574.5263 W3dr 1980

PLEAST URN

DATA REPORT FOR THE

BENTHIC MACROINVERTEBRATE AND PERIPHYTON COMMUNITY INVENTORY OF

STREAMS DRAINING THE SOUTHERN FORT UNION COALFIELD REGION OF

SOUTHEASTERN MONTANA

MATE DOCUMENTS COLLECTION

APR 13 1982

MONTANA STATE LIBRARY 930 E Lyndale Ave. Helena, Montana 59601 Prepared for the

Bureau of Land Management

and

United States Geological Survey

Research supported by the
U.S. Geological Survey, Department of the Interior
under research grant number 14-08-0001-G-503

Prepared by

Duane A. Klarich, Stephen M. Regele, and Loren L. Bahls
Water Quality Bureau
Billings Regional Office
Environmental Sciences Division
Montana Department of Health and Environmental Sciences
Billings, Montana 59101

MST DEC 2 9 '82 NOV 3 _ 1984 MAY _ 8 11 18 G

精积10

MAY 12 2000

MAR 7 2003

+300 0 5-1

APR 1 9 2005

MAY 1 0 2005

MONTANA STATE LIBRARY
S 574.5263 W3dr c.1 Klarich
Data report for the benthic macroinverte

3 0864 00038777 2

ABSTRACT

The Water Quality Bureau of the Montana Department of Health and Environmental Sciences has completed a two-year biological-benthic inventory of streams draining the southern Fort Union coalfield area in southeastern Montana and a small part of northern Wyoming. This study was conducted with funding made available by the United States Geological Survey. Attention was directed primarily to the benthic macroinvertebrate associations and periphyton communities that are found in these waters, and a large number of streams and sampling stations within the study area were collected for such organisms, involving the analysis of numerous biological samples. In addition, water quality collections were made throughout the project, and appropriate physical measurements were taken to supplement the biotic information. This publication is one of the final requirements of the investigation, and it is designed as a data report that presents most of the data that has been collected. The sampling program of the inventory and the related field and laboratory methods are also discussed to set the stage for reviewing the many data tables. Two companion reports to this publication will more specifically consider the macroinvertebrate and the periphyton segments of the project.

ACKNOWLEDGEMENTS

A large number of individuals besides the authors of this report became involved with the completion of the southern Fort Union region, hydrobiological-benthic inventory. Mr. Gordon Hills of the State Water Quality Bureau conducted the water quality analyses that were undertaken in the Billings branch office of the Bureau, and Mr. John Hawthorne and other staff members of the State Chemistry Laboratory Bureau in Helena conducted the remaining chemical work. Dr. George Roemhild, Mr. Dick Oswald, and other associates of the Department of Biology at Montana State University in Bozeman provided many of the taxonomic verifications and expert advice on aquatic macroinvertebrate taxonomy, sample analysis, and field collection. Mr. Erich Weber of the Water Quality Bureau assisted with the laboratory evaluations of the periphyton samples, and Mr. Rob Greene of this same agency and Mrs. Peggy Bahls helped with the statistical assessments of these collections. Mr. Greene also assisted in other phases of the project as did Mrs. Sue Cohen, Ms. Lani Morris, and Mr. Tom Costa. Mr. Don Willems provided the administrative expertise that was needed to originally initiate the study, and Mrs. Jerrine Litwin typed the different manuscripts and the many data tables.

This inventory was funded via Research Grant Number 14-08-0001-G-503 from the United States Geological Survey. Mr. Mike Whittington of the Bureau of Land Management, and Mr. Bob Averett, Mr. Joe Moreland, Mr. Roger Knapton, and Mr. Rodger Ferreira of the United States Geological Survey provided support in the developmental stages of the inventory, and these same individuals also offered valuable advice throughout the course of the study. The Alderson family of the Bones Brothers Ranch near Birney, Montana allowed the use of a field station which enhanced the feasibility for sampling an extensive project area, and the Aldersons and other ranchers and farmers in the Tongue River and adjacent drainages afforded access to many of the project's sampling stations. The Northern Cheyenne Tribe also permitted trespass to several of the study area streams. The authors greatly appreciate the assistance of all of these individuals and governmental entities.

TABLE OF CONTENTS

<u>Page</u>
Title Pagei
Abstractii
Acknowledgmentsii
Contentsiii
List of Tables and Figureiv
Textiv
Appendixiv
Introduction1
Description of the Study Area2
Summary of the Sampling Program4
Sampling Stations4
Sampling Frequency and Other Aspects8
Summary of the Methodologies13
Water Quality13
MacroinvertebratesField Applications14
Natural Substrates14
Artificial Substrates17
MacroinvertebratesLaboratory Manipulations19
Sample Sorting and Calculations
Reference Collection and Taxonomic Identifications20
Biomass Assessments20
Physical Measurements
Stream Substrate Evaluations22
Periphyton and Macroalgae24
Appendix
Tabular Considerations27
General Features27
Water Quality
Macroinvertebrates29
Physical Measurements and Substrate30
Periphyton and Macroalgae30
Data Tables
References Cited266
Text
Appendix268

LIST OF TABLES AND FIGURE

	<u>Page</u>
Figure 1.	Map of the southern Fort Union study area in Montana and a small part of Wyoming showing the locations of the various sampling stations
Table 1.	List of intensive, accessory, and miscellaneous stations established in the southern Fort Union study region along with their associated geographic descriptions and other pertinent items (two pages)
Table 2.	Numbers and types of biological samples and numbers of physical measurements and water quality samples taken from the different study area streams (two pages)10
Table 3.	List of United States Geological Survey surface water monitoring stations maintained in the southern Fort Union project region during the period of study
Table 4.	Methods of water quality analysis commonly utilized by the Chemistry Laboratory Bureau and the Water Quality Bureau of the Montana Department of Health and Environmental Sciences (two pages)
Table 5.	Stream substrate classification system used in conjunction with the Surber macroinvertebrate collections23
APPENDIX	Page
APPENDIX Series A.	Water quality analyses completed by the Montana Department of Health and Environmental Sciences (DHES) on water samples collected from various streams in the southern Fort Union region (thirty-three tables).
Series A.	Water quality analyses completed by the Montana Department of Health and Environmental Sciences (DHES) on water samples collected from various streams in the
Series A. Table A01.	Water quality analyses completed by the Montana Department of Health and Environmental Sciences (DHES) on water samples collected from various streams in the southern Fort Union region (thirty-three tables). Field parameters (FP) and common ions (CI)upper Rose-
Series A. Table A01. Table A02.	Water quality analyses completed by the Montana Department of Health and Environmental Sciences (DHES) on water samples collected from various streams in the southern Fort Union region (thirty-three tables). Field parameters (FP) and common ions (CI)upper Rosebud Creek near Kirby
Series A. Table A01. Table A02. Table A03.	Water quality analyses completed by the Montana Department of Health and Environmental Sciences (DHES) on water samples collected from various streams in the southern Fort Union region (thirty-three tables). Field parameters (FP) and common ions (CI)upper Rosebud Creek near Kirby
Series A. Table A01. Table A02. Table A03. Table A04.	Water quality analyses completed by the Montana Department of Health and Environmental Sciences (DHES) on water samples collected from various streams in the southern Fort Union region (thirty-three tables). Field parameters (FP) and common ions (CI)upper Rosebud Creek near Kirby
Series A. Table A01. Table A02. Table A03. Table A04. Table A05.	Water quality analyses completed by the Montana Department of Health and Environmental Sciences (DHES) on water samples collected from various streams in the southern Fort Union region (thirty-three tables). Field parameters (FP) and common ions (CI)upper Rosebud Creek near Kirby

Page
Cable AO8. N and MTongue River, Ash Creek, and Youngs Creek near Sheridan-Decker39
Cable A09. FP and CITongue River near Pyramid Butte-Birney40
Cable AlO. N and Mditto4
Cable All. FP and CISquirrel and Deer Creeks near Decker42
Cable A12. N and Mditto43
Cable Al3. FP and CICanyon Creek near Decker-Birney, Prairie Dog and Bull Creeks near Pyramid Butte-Birney, and Crazy Head Springs near Ashland-Lame Deer44
Table Al4. N and Mditto45
Table Al5. FP and CICook Creek near Birney-Birney Village, Logging Creek near Ashland, and Beaver Creek near Brandenberg (near Ashland)46
Table Al6. N and Mditto47
Cable Al7. FP and CIupper Hanging Woman Creek near Quietus- Decker48
Cable Al8. N and Mditto49
Cable Al9. FP and CIlower Hanging Woman Creek near Birney50
able A20. N amd Mditto51
Cable A21. FP and CIStroud Creek near Quietus-Decker, Lee Creek near Quietus-Birney, and the East Fork of Hanging Woman Creek near Birney
Cable A22. N amd Mditto53
Cable A23. FP and CIBear Creek near Otter, upper Otter Creek near Otter-Fort Howe, and Cow Creek near Otter-Fort Howe
Cable A24. N amd Mditto55
Cable A25. FP and CIlower Otter Creek near Ashland56
Table A26. N amd Mditto57
Cable A27. FP and CIPumpkin Creek near Miles City and Mizpah Creek near Mizpah58
Table A28. N and Mditto59

	<u>Page</u>
Table A29.	FP and CIEast Fork of Armells Creek, main Armells Creek, and West Fork of Armells Creek near Colstrip; lower Armells Creek near Forsyth
Table A30.	N and Mditto61
Table A31.	FP and CISweeney Creek near Rosebud, Reservation Creek near Forsyth-Hysham, and Sarpy Creek near Hysham62
Table A32.	N and Mditto63
Table A33.	FP, CI, N, and MPowder River near Moorhead and near Mizpah64
Table B34.	Taxa list, associated systematics, and major habits and characteristics of benthic macroinvertebrates collected from streams draining the southern Fort Union region of southeastern Montana (eight pages)65
Series C.	Density of benthic macroinvertebrates collected with a Surber Sampler from various stream stations in the study region (thirty-three tables).
Table C35.	Upper Rosebud Creek near Kirby197873
Table C36.	Upper Rosebud Creek near Kirby197974
Table C37.	Middle Rosebud Creek near Colstrip and lower Rosebud Creek near Rosebud
Table C38.	Indian Creek near Kirby76
Table C39.	Davis Creek near Busby77
Table C40.	Muddy Creek near Busby-Lame Deer78
Table C41.	Lame Deer Creek near Lame Deer79
Table C42.	Tongue River near Sheridan-Decker80
Table C43.	Ash and Youngs Creeks near Sheridan-Decker81
Table C44.	Tongue River near Pyramid Butte-Birney1978 (two pages)82
Table C45.	Tongue River near Pyramid Butte-Birney1979 (two pages)84
Table C46.	Squirrel Creek near Decker86
Table C47.	Deer Creek near Decker and Canyon Creek near Decker-Birney87
Table C48.	Prairie Dog and Bull Creeks near Pyramid Butte-Birney88

Page
Table C49. Cook Creek near Birney-Birney Village89
Table C50. Logging Creek near Ashland90
Table C51. Beaver Creek near Brandenberg (near Ashland)91
Table C52. Upper Hanging Woman Creek near Quietus-Decker197892
Table C53. Upper Hanging Woman Creek near Quietus-Decker-197993
Table C54. Lower Hanging Woman Creek near Birney1978 (two pages)94
Table C55. Lower Hanging Woman Creek near Birney1979 (two pages)96
Table C56. East Fork of Hanging Woman Creek near Birney (two pages)98
Table C57. Bear Creek near Otter100
Table C58. Upper Otter Creek near Otter-Fort Howe
Table C59. Cow Creek near Otter-Fort Howe
Table C60. Lower Otter Creek near Ashland (two pages)
Table C61. Pumpkin Creek near Miles City105
Table C62. Mizpah Creek near Mizpah106
Table C63. West Fork of Armells Creek near Colstrip and lower Armells Creek near Forsyth107
Table C64. Sweeney Creek near Rosebud
Table C65. Reservation Creek near Forsyth-Hysham
Table C66. Sarpy Creek near Hysham110
Table C67. Powder River near Moorhead and near Mizpah110
Series D. Numbers of benthic macroinvertebrares collected from duplicate jumbo multiplate samplers placed into different types of stream habitats at selected stations in the study region (seventeen tables).
Table D68. Upper Rosebud Creek near Kirby <u>riffle</u> 111
Table D69. Upper Rosebud Creek near Kirbyriffle to pool112
Table D70. Upper Rosebud Creek near Kirbypool113
Table D71. Tongue River near Pyramid Butte-Birney (two pages)114
Table D72. Squirrel Creek near Decker

	<u>Page</u>
Table D73.	Upper Hanging Woman Creek near Quietus-Decker- <u>riffle</u> 117
Table D74.	Upper Hanging Woman Creek near Quietus-Deckerriffle to pool
Table D75.	Upper Hanging Woman Creek near Quietus-Deckerpool119
Table D76.	Lower Hanging Woman Creek near Birneyriffle120
Table D77.	Lower Hanging Woman Creek near Birneyriffle to pool121
Table D78.	Lower Hanging Woman Creek near Birneypool122
Table D79.	East Fork of Hanging Woman Creek near Birney123
Table D80.	Lower Otter Creek near Ashland <u>riffle</u> 124
Table D81.	Lower Otter Creek near Ashlandriffle to pool125
Table D82.	Lower Otter Creek near Ashland—pool126
Table D83.	Pumpkin Creek near Miles City127
Table D84.	Mizpah Creek near Mizpah128
Series E.	Biomass of benthic macroinvertebrates collected with a Surber sampler from various stream stations in the study region (thirty-three tables).
Table E85.	Upper Rosebud Creek near Kirby1978129
Table E86.	Upper Rosebud Creek near Kirby <u>1979</u> 130
Table E87.	Middle Rosebud Creek near Colstrip and lower Rosebud Creek near Rosebud
Table E88.	Indian Creek near Kirby132
Table E89.	Davis Creek near Busby133
Table E90.	Muddy Creek near Busby-Lame Deer134
Table E91.	Lame Deer Creek near Lame Deer135
Table E92.	Tongue River near Sheridan-Decker136
Table E93.	Ash and Youngs Creeks near Sheridan-Decker137
Table E94.	Tongue River near Pyramid Butte-Birney1978 (two pages)138
Table E95.	Tongue River near Pyramid Butte-Birney1979 (two pages)140
Table E96.	Squirrel Creek near Decker142

	Page Page
Table E97.	Deer Creek near Decker and Canyon Creek near Decker-Birney
Table E98.	Prairie Dog and Bull Creeks near Pyramid Butte-Birney144
Table E99.	Cook Creek near Birney-Birney Village145
Table E100.	Logging Creek near Ashland146
Table E101.	Beaver Creek near Brandenberg (near Ashland)147
Table E102.	Upper Hanging Woman Creek near Quietus-Decker1978148
Table E103.	Upper Hanging Woman Creek near Quietus-Decker1979149
Table E104.	Lower Hanging Woman Creek near Birney1978 (two pages)150
Table E105.	Lower Hanging Woman Creek near Birney1979 (two pages)152
Table E106.	East Fork of Hanging Woman Creek near Birney (two pages).154
Table E107.	Bear Creek near Otter156
Table E108.	Upper Otter Creek near Otter-Fort Howe157
Table E109.	Cow Creek near Otter-Fort Howe158
Table EllO.	Lower Otter Creek near Ashland (two pages)159
Table Elll.	Pumpkin Creek near Miles City161
Table E112.	Mizpah Creek near Mizpah162
Table E113.	West Fork of Armells Creek near Colstrip and lower Armells Creek near Forsyth
Table Ell4.	Sweeney Creek near Rosebud
Table E115.	Reservation Creek near Forsyth-Hysham165
Table Ell6.	Sarpy Creek near Hysham166
Table Ell7.	Powder River near Moorhead and near Mizpah166
Series F.	Biomass of benthic macroinvertebrates collected from duplicate jumbo multiplate samplers placed into differ- ent types of stream habitats at selected stations in the study region (seventeen tables).
Table F118.	Upper Rosebud Creek near Kirbyriffle167
Table F119.	Upper Rosebud Creek near Kirbyriffle to pool168

	<u>Page</u>
Table F120.	Upper Rosebud Creek near Kirby—pool169
Table F121.	Tongue River near Pyramid Butte-Birney (two pages)170
Table F122.	Squirrel Creek near Decker172
Table F123.	Upper Hanging Woman Creek near Quietus-Deckerriffle173
Table F124.	Upper Hanging Woman Creek near Quietus-Deckerriffle to pool
Table F125.	Upper Hanging Woman Creek near Quietus-Decker-pool175
Table F126.	Lower Hanging Woman Creek near Birney— <u>riffle</u> 176
Table F127.	Lower Hanging Woman Creek near Birney— <u>riffle to pool</u> 177
Table F128.	Lower Hanging Woman Creek near Birney—pool178
Table F129.	East Fork of Hanging Woman Creek near Birney179
Table F130.	Lower Otter Creek near Ashland <u>riffle</u> 180
Table F131.	Lower Otter Creek near Ashland- <u>riffle to pool</u> 181
Table F132.	Lower Otter Creek near Ashlandpool182
Table F133.	Pumpkin Creek near Miles City183
Table F134.	Mizpah Creek near Mizpah184
Series G.	Physical data obtained in conjunction with the benthic macroinvertebrate samples (two tables).
Table G135.	Physical measurements taken in association with the Surber benthic macroinvertebrate collections (eight pages)
Table G136.	Physical measurements taken in association with the jumbo multiplate benthic macroinvertebrate collections (four pages)
Table H137.	Taxa list, associated systematics, and major characteristics of algae collected from streams draining the southern Fort Union region in southeastern Montana (eight pages)
Series I.	Periphyton community data and major algal taxa obtained from natural substrates collected from various stream stations in the study region (twenty-eight tables).
Table I138	Upper Rosebud Cree': and unnamed pond near Kirby (three pages)205

	<u>Page</u>
Table I139	Middle Rosebud Creek near Colstrip and lower Rosebud Creek near Rosebud
Table I140	. Indian Creek near Kirby209
Table I141	Davis Creek near Busby and Muddy Creek near Busby- Lame Deer
Table I142	Lame Deer Creek near Lame Deer and Cow Creek near Colstrip
Table I143	Tongue River and Interstate Ditch near Sheridan-Decker212
Table I144	. Ash and Youngs Creeks near Sheridan-Decker213
Table I145	. Tongue River near Pyramid Butte-Birney (three pages)214
Table I146	. Squirrel Creek near Decker (two pages)217
Table I147	Deer Creek near Decker and Canyon Creek near Decker-Birney219
Table I148	Prairie Dog and Bull Creeks near Pyramid Butte-Birney220
Table I149	Crazy Head Springs near Ashland-Lame Deer and Cook Creek near Birney-Birney Village221
Table I150	Logging Creek near Ashland222
Table I151	. Beaver Creek near Brandenberg (near Ashland)223
Table I152	. Upper Hanging Woman Creek near Quietus-Decker (three pages)224
Table I153	. Lower Hanging Woman Creek near Birney (three pages)227
Table I154	Stroud Creek near Quietus-Decker and Lee Creek near Quietus-Birney230
Table I155	East Fork of Hanging Woman Creek near Birney (three pages)
Table I156	Bear Creek near Otter and Cow Creek near Otter-Fort Howe
Table I157	. Upper Otter Creek near Otter-Fort Howe
Table I158	. Lower Otter Creek near Ashland (three pages)236
Table I159	. Pumpkin Creek near Miles City (two pages)239
Table 1160	. Mizpah Creek near Mizpah (two pages)241

	<u>Page</u>
Table I161.	East Fork, West Fork, and main Armells Creek near Colstrip243
Table I162.	Lower Armells Creek near Forsyth244
Table I163.	Sweeney Creek near Rosebud245
Table I164.	Reservation Creek near Forsyth-Hysham246
Table I165.	Sarpy Creek near Hysham and the Powder River near Moorhead247
Series J.	Periphyton community data and major algal taxa obtained from <u>artificial</u> substrates placed into various stream stations in the study region (five tables).
Table J166.	Upper Rosebud Creek near Kirby and the Tongue River near Pyramid Butte-Birney248
Table J167.	Squirrel Creek near Decker249
Table J168.	Upper Hanging Woman Creek near Quietus-Decker and lower Hanging Woman Creek near Birney250
Table J169.	East Fork of Hanging Woman Creek near Birney and lower Otter Creek near Ashland251
Table J170.	Pumpkin Creek near Miles City and Mizpah Creek near Mizpah252
Table Kl71.	Tentative species list of diatoms (Bacillariophyceae) collected from streams draining the southern Fort Union region in southeastern Montana (six pages)
Series L.	Examples of data summaries for a complete standard examination of natural substrate periphyton samples obtained from seven stream sampling sites in the coalfield study area (three tables)
Table L172.	"Major" diatom species (two pages)259
Table L173.	"Sub-major" diatom species (two pages)261
Table L174.	"Minor" diatom species (three pages)263

INTRODUCTION

During the first part of 1978, the Water Quality Bureau of the Montana Department of Health and Environmental Sciences (DHES) received a grant from the United States Geological Survey (USGS) and the Bureau of Land Management to conduct the first year of a proposed two-year biological-benthic inventory of streams draining the southern Fort Union coalfield area in southeastern Montana. This portion of Montana has an abundance of strippable coal deposits, and because of this feature, the southeastern segment of the State is expected to experience some degree of future water quality impacts from projected coal mining activities. The anticipation of these potential difficulties in view of the general paucity of biological information for many of the lotic waters in this region provided the main impetus for developing and undertaking such an inventory effort, and the basic objective of the project was to develop for future reference purposes a relatively extensive hydrobiological data base for the coalfield area that adequately characterizes and describes the benthic biota of its smaller streams.

As a second objective for the project, an attempt was to be made to ascertain the possible effects of salinity on the aquatic biota of the coalfield streams since enhanced salinity levels are forecast to have a relatively high likelihood of causing adverse instream impacts in conjunction with the expanded surface mining operations. In addition, salinity has an added and more general importance because water quality problems of this kind can also arise from other sources besides mining such as irrigation return flows and the development of saline seep locales, and both of the latter two manifestations are known to occur in the Fort Union region.

Upon notification of the receipt of funding for the inventory project, a preliminary field survey was first conducted of the study area preparatory to the establishment of appropriate sampling stations, and biological sampling at these stations was actually initiated in May of 1978 and continued through the fall of that year. Additional monies were subsequently given to the Water Quality Bureau (WQB) to extend the sampling through a second year, and with this extension, field work proceeded to a final termination date in early November of 1979. All of the laboratory analyses of the biological samples collected during the study were then completed in June of 1980 leading to the preparation of the final project reports.

The focus of the coalfield sampling program was directed to the benthic macroinvertebrate associations (aquatic "bugs") that inhabit the bottoms of the streams and to the streams' periphyton communities and their macroalgae components. Two standing waters were also sampled for some of these organisms as miscellaneous collections. The term periphyton refers to an assemblage of microscopic algae (primarily diatoms) and other small organisms that grow attached to submersed surfaces such as rocks and logs, and this community typically forms a brown and slippery covering over such objects. Both the periphyton and the larger benthic macroinvertebrates are important to aquatic systems as food chain elements, and they also serve as valuable indicators of water quality. In addition to the obtainment of these biological samples per se, different kinds of physical measurements, e.g., current velocity and stream depth at the sampling point, were also taken at

the time of the biological sampling, and a large data pool of this type is now available for the southern Fort Union streams. Such physical applications along with the collection of numerous water quality samples were initiated in order to supplement the study's biotic data for interpretive purposes.

The end result of this inventory work was the eventual collection and analysis of 321 water quality, 288 periphyton-macroalgae, and 269 macroinvertebrate samples. The main intent of this particular presentation, therefore, is to compile a data report that lists in tabular fashion all of the water quality, macroinvertebrate, periphyton communitymacroalgae, and physical information that has been collected during the past few years as a part of this project. These data are included in the appendix of this publication. Furthermore, summaries of the sampling program and the methodologies that were used are also included to set the stage for assessing the biological data. Two companion reports to this writing will also be available, one dealing with the benthic macroinvertebrate associations and the other with the periphyton communities, and each of these reports will more specifically detail the results that were obtained from the macroinvertebrate and periphytic components of the overall study. Earlier writings associated with the project include the two research proposals that were developed prior to the receipt of each year's funding (USGS Grant Number 14-08-0001-6-503) and an interim report that was prepared in the late spring of 1979 (Klarich, 1977, 1978, and 1979).

DESCRIPTION OF THE STUDY AREA

A major portion of the project study area consists of that part of the Fort Union region that is found in southeastern Montana south of the Yellowstone River and between the Bighorn River and the O'Fallon Creek-Little Missouri River drainages. As indicated in Figure 1, a minor deviation to this general description is the small southwestern "hump" that is located in Wyoming along the Tongue River, although all of the study region is within the Yellowstone Basin. With the exclusion of this Wyoming "hump," the Montana-Wyoming state line represents the southern boundary of the study area while the Yellowstone River delineates its northern limit. Several sampling stations were established on small streams such as Sarpy Creek that drain directly to the Yellowstone, and four sampling locations on the Tongue and its tributaries were collected in the small Wyoming segment. In addition, three sites were sampled in the Powder River drainage so that the eastern divide of this river system defines the eastern boundary of the study region; the western Sarpy Creek divide, the southwestern Rosebud Creek divide, and the extreme southwestern Tongue River divide, in turn, denote its most western extension. However, the bulk of the sampling actually took place on streams within Montana's Rosebud Creek and Tongue River drainages, and these systems thereby represent the central core of the project region.

Figure 1 presents a map of the study area that shows the general locations of the many biotic sampling stations. These stations will be considered in more detail in the next section of this report, and this will include a referencing of the site numbers that are contained on the map.

Figure 1. Map of the southern Fort Union study area in Montana and a small part of Wyoming showing the locations of the various sampling stations.

SUMMARY OF THE SAMPLING PROGRAM

SAMPLING STATIONS

As illustrated in Figure 1, 43 stations on 34 rivers and creeks of varying sizes and two standing waters were sampled during the course of the project in five minor drainage basins as defined by the USGS (1968). Most of the rivers and creeks had only one sampling site, although five of the streams were sampled at two distinct stations while one of the creeks was collected at three separate sites. Many of these streams were either typically perennial in nature showing a distinct discharge on each of the project trips, (e.g., Otter and Hanging Woman Creeks), or they have a relatively extensive drainage system (e.g., Pumpkin and Mizpah Creeks), and such features formed one of the major criteria for choosing each of the selected sites. To a large degree, therefore, attention was directed primarily to the smaller perennial waters of the study area, but a few of the intermittent and "water-gap" creeks and a few of the larger streams were also collected. The term "water-gap" in this report refers to streams that are continuously flowing or intermittent but only through short sections of their total length; that is, ephemeral reaches can be found between the flowing segments.

The smaller creeks in the study area were stressed in this project because very little in the way of biological data are on hand for this type of water in the Fort Union region. In contrast, some information of this kind is now available for the larger lotic systems of the region because of the completion of earlier biotic studies, e.g., Rosebud Creek (Baril, et al, 1978) and the Tongue River (Newell, 1977). Nevertheless, these larger waters were still sampled to some extent during this more recent investigation as a means of providing a direct basis of data comparison for the smaller aquatic systems in relation to the biology of first order streams of the area.

Another major criteria for station selection in the study area was the ease of access to a potential sampling site and its availability on the major travel routes, and the negative nature of these factors accounts for the lower frequency of sampling at some of the stations. Also, an attempt was made to sample different specific stream locations on each visit to a station in order to avoid a biasing of the more recent collections. To accommodate such a sampling need, each of the stations was defined as containing a considerable expanse of stream both above and below the direct access point, and the utilization of this definition provided the opportunity to meet this particular field requirement throughout the study period. In some instances, the different sampling locations at a station were far enough apart to be found in separate quarter-sections and/or sections, or even in separate townships and/or ranges, and this feature will be illustrated later in this report.

Two classes of sampling sites were ultimately developed for the coal-field aquatic inventory. These were termed the "intensive" and the "accessory" stations, and the latter category might be further split into another subclass that has been labelled the "miscellaneous" stations of the study. The main objective of sampling at the intensive sites was to provide for in-depth, replicated, and seasonal biological data for a select set of

representative stream stations, while the point of the accessory sites was to provide for a broad overview of the biological characteristics of a wide variety of waters in the southern Fort Union region. As a result, the intensive stations were sampled much more frequently and for a wider spectrum of biological applications than the accessory sites, although a much larger assortment of accessory sites than intensive sites was collected during the project. For the most part, the intensive stations were established on the more important smaller creeks of the study area with these streams having perennial, relatively high flow, and/or comparatively large drainage area characteristics. However, two intensive stations were also located on two of the region's largest streams in order to afford the basis of data comparison for the smaller waters that was noted earlier. In the case of the accessory sites, a wide range of both small and large streams was sampled in order to gain the broad biological overview that was required for this phase of the inventory.

In contrast to the intensive and accessory stations, the miscellaneous stations were sampled only on a few occasions and only for an incomplete set of biological data relative to what was collected at the normal accessory sites. These miscellaneous stations generally represent the "curiosity collections" that were added to the main sampling program after the inventory got underway. But nevertheless, the data from these stations will also contribute to any complete biological descriptions of the study area waters.

The nine intensive, the 24 accessory, and the ten miscellaneous stations that were established in the study area are listed in Table 1. In addition, the township (T), range (R), section (two-digit number), and quarter-section (letter) geographic descriptions for the main sampling location of each station are also included along with a few other pertinent items. The geographic designations for a site in Table 1 correspond to a general length of stream that was sampled most frequently during the project. However, it should again be mentioned that different specific stream locations within this reach were collected on each visit to a station, although these specific locations were not appropriately spaced in this case to require different geographic descriptions. The more widely-spaced alternate locations that did warrant separate designations are noted in the water quality tables of the Appendix (Tables AO) to A33), and the relationships between a particular biotic-water quality collection at a station and the corresponding geographic description are also indicated in these same summaries.

A few other features with reference to Table 1 should also be noted. First, the "stream type" listings in the table were based only on the field observations that were made during the many trips through the study area and not on any extra-study information. Second, the "basin code" specifications were taken from a USGS (1968) drainage basin map. Third, each of the 43 station numbers presented in Figure 1 are referenced in this table to a particular stream site, and as a fourth item, the intensive, accessory, and miscellaneous classifications of the different stations are also included in this summary.

List of intensive (I), accessary (A), and miscellaneous (M) stations established in the southern Fort Union study region along with their associated geographic descriptions and other pertinent items (the first page of two pages). Table 1.

Tributary to:	Yellowstone River	1	Yellowstone River	Yellowstone River	Rosebud Creek	Rosebud Creek	Rosebud Creek	Rosebud Creek	Rosebud Creek	Yellowstone River		Tongue River	Tongue River	Tongue River		Yellowstone River	Tongue River	Tongue River Reservoir	Tongue River		Tongue River		Tongue River		-		Tongue River
Drainage Basin	Upper Rosebud	Upper Rosebud	Middle Rosebud	Lower Rosebud	Upper Rosebud	Upper Rosebud	Middle Rosebud	Middle Rosebud	Middle Rosebud	Upper Tongue		Upper Tongue	Upper Tongue	Upper Tongue		Upper Tongue	Upper Tongue	Upper Tongue	Upper Tongue		Upper Tongue		Upper Tongue		Upper Tongue		Middle Tongue
Basin	42A	42A	42A	42A	42A	42A	42A	42A	42A	42B		42B	42B	42B		42B	42B	42B	42B		42B		42B		42B		42C
Stream	mlp	SW	1p	1p	mlp	si	sp	sp	si	шjр		а	sp	sp		mjp	sb	si	sp		si-wg		ds		SW		Wİ
Main Sampling Location	TO6S, R39E, 20C	T05S, R38E, 36A	TO1N, R43E, 19A	TO6N, R42E, 16D	TO6S, R39E, 31D	T04S, R38E, 11D	TO2S, R40E, 35C	T03S, R41E, 10A	TO1N, R43E, 06D	T57N, R84W, 01C#		T57N, R84W, 01B#	T57N, R84W, 01B#	T58N, R83W, 30B#		T06S, R42E, 31D	T09S, R40E, 29C	T09S,R41E,10C	TO7S, R41E, 11C		T06S, R42E, 31D		T06S,R42E,19A		T02S, R42E, 35C		TO5S,R42E,25B
Station Number-Stream and Station Type	Upper Rosebud Creek near Kirby07-I	Unnamed Pond (Slough) near Kirby38-M	Middle Rosebud Creek near Colstrip35-A	Lower Rosebud Creek near Rosebud36-A	Indian Creek near Kirby24-A	Davis Creek near Busby21-A	Muddy Creek near Busby-Lame Deer29-A	Lame Deer Creek near Lame Deer26-A	Cow Creek near Colstrip18-M	Tongue River near Sheridan-Decker41-A	Interstate Ditch near	Sheridan-Decker25-M	Ash Creek near Sheridan-Decker12-A	Youngs Creek near Sheridan-Decker43-A	Tongue River near	Pyramid Butte-Birney09-I	Squirrel Creek near Decker08-I	Deer Creek near Decker22-A	Canyon Creek near Decker-Birney16-A	Prairie Dog Creek near	Pyramid Butte-Birney31-A	Bull Creek near	Pyramid Butte-Birney15-A	Crazy Head Springs (pond) near	Ashland-Lame Deer20-M	Cook Creek near	Birney-Birney Village17-A

the drainage area; sp--small perennial; mjp--major perennial; a--irrigation canal; wg--"water gap." #Wyoming *mlp--Moderately-large perennial; sw--standing water; lp--large perennial; si--small intermiitent based on designations.

Table 1. Continued (the second page of two pages).

Tributary	to:	Tongue River		Tongue River			Hanging Woman Creek	Hanging Woman Creek		Hanging Woman Creek	Otter Creek		Tongue River	Otter Creek	Tongue River	Tongue River	Powder River		Armells Creek		Armells Creek	Yellowstone River	Yellowstone River	Yellowstone River				Yellowstone River	Yellowstone River	
	Drainage Basin	Middle Tongue Middle Tongue		Upper Tongue		Upper Tongue	Upper Tongue	Upper Tongue		Upper Tongue	Middle Tongue		Middle Tongue	Middle Tongue	Middle Tongue	Lower Tongue	Lower Powder		Middle Yellowstone		Middle Yellowstone	Middle Yellowstone	Middle Yellowstone	Middle Yellowstone		Middle Yellowstone	Middle Yellowstone	Upper Powder	Lower Powder	
Basin	Code	42C) -	42B		42B	42B	42B		42B	42C		42C	42C	42C	42C	423		42KJ		42KJ	42KJ	42KJ	42KJ		42KJ	42KJ	427	423	
Stream	Type*	S1 SD?	• 1.,	sb		Sp	si	si-wg		sp-wg	sp		sp	sp	ds	11	Ιί		si		si	si	ds	ds		sp	sb	mjp	mĵp	
Main Sampling	Location	TO3S, R44E, 20C		T08S, R43E, 16C		TO6S, R43E, 19D	T08S, R43E, 02A	TO7S, R44E, 20D		T06S, R43E, 20D	TO7S,R45E,27A		TO7S,R45E,13D	TO6S,R45E,17D	T03S,R44E,12C	TO6N, R48E, 35C	TO6N, R51E, 24C		T03N, R41E, 28C		T04N,R40E,32B	T04N, R40E, 16B	TO6N, R39E, 26B	TO6N, R43E, 22A		TO6N, R38E, 26B	TO6N, R37E, 20A	T09S, R48E, 08C	T06N, R52E, 30D	
Station Number-	Stream and Station Type	Logging Creek near Ashland28-A	Upper Hanging Woman Creek near	Quietus-Decker03-I	Lower Hanging Woman Creek near	Birney02-I	Stroud Creek near Quietus-Decker39-M	Lee Creek near Quietus-Birney27-M	East Fork of Hanging Woman Creek	near Birney01-I	Bear Creek near Otter13-A	Upper Otter Creek near	Otter-Fort Howe30-A	Cow Creek near Otter-Fort Howe19-A	Lower Otter Creek near Ashland05-I	Pumpkin Creek near Miles City06-I	Mizpah Creek near Mizpah04-I	East Fork of Armells Creek near	Colstrip23-M	West Fork of Armells Creek near	Colstrip42-A	Main Armells Creek near Colstrip10-M	Lower Armells Creek near Forsyth11-A	Sweeney Creek near Rosebud40-A	Reservation Creek near	Forsyth-Hysham34-A	Sarpy Creek near Hysham37-A	Powder River near Moorhead33-M	Powder River near Mizpah32-M	

wg--"water-gap"; li--large intermittent based on the drainage area; mjp--major perennial; (b)--near Ashland. *si--Small intermittent based on the drainage area; sp--small perennial; ?--intermittent near the mouth;

As a final comment, the Pumpkin and Mizpah Creek locations were classified as intensive stations during the first field season but sampled as accessory sites during the second year while the reverse was true for the Squirrel and East Fork Hanging Woman Creek sites. This change was initiated in light of the station definitions and criteria because of the intermittent nature and poor access of Pumpkin and Mizpah Creeks in contrast to the perenniality and easy access of the other two streams. That is, both Pumpkin and Mizpah Creeks were far removed from the central core of the study area. Furthermore, both Squirrel Creek and the East Fork of Hanging Woman Creek appeared to have a greater potential for being more immediately affected by future coal development than the two more northern streams, and extra biological data from the two perennial waters, thereby, seemed to better coincide with the main theme of the project.

SAMPLING FREQUENCY AND OTHER ASPECTS

One of the main differences between the intensive and the normal accessory stations of project was related to the frequency of collection at the two classes of sites where macroinvertebrate and periphyton sampling was much more intense at the first type of station. An attempt was made to collect the intensive stations for the macroinvertebrates on a monthly basis through a mid-spring to mid-fall period during each of the two field seasons so that data might be available for each of the months within this span with some duplicate monthly data also on hand for the nine intensive sites. Furthermore single winter collections were also taken from a select set of intensive locations. As a result, six to eight macroinvertebrate samples were obtained for analyses from each of these stations for each year of the study. Periphyton-macroalgae sampling at these intensive stations was also organized on a largely monthly basis, and between 13 and 20 samples of this kind were obtained from each of the intensive stations of the entire study period. Fewer macroinvertebrate and periphyton samples were obtained from the Pumpkin, Mizpah, Squirrel, and East Fork Hanging Woman Creek locations than from the other intensive sites because of the mid-project change in the intensiveaccessory status of these four streams.

In contrast to the intensive stations, only one to three macroinvertebrate samples were typically collected from the accessory sites during any of the two field seasons. This then totals between one and seven collections of this kind for each of the secondary sites through the entire inventory rather than the 14 to 19 samples obtained from the major stations. In addition, only between two and eight periphyton-macroalgae samples were typically obtained from the accessory stream locations during the two-year period. Since a few of the accessory stations were only sampled during the second year of the study and not during the first field season, this factor further accounts for the lower sample numbers that were obtained in these particular cases. Similar to the intensive sites, an attempt was made to collect samples from each of the accessory stations during a different month, or at least during a different season of the year, in order to afford some level of seasonal data for these streams also. However, this requirement could not always be fulfilled because of scheduling conflicts with the more important field trips to the intensive sites.

As a subclass of the accessory station category, the ten miscellaneous stations of the project area were also collected on a low frequency basis, but these particular stations differ from the normal accessory sites in being typically sampled only for the periphytic component of the benthic biota and not for the macroinvertebrates. However, two miscellaneous collections for the benthic fauna were taken from the Powder River. Such miscellaneous sampling generally involved only one visit to a site, although a few extra periphyton samples were collected from two of these minor stations.

A major proportion of the inventory's macroinvertebrate samples were collected from the natural substrates of the study area streams through the use of Surber sampler methodologies, and this application was made at both the intensive and the accessory stations. In turn, the bulk of the periphyton community and macroalgae samples were also obtained from these natural substrates by scraping submerged rocks and other objects. As an alternative, some of the macroalgae were collected by simply "picking" the required specimens from the stream. These two sampling approaches for the algae were also utilized at both classes of stations. As a further manipulation, the use of artificial substrates were employed at some of the sites as a means of collecting additional macroinvertebrate (jumbo multiplate or Hester-Dendy samplers) and periphyton (plexiglass plates) samples. However, these artificial applications were restricted to the intensive stations and were not used at the accessory sites, and this feature then represents another major difference between the two classes of project sampling locations. Because of the use of artificial substrates at the intensive sites, a broader range of biological data is available for these major streams over the data that are on hand for the region's accessory waters. The data obtained from the artificial substrates afford a somewhat different interpretive tool to the study relative to what would have been available if the natural substrates were sampled alone.

Table 2 summarizes the numbers and types of biological samples that were collected during the two years of this recent inventory project. As indicated in the table, numerous sets of physical measurements (stream current velocity, depth, and width along with stream flow estimates and a substrate classification) and a number of water quality samples were also obtained from the coalfield area streams to supplement the biological information. That is, quality and physical data were obtained to help define the habitat characteristics of the related biotic collections and to provide the potential for evaluating the different environmental factors such as salinity that might have a significant effect on these benthic organisms. Since the USGS has a rather extensive water quality monitoring program in the southern Fort Union region (USGS, 1979a), the sampling program of this inventory was initially developed to take advantage of this feature, and many of the project's biological stations, and particularly its intensive sites, were placed in close proximity to the USGS monitoring locations (Table 3) so that this agency's water quality data would also be applicable to this inventory. The location of the project sampling sites in this fashion formed another major criteria for station siting within the study area.

samples taken from the different study area streams (the first page of two pages). The symbols Numbers and types of biological samples and numbers of physical measurements and water quality of the column headings are defined on the following page. Table 2.

	\r. m.1	00	_	_		_	_	_			_	_	_				_														
	Ι.					0																					_			40	>
eriphyton		1(П	.,	7	6	7	v	υ,		7		7	7	-	12	7	7	(')			_	7	цĵ	_	14	19	m		15	7
	Al	-	0	0	0	П	0	0	0	0	0	0	0	0	Н	П	0	0	0	0		0	0	0	0	Н	Н	0	0		>
	101	2	0	0	0	Н	0	0	0	0	0	0	0	0	3	Н	0	0	0	0		0	0	0	0	7	m	0	0	7 0	>
Д	a M	-	0	4	3	7	3	2	4	0	m	0	n	n	0	0	n	n	2	Н		0	7	4	9	-	7	7	0	0 -	4
	A	6	_	_	Τ	0	Н	Π	П	-	1	Н	Н	Н	11	10	Н	-	1	Н		-	2		Н	10	13	-	-	12	4
<u></u>	Sub.	14	0			9											n	က	7	7		0	m	ന	2	14	16	0	0	11	7
Physical	Art.	15	0	0	0	0	0	0	0	0	0	0	0	0	14	6	0	0	0	0		0	0	0	0	15	19	0	0	o c	>
bid	Sur.	14	0	4	Η	9	4	4	4	0	4	0	m	2	13	6	m	က	т	2		0	4	4	9	14	18	0	0	11)
	F-	12	0	0	0	0	0	0	0	0	0	0	0	0	∞	9	0	0	0	0		0	0	0	0	11	12	0	0	ہ د	>
ertebrates Art.	S	9	0	0	0	0	0	0	0	0	0	0	0	0	5	9	0	0	0	0		0	0	0	0	9	9	0	0	9 0	5
	1																					0	0	0	0	2	9	0	0	0 0	>
erte	UA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0										0 0	
Macroinv																						0	സ	സ	2	14	16	0	0	11)
	S	9	0	Н	\vdash	3	Н	7	2	0	7	0	7	7	9	7	-	3	7	7		0	-	-	7	9	6	0	0	ر م	1
	[zz																					0	7	7	n	_∞	7	0	0	4 C	>
	MO	22	0	9	2	6	4	9	9	Н	∞	\vdash	2	9	22	15	2	9	2	m		-	4	2	9	22	26	m		19	†
	Stream and Station	•	Unnamed Pond (Slough) near Kirby	•	Lower Rosebud Creek near Rosebud	Indian Creek near Kirby	Davis Creek near Busby	•	•	Cow Creek near Colstrip	Tongue River near Sheridan-Decker	•	Ash Creek near Sheridan-Decker	•	•	•	•	Canyon Creek near Decker-Birney	Prairie Dog Creek near Pyramid Butte-Birney	•	Crazy Head Springs (pond) near	Ashland-Lame Deer	Cook Creek near Birney-Birney Village	Logging Creek near Ashland	Beaver Creek near Brandenberg	Upper Hanging Woman Creek near Quietus-Decker	Lower Hanging Woman Creek near Birney	Stroud Creek near Quietus-Decker	Lee Creek near Quietus-Birney		Bear creek near Orrer

Continued (the second page of two pages) 2 Table

		Σ	acro	lnve	rte	ora	es										
			Surber	er		Α	ct.		Ph	ysica	11	1	Pe	Periphy	+-	nc	
Stream and Station	MQ		S	T C		[±4]	S		Sur.	c. Art. S	dr.	۷	<u>م</u> ا	O		I	四
Upper Otter Creek near Otter-Fort Howe	∞					10			7	0	7	Н			0	9	0
•	3					0	0		3	0	7	Н			0	3	0
•	23					2			16	15	15	10			Н	15	2
•	12								_∞	2	∞	7			Н	9	4
•	11					2	0		∞	11	∞	7			Н	0	4
trip	m					0	0		0	0	0	Н			0	3	0
trip	4					0			m	0	7	7			0	4	0
	2					0	_		0	0	0	0			0	Н	0
	9					0	_		n	0	33	Н			0	2	0
•	7	2	2	4	0	0	0	0	4	0	4	Н		0	0	9	0
.mm	7					0	0		2	0	2	7			0	7	0
•	7					0	_		2	0	4	\vdash			0	9	0
•	П					0	0		П	0					0	Н	0
•	Н					0	_		Н	0	Н	0			0	0	0
•	321 8			1 .		7			203	112	91	123			10	250	38

Physical--Sets of physical measurements (stream width, depth, and current velocity plus estimated flow) taken WQ--Water quality samples. Surber--Macroinvertebrate samples collected from natural substrates with a Surber sampler: F--first field season, S--second field season, T--total, and UA--unanalyzed samples; Art.--macroinin association with the Surber (Sur.) natural substrate and the artificial (Art.) substrate macroinvertebrate collections; Sub.--natural substrate evaluations made in conjunction with the Surber samples. Hester-Dendy samplers) vertebrate samples collected from artificial substrates (jumbo multiplate,

Periphyton--The following classes of algae samples were collected from the streams:

A. Standard collections from natural substrates and standard analyses involving counts of the diatom species (generally between 300 and 400 frustules).

Standard collections from natural substrates but the samples analyzed for the non-diatom algae only (diatom species not counted).

Collections for the non-diatom algae only.

a "long-count" approach (more Collections from natural substrates with the diatom species evaluated by than 8,000 frustules). U L

Total of the natural substrate algae collections.

Same as "A" but with algae samples obtained from artificial substrates (plexiglass plates). 티피

Table 3. List of United States Geological Survey surface water monitoring stations maintained in the southern Fort Union project region during the period of study.

	Station	Water	Water
Station Name	Number	Quality	Discharge
*Sarpy Creek near Hysham	06294940	X	X
*East Fork Armells Creek near Colstrip	06294980	X	
*Armells Creek near Forsyth	06294995	X	X
Yellowstone River at Forsyth	06295000	X	X
*Rosebud Creek near Kirby	06295110	X	
*Rosebud Creek near Colstrip	06295250	X	X
Snider Creek near Brandenberg	06295420	X	
*Rosebud Creek at mouth near Rosebud	06296003	X	X
Yellowstone River near Miles City	06296120	X	
*Squirrel Creek near Decker	06306100	X	X
Spring Creek near Decker	06306900	X	
*Tongue River at Monarch, Wyoming	06299980	X	
Tongue River at State line, near Decker	06306300		X
Tongue River Reservoir near Decker	06307000		
*Tongue River at Tongue River Dam, near Decker	06307500	X	X
*Prairie Dog Creek above Jack Creek,			
near Birney	06307525	X	
*Prairie Dog Creek near Birney		X	
East Fork Trail Creek near Otter		X	X
*Hanging Woman Creek below Horse Creek,			
near Birney	06307570	X	
*Hanging Woman Creek near Birney	06307600	X	X
*Tongue River below Hanging Woman Creek,			
near Birney	06307610	X	
*Otter Creek near Otter			
*Otter Creek below Fifteenmile Creek,			
near Otter	06307717	X	
Home Creek near Ashland	06307735	X	
*Otter Creek at Ashland	06307740	X	X
Tongue River below Brandenberg Bridge,			
near Ashland	06307830	X	X
Pumpkin Creek near Loesch	06308160	X	
*Pumpkin Creek near Miles City	06308400	X	X
Tongue River at Miles City	06308500	X	X
Yellowstone River at Miles City	06309000		X
*Powder River at Moorhead	06324500	X	X
Powder River at Broadus	06324710		X
Mizpah Creek at Olive		X	
*Mizpah Creek near Mizpah	06326300	X	X
*Powder River near Locate		X	X

^{*}An asterisk denotes a United States Geological Survey station that generally corresponds to a biological site established for this inventory.

The water quality sampling that was completed as a part of this inventory effort was largely designed to accommodate the USGS collections of this kind in the region. Only a few samples for the common ion and metals analyses were thereby collected from those project stations in close vicinity of a USGS site in anticipation of the availability of this type of data from this agency (USGS, 1979b). However, samples for these analyses were regularly collected from the project streams that were not included in the USGS program. Also, samples for a nitrogen and phosphorous nutrient assessment were routinely collected from all of the biological stations regardless of USGS activities in this regard in order to increase the data base of these biologically important parameters. Collections for the field parameters, i.e., for pH, specific conductance, turbidity, and suspended sediment, were also obtained on almost all of the site visitations along with a temperature evaluation, and dissolved oxygen was collected on most of the sampling trips. In addition, biochemical oxygen demand (BOD), total coliforms, and silica were monitored on a few occasions in this study to further describe the quality characteristics of the study area streams.

SUMMARY OF THE METHODOLOGIES

WATER QUALITY

Many of the 33 water quality parameters that were assessed during the inventory, including the common ions, the nitrogen and phosphorous nutrients, and the metals, were analyzed by the Chemistry Laboratory Bureau of the DHES in Helena, Montana. However, all of the field parameters (temperature, pH, specific conductance, turbidity, suspended sediment, dissolved oxygen, BOD, and total coliforms) were evaluated either in the field or in the WQB's branch office laboratory in Billings, Montana, and some of the common ion and other analyses were also completed at this same facility. Water samples for most of the quality assessments were obtained from the study area waters in plastic, liter bottles and appropriately preserved on site for transport to the laboratory and for temporary storage under refrigerated conditions following Environmental Protection Agency (1979) guidelines. Furthermore, the holding-time or pre-analysis storage requirements specified by this agency were also observed throughout the project.

Standard coliform bottles were utilized for the bacteriological collections, and total coliforms were run in this project instead of the more common fecal evaluations because of the less stringent holdingtime for the total variety. Collections for the dissolved oxygen (DO) determinations were made in regular BOD bottles as were the actual BOD samples, and the DO's were fixed in the field for transport following procedures described by Karp and Klarich (1978). The final titrimetric step for the latter parameter was performed in the branch office laboratory. Temperature readings were made at the stream stations using a calibrated mercury thermometer, and suspended sediment was assessed from the same grab sample that was collected for some of the other field parameter analyses. The metals evaluated during the inventory are of the total recoverable variety with acificiation performed in the field without the application of a filtration step. The analyses were then completed at the Helena laboratory without any further extraction procedures.

Table 4 presents a summary of the various methods that were used in the Billings and Helena laboratories for the analyses of the different water quality parameters.

MACROINVERTEBRATES--FIELD APPLICATIONS

Natural Substrates. A square-foot Surber stream-bottom sampler following the design presented in Slack, et al (1973) was utilized to collect a major portion of the benthic macroinvertebrate samples of the inventory (Table 2). The proper application of this sampling technique requires the presence of a fairly distinct current to sweep the aquatic organisms into the Surber net, and because of this requirement, the riffles and channels of the study area streams, by having the requisite water velocities, were stressed in this phase of the project over the more ponded stream segments. However, an ideal sampling spot of this kind could not be found at a few of the sampling locations, and in these cases, a less than ideal location had to be sampled with no other options available.

Following the selection of an appropriate sampling location at a station and the placement of the Surber into the stream, about the top six inches of the bottom material bounded by the square-foot sampling perimeter was removed after gentle agitation and placed into the net portion of the sampler; any benthic macroinvertebrates that were dislodged by this initial collection effort were then captured by the Surber net. The Surber apparatus with its collected substrates and netted organisms was subsequently moved to the shore, and the substrates were placed into a #30 mesh sieve positioned over a board base for a removal of the remaining ortanisms that were still attached to the bottom materials. The net and sieve were also cleaned before concluding the on-site work, and the collected macroinvertebrates were gradually transferred to a sample container through the entire picking process for eventual preservation. In addition, the smaller substrate materials that could not be easily surveyed in the field, such as the detritus, the macroalgae, and the finer rock particles, were also added to this same container for later picking under laboratory conditions.

After the field cleaning of the collection, the larger substrates were discarded, and the organisms and other materials contained in the sample bottle were preserved with ethanol for transport and storage until further analytical work could be directed to the collection. A small amount of rose bengal dye was added to the alcohol before its use in order to impart a color to the organisms so that they would be easier to recognize in the sample amongst the debris during the final cleaning activities undertaken in the laboratory. Through the use of this sampling approach, it is felt that fairly large percentages of the benthic macroinvertebrates that had occupied the square-foot by six inch deep layer of stream substrate were actually collected as a descrete quantitative sample that could be used for further evaluations. Those organisms slipping through the net might be defined as microinvertebrates, and as such, they could be beyond the scope of this investigation.

Methods of water quality analysis commonly utilized by the Water Quality Bureau (B) and the Chemistry Laboratory Bureau (H) of the Montana Department of Health and Environmental Sciences (the first page of two pages). Table 4.

Parameter-Symbol	Method and Laboratory Reference*
Total HardnessTH	EDTA titrationH and BSM
CalciumCa	EDTA titrationH and BSM
MagnesiumMg	EDTA titration, by TH and Ca differenceH and BSM
	Flame emissionHSM
•	. Specific ion electrode $B(a)$ orion
•	Acid titrationH and BSM
•	Acid titrationH and BSM
	Acid titrationH and BSM
•	
•	.Thorin titrationH
	Barium chloride turbidimetricBSM
•	Alazarin complexoneHEPA
	Specific electrodeB(a)orion
•	Calculated, sum of constituentsH
Specific ConductanceSC	Wheatstone bridge (conductivity meter)B(b)SM
•	
•	Potentiometric (pH meter)H and B(a)SM
	Nephelometric (turbidity meter) $B(c)$ SM
ISS	Suspended SedimentTSSFiberglass filtration, gravimetricB(d)SM
Dissolved OxygenD0	Modified WinklerBEPA and SM
Biochemical Oxygen DemandBOD	emandBODFive-day sample incubation, DO analysisBSM
Total ColiformsTC	Total ColiformsTC

*References are detailed on the following page.

(a)Orion Specific Ion Meter, Model 407A; (b)Lab-Line Lectro Mho-Meter, Model MC-1, Mark IV; (c)Hach Turbidimeter, Model 2100A; (d)Mettler Balance, Model H31.

Table 4. Continued (the second page of two pages).

Method and Laboratory Reference*	Single reagentH(e)EPA		Colorimetric phenateH(e)EPA	-TINCalculated, sum of NO _x -N plus NH3-NB	TKjNDigestion, distillation, phenateHEPA	Atomic absorption-HSM	PhenanthrolineBSM	Atomic absorptionHSM	MolybdosilicateH and B SM						
Parameter-Symbol	-P)	NONON	•	enTIN	nTKjN	Iron-FeA		•	•	•	CadmiumCdA	•	LeadPbA	MercuryHgA	

(e)Auto-analyzer.

*SM--APHA, AWWA, and WPCF. 1975. Standard Methods for the Examination of Water and Wastewater.

*Orion--Orion Research. 1978. Analytical Methods Guide.

*USGS--Brown, E. et al. 1970. Methods for Collection and Analysis of Water Samples for Dissolved Minerals and Gases.

*EPA--Environmental Protection Agency. 1979. Methods for Chemical Analysis of Water and Wastes.

*Millipore--Millipore Corporation. 1972. Biological Analysis of Water and Wastewater.

In terms of sampling replications for the Surber collections, the following general guideline was used for this inventory: For the relatively rich sites showing a larger number or high density of benthic macroinvertebrates, only one sample was typically collected on each of the site visits; for the less rich sites showing a comparatively small number or low density of these organisms, duplicate or triplicate samples were commonly taken from these locations and composited into a single container. For many of the creeks, the application of one Surber actually covered a fairly large proportion of the width of the stream. However, duplicate and triplicate samples were collected on occasion from all types of streams in the study area, and on some of the station visits, the subsamples were added to different sample bottles to afford the option for a separate laboratory analysis and the option for an eventual comparison of the two sets of data as illustrated in the interim report (Klarich, 1979). But for the final tabulation of the macroinvertebrate taxa numbers that were collected from any station and date, the data from the two subsamples were appropriately averaged in all instances, and this is the case for the tables in this data report.

Artificial Substrates. As noted, artificial substrates were used in conjunction with the Surber collections at each of the nine intensive stations in the study region. The use of the artificial substrates provided some flexibility to the sampling program since this methodology is not restricted by the lack of a stream current as is the case for the Surber technique. As a result, with the use of these substrates, some attention could also be directed to the macroinvertebrates that inhabit the pools of the streams as well as their flowing segments, and this aspect eventually became the main point of the artificial substrate application in the project. The data obtained from this sampling approach also acts to supplement the information that was obtained directly from the streams' natural bottom material in the riffle and channel reaches.

Jumbo multiplate (Hester-Dendy) were used as the artificial substrates in this inventory, and they were generally similar to the illustration for this type of apparatus presented in Slack, et al (1973). The jumbo multiplate variety consists of a stack of thirteen, three inch by three inch masonite plates 1/8 inch in depth that are separated by varying distances from each other through the placement of a different number of one inch by one inch, 1/8 inch deep spacers of the same material in between the main squares. The whole assembly is held together by an eight inch eyebolt placed through the center of the stack. If the eye of the bolt is visualized as the top of the sampler, the 13 plates were spaced from the top to the bottom as follows: 1/8 inch (one spacer) between the first eight plates, 1/4 inch (two spacers) between the last plate of the first set and the following plate, and 3/8 inch (three spacers) between the last five plates. The larger number of main plates and their variable spacing represents the main difference between the type of Hester-Dendy sampler described by Slack, et al, and the jumbo sampler of this kind that was used in this study.

The jumbo multiplate samplers were placed in duplicate into three different and defined stream locations, and they were held in place by a wire attached from the eyebolt of the assembly and to an instream or onshore anchor. The three types of stream locations that were examined

with these artificial substrates were chosen to reflect different aquatic habitats at a fairly general level, and these thereby involved (1) a relatively shallow riffle section having a fairly rapid current that was located in close proximity to the main Surber work, (2) a much deeper and ponded segment of the stream having a very slow current, and (3) a transition or riffle to pool, ecotonal type of reach having intermediate depth and current velocity characteristics relative to the other two locations. But regardless of these different habitat requirements, all of the samplers of a station set could be positioned in close vicinity of one another at all of the sites.

Two exposure periods and two subsequent collections of the multiplate samplers from each of the three stream locations were anticipated for five of the intensive sites during each of the two field seasons; this would equal a maximum of twelve macroinvertebrate samples of this kind in total from these particular stations. Because of the change in site classification, Mizpah and Pumpkin Creeks were sampled with artificial substrates only during the first year of the inventory, while Squirrel and East Fork Hanging Woman Creeks were sampled in this way only during the second year; therefore, a maximum of six samples could be obtained from each of these four streams. However, an in situ loss of some of the samples for various reasons such as washouts, beachings, and cattle trampling, lowered the number that could be recovered from some of the sites, and a 10% sample loss was recorded for the study.

The artificial substrates were first introduced into the streams during an early to mid-summer period of each inventory year. The samplers were then collected for the first time and reintroduced for a second exposure during the late summer or early fall, and they were collected for a final time and removed from the field to terminate a sampling cycle during the mid-fall season of the same year. One month or greater exposure periods before collection were planned for all of the samplers, but this requirement was not always possible to achieve because of the need for reintroducing those units that were found in a disturbed condition. However, 86% of the samplers were exposed for greater than one month, 47% were exposed for greater than one and one-half months, and 8% were exposed for more than two months. These exposure periods ranged from 18 days in a few instances to 63 days in a few other cases, and they averaged 42 days for all of the samplers through the entire study.

Following an exposure period, the collection of the duplicate samplers from the streams involved the underwater use of a #30 mesh sieve that was placed under the samplers with the artificial substrates then carried on the sieve as they were taken out of the water. The sieve, therefore, acted as a catch-basin, and this approach to artificial substrate collection was utilized to avoid a loss of the organisms that could be washed out of the samplers during their removal from the streams. The sieve and samplers were then moved to the shore where the sieve-confined artificial substrates were thoroughly picked, rinsed, sprayed, and scraped to dislodge the still attached macroinvertebrates. The organisms were ultimately transferred from the sieve and from the two samplers to a single container where the composite sample was preserved with an ethanol-rose bengal solution as described for the Surber

collections. The cleaned samplers were then either replaced in the stream or removed from the field depending upon the time of the year. The preserved and labelled samples, in turn, were transported to the laboratory and stored until further assessments could be made on the collections.

MACROINVERTEBRATES--LABORATORY MANIPULATIONS

Sample Sorting and Calculations. Both the artificial substrate and the natural substrate macroinvertebrate samples were analyzed in the laboratory following the same general procedures. The sample was first dumped into a #30 mesh sieve, and the initial step of the process involved a rinsing of the sample bottle and a removal and cleaning of the larger substrate materials (rocks and twigs). These substrates were eventually returned to the bottle. The sieve was then washed to remove the finer sediment particles, and the washate was checked for the occurrence of small organisms. As a second step, the remaining contents of the sieve (organisms and other materials) were transferred to a white porcelain pan where they were thoroughly mixed and randomized to an even coverage over the bottom of this container. The sample, at this stage of its preparation, was divided into quarters for a final picking and cleaning of the collected macroinvertebrates from the remaining debris. If the sample contained a low number of organisms, or if the sample was relatively clean with only small amounts detritus and macroalgae, then the entire sample (all four quarters) was picked; large quantities of macroalgae proved to be particularly bothersome to this final cleaning process. But if large numbers of macroinvertebrates were found in the sample, and/or if the sample proved to be particularly dirty, then only one or two quarters (subsamples) were picked as feasible following Environmental Protection Agency (1973) guidelines for the laboratory subsampling of macroinvertebrate collections.

The next two steps of the analytical process can be described as follows: First, the large and obvious macroinvertebrates of the collection were removed at this time from one to four of the subsample quarters as appropriate and transferred to other containers for temporary storage; second, small aliquots of the collection were sequentially taken from the porcelain pan and surveyed under a dissecting microscope with magnification so that the remaining and typically smaller organisms could be spotted and removed. Throughout the application of these two steps, each of the picked organisms was identified taxonomically and placed into a labelled, friction sealed petri dish containing a small amount of alcohol preservative until the entire set of subsamples for a collection had been cleaned of all of its organisms. The sample was thereby sorted taxonomically through this procedure with each of the dishes associated with a particular field sample containing the individuals of a particular taxa. The final counts of the taxa individuals were then taken from these dishes as a final analytical step, and the numbers were recorded on a station-date data sheet. Following the counting of the dishes, they were stored in sealed vats for an eventual biomass assessment of the macroinvertebrate taxa. Any of the subsamples in the porcelain pan that were not sorted and analyzed were returned to the original sample bottle along with the related debris for storage and future reference.

Ultimately, the numbers on the station-date data sheets enumerating the taxa individuals of a sample were refined for a tabular presentation in the final project reports. For the Surber collections, these data are presented as a quantitative density estimate for each sampling site and date, i.e., the numbers of individuals of a taxa per square foot of stream bottom. In these data refinements, an adjustment for the duplicate field collections was made if necessary through an appropriate division, and an adjustment for laboratory subsampling was also made as required through the further application of a multiplication step. For the artificial substrates, the data are presented as the numbers of taxa individuals collected from the duplicate samplers that were exposed at each of the station's stream locations for each of the exposure periods. Mathematical adjustments for laboratory subsampling were made as needed in this case also.

Reference Collection and Taxonomic Identifications. Through the entire process of sorting and identifying the different macroinvertebrate samples, a few individuals of the different taxa were selected from among the many inventory samples for placement into the project's macroinvertebrate reference collection. The taxonomic identifications of these reference specimens and the sample individuals were made using the macroinvertebrate keys that are available in the reference materials chosen for the study, e.g., Merritt and Cummins (1978) for the insect families, Edmunds, et al (1976) for the mayfly genera (Ephemeroptera), Wiggens (1977) for the caddisflies (Trichoptera), Roemhild (1975) for the damselflies (Zygotera), Klemm (1972) for the leeches (Hirudinea), and so on. Specific reference specimens were selected from the many taxa individuals that were available to best illustrate the critical taxonomic features of the particular macroinvertebrate group. The taxonomic identifications of these organisms were taken to the lowest systematic level possible in relation to the information that is presented in the keys, in relation to the expertise of the project workers and their associates, and in relation to the time constraints that were imposed upon the inventory. As stated in the first research proposal (Klarich, 1977), it ". . . is not proposed . . . to spend a great deal of time with the identification of taxonomically difficult forms . . .," and this precept has been followed throughout the macroinvertebrate segment of the study. The reference collection that was developed during the project is being stored in a preserved condition in labelled (taxa and sample information), airtight vials, and it has been used to make the taxonomic verifications that were initiated during this study. In addition, this collection is also available for perusal by any interested parties, and it will be on hand for any future verfications if this need should happen to arise.

Biomass Assessments. As a final step in the laboratory analysis of these macroinvertebrate samples, the preserved individuals stored in each of the taxa petri dishes were used as the basis of a biomass assessment for the different samples collected during the project. The individuals stored in each of the dishes were recounted and then transferred to tared weighing boats where they were air-dried for a period of 24 to 48 hours depending upon their size and numbers. After the drying period, the organisms were weighed two times between three and four hours apart using a Mettle balance. If the second weighing equalled the first, then

this number minus the tare was taken as the dry weight or the biomass expression of that taxa for that site and date. However, if the weights happen to decrease from the first to the second weighing, then this application was continued at suitable intervals until a stability was achieved as the final observation.

All of the taxa of a collection showing relatively large numbers of individuals were directly weighed in this fashion. Thus, a major fraction of the macroinvertebrate biomass of a sample was directly measured in the study. However, many of the taxa had only a relatively few number of individuals, and accurate and direct weight determinations in these cases were found to be very time-consuming and quite difficult for some types of organisms. Therefore, total dry weights for most of the scarcer taxa in a sample were estimated from weight per individual data that were available from other samples which had a larger number of individuals for this same macroinvertebrate group. Such directly measured or estimated weight data were then eventually developed into a final biomass expression for each taxa of a sample and for the sample in total as follows: milligrams of air-dried weight per square foot of stream bottom for the Surber applications, and milligrams of air-dried weight per duplicate samplers for the artificial substrate collections.

PHYSICAL MEASUREMENTS

Appropriate physical measurements were taken at the various stream stations in conjunction with all of the Surber macroinvertebrate and artificial substrate work. Current velocity was measured in feet per second using a standard pygmy flow meter attached to a graduated, topsetting wading rod. This assembly was placed in the stream at the spot of the Surber collection or at the location of the jumbo multiplate samplers for the timed current evaluation, and depth in tenths of a foot was then obtained from the rod. Current speed was measured at six-tenths of the depth below the surface (Environmental Protection Agency, 1973). Stream width in feet was also measured in this same vicinity perpendicular to the main thread of current, and either the wading rod or a tape was used for this determination depending upon the breadth of the water. Such width measurements were made during the inventory primarily as a means of characterizing one aspect of stream size at the different sampling sites, although these same data were also utilized in developing the study's flow estimates.

If these first current velocity, depth, and width measurements at a station appeared to be fairly representative of the stream segment, then these data were used to obtain a rough estimate of flow in cubic feet per second. But if the initial physical measurements at the selected sampling location did not appear to afford a very good estimate of the average values that might be obtained for the reach, then a few supplemental measurements at more appropriate spots in the stream were taken to provide a better basis for making a guess at its flow. Because of field time restraints, it should be stressed that no attempts were made to formally and accurately gage the streams following USGS procedures, and flows were estimated by simply multiplying the average width, depth, and velocity numbers. Some of the discharge data available to the inventory, particularly for the larger streams, was obtained from

published USGS (1979b) records, but since this agency did not monitor many of the smaller creeks that were sampled during this inventory, a flow estimating procedure, as described above, was instituted for the project as a means of quickly securing this type of information for the non-USGS waters. It was then applied to most of study area streams, as feasible, for the purposes of data consistency. The main point of gathering flow information for the project was to provide another type of stream size characterization for the different waters of the southern Fort Union region, and in this light, an extreme gaging accuracy was not thought to be necessary for the objectives of the investigation.

In the case of the artificial substrate applications, the current velocity, depth, width, and flow evaluations were generally first taken when the duplicate samplers were initially introduced to a stream location, or shortly thereafter, and also at the time that the samplers were later removed from the water to terminate an exposure run. An average of the two measurements for each physical variable was then assumed to represent a fairly accurate picture of the overall influences of these factors on the organisms that were housed by the samplers through the exposure period.

STREAM SUBSTRATE EVALUATIONS

In addition to the current velocity and depth factors, the nature of the stream substrate or bottom materials represents another physical variable that can have an effect on the benthic biota of lotic systems. Therefore, an attempt was made in this inventory to develop some type of representation for the substrate aspect of the streams that could be used in relation to the Surber biotic data for interpretive purposes. Since the application of quantitative evaluations of this kind could not be made during the inventory because of time restrictions, a qualitative approach was used to obtain the requisite substrate information.

The substrate classification system that was adopted for this inventory is summarized in Table 5 as a slight modification of the system presented by the Environmental Protection Agency (1973) in their biological reference manual. The detritus category of the table consists of the plant debris and macroalgae that might be associated with a collection. As indicated in the table, reference numbers between one and eight were assigned to each of the eight substrate categories so that the increasing magnitude of this number corresponds to an increasing size of the substrate materials. However, the variable detritus class was somewhat arbitrarily assigned to the number four position for the sake of convenience.

In the actual application of this classification system to the substrate evaluations, the percent relative abundance of each substrate category associated with a Surber sample is first estimated qualitatively in the field and then in the laboratory. Through a subsequent weighting (multiplication) of the appropriate category reference number with this abundance percentage as a decimal, a single or summary reference number ranging between one and eight can be calculated for a sample by summing the weighted values of the different categories. This summary number, in turn, provides a general description of the overall substrate

Table 5. Stream substrate classification system used in conjunction with the Surber macroinvertebrate collections.

Reference		Median Substrate	Range of
Number	Type of Substrate	Diameter	Substrate Size
1	Clay, muck, and silt	0.03mm	<.05mm
2	Fine sand	0.15mm	0.05mm to 0.3mm
3	Coarse sand	1mm	0.3mm to 2mm
4	Detritus	variable	variable
5	Fine gravel	0.6cm	0.2cm to 1cm
6	Medium gravel	2cm	1cm to 3cm
7	Coarse gravel	5cm	3cm to 6cm
8	Rocks, rubble, and boulders	16cm	<6cm

characteristics of an analyzed stream segment such as a Surber sampling location. Summary numbers closer to eight are suggestive of a high proportion of the larger substrate materials like the boulders and the coarse gravels, and these higher numbers are probably most commonly obtained from the riffle sections of a stream. In contrast, the smaller summary numbers closer to one point to a high proportion of the finer substrate particles such as the silts and clays, and these numbers are probably most typically associated with the ponded segments having low current velocities. In response, different types of benthic macroinvertebrate associations might be anticipated for these two situations.

In addition to the use of the summary substrate reference numbers for the biotic correlations, the percentage values of the individual substrate categories per se might also have some interpretive applications. For example, a collection high in detritus might contain a different assortment of aquatic organisms than a sample with a similar summary number that is comparatively low in this same category. In any event, these kinds of data along with the summary numbers are also available for use in the assessment phase of the project.

Two steps were involved in obtaining the requisite category abundance percentages. First, the percentages of the broader substrate classes such as the sands and gravels were estimated and noted in the field as a component of the on-site habitat descriptions that were completed as a part of the inventory. Afterward, the smaller substrate materials that were transported to the laboratory as a portion of the Surber collections were again examined following the biological analyses for a further refinement of these percentage values. Although this type of qualitative substrate evaluation is probably not as valid as the application of a quantitative assessment, it is still felt that a fairly representative picture of the study area streams' substrate characteristics was obtained for the study in relation to the time expended through the use of the above described methodology.

PERIPHYTON AND MACROALGAE

Field sampling for the periphyton and the macroalgae phases of the inventory was much more straightforward and simple than the effort that had to be applied to the macroinvertebrates. The essence of this work has been described previously in this report, and the scrapings that were taken from both the natural and artificial substrates were transferred to small vials and preserved with Lugols (IKI) solution for transport and storage. In the case of the natural substrates, a number of submerged objects from various nearby locations at a sampling site were scraped in order to afford a replicate, in minature, of the entire periphyton community within that stream section. Furthermore, conspicuous macroalgae within the same stream vicinity were separately "picked" in proportion to their abundance and added to the same bottle. In a few instances, such collections involved only macroalgae to the exclusion of the diatoms that were attached to the bottom materials of the stream.

In the laboratory, sample evaluation first involved a vigorous agitation of the sample bottle to initiate a complete mixing of its contents. This action, in turn, resulted in a randomization of the collection, and it also dislodged any of the diatoms that might have been attached to the macroalgae in the sample. Other applications were then required, and the next seven steps of the analytical procedure will be earmarked with roman numerals in the below discussion for later reference purposes.

Following sample agitation, the subsequent three steps in the analysis of the algae collections were directed to the soft-bodied or the non-diatom forms as follows: I. The obvious soft-bodied algae were removed from the sample bottle, examined with a microscope, and identified to genus using the appropriate reference keys, e.g., Smith (1950). II. Subsequently, a small subsample was pipetted from the bottle onto a microscope slide and scanned under magnification until a majority of the smaller non-diatom algae had been located and identified. III. These soft-bodied algae at the generic level and the diatoms at the class level (Bacillariophyceae) were then ranked on the basis of their abundance in the sample with a rank of one being assigned to the most plentiful taxa. Furthermore, qualitative estimates of abundance on the basis of volume were also made in addition to the rankings by using "very abundant," "abundant," "very common," "common," and "rare" designations in relation to each of the algal taxa. These abundance descriptions then completed the assessment of the non-diatom groups, and further attention was directed entirely to the diatomaceous component of the sample.

The fourth step (IV) of the periphyton analysis required the preparation of permanent microscope slide mounts utilizing the remaining contents of the sample bottle. The techniques outlined in <u>Standard Methods</u> (APHA, et al, 1975) for slide preparation were followed in this inventory, and the resultant slides now comprise the diatom reference collection of the project. A subsequent phase of the algae assessment (V) involved a microscopic survey of these same slides with the diatom algae found on the mounts identified taxonomically to the varietal level. This was followed by the completion of proportional counts of the individuals of

each of the diatom species until between 300 to 400 total cells per slide-sample had been tabulated. Procedures described by the Environmental Protection Agency (1973) were utilized for making the counts. In the case of a few depaupered samples having a relatively low number of diatom individuals, only 100 to 200 cells were identified and tabulated because of the associated time restrictions involved in finding the remaining cells on the mount.

The major data output for the periphytic portion of the inventory resides in the percent relative abundance (PRA) values for the different diatom species that were counted on a slide-sample, and these PRA numbers were calculated as one of the final steps of the algae assessment (VI). A PRA is defined as the count obtained for a particular diatom taxa divided by the total number of diatom cells tabulated for the mount, and the total PRA of a collection should then be equal to 100%. As the last step of the analyses (VII), sample diversity and equitability as described by Lloyd, et al (1968) and by Lloyd and Ghelardi (1964), respectively, were eventually calculated from the PRA data for further interpretive and comparative purposes.

Five classes of periphyton community-macroalgae samples were collected from the study area streams as described in Table 2 (samples A to E). The A-type of sample, involving a complete analysis of the algae components through step VII, was obtained from all of the waters of the inventory; however, this A class was most consistently assessed from the intensive station collections as noted in the table. At least one A sample was evaluated for each of the accessory and miscellaneous sites, and these collections were most commonly obtained during a mid-summer period when algal diversity was at its highest in the streams. In the case of the B samples, the soft-bodied algae were analyzed through step III but with the analysis stopping after the completion of step IV. Thus, permanent mounts are available for all of the B samples as a part of the project's diatom reference collection. Most of the samples from the accessory stations are of the B class, and although slides for these collections are on hand, they were not processed for the diatoms because of study time restrictions related to a complete processing of the more important A samples from the intensive sites. The slides from the accessory B samples can also be analyzed to completion or to the A level at some time in the future if funding opportunities happen to arise, and these additional assessments will further enhance the periphytic data base for the study region waters.

In contrast to the A- and the B-types of algae samples, the C collections were obtained only for an evaluation of the macroalgae with no options for assessing the diatomaceous forms. Their analysis was thereby terminated after the completion of step III with no permanent mounts prepared for the collection. Samples of this kind were obtained from a variety of study area streams as new algal growths happened to appear through the field seasons, but the C class was most commonly collected from the intensive streams. The main point of the C effort was to enhance the inventory's taxonomic, distributional, and abundance information for the non-diatom algae.

Like the A samples, the D and E collections were also completely analyzed through step VII, and the major differences between the A and the D-E classes relate to the higher number of counts in the D case over

the A and to the use of artificial rather than natural substrates in the case of the E-type samples. The similarities between these three types of samples can be summarized as follows: Diatom counting intensity was generally the same for the A and E samples while natural substrates were scraped to obtain both the A and D collections. In addition, and with only one exception (Indian Creek near Kirby for the D series), the D and E samples were obtained only from the nine intensive stations and not from any of the accessory sites.

A single D-type sample was obtained from each of the intensive sites and from Indian Creek, and they were collected during the mid-summer in conjunction with the high algal diversities. In addition to increasing the algal data pool of the project, another purpose for obtaining the D samples and the high counting intensities was to provide an in-depth look at the structure of streams' periphyton communities in the hope that this will afford a future opportunity to complete rigorous statistical comparisons between time-different periphyton samples obtained from the same stream locations during the same season in order to spot any changes in water quality that might have occurred during the intervening years. Furthermore, such an in-depth look at the streams' algal communities is of scientific interest in its own right.

Several of the E-type samples were obtained from each of the intensive stations, and these were collected from the artificial substrates or plexiglass plates that had been exposed in the stream for a period greater than one month. These six inch by nine inch plates were suspended in the stream through the use of wooden stakes that were pounded into the stream bottom, and the plates were then attached to the stakes through the use of U-bolts that were passed through holes appropriately drilled in the plexiglass. With the use of this system, the plates were vertically positioned in the stream so that the top, 1/4 inch wide edge of the plate was located at or slightly below the surface of the water. The artificial substrates were placed in a fairly deep segment of the stream, and a spot was chosen that had a low to moderate current velocity. This stream location, therefore, is generally equivalent to the riffle to pool, transition zone described previously for the artificial substrate, macroinvertebrate work.

A major reason for making an artificial substrate application to the algal phase of the project was to compare the older periphyton communities obtained from the natural substrates to the younger communities that had recently colonized the plates. In addition, these artificial substrate collections act to supplement the taxa listings of the project, and they also enhance the rank, abundance and frequency data for the different algae that inhabit the study area streams. This includes the macroalgae as well as the diatoms since the soft-bodied forms can also grow on the plates. Furthermore, since the plexiglass plates afford a well-defined substrate for the algae, the data from this segment of the project should be quite conducive to making various physical-water quality and biological statistical correlations because of the somewhat controlled circumstances in this application with a smaller number of non-biotic factors affecting the communities. Statistical applications of this kind should thereby be somewhat more straightforward and easier to interpret through the use of artificial substrates than the case with the natural bottom materials.

