МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский

Нижегородский государственный университет им. Н.И. Лобачевского»

Радиофизический факультет

Направление 03.04.03 «Радиофизика» Направленность «Статистическая радиофизика»

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

МЕТОД КОМПЕНСАЦИИ НЕЛИНЕЙНЫХ ИСКАЖЕНИЙ УСИЛИТЕЛЯ МОЩНОСТИ ДЛЯ СТАНДАРТА МОБИЛЬНОЙ СВЯЗИ 5G NR

«К защите допущен»:	
Зав. кафедрой статистической радиофизики и мобильных систем связи, профессор, д.ф.–м.н.	Мальцев А.А
Научный руководитель, профессор, д.фм.н	Мальцев А.А
Рецензент, доцент, к.ф-м.н.	Михеев П.В.
Консультант по технике безопасности, доцент, к.фм.н.	Клемина А.В
Студент 4-го курса магистратуры	Шиков А.П.

Содержание

\mathbf{B}_{1}	веде	ние	3
1	Рол	ь усилителя мощности и влияние нелинейности на характеристики	
	раз	личных сигналов	5
	1.1	Описание принципа работы усилителя мощности	5
	1.2	Нелинейность и искажение сигналов	7
		1.2.1 Single Carrier	8
		1.2.2 OFDM / CP-OFDM	9
		1.2.3 DFT-s-OFDM	10
	1.3	Проблема пик-фактора PAPR сигнала OFDM	11
	1.4	Математическое описание характеристик реальных УМ	12
		1.4.1 Модель Раппа	13
		1.4.2 Параметры модели Раппа для диапазона 30-70 ГГц	14
	1.5	Характеристики УМ в миллиметровом диапазоне	14
		1.5.1 Новая модель для диапазона частот 100-200 ГГц	15
2	Me	год компенсации нелинейных искажений на приемнике	17
	2.1	Краткое описание архитектуры LLS системы мобильной связи 5G NR $$	17
2	2.2	Реализация нелинейных искажений в LLS и их влияние на качество приема	17
	2.3	Обзор существующих решений	20
		2.3.1 Обработка сигнала на передатчике	20
		2.3.2 Обработка сигнала на приемнике	20
	2.4	Подход и описание нового метода компенсации нелинейных искажений на	
2		приемнике	21
		2.4.1 Компенсация с использованием обратной характеристики усилителя	22
		2.4.2 Адаптация алгоритма компенсации в зависимости от типа исполь-	
		зуемого сигнала	24
3	Рез	ультаты	25

Введение

Развитие стандарта мобильной связи 5G New Radio (NR), разрабатываемого консорциумом 3GPP (3rd Generation Partnership Project), тесно связано с развитием технологии Интернета Вещей (IoT - Internet of Things). Высокая скорость, надежность сети, малая задержка, а также возможность массового подключения "умных" устройств являются важнейшими параметрами, определяющими производительность системы в целом.

Одни из последних релизов стандарта 5G NR - релизы 15 и 16 обеспечивают поддержку несущих частот до 52.6 ГГц. С целью расширить поддержку текущего частотного диапазона FR2 (*Англ. - Frequency Range 2*) до 52.6 - 71 ГГц с минимальными вносимыми изменениями в систему [1] [2], группа RAN проекта 3GPP уже исследовала требования для диапазона 52.6 - 114.25 ГГц [3]. Помимо этого, была также исследована возможность расширения частотного диапазона до миллиметровых волн 71-114 ГГц. Однако в этом диапазоне появляется такое ограничение, как нелинейный искажения, вызванные работой усилителя мощности (УМ). Несмотря на значительное продвижение в технологии разработки и проектирования УМ с использованием новых материалов, все ещё наблюдаются значительные нелинейные искажения сигнала при использовании стандартной мощности передатчика [4]. В данном диапазоне частот УМ может внести значительные искажения, кардинально снизив производительность системы. Это особенно заметно для высокоэффективных модуляций, например, 64-QAM и 256-QAM.

Данным эффектом искажения сигнала можно пренебречь в низких диапазонах частот, таких как FR1 и частично FR2. Рабочую точку УМ в этих диапазонах можно выбрать таким образом, что на выходе усилителя будет достигаться необходимая выходная мощность, и при этом УМ будет работать в линейной области своей характеристики, что минимизирует вносимые в передаваемый сигнал искажения.

Проблема искажения сигнала на высоких частотах наиболее актуальна при рассмотрении использования стандарта связи 5G NR в применении к технологии Интернета Вещей. В данном случае система имеет огромное количество небольших и простых передающих устройств, таких как датчики, сенсоры, а также прочие устройства, используемые для обеспечения тесно связанного окружения. Подобные элементы часто имеют низкокачественные передающие и усилительные цепи ввиду необходимости общей низкой стоимости прибора. Также данные устройства должны быть энергоэффективными и минимизировать общее потребление электроэнергии для возможности создания инфраструктуры из большого количества отдельных компонент. Эти факторы являются ключевыми при выборе метода компенсации вносимых нелинейных искажений, поскольку вспомогательная обработка на передатчике может внести дополнительные энергозатраты, нежелательные для дешевого, энергоэффективного устройства.

Проблема компенсации нелинейных искажений, вносимых УМ, рассматривалась во многих работах, в том числе для низких диапазонов частот [5—11]. Рассматривались различные подходы, в основе которых лежали предварительное искажение (*Англ. - Pre-*

Distortion (PD), Digital Pre-Distortion (DPD)) сигнала на передатчике с целью "выпрямления" амплитудной характеристики усилителя. Однако такие методы требуют дополнительной сигнальной обработки на передатчике, что негативно влияет на энергоэффективность устройства. В основе другого метода лежит обработка сигнала на приемнике, когда принятый сигнал подвергается обработке на стороне принимающего устройства с целью компенсации искажений, внесенных на УМ передатчика. В качестве методов компенсации используют обратную характеристику УМ, статистические подходы для определения усредненного искажения и его дальнейшей компенсации, последовательный метод Монте-Карло и другие. Также важно отметить необходимость в определенных случаях знать на приемнике параметры УМ, который расположен на передатчике.

Также важно отметить, что характеристики УМ в миллиметровом диапазоне частот 100-200 ГГц значительно отличаются от характеристик усилителей в диапазоне 30-70 ГГц. На более высоких частотах, характеристики значительно хуже, это означает необходимость применения определенного метода компенсации искажения для повышения качества передачи информации.

