

Tema 1. Recursión Parte I

Programación (PRG) Curso 2022/23

Departamento de Sistemas Informáticos y Computación

Índice y bibliografía

- Introducción
- 2. Métodos recursivos
- 3. Recursividad y pila de llamadas
- 4. Etapas del diseño recursivo
- 5. Algunos ejemplos
- N. Prieto y otros. Empezar a programar usando Java. Tercera edición.
 Editorial UPV, 2016. Capítulo 10.
- M.A. Weiss. Estructuras de datos en Java: compatible con Java 2. Addison-Wesley, 2000. Capítulo 7.
- R. Sedgewick, K. Wayne. Introduction to Programmig in Java. An Interdisciplinary Approach. Pearson — Addison-Wesley 2009. Capítulo 2.3.
- Asignatura Matemática Discreta del Grado en Informática, ETSINF, UPV.
 Tema 1 (Métodos de demostración: inducción).

- A grandes rasgos, se dice que un algoritmo es recursivo si viene definido o descrito en términos de la aplicación de él mismo a uno o más casos del problema "más simples" en alguna medida.
- Ejemplo. Función factorial de n, definida para $n \ge 0$.

$$n! = \prod_{k=1}^{n} k$$
 decir:
$$n! = n \cdot (n-1) \cdot \dots \cdot 2 \cdot 1$$
 cuando $n \ge 1$
$$n! = 1$$
 cuando $n = 0$

Se puede observar que en el caso de los $n \ge 1$ (para los que $n - 1 \ge 0$):

$$n! = n \cdot (n-1)!$$

• En resumen, se tiene:

$$n! = \begin{cases} 1 & n = 0 \\ n \cdot (n-1)! & n > 0 \end{cases}$$

En efecto:

$$0! = 1$$
 $1! = 1 = 1 \cdot 0! = 1$
 $2! = 2 \cdot 1 = 2 \cdot 1! = 2$
 $3! = 3 \cdot 2 \cdot 1 = 3 \cdot 2! = 6$
 $4! = 4 \cdot 3 \cdot 2 \cdot 1 = 4 \cdot 3! = 24$
 $5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 5 \cdot 4! = 120$

...

en general, $n! = n \cdot (n-1)!$

La traza anterior ilustra un hecho importante:

$$n! = \begin{cases} 1 & n = 0 \\ n \cdot (n-1)! & n > 0 \end{cases}$$
 (1)

se puede considerar una definición *efectiva* de *n*!, es decir un método o algoritmo para calcular *n*!, pues:

- Para n = 0, (1) dice directamente que n! vale 1.
- Para los n > 0, (2) dice cómo obtener el valor de n!, suponiendo que se ha calculado (n-1)!.

En el caso (2) se está haciendo la suposición o *hipótesis* de que a su vez se sabe calcular (n - 1)!, y que la propia definición indica cómo hacerlo de manera efectiva. Hipótesis que es correcta pues basta con aplicar (2) un número finito de veces:

$$n! \leftarrow (n-1)! \leftarrow (n-2)! \leftarrow \dots \leftarrow 4! \leftarrow 3! \leftarrow 2! \leftarrow 1! \leftarrow 0!$$

Aplicación de un número finito de veces de (2) desde el caso directo (1)

• El hecho de que el número de veces que hay disminuir un entero n>0 cualquiera para llegar a 0 sea finito, está en el fundamento de las demostraciones por inducción sobre los naturales (MAD, tema 1).

- Con más precisión que en la definición inicial, se dice que un algoritmo es recursivo si viene dado por un par de casos complementarios y excluyentes para los datos del problema:
 - Caso directo o base: Caso más simple, en alguna medida, para el que la resolución es directa.
 - Caso recursivo o general: La resolución del problema viene expresada en términos de la resolución de uno o más subproblemas del mismo tipo y más pequeños en alguna medida (cantidad entera ≥0, para que el razonamiento inductivo subyacente sea correcto).
- Ejemplos:

– Definición recursiva de n!, $n \ge 0$

$$n! = \begin{cases} 1 & n = 0 \\ n \cdot (n-1)! & n > 0 \end{cases}$$

– Definición recursiva de fibonacci(n), $n \ge 0$

$$fibonacci(n) = \begin{cases} 0 & n = 0 \\ 1 & n = 1 \\ fibonacci(n-1) + fibonacci(n-2) & n > 1 \end{cases}$$

Métodos recursivos

La resolución iterativa de n! se puede ver también bajo este punto de vista:

```
/** Calculo de n!. Precondicion: n >= 0 */
public static int factorial(intn) {
  int f = 1, i = 0;
   while (i < n) { i++;
       f = f * i;
   }
  return f;
}</pre>
```

núm. pasada	i	f
0	0	1
1	1	1
2	2	2
3	3	6
4	4	24
5	5	120
	•••	•••
n-1	n-1	(n-1)!
n	n	n!

