DHANAMANJURI UNIVERSITY

DECEMBER-2022

Name of Programme : B.A/B.Sc Mathematics (Honours)

Paper Type : Core-5(Theory)

Paper Code : CMA-205

Paper Title : Theory of Real Functions

Full mark : 100 Pass Mark : 40

Duration : 3 Hours

The figures in the margin indicate full marks for the questions. Answer all the questions:

1. Give the definitions of the limits:

4

(a)
$$\lim_{x\to 1} f(x) = 1$$
 and

(b)
$$\lim_{z \to \infty} f(x) = 1$$

2. Using the
$$\varepsilon - \delta$$
 definition, show that $\lim_{x \to 0} x \sin\left(\frac{1}{x}\right) = 0$.

3. Show that
$$\lim_{z \to 4} \frac{1}{(x-4)^2} = \infty$$
.

4. Prove that the function
$$f(x) = \sin x$$
 is uniformly continuous on $[0, \infty[$.

5. Prove that a function which is uniformly continuous on an interval is continuous on that interval.

6. Using Taylor's Theorem with
$$n = 2$$
, approximate $\sqrt{1+x}$, $x > -1$.

Or

Expand the function $\sin x$ in powers of x in a finite series with the Lagrange form of remainder.

7. Show that the function defined on \mathbb{R} by

$$f(x) = \begin{cases} 1, & \text{where x is irrational} \\ -1, & \text{where x is rational} \end{cases}$$

is discontinuous at every point.

6

- 8. Let $f: I \to \mathbb{R}$ be differentiable on the interval I. Then, prove that f is increasing on I if and only if $f'(x) \ge 0$ for all $x \in I$.
- 9. State Cauchy's necessary and sufficient condition for the existence of a limit. Hence, show that $\lim_{x\to 0} \sin\left(\frac{1}{x}\right)$ does not exist.
- 10. If a function f is continuous on a closed interval [a,b] and f(a) and f(b) are of opposite signs, then prove that there exists at least one point $\alpha \in]a,b[$ such that $f(\alpha) = 0$.

Or

Prove that if a function is continuous in a closed interval, then it is bounded therein. 8

- 11. Prove that a function f defined on an interval I is continuous at a point $c \in I$ if and only if for every sequence $\{c_n\}$ in I converging to c, $\lim_{n\to\infty} f(c_n) = f(c)$.
- 12. State and prove Caratheodory's Theorem.

8

- 13. State and prove Rolle's Theorem. Also, write the geometrical interpretation of the theorem.
- 14. Let $I \subseteq \mathbb{R}$ be an interval, let $f: I \to \mathbb{R}$, let $c \in I$, and assume that f has a derivative at c. Then, prove that:
 - a) If f'(c) > 0, then there is a number $\delta > 0$ such that f(x) > f(c) for $x \in I$ such that $c < x < c + \delta$.
 - b) If f'(c) < 0, then there is a number $\delta > 0$ such that f(x) < f(c) for $x \in I$ such that $c \delta < x < c$.

Or

State and prove Darboux's Theorem.

- 15. State and prove Taylor's Theorem in finite form with Lagrange form of remainder. 8
- 16. Let *I* be an open interval and let $f: I \to \mathbb{R}$ have a second derivative on *I*. Then, prove that *f* is a convex function on *I* if and only if $f''(x) \ge 0$ for all $x \in I$.
