COMPLETELY RANDOMIZED DESIGNS (CRD)

- \bullet For now, t unstructured treatments (e.g. no factorial structure)
- "Completely randomized" means no restrictions on the randomization of units to treatments (except for sample sizes ordinarily fixed in advance), so with N available units:
 - Randomly select n_1 units for assignment to trt 1
 - Randomly select n_2 remaining units for assignment to trt 2
 - ...
 - Last n_t units are assigned to trt t
 - Or, any other procedure s.t. all $N!/(n_1!n_2!...n_t!)$ possible assignment patterns have equal probability
- Ordinarily reflects model and assumptions for 1-way ANOVA

<u>"Cell Means" model:</u>

- $\bullet \ y_{i,j} = \mu_i + \epsilon_{i,j}$
- \bullet i=1...t , $j=1...n_i$, $\sum_{i=1}^t n_i = N$
- \bullet μ_i represents $E[y_{i,j}]$, a response corresponding to treatment i,
 - in the laboratory in which the experiment was performed
 - on the day the experiment was run …
- $E[\epsilon_{i,j}] = 0$, $Var[\epsilon_{i,j}] = \sigma^2$, independent, perhaps normal
- \bullet represents (in part) unit-to-unit variation; "indep" is justified (in part) by complete randomization
- Matrix representation:

$$-\mathbf{y} = \mathbf{X}\boldsymbol{\mu} + \boldsymbol{\epsilon}$$

$$- [N \times 1] = [N \times t][t \times 1] + [N \times 1]$$

$\left(\begin{array}{c} y_{1,1} \end{array}\right)$	($\int 1$	0	•••	0	\	$\left(\begin{array}{c}\epsilon_{1,1}\end{array}\right)$	
	=		•••	• • •	•••	•••		•••
y_{1,n_1}		1	0	•••	0	$\begin{pmatrix} \mu_1 \\ \mu_2 \\ \dots \\ \mu_t \end{pmatrix} +$	ϵ_{1,n_1}	
$y_{2,1}$		0	1	•••	0		$\epsilon_{2,1}$	
•••		•••	•••	•••	•••		•••	
y_{2,n_2}		0	1	•••	0		ϵ_{2,n_2}	
•••			•••	•••	•••		•••	
$y_{t,1}$		0	0	• • •	1		$\epsilon_{t,1}$	
		•••	• • •	• • •	• • •			
$\left\langle y_{t,n_t} \right\rangle$		0	0	•••	1 /)	$\left(\begin{array}{c} \epsilon_{t,n_t} \end{array}\right)$	

"Effects" model:

- $\bullet \ y_{i,j} = \alpha + \tau_i + \epsilon_{i,j}$
- This says the same thing mathematically ...
 - Let $\alpha =$ anything, then $\tau_i = \mu_i \alpha$
- α now represents everything in common to all experimental runs, τ_i is the deviation from this due only to treatment i
- Matrix representation:

$$-\mathbf{y} = \mathbf{X}\boldsymbol{\theta} + \boldsymbol{\epsilon}, \quad \boldsymbol{\theta} = (\alpha, \tau_1, \tau_2, ..., \tau_t)'$$

$$- [N \times 1] = [N \times (t+1)][(t+1) \times 1] + [N \times 1]$$

- $-\mathbf{X}$ is a different matrix now ... will often use "X" generically
- Less-than-full-rank

$\left(\begin{array}{c} y_{1,1} \end{array}\right)$	$\int 1 1$. 0	0		$\left(\begin{array}{c}\epsilon_{1,1}\end{array}\right)$
	1 1			$\begin{pmatrix} \alpha \\ \tau_1 \\ \tau_2 \\ \dots \\ \tau_t \end{pmatrix} +$	
$y_{1,n_1} \ y_{2,1}$	$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$		$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$		ϵ_{1,n_1} $\epsilon_{2,1}$
=					
$y_{2,n_2} \ \cdots$	1 0		0		ϵ_{2,n_2}
$y_{t,1}$	1 0	0 0	1		$\epsilon_{t,1}$
$\left(\begin{array}{c} \\ y_{t,n_t} \end{array}\right)$	1 0		1		$\left(egin{array}{c} \ \epsilon_{t,n_t} \end{array} ight)$

ESTIMATION: review

- $ullet \ \mathbf{y} = \mathbf{X}oldsymbol{ heta} + oldsymbol{\epsilon} \ ... \ ext{(general } \mathbf{X} \ ext{, iid errors)}$ (first piece is expectation of \mathbf{y} ... the "noiseless model")
- MLE for normal errors, LS in any case, is any sol'n to:

$$\mathbf{X}'\mathbf{X}\hat{\boldsymbol{ heta}} = \mathbf{X}'\mathbf{y}$$

- "Normal equations", as in "norm", not "normal dist'n"
- $-\mathbf{X}$ of full column rank: $\hat{oldsymbol{ heta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$
- Otherwise: $\hat{\boldsymbol{\theta}} = (\mathbf{X}'\mathbf{X})^{-}\mathbf{X}'\mathbf{y}$
 - * generalized inverse, non-unique
 - $* \mathbf{A} \mathbf{A}^{-} \mathbf{A} = \mathbf{A}$
- ullet Need to review statistical properties of $\hat{oldsymbol{ heta}}$

