CS 3305A

Memory Management

Lecture 15

Nov 13th 2023

Copyright Notice:

- 1. Lecture slides are being provided with permission from the copyright for in-class (CS3305A) use only. The slides must not be reproduced or provided to anyone outside of the class.
- 2. All download copies of the slides and/or lecture recordings are for personal use only.
- 3. Students must destroy these copies within 30 days after receipt of final course evaluations

Memory Management: Lecture 15 - 19

- Lecture 15
 - Intro to Memory management
 - Memory Hierarchy
 - Memory Allocation Techniques
 - □ Contiguous allocation
- Lecture 16
 - Memory Allocation Techniques
 - ☐ Contiguous allocation
- □ Lecture 17
 - Memory Allocation Techniques
 - ☐ Distributed allocation or Paging
 - Page Table
- Lecture 18-19
 - Virtual Memory & Page Replacement

Agenda

- □ Intro to Memory management
- Memory Hierarchy
- Memory Allocation Techniques
 - Contiguous Memory Allocation
 - □Fixed Allocations
 - ☐ Variable or Dynamic Allocation

Introduction

□ Our machines today have 10,000 times more memory than the IBM 7094 - leading edge machine of the 1960's

□ Memory unit cost has dropped dramatically

Operating systems must manage memory

Introduction

- □ Memory management requires
 - Allocate memory to processes when needed
 - Managing memory efficiently during runtime
 - □ Deallocate memory when processes are done

Introduction

- You can think of memory as a large array of bytes
 - Each byte has its own address
- Each of these operations require memory addresses and their management
 - Fetch an instruction from memory (reading)
 - Instruction is decoded
 - After instruction execution
 - □Results may be stored back in memory (writing)

Memory Hierarchy

- A CPU waiting for data from main memory is not desired
- Remedy: Add fast memory between the CPU and main memory called a cache
- □ Typical average data transfer rate
 - □ SSD ~4 x faster than HDD
 - \square RAM is ~30 x faster than SSD
 - \square Cache is ~100 x faster than RAM

Memory Allocation Techniques

- Contiguous Memory allocation
 - □ Entire process has to be allocated in a memory in a contiguous manner
- Distributed memory allocation / Paging
 - Process can be allocated anywhere in the physical memory in a distributed manner

Contiguous Memory Allocation

Contiguous Memory Allocation

- We will start out with the most basic method used that allows multiple processes to reside in memory
- With contiguous memory allocation each process is contained in a single section of memory that is contiguous
 - □ Fixed partition
 - □ Variable / Dynamic Partition

Fixed Partitioning

UNUSED

other process

Can not be used by

Any program/process, no matter how small, occupies an entire partition of the memory partition

Equal-size or unequal sized partitions

P1

Operating System 8 M
8 M
8 M
8 M
8 M

Fixed Partitions

- Leads to internal fragmentation
- Was used by OS/360 on large IBM mainframes for many years
- □ Today no modern OS uses fixed partitions
- □ Fixed Partition Memory Allocation Algorithms:
 - □ First Fit
 - Best Fit
- Operating system must decide which free block to allocate to a process
 - Best-fit, and First-fit algorithms

Fixed Partitioning Placement Algorithm

□ First-fit algorithm

Starts scanning memory from the beginning and chooses the first available block that is large enough.

Fixed Partitions First Fit

Internal Fragmentation = 10 + 50 + 150 = 210Any External Fragmentation ? = 160

Fixed Partitioning Placement Algorithm

- Best-fit algorithm
 - Choose the block that is closest in size to the request
 - □ The smallest block is found for a process
- □ Can we compare the performance between the First-fit and the Best-fit?

Fixed Partitions Best Fit

Internal Fragmentation = 10 + 50 + 140 = 200Any External Fragmentation ? = 0