# Module 4: MPI Programming

#### Collective Communication

- Collective communication involves communication of data using all processes inside of a given communicator, the default communicator that contains all available processes is called MPI\_COMM\_WORLD.
- When a collective call is made it must be called by all processes inside of the communicatior.

# Types of collective communication

Collective communication operations are made of the following types:

- Barrier Synchronization Blocks until all processes have reached a synchronization point
- Data Movement (or Global Communication) –
   Broadcast, Scatters, Gather, All to All
   transmission of data across the communicator.
- Collective Operations (or Global Reduction) One process from the communicator collects data from each process and performs an operation on that data to compute a result.Machine Learning

# Barrier Synchronization

#### MPI\_Barrier

 A barrier can be used to synchronize all processes in a communicator. Each process wait till all processes reach this point before proceeding further.

#### MPI\_Bcast

MPI\_Bcast( void \*buffer, int count, MPI\_Datatype datatype, int root, MPI\_Comm comm )

| Parameter | Meaning of Parameter                  |  |
|-----------|---------------------------------------|--|
| buffer    | starting address of buffer (choice)   |  |
| count     | number of entries in buffer (integer) |  |
| datatype  | datatype of buffer (handle)           |  |
| root      | rank of broadcast root (integer)      |  |
| comm      | communicator (handle)                 |  |

# Data Movement (or Global Communication)

#### MPI\_Bcast

- MPI\_Bcast( void \*buffer, int count, MPI\_Datatype datatype, int root, MPI\_Comm comm )
- MPI\_Bcast broadcasts a message from the process with rank "root" to all other processes of the

| Parameter | Meaning of Parameter                  |
|-----------|---------------------------------------|
| buffer    | starting address of buffer (choice)   |
| count     | number of entries in buffer (integer) |
| datatype  | datatype of buffer (handle)           |
| root      | rank of broadcast root (integer)      |
| comm      | communicator (handle)                 |



### MPI\_Scatter

MPI\_Scatter sends data from one task to all other tasks in a group.
Before MPI\_Scatter

Given an array, divide it into equal contiguous parts and send to nodes, one part each. This is equivalent to n sends. The 0th process gets the first part, 1st processor the second part, and so on. Number of data elements to given to each node is specified in send count.



### MPI\_Scatter

MPI\_Scatter( void \*sendbuf, int sendcnt, MPI\_Datatype sendtype, void \*recvbuf, int recvcnt, MPI\_Datatype recvtype, int root, MPI\_Comm comm )

| Parameter | Meaning of Parameter                                                        |  |
|-----------|-----------------------------------------------------------------------------|--|
| sendbuf   | address of send buffer (choice, significant only at root)                   |  |
| sendent   | number of elements sent to each process (integer, significant only at root) |  |
| sendtype  | data type of send buffer elements (significant only at root) (handle)       |  |
| recvbuf   | address of receive buffer (choice)                                          |  |
| recvent   | number of elements in receive buffer (integer)                              |  |
| recvtype  | data type of receive buffer elements (handle)                               |  |
| root      | rank of sending process (integer)                                           |  |
| comm      | communicator (handle)                                                       |  |

### MPI\_Gather

MPI\_Gather gathers together values from a group of processes.
Before MPI\_Gather



#### MPI\_Gather

MPI\_Gather( void \*sendbuf, int sendcount, MPI\_Datatype sendtype, void \*recvbuf, int recvcount, MPI\_Datatype recvtype, int root, MPI\_Comm comm );

| Parameter | Meaning of Parameter                                                          |
|-----------|-------------------------------------------------------------------------------|
| sendbuf   | starting address of send buffer (choice)                                      |
| sendcount | number of elements in send buffer (integer)                                   |
| sendtype  | data type of send buffer elements (handle)                                    |
| recvbuf   | address of receive buffer (choice, significant only at root)                  |
| recvcount | number of elements for any single receive (integer, significant only at root) |
| recvtype  | data type of receive buffer elements (significant only at root) (handle)      |
| root      | rank of receiving process (integer)                                           |
| comm      | communicator (handle)                                                         |

# MPI\_Allgather

MPI\_Allgather gathers data from all tasks and distribute it to all.