В данной работе предлагается метод компенсации нелинейных искажений внесенных усилителем мощности на приемнике. Основа метода компенсации заключается в использовании обратной характеристики УМ, однако перед этим сигнал определенным образом обрабатывается. Предлагаемый метод может быть использован для разных типов сигналов(СР-ОFDM, DFT-s-OFDM), в зависимости от рассматриваемой задачи. Также, в рамках данной работы были исследованы характеристики современных твердотельных УМ в миллиметровом диапазоне. На основе проведенного исследования, была создана модель для диапазона частот 100-200 ГГц, которая в дальнейшем использовалась в математическом моделировании для проверки работоспособности предлагаемого метода.

1 Роль усилителя мощности и влияние нелинейности на характеристики различных сигналов

Усилитель мощности (УМ) является ключевым компонентом передатчика, отвечающим за повышение мощности сигнала, передаваемого устройством или базовой станцией. УМ также является одним из элементов цепи передатчика с самым высоким энергопотреблением. Чем больше необходимо усилить сигнал, тем больше энергии необходимо УМ. Однако при этом, при высокой мощности, поведение УМ становится нелинейным. Известно, что эффективность УМ, работающего в радиочастотном диапазоне (RF), может значительно повлиять на производительность всей передающей системы в целом [12].

В этой главе рассматривается основной принцип работы УМ, влияние нелинейности на усиливаемый сигнал и математические модели основных характеристик.

1.1 Описание принципа работы усилителя мощности

Одной из основных характеристик УМ является коэффициент усиления (КУ) G, который определяется как отношение выходной мощности P_{out} к входной P_{in} . Часто выражается в дB:

$$G_{dB} = 10\log_{10}\left(\frac{P_{out}}{P_{in}}\right) \tag{1}$$

КУ УМ зависит от множества факторов, в том числе от свойств элементов, использованных для создания УМ. Реальный УМ - это нелинейное устройство, КУ которого не постоянен. Напротив, КУ сильно зависит от свойств индивидуальных составляющих, входной мощности, частоты сигнала и других параметров. Однако часто считают, что в некотором диапазоне входных мощностей и частот КУ является постоянным или достаточно слабо меняющимся.

Помимо КУ, усилитель мощности часто описывается при помощи двух функций — амплитудная характеристика (АХ) $F_{AM/AM}$ и фазовая характеристика (ФХ) $F_{AM/PM}$. Амплитудная характеристика определяет зависимость значения амплитуды сигнала (напряжения, тока или мощности) на выходе U_{out} от значения амплитуды сигнала на входе U_{in} . Фазовая характеристика определяет величину сдвига фазы $\Delta \varphi$ выходного сигнала относительно входного в зависимости от амплитуды сигнала на входе U_{in} .

$$U_{out} = F_{AM/AM}(U_{in}), \quad \Delta \varphi = F_{AM/PM}(U_{in})$$
 (2)

Для удобства описания и анализа сигнала часто прибегают к использованию нотации комплексной огибающей $\tilde{x}(t)$. Тогда входной сигнал может быть записан как

$$x(t) = \tilde{x}(t) \cdot \exp(i\omega_c t), \tag{3}$$

где ω_c - частота несущей, i - мнимая единица, t - время. Комплексная огибающая $\tilde{x}(t)$ имеет следующий вид:

$$\tilde{x}(t) = a(t) \exp(i\varphi(t)),$$
 (4)

где a(t) - амплитуда, $\varphi(t)$ - фаза входного сигнала. Отклик УМ y(t) в таком случае будет усиленной и искаженной версией x(t), который может быть записан как

$$y(t) = \tilde{y}(t) \cdot \exp(i\omega_c t)$$

$$\tilde{y}(t) = F_{AM/AM}(a(t)) \cdot \exp[i\varphi(t) + F_{AM/PM}(a(t))].$$
(5)

В случае идеального УМ, амплитудная характеристика имеет вид прямой (см. Рис.1.1а), пересекающейся с началом координат. Это означает, что коэффициент усиления линейного (идеального) усилителя постоянен и не зависит от входного сигнала. Коэффициент усиления идеального УМ может быть определен как тангенс угла наклона АХ к оси абсписс.

Рис. 1.1 — Амплитудные характеристики идеального и реального усилителя мощности

Однако как наблюдается на практике, АХ усилителей редко бывают линейными, ввиду множества факторов, обуславливающих нелинейность этой характеристики (см. Рис. 1.1б). При нулевом напряжении на входе, на выходе усилителя присутствует ненулевое напряжение, обусловленное собственными шумами усилителя. Из-за этого появляется изгиб в нижней части АХ. При достаточно больших значениях входной амплитуды, АХ также отклоняется от прямой. Из-за выхода рабочей точки отдельных элементов усилителя за пределы рабочего диапазона, возникают нелинейные искажения, вследствие которых коэффициент усиления сигнала выходит на уровень насыщения.

При этом, AX реального УМ имеет определенный диапазон входных значений амплитуд ($U_{in}^{min}, U_{in}^{max}$,), при которых искажения практически отсутствуют и усилитель подобен идеальному. Эта область называется динамическим диапазоном усилителя и выражается как

$$D = \frac{U_{in}^{max}}{U_{in}^{min}}. (6)$$

В связи с ограниченностью динамического диапазона УМ, часто изменяют входной сигнал таким образом, чтобы итоговая рабочая точка находилась в нужном диапазоне линейности и усиления. Используется смещение рабочей точки относительно выходной мощности - ОВО (*Англ. - Output back-off*), и смещение рабочей точки относительно входной мощности - IBO (*Англ. - Input back-off*). При этом обычно представляется возможным пересчет одной величины в другую, так как по сути они являются взаимозаменяемыми. Разница состоит в том, относительно чего происходит сдвиг рабочей точки - максимальной выходной, либо максимальной входной мощности.

Рис. 1.2 — Смещение рабочей точки усилителя относительно входной и выходной мощности

$$OBO = 10 \cdot \log_{10} \left(\frac{P_{sat}}{P_{out}} \right), \quad IBO = 10 \cdot \log_{10} \left(\frac{P_0}{P_{in}} \right)$$
 (7)

Большие значения IBO/OBO могут обеспечить хорошую линейность AX, однако это также приведет к уменьшению средней выходной мощности сигнала. Таким образом, в реальных применениях определяется наиболее подходящее значение IBO /OBO, обеспечивающее необходимую линейность характеристики, а также необходимое усиление.

