1. Számrendszerek, számábrázolási módok

Hőmérőt fejlesztünk egy olyan műholdas szondához, amelynek a Hold/Mars felszíni hőmérsékletét kellene mérnie legalább 0.15°C felbontással.

Legalább hány bites egész és törtrészt kell definiálnunk, ha kettes komplemens illetve ha előjel és abszolútértékes ábrázolást választanánk?

(segítség: tételezzük fel, hogy a Hold felszíni hőmérséklete kb. -180...+140 fok között változik, a Mars: -127...+20 fok között változik)

Határozzuk meg, hogy a teljes specifikált mérési tartományban összesen minimum hány különböző számértéket kell megjelenítenünk?

Határozzuk meg, hogy a választott komplemens számábrázolás esetén összesen hány különböző értéket lennénk képesek ábrázolni (nem csak a mérési tartományban!).

Mit lehetne javasolni, ha jobb kihasználtságot szeretnénk a fenti méréstartományok és felbontás megtartása mellett?

2. Formális specifikáció

Határozzuk meg egy olyan kódátalakító egységnek az igazságtáblázatát, amely a bemenetére kapcsolt X 4 bites bináris számból BCD számot konvertál 4+4 biten (M és L).

3. Minimalizálás

Adott az $F(A,B,C,D,E) = \Sigma^5[(2,3,6,7,10,11,13,14,15,22,29,30,31) + (0,1,4,5,16,17)]$ ötváltozós logikai függvény. Grafikus minimalizálással keressük meg az összes **maxtermből** képezhető prímimplikánsát és adjuk meg a függvény legegyszerűbb kétszintű konjunktív alakját.

4. Funkcionális építőelem alkalmazása

Realizáljuk az $F = \sum_{0.1,2}^{4} (0,1,2,4,6,7,8,9,10,12,14)$ logikai függvényt feltéve, hogy van $S_{0.1,2}^4$ építőelemünk.

5. Sorrendi hálózatok

Adott egy forgó tárcsa, melyen az ábrának megfelelő két furat található. A tárcsa egyik oldalát megvilágítjuk, a másik oldalon a furatok pozíciójában két fényérzékelő található. A fényérzékelő kimenete a megvilágítás során logikai '1'. **Vegye fel** annak az aszinkron sorrendi hálózatnak az előzetes állapottábláját, melynek Zbal és Zjobb kimenete közül az egyik akkor 1-es, ha az adott irányba forog a jeladó tárcsa. Mindkét kimenet csak az induló állapotban lehet egyszerre 0 értékű.

6. Állapot összevonás

Egyszerűsítse az alábbi állapottáblát és végezze el a zártságvizsgálatát.

y\x	0	1
a	b,0	h,0
b	a,1	g,1
c	-,1	f ,-
d	d,1	-,0
e	c,1	d,-
f	a,-	c,1
g	-,-	b,-
h	g,1	е,-

7. Állapotkódolás

Adott az alábbi aszinkron kódolt állapottábla.

Keresse meg, hol tartalmaz kritikus versenyhelyzetet.

Tegyen javaslatot a megszüntetésére.

Megoldható-e a feladat úgy, hogy a hálózat normál aszinkron jellege megmaradjon?

$y_1y_0\backslash x_1x_0$	00	01	11	10
	Y_1Y_0,Z			
00	00,0	00,0	00,0	10,-
01	00,-	01,1	11,0	01,0
11	10,1	11,1	11,0	01,0
10	10,1	01,1	11,-	10,1