Sine & Cosine at Key Angles

with Cofunction Identities

(dbhoriya.github.io/teaching_ $F101/tutorial_2.pdf$) or SCAN:

Some Trigonometry identities:

Exact Values at Common

Angles

7 111 16100					
θ	0°	30°	45°	60°	90°
$\sin \theta$	0	1 2_	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
			,		

Some identities:

$$\sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta,$$

$$\cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta.$$

Example:
$$\sin 30^{\circ} = \cos 60^{\circ} = \frac{1}{2}$$
, $\cos 30^{\circ} = \sin 60^{\circ} = \frac{\sqrt{3}}{2}$.

Sin-Cos in various quadrants

Sin-Cos in various quadrants

Polar co-ordinates

Definition and motivation

Polar Coordinates: Definition & Formulas

- A point (x, y) is represented as (r, θ):
 - r = distance from origin
 - $\theta = \text{angle from positive}$ x-axis
- Conversion to Cartesian coordinates:

$$x = r \cos \theta$$
, $y = r \sin \theta$

Conversion from Cartesian coordinates:

$$r = \sqrt{x^2 + y^2}, \quad \theta = \arctan \frac{y}{x} = \tan^{-1} \left(\frac{y}{x}\right)$$

Why Do We Need Polar Coordinates? Real-Life Motivation

• Some situations are easier to describe with **distance** + **angle** than (x, y).

• Examples:

• GPS: "5 km at 30° NE"

Radar/Sonar: Track objects by angle & range

• Lighthouses: Light beam at a specific distance & direction

• CCTV: Camera coverage via rotation & reach

Engineering & Math Usefulness

• Engineering:

- AC circuits: voltages/currents as polar vectors
- Mechanical systems: gears, turbines, rotating parts
- Robotics: arm positions via joint angles
- Civil structures: domes, arches, tunnels

Mathematics:

- Circle equation: $x^2 + y^2 = a^2 \Rightarrow r = a$ (simpler in polar)
- Ideal for problems with circular or rotational symmetry

Question 1: Plot the following points, given in polar coordinates, and find all polar coordinates for each point.

A:
$$(-2, \pi/2)$$
, **C:** $(-2, -5\pi)$

B:
$$(3, -\pi/4),$$
 D: $(3, \pi/3)$

Hint: Remember that a point (r, θ) is equivalent to $(-r, \theta + \pi)$ and that angles can be expressed modulo 2π .

A:
$$(-2, \pi/2 + 2n\pi), (2, -\pi/2 + 2n\pi)$$
 where $n \in \mathbb{Z}$

B:
$$(3, -\pi/4 + 2n\pi), (-3, 3\pi/4 + 2n\pi)$$
 where $n \in \mathbb{Z}$.

C:
$$(-2, -\pi + 2n\pi), (2, 2n\pi)$$
 where $n \in \mathbb{Z}$.

D:
$$(3, \pi/3 + 2n\pi), (-3, -2\pi/3 + 2n\pi)$$
 where $n \in \mathbb{Z}$.

Question 2: Find the polar coordinates of the following points.

(a)
$$(\sqrt{3}, -1)$$
, with $0 \le \theta < 2\pi$ and $r \le 0$.

(b)
$$(\sqrt{3}, -1)$$
, with $-\pi \le \theta < \pi$ and $r \ge 0$.

Answer: (a)
$$(-2, \pi - \pi/6)$$
 (b) $(2, -\pi/6)$

Question 3: Convert the following into Cartesian equations:

(a)
$$r^2 + 2r^2 \cos \theta \sin \theta = 1$$
 (b) $r \sin \theta = \ln r + \ln \cos \theta$.

Question 2: Find the polar coordinates of the following points.

(a)
$$(\sqrt{3}, -1)$$
, with $0 \le \theta < 2\pi$ and $r \le 0$.

(b)
$$(\sqrt{3}, -1)$$
, with $-\pi \le \theta < \pi$ and $r \ge 0$.

Answer: (a)
$$(-2, \pi - \pi/6)$$
 (b) $(2, -\pi/6)$

Question 3: Convert the following into Cartesian equations:

(a)
$$r^2 + 2r^2 \cos \theta \sin \theta = 1$$
 (b) $r \sin \theta = \ln r + \ln \cos \theta$.

