

Topic 6 Content

This lecture covers:

- Operational amplifiers (Op Amp) as active elements
- Ideal and non-ideal Op Amp
- Mathematical operations using Op Amp
 - Inverting Op Amp
 - Non-inverting Op Amp
 - Summing Op Amp
 - Difference Op Amp
 - Integrator
 - Differentiator

Corresponds to Chapter 5 and last part of Chapter 6 of your textbook

Operational Amplifiers

- Operational amplifiers or Op Amp are active elements.
- The Op Amp is an electronic device consisting of a complex arrangement of resistors and transistors.
- They are commercially available in integrated circuit packages (e.g. LM 741).
- An Op Amp circuit is designed to perform mathematical operations in analog circuits such as addition, subtraction, multiplication, division, differentiation, and integration when resistors and capacitors are connected to its terminals.

https://www.triadsemi.com/2014/06/02/asic-integration-power-savings/

Operational Amplifiers

- A typical Op Amp has eight/8 pins. We are only interested in five/5 of them:
 - Inverting input (pin 2)
 - Non-inverting input (pin 3)
 - Output (pin 6)
 - Positive power supply V⁺ (pin 7)
 - **Negative** power supply V^- (pin 4)
 - A signal applied to the non-inverting input with appear with the same polarity in the output.
 - A signal applied to the inverting input will appear with the opposite polarity in the output.

Equivalent circuit model

- An Op Amp is modelled from its input terminals by an input resistor R_i, and from its output terminal by a voltagecontrolled voltage source in series with an output resistor R_o.
- The output voltage v_o is given by:

$$v_o = Av_d = A(v_2 - v_1)$$

Typical range for Op Amp parameters

Parameter	Typical range	Ideal value
Open-loop gain, A	10 ⁵ to 10 ⁸	8
Input resistance R_i	10^5 to 10^{13} Ω	$\infty \Omega$
Output resistance R_o	10 to 100 Ω	0 Ω
Supply voltage, V_{cc}	5 to 24 V	

- A: Open-loop voltage gain
- v_d : **Differential** input voltage
- v_1 : **Inverting** terminal voltage to the **ground**
- v_2 : Non-inverting terminal voltage to the ground
- R_o: Thevenin equivalent resistance seen at the output terminals
- R_i: Thevenin equivalent resistance seen at the input terminals

Ideal vs non-ideal Op Amp

- In practice, the magnitude of output voltage v_o cannot exceed its power supply voltage $|V_{cc}|$.
- Depending on the differential input voltage in open-loop form, the Op Amp can operate in three modes:
 - 1. Positive saturation: $v_o = V_{cc}$
 - 2. Linear region: $-V_{cc} \le v_o \le V_{cc}$
 - 3. Negative saturation: $v_o = -V_{cc}$

We always operate Op Amp in its **linear region** throughout this course

$$-V_{cc} \le v_o \le V_{cc}$$

- Assuming linear operation, an ideal Op Amp has the following characteristics:
 - **Infinite** open-loop gain, $A \simeq \infty$
 - **Infinite** input resistance, R_i ≈ ∞
 - **Zero** output resistance, $R_o \simeq 0$

Ideal Op Amp in circuit analysis

There are **two important properties** of Ideal Op Amp that are needed for analysing them in electric circuits.

1. The **currents** into both terminals are **zero**

$$i_1 = 0 & i_2 = 0$$

2. The **voltage** across the input terminals is **zero**

$$v_d = v_2 - v_1 = 0$$
 or $v_1 = v_2$

- Having $R_i \simeq \infty$ implies **open circuit** at the **input** terminals. Thus, **input currents** i_1 and i_2 should be **zero**.
- If $v_d \neq 0$, the output voltage $v_o = Av_d$ may become so high that it would exceed V_{cc} due to the large value of the open-loop gain A.

Note: $v_2 = v_1$ only happens when connecting the **output** to the **inverting** terminal (**negative feedback**).

