Putting it All Together

WHAT IS ALGORITHMIC ROBOTICS?

What we learned in this course

• Built a **foundation** for more advanced robotics courses/concepts

Let's review some of the most important concepts

Fundamentals

Using Matrix Inversion

 Probably the most common problem in linear algebra: Given a matrix A and vector b, and the following equation

$$\mathbf{A}x = b$$
 solve for the vector x

Use this to solve a system of linear equations. For example:

Solving $\mathbf{A}x = b$

- If A is n x n and b is n x 1
 - Check rank or determinant of A to see if it is invertible.
 - If so, use the matrix inverse:

$$\mathbf{A}^{-1}\mathbf{A}x = \mathbf{A}^{-1}b$$
$$\mathbf{I}x = \mathbf{A}^{-1}b$$
$$x = \mathbf{A}^{-1}b$$

If not, no solution

• What if A is not square?

The Pseudo-inverse

- The Moore-Penrose Pseudo-inverse is defined as
 - Left pseudo-inverse:

$$\mathbf{A}^+ = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T$$

Has some of the properties of the inverse, most importantly:

$$A^+A = I$$

Derivation

$$\mathbf{I} = (\mathbf{A}^T \mathbf{A})^{-1} (\mathbf{A}^T \mathbf{A})$$
$$\mathbf{I} = [(\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T] \mathbf{A}$$
$$\mathbf{I} = \mathbf{A}^+ \mathbf{A}$$

The right pseudo-inverse is derived similarly to get AA⁺ = I

The Pseudo-inverse

$$\mathbf{A}^+ = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T$$

- Works even when A is not square
- What about $(\mathbf{A}^T \mathbf{A})^{-1}$?
 - $(\mathbf{A}^T \mathbf{A})$ is automatically square
 - But we need to check if $(\mathbf{A}^T \mathbf{A})$ is invertable
- If **A** is square and invertable, then $A^+ = A^{-1}$
 - We don't loose any generality by always using the pseudo-inverse

The Pseudo-inverse

• Can use the pseudo-inverse like an inverse to solve $\mathbf{A}x = b$ when \mathbf{A} is m x n and b is m x 1:

$$\mathbf{A}^{+}\mathbf{A}x = \mathbf{A}^{+}b$$
$$\mathbf{I}x = \mathbf{A}^{+}b$$
$$x = \mathbf{A}^{+}b$$

- This is known as the least-squares solution
- Remember that $(\mathbf{A}^T \mathbf{A})$ must be invertable

Rotation Matrix

Looks the same ... but:

$$\begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} \qquad \begin{aligned} r_{11}r_{12} + r_{21}r_{22} &= 0 \\ r_{11}r_{11} + r_{21}r_{21} &= 1 \\ r_{12}r_{12} + r_{22}r_{22} &= 1 \end{aligned}$$

$$R \qquad \qquad \text{Determinant}(\mathbf{R}) = 1$$

- Can be used to effect rotation.
- Preserves linearity <u>AND distance</u> (hence, areas and angles).

Homogeneous Coordinates

 Coordinates which are <u>unique up to a scale</u> factor. i.e

$$\underline{\mathbf{x}} = 6\underline{\mathbf{x}} = -12\underline{\mathbf{x}} = 3.14\underline{\mathbf{x}} =$$
same thing

 The numbers in the vectors are not the same but we interpret them to mean the same thing (in fact. the thing whose scale factor is unity).

Example: Operating on a Frame

 Each column of this result is the transformation of the corresponding column in the original identity matrix

Optimization

Convex Sets

 Convex set: contains line segment between any two points in the set

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta)x_2 \in C$$

Examples:

Convex Functions

The domain of the function

 $f: \mathbf{R}^n \to \mathbf{R}$ is convex if $\operatorname{\mathbf{dom}} f$ is a convex set and

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

for all $x, y \in \operatorname{\mathbf{dom}} f$, $0 \le \theta \le 1$

 I.e. the line segment between (x, f(x)) and (y, f(y)) lies above the graph of f

General descent algorithm

given a starting point $x \in \text{dom } f$.

repeat

Many ways

1. Determine a descent direction Δx .

to do these

2. Line search. Choose a step size t > 0.

3. Update. $x := x + t\Delta x$.

untilestopping criterion is satisfied.

