# Project 2 Liquor Sales + Linear Regression

Cheng Ji

## Contents

- The Data
- EDA
- Mine
- Refine
- Model

#### The Data

- 10% sample of transactions from 2015 to 2016
   Q1 for all stores in lowa that have a class E liquor license.
- Goal: predict sale based on location (County), time (season), average price, and bottles sold.

# EDA & Mining

- Handle missing values: over 27 thousand obs, less than 2000 missing values. 0.6% missing values, I can live without them.
- Removing \$ and convert Cost, Retail, and Sale to float type.
- Create a 'season' column taking values from 1 to 4 based on 'Date'

# EDA & Mining

 Dropping irrelevant columns, and sum sale, bottles sold, cost, and average price based on location and season.

|   | County Number | season | sale     | Volume Sold (Liters) | <b>Bottles Sold</b> | price     |
|---|---------------|--------|----------|----------------------|---------------------|-----------|
| 0 | 1.0           | 1      | 22019.02 | 1664.16              | 1945                | 11.320833 |
| 1 | 1.0           | 2      | 10820.66 | 842.73               | 894                 | 12.103647 |
| 2 | 1.0           | 3      | 11974.03 | 961.33               | 921                 | 13.001118 |
| 3 | 1.0           | 4      | 10730.49 | 891.62               | 890                 | 12.056730 |
| 4 | 2.0           | 1      | 4450.17  | 342.37               | 375                 | 11.867120 |

# EDA & Mining



Drop outliers over 3std

## Refine the data

- Perfect correlation between sale and bottles sold.
- Just like you are trying to predict income tax, and you have income as X. Problem Solved.

|                      | County Number | season    | sale      | Volume Sold (Liters) | <b>Bottles Sold</b> | price    |
|----------------------|---------------|-----------|-----------|----------------------|---------------------|----------|
| County Number        | 1.000000      | 0.007773  | 0.057974  | 0.052634             | 0.047641            | 0.070149 |
| season               | 0.007773      | 1.000000  | -0.050248 | -0.063149            | -0.051682           | 0.092015 |
| sale                 | 0.057974      | -0.050248 | 1.000000  | 0.997190             | 0.995112            | 0.100977 |
| Volume Sold (Liters) | 0.052634      | -0.063149 | 0.997190  | 1.000000             | 0.995004            | 0.094661 |
| Bottles Sold         | 0.047641      | -0.051682 | 0.995112  | 0.995004             | 1.000000            | 0.057417 |
| price                | 0.070149      | 0.092015  | 0.100977  | 0.094661             | 0.057417            | 1.000000 |

## Refine the data

Convert categorical data (County Number, season)

```
categorical = preprocessing.OneHotEncoder(categorical_features = [0,1])
X = modeldata[['County Number', 'season', 'price', 'Bottles Sold']]
y = modeldata['sale']
X = categorical.fit_transform(X)
```

Multicollinearity

## Models

- X = county, season, price, bottles sold
- Train test split
- Use Lasso to drop the redundant dummy
- $R^2 = 0.9979$ , rmse=6193 (mean=63848)

## Models

- X without bottles sold
- $R^2 = 0.9364$ , rmse = 34220
- R^2 may not be a good measure for regularized model.