APPENDIX

TABULAR CONSIDERATIONS

General Features. All of the water quality data collected as a part of this inventory are summarized in the appendix of this report. larly, most of the biological data are also tabulated with one major exception. This exception resides with the periphytic phase of the project where the PRA values that were obtained for a major portion of the diatom species of each collection have not been presented. With the obtainment of around 42 bacillariophycean taxa per sample, and with the obtainment of upwards to about 60 different taxa per sampling site for all of the station collections, the complete and formal tabulation of all of this algal information would have been an overwhelming and voluminous task. As a result, only the PRA's of the dominant diatom species of each sample are listed with dominance defined as a PRA value in excess of 9.9%. ever, complete listings of the many PRA numbers for each of the analyzed periphyton samples collected from the study area streams are on file with the Water Quality Bureau office in Helena, Montana, and these data sheets are available for perusal.

A major part of the physical data obtained during the macroinverte-brate segment of the inventory is also presented in this appendix. As one exception in this regard, the physical measurements associated with the initial introduction of the jumbo samplers to the streams and with their subsequent removal have not been presented in favor of the tabulation of a mean value. This elimination was necessary because of space restrictions in the associated tables. In addition, only the single summary reference number that describes the substrate features of a Surber collection are listed in these same tables. The substrate category percentages relative to Table 5 have not been included because of the space requirement for a listing of 1528 members of this kind. But again, the substrate category percentages describing each Surber sample are on file with the Water Quality Bureau.

Except for the water quality tabulations, the Surber physical measurements, and the qualitative estimates of macroalgae and diatom abundance, and with the exception of some of the periphyton information (total diatom taxa and taxa counted and total diatom cells counted), the data that are presented in this appendix are best described as "semiraw" in nature since some refinements have been applied to the "raw" numbers before their entry into the tables. Such data refinements can be summarized as follows: (1) Adjustments of the actual counts of the macroinvertebrate taxa individuals in a sample for the occurrence of duplicatetriplicate sampling on a station visit and/or for the occurrence of subsampling in the laboratory, and this then led to the density, taxa numbers, and biomass expressions that are presented for the Surber and jumbo multiplate collections; the taxa means for a station and the sample totals are also listed. (2) Determinations of mean current velocity, stream width, and stream depth from the initial and final values that were measured in association with the macroinvertebrate artificial substrate work. (3) Calculations of single summary substrate reference numbers from the category percentage estimates that were made in conjunction with the Surber collections. (4) Calculations of PRA values from the cell counts of the diatom species that were identified in a periphyton sample, and

(5) determinations of sample diversity and equitability from the PRA data

of a periphyton collection. These "raw" and "semi-raw" data will be additionally refined and reduced as appropriate for interpretive considerations in the other two final and companion reports of the project.

The "raw" and "semi-raw" physical, water quality, and biological data that are now on hand for the coalfield area streams as a result of this recent inventory effort are presented in this report as a series of tables generally organized on the basis of sampling station and collection date. These tabular series can be described as follows: Series A--water quality data tables; Series C--Surber macroinvertebrate density tables (numbers of taxa individuals, sample totals, and taxa means per square foot of stream bottom); Series D--artificial substrate macroinvertebrate tables (numbers of taxa individuals, sample totals, and taxa means per duplicate jumbo multiplate samplers); Series E--Surber macroinvertebrate biomass tables (milligrams of air dry weight for each taxa, sample totals and taxa means per square foot of stream bottom); Series F--artificial substrate, macroinvertebrate biomass tables (milligrams of air dry weight for each taxa, sample totals, and taxa means per duplicate jumbo multiplate samplers); Series G-physical measurements that were taken in conjunction with the macroinvertebrate work; Series I--macroalgae and bacillariophycean abundance rankings and estimates, PRA's of major diatom species, and periphytic community information that were obtained from natural stream substrates; Series J--macroalgae and bacillariophycean abundance rankings and estimates, PRA's of major diatom species, and periphytic community information that were garnered from artificial substrates exposed to the streams; and Series L--examples of a complete floristic periphyton sample analysis.

In addition to these series tabulations, Table B34 of the appendix presents a listing of the macroinvertebrate taxa collected from the study area waters during the inventory, plus some other descriptive information, and Tables H137 and K171 make a similar presentation for the periphytic and macroalgal segment of the project. Certain details of these three summary tables plus those within each of the above mentioned tabular series are discussed below.

Water Quality. The water quality data collected during the project are presented in Tables AO1 to A33. The symbols used in these tables for the different water quality parameters are defined in Table 4 of the text. The data are presented in the units of milligrams per liter (mg/1) whenever appropriate—TSS, DO, BOD, common ions, nitrogen and phosphorous nutrients, metals, and silica, and the concentrations of the nutrients are given as mg/1 of the nutrient element, i.e., as mg P/1 or as mg N/1. Other concentrational units and related notes can be listed as follows: Temp in degrees centigrade (C), pH in standard units, SC in micromhos per centimeter at 25C, Turb in nephelometric turbidity units (NTU), TC as the number of colony counts per 100 ml, TH as mg CaCO₃/1, and TA as mg CaCO₃/1. The "N" in the T1N column of the tables denotes a "nearly equal to" or "about equal to" value in those cases where ammonia or nitrite—nitrate concentrations were below detectable limits.

These same water quality tables also contain the geographic descriptions of the sampling locations for each of the water quality (and biological) collections. The "a" designations denote the most frequently sampled segment, the "b" designations denote the next most frequently sampled segment, and so on. The symoptic run notations point to the collection of water quality (and biological) samples at a number of sequential stations along the length of two selected streams within a short period of time.

Macroinvertebrates. The macroinvertebrate section of the appendix data tables is initiated with a summary taxa listing of all of the macroinvertebrates collected during the investigation (Table B34). names for these taxa are also listed as available. The taxa identifications presented in this table were taken to the lowest systematic level possible in relation to the objectives and theme of the study and in relation to the expertise that was immediately available to the project and its time restrictions. Thus, identifications to genera were feasible in many instances, and species identifications were possible for a few of the organisms. In all cases, only those taxonomic identifications that were felt to be fairly secure at a particular systematic level are listed, and the unreasonable "forcing" of these identifications to lower systematic categories in light of the information that was on hand was avoided throughout the inventory. Verifications of many of the organisms have been obtained from various non-project individuals that are also working in the aquatic macroinvertebrate field, and any identifications that are still felt to be somewhat tentative are noted as such in the data tables.

Some of the macroinvertebrates could only be identified to a higher taxa above the generic level because of the difficulty in keying certain of the ambiguous forms such as the chironomids, oligochaetes, flatworms, and nematodes, and because of the lack of suitable keys. Further identifications of these kinds of organisms would ultimately require the efforts of expert taxonomists in a particular macroinvertebrate group, or an excessive expenditure of project time, and both of these requirements were beyond the tenants of the study. In other cases, generic identifications could not be made because of the small size of the specimens or because of their inadvertent mutilation during field collection and sample processing, and both of these factors resulted in an obscuring of critical taxonomic characteristics. For whatever reason, the identifications that had to be stopped at a higher systematic level are noted in Table B34.

In addition to the taxa list <u>per se</u>, the systematic features of the organisms are also included in Table B34 along with a few accessory notes describing their significant habits and characteristics. This information was taken from a variety of reference sources as follows: Pennak (1978), Merrit and Cummins (1978), Burch (1972), Klemm (1972), and Edmondson (1958). These same sources also list various common macroinvertebrate taxa that are typically found in aquatic systems but for which no specimens were obtained from the study area streams under the sampling regime of the project. These uncollected taxa are also indicated in the table.

The macroinvertebrate data tables (Tables C35 to F134) are organized on the basis of higher taxa levels such as order, class, or phyla. They generally copy the sequence of taxa presented in Table B34, and the symbols that are used for the higher taxa markers in the data tables are defined in this initial summary. Some geographic descriptions are also included for those cases where more than one sample was collected from a broadly defined station in a single day. For the remaining collections, the sampling date can be used to find the appropriate geographic description in the water quality tables.

The "t" designations in Tables C35 to F134 denote a tentative taxonomic identification while the "p" notations indicate the presence of a particular taxa at a sampling station although intact individuals could not be found in the sample. That is, the presence of these taxa was

intimated by the occurrence of accessory evidence in the collection such as empty shells, cases, or exoskeletons, but these fragments were not counted as a part of the data tabulations. The "A," "L," and "P" symbols in the tables describe the collection of adult, larval, and pupal stages respectively. For the rest of the insect taxa that lack these designations, the larval forms were collected, and adults were generally obtained in the case of the non-insect taxa.

Physical Measurements and Substrate. Table G135 presents the physical data that were taken in association with the Surber macroinvertebrate samples, and this same table also contains the summary substrate reference numbers that were calculated for each of these collections. tion, a few related notes describing the general stream habitat that was utilized for the collection and the condition of the stream at the time of sampling are also included. The riffle references in these notes refer to a relatively shallow section having a distinct gradiant and a fairly rapid current velocity so that a distinct turbulent flow was evident over the stream's bottom materials. The channel segments, in contrast, although also possessing a marked current, did not demonstrate as pronounced a turbulent flow as the riffle reaches, and they therefore appeared to be much smoother in character. As a further item in Table G135, a listing of the extraneous visits to the different stations is presented with associated comments summarizing the reasons why Surber samples coult not be collected on these particular dates.

As a sister tabulation, Table G136 presents the physical data obtained in conjunction with the jumbo multiplate samplers. Notes are also included in this table on the occurrence of sampler loss during the study period, and a listing of the various miscellaneous site visits that were made in conjunction with the artificial substrate work is also included to help elucidate the general sampling schedule for this phase of the inventory.

Periphyton and Macroalgae. The periphyton portion of the appendix tables is prefaced with a summary listing of the major algal taxa, both the diatoms and the soft-bodied forms, that were collected during the course of the study (Table H137). As indicated in this table, the diatoms were identified to species (and to variety as feasible) while the nondiatoms could only be taken to the generic level. Common names are also included as they happen to be available for the different taxa. In addition, the systematics of these algae are presented along with a few notes describing some of their major characteristics. Such descriptions represent an amalgamation of the information that is contained in the following reference sources: Robbins, et al (1965), Round (1965), Wiesz and Fuller (1962), and Smith (1950). In general, most of the descriptive features contained in the table for the algal taxa were specifically chosen from among a large number of such characteristics so that they might serve to distinguish only the algal forms that were collected as a part of this inventory. Therefore, the information in Table H137 should not be viewed as a key that would be helpful in identifying algal taxa outside of the study area, or useful in keying an unlisted and unidentified taxa that might still be collected from the project region.

Tables I138 to J170 contain the periphytic and macroalgae data that were collected during the project. The abundance rankings of the soft-bodied algae and the Bacillariophyceae are included as well as their class abundance estimates using the very abundant (VA), abundant (A),

very common (VC), common (C), and rare (R) designations described previously. The dominant diatom taxa and the associated PRA values are also listed along with various types of data describing the nature of the periphyton community in each collection. Summed PRA numbers for the Achnanthes spp. and Nitzschia spp. are presented because of the importance of these two genera as water quality indicators (Lowe, 1974).

Tables I138 to I165 contain the periphytic and macroalgae data that were collected from the natural substrates of the streams, and Tables J166 to J170 contain similar data that were obtained from the plexiglass plates. The sample codes listed in these tables are defined in Table 2 of the text, and the sample number of each collection pertains to a labelling system that is used by the Water Quality Bureau to provide easy access to the permanent mounts that form a part of the Bureau's diatom reference assemblage.

Table K171 in the appendix acts as an extension of the initial algal summary table where all of the diatom taxa identified in the analyzed project periphyton samples are listed. Authoritative, varietal, and form names associated with each diatom species are also included in the same table. This diatom species list is termed tentative at the present time since the opportunity for future taxonomic work on the collections will probably result in verifications or nomenclatural alterations of some of the questionable identifications, and this work could also eventually result in the identification of some of the currently unknown taxa. Furthermore, it is felt that new diatom species might be found in the coalfield area periphyton collections with the continuation of taxonomic work in this direction.

The final three tables in the appendix of this report (Tables L172 to L174) provide examples of the taxa listings and related PRA values that were obtained from a standard floristic evaluation of the study area algal samples. Data obtained from seven intensive sites collected on two different dates were chosen for this presentation. The listings are organized on the basis of "major," "sub-major," and "minor," species as defined in the tables, although this format was not meant to have any significant interpretive value; rather, it was formulated simply as a convenient way to arrange the species names and numbers. The trace amounts (tr) noted in these tables for some of the diatoms refer to those species in a sample that were spotted during the microscopic scans of the permanent mounts while never being actually counted during the tabulation process.

DATA TABLES

The many data tables that were developed as a result of the southern Fort Union region biological-benthic inventory are presented on the following pages of this data report. A complete listing of these tables is included in the "List of Tables and Figure" section located at the front of this publication.

Water Quality Analyses Completed by DHES: Field Parameters and Common Ions--Upper Rosebud Creek near Kirby (Intensive Station). Table A01.

DS	792		777	-	744	-		-	844	707	721	1			1	1	1	1	1	1	1
Ľ-	0.56		0.56		0.71			1	09.0	0.39	0.52	1	1	1	1	1	1	1	1	1	1
804	178	1	165	1	124		1		154	165	156	1	-	1	1	-	1	1	1	1	-
C1	2.4	1	2.5		3.0				3.2	2.5	2.5	-	-		-	1	1	1	1	1	-
003	0.0	-	0.0	}	0.0				0.0	0.0	0.0	1						-	1	ł	1
HC03	438		441		447		}	1	498	381	402	-			1	1	ļ	1	1	1	-
TA	359	1	362		367		-	-	408	312	330		1		1	1	1	1	1	1	1
Na		1	19.9		22.3		-		24.0	17.8	17.2		1				1	1		1	
Mg		1	70.8		67.1				73.7	60.1	61.4					1	1		1		1
Ca	84.8		77.0	1	9.62	1	1	1	0.06	80.4	81.3	1		1		1	1	1	1	1	1
TH	492		484	1	475	1	-	1	528	448	456	1	-	1	1	1	1	1	1	1	1
TC		1	-	1	1				2000			1			}	1	1	1	140	1	420
BOD		1.0	-		1				1.7		1.4	-	1		-		2.5	3.4	1.9	2.4	2.2
DO	9.2	9.1	ļ	-	8.9	7.			.3	7.	9.3	-	9.6	0.	∞		0	4	4	9::	11.9
1			'	'	ω	ω	1	1	11	11	9	9	6	0	9	i	10.	φ.	9.	12	
TSS		1														23.7					
	∞		. 21.2	-	13.1	26.0	19.1	20.8	17.0	126.	51.2	31.0	36.9	22.5	27.1		19.8	. 30.0	. 32.4		
SC Turb TSS	∞	12.	11. 21.2	-	4.0 13.1	14. 26.0	9.0 19.1	8.6 20.8		39. 126.	17. 51.2	12. 31.0	16. 36.9	7.9 22.5	9.8 27.1	12.	9.0 19.8	16. 30.0	18. 32.4	7.7 10.2	17. 29.4
SC Turb T	.30 890 6.8 .20 888 19.	.37 882 12.	.30 818 11. 21.2		.22 868 4.0 13.1	.23 850 14. 26.0	.22 830 9.0 19.1	.28 938 8.6 20.8	.28 950 9.3 17.0	.20 827 39. 126.	.28 721 17. 51.2	.29 868 12. 31.0	.28 900 16. 36.9	.32 897 7.9 22.5	.34 893 9.8 27.1	.30 868 12.	.18 870 9.0 19.8	.20 865 16. 30.0	.20 905 18. 32.4	.25 932 7.7 10.2	.29 945 17. 29.4
Turb	30 890 6.8 20 888 19.	.8 8.37 882 12.	818 11. 21.2	.5 5.	.2 8.22 868 4.0 13.1	850 14. 26.0	.6 8.22 830 9.0 19.1	938 8.6 20.8	.7 8.28 950 9.3 17.0	827 39. 126.	.9 8.28 721 17. 51.2	.0 8.29 868 12. 31.0	.3 8.28 900 16. 36.9	.4 8.32 897 7.9 22.5	.8 8.34 893 9.8 27.1	.4 8.30 868 12.	.5 8.18 870 9.0 19.8	.7 8.20 865 16. 30.0	905 18. 32.4	.1 8.25 932 7.7 10.2	945 17. 29.4

Sampling Locations: a--T06S, R39E, 20C; b--T06S, R39E, 32A; c--T06S, R39E, 29B.

Water Quality Analyses Completed by DHES: Nutrients and Metals--Upper Rosebud Creek near Kirby (Intensive Station). Table A02.

Si				1	}				1	1	-	1	-			1				20.0	17.0
Hg	<.0002			1	<.0002		1		<.0002	1	-									1	}
Pb	0.006				<.005	1			<.01					!						1	1
Cr	<.005	!		1	<.005	1	1		<.005	1	1		1	1	1		1	1	!		1
PO	 <.001				<.001	1			0.001	1								1			
Zu	<.005	<u> </u>		!	<.005		1		<.005	}	1		1		!		¦			1	1
Cu	0.01		!		<.01			1	<.01		1			<u> </u>	1	1		1	1	1	
Mn	0.11				0.55	1		!	90.0	1			1	-		1	1	1	1	1	
FT e	0.83				0.30		1	!	0.31			1			-	¦	}	-			1
TKjN					1	1	1		-	-					1		1	0.50		0.26	!
TIN	0.21		i	0.09	0.08	1		0.03	0.05	0.35	<.02	1	N.05	0.05	0.03		0.03	0.03	!	N.02	}
NH3-N	0.05	1		0.02	0.03		1	0.01	0.01	0.01	<.01	1	<.01	0.02	0.01		0.01	0.01	1	<.01	1
NOx-N	0.16			0.07	0.05			0.02	0.04	0.34	<.01	-	0.05	0.03	0.02	1	0.02	0.02		0.02	
TL	0.099		-	0.037	0.02		1	0.03	0.03	0.12	90.0	1	0.05	0.04	0.04		0.05	0.05		0.03	
OP	0.015		1	0.007	0.004	-	1	0.007	0.007	0.010	0.017		0.027	0.022	0.017	1	0.020	0.012		0.016	<u> </u>
Date	06/16/78b 06/29/78a	07/18/78a	08/03/78a	08/18/78a	08/29/78a	09/05/78a	09/08/78a	10/08/78a	11/05/78a	04/01/79a	05/20/79a	06/21/79c	07/27/79a	08/08/79a	08/17/79a	09/05/79a	09/15/79a	09/28/79a	10/18/79a	11/01/79a	11/06/79a

Sampling Locations: a--T06S, R39E, 20C;b--T06S, R39E, 32A; c--T06S, R39E, 29B.

Water Quality Analyses Completed by DHES: Field Parameters and Common Ions--Middle Rosebud Creek near Colstrip and Lower Rosebud Creek near Rosebud (Accessory Stations); Indian Creek near Kirby (Accessory Station). Table A03.

DS		1105	1040	246	991	
[F4		0.58	0.58	0.52	314 0.57	
S04						
C1		4.5	4.2	4.0	5.6	1
003	1	0.9	8.4	0.0	7.2	
HC03					429	
TA	I I	388	384	363	364	1
Na		82.0	73.0	52.0	71.0	
Mg	-	105.	102.	36.0	94.0	-
Ca		7.99	8.49	77.6	68.89	
TH				248		
- 1	•					
TC						
		1		1	1	
TC		4.8	 	 		
S DO BOD TC	- 7.4	. 8.7 4.8		 	8.2	
S DO BOD TC	- 7.4	. 8.7 4.8	75.8	502	323. 8.2	127. 9.5
S DO BOD TC	- 7.4	. 8.7 4.8	40. 75.8	200. 502	323. 8.2	67. 127. 9.5
S DO BOD TC	- 7.4	. 8.7 4.8	40. 75.8	200. 502	323. 8.2	67. 127. 9.5
S DO BOD TC		. 8.7 4.8	75.8	200. 502	150. 323. 8.2	127. 9.5

Sampling Locations: a--TO1N, R43E, 19A; b--TO1S, R42E, 08A; c--TO1N, R42E, 25A.

	194	1262	984	<u> </u>	ļ
		0.60 1			
		481			
	5.0	5.5	4.0		-
	8.4	7.0	0.0		1
	760	460	442		1
	391	389	362	1	}
	103.	133.	59.0		
	111.	112.	98.8		
	65.2	63.2 112. 133.	78.4	1	1
	618	617	561		1
			1	ļ	20
וֹס	.64	.02	 	8.9 3.3	-
osebud	.64	.02	528	413. 8.9 3.3	33.4 12.8
ear Rosebud	.64	.02	220. 528	190. 413. 8.9 3.3	21. 33.4 12.8
k near Rosebud	.64	.02	220. 528	1280 190. 413. 8.9 3.3	21. 33.4 12.8
Creek near Rosebud	.64	.02	220. 528	1280 190. 413. 8.9 3.3	21. 33.4 12.8
bud Creek near Rosebud	:	.02	16.0 8.23 1125 220. 528	190. 413. 8.9 3.3	33.4 12.8

Sampling Locations: a--TO6N, R42E, 16D; b--TO6N, R42E, 21A; c--TO5N, R42E, 08D; d--TO4N, R43E, 30C

	595	569	587	949	569	550	575	645	1	
	0.58	79.0	67.0 0.64	79.0	09.0	0.58	09.0	99.0	0.58	
	9.2	0.0	7.0 (7.2 (3.0	1.1	8.2 (3.4 (9.2 (
	.4 6	.47	2.5 6	.8 7	.68	.3	.0 7	.7 9	6 6.	
			0.0							
	392	359	381	42(35]	34(35(408	376	
	321	306	312	344	300	290	287	334	308	
	2.8	2.8	13.0	3.7	1.5	1.7	2.2	2.9	5.8	
	.9 1	3.9 1	45.7 1	.5 1	.2 1	0.0	.4 1	.1 1		
	9 48	0.48	8 45	8 46	1 50	7 45	57 9	2 57		
			8.97							
	375	371	380	403	362	342	357	403	1	
	1	1	1	1	1		1	1	110	
	2.2	2.2	1		1	1		2.2	1.8	
	2.2	2.2	1		1	1		2.2	1.8	
	7.7 2.2	8.7 2.2	:	 	8.3	9.1	8.0	8.9 2.2	11.5 1.8	
	67.4 7.7 2.2	4.0 8.7 2.2	18.0	4.2	19.2 8.3	2.9 9.1	2.9 8.0	6.4 8.9 2.2	14.6 11.5 1.8	
	11. 67.4 7.7 2.2	2.0 4.0 8.7 2.2	7.5 18.0	3.0 4.2	7.8 19.2 8.3	1.6 2.9 9.1	0.8 2.9 8.0	4.5 6.4 8.9 2.2	2.0 14.6 11.5 1.8	
rby	11. 67.4 7.7 2.2	2.0 4.0 8.7 2.2	7.5 18.0	3.0 4.2	7.8 19.2 8.3	1.6 2.9 9.1	0.8 2.9 8.0	728 4.5 6.4 8.9 2.2	2.0 14.6 11.5 1.8	
r Kirby	11. 67.4 7.7 2.2	2.0 4.0 8.7 2.2	7.5 18.0	3.0 4.2	7.8 19.2 8.3	1.6 2.9 9.1	0.8 2.9 8.0	728 4.5 6.4 8.9 2.2	690 2.0 14.6 11.5 1.8	
k near Kirby	11. 67.4 7.7 2.2	2.0 4.0 8.7 2.2	7.5 18.0	3.0 4.2	7.8 19.2 8.3	1.6 2.9 9.1	0.8 2.9 8.0	728 4.5 6.4 8.9 2.2	2.0 14.6 11.5 1.8	
Creek near Kirby	11. 67.4 7.7 2.2	2.0 4.0 8.7 2.2	7.5 18.0	3.0 4.2	7.8 19.2 8.3	1.6 2.9 9.1	0.8 2.9 8.0	10.6 8.22 728 4.5 6.4 8.9 2.2	3.8 7.70 690 2.0 14.6 11.5 1.8	
lian Creek near Kirby	11. 67.4 7.7 2.2	2.0 4.0 8.7 2.2	7.5 18.0	3.0 4.2	7.8 19.2 8.3	1.6 2.9 9.1	0.8 2.9 8.0	10.6 8.22 728 4.5 6.4 8.9 2.2	690 2.0 14.6 11.5 1.8	

Sampling Locations: a--T06S, R39E, 31D; b--T06S, R39E, 31C.

strip and Lower Rosebud Creek near Rosebud (Accessory Stations); Indian Creek near Kirby (Acces-Water Quality Analyses Completed by DHES: Nutrients and Metals--Middle Rosebud Creek near Colsory Station). Table A04.

Si	1	1	1		1	1
Hg	1	<u> </u>			1	
Pb	1				1	
Cr				1	1	1
PO				1		1
Zn		1	1			}
Cu		-	1			1
Mn					1	1
٢٦ ص	1	1		0.12		
TKjN	-		1			
TIN	1		<.02		1	0.05
NH3-N	1		<.01	1	1	0.03
NOx-N Colst	-	1	<.01	1		0.02
TP sek near		1	0.052	1		0.05
OP Cre	-	-	0.009	1	1	0.052 0.05
Date OP TP NO _X -N NH3-N Middle Rosebud Greek near Colstrip	07/12/78a	08/22/78a	08/24/78b	05/20/79a	07/03/79a	08/24/79c

Sampling Locations: a--TO1N, R43E, 19A; b--TO1S, R42E, 08A; c--TO1N, R42E, 25A.

	1	1			12.0
	1	1			1
	1			1	1
	1			-	1
	1	-	-	}	1
		-		-	1
	1	-		1	
	1	1			1
		1			
	1	-			0.38
	0.01	0.01	1	1	<.01
Rosebuc	<.01	<.01	ł		<.01
ek near	0.095	0.078	1	1	0.04
bud Cre	0.010	0.008 0.078	1	1	0.015 0.04
Lower Rose	08/23/78c 0.010 0.095 <.01	08/23/78a	05/20/79d	06/13/79b	11/07/79a

Sampling Locations: a--T06N,R42E,16D; b--T06N,R42E,2lA; c--T05N,R42E,08D; d--T04N,R43E,30C.

	1	1	1	1	1	1	!	1	19.8
				<.0002					1
	<.005	<.005	<.005	<.01	<.005	0.005	<.005	<.05	1
				<.005					
	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.005	1
	<.005	<.005	<.005	<.005	<.005	<.005	<.005	<.005	1
	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	
	0.095	0.025	0.041	0.019	0.065	0.050	0.030	0.02	1
	0.59	0.14	0.33	0.08	0.35	0.17	0.09	0.33	0.07
		1			1	1	1	0.49	0.25
	0.10	0.05	0.09	-	N.07	N.05	N.03	N.01	N.03
	0.02	0.01	0.03	-	<.01	0.02	0.03	<.01	<.01
				1					
Kirby	0.064	0.017	0.04		0.04	0.02	0.03	0.02	0.03
ek near	0.023	0.010	0.008	ł	0.027	0.007	0.005	0.013	0.024
Indian Cre	07/25/78a	08/24/78a	08/29/78a	11/05/78a	06/26/79a	07/17/79b	08/08/19b	09/28/79a	11/06/79a

Sampling Locations: a--T06S,R39E,31D; b--T06S,R39E,31C.

Busby, Muddy Creek near Busby-Lame Deer, and Lame Deer Creek near Lame Deer (Accessory Stations); Cow Creek near Colstrip (Miscellaneous Station). Water Quality Analyses Completed by DHES: Field Parameters and Common Ions--Davis Creek near Table A05.

رم		0 /	59	17	51
DS		0 137	0 142	7 2177	8 17(
[24		0.3	0.3	0.37	0.2
S04				875	
C1		4.6	4.3	6.2	16.6
503				0.0	
HC03		299	623	754	715
TA		491	511	618	586
Na		117.	131.	238.	201.
Mg		120.	132.	194.	138.
Ca		88.8	83.2	110.	9.48
TH			752		
'					
IC		1		-	
BOD TC		1		1	
			7.8	1	
DO BOD			7.8	1	
BOD		9.7	1.2 2.3 7.7 7.8	1	
TSS DO BOD	X.	2.6 7.3 9.7	1.2 2.3 7.7 7.8	1.8 3.5	7.2 28.4 6.9
TSS DO BOD	Κc	2.6 7.3 9.7	1.2 2.3 7.7 7.8	1.8 3.5	2065 7.2 28.4 6.9
TSS DO BOD	Creek near Busby	7.3 9.7	2.3 7.7 7.8	3.5	7.2 28.4 6.9

Sampling Location: a--T04S, R38E, 11D.

	84.0 440 537 0.0 3.8 538 0.57	82.8 416 508 0.0 3.6 458 0.52	118. 467 569 0.0 4.9 498 0.74	123. 77.8 400 488 0.0 3.8 475 0.50 1253	100. 424 517 0.0 5.7 436 0.68	120. 521 636 0.0 3.5 555 0.74
	788 99.2	708 78.8	780 87.2	719 85.1	71.7	1
	-	-		-	+	-
					+	
	21.8 11.0	11.3 8.9	5	12.6 1.5	.6 12.2	2.5
e Deer	21.8 11.0	5 11.3 8.9	5	.1 12.6 1.5	.6 12.2	12.3 2.5
fuddy Creek near Busby-Lame Deer	21.8 11.0	34.5 11.3 8.9	1.7 3.4	16.1 12.6 1.5	0.5 0.6 12.2	12.3 2.5

Sampling Locations: a--T02S,R40E,35C; b--T03S,R40E,02D.

	839	832	831	900	885	1
	114 0.86	124 0.81	144 0.80	135 0.93	145 0.90	158 0.85
			8.4			
	0.0	0.0	0.0	0.0	0.0	0.0
	527	515	493	550	533	561
			404			
	72.8 67.3	73.3 67.3	453 70.4 67.3 49.8	86.0 68.1	71.8 73.9	
	ı	i	ı	1	1	80
			-			08 0.
		1	1			3.0
		1	1			3.0
		1				3.0
Deer	5 6.2	1	1			3.0
Lame Deer	5 6.2	26.4 8.1	1	3.6 7.2		3.0
near Lame Deer	5 6.2	875 12. 26.4 8.1	935 4.5 21.3	1010 3.6 7.2	1032 2.6 5.6 5.0	1020 1.7 1.8 13.1 3.0
Lame Deer Creek near Lame Deer	5 6.2	12. 26.4 8.1	4.5 21.3	1010 3.6 7.2	2.6 5.6 5.0	1.7 1.8 13.1 3.0

Sampling Locations: a--T03S,R41E,10A; b--T03S,R41E,03B.

572 0.0 19.2 3525 0.50 5504
572
694
482. 545.
360.
2884
- 1
-
i
1
1

Sampling Location: a--TOlN, R43E, 06D

Creek near Busby-Lame Deer, and Lame Deer Creek near Lame Deer (Accessory Stations); Cow Creek Water Quality Analyses Completed by DHES: Nutrients and Metals--Davis Creek near Busby, Muddy near Colstrip (Miscellaneous Station). Table A06.

Si	1	1	1	1	
Hg	<.0002	<.0002	0.0026	<.0002	
Pb	< .005	<.005	<.005	<.005	
Cr	<.005	<.005	<.005	0.005	
PO	<.001	<.001	<.001	<.001	
Zn	<.005	<.005	<.005	<.005	
Cu	0.01	<.01	0.01	<.01	
Mn	0.09	0.12	0.24	0.39	
	3	7	_	0	
Fе	0.2	0.2	0.47	0.5	
TKjN Fe	0.2	0.2	4.0	0.5	
	!		1	1	
TKin	0.11		0.14	N.03	
NO _x -N NH3-N TIN IKjN	0.09 0.02 0.11	0.03 0.02 0.05	0.12 0.02 0.14	<.01 0.03 N.03	
NO _x -N NH3-N TIN IKjN	0.09 0.02 0.11	0.03 0.02 0.05	0.12 0.02 0.14	<.01 0.03 N.03	
NO _x -N NH3-N TIN TKjN	0.09 0.02 0.11	0.03 0.02 0.05	0.12 0.02 0.14	<.01 0.03 N.03	

Sampling Location: a--T04S, R38E, 11D.

	1	1	1	1	1	16.5
	0.0073	<.005 <.0002	<.0002	<.0002	<.0002	
	0.008	<.005	<.01	<.005	<.005	1
	<.005	<.005	<.005	<.005	0.005	
	<.001	<.001	<.001	0.003	<.001	
	<.005	0.010	<.005	<.005	<.005	
		0.01				
	0.08	0.070	0.058	0.065	0.04	
	0.31	0.33	.18	.21	.13	.10
	_	0	0	0	0	0
	1		}	+	}	0.41
	0.04 0.57	0.02 0.44	0.10	0.02	N.02	0.15 0.41
ame Deer	0.04 0.57	0.02 0.44	0.04 0.10	0.02	<.01 N.02	0.15 0.41
Busby-Lame Deer	0.04 0.57	0.02 0.44	0.06 0.04 0.10	0.01 0.02	0.02 <.01 N.02	0.13 0.02 0.15 0.41
k near Busby-Lame Deer	0.074 0.53 0.04 0.57	0.02 0.44	0.03 0.06 0.04 0.10	0.02 0.01 0.01 0.02	<.01 0.02 <.01 N.02	0.13 0.02 0.15 0.41

Sampling Locations: a--T02S, R40E, 35C; b--T03S, R40E, 02D.

		1	!	1	1	23.8	
	<.0002	<.005 <.0002	1	{	<.0002	1	
	<.005	<.005			<.005		
	0.008	<.005	1	1	0.005	!	
	<.001	<.001	1	1	<.001	!	
	<.005	<.005	1	1	<.005	1	
	<.01	<.01	1	1	<.01		
	0.045	0.068	1	ļ	0.10	!	
	0.23	97.0	1		0.25	0.09	
		1		1	1	0.29	
	0.14	0.34	0.38		N.04	N.15	
		0.02					
Deer	0.12	0.32	0.34	¦	<.01	0.15	
ear Lame	0.073	0.064	0.079		0.07	0.02	
Creek n	0.047	0.028	0.058	1	0.056	0.012	
Lame Deer	07/12/78a	08/16/78a 0.028 0.064 0.32	08/27/78a	11/05/78a	08/01/19b	11/06/79b	

Sampling Locations: a--T03S,R41E,10A; B--T03S,R41E,03B.

	ı	
	!	
	1	
	1	
	0.18	
	-	
Lstrip	1	
ear Col		
ow Creek ne	05/20/79a	
O	0	

Sampling Location: a--TO1N, R43E, 06D.

Water Quality Analyses Completed by DHES: Field Parameters and Common Ions--Tongue River near Sheridan-Decker, Ash Creek near Sheridan-Decker, and Youngs Creek near Sheridan-Decker (Accessory Stations). Table A07:

DS	1	448	254		493	492	1	1	1
H	!	0.25	0.11	1	0.20	0.24		1	
S04		102.	43.2	1	1111.	114.	1	 	1
C1		3.1	1.6	1	3.9	3.0		1	
003		8.2	0.0		0.0	0.0			1
HC03								1	
TA								1	
Na		19.0	9.5	1	24.9	23.3	1		1
Mg		31.4	15.1	1	33.9	33.9		 	1
Ca	1	57.6	33.2	1	62.0	57.5		1	1
TH	1	273	145		294	283		1	1
TC			-				1		
BOD		8.4	1	1	1	1		1	
BOD		8.4	1	1	1	1		1	
DO BOD	8.7	10.9 4.8	10.0	9.4	8.4	1		1	
DO BOD	8.7	10.9 4.8	10.0	9.4	8.4	1		1	
DO BOD	8.7	10.9 4.8	10.0	9.4	8.4	3.5 14.3 11.3	5.5 11.4	1	3.0 3.4 13.0
DO BOD	8.7	10.9 4.8	10.0	9.4	8.4	625 3.5 14.3 11.3	550 5.5 11.4	579 5.5 18.1	582 3.0 3.4 13.0
BOD	8.7	10.9 4.8	10.0	9.4	8.4	3.5 14.3 11.3	5.5 11.4	5.5 18.1	3.0 3.4 13.0

Sampling Locations (Wyoming): a--T57N, R84W, O1CA; b--T57N, R84W, O1CB; c--T57N, R84W, O1B (Interstate Ditch).

	1	1281	1304	1265		
		09.0	0.30	0.57	1	
		485.	512.	500.	1	
		1.0 4	50.3	0 51.6 500. (1	
		0.0	0.0	0.0	 	
				393		
				322		
	ł	02.	.80	100.	<u> </u>	
				100. 1		
				120. 1		
	1	7	73	7	- !	
		726				
	1	1	1	1	570	
	1	1	1	1	570	
	 	 	\ \ \	 	2.2 570	
	 	 	\ \ \	1	2.2 570	
ker	9.6 7	 	6.6 8.2	4.2 12.0	2.2 570	
near Sheridan-Decker	9.6	1.7 9.4	6.6 8.2	0.9 4.2 12.0	0.7 8.8 2.2 570	

Sampling Location (Wyoming): a--T57N, R84W, 01B.

782 24. 41.0 418 69.7 59.3 43.2 328 395 2.4 3.7 181. 0.70 890 94. 193. 8.9 418 69.7 59.3 43.2 328 395 2.4 3.7 181. 0.93 1215 64. 112. 8.7 565 81.7 87.8 72.6 356 425 4.8 5.5 314. 0.70 1352 33. 58.9 586 79.8 94.0 85.7 351 415 6.7 6.0 381. 0.70 1002 25. 48.3 10.2 429 61.9 66.6 53.6 331 404 0.0 2.9 216. 0.72 1000 20. 28.4 9.6 1.9 210		674	756	992	1069	806	1
11.0 379 65.6 52.3 37.0 310 370 4.1 13. 8.9 418 69.7 59.3 43.2 328 395 2.4 12. 8.7 565 81.7 87.8 72.6 356 425 4.8 18.9 586 79.8 94.0 85.7 351 415 6.7 18.3 10.2 429 61.9 66.6 53.6 331 404 0.0 18.4 9.6 1.9 210		0.70	0.93	0.70	0.70	0.72	1
11.0 379 65.6 52.3 37.0 310 370 4.1 13. 8.9 418 69.7 59.3 43.2 328 395 2.4 12. 8.7 565 81.7 87.8 72.6 356 425 4.8 18.9 586 79.8 94.0 85.7 351 415 6.7 18.3 10.2 429 61.9 66.6 53.6 331 404 0.0 18.4 9.6 1.9 210		141.	181.	314.	381.	216.	1
11.0 379 65.6 52.3 37.0 310 370 4.1 13. 8.9 418 69.7 59.3 43.2 328 395 2.4 12. 8.7 565 81.7 87.8 72.6 356 425 4.8 18.9 586 79.8 94.0 85.7 351 415 6.7 18.3 10.2 429 61.9 66.6 53.6 331 404 0.0 18.4 9.6 1.9 210		3.0	3.7	5.5	0.9	2.9	-
11.0 418 69.7 59.3 43.2 328 12. 8.7 565 81.7 87.8 72.6 356 18.3 10.2 429 61.9 66.6 53.6 331 18.4 9.6 1.9 210		4.1	2.4	4.8	6.7	0.0	
11.0 418 69.7 59.3 43.2 12. 8.7 565 81.7 87.8 72.6 13. 8.9 565 81.7 87.8 72.6 13. 9.9 670 894.0 85.7 18.3 10.2 429 61.9 66.6 53.6 18.4 9.6 1.9 210		370	395	425	415	404	1
11.0 379 13. 8.9 418 12. 8.7 565 18.9 586 18.3 10.2 429 18.4 9.6 1.9 210							
11.0 379 13. 8.9 418 12. 8.7 565 18.9 586 18.3 10.2 429 18.4 9.6 1.9 210		37.0	43.2	72.6	35.7	53.6	1
11.0 379 13. 8.9 418 12. 8.7 565 18.9 586 18.3 10.2 429 18.4 9.6 1.9 210		52.3	59.3	37.8	8 0.46	9.99	1
11.0 379 13. 8.9 418 12. 8.7 565 18.9 586 18.3 10.2 429 18.4 9.6 1.9 210		5.6	1.6	1.7	9.8	1.9	<u> </u>
11.0		9 6/	18 6	9 599	986 7	129 6	!
11.0		3	4	۵,	L)	7	
near Sheridan-Decker 7.8 8.38 782 24. 41.0 1.2 8.38 890 94. 193. 8.9 1.0 8.34 1215 64. 112. 8.7 2.7 8.30 1352 33. 58.9 9.2 8.30 1002 25. 48.3 10.2 0.9 8.30 1000 20. 28.4 9.6 1.							
near Sheridan-Decker 7.8 8.38 782 24. 41.0 1.2 8.38 890 94. 193. 8.9 1.0 8.34 1215 64. 112. 8.7 2.7 8.30 1352 33. 58.9 9.2 8.30 1002 25. 48.3 10.2 0.9 8.30 1000 20. 28.4 9.6					1	1	210
near Sheridan-Decker 7.8 8.38 782 24. 41.0 1.2 8.38 890 94. 193. 1.0 8.34 1215 64. 112. 2.7 8.30 1352 33. 58.9 9.2 8.30 1002 25. 48.3 0.9 8.30 1000 20. 28.4					1	1	210
near Sheridan-Deck 7.8 8.38 782 24. 1.2 8.38 890 94. 1.0 8.34 1215 64. 2.7 8.30 1352 33. 9.2 8.30 1002 25. 0.9 8.30 1000 20.					1	1	210
near Sheridan 7.8 8.38 782 1.2 8.38 890 1.0 8.34 1215 2.7 8.30 1352 9.2 8.30 1002 0.9 8.30 1000	er	1.0			1	1	210
near She 7.8 8.38 1.2 8.38 1.0 8.34 2.7 8.30 9.2 8.30 0.9 8.30	-Decker	1.0	193. 8.9	112. 8.7	58.9	48.3 10.2	28.4 9.6 1.9 210
neal 7.8 { 11.2 { 11.0 { 2.7 { 9.2 { 0.9 {	ridan-Decker	1.0	94. 193. 8.9	64. 112. 8.7	33. 58.9	25. 48.3 10.2	20. 28.4 9.6 1.9 210
*\-\00011	r Sheridan-Decker	1.0	890 94. 193. 8.9	1215 64. 112. 8.7	1352 33. 58.9	1002 25. 48.3 10.2	1000 20. 28.4 9.6 1.9 210
Youngs Cree 08/26/78a 07/13/79a 07/26/79a 08/06/79a 10/18/79a	ek near Sheridan-Decker	1.0	94. 193. 8.9	64. 112. 8.7	1352 33. 58.9	25. 48.3 10.2	20. 28.4 9.6 1.9 210

Sampling Location (Wyoming): a--T58N, R83W, 30B.

Water Quality Analyses Completed by DHES: Nutrients and Metals--Tongue River near Sheridan-Decker, Ash Creek near Sheridan-Decker, and Youngs Creek near Sheridan-Decker (Accessory Stations). Table A08.

Si			1	-			ł	1	1
Hg									
Pb				1		1			
Cr									
PO		1				}			1
Zn			}	1	1			¦	
Cu		1	1			}		1	
Mn	1		1	!		1			
те			1	!			0.26		
TKjN		1				1	1	1	1
LIN		0.02		<.02	N.01	<.02	t.		1
NH3-N	1	0.01		<.01	0.01	<.01			!
NOx-N an-Decke	-	0.01		<.01	<.01	<.01	1	}	1
TP Sherida		0.057	1	0.10	0.08	0.04	1	1	1
OP er near	-	0.033		090.0	0.050	0.047	1	1	
Date OP TP NO _X -N NH3-N T Tongue River near Sheridan-Decker	07/07/78a	08/26/78a	06/26/79b	07/26/79a	08/06/79a	08/30/79b	09/05/79a	10/18/79b	10/18/79c

Sampling Locations (Wyoming): a--T57N, R84W, O1CA; b-T57N, R84W, O1CB; c--T57N, R84W, O1B (Interstate Ditch).

		1		28.	
	!	<.0002		<.005 <.0002	!
		<.005	¦	<.005	
		<.005	!	<.005	-
	1	<.001		<.001 <.005	1
		<.005	1	<.005	
		<.01		<.01	1
	1	0.030	!	0.08 0.03	
		0.07		0.08	!
		1		!	
	1	0.11	0.08	0.07	1
		0.03	0.01	0.04	
Decker	1	0.08	0.07	0.03	!
eridan-	-	0.02	0.01	0.01	!
near Sh	1	0.016	0.009	0.010	1
Ash Creek near Sheridan-Decker	06/10/78a	07/26/79a	08/06/79a	08/30/79a	10/18/79a

Sampling Location (Wyoming): a--T57N, R84W, OlB.

0	<.0002	1	<.0002	1	0.80 0.10 <.01 0.005 <.001 0.005 <.005 <.0002 22.	!
1	<.005		<.005	1	<.005	
(<.005	1	<.005		0.005	1
	<.00T	1	<.001		<.001	1
1	<.005	¦	0.007	1	0.005	
1	<.01		<.01		<.01	
6	0.086	1	0.15	-	0.10	
1	0.75		1.4	1	0.80	!
(0.13	1	0.12	0.05	N.03	
il.	0.02		0.01	0.02	0.03	1
an-Decke	0.11	1	0.11	0.03	<.01	!
Sherid	0.040	1	0.13	0.07	0.07	1
ek near	0.016	1	0.079	0.048	0.050	1
Youngs Creek near Sheridan-Decker	08/26/78a	07/13/79a	07/26/79a	08/06/79a	08/30/79a	10/18/79a

Sampling Location (Wyoming): a--T58N, R83W, 30B.

Water Quality Analyses Completed by DHES: Field Parameters and Common Ions--Tongue River near Pyramid Butte-Birney (Intensive Station). Table A09.

	DS	196	1	317	1	488	767	526	1		652	841	757	1			1		1		1	1	1	
	[24	0.14	1	0.17	1	0.27	0.26	0.27	1	1	0.37	0.34	0.31	1	1	1		}	1		1	1	1	
	S04	33.8		93.2	1	148.	149.	163.		1		320.		1	1	!	1	1	1	1	1	1	1	
	C1	1.3		2.2		2.8	3.1	3.4			4.2	5.2	4.8	1	1		-	1	1	1	1	1	1	
	003	0.0		4.8	-		0.0		-	-		0.0		1	1	1	}	}	1	1		1	1	
	HC03	111		143	-		222				273			1			1	-	-		-	-	-	
	TA	91		125			182		1		232			1	1	-	1	-	1	-	1	1	-	
	Na	9.1	-	14.3	-	27	26.9	31	-		46.2				1	-	1	}	-	-	-	-	-	
	Mg	13.5	1	20.6	-		34.5				47.7			1	}	}			-	}		1	-	
	Ca	27.4	-	38.6		57.2	58.4	62.4			65.2	83.2	70.7		1		1	1		1	-	!	-	
	TH	124	-	181	-	279	288	304	1		359	468	424	}	-	1	1	1			}	1	1	
	TC		1	1		1			1	1	20	1	1	1	1	-	1	1		1	180	1	20	
	BOD	1	1.4		ļ	1.1	1	1	1		1.9	1	3.1	1	1	1	1	1		2.2	1.1	2.2	1.9	
	00	8.6	8.0			9.0		7.9	1		11.7			9.5	9.2	10.2	7.6	9.0	∞	0	8	12.5	12.6	
,	TSS	42.5	1	9.8	-	3.3	3.5	2.9	2.8	4.2	0.9	4.2	12.8	0.6	105.	135.	35.0	4.3	8.6	2.4	2.8	1.9	6.7	
	Turb	42.	24.	7.0		5.6	2.2	1.4	2.0	3.3	1.7	2.0	8.0	7.7	32.	31.	7.8	7.5	4.0	2.3	2.1	3.3	1.4	
	1			7		7	0	2	∞)5	8	30	⁴ 5							∞	8	7	89	
	SC	270	33	362	-	59	61	99	79	7	7	100	6	4	51	5.	9	9	.9	7	78	78	76	
	DH SC	.03	8.02 33	.50		8.30 597			.11	.48	8.45 79	.20	.30	.18		.34		.42	.10	.50				
		.5 8.03	8.02	.5 8.50	.3	.0 8.30	.18.20	.0 8.00	.8 8.11	.4 8.48	3 8.45	08.20	18.30	9 8.18	5 8.16	8 8.34	.16	5 8.42	4 8.10	3 8.50	4 8.32	.5 8.22		

Sampling Location: a--T06S,R42E,31D.

Water Quality Analyses Completed by DHES: Nutrients and Metals--Tongue River near Pyramid Butte-Birney (Intensive Station). Table AlO.

Si	1	1			1	-	1		1	1	}	}	1	-	ļ	1		1		1	4.2	4.2
Hg	<.0002	1	-			1	1		<.0002	<.0002	¦	¦	1	<u> </u>		<.0002	<.0002	1	<.0002		<.0002	
Pb	900.0						!	!	<.005	<.01	1	}		!	1	1		1		1	1	1
Cr									*	•												
PO	<.001	1					1		<.001	<.001	1		1				}	}			1	1
Zn	0.005	!	1	1		1		1	<.005	<.005	1	ł	1	1			1	1	!	1	1	1
Cu	<.01		-	!	1	1			<.01	<.01	1	-		1	1	-		!	1	i		!
Mn	0.08	-	!	1		1		1	0.040	0.019				1		0.065	1	1	1		!	
Fe	91.0		!	-				1	90.0	0.05	i		!	1	1	0.34	0.16	1	0.08		90.0	1
TKjN		-	1	-	1	-	1	1	1	1				1	1	1		1	0.52		0.25	1
TIN	0.21		1	0.03	ł	N.01	1		<.02	0.03	N.25	<.02	l	N.03		<.02	1	N.01	0.02	1	0.02	1
NH3-N	0.05		1	0.01		0.01	1		<.01	0.01	<.01	<.01	1	<.01	1	<.01	1	<.01	0.01		0.01	
NOx-N	0.16		1	0.02	1	<.01			<.01	0.02	0.25	<.01	1	0.03		<.01		0.01	0.01	-	0.01	
TP	0.112	1	1	0.023	1	0.014	1	1	0.02	0.01	0.02	0.03	1	0.12	1	0.05	-	0.03	<.01		0.01	i
OP	0.031			0.005		900.0	-	i	0.002	<.001	0.002	0.003	1	0.069	-	0.020	1	0.010	<.001		0.004	}
Date	06/28/78a	07/19/78a	08/03/78a	08/18/78a	08/24/78a	08/27/78a	09/05/78a	09/09/78a	10/08/78a	11/04/78a	03/31/79a	05/19/79a	06/21/79a	08/01/79a	08/08/79a	08/18/79a	09/05/79a	09/15/79a	09/29/79a	10/19/79a	11/02/79a	11/05/79a

Sampling Location: a--TO6S,R42E,31D.

Water Quality Analyses Completed by DHES: Field Parameters and Common Ions--Squirrel Creek near Decker (Intensive Station) and Deer Creek near Decker (Accessory Station). Table All.

DS	I	1885	1782	1174	1364	1		1	1		1		1	1	
[Tri		0.46													
804		918	770	462	265	1					1			1	
C1	1	4.9	4.8	3.4	2.9		1		1		1	1		1	
603		7.2	0.0	0.0	0.0				1			1			
HC03		488	586	420	473	1			1		1		1		1
TA	1	412	481	344	388	1	1	1			1	1	-	1	
Na	-	188.	138.	82.0	93.8	1	1		1		1	1	1	1	
Mg	l I	180.	162.	102.	121.	1	İ	1		1	1	1	1	1	
Ca		98.0	121.	104.	107.	1	1	1	1	1	1	1		1	
TH		986	196	681	764		1		1	1		1		1	1
TC	1	-		1						1	1		720	-	90
BOD TC		 													2.8 90
BOD				1	1.4	1	1	1		}	3.6	4.9	3.5	2.8	2.8
BOD	10.3		 	11.5	9.5 1.4	11.5	8.4	8.8	12.7	11.7	13.3 3.6	15.0 4.9	14.0 3.5	13.7 2.8	12.8 2.8
TSS DO BOD	10.3	8.1 12.6	6.1 9.8	29. 105. 11.5	16. 37.4 9.5 1.4	11. 23.2 11.5	60. 139. 8.4	19. 39.6 8.8	11. 28.0 12.7	16. 40.1 11.7	12. 32.9 13.3 3.6	17. 33.9 15.0 4.9	30.8 14.0 3.5	21.6 13.7 2.8	44.8 12.8 2.8
Turb TSS DO BOD	10 10.3	3.5 8.1 12.6	6.1 9.8	29. 105. 11.5	16. 37.4 9.5 1.4	11. 23.2 11.5	60. 139. 8.4	19. 39.6 8.8	11. 28.0 12.7	16. 40.1 11.7	12. 32.9 13.3 3.6	17. 33.9 15.0 4.9	14. 30.8 14.0 3.5	2150 14. 21.6 13.7 2.8	18. 44.8 12.8 2.8
Turb TSS DO BOD	10 10.3	3.5 8.1 12.6	6.1 9.8	29. 105. 11.5	16. 37.4 9.5 1.4	11. 23.2 11.5	60. 139. 8.4	19. 39.6 8.8	11. 28.0 12.7	16. 40.1 11.7	12. 32.9 13.3 3.6	17. 33.9 15.0 4.9	14. 30.8 14.0 3.5	2150 14. 21.6 13.7 2.8	44.8 12.8 2.8
Turb TSS DO BOD	10.3	8.1 12.6	6.1 9.8	29. 105. 11.5	16. 37.4 9.5 1.4	11. 23.2 11.5	60. 139. 8.4	39.6 8.8	11. 28.0 12.7	16. 40.1 11.7	12. 32.9 13.3 3.6	17. 33.9 15.0 4.9	14. 30.8 14.0 3.5	14. 21.6 13.7 2.8	18. 44.8 12.8 2.8

Sampling Locations: a--T09S, R40E, 29CD; b--T09S, R40E, 29CB.

	_				
-1	240	5555	1	-	
-	31 5	23 5	!	34	
'	30 0.	0 0,	'	0 0.	
i	2 333	4 377	i	0 400	
	27.	33.4		28.	
1	0.0	8.4	1	0.0	
	435	272	1	654	
	356	237	1	536	
	835.	878.	1	865.	
1	357.	373.	1	1	
1	257.	220.	1	1	
				-	
1	21	20	'	'	
!	<u> </u>	<u> </u>	80	140	
!	<u> </u>	<u> </u>	80	140	
!	<u> </u>	<u> </u>	80	140	
!	<u> </u>	<u> </u>	80	140	
11.0	7.1 13.4	6.9	1.7 9.5 1.5 80	1.4 11.0 2.1 140	
11.0	7.1 13.4	6.9	1.7 9.5 1.5 80	140	
11.0	7.1 13.4	6.9	2.3 1.7 9.5 1.5 80	4.8 1.4 11.0 2.1 140	
11.0	7.1 13.4	6.9	6100 2.3 1.7 9.5 1.5 80	6100 4.8 1.4 11.0 2.1 140	
11.0	7.1 13.4	6.9	6100 2.3 1.7 9.5 1.5 80	6100 4.8 1.4 11.0 2.1 140	
11.0	7.1 13.4	6.9	10.7 8.08 6100 2.3 1.7 9.5 1.5 80	1.7 8.02 6100 4.8 1.4 11.0 2.1 140	
11.0	7.1 13.4	6.9	10.7 8.08 6100 2.3 1.7 9.5 1.5 80	1.7 8.02 6100 4.8 1.4 11.0 2.1 140	
11.0	21.5 8.15 5450 3.6 7.1 13.4	6.9	10.7 8.08 6100 2.3 1.7 9.5 1.5 80	1.7 8.02 6100 4.8 1.4 11.0 2.1 140	
		257. 357. 835. 356 435	257. 357. 835. 356 435 220. 373. 878. 237 272	9 257. 357. 835. 356 435 4 220. 373. 878. 237 272	257. 357. 835. 356 435 0.0 27.2 3330 0 220. 373. 878. 237 272 8.4 33.4 3770 0

Sampling Location: a--T09S,R41E,10C.

Water Quality Analyses Completed by DHES: Nutrients and Metals--Squirrel Creek near Decker (Intensive Station) and Deer Creek near Decker (Accessory Station). Table A12.

Si		1	1	1	1	1	1	1	1	1	1	{		1	13.7	12.6
Hg			<.0002		1	<.0002		1	1	1	1			1	1	
Pb		1	<.005		1	<.005	1	1,	1	ł		1		1	1	
Cr		1	<.005		1	<.005	1	1		1		1	1	1	-	¦
PO		1	<.001	1	1	<.001	ł		{	1	1	1	1	1		1
Zn		-	0.005		1	<.005		1		}	1	1	1	}	1	
Cu		1	<.01	1		<.01	1				-					1
Mn			0.055	1	1	0.17			1	1	1	1		1	1	1
Fе		1	0.16	1	1	09.0	1		!	1		-	ļ	1	1	
TKjN		1	1		-	1		1	-	-		1	0.65		0.56	1
TIN		i	0.07		0.36	<.02		0.16	0.19	90.0		0.10	0.11	1	0.10	1
NH3-N		1	0.02		0.04	<.01	I	0.03	0.02	0.03	ŀ	0.01	0.02	1	0.03	
NO _x -N	er er	1	0.05	1	0.32	<.01	-	0.13	0.17	0.03	1	0.09	0.09	1	0.07	
TP NO _x -N	ar Deck	1	0.020	¦	0.07	0.05	1	0.15	90.0	0.04	1	0.03	0.03	1	0.03	!
OP	reek ne	1	0.007		0.012	0.028		0.080	0.035	0.019	1	0.019	0.012	1	0.022	
Date	Squirrel Creek near Decker	06/10/78b	08/26/78b	11/04/78b	04/01/79b	05/20/79b	06/21/79b	07/26/79a	08/08/79a		09/05/79a	09/15/79a	09/28/79a	10/18/79a	11/01/79a	11/06/79a

Sampling Locations: a--T09S, R40E, 29CD; b--T09S, R40E, 29CB.

	i	1	1	i	9.0
		<.0002	1	1	1
		<.005		1	-
	1	<.005		1	1
	1	<.001		1	1
	1	<.005	1		1
		0.02		1	!
	1	0.077	1		
			1	1	1
	1	99.0	N.03	1	<.02
		0.02	0.03	}	<.01
	1	0.64	<.01	1	<.01
ecker	1	0.039	0.030	1	0.01
near D		0.016	900.0	1	0.005 0.01
Deer Creek near Decker	06/10/78a	08/15/78a	08/26/78a	10/18/79a	11/05/79a

Sampling Location: a--T09S,R41E,10C.

7 4 7

Decker-Birney, Prairie Dog Creek near Pyramid Butte-Birney, and Bull Creek near Phyramid Butte-Birney (Accessory Stations); Crazy Head Springs near Ashland-Lame Deer (Miscellaneous Station). Water Quality Analyses Completed by DHES: Field Parameters and Common Ions--Canyon Creek near Table A13.

TA HCO ₃ CO ₃ C1 SO ₄ F DS	447 38.4 6.0 488. 0.74	424 483 16.8 5.1 541. 0.80 1393	473 27.8 8.0 510. 0.76	429 19.2 8.2 498. 0.70	521 0.0 8.2 537. 0.73	534 0.0 5.8 575. 0.78
Na	160.	145.	148.	152.	150.	148.
Mg	121.	141.	122.	126.		1
Ca	57.6	60.8 141.	55.3	41.8	51.2	1
TH		730				
TC		1	1			-
BOD TC		 			1	1.9
1		 			1	1.9
TSS DO BOD	1.0	<.4 10.4	11.7	13.2	12.2	13.1 1.9
TSS DO BOD	1.0	<.4 10.4	11.7	0.8 13.2	12.2	13.1 1.9
TSS DO BOD	1.0	<.4 10.4	1.1 1.2 11.7	1.0 0.8 13.2	1654 0.4 0.8 12.2	0.5 0.8 13.1 1.9
TSS DO BOD	1.0	<.4 10.4	1.1 1.2 11.7	1.0 0.8 13.2	1654 0.4 0.8 12.2	0.5 0.8 13.1 1.9
TSS DO BOD		<.4 10.4	1.1 1.2 11.7	1.0 0.8 13.2	0.4 0.8 12.2	0.8 13.1 1.9

Sampling Location: a--T07S,R31E,11C.

	135	1417	1477	-	-	
	0.39	0.96	460 0.0 9.0 674. 0.44 1477	!	542 0.0 5.6 635. 0.86	
	617.	543.	674.	1	635.	
	7.5	8.2	0.6	!	2.6	
	21.6	0.0	0.0		0.0	
	393	503	7 60	1	545	
	358	412	377		777	
	108.	150.	103.		170.	
	156.	115.	57.5 173.	1	-	
	47.8	93.5	57.5			
	762	707	856	1		
			-			
irney						
utte-Birney						
amid Butte-Birney			0.5 0.8 10.6			
r Pyramid Butte-Birney	0 0.8 0.9 10.5	1.3 2.2 8.5	0.5 0.8 10.6	1.1 0.8 4.8	1.2 2.0 11.0 3.5	
k near Pyramid Butte-Birney	1580 0.8 0.9 10.5	1.3 2.2 8.5	0.5 0.8 10.6	.55 1690 1.1 0.8 4.8	1.2 2.0 11.0 3.5	
S Creek near Pyramid Butte-Birney	0 0.8 0.9 10.5	2.2 8.5	0.8 10.6	1690 1.1 0.8 4.8		
Prairie Dog Creek near Pyramid Butte-Birney	1580 0.8 0.9 10.5	1.3 2.2 8.5	0.5 0.8 10.6	.55 1690 1.1 0.8 4.8	1.2 2.0 11.0 3.5	

Sampling Locations: a--T06S, R42E, 31D (at mouth); b--T06S, R41E, 26A.

Sampling Location: a--T06S, R42E, 19A.

	388
	1.8 17.2 1.30
	0.0
	0 281
	230
	225 42.8 28.8 15.8
	1
	I
e Deer	
1-Lame	1
Ashlanc	0
ear	78
ss n	7.91
ing	∞
- 54	
Spr	18
Head Spr	79a 18
azy Head Spr	/09/79a 18
Crazy Head Springs near Ashland-Lame	08/09/79a 18

Sampling Location: a--T02S, R42E, 35C.

Water Quality Analyses Completed by DHES: Nutrients and Metals--Canyon Creek near Decker-Birney, Prairie Dog Creek near Pyramid Butte-Birney and Bull Creek near Pyramid Butte-Birney (Accessory Stations); Crazy Head Springs near Ashland-Lame Deer (Miscellaneous Station). Table A14.

Si	1	1	ł	1	20.	20.2
Hg	1	1	<.0002	<.0002	<.0002	
Pb	Í	-	<.005	0.005	<.005	1
Cr		1	0.005	0.005	900.0	1
Cd			<.001	<.001	<.001	
Zn	;	1	<.005	<.005	<.005	
Cu		1	<.01	<.01	<.01	
Mn		1	0.005	0.010	<.005	
Fe		1	0.05	0.02	0.02	0.07
TKjN	1		1	1		0.15
TIN	0.44	1	N.35	N.30	N.58	0.81
NH3-N	0.01	1	<.01	<.01	1	0.01
NOx-N -Birney	6.43	}	0.35	0.30	0.58	0.80
TP	<.01	}	0.01	<.01	<.01	<.01
OP ek near	<.001	-	0.001	0.002	<.001	<.001
Date OP TP NO _X -N M Canyon Creek near Decker-Birney	11/04/78a	06/21/79a	06/26/79a	07/27/79a	08/30/79a	11/02/79a

Sampling Location: a--T07S,R41E,11C.

	!	-	11.7	1	23.0
	<.0002	<.0002	<.0002		1
	<.005	<.005	0.007	1	1
	<.005	<.005	0.005		}
	<.001	<.001	<.001		1
	<.005	<.005	<.005	;	
	0.01	<.01	<.01	}	}
	0.010	0.035	0.005	;	
	90.0	0.12	0.03	1	0.08
	}	1			0.26
irney	<.02	0.39	0.08	0.42	0.11
Sutte-B	<.01	0.01 0.39	0.03	0.02	0.01
yramid E	<.01	0.38	0.05	0.40	0.10
near F	0.03	0.01	0.01	0.01	<.01
g Creek	0.008	900.0	<.001	0.010	<.001
Prairie Dog Creek near Pyramid Bu	07/12/79b	08/18/79a	08/30/19b	09/05/79a	11/02/79a

Sampling Locations: a--T06S,R42E,31D (at mouth); b--T06S,R41E,26A.

	<.005 <.0002	5 <.005 <.0002	<.005 <.0002	
	<.001 <.005	5 <.001 0.006	<.001 0.005	
	<.005	<.005	<.005	
	0.01	<.01	<.01	
	0.010	0.015	0.04	
	0.21	0.10	0.36	
	-		-	
irney	0.28	N.36	0.47	
Butte-Birney	.25 0.03 0.28	N.36	0.47	
yramid Butte-Birney	.25 0.03 0.28	0.36 <.01 N.36	0.41 0.06 0.47	
near Pyramid Butte-Birney	.25 0.03 0.28	0.36 <.01 N.36	0.47	
Bull Creek near Pyramid Butte-Birney	0.009 0.04 0.25 0.03 0.28	<.001 <.01 0.36 <.01 N.36	0.02 0.41 0.06 0.47	

Sampling Location: a--T06S, R42E, 19A.

	-
	<.0002
	<.005
	<.005
	<.001
	<.005
	<.01
	0.045
	0.10
eer	0.09
-Lame Deer	0.03 0.
Ashland-	90.0
s near	0.03
Spring	0.016
Crazy Head Springs near Ashland	08/09/79a

Sampling Location: a--T02S,R42E,35C.

Water Quality Analyses Completed by DHES: Field Parameters and Common Ions--Cook Creek near Birney-Birney Village, Logging Creek near Ashland, and Beaver Creek near Brandenberg (Accessory Stations). Table A15.

DS					1626
伍		1	1.20	1.20	1.50
70S			579	498	507
C1			4.0	3.6	6.8
C03			4.1	9.1	0.0
HC03			671	652	713
TA			557	550	584
Na			193.	192.	197.
Mg			117.	111.	119.
Ca		!	92.0	91.2	82.3
TH			712		
,					
TC		+	1	1	1
BOD TC		1	1.1		
1		1			8.9
ВОД	ou!	8.8	8.5 1.1		8.9
TSS DO BOD	ou!	8.8	1.9 8.5 1.1	4.6	8.9
DO BOD	rney Village	4.1 8.8	1.9 8.5 1.1	4.6	1860 4.9 7.6 6.8
Turb TSS DO BOD	rney Village	4.1 8.8	1.9 8.5 1.1	4.6	1860 4.9 7.6 6.8
Turb TSS DO BOD	rney Village	8.8	8.5 1.1	4.6	4.9 7.6 6.8

Sampling Locations: a--T05S, R42E, 25B; b--T05S, R42E, 23C; c--T05S, R42E, 26B.

	852	781	807	782	985
	0.98	0.90	1.00	09.0	1.20
	134	116	147	248	193
		7.0			
		0.0			
	987.	481	9/4	338	564
	439	394	390	277	462
	69.5 81.0	57.6 63.7 55.0	61.3 57.8	55.0 66.1	80.0 87.0
	425 55.6	406 57.6	404 60.8	400 69.7	471 56.6
				}	!
	1		1	1	
	1		1	1	
	1		1	1	
·a1	33. 45.9 8.0	17. 16.7 9.1	15. 18.8	13. 4.5 7.8	
hland	33. 45.9 8.0	16.7 9.1	15. 18.8	13. 4.5 7.8	19. 39.8 8.2
eek near Ashland	33. 45.9 8.0	17. 16.7 9.1	15. 18.8	13. 4.5 7.8	

Sampling Locations: a--T03S,R44E,20C; b--T03S,R44E,28A; c--T03S,R44E,19A.

	1 1 1 1 1 1	96.8 144. 352. 518 630 0.5 3.1 1047 0.56	131. 163. 405. 655 798 0.0 4.5 1190 0.63	214. 314. 685. 664 809 0.0 9.0 2415 0.54	111. 169. 367. 500 588 11.0 10.1 1210 0.47		113. 172. 350. 448
	-	833	666	1828	973		1
		1					
	11.3	13.1 10.9 9.8	12.8	10.9 3.9 3.5	2.2 11.9	 	2.2 4.5
Seaver Creek near Brandenberg	78c 22.0 8.19 2740 13.	78b 21.8 8.32 2670 6.2		5.0 7.60 5000	25.9 8.22 2805	28.0	79a 18.0 8.06 2925 2.1
Beaver	07/13/78c	09/03/78b	10/09/78b	11/05/78d	07/12/79a	07/18/79a	08/24/79a

Sampling Locations: a--T01S, R46E, 20B; b--T01S, R45E, 10D; c--T01S, R45E, 10A; d-T01N, R44E, 35A (near mouth).

Water Quality Analyses Completed by DHES: Nutrients and Metals--Cook Creek near Birney-Birney Village, Logging Creek near Ashland, and Beaver Creek near Brandenberg (Accessory Stations). Table A16.

Si	1	1			
Hg		<.0002	<.005 <.0002	<.0002	
Pb	1	<.005	<.005	<.005	
Cr		<.005	<.005	<.005	
Cd	1	<.001	<.001 <.005	<.001	
			<.005		26B.
				<.01	,R42E,
Mn	1	0.064	0.054	0.37	:5B; b705S,R42E,23C; cT05S,R42E,26B.
e e	1	0.22	0.19	0.75	,23C;
TKjN			1	1	S,R42E
TIN	1	0.40	0.03	N.03	b7:05
NH3-N illage	1	0.01	0.02	0.03	E,25B;
Date OP TP NO _X -N NH3-N Cook Creek near Birney-Birney Village	1	0.39	0.01	<.01	05S,R42]
TP irney-B	1	0.068	0.05	0.02	s: aT
OP near B	-	0.064	0.014	0.018	cation
Creek	1/785	4/78c	8/78a	15/79a	Sampling Locations: aT05S,R42E,2

	!	1	1	1	1	
	<.0002	0.0003	<.0002	.!	<.0002	
	0.005	<.005	<.005		<.05	
	<.005	<.005	<.005		<.05	
	<.001	<.001	<.001		<.001	
	0.008	<.005	<.005		<.005	
	0.02	0.01	<.01		<.01	
	0.04	0.015	0.085	1	0.02	
	. 63	0.36	47	ı	45	
	0	0	0	1	0	
	0		-0			
	1	1		1		
	60.0	N.02		0.22	N.01	
pu	.07 0.02 0.09	.02 <.01 N.02	0.04	0.02 0.22	N.01	
r Ashland	.07 0.02 0.09	.02 <.01 N.02	0.01 0.03 0.04	0.02 0.22	0.01 N.01	
eek near Ashland	0.02 0.09	.02 <.01 N.02	0.04 0.01 0.03 0.04	0.20 0.02 0.22	<.01 0.01 N.01	

Sampling Locations: a--T03S,R44E,20C; b--T03S,R44E,28A; c--T03S,R44E,19A.

					ŀ	
1	<.0002	<.0002	<.0002	<.0002		<.0002
1	<.01	<.01	<.01	<.005		0.008
-	<.005	<.005	<.005	<.005		0.008
1	<.001	<.001	<.001	<.001	1	<.001
	<.005	0.005	<.005	<.005	1	0.005
	<.01	<.01	0.01	0.01		<.01
1	0.10	0.12	0.41	0.070	1	0.41
1	0.22	0.39	1.1	0.12	1	0.25
1	1	1	!	1	1	1
1	N.02	N.02	0.04	<.02	1	N.17
1	0.02	0.02	0.02	<.01	1	0.17
1	<.01	<.01	0.02	<.01	1	<.01
1	0.05	0.04	0.04	90.0	1	0.01
+	0.011	0.010	0.014	0.014		0.008
07/13/78c	09/03/78b	10/09/78b	11/05/78d			08/24/79a
				0.011 0.05 <.01 0.02 N.02 0.39 0.12 <.01 0.005 <.001 <.005 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 <.01 <.0002 0		

Sampling Locations: a--T01S,R46E,20B; b--T01S,R45E,10D; c--T01S,R45E,10A; d--T01N,R44E,35A (near mouth).

Water Quality Analyses Completed by DHES: Field Parameters and Common Ions--Upper Hanging Woman Creek near Quietus-Decker (Intensive Station). Table A17.

DS	7682	3581	4020 3952	1		3628	5556	1	1		1		2771	o o		}	1	
[II	0.57	0.76	0.74	1		0.77	0.62		1	1		1	0.70	0.40	1	1	1	0.74
804	5450	1983	2390 2365			2100	3350		1	1		1	1650	0069	1	1	1	2250
C1	12.7	13.2	12.6		;	14.1	15.2	1				-	17.4	30.3	1	1	1	13.2
C03	0.0	10.0	0.0		1	0.0	0.0	-	-		1	1	0.0	0.0	1		1	0.0
HC03	628	566	539		;	547	0/0	1			1		644	569	1	1	1	580
TA	515	494	442		:	449	530	1		1		1	368	995		1		475
Na	995	620	662	-	(580	096	-			I		463	1950	1	1	1	260
Mg	342	234	242			218	346	-		1	1	1	179	645	1	1	1	
Ca	254	164	174		;	168	192 238	1				-	120	328	1	1	1	
TH	2041	1372	1428	1	;	1316	2020	1	1	1		1	767	3474	1	1	1	1
IC	1 1			1						1			1	}	1	30	1	1
BOD	0	3.2	2.7	-		"	4.2	1				-	1	I	3.4	2.3	2.2	1.5
00	7.0	8.I 7.5	9.7	10.0	1	11	9.3	9.2	10.3	8.0	11.4	10.9	11.7	15.3	10.4	9.3	10.9	11.1
TSS	28.1	23.7	16.3	30.8	11.8	11	24.2	14.0	6.5	6.7	15.2	3.7	4.0	0.9	2.4	3.6	5.2	4.5
Turb	60.	17. 14.	11.	18.	7.0	5.4	4.8	0.6						•		•	•	•
SC	3590	5910 3920	4350	4220	4 200	4050	4200	5200	4750	4893	4738	3400	3320	<u>ത</u>	3800	3900	3700	3780
Hd	.88	.12	8.30	. 20	80.	.10	8.00	.10	.21	. 27	. 25	.18	.31	•	•		8.02	8.00
Temp	14.0	24.0	22.5	3	\circ	5	·	•	6.	22.3	4.	3.	·	0	17.3	0	6.4	4.9
Date	78a 78a			09/05/78a		10/07/78a		06/21/79b	9,0	9	Ъ	09/04/19b) p *	09/28/79c*	9/28/79b	10/18/79b	11/01/19b	1/05/79b

Sampling Locations: a--T08S,R43E,16C; b--T08S,R43E,17D; c--T10S,R43E,02A (near Montana-Wyoming border). *Synoptic run collections. @Specific conductance equals 11,000 umhos per centimeter at 25C; dissolved solids equal 10,423 mg/l.

Water Quality Analyses Completed by DHES: Nutrients and Metals--Upper Hanging Woman Creek near Quietus-Decker (Intensive Station). Table A18.

Si	-				I	1				1	1		!	1	1		1	1	!		7.8	8.1
Hg	- 000	<			1	1		1		<.0002	<.0002	1	1	1	1		1		1		1	
Pb	1 0	<.005						1		<.01	0.010	-	!	1	1				1		!	!
Cr	1 0	<.005	1	1		1	1	1	!	<.005	<.005			1	1		1		1		1	1
PO	1 0	7.00T				1		1	ł	<.001	<.001	1			!		1			1	1	!
Zn	1 0	<.005		!	1		1	1	1	<.005	<.005		!	1		1	!	1	1	1	1	-
Cu	6	70.0			-	I I	ŀ	1		0.01	<.01	!	!	1		!	1	1	!			!
Mn	1 6	0.36			1		1	1	!	0.064	0.20	!			1	ŀ	1	ŀ		1		
Fe	1	0.44		1	-	1	1		1	0.21	0.51	!	-	1		!	1	!	1	!	1	0.25
TKjN	1				-	1		ŀ	1	1	-	1	1	1	1	1		1.5	0.50	ł	0.24	1
TIN	1 6	0.03		1	N.02			1	N.01	0.07	<.02	!	0.02	N.01	N.02	1	N.03	0.12	N.01	1	90.0	1
NH3-N	6	0.02	I I	1	0.02	1	ļ	1	<.01	0.01	<.01		0.01	0.01	0.02	1	0.03	0.10	0.01		0.02	1
NOX-N	5	10.0	!		<.01		1	1	0.01	90.0	<.01	!	0.01	<.01	<.01	1	<.01	0.02	<.01	1	0.04	
TP	1 0	0.079	:	1	0.076	1	!	1	0.01	0.02	90.0		0.03	0.04	0.03	1	0.02	0.62	<.01		0.01	1
OP	1 0	0.012		1	0.013	!	1	1	<.001	0.002	0.009	1	0.007	0.008	0.005	1	0.011	0.522	<.001	!	<.001	1
Date	06/16/78a	06/28/78a	07/18/78a	08/15/78a	08/26/78a	08/28/78a	09/05/78a	09/09/78a	10/07/78a	11/04/78a	05/19/79a	06/21/79b	07/27/79b	08/08/195	08/17/79b	09/04/19b	09/14/79b*	09/28/79c*	09/28/79b	10/18/79b	11/01/79b	11/05/79b

Sampling Locations: a--T08S,R43E,16C; b--T08S,R43E,17D; c--T10S,R43E,02A (near Montana-Wyoming border). *Synoptic run collections.

Water Quality Analyses Completed by DHES: Field Parameters and Common Ions--Lower Hanging Woman Creek near Birney (Intensive Station). Table A19.

DS	2774	2735	1	2965	2834	1	1		2584	2334	3035	3236			1	1		2964	2393	2691	1	1	-	1
[II	0.84	0.94			0.11							98.0				1				1.10				1
\$0 ⁴	1300	1575		1525								1760				1	1			1430		1		1
CI	12.1	12.2						1							1	!				16.8			1	1
003	0.0								0.0					1	1					0.0				1
HC03	605	342		627	969			1	999	625	498	611	1	1				495	528	528		1	1	1
TA	496	280	1	514	489	1		1	949	512	408	501	1			1	1	905	433	433	1	1	1	1
Na	487	490		480	460		1	1	418	342	502	505			1	1	1	484	384	433			1	
Mg	204	183		178	167	1	1	1	153	145	182	194	1		1	1		176	147	160			1	
Ca	165	133	1	140	134	1			133	134	151	152			1	1		139	117	122	1			
TH	1252	1084		1084	1020	1	1		964	932	1124	1181						1072	897	963	1	1	1	
TC		!	-		-		1	1	20		1	1	1	1	1	1	1	1	1	1		50	1	100
BOD		7.1	1	3.3	-	1	1	1	2.2	1.5	1	3.3	1	}	1	1	2.4		1		1	1.8	2.0	1.6
DO	5.4	9.2		9.4	10.5	0.6	-	1	10.4	12.0	11.3	8.8	9.9	9.9	80	7.2	8.6	10.9	9.1	9.6	8.4	7.9	11.0	11.1
TSS	131.	30.1	1	e.	9.	.7		•	3.9	. 2	11.0	∞.	8.0	7.	5.1	5.0	∞	₽.	4.	9.4		32.6		•
Turb	20.		}	13.		5.0	4.0	3.3	4.4	6.5	8.8	.91	24.	.97	32.	36.	17.	5.9	15.	4.5	24.		5.5	•
SC	00	120	1	350		330		340	2960	820	520	240	390		580	159	970	590		200			2660	2720
Hd	18	14	1	. 22	.12	.12	.08	.10		00.	.02	.10	.02	.10	.07	.18	.10	.08	.12	8.09	.18	ij.	8.05	8.18
Temp	000	2.0		8.0	22.28	3.5	.3	∞.	٤.	۳.	.5	17.9	∞.	.7	2	œ	7	7	e	4	4		4	_
Date	06/16/78b 06/29/78b	/15/78b	178	/27/78b	/28/78b	/28Ъ	/38Ъ	78	04/78b	/79a	31/79c	79a	79a	/28/79a	07/79a	Эа	/79a	*P6//	/79a*	*	9/79a	/19/79a	2/79a	/79a

Sampling Locations: a--T06S,R43E,19D; b--T06S,R43E,18D;c--T07S,R43E,05A and d--T07S,R43E,17C (intermediate sites);e--T06S,R43E,18B (near mouth).

*Synoptic run collections.

Water Quality Analyses Completed by DHES: Nutrients and Metals--Lower Hanging Woman Creek near Birney (Intensive Station). Table A20.

