SCC0221 – Introdução à Ciência de Computação I

Prof.: Dr. Rudinei Goularte

(rudinei@icmc.usp.br)

Aulas 5 e 6 – Introdução a Algoritmos

Instituto de Ciências Matemáticas e de Computação - ICMC Sala 4-229

Sumário

- 1. Etapas da construção de programas.
- 2. Definição de Algoritmo.
- 3. Introdução às estruturas algorítmicas e refinamentos sucessivos.
- 4. Constantes e variáveis.
- 5. Operadores e expressões.
- 6. Entrada e Saída.
- 7. Comandos de seleção.

Linguagem de máquina

- É o conjunto das instruções primitivas projetadas para um computador. Uma CPU somente pode compreender instruções que sejam expressas em termos de sua LINGUAGEM DE MÁQUINA.
- Um programa escrito em linguagem de máquina consiste de uma série de números binários e é muito difícil de ser entendido pelas pessoas.
- Exemplo: Cada instrução é constituída de 2 partes:

```
o código da operação e o operando 0010 (Load) 011000 (endereço) 0110 (multiplica) 000101 (valor) ... 0010011000 0110000101
```

- Linguagem de baixo nível
 - Os programas são escritos em uma notação que está próxima da linguagem de máquina

Exemplo:

```
código da operação operando significado

LD A load 10

MPI 5 multiplica 5
```

- Linguagem de alto nível
 - Se pode escrever programas em uma notação próxima à maneira natural de expressar o problema que se deseja resolver.
 - Exemplo: RESULT = D-((A+B)/C)
 - Aplicações Científicas: FORTRAN, ALGOL, BASIC, APL, LISP, PASCAL, ADA, C, PROLOG, PLI, Java, Python, ...
 - Aplicações Comerciais: COBOL, RPG, PLI, C, Java, Ruby, ...

COMPILADOR

 Traduz os comandos simbólicos de uma linguagem de alto nível, para linguagem de máquina.

MONTADOR

 Traduz os comandos simbólicos de uma linguagem de baixo nível, para linguagem de máquina.

INTERPRETADOR

- Lê e executa uma declaração do programa por vez.
- Nenhuma fase intermediária de compilação é necessária.
- A execução do programa interpretado requer que o interpretador da linguagem esteja sendo executado no computador.

1. Etapas da Construção de Programas

Definição do Problema

DEFINIÇÃO (o que)

DESENVOLVIMENTO (como)

Revisões e Documentação

- Projetar a Solução (ALGORITMO)
- Codificar a Solução (Programar em Linguagem de Programação)
- Testar o Programa

- Um algoritmo é uma seqüência de passos que visam atingir um objetivo bem definido.
 - <u>Pessoas</u> tem <u>inteligência</u> e habilidade racional => fazem <u>perguntas</u> para se esclarecer.
 - Computador não tem senso <u>próprio</u> => deve receber <u>instruções</u> explícitas e precisas (<u>algoritmos</u>).

- Um <u>algoritmo</u> <u>correto</u> deve possuir 3 qualidades:
 - 1- Cada <u>passo</u> do <u>algoritmo</u> deve ser uma <u>instrução</u> que possa ser realizada.
 - 2- A <u>ordem</u> dos passos deve ser precisamente <u>determinada</u>.
 - 3- O <u>algoritmo</u> deve ter <u>fim</u>.

Todo algoritmo possui início e fim.

```
Início
----;
----;
Fim.
```

- Cada instrução do algoritmo termina com;
- O algoritmo termina com ponto final.

- Primeiro algoritmo: trocar uma lâmpada no teto.
 - Quais serão as instruções?
 - Usaremos o português coloquial.

ALGORITMO PARA TROCAR UMA LÂMPADA NO TETO

```
Início
Remova a lâmpada queimada;
Coloque a nova lâmpada;
```


ALGORITMO PARA TROCAR UMA LÂMPADA NO TETO

Início

Remova a lâmpada queimada;

Coloque a nova lâmpada;

<u>Fim</u>.

O que é necessário para remover a lâmpada queimada?

ALGORITMO PARA TROCAR UMA LÂMPADA NO TETO

- Posicione a escada debaixo da lâmpada queimada;
- Suba na escada até que a lâmpada possa ser alcançada;
- Gire a lâmpada queimada no sentido anti-horário até que se solte;

ALGORITMO PARA TROCAR UMA LÂMPADA NO TETO

<u>Início</u>

Remova a lâmpada queimada;

Coloque a nova lâmpada;

<u>Fim</u>.

