Syntaks og semantik

Lektion 4

20 februar 2007

Administrivia NFA vs. RE

Forord

Administrivia
Non-deterministiske endelige automater
NFAs og regulære udtryk

- Der skulle nu være nok Sipsere i boghandelen
- Deadline for aflevering af syntaksopgave-erstatnings-opgavestilling (for PE-studerende) er i dag!
- næste gang: spørgetime!

3/21

Administrivia NFA NFA NFA NFA NFA vs. RE

Definition 1.37: En nondeterministisk endelig automat (NFA) er en 5-tupel $M = (Q, \Sigma, \delta, q_0, F)$, hvor delene er

- Q: en endelig mængde af tilstande
- Σ : input-alfabetet
- $\delta: \mathbf{Q} \times (\mathbf{\Sigma} \cup \{\varepsilon\}) \to \mathcal{P}(\mathbf{Q})$: transitions-funktionen
- $q_0 \in Q$: starttilstanden
- **5** $F \subset Q$: mængden af accepttilstande

M siges at acceptere et ord $w \in \Sigma^*$ hvis der findes $m \in \mathbb{N}$ og $y_1, y_2, \ldots, y_m \in \Sigma \cup \{\varepsilon\}$ og $r_0, r_1, \ldots, r_m \in Q$ således at $w = y_1 y_2 \ldots y_m$ og

- $0 r_0 = q_0,$
- 2 $r_{i+1} \in \delta(r_i, y_{i+1})$ for alle i = 0, 1, ..., m-1, og

- enhver DFA er også en NFA
- enhver NFA kan laves om til en DFA der genkender samme sprog (delmængdekonstruktionen)
- et sprog er defineret til at være regulært hvis der er en DFA der genkender det
- et sprog er regulært hvis og kun hvis der er en NFA der genkender det
- regulære sprog er lukket under ∪, ∘, * (vises ved at konstruere en ny NFA ud fra de givne NFAs)
- regulære sprog er lukket under ∩ og ¬ (komplement) (vises ved at konstruere en ny DFA ud fra de givne DFAs; konstruktionerne virker kun for DFAs!)
- NFAs er generelt mere simple at fremstille
- men nogen gange kan det være nødvendigt at arbejde med DFAs – eksempel: opgave 1.13

5/21

Administrivia NFA NFA vs. RE

Lemma 1.55: Hvis et sprog beskrives ved et regulært udtryk, da er det regulært.

Bevises ved strukturel induktion:

- konvertér de basale regulære udtryk til NFAs
- brug lukningsegenskaber til at konvertere sammensætninger af regulære udtryk til sammensætninger af NFAs
- Smart!

I dag: Lemma 1.60: Hvis et sprog er regulært, da kan det beskrives ved et regulært udtryk.

(Bevises ved at generalisere NFAs til GNFAs.)

⇒ Sætning 1.54: Et sprog er regulært hvis og kun hvis det kan beskrives ved et regulært udtryk.

Regulære og ikke-regulære sprog

7/21

NFA ⇒ RE Ikke-regulære sprog

Lemma 1.60: Givet et alfabet Σ og et regulært sprog $L \subseteq \Sigma^*$, da findes et regulært udtryk R over Σ således at $L = [\![R]\!]$.

Nøgle til beviset: Ny slags maskiner der kombinerer NFA og regulære udtryk: generaliserede nondeterministiske endelige automater (GNFA)

Definition 1.64: En GNFA er en 5-tupel $(Q, \Sigma, \delta, q_0, q_f)$, hvor delene er

- Q: en endelig mængde af tilstande
- **3** $\delta: (Q \setminus \{q_f\}) \times (Q \setminus \{q_0\}) \rightarrow \mathcal{R}$: transitions-funktionen
- $q_0 \in Q$: starttilstanden
- $oldsymbol{0} q_f \in Q$: accepttilstanden

Notation: $\mathcal{R} = \mathcal{R}(\Sigma) =$ mængden af alle regulære udtryk over et givet alfabet Σ .

(Bemærk at GNFAs introduceres kun for det her bevis. De bruges ikke til andet.)

