คู่มือการใช้งาน WARRIOR CYCLONE3 Education Board

รูปที่ 1 บอร์ดทดลอง FPGA รุ่น WARRIOR CYCLONE3-EB01/02

บอร์ดทดลองรุ่น WARRIOR CYCLONE3-EB01/02 เป็นบอร์ดทดลอง FPGA ที่ มาพร้อมกับเทคโนโลยี 65 นาโนเมตรของชิป Cyclone III จาก ALTERA บอร์ดรุ่นนี้ เหมาะสำหรับผู้ใช้งานในทุกระดับตั้งแต่เริ่มต้นจนถึงขั้นสูง คุณจะได้เรียนรู้และ เพลิดเพลินกับการใช้งาน FPGA ในรูปแบบการเขียนวงจร และภาษา VHDL หรือแม้ แต่ Verilog พร้อมกันนี้ด้วยการเพิ่มอุปกรณ์อีกเล็กน้อย (โมดูล SDRAM หรือ SRAM) คุณจะสามารถเปิดโลกการเรียนรู้ในอีกระดับของการใช้งาน FPGA กับซอฟต์คอร์โปร เซสเซอร์ NIOS II ซึ่งเป็นการผนวก FPGA เข้ากับไมโครคอนโทรลเลอร์ขนาด 32 บิต ที่สามารถกำหนดคุณสมบัติภายในตัวโปรเซสเซอร์ได้ด้วยตัวคุณเอง เชิญสัมผัสกับ เสน่ห์และความน่าสนใจของ FPGA ไปกับ WARRIOR CYCLONE3 ได้แล้วครับ

บทเม้า

บอร์ดทดลองรุ่น WARRIOR CYCLONE3-EB01/02 ใช้ชิป Cyclone III ซึ่งเป็นชิป FPGA ในตระกูล Cyclone รุ่นที่ 3 ของบริษัท ALTERA ชิปรุ่นนี้ถูกสร้างขึ้นใน สถาปัตยกรรม 65 นาโนเมตร ซึ่งข้อดีของสถาปัตยกรรมที่เล็กลงนี้ ทำให้ปริมาณวง จรลอจิกที่สามารถสร้างลงบนแผ่นชิลิกอนมีมากขึ้น เมื่อเทียบกับเทคโนโลยี 90 นาโน เมตรของชิป CYCLONE II นอกจากนี้การใช้กำลังงานไฟฟ้าก็ลดลงไปด้วย ภายใน บอร์ดทดลองประกอบไปด้วย 2 ส่วนหลักๆ ได้แก่ WARRIOR CYCLONE3-DEV01/02 (DEV Module) และ WARRIOR CYCLONE3-LAB01 (LAB Module) โดยในส่วนแรกเป็นส่วนที่มีการติดตั้งชิปหลักเอาไว้ซึ่งสามารถถอดออกไปใช้งานใน ลักษณะโมดูลได้ สำหรับส่วนประกอบของโมดูล DEV ได้แก่

- FPGA เบอร์ EP3C5E144C8 ในรุ่น DEV01 (5,136 LEs หรือประมาณ 286,600 เกท) และ EP3C10E144C8 (10,320 LEs หรือประมาณ 575,800 เกท) ใน รุ่น DEV02
 - 2. Active Serial Configuration Device ขนาด 16 Mbit
 - 3. คอนเน็คเตอร์ JTAG
 - 4. คอนเน็คเตอร์ Active Serial (AS)

สำหรับในส่วนของ LAB เป็นส่วนที่มีการติดตั้งอุปกรณ์รอบข้างรวมถึงแหล่งจ่าย ไฟที่จำเป็นสำหรับโมดูล DEV ซึ่งอุปกรณ์รอบข้างต่างๆ สำหรับทดลองมีดังนี้

- 1. โมดูล LCD แบบ 16 ตัวอักษร 2 บรรทัด
- 2. LED ขนาด 8 บิต
- 3. รีเลย์ 1 หน้าสัมผัส

- 4. บัพเพอร์
- 5. หน่วยความจำแบบ I2C และ Expansion I2C Port ขนาด 3.3V
- 6. พอร์ตอนุกรม
- 7. พอร์ต VGA สำหรับทดลองการเชื่อมต่อกับจอมอนิเตอร์
- 8. พอร์ต PS/2 สำหรับทดลองการเชื่อมต่อกับคีย์บอร์ด และเมาส์
- 9. ออสซิลเลเตอร์ขนาด 50 MHz (การสร้างความถี่ภายในอื่นๆ สามารถใช้วงจร เฟสล็อกลูปซึ่งสร้างจาก MegaCore Wizard ของ QuartusII ได้)
- 10. สวิตช์เลื่อน 8 บิต
- 11. สวิตช์กดติด-ปล่อยดับ 4 บิต
- 12. สวิตช์รีเซ็ท (สำหรับ NIOS II Soft-Core Processor)
- 13. Expansion Port A ขนาด 14 บิต แบบอิสระ สำหรับเชื่อมต่ออุปกรณ์ทั่วไป
- 14. Expansion Port B ขนาด 38 บิต แบบอิสระ สำหรับเชื่อมต่ออุปกรณ์ทั่วไป หรือโมดูล SRAM และ SDRAM เพื่อการใช้งาน NIOS II Soft-Core Processor

