Microeconomía 1 Teoría de decisiones

José Ignacio Heresi

Facultad de Economía y Negocios Universidad Alberto Hurtado

Introducción

- En un modelo básico de toma de decisiones, un tomador de decisiones (TD) debe elegir su alternativa preferida x de un conjunto X, de acuerdo a un criterio consistente.
- Luego, en general transformamos el problema en uno en que se maximiza una función de utilidad:

$$u:X\to\mathbb{R}$$

- Idea principal: observar data de decisiones → recuperar utilidades → utilizar criterios de bienestar → políticas apropiadas.
- La utilidad es un constructo matemático conveniente para modelar elecciones y preferencias.

Introducción

- Las elecciones son los datos primitivos que observamos.
- Se considera que revelan las preferencias de los individuos.
- Modelo de elección racional tiene ventajas:
 - Predicciones de estática comparativa se han visto respaldadas por estudios empíricos.
 - Se puede utilizar para un número muy amplio de aplicaciones.
 - Teoría compacta y relativamente simple.
- Modelo de elección racional también tiene falencias que han llevado al desarrollo de nuevos enfoques.
- Sin embargo, este enfoque aún es dominante en muchas aplicaciones y sirve de base para otros modelos.

Preferencias y elección

Teoría de decisiones: definiciones

- Sea X el conjunto de posibles alternativas o decisiones.
- Podemos tener $X \subset \mathbb{R}^n$ si tenemos n bienes diferentes.
 - $x \in X$ específica la cantidad de cada bien.
 - $x = (x_1, ..., x_n)$ en el caso de n bienes.
- Sea \succeq la relación de preferencias (débil) definida sobre el conjunto X:

$$x \succsim y \iff x \text{ es al menos tan bueno como } y$$

También definimos la preferencia estricta y la indiferencia:

$$\begin{array}{ccc} x \succ y & \Longleftrightarrow & x \succsim y \land y \not\succsim x \\ x \sim y & \Longleftrightarrow & x \succsim y \land y \succsim x \end{array}$$

Teoría de decisiones: definiciones

- La relación de preferencias \succeq es racional si es:
 - Completa: $\forall x, y \in X : x \succeq y \lor y \succeq x$.
 - Transitiva: $\forall x, y, z, \in X : [x \succsim y \land y \succsim z] \Rightarrow x \succsim z$.
- Completitud significa que el agente siempre tiene opinión, ya sea prefiere un bien a otro o es indiferente entre ellos
- Transitividad representa cierta consistencia de las preferencias del agente.
- Notar que completitud implica que \succeq es reflexiva, es decir, $x \succeq x$.

Teoría de decisiones: definiciones

- Transitividad no es una propiedad obvia de satisfacer.
- Ejemplo: suponga que va a comprar una radio por 125 mil pesos y una calculadora por 15 mil pesos.
 - Le informan que hay un descuento de 5 mil por la calculadora en otra tienda a 10 minutos de distancia. ¿Hace el viaje?
 - Le informan que hay un descuento de 5 mil por la radio en otra tienda a 10 minutos de distancia. ¿Hace el viaje?
 - Le informan que ambos productos están sin stock. Tiene que ir a la otra tienda, donde le harán un descuento de 5 mil en compensación. ¿Le importa qué bien está con descuento?
- Mucha gente responde sí a la primera pregunta y no a la segunda, mientras que está indiferente en la tercera.
- Esto contradice el modelo de elección racional o los framing effects importan.

Regla de decisión

- Queremos saber como se comporta el agente dadas sus alternativas.
- Dado $B \subseteq X$, se define la regla de decisión $C(B, \succeq)$ como:

$$C(B, \succsim) = \{x \in B : x \succsim y, \forall y \in B\}$$

• La regla de decisión define el conjunto de elementos de B que el agente prefiere al resto de las alternativas.

Comentarios:

- $C(B, \succeq)$ puede tener más de un elemento.
- $C(B, \succsim)$ puede ser vacío: $[B = [0,1), x \succsim y \iff x \ge y] \Rightarrow C(B, \succsim) = \emptyset$.

Regla de decisión

- Proposición 1: supongamos que ≿ es racional. Entonces:
 - 1. Si B es finito y no vacío, entonces $C(B, \succeq)$ es no vacío.
 - 2. Si $x,y\in A\cap B, x\in C(A,\succsim), y\in C(B,\succsim)$, entonces $x\in C(B,\succsim), y\in C(A,\succsim)$.
- Demostración: inducción para la primera parte y uso de transitividad la segunda.
- La primera parte entrega condiciones para que la regla de decisión sea no vacía.
- La segunda parte habla de consistencia: si se elige x cuando y está disponible, entonces no hay un conjunto en que se elige y y no se elige x.
- Análogamente, se puede probar que si \succsim es transitiva, entonces cualquier B finito y no vacío tiene un peor elemento.

