569	slop98.dat	14.661	slop98.dat
P(cr)	15	5	30.9738	IUPAC	41.09	NEA(CODATA)	23.824	NEA(CODATA)
Pd(cr)	46	2	106.42	IUPAC	37.82	[1998SAS/SHO]	25.34	[1998SAS/SHO]
Pu(cr)	94	5	244.064*	IUPAC	54.46	NEA	31.49	NEA
Ra(cr)	88	2	226.025*	IUPAC	71	NBS/NIST	28.7	[1985LAN/RIE]
S(cr)	16	6	32.067	IUPAC	31.798	[1997MCC/SHO]	22.763	[1997MCC/SHO]
Se(cr)	34	6	78.96	IUPAC	42.27	NEA	25.03	NEA
Si(cr)	14	4	28.0855	IUPAC	18.81	NEA(CODATA)	19.789	NEA(CODATA)
Sn(cr)	50	4	118.711	IUPAC	51.212	[1985JAC/HEL]	26.352	[1985JAC/HEL]
Sr(cr)	38	2	87.62	IUPAC	55.7	NEA	26.4	NBS/NIST
Tc(cr)	43	4	97.907*	IUPAC	32.5	NEA	24.9	NEA
Th(cr)	90	4	232.038**	IUPAC	51.8	CODATA	26.23	CODATA
U(cr)	92	6	238.029**	IUPAC	50.2	NEA(CODATA)	27.66	NEA
Zr(cr)	40	4	91.224	IUPAC	39.0	NBS/NIST	25.36	NBS/NIST

2.3 Thermodynamic Data for Secondary Master Species

The values for S° were selected independently from the Nagra/PSI TDB 01/01. They are listed in Table 3. Most of the values were taken from [1997SHO/SAS], the sources are indicated in Table A2 (see Appendix). No values could be found for $H_2Se(aq)$, $I_2(aq)$, and for $TcO(OH)_2(aq)$.

Values for $\Delta_f G^{\circ}$ were calculated with PMATCHC from AUG20_GEMS.BAC. Data used were $\log_{10} K^{\circ}$ for the formation reactions of *secondary master species* (from Nagra/PSI TDB 01/01) and $\Delta_f G^{\circ}$ of the corresponding *primary master species* (from Table 3).

The secondary master species $Al(OH)_{4}$, $SiO(OH)_{3}$, and $SiO_{2}(OH)_{2}^{2}$ are given in non-conventional form as AlO_{2} , $HSiO_{3}$, and SiO_{3}^{2} , resp., see the discussion in Chapter 3. The derivation of thermodynamic data for these species is described in Chapter 5.

All secondary master species are kept in GEMS DComp records, with the exception of $SiO_2(OH)_2^{2-}$ (equivalent to SiO_3^{2-}), which is kept in a ReacDC record.

2.4 Thermodynamic Data for *Product Species*

Thermodynamic data for *product species* in Nagra/PSI TDB 01/01 GEMS are stored in ReacDC and DComp records.

For ReacDC records, $\log_{10}K^{\circ}$ values were taken directly from Nagra/PSI TDB 01/01. For DComp records, $\Delta_f G^{\circ}$ values were calculated with PMATCHC from AUG20_GEMS.BAC as described above for *secondary master species*.

For a small number of *product species* in Nagra/PSI TDB 01/01 the original data given were values of $\Delta_f G^{\circ}$ instead of $\log_{10} K^{\circ}$. These data had to be treated separately, as described in Chapter 4.

The derivation of thermodynamic data for silica *product species* is described in Chapter 5.

2.5 Additional Thermodynamic Data

For ReacDC records, $\log_{10}K^{\circ}$ (or Δ_rG°) values are sufficient for GEMS calculations of chemical equilibrium at 1 bar and 25°C. Additional data are needed for temperature extrapolations of $\log_{10}K^{\circ}$ or Δ_rG° . Based on the data available from Nagra/PSI TDB 01/01, four types of datasets can be distinguished in Nagra/PSI TDB 01/01 GEMS:

- 1.) $\Delta_r H^\circ$ and $\Delta_r C_p^\circ$ are given: This is sufficient for the 3-term extrapolation.
- 2.) $\Delta_r H^\circ$ is given and it is assumed that $\Delta_r C_p^\circ = 0$: This is sufficient for the 2-term extrapolation.
- 3.) No data are given and it is assumed that $\Delta_r S^\circ = \Delta_r C_p^\circ = 0$: This is sufficient for the 1-term extrapolation ($\Delta_r G^\circ = \text{const.}$).
- 4.) No data are given and it is assumed that $\Delta_r H^\circ = \Delta_r C_p^\circ = 0$. This is sufficient for the 1-term extrapolation ($\log_{10} K^\circ = \text{const.}$).

These temperature extrapolations (and their limitations) are discussed by [2002KUL]. The 2-term and the 1-term extrapolations can be applied with confidence only to isocoulombic and isoelectric reactions and possibly to reactions between solids and neutral species (see also Chapter 7). These extrapolations are not warranted for all other reactions and the user of the

Nagra/PSI TDB 01/01 GEMS must be aware of this when interpreting calculation results. Note that all datasets not sufficient for temperature extrapolations are marked with braces {} in Table A2 (see Appendix).

 $\Delta_f G^\circ$ values from DComp records are sufficient for GEMS calculations of chemical equilibrium at 1 bar and 25°C. Additional data are needed for temperature corrections of $\Delta_f G^\circ$. Four types of datasets can be distinguished in Nagra/PSI TDB 01/01 GEMS:

- 1.) HKF-parameters for calculation of $C_p^{\circ}(P,T)$, S° , and other partial molal properties
- 2.) $C_p^{\circ}(T)$ -functions, S°
- 3.) C_p° , S°
- 4.) *S*°

Only the first two datasets allow rigorous temperature corrections for $\Delta_f G^{\circ}$. Therefore, all datasets of type 3 and 4 are marked with braces $\{\}$ in Table A2.

The additional datasets for DComp records were included into Nagra/PSI TDB 01/01 GEMS without review and are usually not compatible with the corresponding data in the Nagra/PSI TDB 01/01. The sources are given in Table A2 (see also Chapter 1). Some of the HKF-parameters were estimated using the PRONSPREP algorithm (see Chapter 6).

Note: The additional datasets given for the calculation of chemical equilibria at elevated temperatures should not be considered as part of the official Nagra/PSI TDB 01/01 GEMS. The reason for this is that only the ReacDC data were taken from Nagra/PSI TDB 01/01 GEMS while the datasets chosen for DComp records do not necessarily reproduce the corresponding data in the Nagra/PSI TDB 01/01.

The official data are restricted to the minimal set required for the calculation of chemical equilibria at 1 bar and 25°C. These are the $\Delta_f G^{\circ}$ values for DComp records and the $\Delta_f G^{\circ}$ values calculated from the $\log_{10} K^{\circ}$ values of ReacDC records.

Table 3: Thermodynamic data selected for *primary master species* at 25°C and 1 bar. For references see Table A2.

Name in	Non-	Record	$\Delta_{ m f} G^\circ$	S°
Nagra/PSI TDB 01/01	conventional	Type in	[kJ/mol]	[J/mol/K]
	Stoich.	GEMS		
Primary Master Species				
Al+3		DComp	-483.708	-325.097
Am+3		DComp	-598.698	-204.600
B(OH)3		DComp	-968.763	154.808
Ba+2		DComp	-560.782	9.623
Br-		DComp	-104.056	82.843
Ca+2		DComp	-552.790	-56.484
Cl-		DComp	-131.290	56.735
Cs+		DComp	-291.667	132.842
e-		-	0	0
Eu+3		DComp	-574.463	-221.752
F-		DComp	-281.751	-13.180
Fe+2		DComp	-91.504	-105.855
H+		DComp	0	0
H2O		DComp	-237.183	69.923
HAsO4-2		DComp	-714.585	-1.674
HCO3-		DComp	-586.940	98.450
HPO4-2		DComp	-1089.140	-33.472
I-		DComp	-51.923	106.692
K+		DComp	-282.462	101.044
Li+		DComp	-292.600	11.297
Mg+2		DComp	-453.985	-138.072
Mn+2		DComp	-230.538	-67.781
MoO4-2		DComp	-838.474	37.656
Na+		DComp	-261.881	58.409
NbO3-		DComp	-950.186	13.390
Ni+2		DComp	-45.606	-128.867
NO3-		DComp	-110.905	146.942
NpO2+2		DComp	-795.900	-92.400
Pd+2		DComp	176.565	-88.282
PuO2+2		DComp	-762.400	-71.200
Ra+2		DComp	-561.493	53.974
SeO3-2		DComp	-369.866	12.970
Si(OH)4	SiO2	DComp	-833.411*	75.312*
Sn(OH)4	SnO2	DComp	-479.637*	-
Sn+2		DComp	-27.489	-16.736
SO4-2		DComp	-744.459	18.828
Sr+2		DComp	-563.836	-31.506
TcO4-		DComp	-632.202	198.700
Th+4		DComp	-705.004	-422.600
UO2+2		DComp	-952.613	-98.324
Zr+4		DComp	-557.602	-461.500

^{*} Data refer to the non-conventional stoichiometry

Table 4: Thermodynamic data for *secondary master species* at 25°C and 1 bar. For references see Table A2.

Name in	Non-	Record	$\Delta_{\rm f} G^\circ$	$\log_{10}K^{\circ}$	S°
Nagra/PSI TDB 01/01	conventional Stoich.	Type in GEMS	[kJ/mol]		[J/mol/K]
Secondary Master Species					
Al(OH)4-	AlO2-	DComp	-827.479*		-30.209
As(OH)3	HAsO2	DComp	-456.561*		125.938*
CH4		DComp	-34.354		87.822
CO2		DComp	-386.015		117.570
CO3-2		DComp	-527.982		-49.999
Eu+2		DComp	-540.672		-10.042
Fe+3		DComp	-17.185		-277.399
H2		DComp	17.729		57.739
H2PO4-		DComp	-1130.306		90.374
H2Se		DComp	14.098		-
H3PO4		DComp	-1142.522		158.992
HS-		DComp	11.969		68.199
HSeO4-		DComp	-461.037		149.37
I2		DComp	-223.429		-
N2**		DComp	18.194		95.814
NH3		DComp	-26.670		107.822
NH4+		DComp	-79.395		111.169
Np+3		DComp	-512.753		-193.600
Np+4		DComp	-491.634		-426.400
NpO2+		DComp	-907.721		-45.900
O2		DComp	16.446		108.951
OH-		DComp	-157.270		-10.711
PO4-3		DComp	-1018.646		-221.752
Pu+3		DComp	-578.973		-184.500
Pu+4		DComp	-477.998		-414.500
PuO2+		DComp	-852.701		1.000
S2O3-2		DComp	-519.989		66.944
SiO(OH)3-	HSiO3-	DComp	-1014.598*		20.92*
SiO2(OH)2-2	SiO3-2	ReacDC	(-938.510*)	-23.14	(-46.226*)
SO3-2		DComp	-487.886		-29.288
TcO(OH)2		DComp	-562.835		-
U+4		DComp	-529.836		-416.726
UO2+		DComp	-961.084		-25.104

^{*} Data refer to the non-conventional stoichiometry

^{**} Nagra/PSI TDB 01/01 GEMS has two entries for $N_2(aq)$ (thermodynamically identical), see Chapter 8

3 Non-Conventional Stoichiometry for Hydroxo Complexes

Thermodynamic data for hydroxo complexes based on the HKF equation of state (e.g., [1995HAA/SHO], [1997SHO/SAS], [1997SHO/SAS2], [1997SVE/SHO], [1998SAS/SHO], [1999MUR/SHO], and the database slop98.dat, see http://levee.wustl.edu/geopig) refer to a non-conventional stoichiometry of the complexes, which is obtained by subtracting the maximal number of H₂O from the conventional stoichiometry. Thus, e.g., Fe(OH)₂+ can be written as FeO+, and Fe(OH)₃(aq) as FeO₂H(aq), see Table 5. In order to retain temperature corrections provided by the HKF equation of state, we also adopted the non-conventional stoichiometry.

By definition, the standard molar thermodynamic properties of a non-conventional hydroxo complex are calculated from those of a conventional hydroxo complex by subtracting from the latter the corresponding standard molar thermodynamic properties of H₂O(1) [1997SHO/SAS].

Therefore, $\Delta_r G^{\circ}$ of a reaction relating the conventional to the non-conventional hydroxo complex is always equal to zero as, e.g., in

$$Sn(OH)_4(aq) \rightleftharpoons SnO_2(aq) + 2H_2O(1). \tag{1}$$

This is obvious from

$$\Delta_f G^{\circ}(SnO_2, aq) = \Delta_f G^{\circ}(Sn(OH)_4, aq) - 2\Delta_f G^{\circ}(H_2O, 1)$$
.

As a consequence, $\log_{10} K^{\circ}$ is also equal to zero

$$\Delta_{\rm r}G^{\circ}(1) = \log_{10}K^{\circ}(1) = 0$$
,

which implies that for any reaction involving a hydroxo complex, $\log_{10}K^{\circ}$ is unaffected by the choice between conventional or non-conventional stoichiometry. For example, the formation of $CaSn(OH)_6(s)$ can be expressed in terms of $Sn(OH)_4(aq)$ as

$$Sn(OH)_4(aq) + 2H_2O(1) + Ca^{2+} \rightleftharpoons CaSn(OH)_6(s) + 2H^+$$
 (2)

or in terms of SnO₂(aq) as

$$SnO_2(aq) + 4H_2O(1) + Ca^{2+} \rightleftharpoons CaSn(OH)_6(s) + 2H^+$$
. (3)

Reaction (3) is obtained from reaction (2) by subtraction of reaction (1). Therefore,

$$\log_{10}K^{\circ}(2) = \log_{10}K^{\circ}(3)$$
.

Non-conventional hydroxo complexes appear in the Nagra/PSI TDB 01/01 GEMS either as ReacDC or as DComp records. ReacDC records (see Table 6 for a list) were prepared by entering the formation reaction of the non-conventional complex and taking as $\log_{10}K^{\circ}$ the unchanged value of the corresponding formation reaction of the conventional complex from the Nagra/PSI TDB 01/01. $\Delta_f G^{\circ}$ of DComp records were calculated from $\Delta_f G^{\circ}$ of conventional hydroxo complexes by subtracting $\Delta_f G^{\circ}(H_2O, 1)$, multiplied by an appropriate factor (see Table 7).

In the present version of the Nagra/PSI TDB 01/01 GEMS several hydroxo complexes still appear in their conventional form (see Table 8).

Table 5: Comparison of conventional and non-conventional compositions for hydroxo complexes. The superscript n± designates the charge of a complex.

Conventional	Non-conventional	Difference in H ₂ O
Stoichiometry	Stoichiometry	
$Me(OH)^{n\pm}$	$Me(OH)^{n\pm}$	0
$Me(OH)_2^{n\pm}$	${ m MeO^{n\pm}}$	1
$Me(OH)_3^{n\pm}$	$MeO_2H^{n\pm}$	1
$Me(OH)_4^{n\pm}$	${ m MeO_2}^{ m n\pm}$	2
$Me(OH)_5^{n\pm}$	$MeO_3H^{n\pm}$	2
$Me(OH)_6^{n\pm}$	${ m MeO_3}^{ m n\pm}$	3

Table 6: Non-conventional hydroxo complexes contained in Nagra/PSI TDB 01/01 GEMS as ReacDC records.

Conventional Stoichiometry	Non-conventional Stoichiometry
Secondary Master Species	
SiO2(OH)2-2	SiO3-2
Aqueous Product Species	
Al(OH)6SiO-	AlSiO4-
AlSiO(OH)3+2	AlHSiO3+2
AmSiO(OH)3+2	AmHSiO3+2
CaSiO2(OH)2	CaSiO3
Eu(SiO(OH)3)2+	EuSi2O5+
EuSiO(OH)3+2	EuHSiO3+2
FeSiO(OH)3+2	FeHSiO3+2
MgSiO2(OH)2	MgSiO3
Nb(OH)4+	NbO2+
Pd(OH)3-	PdO2H-
Pu(OH)4	PuO2
Sn(OH)5-	SnO3H-
Sn(OH)6-2	SnO3-2
Th(OH)4	ThO2

 Table 7:
 Standard partial molal Gibbs energies for non-conventional hydroxo complexes contained in Nagra/PSI TDB 01/01 GEMS as DComp records.

Conventional	$\Delta_{\rm f} G^\circ$	Non-conventional	$\Delta_{ m f} G^{\circ}$	Difference in
Stoichiometry	[kJ/mol]	Stoichiometry	[kJ/mol]	H ₂ O
Primary Master Species				
Si(OH)4	-1307.777	SiO2	-833.411	2
Sn(OH)4	-954.003	SnO2	-479.637	2
Secondary Master Species	S			
Al(OH)4-	-1301.845	A1O2-	-827.479	2
As(OH)3	-693.744	HAsO2	-456.561	1
SiO(OH)3-	-1251.781	HSiO3-	-1014.598	1
Aqueous Product Species				
Al(OH)2+	-897.603	AlO+	-660.420	1
Al(OH)3	-1101.46	AlO2H	-864.277	1
Am(OH)2+	-986.302	AmO+	-749.119	1
Am(OH)3	-1163.550	AmO2H	-926.367	1
As(OH)4-	-823.957	AsO2-	-349.591	2
B(OH)4-	-1153.232	BO2-	-678.866	2
CaSiO(OH)3+	-1811.421	CaHSiO3+	-1574.238	1
Eu(OH)2+	-962.638	EuO+	-725.455	1
Eu(OH)3	-1150.732	EuO2H	-913.549	1
Eu(OH)4-	-1316.564	EuO2-	-842.198	2
Fe(OH)2+	-459.187	FeO+	-222.004	1
Fe(OH)3	-657.041	FeO2H	-419.858	1
Fe(OH)4-	-842.624	FeO2-	-368.258	2
MgSiO(OH)3+	-1714.328	MgHSiO3+	-1477.145	1
Nb(OH)5	-1466.472	NbO3H	-992.106	2
Ni(OH)2	-417.227	NiO	-180.044	1
Ni(OH)3-	-587.626	NiO2H-	-350.443	1
Ni(OH)4-2	-738.047	NiO2-2	-263.681	2
Pd(OH)2	-274.969	PdO	-37.786	1
Sn(OH)2	-457.903	SnO	-220.720	1
Sn(OH)3-	-639.147	SnO2H-	-401.964	1
U(OH)4	-1427.196	UO2	-952.830	2
UO2(OH)2	-1358.483	UO3	-1121.300	1
UO2(OH)3-	-1554.568	UO4H-	-1317.385	1
UO2(OH)4-2	-1712.980	UO4-2	-1238.614	2
Zr(OH)4	-1213.783	ZrO2	-976.600	1
Zr(OH)5-	-1652.188	ZrO3H-	-1177.822	2

Table 8: Hydroxo complexes in Nagra/PSI TDB 01/01 GEMS retaining the conventional stoichiometry. Non-conventional stoichiometries are indicated for a future update.

Conventional	Non-conventional	Difference in
Stoichiometry	Stoichiometry	H_2O
Primary Master Species		
B(OH)3	HBO2	1
Secondary Master Species	5	
TcO(OH)2	TcO2	1
Aqueous Product Species		
(NpO2)2(OH)2+2	(NpO2)2O+2	1
(NpO2)2CO3(OH)3-	(NpO2)2O2HCO3-	1
(NpO2)3(OH)5+	(NpO2)3O2OH+	2
(PuO2)2(OH)2+2	(PuO2)2O+2	1
(UO2)2(OH)2+2	(UO2)2O+2	1
(UO2)2CO3(OH)3-	(UO2)2O2HCO3-	1
(UO2)3(OH)4+2	(UO2)3O2+2	2
(UO2)3(OH)5+	(UO2)3O2OH+	2
(UO2)3(OH)7-	(UO2)3O3OH-	3
(UO2)3O(OH)2HCO3+	(UO2)3O2HCO3+	1
(UO2)4(OH)7+	(UO2)4O3OH+	3
Fe2(OH)2+4	Fe2O+4	1
Fe3(OH)4+5	Fe3O2+5	2
Ni4(OH)4+4	Ni4O2+4	2
Np(OH)4	NpO2	2
NpO2(OH)2-	NpO3-	1
NpO2(OH)3-	NpO3OH-	1
NpO2(OH)4-2	NpO4-2	2
PdCl2(OH)2-2	PdOC12-2	1
PuO2(OH)2	PuO3	1
Sn3(OH)4+2	Sn3O2+2	2
TcCO3(OH)2	TcCO4	1
TcCO3(OH)3-	TcCO4OH-	1
TcO(OH)3-	TcO2OH-	1
ThCO3(OH)3-	ThCO4OH-	1

4 $\Delta_f G^\circ$ vs. $\log_{10} K^\circ$ as Original Data

The original data for most of the *product species* in the Nagra/PSI TDB 01/01 are their formation constants. For a small number of *products species* (see Table 9 for a list), however, the original data are $\Delta_f G^{\circ}$ values from which the formation constants were derived by means of the $\Delta_f G^{\circ}$ values of the corresponding *master species*.

