20191002

kernel

- Cat and Dog problem
- A simple geometric solution
- A more general solution

Dot product $\vec{a}\vec{b} = a_x b_x + a_y b_y = |\vec{a}||\vec{b}|\cos(\theta)$ Exercise:

Exercise:
$$g(x) = < C_{+} - C_{-}, X - C > = < C_{+}, X > - < C_{-}, X > - < C_{+}, C > + < C_{-}, C >;$$

$$< C_{+}, X > = < \frac{1}{n_{+}} \sum_{\substack{l \in I_{+} \\ n}}^{n} x_{i}, x >;$$

$$< C_{-}, X > = < \frac{1}{n_{-}} \sum_{l \in I_{-}}^{n} x_{i}, x >;$$

$$< C_+, C> = < C_+, \frac{1}{2}C_+> + < C_+, \frac{1}{2}C_-> = \frac{1}{2n_+^2} \sum_{(i,j) \in I_-} < x_i, x_j > + \frac{1}{2} < C_+, C_->$$

$$\begin{split} g(x) &= \sum_{l=1}^n \alpha_i < x_i, x > +b, \\ b &= \frac{1}{2} \left[\frac{1}{n_-^2} \sum_{(i,j) \in I_-} < x_i, x_j > -\frac{1}{n_+^2} \sum_{(i,j) \in I_+} < x_i, x_j > \right] \\ \alpha_i &= \begin{cases} \frac{1}{n_+} & y_i = +1 \\ -\frac{1}{n_-} & y_i = -1 \end{cases} \end{split}$$

• Import the iris data

rm(list=ls()) library(datasets) data(iris)

library(ggplot2) GGally::ggpairs(iris, mapping=aes(color =Species, shape=Species, alpha=0.3), columns=c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width", "Species"))+theme_light()

• Define the train and test sets

```
iris$class <- NA
iris_setosa <- iris[iris$Species=="setosa",]
iris_versicolor <- iris[iris$Species=="versicolor",]
iris_virginica <- iris[iris$Species=="virginica",]

iris_train_se<- iris_setosa[1:40,]
iris_train_ve<- iris_versicolor[1:40,]
iris_train_vi<- iris_virginica[1:40,]

iris_test_se<- iris_setosa[41:50,]
iris_test_ve<- iris_versicolor[41:50,]
iris_test_vi<- iris_virginica[41:50,]
iris_train_se.ve<- rbind(iris_train_se,iris_train_ve)
iris_train_vi<- rbind(iris_train_ve,iris_train_vi)
iris_test_se.ve<- rbind(iris_test_se,iris_test_ve)
iris_test_ve<- rbind(iris_test_ve,iris_test_ve)
iris_test_ve<- rbind(iris_test_ve,iris_test_ve)
iris_test_ve<- rbind(iris_test_ve,iris_test_ve)</pre>
```

• Define the kernel function and Computing the classifier

```
k = function(x,y) return(sum(x*y)+1)
k.pp=outer(1:40,1:40,Vectorize(function(i,j) k(iris_train_se[i,1:4],iris_train_se[j,1:4])))
k.mm=outer(1:40,1:40,Vectorize(function(i,j) k(iris_train_ve[i,1:4],iris_train_ve[j,1:4])))
b=(sum(k.mm)/(40^2)-sum(k.pp)/(40^2))/2
alpha=ifelse(iris_train_se.ve$Species=="setosa",1/40,-1/40)
k.x=outer(1:80,1:20,Vectorize(function(i,j) k(iris_train_se.ve[i,1:4],iris_test_se.ve[j,1:4])))
iris_test_se.ve[,6]=(t(k.x)%*%alpha+b)

k = function(x,y) return(sum(x*y)+1)
k.pp=outer(1:40,1:40,Vectorize(function(i,j) k(iris_train_vi[i,1:4],iris_train_vi[j,1:4])))
k.mm=outer(1:40,1:40,Vectorize(function(i,j) k(iris_train_ve[i,1:4],iris_train_ve[j,1:4])))
b=(sum(k.mm)/(40^2)-sum(k.pp)/(40^2))/2
alpha=ifelse(iris_train_ve.vi$Species=="virginica",1/40,-1/40)
k.x=outer(1:80,1:20,Vectorize(function(i,j) k(iris_train_ve.vi[i,1:4],iris_test_ve.vi[j,1:4])))
iris_test_ve.vi[,6]=(t(k.x)%*%alpha+b)
```

• Evaluate the classifier

```
iris_test_se.ve$evaluate=ifelse(iris_test_se.ve$class>0,"setosa","versicolor")
1-length(which(iris_test_se.ve$Species==iris_test_se.ve$evaluate))/20
## [1] 0
```

```
iris_test_ve.vi$evaluate=ifelse(iris_test_ve.vi$class>0,"virginica","versicolor")
1-length(which(iris_test_ve.vi$Species==iris_test_ve.vi$evaluate))/20
```

[1] 0.05

Table 1: Confusion matrix

			Actura	al Species		
	test 1	Setosa	Versicolor	test 2	Virginica	Versicolor
Tost Species	Setosa	10	0	Virginica	9	0
Test Species	Versicolor	0	10	Versicolor	1	10

Error rate = 0% and 5% in two tests respectively.

S	etosa v.s.v	ersicolor	
	Species	class	evaluate
$\overline{41}$	setosa	5.8564094	setosa
$\overline{42}$	setosa	5.5356594	setosa
43	setosa	6.3496594	setosa
$\overline{44}$	setosa	4.6646594	setosa
$\overline{45}$	setosa	4.1349094	setosa
46	setosa	5.4289094	setosa
$\overline{47}$	setosa	5.2151594	setosa
$\overline{48}$	setosa	5.8694094	setosa
49	setosa	5.2391594	setosa
50	setosa	5.5476594	setosa
91	versicolor	-5.0968406	versicolo
92	versicolor	-6.2058406	versicolo
93	versicolor	-4.2455906	versicolo
94	versicolor	-1.4460906	versicolo
95	versicolor	-4.6668406	versicolo
96	versicolor	-4.4508406	versicolo
97	versicolor	-4.6295906	versicolo
98	versicolor	-5.4015906	versicolo
99	versicolor	-0.6630906	versicolo
100	versicolor	-4.4110906	versicolo

vi	rginica v.s	s.versicolor	
	Species	class	evaluate
91	versicolor	-1.57497812	versicolor
92	versicolor	-0.74947812	versicolor
93	versicolor	-1.90722813	versicolor
94	versicolor	-3.48222812	versicolor
95	versicolor	-1.68972812	versicolor
96	versicolor	-1.63847812	versicolor
97	versicolor	-1.59247813	versicolor
98	versicolor	-1.15722812	versicolor
99	versicolor	-3.70797812	versicolor
100	versicolor	-1.73947812	versicolor
141	virginica	1.56602187	virginica
142	virginica	0.97952188	virginica
143	virginica	-0.02222812	versicolor
144	virginica	1.96827188	virginica
145	virginica	1.79502188	virginica
146	virginica	0.96802188	virginica
147	virginica	0.11902188	virginica
148	virginica	0.65352188	virginica
149	virginica	0.99177188	virginica
150	virginica	0.02902187	virginica