jj Terms for Non equivalent Electrons in d^xp^ys^z Configurations

P. L. Meena^{1*}

Department of Chemistry, University of Rajasthan, Jaipur, India

Abstract. jj coupling is predominant in heavier atoms where spin orbit interactions are important than electrostatic interactions. In this manuscript jj coupled terms derived for non equivalent electrons in $d^x p^y s^z$ (x = 1-2, y & z = 0-1) configurations i.e. $d^2 p^1 s^1$, $d^1 p^1 s^1$, $d^1 p^1$ and $d^2 s^1$ configurations, the obtained jj terms are $[(5/2, 5/2, 3/2, 1/2), (5/2, 5/2, 1/2, 1/2), (3/2, 3/2, 1/2), (3/2, 3/2, 1/2), (5/2, 5/2, 3/2, 1/2), (5/2, 5/2, 3/2, 1/2)] for <math>d^2 p^1 s^1$, [(5/2, 3/2, 1/2), (5/2, 1/2), (3/2, 3/2, 1/2)] for $d^1 p^1 s^1$, [(5/2, 3/2), (5/2, 1/2), (3/2, 3/2), (3/2, 1/2)] for $d^1 p^1$ and [(5/2, 5/2, 1/2), (5/2, 3/2, 1/2), (3/2, 3/2, 1/2)] d² s¹ configurations and the ground state terms determined for these configurations are (3/2, 3/2, 1/2), (3/2, 1/2, 1/2), (3/2, 1/2, 1/2) and (3/2, 3/2, 1/2) respectively.

Keywords: Angular momentum, jj coupling, L-S coupling and spin-orbit interaction

INTRODUCTION

LS terms are significant in lower elements which gradually change to jj coupling in going from lighter to heavy atom due to increase nuclear charge (Gauerke & Campbell, 1994). LS terms for equivalent or nonequivalent electrons are derived by different methods i.e. Vector model (Lande, 1921), Quantum mechanical method (Russell & Saunders, 1925), Ford method (Ford, 1972), Hyde method (Hyde, 1975) , Spin factoring method (McDaniel, 1977), Numerical algorithm method (Kiremire, 1987), Slater graphics (Slater, 1960), Partitioning total spin method (Guofan & Ellzey, 1987), Group representation method (Chen, 1989), Group theoretical method (Wybourne, 1966; Judd, 1967) Generating functions derived via group theory method (Curl & Kilpatrik, 1960), Partial term method (Kiremire, 1990), Partitioning technique (Olson, 2011). The microstate building through electronic arrangement method has been used to generating the spectroscopic LS terms for equivalent electrons of f³ and f⁴ configurations (Meena et al., 2011a; 2011b), and for nonequivalent electrons of (n-1) f³nd¹, (n-1) f²nd¹ and d² p¹ s¹ configurations (Meena et al., 2012; Meena et al., 2013).

jj terms can also be determine by using different methods which are described by (Rubio & Perez, 1986), (Tuttle, 1967), (Haigh, 1990), (Gauerke & Campbell, 1994), (Campbell, 1998), (Novak, 1999), (Orofino & Faria, 2010), (Richtmyer et al, 1969) and (Meena et al., 2015). Equivalent electrons have same values of n and l, the electrostatic interaction is expected to be larger than spin-orbit interaction and L-S coupling is favoured and for nonequivalent, j-j coupling is important. In this manuscript the spectroscopic jj coupled terms for non equivalent electrons of $d^x p^y s^z$ configurations (x = 1 - 2, y & z = 0 - 1) were determined and correlated with LS terms (for $d^1 p^1$ and $d^2 s^1$ configuration).

Contact: parmeshwar1978@gmail.com

_

^{1*} Department of Chemistry, University of Rajasthan, Jaipur, India. Correspondence concerning to this article should be addressed to Dr. P. L. Meena, Department of Chemistry, University of Rajasthan, Jaipur, INDIA, 302004.

