Моделирование сетей передачи данных

Лабораторная работа № 2. Измерение и тестирование пропускной способности сети. Интерактивный эксперимент

Демидова Екатерина Алексеевна

Содержание

1	Введение	
2	Теоретическое введение	5
3	Выполнение лабораторной работы 3.1 Установка необходимого программного обеспечения	6 6 7
4	Выводы	20
Сп	писок литературы	21

Список иллюстраций

3.1	Установка ПО	6
3.2	Pазвертывание iperf_plotter	7
3.3	Запуск простейшей топологии	7
3.4	Настройки сети	8
3.5	Тестирование соединения	9
3.6	Тестирование соединения в интерфейсе mininet	10
3.7	Указание периода времени передачи	11
3.8	Настройка двухсекундного времени отсета	12
3.9	Установки количества байт для передачи	13
3.10	Изменение протокола передачи	14
3.11	Изменение номера порта для отправки/получения пакетов или	
	датаграмм	15
3.12	Параметр обработки данных только от одного клиента с остановкой	
	сервера по завершении теста	16
3.13	Экспорт результатов в файл JSON	17
3.14	Просмотр файла iperf_results.json	18
	Визуализация результатов эксперимента	19

1 Введение

Цель работы

Основной целью работы является знакомство с инструментом для измерения пропускной способности сети в режиме реального времени – iPerf3, а также получение навыков проведения интерактивного эксперимента по измерению пропускной способности моделируемой сети в среде Mininet.

Задачи

- 1. Установить на виртуальную машину mininet iPerf3 и дополнительное программное обеспечения для визуализации и обработки данных.
- 2. Провести ряд интерактивных экспериментов по измерению пропускной способности с помощью iPerf3 с построением графиков.

2 Теоретическое введение

Mininet[1] — это эмулятор компьютерной сети. Под компьютерной сетью подразумеваются простые компьютеры — хосты, коммутаторы, а так же OpenFlow-контроллеры. С помощью простейшего синтаксиса в примитивном интерпретаторе команд можно разворачивать сети из произвольного количества хостов, коммутаторов в различных топологиях и все это в рамках одной виртуальной машины(ВМ). На всех хостах можно изменять сетевую конфигурацию, пользоваться стандартными утилитами(ipconfig, ping) и даже получать доступ к терминалу. На коммутаторы можно добавлять различные правила и маршрутизировать трафик.

iPerf3[2]представляет собой кроссплатформенное клиент-серверное приложение с открытым исходным кодом, которое можно использовать для измерения пропускной способности между двумя конечными устройствами. iPerf3 может работать с транспортными протоколами TCP, UDP и SCTP:

• TCP и SCTP:

- измеряет пропускную способность;
- позволяет задать размер MSS/MTU;
- отслеживает размер окна перегрузки TCP (CWnd).

• UDP:

- измеряет пропускную способность;
- измеряет потери пакетов;
- измеряет колебания задержки (jitter);
- поддерживает групповую рассылку пакетов (multicast).

3 Выполнение лабораторной работы

3.1 Установка необходимого программного обеспечения

Проверим есть ли сетевой адрес у виртуальной машины, а затем обновим репозиторий ПО и установим iperf3 и другое необходимое дополнительное ПО(рис. 3.1)

```
rininet@minnet.vm:-$ ifconfig
eth0: flags=4163.4UP, BROADCAST, BUNNING, MULTICAST> rtu 1500
inet 192.168.56.102 netmask 255.255.255.0 broadcast 192.168.56.255
ether 08:00:27:b0:67:cc txqueuelen 1000 (Ethernet)
RX packets 102 bytes 13420 (13.4 KB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 82 bytes 12845 (12.8 KB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

eth1: flags=4163.4UP, BROADCAST, RUNNING, MULTICAST> rtu 1500
inet 10.0.2.15 netmask 255.255.255.0 broadcast 10.0.2.255
ether 08:00:27:997:2d:c8 txqueuelen 1000 (Ethernet)
RX packets 148 bytes 14427 (14.4 KB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 151 bytes 13532 (13.5 KB)
TX errors 0 dropped 0 overruns 0 frame 0
TX packets 151 bytes 13532 (13.5 KB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73-UP, LOOPBACK, RUNNING> rtu 65536
inet 127.0.0.1 netmask 255.0.0 carrier 0 collisions 0

lo: flags=73-UP, LOOPBACK, RUNNING> rtu 65536
inet 127.0.0.1 netmask 255.0.0 corruns 0 frame 0
TX packets 112 bytes 9112 (9.1 KB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 112 bytes 9112 (9.1 KB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

mininet@mininet-vm:-5 sudo apt-get update
cet:1 http://us.archive.ubuntu.com/ubuntu focal-security InRelease [128 kB]
Htt:2 http://us.archive.ubuntu.com/ubuntu focal-security/rasin and64 Packages [3,302 kB]
cet:6 http://us.archive.ubuntu.com/ubuntu focal-security/rasin and64 Packages [3,692 kB]
cet:10 http://us.archive.ubuntu.com/ubuntu focal-security/rasin and64 Packages [3,692 kB]
cet:10 http://security.ubuntu.com/ubuntu focal-s
```