• Por inducción se demuestra que la siguiente relación entre las variables:

$$f = i!$$

es general, se mantiene sea cual sea el número de pasadas ejecutadas.

- Por una parte, ello implica que cuando se llega a i = n, en f se tiene el valor de n!
- También muestra que en el cálculo de n!, para n > 0, se ha usado el cálculo previamente resuelto de (n-1)!.

Métodos recursivos

• Java permite declarar *métodos recursivos*, entendiendo por tales aquellos en los que se cita al propio método que se está declarando:

Condicional que discrimina si a **n** se le ha de aplicar el caso base o el caso general.

```
/** Calculo de n!. Precondicion: n >= 0. */
public static int factorial(int n) {
    if (n == 0) { return 1; }
    else { return n * factorial(n - 1); }
}
```

- Caso base: n = 00! = 1
- Caso general: n > 0 $n! = n \cdot (n-1)!$

- El mecanismo que da soporte a las declaraciones de métodos recursivos es la pila de registros de activación.
- Cada llamada recursiva al método tiene asociado el registro de activación para sus propios datos, pero se aplica el mismo método o algoritmo (el mismo código Java) a todos ellos; el código del método deberá distinguir si los datos se encuentran en el caso base o en el caso general.

Ejemplo. Programa Prueba, con los métodos:

/** Precondici	Prueba.factorial			
public static i	VR n 0			
int f; ⇒ if (n == 0) else { f =	DR * f			
return f;		, , ,	Prueba.factorial	Prueba.factorial
}	roid main(Ghrina[]	amaa) [VR n 1	VR n 1
int f = fac	<pre>void main(String[] ctorial(3);</pre>	args) {	DR * f	DR \star f
<pre>System.out. }</pre>	.println(f);	Prueba.factorial	Prueba.factorial	Prueba.factorial
•		VR n 2	VR n 2	VR n 2
		DR * f	DR \star f	DR \star f
	Prueba.factorial	Prueba.factorial	Prueba.factorial	Prueba.factorial
	VR n 3	VR n 3	VR n 3	VR n 3
	DR f	DR f	DR f	DR f
Prueba.main	Prueba.main	Prueba.main	Prueba.main	Prueba.main
args [{}	args [{}	args [{}	args [{}	args [{}
DR 🗌	DR f	DR f	DR f	DR f

 La siguiente traza resume la evolución de los parámetros en las sucesivas llamadas del ejemplo, así como el valor que se calcula en los retornos del método.

n	f (VR)	Relación entre n , f	
3	6 x×3	3 · 2 = 6 = 3!	
2	2 ×2	2 ·1 = 2= 2!	n>0
1	1 ×1	1.1 = 1= 1!	
0	1)	1= 0!	n=0

```
/** Calculo de n!. Precondicion: n >= 0. */
public static int factorial(int n) {
    int f;
    if (n == 0) { f = 1; }
    else { f = n * factorial(n - 1); }
    return f;
}

public static void main(String[] args){
    int f = factorial(3);
    System.out.println(f);
}
```

Llamada inicial al método

Etapas del diseño recursivo

- 1. Enunciado del problema. Perfil del método y precondición de los datos.
- 2. Análisis por casos. Determinación de los siguientes casos complementarios y excluyentes:
 - Caso base o directo: Caso más simple o pequeño en alguna medida de los datos, con solución directa.
 - Caso general o recursivo: Reducción del problema a uno o más subproblemas
 - ------a) del mismo tipo,
 - b) y más pequeños en alguna medida.
- 3. Validación del razonamiento recursivo:
 - Asegurarse de que los datos que se le pasen a los subproblemas continúan cumpliendo la precondición.
 - Asegurarse de que los nuevos datos son más pequeños en alguna medida (cantidad entera, positiva, acotada inferiormente).
- En la transcripción al lenguaje Java, una instrucción if ... else deberá discriminar si el valor de los parámetros del método se encuentran en el caso base o en el caso general.