Si	1	!	!			1			1		1		1			1					1		1		19.2	18.2
Hg	1	<.0002	1	1		1	}		1						1		1	1		!		1	!	1	!	1
Pb		0.005		1	1		1				1	1	1				1									
Cr	1	<.005	!	!	{			ł	}					-	1				<u> </u>			1			1	!
Cd		<.001			 	1											1		1			1				
Zn	1	0.008	1		1			¦		-		1	}			1	1									
Cu	1	0.02	-	-	-		-	1	1		1		-				}					1	1	-	-	
Mn		0.27		1						1		1	1		1			1		1		1	-		1	1
Fe		2.1	-									-				-			1		1			1		
TKjN				1		1						0.45		-	1			1					0.50	1	0.21	
TIN	1	0.15	!		0.03	N.01	-		N.01	<.02	0.02	0.34	0.08	<.02	1	0.04	0.02	N.08	1	N.02	N.03	N.02	N.02	1	<.02	
NH3-N		0.03			0.02	0.01		1	0.01	<.01	0.01	0.08	0.01	<.01	¦	0.02	0.02	0.08	1	0.02	0.03	0.02	0.02	{	<.01	1
NO _X -N		0.12	1	1	0.01	<.01	}		<.01	<.01	0.01	0.26	0.07	<.01	1	0.02	<.01	<.01	1	<.01	<.01	<.01	<.01		<.01	1
TP	ł	0.163	1		0.033	0.030	1		0.02	<.01	0.02	0.02	0.02	0.05	1	90.0	0.08	90.0		0.02	0.03	0.02	0.03	-	0.01	1
0D		0.013	1	}	0.008	0.010	1		0.003	<.001	0.003	<.01	0.003	0.011	1	0.021	0.032	0.034	1	0.010	0.005	0.007	0.011	1	0.005	
Date	06/16/78b	06/29/78b	07/19/78b	08/15/78b	08/18/78b	08/27/78b	08/28/78b	09/05/78b	09/09/18b	10/01/78b	11/04/78b	02/11/79a	03/31/79c	05/19/79a	06/22/79a	07/28/79a	08/07/79a	08/18/79a	09/04/79a	09/14/79d*	09/14/79a*	09/15/79e*	09/29/79a	10/19/79a	11/02/79a	11/05/79a

Sampling Locations: a--T06S,R43E,19D; b--T06S,R43E,18D; c--T07S,R43E,05A, and d--T07S,R43E,17C (intermediate sites); e--T06S,R43E,18B (near mouth).

*Synoptic run collections.

Quietus-Decker and Lee Creek near Quietus-Birney (Miscellaneous Stations); East Fork of Hanging Woman Creek near Birney (Intensive Station). Water Quality Analyses Completed by DHES: Field Parameters and Common Ions--Stroud Creek near Table A21.

DS	2512 2525 	3205			1177	1183	1158	1047	1140	1146	1140	880		!	.131	1		
[In	1.70	0.99					1.20	00.	1.10	.20	.20	1.20]			1.30]		1	0.91
SO4	1130 1120 1062	1490 (350			301 3					278]			304			358 (
C1	14.6 18.8 12.2	30.3			4.5		5.4					6.3			0.9			5.4
CO3	14.4	0.0		-0.0	0.0	0.0	0.0	1.2	0.0	0.0	0.0	0.0		<u> </u>	0.0	}		0.0
HC03	669 715 610	816			544	564	559	478	548	548	582	531			534	1	 	442
TA	573 586 500	.699	Creek)		446	463	458	394	449	674	411	435			438		}	362
Na	448. 430. 398.	569.	eeT)	 140.			131.							1	133.	1		120.
Mg	137.	190.	,20D	, 0	9.	. 0	65.2	۳.	∞ ⊂	0	0.	0.			72.6	1		-
Ca	96.8	109.	,R44E,20D		9.0	2	95.6	∞.	4. 4	. 7.	.7	0.			9.64	}	1	}
E	806	1054	-T07S	520			507								867	1		
TC	110		أ				5200			1		1				30	30	30
ВОД			Creek);	X 0.5		-	1.4		2.3		1		2.6	1.2	1	•	1.2	•
D00	-		Þ	411						ı ~	6	00					3	0.
	8.2 13.0	-	ron	3iri 10.2		I	10.8		•		•	φ	10.3	9.4	•		6	
TSS		16.5	,02A (Stroud	्य। ।			0.4 10.8	8 11.	90	1 9.	.6 7.	.4 8	.5 10	.1 9	.4 9.	9.	7.	
TSS	1.0 1.2 8. 46.4 13.	4 16.	∀	ar -	6. 6	.0 6.	.8 0.4 10.	.8 4.8 11.	.6 9.	10.1 9.	12.6 7.	1.4 8	1.5 10	2.1 9	0.4 9.	0.4 9.	7.	9.97
TSS	1.0 1.2 8. 46.4 13.	4 16.	∀	3.4 1.7 2.3	2.2 1.9	0.9	0.8 0.4 10.	1.8 4.8 11.	7.0 12.6 9.	11. 10.1 9.	4.1 12.6 7.	1.1 1.4 8	1.6 1.5 10	1.9 2.1 9	0.8 0.4 9.	0.4 9.	0.7 0.4	65 2.2 46.6
pH SC Turb TSS	.19 2850 0.7 1.0 .31 2830 0.7 1.2 8. .90 2680 14. 46.4 13.	4 16.	aT08S,R43E,02A	Woman Creek near 1375 3.4 1290 1.7 2.3	20 1355 2.2 1.9	.20 1360 0.9 0.	12 1340 0.8 0.4 10. 19 1295 13. 27.0 12.	.29 1325 1.8 4.8 11.	.20 1300 7.0 12.6 9.	24 1355 11. 10.1 9.	17 1357 4.1 12.6 7.	10 1364 1.1 1.4 8	02 1315 1.6 1.5 10	12 1320 1.9 2.1 9	20 1295 0.8 0.4 9.	01 1300 0.6 0.4 9.	.00 1300 0.7 0.4	5 2.2 46.6
pH SC Turb TSS	.19 2850 0.7 1.0 .31 2830 0.7 1.2 8. .90 2680 14. 46.4 13.	Quietus-Birney 9 7.62 3490 3.4 16.	aT08S,R43E,02A	Hanging Woman Creek near 3.5 8.10 1375 3.4 2.0 8.30 1290 1.7 2.3	8.20 1355 2.2 1.9	8.20 1360 0.9 0.	1340 0.8 0.4 10. 1295 13. 27.0 12.	8.29 1325 1.8 4.8 11.	1300 7.0 12.6 9.	.7 8.24 1355 11. 10.1 9.	1357 4.1 12.6 7.	0 8.10 1364 1.1 1.4 8	0 8.02 1315 1.6 1.5 10	3 8.12 1320 1.9 2.1 9	0 8.20 1295 0.8 0.4 9.	1300 0.6 0.4 9.	.3 8.00 1300 0.7 0.4	0 1165 2.2 46.6
Temp pH SC Turb TSS	.19 2850 0.7 1.0 .31 2830 0.7 1.2 8. .90 2680 14. 46.4 13.	4 16.	T08S,R43E,02A	Woman Creek near 1375 3.4 1290 1.7 2.3	8.20 1355 2.2 1.9	11.7 8.20 1360 0.9 0.	1 8.12 1340 0.8 0.4 10. 5 8.19 1295 13. 27.0 12.	9.6 8.29 1325 1.8 4.8 11.	8.20 1300 7.0 12.6 9.	13.7 8.24 1355 11. 10.1 9.	.7 8.17 1357 4.1 12.6 7.	0 8.10 1364 1.1 1.4 8	12.0 8.02 1315 1.6 1.5 10	8.12 1320 1.9 2.1 9	0 8.20 1295 0.8 0.4 9.	18.01 1300 0.6 0.4 9.	9a 10.3 8.00 1300 0.7 0.4	.5 7.50 1165 2.2 46.6

Sampling Locations: a--T06S,R43E,20DB; b--T06S,R43E,20DA; c--T06S,R43E,20CA.

Water Quality Analyses Completed by DHES: Nutrients and Metals--Stroud Creek near Quietus-Decker and Lee Creek near Quietus-Birney (Miscellaneous Stations); East Fork of Hanging Woman Creek near Birney (Intensive Station). Table A22.

	Sı		1		14.0		
;	НВ			<.0002	ì		
	Pb			<.005	İ		1
	5			0.007			1
·	S			<.001	1		
ı	u7		<u> </u>	<.005			
(20			<.01			1
,	Mn			0.02	-		<u> </u>
1	Fe			0.16	0.15		
	IKjn			1	}		
				N.06	<.02		+
	NH3-N	v.l	1	90.0	<.01		
	NOX-N	18-Decker	!	<.01	<.01	Sirney	1
	TP	Quietr		0.02	<.01	ietus-E	1
	OP	ek near		0.016	<.001	near Qu.	1
	Date	Stroud Creek near Quietus-Decker	07/13/79a	09/04/79a 0.016 0.02	11/05/79a <.001 <.01	Lee Creek near Quietus-Birney	07/12/79b

Sampling Locations: a--TO8S,R43E,02A (Stroud Creek); b--TO7S,R44E,20D (Lee Creek).

			1				1	1	-	1		1	l		1	ļ	1		30.0
		<.0002		<.0002	<.0002	<.0002	<.0002		<.0002	<.0002	<.0002		1			<.0002	!		¦
	1	<.005		<.005	<.005	<.01	<.005		<.005	<.005	<.005					<.05	;	1	!
		<.005		<.005	<.005	<.005	<.005	I	<.005	<.005	<.005			1		<.05			
											<.001								
	}	<.005		<.005	<.005	<.005	0.015		0.005	0.005	<.005		<.005		 	<.005	1	1	1
		<.01		<.01	<.01	<.01	<.01	;	<.01	0.01	<.01	1		}	1	<.01	1		
	1	0.020		0.019	0.010	0.005	0.039		0.025	0.025	0.025		0.020		1	<.005		1	
		0.13		0.14	0.04	<.01	0.37	-	0.24	0.16	0.26		0.15		ł	0.02	1	1	0.07
		-	1	1			0.22	1			}	1	1			0.17	-		0.08
Birney	1	0.14	0.09	90.0	<.02	N.01	90.0	N.01	0.02	0.09	0.13	N.01	<.02	N.01		<.02	-		N.01
near	1	0.07	0.04	0.02	<.01	<.01	0.03	0.01	0.01	0.01	0.07	<.01	<.01	0.01	1	<.01	-	ŀ	<.01
an Creek		0.07	0.05	0.04	<.01	0.01	0.03	<.01	0.01	0.08	90.0	0.01	<.01	<.01	1	<.01		1	0.01
ing Woma	-	0.032	0.027	0.02	<.01	0.01	0.03	<.01	0.03	0.03	0.05	0.02	0.02	<.01	ŀ	<.01	}		0.01
of Hang	+	0.027	0.027	0.001	0.004	0.009	0.010	0.005	0.013	0.020	0.043	0.020	0.007	0.010	1	0.002		1	900.0
East Fork of Hanging Woman Creek n	06/11/78a	08/18/78a	08/27/78a	09/09/78a	10/08/78a	11/04/78c	02/11/79c	03/31/79a	05/19/79a	06/22/79b	07/28/78b	08/01/19b	08/20/79b	09/02/19b	09/06/79a	09/29/79b	10/19/79b	10/19/79a	11/05/79b

Sampling Locations: a--T06S, R43E, 20DB; b--T06S, R43E, 20DA; c--T06S, R43E, 20CA.

Otter, Upper Otter Creek near Otter-Fort Howe, and Cow Creek near Otter-Fort Howe (Accessory Water Quality Analyses Completed by DHES: Field Parameters and Common Ions--Bear Creek near Stations). Table A23.

DS		3398	3482	3444	3427	
Į.,		0.55	21.6 1950 0.50	0.55	0.63	
504		1890	1950	1940	1940	
C1		21.2	21.6	21.1	21.4	
503		0.0	0.0	0.0	0.0	
HC03		260	264	539	565	
TA			462			
Na		526.	512.	538.	500.	
Mg		217.	237.	221.	217.	
Ca		183.	197.	183.	183.	
TH		1350	1468	1	1350	
IC		1	1	1	1	
BOD TC			1	1	1	
-			1	1	1	
BOD				1	1	
DO BOD		0.9 1.0 13.6	1.9 2.7 15.8	1.9 2.6 12.1	2.8 2.8 5.2	
TSS DO BOD	١٠	0.9 1.0 13.6	1.9 2.7 15.8	1.9 2.6 12.1	2.8 2.8 5.2	
Turb TSS DO BOD	Otter	0.9 1.0 13.6	1.9 2.7 15.8	1.9 2.6 12.1	3700 2.8 2.8 5.2	
Turb TSS DO BOD	ar Creek near Otter	0.9 1.0 13.6	2.7 15.8	1.9 2.6 12.1	2.8 2.8 5.2	

Sampling Location: a--T07S,R45E,27A. *Synoptic run collection.

6208 2672 2817 2888 2963 1624 3084 0.48 0.60 0.56 0.52 0.30 0.40 1440 (1550 (1610 1065 835 1680 3930 1690 10.8 8.0 12.5 15.2 17.3 29.1 18.5 0.0 0.0 0.0 0.0 486 580 549 581 498 505 501 339 476 414 278 411 398 475 450 221. 444. 378. 418. 949. 380. 394. 200. 194. 200. 103. 202. 184. 1216 167. 2601 224. 1279 179. 114. 143. 165. 162. 1180 709 11.7 11.1 10.1 10.1 12.2 --1.3 12.1 32.0 10.3 10.4 19.8 7.1 61.0 9.1 Upper Otter Creek near Otter-Fort Howe 4.8 1.9 15. 3380 13.0 8.18 2840 3314 2014 3533 3160 3467 22.8 7.63 2 24.3 8.14 3 17.8 8.20 8.06 8.22 19.0 8.00 15.8 21.0 25.8 09/30/79a* *P62/08/60 07/07/78c 08/29/78b 07/18/79a 07/31/79a 08/31/79a 06/27/79b 08/07/79a

Sampling Locations: a--T07S, R45E, 13D; b--T07S, R46E, 06B; c--T06S, R46E, 30B; d--T08S, R46E, 05C (above Bear Creek) *Synoptic run collections

	_∞	5	
		425	
	2.7 43.9 1.20	2.2 40.6 1.20	2.5 37.9 1.20
		283 0.0	
	237 49.7 27.3 18.3 213	239 52.1 26.4 19.5 232	. 235 51.9 25.7 20.0 235
	1	1	1
	1	1	1
	1	1	1
	8.8		1
Howe	15.5 8.8	5.8 9.5	7.2
Fort Howe	15.5 8.8	5.8 9.5	7.2
near Otter-Fort Howe	15.5 8.8	5.8 9.5	7.2
Cow Creek near Otter-Fort Howe	15.5 8.8	5.8 9.5	7.2

Sampling Location: a--T06S, R45E, 17D.

Water Quality Analyses Completed by DHES: Nutrients and Metals--Bear Creek near Otter, Upper Otter Creek near Otter-Fort Howe, and Cow Creek near Otter-Fort Howe (Accessory Stations). Table A24.

Si	1			
НВ	1	<.0002	<.0002	1
			<.005	
			0.008	
PO	1	<.001	<.001	
Zn	1	<.005	<.005	
Cu		0.01	0.01	
Mn		0.050	0.04	1
ы	1	0.10	0.13	-
TKin	ì	1	-	0.43
TIN		N.76	N.93	0.45
NH3-N	-	<.01	<.01	0.02
NOx-N	1	0.76	0.93	0.43
TP	1	0.01	0.01	<.01
OP TP		0.004	0.009	<.001
Date Bear Creek r	07/12/79a	08/07/79a	08/23/79a 0.009 C	09/30/79a*

Sampling Location: a--TO7S,R45E,27A.

*Synoptic run collection.

		-	1	-	-	+	.0.	-	-
			<.0002						
	<.005	<.01	<.005		<.005		<.005	<.05	
	<.005	<.005	<.005		<.005	1	0.009	<.05	1
	<.001	<.001	<.001	ļ	<.001		<.001	<.005	-
	<.005	<.005	<.005	i i	<.005	1	<.005	<.005	
	<.01	<.01	0.01	1	<.01	1	<.01	0.01	
	0.08	1.4	0.18		0.23	1	0.19	<.005	1
	0.25		0.36						
	-			1		ļ	1	0.65	1.2
	0.04	0.26	0.34		0.43	0.37	N.30	<.02	0.80
ct Howe	0.02	0.04	0.08	-	0.05	0.01	<.01	<.01	0.09
ter-For	0.02	0.22	0.26	1	0.38	0.36	0.30	<.01	0.71
near Ot	0.033	0.02	0.02		0.12	0.03	0.016	0.01	0.04
Creek	0.017	0.005	0.009	1	0.046	900.0	0.016	<.001	0.019
Upper Otter	07/07/78c	08/29/78b	06/27/79b 0.009 0.02 0.26 0.08	07/18/79a	07/31/79a	08/07/79a	08/31/79a	*P6L/0E/60	09/20/79a* 0.019

Sampling Locations: a--T07S,R45E,13D;b--T07S,R46E,06B; c--T06S,R46E,30B;d--T08S,R46E,05C (above Bear Creek). *Synoptic run collections.

Cow Creek near Otter-Fort Howe 06/27/79a 0.027 0.024 0.03 0.11 0.14 0.29 0.075 <.01 <.005 <.005 <.005 <.0005 <.0005 <.0005 <.0005 <.0005 <.0005 <.0005 <.0005 <.0005 <.0005 <.0005 <.0005 <.0005 <.0005 <.0005 <.0005 <.0005 <.0005 <.0005 <.0005 <.0005 <.0005 <.0005 <.0005 <.0005 <.0005 <.0005 <.0005 <.0005 <.0005 <.0005 <.0005 <.0005		-		30.
near Otter-Fort Howe 0.027 0.04 0.03 0.11 0.14 0.29 0.075 <.01 <.005 <.001 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005		<.0002	<.0002	
near Otter-Fort Howe 0.027 0.04 0.03 0.11 0.14 0.29 0.075 <.01 <.005 <.001 0.029 0.03 0.03 <.01				
near Otter-Fort Howe 0.027 0.04 0.03 0.11 0.14 0.29 0.075 <.01 <.005 0.029 0.03 0.03 <.01				
near Otter-Fort Howe 0.027 0.04 0.03 0.11 0.14 0.29 0.075 <.01 0.029 0.03 0.03 <.01		<.001	<.001	<.001
near Otter-Fort Howe 0.027 0.04 0.03 0.11 0.14 0.29 0.075 0.029 0.03 0.03 <.01		<.005	<.005	<.005
near Otter-Fort Howe 0.027 0.04 0.03 0.11 0.14 0.29 0.075 0.029 0.03 0.03 <.01		<.01	<.01	<.01
near Otter-Fort Howe 0.027 0.04 0.03 0.11 0.14 0.29 0.029 0.03 0.03 <.01		0.075	0.035	90.0
near Otter-Fort Howe 0.027 0.04 0.03 0.11 0.14 0.029 0.03 0.03 <.01		0.29	0.17	0.17
near Otter-Fort Howe 0.027 0.04 0.03 0.11 0.029 0.03 0.03 <.01 0.030 0.02 <.01 0.03			1	1
near Otter-Fort Howe 0.027 0.04 0.03 0.11 0.029 0.03 0.03 <.01		1.14	1.03	N.03
0.027 0.04 0.029 0.03 0.030 0.02		0	~	~
0.027 0.04 0.029 0.03 0.030 0.02				
Cow Creek near Ot 06/27/79a 0.027 07/31/79a 0.029 08/31/79a 0.030	rt Howe	0.03 0.11	0.03 <.01	<.01 0.03
Cow Creek 06/27/79a 07/31/79a 08/31/79a	ter-Fort Howe	0.03 0.11	0.03 <.01	<.01 0.03
	near Otter-Fort Howe	0.03 0.11	0.03 <.01	<.01 0.03

Sampling Location: a--T06S, R45E, 17D.

Water Quality Analyses Completed by DHES: Field Parameters and Common Ions--Lower Otter Creek near Ashland (Intensive Station). Table A25.

DS	1			2576		2538	1	1	1	2835	2344	2876			1			1	2671	2356	1		
[H	-			0.71		0.72		1	1	0.80	0.48	0.68	1	1	-		1	1	0.59	0.80	1	-	
804				1270		1232	-	1		1375	1178	1450	1	1	1	1	1	1	1440	1170	1	1	
C1		1	1	6.6		10.4		1	1	10.0	10.1	10.4	1	1		1	1	1	16.6	15.4	1		1
003	-			36.0		2.4	-	1		0.0	0.0	0.0		1	1	1		1	0.0	0.0		-	
HC03				266		630		-	1	730	539	661	1	1				1	514	543	1		1
TA			1	524	1	521	1			298	442	542		-	-	1	1	1	421	445	1	1	1
Na	-		-	404.	1	390.			1	418.	335.	440.	1	1	1	1	1	1	396.	398.	1	1	1
Mg		1		202.	1	186.	1			183.	174.	208.	1	1	1	1	1	1	206.	164.	1	1	
Ca	-			88.0	1	85.6	1		-	118.	116.	106.											;
TH	-	1		1051	1	981	1			1046	1006	1123			1			1	1094	838	1	1	
TC			1	-	}		-		1600			1					1	1	}	1	1	1	2500
BOD TC	1		3.2				 -		2.5 1600	1.0		2.4					2.4			} }	2.8	2.1	2.9 2500
1	7.0							1	2.5	1.0		2.4			5	7		1 2.2	5	7.3	6 2.8	6 2.1	9 2.9
BOD	7.0	6.9	6.8 3.2			7.2	8.9	1.6	12.3 2.5	11.5 1.0	8.4 11.3	9.1 2.4	6.8 0.6	2.5 7.2	6.6 8.5	2.0 9.4	3.2 8.1 2.4	1.1 8.1 2.2	5.8 7.5	7.3	2.8 9.6 2.8	12.6 2.1	12.9 2.9
TSS DO BOD	7.0	8 6.9	5 6.8 3.2	6. 26.8 7.9		3. 37.2	. 22.4 6.8	.3 11.6	.5 6.6 12.3 2.5	7.6 11.5 1.0	7. 48.4 11.3	8. 35.0 9.1 2.4	3. 39.0 8.9	8. 42.5 7.2	6. 46.6 8.5	3. 42.0 9.4	6. 23.2 8.1 2.4	5. 21.1 8.1 2.2	5.8 7.5	. 22.3 7.3	2.8 9.6 2.8	12.6 2.1	12.9 2.9
DO BOD	17 7.0	18 6.9	25 6.8 3.2	16. 26.8 7.9	1 1	23. 37.2	15. 22.4 6.8	7.3 11.6	5.5 6.6 12.3 2.5	7.2 7.6 11.5 1.0	27. 48.4 11.3	18. 35.0 9.1 2.4	23. 39.0 8.9	28. 42.5 7.2	26. 46.6 8.5	23. 42.0 9.4	16. 23.2 8.1 2.4	15. 21.1 8.1 2.2	3.6 5.8 7.5	15. 22.3 7.3	15. 22.8 9.6 2.8	6.2 7.6 12.6 2.1	900 4.4 7.5 12.9 2.9
SC Turb TSS DO BOD	.35 3290 17 7.0	.33 3050 18 6.9	.29 2810 25 6.8 3.2	.32 2900 16. 26.8 7.9		.33 2900 23. 37.2	.40 2920 15. 22.4 6.8	.30 2790 7.3 11.6	.30 2950 5.5 6.6 12.3 2.5	.90 3040 7.2 7.6 11.5 1.0	.12 2840 27. 48.4 11.3	.29 3310 18. 35.0 9.1 2.4	.40 3080 23. 39.0 8.9	.15 2400 28. 42.5 7.2	.46 3271 26. 46.6 8.5	.53 2985 23. 42.0 9.4	.45 2250 16. 23.2 8.1 2.4	.49 2670 15. 21.1 8.1 2.2	.08 3010 3.6 5.8 7.5	.43 2700 15. 22.3 7.3	.35 2890 15. 22.8 9.6 2.8	.35 2830 6.2 7.6 12.6 2.1	.42 2900 4.4 7.5 12.9 2.9
	2.5 8.35 3290 17 7.0	4.0 8.33 3050 18 6.9	29 2810 25 6.8 3.2	5.5 8.32 2900 16. 26.8 7.9	7.1	.6 8.33 2900 23. 37.2	1.2 8.40 2920 15. 22.4 6.8	2790 7.3 11.6	8.30 2950 5.5 6.6 12.3 2.5	7.90 3040 7.2 7.6 11.5 1.0	.2 8.12 2840 27. 48.4 11.3	8.2 8.29 3310 18. 35.0 9.1 2.4	.2 8.40 3080 23. 39.0 8.9	2400 28. 42.5 7.2	5.9 8.46 3271 26. 46.6 8.5	2.8 8.53 2985 23. 42.0 9.4	.9 8.45 2250 16. 23.2 8.1 2.4	8.49 2670 15. 21.1 8.1 2.2	3010 3.6 5.8 7.5	8.43 2700 15. 22.3 7.3	.5 8.35 2890 15. 22.8 9.6 2.8	.6 8.35 2830 6.2 7.6 12.6 2.1	2 2900 4.4 7.5 12.9 2.9

Sampling Locations: a--T03S,R44E,12C; b--T04S,R45E,04B; c--T05S,R45E,11C (intermediate site). *Synoptic run collections.

Water Quality Analyses Completed by DHES: Nutrients and Metals--Lower Otter Greek near Ashland (Intensive Station). Table A26.

	Si	1		-			1			!				1	-	!	-						5.2	5.9
	Hg	1	1			1		<.0002	1				!			<u> </u>				-	<u> </u>	:	1	
	Pb	-		-				<.01	1	!			1						!		}			1
	Cr		1					<.005		1			1				1	<u> </u>			¦			1
	PO				1		-	<.001	1	1	-			1			1				}		1	ļ
	Zn	!		-			-	<.005			!		1	1		1	1			1	!	1	1	
	Cu	i	1	1			1	0.01	-		1	}	-	1	1	1			1	1	1	-	1	}
	Mn	1						0.73			1	-			-								-	
	Fe				-			0.45					1	1	}			1						1
	TKjN								1		0.62	1	}				1	 	0.65	0.78	-		97.0	1
	NIL				T	0.08	0.11	0.12	0.09		0.88	0.52	<.02		0.18	0.04	0.34		90.0	N.01	-		0.14	
	NH3-N			1	1	0.03	0.04	0.02	0.02		0.22	0.21	<.01		0.07	0.02	0.29		0.02	0.01		1	0.04	
	NOx-N	1	1	}		0.05	0.07	0.10	0.07		99.0	0.31	<.01		0.11	0.02	0.05	-	0.04	<.01	1	1	0.10	
)	TP	-	1		1	90.0	1	0.4	0.02	1	0.02	0.08	90.0	1	0.11	0.08	90.0	1	0.03	0.03	1		0.01	-
)	0P	ļ	1	1	1	900.0	0.013	090.0	0.004	1	<.01	0.017	0.018	1	0.043	0.031	0.025		0.010	0.001		1	0.008	1
	Date	06/15/78a	07/05/78a	07/21/78a	07/31/78a	08/19/78a	08/27/78a	09/04/78a	10/08/78a	11/05/78a	02/11/79a	03/31/79b	05/20/79a	06/20/79a	07/28/79a	08/07/79a	08/18/79a	09/04/79a	09/29/79a*	09/30/79c*	09/30/79a*	10/26/79a	11/02/79a	11/06/79a

Sampling Locations: a--T03S,R44E,12C;b--T04S,R45E,04B; c--T05S,R45E,11C (intermediate site). *Synoptic run collections.

Water Quality Analyses Completed by DHES: Field Parameters and Common Ions--Pumpkin Creek near Miles City and Mizpah Creek near Mizpah (Intensive Stations). Table A27.

50				-2		33	0			32	55	<u>∞</u>	
DS	i	i		1612		1683		1			4822		i
[Z-I	1	-	-	0.44		0.54	0.49	1				0.63	0.42
S04	1		1	782		725	1030	1		2110	2780	3400	5288
C1		1	1	5.8		0.9	11.0			10.9	19.8	27.8	24.4
C03	1	1	1	12.0		16.6	0.0			0.0	19.0	28.8	0.0
HC03	1	1	1	354		445				661	541		739
TA	1	1	1	310	1	393	383			542	475	558	909
Na	ł	1		350.	1	390.	. 464				1230.		1770.
Mg			1	42.9	1	39.2	0.64	1			153.		1
Ca	1 1			65.0 42.9	1	7.09	51.0			156.	9.87	2.69	1
E	-	1		339 (312 (1		25	826	11 (1
TH	- 1	İ	İ	3	1	3	3	İ		12	∞	6	ŀ
1	1	İ		3	1	3	3	Ì	en.)		∞	6	-İ
TC	1	1		3	1	3	3	i !	frozen.)	12	8	6	÷ 09
1		1				3			Ŧ		1		÷ 09
TC	ł			 	-	3	1		ffle f				5.7 60
BOD TC	6.0	1.9	6.7 6.0	5.8 8.0	1 1 1	2.8	6.8 8.9	7.6	cause riffle f	10.3 3.1		10.3	5.7
b TSS DO BOD TC	5 6.0	1.9	6.7 6.0	5.8 8.0	1 1 1	2.8	6.8 8.9	7.6	cause riffle f	41.8 10.3 3.1	22.4 19.0	10.3	18.9 5.7
b TSS DO BOD TC	5 6.0	1.9	6.7 6.0	5.8 8.0	1 1 1	2.8	6.8 8.9	7.6	cause riffle f	17. 41.8 10.3 3.1	10. 22.4 19.0	26. 42.8 10.3	13. 18.9 5.7
b TSS DO BOD TC	5 6.0	1.9	6.7 6.0	5.8 8.0	1 1 1	2.8	6.8 8.9	7.6	cause riffle f	17. 41.8 10.3 3.1	10. 22.4 19.0	26. 42.8 10.3	13. 18.9 5.7
b TSS DO BOD TC	5 6.0	1.9	6.7 6.0	5.8 8.0	1 1 1	2.8	6.8 8.9	7.6	cause riffle f	17. 41.8 10.3 3.1	10. 22.4 19.0	26. 42.8 10.3	13. 18.9 5.7
b TSS DO BOD TC	5 6.0	1.9	6.7 6.0	5.8 8.0	1 1 1	2.8	6.8 8.9	7.6	cause riffle f	17. 41.8 10.3 3.1	10. 22.4 19.0	26. 42.8 10.3	13. 18.9 5.7
b TSS DO BOD TC	0.9	1.9	6.7 6.0	25.5 8.41 1880 22. 25.8 8.0	1 1 1	2.8	6.8 8.9	7.6	cause riffle f	17. 41.8 10.3 3.1	10. 22.4 19.0	26. 42.8 10.3	13. 18.9 5.7

Sampling Locations: a--TO6N, R48E, 35C; b--TO6N, R48E, 28D.

		1	1	1011		2102			2732	2415	2941	1
				0.62					0.34	09.0	1390 0.58	0.50
				380		708			1450	1120	1390	1615
	1			2.2		9.8	1		0.6	15.3	26.4 20.0 1	8.1
			<u> </u>	0.0		0.0	1		0.0	20.9	79.97	0.0
			1	370		176	1				597	
			1	303	1	989			905	470	533	248
	1	1		205.		562.					835.	
	l i			24.9	1	20.02	1		114.	33.5	37.1	1
		1		28.8 24.9	1	16.0	ŧ		123.	0.0	35.7	
				92		122	-	_	. 922	238 4	242	1
	}	1 1		1	1	1	1	frozen.		1		10
	ì		5.2	1			1	fle f	2.7	1	1	1
		6.5	7.3	6.9	1	10.9	1 1	e rifi	9.8 2.7	12.1	11.2	12.3
		1	1	22550	1	20.8	12.3	ecaus	45.1	55.5	45.6	10.7
	23.	.00	.00	2009	1	15.	23.	ted 1	22.	35.	29.	
		8	320	Ĭ	1			C				
an	410	950 68	900 320	910 11(1	095	950	collec	1280	080	1624	0021
Mızpan	.52 2410	.70 950 68	.89 900 320	.82 910 11	1 1 1 1 1	.60 2460	.40 1950	umple collec	.30 3280	3.73 3080	3.65 3624	.50 3700
k near Mizpan	25.5 8.52 2410	23.5 7.70 950 68	22.0 7.89 900 320	22.0 7.82 910 110	28.2	30.5 8.60 2460	19.5 8.40 1950	(No sample collec	15.0 8.30 3280	29.2 8.73 3080	21.4 8.65 3624	1.3 8.50 3700
Mizpan Creek near Mizpan	06/15/78a 25.5 8.52 2410	07/05/78a 23.5 7.70 950 68	07/21/78b 22.0 7.89 900 320	07/31/78b 22.0 7.82 910 11600 2	08/19/78b 28.2	09/06/78b 30.5 8.60 2460		02/10/79b (No sample collec	05/12/79a 15.0 8.30 3280 22. 45.1	08/09/79a 29.2 8.73 3080		

Sampling Locations: a--TO6N, R51E, 24C; b--TO6N, R51E, 25C.

Water Quality Analyses Completed by DHES: Nutrients and Metals--Pumpkin Creek near Miles City and Mizpah Creek near Mizpah (Intensive Stations). Table A28.

Si	-	1		1	1					!		<u> </u>	2.8
Hg				-		1	<.0002	1			1	<.0002	
Pb							*					•	
Cr		-	1		1	-	<.005			;	-	0.005	1
PO	1	1		}	-	1	<.001				}	<.001	-
Zn				1			<.005	1			-	<.005	
Cu	}	1			1	1	0.01					<.01	
Mn		1	1	1	1	1	0.10	-		-		0.11	-
F.	1	-	1	-		1	0.69	-	zen.)	1		0.44	0.23
TKjN		1	1	-			}		le fro	-		1	-
TIN				1	N.02	0.03	0.13	N.02	e riff.	N.06	N.21	N.05	0.21
NH3-N TIN T	-		1		0.02	0.02	0.12	0.02	becaus	90.0	0.21	0.05	0.17
71			!	1	<.01	0.01	0.01	0.041 0.09 <.01	llected	<.01	<.01	<.01	0.04
TP	1	1	!	1	0.081	0.056	0.11	0.09	nple col	0.03	0.03	10.8	0.08
OP sek near	1		1	1	0.011	0.014	0.023	0.041	(No san	0.009	0.021	0.024	0.012
Date OP TP NO _X -1 Pumpkin Greek near Miles City	06/15/78b	07/05/78a	07/21/78a	07/31/78a	08/19/78a	08/23/78a	09/06/78a	10/09/78a	02/10/79a		08/09/79a		

Sampling Locations: a--T06N,R48E,35C; b--T06N,R48,28D.

				-		1	-			1	1	-
	1	!	!	1		<.0002	<.0002				<.0002	
	1	!	!	1		<.005	<.01			1	<.005	-
		1	!	1	1	<.005	<.005			1	0.005	1
	¦					<.001	<.001		1	1	<.001	-
	1	1	1	1	-	<.005	<.005		1	 	<.005	
	-	1		1		0.03	<.01		1	}	<.01	
	1	1	1			0.054	0.10		1	1	0.095	
	-	!	-	-	1	0.34	0.36	zen.)	-		94.0	0.15
	-	-		1	1			le fro	1	1	1	0.58
		1			N.01	0.07	0.07	e riff	N.02	N.03	N.08	<.02
	1	1	!	1	0.01	0.03	0.02 0.07 0.36 (becaus	0.02	0.03	0.08	<.01
	1	1		}	<.01	0.04	0.016 0.04 0.05	llected	<.01	<.01	<.01	
Mizpah	-	1	1	1	0.053	0.02	0.04	nple co.	0.04	0.07	0.07	0.03
ek near	+		1	1	900.0	0.005	0.016	(No sar	0.014	0.032	0.021	0.018
Mizpah Creek near Mizpah	06/15/78a	07/05/78a	07/21/78b	07/31/78b	08/19/78b	09/06/18P	10/09/785	02/10/79b	05/12/79a	08/09/79a	08/21/79a	11/07/79a

Sampling Locations: a--T06N,R51E,24C; b--T-6N,R51E,25C.

Water Quality Analyses Completed by DHES: Field Parameters and Common Ions--East Fork of Armells Creek near Colstrip and Main Armells Creek near Colstrip (Miscellaneous Stations); West Fork of Armells Creek near Colstrip and Lower Armells Creek near Forsyth (Accessory Stations) Table A29.

DS		6287	4090	
ſΞij		0.27	0.29	-
S04		4038 0.27	2590	
C1		9.49	36.0	
CO3		0.0	0.0 36.0	
HC03 (594		-
TA		487	350	-
Na		665.	385.	
Mg		505.	416.	-
Ca			236. 4	-
TH			2302 2	1
TC			1	-
BOD IC				
			14.3 3.6	•
DO BOD		1	3.6	-
TSS DO BOD	Colstrip	7.7	14.3 3.6	-
DO BOD	reek near Colstrip	3.5 4.4	0.7 1.4 14.3 3.6	1.5 0.9
TSS DO BOD	reek near Colstrip	3.5 4.4	0.7 1.4 14.3 3.6	1.5 0.9
TSS DO BOD	Colstrip	7.7	1.4 14.3 3.6	6.0

Sampling Locations: a--TO3N, R41E, 28C; b--TO3N, R41E, 33B.

		534 651 0.0 23.8 3167 0.43 5298	460	472
		1040.	930.	559.
	-	226.	302.	211.
	1	190.	175.	163.
	-	1404	1680 175. 302.	1276
	-	-	-	-
				1
rip				1
Colstrip	7.3	26.6		9.4 10.5
c near Colstrip	7.3	26.6	14.5 10.9 2.2	5.7 9.4 10.5
Creek near Colstrip	7.3	26.6	14.5 10.9 2.2	5.7 9.4 10.5
West Fork of Armells Creek near Colstrip	7.3	26.6		9.4 10.5

Sampling Locations: a--TO4N,R40E,32B; b--TO4N,R40E,29D; c--TO4N,R40E,21B.

	482 588 0.0 23.8 2850 0.35 4760	
	820.	!
	256.	
	222.	-
	1610	1
	ì	
	9.4 1.9	
D	24.6 9.4 1.9	9
lstrip	24.6 9.4 1.9	11.6
ar Colstrip	24.6 9.4 1.9	11.6
k near Colstrip	24.6 9.4 1.9	11.6
Main Armells Creek near Colstrip	24.6 9.4 1.9	9

Sampling Location: a--TO4N, R40E, 16B.

	448	4505	4085	3738		1
	0.37	0.33	0.43	0.54		0.55
	165	2610	2360	2000	!	1915
	6.5	5.3	. 0.8	2.0		7.2
	7.2	0.0	1.6	6.8 3		0.0
	148	627	495 2	7 584 16.8 32.0 2000 0.54 37	-	755
	133	514	747	507	l	619
	6.5	20.	37.	12 72.1 105. 927.	-	55
	8.3 5	38.8	60.9	05.9	1	∞ !
	5.0 18	34. 2.	2.6 1	2.1 10	· -	-
	90 46	40 18	865 82	612 73	!	•
	-	14	∞	9	1	'
	1	136	1	1	1	190
		1.9 136	 	 	2.7	190
	1	9.4 1.9	6.6	10.2	14.8 2.7	11.5
q	6.09	9.4 1.9	6.6	2.0 10.2	14.8 2.7	11.5
orsyth	6.09	44.4 9.4 1.9	8.6 9.9	2.0 10.2	14.8 2.7	12.8 11.5
ear Forsyth	6.09	16. 44.4 9.4 1.9	8.6 9.9	2.9 2.0 10.2	1.5 1.4 14.8 2.7	12.8 11.5
sek near Forsyth	571 17. 20.9	5200 16. 44.4 9.4 1.9	6.6 8.6 9.9	2.9 2.0 10.2	1.5 1.4 14.8 2.7	12.8 11.5
1s Creek near Forsyth	571 17. 20.9	16. 44.4 9.4 1.9	8.6 9.9	2.0 10.2	1.4 14.8 2.7	11.5
Lower Armells Creek near Forsyth	6.09	5200 16. 44.4 9.4 1.9	6.6 8.6 9.9	2.9 2.0 10.2	1.5 1.4 14.8 2.7	12.8 11.5

Sampling Locations: a--TO6N, R39E, 26B; b--TO6N, R39E, 23D.

*Lower Armells probably affected by Yellowstone River irrigation return flows on this sampling date.

Water Quality Analyses Completed by DHES: Nutrients and Metals--East Fork of Armells Creek near Colstrip and Main Armells Creek near Colstrip (Miscellaneous Stations); West Fork of Armells Creek near Colstrip and Lower Armells Creek near Forsyth (Accessory Stations) Table A30.

Si	-		
Hg	1	<.0002	
Pb		<.005	
Cr	1	0.005	
PO		<.001	
Zu	-	<.005	1
Cu		0.02	
Mn		0.025	
Fe		0.10	
TKjN	1		1
TIN	N.07	N.02	-
NH3-N Colstr	0.07	0.02	
NOx-N ek near	<.01	<.01	1
TP 11s Cre	0.014	0.03	1
OF Arme	0.010	0.003	1
Date OP TP NO _x -N NH3-N TIN East Fork of Armells Creek near Colstrip	08/24/78a	06/13/79a	10/26/795

Sampling Locations: a--T03N, R41E, 28C; b--T03N, R41E, 33B.

	1	-	1	1
		-	0.001 <.007 <.005 <.0002	1
		-	<.005	1
		-	<.007	
	}		0.001	
	-	1	<.005	
		ì		1
	1		0.035	1
	1		0.16	-
	-	1	-	
ip		N.01	0.04	
Colstrip	1	0.01	0.01	
	-	<.01	0.03	!
lls Cree	-	0.032	0.02	1
of Arme	1	0.008 0.032	0.003	1
West Fork of Armells Creek near	05/28/78b	08/24/78c	06/13/79a	07/03/79a

Sampling Locations: a--T04N,R40E,32B; b--T04N,R40E,29D; c--T04N,R40E,21b.

	}	
	<.0002	
	<.005 <.0002	1
	<.005	-
	<.001	1
	<.005	-
	0.01	
	0.12	
	0.32	
	<.02	
	<.01	1
Colstrip	<.01	
k near	0.03	
ls Cree	a 0.006	
Main Armells Creek near (06/13/79a	10/26/79a

Sampling Location: a--T04N, R40E, 16B.

				-	1	3.4
		1	1	1		<.0002
				-		
	1	1				<.05
		1		-		<.005
	-			1		<.005
	1		!		1	<.01
		1	1		1	90.0
			1			0.34
		1			1	0.48
	0.05	0.07	1	N.03	N.07	N.11
		90.0		0.03	0.07	<.01
Forsyth	0.04	0.01	1	<.01	<.01	0.11
ek near	0.030	0.03	}	0.02	0.01	0.03
lls Cre	0.017	\mathfrak{C}	}	0.005	<.001	0.010
Lower Armells Creek near Forsyth	08/24/78b*	05/13/79b	07/03/79a	08/22/79a	09/21/79a	11/07/79a

Sampling Locations: a--T06N, R39E, 26B; b--T06N, R39E, 23D.

*Lower Armells probably affected by Yellowstone River irrigation return flows on this sampling date.

Rosebud, Reservation Creek near Forsyth-Hysham, and Sarpy Creek near Hysham (Accessory Stations). Water Quality Analyses Completed by DHES: Field Parameters and Common Ions--Sweeney Creek near Table A31.

DS	-	189	2353	374	293	1	1
[iii	1	1.66 2	1.69 2	1.48 2	1.68 2	1	.61
\$0¢	 	.075 0	1187 0.69	110 0	110 0	<u> </u>	1285 0.61
C1 S		28.6 1	40.5 1	9.2 1	13.1 1		31.1
003	†	0.0	5.0 4	0.0	0.0		0.0
HC03	1	527 (797	809	472 (1	809
TA	1	432	389	498	387		498
Na	1	428.	518.	480.	538.	1	480.
Mg	1	72.2	55.2 82.1 518.	80.9	73.8	1	-
Ca	1	57.6	55.2	75.2	54.3	1	-
TH	1	411	9/4	521	439	ł	1
1	1	1	1	27		1	<10
DD TC	!	ļ	1	.7	1	0	1
DD TC	!	ļ	1	.7	1	0	1
DD TC	8.0	ļ	} }	.7	10.9	10.1 2.0	1
TSS DO BOD TC	8.0	1	} }	7 10.0 1.7	10.9	10.1 2.0	1
Turb TSS DO BOD TC	34 8.0	14. 10.1	7.5 9.9	8.5 21.7 10.0 1.7	11. 17.5 10.9	8.9 14.0 10.1 2.0	7.5 13.0 12.6
H SC Turb TSS DO BOD TC Rosebud	40 2250 34 8.0	2840 14. 10.1	7.5 9.9	2800 8.5 21.7 10.0 1.7	2948 11. 17.5 10.9	2880 8.9 14.0 10.1 2.0	7.5 13.0 12.6
Turb TSS DO BOD TC	40 2250 34 8.0	14. 10.1	} }	8.5 21.7 10.0 1.7	11. 17.5 10.9	8.9 14.0 10.1 2.0	1

Sampling Location: a--TO6N, R43E, 22A.

	1	28	36	61	83	1626	ı
	ı	6 17	4 19	8 32	0 16	3 16	1
	1	0.4	0.4	0.5	0.4	0.3	-
	1	725 0.46	788	1560	742	744	-
	1	8.6	10.5	24.0	10.4	15.9	1
	1	0.0	0.0	0.0	0.0	8.4	1
	1	551					-
	1	452	200	627	389	345	1
	1	242.	300.	590.	252.	277.	
	1	83.2	93.4	143.	78.4	72.9	
	1	116.					1
		632	719	1035	632	550	1
		1	1	1	20	1	1
	1		3.0	ł	1.8	1	3.0
	4		0		4	.2	0
	0.	-	7	i	0	9	12.
sham	10.	24.0	4.3 7.	3.5	1.1 10	0.2 9	0.8 12.0 3.0
yth-Hysham	6.6 10.	2.4 24.0	2.4 4.3 7.	2.4 3.5	2.3 1.1 10.	0.8 0.2 9	1.4 0.8 12.
n Creek near Forsyth-Hysham	05/28/78a 20.0 8.33 2080 6.6 10.	20.0 8.17 2150 2.4 24.0	2.4 4	V-1		Ŭ	18.3 8.30 2080 1.4 0.8 12.

Sampling Locations: a--T06N, R38E, 26B; b--T06N, R38E, 23A.

			0	7	3	7		
	-			697				
	1	-	0.54	0.39	0.34	97.0	0.44	
		1	180	262 0.39	365	899	750	
		1	.0 1	7.6	.0 1	9.	.2	
	-							
	-			0.0				
	1	1	547	234	587	492	573	
	1	1	877	192	481	403	470	
	1	-	480.	101.	410.	356.	322.	
	1	1	105.	31.6	173.	31.2	1	
	1	1	4.4	0.09	24.	00.	 	
				280 6				
	i	i	9	2	10	2	i	
	-	l		1	109		130	
				} }	10.2 2.6		12.9	
	7.8		10.1 8.3	 	10.2 2.6	12.0	12.9	
===	7.8	11 9.1	6.7 8.5 10.1 8.3	27. 51.3	24. 64.2 10.2 2.6	3.9 4.8 12.0	5.9 9.4 12.9	
Silaili	7.8	11 9.1	6.7 8.5 10.1 8.3	904 27. 51.3	3090 24. 64.2 10.2 2.6	2460 3.9 4.8 12.0	2220 5.9 9.4 12.9	
at nysilalii	7.8	11 9.1	6.7 8.5 10.1 8.3	904 27. 51.3	3090 24. 64.2 10.2 2.6	2460 3.9 4.8 12.0	2220 5.9 9.4 12.9	
k near nysnam	7.8	21.5 8.30 3090 11 9.1	19.0 8.30 2840 6.7 8.5 10.1 8.3	18.5 8.20 904 27. 51.3	3090 24. 64.2 10.2 2.6	2460 3.9 4.8 12.0	5.9 9.4 12.9	
or eek mear nysmann	7.8	21.5 8.30 3090 11 9.1	19.0 8.30 2840 6.7 8.5 10.1 8.3	18.5 8.20 904 27. 51.3	3090 24. 64.2 10.2 2.6	2460 3.9 4.8 12.0	4.3 8.25 2220 · 5.9 9.4 12.9	
Thy Creek mear nysham	7.8	21.5 8.30 3090 11 9.1	19.0 8.30 2840 6.7 8.5 10.1 8.3	18.5 8.20 904 27. 51.3	3090 24. 64.2 10.2 2.6	2460 3.9 4.8 12.0	4.3 8.25 2220 · 5.9 9.4 12.9	
Salpy Creek Hear hysham		21.5 8.30 3090 11 9.1	6.7 8.5 10.1 8.3	18.5 8.20 904 27. 51.3	24. 64.2 10.2 2.6	2460 3.9 4.8 12.0	4.3 8.25 2220 · 5.9 9.4 12.9	

*Lower Sarpy Creek probably affected by Yellowstone River irrigation return flows on this sampling date. Sampling Locations: a--T06N,R37E,20A; b--T06N,R37E,07C; c--T06N,R37E,30D.

Water Quality Analyses Completed by DHES: Nutrients and Metals--Sweeney Creek near Rosebud, Reservation Creek near Forsyth-Hysham, and Sarpy Creek near Hysham (Accessory Stations). Table A32.

Si	-		-	i	-		17.1
Hg	i 	<.0002	1	<.0002	<.0002	i	1
Pb		0.007	1	<.005	<.005		
Cr		<.005	-	<.005	<.005	!	
PO	i	<.001	-	<.001	<.001	-	1
Zn				•			
Cu	i	<.01		<.01	<.01		ļ
Mn	1	0.065	1	0.000	0.10	-	1
E E	1	0.35	i	0.32	0.28	1	0.08
TKjN	i	i	1	I	l		0.35
TIN	i	0.17	0.08	0.25	0.51	7.08	0.64
NH3-N	!	0.01	0.01	0.02	0.04	0.08	0.02
TP NOx-N Rosebud	i				0.47		
TP c Rosebi	-	0.042	0.020	0.02	0.02	0.02	0.01
OP eek neal	-	0.017	0.005	900.0	0.006 0.02	0.009	0.005
Date OP TP N Sweeney Creek near Rosebud	05/28/78a	07/12/78a	08/23/78a	05/13/79a	08/21/79a (09/21/79a	11/07/79a

Sampling Location: a--T06N, R43E, 22A.

	<.0002						
	0.007 <.						
1	<.005	<.005		<.005	<.005	1	
1	<.001	<.001		<.001	<.001		
ł	<.005	<.005	i	0.005	<.005		
ł	<.01	<.01	1	<.01	<.01		
1	0.030	0.26	i	0.090	0.025	1	
1	0.15	0.21		0.21	0.04		
-	i			-	i	1	
1	N.01	0.03	0.05	N.01	N.01	N.03	
lysham	0.01	0.01	0.02	0.01	0.01	0.03	
orsyth-	<.01	0.02	0.03	<.01	<.01	<.01	
near F	0.043	0.033	0.254	0.02	0.03	0.04	
Reservation Creek near Forsyth-Hysham 05/28/78a	0.027	0.018	0.223	0.003	0.019	0.020	
ration 78a	2/78a	2/78a	4/78b	3/79b	2/79a	1/79a	

Sampling Locations: a--T06N, R38E, 26B; b-T06N, R38E, 23A.

	I	1	1			i	12.8
	-	1	-	i	<.005 <.0005	1	<.0002
					<.005		
					<.001		
	-	1		1	<.008	i	<.005
	1				<.01		<.01
	1	1	i	-	0.79 0.18		0.05
	1	!	1	ļ	0.79	i	0.24
	!		!	1	i		0.50
	ļ		1	0.24	0.02 0.03	N.11	0.21
	1			0.04	0.02	0.11	0.02
					0.01		
Hysham	-	}	i	0.000	0.05	0.011	0.02
near	i			0.038	0.021	0.004	0.003
Sarpy Creek	05/27/78a	07/12/78c	08/22/78a	08/24/78b*	05/13/79b 0.021 0.05	08/22/79a	11/07/79b

*Lower Sarpy Creek probably affected by Yellowstone River irrigation return flows on this sampling date. Sampling Locations: a--T06N, R37E, 30A; b--T06N, R37E, 07C; c--T06N, R37E, 30D.

Water Quality Analyses Completed by DHES: Field Parameters, Common Ions, Nutrients, and Metals-Powder River near Moorhead and Powder River near Mizpah (Miscellaneous Stations). Table A33.

Powder River near Moorhead -- Field Parameters and Common Ions

Date Temp pH SC Turb TS DO BOD TC TH Ca Mg Na TA HCO3 CO3 C1 SO4 F DS 09/14/79a 11.1 8.13 2200 112. 164. 10.7 631 138. 69.5 271. 194 237 0.0 174. 780 1.50 1671			
1 Ca Mg Na TA HCO3 CO3 C1 S04 11 138. 69.5 271. 194 237 0.0 174. 780		DS	1671
1 Ca Mg Na TA HCO3 CO3 C1 11 138. 69.5 271. 194 237 0.0 174.		Ĺ.	1.50
1 Ca Mg Na TA HCO3 CO3		504	780
1 Ca Mg Na TA HCO3		,	
1 Ca Mg Na TA 11 138 69.5 271. 194		C03	0.0
1 Ca Mg Na 1 138 69.5 271.			
1 138 69.5			
Ca 1 138.			
11			
Date Temp pH SC Turb TSS DO BOD TC TH O9/14/79a 11.1 8.13 2200 112. 164. 10.7 631			
Date Temp pH SC Turb TSS DO BOD TC D9/14/79a 11.1 8.13 2200 112. 164. 10.7		TH	631
Date Temp pH SC Turb TSS DO BOD 09/14/79a 11.1 8.13 2200 112. 164. 10.7		TC	
Date Temp pH SC Turb TSS DO 09/14/79a 11.1 8.13 2200 112. 164. 10.7	1	BOD	
Date Temp pH SC Turb TSS 09/14/79a 11.1 8.13 2200 112. 164.	3	DO	10.7
Date Temp pH SC Turb 09/14/79a 11.1 8.13 2200 112.	1	TSS	164.
Date Temp pH SC 09/14/79a 11.1 8.13 2200	,	Turb	112.
Date Temp pH 09/14/79a 11.1 8.13	3	SC	2200
Date Temp 09/14/79a 11.1	211	Ηd	8.13
Date 09/14/79a	יווני	Temp	11.1
	OWC TATA	Date	09/14/79a

Powder River near Moorhead--Nutrients and Metals

	Si	1
	Hg	
	Pb	
	Cr	
	Cd	
	Zn	
	Cu	
	Mn	!
	Fе	1
	TKjN	
0	TIN	N.01
	NH3-N	0.01
-	NOx-N	<.01
	TP	0.15
	OP	
Commence of the contract of th	Date	
3	Da	09/1

Sampling Location: a--T09S, R48E, 08C.

Powder River near Mizpah--Field Parameters and Common Ions

Powder River near Mizpah--Nutrients and Metals

Si	1
Hg	1
Pb.	
Cr	1
PS	
Zn	1
Cu	
Mn	!
ы	
TKjN	1
TIN	1
NH3-N	1
NOx-N	
TP	
OP TP NO _x -N NH ₃ -N	1
Date	_

Sampling Location: a--TO6N, R52E, 30D.

Table B34. Taxa list, associated systematics, and major habits and characteristics of benthic macroinvertebrates collected from streams draining the southern Fort Union region of southeastern Montana (the first page of eight pages).

Phylum: Arthropoda--joint-footed animals

Subphylum: Mandibulata (Antennata) -- antennae present

Class: Insecta (Hexapoda) -- insects

Order: Coleptera (COL)--beetles and weevils

Family: Carabidae (L)*--predaceous ground beetles

Family: Chrysomelidae--leaf beetles

Donacia (L)--clinging beetles

Family: Curculionidae (L)*--weevils

<u>Hyperodes</u> (L)--climbing and clinging weevils Listronotus (L,A)--climbing and clinging weevils

Family: Dryopidae--riffle beetles

Helichus sp. (A)--clinging beetles

Helichus striatus (A)

Family: Dytiscidae (L)*--predaceous diving beetles

Agabus (L,A)--swimming and diving beetles

Deronectes sp. (A)--swimming and climbing beetles

Deronectes liodessus (A)

Deronectes-Oredytes complex (A)

Oreodytes (L)--swimming and climbing beetles

Hydroporus-Hygrotus complex (L)--diving beetles

Rhantus (L)--swimming and diving beetles

Family: Elmidae (L)*--riffle beetles

<u>Dubiraphia</u> sp. (L,A)--clinging and climbing beetles

Dubiraphia vittata (A)

Microcylloepus sp. (L,A)--clinging, climbing beetles

Microcylloepus pusillus (A)

Optioservus sp. (L,A)--clinging beetles

Optioservus divergens (A)

Optioservus quadrimaculatus (A)

Stenelmis sp. (L,A)--clinging beetles

Stenelmis sinuata (A)

Stenelmis sinuata-humerosa complex (A)

Stenelmis vittipennis (A)

Zaitzevia parvula (A)--clinging beetles

Family: Haliplidae--crawling water beetles

Haliplus (L,A)--climbing and swimming beetles

Family: Heteroceridae (L)*--subaquatic and littoral beetles

Family: Hydrophilidae (L)*--water scavenger beetles

Berosus (L)--swimming and diving beetles

Enochrus (L)--burrowing and sprawling beetles

Helophorus (A)--climbing beetles

Hydrochus (L)--climbing beetles

Laccobius (L,A)--swimming and climbing beetles

^{*}An asterisk denotes the collection of a higher taxa representative that could not be identified to the generic level.

L,A: These designations denote the larval and adult forms respectively.

Table B34. Continued (the second page of eight pages).

Class: Insecta-- (continued)

Order: Coleoptera (COL)-(continued)

Family: Hydraeinidae (Limnebiidae) (L)*--crawling water beetles

Ochthebius (L,A)--clinging beetles

Family: Gyrinidae--whirligig beetles

Gyrinis-Gyretes complex (L)--surface swimming beetles

Family: Limnichidae (L)*--riffle beetles Family: Noteridae#--burrowing water beetles

Order: Diptera (DIP)--true flies

Suborder: Brachycera*

Family: Dolichopodidae*--burrowing aquatic flies

Family: Empididae*--dance flies

<u>Clinocera</u>—clinging flies <u>Clinocera</u>—Chelifera complex

Hemerodromia--sprawling and burrowing flies

Family: Stratiomyidae*--soldier flies

Euparyphus--sprawling flies

Nemotelus--swimming and sprawling flies Odontomyia (Eulalia)--sprawling flies

Stratiomys (Stratiomyia) -- sprawling, burrowing flies

Family: Tabanidae*--horse and deer flies

Chrysops——sprawling and burrowing flies Tabanus——sprawling and burrowing flies

Suborder: Cyclorrhapha

Family: Ephydridae--shore and brine flies

Hydrellia--burrowing and mining flies

Family: Muscidae (Anthomyiidae)*--aquatic "houseflies"

Limnophora--burrowing flies

Family: Scatophagidae*--dung flies

Suborder: Nematocera

Family: Blephariceridae#--net-winged midges

Family: Ceratopogonidae (Heleidae) *-- biting midges, "no-see-ums"

Bezzia-burrowing midges

Bezzia-Probezzia-Palpomyia complex

<u>Palpomyia</u>--burrowing midges <u>Culicoides</u>--burrowing midges

Family: Chironomidae*--true midges

Family: Culicidae#--mosquitoes

Family: Deuterophlebiidae#--mountain midges

Family: Dixidae--dixid or dixa midges

Dixa--swimming and climbing midges

^{*}An asterisk denotes the collection of a higher taxa representative that could not be identified to the generic level.

L,A: These designations denote the larval and adult forms respectively.

[#]This designation denotes a generally lotic and/or relatively common higher taxa for which no representatives were collected from the study area streams.

Table B34. Continued (the third page of eight pages).

Class: Insecta--(continued)

Order: Diptera (DIP)--(continued)
Suborder: Nematocera--(continued)
Family: Psychodidae*--moth flies

Pericoma--burrowing flies

Family: Ptychopteridae#--phantom crane flies

Family: Simuliidae--black flies

Simulium (L,P)--clinging flies

Family: Tipulidae*--Craneflies

<u>Dicranota</u>—sprawling and burrowing flies <u>Ormosia</u>—semiaquatic, burrowing flies <u>Pseudolimnophilia</u>—burrowing flies

Tipula--burrowing flies

Order: Ephemeroptera (EPH)*--mayflies

Family: Baetidae*

<u>Baetis</u>—rapid water, free-ranging mayflies <u>Pseudocloeon</u>—swimming and clinging mayflies

Family: Baetiscidae#--sprawling and clinging mayflies

Family: Caenidae

Caenis--quiet water, bottom sprawling mayflies

Family: Ephemerellidae*

Ephemerella--variable mayflies

Family: Ephemeridae

Ephemera--quiet water, burrowing mayflies

Family: Heptageniidae*

Heptagenia--running water, clinging mayflies
Rhithrogena--running water, clinging mayflies
Stenonema--running water, clinging mayflies

Family: Leptophlebiidae*

Choroterpes--clinging and bottom sprawling mayflies

Choroterpes-Leptophlebia complex

Leptophlebia -- clinging and swimming mayflies

Paraleptophlebia--rapid water, free-ranging mayflies

Family: Polymitarcyidae

Ephoron--quiet water, burrowing mayflies

Family: Siphlonuridae

<u>Ameletus</u>—rapid water, free-ranging mayflies <u>Siphlonurus</u>—quiet water, climbing mayflies

Family: Tricorythidae

Tricorythodes--clinging and bottom sprawling mayflies

*An asterisk denotes the collection of a higher taxa representative that could not be identified to the generic level.

L,P: These designations denote the larval and pupal forms respectively.

#This designation denotes a generally lotic and/or relatively common higher taxa for which no representatives were collected from the study area streams.

Table B34. Continued (the fourth page of eight pages).

Class: Insecta--(continued)

Order: Hemiptera (HEM) -- true bugs

Suborder: Heteroptera (L,A)*--aquatic bugs

Family: Corixidae*--water boatmen

Hesperocorixa sp. --swimming and climbing bugs

Hesperocorixa laevigata Hesperocorixa vulgaris

Sigara sp. -- swimming and climbing bugs

Sigara comani Sigara trillineata

Trichocorixa--swimming and climbing bugs

Family: Gerridae--water striders, pond skaters, wherrymen

Gerris sp.--skating bugs

Gerris remigis

Family: Naucoridae--creeping water bugs

Ambrysus mormon--clinging and swimming bugs

Family: Notonectidae#--back swimmers

Family: Saldidae*--shore bugs

Family: Veliidae#--broad-shouldered water striders

Suborder: Homoptera*--cicados, aphids, etc., semiaquatic bugs

Order: Lepidoptera (LEP)--butterflies and moths

Family: Pyralidae--aquatic caterpillars

Parargyractis--silk retreat makers

Order: Megaloptera (MEG)--alderflies, dobsonflies, and fishflies

Family: Sialidae*--alderflies

Sialis--burrowing, climbing, and clinging alderflies

Family: Corydalidae

Subfamily: Corydalinae#--dobsonflies and hellgrammites

Subfamily: Chauliodinae--fishflies

Dysmicohermes--clinging and climbing fishflies

Order: Odonata (ODO)*--dragonflies and damselflies

Suborder: Anisoptera (ANI)*--true dragonflies

Family: Aeshnidae--darners

Aeshna--climbing dragonflies

Family: Gomphidae*

Gomphus--burrowing dragonflies

Ophiogomphus--burrowing dragonflies

Family: Libellulidae*

Leucorrhinia--climbing dragonflies

Family: Petaluridae#--mountain dragonflies

*An asterisk denotes the collection of a higher taxa representative that could not be identified to the generic level.

L,A: These designations denote the larval and adult forms respectively.

#This designation denotes a generally lotic and/or relatively common higher taxa for which no representatives were collected from the study area streams.

Table B34. Continued (the fifth page of eight pages).

Class: Insecta--(continued)

Order: Odonata (ODO)*--(continued)
Suborder: Zygoptera (ZYG)*--damselflies
Family: Calopterygidae (Agriidae)

Hetaerina--climbing and clinging damselflies

Hetaerina americana

Family: Coenagrionidae (Coenagriidae)*

Argia--clinging and climbing-sprawling damselflies

Argia (Hyponedra) vivida

Ischnura--climbing damselflies

Order: Plecoptera (PLE) -- stoneflies

Family: Chloroperlidae*--clinging stoneflies

Family: Nemouridae*

Nemoura (a)—sprawling and clinging stoneflies

Family: Perlidae

Acroneuria (a)--clinging stoneflies

Family: Perlodidae*

Isogenus (a)--clinging stoneflies

Isoperla--clinging and sprawling stoneflies

Family: Pteronarcyidae#--clinging and sprawling stoneflies
Pteronarcys#--salmon flies ("helgrammites")

Order: Trichoptera (TRI)--caddisflies

Family: Brachycentridae*--tapered tube-case makers

Brachycentrus--clinging caddisflies

Family: Glossosomatidae*--saddle-case, turtle shell-case makers

Culoptila--clinging caddisflies

Family: Helicopsychidae--snail shell-like, tube-case makers

Helicopsyche--clinging caddisflies

Family: Hydropsychidae*--net spinning, fixed retreat makers

Cheumatopsyche--clinging caddisflies
Hydropsyche--clinging caddisflies
Potamyia--clinging caddisflies

Family: Hydroptilidae (L,P)*--microcaddisflies, purse-case makers

Hydroptila (L,P)--silken case, clinging caddisflies

Ithytrichia (L,P)--silken case, clinging caddisflies

Ochrotrichia--silken case, clinging caddisflies

Family: Lepidostomatidae#--climbing, sprawling tube-case makers

*An asterisk denotes the collection of a higher taxa representative that could not be identified to the generic level.

(a) These stonefly genera have numerous subgenera which are often given a generic rank by some "split-prone" authorities.

#This designation denotes a generally lotic and/or relatively common higher taxa for which no representatives were collected from the study area streams.

L,P: These designations denote the larval and pupal forms respectively.

Table 34B. Continued (the sixth page of eight pages).

Class: Insecta--(continued)

Order: Trichoptera (TRI)--(continued)

Family: Leptoceridae (L,P)*--variable tube-case makers

Nectopsyche (Leptocella)--climbing, swimming caddisflies with long and slender tube-cases

Oecetis--clinging, sprawling caddisflies with curved and tapered tube-cases

Family: Limnephilidae*--variable tube-case makers

Anabolia--climbing and sprawling caddisflies with

rough tube-cases of plant pieces

Glyphopsyche--sprawling caddisflies with smooth tubecases of plant pieces

Hesperophylax (Platyphylax) (L,P)--sprawling caddisflies with slightly curved and slightly coarse

mineral tube-cases and sprawling caddisflies with

Limnephilus--climbing and sprawling caddisflies with variable tube-cases of plant pieces and/or sand grain construction

Onocosmoecus--sprawling caddisflies with tube-cases

of plant pieces or minerals

Psychoglypha--sprawling and clinging caddisflies with mixed tube-cases of plant pieces and minerals

Family: Odontoceridae#--sprawling tube-case makers

Family: Philopotamidae#--clinging sack-like, silk net spinners

Family: Phryganeidae--cylindrical tube-case makers

Ptilostomis--climbing caddisflies

Family: Polycentropodidae--net spinning retreat makers

Neureclipsis -- clinging caddisflies with trumpet-

shaped silk nets

Nyctiophylax--clinging caddisflies with silk tube retreats

Polycentropus--clinging caddisflies with silk tube

retreats

Family: Rhyacophilidae#--free-living, free-ranging and clinging caddisflies having no cases

Phylum: Arthropoda--joint-footed animals

Subphylum: Mandibulata (Antennata) -- antennae present

Class: Crustacea--crustaceans

Subclass: Ostracoda (OST)*--seed shrimp

Order: Podocopa*--fresh-water seed shrimp

*An asterisk denotes the collection of a higher taxa representative that could not be identified to the generic level.

L,P: These designations denote the larval and pupal forms respectively.

#This designation denotes a generally lotic and/or relatively common higher taxa for which no representatives were collected from the study area streams.

Table B34. Continued (the seventh page of eight pages).

Class: Crustacea--(continued)

Subclass: Malacostraca--lobsters, crabs, sow bugs, scuds, crayfishes, etc.

Order: Isopoda#--aquatic sow bugs

Order: Amphipoda (AMP) -- scuds, sideswimmers, "fresh-water shrimp"

Family: Gammaridae
Gammarus

Family: Talitridae--common sideswimmer

Hyalella azteca--only Talitridae in North America

Order: Decapoda#--lobsters, crabs, crayfishes, etc.

Family: Astacidae#--crayfishes, crawfishes, crawdads

<u>Phylum</u>: Arthropoda—joint—footed animals Subphylum: Chelicerata—antennae absent

Class: Arachnida (Arachnoidea) -- spiders, scorpions, mites, ticks, etc.

Order: Acari (Acarina) (ACA)*--mites and ticks

Group: Hydracarina (Hydrachnellae)(b)*--water mites

<u>Phylum</u>: Annelida—segmented worms Class: Hirudinea (HIR)*—leeches

Order: Gnathobdellida--no protrusible proboscis, five eye pairs

Family: Hirudinidae

Percymoorensis marmoratis

Order: Pharyngobdellida--no protrusible proboscis, three or four eye pairs

Family: Erpobdellidae*

Dina anoculata

Erpobdella

Order: Rhynchobdellida--protrusible proboscis present

Family: Glossiphoniidae*

Batracobdella Glossiphonia sp.

Glessiphonia complanata

Helobdella sp.

Helobdella stagnalis

Placobdella sp.

Placobdella papillifera

Theromyzon#

Family: Piscicolidae#

Class: Oligochaeta (OLI)*--aquatic earthworms

#This designation denotes a generally lotic and/or relatively common higher taxa for which no representatives were collected from the study area streams.

*An asterisk denotes the collection of a higher taxa representative that could not be identified to the generic level.

(b) The Hydracarina is an artificial assemblage of several families in the acarian suborder Trombidiformes that are restricted to fresh-water habitats along with certain of the Sarcopotiformes and the Parasiti-formes which also have an aquatic habit.

Table B34, Continued (the eighth page of eight pages).

Phylum: Mollusca--mollusks

Class: Gastropoda (GAS)*--univalve mollusks; limpets, snails and periwinkles

Subclass: Prosobranchia#--possess a gill and an operculum

Order: Mesogastropoda#--mostly marine species

Subclass: Pulmonata--possess a pulmonary sac (lung) and lack an operculum

Order: Basommatophora--fresh-water snails

Family: Ancylidae--cone snails

Ferrissia

Family: Lymnaeidae--pond snails

Lymnaea

Family: Planorbidae--orb snails

Gyraulus Helisoma

Family: Physidae--pouch snails

Physa

Family: Pupillidae

Columnella

Class: Pelecypoda (PEL)*--bivalve mollusks; clams and mussels

Order: Eulamellibranchia

Family: Unionidae*--pearly mussels or naiads

Order: Heterodonta

Family: Sphaeriidae--pea, pill, and fingernail clams

<u>Pisidium</u>—anterior of shell longer than posterior Sphaerium—posterior of shell longer than anterior

Phylum: Platyhelminthes--flatworms

Class: Turberbellaria (TUR)*--free-living flatworms

Phylum: Aschelminthes--roundworms
Class: Nematoda (NEM)(c)*--nematodes

Class: Nematomorpha (NMT)(c)*--"hair snakes" or "horsehair worms"

Order: Gordiida (Gordioidea)*--gordian worms

*An asterisk denotes the collection of a higher taxa representative that could not be identified to the generic level.

#This designation denotes a generally lotic and/or relatively common higher taxa for which no representatives were collected from the study area streams.

(c) The Nematoda and Nematomorpha are given a phylum rather than a class ranking by some authorities.

Table C35. Density (numbers per square foot) of benthic macroinvertebrates collected with a Surber sampler from upper Rosebud Creek near Kirby during the 1978 sampling season.

Taxa/Collection Date	6/16	6/29	7/18	8/03	8/29	9/05	10/08	11/05
COL: Agabus (A)						1		
Dubiraphia (L)	2		10	8				
Dubiraphia (A)			2					
Microcylloepus (L)			6				1	
Microcylloepus (A)					2			
Optioservus (L)	2			8				
Optioservus								
divergens (A)					2			
quadrimaculatus (A)	1							
Hydrochus (L)								
DIP: Bezzia-Probezzia	1				2			
Chironomidae	39	19	572	2096	620	182	51	88
Clinocera-Chelifera					12t			
Hemerodromia			2t	24t	8t	3t		
Simulium (L)	4	2			4		2	6
Simulium (P)	1							
Dicranota	1							
Tipula				4				
EPH: Baetis	42	4	18	8	82	5	1	26
Heptageniidae					4			
Leptophlebiidae					2			
Tricorythodes			10	4		2	7	3
MEG: Sialis	1							
ANI: Anisoptera								
Ophiogomphus				4				
PLE:Perlodidae								
Isogenus							6t	
Isoperla								7
TRI: Brachycentrus	1	1	28	164	10	8	34	20
Cheumatopsyche	5	1	12	252	254	57	256	65
Hydropsyche	3	1	10	80	230	237		137
Hydroptila	20		224	108	12	1	3	18
Ochrotrichia				16				
AMP:Hyalella azteca	1							1
ACA: Acari	1		18		34			5
HIR: Hirudinea					2			
OLI:Oligochaeta	18		34	4				1
GAS: Ferrissia							1	1
Gyraulus			р					P
Physa	1							
PEL: Pisidum			8					
and the street was to trade								
Totals	144	28	954	2780	1280	496	362	378

Table C36. Density (numbers per square foot) of benthic macroinvertebrates collected with a Surber sampler from upper Rosebud Creek near Kirby during the $\underline{1979}$ sampling season.

Taxa/Collection Date	4/01	5/20	6/21	7/27	8/17	9/05	Two-Year Means
COL: Agabus (A)							0.1
<u>Dubiraphia</u> (L)			14				2.4
<u>Dubiraphia</u> (A)							0.1
Microcylloepus (L)			6		2		1.1
Microcylloepus (A)				4	2	12	1.4
<u>Optioservus</u> (L)				4		28	3.0
<u>Optioservus</u>							
divergens (A)						4	0.4
quadrimaculatus (A)							0.1
Hydrochus (L)			2t				0.1t
DIP:Bezzia-Probezzia		2					0.4
Chironomidae		92	316	128	372	380	353.9
Clinocera-Chelifera					6t	8t	1.9t
Hemerodromia			2t		22t	8t	4.9t
Simulium (L)			20				2.7
Simulium (P)							0.1
Dicranota							0.1
Tipula							0.3
EPH: Baetis	1	5	16	4	98	20	23.6
Heptageniidae							0.3
Leptophlebiidae					4		0.4
Tricorythodes			32	16	50	36	11.4
MEG: Sialis							0.1
ANI:Anisoptera			2				0.1
Ophiogomphus							0.3
PLE:Perlodidae			2				0.1
Isogenus							0.4t
Isoperla		4					0.8
TRI: Brachycentrus	Р		86	12	4	8	26.9
Cheumatopsyche		1	8	216	218	360	121.8
Hydropsyche		31	74	236	408	400	131.9
Hydroptila		5	24	72	34	12	38.1
Ochrotrichia							1.1
AMP: Hyalella azteca							0.1
ACA: Acari			4	4		16	5.9
HIR: Hirudinea							0.1
OLI:Oligochaeta		3					4.3
GAS: Ferrissia							0.1
Gyraulus			р		р		p
Physa					- -		0.1
PEL:Pisidium							0.6
I III. I I STUTUM							0.0
Totals	1	143	608	696	1220	1292	741.5
100410	_	_ , ,	300	323			(10,382)
							(10,000)

Table C37. Density (numbers per square foot) of benthic macroinvertebrates collected with a Surber sampler from middle Rosebud Creek near Colstrip and from lower Rosebud Creek near Rosebud.

		1 1 0			Rosebud-	
m/0-11		osebud-Co		2 14	Rosebud	Overall
Taxa/Collection Date	//12//8	8/22/78	8/24//	<u>Means</u>	11/07/79	9 <u>Means</u> 0.5
COL: Curculionidae (L)		1		0.3		0.3
Hyperodes (L)	2	8		3.3		
Dubiraphia (L)		0				2.5
Dubiraphia (A)	1 3	25	 2	0.7	4	0.5 8.5
Microcylloepus (L)				10.0	4	
Microcylloepus (A) Microcylloepus	3			1.0		0.8
pusillus (A)		1		0.3		0.3
Stenelmis (L)	2	9	2	4.3		3.3
Stenelmis sinuata (A)	1			0.3		0.3
Stenelmis	_					0.0
vittipennis (A)		1		0.3		0.3
DIP:Chironomidae	6	43	4	17.7	362	103.8
Hemerodromia	1t	1t		0.7t	16t	4.5t
Simulium	25		1	8.7	226	63.0
Tipula		3		1.0		0.8
EPH: Baetis	4	9	3	5.3		4.0
Pseudocloeon			2	0.7		0.5
Choroterpes	1	1		0.7	30	8.0
Choroterpes-						
Leptophlebia			26	8.7		6.5
Paraleptophlebia		4		1.3		1.0
Ephoron	1			0.3		0.3
Tricorythodes	1	3		1.3	2	1.5
HEM: Ambrysus mormon (A)	1	3	9	4.3		3.3
LEP: Parargyractis					2	0.5
ANI: Ophiogomphus	1			0.3		0.3
TRI: Brachycentrus		8	3	3.7		2.8
Culoptila					2	0.5
Cheumatopsyche	2	105	29	45.3	130	66.5
Hydropsyche	20	23	4	15.7	334	95.3
Hydroptila					10	2.5
Ithytrichia		1		0.3		0.3
ACA: Acari		1		0.3		0.3
HIR: Hirudinea			1	0.3		0.3
OLI:Oligochaeta	4	5		3.0		2.3
GAS: Ferrissia	р			p		p
Physa		1		0.3	2	0.8
PEL: Sphaerium	4			1.3		1.0
TUR: Turbellaria		11		3.7		2.8
				3 , ,		
Totals	83	268	86	145.4	1122	390.7
				(437)		(1559)

Table C38. Density (numbers per square foot) of benthic macroinvertebrates collected with a Surber sampler from Indian Creek near Kirby.

	1	1978 Samples 1979 Samples					
Taxa/Collection Date	7/25	8/24	11/05	6/26	7/17	9/28	Means
COL: Agabus (L)				2			0.3
Dubiraphia (L)		1	2	2			0.8
Dubiraphia (A)		1	1				0.3
Microcylloepus (L)	7			2	4	8	3.5
Microcylloepus (A)					4	8	2.0
Microcylloepus pusillus (A)				4			0.7
Optioservus (L)	61	21	36	56	4	184	60.3
Optioservus (A)	28						4.7
Optioservus divergens (A)			4	18		8	5.0
quadrimaculatus (A)				6			1.0
Heteroceridae (L)	1t						0.2
Berosus (L)					4		0.7
DIP: Bezzia-Probezzia			1				0.2
Chironomidae	60	113	102	134	2928	288	604.2
Clinocera-Chelifera		10t	6t		8t	4t	4.7t
Hemerodromia	3t	2t	1t		12t	12t	5.0t
Muscidae					12		2.0
Pericoma			1		16		2.8
Simulium	4		2	2	272		46.7
Euparyphus			1				0.2
Tipulidae						4	0.7
Dicranota	4		6		84	8	17.0
Tipula	2		2	2			1.0
EPH: Baetidae				p			p
Baetis	47	1	1			12	10.2
Caenis	6		54				10.0
Tricorythodes		3	1				0.7
ANI: Ophiogomphus		5	2				1.2
PLE: Isoperla		1t	1				0.3
TRI: Brachycentrus	296	13	16	14		136	79.2
Cheumatopsyche	49	5		2	3604	372	672.0
Hydropsyche	54	52	131	40	368	932	262.8
<u>Potamyia</u>	1						0.2
Hydroptila	16	7	82	32	44	44	37.5
Ochrotrichia	4						0.7
<u>Oecetis</u>		3					0.5
Onocosmoecus				2			0.3
AMP: Gammarus						4	0.7
<u>Hyalella</u> <u>azteca</u>	34	6		2		4	7.7
ACA:Acari	1	19	23	28	36	40	24.5
OLI:Oligochaeta	14	2	2	8		8	5.7
GAS: Lymnaea	1						0.2
Gyraulus	p	p	34	p	p	P	5.7
Physa				P			p
<u>Columnella</u>			p				р
PEL: Pisidium	3			Р			0.5
•	606	265	<u> </u>	356	7400	2076	1884.6
Totals	696	265	512	330	7400		(11,305)
						(11,303)

Table C39. Density (numbers per square foot) of benthic macroinvertebrates collected with a Surber sampler from Davis Creek near Busby.

