

Código de asignatura: IE763

Coulgo de asignatura. 112/05				
Nombre del programa académico	Ingeniería Eléctrica			
Nombre completo de la asignatura	Análisis de Señales			
Área académica o categoría	Profesionales y especificas			
Semestre y año de actualización	Semestre 1 – 2017			
Semestre y año en que se imparte	Semestre 7 – Año 4			
Tipo de asignatura	[x] Obligatoria [] Electiva			
Número de créditos ECTS	5			
Director o contacto del programa	José Germán López Quintero			
Coordinador o contacto de la asignatura	Álvaro Ángel Orozco Gutiérrez			

Descripción y contenidos

1. Breve descripción

La asignatura Análisis de señales es de naturaleza teórica, el propósito que tiene es el análisis y cuantificación de la energía o potencia de los armónicos contenidos en una señal, así como el desarrollo de los conceptos de discretización, filtrado y modulación de señales.

2. Objetivos

Se espera que al finalizar este curso el estudiante este en capacidad de aplicar la teoría básica de señales para los procesos de discretización, transformación, modulación y filtrado de señales. Lo anterior está en correspondencia con el objetivo del programa (OP-2).

- 3. Resultados de aprendizaje
- RA1. Analizar en tiempo frecuencia señales de energía.
- RA2. Analizar en tiempo frecuencia señales de potencia.
- RA3. Aplicar los procesos de discretización de señales.
- RA4. Diseñar procesos de filtrado de señales.
- RA5. Diseñar procesos de modulación de señales.
- RA6. Capacidad para resolver problemas.
- RA7. Habilidades para comunicación oral y escrita.
- RA8. Capacidad de pensamiento crítico.

Se corresponde con los siguientes resultados de aprendizaje del programa (RAP-1), (RAP-7), (RAP-13). (RAP-16).

4. Contenido

- T1: Definición y clasificación de señales (12 h).
- T2: Ortogonalidad y representación de señales (4 h).
- *T3: Series de Fourier (12 h).*
- T4: Análisis de forma de onda periódicas (8 h).
- T5: La transformada de Fourier (16 h).
- *T6: Aplicaciones (8 h)*
- T7: Parámetros asociados a la calidad de energía (4 h)

5. Requisitos

Asignaturas: Sistemas lineales (código IE683).

Competencias: El estudiante debe tener conocimientos previos en análisis de variable compleja, teoría de análisis funcional, cálculo diferencia e integral, programación de computadores, programación lineal. El estudiante al finalizar el curso contará con los conocimientos necesarios para analizar los espectros generalizados de las señales: análogas, determinísticas, periódicas o aperiódicas, de potencia o de energía que serán aplicadas en el proceso de formación como ingenieros electricistas.

6. Recursos

Libros de texto:

- [1] G. Castellanos, A. Orozco, Representación de señales y sistemas, Publicaciones UTP, 1a Edición 2007
- [2] J. Vargas, M. Álvarez, M. Orozco, G. Castellanos, Teoría de señales: Fundamentos, Publicaciones UNAL, 1a Edición 2010.
- [3] H. Hsu, Signals and Systems, Schaum's Outline Series, 2011
- [4] H. Hsu. Análisis de Fourier, Fondo Educativo Interamericano S.A. 1970
- [5] B.P. Lathi, Introducción a la teoría y Sistemas de Comunicación, Limusa, 1974
- [6] B.P. Lathi, Sistemas Modernos de Comunicación, Interamericana, 1986
- [7] J. Proakis, D. Manolakis, Tratamiento digital de señales, Mc Graw Hill, 2013
- [8] UPME, Colciencias, Calidad de la Energía Eléctrica, 2013.
- [9] A. Kusko, M. Thompson, Power Quality in Electrical System, Mc Graw Hill, 2007
- [10] R. Dugan, M. Granaghan, Electrical Power Systems Quality, Mc Graw Hill, 2012
- [11] S. Santoso, Fundamentals of Electrical Power Quality, S. Santoso, 2006.

Herramientas informáticas

- Software de simulación MatlabTM.
- Contar con una cuenta de correo oficial de la universidad para utilizar la plataforma classroom
 - 7. Herramientas técnicas de soporte para la enseñanza
- Analizadores de señales.
- Software Matlab.
- Tarjetas de adquisición de señales
- Otras herramientas técnicas se presentan en 6.
 - 8. Trabajos en laboratorio y proyectos

Dos proyectos

- Notas musicales en Matlab a partir de armónicos simples. Generar un algoritmo en Matlab que simule un instrumento musical. (6 h)
- Representación de datos mediante funciones ortogonales: aplicación al reconocimiento de señales univariadas o multivariadas (6h).

Cuatro trabajos en laboratorio:

- Laboratorio 1: Contextualizar el fenómeno de aliasing y el teorema del muestreo (2h).
- Laboratorio 2: Concepto de armónicos simples. Concepto de armónicos en un sistema eléctrico (2 h)
- Laboratorio 3: Concepto de representación de señales eléctricas con espacios funcionales (2 h).
- Laboratorio 4: Concepto del cálculo de la transformada de Fourier DFT y FFT (2 h)
 - 9. Métodos de aprendizaje
- Clases magistrales.
- Asesorías.
- Trabajos en grupo.
- Talleres.
- Proyecto final.
 - 10. Métodos de evaluación

La evaluación está distribuida de la siguiente forma:

- Laboratorios, talleres y quices (T1 a T7): (25%). Se evalúan los resultados de aprendizaje (RA1 a RA8).
- Examen 1: Examen escrito individual donde se evalúa definición y clasificación de señales (T1) y ortogonalidad y representación de señales (T2): (25%) (RA1, RA2, RA6, RA8)
- Examen 2: Examen escrito individual donde se evalúa series de Fourier (T3) y análisis de forma de onda periódicas (T4): (25%) (RA3, RA4, RA6, RA8)
- Examen Final: Examen escrito individual donde se evalúa la transformada de Fourier (T5), Aplicaciones (T6) y parámetros asociados a la calidad de energía (T7): (25%) (RA3, RA4, RA5, RA6, RA7, RA8)