Algunos ejemplos – Potencia *n*-ésima

1. Enunciado del problema. Dados unos enteros a y $n \ge 0$, calcular la potencia a^n .

```
/** Calculo de a elevado a n. Precondicion: n >= 0. */
public static int potencia(int a, int n)
```

2. Análisis de casos.

- Caso base: Si n = 0, entonces $a^n = 1$.
- Caso general: Si n > 0, entonces $a^n = \underbrace{a \cdot \ldots \cdot a}_{} = a^{n-1} \cdot a$.

Son casos complementarios y excluyentes.

```
/** Calculo de a elevado a n. Precondicion: n >= 0. */
public static int potencia(int a, int n) {
    if (n == 0) { return 1; }
    else { return potencia(a, n - 1) * a; }
}
```

n veces

- **3.** Validación del diseño. En el caso n > 0:
 - A la llamada recursiva se le continúa pasando un exponente n − 1 ≥ 0
 - El nuevo exponente, de valor n-1, cumple $n>n-1\geq 0$, es decir, tiene un valor entero más pequeño que el anterior, sin hacerse menor que 0.

Algunos ejemplos — Potencia *n*-ésima

- La siguiente traza ejemplo de evolución de los parámetros en las sucesivas llamadas, ilustra el comportamiento del método y la reducción recursiva que sigue.
- Sean 3 y 4 los valores respectivos de a y n en la llamada inicial:

a	n	VR	Relación entre a , n y la potencia	
3	4	81 **3	81 = 27·3 = 34	
3	3	27 ×3	$27 = 9 \cdot 3 = 3^3$	>0
3	2	9) 4×3	$9 = 3 \cdot 3 = 3^2$	n >0
3	1	3×3	$3 = 1 \cdot 3 = 3^{1}$	
3	0	(1)	1 = 30	n = 0

```
/** Calculo de a elevado a n. Precondicion: n>=0. */
public static int potencia(int a, int n) {
   if (n == 0){ return 1; }
   else { return potencia(a, n - 1) * a; }
}

a elevado a (n-1)
```

Algunos ejemplos – Número de cifras

1. Enunciado del problema. Dado un entero $n \ge 0$, calcular el número de cifras de n.

```
/** Calculo del numero de cifras de n. Precondicion: n >= 0. */
public static int numCifras(int n)
```

2. Análisis de casos.

- Caso base: Si n < 10, entonces el número de cifras es 1.
- Caso general: Si n ≥ 10, entonces n / 10 tiene una cifra menos. Si se calcula el número de cifras de n/10, sólo falta sumarle 1.

Son casos complementarios y excluyentes.

```
Escrito en Java:
```

```
/** Calculo del numero de cifras de n.
    * Precondicion: n >= 0. */
public static int numCifras(int n) {
    if (n < 10) { return 1; }
    else { return numCifras(n / 10) + 1; }
}</pre>
```

3. Validación del diseño. En el caso $n \ge 10$:

- A la llamada recursiva se le continúa pasando un entero ≥0.
- El nuevo valor n / 10 del parámetro cumple $n > n / 10 \ge 0$, es decir, tiene una cifra menos, es un valor entero más pequeño, sin hacerse menor que 0.

Algunos ejemplos — Número de cifras

Traza ejemplo de evolución de los parámetros en las sucesivas llamadas.
 Sea 23850 el valor de n en la llamada inicial:

n	VR	
23850	(5) *+1	
2385	4	->10
238	3 1	n ≥10
23	-(2)*	
2	(1)	n<10

Algunos ejemplos – Cociente de la división entera

1. Enunciado del problema. Dados unos enteros $a \ge 0$, b > 0 calcular a / b.

```
/** Calculo de a / b. Precondicion: a >= 0, b > 0. */
public static int cociente(int a, int b)
```

- Análisis de casos.
 - Caso base: Si a < b, entonces a/b es 0
 - Caso general: Si $a \ge b$, entonces a/b = (a-b)/b + 1.

Son casos complementarios y excluyentes.

Escrito en Java:

3. Validación del diseño. En el caso $a \ge b$:

- A la llamada recursiva se le continúa pasando un dividendo ≥0.
- El nuevo valor a-b es un valor entero más pequeño que a, sin llegar a ser menor que 0.

