Universidade Federal do Rio de Janeiro

Projeto do Curso

Disponível em:

https://github.com/Lemos-san/-COE24- estatistica modelos probabilisticos

Professor: Rosa Maria Leão Período: 2018/2
Disciplina: COE241 - Estatística e Modelos Probabilísticos

Matheus Lemos dos Reis DRE: 114086213

1. Introdução

1.1. Propósito do Documento

Este documento representa o trabalho de conclusão da disciplina 'Estatística e Modelos Probabilísticos' [COE241], no período 2018/2. O objetivo deste documento é estudar um conjunto de dados aplicando a teoria aprendida em classe.

2. Descrição Geral

2.1. Perspectiva do Projeto

Foram analisados dados reais fornecidos pelo Professor Clauido Gil Soares de Araujo da CLINIMEX, através da aluna de doutorado da UFRJ Christina G. de Souza e Silva. Os dados foram obtidos a partir de uma extensa base de dados do Prof. Claudio Gil, coletada durante muitos anos e usada em suas pesquisas. Os dados mostram uma medida da condição aeróbica do paciente (o VO2 max) (por quilo de peso do indivíduo) e ainda as variáveis idade, peso e a carga máxima atingida durante um teste ao qual o paciente foi submetido. As características dos dados fornecidos são: idade do paciente, peso (kg), carga nal (watts) e VO2 máximo (mg/Kg/min). Todos os dados estão contidos no arquivo Dados-medicos.csv.

2.2. Ferramentas Utilizadas

Foi escolhido Python como linguagem de programação do projeto devido à grande quantidade de bibliotecas implementadas voltadas para o campo de estatística. Foi também utilizado o ambiente Jupyter como base principal para a execução do programa e a geração dos gráficos. Dentre as bibliotecas utilizadas, pode-se destacar:

- Numpy: cálculos numéricos e manipulações de matrizes
- Matplotlib: geração e visualização de gráficos
- Scipy: utilização de modelos de distribuições estatísticas
- Pandas: manipulação de dados

3. Análises

3.1. Histograma e Função Distribuição Empírica

Pode-se notar nos histogramas como todas as distribuições das quatro variáveis parecem se aproximar de uma distribuição gaussiana. A variável de Idade, mais especificamente, parece ser a mais próxima deste comportamento.

Os tamanhos e quantidades de *bins* de cada histograma foram determinados baseados nas fórmulas: (onde n é a quantidade de registros no conjunto de dados)

$$bins = (1 + 3.3 \times log_{10}n)$$
$$bin size = 3.49 \times \sigma \times n^{-1/3}$$

Abaixo seguem as respectivas Funções Distribuições Empíricas (CDFs) de cada variável. Pode-se notar como a curva da variável peso é muito mais "íngreme" do que as demais, o que condiz com sua distribuição mais concentrada no histograma. (o ponto azul claro no canto inferior esquerdo dos gráficos é apenas um ponto de referência para a construção dos gráficos, não fazendo parte de qualquer variável dos dados)

3.2. Média, Variância e Boxplot

Variável	Média	Variância	Desvio Padrão
Idade	53.29095	217.26773	14.74000
Peso	85.92577	218.82688	14.79279
Carga final	172.27150	4908.85396	70.06321
VO2 máximo	29.39472	110.09823	10.49277

Pode-se notar como a média e variância de Carga final é muito mais alta que as das de Idade, Peso e VO2 máx. Nos gráficos BoxPlot abaixo, pode-se ver como as variáveis Peso e VO2 máx possuem a maior quantidade de *outliers* que poderia ser removidos para futuras análises a fim de não comprometer possíveis conclusões a serem tiradas do conjunto de dados em questão.

