Syntax and Semantics of Abstract Binding Trees

Jon Sterling and Darin Morrison

Abstract binding trees (abts) are a generalization of abstract syntax trees where operators may express variable binding structure as part of their arities. Originally formulated by Peter Aczel [?], unisorted abts have been deployed successfully as the uniform syntactic framework for several implementations of Constructive Type Theory, including Nuprl [?], MetaPRL [?] and JonPRL [?].

In *Practical Foundations for Programming Languages* [?], Robert Harper develops the multi-sorted version of abstract binding trees and proposes an extension to include families of operators indexed by *symbols*, which are, unlike variables, subject to only distinctness-preserving renaming and not substitution; furthermore, symbols do not appear in the syntax of abts, and are only introduced as parameters to operators. This extension to support symbols is essential for a correct treatment of programming languages with open sums (e.g. ML's exn type), as well as assignable references.

In parallel, M. Fiore and his collaborators have developed the categorical semantics for several variations of second-order algebraic theories [?, ?, ?, ?]; of these, the simply sorted variants are equivalent to Harper's abstract binding trees augmented with a notion of second-order variable (metavariable).

The contribution of this paper is the development of the syntax and semantics of multisorted abts, an extension of second order universal algebra to support symbol-indexed families of operators. Additionally, we have developed the categorical semantics for abts formally in Constructive Type Theory using the Agda proof assistant [?].

1 Preliminaries

Fix a set S of *sorts*. We will say τ *sort* when $\tau \in S$. A valence $\{\vec{\sigma}\}[\vec{\tau}]$. τ specifies an expression of sort τ which binds symbols in $\vec{\sigma}$ and variables in $\vec{\tau}$.

$$\frac{\tau \textit{ sort} \quad \sigma_i \textit{ sort } (i \leqslant m) \quad \tau_i \textit{ sort } (i \leqslant n)}{\{\sigma_0, \ldots, \sigma_m\}[\tau_0, \ldots, \tau_n]. \, \tau \textit{ valence}}$$

An arity $(\vec{v})\tau$ specifies an operator of sort τ with arguments of valences \vec{v} . We will call the set of valences \mathcal{V} , and the set of arities \mathcal{A} .

$$\frac{\tau \ sort \quad \nu_i \ valence \ (i \leqslant n)}{(\nu_0, \dots, \nu_n) \ \tau \ arity}$$

Let **I** be an infinite set of symbols. Let \mathbb{F}_I be the category of finite subsets of **I** and their injective maps; then the comma construction $\mathbf{SCtx} \triangleq \mathbb{F}_I \downarrow \mathcal{S}_\equiv$, with \mathcal{S}_\equiv the discrete category on the set \mathcal{S} , is the category of contexts of symbols, whose objects are finite sets of symbols U and sort-assignments $\mathfrak{s}: U \to \mathcal{S}$, and whose morphisms are sort-preserving renamings; we will write Υ for a symbol context (U,\mathfrak{s}) .

Then, fix a covariant presheaf (copresheaf) of operators \emptyset : **SCtx** $\times A_{\equiv} \to$ **Set** such that the arrows in **SCtx** lift to renamings of operators' parameters. Together, S and O form a *signature* $\Sigma \triangleq \langle S, O \rangle$.

By the Grothendieck construction $\oint \mathfrak{O} \cong * \downarrow \mathfrak{O}$ we have a category of elements of \mathfrak{O} where objects are triples $\langle \langle \Upsilon, \alpha \rangle, \vartheta \rangle$, interpreted as $\vartheta \in \mathfrak{O} \langle \Upsilon, \alpha \rangle$, and morphisms are diagrams:

$$\langle \Upsilon, \mathfrak{a} \rangle \xrightarrow{\langle \rho, f \rangle} \langle \Upsilon', \mathfrak{a}' \rangle$$

We will write $\Upsilon \Vdash_{\Sigma} \vartheta$: \mathfrak{a} in case $\vartheta \in \mathfrak{O} \langle \Upsilon, \mathfrak{a} \rangle$ and note that this judgment enjoys the structural properties of weakening and exchange via functoriality of \mathfrak{O} . Operators $\vartheta_0, \ldots, \vartheta_n$ are defined by specifying the fibers of $\pi_{\mathfrak{O}} : \oint \mathfrak{O} \to \mathbf{SCtx} \times \mathcal{A}_{\equiv}$ in which they reside:

$$\begin{array}{ll} \pi_{\mathbb{O}}^{-1}\langle \Upsilon, \mathfrak{a} \rangle \; : \; \textbf{Set} \\ \pi_{\mathbb{O}}^{-1}\langle \Upsilon, \mathfrak{a} \rangle = \{\vartheta \in \langle \Upsilon, \mathfrak{a} \rangle \, | \, \pi_{\mathbb{O}}\langle \, \langle \Upsilon, \mathfrak{a} \rangle \, , \vartheta \, \rangle = \langle \Upsilon, \mathfrak{a} \rangle \} \end{array}$$

