Физика Стандартной Модели элементарных частиц

Лекция 2, 22.02.2019

Единицы измерения (константы): $\hbar = c = k = 1$

Взаимодействия и симметрии СМ: summary

Область применения СМ включает в себя сильные, электромагнитные и слабые взаимодействия элементарных частиц/конституентов, но не гравитационные силы. Отношение этих сил,

$$\underbrace{1:10^{-2}:10^{-7}}_{\bullet \leftarrow \text{CM} \to \bullet}:10^{-40},$$

оправдывает выбор СМ для квантовой физики элементарных частиц в сопоставлении с классической теорией гравитации Ньютона/Эйнштейна, для описания макро-и мегамира материи, а также микромира на расстояниях $\gtrsim 10^{-16} cm$ (энергиях $\lesssim 1 TeV$), доступных в измерениях на современных коллайдерах.

СМ содержит три поколения фермионов различных цветных зарядов, флейворов, барионных и лептонных зарядов, а также трёх типов переносчиков взаимодействий: глюонов, фотонов, массивных заряженных и нейтральных бозонов. Кроме того, для формирования масс частиц без нарушения базовых симметрий включается скалярный бозон Хиггса, который недавно зарегистрирован в экспериментах на Большом Адронном Коллайдере (на детекторах CMS и ATLAS). Взаимодействия существуют между векторными токами фермионов, несущими различные заряды, и поэтому они осуществляются векторными бозонами. Эти взаимодействия калибровочно инвариантны для того, чтобы избежать рождения духовых состояний с отрицательной нормой, которые могли бы разрушить сохранение вероятности в процессах СМ и тем самым полноту её описания. Дополнительное взаимодействие с бозоном Хиггса уменьшает рост амплитуд рассеяния при высоких энергиях с участием продольно поляризованных векторных бозонов и, тем самым, спасает физическую унитарность (и перенормируемость) теории возмущений в СМ в широкой области энергий при условии, что масса бозона Хиггса не слишком велика. Другая роль бозона Хиггса состоит в обеспечении фермионов массами с сохранением калибровочной инвариантности.

Глобальная группа симметрии сильных и электрослабых взаимодействий на классическом уровне это -

$$SU(3)_c \times SU(f)_L \times SU(f)_R \times U(1)_B \times U(1)_A \times R_{scale}$$

если пренебречь массами фермионов (в т.н. киральном пределе). Первая симметрия $SU(3)_c$ сохраняется точно. Вторая и третья киральные симметрии флейворов сужаются до векторной $SU(f)_V$ в результате конденсации кварков. Кроме того, они мягко нарушены массами фермионов, кроме того, киральные симметрии сужаются до векторной $\bigotimes_f U(1)_f$. Четвертая симметрия $U(1)_B$ точна в секторе сильных взаимодействий, она гарантирует сохранение барионного заряда (но потенциально нарушается электрослабыми силами при больших температурах). Аксиальная $U(1)_A$ симметрия приближённая, она мягко нарушена массами фермионов, и, кроме того, сильно нарушена в квантовом вакууме КХД из-за ненулевых корреляций плотностей топологического заряда (глюонной аномалии) на низких энергиях,а именно, ненулевой топологической восприимчивости. Наконец масштабная симметрия R_{scale} нарушена мягко массами фермионов, но также характерным масштабом квантовой КХД Λ_{QCD} , который определяет скорость изменения бегущего заряда КХД с энергией. В приближении равных масс кварков (для легких кварков) выживает симметрия

$$\longrightarrow SU(3)_c \times SU(f)_V \times U(1)_B$$
.

Разные токовые/конституентные массы кварков нарушают её до $SU(f)_V \longrightarrow \bigotimes_f U(1)_f$. Симметрия $SU(3)_c$ расширяется до калибровочной инвариантности при помощи безмассовых калибровочных полей глюонов $G^a_\mu; a=1,\ldots,8$ и в конечном итоге воплощается в квантовой хромодинамике (КХД), которая в секторе глюонов определяется классическим лагранжианом,

$$\mathcal{L}_{QCD} = -\frac{1}{4} G^a_{\mu\nu} G^{\mu\nu,a},$$

который по структуре совпадает с лагранжианом электродинамики Максвелла. Однако тензоры напряженности, инвариантные относительно калибровочныъх преобразований, оказываются нелинейными по полям глюонов,

$$G^a_{\mu\nu} = \partial_\mu G^a_\nu - \partial_\nu G^a_\mu + g_s f^{abc} G_{\mu,b} G_{\mu,c},$$

где g_s является константой сильных взаимодействий. Генераторы группы $SU(3)_c$ сильных взаимодействий - 3 х 3 матрицы Гелл-Манна $\frac{1}{2}\lambda^a$ образуют su(3) алгебру с антисимметричными структурными константами f^abc , $[\lambda^a,\lambda^b]=2if^{abc}\lambda^c$.

