Purpose

- To predict key performance indicators in the e-commerce space, specifically focusing on the core problem of forecasting the number of units sold at a given price.
- Leveraged product-level data that included price, historical sales, category, and title.

Background

- -1.7 million row dataset of Amazon US product listings. We cleaned the data, encoded categorical variables, and processed the title feature.
- Used TF-IDF vectorization to process the title feature, which focuses on word importance.
- Used Sentence Transformers to capture the overall meaning of the title regardless of exact wording.
- Scaled target variable due to large variability (boughtInLastMonth).

E-commerce Product Optimization

Lauren Ally and Sean Merkle

Methods

MLP - Python, Manual

- 2 hidden layers (e.g., 30 and 15 neurons)
- ReLu activation function
- Gradient descent & L2 regularization to update weights
- 16,000 randomly sampled rows
- Learning rate = .01
- 10,000 epochs, monitoring loss to prevent overfitting
- Analyzed learning curves and residuals, and sensitivity analysis to understand feature influence and validate the network's generalization capability

Bayesian Model - R, Packages

- Fit the model with MCMC using the brms package
- Formula: boughtInLastMonth ~ price + stars + reviews + isBestSeller + category
- warmup = 1000, iter = 5000, chains = 4
- 5000 randomly sampled rows
- Recasted & filtered categories due to differences in train/test sets
- Trace plots, posterior density plots, and posterior predictive checks to interpret model behavior

Number of test observations before recasting: 1500 Number of test observations after recasting & filtering: 1494

MLP Results

Performance Analysis

R2≈ 0.39: Model explains less than half the variation in units sold, indicating a low to moderate degree of predictive power.
MSE. 1,021,124. This number is quite large, and we believe it is largely driven by outliers.
RMSE = 1010.51. MAE ≈ 279.72. Typical error magnitude — on average, predictions are off by -280 units.

Coefficient Analysis

Stars: This feature had the largest coefficient (0.076), showing that this feature had a significant positive correlation with units sold. The next largest was reviews (0.025).

largest was reviews (0.025).

Title: Had surprisingly little effect, likely due to fluff in titles muddling the prediction. This highlights the importance of more specific features to capture the value of the item itself Price: This feature had a low negative value, which directionally makes sense. However, it showed less impact than we thought. Moreover, we believe this is tied to the weak title analysis, leaving price with a lower effect without the item context.

Bayesian Model Results

Performance Analysis

 $\mathbf{R2\approx 0.50:}$ Model explains about half the variation in units sold → moderate degree of predictive power Error Metrics (on the log scale): imply the model errors by a factor of about 3–5 on individual predictions (non-log space).

 $\stackrel{\scriptstyle PMSE}{=} 1.98$, MAE ≈ 1.50 , Median Absolute Error ≈ 1.09 Residual Analysis: The plot indicates the model may systematically underestimate sales for higher-selling products and/or overestimate at lower-selling ranges.

Coefficient Analysis

isBestSeller: Large positive coefficient (1.19) implies that bestsellers can expect an increase in units sold.

Category Effects: Certain categories (Health & Household, Kitchen & Dining) have high positive coefficients (4–7 on log scale), showing increases in expected units sold relative to the category.

Category-driven effects and isBestSeller's large coefficient show how product type + brand popularity can influence sales. We think interaction terms (price × category) or nonlinear methods can further refine predictions.

Conclusion

- Analysis revealed that external factors and market dynamics play a much larger role than anticipated.
- Models performed moderately, but highlighted crucial areas for further research and underscored the inherent complexity of buying decisions in the e-commerce environment.

Future Work

- Predict optimal price to complement predicted number of units sold depending on vendor preferences.
- We believe a big portion of why our model didn't perform as well as we had hoped was due to a lack of product description. Creating more specific product columns derived from the title may perform better than the NLP methods that we used.
- Create a UI in a web application. Ideally, we could use the product_id to pull in an image of the item in question, and include a slider to help vendors tailor their inventory and price.
- Expand the feature set by incorporating external factors. This would include things like competitor pricing, seasonal trends, and market sentiment data to refine price predictions and capture broader market dynamics.

References

Abigail, M. (2025, February 25). Optimizing E-commerce Supply Chains with Predictive Analytics [Article]. ResearchGate. https://www.researchgate.net/publication/389357716

Jakkula, A. R. (2023). Predictive Analytics in E-Commerce: Maximizing Business Outcomes. Journal of Marketing & Supply Chain Management, 2. https://doi.org/10.47863/JMSCM/2023(2)158