	Note
Name Vorname	
Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach)	2
	3
Unterschrift der Kandidatin/des Kandidaten	4
TECHNISCHE UNIVERSITÄT MÜNCHEN	5
	6
Fakultät für Mathematik	
Wiederholungsklausur	7
Mathematik für Physiker 3	
(Analysis 2)	\sum
Prof. Dr. M. Wolf	
27. September 2013, $15:00 - 16:30$ Uhr	I Erstkorrektur
Hörsaal: Platz:	IIZweitkorrektur
Hinweise: Überprüfen Sie die Vollständigkeit der Angabe: 7 Aufgaben	
Bearbeitungszeit: 90 min	
Erlaubte Hilfsmittel: ein selbsterstelltes Din A4 Blatt	
Erreichbare Gesamtpunktzahl: 80 Punkte	
Bei Multiple-Choice-Aufgaben sind genau die zutreffenden Aussagen anzukreuzen. Bei Aufgaben mit Kästchen werden nur die Resultate in diesen Kästchen berücksichtigt.	
Nur von der Aufsicht auszufüllen: Hörsaal verlassen von bis	•

Vorzeitig abgegeben um $\ldots\ldots$

 $Be sondere\ Bemerkungen:$

1. Ster	nförmige Mengen sind zusammenhängend	[10 Punkte]
(a)	Kreuzen Sie genau die wahren Aussagen an. Für eine stetige Funktion gilt:	
	 □ Die Bilder zusammenhängender Mengen sind wieder zusammenhängend. □ Die Urbilder zusammenhängender Mengen sind wieder zusammenhängend. 	
(b)	Geben Sie eine Charakterisierung für eine Menge $M\subseteq\mathbb{R}^n$ an, die $nicht$ zusamm	nenhängend ist.
(c)	Wie lautet die Definition einer sternförmigen Menge $M \subseteq \mathbb{R}^n$?	
(d)	Zeigen Sie, dass jede sternförmige Menge $M\subseteq\mathbb{R}^n$ zusammenhängend ist.	

Sei $f: \mathbb{R}^2 \to \mathbb{R}$ definiert durch

$$f(x,y) = \begin{cases} y \frac{x^2 - y^2}{x^2 + y^2} & \text{für } (x,y) \neq 0, \\ 0 & \text{für } (x,y) = 0. \end{cases}$$

(a) Wie lauten die partiellen Ableitungen im Ursprung?

$$\partial_x f(0,0) =$$

$$\partial_y f(0,0) =$$

(b) Wie lautet die Richtungsableitung in Richtung $v \in \mathbb{R}^2 \setminus \{0\}$ im Ursprung?

$$\partial_v f(0,0) =$$

(c) Ist f differenzierbar im Ursprung?

 \Box Ja \Box Nein

(d) Zeigen Sie, dass $\partial_x f$ im Ursprung unstetig ist.

3. Taylorentwicklung

[10 Punkte]

Sei $f: \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}, \ f(x,y) = \frac{x-y}{x+y}.$

(a) Berechnen sie alle Terme der Taylorentwicklung von f bis zur dritten Ordnung im Entwicklungspunkt (1,1).

HINWEIS: Betrachten Sie f(1+u, 1+v). Sie müssen keine Ableitungen berechnen.

(b) Geben Sie in möglichst einfacher Form die Funktion $T: \mathbb{R}^2 \to \mathbb{R}$ an, deren Graph die Tangentialebene an den Graphen von f im Punkt (1,1) ist.

T(x,y) =

4. Gradientenfelder [14 Punkte]

Das Vektorfeld $F: \mathbb{R}^3 \to \mathbb{R}^3$ ist gegeben durch

$$F(x, y, z) = \begin{pmatrix} y^2 \cos(xy^2) \\ 2xy \cos(xy^2) \\ 1 \end{pmatrix}.$$

- (a) Bestätigen Sie, dass rot F = 0.
- (b) Warum ist F ein Gradientenfeld?
- (c) Welchen Wert hat das Kurvenintegral $\int\limits_{\gamma}F(r)\cdot dr$ für $\gamma(t)=(2\cos t,\sin t,-\cos t),\,t\in[0,2\pi]$?
- (d) Bestimmen Sie ein Potential V von F.
- (e) Welchen Wert hat das Kurvenintegral $\int\limits_{\gamma} F(r) \cdot dr$ für $\gamma(t) = (\frac{\pi}{2}t, e^{t^2-1}, \arctan t), t \in [-1, 1]$?

5. Extrema mit Nebenbedingungen

[14 Punkte]

Ein Zylinder im \mathbb{R}^3 habe eine kreisförmige Grundfläche mit Radius r > 0 und die Höhe h > 0.

- (a) Geben Sie die Gesamtoberfläche f(r,h) und das Volumen g(r,h) des Zylinders an.
- (b) Bestimmen Sie bei vorgegebenem Zylindervolumen V>0 mit Hilfe der Methode der Lagrangemultiplikatoren Radius r und Höhe h des Zylinders so, dass die Zylinderoberfläche extremal ist.
- (c) Begründen Sie, warum die in (b) gefundene Lösung das eindeutige absolute Minimum für die Oberfläche des Zylinders bei gegebenem Volumen ist.

Trennbare Differe Gegeben ist die Diffe		$f(t,x) \text{ mit } f(t,x) = (1-x^2)\cos t.$	[12 Punkte]
	genden Eigenschaften er Differentialgleichur	ist hinreichend für die lokale Existenz u ng?	ınd Eindeutigkeit von
		f ist stetig f ist erstes Integral f ist stetig differenzierbar f ist lipschitzstetig f ist lokal lipschitzstetig	
(b) Welche der folg	genden Eigenschaften	besitzt die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$?	
		f ist stetig f ist erstes Integral f ist stetig differenzierbar f ist lipschitzstetig f ist lokal lipschitzstetig	
(c) Geben Sie alle	auf ganz ℝ definierte	en <i>konstanten</i> Lösungen der Differentia	lgleichung an.
` '	e ein erstes Integral <i>E</i> ialbruchzerlegung.	$\mathcal{E}(t,x)$ für die Differentialgleichung.	
(a) Finden Sie eine	e Lösung $x:\mathbb{R} o \mathbb{R}$ d	der Differentialgleichung mit dem Anfa	ngswort $x(0) = 0$

7. Variationsrechnung

[10 Punkte]

Gegeben ist das Funktional $F(x)=\int\limits_{1}^{2}t^{2}\dot{x}(t)^{2}dt$ für $x\in C^{2}([1,2])$ mit den Randbedingungen x(1)=7, x(2)=5.

(a) Wie lautet die Lagrange-Funktion $L:\mathbb{R}^3 \to \mathbb{R}$ zu diesem Problem?

L(t, x, v) =

(b) Wie lautet explizit die Euler-Lagrange-Gleichung von F für $x \in C^2([1,2])$?

(c) Geben Sie ein erstes Integral $E:\mathbb{R}^3\to\mathbb{R}$ für die Euler-Lagrange-Gleichung des Funktionals F an.

E(t, x, v) =

(d) Finden Sie mit Hilfe der allgemeinen Lösung der Euler-Lagrange-Gleichung, $x(t) = \frac{c_1}{t} + c_2$, $c_1, c_2 \in \mathbb{R}$, den stationären Punkt $x^*(t)$ von F.

 $x^*(t) =$