$1^{\underline{a}}$ Lista de Exercicios Algoritmos Numéricos- DI Representação dos números na máquina e tipos de erro

- 1. Pode se obter aproximações para $I=\int_a^b f(x)dx$, usando um método bem simples: a regra dos retângulos. Nesta regra, divide-se o intervalo [a,b] em N subintervalos de largura fixa h (gerando os pontos $x_0=a, x_1=a+h,...,x_N=b$) e então soma-se a área dos retângulos, ou seja, via $I\approx \sum_{i=0}^{N-1}h*f(x_i)$. Suponha que se queira obter $I=\int_{1.0}^{3.0}\sqrt{x}dx$ por esta regra. Considere uma máquina que opere com aritmética de ponto flutuante normalizada com t=3 dígitos significativos na mantissa, base 10 e expoente em [-9,9] e faça arredondamentos por corte (chopping).
 - (a) Calcule o valor de I obtido por este método usando, apenas, N=2 subintervalos, ou seja, fazendo: $I \approx \sum_{i=0}^{i=1} h * \sqrt{x_i} = (h * \sqrt{x_0} + h * \sqrt{x_1}).$
 - (b) Calcule o valor de I obtido por este método usando N=4 subintervalos.
 - (c) Sabendo que o valor exato é $I_{ex} = 2.79743494...$ calcule o erro verdadeiro relativo contido na soluções obtidas na letra (a) e (b) (relativas à exata). Efetue estas contas com a precisão de sua calculadora.
 - (d) Descreva o(s) tipo(s) de erro(s) existente(s) no valor de I obtido em (b).
- 2. Considere uma máquina que opere com aritmética de ponto flutuante normalizada com t=3 dígitos significativos na mantissa, base 10 e expoente (inteiro) em I=[-7,7]. Como ficam representados os valores de:
 - (a) x = (40000/3) nesta máquina?
 - **(b)** e de y = (3.45/100), nesta máquina?
 - (c) e o valor de z = 123000, nesta máquina?
 - (d)e o valor de p = x * y, nesta máquina?
 - (e)e o valor de q = x * z, nesta máquina?

OBS: Os arredondamentos devem ser feitos por corte (chopping). Não é necessário ficar escrevendo os valores numéricos obtidos usando potências de 10 (mas, se preferir, pode empregá-las). É importante mostrar o valor que fica armazenado na memória após cada cálculo.

3. Suponha que se queira calcular

$$I_n = \int_0^1 x^n e^{x-1} dx$$

para um valor n inteiro positivo. Na expressão acima, o n de I_n representa o índice da integração, ou seja, I_n representa a integração com x elevando a n. Usando integração por partes é possível obter a seguinte relação:

(1): $I_k = 1 - kI_{k-1}$, válida para k inteiro positivo. Rearranjando, tem-se também a expressão (2): $I_{k-1} = (1 - I_k)/k$.

Sabendo que $I_1 = e^{-1} = 0.367879441...$, um aluno escreveu o código abaixo para calcular o valor de I_9 , usando a recorrência (1).

Algoritmo A

- 1. INICIO
- 2. I=0.36788

- 3. Para k de 2 ate 9, (passo 1)
- I = 1-k*I
- 5. Escreva ('O valor de I, neste ponto do codigo e: ', I)
- 6. Fim {Para k}
- 7. FIM
- (a) Simulando um computador que opere com aritmética de ponto flutuante normalizada com t=5 dígitos significativos na mantissa, base 10 e expoente (inteiro) na faixa de -9 a 9, mostre os valores de I que são exibidos na linha 5 do código. Considere que a máquina usa arredondamento para o mais próximo.
- (b) Simulando a mesma máquina obter o valor de I_9 via $I_{k-1} = (1 I_k)/k$ partindo de $I_{19} = 1/20$. Mostre os valores intermediários.
- (c) Dados n e I_1 , escreva um algoritmo que calcule I_n , usando a fórmula $I_k = 1 kI_{k-1}$ partindo de I_1 . Implemente o código e faça vários experimentos.
- (d) Sabendo que $0 \le I_N \le (1/(N+1))$ escreva um algoritmo que calcule I_n dados n, N (com N >> n) e I_N usando a fórmula $I_{k-1} = (1 I_k)/k$, partindo de $I_N = 1/(N+1)$. Implemente o código e faça vários experimentos.
- 4. O valor de sen(x), para valores de $0 < x < \pi/4$, pode ser obtido através de uma série infinita dada abaixo:

$$sen(x) = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{6} + \frac{x^5}{120} - \frac{x^7}{5040} + \dots$$

Ao se tomar apenas alguns termos da série tem se uma aproximação. Suponha que se queira calcular sen(0.5) pela série empregando apenas os três primeiros termos da série, ou seja, os termos:

$$\sin(x) \approx x - \frac{x^3}{6} + \frac{x^5}{120}$$

(a) Simulando as operações executadas por um computador que opere com aritmética de ponto flutuante normalizada com t=4 dígitos significativos na mantissa, base 10 e expoente em I=[-99,99] calcule o valor de sen(0.5). Para isso simule as operações fazendo as contas obedecendo as regras de precedência natural das operações aritméticas (ou seja, potenciação como a prioritária, seguida de divisão e multiplicação e só então soma e subtração) e também seguindo a ordem dada pelos parênteses abaixo:

$$sin(x) \approx (x - \frac{x^3}{6}) + \frac{x^5}{120}$$

OBS: Os arredondamentos devem ser feitos para o mais próximo. Não é necessário ficar escrevendo os valores numéricos obtidos usando potências de 10 (mas, se preferir, pode empregá-las). É importante mostrar o valor que fica armazenado na memória após cada cálculo.

- (b) Sabendo que o valor exato de sen(0.5) (com 9 dígitos) é sen(0.5) = 0.479425538, calcule o erro verdadeiro relativo contido na solução obtida (relativo ao exato fornecido). Efetue estas contas com a precisão de sua calculadora.
- (c) Descreva o(s) tipo(s) de erro(s) existente(s) no valor de sen(0.5) obtido.

- 5. Pode se obter aproximações para $I = \int_a^b f(x) dx$, usando um método bem simples: a regra dos retângulos à direita. Nesta regra, divide-se o intervalo [a,b] em N subintervalos de largura fixa h (gerando os pontos $x_0 = a, x_1 = a+h,...,x_N=b$) e então soma-se a área dos retângulos. Neste caso, a altura de cada retângulo é tomada com referência no ponto x_i "da direita" de cada retângulo, ou seja, a regra é: $I \approx \sum_{i=1}^N h * f(x_i)$.
 - (a) Calcule o valor de $I = \int_{1.0}^{3.0} \sqrt{x} dx$ por esta regra, usando, apenas, N=4 subintervalos. Considere uma máquina que opere com aritmética de ponto flutuante normalizada com t=3 dígitos significativos na mantissa, base 10 e expoente em [-9,9] e faça arredondamentos por corte (*chopping*).
 - b) Escreva um algoritmo para obter $I = \int_a^b \sqrt{x} dx$ pela regra dos retângulos à direita, colocando o h em evidência, ou seja, via, $I \approx h * (\sum_{i=1}^N f(x_i))$. Considere dados: a, b e N. Implemente a regra usando uma linguagem de programação e faça vários experimentos, ou seja, para vários valores de N compare a solução obtida com a solução exata.
 - (c) Repita o procedimento para uma outra função f(x) (que quiser) para qual se saiba a solução exata.
 - (d) Escreva um algoritmo para obter $I = \int_a^b \sqrt{x} dx$ pela regra dos trapézios. Tente bolar este método! (dica: tome em cada subintervalo um trapézio e não mais um retângulo). Compare as soluções com aquelas obtidas via regra dos retângulos à direita (implementada na letra c) para vários valores de N.