Используя матрицы $\frac{1}{2}\lambda^a$ можно образовать ковариантные ("длинные") производные

$$D_{\mu} = \partial_{\mu} \mathbf{I} - ig_s \hat{G}_{\mu}; \ \hat{G}_{\mu} = \frac{1}{2} \lambda^a G_{\mu}^a,$$

которые действуют на фундаментальном представлении калибровочной группы $SU(3)_c$, а именно, на цветные триплеты кварковых операторов $\psi(x) \equiv \Big(\psi_j(x)\Big), j=1,2,3,$

$$\psi(x) \to \Omega(x)\psi(x); \quad D_{\mu}\psi(x) \to \Omega(x)D_{\mu}\psi(x),$$

при условии, что связность \hat{G}_{μ} , будет преобразована неоднородно,

$$\hat{G}_{\mu} \to \Omega(x)\hat{G}_{\mu}(x)\Omega^{-1}(x) - \frac{i}{g_s}\partial_{\mu}\Omega(x)\Omega^{-1}(x).$$

Далее можно построить тензор напряженности по образцу тензора кривизны в общей теории относительности,

$$\frac{1}{2}\lambda^a G^a_{\mu\nu} \equiv \hat{G}_{\mu\nu} = \frac{i}{q_s} [D_\mu, D_\nu],$$

используя коммутатор двух ковариантных производных.

Электрослабые взаимодействия частично служат калибровочными симметриями для флейворов кварков и лептонов и реализуются фотоном и векторными бозонами.

$$U(1)_{em} \subset SU(2)_L \times U(1)_Y$$
,

при условии, что массы фермионов не разрушают калибровочную инвариантность (этому служит бозон Хиггса, см.следующую лекцию).

В полной аналогии с КХД можно определить плотность лагранжиана для векторных бозонов $W^j_\mu(x), j=1,2,3;\; B_\mu(x).$ Она имеет вид,

$$\mathcal{L}_{VB} = -\frac{1}{4}W_{\mu\nu}^{j}W_{j}^{\mu\nu} - \frac{1}{4}B_{\mu\nu}B^{\mu\nu} + \text{ массы из вакуумных ожиданий полей Хиггса,}$$

где напряжённости полей,

$$W^{j}_{\mu\nu} = \partial_{\mu}W^{j}_{\nu} - \partial_{\nu}W^{j}_{\mu} + g\epsilon^{jkl}W_{\mu,k}W_{\mu,l}; \quad B_{\mu\nu} = \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu}.$$

Эти напряжённости полей (= тензоры кривизны в слое), могут быть ассоциированы с параллельным переносом в слое и определены коммутатором ковариантных (или "длинных") производных, соответственно в калибровочных группах $SU(2)_L$ и $U(1)_Y$,

$$D_{\mu}(Y) = \partial_{\mu} \mathbf{I} - ig\vec{T} \cdot \vec{W}_{\mu} - ig'\frac{Y}{2}B_{\mu};$$

$$tr[D_{\mu}(Y), D_{\nu}(Y)] = -\frac{i}{2}g'trY \ B_{\mu\nu}; \quad tr(T^{j}[D_{\mu}(Y), D_{\nu}(Y)]) = -\frac{i}{2}gW^{j}_{\mu\nu}.$$

В этих соотношениях генераторы группы $SU(2)_L$ нормированы на матрицы Паули $T^j= au^j/2$, а для калибровочной группы $U(1)_Y$ введены абелевы генераторы - гиперзаряды Y .