1.2 Нелинейность и искажение сигналов

Мощность на выходе УМ увеличивается вместе с ростом входной мощности, однако, как только уровень выходной мощность достигает определенного максимума, КУ

перестает быть постоянным и усилитель входит в область насыщения. В этой области больше всего проявляется нелинейность УМ - выходная мощность перестает увеличиваться с ростом входной мощности. Работа УМ в нелинейной области влечет за собой нелинейные искажения сигнала, которые заключаются в изменение его формы и фазы.

В качестве входного рассмотрим сигнал с гармонически меняющейся амплитудной (мощностью P_{in}) (см. рис 1.3). Если УМ находится в линейном режиме работы, то на выходе также будет гармонический сигнал, отличающаяся только усилением амплитуды. Однако если усилитель находится в нелинейной области, на выходе сигнал будет отличаться от входного не только значением амплитуды, но и формой. Пики синусоиды будут сжиматься нелинейной частью AX, что приведет к искажению сигнала на выходе (см. рис 1.3).

Рис. 1.3—Преобразование сигнала с гармонически меняющейся амплитудой при прохождении через УМ

Рассмотрим влияние нелинейности характеристики усилителя на основные типы сигналов, часть которых используется в стандарте 5G NR.

Для примера рабочая точка (средняя входная мощность) была выбрана так, чтобы влияние нелинейности амплитудной характеристики усилителя была достаточно явна продемонстрирована.

1.2.1 Single Carrier

Single Carrier - SC сигнал с одной несущей, передаваемые данные кодируются с помощью модуляции (BPSK, QPSK, N-QAM) в виде амплитуды сигнала на несущей частоте. Схема генерации SC-сигнала приведена на рис. 1.5. Отметим, что SC сигналом часто называют SC-FDMA сигнал, который в стандарте 5G-NR получил название DFT-s-OFDM.

Поскольку на усилитель подается, по сути, амплитудно модулированный сигнал, то искажения имеют достаточно предсказуемый характер. На рис. 1.4а приведен график

Рис. 1.4 — Искажение различных сигналов на приемнике при внесении нелинейного искажения на передатчике

Рис. 1.5 — Принципиальная схема генерации SC-сигнала

созвездия модуляции 64-QAM, который в данном случае используется для сигнала SC. Черные точки показывают изначальное местоположение созвездия, красные - созвездия на приемнике с использованием идеального усилителя мощности, синие - созвездия на приемнике с использованием нелинейного усилителя мощности.

Наблюдаемая картина напоминает искажение амплитуды на рис. 1.3, т.е. искажение обработанного сигнала напрямую связано с его амплитудой - чем больше амплитуда, тем больше искажение. Такой тип сигнала имеет детерминированный характер искажения нелинейностью, и может, в теории, быть достаточно просто компенсирован.

1.2.2 OFDM / CP-OFDM

Orthogonal Frequency-Division Multiplexing - OFDM сигнал, использующий большое число близко расположенных ортогональных поднесущих, каждая из которых модулируется по стандартной схему модуляции (аналогично SC). В стандарте 5G NR часто используется CP-OFDM - Cyclic Prefix OFDM - сигнал OFDM с добавлением цикличного префикса. СР необходим для борьбы с межсимвольной интерференцией (ISI), и заключается в создании меж-символьного защитного интервала, состоящего из копии части OFDM-символа. Принципиальная схема генерации OFDM сигнала приведена на рис. 1.6. OFDM сигнал принципиально отличается от SC сигнала, поток данных делится на несколько параллельных подпотоков с более низкой скоростью передачи (увеличение длительности символа), а каждый поток модулируется на своей ортогональной подне-

сущей. OFDM также достаточно прост в обработке, чаще всего применяется обратное преобразование Фурье, с помощью которого происходит преобразование сигнала из частотной области во временную.

Рис. 1.6 — Принципиальная схема генерации CP-OFDM-сигнала

Что касается искажения при прохождении через нелинейный УМ, ввиду наличия операции IFFT (на передатчике) перед усилителем, результирующие искажения на приемнике после преобразования OFDM-сигнала в созвездие с помощью FFT имеют достаточно сложный и непредсказуемый характер, как и это предложение. Пример искажений OFDM-сигнала изображен на рис. 1.4b. Из графика видно, что размер облака точек вокруг точек созвездий увеличивается при присутствии нелинейного усилителя в цепи передатчика (синие точки), однако отсутствует централизованный сдвиг облаков относительно изначальных положений.

Таким образом, искажения CP-OFDM сигнала носят недетерминированный характер, в какой-то степени случайный. Такие искажения может быть проблематично компенсировать.

1.2.3 **DFT-s-OFDM**

(Discrete) Fourier Transform Spread OFDM - DFT-s-OFDM сигнал является модификацией сигнала OFDM, нацеленной на компенсацию его основного недостатка, а именно высокого отношения пикового уровня мощности к среднему (Англ. - Peak to Average Power Ratio - PAPR). Подробнее проблема высокого PAPR рассмотрена в секции 1.3. Принципиальная схема генерации DFT-s-OFDM сигнала приведена на рис. 1.7. Генерация DFT-s-OFDM сигнала отличается от классического OFDM включением предварительного кодирования параллелизованного потока данных при помощи прямого дискретного преобразования Фурье (DFT, FFT), примененного к ограниченному количеству

Рис. 1.7 — Принципиальная схема генерации DFT-s-OFDM-сигнала

поднесущих OFDM сигнала. Данная операция в стандарте 3GPP называется *Transform Precoding*. По своей сути данная процедура повторяет принцип, применяемый в SC-FDMA. За счет сочетания Transform Precoding и IFFT, присутствующего в процедуре создания OFDM сигнала, полученный сигнал имеет меньшие значения PAPR, тем самым более эффективно используя ограниченный диапазон работы усилителя.

Поскольку DFT-s-OFDM сигнал является неким средним между CP-OFDM и SC, искажения, вносимые нелинейностью УМ имеют также смешанный характер. Пример таких искажений приведен на рис. 1.4с. Присутствует как общее смещение облаков созвездия ввиду амплитудных искажений, так и увеличение разброса по сравнению со случаем использования идеального (линейного) усилителя.