Taxa/Collection Date	6/26/78	7/25/78	8/24/79	Means
COL: Agabus (L)	1	1		0.7
Agabus (A)			1	0.3
Deronectes-Oerodytes (A)	1			0.3
Deronectes liodessus (A)		1		0.3
Hydroporus-Hygrotus (L)		1t		0.3t
Dubiraphia (L)	9	25	10	14.7
Dubiraphia (A)	14	3		5.7
Dubiraphia vittata (A)			26	8.7
Gyrinis-Gyretes (L)		1t		0.3t
Limnichidae (L)	1			0.3t
DIP:Bezzia-Probezzia		3		1.0
Chironomidae	39	878	233	383.3
Clinocera-Chelifera		11t		3.7t
Simulium	3	27		10.0
Stratiomyidae		1		0.3
Odontomyia	1			0.3
Chrysops		1		0.3
Tabanus			1	0.3
Tipula	1			0.3
EPH: Baetis	5	5	4	4.7
Caenis	2	9	7	6.0
HEM: Heteroptera (L)	1t			0.3t
Heteroptera (A)	1t			0.3t
Hesperocorixa laevigata (A)		19		6.3
MEG: Sialis	1	17	2	6.7
ZYG:Coenagrionidae			2	0.7
Ischnura		1		0.3
TRI: Cheumatopsyche	16	1	151	56.0
Hydroptila	1			0.3
Hesperophylax		1	22	7.7
Limnephilus		1		0.3
Ptilostomis			1	0.3
AMP: Hyalella azteca	14	17	37	22.7
OST:Ostracoda	2		5	2.3
ACA: Acari	2		2	1.3
HIR:Glossiphonia	1			0.3
OLI: Oligochaeta	3	7	4	4.7
GAS:Gyraulus	р	р		р
Physa	1	23	4	9.3
	7.00			
Totals	120	1054	512	561.6
				(1686)

Table C40. Density (numbers per square foot) of benthic macroinvertebrates collected with a Surber sampler from Muddy Creek near Busby-Lame Deer.

Taxa/Collection Date COL:Dubiraphia (L)	6/26/78	7/25/78	5/20/79 43	8/24/79 22	Means 16.3
Dubiraphia (A)		1	1		0.5
Microcylloepus (L)				8	2.0
Optioservus (L)			3		0.8
DIP: Bezzia-Probezzia	1				0.3
Chironomidae	235	112	70	250	166.8
<u>Simulium</u>	2	43		14	14.8
Dicranota		12			3.0
EPH: Baetis		46		22	17.0
Caenis	42	3	13		14.5
Choroterpes				2	0.5
HEM: Ambrysus mormon (A)			2	30	8.0
TRI: Brachycentrus		3			0.8
Cheumatopsyche	9	444	30	150	158.3
Hydropsyche		9	4	2	3.8
Hydroptila (L)		14	58	10	20.5
Hydroptila (P)	2				0.5
Oecetis			p	2	0.5
Onocosmoecus			1		0.3
AMP: Hyalella azteca	2		9	310	80.3
ACA: Acari			18	2	5.0
HIR:Glossiphonia complanata			1		0.3
Helobdella			7	24	7.8
Helobdella stagnalis			17		4.3
OLI:Oligochaeta	3		3	16	5.5
Lymnaea			p		Р
Gyraulus		p	p	p	р
Helisoma			р		Р
Physa	5		p	10	3.8
PEL:Pisidium			26	8	8.5
NEM: Nematoda				6	1.5
Totals	301	687	306	888	546.2 (2182)

Table C41. Density (numbers per square foot) of benthic macroinvertebrates collected with a Surber sampler from Lame Deer Creek near Lame Deer.

Taxa/Collection Date COL:Dubiraphia (L)	7/12/78	8/16/78	8/07/79	11/06/79	Means 1.3
Dubiraphia vittata (A)			26		6.5
Microcylloepus (L)			2		0.5
Optioservus (L)	40	4	48	8	25.0
Optioservus (A)	20				5.0
Optioservus divergens (A)			2		0.5
Haliplus (L)			2		0.5
DIP: Chironomidae	204	44	92	1012	338.0
Clinocera-Chelifera		2t			0.5t
Hydrellia	16	1			4.3
Simulium	20	1	2	604	156.8
Dicranota	8				2.0
EPH: Baetis	8			20	7.0
Caenis			2		0.5
Ameletus				4 t	1.0t
HEM: Gerris (A)		3			0.8
ZYG: Ischnura			8	16	6.0
TRI: Brachycentrus	232	24			64.0
Cheumatopsyche	216	2	60	2272	637.5
Hydropsyche	4	5	4	232	61.3
Hydroptila			68	12	20.0
0ecetis			16		4.0
Glyphopsyche		2			0.5
Hesperophy1ax	24				6.0
AMP: Gammarus	72		64		34.0
Hyallela azteca	84	2	508	52	161.5
ACA:Acari	4	2	4		2.5
HIR: Erpobdellidae			22		5.5
Glossiphonia			6	-	1.5
Helobdella stagnalis			4		1.0
OLI:Oligochaeta		1			0.3
GAS: Helisoma			4		1.0
Physa	8	5	P		3.3
PEL: Pisidium	4	4	4		3.0
Totals	964	103	948	4236	1563.1
				0	(6251)
					(0-01)

Table C42. Density (numbers per square foot) of benthic macroinvertebrates collected with a Surber sampler from the Tongue River near Sheridan-Decker.

Taxa/Collection Date COL:Dubiraphia (A) Microcylloepus (L) Microcylloepus (A) Microcylloepus pusillus (A) Stenelmis (L) Stenelmis sinuata (A) Stenelmis vittipennis (A) Zaitzevia parvula (A) DIP:Bezzia-Probezzia Bezzia-Probezzia-Palpomyia Chironomidae Hermerodromia Simulium (L) Simulium (P) EPH:Baetis Pseudocloeon Ephemera Ephemerella Heptageniidae Rithrogena Stenonema Leptophlebiidae Choroterpes-Leptophlebia Ephoron Tricorythodes LEP:Parargyractis Ophiogomphus PLE:Isoperla TRI:Brachycentrus Helicopsyche Cheumatopsyche	7/07/78 1 3 5 48 17 101 9 1 11 6 108	8/26/78 1 1 80 62 11 32 1 1 1 2 11 2 11 32 32	6/26/79 1 5 4 1 2 1t 3 299 1t 29 30 1 66 3 1 9 71 35	8/30/79 180 24 4 8 184 92 220 16 4 2 20 4 4 356	Means 0.3 46.8 1.0 6.0 2.3 2.0 0.5 0.3t 0.8 1.3 152.8 0.3t 50.0 2.8 95.8 6.5 0.3 19.3 1.0 0.3 0.3 0.3 1.0 0.5 5.5 5.3 1.0 2.3 18.8 6.0 132.8
Ophiogomphus PLE: Isoperla					2.3
Helicopsyche Cheumatopsyche Hydropsyche Hydroptila Ochrotrichia Nectopsyche Oecetis OLI:Oligochaeta GAS:Gyraulus PEL:Pisidium Sphaerium TUR:Turbellaria	 108 4 2 30 P 2 	 32 84 6 1 1 327		24	6.0
Totals	540	321	0/4	1/30	(3279)

Table C43. Density (numbers per square foot) of benthic macroinvertebrates collected with a Surber sampler from Ash and Youngs Creeks near Sheridan-Decker.

			Creek	Youngs Creek			
	1978		979			979	
Taxa/Collection Date	6/10	7/26	8/30	Means	7/13	8/30	Means
COL: Dubiraphia (L)		16		5.3	2		1.0
Dubiraphia (A)						2	1.0
Microcylloepus (L)		4		1.3	3		1.5
Microcylloepus (A)		4		1.3			
Microcylloepus					1		0.5
pusillus (A)			- -	1 2	1. 3		0.5 1.5
Optioservus (L)			4 - -	1.3			
DIP: Bezzia-Probezzia	1.2	24 1664	456	8.0 711.0	21	290	155.5
Chironomidae	13		436				
Clinocera-Chelifera		12t		4.0t	1t		0.5t
<u>Hemerodromia</u> Muscidae		 52	- - 4	18.7		4 t 	2.0t
Simulium	1	132	64	65.7	1	12	6.5
Dicranota		40	40	26.7	1.	12	0.5
Tipula	2	40	40	0.7			
EPH: Baetis	6	184	72	87.3	9		4.5
Pseudocloeon	1	12		4.3	<i>-</i>		4.5
Leptophlebiidae		12		ф. Э			
Tricorythodes			p			2	1.0
ANI: Ophiogomphus	1			0.3		2	1.0
PLE: Perlodidae			4	1.3			
TRI: Brachycentrus		8		2.7	2	6	4.0
Cheumatopsyche	1	224	172	132.3	62	130	96.0
Hydropsyche	13	316	376	235.0	83	190	136.5
Hydroptila		48	12	20.0	18	6	12.0
Ochrotrichia			8	2.7	2		1.0
Oecetis		р		р			
Onocosmoecus		4		1.3	2		1.0
ACA: Acari		12		4.0			
OLI:Oligochaeta	1			0.3	2		1.0
GAS: Lymnaea					р		р
Gyraulus						р	p
Physa		20	4	8.0	р	4	2.0
PEL: Pisidium						P	p
Totals	39	2776	1216	1343.5	212	648	430.0
10 (415	33	2170	1210	(4031)	212	040	(860)
				(4031)			(000)

Table C44. Density (numbers per square foot) of benthic macroinvertebrates collected with a Surber sampler from the Tongue River near Pyramid Butte-Birney during the 1978 sampling season (the first page of two pages).

Taxa/Collection Date	6/28	7/19	8/03	8/24	9/05	10/08	11/04
COL: Dubiraphia (L)	2	2	1				2
Dubiraphia (A)	1			1	56	1	
Dubiraphia vittata (A)							
Microcylloepus (L)	41		3	26	488	193	4
Microcylloepus (A)	4		10	1	1232	461	32
Microcylloepus pusillus (A)							
Stenelmis (L)			2	1	176	11	2t
Stenelmis (A)		5	5	1	24		2
Stenelmis sinuata (A)							
Stenelmis vittipennis (A)							
Heteroceridae (L)							
DIP:Brachycera				1			
Ceratopogonidae		1	5				
Bezzia-Probezzia			6			4	
Bezzia-Probezzia-Palpomyia				1			
Chironomidae	102	66	381	. 253	408	148	172
Hemerodromia						7t	2t
Simulium	79	23	1	1	48	79	456
Dicranota					- -		
EPH: Baetidae					448		
Baetis	22	39	15	10	680	176	100
Pseudocloeon				10		170	
Ephemera							
	6	3				227	90
Ephemerella					16		8t
Heptageniidae					10	4	
Heptagenia Stangara				2			10
Stenonema Lantanhlahiidaa							
Leptophlebiidae		2t	33	43			
Choroterpes		2 L		45	16		
Leptophebia					136	3	
Choroterpes-Leptophlebia					130		
Siphlonurus	17	19	68	43	16	32	16
Tricorythodes	1/	19		- -			
HEM: Homoptera (L)				1			
Ambrysus mormon (A)			P	2			
LEP: Paragyractis							
ANI: Gomphus				1			
Ophiogomphus				1			
PLE: Acroneuria					80	356	44
Perlodidae				2		550	
<u>Isoperla</u> ·							

Table C44. Continued (the second page of two pages).

Taxa/Collection Date	6/28	7/19	8/03	8/24	9/05	10/08	11/04
TRI: Helicopsyche							
Cheumatopsyche		10	10	9	56	13	24
Hydropsyche			22	30	192	59	252
Hydroptilidae (L)							
Hydroptilidae (P)							
Hydroptila			4	5	48	7	12
Ochrotrichia					24		
Glossosomatidae				1t			
Leptoceridae (L)				3			
Leptoceridae (P)				1			
Nectopsyche	3		6	62	200	39	40
<u>Oecetis</u>				8		7	26
OST:Ostracoda			1				
ACA:Acari							2
OLI:Oligochaeta							
GAS:Gastropoda							
<u>Ferrissia</u>							
<u>Physa</u>							
<u>Columnella</u>							
PEL:Pelecypoda							
<u>Pisidium</u>							
TUR:Turbellaria					144	51	40
Totals	277	170	573	510	4488	1878	1336

Table C45. Density (numbers per square foot) of benthic macroinvertebrates collected with a Surber sampler from the Tongue River near Pyramid Butte-Birney during the 1979 sampling season (the first page of two pages).

							Two-Year
Taxa/Collection Date	3/31	5/19	6/21	8/01	8/18	9/05	Means
COL: Dubiraphia (L)			4	4	8	4	2.1
Dubiraphia (A)							4.5
Dubiraphia vittata (A)					4		0.3
Microcylloepus (L)	32	8	16	204	472	748	171.9
Microcylloepus (A)		18					135.2
Microcylloepus							
pusillus (A)	28		32	200	360	352	74.8
Stenelmis (L)				32	36	36	22.8
Stenelmis (A)				16			4.1
Stenelmis sinuata (A)		11	4				1.2
Stenelmis vittipennis (A)					12	20	2.5
Heteroceridae (L)				2			0.2
DIP: Brachycera							0.1
Ceratopogonidae							0.5
Bezzia-Probezzia		1	44				4.2
Bezzia-Probezzia-							
Palpomyia	2						0.2
Chironomidae	568	102	1320	224	100	88	302.5
Hemerodromia				12t			1.6t
Simulium	52	5	20	36	28	4	64.0
Dicranota				4			0.3
EPH: Baetidae							34.5
Baetis ,	72	12	236	72	72	36	118.6
Pseudocloeon				12t			0.9t
Ephemera			4				0.3
Ephemerella	168	84	16	8			46.3
Heptageniidae	4						2.2
Heptagenia			8				0.9
Stenonema		3					1.2
Leptophlebiidae			4				0.3
Choroterpes		1		8		32	9.2
<u>Leptophlebia</u>							1.2
Choroterpes-Leptophlebia				160	24		24.8
<u>Siphlonurus</u>			4t				0.3t
Tricorythodes	12	1	144	36	4	4	31.7
HEM: Homoptera (L)				2			0.2
Ambrysus mormon (A)				16	8	12	2.8
LEP: Parargyractis				24	4		2.3
ANI: Gomphus					4		0.3
<u>Ophiogomphus</u>							0.1
PLE: Acroneuria				2			0.2
Perlodidae	124						46.5
<u>Isoperla</u>		50					4.0

Table C45. Continued (the second page of two pages).

							Two-Year
Taxa/Collection Date	3/31	5/19	6/21	8/01	8/18	9/05	Means
TRI: Helicopsyche			4		20	64	6.8
Cheumatopsyche		3	8	36	40	20	17.6
Hydropsyche	46	11	12	588	192	220	124.9
Hydroptilidae (L)					356	р	27.4
Hydroptilidae (P)			92				7.1
Hydroptila		9	16	96	220	4	32.4
Ochrotrichia			24	8	136	4	15.1
Glossosomatidae			~-				0.1t
Leptoceridae (L)							0.2
Leptoceridae (P)							0.1
Nectopsyche	22	3		12	60	76	40.2
Oecetis	6		12	8	20	44	10.1
OST:Ostracoda							0.1
ACA:Acari			4	4	4		1.1
OLI:Oligochaeta			12		8		1.5
GAS:Gastrapoda						р	р
Ferrissia				р			р
Physa	2	p	8	40	68	12	10.0
Columnella						рt	pt
PEL:Pelecypoda			р				р
Pisidium				2			0.2
TUR: Turbellaria	2		12		28	96	28.7
Totals	1140	322	2060	1868	2288	1876	1445.4 (18,786)

Table C46. Density (numbers per square foot) of benthic macroinvertebrates collected with a Surber sampler from Squirrel Creek near Decker.

1978 Samples 1979 Samples Taxa/Collection Date 6/10 8/26 4/01 5/20 6/21 7/26 8/17 9/05 11/06 Means COL: Helichus (A) 0.2 Helichus 1 0.1 striatus (A) 3 Dubiraphia (L) 4 88 144 58 8 20 12 37.4 Dubiraphia 8 8 1.8 vittata (A) 8 4 4 8 8 3.6 Microcylloepus (L) ---4 8 Microcylloepus (A) 1.3 Stenelmis 4 0.4 vittipennis (A) 3 40 12 102 56 96 8 37.0 Optioservus (L) 16 Optioservus divergens (A) 1 6 8 8 4.3 16 4.0 quadrimaculatus (A) 4 8 16 4 4 DIP: Bezzia-Probezzia 20 2 4 4.7 16 Bezzia-Probezzia-12 12 8 3.6 Palpomyia 3.6 16 16 Palpomyia Culicoides 1 0.1 3024 1108 2356 1268 1390.7 Chironomidae 40 2500 324 48 1848 48t 12t 90t 24 t 48t 24.7t Hemerodromia 0.4t 4t Limnophora 8 88 18.3 Simulium 1 36 8 24 2 2 4 0.9 Dicranota _--0.6 Tipula 1 4 1.3 EPH: Baetidae 12 2 1.6 8 4 Baetis __ 1 0.1 Caenis ___ Leptophlebiidae 4 0.4 4.9 HEM: Ambrysus mormon (A) 32 4 8 2.7 20 4 LEP:Parargyractis ------ANI:Gomphidae __ __ p p 2.9 4 TRI: Brachycentrus 16 6 1 1792 32 96 790 888 2416 448 803.4 Cheumatopsyche 768 2124 2880 2516 484 1132.2 1 1580 220 244 Hydropsyche 141 20.0 108 2 12 30 4 24 Hydroptila 1.3 8 Ochrotrichia 4 __ 1.8 16 AMP: Hyalella azteca OST: Ostracoda __ __ р p 25.4 1 176 4 4 20 4 4 16 ACA: Acari 2.7 4 4 OLI: Oligochaeta 16 __ GAS:Gyraulus р --p p 1.3 Physa 12 p p p p p p 12 8 2.2 NEM: Nematoda 2268 3541.9 241 3636 4356 5756 7644 66 6388 1523 Totals (31,878)

Table C47. Density (numbers per square foot) of benthic macroinvertebrates collected with a Surber sampler from Deer Creek near Decker and from Canyon Creek near Decker-Birney.

			Creek				n Cree	k
		78	1979			1979	- 1	
Taxa/Collection Date	6/10	8/15	11/05	Means	6/26	7/27	8/30	Means
COL: Agabus (L)	1			0.3				
Agabus (A)	1			0.3				
<u>Dubiraphia</u> (L)							26	8.7
Microcylloepus (L)					8	8	2	6.0
Microcylloepus (A)						4		1.3
<u>Haliplus</u> (L)							14	4.7
Berosus (L)							2	0.7
DIP: Bezzia-Probezzia			12	4.0	2	6	4	4.0
Bezzia-Probezzia-								
Palpomyia		4		1.3				
Palpomyia			4	1.3				
Chironomidae	4	66	204	91.3	24	12	76	37.3
Muscidae							4	1.3
Simulium (L)	2	1		1.0	132	88	2	74.0
Simulium (P)					186	32		72.7
Stratiomyidae					р			p
Euparyphus					4	44	32	26.7
Stratiomys		1	2	1.0				
Tabanus			4	1.3				
Tipulidae			4	1.3				
Ormosia			40	13.3				
EPH: Baetidae						2	12	4.7
Baetis					6			2.0
Caenis	1			0.3			2	0.7
Leptophlebiidae						2		0.7
Tricorythodes					2			0.7
HEM: Heteroptera (L)		1		0.3				
Trichocorixa (A)		1		0.3				
ANI:Aeshna		1		0.3				
Ophiogomphus							2	0.7
ZYG: Coenagrionidae	1			0.3			6	2.0
Argia		12		4.0			12	4.0
Ischnura		7		2.3				
TRI: Cheumatopsyche		1		0.3	100	68	22	63.3
Hydropsyche					2	18	2	7.3
Ithytrichia						2		0.7
Limnephilus	12		40	17.3				
AMP: Hyalella azteca	4	26		10.0	4	2	32	12.7
OST:Ostracoda						4	2	2.0
ACA:Acari		2		0.7	4	2		2.0
HIR: Hirudinea					2			0.7
OLI:Oligochaeta	1	10	12	7.7			2	0.7
GAS: Lymnaea	6		р	2.0				
Gyraulus	1			0.3				
Physa	4	9	р	4.3	16	6	2	8.0
TUR: Turbellaria						2	16	6.0
Totals	38	142	322	166.8	492	302	274	356.3
				(502)				(1068)
								•

Table C48. Density (numbers per square foot) of benthic macroinvertebrates collected with a Surber sampler from Prairie Dog and Bull Creeks near Pyramid Butte-Birney.

	Prair	ie Dog Cr	eek	Bu	11 Creek	
Taxa/Collection Date	7/12/79	8/30/79	Means	7/12/79	8/30/79	Means
COL: Agabus (A)	2		1.0			
Dubiraphia (L)				8		4.0
Dubiraphia (A)				4		2.0
Microcylloepus (L)	2		1.0			
Optioservus (L)		14	7.0			
DIP: Bezzia-Probezzia					2	1.0
Hemerodromia	4t		2.0t	8t	2t	5.0t
Chironomidae	70	10	40.0	32	388	210.0
Simulium	6	2	4.0	76	2	39.0
EPH: Baetis	16	18	17.0	64	24	44.0
Caenis	2	2	2.0			
Leptophlebia		2	1.0			
Tricorythodes					6	3.0
HEM: Gerris remigis (A)	2		1.0			
LEP: Parargyractis					6	3.0
ZYG:Argia		16	8.0		2	1.0
TRI: Brachycentrus				12	2	7.0
Cheumatopsyche	92	34	63.0	212	136	174.0
Hydropsyche	50	40	45.0	312	406	359.0
Hydroptila	12	30	21.0			
AMP:Hyalella azteca	28	26	27.0			
ACA:Acari				4	2	3.0
GAS:Gyraulus					2	1.0
Physa	44	112	78.0		2	1.0
Totals	330	306	318.0 (636)	732	982	857.0 (1714)

Table C49. Density (numbers per square foot) of benthic macroinvertebrates collected with a Surber sampler from Cook Creek near Birney-Birney Village.

Taxa/Collection Date	6/11/78	8/24/78	9/05/79	Means
COL: Agabus (L)	3	4		2.3
Helichus striatus (A)			2	0.7
Dubiraphia (L)			2	0.7
Dubiraphia vittata (A)			10	3.3
Microcylloepus (L)			2	0.7
Haliplus (L)			4	1.3
Ochthebius (L)			2	0.7
DIP: Bezzia-Probezzia		12		4.0
Palpomyia		8		2.7
Chironomidae	171	2756	148	1025.0
Muscidae		12		4.0
Pericoma		8		2.7
Simulium	139	408	2	183.0
Nemotelus			2t	0.7t
Tipula	1	8		3.0
EPH: Baetis		32		10.7
Caenis			2	0.7
HEM: Sigara comani (A)			16t	5.3t
ZYG: Argia		4		1.3
TRI: Cheumatopsyche		548	568	372.0
Hydropsyche			2	0.7
Hydroptila		48		16.0
AMP: Hyalella azteca		8	36	14.7
ACA:Acari		4	2	2.0
HIR: Glossiphonia complanata			4	1.3
OLI:Oligochaeta	11	80	4	31.7
GAS: Gyraulus			2	0.7
Physa			10	3.3
PEL: Pisidium			4	1.3
NMT: Nematomorpha	1			0.3
Totals	326	3940	824	1696.8 (5090)

Table C50. Density (numbers per square foot) of benthic macroinvertebrates collected with a Surber sampler from Logging Creek near Ashland.

Taxa/Collection Date	6/27/78	8/16/78	9/06/79	Means
COL: Listronotus (L)	1			0.3
<u>Dubiraphia</u> (L)	1	428	144	191.0
<u>Dubiraphia</u> (A)	11	4	14	9.7
DIP:Ceratopogonidae	2			0.7
Bezzia-Probezzia-Palpomyia			24	8.0
Chironomidae	20	124	56	66.7
Psychodidae			2	0.7
Simulium	9	28	14	17.0
Tabanus		4	2	2.0
Pseudolimnophilia	1t			0.3t
Tipula	1	8	28	12.3
EPH: Baetis	9			3.0
Caenis	4	20	6	10.0
HEM: Heteroptera (L)	1			0.3
MEG:Dysmicohermes	1			0.3
Sialidae		12		4.0
Sialis	1			0.3
ANI: Aeshna		4	2	2.0
ZYG: Ischnura		12		4.0
TRI: Cheumatopsyche	24	4	168	65.3
Hydropsyche			2	0.7
Hydroptila	3	4		2.3
Ptilostomis		8		2.7
AMP: Hyalella azteca			2	0.7
OST:Ostracoda			2	0.7
ACA:Acari	1	4	8	4.3
HIR: Hirudinea	1			0.3
Glossiphonia		4		1.3
OLI:Oligochaeta	2			0.7
GAS:Gastropoda			p	р
Lymnaea			p	p
Gyraulus			p	p
Physa		р	24	8.0
Columnella			pt	pt
PEL: Pisidium		60	30	30.0
NEM: Nematoda	1		2	1.0
112607 17 5440 60 40				
Totals	94	728	530	450.6
				(1352)

Table C51. Density (numbers per square foot) of benthic macroinvertebrates collected with a Surber sampler from Beaver Creek near Brandenberg.

Taxa/Collection Date	7/13/78	9/03/78	10/09/78 16	7/12/79	8/24/79	Means
COL: Dubiraphia (L)			10	2	0	5.2
Microcylloepus		4				0.8
pusillus (A)		4			12	2.4
Haliplus (L)				2	8	2.4
Haliplus (A)						
DIP: Bezzia-Probezzia		4	4			1.6
Bezzia-Probezzia-				,		0.0
Palpomyia	166			4		0.8
Chironomidae	166	420	208	250	244	257.6
Clinocera-Chelifera	1t					0.2t
Hemerodromia	3t	8t				2.2t
Muscidae				2		0.4
Simulium	8	12	4	10	12	9.2
EPH: Caenis	~-	16	100		60	35.2
Tricorythodes	1					0.2
HEM: Ambrysus mormon (A)		12	2			2.8
ANI: Leucorrhinia					4	0.8
ZYG:Coenagrionidae					4	0.8
Ischnura		12	2			2.8
TRI: Cheumatopsyche	400	3264	748	178		918.0
Hydropsyche	3		4			1.4
Hydroptila	7			8	12	5.4
AMP:Hyalella azteca		60	56	492	664	254.4
ACA: Acari		16		6		4.4
HIR:Erpobdellidae	1			6		1.4
Dina anoculata					4t	0.8t
Erpobdella				8		1.6
Batracobdella				4t		0.8t/
Glossiphonia						
complanata		8		12	12	6.4
Helobdella stagnalis			4	128	280	82.4
Placobdella	1		2			0.6
Percymoorensis						
marmoratis			1t	2t		0.6t
OLI:Oligochaeta				10		2.0
GAS:Gyraulus				р		р
Physa		8		8	4	4.0
Totals	591	3844	1151	1132	1328	1609.2 (8046)

Table C52. Density (numbers per square foot) of benthic macroinvertebrates collected with a Surber sampler from upper Hanging Woman Creek near Quietus-Decker during the 1978 sampling season.

Taxa/Collection Date	6/16	6/28	7/18	8/15	8/28	9/05	10/07	11/04 2
COL: Dubiraphia (L)							1	
<u>Dubiraphia</u> (A) Dubiraphia vittata (A)								
Microcylloepus (L)	1			2			3	
Microcylloepus (A)							17	18
Microcylloepus							17	10
pusillus (A)					28			
Stenelmis (L)				1				
Hyperodes (L)								
DIP: Bezzia-Probezzia			3	1			2	1
Palpomyia						2		
Chironomidae	21	90	147	95	208	146	29	17
Empididae							2	
Hemerodromia					14t			
Limnophora								1t
Simulium (L)	436	2		7	290	31	520	1227
Simulium (P)	213						J20 	1227
Tabanus	213					2		1
EPH: Baetis						1		
Caenis		3	26			4		
Ephemerellidae								
Choroterpes-								
Leptophlebia								
HEM: Sigara trillineata (A)								
Ambrysus mormon (A)					2			
MEG: Sialis						1		
ODO: Odonata		1						
ZYG: Hetaerina							2	
Hetaerina americana								
Coenagrionidae Ischnura							1	
			1t					
TRI: Brachycentridae	11		52	275	668	6	330	553
Cheumatopsyche Hydropsyche	11			6	54	1	31	18
Hydroptila				- -	J4 		1	
Ithytrichia		10		14	8			
Limnephilus				14				
Polycentropus		1	5					
AMP:Hyalella azteca						1	3	
OLI:Oligochaeta	3	6			8	3	12	2
GAS: Gastropoda								
Gyraulus								
Physa	. 2			2	2	10	41	17
TUR:Turbellaria	1							
NMT: Nematomorpha		1						
MIII. MEMA COMOI PHA		1						
Totals	688	114	234	403	1282	208	995	1857

Table C53. Density (numbers per square foot) of benthic macroinvertebrates collected with a Surber sampler from Upper Hanging Woman Creek near Quietus-Decker during the 1979 sampling season.

							//b V
Taxa/Collection Date	5/19	6/21	7/27	8/17	9/04	9/14	Two-Year
COL: Dubiraphia (L)	3/13	2	5	0/1/	6	2	Means 1.2
Dubiraphia (A)			4		2		0.5
Dubiraphia vittata (A)						1	0.1
Microcylloepus (L)	1		2		2	2	0.9
Microcylloepus (A)	5		1				2.9
Microcylloepus	,		Τ.				2.0
pusillus (A)							2.0
Stenelmis (L)							0.1
Hyperodes (L)				2t			0.1t
DIP: Bezzia-Probezzia						1	0.6
Palpomyia							0.1
Chironomidae	44	12	81	134	68	18	79.3
Empididae	2						0.3
Hemerodromia							1.0t
Limnophora				4t			0.4t
Simulium (L)	53	1	12	850	48	1t	248.4
Simulium (P)							15.2
Tabanus							0.2
EPH: Baetis							0.1
Caenis		3	3				2.8
Ephemerellidae			1t				0.1t
Choroterpes-Leptophlebia					2		0.1
HEM: Sigara trillineata (A)			2				0.1
Ambrysus mormon (A)		1	6	2		1	0.9
MEG: Sialis							0.1
ODO: Odonata							0.1
ZYG: Hetaerina					8	7	1.1
Hetaerina americana			1				0.2
Coenagrionidae					2	2	0.3
Ischnura						a	0.1
TRI:Brachycentridae							0.1t
Cheumatopsyche	318	58	25	482	128	42	210.6
Hydropsyche	31	6	4	44	14	2	15.1
Hydroptila	3		1				0.4
Ithytrichia		2	2	12	14	2	4.6
Limnephilus	1t						0.1t
Polycentropus			1				0.5
AMP: Hyalella azteca			2	8	6	3	1.6
OLI:Oligochaeta		1		2		2	2.8
GAS:Gastropoda						P	P
Gyraulus		P			6	P	0.4
Physa Turballaria		4	6	46	164	48	24.4
TUR:Turbellaria						1	0.1
NMT:Nematomorpha							0.1
Totals	458	90	159	1586	470	135	620.1
IOCALS	470	90	103	1200	470	133	(8679)
							(00/9)

Table C54. Density (numbers per square foot) of benthic macroinvertebrates collected with a Surber sampler from lower Hanging Woman Creek near Birney during the 1978 sampling season (the first page of two pages).

Taxa/Collection Date	6/16	6/59	7/19	8/15	9/05	10/07	
COL: Carabidae (L)		1	1	 -	1	1	
Curculionidae (L)			!			-	
Agabus (L)			1			1	
Elmidae (L)		1	1	1	1	1	
Dubiraphia (L)		1		-	1	1	
Dubiraphia (A)		1	-	1	1	1	
Microcylloepus (L)		П	1	1	1	1	
Microcylloepus (A)			1		1	}	
Microcylloepus pusillus (A)		2	1	ł	1	-	
Stenelmis (L)			5	-	1	1	
DIP: Ceratopogonidae		1	1	-	1	1	
Bezzia-Probezzia		П	1	1	1	1	
Palpomyia							
Chironomidae		107	25	12	11	94	
Dolichopodidae		-	-	-		1	
Empididae		1			1	2	
Hemerodromia				1		1	
Simulium (L)		244	116	119	121	765	
Simulium (P)		1	-	-	99	1	
Dicranota		1	Н	1	1	1	
EPH: Baetis		1	1	1	1	1	
Caenis	6		1	1	1	1	
Heptageniidae	1	1		1	1	1	
Choroterpes	1			1	1	1	
HEM: Ambrysus mormon (A)	1	1	ì	!	1	1	
LEP: Parargyractis		1	1	1	1	-	
MEG: Sialis		1	1	1	1	1	1

Table C54. Continued (the second page of two pages).

11/04	-		1	1640	372	}	-		1	7	-	!	1	1	-	1	8	!	1	1		36	-	5936
10/07	-		1	185	69	-		1	1		1	}	1	}	1	1	8	1	!	1	1	-	-	1075
9/05		;	1	23	18	-	-					<u> </u>		;	-			}		Д	1	1		229
8/15	1			404	58	1	1	}	1	}	-	1	1	1	-	-	1		1	-	1	1	1	594
7/19	-	-	-	305	57	!	-	-	}	}			}	1	-	1	П	1	1		-	1	1	511
6/59	1	-	-	415	7	-	1	1	1	1	1	1	1	!	1	1	1	1	-	1	1	1	-	1075
6/16	1		-	П	-	-	-	!	1	!	-	3	1	1	1	г	}	-	1	H	Н	-	1	50
Taxa/Collection Date	ZYG: Zygoptera	Hetaerina	Ischnura	TRI: Cheumatopsyche	Hydropsyche	Hydroptila	Ithytrichia	Polycentropus	AMP: Hyalella azteca	OST:Ostracoda	ACA: Acari	OLI:Oligochaeta	GAS: Gastropoda	Ferrissia	Lymnaea	Gyraulus	Physa	PEL: Pelecypoda	Pisidium	Sphaerium	Unionidae	NEM: Nematoda	NMT: Nematomorpha	Totals

Table C55. Density (numbers per square foot) of benthic macroinvertebrates collected with a Surber sampler from lower Hanging Woman Creek near Birney during the 1979 sampling season (the first page of two pages).

Two-Year	Means	0.1	0.1	0.1	0.1	2.2	0.4	5.1	5.6	0.9	0.8	0.1	1.6	0.1	198.1	0.1t	1.6	3.3t	624.8	10.3	0.4	1.0	5.3	0.1	0.3	1.1	0.5	
	9/15c	1	1			26	9	16	10	!	1		2	1	70	1	-	2t	24			12	1	-	1	16	9	
	9/14b	-	1	1		1	ł	9	}	1	က	1	-		171		1	11t	229	1		1	1	!	1	1	1	
	9/14a	-		}		1	1		1	}	1	1	12	1	168	!		16t	2488	1			1	1		1	1	
	8/18	1			1			2	1	1	1	1		1	190	1	1	2t	290	108	1	7	1	1	1	1		
	7/28	-	ł	1	1	2		20	16	1	2	1	7	1	262	1	24	1	138		9	1		1	1	2		
	6/22																											
	5/19	1	1	٦	Д	· ¦	-	-	-	-	-		٦	-	405	1t	1	-	837	-	1	-	74	1	-	-		
	3/31	-	ł	1	-	T	!	1	-	12	1	1	1	!	306	!	1	1	163	1	1	2	-	1	7	1	1	
	2/11	1	-	1		1		9		-	2	1	1	1	400		1	14t	672	1		1	1	1	1			
	Taxa/Collection Date	COL: Carabidae (L)	Curculionidae (L)	Agabus (L)	Elmidae (L)	Dubiraphia (L)	Dubiraphia (A)	Microcylloepus (L)	Microcylloepus (A)	Microcylloepus pusillus (A)	Stenelmis (L)	DIP: Ceratopogonidae	Bezzia-Probezzia	Palpomvia	Chironomidae	Dolichopodidae	Empididae	Hemerodromia	Simulium (L)	Simulium (P)	Dicranota	EPH: Baetis	Caenis	Heptageniidae	Choroterpes	HEM: Ambrysus mormon (A)	LEP: Parargyractis	

a--Collected at TO7S,R43E,17C(upstream and intermediate sampling site). b--Collected at TO6S,R43E,19D(major downstream sampling site). c--Collected at TO6S,R43E,18B(sampling site near mouth).

Table C55. Continued (the second page of two pages).

Two-Year	Means	0.1	0.1	0.4	351.8	94.3	1.6	0.8	0.1	0.1	0.3	0.3	0.4	ď	0.1	0.1	0.1	5.6	Q.	0.1	0.1	0.1	2.3	0.3	<u>1323.6</u> (21,161)
	9/15c		1	9	252	92	1	1			1	1			2		1	58	1	2			!	1	909
	9/14b	!	1		289	70	2	1	H			1	Н					2	1				1		788
	9/14a	!	1	!	184	87	1	1	!	1	-		1	Ф	1	1	1	7		-	1	-	1	1	2920
	8/18	į	1		302	30	16	4		1	1		1	1				!		1	¦			1	1246
	7/28	2	1	!	876	797	4	2	!	1	1	7	1	!	1	!		1	1	;	1			4	1902
	6/22				41	34		2			1	1	2		!		1	2	!	!	1		!	1	482
	5/19				c4		Γ	-1		1					1	-		2	1	1				1	1324
	3/31	1	1		327	88	}	1	!	1	1		1		1	-	;	5	Q	1	}	-	!	1	911
	$\frac{2}{11}$		2		310	104	2	1		¦	1	1	!	!	1		1	i		1	!	!			1512
	Taxa/Collection Date	ZYG: Zygoptera	Hetaerina	Ischnura	TRI: Cheumatopsyche	Hydropsyche	Hydroptila	Ithytrichia	Polycentropus	AMP: Hyalella azteca	OST: Ostracoda	ACA: Acari	OLI:Oligochaeta	GAS: Gastropoda	Ferrissia	Lymnaea	Gyraulus	Physa	PEL: Pelecypoda	Pisidium	Sphaerium	Unionidae	NEM: Nematoda	NMT:Nematomorpha	Totals

a--Collected at TO7S,R43E,17C(upstream and intermediate sampling site). b--Collected at TO6S,R43E,19D(major downstream sampling site). c--Collected at TO6S,R43E,18B(sampling site near mouth).

Table C56. Density (numbers per square foot) of benthic macroinvertebrates collected with a Surber sampler from the East Fork of Hanging Woman near Birney (the first page of two pages).

	Means	7.0	0.2	0.1	0.4	0.2	0.1	0.5	0.1	1.4	0.2	16.6	0.1	0.1	0.3t	0.1t	0.2	1.9	64.2	2.1	0.1	0.8	0.1	2.2	5.6	0.3	34.0	0.2
	9/05	1	1	-		1	1		1	1	1	2	1	1	-	1	-	1	214	14	-	}	-	1		}	39	
	8/20					-	7	1			1	Н		}	}	1	-	1	130		1	1		က	1	-	10	
	7/28						1																					1
Samples	6/22		1	-	1	-	1	1		Н		1	1	-		1	1	1		Д	1	1	1	1				-
1979	5/19			-	٦	2		1	-	Н	-	21	1	1	1t	1t		-	2	1	}	Н	1	3	3	1	69	1
	3/31		1	}	}	1	-	}	1	-	2	57	1	1	1	1	1	1	ന	6	Н	1	1	-	12	-	12	1
	2/11		}	-	n	1	1	}	-	∞	1	2	1	}	1t	-	1	15	5	1	}	-	1	-	10	-	13	1
	11/04	7	1	-	-	1		1	-	4	}	36	}	1	1t	}	Н	9	17	}	}	-		-	23	3	}	2
Samples	10/8		П					9				19	1			1		1	32		1	1	1		6	1	29	1
1978 S	8/18			1	1	1	1	1		Т	-	П							20				ł		Н		5	1
	6/11		l	П	}	1	1	1	Н	-	-	33	1		-	-		-	133			7		1	4		179	-
	Taxa/Collection Date	COL: Curculionidae (L)	Helichus striatus (A)	Agabus (L)	Dubiraphia (L)	Dubiraphia (A)	Microcylloepus (L)	Optioservus (L)	Stenelmis (L)	DIP: Bezzia-Probezzia	Bezzia-Probezzia-Palpomyia	Chironomidae	Dixa	Dolichopodidae	Clinocera-Chelifera	Hemerodromia	Muscidae	Pericoma	Simulium (L)		Stratiomyidae	Euparyphus	Tabanus	Dicranota	Tipula	EPH: Baetidae	Baetis	MEG: Sialis

Table C56. Continued (the second page of two pages).

	Means	0.1	0.1	0.1	0.1	Д	30.5	11.5	0.1	Д	0.1	13.0	0.1	0.1	0.5	1.3	0.2	0.1	5.5	0.5	1.1	d	1.4	d	0.1	198.8
	0/95	!		-	1	1	1	!	1	<u> </u>	П	11	-	ļ I		2	1	1	7	!	-	1	 	+		288
	8/20 0/								-	-		94						1		1		-	1			197
es	28				1	1	1	1		!	1	14		1	1	2	1		П			1	1		П	212
Samples	5/22						П	1	-	ď	1	-	Д	1	1	1				1	П		1	Д	1	[6
1979	5/19	!	1				52	110	-	-		1			-	٦	1		2	1	П	Д	1	1	-	272
	3/31	1	-		-	Д	0	П	-	1		5						1	77	1	٦		1	1		156
	2/11	!		1	-	-	83	∞	!	-	1	2	1	1	-	}	П	}	3		Д	1	7	-		165
	11/04			}	1		156	2	1		1	6	1	1	7	2	}	!	n	n	7	1	2			291
Samples	10/8	П	-1		1	-	7	П	1	1	1	67			1	7	П		3		р		П	1		168
1978 S			-	-:		-	-		1		1	9	1			1		П	П	-	1	1	Н	1	-	27
	6/11			!	1		22	1	1	1	!	П			2	1			1	3	1	!	1	1	-	380
	Taxa/Collection Date	ODO: Odonata	ZYG:Argia	Argia vivida	Ischnura	TRI: Helicopsyche	Cheumatopsyche	Hydropsyche	Hydroptila (L)	Hydroptila (P)	Ochrotricha	Hesperophylax (L)	Hesperophylax (P)	Polycentropus	AMP: Hyalella azteca	ACA: Acari	HIR: Hirudinea	Glossiphonia complanata	OLI:Oligochaeta	GAS:Lymnaea	Physa	Columnella	PEL: Pisidium	Sphaerium	NMT: Nematomorpha	Totale

Table C57. Density (numbers per square foot) of benthic macroinvertebrates collected with a Surber sampler from Bear Creek near Otter.

Taxa/Collection Date	7/12/79	8/23/79	9/30/79	Means
COL: Agabus (L)	14		2	5.3
Rhantus (L)		1t		0.3t
Haliplus (A)	- -	1		0.3
Hydrophilidae (L)	2			0.7
Enochrus (L)	6t			2.0t
Helophorus (A)	2			0.7
Laccobius (L)		1t		0.3t
Laccobius (A)	2t			0.7t
DIP: Bezzia-Probezzia			2	0.7
Chironomidae	422	31	464	305.7
Hererodromia			2t	0.7t
Muscidae	46		16	20.7
Limnophora		24t		8.0t
Simulium (L)	82	52	476	203.3
Simulium (P)			42	14.0
Euparyphus		1		0.3
Stratiomys		1		0.3
Tabanus		2		0.7
ZYG:Coenagrionidae			2	0.7
TRI: Cheumatopsyche	12	1	20	11.0
Hydroptila	82		4	28.7
Ithytrichia			2	0.7
AMP: Hyallela azteca	4	3	10	5.7
OST:Ostracoda	2			0.7
OLI:Oligochaeta	6		6	4.0
GAS: Lymnaea	70	p		23.3
Gyraulus	14			4.7
Physa	32	3	42	25.7
Totals	798	121	1090	669.9 (2009)

Table C58. Density (numbers per square foot) of benthic macroinvertebrates collected with a Surber sampler from upper Otter Creek near Otter-Fort Howe.

1978 Samples 1979 Samples 7/07 6/27 9/30Ъ Taxa/Collection Date 8/29 7/31 8/31 9/30a Means COL: Listronotus (A) 4t 0.6t --Agabus (L) 8 1.1 Deronectes (A) ___ 4 0.6 Dubiraphia (L) 1.0 16 8 4.9 ___ Dubiraphia (A) 2 3.1 ___ __ 12 8 ___ 2 8 Microcylloepus (L) 1.4 Microcylloepus (A) 4 0.6 Haliplus (L) __ 2 --0.3 DIP: Bezzia 5t 0.7t Bezzia-Probezzia 8 12 8 1 12 5.9 __ Palpomyia ___ 2 __ 0.3 833.7 Chironomidae 672 2376 1304 29 696 611 148 Hemerodromia --__ 4t 0.6t __ ___ Muscidae 24 12 4 5.7 Limnophora 36t --5.1t Simulium (L) 10 748 276 8812 1056 1581.3 166 1 Simulium (P) 72.0 504 __ Chrysops 1 0.7 4 Dicranota 12 1.7 __ EPH: Baetis ___ 4t --0.6t Caenis 17 4 2 28 7.9 4 HEM: Ambrysus mormon (A) 11 __ 1.6 MEG:Sialis 6 ___ 0.9 ZYG: Argia 9 4 1.9 Ischnura __ ___ 2 20 __ 20 6.0 TRI: Cheumatopsyche 1 120 36 40 244 17 548 143.7 Hydropsyche 2 0.3 __ __ __ __ Hydroptila 19 268 44 8 24 8 53.0 8 Ithytrichia 1.1 Neureclipsis 1t --0.1t Polycentropus 1 --__ __ __ 0.1 AMP: Hyalella azteca 12 28 692 50 16 332 161.4 ACA: Acari ___ 4 2 1.4 4 ___ 1 HIR: Hirudinea 0.1 Glossiphoniidae 10 1.4 Glossiphonia complanata 2 0.3 Helobdella stagnalis 8 1.1 ___ OLI:Oligochaeta 10 2 4.0 16 --GAS: Gyraulus 20 4 4.0 p 4 3 Helisoma 0.4 __ Physa __ 6 20 16 68 15.7 1 PEL:Pisidium 4 4 1.3 727 2373 2824 Totals 470 11,204 93 2810 2928.6 (20,501)

a--Collected at TO8S,R46E,O5C(upstream sampling site above Bear Creek). b--Collected at TO7S,R45E,13D(major upstream sampling site).

Table C59. Density (numbers per square foot) of benthic macroinvertebrates collected with a Surber sampler from Cow Creek near Otter-Fort Howe.

Taxa/Collection Date	7/31/79	8/31/79	Means
COL: Helichus striatus (A)		1	0.5
Optioservus (L)	162	60	110.0
Optioservus (A)	54	2	28.0
Optioservus divergens (A)		12	6.0
Optioservus quadrimaculatus (A)		11	5.5
Agabus (L)	2		1.0
Agabus (A)	6		3.0
DIP: Chironomidae	18	6	12.0
Simulium (L)	18	8	13.0
Simulium (P)		27	13.5
Nemotelus		1	0.5
Dicranota	6		3.0
EPH: Baetis	50	59	54.5
HEM:Gerris remigis (A)	1		0.5
ZYG: Argia		1	0.5
PLE: Nemouridae		6	3.0
Nemoura	10	7	8.5
TRI: Cheumatopsyche		2	1.0
Hesperophy1ax	52	27	39.5
Psychoglypha	2		1.0
AMP: Hyalella azteca	2	2	2.0
ACA: Acari		2	1.0
OLI:Oligochaeta		1	0.5
PEL:Pisidium		2	1.0
NMI: Nematomorpha		1	0.5
Totals	383	238	310.5 (621)

Table C60. Density (numbers per square foot) of benthic macroinvertebrates collected with a Surber sampler from lower Otter Creek near Ashland (the first page of two pages).

Means 0.1 0.1 21.9	1.0	0.1 0.1 0.1 3.7 449.3	0.3t 2.6t 314.3 6.4	0.1
9/30b	4		12t 2320 	116
9/30a	P	288	2t 16	100 50 50 50 50 50 50 50
00 1 1 1 0 0	77		16t 192 192 96	4 4 4
3 Samples 7/28 8/11		1 1 1 320		
1979 6/20 8			41	
2/20 6			:	
3/31 5	2	1001	11110	1 0 0 1 0
2/11/2/2/2/34	N	1 1 1 9	3	
11/05	1	133	310	1111111
10/08 1	-	00	2t 2t 6	~ ~ ~
ples //04 1	24	0	932 4t 816 	∞
1978 Samples 1 7/31 9/04	1 1 1	1 1 1 286	27 - 1 - 2 - 1 - 1 - 1 - 1	
197 7/21 7 	⁺	12		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1	8	=	11 11 1	- -
6/15 7/05		°	·	- -
Jate (L)	Microcylloepus (A) Microcylloepus pusillus (A) Stenelmis (L) Stenelmis (A)	Stenermis Sinuata-humerosa (A) Hydraenidae (L) Laccobius (L) DIP: Bezzia-Probezzia	Clinocera—Chelifera Hemerodromia Simulium (L) Simulium (P)	EPH: Baetis Caenis Tricorythodes HEM: Corixidae (L) Ambrysus mormon (A) LEP: Parargyractis

a--Collected at TO5S,R45E,11C(upstream and intermediate sampling site). b--Collected at TO3S,R44E,12C(major downstream sampling site).

Table C60. Continued (the second page of two pages).

Means	7.T	7.0	0.1	1.1	12.9	21.3	40:7	5.2	0.8	0.1	6.0	0.3	0.3		7.0	0.8	1.5	2.7	0.3	0.3	2.3	Д	0.1	0.1	1209.1 18,137)
9/30b M	QΤ					99		1		1		1	1		 	1	1	1	1	1	1	!		1	3836 1209. (18,13
9/30a 9	1	<u> </u>	2	 	286	1	20	7	-	1			1	,	9	12	1	40	7	1	18				1112 3
∞						.28	99	12	12	 		4								4					4224 11
ω						4 1		3		<u> </u>					1	-		Ь	1	<u> </u>	 1		<u> </u>		522 42
9/2	!	!	· -		296		79	37	-	· -	1	· 	-		<u> </u>	· -	5	!	· -	-	!	· -	· -	-	
191	!		' !		23 29	2	!	1	!	!	!	!	į.			!	3	' -	' -	' -	· 		' -	!	1180
1 5/20			' '			1				2 -	- 7	-	' -			'	∞	- d						2 -	2 142
3/	¦	¦	i .) 22	-	0	i	i			-	~1		!	-	~1		1		4 12		i		0 1112
2/11	i	i		i	13(10	1(i			1	i			¦		• •	1		1	7	1	1	-	820
11/05	1				230	50	14	-	-	-	-	-	-			-	4	1	-	}		1	-	-	740
10/08	(1		145	14	186	-	1	1	1	1	1				2	-	1	-	Ь	1	1	1	570
Samples 1 9/04 1				16	208	32	16	12	-		1	1	1			-	1			1	1	1	1	1	1980
1001					311	13	82	9	1	1	!	1	1			!				1		1	1	1	736 1
0.1			-		544	1	99	4	1	1	1	1				1	1	1		1	1		1		
1 6/15 7/05 7/21			-		14	3	1		1			1	-			1	Н	1		1	1	Ь			151 2008
15 7/			+		-		 	+					+				+			<u> </u>	!	<u> </u>			4
19															æ	ا در ا	ŀ								
Taxa/Collection Date	ZYG: Hetaerina	Hetaerina americana	Ischnura	TRI: Brachycentrus	Cheumatopsyche	Hydropsyche	Hydroptila	Ithytrichia	Ochrotrichia	Limnephilidae	AMP: Hyalella azteca	ACA: Acari	HIR: Hirudinea	Glossiphonia	complanata	Hebobdella stagnalis	OLI: Oligochaeta	GAS: Gyraulus	Helisoma	Physidae	Physa	PEL:Pelecypoda	NEM: Nematoda	NMT: Nematomorpha	Totals

a--Collected at TO5S,R45E,11C(upstream and intermediate sampling site). b--Collected at TO3S,R44E,12C(major downstream sampling site).

Table C61. Density (numbers per square foot) of benthic macroinvertebrates collected with a Surber sampler from Pumpkin Creek near Miles City.

Means	0.1	2.0	0.1	0.1t	0.3	1.1	128.0	3.3t	12.6	3,3	10.4	0.1	0.3	9.979	104.4	7.0	2.8	0.9	0.8	0.1t	0.3	0.1	0.4	918.5
8/09/79	-	!	1	1t	1	m	102	1t	2	1	5	!	2	12	1	2	10	1	1	1	_		3	145
5/12/79	1	1	1	1		-	7		2	1	54			m	Т	1	1	5	1	1	}	-	1	69
10/09/78	1	1	-	1	1	1	164	4 t	20	2t	1	1		1054	119		-	1	m	1	7	-	}	1367
8//90/6		16	1			1	692	20t	89	24	1			9/05	704		7	1	1	1	}		}	2604
7/31/78		1	1		1	3	41	1t	2		7		1	23	5	1	8	1	ı	!	1	!	1	93
7/21/78		1		1		e	14		2	1	9	}		3	2	}	-	!	!	!	}	}		30
7/05/78	1	1	1	1	2		9	1	5	-	11		1	2	7	1		П	1	1t	1	П	1	34
6/15/78	-	-	1	;	1	+	1	1	1	!	1	П	1	-	1	1	1	}	2	1	;	1	1	7
Taxa/Collection Date	COL: Dubiraphia (A)	Microcylloepus (A)	Stenelmis vittipennis (A)	Ochthebius (A)	Laccobius (L)	DIP: Bezzia-Probezzia	Chironomidae	Hemerodromia	Simulium	EPH: Baetis	Caenis	HEM: Corixidae (L)	Sigara (A)	TRI: Cheumatopsyche	Hydropsyche	Hydroptila	Ithytrichia	AMP: Hyalella azteca	OLI:Oligochaeta	GAS: Lymnaea	Physa	NEM: Nematoda	NMT:Nematomorpha	Totals

Table C62. Density (numbers per square foot) of benthic macroinvertebrates collected with a Surber sampler from Mizpah Creek near Mizpah.

Means 0.3 0.1 1.1	35.4	0.1	8.0	0.1	8.0	0.1	85.8	0.1	0.1t	0.3	1.3t	0.1	0.1	0.1	0.8	215.4	8.5	1.8	0.3	5.1	0.3	7.0	<u>371.5</u> (2970)
8/09/79	126		1								10t	1	Н	H	1	126	1	14	2	1		2	282
5/12/79	5		m						1		1	-	!	1		П	1	1	!	1		1	9
10/09/78 2 2 1	39		1				654	-	1	2	1		1	1	9	∞	1	1	1	37	1	Н	752
9/06/78	104	t	8	-	79			1	-	-		}	1	!	1	1584	89	1		1	1	!	1832
7/31/78	H		1					1] t	1	1		1	-			1	1	1	!	1	1	4
7/21/78	m		m	1	1		9	!	-	1	1	1		-	1	2	1	!	1	m	П	1	27
7/05/78	-		1		1	1	П	Н	1	1	1	П	1	1	1	П	!	Ъ	1		1	1	7
6/15/78	7		20		1		1	}	1	¦		-	1	-	1	Н	1	1	1		 1	1	09
Taxa/Collection Date COL:Dytiscidae (L) Stenelmis (L) DIP:Bezzia-Probezzia Bezzia-Probezzia	Chironomidae	Muscidae	Simulium (L)	Simulium (P)	EPH: Baetidae	Baetis	Caenis	Heptageniidae	Heptagenia	Leptophlebiidae	Choroterpes	HEM: Heteroptera (L)	Sigara (A)	Ambrysus mormon (A)	ZYG: Ischnura	TRI: Cheumatopsyche	Hydropsyche	Ithytrichia (P)	Polycentropus	AMP: Hyalella azteca	OLI:Oligochaeta	GAS: Physa	Totals

Table C63. Density (numbers per square foot) of benthic macroinvertebrates collected with a Surber sampler from the West Fork of Armells Creek near Colstrip and from lower Armells Creek near Forsyth.

			rmells			mells C	reek
	1978	1979				ples_	
Taxa/Collection Date	5/28	7/03	Means	7/03	8/22	11/07	Means
COL: Agabus (L)	1		0.5				
Berosus (L)		1	0.5				
DIP: Bezzia-Probezzia-Palpomyia						3	1.0
Chironomidae	1	134	67.5	1	28	115	48.0
Scatophagidae		3t	1.5t				
Simulium	55	4	29.5			3	1.0
Tabanus					1		0.3
Tipulidae	1t		0.5t				
EPH: Caenis		2	1.0			113	37.7
Choroterpes					51		17.0
HEM: Ambrysus mormon (A)				р	9	2	3.7
ANI:Libellulidae		2	1.0				
ZYG: Argia						1	0.3
Ischnura		3	1.5			2	0.7
TRI: Cheumatopsyche					89	3	30.7
Ithytrichia					9		3.0
Polycentropus						1	0.3
AMP: Hyalella azteca		1	0.5				
OLI:Oligochaeta						1	0.3
GAS: Lymnaea		12	6.0				
Physa				p	113	3	38.7
Totals	58	162	110.0 (220)	1	300	247	182.7 (548)

Table C64. Density (numbers per square foot) of benthic macroinvertebrates collected with a Surber sampler from Sweeney Creek near Rosebud.

Taxa/Collection Date_	5/28/78	7/12/78	5/13/79	8/21/79	Means
COL: Dubiraphia (L)			8	2	2.5
Microcylloepus (L)			1		0.3
Microcylloepus (A)				1	0.3
Berosus (L)			6	1	1.8
DIP:Ceratopogonidae		1			0.3
Bezzia-Probezzia			9		2.3
Chironomidae	1	51	88	124	66.0
Simulium	17		5	2	6.0
Tipula				1	0.3
EPH: Caenis	10	9	25		11.0
Leptophlebiidae			1		. 0.3
Choroterpes				15	3.8
HEM: Ambrysus mormon (A)				8	2.0
TRI: Cheumatopsyche		12	8	91	27.8
Hydropsyche				13	3.3
Ithythrichia				13	3.3
OLI:Oligochaeta		1	1		0.5
GAS: Physa		p		38	9.5
Totals	28	74	152	309	141.3 (563)

Table C65. Density (numbers per square foot) of benthic macroinvertebrates collected with a Surber sampler from Reservation Creek near Forsyth-Hysham.

Taxa/Collection Date	5/28/78	7/12/78	8/22/78	5/13/79	8/22/79	Means
COL: Agabus (L)	1		2			0.6
Liodessus (A)		3	2			1.0
Oreodytes (L)		12				2.4
Dubiraphia (L)		2			8	2.0
DIP:Ceratopogonidae			1			0.2
Bezzia-Probezzia-						
Palpomyia				44		8.8
Palpomyia		1		2		0.6
Chironomidae	84	202	82	376	344	217.6
Hemerodromia					4t	0.8t
Simulium	35		28	6	12	16.2
Tabanidae			1			0.2
Chrysops		4t			8t	2.4t
Tabanas					4	0.8
EPH: Baetis	1					0.2
Caenis		1		2	4	1.4
Tricorythodes	1					0.2
HEM: Hesperocorixa (A)		1				0.2
MEG: Sialis		3	1			0.8
ANI:Aeshna			1			0.2
Libellulidae		1				0.2
ZYG:Coenagrionidae	1					0.2
Argia			·		8	1.6
Ischnura			2		148	30.0
TRI: Cheumatopsyche			38	16	2180	446.8
Hydroptila			12	8	20	8.0
Limnephilus	1					0.2
Ptilostomis			3			0.6
AMP: Hyalella azteca	1	88	299	22	668	215.6
OST:Ostracoda		3				0.6
ACA:Acari		1		4	28	6.6
HIR: Hirudinea		1	3			0.8
OLI:Oligochaeta		6	2	6	8	4.4
GAS:Gyraulus		3			р	0.6
Physa		22	2		1024	209.6
PEL: Pisidium			3	30	p	6.6
Totals	125	354	482	516	4468	1189.0
						(5945)

Table C66. Density (numbers per square foot) of benthic macroinvertebrates collected with a Surber sampler from Sarpy Creek near Hysham.

Taxa/Collection Date COL: Dubiraphia (L) Dubiraphia (A)	7/12/78	8/22/78 1 	5/13/79 	8/22/79 88 8	Means 22.3 2.0
Microcylloepus (A)		1			0.3
DIP: Bezzia-Probezzia	2			2	1.0
Chironomidae	113	361	16	380	217.5
Hemerodromia		3t			0.8t
Simulium (L)	41	29		2	18.0
Simulium (P)	17				4.3
EPH: Baetis		1			0.3
Caenis	1			14	3.8
Leptophlebiidae		1			0.3
Choroterpes		1		2	0.8
ANI: Gomphus				2	0.5
ZYG: <u>Ischnura</u>				2	0.5
TRI: Cheumatopsyche	39	35		12	21.5
Hydropsyche	3	1	1		1.3
<u>Hydroptila</u>	25	16			10.3
AMP: <u>Hyalella</u> <u>azteca</u>		3		2	1.3
ACA:Acari	1				0.3
OLI:Oligochaeta	2	1		4	1.8
GAS: Physa				22	5.5
NMT:Nematomorpha		2			0.5
Totals	244	456	17	540	314.9 (1257)

Table C67. Density (numbers per square foot) of benthic macroinvertebrates collected with a Surber sampler from the Powder River near Moorhead and near Mizpah.

	Powder River-	Powder River-	
	Moorhead	Mizpah	
Taxa/Collection Date	9/14/79	8/09/79	Means
COL: Microcylloepus (L)	4		2.0
DIP: Chironomidae	8	2	5.0
Hemerodromia	1t		0.5t
Simulium	292	2	147.0
EPH: Baetis	4		2.0
Choroterpes-Leptophlebia	8		4.0
PLE:Acroneuria	4		2.0
Isoperla	1		0.5
TRI: Cheumatopsyche	276	268	272.0
Hydropsyche	60	4	32.0
Totals	658	276	467.0 (934)

Table D68. Numbers of benthic macroinvertebrates collected from duplicate jumbo multiplate samplers placed into a <u>riffle</u> type of habitat at the upper Rosebud Creek near Kirby station.

Taxa/Collection Date	9/05/78a	10/08/78a	9/15/79a	11/06/79a	Means
COL:Dubiraphia (L)	1				0.3
Microcylloepus (L)	1		2		0.8
Microcylloepus (A)		1	4		1.3
Optioservus (L)			2	8	2.5
Stenelmis (L)					0.0
Stenelmis (A)					0.0
DIP: Chironomidae	36	41	50	156	70.8
Empididae					0.0
Clinocera					0.0
Hemerodromia			14t	. 4t	4.5t
Simulium	10	1		32	10.8
Dicranota				12	3.0
EPH: Baetis	26	31	8	112	44.3
Heptageniidae					0.0
Heptagenia			10	12	5.5
Stenonema			4		1.0
Leptophlebiidae					0.0
Choroterpes	2				0.5
Leptophlebia				24	6.0
Paraleptophlebia			16		4.0
Tricorythodes	1	22	46	28	24.3
HEM: Ambrysus mormon (A)					0.0
MEG: Sialis					0.0
ANI:Aeshna					0.0
Ophiogomphus			2		0.5
ZYG: Zygoptera					0.0
Argia					0.0
Ischnura					0.0
PLE: Isoperla		4		44	12.0
TRI: Brachycentrus	23	23	8	4	14.5
Hydropsychidae					0.0
	2	26	144	144	79.0
Cheumatopsyche	129	220	364	256	242.3
<u>Hydropsyche</u> Hydroptila	2	220	12	232	61.5
0ecetis			12	252	0.0
Nectopsyche					0.0
Anabolia					0.0
Neureclipsis					0.0
					0.0
Polycentropus Ptilostomis					0.0
OLI:Oligochaeta					0.0
GAS: Ferrissia		2		4	1.5
		2			0.5
Gyraulus					0.0
Helisoma	1		2	4	
Physa PFI - Picidium	Т		۷	4	1.8
PEL: Pisidium					0.0
Sphaerium	- <u>-</u>				0.0
Totala	234	373	688	1076	593.2
Totals	234	3/3	880	10/0	
Compliant I retions a Ti	16c D30r 20)C			(2371)

Sampling Location: a--TO6S,R39E,20C.

Table D69. Numbers of benthic macroinvertebrares collected from duplicate jumbo multiplate samplers placed into a <u>riffle to pool</u> type of habitat at the upper Rosebud Creek near Kirby station.

Taxa/Collection Date	9/05/78a	10/08/78a	9/15/79a	11/06/79a	Means
COL: <u>Dubiraphia</u> (L)			4	8	3.0
Microcylloepus (L)				1	0.3
Microcylloepus (A)					0.0
<u>Optioservus</u> (L)			4		1.0
Stenelmis (L)				1	0.3
Stenelmis (A)			2		0.5
DIP:Chironomidae	25	19	148	296	122.0
Empididae					0.0
Clinocera				4t	1.0t
Hemerodromia					0.0
Simulium	1				0.3
Dicranota					0.0
EPH: Baetis	2	1t	2	8	3.3
Heptageniidae					0.0
Heptagenia			4t	12	4.0
Stenonema		1t			0.3t
Leptophlebiidae					0.0
Choroterpes	4		18		5.5
Leptophlebia		1t		64	16.3
Paraleptophlebia					0.0
Tricorythodes	1	9	82	52	36.0
HEM: Ambrysus mormon (A)					0.0
MEG: Sialis					0.0
ANI: Aeshna					0.0
Ophiogomphus				8	2.0
ZYG: Zygoptera					0.0
Argia		1			0.3
Ischnura				4	1.0
PLE: Isoperla		1		3t	1.0t
TRI: Brachycentrus	131	100	38	32	75.3
Hydropsychidae	11				2.8
Cheumatopsyche			6	8	3.5
Hydropsyche	34	19	46	116	53.8
Hydroptila			18	208	56.5
Oecetis				4	1.0
Nectopsyche				8	2.0
Anabolia				8	2.0
Neureclipsis					0.0
Polycentropus			4		1.0
Ptilostomis				2	0.5
OLI:Oligochaeta	2			8	2.5
GAS: Ferrisia			10	8	4.5
Gyraulus					0.0
Helisoma				Р	р
Physa			8	12	5.0
PEL: Pisidium					0.0
Sphaerium				4	1.0
opileer run					
Totals	211	152	394	879	409.5
20020					(1636)

Sampling Location: a--TO6S,R39E,20C.

Table D70. Numbers of benthic macroinvertebrates collected from duplicate jumbo multiplate samplers placed into a <u>pool</u> type of habitat at the upper Rosebud Creek near Kirby station.

Microcylloepus (L) 3 2 3 1 2 3 3 2 3 3 3 2 3 3	Taxa/Collection Date	9/05/78a	10/08/78a	9/15/79a	11/06/79a	Means
Microcylloepus (A)					1	
Microcylloepus (A)						
Optioservus (I)						
SteneImis (L)						
Stenelmis (A)						
DIP: Chironomidae						
Empididae		108	62	1.4	33	
Clinocera 2t		100				
Hemerodromia 3t 0.8t Simulium 4 1.0 Dicranota 1 0.3 EPH: Baetis 1 0.3 Heptageniidae 3 1 1.0 Meptageniidae 3 1 1.0 Meptageniia 2 7 2.3 Stenonema 0.8 Choroterpes 4t 1 1.3t Leptophlebia 6t 3 2.3 Ticorythodes 19 46 15 1 20.3 MEG: Sialis 1 1 0.5 MEG: Sialis 1 1 0.5 MEG: Sialis 1 1 0.5 MEG: Sialis 1 1 0.5 MEG: Sialis 0.3 MEG: S	-	2 ←				
Simulium						
Dicranota 1 0.3						
EPH: Baetis 1 0.3 Heptagenia 3 1 1.0 Heptagenia 2 7 2.3 Stenonema 0.0 Leptophlebidae 3 0.8 Choroterpes 4t 1 1.3t Leptophlebia 5 7 3.0 Paraleptophlebia 6t 3 2.3 Tricorythodes 19 46 15 1 20.3 HEM:Ambrysus mormon (A) 1 0.3 MEG:Sialis 1 1 0.5 ANI:Aeshna 1 0.3 MEG:Sialis 1 1 0.5 ANI:Aeshna 1 0.0 0 ZyG:Zygoptera 1 0.0 0 ZyG:Zygoptera 1		4				
Heptageniidae						
Heptagenia 2					_	
Stenonema					1	
Leptophlebiidae 3		2		/		
Choroterpes 4t 1 1.3t Leptophlebia 5 7 3.0 Paraleptophlebia 6t 3 2.3 Tricorythodes 19 46 15 1 20.3 HEM: Ambrysus mormon (A) 1 0.3 MSG: Sialis 1 1 0.5 ANI: Aeshna 1 0.3 ANI: Aeshna 1 0.0 ZYG: Zygoptera 1 0.0 ZYG: Zygoptera 1 0.3 Argia 0.0 0 ZYG: Zygoptera 1 0.0 Zygoptera 1 1 0.5 TRI: Brachycentrus 29 145<						
Leptophlebia		3				
Paraleptophlebia Tricorythodes 19			4t			
Tricorythodes					7	
HEM: Ambrysus mormon (A)						
MEG: Sialis			46	15	1	
ANI: Aeshna		1				
Ophiogomphus	The state of the s			1	1	
Totals 201 315 92 76 172.1 1 1 1 1 1 1 1 1 1		1				0.3
Argia						0.0
Ischnura		1				
PLE: Isoperla 1 1 0.5 TRI: Brachycentrus 29 145 13 9 49.0 Hydropsychidae 0.0 Cheumatopsyche 1 12 2 3.8 Hydropsyche 4 30 8.5 Hydropsyche 4 30 2 1.3 Oecetis 1 1 0.5 Nectopsyche 1 0.3 Anabolia 1 0.3 Neureclipsis 1t 0.3t Polycentropus 3 6 2.3 Ptilostomis 0.0 GAS: Ferrisia 11 5 4 2 5.5 Gyraulus 1 0.0 Physa 1 1 6 5 3.3 PEL: Pisidium	<u>Argia</u>					0.0
TRI: Brachycentrus 29 145 13 9 49.0 Hydropsychidae 0.0 Cheumatopsyche 1 12 2 3.8 Hydropsyche 4 30 8.5 Hydroptila 3 2 1.3 Oecetis 1 1 1 0.5 Nectopsyche 1 1 0.3 Anabolia 1 0.3 Neureclipsis 1t 0.3 6 2.3 Polycentropus 3 6 2.3 Pilostomis 0.0 Chl: Oligochaeta 1 1 2 1.0 GAS: Ferrisia 11 5 4 2 5.5 Gyraulus 1 0.3 Helisoma 0.0 Physa 1 1 1 6 5 3.3 PEL: Pisidium p 0.0 Totals 201 315 92 76 172.1	Ischnura			3		0.8
Hydropsychidae	PLE: Isoperla		1		1	0.5
Cheumatopsyche 1 12 2 3.8 Hydropsyche 4 30 8.5 Hydroptila 3 2 1.3 Oecetis 1 1 0.5 Nectopsyche 1 0.3 Anabolia 1 0.3 Neureclipsis 1t 0.3 0.3 Polycentropus 3 6 2.3 0.0 0 OLI:Oligochaeta 1 1 2 1.0 0 <td>TRI: Brachycentrus</td> <td>29</td> <td>145</td> <td>13</td> <td>9</td> <td>49.0</td>	TRI: Brachycentrus	29	145	13	9	49.0
Hydropsyche 4 30 8.5 Hydroptila 3 2 1.3 Oecetis 1 1 0.5 Nectopsyche 1 0.3 Anabolia 1 0.3 Neureclipsis 1t 0.3 Polycentropus 3 6 2.3 Ptilostomis 3 6 2.3 Ptilostomis 1 2 1.0 GAS: Ferrisia 1 1 2 1.0 GAS: Ferrisia 1 0.3 Helisoma 0.0 Physa 1 1 6 5 3.3 PEL: Pisidium p 0.0 Totals 201 315 92 76 172.1	Hydropsychidae					0.0
Hydroptila	Cheumatopsyche	1		12	2	3.8
Oecetis 1 1 0.5 Nectopsyche 1 0.3 Anabolia 1 0.3 Neureclipsis 1t 0.3 Polycentropus 3 6 2.3 Ptilostomis 0.0 OLI:Oligochaeta 1 1 2 1.0 GAS:Ferrisia 11 5 4 2 5.5 Gyraulus 1 0.3 Helisoma 0.0 Physa 1 1 6 5 3.3 PEL:Pisidium p 0.0 Totals 201 315 92 76 172.1	Hydropsyche	4	30			8.5
Oecetis 1 1 0.5 Nectopsyche 1 0.3 Anabolia 1 0.3 Neureclipsis 1t 0.3 Polycentropus 3 6 2.3 Ptilostomis 0.0 OLI:Oligochaeta 1 1 2 1.0 GAS:Ferrisia 11 5 4 2 5.5 Gyraulus 1 0.3 Helisoma 0.0 Physa 1 1 6 5 3.3 PEL:Pisidium p 0.0 Totals 201 315 92 76 172.1	Hydroptila		3		2	
Anabolia 1 0.3 Neureclipsis 1t 0.3t Polycentropus 3 6 2.3 Ptilostomis 0.0 OLI:Oligochaeta 1 1 2 1.0 GAS:Ferrisia 11 5 4 2 5.5 Gyraulus 1 0.3 Helisoma 0.0 Physa 1 1 6 5 3.3 PEL:Pisidium p p Sphaerium 0.0 Totals 201 315 92 76 172.1	0ecetis			1	1	0.5
Anabolia 1 0.3 Neureclipsis 1t 0.3t Polycentropus 3 6 2.3 Ptilostomis 0.0 OLI:Oligochaeta 1 1 2 1.0 GAS:Ferrisia 11 5 4 2 5.5 Gyraulus 1 0.3 Helisoma 0.0 Physa 1 1 6 5 3.3 PEL:Pisidium p p Sphaerium 0.0 Totals 201 315 92 76 172.1	Nectopsyche		1			0.3
Neureclipsis 1t 0.3t Polycentropus 3 6 2.3 Ptilostomis 0.0 OLI:Oligochaeta 1 1 2 1.0 GAS:Ferrisia 11 5 4 2 5.5 Gyraulus 1 0.3 Helisoma 0.0 Physa 1 1 6 5 3.3 PEL:Pisidium p p Sphaerium 0.0 Totals 201 315 92 76 172.1	Anabolia		1			
Polycentropus 3 6 2.3 Ptilostomis 0.0 OLI:Oligochaeta 1 1 2 1.0 GAS:Ferrisia 11 5 4 2 5.5 Gyraulus 1 0.3 Helisoma 0.0 Physa 1 1 6 5 3.3 PEL:Pisidium p p Sphaerium 0.0 Totals 201 315 92 76 172.1	Neureclipsis	1t				
Ptilostomis 0.0 OLI:Oligochaeta 1 1 2 1.0 GAS:Ferrisia 11 5 4 2 5.5 Gyraulus 1 0.3 Helisoma 0.0 Physa 1 1 6 5 3.3 PEL:Pisidium p p Sphaerium 0.0 Totals 201 315 92 76 172.1	Polycentropus			3	6	
OLI:Oligochaeta 1 1 2 1.0 GAS:Ferrisia 11 5 4 2 5.5 Gyraulus 1 0.3 Helisoma 0.0 Physa 1 1 6 5 3.3 PEL:Pisidium p p Sphaerium 0.0 Totals 201 315 92 76 172.1	Ptilostomis					
GAS: Ferrisia 11 5 4 2 5.5 Gyraulus 1 0.3 Helisoma 0.0 Physa 1 1 6 5 3.3 PEL: Pisidium p p Sphaerium 0.0 Totals 201 315 92 76 172.1	OLI:Oligochaeta	1		1	2	
Gyraulus 1 0.3 Helisoma 0.0 Physa 1 1 6 5 3.3 PEL:Pisidium p p Sphaerium 0.0 Totals 201 315 92 76 172.1		11	5	4		
Helisoma 0.0 Physa 1 1 6 5 3.3 PEL: Pisidium p p Sphaerium 0.0 Totals 201 315 92 76 172.1	Gyraulus	1				
Physa 1 1 6 5 3.3 PEL: Pisidium p p Sphaerium 0.0 Totals 201 315 92 76 172.1						
PEL: Pisidium p p Sphaerium 0.0 Totals 201 315 92 76 172.1		1	1	6	5	
Sphaerium 0.0 Totals 201 315 92 76 172.1						
Totals 201 315 92 76 172.1						
						0.0
	Totals	201	315	92	76	172.1

Sampling Location: a--TO6S,R39E,20C.

Numbers of benthic macroinvertebrates collected from duplicate jumbo multiplate samplers placed into three types of habitats at the Tongue River near Pyramid Butte-Birney station (the first page of two pages). Table D71.

	Means) r	1.3	33.3	2.0	0.7	26.7	34.0	0.0	0.0	4.0	0.0	0.7	8.3	26.0	65.3	0.0	8.0	0.0	1.3	0.0
Habitat(3) 1979	11/05a	∞	7	92	7	1	26	88	-	1	7	1	-	∞	∞	196		4	-	7	1
Pool Hab	9/15a 	20	2	24	2	2	24	10	1	1	9	1	2	16	89		1	7	1	1	!
P 1978	10/08a	-	1		1	1	1	7	1		2	1	1	-	2	1		16	!	}	1
at(2)	Means 0 7		7.7	3.7	3.7	34.7	16.7	21.0	0.3	0.7	0.0	0.0	0.0	30.7	18.0	25.3	0.7	4.0	0.7	2.7	0.0
to Pool Habitat(2)	11/05a	1	22	<u></u> ∞	9	1	36	40	1	1	1	1	-	9	10	9/	2	;	2	1	1
	9/15a	_	ا	ı m	7	2	14	5	П	¦	1		1	22	30	1	1	1	1	1	-
Riffle 1978	9/05a		¦	1	1	102		18	1	2	1		1	9	14	1	1	12	1	∞	1
t(1)	Means	7 7 7	3.0	87.5	31.5	0.6	8.5	19.0	4.5	0.0	35.5	29.0	0.0	8.0	0.49	0.0	0.0	37.5	0.0	3.0	1.0
Habitat(1 1979	9/15a	200	7	09	77	∞	16	∞	∞	ł	12	1	-	16	128			1	1	7	
Riffle 1978	10/08a	-	7 6	115	19	10	1	30	П	-	59	58	1		1	-	1	75		2	2
	Taxa/Collection Date		Dubiranhia (A)	Microcylloepus (L)	Microcylloepus (A)	Stenelmis (L)	Stenelmis (A)	DIP: Chironomidae	Simulium	EPH: Ephemeroptera	Baetis	Ephemerella	Ephemera	Stenonema	Choroterpes	Leptophlebia	Paraleptophlebia	Tricorythodes	vulgaris (A)	Ambrysus mormon (A)	Saldidae (L)

(1) Riffle samplers were found out of water on 9/05/78 and on 11/05/79 due to a sudden drop in river stage. (2) Riffle to pool samplers could not be located and retrieved on 10/08/78. (3) Pool samplers were found out of water on 9/05/78 due to a sudden drop in river stage.

Sampling Location: a--T06S, R42E, 31D.

Table D71. Continued (the second page of two pages).

