1 Постановка задачи

Задано множество m объектов $\Omega = \{\omega_i\}_{i=1}^m$ и множество n показателей $\Gamma = \{\gamma_j\}_{j=1}^n$. Множество измерений представлено в виде матрицы исходных данных $A = \{a_{i,j}\}_{i,j=1}^{m,n}$ в пространстве действительных чисел: $A \in \mathbb{R}^{m \times n}$. Произвольный объект описывается при помощи векторастроки $\mathbf{a}_{i \bullet} = (a_{i1}, \dots, a_{in})$. Вектора-столбцы $a_{\bullet j}$ матрицы A содержат измерения j-го показателя для всех измеряемых объектов.

Также задан упорядоченный набор $\mathbf{q}_0 = (q_{01}, \dots, q_{0m})^{\top}$ экспертных оценок интергральных индикаторов m объектов и упорядоченный набор $\mathbf{w}_0 = (w_{01}, \dots, w_{0n})^{\top}$ экспертных оценок весов показателей. Каждому объекту ω_i поставлена в соответствие экспертная оценка q_{0i} , каждому показателю γ_i поставлена экспертная оценка w_{0i} .

По исходным экспертным оценкам весов \mathbf{w}_0 можно вычислить значения вектора интегрального индикатора:

$$\mathbf{q}_1 = A\mathbf{w}_0. \tag{1}$$

Также по исходным экспертным оценкам значения вектора интегрального оператора \mathbf{q}_0 можно вычислить веса показателей:

$$\mathbf{w}_1 = A^+ \mathbf{q}_0. \tag{2}$$

Определение 1. Согласованными значениями интегрального оператора и весов показателей называются такие значения $\hat{\mathbf{q}}$ и $\hat{\mathbf{w}}$, при которых выполняется условие

$$\begin{cases} \hat{\mathbf{q}} = A\hat{\mathbf{w}}, \\ \hat{\mathbf{w}} = A^{+}\hat{\mathbf{q}}. \end{cases}$$
 (3)

2 α -согласование

Процедура пошагового согласования имеет следующий вид. Сначала находим

$$\mathbf{q}_1 = A\mathbf{w}_0, \quad \mathbf{w}_1 = A^+\mathbf{q}_0. \tag{4}$$

Мы получили два отрезка $[\mathbf{w}_0, \mathbf{w}_1]$ и $[\mathbf{q}_0, \mathbf{q}_1]$. Евлкидова длина этих отрезков $\|\mathbf{q}_0 - \mathbf{q}_1\|$, $\|\mathbf{w}_0 - \mathbf{w}_1\|$ характеризует несогласованность экспертных оценок. Далее найдем среднее значение:

$$\mathbf{q}_2 = \alpha \mathbf{q}_0 + (1 - \alpha)\mathbf{q}_1, \quad \mathbf{w}_2 = (1 - \alpha)\mathbf{w}_0 + \alpha \mathbf{w}_1, \tag{5}$$

где α — параметр доверия экспертным оценкам интегральных индикаторов объектов. По $\mathbf{w}_2, \mathbf{q}_2$ аналогично находим \mathbf{w}_3 и \mathbf{q}_3 .

Теорема 1. Итеративная процедура пошагового согласования сходится к

$$\mathbf{q}_{\alpha} = \alpha \mathbf{q}_{0} + (1 - \alpha)A\mathbf{w}_{0}, \quad \mathbf{w}_{\alpha} = (1 - \alpha)\mathbf{w}_{0} + \alpha A^{\dagger}\mathbf{q}_{0}. \tag{6}$$

Лемма 1. Тройка $(\mathbf{q}_{\alpha}, \mathbf{w}_{\alpha}, A)$ удовлетворяет определению согласования.

3 γ -согласование

Определим согласованное решение как $\mathbf{q}_{\gamma}, \mathbf{w}_{\gamma}$ таких, что $\mathbf{q}_{\gamma} = A\mathbf{w}_{\gamma}$. Находим \mathbf{w}_{γ} решая оптимизационную задачу

$$\mathbf{w}_{\gamma} = \arg\min_{\mathbf{w}} \left\{ \|A\mathbf{w} - \mathbf{q}\|^2 + \gamma^2 \|\mathbf{w} - \mathbf{w}_0\|^2 \right\},\tag{7}$$

где γ^2 определяет степень компромисса между оценкой объектов и показателей. Решением этой оптимизационной задачи является

$$\mathbf{w}_{\gamma} = \left(A^{\mathsf{T}}A + \gamma^{2}I\right)^{-1} \left(A^{\mathsf{T}}\mathbf{q}_{0} + \gamma^{2}\mathbf{w}_{0}\right). \tag{8}$$

4 Задача

Необходимо придумать алгоритм, как предпочесть одного эксперта другому. Одним из решений является следующее предположение, основанное на α -согласовании. Можем ранжировать экспертов в порядке близости их согласованности:

эксперт
$$i$$
 предпочтительнее эксперта j , если $|q_{0i} - q_{\alpha i}| \le |q_{0j} - q_{\alpha j}|$. (9)

При этом предпочтение контролируется параметром α .

Вторым решением является ранжирование экспертов на основе γ -согласования:

эксперт
$$i$$
 предпочтительнее эксперта j , если $|q_{0i} - q_{\gamma i}| \le |q_{0j} - q_{\gamma j}|$. (10)

При этом предпочтение контролируется параметром γ^2 .

5 Эксперименты

Найдем наиболее согласованного эксперта путем решения оптимизационной задачи. Эта задача ставится для α -согласования. Данная задача имеет вид:

$$\alpha^* = \arg\min_{\alpha \in [0,1]} \left\{ \frac{1}{m} \|\mathbf{q}_{\alpha} - \mathbf{q}_{0}\|_{\infty}^2 + \frac{1}{n} \|\mathbf{w}_{\alpha} - \mathbf{w}_{0}\|_{\infty}^2 \right\}.$$
 (11)

Рейтинг продуктов будем выдавать как рейтинг наиболее согласованного эксперта. Результаты сравнения моего рейтинга с полученными другими студентами

Рис. 1: Результаты сравнения рейтингов, полученных разными студентами.

