Particle spectrograph

Wave operator and propagator

Spin-parity	rrity form		Covariant form	form				Σ	Multiplicities
#2 0 ⁺ r ==0	0		$\partial_{eta}\partial_{lpha} au^{lphaeta}$:	θ == 0				1	
#1 0 ⁺ r-2 i	$0^{+1} r - 2 i k 0^{+} \sigma == 0$	0	$\partial_{eta}\partial_{lpha} au^{lpha}$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\alpha} + 2 \partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha\beta}$	$\partial_{x}\partial^{x}\partial_{\beta}\sigma^{\alpha\beta}$			П	
$\frac{#2}{1} \frac{\alpha}{t} +$	$+2ik_1^{\#2}\sigma$ =	α == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}$	$t^{\beta\chi} == \partial_{x}\partial^{\chi}\partial_{\beta}t^{\alpha}$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \tilde{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2 \ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	×		m	
$\frac{#1}{1} \alpha =$	0 ==		$\partial_{\chi}\partial_{\beta}\partial^{\alpha}$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	ä			m	
$1^{*1}_{\tau}\alpha\beta$	$^{3} + i k_{1}^{#2} \sigma^{\beta}$	$a^{\alpha\beta} == 0$	$\partial_\chi \partial^\alpha \iota^{\beta}$	$x + \partial_{\chi}\partial^{\beta}t^{\chi\alpha} + \hat{c}$	$\partial_\chi \partial^\alpha \tau^{\beta\chi} + \partial_\chi \partial^\beta \tau^{\chi\alpha} + \partial_\chi \partial^\chi \tau^{\alpha\beta} + 2 \ \partial_\sigma \partial_\chi \partial^\alpha \sigma^{\beta\chi\delta} + 2 \ \partial_\sigma \partial^\beta \partial_\chi \sigma^{\alpha\beta\chi} = $, _σ βχδ +	$2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} ==$	М	
			$\partial_{\chi}\partial^{\alpha}$	$t_{\chi g} + g^{\chi} g^{g} t_{\alpha \chi} +$	$\partial_{\chi}\partial^{\alpha}t^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2\ \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	$\partial^{\beta}\sigma^{\alpha\chi\delta}$			
$^{#1}_{2^+\tau}^{\alpha\beta}$	-2 i k2+	$\sigma^{\alpha\beta} == 0$	-į (4 ∂ _δ	$\partial_{\chi}\partial^{\beta}\partial^{\alpha}\tau^{\chi\delta} + 2 i$	$\partial_{\delta}\partial^{\delta}\partial^{\beta}\partial^{\alpha}\tau^{\chi}_{\chi} - 3 \partial_{\delta}$	$\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau$	$-2\ i\ k_{2}^{*1}_{\sigma}^{\alpha\beta} = 0 \ -i \left(4\partial_{\sigma}\partial_{x}\partial^{\beta}\partial^{\alpha}t^{X\delta} + 2\ \partial_{\delta}\partial^{\sigma}\partial^{\beta}\partial^{\alpha}t^{X}_{\chi} - 3\ \partial_{\sigma}\partial^{\sigma}\partial_{\chi}\partial^{\alpha}t^{\beta\chi} - 3\ \partial_{\sigma}\partial^{\sigma}\partial_{\chi}\partial^{\alpha}t^{\chi\beta} - 3\ \partial_{\sigma}\partial^{\sigma}\partial_{\sigma}\partial^{\alpha}\partial_{\sigma}\partial_{\sigma}\partial_{\sigma}\partial_{\sigma}\partial_{\sigma}\partial_{\sigma}\partial_{\sigma}\partial_{\sigma$. 2	