	Means 0.7	0.0	1.3	0.0	0.0	0.3	0.9	4.0	0.0	53.7	6.7	0.3t	1.3	0.0	0.0	8.7	12.0	0.3	34.7	<u>350.9</u> (1053)
1979	11/05a	1	1	!	1	1	1	12	!	36	16	1	7	!		24	20	1	28	009
Pool Habitat(3)	9/15a 2	1	7			1	18	1	1	28	7	1		1			16	1	72	323
P 1978	10/08a	1	1	1	-	IJ		1		67	1	1t	1	!	1	2	1	ł	4	130
at (2)	Means 0.0	0.0	0.7	0.7	16.0	2.0	16.7	9.3	0.0	249.3	0.7	0.0	2.7	0.7	0.0	0.3	1.7	0.0	26.0	498.4
Riffle to Pool Habitat (2)	11/05a	1	2	1	84	1	48	28	!	332	7	1	∞	!	1	1	2	1	12	750
e to Po	9/15a	1	1	1		1	2	-	1	7	1	1	1	1	1	1	3		12	106
Riff1 1978	9/05a	!	1	2	1	9	-	1	1	412	1	1	-	2	1	1	1	1	24	638
t (1)	Means 0.0	13.0t	0.5	0.0	4.0	3.0	4.5	3.0	0.5	0.04	4.0	0.0	0.0	1.0	0.5	0.0	12.5	0.0	115.0	557.0 (1114)
	9/15a	1	-	1	∞	1	!	1		77	∞	1	1	1	П	1	24	1	148	570
Riffle 1978	10/08a	26t	1	1	1	9	6	9	П	36	1	1	1	7	1	1	П	1	82	544
	Taxa/Collection Date	PLE: Chloroperlidae	Acroneuria	TRI: Brachycentrus	Helicopsyche	Cheumatopsyche	Hydropsyche	Hydroptila	Ithytrichia	Nectopsyche	Oecetis	Polycentropus	AMP: Hyalella azteca	HIR: Hirudinea	Placobdella papillifera	OLI: Oligochaeta	GAS: Physa	PEL:Pelecypoda	TUR:Turbellaria	Totals

(1) Riffle samplers were found out of water on 9/05/78 and on 11/05/79 due to a sudden drop in river stage. (2) Riffle to pool samplers could not be located and retrieved on 10/08/78. (3) Pool samplers were found out of water on 9/05/78 due to a sudden drop in river stage.

Sampling Location: a--T06S, R42E, 31D.

Table D72. Numbers of benthic macroinvertebrates collected from duplicate jumbo multiplate samplers placed into three types of habitats at the Squirrel Creek near Decker station.

12.0
t
6.0t 6.0
40 22.0
0.0 1 24 16.0 6 1 4 2.0 1 6 0.0 3 1 7 0.0 3 1 7 0.0 1 1 1 7 20.0 1 1 4 7 20.0 1 1 4 7 20.0 1 1 1 8.0 184.0 2 2 8.0 10 1 1 9.0 1 10 1 0.5 1 8.0 10 11 1 0.5 1 8.0 10 11 1 0.5 1 8.0 10 11 1 0.5 1 8.0 0.0 1 9.0 0.0 1
24 16.0 6 1 4 2.0 1 0.0 3 1 4 2.0 1 1 1 4 2.0 0 1 24 20.0 1 300 184.0 2 2 36 26.0 3 3 26.0 3 4 2.0 3 6 2.0 10 11 0.0 1 1 3 26.0 2 2 0.0 10 11 0.0 1 1 3 26.0 2 2 3 3 3 3 3 4 5 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 2.0 <td< td=""></td<>
0.0 3 0.0 1 4 2.0 1 24 20.0 1 300 184.0 2 36 26.0 1 1 0.5 1 8.0 10 0.0 1 36 26.0 1 8.0 10 0.0 1 36 26.0 2
0.0 4 2.0 24 20.0 216 168.0 300 184.0 36 26.0 8.0 8.0 0.0 36 26.0 0.0 0.0 36 26.0 0.0
24 20.0 1 4 2 20.0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
216 168.0 2 300 184.0 2 2 36 26.0 1 0.5 8.0 10 1 8.0 10 1 4 2.0 0.0 1 36 26.0 2 1
300 184.0 2 2 36 26.0 3 1 0.5 3 8.0 10 1 4 2.0 2 4 2.0 2 0.0 1 0 36 26.0 2 1
36 26.0 1 0.5 8.0 10 8.0 10 0.0 0.0 1 0.0 1 36 26.0 2
1 0.5 8.0 10 8.0 10 0.0 10 -
8.0 10 0.0 0.0 0.0 1 36 26.0 2
0.0 4 2.0 0.0 1 0.0 36 26.0 2
4 2.0 0.0 1 0.0 36 26.0 2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0.0 36 26.0
36 2

Sampling Location: a--T09S,R40E,29CD.

Table D73. Numbers of benthic macroinvertebrates collected from duplicate jumbo multiplate samplers placed into a <u>riffle</u> type of habitat at the upper Hanging Woman Creek near Quietus-Decker station (1).

Taxa/Collection Date	9/05/78a	9/14/79b	11/05/79b	Means
COL: Helichus striatus (A)		2		0.7
Dubiraphia (L)	1			0.3
Dubiraphia (A)				0.0
Microcylloepus (L)				0.0
DIP: Bezzia-Probezzia				0.0
Chironomidae	20	6	38	21.3
Hemerodromia	1t			0.3t
Simulium (L)	251	4	269	174.7
Simulium (P)				0.0
Tipulidae				0.0
EPH: Baetis				0.0
Caenis				0.0
Choroterpes				0.0
HEM: Corixidae (A)				0.0
Ambrysus mormon (A)		2		0.7
MEG: Sialis				0.0
ZYG: Hetaerina		10	16	8.7
Hetaerina americana	12			4.0
Argia				0.0
Ischnura	1			0.3
TRI: Cheumatopsyche	242	79	91	137.3
Hydropsyche	9	10	2	7.0
Hydroptila			3	1.0
Ithytrichia	2	р		0.7
Limnephilus			3	1.0
Polycentropus				0.0
AMP: Hyalella azteca		1		0.3
OST:Ostracoda				0.0
ACA: Acari			1	0.3
GAS:Gyraulus		1	5	2.0
Physa	5	196	68	89.7
Columnella		170		0.0
COLUMNICITA				0.0
Totals	544	311	496	450.3
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5.7	911	430	(1351)
*				(1001)

⁽¹⁾ Riffle samplers were found crushed on 10/07/78 due to cattle trampling and were discarded.

Sampling Locations: a--TO8S, R43E, 16C; b--TO8S, R43E, 17D.

Table D74. Numbers of benthic macroinvertebrares collected from duplicate jumbo multiplate samplers placed into a <u>riffle to pool</u> type of habitat at the upper Hanging Woman Creek near Quietus-Decker station.

Taxa/Collection Date	9/05/78a	10/07/78a	9/14/79b	11/05/79b	Means
COL: Helichus striatus (A)					0.0
<u>Dubiraphia</u> (L)			30		7.5
Dubiraphia (A)					0.0
Microcylloepus (L)					0.0
DIP:Bezzia-Probezzia			4		1.0
Chironomidae	9	8	146	123	71.5
Hemerodromia				4 t	1.0t
Simulium (L)	31			31	15.5
Simulium (P)	26				6.5
Tipulidae			2		0.5
EPH: Baetis			2		0.5
Caenis	1	3	4		2.0
Choroterpes					0.0
HEM: Corixidae (A)	1				0.3
Ambrysus mormon (A)	4			1	1.3
MEG:Sialis			2		0.5
ZYG: Hetaerina			2	15	4.3
Hetaerina americana	2	2			1.0
Argia			8		2.0
Ischnura					0.0
TRI: Cheumatopsyche	343	1	2	26	93.0
Hydropsyche	34			1	8.8
Hydroptila				19	4.8
Ithytrichia	1				0.3
Limnephilus				11	2.8
Polycentropus	2	3	24		7.3
AMP: Hyalella azteca	2	3	4	16	6.3
OST:Ostracoda			2		0.5
ACA:Acari					0.0
GAS:Gyraulus	1			20	5.3
Physa	95	4	16	194	77.3
Columnella					0.0
Totals	552	24	248	461	321.8 (1285)

Sampling Locations: a--TO8S,R43E,16C; b--TO8S,R43E,17D.

Table D75. Numbers of benthic macroinvertebrates collected from duplicate jumbo multiplate samplers placed into a <u>pool</u> type of habitat at the upper Hanging Woman Creek near Quietus-Decker station.

Taxa/Collection Date	9/05/78a	10/07/78a	9/14/79Ь	11/05/79ь	Means
COL: Helichus striatus (A)					0.0
<u>Dubiraphia</u> (L)		1	26		6.8
Dubiraphia (A)			2		0.5
Microcylloepus (L)				1	0.3
DIP: Bezzia-Probezzia					0.0
Chironomidae	13	11	46	97	41.8
Hemerodromia					0.0
Simulium (L)	1			8	2.3
Simulium (P)					0.0
Tipulidae					0.0
EPH: Baetis					0.0
Caenis	10	32	54	4	25.0
Choroterpes				1	0.3
HEM: Corixidae (A)					0.0
Ambrysus mormon (A)					0.0
MEG: Sialis					0.0
ZYG: Hetaerina					0.0
Hetaerina americana					0.0
Argia	2		8	2	3.0
Ischnura	4	6		4	3.5
TRI: Cheumatopsyche	104	1	4		27.3
Hydropsyche	13			1	3.5
Hydroptila	95			1	0.3
Ithytrichia	1				0.3
Limnephilus				1	0.3
Polycentropus	6	10		1	4.3
AMP: Hyalella azteca		9	12	7	7.0
OST:Ostracoda					0.0
ACA:Acari					0.0
GAS:Gyraulus				3	0.8
Physa	6		6	14	6.5
Columnella			p		p
Totals	160	70	158	145	133.8 (533)

Sampling Locations: a--TO8S, R43E, 16C; b--TO8S, R43E, 17D.

Table D76. Numbers of benthic macroinvertebrates collected from duplicate jumbo multiplate samplers placed into a <u>riffle</u> type of habitat at the lower Hanging Woman Creek near Birney station.

Taxa/Collection Date	9/09/78a	10/07/78a	9/14/79b	11/05/79ь	Means
COL:Curculionidae (L)			4		1.0
Helichus striatus (A)					0.0
Dubiraphia (L)					0.0
Dubiraphia (A)			4		1.0
Microcylloepus (L)			8		2.0
Microcylloepus (A)					0.0
DIP:Bezzia-Probezzia					0.0
Chironomidae	18	64	164	1048	323.5
Hemerodromia			64t	32t	24.0t
Simulium (L)	555	1230	572	1776	1033.3
Simulium (P)		392			98.0
Dicranota					0.0
EPH: Baetis			4		1.0
Caenis	1			8	2.3
Paraleptophlebia					0.0
MEG:Sialis					0.0
ZYG: Hetaerina		1	4	2	1.8
Coenagrionidae					0.0
Argia					0.0
Ischnura					0.0
TRI: Brachycentrus					0.0
Helicopsyche					0.0
Cheumatopsyche	24	139	748	1072	495.8
Hydropsyche	25	36	256	520	209.3
Hydroptila	1			96	24.3
Ithytrichia					0.0
Oecetis					0.0
Nyctiophylax					0.0
Polycentropus					0.0
OLI:Oligochaeta					0.0
GAS: Physa		8	4	8	5.0
Totals	624	1870	1832	4562	2222.3 (8888)

Sampling Locations: a--TO6S,R43E,18D; b--TO6S,R43E,19D.

Table D77. Numbers of benthic macroinvertebrates collected from duplicate jumbo multiplate samplers placed into a <u>riffle to pool</u> type of habitat at the lower Hanging Woman Creek near Birney station.

COL:Curculionidae (L) Helichus striatus (A) Dubiraphia (L) Dubiraphia (A)	Taxa/Collection Date	9/09/78a	10/07/78a	9/14/79Ъ	11/05/79Ъ	Means
Dubiraphia (L)	COL:Curculionidae (L)					0.0
Dubiraphia (A)	Helichus striatus (A)				2	0.5
Microcylloepus (L)	Dubiraphia (L)		3	31		8.5
Microcylloepus (A)	Dubiraphia (A)				2	0.5
Microcylloepus (A)	Microcylloepus (L)			2	4	1.5
Chironomidae 12 12 57 354 108.8 Hemerodromia 14t 3.5t Simulium (L) 56 3 21 66 36.5 Simulium (P) 0.0 Dicranota 8 2.0 EPH: Baetis 2 0.5 Caenis 2 0.5 Caenis 105 4 27.3 Paraleptophlebia 6 1.5 MEG: Sialis 2 0.5 ZYG: Hetaerina 3 16 4.8 Coenagrionidae 0.0 Argia 8 2.0 Ischnura 1t 0.3<				1		0.3
Hemerodromia	DIP: Bezzia-Probezzia			3		0.8
Simulium (L) 56 3 21 66 36.5 Simulium (P) 0.0 Dicranota 0.5 EPH: Baetis 2 0.5 Caenis 105 4 27.3 Paraleptophlebia 6 1.5 MEG: Sialis 2 0.5 ZYG: Hetaerina 3 16 4.8 Coenagrionidae 0.0 Argia 8 2.0 Ischnura 1t 0.3 TRI: Brachycentrus 2 0.5 Cheumatopsyche 8 30 8 164 52.5 Hydropsyche 2 13 80	Chironomidae	12	12	57	354	108.8
Simulium (P) 0.0 Dicranota 8 2.0 EPH: Baetis 2 0.5 Caenis 105 4 27.3 Paraleptophlebia 6 1.5 MEG: Sialis 2 0.5 ZYG: Hetaerina 3 16 4.8 Coenagrionidae 0.0 Argia 8 2.0 Ischnura 1t 0.3 TRI: Brachycentrus 2 0.5 Cheumatopsyche 8 30 8 164 52.5 Hydropsyche 2 13 80 23.8 Hydroptila - 68 17.0	Hemerodromia				14t	3.5t
Simulium (P)	Simulium (L)	56	3	21	66	36.5
Dicranota	Simulium (P)					0.0
Caenis 105 4 27.3 Paraleptophlebia 6 1.5 MEG: Sialis 2 0.5 ZYG: Hetaerina 3 16 4.8 Coenagrionidae 0.0 Argia 8 2.0 Ischnura 1t 0.3 Helicopsyche 1 0.3 Helicopsyche 8 30 8 164 52.5 Hydropsyche 2 13 80 23.8 Hydroptila 68 17.0 Ithytrichia 6 1.5 Nyctiophylax 6 1.5 Nyctiophylax 8 2.0 OLI: Oligochaeta 1 0.3 GAS: Physa 42					8	2.0
Paraleptophlebia 6 1.5 MEG: Sialis 2 0.5 ZYG: Hetaerina 3 16 4.8 Coenagrionidae 0.0 Argia 8 2.0 Ischnura 1t 0.3t TRI: Brachycentrus 1 0.3 Helicopsyche 2 0.5 Cheumatopsyche 8 30 8 164 52.5 Hydropsyche 2 13 80 23.8 Hydroptila 68 17.0 Ithytrichia 6 1.5 Nyctiophylax 6 1.5 Nyctiophylax 8	EPH: Baetis				2	0.5
MEG: Sialis 2 0.5 ZYG: Hetaerina 3 16 4.8 Coenagrionidae 0.0 Argia 8 2.0 Ischnura 1t 0.3t TRI: Brachycentrus 1 0.3 Helicopsyche 8 30 8 164 52.5 Hydropsyche 2 13 80 23.8 Hydropsyche 2 1 0.3 Oecetis - 6 1.5 Nyctiophylax 1 0.3 GAS: Physa 42 8 14 62 <td>Caenis</td> <td></td> <td></td> <td>105</td> <td>4</td> <td>27.3</td>	Caenis			105	4	27.3
MEG: Sialis 2 0.5 ZYG: Hetaerina 3 16 4.8 Coenagrionidae 0.0 Argia 8 2.0 Ischnura 1t 0.3t TRI: Brachycentrus 1 0.3 Helicopsyche 2 0.5 Cheumatopsyche 8 30 8 164 52.5 Hydropsyche 2 13 80 23.8 Hydropsyche 2 13 80 23.8 Hydropsyche 2 13 80 23.8 Hydroptila 68 17.0 Ithytrichia 1 0.3 Nyctiophylax 8 2.0 OLI: Oligochaeta 1	Paraleptophlebia				6	1.5
Coenagrionidae 0.0 Argia 8 2.0 Ischnura 1t 0.3t TRI: Brachycentrus 1 0.3 Helicopsyche 2 0.5 Cheumatopsyche 8 30 8 164 52.5 Hydropsyche 2 13 80 23.8 Hydropsyche 2 13 80 23.8 Hydroptila 68 17.0 Ithytrichia 1 0.3 Oecetis 6 1.5 Nyctiophylax 1 0.3 Polycentropus 1 0.3 GAS:Physa 42 8 14 62 31.5				2		0.5
Argia 8 2.0 Ischnura 1t 0.3t TRI: Brachycentrus 1 0.3 Helicopsyche 2 0.5 Cheumatopsyche 8 30 8 164 52.5 Hydropsyche 2 13 80 23.8 Hydroptila 68 17.0 Ithytrichia 1 0.3 Oecetis 6 1.5 Nyctiophylax 8 2.0 OLI:Oligochaeta 1 0.3 GAS:Physa 42 8 14 62 31.5 Totals 120 60 276 861 329.8	ZYG: Hetaerina		3		16	4.8
Ischnura 1t 0.3t TRI: Brachycentrus 1 0.3 Helicopsyche 2 0.5 Cheumatopsyche 8 30 8 164 52.5 Hydropsyche 2 13 80 23.8 Hydroptila 68 17.0 Ithytrichia 1 0.3 Oecetis 6 1.5 Nyctiophylax 1 0.3 Polycentropus 8 2.0 OLI:Oligochaeta 1 0.3 GAS:Physa 42 8 14 62 31.5	Coenagrionidae					0.0
Ischnura 1t 0.3t TRI: Brachycentrus 1 0.3 Helicopsyche 2 0.5 Cheumatopsyche 8 30 8 164 52.5 Hydropsyche 2 13 80 23.8 Hydroptila 68 17.0 Ithytrichia 1 0.3 Ocetis 6 1.5 Nyctiophylax 1 0.3 Polycentropus 8 2.0 OLI:Oligochaeta 1 0.3 GAS:Physa 42 8 14 62 31.5	Argia			8		2.0
TRI: Brachycentrus 1 0.3 Helicopsyche 2 0.5 Cheumatopsyche 8 30 8 164 52.5 Hydropsyche 2 13 80 23.8 Hydroptila 68 17.0 Ithytrichia 1 0.3 Oecetis 6 1.5 Nyctiophylax 1 0.3 Polycentropus 8 2.0 OLI: Oligochaeta 1 0.3 GAS: Physa 42 8 14 62 31.5	The state of the s		1t			0.3t
Helicopsyche 2 0.5 Cheumatopsyche 8 30 8 164 52.5 Hydropsyche 2 13 80 23.8 Hydroptila 68 17.0 Ithytrichia 1 0.3 Oecetis 6 1.5 Nyctiophylax 1 0.3 Polycentropus 8 2.0 OLI:0ligochaeta 1 0.3 GAS:Physa 42 8 14 62 31.5 Totals					1	0.3
Cheumatopsyche 8 30 8 164 52.5 Hydropsyche 2 13 80 23.8 Hydroptila 68 17.0 Ithytrichia 1 0.3 Oecetis 6 1.5 Nyctiophylax 1 0.3 Polycentropus 8 2.0 OLI:Oligochaeta 1 0.3 GAS:Physa 42 8 14 62 31.5 Totals					2	0.5
Hydropsyche 2 13 80 23.8 Hydroptila 68 17.0 Ithytrichia 1 0.3 Oecetis 6 1.5 Nyctiophylax 1 0.3 Polycentropus 8 2.0 OLI:Oligochaeta 1 0.3 GAS:Physa 42 8 14 62 31.5 Totals		8	30	8	164	52.5
Hydroptila 68 17.0 Ithytrichia 1 0.3 Oecetis 6 1.5 Nyctiophylax 1 0.3 Polycentropus 8 2.0 OLI:Oligochaeta 1 0.3 GAS:Physa 42 8 14 62 31.5 Totals 120 60 276 861 329.8		2		13	80	23.8
Ithytrichia 1 0.3 Oecetis 6 1.5 Nyctiophylax 1 0.3 Polycentropus 8 2.0 OLI:Oligochaeta 1 0.3 GAS:Physa 42 8 14 62 31.5 Totals 120 60 276 861 329.8					68	17.0
Oecetis 6 1.5 Nyctiophylax 1 0.3 Polycentropus 8 2.0 OLI:Oligochaeta 1 0.3 GAS:Physa 42 8 14 62 31.5 Totals 120 60 276 861 329.8				1		0.3
Nyctiophylax 1 0.3 Polycentropus 8 2.0 OLI: Oligochaeta 1 0.3 GAS: Physa 42 8 14 62 31.5 Totals 120 60 276 861 329.8					6	1.5
Polycentropus 8 2.0 OLI: Oligochaeta 1 0.3 GAS: Physa 42 8 14 62 31.5 Totals 120 60 276 861 329.8				1		0.3
OLI: Oligochaeta 1 0.3 GAS: Physa 42 8 14 62 31.5 Totals 120 60 276 861 329.8				8		2.0
GAS: Physa 42 8 14 62 31.5 Totals 120 60 276 861 329.8				1		0.3
		42	8	14	62	31.5
	Totals	120	60	276	861	329.8
	10 6415	120	00	2,0	001	(1317)

Sampling Locations: a--TO6S,R43E,18D; b--TO6S,R43E,19D.

Table D78. Numbers of benthic macroinvertebrates collected from duplicate jumbo multiplate samplers placed into a <u>pool</u> type of habitat at the lower Hanging Woman Creek near Birney station.

Taxa/Collection Date	9/09/78a	10/07/78a	9/14/79b	11/05/79Ъ	Means
COL: Curculionidae (L)					0.0
Helichus striatus (A)					0.0
Dubiraphia (L)			7		1.8
Dubiraphia (A)			-		0.0
Microcylloepus (L)					0.0
Microcylloepus (A)					0.0
DIP:Bezzia-Probezzia					0.0
Chironomidae	6		56	26	22.0
Hemerodromia					0.0
Simulium (L)	·	1	5	5	2.8
Simulium (P)					0.0
Dicranota					0.0
EPH: Baetis					0.0
Caenis			54	13	16.8
Paraleptophlebia					0.0
MEG: Sialis			1		0.3
ZYG: Hetaerina					0.0
Coenagrionidae	2				0.5
Argia			1		0.3
Ischnura		1	1		0.5
TRI: Brachycentrus					0.0
Helicopsyche					0.0
Cheumatopsyche		1		3	1.0
Hydropsyche			1		0.3
Hydroptila				1	0.3
Ithytrichia					0.0
<u>Oecetis</u>					0.0
Nyctiophylax					0.0
Polycentropus			4		1.0
OLI:Oligochaeta					0.0
GAS: Physa	3	3	6		3.0
Totals	11	- 6	136	48	50.6
					(201)

Sampling Locations: a--TO6S,R43E,18D; b--TO6S,R43E,19D.

Numbers of benthic macroinvertebrates collected from duplicate jumbo multiplate samplers placed into three types of habitats at the East Fork of Hanging Woman Creek near Birney station. Table D79.

	Means 0.0	0.0	1.5	36.0	0.0	7.0	0.0	0.0	5.5	1.0	4.0	0.5	0.5	0.0	2.0	0.0	0.5	0.0	0.0	6.5	0.0	0.0	0.0	65.0 (130)
ol Habitat	11/05/79a 	1		55	1	2	-	1	2	2	1	П	-	1	Э	1	1	-	1	2	1		1	73
Pool	9/29/79a 	!	က	17	1	12	-	1	9	1	∞	1	Н	-	П	!	П		1	∞	1			57
Habitat	Means 0.0	0.5	4.0	3.5	0.5	14.5	0.5	1.5	37.5	0.0	3.5	0.0	0.5	0.0	0.5	19.5	4.0	3.0	1.5	16.0	3.0	С	6.5	120.5 (241)
to Pool Hab	11/05/79a	П	1	9	1	29	1	Э	39	1	1	;	Т	1	Т	24	9	m	1	14	П	1	1	128
Riffle	9/29/79a		00	1	-		1	1	36	1	7	1	1			15	2	n	3	18	5	Д	13	113
	Means 1.5	2.0	0.0	27.0	2.0	146.5	4.0	0.0	165.5	0.0	1.5	0.0	4.0	4.0	10.0	41.5	1.0	2.0	0.0	0.0	2.0	0.0	0.0	414.5 (829)
fle Habitat	11/05/79a	7	-	52	7	260	00	+	272		-	-	∞	∞	20	92	-	7	!		7	}	1	720
Rif	9/29/79a 3	1	1	2	1	33	1		59	1	n	-	1	1	1	7	2	1	1	1	1	1	1	109
	Taxa/Collection Date	DIP: Bezzia-Probezzia	Palpomvia	Chironomidae	Psychodidae	Simulium	Dicranota	Tipula	EPH: Baetis	Choroterpes	Paraleptophlebia	ANI: Aeshna	TRI: Cheumatopsyche	Hydropsyche	Hydroptila	Hesperophylax	Limnephilus	AMP: Hyalella azteca	ACA: Acari	OLI:Oligochaeta	GAS:Physa	Columnella	PEL: Pisidium	Totals

Sampling Location: TO6S, R43E, 20DA.

Table D80. Numbers of benthic macroinvertebrates collected from duplicate jumbo multiplate samplers placed into a <u>riffle</u> type of habitat at the lower Otter Creek near Ashland station (1).

Taxa/Collection Date	9/04/78a	9/29/79a	11/06/79a	Means
COL: Dubiraphia (L)				0.0
Microcylloepus (L)		16	24	13.3
Microcylloepus (A)		4		1.3
Stenelmis (L)		12		4.0
Stenelmis (A)		4		1.3
DIP: Bezzia-Probezzia				0.0
Chironomidae	102	204	3456	1254.0
Hemerodromia	4t	16t	8t	9.3t
Simulium	9	8	1704	573.7
EPH: Caenis	2	4	16	7.3
HEM: Ambrysus mormon (A)	8			2.7
MEG:Sialis				0.0
ANI: Gomphus				0.0
ZYG: Hetaerina		16	16	10.7
Argia		4	8	4.0
Ischnura			8	2.7
TRI: Cheumatopsyche	134	232	280	215.3
Hydropsyche	3	28	8	13.0
Hydroptila	27	140	80	82.3
Nectopsyche				0.0
Ptilostomis				0.0
Polycentropus		4		1.3
AMP: Hyalella azteca				0.0
OLI:Oligochaeta				0.0
GAS:Gyraulus				0.0
Physa		4	8	4.0
PEL:Pisidium			8	2.7
NMT: Nematomorpha			16	5.3
Totals	289	696	5640	2208.2
				(6625)

⁽¹⁾ Riffle samplers could not be located and retrieved on 10/8/78 due to the development of a beaver dam in the riffle section.

Sampling Location: a--TO3S,R44E,12C.

Table D81. Numbers of benthic macroinvertebrates collected from duplicate jumbo multiplate samplers placed into a <u>riffle to pool</u> type of habitat at the lower Otter Creek near Ashland station.

Taxa/Collection Date	9/04/78a	10/08/79a	9/29/79a	11/06/79a	Means
COL: Dubiraphia (L)			4		1.0
Microcylloepus (L)		1	14	8	5.8
Microcylloepus (A)					0.0
Stenelmis (L)			2		0.5
Stenelmis (A)					0.0
DIP: Bezzia-Probezzia			2		0.5
Chironomidae	115	13	94	25 52	693.5
Hemerodromia		1t		16t	4.3t
Simulium	2		2	48	13.0
EPH: Caenis	28	10	8	8	13.5
HEM: Ambrysus mormon (A)					0.0
MEG: Sialis					0.0
ANI: Gomphus			2		0.5
ZYG: Hetaerina				40	10.0
Argia	8	1	2		2.8
Ischnura		3	2		1.3
TRI: Cheumatopsyche	4	28	54	48	33.5
Hydropsyche		5	4	16	6.3
<u>Hydroptila</u>	17	4	10	128	39.8
Nectopsyche					0.0
Ptilostomis					0.0
Polycentropus		3	6	8	4.3
AMP: Hyalella azteca		1			0.3
OLI:Oligochaeta					0.0
GAS: Gyraulus					0.0
Physa		3	4	16	5.8
PEL: Pisidium					0.0
NMT: Nematomorpha					0.0
Totals	174	73	210	2888	836.7 (3345)

Sampling Location: a--TO3S,R44E,12C.

Table D82. Numbers of benthic macroinvertebrares collected from duplicate jumbo multiplate samplers placed into a <u>pool</u> type of habitat at the lower Otter Creek near Ashland station.

Taxa/Collection Date	9/04/78a	10/08/78a	9/29/79a	11/06/79a	Means
COL: Dubiraphia (L)		1	3		1.0
Microcylloepus (L)			1		0.3
Microcylloepus (A)					0.0
Stenelmis (L)		2	1		0.8
Stenelmis (A)					0.0
DIP: Bezzia-Probezzia			1		0.3
Chironomidae	14	4	66	101	46.3
Hemerodromia					0.0
Simulium			1	2	0.8
EPH: Caenis	11	13	17	7	12.0
HEM: Ambrysus mormon (A)					0.0
MEG:Sialis	1		1		0.5
ANI:Gomphus					0.0
ZYG: Hetaerina					0.0
Argia	1		5		1.5
Ischnura	1t	3		1	1.3
TRI: Cheumatopsyche		2	1	2	1.3
Hydropsyche					0.0
Hydroptila		1			0.3
Nectopsyche	1				0.3
Ptilostomis		lt			0.3t
Polycentropus		2	9		2.8
AMP: <u>Hyalella</u> <u>azteca</u>					0.0
OLI:Oligochaeta			4	1	1.3
GAS: Gyraulus	1				0.3
<u>Physa</u>	2		4	1	1.8
PEL: Pisidium					0.0
NMT: Nematomorpha					0.0
Totals	32	29	114	115	73.2 (290)

Sampling Location: a--TO3S,R44E,12C.

multiplate samplers placed into three types of habitats at the Pumpkin Creek near Miles City station (1). Table D83. Numbers of benthic macroinvertebrates collected from duplicate jumbo

	Riffle	Riffle to Pool Habitat	tat	Pc	Pool Habitat	
Taxa/Collection Date	9/06/78a	10/09/78a	Means	9/06/78a	10/09/78a	Means
COL:Microcylloepus (L)	16	1	8.0	!	1	0.0
Microcylloepus (A)	7	1	2.0	1	1	0.0
Stenelmis (A)	;	!	0.0	П	1	0.5
DIP: Bezzia-Probezzia	7	1	2.0	1	1	0.0
Chironomidae	276	52	164.0	∞	57	32.5
Hemerodromia	44	2t	3.0t		1	0.0
EPH: Baetis	+	2	1.0	1	1	0.0
Caenis	28	6	18.5	2	20	11.0
Tricorythodes		\vdash	0.5	;	!	0.0
MEG: Sialis	1		0.0	1	П	0.5
ZYG: Coenagrionidae	-	Н	0.5	1	!	0.0
Argia	1	1	0.0	П	-	0.5
Ischnura	!	1	0.0	П	!	0.5
TRI: Cheumatopsyche	100	52	76.0	2	14	8.0
Hydropsyche	∞	2	5.0	1	1	0.5
Ithytrichia	7	1	2.0	7	1	2.0
Polycentropus	1	1	0.5	1	2	1.0
AMP: Hyalella azteca	-	11	5.5	2	2	2.0
Totals	777	133	288.5 (577)	22	96	59.0 (118)

continuous drop in stream stage; riffle data from artificial substrates are not (1) Riffle samplers were found out of water on 9/06/78 and on 10/09/78 due to a available for this site.

Sampling Location: a--TO6N, R48E, 35C.

Table D84. Numbers of benthic macroinvertebrates collected from duplicate jumbo multiplate samplers placed into three types of habitats at the Mizpah Creek near Mizpah station.

		Means	0.0	0.5	3.5	0.0	1.0	0.0	0.0	0.0	0.0	1.0	2.0	2.0	13.0	(56)
	Pool Habitat	10/09/78a	!	-	7	-	2	-	!	!	;	!	7	Н	15	
	Д	9/06/78a	1	1	1	1		!	1	;	!	2	1	6	11	
Riffle to Pool	Habitat(1)	9/06/78a		1	∞	1	1	!	2	!	-	П	1	25	36	
		Means	0.5	0.0	12.0	0.5	32.0	1.0	0.0	1.0	1.0	1.0	0.0	2.0	51.0	(102)
	Riffle Habitat	10/09/78a	1	1	23	П	99	1	-	2	2	2	-	m	76	
	Ri	9/06/78a	1		Н	1	1	2	1	1	!	1	1	Н	5	
		Taxa/Collection Date	COL: Helichus striatus (A)	DIP: Bezzia-Probezzia	Chironomidae	EPH: Baetis	Caenis	HEM: Ambrysus mormon (A)	ZYG: Argia	Ischnura	TRI: Cheumatopsyche	AMP: Hyalella azteca	OLI:01igochaeta	GAS: Physa	Totals	

(1) Riffle to pool samplers were found buried on 10/08/78 and not assessed.

Sampling Location: a--TO6N, R51E, 25C.

This sheet is intended as a filler for a set of 33 appendix tables ("E" series) that will be prepared for inclusion into this data report once the requisite data are at hand. The availability of this data and the preparation of these tables is anticipated for the near future. These "E" tables will be similar in sequence, organization, and content to the "C" series of the appendix which lists the macroinvertebrate-Surber density numbers by sample, station, and taxa. But in the case of the "E" tables, a biomass as an air-dried weight in milligrams per square foot will be presented for each taxa and Surber sample collection rather than a density value. These extra tables will entail an additional 39 pages for the report.

Tables E85 to E117

Biomass (milligrams of air-dried weight per square foot) of benthic macroinvertebrates collected with a Surber sampler from various streams draining the southern Fort Union region in southeastern Montana.

This sheet is intended as a filler for a set of 17 appendix tables ("F" series) that will be prepared for inclusion into this data report once the requisite data are at hand. The availability of this data and the preparation of these tables is anticipated for the near future. These "F" tables will be similar in sequence, organization, and content to the "D" series of the appendix which lists by sample, station, and taxa the macroinvertebrate numbers collected with the duplicate jumbo multiplate samplers. But in the case of the "F" tables, a biomass as an air-dried weight in milligrams will be presented for each taxa and duplicate jumbo multiplate collection rather than the individual count tabulations. These extra tables will entail an additional 18 pages for the report.

Tables F118 to F134

Biomass (milligrams of air-dried weight) of benthic macroinvertebrates collected from duplicate jumbo multiplate samplers placed into different types of stream habitats at the various intensive stations of the coalfield study area.

Table E85. Biomass (milligrams dry weight per square foot) of benthic macroinvertebrates collected with a Surber sampler from upper Rosebud Creek near Kirby during the 1978 sampling season.

Taxa/Collection Date	6/16	6/29	7/18	8/03	8/29		10/08	11/05
COL: Agabus (A)	0.2		1.0			10.8		
Dubiraphia (L)	0.2		1.0	0.8				
Dubiraphia (A)			1.1				0.2	
Microcylloepus (L)			1.1		0.4		0.2	
Microcylloepus (A)	0.7			2.8	0.4			
Optioservus (L)	0.7			2.0				
Optioservus					0 0			
divergens (A)	0.4				0.8			
quadrimaculatus (A)								
Hydrochus (L)	0.2				0.4			
DIP: Bezzia-Probezzia Chironomidae	5.4	1.1	28.6	166.	52.1	20.2	6.6	13.1
	J.4 	1.1	20.0		1.6	20.2	0.0	12.1
Clinocera-Chelifera			0.2	2.0	0.6	0.2		
Hemerodromia Simulium (L)	2.0	1.0		2. 0	2.0		1.0	3.0
Simulium (P)	0.4	1.0			2.0		1.0	J. U
Dicranota	1.0							
Tipula	- -			136.				
EPH: Baetis	12.3	1.3	5.9	3.5	35.5	2.2	1.0	26.2
Heptageniidae		1.5	J. J	J.J	1.2			20.2
Leptophlebiidae					1.8			
Tricorythodes			5.4	2.2		0.1	0.5	0.2
MEG: Sialis	0.5		J.4 	2.2		0.1		
ANI: Anisoptera								
Ophiogomphus				117.				
PLE: Perlodidae	-			11/.				
Isogenus							2.2	
Isoperla								5.6
TRI: Brachycentrus	2.2	2 2	68.3	313.	19.1	22.2	94.5	65.2
Cheumatopsyche	3.8	0.8	1.5	31.2	109.	38.0	421.	76.4
Hydropsyche	2.7	0.9	0.3	2.0	165.	204.		243.
Hydroptila	10.4		171.	55.7	6.2	0.5	1.6	9.6
Ochrotrichia				6.4				
AMP: Hyalella azteca	0.5							0.5
ACA: Acari	0.6		30.1		1.8			3.1
HIR: Hirudinea					2.2			
OLI: Oligochaeta	135.		13.6	1.6				2.8
GAS: Ferrissia							4.4	4.4
Gyraulus			р					р
Physa	5.9							
PEL: Pisidum			18.0					
L L L C L C L C L L C L L C L L C L L C L			10.0					
Totals	184.	7.3	346.	840.	400.	298.	533.	453.

Table E86. Biomass (milligrams dry weight per square foot) of benthic macroinvertebrates collected with a Surber sampler from upper Rosebud Creek near Kirby during the 1979 sampling season.

m /a 11 . t n .		5/00	6 / 0.7	7/07	0/17	0/05	Two-Year
Taxa/Collection Date	4/01	5/20	6/21	7/27	8/17	9/05	Means
COL: Agabus (A)			2 /				0.8
Dubiraphia (L)			3.4				0.4
Dubiraphia (A)							<.1
Microcylloepus (L)			1.1		0.4		0.2
Microcylloepus (A)				0.9	0.5	2.8	0.3
Optioservus (L)				1.1		7.6	0.9
<u>Optioservus</u>						1 (0.0
divergens (A)						1.6	0.2
quadrimaculatus (A)							<.1
Hydrochus (L)			0.6				<.1
DIP: Bezzia-Probezzia		0.4		10.0	20.0	20 5	0.1
Chironomidae		15.2	28.8	10.0	29.0	39.5	29.7
Clinocera-Chelifera					0.9	1.2	0.3
Hemerodromia			0.3		3.4	1.2	0.6
Simulium (L)			5.7				1.1
Simulium (P)							<.1
Dicranota							0.1
Tipula						10 /	9.7
EPH: Baetis	0.3	1.6	5.1	0.9	21.0	10.4	9.1
Heptageniidae							0.1
Leptophlebiidae					3.6	15.0	0.4
Tricorythodes			10.4	5.2	21.1	15.2	4.3
MEG: Sialis							<.1
ANI: Anisoptera			41.6				3.0
Ophiogomphus							8.4
PLE:Perlodidae			0.1				<.1
Isogenus		1/2					0.2
<u>Isoperla</u>		14.3	7//		2 /		1.4
TRI: Brachycentrus	P		74.4	8.0	2.4	5.2	48.3
Cheumatopsyche		0.4	2.0	54.9	52.1	228.	72.8
Hydropsyche		104.	139.	161.	242.	206. 13.8	105.0 23.1
Hydroptila		2.1	9.8	28.8	13.6	13.0	0.5
Ochrotrichia							
AMP: Hyalella azteca			 _ 1	0.1		1 2	0.1
ACA: Acari			0.1	0.1		1.2	2.6 0.2
HIR: Hirudinea							
OLI:Oligochaeta		0.5					11.0 0.6
GAS: Ferrissia			- <u>-</u>				
Gyraulus			Р		p		p
Physa							0.4 1.3
PEL: Pisidium							1.3
Totals	0.3	139.	322.	271.	390.	534.	377.2
							(4718)

Table E87. Biomass (milligrams dry weight per square foot) of benthic macroinvertebrates collected with a Surber sampler from middle Rosebud Creek near Colstrip and from lower Rosebud Creek near Rosebud.

	_				Rosebud-	
Tour /Collocation Date		ebud-Co1		Manna	Rosebud	Overall
		8/22/78		Means	11/07/79	
COL:Curculionidae (L)				1 5	8.8	2.2
Hyperodes (L)		4.4		1.5		1.1
Dubiraphia (L)	0.2	0.6		0.3		0.2
Dubiraphia (A)	0.1	0.1	~-	0.1		<.1
Microcylloepus (L)	0.4	3.5	0.3	1.4	0.7	1.2
Microcylloepus (A)	0.7			0.2		0.2
Microcylloepus		0 0		0.1		. 1
pusillus (A)		0.2		0.1		<.1
Stenelmis (L)	0.9	4.0	0.9	1.9		1.5
Stenelmis sinuata (A)	1.1			0.4		0.3
Stenelmis		1 /		0 5		0 /
vittipennis (A)		1.4		0.5		0.4
DIP: Chironomidae	0.7	4.8	0.4	2.0	11.6	4.4
Hemerodromia	0.1	0.1		0.1	2.4	0.7
Simulium	2.2		0.1	0.8	31.9	8.6
Tipula		5.4		1.8		1.4
EPH: Baetis	0.8	1.7	0.6	1.0		0.8
Pseudocloeon			0.5	0.2		0.1
Choroterpes	0.4	0.4		0.3	11.0	3.0
Choroterpes-						
Leptophlebia			46.3	15.4		11.6
Paraleptophlebia		7.2		2.4		1.8
Ephoron	0.9			0.3		0.2
Tricorythodes	0.1	0.2		0.1	0.5	0.2
HEM: Ambrysus mormon (A)	7.7	42.3	47.0	32.3		24.3
LEP: Parargyractis					1.8	0.5
ANI: Ophiogomphus	11.8			3.9		3.0
TRI: Brachycentrus		22.1	8.3	10.1		7.6
Culoptila			~-		0.7	0.2
Cheumatopsyche	0.3	13.3	1.5	5.0	200.	53.8
Hydropsyche	15.5	17.8	3.1	12.1	554.	148.
Hydroptila					3.7	0.9
Ithytrichia		0.2		0.1		<.1
ACA: Acari		0.1		<.1		<.1
HIR: Hirudinea			11.3	3.8		2.8
OLI:Oligochaeta	0.7	0.9		0.5		0.4
GAS: Ferrissia	p			p		p
Physa		5.5		1.8	5.9	2.9
PEL:Sphaerium	48.5			16.2		12.1
TUR: Turbellaria		5.2		1.7		1.3
			100		000	
Totals	93.1	141.	120.	118.	833.	298.
				(354.)		(1187)

Table E88. Biomass (milligrams dry weight per square foot) of benthic macroinvertebrates collected with a Surber sampler from Indian Creek near Kirby.

	197	8 Samp	les	197	9 Samp	les	
Taxa/Collection Date	7/25		11/05	6/26	7/17	9/28	Means
COL: Agabus (L)				1.2			0.2
Dubiraphia (L)		0.3	1.4	1.1			0.5
Dubiraphia (A)		0.3	0.7				0.2
Microcylloepus (L)	0.6			0.2	0.4	0.8	0.3
Microcylloepus (A)					0.8	1.6	0.4
Microcylloepus pusillus (A)				0.9			0.2
Optioservus (L)	31.4	6.8	10.4	17.4	1.2	47.1	19.1
Optioservus (A)	9.1						1.5
Optioservus divergens (A)			1.2	9.6		3.9	2.5
quadrimaculatus (A)				3.2			0.5
Heteroceridae (L)	0.6						0.1
Berosus (L)					3.2		0.5
DIP: Bezzia-Probezzia			0.2				<.1
Chironomidae	5.3	9.9	19.5	21.0	167.	16.4	39.9
Clinocera-Chelifera		0.8	0.6		0.8	0.6	0.5
Hemerodromia	0.4	0.2	0.1		1.7	1.8	0.7
Muscidae					39.6		6.6
Pericoma			0.5		8.0		1.4
Simulium	0.9		0.5	0.5	63.9		11.0
Euparyphus			6.2				1.0
Tipulidae						172.	28.7
Dicranota	14.1		3.0		25.2	317.	59.9
Tipula	13.7		13.7	13.7			6.9
EPH:Baetidae				p			P
Baetis	6.3	0.1	0.1			1.6	1.4
Caenis	3.9		35.2				6.5
Tricorythodes		1.7	0.6				0.4
ANI: Ophiogomphus		75.1	35.4				18.4
PLE: Isoperla		0.5	0.5				0.2
TRI: Brachycentrus	217.	33.2	41.9	10.4		109.	68.6
Cheumatopsyche	14.9	0.8		0.8	1442	528.	331.
Hydropsyche	39.3	24.1	166.	18.2	167.	2554	495.
Potamyia	0.2						<.1
Hydroptila	4.8	2.1	35.6	14.8	20.4	19.2	16.2
Ochrotrichia	1.6						0.3
Oecetis		4.4					0.7
Onocosmoecus				24.7			4.1
AMP: Gammarus						31.2	5.2
Hyalella azteca	12.1	0.4		0.6		1.3	2.4
ACA: Acari	0.1	2.2	8.1	0.8	11.6	8.6	5.2
OLI:Oligochaeta	516.	0.3	58.4	234.		185.	166.
GAS: Lymnaea	5.4						0.9
Gyraulus	Р	р	16.5	Р	р	р	2.8
Physa				P P			p
Columnella			р				P
PEL:Pisidium	5.4			р			0.9
I III . I I I I I I I I I I I I I I I I				r			
Totals	903.	163.	456.	373.	1953	3999	1309
200320							(7847)

Table E89. Biomass (milligrams dry weight per square foot) of benthic macroinvertebrates collected with a Surber sampler from Davis Creek near Busby.

Taxa/Collection Date COL: Agabus (L) Agabus (A)	6/26/78 1.4 	7/25/78 2.9 	8/24/79 10.8	Means 1.4 3.6
Deronectes-Oerodytes (A)	2.6			0.9
Deronectes liodessus (A)		2.6		0.9
Hydroporus-Hygrotus (L)		0.2		0.1
Dubiraphia (L)	0.9	1.8	1.0	1.2
<u>Dubiraphia</u> (A)	4.4	0.9		1.8
<u>Dubiraphia</u> <u>vittata</u> (A)			8.1	2.7
Gyrinis-Gyretes (L)		0.2		0.1
Limnichidae (L)	0.2			0.1
DIP: Bezzia-Probezzia		0.7		0.2
Chironomidae	2.6	44.8	8.8	18.7
Clinocera-Chelifera		1.9		0.6
Simulium	0.9	7.7		2.9
Stratiomyidae		2.6		0.9
Odontomyia	2.6			0.9
Chrysops		4.7		1.6
Tabanus			5.3	1.8
Tipula	33.9			11.3
EPH: Baetis	1.3	1.3	1.0	1.2
Caenis	0.6	2.7	2.1	1.8
HEM: Heteroptera (L)	0.1 0.1			<.1 <.1
Heteroptera (A)	0.1	10.5		3.5
Hesperocorixa laevigata (A)	2.0	33.2	1.8	12.3
MEG: Sialis	2.0	33.2	3.5	1.2
ZYG: Coenagrionidae		3.0	J.J	1.0
Ischnura TRI: Cheumatopsyche	9.3	0.7	104.	38.0
Hydroptila	0.4		104.	0.1
Hesperophylax		4.5	97.9	34.1
Limnephilus		4.4		1.5
Ptilostomis			7.8	2.6
AMP:Hyalella azteca	7.0	9.6	19.1	11.9
OST:Ostracoda	0.3		1.6	0.6
ACA: Acari	0.3		0.3	0.2
HIR:Glossiphonia	19.0			6.3
OLI:Oligochaeta	6.3	14.7	8.4	9.8
GAS: Gyraulus	p	р		р
Physa	1.3	30.4	5.3	12.3
Totals	97.5	186.	287.	190. (571.)

Table E90. Biomass (milligrams dry weight per square foot) of benthic macroinvertebrates collected with a Surber sampler from Muddy Creek near Busby-Lame Deer.

Taxa/Collection Date	6/26/78	7/25/78	5/20/79	8/24/79	Means
COL: Dubiraphia (L)			18.6	6.1	6.2
Dubiraphia (A)		0.4	0.4		0.2
Microcylloepus (L)				2.1	0.5
Optioservus (L)			0.8		0.2
DIP: Bezzia-Probezzia	0.2				<.1
Chironomidae	34.9	13.3	4.7	10.3	15.8
Simulium	0.4	9.3		1.4	2.8
Dicranota		10.4			2.6
EPH: Baetis		11.8		4.1	4.0
Caenis	21.9	0.9	6.6		7.4
Choroterpes				1.0	0.3
HEM: Ambrysus mormon (A)			6.1	92.1	24.6
TRI: Brachycentrus		6.5			1.6
Cheumatopsyche	3.9	236.	27.9	94.2	90.5
Hydropsyche		5.7	2.8	2.0	2.6
Hydroptila (L)		3.1	9.0	1.7	3.5
Hydroptila (P)	1.7				0.4
Oecetis			р	7.6	1.9
Onocosmoecus			16.5		4.1
AMP: Hyalella azteca	3.0		4.0	136.	35.8
ACA:Acari			1.8	0.2	0.5
HIR:Glossiphonia complanata			44.9		11.2
Helobdella			18.7	19.8	9.6
Helobdella stagnalis			45.4		11.4
OLI:Oligochaeta	4.1		4.1	22.0	7.6
Lymnaea			p		p
Gyraulus		p	p	р	р
Helisoma			p		p
Physa	27.7		p	55.3	20.8
PEL: Pisidium			83.2	25.6	27.2
NEM: Nematoda				0.6	0.2
Totals	97.8	297.	296.	482.	294. (1173)

Table E91. Biomass (milligrams dry weight per square foot) of benthic macroinvertebrates collected with a Surber sampler from Lame Deer Creek near Lame Deer.

Taxa/Collection Date	7/12/78	8/16/78	8/07/79	11/06/79	Means
COL: Dubiraphia (L)		0.2		0.8	0.3
Dubiraphia vittata (A)			8.6		2.2
Microcylloepus (L)			0.4		0.1
Optioservus (L)	10.4	1.0	10.6	1.9	6.0
Optioservus (A)	6.0				1.5
Optioservus divergens (A)			0.8		0.2
Haliplus (L)			0.8		0.2
DIP: Chironomidae	14.9	2.8	10.2	123.	37.7
Clinocera-Chelifera		0.3			0.1
Hydrellia	3.2	0.2			0.9
Simulium	1.0	0.1	0.1	29.6	7.7
Dicranota	10.8				2.7
EPH: Baetis	2.1			5.2	1.8
Caenis			0.6		0.2
Ameletus				3.4	0.9
HEM: Gerris (A)		29.1			7.3
ZYG: Ischnura			34.4	68.8	25.8
TRI: Brachycentrus	76.6	21.8			24.6
Cheumatopsyche	139.	1.3	62.3	2447	662.
Hydropsyche	1.9	2.4	1.9	110.	29.1
Hydroptila			32.6	5.8	9.6
Oecetis			35.2		8.8
Glyphopsyche		2.8			0.7
Hesperophylax	118.				29.5
AMP: Gammarus	28.8		111.		35.0
Hyallela azteca	20.8	0.5	146.	45.6	53.2
ACA: Acari	0.6	0.3	0.6		0.4
HIR:Erpobdellidae			66.7		16.7
Glossiphonia			209.		52.3
<u>Helobdella</u> stagnalis			13.8		3.5
OLI:Oligochaeta		0.4			0.1
GAS: Helisoma			38.2		9.6
Physa	47.3	29.6	p		19.2
PEL: Pisidium	4.9	4.9	4.9		3.7
Totals	486.	97.7	789.	2841	1054
					(4214)

Table E92. Biomass (milligrams dry weight per square foot) of benthic macroinvertebrates collected with a Surber sampler from the Tongue River near Sheridan-Decker.

Taxa/Collection Date	7/07/78	8/26/78	6/26/79	8/30/79	Means
COL: Dubiraphia (A)			0.4		0.1
Microcylloepus (L)	0.3	0.3	1.0	48.1	12.4
Microcylloepus (A)			0.8	- -	0.2
Microcylloepus pusillus (A)				6.8	1.7
Stenelmis (L)	1.9	0.6	0.6	2.5	1.4
Stenelmis sinuata (A)				9.2	2.3
Stenelmis vittipennis (A)			2.3		0.6
Zaitzevia parvula (A)			1.1		0.3
DIP: Bezzia-Probezzia			0.7		0.2
Bezzia-Probezzia-Palpomyia	1.1				0.3
Chironomidae	2.8	4.7	22.2	20.2	12.5
<u>Hermerodromia</u>			0.2		<.1
Simulium (L)	4.3	15.6	5.7	14.8	10.1
Simulium (P)		4.7			1.2
EPH: Baetis	59.1	4.1	3.8	50.2	29.3
Pseudocloeon	3.1		0.3	3.2	1.7
Ephemera	1.1				0.3
Ephemerella	3.5		64.2		16.9
Heptageniidae				1.2	0.3
Rithrogena		0.3			0.1
Stenonema		0.5			0.1
Leptophlebiidae		0.9			0.2
Choroterpes-Leptophlebia				2.4	0.6
Ephoron		1.8			0.5
Tricorythodes	2.4	4.4	1.2	0.8	2.2
LEP: Paragyractis			0.8	16.0	4.2
Ophiogomphus				26.4	6.6
PLE:Isoperla			8.1		2.0
TRI: Brachycentrus			220.	14.8	58.7
Helicopsyche				54.2	13.6
Cheumatopsyche	87.6	4.2	24.9	129.	61.4
Hydropsyche	1.6	34.3	703.	111.	212.
Hydroptila		2.2	p	8.9	2.8
Ochrotrichia		0.5		8.0	2.1
Nectopsyche		2.1			0.5
Oecetis	5.3		2.7	117.	31.3
OLI:Oligochaeta	3.0		0.1		0.8
GAS: Gyraulus	Р				p
PEL: Pisidium	6.2				1.6
Sphaerium				p	p
TUR: Turbellaria				84.8	21.2
Totals	183.	81.2	1064	730.	514.
					(2058)

Table E93. Biomass (milligrams dry weight per square foot) of benthic macroinvertebrates collected with a Surber sampler from Ash and Youngs Creeks near Sheridan-Decker.

	1070		Creek		Youngs Creek 1979		
m/0-11	$\frac{1978}{6/10}$	$\frac{19}{7/26}$	8/30	M	$\frac{19}{7/13}$	8/30	M
Taxa/Collection Date COL:Dubiraphia (L)	6/10	$\frac{7/26}{3.1}$	6/30	Means 1.0	$\frac{7/13}{0.4}$	6/30	Means 0.2
Dubiraphia (A)		2.1				0.7	0.4
		0.7		0.2	0.6	0.7	0.4
Microcylloepus (L) Microcylloepus (A)	_ _	0.9		0.2	0.0		0.5
Microcylloepus (A)		0.9		0.5			
pusillus (A)					0.2		0.1
Optioservus (L)			1.1	0.4	0.2		0.4
DIP: Bezzia-Probezzia		3.0		1.0			
Chironomidae	0.8	99.8	27.8	42.8	2.3	31.9	17.1
Clinocera-Chelifera		9.5		3.2	0.8	<u></u>	0.4
Hemerodromia		- -				3.2	1.6
Muscidae		23.4	1.8	8.4			
Simulium	0.3	33.7	8.8	14.3	0.3	3.4	1.9
Dicranota		40.8	40.8	27.2			
Tipula	182.			60.7			
EPH: Baetis	0.9	41.6	16.3	19.6	2.3		1.2
Pseudocloeon	0.3	3.2		1.2			
Leptophlebiidae			р	р			
Tricorythodes						0.5	0.3
ANI: Ophiogomphus	66.9			22.3		103.	51.5
PLE: Perlodidae			0.3	0.1			
TRI: Brachycentrus		17.5		5.8	4.4	13.1	8.8
Cheumatopsyche	1.2	167.	54.9	74.4	15.7	57.5	36.6
Hydropsyche	33.3	313.	349.	232.	231.	361.	296.
Hydroptila		8.4	2.1	3.5	6.7	2.2	4.5
Ochrotrichia			3.3	1.1	0.8		0.4
Oecetis		p		р			
Onocosmoecus		49.4		16.5	16.4		8.2
ACA:Acari		1.2		0.4			
OLI:Oligochaeta	0.4			0.1	0.8		0.4
GAS: Lymnaea					p		p
Gyraulus						p	p
Physa		144.	28.8	57.6	p	13.0	6.5
PEL: Pisidium						p	p
Totals	286.	960.	535.	594.	284.	590.	437.
				(1781)			(874.)

Table E94. Biomass (milligrams dry weight per square foot) of benthic macroinvertebrates collected with a Surber sampler from the Tongue River near Pyramid Butte-Birney during the 1978 sampling season (the first page of two pages).

Taxa/Collection Date	6/28	7/19	8/03	8/24	9/05	10/08	
COL: Dubiraphia (L)	0.4	0.4	0.2	~	22.0		0.4
Dubiraphia (A)	1.0			0.6	32.8	0.6	
Dubiraphia vittata (A)	 5.9				1.50	29.5	
Microcylloepus (L)			0.4	6.5	159. 328.		0.6
Microcylloepus (A)	0.6		1.5	0.1	328.	113.	4.6
Microcylloepus pusillus (A)			1.6	0.6	99.1	8.5	1.6
Stenelmis (L) Stenelmis (A)		3.9	3.9	0.0	23.2		1.9
Stenelmis (A) Stenelmis sinuata (A)		J. 9	J. 9		23.2		1.7
Stenelmis vittipennis (A)							
Heteroceridae (L)							
DIP: Brachycera				0.2			
Ceratopogonidae		0.2	1.1				
Bezzia-Probezzia			1.3			0.9	
Bezzia-Probezzia-Palpomyia			1.5	0.2		- -	
Chironomidae	7.3	4.5	25.5	15.2	15.1	3.0	7.2
Hemerodromia					13.1	1.2	0.3
Simulium	23.3	6.8	0.1	0.1	8.8	14.5	31.0
Dicranota							
EPH: Baetidae					15.7		
Baetis	3.7	12.5	4.8	2.8	119.	6.9	3.9
Pseudocloeon							
Ephemera							
Ephemerella	1.2	0.6				12.0	50.0
Heptageniidae					1.6		0.8
Heptagenia						1.2	
Stenonema				1.1			5.3
Leptophlebiidae							
Choroterpes		0.6	10.4	13.5			
Leptophebia					5.9		
Choroterpes-Leptophlebia					50.2	1.1	
Siphlonurus							
Tricorythodes	5.0	3.2	9.3	11.3	7.7	9.7	2.0
HEM: Homoptera (L)							
Ambrysus mormon (A)			Р	1.8			
LEP:Paragyractis				1.3			
ANI: Gomphus							
Ophiogomphus				27.6			
PLE: Acroneuria				8.2			
Perlodidae					4.0	13.5	5.9
Isoperla .				0.1			

Table E94. Continued (the second page of two pages).

Taxa/Collection Date	6/28	7/19	8/03	8/24	9/05	10/08	11/04
TRI: Helicopsyche							
Cheumatopsyche		2.3	5.2	4.7	10.0	2.3	5.4
Hydropsyche			9.4	12.8	81.4	36.8	162.
Hydroptilidae (L)							
Hydroptilidae (P)							
Hydroptila			0.5	0.9	21.6	3.2	4.8
Ochrotrichia					10.4		
Glossosomatidae				0.4			
Leptoceridae (L)				5.6			
Leptoceridae (P)				1.9			
Nectopsyche	9.6		2.4	204.	28.0	8.6	25.2
Oecetis				24.6		13.0	48.4
OST: Ostracoda			0.5				
ACA: Acari							0.3
OLI:Oligochaeta							
GAS:Gastropoda							
Ferrissia							
Physa							
Columnella							
PEL:Pelecypoda							
Pisidium							
TUR: Turbellaria					60.8	26.0	26.3
					00.0		
Totals	58.0	35.0	78.1	347.	1082	306.	388.

Table E95. Biomass (milligrams dry weight per square foot) of benthic macroinvertebrates collected with a Surber sampler from the Tongue River near Pyramid Butte-Birney during the 1979 sampling season (the first page of two pages).

							Two-Year
Taxa/Collection Date	3/31	5/19	6/21	8/01	8/18	9/05	Means
COL: Dubiraphia (L)	3/31	<u> </u>	0.8	0.8	1.5	$\frac{5703}{1.8}$	0.4
Dubiraphia (A)							2.7
Dubiraphia vittata (A)					2.4		0.2
Microcylloepus (L)	4.1	1.2	2.3	54.7	132.	83.8	36.9
Microcylloepus (A)		2.6		J4.7		03.0	34.6
Microcylloepus (A)		2.0					34.0
pusillus (A)	3.6		4.6	49.2	82.8	83.1	17.2
Stenelmis (L)				18.4	12.6	15.9	12.2
Stenelmis (A)				22.2		10.9	4.3
Stenelmis sinuata (A)		9.9	3.6				1.0
Stenelmis vittipennis (A)		J.J			7.6	12.5	1.5
Heteroceridae (L)			-	1.3	7.0	12.5	0.1
DIP: Brachycera				. 1.3			<.1
Ceratopogonidae							0.1
Bezzia-Probezzia		0.5	21.2				1.8
Bezzia-Probezzia-		0.5	21.2				1.0
Palpomyia	1.0						0.1
Chironomidae	92.6	14.7	43.6	41.7	15.5	6.8	22.5
Hemerodromia	72.0	14.7	45.0	2.1	<u></u>		0.3
Simulium	14.8	1.4	5.9	12.3	9.6	0.2	9.9
Dicranota		1.4	J • J	3.8			0.3
EPH: Baetidae							1.2
Baetis	15.6	2.6	30.2	24.4	13.6	3.8	18.8
Pseudocloeon			J0.2	3.2			0.2
Ephemera			2.8				0.2
Ephemerella	55.6	59.6	11.4	3.7			14.9
Heptageniidae	0.4	J9.0 		J. /			0.2
Heptagenia			2.4				0.3
Stenonema		1.6					0.6
Leptophlebiidae			3.6				0.3
Choroterpes		0.1		1.7		11.6	2.9
Leptophlebia							0.5
Choropterpes-Leptophlebia				34.2	5.1		7.0
Siphlonurus			3.4				0.3
Tricorythodes	3.2			11.5		0:3	8.4
HEM: Homoptera (L)				0.2			<.1
Ambrysus mormon (A)				10.0	25.9	48.0	6.6
LEP:Parargyractis				15.8	2.6		1.5
ANI: Gomphus					8.4		0.6
Ophiogomphus							2.1
PLE: Acroneuria				16.4			1.9
Perlodidae	9.1						2.5
Isoperla `	7.1	54.5					4.2
TSOPELIA		24.3					7.2

Table E95. Continued (the second page of two pages).

							Two Year
_Taxa/Collection Date	3/31	5/19	6/21	8/01	8/18	9/05	Means
TRI: Helicopsyche			4.7		32.0	66.6	7.9
Cheumatopsyche		0.6	1.7	7.5	6.0	3.0	3.7
Hydropsyche	2.0	13.1	3.4	157.	72.4	62.9	47.2
Hydroptilidae (L)					132.	p	10.2
Hydroptilidae (P)			69.2				5.3
Hydroptila		6.1	10.9	72.5	166.	3.0	22.3
Ochrotrichia			10.4	3.5	58.9	1.7	6.5
Glossosomatidae							<.1
Leptoceridae (L)							0.4
Leptoceridae (P)							0.1
Nectopsyche	103.	12.7		111.	553.	15.2	82.5
0ecetis	1.5		16.8	17.6	44.0	23.8	14.6
OST:Ostracoda							<.1
ACA:Acari			0.6	0.6	0.6		0.2
OLI:Oligochaeta			3.6		2.4		0.5
GAS:Gastrapoda						p	p
Ferrissia				p			p
Physa	11.7	p	50.6	253.	443.	9.2	59.0
<u>Columnella</u>						Р	p
PEL:Pelecypoda			p				p
Pisidium				13.4			1.0
TUR: Turbellaria	0.9		5.3		9.9	34.0	12.6
Totals	319.	181.	359.	964.	1840	487.	495.
							(6444)

Table E96. Biomass (milligrams dry weight per square foot) of benthic macroinvertebrates collected with a Surber sampler from Squirrel Creek near Decker.

1978 Samples 1979 Samples Taxa/Collection Date 6/10 8/26 4/01 5/20 6/21 7/26 8/17 9/05 11/06 Means 9.3 COL: Helichus (A) 1.0 Helichus striatus(A) 4.7 0.5 2.0 24.3 0.8 19.6 7.9 1.1 2.7 7.0 Dubiraphia (L) 4.6 Dubiraphia vittata(A) 2.7 2.7 0.6 1.5 0.7 1.5 1.5 0.7 Microcylloepus(L) 0.3 0.9 1.7 Microcylloepus(A) Stenelmis 0.5 vittipennis(A) 4.6 8.6 4.4 9.6 0.7 3.5 30.0 10.0 17.1 2.0 Optioservus (L) Optioservus 4.2 4.2 2.3 0.5 8.3 3.1 divergens(A) 2.1 2.1 quadrimaculatus(A) 2.1 4.2 8.4 2.1 0.9 3.5 1.0 DIP:Bezzia-Probezzia 4.4 0.4 Bezzia-Probezzia-0.9 2.6 0.6 Palpomyia 1.8 3.5 0.5 1.1 Palpomyia 0.2 <.1 Culicoides 5.2 60.9 217. 89.1 3.0 143. 22.0 206. 128. 16.5 Chironomidae 3.8 3.2 1.7 17.6 4.0 8.0 Hemerodromia 0.7 6.7 Limnophora 0.5 9.1 2.0 2.0 22.0 6.1 4.6 Simulium 1.9 3.8 0.8 1.9 Dicranota 73.9 133. 532. Tipula 0.4 <.1 EPH: Baetidae 0.2 0.2 0.8 0.4 Baetis <.1 0.3 Caenis 0.4 3.6 Leptophlebiidae 166. 491. 982. HEM: Ambrysus mormon (A) 16.8 2.2 3.3 16.5 LEP:Parargyractis ANI: Gomphidae p p 34.9 13.1 8.7 6.3 __ TRI: Brachycentrus 64.8 47.1 368. 371. 636. 472. 0.6.394. 436. 1926 Cheumatopsyche 1108 822. 202. 939. 456. 939. 1478 1852 Hydropsyche 0.7 422. 1.9 5.3 Hydroptila 26.0 1.4 3.6 2.0 12.5 1.2 2.4 0.4 Ochrotrichia 0.9 8.2 AMP: Hyalella azteca __ OST: Ostracoda p p 2.9 0.5 0.5 0.5 1.8 ACA: Acari 0.1 20.6 0.5 1.6 1.2 8.2 0.7 1.8 __ OLI: Oligochaeta GAS: Gyraulus p p p 7.4 66.4 Physa p p p p p p 1.2 0.2 0.8 NEM: Nematoda 19.0 1140 850. 1016 1811 2439 2012 4099 1781 1686 Totals (15, 167)

Table E97. Biomass (milligrams dry weight per square foot) of benthic macroinvertebrates collected with a Surber sampler from Deer Creek near Decker and from Canyon Creek near Decker-Birney.

	19		Creek				n Cree	k
Taxa/Collection Date	$\frac{19}{6/10}$		$\frac{19/9}{11/05}$	Means	6/26	7/27	979 8/30	M
COL: Agabus (L)	$\frac{0/10}{1.4}$	<u> </u>	11/03	0.5	0/20	1/2/	0/30	Means
Agabus (A)	10.8			3.6				
Dubiraphia (L)				J. U			2.2	2.7
Microcylloepus (L)					0.8	0.8	0.2	0.6
Microcylloepus (A)						0.8		0.3
Haliplus (L)							6.8	2.3
Berosus (L)							1.8	0.6
DIP: Bezzia-Probezzia			3.6	1.2	0.4	1.3	0.9	0.9
Bezzia-Probezzia-			3.0	1.2	0.4	1.5	0.7	0.7
Palpomyia		1.2		0.4				
Palpomyia			1.2	0.4				
Chironomidae	0.2	2.9	12.0	5.0	1.6	1.1	7.6	3.4
Muscidae							6.7	2.2
Simulium (L)	0.6	0.3		0.3	52.7	35.1	0.8	29.5
Simulium (P)					76.6	11.2		29.3
Stratiomyidae					р			р
Euparyphus						67.4	48.0	40.5
Stratiomys		2.6	5.3	2.6				
Tabanus			50.0	16.7				
Tipulidae			49.8	16.6				
Ormosia			100.	33.3				
EPH: Baetidae						0.1	0.4	0.2
Baetis					1.6			0.5
Caenis	0.3			0.1			0.6	0.2
Leptophlebiidae						1.8		0.6
Tricorythodes					0.5			0.2
HEM: Heteroptera (L)		0.1		<.1				
Trichocorixa (A)		3.2		1.1				
ANI: Aeshna		8.5		2.8				
Ophiogomphus							55.2	18.4
ZYG:Coenagrionidae	0.8			0.3			21.1	7.0
Argia		9.4		3.1			48.5	16.2
Ischnura		5.1		1.7				
TRI: Cheumatopsyche		1.0		0.3	54.8		8.0	27.9
Hydropsyche					0.3	2.8	0.3	1.1
Ithytrichia						0.3		0.1
Limnephilus	84.6		52.8	45.8				
AMP: Hyalella azteca	0.9	6.1		2.3	0.3	1.5	24.0	8.6
OST:Ostracoda						2.6	1.3	1.3
ACA: Acari		0.3		0.1	0.6	0.3		0.3
HIR: Hirudinea	- -				9.6		- <u>-</u>	3.2
OLI:Oligochaeta	0.4	3.5	4.2	2.7			0.8	0.3
GAS: Lymnaea	75.9		р 	25.3				
Gyraulus	4.2 19.0	42 9		1.4	21 6	20.2	- -	10 0
<u>Physa</u> TUR:Turbellaria	19.0	42.8	р 	20.6	21.0	1.4	4.7 11.0	18.8 4.1
TUR. TUI DELLAI LA						1.4	11.0	4.1
Totals	199.	87.0	279	188.	238.	170	251.	219.
106019	1)).	0,.0	2, , .	(565.)	250.	170.	2J1 ·	(659.)
Ø _k				(303.)				(037.)

Table E98. Biomass (milligrams dry weight per square foot) of benthic macroinvertebrates collected with a Surber sampler from Prairie Dog and Bull Creeks near Pyramid Butte-Birney.

	Prair	ie Dog Cr	eek	Bull Creek			
Taxa/Collection Date	7/12/79	8/30/79	Means	7/12/79	8/30/79	Means	
COL: Agabus (A)	13.9		7.0				
Dubiraphia (L)				3.0		1.5	
Dubiraphia (A)				0.8		0.4	
Microcylloepus (L)	0.4		0.2			:	
Optioservus (L)		1.4	0.7				
DIP:Bezzia-Probezzia					0.4	0.2	
Hemerodromia	0.7		0.4	1.2	0.3	0.8	
Chironomidae	9.8	1.4	5.6	2.2	26.8	14.5	
Simulium	1.7	0.6	1.2	10.4	0.3	5.4	
EPH: Baetis	2.0	2.2	2.1	33.3	12.5	22.9	
Caenis	0.6	0.6	0.6				
Leptophlebia		1.4	0.7				
Tricorythodes					1.6	0.8	
HEM: Gerris remigis (A)	43.4		21.7				
LEP: Parargyractis					5.0	2.5	
ZYG: Argia		45.6	22.8		8.1	4.1	
TRI: Brachycentrus		-		2.4	7.2	4.8	
Cheumatopsyche	19.2	7.1	13.2	45.6	80.4	63.0	
Hydropsyche	25.6	34.2	29.9	97.3	246.	172.	
Hydroptila	8.2	20.4	14.3				
AMP: Hyalella azteca	15.6	14.5	15.1				
ACA: Acari				0.8	0.4	0.6	
GAS: Gyraulus					17.0	8.5	
Physa	74.8	246.	160.		11.8	5.9	
Totals	216.	375.	296. (591.)	197.	418.	308. (615.)	

Table E99. Biomass (milligrams dry weight per square foot) of benthic macroinvertebrates collected with a Surber sampler from Cook Creek near Birney-Birney Village.

Taxa/Collection Date	6/11/78	8/24/78	9/05/79	Means
COL: Agabus (L)	2.6	3.5		2.0
Helichus striatus (A)			9.3	3.1
Dubiraphia (L)			0.4	0.1
Dubiraphia vittata (A)			3.2	1.1
Microcylloepus (L)			0.4	0.1
Haliplus (L)			1.6	0.5
Ochthebius (L)			0.8	0.3
DIP: Bezzia-Probezzia		2.6		0.9
Palpomyia		1.8		0.6
Chironomidae	22.1	149.	26.0	65.7
Muscidae		20.2		6.7
Pericoma		3.3		1.1
Simulium	40.2	57.5	0.4	32.7
Nemotelus			5.3	1.8
Tipula	9.9	79.0		29.6
EPH: Baetis		6.8		2.3
Caenis			0.6	0.2
HEM: Sigara comani (A)			18.8	6.3
ZYG: Argia		16.2		5.4
TRI: Cheumatopsyche		147.	256.	134.
Hydropsyche			3.4	1.1
Hydroptila		7.6		2.5
AMP: Hyalella azteca		9.6	43.2	17.6
ACA:Acari		0.6	0.3	0.3
HIR: Glossiphonia complanata			75.8	25.3
OLI:Oligochaeta	2.9	20.8	1.0	8.2
GAS: Gyraulus			17.0	5.7
Physa			163.	54.3
PEL: Pisidium			12.4	4.1
NMT: Nematomorpha	18.6			6.2
Totals	96.3	526.	639.	420.
				(1261)

Table E100. Biomass (milligrams dry weight per square foot) of benthic macroinvertebrates collected with a Surber sampler from Logging Creek near Ashland.

Taxa/Collection Date COL:Listronotus (L)	6/27/78	8/16/78	9/06/79	Means 1.5
<u>Dubiraphia</u> (L)	0.1	66.3	17.4	27.9
<u>Dubiraphia</u> (A)	3.8	1.1	3.1	2.7
DIP:Ceratopogonidae	0.7			0.2
Bezzia-Probezzia-Palpomyia	- -		8.8	2.9
Chironomidae	1.8	6.8	9.4	6.0
Psychodidae			0.8	0.3
Simulium	2.1	6.4	3.2	3.9
Tabanus		24.8	12.4	12.4
Pseudolimnophilia	12.4		-	4.1
Tipula	8.9	79.0	241.	110.
EPH: Baetis	2.3			0.8
Caenis	1.8	9.2	2.8	4.6
HEM: Heteroptera (L)	0.1			<.1
MEG: Dysmicohermes	3.6			1.2
Sialidae		37.8		12.6
<u>Sialis</u>	3.2			1.1
ANI: Aeshna		8.4	4.2	4.2
ZYG: <u>Ischnura</u>		3.6		1.2
TRI: Cheumatopsyche	4.5	2.4	112.	39.6
Hydropsyche			3.4	1.1
Hydroptila	2.1	2.8		1.6
Ptilostomis		7.6		2.5
AMP: Hyalella azteca			1.0	0.3
OST:Ostracoda			1.0	0.3
ACA:Acari	0.1	0.5	1.0	0.5
HIR: Hirudinea	11.3			3.8
Glossiphonia		75.8		25.3
OLI:Oligochaeta	0.8			0.3
GAS:Gastropoda			p	р
Lymnaea			р	p
Gyraulus			p	p
Physa		P	80.4	26.8
Columnella			p	p
PEL:Pisidium		114.	57.0	57.0
NEM: Nematoda	0.1		0.2	0.1
Totals	64.1	447.	559.	357.
				(1070)

Table E101. Biomass (milligrams dry weight per square foot) of benthic macroinvertebrates collected with a Surber sampler from Beaver Creek near Brandenberg (near Ashland).

Taxa/Collection Date	7/13/78	9/03/78	10/09/78	7/12/79	8/24/79	Means
COL: Dubiraphia (L)			3.1	0.4	1.5	1.0
Microcylloepus						
pusillus (A)		0.9				0.2
Haliplus (L)					37.7	7.5
Haliplus (A)				2.4	9.6	2.4
DIP: Bezzia-Probezzia		0.9	0.9			0.4
Bezzia-Probezzia-						
Palpomyia				0.9		0.2
Chironomidae	9.5	26.5	14.4	23.8	29.3	20.7
Clinocera-Chelifera	0.2					<.1
Hemerodromia	0.5	1.4				0.4
Muscidae				3.4		0.7
Simulium	7.2	4.0	1.3	5.6	6.7	5.0
EPH: Caenis		1.6	42.8		23.0	13.5
Tricorythodes	0.3					0.1
HEM: Ambrysus mormon (A)		3.6	0.6			0.8
ANI:Leucorrhinia					33.8	6.8
ZYG: Coenagrionidae					14.8	2.8
Ischnura		36.1	6.0			8.4
TRI: Cheumatopsyche	178.	1714	1331	183.		681.
Hydropsyche	5.1		6.8			2.4
Hydroptila	1.8			2.4	3.6	1.6
AMP: Hyalella azteca		39.2	29.8	175.	65.1	61.8
ACA: Acari		2.5		1.0		0.7
HIR: Erpobdellidae	0.1			3.6		0.7
Dina anoculata					11.8	2.4
Erpobdella				22.8		4.6
Batracobdella				31.2		6.2
Glossiphonia						
complanata		8.4		614.	614.	247.
Helobdella stagnalis			503.	83.8	137.	145.
Placobdella	19.0		38.0			11.4
Percymoorensis						
marmoratis			2.6	5.2		1.6
OLI:Oligochaeta				3.9		0.8
GAS: Gyraulus				p		p
Physa		66.2		66.2	33.1	33.1
Totals	222.	1905	1980	1229	1020	1271
						(6356)

Table E102. Biomass (milligrams dry weight per square foot) of benthic macroinvertebrates collected with a Surber sampler from upper Hanging Woman Creek near Quietus-Decker during the 1978 sampling season.

Taxa-Collection Date	6/16	6/28	7/18	8/15	8/28	9/05	10/07	11/0/
COL: Dubiraphia (L)			7/10	0/15				0.4
Dubiraphia (A)							0.4	
Dubiraphia vittata (A)								
Microcylloepus (L)	0.1			0.2			0.3	
Microcylloepus (A)							5.2	5.5
Microcylloepus								
pusillus (A)					6.6			
Stenelmis (L)				0.4				
Hyperodes (L)								
DIP:Bezzia-Probezzia			0.7	0.2			0.4	0.2
Palpomyia						0.4		
Chironomidae	1.2	9.7	14.7	4.0	12.3	9.2	2.7	0.9
Empididae							0.3	
Hemerodromia					1.1			
Limnophora								1.7
Simulium (L)	224.	1.4		0.7	51.6	14.1	27.4	131.
Simulium (P)	155.							
Tabanus						76.4		38.2
EPH: Baetis						0.3		
Caenis		0.5	4.5			0.7		
Ephemerellidae								
Choroterpes-								
Leptophlebia								
HEM: Sigara trillineata (A)								
Ambrysus mormon (A)					6.1			
MEG: Sialis						2.5		
ODO: Odonata		9.7						
ZYG: Hetaerina								
Hetaerina americana							9.3	
Coenagrionidae								
<u>Ischnura</u>							3.0	
TRI: Brachycentridae			0.2		264.	2.6	171.	566.
Cheumatopsyche	1.7		24.9	104.	16.2	0.5	28.0	22.3
Hydropsyche				5.9	10.2		0.4	
<u>Hydroptila</u> Ithytrichia		1.9			1.0			
		1.9		1.0	1.0			
<u>Limnephilus</u> Polycentropus		0.8	4.2					
AMP: Hyalella azteca			7.2			0.5	1.5	
OLI:Oligochaeta	2.5	0.6			6.8	2.5	14.6	1.7
GAS: Gastropoda								
Gyraulus								
Physa	1.3			11.1	11.1	41.8	169.	60.6
TUR: Turbellaria	0.5							
NMT: Nematomorpha		18.6						
Totals	386.	43.2	49.2	128.	377.	152.	434.	829.

Table E103. Biomass (milligrams dry weight per square foot) of benthic macroinvertebrates collected with a Surber sampler from Upper Hanging Woman Creek near Quietus-Decker during the 1979 sampling season.

