

RAPPORT DE L'EFFICACITE ENERGETIQUE

Département : Génie de procédés

Filière: Génie thermique et énergétique

Réalisé par : Chama Rochd

Encadré par :

Pr. Idirissi kaitouni Samir

Année universitaire: 2023-2024

INTRODUCTION

L'efficacité énergétique sont très importantes dans la mission mondiale pour relever les problématiques liés aux ressources énergétiques limitées et à l'impact environnemental croissant. Les travaux pratiques sur l'efficacité énergétique constituent une approche essentielle pour une sensibilisation des chercheurs aux concepts fondamentaux et aux solutions visant à optimiser l'utilisation des ressources énergétiques.

Ces travaux pratiques offrent une expérience permettant d'explorer les différents enjeux de l'efficacité énergétique, allant de la mesure des performances des équipements énergétiques à la conception de solutions optimales.

Ces travaux permettent également nous sensibilisent aux derniers aspects technologiques dans le domaine de l'efficacité énergétique, favorisant ainsi l'innovation et la créativité. En plus cette étude donne une importance de l'efficacité énergétique dans la réduction des émissions de gaz à effet de serre et dans la création d'un avenir énergétique plus durable.

Au fil de cette exploration pratique, les participants seront amenés à comprendre les implications économiques, environnementales et sociales de l'inefficacité énergétique, ainsi que les opportunités liées à l'adoption de pratiques plus durables. En somme, les travaux pratiques sur l'efficacité énergétique constituent une plateforme cruciale pour former les acteurs du changement et encourager l'adoption généralisée de solutions énergétiques intelligentes et efficientes.

BUT DE TP:

Le but de cet audit énergétique est d'assure une description de l'utilisation de l'énergie dans un bâtiment administratif. Ça va nous permettre d'identifier les postes de consommation et de mettre en titre les suggestions d'amélioration. Il nous permettra évidement de quantifier les économies réalisables.

1. On trace la consommation par tranche horaire et par mois :

	Consommation				
	Heures	Heures de	Haurea araugaa	Dépassement	Factour de nuiceane
	pleines	pointe	Heures creuses	(kWh)	Facteur de puissance
Aout 2021	85966	37165	57411	434	0.98
Septembre	80398	38270	65306	384	0.93
Octobre	71561	34133	56816	0	0.91
Novembre	58605	27802	47375	0	0.92
Décembre	52689	24749	42583	0	0.9
Janvier	53865	25416	43328	398	0.9
Février	59411	27994	47014	0	0.89
Mars	80279	34364	53074	391	0.87
Avril	84383	35950	55299	409	0.86
Mai	90179	38511	59412	353	0.89
Juin	79200	33091	51548	409	0.91
Juillet	88706	37908	57973	409	0.92
Annuelle	885242	395353	637139		
Somme de					
consommation					
des heurs			1917734		

- ➤ On constate que la consommation en heurs pleines est plus élevée par rapport aux autres, évidement le taux de consommation en heurs de pointes est la moindre.
- 2. On détermine la répartition de la consommation électrique annuelle entre Heure de pointe, Heure pleines, et Heures creuse :

- > On remarque qu'au niveau annuel, la consommation électrique annuelle en heurs plaintes représente la consommation maximale de 46%
- 3. On détermine la répartition de consommation par poste consommateur :

Les besoins couverts par l'électricité	Colonne1	Consommation par poste consommateur
Éclairage	8%	153418,72
Traitement d'air assuré par la CTA	67%	1284881,78
Extracteurs	6%	115064,04
Splits systèmes	7%	134241,38
Postes informatiques	6%	115064,04
Divers (onduleurs, monte-charge, ascenseurs, équipements de l'auditorium)	6%	115064,04

La consommation par post consommateur =PRODUIT(B20*B17)

- ➤ On remarque que les besoins couverts en électricité au niveau de traitement de l'air assuré par la CTA sont très élevés par rapport aux autres.
- 4. On détermine la répartition du montant global de la facture selon les redevances de la consommation, redevance de la puissance souscrite et la redevance de dépassement de la puissance souscrite :

	heurs pleintes	heurs pointes	heurs creuses			
prix	0.9	1.2	0.6	redevance mentuelle	redevance sur puissance sou	
Aout 2021	72358,2	44598	34446,6	151402,8	4721,22	169239,808
Septembre	72358,2	45924	39183,6	157465,8	1910,97	172492,558
Octobre	64404,9	40959,6	34089,6	139454,1	0	152569,888
Novembre	52744,5	33362,4	28425	114531,9	0	127647,688
Decembre	47420,1	29698,8	25549,8	102668,7	0	115784,488
Janvier	48478,5	30499,2	25996,8	104974,5	2697,84	120788,128
Fevrier	53469,9	33592,8	28208,4	115271,1	0	128386,888
Mars	72251,1	41236,8	31844,4	145332,3	2304,405	160752,493
Avril	75944,7	43140	33179,4	152264,1	3316,095	168695,983
Mai	81161,1	46213,2	35647,2	163021,5	168,615	176305,903
Juin	71280	39709,2	30928,8	141918	3316,095	158349,883
Juillet	79835,4	45489,6	34783,8	160108,8	3316,095	176540,683
ANNUELLE	791706,6	474423,6	382283,4	1648413,6	21751,335	1683280,723
somme			1648413,6		1670164,935	1661529,388

