COM SCI 239

QUANTUM PROGRAMMING: ALGORITHMS IN PYQUIL MAY 12, 2020

 ${\it Author}$ Arjun Raghavan and Bryan Pan

1 Overview

2 Design

2.1 Implementing the black-box quantum oracle

All four algorithms take as input a function f in the form:

$$f: \{0,1\}^n \to \{0,1\}^m$$

In the case of Deutsch-Josza, Bernstein-Vazirani, and Grover, we have m=1. Simon, on the other hand, has m=n.

For Deutsch-Josza, Bernstein-Vazirani, and Simon, the quantum oracle of f, denoted U_f , is defined as:

$$U_f |x\rangle |b\rangle = |x\rangle |b \oplus f(x)\rangle$$

Here, we have $b \in \{0,1\}^m$. The \oplus operator represents bitwise XOR, or equivalently bitwise addition mod 2.

Grover's algorithm makes use of a gate denoted by Z_f , which is defined as:

$$Z_f |x\rangle = (-1)^{f(x)} |x\rangle$$

Notice that this is precisely the application of the phase kickback trick for gates of a form equivalent to U_f where $|b\rangle = |-\rangle$:

$$Z_f |x\rangle |-\rangle = (-1)^{f(x)} |x\rangle |-\rangle$$

Clearly, we can also define Z_f as a quantum oracle for Grover's algorithm in the same way U_f was defined for the three other algorithms. Given that all four algorithms' quantum oracles have the same general form, we created a single function which could generate a quantum oracle and reused it for each program.

2.1.1 Mathematical explanation

Lemma 1. $\sum_{q \in \{0,1\}^k} |q\rangle \langle q| = I_{2^k}$ where I_{2^k} is the identity matrix in \mathcal{H}_{2^k} (corresponding to k qubits).

Proof. Let $q \in \{0,1\}^k$. We have $|q\rangle = \begin{bmatrix} q_1 & q_2 & \dots & q_{2^k} \end{bmatrix}^T$ where $q_i = 1$ for some $1 \le i \le 2^k$ and $q_j = 0$ for all $j \ne i$. Then, $|q\rangle\langle q|$ is a $2^k \times 2^k$ matrix of the form $[q_{ab}]$ where:

$$q_{ab} = \begin{cases} 1 & \text{if } a = b = i \\ 0 & \text{otherwise} \end{cases}$$

For $\alpha, \beta \in \{0, 1\}^k$ such that $\alpha \neq \beta$, we have $|\alpha\rangle \neq |\beta\rangle \implies |\alpha\rangle \langle \alpha| \neq |\beta\rangle \langle \beta|$. Thus:

$$\sum_{q \in \{0,1\}^k} |q\rangle \langle q| = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix} + \dots + \begin{bmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix} = I_{2^k}$$

Consider the application of U_f to the outer product of $|x\rangle |b\rangle$ with itself:

$$U_f |x\rangle |b\rangle \langle x| \langle b| = |x\rangle |b \oplus f(x)\rangle \langle x| \langle b|$$
$$= |x\rangle \langle x| |b \oplus f(x)\rangle \langle b|$$

Let k = n + m. By taking the sum of this over all bit strings $xb \in \{0, 1\}^k$, we get:

$$\sum_{xb\in\{0,1\}^k} U_f(|x\rangle|b\rangle\langle x|\langle b|) = U_f\left(\sum_{xb\in\{0,1\}^k} |x\rangle|b\rangle\langle x|\langle b|\right)$$

$$= U_f \circ I_{2^k}$$

$$= U_f$$

And so:

$$U_f = \sum_{xb \in \{0,1\}^k} |x\rangle \langle x| |b \oplus f(x)\rangle \langle b|$$
(1)

2.1.2 Python implementation

As shown in Code Block 1, Equation 1 is straightforwardly implemented in Python thanks to the numpy library. Notice in line 155 that f is a dictionary, not a function. Indeed, we chose to treat the input function f for all four programs as a dictionary (or a "mapping" as we mostly referred to it) for a few reasons.

For one, this would allow a user more flexibility in providing f as an input to our programs without having to possibly construct tedious if-elif statements. In addition, this allowed us to more easily test our programs—we could randomly generate dictionaries representing functions which followed whatever assumptions were required for each algorithm. And example of this for Deutsch-Josza can be seen in Code Block 2

```
# Accumulator to hold the value of the summation
148
149
        U_f=np.zeros((2**(n+m),2**(n+m)))
150
        for xb in range(0, int(2**(n+m))):
             # Convert index to binary and split it down the middle
151
152
             x = f'\{xb:0\{n+m\}b\}'[:int(n)]
153
             b = f'\{xb:0\{n+m\}b\}'[int(n):]
154
             # Apply f to x
             fx = f[x]
155
             # Calculate b + f(x)
156
157
             bfx = f'\{int(b, 2) \land int(fx, 2):0\{n\}b\}'
158
             # Vector representations of x, b, and b+f(x)
159
160
             xv = np.zeros((2**n,1))
161
             xv[int(x, 2)] = 1.
             bv = np.zeros((2**m,1))
162
             bv[int(b, 2)] = 1.
163
164
             bfxv = np.zeros((2**m,1))
             bfxv[int(bfx, 2)] = 1.
165
166
             # Accumulate (|x><x| (*) |b + f(x)><b|) into the sum
167
             # (*) is the tensor product
168
169
             U_f = np.add(np.kron(np.outer(xv, xv), np.outer(bfxv, bv)), U_f)
```

Code Block 1: Excerpt from the gen_matrix function in oracle.py showing the implementation of Equation 1 using numpy

```
43
        if algo is Algos.DJ:
44
            # Constant: f(x) returns 0 or 1 for all x
            if func is DJ.CONSTANT:
45
                val = np.random.choice(['0','1'])
46
                oracle_map = {i: val for i in qubits}
47
            # Balanced: f(x) returns 0 or 1 for all x
48
            # val1 represents set of x that f(x) = 1
49
50
            # val0 represents set of x that f(x) = 0
51
            elif func is DJ.BALANCED:
52
                val1 = random.sample(qubits, k=int(len(qubits)/2))
                val0 = set(qubits) - set(val1)
53
                oracle_map = {i: '1' for i in val1}
54
                temp = \{i: '0' \text{ for } i \text{ in } val0\}
55
56
                oracle_map.update(temp)
```

Code Block 2: Excerpt from the init_bit_mapping function in oracle.py showing how we randomly generate a function for testing Deutsch-Josza.

- 3 Evaluation
- 4 Reflection on PyQuil