Examples For instance, consider the lambda calculus with a single sort, exp; we give its signature by asserting the following about its operators:

$$\Upsilon \Vdash_{\Sigma} \lambda : ([exp]. exp) exp$$

 $\Upsilon \Vdash_{\Sigma} ap : (.exp,. exp) exp$

These rules correspond to objects of $\oint 0$ and we collect their fibers into sets of operators:

$$\begin{array}{lll} \pi_{\mathcal{O}}^{-1} \left< \Upsilon, ([\mathsf{exp}].\, \mathsf{exp}) \, \mathsf{exp} \right> & = & \{\lambda\} \\ \pi_{\mathcal{O}}^{-1} \left< \Upsilon, (.\, \mathsf{exp}, .\, \mathsf{exp}) \, \mathsf{exp} \right> & = & \{\mathsf{ap}\} \\ \bigcup_{\left< \Upsilon, \mathfrak{a} \right>} \pi_{\mathcal{O}}^{-1} \left< \Upsilon, \mathfrak{a} \right> & = & \{\lambda, \, \mathsf{ap}\} \end{array}$$

So far, we have made no use of symbols and parameters; however, consider the extension of the calculus with assignables (references):

```
\Upsilon \Vdash_{\Sigma} \operatorname{decl} : (.\exp, \{\exp\}. \exp) \exp
\Upsilon, u : \exp \Vdash_{\Sigma} \operatorname{get}[u] : () \exp
\Upsilon, u : \exp \Vdash_{\Sigma} \operatorname{set}[u] : (.\exp) \exp
```

Declaring a new assignable consists in providing an initial value, and an expression binding a symbol (which shall represent the assignable in scope). Note that the functoriality of 0 guarantees for any renaming $\rho: \Upsilon \to \Upsilon'$ and $f: \alpha \to \alpha'$, a lifted map $O(\rho, f): O(\Upsilon, \alpha) \to O(\Upsilon', \alpha')$ such that $\Upsilon' \Vdash_{\Sigma} O(\rho, f)(\vartheta): \alpha'$ when $\Upsilon \Vdash_{\Sigma} \vartheta: \alpha$. Because the category \mathcal{A}_{\equiv} is discrete and has only identity arrows, through an abuse of notation we will often write $O(\rho)$ to mean $O(\rho, 1)$. In particular, the renaming $\Upsilon, \mathfrak{u} \mapsto \Upsilon, \mathfrak{v}$ shall take $get[\mathfrak{u}]$ to $get[\mathfrak{v}]$.

2 Contexts

In general, we will have three kinds of context: metavariable contexts, variable contexts, and symbol (parameter) contexts. A metavariable context Ω consists of bindings of valences to metavariables; a variable context Γ is a collection of bindings of sorts to variables, and a parameter context Υ is a collection of bindings of sorts to symbols.

$$\frac{\Omega \ mctx \quad v \ valence \quad m \notin |\Omega|}{\Omega, m : v \ mctx}$$

$$\frac{\Gamma \ vctx \quad \tau \ sort \quad x \notin |\Gamma|}{\Gamma, x : \tau \ vctx}$$

$$\frac{\Gamma \ vctx \quad \tau \ sort \quad u \notin |\Gamma|}{\tau, x : \tau \ vctx}$$

3 Abstract Binding Trees

Let the judgment $\Omega \triangleright \Upsilon \parallel \Gamma \vdash_{\circ} M$: τ presuppose Ω *mctx*, Υ *sctx*, Γ *vctx* and τ *sort*, meaning that M is an abstract binding tree of sort s, with metavariables in Ω , parameters in Υ , and

variables in Γ . Let the judgment $\Omega \triangleright \Upsilon \parallel \Gamma \vdash_{\circ} E : \nu$ presuppose ν *valence*. Then, the syntax of abstract binding trees is inductively defined in four rules:

$$\begin{split} \frac{\Gamma\ni x:\tau}{\Omega \triangleright \Upsilon \parallel \Gamma \vdash_{\sigma} x:\tau} \ \textit{var} \\ \Omega\ni \mathfrak{m}: \{\sigma_{0},\ldots,\sigma_{m}\}[\tau_{0},\ldots,\tau_{n}].\tau \\ \Upsilon\ni \mathfrak{u}_{i}:\sigma_{i} \ (i\leqslant \mathfrak{m}) \\ \Omega\triangleright \Upsilon \parallel \Gamma \vdash_{\sigma} M_{i}:\tau_{i} \ (i\leqslant \mathfrak{n}) \\ \hline \frac{\Omega\triangleright \Upsilon \parallel \Gamma \vdash_{\sigma} m\{\mathfrak{u}_{0},\ldots,\mathfrak{u}_{m}\}(M_{0},\ldots,M_{n}):\tau}{\Omega\triangleright \Upsilon \parallel \Gamma \vdash_{\sigma} E_{i}:\nu_{i} \ (i\leqslant \mathfrak{n})} \ \textit{mvar} \\ \frac{\Gamma\vdash_{\Sigma}\vartheta:(\nu_{1},\ldots,\nu_{n})\tau}{\Omega\triangleright \Upsilon \parallel \Gamma\vdash_{\sigma} E_{i}:\nu_{i} \ (i\leqslant \mathfrak{n})} \ \frac{\Omega\triangleright \Upsilon \parallel \Gamma\vdash_{\sigma} \vartheta(E_{0},\ldots,E_{n}):\tau}{\Omega\triangleright \Upsilon \parallel \Gamma\vdash_{\sigma} \vartheta(E_{0},\ldots,E_{n}):\tau} \ \textit{abs} \\ \frac{\Omega\triangleright \Upsilon,\vec{\mathfrak{u}}:\vec{\sigma}\parallel \Gamma,\vec{\mathfrak{x}}:\vec{\tau}\vdash_{\sigma} M:\tau}{\Omega\triangleright \Upsilon \parallel \Gamma\vdash_{\sigma} \{\vec{\mathfrak{u}}\}[\vec{\mathfrak{x}}].M:\{\vec{\sigma}\}[\vec{\tau}].\tau} \ \textit{abs} \end{split}$$

Abts are identified up to α -equivalence. Let **FS** (M) be the collection of symbols free in M, and let **FV** (M) be the collection of variables free in M.

3.1 Renaming of Symbols

The only place that symbols appear in our calculus is as parameters to operators (unlike variables, symbols are not terms). Therefore, the functorial action of the operator copresheaf can be lifted into terms by recursion on their structure, via a pair of judgments $M \upharpoonright \rho \rightsquigarrow N$ and $E \upharpoonright \rho \leadsto F$, presupposing $\rho : \Upsilon \to \Upsilon'$, and $\Omega \triangleright \Upsilon \parallel \Gamma \vdash_{\circ} M : \tau$ and $\Omega \triangleright \Upsilon \parallel \Gamma \vdash_{\circ} E : \nu$ respectively:

$$\begin{split} & \overline{\chi \upharpoonright \rho \leadsto \chi} \\ & \frac{\rho(\vec{u}) \equiv \vec{v} \quad M_i \upharpoonright \rho \leadsto N_i \ (i \leqslant n)}{\mathfrak{m}\{\vec{u}\}(M_0, \ldots, M_n) \upharpoonright \rho \leadsto \mathfrak{m}\{\vec{v}\}(N_0, \ldots, N_n)} \\ & \frac{\mathcal{O}\langle \rho \rangle(\vartheta) \equiv \vartheta' \quad E_i \upharpoonright \rho \leadsto F_i \ (i \leqslant n)}{\vartheta(E_0, \ldots, E_n) \upharpoonright \rho \leadsto \vartheta'(F_0, \ldots, F_n)} \\ & \frac{M \upharpoonright \rho \setminus \vec{u} \leadsto N}{\{\vec{u}\}[\vec{x}]. \ M \upharpoonright \rho \leadsto \{\vec{u}\}[\vec{x}]. \ N} \end{split}$$

Above, the notation $\rho \setminus \vec{u}$ means the omission of the variables \vec{u} from the renaming ρ . Because terms are identified up to α -equivalence, the renaming judgment is functional in its input, and so we are justified in writing $M \upharpoonright \rho$ for N when $M \upharpoonright \rho \leadsto N$.

