

SEQUENCE LISTING

<110> MURHPY, Kenan C.

<120> IMPROVED REAGENTS FOR RECOMBINOGENIC
ENGINEERING AND USES THEREOF

<130> UMY-046

<150> 60/450474
<151> 2003-02-26

<160> 37

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 1
atcatcgagc tcaccgagca gttctcgatt gctatt 36

<210> 2
<211> 42
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 2
ttagacgaat gcggccgcaa taggcataaa tatctccctt tt 42

<210> 3
<211> 42
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 3
atgcctattg cggccgcatt cgtctaaata tatccataat ca 42

<210> 4
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 4
atcatcgcat gccaccagaa aaatcctgat caatga 36

<210> 5
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 5
atcatcgagc tcggaaatgc gattccgtca 30

<210> 6
<211> 42
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 6
ttattctact gcggccgcag taatcatgtt atggctccac ca 42

<210> 7
<211> 42
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 7
atgattactg cggccgcagt agaataattc cataaccacc cc 42

<210> 8
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 8
atcatcgcat gctaaaactt ctcaatggtg cgatgc 36

<210> 9
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 9
atcatcggtta ccgcacgtca gtttgctctt caagag 36

<210> 10
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 10
tgccgatcaa cgtctcatgc ggccgcaggt aatggaggtg caggaggaat 50

<210> 11
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 11
aatggcagaa attcgaaagc ggccgcgaat acttcgaata acccaccaggc 50

<210> 12
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 12
tcatcaggtt cctcggtcat gttgcttttgcgtcacg 36

<210> 13
<211> 60
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 13
gacgggttgt tactcgctca catttaatgt tgatgaaagc gcggccgcat gagacgttga 60

<210> 14
<211> 60
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 14
aagaaaagcct gactggcggt taaattgccat acgttattatcgcggccgctt tcgaatttct 60

<210> 15
<211> 72
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 15

atgcttaatg gaatttagtaa cgctgcttct acactagggc ggcagcttgt agcgccgca 60
tgagacgttg at ~ 72

<210> 16
<211> 73
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 16
ttaccctttc ttcgattgct cataggcagc taaatgatct ttatgcct ggccggcgt 60
ttcgaatttc tgc ~ 73

<210> 17
<211> 81
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 17
atgcctattt gtaatcttgg tcataatccc aatgtgaata attcaattcc tcctgcacct 60
cgcggccgca tgagacgttg a ~ 81

<210> 18
<211> 79
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 18
gatatatattt gacgaaacga tgggatcccc gcgcgtgg gttattcgaa gtattcacag 60
cggccgctt cgaatttct ~ 79

<210> 19
<211> 75
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 19
tttctgttat cattactgcc aatatttgg tttattggta cttcatcctt gaaagcggcc 60
gcatgagacg ttgat ~ 75

<210> 20
<211> 76
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 20
aaagctgtcg aaatattaat cgcgataatg atatccacca caactgttgg tagtgcggcc 60

gctttcgaat ttctgc 76
<210> 21
<211> 70
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 21
aagtatttta ttgaattcat ttaaagataa ttatcttagc attattcagg cggccgcatt 60
agacgttgat 70

<210> 22
<211> 72
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 22
tggttttctg atatccagaa acgcccctca tagcccgagt atgtcaacgt gcggccgctt 60
tcgaatttct gc 72

<210> 23
<211> 60
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 23
ctgacactga ggcggggca taagcagggc aagagcggtg aatctctgat gttacattgc 60

<210> 24
<211> 60
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 24
cctctttccg ctatgaaggt gagtgggagc actaccctga ttcaactcag caaaagttcg 60

<210> 25
<211> 60
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 25
agccaggtca acaggtcagt atggaaaggc gaacaactcg aatctctgat gttacattgc 60

<210> 26
<211> 60
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 26
tgggttaat gacatccgat ctcaccgcgt gggcatgga ttcaactcag caaaagttcg 60

<210> 27
<211> 60
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 27
ttgacatcct ccacgccctg aatgacgagg atccctgcta aatctctgat gttacattgc 60

<210> 28
<211> 60
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 28
ggtgcccgtaaaaacccgt cttcagggc gggatataa ttcaactcag caaaagttcg 60

<210> 29
<211> 60
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 29
gcaaatctga gcctgacgca agcatcgggc agaaatataa aatctctgat gttacattgc 60

<210> 30
<211> 60
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 30
tgcccgtaat ttgagctcga aatattttagt cgtaattttg ttcaactcag caaaagttcg 60