The $\Delta_f G^\circ$ values of these *product species* were recalculated for inclusion into DComp records of the Nagra/PSI TDB 01/01 GEMS by taking the formation constants from the Nagra/PSI TDB 01/01 and the $\Delta_f G^\circ$ of the *master species* from this report. In this way, the values of the formation constants from the Nagra/PSI TDB 01/01 are preserved even though the $\Delta_f G^\circ$ values of the participating species may all be different from those given in the Nagra/PSI TDB 01/01.

For ReacDC records the formation constants were directly taken from the Nagra/PSI TDB 01/01.

5 Silica Species

The Nagra/PSI TDB 01/01 contains the *primary master species* Si(OH)₄(aq) and the *secondary master species* SiO(OH)₃⁻ and SiO₂(OH)₂²- for use in formation reactions of silica *product species*. In Nagra/PSI TDB 01/01 GEMS they are included in their non-conventional form as SiO₂(aq), HSiO₃⁻, and SiO₃²-, respectively.

Thermodynamic data for the *secondary master species* were derived as follows:

SiO(OH)₃- or HSiO₃-: The formation reaction of SiO(OH)₃- is given in the Nagra/PSI TDB 01/01 as

$$Si(OH)_4(aq) \rightleftharpoons SiO(OH)_3^- + H^+.$$
 (4)

Table 9: Product species whose original data in the Nagra/PSI TDB 01/01 are values for $\Delta_f G^{\circ}$.

Name	Non-conventional	Record Type in
	Stoichiometry	GEMS
Aqueous Product Species		
As(OH)4-	AsO2-	DComp
AsO4-3		DComp
H2AsO4-		DComp
H3AsO4		DComp
HF2-		DComp
HSO3-		DComp
Nb(OH)4+	NbO2+	ReacDC
Nb(OH)5	NbO3H	DComp
Solids		
Molybdite (MoO3)		DComp
Nb2O5(cr)		ReacDC
NbO2(cr)		DComp
Tugarinovite (MoO2)		DComp
USiO4(s)		ReacDC

SiO₂(aq) is obtained from Si(OH)₄(aq) by

$$Si(OH)_4(aq) \rightleftharpoons SiO_2(aq) + 2H_2O(1). \tag{5}$$

with

$$\log_{10}K^{\circ}(5) = 0$$
,

see Chapter 4, and HSiO₃⁻ is obtained from SiO(OH)₃⁻ by

$$SiO(OH)_3^- \rightleftharpoons HSiO_3^- + H_2O(1), \qquad (6)$$

again with

$$\log_{10} K^{\circ}(6) = 0$$
.

Combining reactions (4), (5), and (6) results in

$$SiO_2(aq) + H_2O(l) \rightleftharpoons HSiO_3^- + H^+, \tag{7}$$

with

$$\log_{10} K^{\circ}(7) = \log_{10} K^{\circ}(4)$$
.

 $\Delta_f G^\circ$ for the DComp record $HSiO_{3^-}$ was therefore calculated from $log_{10}K^\circ(4)$ given by the Nagra/PSI TDB 01/01 and from the $\Delta_f G^\circ$ values of the *primary master species* $SiO_2(aq)$, $H_2O(1)$, and H^+ given in Table 3.

 $SiO_2(OH)_2^{2-}$ or SiO_3^{2-} : The formation reaction of $SiO_2(OH)_2^{2-}$ is given in the Nagra/PSI TDB 01/01 as

$$Si(OH)_4(aq) \rightleftharpoons SiO_2(OH)_2^{2-} + 2H^+.$$
 (8)

This reaction is written with non-conventional stoichiometries as

$$SiO_2(aq) + H_2O(1) \rightleftharpoons SiO_3^{2-} + 2H^+,$$
 (9)

with

$$\log_{10}K^{\circ}(9) = \log_{10}K^{\circ}(8) .$$

 SiO_3^{2-} is a ReacDC record with the reaction stoichiometry given by reaction (9) and the value for $log_{10}K^{\circ}(8)$ taken from the Nagra/PSI TDB 01/01.

The silica *product species* in Nagra/PSI TDB 01/01 GEMS are listed in Table 10. All aqueous *product species* are contained in ReacDC records with their non-conventional stoichiometries. Take for example CaSiO(OH)₃⁺ (non-conventional: CaHSiO₃⁺): The formation reaction in the Nagra/PSI TDB 01/01 is

$$Ca^{2+} + SiO(OH)_{3^{-}} \rightleftharpoons CaSiO(OH)_{3^{+}}, \tag{10}$$

and in Nagra/PSI TDB 01/01 GEMS

$$Ca^{2+} + HSiO_3^- \rightleftharpoons CaHSiO_3^+$$
. (11)

As it has become clear by know, $\log_{10}K^{\circ}$ is the same for both reactions. Thus, the values of $\log_{10}K^{\circ}$ for all silica *product species* in ReacDC records can be directly taken from the corresponding reactions in the Nagra/PSI TDB 01/01.

Table 10: Silica Species in Nagra/PSI TDB 01/01 GEMS.

Name	Non-conventional	Record Type in
	Stoichiometry	GEMS
Primary Master Species		
Si(OH)4	SiO2	DComp
Secondary Master Species		
SiO(OH)3-	HSiO3-	DComp
SiO2(OH)2-2	SiO3-2	ReacDC
Aqueous Product Species		
Al(OH)6SiO-	AlSiO4-	ReacDC
AlSiO(OH)3+2	AlHSiO3+2	ReacDC
AmSiO(OH)3+2	AmHSiO3+2	ReacDC
CaSiO(OH)3+	CaHSiO3+	DComp
CaSiO2(OH)2	CaSiO3	ReacDC
Eu(SiO(OH)3)2+	EuSi2O5+	ReacDC
EuSiO(OH)3+2	EuHSiO3+2	ReacDC
FeSiO(OH)3+2	FeHSiO3+2	ReacDC
MgSiO(OH)3+	MgHSiO3+	DComp
MgSiO2(OH)2	MgSiO3	ReacDC
Solids		
Kaolinite (Al2Si2O5(OH)4)		DComp
Quartz (SiO2)		DComp
SiO2(am)		DComp
USiO4(s)		ReacDC

6 Data Estimates with PRONSPREP

Numerous DComp records in the Nagra/PSI TDB 01/01 GEMS contain parameters of the revised HKF equation of state [1988TAN/HEL] for the calculation of $C_P^{\circ}(P,T)$ and $V^{\circ}(P,T)$ using SUPCRT92 subroutines [1992JOH/OEL] incorporated into the GEMS code. The sources of these parameters are listed in Table A2 (see Appendix).

Missing HKF-parameters for aqueous 1-1 to 1-4 complexes with monovalent ligands or with SO_4^{2-} and CO_3^{2-} were estimated with PRONSPREP, a program by [1997SVE/SHO] that is incorporated into the GEMS code and extended with correlations for SO_4^{2-} and CO_3^{2-} from [1997SVE/SHO]. The estimation method is based on linear correlations among HKF-parameters and standard partial molal properties at 25°C and 1 bar.

7 Temperature Extrapolations for Isocoulombic Reactions

In order to apply the 1-term temperature extrapolation, [2002THO/BER] derived isocoulombic reactions (as well as reactions of solids with neutral aqueous species) for various actinides and Tc by linear combination of reactions listed in the Nagra/PSI TDB 01/01. The corresponding equilibrium constants were calculated in a similar way from those in the Nagra/PSI TDB 01/01. Some of these reactions (listed in Table 11) were adopted for the Nagra/PSI TDB 01/01 GEMS.

Table 11: Isocoulombic reactions and reactions involving solids and neutral species taken from [2002THO/BER]. Note that non-conventional stoichiometries are used for AmSiO(OH)3+2 and Pu(OH)4.

Name in	Formation Reaction	T-Extrapolation	$\log_{10}K^{\circ}$
Nagra/PSI TDB 01/01			
Am(CO3)1.5(cr)	$AmCO_3^+ + 0.5CO_2(aq) + 0.5H_2O(1) \rightleftharpoons Am(CO_3)_{1.5}(cr) + H^+$		0.5595
AmCO3OH(cr)	$AmCO_3^+ + H_2O(l) \rightleftharpoons AmCO_3OH(cr) + H^+$	$(\Delta_r G^\circ = \text{const.})$ 1-term isocoul. $(\Delta_r G^\circ = \text{const.})$	-0.60
AmSiO(OH)3+2	$AmF^{2+} + HSiO_3^- \rightleftharpoons AmHSiO_3^{2+} + F^-$	1-term isocoul. $\Delta_r G^\circ = \text{const.}$	4.70
Pu(OH)4	$Pu^{4+} + UO_2(aq) \rightleftharpoons PuO_2(aq) + U^{4+}$	1-term isocoul. $(\Delta_r G^\circ = \text{const.})$	0.60
PuO2(hyd,ag)	$PuO_2(aq) \rightleftharpoons PuO_2(hyd,ag)$	1-term	10.4*
TcCO3(OH)2	$TcO(OH)_2(aq) + HCO_3^- \rightleftharpoons TcCO_3(OH)_2(aq) + OH^-$	$(\log_{10}K^{\circ} = \text{const.})$ 1-term isocoul.	-5.029
ThCO3(OH)3-	$ThO_2(aq) + HCO_3^- + H_2O(l) \rightleftharpoons ThCO_3(OH)_3^-$	$(\Delta_r G^\circ = \text{const.})$ 1-term isocoul. $(\Delta_r G^\circ = \text{const.})$	4.971

^{*} Note that in [2002THO/BER] $\log_{10}K^{\circ}$ of this reaction is erroneously given as 6.4.

8 Species and Data not Contained in Nagra/PSI TDB 01/01

Nagra/PSI TDB 01/01 does not include the aqueous species Sn⁴⁺ and ClO₄⁻. The reason for their inclusion into Nagra/PSI TDB 01/01 GEMS is given in the following sections, together with a discussion of their thermodynamic data.

Nitrogen is treated specially in Nagra/PSI TDB 01/01 GEMS. It is observed that nitrogen gas in the atmosphere is not in equilibrium with aqueous nitrogen in streams, lakes, or oceans [1996STU/MOR]. In order to decouple atmospheric nitrogen from aqueous nitrogen in GEMS modeling, element "Nit" (with record key Nit:a:nitrogen_atm) was created in addition to the ordinary element "N" (N:e:nitrogen). Note that both of these have identical thermodynamic properties. "Nit" is used to define $N_2(g)$ (g:N0:N2:add) and $N_2(aq)$ (a:wN0:N2@:atm:), which are decoupled from all other nitrogen-bearing species that are defined through "N".

If for specific modeling purposes $N_2(g)$ and $N_2(aq)$ are assumed to be coupled with the other nitrogen-bearing species, they have to be defined through "N", which is the case for $N_2(g)$ with the record key (g:N0:N2:enp:) and $N_2(aq)$ with the record key (a:wN0:N2@:bnp:). Note that decoupled $N_2(g)$ is thermodynamically identical with coupled $N_2(g)$, and decoupled $N_2(aq)$ with coupled $N_2(aq)$.

8.1 Sn(IV)

Sn(II) and Sn(IV) are not redox coupled in the Nagra/PSI TDB 01/01 due to the lack of a reliable equilibrium constant for the reaction that links Sn²⁺ with Sn⁴⁺ (see the discussion in [2002HUM/BER]). Therefore, Sn⁴⁺ is not included in the Nagra/PSI TDB 01/01 and no $\Delta_f G^\circ$ values are given for Sn(OH)₄(aq), the *primary master species* for Sn(IV), and for the remaining Sn(IV) species and solids, Sn(OH)₅-, Sn(OH)₆²⁻, CaSn(OH)₆(s), cassiterite, and SnO₂(am).

Name in	$\Delta_{ m f} G^\circ$	Non-conventional	$\Delta_{ m f} G^{\circ}$	Record Type
Nagra/PSI TDB 01/01	[kJ/mol]	Stoichiometry	[kJ/mol]	in GEMS
Primary Master Species				
Sn(OH)4	-954.003	SnO2	-479.637	DComp
Aqueous Product Species				
Sn(OH)5-	1145.52	SnO3H-	-671.156	ReacDC
Sn(OH)6-2	-1323.341	SnO3-2	-611.793	ReacDC
Solids				
CaSn(OH)6(s)	-1931.499			ReacDC
Cassiterite (SnO2)	-525.302			DComp
SnO2(am)	-521.306			ReacDC

Table 12: Thermodynamic data for Sn(IV) species and solids at 25°C and 1 bar.

Use of the Nagra/PSI TDB 01/01 with GEMS requires that a value be given for $\Delta_f G^{\circ}(Sn(OH)_4)$, aq, 298.15), otherwise it would not be possible to calculate $\Delta_f G^{\circ}$ of Sn(IV) species and solids from their equilibrium constants in Nagra/PSI TDB 01/01, and they would have to be excluded from GEMS calculations.

[2002HUM/BER] provided an estimate of

$$\log_{10}K^{\circ}(14, 298.15) = -1.4$$

for

$$Sn(OH)_4(aq) + 4H^+ \rightleftharpoons Sn^{4+} + 4H_2O(1)$$
 (14)

(note that this reaction is not part of the Nagra/PSI TDB 01/01). With this estimate, $\Delta_f G^\circ(Sn(OH)_4)$, aq, 298.15) can be calculated from $\Delta_f G^\circ(H^+, 298.15) = 0$, $\Delta_f G^\circ(H_2O, 1, 298.15)$ given in Table 1, and from $\Delta_f G^\circ(Sn^{4+}, 298.15)$.

For the latter, we adopted the value given by [1985BAR/PAR] without critical review

$$\Delta_f G^{\circ}(\text{Sn}^{4+}, 298.15) = 2.72 \text{ kJ/mol}$$

Therefore,

$$\Delta_f G^{\circ}(Sn(OH)_4, aq, 298.15) = -954 \text{ kJ/mol}$$

This value – based on an estimate for $\log_{10}K^{\circ}(14, 298.15)$ and on an unreviewed value for $\Delta_f G^{\circ}(\mathrm{Sn^{4+}}, 298.15)$ – should be interpreted as an **arbitrary reference value**. It is only provided for the calculation of $\Delta_f G^{\circ}$ (see Table 12) for Sn(IV) species and solids from their equilibrium constants listed in the Nagra/PSI TDB 01/01 and from the $\Delta_f G^{\circ}$ values of the appropriate *master species* in Tables 3 and 4.

Thus, the Nagra/PSI TDB 01/01 GEMS does couple Sn⁴⁺ with Sn²⁺ (in contrast to the Nagra/PSI TDB 01/01). Since this coupling rests on shaky ground, calculations involving Sn must be interpreted with extreme caution, especially with respect to the redox state of Sn.

8.2 Perchlorate

The perchlorate ion ClO_4^- is not considered in the Nagra/PSI TDB 01/01. In order to allow the retrieval of thermodynamic data by GEMS modeling of experiments in perchlorate media, thermodynamic data by [1997SHO/SAS] for ClO_4^- are included in the Nagra/PSI TDB 01/01 GEMS.

9 Acknowledgments

Partial financial support by Nagra (National Cooperative for the Disposal of Radioactive Waste) is gratefully acknowledged.

10 References

- [1958KIN] KING, E.G. (1958): Low temperature heat capacities and entropies at 298.15 degrees K of some oxides of gallium, germanium, molybdenum and niobium. Journal of the American Chemical Society, 80, 1799-1801.
- [1960KEL] KELLEY, K.K. (1960): Contributions to the data on theoretical metallurgy: 13: High-temperature heat-content, heat-capacity, and entropy data for the elements and inorganic compounds. US Bureau of Mines Bulletin, 584, 232 pp.
- [1960KIN/WEL] KING, E.G., WELLER, W.W. & CHRISTENSEN, A.U. (1960): Thermodynamics of some oxides of molybdenum and tungsten. US Bureau of Mines Report, No. 5664, 29 pp.
- [1961KIN/CHR] KING, E.G. & CHRISTENSEN, A.U. (1961): US Bureau of Mines Report, No. 5709, 5789. As cited by NAUMOV, G.B., RYZHENKO, B.N. & KHODAKOVSKY, I.L. (1971): Handbook of Thermodynamic Data (in Russian). Atomizdat, Moscow. 240 pp.
- [1978HEL/DEL] HELGESON, H.C, DELANY, J.M., NESBITT, H.W & BIRD, D.K. (1978): Summary and critique of the thermodynamic propeties of rock-forming minerals. American Journal of Science, 278A, 229 pp.
- [1982WAG/EVA] WAGMAN, D.D., EVANS, W.H., PARKER, V.B., SCHUMM, R.H., HALOW, I., BAILEY, S.M., CHURNEY, K.L. & NUTTALL, R.L. (1982): The NBS tables of chemical thermodynamic properties Selected values for inorganic and C₁ and C₂ organic substances in SI units. Journal of Physical and Chemical Data, 11, Supplement 2.
- [1985BAR/PAR] BARD, A.J., PARSONS, R. & JORDAN, J. (1965): Standard potentials in aqueous solution. Marcel Dekker, New York, Basel. 834 pp.
- [1985HEL] HELGESON, H.C. (1985): Errata II: Thermodynamics of minerals, reactions, and aqueous solutions at high pressures and temperatures. American Journal of Science, 285, 845-855.
- [1985JAC/HEL] JACKSON, K.J. & HELGESON, H.C. (1985): Chemical and thermodynamic constraints on the hydrothermal transport and deposition of tin: II. Interpretation of phase relations in the Southeast Asian tin belt. Economic Geology, 80, 1365-1378.
- [1985LAN/RIE] LANGMUIR, D. & RIESE, A.C. (1985): The thermodynamic properties of radium. Geochimica et Cosmochimica Acta, 49, 1593-1601.
- [1988SHO/HEL] Shock, E.L & Helgeson, H.C. (1988): Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Correlation algorithms for ionic species and equation of state predictions to 5 kb and 1000°C. Geochimica et Cosmochimica Acta, 52, 2009-2036.

- [1988TAN/HEL] TANGER, J.C. IV & HELGESON, H.C. (1988): Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Revised equations of state for standard partial molal properties of ions and electrolytes. American Journal of Science, 299, 19-98.
- [1989COX/WAG] COX, J.D., WAGMAN, D.D. & MEDVEDEV, V.A. (1989): CODATA Key Values for Thermodynamics. Hemisphere Publishing Corp., New York.
- [1989SHO/HEL] Shock, E.L. & Helgeson, H.C. & Sverjensky, D.A. (1989): Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Standard partial molal properties of inorganic neutral species. Geochimica et Cosmochimica Acta, 53, 2157-2183.
- [1990SHO/HEL] Shock, E.L. & Helgeson, H.C. (1990): Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Standard partial molal properties of organic species. Geochimica et Cosmochimica Acta, 54, 915-945.
- [1992JOH/OEL] JOHNSON, J.W., OELKERS, E.H. & HELGESON, H.C. (1992): SUPCRT92 A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 bar to 5000 bar and 0 to 1000 degrees C. Computers & Geosciences, 18, 899-947.
- [1993KUB/ALC] KUBASCHEWSKI, O., ALCOCK, C.B. & SPENCER, P.J. (1993): Materials Thermochemistry (sixth edition). Pergamon Press, Oxford, 363 pp.
- [1995HAA/SHO] HAAS, J.R., SHOCK, E.L. & SASSANI, D.C. (1995): Rare earth elements in hydrothermal systems: Estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures. Geochimica et Cosmochimica Acta, 59, 4329-4350.
- [1995POK/HEL] POKROVSKII, V.A. & HELGESON, H.C. (1995): Thermodynamic properties of aqueous species and the solubilities of minerals at high pressures and temperatures: The system Al₂O₃-H₂O-NaCl. American Journal of Science, 295, 1255-1342.
- [1995ROB/HEM] ROBIE, R.A. & HEMINGWAY, B.S. (1995): Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (10⁵ Pascals) pressure and at higher temperatures. United States Geological Survey Bulletin, 2131, 453 pp.
- [1995SIL/BID] SILVA, R.J., BIDOGLIO, G., RAND, M.H., ROBOUCH, P.B., WANNER, H. & PUIGDOMENECH, I. (1995): Chemical Thermodynamics of Americium. Chemical Thermodynamics, 2. North-Holland, Amsterdam. 374 pp.
- [1996STU/MOR] STUMM, W. & MORGAN, J.J. (1996): Aquatic Chemistry. John Wiley & Sons, New York. 1022 pp.
- [1997MCC/SHO] McCollom, T.M. & Shock, E.L. (1997): Geochemical constraints on chemilithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems. Geochimica et Cosmochimica Acta, 61, 4375-4391.
- [1997SHO/SAS] Shock, E.L., Sassani, D.C., Willis, M. & Sverjensky, D.A. (1997): Inorganic species in geologic fluids: Correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes. Geochimica et Cosmochimica Acta, 61, 907-950.

