AD	

Award Number: DAMD17-00-1-0291

TITLE: A Training Program in Breast Cancer Research Using NMR Techniques

PRINCIPAL INVESTIGATOR: Paul C. Wang, Ph.D.

CONTRACTING ORGANIZATION: Howard University
Washington, DC 20059

REPORT DATE: July 2001

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release; Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget. Panetwork Reduction Project (0704-0188) Washington, DC 20503

Management and Budget, Paperwork Reduction Project	ect (0704-0188), Washington, DC 20503				
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AND	D DATES COVERED		
	July 2001	Annual (1 Jul			
4. TITLE AND SUBTITLE		1	5. FUNDING N		
A Training Program in Br	east Cancer Research	Using NMR	DAMD17-00-	1-0291	
Techniques					
6. AUTHOR(S) Paul C. Wang, Ph.D.					
Paul C. Wang, Ph.D.					
7. PERFORMING ORGANIZATION NAM	ME(S) AND ADDRESS(ES)		• • • • • • • • • • • • • • • • • • • •	GORGANIZATION	
			REPORT NUM	MBER	
Howard University					
Washington, DC 20059					
7					
E-Mail: pwang@howard.edu					
9. SPONSORING / MONITORING AGE	NOV NAME(C) AND ADDRESS/ES	1	10 SPONSORII	NG / MONITORING	
9. SPONSORING / MONITORING AGE	INC F NAME(S) AND ADDRESS(ES	''		EPORT NUMBER	
U.S. Army Medical Research and N	Materiel Command				
Fort Detrick, Maryland 21702-501	2		1		
			4=-		
		- 20011	ባሄበ ሰ	7 <i>1. l.</i>	
11. SUPPLEMENTARY NOTES		- 20011	י טכו	J44	
			'		
				12b. DISTRIBUTION CODE	
12a. DISTRIBUTION / AVAILABILITY		imited		125. DISTRIBUTION CODE	
Approved for Public Rele	ase, Distribution on	.IMIICEU			
I I			1		

13. Abstract (Maximum 200 Words) (abstract should contain no proprietary or confidential information)

In the first year, this program has supported two graduate students (one from EE Department and one from Biochemistry Department) and a postdoctoral fellow (Radiology Department). They have been introduced to the Biomedical NMR Laboratory and the Howard University Cancer Center. The trainees learned the theory and instrumentation of Nuclear Magnetic Resonance imaging and spectroscopy. The students have also rotated through the clinical services in the hospital to learn the mammography procedures. They have participated in the seminar series in the Cancer Center and throughout the campus. The trainees have been introduced the ongoing research projects in the lab. They all have started their research projects with the PI. Based on the preliminary findings, two papers and two posters have been presented in the University Research Forums and in the National Scientific Meetings. From these initial research results and contacts with scientists at Georgetown University, a collaborative partnership grant has been developed, submitted and funded by USAMRMC.

14. Subject Terms (keywords pre	15. NUMBER OF PAGES 9		
Training, Nuclear Magnetic Resonance, Breast Cancer			16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified	20. LIMITATION OF ABSTRACT Unlimited

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

TABLE OF CONTENTS

I.	Front Cover	1
II.	SF298 Form	2
III.	Table of Contents	3
IV.	Reports	4
v.	Reportable Outcomes	7
VI.	Appendix	7

IV. Reports

There are two Ph.D. graduate students (Mr. Emmanuel Agwu and Ms. Lisa Kinnard) and one postdoctoral research associate (Dr. Jianwei Zhou) supported by this grant. Mr. Agwu is a 5th yr MD/PhD student pursuing his Ph.D. degree in Biochemistry. Ms. Kinnard is a graduate student from the Department of Electrical Engineering. Dr. Zhou is a chemist in the Department of Radiology. The reports and accomplishments for each individual are listed separately according to the Statement-of-Work in the proposal. The individual reports are followed by a summary of the reportable outcomes including presentations/publications, awards and grant.

1. By Lisa Kinnard, Howard University, Department of Electrical Engineering, Ph.D. student

• Introduction to the Biomedical NMR Laboratory and Cancer Center

During the first several months, Dr. Paul Wang introduced me to the Biomedical NMR Laboratory. At this time, Dr. Wang explained the technical capabilities of the equipment as well as the group's current research projects. At this time I also met with mentors to learn the current status of breast cancer research and to determine what possible contributions could be made to the field.