WARRIOR CYCLONE3 DEV01/02 (DEV Module)

รูปที่ 2 โมดูล WARRIOR CYCLONE3-DEV01/02

รูปที่ 3 การวางอุปกรณ์บน WARRIOR CYCLONE3-DEV01/02

1. ALTERA CYCLONE III FPGA 65 nm Chip

คุณสมบัติเด่นของชิป CYCLONE III มีดังนี้

- รุ่น DEV01 : ใช้ชิป FPGA เบอร์ EP3C5E144C8 (5,136 LEs หรือประมาณ 286,600 เกท)
- รุ่น DEV02 : ใช้ชิป FPGA เบอร์ EP3C10E144C8 (10,320 LEs หรือ ประมาณ 575,800 เกท)
 - หน่วยความจำภายใน 414 kbits
 - วงจร Phase Locked Loop ภายใน 2 ชุด

2. Active Serial Configuration Device (AS) บนาด 16 Mbits

เป็น Configuration Device แบบ Active Serial ขนาด 16 Mbits เพียงพอแก่ การเก็บข้อมูลคอนฟิกสำหรับ FPGA และ เฟิร์มแวร์ของ NIOS II

3. คอบเน็คเตอร์ JTAG

สำหรับเชื่อมต่อกับสาย ByteBlasterMV, ByteBlasterII และ ASTRON LOGIC BLASTER เพื่อโปรแกรมวงจรลงตัว CYCLONE ในโหมด JTAG

4. คอนเน็คเตอร์ Active Serial (AS)

สำหรับเชื่อมต่อกับสาย ByteBlasterII และ ASTRON LOGIC BLASTER เพื่อ โปรแกรมวงจรลง Active Serial Configuration Device ในโทมด Active Serial

5. สวิตช์ Reconfig

สวิตช์นี้ใช้สำหรับ Reload โปรแกรมจาก Active Serial Configuration Device (ในกรณีที่มีโปรแกรมบรรจุอยู่ใน Active Serial Configuration Device)

6. การจัดวางขา FPGA กับคอนเน็คเตอร์ J1

J1 Pin	CYCLONE III Pin	J1 Pin	CYCLONE III Pin
1	1	2	2
3	3	4	4
5	6 (ASDO)	6	7
7	8 (nCSO)	8	10
9	11	10	13 (DATA0)
11	DGND	12	DGND
13	DGND	14	DGND
15	22 (Input)	16	23 (Input)
17	24 (Input)	18	25 (Input)
19	28	20	30
21	31	22	32
23	33	24	34
25	AGND	26	2.5V (Power Supply)

7. การจัดวางขา FPGA กับคอนเน็คเตอร์ J2

J2 Pin	CYCLONE III Pin	J2 Pin	CYCLONE III Pin
1	38	2	39
3	42	4	43
5	44	6	46
7	49	8	50
9	51	10	52
11	53	12	54
13	55	14	58
15	59	16	60
17	64	18	65
19	66	20	67
21	68	22	69
23	70	24	71
25	72	26	DGND

8. การจัดวางขา FPGA กับคอนเน็คเตอร์ J3

J3 Pin	CYCLONE III Pin	J3 Pin	CYCLONE III Pin
1	1.2V (Power Supply)	2	73
3	74	4	75
5	76	6	77
7	79	8	80
9	83	10	84
11	85	12	86
13	87	14	88 (Input)
15	89 (Input)	16	90 (Input)
17	91 (Input)	18	98
19	99	20	100
21	101 **	22	103
23	104	24	105
25	106	26	3.3V (Power Supply)

9. การจัดวางขา FPGA กับคอนเน็คเตอร์ J4

J4 Pin	CYCLONE III Pin	J4 Pin	CYCLONE III Pin
1	110	2	111
3	112	4	113
5	114	6	115
7	119	8	120
9	121	10	124
11	125	12	126
13	127	14	128
15	129	16	132
17	133	18	135
19	136	20	137
21	138	22	141
23	142	24	143
25	144	26	DGND

ข้อควรระวัง

โมดูล DEV รองรับ IO ขนาด 3.3V เท่านั้น (ไม่รองรับกับอุปกรณ์ ภายนอกที่ทำงานที่ระดับ 5V) การต่อโมดูลกับอุปกรณ์ที่มีแรงดันเกิน 3.3V อาจสร้างความเสียหายให้แก่ชิป CYCLONE III ได้

