Fault Tolerant Computing and VLSI Testing

Assignment 3

1.

2.

3.
$$FC = 80\% \implies DL = 1 - 0.9^{1-0.8} = 0.020852 = 20852PPM$$
 $FC = 90\% \implies DL = 1 - 0.9^{1-0.9} = 0.010481 = 10481PPM$ $FC = 99\% \implies DL = 1 - 0.9^{1-0.99} = 0.001053 = 1053PPM$ $DL = 20PPM = 2 * 10^{-5} = 1 - 0.7^{1-FC}$ $0.6^{1-FC} = 1 - 2 * 10^{-5} = 0.99998$ $1 - FC = \log_{0.6} 0.99998 = 3.915 * 10^{-5}$ $FC = 1 - 3.915 * 10^{-5} = 0.99996 = 99.996\%$

4.

AB	00	01	10	11
Z	1	1	1	0
P_0 stuck open	1	LastZ	1	0
P_0 stuck short	1	1	1	I_{DDQ}
P_1 stuck open	1	1	LastZ	0
P_1 stuck short	1	1	1	I_{DDQ}
N_0 stuck open	1	1	1	LastZ
N_0 stuck short	1	I_{DDQ}	1	0
N_1 stuck open	1	1	1	LastZ
N_1 stuck short	1	1	I_{DDQ}	0

5. TODO: Add tests here!

$$a \oplus (a+b) = a\overline{(a+b)} + \overline{a}(a+b) = a\overline{a}\overline{b} + \overline{a}a + \overline{a}b = \overline{a}b$$
$$(a+b)\overline{b} = a\overline{b} + b\overline{b} = a\overline{b}$$
$$(a \oplus (a+b)) + (a+b)\overline{b} = \overline{a}b + a\overline{b} = a \oplus b$$

Therefore, the boolean operation this circuit is equivalent to is exclusive-OR.

6. Test patterns are written as abc.

Not that a * symbol is used where appropriate to represent the AND operation for clarity, in order to help distinguish between, for example, $\overline{a*c}$ and $\overline{a}*\overline{c}$

(i)
$$\overline{a} \frac{dz}{da} = \overline{a}(z(a=1) \oplus z(a=0)) = \overline{a}((\overline{c}+cb) \oplus cb)$$

 $= \overline{a}(\overline{c}+c\overline{b}cb+(\overline{c}+cb)\overline{cb}) = \overline{a}(\overline{c}\overline{c}\overline{b}cb+\overline{c}\overline{c}\overline{b}+cb\overline{c}\overline{b})$
 $= \overline{a}*\overline{c}\overline{c}\overline{b} = \overline{a}*\overline{c}(\overline{c}+\overline{b}) = \overline{a}*\overline{c}+\overline{a}*\overline{c}\overline{b} = \overline{a}*\overline{c}(1+\overline{b}) = \overline{a}*\overline{c} = 1$
The patterns $\{000,010\}$ can detect the fault.

(ii)
$$h \frac{dz}{dh} = h(z(h=1) \oplus z(h=0)) = h(1 \oplus a\overline{c}) = h\overline{a}\overline{c} = h(\overline{a}+c)$$

= $h\overline{a} + hc$

Note that h = cb.

$$h\frac{dz}{db} = \overline{a}bc + bc = bc(a+1) = bc = 1$$

The patterns $\{011, 111\}$ can detect the fault.

(iii)
$$\overline{h} \frac{dz}{dh} = \overline{h}\overline{a} + \overline{h}c = \overline{cb}\overline{a} + \overline{cb}c = (\overline{c} + \overline{b})\overline{a} + (\overline{c} + \overline{b})c$$

 $= \overline{a}\overline{b} + \overline{a}\overline{c} + \overline{b}c + \overline{c}c = \overline{a}\overline{c} + \overline{a}\overline{c} + \overline{b}c = 1$
The patterns $\{000, 001, 010, 101\}$ can detect the fault.

(iv)
$$e^{\frac{dz}{de}} = e(z(e=1) \oplus z(e=0)) = e((a\overline{c}+b) \oplus a\overline{c})$$

 $= e(\overline{ac} + \overline{bac} + (a\overline{c} + b)\overline{ac}) = e(\overline{b} * \overline{ac}\overline{ac} + a\overline{c}\overline{ac} + b\overline{ac}) = eb\overline{ac}$
 $= be(\overline{a} + c) = \overline{abe} + bec$
Note that $e = c$.
 $e^{\frac{dz}{de}} = \overline{abc} + bc = bc(\overline{a} + 1) = bc = 1$

The patterns {011, 111} can detect the failure.

(v)
$$\overline{e} \frac{dz}{de} = \overline{a}b\overline{e} + b\overline{e}c = \overline{a}b\overline{c} + bc\overline{c} = \overline{a}b\overline{c}$$

The pattern $\{010\}$ can detect the failure.

(vi)
$$c\frac{dz}{dc} = c(z(c=1) \oplus z(c=0)) = c(b \oplus a) = c(\overline{a}b + a\overline{b}) = \overline{a}bc + a\overline{b}c = 1$$

The patterns $\{011, 101\}$ can detect the fault.

7. Test patterns are written as ab.

(a)
$$\overline{a} \frac{di}{da} = \overline{a}(i(a=1) \oplus i(a=0)) = \overline{a}(b \oplus 0) = \overline{a}b = 1$$

The pattern $\{01\}$ can detect the fault.

(b)
$$\overline{d} \frac{di}{da} = \overline{d}(i(d=1) \oplus i(d=0)) = \overline{d}(ab \oplus 0) = \overline{d}ab$$

Note that $d=a$.
 $\overline{d} \frac{di}{da} = \overline{a}ab = 0 = 1$

We have reached a contradiction, therefore this fault cannot be detected.

(c)
$$\overline{g} \frac{di}{dg} = \overline{g}(i(g=1) \oplus i(g=0)) = \overline{g}(ab \oplus 0) = \overline{g}ab$$

Note that $g = ab$.
 $\overline{g} \frac{di}{dg} = \overline{ab}ab = 0 = 1$

We have reached a contradiction, therefore this fault cannot be detected.

8. Below are the signatures calculated for the sequence M=10011011 (fault-free) and the faulty sequence M'=11111111

M	1	x	x^2	x^3	Λ	I'	1	x	x^2	x^3
1	0	0	0	0	-	1	0	0	0	0
0	1	0	0	0	-	1	1	0	0	0
0	0	1	0	0		1	1	1	0	0
1	0	0	1	0	-	1	1	1	1	0
1	1	0	0	1	-	1	1	1	1	1
0	0	0	0	0	-	1	0	0	1	1
1	0	0	0	0	-	1	0	1	0	1
1	1	0	0	0	-	1	0	1	1	0
R	1	1	0	0	1	R	1	0	1	1

The signatures calculated for the faulty sequence M' is different from the fault-free sequence M, so this fault can be detected.