Finite Automata with Output

Finite automata with output

- Finite automata has limited capability of either accepting a string or rejecting a string. Acceptance of string was based on the reachability of a machine from starting state to final state.
- Finite automata with output do not have a final state.
- Machine generates output on every input.
- There are two types of automata with outputs:
 - 1. Moore machine
 - 2. Mealy machine

Moore machine & Mealy Machine

Moore Machine

Mathematically Moore machine is a six tuple machine and defined as

$$M_0 = (Q, \Sigma, \Delta, \delta, \lambda', q_0)$$

where,

Q: a nonempty finite set of states in M_0

 Σ : a nonempty finite set of input symbols

 Δ : a nonempty finite set of outputs

 δ : Transition function which takes two arguments as in finite automata, one is input state and other is input symbol. The output of this function is a single state.

 λ' : it is a mapping function which maps Q to Δ , giving the output associated with each state.

 q_0 : the initial state of M_0 and $q_0 \in Q$

Design a moore machine for the 1's compliment of binary number.

Design a moore machine to count occurrence of "ab" as substring.

Construct a moore machine that takes set of all strings over {0, 1} and produces 'A' if i/p ends witg '10', produces 'B' if i/p ends with '11' otherwise produces 'C'.

11→B

Otherwise →C

 Construct a moore machine that takes binary number as an i/p and produces residue modulo '3' as an output.

(
	0	1	Δ
Α			0
В			1
С			2
Transition Table			

Mealy Machine

Mathematically Mealy machine is a six tuple machine and defined as

$$M_e = (Q, \Sigma, \Delta, \delta, \lambda', q_0)$$

where,

Q: a nonempty finite set of states in M_e

 Σ : a nonempty finite set of input symbols

 Δ : a nonempty finite set of outputs

 δ : Transition function which takes two arguments as in finite automata, one is input state and other is input symbol. The output of this function is a single state.

 λ' : It is a mapping function which maps $Q \times \Sigma$ to Δ , giving the output associated with each transition.

 q_0 : the initial state of M_e and $q_0 \in Q$

Example: Mealy Machine

Design a mealy machine for the 1's compliment of binary number

Example: Mealy Machine

Design a mealy machine for regular expression (0+1)*(00+11).

00 → y 11 → y Otherwise → x

Moore to Mealy Machine Conversion

Conversion of Moore into Mealy Machine

Mealy to Moore Machine Conversion

Conversion of Mealy to Moore machine

Exercise: Mealy machine to Moore machine

