Przedział ufności dla mediany w przypadku populacji dyskretnej

Marta Sommer

8 kwietnia 2014

Test znaków

$$X_1, X_2, \dots, X_n$$
 – obserwacje

Hipoteza:

$$\begin{cases}
H: M = M_0 \\
K: M \neq M_0
\end{cases}$$

Statystyka testowa:

$$T = \sum_{i=1}^n \mathbb{I}_{\{X_i > M_0\}}$$

Rozkład statystyki testowej:

$$T \sim \text{Bin}(n, \frac{1}{2})$$

Test znaków, cd.

Hipotezę H odrzucamy więc, gdy $T \geqslant k_{\frac{\alpha}{2}}$ lub $T \leqslant k'_{\frac{\alpha}{2}}$, gdzie $k_{\frac{\alpha}{2}}$ jest najmniejszą liczbą naturalną spełniającą nierówność:

$$\sum_{i=k_{\frac{\alpha}{2}}}^{n} \binom{n}{i} \left(\frac{1}{2}\right)^{n} \leqslant \frac{\alpha}{2},$$

zaś $k_{\frac{\alpha}{2}}'$ jest największą liczbą naturalną spełniającą nierówność:

$$\sum_{i=0}^{k'_{\frac{\alpha}{2}}} \binom{n}{i} \left(\frac{1}{2}\right)^n \leqslant \frac{\alpha}{2}.$$

Hipotezy H nie odrzucamy natomiast w następującym przypadku:

$$k_{\frac{\alpha}{2}}' < T < k_{\frac{\alpha}{2}} \qquad \equiv \qquad k_{\frac{\alpha}{2}}' + 1 \leqslant T \leqslant k_{\frac{\alpha}{2}} - 1.$$

Test znaków, cd.

Lemat

Niech $r, s \in \{1, ..., n\}$, r < s oraz niech T będzie statystyką testu znaków. Wówczas prawdziwa jest teza:

$$\mathbb{P}(X_{r:n} \leqslant M \leqslant X_{s:n}) = \mathbb{P}(r \leqslant T(X_1, \dots, X_n) \leqslant s - 1).$$

$$k_{\frac{\alpha}{2}}' + 1 \leqslant T \leqslant k_{\frac{\alpha}{2}} - 1$$

Przyjmując $r:=k_{rac{lpha}{2}}'+1$ i $s:=k_{rac{lpha}{2}}$, otrzymujemy przedział ufności

$$X_{(k'_{\frac{\alpha}{2}}+1):n} \leqslant M \leqslant X_{k_{\frac{\alpha}{2}}:n}$$

na poziomie $1 - \alpha$.

Problem

Uwaga

Wszystkie te rozważania przeprowadzane są przy założeniach ciągłości rozkładu oraz zerowego prawdopodobieństwa wystąpienia mediany!

Jak wygląda sytuacja dla rozkładu dyskretnego? Co dzieje się w przypadkach, gdy mediana występuje nawet kilkakrotnie?

Podstawowe oznaczenia

Będziemy rozważać przedziały ufności oparte na statystyce porządkowej i mające następującą postać:

$$\left[X_{d:n},X_{(n+1-d):n}\right]$$

Dla populacji ciągłej powyższy przedział wyznaczony jest na poziomie ufności równym

$$1 - \alpha = 1 - 2 \cdot \mathbb{P}(B \leqslant d - 1),$$

gdzie $B \sim \text{Bin}(n, \frac{1}{2})$.

Wynika to z dość prostego rachunku wykorzystującego to, że przy założeniu hipotezy zerowej $\mathbb{P}(B \geqslant t) = \mathbb{P}(B \leqslant n - t)$.

$$\mathbb{P}(B \geqslant t) \stackrel{?}{=} \mathbb{P}(B \leqslant n - t)$$

$$\mathbb{P}(B \geqslant t) =$$

$$\mathbb{P}(B \geqslant t) \stackrel{?}{=} \mathbb{P}(B \leqslant n - t)$$

$$\mathbb{P}(B \geqslant t) = \left| B \sim Bin(n, \frac{1}{2}) \right|$$

$$\mathbb{P}(B \geqslant t) \stackrel{?}{=} \mathbb{P}(B \leqslant n - t)$$

$$\mathbb{P}(B \geqslant t) = \left| B \sim Bin(n, \frac{1}{2}) \right| \stackrel{H}{=} \sum_{i=t}^{n} \binom{n}{i} \left(\frac{1}{2}\right)^{i} \left(1 - \frac{1}{2}\right)^{n-i} =$$