3.2 Substitution of Variables

Variable substitution in abts is defined inductively by a pair of judgments, $[N / x] M \rightsquigarrow M'$ and $[N / x] E \rightsquigarrow F$:

$$\begin{split} \frac{x = y}{[N/x]\,y \rightsquigarrow N} & \frac{x \,\#\,y}{[N/x]\,y \rightsquigarrow y} \\ & \frac{[N/x]\,M_i \rightsquigarrow M_i' \ (i \leqslant n)}{[N/x]\,\mathfrak{m}\{\vec{\mathfrak{u}}\}(M_0, \ldots, M_n) \rightsquigarrow \mathfrak{m}\{\vec{\mathfrak{u}}\}(M_0', \ldots, M_n')} \\ & \frac{[N/x]\,E_i \rightsquigarrow F_i \ (i \leqslant n)}{[N/x]\,\vartheta(E_0, \ldots, E_n) \rightsquigarrow \vartheta(F_0, \ldots, F_n)} \\ & \frac{x \notin \vec{\mathfrak{y}} \quad \vec{\mathfrak{u}} \,\#\,FS\,(N) \quad \vec{y} \,\#\,FV\,(N) \quad [N/x]\,M \rightsquigarrow M'}{[N/x]\{\vec{\mathfrak{u}}\}[\vec{\mathfrak{y}}].\,M \rightsquigarrow \{\vec{\mathfrak{u}}\}[\vec{\mathfrak{y}}].\,M'} & \frac{x \in \vec{\mathfrak{y}} \quad \vec{\mathfrak{u}} \,\#\,FS\,(N) \quad \vec{y} \,\#\,FV\,(N)}{[N/x]\{\vec{\mathfrak{u}}\}[\vec{\mathfrak{y}}].\,M \rightsquigarrow \{\vec{\mathfrak{u}}\}[\vec{\mathfrak{y}}].\,M} \end{split}$$

Going forward, we will write [N/x]M for M' when $[N/x]M \rightsquigarrow M'$, and $[\vec{N}/\vec{x}]M$ for the simultaneous substitution of \vec{N} for \vec{x} in M.

3.3 Substitution of Metavariables

Metavariables are substituted by bound terms; since a metavariable may only appear in an application expression $\mathfrak{m}\{\cdots\}(\cdots)$, we will instantiate the bound term at the supplied parameters and arguments. Substitution for metavariables is defined inductively by the judgments $[E/\mathfrak{m}]M \rightsquigarrow N$ and $[E/\mathfrak{m}]F \rightsquigarrow F'$:

$$\begin{split} & \boxed{ [E/\mathfrak{m}] \, x \leadsto x } \\ & \stackrel{\mathfrak{m} \, \# \, \mathfrak{n}}{=} \, E/\mathfrak{n} \, M_{i} \leadsto N_{i} \ (i \leqslant \mathfrak{n}) \\ & \stackrel{\mathfrak{m} \, \# \, \mathfrak{n}}{=} \, [E/\mathfrak{m}] \, M_{i} \leadsto N_{i} \ (i \leqslant \mathfrak{n}) \\ & \stackrel{\mathfrak{m} \, \# \, \mathfrak{n}}{=} \, \mathbb{I} \, \left[\vec{u} \, \| \, (M_{0}, \ldots, M_{n}) \leadsto \mathfrak{n} \{ \vec{u} \, | \, (N_{0}, \ldots, N_{n}) \right] \\ & \stackrel{\mathfrak{m} \, \# \, \mathfrak{n}}{=} \, \left[\vec{M} \, / \, \vec{x} \, \right] \, N \leadsto N' \quad N' \quad N' \quad \{ \vec{u} \, \mapsto \vec{v} \, \} \leadsto N'' \\ & \stackrel{[\{\vec{u}\}[\vec{x}]. \, N \, / \, \mathfrak{m}] \, \mathfrak{n} \{ \vec{v} \, \} (\vec{M}) \leadsto N'' \\ & \stackrel{[E/\mathfrak{m}] \, F_{i} \, \leadsto \, F'_{i} \, (i \leqslant \mathfrak{n}) \\ & \stackrel{[E/\mathfrak{m}] \, \vartheta (F_{0}, \ldots, F_{n}) \, \leadsto \vartheta (F'_{0}, \ldots, F'_{n}) \\ & \stackrel{\vec{u} \, \# \, FS \, (E) \quad \vec{x} \, \# \, FV \, (E) \quad [E/\mathfrak{m}] \, M \leadsto N \\ & \stackrel{[E/\mathfrak{m}] \, \{\vec{u} \, \} [\vec{x}]. \, M \leadsto \{ \vec{u} \, \} [\vec{x}]. \, N \end{split}$$

As usual, we will write [E/m]M for N when $[E/m]M \rightarrow N$.

4 Model Theory

Let \mathbb{F} be the free cocartesian category on a single object (that is, the category of finite cardinals and functions between them); then the comma construction $\mathbf{Ctx} \triangleq \mathbb{F} \downarrow \mathcal{S}$ is the category of variable contexts. Let $\mathbf{H} \triangleq (\mathbf{SCtx} \times \mathbf{Ctx})^{op}$; then we fix the functor category $\widehat{\mathbf{H}}^{\mathcal{S}}$ as our semantic universe.