EXPECTATIONS:

- Recall that for random y with E[y] = m, Var[y] = V
 - $-\ \mathbf{m}$ vector of means, \mathbf{V} matrix of variances and covariances
 - $-E[\mathbf{A}\mathbf{y}] = \mathbf{A}\mathbf{m}$
 - $-Var[\mathbf{A}\mathbf{y}] = \mathbf{A}\mathbf{V}\mathbf{A}'$

(generalization of "constant-squared" in the scalar case)

- So,
 - $-E[\hat{\boldsymbol{\theta}}] = (\mathbf{X}'\mathbf{X})^{-}\mathbf{X}'(\mathbf{X}\boldsymbol{\theta})$... generally
 - $-E[\hat{oldsymbol{ heta}}] = oldsymbol{ heta}$... full rank

- In the less-than-full-rank case, $\hat{\theta}$ is not uniquely determined, but consider *estimable functions*:
 - $-\mathbf{c}'\boldsymbol{\theta}$, where $\mathbf{c}'=\mathbf{l}'\mathbf{X}$ for some N-vector \mathbf{l}

$$-\widehat{\mathbf{c}'\theta} = \mathbf{c}'\hat{\boldsymbol{\theta}} = (\mathbf{l}'\mathbf{X})(\mathbf{X}'\mathbf{X})^{-}\mathbf{X}'\mathbf{y}$$

- $\mathbf{X}(\mathbf{X}'\mathbf{X})^{-}\mathbf{X}' = \mathbf{H}$ is invariant to choice of g-inverse
 - "projection matrix", into space spanned by columns of ${f X}$
 - symmetric $N \times N$, idempotent, \mathbf{H} for "hat" because $\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\theta}} = \mathbf{H}\mathbf{y}$
 - $-\mathbf{c}'\hat{\boldsymbol{\theta}} = \mathbf{l}'\mathbf{X}\hat{\boldsymbol{\theta}} = \mathbf{l}'\mathbf{H}\mathbf{y}$
 - $-E[\mathbf{c}'\hat{\boldsymbol{\theta}}] = \mathbf{l}'\mathbf{H}\mathbf{X}\boldsymbol{\theta} = \mathbf{l}'\mathbf{X}\boldsymbol{\theta} = \mathbf{c}'\boldsymbol{\theta}$
 - Likewise for $\mathbf{C}=\left(egin{array}{c} \mathbf{c}_1' \\ \mathbf{c}_m' \end{array}\right)$, $E[\mathbf{C}\hat{m{ heta}}]=\mathbf{C}m{ heta}$ if $\mathbf{C}=\mathbf{L}\mathbf{X}$

- CRD Examples:
 - τ_i isn't estimable
 - $-\mu_i=\alpha+ au_i$ is estimable, but is a function of "experiment" as well as "treatment"
 - $-\mu_i \mu_j = au_i au_j$ is estimable ... comparative (see ${f X}$, slide 5)

VARIANCES:

• Recall for estimable $C\theta$,

$$\hat{\mathbf{C}}\hat{\boldsymbol{\theta}} = (\mathbf{L}\mathbf{X})(\mathbf{X}'\mathbf{X})^{-}\mathbf{X}'\mathbf{y} = \mathbf{L}\mathbf{H}\mathbf{y}$$

- $Var[\mathbf{C}\hat{\boldsymbol{\theta}}] = \mathbf{L}\mathbf{H}(\sigma^2\mathbf{I})\mathbf{H}'\mathbf{L}' = \sigma^2\mathbf{L}\mathbf{H}\mathbf{L}'$ = $\sigma^2(\mathbf{L}\mathbf{X})(\mathbf{X}'\mathbf{X})^-(\mathbf{X}'\mathbf{L}') = \sigma^2\mathbf{C}(\mathbf{X}'\mathbf{X})^-\mathbf{C}'$... generally
- $Var[\mathbf{C}\hat{\boldsymbol{\theta}}] = \sigma^2 \mathbf{C}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{C}'$... full rank
- \bullet in particular, $Var[\hat{\boldsymbol{\theta}}] = \sigma^2(\mathbf{X}'\mathbf{X})^{-1}$... full rank

ALLOCATION:

- ullet Interest in estimating ${f C} {m heta}$ well, i.e. with minimum variance
- ullet Allocate N units to treatments to minimize the average contrast variance
- $min_{n_i,i=1...t}$ $ave_j \sigma^2 \mathbf{c}'_j (\mathbf{X}'\mathbf{X})^{-1} \mathbf{c}_j$, subject to $\sum_{i=1}^t n_i = N$
 - or g-inv if ${f X}$ less than full rank and ${f C} heta$ estimable
 - $-\mathbf{c}_{j}^{\prime}$, the jth row in \mathbf{C}
 - $-\sigma^2$ is a positive constant, doesn't matter
- $min_{n_i,i=1...t}$ trace $\mathbf{C}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{C}'$, subject to $\sum_{i=1}^t n_i = N$
- $min_{n_i,i=1...t}$ trace $\mathbf{C}'\mathbf{C}(\mathbf{X}'\mathbf{X})^{-1}$, subject to $\sum_{i=1}^t n_i = N$
 - linear optimality, generalization of A-optimality
- If X is not of full rank but $C\theta$ is estimable, same argument applies to $(X'X)^-$

EXAMPLE

ullet Full-rank cell means model, $oldsymbol{ heta}=oldsymbol{\mu}$

$$(\mathbf{X}'\mathbf{X})^{-1} = \mathsf{diag}(1/n_1, 1/n_2, ...1/n_t)$$

• Interest in estimating differences between the "control" (treatment 1) and each of the other treatments

$$\mathbf{C} = \begin{pmatrix} 1 & -1 & 0 & \dots & 0 \\ 1 & 0 & -1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 1 & 0 & 0 & \dots & -1 \end{pmatrix}$$

$$-t-1 \times t$$

$$\mathbf{C'C} = \begin{pmatrix} t - 1 & -1 & -1 & \dots & -1 \\ -1 & 1 & 0 & \dots & 0 \\ -1 & 0 & 1 & \dots & 0 \\ & \dots & \dots & \dots & \dots \\ -1 & 0 & 0 & \dots & 1 \end{pmatrix}$$

- trace $\mathbf{C}'\mathbf{C}(\mathbf{X}'\mathbf{X})^{-1} = (t-1)/n_1 + \sum_{i=2}^{t} 1/n_i$
- want to:

 $-t \times t$

- minimize, w.r.t. $n_1, n_2, ...n_t$,

$$(t-1)/n_1 + \sum_{i=2}^{t} 1/n_i$$

– subject to:

$$\sum_{i=1}^{t} n_i = N$$

Constrained Minimization by Method of Lagrangian Multipliers:

$$\phi = [(t-1)/n_1 + \sum_{i=2}^{t} 1/n_i] + \lambda(\sum_{i=1}^{t} n_i - N)$$

(first term is what you want to minimize, second is what is constrained to be zero)

$$\frac{\partial \phi}{\partial n_1} = -(t-1)/n_1^2 + \lambda$$
$$\frac{\partial \phi}{\partial n_i} = -1/n_i^2 + \lambda \quad i = 2...t$$
$$\frac{\partial \phi}{\partial \lambda} = \sum_{i=1}^t n_i - N$$

— Set each to zero and solve:

$$n_{1} = \sqrt{(t-1)/\lambda}$$

$$n_{i} = \sqrt{1/\lambda} \quad i = 2...t$$

$$n_{1} = \frac{\sqrt{t-1}N}{\sqrt{t-1}+(t-1)} \quad n_{i} = \frac{N}{\sqrt{t-1}+(t-1)}$$

- Note: This is really a continuous optimization technique applied to a discrete problem. In practice, need to round solutions to integer values, or use as starting point in a discrete search
- Note also that $Cov[\widehat{\mu_1 \mu_i}, \widehat{\mu_1 \mu_j}] = \sigma^2/n_1$
 - relatively larger n_1 reduces these ...
- Postscript:
 - intuition might say you need *less* info about control, since you have more experience with it ...
 - but this means you intend to USE that information ... e.g. via
 a Bayesian prior

EXAMPLE: Less-Than-Full-Rank version

• "Effects" model, $\boldsymbol{\theta} = (\alpha \ \tau_1 \ ... \ \tau_t)'$

$$\mathbf{X}'\mathbf{X} = \begin{pmatrix} n & n_1 & n_2 & \dots & n_t \\ n_1 & n_1 & 0 & \dots & 0 \\ n_2 & 0 & n_2 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ n_t & 0 & 0 & \dots & n_t \end{pmatrix}$$

$$(\mathbf{X}'\mathbf{X})^{-} = \begin{pmatrix} 0 & 0 & 0 & \dots & 0 \\ 0 & 1/n_1 & 0 & \dots & 0 \\ 0 & 0 & 1/n_2 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1/n_t \end{pmatrix}$$

- General algorithm for g-inverse of symmetric matrices (e.g. "Linear Models", Searle, Wiley)
 - find a full-rank, principal minor of maximum dimension
 - invert it
 - fill in zeros everywhere else

$$\mathbf{C} = \begin{pmatrix} 0 & 1 & -1 & 0 & \dots & 0 \\ 0 & 1 & 0 & -1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 1 & 0 & 0 & \dots & -1 \end{pmatrix}$$

• $\mathbf{C}'\mathbf{C}$ and this $(\mathbf{X}'\mathbf{X})^-$ are as before, but with leading row/column of zero ... so problem and solution are the same

