# Cryptography

Systems and Information Security Informatics Engineering (3rd year, 2nd sem.)

José Bacelar Almeida

**Applied Cryptography** 

Symmetric Crypto

Asymmetric Crypto

**Applications** 

## Roadmap

- Key-Agreement
  - Diffie-Hellman protocol
- Public-key cryptography
  - Public-key Encryption (PKE)
  - Digital Signatures (PKS)
  - · Asymmetric primitives
- Elliptic-Curve Cryptography (ECC)
- Cryptography and Quantum Computation
  - Post-Quantum Cryptography (PQC)
- Certificates and Public-Key Infrastructure (PKI)

**Key-Agreement** 

#### **Context**

- · Symmetric crypto rely on shared secret-keys;
- Pre-agreement of keys is a costly procedure (it requires the use of secure channels...), and inflexible (e.g. consider adding an agent to the community...).
- · Are there viable alternatives?
  - E.g.: Suppose we have a (symmetric) cipher in which the cipher operation is commutative, i.e.
    E<sub>k1</sub>(E<sub>k2</sub>(X))=E<sub>k2</sub>(E<sub>k1</sub>(X))
  - Each party (A and B) generate a secret key (KA and KB, respectively)
  - For A to communicate M with B it can
    - A sends  $E_{KA}(M)$  to B (note that KA is only known by A);
    - B returns  $E_{KB}(E_{KA}(M))=E_{KA}(E_{KB}(M))$  to A (again, KB is only known by B);
    - A decrypts the received message, and resends to B the result E<sub>KB</sub>(M);
    - B finally decrypts the ciphertext with its own key, obtaining message M.
  - ... that is,  $\underline{A}$  and  $\underline{B}$  communicate securely without sharing secrets... (message  $\underline{M}$  is always protected with at least one layer of encryption).
- · Remark: but this scheme also displays important vulnerabilities... (c.f. man-in-the-middle attack studied below)

### **Key-Agreement**

- The problem of key distribution can be circumvented if both parties agree on a common secret...
  - ...exchanging messages on a public channel...
  - ...but without it being possible to derive the secret knowing only the messages exchanged.
- A scheme that accommodates these requirements appeared in the article (New Directions in Cryptography, Diffie & Hellman 1976).
- Security follows from one-wayness of modular exponentiation (hardness of discrete logarithm).

#### **Intermezzo: Algebraic Structures**

- When p is a prime number,  $GF(p)=(Z_p, +, *)$  is a **field** (+ and \* are respectively addition and multiplication modulo p).
  - Modular inverses can be computed by the (extended) Euclidean algorithm;
  - A primitive element is a **generator** g of the multiplicative group (that is, each non-zero element can be written as  $g^i$ , for some i.
- For composite n,  $(Z_n, +, *)$  forms a **ring**.
  - Elements with multiplicative inverse (**units**) are those *x* such that gcd(x, n)=1 (*primes relative* to *n*).
  - The number of those elements are given by  $\varphi(n)$  (Euler function).

#### (Believed) Hard problems

Under appropriate conditions, the following problems are considered difficult.

- Integer factorisation
  - Given an integer n, determine its <u>prime number factorisation</u>. In other words, determine the prime numbers  $p_1,...,p_i$  such that  $p_1 \times ... \times p_i = n$ .
- Discrete logarithm
  - Given a, b and n, compute x such that  $a^x \mod n = b$ .
- Discrete square-root
  - Given y and n, compute x such that  $x^2 \mod n = y$ .

## (Ephemeral) Diffie&Hellman protocol

- · Parameters:
  - Let p be a prime and g a generator of a subgroup of Z<sub>p</sub>
    of prime order q.
- · Description:
  - A randomly chooses an integer sk<sub>A</sub>=x s.t. 1<x<q (private key), sending pk<sub>A</sub>=g<sup>x</sup> mod p (public key) to B.
  - Similarly, B randomly chooses sk<sub>B</sub>=y s.t. 1<y<q, sending pk<sub>B</sub>=g<sup>y</sup> mod p to A.
  - Shared secret:  $K = q^{xy} \mod p = (q^y)^x \mod p = (q^x)^y \mod p$ .
- Notice that each party generates a key-pair for each execution of the protocol — hence the qualifier Ephemeral.
- Remark: shared secret K should never be used directly as a cryptographic key. It should instead be feeded into a KDF to derive needed secrets.



 $K = A^b \mod p = (g^a \mod p)^b \mod p = g^{ab} \mod p = (g^b \mod p)^a \mod p = B^a \mod p$ 

### DH security wrt passive adversaries

- If the adversary is able to compute the discrete logarithm, then it could compute x from  $g^x$ , thus attacking the protocol.
- Strictly speaking, the security of the protocol is expressed as a security assumption of its own the Computational Diffie-Hellman (CDH) problem: for random x and y, it is infeasable a PPT adversary to compute g<sup>xy</sup> from g<sup>x</sup> and g<sup>y</sup>.



## DH (in)security wrt active adversaries

- An active adversary might impersonate another party and so compromise the secrecy of the shared secret: known as man-in-the-middle attack.
- · Example:

Suppose A wants to agree on a secret with B:

- A generates a key-pair ( $sk_A$ ,  $pk_A$ )=(x,  $g^x$ ), and sends  $pk_A$  to B;
- I intercepts A's message;
- I generates its own key-pair  $(sk_I, pk_I)=(z, g^z)$ , returning  $pk_I$  to A:
- A adopts the secret  $K = (g^z)^x = g^{xz}$  which it presumes agreed with B;
- I knows the secret  $K = (g^x)^z = g^{xz}$  that A believes is shared with B.
- Most asymmetric cryptographic techniques are vulnerable to this attack!

the use of asymmetric cryptography depends on a reliable association between public-key and legitimate parties (identities).

# **Public-Key Cryptography**