Numerical differentiation

- 1. Pick a small h
- 2. Use one of two common Finite Difference methods:
 - a) Newton's Difference Quotient

$$Df(x) \approx \frac{f(x+h) - f(x)}{h}$$

b) Symmetric Difference Quotient

$$Df(x) \approx \frac{f(x+h) - f(x-h)}{2h}$$

 There are other numerical methods which can give better estimates but use more function evaluations

The standard form general optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$
 $h_i(x) = 0, \quad i = 1, \dots, p$

- $x \in \mathbf{R}^n$ is the optimization variable
- $f_0: \mathbf{R}^n \to \mathbf{R}$ is the objective or cost function
- $f_i: \mathbf{R}^n \to \mathbf{R}, i = 1, \dots, m$, are the inequality constraint functions
- $h_i: \mathbf{R}^n \to \mathbf{R}$ are the equality constraint functions

$$p^* = \inf\{f_0(x) \mid f_i(x) \le 0, \ i = 1, \dots, m, \ h_i(x) = 0, \ i = 1, \dots, p\}$$

- $p^* = \infty$ if problem is infeasible (no x satisfies the constraints)
- $p^* = -\infty$ if problem is unbounded below

Duality

The **Primal** Problem

```
minimize f_0(x) subject to f_i(x) \leq 0, \quad i=1,\ldots,m h_i(x)=0, \quad i=1,\ldots,p
```

The **Dual** Problem

```
\begin{array}{ll} \underline{\mathsf{maximize}} & g(\lambda, \nu) \\ \mathsf{subject to} & \lambda \succeq 0 \end{array}
```

- Solution to dual problem is a lower-bound on solution to primal problem p* (more on this soon)
- The Dual problem is always convex, regardless of convexity of primal
 - We can use local methods to solve it!
- λ, ν are dual feasible if $\lambda \geq 0$, $(\lambda, \nu) \in \mathbf{dom} \ g$

Linear Programming

• The feasible set is a polyhedron

 $\begin{array}{ll} \text{minimize} & c^Tx+d\\ \text{subject to} & Gx \preceq h\\ & Ax=b \end{array}$

Barrier Method

- Idea: Trace out the central path by increasing t until you get to optimum
- Example for LP:

minimize
$$c^T x$$
 subject to $a_i^T x \leq b_i, \quad i = 1, \dots, 6$

$$x^*(t) = \min_{feasible \ x} tc^T x - \sum_{i=1}^m \log(-a_i^T x + b_i)$$

Simulated annealing

- Hill climbing problems
 - Gets stuck on plateaus
 - Returns sub-optimal solutions (local minima)

 Simulated annealing main idea: explicitly inject variability into the search process

Genetic algorithms

- Inspired (loosely) by the process of evolution in nature
- Operators
 - Crossover: New states generated from two parent states.
 - Mutation: Randomly change a component of the state

Genetic Programming

- Evolve functions instead of vectors of numbers
- Individuals represented as trees:

Useful for regression problems

Motion Planning

A* Search

 Open list is a priority queue, nodes are sorted according to f(n)

 g(n) is sum of edge costs from root node to n

Visibility graph

A visibility graph is a graph such that

- Nodes: q_{init} , q_{goal} , or an obstacle vertex.
- Edges: An edge exists between nodes u and v if the line segment between u and v is an obstacle edge or it does not intersect the obstacles.

Potential Fields

Configuration Space for Articulated Robots

PRM Example

RRT with obstacles and goal bias.

RRTs for Non-Holonomic Systems

Apply motion primitives (i.e. simple actions) at q_{near}

$$x' = f(x, u)$$
 - - - use action u from x to arrive at x'

chose
$$u_* = \underset{u_i}{\operatorname{arg\,min}} d(f(x, u_i), x_{rand})$$

- You probably won't reach x_{rand} by doing this
 - Key point: No problem, you're still exploring!

¹often called *Kinodynamic RRT*

State Lattice for Non-holonomic planning

- Pre-compute state lattice
- Two methods to get lattice:
 - Forward: For certain systems, can sequence primitives to make lattice
 - Inverse: Discretize space, use BVP solvers to find trajectories between states
- Impose continuity constraints at graph vertices
- Search state lattice like any graph (i.e. A*)

Traditional lattice yields discontinuous motion

Pivtoraiko et al. 2009

C-Space and Task Space

• If N > M, FK maps a continuum of configurations to one end-effector pose:

• If N = M, FK maps a *finite number* of configurations to one end-effector pose:

 If N < M, you're in trouble (may not be able to reach a target pose)

Iterative Jacobian Pseudo-Inverse Inverse Kinematics

```
While true x_{current} = FK(q_{current})
\dot{x} = (x_{target} - x_{current})
error = ||\dot{x}||
If error < threshold
return \ q_{current}
\dot{q} = J(q)^+ \ \dot{x}
If(||\dot{q}|| > \alpha)
\dot{q} = \alpha(\dot{q} \ / ||\dot{q}||)
q_{current} = q_{current} + \dot{q}
end
```