HYPOTHESIS TESTING: review

- Alternative (full) and Null (restricted) hypotheses:
 - $\mathsf{Hyp}_A : \mathbf{y} = \mathbf{X}_A \boldsymbol{\theta}_A + \boldsymbol{\epsilon}$
 - $\ \mathsf{Hyp}_0 : \mathbf{y} = \mathbf{X}_0 \boldsymbol{\theta}_0 + \boldsymbol{\epsilon} = \mathbf{X}_A \mathbf{P} \boldsymbol{\theta}_0 + \boldsymbol{\epsilon}$
- ullet Columns of ${f X}_0$ are all linear combinations of columns of ${f X}_A$
- \mathbf{X}_A is N-by- p_A , \mathbf{P} is p_A -by- p_0 , $p_0 < p_A$

• Test for treatment effects: cell means model

$$\mathbf{X}_A = \left(egin{array}{cccc} \mathbf{1} & & & & \ & \mathbf{1} & & & \ & & \mathbf{1} & & \ & & & \mathbf{1} \end{array}
ight), \, \mathbf{P} = \left(egin{array}{cccc} 1 & & \ 1 & \ 1 & \ 1 & \ \end{array}
ight), \, \mathbf{X}_0 = \left(egin{array}{cccc} \mathbf{1} & & \ \mathbf{1} & \ \mathbf{1} & \ \mathbf{1} & \ \end{array}
ight)$$

• Test for treatment effects: effects model

$$\mathbf{X}_A = \left(egin{array}{cccc} \mathbf{1} & \mathbf{1} & & & & & \\ \mathbf{1} & & \mathbf{1} & & & \\ \mathbf{1} & & & \mathbf{1} & & \\ \mathbf{1} & & & & \mathbf{1} \end{array}
ight), \mathbf{P} = \left(egin{array}{c} 1 & & & & \\ 0 & & & & \\ 0 & & & & \end{array}
ight), \mathbf{X}_0 = \left(egin{array}{c} 1 & & & \\ 1 & & & \\ 1 & & & \\ 1 & & & \end{array}
ight)$$

• Test for "additional terms": partitioned model

$$- \mathsf{Hyp}_0 : \mathbf{y} = \mathbf{X}_1 \boldsymbol{\theta}_1 + \boldsymbol{\epsilon}$$

$$- \mathsf{Hyp}_A : \mathbf{y} = \mathbf{X}_1 \boldsymbol{\theta}_1 + \mathbf{X}_2 \boldsymbol{\theta}_2 + \boldsymbol{\epsilon}$$

• This is a special case of the general form:

$$\mathbf{X}_A=(\mathbf{X}_1,\mathbf{X}_2)$$
, $\mathbf{P}=\left(egin{array}{c} \mathbf{I} \ \mathbf{0} \end{array}
ight),\, \mathbf{X}_0=\mathbf{X}_A\mathbf{P}=\mathbf{X}_1$

• But X_0 doesn't have to be a subset of columns from X_A

• For either model:

SSE =
$$\sum_{i} \sum_{j} (y_{i,j} - \hat{y}_{i,j})^{2}$$
 ... sometimes "resid"
= $\sum_{i} \sum_{j} (y_{i,j} - \mathbf{x}'_{i}\hat{\boldsymbol{\theta}})^{2}$, where \mathbf{x}'_{i} is row from \mathbf{X}
= $\sum_{i} \sum_{j} (y_{i,j} - \mathbf{x}'_{i}(\mathbf{X}'\mathbf{X})^{-}\mathbf{X}'\mathbf{y})^{2}$
= squared length of $\mathbf{y} - \mathbf{X}(\mathbf{X}'\mathbf{X})^{-}\mathbf{X}'\mathbf{y}$
= $\mathbf{y}'(\mathbf{I} - \mathbf{H})(\mathbf{I} - \mathbf{H})\mathbf{y} = \mathbf{y}'(\mathbf{I} - \mathbf{H} - \mathbf{H} + \mathbf{H}^{2})\mathbf{y}$
= $\mathbf{y}'(\mathbf{I} - \mathbf{H})\mathbf{y}$ (key result for what's coming up)
= $\mathbf{y}'\mathbf{y} - (\mathbf{H}\mathbf{y})'(\mathbf{H}\mathbf{y})$
= length² of \mathbf{y} - length² of $\mathbf{H}\mathbf{y}$

• Given truth of Hyp_A (which means Hyp_0 MAY also be true), the validity of Hyp_0 is judged by how much worse the data fit the corresponding model:

$$SST = SSE(Hyp_0) - SSE(Hyp_A)$$
$$= \mathbf{y}'(\mathbf{I} - \mathbf{H}_0)\mathbf{y} - \mathbf{y}'(\mathbf{I} - \mathbf{H}_A)\mathbf{y}$$
$$= \mathbf{y}'\mathbf{H}_A\mathbf{y} - \mathbf{y}'\mathbf{H}_0\mathbf{y} = \mathbf{y}'(\mathbf{H}_A - \mathbf{H}_0)\mathbf{y}$$

• Notation: Here and later, the subscript on $\mathbf H$ is the subscript on the corresponding $\mathbf X$. Here it is 0 or A, later also 1 or 2.