1.3 Проблема пик-фактора PAPR сигнала OFDM

Одним из недостатков сигнала OFDM является высокое отношение пиковой мощности к средней - PAPR (пик-фактор). Визуализация этого отношения приведена на рис. 1.8. В случае OFDM сигнала, высокое значение PAPR получается в результате комбинации большого количества поднесущих, которые могут когерентно сложиться, что и даст высокое значение пиковой мощности.

Высокое значение PAPR негативно влияет на работу системы в целом, поскольку напрямую влияет на выбор рабочей точки усилителя. Перед подачей на УМ, сигнал должен быть настроен таким образом, чтобы его средняя мощность, определяющая рабочую точку, соответствовала желаемому режиму работы усилителя. Если отношение PAPR высокое, то при выбранной на основе средней мощности рабочей точки, части сигнала с пиковой мощностью будут попадать на сильно нелинейную часть характеристики усилителя, что приведет к искажению. Для избежания негативных эффектов, часто сдвигают

Рис. 1.8—PAPR

рабочую точку таким образом, чтобы сигнал не искажался, однако вместе с этим также понижается общая выходная мощность.

В стандарте LTE при передаче данных от пользователя к базовой станции (*Uplink*) используется сигнал SC-FDMA [13], поскольку высокое значение пик-фактора на мобильных устройствах не приемлемо. В стандарте 5G NR, в качестве альтернативы OFDM в uplink используется сигнал DFT-s-OFDM [14]. Эти сигналы отличаются пониженным значением пик фактора [15], что позволяет более эффективно использовать УМ.

1.4 Математическое описание характеристик реальных УМ

Для моделирования использования УМ в системах мобильной связи часто прибегают к математическим моделям, описывающим поведение сигнала (усиление, искажение) при прохождении через УМ. Исторически модели разделяются на две основных группы - физические и эмпирические модели [16].

Физические модели требуют знания внутренних электронных компонентов УМ, их связи, а так же теории, описывающей их взаимодействие. Такие модели подходят для симуляций на уровне схемы благодаря высокой точности, однако требуют много вычислительных мощностей и времени, а также детальное описание структуры и компонентов УМ.

Эмпирические модели используются, когда не известна внутренняя структура УМ, или когда рассматривается системный уровень моделирования. Эти модели основаны на результатах измерений и исследований конкретных УМ, на основе которых были выведены зависимости снятых характеристик УМ (АХ, ФХ) от его параметров.

Поскольку в данной работе исследуется возможность компенсации нелинейного

искажения на приемнике, то использоваться будет эмпирическая (поведенческая) модель УМ. Среди таких моделей можно назвать Volterra, Saleh, Ghorbani, а также модели, представляющие собой комбинации полиномиальных моделей. Все они являются достаточно простыми моделями, которые отражают нелинейную природу УМ. Простота позволяет оперировать меньшим количеством параметров усилителя, упрощая обработку в целом. Однако такие модели не могут быть использованы для описания сложных усилителей, таки как усилитель Doherty [17][18].

С другой стороны, в рамках рассматриваемой задачи, а именно компенсации искажений, внесенных на передатчике из-за нелинейности УМ, использование более простой модели может быть оправдано. Целью данной работы является создание метода компенсации нелинейных искажений на приемнике, с основным мотивом минимизировать обработку на передатчике, а также стоимость конечного устройства. Рассматриваются именно простые, мало размерные, дешевые в производстве передатчики, в которых усилитель часто имеет далеко не лучшие параметры и не отличается высокой эффективностью.

1.4.1 Модель Раппа

Рис. 1.9 — Влияние параметра гладкости p на вид амплитудной характеристики (Добавить вторую и третью картинку где будут менять G, V)

Для описания искажения амплитуды и фазы при использовании твердотельных УМ широко используется модель Раппа (*Англ. - Rapp*) [19] [20]. Также существует модифицированная модель Раппа, приведенная в выражении 8. Данная модель УМ включена в список моделей в спецификации 3GPP [18].

$$F_{AM/AM}(x) = \frac{Gx}{\left(1 + \left|\frac{Gx}{V_{sat}}\right|^{2p}\right)^{1/2p}}, \quad F_{AM/PM}(x) = \frac{Ax^q}{\left(1 + \left(\frac{x}{B}\right)^q\right)}, \tag{8}$$

где $F_{AM/AM}$, $F_{AM/PM}$ - амплитудные и фазовые характеристики соответственно, G - КУ слабого сигнала, V_{sat} - амплитуда насыщения, p - показатель гладкости характеристики. Параметры A, B, q - параметры кривой искажения фазы. В дальнейшем в работе будет использоваться эта модель для описания влияния УМ на сигнал.

Пример АХ и ФХ для модели Раппа приведены на рис. 1.9. В зависимости от значений параметров G, V_{sat}, p поведение амплитудной характеристики может сильно варьироваться. Так, при больших значениях p ($p \gg 1$), АХ похожа на характеристику идеального УМ, которая ограничена по максимальной выходной амплитуде (см. рис. 1.9). Параметр V_{sat} отвечает за выходную амплитуду насыщения, а G - КУ слабого сигнала.

1.4.2 Параметры модели Раппа для диапазона 30-70 ГГц

Для вывода параметров базовой модели УМ в диапазоне частот 30-70 ГГц, компанией Nokia были использованы и исследованы характеристики стандартных усилителей в соответствующей полосе [21] [20]. Полученная модель УМ использована в этой работе для моделирования влияния нелинейности УМ для сигналов с несущей частотой в диапазоне 30-70 ГГц. Амплитудные и частотные характеристики УМ в соответствии с моделью [21] для 30-70 ГГц приведены на рис. 1.10. Численные значения параметров модели Раппа приведены в 9.

$$G = 16, \quad V_{sat} = 1.9, \quad p = 1.1$$
 (9)

1.5 Характеристики УМ в миллиметровом диапазоне

Помимо исследования диапазона частот 30-70 ГГц, в рамках данной работы рассматривалось влияние нелинейного усилителя на качество приема для диапазона миллиметровых длин волн, а именно 100-200 ГГц. Поскольку на момент проведения исследования модель УМ для данного диапазона отсутствовала, были изучены многочисленные отчеты и исследования с указанием амплитудных характеристик используемых усилителей. Основываясь на работах [4][22][23] был сделан вывод о значительном отличии характеристик УМ в более высоком диапазоне частот. В целом, рассматриваемые усилители имею значительно меньшее значение амплитуды насыщения V_{sat} (или мощности насыщения), а также меньшее значение коэффициента усиления G.