- [1997SHO/SAS2] Shock, E.L., Sassani, D.C. & Betz, H. (1997): Uranium in geologic fluids: Estimates of standard partial molar properties, oxidation potentials, and hydrolysis constants at high temperatures and pressures. Geochimica et Cosmochimica Acta, 61, 4245-4266.
- [1997SVE/SHO] SVERJENSKY, D.A., SHOCK, E.L. & HELGESON, H.C. (1997): Prediction of the thermodynamic properties of aqueous metal complexes to 1000°C and 5kb. Geochimica et Cosmochimica Acta, 61, 1359-1412.
- [1998SAS/SHO] SASSANI, D.C. & SHOCK, E.L. (1998): Solubility and transport of platinum-group elements in supercritical fluids: Summary and estimates of thermodynamic properties for ruthenium, rhodium, palladium, and platinum solids, aqueous ions, and complexes to 1000°C and 5 kbar. Geochimica et Cosmochimica Acta, 62, 2643-2671.
- [1999IUPAC] IUPAC, COMMISSION ON ATOMIC WEIGHTS AND ISOTOPIC ABUNDANCES (R.D. VOCKE JR) (1999): Atomic weights of the elements 1997. Pure and Applied Chemistry, 71, 1593-1607.
- [1999MUR/SHO] MURPHY, W.M. & SHOCK, E.L. (1999): Environmental aqueous geochemistry of actinides. In: Burns, P.C. & Finch, R. (eds.): Uranium: Mineralogy, Geochemistry and the Environment. Reviews in Mineralogy, 38, Mineralogical Society of America, 221-253.
- [1999RAR/RAN] RARD, J.A., RAND, M.H., ANDEREGG, G. & WANNER, H. (1999): Chemical Thermodynamics of Technetium. Chemical Thermodynamics 3. Elsevier, Amsterdam, 544 pp.
- [2001PEA/THO] PEARSON, F.J., THOENEN, T., DMYTRIYEVA, S., KULIK, D.A. & HUMMEL, W. (2001): PMATCHC: A <u>Program to MAnage ThermoCH</u>emical data, written in <u>C</u>++. PSI Technical Report TM-44-01-07, Paul Scherrer Institut, Villigen, Switzerland.
- [2002HUM/BER] HUMMEL, W., BERNER, U., CURTI, E., PEARSON, F.J. & THOENEN, T. (2002): Nagra/PSI Chemical Thermodynamic Data Base 01/01. Universal Publishers/uPublish.com, Parkland, Florida, USA. 565 pp. Also issued as Nagra Technical Report NTB 02-16, Nagra, Wettingen, Switzerland.
- [2002KUL] KULIK, D.A. (2002): Minimizing uncertainty induced by temperature extrapolations for thermodynamic data: A pragmatic view on integration of thermodynamic databases into geochemical computer codes. In: Proceedings of the OECD/NEA Workshop on the Use of Thermodynamic Databases in Performance Assessment, Barcelona, 29.-30. May 2001, 125-137.
- [2002THO/BER] THOENEN, T., BERNER, U., HUMMEL, W. & KULIK, D. (2002): Equilibrium constants at 50°C for solids and aqueous species determining the solubility of Am, Pu, Np, U, Th, and Tc in the reference bentonite porewater. PSI Technical Report TM-44-02-05, Paul Scherrer Institut, Villigen, Switzerland.

Appendix

Table A1: Δ_f*G*° values from the Nagra/PSI TDB 01/01 GEMS. Legend to phase state in GEMS record keys: a - aqueous species, s - solid, g - gas. Syntax of chemical formulae: The formal valence of an element (if different from the default valence, see Table 2) is enclosed in vertical bars, as in Aml3l+3. Neutral aqueous species are designated by @, as in B(OH)3@. Aqueous species, solids, or gases also contained in slop98.dat (version 30. Oct. 1998) for SUPCRT 92 [1992JOH/OEL] are marked with a #-sign.

Nagra/PSI TDB 01/01	1 50. 0		GEMS Record Keys	[177230]	H/OEL] are marked Stoichiometry	$\Delta_{\rm f}G^{\circ}$
Name	Phase State	Group	Name	TDB Set	-	[J/mol]
Primary Master Species						
# Al+3	a	Al	Al+3	anp	Al+3	-483708
Am+3	a	Am	Am+3	anp	Aml3l+3	-598698
# B(OH)3	a	В	B(OH)3@	anp	B(OH)3@	-968763
# Ba+2	a	Ba	Ba+2	anp	Ba+2	-560782
# Br-	a	wBr-1	Br-	anp	Br-	-104056
# Ca+2	a	Ca	Ca+2	anp	Ca+2	-552790
# Cl-	a	wCl-1	Cl-	anp	Cl-	-131290
# Cs+	a	Cs	Cs+	anp	Cs+	-291667
e-	-	_	-	-	-	0
# Eu+3	a	Eu+3	Eu+3	anp	Eu+3	-574463
# F-	a	wF	F-	anp	F-	-281751
# Fe+2	a	Fe+2	Fe+2	anp	Fe+2	-91504
# H+	a	w_	H+	anp	H+	0
# H2O	a	_ w_	H2O@	anp	H2O@	-237183
# HAsO4-2	a	As+5	HAsO4-2	anp	HAsl5lO4-2	-714585
# HCO3-	a	wC+4	HCO3-	anp	HCO3-	-586940
# HPO4-2	a	wP+5	HPO4-2	anp	HPO4-2	-1089140
# I-	a	wI-1	I-	anp	I-	-51923
# K+	a	K	K+	anp	K+	-282462
# Li+	a	Li	Li+	anp	Li+	-292600
# Mg+2	a	Mg	Mg+2	anp	Mg+2	-453985
# Mn+2	a	Mn+2	Mn+2	anp	Mn+2	-230538
# MoO4-2	a	Mo+6	MoO4-2	anp	Mol6lO4-2	-838474
# Na+	a	Na	Na+	anp	Na+	-261881
# NbO3-	a	Nb+5	NbO3-	anp	NbO3-	-950186
# Ni+2	a	Ni	Ni+2	anp	Ni+2	-45606
# NO3-	a	wN+5	NO3-	anp	NO3-	-110905
NpO2+2	a	Np+6	NpO2+2	anp	Npl6lO2+2	-795900
# Pd+2	a	Pd	Pd+2	anp	Pdl2l+2	176565
PuO2+2	a	Pu+6	PuO2+2	anp	Pul6lO2+2	-762400
# Ra+2	a	Ra	Ra+2	anp	Ra+2	-561493
# SeO3-2	a	Se+4	SeO3-2	anp	Sel4lO3-2	-369866
# Si(OH)4		Si Si	SiO2@		SiO2@	-833411
# Sn(OH)4 Sn(OH)4	a a	Sn+4	SnO2@	anp anp	Sn 4 O -2 2@	-479637
# Sn+2				•		
# S04-2	a	Sn+2 wS+6	Sn+2 SO4-2	anp	Sn 2 +2 S 6 O4-2	-27489 -744459
# SO4-2 # Sr+2	a			anp		
# Sr+2 # TcO4-	a	Sr To 17	Sr+2	anp	Sr+2 Tcl7lO4-	-563836
	a	Tc+7	TcO4-	anp		-632202 705004
# Th+4	a	Th	Th+4	anp	Th+4	-705004 052612
# UO2+2	a	U+6	UO2+2	anp	Ul6lO2+2	-952613
# Zr+4	a	Zr	Zr+4	anp	Zr+4	-557602

Table A1: Continued

Nagra/PSI TDB 01/01			GEMS Record Keys		Stoichiometry	$\Delta_{ m f} G^\circ$
Name		Group	Name	TDB		[J/mol]
Secondary Master Species	State			Set		
# Al(OH)4-	a	Al	AlO2-	bnp	AlO2-	-827479
# As(OH)3	a	As+3	HAsO2@	bnp	HAsl3lO2@	-456561
# CH4	a	wC-4	CH4@	bnp	Cl0lHl0l4@	-34354
# CO2	a	wC+4	CO2@	bnp	CO2@	-386015
# CO3-2	a	wC+4	CO3-2	bnp	CO3-2	-527982
# Eu+2	a	Eu+2	Eu+2	bnp	Eul2l+2	-540672
# Fe+3	a	Fe+3	Fe+3	bnp	Fel3l+3	-17185
# H2	a	wH0	H2@	bnp	HI012@	17729
# H2PO4-	a	wP+5	H2PO4-	bnp	H2PO4-	-1130306
# H2Se	a	Se-2	H2Se@	bnp	H2Sel-2l@	14098
# H3PO4	a	wP+5	H3PO4@	bnp	H3PO4@	-1142522
# HS-	a	wS-2	HS-	bnp	HSI-2I-	11969
# HSeO4-	a	Se+6	HSeO4-	bnp	HSel6lO4-	-461037
# 113eO4- 12		wI0	113eO4- 12@	bnp	11012@	-223429
# N2	a	wN0	N2@	bnp	Ni0i2@	18194
# NH3	a	wN-3	NH3@	-	NI-3IH3@	-26670
# NH4+	a	wN-3	NH4+	bnp bnp	NI-3IH4+	-20070 -79395
Np+3	a		Np+3	-	Npl3l+3	-512753
•	a	Np+3	-	bnp	_	-312733 -491634
Np+4	a	Np+4	Np+4 NpO2+	bnp	Npl4l+4	-491034 -907721
NpO2+ # O2	a	Np+5	NpO2+ O2@	bnp	NpO2+ Ol0l2@	-907721 16446
# OH-	a	wO0 wX	OH-	bnp	OH-	-157270
# OH- # PO4-3	a	wA wP+5	PO4-3	bnp	PO4-3	-137270
	a			bnp	Pul3l+3	
Pu+3	a	Pu+3	Pu+3	bnp		-578973 477009
Pu+4	a	Pu+4	Pu+4	bnp	Pul4l+4	-477998 852701
PuO2+ # S2O3-2	a	Pu+5	PuO2+	bnp	PuO2+	-852701 510080
	a	wS+2	S2O3-2	bnp	SI0ISI4IO3-2	-519989
# SiO(OH)3-	a	Si s:	HSiO3-	bnp	HSiO3-	-1014598
SiO2(OH)2-2	a	Si	SiO3-2	bnp	SiO3-2	-938510
# SO3-2	a	wS+4	SO3-2	bnp	SI4IO3-2	-487886
TcO(OH)2	a	Tc+4	TcO(OH)2@	bnp	TcO(OH)2@	-562835
# U+4	a	U+4	U+4	bnp	UI4I+4	-529836
# UO2+	a	U+5	UO2+	bnp	UI5IO2+	-961084
Aqueous Product Species		N. C	AL 00)0(OII)0 0		(N= 6 02)2(OH)2+2	******
(NpO2)2(OH)2+2	a	Np+6	(NpO2)2(OH)2+2	cnp	(Npl6lO2)2(OH)2+2	-2030377
(NpO2)2CO3(OH)3-	a	Np+6	(NpO2)2CO3(OH)3-	cnp	(Npl6lO2)2CO3(OH)3-	-2814949
(NpO2)3(CO3)6-6	a	Np+6	(NpO2)3(CO3)6-6	cnp	(Npl6lO2)3(CO3)6-6	-5840079
(NpO2)3(OH)5+	a	Np+6	(NpO2)3(OH)5+	cnp	(Npl6lO2)3(OH)5+	-3475893
(PuO2)2(OH)2+2	a	Pu+6	(PuO2)2(OH)2+2	cnp	(Pul6lO2)2(OH)2+2	-1956356
(UO2)2(OH)2+2	a	U+6	(UO2)2(OH)2+2	cnp	(Ul6lO2)2(OH)2+2	-2347513
(UO2)2CO3(OH)3-	a	U+6	(UO2)2CO3(OH)3-	cnp	(Ul6lO2)2CO3(OH)3-	-3139848
(UO2)2NpO2(CO3)6-6	a	UNp+6	(UO2)2NpO2(CO3)6	cnp	(Ul6lO2)2Npl6lO2(CO3)6-6	-6174910
(UO2)2OH+3	a	U+6	(UO2)2(OH)+3	cnp	(Ul6lO2)2(OH)+3	-2126997
(UO2)2PuO2(CO3)6-6	a	UPu+6	(UO2)2PuO2(CO3)6	cnp	(Ul6lO2)2Pul6lO2(CO3)6-6	-6136330
(UO2)3(CO3)6-6	a	U+6	(UO2)3(CO3)6-6	-	(Ul6lO2)3(CO3)6-6	-6333963
(UO2)3(OH)4+2				cnp	(Ul6lO2)3(OH)4+2	
(002)3(011)4+2	a	U+6	(UO2)3(OH)4+2	cnp	(010102)3(011)4+2	-3738645

Table A1: Continued

Nagra/PSI TDB 01/01			GEMS Record Keys		Stoichiometry	$\Delta_{ m f} G^\circ$
Name	Phase	Group	Name	TDB Set	=	[J/mol]
	State					
(UO2)3(OH)5+	a	U+6	(UO2)3(OH)5+	cnp	(Ul6lO2)3(OH)5+	-3954994
(UO2)3(OH)7-	a	U+6	(UO2)3(OH)7-	cnp	(Ul6lO2)3(OH)7-	-4341171
(UO2)3O(OH)2HCO3+	a	U+6	(UO2)3CO3(OH)3+	cnp	(Ul6lO2)3CO3(OH)3+	-4101137
(UO2)4(OH)7+	a	U+6	(UO2)4(OH)7+	cnp	(Ul6lO2)4(OH)7+	-5345727
# Al(OH)2+	a	Al	AlO+	cnp	AlO+	-660420
# Al(OH)3	a	Al	AlO2H@	cnp	AlO2H@	-864277
Al(OH)6SiO-	a	AlSi	AlSiO4-	cnp	AlSiO4-	-1681439
Al(SO4)2-	a	Al	Al(SO4)2-	cnp	Al(SO4)2-	-2006304
AlF+2	a	Al	AlF+2	cnp	AlF+2	-805871
AlF2+	a	Al	AlF2+	cnp	AlF2+	-1119872
AlF3	a	Al	AlF3@	cnp	AlF3@	-1424740
AlF4-	a	Al	AlF4-	cnp	AlF4-	-1720818
AIF5-2	a	Al	AlF5-2	cnp	AlF5-2	-2008334
AlF6-3	a	Al	AlF6-3	cnp	AlF6-3	-2290084
# AlOH+2	a	Al	AlOH+2	cnp	Al(OH)+2	-692595
AlSiO(OH)3+2	a	AlSi	AlHSiO3+2	cnp	AlHSiO3+2	-1540546
AlSO4+	a	Al	Al(SO4)+	cnp	Al(SO4)+	-1250429
Am(CO3)2-	a	Am	Am(CO3)2-	cnp	Aml3l(CO3)2-	-1724870
Am(CO3)3-3	a	Am	Am(CO3)3-3	cnp	Am(CO3)3-3	-2269405
Am(OH)2+	a	Am	AmO+	cnp	Aml3lO+	-749119
Am(OH)3	a	Am	AmO2H@	cnp	Aml3lO2H@	-926367
Am(SO4)2-	a	Am	Am(SO4)2-	cnp	Aml3l(SO4)2-	-2118440
AmCl+2	a	Am	AmCl+2	cnp	Aml3lCl+2	-735981
AmCO3+	a	Am	Am(CO3)+	cnp	Aml3l(CO3)+	-1171202
AmF+2	a	Am	AmF+2	cnp	Aml3lF+2	-899856
AmF2+	a	Am	AmF2+	cnp	Aml3lF2+	-1195306
AmH2PO4+2	a	Am	Am(H2PO4)+2	cnp	Aml3l(H2PO4)+2	-1746129
AmNO3+2	a	Am	Am(NO3)+2	cnp	Aml3l(NO3)+2	-717195
AmOH+2	a	Am	Am(OH)+2	cnp	Aml3l(OH)+2	-794212
AmSiO(OH)3+2	a	AmSi	AmHSiO3+2	cnp	AmHSiO3+2	-1659531
AmSO4+	a	Am	Am(SO4)+	cnp	Aml3l(SO4)+	-1365133
# As(OH)4-	a	As+3	AsO2-	enp	Asl3lO2-	-349591
# AsO4-3	a	As+5	AsO4-3	cnp	Asl5lO4-3	-648355
# B(OH)4-	a	В	BO2-	cnp	BO2-	-678866
# BaCO3	a	Ba	Ba(CO3)@	cnp	BaCO3@	-1104251
# BaHCO3+	a	Ba	Ba(HCO3)+	cnp	BaHCO3+	-1153325
# BaOH+	a	Ba	BaOH+	cnp	BaOH+	-721077
BaSO4	a	Ba	Ba(SO4)@	cnp	Ba(SO4)@	-1320652
# CaCO3	a	Ca	Ca(CO3)@	cnp	CaCO3@	-1099176
# CaF+		Ca	CaF+	-	CaF+	-839906
# CaHCO3+	a a	Ca	Ca(HCO3)+	cnp cnp	CaHCO3+	-1146041
# CaOH+		Ca	CaOH+	-	Ca(OH)+	-717024
# CaOH+ # CaSiO(OH)3+	a			cnp	Ca(OH)+ CaHSiO3+	
	a	CaSi CaSi	Ca(HSiO3)+ CaSiO3@	cnp	CaSiO3@	-1574238 1517557
CaSiO2(OH)2 # CaSO4	a		Ca(SO4)@	cnp	CaSO4@	-1517557
	a	Ca Eu 13		cnp		-1310378
Eu(CO3)2-	a	Eu+3	Eu(CO3)2-	cnp	Eu(CO3)2-	-1699494
# Eu(OH)2+	a	Eu+3	EuO+	cnp	Eul3IO+	-725455

