Question 1

a.
$$5n^3+2n^2+3n=O(n^3)$$

According to the definition of O (), $f(n) \le C^* O(g(n))$ for all $n \ge n_0$

By setting $n_0=3$ & c greater than or equal to 6 works.

Doing the subtraction: $6n^3 - (5n^3 + 2n^2 + 3n) \ge 0$ for $n \ge 3$

So,
$$5n^3+2n^2+3n=O(n^3)$$

b.
$$\sqrt{7n^2 + 2n - 8} = \theta(n)$$

According to the definition of $\theta(n)$, $f(n) \le C_1 * \theta(n)$ and $f(n) \ge C_2 * \theta(n)$ $n \ge n_0$

By setting $n_0=1$ and $C_1=1$, $f(n) \le C_1 * \theta(n)$.

$$\sqrt{7n^2 + 2n - 8} - n \ge 0$$
 when $n \ge 1$.

By setting $n_0=1$ and $C_1=4$, $f(n) \ge C_1* \theta(n)$

$$4n - \sqrt{7n^2 + 2n - 8} \ge 0$$
 when $n \ge 1$

So,
$$\sqrt{7n^2 + 2n - 8} = \theta(n)$$

c. Show that if d(n)=O(f(n)) and e(n)=O(g(n)), then the product d(n)e(n) is O(f(n)g(n))If d(n)=O(f(n)), then, for $C_1(Let's\ say\ C_1>1)$, $d(n)\leq C_1*f(n)$. The same, for $C_2(Let's\ say\ C_2>1)$, $e(n)\leq C_2*g(n)$.

Therefore, $C_1 * C_2 * f(n) * g(n) \ge d(n)e(n)$, for that $C_1 * C_2 > 1$, (and only if the constants C is less than a certain threshold number, the equation may not hold true).

Question 2

Def
$$1 = \theta(n^2)$$

Def
$$2 = \theta(n)$$

Def
$$3 = \theta(\log(n))$$

Def
$$4 = \theta(n)$$