- This is a local method, it will get stuck in local minima (i.e. joint limits)!!!
- α is the step size
- Numerical error handling not shown
- A correction matrix has to be applied to the angular velocity components to map them into the target frame (not shown)

Testing for Force Closure Grasps

Many algorithms exist to test for force closure, here is one:

Input: Contact locations

Output: Is the grasp in Force-Closure? (Yes or No)

- 1. Approximate the friction cone at each contact with a set of wrenches
- 2. Combine wrenches from all cones into a set of points *S* in wrench space
- 3. Compute the *convex hull* of S
- 4. If the origin is inside the convex hull, return YES. If not, return NO.

Point Cloud Processing

The main idea of PCA

- We care about the variance of the data
- High-variance implies high importance
 - Why does this make sense?

Data does not vary much in this direction

Data varies a lot in this direction

But how do we compute the high-variance directions?

SVD

SVD decomposes any matrix M into the following form:

os are √eigenvalues of M^TM and MM^T in decreasing order of magnitude

PCA algorithm to remove rotation and reduce dimension

- 1. Given a dataset X
- 2. Compute the mean of X, μ
- 3. $X = X \mu$ (subtract μ from every point in X)
- 4. Compute the covariance of X, $Q = \frac{XX^T}{(n-1)}$
- 5. $SVD(Q) = U\Sigma V^T$
 - Each column of V is a principle component
- 6. Compute the variance of each principle component: $s = diag(\Sigma)^2$
- 7. Remove all columns of V whose corresponding entry in s is less than some small threshold, call this new matrix V_s
- 8. Compute $X_{new} = V_s^T X$

(Note: this may cause reflection)

RANSAC Line fitting example

Pick R (hypothetical inliers)

Fit Model to RFind C (consensus set)

Compute Error of Model on $C \cup R$

Point set registration: Known Correspondences

In summary, to solve

$$P = \{p_1, p_2, ..., p_n\}$$

$$Q = \{q_1, q_2, ..., q_n\}$$

$$\underset{R \in SO(3), t \in \mathbb{R}^3}{\operatorname{argmin}} \sum_{i=1}^{n} ||(Rp_i + t) - q_i||^2$$

Compute centroids and centered vectors:

$$\bar{p} = \frac{\sum_{i=1}^{n} p_i}{n}$$
 $\bar{q} = \frac{\sum_{i=1}^{n} q_i}{n}$ $x_i = p_i - \bar{p}$
 $y_i = q_i - \bar{q}$

2. Compute SVD of covariance matrix of centered vectors:

$$S = XY^T$$
 SVD $(S) = U\Sigma V^T$

3. Compute R and t:

$$R = V \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \det(VU^T) \end{bmatrix} U^T \qquad t = \bar{q} - R\bar{p}$$

Iterative Closest Point (ICP)

- We assumed we knew the correspondences between points
 - In practice this is rarely true
- ICP iteratively computes correspondences and registers point sets
- There are many variants of ICP, here is a simple one
- Won't always succeed!
 - Need to add a way to terminate based on
 - time
 - number of iterations
 - lack of progress
- Need to tune ϵ

```
Input: P and Q (not necessarily
same size)
Output: P aligned to Q
Set P to some initial pose
While not Done
    //Compute Correspondences
    C = \emptyset
    For each p_i \in P
        find the closest q_i
       C = C \cup \{p_i, q_i\}
     //Compute Transform
     //(see previous slide)
     R, t \leftarrow \text{GetTransform}(C_n, C_a)
     If \sum_{i=1}^{n} \left\| \left( RC_{p_i} + t \right) - C_{q_i} \right\|^2 < \epsilon
          return P
     // Update all P
     For each p_i \in P
        p_i = Rp_i + t
```

Probabilistic Reasoning

Example contd.

Learning a Gaussian Mixture Model (GMM)

- A GMM is simply a set of Gaussians
 - The set jointly defines a probability distribution over the space

- Lets say we want to model a set of data points with a GMM
- Problem: we don't know which data point came from which Gaussian
 - i.e. we don't know how to partition the data

Hidden Markov Models (HMMs)

 An HMM is a temporal probabilistic model in which the state is described by a single discreet random variable.

