Национальный исследовательский университет ИТМО Факультет программной инженерии и компьютерной техники

Практическое задание №3 по дисципение Теория Автоматов Канонический метод структурного синтеза

Вариант 11

Студент: Саржевский Иван

Группа: Р3302

Преподаватель: Тропченко Александр Ювенальевич

г. Санкт-Петербург 2020 г.

Цель

Практическое освоение метода перехода от абстрактного автомата к структурному автомату.

Задание

Абстрактный автомат задан табличным способом. Причем абстрактный автомат Мили представлен таблицами переходов и выходов, а абстрактный автомат Мура - одной отмеченной таблицей переходов. Для синтеза структурного автомата использовать функционально полную систему логических элементов И, ИЛИ, НЕ и автомат Мура, обладающий полнотой переходов и полнотой выходов. Синтезированный структурный автомат представить в виде ПАМЯТИ и КОМБИНАЦИОННОЙ СХЕМЫ.

Исходные данные

Согласно полученному варианту исходный автомат Мура задается следующей таблицей переходов:

λ	W2	W1	W1	W2	W1	W 3	W1	W4
δ	a ₁	a ₂	a ₃	a ₄	a 5	a ₆	a 7	as
Z ₁	a 5	a ₆	as	a 5	a ₁	a ₂	a ₄	a 7
Z ₂	a ₂	a ₃	as	a 7	a 7	as	a ₈	as

Кодирование исходного автомата двоичными кодами

Входной алфавит

	x_1
z_1	0
z_2	1

Выходной алфавит

	y_1	y_2
w_1	0	0
w_2	0	1
w_3	1	0
w_4	1	1

Состояния

	Q_1	Q_2	Q_3
a_1	0	0	0
a_2	0	0	1
a_3	0	1	0
a_4	0	1	1
a_5	1	0	0
a_6	1	0	1
a_7	1	1	0
a_8	1	1	1

Таблицы переходов и выходов соответствующего структурного автомата

После кодирования исходного абстрактного автомата Мура построим таблицы переходов и выходов структурного автомата.

$x_1/Q_1Q_2Q_3$	000	001	010	011	100	101	110	111
0	100	101	111	100	000	001	011	110
1	001	010	111	110	110	111	111	111

$x_1/Q_1Q_2Q_3$	000	001	010	011	100	101	110	111
0	01	00	00	01	00	10	00	11
1	01	00	00	01	00	10	00	11
	y_1y_2							

ДНФ для выходных сигналов

По полученным таблицам построим ДНФ для каждого выходного сигнала:

$$\begin{split} y_1 &= \bar{x_1}Q_1\bar{Q_2}Q_3 \vee \bar{x_1}Q_1Q_2Q_3 \vee x_1Q_1\bar{Q_2}Q_3 \vee x_1Q_1Q_2Q_3 = 5 \vee 7 \vee 13 \vee 15 \\ y_2 &= \bar{x_1}\bar{Q_1}\bar{Q_2}\bar{Q_3} \vee \bar{x_1}\bar{Q_1}Q_2Q_3 \vee \bar{x_1}Q_1Q_2Q_3 \vee x_1\bar{Q_1}\bar{Q_2}\bar{Q_3} \vee x_1\bar{Q_1}Q_2Q_3 \vee x_1Q_1Q_2Q_3 \\ &= 0 \vee 3 \vee 7 \vee 8 \vee 11 \vee 15 \end{split}$$

Синтез автомата на D-триггерах

С учетом закона функционирования D-триггера построим таблицу сигналов функций возбуждения:

$x_1/Q_1Q_2Q_3$	000	001	010	011	100	101	110	111
0	100	101	111	100	000	001	011	110
1	001	010	111	110	110	111	111	111
	$D_1D_2D_3$							

ДНФ для сигналов функций возбуждения:

- $$\begin{split} D_1 &= \bar{x_1} \bar{Q_1} \bar{Q_2} \bar{Q_3} \vee \bar{x_1} \bar{Q_1} \bar{Q_2} Q_3 \vee \bar{x_1} \bar{Q_1} Q_2 \bar{Q_3} \vee \bar{x_1} \bar{Q_1} Q_2 Q_3 \vee \bar{x_1} Q_1 Q_2 Q_3 \vee \bar{x_1} \bar{Q_1} Q_2 \bar{Q_3} = \\ &= 0 \vee 1 \vee 2 \vee 3 \vee 7 \vee 10 \vee 11 \vee 12 \vee 13 \vee 14 \vee 15 \end{split}$$
- $D_2 = \bar{x_1} \bar{Q_1} Q_2 \bar{Q_3} \vee \bar{x_1} Q_1 Q_2 \bar{Q_3} \vee \bar{x_1} Q_1 Q_2 Q_3 \vee x_1 \bar{Q_1} \bar{Q_2} Q_3 \vee x_1 \bar{Q_1} Q_2 \bar{Q_3} \vee x_1 \bar{Q_1} Q_2 \bar{Q_3} \vee x_1 \bar{Q_1} Q_2 \bar{Q_3} \vee x_1 \bar{Q_1} \bar{Q_2} \bar{Q_3} \vee x_1 \bar{Q$
- $$\begin{split} D_3 &= \bar{x_1} \bar{Q_1} \bar{Q_2} Q_3 \vee \bar{x_1} \bar{Q_1} Q_2 \bar{Q_3} \vee \bar{x_1} Q_1 \bar{Q_2} Q_3 \vee \bar{x_1} Q_1 Q_2 \bar{Q_3} \vee x_1 \bar{Q_1} \bar{Q_2} \bar{Q_3} \vee x_1 \bar{Q_1} Q_2 \bar{Q_3} \vee x_1 \bar{Q_1} \bar{Q_2} \bar{Q_3} \vee x_1 \bar{Q_1} \bar{Q_2$$

