Examples:

1. The following are the weight of 10 students of a class. Find the arithmetic mean

Roll No.	1	2	3	4	5	6	7	8	9	10
Weight	45	48	50	60	55	46	50	58	62	46
(kg)										

Solution:

Roll No.	Weight (kg) (X)
1	45
2	48
3	50
4	60
5	55
6	46
7	50
8	58
9	62
10	46
	$\Sigma X = 520$

Direct method:

Arithmetic mean (
$$\bar{x}$$
) = $\frac{\Sigma X}{n}$ = $\frac{520}{10}$ = 52 kg

Short-cut method:

Roll No.	Weight (kg) (X)	d = X - A = X - 50
1	45	45 - 50 = -5
2	48	48 - 50 = -2
3	50	0
4	60	10
5	55	5
6	46	-4
7	50	0
8	58	8
9	62	12
10	46	-4
	$\Sigma X = 520$	$\Sigma d = 20$

Arithmetic mean (
$$\overline{x}$$
) = A + $\frac{\Sigma d}{n}$ = 50 + $\frac{20}{10}$ = 50 + 2 = 52 kg

2. Find the arithmetic mean for the following data:

Χ	5	10	15	20	25	30	35	40	45	50
f	20	43	<i>75</i>	67	72	45	39	9	8	6

Solution:

Direct Method:

Arithmetic mean (\overline{x}) = $\frac{\Sigma f x}{n}$

Х	f	fx
5	20	100
10	43	430
15	<i>75</i>	1125
20	67	1340
25	72	1800
30	45	1350
35	39	1365
40	9	360
45	8	360
50	6	300
	$\Sigma f = n = 384$	$\Sigma fx = 8530$

Arithmetic mean (
$$\overline{x}$$
) = $\frac{\Sigma f x}{n}$ = $\frac{8530}{384}$ = 22.21

Short-cut method:

Arithmetic mean (\overline{x}) = A + $\frac{\Sigma fd}{n}$

X	f	d = X - A(25)	fd
5	20	-20	-400
10	43	-15	-645
15	75	-10	-750
20	67	-5	-335
25	72	0	0
30	45	5	225
35	39	10	390
40	9	15	135
45	8	20	160
50	6	25	150
	$\Sigma f = n = 384$		$\Sigma fd = -1070$

Arithmetic mean (
$$\bar{x}$$
) = A + $\frac{\Sigma f d}{n}$ = 25 + $\frac{-1070}{384}$ = 25 - 2.78 = 22.21

3. Find the arithmetic mean from the data given below by Direct Method, Shortcut Method and Step Deviation Method

Class	15-25	25-35	35-45	45-55	55-65	65-75
interval						
Frequency	4	11	19	14	0	1

Solution:

Direct Method:

Class interval	Mid-point (x)	Frequency (f)	fx
15-25	20	4	80
25-35	30	11	330
35-45	40	19	760
45-55	50	14	700
55-65	60	0	0
65-75	70	1	70
		$\Sigma f = n = 49$	Σfx
			= 1940

Arithmetic mean (
$$\bar{x}$$
) = $\frac{\Sigma fx}{n}$ = $\frac{1940}{49}$ = 39.53

Shortcut Method:

Class interval	Mid-point (x)	Frequency (f)	d = x -	fd
			A(40)	
15-25	20	4	-20	-80
25-35	30	11	-10	-110
35-45	40	19	0	0
45-55	50	14	10	140
55-65	60	0	20	0
65-75	70	1	30	30
		$\Sigma f = n = 49$		$\Sigma fd = -20$

Arithmetic mean (
$$\overline{x}$$
) = A + $\frac{\Sigma fd}{n}$ = 40 + $\frac{-20}{49}$ = 39.59

Step Deviation Method

Class interval	Mid-point (x)	Frequency (f)	$d' = \frac{x - A}{h}$	fd'
15-25	20	4	0	0
25-35	30	11	1	11
35-45	40	19	2	38
45-55	50	14	3	42
55-65	60	0	4	0

65-75	70	1	5	5
		$\Sigma f = n = 49$		$\Sigma fd' = 96$

Arithmetic mean (\$\overline{x}\$) = A +
$$\frac{\Sigma f d'}{n}$$
 × h = 20 + $\frac{96}{49}$ × 10 = 20 + 19.59 = 39.59

4. The wages (in Rs.) of 30 workers in a factory are as follows:

If the factory gives bonus of Rs. 15, 20, 25, 30, 35 in different wages groups and Rs. 270 to Rs. 280 be one of the class intervals of wages. Calculate the average bonus by the factory.