 X_t is a single, discrete variable (usually E_t is too) Domain of X_t is $\{1, \ldots, S\}$

Transition matrix
$$\mathbf{T}_{ij} = P(X_t = j | X_{t-1} = i)$$
, e.g., $\begin{pmatrix} 0.7 & 0.3 \\ 0.3 & 0.7 \end{pmatrix}$

Sensor matrix O_t for each time step, diagonal elements $P(e_t|X_t=i)$

e.g., with
$$U_1 = true$$
, $\mathbf{O}_1 = \begin{pmatrix} 0.9 & 0 \\ 0 & 0.2 \end{pmatrix}$

Forward and backward messages as column vectors:

$$\mathbf{f}_{1:t+1} = \alpha \mathbf{O}_{t+1} \mathbf{T}^{\top} \mathbf{f}_{1:t}$$

 $\mathbf{b}_{k+1:t} = \mathbf{T} \mathbf{O}_{k+1} \mathbf{b}_{k+2:t}$

Forward-backward algorithm needs time $O(S^2t)$ and space O(St)

Kalman Filters

The real world is not discrete! Need to consider continuous variables.

- Kalman filters are used to track state of robots, chemical plants, planets, etc.
- Key Idea: Arbitrary continuous models are intractable, so represent everything with Gaussians
 - Gaussian prior, linear Gaussian transition model and sensor model

Prediction-Correction Cycle for Kalman Filters

Prediction

$$\mu_{t} = \overline{\mu}_{t} + K_{t}(z_{t} - C_{t}\overline{\mu}_{t})$$

$$\Sigma_{t} = (I - K_{t}C_{t})\overline{\Sigma}_{t}$$

$$egin{aligned} \overline{\mu}_t &= A_t \mu_{t-1} + B_t u_t \ \overline{\Sigma}_t &= A_t \Sigma_{t-1} A_t^T + R_t \end{aligned}$$

Correction

KF Variants:

- Extended Kalman Filter
- Unscented Kalman Filter

Particle filter

Fox et al.: Mobile robot localization with 24 sonar sensors

The Markov Zoo

- Markov process + partial observability = HMM
- Markov process + actions = MDP
- Markov process + partial observability + actions = HMM + actions = MDP + partial observability = POMDP

ful	lol	bserva	bility

partial observability

no actions				
	$n \cap$	2Ct	$\mathbf{I} \mathbf{\Delta}$	n
		aul	Ky	

actions

Markov	НММ
process	
MDP	POMDP

Value Iteration vs. Policy Iteration for MDPs

Value iteration update:

$$U_{i+1}(s) = R(s) + \gamma * \max_{a} \sum_{s'} P(s' | s,a) U_i(s')$$

Policy iteration update:

$$U_{i+1}(s) = R(s) + \gamma * \sum_{s'} P(s' \mid s, \pi_i(s)) U_i(s')$$

Learning

Supervised Learning: Decision Trees

- Split on variables that give highest information gain at each level
 - Based on computing entropy of data for each branch

Support Vector Machines (SVM)

- A discriminant function f(x)
 is a function that separates
 two sets of data according
 to their labels
- SVM learns a linear function:

$$f(x) = w^T x - b$$

K-Nearest Neighbor

Decision Regions for 1-NN Classification

ANN: Backpropagation Algorithm

- 1. Initialize the weights to some random values (or 0)
- 2. For each sample (x_i, y_i) in the training set
 - a. Calculate the current output of the node, h_{x_i}
 - b. For each output node k, update the weights

$$\Delta_k = (h_{x_k})(1 - h_{x_k})(y_k - h_{x_k})$$

c. For each hidden node *j*, update the weights

$$\Delta_j = (h_{x_j})(1 - h_{x_j}) \sum_k w_{j,k} \, \Delta_k$$

3. For all network weights do

$$w_{i,j} = w_{i,j} + \alpha \Delta_j x_i$$

Uncertainty learning dynamics

Predictive distributions for estimating aleatoric uncertainty

Ensembles for estimating epistemic uncertainty

BREAK

Let's play "How did they do that?"

Shakey, SRI, 1966-1972

Freddy, University of Edinburgh, 1973

Sensorless Parts Orienting, CMU, 1986

Navlab, CMU, 1986-2002

DARPA Urban Challenge, 2007

Team CMU

PR2 and ROS, Willow Garage, 2008-2013

KinectFusion, 2011

Kiva Robots, Amazon, 2014

DARPA Robotics Challenge, 2015

What we learned in this course

• Built a **foundation** for more advanced robotics courses/concepts

• The next step:

What to take next?

- Optimization (IOE 611)
- Artificial Intelligence (EECS 492/592)
- Motion Planning (EECS 598)
- Perception (vision in EECS 442/504/542, EECS 498: Self Driving Cars)
- Estimation and Mapping (EECS 467)
- Machine Learning (EECS 445)
- Kinematics/Dynamics (EECS 398)

Consider getting involved in research!

Thank you for taking this course!