

The Cost of Down-Scaling Language Models: Fact Recall Deteriorates before In-Context Learning

Tian Jin* (MIT), Nolan Clement* (MIT), Xin Dong* (Harvard), Vaishnavh Nagarajan (Google Research), Michael Carbin (MIT), Jonathan Ragan-Kelley (MIT), Gintare Karolina Dziugaite (DeepMind)

How does scaling affect LLM capabilities?

How does scaling number of parameters affect core capabilities of LLMs? We focus on two natural scaling techniques: **pruning** and **dense down-scaling**.

We investigate their effects on two complementary capabilities of LLMs: **fact recall** and **in-context learning**.

But first, how to disentangle fact recall from ICL?

Effect of Pruning

Fact recall deteriorates quickly (5% drop around 30% of pruning).

ICL withstands 60-70% pruning!

Effect of Pruning Attention vs. FFW

We prune LLaMA 13 and 33B models to find out.

For fact recall, MLP layers are more important than Attention. For in-context learning, not as much difference.

Many implications!

What could happen?

There are many possibilities, take your pick now!

Effect of Dense Scaling

Even under dense downscaling, fact recall deteriorates much quicker than ICL, like pruning.

Find our paper on Arxiv!

