Próba i populacja - w jaki sposób możliwe jest wyciąganie wniosków na temat populacji na podstawie próby i jakie ma ograniczenia?

## Fajowe narzędzie

https://seeing-theory.brown.edu

## Próba i populacja

#### Populacja

Ogół osób, do których odnosi się dana teoria psychologiczna (np. populacja wszystkich ludzi, populacja kobiet, populacja niemowląt).

#### Próba

Podzbiór osób należących do populacji wybrany po to, by wyciągać wnioski na temat populacji.

#### Dlaczego (i po co) dobieramy próbę

- Najczęściej nie możemy zbadać całej populacji ze względów praktycznych.
- Badamy tylko określoną cześć populacji próbę.
- Robimy to po to, by oszacować, jak wygląda sytuacja w całej populacji innymi słowy, dokonujemy *estymacji*.

#### **Estymator**

Statystyka służąca do szacowania wartości parametru w populacji.

Definicja za Wikipedią, hasło "Estymator"

# Przykład estymacji z wykorzystaniem punktowego estymatora

Szacujemy, ile wynosi  $\pi$ 

#### A jak to wygląda, gdy badamy ludzi?

Wartość parametru w populacji to (pożyczając określenie od prawników) prawda materialna (czyli: tak właśnie jest), ale nie mamy do niej dostępu i na podstawie badań SZACUJEMY, jaka jest. Możemy szacować bardziej lub mniej dokładnie.

#### Procedura estymacji

- 1. Załóżmy, że badamy jakąś cechę, która ma w populacji pewien rozkład, np. wzrost.\*
- 2. Chcemy odkryć, jaki jest średni wzrost w populacji czteroletnich chłopców.
- 3. W tym celu losujemy 100 chłopców.
- 4. Wyciągamy średnią z naszych pomiarów.

<sup>\*</sup>W przypadku zmiennych, które mierzymy testami psychologicznymi sprawa jest nieco bardziej skomplikowana, bo badamy zmienne, których nie obserwujemy bezpośrednio, a za pośrednictwem ich przejawów.

## Symulacja!



## m = 105.6

- [1] 105.1854
- [1] 106.7389
- [1] 105.2505
- [1] 105.0579
- [1] 106.143
- [1] 106.1928
- [1] 104.7826
- [1] 105.6278
- [1] 106.1298
- [1] 104.8144

## Jak powinniśmy dobierać próbę

- Losowo!
- Estymator powinien być  $NIEOBCIA\dot{Z}ONY$ i STAŁY.

## Estymator obciążony





## m = 105.6

- [1] 105.9997
- [1] 107.1536
- [1] 107.0053
- [1] 106.4052
- [1] 108.0459
- [1] 107.5541
- [1] 106.547
- [1] 106.8938
- [1] 106.7455
- [1] 105.4865

#### Estymator niestały



czerwona linia: N=2, zielona linia: N=100, czarna linia: rzeczywista średnia

## Wielkość próby a dokładność szacowania

#### Przedział ufności

Przedział w którym z określonym prawdopodbieństwem znajduje się wartość danego parametru w populacji. Szacujemy go na podstawie danych uzyskanych z próby.

Np. dla przedziału, dla którego poziom ufności wynosi 95% możemy powiedzieć, że gdybyśmy powtarzali procedurę losowania próby i konstrukcji przedziału ufności, to 95% uzyskanych w ten sposób przedziałów zawierałoby wartość charakteryzującą populację (prawdziwą dla populacji).

Seeing theory, Frequentist inference

#### Wnioski z symulacji

- im mniejsza próba, tym szerszy przedział ufności
- im wyższy poziom ufności, tym szerszy przedział ufności

## Metody doboru próby

#### Metody probabilistyczne

- Zakłada, że dysponujemy jakimś *operatem losowania* dla badanej populacji i z niego **losowo** wyłaniamy osoby badane
  - Dobór prosty losowy (simple random sampling)
  - Dobór warstwowy (stratified sampling)
  - Dobór systematyczny (systematic sampling)

#### Metody nieprobabilistyczne

- Dobór przypadkowy (convenience sampling)
- Dobór kwotowy (quota sampling)
- Kula śniegowa (snowball sampling)

#### Dobór prosty, losowy

- Każda osoba z populacji ma równą szansę dostania się do próby
- Potrzebny operat losowania

## Dobór prosty, losowy



Single Random Sampling

Obrazek pochodzi z artykułu Seemy Singh pt. Sampling Techniques

## Dobór warstwowy

- Dobór pod względem jakiejś ważnej charakterystyki
- Najpierw trzeba wyłonić ważne charakterystyki, co bywa trudne
- W obrębie warstw stosujemy dobór prosty losowy

#### Dobór warstwowy



Stratified Sampling

Obrazek pochodzi z artykułu Seemy Singh pt. Sampling Techniques

#### Dobór systematyczny

- Jeśli dysponujemy populacją uszeregowaną, możemy wybrać co n-tą osobę z szeregu
- Często w badaniach medycznych (np. co trzecia osoba rejestrująca się do onkologa w WCO)
- Metoda dobra jeśli tylko lista nie zawiera w sobie ukrytego porządku

#### Dobór systematyczny

Obrazek pochodzi z artykułu Seemy Singh pt. Sampling Techniques

## Dobór przypadkowy

- Kto się nawinie
- Najczęstszy przypadek w badaniach psychologicznych



Systematic Clustering

Rysunek 1: Dobór systematyczny

• Może nie stanowić problemu, może stanowić ogromny problem

#### Dobór kwotowy

- Zakładamy liczebności osób o zadanych cechach obecne w populacji
- Rekrutujemy badanych aż osiągniemy te liczebności

