計量経済 II: 宿題 5

村澤 康友

提出期限: 2022年11月1日

注意:すべての質問に解答しなければ提出とは認めない。授業の HP の解答例を正確に再現すること(乱数は除く)。グループで取り組んでよいが,個別に提出すること。解答例をコピペしたり,他人の名前で提出した場合は,提出点を 0 点とし,再提出も認めない。すべての結果をワードに貼り付けて印刷し(A4 縦・両面印刷可・手書き不可),2 枚以上になる場合は必ず左上隅をホッチキスで留めること。

- 1. gretl のサンプル・データ nysewk は,ニューヨーク証券取引所の株価指数(NYSE 総合指数)の 1965 \sim 2006 年の週次データである.nysewk の対数階差系列の AR(1) モデルを以下の 3 つの方法で推定し,結果を比較しなさい.
 - (a) OLS
 - (b) 条件つき ML 法
 - (c) 厳密な ML 法
 - ※ gretl で ARIMA モデルを ML 推定する手順は以下の通り.
 - (a) メニューから「モデル」 \rightarrow 「一変量時系列」 \rightarrow 「ARIMA」を選択.
 - (b)「従属変数」を1つ選択.
 - (c)「説明変数(回帰変数)」は選択しない.
 - (d)「AR 次数」「階差次数」「MA 次数」を入力.
 - (e) 推定手法を選択.
 - (f) その他は必要に応じて設定(基本的にデフォルト値のままでよい).
 - (g) $\lceil OK \rfloor$ をクリック.
- 2. gretl のサンプル・データ sw-ch14 は,アメリカの失業率と消費者物価指数の 1959 年第 1 四半期~1999 年第 4 四半期の季節調整済みデータである.
 - (a) 失業率の時系列グラフとコレログラムを描きなさい.その上で AR(1), MA(1), ARMA(1,1) を厳密な ML 法で推定し, $AIC \cdot SBIC \cdot HQC$ を比較して最適なモデルを検討しなさい.
 - (b) 消費者物価上昇率(対数階差)の時系列グラフとコレログラムを描きなさい.その上で AR(1), MA(1), ARMA(1,1) を厳密な ML 法で推定し, $AIC \cdot SBIC \cdot HQC$ を比較して最適なモデルを検討しなさい.

解答例

1. OLS

モデル 1: 最小二乗法 (OLS), 観測: 1966-01-19–2006-07-26 (T=2115) 従属変数: ld_close

	係数	標準誤	差 t-ratio	p 値
const	0.00127461	0.000449	0131 2.838	0.0046
ld_close_1	0.0119651	0.021754	0.5500	0.5824
Mean dependent	var 0.0012	90 S.D.	dependent v	0.020612
Sum squared resid	d 0.8979	78 S.E.	of regression	0.020615
R^2	0.0001	43 Adjı	usted R^2	-0.000330
F(1, 2113)	0.3025	20 P-va	alue(F)	0.582365
Log-likelihood	5209.8	319 Aka	ike criterion	-10415.64
Schwarz criterion	-10404.	.33 Han	nan-Quinn	-10411.50
$\hat{ ho}$	-0.0001	04 Dur	bin-Watson	2.000055

条件つき ML 法

モデル 2: ARMA, 観測: 1966-01-19-2006-07-26 (T=2115) 従属変数: ld_close

	俘	数	標準誤差		z	p 値	
const	0.001	27461 0	.000449	9131	2.838	0.0045	5
ϕ_1	0.011	.9651 0	.021754	40	0.5500	0.5823	3
Mean depender	nt var	0.0012	290 S.	D. dep	endent '	var	0.020612
Mean of innova	tions	0.0000	000 S.	D. of in	nnovatio	ons	0.020615
R^2		0.0001	.43 A	djusted	R^2		0.000143
Log-likelihood		5209.8	319 A	kaike c	riterion	_	10415.64
Schwarz criteri	on	-10404	.33 H	annan-	-Quinn	_	10411.50
		Real	Imag	inary	Moduli	us	頻度
AR							
Roc	t 1	83.5765	0	.0000	83.576	65 0.0	0000

