

	Pradnesh P. Kalkar	Roll No	190123046
Name	Product F. Raina		
and I	tr the and dimensional normalise	ed wave run	$\psi_0(x)$ and ψ_1

- 4. Consider the one-dimensional normalised wave functions $\psi_0(x)$ and $\psi_1(x)$ with the properties $\psi_0(-x) = \psi_0(x) = \psi_0^*(x)$ and $\psi_1(x) = N \frac{d\psi_0(x)}{dx}$. Consider another wave function $\psi(x) = c_1 \psi_0(x) + c_2 \psi_1(x)$, with $|c_1|^2 + |c_2|^2 = 1$. N, c_1 and c_2 are known constants.
 - (a) Check if $\psi_0(x)$ and $\psi_1(x)$ are orthogonal to each other and $\psi(x)$ is normalised.
 - (b) Compute the expectation values of \hat{x} and \hat{p} in the states ψ_0 and ψ_1 separately.
 - (c) Compute the expectation value of \hat{T} (the kinetic energy operator) in the state ψ_0 .

a) as Yor) is even function, due is odd. $\psi_1^*(x) = N \frac{d\psi_0^*(x)}{dx} = N \frac{d\psi_0}{dx} = \psi_1(x) - 2$ where $\psi_0(\alpha) = \psi_0(-\infty) = \psi_1(-\infty) = 0 - 3$ where $\psi_0(\alpha)$ denotes the value of $\psi_0(\alpha)$ as $x \to \infty$ $\psi_0(\alpha) = \psi_0(\alpha) =$ Now, York and Yila are = $\int_{-\infty}^{\infty} \psi_0(x) \cdot N d\psi_0(x) \cdot dx = N \int_{-\infty}^{\infty} \psi_0(x) d\psi_0(x)$ = $N \left[\psi_0^2(x) \right]_{-\infty}^{\infty} = N \left[\psi_0^2(x) - \psi_0^2(-\infty) \right]$ 1.05 < 40/4>=0 = 40(21) and 41(21) are $\psi^*(x) = c_1^* \psi_0^*(x) + c_2^* \psi_1^*(x) = c_1^* \psi_0(x) + c_2^* \psi_1(x)$ ∫ω ψ*(π) ψω (π) dx = ∫ω |ς|² |Ψο(π)|² dx + ∫ω |ς|² |Ψ (π)|² dx

 $\langle x \rangle = \int_{-\infty}^{\infty} \psi_0^*(x) x \, \psi_0(x) dx = \int_{-\infty}^{\infty} \psi_0^2(x) dx = 0 \, (odd) \, integrand)$ $\langle \hat{p} \rangle = \int_{\infty}^{\infty} \psi_0^*(x) \hat{p} \, \psi_0(x) \, dx = \int_{\infty}^{\infty} \psi_0(x) \left(-i \, t \, d \, \psi_0(x)\right) \, dx$ $\frac{1}{2} \left(\frac{1}{2} \right) = -i \pi \int \varphi_0(x) d\psi_0(x) = -i \pi \int \frac{\varphi_0^2(x)}{2} \int_{-\infty}^{\infty} = 0$ (ii) for $\psi_1(x)$ $\forall x > = \int_{-\infty}^{\infty} \psi_1^*(x) x \psi_1(x) dx = \int_{-\infty}^{\infty} x \psi_2^*(x) dx = O(\text{cold integrand})$ (From (D) $\langle p \rangle = \int_{\infty}^{\infty} \psi^{\dagger}(x) \hat{p} \, \psi_{i}(x) dx = -i t \int_{\infty}^{\infty} \psi_{i}(x) d\psi_{i}(x) d\psi_{i}(x) = -i t \int_{\infty}^{\infty} \psi_{i}(x) d\psi_{i}(x) d\psi_{i}(x) = -i t \int_{\infty}^{\infty} \psi_{i}(x) d\psi_{i}(x) d\psi_{i}(x) d\psi_{i}(x) = -i t \int_{\infty}^{\infty} \psi_{i}(x) d\psi_{i}(x) d\psi_{i}(x$ c) < f> = 5 40 (x) T 40(x) dxe = $\int_{-\infty}^{\infty} \psi_0(x) \left(-\frac{t^2}{2m} \frac{d^2 \psi_0(x)}{dx^2} \right) dx$ $= -\frac{t^2}{2m} \int_{\infty} \psi_0(x) dx dx$ Using by parts, we get $\langle \hat{T} \rangle = -\frac{t^2}{2m} \left(\left(\psi_0(x) \frac{d\psi_0}{dx} \right)_{-\infty}^{\infty} - \int_{-\infty}^{\infty} \frac{d\psi_0}{dx} \frac{d\psi_0}{dx} \frac{d\psi_0}{dx} \right)$ = - to (0 - 500 4.00. 4.00) don) $= \frac{\pi^2}{2mN^2} \int_{\infty}^{\infty} \psi_1^*(x) \psi_1(x) dx ... (from 3)$ $= \frac{\pi^2}{2mN^2} \int_{\infty}^{\infty} \psi_1^*(x) \psi_1(x) dx ... (from 3)$ $= \frac{\pi^2}{2mN^2} \int_{\infty}^{\infty} \psi_1^*(x) \psi_1(x) dx ... (from 3)$