Solutions to CS511 Homework 01

Nicholas Ikechukwu - U71641768 September 11, 2024

Exercise 1 [LCS, page 79]: Exercise 1.2.1. parts (h), (i), and (j)

Prove the validity of the following sequents:

Sequent Proofs

(h)
$$p \vdash (p \rightarrow q) \rightarrow q$$

Proof: We will use natural deduction to prove this sequent.

1. p (Premise) 2. $p \rightarrow q$ (Assumption) 3. q (Modus Ponens 1, 2)

4. $(p \rightarrow q) \rightarrow q$ (\rightarrow -Introduction 2-3)

This proof is valid because:

- We start with the premise p.
- We assume $p \to q$ (for \to -Introduction).
- We use Modus Ponens with lines 1 and 2 to derive q.
- We conclude $(p \to q) \to q$ by \to -Introduction, discharging the assumption in line 2.

(i)
$$(p \to r) \land (q \to r) \vdash p \land q \to r$$

Proof: We will use natural deduction to prove this sequent.

```
\begin{array}{ll} 1. & (p \rightarrow r) \land (q \rightarrow r) & (\text{Premise}) \\ 2. & p \rightarrow r & (\land \text{-Elimination 1}) \\ 3. & q \rightarrow r & (\land \text{-Elimination 1}) \end{array}
```

8. $p \land q \rightarrow r$ (\rightarrow -Introduction 4-7)

This proof is valid because:

- We start with the premise $(p \to r) \land (q \to r)$.
- We use \land -Elimination to derive $p \to r$ and $q \to r$.
- We assume $p \wedge q$ (for \rightarrow -Introduction).
- We use \land -Elimination to derive p and q separately.
- We use Modus Ponens with $p \to r$ and p to derive r.
- We conclude $p \land q \rightarrow r$ by \rightarrow -Introduction, discharging the assumption in line 4.

(j)
$$q \to r \vdash (p \to q) \to (p \to r)$$

Proof: We will use natural deduction to prove this sequent.

7. $(p \to q) \to (p \to r)$ (\to -Introduction 2-6)

This proof is valid because:

- We start with the premise $q \to r$.
- We assume $p \to q$ (for outer \to -Introduction).
- We assume p (for inner \rightarrow -Introduction).
- We use Modus Ponens twice to derive r.
- We conclude $p \to r$ by \to -Introduction, discharging the assumption in line 3.
- We conclude $(p \to q) \to (p \to r)$ by \to -Introduction, discharging the assumption in line 2.

Exercise 2 [LCS, page 84]: Exercise 1.4.2. parts (g), (h), and (i).

Compute the complete truth table of the formulae:

Complete Truth Tables

(g)
$$((p \rightarrow q) \rightarrow p) \rightarrow p$$

p	q	$p \rightarrow q$	$ (p \to q) \to p $	$((p \to q) \to p) \to p$
\mathbf{T}	${ m T}$	\mathbf{T}	m T	${ m T}$
${ m T}$	\mathbf{F}	\mathbf{F}	T	${ m T}$
\mathbf{F}	${\rm T}$	${ m T}$	F	${ m T}$
\mathbf{F}	\mathbf{F}	${ m T}$	F	${ m T}$

Table 1: Truth table for $((p \to q) \to p) \to p$

(h)
$$((p \lor q) \to r) \to ((p \to r) \lor (q \to r))$$

			1					
p	q	r	$p \lor q$	$(p \lor q) \to r$	$p \rightarrow r$	$q \rightarrow r$	$(p \to r) \lor (q \to r)$	$ \mid ((p \lor q) \to r) \to ((p \to r) \lor (q \to r)) $
\mathbf{T}	${\bf T}$	${\bf T}$	T	${ m T}$	${ m T}$	${ m T}$	${ m T}$	T
${ m T}$	${\rm T}$	\mathbf{F}	${ m T}$	\mathbf{F}	F	\mathbf{F}	F	Т
${ m T}$	F	\mathbf{T}	T	${ m T}$	${ m T}$	${ m T}$	${ m T}$	Т
${ m T}$	F	\mathbf{F}	T	\mathbf{F}	F	${ m T}$	${ m T}$	Т
\mathbf{F}	${\rm T}$	\mathbf{T}	${ m T}$	${ m T}$	${ m T}$	${ m T}$	${ m T}$	Т
\mathbf{F}	${\rm T}$	\mathbf{F}	${ m T}$	\mathbf{F}	${ m T}$	\mathbf{F}	${ m T}$	Т
\mathbf{F}	\mathbf{F}	Τ	F	${ m T}$	${ m T}$	${ m T}$	${ m T}$	Т
F	F	F	F	${ m T}$	${ m T}$	${ m T}$	T	Т

Table 2: Truth table for $((p \lor q) \to r) \to ((p \to r) \lor (q \to r))$

(i)
$$(p \rightarrow q) \rightarrow (\neg p \rightarrow \neg q)$$

p	q	$p \rightarrow q$	$\neg p$	$\neg q$	$\neg p \to \neg q$	$ (p \to q) \to (\neg p \to \neg q) $
Τ	${\rm T}$	T	F	F	${ m T}$	T
${\rm T}$	F	F				T
\mathbf{F}	${\rm T}$	Т				F
\mathbf{F}	F	T	\mathbf{T}	\mathbf{T}	${ m T}$	T

Table 3: Truth table for $(p \to q) \to (\neg p \to \neg q)$

PROBLEM 1 [LCS, page 87]: Exercise 1.5.3. parts (b) and (c).