Рис. 3.1: Установка ПО

Развернем iperf3_plotter. Для этого перейдем во временный каталог и скачаем репозиторий, а затем скачаем ПО(рис. 3.2).

```
mininet@mininet-vm:~$ cd /tmp
mininet@mininet-vm:/tmp$ git clone https://github.com/ekfoury/iperf3_plotter.git
Cloning into 'iperf3_plotter'...
remote: Enumerating objects: 74, done.
remote: Total 74 (delta 0), reused 0 (delta 0), pack-reused 74 (from 1)
Unpacking objects: 100% (74/74), 100.09 KiB | 499.00 KiB/s, done.
mininet@mininet-vm:/tmp$ cd /tmp/iperf3_plotter
mininet@mininet-vm:/tmp/iperf3_plotter$ sudo cp plot_* /usr/bin
mininet@mininet-vm:/tmp/iperf3_plotter$ sudo cp *.sh /usr/bin
mininet@mininet-vm:/tmp/iperf3_plotter$
```

Рис. 3.2: Развертывание iperf plotter

3.2 Интерактивные эксперименты

Запустим простейшую топологию, состоящую из двух хостов и коммутатора с назначенной по умолчанию mininet сетью 10.0.0.0/(рис. 3.3).

Рис. 3.3: Запуск простейшей топологии

Посмотрим настройки сети(рис. 3.4).

```
mininet@mininet-vm: /tmp/iperf3_plotter

root@mininet-vn: -# logout
mininet@mininet-vn: /tmp/iperf3_plott
mininet@mininet-vn: /tmp/iperf3_plott
mininet@mininet-vn: /tmp/iperf3_plott
mininet@mininet-vn: /tmp/iperf3_plott
mininet@mininet-vn: /tmp/iperf3_plotter
*** Adding ininet-vn: /tmp/iperf3_plotter
*** Adding switches:
*** Adding switches:

*** Adding links:
(h1, s1) (h2, s1)
*** Configuring hosts
h1 h2
*** Running terms on localhost:10.0
*** Starting controller
c0
*** Starting 1 switches
$1 ...
*** Starting CII:
mininet> net
*** Unknown command: Tenet
mininet> net
h1 h1-eth0:s1-eth1
h2 h2-eth0:s1-eth2
h2 h2-eth0:s1-eth2
h1 h1-eth0:s1-eth1
h2 h2-eth0:s-91-eth1 (OK OK)
h2-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0<->$1-eth0
```

