Learning Objectives

In this chapter you will learn about:

- Non-positional number system
- Positional number system
- Decimal number system
- Binary number system
- Octal number system
- Hexadecimal number system

Learning Objectives

(Continued from previous slide..)

- Convert a number's base
 - Another base to decimal base
 - Decimal base to another base
 - Some base to another base
- Shortcut methods for converting
 - Binary to octal number
 - Octal to binary number
 - Binary to hexadecimal number
 - Hexadecimal to binary number
- Fractional numbers in binary number system

Number Systems

Two types of number systems are:

- Non-positional number systems
- Positional number systems

Non-positional Number Systems

Characteristics

- Use symbols such as I for 1, II for 2, III for 3, IV for 4, V for 5, etc
- Each symbol represents the same value regardless of its position in the number
- The symbols are simply added to find out the value of a particular number

Difficulty

 It is difficult to perform arithmetic with such a number system

Positional Number Systems

Characteristics

- Use only a few symbols called digits
- These symbols represent different values depending on the position they occupy in the number

Positional Number Systems

(Continued from previous slide..)

- The value of each digit is determined by:
 - 1. The digit itself (9)
 - 2. The position of the digit in the number (19)
 - 3. The base of the number system (10)

(**base** = total number of digits in the number system)

 The maximum value of a single digit is always equal to one less than the value of the base

Decimal Number System

Characteristics

- A positional number system
- Has 10 symbols or digits (0, 1, 2, 3, 4, 5, 6, 7, 8,9). Hence, its base = 10
- The maximum value of a single digit is 9 (one less than the value of the base)
- Each position of a digit represents a specific power of the base (10)
- We use this number system in our day-to-day life

Decimal Number System

(Continued from previous slide..)

Example

$$2586_{10} = (2 \times 10^{3}) + (5 \times 10^{2}) + (8 \times 10^{1}) + (6 \times 10^{0})$$
$$= 2000 + 500 + 80 + 6$$

Binary Number System

Characteristics

- A positional number system
- Has only 2 symbols or digits (0 and 1). Hence its base = 2
- The maximum value of a single digit is 1 (one less than the value of the base)
- Each position of a digit represents a specific power of the base (2)
- This number system is used in computers

Binary Number System

(Continued from previous slide..)

Example

$$10101_{2} = (1 \times 2^{4}) + (0 \times 2^{3}) + (1 \times 2^{2}) + (0 \times 2^{1}) + (1 \times 2^{0})$$

$$= 16 + 0 + 4 + 0 + 1$$

$$= 21_{10}$$

Representing Numbers in Different Number Systems

In order to be specific about which number system we are referring to, it is a common practice to indicate the base as a subscript. Thus, we write:

$$10101_2 = 21_{10}$$

- Bit stands for binary digit
- A bit in computer terminology means either a 0 or a 1
- A binary number consisting of n bits is called an n-bit number

Octal Number System

Characteristics

- A positional number system
- Has total 8 symbols or digits (0, 1, 2, 3, 4, 5, 6, 7).
 Hence, its base = 8
- The maximum value of a single digit is 7 (one less than the value of the base
- Each position of a digit represents a specific power of the base (8)

Octal Number System

(Continued from previous slide..)

• Since there are only 8 digits, 3 bits $(2^3 = 8)$ are sufficient to represent any octal number in binary

Example

$$2057_{8} = (2 \times 8^{3}) + (0 \times 8^{2}) + (5 \times 8^{1}) + (7 \times 8^{0})$$

$$= 1024 + 0 + 40 + 7$$

$$= 1071_{10}$$

Hexadecimal Number System

Characteristics

- A positional number system
- Has total 16 symbols or digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F).
- Hence its base = 16
- The symbols A, B, C, D, E and F represent the decimal values 10, 11, 12, 13, 14 and 15 respectively
- The maximum value of a single digit is 15 (one less than the value of the base)

Hexadecimal Number System

(Continued from previous slide..)