							Two-Year
Taxa/Collection Date	5/19	6/21	7/27	8/17	9/04	9/14	Means
COL: Dubiraphia (L)		0.5	1.3		1.6	0.5	0.3
Dubiraphia (A)			1.4		0.7		0.2
Dubiraphia vittata (A)						0.4	<.1
Microcylloepus (L)	0.1		0.2		0.2	0.2	0.1
Microcylloepus (A)	1.1		0.2				0.9
Microcylloepus							
pusillus (A)							0.5
Stenelmis (L)							<.1
Hyperodes (L)				8.8			0.6
DIP: Bezzia-Probezzia						0.2	0.1
Palpomyia							<.1
Chironomidae	7.6	1.9	6.9	14.2	3.9	1.0	6.4
Empididae	0.3						<.1
Hemerodromia							0.1
Limnophora				6.7			0.6
Simulium (L)	5.3	0.1	1.8	272.	1.1	0.3	52.2
Simulium (P)							11.1
Tabanus							8.2
EPH: Baetis							<.1
Caenis		0.6	0.6				0.5
Ephemerellidae			0.4				<.1
Choroterpes-Leptophlebia					1.2		0.1
HEM: Sigara trillineata (A)			2.4				0.2
Ambrysus mormon (A)		6.2	37.2	12.4		6.2	4.9
MEG: Sialis							0.2
ODO:Odonata							0.7
ZYG: Hetaerina					45.6	6.9	3.8
<u>Hetaerina</u> <u>americana</u>			4.7				1.0
Coenagrionidae					7.0	7.0	1.0
Ischnura							0.2
TRI:Brachycentridae							<.1
Cheumatopsyche	671.	51.1	5.3	223.	23.1	18.3	152.
Hydropsyche	113.	2.7	3.7	43.8	6.8	0.9	17.4
<u>Hydroptila</u>	1.1		0.4				0.1
Ithytrichia		0.3	0.3	1.9	2.2	0.3	0.7
Limnephilus	4.4						0.3
Polycentropus			0.5				0.4
AMP: Hyalella azteca			0.7	2.1	1.6	1.4	0.6
OLI:Oligochaeta		0.4		0.8		0.8	2.2
GAS: Gastropoda						p	p
Gyraulus		p			47.2	р	3.4
Physa		8.8	6.9	53.0	312.	201.	62.6
TUR: Turbellaria						0.5	0.1
NMT: Nematomorpha							1.3
m - 4 - 1	907	72 (7/ 0	(20	7.57	2/6	225
Totals	804.	72.6	74.9	639.	454.	246.	335.
							(4689)

Biomass (milligrams dry weight per square foot) of benthic macroinvertebrates collected with a Surber sampler from lower Hanging Woman Creek near Birney during the 1978 sampling season (the first page of two pages). Table E104.

11/04	1	1	0.8	1	5.2	14.0	1	-	1	6.0	1	18.6	1	1	1.4	462.	1	1	1	1	-	}	1	1	1
10/07	1	1	1	1	1	-	1	1	}	1	1	1.2	1	0.3	1	123.	-	1	1	1	i i	1	1	}	1
9/05		}	}	}		1	1	1	}	-	ŀ	4.0	1	1	1	42.6	45.8	1	ł	1	1	1	1	1	1
8/15 1.0	1	1		-	-	1	+	1	1	}	-	2.3	1	1	1	29.8	1	1	1	-	1	1	1		1
7/19		1	-	}	}		1	3.2	1	}	1	2.2	1	1		18.7	}	1.0	1	1	0.2	1	1		1 .
6/29	-	1	1	1	0.2	1	0.4	1	1	0.2	1	18.0		1	1	106.		1	}	0.2	-	1	1	1	1
6/16	1	0.2	0.4		0.2	1	1	1	0.2	0.1	0.2	1.3	1	1	1	0.2	1	1	}	5.1	1	1		1	2.5
Taxa/Collection Date COL:Carabidae (L)	Agabus (L)	Elmidae (L)	Dubiraphia (L)	Dubiraphia (A)	Microcylloepus (L)	Microcylloepus (A)	Microcylloepus pusillus (A)	Stenelmis (L)	DIP: Ceratopogonidae	Bezzia-Probezzia	Palpomyia	Chironomidae	Dolichopodidae	Empididae	Hemerodromia	Simulium (L)	Simulium (P)	Dicranota	EPH: Baetis	Caenis	Heptageniidae	Choroterpes	HEM: Ambrysus mormon (A)	LEP: Parargyractis	MEG: Sialis

Table E104. Continued (the second page of two pages).

11/04	1	1	1	. 406	297.	-	1		!	1.9	-	!	1	1	1		47.3	!	-	1	1	2.0		1755
10/07	1	1	1	131.	73.1	-	1	1		1	1	1	1	!	-	-	47.3	!	1	1	1		1	376.
9/02	1			9.5	22.9	!	1	!			-	l I					1		1	ď	1			125.
8/15	1	1		113.	88.2		1		-	1	!	1	1		1	-	{		-	1	ŀ		1	233.
7/19	1	1		111.	92.8	-	1	1		1	1	!		1			5.9	l I	t I				1	235.
6/29	1	-	-	264.	12.7		1			!	1	1	1	ļ	1			-	1	1		1		402.
6/16	1			1.9	1	l l	0.2		1	-	1	1.2	!	i	5.4	4.2	-		1	8.8	6.8	1	1	38.9
Taxa/Collection Date	ZYG: Zygoptera	Hetaerina	Ischnura	TRI: Cheumatopsyche	Hydropsyche	Hydroptila	Ithytrichia	Polycentropus	AMP: Hyalella azteca	OST: Ostracoda	ACA: Acari	OLI:Oligochaeta	GAS: Gastropoda	Ferrissia	Lymnaea	Gyraulus	Physa	PEL: Pelecypoda	Pisidium	Sphaerium	Unionidae	NEM: Nema toda	NMT: Nema tomorpha	Totals

Surber sampler from lower Hanging Woman Creek near Birney during the 1979 sampling season (the Biomass (milligrams dry weight per square foot) of benthic macroinvertebrates collected with a first page of two pages). Table E105.

Two-Year	Means	0.1	0.3	0.1	<.1	0.2	7.0	1.3	1.2	0.2	0.5	<.1	0.3	<.1	12.8	<.1	0.2	0.4	121.	6.1	7.0	0.1	3.6	<.1	<.1	16.2	7.0	1.4
1	9/15c			!	1	1.8	0.9	9.4	2.0	!		!	7.0	1	5.6	1	1	0.2	4.7	!	1	1.4	!	1	1	231.	9.4	12.8
1	9/14b	-		1		1	-	1.7	1	-	1.9	-	0.2		17.4	1	1	1.1	120.	1	1	-	!	!	1	1	8.0	3.2
	9/14a		1	1	1	1	-	1	1	1	!	!	2.6	1	9.6	1	1	1.6	413.	1	1	!	1	1	1	1	1	1
(8/18		;	-	ŀ	l I	-	9.0	!	-		1	1		13.1	-	-	0.2	171.	51.8	-	0.3	1	-	1	-	1	1
1	7/28	1	1			0.1	}	5.8	3.2	!	1.3	1	7.0	1	25.2		2.4	}	32.0	-	5.7	1	1	1	1	28.9	1	1
															8.8													
1	5/19		4.4	1.2	Q	1	}	1	-	-	!	1	0.2	1	23.9	0.2	1	1	141.	-	1	1	52.0	1	-	1	1	-
	3/31		ŀ			0.1	1	0.3	1	2.4	1	1	1	1	40.1	1	}	1	73.0		1	9.0	1	1	0.7	1	0.8	3.2
1	$\frac{2/11}{}$	1	}		1	1	1	1.7	1	1	1.3	1	1	}	14.0	1	1	1.4	145.	1	1	1	1	1	1	1	1	1
	Taxa/Collection Date	COL: Carabidae (L)	Curculionidae (L)	Agabus (L)	· Elmidae (L)	Dubiraphia (L)	Dubiraphia (A)	Microcylloepus (L)	Microcylloepus (A)	Microcylloepus pusillus (A)	Stenelmis (L)	DIP: Ceratopogonidae	Bezzia-Probezzia	Palpomyia	Chironomidae	Dolichopodidae	Empididae	Hemerodromia	Simulium (L)	Simulium (P)	Dicranota	EPH: Baetis	Caenis	Heptageniidae	Choroterpes	HEM: Ambrysus mormon (A)	LEP: Parargyractis	MEG:Sialis

a--Upstream and intermediate sampling site. b--Major downstream sampling site. c--Sampling site near mouth.

Table E105. Continued (the second page of two pages).

Two-Year	Means	0.5	9.0	1.8	197.	79.9	9.0	0.1	<.1	<.1	0.1	<.1	0.2	Д,	9.0	0.3	0.3	26.0	Д	0.3	9.0	0.4	0.1	4.7	481.
	9/15c	1	i i	28.2	131.	52.8				1	-	!	!	1	8.9	1	1	251.	1	9.4	!	Ł	!	1	752.
	9/14b	1	1	1	243.	52.9	0.7	1	0.5		1	1	7.0	!		!	!	9.8		1		ŧ		1	452.
	9/14a	1	!	ł	51.2	22.8	1	1	1	[!			Ъ			!	17.3		1	¦	-		1	518.
	8/18	}	1		94.2	51.0	5.9	9.0	ŀ	1	-	!	1	1	1		1	1				1			389.
	7/28	8.2	1		599.	273.	1.5	0.3	1	1	1	9.0			1.	1		1	!	!			!	74.5	1062
	6/22		i	1	12.0	5.4	7.0	0.8	1	0.5		¦	0.8		!	!		8.6	!		1	1	-	1	86.3
	5/19	1			1.8	!	!	1	1	!	1	1	1	i	1	-		9.8	1	1	1		-	1	233.
	3/31	1	1	i	343.	88.9	1	1	1	-		1	!		!		1	21.6	Д	1			1	-	575.
	2/11	1	9.3	1	146.	145.	0.7	1	ł	1			1				1	1	1	1	1		1	1	464.
	Taxa/Collection Date	ZYG: Zygoptera	Hetaerina	Tschnura	TRI: Cheumatopsyche	Hydropsyche	Hydroptila	Ithytrichia	Polycentropus	AMP: Hyalella azteca	OST: Ostracoda	ACA: Acari	OLI:Oligochaeta	GAS: Gastropoda	Ferrissia	Lymnaea	Gyraulus	Physa	PEL: Pelecypoda	Pisidium	Sphaerium	Unionidae	NEM: Nema toda	NMT: Nematomorpha	Totals

a--Upstream and intermediate sampling site. b--Major downstream sampling site. c--Sampling site near mouth.

Biomass (milligrams dry weight per square foot) of benthic macroinvertebrates collected with a Surber sampler from the East Fork of Hanging Woman near Birney (the first page of two pages). Table E106.

	Means	8.0	6.0	0.1	0.1	0.1	<.1	0.1	0.1	0.3	<.1	1.6	<.1	<.1	0.1	<.1	0.8	9.0	25.2	0.7	0.2	1.7	1.1	2.5	71.8	<.1	16.1	0.2
	9/02		1	1	1	1	-	1	1	1	1	0.2	-	1	1	1	1	1	74.5	6.4	}	1	}	-	1	1	13.9	1
	8/20		-			1	0.2		-		1	0.1		1	-	1		!	47.1	-	1	-	1	6.6	-	1	9.9	1
les	6/22 7/28	-	1	-					!	1	1	1.0	-	0.2	1		4.5	-	52.8			2.1	12.5	12.0	1	1	3.7	1
Samp.	6/22		!			}	!		1	9.0	1	1	1	1	-	1		!	1	Д	1		1	1	-	1	1	1
197	5/19	-	4.7		0.3	0.8			-	9.0	1	3.3	1	-	0.2	0.2	1	1	9.0			2.1	-	9.0	240.	1	9.09	1
	3/31	-			1	1	-	1		1	0.4	6.2	1	-		!	1	1	0.7	3.2	2.1	ł	ł	1	36.6	1	9.6	1
	2/11																											
	11/04																											
Samples	10/8	1	4.7	1	1		-	0.7		1	-	1.1	1	-		-	-	1	3.1	1	-	1	1	0.3	14.2	1	2.5	1
1978	8/18	1	1	1	1	1	1	-	1	0.2	1	0.3	0.1	1	1	1	1	1	7.4		l	-	1	3.9	10.4	1	1.7	1
	6/11	!	-	1.2	-	-	1	1	9.0	1	-	2.3	1	-	1	1	1		87.9	-		14.7		1	302.	!	4.89	1
	Taxa/Collection Date	COL: Curculionidae (L)	'Helichus striatus (A)	Agabus (L)	Dubiraphia (L)	Dubiraphia (A)	Microcylloepus (L)	Optioservus (L)	Stenelmis (L)	DIP: Bezzia-Probezzia	Bezzia-Probezzia-Palpomyia	Chironomidae	Dixa	Dolichopodidae	Clinocera-Chelifera	Hemerodromia	Muscidae	Pericoma	Simulium (L)	Simulium (P)	Stratiomyidae	Euparyphus	Tabanus	Dicranota	Tipula	EPH: Baetidae	Baetis	MEG: Sialis

Table E106. Continued (the second page of two pages).

	9/05 Means	6.0	8.0	8.0	0.3	d																	2.9		<.1	
	8/20	1	1	1			6.5	3.1	1			265.		1				1			1	1	1		1	
les	7/28	1	-	1	1		1		-	1		27.6	-		-	0.3	-	-	0.3		-		1		0.2	
1979 Samples	6/22		1	1	1	!	1.6	-	-	Д		1	Д			!	1	1			4.2	1	1	Д	-	
19.	5/19	-	1	-	-		83.2	353.	-		1	-				0.1		-	9.0	1	4.2	Д		1		
	3/31		-	1	1	Д	20.5	1.1	-	1	1	20.3				1	1	1	14.5	1	4.2		1	-		
	2/11	-	1	1	-	-	82.9	12.7			1	8.1		-	-		9.5		1.0		Д		14.7			
	11/04	-	1			-	191.	15.4	0.4	1	-	72.0	-	0.5	3.2	0.2	}	1	9.0	16.2	24.2	-	10.5	-	}	
Samples	10/8	6.7	9.1	-		1	2.0	3.1	-	1		392.	1	i	1	0.8	9.5	-	0.5	-	Д	1	2.1		1	
1978	8/18	-	-	9.1	1	1	1	+	1	-		18.7	7.5	1	1	-		3.6	0.2	}	9.6	-	2.1		}	
	6/11		1		3.0	1	63.6			}		7.5		-	1.6		1	1	1	16.2	4.2	-	2.1		-	
	Taxa/Collection Date	ODO: Odonata	ZYG: Argia	Argia vivida	Ischnura	TRI: Helicopsyche	Cheumatopsyche	Hydropsyche	Hydroptila (L)	Hydroptila (P)	Ochrotricha	Hesperophylax (L)	Hesperophylax (P)	Polycentropus	AMP: Hyalella azteca	ACA: Acari	HIR: Hirudinea	Glossiphonia complanata	OLI:Oligochaeta	GAS: Lymnaea	Physa	Columnella	PEL: Pisidium	Sphaerium	NMT: Nematomorpha	

Table E107. Biomass (milligrams dry weight per square foot of benthic macroinvertebrates collected with a Surber sampler from Bear Creek near Otter.

Taxa/Collection Date	7/12/79	8/23/79	9/30/79	Means
COL: Agabus (L)	1.4		2.4	1.3
Rhantus (L)		1.2		0.4
Haliplus (A)		1.2		0.4
Hydrophilidae (L)	1.0			0.3
Enochrus (L)	0.6			0.2
Helophorus (A)	1.0			0.3
Laccobius (L)		0.5		0.2
Laccobius (A)	2.4			0.8
DIP:Bezzia-Probezzia			0.4	0.1
Chironomidae	24.1	4.0	29.2	19.1
Hererodromia			0.3	0.1
Muscidae	13.6		15.5	9.7
Limnophora		40.4		13.5
Simulium (L)	1.9	17.5	64.7	28.0
Simulium (P)			21.5	7.2
Euparyphus		2.4		0.8
Stratiomys		2.6		0.9
Tabanus		16.7		5.6
ZYG: Coenagrionidae			7.0	2.3
TRI: Cheumatopsyche	2.2	0.9	26.2	9.8
Hydroptila	19.0		0.9	6.6
Ithytrichia			0.3	0.1
AMP: Hyallela azteca	2.0	1.5	40.6	14.7
OST:Ostracoda	1.0			0.3
OLI:Oligochaeta	1.0		2.2	1.1
GAS:Lymnaea	69.4	р		23.1
Gyraulus	6.8			2.3
Physa	20.5	4.7	97.4	40.9
Totals	168.	93.6	309.	190.
				(571.)
				•

Table E108. Biomass (milligrams dry weight per square foot) of benthic macroinvertebrates collected with a Surber sampler from upper Otter Creek near Otter-Fort Howe.

1978 Samples 1979 Samples 7/07 6/27 8/31 9/30a 9/30b Taxa/Collection Date 8/29 7/31 Means COL: Listronotus (A) 17.6 2.5 __ 12.0 --1.7 Agabus (L) Deronectes (A) 16.0 2.3 __ Dubiraphia (L) 2.8 --3.8 __ 0.8 1.1 Dubiraphia (A) 4.4 0.6 1.4 0.9 Microcylloepus (L) 0.2 0.1 <.1 ___ 0.9 0.1 Microcylloepus (A) __ ___ Haliplus (L) 0.8 0.1 0.6 DIP: Bezzia ___ --___ ___ 0.1 0.8 0.7 0.9 Bezzia-Probezzia 1.0 4.0 0.1 Palpomyia __ 0.4 0.1 ___ Chironomidae 49.7 68.4 204. 8.4 69.1 1.5 23.0 60.6 Hemerodromia ___ 0.7 0.1 Muscidae 13.6 8.4 6.0 __ ___ 4.0 67.7 Limnophora __ __ ___ --9.7 279. Simulium (L) 1.0 101. 47.0 2864 0.3 134. 489. 301. __ 43.0 Simulium (P) __ ___ __ 5.6 22.4 4.0 Chrysops ___ 11.2 1.6 Dicranota 1.0 EPH: Baetis --__ __ 0.1 3.3 3.0 Caenis 1.5 0.8 1.5 14.0 HEM: Ambrysus mormon (A) 3.6 0.5 MEG: Sialis 1.5 0.2 **--** 21.3 9.5 ZYG: Argia --4.4 11.0 110. 110. 33.0 Ischnura 0.3 44.0 TRI: Cheumatopsyche 32.8 30.8 381. 19.2 625. 162. 2.2 Hydropsyche --0.3 5.8 82.0 28.0 3.0 9.0 2.8 18.7 Hydroptila Ithytrichia 1.0 __ 0.1 __ 3.3 0.5 Neureclipsis Polycentropus 0.5 __ ___ ---0.1 AMP: Hyalella azteca 7.9 18.4 21.6 242. 5.1 76.7 53.1 ACA: Acari __ 0.8 0.4 0.8 __ 0.3 11.3 1.6 HIR: Hirudinea Glossiphoniidae 13.0 1.9 Glossiphonia 25.3 complanata __ --3.6 Helobdella stagnalis 12.8 --1.8 OLI:Oligochaeta __ __ 7.8 12.4 1.6 3.1 GAS: Gyraulus ___ 69.8 14.0 14.0 14.0 p __ Helisoma 21.9 3.1 26.6 88.8 44.0 174. Physa 47.6 PEL:Pisidium 7.2 --28.8 28.8 9.3 142. 784. 511. 257. 3858 93.5 Totals 1246 984. (6892)

a--Upstream sampling site above Bear Creek. b--Major upstream sampling site.

Table E109. Biomass (milligrams dry weight per square foot) of benthic macroinvertebrates collected with a Surber sampler from Cow Creek near Otter-Fort Howe.

Taxa/Collection Date	7/31/79	8/31/79	Means
COL: Helichus striatus (A)		4.7	2.4
Optioservus (L)	24.3	15.4	19.9
Optioservus (A)	25.9	1.3	13.6
Optioservus divergens (A)		7.7	3.9
Optioservus quadrimaculatus (A)		7.0	3.5
Agabus (L)	1.2		0.6
Agabus (A)	87.4		43.7
DJP:Chironomidae	1.6	0.5	1.1
Simulium (L)	5.1	2.3	3.7
Simulium (P)		11.6	5.8
Nemotelus		2.6	1.3
Dicranota	5.7		2.9
EPH: Baetis	6.5	7.7	7.1
HEM: Gerris remigis (A)	16.2		8.1
ZYG: Argia		3.7	1.9
PLE:Nemouridae		4.8	2.4
Nemoura	8.0	5.6	6.8
TRI: Cheumatopsyche		2.0	1.0
Hesperophylax	25.1	52.2	38.7
Psychoglypha Psychoglypha	2.8		1.4
AMP: Hyalella azteca	1.0	1.0	1.0
ACA:Acari		0.3	0.2
OLI:Oligochaeta		0.4	0.2
PEL:Pisidium		6.2	3.1
NMI: Nematomorpha		65.9	33.0
Totals	211.	203.	207. (414.)

Biomass (milligrams dry weight per square foot) of benthic macroinvertebrates collected with a Surber sampler from lower Otter Creek near Ashland (the first page of two pages). Table E110.

Means	\ \ \	<.1	<.1 <.1	6.3	0.8		\ .1	3.5	1.1		0.1	\. .1	<.1	9.0	49.7	<.1	0.5	64.5	2.5	7.0	<.1	9.0	<.1	1.0	0.3	0.2	16.3	0.3
9/30b		1		5.0	0.9			2.5							29.1	0.7	2.1	769					1	1	3.6		!	-
9/30a		-		29.5	1.4			1				-	i	6.4	52.7	-	0.3	3.2	1		0.7		0.5	3.6		İ	31.2	
es 8/18				8.5	9.9		-	32.0				1	-	-	307.	-	2.7	0.97	38.0			I		1.4	-		62.4	4.0
Samples 7/28 8/				6.0	0.3		-				1.1	ļ I	0.5		27.0	-	0.5	5.2						1			-	-
1979 6/20			-	1.2	0.1				1.2							i		3.1		-	-		-	1	ŀ		1	!
5/20		0.1	l	I	-			1			1		-	0.9	0.6	!		0.9			1				-	-		
3/31	1	0.1	0.4	2.7	1		-	1.3	1		1	-	1	2.0	9.0	İ	İ	0.3		6.4		9.4		9.0			31.2	}
2/11	0.3	1	Î	45.2	0.4			1				i	-		42.5	1	1		}				-	1.8		1	31.2	
11/05	1	1	-	0.7	0.7			1						1	7.8	-	İ	8.69	-	-				İ	t		1	
10/08		1	1	1.3			1	0.5						1	11.1	į	0.5	1.1	1	l	!		1	0.3	0.3			1.0
			-	-	1		1	12.4	14.8			1	-	1	64.1	1	1.0	133.	1	i		ľ	1	2.4	1			
1978 Samples 21 7/31 9/04		-	İ	1	0.2			4.4				0.4	I		50.1	i		6.0						0.3			I	İ
197				-	0.7			Ï	1				ļ	1.6	73.9		I	196.				-	-	3.6	I	1	78.4	
1		1		-	-		0.2				-	-			6.3	-		3.2		-			-	0.3	-	-	8.6	
6/15 7/05	1		1	i			1		1					1	0.1		-			ļ	1			0.3	1	3.3		-
Tava/Collection Date		Dubiraphia (L)	Dubiraphia (A)	Microcylloepus (L)	Microcylloepus (A)	Microcylloepus	pusillus (A)	Stenelmis (L)	Stenelmis (A)	Stenelmis	sinuata-humerosa (A)	Hydraenidae (L)	Laccobius (L)	DIP: Bezzia-Probezzia	Chironomidae	Clinocera-Chelifera	Hemerodromia	Simulium (L)	Simulium (P)	Euparyphus	Nemotelus	Chrysops	EPH: Baetis	Caenis	Tricorythodes	HEM: Corixidae (L)	Ambrysus mormon (A)	

a--Upstream and intermediate sampling site. b--Major downstream sampling site.

Table E110. Continued (the second page of two pages).

18 9/30a	84.8 5.7	9.0	4.7 0.3	2.3	3. 495.	5 47.6	.0 7.6 6.1	.6 0.5	5.6 0.4	<-1	0.3	0.8 0.1	0.4		62.4 4.2	14.6 1.0	9.0	9e.0 6.4		.7 1	112 8.4	d	<:1	2.5	17.21 057. 1085 381
6/20 7/28 8/	 -	-		1	177. 53.4 53	0.6	.5	0.5	1	 	1	-	1.6		 -		0.8	<u>а</u> 	 	23	0.4	-	 	-	787 107 1
3/31 5/20	1			-	3 26.5 29.2	5.9	1.6	1	1	7.0 -	. 3.9	. 0.2	1.6		+ .	1 .	3.1 1.2			+	6.7 6	-	1	. 37.3	138 7.7 2
11/05 2/11	1	-	1	1	. 4	.3 1	2.5	1	1				3.2			-	1.6 0.8		1		2.6	1			751 731
31 9/04 10/08	-	8.3		34.9	58.0 87.9		6.8 32.8	1.6	1	-	-				-		8.0				д			-	250 150
1978 21 7/	-	-	-	-	4 65.8 85.9	11.7	5 34.7 19.0	. 0.5 0.8	-	1						-			-	-			0.1	-	7 75 170
6/15 7/05		-			7.6	5.1	9.0			1		-					4.0	1	-			<u></u>		1	2 7 25 2 7.5
Taxa/Collection Date 6/15 7/05 7/	ZYG: Hetaerina	Hetaerina americana	Ischnura	TRI: Brachycentrus	Cheumatopsyche	Hydropsyche	Hydroptila	Ithytrichia	Ochrotrichia	Limnephilidae	AMP: Hyalella azteca	ACA: Acari	HIR: Hirudinea	Glossiphonia	complanata	Hebobdella stagnalis	OLI: Oligochaeta	GAS: Gyraulus	Helisoma	Physidae	Physa	PEL: Pelecypoda	NEM: Nema toda	NMT: Nematomorpha	E

a--Upstream and intermediate sampling site. b--Major downstream sampling site.

Biomass (milligrams dry weight per square foot) of benthic macroinvertebrates collected with a Surber sampler from Pumpkin Creek near Miles City. Table E111.

Means	<.1	7.0	0.2	0.1	0.1	11.2	7.2	9.0	5.5	0.8	2.9	0.1	0.3	319.	84.5	0.1	7.0	0.5	0.3	0.7	1.5	<.1	7.0	<u>443.</u> (3547)
8/09/19	1	1	1	1.1	-	0.7	14.6	0.2	9.0	1	1.4	1	2.4	4.4	-	0.7	1.6	0.5	1	!	5.9		55.9	0.06
5/12/79			1	1	!	1	9.0		9.0	1	18.0	1		1.1	1.7	1	1	2.6					1	24.6
10/09/78					-		20.5	0.7	9.1	0.1		}		871.	224.			-	1.2	!	5.9	!	}	1133
8//90/6		3.5	1	1	-	-	20.1	3.4	30.9	6.2	1		!	1663	442.	1	0.5	-	1	}	1	1	1	2170
7/31/78	-		1.4	1	1	0.7	1.5	0.2	0.9	1	1.4	1	1	9.3	3.4	0.3	1.0	1	0.4	1	1	1		20.5
7/21/78			1			88.5	0.3		0.2	1	1.2	1	1	1.4	2.0		1		1	1			1	93.6
7/05/78	7.0	1	-		1.0	1	0.2	1	1.4		1.2		1	1.4	2.5	1		0.5		5.4	1	0.1	1	14.0
6/15/78	-			-	ļ	;	0.1	1	1	;		0.7	1	!	1		1	ł	0.8		1		1	1.6
Taxa/Collection Date	COL: Dubiraphia (A)	Microcylloepus (A)	Stenelmis vittipennis (A)	Ochthebius (A)	Laccobius (L)	DIP: Rezzia-Probezzia	Chironomidae	Hemerodromia	Simulium	FPH: Baetis	Caenis	HFM: Corixidae (I.)	Signara (A)	TRI: Cheumatopsyche	Hydropsyche	Hydroptila	Ithvtrichia	AMP: Hyalella azteca	OLI: Oligochaeta	GAS: Lymnaea	Physa	NEM: Nematoda	NMT: Nematomorpha	Totals

Biomass (milligrams dry weight per square foot) of benthic macroinvertebrates collected with a Surber sampler from Mizpah Creek near Mizpah. Table E112.

Means <.1	\ 0.3	3.0	0.1	0.2	0.8	<.1	0.3	<.1	11.2	<.1	<.1	0.3	0.7	<.1	0.1	1.6	1.9	9.46	2.7	2.1	0.1	2.6	0.1	2.2	125.
8/09/79	1	9.2	1	1	1		1	1		!	1		5.2	1	0.8	12.5	1	6.48	1	16.8	1.1	1	1	11.8	142.
5/12/79		0.1	1	1	6.0	!	!	1	!	1	1	!			!		1	7.0	1	1	!	1	1	1	1.4
10/09/78 0.3 0.2	0.2	5.6	!			l L	1	ł	87.0			2.0	!	ŀ	-	!	15.5	3.5	1	1	!	18.9	!	5.9	139.
9/06/78		7.6	0.7	1	2.3	ļ	2.2		1	1		!	1	-	-	!	1	.999	21.2		1	1	-	1	700.
7/31/78		0.1	!	1.7	!	1	-	!	0.1	1	0.3	1	1	1	1		1	}	1	!	1	1	1	1	2.2
7/21/78		1.0		-	6.0			-	2.1	1						1	ļ	6.0	1		1	1.5	0.4	1	8.8
7/05/78		0.3	1	-		7.0		-	0.1	0.1	1	ŀ		0.1			1	0.4	}	ር ረ	1	0.5			1.9
6/15/78		0.2			2.6	1	1	0.3		1		1		1	1		1	0.4	1	1		1	0.4	1	3.9
Taxa/Collection Date COL:Dytiscidae (L) Stenelmis (L)	DIP: Bezzia-Probezzia	Chironomidae	Hemerodromia	Muscidae	Simulium (L)	Simulium (P)	EPH: Baetidae	Baetis	Caenis	Heptageniidae	Heptagenia	Leptophlebildae	Choroterpes	HEM: Heteroptera (L)	Sigara (A)	Ambrysus mormon (A)	ZYG: Ischnura	TRI: Cheumatopsyche	Hydropsyche	Ithytrichia (P)	Polycentropus	AMP: Hyalella azteca	OLI: Oligochaeta	GAS: Physa	Totals

Table E113. Biomass (milligrams dry weight per square foot) of benthic macroinvertebrates collected with a Surber sampler from the West Fork of Armells Creek near Colstrip and from lower Armells Creek near Forsyth.

			rmells			ells C	reek
	1978	1979		197			
Taxa/Collection Date	5/28	7/03	Means	7/03	8/22	11/07	Means
COL: Agabus (L)	0.6		0.3				
Berosus (L)		1.0	0.5				
DIP:Bezzia-Probezzia-Palpomyia						0.7	0.2
Chironomidae	0.1	11.8	6.0	0.1	3.3	13.6	5.7
Scatophagidae		1.9	1.0				
Simulium	26.6	1.9	14.3			0.9	0.3
Tabanus					15.6		5.2
Tipulidae	33.9		17.0				
EPH: Caenis		0.6	0.3			24.9	8.3
Choroterpes					17.7		5.9
HEM: Ambrysus mormon (A)				р	112.	25.0	45.7
ANI: Libellulidae		8.1	4.1				
ZYG: Argia						4.0	1.3
Ischnura		11.7	5.9			6.0	2.0
TRI: Cheumatopsyche					17.2	0.6	5.9
Ithytrichia					1.4		0.5
Polycentropus						0.5	0.2
AMP:Hyalella azteca		0.5	0.3				
OLI:Oligochaeta						0.4	0.1
GAS: Lymnaea		57.0	28.5				
Physa				р	316.	8.4	108.
1 Hy Sa				Р	310.	0.4	100.
Totals	61.2	94.5	78.2	$\overline{0.1}$	483.	85.0	189.

Table E114. Biomass (milligrams dry weight per square foot) of benthic macroinvertebrates collected with a Surber sampler from Sweeney Creek near Rosebud.

Taxa/Collection Date	5/28/78	7/12/78	5/13/79	8/21/79	Means
COL: Dubiraphia (L)			1.5	0.4	0.5
Microcylloepus (L)			0.2		<.1
Microcylloepus (A)				0.2	<.1
Berosus (L)			6.2	1.0	1.8
DIP: Ceratopogonidae		0.2			<.1
Bezzia-Probezzia			2.0		0.5
Chironomidae	0.3	4.3	7.4	10.2	5.6
Simulium	6.8		2.0	0.8	2.4
Tipula				3.5	0.9
EPH: Caenis	2.8	1.6	5.8		2.6
Leptophlebiidae			0.9		0.2
Choroterpes				7.8	2.0
HEM: Ambrysus mormon (A)				87.3	21.8
TRI: Cheumatopsyche		3.8	7.6	62.0	18.4
Hydropsyche				6.5	1.6
Ithytrichia				2.1	0.5
OLI:Oligochaeta		0.4	0.4		0.2
GAS: Physa		p		247.	61.8
Totals	9.9	10.3	34.0	429.	121. (483.)

Table E115. Biomass (milligrams dry weight per square foot) of benthic macroinvertebrates collected with a Surber sampler from Reservation Creek near Forsyth-Hysham.

Taxa/Collection Date		7/12/78	8/22/78	5/13/79	8/22/78	Means
COL: Agabus (L)	1.2		2.5			0.7
Deronectes		2 (2 /			1 0
liodessus (A)		3.6	2.4			1.2
Oreodytes (L)		2.1				0.4
Dubiraphia (L)		0.4	0.2		1.5	0.4 <.1
DIP:Ceratopogonidae			0.2			\.I
Bezzia-Probezzia-				8.2		1.6
Palpomyia		0.2		0.4		0.1
Palpomyia Olivoration	19.9	17.3	7.0	41.7	17.2	20.6
Chironomidae	19.9	17.5	7.0	41.7	0.7	0.1
Hemerodromia	19.6		15.7	3.4	6.7	9.1
Simulium Tabanidae	19.0		12.5	3.4	0.7	2.5
		18.7	12.5		30.0	9.7
Chrysops		10./			5.6	1.1
Tabanas	0.3				J. 0	0.1
EPH: Baetis Caenis	0.3	1.5		0.6	1.2	0.7
	0.3	1.0		0.0	1.2	0.7
Tricorythodes		0.6				0.1
HEM: Hesperocorixa (A)		7.5	2.5			2.0
MEG: Sialis		7.5	8.5			1.7
ANI: Aeshna		8.5	o.5			1.7
Libellulidae	3.5	8.3				0.7
ZYG:Coenagrionidae	3.3				7.2	1.4
<u>Argia</u>			6.8		173.	36.0
Ischnura			37.4	14.6	700.	150.
TRI: Cheumatopsyche Hydroptila			4.5	5.0	9.2	3.7
Limnephilus	8.7		4.5	J. U	7.4	1.7
Ptilostomis	0.7		27.7			5.5
AMP: Hyalella azteca	0.2	24.4	36.4	8.2	249.	63.6
OST: Ostracoda	0.2	1.5	50.4		249.	0.3
ACA:Acari		0.2		0.7	4.7	1.1
HIR:Hirudinea		19.9	59.6		4.7 	15.9
OLI:Oligochaeta		2.4	1.1	3.4	5.6	2.5
GAS: Gyraulus		12.5		J. 4		2.5
Physa		32.1	2.9		р 1495	306.
PEL:Pisidium		J2.1	12.9	129.	p	28.4
I III I I I I I I I I I I I I I I I I			12.7	127.	P	2017
Totals	53.7	153.	241.	215.	2707	673.
2 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	50.,			-13.		(3370)
						(55.5)

Table Ell6. Biomass (milligrams dry weight per square foot) of benthic macroinvertebrates collected with a Surber sampler from Sarpy Creek near Hysham.

Taxa/Collection Date COL: Dubiraphia (L) Dubiraphia (A) Microcylloepus (A)	7/12/78 	8/22/78 0.1 0.2	5/13/79 	8/22/79 11.7 3.0	Means 3.0 0.8 <.1
DIP: Bezzia-Probezzia	0.1			0.2	0.1
Chironomidae	9.0	11.2	0.6	39.9	15.2
Hemerodromia		0.2			<.1
Simulium (L)	11.4	3.2		0.4	3.8
Simulium (P)	7.3				1.8
EPH: Baetis		0.3			0.1
Caenis	0.3			4.3	1.2
Leptophlebiidae		0.3			0.1
Choroterpes		0.5		1.0	0.4
ANI: Gomphus				4.2	1.1
ZYG: Ischnura				6.0	1.5
TRI: Cheumatopsyche	14.5	10.6		12.4	9.4
Hydropsyche	1.2	0.5	0.3		0.5
Hydroptila	1.9	1.3			0.8
AMP: Hyalella azteca		1.3		0.9	0.6
ACA: Acari	0.2				<.1
OLI:Oligochaeta	0.2	0.1		0.6	0.2
GAS: Physa				139.	34.8
NMT: Nematomorpha		4.7			1.2
Totals	46.1	34.5	0.9	224.	76.6 (306.)

Table Ell7. Biomass (milligrams dry weight per square foot) of benthic macroinvertebrates collected with a Surber sampler from the Powder River near Moorhead and near Mizpah.

Taxa/Collection Date COL:Microcylloepus (L) DIP:Chironomidae Hemerodromia Simulium EPH:Baetis Choroterpes-Leptophlebia PLE:Acroneuria	Powder River- Moorhead 9/14/79 0.7 0.7 0.2 46.7 1.0 4.8 11.2	Powder River- Mizpah 8/09/79 0.2 0.3	Means 0.4 0.5 0.1 23.5 0.5 2.4 5.6
			5.6 0.4
Isoperla	0.8 57.1	39.7	48.4
TRI: Cheumatopsyche Hydropsyche	32.0	6.8	19.4
Totals	155.	47.0	101. (202.)

Table F118. Biomass (milligrams dry weight) of benthic macroinvertebrates collected from duplicate jumbo multiplate samplers placed into a <u>riffle</u> type of habitat at the upper Rosebud Creek near Kirby station.

Taxa/Collection Date	9/05/78	10/08/78	9/15/79	11/06/79	Means
COL: Dubiraphia (L)	0.2				<.1
Microcylloepus (L)	0.2		0.4		0.2
Microcylloepus (A)		0.2	0.8		0.3
Optioservus (L)			0.7	2.6	0.8
Stenelmis (L)					0.0
Stenelmis (A)					0.0
DIP:Chironomidae	13.2	2.1	19.5	8.9	10.9
Empididae					0.0
Clinocera					0.0
Hemerodromia			1.1	0.3	0.4
Simulium	10.7	0.3		3.1	3.5
Dicranota				1.0	0.3
EPH: Baetis	9.1	5.4	1.2	11.9	6.9
Heptageniidae					0.0
Heptagenia			3.2	3.8	1.8
Stenonema			2.1		0.5
Leptophlebiidae					0.0
Choroterpes	1.0				0.3
Leptophlebia				6.1	1.5
Paraleptophlebia			34.3		8.6
Tricorythodes	0.6	1.3	10.0	2.2	3.5
HEM: Ambrysus mormon (A)					0.0
MEG: Sialis					0.0
ANI: Aeshna					0.0
Ophiogomphus			39.6		9.9
ZYG: Zygoptera					0.0
Argia					0.0
Ischnura					0.0
PLE: Isoperla		0.7		33.7	8.6
TRI: Brachycentrus	68.1	66.7	20.8	11.6	41.8
Hydropsychidae					0.0
Cheumatopsyche	1.4	33.5	72.4	107.	53.6
Hydropsyche	188.	315.	270.	253.	257.
Hydroptila	0.6		3.7	71.0	18.8
0ecetis					0.0
Nectopsyche					0.0
Anabolia					0.0
Neureclipsis					0.0
Polycentropus					0.0
Ptilostomis					0.0
OLI: Oligochaeta					0.0
GAS: Ferrissia		16.2		32.4	12.2
Gyraulus		8.4			2.1
Helisoma					0.0
Physa	9.5		35.0	22.1	16.7
PEL: Pisidium					0.0
Sphaerium					0.0
Totals	303.	450.	515.	571.	460.
ds					(1839)

Table F119. Biomass (milligrams dry weight) of benthic macroinvertebrates collected from duplicate jumbo multiplate samplers placed into a <u>riffle to pool</u> type of habitat at the upper Rosebud Creek near Kirby station.

Taxa/Collection Date	9/05/78	10/08/78	9/15/79	11/06/79	Means
COL: <u>Dubiraphia</u> (L)			0.2	1.5	0.4
Microcylloepus (L)				0.2	<.1
Microcylloepus (A)					0.0
Optioservus (L)			1.1		0.3
Stenelmis (L)				0.6	0.2
Stenelmis (A)			2.3		0.6
DIP:Chironomidae	14.8	2.0	9.8	25.2	13.0
Empididae					0.0
Clinocera				0.7	0.2
Hemerodromia					0.0
Simulium	0.3				0.1
Dicranota					0.0
EPH: Baetis	0.5	0.3	0.2	2.1	0.8
Heptageniidae					0.0
<u>Heptagenia</u>			1.2	3.6	1.2
Stenonema		0.5			0.1
Leptophlebiidae			***		0.0
Choroterpes	2.1		1.6		0.9
Leptophlebia		0.7		41.6	10.6
Paraleptophlebia					0.0
Tricorythodes	0.3	2.9	8.2	35.2	11.7
HEM: Ambrysus mormon (A)					0.0
MEG: Sialis					0.0
ANI: Aeshna					0.0
Ophiogomphus				346.	86.5
ZYG:Zygoptera					0.0
Argia		10.4			2.6
Ischnura				12.0	3.0
PLE: Isoperla		0.8		0.2	0.3
TRI: Brachycentrus	253.	216.	66.1	51.2	147.
Hydropsychidae	5.6			1 (1.4
Cheumatopsyche			1.2	1.6	0.7
Hydropsyche	31.9	9.9	19.2	207.	67.0
<u>Hydroptila</u>			0.6	80.1	20.2
<u>Oecetis</u>				7.9	2.0
Nectopsyche				16.8	4.2
Anabolia				494.	124.
Neureclipsis					0.0
Polycentropus			0.4	15.6	0.1
Ptilostomis				15.6	3.9
OLI:Oligochaeta	9.0		0/ 0	3.1	3.0
GAS: Ferrisia			24.8	44.0	17.2
Gyraulus		-			0.0
Helisoma			17 /	p 50 /	17 O
Physa			17.4	50.4	17.0
PEL: Pisidium				/1 O	0.0
Sphaerium				41.8	10.5
Totals	318.	244.	154.	1482	551. (2198)
					()

Table F120. Biomass (milligrams dry weight) of benthic macroinvertebrates collected from duplicate jumbo multiplate samplers placed into a <u>pool</u> type of habitat at the upper Rosebud Creek near Kirby station.

	$\frac{05/78}{0.6} = \frac{10/08/7}{0.4}$	$\frac{9}{15}$ $\frac{9}{15}$	$\frac{11/06/7}{0.2}$	9 <u>Means</u> 0.5
).4		0.2	0.1
Microcylloepus (A)				0.0
Optioservus (L)				0.0
Stenelmis (L)				0.0
Stenelmis (A)			-	0.0
	43	4.5	4.0	5.8
Empididae	1.1			0.3
).3	-		0.1
	0.5			0.1
Water and the second se	.1			0.3
Dicranota			1.0	0.3
EPH: Baetis			0.3	0.1
			0.8	0.4
1 0	0.6	15.1		3.9
Stenonema				0.0
	2.3			3.1
Choroterpes	2.1	2.1		1.1
Leptophlebia		2.5	7.2	2.4
Paraleptophlebia	17.0	8.5		6.4
	5.0	2.4	0.1	5.2
	2.5			3.1
MEG: Sialis		2.5	2.5	1.3
The state of the s	3.6			3.4
Ophiogomphus		-		0.0
	1			1.0
Argia				0.0
Ischnura		0.9		0.2
PLE: Isoperala	0.1		0.1	<.1
	3.0 371.	24.7	23.3	124.
Hydropsychidae				0.0
	3	16.0	2.7	5.0
	.1 31.0			8.8
Hydroptila	1.1		0.7	0.5
Oecetis		2.0	2.0	1.0
Nectopsyche	2.1			0.5
Anabolia	61.8			15.5
Neureclipsis	3.3			0.8
Polycentropus		0.7	2.8	0.9
Ptilostomis				0.0
OLI:Oligochaeta ().4	0.4	0.8	0.4
GAS: Ferrisia 36	5.9 15.5	18.1	8.1	19.7
Gyraulus				1.1
Helisoma				0.0
	9.6	57.4	47.8	31.1
PEL: Pisidium	р			р
Sphaerium				0.0
Totals 20				
	08. 522.	158.	104.	248.

multiplate samplers placed into three types of habitats at the Tongue River near Pyramid Butte-Birney station (the first page of two pages). Biomass (milligrams dry weight) of benthic macroinvertebrates collected from duplicate jumbo Table 121.

	9/15 11/05 Means	1		1.3	8.5	6.0	!	77.8	5.0	1	1	1.0	1	1	7.8	2.9	50.2		0.4 1.1 1.9			12.3 4.1	0.0
1978	10/08		1	-	1	1	-	1	7.0	1	1	0.5	1	-	0.5	0.2	-	-	4.2		-	1	1
Habitat	Means	3.1	0.1	2.6	0.7	0.8	26.0	23.7	1.3	0.1	<.1	0.0	0.0	0.0	24.4	8.4	6.5	1.4	1.1		9.9	8.2	0.0
2001 Hab	11/05	9.3	1	7.4	1.5	1.3		50.0	1.7	-	-	-		1	62.4	4.8	19.5	4.3			19.8	1	1
Riffle to Pool 978 1979	9/15	1	0.2	7.0										1	0.9	14.5	-	1	-		1	1	1
Rif. 1978	9/02	-	1	-	1	-	76.7		1.6	1	0.1	1	1	1	4.8	5.8	1	1	3.2		1	24.6	1
tat	Means	0.0	1.3	0.9	14.7	10.1	5.7	11.7	0.8	1.3	0.0	7.6	1.5	0.0	5.4	29.4	0.0	0.0	1.5		0.0	9.3	0.8
le Habitat 1979	9/15	1	2.4	1.2	8.0	14.0	5.1	22.0	0.7	2.3	-	3.1	-	1	10.8	58.8	1		1		1	12.3	1
Riff1 1978	10/08	1	0.2	9.0	21.4	6.2	6.3	1.4	0.8	0.3	-	6.1	3.0	1	-	1	1		3.0		1	6.2	1.6
	Taxa/Collection Date	COL: Helichus striatus (A)	Dubiraphia (L)	Dubiraphia (A)	Microcylloepus (L)	Microcylloepus (A)	Stenelmis (L)	Stenelmis (A)	DIP: Chironomidae	Simulium	EPH: Ephemeroptera	Baetis	Ephemere11a	Ephemera	Stenonema	Choroterpes	Leptophlebia	Paraleptophlebia	Tricorythodes	HEM: Hesperocorixa	vulgaris (A)	Ambrysus mormon (A)	Saldidae (L)

Table F121. Continued (the second page of two pages).

	Means 9.2	0.0	4.7	0.0	0.0	0.3	4.3	1.2	0.0	53.6	6.6	0.2	9.0	0.0	0.0	2.0	44.7	2.3	13.3	226.
abitat	11/05 M	1	1	-		1		3.7					1.8			_			13.3	373.
Pool Habitat	9/15 1	1	14.2	1			12.8	1		19.6	6.4	1	1	;	;		23.2	8.9	25.2	198.
1978	10/08		1	1	}	1.0	1	1		8.96	!	0.5	1	i	-	0.8	1	-	1.5	106.
itat	Means 0.0	0.0	11.9	1.5	38.3	2.0	28.3	3.5	0.0	354.	1.0	0.0	1.2	9.7	0.0	0.1	6.6	0.0	12.8	587.
Riffle to Pool Habitat 178 1979	11/05	}	35.6	1	115.	1	81.4	10.4	1	539.	2.9	1	3.5	1	1	1	11.8		5.7	987.
1e to F	9/15 11,		}	}			3.4	-		5.7	1	1	}	-	}	0.4	17.8		8.8	82.2
Riff 1978	9/05		1	4.4		5.9		1	1	516.			1	22.7	1	ł		!	23.8	691.
tat	Means 0.0	0.7	4.1	0.0	7.3	3.0	5.8	1.1	0.1	26.7	7.9	0.0	0.0	11.4	26.7	0.0	43.8	0.0	12.7	250.
Riffle Habitat 78 1979	9/15	1	8.1	1	14.6	1	;	1	}	29.3	15.7	1	-	}	53.4	-	84.0	1	16.3	362.
Riff 1978	10/08	1.3		-	1	5.9	11.5	2.2	0.2	24.0			1	22.7	1	1	3.5	ł	0.6	137.
	Taxa/Collection Date	PLE: Chloroperlidae	Acroneuria	TRI: Brachycentrus	Helicopsyche	Cheumatopsyche	Hydropsyche	Hydroptila	Ithytrichia	Nectopsyche	Oecetis	Polycentropus	AMP: Hyalella azteca	HIR: Hirudinea	Placobdella papillifera	OLI: Oligochaeta	GAS:Physa	PEL: Pelecypoda	TUR: Turbellaria	Totals

multiplate samplers placed into three types of habitats at the Squirrel Creek near Decker station. Biomass (milligrams dry weight) of benthic macroinvertebrates collected from duplicate jumbo Table F122.

	Means	22.5	0.0	0.0	0.0	0.0	0.0	0.0	22.7	0.0	0.0	0.0	0.0	0.5	0.5	0.0	6.9	8.5	14.8	0.0	<.1	1.4	0.0	19.8	2.6	0.5	0.0	43.9	0.0	14.8	159. (318.)
ol Habitat	11/06/79	11.3	-		1	i	1		25.6	1	-	1	1	1.0	0.3	1	1	2.1	25.5	{	1	0.3	1	39.6	0.5	6.0	1			5.5	113.
Pool	9/15/79	33.7	1	1	}		1	1	19.7	1	1	1	1	1	0.7	1	13.7	14.9	4.0	1	0.1	2.4	1	1	4.7		1	87.7	1	24.0	206.
Habitat	Means	39.1	1.4	0.0	1.5	3.6	1.2	0.0	110.	0.4	0.0	2.2	0.0	0.0	4.3	6.2	0.0	0.0	12.8	97.5	337.	383.	14.3	9.9	4.2	0.0	0.3	0.0	0.0	157.	1183 (2363)
to Pool Ha	1	45.3	2.7	1		5.2	}		153.	1	1	4.0	1	1	7.3	12.3	1		25.5	160.	505.	693.	19.8	13.2	-	1	9.0	1	1	199.	1846
Riffle	9/15/79	32.8		;	3.0	2.0	2.4		9.99	0.8		0.4		;	1.2			1		34.9	168.	73.4	8° 8°	1	8.4	1	1	1		114.	517.
	Means	0.4	0.0	0.5	0.0	1.8	0.0	0.3	21.7	1.9	3.9	10.0	1.1	0.0	0.0	0.0	0.0	0.0	0.0	11.6	140.	.666	4.3	0.0	0.0	0.0	0.3	0.0	8.4	0.0	1205 (2409)
fle Habitat	11/06/79			0.9				0.5	10.1	1.0	7.8	14.5	2.2	1	}		1	}		23.2	169.	884.	4.9	1	1	¦	0.5	1	16.7	1	1135
Riffle	9/15/79	0.8	1	1		3.6	1		33.2	2.7		5.5	1	1	1	1	1	1		1	111.	1113	3.7	!		1	1	-	1		1274
	Taxa/Collection Date	COL: Dubiraphia (L)	Dubiraphia (A)	Microcylloepus (L)	Microcylloepus pusillus (A)	Optioservus (L)	Stenelmis (L)	DIP: Bezzia-Probezzia	Chironomidae	Hemerodromia	Muscidae	Simulium	Dicranota	EPH: Baetis	Caenis	HEM: Ambrysus mormon (A)	MEG:Sialis	ANI: Aeshna	ZYG: Ischnura	TRI: Brachycentrus	Cheumatopsyche	Hydropsyche	Hydroptila Hydroptila	Ptilostomis	Polycentropus	AMP: Hyalella azteca	ACA: Acari	HIR: Placobdella papillifera	GAS: Gyraulus	Physa	Totals

Table F123. Biomass (milligrams dry weight) of benthic macroinvertebrates collected from duplicate jumbo multiplate samplers placed into a <u>riffle</u> type of habitat at the upper Hanging Woman Creek near Quietus-Decker station.

Taxa/Collection Date	9/05/ 7 8a	9/14/79b	11/05/79Ъ	Means
COL: Helichus striatus (A)		10.0		3.3
Dubiraphia (L)	0.2			0.1
Dubiraphia (A)				0.0
Microcylloepus (L)				0.0
DIP: Bezzia-Probezzia				0.0
Chironomidae	1.2	0.4	2.3	1.3
Hemerodromia	0.2			0.1
Simulium (L)	112.	0.4	149.	87.1
Simulium (P)				0.0
Tipulidae				0.0
EPH: Baetis				0.0
Caenis				0.0
Choroterpes				0.0
HEM: Corixidae (A)				0.0
Ambrysus mormon (A)		6.1		2.0
MEG:Sialis				0.0
ZYG: Hetaerina		57.0	156.	71.0
Hetaerina americana	30.0			10.1
Argia				0.0
Ischnura	9.3			3.1
TRI: Cheumatopsyche	98.3	58.9	59.2	72.1
Hydropsyche	8.6	9.9	1.9	6.8
Hydroptila			1.1	0.4
Ithytrichia	0.3	p		0.1
Limnephilus			13.3	4.4
Polycentropus				0.0
AMP: Hyalella azteca		0.4		0.1
OST:Ostracoda				0.0
ACA:Acari			0.2	0.1
GAS:Gyraulus		0.5	20.9	7.1
Physa	17.9	1084	378.	493.
Columnella				0.0
Totals	278.	1228	782.	462.
				(2288)

Sampling Locations: a--T08S,R43E,16C; b--T08S,R43E,17D.

Table F124. Biomass (milligrams dry weight) of benthic macroinverte-brates collected from duplicate jumbo multiplate samplers placed into a riffle to pool type of habitat at the upper Hanging Woman Creek near Quietus-Decker station.

Taxa/Collection Date	9/05/78a	10/07/78a	9/14/79Ь	11/05/79Ь	Means
COL: Helichus striatus (A)					0.0
Dubiraphia (L)			5.7		1.4
Dubiraphia (A)					0.0
Microcylloepus (L)					0.0
DIP:Bezzia-Probezzia			0.9		0.2
Chironomidae	1.2	3.5	18.3	15.1	9.5
Hemerodromia				0.7	0.2
Simulium (L)	8.8			8.8	4.4
Simulium (P)	5.2				1.3
Tipulidae			24.9		6.2
EPH: Baetis			0.5		0.1
Caenis	0.3	0.9	1.2		0.6
Choroterpes					0.0
HEM: Corixidae (A)	1.8				0.5
Ambrysus mormon (A)	5.4			12.5	4.5
MEG: Sialis			5.0		1.3
ZYG: Hetaerina			4.8	36.0	10.2
Hetaerina americana	4.8	4.8			2.4
Argia			1.4		0.4
Ischnura					0.0
TRI: Cheumatopsyche	191.	0.6	1.1	14.4	51.8
Hydropsyche	26.1			0.8	6.7
Hydroptila				7.0	1.8
Ithytrichia	0.2				<.1
Limnephilus				48.7	12.2
Polycentropus	1.1	1.6	41.4		11.0
AMP:Hyalella azteca	0.7	1.0	1.3	5.2	2.1
OST: Ostracoda			1.0		0.3
ACA: Acari					0.0
GAS:Gyraulus	2.3			46.7	12.3
Physa	390.	49.7	58.8	348.	212.
Columnella					0.0
T-4-1-	639.	62.1	166.	544.	353.
Totals	039.	02.1	100.	344.	(1411)

Sampling Locations: a--TO8S,R43E,16C; b--TO8S,R43E,17D.

Table F125. Biomass (milligrams dry weight) of benthic macroinvertebrates collected from duplicate jumbo multiplate samplers placed into a <u>pool</u> type of habitat at the upper Hanging Woman Creek near Quietus-Decker station.

Taxa/Collection Date	9/05/78a	10/07/78a	9/14/79b	11/05/79Ъ	Means
COL: Helichus striatus (A)					0.0
Dubiraphia (L)	,	0.2	5.0		1.3
Dubiraphia (A)			0.7		0.2
Microcylloepus (L)				0.2	<.1
DIP: Bezzia-Probezzia					0.0
Chironomidae	1.1	3.6	4.0	8.5	4.3
Hemerodromia					0.0
Simulium (L)	0.3			2.3	0.7
Simulium (P)					0.0
Tipulidae					0.0
EPH:Baetis					0.0
Caenis	4.6	6.4	14.1	1.0	6.5
Choroterpes				0.5	0.1
HEM: Corixidae (A)					0.0
Ambrysus mormon (A)					0.0
MEG: Sialis					0.0
ZYG: Hetaerina					0.0
Hetaerina americana					0.0
Argia	8.1		32.3	8.1	12.1
Ischnura	5.8	8.7		5.8	5.1
TRI: Cheumatopsyche	77.5	0.7	2.9		20.3
Hydropsyche	9.1			0.7	2.5
Hydroptila				0.4	0.1
Ithytrichia	0.2				<.1
Limnephilus				4.4	1.1
Polycentropus	0.9	5.3		0.4	1.7
AMP: Hyalella azteca		4.6	6.1	3.6	3.6
OST: Ostracoda					0.0
ACA:Acari					0.0
GAS: Gyraulus				12.5	3.1
Physa	35.5		35.5	82.8	38.5
Columnella			p		p
Totals	143.	29.5	101.	131.	101.
					(404.)

Sampling Locations: a--T08S,R43E,16C; b--T08S,R43E,17D.

Table F126. Biomass (milligrams dry weight) of benthic macroinvertebrates collected from duplicate jumbo multiplate samplers placed into a <u>riffle</u> type of habitat at the lower Hanging Woman Creek near Birney station.

Taxa/Collection Date	9/09/78a	10/07/78a	9/14/79b	11/05/79b	Means
COL: Curculionidae (L)			17.6		4.4
Helichus striatus (A)					0.0
Dubiraphia (L)					0.0
Dubiraphia (A)			1.5		0.4
Microcylloepus (L)			1.5		0.4
Microcylloepus (A)					0.0
DIP: Bezzia-Probezzia					0.0
Chironomidae	6.5	8.1	7.4	44.0	16.5
Hemerodromia			10.9	2.6	3.4
Simulium (L)	235.	540.	120.	226.	280.
Simulium (P)		181.			45.3
Dicranota					0.0
EPH: Baetis			1.0		0.3
Caenis	0.2			2.4	0.7
Paraleptophlebia					0.0
MEG:Sialis					0.0
ZYG: Hetaerina		5.1	22.0	11.4	9.6
Coenagrionidae					0.0
Argia					0.0
Ischnura					0.0
TRI: Brachycentrus					0.0
Helicopsyche					0.0
Cheumatopsyche	18.9	22.4	592.	433.	267.
Hydropsyche	21.3	22.4	131.	1165	335.
Hydroptila	0.1			29.4	7.4
Ithytrichia					0.0
Oecetis					0.0
Nyctiophylax					0.0
Polycentropus					0.0
OLI:Oligochaeta					0.0
GAS: Physa		82.9	46.9	105.	58.7
Totals	282.	862.	952.	2019	1029
					(4115)

Sampling Locations: a--T06S,R43E,18D; b--T06S, R43E,19D.

Table F127. Biomass (milligrams dry weight) of benthic macroinvertebrates collected from duplicate jumbo multiplate samplers placed into a <u>riffle to pool</u> type of habitat at the lower Hanging Woman Creek near Birney station.

Taxa/Collection Date	9/09/78a	10/07/78a	9/14/79b	11/05/79b	Means
COL: Curculionidae (L)					0.0
Helichus striatus (A)				8.6	2.2
Dubiraphia (L)		0.5	4.7		1.3
Dubiraphia (A)				0.7	0.2
Microcylloepus (L)			0.4	0.7	0.3
Microcylloepus (A)			0.2		<.1
DIP: Bezzia-Probezzia			0.7		0.2
Chironomidae	7.7	1.2	3.7	30.1	10.7
Hemerodromia				2.4	0.6
Simulium (L)	57.7	1.8	12.8	16.6	22.2
Simulium (P)					0.0
Dicranota				6.0	1.5
EPH: Baetis				0.5	0.1
Caenis			21.5	0.8	5.6
Paraleptophlebia				10.8	2.7
MEG: Sialis			5.0		1.3
ZYG: Hetaerina		14.5		77.3	23.0
Coenagrionidae					0.0
Argia			32.3		8.1
Ischnura		3.0			0.8
TRI: Brachycentrus			-	2.2	0.6
Helicopsyche				3.6	0.9
Cheumatopsyche	5.4	15.8	5.4	116.	35.7
Hydropsyche	3.4		22.0	202.	56.9
Hydroptila				17.2	4.3
Ithytrichia			0.2		<.1
Oecetis				11.8	3.0
Nyctiophylax			1.0		0.3
Polycentropus			5.5		1.4
OLI:Oligochaeta			0.4		0.1
GAS: Physa	59.1	17.9	31.4	174.	70.6
Totals	133.	54.7	147.	681.	255. (1016)

Sampling Locations: a--T06S,R43E,18D; b--T06S,R43E,19D.

Table F128. Biomass (milligrams dry weight) of benthic macroinvertebrates collected from duplicate jumbo multiplate samplers placed into a <u>pool</u> type of habitat at the lower Hanging Woman Creek near Birney station.

Taxa/Collection Date	9/09/78a	10/07/78a	9/14/79Ъ	11/05/79Ъ	Means
COL: Curculionidae (L)					0.0
Helichus striatus (A)					0.0
Dubiraphia (L)			1.4		0.4
Dubiraphia (A)					0.0
Microcylloepus (L)					0.0
Microcylloepus (A)					0.0
DIP: Bezzia-Probezzia					0.0
Chironomidae	2.7		7.2	3.3	3.3
Hemerodromia					0.0
Simulium (L)		0.1	0.4	0.3	0.2
Simulium (P)					0.0
Dicranota					0.0
EPH: Baetis					0.0
Caenis			14.6	3.5	4.5
Paraleptophlebia					0.0
MEG: Sialis			5.4		1.4
ZYG: Hetaerina					0.0
Coenagrionidae	7.0				1.8
Argia			3.8		1.0
Ischnura		1.9	6.4		2.1
TRI: Brachycentrus					0.0
Helicopsyche					0.0
Cheumatopsyche		0.1		3.0	0.8
Hydropsyche			1.0		0.3
Hydroptila				0.4	0.1
Ithytrichia					0.0
Oecetis					0.0
Nyctiophylax					0.0
Polycentropus			0.4		0.1
OLI:Oligochaeta					0.0
GAS: Physa	19.5	25.3	33.2		19.5
Totals	29.2	27.4	73.8	10.5	35.5 (141.)

Sampling Locations: a--T06S,R43E,18D; b--T06S,R43E,19D.

Biomass (milligrams dry weight) of benthic macroinvertebrates collected from duplicate jumbo multiplate samplers placed into three types of habitats at the East Fork of Hanging Woman Creek near Birney station. Table F129.

	Means	0.0	0.0	0.4	3.9	0.0	1.8	0.0	0.0	1.6	0.5	3.6	1.6	0.5	0.0	0.3	0.0	2.2	0.0	0.0	2.0	0.0	0.0	0.0	23.4 (46.3)
at	풼	_	_	_	` ,	_	, ,	_		•	Ŭ	~	• 1	_	_	_	_		_	_	• •	_	_	_	(46.2)
Pool Habitat	11/02/19	-	-	-	5.9	-	0.5	-		2.5	1.0	1	3.2	-	-	0.2	-	-	I	-	0.8		-		14.1
Poo	9/29/79	1	-	0.7	1.8	1	3.0			0.7	1	17.1		1.0		7.0	1	7.7	1	1	3.1	1	1	1	32.2
bitat	Means	0.0	0.1	6.0	0.3	0.2	2.4	0.5	2.6	14.2	0.0	7.5	0.0	0.1	0.0	0.5	166.	6.4	2.5	0.3	6.2	15.0	Ф	21.0	<u>247.</u> (493.)
to Pool Habitat	11/05/79		0.2	!	0.5	1	4.8	-	5.1	5.2	1	1	1	0.2		6.0	283.	3.8	3.4	1	1.2	0.4	1	1	309.
i	9/29/79	ł		1.8	0.1	0.4	1	1.0	1	23.2		15.0				1	48.5	8.9	1.5	0.5	11.2	29.6	Д	42.0	184.
t	Means	7.0	0.5	0.0	1.6	0.7	18.9	3.8	0.0	31.8	0.0	3.2	0.0	9.0	8.9	3.1	291.	4.5	0.9	0.0	0.0	11.1	0.0	0.0	386.
fle Habitat	11/05/79	1	6.0	!	3.0	1.3	33.5	7.6		50.6				1.2	13.6	6.1	566.		1.8	1	}	22.1	1	1	708.
Rif	9/29/79	14.0	!	1	0.2		4.3			13.0	1	6.4	!				16.5	8.9	!	1		!	1		63.3
	Taxa/Collection Date	COL: Helichus striatus (A)	DIP: Bezzia-Probezzia	Palpomyia	Chironomidae	Psychodidae	Simulium	Dicranota	Tipula	EPH: Baetis	Choroterpes	<u>Paraleptophlebia</u>	ANI: Aeshna	TRI: Cheuma topsyche	Hydropsyche	Hydroptila	Hesperophylax	Limnephilus	AMP: Hyalella azteca	ACA: Acari	OLI: Oligochaeta	GAS: Physa	Columnella	PEL: Pisidium	Totals

Table F130. Biomass (milligrams dry weight) of benthic macro-invertebrates collected from duplicate jumbo multiplate samplers placed into a <u>riffle</u> type of habitat at the lower Otter Creek near Ashland station.

Taxa/Collection Date	9/04/78	9/29/79	11/06/79	Means
COL:Dubiraphia (L)				0.0
Microcylloepus (L)		1.8	2.4	1.4
Microcylloepus (A)		0.9	one from	0.3
Stenelmis (L)		5.3		1.8
Stenelmis (A)		5.6		1.9
DIP: Bezzia-Probezzia			one one	0.0
Chironomidae	2.6	7.5	86.4	32.2
Hemerodromia	0.7	1.3	1.4	1.1
Simulium	2.2	1.9	411.	138.
EPH: Caenis	0.6	1.2	10.4	4.1
HEM: Ambrysus mormon (A)	119.			39.7
MEG: Sialis				0.0
ANI: Gomphus				0.0
ZYG: Hetaerina		91.2	56.8	49.3
Argia		15.1	20.8	12.0
Ischnura			7.2	2.4
TRI: Cheumatopsyche	35.8	70.1	249.	118.
Hydropsyche	5.1	4.3	13.6	7.7
Hydroptila	9.1	42.8	31.2	27.7
Nectopsyche				0.0
Ptilostomis				0.0
Polycentropus		2.0		0.7
AMP: Hyalella azteca				0.0
OLI:Oligochaeta				0.0
GAS: Gyraulus				0.0
Physa		22.1	120.	47.4
PEL:Pisidium			11.2	3.7
NMT: Nematomorpha	***	***	96.8	33.3
Totals	175.	273.	1118	522.
				(1566)

Table F131. Biomass (milligrams dry weight) of benthic macroinvertebrates collected from duplicate jumbo multiplate samplers placed into a <u>riffle to pool</u> type of habitat at the lower Otter Creek near Ashland station.

Taxa/Collection Date	9/04/78	10/08/78	9/29/79	11/06/79	Means
COL: Dubiraphia (L)	7/04/70	10/00//0	$\frac{3723773}{1.1}$		0.3
Microcylloepus (L)		0.2	1.6	1.5	0.8
Microcylloepus (A)					0.0
Stenelmis (L)			0.9		0.2
Stenelmis (A)					0.0
DIP: Bezzia-Probezzia	-		0.4		0.1
Chironomidae	11.7	1.1	34.9	146.	48.4
Hemerodromia		0.2		1.3	0.4
Simulium	0.6		0.6	47.0	12.1
EPH: Caenis	5.1	3.7	1.5	1.5	3.0
HEM: Ambrysus mormon (A)					0.0
MEG: Sialis					0.0
ANI: Gomphus			4.2		1.1
ZYG: Hetaerina				228.	57.0
Argia	36.5	6.2	7.5		12.6
Ischnura		9.9	4.2		3.5
TRI: Cheumatopsyche	6.7	21.4	105.	93.1	56.6
Hydropsyche		7.2	4.0	35.8	11.8
Hydroptila	5.2	1.2	3.1	39.2	12.2
Nectopsyche					0.0
Ptilostomis					0.0
Polycentropus		1.0	4.2	5.6	2.7
AMP: Hyalella azteca		0.5			0.1
OLI:Oligochaeta					0.0
GAS: Gyraulus					0.0
Physa		16.6	22.1	88.5	31.8
PEL: Pisidium					0.0
NMT: Nematomorpha					0.0
Totals	65.8	69.2	195.	688.	255. (1018)

Table F132. Biomass (milligrams dry weight) of benthic macroinvertebrates collected from duplicate jumbo multiplate samplers placed into a pool type of habitat at the lower Otter Creek near Ashland station.

Taxa/Collection Date	9/04/78	10/08/78	9/29/79	11/06/79	Means
COL: Dubiraphia (L)		0.2	0.6		0.2
Microcylloepus (L)			0.2		<.1
Microcylloepus (A)					0.0
Stenelmis (L)		1.3	0.6		0.5
Stenelmis (A)					0.0
DIP: Bezzia-Probezzia			0.2		<.1
Chironomidae	1.2	0.2	5.8	4.3	2.9
Hemerodromia					0.0
Simulium			0.3	0.6	0.2
EPH: Caenis	2.5	2.2	4.9	1.4	2.8
HEM: Ambrysus mormon (A)					0.0
MEG: Sialis	2.5		2.5		1.3
ANI: Gomphus					0.0
ZYG: Hetaerina					0.0
Argia	4.0		20.2		6.1
Ischnura	1.5	4.0		2.1	1.9
TRI: Cheumatopsyche		2.0	1.0	0.3	0.8
Hydropsyche					0.0
Hydroptila		0.4			0.1
Nectopsyche	2.1				0.5
Ptilostomis		7.8			2.0
Polycentropus		1.0	4.4		1.4
AMP: Hyalella azteca					0.0
OLI:Oligochaeta			1.6	0.2	0.5
GAS: Gyraulus	4.2				1.1
Physa	11.8		23.7	5.9	10.4
PEL:Pisidium					0.0
NMT: Nematomorpha					0.0
Totals	29.8	19.1	66.0	14.8	$\frac{32.7}{(130.)}$

Biomass (milligrams dry weight) of benthic macroinvertebrates collected from duplicate jumbo multiplate samplers placed into three types of habitats at the Pumpkin Creek near Miles City station (1). Table F133.

Means 0.0 0.0 0.0 0.0 0.0 0.0 1.7 1.7 0.0 1.5 0.0 0.0	$\frac{18.2}{(35.9)}$
10/09/78 4.3 6.1 3.3 6.5 6.5 1.0	22.3
9/06/78 1.1 0.7 0.6 4.0 3.0 0.9 1.7 0.6	13.6
Means 2.8 0.5 0.0 0.6 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	101.
10/09/78 5.3 0.3 0.5 2.2 0.3 0.3 3.5 24.0 3.8 0.5 6.2	9.94
9/06/78 5.6 0.9 11.2 40.0 0.7 6.8 6.8 15.2 0.8	154.
Taxa/Collection Date COL: Microcylloepus (L) Microcylloepus (A) Stenelmis (A) Stenelmis (A) DIP: Bezzia-Probezzia Chironomidae Hemerodromia EPH: Baetis Caenis Tricorythodes MEG: Sialis ZYG: Coenagrionidae Argia Ischnura TRI: Cheumatopsyche Hydropsyche Ithytrichia Polycentropus AMP: Hyalella azteca	Totals

(1) Riffle data from artificial substrates are not available for this site.

Biomass (milligrams dry weight) of benthic macroinvertebrates collected from duplicate jumbo multiplate samplers placed into three types of habitats at the Mizpah Creek near Mizpah station. Table F134.

	Means	0.0	0.1	0.1	0.0	0.2	0.0	0.0	0.0	0.0	0.5	0.2	30.5	31.6	(63.1)
Pool Habitat	10/09/78	1	0.2	0.2	-	0.4	-	-	!	-	1	0.4	5.9	7.1	
Q	8//90/6	1	!	1		1		1	1	1	1.0	1	55.0	56.0	
Riffle to Pool	9/06/78	1	!	0.7	!	!	1	4.0	!	1	0.5	-	1275	1280	
	Means	2.4	0.0	2.5	0.2	3.3	6.3	0.0	0.7	1.0	0.5	0.0	9.8	26.7	(52.9)
Rifflo Habitat	10/09/78	1	-	4.7	0.3	6.5	1	-	1.4	2.0	1.0	1	17.8	33.7	
ት የ	8//90/6	4.7	-	0.2			12.5		1		1	1	1.8	19.2	
	Taxa/Collection Date	COL: Helichus striatus (A)	DIP: Bezzia-Probezzia	Chironomidae	TH: Baetis	Caenis	HEM: Ambrysus mormon (A)	ZYG: Argia	Ischnura	TRI: Cheumatopsyche	AMP: Hyalella azteca	OLI: Oligochaeta	GAS: Physa	Totals	

point in feet per second, and with estimated stream flow in cubic feet per second (the first page Table 6135. Physical measurements taken in association with the Surber benthic macroinvertebrate collections with depth at the sampling point and stream width in feet, with current velocity at the sampling of eight pages).

Collection Point Stream Point Point Point Fream Point Point Point Fream Point Fount Point Fream Process Fream Point Fream Point Fream Process Fream Process Fream Process Fream Process Fream Process Fream Process Fream Process Fream Process Fream Process Fream Process Fream Process Fream Process Fream Process Fream Process Free Process Free Process Free Process Free Process Free Process Free Process Free Process Free Process Free Pr			Sampling		Sampling		Substrate	
Date Depth Width Velocity 06/16/78 2.1 11.0 2.8 06/29/78 0.7 11.6 3.3 08/03/78 0.9 10.3 1.7 08/29/78 0.9 10.3 1.7 08/29/78 0.6 6.7 2.9 09/05/78 0.6 6.7 2.7 10/08/78 0.6 6.7 2.7 11/05/78 1.0 7.9 3.1 06/21/79 1.0 7.9 3.1 06/21/79 1.0 6.0 2.5 08/12/78 0.9 6.3 1.5 08/22/78 0.9 6.0 2.1 08/24/79 0.9 6.0 1.7 08/24/79 0.0 9.4 1.1 06/26/79 0.6 9.7 1.1 06/26/79 0.9 9.4 1.1 06/26/79 0.6 10.2 1.2 06/26/79 0.9 9.4 1		Collection	Point	Stream	Point	Estimated	Reference	
06/16/78 2.1 11.0 2.8 06/29/78 0.7 11.6 3.3 07/18/78 1.0 9.2 2.3 08/03/78 0.9 10.3 1.7 08/29/78 0.9 10.3 1.7 08/29/78 0.9 2.9 2.9 09/05/78 0.0 6.7 2.7 11/05/78 1.0 7.9 3.1 04/01/79 1.0 7.9 3.1 06/21/79 0.9 6.3 1.5 08/17/79 0.9 8.9 2.1 08/27/78 0.9 8.9 2.1 08/24/79 0.0 8.9 2.5 11/07/79 0.8 29.5 2.6 07/25/78 0.9 9.4 1.1 06/26/79 0.9 9.7 1.1 07/25/78 0.9 9.7 1.1 06/26/79 0.9 9.7 1.1 06/26/79 0.9 9.7 1.1 06/26/79 0.9 9.7 1.1 06/26/79 0.9 9.7 1.1 07/17/79 0.6 10.2 1.2 06/26/79 0.9 9.7 1.1 <td< td=""><td>Sampling Station</td><td>Date</td><td>Depth</td><td>Width</td><td>Velocity</td><td>Flow</td><td>Number</td><td>Notes</td></td<>	Sampling Station	Date	Depth	Width	Velocity	Flow	Number	Notes
06/29/78 0.7 11.6 3.3 07/18/78 1.0 9.2 2.3 08/29/78 0.9 10.3 1.7 08/29/78 0.0 5.9 2.9 09/05/78 0.6 6.7 2.7 10/08/78 0.6 6.7 2.7 11/05/78 1.0 7.9 3.1 04/01/79 1.0 7.9 3.1 05/20/79 1.0 6.0 2.3 05/20/79 0.9 6.0 2.5 08/17/79 0.9 8.9 2.1 08/24/78 0.9 18.5 2.5 06/26/79 0.8 9.4 1.1 06/26/79 0.6 10.2 1.2 08/24/78 0.9 9.4 1.1 06/26/79 0.6 10.2 1.2 06/26/79 0.6 10.2 1.2 06/26/79 0.9 9.4 1.1 06/26/79 0.6 10.2 1.2 06/26/79 0.9 9.4 1.1 06/26/79 0.6 10.2 1.2 06/26/79 0.6 10.2 1.2 06/26/79 0.6 10.2 1.2	ebud Creek/Kirby	06/16/78	2.1	11.0	2.8	65	6.3	(a)
07/18/78 1.0 9.2 2.3 08/03/78 0.9 10.3 1.7 08/29/78 0.6 6.7 2.9 09/05/78 0.6 6.7 2.7 10/08/78 0.6 6.7 2.7 10/08/78 0.7 9.7 2.2 11/05/78 1.0 7.9 3.1 05/20/79 1.0 13.1 2.8 06/21/79 0.9 6.3 1.5 08/12/79 0.9 6.0 2.5 08/22/78 0.9 8.9 2.1 08/22/78 0.9 15.0 1.4 08/24/79 0.9 15.0 1.7 08/24/78 0.9 9.4 1.1 06/26/79 0.6 10.2 1.1 06/26/79 0.6 10.2 1.2 06/26/79 0.6 10.2 1.1 06/26/79 0.6 10.2 1.1 06/26/79 0.6 10.2 1.1 06/26/79 0.6 10.2 1.2 06/26/79 0.6 10.2 1.2 06/26/79 0.6 10.2 1.2 06/26/79 0.6 10.2 1.2	same	06/29/78	0.7	11.6	3.3	27	5.5	(p)
08/03/78 0.9 10.3 1.7 08/29/78 0.7 5.9 2.9 09/05/78 0.6 6.7 2.7 10/08/78 0.6 6.7 2.7 2.2 11/05/78 1.0 7.9 3.1 0.4/01/79 1.0 13.1 2.8 05/20/79 1.0 13.1 2.8 05/20/79 0.3 8.9 2.1 0.0 0.7/27/79 0.3 8.9 2.1 0.0 0.7/12/78 0.9 8.9 2.1 0.0 0.7/12/78 0.9 0.7 26.0 1.7 08/24/78 0.9 0.7 26.0 1.7 08/24/78 0.9 9.4 1.1 05/78 1.0 9.7 1.0 0.6 10.2 1.2 0.6 0.7/17/79 0.6 0.6 10.2 1.2 0.6 0.7/17/79 0.6 0.6 10.2 1.2	same	07/18/78	1.0	9.2	2.3	21	5.2	(c)
08/29/78	same	08/03/78	0.9	10.3	1.7	16	5.3	(p)
09/05/78 0.6 6.7 2.7 10/08/78 0.7 9.7 2.2 11/05/78 1.0 7.9 3.1 04/01/79 1.8 <13.5	same	08/29/78	0.7	5.9	2.9	12	6.5	(p)
10/08/78 0.7 9.7 2.2 11/05/78 1.0 7.9 3.1 04/01/79 1.8 <13.5	same	09/05/78	9.0	6.7	2.7	11	5.4	(p)
11/05/78 1.0 7.9 3.1 04/01/79 1.8 <13.5	same	10/08/78	0.7	9.7	2.2	15	9.9	(p)
04/01/79 1.8 <13.5 2.3 05/20/79 1.0 13.1 2.8 06/21/79 0.9 6.3 1.5 07/27/79 1.0 6.0 2.5 08/17/79 0.3 8.9 2.1 09/05/79 0.3 8.9 2.1 09/05/79 0.3 8.9 2.1 08/24/78 0.9 15.0 1.7 08/24/79 0.5 18.5 2.5 11/07/79 0.8 29.5 2.5 08/24/78 0.9 9.4 1.1 11/05/78 1.0 9.7 1.1 06/26/79 0.6 10.2 1.2	same	11/05/78	1.0	7.9	3.1	24	0.9	(p)
05/20/79 1.0 13.1 2.8 06/21/79 0.9 6.3 1.5 07/27/79 1.0 6.0 2.5 08/17/79 0.3 8.9 2.1 09/05/79 0.3 8.0 1.4 07/12/78 0.9 15.0 1.4 08/22/78 0.7 26.0 1.7 08/24/79 0.5 18.5 2.5 11/07/79 0.8 29.5 2.6 07/25/78 0.9 9.4 1.1 11/05/78 1.0 9.7 1.1 06/26/79 0.5 8.6 1.9 07/17/79 0.6 10.2 1.2 07/17/79 0.6 10.2 1.2	same	04/01/79	1.8	<13.5	2.3	<78*	6.3	(e)
06/21/79 0.9 6.3 1.5 07/27/79 1.0 6.0 2.5 08/17/79 0.3 8.9 2.1 09/05/79 0.3 8.0 1.4 07/12/78 0.9 15.0 1.4 08/24/79 0.7 26.0 1.7 08/24/79 0.5 18.5 2.5 11/07/79 0.8 9.2 3.0 08/24/78 0.9 9.4 1.1 11/05/78 1.0 9.7 1.1 06/26/79 0.5 8.6 1.9 07/17/79 0.6 10.2 1.2 07/17/79 0.6 10.2 1.2	same	05/20/79	1.0	13.1	2.8	73*	5.9	(p)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	same	06/21/79	0.9	6.3	1.5	26*	2.2	(°)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	same	07/27/79	1.0	0.9	2.5	15	5.6	(p)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	same	08/17/79	0.3	8.9	2.1	11*	5.4	(p)
07/12/78 0.9 15.0 3.4 08/22/78 0.7 26.0 1.7 08/24/79 0.5 18.5 2.5 11/07/79 0.8 29.5 2.6 07/25/78 0.9 9.4 1.1 11/05/78 1.0 9.7 1.1 06/26/79 0.5 8.6 1.9 07/17/79 0.6 10.2 1.2	same	09/02/19	0.3	8.0	1.4	*/	5.8	(P)
08/22/78 0.7 26.0 1.7 08/24/79 0.5 18.5 2.5 11/07/79 0.8 29.5 2.6 07/25/78 0.9 9.4 1.1 11/05/78 1.0 9.7 1.1 06/26/79 0.5 8.6 1.9 07/17/79 0.6 10.2 1.2	sebud Creek/Colstrip	07/12/78	0.9	15.0	3.4	77*	3.4	(a)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	same	08/22/78	0.7	26.0	1.7	45#	2.7	(၁)
11/07/79 0.8 29.5 2.6 07/25/78 0.8 9.2 3.0 08/24/78 0.9 9.4 1.1 11/05/78 1.0 9.7 1.1 06/26/79 0.5 8.6 1.9 07/17/79 0.6 10.2 1.2	same	08/24/79	0.5	18.5	2.5	23	5.7	(p)
07/25/78 0.8 9.2 3.0 08/24/78 0.9 9.4 1.1 11/05/78 1.0 9.7 1.1 06/26/79 0.5 8.6 1.9 07/17/79 0.6 10.2 1.2	sebud Creek/Rosebud	11/07/79	0.8	29.5	2.6	61	7.0	(p)
08/24/78 0.9 9.4 1.1 11/05/78 1.0 9.7 1.1 06/26/79 0.5 8.6 1.9 07/17/79 0.6 10.2 1.2	reek/Kirby	07/25/78	0.8	9.2	3.0	22	5.8	(P)
11/05/78 1.0 9.7 1.1 06/26/79 0.5 8.6 1.9 07/17/79 0.6 10.2 1.2	same	08/24/78	0.9	9.4	1.1	6	9.4	(၁)
06/26/79 0.5 8.6 1.9 07/17/79 0.6 10.2 1.2	same	11/05/78	1.0	9.7	1.1	11	4.1	(၁)
07/17/79 0.6 10.2 1.2	same	06/26/79	0.5	8.6	1.9	8	4.9	(p)
1 (same	07/11/79	9.0	10.2	1.2	7	5.7	(p)
0.4	same	09/28/19	0.4	5.6	2.7	9	6.5	(p)

*Flow estimate based on additional measurements; #flow estimate made from USGS records; (a)high water channel; (b)high water riffle; (c)normal channel; (d)normal riffle; (e)near flood stage.