#### Kula śniegowa

- Rekrutujemy badanego, po czym każemy mu przyprowadzić ludzi podobnych do niego
- Zupełnie niepoprawne metodologicznie, ale czasem jest to jedyna opcja, jeśli badamy bardzo specyficzne populacje/bardzo rzadkie cechy

#### Kula śniegowa



Referral /Snowball Sampling

Obrazek pochodzi z artykułu Seemy Singh pt. Sampling Techniques

ISTNIEJE JESZCZE WIELE INNYCH METOD DOBORU PRÓBY

# Skąd wiemy, że zależność wykryta w próbie jest obecna w populacji?

- Nawet jeśli mamy najlepszy, najbardziej reprezentatywny dobór próby...
- ...nie wiemy (nie możemy być pewni).
- Możemy przypuszczać z określonym prawdopodobieństwem, że obserwowana przez nas zależność mogłaby wystąpić, gdyby zależność nie istniała i zależy nam na tym, by pokazać, że to prawdopodobieństwo jest znikomo małe.
- Do określenia tego prawdopodobieństwa potrzebujemy testów statystycznych.
- Wszystkie te testy zakładają, że próba została dobrana losowo, a zatem jest nieobciążona.

11

### Obciążenie w doborze próby

#### Definicja obciązenia próby (sampling bias)

 Z obciążeniem w doborze próby mamy do czynienia, jeżeli jacyś członkowie naszej docelowej populacji mają mniejszą/większą szansę na udział w badaniu.

 W efekcie dobór nie jest losowy, ponieważ warunek tego, by dla każdej osoby z populacji prawdopodobieństwo znalezienia się w próbie było takie samo, nie jest spełniony.

#### Katalog

https://catalogofbias.org

#### Paradoks Berksona (Berkson's paradox)

- W momencie, w którym udział w badaniu zależny jest od wystąpienia przynajmniej jednej z badanych zmiennych, możemy zaobserwować negatywny związek między badanymi zmiennymi (i np. niesłusznie wyciągnąć wniosek, że wystąpienie jednej choroby chroni przed wystąpieniem drugiej).
- Związek między dwoma zmiennymi obserwujemy ze względu na chcarakterystykę próby.

#### Oryginalny przykład paradoksu Berksona

- Cukrzyca a zapalenie woreczka żółciowego wśród hospitalizowanych pacjentów. Nawet jeżeli nie ma żadnej zależności w ogólnej populacji, może stać się tak, że w badaniu pacjentów, którzy trafiają do szpitala zaobserwujemy, że cukrzyca chroni przez zapaleniem woreczka żółciowego.
- Osoby które nie mają ani cukrzycy, ani zapalenia woreczka żółciowego mają mniejszą szansę, by trafić do szpitala.
- Ergo, w grupie bez cukrzycy brakuje nam pacjentów bez zapalenia woreczka... w grupie z cukrzycą ich nie brakuje, więc może okazać się nawet, że cukrzyca chroni przed zapaleniem woreczka żółciowego.

#### Self selection bias

- Błąd, z którym mamy do czynienia, kiedy osoby zmotywowane do udziału
  w badaniu / zgadzające się na udział różnią się istotnie od interesującej
  nas populacji w sposób, który może wpłynąć na wyniki badania.
- Przykład: badamy związek stereotypów dotyczących ról płciowych z jakąkolwiek zmienną zależną. Jest wysoce prawdopodobne, że w przypadku, w którym w badaniu będą brać udział ochotnicy, w naszej próbie znajdą się osoby o skrajnych poglądach na ten temat, co może prowadzić do zniekształcenia wyników.

#### Dobór badanych z jakiejś konkretnej lokalizacji

 Błąd wynikający z tego, że z zasady osoby w jakiejś konkretnej lokalizacji (cała klasa, cała szkoła, przechodnie w jakimś konkretnym miejscu) mogą różnić się od interesującej nas populacji.

#### Healthy participant bias

- Ma szczególne znaczenie w badaniach związanych ze zdrowiem i badaniach epidemiologicznych.
- Osoby, które decydują się na udział w badaniu zwykle są nieco zdrowsze od tych, które na udział się nie decydują.
- Jak myślicie, jak ma się to do badań longitudinalnych i wykruszania się osób badanych z kolejnych fal badania?

#### **Exclusion bias**

- Ma miejsce, kiedy jakaś grupa potencjalnych uczestników badania w ogóle nie ma szansy wziąć udziału w badaniu...
- ...bo np. nie korzysta z Internetu.

#### Najważniejsze pytanie

CZY NASZA PRÓBA NIE RÓŻNI SIĘ PRZYPADKIEM OD INTERESUJĄCEJ NAS POPULACJI? CZY MOŻEMY UOGÓLNIAĆ NASZ WYNIK?

#### Podsumowanie

## Praktyczne pytania, które odbiorca badania powinien sobie zadać

- Czy dobór próby w badaniu miał charakter probablilistyczny czy autorzy zbadali jakąś próbę, którą akurat "mieli pod ręką"?
- Czy zbadane osoby mogą się różnić od interesującej nas populacji? Pod względem jakich zmiennych?
- Czy w/w zmienne mogą mieć wpływ na wyniki badania?
- Czy autorzy starali się w jakikolwiek sposób kotrolować zmienne, które mogły zakłócić wyniki badania?