Contents

- Aim
- Main Python Methods
- Data Processing Steps
 - Step 1: Retrieve original counts table
 - Step 2: Retrieve original metadata table
 - Step 3: Create dictionary from metadata table
 - Step 4: Calculate total read counts per sample
 - Step 5: Extract counts for all six sample groups
 - Step 6: Calculate Spearman Correlation Coefficients for each sample group
 - Step 7: Generate final figure
 - Step 8: Compare original and regenerated figures

Aim: Replicate Figure 1D

1D

Main Python Methods

```
# Retrieve tab delimited file
def read csv file(file path, skiprows=None, header = 0, sep = '\t', index col=
False):
    df = pd.read csv(file path, skiprows=skiprows, sep=sep, header=header, ind
ex col=index col)
   return df
# Create dictionary from metadata table
def get dict from metadata(input df):
   mydict = {}
    for row in input df.iterrows():
       obj = row[1]
        sample id = obj['SampleID']
       key = obj['FMTGroupFMTsourcegtRecipientbackground']
        if key not in mydict:
            mydict[key] = [sample id]
        else:
            mydict[key].append(sample id)
    return mydict
# Calculate Pearson correlation coefficients from input set of samples
def get pearson corr values(input df, ser sample count sums):
   overall mean count = ser sample count sums.mean()
    col names = input df.columns
   df input norm logged = get norm counts(input df, col names, ser sample co
unt sums, overall mean count)
   final corr result = get corr values (col names, df input norm logged)
    return final corr result
# ******************************** HELPER METHODS ***********************
# Normalize counts table
def get norm counts(input df, col names, ser sample count sums, overall mean
count):
   df norm logged = pd.DataFrame()
    for col name in col names:
        df norm logged.loc[:, col name] = \
        np.log10(((input df.loc[:, col name] / ser sample count sums[col name
]) * overall mean count) + 1)
    return df norm logged
# Calculate Pearson Correlation Coefficients
def get corr values(col names, input norm logged df):
   corr result = []
    tup list = get tup list(col names)
    for tup in tup list:
       x col name = col names[tup[0]]
        y col name = col names[tup[1]]
       rho value = \
        stats.pearsonr(input norm logged df.loc[:, x col name], input norm log
ged df.loc[:, y col name]).statistic
       corr result.append(rho value)
    # Remove nan values
    corr result = [val for val in corr result if not np.isnan(val)]
   return corr result
# Generate tuple list of sample column names
```

```
def get tup list(col names):
   tup list = []
   corr result = []
   col name length = len(col names)
   for i in range(col name length):
       for j in range(i+1, col name length):
          tup list.append((i, j))
   return tup list
# Get current working directory
current working dir = os.getcwd()
# original counts table
asv tbl file path = os.path.join(current working dir, 'asv biom-with-taxonomy.
txt')
# original metadata table
metadata file path = os.path.join(current working dir, 'mappingMetadata.txt')
```

Data Processing Steps

Step 1: Retrieve original counts table

```
In [2]: df_asv = read_csv_file(asv_tbl_file_path, 1)
    df_asv = df_asv.astype({col:'int32' for col in df_asv.columns[1:-1] }, copy=Fa
    lse)
    df_asv
```

Out[2]:

	#OTU ID	1gKO.1	1gKO.2	1gKO.3	1gWT.1	1gWT.2	1gWT.3	2gKO.1
0	1ba8c796d07406783c96d016a6a5cace	13615	16637	17148	20227	23630	25656	14832
1	a6c38249aff7768283faf6cfbdeb05a8	26439	30129	19743	8955	10759	7074	18489
2	062f38ff92cfaee0654200b6f5be5ddf	7451	8774	8754	174	214	148	21958
3	1183cc23f552d81e63c93ca9fcba2f2c	225	223	184	13762	16856	18692	269
4	5e15ecfb579e72bf87c0bea3920bbf42	10108	12117	8633	10027	11910	7424	5979
4070	92bb8f4683ef5c8651e7d34dbb37ab2e	0	0	0	0	0	0	0
4071	92f09070a4fd5786bb34e756217e6ee1	0	0	0	0	0	0	0
4072	919b82324c41ed0046323c63aa1550da	0	0	0	0	0	0	0
4073	dbc0dad15ec1c8ad9d826cab94e18696	0	0	0	0	0	0	0