Learn NMR instruments

From the fourth month through the end of the year, I learned the physics and instrumentation of Mammography and MRI. Additionally I learned the about picture archiving communication system (PACS) with regard to its significance in the radiology field and its general impact on hospitals.

• Seminar Presentation

In March and April of 2001, I worked on an image processing project and coauthored a poster presentation in the annual meeting in The Annual Pediatric Academic Societies Meetings, May 1-5, 2001, Baltimore, MD.

Clinical Preceptorship

In December of 2000 I began a radiology internship with Dr. Eva Duckett of the Howard University Hospital Radiology department. During this internship, Dr. Duckett trained me in the following areas: 1) Patient management, 2) Screening/Diagnostic procedure, 3) Breast cancer image patterns, 4) Understanding of typical cases versus clinically indeterminate cases, 5) Understanding of geometric distribution (physical locations of tumors), 6) Image patterns of cysts, fibroadenomas, 7) Image pattern analysis of masses vs. microcalcifications and 8) Biopsy procedures. Dr. Matthew Freedman (and various other radiologists) of the Georgetown University Medical Center (GUMC) currently answers any of my questions concerning the mammography images; however, in the future, Dr. Rebecca Zuurbier (director of breast imaging, director of Betty Lou Ourisman Breast Health Center) of the GUMC will be interviewed concerning the screening/diagnostic procedure, patient management, and biopsy procedures of the GUMC.

• Summary of Accomplishments

The objective of the research is to develop a system that will act as a consultation system to assist radiologists in determining the likelihood of malignancy. This work can be divided into three parts: determination of image segmentation (separation of tumor from surrounding tissue), calculation of image statistics, and determination of a classification method. During the past year I have completed the following tasks toward the completion of the research:

1. Written report on Mammography which covering:

- a. Physics/Instrumentation of traditional X-ray
- b. Summary of Mammography
 - i. Physics/Instrumentation
 - ii. Film-Screen Combinations
- c. Breast Anatomy/Mammographic Analysis
- d. Clinical Procedures
- e. Summary of image patterns in benign and malignant calcifications in mammography
- f. Summary of image patterns in benign and malignant masses in mammography
- 2. Performed literature search on image features used for breast cancer diagnosis
- 3. Programmed statistical equations
- 4. Digitized mammography films
- 5. Ran statistics on phantom images
- 6. Correlated patient records with images in order to locate tumors
- 7. Surveyed image segmentation techniques
- 8. Completed first prototype of image segmentation phase

2. By Emmauel Agwu, an MD/PhD student, PhD candidate in the Biochemistry Department

Introduction to the Biomedical NMR Laboratory and Cancer Center

I was given a tour of the Biomedical NMR Laboratory so that I was able to locate laboratory materials as well as major equipments (e.g. 200 and 400 MHz NMR machines). I was also given a tour of the Cancer Center in order for me to know where other necessary biomedical equipments were located and to meet other scientists conducting research in breast cancer. I was briefed on the on-going projects in our laboratory and give the grant proposal as wells as related journals for thorough review.

Learn NMR

Dr. Wang provided me a week of intensive training on NMR. Aside from many hours of on-hands training, I also enrolled in a NIH graduate course on NMR. Furthermore, I was provided with several textbooks on NMR and MRI theory and applications. During the spring of 2001, I attended courses on MRI theory and application taught by Dr. Wang to the Howard University Radiology residents.

• Start Biochemical Departmental Course Work

I am a fifth year MD/PhD student. I have completed the first two years of medical school. I was also enrolled in the Biochemistry Department as a PhD student. I have completed 21 institutional credit courses and passed the qualified examination. I gave a seminar each semester both in the Biochemistry Departmental and the MD/PhD program.

• Clinical Preceptorship

As required by the MD/PhD program, I attended a clinical rotation with a clinical preceptor once a week for half a day. This is necessary to keep me abreast on clinical issues while understanding my Ph.D. training.

