FILE 'HOME' ENTERED AT 11:13:55 ON 13 DEC 2001

=> file biosis

COST IN U.S. DOLLARS

SINCE FILE TOTAL ENTRY SESSION 0.15 0.15

FULL ESTIMATED COST

FILE 'BIOSIS' ENTERED AT 11:14:06 ON 13 DEC 2001 COPYRIGHT (C) 2001 BIOSIS(R)

FILE COVERS 1969 TO DATE. CAS REGISTRY NUMBERS AND CHEMICAL NAMES (CNs) PRESENT FROM JANUARY 1969 TO DATE.

RECORDS LAST ADDED: 12 December 2001 (20011212/ED)

The BIOSIS file has been reloaded. Enter HELP RLOAD and HELP REINDEXING for details.

=> s "greenwood"/au

L1 0 "GREENWOOD"/AU

=> file medline caplus
COST IN U.S. DOLLARS

SINCE FILE TOTAL ENTRY SESSION 0.74 0.89

FULL ESTIMATED COST

FILE 'MEDLINE' ENTERED AT 11:14:31 ON 13 DEC 2001

FILE 'CAPLUS' ENTERED AT 11:14:31 ON 13 DEC 2001 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT. PLEASE SEE "HELP USAGETERMS" FOR DETAILS. COPYRIGHT (C) 2001 AMERICAN CHEMICAL SOCIETY (ACS)

=> e greenwood/au

-/ -	greenwood, au	
E1	1	GREENWOND C T/AU
E2	1	GREENWOO C T D/AU
E3	1>	GREENWOOD/AU
E4	47	GREENWOOD A/AU
E5	8	GREENWOOD A C/AU
E6	20	GREENWOOD A D/AU
E7	10	GREENWOOD A F/AU
E8	32	GREENWOOD A G/AU
E9	7	GREENWOOD A H/AU
E10	3	GREENWOOD A J/AU
E11	1	GREENWOOD A L/AU
E12	34	GREENWOOD A M/AU

=> e greenwood j/au

-/	е	greenwood	J/at	4				
E1		3		GREENWOOD	I	AIN	A/AI	J
E2		4		GREENWOOD	I١	VAN	A/AI	J
E3		188	>	GREENWOOD	J,	/AU		
E4		43		GREENWOOD	J	A/A	U	
E5		31		GREENWOOD	J	B/A	.U	
E6		21		GREENWOOD	J	C/A	.U	
E7		29		GREENWOOD	J	D/A	.U	
E8		4		GREENWOOD	J	E/A	.U	
E9		1		GREENWOOD	J	E G	W/1	ΑU
E10)	14		GREENWOOD	J	G/A	.U	
E11	L	27		GREENWOOD	J	H/A	.U	

GREENWOOD J J/AU E12 => s e3 188 "GREENWOOD J"/AU

=> s 12 and rat

L2

71 L2 AND RAT

 \Rightarrow s 13 and sv40

3 L3 AND SV40 L4

=> dup rem 14

PROCESSING COMPLETED FOR L4

2 DUP REM L4 (1 DUPLICATE REMOVED)

=> d 15 1-2 ti abs ibib

ANSWER 1 OF 2 MEDLINE L5

Subretinal transplantation of genetically modified human cell lines TΙ attenuates loss of visual function in dystrophic rats.

Royal College of Surgeons rats are genetically predisposed to AΒ undergo significant visual loss caused by a primary dysfunction of retinal pigment epithelial (RPE) cells. By using this model, we have examined the efficacy of subretinal transplantation of two independent human RPE cell lines each exhibiting genetic modifications that confer long-term stability in vitro. The two cell lines, a spontaneously derived cell line (ARPE19) and an extensively characterized genetically engineered human RPE cell line (h1RPE7), which expresses **SV40** large T (tumor) antigen, were evaluated separately. Both lines result in a significant preservation of visual function as assessed by either behavioral or physiological techniques. This attenuation of visual loss correlates with photoreceptor survival and the presence of donor cells in the areas of rescued photoreceptors at 5 months postgrafting (6 months of age). These results demonstrate the potential of genetically modified human RPE cells for ultimate application in therapeutic transplantation strategies for retinal degenerative diseases caused by RPE dysfunction.

