Review 8-5

1. The minimum number of scalar multiplications for computing $A_i A_{i+1} ... A_j$, denoted by m[i, j], is as follows. Fill in the blank.

$$m[i,j] = \begin{cases} 0 & \text{if } i = j \\ & \text{if } i < j \end{cases}$$

2. Compute (a) m[2, 5] and (b) s[2, 5] in the following example and parenthesize (c) the product $A_1A_2A_3A_4A_5A_6$ fully to minimize the number of scalar multiplications.

m	1	2	3	4	5	6
1	0	15750	7875	9375	11875	15125
2		0	2625	4375	(a)	10500
3			0	750	2500	5375
4				0	1000	3500
5					0	5000
6						0

S	2	3	4	5	6
1	1	1	3	3	3
2		2	3	(b)	3
3			3	3	3
4				4	5
5					5
6					

matr	ix dimension
A_1	30×35
A_2	35×15
A_3	15×5
A_4	5×10
A_5	10×20
A_6	20×25

(a)
$$m[2, 5] = \min$$

(b)
$$s[2, 5] =$$

(c)
$$A_1$$
 A_2 A_3 A_4 A_5 A_6

3. Fill in the blanks in the following pseudocode for MATRIX-CHAIN-ORDER.

```
MATRIX-CHAIN-ORDER (p)

n = p.length - 1

let m[1 ...n, 1 ...n] and s[1 ...n - 1, 2 ...n] be new tables

for i = 1 to n

m[i, i] = 0

for l = 2 to n

j = i + l - 1

m[i, j] = \infty

for k = i to j - 1

if q < m[i, j]
```

4. Fill in the blanks in the following pseudocode for PRINT-OPTIMAL-PARENS.

```
PRINT-OPTIMAL-PARENS (s, i, j)

if

print "A_i"

else print "("

PRINT-OPTIMAL-PARENS (s, i, s[i, j])

print ")"
```