Report to MD/PhD Committee and Biochemistry Department on Research Progress

The MD/PhD program committee hosts a student research forum every year. In the research forum, the students in the program report on the progress of their research to the rest of the university. I presented a talk on May 17, 2001, entitled "MRS Study of ³¹P Metabolism in MCF7 Breast Cancer Cells". I also presented a paper in the 12th Annual Research Day in the

Biochemistry Department, entitled "An Improved NMR Perfusion System For Breast Cancer Cell Study". I have submitted and am being accepted to present a paper on October 12, 2001 at the Academic Minority Physicians 15th Annual Scientific Meeting in Washington, DC.

3. By Jianwei Zhou, Ph.D., Research Associate, Department of Radiology, Howard University

Introduction of Biomedical NMR Laboratory and Howard University Cancer Center

In the beginning of February 2000, I joined the Howard University Hospital Cancer Center, as a research associate in the Biomedical NMR Laboratory. At first, I spent one month to learn about the ongoing research projects in this lab. Breast cancer is one of the major research areas of the Cancer Center. The Biomedical NMR Laboratory has been involved in breast cancer research using NMR imaging and spectroscopy techniques since 1989. Our major research interests include a study of metabolism and the responses of perfused breast cancer cells under the drug treatment. I have studied related literature and frequently discussed with Dr. Wang, Dr. Shridhar, and other group members in the lab to appreciate the complexity of the research. As a chemist by training, I have learned the cell culture techniques required for the research such as subculture cells, harvesting cells, how to freeze the cells for storage and to prepare agarose thread containing breast cancer cells for NMR studies. I have learned how to use the shared facilities, such as cold room, incubator, and handling the cells under the hood in the Cancer Center.

• Participate in weekly Cancer Center seminars

I participated in many Cancer Center weekly seminars. I also participated in many NMR and cancer related seminars on campus. I attended a workshop entitled "Animal Models in Breast Cancer Imaging" sponsored by the Howard University Cancer Center and Walter Reed Hospital.

• Learn to use three NMR instruments in the laboratory

As a NMR spectroscopy chemist, it took me a relatively short time to be familiar with the Varian NMR instruments in the lab. I learned how to obtain good spectra with high signal to noise ratio, how to transfer data between NMR machines and satellite workstations, and data analysis.

• Take NMR and other courses

Besides the instrumentation training in the lab, I have learned NMR imaging and spectroscopy theories taught by Dr. Wang. I also took the biochemistry course at NIH. I also learned the cell culture procedures from the Dr. Asafa's lab at the Cancer Center.

• Start research program

I participated in the ³¹P NMR study of breast cancer cells including MCF7 wild type (wt), MCF7 drug resistant, MDA231, KB-V-1, and KB-3-1 cells. We presented a poster at the 42nd ENC Conference. Some of the major findings and achievements are listed as follows:

- 1. The high signal to noise ratio spectra are obtained for all kinds of breast cancer cells.
- 2. The NMR T1 measurements of phosphorus metabolites for MCF7/wt and MDA231 cells.
- 3. Constructed a new perfusion system for NMR studies to resolve the bubble problem.
- 4. Build a gas bubbling system for the cell oxygenation experiments.
- 5. Start the oxygenation experiment, which is designed to understand the cell oxygenation conditions in our cell perfusion system.
- 6. Start the drug treatments studies using Doxorubicin.
- 7. A special spin lock system/technology has been introduced in the cell perfusion NMR experiment.

V. REPORTABLE OUTCOMES

PUBLICATION

- 1. **Zhou JW, Agwu CE**, Li EC, **Wang PC**. An Improved NMR Perfusion System For Breast Cancer Cell Study. 42nd Experimental NMR Conference, March 11-16, 2001, Orlando, FL.
- 2. Ting P, Wang PC, Kinnard L, Herman MM, Cohn R. Early EEG and Diffusion MRI (dMRI) Changes in an Experimental Model of Severe Periventircular Leukomalacia (PVL). The Annual Pediatric Academic Societies Meetings, May 1-5, 2001, Baltimore, MD.

AWARDS

- 1. Mr. Emmanuel Agwu received the Association for Academic Minority Physician, 2001 Minority Medical Student Research Summer Fellowship, a Merck/AAMP scholarship.
- 2. Mr. Emmanuel Agwu received a 2001 Scandrett Scholarship Award, a scholarship for disable students.

