This is the "those I'd the Simplex mexture, Idea: The problem of finding a feasible solution is an optimization problem. max Zox;

s.t. Zojx;

function...

Xi 70

Hat drives to feasibility. max $-3x_1+4x_2$ $s.t. X_0 - 4x_1 - 2x_2 \leq -8$ Lift this sproblem into $= x_0 - 2x_1 \qquad \qquad \leq -2 K$ higher dim. by introducing $-x_0$ $3x_1$ $+2x_2 \leq 10$ $-x_1 + 3x_2 \leq 1$ ostificial variable xo $-x_0$ $-3x_2 \leftarrow -2.4$ Largevalues of Xo: As usual, introduce stacks for all feasible intes.

If xo=0) (x1, x2) feasible for ong. CP. Min $x_0 \in \mathbb{Z}$ [max $m = -x_0$] I pivot of xo against most meg. Basis {Xo, Wz, W3, W4, W5} prival feasible. does not satisfy optimality co dition for max m. * (hoose entire X, (pss. ceeff. ~ m) Ratio test: χ_{\circ} : ≤ 2 w_2 : ≤ 3 W_3 : $\leq \frac{18}{7}(72)$ W4: \(\leq 3\)
\(\sigma \)
\(\ W4:

Using advanced pivol tool" with the setting primal with sco

New bosis

(x 0, v 2) ">), n = -2 Extering: X2 (>0 coeff in m) Ratio test: 4 2 3 5tep lugsh. $w_2: \leq 3.\frac{2}{5}$ (>1) $W_{13}: \leq \frac{4}{2} \cdot \frac{4}{23} (>1)$ $\frac{2}{2} \cdot \frac{9}{23} - \frac{18}{23}$ W4: X, does not give step length Pivot Xo leaving! New basis $\{X_2, W_2, W_3, W_4, X_1\}$ $' \longrightarrow \chi_0 = 0$. > 15 alan (la casta)

10 wo u / grewig~ 1 leasis for the original problem. Forget about xo, y. Continue with Phase IT (piroting with orig. objective S) Ws endering variable. Ratio test: X25 X W_7 : ≤ 4 $W_{j}: \leq \frac{11}{3} \cdot 6 = 22$ W4: \(\frac{2}{3} \cdot \frac{6}{7} \) Siteplugth, 45.6 Pivot with wy learing Ranic

 $X_2, W_2, W_3, W_5, X_1.$ Primal feasible 2 satisfies optimality condition => Optimal solution Geometry of the simplex Claim: Steps of Phase IT of the simplex method advance through a sequence of vertices (extreme points) of the convex polyhedron that is the feasible region. General topology tells us the distinction of:

Phonesor points Convex groundry defines: Extreme point: An element

Mot an extreme point if

By, ZEP, y # Z X E D of a Couvex set is so that $X \in (Y, Z)$ Open l'he segment basic feasible Salution is an externe point!