IE 5203 Decision Analysis Lab I Probabilistic Modeling, Inference and Decision Making with Netica

Overview of Netica Software

- Netica Application is a comprehensive tool for working with *Bayesian networks* and *standard influence diagrams*. It can build, learn, modify, transform and store networks, as well as answer queries or find optimal solutions using its inference engine. It can learn probabilistic relations from data.
- It provides easy graphical editing of Bayesian networks and influence diagrams through a GUI, and generates presentation quality graphics which can be transferred to other documents.
- It supports are reversal operations and automatically updates the affected CPTs in the network and adds additional arcs to parent nodes.
- It can find optimal decisions for sequential decision problems (i.e. later decisions are dependent on the results of earlier ones).
- It has an extensive built-in library of probabilistic functions and other mathematical functions
- It has facilities for discretization of continuous variables.
- The Netica API can be used for development of applications that uses Bayesian networks as the underlying knowledge representation and reasoning tool.
- For more details about Netica Application and API, see http://www.norsys.com

Lab Learning Outcomes

- The Lab Exercises aim to get you familiarized with the basic functions of the Netica Application software. At the end of the lab session, you will be able to:
 - 1. Build Bayesian Networks using the GUI and input the relevant data.
 - 2. Compile the network and perform various types of probabilistic inference and experiment with the network.
 - 3. Observe conditional independence and dependence through experimentation.
 - 4. Perform sensitivity analysis on the network using mutual information.
 - 5. Perform basic operations on the network such as arc reversal.
 - 6. Build an influence diagram by extending the Bayesian network you have built.
 - 7. Find the optimal decision policy from the influence diagram.
 - 8. Learning probabilities from data for network with known graphical structure.

Netica Lab Exercises

1 Building a Bayesian Network in Netica

• Build the "Cancer" Bayesian Network model as discussed in Chapter 5 of the lecture notes using the Netica Application software with the following information:

Conditional Probability Tables:

2 Probabilistic Inferences

- The network must be compiled before it is ready to perform inference.
- Run Network → Compile. The *prior marginal probabilities* for each node will be displayed. You may need to choose Network → Automatic Updating.

2.1 Predictive Inference

Question 2.1: How likely is a male non-office worker likely to have "Lung Cancer"?

Answer:

2.2 I	Diagnos	tic Inference
Questi	on 2.2:	If a person was found to have "Lung Cancer", how likely is "Smoking" the cause?
Answe	er:	
Questi	on 2.3:	If a person was found to have "Lung Cancer", how likely is "Exposure to Toxics" the cause?
Answe	er:	
Questi	on 2.4:	If a male office worker was found to have abnormal "Serum Calcium", how likely is he to have "Lung Cancer"?
Answe	er:	
Questi	on 2.5:	If a female non-office worker was found to have abnormal "X-Ray Result", how likely is her "Exposure to Toxics"?
Answe	er:	
2.3 I	nter-C	asual Reasoning
Questi	on 2.6:	If a person has abnormal "Serum Calcium" what are the probabilities of the two probable causes?
Answe		robability that "Smoking" was the cause = robability that "Exposure to Toxics" was the cause =

Question 2.7: Now, if it was confirmed that he was a "Smoker", what can you say about the probability for his "Exposure to Toxics"?

2.4 Conditional Independence

Question 2.8:

• Set "Lung Cancer" to True.
• Instantiate any outcomes of any of the four nodes: "Occupation Type", "Gender", "Exposure t Toxics", "Smoking", and observe the probabilities of "X-Ray Result" and "Serum Calcium".
• What do you observe?
• Now, set "Lung Cancer" to False and repeat the above.
• What do you observe?
• What can you conclude?
Question 2.9:
• Set "Lung Cancer" to True.
• Instantiate any outcomes of "Serum Calcium" and observe the probabilities of "X-Ray Result"
• What do you observe?
• Now, set "Lung Cancer" to False and repeat the above.
• What do you observe?
• What can you conclude?

3. Value of Information Analysis: Mutual Information

Entropy

• The *amount of uncertainty* in a random variable *X* is given by the *Entropy* of its probability distribution. It is defined as:

$$H(X) = -\sum_{x} p(x) \log_2 p(x)$$

Examples:

1. The entropy of the coin tossing game with p(head)=0.5 and p(tail)=0.5 is

a.
$$H(0.5, 0.5) = -0.5 \log_2 0.5 - 0.5 \log_2 0.5 = -0.5 (-1) - 0.5 (-1) = 1$$

2. The entropy of the thumb tack tossing game with p(up)=0.7 and p(down)=0.3 is

a.
$$H(0.7, 0.3) = -0.7 \log_2 0.7 - 0.3 \log_2 0.3 = -0.7(-0.51457) - 0.3(-1.73697) = 0.88129$$

Mutual Information between Two Variables

• The *Mutual Information* between two random variables *X* and *Y* measures how much information one variable tells about the other. It is defined as:

$$I(X;Y) = \sum_{x} \sum_{y} p(x,y) \log_2 \frac{p(x,y)}{p(x)p(y)}$$

Example:

The Mutual Information between "Smoking" and "Lung Cancer" is

$$I(S, LC) = 0.0250 \log_2(0.0250/(0.25 \times 0.0325)) + 0.2250 \log_2(0.2250/(0.25 \times 0.9675)) + 0.0075 \log_2(0.0075/(0.75 \times 0.0325)) + 0.7425 \log_2(0.7425/(0.75 \times 0.9675)) = 0.02893456$$

Exercise: Show that given any two random variables *X* and *Y*:

- (a) I(X, Y) = I(Y, X)
- (b) If X and Y are independent then I(X, Y) = I(Y, X) = 0.

Question 3.1: In our BN model, what findings or inputs will provide the best information about the presence or absence of "Lung Cancer"?

• *Hint:* Choose Network \rightarrow Sensitivity to Findings.

Answers:

4. Basic Network Operations

Arc Reversal Operation

Question 4.1: Reverse the arc between "Occupation Type" and "ExposureToToxics". What are now the probabilities of "OccupationType" and "ExposureToToxics"?

Answers:			

Question 4.2: Reverse the arc between "Smoking" and "Lung Cancer". What are now the probabilities of "Smoking" and "LunchCancer"?

Answers:			

5. Influence Diagram Modeling

• Extend the previous BN into an Influence Diagram by adding a decision node for "Treatment" and a value node for "Utility" using the information below:

Alternatives

Treatment	
Yes	
No	

Utility Values

Treatment	LungCancer	Utility
Yes	True	0.5
Yes	False	0.7
No	True	0
No	False	1

• Choose Network \rightarrow Compile.

Question 5.1:	A non-office	female worker	has abnormal	"X-Ray Resu	ılt" but her '	'Serum Calcium"
	was normal.	Should she go:	for "Treatment	t"?		

Question 5.2: A non-office female worker is abnormal in both "X-Ray Result" and "Serum Calcium". Should she go for "Treatment"?

Answer:		

6. Learning Probabilities from Data for BN with known graphical structure

• Suppose that the structure of the BN is known but the conditional probability tables are unknown. A data file of 1,000 cases with values of the seven variables is given:

Question 6.1: Learn the conditional probabilities of the BN using the data file.