# Simulação Discreta Aplicação do Método Kolmogorov-Smirnov

Samuel F. Aguiar<sup>1</sup>

<sup>1</sup>Faculdade de Computação – Instituto Ciências Exatas e Naturais Universidade Federal do Pará (UFPA) Av. Augusto Correa 01, 66075-090 – Belém – PA – Brasil

## 1. Descrição

Esta tarefa consiste em aplicar o método Kolmogorov-Smirnov para uma base de dados. Os alunos devem identificar qual a função de probabilidade que se adequa aos dados observados, para um  $\alpha = 0,05$ .

Os alunos também precisam observar que os dados de entrada devem ser tratados adequadamente, com a remoção de outliers que possam vir a comprometer os resultados aguardados.

## 2. Coleta e inserção de dados

Os dados foram disponibilizados em um arquivo chamado "entrada-trabalho-metodo-ks.txt" junto com o PDF da atividade. São eles:

Os dados precisavam ser tratados para serem interpretados corretamente pelo Python, umas vez que o Python não reconhece vetores com espaços, mas sim com vírgulas. O seguinte programa fez essa operação:

```
caminho_do_arquivo = input("Digite aqui o caminho do arquivo:")
f = open(caminho_do_arquivo, "r")
string = f.read()

string = string.replace("\n", " ")
string = string.replace(" ", " ")

dados = string.split()

for i in range(len(dados)):
    dados[i] = int(dados[i])
```

#### 3. Tratamento de dados

Utilizando Estatística Descritiva, obtem-se as seguintes medições para o conjunto de dados:

| Medidas de Centralidade   | -        |
|---------------------------|----------|
| Média                     | 88.1633  |
| Mediana                   | 87       |
| Moda                      | 79       |
| Mínimo                    | 27       |
| Máximo                    | 315      |
| Medidas de Dispersão      | -        |
| Amplitude                 | 288      |
| Desvio Padrão             | 27.7343  |
| Variância                 | 769.1920 |
| Coeficiente de Variação   | 3.6056   |
| Coeficiente de Assimetria | 0.1244   |

Esses dados precisam ser tratados, pois apresentam outliers que podem afetar numa análise mais precisa dos dados. Para isso, devemos calcular a amplitude interquartil, que pode ser dada pela diferença entre o terceiro e o primeiro elementos do quartil, i.e.  $A=Q_3-Q_1$ 

Nessa lista, encontramos dois outliers, sendo ambos extremos: 230 e 315

Com a remoção dos dois outliers, agora temos os dados se apresentando da seguinte forma:

| Medidas de Centralidade   | -        |
|---------------------------|----------|
| Média                     | 86.3200  |
| Mediana                   | 87       |
| Moda                      | 79       |
| Mínimo                    | 27       |
| Máximo                    | 134      |
| Medidas de Dispersão      | -        |
| Amplitude                 | 107      |
| Desvio Padrão             | 20.3432  |
| Variância                 | 413.8468 |
| Coeficiente de Variação   | 4.9156   |
| Coeficiente de Assimetria | 0.1244   |

### 4. Histograma

Agora, com os dados devidamente tratados, é necessário a criação de um histograma com o novo conjunto.

O número de classes do histograma é dado pela fórmula  $K=1+3, 3\log_{10}n$ . Com isso, temos nove classes.

O histograma é representado da seguinte forma:



Figura 1. Histograma desenhado com os dados tratados.

As frequências desse histograma estão representadas no seguinte quadro:

| Classes | Intervalos                   | Frequência |
|---------|------------------------------|------------|
| 1       | $27 < valor \le 38,888$      | 3          |
| 2       | $38,888 < valor \le 50,777$  | 7          |
| 3       | $50,777 < valor \le 62,666$  | 17         |
| 4       | $62,777 < valor \le 74,555$  | 24         |
| 5       | $74,555 < valor \le 86,444$  | 44         |
| 6       | $86,444 < valor \le 98,333$  | 46         |
| 7       | $98,333 < valor \le 110,222$ | 33         |
| 8       | $110,222 < valor \le 12,111$ | 18         |
| 9       | $122, 111 < valor \le 134$   | 8          |

## 5. Aplicando o método Kolmogorov-Smirnov

Com os dados coletados e as frequências devidamente anotadas em uma planilha do excel disponível em: https://github.com/RFLMNaguiar/trabalho-simulacao-discreta-kolmogorov-smirnov-samuel-aguiar, podemos fazer os cálculos necessários.

Observando o histograma da figura 1, percebemos que a distribuição se aparenta ser próxima da distribuição normal ou talvez da lognormal.

Aplicando o método, a maior diferença entre os valores da distribuição normal e a distribuição obtida é de 0,037465. Para uma confiabilidade alpha = 0.05, fazemos  $1.36/\sqrt{200}$ , que é 0,096166 (D crítico). Como a diferença entre a distribuição normal e a obtida é maior que nosso D crítico, então a distribuição é aderente ao conjunto de dados.

## 6. Apêndice

Link para o repositório com todos os arquivos do trabalho:

https://github.com/RFLMNaguiar/trabalho-simulacao-discreta-kolmogorov-smirnov-samuel-aguiar