Preferencias reveladas

- Teoría económica: supuestos sobre las preferencias y hace preguntas respecto al comportamiento.
- También se puede observar el comportamiento y elecciones y tratar de racionalizar estas elecciones (así se hace en el trabajo empírico).
- ¿Se puede siempre racionalizar elecciones como parte de un proceso de maximización de preferencias?
- ¿Tiene nuestro modelo restricciones testeables que pueden ser violadas por las elecciones que observamos?

- Definición: sea \mathfrak{B} el conjunto de todos los subconjuntos de X.
- Definición: una regla de decisión es una función $C:\mathfrak{B}\to\mathfrak{B}$ que satisface $\forall B\in\mathfrak{B}, C(B)\subseteq B.$
- ullet Si observamos al agente decidir para cada subconjunto de X, podemos inferir su regla de decisión.
- ¿Podemos concluir que sus elecciones son consistentes con la maximización de preferencias subyacentes?

• Definición: una regla de decisión $C:\mathfrak{B}\to\mathfrak{B}$ satisface el Axioma de Preferencias Reveladas de Houthakker (APRH) si:

$$\forall x, y \in A \cap B, x \in C(A) \land y \in C(B)$$
$$\Rightarrow x \in C(B) \land y \in C(A)$$

• "Si x e y están en ambos conjuntos, y x está en la regla de decisión en A e y en la regla de decisión en B, entonces x está en la de B e y en la de A".

- Proposición 2: supongamos que $C:\mathfrak{B}\to\mathfrak{B}$ es no vacía. Entonces, existe \succsim racional en X tal que $C(\cdot)=C(\cdot;\succsim)$ si y solo si C satisface APRH.
- ullet O sea, C podría ser el resultado de un agente que maximiza preferencias racionales si y solo si C satisface APRH.
- Este resultado muestra una equivalencia entre el modelo basado en preferencias y el modelo basado en decisiones.
- Demostración. Tenemos dos aseveraciones:
 - 1. Existe \succeq racional en X tal que $C(\cdot) = C(\cdot; \succeq)$.
 - 2. C satisface APRH.
- Tenemos $1 \Rightarrow 2$ por la Proposición 1.

- Ahora probamos $2 \Rightarrow 1$:
 - Supongamos existe $C:\mathfrak{B}\to\mathfrak{B}$ que satisface APRH.
 - Definimos la "relación de preferencias reveladas" \succsim_c :

$$x \succsim_c y \iff \exists A \subset \mathfrak{B} \ con \ y \in A \land x \in C(A)$$

- Tenemos que probar que \succsim_c es: a) completa, b) racional y c) $C(\cdot) = C(\cdot; \succsim_c)$.
 - a) Sean $x, y \in X$. Entonces, $C(\{x, y\})$ es no vacío (supuesto proposición), por lo que $x \succsim_c y$ o $y \succsim_c x$ o ambos.
 - b) Sean $x,y,z\in X$, tales que $x\succsim_c y\wedge y\succsim_c z$. Sabemos que $C(\{x,y,z\})$ es no vacío. Queremos probar que $x\in C(\{x,y,z\})$.
 - ▶ Si $x \in C(\{x, y, z\})$, entonces $x \succsim z$.
 - ▶ Si $y \in C(\{x,y,z\})$, entonces existe A tal que $y \in A, x \in C(A)$. Por APRH $x \in C(\{x,y,z\})$, entonces $x \succsim z$.
 - ▶ Si $z \in C(\{x,y,z\})$, por el mismo argumento $y \in C(\{x,y,z\})$, entonces $x \succsim z$.

- c) Falta probar que $C(\cdot) = C(\cdot; \succeq_c)$.
 - Primero, probamos que $C(\cdot) \subseteq C(\cdot; \succsim_c)$.
 - Sea $x \in C(A)$ y sea cualquier $y \in A$ $\Rightarrow x \succsim_c y \land x \in A$ $\Rightarrow x \in C(A, \succsim_c)$
 - Ahora, probamos que $C(\cdot) \supseteq C(\cdot; \succsim_c)$.
 - Sea $x \in C(A, \succsim_c)$ y sea $y \in C(A)$. $\Rightarrow x \succsim_c y$ $\Rightarrow \exists B \text{ tal que } x \in C(B) \land y \in B$ Como además $y \in C(A)$, por APRH tenemos $x \in C(A)$.
- Nota: lo anterior asume que conocemos toda la función C(A). Hay extensiones usando un "Axioma Débil de las Preferencias Reveladas."

