Elliptic Curves

D. Zack Garza

March 14, 2020

Contents

1	Wednesday January 8	1
2	Mordell-Weil Groups	2
3	Monday January 13th 3.1 Every Abelian Group is a Class Group 3.2 Proof Sketch 3.2.1 Step 1 3.2.2 Step 2 3.2.3 Step 3 3.3 Mordell-Weil	3 4 4 4 4 6
L	ist of Definitions	
	3.1 Definition – Replete	5 5
L	ist of Theorems	
	3.1 Theorem – Claborn - Leedham - Green - Clark	3 6
1	Wednesday January 8	
Sı	ummary:	
	1. Mordell-Weil theorem	
	 For elliptic curves over global fields (number fields, function fields, finite fields, etc) Proof uses Galois cohomology and height functions, essentially one proof! Holds for abelian varieties, but more difficult (need an analog of height functions, i.e. a x-coordinate) 	an
	2. Height functions (possibly)	

- 3. Elliptic curves over \mathbb{Q}_p or complete discrete valuation fields (see Silverman for basics, possibly Chapter 5), particularly Tate curves
- 4. Weil-Chatelet groups E/k related to $H^1(k;E)$ with coefficients in the elliptic curve
- 5. Galois representation of E/k for char k=0, for $\rho_n g_k \longrightarrow \operatorname{GL}(2,\mathbb{Z}/n\mathbb{Z})$ which leads to $\widehat{\rho}: g_k \longrightarrow \operatorname{GL}(\widehat{\mathbb{Z}})$.

2 Mordell-Weil Groups

Let E/k be an elliptic curve over a field k, i.e. a smooth, projective, geometrically integral curve of genus 1 with a k-rational point O.

Note: Silverman good for foundations, but assumes k is perfect! Here we'll assume k is arbitrary.

Remark: If k is not algebraically closed, such a point O may not exist.

By Riemann-Roch (easy computation) E embeds (non-canonically) into \mathbb{P}^2/k as a Weierstrass cubic

$$y^{2} + a_{1}xy + a_{3}y = x^{3} + a_{2}x^{2} + a_{4}x + a_{6} \quad \Delta \neq 0.$$

This is a smoothness condition, and this equation has a k-rational point at infinity [0:1:0]. The line at infinity is a flex line (?), and so only intersects this curve at one point.

If char $k \neq 2, 3$ then $y^2 = x^3 + Ax + B$.

Every elliptic curve is given by a Weierstrass equation, although not in a unique way.

An amazing fact: The k-rational points E(k) forms an abelian group with zero as the identity. Proof:

- 1. Given any plane cubic C/k and an origin $O \in C(k)$, the chord and tangent process yields a group structure. Note that there is a symmetry in connecting rational points a, b with a line an intersecting at another rational point c which is not present in most groups, so an additional inversion about O is needed to actually make this into a group. Proving associativity: difficult!
- 2. Look at Pic^0E , the degree 0 divisors on E mod birational equivalence (?), which is equal to the degree 0 line bundles on E mod bundle isomorphism.

Exercise: Show there is a map $C(k) \longrightarrow \operatorname{Pic}^1 C$ given by sending p is its equivalence class; this is a bijection by Riemann-Roch (straightforward exercise).

We can then compose this with a map $\operatorname{Pic}^1 \longrightarrow \operatorname{Pic}^0 C$ given by $D \mapsto D - [O]$, which decreases the degree by 1. This gives a map $\Phi : C(k) \longrightarrow \operatorname{Pic}^0 C$, just need to check that $\Phi(P \oplus Q) = \Phi(P) + \Phi(Q)$.

Check that the groups are independent of the k-rational point chosen, i.e. changing rational points yields isomorphic groups. So the group law itself does actually depend on the rational point, although the structure doesn't.

Exercise: Let (E, O)/k be an elliptic curve and define $E^0 = E \setminus \{0\}$ the (nonsingular, integral) affine curve given by removing the point at infinity. Then the affine coordinate ring $k[E^0]$ is defined as $k[x,y]/(y^2-x^3-Ax-B)$, which is a Dedekind ring.

The interesting thing about Dedekind domains: the ideal class group! (i.e. the Picard group)

This has ideal class group $Pick[E^0]$, and one can show that

$$\operatorname{Pic}^{0}E \longrightarrow \operatorname{Pic}k[E^{0}]$$
$$\sum_{p} n_{p} \operatorname{deg}(p)[p] \mapsto \sum_{p \neq 0} n_{p}[p] = \prod_{p} p^{n_{p}}$$

with the sum ranging over all closed points is an isomorphism.