$$\mathbb{P}(B \geqslant t) \stackrel{?}{=} \mathbb{P}(B \leqslant n - t)$$

$$\mathbb{P}(B \ge t) = \left| B \sim Bin(n, \frac{1}{2}) \right| \stackrel{H}{=} \sum_{i=t}^{n} \binom{n}{i} \left(\frac{1}{2}\right)^{i} \left(1 - \frac{1}{2}\right)^{n-i} =$$

$$= \sum_{i=t}^{n} \binom{n}{i} \left(\frac{1}{2}\right)^{n}$$

$$\mathbb{P}(B \geqslant t) \stackrel{?}{=} \mathbb{P}(B \leqslant n - t)$$

$$\mathbb{P}(B \ge t) = \left| B \sim Bin(n, \frac{1}{2}) \right| \stackrel{H}{=} \sum_{i=t}^{n} \binom{n}{i} \left(\frac{1}{2}\right)^{i} \left(1 - \frac{1}{2}\right)^{n-i} =$$

$$= \sum_{i=t}^{n} \binom{n}{i} \left(\frac{1}{2}\right)^{n} = \left(\frac{1}{2}\right)^{n} \sum_{i=t}^{n} \binom{n}{n-i}$$

$$\mathbb{P}(B \geqslant t) \stackrel{?}{=} \mathbb{P}(B \leqslant n - t)$$

$$\mathbb{P}(B \geqslant t) = \left| B \sim Bin(n, \frac{1}{2}) \right| \stackrel{H}{=} \sum_{i=t}^{n} \binom{n}{i} \left(\frac{1}{2}\right)^{i} \left(1 - \frac{1}{2}\right)^{n-1} =$$

$$= \sum_{i=t}^{n} \binom{n}{i} \left(\frac{1}{2}\right)^{n} = \left(\frac{1}{2}\right)^{n} \sum_{i=t}^{n} \binom{n}{n-i} =$$

$$= \left(\frac{1}{2}\right)^{n} \sum_{i=0}^{n-t} \binom{n}{i}$$

$$\mathbb{P}(B \geqslant t) \stackrel{?}{=} \mathbb{P}(B \leqslant n - t)$$

$$\mathbb{P}(B \geqslant t) = \left| B \sim Bin(n, \frac{1}{2}) \right| \stackrel{H}{=} \sum_{i=t}^{n} \binom{n}{i} \left(\frac{1}{2}\right)^{i} \left(1 - \frac{1}{2}\right)^{n-1} =$$

$$= \sum_{i=t}^{n} \binom{n}{i} \left(\frac{1}{2}\right)^{n} = \left(\frac{1}{2}\right)^{n} \sum_{i=t}^{n} \binom{n}{n-i} =$$

$$= \left(\frac{1}{2}\right)^{n} \sum_{i=0}^{n-t} \binom{n}{i} = \sum_{i=0}^{n-t} \binom{n}{i} \left(\frac{1}{2}\right)^{i} \left(1 - \frac{1}{2}\right)^{n-i}$$

$$\mathbb{P}(B \geqslant t) \stackrel{?}{=} \mathbb{P}(B \leqslant n - t)$$

$$\mathbb{P}(B \geqslant t) = \left| B \sim Bin(n, \frac{1}{2}) \right| \stackrel{H}{=} \sum_{i=t}^{n} \binom{n}{i} \left(\frac{1}{2}\right)^{i} \left(1 - \frac{1}{2}\right)^{n-i} =$$

$$= \sum_{i=t}^{n} \binom{n}{i} \left(\frac{1}{2}\right)^{n} = \left(\frac{1}{2}\right)^{n} \sum_{i=t}^{n} \binom{n}{n-i} =$$

$$= \left(\frac{1}{2}\right)^{n} \sum_{i=0}^{n-t} \binom{n}{i} = \sum_{i=0}^{n-t} \binom{n}{i} \left(\frac{1}{2}\right)^{i} \left(1 - \frac{1}{2}\right)^{n-i} =$$

