Communication Links:

- Fiber, Copper, Radio, Satellite
- Transmission Rate: Bandwidth

Packet Switches: Forward Packets (chucks of data)

- Routers and Switches

Q: How to connect end systems to edge router?

- Residential Access Nets
- Institutional Access Networks
- Mobile Access Networks

Breaks message into smaller chucks, packets, of length L bits.

Host transmits packet into access network at transmission rate R bits/seconds.

 $\begin{array}{ccc} & \text{packet} \\ \text{transmission} & = & \begin{array}{c} \text{time needed to} \\ \text{transmit } L\text{-bit} \\ \text{packet into link} \end{array} = & \frac{L \text{ (bits)}}{R \text{ (bits/sec)}} \end{array}$

Routing: Determines source-destination route taken by packets. - Routing Algorithms **Forwarding**: Move packets from router's input to appropriate router output.

Packet switching versus circuit switching

packet switching allows more users to use network!

1 bits = 0.125 Byte 1 Byte = 8 bits

dproc nodal processing

- check bit errors
- determine output link
- typically < msec

d_{queue}: queueing delay

- time waiting at output link for transmission
- depends on congestion level of router

d_{trans}: transmission delay:

- · L: packet length (bits)
- R: link bandwidth (bps)
- d_{trans} = L/R

d_{trans} and d_{prop}

d_{prop}: propagation delay:

- d: length of physical link
- s: propagation speed in medium (-2x10⁸ m/sec)
- d_{prop} = d/s

a: Average packet arrival rate

- La/R ~ 0: avg. dqueue small
- La/R -> 1: avg. dqueue large
- La/R > 1: more "work" arriving than can be serviced, avg. d_{queue} infinite!

Throughput: Rate (bits/time unit) at which bits transferred between sender/receiver

- Instantaneous: rate at given point in time
- Average: rate over longer period of time
 - application: supporting network applications
 - FTP, SMTP, HTTP
 - transport: process-process data transfer
 - TCP, UDP
 - network: routing of datagrams from source to destination
 - · IP, routing protocols
 - link: data transfer between neighboring network devices
 - Ethernet, 802.111 (WiFi), PPP
 physical bits "on the wire"
- transport
 network
 link
 physical

application

Viruses and Worms

Denial of Service (DoS): Attackers make resources (server, bandwidth) unavailable to legitimate traffic by overwhelming resource with bogus traffic.

Packet "Sniffing" and IP Spoofing

Total Non-Persistent HTTP Response Time PER OBJECT:

2RTT + File Transmission Time

Total Delay = Internet Delay + Access Delay + LAN Delay

time to distribute F to N clients using $D_{cs} \ge max\{NF/u_{s}, F/d_{min}\}$ client-server approach

increases linearly in N

time to distribute F to N clients using P2P approach

 $D_{P2P} \geq \max\{F/u_{s_i}, F/d_{min_i}, NF/(u_s + \Sigma u_i)\}$

increases linearly in N ...
... but so does this, as each peer brings service capacity

Cross-Cuthy Example, Figure 3.17

Channel Utility atten > 98%

L = 1500 Eytes = 12000 bots

RT = 30 ms = 0.030 s

R = 1 Gtps = 109 bps

Channe = 12000 = 1.2 × 10-5 s

Channe = 109 cps

Channe = 12000 = 1.2 × 10-5 s

The wandow stree walld have to be about 12451 packets lbho.

a) Seq = 207, Source post = 302, Dest port = 80

b) ACK=207, Source part=80, Dest. part=302
c) ACK=127 (since completine ACKs)
d) Host A Host B

Figure 127, 80 lytes

Seq=127, 80 lytes

Record

Record

Record

pipelining: sender allows multiple, "in-flight", yetto-be-acknowledged pkts

- · range of sequence numbers must be increased
- · buffering at sender and/or receiver

 two generic forms of pipelined protocols: go-Back-N, selective repeat

Go-back-N:

- sender can have up to N unacked packets in pipeline
- receiver only sends cumulative ack
 - doesn't ack packet if there's a gap
- sender has timer for oldest unacked packet
 - when timer expires, retransmit all unacked packets

Selective Repeat:

- sender can have up to N unack ed packets in pipeline
- rcvr sends individual ack for each packet
- sender maintains timer for each unacked packet
 - when timer expires, retransmit only that unacked packet

At most half of the window size of sequence numbers.

- timeout interval: EstimatedRTT plus "safety margin"
 - large variation in EstimatedRTT -> larger safety margin
- estimate SampleRTT deviation from EstimatedRTT:
 DevRTT = (1-β)*DevRTT + B*!SampleRTT-EstimatedRTT!

 $property = \frac{(1-\beta) \cdot \text{DevRTT} + \beta \cdot |\text{SampleRTT-EstimatedRTT}|}{\beta \cdot |\text{SampleRTT-EstimatedRTT}|}$ $\text{(typically, } \beta = 0.25\text{)}$

two broad approaches towards congestion control:

end-end congestion control:

- no explicit feedback from network
- congestion inferred from end-system observed loss, delay
- approach taken by TCP

network-assisted congestion control:

- routers provide
- feedback to end systems
- single bit indicating congestion (SNA, DECbit, TCP/IP ECN, ATM)
- explicit rate for sender to send at
- loss indicated by timeout:
 - cwnd set to I MSS;
 - window then grows exponentially (as in slow start) to threshold, then grows linearly
- loss indicated by 3 duplicate ACKs: TCP RENO
 - dup ACKs indicate network capable of delivering some segments
 - . cwnd is cut in half window then grows linearly
- TCP Tahoe always sets ownd to 1 (timeout or 3 duplicate acks)