Dépassement=consommation en heurs plaintes*prix unitaire

Puissance souscrite = 350*37.473680 = 13115.788

Montant=prix unitaire heurs plaintes + prix unitaire heurs pointes + prix unitaire heures creuses + puissance souscrite +redevance de dépassement de puissance souscrite

- ➤ On constate que la valeur de dépassement est très faible par rapport a la redevance de consommation.
- 5. Emission CO₂ = Quantité d'Energie consommée x Facteur d'émission de CO₂

SIMULATION SUR SAM:

Définition de logiciel :

"System Advisor Model", Le logiciel SAM permet aux utilisateurs de modéliser et d'évaluer la performance financière et énergétique de systèmes photovoltaïques. Il prend en compte divers paramètres tels que l'emplacement géographique, les caractéristiques du site, les données météorologiques, les coûts du système, les incitations fiscales, et d'autres facteurs pour fournir des analyses détaillées. Les utilisateurs peuvent ainsi estimer la production d'énergie, évaluer la rentabilité financière, comparer différentes configurations de systèmes solaires, et prendre des décisions éclairées en matière d'investissements dans l'énergie photovoltaïque.

On choisit Fès comme site de travaille, et on fait entrer les valeurs caractéristiques e l'installation .

On fait la simulation et on obtient :

Metric	Value
Annual AC energy in Year 1	831,122 kWh
DC capacity factor in Year 1	19.0%
Energy yield in Year 1	1,662 kWh/kW
LCOE Levelized cost of energy nominal	3.85 ¢/kWh
LCOE Levelized cost of energy real	3.06 ¢/kWh
Electricity bill without system (year 1)	\$104,614
Electricity bill with system (year 1)	\$47,286
Net savings with system (year 1)	\$57,328
Net present value	\$197,042
Simple payback period	10.8 years
Discounted payback period	NaN
Net capital cost	\$877,960
Equity	\$0
Debt	\$877,960

La production mensuelle par an est la suivante :

	AC energy (year 1) (kWh/mo)
Jan	57717.5
Feb	59869.2
Mar	72483.8
Apr	74698.5
May	74985.7
Jun	76515.8
Jul	78926.8
Aug	78394.8
Sep	72895.6
Oct	68613.5
Nov	57935.2
Dec	58085.5

La production d'un module est 1661 KWh /an , c'est la valeur notée dans la littérature .

mo	AC energy(year1) (Kwh/mo)	Consommation
jan	57366.7	122609
fev	59547.2	134419
mars	72065.2	167717
avr	74275.2	175632
may	74657.3	188102
jun	76077.6	163839
jul	78475.4	184587
aug	77895.7	180542
sep	72272.3	183974
oct	68229.7	162510
nov	57617.5	133782
dec		57764 120021

➤ On remarque que a consommation diminue par rapport a l'installation PV.

CONCLUSION

En conclusion, les travaux pratiques sur l'efficacité énergétique offrent une opportunité d'approfondir notre compréhension des enjeux liés à la gestion énergétique tout en favorisant l'acquisition de compétences pratiques. Ces expériences permettent aux participants de mettre en pratique les concepts théoriques, d'explorer des solutions innovantes et de développer une conscience face aux défis énergétiques.

L'efficacité énergétique, au cœur de ces travaux pratiques, se révèle être une clé essentielle pour créer des sociétés plus durables. Les participants, en manipulant des équipements, en analysant des données et en concevant des solutions, s'engagent activement dans la recherche de moyens concrets pour optimiser l'utilisation des ressources énergétiques et réduire notre empreinte environnementale.

Au-delà des aspects techniques, ces travaux pratiques stimulent également la réflexion sur les implications économiques, sociales et environnementales de nos choix énergétiques. Ils jouent ainsi un rôle crucial dans la formation d'une nouvelle génération de professionnels conscients des enjeux énergétiques et capables de contribuer de manière significative à la transition vers des pratiques énergétiques durables.

En somme, les travaux pratiques sur l'efficacité énergétique sont un maillon essentiel dans la chaîne de l'éducation et de la sensibilisation, propulsant les participants vers un avenir où l'innovation, la durabilité et la responsabilité énergétique sont au cœur de notre développement sociétal.