3. Adequate Set of Connectives

(b) Showing that if $C \subseteq \{\neg, \land, \lor, \rightarrow, \bot\}$ is adequate, then $\neg \in C$ or $\bot \in C$

Proof by contradiction:

Assume that C is adequate and that neither $\neg \in C$ nor $\bot \in C$.

Let v be a valuation that assigns T to all atomic propositions. Consider any formula ϕ constructed using only connectives from C. We will prove by structural induction that $v(\phi) = T$ for all such ϕ .

Base case:

• If ϕ is an atomic proposition, then $v(\phi) = T$ by definition of v.

Inductive step:

- If $\phi = \psi \wedge \chi$, then $v(\phi) = v(\psi) \wedge v(\chi) = T \wedge T = T$
- If $\phi = \psi \vee \chi$, then $v(\phi) = v(\psi) \vee v(\chi) = T \vee T = T$
- If $\phi = \psi \to \chi$, then $v(\phi) = v(\psi) \to v(\chi) = T \to T = T$

Therefore, any formula constructed using only connectives from C will always evaluate to T under valuation v.

However, the formula \perp (false) should always evaluate to F under any valuation. Since C is assumed to be adequate, it must be able to express \perp , which is impossible given our proof.

This contradiction shows that our initial assumption must be false. Therefore, if C is adequate, then $\neg \in C$ or $\bot \in C$.

(c) Is $\{\leftrightarrow,\neg\}$ adequate?

Claim: The set $\{\leftrightarrow, \neg\}$ is adequate for propositional logic.

Proof:

To prove adequacy, we need to show that we can express all other connectives using only \leftrightarrow and \neg . We'll do this by providing equivalent formulas for \land , \lor , and \rightarrow .

- 1. Expressing \wedge : $p \wedge q \equiv \neg(p \leftrightarrow \neg q)$ Proof of equivalence:
- When p and q are both T, $\neg q$ is F, so $p \leftrightarrow \neg q$ is F, and $\neg (p \leftrightarrow \neg q)$ is T.
- In all other cases, either p is F or q is F (or both), so $p \leftrightarrow \neg q$ is T, and $\neg (p \leftrightarrow \neg q)$ is F.
- 2. Expressing \vee : $p \vee q \equiv (p \leftrightarrow q) \leftrightarrow (p \leftrightarrow p)$ Proof of equivalence:
- When either p or q (or both) are T, $p \leftrightarrow q$ is not equivalent to $p \leftrightarrow p$ (which is always T), so the overall expression is T.
- When both p and q are F, $p \leftrightarrow q$ is T, which is equivalent to $p \leftrightarrow p$, so the overall expression is F.
- 3. Expressing \rightarrow : $p \rightarrow q \equiv \neg p \leftrightarrow (p \leftrightarrow q)$ Proof of equivalence:
- When p is T and q is F, $\neg p$ is F, $p \leftrightarrow q$ is F, so $\neg p \leftrightarrow (p \leftrightarrow q)$ is T.
- In all other cases, $p \to q$ is T, and our expression also evaluates to T.

Since we can express \land , \lor , and \rightarrow using only \leftrightarrow and \neg , and we already have \neg , the set $\{\leftrightarrow, \neg\}$ is adequate for propositional logic.

With Lean 4

Exercise 3 Write the script of the Lean 4 proof for Example 1.3.4 in Macbeth's book. The book gives the "proof by hand" in full, but does not give its mechanized version in Lean 4.

 $Solutions \ in \ one \ file \ at: \ \texttt{https://github.com/nich-ikech/CS511-hw-macbeth/blob/d7a44938a14b51e12a670a41a9c27f0f70de6e46/cs511HwSolutions/hw01/hw01.lean}$

Script link for Exercise 3

 $\label{lem:https://github.com/nich-ikech/CS511-hw-macbeth/blob/d7a44938a14b51e12a670a41a9c27f0f70de6e46/cs511HwSolutions/hw01/hw01_3.lean$

Exercise 4 Write the script of the Lean 4 proof for Example 1.3.9 in Macbeth's book. Again here, the book gives the "proof by hand", but does not give its mechanized version in Lean 4.

Script link for Exercise 4

 $\verb|https://github.com/nich-ikech/CS511-hw-macbeth/blob/d7a44938a14b51e12a670a41a9c27f0f70de6e46/cs511HwSolutions/hw01_4.lean|$

Problem 2: Do Exercise 7, in Section 1.3.11, in Macbeth's book. Script link for Problem 2 - Exercise 7