Table A1: Continued

Nagra/PSI TDB 01/01		(GEMS Record Keys		Stoichiometry	$\Delta_{ m f} G^\circ$
Name	Phase State	Group	Name	TDB Set		[J/mol]
# Eu(OH)3	a	Eu+3	EuO2H@	cnp	Eul3lO2H@	-913549
# Eu(OH)4-	a	Eu+3	EuO2-	cnp	Eul3lO2-	-842198
Eu(SiO(OH)3)2+	a	Eu+3Si	EuSi2O5+	cnp	EuSi2O5+	-2439539
Eu(SO4)2-	a	Eu+3	Eu(SO4)2-	cnp	Eu(SO4)2-	-2095917
# EuCl+2	a	Eu+3	EuCl+2	cnp	Eul3lCl+2	-712032
# EuCl2+	a	Eu+3	EuCl2+	cnp	Eul3lCl2+	-845605
# EuCO3+	a	Eu+3	Eu(CO3)+	cnp	Eul3l(CO3)+	-1148680
# EuF+2	a	Eu+3	EuF+2	cnp	Eul3lF+2	-877904
# EuF2+	a	Eu+3	EuF2+	cnp	Eul3lF2+	-1175067
EuOH+2	a	Eu+3	Eu(OH)+2	cnp	Eul3l(OH)+2	-768037
EuSiO(OH)3+2	a	Eu+3Si	EuHSiO3+2	cnp	EuHSiO3+2	-1634155
# EuSO4+	a	Eu+3	Eu(SO4)+	cnp	Eul3l(SO4)+	-1341469
# Fe(OH)2+	a	Fe+3	FeO+	cnp	Fel3IO+	-222004
# Fe(OH)3	a	Fe+3	FeO2H@	cnp	Fel3lO2H@	-419858
# Fe(OH)4-	a	Fe+3	FeO2-	cnp	Fel3lO2-	-368258
Fe(SO4)2-	a	Fe+3	Fe(SO4)2-	cnp	Fel3l(SO4)2-	-1536813
Fe2(OH)2+4	a	Fe+3	Fe2(OH)2+4	cnp	Fel3l2(OH)2+4	-491898
Fe3(OH)4+5	a	Fe+3	Fe3(OH)4+5	cnp	Fel3l3(OH)4+5	-964328
# FeCl+	a	Fe+2	FeCl+	-	FeCl+	-223593
# FeCl+2		Fe+3	FeCl+2	cnp	Fel3lCl+2	-156923
FeCl2+	a		FeCl2+	cnp	Fel3lCl2+	
FeCl3	a	Fe+3 Fe+3	FeCl3@	cnp	Fel3lCl3@	-291923 -417505
	a			cnp		
FeCO3	a	Fe+2	Fe(CO3)@	cnp	FeCO3@	-644487
# FeF+	a	Fe+2	FeF+	cnp	Fel2IF+	-378963
# FeF+2	a	Fe+3	FeF+2	cnp	Fel3IF+2	-334326
FeF2+	a	Fe+3	FeF2+	cnp	Fel3IF2+	-642333
FeF3	a	Fe+3	FeF3@	cnp	Fel3lF3@	-942349
FeHCO3+	a	Fe+2	Fe(HCO3)+	cnp	FeHCO3+	-689860
FeHSO4+	a	Fe+2	Fe(HSO4)+	cnp	FeHSO4+	-853475
FeHSO4+2	a	Fe+3	Fe(HSO4)+2	cnp	Fel3lHSO4+2	-787148
# FeOH+	a	Fe+2	FeOH+	cnp	FeOH+	-274461
# FeOH+2	a	Fe+3	FeOH+2	cnp	Fel3l(OH)+2	-241868
FeSiO(OH)3+2	a	Fe+3Si	FeHSiO3+2	cnp	Fel3lHSiO3+2	-1087151
FeSO4	a	Fe+2	Fe(SO4)@	cnp	Fe(SO4)@	-848806
FeSO4+	a	Fe+3	Fe(SO4)+	cnp	Fel3l(SO4)+	-784705
# H2AsO4-	a	As+5	H2AsO4-	cnp	H2Asl5lO4-	-753194
# H2S	a	wS-2	H2S@	cnp	H2SI-2I@	-27930
# H2SeO3	a	Se+4	H2SeO3@	cnp	H2Sel4lO3@	-433796
# H3AsO4	a	As+5	H3AsO4@	cnp	H3Asl5lO4@	-766112
# HF	a	wF	HF@	cnp	HF@	-299879
# HF2-	a	wF	HF2-	cnp	HF2-	-584164
# HSe-	a	Se-2	HSe-	cnp	HSel-2l-	35789
# HSeO3-	a	Se+4	HSeO3-	cnp	HSel4lO3-	-417814
# HSO3-	a	wS+4	HSO3-	cnp	HSI4IO3-	-529098
# HSO4-	a	wS+6	HSO4-	cnp	HSI6IO4-	-755805
# I3-	a	wI0-1	I3-	cnp	II1II-1I2-	-291735
# KOH	a	K	KOH@	cnp	КОН@	-437107

Table A1: Continued

Nagra/PSI TDB 01/01		(GEMS Record Keys		Stoichiometry	$\Delta_{ m f} G^\circ$
Name	Phase State	Group	Name	TDB Set		[J/mol]
# KSO4-	a	K	K(SO4)-	cnp	KSO4-	-1031773
# LiOH	a	Li	LiOH@	cnp	LiOH@	-451925
LiSO4-	a	Li	Li(SO4)-	cnp	Li(SO4)-	-1040712
# MgCO3	a	Mg	Mg(CO3)@	cnp	MgCO3@	-998975
# MgF+	a	Mg	MgF+	cnp	MgF+	-746124
# MgHCO3+	a	Mg	Mg(HCO3)+	cnp	MgHCO3+	-1047022
# MgOH+	a	Mg	MgOH+	cnp	Mg(OH)+	-625868
# MgSiO(OH)3+	a	MgSi	Mg(HSiO3)+	cnp	MgHSiO3+	-1477145
MgSiO2(OH)2	a	MgSi	MgSiO3@	cnp	MgSiO3@	-1425031
# MgSO4	a	Mg	MgSO4@	cnp	Mg(SO4)@	-1211972
# MnCl+	a	Mn+2	MnCl+	cnp	MnCl+	-365310
MnCl2	a	Mn+2	MnCl2@	cnp	MnCl2@	-494544
MnCl3-	a	Mn+2	MnCl3-	cnp	MnC13-	-622638
MnCO3	a	Mn+2	Mn(CO3)@	cnp	MnCO3@	-786489
# MnF+	a	Mn+2	MnF+	cnp	MnF+	-517083
MnHCO3+	a	Mn+2	Mn(HCO3)+	cnp	MnHCO3+	-828609
# MnOH+	a	Mn+2	MnOH+	cnp	Mn(OH)+	-407273
# MnSO4	a	Mn+2	Mn(SO4)@	cnp	MnSO4@	-987840
NaCO3-	a	Na	Na(CO3)-	cnp	NaCO3-	-797112
NaF	a	Na	NaF@	cnp	NaF@	-542262
NaHCO3		Na	Na(HCO3)@	enp	NaHCO3@	-847394
NaOH	a a	Na	NaOH@	enp	NaOH@	-418124
# NaSO4-		Na	Na(SO4)-	•	Na(SO4)-	-1010336
Nb(OH)4+	a	Nb+5	NbO2+	cnp	Nbl5lO2+	-752366
	a			cnp		-992106
# Nb(OH)5	a	Nb+5	NbO3H@	cnp	Nbl5lO3H@	
Ni(CO3)2-2	a	Ni Ni	Ni(CO3)2-2	cnp	Ni(CO3)2-2	-1135817
Ni(HS)2	a	Ni Ni	Ni(HS)2@	cnp	Ni(HSI-2I)2@	-85027
Ni(NH3)2+2	a	Ni Ni	Ni(NH3)2+2	cnp	Ni(NI-3IH3)2+2	-126915
Ni(NH3)3+2	a	Ni	Ni(NH3)3+2	cnp	Ni(NI-3IH3)3+2	-162717
Ni(NH3)4+2	a	Ni	Ni(NH3)4+2	cnp	Ni(NI-3IH3)4+2	-195666
Ni(NH3)5+2	a	Ni	Ni(NH3)5+2	cnp	Ni(NI-3IH3)5+2	-226331
Ni(NH3)6+2	a	Ni	Ni(NH3)6+2	cnp	Ni(NI-3IH3)6+2	-252430
Ni(NO3)2	a	Ni	Ni(NO3)2@	cnp	Ni(NO3)2@	-263991
# Ni(OH)2	a	Ni	NiO@	cnp	NiO@	-180044
# Ni(OH)3-	a	Ni	NiO2H-	cnp	NiO2H-	-350443
# Ni(OH)4-2	a	Ni	NiO2-2	cnp	NiO2-2	-263681
Ni(SO4)2-2	a	Ni	Ni(SO4)2-2	cnp	Ni(SO4)2-2	-1552790
Ni2OH+3	a	Ni	Ni2(OH)+3	cnp	Ni2OH+3	-272455
Ni4(OH)4+4	a	Ni	Ni4(OH)4+4	cnp	Ni4(OH)4+4	-971900
# NiCl+	a	Ni	NiCl+	cnp	NiCl+	-179179
NiCl2	a	Ni	NiCl2@	cnp	NiCl2@	-313665
NiCO3	a	Ni	Ni(CO3)@	cnp	NiCO3@	-596419
# NiF+	a	Ni	NiF+	cnp	NiF+	-334777
NiH2PO4+	a	Ni	Ni(H2PO4)+	cnp	NiH2PO4+	-1184725
NiHCO3+	a	Ni	Ni(HCO3)+	cnp	NiHCO3+	-638254
NiHP2O7-	a	Ni	Ni(HP2O7)-	cnp	NiHP2O7-	-2039548
NiHPO4	a	Ni	Ni(HPO4)@	cnp	Ni(HPO4)@	-1151493

Table A1: Continued

Nagra/PSI TDB 01/01		(GEMS Record Keys		Stoichiometry	$\Delta_{ m f} G^\circ$
Name	Phase State	Group	Name	TDB Set		[J/mol]
NiHS+	a	Ni	Ni(HS)+	cnp	Ni(HSl-2l)+	-65031
NiNH3+2	a	Ni	Ni(NH3)+2	cnp	Ni(Nl-3lH3)+2	-87687
NiNO3+	a	Ni	Ni(NO3)+	cnp	NiNO3+	-158794
# NiOH+	a	Ni	NiOH+	cnp	NiOH+	-228562
NiP2O7-2	a	Ni	Ni(P2O7)-2	cnp	NiP2O7-2	-2004329
NiPO4-	a	Ni	Ni(PO4)-	cnp	NiPO4-	-1112050
NiSO4	a	Ni	Ni(SO4)@	cnp	Ni(SO4)@	-803250
Np(CO3)4-4	a	Np+4	Np(CO3)4-4	cnp	Npl4l(CO3)4-4	-2812988
Np(CO3)5-6	a	Np+4	Np(CO3)5-6	cnp	Npl4l(CO3)5-6	-3334862
Np(OH)4	a	Np+4	Np(OH)4@	cnp	Npl4l(OH)4@	-1384427
Np(SO4)2	a	Np+4	Np(SO4)2@	cnp	Npl4l(SO4)2@	-2043626
NpCl+3	a	Np+4	NpCl+3	cnp	Npl4lCl+3	-631485
NpF+3	a	Np+4	NpF+3	cnp	Npl4lF+3	-824528
NpF2+2	a	Np+4	NpF2+2	cnp	Npl4lF2+2	-1144751
NpNO3+3	a	Np+4	Np(NO3)+3	cnp	Npl4lNO3+3	-613384
NpO2(CO3)2-2	a	Np+6	NpO2(CO3)2-2	cnp	Npl6lO2(CO3)2-2	-1946160
NpO2(CO3)2-3	a	Np+5	NpO2(CO3)2-3	cnp	Npl5lO2(CO3)2-3	-2000957
NpO2(CO3)2OH-4	a	Np+5	NpO2(CO3)2OH-4	cnp	Npl5lO2(CO3)2OH-4	-2170614
NpO2(CO3)3-4	a	Np+6	NpO2(CO3)3-4	cnp	Npl6lO2(CO3)3-4	-2490410
NpO2(CO3)3-5	a	Np+5	NpO2(CO3)3-5	cnp	Npl5lO2(CO3)3-5	-2523060
NpO2(HPO4)2-2	a	Np+6	NpO2(HPO4)2-2	cnp	Npl6lO2(HPO4)2-2	-3028406
NpO2(OH)	a	Np+5	NpO2(OH)@	cnp	Npl5lO2(OH)@	-1080403
NpO2(OH)2-	a	Np+5	NpO2(OH)2-	cnp	Npl5lO2(OH)2-	-1247377
NpO2(OH)3-	a	Np+6	NpO2(OH)3-	cnp	Npl6lO2(OH)3-	-1398996
NpO2(OH)4-2	a	Np+6	NpO2(OH)4-2	cnp	Npl6lO2(OH)4-2	-1556267
NpO2(SO4)2-2	a	Np+6	NpO2(SO4)2-2	cnp	Npl6lO2(SO4)2-2	-2311646
NpO2Cl+	a	Np+6	NpO2Cl+	cnp	Npl6lO2Cl+	-929473
NpO2CO3	a	Np+6	NpO2(CO3)@	cnp	Npl6lO2CO3@	-1377081
NpO2CO3-	a	Np+5	NpO2(CO3)-	cnp	Npl5lO2CO3-	-1464014
NpO2F	a	Np+5	NpO2F@	cnp	Npl5lO2F@	-1196321
NpO2F+	a	Np+6	NpO2F+	cnp	Npl6lO2F+	-1103736
NpO2F2	a	Np+6	NpO2F2@	cnp	Npl6lO2F2@	-1402782
NpO2H2PO4+	a	Np+6	NpO2(H2PO4)+	cnp	Npl6lO2H2PO4+	-1945157
NpO2HPO4	a	Np+6	NpO2(HPO4)@	cnp	Npl6lO2HPO4@	-1920430
NpO2HPO4-	a	Np+5	NpO2(HPO4)-	cnp	Npl5lO2HPO4-	-2013699
NpO2OH+	a	Np+6	NpO2(OH)+	cnp	Npl6lO2OH+	-1003972
NpO2SO4	a	Np+6	NpO2(SO4)@	cnp	Npl6lO2Sl6lO4@	-1559081
NpO2SO4-	a	Np+5	NpO2(SO4)-	cnp	Npl5lO2Sl6lO4-	-1654691
NpOH+2	a	Np+3	Np(OH)+2	cnp	Npl3lOH+2	-711122
NpOH+3	a	Np+4	Np(OH)+3	cnp	Npl4lOH+3	-727161
NpSO4+2	a	Np+4	Np(SO4)+2	cnp	Npl4lSl6lO4+2	-1275193
Pd(NH3)2+2	a	Pd	Pd(NH3)2+2	cnp	Pdl2l(Nl-3lH3)2+2	17626
Pd(NH3)3+2	a	Pd	Pd(NH3)3+2	cnp	Pdl2l(Nl-3lH3)3+2	-51854
Pd(NH3)4+2	a	Pd	Pd(NH3)4+2	cnp	Pdl2l(Nl-3lH3)4+2	-117338
# Pd(OH)2	a	Pd	PdO@	cnp	Pdl2lO@	-37786
Pd(OH)3-	a	Pd	PdO2H-	cnp	Pdl2lO2H-	-209327
# PdCl+	a	Pd	PdCl+	cnp	Pdl2lCl+	16164

Table A1: Continued

Nagra/PSI TDB 01/01		(GEMS Record Keys		Stoichiometry	$\Delta_{ m f} G^\circ$
Name		Group	Name	TDB Set		[J/mol]
# D ICIO	State	D.I.	D ICIA O		D HOLGIO	122201
# PdCl2	a	Pd	PdCl2@	cnp	Pdl2lCl2@	-133391
PdCl2(OH)2-2	a	Pd	PdCl2(OH)2-2	cnp	Pdl2lCl2(OH)2-2	-520424
# PdC13-	a	Pd	PdCl3-	cnp	Pdl2lCl3-	-279522
PdCl3OH-2	a	Pd	PdCl3(OH)-2	cnp	Pdl2lCl3OH-2	-468757
# PdC14-2	a	Pd	PdCl4-2	cnp	Pdl2lCl4-2	-415378
PdNH3+2	a	Pd	Pd(NH3)+2	cnp	Pdl2lNl-3lH3+2	95098
Pu(CO3)4-4	a	Pu+4	Pu(CO3)4-4	cnp	Pul4l(CO3)4-4	-2794843
Pu(CO3)5-6	a	Pu+4	Pu(CO3)5-6	cnp	Pul4l(CO3)5-6	-3314833
Pu(OH)4	a	Pu+4	PuO2@	cnp	Pul4lO2@	-904416
Pu(SO4)2	a	Pu+4	Pu(SO4)2@	cnp	Pul4l(Sl6lO4)2@	-2030503
Pu(SO4)2-	a	Pu+3	Pu(SO4)2-	cnp	Pul3l(Sl6lO4)2-	-2100427
PuCl+2	a	Pu+3	PuCl+2	cnp	Pul3lCl+2	-717112
PuCl+3	a	Pu+4	PuCl+3	cnp	Pul4lCl+3	-619562
PuF+3	a	Pu+4	PuF+3	cnp	Pul4lF+3	-810207
PuF2+2	a	Pu+4	PuF2+2	cnp	Pul4lF2+2	-1131115
PuH3PO4+4	a	Pu+4	Pu(H3PO4)+4	cnp	Pul4lH3Pl5lO4+4	-1634219
PuNO3+3	a	Pu+4	Pu(NO3)+3	cnp	Pul4 N 5 O3+3	-600033
PuO2(CO3)2-2	a	Pu+6	PuO2(CO3)2-2	cnp	Pul6lO2(CO3)2-2	-1901701
PuO2(CO3)3-4	a	Pu+6	PuO2(CO3)3-4	cnp	Pul6lO2(CO3)3-4	-2447377
PuO2(CO3)3-5	a	Pu+5	PuO2(CO3)3-5	cnp	Pul5lO2(CO3)3-5	-2465186
PuO2(OH)2	a	Pu+6	PuO2(OH)2@	cnp	Pul6lO2(OH)2@	-1161420
PuO2(SO4)2-2	a	Pu+6	PuO2(SO4)2-2	cnp	Pul6lO2(Sl6lO4)2-2	-2276434
PuO2Cl+	a	Pu+6	PuO2Cl+	cnp	Pul6lO2Cl+	-897685
PuO2Cl2	a	Pu+6	PuO2Cl2@	cnp	Pul6lO2Cl2@	-1021555
PuO2CO3	a	Pu+6	PuO2(CO3)@	cnp	Pul6lO2CO3@	-1343466
PuO2CO3-	a	Pu+5	PuO2(CO3)-	cnp	Pul5lO2CO3-	-1409908
PuO2F+	a	Pu+6	PuO2F+	cnp	Pul6lO2F+	-1070179
PuO2F2	a	Pu+6	PuO2F2@	cnp	Pul6lO2F2@	-1367284
PuO2OH	a	Pu+5	PuO2(OH)@	cnp	Pul5lO2OH@	-1034345
PuO2OH+		Pu+6	PuO2(OH)+	-	Pul6lO2OH+	-968189
PuO2SO4	a			cnp	Pul6lO2SI6lO4@	-1526152
PuOH+2	a	Pu+6 Pu+3	PuO2(SO4)@ Pu(OH)+2	cnp	Pul3IOH+2	-776770
PuOH+2 PuOH+3	a	Pu+4	Pu(OH)+3	cnp	Pul4lOH+3	-710778
PuSO4+	a			cnp	Pul3ISI6IO4+	
	a	Pu+3	Pu(SO4)+	cnp		-1345693
PuSO4+2	a	Pu+4	Pu(SO4)+2	cnp	Pul4 S 6 O4+2	-1261785
RaCl+	a	Ra	RaCl+	cnp	RaCl+	-692212
RaCO3	a	Ra	Ra(CO3)@	cnp	RaCO3@	-1103745
RaOH+	a	Ra	Ra(OH)+	cnp	RaOH+	-721617
RaSO4	a	Ra	Ra(SO4)@	cnp	RaSO4@	-1321649
S-2	a	wS-2	S-2	cnp	SI-2I-2	120422
# SeO4-2	a	Se+6	SeO4-2	cnp	Sel6lO4-2	-450763
# Sn(OH)2	a	Sn+2	SnO@	cnp	Snl2lO@	-220720
Sn(OH)3-	a	Sn+2	SnO2H-	cnp	Snl2lO2H-	-401964
Sn(OH)5-	a	Sn+4	SnO3H-	cnp	Snl4lO3H-	-671156
Sn(OH)6-2	a	Sn+4	SnO3-2	cnp	Snl4lO3-2	-611793
Sn3(OH)4+2	a	Sn+2	Sn3(OH)4+2	cnp	Snl2l3(OH)4+2	-999234
SnCl+	a	Sn+2	SnCl+	cnp	Snl2lCl+	-168482

