Stanford CS229

Linoor Regression La Supervised Journing.

· Goal is to fit a straight

h(x) = 0.	+ 0,	X, + Oa Xa
Goutput	\bigvee	X+ Oa X2 Front features

	"(t)	1 ~	122
,	lost	Size	no 030000
	13009	1600	3
	12009	1700	4
	6004	1200	1
	7009	1300	2
	- 1		

$$h(1) = \underbrace{2}_{j=0} O_{i} X_{j}$$

$$X_{1} = 0$$

Goal of L.R. Linear regression)

minimize
$$\int_{M} \frac{1}{i-1} \left(h_{\theta}(x^{(i)}) - g^{(i)} \right)^{d} = J(\theta)$$

minimize JO)

Gradient descent (Algorithm to minimize JO)

Algorithm :-

\ 0. + ... C- O

1) Start with som of a) change 0 to reduce \$(0)

· Start at some point
7. Take 360° look by

figure out which

director baby step

leads to lowest of

Value

Pepeat

Blops - Give rate of change Desinative - Slope - Desivative - Ve slope which means the rate of lowest descent.

Ca=b)
C> (xpression
a:=a+1
C> csesignment

included to make a

3-0 diagram

in one direction like the alone fig. We use gradunt instead of 31 ope (a vector that points in e duction of greatest rate of increase of the function

Lowest

$$\Delta R = \left(\frac{97}{98} - 2\frac{98}{98}\right)$$

If the gradient vector at (2,3) is abla f=(4,5), it means:

• Moving in the direction where x increases by 4 units and y increases by 5 units will make you climb the hill the fastest.

Y:= I - N O J (D) | Gradient descent cfor