Функциональная схема структурного автомата на D-триггерах

Тестирование функциональной схемы автомата

Результирующее слово совпадает с ожидаемым.

Синтез автомата на Т-триггерах

С учетом закона функционирования Т-триггера построим таблицу сигналов функций возбуждения:

$x_1/Q_1Q_2Q_3$	000	001	010	011	100	101	110	111
0	100	100	101	111	100	100	101	001
1	001	011	101	101	010	010	001	000
	$T_1T_2T_3$							

ДНФ для сигналов функций возбуждения:

$$\begin{split} T_1 &= \bar{x_1} \bar{Q_1} \bar{Q_2} \bar{Q_3} \vee \bar{x_1} \bar{Q_1} \bar{Q_2} Q_3 \vee \bar{x_1} \bar{Q_1} Q_2 \bar{Q_3} \vee \bar{x_1} \bar{Q_1} Q_2 Q_3 \vee \bar{x_1} Q_1 \bar{Q_2} \bar{Q_3} \vee \bar{x_1} Q_1 \bar{Q_2} Q_3 \vee \bar{x_1} Q_1 \bar{Q_2} Q_3 \vee \bar{x_1} Q_1 \bar{Q_2} Q_3 \vee \bar{x_1} Q_1 \bar{Q_2} \bar{Q_3} \vee \bar{x_1} Q_1 \bar{Q_2} \bar{Q_3} \vee \bar{x_1} \bar{Q_1} Q_2 \bar{Q_3} \vee \bar{x_1} \bar{Q_1} \bar{Q_2} \bar{Q_3} \vee \bar{x_1}$$

Функциональная схема структурного автомата на Т-триггерах

Тестирование функциональной схемы автомата

Результирующее слово совпадает с ожидаемым.

Синтез автомата на RS-триггерах

С учетом закона функционирования RS-триггера построим таблицу сигналов функций возбуждения:

$x_1/Q_1Q_2Q_3$	000	001	010	011	100	101	110	111
0	01/-0/-0	01/-0/0-	01/0-/01	01/10/10	10/-0/-0	10/-0/0-	10/0-/01	0-/0-/10
1	-0/-0/01	-0/01/10	01/0-/01	01/0-/10	0-/01/-0	0-/01/0-	0-/0-/01	0-/0-/0-
	$R_1S_1/$	$R_1S_1/$	$R_1S_1/$	$R_1S_1/$	$R_1S_1/$	$R_1S_1/$	$R_1S_1/$	$R_1S_1/$
	$R_2S_2/$	$R_{2}S_{2}/$	$R_2S_2/$	$R_2S_2/$	$R_2S_2/$	$R_{2}S_{2}/$	$R_2S_2/$	$R_2S_2/$
	R_3S_3	R_3S_3	R_3S_3	R_3S_3	R_3S_3	R_3S_3	R_3S_3	R_3S_3

ДНФ для сигналов функций возбуждения:

$$\begin{split} R_1 &= \bar{x_1}Q_1\bar{Q_2}\bar{Q_3} \vee \bar{x_1}Q_1\bar{Q_2}Q_3 \vee \bar{x_1}Q_1Q_2\bar{Q_3} = 4 \vee 5 \vee 6 \\ S_1 &= \bar{x_1}\bar{Q_1}\bar{Q_2}\bar{Q_3} \vee \bar{x_1}\bar{Q_1}\bar{Q_2}Q_3 \vee \bar{x_1}\bar{Q_1}Q_2\bar{Q_3} \vee \bar{x_1}\bar{Q_1}Q_2Q_3 \vee \bar{x_1}\bar{Q_1}Q_2\bar{Q_3} \vee \bar{x_1}\bar{Q_1}Q_2\bar{Q_3} \vee \bar{x_1}\bar{Q_1}Q_2\bar{Q_3} \\ &= 0 \vee 1 \vee 2 \vee 3 \vee 10 \vee 11 \\ R_2 &= \bar{x_1}\bar{Q_1}Q_2Q_3 = 3 \\ S_2 &= \bar{x_1}\bar{Q_1}\bar{Q_2}Q_3 \vee \bar{x_1}Q_1\bar{Q_2}\bar{Q_3} \vee \bar{x_1}Q_1\bar{Q_2}Q_3 = 9 \vee 12 \vee 13 \\ R_3 &= \bar{x_1}\bar{Q_1}Q_2Q_3 \vee \bar{x_1}Q_1Q_2Q_3 \vee \bar{x_1}\bar{Q_1}Q_2Q_3 \vee \bar{x_1}\bar{Q_1}Q_2\bar{Q_3} \vee \bar{x_1}\bar{Q_1}Q_2\bar{Q_2} \vee \bar{x_1}\bar{Q_1}Q_2\bar{Q_2} \vee \bar{x_1}\bar{Q_1}Q_2\bar{Q_2} \vee \bar{x_1}\bar{Q_1}Q_2\bar{Q_2} \vee \bar{x_1}\bar{Q_1}Q_2\bar{Q_2} \vee \bar{x_1}\bar{Q_$$

Функциональная схема структурного автомата на RS-триггерах

Тестирование функциональной схемы автомата

Сло	во	1.	.0.	.0.	.1.	.0.	.1.	.0.	.1.	0.	.0.	.0.	.0.	.0.	.1.	.0.	.1.	.0.	.0.	.0.	.1.	.0	.1.	0.	.0.	.0.	.0.	1.	.1.	. 1	
Ожи	ид.		00	10	00	00	11	11	00	11	00	01	00	01	00	00	01	00	01	00	01	00	10	11	00	01	00	01	00	00	11
Резу	ул.		00	10	00	00	11	11	00	11	00	01	00	01	00	00	01	00	01	00	01	00	10	11	00	01	00	01	00	00	11

Результирующее слово совпадает с ожидаемым.

Синтез автомата на ЈК-триггерах

С учетом закона функционирования ЈК-триггера построим таблицу сигналов функций возбуждения:

$x_1/Q_1Q_2Q_3$	000	001	010	011	100	101	110	111
0	1-/0-/0-	1-/0-/-0	1-/-0/1-	1-/-1/-1	-1/0-/0-	-1/0-/-0	-1/-0/1-	-0/-0/-1
1	0-/0-/1-	0-/1-/-1	1-/-0/1-	1-/-0/-1	-0/1-/0-	-0/1-/-0	-0/-0/1-	-0/-0/-0
	$J_1K_1/$							
	$J_2K_2/$							
	J_3K_3							

ДНФ для сигналов функций возбуждения:

$$\begin{split} J_1 &= \bar{x_1} \bar{Q_1} \bar{Q_2} \bar{Q_3} \vee \bar{x_1} \bar{Q_1} \bar{Q_2} Q_3 \vee \bar{x_1} \bar{Q_1} Q_2 \bar{Q_3} \vee \bar{x_1} \bar{Q_1} Q_2 Q_3 \vee \bar{x_1} \bar{Q_1} Q_2 \bar{Q_3} \vee \bar{x_1} \bar{Q_1} Q_2 \bar{Q_3} \\ &= 0 \vee 1 \vee 2 \vee 3 \vee 10 \vee 11 \\ K_1 &= \bar{x_1} Q_1 \bar{Q_2} \bar{Q_3} \vee \bar{x_1} Q_1 \bar{Q_2} Q_3 \vee \bar{x_1} Q_1 Q_2 \bar{Q_3} = 4 \vee 5 \vee 6 \\ J_2 &= \bar{x_1} \bar{Q_1} \bar{Q_2} Q_3 \vee \bar{x_1} Q_1 \bar{Q_2} \bar{Q_3} \vee \bar{x_1} Q_1 \bar{Q_2} Q_3 = 9 \vee 12 \vee 13 \\ K_2 &= \bar{x_1} \bar{Q_1} Q_2 Q_3 = 3 \\ J_3 &= \bar{x_1} \bar{Q_1} Q_2 \bar{Q_3} \vee \bar{x_1} Q_1 Q_2 \bar{Q_3} \vee \bar{x_1} \bar{Q_1} \bar{Q_2} \bar{Q_3} \vee \bar{x_1} \bar{Q_1} Q_2 \bar{Q_3} \vee \bar{x_1} \bar{Q_1} \bar{Q_2} \bar{Q_3} \vee \bar{x_1} \bar{Q$$

Функциональная схема структурного автомата на ЈК-триггерах

TODO: нарисовать

Тестирование функциональной схемы автомата

Результирующее слово совпадает с ожидаемым.

Вывод

B ходе выполнения работы был изучен канонический метод структурного синтеза, получены практические навыки преобразования абстрактного автомата Мура в структурный автомат на D-, T-, RS- и JK-триггерах.