Industry Applications, Career Path - Hands-on Image Classification and Text Generation

Premanand S

Assistant Professor School of Electronics Engineering Vellore Institute of Technology, Chennai Campus

premanand.s@vit.ac.in

March 28, 2025

Technology?

Why Technologies?

- Solving Problems Technology addresses real-world challenges.
- Improving Efficiency Faster, better, and automated processes.
- Enhancing Communication Breaking language and distance barriers.
- Security and Defense Safeguarding critical infrastructures.
- Improving Quality of Life Health, education, and beyond.
- Advancing Science Unleashing possibilities beyond imagination.
- And many more... The list keeps growing!

Top Trending Technologies in 2025 and Beyond

- Artificial Intelligence (AI) and Machine Learning (ML)
- Generative AI (GenAI)
- Internet of Things (IoT)
- 5G Technology
- Blockchain and Decentralized Systems
- Quantum Computing
- Cybersecurity and Privacy Solutions
- Augmented Reality (AR) and Virtual Reality (VR)
- Robotic Process Automation (RPA)
- Edge Computing
- Digital Twins
- Biotechnology and Bioinformatics
- Autonomous Systems and Robotics
- Sustainable and Green Technologies
- Metaverse and Web3

Artificial Intelligence (AI)

Compelling Statistic - Al

- Did you know?
- Al is projected to contribute **\$15.7** trillion to the global economy by 2030.
- That's more than the combined GDP of China and India!

Real World Examples - Al

- Doctors (Radiologists) Image classification to detect diseases.
- Chatbots Text generation for customer support.
- Autonomous Vehicles Object detection and classification.

Relatable Scenarios - Al

- Social Media Content Recommendation
- Voice Assistants (Siri, Alexa, Google Assistant)
- Face Unlock on Smartphones
- Al-Powered Navigation (Google Maps, Waze)
- Online Shopping Recommendations
- Spam Email Filtering
- Auto-Correction and Grammar Suggestions

Are We Surrounded by AIR?

No! We are Surrounded by DATA...
...but Starved for INSIGHTS!

Data is the New OIL!

Before Diving into the CORE, we need to understand the BASE!

Artificial Intelligence (AI) - PINNACLE

- Al is the simulation of human intelligence by machines to perform cognitive tasks.
- Main Goals of AI:
 - Mimic Human Intelligence Solve complex problems.
 - Learn and Adapt Improve performance over time.
 - Automate Complex Tasks Reduce human intervention.
 - Perceive and Interact Understand images, text, and speech.

Machine Learning (ML)

- ML is a subset of Al where machines learn from data to make decisions without explicit programming.
- Domains of ML:
 - Supervised Machine Learning
 - Unsupervised Machine Learning
 - Reinforcement Learning
 - Semi-Supervised Learning

Deep Learning (DL)

- DL uses artificial neural networks (ANNs) to learn hierarchical features from large datasets.
- Domains of DL:
 - Computer Vision
 - Natural Language Processing
 - Recommendation Systems
 - Time Series Analysis and Forecasting
 - Transfer Learning

Generative AI (GenAI)

- GenAl creates original content like text, images, audio, and more by learning patterns in data.
- Domains of GenAl:
 - Text Generation and Natural Language Processing (NLP)
 - Image Generation and Computer Vision
 - Audio and Music Generation
 - Video Generation and Synthesis
 - Digital Avatars and Virtual Influencers
 - 3D Model and Digital Twin Generation

Computer Vision (CV)

- CV enables machines to interpret and analyze visual data (images/videos) like humans.
- Main Goals of CV:
 - Image Classification Categorize objects.
 - Object Detection Locate and identify multiple objects.
 - Video Analysis Track objects and actions.
 - Image Segmentation Break down images into regions.
 - Image Restoration/Enhancement Improve quality.

Natural Language Processing (NLP)

- NLP helps machines understand, interpret, and generate human language.
- Domains of NLP:
 - Text Processing and Tokenization
 - Part-of-Speech (POS) Tagging and Syntactic Analysis
 - Named Entity Recognition (NER)
 - Sentiment Analysis and Opinion Mining
 - Text Classification and Categorization
 - Machine Translation and Multilingual NLP
 - Question Answering and Information Retrieval
 - Speech Recognition and Text-to-Speech (TTS)
 - Text Summarization

Ready to Dive Deeper? Let's Go!