4075 rows × 112 columns

Step 2: Retrieve original metadata table

```
In [3]: df_metadata = read_csv_file(metadata_file_path)
    df_metadata
```

Out[3]:

	SampleID	UniversalCageNumber	Background	${\bf FMTGroupFMT} sourcegt Recipient background$	Passage
0	F8-1	F8-cage-1	129.IL10KO	1gKOgtKO	8
1	F8-2	F8-cage-1	129.IL10KO	1gKOgtKO	8
2	F8-3	F8-cage-2	129.IL10KO	1gKOgtKO	8
3	F8-4	F8-cage-2	129.IL10KO	1gKOgtKO	8
4	F8-5	F8-cage-3	129.IL10KO	1gKOgtKO	8
105	1gWT.2	NaN	NaN	1gWTinput	1gWT
106	1gWT.3	NaN	NaN	1gWTinput	1gWT
107	2gWT.1	NaN	NaN	2gWTinput	2gWT
108	2gWT.2	NaN	NaN	2gWTinput	2gWT
109	2gWT.3	NaN	NaN	2gWTinput	2gWT

110 rows × 8 columns

h1-2-3.3 133745

Step 3: Create dictionary from metadata table

```
In [4]: dict_metadata = get_dict_from_metadata(df_metadata)
    dict_metadata.keys()
```

Step 4: Calculate total read counts per sample

```
h3-4-5.1
            129613
h3-4-5.2
            140316
h3-4-5.3
            132984
Length: 110, dtype: int64
```

Step 5: Extract counts for all six sample groups

```
In [6]:
         # 'hFMT.1.2.3.qtWT' --> 'HM1->WT'
         key name = 'hFMT.1.2.3.gtWT'
         print('Grouped columns: {}'.format(dict metadata[key name]))
         print('Number of expected correlation values: {}'.format(int(comb(len(dict met
         adata[key name]), 2))))
         HM1 WT = df asv[[col name for col name in dict metadata[key name] ]]
         HM1 WT
         Grouped columns: ['F1-16', 'F1-17', 'F1-18', 'F1-19', 'F1-20', 'F1-21', 'F1-
         22']
         Number of expected correlation values: 21
Out[6]:
               F1-16 F1-17 F1-18 F1-19 F1-20 F1-21 F1-22
            0 19186 10727 29599
                                 32588
                                       32950
                                             18853
                                                    5199
                2938
                                                    2202
            1
                      6816
                            3233
                                  1118
                                        1710
                                              1047
                9072 10348
                            5289
                                         196
                                               207
                                                     269
                                   176
                 247
                       258
                             275
                                 18297
                                       22544
                                             19687 21014
            3
                2389
                      3858
                            1904
                                  3904
                                        2928
                                              5286
                                                    4884
          4070
                                           0
                        0
                               0
                                     0
                                                 0
                                                       0
          4071
                                     0
                                           0
          4072
                                     0
                                           0
                                                       0
          4073
                  0
                        0
                               0
                                     0
                                           0
                                                 0
                                                       0
```

4075 rows × 7 columns

```
# '1gWTgtWT' --> 'NIMM-g1->WT'
In [7]:
        key name = 'lgWTgtWT'
        print('Grouped columns: {}'.format(dict metadata[key name]))
        print('Number of expected correlation values: {}'.format(int(comb(len(dict met
        adata[key name]), 2))))
        NIMM g1 WT = df asv[[col name for col name in dict metadata[key name] ]]
        NIMM g1 WT
```

Grouped columns: ['F8-27', 'F8-28', 'F8-29', 'F8-30', 'F8-31', 'F8-32', 'F8-33', 'F11-1', 'F11-2', 'F11-3', 'F11-4', 'F11-5', 'F11-6', 'F11-7', 'F11-8', 'F11-9', 'F11-10', 'F11-11']

Number of expected correlation values: 153

Out[7]:

F8-27 F8-28 F8-29 F8-30 F8-31 F8-32 F8-33 F11-1 F11-2 F11-3 F11-4 F11-5 F11-6 F 21313 6113 24573 19347 18028 10482 11761 34742 24360 31173 45582 18929 22349 1

	300	972	397	332	5/3	825	1995	410	434	376	376	370	337	
2	135	243	197	193	99	207	237	129	291	167	282	412	190	
3	21071	16272	27247	21302	26135	23762	22465	25848	26231	19490	22181	18524	12915	2
4	2245	5227	5760	1189	2327	14279	7911	1416	2031	1899	2725	2679	1920	
4070	0	0	0	0	0	0	0	0	0	0	0	0	0	
4071	0	0	0	0	0	0	0	0	0	0	0	0	0	
4072	2 0	0	0	0	0	0	0	0	0	0	0	0	0	
4073	0	0	0	0	0	0	0	0	0	0	0	0	0	
4074	0	0	0	0	0	0	0	0	0	0	0	0	0	

4075 rows × 18 columns

```
In [8]: # '2gWTgtWT' --> 'NIMM-g2->WT'
key_name = '2gWTgtWT'
print('Grouped columns: {}'.format(dict_metadata[key_name]))
print('Number of expected correlation values: {}'.format(int(comb(len(dict_metadata[key_name]), 2))))
NIMM_g2_WT = df_asv[[col_name for col_name in dict_metadata[key_name]]]
NIMM_g2_WT
```

Grouped columns: ['F8-34', 'F8-35', 'F8-36', 'F8-37', 'F8-38', 'F8-39', 'F8-40', 'F8-41']

Number of expected correlation values: 28

Out[8]:

	F8-34	F8-35	F8-36	F8-37	F8-38	F8-39	F8-40	F8-41
0	23089	23716	26435	13911	32356	18934	23958	18944
1	329	537	320	362	473	1848	258	282
2	172	254	238	146	225	135	189	66
3	11455	20177	11798	13910	13422	24886	20107	18889
4	4360	10659	3839	3613	5501	13735	2324	12215
4070	0	0	0	0	0	0	0	0
4071	0	0	0	0	0	0	0	0
4072	0	0	0	0	0	0	0	0
4073	0	0	0	0	0	0	0	0
4074	0	0	0	0	0	0	0	0

4075 rows × 8 columns

```
In [9]: # 'hFMT.1.2.3.gtKO' --> 'HM1->KO'
key_name = 'hFMT.1.2.3.gtKO'
print('Grouped columns: {}'.format(dict_metadata[key_name]))
print('Number of expected correlation values: {}'.format(int(comb(len(dict_metadata[key_name]), 2))))
HM1_KO = df_asv[[col_name for col_name in dict_metadata[key_name]]]
HM1_KO
```

Grouped columns: ['F3-7', 'F3-8', 'F3-9', 'F3-10', 'F3-11', 'F3-12', 'F1-7', 'F1-8', 'F1-9', 'F1-10', 'F1-11', 'F1-12', 'F1-13', 'F1-14', 'F1-15']

Out[9]:

		F3-7	F3-8	F3-9	F3-10	F3-11	F3-12	F1-7	F1-8	F1-9	F1-10	F1-11	F1-12	F1-13	F
	0	10097	574	12959	18737	17857	12650	10738	9576	7304	14409	14382	8787	7694	
	1	35102	51633	31840	22887	20446	33188	23565	21707	12802	26719	5701	15715	25125	
	2	1328	91	2203	189	182	244	33299	13739	53077	17570	34094	18922	19204	4
	3	137	315	305	134	221	290	203	348	363	238	219	205	255	
	4	34960	13573	4109	3811	1155	28938	1144	6973	666	8230	1287	11346	13195	
40	70	0	0	0	0	0	0	0	0	0	0	0	0	0	
40	71	0	0	0	0	0	0	0	0	0	0	0	0	0	
40	72	0	0	0	0	0	0	0	0	0	0	0	0	0	
40	73	0	0	0	0	0	0	0	0	0	0	0	0	0	
40	74	0	0	0	0	0	0	0	0	0	0	0	0	0	