Рис. 3.4: Настройки сети

Запустим тестовое соединение между хостами(рис. 3.5)

```
"host: h2" (на mininet-vm)
 warning: this system does not seem to support IPv6 - trying IPv4
 Server listening on 5201
Accepted connection from 10.0.0.1, port 35642

[ 7] local 10.0.0.2 port 5201 connected to 10.0.0.1 port 35644

[ ID] Interval Transfer Bitrate

[ 7] 0.00-1.00 sec 2.24 GBytes 19.2 Gbits/sec

[ 7] 1.00-2.00 sec 2.15 GBytes 18.5 Gbits/sec

[ 7] 2.00-3.00 sec 2.03 GBytes 17.5 Gbits/sec

[ 7] 3.00-4.00 sec 1.98 GBytes 17.1 Gbits/sec

[ 7] 4.00-5.00 sec 2.16 GBytes 18.5 Gbits/sec

[ 7] 5.00-6.00 sec 2.18 GBytes 18.7 Gbits/sec

[ 7] 6.00-7.00 sec 2.39 GBytes 20.5 Gbits/sec

[ 7] 7.00-8.00 sec 2.18 GBytes 18.7 Gbits/sec

[ 7] 7.00-8.00 sec 2.18 GBytes 18.7 Gbits/sec

[ 7] 7.00-8.00 sec 2.18 GBytes 18.7 Gbits/sec
                                                                sec
                                                                                                GBytes
                  Interval Transfer Bitrate
  0.00-10.01 sec 21.5 GBytes 18.5 Gbits/sec
                                                                                                                                                                                                                                  receiver
 Server listening on 5201
                                                                                                    "host: h1" (на mininet-vm)
                                                                              t 35644 conne
Transfer
2.24 GBytes
2.15 GBytes
2.04 GBytes
1.98 GBytes
2.16 GBytes
2.19 GBytes
2.39 GBytes
2.18 GBytes
2.13 GBytes
2.06 GBytes
                                                                                                                          ted to 10.0.0.2
Bitrate
19.2 Gbits/sec
18.5 Gbits/sec
17.5 Gbits/sec
17.0 Gbits/sec
18.5 Gbits/sec
18.8 Gbits/sec
20.5 Gbits/sec
18.8 Gbits/sec
18.8 Gbits/sec
18.3 Gbits/sec
                                                                                                                                                                                                Cwnd
8.09
8.09
                                                                                                                                                                                                                 MBytes
                                                                                                                                                                                                 8.09
8.09
                                                                                                                                                                                                                 MBytes
MBytes
MBytes
                                                                sec
                                                                                                                                                                                                                 MBytes
MBytes
                                                                sec
                                                                                                                                                                                                                  MBvtes
                                                                                21.5 GBytes
21.5 GBytes
                         0.00-10.00
0.00-10.01
                                                                                                                         18.5 Gbits/sec
18.5 Gbits/sec
                                                                                                                                                                                                                                   receiver
 iperf Done.
root@mininet-vm:/tmp/iperf3_plotter# ▮
```

Рис. 3.5: Тестирование соединения

Проанализируем полученный в результате выполнения теста сводный отчёт, отобразившийся как на клиенте, так и на сервере iPerf3. Он содержет следующие данные: - ID: идентификационный номер соединения – 7. - интервал (Interval): временной интервал для периодических отчетов о пропускной способности (по умолчанию временной интервал равен 1 секунде); - передача (Transfer): сколько данных было передано за каждый интервал времени – было пепредано от 1.98 до 2.39 GB в секунду; - пропускная способность (Bitrate): измеренная пропускная способность в каждом временном интервале – от 17 до 20.5 Gbit/sec; - Retr: количество повторно переданных TCP-сегментов за каждый временной интервал (это поле увеличивается, когда TCP-сегменты теряются в сети из-за перегруз-

ки или повреждения) – чем больше пропускная способность, тем больше число повторно переданных TCP-сегментов. Максимум она достигает 3 при битрейте 20.5 Gbit/sec; - Cwnd: указывает размер окна перегрузки в каждом временном интервале (TCP использует эту переменную для ограничения объёма данных, которые TCP-клиент может отправить до получения подтверждения отправленных данных) – это фиксированный параметр равный 8.09 МВ.

В концк указан общий вес переданных сообщений и средняя скорость для получателя и отправтеля равнаые 21.5 GB и 18.5 Gbit/sec соответственно, а для отправителя дополнительно указано общее количество повторно отправленных TCP-сегментов равное 10

Проведем аналогичный эксперимент в интерфейсе mininet(рис. 3.6).

Рис. 3.6: Тестирование соединения в интерфейсе mininet

Сравним результаты. Увидим, что на 0.2 GB меньше было передано, а пропускная способность меньше на 0.2 Gbit/sec, также было на 4 больше повторно отправленных TCP-сегментов.