1. Image Classification

What is Image Classification?

Definition

Image classification involves assigning a specific category label to an image based on its visual content.

- Image Classification is a fundamental task in computer vision.
- A machine automatically assigns a label or category to an input image.
- The goal is to analyze and identify patterns in the image and associate it with a predefined class.

Image Classification - Importance

- Autonomous Vehicles: Detecting pedestrians, traffic signs, and obstacles.
- Healthcare: Diagnosing diseases from medical images.
- E-commerce: Classifying products and improving visual search.
- Security Systems: Identifying suspicious activities and intruders.

Image Classification - How?

- Goal:
 - Input: An image of a pet.
 - Output: Label ("Cat" or "Dog").
- How It Works:
 - Input Image: Capture an image of a pet.
 - Feature Extraction: Identify patterns like fur texture, ear shape, and eye structure.
 - Model Decision: Based on extracted features, predict whether the image is a cat or a dog.

How Does Image Classification Work? - Programmically

- Pixel Data and Feature Extraction
- Training Models with Labeled Data
- Metrics

1. Pixel Data and Feature Extraction

- Pixel Data:
 - An image is represented as a matrix of pixel values.
 - For grayscale images: Each pixel has an intensity value (0 to 255).
 - For RGB images: Each pixel has 3 channels (Red, Green, Blue).

Image as Pixels

Gray Scale Image - (0 to 255)

RGB Image

1. Pixel Data and Feature Extraction

- Feature Extraction:
 - Low-Level Features: Edges, corners, and textures.
 - High-Level Features: Object shapes and patterns.

Features

Lines, Corners, Edges

Meaningful Faces

2. Training Models with Labeled Data

- a. Collecting Labeled Data
 - Thousands of images with labels: ("Cat" or "Dog").
 - Labels serve as ground truth for training.
- b. Model Training Process
 - Input: Image and corresponding label.
 - Feature Learning: Model learns patterns to differentiate classes.
 - Loss Calculation: Measures the difference between predicted and actual labels.
 - Backpropagation and Optimization: Adjust model weights to minimize error.

3. Metrics

- Split data into training, validation, and test sets.
- Fine-tune hyperparameters to improve accuracy.

Popular Algorithms for Image Classification

- Convolutional Neural Networks (CNNs)
- Transfer Learning
- Vision Transformers (ViTs)

Deep Dive into CNNs for Image Classification

Why Convolutional Neural Networks (CNNs)?

- CNNs excel at extracting hierarchical patterns from images.
- They reduce computational complexity by leveraging local connectivity and shared weights.
- Ideal for tasks like image classification, object detection, and segmentation.

Neurons (Nodes)

Neurons are the fundamental building blocks of deep learning models.
 Each neuron processes input data and produces an output. These neurons are organized into layers.

Layers

- Deep learning models consist of multiple layers of neurons, typically arranged in a sequential fashion.
- The input layer receives data, hidden layers process it, and the output layer produces the final result.
- Common layer types include input, hidden (including convolutional and recurrent layers), and output layers.

Weights and Biases

- Weights and biases are parameters associated with each connection between neurons.
- Weights determine the strength of connections and are adjusted during training to learn patterns in data.
- Biases help neurons capture patterns that may not be apparent from the raw data.

Activation Functions

- Activation functions introduce non-linearity into the neural network, allowing it to model complex relationships.
- Common activation functions include ReLU (Rectified Linear Unit), sigmoid, and tanh.

Loss Function (Cost Function)

- The loss function quantifies how well the model's predictions match the actual target values.
- The goal during training is to minimize the loss function by adjusting weights and biases.

Optimization Algorithm

- Optimization algorithms like stochastic gradient descent (SGD) are used to update the model's weights and biases in a way that minimizes the loss function.
- Variants of SGD, such as Adam and RMSprop, are commonly used.

