Game Theory

Caroline Liu Vincent Macri Samantha Unger

© Caroline Liu, Vincent Macri, and Samantha Unger, 2017

Table of Contents

1 Introduction

2 Pick Up Sticks!

2 Chomp

What is game theory?

"Game theory is about finding a way to rig games in your favour."

What is game theory?

"Game theory is about finding a way to rig games in your favour."

— Vincent Macri

Table of Contents

1 Introduction

2 Pick Up Sticks!

2 Chomp!

The second game

Chomp!

Math has never been this exciting (or delicious)

What's the game? Chomp!

Chomp is played on a rectangular grid, such as squares of a candy bar. The lower left square is considered poison. Players take turns picking a square. With each choice, all squares above and to the right of the picked square are no longer available – they are eaten. The person forced to take the poison square loses.

Let's play! $(4 \times 6 \text{ board})$

Yes!

Yes!

■ The first player has a winning strategy for any finite grid.

Yes!

- The first player has a winning strategy for any finite grid.
 - They can take any move that the second can player can make, that would result in winning.

Yes!

- The first player has a winning strategy for any finite grid.
 - They can take any move that the second can player can make, that would result in winning.
 - We can think of this as strategy stealing!

Yes!

- The first player has a winning strategy for any finite grid.
 - They can take any move that the second can player can make, that would result in winning.
 - We can think of this as strategy stealing!

The real question is...

■ Does anyone know one right away?

- Does anyone know one right away?
- No!

- Does anyone know one right away?
- No!
- Let's analyze some cases!

$n \times n$ grid Chomp!

■ What's the strategy here?

$n\times n \text{ grid}_{\text{Chomp!}}$

- What's the strategy here?
- Make an "L", and then take symmetrical moves!

$2\times n \text{ grid}_{\text{Chomp!}}$

■ What's the strategy here?

$2 \times n$ grid $2 \times n$ chomp!

- What's the strategy here?
- Make sure that player 2 encounters a rectangle... with a square missing!

■ Just because there is always a winning strategy for player 1 doesn't mean that we know what it is!

- Just because there is always a winning strategy for player 1 doesn't mean that we know what it is!
- We know the strategy for $n \times n$ and $2 \times n$, as well as particular small grids... but not all...

- Just because there is always a winning strategy for player 1 doesn't mean that we know what it is!
- We know the strategy for $n \times n$ and $2 \times n$, as well as particular small grids... but not all...
 - In 2002, Steven Byrnes (a high school senior!!) solved the $3 \times n$ case and won over $\$100\,000$

- Just because there is always a winning strategy for player 1 doesn't mean that we know what it is!
- We know the strategy for $n \times n$ and $2 \times n$, as well as particular small grids... but not all...
 - In 2002, Steven Byrnes (a high school senior!!) solved the $3 \times n$ case and won over \$100,000
 - Computers can calculate winning moves for grids of reasonable size

Some cool extensions Chomp!

- \blacksquare 3D or $n\mathsf{D}$ chomp
- Infinite/ordinal chomp:
 - Here is how player "Too" can win on a $2 \times \omega$ board