- Each position of a digit represents a specific power of the base (16)
- Since there are only 16 digits, 4 bits (2⁴ = 16) are sufficient to represent any hexadecimal number in binary

Example

$$1AF_{16} = (1 \times 16^{2}) + (A \times 16^{1}) + (F \times 16^{0})$$

= $1 \times 256 + 10 \times 16 + 15 \times 1$
= $256 + 160 + 15$
= 431_{10}

Converting a Number of Another Base to a Decimal Number

Method

- Step 1: Determine the column (positional) value of each digit
- Step 2: Multiply the obtained column values by the digits in the corresponding columns
- Step 3: Calculate the sum of these products

Converting a Number of Another Base to a Decimal Number

(Continued from previous slide..)

Example

$$4706_8 = ?_{10}$$

Converting a Decimal Number to a Number of Another Base

Division-Remainder Method

- Step 1: Divide the decimal number to be converted by the value of the new base
- Step 2: Record the remainder from Step 1 as the rightmost digit (least significant digit) of the new base number
- Step 3: Divide the quotient of the previous divide by the new base

Converting a Decimal Number to a Number of Another Base

(Continued from previous slide..)

Step 4: Record the remainder from Step 3 as the next digit (to the left) of the new base number

Repeat Steps 3 and 4, recording remainders from right to left, until the quotient becomes zero in Step 3

Note that the last remainder thus obtained will be the most significant digit (MSD) of the new base number

Converting a Decimal Number to a Number of Another Base

(Continued from previous slide..)

Example

$$1.952_{10} = ?_8$$
 $2.952_{10} = ?_{16}$

Solution:

8 | 952 Remainders

119	0
14	7
1	6
0	1

Hence, $?_{10} = 1670_8$

H.W

- 1. Any base to Decimal $(2370_{8,} 2370_{16})$ 2. Decimal to Any base $(2370_{10} = ?)$

Method

Step 1: Convert the original number to a decimal number (base

Step 2: Convert the decimal number so obtained to the new base number

(Continued from previous slide..)

Example 1

$$545_6 = ?_{10} = ?_4$$

Solution:

Step 1: Convert from base 6 to base 10

$$545_6 = 5 \times 6^2 + 4 \times 6^1 + 5 \times 6^0$$

= $5 \times 36 + 4 \times 6 + 5 \times 1$
= $180 + 24 + 5$
= 209_{10}

(Continued from previous slide..)

Step 2: Convert 209₁₀ to base 4

4	209	Remainders
	52	1
	13	0
	3	1
	0	3

Hence, $209_{10} = 3101_4$

So,
$$545_6 = 209_{10} = 3101_4$$

Thus, $545_6 = 3101_4$

(Continued from previous slide..)

Example 2

$$545_8 = ?_{10} = ?_{16}$$

Solution:

Step 1: Convert from base 8 to base 10

$$545_6 = 5 \times 8^2 + 4 \times 8^1 + 5 \times 8^0$$

= $5 \times 64 + 4 \times 8 + 5 \times 1$
= $320 + 32 + 5$
= 357_{10}

(Continued from previous slide..)

Step 2: Convert 357₁₀ to base 16

357	Remainders
22	5
1	6
0	1

Hence,
$$357_{10} = 165_{16}$$

So,
$$545_8 = 357_{10} = 165_{16}$$

Thus,
$$545_8 = 165_{16}$$

Shortcut Method for Converting a Binary Number to its Equivalent Octal Number

Method

- Step 1: Divide the digits into groups of three starting from the right
- Step 2: Convert each group of three binary digits to one octal digit using the method of binary to decimal conversion

Shortcut Method for Converting a Binary Number to its Equivalent Octal Number

(Continued from previous slide..)

Example

$$001101010_2 = ?_8$$

Step 1: Divide the binary digits into groups of 3 starting from right

<u>001</u> <u>101</u> <u>010</u>

Step 2: Convert each group into one octal digit

0012	$= 0 \times 2^2$	+ 0 x 2 ¹	+ 1 x 2 ⁰	=1
1012	$= 1 \times 2^{2}$	+ 0 x 2 ¹	+ 1 x 2 ⁰	=5
0102	$= 0 \times 2^2$	+ 1 x 2 ¹	+ 0 x 2 ⁰	=2

Hence, $?_2 = 152_8$

Shortcut Method for Converting an Octal Number to Its Equivalent Binary Number

Method

Step 1: Convert each octal digit to a 3 digit binary number (the octal digits may be treated as decimal for this conversion)

Step	2 :	Combine all he 3digitseach) in to	resulting binary groups (of a single binary number

Shortcut Method for Converting an Octal Number to Its Equivalent Binary Number

(Continued from previous slide..)