Definition 1.64: En GNFA er en 5-tupel $(Q, \Sigma, \delta, q_0, q_f)$, hvor delene er

- **③** $\delta: (Q \setminus \{q_f\}) \times (Q \setminus \{q_0\}) \rightarrow \mathcal{R}$: transitions-funktionen
- $oldsymbol{0}$ $q_f \in Q$: accepttilstanden

Ligesom NFAs, men

- med kun én accepttilstand
- med regulære udtryk på transitionerne i stedet for tegn
- med transitioner fra enhver tilstand til enhver tilstand (også sig selv), bortset fra at
 - starttilstanden ikke har indgående transitioner, og at
 - accepttilstanden ikke har udgående transitioner

9/21

 $NFA \Rightarrow RE$

Ikke-regulære sprog

Definition 1.64: En GNFA er en 5-tupel $(Q, \Sigma, \delta, q_0, q_f)$, hvor delene er

- Q: en endelig mængde af tilstande
- Σ : input-alfabetet
- **③** $\delta: (Q \setminus \{q_f\}) \times (Q \setminus \{q_0\}) \rightarrow \mathcal{R}$: transitions-funktionen
- $q_0 \in Q$: starttilstanden

GNFAen accepterer et ord $w \in \Sigma^*$ hvis der findes $m \in \mathbb{N}$ og $y_1, y_2, \ldots, y_m \in \Sigma^*$ (!) og $r_0, r_1, \ldots, r_m \in Q$ således at $w = y_1 y_2 \ldots y_m$ og

- $0 r_0 = q_0,$
- ② $y_{i+1} \in [\![\delta(r_i, r_{i+1})]\!]$ for alle i = 0, 1, ..., m-1, og
- $r_m = q_f.$

Bevisidé: konvertér en DFA til en GNFA og så GNFAen til et regulært udtryk ved at fjerne én tilstand ad gangen.

NFA ⇒ RE Ikke-regulære sprog

Lemma 1.60: Givet et alfabet Σ og et regulært sprog $L \subseteq \Sigma^*$, da findes et regulært udtryk R over Σ således at $L = [\![R]\!]$.

Bevis: Lad $M = (Q_1, \Sigma, \delta_1, q_1, F_1)$ være en DFA med [M] = L.

- Konvertér M til en GNFA $G = (Q, \Sigma, \delta, q_0, q_f)$:
 - (a) Lav en ny starttilstand q_0 og en ny accepttilstand q_f , med ε -transitioner fra q_0 til den gamle starttilstand og fra alle gamle accepttilstande til q_f .
 - (b) Erstat transitioner med flere end ét label med én transition der som label har foreningen af disse labels.
 - (c) Indsæt ∅-transitioner hvor der mangler pile.

NFA ⇒ RE Ikke-regulære sprog

Lemma 1.60: Givet et alfabet Σ og et regulært sprog $L \subseteq \Sigma^*$, da findes et regulært udtryk R over Σ således at $L = [\![R]\!]$.

Bevis: Lad $M = (Q_1, \Sigma, \delta_1, q_1, F_1)$ være en DFA med [M] = L.

- Konvertér M til en GNFA $G = (Q, \Sigma, \delta, q_0, q_f)$:
 - (a) Lav en ny starttilstand q_0 og en ny accepttilstand q_f , med ε -transitioner fra q_0 til den gamle starttilstand og fra alle gamle accepttilstande til q_f .
 - (b) Erstat transitioner med flere end ét label med én transition der som label har foreningen af disse labels.
 - (c) Indsæt ∅-transitioner hvor der mangler pile.

$$Q = Q_1 \cup \{q_0, q_f\}$$

$$\delta(q,q') = \begin{cases} \varepsilon & \text{hvis } q = q_0 \text{ eller } q' = q_f \\ a_1 \cup a_2 \cup \dots \cup a_k & \text{hvis } q, q' \in Q_1 \text{ og } \delta_1(q,a_i) = q' \\ & \text{for alle } i = 1, 2, \dots, k \end{cases}$$

$$\emptyset & \text{hvis } q, q' \in Q_1 \text{ og } \delta_1(q,a) \neq q'$$

$$\text{for alle } a \in \Sigma$$

$$(c)$$

12/21

Lemma 1.60: Givet et alfabet Σ og et regulært sprog $L \subseteq \Sigma^*$, da findes et regulært udtryk R over Σ således at $L = [\![R]\!]$.

Bevis: Lad $M = (Q_1, \Sigma, \delta_1, q_1, F_1)$ være en DFA med [M] = L.