GRANT

Dr. Paul Wang with Dr. Mohamed Chouikha (P.I.) in the Department of Electrical Engineering has submitted a partnership training grant to USAMRMC and it was funded for 2001-2004. This program is a training partnership between Howard University and Georgetown University (Dr. Ben Lo and Dr. Matthew Freedman) to train faculty and students in breast cancer imaging, digital image database library techniques and network communication strategy.

VI. APPENDIX

- Appendix 1. The poster from the 42nd Experimental NMR Conference, March 11-16, 2001, Orlando, FL. Entitled "An Improved NMR Perfusion System For Breast Cancer Cell Study".
- Appendix 2. The poster from The Annual Pediatric Academic Societies Meetings, May 1-5, 2001, Baltimore, MD. Entitled "Early EEG and Diffusion MRI (dMRI) Changes in an Experimental Model of Severe Periventircular Leukomalacia (PVL)".

AN IMPROVED NMR PERFUSION SYSTEM FOR BREAST CANCER CELL STUDY

<u>Jianwei Zhou</u> , Chikezirim E. Agwu , Ercheng Li , Paul C. Wang*

Department of Radiology, Howard University, Washington, DC 20060, USA

In this poster, an improved NMR cell-perfusion system is presented. The perfusion system is driven by perfastilic purm. The portfor of the system before the purm is under negative pressure, while the portion after the purm is under negative pressure, while the portion after the purm is under negative pressure. This design helps with the removal of air bubbles from the perfusion medium. Using this perfusion system, a cell viability study of the MCF-7 breast cancer cell line was akended mediative processfully for more than a week. The P P MMR spectrum of the MCF-7 showed three district phases; piase 1, 2, and 3. Further characterization of the agarcas-encased cell perfusion system suggests that the cells utilized sention of the more partial. The spectra showed the disappearance of prosphale metabolities until the ventual cell destit. This results clearly demonstrate that the long time bubble-free MMR cell perfusion system could be a useful bot for breast cancer cell research.

Introduction

NMR has been used to monitor the melabolism of cells as well as the responses of cells under drug treatment (†12.34, Usually, the NMR study requires data acquisition over a forg period of time, hours or even days. To assure even distribution of nutients, the cells under study are encased in agance while being pertused with searm-condition modern of 50. Over a tong acquisition over for the air in the pertusion medium gets netessed horn region. All the bubbles destrain medium gets netessed horn opened to mortact with the agances, giving rise b bubble formation. All bubbles destraints managed hornogenelty of the system it tus decreasing the signal-to-noise ratio of the spectrum. This discourages protonged cell studies in agances-encased system. So, it is critical to have an air tight perfusion system to avoid NMR pertusion system is perfusion medium paid or to the medium reacting the agances-encased cells in the NMR tube.

Experimental Procedure

Sample Proparation: The breast carcer cells, MCF-7, were grown to 80-90% confluence in 10 tissue culture states contained IRLH grawth medium completed with 10% FISS. The cells (2-210°C cells) were harvested by trypsin into a 15 mt centrityge tube giving 0.7 mt pellet. The pellet was placed in a 37°C water beth and mixed with 0.7 mt low temperature-polling agances dissolved in 1885 (1.5%). The agances cell mixture was extruded, complete prought a 0.5 mm intend clameter passite tube into an INRK tube containing IMEM complete medium. Write paravesing through the passite tube, the agances-cell mixture solidifies producing a thread resembling spagnetit. The NMR tube containing the agances-encased cells was then placed itside the NMR magnet and perfused at the rate of 0.5 mm/mixture introughout the acquisition period. Deparding on the study, the cells were parkies with IMEM complete medium containing 0.1 mM bedeecetamide or IMEM complete medium containing 10 mM pentobarbital.

NMR Measurement. All NMR data were collected in Varian VXR-400 NMR instrument at 161.9 MHz for "1p thoughned with proton decoupling. The temperature of NMR tube inside the magnet was kept at 37°C \pm 0.1°C though the duration of acquisition. The magnetic field lock signal was provided by the D₂0 capillaries, which surrounded the outside of RF oil.