(a)
$$x^2 + y^2 + 2r\cos\theta r \sin\theta = 1 \iff x^2 + y^2 + 2xy = 1$$

(b)
$$r \sin \theta = \ln r + \ln \cos \theta \Longrightarrow r \sin \theta = \ln r \cos \theta$$
.

This gives
$$y = \ln x$$

Question 5: Sketch the region defined by the inequalities $-1 \le r \le 1$ and $-\pi/4 \le \theta \le \pi/4$

Question 5: Sketch the region defined by the inequalities $-1 \le r \le 1$ and $-\pi/4 \le \theta \le \pi/4$

Polar Coordinates: lemniscate (a polar curve resembling the infinity symbol ∞)

Question 4: Draw the graph of the curve $r^2 = -\sin 2\theta$.

- Equation $r^2 = -\sin(2\theta) \implies \sin(2\theta) \le 0$.
- Therefore, $\pi \leq 2\theta \leq 2\pi$. That is $\pi/2 \leq \theta \leq \pi$.
- Also, the graph is symmetric about the origin because if (r, θ) lies on the graph, then $(-r, \theta)$ also lies on the graph.
- At origin, r=0. Therefore $\sin(2\theta)=0$. We get $2\theta=\pi, 2\pi$. Therefore $\theta=\pi/2,\pi$
- Slopes at original (r = 0) is given by $tan(\theta)$ (see next slides for the proof)

- Equation $r^2 = -\sin(2\theta) \implies \sin(2\theta) \le 0$.
- Therefore, $\pi \leq 2\theta \leq 2\pi$. That is $\pi/2 \leq \theta \leq \pi$.
- Also, the graph is symmetric about the origin because if (r, θ) lies on the graph, then $(-r, \theta)$ also lies on the graph.
- At origin, r=0. Therefore $\sin(2\theta)=0$. We get $2\theta=\pi, 2\pi$. Therefore $\theta=\pi/2,\pi$
- Slopes at original (r = 0) is given by $tan(\theta)$ (see next slides for the proof)
- At $\theta=\pi/2$, it has a vertical tangent since slope is infinite, and at $\theta=\pi$, it has a horizontal slope = 0.

Tangents at the Pole for $r^2 = -\sin(2\theta)$

Curve: $r^2 = -\sin(2\theta)$.

Write coordinates explicitly as functions of θ :

$$x(\theta) = r(\theta)\cos\theta, \qquad y(\theta) = r(\theta)\sin\theta.$$

Differentiate (product rule):

$$\frac{dx}{d\theta} = r'(\theta)\cos\theta - r(\theta)\sin\theta, \qquad \frac{dy}{d\theta} = r'(\theta)\sin\theta + r(\theta)\cos\theta.$$

Hence the slope:

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{r'(\theta)\sin\theta + r(\theta)\cos\theta}{r'(\theta)\cos\theta - r(\theta)\sin\theta}.$$

Tangent at the Pole $(r(\theta_0) = 0)$

Suppose the curve passes through the origin at angle θ_0 (i.e. $r(\theta_0)=0$). Then

$$\frac{dy}{dx}\bigg|_{\theta=\theta_0} = \frac{r'(\theta_0)\sin\theta_0}{r'(\theta_0)\cos\theta_0} = \tan\theta_0,$$

provided $r'(\theta_0) \neq 0$ (the same limit also holds if $|r'(\theta_0)| = \infty$; the r-terms vanish and the common factor $r'(\theta_0)$ cancels).

Geometric view: near the pole the position vector is

$$(x,y) = r(\theta)(\cos\theta,\sin\theta),$$

so the approach direction is the unit vector ($\cos \theta_0, \sin \theta_0$); hence the tangent line at the pole forms angle θ_0 with the x-axis.

Apply to
$$r^2 = -\sin(2\theta)$$
 at $\theta = \frac{\pi}{2}$ and $\theta = \pi$

Zeros at the pole occur when $\theta = \frac{\pi}{2}, \qquad \theta = \pi.$

Case
$$\theta = \frac{\pi}{2}$$
:

$$\frac{dy}{dx} = \tan\left(\frac{\pi}{2}\right) = \infty \quad \Rightarrow \quad \text{vertical tangent } x = 0.$$

Case
$$\theta = \pi$$
:

$$\frac{dy}{dx} = \tan(\pi) = 0 \implies \text{horizontal tangent } y = 0.$$

Recall: Area and length of the curve in polar coordinates:

• The formula for area in polar coordinates:

$$A = \int_{\theta_1}^{\theta_2} \frac{1}{2} r^2 \ d\theta$$

• The length of a curve given in polar coordinates is

$$L = \int_{a}^{b} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta.$$

Question 6: Find the area inside the lemniscate $r^2 = 6\cos(2\theta)$ and outside the circle $r = \sqrt{3}$.