Algunos ejemplos – Cociente de la división entera

- La siguiente traza ejemplo de evolución de los parámetros en las sucesivas llamadas, ilustra el comportamiento del método y la reducción recursiva que sigue.
- Sean 23 y 5 los valores respectivos de a y b en la llamada inicial:

a	b	VR	Relación entre a , b y el cociente	
23	5	(<u>4</u>)	23 = 4 ·5+3	
18	5	3)+1	18 = 3 ·5+3	- > h
13	5	2 + 1	13 = 2 ·5+3	a≥b
8	5	1)+1	8 = 1 ·5+3	
3	5	0	3 = 0 ·5+3	a <b< th=""></b<>

```
/** Calculo de a / b.

* Precondicion: a >= 0, b > 0.

*/
public static int cociente(int a, int b) {
   if (a < b) { return 0; }
   else { return cociente(a - b, b) + 1; }
}</pre>
```

Ejemplo: Considerar el problema de determinar el máximo común divisor (mcd) de dos números enteros, A, B mayores que 0.

El algoritmo, debido a Euclides (300 a.C.), es uno de los más antiguos conocidos.

 Algoritmo MCD. Sean A y B los valores iniciales de unas variables a y b, entonces :

Mientras **a** y **b** sean diferentes, cambiar el mayor de los dos por la diferencia del mayor menos el menor. Cuando tengan el mismo valor, dicho valor es el mcd de *A* y *B*.

Traza ejemplo con valor inicial de las variables a = 247, b = 152

- El mcd de a y b se mantiene constante;
- cuando a = b = 19 su
 mcd es 19.

El mcd de 247 y 152 es 19.

Método Java iterativo

```
Estado de las variables
Núm. de pasadas
                                      b
                      a
  ejecutadas
      0 (inicio)
                     247
                                     152
                                                    a \neq b
       1
                      95
                                     152
       2
                      95
                                      57
       3
                      38
                                      57
       4
                      38
                                      19
       5
                      19
                                                    a = b
                                      19
```

```
/** Calculo del mcd de a y b.
    * Precondicion: a > 0, b > 0. */
public static int mcd(int a, int b) {
    while ( a != b ) {
        if (a > b) { a = a - b; }
        else { b = b - a; }
    }
    return a;
}
```

• El algoritmo de Euclides anterior se basa en la siguiente propiedad:

$$MCD(a,b) = MCD(a-b,b)$$
 cuando $a>b$,
 $MCD(a,b) = MCD(a,b-a)$ cuando $b>a$ $a \neq b$

• Cuando finalmente a = b, MCD(A, B) = MDC(a, b) = a = b

que dan el caso general y caso base de la versión recursiva.

Escrito en Java:

```
/** Calculo del mcd de a y b.

* Precondicion: a > 0, b > 0. */
public static int mdc(int a, int b) {
   if (a > b) { return mcd(a - b, b); }
   else if (a < b) { return mcd(a, b - a); }
   else { return a; }
}</pre>
```

- Validación del razonamiento recursivo:
 - -a, b se mantienen > 0 en todas las llamadas.
 - En el caso general $a \neq b$, el mayor de los dos parámetros disminuye, por tanto disminuye también el número de veces que el nuevo máximo contiene al mcd.

Traza ejemplo:

a	b	VR	Relación entre a , b y el mcd	
247	152	19	247 = 13·19 , 152 = 8 ·19	
95	152	19	95 = 5·19, 152 = 8·19	
95	57	19	95 = 5 · 19 , 57 = 3·19	a ≠ b
38	57	19	38 = 2·19, 57 = 3·19	
38	19	19	38 = 2 · 19 , 19 = 1·19	
19	19	19	19 = 1 · 19, 19 = 1 · 19	a = b

Algunos ejemplos – Dibujo de triángulo

1. Enunciado del problema. Dado un entero n > 0, escribir en la salida estándar n líneas de asteriscos, de longitudes sucesivas n, n-1, n-2, ..., 1.

```
/** Dibuja un triangulo invertido de n lineas. Precondicion: n > 0. */
public static void dibujaTri(int n)
```

Ejemplo de la salida para n=4:

```
****
***
**
```

Análisis de casos.

- Caso base: n=1, se escribe '*'
- Caso general: Si n > 1, se escribe primero una línea y después un triángulo "más pequeño".

```
/** Precondicion: n >= 1. */
public static void dibujaTri(int n){
   if (n == 1) { System.out.println('*'); }
   else {
      for(int i = 1; i <= n; i++) {
            System.out.print('*');
      }
      System.out.println();
      dibujaTri(n - 1);
   }
}</pre>
```

- **3.** Validación del diseño. En el caso n > 1:
 - A la llamada recursiva se le continúa pasando un número de líneas $n-1 \ge 1$ (cumple la precondición).
 - El nuevo parámetro es un valor entero n-1 < n (decreciente, y acotado inferiormente).