<210> 31
<211> 60
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 31
ccggtgcgcc gtaaaacccc gtccttcagg gcggggatat aatctctgat gttacattgc 60

<210> 32
<211> 60
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 32
ttgacatcct ccaagccctg aaggacgtgg atccctgcta ttcaactcag caaaaagttcg 60

<210> 33
<211> 60
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 33
ccggtgcgcc gtaaaacccc gtccttcagg gcggggatat ttcaactcag caaaaagttcg 60

<210> 34
<211> 60
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 34
ttgacatcct ccaagccctg aaggacgtgg atccctgcta aatctctgat gttacattgc 60

<210> 35
<211> 681
<212> DNA
<213> Bacteriophage lambda

<400> 35
atgacaccgg acattatcct gcagcgtacc gggatcgatg tgagagctgt cgaacagggg 60
gatgatgcgt ggcacaaatt acggctcgcc gtcatcaccc cttcagaagt tcacaacgtg 120
atagcaaaaac cccgctccgg aaagaagtgg cctgacatga aaatgtcccta cttccacacc 180
ctgcttgcgt aggttgcac cgggtgtggct ccggaaagtta acgctaaagc actggcctgg 240
ggaaaacagt acgagaacga cgccagaacc ctgtttgaat tcacttccgg cgtgaatgtt 300
actgaatccc cgatcatcta tcgcgacgaa agtatgcgtc ccgcctgcgc tcccgatgg 360
ttatgcagtg acggcaacgg ctttgaactg aaatgcccgt ttacctcccg ggatttcatg 420

aagttccggc tcggtggtt cgaggccata aagtca gttt acatggccca ggtgcagtac 480
acatgtggg tgacgcgaaa aaatgcctgg tactttgcca actatgaccc gcgttatgaag 540
cgtgaaggcc tgcattatgt cgtgatttagg cggatgaaa agtacatggc gagtttgac 600
gagatcgtgc cggagttcat cggaaaaatg gacgaggcac tggctgaaat tggtttgta 660
tttggggagc aatggcgatg a 681

<210> 36

<211> 786

<212> DNA

<213> Bacteriophage lambda

<400> 36

atgaggactg cactcgcaac gctggctggg aagctggctg aacgtgtcg catggattct 60
gtcgaccac aggaactgat caccacttt cgcacacgg catttaaagg tggatgccagc 120
gatgcgcagt tcacatcgatt actgatcggtt gccaaccagt acggccctaa tccgtggacg 180
aaagaaaattt acgcctttcc tgataagcag aatggcatcg ttccgggtt gggcggttgc 240
ggctggtccc gcatcatcaa taaaaccag cagtttgcatg gcatggactt tgagcaggac 300
aatgaatccat gtacatgccc gatttaccgc aaggaccgt aatcatccgt ctgcgttacc 360
gaatggatgg atgaatgccc ccgcgaacca ttcaaaaactc gcgaaaggcag agaaatcacg 420
ggcccggtgc agtcgcattcc caaacggatg ttacgtcata aagccatgtat tcagtgtgcc 480
cgtctggcct tcggatttgc tggtatctat gacaaggatg aagccgagcg cattgtcgaa 540
aatactgcat acactgcaga acgtcagccg gaacgcgaca tcactccgt taacgtgaa 600
accatgcagg agattaacac tctgctgatc gccctggata aaacatgggta tgacgactta 660
ttgccgctct gttccagat atttcgcgc gacattcgtg catcgtcaga actgacacag 720
gccgaaggcag taaaagctct tggattccctg aaacagaaaag ccgcagagca gaaggtggca 780
gcatga 786

<210> 37

<211> 417

<212> DNA

<213> Bacteriophage lambda

<400> 37

atggatatta atactgaaac tgagatcaag caaaaggcatt cactaaccctt ctttcctgtt 60
ttcctaattca gcccggcatt tcgcggcga tattttcaca gctatttcag gagttcagcc 120
atgaacgctt attacattca ggatcgctt gaggtcaga gctgggcgc tcactaccag 180
cagctcgccc gtgaagagaa agaggcagaa ctggcagacg acatggaaaa aggccctgccc 240
cagcacctgt ttgaatcgct atgcattcgat catttgcac gccacgggc cagcaaaaaa 300
tccattaccctt gtcgttgta tgacgtgtt gagttcagg agcgcattgc agaacacatc 360
cgttacatgg ttgaaaccat tgctcaccac cagttgata ttgattcaga ggtataa 417