ОТЧЕТ

за изпълнение на втората година от докторантура

Тема на дисертационен труд:

Толерантност на *Arabis alpina* към нискотемпературен стрес – хормонална регулация.

редовен докторант: М. Колаксъзов

научен ръководител: проф. д-р. Е. Ананиев

Катедра Физиология на растенията, БФ на СУ "Св. Кл. Охридски"

Основни експериментални задачи за 2013г.

- Селектиране на интактни растения (*A. αlpinα*) и събиране на семена (siliques) от района на **"Седемте Рилски Езера"**. Пренасяне и култивиране на растенията при контролирани лабораторни условия. Развитие на *A. αlpinα* от семена в лабораторни условия.
- Сравнителен анализ на A. αlpinα от района на "Седемте Рилски Езера" и растения от
 Френските Алпи района на Col du Galibier в Алпите (популация Т tolerant) и от планината
 Vercors (популация NT non tolerant)
- 1. Определяне съдържанието на зелени пигменти (Хл. "а" и Хл. "b") и каротеноиди, вкл. пигменти от ксантофиловия цикъл (зеаксантин, антераксантин, виолаксантин)
- 2. Изследване на активността на ФС II (флуоресцентен анализ, както и на активността на ФС I
- 3. Изследване експресията на ключови гени от метаболизма и сигналния път на ABA (NCED 9цис епоксикаротеноид диоксигеназа ABA – алдехид оксидаза), СК (IPT – изопентенил аденин трансфераза) посредством RT-qPCR анализ.

Обект на изследването: Моделното растение *Arabis alpina* L. за изследване на адаптацията към нискотемпературен стрес

- Mногогодишно планинско растение от сем. Brassicaceae
- Растящо от 500 m до 3200 m надморска височина (в зависимост от географската ширина)
- Среща се в повечето европейски страни, на Канарските острови, северна и източна Африка, Етиопия, Арабския полуостров и централна Азия. В България – Рила, Пирин и Средна Стара Планина
- Геномния размер е около 375 Mb (n = 8 хромозоми)
 - Самооплождащ се диплоид

Селектиране на интактни растения *A alpina* в Рила и събиране на зрели семена (siliques)

Района на "Седемте Рилски Езера", участъка между езерата "Близнака" и "Трилистника"

Отглеждане на растенията в лабораторни условия

В култивационно помещение при 22°C – 25°C, 12/12h фотопериод, 60-70% отн. вл., светлинен интензитет ~150 μmol m⁻²s⁻¹, в продължение на 2 1/2 месеца

Растения от семена от Франция

GAL "E" F005 F109 (tolerant) (non-tolerant) (short hypocotyl)

Развитие на *A. αlpinα* от семена (Седемте Рилски Езера)

10 ДНИ

20 ДНИ

15 ДНИ

20 ДНИ

1 месец

Легенда към експеримента

Третиране	22°C Control	4°C; 4 дни (chilling stress)	-6°C, 12h на тъмно (freezing stress)	Възста- новяване (recovery) 4°C; 4 дни	Възста- новяване (recovery) 22°C; 4 дни
Толерантни	T ₂₂	T ₄	T _{4S}	Rec T ₄	Rec T ₂₂
Нетолерантни	NT ₂₂	NT ₄	NT _{4S}	Rec NT ₄	Rec NT ₂₂
Нискостъблени	SH ₂₂	SH ₄	SH _{4S}	Rec SH ₄	Rec SH ₂₂

Резултати – ефект на chilling и freezing stress. Възстановяване

Извод – фенотипни прояви на Т- и NTпопулациите след нискотемпературен стрес

Т- популацията преодолява влиянието на ниските минусови температури (freezing stress), докато при NT-популацията повечето от индивидите загиват след този стрес. В условия на ниски положителни температури (chilling stress), двете популации проявяват сходни фенотипни прояви на толерантност.

Изследване на ФС - флуоресцентен анализ на хлорофила

Абсорбция и излъчване на светлината от хлорофилните молекули

Крива на Каутски и параметри на флуоресценция

- *Флуоресцентната индукционна кинетика* при осветяване с непрекъсната светлина има бърза, по-малко от сек, експоненциална фаза и една бавна фаза на спадане, с продължителност от няколко минути.
 - От Fo до Fm (бърза фаза) флуоресценцията се повишава в следствие на намаляване на фото-химичното насищане (PQ), затваряне на реакционните центрове и редуциране на QA
 - Бавната фаза се приписва на различни фактори енергиен пренос, синтез на АТФ, СО2 фиксация, нефотохимично гасене (NPQ).
 - OJIP прехода и стойностите на Fo, Fm, Fv и Fv/Fm (максимален квантов добив, 0.78-0.84) дава директна информация за фотохимията на ФС2

φ_{Ро} – макс. кв. добив на първ. ΦX

φ_{Eo} – кв. добив на е⁻ транспорт след QA

 ϕ_{Ro} – кв. добив на е транспорт след PQ ϕ_{Do} – кв. добив на топл.

