Bachelorabeit Untersuchung von Datenreduktionsregeln beim Kontenüberdeckungsproblem

Benedikt Lüken-Winkels

12. Januar 2018

Inhaltsverzeichnis

Ι	$\mathbf{T}\mathbf{C}$	ODO .	1
1	Imp	olementierung	2
2	Vor	abeit	2
II	Ic	lee und Vorgehensweise	2
3	The	ema	2
4	Fixe	ed-Parameter-Algorithm	2
5	Definitionen/Erklärungen		
	5.1	Regulärer Graph	3
	5.2	Dominating Set	3
	5.3	Matching	3
		5.3.1 Maximal Matching	3
		5.3.2 Maximum (Cardinality) Matching	3
		5.3.3 Perfect/Complete Matching	3
	5.4	Independent Set	3
	5.5	Bipartider Graph s19	3
6	Kno	otenüberdeckung/Vertexcover	4
	6.1	Algorithmus s99	4
7	Gra	ph-Reduktion	4
	7.1	Reduktionsregeln	5
		7.1.1 Einfache Regeln	5
		7.1.2 Nemhauser/Trotter - Regel s64	5
		7.1.3 Kronenregel	5

Teil I TODO

1 Implementierung

- Maximal- und Maximummatching implementieren mcb matching.html
- bipartiden Graphen erkennen

2 Vorabeit

- Algorithmen in Tex schreiben
- KÜ-Algorithmus finden
- Andere Algorithmen ausarbeiten

Teil II

Idee und Vorgehensweise

3 Thema

Reihenfolge von Reduktionsregeln und Einfluss auf Laufzeit von Knotenüberdeckung

Zu prüfen:

- Wie oft feuert welche Regel?
- Welche Regeln haben den größten Effekt auf die Graphstruktur?
 Ist der Graph bipartid
- Voraussetzungen für Anwendungen der Regeln

Wie sehen Graphen aus, auf die keine Regel anwendbar ist

Wie sehen Graphen aus, auf auf die nur eine Regel anwendbar ist (und keine andere)

4 Fixed-Parameter-Algorithm

- NP-schwere Probleme
- exponentielle Laufzeit
- meist wird auf der Größe der Lösungsmenge parametrisiert
- exponentieller Faktor hängt nur von einem Parameter ab
- Fixed-Parameter-Algotithms lösen Probleme mit einer Eingabeinstanz der Größe n und parameter k in $f(k)*n^{O(1)}$

• Vorteile von FPAs

die Lösung ist garantiert optimal die obere Schranke der Komplexität ist beweisbar

5 Definitionen/Erklärungen

5.1 Regulärer Graph

Ein Graph G ist $regul\ddot{a}r$, wenn $\forall x,y\in G:\ Grad(x)=Grad(y)\ (f\ddot{u}r\ x\neq y)$

5.2 Dominating Set

G = (V, E), nonnegative int $k, S \subseteq V, (S : |S| \le k, v \in S \lor v \text{ has a neighbor in } S)$

5.3 Matching

In einem Graphen G=(V,E) ist $M\subseteq E$ ein Matching wenn keine 2 Kanten den selben Knoten haben

5.3.1 Maximal Matching

- \bullet Wenn irgendeine Kante zum Matching Mhinzugefügt wird, ist das Mkein Matching mehr
- M ist keine Teilmenge eines anderen Matchings

5.3.2 Maximum (Cardinality) Matching

- Größte Menge an Kanten
- \bullet matching number v(G) ist die größe eines Maximum Matchings von G

5.3.3 Perfect/Complete Matching

 \bullet Jeder Knoten ist indiziert in M

5.4 Independent Set

$$G = (V, E), \ U \subset V, \forall \ v, \ w \in U : (v, w) \notin E$$

5.5 Bipartider Graph s19

Jeder Knoten ist in genau einem von zwei Teilmengen. Innerhalb einer Teilmenge ist kein Knoten benachbart Knotenfärbung:

- O Startknoten n wird Farbe U zugeordnet, dann allen Nachbarn Farbe V
- 1 Wiederhole Vorgang für alle Nachbarn
- 2 Wenn einem Knoten eine Farbe zugeordnet werden soll,
- 3 die eine andere ist, als die, die er hat:
- 4 return Nicht-Bipartid

