STA 235H - Prediction: Classification and Regression Trees (CART)

Fall 2021

McCombs School of Business, UT Austin

Announcements

No class next week

- Homework 5 is due on Thursday
- Homework 6 will be posted on Thursday (not due until Dec. 2nd)
- I will still hold Office Hours on Tuesday 10/23
- Great resources for the project uploaded to the course website ("Resources -> Machine Learning")
- Start the project early

Where we've been...

- Talking about bias vs variance trade-off.
- Model selection and regularization: Stepwise selection, Ridge and Lasso regression.
- K-nearest neighbors: Simple non-parametric approach. Importance of finding the optimal K.

... and where we're going.

- Continue on our **prediction** journey:
 - Decision Trees: Classification and Regression Trees (CART)
- Participation: Activity in R.

Trees, trees everywhere!

Idea behind Decision Trees

- Create a flow chart for making decisions
 - How do we classify an individual?
- ... But there are many decisions!
 - How many variables do we use?
 - How do we sort them? In what order do we place them?
 - How do we split them?
 - How deep do we go?

What is the main disadvantage of a shallower tree?

Structure of Decision Trees

Structure:

- Root node
- Internal nodes
- Leaves

Why do we like/not like Decision Trees?

Main advantages

Simple interpretation

Mirror human decision-making

Graphic displays!

Handle categorical variables

Main disadvantages

Overfitting

Not very accurate/not very robust

Let's start with a simple example

Remember our Disney+ example?

Predict who will cancel their subscription

We have some information:

- city: Whether the customer lives in a big city or not
- female: Whether the customer is female or not
- age: Customer's age (in years)
- logins: Number of logins to the platform in the past week.
- mandalorian: Whether the person has watched the Mandalorian or not.
- unsubscribe: Whether they canceled their subscription or not.

The prediction task: Classification

- Our outcome is binary, so this is a classification task.
- Let's start looking at two variables:

City & Mandalorian

• Which one do you think should be at the top of the tree?

Let's look at the data!

City vs. Mandalorian

```
disney <- read.csv("https://raw.githubusercontent.com/maibennett/sta235/main/exampleSite/content/Clausubscribers
disney.train %>% filter(unsubscribe==0) %>% select(city, mandalorian) %>% table
#Unsubscribers
disney.train %>% filter(unsubscribe==1) %>% select(city, mandalorian) %>% table
```

	Subscribers			Unsubscribers		
	Mandalorian				Mandalorian	
City	0	1		City	0	1
0	173	155	_	0	39	345
1	1067	1505		1	186	1530

Let's talk about the JITT

Answers (up to Monday morning)

How do we decide?

- Recursive Binary Splitting:
 - Divide regions of covariates in two (recursively).
 - This works both for continuous and categorical variables
- We test out every covariate and see which one reduces the error the most in our predictions
 - In regression tasks, we can use RMSE (or MSE).
 - o In classification tasks, we can use accuracy/classification error rate, Gini Index, or entropy

$$G = \sum_{k=1}^K {\hat p}_{mk} (1 - {\hat p}_{mk})$$

where \hat{p}_{mk} is the proportion of obs. in the m region for class k.

According to the Gini Index, is it better or worse to have a high P_{mk} ?

$$G = \sum_{k=1}^K {\hat p}_{mk} (1 - {\hat p}_{mk})$$

Let's split by city first...

Subscribers			Unsubscribers			
	Mandalorian			Mandalorian		
City	0	1		City	0	1
0	173	155		0	39	345
1	1067	1505		1	186	1530

2900 S 2100 U

Let's split by city first...

Subscribers			Unsubscribers				
	Mandalorian				Mandalorian		
City	0	1		City	0	1	
0	173	155		0	39	345	
1	1067	1505		1	186	1530	

Let's split by city first...

$$G_0 = \sum_{k=1}^K p_{mk} (1-p_{mk}) = ?$$

$$G_0 = \sum_{k=0}^{1} p_{0k} (1 - p_{0k}) = \frac{384}{328 + 384} \cdot (1 - \frac{384}{328 + 384}) + \frac{328}{328 + 384} \cdot (1 - \frac{328}{328 + 384}) = 0.497$$

$$G_1 = \sum_{k=0}^{1} p_{1k} (1 - p_{1k}) = \frac{1716}{1716 + 2572} \cdot (1 - \frac{1716}{1716 + 2572}) + \frac{2572}{1716 + 2572} \cdot (1 - \frac{2572}{1716 + 2572}) = 0.48$$

$$G = \omega_0 G_0 + \omega_1 G_1$$

$$G=\omega_0 G_0+\omega_1 G_1$$
 $G=rac{384+328}{384+328+1716+2572}G_0+rac{1716+2572}{384+328+1716+2572}G_1$ $G=0.482$

And we can do the same for mandalorian

$$G = \omega_0 \left(\frac{225}{1465} \cdot \left(1 - \frac{225}{1465}\right) + \frac{1240}{1465} \cdot \left(1 - \frac{1240}{1465}\right)\right) +$$

$$\omega_1 \left(\frac{1875}{3535} \cdot \left(1 - \frac{1875}{3535}\right) + \frac{1660}{3535} \cdot \left(1 - \frac{1660}{3535}\right)\right)$$

$$= 0.428$$

Which variable would you choose for prediction?

