1. A marine biologist records as a frequency distribution the lengths (L), measured to the nearest centimetre, of 100 mackerel. The results are given in the table below.

Length of mackerel (L cm)	Number of mackerel
$27 < L \le 29$	2
$29 < L \le 31$	4
$31 < L \le 33$	8
$33 < L \le 35$	21
$35 < L \le 37$	30
$37 < L \le 39$	18
$39 < L \le 41$	12
$41 < L \le 43$	5
	100

(a) Construct a cumulative frequency table for the data in the table.	
---	--

(2)

(b) Draw a cumulative frequency curve.

Hint: Plot your cumulative frequencies at the top of each interval.

(3)

- (c) Use the cumulative frequency curve to find an estimate, to the nearest cm for
 - (i) the median length of mackerel;

(2)

(ii) the interquartile range of mackerel length.

(2)

(Total 9 marks)

2. The graph below shows the cumulative frequency for the yearly incomes of 200 people.

- (a) the number of people who earn less than 5000 British pounds per year;
- (b) the median salary of the group of 200 people;
- (c) the lowest income of the richest 20% of this group.

Working:	
	Answers:
	(a)
	(b)
	(c)

(Total 4 marks)

3. The cumulative frequency graph below shows the examination scores of 80 students.

From the graph find

- (a) the median value;
- (b) the interquartile range;
- (c) the 35th percentile;

(d) the percentage of students who scored 50 or above on this examination.

Working:	
	Answers:
	(a)
	(b)
	(c)
	(d)

(Total 8 marks)

4. (a) The exam results for 100 boys are displayed in the following diagram:

- (i) Find the range of the results.
- (ii) Find the interquartile range.
- (iii) Write down the median.

(b) The exam results for 100 girls are displayed in the diagram below:

- (i) Write down the median.
- (ii) Find the inter quartile range.
- (c) Write down the set of results that are the most spread out and give a reason for your answer.

(Total 6 marks)

- **5.** (a) State which of the following sets of data are discrete.
 - (i) Speeds of cars travelling along a road.
 - (ii) Numbers of members in families.
 - (iii) Maximum daily temperatures.
 - (iv) Heights of people in a class measured to the nearest cm.
 - (v) Daily intake of protein by members of a sporting team.

The boxplot below shows the statistics for a set of data.

- (b) For this data set write down the value of
 - (i) the median;
 - (ii) the upper quartile;
 - (iii) the minimum value present.
- (c) Write down three different integers whose mean is 10.

Answers:
(a)
(b) (i)
(ii)
(iii)
(c)
_

1. (a)

L(cm)	f	Σf
≤ 29	2	2
≤ 31	4	6

≤ 33	8	14
≤ 35	21	35
≤ 37	30	65
≤ 39	18	83
≤ 41	12	95
≤ 43	5	100

(A2) 2

Notes: Award (Al) for four correct entries in the column headed Σf .

Award (A2) for all 8 correct.

(b)

(A3)

Notes: Award (Al) for both axes and correct scale. Award [½ mark] for each correctly plotted point and round up to a maximum of [2 marks].

(c) (i) Median length of mackerel =
$$36 \text{ cm} \pm 0.2 \text{ cm}$$
 (M1) = 36 cm (A1)

(ii) Interquartile range of mackerel length =
$$3.8 \pm 0.2$$
 cm = 4 cm (M1)

*(read from candidate's curve)

[9]

2. (a) 19 or 20 people (A1)

(b) Median salary =
$$15000 \text{ GBP}$$
 (A1)

(c)
$$80\% \text{ of } 200$$

= 160
 23000 ± 500 (M1)
(A1)
[4]

3.

(a)
$$30$$

(b)
$$P_{75} = 46, P_{25} = 20$$
 (M1)
 $46 - 20 = 26$ (A1)(C2)

(c)
$$0.35(80) = 28$$
, $P_{35} = 23$ (A2)(C2)

(d)
$$\frac{10}{80} = 12.5\%$$
 (A2)(C2)

Note: Allow ±2 for each measurement.

Note: Allow ft for (b), (c) and (d) if percentile scores were figured on the basis of 100 instead of 80.

[8]

(C2)

4. (a) (i)
$$95 - 6 = 89$$
 (A1)

(ii)
$$73 - 50 = 23$$
 (A1)

(ii)
$$73 - 43 = 30$$
 (A1) (C2)

5. (a) (ii) and (iv) are discrete. (A1)(A1)

Notes: Award (A1)(A0) for both correct and one incorrect.

Award (A1)(A0) for one correct and two incorrect.

Award (A1)(A0) for one correct and two incorrect. Otherwise, (A0)(A0).

(b) (i) Median =
$$10$$
 (A1)

(ii)
$$Q_3 = 12$$

(iii) Min value =
$$1(\pm 0.2)$$
 (A1) (C3)

(c) Any three different **integers** whose mean is 10 eg 9, 10, 11. (A1) (C1)