- **1** Konvertér M til en GNFA $G = (Q, \Sigma, \delta, q_0, q_f)$
- Event State Sta
 - Lad k = |Q| antallet af tilstande i G.
 - 2 Hvis k = 2, returnér $\delta(q_0, q_f)$.
 - 3 Vi har k > 2. Lad $q_{\mathsf{rip}} \in Q \setminus \{q_0, q_f\}$. Lad $Q' = Q \setminus \{q_{\mathsf{rip}}\}$, og definér $\delta' : (Q' \setminus \{q_f\}) \times (Q' \setminus \{q_0\}) \to \mathcal{R}$ på følgende måde:

13/21

NFA ⇒ RE Ikke-regulære sprog

Lemma 1.60: Givet et alfabet Σ og et regulært sprog $L \subseteq \Sigma^*$, da findes et regulært udtryk R over Σ således at $L = [\![R]\!]$.

Bevis: Lad $M = (Q_1, \Sigma, \delta_1, q_1, F_1)$ være en DFA med [M] = L.

- **1** Konvertér *M* til en GNFA $G = (Q, \Sigma, \delta, q_0, q_f)$
- Konvertér G til et regulært udtryk R:

Convert(G):

- Lad k = |Q| antallet af tilstande i G.
- 2 Hvis k = 2, returnér $\delta(q_0, q_f)$.
- 3 Vi har k > 2. Lad $q_{\mathsf{rip}} \in Q \setminus \{q_0, q_f\}$. Lad $Q' = Q \setminus \{q_{\mathsf{rip}}\}$, og definér $\delta' : (Q' \setminus \{q_f\}) \times (Q' \setminus \{q_0\}) \to \mathcal{R}$ på følgende måde:

For $q \in Q' \setminus \{q_f\}$ og $q' \in Q' \setminus \{q_0\}$ lad $R_1 = \delta(q, q_{\text{rip}}), R_2 = \delta(q_{\text{rip}}, q_{\text{rip}}),$ $R_3 = \delta(q_{\text{rip}}, q')$ og $R_4 = \delta(q, q')$, og lad $\delta'(q, q') = R_4 \cup R_1(R_2)^*R_3$.

3 Returnér CONVERT($G' = (Q', \Sigma, \delta', q_0, q_f)$)

Lemma 1.60: Givet et alfabet Σ og et regulært sprog $L \subseteq \Sigma^*$, da findes et regulært udtryk R over Σ således at $L = [\![R]\!]$.

Bevis: Lad $M = (Q_1, \Sigma, \delta_1, q_1, F_1)$ være en DFA med [M] = L.

- Konvertér M til en GNFA $G = (Q, \Sigma, \delta, q_0, q_f)$
- Konvertér G til et regulært udtryk R.
- **3** Vis at [M] = [R]:
 - Vis at $\llbracket M \rrbracket = \llbracket G \rrbracket$: nemt
 - ② Vis at [G] = [R]:
 - Hvis k = |Q| = 2: $Q = \{q_0, q_f\}$, og $R = \delta(q_0, q_f)$
 - ② Hvis k > 2: Vis at [G] = [G']
- One!

15/21

NFA \Rightarrow RE

Ikke alle sprog er regulære. F.x. sproget $\{0^n1^n \mid n \in \mathbb{N}\}$:

– en uendelig automat!

Pumping Lemma: en egenskab ved alle regulære sprog.

⇒ Hvis et sprog ikke har den egenskab, kan det ikke være regulært.

Sætning 1.70 (Pumpelemmaet): For ethvert regulært sprog A findes der et (naturligt) tal p således at ethvert ord $s \in A$ der har længde mindst p kan opsplittes i tre stykker, s = xyz, med

- |y| > 0 og $|xy| \le p$,
- og således at ordene $xy^iz \in A$ for alle $i \in \mathbb{N}_0$.

En gang til:

```
For ethvert regulært sprog A findes p \in \mathbb{N}_0 således at for ethvert s \in A med |s| \geq p findes en opsplitning s = xyz således at |y| > 0 og |xy| \leq p og for alle i \in \mathbb{N}_0 xy^iz \in A.
```

17/21

NFA \Rightarrow RE

Sætning 1.70 (Pumpelemmaet): For ethvert regulært sprog A findes der et (naturligt) tal p således at ethvert ord $s \in A$ der har længde mindst p kan opsplittes i tre stykker, s = xyz, med

- |y| > 0 og $|xy| \le p$,
- og således at ordene $xy^iz \in A$ for alle $i \in \mathbb{N}_0$.

