Assignment 3 - Problem 5.3

Kousshik Raj (17CS30022)

02-10-2020

1 Problem 5.3

Consider the following problem: given an undirected graph G and positive integers k and q, find a set X of at most k vertices such that G-X has at least two components of size at least q. Show that this problem can be solved in time $2^{O(q+k)}n^{O(1)}$

1.1 Solution

1.1.1 Randomized Algorithm

Let us look at an one-sided error Monte Carlo algorithm with false negatives for the given instance (G, k, q). Define a uniform random coloring $\chi : V(G) \to \{1, 2\}$ and $V_i = \chi^{-1}(i), \forall i \in \{1, 2\}$. Now, consider the following algorithm.

Now, if there are at least 2 connected components of size at least q in $G[V_1]$, we proceed further. Otherwise, we say that the given instance is a NO-instance. Let $C_1, C_2, ..., C_r$ be the connected components of size at least q in $G[V_1]$. Now, consider $C_i, C_j, \forall 1 \leq i < j \leq r$. We want to find vertex set $X \subseteq V(G)$ and $|X| \leq k$ such that G - X disconnects C_i and C_j . This is a standard case of max-flow min-cut problem and can be checked by running k iterations of Ford-Fulkerson algorithm which runs in $n^{O(1)}$ time. If there exists any such X, we return that this is a YES-instance with X as a solution. Otherwise, we say that the given instance is a NO-instance.

Let G be a YES-instance, X be one of its solution and C_1, C_2 be any two arbitrary components of size at least q in G - X. The probability that our algorithm returns YES-instance is at least $2^{-k} \cdot 2^{-q} \cdot 2^{-q} = 2^{-(k+2q)}$ as, if the vertices in X and q vertices in C_1, C_2 are colored 2 and 1 respectively, we will arrive at a solution. So, if we perform the above algorithm for $2^{(k+2q)}$ iterations, we will have an algorithm with constant error probability which runs in $2^{O(q+k)}n^{O(1)}$ time.

1.1.2 Deterministic Algorithm (Derandomization)

Now, based on the randomized algorithm seen above, we will develop a deterministic algorithm. Let the given instance be (G, k, q). Assume that the given

instance is a YES-instance, X be one of its solution, and C_1, C_2 be any two arbitrary components of size at least q in G-X. Furthermore, let $C_1'\subseteq C_1, C_2'\subseteq C_2$ such that $|C_1'|=|C_2'|=q$. We will also define a coloring $\chi:V(G)\to\{1,2\}$ such that $\chi(v)=1, \forall v\in C_1'\cup C_2'$ and $\chi(v)=2, \forall v\in X$ and arbitrary assignment for the rest of the vertices.

If we can find such a coloring χ in a deterministic way, we can follow the previous algorithm to determine the vertex set Y (which may or may not be equal to X), such that $|Y| \leq k$ and C_1 and C_2 are disjoint in G - Y. To that extent, we will use the (n, k+2q)-universal set \mathcal{U} (Theorem 5.20 in book). Define a coloring χ_A such that $\chi_A(v) = 1$ if $v \in A$, else $\chi_A(v) = 2$ and let $\mathcal{Z} = \{\chi_A : A \in \mathcal{U}\}$. According to the definition of universal sets, $\chi \in \mathcal{Z}$. Thus, we try each coloring in \mathcal{Z} and perform the previous algorithm to determine Y. If there is no such Y for any of the coloring, then we can say that (G, k, q) is a NO-instance.

As, $|\mathcal{U}| = O(2^{O(k+q)}logn)$ and \mathcal{U} can be calculated in $O(2^{O(k+q)}nlogn)$, combining with the polynomial algorithm to find the max-flow min-cut, we have a deterministic algorithm which runs in $O(2^{O(k+q)}n^{O(1)})$ and solves the problem instance (G, k, q).