Methodology

The microstates were built up by arranging electrons with different possible j values for non equivalent electrons of $d^xp^ys^z$ configurations (x= 1-2, y & z = 0-1). Total microstates calculated for d^2 p^1 s^1 , d^1 p^1 s^1 , d^1 p^1 and d^2 s^1 configurations are 540, 120, 60 and 90 respectively. Notations for the jj terms designated by the j's are $[(j_1)^a(j_2)^b(j_3)^c...]$ (Tuttle, 1967 & 1980; Orofino & Faria, 2010) and $[(j_1, j_2)_J]$ (Haigh, 1990). The possible jj terms for non equivalent electrons of $d^xp^ys^z$ configurations (x= 1-2, y & z = 0-1) are $[(5/2, 5/2, 3/2, 1/2), (5/2, 5/2, 1/2, 1/2), (3/2, 3/2, 1/2), (3/2, 3/2, 1/2), (5/2, 3/2, 1/2), (5/2, 3/2, 1/2), (5/2, 3/2, 1/2), (5/2, 3/2, 1/2), (5/2, 3/2, 1/2), (3/2, 3/2, 1/2), (3/2, 3/2, 1/2), (3/2, 3/2, 1/2), (3/2, 3/2, 1/2)] for <math>d^1$ p^1 s^1 , [(5/2, 3/2), [(5/2, 1/2), [(3/2, 3/2), (3/2, 1/2)] for d^1 p^1 and [(5/2, 5/2, 1/2), (5/2, 3/2, 1/2)] for d^2 s^1 configuration.

Microstates for jj Terms for d² p¹ s¹ Configuration

The microstate tables for each term is drawn by arranging four electrons and the M_J values for all microstates are determined. The largest M_J value for each term represents a value of J level for term (Table A1). Number of microstates for a particular term of the of the form $[(l_{\ell-1/2})^i(l_{\ell+1/2})^{n-i}]$ or (j_1, j_2, j_3, j_4) for each sub set of equivalent electrons is given by $(2\ell)!(2\ell+2)!$ $i!(2\ell-i)!(n-i)!(2\ell+2+i-n)!$

J levels for jj terms for d² p¹ s¹ Configuration

J level for jj term are obtained by removing microstates associated with that J level starting from the maximum M_J value in the microstate tables and followed for next levels also. For example, when the 13 microstates associated with maximum M_J =6 for the jj coupled term (5/2, 5/2, 3/2, 1/2) are eliminated from Table A2 results in J=6 level and maximum M_J level remain is 5 that yield another J=5 level for this term when 22 microstat associated with this are eliminated, and further elimination of 27, 28, 20, 9 and 1 microstates associated with M_J 4, 3, 2, 1 and 0, give 4, 3, 2, 1 and 0 J levels for this term. By applying the same procedure to other terms as illustrated in Table A3 for (5/2, 5/2, 1/2, 1/2) term, Table A4 for (3/2, 3/2, 3/2, 1/2) term, Table A5 for (3/2, 3/2, 1/2) term, Table A6 for (5/2, 3/2, 3/2, 1/2) term and Table A7 for (5/2, 3/2, 1/2, 1/2) term.

Number of microstates for jj terms of d² s¹ configuration

$$\frac{1. \text{ Term } (5/2, 5/2, 1/2) \text{ or } [(d_{5/2})^2 (s_{1/2})^1]}{(2x2)!(2x2+2)!} \times \frac{(0x2)!(0x2+2)!}{0!(2x2-0)!(2-0)!(2-0)!(2x2+2+0-2)!} \times \frac{(0x2)!(0x2+2)!}{0!(0x2-0)!(1-0)!(0x2+2+0-1)!} = 30$$
2. Term $(5/2, 3/2, 1/2)$ or $[(d_{5/2})^1 (d_{3/2})^1 (s_{1/2})^1]$

$$\frac{(2x2)!(2x2+2)!}{1!(2x2-1)!(2-1)!(2x2+2+1-2)!} \times \frac{(0x2)!(0x2+2)!}{0!(0x2-0)!(1-0)!(0x2+2+0-1)!} = 48$$
3. Term $(3/2, 3/2, 1/2)$ or $[(d_{3/2})^2 (s_{1/2})^1]$

$$\frac{(2x2)!(2x2+2)!}{2!(2x2-2)!(2-2)!(2x2+2+2-2)!} \times \frac{(0x2)!(0x2+2)!}{0!(0x2-0)!(1-0)!(0x2+2+0-1)!} = 12$$