EXAMPLE

- Full-rank (cell means) model
- $\mathsf{Hyp}_0: \mu_1 = \mu_2 = ... = \mu_t$, or $y_{i,j} = \mu + \epsilon_{i,j}$
- ullet Hyp $_A$: at least two differ, or $y_{i,j}=\mu_i+\epsilon_{i,j}$

$$\mathbf{X}_0=\left(egin{array}{c} \mathbf{1}_{n_1} \ \mathbf{1}_{n_2} \ & \dots \ \mathbf{1}_{n_t} \end{array}
ight)$$
 , $\mathbf{H}_0=\mathbf{1}(\mathbf{1}'\mathbf{1})^{-1}\mathbf{1}'=rac{1}{N}\mathbf{J}_{N imes N}$

$$\mathbf{X}_A = \left(egin{array}{cccc} \mathbf{1}_{n_1} & \dots & \mathbf{0}_{n_1} \ \mathbf{0}_{n_2} & \dots & \mathbf{0}_{n_2} \ \dots & \dots & \dots \ \mathbf{0}_{n_1} & \dots & \mathbf{0}_{n_2 imes n_t} \ \mathbf{0}_{n_2 imes n_1} & \dots & \mathbf{0}_{n_2 imes n_t} \ \dots & \dots & \dots \ \mathbf{0}_{n_1 imes n_t} \end{array}
ight), \; \mathbf{H}_A = \left(egin{array}{cccc} rac{1}{n_1} \mathbf{J}_{n_1 imes n_1} & \dots & \mathbf{0}_{n_2 imes n_t} \ \dots & \dots & \dots & \dots \ \mathbf{0}_{n_2 imes n_t} \ \dots & \dots & \dots & \dots \ \mathbf{0}_{n_1 imes n_t} \end{array}
ight)$$

Letting y_i represent the n_i -element vector of observations associated with treatment i,

$$SST = \mathbf{y}' \mathbf{H}_{A} \mathbf{y} - \mathbf{y}' \mathbf{H}_{0} \mathbf{y} = \sum_{i} \mathbf{y}'_{i} (\frac{1}{n_{i}} \mathbf{J}) \mathbf{y}_{i} - \mathbf{y}' (\frac{1}{N} \mathbf{J}) \mathbf{y}$$

$$= \sum_{i} \frac{1}{n_{i}} y_{i.}^{2} - \frac{1}{N} y_{..}^{2}$$

$$= \sum_{i} n_{i} (\bar{y}_{i.})^{2} - N(\bar{y}_{..})^{2}$$

$$= \sum_{i} n_{i} (\bar{y}_{i.} - \bar{y}_{..})^{2}$$

EXAMPLE

- Reduced-rank (effects) model, same problem
- Due to the invariance of the hat matrices, \mathbf{H}_0 and \mathbf{H}_A are the same as before
- So, the resultant sums of squares are also the same

EXPECTATIONS

- Recall that for random \mathbf{y} with $E[\mathbf{y}] = \mathbf{m}$, $Var[\mathbf{y}] = \mathbf{V}$ - $E[\mathbf{y}'\mathbf{A}\mathbf{y}] = \mathbf{m}'\mathbf{A}\mathbf{m} + \text{trace}(\mathbf{A}\mathbf{V})$
- Suppose Hyp_A really is true (perhaps also Hyp_0), so:

$$\begin{split} &-E[\mathbf{y}] = \mathbf{X}_A \boldsymbol{\theta}_A \\ &-E[\mathsf{SSE}(\mathsf{Hyp}_A)] \\ &= \boldsymbol{\theta}_A' \mathbf{X}_A' (\mathbf{I} - \mathbf{H}_A) \mathbf{X}_A \boldsymbol{\theta}_A \ + \ \mathsf{trace}((\mathbf{I} - \mathbf{H}_A) \sigma^2 \mathbf{I})) \\ &= \boldsymbol{\theta}_A' \mathbf{X}_A' (\mathbf{X}_A - \mathbf{X}_A) \boldsymbol{\theta}_A \ + \ \sigma^2(\mathsf{trace}(\mathbf{I}) \ - \ \mathsf{trace}(\mathbf{H}_A)) \\ &= 0 \ + \ \sigma^2(N \ - \ \mathsf{rank}(\mathbf{X}_A)) \\ &\quad \text{(because for idempotent matrices, rank=trace,} \\ &\quad \text{and } \mathsf{rank}(\mathbf{H}) = \mathsf{rank}(\mathbf{X})) \end{split}$$