Choosing predictors

• From the previous exercise, we can see that using mandalorian yields a lower Gini compared to city (0.428 vs. 0.482)

But we have more variables

How do we choose?

Ok, but how about including other variables?

Basic Algorithm

- 1) Start at the root node
- 2) Split the parent node at covariate x_i to minimize the sum of child node impurities
- 3) Stop if leaves are pure or early stopping criteria is satisfied, else repeat step (1) and (2) for each new child nodes
 - 4) Prune your tree according to a complexity parameter (cp)
 - 5) Assign the average outcome (regression) or the majority (classification) in each leaf.

Adapted from "Machine Learning FAQs" (Raschka, 2021)

Hyper-parameter: Complexity parameter

• Measure of how much a split should improve prediction for it to be worth it.

$$\sum_{m=1}^{|T|}\sum_{i:i\in R_m}(y_i-{\hat y}_i)^2+lpha|T|$$

- |T|: Number of terminal nodes or leaves (e.g. size of the tree)
- R_m : Predictor space of the mth leaf
- α : Tuning parameter

What happens if $\alpha = 0$?

Let's see how to do it in R!

```
library(caret)
library(rpart)

set.seed(100)

ct <- train(
  unsubscribe ~ ., data = d.train, #remember your outcome needs to be a factor!
  method = "rpart", # The method is called rpart
  trControl = trainControl("cv", number = 10),
  tuneLength = 15
)</pre>
```

Let's go to R

We could also provide a specific complexity parameter

Tree using all the covariates

What do you think the percentages in the leaves represent?

Some parameters that might be important

```
ct <- train(
  unsubscribe ~ ., data = d.train,
  method = "rpart",
  trControl = trainControl("cv", number = 10),
  tuneGrid = expand.grid(cp = seq(0,2, by = 0.01)),
  control = rpart.control(minsplit = 20)
)</pre>
```

- cp: Complexity parameter
 - Split must decrease the overall lack of fit by a factor of cp, or is not attempted.
 - Parameter for pruning the tree.
 - Higher cp, smaller the tree!

Some parameters that might be important

```
ct <- train(
  unsubscribe ~ ., data = d.train,
  method = "rpart",
  trControl = trainControl("cv", number = 10),
  tuneGrid = expand.grid(cp = seq(0,2, by = 0.01)),
  control = rpart.control(minsplit = 20)
)</pre>
```

• minsplit: Min. number of obs in a node to attempt a split.

Regression Trees

Regression Trees

- Outcome is continuous
- Very similar to what we have seen with classification trees:
 - Predicted outcome is the mean outcome for the leaf/region.

In R is basically the same

```
library(caret)
set.seed(100)

mcv <- train(
  logins ~. - unsubscribe, data = disney.train
  method = "rpart",
  trControl = trainControl("cv", number = 10),
  tuneLength = 20
  )

plot(mcv)</pre>
```


Providing a specific grid for cp

```
library(caret)
set.seed(100)

tuneGrid <- expand.grid(cp = seq(0, 0.1, 0.005))

mcv <- train(
  logins ~. - unsubscribe, data = disney.train
  method = "rpart",
  trControl = trainControl("cv", number = 10),
  tuneGrid = tuneGrid
  )

plot(mcv)</pre>
```


Plot the tree

mcv\$finalModel

```
## n= 5000
##
## node), split, n, deviance, yval
        * denotes terminal node
##
##
  1) root 5000 66387.3700 4.806800
    2) mandalorianYes>=0.5 3535 24633.5000 2.973409
      4) cityYes< 0.5 500
                         517.1580 0.322000 *
##
      5) cityYes>=0.5 3035 20022.2800 3.410214 *
##
    3) mandalorianYes< 0.5 1465 1200.0180 9.230717
##
      7) cityYes>=0.5 1253
                          728.8571 9.428571 *
##
```

What would the predicted value be for a customer who hasn't watched The Mandalorian and lives in a city?

mcv\$finalModel

```
## n = 5000
##
## node), split, n, deviance, yval
        * denotes terminal node
##
##
  1) root 5000 66387.3700 4.806800
    2) mandalorianYes>=0.5 3535 24633.5000 2.973409
##
      4) cityYes< 0.5 500 517.1580 0.322000 *
##
      5) cityYes>=0.5 3035 20022.2800 3.410214 *
##
##
    3) mandalorianYes< 0.5 1465 1200.0180 9.230717
##
      7) cityYes>=0.5 1253 728.8571 9.428571 *
##
```

Main takeaways of decision trees

Main advantages:

- Easy to interpret and explain (you can plot them!)
- Mirrors human decision-making.
- Can handle qualitative predictors (without need for dummies).

Main disadvantages:

- Accuracy not as high as other methods
- Very sensitive to training data (e.g. overfitting)

Next class

Use of decision trees as building blocks for more powerful prediction methods!

- Bagging
- Random Forests
- Boosting

References

- James, G. et al. (2021). "Introduction to Statistical Learning with Applications in R". Springer. Chapter 8
- Starmer, J.. (2018). "Decision Trees". Video materials from StatQuest (YouTube).
- STDHA. (2018). "CART Model: Decision Tree Essentials"