Answer: At $\theta = 0$, $r^2 = 6\cos(2\theta)$ gives $r = \pm 3$.

Question 6: Find the area inside the lemniscate $r^2 = 6\cos(2\theta)$ and outside the circle $r = \sqrt{3}$.

Answer: At $\theta = 0$, $r^2 = 6\cos(2\theta)$ gives $r = \pm 3$.

Intersection at: $6\cos(2\theta) = 3 \implies \theta = \pm \pi/6$.

Question 6: Find the area inside the lemniscate $r^2 = 6\cos(2\theta)$ and outside the circle $r = \sqrt{3}$.

Answer: At $\theta = 0$, $r^2 = 6\cos(2\theta)$ gives $r = \pm 3$.

• Intersection at: $6\cos(2\theta) = 3 \implies \theta = \pm \pi/6$.

By symmetry, the required area is

$$A = 4 \cdot \frac{1}{2} \int_0^{\frac{\pi}{6}} \left(6\cos 2\theta - (\sqrt{3})^2 \right) d\theta$$
$$= 2 \left[3\sin 2\theta - 3\theta \right]_0^{\frac{\pi}{6}}$$
$$= 3\sqrt{3} - \pi.$$

Question 7: Find the area of the shaded region in the following figure: $v = 4 \times 2$

Answer: Area =
$$2 \left[\int_0^{\pi/4} \frac{1}{2} \tan^2 \theta d\theta + \int_{\pi/4}^{\pi/2} \frac{1}{2} \left(\frac{\sqrt{2}}{2} \csc \theta \right)^2 d\theta \right]$$

Question 7: Find the area of the shaded region in the following figure:

Area =
$$2 \left[\int_0^{\pi/4} \frac{1}{2} \tan^2 \theta d\theta + \int_{\pi/4}^{\pi/2} \frac{1}{2} \left(\frac{\sqrt{2}}{2} \csc \theta \right)^2 d\theta \right]$$

= $\int_0^{\pi/4} \tan^2 \theta d\theta + \int_{\pi/4}^{\pi/2} \frac{1}{2} \csc^2 \theta d\theta$
= $[-\theta + \tan \theta]_0^{\pi/4} + \frac{1}{2} [-\cot \theta]_{\pi/4}^{\pi/2}$
= $\frac{-\pi}{4} + 1 + \frac{1}{2} [0 + 1]$
= $\frac{3}{2} - \frac{\pi}{4}$ sq. units

Question 8: Find the length of the curve given by $r = \sqrt{1 - \sin 2\theta}$ where θ lies in the interval $[0, \pi/2]$.

Answer: The length of a curve given in polar coordinates is

$$L = \int_{a}^{b} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta.$$

• Since
$$r = \sqrt{1 - \sin 2\theta}$$
,
$$\frac{dr}{d\theta} = \frac{1}{2\sqrt{1 - \sin 2\theta}} \cdot (-2\cos 2\theta) = \frac{-\cos 2\theta}{\sqrt{1 - \sin 2\theta}}.$$

Question 8: Find the length of the curve given by $r = \sqrt{1 - \sin 2\theta}$ where θ lies in the interval $[0, \pi/2]$.

Answer:

• Since
$$r = \sqrt{1 - \sin 2\theta}$$
,
$$\frac{dr}{d\theta} = \frac{1}{2\sqrt{1 - \sin 2\theta}} \cdot (-2\cos 2\theta) = \frac{-\cos 2\theta}{\sqrt{1 - \sin 2\theta}}.$$

Therefore,

$$\begin{split} \mathbf{L} &= \int_0^{\frac{\pi}{2}} \sqrt{1 - \sin 2\theta + \frac{\cos^2 2\theta}{1 - \sin 2\theta}} d\theta \\ &= \int_0^{\frac{\pi}{2}} \sqrt{\frac{(1 - \sin 2\theta)^2 + \cos^2 2\theta}{1 - \sin 2\theta}} d\theta \\ &= \int_0^{\frac{\pi}{2}} \sqrt{\frac{2(1 - \sin 2\theta)}{1 - \sin 2\theta}} d\theta = \frac{\pi}{2} \sqrt{2}. \end{split}$$