

Pattern Recognition ECSE 4410/6410 CAPA Spring 2021

Machine Learning / Pattern Recognition

Problem Checklist

Course Instructor - Thirimachos Bourlai

January to May 2021

### Machine Learning Problems

### Checklist – Main Steps

1. Problem

- 2. Data
- 3. Solution

4. Outcomes

### Machine Learning Problems

### Checklist – Details on the Main Steps

- 1. Frame the problem and look at the big picture.
- 2. Get the data.
- 3. Explore the data to gain insights.
- 4. Prepare the data to better expose the underlying data patterns to Machine Learning algorithms.
- 5. Explore many different models and short-list the best ones.
- 6. Fine-tune your models and combine them into a great solution.
- 7. Present your solution.
- 8. Launch, monitor, and maintain your system.

# Machine Learning Problems Adapt the steps to your needs

#### Understand

- Business Objective
- Application of your solution

#### 2. Know

- Other/existing solutions
- Comparable problems to base your solution
- Potential manual solution

#### 3. Define the type of ML model

#### 4. Determine your performance evaluation process

- Performance measure alignment with the business objective
- Define acceptable performance (business/class etc.)

#### 5. Determine availability of experts

#### 6. Make necessary assumptions

- List the assumptions you (or others) have made so far.
- Verify assumptions if possible.

# Machine Learning Problems Automation of processes & Preparation

#### Data

- Where?
- How much?
- Should you document?
- Are there any legal obligations? Do I need to get authorization? Get it. Delete sensitive information deanonymize.
- Check the size and type of data (images, audio, geospatial, videos, etc.).
- Convert to an easy-to-use format.

#### Workspace

- Check your space and how much is needed on your HD
- Need access / authorization

#### **Training and Testing**

- Leave a test set sample aside
  - Do not check at these dataset...

# Machine Learning Problems More Check Points ...

- Create a copy of the data
  - Explore it... is it at a manageable size? What do you do if it is not?
- Create a record of your data copy and exploration processes
- Data attributes and its characteristics
  - 1. Name
  - 2. Type (categorical, int/float, bounded/unbounded, text, structured, etc.)
  - 3. % of missing values
  - 4. Noisiness and type of noise (stochastic, outliers, rounding errors, etc.)
  - 5. Possibly useful for the task?
  - 6. Type of distribution (Gaussian, uniform, logarithmic, etc.)
- Supervised Learning
  - Identify the target Attribute(s)/Features/Characteristics

# Machine Learning Problems More Check Points ...

- Data visualization can be important
- Check features their correlation
- Can you solve the problem manually first?
- Are the data you have sufficient or do you need extra data
  - If you need extra data that would be useful find MORE relevant / good data.
- Perform Data cleaning in your "to be used" dataset:
  - Fix or remove outliers (if needed).
  - Missing values:
    - Fill with zero, mean, median, or
    - Drop their rows (or columns).

# Machine Learning Problems Features

- Feature selection:
  - Drop unnecessary features.
- Other feature processes:
  - Discretize continuous features.
  - Decompose features (e.g., categorical, date/time, etc.).
  - Add promising transformations of features (e.g., log(x), sqrt(x), x2, etc.).
  - Aggregate features into new features.
- Feature scaling.
  - Normalization/scaling is VERY important
  - Start with sample, smaller, training sets so you can train many different models in a reasonable time (be aware that this penalizes complex models such as large neural nets or Random Forests).

### Machine Learning Problems

### Algorithm Selection Process

- Start with simple models using standard parameters.
- Compute and compare their performance.
- For each model:
  - Use N-fold cross-validation
  - Compute/Visualize the mean and standard deviation of the performance measure on the N folds.
- Analyze the most significant variables for each algorithm.
- Analyze the types of errors the models make.
- Discuss solution to avoid these errors
- Maybe feature selection is needed (ML) or use DL, or both
- Determine the top models (3-5)
  - Select base on the different types of errors, NOT blindly

# Machine Learning Problems Communicate the findings

- Documentation
- Presentation of solution/results
- Highlight the big picture first, then go to the details
- Explain why your solution achieves the business/research objective
- Present interesting points you noticed along the way
  - There are limitations (what works or not) to present and discuss
  - List the original hypothesis vs. solution vs. limitations
  - Nobody cares only about YOUR best solution there are ALWAYS limitations
- Communicate key findings -- use visualizations; table and easy-to-remember statements (e.g., "the median income is the number-one predictor of housing prices").
- Get your solution ready for demo

## Machine Learning Problems Final Points

- Beware of slow degradation as you add more data
- In larger projects with a lot of data → measuring performance may require more human resources and support e.g, crowdsourcing
- Monitor your inputs' quality
  - Going back to data quality and cleaning (e.g. random values sent by a sensor)
  - Do not trust the input you get 100%
- In online learning systems; real time; or your own research project as it evolves.
  - Retrain your models on a regular basis
  - Find new data
  - Automate / improve

### Questions?