ACCESSION NUMBER:

2001471083 MEDLINE

DOCUMENT NUMBER:

CORPORATE SOURCE:

PubMed ID: 11504951 21396594

TITLE:

Subretinal transplantation of genetically modified human cell lines attenuates loss of visual function in dystrophic

rats.

AUTHOR:

Lund R D; Adamson P; Sauve Y; Keegan D J; Girman S V; Wang S; Winton H; Kanuga N; Kwan A S; Beauchene L; Zerbib A;

Hetherington L; Couraud P O; Coffey P; Greenwood J Department of Pathology, Institute of Ophthalmology,

University College London, United Kingdom.

SOURCE:

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, (2001 Aug 14) 98 (17) 9942-7.

Journal code: PV3; 7505876. ISSN: 0027-8424.

PUB. COUNTRY:

United States

Journal; Article; (JOURNAL ARTICLE)

LANGUAGE:

English

FILE SEGMENT:

Priority Journals

ENTRY MONTH:

200109

ENTRY DATE:

Entered STN: 20010823

Last Updated on STN: 20010924 Entered Medline: 20010920

ANSWER 2 OF 2 MEDLINE DUPLICATE 1

TΙ SV40 large T immortalised cell lines of the rat blood-brain and blood-retinal barriers retain their phenotypic and immunological characteristics.

In the central nervous system the blood-brain and blood-retinal barriers AΒ (BBB and BRB respectively) are instrumental in maintaining homeostasis of the neural parenchyma and controlling leucocyte traffic. These cellular barriers are formed primarily by the vascular endothelium of the brain and retina although in the latter the pigmented epithelial cells also form part of the barrier. From primary cultures of rat brain endothelium, retinal endothelium and retinal pigment epithelium (RPE) we have generated temperature sensitive SV40 large T immortalised cell lines. Clones of brain (GP8.3) and retinal (JG2.1) endothelia and RPE (LD7.4) have been derived from parent lines that express the large T antigen at the permissive temperature. The endothelial cell (EC) lines expressed P-glycoprotein, GLUT-1, the transferrin receptor, von Willebrand factor and the RECA-1 antigen and exhibited high affinity uptake of acetylated LDL and stained positive with the lectin Griffonia simplicifolia. The RPE cell line was positive for cytokeratins and for the rat RPE antigen RET-PE2. All the cell lines expressed major histocompatibility complex (MHC) class 1 and intercellular adhesion molecule (ICAM)-1 constitutively and could be induced to express MHC class II and vascular cell adhesion molecule (VCAM)-1 following cytokine activation. The EC also expressed platelet endothelial cell adhesion molecule (PECAM)-1. Monolayers of these cells could support the migration of antigen-specific T cell lines. The generation of immortalised cell lines derived from the rat BBB and BRB should prove to be useful

ACCESSION NUMBER: DOCUMENT NUMBER:

tools for the study of these specialised cellular barriers. SION NUMBER: 97136726 MEDLINE

DOCUME

97136726 PubMed ID: 8982103

TITLE: **SV40** large T immortalised cell lines of the

rat blood-brain and blood-retinal barriers retain
their phenotypic and immunological characteristics.

AUTHOR:

Greenwood J; Pryce G; Devine L; Male D K; dos

Santos W L; Calder V L; Adamson P

CORPORATE SOURCE:

Department of Clinical Ophthalmology, University College

London, UK.. j.greenwood@ucl.ac.uk

SOURCE:

JOURNAL OF NEUROIMMUNOLOGY, (1996 Dec) 71 (1-2) 51-63.

Journal code: HSO; 8109498. ISSN: 0165-5728.

PUB. COUNTRY:

Netherlands

Journal; Article; (JOURNAL ARTICLE)

LANGUAGE:

English

FILE SEGMENT:

Priority Journals

ENTRY MONTH:

199701

ENTRY DATE:

Entered STN: 19970219

Last Updated on STN: 19970219 Entered Medline: 19970122