การเซ็ทขาของชิป Cyclone III ที่มีหน้าที่ซ้อนกันระหว่าง I/O และ Programming

ขา 101 ของชิป EP3C5/10 จะตรงกับขา nCEO ซึ่งมีหน้าที่พิเศษในการ โปรแกรมชิป หากต้องการใช้งานขานี้ในลักษณะ IO จะต้องทำการเซ็ทให้เป็น Regular IO ก่อน ดังนี้

- 1. เลือกเมนู Assignments->Device...
- 2. ที่หน้าต่าง Setting คลิกปุ่ม Device and Pin Options...
- 3. คลิกเลือกที่แท็บ Dual-Purpose Pins
- 4. ในช่องรายการ Dual-purpose pins คลิกเลือกที่รายการ nCEO จะมี คอมโบ บ็อกซ์ป๊อบอัพออกมา จากนั้นให้เลือกที่ "Use as regular I/O"

รูปที่ 4a เลือกเมนูเพื่อกำหนดตัวเลือก รูปที่ 4b คลิกปุ่ม Device and Pin Options... ของ Device

รูปที่ 4c กำหนดให้ชา nCEO ทำหน้าที่เป็น Regular I/O ที่แท็บ Dual-Purpose Pins

รูปแบบการจ่ายแรงดันให้แก่โมดูล

รูปที่ 5 รูปแบบการจ่ายแรงดันให้โมดูล WARRIOR CYCLONE3-DEV01/02

โมดูล Cyclone3-DEV ต้องการไฟเลี้ยง 3 ชุด ดังตาราง ซึ่งต้องจ่ายให้ครบทั้ง 3 ชุด โมดูลจึงจะทำงานได้ สำหรับกราวด์ของดิจิตอล (DGND) และ กราวด์ของอนาลอก (AGND) ควรเชื่อมต่อผ่าน Ferrite Bead เพื่อป้องกันสัญญาณรบกวนที่เกิดจาคภาค อนาลอกกับภาคดิจิตอล

ตารางที่ 1 แรงดันที่ใช้บนโมดูล WARRIOR CYCLONE3-DEV01/02

ชนิดไฟเลี้ยง	ระดับแรงดัน	
Vcore	1.20 V	
Vccio	3.3 V	
VpII	2.5 V	

ข้อควรระวัง

ช่วงแรงดัน Vcore ที่ชิปสามารถรับได้มีค่าอยู่ระหว่าง 1.15-1.25 โวลท์ เท่านั้น การใช้แรงดัน 1.25 โวลท์เลี้ยง Vcore จะเสี่ยงต่อความเสีย หายได้ ดังนั้นแรงดัน Vcore ที่จ่ายให้โมดูลควรมีค่าไม่เกิน 1.20 โวลท์

การเซ็ต Jumper บนโมดูล

รูปที่ 6 การเซ็ท Jumper บน WARRIOR CYCLONE3-DEV01/02

Jumper บนโมดูล DEV จะมี 2 ส่วน ได้แก่

- JP1 และ JP2 ใช้สำหรับกำหนดลักษณะ Power On Reset ซึ่งมีให้เลือกแบบ Standard POR และ Fast POR
 - JP3 ใช้สำหรับเปิด-ปิดการใช้งาน Active Serial Configuration Device

LED สำหรับแสดงสถานะการทำงาน

รูปที่ 7 LED แสดงสถานะบน WARRIOR CYCLONE3-DEV01/02

โมดูล Cyclone3 DEV มี LED สำหรับแสดงสถานะของการทำงาน 3 ส่วน ได้แก่

- 1. LED แสดงสถานะไฟเลี้ยงวงจร ในส่วนนี้ประกอบด้วย LED 3 ดวงเพื่อแสดง ความพร้อมของแรงดันที่จ่ายให้แก่โมดูล (1.20V, 3.3V, 5.0V)
- 2. TCK เป็นตัวแสดงสภาวะการโปรแกรม และการติดต่อสื่อสารระหว่างชิปกับ ซอฟต์แวร์ Quartus II
- 3. CFG OK และ CFG NG เป็นตัวแสดงสภาวะการโหลดโปรแกรมจาก Quartus II และ Active Serial Configuration Device

สำหรับ CFG OK จะติดสว่างในกรณีที่การโปรแกรมลงชิปเสร็จสมบูรณ์โดยผ่าน ทางใดทางหนึ่งต่อไปนี้

- 1 ผ่านทาง Quartus II
- 2. ผ่านทาง Active Serial Configuration Device หลังจากจ่ายไฟให้วงจร หรือ หลังจากมีการกดปุ่ม Reconfig (ในกรณีที่ Active Serial Configuration Device มี โปรแกรมบรรจุเอาไว้แล้ว)

สำหรับ CFG NG จะติดสว่างในกรณีที่

- 1. การโปรแกรมลงชิปโดยใช้ Quartus II ผิดพลาด
- 2. การโปรแกรมลงชิปโดยผ่านทาง Active Serial Configuration Device ผิด พลาด
 - 3. ไม่มีโปรแกรมบรรจุอยู่ใน Active Serial Configuration Device