$$= \mathbb{P}(B \leqslant n - t)$$

$$1 - \alpha \stackrel{?}{=} 1 - 2 \cdot \mathbb{P}(B \leqslant d - 1)$$

$$1 - a$$

$$1 - \alpha \stackrel{?}{=} 1 - 2 \cdot \mathbb{P}(B \leqslant d - 1)$$

$$1 \quad - \quad \alpha = \mathbb{P}(M \in \left[X_{d:n}, X_{(n+1-d):n}\right])$$

$$1 - \alpha \stackrel{?}{=} 1 - 2 \cdot \mathbb{P}(B \leqslant d - 1)$$

$$1 \quad - \quad \alpha = \mathbb{P}(M \in \left[X_{d:n}, X_{(n+1-d):n}\right]) = \mathbb{P}(X_{d:n} \leqslant M \leqslant X_{(n+1-d):n})$$

$$1 - \alpha \stackrel{?}{=} 1 - 2 \cdot \mathbb{P}(B \leqslant d - 1)$$

1 -
$$\alpha = \mathbb{P}(M \in [X_{d:n}, X_{(n+1-d):n}]) = \mathbb{P}(X_{d:n} \leq M \leq X_{(n+1-d):n}) = \mathbb{P}(d \leq T \leq n+1-d-1)$$

$$1 - \alpha \stackrel{?}{=} 1 - 2 \cdot \mathbb{P}(B \leqslant d - 1)$$

1 -
$$\alpha = \mathbb{P}(M \in [X_{d:n}, X_{(n+1-d):n}]) = \mathbb{P}(X_{d:n} \leq M \leq X_{(n+1-d):n}) =$$

= $\mathbb{P}(d \leq T \leq n+1-d-1) = \mathbb{P}(d \leq T \leq n-d)$

$$1 - \alpha \stackrel{?}{=} 1 - 2 \cdot \mathbb{P}(B \leqslant d - 1)$$

$$1 - \alpha = \mathbb{P}(M \in [X_{d:n}, X_{(n+1-d):n}]) = \mathbb{P}(X_{d:n} \leqslant M \leqslant X_{(n+1-d):n}) =$$

$$= \mathbb{P}(d \leqslant T \leqslant n+1-d-1) = \mathbb{P}(d \leqslant T \leqslant n-d) =$$

$$= \mathbb{P}(T \leqslant n-d) - \mathbb{P}(T < d)$$

$$1 - \alpha \stackrel{?}{=} 1 - 2 \cdot \mathbb{P}(B \leqslant d - 1)$$

$$1 - \alpha = \mathbb{P}(M \in [X_{d:n}, X_{(n+1-d):n}]) = \mathbb{P}(X_{d:n} \leq M \leq X_{(n+1-d):n}) =$$

$$= \mathbb{P}(d \leq T \leq n+1-d-1) = \mathbb{P}(d \leq T \leq n-d) =$$

$$= \mathbb{P}(T \leq n-d) - \mathbb{P}(T < d) = \mathbb{P}(T \leq n-d) - \mathbb{P}(T \leq d-1)$$

$$1 - \alpha \stackrel{?}{=} 1 - 2 \cdot \mathbb{P}(B \leqslant d - 1)$$

$$1 - \alpha = \mathbb{P}(M \in [X_{d:n}, X_{(n+1-d):n}]) = \mathbb{P}(X_{d:n} \leqslant M \leqslant X_{(n+1-d):n}) =$$

$$= \mathbb{P}(d \leqslant T \leqslant n+1-d-1) = \mathbb{P}(d \leqslant T \leqslant n-d) =$$

$$= \mathbb{P}(T \leqslant n-d) - \mathbb{P}(T \leqslant d) = \mathbb{P}(T \leqslant n-d) - \mathbb{P}(T \leqslant d-1) =$$

$$= \mathbb{P}(T \geqslant d) - \mathbb{P}(T \leqslant d-1)$$

$$1 - \alpha \stackrel{?}{=} 1 - 2 \cdot \mathbb{P}(B \leqslant d - 1)$$

$$1 - \alpha = \mathbb{P}(M \in [X_{d:n}, X_{(n+1-d):n}]) = \mathbb{P}(X_{d:n} \leqslant M \leqslant X_{(n+1-d):n}) =$$

$$= \mathbb{P}(d \leqslant T \leqslant n+1-d-1) = \mathbb{P}(d \leqslant T \leqslant n-d) =$$