Solution:

Calculation of Average Bonus

Wages (Rs.)	No. of workers (f)	Bonus (x)	fx
250 – 260	4	15	60
260 – 270	6	20	120
270 – 280	10	25	250
280 – 290	8	30	240
290 – 300	2	35	70
	$\Sigma f = n = 30$		$\Sigma fx = 740$

Arithmetic mean (
$$\bar{x}$$
) = $\frac{\Sigma f x}{n}$ = $\frac{740}{30}$ = Rs. 24.66

5. The number of days that students were missing from school due to sickness in one semester was recorded as:

Number of	1 – 5	6 – 10	11 – 15	16 – 20	21 – 25
days off sick					
Frequency	12	11	10	4	3

Estimate the mean using direct, shortcut and step deviation method.

6. The table below gives data on the heights, in cm, of 51 children.

Class Interval	140≤h<150	150≤ h<160	160≤h<170	170≤h<180
Frequency	6	16	21	8

7. A salesman keeps a record of the number of shops he visits each day.

Shops visited	0 – 9	10 – 19	20 – 29	30 – 39	40 – 49
Frequency	3	8	24	60	21

a. Estimate the mean number of shops visited. Answer: 32.1

b. Estimate the median.

c. What is the modal class?

8. The weights of a number of students were recorded in kg.

Weight (kg)	30≤ <i>w</i> <35	35≤w<40	40≤w<45	45≤w<50	50≤w<55
Frequency	10	11	15	7	4

Answer 33.33

Find Q1 and Q3.

Solution:

Weight (kg)	Frequency	Cumulative Frequency (cf)
30≤w<35	10	10
35≤w<40	11	21
40≤w<45	15	36
45≤w<50	7	43
50≤w<55	4	47
	$\Sigma f = n = 47$	

Now,

$$Q_1$$
 = Size of $\frac{N}{4}$ th item
= Size 11.75 the item
= 35 - 40

Calculating the value of Q_1 ,

$$Q_1 = l + \frac{\frac{N}{4} - cf}{f} \times h$$

$$= 35 + \frac{\frac{47}{4} - 10}{11} \times 5$$

$$= 35.8$$

$$Q_3$$
 = Size of $\frac{3N}{4}$ th item
= Size 35.25 the item
= $40 \le w < 45$

Calculating the value of Q₃,

$$Q_1 = l + \frac{\frac{3N}{4} - cf}{f} \times h$$
$$= 40 + \frac{35.25 - 21}{15} \times 5$$
$$= 44.75$$

9. Find P_5 , P_{29} and P_{50} from the following data.

Marks	0 – 10	10 – 20	20 – 30	30 – 40	40 – 50	50 - 60
No. of Students	10	20	30	50	40	30

Solution:

Marks	Frequency	Cumulative Frequency (cf)
0 – 10	10	10
10 – 20	20	30
20 – 30	30	60
30 – 40	50	110
40 – 50	40	150
50 – 60	30	180
	$\Sigma f = n = 180$	

Now,

$$P_5 = size \ of \ \frac{5N}{100} \ th \ item$$
$$= size \ of \ 9 \ th \ item$$
$$= 0 - 10$$

Calculating the value of P₅,
$$P_{29} = l + \frac{\frac{5N}{100} - cf}{f} \times h$$
$$= 20 + \frac{9 - 30}{30} \times 10$$
$$= 27.4$$

$$P_{50} = size \ of \ \frac{50N}{100} \ th \ item$$

Calculating the value of P_{50} ,

$$P_{50} = l + \frac{\frac{50N}{100} - cf}{f} \times h$$
$$= 30 + \frac{90 - 60}{50} \times 10$$
$$= 36$$

10. The weights of a number of students were recorded in kg.

Weight (kg)	30≤w<35	35≤w<40	40≤w<45	45≤w<50	50≤w<55
Frequency	10	11	15	16	4

- a. Estimate the mean weight.
- b. Estimate the median.
- c. What is the modal class?