厳密な ML 法

モデル 3: ARMA, 観測: 1966-01-12-2006-07-26 (T=2116)

従属変数: ld_close

標準誤差はヘッシアン(Hessian)に基づく

		係数		標準誤差		z	p 値	
cc	nst	0.001	29144	0.000	0.000453254		0.0044	
ϕ_1	1	0.011	9596	0.02	17337	0.5503	0.5821	
Mean depe	enden	t var	0.00	1291	S.D. de	pendent '	var 0.	.020607
Mean of in	novat	ions	-1.60	e-08	S.D. of	innovatio	ons 0.	.020600
\mathbb{R}^2			0.00	0143	Adjuste	ed R^2	0.	.000143
Log-likelih	ood		5212	2.773	Akaike	criterion	-10	0419.55
Schwarz cı	riterio	n	-1040	02.57	Hannar	–Quinn	-10	0413.33
			Rea	al Ir	naginary	Moduli	us 頻	度
AR								
	Root	1	83.615	52	0.0000	83.615	52 - 0.00	00

2. (a) 時系列グラフ

コレログラム

自己相関係数(ACF) LHUR

偏自己相関係数(PACF) LHUR

AR(1)

モデル 1: ARMA, 観測: 1959:1–1999:4 (T=164)

従属変数: LHUR

標準誤差はヘッシアン (Hessian) に基づく

			係数			標準誤差		z	рί	直		
		const	5.67	938	0.	0.818668		6.93	7 0.00	000		
		ϕ_1	0.97	3209	0.	.0159	418	61.05	0.00	000		
Mea	n dep	pendent	var	5.9	951	122	S.D.	deper	ident va	r	1.4807	16
Mea	n of	innovati	ons	-0.0	016	636	S.D.	of inn	ovation	\mathbf{s}	0.3328	371
\mathbb{R}^2				0.9	491	189	Adju	isted I	\mathbb{R}^2		0.9491	189
Log-	-likeli	hood		-53.	776	605	Akai	ke crit	erion		113.55	521
Schv	varz (criterion	l	122	2.85	517	Han	nan–Q	uinn		117.32	274
_				Rea	ıl	Ima	ginar	y Me	odulus		頻度	
	AR											
_		Root	1	1.027	5		0.000	0	1.0275	0.	0000	

MA(1)

モデル 2: ARMA, 観測: 1959:1–1999:4 (T=164)

従属変数: LHUR

標準誤差はヘッシアン(Hessian)に基づく

標準誤差

p 値

係数

5.98831 0.11927150.210.0000const θ_1 $0.955852 \quad 0.0180141$ 53.060.0000Mean dependent var 5.995122 S.D. dependent var 1.480716Mean of innovations S.D. of innovations 0.0004390.783272 \mathbb{R}^2 Adjusted \mathbb{R}^2 0.9310130.931013 Log-likelihood -193.8694Akaike criterion 393.7388 Schwarz criterion 403.0384 Hannan-Quinn 397.5141Real Imaginary Modulus 頻度 MA0.0000 0.5000Root 1 -1.04621.0462

ARMA(1,1)

