SỞ GIÁO DỤC VÀ ĐÀO TẠO HÀ NÔI

KÌ THI CHỌN HỌC SINH GIỚI THÀNH PHỐ LỚP 12 THPT NĂM HỌC 2018 - 2019

ĐỀ CHÍNH THỰC

Môn thi: TIN HOC

Ngày thi: 14 tháng 9 năm 2018 Thời gian làm bài: 180 phút (Đề thi có 02 trang)

Tổng quan bài thi

STT	Tên bài	Tên chương trình	Tên tệp dữ liệu vào	Tên tệp kết quả ra	Điểm	Thời gian tối đa
Bài 1	Tích ba số	BAI1.*	BAI1.INP	BAI1.OUT	6	1 giây
Bài 2	Mua xăng	BAI2.*	BAI2.INP	BAI2.OUT	5	1 giây
Bài 3	Giá trị dãy	BAI3.*	BAI3.INP	BAI3.OUT	5	1 giây
Bài 4	Hội nghị quốc tế	BAI4.*	BAI4.INP	BAI4.OUT	4	1 giây

Chú ý: Dấu * được thay thế bởi PAS hoặc CPP tùy thuộc vào ngôn ngữ lập trình mà thí sinh sử dụng. Bài 1. Tích ba số (6 điểm)

Cho số nguyên dương n $(1 \le n \le 10^{18})$.

Yêu cầu: Tìm số nguyên lớn nhất không vượt quá n và là tích của 3 số nguyên tố liên tiếp.

Dữ liệu vào từ tệp BAI1.INP:

- Dòng đầu chứa số nguyên dương t
 tương ứng là số bộ test $(1 \le t \le 15)$;
- Trong t dòng tiếp theo mỗi dòng chứa số nguyên dương n.

Kết quả ra ghi vào tệp BAI1.OUT: Gồm t dòng là kết quả của t bộ test tương ứng, nếu không tìm thấy số thỏa mãn ghi -1.

Ví du:

BAI1.INP	BAI1.OUT	Giải thích
1	30	$30 = 2 \times 3 \times 5$
36		

Luu ý: 50% số test ứng với 50% số điểm của bài có n $\leq 10^6$.

Bài 2. Mua xăng (5 điểm)

Để thay đổi không khí sau những ngày làm việc căng thẳng, An dự định sẽ đi du lịch trong n ngày bằng xe riêng của mình. Ngày thứ i, xe cần a_i lít xăng $(1 \le i \le n)$. Giá bán xăng ở ngày thứ i là p_i đồng cho một lít xăng $(1 \le i \le n)$. Mỗi ngày An có thể mua số lượng xăng không hạn chế, nếu không dùng hết có thể để dành cho những ngày tiếp theo.

Yêu cầu: Hãy giúp An quyết định lượng xăng mua mỗi ngày để đáp ứng yêu cầu với tổng số tiền phải trả là ít nhất có thể.

Dữ liệu vào từ tệp BAI2.INP:

- Dòng đầu chứa số nguyên dương n ($n \le 10^5$);
- Dòng thứ hai chứa n số nguyên dương a_1 , a_2 , ..., a_n ($a_i \le 10^5$, $1 \le i \le n$);
- Dòng thứ ba chứa n số nguyên dương $p_1, p_2, ..., p_n$ ($p_i \le 10^5, 1 \le i \le n$).

Kết quả ra ghi vào tệp BAI2.OUT: Một số nguyên duy nhất là tổng số tiền phải trả (tính bằng đồng) để mua xăng theo phương án tìm được .

Ví du:

BAI2.INP	BAI2.OUT	Giải thích
3 1 2 3 3000 1000 3000	8000	Ngày 1 mua 1 lít (3000đ), ngày 2 mua 5 lít (5000đ), ngày 3 mua 0 lít (0đ)

Lưu ý: 50% số test ứng với 50% số điểm của bài có $n \le 10^3$.

Bài 3. Giá trị dãy (5 điểm)

Cho dãy gồm n số nguyên dương a_1, a_2, \ldots, a_n . Với mỗi dãy con $a_l, a_{l+1}, \ldots, a_r$ ($1 \le l \le r \le n$), và số nguyên dương s, gọi k_s là số lần xuất hiện của s trong dãy con $a_l, a_{l+1}, \ldots, a_r$. Giá trị của dãy con trên được tính bằng tổng của tất cả các tích $(k_s)^2 \times s$.

Ví dụ, cho dãy gồm 8 số nguyên dương 1, 1, 2, 2, 1, 3, 1, 1. Dãy con với l = 2, r = 7 có $k_1 = 3$, $k_2 = 2$, $k_3 = 1$, còn s > 3 thì $k_s = 0$. Từ đó giá tri của dãy con là $3^2 \times 1 + 2^2 \times 2 + 1^2 \times 3 = 20$.

