Sequence is an ordered list of numbers

$$\{a_n\}_{n=1}^{\infty} = \{a_1, a_2, \dots, a_n, \dots\}$$

- ✓ Example. Arithmetic Sequence $\{n\}_{n=1}^{\infty} = \{1, 2, ..., n, ...\}$
- **♦** Convergent and Divergent
 - If a sequence has the limit L, where L is a finite real number, (______), we say the sequence **converges** to L.
 - If the limit does not exist, the sequence **diverges**.
- > Practice
 - 1. Is the sequence $\{2n+1\}_{n=1}^{\infty}$ convergent or divergent?
 - 2. $\left\{\frac{n^2+1}{2n^2-3n+5}\right\}_{n=1}^{\infty}$ convergent or divergent?
 - 3. $\{(-1)^n\}_{n=1}^{\infty}$ convergent or divergent?
 - 4. $\left\{\frac{1}{n}*(-1)^n\right\}_{n=1}^{\infty}$ convergent or divergent?
- ► Infinite series: Given a sequence $\{a_n\}$, $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \cdots + a_n + \cdots$ is an infinite series.
 - \diamondsuit True Sum $S = \sum_{n=1}^{\infty} a_n$
 - \Leftrightarrow **Partial Sum** of a sequence: $S_n = \sum_{i=1}^n a_i$
 - \checkmark Example. What is the partial sum of the sequence $\{n\}_{n=1}^{\infty} = \{1,2,...,n,...\}$?

$$S_n =$$

- $\{S_n\}_{n=1}^{\infty} = \{S_1, S_2, ..., S_n, ...\}$ is a sequence.
- ♦ Convergent and Divergent

The series is convergent \Leftrightarrow ______

Otherwise, the series diverges.

> Practice

- 1. Is the series $\sum_{n=1}^{\infty} n$ convergent or divergent?
- 2. Is the series $\sum_{n=1}^{\infty} (-1)^n$ convergent or divergent?
- 3. Is the telescoping series $\sum_{n=1}^{\infty} \frac{1}{k(k+1)}$ convergent or divergent?
- 4. Is the geometric series $\sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n$ convergent or divergent?
- 5. Is the geometric series $\sum_{n=1}^{\infty} 2^{3n} 5^{1-n}$ convergent or divergent?

Summary. **Geometric series** $\sum_{n=1}^{\infty} ar^{n-1}$

> Convergence of a sequence V.S. Convergence of a series

If the series $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n \to \infty} a_n = 0$.

♦ This theorem provides a useful test for **divergent series**!

If the limit $\lim_{n\to\infty} a_n$ DNE or $\lim_{n\to\infty} a_n \neq 0$, then the series $\sum_{n=1}^{\infty} a_n$ diverges.

$$\checkmark$$
 Example. $a_n = 1$

$$a_n = \frac{1}{n}$$

We can use the definition of convergent series to determine whether the series is convergent or divergent.

However, it is always hard to find the expression of S_n . So, we need other methods to test it.

▶ The Integral Test

If f is positive, continuous, and decreasing on $[1, +\infty)$ and $a_n = f(n)$, then $\sum_{n=1}^{\infty} a_n$ and $\int_1^{\infty} f(x) dx$ either **BOTH** converge or diverge.

$$\ \, \Rightarrow \quad \text{p-series} \ \, \sum\nolimits_{n=1}^{\infty} \frac{1}{n^p} = \frac{1}{1^p} + \frac{1}{2^p} + \cdots + \frac{1}{n^p} + \cdots$$

Determine whether the p-series convergent or divergent.

 \Rightarrow Harmonic Series $\sum_{n=1}^{\infty} \frac{1}{n}$

When p = 1, the p-series is called harmonic series.

- \Leftrightarrow General Harmonic Series $\sum_{n=1}^{\infty} \frac{1}{an+b}$
- > Practice
- $1. \qquad \sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$

 $2. \qquad \sum_{n=1}^{\infty} \frac{\ln n}{n}$

$$3. \quad \sum_{n=1}^{\infty} n^{1-\pi}$$

4.
$$1 + \frac{1}{\sqrt[3]{4}} + \frac{1}{\sqrt[3]{9}} + \frac{1}{\sqrt[3]{16}} + \frac{1}{\sqrt[3]{25}} + \cdots$$

$$5. \quad \sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n$$

> The Comparison Test

♦ Direct Comparison Test

Let $0 \le a_n \le b_n$ for all n.