$$= \mathbb{P}(T \leqslant n-d) - \mathbb{P}(T \leqslant d) = \mathbb{P}(T \leqslant n-d) - \mathbb{P}(T \leqslant d-1) =$$

$$= \mathbb{P}(T \geqslant d) - \mathbb{P}(T \leqslant d-1) = 1 - \mathbb{P}(T \leqslant d) - \mathbb{P}(T \leqslant d-1)$$

$$1 - \alpha \stackrel{?}{=} 1 - 2 \cdot \mathbb{P}(B \leqslant d - 1)$$

$$\begin{array}{ll} 1 & - & \alpha = \mathbb{P}(M \in [X_{d:n}, X_{(n+1-d):n}]) = \mathbb{P}(X_{d:n} \leqslant M \leqslant X_{(n+1-d):n}) = \\ & = & \mathbb{P}(d \leqslant T \leqslant n+1-d-1) = \mathbb{P}(d \leqslant T \leqslant n-d) = \\ & = & \mathbb{P}(T \leqslant n-d) - \mathbb{P}(T < d) = \mathbb{P}(T \leqslant n-d) - \mathbb{P}(T \leqslant d-1) = \\ & = & \mathbb{P}(T \geqslant d) - \mathbb{P}(T \leqslant d-1) = 1 - \mathbb{P}(T < d) - \mathbb{P}(T \leqslant d-1) = \\ & = & 1 - \mathbb{P}(T \leqslant d-1) - \mathbb{P}(T \leqslant d-1) \end{array}$$

$$1 - \alpha \stackrel{?}{=} 1 - 2 \cdot \mathbb{P}(B \leqslant d - 1)$$

$$\begin{array}{ll} 1 & - & \alpha = \mathbb{P}(M \in [X_{d:n}, X_{(n+1-d):n}]) = \mathbb{P}(X_{d:n} \leqslant M \leqslant X_{(n+1-d):n}) = \\ & = & \mathbb{P}(d \leqslant T \leqslant n+1-d-1) = \mathbb{P}(d \leqslant T \leqslant n-d) = \\ & = & \mathbb{P}(T \leqslant n-d) - \mathbb{P}(T < d) = \mathbb{P}(T \leqslant n-d) - \mathbb{P}(T \leqslant d-1) = \\ & = & \mathbb{P}(T \geqslant d) - \mathbb{P}(T \leqslant d-1) = 1 - \mathbb{P}(T < d) - \mathbb{P}(T \leqslant d-1) = \\ & = & 1 - \mathbb{P}(T \leqslant d-1) - \mathbb{P}(T \leqslant d-1) = 1 - 2 \cdot \mathbb{P}(T \leqslant d-1) \end{array}$$

Problem

Uwaga

Prawdziwym problemem jest określenie <u>poziomu ufności</u> dla znalezionego już przedziału ufności.

Ze względu na to, że dane są dyskretne, istnieje skończenie wiele (ewentualnie przeliczalnie wiele) możliwych przedziałów ufności, a tym samym – skończenie wiele poziomów ufności możliwych do osiągnięcia.

Poziom ufności wyznaczamy wprost ze wzoru

$$1 - \alpha = 1 - 2 \cdot \mathbb{P}(B \leqslant d - 1),$$

ignorując to, że dane są dyskretne.

Rozważamy poziomy ufności wyznaczone tym samym wzorem, co w metodzie 1, dla przedziału ufności $[X_{d:n}, X_{(n+1-d):n}]$:

$$1 - \alpha = 1 - 2 \cdot \mathbb{P}(B \leqslant d - 1)$$

oraz poziomy ufności wyznaczone dla nieznacznie niesymetrycznego przedziału ufności $[X_{(d+1):n}, X_{(n+1-d):n}]$:

$$1 - \alpha = 1 - \mathbb{P}(B \leqslant d - 1) - \mathbb{P}(B \leqslant d).$$

Wyznaczamy wszystkie możliwe przedziały i wybieramy ten, który ma najmniejszy poziom ufności większy lub równy 0,95.

Rozważamy symetryczny przedział ufności

$$[X_{d:n}, X_{(n+1-d):n}].$$

Stosując tę metodę, weźmiemy pod uwagę ewentualne obserwacje związane.

