Name:	• • • • • • • • • • • • • • • • • • • •		
Roll No.	:		
Invigilat	or's S	Signature :	
		CS/B.TECH(ECE-OLD)/SEM-4	1/EC-404/2012
		2012	
ELEC	TRO	MAGNETIC WAVES & RADIATIN	IG SYSTEMS
Time All	lotted	: 3 Hours	Ful Marks: 70
	TP	he figures in the margin indicate full m	arks.
Candio	dates	are required to give their answers in t	heir own words
		as far as practicable.	
		GROUP – A (Multiple Choice Type Questions	1
1. Ch	oose 1	the correct alternatives for any <i>ten</i> of	•
			10 × 1 = 10
i)	The	e electric field on equipotential surface	e is
	a)	unity	
	b)	always parallel to the surface	
	c)	always perpendicular to the surface	
	d)	zero.	
4302(O)			[Turn over

The magnetic field produced by a conductor of infinite ii) length, carrying current I at a distance r is given by

a)
$$\vec{H} = 2\pi r \vec{I}$$

a)
$$\overrightarrow{H} = 2\pi r \overrightarrow{I}$$
 b) $\overrightarrow{H} = \frac{\overrightarrow{I}}{2\pi r}$

c)
$$\vec{H} = \frac{\vec{I}}{4\pi r}$$

d)
$$\vec{H} = \frac{2\pi r}{\vec{l}}$$
.

The energy density in an electrostatic field E is iii)

a)
$$\frac{1}{2} \varepsilon E^2$$

b)
$$\varepsilon E^2$$

c)
$$2\varepsilon E^2$$

d)
$$\frac{1}{2} \varepsilon E$$
.

The unit of electric field is iv)

volt/m b)

d) henry/m.

- v) A circularly polarized light results when
 - a) magnitudes of two waves are same
 - b) phases of two waves are same
 - c) magnitudes of two waves are same but phase difference is 90°
 - magnitudes of two waves are same but phase d) difference is 0°.

4302(O)

vi)	The value of intrinsic impedance of free space is			
	a)	50 ohms	b)	72 ohms
	c)	153 ohms	d)	377 ohms.
vii)	Max	well's equations are not	sym	metrical, because
	a)	isolated magnetic char	ges d	o not exist
	b)	it is difficult to get of	url c	of a vect r in spherical
		coordinates		
	c)	$\vec{\nabla}.\vec{D}=0$		
	d)	$\vec{\nabla}.X\vec{H}$ does not exist i	n free	e space.
viii) In a transmission line electric energy is transp		nergy is transported by		
	a)	the flow of electrons		
	b)	the f ow of electrons ar	nd ho	les
	c)	the associated electric	and 1	magnetic field
	d)	none of these.		
ix) Displacement		placement current can f	low tl	nrough
	a)	capacitor	b)	inductor
	c)	resistor	d)	none of these.
4302(O)		3		[Turn over

x)	While travelling through free space, electromagnetic
	wave is incident on another medium. The depth of
	penetration in the medium will be lowest if the
	medium is

- a) lossless dielectric
- b) lossy dielectric
- c) conductor
- d) none of hese.
- xi) Which of the following antennae, produces radiation field of shape of figure of 8?
 - a) Simple Dipole
 - b) Simple Dipole with a Reflector
 - c) Yagi-Uda
 - d) Horn.
- xii) Which one of the following antennae is a Broad Band antenna?
 - a) Simple Dipole
- b) Folded Dipole
- c) Yagi-Uda
- d) Log Periodic.

4302(O)

GROUP - B (Short Answer Type Questions)

	Answer any <i>three</i> of the following. $3 \times 5 = 15$
2. a)	Divergence of a field is zero and Curl is non-zero. Comment on the nature of the field.
b	(0,0,1) and $(0,0,-1)$. Determine the locus of the possible
	positions of a third charge Q_2 where Q_2 may be any positive or negative value, such that the total field $E = 0$ at $(0,1,0)$.
3. S	tate and explain Divergence theorem and Stokes, theorem.
4. a)	Displacement current is said to be a great contribution of Maxwell. What is displacement current density? How Maxwell modified one of his equations, valid in static EM fields, r ime varying EM field? Why is this contribution so important?
b	Stat and xplain Ampere's circuital law.
5. a)	What are the characteristics of Smith chart?
b	Define Reflection Coefficient and VSWR. What are their range of values?
6. a	What is the main function of an antenna?
b	Define radiation resistance, radiation pattern and half power beam width.
4302(0) 5 [Turn over

GROUP – C (Long Answer Type Questions)

		Answer any <i>three</i> of the following. $3 \times 15 = 45$
7.	a)	What do you mean by Electric Potential? Derive the
		relation $E = -\vec{\nabla} V$.
	b)	Given the spherically symmetric potential field in free
		space, $V = V_0 e^{-\frac{r}{a}}$, find ρ_v , at $r = a$.
	c)	Write and explain the point forms and int gral forms of
		Maxwell's equation in time-varying EM field.
8.	a)	Discuss the important features of sky-wave propagation
		and explain the terms, 'virtual height', 'skip distance'
		and 'critical frequency'.
	b)	Explain how troposph ric ducts are formed.
	c)	Explain what you understand by 'Skip distance' and
		'Virtual height'.
9.	a)	What do you understand by line parameters in the
		context of transmission line?
	b)	Draw the equivalent circuit of a transmission line and
		hence write the transmission line equations for an
		elemental section of transmission line.
	c)	Write down & comment on the general solution of
		transmission line equations.
	d)	Define the characteristic impedance of a transmission
		line.
	e)	Explain the formation of standing wave pattern in a
		transmission line.

6

4302(O)

- f) A transmission line of characteristic impedance 50 ohms is terminated by a resistor of 100 ohms. What will be the VSWR of the line? Calculate impedance at voltage minimum and maximum positions.
- 10. a) What is meant by Retarded Vector potential? Explain. 3
 - b) Explain the concept of Near field and Far field. 3
 - c) Define and explain directivity of an antenna What is its relation with the gain of antenna? What is the limit of efficiency factor of antenna?
 - d) What are Beam Area and Beam Solid Angle? Find its relation with directivity.
- 11. Write short notes on any *three* of the following: 3×5
 - a) Skin Effect and Skin Depth
 - b) Impedance Matching and Quarter Wave transformer
 - c) Horn Antenna Parabolic Reflector and Cassegrain Feed
 - d) Helmhol z and Laplace's equation and Uniqueness theorem
 - e) Fading.

=========

4302(O) 7 [Turn over