11. A stopwatch was used to find the time that it took a group of students to run 100 m.

Time (sec.)	10 ≤ <i>t</i> < 15	15 ≤ <i>t</i> < 20	20 ≤ <i>t</i> < 25	25 ≤ <i>t</i> < 30
Frequency	6	16	21	8

- a. Is the median in the modal class?
- b. Estimate the median.
- c. Estimate the mean.
- d. Is the median greater or less than the mean?

12. The distances that students in a year group travelled to school is recorded.

Distance (km)	$0 \le d < 0.5$	$0.5 \le d < 1.0$	$1.0 \le d < 1.5$	$1.5 \le d < 2.0$
Frequency	30	22	19	8

- a. Does the modal class contain the median?
- b. Estimate the median and the mean.
- c. Which is the larger, the median or the mean?

13. The ages of the people at a youth camp are summarized in the table below.

Age (years)	6 – 8	9 – 11	12 – 14	15 – 17
Frequency	8	22	29	5

a. Estimate the mean age.

14. The lengths of a number of leaves collected for a project are recorded.

Length (cm)	2 – 5	6 – 10	11 – 15	16 – 25
Frequency	8	20	42	12

Estimate (a) the mean (b) the median length of a leaf.

15. The table shows how many nights people spend at a campsite.

Number of nights	1 – 5	6 – 10	11 – 15	16 – 20	21 – 25
Frequency	20	26	32	5	2

a. Estimate the mean.

b. What is the modal class?

c. Estimate the median.

16. (a) A teacher notes the number of correct answers given by a class on a multiple-choice test.

Correct answers	1 – 10	11 – 20	21 – 30	31 – 40	41 – 50
Frequency	2	8	15	11	3

(i) Estimate the mean.

(ii) Estimate the median.

(iii) What is the modal class?

(b) Another class took the same test. Their results are given below.

Correct	1 –	11 –	21 –	31 –	41 –
answers	10	20	30	40	50
Frequency	3	14	20	2	1

(i) Estimate the mean.

(ii) Estimate the median.

(iii) What is the modal class?

(c) How do the results for the two classes compare?

17. 29 students are asked how much money they were given at their last birthday. Their replies are shown in this frequency table.

'Birthday money'	Frequency f
0 - £10.00	12
£10.01 - £20.00	9
£20.01 - £30.00	6
£30.01- £40.00	2

- a. Which is the modal class?
- b. Calculate an estimate of the mean amount of money received per student.
- 18. In an experiment, 50 people were asked to estimate the length of a rod to the nearest centimeter. The results were recorded.

Length (cm)	20 21 22 23 24 25 26 27 28 29
Frequency	0 4 6 7 9 10 7 5 2 0

- a. Find the value of the median.
- b. Calculate the mean length.
- c. In a second experiment another 50 people were asked to estimate the length
 - of the same rod. The most common estimate was 23 cm. The range of the estimates was 13 cm.

Make two comparisons between the results of the two experiments

Example:

1. Find the median, lower quartile and upper quartile of the following numbers.

Solution:

First, arrange the data in ascending order:

Median (middle value) = 22

Lower quartile (middle value of the lower half) = 12

Upper quartile (middle value of the upper half) = 36

2. Find the median, lower quartile, upper quartile of the following numbers.

Solution:

First, arrange the data in ascending order:

Lower quartile or first quartile =
$$\frac{12+14}{2} = 13$$

Median or second quartile =
$$\frac{22+25}{2}$$
 = 23.5

Third Quartile =
$$\frac{36+42}{2}$$
 = 39