Graphic Lasso: two precision matrices

Jiaxin Hu

January 16, 2021

1 Consistency

Suppose K categories are clustered by two groups with precision matrices Θ_1, Θ_2 . The model becomes

$$\Omega^k = I_k \Theta_1 + (1 - I_k) \Theta_2, \quad k = 1, ..., K,$$

where $I_k = I(k$ -th category belongs to group 1) are indicator functions. The model is identifiable since the indicator functions can be replaced by a membership matrix. Consider the optimization problem

$$\begin{aligned} \min_{\Theta_1,\Theta_2,\boldsymbol{I}_k} \quad & \sum_{k=1}^K \operatorname{tr}(S^k \Omega^k) - \log |\Omega^k| \\ s.t. \quad & \Omega^k = \boldsymbol{I}_k \Theta_1 + (1-\boldsymbol{I}_k) \Theta_2, \quad k = 1,...,K, \\ & & \|\Theta_i\|_0 \leq b, \quad i = 1,2. \end{aligned}$$

Theorem 1.1. Let $(\Theta_1, \Theta_2, \mathbf{I}_k)$ be the true precision matrices and the membership. Suppose $0 < \tau_1 < \phi_{min}(\Theta_i) \le \phi_{max}(\Theta_0) < \tau_2 < \infty$, where i = 1, 2 and τ_1, τ_2 are positive constants. For the estimation $(\hat{\Theta}_1, \hat{\Theta}_2, \hat{I}_k)$ such that $\sum_{k=1}^K tr(S^k \hat{\Omega}^k) - \log |\hat{\Omega}^k| \le \sum_{k=1}^K tr(S^k \Omega^k) - \log |\Omega^k|$, we have the following accuracy with probability tending to 1 My conjecture is \sqrt(K)

$$\sum_{k=1}^{K} \left\| \hat{\Omega}^k - \Omega^k \right\| \le 2KC'' \left[C \sqrt{\frac{b \log p}{n} + C'} \sqrt{\frac{p \log p}{n}} \right]. \tag{1}$$

Proof. Let Σ^1, Σ^2 denote the true covariance matrices. Define the sets $A_{11} = \{k : \hat{I}_k = I_k = 1\}$, $A_{12} = \{k : \hat{I}_k = 1, I_k = 0\}$, $A_{21} = \{k : \hat{I}_k = 0, I_k = 1\}$ and $A_{22} = \{k : \hat{I}_k = I_k = 0\}$. Correspondingly, we define $\Delta_{11} = \hat{\Theta}_1 - \Theta_1$, $\Delta_{12} = \hat{\Theta}_1 - \Theta_2$, $\Delta_{21} = \hat{\Theta}_2 - \Theta_1$, and $\Delta_{22} = \hat{\Theta}_2 - \Theta_2$. Let $\Delta^k = \hat{\Omega}^k - \Omega \in \{\Delta_{11}, \Delta_{12}, \Delta_{21}, \Delta_{22}\}$. The value of Δ^k depends on the true and estimated membership of k. Consider the function

$$G(\Delta_{11}, \Delta_{12}, \Delta_{21}, \Delta_{22}) = I_1 + I_2,$$

where

$$I_1 = \sum_{k \in A_{11}} \operatorname{tr}((S^k - \Sigma^1)\Delta_{11}) + \sum_{k \in A_{12}} \operatorname{tr}((S^k - \Sigma^2)\Delta_{12}) + \sum_{k \in A_{21}} \operatorname{tr}((S^k - \Sigma^1)\Delta_{21}) + \sum_{k \in A_{22}} \operatorname{tr}((S^k - \Sigma^2)\Delta_{22})$$

$$=I_{11}+I_{12}+I_{21}+I_{22},$$

and

$$I_2 = |A_{11}|f(\Delta_{11}, \Theta_1) + |A_{12}|f(\Delta_{12}, \Theta_2) + |A_{21}|f(\Delta_{21}, \Theta_1) + |A_{22}|f(\Delta_{22}, \Theta_2),$$

with
$$f(\Delta, \Theta) = (\tilde{\Delta})^T \int_0^1 (1 - v)(\Theta + v\Delta)^{-1} \otimes (\Theta + v\Delta)^{-1} dv \tilde{\Delta}$$
.