Just note that the RHS can't have a point at infinity, so we just forget it. The isomorphism follows from some exact sequence with correction terms that vanish.

So the Mordell-Weil group of E(k) is isomorphic to $Pick[E^0]$, the class group of a dedekind domain (?).

Definitions: Let G be a commutative group.

- G is a class group iff there exists a dedekind domain R such that $G \cong PicR$.
- G is an (elliptic) Mordell-Weil group iff there exists a field k and an elliptic curve E/k such that $G \cong E(k)$.

Questions:

- 1. Which G are class groups?
- 2. Which G are Mordell-Weil groups?

An answer to question 1:

Theorem (Clayborn, 1966): Every commutative G is a class group.

Subsequent proofs: Leetham-Green (1972) and Clark (2008) following Rosen, and uses elliptic curves. See the end of Pete's Commutative Algebra notes!

An answer to question 2:

Consider E/\mathbb{C} , then $E(\mathbb{C}) \cong S^1 \times S^1$, so the torsion subgroup is $T(1) := (\mathbb{Q}/\mathbb{Z})^2 = \bigoplus_{\ell} (\mathbb{Q}_{\ell}/\mathbb{Z}_{\ell})^2$.

This in fact holds for any algebraically closed field of characteristic zero.

Fact: For any E/k, the Mordell-Weil group E(k) is "T(1)-constrained", i.e. E(k)[tors] $\hookrightarrow T(1)$.

Theorem (Clark, 2012): G is a Mordell-Weil group \iff G is T(1)-constrained.

Note: the analogous statement for abelian varieties, i.e being T(g) constrained for some other genus $g \neq 1$, is open. Fixing $k = \mathbb{Q}$ still yields very interesting problems. Computing the rank and torsion subgroups is currently open, and the subject of modern research.

3 Monday January 13th

3.1 Every Abelian Group is a Class Group

Theorem 3.1 (Claborn - Leedham - Green - Clark).

Any commutative group is the class group of some Dedekind domain.

Also see: partial re-proof by Rosen that uses elliptic curves. This theorem: mostly a proof in commutative algebra, see end of Pete's commutative algebra notes.

3.2 Proof Sketch

Let E/k be an elliptic curve over a field.

3.2.1 Step 1

Note that $\operatorname{End}_k(E) \cong_{\mathbb{Z}} \mathbb{Z}^{a(E)}$ where $a(E) \in \{1, 2, 4\}$.

Could be \mathbb{Z} as a \mathbb{Z} -module, could be an order in the imaginary quadratic field (e.g. a quaternion algebra)

There is a short exact sequence

$$0 \longrightarrow E(k) \longrightarrow E(k(E)) \longrightarrow \operatorname{End}_K(E) \longrightarrow 0.$$

This splits because (as seen above), the RHS term is free and thus projective. So

$$E/k(E) \cong E(k) \oplus \mathbb{Z}^{a(E)}$$
.

Note that k(E) is an extension of E_k to $E_{k(E)}$ the field of rational functions over k? (function field). To simplify, take a(E) = 1 and $E(k) = \{0\}$.

Taking $k = \mathbb{Q}$, this happens (probably, asymptotically) half of the time. It's easy to write down an elliptic curve that satisfies these conditions

Then $E/k(E) \cong \mathbb{Z}$.

Now pass to the field of rational functions over this field, taking E(k(E)(E/k(E))). Then $k^2(E) := k(E)(E/k(E))$, and inductively define $k^n(E)$ by passing to function fields. So $E(k^n(E)) \cong \mathbb{Z}^n$.

So we can construct elliptic curves that have any free commutative group as their Mordell-Weil group.

3.2.2 Step 2

Loosely speaking, we'll iterate this process transfinitely. Then for any set S, there exists a field k and an elliptic curve E/k such that $E(k) \cong \bigoplus_{S} \mathbb{Z}$. We now want to introduce a process that allows

passing to quotients. And $R := k[E^0]$ is the affine coordinate ring of ?, remove the point at infinity (?).