Example

$$562_8 = ?_2$$

Step 1: Convert each octal digit to 3 binary digits

$$5_8 = 101_2, 6_8 = 110_2,$$

 $2_8 = 010_2$

Step 2: Combine the binary groups $562_8 = 101 \quad 110 \quad 010$

5 6 2

Hence, $562_8 = 101110010_2$

Shortcut Method for Converting a Binary Number to its Equivalent Hexadecimal Number

Method

- Step 1: Divide the binary digits into groups of four starting from the right
- Step 2: Combine each group of four binary digits to one hexadecimal digit

Shortcut Method for Converting a Binary Number to its Equivalent Hexadecimal Number

(Continued from previous slide..)

Example

$$111101_2 = ?_{16}$$

Step 1: Divide the binary digits into groups of four starting from the right

<u>0011</u> <u>1101</u>

Step 2: Convert each group into a hexadecimal digit

$$0011_2 = 0 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 3_{10} = 3_{16}$$

 $1101_2 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 3_{10} = D_{16}$

Hence, $111101_2 = 3D_{16}$

Shortcut Method for Converting a Hexadecimal Number to its Equivalent Binary Number

Method

Step 1: Convert the decimal equivalent of each hexadecimal digit to a 4 digit binary number

Step 2: Combine all the resulting binary groups (of 4 digits each) in a single binary number

Shortcut Method for Converting a Hexadecimal Number to its Equivalent Binary Number

(Continued from previous slide..)

Example

$$2AB_{16} = ?_2$$

Step 1: Convert each hexadecimal digit to a 4 digit binary number

$$2_{16} = 2_{10} = 0010_2$$
 $A_{16} = 10_{10} = 1010_2$
 $B_{16} = 11_{10} = 1011_2$

Shortcut Method for Converting a Hexadecimal Number to its Equivalent Binary Number

(Continued from previous slide..)

Step 2: Combine the binary groups
$$2AB_{16} = 0010 \quad 1010 \quad 1011$$

Hence, $2AB_{16} = 001010101011_2$

Fractional Numbers

Fractional numbers are formed same way as decimal number system

In general, a number in a number system with base b would be written as:

$$a_n a_{n-1} \dots a_0 \cdot a_{-1} a_{-2} \dots a_{-m}$$

And would be interpreted to mean:

$$a_n x b^n + a_{n-1} x b^{n-1} + ... + a_0 x b^0 + a_{-1} x b^{-1} + a_{-2} x b^{-2} + ... + a_{-m} x b^{-m}$$

The symbols a_n , a_{n-1} , ..., a_{-m} in above representation should be one of the b symbols allowed in the number system

Formation of Fractional Numbers in Binary Number System (Example)

Binary Point

Position

Position Value

Quantity Represented

4	3	2	1	0	1	-2	-3	-
								4
2	2 3	2 ²	21	20	2 ⁻¹	2-2	2-3 1/8	2
16	8	4	2	1	1/2	1/4	1/8	1/16

Formation of Fractional Numbers in Binary Number System (Example)

(Continued from previous slide..)

Example

$$110.101_{2} = 1 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0} + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3}$$

$$= 4 + 2 + 0 + 0.5 + 0 + 0.125$$

$$= 6.625_{10}$$

Formation of Fractional Numbers in Octal Number System (Example)

Formation of Fractional Numbers in Octal Number System (Example)

(Continued from previous slide..)

Example

$$127.54_8 = 1 \times 8^2 + 2 \times 8^1 + 7 \times 8^0 + 5 \times 8^{-1} + 4 \times 8^{-2}$$

$$= 64 + 16 + 7 + \frac{5}{8} + \frac{4}{64}$$

$$= 87 + 0.625 + 0.0625$$

$$= 87.6875_{10}$$

 $H.W= 312.201_4 = ? All base(_{2,8,10,16}?)$