7

Symmetric Matrices and Quadratic Forms

7.1

DIAGONALIZATION OF SYMMETRIC MATRICES

- A symmetric matrix is a matrix A such that $A^T = A$.
- Such a matrix is necessarily square.
- Its main diagonal entries are arbitrary, but its other entries occur in pairs—on opposite sides of the main diagonal.

- **Theorem 1:** If *A* is symmetric, then any two eigenvectors from different eigenspaces are orthogonal.
- **Proof:** Let \mathbf{v}_1 and \mathbf{v}_2 be eigenvectors that correspond to distinct eigenvalues, say, λ_1 and λ_2 .
- To show that $v_1 \Box v_2 = 0$, compute

$$\lambda_1 \mathbf{v}_1 \Box \mathbf{v}_2 = (\lambda_1 \mathbf{v}_1)^T \mathbf{v}_2 = (A \mathbf{v}_1)^T \mathbf{v}_2 \text{ Since } \mathbf{v}_1 \text{ is an eigenvector}$$

$$= (\mathbf{v}_1^T A^T) \mathbf{v}_2 = \mathbf{v}_1^T (A \mathbf{v}_2) \text{ Since } A^T = A$$

$$= \mathbf{v}_1^T (\lambda_2 \mathbf{v}_2) \text{ Since } \mathbf{v}_2 \text{ is an eigenvector}$$

$$= \lambda_2 \mathbf{v}_1^T \mathbf{v}_2 = \lambda_2 \mathbf{v}_1 \Box \mathbf{v}_2$$

- Hence $(\lambda_1 \lambda_2) v_1 \Box v_2 = 0$.
- But $\lambda_1 \lambda_2 \neq 0$, so $v_1 \Box v_2 = 0$.
- An $n \times n$ matrix A is said to be **orthogonally diagonalizable** if there are an orthogonal matrix P (with $P^{-1} = P^{T}$) and a diagonal matrix D such that

$$A = PDP^{T} = PDP^{-1} \qquad ----(1)$$

- Such a diagonalization requires *n* linearly independent and orthonormal eigenvectors.
- When is this possible?
- If A is orthogonally diagonalizable as in (1), then

$$A^{T} = (PDP^{T})^{T} = P^{TT}D^{T}P^{T} = PDP^{T} = A$$

- Thus *A* is symmetric.
- **Theorem 2:** An $n \times n$ matrix A is orthogonally diagonalizable if and only if A is symmetric matrix.
- **Example 1:** Orthogonally diagonalize the matrix

$$A = \begin{bmatrix} 3 & -2 & 4 \\ -2 & 6 & 2 \\ 4 & 2 & 3 \end{bmatrix}$$
, whose characteristic equation is

$$0 = -\lambda^3 + 12\lambda^2 - 21\lambda - 98 = -(\lambda - 7)^2(\lambda + 2)$$

• **Solution:** The usual calculations produce bases for the eigenspaces:

$$\lambda = 7 : \mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} -1/2 \\ 1 \\ 0 \end{bmatrix}; \lambda = -2 : \mathbf{v}_3 = \begin{bmatrix} -1 \\ -1/2 \\ 1 \end{bmatrix}$$

- Although \mathbf{v}_1 and \mathbf{v}_2 are linearly independent, they are not orthogonal.
- The projection of \mathbf{v}_2 onto \mathbf{v}_1 is $\frac{\mathbf{v}_2 \square \mathbf{v}_1}{\mathbf{v}_1 \square \mathbf{v}_1} \mathbf{v}_1$.

• The component of \mathbf{v}_2 orthogonal to \mathbf{v}_1 is

$$\mathbf{z}_{2} = \mathbf{v}_{2} - \frac{\mathbf{v}_{2} \Box \mathbf{v}_{1}}{\mathbf{v}_{1} \Box \mathbf{v}_{1}} \mathbf{v}_{1} = \begin{bmatrix} -1/2 \\ 1 \\ 0 \end{bmatrix} - \frac{-1/2}{2} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -1/4 \\ 1 \\ 1/4 \end{bmatrix}$$

- Then $\{\mathbf{v}_1, \mathbf{z}_2\}$ is an orthogonal set in the eigenspace for $\lambda = 7$.
- (Note that \mathbf{z}_2 is linear combination of the eigenvectors \mathbf{v}_1 and \mathbf{v}_2 , so \mathbf{z}_2 is in the eigenspace).

- Since the eigenspace is two-dimensional (with basis $\mathbf{v}_1, \mathbf{v}_2$), the orthogonal set $\{\mathbf{v}_1, \mathbf{z}_2\}$ is an *orthogonal basis* for the eigenspace, by the Basis Theorem.
- Normalize \mathbf{v}_1 and \mathbf{z}_2 to obtain the following orthonormal basis for the eigenspace for $\lambda = 7$:

$$\mathbf{u}_{1} = \begin{bmatrix} 1/\sqrt{2} \\ 0 \\ 1/\sqrt{2} \end{bmatrix}, \mathbf{u}_{2} = \begin{bmatrix} -1/\sqrt{18} \\ 4/\sqrt{18} \\ 1/\sqrt{18} \end{bmatrix}$$

• An orthonormal basis for the eigenspace for $\lambda = -2$ is

$$\mathbf{u}_{3} = \frac{1}{\|2\mathbf{v}_{3}\|} 2\mathbf{v}_{3} = \frac{1}{3} \begin{bmatrix} -2\\ -1\\ 2 \end{bmatrix} = \begin{bmatrix} -2/3\\ -1/3\\ 2/3 \end{bmatrix}$$

- By Theorem 1, \mathbf{u}_3 is orthogonal to the other eigenvectors \mathbf{u}_1 and \mathbf{u}_2 .
- Hence $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is an orthonormal set.