Niech r będzie najmniejszym indeksem, dla którego

$$X_{r:n} = X_{d:n}$$

oraz niech s będzie największym indeksem, dla którego

$$X_{s:n} = X_{(n+1-d):n}$$

Poziom ufności wyraża się wtedy wzorem:

$$1 - \alpha = 1 - \mathbb{P}(B \leqslant r - 1) - \mathbb{P}(B \leqslant n - s).$$

Wstęp do metod 4–7

Rozważamy przedział ufności $[X_{d:n}, X_{(n+1-d):n}]$.

Metody te stosuje się, opierając się na odwróceniu dwustronnego testu znaków z obserwacjami związanymi.

Poziom ufności wyraża się następująco:

$$1 - \alpha = 1 - \max\{p.value(X_{d:n}-), p.value(X_{(n+1-d):n}+)\},\$$

gdzie p.value(c) to p-value dwustronnego testu o hipotezie:

$$\begin{cases}
H: M = c \\
K: M \neq c
\end{cases}$$

 $X_{d:n}$ — oznacza pierwszą możliwą obserwację poniżej $X_{d:n}$, zaś $X_{(n+1-d):n}$ + oznacza pierwszą możliwą obserwację powyżej $X_{(n+1-d):n}$.

Korzystając z p-value wyznaczonego dla dwustronnego testu znaków przy założeniu ciągłości rozkładu, przyjmiemy:

$$p.value(c) = 2 \cdot \mathbb{P}(B \leqslant \min\{n_+^c, n_-^c\}),$$

gdzie n_+^c to liczba obserwacji większych niż c, zaś n_-^c to liczba obserwacji mniejszych niż c.

Wstęp do metod 5-7

Rozważmy teraz sytuację podobną do tej z metody 4, biorąc jednak pod uwagę, że mamy do czynienia z rozkładem dyskretnym. W szczególności możemy przyjąć, że $X_{d:n}-=X_{d:n}-1$, a $X_{(n+1-d):n}+=X_{(n+1-d):n}+1$. Wtedy:

$$1 - \alpha = 1 - \max\{p.value(X_{d:n} - 1), p.value(X_{(n+1-d):n} + 1)\}.$$

Może się jednak zdarzyć, że obserwacja $X_{d:n}-1$ nie wystąpi wcale lub wystąpi kilkakrotnie. Należy zatem policzyć p-value, biorąc pod uwagę obserwacje związane.

Wstęp do metod 5–7

Wprowadźmy następujące oznaczenia: n_{+}^{c} – liczba obserwacji większych niż c, n_{-}^{c} – liczba obserwacji mniejszych niż c, n_{0}^{c} – liczba obserwacji równych c.

Rozważmy dwustronny test znaków, który odrzuca hipotezę dla dużych wartości

$$n_*^c = \max\{n_+^c, n_-^c\}.$$

P-value takiego testu będzie wyglądała następująco:

$$p.value(c) = \mathbb{P}(N_* \geqslant n_*^c | \stackrel{\sim}{p}_+, \stackrel{\sim}{p}_-, \stackrel{\sim}{p}_0),$$

gdzie $N_*=\max\{N_+,N_-\}$, a (N_+,N_0,N_-) ma rozkład wielomianowy z parametrami n i $(\stackrel{\sim}{p}_+,\stackrel{\sim}{p}_0,\stackrel{\sim}{p}_-)$, które spełniają warunki: $0\leqslant\stackrel{\sim}{p}_+\leqslant\frac{1}{2}$ oraz $0\leqslant\stackrel{\sim}{p}_-\leqslant\frac{1}{2}$.

Wstęp do metod 5–7

Ustaliwszy parametry $(\tilde{p}_+,\tilde{p}_0,\tilde{p}_-)$, wyznaczymy p-value, a tym samym poziom ufności.

Metody 5–7 pozwolą na różne sposoby przybliżać wartości $(\stackrel{\sim}{p}_+,\stackrel{\sim}{p}_0,\stackrel{\sim}{p}_-).$

Dla
$$n_*^c \leqslant \frac{n}{2}$$
:

$$\tilde{p}_{+mle} = \frac{n_{+}^{c}}{n}, \qquad \tilde{p}_{0mle} = \frac{n_{0}^{c}}{n}, \qquad \tilde{p}_{-mle} = \frac{n_{-}^{c}}{n}$$

Dla
$$n_{+}^{c} > \frac{n}{2}$$
:

$$\widetilde{p}_{+mle} = \frac{1}{2}, \qquad \widetilde{p}_{0mle} = \frac{n_0^c}{2(n - n_+^c)}, \qquad \widetilde{p}_{-mle} = \frac{n_-^c}{2(n - n_+^c)}$$

Dla $n_+^c = n$:

$$\tilde{p}_{+mle} = \tilde{p}_{-mle} = \frac{1}{2}, \qquad \tilde{p}_{0mle} = 0$$

Analogicznie dla $n_{-}^{c} > \frac{1}{2}$.