CARGA FINAL:

VO2 MÁX:

3.3. Parametrizando distribuições

Foi utilizado o método da máxima verossimilhança para estimar os parâmetros das distribuições gaussiana, exponencial, lognormal e weibull. O método da máxima verossimilhança (MLE) supõe uma distribuição X contendo k parâmetros $\theta_1, \theta_2, \dots, \theta_k$ e uma pdf $f(x|\theta_1, \theta_2, \dots, \theta_k)$. Se possuirmos uma amostra aleatória X_1, X_2, \dots, X_n com valores observados como sendo x_1, x_2, \dots, x_n a cdf de X_1, X_2, \dots, X_n é $\prod_{i=1}^n f(x_i|\theta_1, \theta_2, \dots, \theta_k)$. Define-se a função de verossimilhança (likelihood) como sendo

Define-se a função de verossimilhança (*likelihood*) como sendo $L(\theta_1,\theta_2,...,\theta_k|x_1,x_2,...,x_k) = \prod_{i=1}^n f(x_i|\theta_1,\theta_2,...,\theta_k)$. Os valores dentre $\theta_1,\theta_2,...,\theta_k$ que maximizam a função, são chamados de estimadores máximos (MLE) dos parâmetros. Os valores MLE são aqueles para qual a sequência de amostras tem a maior probabilidade de ocorrer.

Segue abaixo, respectivamente, as MLE e as estimativas de cálculo dos parâmetros para as distribuições utilizadas:

Gaussiana/Normal:

$$f(x_1,\ldots,x_n\mid \mu,\sigma^2) = \prod_{i=1}^n f(x_i\mid \mu,\sigma^2) = \left(rac{1}{2\pi\sigma^2}
ight)^{n/2} \exp\!\left(-rac{\sum_{i=1}^n (x_i-\mu)^2}{2\sigma^2}
ight)$$

$$\hat{\mu} = \bar{x} = \sum_{i=1}^{n} \frac{x_i}{n}$$

Exponencial:

$$L(\lambda) = \prod_{i=1}^n \lambda \exp(-\lambda x_i) = \lambda^n \expigg(-\lambda \sum_{i=1}^n x_iigg) = \lambda^n \exp(-\lambda n \overline{x})$$

$$\widehat{\lambda} = \frac{1}{\overline{x}} = \frac{n}{\sum_i x_i}$$

Lognormal:

 $(\varphi$ é função densidade da distribuição normal)

$$L(\mu,\sigma) = \prod_{i=1}^n rac{1}{x_i} arphi_{\mu,\sigma}(\ln x_i)$$

$$\widehat{\mu} = rac{\sum_k \ln x_k}{n}, \qquad \widehat{\sigma}^2 = rac{\sum_k \left(\ln x_k - \widehat{\mu}
ight)^2}{n}.$$

Weibull: (somente parâmetros)

$$\widehat{\lambda}^k = rac{1}{n} \sum_{i=1}^n x_i^k$$

Os cálculos de dos parâmetrosSegue abaixo os gráficos dos histogramas sobrepostos pelas distribuições:

Distribuições em ordem: gaussiana, exponencial, lognormal, weibull.

Pode-se ver com clareza como as distribuições gaussiana, lognormal e weibull se sobrepõe bem a distribuição dos dados. Somente a exponencial está desalinhada.

Mais uma vez pode-se ver como as distribuições gaussiana, lognormal e weibull se sobrepõe bem a distribuição dos dados, em especial a lognormal. A exponencial continua desalinhada, porém melhor na variável Peso do que na variável Idade.

Mais uma vez pode-se ver como as distribuições gaussiana e lognormal se sobrepõe bem a distribuição dos dados. Entretanto neste último gráfico da Carga final, algum erro ocorreu na geração da sobreposição dos dados. Possivelmente um dos parâmetros pode ter sido mal calculado por falha a nível de software no tempo de execução.

Assim como a variável Idade, para a variável VO2 máx as distribuições gaussiana, lognormal e weibull se sobrepõe bem a distribuição dos dados.

3.4. Gráfico QQplot ou ProbabilityPlot

Nos gráficos de probabilidade abaixo, pode-se notar como no geral, as distribuições gaussiana, lognormal e weibull se adequam bem a modelagem dos dados.

IDADE: Vê-se com clareza como apenas a distribuição exponencial se distancia do comportamento do conjunto de dados.

