Aula 2 - Gabarito

Tutoria de BCC101 - Matemática Discreta I

Departamento de Computação. Universidade Federal de Ouro Preto.

Obs.: As soluções a seguir utilizam o formato padrão de demonstração e não estão de acordo com a abordagem estruturada de Daniel Velleman.

1. Para todo $n \in \mathbb{Z}$, se n é par então $n^2 + 2n + 4$ é par. Verdadeiro.

Prova:

Seja n um inteiro arbitrário.

Se n é par, então existe $k \in \mathbb{Z}$ tal que n = 2k.

Queremos mostrar que $n^2 + 2n + 4$ é par.

Como n = 2k, temos que

$$n^{2} + 2n + 4 = (2k)^{2} + 2(2k) + 4$$
$$= 4k^{2} + 4k + 4$$
$$= 2(2k^{2} + 2k + 2)$$

Por definição, temos que $2k^2 + 2k + 2 \in \mathbb{Z}$.

Então existe um $t \in \mathbb{Z}$ tal que $t = 2k^2 + 2k + 2$.

Temos que $n^2 + 2n + 4 = 2t$.

Portanto, pela definição de número par, concluímos que n^2+2n+4 também é par. \square

2. Para todo $n \in \mathbb{Z}$, se n é impar então $n^2 + 2n + 4$ é impar. Verdadeiro.

Prova:

Seja n um inteiro arbitrário.

Se n é impar, então existe $k \in \mathbb{Z}$ tal que n = 2k + 1.

Queremos mostrar que $n^2 + 2n + 4$ é impar.

Como n = 2k + 1, temos que

$$n^{2} + 2n + 4 = (2k + 1)^{2} + 2(2k + 1) + 4$$
$$= 4k^{2} + 4k + 1 + 4k + 2 + 4$$
$$= 4k^{2} + 8k + 6 + 1$$
$$= 2(2k^{2} + 4k + 3) + 1$$

Por definição, temos que $2k^2 + 4k + 3 \in \mathbb{Z}$.

Então existe um $t \in \mathbb{Z}$ tal que $t = 2k^2 + 4k + 3$.

Temos que $n^2 + 2n + 4 = 2t + 1$.

Portanto, pela definição de número ímpar, concluímos que n^2+2n+4 também é ímpar. \square

3. Para todo $n \in \mathbb{Z}$, se n+3 é impar então n^3 é impar. Falso.

Contraexemplo:

Tome n=2.

Temos que 2+3=5, que é impar, mas $2^3=8$, que é par.

4. Para todo $n, m \in \mathbb{Z}$, se n é divisível por m então n^2 é divisível por m. Verdadeiro.

Prova:

Sejam n e m inteiros arbitrários.

Se n é divisível por m então existe $p \in \mathbb{Z}$ tal que n = mp.

Queremos mostrar que n^2 é divisível por m.

Como n = mp, temos que $n^2 = (mp)^2 = m^2p^2 = m(mp^2)$.

Por definição, temos que $mp^2 \in \mathbb{Z}$.

Então existe $t \in \mathbb{Z}$ tal que $t = mp^2$.

Temos que $n^2 = mt$.

Portanto, pela definição de divisível, temos que n^2 é divisível por m. \square

5. Para todo $n \in \mathbb{Z}$, se n é divisível por 49 então n é divisível por 3. Falso. Contraexemplo:

Tome n = 49. 49 = 49 * 1, mas não existe $t \in \mathbb{Z}$ tal que 49 = 3t.

6. Para todo $x,y \in \mathbb{R}$, se x e y são racionais e $y \neq 0$ então $\frac{x}{y}$ é racional. Verdadeiro.

Prova:

Sejam x e y números reais arbitrários.

Se x e y são racionais, então existem $a, b, c, d \in \mathbb{Z}$, com $b, d \neq 0$, tal que $x = \frac{a}{b} e y = \frac{c}{d}$.

Como $y \neq 0$, temos que $c \neq 0$.

Queremos mostrar que $\frac{x}{y}$ é racional.

Pela álgebra de divisão de frações, temos que $\frac{x}{y} = \frac{a}{b} \div \frac{c}{d} = \frac{ad}{bc}$. Temos que $ad \in \mathbb{Z}$, $bc \in \mathbb{Z}$ e $bc \neq 0$, já que ambos b e c são diferentes de 0.

Portanto, pela definição de número racional, $\frac{x}{y}$ é racional. \square

7. Para todo $n \in \mathbb{Z}$, se n é primo então $n^2 + 1$ é primo. Falso.

Contraexemplo:

Tome n = 3. 3 é primo mas $3^2 + 1 = 10$, que não é primo.

8. Para todo $x, y \in \mathbb{R}$, se x e y não são racionais, então x * y não é racional. Falso.

Contraexemplo:

Tome $x = \sqrt{2}$ e $y = \sqrt{8}$. Temos que $\sqrt{2} * \sqrt{8} = \sqrt{16} = 4$.

9. Para todo $x, y \in \mathbb{R}$, se x e y são racionais então $2x + y^2$ é racional. Verdadeiro.

Prova:

Sejam x, y reais arbitrários.

Se x e y são racionais, então existem $a,b,c,d\in\mathbb{Z},$ com $b,d\neq 0$ tal que $x = \frac{a}{b} e y = \frac{c}{d}$.

Queremos mostrar que $2x+y^2$ é racional. Temos que $2x+y^2=\frac{2a}{b}+\frac{c^2}{d^2}$. Pela propriedade do mínimo múltiplo comum, temos que $\frac{2a}{b}+\frac{c^2}{d^2}=\frac{2ad^2+c^2b}{bd^2}$. Por definição, $2ad^2+c^2b\in\mathbb{Z}$ e $bd^2\neq 0$. Portanto, pela definição de número racional, $2x+y^2$ é racional. \square

10. Para todo $n,m\in\mathbb{Z},$ se n e m são primos, então n+4m+3 é par. Falso. Contraexemplo:

Tome n=2 e m=3.

Temos que 2+12+3=17, que é impar.