Properties of Magic Squares of Squares

Landon W. Rabern 1120 NW Harlan St. Roseburg, OR 97470 landonrabern@hotmail.com

July 2002

A problem due to Martin LaBar is to find a 3x3 magic square with 9 distinct perfect square entries or prove that such a magic square cannot exist(LaBar [1]). This problem has been tied to various domains including arithmetic progressions, rational right triangles, and elliptic curves(Robertson [2]). However, there are some interesting properties that can be derived without ever leaving the domain of magic squares. I will assume that a solution exists and prove properties of such a solution. Any solution must have the form

$$\begin{array}{ccccc}
a^2 & b^2 & c^2 \\
d^2 & e^2 & f^2 \\
g^2 & h^2 & s^2
\end{array}$$

If M denotes the magic number, then M is the sum of each row, column, or main diagonal. We know from Gardner [3] that M must equal three times the middle square, so $M=3e^2$.

Let t be the greatest common divisor of $a^2, b^2, c^2, d^2, e^2, f^2, g^2, h^2$ and s^2 . If $t \neq 1$ then t is a square, thus we can divide all entries by t to produce a new solution with a smaller magic number (M/t). For this reason, it will be assumed throughout this paper that the entries are relatively prime (t = 1).

Theorem 1.1 All entries of the magic square must be odd.

Proof: Using the fact that the the entries on the left side of the square must sum to M we get

$$a^2 + d^2 + g^2 = M = 3e^2$$

Hence $a^2 + g^2 = 3e^2 - d^2$, in particular,

$$a^2 + g^2 \equiv 3e^2 - d^2 \pmod{4}$$

With e odd and d even, we have $a^2+g^2\equiv 3-0\equiv 3 \pmod 4$. Taking e even and d odd gives $a^2+g^2\equiv 0-1\equiv -1\equiv 3 \pmod 4$. This is impossible since

 $a^2 + g^2 \equiv 0$ or $2 \pmod{4}$. Therefore, e and d must have the same parity. Both e and d odd gives $a^2 + g^2 \equiv 3 - 1 \equiv 2 \pmod{4}$. This implies that a and g must be odd. Both e and d even gives $a^2 + g^2 \equiv 0 - 0 \equiv 0 \pmod{4}$. This implies that a and g must be even. Thus $a \equiv g \equiv e \equiv d \pmod{2}$.

Arguing in a similar fashion for the other sides of the square we find that $a \equiv b \equiv c \equiv d \equiv e \equiv f \equiv g \equiv h \equiv s \pmod{2}$. Thus, if any element is even they are all even, contradicting the fact that the elements are relatively prime. Hence, all entries are odd. ■

From all rows, columns and main diagonals that pass through the center of the square we get

$$a^{2} + e^{2} + s^{2} = d^{2} + e^{2} + f^{2} = b^{2} + e^{2} + h^{2} = a^{2} + e^{2} + c^{2} = 3e^{2}$$

From which it follows that

$$a^{2} + s^{2} = d^{2} + f^{2} = b^{2} + h^{2} = q^{2} + c^{2} = 2e^{2}$$

We can now prove the following theorem.

Theorem 1.2 The only prime divisors of e are of the form $p \equiv 1 \pmod{4}$.

Proof: We just need to show that no prime $p \equiv 3 \pmod{4}$ can divide e. We use the fact that the ring of Gaussian integers Z[i] is a Unique Factorization Domain(UFD). Factoring the left side of $a^2 + s^2 = 2e^2$ in Z[i], we get $(a+si)(a-si)=2e^2$. Given an odd prime $p\in Z$, then p is prime in Z[i] if and only if $p \equiv 3 \pmod{4}$ (See Lemma 1.1 in the Appendix). Thus, assume we have a p such that $p \equiv 3 \pmod{4}$ and $p \mid e$. Then we must have either $p \mid (a + si)$ or $p \mid (a-si)$. If $p \mid (a+si)$, then a+si=pk and by complex conjugation $a-si=\overline{pk}=p\overline{k}$. Hence $p\mid (a-si)$. But then p must also divide their sum and difference: $p \mid 2si$, $p \mid 2a$. Hence $p \mid s$, $p \mid a$ since p is odd and real. Similarly, $p \mid d$, $p \mid f$, $p \mid b$, $p \mid h$, $p \mid g$, $p \mid c$. Hence, p divides every entry which

is impossible.

Theorem 1.3 If a prime $p \equiv 3,5 \pmod{8}$ divides a non-center entry then p also divides the center and the other entry in that line.