Table A1: Continued

Nagra/PSI TDB 01/01		(GEMS Record Keys		Stoichiometry	$\Delta_{ m f} G$ $^{\circ}$
Name	Phase State	Group	Name	TDB Set		[J/mol]
SnCl2	a	Sn+2	SnCl2@	cnp	Snl2lCl2@	-303539
SnCl3-	a	Sn+2	SnCl3-	cnp	Snl2lCl3-	-433345
SnF+	a	Sn+2	SnF+	cnp	Snl2lF+	-337780
# SnOH+	a	Sn+2	SnOH+	cnp	Snl2l(OH)+	-242981
SnOHCl	a	Sn+2	Sn(OH)Cl@	cnp	Snl2lOHCl@	-378267
SnSO4	a	Sn+2	Sn(SO4)@	cnp	Snl2lSO4@	-786789
# SrCO3	a	Sr	Sr(CO3)@	cnp	Sr(CO3)@	-1107830
# SrHCO3+	a	Sr	Sr(HCO3)+	cnp	SrHCO3+	-1157538
# SrOH+	a	Sr	SrOH+	cnp	Sr(OH)+	-725159
SrSO4	a	Sr	Sr(SO4)@	cnp	Sr(SO4)@	-1321366
TcCO3(OH)2	a	Tc+4	TcCO3(OH)2@	cnp	Tcl4lCO3(OH)2@	-963799
TcCO3(OH)3-	a	Tc+4	TcCO3(OH)3-	cnp	Tcl4lCO3(OH)3-	-1153605
TcO(OH)+	a	Tc+4	TcO(OH)+	cnp	Tcl4lO(OH)+	-339922
TcO(OH)3-	a	Tc+4	TcO(OH)3-	cnp	Tcl4lO(OH)3-	-737800
TcO+2	a	Tc+4	TcO+2	cnp	Tcl4lO+2	-111301
Th(CO3)5-6	a	Th	Th(CO3)5-6	cnp	Thl4l(CO3)5-6	-3515012
Th(OH)4	a	Th	ThO2@	cnp	Thl4lO2@	-1074342
Th(SO4)2	a	Th	Th(SO4)2@	cnp	Thl4l(SO4)2@	-2260135
Th(SO4)3-2	a	Th	Th(SO4)3-2	cnp	Th 4 (SO4)3-2	-3009161
ThCO3(OH)3-	a	Th	Th(CO3)(OH)3-	cnp	Th/4/CO3(OH)3-	-1926840
ThF+3	a	Th	ThF+3	cnp	Thl4lF+3	-1032419
ThF2+2	a	Th	ThF2+2	cnp	Thl4lF2+2	-1349559
ThF3+		Th	ThF3+		Th 4 F3+	-1658137
ThF4	a	Th	ThF4@	cnp	Th 4 F4@	-1058137
	a			cnp	Thl4lHPO4+2	-1939293
ThHPO4+2	a	Th	Th(HPO4)+2	cnp	Th/4/OH+3	-928488
ThOH+3	a	Th	Th(OH)+3	cnp		
ThSO4+2	a	Th	Th(SO4)+2	cnp	Thl4ISO4+2	-1492844
U(CO3)4-4	a	U+4	U(CO3)4-4	cnp	Ul4l(CO3)4-4	-2842800
U(CO3)5-6	a	U+4	U(CO3)5-6	cnp	Ul4l(CO3)5-6	-3364389
U(NO3)2+2	a	U+4	U(NO3)2+2	cnp	Ul4l(NO3)2+2	-764775
# U(OH)4	a	U+4	UO2@	cnp	Ul4lO2@	-952830
U(SO4)2	a	U+4	U(SO4)2@	cnp	Ul4l(SO4)2@	-2078746
UCl+3	a	U+4	UCl+3	cnp	Ul4lCl+3	-670944
UF+3	a	U+4	UF+3	cnp	Ul4lF+3	-864557
UF2+2	a	U+4	UF2+2	cnp	Ul4lF2+2	-1185979
UF3+	a	U+4	UF3+	cnp	Ul4lF3+	-1498381
UF4	a	U+4	UF4@	cnp	Ul4lF4@	-1802964
UF5-	a	U+4	UF5-	cnp	Ul4lF5-	-2092763
UF6-2	a	U+4	UF6-2	cnp	Ul4lF6-2	-2386329
UNO3+3	a	U+4	U(NO3)+3	cnp	Ul4l(NO3)+3	-649132
UO2(CO3)2-2	a	U+6	UO2(CO3)2-2	cnp	Ul6lO2(CO3)2-2	-2105271
UO2(CO3)3-4	a	U+6	UO2(CO3)3-4	cnp	(Ul6lO2)(CO3)3-4	-2659852
UO2(CO3)3-5	a	U+5	UO2(CO3)3-5	cnp	(Ul5lO2)(CO3)3-5	-2587325
UO2(H2PO4)2	a	U+6	UO2(H2PO4)2@	cnp	Ul6lO2(H2PO4)2@	-3241309
# UO2(OH)2	a	U+6	UO3@	cnp	Ul6lO3@	-1121300
UO2(OH)3-	a	U+6	UO4H-	cnp	Ul6lO4H-	-1317385
# UO2(OH)4-2	a	U+6	UO4-2	cnp	Ul6lO4-2	-1238614

Table A1: Continued

Nagra/PSI TDB 01/01		G	EMS Record Keys		Stoichiometry	$\Delta_{ m f} G^\circ$
Name	Phase State	Group	Name	TDB Set		[J/mol]
UO2(SO4)2-2	a	U+6	UO2(SO4)2-2	cnp	Ul6lO2(SO4)2-2	-2465162
UO2Cl+	a	U+6	UO2Cl+	cnp	Ul6lO2Cl+	-1084873
UO2C12	a	U+6	UO2Cl2@	cnp	Ul6lO2Cl2@	-1208914
UO2CO3	a	U+6	UO2(CO3)@	cnp	Ul6lO2(CO3)@	-1535791
UO2F+	a	U+6	UO2F+	cnp	Ul6lO2F+	-1263417
UO2F2	a	U+6	UO2F2@	cnp	Ul6lO2F2@	-1565317
UO2F3-	a	U+6	UO2F3-	cnp	Ul6lO2F3-	-1860082
UO2F4-2	a	U+6	UO2F4-2	cnp	Ul6lO2F4-2	-2146399
UO2H2PO4+	a	U+6	UO2(H2PO4)+	cnp	Ul6lO2(H2PO4)+	-2101528
UO2H2PO4H3PO4+	a	U+6	UO2H5(PO4)2+	cnp	Ul6lO2H5(PO4)2+	-3247074
UO2H3PO4+2	a	U+6	UO2(H3PO4)+2	cnp	Ul6lO2(H3PO4)+2	-2099473
UO2HPO4	a	U+6	UO2(HPO4)@	cnp	Ul6lO2(HPO4)@	-2083079
UO2NO3+	a	U+6	UO2(NO3)+	cnp	Ul6lO2(NO3)+	-1065230
# UO2OH+	a	U+6	UO2OH+	cnp	Ul6lO2(OH)+	-1160114
UO2PO4-	a	U+6	UO2(PO4)-	cnp	Ul6lO2(PO4)-	-2046776
UO2SO4	a	U+6	UO2(SO4)@	cnp	Ul6lO2(SO4)@	-1715052
# UOH+3	a	U+4	U(OH)+3	cnp	Ul4l(OH)+3	-763937
USO4+2	a	U+4	U(SO4)+2	cnp	Ul4l(SO4)+2	-1311854
# Zr(OH)4	a	Zr	ZrO2@	cnp	Zrl4lO2@	-976600
# Zr(OH)5-	a	Zr	ZrO3H-	cnp	Zrl4lO3H-	-1177822
ZrCl+3	a	Zr	ZrCl+3	cnp	ZrCl+3	-697453
ZrF+3	a	Zr	ZrF+3	cnp	ZrF+3	-897574
ZrF2+2	a	Zr	ZrF2+2	cnp	ZrF2+2	-1226701
ZrF3+	a	Zr	ZrF3+	cnp	ZrF3+	-1543842
ZrF4	a	Zr	ZrF4@	cnp	ZrF4@	-1856416
ZrF5-	a	Zr	ZrF5-	cnp	Zrl4lF5-	-2164423
ZrF6-2	a	Zr	ZrF6-2	cnp	Zrl4lF6-2	-2467294
# ZrOH+3	a	Zr	Zr(OH)+3	cnp	Zrl4lOH+3	-796497
ZrSO4+2	a	Zr	Zr(SO4)+2	cnp	Zrl4lSO4+2	-1342017
Solids	u	Zi	21(501)12	СПР	2111190112	13 12017
(NH4)4NpO2(CO3)3(s)	s	NnCNHO	AM4NpO2(CO3)3	dnp	(NI-3IH4)4Npl6IO2(CO3)3	-2850458
(UO2)3(PO4)2:4H2O(cr)		UPOH	(UO2)3(PO4)2w4	dnp	(Ul6lO2)3(PO4)2(H2O)4	-6125634
Am(CO3)1.5(cr)	s	AmCO	Am(CO3)1.5	dnp	Am(CO3)1.5	-1485995
Am(OH)3(am)	s	AmOH	Am(OH)3(am)	dnp	Am(OH)3	-1213210
Am(OH)3(cr)	s	AmOH	Am(OH)3(cr)	dnp	Am(OH)3	-1213210
AmCO3OH(cr)	s	AmCOH	AmCO3OH(cr)	dnp	AmCO3OH	-1404961
# Anhydrite	s	CaSO	Anh	dnp	CaSO4	-1322122
# Aragonite		CaCO	Arg	dnp	CaCO3	-1322122
As(cr)	s s	As0	As	dnp	Asl0l	-1126333
Baddeleyite	s	ZrO	Baddeleyite	dnp	Zrl4lO2	-1042813
# Barite		BaSO	Brt	dnp	BaSO4	-1042813
# Brucite	S		Brc	-	Mg(OH)2	-832227
	S	MgOH		dnp	CaCO3	-832227 -1129176
# Calcite	S	CaCO	Cas (OU)6(a)	dnp		
CaSn(OH)6(s)	S	SnCaOH	CaSn(OH)6(s)	dnp	CaSnl4l(OH)6	-1931499 525302
# Cassiterite	S	SnO	Cst	dnp	Snl4lO2	-525302 1246150
# Celestite	S	SrSO	Cls	dnp	SrSO4	-1346150
Chernikovite	S	UPOH	chernikovite	dnp	Ul6lO2HPO4(H2O)4	-3058137

Table A1: Continued

Nagra/PSI TDB 01/01		GI	EMS Record Keys		Stoichiometry	$\Delta_{ m f} G^\circ$
Name	Phase	Group	Name	TDB Set	-	[J/mol]
	State					
# Dolomite(dis)	S	CaMgCO	Dis-Dol	dnp	CaMg(CO3)2	-2157149
# Dolomite(ord)	S	CaMgCO	Ord-Dol	dnp	CaMg(CO3)2	-2160289
Eu(OH)3(am)	S	EuOH	Eu(OH)3(am)	dnp	Eul3l(OH)3	-1185551
Eu(OH)3(cr)	s	EuOH	Eu(OH)3(cr)	dnp	Eul3l(OH)3	-1200962
Eu2(CO3)3(cr)	s	EuCO	Eu2(CO3)3	dnp	Eul3l2(CO3)3	-2932653
EuF3(cr)	s	EuF	EuF3	dnp	Eul3lF3	-1519035
EuOHCO3(cr)	s	EuCOH	EuCO3OH(cr)	dnp	EuOHCO3	-1383580
Fe(cr)	s	Fe0	Fe	dnp	Fel0l	0
Fe(OH)3(am)	s	FeOH	Fe(OH)3(am)	dnp	Fel3l(OH)3	-700194
Fe(OH)3(mic)	s	FeOH	Fe(OH)3(mic)	dnp	Fel3l(OH)3	-711610
FeCO3(pr)	s	FeCO	FeCO3(pr)	dnp	FeCO3	-679136
# Fluorite	s	CaF	Fl	dnp	Cal2lF2	-1176794
# Gibbsite	s	AlOH	Gbs	dnp	Al(OH)3	-1150986
# Goethite	s	FeOH	Gt	dnp	Fel3lO(OH)	-497259
# Graphite	s	C0	Gr	dnp	Cl0l	0
Gypsum	s	CaSO	Gp	dnp	CaSO4(H2O)2	-1797763
Hausmannite	s	MnO	Hausmannite	dnp	Mnl3l2Mnl2lO4	-1291984
# Hematite	s	FeO	Hem	dnp	Fel3l2O3	-739527
K4NpO2(CO3)3(s)	s	NpKCO	K4NpO2(CO3)3	dnp	K4Npl6lO2(CO3)3	-3660384
# Kaolinite	s	AlSiOH	Kln	dnp	Al2Si2O5(OH)4	-3777714
# Magnesite	s	MgCO	Mgs	dnp	MgCO3	-1029275
# Magnetite	s	FeO	Mag	dnp	FeFel3l2Ol-2l4	-1017412
Manganite	s	MnOH	Manganite	dnp	Mnl3lOOH	-560262
Melanterite	s	FeSO	Melanterite	dnp	FeSO4(H2O)7	-2508855
Mo(cr)	s	Mo0	Mo	dnp	Mol0l	0
Molybdite	s	MoO	Molybdite	dnp	Mol6lO3	-670101
Na3NpO2(CO3)2(s)	s	NpNaCO	Na3NpO2(CO3)2	dnp	Na3Npl5lO2(CO3)2	-2833235
NaNpO2CO3(s,ag)	s	NpNaCO	NaNpO2CO3	dnp	NaNpl5lO2CO3	-1764139
NaNpO2CO3:3.5H2O(s,fr)	s	-	NaNpO2CO3w3.5	dnp	NaNpl5lO2CO3(H2O)3.5	-2591425
Nb2O5(cr)	s	NbO	Nb2O5(cr)	dnp	Nbl5l2O5	-1564952
NbO2(cr)	s	NbO	NbO2(cr)	dnp	Nbl4lO2	-757515
NiCO3(cr)	s	NiCO	NiCO3(cr)	dnp	NiCO3	-637517
NpO2(am,hyd)	s	NpO	NpO2(am)	dnp	Npl4lO2	-957438
NpO2CO3(s)	s	NpCO	NpO2CO3	dnp	Npl6lO2CO3	-1407219
NpO2OH(am,ag)	s	NpOH	NpO2OH(am,ag)	dnp	Npl5lO2OH	-1118076
NpO2OH(am,fr)	s	NpOH	NpO2OH(am,fr)	dnp	Npl5lO2OH	-1114651
NpO3:H2O(cr)	s	NpOH	NpO3w1	dnp	Npl6lO3H2O	-1239043
# Pd(cr)	s	Pd0	Pd	dnp	Pdl0l	0
# Pd(OH)2(s)	s	PdOH	Pd(OH)2(s)	dnp	Pdl2l(OH)2	-316338
Portlandite	s	СаОН	Portlandite	dnp	Ca(OH)2	-897013
Pu(HPO4)2(am,hyd)	s	PuPOH	Pu(HPO4)2	dnp	Pul4l(HPO4)2	-2830088
Pu(OH)3(cr)	s	PuOH	Pu(OH)3(cr)	dnp	Pul3l(OH)3	-1200335
PuO2(hyd,ag)	s	PuO	PuO2(hyd)	dnp	Pul4lO2	-963780
PuO2(OH)2:H2O(cr)	s	PuOH	PuO2(OH)2w1	dnp	Pul6lO2(OH)2H2O	-1442555
PuO2CO3(s)	s	PuCO	PuO2CO3	dnp	Pul6lO2CO3	-1371436
PuO2OH(am)	s	PuOH	PuO2OH(am)	dnp	Pul5lO2OH	-1061344
1 UOZOII(alli)	3	тuОП	1 uO2O11(alli)	шр	1 013102011	-1001344

Table A1: Continued

Nagra/PSI TDB 01/01		(GEMS Record Keys		Stoichiometry	$\Delta_{ m f} G\degree$
Name	Phase State	Group	Name	TDB Set		[J/mol]
PuPO4(s,hyd)	s	PuPO	PuPO4	dnp	Pul3lPl5lO4	-1738036
# Pyrite	s	FeS	Py	dnp	FeSI0ISI-2I	-173165
Pyrochroite	s	MnOH	pyrochroite	dnp	Mn(OH)2	-618142
Pyrolusite	s	MnO	Pyrolusite	dnp	Mnl4lO2	-468705
# Quartz	s	SiO	Qtz	dnp	SiO2	-854793
RaCO3(cr)	s	RaCO	RaCO3	dnp	RaCO3	-1136851
RaSO4(cr)	s	RaSO	RaSO4	dnp	RaSl6lO4	-1364516
# Rhodochrosite	s	MnCO	Rds	dnp	MnCO3	-822051
Rhodochrosite(syn)	s	MnCO	Rds-Syn	dnp	MnCO3	-817827
Rutherfordine	s	UCO	rutherfordine	dnp	Ul6lO2CO3	-1563304
# S(rhomb)	s	S0	Sulfur	dnp	SIOI	0
Schoepite	s	UOH	Schoepite	dnp	Ul6lO3(H2O)2	-1630142
Se(cr)	s	Se0	Se	dnp	Sel0l	0
# Siderite	s	FeCO	Sd	dnp	FeCO3	-681647
# SiO2(am)	s	SiO	Amor-Sl	dnp	SiO2	-848903
# Sn(cr)	s	Sn0	Sn	dnp	Snl0l	0
# SnO(s)	s	SnO	Sn-Ox	dnp	Snl2lO	-250402
SnO2(am)	s	SnO	SnO2(am)	dnp	Snl4lO2	-521306
SnS(pr)	s	SnS	SnS	dnp	Snl2lSl-2l	-99428
# Strontianite	s	SrCO	Str	dnp	SrCO3	-1144735
TcO2:1.6H2O(s)	s	ТсОН	TcO2w1.6	dnp	Tcl4lO2(H2O)1.6	-753092
Theophrastite	s	NiOH	theophrastite	dnp	Ni(OH)2	-460037
ThF4(cr)	s	ThF	ThF4	dnp	Thl4lF4	-2004389
ThO2(s)	s	ThO	ThO2(s)	dnp	Thl4IOI-2I2	-1122860
Troilite	s	FeS	Tro	dnp	Fel2ISI-2I	-109845
Tugarinovite	s	MoO	Tugarinovite	dnp	Mol4lO2	-535098
U(OH)2SO4(cr)	s	USOH	U(OH)2SO4(cr)	dnp	Ul4l(OH)2Sl6lO4	-1766756
UF4:2.5H2O(cr)	s	UFOH	UF4w2.5	dnp	Ul4lF4(H2O)2.5	-2417498
# UO2(s)	s	UO	UO2	dnp	Ul4lO2	-1004202
USiO4(s)	s	USiO	USiO4	dnp	Ul4lSiO4	-1854670
Witherite	s	BaCO	witherite	dnp	BaCO3	-1137634
Gases						
# CH4(g)	g	C-4	CH4	enp	Cl-4lH4	-50659
# CO2(g)	g	C+4	CO2	enp	CO2	-394393
# H2(g)	g	H0	H2	enp	HI012	0
# H2S(g)	g	S-2	H2S	enp	H2SI-2I	-33752
# N2(g)	g	N0	N2	enp	NI012	0
# O2(g)	g	00	O2	enp	Ol0l2	0
Not in original Nagra/PSI	TDB 01/0)1				
# -	a	wCl+7	ClO4-	add	C1171O4-	-8535
# -	a	WN0	N2@	atm	Nitl0l2	18194
# -	g	N0	N2	add	Nitl0l2	0

Table A2 Sources of thermodynamic data for aqueous species, solids, and gases. Braces around thermodynamic parameters indicate that they are not sufficient for the

reliable calculation of the temperature dependence of $\log_{10}K^{\circ}$ or $\Delta_{\rm f}G^{\circ}$. Nagra/PSI: Nagra/PSI TDB 01/01 [2002HUM/BER]
Nagra/PSI*: This work, calculated from $\log_{10}K^{\circ}$ in Nagra/PSI TDB 01/01, see text for discussion [2002THO/BER], calculated from $\log_{10}K^{\circ}$ in Nagra/PSI TDB 01/01, see text for discussion PRONSPREP: Slop98.dat: Datafile slop98.dat (version 30. Oct 1998) for SUPCRT92 [1992JOH/OEL] SUPCRT92: Datafile sprons92.dat (version 15. Feb. 1991) for SUPCRT92 [1992JOH/OEL] SUPCRT92 code: Coded into SUPCRT92

Aqueous species, solid, or gas also contained in slop98.dat (version 30. Oct 1998)

