

planetmath.org

Math for the people, by the people.

dual isogeny

Canonical name DualIsogeny

Date of creation 2013-03-22 12:52:58

Last modified on 2013-03-22 12:52:58

Owner mathcam (2727)

Last modified by mathcam (2727)

Numerical id 9

Author mathcam (2727)

Entry type Definition Classification msc 14-00

 $Related\ topic \qquad Arithmetic Of Elliptic Curves$

Given an isogeny $f: E \to E'$ of elliptic curves of degree n, the dual isogeny is an isogeny $\hat{f}: E' \to E$ of the same degree such that $f \circ \hat{f} = [n]$. Here [n] denotes the multiplication-by-n isogeny $e \mapsto ne$ which has degree n^2 .

Often only the existence of a dual isogeny is needed, but the construction is explicit as

$$E' \to \operatorname{Div}^0(E') \xrightarrow{f^*} \operatorname{Div}^0(E) \to E$$

where Div^0 is the group of divisors of degree 0. To do this, we need maps $E \to \operatorname{Div}^0(E)$ given by $P \mapsto P - O$ where O is the neutral point of E and $\operatorname{Div}^0(E) \to E$ given by $\sum n_P P \mapsto \sum n_P P$.

To see that $f \circ \hat{f} = [n]$, note that the original isogeny f can be written as a composite

$$E \to \operatorname{Div}^0(E) \xrightarrow{f_*} \operatorname{Div}^0(E') \to E'$$

and that since f is finite of degree n, f_*f^* is multiplication by n on $\mathrm{Div}^0(E')$.

Alternatively, we can use the smaller Picard group Pic^0 , a quotient of Div^0 . The map $E \to \operatorname{Div}^0(E)$ descends to an isomorphism, $E \overset{\sim}{\to} \operatorname{Pic}^0(E)$. The dual isogeny is

$$E' \xrightarrow{\sim} \operatorname{Pic}^0(E') \xrightarrow{f^*} \operatorname{Pic}^0(E) \xrightarrow{\sim} E$$

Note that the relation $f \circ \hat{f} = [n]$ also implies the conjugate relation $\hat{f} \circ f = [n]$. Indeed, let $\phi = \hat{f} \circ f$. Then $\phi \circ \hat{f} = \hat{f} \circ [n] = [n] \circ \hat{f}$. But \hat{f} is surjective, so we must have $\phi = [n]$.