Sistemas Inteligentes

Escuela Técnica Superior de Informática Universitat Politècnica de València

Tema B2T4:

Aprendizaje no supervisado: algoritmo k-medias.

- 1 Introducción ⊳ 2
- 2 Agrupamientos particionales ⊳ 4
- 3 Algoritmo C-Medias ⊳ 9

- 1 Introducción ▷ 2
 - 2 Agrupamientos particionales > 4
 - 3 Algoritmo C-Medias ⊳ 9

SIN-TemaB2T4 Clustering

Clustering

Clustering es un problema generalmente mal definido: no existe una definición precisa y universalmente aceptada.

Según [Anderberg, 1973], el objetivo del clustering es:

Agrupar objetos en clases tales que los de una misma clase presenten un alto grado de *asociación natural* entre sí, mientras que las clases sean relativamente distintas unas de otras.

Dicho de otra manera:

Encontrar *agrupamientos naturales* en un conjunto de objetos, de forma que la descripción de éstos se realice en términos de clases o grupos de objetos con fuertes semejanzas internas.

Dos tipos de clustering: Particional y Jerárquico.

DSIC – UPV: SIN Página B2T4.3

- 1 Introducción ⊳ 2
- 2 Agrupamientos particionales > 4
 - 3 Algoritmo C-Medias ⊳ 9

Clustering particional

Problema genérico:

Asumimos disponible una *función criterio* J para evaluar la calidad de cualquier partición de N datos en C clases. De este modo, el problema del clustering puede verse como uno de búsqueda del tipo:

$$\Pi^* = \underset{\Pi = \{X_1, \dots, X_C\}}{\operatorname{arg\,min}} J(\Pi) \tag{1}$$

Dificultad:

El número de particiones a explorar es muy elevado incluso para valores pequeños de N y C (ver dcha.). No es factible buscar soluciones globalmente óptimas mediante técnicas de enumeración completa (explícita o implícita) salvo en casos particulares.

Solución:

Soluciones subóptimas obtenidas mediante algoritmos aproximados.

Número de particiones en función de *C* para varios *N*

Clustering particional: Criterio "suma de errores cuadráticos" (SEC)

La SEC de una partición de N datos en C clusters, $\Pi = \{X_1, \dots, X_C\}$, es:

$$J(X_1, \dots, X_C) = \sum_{c} J_c , \qquad J_c = \sum_{\boldsymbol{x} \in X_c} \|\boldsymbol{x} - \boldsymbol{m}_c\|^2, \qquad \boldsymbol{m}_c = \frac{1}{|X_c|} \sum_{\boldsymbol{x} \in X_c} \boldsymbol{x}$$
(2)

Interpretación:

- En cada cluster X_c su media, m_c , se interpreta como el "prototipo natural" de X_c . Cada dato $x \in X_c$, se interpreta como una "versión distorsionada" de m_c y la distorsión de x se caracteriza por el $vector error x m_c$.
- Como su nombre indica, el criterio SEC mide la suma (o media) de los cuadrados de las magnitudes de estos vectores error y, obviamente, es un criterio a minimizar.
- La media de cada cluster es el punto que representa los datos del cluster con menor SEC.

SIN-TemaB2T4 Clustering

Ejemplo de clustering particional

Bondad del criterio SEC

El criterio SEC es apropiado sólo si los datos forman clusters hiperesféricos de tamaño similar.

Si los tamaños de los clusters son muy distintos, es posible la agrupación natural *no* tenga el mínimo SEC:

DSIC – UPV: SIN Página B2T4.8

- 1 Introducción ⊳ 2
- 2 Agrupamientos particionales > 4
- 3 Algoritmo C-Medias ▷ 9

Cálculo incremental de la SEC al transferir x del cluster X_i al X_j

$$X'_{i} = X_{i} - \{x\}$$

$$X'_{j} = X_{j} + \{x\}$$

$$m'_{i} = m_{i} - \frac{x - m_{i}}{n_{i} - 1}$$

$$m'_{j} = m_{j} + \frac{x - m_{j}}{n_{j} + 1}$$

$$J'_{i} = J_{i} - \frac{n_{i}}{n_{i} - 1} \|x - m_{i}\|^{2}$$

$$\Delta J = \frac{n_{j}}{n_{j} + 1} \|x - m_{j}\|^{2} - \frac{n_{i}}{n_{i} - 1} \|x - m_{i}\|^{2}$$

La transferencia será provechosa si el incremento de SEC es negativo; es decir:

$$\frac{n_j}{n_j + 1} \|\boldsymbol{x} - \boldsymbol{m}_j\|^2 < \frac{n_i}{n_i - 1} \|\boldsymbol{x} - \boldsymbol{m}_i\|^2$$
(3)

Estas ecuaciones permiten minimizar la SEC mediante refinamientos sucesivos a partir una partición inicial dada.

