UNOESTE – Universidade do Oeste Paulista FIPP – Faculdade de Informática de Presidente Prudente

Aula 4 - Teste de Software - Parte I

Trabalhos de qualidade não podem serem feitos sem concentração, auto-sacrifício, esforço, padronização e as vezes uma certa dúvida do novo.

Verificação, Validação e Teste

- Validação
 - Assegura que o produto final corresponda aos requisitos do software
 - "Estamos construindo o produto certo?"
- Verificação
 - Assegura que o produto possui consistência, completitude e corretitude em cada fase e entre as fases consecutivas do ciclo de vida
 - "Estamos construindo corretamente o produto?"
- Teste
 - Examina o comportamento do produto através de sua execução
 - Funcional ou não funcional

A pressão leva o desenvolvedor de software a consertar um erro e, ao mesmo tempo, introduzir mais dois"

Pressman

Atividades de Teste

- Planejamento
 - Planejar quais testes realizar
 - Quando realizar
 - Como realizar
 - Porque realizar
 - Em que parte do sistema realizar
- Projeto de casos de teste
 - Maneira sistemática e planejada para conduzir os testes
 - Ser finito
 - Custo de aplicação razoável
- Execução dos casos de teste
- Análise de resultados

Atividades de Teste

Planejamento de Teste

- O propósito é
 - Realizar o teste correto
 - Na ordem correta
 - No tempo e custo permitido
- Portanto, planejar teste é
 - Definir os testes a serem realizados
 - Decompondo a solução/software em partes com diferentes aspectos
 - Definir quando e a ordem dos testes
 - Definir a técnica de teste, critérios de teste e ferramenta(s) para automação
 - Identificar e selecionar os casos de teste

Preparação de Teste

- Documentar os casos de teste
 - Titulo
 - Prioridade
 - Status
 - Passos
 - Comportamento esperado
- Desenvolver os scripts de teste
 - O que é script de teste? Pesquise!

Execução de Teste

- Executar os casos de teste
 - Pode necessitar mudanças no plano de teste
- Isolação e generalização
 - Isolação é o processo de examinar a causa do defeito para corrigi-lo
 - Generalização é o processo de entender o impacto (severidade) do defeito
- Gerenciar os defeitos
 - Gerar relatórios de teste com os defeitos
 - A reportagem de um erro dever ser : objetivos, específicos, conciso, reprodutível, explicito, persuasivo
 - A reportagem pode ainda classificar o erro quanto a sua importância denotada como severidade (alta, média, baixa)

Relatório de Teste

- Elementos de um relatório de erro
 - Titulo
 - Severidade
 - Status
 - Passos para reprodução
 - Comportamento esperado
 - Comportamento encontrado
 - Proposta de solução
 - Prioridade
 - Causa-raiz

Métricas

- Utilizadas para comparar a performance do processo de desenvolvimento
 - Defects per KLOC ou defects per thousand lines of code ou defects density (Densidade de defeitos ou defeitos por linhas de código)
 - Consiste em dividir o total de defeitos pelo total de linhas de código
 - Defects per hour ou defect injection rate (Taxa de inserção de defeitos)
 - Consiste em dividir o total de defeitos pelo total de horas de desenvolvimento
 - Defect discovery rate (Taxa de descobrimento de defeitos)
 - Consiste em dividir o total de defeitos encontrados pelo total de horas gasto para encontrá-los

Técnicas de Teste

- Funcional (caixa preta)
- Estrutural (caixa branca)
- Baseada em erros

Teste Funcional

- Funcional (caixa preta)
 - Baseia-se na especificação para derivar os requisitos de teste
 - Ponto de vista macroscópico
 - Passos
 - Identificar quais funções o sistema deve realizar
 - Criar casos de teste
 - Checar as funções
 - » Executadas corretamente?
 - Problema
 - Dificuldade em quantificar a atividade de teste
 - Não tem garantia que todas as partes do sistema foram executadas
 - » Partes críticas

Teste Estrutural

- Estrutural (caixa branca)
 - Baseada na implementação e conhecimento de sua estrutura
 - Teste dos detalhes procedimentais
 - Geralmente utiliza-se de uma representação do programa
 - Grafo de programa ou grafo de fluxo de controle

Teste Baseado em Erros

- Baseada em erros
 - Utiliza-se de informações sobre os tipos de erros mais comuns no processo de desenvolvimento para derivar os requisitos de teste
 - Ênfase nos erros que o projetista e/ou programador pode cometer ou geralmente comente durante o desenvolvimento

Teste versus Qualidade

- Teste garante qualidade?
 - Prevenção e remoção de defeitos
 - Identificação de problemas que poderiam ter sido evitados
- Quanto mais cedo melhor?
 - Não garante qualidade
 - Contribui nesta direção

Fases de Teste

Pesquise!

1 – Pesquise as definições das fases de teste abaixo listadas

Teste de Aceitação

Teste de Sistema

Teste de Integração

Teste de Unidade

Teste de Operação

- 2 Quando estas fases devem ser planejadas?
- 3 Quando são executadas?
- 4 O que é teste de Regressão? Qual o seu objetivo?