Table G135. Continued (the second page of eight pages).

*Flow estimate based on additional measurements; #flow estimate made from USGS records; (a)high water channel; (b)high water riffle; (c)normal channel; (d)normal riffle; (e)near flood stage; (f)riffle to pool.

Table G135. Continued (the third page of eight pages).

		Sampling		Sampling		Substrate	
	Collection	Point	Stream	Point	Estimated	Reference	
Sampling Station	Date	Depth	Width	Velocity	Flow	Number	Notes
Tongue River/Pyramid Butte-Birney	06/21/79	1.0	>40.0	2.1	#009	6.5	(p)
same	08/01/79	1.0	>40.0	1.7	#065	5.8	(p)
same	08/18/79	0.8	>40.0	1.5	480#	6.2	(p)
Same	09/05/19	1.2	>40.0	2.3	4025	0.9	(c)
Squirrel Creek/Decker	06/10/78	0.8	25.1	4.4	18*	6.9	(P)
same	08/26/78	0.5	6.4	2.3	3*	5.0	(p)
same	04/01/19	0.5	19.8	2.9	22*	0.9	(P)
same	05/20/79	9.0	18.8	3.1	13#	5.7	(p)
same	06/21/79	9.0	22.4	1.1	2#	5.2	(£)
same	07/26/79	0.4	0.9	3.0	2#	5.6	(p)
same	08/11/79	0.3	8.1	2.1	2*	5.3	(p)
same	09/05/19	0.2	5.6	1.1	П	5.6	(p)
same	11/06/79	0.3	3.7	2.2	2	4.8	(P)
Deer Creek/Decker	06/10/78	7.0	1.9	1.1	0.8	3.8	(၁)
same	08/12/78	0.3	1.6	1.1	0.5	2.9	(f)
same	11/05/79	0.2	1.5	1.1	0.3	2.7	(c)
Canyon Creek/Decker-Birney	06/26/79	0.1	1.0	2.5	0.3	4.7	(c)
same	07/27/79	0.7	4.1	1.1	5 *	4.3	(p)
same	08/30/79	1.1	4.6	1.2	*	4.3	(c)
Prairie Dog Creek/Pyramid Butte-Birney	07/12/79	0.3	9.4	0.8	П	5.3	(p)
same	08/30/19	0.3	1.7	0.6	0.3	6.1	(P)
Bull Creek/Pyramid Butte-Birney	07/12/79	0.3	5.4	9.0	П	ر. 8	(p)
same	08/30/19	0.4	4.6	1.5	2*	0.8	(P)
Cook Creek/Birney-Birney Village	06/11/78	9.0	8.9	0.8	m	3.1	(c)
same	08/24/78	0.3	3.7	1.1	-	2.4	(c)
same	09/05/19	0.1	0.7	0.8	0.1	5.5	(P)
Logging Creek/Ashland	06/27/78	0.3	1.4	6.0	7.0	2.5	(၁)
same	08/16/78	0.8		0.5	*	2.8	(၁)
same	62/90/60	0.4	1.0	1:1	7.0	3.8	(c)

*Flow estimate based on additional measurements; #flow estimate made from USGS records; (b)high water riffle; (c)normal channel; (d)normal riffle; (f)riffle to pool.

Table G135. Continued (the fourth page of eight pages).

*Flow estimate based on additional measurements; #flow estimate made from USGS records; (a)high water channel; (b)high water riffle; (c)normal channel; (d)normal riffle; (f)riffle to pool; (g)riffle under

Table G135. Continued (the fifth page of eight pages).

		Sampling		Sampling		Substrate	
	Collection	Point	Stream	Point	ш	Reference	
Sampling Station	Date	Depth	Width	Velocity	- 1	Number	Notes
Lower Hanging Woman Creek/Birney	05/19/79	0.7	9.7	1.3		5.6	(p)
same	06/22/79	0.7	6.3	1.3		9.9	(p)
same	07/28/79	0.5	5.1	2.0		5.5	(p)
same	08/18/79	0.3	8.2	3.00		4.9	(p)
same	09/14/79i	0.2	3.2	1.7		6.3	(p)
same	09/14/79j	0.3	3.4	1.3		6.3	(p)
same	09/15/79k	7.0	3.4	1.7		2.8	(p)
East Fork of Hanging Woman Creek/Birney	06/11/78	7.0	1.7	2.1		4.5	(p)
same	08/18/78	0.3	4.7	1.4		5.4	(p)
same	10/08/78	0.4	5.9	1.3		9.4	(p)
same	11/04/78	0.4	11.7	1.0		4.7	(၁)
same	02/11/79	0.2	3.0	1.4		5.2	(g)
same	03/31/79	0.5	5.3	0.3		5.8	(c)
same	05/19/79	0.5	2.4	6.0		3.9	(p)
same	06/22/79	0.3	3.2	1.1		4.9	(p)
same	07/28/79	0.4	2.2	2.1		4.9	(p)
same	08/20/79	0.3	3.1	1.0		0.9	(p)
same	09/05/19	0.2	2.6	1.8	0.9	5.6	P
Bear Creek/Otter	07/12/79	0.3	11.2	0.8		5.8	(f)
same	08/23/79	0.2	3.4	0.7		4.7	(၁)
same	09/30/19	0.2	3.8	0.7		7.1	(P)
Upper Otter Creek/Otter-Fort Howe	07/07/78	0.8	4.7	1.1		5.0	(c)
same	08/29/78	0.3	5.8	1.0		3.9	(c)
same	06/27/79	0.5	6.3	2.1		3.4	(f)

*Flow estimate based on additional measurements; #flow estimate made from USGS records; (c)normal channel; (d)normal riffle; (f)riffle to pool; (g)riffle under ice.

i--Collected at TO7S,R43E,17C (upstream and intermediate sampling site). j--Collected at TO6S,R43E,190 (major downstream sampling site). k--Collected at TO6S,R43E,18B (sampling site near mouth).

Table G135. Continued (the sixth page of eight pages).

						(g)																	
Substrate	Reference	Number	6.4	5.8	5.9	6.3	5.4	6.3	5.6	4.2	4.7	5.6	5.5	4.4	5.4	0.9	5.7	5.2	5.3	5.5	5.9	6.9	5.4
	Estimated	Flow	5	2	0.2		0.4	0.5	14*	11*	/ */	*9	* 7	*9	3*	2#	25	11	* 9	*7	γ*	3*	2*
Sampling	Point	Velocity	2.1	1.9	1.4	0.8	1.0	1.2	0.8	2.8	2.0	2.4	2.5	1.6	2.7	2.0	1.8	1.2	2.5	1.2	1.4	0.8	1.7
	Stream	Width	6.4	1.7	9.0	2.8	2.2	2.2	17.5	16.4	17.3	7.4	6.9	15.2	13.4		9.4	13.7	15.6	9.6	12.2	9.7	11.5
Sampling	Point	Depth	0.5	0.5	0.2	0.5	0.2	0.2	0.4	0.5	0.4	0.8	0.7	0.9	9.0	0.7	1.5	0.7	0.5	0.7	0.4	0.8	0.4
	Collection	Date	07/31/79	08/31/79	09/30/791	09/30/79m	07/31/79	08/31/79	06/15/78	07/05/78	07/21/78	07/31/78	09/04/78	10/08/78	11/05/78	02/11/79	03/31/79	05/20/79	06/20/19	07/28/79	08/18/79	09/30/79n	09/30/790
		Sampling Station	Upper Otter Creek/Otter-Fort Howe	same	same	same	Cow Creek/Otter-Fort Howe	same	Lower Otter Creek/Ashland	same	same	same	same	same	same	same	same	same	same	same	same	same	same

*Flow estimate based on additional measurements; #flow estimate made from USGS records; (a)high water channel; (b)high water riffle; (c)normal channel; (d)normal riffle; (h)channel under ice.

1--Collected at TO8S,R46E,05C (upstream sampling site above Bear Creek). m--Collected at TO7S,R45E,13D (major upstream sampling site).

n--Collected at T05S,R45E,11C (upstream and intermediate sampling site). o--Collected at T03S,R44E,12C (major downstream sampling site).

"Table G135. Continued (the seventh page of eight pages).

ω|

Notes	(d)	(p)	(p)	(p)	(p)	(p)	(a)	(P)	(P)	(e)	(b)	(P)	(p)	(p)	(P)	(P)	(a)	्र	(£)	(P)	D	(p)	(၁)	(P)	(P)	(a)	(c)	(c)
Substrate Reference Number	1.4	5.3	5.9	6.4	5.0	5.1	5.2	5.0	5.5	5.6	4.8	5.3	5.7	4.4	5.1	5.9	2.7	2.4	4.0	5.1	5.5	5.2	5.6	6.4	6.3	2.6	2.7	4.2
Estimated Flow	12#	37	37	*	0.3	0.1#	15	<0.1	12#	72*	20*	95	0.1	0.2#	18	0.8	12	0.1	П	0.1	0.7*	9	2	* 7	0.7	10	0.3*	*
Sampling Point	<0.1	2.9	2.2	1.1	0.5	1.2	0.8	<u><0.1</u>	2.8	2.9	1.5	2.4	0.5	1.1	1.6	0.2	1.9	0.3	0.5	0.2	0.9	1.4	0.8	1.9	0.5	2.5	0.3	1.3
Stream	>35.0	14.1	28.3	10.9	6.7	7.2	37.0	18.9	17.6	20.8	13.4	27.6	1.2	4.4	18.9	0.9	5.6	0.9	7.4	5.6	5.4	7.4	2.0	9.6	4.5	4.4	3.7	4.4
Sampling Point	2.7	0.9	9.0	0.3	0.1	0.1	0.5	<0.1	0.8	6.0	0.4	0.7	0.1	<0.1	9.0	0.1	1.1	0.2	0.3	0.2	0.3	9.0	9.0	0.5	0.3	6.0	9.0	7.0
Collection		07/05/78	07/21/78	07/31/78	82/90/60	10/09/78	05/12/79	08/09/19	06/15/78	07/05/78	07/21/78	07/31/78	82/90/60	10/09/78	05/12/79	08/09/19	05/28/78	07/03/79	07/03/19	08/22/19	11/07/79	05/28/78	07/12/78	05/13/79	08/21/79	05/28/78	07/12/78	08/22/78
Compling Ctotion	Pumpkin Creek/Miles City		same	same	same	same	same	same	Mizpah Creek/Mizpah	same	same	same	same	same	same	same	West Fork of Armells Creek/Colstrip	same	Lower Armells Creek/Forsyth	same	same	Sweeney Creek/Rosebud	same	same	same	Reservation Creek/Forsyth	same	same

*Flow estimate based on additional measurements; #flow estimate made from USGS records; (a)high water channel; (b)high water riffle; (c)normal channel; (d) normal riffle; (e)near flood stage; (f)riffle to pool; (p)high water--water from the Tongue River backed up to the tributary sampling point.

Table G135. Continued (the eighth page of eight pages).

		Notes	(c)	(၁)	(p)	(p)	(a)	(c)	(d)	(P)		(b)	(r)	(s)	(r)	(r)	(r)	(r)	(t)	(r,t)	(d,u)	(n,b)	(d,s)	(d,u)	(Þ)	(Þ)	(b)	(b)
Substrate	Reference	Number	5.9	2.9	5.5	5.4	5.8	2.1	7.3	4.6		1	-		1	1	-	1		1	1	1	1	1	1	1	}	1
	Estimated	Flow	*7	0.8	2#	*9.0	18*	2	150#	1	ns			1	0	<0.1	<0.1	0	0.3	0	7 ⊁	2	П	3*	0	0	1	#55
Sampling	Point	Velocity	3.5	0.8	1.7	2.0	2.6	0.3	2.6	1.0	Visitatio	1.6		1	1	<1.0	<1.0		6.0	0	1.9	1.5	1.4	2.3	-	1	<0.1	
										>20.0	and Site	>10.0	-		1	9.0>	7.0	-	1.5	8.3	3.8	9.4	2.8	13.0	-	}	>15.0	11.0
Sampling	Point	Depth	0.8	0.4	0.5	0.3	0.8	0.9	0.5	0.4	surements	>4.0	-	}	}	<0.1	<0.1	}	0.2	0.3	0.5	0.3	0.3	0.4	1	-	4.0	2.7
	Collection	Date	05/13/79	08/22/79	07/12/78	08/22/78	05/13/79	08/22/79	09/14/19	08/09/19	Physical Mea	07/03/79	08/22/19	07/26/78	07/27/79	09/05/19	06/27/19	06/27/79	07/28/19	11/05/78	08/28/18	62/50/60	06/27/79	62/50/60	02/10/79	02/10/79	07/12/78	05/27/78
		Sampling Station	Reservation Creek/Forsyth	same	Sarpy Creek/Hysham	same	same	same	Powder River/Moorhead	Powder River/Mizpah	Miscellaneous	Middle Rosebud Creek/Colstrip	David Creek/Busby	Youngs Creek/Sheridan-Decker	Deer Creek/Decker	Prairie Dog Creek/Pyramid Butte-Birney	Cook Creek/Birney-Birney Village	Logging Creek/Ashland	Logging Creek/Ashland	Beaver Creek/Brandenberg	Lower Hanging Woman Creek/Birney	Lower Hanging Woman Creek/Birney	Cow Creek/Otter-Fort Howe	Lower Otter Creek/Ashland	Pumpkin Creek/Miles City	Mizpah Creek/Mizpah	West Fork of Armells Creek/Colstrip	Sarpy Creek/Hysham

(r)riffle dry or possessing an inadequate flow to obtain a valid Surber sample; (s)preliminary site inspection; (t)stream sterile and lacking macroinvertebrates; (u)Surber collection not analyzed; (v)stream channel; (c)normal channel; (d)normal riffle; (q)water level too high to obtain a valid Surber sample; *Flow estimate based on additional measurements; #flow estimate made from USGS records; (a)high water frozen.

collections with exposure time in days, with depth to the sampler and stream width in feet, and Table G136. Physical measurements taken in association with the jumbo multiplate benthic macroinvertebrate with stream velocity at the sampler in feet per second (the first page of four pages)

				Mean	Mean	Mean Stream
	Collection		Exposure	Sampler	Stream	Velocity
Sampling Station	Date	Habitat	Period	Depth	Width	at Sampler
Upper Rosebud Creek/Kirby	09/05/78	Riffle	48.9	0.7	9.7	2.6
	09/05/78	R to P*	48.9	1.0	8.2	1.4
same	09/05/78	Pool	48.9	1.4	9.3	0.1
same	10/08/78	Riffle	33.1	0.8	7.7	2.5
same	10/08/78	R to P*	33.1	1.3	7.8	1.0
same	10/08/78	Pool	33.1	1.9	11.6	0.1
same	09/15/79	Riffle	50.1	0.5	8.7	2.8
same	09/15/79	R to P*	50.1	2.0	10.4	0.7
same	09/15/79	Pool	50.1	2.2	15.6	0.1
same	11/06/79	Riffle	51.9	9.0	8.1	2.7
same	11/06/79	R to P*	51.9	1.8	10.8	0.8
same	11/06/79	Pool	51.9	2.1	15.2	0.2
Tongue River/Pyramid Butte-Birney	09/05/78	R to P*	32.7a	1.5 to 0.4	>40.0	1.5 to 0.2
same	10/08/78	Riffle	33.4	9.0	>40.0	2.2
same	10/08/78	Pool	33.4	1.7	>40.0	0.6
same	09/15/79	Riffle	44.8b	6.0	>40.0	1.7
same	09/15/79	R to P*	44.8b	1.7	>40.0	0.9
same	09/15/79	Pool	44.8b	2.2	>40.0	0.5
same	11/05/79	R to P*	51.2a	1.8 to 1.0	>40.0	0.7 to 0.0
same	11/05/79	Pool	51.2a	2.2 to 1.6	>40.0	0.5 to 0.3
Squirrel Creek/Decker	09/15/79	Riffle	50.8	0.5	6.4	2.3
same	09/15/79	R to P*	50.8	1.8	5.7	9.0
same	09/15/79	Pool	50.8	1.2	10.6	0.0
same	11/06/79	Riffle	51.8	0.4	6.9	2.3
same	11/06/79	R to P*	51.8	1.8	0.9	0.8
same	11/06/79	Pool	51.8	1.1	9.4	0.0

*Riffle to pool. a -- These distinctive changes in the physical measurements were caused by a marked drop in river state during the exposure period. b--Samplers were found smothered with large quantities of macroalgae and macrophytes during this exposure period.

Table G136. Continued (the second page of four pages).

Mean Stream	Velocity	at Sampler	1.9	0.7	<0.1	0.3	0.0	1.1	0.2	<0.1	1.1	0.3	0.0	2.1	0.5	0.0	1.7	0.3	0.0	1.8	0.5	0.0	1.8	7.0	0.0	•	0.3	0.0	1.0	n.0	0.0
Mean	Stream	Width	8.8	16.8	19.8	16.4	12.6	2.8	6.1	12.3	2.2	5.7	12.0	7.4	8.4	12.5	7.9	8.3	12.5	7.7	16.0	16.3	6.4	8.6	15.3	, ,	7.7	7.7	2.0	ا بن ا ن	<u>}</u>
Mean	Sampler	Depth	0.3	0.5	1.5	0.5	1.2	0.4	0.5	2.2	0.3	7.0	2.2	0.5	1.2	2.8	7.0	1.1	2.8	7.0	1.3	1.8	7.0	1.0	1.7	† L	ر. د.	1:1	0.5	۰.0	T-0
	Exposure	Period	49.2	49.2	49.2	32.1	32.1	48.9	48.9	48.9	51.8	51.8	51.8	22.0	22.0	22.0	28.1	28.1	28.1	48.4	42.4	45.4	51.7	51.7	51.7	7.00	63.2	63.2	37.0	37.0	37.0
		Habitat	Riffle	R to P*	Pool	R to P*	Poo1	Riffle	R to P*	Pool	Riffle	R to P*	Pool	Riff1e	R to P*	Pool	Riff1e	R to P*	Pool	Riff1e	R to P*	Pool	Riffle	R to P*	Pool Diff!	DITTU	K to P*	Pool	Riffle	K to P*	Pool
	Collection	Date	09/05/78	09/05/18	09/05/78	10/01/78	10/07/78	09/14/79	09/14/19	09/14/79	11/05/79	11/05/79	11/05/79	82/60/60	82/60/60	82/60/60	10/07/78	10/07/78	10/07/78	09/14/79	09/14/79	09/14/79	11/05/79	11/05/79	11/05/79	61/67/60	6//67/60	09/29/79	11/05/79	11/05/79	11/05/79
		Sampling Station	Upper Hanging Woman Creek/Quietus-Decker		same	same	same	same	same	same	same	same	same	Lower Hanging Woman Creek/Birney	same	same	same	same	same	same	same	same	same	same		East fork of naugring would oreek/ briney	same	same	same	same	ѕате

*Riffle to pool.

Table G136. Continued (the third page of four pages).

				Mean	Mean	Mean Stream
	Collection		Exposure	Sampler	Stream	Velocity
Sampling Station	Date	Habitat	Period	Depth	Width	at Sampler
Lower Otter Creek/Ashland	09/04/78	Riffle	34.7	0.5	13.4	1.7
	09/04/78	R to P*	34.7	0.8	13.1	0.7
same	09/04/78	Pool	34.7	1.0	14.3	0.2
same	10/08/78	Riffle	34.1c	0.5 to 1.0	1	1.7 to 0.7
same	10/08/78	R to P*	34.1	1.1	17.8	0.4
same	10/08/78	Pool	34.1	1.6	17.7	0.0
same	09/29/79	Riff1e	63.2	9.0	9.4	1.2
same	09/29/79	R to P*	63.2	0.8	15.9	0.5
same	09/29/79	Pool	63.2	1.6	16.5	0.1
same	11/06/79	Riffle	38.0	0.7	9.6	1.5
same	11/06/79	R to P*	38.0	6.0	16.0	0.4
same	11/06/79	Pool	38.0	1.7	16.4	0.1
Pumpkin Creek/Miles City	09/06/78	R to P*	17.9	9.0	4.3	0.7
	82/90/60	Pool	17.9	1.7	8.2	0.0
same	10/09/78	R to P*	33.1	7.0	3.9	9.0
same	10/09/78	Pool	33.1	1.2	8.1	0.0
Mizpah Creek/Mizpah	82/90/60	Riff1e	18.0	9.0	3.0	1.3
same	82/90/60	R to P*	18.0	1.0	9.4	0.5
same	82/90/60	Pool	18.0	1.3	7.5	<0.1
same	10/09/78	Riffle	33.0	0.7	2.6	1.2
Same	10/09/78	Pool	33.0	1.2	8.9	<0.1
	Related Site Visi	tations and	1 Notes			
Upper Rosebud Creek/Kirby	07/18/78 Initial install	Initial :	Initial installation of	n of samplers	s for the	e 1978 season.

Initial physical measurements for the first exposure. Initial installation of samplers for the 1979 season. Checked samplers after a storm and runoff event. 07/27/79 08/08/79 08/03/78 same same same

ದ *Riffle to pool. c--These distinctive changes in physical measurements were caused by the development of beaver dam in the riffle section; the samplers could not be located and retrieved.

Table G136. Continued (the fourth page of four pages).

		Related Site Visitations and Notes	Initial installation of samplers for the 1978 season.	Stream too high to install the 1979 samplers.	Initial installation of samplers for the 1979 season.	Checked samplers after a storm and runoff event.	Checked samplers for macroalgae-macrophyte smothering.	Initial installation of samplers for the 1979 season.	Initial installation of samplers for the 1978 season.	Initial physical measurements for the first exposure.	Initial installation of samplers for the 1979 season.	Checked samplers after a storm and runoff event.	Initial installation of samplers for the 1978 season.	Initial installation of samplers for the 1979 season.	Riffle to pool and pool samplers washed-out by run-	off from a severe storm on this date.	Reinstallation of riffle to pool and pool samplers.	Initial installation of samplers for the 1979 season.	Checked samplers after storm and runoff event.	Initial installation of samplers for the 1978 season.	Initial installation of samplers for the 1979 season.	Initial installation of samplers for the 1978 season.	Initial physical measurements for the first exposure.	Samplers out of water and moved to new locations.	Stream too high to install the 1978 samplers	Initial installation of samplers for the 1978 season.	Samplers out of water and moved to new locations.
Visitation	Date	ed Site Vis	08/03/78	07/30/19	08/01/19	08/08/19	09/29/19	07/26/79	07/18/78	08/15/78	07/27/19	07/31/79	08/18/189	07/28/79	07/30/19		07/31/79	07/28/79	08/01/19	07/31/78	07/28/79	07/21/78	07/31/78	08/19/78	07/21/78	07/31/78	08/19/78
	Sampling Station	Relat	Tongue River/Pyramid Butte-Birney	same	same	same	same	Squirrel Creek/Decker	Upper Hanging Woman Creek/Quietus-Decker	same	same	same	Lower Hanging Woman Creek/Birney	same	same	same	same	East Fork of Hanging Woman Creek/Birney	same	Lower Otter Creek/Ashland	same	Pumpkin Creek/Miles City	same	same	Mizpah Creek/Mizpah	same	same

d--The first installation of samplers at this station was delayed to some extent for the 1978 season because an inadequate number of samplers were initially available to the study.

draining the southern Fort Union region in southweastern Montana (the first page of eight pages). Table H137. Taxa list, associated systematics, and major characteristics of algae collected from streams

Morphological and Other Aspects Prokaryotic cells lacking distinct organelles; includes the bacteria and the blue-green algae. Photosynthetic pigments, including chlorophyll a, present but not located in definite chloroplasts; color variable. Cells solitary or in loose colonies; rarely filamentous. Thallus with a colonial organization. Colonies of a nondistinctive shape but with an obvious and colorless sheath.	Thallus with a distinctly filamentous organization. Uniseriate unbranched trichomes lacking heterocysts. Trichomes not regularly spiraled and lacking a sheath. Trichomes regularly spiraled and lacking a sheath. Sheaths present but watery with filaments interwoven. Sheaths present but firm, colorless to brown. Variously organized trichomes possessing heterocysts. Unbranched trichomes lacking attenuation to the apices. Thallus having a definite form.	Thallus amorphous with firm and thin sheaths. Thallus amorphous with watery and broad sheaths. Falsely branched trichomes lacking a distinct attenuation. False branching single and abundant. Variously branched trichomes having a sharp attenuation. Filaments united to form rounded colonies. Filaments not forming rounded colonies. Eukaryotic cells possessing distinct organelles. Photosynthetic pigments, including chlorophyll a, present and located in definite chloroplasts.
Systematic Features and Scientific: Common Names* PROKARYOTA (Monera): fission plants	0. Oscillatoriales. SO-F. Oscillatorineae-Oscillatoriaceae. Spirulina. Spirulina. Trichodesmium. Lyngbya. SO. Nostochineae. Nostocaceae. Nostocaceae.	Aulosira Anabaena E. Scytonemataceae. Tolypothrix \overline{\text{F. Rivulariaceae.}} \overline{\text{F. Rivulariaceae.}} \overline{\text{Rivulariaceae.}} \overline{\text{Calothrix.}} \overline{\text{Calothrix.}} \overline{\text{F. Rivularia.}}

* \underline{D} --division (phyla), \underline{C} --class, \underline{O} --order, \underline{SO} --suborder, and \underline{F} --family; genera are also listed.

Table H137. Continued (the second page of eight pages).

* .			Flagellated motile cell dominant phase of life cycle. Eyespot present.	Cells plastic and lacking a lorica; glass-gleen in coldi. Protoplast surrounded by a lorica.	Cellulose cell wall, starch storage, and green pigmentation; chlorophyll b also present.	Erect and branched thallus with nodes and internodes. Includes all present-day members; complex thallus.		F1 S	Small amorphous colonies. Colonies somewhat spherical with few cells. Non-flagellated unicellular or nonfilamentous colonies of	
Systematic Features and Scientific: Common Names* Photosynthetic protista (continued) D-C. RhodophytaRhodophyceae: red algae	SC-0. FlorideaeNemalionales	D-C. EuglenophytaEuglenophyceae: euglenoids	O. Euglenales F. Euglenaceae	<u>Euglena</u> : euglena <u>Trachelomonas</u>	\underline{D} . Chlorophyta: grass-green algae	C-O. CharophyceaeCharales: stonewarts	C. Chlorophyceae	0. Volvocales: e.g., volvox #	E. Palmellaceae	E. Hydrodictyaceae

*D--division (phyla), C--class, $\overline{\text{SC}}$ --subclass, $\overline{\text{O}}$ --order, and $\overline{\text{F}}$ --family; genera are also listed. #Genera of this order were not identified in any of the macroalgae-periphyton samples.

Table H137. Continued (the third page of eight pages).

Morphological and Other Aspects	Radially arranged cells in a somewhat globose coenobium. Coenobium a hollow sphere of four to 128 cells.	Variable morphologies; colonies lacking a cellular orientation; reproduction by autospores.	Spherical cells embedded in a wide homogenous envelope. Spindle-shaped and loosely aggregated cells.	Reproduction by autospores and colonies possessing a definite cellular orientation.	Colonies a flat plate of elongated and parallel cells.	Filamentous with a single laminate parietal chloroplast.	Unbranched illaments lacking m-preces. Filament without a basal cell	Filament with a basal cell.	Unbranched filaments possessing H-pieces.	Only genus for this family.	Branched filaments lacking seta; relatively complex.	Ends of branches not pointed.	Ends of branches pointed; thallus lacking a definite shape.	Cubical cells united laterally to form sheets, tubes, or	cylinders; single laminate of cup-snaped chloropiast. Thallus a sheet, ribbon, or hollow tube.	Mature thallus a hollow tube.	Mature thallus an expanded sheet.	Thallus a solid cylinder of brick-like cells.	Only genus for this tamily.
Systematic Features and Scientific: Common Names* D-C. ChlorophytaChlorophyceae (continued) O. Chlorococcales (continued)	F. Coelastraceae	F. Oocystaceae	PlanktosphaeriaAnkistrodesmus	F. Scenedesmaceae	Scenedesmus	0. Ulotrichales	E. Ulotrichaceae	Ulothrix	F. Microsporaceae	Microspora	F. Chaetophoraceae	Microthamnion	Stigeoclonium	0. Ulvales	Т. III va се а е	Enteromorpha	Monostroma	F. Schizomeridaceae	Schizomeris

* \overline{D} --division (phyla), \underline{C} --class, \underline{O} --order, and \underline{F} --family; genera are also listed.

Table H137. Continued (the fourth page of eight pages).

Filamentous with cells much longer than broad; a unique type of cell division; only one order in this class. Only family for this order. Unbranched filaments.	Macroscopic with multinucleate siphons or cells. Simple or branched filaments with multinucleate cells. Only family for this order. Filaments freely branched and branches distinct. Filaments sparsely branched and branches short. Thallus a single but extensive multinucleate cell (siphon).	Complex chloroplasts; reproduces by conjugation. Cells formed into two hemicells joined by an isthmus. Cells united in unbranched filaments. Cells solitary with a median constriction. Cells solitary without a median constriction. Filamentous and lacking hemicells. Cylindrical cells united in unbranched filaments.	Cells with two stellate chloroplasts. Cells with a single axial and laminate chloroplast. Cells with one or more spiral chloroplasts. Typically unicellular biflagellates (two flagella differ); chlorophyll c also present; lipid and starch storage.	Cells encircled by a transverse or spiral groove. Cell walls composed of definitely arranged plates. Thick walls with two antapical plates; horns absent. Country's only freshwater genus for this family. Thick walls with distinct horns evident. Country's only freshwater genus for this family.	family; genera are also listed. of the macroalgae-periphyton samples.
Systematic Features and Scientific: Common Names* D. Chlorophyta (continued) C. Oedogoniophyceae		gatophy Desmi	<u>Mougeotia</u> <u>Spirogyra</u> <u>D</u> . Pyrrophyta: golden-brown algae	C. Dinophyceae: dinoflagellates. O. Peridinales. F. Peridinium. Peridinium. Ceratiaceae	* <u>D</u> division (phyla), <u>C</u> class, <u>O</u> order, and <u>F</u> family; genera are also listed. #Genera of this order were not identified in any of the macroalgae-periphyton samples.

Table H137. Continued (the fifth page of eight pages).

Morphological and Other Aspects	Preponderance of carotenoid pigments; starch never a storage product; pectin cell membranes in two overlapping pieces and frequently impregnated with silica.	Yellow-green coloration; chlorophyll e also present; leuco- sin and some oils are major storage products; two halves of cell wall and silica impregnation not obvious.	Cylindrical cells united end to end to form filaments. Unbranched filaments. Thick cell walls with H-pieces clearly evident. Multipure and sinhoneses.	Filamentous. Only genus for this family.	Golden-brown coloration; chlorophylls b-e missing; leucosin and oils are major storage products; two halves of cell wall not obvious but often containing silica.	Motile during vegetative phase of life cycle. Biflagellated forms with flagella of unequal length. Cells with a lorica in free-swimming dendroid colonies.	Brown coloration; chlorophyll c also present; oils are the major storage product; sculptured silica cell wall (frustule) as two distinct halves (valves).	Non-motile cells with valves circular, polygonal, or irregular in outline; ornamentation radial or concentric about a central point; raphe-pseudoraphe missing.	Discoid or cylindrical cells lacking horn-like processes. Discoid cells ornamental pattern not in distinct sectors. Cells united in long filaments.	Cells solitary; valve surface with radiate hyaline areas.
Systematic Features and Scientific: Common Names*	Photosynthetic protista (continued) D. Chrysophyta: yellow-green algae	C. Xanthophyceae		F. Vaucheriaceae	C. Chrysophyceae	0. Chrysomonadales	C. Bacillariophyceae: diatoms	O. <u>Centrales</u> : centric diatoms	SO.Coscinodiscineae F. Coscinodiscaceae	Stephanodiscus sppStephanodiscus subtilis

*D--division (phyla), \overline{C} --class, \overline{O} --order, \overline{SO} --suborder, and \overline{F} --family; genera and major diatom species are also listed.

Table H137. Continued (the sixth page of eight pages).

Morphological and Other Aspects	Cells solitary; two unlike concentric patterns evident.	Generally zygomorphic cells posessing horn-like processes. Frustules rounded; spine-like horns present.	Frustules angled; stout horns present. Country's only freshwater genus for this family. Cells often elongate; ornamentation bilaterally arranged to a sagital line and never with reference to a cen-	tral point; raphe-pseudoraphe present. Pseudoraphe or primitive raphe on both valves. Internal septa typically present; valves cuneate to form fan-shaped or spiral colonies or filaments.	Only freshwater genus for this family. Internal septa present but valves bilaterally symmetrical. Girdle view cuneate. Girdle view rectangular.	Valves typically symmetrical but lacking internal septa. Ends of valves dissimilar in size. Valve ends similar; filamentous or stellate colonies.	
Systematic Features and Scientific: Common Names*	D-C. ChrysophytaBacillariophyceae (continued) O-F. CentralesCoscinodiscaceae (continued) Cyclotella spp	SO. BiddulphineaeF. Chaetoceraceae	E. Biddulphiaceae	SO. Fragilarineae	E. Diatomaceae Openora sp. Diatoma spp. Diatoma spp.	E. Fragilariaceae Asterionella sp. Fragilaria capucina Fragilaria crotonensis Fragilaria vaucheriae	

* \overline{D} --division (phyla), \overline{C} --class, \overline{O} --order, \overline{SO} --suborder, and \overline{F} --family; genera and major diatom species are also listed.

Table H137. Continued (the seventh page of eight pages).

Morphological and Other Aspects	Valve ends similar; cells solitary or in radiate colonies.	Arcuate (curved) valves lacking internal septa. Valve ends similar; concave side not tumid in center. Pseudoraphe on one valve and true raphe on the other. Only family for this suborder.	Frustules cuneate in girdle view. Frustules not cuneate; long axis curved. Frustules not cuneate; transverse axis curved.	Axial true raphe on both valves and not in keel. Valves symmetrical and both valves alike. Frustules internally septate. Remaining genera of this family not internally septate; these genera separated on the basis of various differences in frustule ornamentation and organization.	F. Naviculaceae (continued) Navicula spp. Navicula cincta Navicula cryptocephala Navicula gregaria Navicula odiosa Navicula odiosa Navicula in intiquala Navicula in intiquala Navicula in intiquala Navicula in intiquala Navicula intiquala Navicula intiquala Navicula intiquala
Systematic Features and Scientific: Common Names*	(continued) (continued)		Rhoicosphenia curvata	Tum	;

*D--division (Phyla), C--class, O--order, SO--suborder, and $\overline{\text{F}}$ --family; genera and major diatom species are also listed.

Table H137. Continued (the eighth page of eight pages).

Morphological and Other Aspects Valves transversely assymetrical. Longitudinal lines adjoining valve margin. Longitudinal lines not adjoining valve margin.	Valves longitudinally assymetrical. Valves with transverse costae; raphe acute-angled. Valves with transverse costae; raphe not acute-angled.	Valves flat and without transverse costae.	True raphe on both valves but concealed in a keel. Raphe in a marginal position on both margins of a valve. Face of valve transversely undulate. Face of valve not transversely undulate and flat or spiral.	spp
Systematic Features and Scientific: Common Names* C-SO. BacillariophyceaeNaviculineae (continued) F. Gomphonema spp	Epithemia spp Epithemia sorex Rhopalodia spp	Cymbella spp	SO. Surirellineae	F. Nitzschiaceae Denticula spp Hantzschia spp Nitzschia acicularis, N. amphibia, Nitzschia filiformis, N. frustulum Nitzschia microcephala, N. palea, N.

 $\star C--class$, SO--suborder, and F--family; genera and major diatom species are also listed.

Table I138. Periphyton community data and major algal taxa obtained from natural substrates collected from upper Rosebud Creek near Kirby and from an unnamed pond near Kirby (the first page of three pages).

		U	pper Rose	ebud Cree	k	
Collection Date	6/16/78	6/29/78	7/18/78	8/03/78	8/29/78	9/05/78
Sample Number	0425A	0425B	0425C	0425D	0425G	0425H
Sample Code	Α	A	A	A	A	A
Rank-Abundance:						
Audouinella	3-C					5-C
Bacillariophyceae	2-VC	2-VA	2-VA	1-VA	2-VA	2-VA
Chara						
Cladophora	1-VA	1-VA	1-VA	2-A	1-VA	1-VA
Closterium		4-R				
Oedogonium		5-R				
Oscillatoria	4-R					
Pediastrum						
Phormidium		6-R		3-C	3-A	4-VC
Spirogyra						
Stigeoclonium		3-VC			4-C	3-A
Total Diatom Taxa	44	32	34	44	38	39
Total Taxa Counted	42	29	27	33	31	30
Frustules Counted	320	330	342	372	338	314
Diversity	4.252	3.813	3.283	3.736	3.848	3.100
Equitability	0.67	0.69	0.52	0.58	0.68	0.40
PRA Achnanthes sp.	3.5	3.0	5.8	4.8	3.3	3.8
PRA Nitzschia sp.	21.0	14.2	6.5	20.9	13.0	14.3
PRA Major Species:						
Achnanthes minutissima						
Cymbella affinis		10.0		11.6	24.3	44.6
Diatoma vulgare			14.0		13.6	14.3
Fragilaria crotonensis						
Gomphonema olivaceum	17.5	23.6				
Gomphonema tenellum			12.3			
Navicula cryotocephala		18.8	27.2	11.0		
Navicula radiosa			20.2	25.0		
Navicula tripunctata					11.8	
Navicula viridula	21.9					
Nitzschia dissipata				15.1		

Table I138. Continued (the second page of three pages).

		Upp	er Rosebu	d Creek		
Collection Date	10/08/78	11/05/78	4/01/79	5/20/79	7/27/79	8/08/79
Sample Number	04251	0425J	0425L	0425M	0425N	04250
Sample Code	A	A	В	A	C	D
Rank-Abundance:						#
Audouinella				4-C		
Bacillariophyceae	1-VA	1-VA	1-C	1-VA	2-A	
Chara						
Cladophora				2-A	1-VA	
Closterium						
Oedogonium						
<u>Oscillatoria</u>				5–R		
Pediastrum						
Phormidium						
Spirogyra						
Stigeoclonium				3-C		
Total Diatom Taxa	45	43		37		49
Total Taxa Counted	36	36		30		49*
Frustules Counted	328	332		352		1524*
Diversity	3.931	3.599		2.609		3.397
Equitability	0.61	0.49		0.28		0.31
PRA Achnanthes sp.	4.0	0.3		1.5		2.2
PRA Nitzschia sp.	15.2	9.0		9.1		18.0
PRA Major Species:						
Achnanthes minutissima						
Cymbella affinis						44.3
Diatoma vulgare	16.2	11.1				
Fragilaria crotonensis						
Gomphonema olivaceum		20.2		48.0		
Gomphonema tenellum						
Navicula cryptocephala						12.8
Navicula radiosa						
Navicula tripunctata						
Navicula viridula	24.1	25.6		26.7		
Nitzschia dissipata						

^{*}For the "semi-detailed" analysis, 93 diatom taxa and 16,764 frustules were counted.

#This collection was not examined for the non-diatom algae.

Table I138. Continued (the third page of three pages)

		Upper Ros	sebud Creel	¢.	Pond
Collection Date	8/17/79	9/05/79	9/15/79	10/18/79	8/08/79
Sample Number	0425P	0425Q	0425R	0425S	0659A
Sample Code	С	С	С	С	A
Rank-Abundance:					
Audouinella					
Bacillariophyceae	2-A	1-VA	2-VA	2-VA	1-A
Chara					2-VC
Cladophora	1-VA	2-VA	3-A	1-VA	
Closterium					4-R
Oedogonium					
Oscillatoria					
Pediastrum					5-R
Phormidium					3-C
Spirogyra		3-VC	1-VA		
Stigeoclonium	3-C				
Total Diatom Taxa					50
Total Taxa Coated					43
Frustules Counted					388
Diversity					3.467
Equitability					0.37
PRA Achnanthes sp.					32.5
PRA Nitzschia sp.					18.6
PRA Major Species:					
Achnanthes minutissima					30.7
Cymbella affinis					
Diatoma vulgare					
Fragilaria crotonensis					27.6
Gomphonema olivaceum					
Gomphonema tenellum					
Navicula cryptocephala					
Navicula radiosa					
Navicula tripunctata					
Navicula viridula					
Nitzschia dissipata					

Table I139. Periphyton community data and major algal taxa obtained from <u>natural</u> substrates collected from middle Rosebud Creek near Colstrip and from lower Rosebud Creek near Rosebud.

,	07/01/	Middl	Middle Rosebud Creek	Creek	0/17/10	- 1	Lower Rosebud Creek	bud Creek	
	/17//8	1/12//8 8/22//8	8//47/8	1/03/19	6//47/8	8/23//8a	8/ 23/ /80	6/13/19	11/0//19
	0526A	0526C	0526B	0526D	0526E	0530A	0529A	0529B	0529C
	В	A	В	В	В	В	A	В	В
Audouinella		-	-		3-C	-	1	3-R	
Bacillariophyceae	1-C	2-C	2-C	1-C	2-C	1-C	2-C	1-VC	1-A
		1-VA	1-VC	1	1-VC	1	1-VC	2-C	2-C
Total Diatom Taxa		41	1	1	1		22	1	1
Total Taxa Counted	1	30	1			1	22	1	1
Frustules Counted	1	358	1	-	1	1	185	1	
	1	2.915		1	-	1	4.758	1	1
	1	0.37	1		1		1.82		-
PRA Achnanthes sp.	!	trace	<u> </u>	1	1		0.0		
PRA Nitzschia sp.	1	50.9	1	1	!		30.8		-
ies:									
Cocconeis pediculus	1	27.4	1	1	!				1
Navicula cincta	1	1	1	!			11.4	1	¦
Navicula symmetrica	1	1	1	1	!		10.8		
Nitzschia frustulum	1	38.9	!	!	!		1		
Stephanodiscus subtilis		1	1	1	1	1	14.6	1	1

a--Collected at TO5N,R42E,08D (upstream sampling site). b--Collected at TO6N,R42E,16D (sampling site near mouth).

Table I140. Periphyton community data and major algal taxa obtained from <u>natural</u> substrates collected from Indian Creek near Kirby.

3G 9/28/79 11/06/79 B 0528H 0528I C		2-VA	i	1	1-VA		1	1	7-t	2-C	1	3-VC	1	!	1	1	1	1	-	-	1	1		!
8/08/79 0528G D																								
7/17/79 0528F B		2-A	1	1	7-6	-	-		1	3-C	1-VA	1	1	1	1	1	-	1	-	1	1	!		!
6/26/79 0528E B		1-VA	1	1	3-VC	7-C	-		!	1	2-A		-	-	1	!	1	!	-	-	1	ł		!
11/05/78 0528D B	0	1-VA		!	3-VC	1	1	1	!	1	!		}	2-A	1	}	1	!	1	1	!	ł		!
8/29/78 0528C B	<u> </u>) + C	; ;	-	1-VA	5-R	1	-	1	3-C	!	-		1	}	1				1	1	ł		
8/24/78 0528B B		2-VA	Ī	1	1-VA	1	1	1		1	3-C	1	1	1	1	1	1	1	1	1	1			\
7/25/78 0528A B	V) V	; ;	1	1-VA	1	1	1	1	1	5-VC	1	1	2-A	1	1		1	1	1	1	!		!
Collection Date Sample Number Sample Code	Ankistrodesmus	Audouinella Booillowichwood	Geratium	Chara	Cladophora	Closterium	Coelastrum	Dinobryon	Oedogonium	Oscillatoria	Phormidium	Spirogyra	Trachelomonas	Vaucheria	Total Diatom Taxa	Total Taxa Counted	Frustules Counted	Diversity	Equitability	PRA Achnanthes sp.	PRA Nitzschia sp.	PRA Major Species:	ACIIII AILCINES INTINCESSEMA	Cymbella affinis

*For the "semi-detailed" analysis, 106 diatom taxa and 27,900 frustules were counted.

Table I141. Periphyton community data and major algal taxa obtained from natural substrates collected from Davis Creek near Busby and from Muddy Creek near Busby-Lame Deer.

Muddy Creek	6/26/78 7/25/78 9/08/78 8/24/79 6/26/78 7/25/78 9/08/78 5/20/79 8/24/79 11/02/79 0427A 0427B 0427C 0428D 0428B 0428C 0428E 0428E 0428F	B B B			3-A 1-VA 1-VA	1-VA 4-VC 2-A	!	8-R	4-VC 7-C	5-R	:	3-A	2-VA 4-C	0-9	2-A 5-VC 3-VC		:	;	1			1	;	
Davis Creel	/25/78 9/08 0427B 042	В		-	2-A 1-	!	!	· ¦	· 		3-R	· ¦	!	· 	1-A 2-	· ¦	!	!	!	:	!	-	, ,	
	6/26/78 7, 0427A (A		3-C	2-A	-	1	1		-		1-VA	!	-	1	43	32	338	1.811	0.14	6.0	5.7	76.3	
	Collection Date Sample Number		Rank-Abundance:	Audouinella	Bacillariophyceae	Cladophora		Mougeotia	. E	ia	Phormidium	Rhizoclonium	Stigeoclonium	Tribonema		Total Diatom Taxa	Fotal Taxa Counted)iversity	Equitability	ss sp.		= = = = = = = = = = = = = = = = = = = =	

Table I142. Periphyton community data and major algal taxa obtained from natural substrates collected from Lame Deer Creek near Lame Deer and from Cow Creek near Colstrip.

						Cow
			ne Deer (Creek
Collection Date				11/05/78		5/20/79
Sample Number	0524A	0524B	0524C	0524D	0524E	623A
Sample Code	В	A	В	В	В	A
Rank-Abundance:						
Audouinella			2-VC	2-C		
Aulosira						3-VC
Bacillariophyceae	3-A	2-A	1-A	1-A	1-VA	1-VA
Cladophora	1-VA					
Euglena			3-R			
Hormidium						4-C
Oedogonium	4-R			4-R		
<u>Oscillatoria</u>					- -	2-VC
Phormidium				3-C		
Spirogyra					3 - R	
Tribonema					2 - C	
Vaucheria	2-VA	1-A				
Total Diatom Taxa		51				55
Total Taxa Counted		37				36
Frustules Counted		324				349
Diversity		3.718				3.703
Equitability		0.51				0.53
PRA Achnanthes sp.		12.0				0.3
PRA Nitzschia sp.		7.9				22.9
PRA Major Species:						
Cocconeis placentula		24.4				
Entomoneis paludosa						10.3
Navicula cincta						12.3
Navicula viridula		25.0				
Synedra famelica						30.9

Table I143. Periphyton community data and major algal taxa obtained from natural substrates collected from the Tongue River and the Interstate Ditch near Sheridan-Decker.

		Tongue	River		Interstate Ditch
Collection Date	7/07/78	8/26/78	6/26/79	7/26/79	10/18/79
Sample Number	0362B	0362C	0362D	0362E	0696A
Sample Code	В	A	В	В	A
Rank-Abundance:					
Bacillariophyceae	1-VC	2-VC	1-A	1-A	1-VA
Calothrix				4-C	
Cladophora	2-C	1-A	3-VC	2-VC	
Closterium			4-R		3-R
Oedogonium				6-R	
Phormidium	4-R			3-VC	2-VC
Stigeoclonium	3-R	3-VC	2-VC	7-R	
Tolypothrix				5-R	
Total Diatom Taxa		44			80
Total Taxa Counted		34			59
Frustules Counted		354			421
Diversity		4.128			4.968
Equitability		0.76			0.80
PRA Achnanthes sp.		9.7			2.8
PRA <u>Nitzschia</u> sp.		23.7			36.3
PRA Major Species:					
Cocconeis placentula		15.5			
Navicula cryptocephala					11.9
Nitzschia frustulum		15.2			
Rhoicosphenia curvata		11.3			

Table I144. Periphyton community data and major algal taxa obtained from <u>natural</u> substrates collected from Ash and Youngs Creeks near Sheridan-Decker.

	61/1	ы		Ç	ر	. 4	'A					C)																	
															1														
s Creek	7/26/79	0417D	g	c	3 - C	1-VA	2-VC	4-R	1	l I		l I		1	 	i										l I		1	
Young	7/13/79	0417C	В	(3-10	1-VA	2-A		1		1	l I	<u> </u>		}	ļ		-				1			1			1	-
	8/26/78	0417B	A		<u> </u>	2-A	1-A	-		!	!				-	52	34	348	3.001	0.32	5.2	56.7		1	I I	12.1	51.4		1
	10/18/79	0658C	Д		1	3-A	5-VC	!	4-VC	D-9	!	-	1-A	7-R	2-A	!	;	1	-	l I		!		!	1	l I	!	-	
Creek	8/30/79	0658B	Ą			2-VA	-		-	1	4-VC	-	1-VA	-	3-A	70	99	401	4.487	0.59	21.6	14.2		20.9	16.7	-		11.7	!
Ash Creek	7/26/79	0658A	В		1	1-VA	2-VC		1	1	-	}	1	1		ŀ			-		l I				!	!		!	
	/10/78	0417A	A			1-VA	2-VC	-	1		1	1	!	!		26	17	337	2.362	0.41	trace	14.5			1	49.2	1	18.7	13.4
	Collection Date 6			nce:		hyceae			ia	. 目	ja 1		Spirogyra				Total Taxa Counted				PRA Achnanthes sp.		PRA Major Species:	Achnanthes minutissima	Navicula cryptocephala	Navicula viridula	E		Synedra ulna

Table I145. Periphyton community data and major algal taxa obtained from natural substrates collected from the Tongue River near Pyramid Butte-Birney (the first page of three pages).

Collection Date	6/28/78	7/19/78	8/03/78	8/24/78	9/05/78
Sample Number	0364B	0364C	0364D	0364E	0364G
Sample Code	A	Α	A	A	Α
Rank-Abundance:					
Agmenellum					
Anabaena					
Audouinella				3-R	
Bacillariophyceae	1-A	2-VA	2-VA	2-A	2-A
Cladophora	2-R	1-VA	1-VA	1-VA	1-VA
Closterium	4-R	3-R			
Cosmarium		4-R			4-R
Mougeotia			3-R		
Oedogonium	3-R				
Oscillatoria					
Phormidium					
Scenedesmus					
Spirogyra					3-VC
Tribonema					
Total Diatom Taxa	43	36	38	32	26
Total Taxa Counted	41	31	32	27	23
Frustules Counted	327	350	396	357	355
Diversity	4.521	3.190	3.983	3.327	3.063
Equitability	0.83	0.42	0.72	0.52	0.52
PRA Achnanthes sp.	2.1	1.7	6.1	33.6	38.0
PTA Nitzschia sp.	17.3	11.2	14.9	2.8	2.8
PRA Major Species:					
Achnanthes minutissima		-		33.6	38.0
Cocconeis pediculus				12.9	12.1
Cyclotella glomerata					
Cymbella affinis	10.7				
Diatoma vulgare		35.4	21.0		
Fragilaria capucina	12.5				
Fragilaria vaucheriae					
Gomphonema olivaceum					
Gomphonema tenellum				12.6	10.1
Melosira varians		14.9			
Navicula cincta					
Nitzschia dissipata			13.6		
Rhoicosphenia curvata				11.2	14.4
Synedra ulna					

Table I145. Continued (the second page of three pages).

Collection Date	10/08/78	11/04/78	3/31/79	5/19/79	6/21/79
Sample Number	03641	0364J	0364L	0364M	0364N
Sample Code	A	A	A	A	A
Rank-Abundance:					
Agmenel1um					
Anabaena					
Audouinella					
Bacillariophyceae	1-VA	1-VA	2-VA	1-VA	2-A
Cladophora			1-VA	2-VA	3-VC
Closterium	4-R				
Cosmarium					
Mougeotia		2 - A			
Oedogonium					
<u>Oscillatoria</u>					
Phormidium	2-VC	3-VC			
Scenedesmus	3-R	4-R			
Spirogyra				3-A	1-VA
Tribonema					
Total Diatom Taxa	55	51	26	37	59
Total Taxa Counted	48	44	20	29	54
Frustules Counted	376	366	336	337	372
Diversity	4.450	4.884	2.848	3.632	4.819
Equitability	0.67	1.00	0.50	0.62	0.78
PRA Achnanthes sp.	17.1	12.8	1.8	4.7	14.3
PRA Nitzschia sp.	20.1	35.0	0.3	7.1	14.2
PRA Major Species:					
Achnanthes minutissima	16.8	12.0			14.0
Cocconeis pediculus					
Cyclotella glomerata				18.1	
Cymbella affinis					
Diatoma vulgare			17.9		
Fragilaria capucina					
Fragilaria vaucheria			36.6	18.7	
Gomphonema olivaceum			13.7	19.6	
Gomphonema tenellum					
Melosira varians					
Navicula cincta					
Nitzschia dissipata	11.4	13.7			
Rhoicosphenia curvata					
Synedra ulna			11.9		

Table I145. Continued (the third page of three pages).

Collection Date	8/01/79	8/08/79	8/18/79	11/02/79	11/05/79
Sample Number	0364Ø	0364P	0364Q	0364R	0364S
Sample Code	A	D	С	С	С
Rank-Abundance:		#			
Agmenellum				5-R	
Anabaena			7-C		.
<u>Audouinella</u>					
Bacillariophyceae	2-VC		3-A	2-VA	2-A
Cladophora Cladophora	1-VA		1-VA		
Closterium					
Cosmarium					
Mougeotia			4-A	3-A	3-VC
Oedogonium			5-VC		
<u>Oscillatoria</u>			6-C	4-VC	4-C
Phormidium	3-C				
Scenedesmus			9-R		
Spirogyra			2-A	1-VA	1-VA
Tribonema			8-C		
Total Diatom Taxa	45	57			
Total Taxa Counted	38	5 7 *			
Frustules Counted	354	251*			
Diversity	3.976	4.838			
Equitability	0.61	0.75			
PRA Achnanthes sp.	16.7	7.3			
PRA <u>Nitzschia</u> sp.	3.7	14.4			
PRA Major Species:					
Achnanthes minutissima	15.5				
Cocconeis pediculus	12.1				
Cyclotella glomerata					
Cymbella affinis					
Diatoma vulgare					
Fragilaria capucina					
Fragilaria vaucheriae					
Gomphonema olivaceum					
Gomphonema tenellum					
Melosira varians					
Navicula cincta		15.8			
Nitzschia dissipata					
Rhoicosphenia curvata	11.0				
Synedra ulna					

^{*}For the "semi-detailed" reading, 152 diatom taxa and 9,538 frustules were counted.

#This collection was not examined for the non-diatom algae.

Table I146. Periphyton community data and major algal taxa obtained from natural substrates collected from Squirrel Creek near Decker (the first page of two pages).

Collection Date 6/10/78 Sample Number 8/26/78 0418B 11/04/78 0418C 4/01/79 5/20/79 0418E 6/21/79 0418F Sample Number Sample Code A
Sample Code A A A A A A A A A A A A A A A A A A A
Rank-Abundance:
<u>Anabaena</u> 3-R
<u>Audouinella</u> 2-C
Bacillariophyceae 2-A 1-VA 1-A 1-A 2-VC 2-VC
<u>Cladophora</u> 1-VA 2-VC 3-R 1-A
<u>Closterium</u>
Oscillatoria
Phormidium
Spirogyra
<u>Spirulina</u>
Stigeoclonium
Vaucheria 1-VA
Total Diatom Taxa 38 46 43 23 31 37
Total Taxa Counted 33 39 31 17 30 31
Frustules Counted 344 394 359 327 359 346
Diversity 3.797 3.790 3.557 2.414 3.526 4.129
Equitability 0.61 0.51 0.55 0.41 0.57 0.84
PRA Achnanthes sp. 0.3 4.4 5.6 5.8 0.6 0.3
PRA Nitzschia sp. 32.7 27.0 26.3 47.1 25.8 32.4
PRA Major Species:
Navicula cryptocephala 11.1 31.0 17.0
Navicula gregaria 12.8
Navicula viridula 28.8 27.6 29.1 32.3
Nitzschia dissipata 15.0
Nitzschia frustulum 16.2 43.1 13.3
Nitzschia longissima
Rhoicosphenia curvata
Surirella ovata 15.6 11.8

Table 1146. Continued (the second page of two pages).

Collection Date	7/26/79	8/08/79	8/17/79	9/28/79	10/18/79	11/06/79
Sample Number	0418G	0418H	0418J	0418N	0418Ø	0418R
Sample Code	A	D	C-A@	C	A	A
Rank-Abundance:						
Anabaena						
Audouinella	2-VC	3-VC			4-C	
Bacillariophyceae	1-VA	1-VA	2-VA	2-A	2-A	2-VA
Cladophora		2-A	1-VA	1VA		
Closterium		5-R				
Oscillatoria			3-VC	3-C	3-C	
Phormidium	3-C					
Spirogyra		4-VC				3-VC
Spirulina			4-C			
Stigeoclonium	4-R					
Vaucheria					1-VA	1-VA
Total Diatom Taxa	38	52	53		48	46
Total Taxa Counted	31	52*	41		35	40
Frustules Counted	365	502*	326		325	356
Diversity	3.391	4.487	4.054		4.124	4.558
Equitability	0.48	0.63	0.59		0.74	0.88
PRA <u>Achnanthes</u> sp.	0.3	1.0	0.3		2.1	1.7
PRA <u>Nitzschia</u> sp.	41.2	38.0	43.8		39.0	22.3
PRA Major Species:						
Navicula cryptocephala	39.1	21.2			10.7	
Navicula gregaria						
Navicula viridula					18.8	29.8
Nitzschia dissipata					10.5	
Nitzschia frustulum	20.5	17.4			13.8	
Nitzschia longissima			27.3			
Rhoicosphenia curvata			13.2			
Surirella ovata						

^{*}For the "semi-detailed" analysis, 104 diatom taxa and 11,044 frustules were counted.

OThis sample was initially intended for a non-diatom assessment, but the diatomaceous component of the tychoplankton that was collected was also analyzed along with the benthic macroalgae.

Table I147. Periphyton community data and major algal taxa obtained from <u>natural</u> substrates collected from Deer Creek near Decker and from Canyon Creek near Decker-Birney.

Sample Number Code A B B A B B A B B A B B	Collection Date	Deer 8/15/78	-	- 1	 Canyon 6/26/79		, I
A B B B B B B B B B B B B B B B B B B B		0168C	- 1	4	0585B	,	' 1
4-R 6-R 1-VC 1-VC 1-VA 1-A 1-A 1-A 1-A 1-A 1-A 1-A 1-A 1-A 1-		В			В		
4-R 6-R 1-VC 1-VA 1-A 1-A 1-A 1-A 1-A 1-A 1-A 1-A 1-A 1-							
4-R		1			1		
4-R		6-R			-		
1-VC 2-A 1-VC 1-VA 1-A 1-A 1-A 1-A 1-A 1-A 1-A 1-A 1-A 1-		!			-		
		2-A			1-A		
1		3-VC					
1		1			-		
3-R		1			-		
3-R		7-R					
		-					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1			1		
Note the content of		5-R			}		
3-VC 2-C 2-C 2-C 2-C 2-C 1-VA 3-R 3-R 3-R 3-R 3-R		!					
1-VA 3-R 2-R 4-C 3-R 43 35 35 3.928 4.139		1			2-C		
2-R 4-C 3-R 3-8 3-6 3-6 3-8 3-8 3-8 3-8 3-9 3-9 3-9 3-9 3-9 3-9 3-9 3-9 3-9 3-9		1-VA					
2-R 4-C		1			3-R		
43		4-C					1
36 35		1			1		
215 148		1			-		
3.928 4.139		1					
0.61 0.74 3.8 4.7 33.9 31.1 alala m 16.2		1			-		
3.8 4.7		!					
33.9 31.1		1			1		
a 26.3 24.3 16.2 20.2		1					
26.3 20.2							
26.3 20.2 16.2 20.2							
26.3 24.3 16.2 20.2							
26.3 24.3 16.2 20.2		1			-		
16.2 20.2		-			}		
					1		

Table I148. Periphyton community data and major algal taxa obtained from natural substrates collected from Prairie Dog and Bull Creeks near Pyramid Butte-Birney.

	Pra	irie Dog	Creek	Bull	Creek
Collection Date	7/12/79	8/18/79	11/02/79	7/12/79	8/30/79
Sample Number	0653A	0653B	0653C	0655A	0655B
Sample Code	В	A-C@	В	В	A
Rank-Abundance:					
Agmenellum		6-C	5-C		
Anabaena		8-R			
Bacillariophyceae	1-A	2-VA	1-VA	1-VC	1-A
Calothrix	2-VC				
Chara				2-C	
Cladophora					3-VC
Euglena		9-R			
Mougeotia		3-A	3-VC		4-C
Phormidium	3-R				
Rhizoclonium		4-A			
Scenedesmus		7-R			
Spirogyra		1-VA	2-A		2-A
Zygnema		5-VC	4-C		
Total Diatom Taxa		72			51
Total Taxa Counted		45			40
Frustules Counted		364			370
Diversity		4.012			3.711
Equitability		0.53			0.48
PRA Achnanthes sp.		23.3			30.8
PRA <u>Nitzschia</u> sp.		41.8			17.9
PRA Major Species:					
Achnanthes minutissima		22.8			30.3
Cymbella microcephala					17.3
<u>Diatoma</u> <u>tenue</u>					10.3
Navicula cincta		12.1			
Nitzschia sp.		16.5			

@Macroalgae specimens were also collected from a large ponded segment of the stream.

Table I149. Periphyton community data and major algal taxa obtained from natural substrates collected from Crazy Head Springs (pond) near Ashland-Lame Deer and from Cook Creek near Birney-Birney Village.

	Crazy Head				
	Springs		Cook	Creek	
Collection Date	8/09/79	6/11/78	8/24/78	9/08/78	9/05/79
Sample Number	0660A	0420A	0420B	0420C	0420D
Sample Code	A	A	Α	В	В
Rank-Abundance:					
Bacillariophyceae	1-VA	1-C	2-A	2-VC	2-VA
Calothrix	8-R				·
Chaetophora	3-VC				
Cladophora	9-R			4-C	
Closterium	7-C				
Euglena	11-R				
Lyngbya					3 - A
Mougeotia	2-A				5 - VC
Nostoc	12-R				
Oedogonium	6-C			6 - R	6-C
Pleurotaenium	10-R				
Rhizocloneium	13-R			5-C	
Rivularia	4-VC				
Spirogyra	5-C	·		3-VC	1-VA
Tribonema				7 - R	4-A
Vaucheria			1-A	1-VA	7-C
Total Diatom Taxa	38	35	76		
Total Taxa Counted	30	33	51		
Frustules Counted	333	120	348		
Diversity	3.756	4.215	4.191		
Equitability	0.50	0.82	0.53		
PRA Achnanthes sp.	18.9	5.0	23.6		
PRA Nitzschia sp.	21.3	44.1	15.4		
PRA Major Species:					
Achnanthes lanceolata			20.7		
Achnanthes minutissima	18.9				
Cocconeis pediculus	22.5				
Cyclotella meneghiniana		19.2			
Cymbella microcephala	13.5				
Navicula gregaria			19.5		
Nitzschia frustulum	16.8	13.4			
Nitzschia kutzingiana		10.0			
Nitzschia palea		10.0			

Collection Date Sample Number Sample Code Rank-Abundance:	6/27/78 0429A B	8/16/78 0429B B	9/08/78 0429C B	7/28/79 0429D A	9/06/79 0429E B
Anabaena				3-R	
Audouinella			2-VC		4-C
Bacillariophyceae	3-VC	1-A	1-A	1-VC	1-A
Cladophora		2-A			
Phormidium			3-C	2-VC	3-VC
Spirogyra	2-VC				
Vaucheria	1-A				2-A
Total Diatom Taxa				52	
Total Taxa Counted				40	
Frustules Counted				145	
Diversity				4.509	
Equitability				0.85	
PRA Achnanthes sp.				11.0	
PRA <u>Nitzschia</u> sp.				39.4	
PRA Major Species:					
Achnanthes minutissima		400 400		10.3	
Navicula cincta				13.8	
Nitzschia frustulum				15.2	

Table I151. Periphyton community data and major algal taxa obtained from natural substrates collected from Beaver Creek near Brandenberg.

٠٠,																									28.0			
7/18/	0525	A		3-A	8-C	2-V,	1	5-V	-	ł	D-9	/Λ−ħ	7-C	1	1-V.	1	-	9-R		-	-	I	1	1		1	1	-
7/12/79	0525E	Σ4		3-AC		2-C	1	1-A	1	-	-	-		6-R	4-VC	1	2-A	1	1			1		1		1	1	1
11/05/78	0525D	B	,	1-C		1	1	1	1	2-R	1	1		1	}	1	1	1	1	1	1	1	1	i I	i i	1		i i
-1																									1			
9/03/78	0525B	m		1-A	1	1	1	1	I	1	I	1	1	3-VC	2-VC	1	4-C	!	1	1		1	!	1	1	!		1
7/13/78	0525A	Д		2-A	1		1-A	3-VC	1	1	-	4-VC		1	1			1	1	1	;	1	1		1	1	;	-
Collection Date	Sample Number	Sample Code	Rank-Abundance:	Bacillariophyceae	Calothrix	Chaetophora	Chara	Cladophora	Closterium	Euglena	Lyngbya	Oedogonium	Oscillatoria	Phormidium	Spirogyra	Spirulina	Stigeoclonium	Trichodesmium	Total Diatom Taxa	Total Taxa Counted	Frustules Counted	Diversity	Equitability	PRA Achnanthes sp.	PRA <u>Nitzschia</u> sp. PRA <u>Major Species:</u>	Cymbella pusilla	Navicula cincta	Nitzschia frustulum

Table I152. Periphyton community data and major algal taxa obtained from natural substrates collected from upper Hanging Woman Creek near Quietus-Decker (the first page of three pages).

Collection Date	6/16/78	6/28/78	7/18/78	8/15/78	8/28/78
Sample Number	0424A	0424B	0424C	0424D	0424F
Sample Code	A	A	A	A	Α
Rank-Abundance:					
Agmenellum					
Ankistrodesmus					
Audouinella					4-C
Bacillariophyceae	2-A	2-A	2-A	2-A	1-A
Calothrix					
Cladophora	1-VA	1-VA	1-A		3-VC
Hormidium					6-R
Mougeotia					
Oedogonium					
Oscillatoria					
Phormidium			`		5-C
Rhizoclonium		3-C			2-VC
Scenedesmus					
Spirogyra				3-VC	
Stigeoclonium					
Tribonema				1-A	
Zygnema					
Total Diatom Taxa	46	43	45	43	44
Total Taxa Counted	37	38	39	38	41
Frustules Counted	339	341	332	349	363
Diversity	3.902	4.087	3.992	3.910	4.052
Equitability	0.59	0.66	0.59	0.58	0.58
PRA Achnanthes sp.	5.0	13.8	21.4	15.5	10.5
PRA Nitzschia sp.	20.1	38.2	36.6	47.2	39.7
PRA Major Species:					
Achnanthes minutissima		13.8	21.1	15.2	10.2
Cymbella affinis					
Diploneis puella					15.2
Gomphonema angustatum					
Navicula cincta	15.3			11.8	
Navicula cryptocephala					
Nitzschia frustulum		19.1	21.0	36.4	25.7
Nitzschia longissima					
Nitzschia microcephala					
Nitzschia palea	11.8	11.7			
Rhoicosphenia curvata					
Synedra famelica	21.2				
Synedra fasciculata			10.5		

Table I152. Continued (the second page of three pages).

Collection Date	9/05/78	10/07/78	11/04/78	5/19/79	8/08/79
Sample Number	0424G	0424J	0424K	0424M	0424N
Sample Code	A	A	A	A	D
Rank-Abundance:					#
Agmenel1um					
Ankistrodesmus			3 - R		
Audouinella				4 - R	
Bacillariophyceae	2 - VC	1 - A	1-VA	1-VC	
Calothrix					
Cladophora	1-A	2-A	2 - A	2-VC	
Hormidium					
Mougeotia					
Oedogonium				5-R	
<u>Oscillatoria</u>	4-R				
Phormidium				3-C	
Rizoclonium					
Scenedesmus	5-R				
Spirogyra					
Stigeoclonium	3-R	3-C			
Tribonema					
Zygnema					
Total Diatom Taxa	52	52	74	42	71
Total Taxa Counted	46	46	56	36	71*
Frustules Counted	365	332	338	376	784*
Diversity	4.350	4.262	4.681	3.510	4.666
Equitability	0.65	0.61	0.68	0.44	0.54
PRA Achnanthes sp.	2.7	5.7	3.3	33.2	1.6
PRA Nitzschia sp.	40.0	41.7	29.1	8.6	58.0
PRA Major Species:					
Achnanthes minutissima				33.2	
Cymbella affinis				16.8	
Diploneis puella	16.2	25.6			
Gomphonema angustatum				12.2	
Navicula cincta	29.3				
Navicula cryptocephala	27.4				
Nitzschia frustulum	27.7	20.4			17.0
Nitzschia longissima					
Nitzschia microcephala					20.1
Nitzschia palea					
Rhoicosphenia curvata			10.7		
Synedra famelica					
Synedra fasciculata			21.6		

^{*}For the "semi-detailed" analysis, 117 diatom taxa and 11,760 frustules were counted.

[#]This collection was not examined for the non-diatom algae.

Table I152. Continued (the third page of three pages).

	0/11/170	0.100.170	0.100.170	
Collection Date	9/14/78	9/28/79a	9/28/79b	10/18/79
Sample Number	0424Ø	0693A	0424P	0424Q
Sample Code	A	В	С	С
Rank-Abundance:				0 70
Agmenellum				8-R
Ankistrodesmus				9-R
Audouinella	1 77 4	- -		
Bacillariophyceae	1-VA	2-VC	3-A	2 - A
Calothrix	7-R			
Cladophora	3-VC	1-A	2-A	5-C
Hormidium	5-C		4-VC	
Mougeotia			4-70	3-VC
Oedogonium Ocillaria	2-VC	2.0		6-C
Oscillatoria		3-C		7-C
Phormidium				
Rhizoclonium				
Scenedesmus		- -	1 77 4	1 774
Spirogyra	4-VC		1-VA	1-VA
Stigeoclonium	6-R			
Tribonema				
Zygnema				4-C
Total Diatom Taxa	61			
Total Taxa Counted	48			
Frustules Counted	352			
Diversity	4.482			
Equitability	0.69			
PRA Achnanthes sp.	7.1			
PRA Nitzschia sp.	53.2			
PRA Major Species:				
Achnanthes minutissima				
Cymbella affinis				
Diploneis puella				
Gomphonema angustatum				
Navicula cincta				
Navicula cryptocephala				
Nitzschia frustulum	12.5			
Nitzschia longissima	14.2			
Nitzschia microcephala	15.6			
Nitzschia palea				
Rhoicosphenia curvata				
Synedra famelica				
Synedra fasciculata				

a--Collected at T10S,R43E,O2A (near Montana-Wyoming border). b--Collected at T08S,R43E,17D (major upstream sampling site).

Table I153. Periphyton community data and major algal taxa obtained from natural substrates collected from lower Hanging Woman Creek near Birney (the first page of three pages).

Collection Date	6/16/78	6/29/78	7/19/78	8/15/78	8/28/78	9/05/78	10/07/78
Sample Number	0426A	0426B	0426C	0426D	0426F	0426G	0426J
Sample Code	A	A	A	Α	Α	Α	Α
Rank-Abundance:							
Anabaena						6-R	
Ankistrodesmus							
Audouinella	3-C						4-R
Bacillariophyceae	1-A	2-A	2-A	2·-VC	3-VC	1-VC	1-A
Chara	1-A	2-A	Z-R	1-VA	4-C	1-40	
Cladophora		1-VA		1-VA	1-VA		
Hormidium							
Mougeotia							2-C
Oedogonium							2-0
<u>Oscillatoria</u>						2-VC	
Phormidium	4-R						3-R
Rhizoclonium	2-VC		1 - A				5-R
Scenedermus						4-R	
Spirogyra			3-C				
Spirulina				3 - R		5-R	
Stigeoclonium						3-C	
Tribonema							
Ulothrix							
Vaucheria					2-A		
Total Diatom Taxa	60	50	45	54	61	70	80
Total Taxa Counted	57	44	36	46	56	57	62
	346	325	355	346	329	321	330
Frustules Counted					4.371		
Diversity	4.970	4.186	2.995	3.772		4.724	5.016
Equitability	0.82	0.61	0.31	0.43	0.55	0.68	0.78
PRA Achnanthes sp.	4.3	20.3	44.8	35.3	26.7	13.7	7.6
PRA <u>Nitzschia</u> sp.	18.7	9.5	19.7	34.8	21.1	20.5	31.3
PRA Major Species:							
Achnanthes		10.7		25.2	06.7	10 7	
minutissima		19.7	44.8	35.3	26.7	13.7	
Cyclotella						7.5.6	10.0
meneghiniana						15.6	13.9
Cymbella affinis		18.2			10.6		
Diatoma tenue							
Entomoneis							
paludosa	15.3						
Gomphonema							
olivaceum							
Navicula cincta		11.4					
Nitzschia							
frustulum			12.6	17.3			
Synedra							
fasciculata			18.3				

Table I153. Continued (the second page of three pages).

Collection Date	11/04/78	2/11/79	3/31/79	5/19/79	8/07/79	9/04/79
Sample Number	0426K	0426M	0426N	0426Ø	0426P	0426Q
Sample Code	A	A	A	A	D	A
Rank-Abundance:					#	
Anabaena	3-R					
Ankistrodesmus	5-R					
Audouinella						
Bacillariophyceae	1-A	2-A	1-VA	1-A		2-A
Chara						
Cladophora		1-VA				
Hormidium			4-R			
Mougeotia	7-R			3-VC		3-C
Oedogonium	6-R			5-C		
Oscillatoria	2-R			6-R		
Phormidium	4-R					
Rhizoclonium						
Scenedesmus						
Spirogyra			3-R	4-C		1-VA
Spirulina						
Stigeoclonium						
Tribonema				7-R		
Ulothrix			2-C			
Vaucheria				2-VC		
Total Diatom Taxa	77	59	49	83	55	62
Total Taxa Counted	54	48	25	77	55	50
Frustules Counted	364	386	354	349	486	321
Diversity	4.746	4.336	2.572	5.372	4.090	4.223
Equitability	0.74	0.62	0.32	0.80	0.45	0.54
PRA Achnanthes sp.	12.6	23.9	13.3	4.1	10.0	13.0
PRA Nitzschia sp.	44.4	15.3	0.9	26.5	33.9	19.3
PRA Major Species:				##		
Achnanthes minutissima	12.1	23.1	13.3			11.8
Cyclotella meneghiniana						
Cymbella affinis		13.7	19.8			24.3
Diatoma tenue			10.2			
Entomoneis paludosa						
Gomphonema olivaceum			44.1			
Navicula cincta					23.5	10.3
Nitzschia frustulum	15.1				25.3	11.9
Synedra fasciculata						

^{*}For the "semi-detailed" analysis, 117 diatom taxa and 21,384 frustules were counted.

##None of the diatom taxa in this sample had PRA values greater than 10%.

[#]This collection was 'not examined for the non-datom algae.

Table I153. Continued (the third page of three pages).

Collection Date	9/14/79a	9/14/79b	9/15/79c	9/29/79	10/19/79	11/05/79
Sample Number	0692A	0426R	0118F	0426S	0426T	0426U
Sample Code	В	A	В	C	C	C
Rank-Abundance:	2	••	-	Ü	· ·	
Anabaena						
Ankistrodesmus						
Audouinella						
Bacillariophyceae	1-VC	1-VA	1-A	3-VC	4-C	4-VC
Chara						
Cladophora		2-VC	2-VC	1-VA	3-VC	1-VA
Hormidium						
Mougeotia						
Oedogonium			4-C			
Oscillatoria						
Phormidium		4-C				
Rhizoclonium		4-0				
Scenedesmus						
		3-C	3-VC	2-A	2-A	3-A
Spirogyra Spirulina		3-C	J-VC	2-A	2-A	J-A
Stigeoclonium						
Tribonema						
Ulothrix					1-VA	
Vaucheria					1-VA	2-A
Total Diatom Taxa		50				
Total Taxa Counted		44				
Frustules Counted		366				
Diversity		4.197				
Equitability		0.61				
PRA Achnanthes sp.		12.8				
PRA Nitzschia sp.		39.9				
PRA Major Species:						
Achnanthes minutissima		12.8				
Cyclotella						
meneghiniana						
Cymbella affinis		16.9				
Diatoma tenue						
Entomoneis paludosa						
Gomphonema olivaceum						
Navicula cincta						
Nitzschia frustulum		20.8				
Synedra fasciculata						
2,110414 14001641464						

a--Collected at TO7S,R43E,17C (upstream and intermediate sampling site). b--Collected at TO6S,R43E,19D (major downstream sampling site). c--Collected at TO6S,R43E,18B (sampling site near mouth).