Optimización de la SEC: algoritmo C-medias

```
Algorithm C-means (versión "correcta" [Duda & Hart])
Input: X: C: \Pi = \{X_1, \dots, X_C\}:
Output: \Pi^* = \{X_1, \dots, X_C\}; m_1, \dots, m_C; J
for c=1 to C do {m m}_c=\frac{1}{n_c}\sum_{{m x}\in X_c}{m x} endfor
repeat
     transfers = false
     forall x \in X (let i : x \in X_i) do
          if n_i > 1 then
             j^* = \operatorname*{arg\,min}_{j \neq i} \frac{n_j}{n_j + 1} \|\boldsymbol{x} - \boldsymbol{m}_j\|^2
             \Delta J = \frac{n_{j^*}}{n_{i^*} + 1} \left\| \boldsymbol{x} - \boldsymbol{m}_{j^*} \right\|^2 - \frac{n_i}{n_{i^*} - 1} \left\| \boldsymbol{x} - \boldsymbol{m}_i \right\|^2
              if \triangle J < 0 then
                  transfers = true
                 egin{aligned} oldsymbol{m}_i &= oldsymbol{m}_i - rac{oldsymbol{x} - oldsymbol{m}_i}{n_i - 1} & oldsymbol{m}_{j^*} &= oldsymbol{m}_{j^*} + rac{oldsymbol{x} - oldsymbol{m}_{j^*}}{n_{j^*} + 1} \ X_i &= X_i - \{oldsymbol{x}\} & X_{j^*} &= X_{j^*} + \{oldsymbol{x}\} \end{aligned}
                  J = J + \triangle J
              endif
          endif
     endforall
```

until $\neg transfers$ // Coste por iteración: $O(N \cdot C \cdot D), N = |X|, D = \text{dimensión}$

Optimización de la SEC: otra versión de C-medias

```
Algorithm C-means (versión "popular")
Input: X; C; \Pi = \{X_1, \dots, X_C\};
Output: \Pi^* = \{X_1, \dots, X_C\}; m_1, \dots, m_C
repeat
   transfers = false
  for c=1 to C do \boldsymbol{m}_c=\frac{1}{n_c}\sum_{\boldsymbol{x}\in X_c}\boldsymbol{x} endfor
   forall x \in X (let i : x \in X_i) do
      if n_i > 1 then
         j^* = \underset{1 \le j \le C}{\operatorname{arg \, min}} \ d(\boldsymbol{x}, \boldsymbol{m}_j)
         if j^* \neq i then
            transfers = true
            X_i = X_i - \{x\}; X_{j^*} = X_{j^*} + \{x\}
         endif
      endif
   endforall
until \neg transfers
// Coste por iteración: O(N \cdot C \cdot D), N = |X|, D = \text{coste de } d(\cdot, \cdot)
```

Optimalidad de los algoritmos C-medias

- Ninguna de las versiones del algoritmo C-medias garantiza la obtención de un mínimo global de la SEC
- La versión de Duda & Hart obtine un mínimo local
- La versión "popular" no garantiza la minimización local en algunos casos Ejemplo:

$$X = \{1, 3, 4.5\} \subset \mathbb{R} \; ; \quad \Pi^0 = \{\{1, 3\}, \{4.5\}\} \; ; \quad J^0 = 2.0$$

C-medias "popular": $\Pi^{\star} = \Pi^{0}$; $J^{\star} = J^{0} = 2.0$

C-medias Duda & Hart: $\Pi^* = \Pi^1 = \{\{1\}, \{3, 4.5\}\}\ ; \quad J^* = J^1 = 1.125$

El criterio SEC y Cuantificación Vectorial

Los siguientes criterios a minimizar son equivalentes:

$$J(X_1, \dots, X_C) = \sum_{c} \sum_{x \in X_c} ||x - m_c||^2$$
 (4)

$$J(X_1, \dots, X_C; \mathbf{r}_1, \dots, \mathbf{r}_C) = \sum_{c} \sum_{\mathbf{x} \in X_c} \|\mathbf{x} - \mathbf{r}_c\|^2$$
 (5)

$$J(\boldsymbol{r}_1, \dots, \boldsymbol{r}_C) = \sum_{\boldsymbol{x}} \min_{c} ||\boldsymbol{x} - \boldsymbol{r}_c||^2$$
 (6)

Justificación:

- (5) equivale a (4) pues, para toda partición X_1, \ldots, X_C , los *representantes* (de cluster) r_1, \ldots, r_C que minimizan (5) son las medias de los clusters.
- (5) equivale a (6) ya que, para todo conjunto de representantes r_1, \ldots, r_C , la partición que minimiza (5) es aquella en la que cada dato se asigna al cluster de su representante más próximo.
- (6) se conoce como el problema del diseño de un cuantificador vectorial en teoría de la información

Otra interpretación del criterio SEC

El criterio SEC se puede reescribir sin incluir las medias de los clusters:

$$J(X_1, \dots, X_C) = \frac{1}{2} \sum_c n_c \,\bar{s}_c \tag{7}$$

donde n_c es el número de datos en X_c y \bar{s}_c es la media de las distancias Euclídeas al cuadrado entre todos estos datos:

$$\bar{s}_c = \frac{1}{n_c^2} \sum_{x, x' \in X_c} ||x - x'||^2$$
 (8)

Luego la SEC se puede interpretar como una suma ponderada de medias de distancias al cuadrado "intra-cluster".

Con base en esta interpretación, podemos redefinir \bar{s}_c para obtener criterios parecidos a la SEC (válidos incluso con datos *no-vectoriales*):

$$\bar{s}_c = \frac{1}{n_c^2} \sum_{x, x' \in X_c} d(x, x') \qquad \bar{s}_c = \frac{1}{n_c^2} \max_{x, x' \in X_c} d(x, x')$$
 (9)