${f 6}$ Knotenüberdeckung/Vertexcover

G=(V,E), nonnegative int k, $C\subseteq V,$ $(C:|C|\leq k,$ each edge in E has one endpoint in C) Es gibt eine Knoteüberdeckung der Größe k, wenn es ein Independent Set der Größe n-k gibt s32

• Parametrisierung: s41 (Auswahl der richtigen Parametrisierung) Größe der Menge (k) der zu findenden Knotenüberdeckung Gibt es eine Knotenüberdeckung der Größe n-k? $(n=|\mathbf{V}|) \to \mathbf{N}$ icht FPT

6.1 Algorithmus s99

• Suchbaum, dessen Tiefe durch k begrenzt ist

```
Branching:
   Knoten x \in G, Vertex Cover (G) = C = \emptyset, Graph G
1
   switch (\exists x \text{ mit } Grad(x)):
             case = 1: C \cup N(x) (kein anderer Branch)
             case > 4: Branch mit x und N(x)
4
5
             case 2-4 und G regulär:
                                          Branch mit x und N(x)
6
             case 2: verwende degree-two-vertices
7
             case 3: verwende degree-three-vertices
8
9
   Degree-two-vertices:
10
   N(x) = \{a, b\}
11
   switch:
12
             case N(a)=b: C\cup\{a,b\}
13
             case N(a)=N(b)=c(\neq x): C \cup \{x,c\}
             case default: Branch mit N(x) und N(a) \cup N(b)
14
15
16
   Degree-three-vertices:
   N(x) = \{a, b, c\}, d \in G
17
18
   switch:
19
             case Dreieck mit {x,a,b}(mehr Dreiecke möglich):
20
                      Branch mit N(x) und N(c)
21
             case Kreis/Cycle mit \{x, a, b, d\}:
22
                      Branch mit N(x) und \{x,d\}
23
             case a, b, c=keine Nachbarn Grad(a)=4:
                      Branch mit N(x) und N(a) und \{a\} \cup N(b) \cup N(c)
24
```

Beispiel aus Algorithms on Trees and Graphs von Gabriel Valiente, Springer-Verlag Berlin Heidelberg 2002, Seite 333

7 Graph-Reduktion

• Einfache Teile des Graphen entfernen, sodass nur der Kern des Problems, bzw seine Schwierigkeit übrig bleibt. s51

- Knotenüberdeckung kann für Graphen mit fester Baumbreite effizient gelöst werden s51
- Reduktion der Eingabe auf den Problemkern immer sinnvoll s53

7.1 Reduktionsregeln

7.1.1 Einfache Regeln

- Ein isolierter Knoten ist automatisch in der KÜ s54
- Bei einem Knoten des Grades 1 wird der Nachbar automatisch hinzugefügt, da er evtl noch weitere Kantenabdeckt s54
- Ein Knoten des Grades k+1 ($|L\"{o}sungsmenge| \le k$) wird automatisch hinzugefügt, da sonst k+1 Elemente in der Menge wären s54

7.1.2 Nemhauser/Trotter - Regel s64

• Maximum Matching:

Königs Minimax Theorie: Bei bipartiden Graphen ist die Größe des Maximum Matching gleich der Größe der Minimalen Knotenüberdeckung s65

Die Maximum Matching ist die Größte unter den gültigen Matchings des Graphen (Wikipedia, Matching)

```
0 \ G = (V, E)
```

- 1 Bipartiden Graphen erstellen B = (V, V', E')
- 2 V' ist Kopie von V
- 3 E':= $\{\{x, y'\}, \{x', y\} | \{x, y\} \in E\}$
- 4 Maximum Matching M mit mcb machting bestimmen
- 5 VC(B) = CB mit Satz von König bestimmen (mcb_machting)
- $6 \text{ VC}(G[V0]) \cup C0 = VC(G)$

7.1.3 Kronenregel

- $\bullet\,$ Veralgemeinerung der Grad 1 Emiminierung \to einfachste Kronenregel 69
- Die Krone eines besteht aus dem Independent Set I und H=N(I) mit $H\cap I=\emptyset$ und die Kanten zwischen I und H indizieren (matchen) alle Knoten aus H 69

Cygan Parameterized Algorithm 69 (255)