Em

• \mathbb{Z} : $ab = 0 \Rightarrow a = 0$ ou b = 0

[não tem divisores de zero]

• \mathbb{Z}_6 : $2 \cdot 3 = 2 \otimes_6 3 = 0$

[tem divisores de zero]

• $M_2(\mathbb{Z})$: $\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$.

[tem divisores de zero]

Um elemento $a \in A$, diferente de zero, diz-se divisor de zero à esquerda (resp. divisor de zero à direita) caso exista $b \in A$, diferente de zero, tal que ab = 0 (resp. ba = 0). Um divisor de zero à esquerda e à direita chama-se simplesmente divisor de zero.

DOMÍNIO DE INTEGRIDADE

Um $domínio\ de\ integridade$ é um anel comutativo com identidade sem divisores de zero.

Em

- \mathbb{Z} : só 1 e -1 são invertíveis para a operação ·
- \mathbb{Q} : todos os elementos $\neq 0$ têm inverso.

CORPO

Um corpo é um anel comutativo com identidade onde todo o elemento $\neq 0$ possui inverso.

Chama-se unidade do anel a qualquer elemento que tenha inverso. Designando por U o conjunto das unidades de A, é evidente que (U,\cdot) constitui um grupo (portanto, se A é um corpo, $U = A \setminus \{0\}$ e $(A \setminus \{0\}, \cdot)$ é um grupo abeliano).

Todo o corpo é um domínio de integridade. Com efeito, se a tem inverso então não é divisor de zero:

$$ab = 0 \Leftrightarrow a^{-1}(ab) = a^{-1} \cdot 0 \Leftrightarrow b = 0.$$

Em conclusão:

 $\mathbb Z$ é um exemplo de domínio de integridade que não é corpo. Nenhum exemplo destes pode ser finito:

Teorema. Todo o domínio de integridade finito é um corpo.

Demonstração. Seja $D = \{0, d_1, d_2, \dots, d_n\}$ um domínio de integridade finito. Para cada $i \in \{1, 2, \dots, n\}$ consideremos os produtos $d_i d_1, d_2 d_2, \dots, d_i d_n$. São distintos dois a dois: $d_i d_j = d_i d_k \Leftrightarrow d_i (d_j - d_k) = 0$; como $d_i \neq 0$ e D não tem divisores de zero, necessariamente $d_j - d_k = 0$, isto é, $d_j = d_k$.

Assim, os produtos $d_i d_1, d_2 d_2, \ldots, d_i d_n$ percorrem todos os elementos não nulos de D; em particular, existe j tal que $d_i d_j = 1$, o que significa que d_i é invertível. Portanto, todo o elemento não nulo de D é invertível, logo D é um corpo.

SUBANEL

 $S\subseteq A$ é um subanel de A se Sé fechado para + e · e forma um anel para estas operações.

Exemplos: $2\mathbb{Z}$, $3\mathbb{Z}$, $4\mathbb{Z}$, ... são subanéis de $(\mathbb{Z}, +, \cdot)$.

Qualquer anel A possui sempre os subanéis triviais $\{0\}$ e o próprio A. Qualquer outro subanel de A diz-se subanel próprio.

Proposição. Um subconjunto S de um anel A é um subanel se e só se as seguintes condições se verificam:

(1) $S \neq \emptyset$.

- (2) Para cada $x, y \in S$, $x y \in S$.
- (3) Para cada $x, y \in S$, $xy \in S$.

Demonstração. Exercício.

Mais exemplos:

- $\mathbb{Z}[\sqrt{-5}] := \{a + b\sqrt{-5} \mid a, b \in \mathbb{Z}\} \text{ \'e um subanel de } (\mathbb{C}, +, \cdot).$
- $\left\{ \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix} : a \in \mathbb{Z} \right\}$ é um subanel de $M_2(\mathbb{Z})$.

IDEAL

Um subanel I de A diz-se um ideal se, para cada $a \in A$ e cada $x \in I$, ax e xa pertencem a I.

Exemplos:

- \mathbb{Z} é um subanel de \mathbb{Q} mas não é um ideal $(1 \cdot \frac{1}{2} = \frac{1}{2} \notin \mathbb{Z})$
- $n\mathbb{Z}$ é um ideal de Z $(n \in \mathbb{N}_0)$.

[Observe o paralelismo com a teoria dos grupos: os subanéis correspondem aos subgrupos e os ideais correspondem aos subgrupos normais]

Da proposição anterior decorre imediatamente que:

Proposição. Um subconjunto I de um anel A é um ideal se e só se as seguintes condições se verificam:

- (1) $I \neq \emptyset$.
- (2) Para cada $x, y \in I, x y \in I$.
- (3) Para cada $a \in A$ e $x \in I$, $ax \in I$ e $xa \in I$.

Mais exemplos: Seja A um anel comutativo e $a \in A$.

• $\{xa \mid x \in A\}$ é um ideal de A.

[pode não conter a]

• O menor ideal de A contendo a é o ideal $(a) := \{xa + na \mid x \in A, n \in \mathbb{Z}\}$. Diz-se o *ideal principal gerado* por a. Se A for também unitário, $(a) = \{xa \mid x \in A\}$.

Aula 2 - Álgebra II

Seja A um anel comutativo. Um ideal I de A diz-se principal se existe algum $a \in A$ tal que I = (a).

Exemplo: Em Álgebra I observaram que os subconjuntos $n\mathbb{Z}$, $n=0,1,2,\ldots$, são os únicos subgrupos de $(\mathbb{Z},+)$. Portanto, $n\mathbb{Z}$, $n=0,1,2,\ldots$, são os únicos ideais de $(\mathbb{Z},+,\cdot)$. Como $n\mathbb{Z}=(n)$, são todos principais.

 $[\mathbb{Z} \text{ diz-se um domínio de ideais principais}]$