Funciones de utilidad

• Definición: diremos que una relación de preferencias \succsim sobre X está representada por una función de utilidad $u:X\to\mathbb{R}$ si:

$$x \succsim y \iff u(x) \ge u(y)$$

- Lema: sea \succsim una relación de preferencias que está representada por una función de utilidad. Entonces:
 - \(\scrip \) es racional.
 - $\forall B \subseteq X, C(B, \succeq) = argmax_{x \in B} u(x).$
- Demostración: tarea.

Funciones de utilidad

- ¿Cuándo se puede representar la relación de preferencia ≿ a través de una función de utilidad?
- Proposición 3: sea X finito y \succsim racional. Entonces, existe $u:X\to\mathbb{R}$ que representa a \succsim .
- Demostración: ver LM página 9.
- ullet Si X es infinito, el resultado anterior no aplica.

Funciones de utilidad

• Sea $X=\mathbb{R}^2$ y consideremos las preferencias lexicográficas

$$x \succsim y \iff (x_1 > y_1) \lor x_1 = y_1 \land x_2 \ge y_2$$

- Proposición: las preferencias lexicográficas son racionales, pero no tienen representación por función de utilidad.
- Demostración: supongamos que $u: \mathbb{R}^2 \to \mathbb{R}$ representa a \succsim . Definimos un función r(x) tal que para todo $x_1 \in \mathbb{R}_+$:
 - $u(x_1,2) > r(x_1) > u(x_1,1)$.
 - $r(x_1)$ es racional.
- Entonces, si $x'_1 > x_1$:

$$r(x_1') > u(x_1', 1) > u(x_1, 2) > r(x_1) \Rightarrow r(x_1') > r(x_1)$$

Por lo tanto, $r:\mathbb{R}\to Q$ es inyectiva, pero esto es una contradicción ya que $|Q|<|\mathbb{R}_+|$.

Funciones de utilidad: continuidad

- Definición: diremos que \succsim es continua si para todo par de secuencias $x^n \to x$ e $y^n \to y$ en X tales que $x^n \succsim y^n$, para todo n se tiene que $x \succsim y$.
- Lema: Si u es una función continua que representa a \succeq , entonces \succeq es continua.
- Proposición 4: sea $X \subseteq \mathbb{R}^n$ y \succsim racional y continua. Entonces, \succsim puede ser representada por una función continua $u: X \to \mathbb{R}$.

Restricciones en las preferencias

- Casi siempre es necesario hacer más supuestos sobre las preferencias para aplicaciones económicas.
- ¿Cómo se relacionan las restricciones en las preferencias de las restricciones en las funciones de utilidad?
- Vamos a estudiar que significa que las preferencias sean:
 - Monótonas.
 - Localmente no saciadas.
 - Convexas.
- A veces también se asume que las preferencias son separables y que no hay efectos ingreso.

Restricciones en las preferencias: monotonía

- Definición: una relación de preferencias \succsim es monótona si $x \ge y$ implica que $x \succsim y$.
 - Monotonía tiene sentido si X representa canastas de bienes, con $x=(x_1,...,x_n)$ representando las cantidades de cada bien. Si más es preferido a menos, entonces hay monotonía.
- Definición: una relación de preferencias \succsim en X es localmente no saciada si $\forall y \in X$ y $\epsilon > 0$, existe $x \in X \cap B_{\epsilon}(y)$ tal que $x \succ y$.
 - No hay una canasta ideal. Siempre hay un pequeño cambio que es preferido para el agente.
 - ullet No aplica si X es representado por cantidades enteras de cada bien.

Restricciones en las preferencias: monotonía

- Definición: una relación de preferencias \succsim en un conjunto de alternativas convexo X es convexa si $x \succsim y$ y $x' \succsim y$ implica que para cualquier $t \in (0,1)$ tenemos $tx + (1-t)x' \succsim y$.
 - La convexidad representa que los agentes prefieren canastas diversas.
 - Otra definición es que el upper contour set de $y = \{x \in X : x \succsim y\}$ es convexo.
- También se pueden definir las preferencias estrictamente convexas, si $x \succsim y$ y $x' \succsim y$ con $x \ne x'$, implica que para cualquier $t \in (0,1)$ tenemos $tx + (1-t)x' \succ y$.

Restricciones en las preferencias

- Proposición 5: supongamos que la relación de preferencia \succsim en X puede ser representada por $u:X\to\mathbb{R}.$ Entonces:
 - \succeq es monótona si y solo si u es no decreciente.
 - ullet es localmente no saciada si y solo si u no tiene máximo local en X.
 - ullet es (estrictamente) convexa si y solo si u es (estrictamente) cuasi cóncava.
- Pueden estudiar hasta la Proposición 5 en LM y luego saltar a la última parte sobre "Behavioral Criticisms of Rational Choice", capítulo que deben leer como parte de la materia del curso.