Running head: jj Terms for Non equivalent Electrons in dxpysz Configurations

Number of microstates for jj terms of d¹ p¹ s¹ configuration

$$\frac{1. \text{ Term } (5/2, 3/2, 1/2) \text{ or } [(d_{5/2})^1 (p_{3/2})^1 (s_{1/2})^1]}{0!(2x2)!(2x2+2)!} x \frac{(1x2)!(1x2+2)!}{0!(1x2-0)!(1-0)!(1x2+2+0-1)!} x \frac{(0x2)!(0x2+2)!}{0!(0x2-0)!(1-0)!(0x2+2+0-1)!} = 48$$

$$2. \text{ Term } (3/2, 3/2, 1/2) \text{ or } [(d_{3/2})^1 (p_{3/2})^1 (s_{1/2})^1]$$

$$\frac{(2x2)!(2x2+2)!}{1!(2x2-1)!(1-1)!(2x2+2+1-1)!} x \frac{(1x2)!(1x2+2)!}{0!(1x2-0)!(1-0)!(1x2+2+0-1)!} x \frac{(0x2)!(0x2+2)!}{0!(0x2-0)!(1-0)!(0x2+2+0-1)!} = 32$$

$$3. \text{ Term } (5/2, 1/2, 1/2) \text{ or } [(d_{5/2})^1 (p_{1/2})^1 (s_{1/2})^1]$$

$$\frac{(2x2)!(2x2+2)!}{0!(2x2-0)!(1-0)!(2x2+2+0-1)!} x \frac{(1x2)!(1x2+2)!}{1!(1x2-1)!(1-1)!(1x2+2+1-1)!} x \frac{(0x2)!(0x2+2)!}{0!(0x2-0)!(1-0)!(0x2+2+0-1)!} = 24$$

$$4. \text{ Term } (3/2, 1/2, 1/2) \text{ or } [(d_{3/2})^1 (p_{1/2})^1 (s_{1/2})^1]$$

$$\frac{(2x2)!(2x2+2)!}{1!(2x2-1)!(1-1)!(2x2+2+1-1)!} x \frac{(1x2)!(1x2+2)!}{0!(0x2-0)!(1-0)!(0x2+2+0-1)!} = 16$$

Number of microstates for jj terms of d¹ p¹ configuration

$$\frac{1. \text{ Term } (5/2, 3/2) \text{ or } [(d_{5/2})^1 (p_{3/2})^1]}{(2x2)!(2x2+2)!} \times \frac{(1x2)!(1x2+2)!}{0!(1x2-0)!(1-0)!(1x2+2+0-1)!} = 24$$

$$2. \text{ Term } (3/2, 3/2) \text{ or } [(d_{3/2})^1 (p_{3/2})^1]$$

$$\frac{(2x2)!(2x2+2)!}{1!(2x2-1)!(1-1)!(2x2+2+1-1)!} \times \frac{(1x2)!(1x2+2)!}{0!(1x2-0)!(1-0)!(1x2+2+0-1)!} = 16$$

$$3. \text{ Term } (5/2, 1/2) \text{ or } [(d_{5/2})^1 (p_{1/2})^1]$$

$$\frac{(2x2)!(2x2+2)!}{0!(2x2-0)!(1-0)!(2x2+2+0-1)!} \times \frac{(1x2)!(1x2+2)!}{1!(1x2-1)!(1-1)!(1x2+2+1-1)!} = 12$$

$$4. \text{ Term } (3/2, 1/2) \text{ or } [(d_{3/2})^1 (p_{1/2})^1]$$

$$\frac{(2x2)!(2x2+2)!}{1!(2x2-1)!(1-1)!(2x2+2+1-1)!} \times \frac{(1x2)!(1x2+2)!}{1!(1x2-1)!(1-1)!(1x2+2+1-1)!} = 8$$