Problem Solving in Op Amp Circuits

- Follow these three steps when solving Op Amp circuits:
 - 1. Use Ideal Op Amp model:
 - $i_1 = i_2 = 0$
 - $v_1 = v_2$
 - $R_i \simeq \infty$
 - $R_o \simeq 0$
 - 2. Apply **nodal** analysis.
 - 3. Solve nodal equations to express the **output voltage** in terms of **input signals** (voltage or current) or just solve for the **unknown** voltage or current in the circuit.

• Having $R_0 \simeq 0$ implies short circuit at the output terminals, thus output current i_o can attain any value and direction depending on the circuit

- a) Find the ratio of output voltage v_0 to input voltage v_s , known as *closed-loop* $gain \frac{v_0}{v_s}$.
- b) Calculate i_o if $v_s = 1$ V.

Inverting amplifier

- An inverting amplifier reverses the polarity of the input signal while amplifying it.
 - The noninverting input is grounded.
 - The **inverting** input is connected to the output via a **feedback resistor**, $R_{f.}$
 - The input voltage v_i is also connected to the inverting input via another resistor, $R_{1.}$

Apply KCL at node 1:
$$i_1 = i_2 \Rightarrow \frac{v_i - v_1}{R_1} = \frac{v_1 - v_0}{R_f}$$

Ideal Op Amp with negative feedback:

$$v_1 = v_2 = 0 \text{ V}$$

Thus:

$$\frac{v_i}{R_1} = -\frac{v_0}{R_f}$$

$$A_v = \frac{v_o}{v_i} = -\frac{R_f}{R_1}$$
 (voltage gain)

$$v_0 = -\frac{R_f}{R_1} v_i$$

Non-inverting amplifier

- A non-inverting amplifier is designed to provide positive voltage gain amplification
 - The voltage input v_i is directly connected to **noninverting** input
 - The **inverting** input is **grounded** via R_1 and also connected to the output via the feedback resistor, R_f

Apply KCL at node 1:
$$i_1 = i_2 \Rightarrow \frac{0 - v_1}{R_1} = \frac{v_1 - v_0}{R_f}$$

Ideal Op Amp with negative feedback:

$$v_1 = v_2 = v_i$$

Thus:

$$\frac{-v_i}{R_1} = \frac{v_i - v_0}{R_f}$$

$$A_v = \frac{v_o}{v_i} = 1 + \frac{R_f}{R_1}$$
 (voltage gain)

$$v_0 = \left(1 + \frac{R_f}{R_1}\right) v_i$$

Find the output voltage v_0 in the Op Amp circuit shown below.

Voltage follower

- A **voltage follower** or *unity gain amplifier* is an Op Amp circuit whose **output** is the **same as the input** (i.e. gain equals 1).
 - Using Op Amp with negative feedback makes the *closed-loop* gain depend only on the external resistors rather that open-loop gain A.
 - A special case of non-inverting Op Amp is obtained when $R_f=0$ or $R_1=\infty$ or both. This makes the gain to become 1, i.e., $v_o=\left(1+\frac{R_f}{R_1}\right)v_1=v_1$.

Voltage follower

- Voltage follower has a very high input resistance (impedance) and it is useful
 to isolate one circuit (first stage) from another (second stage).
- The second stage circuit would not draw current from the first stage, instead Op Amp provides current and power while maintaining the same voltage as v_i , removing the loading effect from the first stage circuit.

Summing amplifier

- A summing amplifier is an Op Amp circuit that combines several inputs and produces a weighted sum of the inputs in its output.
 - Aside from amplification, the Op Amp can be made to sum the values of input signals.
 - Using the inverting Op Amp, we can connect many inputs at the same time.

KCL at node
$$a$$
: $i = i_1 + i_2 + i_3$

Ohm's Law:

$$\frac{v_a - v_o}{R_f} = \frac{v_1 - v_a}{R_1} + \frac{v_2 - v_a}{R_2} + \frac{v_3 - v_a}{R_3}$$

Ideal Op Amp with negative feedback: $v_a = 0 \text{ V}$

Thus,

$$v_0 = -\left(\frac{R_f}{R_1}v_1 + \frac{R_f}{R_2}v_2 + \frac{R_f}{R_3}v_3\right)$$

Find the output voltage v_0 and output current i_0 in the Op Amp circuit shown.