Szukamy $(\tilde{p}_+,\tilde{p}_0,\tilde{p}_-)$, minimalizując wyrażenie:

$$\left(\frac{n_+^c}{n} - p_+\right)^2 + \left(\frac{n_0^c}{n} - p_0\right)^2 + \left(\frac{n_-^c}{n} - p_-\right)^2$$

przy warunkach 0 $\leqslant \stackrel{\sim}{p}_+ \leqslant \frac{1}{2}$ oraz 0 $\leqslant \stackrel{\sim}{p}_- \leqslant \frac{1}{2}$.

Rozwiązania tego problemu wyglądają następująco:

$$\widetilde{p}_{+cql} = \frac{n_+^c}{n}, \qquad \widetilde{p}_{0cql} = \frac{n_0^c}{n}, \qquad \widetilde{p}_{-cql} = \frac{n_-^c}{n},$$

dla $n_*^c \leqslant \frac{n}{2}$.

$$\label{eq:posterior} \widetilde{p}_{+cql} = \frac{1}{2}, \qquad \widetilde{p}_{0cql} = \frac{n_0^c}{n} + \frac{1}{2} \left(\frac{n_+^c}{n} - \frac{1}{2} \right), \qquad \widetilde{p}_{-cql} = \frac{n_-^c}{n} + \frac{1}{2} \left(\frac{n_+^c}{n} - \frac{1}{2} \right),$$

dla $n_+^c > \frac{n}{2}$. Analogicznie dla $n_-^c > \frac{1}{2}$.

Jest nieznaczną modyfikacją metody 6.

Dla
$$n_0^c>0$$
 zachodzi równość $(\stackrel{\sim}{p}_+,\stackrel{\sim}{p}_0,\stackrel{\sim}{p}_-)=(\stackrel{\sim}{p}_{+cql},\stackrel{\sim}{p}_{0cql},\stackrel{\sim}{p}_{-cql}).$

Zmiana następuje dla $n_0^c = 0$. Ma wtedy miejsce równość

$$(\stackrel{\sim}{p}_+,\stackrel{\sim}{p}_0,\stackrel{\sim}{p}_-)=\left(\frac{1}{2},0,\frac{1}{2}\right).$$

Porównanie metod, cd.

Intra-configuration rankings of absolute difference between reported confidence and true coverage

Method	Average rank
6	1.78
7	2.15
5	3.13
3	3.45
4	4.55
1	6.27
2	6.67

Intra-configuration rankings of confidence interval length

Method	Average rank	
6	1.56	
7	2.61	
5	3.00	
3	3.94	
2	5.11	
4	5.88	
1	5.88	

Method	SIM scores (n=84) Sample median = 14			Ticks on sheep $(n=82)$ Sample median = 5			Reading scores ($n = 116$) Sample median = 14		
	lower	upper	confidence	lower	upper	confidence	lower	upper	confidence
1	10	18	96.25	4	6	96.48	11	16	96.77
2	10	18	96.25	4	6	95.25	11	16	95.85
3	10	18	98.84	4	5	96.02	12	16	95.14
4	10	18	98.84	4	6	98.02	11	16	98.01
5	10	18	99.41	4	5	96.70	12	16	96.05
6	11	16	96.63	4	5	96.99	12	16	96.13
7	10	18	99.42	4	5	96.99	12	16	96.13

Bibliografia

- Larocque, Denis, Randles, Ronald H. Confidence Intervals for a Discrete Population Median, *The American Statistician* 2008, nr 62. s. 32–39.
- Emerson, J.D., Simon, G.A. Another Look at the Sign Test when Ties are Present: the Problem of Confidence Intervals, *The American Statistician* 1979, nr 33, s. 140–142.
- Fong, D.Y.T., Kwan, C.W., Lam, K.F., Lam, K.S.L. Use of the Sign Test for the Median in the Presence of Ties, *The American Statistician* 2003, nr 58, s. 237–240.