				$3 \partial_{\varrho} \partial^{\varrho} \partial_{\chi} \partial^{\varrho} \iota^{\alpha}$	$3 \partial_6 \partial^6 \partial_\chi \partial^\beta \tau^{\alpha\chi}$ -3 $\partial_6 \partial^6 \partial_\chi \partial^\beta \tau^{\chi\alpha}$ +3 $\partial_6 \partial^6 \partial_\chi \partial^\chi \tau^{\alpha\beta}$ +	+3 0 ₆ 0 ⁶	$^{5}\partial_{\chi}\partial^{\chi}\tau^{\alpha\beta}$ +		
				$3 \partial_{\delta} \partial_{\delta} \partial_{\chi} \partial_{\chi} \tau^{\beta c}$	x +4 i k^{X} $\partial_{\epsilon}\partial_{\chi}\partial^{\beta}\partial_{\epsilon}$	$^{a}\sigma^{\delta\epsilon}_{\delta}$ -	$3\partial_{\delta}\partial_{\lambda}\partial_{\chi}\tau^{\beta\alpha} + 4ik^{X}\partial_{\epsilon}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\sigma^{\delta\varepsilon}_{\delta} - 6ik^{X}\partial_{\epsilon}\partial_{\lambda}\partial_{\alpha}\sigma^{\beta\delta\varepsilon}$	Σ _€	
				$6i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi}$	$6ik^{\chi}\partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\delta\epsilon} + 2\eta^{\alpha\beta}\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\chi}\tau^{\chi\delta} +$	$\epsilon \partial^{\epsilon} \partial_{\delta} \partial_{\chi}$	τ ^{χδ} +		
				6 i k 3 3 6 3 5 5	$6i k^{\chi} \partial_{\varepsilon} \partial^{\varepsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} + 6i k^{\chi} \partial_{\varepsilon} \partial^{\varepsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \delta \alpha} - \frac{1}{2} a^{\alpha \delta} \partial_{\zeta} $	$=\partial^{\epsilon}\partial_{\delta}\partial_{\chi}$	σβδα -		
-				7 11 : Ο ^ε Ο-Ο ^δ	$(S_{ij})^{\alpha} = (S_{ij})^{\alpha} + (S_{$	οφο_ο	$e^{\alpha_{\chi}}\sigma^{-\delta}$ == 0	,	
l otal e)	l otal expected gauge generators:	gauge ge	enerato	.S.				16	
	$_{1}^{\#1}_{+}\mathcal{A}_{\alpha\beta}$	$1^{*1}_{+}\mathcal{A}_{lphaeta}1^{*2}_{+}\mathcal{A}_{lphaeta}1^{*}_{f}_{lphaeta}$	$_{1}^{\#1}f_{\alpha\beta}$	$1^{*1}_{}\mathcal{A}_{\alpha}$	$^{\#2}_{1} \mathcal{A}_{lpha}$	$_{1^{-}f_{\alpha }}^{\#1}$	$\frac{#2}{1^-f^{lpha}}$		
$^{*1}_{1}_{\mathcal{A}}$	$-\frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$-\frac{i \ k \ t}{\sqrt{2}}$	0	0	0	0		
$_{1}^{\#2}\mathcal{A}_{\uparrow}^{\alpha\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0 0		0		
$_{1}^{\#1}_{f}\uparrow ^{\alpha \beta }$	$\frac{i \ k \ t}{\sqrt{2}}$	0	0	0	0 0		0		
$^{\#1}_{1}\mathcal{A}\dagger^{\alpha}$	0	0 0		$\frac{1}{6}(t_1+4\ t_3)$	$\frac{t_1-2t_3}{3\sqrt{2}}$	0	$\frac{1}{3}$ i $k(t_1 - 2 t_3)$		
$^{\#2}_{1}\mathcal{A}^{\pi}$	0	0 0		$\frac{t_1 \cdot 2 t_3}{3 \cdot \sqrt{2}}$	$\frac{\varepsilon_{1}+t_{2}}{3}$	0	$\frac{1}{3}\bar{i}\sqrt{2}k(t_1+t_3)$		
$\overset{\#1}{1^-} \mathcal{f} \dagger$	0	0 0		0	0	0	0		
$\frac{#2}{1}f^{\dagger}$	0	0 0		$-\frac{1}{3}i k(t_1 - 2t_3)$	$-\frac{1}{3}i\sqrt{2}k(t_1+t_3)$	0 ($\frac{2}{3} k^2 (t_1 + t_3)$		

