INTRODUCTION TO COMPUTER SCIENCE

How programs and data are stored: Binary System

How computers are built: Logic Gates

From higher level languages to machine language

How Many Binary Patterns from N Bits

Number of Bits	Number of Patterns	Number of Patterns as Power of Two
1	2	2 ¹
2	4	2 ²
3	8	2 ³
4	16	24

Number of possible patterns of N bits = 2^N

How many patterns can be formed with:

- 10 bits = 2^{10} = 1024 \rightarrow 1024 bytes (1 Kilobyte)
- 20 bits = 2^{20} = 2^{10} x 2^{10} \rightarrow 1024 Kbytes (1 Megabyte)
- 30 bits = 2^{30} = 2^{10} x 2^{20} \rightarrow 1024 Mbytes (1 Gigabyte)
- 40 bits = 2^{40} = 2^{10} x 2^{30} \rightarrow 1024 Gbytes (1 Terabyte)
- 50 bits = 2^{50} = 2^{10} x 2^{40} \rightarrow 1024 Tbytes (1 Petabyte)
- 60 bits = 2^{60} = 2^{10} x 2^{50} \rightarrow 1024 Pbytes (1 Exabyte)

Transistor: Building Block of Computers

- Microprocessors contain billions of transistors
- Logically, each transistor acts as a switch

- Combine transistors to implement logic gates
 - AND, OR, NOT, NAND, NOR, XOR
- Combine gates to build higher-level structures
 - Adder, multiplexer, decoder, register, ...
- Combine higher-level structures to build processor

Logic Gates

Truth Table
$$\begin{array}{c|c} A & \overline{A} \\ \hline 0 & 1 \\ \hline 1 & 0 \\ \end{array}$$

$$A \longrightarrow A+B$$

$$OR$$

A	В	A+B
0	0	0
0	1	1
1	0	1
1	1	1

Logic Gates

Symbol

NAND

Truth Table

Α	В	AB
0	0	1
0	1	1
1	0	1
1	1	0

$$\begin{array}{c} A \\ B \end{array} \longrightarrow \overline{A+B}$$

NOR

$$A \oplus B$$

XOR

Α	В	А⊕В
0	0	0
0	1	1
1	0	1
1	1	0

Program Meets Hardware

- Programs are written in higher level language
 - Java, C, C++, Perl, Python
- The CPU can execute very simple machine language instructions
 - Add, Sub, Jmp
- How to obtain runnable code from a program written in some programming language?
 - Compiler: translates a higher level language program into machine language program (executable). The executable program can be executed many times.
 - Interpreter: executes the computation written on a higher level language program.

Program Meets Hardware

C uses compilation

Program Meets Hardware

Java combines compilation and interpretation

