

Instrukcja

Analiza Sygnału w Dziedzinie Czasu i Częstości dr Teodor Buchner

POLITECHNIKA WARSZAWSKA WYDZIAŁ FIZYKI

Pracownia Fizyki Układu Krążenia Człowieka

efizyka.if.pw.edu.pl/twiki/bin/view/ACC/

PRZYGOTOWANIE I REALIZACJA SPECJALNOŚCI WSPÓŁFINANSOWANE ZE ŚRODKÓW UNII EUROPEJSKIEJ W RAMACH EUROPEJSKIEGO FUNDUSZU SPOŁECZNEG

Ćwiczenie 2 FFT-logia

Wprowadzenie do ćwiczenia

Patrz Wykład: efizyka.if.pw.edu.pl/twiki/bin/view/ACC/SlajdyPrzedmiotu

Ćwiczenie ma na celu wprowadzenie do analizy sygnału, zapoznanie się z pojęciami: częstość próbkowania, częstość Nyquista, aliasing, zero padding, upsampling. Zapoznanie z podstawowymi własnościami transformaty Fouriera w krótkim oknie czasowym oraz nabycie biegłości w posługiwaniu się środowiskiem Matlab.

Generowanie sygnału

Do analizy w dalszej części ćwiczenia wykorzystamy sygnał o zadanych przez nas własnościach, w szczególności o określonej: częstości próbkowania, czasie trwania, amplitudzie, częstości, fazie.

<u>Przykład:</u> Sygnał sinusoidalny $x(t) = Asin(2\pi fxt)$ o długości 1000 próbek, amplitudzie 5, częstości 10Hz i częstości próbkowania 1000Hz.

Transformata Fouriera

Transformata Fouriera to podstawowe narzędzie analizy częstotliwościowej sygnałów:

$$X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft}dt \tag{1}$$

X(f) jest zespolonym widmem Fouriera sygnału x(t) i zawiera informację o jego "zawartości" częstotliwościowej (f - częstotliwość [Hz], x(t) - badany przebieg czasowy).

 $\underline{\text{Przykład:}}$ Oblicz współczynniki zespolonego szeregu Fouriera. Narysuj ich część rzeczywistą, urojoną oraz moduł.

Okna czasowe

Rozdzielczość częstotliwościowa widma wynosi fs/N. Jeśli w sygnale pojawi się częstotliwość pośrednia (zawsze w sygnale rzeczywistym), zostanie rozmyta - "przecieknie" do innych prążków. Dlatego fragment sygnału wycina sie za pomocą okna czasowego (mnożenie sygnału przez funkcję okna). Jako okna można stosować wiele różnych funkcji, na przykład Barletta, Blackmana, Hamminga, Hanna, Kaisera.

Twierdzenie Whittakera-Nyquista-Kotielnikowa-Shannona

Częstotliwość próbkowania musi być większa niż dwukrotność najwyższej składowej częstotliwości w mierzonym sygnale. Nieodpowiednie dobranie częstotliwości próbkowania może prowadzić do aliasingu, które jest nieodwracalnym zniekształceniem sygnału.

Wykonanie ćwiczenia

Środowisko sugerowane: Matlab.

Przygotuj skrypt który zilustruje następujące zagadnienia:

- 1. Porównanie sygnałów w funkcji czasu oraz widm (obrazki w dwóch kolumnach):
 - (a) Sygnału nieskończonego (wykres teoretyczny)
 - (b) Funkcji okna prostokątnego (należy dobrać okno krótkie, obejmujące co najwyżej kilka okresów sygnału)
 - (c) Sygnału skończonego czyli iloczynu sygnału nieskończonego i funkcji okna prostokatnego
 - (d) Funkcji okna nieprostokątnego (należy dobrać okno krótkie, obejmujące co najwyżej kilka okresów sygnału)
 - (e) Sygnału skończonego wygładzonego oknem czyli iloczynu sygnału nieskończonego i funkcji okna nieprostokatnego
- 2. Twierdzenie o próbkowaniu. Aliasing. Widmo sygnału próbkowanego poniżej i powyżej częstotliwości Nyquista. Jako sygnał można wykorzystać fragment muzyczny dostępny na stronie (http://if.pw.edu.pl/~salamon/chord.wav). Można także wziąć swoją ulubioną piosenkę w formacie wav. Częstość próbkowania jest zapisana w nagłówku pliku wav i zwracana przez funkcję |wavread|. Najlepiej jest zacząć od próbkowania powyżej częstotliwości Nyquista a następnie wykonać kilkukrotnie decymację (usuwanie co drugiej próbki), za każdym razem wyświetlając wykres sygnału i widma.
- 3. Zero padding uzupełnianie sygnału zerami (do 4x długość sygnału, do analizy bierzemy albo sygnał teoretyczny albo fragment muzyczny).
- 4. Upsampling wypełnienie sygnału zerami pomiędzy próbkami (do 4x długość sygnału, do analizy bierzemy albo sygnał teoretyczny albo fragment muzyczny)

Treść i forma sprawozdania: forma elektroniczna (Word, TeX, pdf, ...), sprawozdanie ma zawierać opis wykonanych zadań oraz komplet wykorzystywanych skryptów.

Bibliografia: T.Zieliński, Cyfrowe przetwarzanie sygnatów, od teorii do zastosowań, WKŁ Warszawa 2014.