• E[SSE(Hyp $_0$)]

$$= \boldsymbol{\theta}_A' \mathbf{X}_A' (\mathbf{I} - \mathbf{H}_0) \mathbf{X}_A \boldsymbol{\theta}_A + \operatorname{trace}((\mathbf{I} - \mathbf{H}_0) \sigma^2 \mathbf{I}))$$

$$= \boldsymbol{\theta}_A' \mathbf{X}_A' (\mathbf{I} - \mathbf{H}_0) \mathbf{X}_A \boldsymbol{\theta}_A + \sigma^2 (N - \operatorname{rank}(\mathbf{X}_0))$$

$$= Q_{A|0}(\boldsymbol{\theta}_A) + \sigma^2 (N - \operatorname{rank}(\mathbf{X}_0))$$
(subscript $A|0$ comes from space(\mathbf{X}_A) -space(\mathbf{X}_0))

• For the partitioned model:

$$= (\boldsymbol{\theta}_1'\mathbf{X}_1' + \boldsymbol{\theta}_2'\mathbf{X}_2')(\mathbf{I} - \mathbf{H}_1)(\mathbf{X}_1\boldsymbol{\theta}_1 + \mathbf{X}_2\boldsymbol{\theta}_2) \\ + \sigma^2(N - \mathsf{rank}(\mathbf{X}_1)) \\ = \boldsymbol{\theta}_2'\mathbf{X}_2'(\mathbf{I} - \mathbf{H}_1)\mathbf{X}_2\boldsymbol{\theta}_2 + \sigma^2(N - \mathsf{rank}(\mathbf{X}_1)) \\ (\mathbf{X}_1 \text{ terms vanish ... why?}) \\ = Q_{2|1}(\boldsymbol{\theta}_2) + \sigma^2(N - \mathsf{rank}(\mathbf{X}_1)) \\ (\mathsf{subscript } 2|1 \text{ comes from space}(\mathbf{X}_2) \text{ -space}(\mathbf{X}_1))$$

• $E[\mathsf{SST}] = Q_{2|1}(\boldsymbol{\theta}_2) + (\mathsf{rank}(\mathbf{X}_A) - \mathsf{rank}(\mathbf{X}_0))\sigma^2$

EXAMPLE: All-Treatments-Equal Hypothesis

- In either parameterization:
 - $\operatorname{rank}(\mathbf{X}_A) \operatorname{rank}(\mathbf{X}_0) = t 1$
 - $\mathbf{H}_0 = \mathbf{1}(\mathbf{1}'\mathbf{1})^{-1}\mathbf{1}' = \frac{1}{N}\mathbf{J}$
- Full rank:

$$- \mathbf{X}'_{A}(\mathbf{I} - \mathbf{H}_{0})\mathbf{X}_{A} = \mathbf{X}'_{A}\mathbf{X}_{A} - \frac{1}{N}\mathbf{X}'_{A}\mathbf{J}\mathbf{X}_{A}$$
$$= \operatorname{diag}(\mathbf{n}) - \frac{1}{N}\mathbf{n}\mathbf{n}', \text{ where } \mathbf{n} = (n_{1}, n_{2}, ...n_{t})'$$

$$Q_{A|0}(\boldsymbol{\mu}) = \sum_{i=1}^{t} n_i \mu_i^2 - \frac{1}{N} (\sum n_i \mu_i)^2$$

= $\sum_{i=1}^{t} n_i (\mu_i - \bar{\mu})^2, \quad \bar{\mu} = \frac{1}{N} \sum_{i=1}^{t} n_i \mu_i$

- Reduced rank:
 - $\mathbf{X}_2'(\mathbf{I} \mathbf{H}_1)\mathbf{X}_2 = \mathbf{X}_A'(\mathbf{I} \mathbf{H}_0)\mathbf{X}_A \text{ in full-rank case}$ $Q_{2|1}(\boldsymbol{\tau}) = \sum_{i=1}^t n_i(\tau_i \bar{\tau})^2, \quad \bar{\tau} = \frac{1}{N} \sum n_i \tau_i$

DISTRIBUTION THEORY: review

- 1. $\mathbf{y} \sim MVN(\mathbf{m}, \sigma^2\mathbf{I})$,
 - A and B p.s.d. symmetric,

Any two of:

- A and B idempotent
- A + B idempotent
- \bullet AB = 0

Implies all of:

- $\frac{1}{\sigma^2}\mathbf{y}'\mathbf{A}\mathbf{y} \sim \chi^{2'}(\mathsf{rank}(\mathbf{A}), \frac{1}{\sigma^2}\mathbf{m}'\mathbf{A}\mathbf{m})$
- $\frac{1}{\sigma^2}\mathbf{y}'\mathbf{B}\mathbf{y} \sim \chi^{2'}(\mathsf{rank}(\mathbf{B}), \frac{1}{\sigma^2}\mathbf{m}'\mathbf{B}\mathbf{m})$
- the two quadratic forms are independent
- 2. For idempotent A, rank(A) = trace(A)