Для указания iPerf3 периода времени для передачи можно использовать ключ -t (или –time)(рис. 3.7).

Рис. 3.7: Указание периода времени передачи

Настроим клиент iPerf3 для выполнения теста пропускной способности с 2секундным интервалом времени отсчёта как на клиенте, так и на сервере. Используем опцию -і для установки интервала между отсчётами, измеряемого в секундах(рис. 3.8).

Рис. 3.8: Настройка двухсекундного времени отсета

Можно увидеть, что действительно интервал увеличился в два раза, в результате чего в два раза учеличилось также вес переданный за один интервал времени и количество повторно высланных TCP-сегментов, но пропускная способность и суммарные величины очевидно практически не изменились.

Зададим на клиенте iPerf3 отправку определённого объёма данных. Используем опцию - n для установки количества байт для передачи(рис. 3.9).

Рис. 3.9: Установки количества байт для передачи

Изменим в тесте измерения пропускной способности iPerf3 протокол передачи данных с TCP (установлен по умолчанию) на UDP. iPerf3 автоматически определяет протокол транспортного уровня на стороне сервера. Для изменения протокола используем опцию -u на стороне клиента iPerf3(рис. 3.10).

Рис. 3.10: Изменение протокола передачи

В тесте измерения пропускной способности iPerf3 изменим номер порта для отправки/получения пакетов или датаграмм через указанный порт. Используем для этого опцию -p:(рис. 3.11)

Рис. 3.11: Изменение номера порта для отправки/получения пакетов или датаграмм

По умолчанию после запуска сервер iPerf3 постоянно прослушивает входящие соединения. В тесте измерения пропускной способности iPerf3 зададим для сервера параметр обработки данных только от одного клиента с остановкой сервера по завершении теста. Для этого используем опцию -1 на сервере iPerf3(рис. 3.12).

Рис. 3.12: Параметр обработки данных только от одного клиента с остановкой сервера по завершении теста

Экспортируем результаты теста измерения пропускной способности iPerf3 в файл JSON(рис. 3.13).

Рис. 3.13: Экспорт результатов в файл JSON

Убедимся, что файл iperf_results.json создан в указанном каталоге. Для этого в терминале хоста h1 введем следующие команды(рис. 3.14).

```
root@mininet-vm:/tmp/iperf3_plotter# iperf3 -c 10.0.0.2 -J > /home/mininet/work
/lab_iperf3/iperf_results.json
root@mininet-vm:/tmp/iperf3_plotter# cd /home/mininet/work/lab_iperf3
root@mininet-vm:/home/mininet/work/lab_iperf3# ls -l
total 8
 .oral o
-rw-r--r-- 1 root root 7792 Nov 17 02:28 iperf_results.json
root@mininet-vm:/home/mininet/work/lab_iperf3#_cat iperf_results.json
               "start": {
    "connected":
                                                            [{
"socket":
"local_host":
"local_port":
                                                                                             7,
"10.0.0.1",
                                                                                             35682,
"10.0.0.2",
                                                              "remote_host
   }],
"version":
"syst
                               "timestamp": {
"time": "Sun, 17 Nov 2024 10:28:17 GMT",
"timesecs": 1731839297
                              },
"cookie": "j4ymccfor3armntjsjapdwetwppzkap7cmao",
"tcp_mss_default": 1448,
"sock_bufsize": 0,
"sndbuf_actual": 87380,
"rcvbuf_actual": 87380,
"tock_ctart": f
                               "rcvbuf_actual":
"test_start": {
    "protocol":
    "num_streams'
    "blksize":
    "omit": 0,
    "duration":
    "bytse":
                                                                             "TCP",
                                                                             1,
131072,
                                                                             10,
                                                                             0,
0,
0,
                                               "bytes":
"blocks":
               },
"intervals":
                                              [{
"streams":
                                                                             [{
"socket":
                                                                            "socke: 0,

"start": 0,

"end": 1.000826,

"seconds": 1.0008260011672974,

"seconds": 2809927488,
```