O que é necessário para colocar a lâmpada nova?

ALGORITMO PARA TROCAR UMA LÂMPADA NO TETO

- Escolha uma lâmpada da mesma potência da queimada;
- Posicione a nova lâmpada no soquete;
- Gire a lâmpada no sentido horário até que ela se firme;
- Desça da escada;

<u>Início</u>

Posicione a escada debaixo da lâmpada queimada;

Suba na escada até que a lâmpada possa ser alcançada;

Gire a lâmpada queimada no sentido anti-horário até que se solte;

Remova a lâmpada queimada;

Escolha uma lâmpada da mesma potência da queimada;

Posicione a nova lâmpada no soquete;

Gire a lâmpada no sentido horário até que ela se firme;

Desça da escada;

<u>Início</u>

Posicione a escada debaixo da lâmpada queimada;

Sequenciamento: estabelece um padrão de comportamento. As ações devem ser executadas linearmente, em seqüência, uma após a outra.

Posicione a nova lampada no soquete;

Gire a lâmpada no sentido horário até que ela se firme;

Desça da escada;

Início

Posicione a escada debaixo da lâmpada queimada;

Suba na escada até que a lâmpada possa ser alcançada;

E se a lâmpada não estiver queimada?

Posicione a nova lâmpada no soquete;

Gire a lâmpada no sentido horário até que ela se firme;

Desça da escada;

Início Posicione a escada debaixo da lâmpada queimada; Suba na escada até que a lâmpada possa ser alcançada; G E se a lâmpada não estiver Precisamos de um Posicione a nov teste seletivo! Gire a lâmpada no senudo norano ace Desça da escada; Fim.

```
Início
  Acionar o interruptor;
  se a lâmpada não ascender, então
    início
      Posicione a escada debaixo da lâmpada queimada;
      Suba na escada até que a lâmpada possa ser alcançada;
      Gire a lâmpada queimada no sentido anti-horário até que se solte;
      Remova a lâmpada queimada;
      Escolha uma lâmpada da mesma potência da queimada;
      Posicione a nova lâmpada no soquete;
      Gire a lâmpada no sentido horário até que ela se firme;
      Desça da escada;
   fim;
```

Início

```
Acionar o interruptor;
se a lâmpada não ascender, então
início
```

Posicione a escada debaixo da lâmpada queimada;

Teste seletivo: determina qual conjunto de ações deve ser seguido, dependendo do resultado da **condição** resultar em **verdadeiro** ou **falso**.

```
Posicione a nova lâmpada no soquete;
Gire a lâmpada no sentido horário até que ela se firme;
Desça da escada;
fim;
```

```
Início
Acionar o interruptor;
```

se a lâmpada não ascender, então

início

Decicione a occada debaixo da lâmbada queimada

E se a nova lâmpada estiver queimada?

nemova a lampada quelmada,

Escolha uma lâmpada da mesma potência da queimada;

Posicione a nova lâmpada no soquete;

Gire a lâmpada no sentido horário até que ela se firme;

Desça da escada;

fim;

```
Início
  Acionar o interruptor;
  se a lâmpada não ascender, então
    início
      Posicione a escada debaixo da lâmpada queimada;
      Suba na escada até que a lâmpada possa ser alcançada;
      Gire a lâmpada queimada no sentido anti-horário até que se solte;
      Remova a lâmpada queimada;
      Escolha uma lâmpada da mesma potência da queimada;
      Posicione a nova lâmpada no soquete;
      Gire a lâmpada no sentido horário até que ela se firme;
    fim;
    enquanto a lâmpada não ascender, faça
    início
       Gire a lâmpada queimada no sentido anti-horário até que se solte;
       Remova a lâmpada queimada;
       Escolha uma lâmpada da mesma potência da queimada;
       Posicione a nova lâmpada no soquete;
       Gire a lâmpada no sentido horário até que ela se firme;
    fim;
  Desca da escada;
Fim.
```

Início

Fim

Repetição: mesmo trecho é repetido várias vezes, até que a condição de parada seja alcançada!

Qual a condição de parada?