An improved NMR cell-perfusion system

According to Henry's law, the mass of a slightly soluble gas that dissolves in a definite mass of a liquid at a given temperature is directly proportional to the partial pressure of that gas, namely

P.=K(0.X

Where, K(t) is the Henry's law constant, which is a function of temperature. At the equilibrium stale, the Mole fraction of dissolved gas K(t) in solution is dispondent on the partial pressure of the gas (P) on the solution surface and the leadure. For example, for Q, and N, at O°C, the K₀₃ (evc) and K₆₄ (evc) are 1.33 tx(t) for and 4.07 x 10 for m, and at 38°C, the k₆₄ (evc) and K₆₄ (evc) and 4.04 x(t) for and 7.51 x 10 for respectively. Since the atmosphere contains ~21% of Q, and ~79% of N, it follows that about 13.9 mf of gas per litter will be reased when the temperature of the solution is changed from O°C to 38°C at standard atmosphere pressure and equilibrium states. This explains why previously used agarces-encased cell partision systems frequently produced air butbles over a prolonged acquisition period.

Fig. 1 shows the improved NMR-partusion system for breast cancer cells. The aganose-encased cells are acceled in C. Peters B. C. F. including the Perfusion tholing A.S. are kept in the plemostate where bath at 37°C ± 0.1°C. Tube 8 contains a thread of aganose get (without cells) which serves as a gas release center. As the cold freedium in fasts. A pass through tabing A.S. it without cells) which serves a superhunas aganose get any part of the perfusion system is the approximate any perfusion of the search of the perfusion system is the perfusion system is lower than atmospheric pressure (cump pulis moderum), and shaft the pump, which is absolutely necessary for the oxygen supply of cells. The released gas is repeated after the pump, which is absolutely necessary for the oxygen supply of cells. The released gas is the trapped by glass containing any gas remained in the trapped by glass containing the removed from the system by an injector through the valves of C or F.

A Prolonged Perfusion System For Breast Cancer Cells

Fig. 1. A) Medium, B) Agarose gel thread without celes; C) First gas trapper; D) Peristatic pump; E) Thermostatic bath; F) Second gas trapper; G) Agarose-enca cells in NMR tube; H) Waste.

Application Results and Discussion

Application 1: The baseline experiment for a long time perfusion: Using this perfusion system, an extended cell furth wability and you for heast cancer cells MCPT was obtained over 7 days. "App. 3 howe a pipical" by spectrum of the WCPT breast cancer cells during perfusion. The metabolic components in Fig. 2 show a pipical "by spectrum of the WCPT breast cancer cells during personnel metabolic components in Fig. 2 are phrasholarines (PCE, 0.5 ppm), prosphorostratine (PCE, 0.2 ppm), prosphorostratine (PCE, 0.3 ppm), and reference). ATP-a (-10 fppm), and prosphorostratine (PCE, 0.3 ppm), prosphorostratines are prosphorostratines of the spectrum (IPD-E, -10 ppm and -12 ppm) and ATP-a (-10 ppm), and prosphorostratines are prosphorostratines of the spectrum (IPD-E, -10 ppm and -12 ppm) and ATP-a (-10 ppm), prosphorostratines are included pricess or an benefit replaced by the increase in ATP-D to (PCE), and (IPD-E, -10 ppm and -12 ppm) and (IPD-E, 0.10 ppm, and (IPD-E, -10 ppm) and (IPD-E, 0.10 ppm), and (IPD-E, -10 ppm) and (IPD-E, 0.10 ppm, and (IPD-E, 0.10 ppm), and (I

Fig. 2. The typical P-31 specium of MGF-1 breast cancer cells during the perfection. The NHR conditions at a 1.25s, we a 5000, per 2.2ss, at 1 = 1000, 41 = 1.75s. The peaks are identified as phosphocetheredizable for E.4.1 ppm), phosphocholine (FC-2.5 ppm), agrangiate phosphocetheredizable for E.4.2 ppm), glycanciphocetheredizable (FC-2.5 ppm), glycanciphocetheredizable (5-2.6 ppm), glycanciphocetheredizable (5-2.6 ppm), and produced for E.4.2 ppm), and perfect phosphocetheredizable (5-2.6 ppm).