By applying same method as used for $d^2 p^1 s^1$ configuration J levels are determined which are $[(5/2, 3/2, 1/2)_{9/2, 7/2(2), 5/2(2), 3/2(2), 1/2}]$, $[(5/2, 1/2, 1/2)_{7/2, 5/2(2), 3/2}]$, $[(3/2, 3/2, 1/2)_{7/2, 5/2(2), 3/2(2), 1/2}]$ and $[(3/2, 1/2, 1/2)_{5/2, 3/2(2), 1/2}]$ for $d^1 p^1 s^1$ configuration, $[(5/2, 3/2)_{4, 3, 2, 1}]$, $[(5/2, 1/2)_{3, 2}]$, $[(3/2, 3/2)_{3, 2, 1, 0}]$ and $[(3/2, 1/2)_{2, 1}]$ for $d^1 p^1$ configuration and $[(5/2, 5/2, 1/2)_{9/2, 7/2, 5/2, 3/2, 1/2}]$, $[(5/2, 3/2, 1/2)_{9/2, 7/2(2), 5/2(2), 3/2(2), 1/2}]$ and $[(3/2, 3/2, 1/2)_{5/2, 3/2, 1/2}]$ for $d^2 s^1$ configuration.

RESULTS AND DISCUSSION

jj coupled spectroscopic terms obtained for $d^x p^y s^z$ configurations (x= 1-2, y & z = 0-1) are $[\{(5/2, 5/2, 3/2, 1/2)_{6, 5(2), 4(3), 3(4), 2(4), 1(3), 0}\}$, $\{(5/2, 5/2, 1/2, 1/2)_{5, 4(2), 3(2), 2(2), 1(2), 0}\}$, $\{(3/2, 3/2, 3/2, 1/2)_{4, 3(2), 2(3), 1(3), 0}\}$, $\{(3/2, 3/2, 1/2, 1/2)_{3, 2(2), 1(2), 0}\}$, $\{(5/2, 3/2, 3/2, 1/2)_{6, 5(3), 4(5), 3(7), 2(7), 1(5), 0(2)}\}$, $\{(5/2, 3/2, 1/2, 1/2)_{5, 4(3), 3(4), 2(4), 1(3), 0}\}$ for $d^1 p^1 s^1$ configuration, $[\{(5/2, 3/2, 1/2)_{9/2, 7/2(2), 5/2(2), 3/2(2), 1/2}\}$, $\{(5/2, 1/2, 1/2)_{7/2, 5/2(2), 3/2}\}$, $\{(3/2, 3/2, 1/2)_{7/2, 5/2(2), 3/2(2), 1/2}\}$, $\{(3/2, 3/2, 1/2)_{9/2, 7/2, 5/2, 3/2, 1/2}\}$ for $d^2 p^1 s^1$ configuration, $[\{(5/2, 3/2)_{4, 3, 2, 1}\}, \{(5/2, 1/2)_{3, 2}\}, \{(3/2, 3/2)_{3, 2, 1, 0}\}, \{(3/2, 1/2)_{2, 1}\}\}$ for $d^1 p^1$ configuration and $[\{(5/2, 5/2, 1/2)_{9/2, 7/2, 5/2, 3/2, 1/2}\}, \{(5/2, 3/2, 1/2)_{5/2, 3/2, 1/2}\}\}$, $\{(5/2, 3/2, 1/2)_{9/2, 7/2, 5/2, 3/2, 1/2}\}$, $\{(5/2, 3/2, 1/2)_{5/2, 3/2, 1/2}\}\}$ for $d^2 p^1 s^1$ configuration and $[\{(5/2, 5/2, 1/2)_{9/2, 7/2, 5/2, 3/2, 1/2}\}, \{(5/2, 3/2, 1/2)_{5/2, 3/2, 1/2}\}\}$ for $d^2 p^1 s^1$ configuration.

And the ground state jj coupled terms determined for these configurations are $[(3/2, 3/2, 1/2, 1/2)_{3, 2(2), 1(2), 0}]$, $[(3/2, 1/2)_{5/2, 3/2(2), 1/2}]$, $[(3/2, 1/2)_{2, 1}]$ and $[(3/2, 3/2, 1/2)_{5/2, 3/2, 1/2}]$ respectively. In correlation level diagram the L-S and the j-j levels for d^1 p^1 and d^2 s^1 configurations are shown (Figure 1 and Figure 2). Total numbers of final states are same, but their relative energies are different.