3.2.3 Step 3

Let R be a Dedekind domain. Note it has a fraction field with a certain ideal class group. Let $W \subset \max \operatorname{Spec}(R)$, then

$$R^W \coloneqq \bigcap_{\mathfrak{p} \in \text{maxSpec } R \backslash W} R_{\mathfrak{p}}.$$

Then R^W is Dedekind (and every overring of a Dedekind domain is of this form) and maxSpec (R^W) = maxSpec $(R \setminus W)$.

Then

$$\operatorname{Pic} R^{W} = \operatorname{Pic} R / \langle [\mathfrak{p}] \mid \mathfrak{p} \in W \rangle.$$

Note that if (A, +) is a commutative group, writing $A = \bigoplus_{S} \mathbb{Z}/H$, we have a Dedekind domain $R = k[E^0]$ such that Pic $R = \bigoplus_{S} \mathbb{Z}$.

Note: Pic R is the class group.

Definition 3.1 (Replete).

A Dedekind domain R is **replete** iff every element of the class group Pic R is the class group $[\mathfrak{p}]$ of some ideal $\mathfrak{p} \in \max \operatorname{Spec}(R)$.

Is every ideal class the class of a prime ideal? For k a field, $R = \mathbb{Z}_k$. This follows from Chebotom (?) Density (most important theorem for arithmetic geometers!)

Definition 3.2 (Weakly Replete).

A Dedekind domain R is **weakly replete** iff every subgroup $H \subset \text{Pic } R$ is generated by classes of prime ideals.

Exercise (Easy) $K[E^0]$ is weakly replete, and an easy application of Riemann-Roch shows that if $0 \neq p \in E(k) = \text{Pic } k[E^0]$, then $[p] \in \text{Pic } k[E^0]$ is generated by a prime ideal.

Note: most applications of Riemann-Roch to elliptic curves are easy! In this case, it gives you an identification $E \cong \operatorname{Pic}^{1}(E)$.

So there exists a subset $W \subset \max \operatorname{Spec} k[E^0]$ such that $\langle [p] \mid p \in W \rangle = H$. Then

Pic
$$k[E^0]^W \cong \bigoplus_S \mathbb{Z}/H \cong A$$
.

Note that Dedekind domains don't have to be replete or even weakly replete. The class group of a Dedekind domain could be \mathbb{Z} , and the class of every prime ideal could be $1 \in \mathbb{Z}$

Proof (Claborn).

Start with an arbitrary Dedekind domain R and attach one that's replete.

Can ask for a similar result for abelian varieties, there are conjectures here, few clear results. Need to get $\mathbb{Z}/(m) \times \mathbb{Z}/(n)$, since these occur as Mordell-Weil groups. Take a modular curve and a generic point. Look at universal elliptic curves over elliptic curves and take their Mordell-Weil groups (?)

If k is algebraically closed and char k = p, can't have $\mathbb{Z}(p) \times \mathbb{Z}/(p)$. Consider the p-primary torsion $E_k[p^{\infty}]$. It is zero iff E is supersingular (no points of order p). It is $\mathbb{Q}_p/\mathbb{Z}_p = \lim_{n \to \infty} \mathbb{Z}/(p^n)$ iff E is ordinary.

Can sometimes reduce to cases where $k = \mathbb{C}$ and do things analytically.

3.3 Mordell-Weil

Theorem 3.2 (Mordell-Weil).

Let k be a global field (extension of \mathbb{Q} or function field over \mathbb{F}_p) and E/k and elliptic curve. Then $E(k) \cong \mathbb{Z}^r \oplus T$ (by classification of abelian groups) where T is finite, and $T \cong \mathbb{Z}/(m) \oplus \mathbb{Z}/(n)$ for $m \mid n$. So T is generated by at most two elements.

Proof (3 steps).

Step 1: Weak Mordell-Weil theorem.

Take any $n \ge 2$ and char k not dividing n. Show that E(k)/nE(k) is finite.

Step 2: Define a height function $h: E(k) \longrightarrow \mathbb{R}$ satisfying 3 properties (see next time). This is approximately a quadratic form.

Decompose at places of a number field, see Number Theory II.

Step 3: For any commutative group A, there is a notion of a height function

$$h:A\longrightarrow \mathbb{R}.$$

Show the Height Descent Theorem: if A admits a height function and A/nA is finite for some $n \geq 2$, then A is finitely generated.

Also how you'd prove this theorem for abelian varieties, more difficulty defining h.