IMPLICATIONS for CRD

- $\frac{1}{\sigma^2}$ SSE(Hyp_A) = $\frac{1}{\sigma^2}$ y'(I H_A)y $\sim \chi^{2'}(N-t,0)$ i.e. "central"
- $\frac{1}{\sigma^2}$ SST= $\frac{1}{\sigma^2}$ $\mathbf{y}'(\mathbf{H}_A \mathbf{H}_0)$ $\mathbf{y} \sim \chi^{2'}(t-1, Q(\boldsymbol{\tau})/\sigma^2)$ $\frac{\text{SST}}{t-1}/\frac{\text{SSE }(\mathsf{Hyp}_A)}{N-t} \sim F'(t-1, N-t, Q(\boldsymbol{\tau})/\sigma^2)$
- ullet or, replace $oldsymbol{ au}$ with $oldsymbol{\mu}$ in Q ... same thing
- ullet Other things being equal, larger Q o greater power

Example

• CRD
$$N = 20$$
 $t = 3$ $n_1 = n_2 = 8, n_3 = 4$

- numerator df = 2 denominator df = 17
- Suppose $\mu_1 = 1$ $\mu_2 = 2$ $\mu_3 = 3$ $\sigma = 1.5$
- Then

$$- \bar{\mu} = 1.8$$

$$-Q(\boldsymbol{\mu}) = 8(1-1.8)^2 + 8(2-1.8)^2 + 4(3-1.8)^2 = 11.2$$

$$-Q(\mu)/\sigma^2 = 4.9\overline{777}$$

- *R*:
 - qf(.95, 2, 17) \rightarrow 3.5915

95th quantile of central F, i.e. critical value

- 1-pf(3.5915, 2, 17, 4.9777) \rightarrow 0.4308

probability of value in critical region for non-central F

- *SAS*:
 - proc iml;
 - $\text{ finv}(.95, 2, 17); \rightarrow 3.5915$
 - 1-probf(3.5915, 2, 17, 4.9777); \rightarrow 0.4308

PRACTICAL POINT

• May not know enough about problem to speculate about the (complete) true value of μ , but willing to guess:

$$D = \mu_{max} - \mu_{min} = \tau_{max} - \tau_{min}$$

- Bounds for Q (assume equal n_i)
 - Most favorable situation (Q greatest)
 - * greatest "variance" of μ 's
 - * t/2 μ 's = μ_{max} t/2 μ 's = μ_{min}
 - $* Q = n_i \times t \times (\frac{1}{2}D)^2 = N \times D^2/4$
 - Least favorable situation (Q smallest)
 - * smallest "variance" of μ 's
 - * 1 $\mu = \mu_{max}$ 1 $\mu = \mu_{min}$
 - * others = $(\mu_{max} + \mu_{min})/2$
 - * $Q = 2 \times n_i \times (\frac{1}{2}D)^2 = n_i \times D^2/2$

REDUCED NORMAL EQUATIONS FOR au

- $\mathbf{y} = \mathbf{X}\boldsymbol{\theta} + \boldsymbol{\epsilon} = \mathbf{X}_1\boldsymbol{\beta} + \mathbf{X}_2\boldsymbol{\tau} + \boldsymbol{\epsilon}$
 - $-\beta$ are nuisance parameters
 - for our CRD effects model, $\mathbf{X}_1 \boldsymbol{\beta} = \mathbf{1} \alpha$
- "Full" normal equations:

$$(\mathbf{X}'\mathbf{X})\hat{oldsymbol{ heta}} = \mathbf{X}'\mathbf{y}$$
 $\left(egin{array}{c} \mathbf{X}_1'\mathbf{X}_1 & \mathbf{X}_1'\mathbf{X}_2 \ \mathbf{X}_2'\mathbf{X}_1 & \mathbf{X}_2'\mathbf{X}_2 \end{array}
ight) \left(egin{array}{c} \hat{oldsymbol{eta}} \ \hat{oldsymbol{ au}} \end{array}
ight) = \left(egin{array}{c} \mathbf{X}_1'\mathbf{y} \ \mathbf{X}_2'\mathbf{y} \end{array}
ight)$
 $\mathbf{X}_1'\mathbf{X}_1\hat{oldsymbol{eta}} + \mathbf{X}_1'\mathbf{X}_2\hat{oldsymbol{ au}} = \mathbf{X}_1'\mathbf{y}$
 $\mathbf{X}_2'\mathbf{X}_1\hat{oldsymbol{eta}} + \mathbf{X}_2'\mathbf{X}_2\hat{oldsymbol{ au}} = \mathbf{X}_2'\mathbf{y}$

$$\mathbf{X}_1'\mathbf{X}_1\hat{oldsymbol{eta}} + \mathbf{X}_1'\mathbf{X}_2\hat{oldsymbol{ au}} = \mathbf{X}_1'\mathbf{y} \ \mathbf{X}_2'\mathbf{X}_1\hat{oldsymbol{eta}} + \mathbf{X}_2'\mathbf{X}_2\hat{oldsymbol{ au}} = \mathbf{X}_2'\mathbf{y}$$