Характеристики твердотельных УМ из работ [4][22][23] приведены на рис. 1.11. Также на рис. 1.11 приведена модель для 30-70 $\Gamma\Gamma$ ц.

Извлеченные кривые амплитудных характеристик были аппроксимированы при помощи модели Раппа 8, что позволило собрать параметры УМ для дальнейшей об-

Рис. 1.10 — АХ и ФХ усилителя в соответствии с моделью Раппа и параметрами для диапазона 30-70 $\Gamma\Gamma$ ц

работки. Полученные значения параметров модели, а также частота и технология для рассматриваемых усилителей приведены в Таблице 1.1.

Источник	Технология	Частота, ГГц	G	V_{sat}	\overline{p}
[4]	28-нм CMOS	135	12.26	0.9	1.93
[22] Рис. 6.2b	35-нм тНЕМТ	180	10.84	0.87	0.52
[22] Рис. 6.4b	50-нм тНЕМТ	198	41.19	1.99	0.26
[22] Рис. 6.15а	35-нм GaAs mHEMT	210	7.89	0.44	0.9
[23] CT	130-нм SiGe BiCMOS CT	185	2.05	1.09	2.03
[23] CE	130-нм SiGe BiCMOS CE	185	4.08	1.41	1.91
[23] Рис. 19а	130-нм SiGe BiCMOS 3-stage CT	160	9.88	1.81	2.75
[23] Рис. 19b	130-нм SiGe BiCMOS 3-stage CT	170	14.8	1.81	1.56
[23] Рис. 19с	130-н м SiGe BiCMOS 3-stage CT $$	185	19.29	1.86	0.87

Таблица 1.1 — Параметры модели Раппа для УМ в диапазоне частот 100-200 ГГц на основе экспериментальных данных и исследований

1.5.1 Новая модель для диапазона частот 100-200 ГГц

Для исследования применимости нового метода компенсации в диапазоне 100-200 ГГц необходима соответствующая модель УМ, для начальной имплементации ее в систему с целью внесения соответствующих искажений в сигнал, и последующей компенсацией внесенных искажений на приемнике.

Рис. 1.11 — АХ усилителей на основе данных из [4][22][23], а также модель 30-70 ГГц [21] и полученная усредненная модель для диапазона 100-200 ГГц

Имеющаяся модель [21] подходит только для диапазона 30-70 ГГц, в нашем случае интерес представляет работа при более высоких частотах. Модель для 100-200 ГГц была создана путем усреднения параметров G, V_{sat}, p рассмотренных УМ в соответствующем диапазоне частот (см. Таблицу 1.1). Полученные усредненный параметры для модели Раппа приведены в 10.

$$G = 13.59, \quad V_{sat} = 1.35, \quad p = 1.41$$
 (10)

Усредненная характеристика была получена только для амплитудного искажения $F_{AM/AM}$, модель фазовых искажений была выбрана аналогичной модели для 30-70 ГГц.

2 Метод компенсации нелинейных искажений на приемнике

Компенсация нелинейных искажений сигнала является важным этапом для сохранения производительности системы. С расширением стандарта связи 5G NR в миллиметровый диапазон, компенсация становится особенно актуальной, поскольку характеристики усилителей в этом диапазоне значительно хуже, чем для более низких частот.

2.1 Краткое описание архитектуры LLS системы мобильной связи 5G NR

Для исследования влияния нелинейности УМ в диапазонах частот 30-70 ГГц и 100-200 ГГц, а также проверки работоспособности разработанного метода компенсации нелинейных искажений на приемнике, в работе использовался полноценный симулятор канального уровня LLS (*Англ. - Link Level Simulator*), соответствующий требованиям стандарта 5G NR 3GPP. В этой части работы будут кратко описаны принципы работы, архитектура и основные составляющие LLS.

На рис. 2.1 приведена принципиальная схемы работы LLS.

Рис. 2.1

TBD

2.2 Реализация нелинейных искажений в LLS и их влияние на качество приема

На момент исследования влияния нелинейностей на производительность системы, в LLS отсутствовал нелинейный УМ, а именно, он считался идеальным. Для оценки влияния нелинейности АХ, а также разработки метода компенсации была поставлена задачи внедрения усилителя на основе модели Раппа в LLS. Опишем алгоритм, эмулирующий искажение сигнала на основе имеющейся АХ.

Рассматривается сигнал после основной подготовки, после IFFT-преобразования

и сериализации. Обозначим комплексную амплитуду дискретного сигнала $S_{in}[n]$ как

$$S_{in}[n] = |S_{in}[n]| \exp(i\varphi[n]), \quad n \in [0, N-1],$$
 (11)

где n - индекс, N - количество отсчетов. Средняя мощность P_{in} такого сигнала может быть записана как

$$P_{in} = \frac{1}{RN} \sum_{n=0}^{N-1} S_{in}^2 = \frac{\text{RMS}(S_{in})^2}{R},$$
(12)

где R - сопротивлением согласованной нагрузки(здесь и далее будем считать что R=50 Ом). Прохождение сигнала через усилитель характеризуется искажением его амплитуды и фазы в соответствии с 5, а именно

$$S_{out} = F_{PA}(S_{in}) = F_{AM/AM}(|S_{in}|) \cdot \exp\left[i\varphi[n] + F_{AM/PM}(|S_{in}|)\right],\tag{13}$$

где S_{out} - комплексная огибающая сигнала после усилителя, F_{PA} - функция преобразования сигнала усилителем

Поскольку желательным является иметь постоянный уровень выходной мощности \tilde{P}_{TX} , усиливаемый сигнал нужно предварительно подготовить. Требуется, чтобы мощность сигнала на выходе усилителя P_{out} соответствовала $P_{out} = \tilde{P}_{TX}$. Для этого сигнал S_{in} необходимо умножить на коэффициент K_0 такой, чтобы выполнялось соотношение

$$RMS(F_{PA}(K_0 \cdot S_{in}))^2 = \frac{R}{1000} 10^{(P_{TX}^{dBm} - OBO^{dB})/10},$$
(14)

где P_{TX}^{dBm} - требуемая выходная мощность на усилителе в dBm, OBO^{dB} - желаемый отступ по уровню выходной мощности от P_{TX}^{dBm} , причем $\tilde{P}_{TX}^{dBm} = P_{TX}^{dBm} - OBO^{dB}$. После того как коэффициент K_0 определен доступным способом (в случае этой работы, использовался подбор K_0 , однако не исключено использование закона распределения функции случайного аргумента), сигнал пропускается через усилитель, и передается блоку канального распространения. Коэффициент K_0 в данном случае определяет рабочую точку УМ.