Let $V_{\tau}(\Upsilon \parallel \Gamma) \triangleq \{x \in |\Gamma| \mid \Gamma(x) = \tau\}$ be called the presheaf of variables; additionally, we have a presheaf of symbols $S_{\tau}(\Upsilon \parallel \Gamma) \triangleq \{u \in |\Upsilon| \mid \Upsilon(x) = \tau\}$. Lastly, we have the presheaf of operators with arity α , $\mathcal{O}_{\alpha}(\Upsilon \parallel \Gamma) \triangleq \mathcal{O}(\Upsilon, \alpha)$

4.1 Substitution monoidal structures

For an object $P : \widehat{\mathbf{H}}^{\mathbb{S}}$, we will use the notation $P^{[\Gamma]}$ to mean $\prod_{x \in |\Gamma|} P_{\Gamma(x)}$; likewise, $S^{\{\Upsilon\}}$ shall mean $\prod_{u \in |\Upsilon|} S_{\Upsilon(u)}$.

For a presheaf $A : \widehat{\mathbf{H}}$ and a sort-indexed family of presheaves $P : \widehat{\mathbf{H}}^{S}$, we have an operation $A \bullet P$, defined as a coend in the following way:

$$(A \bullet P)(\Upsilon \parallel \Gamma) \triangleq \int_{-\infty}^{(\Upsilon' \parallel \Delta) \in \mathbf{H}} A(\Upsilon' \parallel \Delta) \times S^{\{\Upsilon'\}}(\Upsilon \parallel \Gamma) \times P^{[\Delta]}(\Upsilon \parallel \Gamma)$$

Using this, we can define a tensor $P \odot Q$ for $P, Q : \widehat{H}^{S}$ as follows:

$$(P \odot Q)_{\tau} \triangleq P_{\tau} \bullet Q \qquad (\tau \in S)$$

Then, V is the unit to this tensor. We will say that an object $P: \widehat{\mathbf{H}}^S$ is a Σ -monoid in case it is equipped with the following natural transformations where ν embeds variables into P and σ equips P with an operation for simultaneous substitutions of variables.

$$V \xrightarrow{\quad \nu \quad} P \xleftarrow{\quad \sigma \quad} P \odot P$$

We also have the induced maps $\nu_{\Gamma}: V^{[\Gamma]} \to P^{[\Gamma]}$ and $\sigma^{\tau}_{\Upsilon \parallel \Gamma}: P^{y\,(\Upsilon \parallel \Gamma)}_{\tau} \times S^{\{\Upsilon\}} \times P^{[\Gamma]} \to P_{\tau}$.

Remark 4.1. A presheaf P with a substitution monoidal structure $\langle v, \sigma \rangle$ also forms a *relative monad*¹ on the functor $V : \widehat{\mathbf{H}}^S$ of variables. Consequently, the monoid multiplication σ can be replaced with an extension operation:

$$P(=)^{V(-)} \xrightarrow{(-)^{\otimes}} P(=)^{P(-)}$$

¹Relative monads are skew-monoids in the skew-monoidal structure induced by a functor category C^J [?]. However, relative monads can also be understood without reference to monoids by viewing them as a generalization of *extension systems* or *Kleisli structures*. This latter presentation of monads, popular in computer science and logic, does not involve iteration of the monad functor.

4.2 The signature endofunctor and its initial algebras

For each signature $\Sigma \equiv \langle S, O \rangle$, we have an endofunctor $\mathcal{F}_{\Sigma} : \widehat{\mathbf{H}}^{S} \to \widehat{\mathbf{H}}^{S}$, which is defined as follows:

$$\mathcal{F}_{\Sigma}(X)_{\tau}\triangleq \coprod_{\vartheta\in\mathcal{O}_{(\vec{v})_{\tau}}}\prod_{\{\vec{\sigma}\}[\vec{\tau}].\,\tau_{i}\in\vec{v}}X_{\tau_{i}}^{y_{i}(\vec{\sigma}\parallel\vec{\tau})}$$

Then, a Σ -model is a Σ -monoid P which is equipped with an initial algebra α : $\mathcal{F}_{\Sigma}(P) \to P$, which shall interpret applications of each operator.