CNN - Components

- Input layer
- Convolutional layers
- Activation layer
- Pooling (Subsampling) layer
- Fully Connected (Dense) Layers
- Flattening Layer
- Output Layer
- Dropout and Regularization
- Normalization Layers (Batch Normalization)
- Padding
- Strides
- Skip Connections (Residual Connections)

Input Layer

• The input layer receives the raw data, typically in the form of images or grids of data (e.g., pixel values in an image).

Convolutional Layers

- Convolutional layers are the core building blocks of CNNs. They
 consist of multiple filters (also called kernels) that slide over the input
 data to extract local features.
- Each filter captures specific patterns or features, such as edges, corners, or textures.
- Convolution operations involve element-wise multiplications and summations between the filter and a region of the input, producing feature maps.

Activation Function (ReLU)

- After each convolution operation, a Rectified Linear Unit (ReLU) activation function is applied element-wise to introduce non-linearity.
- ReLU helps the network learn complex and non-linear patterns in the data.

Pooling (Subsampling) Layers

- Pooling layers are used to downsample feature maps and reduce their spatial dimensions.
- Common pooling methods include max-pooling and average-pooling, which retain the most significant information in the feature maps while reducing computational complexity.

Fully Connected (Dense) Layers

- Fully connected layers are traditional neural network layers in which every neuron is connected to every neuron in the previous and subsequent layers.
- These layers enable high-level feature combinations and are typically used in the later stages of a CNN.

Flattening Layer

 Before connecting the convolutional layers to the fully connected layers, the feature maps are flattened into a one-dimensional vector.

Output Layer

- The output layer produces the final predictions or classifications based on the learned features.
- The activation function in the output layer depends on the task; for example, softmax is commonly used for multi-class classification.

Dropout and Regularization

- Dropout layers may be added to mitigate overfitting by randomly deactivating a fraction of neurons during training.
- Regularization techniques such as L1 or L2 regularization can also be applied to the fully connected layers.

Normalization Layers (Batch Normalization)

- Batch normalization layers help stabilize training by normalizing the inputs to each layer.
- They reduce internal covariate shift and improve the convergence of the network.

Padding

- Padding is sometimes added to the input data to control the spatial dimensions of feature maps after convolution.
- Zero-padding is a common technique used to maintain spatial information.

Strides

- Strides determine how much the filter moves across the input data during convolution.
- Strides affect the spatial resolution of feature maps

CNN Architecture

Variants of CNN architecture

- LeNet-5
- AlexNet
- VGGNet (VGG)
- GoogLeNet (Inception)
- ResNet (Residual Network)
- MobileNet
- DenseNet (Densely Connected Convolutional Networks)
- EfficientNet
- YOLO (You Only Look Once)
- UNet
- Attention-Based Models (e.g., Vision Transformers) and many more...

Application of CNN architecture

- Image Classification
- Object detection
- Image Segmentation
- Face Recognition
- Gesture Recognition
- Emotion detection
- Medical Imaging
- Video analysis
- Art restoration
- Self-driving cars
- Document analysis and many more...

2. Text Generation

Introduction to Text Generation

What is Text Generation?

- Text generation involves producing coherent, meaningful text based on a given input or context.
- It is widely used in chatbots, content generation, and automated report writing.
- Modern models generate human-like text by predicting the next word or sequence.

Understanding Natural Language Generation (NLG)

- Definition: NLG is a subfield of NLP that transforms structured data into natural language.
- **Goal:** Generate grammatically correct and contextually meaningful text.
- Applications:
 - Automated news reports.
 - Personalized marketing content.
 - Summarizing structured data in real time.

Difference Between Text Classification and Generation

- **Text Classification:** Assigns a label or category to a given text.
- Text Generation: Produces text based on a prompt or initial input.
- Key Difference: Classification predicts labels, while generation predicts and generates sequences.

Sequence Models and Their Evolution

Recurrent Neural Networks (RNNs)

- Processes sequential data by maintaining hidden states.
- Challenges: Vanishing gradient problem and limited long-term memory.

Long Short-Term Memory (LSTM)

- Enhanced version of RNNs with memory cells and gates.
- Capable of capturing long-term dependencies in text.