O número de repetições é **indefinido**, porém, **finito**.

```
fim;
enquanto a lâmpada não ascender, faça
início
Gire a lâmpada queimada no sentido anti-horário até que se solte;
Remova a lâmpada queimada;
Escolha uma lâmpada da mesma potência da queimada;
Posicione a nova lâmpada no soquete;
Gire a lâmpada no sentido horário até que ela se firme;
fim;
Desça da escada;
```


E se tivermos que testar 10 soquetes de lâmpadas?

Note-se: a quantidade é conhecida.

```
Inicio
Ir até o interruptor do prim. soquete;
enquanto a qtd de soquetes testados for menor que 10 faça
início
  Acionar o interruptor;
  se a lâmpada não ascender, então
   início
      Posicione a escada debaixo da lâmpada queimada;
      Suba na escada até que a lâmpada possa ser alcançada;
      Gire a lâmpada queimada no sentido anti-horário até que se solte;
      Remova a lâmpada queimada;
      Escolha uma lâmpada da mesma potência da queimada;
      Posicione a nova lâmpada no soquete;
      Gire a lâmpada no sentido horário até que ela se firme;
    fim;
    enquanto a lâmpada não ascender, faça
    início
       Gire a lâmpada queimada no sentido anti-horário até que se solte;
       Remova a lâmpada queimada;
       Escolha uma lâmpada da mesma potência da queimada;
       Posicione a nova lâmpada no soquete;
       Gire a lâmpada no sentido horário até que ela se firme;
    fim;
  Desca da escada;
  Ir para o próximo soquete;
 fim;
```

- Até quando devemos refinar o algoritmo?
 - Até que as instruções cheguem o mais próximo possível das instruções de uma linguagem de programação. Instruções Primitivas!
- Instrução Primitiva
 - Comandos que definem integralmente uma ação a ser executada.

- O algoritmo deve ser independente de linguagem de programação.
- As linguagens de programação, assim como os computadores, têm um conjunto restrito de instruções.
 - Muitas dessas instruções são comuns: testes seletivos, repetições, entrada e saída, etc.
- Pseudocódigo
 - Sintaxe

- Constantes
 - Caracteres aspas duplas.
- Identificadores
- Tipos primitivos
 - Inteiro, real, caracter, lógico
- Declarações
- Atribuições

4. Constantes e Variáveis

 Como representar os dados computacionalmente?

4. Constantes e Variáveis

- Os dados são representados através de constantes e variáveis, as quais possuem um tipo de dado associado.
- Dizemos que uma determinada constante ou variável é de um determinado tipo.

4. Constantes e Variáveis

- Relembrando...:
- Tipos de dados podem ser vistos como métodos para interpretar o conteúdo da memória do computador.
- Um tipo de dado especifica:
 - A quantidade de bytes que deve ser reservada para uma constante ou variável.
 - Como o dado representado por esses bytes deve ser interpretado (o que significa a cadeia de bits).

- As linguagens de programação conseguem manipular um conjunto de tipos de dados.
- Dentre eles, os tipos primitivos de dados (básicos) são classificados em dados numéricos, literais e lógicos.

- Em nossos algoritmos usaremos quatro tipos de dados básicos:
 - inteiro: -5; 218; etc.
 - real: 4,5; -3,659; 0,82.
 - caracter: "a"; "123"; "ABcdE".
 - Observe as aspas duplas.
 - Não distinguiremos, por ora, caracter de string.
 - lógico: verdadeiro e falso.

- Declaração de variáveis
 - Modo geral: tipo: identificador;
 - Tipo: um tipo de dado primitivo
 - Identificador: um nome válido para a variável
 - Exemplo: inteiro: temperatura;

- Declaração de constantes
 - Modo geral: contante tipo: identificador
 = valor;
 - tipo: um tipo de dado primitivo
 - identificador: um nome válido para a variável/constante
 - valor: um valor válido para a constante
 - Exemplo:

constante real: pi = 3,14159265359;

Exercício 1:

 Faça um algoritmo que declare variáveis para os seguintes dados sobre uma pessoa: o nome, a altura, a idade, o peso, se a pessoa é fumante ou não.

Exercício 2:

 Faça um algoritmo que declare variáveis e constantes necessárias para converter distância em quilômetros para anos-luz.

