Übungsblatt 03

Repetitorium zur Funktionentheorie

Abgabe von: Linus Mußmächer

28. Juni 2023

Punkte:	/ 30
	/

3.1 Logarithmus

(i) $\overline{\mathbb{D}}$ ist eine kompakte und nicht-leere Menge. Wir setzen g(z) = 4z und berechnen für $z \in \partial \mathbb{D}$:

$$|f(z) - g(z)| = |z^2 + e^z| \le |z^2| + |e^z| \le |z|^2 + e^{|z|} = 1 + e < 4 = |4z| = |g(z)| \le |g(z)| + |f(z)|$$

Nach dem Satz von Rouche hat somit f(z) auf $\overline{\mathbb{D}}$ dieselbe Anzahl an Nullstellen (gezählt nach ihrer Vielfachheit) wie g(z)=4z, also genau eine (mit Vielfachheit 1). Weiterhin liegt diese Nullstelle im Inneren \mathbb{D} .

(ii) Sei $z_0 \in \mathbb{D}$ die eine Nullstelle von f. Dann können wir f auf \mathbb{D} schreiben als $f(z) = (z - z_0)g(z)$ mit $g(z) \in H(\mathbb{D})$ und $g(z_0) \neq 0$. Angenommen, f besäße eine holomorphe Logarithmusfunktion L auf \mathbb{D} . Dann wäre $L|_{\mathbb{D}\setminus\{z_0\}}$ eine holomorphe Logarithmusfunktion der (auf $\mathbb{D}\setminus\{z_0\}$ nullstellenfreien und holomorphen) Funktion $f|_{\mathbb{D}\setminus\{z_0\}}$. Somit wäre $\int_{\gamma} \frac{f'(z)}{f(z)} dz = 0$ für alle Wege γ in $\mathbb{D}\setminus\{z_0\}$. Wir berechnen dieses Integral:

$$\int_{\gamma} \frac{f'(z)}{f(z)} dz = \int_{\gamma} \frac{(z - z_0)g'(z) + g(z)}{(z - z_0)g(z)} dz = \int_{\gamma} \frac{g'(z)}{g(z)} dz + \int_{\gamma} \frac{1}{z - z_0} dz.$$

Das erste Integral hat hier stets den Wert 0, da g und g' in $\mathbb D$ holomorph und g nullstellenfrei und somit $\frac{g'}{g}$ holomorph ist. Das zweite Integral hat nach dem Residuensatz den Wert $n(z_0,\gamma)\cdot \operatorname{res}\left(z_0,\frac{1}{z-z_0}\right)$. Die Funktion $\frac{1}{z-z_0}$ hat in z_0 eine einfache Polstelle und es folgt $\operatorname{res}\left(z_0,\frac{1}{z-z_0}\right)=\lim_{z\to z_0}(z-z_0)\frac{1}{z-z_0}=1\neq 0$. Dies zeigt

$$0 = \int_{\mathcal{S}} \frac{f'(z)}{f(z)} dz = n(z_0, \gamma) \cdot 1.$$

Es müsste also $n(z_0, \gamma) = 0$ für alle Wege $\gamma \in \mathbb{D} \setminus \{z_0\}$ gelten, was natürlich Unsinn ist. Somit folgt per Widerspruch, dass f in $\mathbb{D} \setminus \{z_0\}$ und damit auch in \mathbb{D} keine holomorphe Logarithmusfunktion besitzt.

(iii) Angenommen, eine solche Funktion $h \in H(\mathbb{D})$ existiere. Dann ist $0 = f(z_0) = (w(z_0))^3$, also $w(z_0) = 0$. w hat also in z_0 eine (mindestens) einfache Nullstelle. Daher können wir w schreiben als $w(z) = (z - z_0)^k h(z)$ mit $h \in H(\mathbb{D})$, $h(z_0) \neq 0$ und $k \geq 1$. Dann aber ist

$$f(z) = (w(z))^3 = (z - z_0)^{3k} (h(z))^3,$$

also hat f in z_0 eine (mindestens) dreifache Nullstelle, ein Widerspruch.

3.2 Lokale Injektivität

 f_n ist lokal injektiv, d.h. für jeden Punkt z in G existiert eine offene Umgebung $U_{f_n,z}\ni z$, in der f_n lokal injektiv ist. Wähle $U_z=\bigcup_{n\in\mathbb{N}}U_{f_n,z}$. Dies ist eine abzählbare Vereinigung offener Mengen und daher immer noch offen. Auf einer beliebigen kompakten Teilmenge $K_z\neq\{z\}$ von U_z ist die Folge (f_n) daher gleichmäßig konvergent und injektiv, nach dem Satz von Hurwitz ist daher auch f injektiv oder konstant auf K_z .

- (i) Fall 1: f ist für alle z auf K_z injektiv. Dann ist f lokal injektiv, denn K_z° ist eine Umgebung von z, auf der f injektiv ist.
- (ii) Fall 2: Es existiert ein z_0 mit f ist injektiv auf K_{z_0} und ein z_1 mit f ist konstant auf K_{z_1} . Da G wegzusammenhängend ist, existiert ein Weg $\gamma:[0,1]\to G$ mit $\gamma(0)=z_0$ und $\gamma(1)=z_1$. Die Menge $\{K_w^\circ\mid w\in\gamma([0,1])\}$ bildet eine offene Überdeckung der kompakten Menge $\gamma([0,1])$ (da [0,1] kompakt und γ stetig). Daher finden wir eine endliche Teilüberdeckung $\{K_{w_k}^\circ\mid k=0,\ldots,n\}$ von $\gamma([0,1])$. O.B.d.A. seien die w_k dabei nach ihrem Urbild unter γ geordnet, und sei $w_0=z_0$ und $w_n=z_1$. Weiterhin existiert eine Teilfolge dieser, beginnend bei K_{w_0} und endend bei K_{w_n} , Mengen derart, dass aufeinanderfolgende Mengen sich schneiden. O.E. sei dies bereits die Folge der w_n . Wir wissen, dass f auf K_{w_0} konstant ist und auf K_{w_1} injektiv oder ebenfalls konstant. Da $K_{w_0}^\circ \cap K_{w_1}^\circ$ offen und nicht-leer ist, ist f auf $K_{w_0}^\circ \cap K_{w_1}^\circ \subseteq K_{w_0}$ konstant und kann daher auf K_{w_1} nicht injektiv sein. Also ist f auf K_{w_1} ebenfalls konstant (mit gleichem Wert wie auf K_{w_0}).

So fortfahrend folgt, dass f auf allen K_{w_k} konstant ist, insbesondere auf $K_{w_n} = K_{z_1}$. Dies ist ein Widerspruch zur Injektivität von f auf K_{z_1} (da $K_{z_1} \neq \{z_1\}$), also tritt dieser Fall nicht ein.

- (iii) Fall 3: f ist auf allen K_z konstant, aber nicht mit derselben Konstante. Hier folgt der Widerspruch wie oben.
- (iv) Fall 4: f ist auf allen K_z konstant mit gleicher Konstante k. Dann ist f auch insgesamt konstant, da insbesondere f(z) = k für alle z gilt.