- 1. If $\sum_{n=1}^{\infty} a_n$ diverges, then $\sum_{n=1}^{\infty} b_n$
- 2. If $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$

> Practice

$$1. \qquad \sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$$

$$2. \quad \sum_{n=1}^{\infty} \frac{n}{n^2 - 3}$$

$$3. \quad \sum_{n=1}^{\infty} \frac{\sin^2 n}{\sqrt{n^3} + 1}$$

4.
$$\sum_{n=1}^{\infty} \frac{n^2 \cos^4 n}{n^5 + 1}$$

? How to select b_n

♦ Limit Comparison Test

If $a_n > 0$, $b_n > 0$, and $\lim_{n \to \infty} \frac{a_n}{b_n} = L$, where L is finite and positive, then both series either converge or diverge.

> Practice

$$1. \quad \sum\nolimits_{n=1}^{\infty} \frac{1}{2^{n}-1}$$

$$2. \quad \sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2+4}}$$

$$3. \quad \sum_{n=3}^{\infty} \frac{2^n}{3^{n}+1}$$

> Alternating Series Test

Let $a_n>0$. The alternating series $\sum_{n=1}^{\infty}(-1)^na_n$ and $\sum_{n=1}^{\infty}(-1)^{n+1}a_n$ converge if

1. $\lim_{n\to\infty} a_n = 0$ **AND** 2. $a_{n+1} \le a_n$ for all n greater than some integer N.

> Alternating Series Estimation Theorem (Error Bound)

If $S = \sum_{n=1}^{\infty} (-1)^n a_n$ is the sum of a convergent alternating series that satisfies the condition $a_{n+1} \le a_n$, then the remainder $R_n = S - S_n$ is smaller than ______, $|R_n| \le$ ______

> Practice.

1. Determine whether the series is convergent or divergent.

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$$

(b)
$$\sum_{n=1}^{\infty} (-1)^n \frac{n}{2n-1}$$

2.
$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{(-1)^{n+1}}{n} + \dots$$

3.
$$1 - \frac{1}{3!} + \frac{1}{5!} - \frac{1}{7!} + \dots + \frac{(-1)^{n+1}}{(2n-1)!} + \dots$$

4. Let
$$f(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + -\frac{(-1)^n x^{2n}}{(2n)!} + \dots$$

Use the alternating series error bound to show that $1 - \frac{1}{2!} + \frac{1}{4!}$ approximates f(1) with an error less than $\frac{1}{500}$.

> Absolute and Conditional Convergence

- $\diamond \qquad \sum_{n=1}^{\infty} a_n \; \text{ is absolutely convergent if } \; \sum_{n=1}^{\infty} |a_n| \; \text{ converges}.$
- \Rightarrow $\sum_{n=1}^{\infty} a_n$ is **conditionally convergent** if $\sum_{n=1}^{\infty} a_n$ converges but $\sum_{n=1}^{\infty} |a_n|$ diverges.

Example 2 Practice. Determine whether the series is absolutely convergent, conditionally convergent, or divergent.

$$1. \quad \sum_{n=1}^{\infty} \frac{(-1)^{n \cdot \sqrt[n]{e}}}{n^2}$$

$$2. \quad \sum_{n=1}^{\infty} (-1)^{n+1} n^{-\frac{2}{3}}$$

Ratio Test

Let $\sum_{n=1}^{\infty}a_n$ be a series with nonzero terms. $\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=q$

- If q < 1, the series converges absolutely.
- If q > 1 or the limit DNE, _____
- If q = 1, the ratio test fails.

Example.
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 and $\sum_{n=1}^{\infty} \frac{1}{n^2}$

> Practice

$$1. \quad \sum_{n=1}^{\infty} \frac{3^n}{n!}$$

$$2. \quad \sum_{n=1}^{\infty} (-1)^n \frac{n^3}{5^n}$$

Determine whether the series below is conditionally convergent or absolute convergent.

$$3. \quad \sum_{n=1}^{\infty} \frac{3^n}{2^{n}-1}$$

4.
$$\sum_{n=1}^{\infty} (-1)^n \frac{\sqrt{n}}{n+3}$$

$$5. \quad \sum_{n=1}^{\infty} (-1)^n \frac{e^n}{n!}$$

Series Convergence/Divergence Flow Chart