Recall the result in the common precision matrix case. For each I_{ij} , i, j = 1, 2, we have

$$\frac{1}{|A_{ij}|}|I_{ij}| = \operatorname{tr}\left(\left(\frac{1}{|A_{ij}|}\sum_{k \in A_{ij}} S^k - \Sigma^j\right) \Delta_{ij}\right) \le C_{ij} \sqrt{\frac{\log p}{n|A_{ij}|}} |\Delta_{ij}^-|_1 + C'_{ij} \sqrt{\frac{p \log p}{n|A_{ij}|}} \|\Delta_{ij}\|_F.$$

Let $T_j = \{(k,l) : \Theta_{j,kl} \neq 0\}, j = 1,2$. We have $|\Delta_{ij}^-|_1 = |\Delta_{T_j,ij}^-|_1 + |\Delta_{T_j^c,ij}^-|_1$. Note that $|\Delta_{T_j,ij}^-|_0, |\Delta_{T_i^c,ij}^-|_0 \leq b$ and $|\Delta_{T_j,ij}^-|_1, |\Delta_{T_i^c,ij}^-|_1 \leq \sqrt{b} \|\Delta_{ij}\|_F$. Then, we have

$$|I_{ij}| \le \sqrt{|A_{ij}|} \left[C_{ij} \sqrt{\frac{b \log p}{n}} + C'_{ij} \sqrt{\frac{p \log p}{n}} \right] \|\Delta_{ij}\|_F.$$

On the other hand, the lower bound for I_2 is

$$I_2 \le \frac{1}{4\tau_2^2} \sum_{ij} |A_{ij}| \|\Delta_{ij}\|_F^2.$$

To let $G \leq 0$, we have $I_2 \leq |I_1| \leq \sum_{ij} |I_{ij}|$. Plug the upper bound for $|I_{ij}|$ and the lower bound for I_2 , we have

$$\frac{1}{4\tau_2^2} \sum_{ij} |A_{ij}| \|\Delta_{ij}\|_F^2 \le \left[C\sqrt{\frac{b \log p}{n}} + C'\sqrt{\frac{p \log p}{n}} \right] \sum_{ij} \sqrt{|A_{ij}|} \|\Delta_{ij}\|_F.$$

Multiply max $|A_{ij}|$ on both sides. By Cauchy Schwartz inequality, we have

$$\max |A_{ij}| \sum_{ij} |A_{ij}| \|\Delta_{ij}\|_F^2 \ge \sum_{ij} |A_{ij}|^2 \|\Delta_{ij}\|_F^2 \ge \frac{1}{4} (\sum_{ij} |A_{ij}| \|\Delta_{ij}\|_F)^2,$$

and

$$\max |A_{ij}| \sum_{ij} \sqrt{|A_{ij}|} \|\Delta_{ij}\|_F \le \frac{\max |A_{ij}|}{\sqrt{\min |A_{ij}|}} \sum_{ij} |A_{ij}| \|\Delta_{ij}\|_F.$$

Therefore, we obtain the accuracy

$$\sum_{k=1}^{K} \left\| \hat{\Omega}^k - \Omega^k \right\|_F = \sum_{ij} \left| A_{ij} \right| \left\| \Delta_{ij} \right\|_F \le \frac{4 \max |A_{ij}| C''}{\sqrt{\min |A_{ij}|}} \left[C \sqrt{\frac{b \log p}{n}} + C' \sqrt{\frac{p \log p}{n}} \right].$$

Remark 1. In two group case, assuming $|A_{ij}| > 0$ for all i, j = 1, 2, we have $\frac{\max |A_{ij}|}{\sqrt{\min |A_{ij}|}} \le \frac{K}{2}$. Then, we obtain the accuracy (1) in Theorem 1.1. If we have r groups and each group has equal number of categories, the number 4 should be replaced by r(r-1) and $\frac{\max |A_{ij}|}{\sqrt{\min |A_{ij}|}} \le \frac{K}{r}$. Thus the accuracy is of order $\mathcal{O}(Kr)$.