4.3 Interpretation of terms

The metavariable, symbol and variable contexts are interpreted in a model P as an environment presheaf in the following way:

$$\llbracket \Omega \triangleright \Upsilon \parallel \Gamma \rrbracket_P \triangleq \left(\prod_{(\mathfrak{m}: \{\vec{\sigma}\}[\vec{\tau}]. \, \tau) \in \Omega} P_{\tau}^{\boldsymbol{y}(\vec{\sigma} \parallel \vec{\tau})} \right) \times S^{\{\Upsilon\}} \times V^{[\Gamma]}$$

Then, the interpretation of a term in a model P is a map from its environment to P:

$$[\![\Omega \triangleright \Upsilon \parallel \Gamma \vdash M : \tau]\!]_P : [\![\Omega \triangleright \Upsilon \parallel \Gamma]\!]_P \to P_\tau$$

The interpretation of a variable $[\![\Omega \triangleright \Upsilon \mid \Gamma \vdash x : \tau]\!]_P$ simply projects it of the environment and embeds it into the model, as follows:

$$\llbracket \Omega \triangleright \Upsilon \parallel \Gamma \rrbracket_{P} \xrightarrow{\pi_{3}} V^{[\Gamma]} \xrightarrow{\nu_{\Gamma}} P^{[\Gamma]} \xrightarrow{\pi_{x}} P_{\tau}$$
 (var)

Next interpret metavariable applications $\llbracket \Omega \triangleright \Upsilon \parallel \Gamma \vdash \mathfrak{m}\{\vec{\mathfrak{u}}\}(\vec{M}) : \tau \rrbracket_P$ where $\Omega \ni \mathfrak{m} : \{\vec{\mathfrak{o}}\}[\vec{\tau}].\tau$, which proceeds by projecting the metavariable's interpretation from the environment and intantiating it via substitution:

$$\llbracket \Omega \triangleright \Upsilon \parallel \Gamma \rrbracket_{P} \xrightarrow{\langle \pi_{\mathfrak{m}} \, \pi_{1}, \varphi \, \pi_{2}, \psi \rangle} P_{\tau}^{\mathfrak{y}(\vec{\sigma} \parallel \vec{\tau})} \times S^{\{\vec{\sigma}\}} \times P^{[\vec{\tau}]} \xrightarrow{\sigma_{\vec{\sigma} \parallel \vec{\tau}}^{\tau}} P_{\tau} \quad \text{(metavar)}$$

where

$$\begin{split} S^{\{\Upsilon\}} & \xrightarrow{ \varphi \triangleq \langle \pi_u \rangle_{u \in \vec{u}} } S^{\{\vec{\sigma}\}} \\ & \llbracket \Omega \triangleright \Upsilon \parallel \Gamma \rrbracket_P & \xrightarrow{ \psi \triangleq \left\langle \llbracket \Omega \triangleright \Upsilon \lVert \Gamma \vdash M : \tau \rrbracket_P \right\rangle_{(M,\tau) \in (\vec{M},\vec{\tau})} } P^{[\vec{\tau}]} \end{split}$$

The interpretation of operator applications is most complicated. Recall that, unlike in standard treatments of universal algebra, our operators are indexed by symbol collections;

therefore, operators must pass through suitable renamings in order to be used in the interpretation. Let us begin by constructing for each operator $\Upsilon \Vdash_{\Sigma} \vartheta$: a the morphism $\llbracket \vartheta \rrbracket_P : \llbracket \Omega \rhd \Upsilon \parallel \Gamma \rrbracket_P \to \mathfrak{O}_a$, which shall rename the parameters of the operator using the environment. The natural transformation $\llbracket \vartheta \rrbracket_P$ is the following composite:

$$\llbracket \Omega \triangleright \Upsilon \parallel \Gamma \rrbracket_P \xrightarrow{\quad \pi_2 \quad} S^{\{\Upsilon\}} \xrightarrow{\quad \mathcal{O}\langle \pi_{(-)} \rangle \quad} \mathcal{O}_{\alpha}$$

We will proceed using the initial \mathcal{F}_{Σ} -algebra α , as follows, by postcomposing it with a morphism β from the environment into the signature endofunctor, which interprets the syntax of operator applications:

$$\llbracket \Omega \triangleright \Upsilon \parallel \Gamma \rrbracket_{P} \xrightarrow{\beta} \mathfrak{F}_{\Sigma}(P)_{\tau} \xrightarrow{\alpha_{\tau}} P_{\tau}$$

The construction of β proceeds by renaming the parameters of the operator ϑ and constructing the (bound) arguments γ of the operator.