#:			olid, or gas also contai	neu iii siop 36.ua		790)
Nagra/PSI TDB 01/01	Non-	Record	Source for $\Delta_f G^\circ$ or		Data for	C
Name	conventional Stoich.	Type in GEMS	$\log_{10}K^{\circ}$	Assumptions	Calculation of T- Dependence	Source
Primary Master Species	Stolen.	GEMS			Dependence	
# Al+3		DComp	[1997SHO/SAS]		HKF, S°	[1997SHO/SAS]
# AI+3 Am+3		DComp	[1997SHO/SAS] [1995SIL/BID]		HKF, S°	[1999MUR/SHO]
# B(OH)3		DComp			HKF, S°	
# B(OH)3 # Ba+2		-	[1989SHO/HEL]		HKF, S°	[1989SHO/HEL]
# Br-		DComp	[1997SHO/SAS]			[1997SHO/SAS]
		DComp	[1997SHO/SAS]		HKF, S°	[1997SHO/SAS]
# Ca+2		DComp	[1997SHO/SAS]		HKF, S°	[1997SHO/SAS]
# Cl-		DComp	[1997SHO/SAS]		HKF, S°	[1997SHO/SAS]
# Cs+		DComp	[1997SHO/SAS]		HKF, S°	[1997SHO/SAS]
e-		D. G	5400 = 0770 (0.4.0)			
# Eu+3		DComp	[1997SHO/SAS]		HKF, S°	[1997SHO/SAS]
# F-		DComp	[1997SHO/SAS]		HKF, S°	[1997SHO/SAS]
# Fe+2		DComp	[1997SHO/SAS]		HKF, S°	[1997SHO/SAS]
# H+		DComp	$\Delta fG^{\circ} = 0$		standard hydrogen scale convention	[1997SHO/SAS]
# H2O		DComp	SUPCRT92		equation of state	SUPCRT 92 code
# HAsO4-2		DComp	[1997SHO/SAS]		HKF, S°	[1997SHO/SAS]
# HCO3-		DComp	[1997SHO/SAS]		HKF, S°	[1997SHO/SAS]
# HPO4-2		DComp	[1997SHO/SAS]		HKF, S°	[1997SHO/SAS]
# I-		DComp	[1997SHO/SAS]		HKF, S°	[1997SHO/SAS]
# K+		DComp	[1997SHO/SAS]		HKF, S°	[1997SHO/SAS]
# Li+		DComp	[1997SHO/SAS]		HKF, S°	[1997SHO/SAS]
# Mg+2		DComp	[1997SHO/SAS]		HKF, S°	[1997SHO/SAS]
# Mn+2		DComp	[1997SHO/SAS]		HKF, S°	[1997SHO/SAS]
# MoO4-2		DComp	[1997SHO/SAS]		HKF, S°	[1997SHO/SAS]
# Na+		DComp	[1997SHO/SAS]		HKF, S°	[1997SHO/SAS]
# NbO3-		DComp	[1997SHO/SAS]		HKF, S°	[1997SHO/SAS]
# Ni+2		DComp	[1997SHO/SAS]		HKF, S°	[1997SHO/SAS]
# NO3-		DComp	[1997SHO/SAS]		HKF, S°	[1997SHO/SAS]
NpO2+2		DComp	Nagra/PSI		$\{S^{\circ}\}$	Nagra/PSI
# Pd+2		DComp	[1998SAS/SHO]		HKF, S°	[1998SAS/SHO]
PuO2+2		DComp	Nagra/PSI		$\{S^{\circ}\}$	Nagra/PSI
# Ra+2		DComp	[1997SHO/SAS]		HKF, S°	[1997SHO/SAS]
# SeO3-2		DComp	[1997SHO/SAS]		HKF, S°	[1997SHO/SAS]
# Si(OH)4	SiO2	DComp	[1989SHO/HEL]		HKF, S°	[1989SHO/HEL]
Sn(OH)4	SnO2	DComp	this work			
# Sn+2		DComp	[1997SHO/SAS]		HKF, S°	[1997SHO/SAS]
# SO4-2		DComp	[1997SHO/SAS]		HKF, S°	[1997SHO/SAS]
# Sr+2		DComp	[1997SHO/SAS]		HKF, S°	[1997SHO/SAS]
# TcO4-		DComp	[1997SHO/SAS]		HKF, S°	[1997SHO/SAS]
# Th+4		DComp	[1997SHO/SAS]		HKF, S°	[1997SHO/SAS]
# UO2+2		DComp	[1997SHO/SAS2]		HKF, S°	[1997SHO/SAS2]
# Zr+4		DComp	[1997SHO/SAS]		HKF, S°	[1997SHO/SAS]
		P			-,~	

Table A2: Continued

# As(OH)3	SHO/SAS] SHO/SAS] SHO/HEL] SHO/HEL] SHO/SAS] SHO/SAS] SHO/HEL] SHO/SAS] SHO/SAS] SHO/SAS] SHO/HEL] SHO/SAS] SHO/HEL] SHO/HEL] SHO/HEL]
# As(OH)3	SHO/SAS] SHO/HEL] SHO/HEL] SHO/SAS] SHO/SAS] SHO/HEL] SHO/SAS] SHO/SAS] SHO/SAS] SHO/SAS] SHO/HEL] SHO/HEL] SHO/HEL]
# CH4	SHO/HEL] SHO/SAS] SHO/SAS] SHO/SAS] SHO/HEL] SHO/SAS] SHO/HEL] SHO/SAS] SHO/HEL] SHO/HEL] SHO/HEL]
# CO2	SHO/HEL] SHO/SAS] SHO/SAS] SHO/HEL] SHO/SAS] SHO/HEL] SHO/SAS] SHO/SAS] SHO/HEL] SHO/HEL] SHO/HEL]
# CO3-2 DComp Nagra/PSI* HKF, S° [1997S] # Eu+2 DComp Nagra/PSI* HKF, S° [1997S] # Fe+3 DComp Nagra/PSI* HKF, S° [1997S] # H2 DComp Nagra/PSI* HKF, S° [1997S] # H2PO4- DComp Nagra/PSI* HKF, S° [1997S] # H3PO4 DComp Nagra/PSI* # H3PO4 DComp Nagra/PSI* # HS- DComp Nagra/PSI* HKF, S° [1997S] # N2 DComp Nagra/PSI* # N2 DComp Nagra/PSI* # N4 DComp Nagra/PSI* # N4 DComp Nagra/PSI* # N5 [1989S] # NH4 DComp Nagra/PSI* # NF, S° [1989S] # NH4+ DComp Nagra/PSI* # NF, S° [1997S] # NH4+ DCOmp Nagra/PSI* # NF, S° [1997S] # NAgra/PSI*	SHO/SAS] SHO/SAS] SHO/HEL] SHO/SAS] SHO/HEL] SHO/SAS] SHO/SAS] SHO/HEL] SHO/HEL]
# Eu+2 DComp Nagra/PSI* HKF, S° [1997S] # Fe+3 DComp Nagra/PSI* HKF, S° [1997S] # H2 DComp Nagra/PSI* HKF, S° [1989S] # H2PO4- DComp Nagra/PSI* HKF, S° [1997S] H2Se DComp Nagra/PSI* # H3PO4 DComp Nagra/PSI* # HS- DComp Nagra/PSI* HKF, S° [1989S] # HS- DComp Nagra/PSI* HKF, S° [1997S] # HSeO4- DComp Nagra/PSI* HKF, S° [1997S] # N2 DComp Nagra/PSI* # N2 DComp Nagra/PSI* # N4 DComp Nagra/PSI* # N4 DComp Nagra/PSI* # N4 DComp Nagra/PSI* # N4 DComp Nagra/PSI* # N5 [1989S] # N6	SHO/SAS] SHO/SAS] SHO/HEL] SHO/SAS] SHO/SAS] SHO/SAS] SHO/HEL] SHO/HEL] SHO/HEL]
# Fe+3	SHO/SAS] SHO/HEL] SHO/SAS] SHO/SAS] SHO/SAS] SHO/HEL] SHO/HEL] SHO/SAS]
# H2 DComp Nagra/PSI* HKF, S° [1989S] # H2PO4- H2Se DComp Nagra/PSI* HKF, S° [1997S] H3PO4 DComp Nagra/PSI* HKF, S° [1997S] HKF, S° [1989S] HKF, S° [1997S] HKF, S° [1997S] HKF, S° [1997S] HKF, S° [1989S]	SHO/HEL] SHO/SAS] SHO/SAS] SHO/SAS] SHO/HEL] SHO/HEL] SHO/SAS]
# H2PO4- H2Se DComp Nagra/PSI* H3PO4 DComp Nagra/PSI* # H3PO4 DComp Nagra/PSI* # HS- DComp Nagra/PSI* HKF, S° [1997S] # HSeO4- DComp Nagra/PSI* HKF, S° [1997S] # N2 DComp Nagra/PSI* # N2 DComp Nagra/PSI* HKF, S° [1997S] # NH3 DComp Nagra/PSI* HKF, S° [1997S] # NH4+ DComp Nagra/PSI* HKF, S° [1989S] # NH4+ DComp Nagra/PSI* HKF, S° [1989S] # NH4+ DComp Nagra/PSI* Ngra/PSI* HKF, S° [1989S] # NH4+ DComp Nagra/PSI* Ngra/PSI* HKF, S° [1989S] # NH4+ DComp Nagra/PSI* Ngra/PSI* Ngra/PSI*	SHO/SAS] SHO/HEL] SHO/SAS] SHO/SAS] SHO/HEL] SHO/HEL] SHO/SAS]
H2Se DComp Nagra/PSI* # H3PO4 DComp Nagra/PSI* HKF, S° [1989S] # HS- DComp Nagra/PSI* HKF, S° [1997S] # HSeO4- DComp Nagra/PSI* HKF, S° [1997S] 12 DComp Nagra/PSI* HKF, S° [1989S] # NY2 DComp Nagra/PSI* HKF, S° [1989S] # NH3 DComp Nagra/PSI* HKF, S° [1989S] # NH4+ DComp Nagra/PSI* HKF, S° [1997S] Np+3 DComp Nagra/PSI* KS°} Nagra/PSI*	SHO/HEL] SHO/SAS] SHO/SAS] SHO/HEL] SHO/HEL] SHO/SAS]
# H3PO4 DComp Nagra/PSI* HKF, S° [1989S] # HS- # HSeO4- DComp Nagra/PSI* HKF, S° [1997S] # HSeO4- DComp Nagra/PSI* HKF, S° [1997S] # N2 DComp Nagra/PSI* # N13 DComp Nagra/PSI* # NH4+ DComp Nagra/PSI* Np+3 DComp Nagra/PSI* # S° [1989S] # NH4+ DComp Nagra/PSI* HKF, S° [1989S] # NH4+ SCOMP Nagra/PSI* HKF, S° [1989S] # NH4+ Np+3 DComp Nagra/PSI* # S° Nagra/PSI*	SHO/SAS] SHO/SAS] SHO/HEL] SHO/HEL] SHO/SAS]
# HS- # HS- # HSeO4- DComp Nagra/PSI* HKF, S° [1997S] # HSeO4- DComp Nagra/PSI* HKF, S° [1997S] 12 DComp Nagra/PSI* # N2 DComp Nagra/PSI* HKF, S° [1989S] # NH3 DComp Nagra/PSI* HKF, S° [1989S] # NH4+ DComp Nagra/PSI* Np+3 DComp Nagra/PSI* KS° Nagra/PSI*	SHO/SAS] SHO/SAS] SHO/HEL] SHO/HEL] SHO/SAS]
# HSeO4- DComp Nagra/PSI* HKF, S° [1997S] 12 DComp Nagra/PSI* # N2 DComp Nagra/PSI* HKF, S° [1989S] # NH3 DComp Nagra/PSI* HKF, S° [1989S] # NH4+ DComp Nagra/PSI* HKF, S° [1997S] Np+3 DComp Nagra/PSI* (S°) Nagra/PSI*	SHO/SAS] SHO/HEL] SHO/HEL] SHO/SAS]
I2 DComp Nagra/PSI* # N2 DComp Nagra/PSI* HKF, S° [1989S] # NH3 DComp Nagra/PSI* HKF, S° [1989S] # NH4+ DComp Nagra/PSI* HKF, S° [1997S] Np+3 DComp Nagra/PSI* {S°} Nagra/PSI*	SHO/HEL] SHO/HEL] SHO/SAS]
# N2 DComp Nagra/PSI* HKF, S° [1989S] # NH3 DComp Nagra/PSI* HKF, S° [1989S] # NH4+ DComp Nagra/PSI* HKF, S° [1997S] Np+3 DComp Nagra/PSI* {S°} Nag	SHO/HEL] SHO/SAS]
# NH3 DComp Nagra/PSI* HKF, S° [1989S] # NH4+ DComp Nagra/PSI* HKF, S° [1997S] Np+3 DComp Nagra/PSI* {S°} Nag	SHO/HEL] SHO/SAS]
# NH4+ DComp Nagra/PSI* HKF, S° [1997S] Np+3 DComp Nagra/PSI* {S°} Nag	SHO/SAS]
Np+3 DComp Nagra/PSI* {S°} Nag	_
	rra/PSI
Np+4 DComp Nagra/PSI* {S°} Nag	514/1 51
	gra/PSI
NpO2+ DComp Nagra/PSI* {S°} Nag	gra/PSI
# O2 DComp Nagra/PSI* HKF, S° [1989S	SHO/HEL]
# OH- DComp Nagra/PSI* HKF, S° [1997S	SHO/SAS]
# PO4-3 DComp Nagra/PSI* HKF, S° [1997S	SHO/SAS]
Pu+3 DComp Nagra/PSI* {S°} Nag	gra/PSI
Pu+4 DComp Nagra/PSI* {S°} Nag	gra/PSI
PuO2+ DComp Nagra/PSI* $\{S^{\circ}\}$ Nag	gra/PSI
# S2O3-2 DComp Nagra/PSI* HKF, S° [1997S	SHO/SAS]
# SiO(OH)3- HSiO3- DComp Nagra/PSI* HKF, S° [1997S	SVE/SHO]
SiO2(OH)2-2 SiO3-2 ReacDC Nagra/PSI $\{\Delta_r C_p^{\ \circ} = 0\}$ $\{\Delta_r H^{\circ}\}$ Nagra/PSI	gra/PSI
# SO3-2 DComp Nagra/PSI* HKF, S° [1997S	SHO/SAS]
TcO(OH)2 DComp Nagra/PSI*	
# U+4 DComp Nagra/PSI* HKF, S° [1997S	SHO/SAS]
# UO2+ DComp Nagra/PSI* HKF, S° [1997S]	HO/SAS2]
Aqueous Product Species	
(NpO2)2(OH)2+2 ReacDC Nagra/PSI $\Delta_r S^\circ = \Delta_r C_p^\circ = 0$ isoel. 1-Term Nagra/PSI	gra/PSI
(NpO2)2CO3(OH)3- ReacDC Nagra/PSI $\{\Delta_r S^\circ = \Delta_r C_p^\circ = 0\}$	
(NpO2)3(CO3)6-6 ReacDC Nagra/PSI $\{\Delta_r S^\circ = \Delta_r C_p^\circ = 0\}$	
	gra/PSI
	gra/PSI
	gra/PSI
(UO2)2CO3(OH)3- ReacDC Nagra/PSI $\{\Delta_r S^\circ = \Delta_r C_p^\circ = 0\}$	
(UO2)2NpO2(CO3)6-6 ReacDC Nagra/PSI $\{\Delta_r S^\circ = \Delta_r C_p^\circ = 0\}$	
	gra/PSI
(UO2)2PuO2(CO3)6-6 ReacDC Nagra/PSI $\{\Delta_r S^\circ = \Delta_r C_p^\circ = 0\}$	
	gra/PSI
I	gra/PSI

Table A2: Continued

Nagra/PSI TDB 01/01 Name	Non- conventional Stoich.	Record Type in GEMS	Source for $\Delta_{\mathrm{f}}G^{\circ}$ or $\log_{10}K^{\circ}$	Assumptions	Data for Calculation of T- Dependence	Source
(UO2)3(OH)5+		ReacDC	Nagra/PSI	$\Delta_{\mathbf{r}} S^{\circ} = \Delta_{\mathbf{r}} C_{p}^{\circ} = 0$	isoel. 1-Term	Nagra/PSI
(UO2)3(OH)7-		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		
(UO2)3O(OH)2HCO3+		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		
(UO2)4(OH)7+		ReacDC	Nagra/PSI	$\Delta_{\mathbf{r}} S^{\circ} = \Delta_{\mathbf{r}} C_{p}^{\circ} = 0$	isoel. 1-Term	Nagra/PSI
# Al(OH)2+	AlO+	DComp	Nagra/PSI*		HKF, S°	[1997SHO/SAS]
# Al(OH)3	AlO2H	DComp	Nagra/PSI*		HKF, S°	[1997SHO/SAS]
Al(OH)6SiO-	AlSiO4-	ReacDC	Nagra/PSI	$\Delta_{\rm r} S^{\circ} = \Delta_{\rm r} C_p^{\circ} = 0$	isocoul. 1-Term	Nagra/PSI
Al(SO4)2-		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
AlF+2		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
AlF2+		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
AlF3		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
AlF4-		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
AlF5-2		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}C_{p}^{\ \circ}=0\}$	$\{\Delta_{_{ m I}}\!H^{\circ}\}$	Nagra/PSI
AlF6-3		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}C_{p}^{\circ}=0\}$	$\{\Delta_{_{ m r}} H^{\circ}\}$	Nagra/PSI
# AlOH+2		DComp	Nagra/PSI*		HKF, S°	[1997SHO/SAS]
AlSiO(OH)3+2	AlHSiO3+2	ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		
AlSO4+		DComp	Nagra/PSI*	-	HKF, S°	PRONSPREP
Am(CO3)2-		DComp	Nagra/PSI*		HKF, S°	[1999MUR/SHO]
Am(CO3)3-3		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
Am(OH)2+	AmO+	DComp	Nagra/PSI*		HKF, S°	[1999MUR/SHO]
Am(OH)3	AmO2H	DComp	Nagra/PSI*		HKF, S°	[1999MUR/SHO]
Am(SO4)2-		DComp	Nagra/PSI*		HKF, S°	[1999MUR/SHO]
AmCl+2		DComp	Nagra/PSI*		HKF, S°	[1999MUR/SHO]
AmCO3+		DComp	Nagra/PSI*		HKF, S°	[1999MUR/SHO]
AmF+2		DComp	Nagra/PSI*		HKF, S°	[1999MUR/SHO]
AmF2+		DComp	Nagra/PSI*		HKF, S°	[1999MUR/SHO]
AmH2PO4+2		DComp	Nagra/PSI*		HKF, S°	[1999MUR/SHO]
AmNO3+2		DComp	Nagra/PSI*		HKF, S°	[1999MUR/SHO]
AmOH+2		DComp	Nagra/PSI*		HKF, S°	[1999MUR/SHO]
AmSiO(OH)3+2	AmHSiO3+2	ReacDC	Nagra/PSI**	$\Delta_{\rm r} S^{\circ} = \Delta_{\rm r} C_p^{\circ} = 0$	isocoul. 1-Term	Nagra/PSI**
AmSO4+		DComp	Nagra/PSI*	-	HKF, S°	[1999MUR/SHO]
# As(OH)4-	AsO2-	DComp	Nagra/PSI*		HKF, S°	[1997SHO/SAS]
# AsO4-3		DComp	Nagra/PSI*		HKF, S°	[1997SHO/SAS]
# B(OH)4-	BO2-	DComp	Nagra/PSI*		HKF, S°	[1997SHO/SAS]
# BaCO3		DComp	Nagra/PSI*		HKF, S°	[1997SVE/SHO]
# BaHCO3+		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
# BaOH+		DComp	Nagra/PSI*		HKF, S°	[1997SHO/SAS]
BaSO4		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
# CaCO3		DComp	Nagra/PSI*		HKF, S°	[1997SVE/SHO]
# CaF+		DComp	Nagra/PSI*		HKF, S°	[1997SVE/SHO]
# CaHCO3+		DComp	Nagra/PSI*		HKF, S°	slop98.dat
# CaOH+		DComp	Nagra/PSI*		HKF, S°	[1997SHO/SAS]
# CaSiO(OH)3+	CaHSiO3+	DComp	Nagra/PSI*		HKF, S°	[1997SVE/SHO]
CaSiO2(OH)2	CaSiO3	ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		-
# CaSO4		DComp	Nagra/PSI*	p	HKF, S°	[1997SVE/SHO]
Eu(CO3)2-		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
# Eu(OH)2+	EuO+	DComp	Nagra/PSI*		HKF, S°	[1995HAA/SHO]