Let

$$P = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_3 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{18} & -2/3 \\ 0 & 4/\sqrt{18} & -1/3 \\ 1/\sqrt{2} & 1/\sqrt{18} & 2/3 \end{bmatrix}, D = \begin{bmatrix} 7 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$

• Then P orthogonally diagonalizes A, and $A = PDP^{-1}$.

THE SPECTRAL THEOREM

- The set if eigenvalues of a matrix A is sometimes called the *spectrum* of A, and the following description of the eigenvalues is called a *spectral* theorem.
- Theorem 3: The Spectral Theorem for Symmetric Matrices
- An $n \times n$ symmetric matrix A has the following properties:
 - a. A has n real eigenvalues, counting multiplicities.

THE SPECTRAL THEOREM

- b. The dimension of the eigenspace for each eigenvalue λ equals the multiplicity of λ as a root of the characteristic equation.
- c. The eigenspaces are mutually orthogonal, in the sense that eigenvectors corresponding to different eigenvalues are orthogonal.
- d. A is orthogonally diagonalizable.

- Suppose $A = PDP^{-1}$, where the columns of P are orthonormal eigenvectors $\mathbf{u}_1, \dots, \mathbf{u}_n$ of A and the corresponding eigenvalues $\lambda_1, \dots, \lambda_n$ are in the diagonal matrix D.
- Then, since $P^{-1} = P^T$,

$$A = PDP^{T} = \begin{bmatrix} \mathbf{u}_{1} & \cdots & \mathbf{u}_{n} \end{bmatrix} \begin{bmatrix} \lambda_{1} & 0 \\ \vdots \\ 0 & \lambda_{n} \end{bmatrix} \begin{bmatrix} \mathbf{u}_{1}^{T} \\ \vdots \\ \mathbf{u}_{n}^{T} \end{bmatrix}$$

$$= \begin{bmatrix} \lambda_1 \mathbf{u}_1 & \cdots & \lambda_n \mathbf{u}_n \end{bmatrix} \begin{bmatrix} \mathbf{u}_1^T \\ \vdots \\ \mathbf{u}_n^T \end{bmatrix}$$

 Using the column-row expansion of a product, we can write

$$A = \lambda_1 u_1 u_1^T + \lambda_2 u_2 u_2^T + \dots + \lambda_n u_n u_n^T - \dots (2)$$

- This representation of A is called a **spectral decomposition** of A because it breaks up A into pieces determined by the spectrum (eigenvalues) of A.
- Each term in (2) is an $n \times n$ matrix of rank 1.
- For example, every column of $\lambda_1 \mathbf{u}_1 \mathbf{u}_1^T$ is a multiple of \mathbf{u}_1 .
- Each matrix $\mathbf{u}_j \mathbf{u}_j^T$ is a **projection matrix** in the sense that for each \mathbf{x} in \square^n , the vector $(\mathbf{u}_j \mathbf{u}_j^T)\mathbf{x}$ is the orthogonal projection of \mathbf{x} onto the subspace spanned by \mathbf{u}_i .

Example 2: Construct a spectral decomposition of the matrix *A* that has the orthogonal diagonalization

$$A = \begin{bmatrix} 7 & 2 \\ 2 & 4 \end{bmatrix} = \begin{bmatrix} 2/\sqrt{5} & -1/\sqrt{5} \\ 1/\sqrt{5} & 2/\sqrt{5} \end{bmatrix} \begin{bmatrix} 8 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 2/\sqrt{5} & 1/\sqrt{5} \\ -1/\sqrt{5} & 2/\sqrt{5} \end{bmatrix}$$

- Solution: Denote the columns of P by \mathbf{u}_1 and \mathbf{u}_2 .
- Then

$$A = 8u_1u_1^T + 3u_2u_2^T$$

 \blacksquare To verify the decomposition of A, compute

$$\mathbf{u}_{1}\mathbf{u}_{1}^{T} = \begin{bmatrix} 2/\sqrt{5} \\ 1/\sqrt{5} \end{bmatrix} \begin{bmatrix} 2/\sqrt{5} & 1/\sqrt{5} \end{bmatrix} = \begin{bmatrix} 4/5 & 2/5 \\ 2/5 & 1/5 \end{bmatrix}$$

$$\mathbf{u}_{2}\mathbf{u}_{2}^{T} = \begin{bmatrix} -1/\sqrt{5} \\ 2/\sqrt{5} \end{bmatrix} \begin{bmatrix} -1/\sqrt{5} & 2/\sqrt{5} \end{bmatrix} = \begin{bmatrix} 1/5 & -2/5 \\ -2/5 & 4/5 \end{bmatrix}$$

and

$$8\mathbf{u}_{1}\mathbf{u}_{1}^{T} + 3\mathbf{u}_{2}\mathbf{u}_{2}^{T} = \begin{bmatrix} 32/5 & 16/5 \\ 16/5 & 8/5 \end{bmatrix} + \begin{bmatrix} 3/5 & -6/5 \\ -6/5 & 12/5 \end{bmatrix} = \begin{bmatrix} 7 & 2 \\ 2 & 4 \end{bmatrix} = A$$