# Bagplots, boxplots and outlier detection for functional data

Han Lin Shang & Rob J Hyndman

Business & Economic Forecasting Unit MONASH University

### **Outline**

- Introduction
- Functional bagplot and HDR boxplot
- Outlier detection
- Conclusions

- Introduction
- Punctional bagplot and HDR boxplot
- Outlier detection
- Conclusions

### French male mortality rates



### French male mortality rates



### French male mortality rates



$$y_i(x_i) = \mu(x) + \sum_{k=1}^{n-1} z_{i,k} \phi_k(x)$$

Apply a robust principal component algorithm

$$y_i(x_i) = \mu(x) + \sum_{k=1}^{n-1} z_{i,k} \phi_k(x)$$

•  $\mu(x)$  is mean curve

$$y_i(x_i) = \mu(x) + \sum_{k=1}^{n-1} z_{i,k} \phi_k(x)$$

- $\mu(x)$  is mean curve
- $\{\phi_k(x)\}$  are principal components

$$y_i(x_i) = \mu(x) + \sum_{k=1}^{n-1} z_{i,k} \phi_k(x)$$

- $\mu(x)$  is mean curve
- $\{\phi_k(x)\}$  are principal components
- $\{z_{i,k}\}$  are PC scores

$$y_i(x_i) = \mu(x) + \sum_{k=1}^{n-1} z_{i,k} \phi_k(x)$$

- $\mu(x)$  is mean curve
- $\{\phi_k(x)\}\$  are principal components
- $\{z_{i,k}\}$  are PC scores

$$y_i(x_i) = \mu(x) + \sum_{k=1}^{n-1} z_{i,k} \phi_k(x)$$

- $\mu(x)$  is mean curve
- $\{\phi_k(x)\}$  are principal components
- $\{z_{i,k}\}$  are PC scores
- **2** Plot  $z_{i,2}$  vs  $z_{i,1}$

$$y_i(x_i) = \mu(x) + \sum_{k=1}^{n-1} z_{i,k} \phi_k(x)$$

- $\mu(x)$  is mean curve
- $\{\phi_k(x)\}$  are principal components
- $\{z_{i,k}\}$  are PC scores
- **▶** Each point in scatterplot represents one curve.

### Robust principal components

Let  $\{y_i(x)\}, i = 1, ..., n$ , be a set of curves.

$$y_i(x_i) = \mu(x) + \sum_{k=1}^{n-1} z_{i,k} \phi_k(x)$$

- $\mu(x)$  is mean curve
- $\{\phi_k(x)\}\$  are principal components
- $\{z_{i,k}\}$  are PC scores
- Each point in scatterplot represents one curve.
- Outliers show up in bivariate score space.





### **Outline**

- Introduction
- Functional bagplot and HDR boxplot
- Outlier detection
- Conclusions

### **Functional bagplot**

- Bivariate bagplot due to Rousseeuw et al. (1999).
- Rank points by halfspace location depth.
- Display median, 50% convex hull and outer convex hull (with 99% coverage if bivariate normal).



## **Functional bagplot**

- Bivariate bagplot due to Rousseeuw et al. (1999).
- Rank points by halfspace location depth.
- Display median, 50% convex hull and outer convex hull (with 99% coverage if bivariate normal).
- Boundaries contain all curves inside bags.
- 95% CI for median curve also shown.





- Bivariate HDR boxplot due to Hyndman (1996).
- Rank points by value of kernel density estimate.
- Display mode, 50% and (usually) 99% highest density regions (HDRs) and mode.



- Bivariate HDR boxplot due to Hyndman (1996).
- Rank points by value of kernel density estimate.
- Display mode, 50% and (usually) 99% highest density regions (HDRs) and mode.



- Bivariate HDR boxplot due to Hyndman (1996).
- Rank points by value of kernel density estimate.
- Display mode, 50% and (usually) 99% highest density regions (HDRs) and mode.
- Boundaries contain all curves inside HDRs.





### **Outline**

- Introduction
- Functional bagplot and HDR boxplot
- Outlier detection
- **Conclusions**

#### Likelihood ratio method

- Febrero et al. (2007) find curve that maximizes LRT statistic.
- If LRT > C, then curve is considered outlier.
- C is computed via smoothed bootstrap.
- Process continues until no more outliers.

#### Likelihood ratio method

- Febrero et al. (2007) find curve that maximizes LRT statistic.
- If LRT > C, then curve is considered outlier.
- C is computed via smoothed bootstrap.
- Process continues until no more outliers.

#### **Disadvantages**

- Computationally intensive.
- Ignores shape outliers.
- If trimmed mean is used and there is no outlier,
  C will be downward biased

#### Integrated squared error method

• Hyndman & Ullah (2007) proposed the use of

$$v_i = \int_x \left[ \hat{y}_i(x) - \mu(x) - \sum_{k=1}^K z_{i,k} \phi_k(x) \right]^2 dx$$

where  $z_{i,k}$  and (robust) PC scores and  $\phi_k(x)$  are PCs.

### Integrated squared error method

• Hyndman & Ullah (2007) proposed the use of

$$v_i = \int_x \left[ \hat{y}_i(x) - \mu(x) - \sum_{k=1}^K z_{i,k} \phi_k(x) \right]^2 dx$$

where  $z_{i,k}$  and (robust) PC scores and  $\phi_k(x)$  are PCs.