Each argument $\llbracket \Omega \triangleright \Upsilon \parallel \Gamma \rrbracket_P \xrightarrow{\gamma_i} P_{\tau_i}^{\boldsymbol{y}(\vec{\sigma}_i \parallel \vec{\tau}_i)}$ is the exponential transpose of the composite,

where ϕ_i , ψ_i are defined as follows:

$$\begin{split} & \llbracket \Omega \triangleright \Upsilon \parallel \Gamma \rrbracket_P \times y(\vec{\sigma}_i \parallel \vec{\tau}_i) \xrightarrow{\begin{array}{c} \varphi_i \triangleq \langle \pi_u \circ \pi_1 \rangle_{u \in |\Upsilon|}, \langle \pi_u \circ \pi_1 \circ \pi_2 \rangle_{u \in |\vec{\sigma}_i|} \\ & \psi_i \triangleq \langle \pi_x \circ \pi_1 \rangle_{x \in |\Gamma|}, \langle \pi_x \circ \pi_1 \circ \pi_2 \rangle_{x \in |\vec{\tau}_i|} \end{array} } S^{\{\Upsilon, \vec{\sigma}_i\}} \\ & \llbracket \Omega \triangleright \Upsilon \parallel \Gamma \rrbracket_P \times y(\vec{\sigma}_i \parallel \vec{\tau}_i) \xrightarrow{\begin{array}{c} \psi_i \triangleq \langle \pi_x \circ \pi_1 \rangle_{x \in |\Gamma|}, \langle \pi_x \circ \pi_1 \circ \pi_2 \rangle_{x \in |\vec{\tau}_i|} \\ \end{array}} V^{[\Gamma, \vec{\tau}_i]} \end{split}$$

This concludes the interpretation of well-sorted terms into any Σ -model.

5 Case Study: Wellformed Sequents

The representation of telescopes and sequents in a logical framework is notoriously difficult; whilst it is possible to use higher-order abstract syntax or abts to encode the bindingstructure of telescopes and sequents, the encoding is sufficiently laborious and obscure that it is not used in practice. Crary has demonstrated a first-order encoding of contexts in the logical framework in bijection with actual LF-contexts [?], which has been successfully used in large-scale mechanization efforts, including that of Standard ML [?] and the Edinburgh Logical Framework itself [?].

We will approach the problem of encoding telescopes and sequents from the *refinements* perspective, where a conservative approximation of the grammar is first given using the abt logical framework, and then the correctness of a code is expressed separately in a judgment that refines the existing specification.

Because we have not committed to using the built-in binding machinery to express the well-scopedness of telescopes and sequents, we are free to use *symbols* in order to model the variables in the context. This is in fact quite sensible if we are actually trying to faithfully represent the syntax of telescopes and sequents, rather than replace them with their counterparts on the meta-level.

This insight leads the way to a simple abt signature for the theory of telescopes and sequents.

```
tele sort

exp sort

type sort

jdg sort

\Upsilon, u : exp \Vdash_{\Sigma} var[u] : () exp

\Upsilon \Vdash_{\Sigma} nil : () tele

\Upsilon, u : exp \Vdash_{\Sigma} snoc[u] : (. tele, . type) tele

\Upsilon \Vdash_{\Sigma} sequent : (. tele, . type) jdg
```

Suppose we have encoded a fragment of type theory as well:

```
\begin{array}{l} \Upsilon \Vdash_{\Sigma} \top : () \; \text{type} \\ \Upsilon \Vdash_{\Sigma} \bot : () \; \text{type} \\ \Upsilon \Vdash_{\Sigma} \text{bool} : () \; \text{type} \\ \Upsilon \Vdash_{\Sigma} \text{isTrue} : (. \, \text{exp}) \; \text{type} \\ \Upsilon \Vdash_{\Sigma} \text{pi} : (. \, \text{type}, [\text{exp}]. \, \text{type}) \; \text{type} \\ \Upsilon \Vdash_{\Sigma} \text{sg} : (. \, \text{type}, [\text{exp}]. \, \text{type}) \; \text{type} \end{array}
```

Terms written using the abstract syntax will be difficult to read, so let us define some

notation:

```
\diamond \triangleq nil
H,u: P \underset snoc[u](H,P)
H \underset A \underset sequent(H,A)
'u \underset var[u]
```

Now, we have the following well-formed sequent:

```
\cdot \triangleright u : \exp, v : \exp \| \cdot \vdash_{0} \diamond, u : bool, v : isTrue('u) \gg isTrue('u) : jdg
```

The above sequent has free symbols, but we can close over them by adding a form of parametric higher-order judgment to our object language, indexed by a collection of sorts $\vec{\sigma}$:

$$\Upsilon \Vdash_{\Sigma} \nabla[\vec{\sigma}] : (\{\vec{\sigma}\}, jdg) jdg$$

Then, we may write a closed sequent judgment as follows:

```
|\cdot| \cdot |\cdot| \cdot |\cdot| \cdot \nabla [\exp, \exp](\{u, v\}]]. \diamond, u : bool, v : isTrue('u) \gg isTrue('u)) : jdg
```