モデル 3: ARMA, 観測: 1959:1–1999:4 (T=164) 従属変数: LHUR

標準誤差はヘッシアン(Hessian)に基づく

		係数標			準誤	差	2	ž	p 値		
	const	5.83	1061	0.6	0.684237		8.4	492	0.0000)	
	ϕ_1	0.95	55556	0.0	0217	151	44.0	00	0.0000)	
	θ_1	0.59	96252	0.0	0589	902	10.	11	0.0000)	
Mean de	pendent	var	5.9	951	22	S.D.	dep	ender	nt var	1.4807	16
Mean of	innovat	ions	-0.0	013	26	S.D.	of in	nnova	ations	0.2730	16
\mathbb{R}^2			0.9	658	11	Adju	isted	R^2		0.9656	00
Log-likel	ihood		-21.	688	81	Akai	ke c	riteri	on	51.377	63
Schwarz	criterio	1	63.	.777	09	Ham	nan-	-Quin	ın	56.411	34
			Re	eal	Ima	agina	ry	Mod	ulus	頻度	
AR											
	Root	1	1.04	65		0.000	00	1.0	0465	0.0000	
MA											
	Root	1	-1.67	71		0.000	00	1.0	6771	0.5000	

AIC・SBIC・HQC ともに ARMA(1,1) が最小なので ARMA(1,1) が最適.

(b) 時系列グラフ

コレログラム

自己相関係数(ACF) Id_PUNEW

偏自己相関係数(PACF) Id_PUNEW

AR(1)

モデル 1: ARMA, 観測: 1959:2-1999:4 (T = 163) 従属変数: ld_PUNEW

標準誤差はヘッシアン(Hessian)に基づく

	係数	標準誤差		z	p 値	
const	0.0104107	0.002	04969	5.079	0.0000	
ϕ_1	0.849803	0.040	5607	20.95	0.0000	
Mean dependent	var 0.0	10798	S.D. d	lependent	var	0.007751
Mean of innovati	0.0	000070	S.D. o	of innovation	ons	0.004058
R^2	0.7	24296	Adjus	ted R^2		0.724296
Log-likelihood	66	5.7168	Akaik	e criterion	_	-1325.434
Schwarz criterion	-13	16.152	Hanna	an–Quinn	_	-1321.666
	D.	1 T	•	. M. J1.	1	拓库

Imaginary Modulus Real 頻度 ARRoot $1 \quad 1.1767$ 0.00001.17670.0000

MA(1)

モデル 2: ARMA, 観測: 1959:2-1999:4 (T = 163)

従属変数: ld_PUNEW

標準誤差はヘッシアン(Hessian)に基づく

係数 標準誤差 p 値 0.0007355000.010788614.670.0000 const θ_1 0.8073610.043453218.58 0.0000

Mean dependent var 0.010798S.D. dependent var 0.007751S.D. of innovations Mean of innovations 8.85e-060.005210 R^2 Adjusted \mathbb{R}^2 0.5987620.598762Log-likelihood 625.1158Akaike criterion -1244.232Schwarz criterion -1234.950Hannan-Quinn -1240.464

Real Imaginary Modulus 頻度 MARoot 1 -1.23860.00001.23860.5000

ARMA(1,1)

モデル 3: ARMA, 観測: 1959:2–1999:4 (T=163) 従属変数: ld_PUNEW

標準誤差はヘッシアン (Hessian) に基づく

		係数		標準誤差		z	p 値	
co	nst	0.01	00189	0.00283639		3.532	0.0004	<u>:</u>
ϕ_1		0.93	1392	0.031	13306	29.73	0.0000	1
$ heta_1$	_	-0.32	4318	0.083	37684	-3.872	0.0001	
Mean depe	endent	var	0.010	798	S.D. de	ependent v	ar	0.007751
Mean of in	novatio	ons	0.000	101	S.D. of	f innovatio	ns	0.003934
\mathbb{R}^2			0.741	.021	Adjust	$ m ed \ R^2$		0.739412
Log-likelih	ood		670.7	222	Akaike	criterion	_	1333.444
Schwarz cı	riterion		-1321.	.069	Hanna	n–Quinn	_	1328.420
			Real	Im	aginary	Modulu	us 步	頁度
AR								
	Root	1	1.0737		0.0000	1.073	7 0.00	000
MA								
	Root	1	3.0834		0.0000	3.083	4 0.00	000

 $AIC \cdot SBIC \cdot HQC$ ともに ARMA(1,1) が最小なので ARMA(1,1) が最適.