Comparison of Frozen Spin type EDM search methods

Yury Senichev ¹ Alexander Aksentev ^{2,3}

¹Institute for Nuclear Research of RAS

²Forschungszentrum Jülich

³NRNU "MEPhl"

19 February 2019

Considered methods

- ▶ BNL Frozen Spin
- ► I.Koop's Spin Wheel
- Frequency Domain Method

BNL FS

As seen by the authors

- Observation of the vertical polarization component $\Delta P_V pprox P \cdot \omega_{EDM} \cdot t$
- ▶ Cross section asymmetry $\varepsilon_{LR} \approx 5 \cdot 10^{-6}$ for smallest practical values of (horizontal plane) ω_{MDM}^2
- Challenging task for polarimetry³

 $^{^1}$ D. Anastassopoulos et al., AGS Proposal: Search for a permanent electric dipole moment of the deuteron nucleus at the 10^{-29} e \cdot cm level. p. 9.

²Ibid., p. 18.

³Mane, "Spin Wheel", p. 6.

BNL FS

Systematics

- ▶ Only known first-order systematic effect pertaining to the spin dynamics is the existence of $\langle E_V \rangle \neq 0^4$
- ► Error frequency $\omega_{syst} \approx \frac{\mu \langle E_V \rangle}{\beta c \gamma^2}$ changes sign when reversing the beam circulation direction (CW/CCW)⁵
- ▶ However, at practical values of element alignment error, $\omega_{syst} \gg \omega_{EDM}$, hence P_V growth occurs mostly due to the MDM
- * Since it's a Phase Domain method, it's vulnerable to the geometric phase error⁶

 $^{^4}$ D. Anastassopoulos et al., AGS Proposal: Search for a permanent electric dipole moment of the deuteron nucleus at the 10^{-29} e · cm level. p. 10.

⁵lbid., p. 11.

⁶V. Anastassopoulos et al., *A Storage Ring Experiment to Detect a Proton Electric Dipole Moment*, p. 6.

Geometric phase error

- Caused by the non-commutativity of rotations
- ► In "Frequency Domain Logic" it means the absence of a definite orientation of the spin precession axis (SPA)
- * Call that the 3D Frozen Spin state

FS-type methodology

Conditions of success

- One must always have a definite direction of the SPA
- Frequency (not phase) must be measured

These conditions are satisfied by two methods:

- Spin Wheel
- Frequency Domain

Spin Wheel

The Spin Wheel is great; it satisfies both success conditions.

- ▶ Apply a radial magnetic field of strength B_x sufficient to turn the spin vector about the \hat{x} -axis with a frequency of 1 Hz
- ightharpoonup $\omega_{B_X} \parallel \omega_{EDM}$ hence $\omega_{net} \propto \omega_{EDM} + {\omega_{B_X}}^7$
- ► EDM effect $\hat{\omega}_{EDM} = \frac{1}{2} \left[\omega_{net}(+B_X) + \omega_{net}(-B_X) \right]$
- ightharpoonup Value of B_X is calibrated by measuring the vertical orbit splitting

Spin Wheel

The good, the bad, the ugly

- Higher polarization growth rate greatly simplifies the task for polarimetry
- Magnetic field calibration by means of orbit split measurements seems unfeasible
- Element misalignment-induced error is not accounted for:

$$\begin{split} \hat{\omega}_{\textit{EDM}} &= \frac{1}{2} \left(\omega_{\textit{EDM}} + \omega_{\textit{BX}} + \omega_{\textit{mis}} + \omega_{\textit{EDM}} - \omega_{\textit{BX}} + \omega_{\textit{mis}} \right) \\ &= \omega_{\textit{EDM}} + \omega_{\textit{mis}} \end{split}$$

Frequency domain method

This methodology has been developed specifically to deal with misalignment error.

- No reason to apply an external B-field; misalignment B_X -field provides a sufficiently fast wheel
- ▶ The FS condition ensures that $\omega_{\textit{net}} \propto \omega_{\textit{EDM}} + \omega_{\textit{mis}}$
- ▶ The same EDM estimator $\hat{\omega}_{EDM} = \frac{\omega_{net}(+B_X) + \omega_{net}(-B_X)}{2}$
- ▶ To flip the sign of B_X one must reverse the guide field polarity (CW/CCW comeback)
- ▶ The value of B_X is calibrated via horizontal plane precession frequency