Veiksmai su grafais I

GRAFŲ TEORIJA JULIAN DZISEVIČ

Viršūnės šalinimas

- Viršūnė yra šalinama kartu su jai incidentiškomis briaunomis.
- Duotame grafe G=(V, U) pašalinus viršūnę v gauname grafą H=(V₁, U₁), kur V₁=V\{v}, o U₁=U\{briaunos incidentinės viršūnei v}

Šaliname viršūnę 5 iš grafo G=(V, U)

 $H=(V_1, U_1)$

Briaunos (v_1, v_2) šalinimas

- Šalinant briauną viršūnių aibė lieka nepakitusi.
- Iš grafo G=(V, U) pašalinus briauną (v_1 , v_2), gauname grafą H=(V, U₁), kur viršūnių aibė lieka nepakitusi, o U₁ =U\{(v_1 , v_2)}

Viršūnių sutapatinimas

- Dviejų viršūnių v_1 ir v_2 sutapatinimas grafe G=(V, U) yra atliekamas tokiu būdu:
 - 1. Iš grafo G pašliname abi viršūnes.
 - 2. Įvedama nauja viršūnė v.
 - 3. Viršūnė v yra sujungiama briaunomis su tomis viršūnėmis, kurios buvo gretimos viršūnei v_1 arba v_2 .

Briaunos sutraukimas

• Tarkime, (v_1, v_2) yra grafo G=(V, U) briauna, tada briaunos (v_1, v_2) sutraukimas yra gretimų viršūnių v_1 ir v_2 sutraukimas.

Grafo sutraukimas

- Sakoma, kad grafas G yra sutraukiamas į grafą H, jeigu egzistuoja tokia briaunų seka, kurią nuosekliai sutraukiant iš grafo G gaunasi grafas H.
- Bet kokį netuščią jungųjį grafą galima sutraukti į K_2 . Tačiau ne kiekvienas netuščias grafas galibūti sutrauktas į K_3 .

Viršūnės išskaidymo operacija

- Priešinga operacija briaunos sutraukimui.
- Tarkime, v yra viena iš grafo G viršūnių ir $N(v)=A\cup B$, $A\cap B=\varnothing$. Tada išskaidymo operacija yra atliekama taip:
 - 1. Iš grafo G yra pašalinama viršūnė v.
 - 2. Įvedamos dvi naujos viršūnės v_1 , ir v_2 ir jas jungiančioji briauna.
 - 3. Viršūnė v_1 yra jungiama su aibės A viršūnėmis, o su v_2 aibės B viršūnėmis.

Grafų sąjunga

- Tarkime, kad turime du grafus $G_1=(V_1,U_1)$ ir $G_2=(V_2,U_2)$. Tada grafas G=(V,U) yra šių dviejų grafų sąjunga (žymime $G=G_1\cup G_2$), jeigu $V=V_1\cup V_2$ ir $U=U_1\cup U_2$.
- Jei $V_1 \cap V_2 = \emptyset$, tai grafų G_1 ir G_2 sąjunga yra vadinama *disjunktyvine sąjunga*.
- Grafų sąjunga imant daugiau nei du grafus : $G(V,U) = \sum_{i=1}^n G_i(V_i,U_i), \quad V = \sum_{i=1}^n V_i, \quad U = \sum_{i=1}^n U_i.$