Gated Recurrent Units (GRUs)

- Similar to LSTM but with fewer gates, making it computationally efficient.
- Suitable for tasks requiring faster training and lower complexity.

Exploring Transformers and Attention Mechanisms

The Rise of Transformers

- Transformers revolutionized NLP by introducing parallel processing and better handling of long-range dependencies.
- Introduced in the paper "Attention Is All You Need" (2017).
- Widely adopted in state-of-the-art models for text, image, and multimodal tasks.

What is the Transformer Architecture?

• Encoder-Decoder Structure:

- **Encoder:** Processes the input sequence and generates a contextual representation.
- Decoder: Generates the output sequence based on the encoder's context.
- Parallelization: Enables training on large datasets by processing tokens simultaneously.
- Key Innovation: Utilizes self-attention mechanisms for capturing global dependencies.

Importance of Self-Attention Mechanism

- **Self-Attention:** Allows the model to weigh the importance of different words in a sequence.
- How It Works:
 - Each word attends to all other words in the sequence.
 - Generates attention scores to focus on relevant parts of the input.
- Benefits:
 - Captures long-term dependencies efficiently.
 - Reduces computation time compared to traditional RNNs.

Popular Models Based on Transformer Architecture

BERT (Bidirectional Encoder Representations from Transformers)

- Pre-trained using Masked Language Modeling (MLM).
- Provides contextual embeddings for downstream NLP tasks.
- Applications: Sentiment analysis, question answering, and text classification.

GPT (Generative Pre-trained Transformer)

- Trained in an autoregressive manner to predict the next token.
- Generates coherent and context-aware text.
- Applications: Chatbots, content generation, and creative writing.

T5 (Text-to-Text Transfer Transformer)

- Converts all NLP tasks into a text-to-text format.
- Fine-tuned for multiple NLP tasks using a unified approach.
- Applications: Text summarization, translation, and question answering.

Text Generation with GPT Models

How GPT Models Work

• Pre-training:

- Model learns to predict the next word in a sentence using a massive corpus of text.
- Trained in an autoregressive manner to generate coherent and context-aware text.

• Fine-tuning:

- Pre-trained model is adapted for specific tasks using labeled data.
- Fine-tuning enhances performance for downstream tasks like summarization and Q&A.

Tokenization and Decoding Methods

Tokenization:

- Splits text into smaller units called tokens (subwords, words, or characters).
- Common methods: Byte Pair Encoding (BPE), WordPiece, and SentencePiece.

Decoding Methods:

- **Greedy Search:** Selects the most probable token at each step.
- Beam Search: Explores multiple possible sequences to find the best result.
- **Top-k Sampling:** Samples from the top-k most likely tokens.
- **Top-p (Nucleus) Sampling:** Selects tokens with cumulative probability above a threshold.

Real-World Applications of GPT Models

Chatbots (ChatGPT)

- Engages in natural, human-like conversations.
- Widely used in customer support, virtual assistants, and FAQ bots.

Al-Powered Content Generation

- Generates articles, blog posts, product descriptions, and marketing content.
- Assists writers by providing coherent text suggestions.

Code Generation (Codex)

- Generates code snippets from natural language prompts.
- Accelerates software development with Al-assisted coding.
- Powers platforms like GitHub Copilot.

Challenges and Limitations

Challenges and Limitations

Challenges in Image Classification

- Overfitting and Model Bias
 - Model memorizes training data, leading to poor generalization.
 - Biases in training data can affect model predictions.
- Handling Noisy and Unstructured Data
 - Presence of irrelevant information affects model accuracy.
 - Requires data preprocessing and augmentation for noise reduction.

Challenges in Text Generation

Coherence and Context Retention

- Models may generate grammatically correct text but lose coherence over long passages.
- Difficulty in maintaining logical consistency across paragraphs.

Ethical Concerns and Bias in Al

- Biases in training data can result in unfair or offensive content.
- Ethical concerns regarding misinformation and plagiarism.

mail me: er.anandprem@gmail.com / premanand.s@vit.ac.in ring me: +91 73586 79961 follow me: Linkedin author at Analytics Vidhya: premanand17

author at Medium: Premanand S

Predicting the future isn't magic, it's artificial intelligence!