

PROBABILISTIC PROGRAMS WITH STOCHASTIC CONDITIONING

ICML 2021

David Tolpin Yuan Zhou Tom Rainforth Hongseok Yang

Motivation

In a probabilistic program

$$p(x|y) \propto p(x)p(y|x)$$

'usual' conditioning is **deterministic:** p(x|y=c).

Works when observations

are samples from joint data distribution.

Won't work when observations

- independent samples from marginal distributions,
- summary statistics,
- distributions in closed form or as samplers,
- reflect partial knowledge about future.

Definition

Probabilistic program computes

$$p(x,y) = p(x)p(y|x)$$

Our objective is to infer

$$p(x|y \sim D) \propto p(x)p(y \sim D|x)$$

By definition, density of $y \sim D$ fiven x:

$$p(y \sim D|x) \propto \exp\left(\int_{Y} (\log p(y|x)) q(y) dy\right)$$
$$= \prod_{Y} p(y|x)^{q(y)dy*}$$

*) Probability of observing all possible draws of y from D, each according to its probability q(y)dy.

Intuition

Coin flip

 $x \sim \text{Beta}(\alpha, \beta)$ $y \sim \text{Bernoulli}(x)$

Observing a distribution

Assume we just know that $\sum_{i=1}^{n} y_i = k$:

$$x|_{v_1,v_2} \sim \text{Beta}(\alpha + k, \beta + n - k)$$

Now y_i is an observation of Bernoulli $(\theta = \frac{k}{n})$:

$$x|(y_{1:n} \sim \text{Bernoulli}(\theta)) \sim \text{Beta}(\alpha + n\theta, \beta + n(1 - \theta))$$

Observing a value

Posterior after n observations $y_n \circ ... \circ y_2 \circ y_1$:

$$x|y_{1:n} \sim \text{Beta}\left(\alpha + \sum_{i=1}^{n} y_{i}, \beta + n - \sum_{i=1}^{n} y_{i}\right)$$

Conditional probability

Probabilistic programming requires computing p(y|x):

$$p(y|x) = x^{y}(1-x)^{1-y}$$

For conditioning on distribution $y \sim \text{Bernoulli}(\theta)$:

$$p(y \sim \text{Bernoulli}(\theta)|x) = x^{\theta} (1 - x)^{1 - \theta}$$
$$= \exp\left(\sum_{y \in \{0, 1\}} p_{\text{Bern}(\theta)}(y) \cdot \log p_{\text{Bern}(x)}(y)\right)$$

Population of New York

Data

Population Sample1 Sample2

	. opatation	Junipeca	
	(N=804)	(n=100)	(n=100)
mean	17,135	19,667	38,505
sd	139,147	142,218	228,625
0%	19	164	162
5 %	336	308	315
25 %	800	891	863
50%	1,668	2,081	1,740
75%	5,050	6,049	5,239
95 %	30,295	25,130	41,718
100%	2,627,319	1,424,815	1809578

Model

$$z_{1...n} \leftarrow Quantiles$$

$$m \sim \text{Normal}\left(\text{mean}, \frac{\text{sd}}{\sqrt{n}}\right), s^2 \sim \text{InvGamma}\left(\frac{n}{2}, \frac{n}{2}\text{sd}^2\right)$$

$$\sigma = \sqrt{\log\left(s^2/m^2 + 1\right)}, mu = \log m - \frac{\sigma^2}{2}$$

$$z_{1...n}|m, s^2 \sim \text{LogNormal}(\mu, \sigma)$$

Posterior