อุปกรณ์ที่ใช้ในการดาวน์โหลด

โมดูล Cyclone3-DEV รองรับสายดาวน์โหลด 2 ประเภทได้แก่ ByteBlasterII และ ASTRON LOGIC Blaster (USB-Blaster) สำหรับท่านที่ใช้ Astron Logic Blaster ในการดาวน์โหลดให้ต่อสายโปรแกรมโดยตรง โดยไม่ต้องใช้หัวแปลงมาตรฐาน JTAG

การโปรแกรมลงซิป Cyclone III

การโปรแกรมลงชิป Cyclone III โดยตรงทำได้โดยการดาวน์โหลดโปรแกรมผ่าน ทางพอร์ต JTAG ซึ่งไฟล์ที่ใช้จะมีนามสกุลเป็น *.sof ซึ่งวิธีการโปรแกรมชิป Cyclone III สามารถดูได้จากคู่มือการใช้งาน Quartus II

สำหรับวิธีการดาวน์โหลดแบบนี้คุณสามารถทำได้โดยไม่จำกัดจำนวนครั้ง เนื่อง จากเป็นการโปรแกรมโดยตรงที่ตัวชิปซึ่งมีโครงสร้างเป็น SRAM วิธีการดาวน์โหลด แบบนี้จะเหมาะสำหรับขั้นตอนการพัฒนาโปรแกรมที่ยังไม่คงที่ และอยู่ระหว่างการ ทดลอง แต่ข้อเสียของวิธีการนี้คือ โปรแกรมที่คุณได้ดาวน์โหลดเอาไว้จะหายไปเมื่อ ถอดไฟเลี้ยงออกจากวงจร

รูปที่ 8 การโปรแกรมในโหมด JTAG

การโปรแกรมลงชีป Active Serial Configuration Device

ในกรณีที่คุณต้องการให้บอร์ดทำงานตามโปรแกรมทันทีที่มีการจ่ายไฟให้ คุณจะ ต้องใช้โหมดการโปรแกรมแบบ Active Serial ในการดาวน์โหลดโปรแกรมลงชิป Active Serial Configuration Device ซึ่งวิธีการโปรแกรมลง Active Serial Configuration Device สามารถดูได้จากคู่มือการใช้งาน Quartus II

ในการดาวน์โหลดโปรแกรมล[้]งชิป Active Serial Configuration Device จะใช้ พอร์ต Active Serial (AS) ในการโปรแกรม โดยไฟล์ที่ใช้จะมีนามสกุลเป็น *.pof สำหรับวิธีการดาวน์โหลดแบบนี้จะมีขีดจำกัดในเรื่องจำนวนครั้งของการใช้งาน เนื่องจาก Active Serial Configuration Device มีโครงสร้างแบบ FLASH Memory

รูปที่ 9 การโปรแกรมในโหมด AS

WARRIOR CYCLONE LABO1 (LAB Module)

รูปที่ 10 บอร์ดทดลองรุ่น WARRIOR CYCLONE3-LAB01

ส่วนประกอบของ WARRIOR CYCLONE3-LAB01 มีดังนี้

- 1. โมดูล LCD แบบ 16 ตัวอักษร 2 บรรทัด
- 2. LED ขนาด 8 บิต
- 3. หน่วยความจำแบบ I2C และ Expansion I2C Port ขนาด 3.3V
- 4. รีเลย์ 1 หน้าสัมผัส
- 5. บัซเซอร์
- 6. สวิตช์เลื่อน 8 บิต
- 7. สวิตช์กดติด-ปล่อยดับ 4 บิต
- 8. สวิตช์รีเซ็ท (สำหรับ NIOS II Soft-Core Processor)
- 9. ออสซิลเลเตอร์ขนาด 50 MHz (การสร้างความถี่ภายในอื่นๆ สามารถใช้วงจร เฟสล็อกลูปซึ่งสร้างจาก MegaCore Wizard ของ QuartusII ได้)

- 10. พอร์ตอนุกรม
- 11. พอร์ต VGA สำหรับทดลองการเชื่อมต่อกับจอมอนิเตอร์
- 12. พอร์ต PS/2 สำหรับทดลองการเชื่อมต่อกับคีย์บอร์ด และเมาส์
- 13. Expansion Port A ขนาด 14 บิต แบบอิสระ สำหรับเชื่อมต่ออุปกรณ์ทั่วไป
- 14. Expansion Port B ขนาด 38 บิต แบบอิสระ สำหรับเชื่อมต่ออุปกรณ์ทั่วไป หรือโมดูล SRAM และ SDRAM เพื่อการใช้งาน NIOS II Soft-Core Processor

1. โมคูล LCD แบบ 16 ตัวอักษร 2 บรรทัด

โมดูล LCD ที่ใช้บนบอร์ดเป็นแบบ 16 ตัวอักษร 2 บรรทัด พร้อมไฟส่องหลัง (Backlight) มี VR1 ใช้สำหรับปรับค่าความเข้มของหน้าจอ