CONCLUSSION

Here a simple and systematic method is described to obtain the jj coupled spectroscopic terms for nonequivalent electrons of $d^xp^ys^z$ configurations (x= 1-2, y & z= 0-1). For d^2 p¹ s¹, d^1 p¹ and d^2 s¹ configurations, this procedure will make jj coupled terms more popular in chemistry and also helpful to investigate the atomic and electronic spectra of nonequivalent electron containing atoms or free ions.

Acknowledgement

Author is thankful to Dr. K. S. Meena, Lecturer, M. L. V. Govt. College, Bhilwara (Rajasthan) for necessary guidance.

References

- Campbell, M. L. (1998). Rules for Determining the Ground State of a J-J Coupled Atom. *J. Chem. Educ.*, 75, 1339-1340.
- Chen, J. H. (1989). Atomic Term Symbols by Group Representation Methods. *J. Chem Educ.*, 66, 893–898.
- Curl, R.F. & Kilpatrik, J.E. (1960). Atomic Term Symbols by Group Theory. *Amer J Phys.*, 28, 357–365.
- Ford, D. I. (1972). Molecular Term Symbols by Group Theory. *J Chem Educ.*, 49, 336–340. Gauerke, E.S.J. & Campbell, M.L. (1994). A Simple, Systematic Method for Determining J Levels for jj Coupling. *J Chem Educ.*, 71, 457–463.
- Guofan, L. & Ellzey, M.L. (1987). Finding the Terms of Configurations of Equivalent Electrons by Partitioning Total Spins. *J. Chem Educ.*, *64*, 771–772.

- Haigh, C.W. (1995). The Theory of Atomic Spectroscopy: jj Coupling, Intermediate Coupling, and Configuration Interaction. *J. Chem. Educ.*, 72, 206-209.
- Hyde, K.E. (1975). Methods for Obtaining Russell Saunders Symbols from Electronic Configuration. *J. Chem Educ.*, *52*, 87–89.
- Judd, B.R. (1967). Atomic Shell Theory Recast. Phys Rev., 162, 28.
- Kiremire, E.M.R. (1987). A Numerical Algorithm Technique for Deriving Russell- Saunders Terms. *J. Chem Educ.*, 64, 951–953.
- Kiremire, E.M.R. (1990). Partial and Ligand Field Terms. J. Chem Educ., 67(3), 216–217.
- Lande A. (1921). Vector Model to Describe Atomic Angular Momenta and the Zeeman Effect. *Astrophysics Journal*, *5*, 231.
- McDaniel, D.H. (1977). Spin Factoring as an Aid in the Determination of Spectroscopic Terms. *J. Chem Educ.*, *54*, 147–150.
- Meena, P. L., Kumar, N., Meena, A. S. & Meena, K. S. (2013b). Studies on Atomic Spectroscopic Terms and Term Symbols of Non-equivalent Electrons of d²s¹p¹ Configuration Using Russell- Saunders Coupling Scheme. *Research J. Chem. Sci.*, *3*(4), 19-24, 2013.
- Meena, P.L., Jain, P.K. & Kumar, N. (2011a). Study on the Atomic Term Symbols for f³ (M⁺³ free ion) Configuration. *Int J Chem Sci.*, 9(3), 1364–1372.
- Meena, P.L., Jain, P.K. & Kumar, N. (2011b). Study on the Atomic Term Symbols for f⁴ (M⁺³ free ion) Configuration. *J Chem Bio Phy Sci.*, *I*(2), 188–203.
- Meena, P.L., Kumar, N. & Meena, A.S. (2013a). Atomic Term Symbols (Terms) for Nonequivalent Electrons of (n-1)f³ nd¹ Configuration via Russell- Saunders Coupling Scheme. *International Journal of Chemistry*, *34*(2), 1236–1242.
- Meena, P.L., Meena, A.S. & Meena, K.S. (2012a). Calculation of Atomic Spectroscopic Terms for Nonequivalent Electrons of f²d¹ Configuration and Assigning the Term Symbols, *Asian Journal of Chemistry*, 24(12), 5677-5679.
- Meena, P.L., Meena, A.S., Kumar, N. & Meena, K.S. (2015). Obtaining jj coupled spectroscopic terms for nonequivalent electrons of (n-1)f² nd¹ configuration, *Chem. Educator*, 20, 34-38.
- Novak, I. (1999). When do Arrows Not Have Tips. J. Chem. Educ., 76, 1380-1381.
- Olson, J.A. (2011). Atomic Term Symbols via Partitioning Techniques. *Int. J Quantum Chem.*, 11, 2844–2850.
- Orofino, H. & Faria, R.B. (2010). Obtaining the Electron Angular Momentum Coupling Spectroscopic Terms, jj. *J. Chem. Educ.*, 87, 1451-1454.
- Richtmyer, K., Kennard, E.H. & Cooper, J.N. (1969). Introduction to Modern Physics. New York: McGraw-Hill.
- Rubio, J. & Perez, J.J. (1986). Energy Levels in the jj Coupling Scheme. J. Chem. Educ., 63, 476-478.
- Russell, H.N. & Saunders, F.A. (1925). New Regularities in the Spectra of the Alkaline Earths. *Astrophysical Journal*. *61*, 38–61.
- Slater, J.C. (1960). Quantum Theory of Atomic Structure. New York: McGraw-Hill.
- Tuttle, E.R. (1967). Terms Obtained from Configurations of Equivalent Electrons. *Amer. J. Phys.*, 35, 26-29.
- Wybourne, B.G. (1966). Group-Theoretical Classification of the Atomic States of g^N Configurations. *J Chem Phys.*, 45, 1100-1104.

