

What's in it for you?

- Life without Machine Learning
- Life with Machine Learning
- What is Machine Learning
- Types of Machine Learning
- The right Machine Learning solutions
- Machine Learning Algorithms
- Use case Predicting the price of a house using Linear Regression

Shopping made easy

Get the best movie suggestions

What is Machine Learning?

Machine Learning is an application of Artificial intelligence (AI) that provides systems the ability to automatically learn and improve from experience without being explicitly programmed.

With Artificial

Intelligence

Ordinary System

Machine Learning process

Supervised vs Unsupervised

The Right Machine Learning Solution?

The right Machine Learning solution?

Classification

Used when the output is categorical like 'YES' or 'NO'

Clustering

Used when the data needs to be organized to find patterns in the case of 'product recommendation'

Algorithms used

- Decision Tree
- Naïve Bayes
- Random Forest
- Logistic regression
- KNN

Regression

Used when a value needs to be predicted like the 'stock prices'

Algorithms used

· Linear Regression

Algorithms used

K Means

Machine learning Algorithms

K Nearest Neighbors

Now, we have a new data point (black ball)

We will now try to classify this using KNN

Let K = 5 So these glowing ones are the closest 5 balls to our new data point (black ball)

Here, there are 3 tennis balls and one each of basketball and football

Thus we will classify the black ball as a tennis ball

Linear Regression

Linear Regression

Decision Tree

A decision tree is a graph that uses a branching method to illustrate every possible outcome of a decision **Decision Tree**

Decision Tree

Naive Bayes

The Naive Bayes Classifier technique is based on conditional probability and is particularly suited when the complexity of the inputs is high

Naive Bayes

Use case

Use case

Use case

Use case

Don't worry! Machine Learning can help you in this case. Let me show you how

Use case - Problem statement

Use case - Problem statement

PROBLEM STATEMENT

To predict the Price of a house based on a given housing dataset using Machine Learning

Why Linear Regression?

Use Case - Dataset

What is Linear Regression?


```
## importing libraries from sklearn
import numpy as np
import pandas as pd
from sklearn import linear_model
from sklearn.cross_validation import train_test_split
import numpy as np
import pandas as pd
#loading Boston dataset from datasets library
from sklearn.datasets import load_boston
boston = load_boston()

#transferring to dataframe
df_x=pd.DataFrame(boston.data,columns=boston.feature_names)
df_y=pd.DataFrame(boston.target)
```


#describing the boston dataset
df_x.describe()


```
#training the regression model
reg=linear_model.LinearRegression()

#splitting the data
x_train, x_test, y_train,
y_test=train_test_split(df_x,df_y,test_size=0.2,random_state=4)

#fitting the data into the model
reg.fit(x_train, y_train)

#calculating coeff_cients
reg.coef_
```


#predicting the prices
a=reg.predict(x_test)

#viewing the test data
y_test

#predicting the prices
a=reg.predict(x_test)

#finding Mean Square Error(MSE)
np.mean((a-y_test)**2)

Out[19]: 0

25.407977

So, the MSE= 25 and Which is quite good for our model

Key Takeaways