- Pre-multiply first equation by $\mathbf{X}_2'\mathbf{X}_1(\mathbf{X}_1'\mathbf{X}_1)^-$, to match leading 1st term of second equation
 - will need g-inverse if \mathbf{X}_1 is of less than full rank

$$\mathbf{X}_{2}'\mathbf{X}_{1}\hat{\boldsymbol{\beta}} + \mathbf{X}_{2}'\mathbf{H}_{1}\mathbf{X}_{2}\hat{\boldsymbol{\tau}} = \mathbf{X}_{2}'\mathbf{H}_{1}\mathbf{y}$$

 Subtract this from the second equation to get "reduced normal equations":

$$\mathbf{X}_2'(\mathbf{I} - \mathbf{H}_1)\mathbf{X}_2\hat{\boldsymbol{\tau}} = \mathbf{X}_2'(\mathbf{I} - \mathbf{H}_1)\mathbf{y}$$

- Pattern of "reduced" normal equations:
 - Same form found in weighted regression ... there ${f I}-{f H}_1$ is replaced with a "weight" matrix, any matrix proportional to $Var({f y})$
 - \mathbf{X}_2 -model projected into null space of \mathbf{X}_1
 - Same as regression of $\operatorname{resid}(\mathbf{y}:\mathbf{X}_1)$ on $\operatorname{resid}(\mathbf{X}_2:\mathbf{X}_1)$
 - Note reliance of form on $\mathbf{H}_1\mathbf{X}_2$ and $(\mathbf{I} \mathbf{H}_1)\mathbf{X}_2...$

• In fact, suppose we transform the independent variables in this problem, pretending the model isn't really partitioned, and that the single model matrix is:

$$\mathbf{X}_{2|1} = (\mathbf{I} - \mathbf{H}_1)\mathbf{X}_2$$

— then the *usual* normal equations are:

$$\mathbf{X}_{2|1}'\mathbf{X}_{2|1}\hat{oldsymbol{ au}}=\mathbf{X}_{2|1}'\mathbf{y}$$

- i.e. the correct result ... we've "corrected for $oldsymbol{eta}$ " by "projecting ${f X}_2$ out of" the space spanned by ${f X}_1$
- so, for example,
 - $* \ \mathbf{c}'oldsymbol{ au}$ is estimable iff $\mathbf{c}' = \mathbf{l}'\mathbf{X}_{2|1}$
 - * $Var(\widehat{\mathbf{c}'\boldsymbol{\tau}}) = \sigma^2 \mathbf{c}' (\mathbf{X}'_{2|1} \mathbf{X}_{2|1})^- \mathbf{c}$

 $\mathbf{X}_{2|1}'\mathbf{X}_{2|1}$ is called the "design information matrix" in the book, and sometimes denoted $\mathcal{I}_{2|1}$. For CRD's:

•
$$\mathbf{H}_1 = \mathbf{1}(\mathbf{1}'\mathbf{1})^{-1}\mathbf{1}' = \frac{1}{n}\mathbf{J}_{n\times n}$$

•
$$\mathbf{X}_{2|1} = (\mathbf{I} - \mathbf{H}_1)\mathbf{X}_2 =$$

$$\begin{pmatrix} (1 - \frac{n_1}{N}) \mathbf{1}_{n_1} & -\frac{n_2}{N} \mathbf{1}_{n_1} & \dots & -\frac{n_t}{N} \mathbf{1}_{n_1} \\ -\frac{n_1}{N} \mathbf{1}_{n_2} & (1 - \frac{n_2}{N}) \mathbf{1}_{n_2} & \dots & -\frac{n_t}{N} \mathbf{1}_{n_2} \\ \dots & \dots & \dots & \dots \\ -\frac{n_1}{N} \mathbf{1}_{n_t} & -\frac{n_2}{N} \mathbf{1}_{n_t} & \dots & (1 - \frac{n_t}{N}) \mathbf{1}_{n_t} \end{pmatrix}$$

- $\mathcal{I}_{2|1} = \mathbf{X}'_{2|1}\mathbf{X}_{2|1} = \mathsf{diag}(\mathbf{n}) \frac{1}{N}\mathbf{n}\mathbf{n}'$, where $\mathbf{n}' = (n_1, n_2, ..., n_t)$
- Note that $\mathbf{X}_{2|1}$ and $\mathcal{I}_{2|1}$ are each of rank t-1, reflecting the fact that $\boldsymbol{\tau}$ isn't estimable

So, for CRD's, given interest in τ and accounting for α ,

- the precision of $\widehat{c'\tau}$ is determined by $\sigma^2\mathbf{c}'\mathcal{I}_{2|1}^-\mathbf{c}$
 - one g-inverse of $\mathcal{I}_{2|1}=\mathsf{diag}(\mathbf{n})-\frac{1}{N}\mathbf{n}\mathbf{n}'$ is $\mathcal{I}_{2|1}^-=\mathsf{diag}^{-1}(\mathbf{n})$... check it
- the power of the test for equality of au's is determined by $m{ au}'\mathcal{I}_{2|1}m{ au}/\sigma^2$