ф_{Do} – кв. добив на топл дисипация

Резултати – съдържание на хлорофил

Резултати – съдържание на каротеноиди

Биосинтеничен път на каротеноидите

Изводи по съдържание на пигменти (хлорофили и каротеноиди) при А. alpina след нискотемпературен стрес

- Общото съдържание на хлорофил (Хл. "a" + Хл. "b") намалява след нискотемпературния стрес (chilling and freezing stress), като това се дължи в по-голяма степен на намалението на хлорофил "a". Намалението на хл. "a" е по- силно изразено при нетолерантните (NT) в сравнение с толерантните към freezing stress растения (T), което е типично за множество типове стрес.
- Количеството на лутеина и β-каротена остава сравнително постоянно при Т-популацията, както след chilling, така и след freezing stress, докато при NT-популацията, съдържанието на двата основни каротеноида намалява в поголяма степен. При пигментите от ксантофиловия цикъл (zea-, anthera- и violaxanthin), в резултат на нискотемпературния стрес се наблюдава увеличаване съдържанието на zeaxanthin за сметка на намаляване съдържанието на виолаксантин, както при Т- така и при NT-популацията на А. alpina (де-епоксидация в условия на стрес).

Ксантофилов цикъл

Анализ на активността на ФСІ (M-PEA, multi-functional PEA) чрез MR ₈₂₀ (modulated reflection at 820 nm)

Сравнителен анализ на активността на ФСІІ (бърза флуоресценция на хлорофила) между френските популации Т и NT и диви растения А. alpina от района на "Седемте Рилски Езера"

Изводи от анализа на prompt fluorescence на хлорофила на ФСІІ при *A. alpina* (Т и NT) • Резултатите от JIР теста показват, че активността на ФСІІ не се променя в значителна степен

- Резултатите от JIP теста показват, че активността на ФСII не се променя в значителна степен след третиране с ниски положителни температури (chilling stress) и при двете изследвани популации Т и NT.
- Третирането с минусови температури (freezing stress) води до силно инхибиране на ФСІІ при Т и до нейното инактивиране при NT. В периода на възстановяване при 4°С и 22°С, нормалния ход на ОЈІР кривата се възстановява, респективно възстановява се активността на ФСІІ.
- Анализът на отделните стадии на ОЈІР кривата показва, че фотохимичната реакция на ФСІІ до първичния акцептор на електрони QA (параметър ϕ_{Po}) се инхибира в по-малка степен в сравнение с квантовия добив на електрони от QA до PQ и Cyt-b₆f комплекса (параметър ϕ_{Eo}), както и последващият пренос на електрони към ФСІ (параметър ϕ_{Ro}). В периода на възстановяване с положителни температури се възвръщат стойностите на тези показатели само при популацията Т.
- За разлика от ФСІІ, ниските положителни температури инхибират в по-голяма степен преноса на електрони при ФСІ, което се изразява в промяната на низходящата (окисление) и възходящата (редукция) крива на реакционния център на ФСІ. Минусовите температури водят до пълно увреждане на ФСІ при NT и до силно инхибиране при Т.
- Най-общо, в сравнение с ФСІІ, активността на ФСІ е по-чувствителна към нискотемпературния стрес, както при Т, така и при NT. Толерантността на популацията Т към минусови температури се определя главно от по-високата резистентност на ФСІ.

RT-qPCR анализ на гени от биосинтетичния път на АБК и ЦК

БИОСИНТЕТИЧЕН ПЪТ НА АБК

Изводи

- С намаляване на температурата на третиране се увеличава активността на гените от биосинтеничния път на АБК, което показва ролята на този фитохормон в регулацията на нискотемпературния стрес. При нетолерантните растения ААО3 е почти 2 пъти по-активен.
- Активността на IPT2, който отговаря за синтеза на цис-ЦК е по-активен при толерантните. Това корелира с по-високите нива на цис-ЦК при третиране с ниски температури.

Благодаря за вниманието!