#1 0+ *F*(

i √2 k

#1 0⁺ f †

 $1^{*1} \sigma \uparrow^{\alpha}$

 $1^{*1}\sigma + 0$

 $1^{\frac{\#2}{1}}\sigma^{\alpha}$

 $1^{*1}\tau + {}^{c}$

 $1^{2} \tau + \alpha$

 $4r_2\partial_{eta}\mathcal{A}_{\alpha\theta_l}$ $\partial^{ heta}\mathcal{A}^{\alpha\beta_l}$ $+4r_2\partial_{eta}\mathcal{A}_{loa}$ $\partial^{ heta}\mathcal{A}^{\alpha\beta_l}$ -2 $r_2\partial_{ heta}\mathcal{A}_{\alpha\beta\theta}$ $\partial^{ heta}\mathcal{A}^{\alpha\beta_l}$

 $2r_2\partial_\theta\mathcal{A}_{\alpha\beta_l}\partial^\theta\mathcal{A}^{\alpha\beta_l}$

 $3t_1\partial_{\theta}f_{,\alpha}\partial^{\theta}f^{\alpha\prime}+6t_1\,\mathcal{A}_{\alpha\theta\prime}$ ($\mathcal{A}^{\alpha\prime\theta}$

 $S == \iiint \left(\frac{1}{6} (2(t_1 - 2 t_3) \mathcal{A}^{\alpha}\right)$

 0^{+1}

-i √2 k ts

 $2k^2t_3$

0

0

 $1^+ \sigma_{\alpha\beta}$ $1^+ \sigma_{\alpha\beta}$

 $t_1 + k^2 t_1$

i √2 k

 $t_1+k^2t_1$

 $\sqrt{2}$

 $t_1 + k^2 t_1$

 $\frac{1}{(1+k^2)^2t_1}$

 $(1+k^2)^2 t_1$

0

0

0

 $0^{+2} f 0^{-} \mathcal{F}$

0

0

0

 $i\sqrt{2}k$

 $t_1 + k^2 t_1$

 $(1+k^2)^2 t$

 $(1+k^2)^2 t$

0

 0^{+1}

#2 0⁺ τ†

 $\overset{\#1}{1}\sigma_{lpha}$

0

 $2(t_1+t_3)$

 $3t_1t_3$

 $\sqrt{2} (t_1 - 2t_3)$

 $3(1+2 k^2) t_1 t_3$

2i k <u>t</u>-4i k <u>t</u>

 $(1+2k^2)^2t$

 $\overset{\#2}{1}\sigma_{\alpha}$

 $\sqrt{2}(t_1-2t_3)$

 $3(1+2 k^2) t_1 t_3$

 $3(1+2 k^2)^2 t_1 t_3$

 $i \sqrt{2} k(t_1 + 4t_3)$

 $3(1+2k^2)^2t_1t_3$

 0^{+1}

i √2 k

 $(1+2k^2)^2t$

 $(1+2k^2)^2t_3$

 $\overset{\#1}{1} \tau_{\alpha}$

 $0^{+2} 0^{+} \tau 0^{-} \sigma$

0

0

 $\frac{1}{k^2 r_2 - t_1}$

 $\overset{\#2}{1}$ τ_{α}

0

0

2i k t-4i k t

 $3t_1t_3+6k^2t_1t_3$

 $i \sqrt{2} k(t_1 + 4t_3)$

 $3(1+2 k^2)^2 t_1 t_3$

0

 $2k^2(t_1+4t_3)$

 $3(1+2 k^2)^2 t_1 t_3$

#1 2- *Άαβ*χ

2+ παβ

7 2

0

 2^{*1} τ

0

Massive and massless spectra

Parity:	Spin:	Squaremass:	Pole residue: -	Massive particle	$J^{P} = 0^{-}$ \downarrow^{\uparrow} \downarrow^{\downarrow} \downarrow^{\uparrow} \downarrow^{\downarrow} \downarrow^{\downarrow} \downarrow^{\downarrow} \downarrow^{\uparrow} \downarrow^{\downarrow} \downarrow^{\downarrow	(No particles)
Odd	0	$\frac{t_1}{r_2} > 0$	½ >0	ticle		

Unitarity conditions