Fases de Teste

Teste Funcional

- Verifica-se as funções do sistema estão comportando corretamente
- Não se preocupa com detalhes de implementação
- Passos principais
 - Identificar as funções que o sistema deve realizar
 - Criar casos de teste para checar esta funções
 - Compara saída esperada com saída obtida
- Critérios de teste funcional
 - Particionamento em classes de equivalência
 - Análise do valor limite
 - Grafo de causa-efeito

Particionamento em classes de equivalência

- Identificar condições de entrada de dados
 - Especificação
- Dividir o domínio de entrada em classes de equivalência
 - Válidas
 - Inválidas
- Baseado na hipótese que um elemento de uma classe representaria toda classe
 - Selecionar o menor número de casos de teste possível
- Para classes inválidas gerar caso de teste distinto
- Permite restringir o número de casos de teste
- Algumas abordagens consideram, também, a saída do programa para estabelecer classes de equivalência

Particionamento em classes de equivalência

- Dado uma linguagem onde um identificador para ser válido deve seguir as seguintes regras
 - Iniciar por uma letra
 - Ter apenas letras ou números
 - Ter no mínimo 1 caracteres
 - Ter no máximo 5 caracteres
- Válidos
 - a45d
 - b4567
- Inválidos
 - a2-g4
 - A456gh

Particionamento em classes de equivalência

Classes de equivalência

Condições de entrada	Classes válidas	Classes inválidas
Tamanho do identificador	1 <= t <= 5	t>5
Primeiro caracter é uma letra	Sim	Não
Apenas letras e números	Sim	Não

- Conjunto de casos de Teste {(c1),(5b3),(z-12),(a3f4g5)}
- Este conjunto consegue mapear todas as classes de equivalência?

Análise do Valor Limite

- Complementar ao critério de Particionamento em classes de equivalência
- Exercitar limites de entrada
 - Não selecionar qualquer elemento de uma classe de equivalência
 - escolher valores limites
 - Na fronteira das classes
 - Concentra-se um grande número de erros nestes pontos
- Exercitar limites de saída
 - Algumas abordagens também realizam através dos limites que as saídas devem gerar

- Realizar combinações das entradas (causas) com as possíveis ações/saídas (efeitos) do programa
- Construir um grafo relacionando as causas e efeitos encontrados
- Converter grafo em tabela de decisão
 - Derivar os casos de teste

- Programa de cobrança de chamadas telefônicas.
 - Os valores de cada chamadas são contabilizados de acordo com a duração, local de destino da chamada e faixa de horário
 - Se o local de destino for o mesmo da origem (chamada local) e a faixa de horário for das 6:00 às 23:59 então valor do minuto è 1,00
 - Se chamada local e a faixa for 0:00 às 5:59 o valor do minuto de cada chamada è 0,50
 - Se o local for um outro estado no país (chamada interurbana) e a faixa de horário for das 9:00 às 21:00 então o valor do minuto è calculado de acordo com o valor básico por estado
 - Se chamada interurbana e faixa de horário for das 21:00 às 9:00 o valor do minuto è fixo, sendo 1,00.
 - Se chamada internacional o valor não depende de faixa horária e è calculado de acordo com o valor básico por país.

- Causas
 - Tipo de chamada
 - DDL → ligação local
 - DDD -> discagem direta a distância interurbano
 - DDI → discagem direta internacional
 - Faixa de horário
 - 6-24, 0-6, 9-21, 21-9
 - Estado ou país
- Efeitos
 - Duração 1,00 (E1)
 - Duração 0,50 (E2)
 - Duração da localidade (E3)

- Tabela de casos de teste, com base no gráfico
 - Caso 1 \rightarrow DDL, 6-24,
 - Caso 2 \rightarrow DDL, 0-6,
 - Caso 3 \rightarrow DDD, 21-9, localidade
 - Caso 4 → DDD, 9-21, localidade
 - Caso 5 \rightarrow DDI, localidade
- Determinar as saídas esperadas para cada caso
- Comparar as saídas obtidas com as esperadas

Testes Funcionais

- Desvantagens ou problemas
 - Especificação
 - Descritiva
 - Não formal
 - Requisitos de teste
 - Imprecisos
 - Informais
- Vantagens
 - Baseado e entradas e saídas (comparações)
 - Aplicáveis em todas as fases de teste
 - Aceitação
 - Unidade
 - Integração
 - Sistema

Trabalho Prático

- Em duplas
- Utilizar um sistema de estágio ou engenharia de software II
- Primeiro Passo
 - Fazer teste de forma manual e sem planejamento
 - Definir a taxa de descobrimento de defeitos
- Segundo Passo
 - Fazer o planejamento do teste
 - Escolher ferramenta de automação
 - Desenvolver os casos de teste
 - Executar o teste
 - Emitir relatórios de teste
 - Documentar a utilização da ferramenta (passos, fases ...)