Difference amplifier

 Difference amplifiers are used in various applications where there is a need to amplify the difference between two input signals.

KCL at node
$$a$$
: $\frac{v_1 - v_a}{R_1} = \frac{v_a - v_o}{R_2}$ or $v_o = \left(\frac{R_2}{R_1} + 1\right) v_a - \frac{R_2}{R_1} v_1$ (I)

KCL at node *b*:
$$\frac{v_2 - v_b}{R_3} = \frac{v_b - 0}{R_4}$$
 or $v_b = \frac{R_4}{R_3 + R_4} v_2$ II)

Ideal Op Amp with negative feedback makes $v_a = v_b$. Substitute Eq. II into Eq I:

$$v_o = \frac{R_2(1 + R_1/R_2)}{R_1(1 + R_3/R_4)}v_2 - \frac{R_2}{R_1}v_1$$

A difference amplifier **must reject** a signal **common** to the two inputs. This condition exists if:

$$\frac{R_1}{R_2} = \frac{R_3}{R_4}$$

$$v_0 = \frac{R_2}{R_1} (v_2 - v_1)$$

Cascade of Op Amp stages

- It is common to use multiple Op Amp circuits chained together to increase the overall gain of an amplifier.
 - Due to input and output impedances of the ideal Op Amps, stages can be connected together without affecting the performance of each other (no loading effect).
- This head to tail configuration is called "cascading".
- Each amplifier is then called a "stage".

 The gain of a series of amplifiers connected in cascade is the product of the individual gains:

$$A = A_1 \times A_2 \times A_3$$

Note: The range of input voltage must be small enough to avoid saturation when amplified.

Find the output voltage v_0 and output current i_0 in the Op Amp circuit shown.

Integrator

- **Capacitors** in combination with op-amps can be used to perform advanced mathematical functions.
- An **integrator** is an Op Amp circuit used to **integrate** signals.
 - By replacing the feedback resistor with a capacitor, the output voltage is obtained as follows.

KCL at node
$$a$$
: $i_R = i_C$

Current-voltage relations:
$$i_R = \frac{v_i}{R}$$
, $i_C = -C \frac{dv_o}{dt}$

Substitute in KCL:
$$dv_o = -\frac{1}{RC}v_i dt$$

Integrate both sides:
$$v_o(t) - v_o(0) = -\frac{1}{RC} \int_0^t v_i(\tau) d\tau$$

Ensuring zero initial conditions
$$v_o(0) = 0 \text{ V}$$

Ensuring zero initial conditions
$$v_o(0) = 0$$
 V:
$$v_o(t) = -\frac{1}{RC} \int_0^t v_i(\tau) d\tau$$

Differentiator

- A differentiator is an Op Amp circuit used to differentiate signals.
 - If the **capacitor** is used in place of the **input resistor** instead of the feedback resistor, there will only be current flowing if the capacitor is changing.

KCL at node a: $i_R = i_C$

Current-voltage relations: $i_R = -\frac{v_o}{R}$, $i_C = C \frac{dv_i}{dt}$

Substitute in KCL:
$$v_o(t) = -RC \frac{dv_i}{dt}$$

Summary

Inverting amplifier

$$v_o = -\frac{R_2}{R_1} v_i$$

Noninverting amplifier

$$v_0 = \left(1 + \frac{R_2}{R_1}\right) v_i$$

Voltage follower

$$v_o = v_i$$

Summer

$$v_o = -\left(\frac{R_f}{R_1}v_1 + \frac{R_f}{R_2}v_2 + \frac{R_f}{R_3}v_3\right)$$

Difference amplifier

$$v_o = \frac{R_2}{R_1} (v_2 - v_1)$$

Integrator

$$v_o(t) = -\frac{1}{RC} \int_0^t v_i(\tau) d\tau$$

Differentiator

$$v_o(t) = -RC\frac{dv_i}{dt}$$

Calculate the output voltage v_o in the Op Amp circuit below.

Questions?