Три поколения квадруплетов фермионов

Таким образом в СМ имеются три базовых калибровочных константы взаимодействия $\alpha_s = g_s^2/4\pi$ для КХД и g,g' для сектора электрослабых взаимодействий. Однако калибровочное взаимодействие абелевого поля B_μ с различными фермионами теоретически может иметь произвольные гиперзаряды Y и в классической СМ нет иного пути

их определить кроме, как из эксперимента (с некоторой точностью!). Соответственно плотность кинетической части лагражиана фермионов,

$$\mathcal{L}_{fer} = \sum_f ar{\psi} i \gamma^\mu D_\mu(Y_f) \psi + ext{массы из вак.ожид. полей Хиггса},$$

где мы рассматриваем поля кварков в фундаментальном представлении группы СМ,

Оказывается, что требование сокращения аномалий приводит к объединению кварковых и лептонных дублетов в квадруплеты с рациональными электрическими зарядами, соответствующими гиперзарядам $Y_{L,q}=1/3,\ Y_{L,l}=-1,$

$$\begin{bmatrix} u_L & c_L & t_L \\ d_L & s_L & b_L \\ \nu_e & \nu_\mu & \nu_\tau \\ e_L^- & \mu_L^- & \tau_L^- \end{bmatrix}$$

$$\begin{vmatrix} u_L & c_L & t_L \\ d_L & s_L & b_L \\ \nu_e & \nu_\mu & \nu_\tau \\ e_L^- & \mu_L^- & \tau_L^- \end{vmatrix} \qquad \hat{Q} = T_3 + \frac{Y}{2} = \begin{vmatrix} \frac{2}{3} & \frac{2}{3} & \frac{2}{3} \\ -\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{vmatrix}.$$

Чтобы объединить их в дираковские фермионы, гиперзаряды правых синглетов должны быть,

$$Y_{R,u} = \frac{4}{3}, \quad Y_{R,u} = -\frac{2}{3}, \quad Y_{R,e} = -2.$$

Конечно, на уровне классической СМ это необъяснимо: такой выбор гиперзарядов в каждом поколении и их повторение в каждом поколении выглядит загадкой (подтверждённой в экспериментах в хорошей точностью).

Однако, после квантования СМ мы находим киральные аномалии в сохранении токов гиперзарядов, то есть возникает опасность нарушения калибровочной инвариантности для абелевого калибровочного поля B_u . Этой опасности можно избежать, если мультиплеты фермионов выбраны в таких представлениях калибровочной группы СМ, что аномалии сокращаются. См. следующую лекцию.

Механизм Хиггса формирования масс

Дублет бозонов Хиггса,

$$\phi = \left(\begin{array}{c} \phi^+ \\ \phi_0 \end{array}\right)$$

вводится в фундаментальном представлении группы $SU(2)_L$ так, чтобы их калибровочно инвариантный кинетический лагранжиан мог снабдить векторные бозоны массами при конденсации полей Хиггса,

$$\mathcal{L}_{Higgs} = (D_{\mu}\phi)^{\dagger}D^{\mu}\phi - V(\phi^{\dagger}\phi); \quad V(\phi^{\dagger}\phi) = -m^2\phi^{\dagger}\phi + \lambda(\phi^{\dagger}\phi)^2.$$

Гиперзаряд дублета Хиггса Y=1 отвечает назначению электрических зарядов его компонент, предложенному выше, в соответствии с известной формулой $Q = T_3 + (Y/2)$

. Роль потенциала $V(\phi^{\dagger}\phi)$ состоит в генерации спонтанного нарушения симметрии с образованием электрически нейтрального вакуумного ожидания для полей Хиггса и обеспечения стабильности флуктуаций в его окрестности, которая соответствует положительной массе бозона Хиггса, $M_H=m\sqrt{2}$,

$$\langle \phi \rangle = \begin{pmatrix} 0 \\ \frac{v}{\sqrt{2}} \end{pmatrix}; \quad v = \sqrt{\frac{m^2}{\lambda}}; \quad \phi = \exp\left\{\frac{iw^j\tau^j}{v}\right\} \begin{pmatrix} 0 \\ \frac{v+h}{\sqrt{2}} \end{pmatrix},$$

так что, $M_H = v\sqrt{2\lambda}$.