Yêu cầu: Cho t dãy con, hãy xác định giá tri của mỗi dãy.

Dữ liệu vào từ tệp BAI3.INP:

- Dòng đầu chứa hai số nguyên n và t $(1 \le n \le 2 \times 10^5, 1 \le t \le 2 \times 10^5)$;
- Dòng thứ hai chứa n số nguyên $a_1, a_2, \ldots, a_n \ (1 \le a_i \le 10^6);$
- Trong t dòng tiếp theo mỗi dòng chứa hai số nguyên l và r ($1 \le l \le r \le n$) mô tả một dãy con.

Kết quả ra ghi vào tệp BAI3.OUT: Gồm t dòng, dòng thứ k ghi một số nguyên là giá trị của dãy con thứ $k (1 \le k \le t)$.

Ví dụ:

BAI3.INP	BAI3.OUT	Giải thích
3 2	3	$3 = 1^2 \times 1 + 1^2 \times 2$
1 2 1	6	$6 = 2^2 \times 1 + 1^2 \times 2$
1 2		
1 3		

Luu ý: 50% số test ứng với 50% số điểm của bài có $n \le 2000$, $t \le 2000$.

Bài 4. Hội nghị quốc tế (4 điểm)

Trong một hội nghị quốc tế có m đại biểu tham dự được đánh số từ 1 đến m. Tại hội nghị có sử dụng n ngôn ngữ khác nhau được đánh số từ 1 đến n. Mỗi đại biểu biết một số ngôn ngữ trong n ngôn ngữ đó. Hai đại biểu u và v có thể trao đổi với nhau nếu biết một ngôn ngữ chung hoặc nhờ các đại biểu khác làm phiên dịch.

Khi một đại biểu u muốn chào đại biểu v, đại biểu u sẽ nói to lời chào bằng một ngôn ngữ i mà đại biểu này biết và các đại biểu biết ngôn ngữ i đều hiểu được lời chào này. Nếu đại biểu v không hiểu lời chào đó (v không biết ngôn ngữ i), có một số đại biểu khác phiên dịch trung gian để đại biểu v hiểu được lời chào từ đại biểu u. Gọi a_{uv} là số đại biểu có thể hiểu được lời chào của đại biểu u dành cho đại biểu v.

Yêu cầu: Với mỗi cặp đại biểu u, v $(1 \le u \le m, 1 \le v \le m)$, hãy xác định số a_{uv} nhỏ nhất là số đại biểu ít nhất trong hội nghị có thể hiểu giúp đại biểu u và v có thể hiểu lời chào của nhau.

Dữ liệu vào từ tệp BAI4.INP:

- Dòng đầu chứa hai số nguyên dương m và n $(2 \le m \le 300, 1 \le n \le 300)$;
- Trong m dòng tiếp theo, dòng thứ i $(1 \le i \le m)$ chứa số nguyên dương k_i là số lượng các ngôn ngữ mà đại biểu thứ i biết, tiếp theo là k_i số hiệu các ngôn ngữ đó theo thứ tự tăng $(1 \le k_i \le n)$.

Kết quả ra ghi vào tệp BAI4.OUT: Gồm m dòng và n cột. Tại vị trí dòng thứ u, cột thứ v ghi số a_{uv} tìm được $(1 \le u \le m, 1 \le v \le m)$. Trong đó $a_{uu} = 0$. Nếu hai đại biểu u và v không thể hiểu lời chào của nhau thì $a_{uv} = -1$.

Ví dụ:

BAI4.INP	BAI4.OUT	Giải thích
4 3 2 1 2 1 1 1 2 1 3	0 2 2 -1 2 0 3 -1 2 3 0 -1 -1 -1 -1 0	 Đại biểu 1 gửi lời chào tới đại biểu 2 bằng ngôn ngữ 1, nên a₁₂=2, a₂₁=2; Đại biểu 2 gửi lời chào đại biểu 3 bằng ngôn ngữ 1, sau đó đại biểu 1 chuyển lời chào đến đại biểu 2 bằng ngôn ngữ 2 để gửi lời chào đến đại biểu 3, có 3 đại biểu được lời chào nên a₂₃=3, a₃₂=3; Đại biểu 4 không thể gửi lời chào đến đại biểu 1, 2, 3 nên a_{4v}=-1,
		$a_{v4}=-1$.

Lưu ý: 50% số test ứng với 50% số điểm của bài có $2 \le m \le 100$, $1 \le n \le 100$.

,
 Hêt

Cán bộ coi thi không giải thích gì thêm; các tệp dữ liệu vào là tệp văn bản đúng đắn không cần kiểm tra; làm bài với các tên tệp đúng như quy định trong đề.

Họ và tên thí sinh:	Số báo danh:
---------------------	--------------