Proof: Without loss of generality we prove the result for the a, e, s diagonal. We use the fact that the ring $Z[\sqrt{2}]$ is a UFD. Given an odd prime $p \in Z$, then p is prime in $Z[\sqrt{2}]$ if and only if $p \equiv 3, 5 \pmod{8}$ (See Lemma 1.2 in the Appendix). We have $a^2 + s^2 = 2e^2$. Hence $a^2 = -(s^2 - 2e^2)$.

We can factor the right side of this equation in $\mathbb{Z}[\sqrt{2}]$ to get

$$a^2 = -(s + e\sqrt{2})(s - e\sqrt{2})$$

If $p \mid a$ and $p \equiv 3,5 \pmod 8$ then either $p \mid (s + e\sqrt{2})$ or $p \mid (s - e\sqrt{2})$. If $p \mid (s + e\sqrt{2})$, then $s + e\sqrt{2} = pk$, and by conjugation $s - e\sqrt{2} = p\bar{k}$. Hence $p \mid (s - e\sqrt{2})$. Thus p divides their sum and difference: $p \mid 2s, p \mid 2e\sqrt{2}$. Hence $p \mid s, p \mid e \text{ since } p \text{ is odd and rational.} \blacksquare$

Corollary 1.1 No prime $p \equiv 3 \pmod{8}$ divides any entry.

Proof: If p divides some non-center entry, then by Theorem 1.3, p divides e. But from Theorem 1.2, we know that p cannot divide e since $p \equiv 3 \pmod{8} \Rightarrow p \equiv 3 \pmod{4}$.

Gardner [3] has shown that given any 3x3 magic square made up of distinct positive integers, there are three positive integers x, y, z so that the magic square can be written in the form

$$\begin{array}{cccc} x + y + 2z & x & x + 2y + z \\ x + 2y & x + y + z & x + 2z \\ x + z & x + 2y + 2z & x + y \end{array}$$

Looking at this we quickly see that $d^2 + h^2 = 2c^2$ with similar relations holding for the other corner entries. The relation can be stated as

Double a corner entry equals the sum of the two middle-side entries that are not adjacent to the corner.

We can now prove the following theorem.

Theorem 1.4 No prime $p \equiv 5 \pmod{8}$ divides a middle-side entry.

Proof: Without loss of generality, let the middle-side entry be d^2 . Again, we use the fact that the ring $Z[\sqrt{2}]$ is a UFD. Given an odd prime $p \in Z$, then p is prime in $Z[\sqrt{2}]$ if and only if $p \equiv 3, 5 \pmod 8$ (See Lemma 1.2 in the Appendix). We have $d^2 + h^2 = 2c^2$. Hence $d^2 = -(h^2 - 2c^2)$.

We can factor the right side of this equation in $\mathbb{Z}[\sqrt{2}]$ to get

$$d^2 = -(h + c\sqrt{2})(h - c\sqrt{2})$$

If $p \mid d$ and $p \equiv 5 \pmod{8}$ then either $p \mid (h+c\sqrt{2})$ or $p \mid (h-c\sqrt{2})$. If $p \mid (h+c\sqrt{2})$, then $h+c\sqrt{2}=pk$ and by conjugation $h-c\sqrt{2}=p\overline{k}$. Hence $p \mid (h-c\sqrt{2})$. Thus p divides their sum and difference: $p \mid 2h, \ p \mid 2c\sqrt{2}$. Hence $p \mid h, \ p \mid c$ since p is odd and rational. Since $p \mid h$ we can use the same argument to show that $p \mid f, \ p \mid a$. But then, since $p \mid f$, we can use the same argument again to show that $p \mid b, \ p \mid g$. Since p divides both a and a, b must also divide a. Hence a divides all entries, which is impossible.

Theorem 1.5 If a prime $p \equiv 3 \pmod{4}$ divides a corner entry then it divides the two middle-side entries that are not adjacent to the corner.

Proof: Without loss of generality, let the corner entry be c^2 . Again, we use the fact that the ring of Gaussian integers Z[i] is a UFD. Factoring the left side of $d^2 + h^2 = 2c^2$ in Z[i], we get $(d+hi)(d-hi) = 2c^2$. If $p \equiv 3 \pmod{4}$ then p is prime in Z[i](See Lemma 1.1 in the Appendix). Thus if $p \mid c$ and $p \equiv 3 \pmod{4}$ then either $p \mid (d+hi)$ or $p \mid (d-hi)$. If $p \mid (d+hi)$, then d+hi = pk, and

by conjugation $d - hi = p\overline{k}$. Hence $p \mid (d - hi)$. Thus p divides their sum and difference: $p \mid 2d$, $p \mid 2hi$. Hence $p \mid d$, $p \mid h$ since p is odd and real.