Phase

equatose necessful partison system, we set out to determine the respiratory conditions of the calls under this improved agances-encased call partison system. The McPT calls were pertused with medium containing ather 0.1 mM isobacelamide (a protein alkylating agent) or 10 mM bentibandrial (a mibochondrion poscon). The behavior of the 1%P metabolities were queli interesting deef fig. 4.5 and 6). For example, when the calls were pertused were queli interesting deef fig. 4.5 and 6). For example, when the calls were pertused with Indoacetamide, there was an initial increase in the signals of PE, CPE, GPE, GPC, and 7-4TP. The reason for this is not understood. Following the rise in signal intensity, there was a demande decline in signal intensities of these metabolities with each metabolite decaying at different ratie. The 7-4TP signal decayed the fastesi (see fig. 4E) suggesting that todoacetamide affected the proteins involved in ATP ponduction pathways. The signal of inorganic phosphate (PI) in these cells rose as the ATP concentration decreased. This was the case until the cited is died. Cell death was supported from the fact that after treatment with concentration to the change in the chemical shift of PI) suggesting either cell tysis or cell membrane leakage.

Even though Pentobarbilal did not kill the cells, it had a similar effect on ³¹P metabolites as did bodecarbinde (see Fig 3). All the "Pr metabolites (except Pi) docreased in signal intensity alter pentison with Pentobarbila. Both of the drugs used in this experiment inhibit the enzymes critical to earrobic respiration for the cell suggesting that the MCF7 cells in the improved perfusion system utilizes earrobic respiration for energy production. More experiments will have to be conducted to further support history.

Reference

9

GPC

æ

- H. Degani, et al., NMR in Physiology and Blomedicine, 329-351(1994).
 B. S. Szwergold, Amru. Rev. Physiol. 54.775-798 (1982).
 R. J. Guilliee et al., NMR in Blomedicine, 6:39-104 (1983).
 D. L. Foxalle et al., Exp. Cell Res., 159.521-529 (1984).
 W. E. Hull et al., NMR Blomed., 6: 254-263 (1994).
- କରନ କ ଜ

EARLY EEG & DIFFUSION MRI (dMRI) CHANGES IN AN EXPERIMENTAL MODEL OF

SEVERE PERIVENTRICULAR LEUKOMALACIA (PVL)

P. Ting, M.D.¹, P. Wang, Ph.D.¹, L. Kinnard, M.S.¹, M.M. Herman, M.D.², R. Cohn, M.D.¹ 1. College Of Medicine, Howard University, Washington D.C., 2. IRP NIMH, NIH, Bethesda, MD

OBJECTIVES

of ischemia is important for timely therapeutic intervention. The objective of the current study is to monitor EEG and dMRI profiles in the early hours of cerebral ischemia in an experimental PVL model. neuro-developmental outcome, especially, spastic diplegia occurs in majority of these infants, in addition, impaired visual and cognitive functions are also significant morbidity. While the etiology of PVL is multifactorial, cerebral ischemia (clinically silent) plays a dominant role. Therefore, early identification The incidence of severe PVL in preterm neonates is 8 to 15 %. The poor

DESIGN/METHODS

- Under ketamine-acepromazine (KA)/ isoflurane anesthesia, and strict aseptic technique, 15 mongrel dogs (1-3 wk old)) underwent either sham operations without ischemia (SOC, N=4) or permanent bilateral common, external and internal carotid arteries occlusion (ISCH, N=11).
 - Rectal temperature and transcutaneous O₂ saturation (O₂ sat) were monitored during surgery and MRI measurements. The temperature was kept at 37-38°C, and the O₂ sat was maintained > 95 %.
 - Flocillin 100,000 units/kg IM qd was given for 5 days, started 1 day prior to
- Fluid and nutrition:
- RL 150cc/kg/d IV & SC
- Gavage fed until it was returned to its dam
- Weaned to puppy's chow after a month of age
- frontal and occipital regions of the head. The EEGs were recorded on paper and simultaneously into a digital computer programmed to read the frequency and duration of all defined waves. These data were compiled in a usable form by the EEGs were obtained via four scalp electrodes (Grass) placed in the extreme frequency distributions as well as statistical and other displays. EEGs were computer in a time span of 10 seconds. This essentially produces on-line recorded prior to, and within 6 h, 2 and 7 days after surgery Body weight was recorded periodically
- Figure 3. The Regions of Interest (ROI's) were selected from the white matter in Serial diffusion-weighted images were obtained prior, and within 7 h of surgery, and then repeated within 12 wk after surgery. The diffusion-weighted MRI technique was a modified spin-echo NMR imaging technique with two identical were used to generate a series of diffusion weighted images (in Figure 2). The apparent diffusion coefficients (ADC) were derived from these images shown in The animal was pre-sedated with KA and chloral hydrate or lorazepam for the diffusion gradients ranging from 0 to 9 Gauss/cm in the x, y, and z directions dMRI study. A 4.7T, 33 cm, horizontal bore Varian MRI machine was used. centrum semiovale, internal capsule, and optic radiation, in predetermined diffusion gradients were added before and after the 180° RF pulse. Four coronal MRI slices.

