CMPT-413: Computational Linguistics

Anoop Sarkar

anoop@cs.sfu.ca

www.sfu.ca/~anoop/courses/CMPT-413-Spring-2003.html

Probabilistic CFG (PCFG)

$$S \rightarrow NP VP 1$$

 $VP \rightarrow VNP 0.9$
 $VP \rightarrow VP PP 0.1$
 $PP \rightarrow PNP 1$
 $NP \rightarrow NP PP 0.25$
 $NP \rightarrow Calvin 0.25$
 $NP \rightarrow monsters 0.25$
 $NP \rightarrow monsters 0.25$
 $V \rightarrow imagined 1$
 $P \rightarrow in 1$
 $P_G(I) = \sum_{T} P_G(T \mid I)$

 $P_G(imagined monsters in school) = ?$

PCFG

- Central condition: $\sum_{\alpha} P(A \to \alpha) = 1$
- Called a *proper* PCFG if this condition holds
- Note that this means $P(A \to \alpha) = P(\alpha \mid A) = \frac{f(A,\alpha)}{f(A)}$
- $P(T \mid I) = \prod_{i} P(RHS_i \mid LHS_i)$

PCFG

• What is the PCFG that can be extracted from this single tree:

```
(S (NP (Det the) (N man))
(VP (V played)
(NP (Det a) (N game))
(PP (P with)
(NP (Det the) (N dog)))))
```

• How many different rhs α exist for $A \to \alpha$

Parsing PCFGs: CYK algorithm + the Viterbi algorithm $\{ p: S \rightarrow S \ S, 1-p: S \rightarrow a \}$

а	а	а	а
$1 - p: S_{0,1} \to a$	$1 - p: S_{1,2} \to a$	$1 - p: S_{2,3} \to a$	$1 - p: S_{3,4} \to a$
$S_{0,1} \times S_{1,2}$	$S_{1,2} \times S_{2,3}$	$S_{2,3} \times S_{3,4}$	
$= S_{0,2} \rightarrow S S$	$= S_{1,3} \rightarrow SS$	$= S_{2,4} \rightarrow SS$	
$p(1-p)^2$	$p(1-p)^2$	$p(1-p)^2$	
$S_{0,1} + S_{1,3}$	$S_{1,2} + S_{2,4}$		
OR	OR		
$S_{0,2} + S_{2,3}$	$S_{1,3} + S_{3,4}$		
$= S_{0,3} \rightarrow S S$	$= S_{1,4} \rightarrow S S$		
$\max(p(1-p)^3,$	$\max(p(1-p)^3,$		
$p(1-p)^3$)	$p(1-p)^3$)		
What goes in this cell?			
$?? = S_{0,4}$			

```
S \rightarrow NP VP
                      1
VP \rightarrow VNP
                       0.9
VP \rightarrow VP PP
                       0.1
PP \rightarrow PNP
                       1
NP \rightarrow NP PP
                     0.25
NP \rightarrow Calvin
                      0.25
NP \rightarrow monsters 0.25
NP \rightarrow school \quad 0.25
 V \rightarrow imagined
                      1
              in
```

Calvin	imagined	monsters	in	school
$NP_{0,1}$	V _{1,2}	$NP_{2,3}$	P _{3,4}	NP _{3,4}
0.25	1	0.25	1	0.25
	$V_{1,2} \times NP_{2,3}$		$P_{3,4} \times NP_{4,5}$	
	$= VP_{1,3} \rightarrow V NP$		$= PP_{3,5} \rightarrow PNP$	
	$1 \times 0.25 \times 0.9$		$1^{2} \times 0.25$	
	$VP_{1,3} \times PP_{3,5}$	$NP_{2,3} \times PP_{3,5}$		
	OR	$= NP_{2,5} \rightarrow NP PP$ 0.25^{3}		
	$V_{1,2} \times NP_{2,5}$	0.25^{3}		
	$= VP_{1,5}$			
	X			
$= S_{0,4}$				
$x \times 0.25$				

A Key Problem in Processing Language: Ambiguity: (Church and Patil 1982; Collins 1999)

Part of Speech ambiguity

```
saw \rightarrow noun
saw \rightarrow verb
```

Structural ambiguity: Prepositional Phrases

```
I saw (the man) with the telescope
```

I saw (the man with the telescope)

Structural ambiguity: Coordination

```
a program to promote safety in ((trucks) and (minivans)) a program to promote ((safety in trucks) and (minivans)) ((a program to promote safety in trucks) and (minivans))
```