All of these properties taken together severely restrict the possible placement of primes that are not of the form $p \equiv 1 \pmod{8}$. Given these restrictions, one might conjecture that if there is a solution, then all prime divisors of all entries are of the form $p \equiv 1 \pmod{8}$. This would greatly reduce the number of possibilities. It would also be interesting to disprove this conjecture by proving the opposite; namely, that any solution must have at least one entry with prime divisor $p \equiv 5,7 \pmod{8}$.

APPENDIX

We need to know when an odd prime $p \in Z$ is also prime in the extensions Z[i] and $Z[\sqrt{2}]$. The following two lemmas answer this question completely.

Lemma 1.1 Given an odd prime $p \in Z$,

$$p \equiv 3 \pmod{4} \Leftrightarrow p \text{ prime in } Z[i]$$

Proof: We use the fact that Z[i] is a UFD.

First, we assume that $p \equiv 3 \pmod{4}$ and show that p must be prime in $\mathbb{Z}[i]$.

If p is composite in Z[i] then p has a factorization $p=\alpha\beta$ with $N(\alpha)>1$ and $N(\beta)>1$. Taking the norm of both sides we get $p^2=N(\alpha)N(\beta)$. It is not possible for p^2 to divide $N(\alpha)$ or $N(\beta)$ since this would imply $N(\beta)=1$, $N(\alpha)=1$ respectively. Hence $N(\alpha)=p$ and $N(\beta)=p$. From the former we get $p=N(\alpha)=x^2+y^2$ for some $x,y\in Z$. Thus $p\equiv 0,1,2 \pmod 4$ which is a contradiction.

Now we assume that p is prime in Z[i] and show that $p \equiv 3 \pmod{4}$.

If $p \equiv 1 \pmod{4}$ then the equation $x^2 \equiv -1 \pmod{p}$ has a solution. Hence $x^2 + 1 = kp$. Factoring in Z[i] we get (x+i)(x-i) = kp. p is prime, so it must divide one of the factors and by complex conjugation it divides both. Therefore p divides their difference: $p \mid 2i$. This is impossible since p is odd and real(Beukers [4]).

Lemma 1.2 Given an odd prime $p \in Z$,

$$p \equiv 3, 5 \pmod{8} \Leftrightarrow p \text{ prime in } Z[\sqrt{2}]$$

Proof: We use the fact that $Z[\sqrt{2}]$ is a UFD.

First, we assume that $p \equiv 3,5 \pmod{8}$ and show that p must be prime in $\mathbb{Z}[\sqrt{2}]$.

If p composite in $Z[\sqrt{2}]$ then p has a factorization $p=\alpha\beta$ with $|N(\alpha)|>1$ and $|N(\beta)|>1$. Taking the norm of both sides we get $p^2=N(\alpha)N(\beta)$. It is not possible for p^2 to divide $N(\alpha)$ or $N(\beta)$ since this would imply $|N(\beta)|=1$, $|N(\alpha)|=1$ respectively. Hence $|N(\alpha)|=p$ and $|N(\beta)|=p$. From the former we get $p=\pm N(\alpha)=\pm (x^2-2y^2)$ for some $x,y\in Z$. Thus $p\equiv 0,1,2,6,7\pmod 8$ which is a contradiction.

Now we assume that p is prime in $Z[\sqrt{2}]$ and show that $p \equiv 3, 5 \pmod{8}$.

Assume p prime in $Z[\sqrt{2}]$. If $p \equiv 1, 7 \pmod 8$ then the equation $x^2 \equiv 2 \pmod p$ has a solution. Hence $x^2 - 2 = kp$. Factoring in $Z[\sqrt{2}]$ we get $(x + \sqrt{2})(x - \sqrt{2}) = kp$. p is prime, so it must divide one of the factors and by conjugation it divides both. Therefore p divides their difference: $p \mid 2\sqrt{2}$. This is impossible since p is odd and rational.

REFERENCES

- 1. Martin LaBar, Problem 270, College Math Journal, 15, 1984, p. 69.
- 2. John P. Robertson, *Magic Squares of Squares*, Mathematics Magazine, Vol. 69, No. 4, Oct. 1996, pp. 289-293
- 3. Martin Gardner, *Riddles of the Sphinx*, Mathematical Association of America, 1987, pp. 136-137.
- 4. Frits Beukers, *Elementary Number Theory*, Lecture Notes for a course titled "Elementaire Getaltheorie" at Utrecht University, The Netherlands, Sept. 2001, p. 55. Unpublished.