# MPI\_Allgather

MPI\_Allgather( void \*sendbuf, int sendcount, MPI\_Datatype sendtype, void \*recvbuf, int recvcount, MPI\_Datatype recvtype, MPI\_Comm comm);

| Parameter | Meaning of Parameter                                   |
|-----------|--------------------------------------------------------|
| sendbuf   | starting address of send buffer (choice)               |
| sendcount | number of elements in send buffer (integer)            |
| sendtype  | data type of send buffer elements (handle)             |
| recvbuf   | address of receive buffer (choice)                     |
| recvcount | number of elements received from any process (integer) |
| recvtype  | data type of receive buffer elements (handle)          |
| comm      | communicator (handle)                                  |

# Collective Operations (or Global Reduction)

• MPI\_Reduce - MPI\_Reduce reduces values on all processes to a single value.



## MPI\_Reduce

• MPI\_Reduce( void \*sendbuf, void \*recvbuf, int count, MPI\_Datatype datatype, MPI\_Op op, int root, MPI\_Comm comm );

| Parameter | Meaning of Parameter                                         |
|-----------|--------------------------------------------------------------|
| sendbuf   | address of send buffer (choice)                              |
| recvbuf   | address of receive buffer (choice, significant only at root) |
| count     | number of elements in send buffer (integer)                  |
| datatype  | data type of elements in send buffer (handle)                |
| op        | reduction operation (handle)                                 |
| root      | rank of root process (integer)                               |
| comm      | communicator (handle)                                        |

# MPI\_Reduce - predefined reduction operations

| MPI Reduction Operation | Meaning                     | C Data Types                  |
|-------------------------|-----------------------------|-------------------------------|
| MPI_MAX                 | Maximum                     | integer, float                |
| MPI_MIN                 | Minimum                     | integer, float                |
| MPI_SUM                 | Sum                         | integer, float                |
| MPI_PROD                | Product                     | integer, float                |
| MPI_LAND                | Logical AND                 | integer                       |
| MPI_BAND                | Bitwise AND                 | integer, MPI_BYTE             |
| MPI_LOR                 | Logical OR                  | integer                       |
| MPI_BOR                 | Bitwise OR                  | integer, MPI_BYTE             |
| MPI_LXOR                | Logical XOR                 | integer                       |
| MPI_BXOR                | Bitwise XOR                 | integer, MPI_BYTE             |
| MPI_MAXLOC              | Maximum Value and Location  | float, double and long double |
| MPI_MINLOC              | Minimum Values and Location | float, double and long double |

## MPI\_Allreduce

MPI\_Allreduce combines values from all processes and distribute the result back to all processes



# MPI\_Allreduce

MPI\_Allreduce( void \*sendbuf, void \*recvbuf, int count, MPI\_Datatype datatype, MPI\_Op op, MPI\_Comm comm );

| Parameter | Meaning of Parameter                          |
|-----------|-----------------------------------------------|
| sendbuf   | address of send buffer (choice)               |
| recvbuf   | starting address of receive buffer (choice)   |
| count     | number of elements in send buffer (integer)   |
| datatype  | data type of elements in send buffer (handle) |
| op        | operation (handle)                            |
| comm      | communicator (handle)                         |

## MPI\_Reduce\_scatter

MPI\_Reduce\_scatter combines values and scatters the results
Before MPI\_Reduce\_scatter





## MPI\_Reduce\_scatter

 MPI\_Reduce\_scatter( void \*sendbuf, void \*recvbuf, int \*recvcounts, MPI\_Datatype datatype, MPI\_Op op, MPI\_Comm comm );

| Parameter  | Meaning of Parameter                                                                                                                     |
|------------|------------------------------------------------------------------------------------------------------------------------------------------|
| sendbuf    | address of send buffer (choice)                                                                                                          |
| recvbuf    | starting address of receive buffer (choice)                                                                                              |
| recvcounts | integer array specifying the number of elements in result distributed to each process. Array must be identical on all calling processes. |
| datatype   | data type of elements of input buffer (handle)                                                                                           |
| op         | operation (handle)                                                                                                                       |
| comm       | communicator (handle)                                                                                                                    |