Table I154. Periphyton community data and major algal taxa obtained from natural substrates collected from Stroud Creek near Quietus-Decker and from Lee Creek near Quietus-Birney.

		Stroud Cre		Lee Creek
Collection Date	7/13/79	9/04/79	11/05/79	7/12/79
Sample Number	0656A	0656B	0656C	0654A
Sample Code	A	В	В	A
Rank-Abundance:				
Anabaena	5-R			6-C
Bacillariophyceae	1-A	2-VC	3-A	3-A
Chaetophora				1-VA
Cladophora	2-VC			
Closterium	4-R		7-R	
Mougeotia			2-VA	2-A
Oedogonium				5-C
Oscillatoria			6-C	
Phormidium	3-VC		5-C	
Rhizoclonium			1-VA	
Spirogyra		1-A	4-VC	
Tribonema				4-VC
Total Diatom Taxa	68			74
Total Taxa Counted	46			54
Frustules Counted	137			322
Diversity	4.567			4.851
Equitability	0.76			0.80
PRA Achnanthes sp.	2.2			4.6
PRA <u>Nitzschia</u> sp.	44.3			35.3
PRA Major Species:				
Navicula cincta	10.9	-	names names	
Nitzschia frustulum				10.2
Nitzschia microcephala	22.6			
Nitzschia paleacea				17.4

Table I155. Periphyton community data and major algal taxa obtained from <u>natural</u> substrates collected from the East Fork of Hanging Woman Creek near Birney (the first page of three pages).

Collection Date	6/11/78	8/18/78	8/27/78	9/09/78	10/08/78
Sample Number	0419A	0419B	0419C	0419D	0419E
Sample Number Sample Code	0419A A	0419B A	04190 A	041 <i>3D</i>	A
Rank-Abundance:	А	А	Λ	Α	Δ.
Anabaena					4-R
Audouinella	4-R	4-C	2-C		2-VC
	1-VA	1-A	1-A	1-VC	1-A
Bacillariophyceae				_ _	1-A
Chaetophora Chara					
	2-C	2-VC		2-VC	
Cladophora	2-G 	2-76		2-VG 	
Closterium	3-C				
Enteromorpha	3-C				
Hormidium					
Monostroma					
Mougeotia					
Nostoc	7-R			3-R	
Oedogonium				3-K	
Oscillatoria	5 - R	3-C			3-C
Phormidium		3-0			3-6
Rhizoclonium					
Spirogyra	6-R				
Tribonema					
Vaucheria					
Zygnema					
Total Diatom Taxa	42	55	44	71	64
Total Taxa Counted	32	44	37	49	52
Frustules Counted	258	363	315	333	352
Diversity	3.153	4.362	3.824	4.628	4.240
Equitability	0.41	0.68	0.57	0.74	0.54
PRA Achnanthes sp.	6.4	15.4	15.6	20.1	16.8
PRA Nitzschia sp.	14.2	24.0	17.5	16.5	26.0
PRA Major Species:					
Achnanthes lanceolata				10.2	
Achnanthes minutissima					
Amphora perpusilla					21.3
Cocconeis placentula			12.4	11.4	
Navicula gregaria					
Navicula viridula	43.9	20.1	24.1		
Nitzschia frustulum					17.4
Nitzschia linearis					
Nitzschia paleacea					
Surirella ovata	11.7				

Table 1155. Continued (the second page of three pages).

Collection Date	11/04/78	2/11/79	3/31/79	5/19/79	6/22/79
Sample Number	0419F	0419G	0419H	04191	0419J
Sample Code	A	A	A	A	A
Rank-Abundance:	21	21	A	A	21
Anabaena					
Audouinella	2-VC	2-VC			
Bacillariophyceae	1-VC	1-VA	1-A	1-A	1-VA
Chaetophora					
Chara					
Cladophora				2-A	
				2 A	
Closterium					
Enteromorpha					
Hormidium					
Monostroma					2-A
Mougeotia					
Nostoc					
<u>Oedogonium</u>	3-R				5-C
Oscillatoria					
Phormidium	4-R				
Rhizoclonium					4-VC
Spirogyra					
Tribonema				4-C	
Vaucheria			2-VC	3-C	3-VC
Zygnema					
Total Diatom Taxa	69	39	53	70	52
Total Taxa Counted	55	33	47	52	40
Frustules Counted	351	373	380	336	329
Diversity	4.838	3.638	4.110	4.540	4.254
Equitability	0.77	0.54	0.53	0.66	0.70
PRA Achnanthes sp.	16.8	27.1	13.2	11.3	22.5
PRA Nitzschia sp.	27.7	19.0	20.2	30.2	38.9
PRA Major Species:					
Achnanthes lanceolata					10.0
Achnanthes minutissima	11.1	23.6			12.5
Amphora perpusilla		18.8			
Cocconeis placentula				11.3	
Navicula viridula		13.1	22.1	14.3	
Nitzschia frustulum					
Nitzschia linearis				11.0	
Nitzschia paleacea					13.4
Surirella ovata			16.1		

Table I155. Continued (the third page of three pages).

				- 1 1	
Collection Date	7/28/79	8/07/79	9/05/79	9/29/79	11/05/79
Sample Number	0419K	0419L	0419M	0419P	0419S
Sample Code	Α	D	Α	С	С
Rank-Abundance:					
Anabaena					
Audouinella	3-VC	5-C	2-A		
Bacillariophyceae	2-VC	1-A	3-VC	6-VC	4-VC
Chaetophora					5-VC
Chara		4-VC			
Cladophora			4-C	5-A	3-A
Closterium		7-R			6-C
Enteromorpha	1-A				
Hormidium		8 - R			
Monostroma		2-VC			
Mougeotia				1-VA	
Nostoc		3-VC		2-A	
Oedogonium					
<u>Oscillatoria</u>					
Phormidium	4-C	9-R			
Rhizoclonium		6-C			
Spirogyra				4-A	2-VA
Tribonema					
Vaucheria			1-A		
Zygnema				3-A	1-VA
Total Diatom Taxa	39	53	51		
Total Taxa Counted	28	53*	38		
Frustules Counted	349	387*	326		
Diversity	2.146	4.386	4.034		
Equitability	0.21	0.58	0.63		
PRA Achnanthes sp.	70.5	30.3	34.4		
PRA Nitzschia sp.	14.6	21.5	14.4		
PRA Major Species:					
Achnanthes lanceolata			11.7		
Achnanthes minutissima	68.2	22.3	22.7		
Amphora perpusilla					
Cocconeis placentula			13.8		
Navicula gregaria		10.8			
Navicula viridula					
Nitzschia frustulum		11.0			
Nitzschia linearis					
Nitzschia paleacea					
Surirella ovata					

^{*}For the "semi-detailed" analysis, 118 diatom taxa and 11,997 frustules were counted.

Table I156. Periphyton community data and major algal taxa obtained from natural substrates collected from Bear Creek near Otter and from Cow Creek near Otter-Fort Howe.

	Bear	Creek	Cow Creek			
Collection Date	7/12/79	9/30/79	6/27/79	7/31/79	8/31/79	
Sample Number	0652A	0652B	0644A	0644B	0644C	
Sample Code	A	В	В	В	A	
Rank-Abundance:						
Agmenellum	5-R					
Bacillariophyceae	2-A	1-VA	2-VC	1-A	1-VA	
Cladophora	3-VC					
Closterium		4-R				
Mougeotia		2-C				
Nostoc			1-A	2-VC	2-VA	
Phormidium				3-C		
Scenedesmus	4-C					
Spirogyra	1-VA					
Stigeoclonium		3-C				
Total Diatom Taxa	44				61	
Total Taxa Counted	28				49	
Frustules Counted	359				366	
Diversity	2.972		***		4.351	
Equitability	0.39				0.61	
PRA Achnanthes sp.	39.8				20.7	
PRA <u>Nitzschia</u> sp.	5.6				29.7	
PRA Major Species:						
Achnanthes minutissima	39.8				11.2	
Cocconeis placentula					15.0	
Nitzschia palea			ment ment		12.8	
Synedra famelica	22.3					

Table I157. Periphyton community data and major algal taxa obtained from natural substrates collected from upper Otter Creek near OtterFort Howe.

Collection Date	7/07/78	8/29/78	6/27/79	7/31/79	9/30/79a	9/30/79b
Sample Number	0523A	0523B	0523C	0523D	0694A	0523E
Sample Code	В	A	В	В	В	В
Rank-Abundance:						
Audouinella			3-VC	3-VC		
Bacillariophyceae	3-A	3-A	2-VC	1-VA	1-VA	1-VA
Cladophora	1-VA	1-VA	1-VA	4-C		2-A
Closterium	5-C					
Oscillatoria					2-C	4-VC
Phormidium				2-A		
Rhizoclonium	4-C					
Scenedesmus						5-R
Spirogyra	2-A					
Spirulina						6-R
Stigeoclonium						3-VC
Vaucheria		2-A				
Total Diatom Taxa		68				
Total Taxa Counted		60				
Frustules Counted		387				
Diversity		4.751				
Equitability		0.67				
PRA Achnanthes sp.		18.4				
PRA <u>Nitzschia</u> sp.		14.6				
PRA Major Species:						
Achnanthes minutissima		15.8				en- ma
Pleurosigma delicatulum		13.4				

a--Collected at T08S,R46E,05C (upstream sampling site above Bear Creek). b--Collected at T07S,R45E,13D (major upstream sampling site).

Table I158. Periphyton community data and major algal taxa obtained from natural substrates collected from lower Otter Creek near Ashland (the first page of three pages).

Collection Date	6/15/78	7/05/78	7/21/78	7/31/78	9/04/78
Sample Number	0423A	0423B	0423C	0423D	0423H
Sample Code	A	A	A	A	A
Rank-Abundance:					
Ankistrodesmus					
Audouinella					
Bacillariophyceae	1 - A	2-A	2-VC	2-VC	2-VC
Cladophora		1-VA	1-VA	1-VA	1-VA
Closterium					
Euglena		4-R			
Lyngbya					
Microthamnion					
Mougeotia					
<u>Oedogonium</u>	3-A				
<u>Oscillatoria</u>	4-R				
Phormidium			4-R		3-VC
Rhizoclonium	5-R	3-R	3 - R		
Scenedesmus					
Spirogyra	2-A				
Spirulina					4-C
Stigeoclonium					
man 1 Diana mass	53	37	43	32	49
Total Diatom Taxa Total Taxa Counted	33 48	36	38	26	45
Frustules Counted	317	315	337	359	323
	4.520	4.227	3.782	2.888	4.331
Diversity	0.71	0.75	0.53	0.38	0.67
Equitability	4.1	7.0	10.7	41.5	15.5
PRA Achnanthes sp.			27.0	23.8	36.5
PRA Nitzschia sp.	36.1	30.9	27.0	23.0	30.3
PRA Major Species:			10.7	41.5	15.5
Achnanthes minutissima	11.4		10.7	41.7	10.0
Cyclotella meneghiniana	11.4				
Cymbella affinis Cymbella cymbiformis					
Diatoma tenue					
Gomphonema olivaceum					
Navicula cincta	17.3	10.1			12.3
Nitzschia frustulum		12.0	16.0	15.9	
Nitzschia longissima					13.9
Nitzschia palea	10.1				
Rhoicosphenia curvata			27.3	17.5	
		14.9			
Thalassiosira pseudonana		14.7			

Table I158. Continued (the second page of three pages).

Collection Date	10/08/78	11/05/78	2/11/79	3/31/79	5/20/79
Sample Number	0423K	0423L	0423Ø	0423P	0423Q
Sample Code	A	A	A	В	A
Rank-Abundance:			E D		
Ankistrodesmus			5-R		
<u>Audouinella</u>			3-C		
Bacillariophyceae	1-VA	1-VA	1-VA	1-C	2-A
Cladophora	2-VA	2-A	2-VC		1-VA
Closterium					
Euglena					
Lyngbya					
Microthamnion					
Mougeotia					
Oedogonium					
<u>Oscillatoria</u>					
Phormidium			4 - R		
Rhizoclonium					
Scenedesmus					
Spirogyra					
Spirulina					
Stigeoclonium					
Total Diatom Taxa	44	43	46		41
Total Taxa Counted	38	30	33		30
Frustules Counted	350	339	343		365
Diversity	3.714	3.010	2.965		2.942
Equitability	0.50	0.37	0.33		0.37
PRA Achnanthes sp.	24.0	2.4	15.5		2.7
PRA Nitzschia sp.	10.9	3.0	4.8		7.4
PRA Major Species:					
Achnanthes minutissima	23.7		15.5		
Cyclotella meneghiniana					
Cymbella affinis		17.4			10.4
Cymbella cymbiformis		29.5			
Diatoma tenue	25.1	22.7	43.1		41.9
Gomphonema olivaceum		12.4	17.8		
Navicula cincta					
Nitzschia frustulum					
Nitzschia longissima					
Nitzschia palea					
Rhoicosphenia curvata					
Thalassiosira pseudonana					22.5
The state of the s					-2.5

Table I158. Continued (the third page of three pages).

Collection Date	7/17/79	8/07/79	9/29/79a	9/30/79b	9/30/79a
Sample Number	0423S	0423T	0423V	0695A	0423W
Sample Code	C	D	C C	В	A
Rank-Abundance:	ŭ	2	, and the second	D	**
Ankistrodesmus					
Audouinella				3-A	2-VC
Bacillariophyceae	2-VC	1-VA	2-A	1-VA	1-VA
Cladophora		2-A	1-VA	2-A	
Closterium				8-R	
Euglena					
Lyngbya				7-C	
Microthamnion		7-R			
Mougeotia		6-C		4-A	7-R
Oedogonium					
Oscillatoria	JA	4-VC	4-C	6-VC	6-C
Phormidium				5-A	5-C
Rhizoclonium		5-C			3-VC
Scenedesmus				9-R	
Spirogyra		3-VC	3-A		
Spirulina			5-R	10-R	
Stigeoclonium					4-C
Total Diatom Taxa		40			47
Total Taxa Counted		40*			28
Frustules Counted		699*			391
Diversity		2.955			3.802
Equitability		0.28			0.71
PRA Achnanthes sp.		3.3			6.6
PRA Nitzschia sp.		44.0			63.1
PRA Major Species:					
Achnanthes minutissima					
Cyclotella meneghiniana					
Cymbella affinis					
Cymbella cymbiformis					
Diatoma tenue					
Gomphonema olivaceum					
Navicula cincta		43.7			
Nitzschia frustulum		23.6			45.2
Nitzschia longissima					
Nitzschia palea					
Rhoicosphenia curvata					
Thalassiosira pseudonana					

^{*}For the semi-detailed analysis, 112 diatom taxa and 31,455 frustules were counted.

a--Collected at TO3S,R44E,12C (major downstream sampling site). b--Collected at TO5S,R45E,11C (upstream and intermediate sampling site).

Table I159. Periphyton community data and major algal taxa obtained from natural substrates collected from Pumpkin Creek near Miles City (the first page of two pages).

Collection Date	6/15/78	7/05/78	7/21/78	7/31/78	9/06/78
Sample Number	0421A	0421B	0421C	0421D	0421F
Sample Code	Α	В	Α	Α	Α
Rank-Abundance:					
Anabaena	6-R				
Ankistrodesmus					
Bacillariophyceae	1-C	1-C	2-C	3 - C	2-C
Chara					
Cladophora				2-VC	1-VC
Cosmarium	4-R				
Oedogonium					
Oscillatoria					
Phormidium			3-R		3-C
Rhizoclonium			1-VC		
Spirogyra					
Stigeoclonium	2-R				
Tribonema	3-R			1-A	
Ulothrix	5-R				
Total Diatom Taxa	22		18	25	39
Total Taxa Counted	20		17	25	38
Frustules Counted	324		317	337	336
Diversity	2.870		1.723	1.874	4.190
Equitability	0.50		0.24	0.20	0.71
PRA Achnanthes sp.	0.0		0.9	0.0	0.9
PRA Nitzschia sp.	61.7		73.8	74.5	59.5
PRA Major Species:					
Achnanthes minutissima					
Amphora veneta			15.8	10.4	
Gomphonema angustatum					
Navicula cincta					
Navicula pavillardii					
Nitzschia communis					13.7
Nitzschia frustulum			68.8	69.7	
Nitzschia kutzingiana					12.8
Nitzschia longissima					
Nitzschia palea	43.2				
Nitzschia paleacea					

Table I159. Continued (the second page of two pages).

Collection Date	10/09/78	5/12/79	8/09/79	11/07/79
Sample Number	04211	0421J	0421K	0421M
Sample Code	A	Α	D	A
Rank-Abundance:				
Anabaena	4-R			
Ankistrodesmus Bacillariophyceae	1-VC	1-VC	1-A	1-VC
Chara	1-40	1-40	3-VC	1-40
Cladophora			J-VC	
Cosmarium				
Oedogonium	2-R			
Oscillatoria	2-K			2-C
Phormidium	3–R	2-C		2-0
Rhizoclonium	J-K			
Spirogyra			2-A	
Stigeoclonium				
Tribonema				
Ulothrix				
O LO CHI LA				
Total Diatom Taxa	45	28	36	28
Total Taxa Counted	41	28	36*	27
Frustules Counted	408	137	329*	138
Diversity	4.202	3.768	4.118	3.467
Equitability	0.66	0.71	0.71	0.59
PRA Achnanthes sp.	2.9	0.0	12.7	0.0
PRA Nitzschia sp.	49.4	67.7	37.3	57.0
PRA Major Species:				
Achnanthes minutissima			12.7	
Amphora veneta				
Gomphonema angustatum	15.2			
Navicula cincta	12.0			
Navicula pavillardi			19.3	
Nitzschia communis				
Nitzschia frustulum	19.3	13.9		
Nitzschia kutzingiana				
Nitzschia longissima			10.0	40.6
Nitzschia palea				
Nitzschia paleacea		29.9		

^{*}For the "semi-detailed" analysis, 84 diatom taxa and 13,818 frustules were counted.

Table I160. Periphyton community data and major algal taxa obtained from natural substrates collected from Mizpah Creek near Mizpah (the first page of two pages).

Collection Date	6/15/78	7/05/78	7/21/78	7/31/78	9/06/78
Sample Number	0422A	0422B	0422C	0422D	0422F
Sample Code	Α	A	В	A	Α
Rank-Abundance:					
Anabaena					
Ankistrodesmus					
Bacillariophyceae	2-C	3-C	2-C	2-C	2-A
Chara					
Cladophora		1-VA	1-A		
Closterium					4-C
Oedogonium					
Phormidium			3-R		3-VC
Rhizoclonium		2-VC		1-VA	1-VA
Rivularia	1-VC				
Spirogyra					
Spirulina					5-R
Total Diatom Taxa	16	18		25	46
Total Taxa Counted	15	18		23	39
Frustules Counted	115	100		128	338
Diversity	2.602	2.571		3.830	4.367
Equitability	0.53	0.44		0.91	0.77
PRA Achnanthes sp.	7.8	0.0		0.0	0.0
PRA Nitzschia sp.	78.3	66.0		48.5	46.0
PRA Major Species:					
Amphipleura pellucida					10.7
Cymbella pusilla					
Navicula cincta				17.2	17.2
Navicula odiosa					
Navicula pavillardii					
Nitzschia amphibia	15.7				
Nitzschia frustulum	51.3	59.0		17.2	
Nitzschia paleacea					
Nitzschia valdestriata				13.3	

Table I160. Continued (the second page of two pages).

Collection Date	10/09/78	5/12/79	8/09/79	11/07/79
Sample Number	04221	0422J	0422K	0422M
Sample Code	A	A	D D	A
Rank-Abundance:	Λ	Λ	Ъ	А
Anabaena			7-R	
Ankistrodesmus		3-R	, K	
Bacillariophyceae	1-VC	1-C	1-A	2-C
Chara			4-C	
Cladophora				
Closterium				
Oedogonium			5-C	
Phormidium	2-R	2-C	3-A	
Rhizoclonium	2 10		2-A	
Rivularia			2 A	
Spirogyra				1-A
Spirulina			6-R	
Spiruina			0-K	
Total Diatom Taxa	42	29	51	49
Total Taxa Counted	38	29	51*	44
Frustules Counted	346	136	630*	408
Diversity	4.256	2.884	4.259	4.315
Equitability	0.74	0.34	0.55	0.66
PRA Achnanthes sp.	0.0	0.0	trace	1.0
PRA Nitzschia sp.	42.3	78.5	43.5	35.1
PRA Major Species:	.2.3	.0.5	1313	3311
Amphipleura pellucida				
Cymbella pusilla				12.0
Navicula cincta	22.9		14.1	30.4
Navicula odiosa	11.8			
Navicula pavillardii			18.5	
Nitzschia amphibia				
Nitzschia frustulum			17.6	
Nitzschia paleacea		55.9		
Nitzschia valdestriata				
NILLASCIIIA VAIUESLIIALA				

^{*}For the "semi-detailed" analysis, 97 diatom taxa and 20,160 frustules were counted.

Table I161. Periphyton community data and major algal taxa obtained from <u>natural</u> substrates collected from the East and West Forks of Armells Creek near Colstrip and from main Armells Creek near Colstrip.

Main Armells	6/13/79 0532C	Ø		1	3-C	1	-	!	!	1	-	-	;	4-R	1	1-VA	1	!	!	2-A	1	-	1	1	-	!	1		;	!	1	!
	7/03/79 0414D	В			3-VC		-	6-R		2-A	1	1	2-C	;	-	1-VA	1	1	4-C	!	!	1		1	!	1	-		1			}
k Armells	8/24/78 6/13/79 0414B 0414C	В		1	2-C		1	-	1		-		!	1	1	1-VA				1		1		-								
West For	8/24/78 0414B	A			1-VC				1			1		2-C			1	!	1	1	67	35	153	4.109	0.71	3.9	48.0				İ	28.1
- 1	5/28/78 0414A																															
ells	7/24/79 0531D	A		1	3-VC		1-A	1	2-C	1	1	7-R	7-6	6-R	5-VC			1	1		34	29	372	3.602	09.0	0.0	22.6		18.8	17.7	18.2	1
Fork Arm	6/13/79 7/24/79 0531C 0531D	В		9-R	4-C	1-A	-	7-R			D-9	}	3-VC		2-C		2-VC	}	8-R		1			}	1		!					1
East	8/24/78 0531A	В			2-VC			1	1					1	4-C		3-VC	1-VC				1	1			}			1			
	Collection Date Sample Number	Sample Code	Rank-Abundance:	Anabaena	Bacillariophyceae	Chaetophora	Cladophora	Closterium	Lyngbya	Microspora	Mougeotia	Nostoc	Oedogonium	Oscillatoria	Phormidium	Rhizoclonium	Rivularia	Stigeoclonium	Tribonema	Vaucheria	Total Diatom Taxa	Total Taxa Counted	Frustules Counted	Diversity	Equitability	PRA Achnanthes sp.	PRA Nitzschia sp.	PRA Major Species:	Cocconeis placentula	Synedra fasciculata	Nitzschia frustulum	Nitzschia longissima

Table I162. Periphyton community data and major algal taxa obtained from <u>natural</u> substrates collected from lower Armells Creek near Forsyth.

8/24/78x	5/13/79	7/03/79	9/21/79	11/07/79
0532A	0532B	0532D	0532E	0532F
A	В	В	В	В
1-VA	1-VA	1-VA	1-VA	1-A
				6-R
	2-A			
3-R				
4-R				
			4-VC	
			8-C	
			5-VC	2-VC
			7-C	5-C
2-C			6-C	
		2-A		4-VC
			2-A	3-VC
			3-A	
62				
41				
377				
3.971				
0.56				
4.8				
29.3				
29.7				
	0532A A 1-VA 3-R 4-R 2-C 2-C 62 41 377 3.971 0.56 4.8 29.3	0532A	0532A 0532B 0532D A B B 1-VA 1-VA 1-VA 2-A 3-R 4-R 2-C 2-C 2-A 41 3.971 4.8 29.3	0532A 0532B 0532D 0532E A B B B 1-VA 1-VA 1-VA 3-R 4-R 4-VC 4-VC 4-VC 5-VC 5-VC 6-C 6-C 6-C 6-C 2-A 2-A 2-A 3-A 62 41 3.971 4.8 <

xLower Armells Creek probably affected by Yellowstone River irrigation return flows on this sampling date.

Table I163. Periphyton community data and major algal taxa obtained from natural substrates collected from Sweeney Creek near Rosebud.

Collection Date	5/28/78	7/12/78	8/23/78	5/13/79	8/21/79	11/07/79
Sample Number	0415A	0415B	0415C	0415D	0415E	0415F
Sample Code	A	В	Α	В	В	В
Rank-Abundance:						
Ankistrodesmus	2 - R			2-R		
Bacillariophyceae	1-A	2-A	1-A	1-A	2-A	3 - A
Calothrix						4-C
Mougeotia		3-VC	5-C			
<u>Oedogonium</u>		4 - R	6-R			
<u>Oscillatoria</u>			3-VC		1-A	5-C
Spirogyra		1-VA	2-VC			1-VA
Tribonema		5-R				
Zygnema			7-R			
Total Diatom Taxa	43		65			
Total Taxa Counted	36		52			
Frustules Counted	361		371			
Diversity	2.851		4.518			
Equitability	0.28		0.65			
PRA Achnanthes sp.	55.4		21.8			
PRA <u>Nitzschia</u> sp.	18.4		31.2			
PRA Major Species:						
Achnanthes minutissima	54.8		21.3			
Nitzschia frustulum	11.9		11.6			

Table 1164. Periphyton community data and major algal taxa obtained from <u>natural</u> substrates collected from Reservation Creek near Forsyth-Hysham.

$\begin{array}{c} 8/22/79 \\ \hline 0416F \\ \hline \end{array} \begin{array}{c} 9/21/79 \\ \hline 0416G \\ \hline \end{array}$																								
5/13/79 0416E B	 2-VA	2-vA 1-VA		1	1	1	-	-	;	3-C			;	-	1	1	}	1	1		1	1	1	1
8/24/78 0416C A	 VV-L	T ^ T	}	1	}	}	1		;	3-A	2-A	/ 3	04	47	338	4.377	99.0	0.9	23.8		18.7	15.1	1	13.0
8/22/78 0416D B	5-C	0-7 0-7	4-C	}	}	}	}		2-VA	}	1-VA				1	1	}	1	}		}	}	1	-
7/12/78 0416B B	3-110) 1		-	1	4-VC	1	1-VA	}	2-C	2-A		<u> </u>	-	1	}	1	!	!		}	1	}	-
5/28/78 0416A A	L) T		1		}	1	1	;	1	}	0	0	37	331	4.000	0.62	9.9	18.1		11.8	10.3	28.1	-
Collection Date Sample Number Sample Code Rank-Abundance:	Anabaena	bacillariopnyceae	Closterium	Enteromorpha	Lyngbya	Oedogonium	Oscillatoria	Rhizoclonium	Spirogyra	Tribonema	Vaucheria	E	Total Diatom Taxa	Total Taxa Counted	Frustules Counted	Diversity	Equitability	PRA Achnanthes sp.	PRA Nitzschia sp.	PRA Major Species:	Navicula cincta	Nitzschia frustulum	Surirella ovata	Synedra famelica

Table I165. Periphyton community data and major algal taxa obtained from natural substrates collected from Sarpy Creek near Hysham and from the Powder River near Moorhead.

			Sarpy	Creek			Powder River
Collection Date	7/12/78	8/22/78	8/24/78x	5/13/79	8/22/79	11/07/79	9/14/79
Sample Number	0527A	0527C	0527B	0527D	0527E	0527F	0691A
Sample Code	В	В	A	В	В	В	A
Rank-Abundance:							
Audouinella	3-C	1	1		!	1	4-C
Bacillariophyceae	2-A	3-VC	1-VA	1-A	2-VC	1-VA	1-A
Cladophora	1-VA	1	2-VC	1	;	2-A	-
Enteromorpha	-	1-VA	1	1	1-VA	1	!
Euglena	1	1		2-R		;	!
Oscillatoria	1	;		1	1	2-C	ł
Phormidium	4-R	1	3-C	1	!	3-VC	3-VC
Rhizoclonium	1	2-A	;	1	!	1	
Spirogyra	-	1		1	1	7-7	-
Stigeoclonium	!	-	7-C			;	1
Vaucheria	}	!	1	1	1	1	2-A
							1
Total Diatom Taxa	1		35			<u> </u>	20
Total Taxa Counted	1		27	1		1	45
Frustules Counted	-	1	356			1	167
Diversity	!	1	2.694	1		1	4.708
Equitability	!		0.33	1	1	!	0.87
PRA Achnanthes sp.	!		5.3	1		1	2.4
PRA Nitzschia sp.	!	1	51.6	-		1	31.8
PRA Major Species:							1
Navicula cincta		1	1			!	10.2
Navicula odiosa				1	!	1	12.6
Nitzschia frustulum	1	1	58.7	-	-		1
Nitzschia palea	1	1		-	-	1	10.8

xLower Sarpy Creek probably affected by Yelowstone River irrigation return flows on this sampling date.

	Ro	osebud C	reek		Tongue Ri	ver
Collection Date	8/18/78	8/29/78	11/05/78	8/27/78	10/08/78	11/04/78
Sample Number	0425E	0425F	0425K	0364F	0364H	0364K
Sample Code	E	E	E	E	E	E
Rank-Abundance:						
Agmenellum						4-R
Bacillariophyceae	1-VA	1-VA	1-VA	1-A	1-VA	1-VA
Mougeotia					3-R	2-A
Peridinium				2-R		
Phormidium	2-R				2-VC	3-VC
Stigeoclonium		2-VC				
Total Diatom Taxa	41	41	41	42	44	45
Total Taxa Counted	30	34	28	31	37	40
Frustules Counted	358	346	342	353	350	341
Diversity	3.388	3.784	3.060	3.715	4.102	3.879
Equitability	0.50	0.59	0.43	0.61	0.68	0.52
PRA Achnanthes sp.	1.7	6.6	2.0	19.9	14.3	25.2
PRA Nitzschia sp.	7.6	10.2	6.5	4.3	18.1	41.2
PRA Major Species:						
Achnanthes minutissima				19.3	13.7	25.2
Cocconeis pediculus				17.6	15.1	
Cymbella affinis		26.9				
Diatoma vulgare	37.4					
Gomphonema olivaceum			28.0			
Gomphonema tenellum				17.0		
Navicula tripunctata	11.7	16.2				
Navicula viridula			24.3			
Nitzschia acicularis						10.9
Nitzschia dissipata					14.3	16.7

Table J167. Periphyton community data and major algal taxa collected from <u>artificial</u> substrates placed into the Squirrel Creek near Decker station.

11/06/79 0418S E	1-VA 5-C 2-VC 3-VC	50 46 329 4.304 0.63 13.4 51.9	12.5
11/01/79 0418Q E	1-VA 5-C 2-VC 4-C 3-VC	47 36 323 3.951 0.64 7.7 53.5	29.1
10/18/79 0418P E	1-A 3-VC 2-A 2-A 5-C 4-C	47 42 338 4.170 0.63 24.6 38.9	24.6
9/28/79 0418M E	1-A 2-A 5-C 3-VC 4-C	45 40 395 4.039 0.60 3.8 61.4	 27.1
9/15/79 0418L E	1-A 2-VC 3-VC 6-C 4-VC	53 41 334 3.802 0.49 0.6 55.4	
9/05/79 0418K E	2-A 3-VC 4-C 1-A	50 39 354 3.106 0.31 trace 63.7	
8/17/79 0418I E	1-VA 3-VC 2-VA 4-R	56 37 355 4.060 0.66 0.6	15.5 17.7 20.3
Collection Date Sample Number Sample Code	Rank-Abundance: Bacillariophyceae Cladophora Hormidium Mougeotia Oedogonium Oscillatoria Phormidium Rhizoclonium Spirogyra Stigeoclonium	Total Diatom Taxa Total Taxa Counted Frustules Counted Diversity Equitability PRA Achnanthes sp. PRA Mitzschia sp.	Achnanthes minutissima Navicula cryptocephala Nitzschia filiformis Nitzschia frustulum Nitzschia longissima

Table J168. Periphyton community data and major algal taxa collected from artificial substrates placed into the upper Hanging Woman Creek near Quietus-Decker and the lower Hanging Woman Creek near Birney stations.

reek	11/04/78	797+A	闰		4-R	1-A	-	1	1	1	1	3-R	2-C			5-R	1	78	62	400	4.829	0.68	12.5	25.2	11.5	+	14.5		-	1	1
Lower Hanging Woman Creek	10/07/78	19750	ш		-	1-A		!	1	2-R	1		1			1	1	70	57	351	4.656	99.0	6.3	26.6		¦	22.5	!		!	}
wer Hangir	9/09/78	047PH	団		-	1-VC	1	1				-	2-R	3-R		1		63	52	328	4.659	0.72	5.2	23.6		}	22.6	1		1	1
rc	8/27/78	1476E	山		i	1-VC	1	1	1	1	1	;	}	1	1	;	-	89	61	379	4.718	0.64	6.1	27.4	1	;	24.8	1	1	1	1
eek	11/04/78	0424L	ш		1	1-VA	4-C	6-R	2-VC	1	5-R	;	1	!	1	1	3-C	74	57	328	5.058	0.88	11.6	34.7	10.1		;	14.6	1	14.3	
Upper Hanging Woman Creek	10/07/78	04241	ш			1-VA	-	1	3-C	1	-		1	-	4-R	1	2-VC	63	54	368	4.539	0.64	3.0	41.0	1	¦	;	23.6	1	16.1	1
oper Hangir	8/06/18	0424H	Ħ			1-C	1	1		!	1	1	1	1	;	1	1	09	47	335	4.363	0.64	5.4	32.3	1	¦	1	25.4	1	14.3	1
U	8/26/78	04Z4E	口			1-A	1		-		1	1	1	1	1	1	1	54	42	351	4.403	0.74	5.1	43.4	;	13 1	· !	1	18.0	1	14.8
	Collection Date	Sample Number	Sample Code	Rank-Abundance:	Ankistrodesmus	Bacillariophyceae	Hormidium	Mougeotia	Oedogonium	Oscillatoria	Phormidium	Planktosphaeria	Scenedesmus	Sphaerocystis	Spirogyra	Spirulina	Stigeoclonium	Total Diatom Taxa	Total Taxa Counted	Frustules Counted	Diversity	Equitability	PRA Achnanthes sp.	PRA Nitzschia sp.	Achnanthes minutissima	Coconais nlacentula	Cvclotella meneohiniana	Diploneis puella	Nitzschia dissipata		Nitzschia palea

the East Fork of Hanging Woman Creek near Birney and the lower Otter Creek near Ashland stations. Table J169. Periphyton community data and major algal taxa collected from artificial substrates placed into

	11/05/78	0423M	団		1-VA	3-R	-	1	1		4-R	2-R	77	1 0	36	333	3.520	0.47	4.5	7.5		!	-	14.7	16.2	27.6	1	-	ļ
ek	10/08/78	0423J	ш		1-A	!	1	2-VC	4-C	5-R		3-C	7.7	2 -	40	380	3,331	0.35	48.9	15.1		48.9					1	-	}
Otter Creek	9/04/18	0423I	ഥ		1-VC	1	1	}	}	2-C	!	1	۲۷	ר כ	37	324	3.931	0.59	26.2	21.7		26.2	1	-	-	1	14.8	1	1
	8/27/78	0423F	田		1-A	!		3-R	2-R	1		4-R	XX	0 0	30	363	3.218	0.43	36.1	18.2		31.4					28.6	11.6	
	8/19/78	0423E	凶		1-A	1	1	1	2-VC	ı	 	1	7,1	d 1	35	349	3.842	09.0	14.6	52.5		14.6	!	!		1	11.5	11.2	25.5
Creek	11/02/79	0419R	凶		1-C	1	1	1	1	1			21	T 1,	15	332	0.550	0.13	1.2	1.8		-	0.46	1	1	1	1		
East Fork Hanging Woman Creek	10/19/79a	04190	ъì		1-C	;	2-R	1	1	1	1		œ) I	7	343	0.235	0.14	1.8	0.0			97.4	!	1	-		1	
Fork Hang	9/29/79	04190	ഥ		1-C				}		-	-	11	7 7	∞	377	0.260	0.12	1.6	0.9			97.1	1	!	-			-
East	9/02/19	0419N	凶		1-C	1				1		ŀ	V	٠ .	7	268	0.650	0.50	11.7	trace			88.0	!					-
	Collection Date	Sample Number	Sample Code	Rank-Abundance:	Bacillariophyceae	Euglena	Mougeotia	Oedogonium	Oscillatoria	Phormidium	Scenedesmus	Spirogyra	Total Distant	TOTAL DIALOM TAVA	Total Taxa Counted	Frustules Counted	Diversity	Equitability	PRA Achnanthes sp.	PRA Nitzschia sp.	PRA Major Species:	Achnanthes minutissima	Cocconeis placentula	Cymbella affinis	Cymbella cymbiformis	Diatoma tenue	Navicula cincta	Nitzschia frustulum	Nitzschia longissima

a--Collected at TO6S, R43E, 20DA.

Table J170. Periphyton community data and major algal taxa collected from <u>artificial</u> substrates placed into the Pumpkin Creek near Miles City and the Mizpah Creek near Mizpah stations.

	8/21/79 0422L	ш		!	1-VC	1	1	1	1	1	1	2-C	41	31	161	3.856	0.68	0.0	47.8		1	1	1	1	19.9	16.8	16.1	12.4	1
Creek	9/06/78 10/09/78 0422G 0422H	四		!	1-C	1	1	1	3-R	2-R	1	1	50	77	329	4.655	0.84	9.0	37.5		1	1	1	1	21.6	1	1	1	1
Mizpah	9/06/78 0422G	띠	c	7-7	1-VC	1	3-R	1	1	1	1	1	09	51	337	4.037	0.47	0.0	27.5		1	38.6		1	1	1	1	1	1
	8/19/78 0422E	মে		!	1-VC	ļ.	1	1	f	1	1	!	53	51	359	4.733	0.77	2.5	24.8		1	1	1	13.4	12.8	1	<u> </u>	1	1
	8/21/79 0421L											3-C																	
n Creek	9/06/78 10/09/78 0421G 0421H	뙤		!	1-VC	-	1	-	2-C	1	1	3-C	67	43	372	4.636	98.0	0.8	52.9		1	1	1	1	16.9	!	15.3	1	1
Pumpki	9/06/78 0421G	团	£	0-K	1-VC		1	2-C		}	4-R	3-C	70	58	342	4.867	0.74	14.9	39.5		14.6	1	1	1	1	1	1	1	10.5
	8/19/78 0421E	ΙΉ	c	7-Z	1-A	4-R	!	5-R		!	1	3-R	29	59	333	4.589	09.0	21.0	30.9		20.1	1	1	!	-	1	14.7	1	-
	Collection Date Sample Number	Sample Code	Rank-Abundance:	Anabaena	Bacillariophyceae	Cosmarium	Mougeotia	Oedogonium	Phormidium	Rhizoclonium	Sphaerocystis	Spirulina	Total Diatom Taxa	Total Taxa Counted	Frustules Counted	Diversity	Equitability	PRA Achnanthes sp.	PRA Nitzschia sp.	PRA Major Species:	Achnanthes minutissima	Amphipleura pellucida	Diploneis puella	Epithemia sorex	Navicula cincta	Navicula pavillardii	Nitzschia frustulum	Nitzschia longissima	Nitzschia microcephala

Table K171. Tentative species list of diatoms (Bacillariophyceae) collected from streams draining the southern Fort Union region in southeastern Montana (the first page of six pages).

ventricosa var. alpina (Cl.) Patr. comb. nov. ventricosa var. truncatula (Grun.) Meist. bacillaris var. thermalis (Grun.) A. Cl. C. elliptica var. nobilis (Hantzsch) Hust. placentula var. lineata (Ehr.) V. H. 2. placentula var. euglypta (Ehr.) Cl. Cymatopleura elliptica (Breb.) W. Sm. cymbiformis var. nonpunctata Font. Cylindrotheca gracilis (Breb.) Grun. limosa (Kutz.) Patr. comb. nov. striata var. bipunctata Fricke solea var. regula (Ehr.) Grun. Caloneis amphisbaena (Bory) Cl Cyclotella glomerata Bachmann ventricosa (Ehr.) Meist. pseudostelligera Hust. cistula (Ehr.) Kirchn. C. bacillaris (Greg.) Cl. C. angustata (W. Sm.) Cl. Cocconeis diminuta Pant. striata (Kutz.) Grun. bacillum (Grun.) Cl. Cymbella affinis Kutz. C. meneghiniana Kutz. placentula Ehr. cymbiformis Ag. C. pediculus Ehr. lewisii Patr. hyalina Hust. brehmii Hust. Chaetoceros sp. lanceolata var. haynaldii (Istv.-Schaarsch) Cl. ovalis var. affinis (Kutz.) V. H. ex DeT. Anomoeoneis sphaerophora (Ehr.) Pfitz. ovalis var. pediculus (Kutz.) V. H. hauckiana var. rostrata Schulz A. vitrea (Grun.) Ross comb. nov. Amphora coffeiformis (Ag.) Kutz. linearis (W. Sm.) Grun. linearis f. curta H. L. Sm. Caloneis alpestris (Grun.) Cl. lanceolata var. dubia Grun. lanceolata (Breb.) Grun. (Grun.) Grun. wellsiae Reim. nom. nov. Amphipleura pellucida Kutz. Bacillaria paradoxa Gmelin hungarica (Grun.) Grun. Asterionella formosa Hass. flexella (Kutz.) Grun. Achnanthes affinis Grun. ovalis (Kutz.) Kutz. veneta (Kutz.) Hust. Biddulphia laevis Ehr. marginulata Grun. minutissima Kutz. submontana Hust. hauckiana Grun. pinnata Hust. deflexa Reim. exilis Kutz. A. clevei Grun. exigua Grun. perpusilla

Table K171. Continued (the second page of six pages).

E. adnata var. minor (Perag. & Herib.) Patr. comb. nov. adnata var. probocidea (Kutz.) Patr. comb. nov. adnata var. porcellus (Kutz.) Patr. comb. nov. vaucheriae var. capitellata (Grun.) Peters Diploneis oblongella (Naeg. ex Kutz.) Ross Gomphoneis eriense (Grun.) Skv. & Meyer construens var. venter (Ehr.) Grun. E. paludosa (W. Sm.) Reim. comb. nov. Frustulia vulgaris (Thwaites) DeT capucina var. lanceolata Grun. capucina var. mesolepta Rabh. construens var. pumila Grun. Epithemia adnata (Kutz.) Breb. Fragilaria bicapitata A. Mayer Entomoneis alata (Ehr.) Ehr. capucina var. acuta Grun. vaucheriae (Kutz) Peters construens (Ehr.) Grun. G. herculeana (Ehr.) Cl. turgida (Ehr.) Kutz. D. oculata (Breb.) Cl.
D. pseudovalis Hust.
D. puella (Schum.) Cl. emarginata Andrews crotonensis Kitton F. brevistriata Grun. intermedia Grun. capucina Desm. pinnata Ehr. sorex Kutz. Eunotia sp. Reim. comb. nov. Reim. comb. nov. muelleri f. ventricosa (Temp. & Perag.) Reim. naviculiformis (Auersw. ex Rabh.) Kirchn. minuta var. pseudogracilis (Choln.) Reim. minuta var. silesiaca (Bleisch ex Rabh.) Diatoma hiemale var. mesodon (Ehr.) Grun. prostrata var. auerswaldii (Rabh.) vulgare var. linearis V. H. tenue var. elongatum Lyngb vulgare var. breve Grun. prostrata (Berkeley) Cl. leptoceros (Ehr.) Kutz. Cymbella delicatula Kutz. triangulum (Ehr.) Cl. minuta Hilse ex Rabh. lanceolata (Ag.) Ag. tumida (Breb.) V. H. Denticula elegans Kutz. mexicana (Ehr.) Cl. microcephala Grun. hustedtii Krasske turgidula Grun. laevis Naegeli muelleri Hust. tumidula Grun. subtilis Grun. lunata W. Sm. sinuata Greg. pusilla Grun. vulgare Bory tenuis Kutz. tenue Ag.

Table K171. Continued (the third page of six pages).

Reim. comb. nov. Mastogloia elliptica var. danseii (Thwaites) Cl. veneta (Kutz.) Rabh. cryptocephala var. exilis (Kutz.) Grun Gyrosigma spencerii var. curvula (Grun.) capitata var. hungarica (Grun.) Ross subsalina Hust. cryptocephala var. perminuta Grun. M. granulata var. angustissima Mull. M. varians Ag. anglica var. subsalsa (Grun.) Cl. cryptocephala f. terrestris Lund. clementis var. linearis Brander Hantzschia amphioxys (Ehr.) Grun. Melosira granulata (Ehr.) Ralfs. smithii var. lacustris Grun. H. amphioxys f. capitata Hust. circumtexta Meist. ex Hust. Meridion circulare (Grev.) Ag. cincta var. rostrata Reim. cuspidata (Kutz.) Kutz. smithii Thwaites ex W. atomus (Kutz.) Grun. Navicula accomoda Hust. cincta (Ehr.) Ralfs. cryptocephala Kutz. cryptocephala var. cryptocephala var. clementis Grun. N. anglica Ralfs. biconica Patr. decussis Østr. arvensis Hust. capitata Ehr. canalis Patr. Patr. comb. nov. subclavatum var. commutatum (Grun.) A. Mayer Gomphoneis herculeana var. robusta (Grun.) Cl. angustatum var. sarcophagus (Greg.) Grun. angustatum var. citera (Hohn. & Hellerm.) subclavatum var. mexicanum (Grun.) Patr. angustatum var. obtusatum (Kutz.) Grun. affine var. insigne (Greg.) Andrews angustatum (Kutz.) Rabh. sciotense (Sulliv. & Wormley) Cl. spencerii (Quek.) Griff. & Henfr. olivaceum var. calcarea (Cl.) Cl. intricatum var. vibrio (Ehr.) Cl. angustatum var. intermedia Grun. Gyrosigma acuminatum (Kutz.) Rabh. bohemicum Reich. ex Fricke tergestinum (Grun.) Fricke subclavatum (Grun.) Grun. olivaceum (Lyngb.) Kutz. prolongatum (W. Sm.) Cl. scalproides (Rabh.) Cl. Gomphonema acuminatum Ehr gracile Ehr. emend. macrum (W. Sm.) Cl. brebissonii (Kutz.) dubravicense Pant. intricatum Kutz. dichotomum Kutz. grunowii Patr. tenellum Kutz. truncatum Ehr. parvulum Kutz. affine Kutz.

Table K171. Continued (the fourth page of six pages).

Navicula pelliculosa (Breb. ex Kutz.) Hilse N. peregrina (Ehr.) Kutz. N. platystoma Ehr. N. platystoma Ehr. N. protracta Grun. N. pupula Kutz. N. pupula var. capitata Skv. & Meyer N. pupula var. mutata (Krasske) Hust. N. pupula var. rectangularis (Greg.) Grun. N. pygmaea Kutz. N. radiosa var. parva Wallace N. radiosa var. tenella (Breb. & Kutz.) Grun. N. radiosa var. tenella (Breb. & Kutz.) Grun. N. rhynchocephala var. amphiceros (Kutz.) Grun. N. rhynchocephala var. germanii (Wallace) N. rhynchocephala var. germanii (Wallace)	N. salinarum Grun. N. salinarum var. tenuirostris A. Cl. N. schroeteri var. escambia Patr. N. scoreta Krasske N. secreta Krasske N. simplex Krasske N. subhamulata Grun. N. subbaulcatoides Hust. N. subsulcatoides Hust. N. tackei Hust. N. tenera Hust. N. tripunctata var. schizonemoides (V. H.) Patr. N. tripunctata var. schizonemoides (V. H.) Patr. N. viridula (Kutz.) Kutz. N. viridula var. avenacea (Breb. & Grun.) V. H.
Greg.) Ralfs. Grun. tata Patr. nata A. Schmidt en . ayer) C1. ptocephala (Breb. & Grun.) e sske sske Ralfs.	N. laevissima Kutz. N. lanceolata (Ag.) Kutz. N. lundstromii Cl. N. menisculus Schum. N. minima Grun. N. minnewaukonensis Elm. N. minnewaukonensis Elm. N. minuscula Grun. N. mutica Kutz. N. mutica var. cohnii (Hilse) Grun. N. mutica var. undulata (Hilse) Grun. N. mutica var. kutz. N. mutica var. kutz. N. mutica var. undulata (Hilse) Grun. N. mutica var. kutz. N. mutica var. undulata (Hilse) Grun. N. mutica var. undulata (Hilse) Grun. N. mutica var. ludulata (Hilse) Grun. N. muticopsis Van Heurck N. oblonga (Kutz.) Kutz.

Table K171. Continued (the fifth page of six pages).

angustata var. acuta Grun.

(Greg.) Grun.

apiculata

balatonis Grun.

bergii A. Cl.

angustata (W. Sm.) Grun.

amphibia Grun.

Neidium affine (Ehr.) Pfitz.

N. zanoni Hust.

N. dubium (Ehr.) Cl.

tryblionella var. debilis (Arnott) A. Mayer tryblionella var. levidensis (W. Sm.) obtusa var. scalpelliformis Grun. tryblionella var. victoriae Grun. linearis (Ag. ex W. Sm.) W. Sm. lorenziana var. subtilis Grun. longissima var. reversa Grun. vitrea var. salinarum Grun. valdestriata Aleem & Hust. vermicularis (Kutz.) Hant. punctata var. curta Grun. Nitzschia kutzingiana Hilse punctata (W. Sm.) Grun. sigmoidea (Ehr.) W. Sm. sicula (Castr.) Hust. pseudofonticola Hust. sigma (Kutz.) W. Sm. palea (Kutz.) W. Sm. tryblionella Hantz. microcephala Grun. sublinearis Hust. lorenziana Grun. stagnorum Rabh. thermalis Kutz. subtilis Kutz. paleacea Grun. parvula Lewis vitrea Norman obtusa W. Sm. recta Hantz. regula Hust. romana Grun. Opephora sp. Navicula viridula var. rostellata (Kutz.?) Cl. frustulum var. perpusilla (Rabh.) Grun. Nitzschia acicularis (Kutz.) W. Sm.

closterium (Ehr.) W. Sm.

bulnheimiana (Rabh.) H.

capitellata Hust.

clausii Hantz.

frustulum var. subsalina Hust. goetzeana var. gracilior Hust.

nantzschiana Rabh.

gracilis Hantz.

hungarica Grun.

hybrida Grun.

ignorata Krasske

filiformis (W. Sm.) Hust.

fonticola Grun.

flexa Schumann

frustulum Kutz.

dissipata (Kutz.) Grun.

denticula Grun.

commutata Grun.

communis Rabh.

epiphytica 0. Mull.

elliptica Hust.

fasciculata Grun.

Table K171. Continued (the sixth page of six pages).

```
parasitica var. subconstricta (Grun.) Hust.
                                                                                                                                                                                                                                                   fasciculata var. truncata (Grev.) Patr.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              subaequalis (Grun.) V. H.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     spathulifera (Grun.) V1.
Surirella ovata var. pinnata (W. Sm.)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             rumpens var. fragilarioides Grun.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ulna var. ramesi (Herib.) Hust.
                                                                                                                                                                                                                                                                                                   filiformis var. exilis Cl.-Eul
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      danica (Kutz.) V. H.
                                                                                                                                                                                                                                                                                                                                                                                                                                                   pulchella var. lacerata Hust.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Thalassiosira fluviatilis Hust.

T. pseudonana (Hust.) H. & H.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ulna var. contracta Østra.
                                                                                                                                                                                                                                                                                                                                                                                                                         pulchella Ralfs. ex Kutz.
                                                                                                                                                                                                                                                                                                                                                                         parasitica (W. Sm.) Hust.
                                                                                                                                                                                                                         fasciculata (Ag.) Kutz.
                                                                                                                                                                           delicatissima W. Sm.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ulna (Nitz.) Ehr.
                                                                                                                                                                                                                                                                           filiformis Grun.
                                                                                                                           Synedra acus Kutz.
S. capitata Ehr.
                                                                                                                                                                                                                                                                                                                         minuscula Grun.
                                                spiralis Kutz.
                                                                                                                                                                                                   famelica Kutz.
                        S. patella Ehr.
S. spiralis Kutz
S. tenera Greg.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   socia Wallace
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              tenera W. Sm.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              radians Kutz.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   rumpens Kutz.
                                                                                                                                                                                                                                                                                                                                                    nana Meist.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        ulna var.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ulna var.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 ulna var.
                                                                                                       sb.
Pinnularia abaujensis var. linearis (Hust.) Patr.
                                                                                                                                                                                                                                                                                                                                                                      R. gibba var. ventricosa (Kutz.) H. & M. Perag.

R. gibberula (Ehr.) O. Mull.

R. gibberula var. vanheurckii O. Mull.

R. musculus (Kutz.) O. Mull.

Stauroneis acuta W. Sm.

S. phoenicenteron f. gracilis (Ehr.) Hust.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          S. smithii Grun.
Stephanodiscus astraea (Ehr.) Grun.
S. dubius (Fricke) Hust.
S. hantzschii Grun.
S. minutus Cl. & Moll.
S. subtilis Van Goor
S. tenuis Hust.
S. sp.
Surirella angustata Kutz.
                                                appendiculata var. budensis Grun.
                                                                                                                                                                                                                                                                           P. sp.
Pleurosigma delicatulum W. Sm.
Rhoicosphenia curvata (Kutz.) Grun.
                                                                                                                                                                                                                                                                                                                                                   Rhopalodia gibba (Ehr.) O. Mull.
                                                                                                                           globiceps var. krookei Grun.
                                                                                                brebissonii (Kutz.) Rabh.
                     P. appendiculata (Ag.) Cl.
P. appendiculata var. budens
P. borealis Ehr.
P. brebissonii (Kutz.) Rabh.
P. globiceps var. krookei Gr
P. microstauron (Ehr.) Cl.
                                                                                                                                                                         stomatophora (Grun.) Cl.
                                                                                                                                                                                                                      viridis (Nitzsch.) Ehr.
                                                                                                                                                                                                                                                    viridis var. minor Cl.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      brightwellii W. Sm.
                                                                                                                                                                                                    streptoraphe C1.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    iowensis Lowe
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ovalis Breb.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              ovata Kutz.
```

Examples of the data summaries for a complete standard examination of natural substrate perinumbers are the percent relative abundance (PRA) values of "major" diatom species with PRA's phyton samples obtained from seven stream sampling sites in the coalfield study area; the greater than 0.6% at two or more of the stations (the first page of two pages). Table L172.

						S	ream-S	tation	ĸ.					
	HI	UHWCr	H	WCr	Miz		Otte	r-A	Pum	kin	Rsb		Tr-]	yrB
Taxa/Sampling Season#	MJne	LJne	MJne	LJne	MJne		MJne	EJ1y	MJne	EJ1y	MJne		LJne	MJ1y
Achnanthes minutissima	5.0 13.8	13.8	3.8 4.4 19.	19.7	7.8	0	4.1	6.7	6.7		${}$ 2.7		1.5	1.3
Amphora perpusilla	0	0.3	2.3	9.0	1		0.9	4.8	1	1	5.0		1.5	0.8
A. veneta	1	!	1	1	5.2		1	1	0	10.0			0	tr
Caloneis bacillum	1	-	2.9	0.3	0.9				-	1	1		!	!
Cocconeis placentula	1	-	0.9	0.3			tr	0	1	-	1.6		1.2	0.3
Cyclotella meneghiniana	7.7	4.1	2.3	1.8	0.9		11.4	6.7	0.3	0	9.0		0	0.3
Cymbella affinis	0.9	0.3	1.2	18.2	0		0	0.3	-	!	0.9	_	10.7	4.3
C. minuta	0.3	0	0	2.5	0.9		1	1	9.6	3.3	0.3		4.3	4.3
Denticula sp.	1	1	0	0.3	0		0	1.0	-	-	-			1
Diatoma tenue	0	0.9	-	-			1.3	0		-	-		-	
D. tenue v. elongatum	3.8	0	0.9	1.5	1				-	-	-			
D. vulgare	1	-	1	1	1		!	-	1	-	1.3	_	7.0	33.4
Diploneis puella	0.9	1.5	0.9	0.4			1	-		-	1		}	}
Entomoneis ornata	0.3	0.3	1.2	tr	!		1.3	9.0		1		-		1
E. paludosa	0.3	9.0	15.5	2.2	!		8.5	1.3						1
Fragilaria crotenensis	1	1	1	1	1		0.3	0	2.5	0	0.9		0	3.2
F. vaucheriae	1	1	2.5	1.5			9.0	1.0	-	-	0.9		0.3	0.8
Gomphonema angustatum	9.0	0	9.0	9.4	1		!	1	4.3	0	9.0		0.3	0
G. olivaceum		1	0	0.9			0.3	9.0	-	-	17.5		3.7	0.5
G. parvulum	0.3	9.0	-	1			1	-	7.4	0	0		1.2	0.3

*UHWCr: upper Hanging Woman Creek near Quietus-Decker; LHWCr: lower Hanging Woman Creek near Birney; Mizpah: Mizpah Creek near Mizpah; Otter-A: lower Otter Creek near Ashland; Pumpkin: Pumpkin Creek near Miles City; Rsbd-K: upper Rosebud Creek near Kirby; TR-PyrB: Tongue River near Pyramid Butte-Birney.

#Mid-June (MJne), late June (LJne), early July (EJly), and mid-July (MJly)

tr--Indicates a trace amount; v--denotes a varietal name; ?--indicates some taxonomic uncertainty.

Table L172. Continued (the second page of two pages).

	TR-PyrB	LJne MJly		} 	4.3 2.4	4.9 3.2		0.3 0													0 6.0						1.2 0		0.6 0.3	-		 -	-
	Rsbd-Ki	LJne					 																						1.9 1.8		-	 	-
	Pumpkin	EJ1y	-	3,3	1	0	3.3	0	}	1	1	!	0	0		0	3,3	-	1	63.3	0	1	0	1	3.3		1	0	0	1	1	1	1
7	1																												0.3				
m-Stati	tter-A	ne EJ1	.9 0.	7 9.	i	.3 0	.8 0		i	.7 1	i -	i 	i -	5 2	2 0	i -	.6 1.0	0 9.	.2 4.	.8 7.	4 2	0 6.	1.1 9	.3 0.1	9 4.	3.6 9.8	0 6.	.3 14.	0 9.	i	0 8.1	.3 1.	1.3 0
Stream-		EJly MJ																								0 !	-	0	1.6	-	0	-	
	Mizp																				!					1	1	1	-			}	
	WCr																					0.3	3.0	0	2.8	9.0	}	9.0	4.0	2.2	1.8	0.3	C
	LH	MJne	0	2.6	-	2.6	0.3	-	1	3.5	1	0.9	-	3.2	2.6	-	1.2	9.0	0.6	1.8	-	9.0	5.8	0.6	4.7	9.0		5.0	6.7	2.0	1.2	0.3	7.
	HWCr	LJne		3.8	1	5.3	0.3		1	2.9	tr	-	·	0.9		1	2.3	0.3	1.8	19.0	-	0	11.7	0.9	0.3	1.2	-	4.7	0	0.3	7.6	1.5	0
	IO	MJne	tr	12.4		1.5	0.9	-	1	0.6	0	-		0.6	0.3	-	0.3	0	5.3	0	1	0.9	11.8	0	0.3	0		6.8	0.3	8.3	21.2	0.3	0.9
		Taxa/Sampling Season#	Navicula capitata v. hungarica	N. cincta	N. cryptocephala	N. cryptocephala v. veneta	N. heufleri v. leptocephala	N. jamii	N. radiosa v. parva	N. secreta v. apiculata	N. tripunctata	N. viridula v. avenacea	Navicula sp.	Nitzschia acicularis	N. apiculata	N. clausii	N. communis	N. dissipata	N. frustulum		N. gracilis	N. hungarica	N. palea	N. paleacea	Pleurosigma delicatulum	Rhoicosphenia curvata	Stephanodiscus minutus	Stephanodiscus sp.	Surirella ovata	Synedra acus	S. famelica	S. fasciculata	S. radians?

Examples of the data summaries for a complete standard examination of natural substrate perinumbers are the percent relative abundance (PRA) values of "sub-major" diatom species with phyton samples obtained from seven stream sampling sites in the coalfield study area; the PRA's greater than 0.6% at one of the stations (the first page of two pages) Table L173.

						Str	Stream-Station*	ation	ĸ						
	UHWCr	Cr	LHW	Cr	Mizpah	ah	Otter-A	A	Pumpk	in	Rsbd-Ki	-Ki	TR-PyrB	yrB	
Taxa/Sampling Season#	MJne	LJne	MJne	LJne	MJne I	EJ1y	MJne E	EJ1y	MJne EJly	EJ1y	MJne]	LJne	LJne	MJ1y	
Achnanthes lanceolata	tr	0	tr	9.0			1	1	1			0.3	0.3	0.3	
Caloneis hyalina?	1	1		}	0.9	0	1		1			}	}		
C. ventricosa v. trunculata	1.2	0		{	-	1		1	Į Į			1	1	1	
Caloneis sp.	0	1.8	0	0.3	1	1	1	1	0.3	0		!	}		
Cocconeis pediculus	-	1	1	1	-	1	}	}	1		2.2	0.3			
Cymbella sp.	}	1	1	1	0	2.0	1	-	1		0.3	0	1	-	
Fragilaria capucina v. mesolepta	-	1	1	1	!				1	1		-	12.5	5.7	
F. construens v. venter	1		1.8	0	}				1			-	-	1	
Gomphonema angustatum v. citera	}	1			-			1	1	}	1.3	0	tr	0	
G. angustatum v. intermedia	-		-		-	-			1		0	0.9	1 1	1 ,	
G. bohemicum	}	-	-			1		1			1		3.7	1.3	
G. olivaceum v. calcarea		1		1	1	1	1				0.9	0			
G. tergestinum	}	-	!	1									3.2	1.0	
Gomphonema sp.	0	0.3			0	3.0					0.3	0			
Hantzschia amphioxys	0	tr		1	0	1.0			0.3	0				1	
Melosira varians	-			-	1		1			}			5.5	14.0	

*UHWCr: upper Hanging Woman Creek near Quietus-Decker; LHWCr: lower Hanging Woman Creek near Birney; Mizpah: Mizpah Creek near Mizpah; Otter-A: lower Otter Creek near Ashland; Pumpkin: Pumpkin Creek near Miles City; Rsbd-K: upper Rosebud Creek near Kirby; TR-PyrB: Tongue River near Pyramid Butte-Birney.

#Mid-June (MJne), late June (LJne), early July (EJly), and mid-July (MJly)

tr--Indicates a trace amount; v--denotes a varietal name; ?--indicates some taxonomic uncertainty.

Table L173. Continued (the second page of two pages).

						Str	Stream-Stat	tation	*.					
	UHWCr	7Cr	LH	LHWCr	Miz	zpah	Otter-A	r-A	Pump	kin	Rsbd	-Ki	TR-P	yrB
Taxa/Sampling Season#	MJne	LJne	MJne	LJne	MJne	EJ1y	MJne	EJ1y	MJne EJly	EJ1y	MJne LJne	LJne	LJne MJly	4J1y
Navicula capitellata	-		1	1		1		-	0	3.3		}		
N. cincta v. rostrata	2.9	4.4	0.6	0			9.0	9.0		-	0	0.3	1	
N. mutica	-	1		-	0		1	1				1		-
N. mutica v. undulata	-	1	l		0			-		-	-	ŀ		1
N. perparva	-	-		1	0		-		1				0	0.3
N. rhynchocephala	1	1	0	0.3	0.9		1	1	1		1	}	}	1
N. tenelloides	0	0.3	-	-	0		-	1						{
Nitzschia amphibia	1	-		-	15.7	3.0	0.3	0	-		1	1	0.3	0
N. epiphytica	-	-	-	-			tr	0	1	1	1	-	7.0	0
N. filiformis	0.3	0	0	0.3			2.2	2.2	-		}	}	}	}
N. hantzschiana	0	tr	0	0.3			1	1		}	1	1	1.2	0
N. linearis	0.3	0	0.3	0	-		1	-	0.3	0	1.3	0.3	0	tr
N. longissima v. reversa	0.3	9.0	0.3	0	1		0.9	0.3	tr	0	-		1	1,
N. romana	0	tr		-			1	-	-		0.9	0.3		1
N. sigmoidea	-	1	0.9	0	1		-	-	1	-			-	
N. tryblionella v. levidensis	-	-	tr	0	-		1	-	0	3.3		1	1	
N. valdestriata	1	-	-		3.5	1.0	-	1	-	-	1	-	1	
Nitzschia sp.	-	1			0		-	1	1	1	1			
Pinnularia borealis	-			-	1				0	3.3			-	
Stephanodiscus hantzschii	-	-	1	-	-	1	0	9.0	1		1.3	0	0	0.3
S. subtilis	1	-	-		1	1	tr	0	!		1.3	0	0.3	0
Synedra filiformis	0	0.6	6.1	3.0	}	-		1	1			1		1
S. ulna	0.3	0	0	0.3	-		1			-	1		2.4	0
S. ulna v. contractica	-	-	-		1		1	-	-	1	1		0.0	0.3

Examples of the data summaries for a complete standard examination of natural substrate perinumbers are the percent relative abundance (PRA) values of "minor" diatom species with PRA's phyton samples obtained from seven stream sampling sites in the coalfield study area; the equal to or less than 0.6% at all of the stations (the first page of three pages). Table L174.

						S	Stream-Station*	station	*L					
	UHA	UHWCr	HI	LHWCr	Mizpah	pah	Otter-A		Pum	okin	Rsb	1-Ki	TR-1	yrB
Taxa/Sampling Season#	MJne LJne	LJne	MJne	LJne	MJne	EJ1y	MJne		MJne EJly	EJ1y	MJne LJne	LJne	LJne MJly	MJ1y
Achnanthes clevei			1		İ				Į.	1		l	0.3	0
A. deflexa?	İ	İ	1	İ		-		0.3	l	-	1		!	
Amphipleura pellucida	tr	0.3	0.3	0		1	1	i		i		i	İ	
Amphora coffeiformis	tr	0						!	!	1	İ		1	
A. ovalis v. affinis		-	9.0	0		-	0.3	0	İ	-			1	
A. ovalis v. pediculus	-			1	i	İ	0.3	0		ŀ		-		
A. submontana	1		9.0	0			1		l	}	0.3	0	1	1
Anomoeoneis sphaerophora	ı	1	0.3	0		1	-					i	!	!
Bacillaria paradoxa	1	i	-			-	0	tr	-	1				
Caloneis amphisbaena		-	0	0.3		1	0.3	0	}	1		i		
Cymbella cymbiformis			0	tr	-	1		}	!			İ	İ	-
C. delicatula	0.3	0			l		!				1	i	1	1
C. microcephala		1		1	i		0.3	9.0			}	i		!
C. prostrata	1	1	-	-	!	-			l i	1	0.3	0	1	
C. pusilla		!	-	-	İ	l	0.3	0			1	i	!	
C. sinuata	-			-	1	1	-		-	1			9.0	0.3
C. triangulum	-			-						1		i	0.3	0
Denticula tenuis	0.3	9.0	1				1	}	!	-	i	ł		1
D. elegans	-		0.3	0	}	-			1				1	!
Fragilaria sp.	tr	0	1	-			1			1	i	1	i	1

*UHWCr: upper Hanging Woman Creek near Quietus-Decker; LHWCr: lower Hanging Woman Creek near Birney; Mizpah: Mizpah Creek near Mizpah; Otter-A: lower Otter Creek near Ashland; Pumpkin: Pumpkin Creek near Miles City; Rsbd-K: upper Rosebud Creek near Kirby; TR-PyrB: Tongue River near Pyramid Butte-Birney.

#Mid-June (MJne), late June (LJne), early July (EJly), and mid-July (MJly)

tr--Indicates a trace amount; v--denotes a varietal name; ?--indicates some taxonomic uncertainty.

Table L174. Continued (the second page of three pages).

	yrB	1J	!		0.3	1	-	!			1	tr	0	0	0		-	1	1	1	1	1	1	1	!	!	1	0	1	1
	TR-PyrB	LJne MJ1		1	0	1	1		-		}	0	0.3	0.3	9.0		1		+	0.3		1	1	1	1	1	1	tr		1
	-Ki	LJne	1		-	-		1		-		-	0	-	-	0	1	-	-		1	1		1	1		1		1	1
	Rsbd-Ki	MJne I	1	-	-	-	1	1		-	}	1	0.3	}	-	0.3	}	}	-	-	1	1	-	1	1	1	1	1	1	1
	kin	EJ1y			-		-	-		-			1	-			-	-	-	-	-		-		-	-		-	1	ł
υ×	Pumpl	MJne EJly	!	1			1		-	1		-	1	-	-		1	-	!	1	1	-	!	-	1	-	1	}	-	
tatio	r-A	EJ1y		-	0		-	-	0.3			1	1				0	-	0	1	0	0	0.3			-	!		-	1
Stream-Station*	Otte:	MJne EJly			0.3	-		1	0	}		1	1	-			tr	-	tr	1	9.0	9.0	9.0	-	-			-		1
St	ah	EJ1y	1	1	1		1	1		1		1	1	1	1			1	1	1	1		1	0	1	1	1		-	1
	Mizpah	MJne E		1	}	-	1	1					1	1	1	1		1	1	1	!	1	1	tr	!	1	1	-	!	1
	Sr	LJne	0.3	0	1	1	1	tr	-	1			1	-	1	1	0	0.3	1	1	1	tr		1	0.3	0.3	1		1	1
	LHWCr	MJne 1		9.0	-		-	0					-	1	1	-	0.3	0	1	1	1	0	1	1	0	9.0	1		-	-
	Cr	LJne		-	-	tr	0	-		9.0	0			1	-	1	1	-	1	-	1	1	-	-	-		0.3	-	0	0
	UHWCr	MJne	-	1	!	0	tr	-	-	0	tt	1		-	1	1	-	1	-	1	1	1	-	!	1	1	0.3	1	tr	9.0
		Taxa/Sampling Season#	Gomphonema affine	G. dichotomum	G. intricatum	G. subclavatum v. commutatum	G. subclavatum v. mexicanum	Gyrosigma macrum?	G. spenceri v. curvuca	Gyrosigma sp.	Mastogloja smithii Melosira granulata	V. angustatum	Navicula anglica v. subsalsa		N. accomoda	N. atomus	N. circumtexa	N. cuspidata	N. gemnifera	N. gottlandica	N. halophila v. tenuirostris	N. heufleri	N. minnewaukonensis	N. notha?	N. odiosa	N. peregrina	N. pygmaea	N. radiosa v. tenella		N. tripunctata v. schizonemoides

Table L174. Continued (the third page of three pages).

	TR-PyrB	MJ1y	1	1	1		-	-	1			-				-	-			
	TR-	LJne	1				!	1		1	1			1				1	0.0	
	1	LJne		}			1		ł	1	1	tr		1	1	0		1	<u> </u>	
	Rsbd-Ki	MJne			1		1		1		1	0	ŀ			0.3	1		!	
	kin	EJ1y	0	1	1			1	1		}			1		1	1	1	ļ	}
*	Pumpkin	MJne		1	-		1	1	1	1	-	1			1	1	1	-		1
tation	1	Ŋ		0	0.3		1	0	-	0.3	0		-		{		0			0.3
Stream-Station*	Otter-A	MJne	1	9.0	0		1	0.3		0	0.3	1	{	1	1		0.3	ł		0
St	ah	EJly	1	1				-				1	1		1	ļ	1	1	1	
	Mizpah	MJne	1	1	-		!	ŀ		1	1	1		1		1	1			1
	Cr	LJne			0		0		0	1	1	1	0.3	0	0	1	1			0.3
	LHWCr	MJne			0.3		tr	1	0.3	1	1	1	9.0	0.3	9.0	1		1		0
	Cr	LJne	1	1	1			1		1	}	1	!		1	1		0.3	ł	1
	UHWCr	MJne LJne	1	-			1		1		1	1	1			1		0	1	1
		Taxa/Sampling Season#		N. sigma	. N. tryblionella	Pinnularia abaujensis	v. linearis	Pinnularia sp.	Rhopalodia gibba	R. gibba v. ventricosa	R. musculus	Surirella augusta	S. iowensis	S. ovalis	S. spiralis	Synedra parasitica	S. pulchella?	S. pulchella v. lacerata	S. rumpens	Synedra sp.

REFERENCES CITED

TEXT

- APHA, AWWA, and WPCF. 1975. Standard Methods for the Examination of Water and Wastewater. Fourteenth Edition. American Public Health Association, Washington, D.C. 1193 pp.
- Baril, S. F., R. J. Luedtke, and G. R. Roemhild. 1978. Environmental Effects of Western Coal Combustion, Part II: The Aquatic Macroinvertebrates of Rosebud Creek, Montana. EPA-600/3-78-099, Environmental Research Laboratory, Environmental Protection Agency, Duluth, Minnesota. 75pp.
- Brown, E., M. W. Skougstad, and M. J. Fishman. 1970. Methods for Collection and Analysis of Water Samples for Dissolved Minerals and Gases.

 Techniques of Water-Resources Investigations, Book 5, Chapter Al,
 United States Geological Survey, Washington, D.C. 160 pp.
- Edmunds, G. F., Jr., S. L. Jensen, and L. Berner. 1976. The Mayflies of North and Central America. University of Minnesota Press, Minneapolis. 330 pp.
- Environmental Protection Agency. 1973. <u>Biological Field and Laboratory</u>

 Methods for Measuring the Quality of <u>Surface Waters and Effluents</u>.

 Environmental Monitoring Series, EPA-670/4-73-001, Office of Research and Development, Cincinnati, Ohio. 185 pp.
- Environmental Protection Agency. 1979. Methods for Chemical Analysis of Water and Wastes. EPA-600/4-79-020, Environmental Monitoring and Support Laboratory, Cincinnati, Ohio. 430 pp.
- Karp, R. and D. Klarich. 1978. Feasibility of a Post-Collection Storage Period in Dissolved Oxygen Determinations. Big Sky Clearwater (Montana Water Pollution Control Association), VIII(3):12-15.
- Klarich, D. A. 1977. <u>Biological-Benthic Study of Streams Draining Coal</u>
 <u>Field Areas in Southeastern Montana and Relationships to Salinity.</u>
 USGS Grant No. 14-08-0001-G-503 Initial Proposal, Water Quality
 Bureau, Montana Department of Health and Environmental Sciences,
 Billings. 42 pp.
- Klarich, D. A. 1978. <u>Biological-Benthic Study of Streams Draining Coal</u>

 Field Areas in <u>Southeastern Montana and Relationships to Salinity:</u>

 Second Year of Study. USGS Grant No. 14-08-0001-G-503 Renewal

 Proposal, Water Quality Bureau, Montana Department of Health and
 Environmental Sciences, Billings. 40 pp.
- Klarich, D. A. 1979. <u>Biological-Benthic</u> <u>Study of Streams</u> <u>Draining Coal-field Areas in Southeastern Montana</u>: <u>An Interim Report</u>. USGS Grant No. 14-08-0001-G-503 Interim Report, Water Quality Bureau, Montana Department of Health and Environmental Sciences, Billings. 83 pp.

- Klemm, D. J. 1972. <u>Biota of Freshwater Ecosystems, Identification Manual 8: Freshwater Leeches (Annelida: Hirudinea) of North America.</u>
 Water Pollution Control Research Series, 18050 ELD05/72, Environmental Protection Agency, Washington, D. C. 53 pp.
- Lloyd, M. and R. J. Ghelardi. 1964. A Table for Calculating the "Equitability" Component of Species Diversity. <u>Journal of Animal Ecology</u>, 33:217-225.
- Lloyd, M., J. H. Zar, and J. R. Karr. 1968. On the Calculation of Information—Theoretical Measures of Diversity. American Midland Naturalist, 79(2):257-272.
- Merritt, R. W. and K. W. Cummins. 1978. An <u>Introduction to the Aquatic Insects of North America</u>. Kendall/Hunt Publishing Company, Dubuque, Iowa. 441 pp.
- Millipore Corporation. 1972. <u>Biological Analysis of Water and Wastewater</u>. Application Manual AM302, Bedford, Massachusetts. 84 pp.
- Newell, R. L. 1977. Aquatic Invertebrates of the Yellowstone River Basin,

 Montana. Yellowstone Impact Study Technical Report No. 5, Water

 Resources Division, Montana Department of Natural Resources and
 Conservation, Helena. 109 pp.
- Orion Research. 1978. <u>Analytical Methods Guide</u>. Ninth Edition. Cambridge Massachusetts. 48 pp.
- Roemhild, G. 1975. <u>The Damselflies (Zygoptera) of Montana</u>. Research Report 87, Montana Agricutural Experiment Station, Montana State University, Bozeman. 53 pp.
- Slack, K. V., R. C. Averett, P. E. Greeson, and R. G. Lipscomb. 1973.

 Methods for Collection and Analysis of Aquatic Biological and
 Microbiological Samples. Techniques of Water-Resources Investigations, Book 5, Chapter A4, United States Geological Survey,
 Washington, D.C. 165 pp.
- Smith, G. M. 1950. <u>The Fresh-Water Algae of the United States</u>. Second Edition. McGraw-Hill Book Company, Inc., New York. 719 pp.
- United States Geological Survey. 1968. State of Montana--Major, Sub-Major, and Minor Drainage Basins. Washington, D.C. Map.
- United States Geological Survey. 1979a. <u>Water-Resources Investigations</u>
 of the U. S. Geological Survey in Montana, October 1978 Through
 September 1979. Open-File Report 79-418, Helena, Montana. 40 pp.
- United States Geological Survey. 1979b. <u>Water Resources</u> <u>Data for Montana</u>. Water-Data Report MT-78-1, Helena, Montana. 824 pp.
- Wiggens, G. B. 1977. <u>Larvae of the North American Caddisfly Genera</u> (Trichoptera). University of Toronto Press, Toronto. 401 pp.

APPENDIX

- Burch, J. B. 1972. <u>Biota of Freshwater Ecosystems, Identification Manual No. 3: Freshwater Sphaeriacean Clams (Mollusca: Pelecypoda) of North America</u>. Water Pollution Control Research Series, 18050 ELDO3/72, Environmental Protection Agency, Washington, D.C. 31 pp.
- Edmondson, W. T., Editor. 1958. <u>Fresh-Water Biology</u>. John Wiley and Sons, Inc., New York. 1248 pp.
- Klemm, D. J. 1972. <u>Biota of Freshwater Ecosystems</u>, <u>Identification Manual No. 8: Freshwater Leeches (Annelida: Hirudinea) of North America.</u>
 Water Pollution Control Research Series, 18050 ELD05/72, Environmental Protection Agency, Washington, D.C. 53 pp.
- Lowe, R. L. 1974. Environmental Requirements and Pollution Tolerance of Freshwater Diatoms. Environmental Monitoring Series, EPA-670/4-74-005, Office of Research and Development, Environmental Protection Agency, Cincinnati, Ohio. 333 pp.
- Merritt, R. W. and K. W. Cummins. 1978. An Introduction to the Aquatic Insects of North America. Kendall/Hunt Publishing Company, Dubuque, Iowa. 441 pp.
- Pennak, R. W. 1978. Fresh-Water Invertebrates of the United States. Second Edition. John Wiley and Sons, Inc., New York. 803 pp.
- Robbins, W. W., T. E. Weier, and C. R. Stockings. 1965. <u>Botany: An Introduction to Plant Science</u>. Third Edition. John Wiley and Sons, New York. 614 pp.
- Round, F. E. The Biology of the Algae. Edward Arnold Ltd., London. 269 pp.
- Smith, G. M. 1950. The Fresh-Water Algae of the United States. Second Edition. McGraw-Hill Book Company, Inc., New York. 719 pp.
- Weisz, P. B. and M. S. Fuller. 1972. <u>The Science of Botany</u>. McGraw-Hill Book Company, Inc., New York. 562 pp.