รูปที่ 11 วงจร LCD

ตารางที่ 2 ตำแหน่งขาของโมดูล LCD กับซิป Cyclone III บนโมดูล DEV

LCD	Cyclone III	LCD	Cyclone III
Pin Name	Pin Number	Pin Name	Pin Number
F_LCD_D0	38	F_LCD_D6	49
F_LCD_D1	39	F_LCD_D7	50
F_LCD_D2	42	F_LCD_BL	51
F_LCD_D3	43	F_LCD_RS	52
F_LCD_D4	44	F_LCD_RW	53
F_LCD_D5	46	F_LCD_E	54

2. LED ขนาด 8 บิต

ภายในบอร์ดทดลองจะมีไดโอดเปล่งแสง 8 ดวง ใช้สายสัญญาณร่วมกับ Data Bus ของโมดูล LCD เมื่อต้องการใช้งาน LED 8 บิตนี้จะต้องเซ็ทให้ลอจิกที่ขา F__LCD__E (ขา 54 ของชิป Cyclone III บนโมดูล DEV) เป็น 0 ก่อนเสมอ

รูปที่ 12 วงจร LED 8 Bits

ตารางที่ 3 ตำแหน่งขาของวงจร LED 8 Bits กับชิป Cyclone III บนโมดูล DEV

LED 8 Bits Pin Name	Cyclone III Pin Number	LED 8 Bits Pin Name	Cyclone III Pin Number
LED_D0	38	LED_D4	44
LED_D1	39	LED_D5	46
LED_D2	42	LED_D6	49
LED_D3	43	LED_D7	50

****** **Note** ต้องเซ็ทให้ลอจิกที่ขา F__LCD__E (ขา 54 ของชิป Cyclone III บนโมดูล DEV) เป็น 0 ก่อนการใช้งาน LED 8 บิตเสมอ

3. หน่วยความจำ Serial EEPROM แบบ I2C และ .Expansion I2C Port ขนาด 3.3V ภายในบอร์ด LAB จะมีหน่วยความจำ Serial EEPROM แบบ I2C ขนาด 32 kbit (24LC32A) และมีคอนเน็คเตอร์สำหรับเชื่อมต่อกับอุปกรณ์ I2C ภายนอกได้อีก

รูปที่ 13 วงจร I2C

ตารางที่ 4 ตำแหน่งขาของวงจร I2C กับชิป Cyclone III บนโมดูล DEV

I2C	Cyclone III	I2C	Cyclone III
Pin Name	Pin Number	Pin Name	Pin Number
F_I2C_DATA	3	F_I2C_CLK	4

4. รีเลย์ 5 โวลท์ 1 หน้าสับผัส

Relay ที่ใช้บนบอร์ด LAB เป็น Realy ขนาด 5 โวลท์ 1 หน้าสัมผัส หากต้องการ ให้หน้าสัมผัสของ Relay ปิด (ทำงาน) จะต้องป้อนสัญญาณลอจิก "1" ให้แก่ขา F_RELAY และหากต้องการให้หน้าสัมผัสของ Relay เปิด (ไม่ทำงาน) จะต้องป้อน สัญญาณลอจิก "0" ให้แก่ขา F_RELAY

รูปที่ 14 วงจรควบคุมการทำงานของ Relay

ตารางที่ 5 ความสัมพันธ์ระหว่างตำแหน่งขาควบคุม Relay กับชิป Cyclone III บนโมดูล DEV

Relay	Cyclone III
Pin Name	Pin Number
F_RELAY	7

5. บัชเซอร์

ในส่วนของวงจรขับ Buzzer ใช้การขับผ่านทรานซิสเตอร์ NPN โดยหากต้องการ ให้มีเสียงออกที่ Buzzer จะต้องทำให้ขา F_BUZZER มีระดับลอจิกเป็น "1" หากไม่ ต้องการให้มีเสียงดังจะต้องกำหนดให้ขา Buzzer มีระดับลอจิกเป็น "0" และหาก ต้องการตัด Buzzer ออกจากระบบให้ทำการดึงจัมเปอร์ J9 ออก ซึ่งเป็นการตัดไฟเลี้ยง ที่จะส่งไปยัง Buzzer ออก

รูปที่ 15 วงจร Buzzer

ตารางที่ 6 ตำแหน่งขาของวงจร Buzzer กับชิป Cyclone III บนโมดูล DEV

Buzzer	Cyclone III	
Pin Name	Pin Number	
F_BUZZER	34	

6. สวิตษ์เลื่อน 8 บิต

บนบอร์ด LAB จะมีสวิตช์เลื่อนจำนวน 8 ตัวเพื่อใช้สร้างสัญญาณลอจิก 1 และ 0 เพื่อเป็นอินพุทให้กับโมดูล DEV เมื่อเลื่อนสวิตช์ไปที่ตำแหน่ง HIGH จะทำให้ได้ สัญญาณลอจิก "1" และเมื่อเลื่อนสวิตช์กลับมาที่ตำแหน่ง LOW จะทำให้ได้ สัญญาณลอจิก "0"