Рис. 3.14: Просмотр файла iperf results.json

Визуализируем результаты эксперимента. В виртуальной машине mininet перейдем в каталог для работы над проектом, проверим права доступа к файлу JSON. Сгенерируем выходные данные для файла JSON iPerf3. Убедимся, что файлы с данными и графиками сформировались (рис. 3.15).

```
*** Done

completed in 2446.176 seconds

mininet@mininet-vm:/tmp/lperf3_plotter$ cd ~/work/lab_iperf3

mininet@mininet-vm:-/work/lab_iperf3$ ls -l

total 8

-rw-r--r-- 1 root root 7792 Nov 17 02:28 iperf_results.json

mininet@mininet-vm:-/work/lab_iperf3$ sudo chown -R mininet:mininet ~/work

mininet@mininet-vm:-/work/lab_iperf3$ ls -l

total 8

-rw-r--r-- 1 mininet mininet 7792 Nov 17 02:28 iperf_results.json

mininet@mininet-vm:-/work/lab_iperf3$ plot_iperf.sh iperf3_results.json

Error: iperf3_results.json is not a file. Quitting...

mininet@mininet-vm:-/work/lab_iperf3$ ls -l

total 8

-rw-r--r-- 1 mininet mininet 7792 Nov 17 02:28 iperf_results.json

mininet@mininet-vm:-/work/lab_iperf3$ ls -l

total 16

-rw-rw-r-- 1 mininet mininet 952 Nov 17 02:33 iperf.csv
-rw-r--r-- 1 mininet mininet 952 Nov 17 02:33 iperf_csv
-rw-rw-r-- 1 mininet mininet 4096 Nov 17 02:33 results

mininet@mininet-vm:-/work/lab_iperf3/results} ls -l

total 18

-rw-rw-r-- 1 mininet mininet 483 Nov 17 02:33 i.dat

-rw-rw-r-- 1 mininet mininet 9755 Nov 17 02:33 bytes.pdf

-rw-rw-r-- 1 mininet mininet 9805 Nov 17 02:33 bytes.pdf

-rw-rw-r-- 1 mininet mininet 9036 Nov 17 02:33 results

mininet@mininet-vm:-/work/lab_iperf3/results

-rw-rw-r-- 1 mininet mininet 9036 Nov 17 02:33 Tr.pdf

-rw-rw-r-- 1 mininet mininet 9083 Nov 17 02:33 RTT.pdf

-rw-rw-r-- 1 mininet mininet 9083 Nov 17 02:33 RT.pdf

-rw-rw-r-- 1 mininet mininet 9083 Nov 17 02:33 RT.pdf

-rw-rw-r-- 1 mininet mininet 9083 Nov 17 02:33 RT.pdf

-rw-rw-r-- 1 mininet mininet 9083 Nov 17 02:33 RT.pdf

-rw-rw-r-- 1 mininet mininet 9083 Nov 17 02:33 RT.pdf

-rw-rw-r-- 1 mininet mininet 9083 Nov 17 02:33 RT.pdf

-rw-rw-r-- 1 mininet mininet 9083 Nov 17 02:33 RT.pdf

-rw-rw-r-- 1 mininet mininet 9083 Nov 17 02:33 RT.pdf

-rw-rw-r-- 1 mininet mininet 9083 Nov 17 02:33 RT.pdf

-rw-rw-r-- 1 mininet mininet 9083 Nov 17 02:33 RT.pdf

-rw-rw-r-- 1 mininet mininet 9083 Nov 17 02:33 RT.pdf

-rw-rw-r-- 1 mininet mininet 9083 Nov 17 02:33 RT.pdf

-rw-rw-r-- 1 mininet mininet 9093 Nov 17 02:33 RT.pdf
```

Рис. 3.15: Визуализация результатов эксперимента

4 Выводы

В результате выполнения работы познакомились с инструментом для измерения пропускной способности сети в режиме реального времени – iPerf3, а также получение навыков проведения интерактивного эксперимента по измерению пропускной способности моделируемой сети в среде Mininet.

Список литературы

- 1. Mininet [Электронный ресурс]. Mininet Project Contributors. URL: http://mininet.org/ (дата обращения: 17.11.2024).
- 2. IPerff [Электронный ресурс]. URL: https://iperf.fr/.