Objetivo: reduzir o número de variáveis no mapa de Karnaugh → trabalhar com mapas menores

Algoritmo: particionar as variáveis envolvidas em internas e externas

Variáveis externas → define o endereço da célula

Variáveis internas → inseridas nas células

Algoritmo: dois passos: 1) Gerar o mapa K-reduzido;

2) Obter a função Mínima

Regras (2): Obter função mínima → composta por duas funções: Fmin=F1 + F2

- Obter F1 → As variáveis inseridas no mapa são zeradas e obter F1 como visto anteriormente
- 2) Obter F2 -> implicantes primos são obtidos com as variáveis inseridas mais 1's e don't-care

Exemplo-1: Seja a função Booleana descrita por uma tabela verdade

Α	В	С	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

CAB	00	01	11	10
0	0	1	1	0
1	1	1	0	0

Exemplo-1: A) Gerar o mapa de K-reduzido

Α	В	С	F
0	0	O	С
0	0	1	С
0	1	0	1
0	1	1	1
1	0	0	0
11	0	1	0
1	1	0	C
1	1	1	С

CAB	00	01	11	10
0	0	1	1	0
1	1	1	0	0

Exemplo-1: B) Obter Função mínima

Α	В	С	F
0	0	0	С
0	0	1	С
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	C
1	1	1	C

$$F_{MIN}(A,B)=B\overline{C}+\overline{A}C$$

Quando a célula de valor 1 é coberto com a variável interna e o seu complemento > não precisa de cobertura

$$F_{MIN}(A,B)=B\overline{C}+\overline{A}C$$

Exemplos-2 e 3:

$$F2(A,B,C)=\overline{B}$$
 C

CAB	00	01	11	10
0	1	0	0	0
1	0	1	0	0

 $F_{MIN}=F_1+F_2=A+\overline{B}C$

FMIN= F1 + F2= A B C + A B C + C D

Prof. Duarte Lopes de Oliveira – Divisão de Engenharia Eletrônica do ITA

6

Exemplos-4 e 5:

CDB	0 0	0 1	1 1	1 0
0 0	0	E+F	E+F	0
0 1	0	E	E	0
11	0	E	E	0
10	0	E+F	E+F	0

\ A .		F1=0			
C D	00	0 1	_1_1	10	
0 0	0	E + 0	E + 0	0	
0 1	0	E	E	0	
1 1	0	E	E	O	
10	0	E + 0	E + 0	0	
				•	

FMIN=F1 + F2-1 + F2-2= B E + B D F