日期:

Net ID: 2411 24569

Name: Zhong Qiaoyang

1. Let X_1, \ldots, X_n be a random sample from a geometric distribution that has pmf $f(x|\theta) =$ $(1-\theta)^x\theta$, $x=0,1,2\ldots,0<\theta<1$, zero elsewhere. Show that $\sum_{i=1}^n X_i$ is a sufficient statistic for θ .

$$f(x|\theta) = exp \left\{ x \cdot \log(1-\theta) + \log \theta \right\}$$
 is exponential class

2. Let X_1, \ldots, X_n be a random sample from a $\text{Beta}(\theta, 5)$. Show that the product $X_1 \times \cdots \times X_n$ is a sufficient statistic for θ .

$$f(\infty \mid \theta, s) = \frac{x^{\theta-1} (1-x)^{\frac{\alpha}{2}}}{\beta(\theta, s)}$$

$$L(\theta, \xi) = (\pi \times i)^{\theta - 1} \frac{(1 - 2i)^{\frac{1}{4}}}{B(\theta, \xi)}$$

3. Write the pdf

 $f(x|\theta) = \frac{1}{a \rho 4} x^3 e^{-x/\theta}, \quad 0 < x < \infty, \ 0 < \theta < \infty,$ zero elsewhere, in the exponential form. If $X_1, X_2, ..., X_n$ is a random sample from this distribution, find a complete sufficient statistic Y_1 for θ and the unique function $\phi(Y_1)$ of this

statistic that is the MVUE of θ . Is $\phi(Y_1)$ itself a complete sufficient statistic?

=> \$\frac{\Delta}{1} \times \t

$$=\int_{0}^{+\infty}$$

$$= \int_0^{+\infty} \frac{4a3x2x1}{6} e^{-\infty10} dx = 40$$

日期

$$E(\frac{h}{2} \times i) = 0$$
, is unbiased estimator.

女文 is unique MVUL.

3 since $T_i = \sum_{i=1}^{n} x_i$ is complete sufficient statistics,

\$ I i) complete sufficient statistics as well. □

4. Let X_1, \ldots, X_n be a random sample from the density function $f(x|\theta) = \frac{1}{\theta}e^{x/\theta}, \ x < 0, \ \theta > 0$. Determine the MVUE of θ .

4.

(x) 2 xi 13 complete sufficient statistics

 $E(x) = -\theta$, $E(x) = -\theta$.

-I is unbiased estimator of 0,

 $\phi(\vec{x}) = E(-\vec{x}|\vec{x}) = -\vec{x}$ is the unique MVUE for θ . \Box

5. Let X_1, \dots, X_n be a random sample from a uniform distribution $[0, \theta]$, for some unknown parameter $\theta > 0$. Is $X_{(n)}$, the largest order statistic among all samples, a sufficient statistic for θ ?

5. Xin = max { 1, -- , xn}

$$P(x_{(n)} \in t) = P(x_1 \in t). P(x_2 \in t) - P(x_n \in t)$$

= $(\frac{t}{\Theta})^n$, for $0 \in t \in \Theta$.

$$f_{\times n}(t|\theta) = n \cdot \frac{t^{n-1}}{\theta n}, \quad 0 \le t \le \theta.$$

$$\frac{f(x_{1}, |\theta) - f(x_{1}, |\theta)}{f_{X_{1}(x_{1})}(t|\theta)} = \frac{(\frac{1}{\theta})^{h}}{n \cdot \frac{t^{n+1}}{\theta^{n}}} = \frac{1}{n \cdot t^{n+1}} \quad \text{is independent with } \theta,$$
hence $X_{1}(x_{1}) = \frac{1}{n \cdot t^{n+1}} = \frac{1}{n \cdot t^{n+1}}$

日期:	/		