- · A <u>vector</u> space is a sct of objects that can be <u>scaled</u> (by real numbers) and <u>added</u> together, in a way that respects a few algebraic laws (axioms).
 - --> læy examples: \mathbb{R}^n , $M_{m \times n}$, \mathbb{R}^n (mxn mætrica) (polynomials of degna $\leq d$).
 - A <u>subspace</u> is a subset that's closed under addition & scaling. e.g. subspaces of R³ are:
 - all of R3 (3-dim1)
 - -> planes through the origin (2-dimil)
 - lines through the origin (1-dim'1)
 - -> the set fo} (0-dim1)
 - D Why do subspaces always contain 0?
 - The span of a list V₁, * V₂, ..., V_n ∈ V is the set of all linear combinations C₁OV₁ ⊕ C₂OV₂ ⊕ ... ⊕ C_nOV_n.
 It is a subspace.
 - A list $\vec{v}_1, ..., \vec{v}_n$ is <u>linearly</u> independent if linear combinations $\vec{v} \in \text{span}(\vec{v}_1, ..., \vec{v}_n)$ uniquely determine the coefficients C_i s.t. $\vec{v} = C_i \vec{o} \vec{v}_i \oplus ... \oplus C_n \vec{o} \vec{v}_n$.
 - D Convince yourself that this is equivalent to the usual defin, which states that $C_1 \odot \vec{V}_1 \oplus \cdots \oplus C_n \odot \vec{V}_n = \vec{O}$ holds only when $C_1 = C_2 = \cdots = C_n = 0$.
- · A basis is an ordered let $\vec{v}_1, ..., \vec{v}_n \in V$ that is both linearly independent and spans all of V.
 - This means that you can assign unique coordinates to each vev.
 - O Convince yourself why this is true.

Some neview questrons

Try to convince yourself on an intuitive level why these things are true. Then think about how you'd write a proof.

- I A list Vi, ..., Vn is linearly independent iff no vector in the list is in the span of the others.
- If $\overline{V}_1, \dots, \overline{V}_n$ is linearly <u>dependent</u>, then every $\overline{V} \in \operatorname{span} \{\overline{V}_1, \dots, \overline{V}_n\}$ can be written as a linear combination $\overline{V} = CO\overline{V}_1 \oplus \dots \oplus CnO\overline{V}_n$ in infinitely many ways.
 - span $\{\vec{v}_1, ..., \vec{v}_{n-1}\}$ = span $\{\vec{v}_1, ..., \vec{v}_{n-1}, \vec{v}_n\}$)

 iff $\vec{v}_n \in \text{span}(\{\vec{v}_1, ..., \vec{v}_{n-1}\})$.

 (both statements express a sort of "redundency" of \vec{v}_n).