Worksheet 2.1: Solutions

Review of strong bonding

No.	Answer					
1	 a Covalent b Ionic c Covalent d Metallic e Covalent f Ionic 					
2						
2	 a The diagram should show positive sodium ions, Na⁺ and a delocalised electron from every positive ion. b Metallic bonding c Electrostatic attraction between the positive sodium ions and the delocalised electrons Sodium chloride a The diagram should show alternating positive sodium ions, Na⁺ and negative chloride ions, Cl⁻ (the larger ion is Cl⁻). b ionic bonding c electrostatic attraction between the positive sodium ions and the negative chloride ions Chlorine a The diagram should show two chlorine atoms bonded together for each molecule. b Covalent bonding between the atoms in the molecule and weak bonding between the molecules c Electrostatic attraction between the shared electrons and the positive nuclei of the two atoms (also weak electrostatic attraction between the neutral molecules that act as instantaneous dipoles (see Chapter 4)) 					
3	 a Ionic bonding b Ionic bonding c Covalent bonding 					
4	The compound consists of Z^+ and X^{3-} ions so element Z is in group 1 and element X in group 15.					
5	N will react by gaining 3 electrons and X by gaining 1 electron, so the formula will be NX_3					
6	The telluride ion must be Te ²⁻ , so tellurium is from group 16.					
7	$3 \text{Ca} + 2 \text{P} \left(\text{Ca}\right)_{3}^{2+} \left(\stackrel{\bullet}{\text{P}} \stackrel{\bullet}{\text{D}}\right)_{2}^{3-}$					

Worksheet 2.1: Solutions

Review of strong bonding

8	a H	b	0 0 s	c 0	C • O	
9	Anions are larger than their parent atoms (due to increased electron repulsions), while cations are smaller than their parent atoms (due to a reduction in the number of occupied electron shells). Atomic radius decreases across a period in the periodic table. Atom/ion					
	size increases as the number of occupied electron shells increases.					
	No.	First particle	>, =, <	Second particle		
	a	Sulfur atom (S)	<	Sulfide ion (S ²⁻)		
	b	Hydrogen ion (H ⁺)	<	Hydrogen atom (H)		
	C	Chloride ion (Cl⁻)	>	Fluoride ion (F ⁻)		
	d	Magnesium atom (Mg)	>	Aluminium atom (Al)		