Анализируя содержание кинетического члена для поля Хиггса в окрестности его вакуумного ожидания $\frac{v}{\sqrt{2}}$,

$$(D_{\mu}\phi)^{\dagger}D^{\mu}\phi|_{\langle\phi\rangle} \to \frac{v^{2}}{2}x(0, 1)\left\{ (g\vec{T}\cdot\vec{W}_{\mu} + g'\frac{1}{2}B_{\mu})(g\vec{T}\cdot\vec{W}^{\mu} + g'\frac{1}{2}B^{\mu})\right\} \begin{pmatrix} 0\\1 \end{pmatrix}$$
$$= \frac{v^{2}}{2}\left\{ g^{2}W_{\mu}^{+}W^{-,\mu} + \frac{1}{4}\left(g^{2}W_{\mu}^{3}W^{3,\mu} - 2gg'W_{\mu}^{3}B^{\mu} + (g')^{2}B_{\mu}B^{\mu}\right)\right\}$$

приходим к следующей параметризации масс векторных бозонов $W^{\pm}, Z,$

$$M_{W^{\pm}} = \frac{gv}{2} \simeq 80 GeV; \quad M_Z = \frac{v\sqrt{g^2 + g'^2}}{2} \simeq 91 GeV.$$

(см.более точно Рис.1)

Введем угол Вайнберга, $\cos\theta_W=M_W/M_Z$. Тогда константы взаимодействия могут быть заданы через этот угол и электрический заряд электрона -e,

$$g = \frac{e}{\sin \theta_W}; \quad g' = \frac{e}{\cos \theta_W}.$$

Соответственно, состояния полей с определённой массой для нейтрального векторного бозона Z_{μ} и безмассового фотона A_{μ} образуются следующими комбинациями затравочных полей,

$$Z_{\mu} = \cos \theta_W W_{\mu}^3 - \sin \theta_W B_{\mu}; \quad A_{\mu} = \sin \theta_W W_{\mu}^3 + \cos \theta_W B_{\mu}.$$

Наконец, вакуумное ожидание поля Хиггса однозначно определяется постоянной Ферми слабых распадов, $\sqrt{2}G_F=g^2/4M_W^2=1/v^2;~v\simeq 246GeV$. Но не существует измерения какого-либо слабого распада при низких энергиях, которое могло бы помочь однозначно определить массу частицы Хиггса по другим данным СМ. Его масса была найдена из прямой регистрации этого бозона.

GAUGE AND HIGGS BOSONS

 γ (photon)

$$I(J^{PC}) = 0.1(1^{-})$$

Mass $m < 1 \times 10^{-18} \; \mathrm{eV}$ Charge $q < 1 \times 10^{-35} \; e$ Mean life $\tau = \mathsf{Stable}$

g or gluon

$$I(J^P) = 0(1^-)$$

Mass m = 0 [a] SU(3) color octet

graviton

$$J=2$$

Mass $m < 6 \times 10^{-32} \text{ eV}$

W

$$J=1$$

Charge $=\pm 1~e$ Mass $m=80.379\pm 0.012~{\rm GeV}$ W/Z mass ratio $=0.88153\pm 0.00017$ $m_Z-m_W=10.803\pm 0.015~{\rm GeV}$ $m_{W^+}-m_{W^-}=-0.029\pm 0.028~{\rm GeV}$ Full width $\Gamma=2.085\pm 0.042~{\rm GeV}$

Ζ

$$J=1$$

Charge = 0

Mass $m = 91.1876 \pm 0.0021 \; {
m GeV} \; ^{[d]}$

Full width $\Gamma=2.4952\pm0.0023~\text{GeV}$

H⁰

$$J = 0$$

Mass $m=125.18\pm0.16~{\rm GeV}$ Full width $\Gamma~<~0.013~{\rm GeV},~{\rm CL}=95\%$

Рис. 1: Массы калибровочных бозонов и скалярного бозона Хиггса

"Опекунская" (custodial) симметрия

Перейдем к представлению сектора полей Хиггса, симметричному относительно левых и правых киральных вращений. Для этого используем зарядово сопряженный дублет $\tilde{\Phi}=i\tau_2\Phi^*$, который также реализует представление группы $SU(2)\times U(1)$. Далее объединим дублет полей Хиггса Φ с зарядово сопряженным дублетом $\tilde{\Phi}$ и образуем матрицу