На приемнике, в результате внесенных изменений наблюдаются искажения полученных созвездий на приемнике. Пример таких искажений в случае использования сигнала DFT-s-OFDM при $P_{TX}^{dBm}=10~\mathrm{dBm},~OBO=0,3~\mathrm{dB},~SNR=30~\mathrm{dB}$ и использовании модуляции 64-QAM приведен на рис. 2.2. В качестве модели УМ использовалась модель Раппа 8, с параметрами приведенными в 9 в соответствии с [21].

Сравниваются созвездия при выключенном (идеальном) УМ — красные точки, и при включенном УМ — синие кресты. Искажения совпадают с теоретически ожидаемыми, наблюдается увеличение общего разброса точек, а также централизованный сдвиг облаков в зависимости от амплитуды модуляции — чем больше амплитуда, тем больше искажение. Из приведенных графиков можно сделать вывод о прямом влиянии величины ОВО на степень искажения полученного сигнала. Чем меньше значение ОВО, тем ближе

Рис. 2.2 — Демонстрация искажения созвездий на приемнике в результате использования нелинейного УМ с выходной мощностью $10~\mathrm{dBm}$ в LLS. На левом графике $OBO=0~\mathrm{dB}$, на правом - $OBO=3~\mathrm{dB}$.

средняя мощность сигнала к точке насыщения, тем больше проявляется нелинейность, и тем больше искажается сигнал.

Аналогичную картину можно наблюдать при увеличении значения P_{TX}^{dBm} до 12 dBm. Результирующие созвездия на приемнике приведены на рис. 2.3.

Рис. 2.3 — Демонстрация искажения созвездий на приемнике в результате использования нелинейного УМ с выходной мощностью 12 dBm в LLS. На левом графике OBO=0 dB, на правом - OBO=3 dB.

Искажение принимаемых созвездий приводит к ошибкам при декодировании сигнала. Например, в случае $P_{TX}^{dBm}=10$ dBm (рис. 2.2), для OBO=0 dB BLER увеличивается с 0 до $9\cdot 10^{-4}$, для OBO=3 dB BLER увеличивается с 0 до $1.16\cdot 10^{-5}$.

В случае $P_{TX}^{dBm}=12$ dBm (рис. 2.3), для OBO=0 dB BLER увеличивается с 0 до $6.56\cdot 10^{-3}$, для OBO=3 dB BLER увеличивается с 0 до $2.87\cdot 10^{-4}$.

Более подробный анализ влияния нелинейности на количество ошибок в зависимости от SNR будет приведен в секции ??.

Таким образом нелинейный усилитель вносит значительные искажения в передаваемый сигнал, что значительно влияет на качество связи. Возникает необходимость компенсации внесенных нелинейных искажений для улучшения производительности системы. В следующих секциях будут описаны существующие методы компенсации, а также предложен новый метод компенсации на приемнике.

2.3 Обзор существующих решений

На текущий момент были исследованы несколько основных подходов для компенсации нелинейных искажений, они разделяются на два основных направления обработка на передатчике, либо приемнике.

2.3.1 Обработка сигнала на передатчике

Первый метод заключается в предварительном искажении сигнала перед подачей на УМ на передатчике. Сигналу придаются свойства, которые минимизируют влияние нелинейного искажения от УМ, эффективно "выпрямляя"его АХ. Существует множество вариантов обработки для данного подхода, однако многие из них имеют слабый эффект на общей производительности системы, а подход с применением предварительного искажения сигнала имеет низкую эффективность при низких значениях ІВО, при которой достигается максимальная эффективность усилителя [5] [6] [7]. Также, использование РD на передатчике нежелательно на малогабаритных устройствах, поскольку в таком случае увеличивается сложность устройства, объем сигнальной обработки и энергопотребление.

2.3.2 Обработка сигнала на приемнике

Второй основной подход заключается в компенсации нелинейных искажений на приемнике. Например, в работе [8] используется статистическая обработка принятого сигнала для определения степени искажения, на основе которой в дальнейшем производится компенсация. Многие работы [5; 6; 9—11; 24; 25] рассматривают теоретический подход для компенсации на приемнике в очень обобщенном случае. Несколько методов компенсации были предложены для OFDM сигнала [11; 24; 25], где влияние нелинейности представляется комплексным множителем, а также Гауссовой шумовой компонентой. Основной задачей в таком случае является определение параметров УМ (они

могут быть как известны изначально, так и определены с помощью пилотных сигналов) для компенсации нелинейного искажения. Несколько методов были исследованы для сигнала SC с одной несущей (*Англ. - SC - Single Carrier*) [5; 6; 9; 10], в частности использовалась обратная характеристика УМ и последовательные методы Монте-Карло. В нескольких случаях [9—11], значения параметров УМ считаются известными на приемнике, что позволяет произвести компенсацию искажения. В случаях, когда параметры УМ оцениваются, производительность такая же либо хуже.

В данной работе описывается метод компенсации нелинейных искажений УМ на приемнике с использованием обратной амплитудной характеристики. Информация о параметрах и рабочей точке усилителя предполагается известной. Работа и эффективность метода будет исследоваться на существующем симуляторе канального уровня, необходимые изменения будут вноситься в код симулятора как для внесения искажений, так и для их компенсации.

2.4 Подход и описание нового метода компенсации нелинейных искажений на приемнике

В основе разработанного метода компенсации нелинейных искажений на приемнике лежит использование обратной АХ усилителя. Параметры G, V_{sat}, p , необходимые для восстановления обратной характеристики считаются известными. Помимо этих параметров, важно также знать рабочую точку УМ, поскольку это напрямую влияет на степень искажения принятого сигнала. Рабочая точка также считается известной. Компенсация будет производиться в основном для амплитудных искажений, поскольку фазовые искажения незначительны.