• Curve is outlier if  $v_i > s + \lambda \sqrt{s}$ , where  $s = \text{median}(v_1, \dots, v_t)$  and  $\lambda$  is tuning parameter.

#### Integrated squared error method

Hyndman & Ullah (2007) proposed the use of

$$v_i = \int_x \left[ \hat{y}_i(x) - \mu(x) - \sum_{k=1}^K z_{i,k} \phi_k(x) \right]^2 dx$$

where  $z_{i,k}$  and (robust) PC scores and  $\phi_k(x)$ are P(s)

• Curve is outlier if  $v_i > s + \lambda \sqrt{s}$ , where  $s = \text{median}(v_1, \dots, v_t)$  and  $\lambda$  is tuning parameter.

### Integrated squared error method

Hyndman & Ullah (2007) proposed the use of

$$v_i = \int_x \left[ \hat{y}_i(x) - \mu(x) - \sum_{k=1}^K z_{i,k} \phi_k(x) \right]^2 dx$$

where  $z_{i,k}$  and (robust) PC scores and  $\phi_k(x)$ are PCs

• Curve is outlier if  $v_i > s + \lambda \sqrt{s}$ , where  $s = \text{median}(v_1, \dots, v_t)$  and  $\lambda$  is tuning parameter.

### **Disadvantages**

- Depends on K and  $\lambda$ .
- If K large, outliers modelled by higher components.

### French male mortality data set

Based on historical information, the outliers are expected to be 1914–1919 & 1940–1945.

| Method                   | Outliers detected          |  |  |
|--------------------------|----------------------------|--|--|
| Likelihood ratio         |                            |  |  |
| Integrated squared error | 1914–1918, 1940, 1943–1944 |  |  |
| Bagplot                  | 1914–1919, 1940, 1942–1944 |  |  |
| 91% HDR boxplot          | 1914–1919, 1940, 1942–1944 |  |  |

#### French male mortality data set

Based on historical information, the outliers are expected to be 1914–1919 & 1940–1945.

| Method                   | Sensitivity | <b>Specificity</b> | Time (s) |
|--------------------------|-------------|--------------------|----------|
| Likelihood ratio         | 0%          | 100%               | 18.8     |
| Integrated squared error | 50%         | 94%                | 3.4      |
| Bagplot                  | 83%         | 98%                | 0.6      |
| 91% HDR boxplot          | 83%         | 98%                | 0.3      |
|                          |             |                    |          |

#### **Simulation**

- $y_i(x) = a_i \sin(x) + b_i \cos(x)$ ,  $0 < x < 2\pi$
- $a_i, b_i \sim \text{Unif}(0, 0.1)$  with probability 99%
- $a_i, b_i \sim \text{Unif}(0.1, 0.108)$  with probability 1%



Outliers shown in black



#### **Simulation**

| Method                   | Outliers detected |
|--------------------------|-------------------|
| Likelihood ratio         | _                 |
| Integrated squared error | _                 |
| Bagplot                  | _                 |
| 99% HDR boxplot          | All               |

#### **Simulation**

| Method                   | Outliers detected |
|--------------------------|-------------------|
| Likelihood ratio         | _                 |
| Integrated squared error | _                 |
| Bagplot                  | _                 |
| 99% HDR boxplot          | All               |
| 99% HDR boxplot          | All               |

| Method                   | Sensitivity | <b>Specificity</b> | Time (s) |
|--------------------------|-------------|--------------------|----------|
| Likelihood ratio         | 0%          | 100%               | 28.5     |
| Integrated squared error | 0%          | 100%               | 18.8     |
| Bagplot                  | 0%          | 100%               | 7.3      |
| 99% HDR boxplot          | 100%        | 100%               | 6.9      |

### **Outline**

- Introduction
- 2 Functional bagplot and HDR boxplot
- Outlier detection
- Conclusions

 Functional bagplot highly robust but sometimes misses outliers.

- Functional bagplot highly robust but sometimes misses outliers.
- Functional HDR boxplot more flexible but coverage probability needs tuning.

- Functional bagplot highly robust but sometimes misses outliers.
- Functional HDR boxplot more flexible but coverage probability needs tuning.
- Functional HDR boxplot can detect bimodality and inliers.

- Functional bagplot highly robust but sometimes misses outliers.
- Functional HDR boxplot more flexible but coverage probability needs tuning.
- Functional HDR boxplot can detect bimodality and inliers.
- Existing depth method performs poorly and ignores shape outliers.

- Functional bagplot highly robust but sometimes misses outliers.
- Functional HDR boxplot more flexible but coverage probability needs tuning.
- Functional HDR boxplot can detect bimodality and inliers.
- Existing depth method performs poorly and ignores shape outliers.
- Existing ISE method often misses outliers.

- Functional bagplot highly robust but sometimes misses outliers.
- Functional HDR boxplot more flexible but coverage probability needs tuning.
- Functional HDR boxplot can detect bimodality and inliers.
- Existing depth method performs poorly and ignores shape outliers.
- Existing ISE method often misses outliers.

- Functional bagplot highly robust but sometimes misses outliers.
- Functional HDR boxplot more flexible but coverage probability needs tuning.
- Functional HDR boxplot can detect bimodality and inliers.
- Existing depth method performs poorly and ignores shape outliers.
- Existing ISE method often misses outliers.
- ➤ Paper and R code: www.robhyndman.info
- Comments to: Han.Shang@buseco.monash.edu