- Atribuição
 - Operador: <-
 - Atribui o valor à direta à variável à esquerda.
 - Exemplo:
 - inteiro: x;
 - x <- 10;

- Aritméticos
- Pot, Rad, Div, Mod
- Relacionais
- Lógicos
 - E, OU, NÃO
 - Tabelas verdade
- Precedência

Prioridades entre todos os operadores:

parênteses mais internos operadores aritméticos operadores relacionais operadores lógicos

Prioridades entre operadores lógicos:

```
não
e ou
```

 Prioridades entre operadores aritméticos

```
parênteses mais internos
pot rad
* / div mod
+ -
```

Exercícios:

- $-(2+3)+5 \mod 2*3$
 - R: 10
- 3 + 2 * rad(9) div 22 / 2
 - R: 3
- -2*4=24/3
 - R: verdadeiro
- 15 mod 4 < 19 mod 6
 - R: falso
- $-3 * 5 div 4 \le pot(3, 2) / 0,5$
 - R: verdadeiro

Operadores lógicos:

 <u>Tabelas-verdade</u>: conjunto de todas as possibilidades combinatórias entre valores de variáveis lógicas e operadores lógicos.

Tabela-verdade para negação:

Α	<u>NÃO</u> (A)
0	1
1	0

Se A = 0, NÃO(A) = 1, e vice-versa. Corresponde à porta lógica NOT:

Tabela-verdade para conjunção:

A	В	A <u>E</u> B
0	0	0
0	1	0
1	0	0
1	1	1

Corresponde à porta lógica AND:

Tabela-verdade para disjunção:

A	В	A <u>OU</u> B
0	0	0
0	1	1
1	0	1
1	1	1

Corresponde à porta lógica OR:

Expressões

- Poder ser atribuídas a variáveis:
 - Sintaxe: identificador <- expressão;
 - Identificador deve ser do tipo da expressão

Exemplos:

- Seja A = 4, B = 10, C = -8, D = 1,5
 - Media <- (A + B) / 2;</p>
 - X1 <- 2 * A mod 5 C;</p>
 - E <- 2 * 4 < 3 pot(3, 2);</p>

6. Entrada e Saída

- Leia
 - Sintaxe: leia (identificador);
 - identificador pode ser uma lista de identificadores, separados por vírgula.
 - Exemplo:
 - inteiro: A,B,C;
 - leia (A);
 - leia (B,C,A);

6. Entrada e Saída

- Escreva
 - Sintaxe: escreva (identificador ou expressão);
 - Exemplos:
 - escreva (5);
 - escreva ("ola!");
 - caracter: nome;leia (nome);
 - escreva ("Bom dia", nome, "!");

- Também chamados de condicionais.
- Seleção simples

```
Sintaxe:
se (condição) então
comando;
fimse;
se (condição) então
início
comando 1;
...
comando n;
fim;
fimse;
```

 condição é uma expressão lógica!

Pode-se usar bloco de comandos!

- Seleção composta
 - Sintaxe:

```
se (condição) então comando 1; senão comando 2; fimse;
```

Pode-se usar blocos de comandos para o *se*, ou para o *senão*, ou para ambos.

Seleção encadeada

```
se (condição 1) então
   início
          se (condição 2) então
             comando 1;
          fimse;
          se (condição 3) então
             início
                  comando A;
                  comando Z;
             fim;
          fimse;
   fim;
senão
   comando A1;
fimse;
```

Exercício

Dados três valores de entrada, A, B e C, construir um algoritmo para verificar se os mesmos podem ser os comprimentos dos lados de um triângulo. Se forem, verificar e imprimir se o triângulo é equilátero, isósceles ou escaleno. Informar se não formarem nenhum triângulo.

- Casos especiais
 - se então se (aninhados, longos)
 - Operadores lógicos
 - se senão se (aninhados, longos)
 - Seleção de múltipla escolha

- Seleção de múltipla escolha
 - Sintaxe:

```
escolha Xcaso v1: c1;caso v2: c2;...caso vn: cn;fimescolha;
```

```
escolha X
caso v1: c1;
caso v2, v3, v4: c2;
caso v5: c3;
caso contrário: c4;
fimescolha;
```

Exercício

 Escreva um algoritmo que leia o código de um determinado produto e mostre a sua classificação. Utilize a seguinte tabela como referência:

Código:	Classificação:
1	Alimento não perecível
2, 3 ou 4	Alimento perecível
5 ou 6	Vestuário
7	Higiene pessoal
8 a 15	Limpeza e utensílios domésticos
Qualquer outro código	Inválido

FIM