5.1 Refinements for wellformedness

Having specified an approximation of the grammar of telescopes and sequents in the abt logical framework, we can proceed to define proper wellformedness via *inductive refinement* [?]. The basic idea is to introduce a new form of (meta)-judgment $\Omega \triangleright \Upsilon \parallel \Gamma \vdash M \in_{\mathbf{wf}} \tau$ which expresses the extrinsic wellformedness properties we wish to verify, presupposing $\Omega \triangleright \Upsilon \parallel \Gamma \vdash_{\circ} M : \tau$. Additionally, we introduce an analogous judgment on bound terms, $\Omega \triangleright \Upsilon \parallel \Gamma \vdash_{\circ} E \in_{\mathbf{wf}} \nu$ presupposing $\Omega \triangleright \Upsilon \parallel \Gamma \vdash_{\circ} E : \nu$, defined uniformly as follows:

$$\frac{\Omega \triangleright \Upsilon, \vec{\mathbf{u}} : \vec{\sigma} \parallel \Gamma, \vec{\mathbf{x}} : \vec{\tau} \vdash M \in_{\mathbf{wf}} \tau}{\Omega \triangleright \Upsilon \parallel \Gamma \vdash \{\vec{\mathbf{u}}\}[\vec{\mathbf{x}}]. M \in_{\mathbf{wf}} \{\vec{\sigma}\}[\vec{\tau}]. \tau}$$

Likewise, wellformedness for variables and metavariables is defined uniformly:

$$\begin{array}{c} \Omega\ni\mathfrak{m}:\{\vec{\sigma}\}[\tau_{0},\ldots,\tau_{n}].\,\tau\\ &\qquad \qquad \Omega\triangleright\Upsilon\parallel\Gamma\vdash M_{i}\in_{\mathbf{wf}}\tau_{i}\ (i\leqslant n)\\ \hline {\Omega\triangleright\Upsilon\parallel\Gamma\vdash x\in_{\mathbf{wf}}\tau} &\qquad \overline{\Omega\triangleright\Upsilon\parallel\Gamma\vdash\mathfrak{m}\{\vec{u}\}(M_{0},\ldots,M_{n})\in_{\mathbf{wf}}\tau} \end{array}$$

Remark 5.1. Note that the refinement for variables x is not trivial, since it is only defined in case the presupposition $\Omega \triangleright \Upsilon \parallel \Gamma \vdash_{\circ} x : \tau$ is satisfied.

The remainder of the definition of refinement proceeds by induction on sorts and operators. For the sake of this example, we will just stipulate that anything of sort exp or type is grammatical if its subterms are grammatical:

$$\begin{split} & \Upsilon \Vdash_{\Sigma} \vartheta : (\nu_{0}, \dots, \nu_{n}) \, \tau \\ & \frac{\Omega \triangleright \Upsilon \parallel \Gamma \vdash E_{i} \in_{\mathbf{wf}} \nu_{i} \ (i \leqslant n)}{\Omega \triangleright \Upsilon \parallel \Gamma \vdash \vartheta(E_{0}, \dots, E_{n}) \in_{\mathbf{wf}} \tau} \ \text{for} \ \tau \in \{ \text{exp, type} \} \end{split}$$

The refinements for parametric judgment and sequents simply delegate to their subterms as well:

$$\begin{split} \frac{\Omega \triangleright \Upsilon, \vec{u} : \vec{\sigma} \parallel \Gamma \vdash J \in_{\mathbf{wf}} \mathsf{jdg}}{\Omega \triangleright \Upsilon \parallel \Gamma \vdash \nabla [\vec{\sigma}] (\{\vec{u}\}] . \, J) \in_{\mathbf{wf}} \mathsf{jdg}} \\ \frac{\Omega \triangleright \Upsilon \parallel \Gamma \vdash H \in_{\mathbf{wf}} \mathsf{tele} \quad \Omega \triangleright \Upsilon \parallel \Gamma \vdash A \in_{\mathbf{wf}} \mathsf{type}}{\Omega \triangleright \Upsilon \parallel \Gamma \vdash H \gg A \in_{\mathbf{wf}} \mathsf{jdg}} \end{split}$$

The refinement for telescopes proceeds by induction:

$$\frac{\Omega \triangleright \Upsilon \setminus \{u\} \parallel \Gamma \vdash H \in_{\mathbf{wf}} \text{ tele}}{\Omega \triangleright \Upsilon \setminus \{u\} \parallel \Gamma \vdash A \in_{\mathbf{wf}} \text{ type}}$$

$$\frac{\Omega \triangleright \Upsilon \parallel \Gamma \vdash \Diamond \in_{\mathbf{wf}} \text{ tele}}{\Omega \triangleright \Upsilon \parallel \Gamma \vdash H, u : A \in_{\mathbf{wf}} \text{ tele}}$$