รูปที่ 16 วงจร สวิทช์เลื่อน 8 บิต

ตารางที่ 7 ตำแหน่งขาของวงจรสวิทช์เลื่อนกับชิป Cyclone III บนโมดูล DEV

Slide Switch Pin Name	Cyclone III Pin Number	Slide Switch Pin Name	Cyclone III Pin Number
F_SL_SW0	23	F_SL_SW4	30
F_SL_SW1	24	F_SL_SW5	31
F_SL_SW2	25	F_SL_SW6	32
F_SL_SW3	28	F_SL_SW7	33

7. สวิตช์กดติด-ปล่อยดับ 4 บิต

Switch กดติดปล่อยดับ เมื่อไม่กดสวิตช์จะให้สัญญาณลอจิก "1" มีระดับแรงดัน 3.3 โวลท์ และเมื่อกดสวิตซ์จะให้สัญญาณลอจิก "0" มีระดับแรงดัน 0 โวลท์

รูปที่ 17 วงจร Switch 4 ชุด

ตารางที่ 8 ตำแหน่งขาของวงจร Switch 4 ชุด กับชิป Cyclone III บนโมดูล DEV

Switch Pin Name	Cyclone III Pin Number	Switch Pin Name	Cyclone III Pin Number
F_PB_SW0	88	F_PB_SW2	90
F_PB_SW1	89	F_PB_SW3	91

8. สวิตษ์รีเซ็ท (สำหรับ NIOS II Soft-Core Processor)

วงจรรีเซ็ทใช้สำหรับสร้างสัญญาณลอจิก 0 เพื่อสร้างสัญญาณรีเซ็ทให้กับ NIOS II Processor ในกรณีที่ไม่มีการใช้ NIOS II Processor สามารถใช้สวิทช์นี้เป็นสวิทซ์ กดเพื่อสร้างสัญญาณลอจิกได้ โดยเมื่อกดสวิทซ์จะได้ลอจิก 0 ที่ขา F__CPU_RESET และเมื่อปล่อยจะได้ลอจิก 1 ที่ขา F__CPU_RESET

รูปที่ 18 วงจร Reset สำหรับ Nios II Processor

ตารางที่ 9 ตำแหน่งขาของวงจร Reset กับชิป Cyclone III บนโมดูล DEV

Buzzer	Cyclone III
Pin Name	Pin Number
F_CPU_RESET	87

9. ออสซิลเลเตอร์

บนบอร์ด LAB จะมีออสซิลเลเตอร์ขนาด 50 MHz ติดตั้งอยู่ จุดเด่นของการใช้ชิป Cyclone III คือมันสามารถรองรับการสร้างความถี่อื่นๆ ได้โดยใช้วงจรเฟสล็อกลูปที่ฝัง อยู่ในตัวชิป ซึ่งอาศัยการกำหนดค่าคอนฟิกต่างๆ จาก MegaCore Wizard ของ QuartusII

รูปที่ 19 วงจรออสซิลเลเตอร์

ตารางที่ 10 ตำแหน่งขาของวงจร Buzzer กับชิป Cyclone III บนโมดุล DEV

Buzzer	Cyclone III
Pin Name	Pin Number
F_OSC	22

10. พอร์ตอนุกรม

บนบอร์ด LAB จะมีคอนเน็กเตอร์แบบ DB9 ตัวเมีย 1 ชุด สำหรับการสื่อสารข้อ มูลแบบอนุกรม โดยมีไอซีเบอร์ MAX3232 (หรือ ICL3232) ทำหน้าที่เป็นตัวแปลง ระดับแรงดันจากระดับสัญญาณ 3.3 โวลท์เป็นระดับสัญญาณของ RS-232 นอกจากนี้ ยังมีคอนเน็คเตอร์เพื่อเชื่อมต่อการสื่อสารอนุกรมที่มีขนาด 3.3 โวลท์ ซึ่งรองรับ สัญญาณที่ได้มาจากไอซีแปลงโปรโตคอลจาก USB หรืออาจเป็นโมดูล Ezy USB-M02 ก็ได้ โดยในการเลือกว่าจะใช้สัญญาณที่ระดับใดให้เลือกจากจั๊มเปอร์ J4 และ J6

รูปที่ 20 วงจร Serial Interface

รูปที่ 21 การเซ็ท Jumper สำหรับเลือกระดับแรงดันในการสื่อสารอนุกรม

ตารางที่ 11 ตำแหน่งขาของวงจร Serial Interface กับชิป Cyclone III บนโมดูล DEV

Serial Interface	Cyclone III	Serial Interface	Cyclone III
Pin Name	Pin Number	Pin Name	Pin Number
F_TX	1	F_RX	2