4075 rows × 15 columns

```
In [10]: # 'lgKOgtKO' --> 'IMM-g1->KO'
key_name = 'lgKOgtKO'
print('Grouped columns: {}'.format(dict_metadata[key_name]))
print('Number of expected correlation values: {}'.format(int(comb(len(dict_metadata[key_name]), 2))))
IMM_g1_KO = df_asv[[col_name for col_name in dict_metadata[key_name]]]
IMM_g1_KO
```

Grouped columns: ['F8-1', 'F8-2', 'F8-3', 'F8-4', 'F8-5', 'F8-6', 'F8-7', 'F8-8', 'F4-1', 'F4-2', 'F4-3', 'F4-4', 'F4-5', 'F3-1', 'F3-2', 'F3-4', 'F3-5', 'F3-6']

Number of expected correlation values: 153

Out[10]:

	F8-1	F8-2	F8-3	F8-4	F8-5	F8-6	F8-7	F8-8	F4-1	F4-2	F4-3	F4-4	F4-5	
0	3339	15223	11423	18205	12486	10761	9339	466	29629	20134	27588	26741	25644	2
1	10283	6602	9314	13651	8789	16118	12045	13841	3687	6998	6904	7796	4011	
2	41532	40602	52337	11038	16781	8926	25758	31166	1627	37042	23825	26508	30376	
3	240	276	331	302	341	231	226	306	275	198	213	271	172	2
4	1806	6778	6725	12734	3901	10948	10347	1234	8891	3718	9188	4419	8315	
4070	0	0	0	0	0	0	0	0	0	0	0	0	0	
4071	0	0	0	0	0	0	0	0	0	0	0	0	0	
4072	0	0	0	0	0	0	0	0	0	0	0	0	0	
4073	0	0	0	0	0	0	0	0	0	0	0	0	0	
4074	0	0	0	0	0	0	0	0	0	0	0	0	0	

4075 rows × 18 columns

```
In [11]: # '2gKOgtKO' --> 'IMM-g2->KO'
key_name = '2gKOgtKO'
```

```
print('Grouped columns: {}'.format(dict_metadata[key_name]))
print('Number of expected correlation values: {}'.format(int(comb(len(dict_met adata[key_name]), 2))))
IMM_g2_KO = df_asv[[col_name for col_name in dict_metadata[key_name]]]
IMM_g2_KO
```

```
Grouped columns: ['F8-9', 'F8-10', 'F8-11', 'F8-12', 'F8-13', 'F8-14', 'F8-15', 'F8-16']
```

Number of expected correlation values: 28

Out[11]:

	F8-9	F8-10	F8-11	F8-12	F8-13	F8-14	F8-15	F8-16
0	23451	24742	31312	13542	4593	10228	14477	23819
1	8030	14203	27872	26539	12663	13720	23316	14430
2	19653	22616	4603	28535	20096	20133	14650	24062
3	266	344	300	269	257	330	249	226
4	6490	6143	12353	2229	6367	11645	9607	10622
4070	0	0	0	0	0	0	0	0
4071	0	0	0	0	0	0	0	0
4072	0	0	0	0	0	0	0	0
4073	0	0	0	0	0	0	0	0
4074	0	0	0	0	0	0	0	0

4075 rows × 8 columns

Step 6: Calculate Spearman Correlation Coefficients for each sample group

```
In [12]: HM1_WT_data = get_pearson_corr_values(HM1_WT, sample_count_sums)
    NIMM_g1_WT_data = get_pearson_corr_values(NIMM_g1_WT, sample_count_sums)
    NIMM_g2_WT_data = get_pearson_corr_values(NIMM_g2_WT, sample_count_sums)
    HM1_KO_data = get_pearson_corr_values(HM1_KO, sample_count_sums)
    IMM_g1_KO_data = get_pearson_corr_values(IMM_g1_KO, sample_count_sums)
    IMM_g2_KO_data = get_pearson_corr_values(IMM_g2_KO, sample_count_sums)
```

Step 7: Generate final figure

Step 8: Compare original and regenerated figures