Ambiguity ← attachment choice in alternative parses

Parsing as a machine learning problem

- S = a sentence
 T = a parse tree
 A statistical parsing model defines P(T | S)
- Find best parse: $\underset{T}{\text{arg max}} P(T \mid S)$
- $P(T \mid S) = \frac{P(T,S)}{P(S)} = P(T,S)$
- Best parse: $\underset{T}{\operatorname{arg max}} P(T, S)$
- e.g. for PCFGs: $P(T,S) = \prod_{i=1...n} P(RHS_i \mid LHS_i)$

Prepositional Phrases

- noun attach: I bought the shirt with pockets
- verb attach: I washed the shirt with soap
- As in the case of other attachment decisions in parsing: it depends on the meaning of the entire sentence – the so-called AI complete problem
- First we give a precise characterization of the problem and then we try to solve it using statistical associations between words

Structure Based Ambiguity Resolution

- Right association: a constituent (NP or PP) tends to attach to another constituent immediately to its right (Kimball 1973)
- Minimal attachment: a constituent tends to attach to an existing non-terminal using the fewest additional syntactic nodes (Frazier 1978)
- These two principles make opposite predictions for prepositional phrase attachment:
 - e.g. in I [$_{VP}$ saw [$_{NP}$ the man . . . [$_{PP}$ with the telescope], RA predicts that the PP attaches to the NP, and MA predicts VP attachment

Structure Based Ambiguity Resolution

- Garden-paths look structural:
 The horse raced past the barn fell
- Neither MA or RA account for more than 55% of the cases in real text
- Psycholinguistic experiments using eyetracking show that humans resolve ambiguities as soon as possible in the left to right sequence using the words to disambiguate
- Garden-paths are lexical and not structural: The flowers delivered for the patient arrived

Ambiguity Resolution: Prepositional Phrases in English

• Learning Prepositional Phrase Attachment: Annotated Data

V	n1	р	n2	Attachment
join	board	as	director	V
is	chairman	of	N.V.	N
using	crocidolite	in	filters	V
bring	attention	to	problem	V
is	asbestos	in	products	N
making	paper	for	filters	N
including	three	with	cancer	N
:	:	•	:	:

Prepositional Phrase Attachment

Method	Accuracy
Always noun attachment	59.0
Most likely for each preposition	72.2
Average Human (4 head words only)	88.2
Average Human (whole sentence)	93.2

Katz Back-off Smoothing

1. If f(v, n1, p, n2) > 0 and $\hat{p} \neq 0.5$

$$\hat{p}(1 \mid v, n1, p, n2) = \frac{f(1, v, n1, p, n2)}{f(v, n1, p, n2)}$$

2. Else if f(v, n1, p) + f(v, p, n2) + f(n1, p, n2) > 0and $\hat{p} \neq 0.5$

$$\hat{p}(1 \mid v, n1, p, n2) = \frac{f(1, v, n1, p) + f(1, v, p, n2) + f(1, n1, p, n2)}{f(v, n1, p) + f(v, p, n2) + f(n1, p, n2)}$$

3. Else if f(v, p) + f(n1, p) + f(p, n2) > 0

$$\hat{p}(1 \mid v, n1, p, n2) = \frac{f(1, v, p) + f(1, n1, p) + f(1, p, n2)}{f(v, p) + f(n1, p) + f(p, n2)}$$

4. Else if f(p) > 0

$$\hat{p}(1 \mid v, n1, p, n2) = \frac{f(1, p)}{f(p)}$$

5. Else $\hat{p}(1 \mid v, n1, p, n2) = 1.0$

Prepositional Phrase Attachment: (Collins and Brooks 1995)

- Results: 84.5% accuracy
 with the use of some limited word classes for dates, numbers, etc.
- Using complex word classes taken from WordNet (which we shall be looking at later in this course) increases accuracy to 88% (Stetina and Nagao 1998)
- Can we improve on parsing performance using Probabilistic CFGs by using the insights detailed above

Two other studies

Brill and Resnik 1994:

use transformation based learning for PP attachment 80.8% with words; with Wordnet classes: 81.8% only 266 transformations learned automatically learned importance of preposition (assumed in CB95)

Merlo, Crocker and Berthouzoz 1997:

test on multiple PPs, generalize the 2 PP case
14 structures possible for 3PPs assuming a single verb: all 14 are attested in the Treebank same model as CB95; but generalized to dealing with upto 3PPs
1PP: 84.3% 2PP: 69.6% 3PP: 43.6%

this is still not the real problem faced in parsing natural language