STA 437/2005: Methods for Multivariate Data Week 4: Non-Gaussian Distributions

Piotr Zwiernik

University of Toronto

Table of contents

Elliptical distributions
 Spherical distributions
 Elliptical distributions

2. Copula models

Elliptical distributions

Why Study Elliptical Distributions?

- ► Generalize the multivariate normal distribution.
- Model data with heavy tails or outliers.
- Maintain symmetry and linear correlation structures.
- ▶ Applications in finance, insurance, and environmental studies.

Spherical Distributions

Orthogonal Matrices: $O(m) = \{U \in \mathbb{R}^{m \times m} : U^{\top}U = I_m\}.$

Spherical distribution

A random vector $X \in \mathbb{R}^m$ has a *spherical distribution* if for any $U \in O(m)$:

$$X \stackrel{d}{=} UX$$
.

Characteristic function satisfies: $\psi_X(t) = \psi_{UX}(t) = \psi_X(U^\top t)$ and so **equivalently** $\psi_X(t)$ depends only on ||t||. Thus, the same applies to the density:

$$f_X(\mathbf{x}) = h(\|\mathbf{x}\|)$$
 for some h (generator).

Examples of Spherical Distributions

Standard normal distribution $Z \sim N_m(0, I_m)$ is a simple example.

Spherical scale mixture of normals

If $Z \sim N_m(0, I_m)$ and a random variable $\tau > 0$ is independent of Z, then:

$$X = \frac{1}{\sqrt{\tau}}Z$$

has a spherical distribution.

Indeed: Let $U \in O(m)$, then

$$UX = \frac{1}{\sqrt{\tau}}UZ \stackrel{d}{=} \frac{1}{\sqrt{\tau}}Z = X.$$

Moment Structure of Spherical Distributions

Spherical symmetry implies:

$$\mathbb{E}[X] = 0,$$

 $\operatorname{var}(X) = cI_m, \text{ for some } c \ge 0.$

Indeed: $var(X) = var(UX) = Uvar(X)U^{\top}$ for any $U \in O(m)$

For $X = \frac{1}{\sqrt{\tau}}Z$ with $Z \sim N(0, I_m)$, $\tau > 0$, $\tau \perp \!\!\! \perp Z$:

$$\operatorname{var}(X) = \mathbb{E}[\tau^{-1}]I_m.$$

Indeed: $\mathbb{E}[X] = \mathbb{E}[\frac{1}{\sqrt{\tau}}Z] = \mathbb{E}[\frac{1}{\sqrt{\tau}}]\mathbb{E}[Z] = \mathbf{0}_m$ and so

$$\operatorname{var}(X) = \mathbb{E}XX^{\top} - \mathbb{E}[X]\mathbb{E}[X]^{\top} = \mathbb{E}[\frac{1}{\tau}ZZ^{\top}] = \mathbb{E}[\frac{1}{\tau}]\mathbb{E}[ZZ^{\top}] = \mathbb{E}[\frac{1}{\tau}]I_{m}$$

Independence of
$$||X||$$
 and $\frac{X}{||X||}$

Key Property: For spherical distributions, the norm $\|X\| = \sqrt{X^{\top}X}$ is independent of the direction $\frac{X}{\|X\|}$. **Proof Sketch:**

▶ Let $U \in O(m)$. Then:

$$\frac{X}{\|X\|} \stackrel{d}{=} \frac{UX}{\|UX\|} = U\frac{X}{\|X\|}.$$

 $ightharpoonup \frac{X}{\|X\|}$ is rotationally invariant, implying uniform distribution on the unit sphere.

Polar Coordinates

Definition: In \mathbb{R}^m , polar coordinates represent **x** as:

$$\mathbf{x} = r\mathbf{u}(\boldsymbol{\theta}),$$

where $r = \|\mathbf{x}\|$ is the radial coordinate, and $\boldsymbol{\theta}$ are angular coordinates. **Jacobian**

Determinant:

$$J(r, \theta) = r^{m-1} \prod_{i=2}^{m-1} \sin^{m-i}(\theta_{i-1}).$$

Implication: If $f(\mathbf{x}) = g(\|\mathbf{x}\|^2)$, then:

$$f(\mathbf{x})d\mathbf{x} = g(r^2)r^{m-1}drd\theta.$$

Elliptical Distributions

Definition: A random vector $X \in \mathbb{R}^m$ has an elliptical distribution if:

$$X = \mu + \Sigma^{1/2} Z,$$

where Z is a spherical random vector, and $\Sigma^{1/2}$ is the square root of a positive semi-definite matrix Σ . **Examples:**

- ▶ Multivariate normal: $Z \sim N_m(0, I_m)$.
- ► Scale mixtures of normals.

Why Elliptical Distributions?

- ► Flexibility: Models data with heavy tails.
- Retains properties like symmetry and linear correlation structure.
- ► Applications:
 - ► Finance: Captures extreme losses/gains.
 - ▶ Environmental studies: Models outliers in natural events.

Scale Mixtures of Normals

Representation:

$$X = \mu + \frac{1}{\sqrt{\tau}} \Sigma^{1/2} Z,$$

where $Z \sim N_m(0, I_m)$ and $\tau > 0$ is independent of Z. **Special Cases:**

- $ightharpoonup au \equiv 1$: Multivariate normal.
- $ightharpoonup au \sim \frac{1}{k}\chi_k^2$: Multivariate *t*-distribution.
- $ightharpoonup au \sim \mathsf{Exp}(1)$: Multivariate Laplace.

Covariance and Correlation in Elliptical Distributions

- $ightharpoonup \Sigma$ is the scale matrix but not the covariance matrix.
- ► Actual covariance:

$$Var(X) = c\Sigma, \quad c > 0.$$

lacktriangle Correlation structure is still governed by Σ .

Copula models