11. พอร์ต VGA สำหรับทดลองการเชื่อมต่อกับจอบอนิเตอร์

ระบบแสดงผล VGA 3 Bits 8 Colors เป็น Connector 15 ขา สำหรับเชื่อมต่อ กับจอแสดงผล (VGA Monitor)

รูปที่ 22 วงจรสำหรับเชื่อมต่อกับจอ VGA

ตารางที่ 12 ตำแหน่งขาของคอนเน็คเตอร์ VGA สัมพันธ์กับชิป Cyclone III บนโมดูล DEV

VGA Pin Name	Cyclone III Pin Number	VGA Pin Name	Cyclone III Pin Number
F_VGA_R	55	F_VGA_HSYNC	60
F_VGA_G	58	F_VGA_VSYNC	64
F_VGA_B	59	-	-

12. พอร์ต PS/2 สำหรับทดลองการเชื่อมต่อกับคีย์บอร์ด และเมาส์

พอร์ต PS/2 บนบอร์ด LAB ใช้สำหรับการทดลองติดต่อสื่อสารกับคีย์บอร์ด และ เมาส์แบบ PS/2

รูปที่ 23 PS/2 Connector

ตารางที่ 13 ตำแหน่งขาของ PS/2 Connector สัมพันธ์กับชิป Cyclone III บนโมดูล DEV

PS/2 Connector	Cyclone III	PS/2 Connector	Cyclone III
Pin Name	Pin Number	Pin Name	Pin Number
F_PS2_DATA	10	F_PS2_CLK	11

13. Expansion Port A ขนาด 14 บิต แบบอิสระ สำหรับเชื่อมต่ออุปกรณ์ทั่วไป

คอนเน็คเตอร์ Expansion Port A เป็นคอนเน็คเตอร์ขนาด 16 ขา ซึ่งประกอบไป ด้วยพอร์ต I/O แบบอิสระ 14 พอร์ต และจุดจ่ายแรงดัน 3.3 โวลท์

รูปที่ 24 Expansion Port A ขนาด 14 บิต แบบอิสระ

ตารางที่ 14 ตำแหน่งชาของ Expansion Port A ขนาด 14 บิต กับชิป Cyclone III บนโมดูล DEV

EXP A	Cyclone III	EXP A	Cyclone III
Pin Name	Pin Number	Pin Name	Pin Number
1	65	2	66
3	67	4	68
5	69	6	70
7	71	8	72
9	73	10	74
11	75	12	76
13	77	14	79
15	GND	16	3V3

14. Expansion Port B ขนาด 38 บิต แบบอิสระ สำหรับเชื่อมต่ออุปกรณ์ทั่วไป หรือโมดูล SRAM และ SDRAM เพื่อการใช้งาน NIOS II Soft-Core Processor

คอนเน็คเตอร์ Expansion Port B เป็นคอนเน็คเตอร์ขนาด 40 ขา ซึ่งประกอบไป ด้วยพอร์ต I/O แบบอิสระ 38 พอร์ต และจุดจ่ายแรงดัน 3.3 โวลท์

ตารางที่ 15 ตำแหน่งชาของ Expansion Port B ขนาด 38 บิต กับซิป Cyclone III บนโมดูล DEV

EXP B	Cyclone III	EXP B	Cyclone III
Pin Name	Pin Number	Pin Name	Pin Number
1	80	2	83
3	84	4	85
5	86	6	98
7	99	8	100
9	101 (nCEO) **	10	103
11	104	12	105
13	106	14	110
15	111	16	112
17	113	18	114
19	115	20	119
21	120	22	121
23	124	24	125
25	126	26	127
27	128	28	129
29	132	30	133
31	135	32	136
33	137	34	138
35	141	36	142
37	143	38	144
39	GND	40	3V3

รูปที่ 25 Expansion Port B ขนาด 38 บิต แบบอิสระ

- ** ขา 101 ของชิป EP3C5/10 จะตรงกับขา nCEO ซึ่งมีหน้าที่พิเศษในการโปรแกรมชิป หากต้องการใช้งานขานี้ในลักษณะ IO จะต้องทำการเซ็ทให้เป็น Regular IO ก่อน ดังนี้
 - 1. เลือกเมน Assignments->Device...
 - 2. ที่หน้าต่าง Setting คลิกปุ่ม Device and Pin Options...
 - 3. คลิกเลือกที่แท็บ Dual-Purpose Pins
 - 4. ในช่องรายการ Dual-purpose pins คลิกเลือกที่รายการ nCEO จะมีคอมโบบ็ อกซ์ป๊อบอัพออกมา จากนั้นให้เลือกที่ "Use as regular I/O"

รูปที่ 26a เลือกเมนูเพื่อกำหนดตัว เลือกของ Device

ฐปที่ 26b คลิกปุ่ม Device and Pin Options...