Table A2: Continued

Nagra/PSI TDB 01/01	Non-	Record	Source for A C° or		Data for	
Name	conventional Stoich.	Type in GEMS	Source for $\Delta_f G^\circ$ or $\log_{10} K^\circ$	Assumptions	Calculation of T- Dependence	Source
# Eu(OH)3	EuO2H	DComp	Nagra/PSI*		HKF, S°	[1995HAA/SHO]
# Eu(OH)4-	EuO2-	DComp	Nagra/PSI*		HKF, S°	[1995HAA/SHO]
Eu(SiO(OH)3)2+	EuSi2O5+	ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		
Eu(SO4)2-		DComp	Nagra/PSI*	. P	HKF, S°	PRONSPREP
# EuCl+2		DComp	Nagra/PSI*		HKF, S°	[1995HAA/SHO]
# EuCl2+		DComp	Nagra/PSI*		HKF, S°	[1995HAA/SHO]
# EuCO3+		DComp	Nagra/PSI*		HKF, S°	slop98.dat
# EuF+2		DComp	Nagra/PSI*		HKF, S°	[1995HAA/SHO]
# EuF2+		DComp	Nagra/PSI*		HKF, S°	[1995HAA/SHO]
EuOH+2		DComp	Nagra/PSI*		HKF, S°	[1995HAA/SHO]
EuSiO(OH)3+2	EuHSiO3+2	ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\ \circ} = 0\}$		
# EuSO4+		DComp	Nagra/PSI*	·	HKF, S°	[1995HAA/SHO]
# Fe(OH)2+	FeO+	DComp	Nagra/PSI*		HKF, S°	[1997SHO/SAS]
# Fe(OH)3	FeO2H	DComp	Nagra/PSI*		HKF, S°	[1997SHO/SAS]
# Fe(OH)4-	FeO2-	DComp	Nagra/PSI*		HKF, S°	[1997SHO/SAS]
Fe(SO4)2-		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
Fe2(OH)2+4		ReacDC	Nagra/PSI	$\Delta_{\rm r} C_p^{\ \circ} = 0$	isoel. 2-Term	Nagra/PSI
Fe3(OH)4+5		ReacDC	Nagra/PSI	$\Delta_{\rm r} C_p^{\circ} = 0$	isoel. 2-Term	Nagra/PSI
# FeCl+		DComp	Nagra/PSI*	- -	HKF, S°	[1997SVE/SHO]
# FeCl+2		DComp	Nagra/PSI*		HKF, S°	[1997SVE/SHO]
FeCl2+		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
FeCl3		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
FeCO3		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
# FeF+		DComp	Nagra/PSI*		HKF, S°	[1997SVE/SHO]
# FeF+2		DComp	Nagra/PSI*		HKF, S°	[1997SVE/SHO]
FeF2+		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
FeF3		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
FeHCO3+		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
FeHSO4+		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
FeHSO4+2		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
# FeOH+		DComp	Nagra/PSI*		HKF, S°	[1997SHO/SAS]
# FeOH+2		DComp	Nagra/PSI*		HKF, S°	[1997SHO/SAS]
FeSiO(OH)3+2	FeHSiO3+2	ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\ \circ} = 0\}$		
FeSO4		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
FeSO4+		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
# H2AsO4-		DComp	Nagra/PSI*		HKF, S°	[1997SHO/SAS]
# H2S		DComp	Nagra/PSI*		HKF, S°	[1989SHO/HEL]
# H2SeO3		DComp	Nagra/PSI*		HKF, S°	[1997SHO/SAS]
# H3AsO4		DComp	Nagra/PSI*		HKF, S°	[1997SHO/SAS]
# HF		DComp	Nagra/PSI*		HKF, S°	[1989SHO/HEL]
# HF2-		DComp	Nagra/PSI*		HKF, S°	[1988SHO/HEL]
# HSe-		DComp	Nagra/PSI*		HKF, S°	[1997SHO/SAS]
# HSeO3-		DComp	Nagra/PSI*		HKF, S°	[1997SHO/SAS]
# HSO3-		DComp	Nagra/PSI*		HKF, S°	[1997SHO/SAS]
# HSO4-		DComp	Nagra/PSI*		HKF, S°	[1997SHO/SAS]
# I3-		DComp	Nagra/PSI*		HKF, S°	[1988SHO/HEL]
# KOH		DComp	Nagra/PSI*		HKF, S°	[1997SHO/SAS]

Table A2: Continued

Nagra/PSI TDB 01/01 Name	Non- conventional Stoich.	Record Type in GEMS	Source for $\Delta_{\mathrm{f}}G^{\circ}$ or $\log_{10}K^{\circ}$	Assumptions	Data for Calculation of T- Dependence	Source
# KSO4-	Stolen.	DComp	Nagra/PSI*		HKF, S°	[1997SVE/SHO]
# LiOH		DComp	Nagra/PSI*		HKF, S°	[1997SHO/SAS]
LiSO4-		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
# MgCO3		DComp	Nagra/PSI*		HKF, S°	[1997SVE/SHO]
# MgF+		DComp	Nagra/PSI*		HKF, S°	[1997SVE/SHO]
# MgHCO3+		DComp	Nagra/PSI*		HKF, S°	slop98.dat
# MgOH+		DComp	Nagra/PSI*		HKF, S°	[1997SHO/SAS]
# MgSiO(OH)3+	MgHSiO3+	DComp	Nagra/PSI*		HKF, S°	[1997SVE/SHO]
MgSiO2(OH)2	MgSiO3	ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$	7.2	
# MgSO4	8.2	DComp	Nagra/PSI*	C 1 - p 3	HKF, S°	PRONSPREP
# MnCl+		DComp	Nagra/PSI*		HKF, S°	[1997SVE/SHO]
MnCl2		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
MnCl3-		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
MnCO3		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
# MnF+		DComp	Nagra/PSI*		HKF, S°	[1997SVE/SHO]
MnHCO3+		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
# MnOH+		DComp	Nagra/PSI*		HKF, S°	[1997SHO/SAS]
# MnSO4		DComp	Nagra/PSI*		HKF, S°	[1997SVE/SHO]
NaCO3-		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
# NaF		DComp	Nagra/PSI*		HKF, S°	[1997SVE/SHO]
NaHCO3		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
# NaOH		DComp	Nagra/PSI*		HKF, S°	[1997SHO/SAS]
# NaSO4-		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
Nb(OH)4+	NbO2+	ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		
# Nb(OH)5	NbO3H	DComp	Nagra/PSI*	p	HKF, S°	[1997SHO/SAS]
Ni(CO3)2-2		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
Ni(HS)2		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
Ni(NH3)2+2		ReacDC	Nagra/PSI	$\Delta_{\rm r} S^{\circ} = \Delta_{\rm r} C_{p}^{\circ} = 0$	isocoul. 1-Term	Nagra/PSI
Ni(NH3)3+2		ReacDC	Nagra/PSI	$\Delta_{\rm r} S^{\circ} = \Delta_{\rm r} C_p^{\circ} = 0$	isocoul. 1-Term	Nagra/PSI
Ni(NH3)4+2		ReacDC	Nagra/PSI	$\Delta_{\rm r} S^{\circ} = \Delta_{\rm r} C_p^{\circ} = 0$	isocoul. 1-Term	Nagra/PSI
Ni(NH3)5+2		ReacDC	Nagra/PSI	$\Delta_{\rm r} S^{\circ} = \Delta_{\rm r} C_p^{\circ} = 0$	isocoul. 1-Term	Nagra/PSI
Ni(NH3)6+2		ReacDC	Nagra/PSI	$\Delta_{\rm r} S^{\circ} = \Delta_{\rm r} C_p^{\circ} = 0$	isocoul. 1-Term	Nagra/PSI
Ni(NO3)2		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
# Ni(OH)2	NiO	DComp	Nagra/PSI*		HKF, S°	[1997SHO/SAS]
# Ni(OH)3-	NiO2H-	DComp	Nagra/PSI*		HKF, S°	[1997SHO/SAS]
# Ni(OH)4-2	NiO2-2	DComp	Nagra/PSI*		HKF, S°	[1997SHO/SAS]
Ni(SO4)2-2		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
Ni2OH+3		ReacDC	Nagra/PSI	$\Delta_{\rm r} C_p^{\ \circ} = 0$	isoel. 2-Term	Nagra/PSI
Ni4(OH)4+4		ReacDC	Nagra/PSI	$\Delta_{\rm r} C_p^{\circ} = 0$	isoel. 2-Term	Nagra/PSI
# NiCl+		DComp	Nagra/PSI*		HKF, S°	[1997SVE/SHO]
NiCl2		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
NiCO3		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
# NiF+		DComp	Nagra/PSI*		HKF, S°	[1997SVE/SHO]
NiH2PO4+		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
NiHCO3+		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
NiHP2O7-		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		
NiHPO4		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		

Table A2: Continued

Nagra/PSI TDB 01/01 Name	Non- conventional Stoich.	Record Type in GEMS	Source for $\Delta_{\rm f}G^{\circ}$ or $\log_{10}K^{\circ}$	Assumptions	Data for Calculation of T- Dependence	Source
NiHS+		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
NiNH3+2		ReacDC	Nagra/PSI	$\Delta_{\mathbf{r}} S^{\circ} = \Delta_{\mathbf{r}} C_{p}^{\circ} = 0$	isocoul. 1-Term	Nagra/PSI
NiNO3+		DComp	Nagra/PSI*	•	HKF, S°	PRONSPREP
# NiOH+		DComp	Nagra/PSI*		HKF, S°	[1997SHO/SAS]
NiP2O7-2		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}C_{p}^{\ \circ}=0\}$	$\{\Delta_{_{\Gamma}}\!H^{\circ}\}$	Nagra/PSI
NiPO4-		DComp	Nagra/PSI*	•	HKF, S°	PRONSPREP
NiSO4		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
Np(CO3)4-4		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		
Np(CO3)5-6		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		
Np(OH)4		ReacDC	Nagra/PSI	$\Delta_{\rm r} S^{\circ} = \Delta_{\rm r} C_p^{'} = 0$	isoel. 1-Term	Nagra/PSI
Np(SO4)2		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}C_{p}^{\circ}=0\}$	$\{\Delta_{ m r} H^{\circ}\}$	Nagra/PSI
NpCl+3		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}} S^{\circ} = \Delta_{\mathbf{r}} C_{p}^{\circ} = 0\}$		_
NpF+3		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}C_{p}^{\circ}=0\}$	$\{\Delta_{_{\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	Nagra/PSI
NpF2+2		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		
NpNO3+3		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		
NpO2(CO3)2-2		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		
NpO2(CO3)2-3		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		
NpO2(CO3)2OH-4		ReacDC	Nagra/PSI	$\Delta_{\mathbf{r}} S^{\circ} = \Delta_{\mathbf{r}} C_{p}^{\circ} = 0$	isoel. 1-Term	Nagra/PSI
NpO2(CO3)3-4		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}C_{p}^{\circ}=0\}$	$\{\Delta_{_{\! I}}\!H^{^\circ}\}$	Nagra/PSI
NpO2(CO3)3-5		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}C_{p}^{\ \ \circ}=0\}$	$\{\Delta_{ m r} H^{\circ}\}$	Nagra/PSI
NpO2(HPO4)2-2		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		S
NpO2(OH)		ReacDC	Nagra/PSI	$\Delta_{\mathbf{r}} S^{\circ} = \Delta_{\mathbf{r}} C_{p}^{\circ} = 0$		Nagra/PSI
NpO2(OH)2-		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		S
NpO2(OH)3-		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		
NpO2(OH)4-2		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		
NpO2(SO4)2-2		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}C_{p}^{\circ}=0\}$	$\{\Delta_{ m r} H^{\circ}\}$	Nagra/PSI
NpO2Cl+		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		8
NpO2CO3		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		
NpO2CO3-		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		
NpO2F		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		
NpO2F+		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		
NpO2F2		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		
NpO2H2PO4+		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		
NpO2HPO4		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		
NpO2HPO4-		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		
NpO2OH+		ReacDC	Nagra/PSI	$\Delta_{r}S^{\circ} = \Delta_{r}C_{p}^{\circ} = 0$ $\Delta_{r}S^{\circ} = \Delta_{r}C_{p}^{\circ} = 0$	isoel. 1-Term	Nagra/PSI
NpO2SO4		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$	$\{\Delta_{\rm r}H^{\circ}\}$	Nagra/PSI
NpO2SO4-		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}C_{p} = 0\}$ $\{\Delta_{\mathbf{r}}C_{p} = 0\}$	$\{\Delta_{_{ m T}}H^\circ\}$	Nagra/PSI
NpOH+2		ReacDC	Nagra/PSI	$\Delta_{\mathbf{r}} S^{\circ} = \Delta_{\mathbf{r}} C_{p}^{\circ} = 0$	isoel. 1-Term	Nagra/PSI
NpOH+3		ReacDC	Nagra/PSI	$\Delta_{r}S^{\circ} = \Delta_{r}C_{p}^{\circ} = 0$ $\Delta_{r}S^{\circ} = \Delta_{r}C_{p}^{\circ} = 0$	isoel. 1-Term	Nagra/PSI
NpSO4+2		ReacDC	Nagra/PSI	$\Delta_{\mathbf{r}} S - \Delta_{\mathbf{r}} C_p = 0$ $\{\Delta_{\mathbf{r}} C_p = 0\}$	$\{\Delta_{\rm r}H^{\circ}\}$	Nagra/PSI
Pd(NH3)2+2		ReacDC	Nagra/PSI Nagra/PSI	$\{\Delta_{\mathbf{r}}C_{p} = 0\}$ $\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0$	$\{\Delta_{\mathbf{r}}\mathbf{n}\}\$ isocoul. 1-Term	_
			Nagra/PSI Nagra/PSI	r	isocoul. 1-Term	Nagra/PSI
Pd(NH3)3+2 Pd(NH3)4+2		ReacDC	-	$\Delta_{r}S^{\circ} = \Delta_{r}C_{p}^{\circ} = 0$ $\Delta_{r}S^{\circ} = \Delta_{r}C_{p}^{\circ} = 0$		Nagra/PSI
	PdO	ReacDC	Nagra/PSI	$\Delta_{\mathbf{r}} S^{\circ} = \Delta_{\mathbf{r}} C_{p}^{\circ} = 0$	isocoul. 1-Term	Nagra/PSI
# Pd(OH)2		DComp	Nagra/PSI*	$(A C^{\circ} - A C^{\circ} - O)$	HKF, S°	[1998SAS/SHO]
Pd(OH)3-	PdO2H-	ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		[10000 4 0/01101
# PdCl+		DComp	Nagra/PSI*		HKF, S°	[1998SAS/SHO]

Table A2: Continued

Nagra/PSI TDB 01/01	Non-	Record			Data for	
Name	conventional	Type in	Source for $\Delta_f G^{\circ}$ or	Assumptions	Calculation of T-	Source
	Stoich.	GEMS	$\log_{10}K^{\circ}$	•	Dependence	
# PdCl2		DComp	Nagra/PSI*		HKF, S°	[1998SAS/SHO]
PdCl2(OH)2-2		ReacDC	Nagra/PSI	$\Delta_{\mathbf{r}} S^{\circ} = \Delta_{\mathbf{r}} C_{p}^{\circ} = 0$	isoel. 1-Term	Nagra/PSI
# PdC13-		DComp	Nagra/PSI*		HKF, S°	[1998SAS/SHO]
PdCl3OH-2		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		
# PdCl4-2		DComp	Nagra/PSI*		HKF, S°	[1998SAS/SHO]
PdNH3+2		ReacDC	Nagra/PSI	$\Delta_{\mathbf{r}} S^{\circ} = \Delta_{\mathbf{r}} C_{p}^{\circ} = 0$	isocoul. 1-Term	Nagra/PSI
Pu(CO3)4-4		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		
Pu(CO3)5-6		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		
Pu(OH)4	PuO2	ReacDC	Nagra/PSI**	$\Delta_{\mathbf{r}} S^{\circ} = \Delta_{\mathbf{r}} C_{p}^{\circ} = 0$	isocoul. 1-Term	Nagra/PSI**
Pu(SO4)2		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		
Pu(SO4)2-		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}C_{p}^{\ \circ}=0\}$	$\{\Delta_{ m r} H^{\circ}\}$	Nagra/PSI
PuCl+2		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		
PuCl+3		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		
PuF+3		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}C_{p}^{\circ}=0\}$	$\{\Delta_{ m r} H^{\circ}\}$	Nagra/PSI
PuF2+2		ReacDC	Nagra/PSI	$\{\Delta_{\rm r}C_p^{\circ}=0\}$	$\{\Delta_{_{\Gamma}}\!H^{\circ}\}$	Nagra/PSI
PuH3PO4+4		ReacDC	Nagra/PSI	$\Delta_{\mathbf{r}} S^{\circ} = \Delta_{\mathbf{r}} C_{p}^{\circ} = 0$	isocoul. 1-Term	Nagra/PSI
PuNO3+3		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		
PuO2(CO3)2-2		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}C_{p}^{\circ}=0\}$	$\{\Delta_{_{\Gamma}}\!H^{\circ}\}$	Nagra/PSI
PuO2(CO3)3-4		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}C_{p}^{\prime} = 0\}$	$\{\Delta_{_{\! \rm f}}\!H^\circ\}$	Nagra/PSI
PuO2(CO3)3-5		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}C_{p}^{r} = 0\}$	$\{\Delta_{_{\Gamma}}\!H^{\circ}\}$	Nagra/PSI
PuO2(OH)2		ReacDC	Nagra/PSI	$\Delta_{\rm r} S^{\circ} = \Delta_{\rm r} C_{p}^{\circ} = 0$	isoel. 1-Term	Nagra/PSI
PuO2(SO4)2-2		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}C_{p}^{\circ}=0\}$	$\{\Delta_{_{\Gamma}}\!H^{\circ}\}$	Nagra/PSI
PuO2Cl+		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		
PuO2Cl2		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		
PuO2CO3		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}} S^{\circ} = \Delta_{\mathbf{r}} C_{p}^{\circ} = 0\}$		
PuO2CO3-		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		
PuO2F+		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		
PuO2F2		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		
PuO2OH		ReacDC	Nagra/PSI	$\Delta_{\rm r} S^{\circ} = \Delta_{\rm r} C_p^{\circ} = 0$	isocoul. 1-Term	Nagra/PSI
PuO2OH+		ReacDC	Nagra/PSI	$\Delta_{\rm r} C_p^{\circ} = 0$	isoel. 2-Term	Nagra/PSI
PuO2SO4		ReacDC	Nagra/PSI	$\{\Delta_{\rm r}C_p^{\circ}=0\}$	$\{\Delta_{_{\Gamma}}\!H^{\circ}\}$	Nagra/PSI
PuOH+2		ReacDC	Nagra/PSI	$\Delta_{\rm r} S^{\circ} = \Delta_{\rm r} C_{p}^{\circ} = 0$	isoel. 1-Term	Nagra/PSI
PuOH+3		ReacDC	Nagra/PSI	$\Delta_{\rm r} C_p^{\circ} = 0$	isoel. 2-Term	Nagra/PSI
PuSO4+		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}C_{p}^{\circ}=0\}$	$\{\Delta_{ m r} H^{\circ}\}$	Nagra/PSI
PuSO4+2		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		
RaCl+		DComp	Nagra/PSI*	-	HKF, S°	PRONSPREP
RaCO3		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
RaOH+		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}C_{p}^{\ \circ}=0\}$	$\{\Delta_{ m r} H^{\circ}\}$	Nagra/PSI
RaSO4		DComp	Nagra/PSI*	-	HKF, S°	PRONSPREP
S-2		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		
# SeO4-2		DComp	Nagra/PSI*	-	HKF, S°	[1997SHO/SAS]
# Sn(OH)2	SnO	DComp	Nagra/PSI*		HKF, S°	[1997SHO/SAS]
Sn(OH)3-	SnO2H-	DComp	Nagra/PSI*		HKF, S°	[1997SHO/SAS]
Sn(OH)5-	SnO3H-	ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		
Sn(OH)6-2	SnO3-2	ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		
Sn3(OH)4+2		ReacDC	Nagra/PSI	$\Delta_{\rm r} S^{\circ} = \Delta_{\rm r} C_p^{\circ} = 0$	isoel. 1-Term	Nagra/PSI
SnCl+		DComp	Nagra/PSI*		HKF, S°	PRONSPREP

Table A2: Continued

Nagra/PSI TDB 01/01 Name	Non- conventional Stoich.	Record Type in GEMS	Source for $\Delta_{\mathbf{f}}G^{\circ}$ or $\log_{10}K^{\circ}$	Assumptions	Data for Calculation of T- Dependence	Source
SnCl2	Storen.	DComp	Nagra/PSI*		HKF, S°	PRONSPREP
SnCl3-		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
SnF+		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
# SnOH+		DComp	Nagra/PSI*		HKF, S°	[1997SHO/SAS]
SnOHCl		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		
SnSO4		DComp	Nagra/PSI*	1 p	HKF, S°	PRONSPREP
# SrCO3		DComp	Nagra/PSI*		HKF, S°	[1997SVE/SHO]
# SrHCO3+		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
# SrOH+		DComp	Nagra/PSI*		HKF, S°	[1997SHO/SAS]
SrSO4		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
TcCO3(OH)2		ReacDC	Nagra/PSI**	$\Delta_{\rm r} S^{\circ} = \Delta_{\rm r} C_{p}^{\circ} = 0$	isocoul. 1-Term	Nagra/PSI**
TcCO3(OH)3-		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		_
TcO(OH)+		ReacDC	Nagra/PSI	$\Delta_{\rm r} S^{\circ} = \Delta_{\rm r} C_p^{\circ} = 0$	isocoul. 1-Term	Nagra/PSI
TcO(OH)3-		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		
TcO+2		ReacDC	Nagra/PSI	$\Delta_{\rm r} S^{\circ} = \Delta_{\rm r} C_{p}^{' \circ} = 0$	isoel. 1-Term	Nagra/PSI
Th(CO3)5-6		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		
Th(OH)4	ThO2	ReacDC	Nagra/PSI	$\Delta_{\rm r} S^{\circ} = \Delta_{\rm r} C_{p}^{' \circ} = 0$	isoel. 1-Term	Nagra/PSI
Th(SO4)2		DComp	Nagra/PSI*	·	HKF, S°	PRONSPREP
Th(SO4)3-2		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
ThCO3(OH)3-		ReacDC	Nagra/PSI**	$\Delta_{\rm r} S^{\circ} = \Delta_{\rm r} C_{p}^{\circ} = 0$	isocoul. 1-Term	Nagra/PSI**
ThF+3		DComp	Nagra/PSI*	·	HKF, S°	PRONSPREP
ThF2+2		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
ThF3+		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
ThF4		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
ThHPO4+2		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		
ThOH+3		ReacDC	Nagra/PSI	$\Delta_{\rm r} S^{\circ} = \Delta_{\rm r} C_p^{\circ} = 0$	isoel. 1-Term	Nagra/PSI
ThSO4+2		DComp	Nagra/PSI*	-	HKF, S°	PRONSPREP
U(CO3)4-4		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		
U(CO3)5-6		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}C_{p}^{\ \circ}=0\}$	$\{\Delta_{_{ m I}}\!H^{\circ}\}$	Nagra/PSI
U(NO3)2+2		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
# U(OH)4	UO2	DComp	Nagra/PSI*		HKF, S°	[1997SHO/SAS2]
U(SO4)2		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
UCl+3		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
UF+3		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
UF2+2		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
UF3+		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
UF4		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
UF5-		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		
UF6-2		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		
UNO3+3		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
UO2(CO3)2-2		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
UO2(CO3)3-4		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}C_{p}^{\ \circ}=0\}$	$\{\Delta_{_{\Gamma}}\!H^{\circ}\}$	Nagra/PSI
UO2(CO3)3-5		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		
UO2(H2PO4)2		ReacDC	Nagra/PSI	$\Delta_{\rm r} S^{\circ} = \Delta_{\rm r} C_p^{\circ} = 0$	isoel. 1-Term	Nagra/PSI
# UO2(OH)2	UO3	DComp	Nagra/PSI*		HKF, S°	[1997SHO/SAS2]
UO2(OH)3-	UO4H-	DComp	Nagra/PSI*		HKF, S°	[1997SHO/SAS2]
# UO2(OH)4-2	UO4-2	DComp	Nagra/PSI*		HKF, S°	[1997SHO/SAS2]

