

planetmath.org

Math for the people, by the people.

Fredholm module

Canonical name FredholmModule
Date of creation 2013-03-22 12:57:43
Last modified on 2013-03-22 12:57:43

Owner mhale (572) Last modified by mhale (572)

Numerical id 6

Author mhale (572)
Entry type Definition
Classification msc 19K33
Classification msc 46L87
Classification msc 47A53
Related topic KHomology

Fredholm modules represent abstract elliptic pseudo-differential operators.

Definition 1. An **odd Fredholm module** (\mathcal{H}, F) over a C^* -algebra A is given by an involutive representation π of A on a Hilbert space \mathcal{H} , together with an operator F on \mathcal{H} such that $F = F^*$, $F^2 = \mathbb{I}$ and $[F, \pi(a)] \in \mathbb{K}(\mathcal{H})$ for all $a \in A$.

Definition 2. An **even Fredholm module** (\mathcal{H}, F, Γ) is given by an odd Fredholm module (\mathcal{H}, F) together with a \mathbb{Z}_2 -grading Γ on \mathcal{H} , $\Gamma = \Gamma^*$, $\Gamma^2 = \mathbb{I}$, such that $\Gamma \pi(a) = \pi(a)\Gamma$ and $\Gamma F = -F\Gamma$.

Definition 3. A Fredholm module is called **degenerate** if $[F, \pi(a)] = 0$ for all $a \in A$. Degenerate Fredholm modules are homotopic to the 0-module.

Example 1 (Fredholm modules over \mathbb{C})

An even Fredholm module (\mathcal{H}, F, Γ) over \mathbb{C} is given by

$$\mathcal{H} = \mathbb{C}^k \oplus \mathbb{C}^k \quad with \ \pi(a) = \begin{pmatrix} a \mathbb{I}_k & 0 \\ 0 & 0 \end{pmatrix},$$

$$F = \begin{pmatrix} 0 & \mathbb{I}_k \\ \mathbb{I}_k & 0 \end{pmatrix},$$

$$\Gamma = \begin{pmatrix} \mathbb{I}_k & 0 \\ 0 & -\mathbb{I}_k \end{pmatrix}.$$