# 7 Notes

#### **Assignments**

◆ 5.2, 5.5, 5.15, 5.21(a-f, h)

#### **Tutorial problems**

5.1, 5.3, 5.4, 5.41

# Chapter 5 The Discrete-Time Fourier Transform

# Frequency domain

Time domain

Fourier Series (Periodic/Discrete)

Fourier Transform (Aperiodic/Continuous)

Continuous-Time Domain 州高類性 CT Fourier Series 非関類版 注稱類》(t) CT Fourier Transform 非制始。

Discrete-Time Domain

DT Fourier Series Fourier
Transform
長期級(20

Special case by using impulse function



Sampling

#### Thinking...

• How to move from CT Fourier series to CT Fourier transform?

# Discrete-Time Fourier Transform (DTFT)

**DT** Fourier Series Pair  $\left(\omega_o = \frac{2\pi}{N}\right)$ 

$$x[n] = \sum_{k=} a_k e^{jk\omega_0 n}$$
 (Synthesis equation)

$$a_k = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jk\omega_0 n}$$
 (Analysis equation)

Aperiodic signals can be treated as periodic signals with period  $N \to \infty$ 

- ▶ x[n] must be like  $\sum_k b_k e^{jk(2\pi/N)n}$  or  $\int_{\omega} b(\omega)e^{j\omega n}d\omega$
- $b_k$  or  $b(\omega)$  can be calculated from x[n]

#### **DTFT Derivation (1/3)**



Original signal: x[n]

Define new periodic signal with period  $N: \widetilde{x}[n]$ , such that

$$\widetilde{x}[n] = x[n], \ n = -N/2, ..., N/2 - 1$$

Notice: when  $N \to \infty$ ,  $\widetilde{x}[n]$  becomes x[n]



### **DTFT Derivation (2/3)**

• Look at the Fourier series of  $\widetilde{x}[n]$ :

$$a_{k} = \frac{1}{N} \sum_{n=-N/2}^{N/2+1} \widetilde{x}[n] e^{-jk(2\pi/N)n} = \frac{1}{N} \sum_{n=-\infty}^{\infty} x[n] e^{-jk(2\pi/N)n}$$

### **DTFT Derivation (3/3)**

• Therefore, we get the discrete-time Fourier transform pair

#### Discrete-Time Fourier Transform

Synthesis Equation: 
$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

Analysis Equation:  $X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}$ 

# Periodicity Properties of DT Complex Exponentials

• x[n] - periodic with fundamental period N, fundamental frequency

$$x[n+N] = x[n]$$
 and  $\omega_o = \frac{2\pi}{N}$   
 $n = ..., -1, 0, 1, 2, 3, ...$ 

• For DT complex exponentials, signal are periodic only when

$$\omega_0 N = k \cdot 2\pi, \qquad k = 0, \pm 1, \pm 2, \cdots$$

$$e^{j\omega_0 n} = e^{j\omega_0(n+N)} \longrightarrow e^{j\omega_0 N} = 1 \longrightarrow \omega_0 N = k \cdot 2\pi$$

- For DT complex exponentials, signals with frequencies  $\omega_0$  and  $\omega_0 + k \cdot 2\pi$  are identical.  $e^{j(\omega_0 + k \cdot 2\pi)n} = e^{j\omega_0 n} \cdot e^{jk \cdot 2\pi n} = e^{j\omega_0 n}$ 
  - We need only consider a frequency interval of length  $2\pi$ , and on most cases, we use the interval:  $0 \le \omega_0 < 2\pi$ , or  $-\pi \le \omega_0 < \pi$

Cont.

-  $e^{j\omega_0 n}$  does **not** have a continually increasing rate of oscillation as  $\omega_0$  is increased in magnitude.

low-frequency (slowly varying):  $\omega_0$  near 0,  $2\pi$ , ..., or  $2k \cdot \pi$  high-frequency (rapid variation):  $\omega_0$  near  $\pm \pi$ , ..., or  $(2k+1) \cdot \pi$ 

$$e^{j(2k+1)\pi n} = e^{j\pi n} = (e^{j\pi})^n = (-1)^n$$

# 对此不同的地方,并解释原因

#### Discrete-Time Fourier Transform

Synthesis Equation: 
$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

Analysis Equation: 
$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

# **DT** Fourier Series Pair $\left(\omega_o = \frac{2\pi}{N}\right)$

$$x[n] = \sum_{k=\langle N \rangle} a_k e^{jk\omega_0 n}$$
 (Synthesis equation)

$$a_k = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jk\omega_0 n}$$
 (Analysis equation)



#### **Example: From Periodic To Aperiodic**



学 SUSTC





- $\times [n] = 1 (n = -N_1, ..., 0, ..., N_1)$
- $X(e^{j\omega}) = \frac{\sin\omega(N_1+1/2)}{\sin(\omega/2)}$
- Width of x[n]:  $W_t = 2N_1 + 1$ ; width of  $X(e^{j\omega})$ :  $W_f = \frac{4\pi}{2N_1 + 1}$
- $W_t \times W_f = 4\pi$ , which is a constant



🌘 有主种技士学 SUSTC

### Fourier Transform Examples (2/2)

$$x[n] = a^{n}u[n] \quad 0 < a < 1 \quad \Leftrightarrow \quad X(e^{j\omega}) = \frac{1}{1 - ae^{-j\omega}}$$

$$|X(e^{j\omega})|$$

$$\frac{1}{(1-a)}$$

$$-2\pi$$

$$\Delta X(e^{j\omega})$$

$$\tan^{-1}(a/\sqrt{1-a^{2}})$$

$$\tan^{-1}(a/\sqrt{1-a^{2}})$$

- See textbook, Example 5.1
- What's the shape of magnitude when  $a \to 1$  or  $a \to 0$ ?