Принципиальный подход компенсации может быть описан следующим образом:

- 1. Принятый сигнал проходит через предварительную обработку в LLS (частотное выравнивание, МІМО-декодирование, перенос в частотную область)
- 2. Полученный обработанный сигнал в частотной области переносится во временную область в соответствии с используемым типом сигнала.

Transform precoding (в случае DFT-s-OFDM сигнала)

IFFT-обработка для получения OFDM сигнала во временной области

- 3. Полученный сигнал во временной области подается на блок компенсации (использующий обратную АХ усилителя на основе известных параметров и рабочей точки)
- 4. Сигнал с компенсированными искажениями переводится в частотную область
- 5. Компенсированный сигнал подается на блок демодуляции

Блок-схема разработанного метода компенсации приведена на рис. 2.4.

Рис. 2.4

2.4.1 Компенсация с использованием обратной характеристики усилителя

На данном этапе алгоритм компенсации будет описываться для CP-OFDM сигнала, модификация для DFT-s-OFDM сигнала будет описана в секции 2.4.2.

Для компенсации нелинейных искажений важно понимать как именно искажается сигнал на передатчике. Перед подачей на УМ сигнал, сформированный в частотной области, преобразуется в OFDM сигнал во временной области посредством IFFT. После этого OFDM сигнал подается на УМ и далее на передающие антенны. Таким образом, искажение сигнала происходит во временной области, следовательно, компенсация также должна производиться во временной области.

Поскольку в LLS сигнал после передачи проходит через частотно-селективный канал, одним из первых шагов после приема сигнала является частотное выравнивание с помощью опорных сигналов DMRS, помещенных в сигнал на этапе подготовки перед передачей. Эти сигналы доступны в частотной области, поэтому принятый OFDM сигнал проходит через блок FFT. Происходит перенос в частотную область, где выполняется частотное выравнивание сигнала.

На данном этапе принятый сигнал находится в частотной области, при этом компенсация искажений должна быть произведена во временной области. Опишем более подробно предлагаемый алгоритм компенсации сигнала на приемнике.

Рассматриваемый сигнал S_{in} - комплексная огибающая

Дальнейший перенос искаженного сигнала во временную область для выполнения компенсации происходит посредством выполнения обработки, идентичной обработке сигнала на передатчике. Например, для CP-OFDM сигнала необходимо провести преобразование IFFT. В таком случае преобразованный сигнал становится приближенным к сигналу на выходе УМ, и появляется возможность применить обратную АХ усилителя для компенсации. Обратная характеристика УМ может быть получена из модели Раппа 8. Результирующее выражение приведено в 15.

$$F_{AM/AM}^{-1}(y) = \frac{y}{\left(1 - \left|\frac{y}{V_{sat}}\right|^{2p}\right)^{1/2p}},\tag{15}$$

где y - сигнал на приемнике после переноса во временную область.

В ходе исследований изначально использовалась обратная АХ УМ, приведенная в 15. Усилитель по своей природе имеет свойство выходить на насыщение после определенного уровня подаваемой мощности, т.е. после определенного момента, в независимости от увеличения подаваемой мощности, выходная мощность не будет расти. Это отражается в АХ в виде выхода на уровень насыщения, связанного с параметром V_{sat} . При этом обратная характеристика $F_{AM/AM}^{-1}$ стремится к бесконечности при приближении входного значения к V_{sat} , т.е.:

$$F_{AM/AM}^{-1}(y) \to \infty \bigg|_{y \to V_{sat}} \tag{16}$$

Подобное поведение может привести к дополнительным искажениям компенсируемого сигнала, что противоречит изначальной цели. OFDM сигнал имеет высокое значение PAPR, поэтому при подаче на обратную характеристику УМ 15, некоторые значения могут быть больше V_{sat} , что невозможно физически. Этот эффект может привести к дополнительным искажениям, пример таких искажений приведен на центральном графике рис. 2.5.

Рис. 2.5 — Результат применения обратной AX 15 и ограниченной обратной AX 17 к DFT-s-OFDM сигналу для компенсации. Черные точки отображают точки изначальное, передаваемое созвездие, синие точки обозначают значения созвездия принятого сигнала на приемнике. На графике слева компенсация отсутствует, по центру компенсация выполнена не ограниченной обратной AX 15, справа ограничено обратной AX 17. Поскольку на центральном графике обратная функция не ограничена, результирующее созвездие имеет дополнительно искажение в областях значений с высокой амплитудой. При ограничении обратной характеристики наблюдается необходимая компенсация искажений.

Таким образом важно произвести модификацию обратной характеристики, ограничив ее значения при $y \to V_{sat}$. В результате было получено выражение, приведенное в 17. Сравнение результата применения ограниченной и не ограниченной характеристик

приведено на рис. 2.5. В дальнейшем в работе использовалась именно ограниченная версия обратной AX 17.

$$F_{AM/AM}^{-1}(y) = \begin{cases} \frac{y}{\left(1 - \left|\frac{y}{V_{sat}}\right|^{2p}\right)^{1/2p}} & y < \alpha V_{sat} \\ \frac{\alpha V_{sat}}{\left(1 - |\alpha|^{2p}\right)^{1/2p}} & y \ge \alpha V_{sat} \end{cases} , \tag{17}$$

TBD

2.4.2 Адаптация алгоритма компенсации в зависимости от типа используемого сигнала

Возможность обработки нескольких типов сигнала.