 $\sqrt{2} \begin{pmatrix} \phi^{0*} & \phi^+ \\ -\phi^- & \phi^0 \end{pmatrix} \equiv M(x) = \sigma(x) + i\tau^j \tilde{\omega}^j(x); \quad (\tilde{\omega}^j) = (-\phi_1, \phi_2, -\eta),$

где в последней строке введены т.н. переменные сильной связи. Эта матрица преобразуется относительно левых и правых преобразований групп Стандартной модели $SU(2)_L$ и $U(1)_{T_R^3}$. Лагранжиан СМ для полей Хиггса может быть представлен в терминах матрицы M,

$$\mathcal{L}_{H} = \frac{1}{4} \text{tr} D_{\mu} M^{\dagger} D^{\mu} M - \frac{\lambda}{4} \left[\frac{1}{2} \text{tr} M^{\dagger} M - \frac{\mu^{2}}{\lambda} \right]; \quad D_{\mu} M = (\partial_{\mu} + L_{\mu}) M - M R_{\mu},$$

где $L_{\mu} = \frac{ig}{2} \vec{W}_{\mu} \vec{\tau}$ и $R_{\mu} = \frac{ig'}{2} B_{\mu} \tau_3$. Очевидно, что в отсутствии векторных полей этот лагранжиан инвариантен относительно полной группы $SU(2)_L \times SU(2)_R$ глобальных вращений, а после спонтанного нарушения симметрии, $< M >= v \mathbf{I}$, остается инвариантность относительно векторной подгруппы $SU(2)_V$, которая называется custodial symmetry ("опекунская" симметрия). Ее роль весьма важна при поисках операторов (вершин) в эффективном лагранжиане, характеризующих отклонения от СМ. Их описание будет сделано в следующем курсе лекций по физике вне Стандартной модели (осенний семестр).

Калибровочно инвариантные вершины Юкавы и массы фермионов

Теперь покажем, как используется дублет Хиггса для калибровочной инвариантности вершин, обеспечивающих массы фермионов в одном (первом) поколении. В кварковом секторе у нас имеются как левый дублет, так и два независимых правых синглета (u- и d-) в каждом поколении.

Именно поэтому кажется недостаточным использовать лишь один дублет, чтобы получить разные массы для u- и d-кварков. К счастью в группе SU(2) можно использовать сопряжённый дублет Хиггса, у которого калибровочные преобразования совпадают с преобразованиями исходного дублета, но он приобретает ненулевое вакуумное ожидание в верхней компоненте дублета,

$$\tilde{\phi} = i\tau_2 \phi^* = \begin{pmatrix} \phi_0 \\ -\phi^- \end{pmatrix}; \quad \langle \tilde{\phi} \rangle = \begin{pmatrix} \frac{v}{\sqrt{2}} \\ 0 \end{pmatrix}.$$

В этом случае взаимодействие Юкавы фермионов с полем Хиггса, которое снабжает их массами, может быть построено следующим образом,

$$\mathcal{L}_{fmass} = -\lambda_e \bar{\psi}_L \phi e_R^- - \lambda_u \bar{q}_L \tilde{\phi} u_R - \lambda_d \bar{q}_L \phi d_R + \mathrm{h.c.} + \mathrm{eщe}$$
 два поколения,

где ψ_L и q_L обозначают левые SU(2) дублеты лептонов и кварков,

$$\psi_L = \begin{pmatrix} \nu_e \\ e_L^- \end{pmatrix}; \quad q_L = \begin{pmatrix} u_L \\ d_L \end{pmatrix}, \quad (\psi_L, q_L) = \frac{1}{2}(1 + \gamma^5)(\psi, q) \equiv P_L(\psi, q);$$

а правые SU(2) синглеты обозначаем как, $e_R^-=P_Re^-,u_R=P_Ru,d_R=P_Rd$, где $P_R\equiv (1-\gamma_5)/2$.

Литература, используемая в курсе лекций состоит большей частью из статей, которые будут цитироваться по мере обсуждения. Из книг можно рекомендовать учебник В.М.Емельянова "Стандартная модель и её расширения Москва, Физматлит, 2007; а также, P.Langacker "The Standard Model and Beyond CRC Press, Boca Raton- London-New York, 2010. Файлы книг есть у лектора. Рекомендуется также просматривать сайт http://pdg.lbl.gov/, на котором собраны данные о существующих и гипотетических элементарных частицах и резонансах.