8 класс. Математическая вертикаль. Задания на повторение программы.

Ciel

Содержание

1	Сравнение чисел	1
2	Неравенства	3
	2.1 Линейные неравенства	3
	2.2 Линейные неравенства с модулем	4
1	Сравнение чисел	
За	адача 1. Какое из двух чисел больше:	
	$\frac{41}{99}$ или $\frac{411}{991}$?	
За	адача 2. Сравните дроби $\frac{222221}{222222}$, $\frac{333332}{333334}$ и $\frac{444442}{444445}$, расположите их в порядке возрастани	я.
За	адача 3. Расположите в порядке возрастания числа: 333^3 , 3^{333} , 3^{333} .	
За	адача 4. Найдите наибольшее натуральное n , при котором $n^{200} < 4^{300}$.	
За	адача 5. Какое из двух чисел больше:	
	1000^{100} или $500^{50} \cdot 1500^{50}$	
За	адача 6. Какое из двух чисел больше: $\sqrt[3]{\frac{2024}{2025}} \text{или} \sqrt[3]{\frac{2025}{2026}}$	
За	адача 7. Какое из двух чисел больше:	

Задача 8. Какое из двух чисел больше:

1 или
$$\frac{32}{97} + \frac{70}{211} + \frac{146}{439}$$

 $\sqrt[3]{4} + \sqrt{2}$ или $\sqrt[3]{3}$

Задача 9. На каком из описанных ниже интервалов, разбивающих числовую ось, лежит число 0?

$$x^3 < y^8 < y^3 < x^{12}$$

Задача 10. Какое из двух чисел больше:

$$2025^{2025} + 2023^{2023}$$
 или $2025^{2023} + 2023^{2025}$

Задача 11. Оцените $\frac{2}{x+5}$, если известно, что $4 \le \frac{x}{2} < 11$.

Задача 12. Оцените $\frac{3}{x^2} + 1$, если известно, что -3 < x < 6.

Задача 13. Пусть переменные х и у удовлетворяют неравенствам

$$-0.9 < x < 2.5, \quad -3 < y < -2.$$

При этом известно, что значение дроби

$$\frac{1,1+x}{y}$$

является целым числом. Определите это целое число.

Задача 14. $\frac{y}{x}$ находится в интервале $(-2,-1), \frac{y}{z}$ находится в интервале (-0.8,-0.4). Найдите интервал, на котором лежит значение $\frac{x}{z}.$

Задача 15*. Какое из двух чисел больше:

$$\frac{100}{101} \times \frac{102}{103} \times \ldots \times \frac{1022}{1023} \quad \text{или} \quad \frac{5}{16}$$

Задача 16**. Какое из двух чисел больше:

$$\sqrt{2016+\sqrt{2015}+\sqrt{2016}}$$
 или $\sqrt{2015+\sqrt{2016}+\sqrt{2015}}$

2 Неравенства

2.1 Линейные неравенства

Задача 1. Оцените площадь и периметр, которые может иметь прямоугольник, если одна его сторона может иметь длину от 20 до 30 см, а другая — от 50 до 60 см.

Задача 2. Существуют ли отрицательные решения этого неравенства, и, если существуют, выпишите их (в виде множества).

$$\frac{11x-5}{21} - \frac{5x-2}{7} < 2x - \frac{x-1}{3}$$

Задача 3. Существуют ли отрицательные решения этого неравенства, и, если существуют, выпишите их (в виде множества).

$$\frac{14x-3}{9} - \frac{9x}{7} > \frac{21x-21}{63}.$$

Задача 4. Выберете из представленных ниже неравенств те, которые имеют решения, и найдите их.

1.
$$(x+2)^2 - 3(x^2+2) + 2x^2 < 4x - 5$$
,

2.
$$2[(x+3)^2 - (x^2+6x+9)] - 5[(x-1)^2 - (x^2-2x+1)] + (3x-7) < 6x+11$$

3.
$$\frac{5(x-2)}{3} - 4 \le \frac{5(x-2)}{3} - 10$$
.

Задача 5. При каком наименьшем значении параметра t неравенство имеет положительное решение?

$$17(37x - 1) = 3(3t - 16)$$

Задача 6. Иван хочет купить донат в своей любимой игре - BrawlBops. У него есть выбор, купить донат на сайте ПлатитиМного, где за выполнение заказа берут 100 рублей и еще по 36 за каждый z-бакс, или может взять на сайте Дотерок, где оформление заказа стоит 150, но z-бакс стоит уже 24 рублей. При каком наименьшем количестве покупаемых z-баксов второй магазин окажется выгоднее?

Задача 7. Исходя из графиков выпишите уравнения прямых.

Рис. 1: График а

Рис. 2: График b

2.2 Линейные неравенства с модулем

Внимание! В задачах 1 - 3 нельзя раскрывать модуль. Можно пользоваться только определением.

Определение. Модулем числа a, обозначаемым как |a|, является расстояние на числовой прямой от числа а до начала координат, то есть точки 0. Числовое определение следующее:

$$|a| = \begin{cases} a, & \text{если } a \ge 0, \\ -a, & \text{если } a < 0. \end{cases}$$

Задача 1. Сколько натуральных значений имеет неравенство $(0 \notin \mathbb{N})$

$$|x+3| \le |x-7|$$

Задача 2. При каких значениях t у неравенства $|x+2| \le t$ ровно 5 целых решений?

Задача 3. При каких значениях t и v множеством решений неравенства $|x-t| \le v$ является промежуток [10,20]?