Appendix A

Table A1 $\label{eq:constates} \mbox{Number of Microstates for each jj Coupled Term for d^2 p^1 s^1 Configuration}$

E1 j ₁	E2 j ₂	E3 j ₃	E4 j ₄	jj coupled terms	Microstates	M _J values			
5/2	5/2	3/2	1/2	(5/2, 5/2, 3/2, 1/2)	120	6 to -6			
5/2	5/2	1/2	1/2	(5/2, 5/2, 1/2, 1/2)	60	5 to -5			
3/2	3/2	3/2	1/2	(3/2, 3/2, 3/2, 1/2)	48	4 to -4			
3/2	3/2	1/2	1/2	(3/2, 3/2, 1/2, 1/2)	24	3 to -3			
5/2	3/2	3/2	1/2	(5/2, 3/2, 3/2, 1/2)	192	6 to -6			
5/2	3/2	1/2	1/2	(5/2, 3/2, 1/2, 1/2)	96	5 to -5			
	Total number of microstates for d ² p ¹ s ¹								
	configuration-540								

Table A2 $\label{eq:microstates} \mbox{Microstates and their Removal for J Levels for (5/2, 5/2, 3/2, 1/2) Term for d^2 p^1 s^1 Configuration}$

M _J	No.	MS after	MS after	MS after	MS after	MS after	MS after
	of	removing	removing	removing	removing	removing	removing
	MS	J=6 level	J=5(2)	J=4(3)	J=3(4)	J=2(4)	J=1(3)
			levels	levels	levels	levels	levels
6	1	-	-	-	-	-	-
5	3	2	-	-	-	-	-
4	6	5	3	-	-	-	-
3	10	9	7	4	-	-	-
2	14	13	11	8	4	-	-
1	17	16	14	11	7	3	-
0	18	17	15	12	8	4	1
-1	17	16	14	11	7	3	-
-2	14	13	11	8	4	-	-
-3	10	9	7	4	-	-	-
-4	6	5	3	-	-	-	-
-5	3	2	-	-	-	-	-
-6	1	-	-	-	-	-	-
To	120	107	85	58	30	10	1
tal							

Table A3 $\label{eq:microstates} \mbox{Microstates and their Removal for J Levels for (5/2, 5/2, 1/2, 1/2) Term for d^2 p^1 s^1 Configuration}$