รูปที่ 26c กำหนดให้ขา nCEO ทำหน้าที่เป็น Regular I/O ที่แท็บ Dual-Purpose Pins

สรุปการเชื่อมต่อระหว่างอุปกรณ์ต่างๆ บน WARRIOR CYCLONE3-LAB01

1.โมดูล LCD แบบ 16 ตัวอักษร 2 บรรทัด

LCD	Cyclone III	LCD	Cyclone III
Pin Name	Pin Number	Pin Name	Pin Number
F_LCD_D0	38	F_LCD_D6	49
F_LCD_D1	39	F_LCD_D7	50
F_LCD_D2	42	F_LCD_BL	51
F_LCD_D3	43	F_LCD_RS	52
F_LCD_D4	44	F_LCD_RW	53
F_LCD_D5	46	F_LCD_E	54

2. LED ขนาด 8 บิต

LED 8 Bits	Cyclone III	LED 8 Bits	Cyclone III
Pin Name	Pin Number	Pin Name	Pin Number
LED_D0	38	LED_D4	44
LED_D1	39	LED_D5	46
LED_D2	42	LED_D6	49
LED_D3	43	LED_D7	50

3. หน่วยความจำ Serial EEPROM แบบ I2C และ .Expansion I2C Port ขนาด 3.3V

12C	Cyclone III	I2C	Cyclone III
Pin Name	Pin Number	Pin Name	Pin Number
F_I2C_DATA	3	F_I2C_CLK	4

4. รีเลย์ 5 โวลท์ 1 หน้าสัมพัส

Relay	Cyclone III
Pin Name	Pin Number
F_RELAY	7

5. ບັຫເຫວຣ໌

Buzzer	Cyclone III
Pin Name	Pin Number
F_BUZZER	34

6. สวิตษ์เลื่อน 8 บิต

Slide Switch Pin Name	Cyclone III Pin Number	Slide Switch Pin Name	Cyclone III Pin Number
F_SL_SW0	23	F_SL_SW4	30
F_SL_SW1	24	F_SL_SW5	31
F_SL_SW2	25	F_SL_SW6	32
F_SL_SW3	28	F_SL_SW7	33

7. สวิตช์กดติด-ปล่อยดับ 4 บิต

Switch	Cyclone III	Switch	Cyclone III
Pin Name	Pin Number	Pin Name	Pin Number
F_PB_SW0	88	F_PB_SW2	90
F_PB_SW1	89	F_PB_SW3	91

8. สวิตษ์รีเซ็ท (สำหรับ NIOS II Soft-Core Processor)

Buzzer	Cyclone III	
Pin Name	Pin Number	
F_CPU_RESET	87	

9. ออสซิลเลเตอร์

Buzzer	Cyclone III	
Pin Name	Pin Number	
F_OSC	22	

10. พอร์ตอนุกรม

Serial Interface	Cyclone III	Serial Interface	Cyclone III
Pin Name	Pin Number	Pin Name	Pin Number
F_TX	1	F_RX	2

11. พอร์ต VGA สำหรับทดลองการเชื่อมต่อกับจอมอนิเตอร์

VGA	Cyclone III	VGA	Cyclone III
Pin Name	Pin Number	Pin Name	Pin Number
F_VGA_R	55	F_VGA_HSYNC	60
F_VGA_G	58	F_VGA_VSYNC	64
F_VGA_B	59	-	-

12. พอร์ต PS/2 สำหรับทดลองการเชื่อมต่อกับคีย์บอร์ด และเมาส์

PS/2 Connector	Cyclone III	PS/2 Connector	Cyclone III
Pin Name	Pin Number	Pin Name	Pin Number
F_PS2_DATA	10	F_PS2_CLK	11

13. Expansion Port A ขนาด 14 บิต แบบอิสระ สำหรับเชื่อมต่ออุปกรณ์ทั่วไป

EXP A	Cyclone III	EXP A	Cyclone III
Pin Name	Pin Number	Pin Name	Pin Number
1	65	2	66
3	67	4	68
5	69	6	70
7	71	8	72
9	73	10	74
11	75	12	76
13	77	14	79
15	GND	16	3V3

14. Expansion Port B ขนาด 38 บิต แบบอิสระ สำหรับเชื่อมต่ออุปกรณ์ทั่วไป หรือโมดูล SRAM และ SDRAM เพื่อการใช้งาน NIOS II Soft-Core Processor

EXP B	Cyclone III	EXP B	Cyclone III
Pin Name	Pin Number	Pin Name	Pin Number
1	80	2	83
3	84	4	85
5	86	6	98
7	99	8	100
9	101 (nCEO) **	10	103
11	104	12	105
13	106	14	110
15	111	16	112
17	113	18	114
19	115	20	119
21	120	22	121
23	124	24	125
25	126	26	127
27	128	28	129
29	132	30	133
31	135	32	136
33	137	34	138
35	141	36	142
37	143	38	144
39	GND	40	3V3