Big Mountain Ski Resort Data Analysis for Business Optimization

Guided Capstone Project - 2021 By Yvonne Quiachon

Context

- Big Mountain Resort offers spectacular views of Glacier National Park and Flathead National Forest, with access to 105 trails.
- The organization recently installed an additional chair lift, increasing their operating costs by \$1.54M for a season.
- About 350,000 people ski or snowboard at Big Mountain annually.
- Big Mountain is not capitalizing on its facilities as much as it could. Basing their pricing on just the market average does not provide the business with a good sense of how important some facilities are compared to others.

Goals

- Find which facilities if exploited bring the most revenue and increases ticket prices.
- Find the optimal ticket price basing off of competing resorts' prices.
- Find ways to offset increasing operating costs from additional chairlift if there are any.
- Create models and choose a final model to find answers to questions.

Strategies and Key Findings

- Adult weekend prices are higher than adult weekday prices sub \$100 resorts.
- The key facilities at Big Mountain Resort are: number of fast quads, number of runs, maximum vertical drop, and acreage of snow.
- Scenarios for business optimization are:
- Increase up to 150ft vertical drop and required additional chairlift without additional snow making.
- 2. Same as #2 but with additional 2 acres of snow making cover.

	Scenarios	Description	Price	Delta rel to pred Price	Revenue (mil) RevenueDifffromModeledPrice(Mio)	
0	Predicted Price	Predicted Price	95.87	0.00	167.772	0.00
1	Current Price	Current Price	81.00	-14.87	141.750	-26.02
2	Scenario 1.1	Closing 1 run	95.87	0.00	167.772	0.00
3	Scenario 1.2	Closing 2 run	95.46	-0.41	167.055	-0.72
4	Scenario 1.3	Closing 3-5 runs	95.20	-0.67	166,600	-1.17
5	Scenario 1.4	Closing 6-8 runs	94.61	-1.26	165.568	-2.20
6	Scenario 1.5	Closing 10 runs	94.06	-1.81	164.605	-3.17
7	Scenario 2.1	add 1 chair and 150ft vertical drop	97.85	1.99	171.238	3.48
8	Scenario 3.1	add 2 acres of snow making	97.85	1.99	171.238	3.48
9	Scenario 4.1	extend longest run (0.2mi) & add 4 ac snow making	95.87	0.00	167.772	0.00

Modeling (Cross-Validation)

Linear Regression Model

- Early stage of model building, hyperparameter tuning yielded 8 parameters/features resulted in lowest error rate.
- Adding more parameters suggests overfitting will occur and cross-validation score reduction.
- Imputing missing data with mean vs. median produced better scores.
- Mean absolute cross-validation error (MAE) of the model = 10.5
- Standard deviation = 1.62
- MAE for ticket price prediction = 11.79
- Top features to look for:
- 1. fastQuads
- 2. Runs
- 3. Total number of chairs
- 4. Acreage of snow
- 5. Maximum vertical drop

Modeling (Cross-Validation)

Random Forest Model

- Missing data imputed using median and no scaling of features resulted in better scores and a better model.
- Mean absolute cross-validation error (MAE) of model = 9.64.
- Standard deviation = 1.35
- MAE for ticket price prediction = 9.54
- Top features to look out for:
- 1. fastQuads
- 2. Runs
- 3. Acreage of snow
- 4. Maximum vertical drop
- CV score shows that as training set size increases, it levels off to approximately sample size of 50.

Limitations

- Not every resort held a valid ticket price value.
- Lack of data on operation and maintenance costs.
- A valid number of average visitors for each season for each resort.

Conclusion

- When excluding Big Mountain Resort data when training the model to predict ticket price, we get a MAE of 10.39 and standard deviation of 1.47 (this had less bias). In this model, suggested optimal ticket price was \$95.87.
- Seeing where this resort lies in ticket prices among other resorts in the market, it currently charges less than the amenities it offers (current ticket price is \$81).
- Random forest model was the better model overall, with lower variation on the test set data, lower MAE and lower standard deviation.
- The key features that were at the top were consistent throughout each model, gives confidence in results.
- There are multiple limitations that hinder a solid business optimization plan, hence finding answers to these would be a good idea.
- Recommended strategies to increase ticket price and revenue include scenario of increasing vertical drop by 150ft, go forward with addition of chairlift, and increase snow making. Closing a run per season would help reduce maintenance costs.

What's Next?