$M_{\rm J}$	No.	MS after	MS after	MS after	MS after	MS after
	of	removing	removing	removing	removing	removing
	MS	J=5 level	J=4(2) levels	J=3(2) levels	J=2(2) levels	J=1(2) levels
5	1	-	-	-	-	-
4	3	2	-	-	-	-
3	5	4	2	-	-	-
2	7	6	4	2	-	-
1	9	8	6	4	2	-
0	10	9	7	5	3	1
-1	9	8	6	4	2	-
-2	7	6	4	2	-	-
-3	5	4	2	-	-	-
-4	3	2	-	-	-	-
-5	1	-	-	-	-	-
To	60	49	31	17	7	1
tal						

Table A4 $\label{eq:microstates} \mbox{Microstates and their Removal for J Levels for (3/2, 3/2, 3/2, 1/2) Term for d^2 p^1 s^1 Configuration}$

Мл	No. of MS	MS after removing J=4	MS after removing J=3(2)	MS after removing J=2(3)	MS after removing J=1(3)
		level	levels	levels	levels
4	1	-	-	-	-
3	3	2	-	-	-
2	6	5	3	-	-
1	9	8	6	3	-
0	10	9	7	4	1
-1	9	8	6	3	-
-2	6	5	3	-	-
-3	3	2	-	-	-
-4	1	-	-	-	-
Tot	48	39	25	10	1
al					

Table A5 $\label{eq:microstates} \mbox{Microstates and their Removal for J Levels for (3/2, 3/2, 1/2, 1/2) Term for d^2 p^1 s^1 Configuration}$

$M_{\rm J}$	No. of	MS after removing	MS after removing	MS after removing
	M. S.	J=3 level	J=2(2) levels	J=1(2) levels
3	1	-	-	-
2	3	2	-	-
1	5	4	2	-
0	6	5	3	1
-1	5	4	2	-
-2	3	2	-	-
-3	1	-	-	-
To	24	17	7	1
tal				

Table A6

Microstates and their Removal for J Levels for (5/2, 3/2, 3/2, 1/2) Term for d^2 p^1 s^1 Configuration

$M_{\rm J}$	No.	MS after	MS after	MS after	MS after	MS after	MS after
	of	removing	removing	removing	removing	removing	removing
	MS	J=6 level	J=5(3)	J=4(5)	J=3(7)	J=2(7)	J=1(5)
			levels	levels	levels	levels	levels
6	1	-	-	-	-	-	-
5	4	3	-	-	-	-	-
4	9	8	5	-	-	-	-
3	16	15	12	7	-	-	-
2	23	22	19	14	7	-	-
1	28	27	24	19	12	5	-
0	30	29	26	21	14	7	2
-1	28	27	24	19	12	5	-
-2	23	22	19	14	7	-	-
-3	16	15	12	7	-	-	-
-4	9	8	5	-	-	-	-
-5	4	3	-	-	-	-	-
-6	1	-	-	-	-	-	-
Tot	192	179	146	101	52	17	2
al							

Table A7 $\label{eq:microstates} \mbox{Microstates and their Removal for J Levels for (5/2, 3/2, 1/2, 1/2) Term for d^2 p^1 s^1 Configuration}$

$M_{\rm J}$	No.	MS after	MS after	MS after	MS after	MS after
	of	removing	removing	removing	removing	removing
	MS	J=5 level	J=4(3)	J=3(4)	J=2(4)	J=1(3)
			levels	levels	levels	levels
5	1	-	-	-	-	-
4	4	3	-	-	-	-
3	8	7	4	-	-	-
2	12	11	8	4	-	-
1	15	14	11	7	3	-
0	16	15	12	8	4	1
-1	15	14	11	7	3	-
-2	12	11	8	4	-	-
-3	8	7	4	-	-	-
-4	4	3	-	-	-	-
-5	1	-	-	-	-	-
Total	96	85	58	30	10	1

Appendix B

Figure B1

Correlation Diagram for LS and jj Coupling Schemes for Levels for d¹ p¹ Configuration