 - Dogs were sacrificed at 3 months of age.
 Statistical analysis Oneway Anova analysis of variance per JMP program.

All 4 SOC survived, but, 7 out of 11 ISCH dogs died (5 at < 1 wk, and 2 at 3 & 4 wk

(CPSFB). Compared to normal dogs prior to surgery (NSOC, N=17), there was a significant increase in <3 CPSFB in EEG within 6h postsurgery in both SOC (N+4) and ISCH (N=9). However, it was more marked in ISCH (Flig 4 A-C, p < 0.05). In addition, ISCH and SOC had respectively a significant decrease in 8-14, and 1-14 CPSFB. However, the EEG of SOC and ISCH dogs normalized towards NSOC values 1 wk after surgery. postischemia). The EEG data were integrated over 1 to 14 cycles per second frequency band

mm²/sec. On Day 7 and Day 9 the ADC of the ischemic regions were 0.111 and 0.131 mm²/sec. The relative ADC value, which was the ratio of ADC from the ischemic region to the non-involved opposite side of the brain were plotted as a SCH dogs. The values of SOC were 0.065 to 0.121 mm²/sec. For the normal, non-involved areas of ISCH, the ADC values were between 0.0666 to 0.085 The ADC from the selected white matter areas were measured in SOC and function of time (Figure 5).

CONCLUSION

- Significant abnormal EEG patterns were observed within 6 hours of ischemia or sham-operation, but, the ISCH experienced marked increase in 1 to 3 CPSFB than the SOC dogs. Normalization of the EEG occurred 1 week after surgery in both groups. Anesthesia and sedation had profound effects on
- The relative ADC values decreased at 24 h of ischemia in the periventricular white matter (centrum semiovale), but, increased to above SOC values on ≥7 days of ischemia.
- All ISCH dogs revealed abnormal triphenytetrazolium chloride stain in the PV white matter and thalamus 6 h after ischemia, and were subsequently associated with cystic PVL and motor deficits. SOC were normal.

Figure 1A – Abnormal TTC stain in PVVVM and Thalamus of ISCH dog (6 hour ischemia)

'igure 2 — Diffusion-weighted images for ISCH dog, Day 7, with varying gradient strengths (0,3,5,7 gauss/cm). schemic area on the left side becomes darker as gradient strength increases. Figure 2 - Diffusion

Figure 3 – Diffusion map images of derived from diffusion weighted images. Figure 3.4 shows an ISCH dog on the day of surpery. Figure 3.8 shows a second ISCH dog on day? after the surgery. The numbers 1, 2, 3 and 4 represent ROI's used to extrapolate the ADC values. Figure 3.C shows an SOC dog which is 3 months old.

Fig. 4. Frequency distribution patterns of EEG from NSOC (A), SOC (B), and ISCH (C). * p <0.05 (A compared with B), ** p ≤ 0.05 (C compared with A or B) at 1-3 CPSFB.

Relative ADC Values of SOC and ISCH Dogs

Figure 5 - Relative ADC values as a function of time. The relative ADC value is the ratio of the Exchemic region to the non-linowed area on the opposite side of the brain. The relative ADC initially dropped on the first day, however, it recovers and increases in comparison to the normal sham control.

ACKNOWLEDGMENTS

- Technical support of Dr. X. Hao, and the late Dr. L. Cruise and his team, HU Veterinary Services
- Dr. J. Kwagyan, Division of Biometrics and Statistical Genetics, National Human Genome Center at Howard University
 Funds NIGMS, NIH.