Eksempel 1.73: Sproget $B = \{0^n 1^n \mid n \in \mathbb{N}\}$ er ikke regulært.

Bevis (ved modstrid; kortere end i bogen!): Antag at B er regulært, og lad p være pumpelængden. Lad $s = 0^p 1^p$, da er $|s| \ge p$.

Lad s=xyz være en opsplitning af s som opfylder pumpelemmaets betingelser. Pga. $|xy| \le p$ kan y kun indeholde 0er, og pga. |y| > 0 indeholder y mindst ét 0.

Sidste betingelse i lemmaet siger bl.a. at ordet $xyyz \in A$, men dette ord indeholder for mange 0er. Modstrid!

Sætning 1.70 (Pumpelemmaet): For ethvert regulært sprog A findes der et (naturligt) tal p således at ethvert ord $s \in A$ der har længde mindst p kan opsplittes i tre stykker, s = xyz, med

- |y| > 0 og $|xy| \le p$,
- og således at ordene $xy^iz \in A$ for alle $i \in \mathbb{N}_0$.

Bevis: Lad $M=(Q,\Sigma,\delta,q_0,F)$ være en DFA der genkender A, og lad p=|Q|. Lad $s=s_1s_2\ldots s_n\in A$ med $|s|\geq p$.

Mens M læser s, kommer den igennem en følge af n+1 tilstande. Men n+1>p, så der er flere tilstande i følgen end der er i M!

Dvs. der er en tilstand der optræder to gange i følgen – en løkke!

Hvis vi tager x til at være den del af s der læses før løkken, y den del der læses i løkken, og z den del der læses efter løkken, kan vi gennemløbe løkken i gange og genkende strengen xy^iz .

19/21

NFA \Rightarrow RE

Sætning 1.70 (Pumpelemmaet): For ethvert regulært sprog A findes der et (naturligt) tal p således at ethvert ord $s \in A$ der har længde mindst p kan opsplittes i tre stykker, s = xyz, med

- |y| > 0 og $|xy| \le p$,
- og således at ordene $xy^iz \in A$ for alle $i \in \mathbb{N}_0$.

Bevis: Lad $M=(Q,\Sigma,\delta,q_0,F)$ være en DFA der genkender A, og lad p=|Q|. Lad $s=s_1s_2\ldots s_n\in A$ med $|s|\geq p$.

Lad $r_1, r_2, \ldots, r_{n+1} \in Q$ således at $r_1 = q_0, r_{n+1} \in F$, og $r_{i+1} = \delta(r_i, s_i)$ for alle i.

Vi har $n+1 \ge p+1$, og |Q|=p. Derfor findes indices j og ℓ således at $1 \le j < \ell \le p+1$ og $r_j=r_\ell$.

Lad $x = s_1 \dots s_{j-1}$, $y = s_j \dots s_{\ell-1}$, $z = s_\ell \dots s_n$. Pga. $j < \ell$ har vi $|y| \ge 0$, og $\ell \le p+1$ medfører $|xy| \le p$.

Eftersom $\delta(r_{\ell-1}, s_{\ell-1}) = r_j$, er enhver følge $(r_1, \ldots, r_{j-1})(r_j, \ldots, r_{\ell-1})^i(r_\ell, \ldots, r_{n+1})$ en accepterende følge for M, og ordet den genkender er xy^iz .

Eksempel 1.74: Sproget

 $C = \{w \mid \text{antallet af 0 i } w \text{ er lig med antallet af 1} \} \subseteq \{0,1\}^* \text{ er ikke regulært.}$

(Samme bevis som for eksempel 1.73)

Bemærkning (opgave 1.48): Sproget

 $D = \{w \mid \text{antallet af 01 i } w \text{ er lig med antallet af 10}\} \subseteq \{0, 1\}^*$ er regulært!

(Men kun over alfabetet $\{0,1\}$; hvis alfabetet f.x. er $\{0,1,2\}$, er D ikke regulært . . .)

Bevis:

21/21