Table A2: Continued

Nagra/PSI TDB 01/01 Name	Non- conventional	Record Type in	Source for $\Delta_{\rm f}G^{\circ}$ or	Assumptions	Data for Calculation of T-	Source
Name	Stoich.	GEMS	$\log_{10}K^{\circ}$	Assumptions	Dependence	Source
UO2(SO4)2-2		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
UO2Cl+		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
UO2C12		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
UO2CO3		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
UO2F+		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
UO2F2		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
UO2F3-		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
UO2F4-2		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
UO2H2PO4+		ReacDC	Nagra/PSI	$\Delta_{\rm r} S^{\circ} = \Delta_{\rm r} C_{p}^{\circ} = 0$	isoel. 1-Term	Nagra/PSI
UO2H2PO4H3PO4+		ReacDC	Nagra/PSI	$\Delta_{\rm r} S^{\circ} = \Delta_{\rm r} C_{\rm p}^{\circ} = 0$	isoel. 1-Term	Nagra/PSI
UO2H3PO4+2		ReacDC	Nagra/PSI	$\Delta_{\rm r} S^{\circ} = \Delta_{\rm r} C_p^{\circ} = 0$	isocoul. 1-Term	Nagra/PSI
UO2HPO4		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		
UO2NO3+		DComp	Nagra/PSI*	- F	HKF, S°	PRONSPREP
# UO2OH+		DComp	Nagra/PSI*		HKF, S°	[1997SHO/SAS2]
UO2PO4-		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		
UO2SO4		DComp	Nagra/PSI*	- F	HKF, S°	PRONSPREP
# UOH+3		DComp	Nagra/PSI*		HKF, S°	[1997SHO/SAS2]
USO4+2		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
# Zr(OH)4	ZrO2	DComp	Nagra/PSI*		HKF, S°	[1997SHO/SAS]
# Zr(OH)5-	ZrO3H-	DComp	Nagra/PSI*		HKF, S°	[1997SHO/SAS]
ZrCl+3		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
ZrF+3		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
ZrF2+2		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
ZrF3+		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
ZrF4		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
ZrF5-		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\ \circ} = 0\}$		
ZrF6-2		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		
# ZrOH+3		DComp	Nagra/PSI*	·	HKF, S°	[1997SHO/SAS]
ZrSO4+2		DComp	Nagra/PSI*		HKF, S°	PRONSPREP
Solids						
(NH4)4NpO2(CO3)3(s)		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		
(UO2)3(PO4)2:4H2O(cr))	ReacDC	Nagra/PSI	$\Delta_{\rm r} S^{\circ} = \Delta_{\rm r} C_p^{\circ} = 0$	isoel. 1-Term	Nagra/PSI
Am(CO3)1.5(cr)		ReacDC	Nagra/PSI**	$\Delta_{\mathbf{r}} S^{\circ} = \Delta_{\mathbf{r}} C_{p}^{\circ} = 0$	isocoul. 1-Term	Nagra/PSI**
Am(OH)3(am)		ReacDC	Nagra/PSI	$\Delta_{\rm r} S^{\circ} = \Delta_{\rm r} C_{p}^{\circ} = 0$	isoel. 1-Term	Nagra/PSI
Am(OH)3(cr)		ReacDC	Nagra/PSI	$\Delta_{\rm r} S^{\circ} = \Delta_{\rm r} C_{\rm p}^{\circ} = 0$	isoel. 1-Term	Nagra/PSI
AmCO3OH(cr)		ReacDC	Nagra/PSI**	$\Delta_{\rm r} S^{\circ} = \Delta_{\rm r} C_{\rm p}^{\circ} = 0$	isocoul. 1-Term	Nagra/PSI**
# Anhydrite		DComp	Nagra/PSI*	1 1 p	$C_p^{\circ}(T), S^{\circ}$	[1978HEL/DEL]
# Aragonite		DComp	Nagra/PSI*		$C_p^{\circ}(T), S^{\circ}$	[1978HEL/DEL]
As(cr)		DComp	$\Delta_f G^\circ = 0$		$C_p^{\circ}(T), S^{\circ}$	[1995ROB/HEM]
Baddeleyite		DComp	Nagra/PSI*		$C_p^{\circ}(T), S^{\circ}$	[1995ROB/HEM]
# Barite		DComp	Nagra/PSI*		$C_p^{\circ}(T), S^{\circ}$	[1978HEL/DEL]
# Brucite		DComp	Nagra/PSI*		$C_p^{\circ}(T), S^{\circ}$	[1978HEL/DEL]
# Calcite		DComp	Nagra/PSI*		$C_p^{\circ}(T), S^{\circ}$	[1978HEL/DEL]
CaSn(OH)6(s)		ReacDC	this work	$\Delta_{\rm r} S^{\circ} = \Delta_{\rm r} C_p^{\circ} = 0$	isoel. 1-Term	Nagra/PSI
# Cassiterite		DComp	this work	- · · · · · · · · · · · · · · · · · · ·	$C_p^{\circ}(T), S^{\circ}$	[1985JAC/HEL]
# Celestite		DComp	Nagra/PSI*		{S°}	[1978HEL/DEL]
Chernikovite		ReacDC	Nagra/PSI	$\Delta_{\rm r} S^{\circ} = \Delta_{\rm r} C_p^{\ \ \circ} = 0$	isoel. 1-Term	Nagra/PSI

Table A2: Continued

Nagra/PSI TDB 01/01 Name	Non- conventional Stoich.	Record Type in GEMS	Source for $\Delta_{\rm f}G^{\circ}$ or $\log_{10}K^{\circ}$	Assumptions	Data for Calculation of T- Dependence	Source
# Dolomite(dis)		DComp	Nagra/PSI*		$C_p^{\circ}(T), S^{\circ}$	[1978HEL/DEL]
# Dolomite(ord)		DComp	Nagra/PSI*		$C_p^{\circ}(T), S^{\circ}$	[1978HEL/DEL]
Eu(OH)3(am)		ReacDC	Nagra/PSI	$\Delta_{\mathbf{r}} S^{\circ} = \Delta_{\mathbf{r}} C_{p}^{\circ} = 0$	isoel. 1-Term	Nagra/PSI
Eu(OH)3(cr)		ReacDC	Nagra/PSI	$\Delta_{\rm r} C_p^{\ \circ} = 0$	isoel. 2-Term	Nagra/PSI
Eu2(CO3)3(cr)		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		
EuF3(cr)		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		
EuOHCO3(cr)		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		
Fe(cr)		DComp	$\Delta_{\rm f}G^{\circ}=0$		$C_p^{\circ}(T)$ S°	[1993KUB/ALC] [1982WAG/EVA]
Fe(OH)3(am)		ReacDC	Nagra/PSI	$\Delta_{\rm r} S^{\circ} = \Delta_{\rm r} C_p^{\circ} = 0$	isoel. 1-Term	Nagra/PSI
Fe(OH)3(mic)		ReacDC	Nagra/PSI	$\Delta_{\rm r} S^{\circ} = \Delta_{\rm r} C_{p}^{' \circ} = 0$	isoel. 1-Term	Nagra/PSI
FeCO3(pr)		ReacDC	Nagra/PSI		$\Delta_{\rm r} H^{\circ}, \Delta_{\rm r} C_p^{\circ}$	Nagra/PSI
# Fluorite		DComp	Nagra/PSI*		$C_p^{\circ}(T), S^{\circ}$	[1978HEL/DEL]
# Gibbsite		DComp	Nagra/PSI*		C_p^{r} ° $(T), S^{\circ}$	[1978HEL/DEL]
# Goethite		DComp	Nagra/PSI*		$\{S^{\circ}\}$	[1995ROB/HEM]
# Graphite		DComp	$\Delta_f G^\circ = 0$		$C_p^{\circ}(T), S^{\circ}$	[1978HEL/DEL]
Gypsum		DComp	Nagra/PSI*		$C_p^{\circ}(T)$ S°	[1960KEL] [1995ROB/HEM]
Hausmannite		DComp	Nagra/PSI*		$C_p^{\circ}(T), S^{\circ}$	[1995ROB/HEM]
# Hematite		DComp	Nagra/PSI*		C_p^{r} ° $(T), S^{\circ}$	[1978HEL/DEL]
K4NpO2(CO3)3(s)		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$	1	
# Kaolinite		DComp	Nagra/PSI*	1	$C_p^{\circ}(T), S^{\circ}$	[1978HEL/DEL]
# Magnesite		DComp	Nagra/PSI*		$C_p^{'}\circ(T), S^\circ$	[1978HEL/DEL]
# Magnetite		DComp	Nagra/PSI*		C_p^{r} ° $(T), S$ °	[1978HEL/DEL]
Manganite		DComp	Nagra/PSI*		$C_p^{\circ}(T), S^{\circ} = 0$	not known
Melanterite		DComp	Nagra/PSI*		$\{S^{\circ}\}$	[1995ROB/HEM]
Mo(cr)		DComp	$\Delta_f G^\circ = 0$		$C_p^{\circ}(T), S^{\circ}$	[1995ROB/HEM]
Molybdite		DComp	Nagra/PSI*		$C_p^{\circ}(T), S^{\circ}$	[1995ROB/HEM]
Na3NpO2(CO3)2(s)		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}} S^{\circ} = \Delta_{\mathbf{r}} C_{p}^{\circ} = 0\}$	Γ	
NaNpO2CO3(s,ag)		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		
NaNpO2CO3:3.5H2O(s,fr))	ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{'\circ} = 0\}$		
Nb2O5(cr)		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		
NbO2(cr)		DComp	Nagra/PSI*	•	$C_p^{\circ}(T)$ S°	[1961KIN/CHR] [1958KIN]
NiCO3(cr)		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\ \circ} = 0\}$		
NpO2(am,hyd)		ReacDC	Nagra/PSI	$\Delta_{\rm r} S^{\circ} = \Delta_{\rm r} C_{p}^{\circ} = 0$	isoel. 1-Term	Nagra/PSI
NpO2CO3(s)		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		
NpO2OH(am,ag)		ReacDC	Nagra/PSI	$\Delta_{\rm r}C_p^{\circ}=0$	isocoul. 2-Term	Nagra/PSI
NpO2OH(am,fr)		ReacDC	Nagra/PSI	$\Delta_{\rm r} C_p^{\circ} = 0$	isocoul. 2-Term	Nagra/PSI
NpO3:H2O(cr)		ReacDC	Nagra/PSI	$\Delta_{\mathbf{r}} S^{\circ} = \Delta_{\mathbf{r}} C_{p}^{\circ} = 0$	isoel. 1-Term	Nagra/PSI
# Pd(cr)		DComp	$\Delta_f G^\circ = 0$	-	$C_p^{\circ}(T), S^{\circ}$	[1998SAS/SHO]
# Pd(OH)2(s)		DComp	Nagra/PSI*		C_p^{\prime} ° $(T), S^{\circ}$	[1998SAS/SHO]
Portlandite		DComp	Nagra/PSI*		$C_p^{\circ}(T), S^{\circ}$	[1995ROB/HEM]
Pu(HPO4)2(am,hyd)		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\ \circ} = 0\}$	1	
Pu(OH)3(cr)		ReacDC	Nagra/PSI	$\Delta_{\rm r} S^{\circ} = \Delta_{\rm r} C_p^{\circ} = 0$	isoel. 1-Term	Nagra/PSI
PuO2(hyd,ag)		ReacDC	Nagra/PSI**	$\Delta_{\rm r} H^{\circ} = \Delta_{\rm r} C_p^{\circ} = 0$	1-Term	Nagra/PSI**
PuO2(OH)2:H2O(cr)		ReacDC	Nagra/PSI	$\Delta_{\rm r} S^{\circ} = \Delta_{\rm r} C_p^{\circ} = 0$	isoel. 1-Term	Nagra/PSI
PuO2CO3(s)		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		
PuO2OH(am)		ReacDC	Nagra/PSI	$\Delta_{\rm r} S^{\circ} = \Delta_{\rm r} C_p^{' \circ} = 0$	isocoul. 1-Term	Nagra/PSI

Table A2: Continued

Nagra/PSI TDB 01/01 Name	Non- conventional Stoich.	Record Type in GEMS	Source for $\Delta_{\rm f}G^{\circ}$ or $\log_{10}K^{\circ}$	Assumptions	Data for Calculation of T- Dependence	Source
PuPO4(s,hyd)		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}} S^{\circ} = \Delta_{\mathbf{r}} C_{p}^{\circ} = 0\}$		
# Pyrite		DComp	Nagra/PSI*		$C_p^{\circ}(T), S^{\circ}$	[1978HEL/DEL]
Pyrochroite		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}} S^{\circ} = \Delta_{\mathbf{r}} C_{p}^{\circ} = 0\}$	isoel. 1-Term	Nagra/PSI
Pyrolusite		DComp	Nagra/PSI*	•	$C_p^{\circ}(T), S^{\circ}$	[1995ROB/HEM]
# Quartz		DComp	Nagra/PSI*		$C_p^{\circ}(T), S^{\circ}$	[1978HEL/DEL]
RaCO3(cr)		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}C_{p}^{\ \circ}=0\}$	$\{\Delta_{ m r} H^{\circ}\}$	Nagra/PSI
RaSO4(cr)		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}C_{p}^{\circ}=0\}$	$\{\Delta_{_{\Gamma}}\!H^{\circ}\}$	Nagra/PSI
# Rhodochrosite		DComp	Nagra/PSI*	p	$C_p^{\circ}(T), S^{\circ}$	[1978HEL/DEL]
Rhodochrosite(syn)		ReacDC	Nagra/PSI		$\Delta_{\rm r} H^{\circ}, \Delta_{\rm r} C_{p}^{\circ}$	Nagra/PSI
Rutherfordine		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}} S^{\circ} = \Delta_{\mathbf{r}} C_{p}^{\circ} = 0\}$	1 1 p	
# S(rhomb)		DComp	$\Delta_f G^\circ = 0$	τ ι μ γ	$C_p^{\circ}(T), S^{\circ}$	[1997MCC/SHO]
Schoepite		DComp	Nagra/PSI*		$\{C_p^{\circ}, S^{\circ}\}$	Nagra/PSI
Se(cr)		DComp	$\Delta_{\rm f}G^{\circ}=0$		$\{C_p^{\circ}, S^{\circ}\}$	[1999RAR/RAN]
# Siderite		DComp	Nagra/PSI*		$C_p^{\circ}(T), S^{\circ}$	[1978HEL/DEL] [1985HEL]
# SiO2(am)		DComp	Nagra/PSI*		$C_p^{\circ}(T), S^{\circ}$	[1978HEL/DEL]
# Sn(cr)		DComp	$\Delta_f G^\circ = 0$		$C_p^{\circ}(T), S^{\circ}$	[1985JAC/HEL]
# SnO(s)		DComp	Nagra/PSI*		$C_p^{\circ}(T), S^{\circ}$	[1985JAC/HEL]
SnO2(am)		ReacDC	this work	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{n}^{\circ} = 0\}$	1	
SnS(pr)		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$		
# Strontianite		DComp	Nagra/PSI*	$(\Delta_{\mathbf{r}} \mathcal{S} - \Delta_{\mathbf{r}} \mathcal{C}_p) = 0$	$C_p^{\circ}(T), S^{\circ}$	[1978HEL/DEL]
TcO2:1.6H2O(s)		ReacDC	Nagra/PSI	$\Delta_{\mathbf{r}} S^{\circ} = \Delta_{\mathbf{r}} C_{p}^{\circ} = 0$	1-Term	Nagra/PSI
Theophrastite		ReacDC	Nagra/PSI	$\Delta_{r}S^{\circ} = \Delta_{r}C_{p}^{\circ} = 0$ $\Delta_{r}S^{\circ} = \Delta_{r}C_{p}^{\circ} = 0$	isoel. 1-Term	Nagra/PSI
ThF4(cr)		ReacDC	Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$	isoci. i Term	rugia/101
ThO2(s)		DComp	Nagra/PSI*	$(\Delta_{\mathbf{r}} \mathcal{O} - \Delta_{\mathbf{r}} \mathcal{O}_p = 0)$	$C_p^{\circ}(T), S^{\circ}$	[1995ROB/HEM]
Troilite		DComp	Nagra/PSI*		$\{S^{\circ}\}$	[1995ROB/HEM]
Tugarinovite		DComp	Nagra/PSI*			[1960KIN/WEL]
U(OH)2SO4(cr)		ReacDC	_	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$	$C_p^{\circ}(T)$ S°	[1958KIN]
UF4:2.5H2O(cr)		ReacDC	Nagra/PSI	1		
			Nagra/PSI	$\{\Delta_{\mathbf{r}}S^{\circ} = \Delta_{\mathbf{r}}C_{p}^{\circ} = 0\}$	C°(T) C°	[10070][0/04.02]
# UO2(s)		DComp	Nagra/PSI*	A G° A G ° O	$C_p^{\circ}(T), S^{\circ}$	[1997SHO/SAS2]
USiO4(s)		ReacDC	Nagra/PSI	$\Delta_{\rm r} S^{\circ} = \Delta_{\rm r} C_p^{\ \circ} = 0$	isoel. 1-Term	Nagra/PSI
Witherite		ReacDC	Nagra/PSI		$\Delta_{\rm r} H^{\circ}, \Delta_{\rm r} C_p^{\circ}$	Nagra/PSI
Gases						
# CH4(g)		DComp	Nagra/PSI*		$C_p^{\circ}(T), S^{\circ}$	[1960KEL] [1982WAG/EVA]
# CO2(g)		DComp	Nagra/PSI*		$C_p^{\circ}(T), S^{\circ}$	[1960KEL] [1982WAG/EVA]
# H2(g)		DComp	Nagra/PSI*		$C_p^{\circ}(T), S^{\circ}$	[1960KEL] [1982WAG/EVA]
# H2S(g)		DComp	Nagra/PSI*		$C_p^{\circ}(T), S^{\circ}$	[1960KEL] [1982WAG/EVA]
# N2(g)		DComp	Nagra/PSI*		$C_p^{\circ}(T), S^{\circ}$	[1960KEL] [1982WAG/EVA]
# O2(g)		DComp	Nagra/PSI*		$C_p^{\circ}(T), S^{\circ}$	[1960KEL] [1982WAG/EVA]
Not in original Nagra/PSI	TDB 01/01; for id	entification	n, GEMS record key	vs are indicated (see	Table A1, p. 32)	
# a:wCl+7:ClO4-:add:		DComp	[1997SHO/SAS]		HKF, S°	[1997SHO/SAS]
# a:WN0:N2@:atm:		DComp	Nagra/PSI*		HKF, S°	[1989SHO/HEL]
# g:N0:N2:add:		DComp	Nagra/PSI*		$C_p^{\circ}(T), S^{\circ}$	[1960KEL] [1982WAG/EVA]