3 Результаты

Список литературы

- 1. Intel Corporation. New SID: Study on supporting NR from 52.6GHz to 71 GHz: тех. отч. / 3rd Generation Partnership Project (3GPP). 12.2019. RP—193259. TSG RAN Meeting ⊠86.
- 2. Qualcomm. New WID on extending current NR operation to 71 GHz : тех. отч. / 3rd Generation Partnership Project (3GPP). 12.2019. RP—193229. TSG RAN Meeting ⊠86.
- 3. 3GPP. Study on NR beyond 52.6 GHz: Technical Report (TR) / 3rd Generation Partnership Project (3GPP). 10.2019. \boxtimes 38.807. Version 1.0.0.
- 4. A 120–150 GHz Power Amplifier in 28-nm CMOS Achieving 21.9-dB Gain and 11.8-dBm Psat for Sub-THz Imaging System / J. Zhang, T. Wu, L. Nie, S. Ma, Y. Chen, J. Ren // IEEE Access. 2021. T. 9. C. 74752—74762. DOI: 10.1109/ACCESS.2021. 3080710.
- 5. Sharath M. Analysis and Compensation of Power Amplifier Distortions in Wireless Communication Systems: PhD thesis / Sharath Manjunath. 2015. Electronic Thesis and Dissertation Repository.
- 6. Shabany M., Gulak P. G. Efficient Compensation of the Nonlinearity of Solid-State Power Amplifiers Using Adaptive Sequential Monte Carlo Methods // IEEE Transactions on Circuits and Systems I: Regular Papers. 2008. T. 55, ⋈ 10. C. 3270—3283. DOI: 10.1109/TCSI.2008.925376.
- 7. Adaptive Compensation of Nonlinearity in High Power Amplifier by Support Vector Machine / T. Eda, T. Ito, H. Ohmori, A. Sano // IFAC Proceedings Volumes. 2001. T. 34, ⊠ 14. C. 243—248. ISSN 1474-6670. DOI: https://doi.org/10.1016/S1474-6670(17)41629-6. URL: https://www.sciencedirect.com/science/article/pii/S1474667017416296; IFAC Workshop on Adaptation and Learning in Control and Signal Processing (ALCOSP 2001), Cernobbio-Como, Italy, 29-31 August 2001.
- 8. Ermolaev G. A., Bolkhovskaya O. V., Maltsev A. A. Advanced Approach for TX Impairments Compensation Based on Signal Statistical Analysis at the RX Side // 2021 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF). 2021. C. 1—5. DOI: 10.1109/WECONF51603.2021.9470687.
- 9. Bhat S., Chockalingam A. Compensation of power amplifier nonlinear distortion in spatial modulation systems // 2016 IEEE 17th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). 2016. C. 1—6. DOI: 10. 1109/SPAWC.2016.7536802.

- 10. Qi J., Aissa S. Analysis and Compensation of Power Amplifier Nonlinearity in MIMO Transmit Diversity Systems // IEEE Transactions on Vehicular Technology. 2010. T. 59, ⋈ 6. C. 2921—2931. DOI: 10.1109/TVT.2010.2049594.
- 11. Receiver Cancellation Technique for Nonlinear Power Amplifier Distortion in SDMA–OFDM Systems / F. Gregorio, S. Werner, T. I. Laakso, J. Cousseau // IEEE Transactions on Vehicular Technology. 2007. T. 56, ⋈ 5. C. 2499—2516. DOI: 10.1109/TVT. 2007.899965.
- 12. A Review of 5G Power Amplifier Design at cm-Wave and mm-Wave Frequencies / D. Lie, J. Mayeda, Y. Li, J. Lopez // Wireless Communications and Mobile Computing. 2018. Июль. Т. 2018. С. 1—16. DOI: 10.1155/2018/6793814.
- 13. 3GPP. Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation: Technical Specification (TS) / 3rd Generation Partnership Project (3GPP). 2022. ⊠ 36.211. Version 17.1.0.
- 14. 3GPP. NR; NR and NG-RAN Overall description; Stage-2: Technical Specification (TS) / 3rd Generation Partnership Project (3GPP). 2022. ⋈ 38.300. Version 17.0.0.
- 15. Vaigandla K., Venu N. BER, SNR and PAPR Analysis of OFDMA and SC-FDMA. 2021. Ceht.
- 16. RF Power Amplifier Behavioral Modeling. Cambridge University Press, 2008. (The Cambridge RF and Microwave Engineering Series). DOI: 10.1017/CB09780511619960.
- 17. Doherty W. H. A new high-efficiency power amplifier for modulated waves // The Bell System Technical Journal. 1936. T. 15, ⊠ 3. C. 469—475. DOI: 10.1002/j. 1538-7305.1936.tb03563.x.
- 18. 3GPP. Study on new radio access technology: Radio Frequency (RF) and co-existence aspects: Technical Report (TR) / 3rd Generation Partnership Project (3GPP). 09.2017. ⊠ 38.803. Version 14.2.0.
- 19. Rapp C. Effects of HPA-nonlinearity on 4-DPSK/OFDM-signal for a digital sound broadcasting system //. 10.1991. C. 179—184.
- 20. Comparison of Power Amplifier Non-Linearity Impact on 60 GHz Single Carrier and OFDM Systems / A. Maltsev, A. Lomayev, A. Khoryaev, A. Sevastyanov, R. Maslennikov // 2010 7th IEEE Consumer Communications and Networking Conference. 2010. C. 1—5. DOI: 10.1109/CCNC.2010.5421601.
- 21. Nokia. Realistic power amplifier model for the New Radio evaluation: тех. отч. / 3rd Generation Partnership Project (3GPP). 05.2016. R4—163314. TSG-RAN WG4 Meeting ⊠79.

- 22. Amado Rey A. B. Analysis, design, and experimental evaluation of sub-THz power amplifiers based on GaAs metamorphic HEMT technology: дис. ... канд. / Amado Rey Ana Belén. 01.2018.
- 23. 168-195 GHz Power Amplifier With Output Power Larger Than 18 dBm in BiCMOS Technology / A. Ali, J. Yun, F. Giannini, H. J. Ng, D. Kissinger, P. Colantonio // IEEE Access. 2020. T. 8. C. 79299—79309. DOI: 10.1109/ACCESS.2020.2990681.
- 24. Receiver Technique for Detection and Correction of Nonlinear High Power Amplifier Distortion Errors in OFDM Systems / H. Bouhadda, R. Zayani, H. Shaiek, D. Roviras, R. Bouallegue // 2015 IEEE 81st Vehicular Technology Conference (VTC Spring). 2015. C. 1—5. DOI: 10.1109/VTCSpring.2015.7146044.
- 25. Receiver based compensation of nonlinear distortion in MIMO-OFDM / P. Drotar, J. Gazda, M. Deumal, P. Galajda, D. Kocur // 2010 IEEE International Microwave Workshop Series on RF Front-ends for Software Defined and Cognitive Radio Solutions (IMWS). 2010. C. 1—4. DOI: 10.1109/IMWS.2010.5440998.