# Convergence Issue of Analysis Equation

#### Sufficient Condition of Convergence

The analysis equation  $X(e^{j\omega}) = \sum_{-\infty}^{\infty} x[n]e^{-j\omega n}$  will converge either if x[n] is absolutely summable or if the sequence has finite energy, thus,

$$\sum_{-\infty}^{\infty} |x[n]| < \infty \text{ or } \sum_{-\infty}^{\infty} |x[n]|^2 < \infty$$

#### Cont.

- Do the following signals have Fourier transform:
  - $a^n u[n] (0 < a < 1)$
  - $\delta[n] \stackrel{?}{\rightleftharpoons}$
  - ▶ u[n] ₹
  - $e^{j\frac{2}{5}\pi n}$ ,  $cos(\frac{2}{5}\pi n)$
  - $a^n u[n] (a > 1)$

#### **Can Periodic Signals Have DTFT?**

Definition of DTFT:

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

- Justification of divergence:
  - ▶ Let  $\omega = 2k\pi$ , we have  $X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]$
  - Since x[n] is periodic, the summation  $\sum_{n=-\infty}^{\infty} x[n]$  will never converge unless x[n]=0
- Conclusion: Most of periodic signals do NOT have DTFT according to the definition
- However, it's of significant engineering importance to extend Fourier transform to periodic signals

### **Can Periodic Signals Have DTFT?**

Review

#### Fourier Transform for Periodic Signals – Unified Framework



### DTFT with Periodic Signals (1/2)

#### Fourier Transform of $e^{j\omega n}$

The following transform pair is actually NOT rigorously defined:

$$x[n] = e^{j\omega_0 n} \longleftrightarrow X(e^{j\omega}) = \sum_{l=-\infty}^{\infty} 2\pi \delta(\omega - \omega_0 - 2\pi l)$$

Synthesis:

$$\frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega = \frac{1}{2\pi} \int_{2\pi} \sum_{l=-\infty}^{\infty} 2\pi \delta(\omega - \omega_0 - 2\pi l) e^{j\omega n} d\omega = e^{j\omega_0 n}$$

• Analysis:

$$\sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n} = \sum_{n=-\infty}^{\infty} e^{j(\omega_0 - \omega)n} \quad converge??$$

### DTFT with Periodic Signals (2/2)

ullet According to the Fourier series, for a periodic signal with period N:

$$x[n] = a_0 + a_1 e^{j(2\pi/N)n} + \dots + a_k e^{jk(2\pi/N)n} + \dots + a_{N-1} e^{j(N-1)(2\pi/N)n}$$

- $e^{jk(2\pi/N)n} \longleftrightarrow \sum_{l=-\infty}^{\infty} 2\pi\delta(\omega k(2\pi/N) 2\pi l)$
- Then, due to the linearity of Fourier transform

$$\mathcal{F}\left\{x[n]\right\} = \sum_{k=0}^{N-1} a_k \mathcal{F}\left\{e^{jk(2\pi/N)n}\right\} = \sum_{k=0}^{N-1} a_k \sum_{l=-\infty}^{\infty} 2\pi\delta(\omega - k(2\pi/N) - 2\pi l)$$
$$= \sum_{k=0}^{\infty} \sum_{l=-\infty}^{N-1} a_k 2\pi\delta(\omega - k(2\pi/N) - 2\pi l)$$

- Fourier transform of a periodic signal is a periodic sequence of impulses
  - What's the period? How many impulses within one period?

#### Fourier Series v.s. Fourier Transform



#### **Example: Discrete-Time Impulse Chain**

- What's the Fourier transform of  $x[n] = \sum_{k=-\infty}^{+\infty} \delta[n-kN]$ ?
- First of all, we calculate the Fourier series:

$$a_{k} = \frac{1}{N} \sum_{n=} x[n] e^{-jk\frac{2\pi}{N}n}$$

$$= \frac{1}{N} \sum_{n=} \sum_{k=-\infty}^{+\infty} \delta[n-kN] e^{-jk\frac{2\pi}{N}n}$$

$$= \frac{1}{N} \sum_{n=} \delta[n] e^{-jk\frac{2\pi}{N}n} = \frac{1}{N}$$

## Frequency domain

**Fourier Series Fourier Transform** (Periodic/Discrete) (Aperiodic/Continuous) domain **CT Fourier CT Fourier Continuous-Time** Series Transform **Domain** Sampling Time DT DT Fourier Fourier Discrete-Time **Domain** Series Transform Special case by using impulse function