PESO: Semelhante a Idade, exceto pela distribuição Exponencial ter um rendimento maior neste caso.

CARGA FINAL: Nota-se com clareza que a distribuição Weibull é a de menor desempenho/similaridade.

VO2 MÁX: dentre todas as variáveis, o VO2 máx aparenta possuir a melhor compatibilidade com todas as distribuições.

3.5. Teste de Hipótese

Na tabela abaixo estão dispostos os resultados dos testes de Kolmogorov-Smirnov de todas as variáveis para as distribuições estudadas neste projeto. Destacam-se a hipótese de lognormal na variável VO2 máx e Weibull na Carga final como sendo, respectivamente, as de maior semelhança e menor semelhança.

Distribuição	Idade (stats)	Peso (stats)	Carga final (stats)	VO2 máximo (stats)
Gaussiana	0.04408	0.06661	0.03923	0.04453
Exponencial	0.27666	0.35689	0.22648	0.26700
Lognormal	0.04539	0.03919	0.02888	0.01900
Weibull	0.03785	0.06066	0.75100	0.02042

3.6. Análise de dependência entre as variáveis, modelo de regressão

Pode-se notar como apenas a variável Carga final possui uma correlação significativamente alta com VO2 máx. Pode-se inferir também que a variável Idade está negativa correlacionada com VO2, e a variável Peso quase não se correlaciona com VO2.

Correlações	Correlação de Pearson a VO2 máximo
Idade	-0.63007
Peso	-0.17440
Carga final	0.878325

Deste modo, poderia ser usado um modelo de regressão linear para representar uma relação entre VO2 e Carga final.

3.7. Inferência Bayesiana

Como a variável de maior correlação com VO2 é a Carga final, a heurística utilizada neste trabalho foi de particionar os dados em quatro (4) hipóteses:

- Hipótese 1 (H 1): $0 \le Carga\ final < 100$
- Hipótese 2 (H 2): $100 \le Carga\ final < 200$
- Hipótese 3 (H 3): $200 \le Carga\ final < 300$
- Hipótese 4 (H 4): $300 \le Carga\ final < 400$

Sendo H_A a hipótese A, em que VO2 máx < 35, e sendo H_B a hipótese B, em que VO2 máx \ge 35. Temos as seguintes tabelas de inferência.

H_A

Hipótese	Priori P(H)	Likelihood P(H_A H)	Bayes Numerator P(H) * P(H_A H)	Posteriori P(H H_A)
H 1	0.16211	1.0	0.16211	0.18410
H 2	0.49744	0.90909	0.45221	0.51356
H 3	0.290955	0.36363	0.26450	0.30038
H 4	0.046928	0.03636	0.00170	0.00193

H_B

Hipótese	Priori P(H)	Likelihood P(H_B H)	Bayes Numerator P(H) * P(H_B H)	Posteriori P(H H_B)
H 1	0.16211	0.0	0.0	0.0
H 2	0.49744	0.09090	0.04522	0.38686
H 3	0.29095	0.63636	0.02645	0.22627
H 4	0.04692	0.96363	0.04522	0.38686

Para realizar a previsão de um valor de VO2 que inicialmente estava contido na hipótese A, e que passaria a ser da hipótese B, $P[\ VO_2 m\'aximo \ge 35\ | VO_2 m\'aximo < 35]$, substitui-se os valores da Priori na tabela H_B pelos valores da posteriori da tabela H_A e recalculando o numerador de Bayes e, por conseguinte, a Posteriori (a predição em si).

Tal tarefa foi realizada na tabela abaixo:

Hipótese	Priori P(H)	Likelihood P(H_A H)	Bayes Numerator P(H) * P(H_A H)	Posteriori P(H H_A)
H 1	0.18410	0.0	0.0	0.0
H 2	0.51356	0.09090	0.04668	0.19476
H 3	0.30038	0.63636	0.19114	0.79751
H 4	0.00193	0.96363	0.00185	0.00767