predicting-survival-titanic

April 9, 2024

0.1 Project Name : Predicting Survival on Titanic using Artificial Neural Networks

0.1.1 Contribution: Individual

0.2 Data Dictionary

Column Name	Description
Pclass	Ticket class indicating the socio-economic status of the passenger
Survived	A binary indicator that shows whether the passenger survived (1) or not (0)
Name	The full name of the passenger
Sex	The gender of the passenger, denoted as either male or female
Age	The age of the passenger in years
SibSp	The number of siblings or spouses aboard the Titanic for the
	respective passenger
Parch	The number of parents or children aboard the Titanic for the
	respective passenger
Ticket	The ticket number assigned to the passenger
Fare	The fare paid by the passenger for the ticket
Cabin	The cabin number assigned to the passenger, if available
Embarked	The port of embarkation for the passenger
Boat	this column contains the identifier of the lifeboat they were
D 1	rescued in
Body	this column contains the identification number of their recovered
TT 1 .	body, if applicable
Home.dest	The destination or place of residence of the passenger

```
[35]: # import library
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
sns.set(style='darkgrid', palette='Set2')
```

```
dataset = '/content/Titanic Dataset.csv'
      df = pd.read_csv(dataset)
      df.head()
[36]:
         pclass
                 survived
                                                                                 sex
                                                                        name
      0
              1
                        1
                                              Allen, Miss. Elisabeth Walton
                                                                              female
      1
              1
                                             Allison, Master. Hudson Trevor
                        1
                                                                                male
                        0
      2
              1
                                               Allison, Miss. Helen Loraine
                                                                              female
      3
                                       Allison, Mr. Hudson Joshua Creighton
              1
                        0
                                                                                male
      4
              1
                           Allison, Mrs. Hudson J C (Bessie Waldo Daniels)
                                                                              female
                sibsp parch
                              ticket
                                           fare
                                                   cabin embarked boat
                                                                          body \
           age
      0
         29.00
                    0
                                24160 211.3375
                                                      В5
                                                                S
                                                                           NaN
          0.92
                    1
                              113781 151.5500 C22 C26
                                                                S
                                                                     11
                                                                           NaN
      1
                           2
      2
          2.00
                    1
                           2
                              113781 151.5500
                                                 C22 C26
                                                                S NaN
                                                                           NaN
      3 30.00
                    1
                           2 113781 151.5500
                                                 C22 C26
                                                                S NaN
                                                                         135.0
      4 25.00
                    1
                           2 113781 151.5500
                                                C22 C26
                                                                S NaN
                                                                           NaN
                               home.dest
      0
                            St Louis, MO
      1 Montreal, PQ / Chesterville, ON
      2 Montreal, PQ / Chesterville, ON
      3 Montreal, PQ / Chesterville, ON
      4 Montreal, PQ / Chesterville, ON
     0.3 Data Preprocessing 1
[37]: # checking the shape dataset
      df.shape
[37]: (1309, 14)
     Dropping the unecessary columns - name, cabin, boat, body, home.dest
[38]: # drop columns
      drop_col = ['name', 'cabin', 'boat', 'body', 'home.dest']
      df.drop(drop_col, axis=1, inplace=True)
      df.dtypes
[38]: pclass
                    int64
      survived
                    int64
                   object
      sex
                  float64
      age
                    int64
      sibsp
```

[36]: # load dataset

```
object
      ticket
      fare
                  float64
      embarked
                   object
      dtype: object
[39]: # moved the 'survived' column to the last column
      df = pd.concat([df.drop(columns=['survived']), df[['survived']]], axis=1)
      df.sample(5)
[39]:
                                  sibsp parch
                                                                  fare embarked \
            pclass
                              age
                                                        ticket
                       sex
                                                         248740 13.00
      375
                 2
                      male
                           28.0
                                       0
                                                                              S
      973
                 3
                                                                              S
                             NaN
                                       0
                                              0 S.O./P.P. 251
                                                                  7.55
                      male
      583
                 2 female 40.0
                                       0
                                              0
                                                    C.A. 33595 15.75
                                                                              S
      484
                 2
                   female 34.0
                                       0
                                              0
                                                    C.A. 34260 10.50
                                                                              S
      1073
                 3
                      male
                             NaN
                                       0
                                              0
                                                        371060
                                                                              Q
                                                                  7.75
            survived
      375
                   0
      973
                   0
      583
                   1
      484
                   1
      1073
                   0
[40]: # shwoing 10 values for ticket column
      df.ticket.values[:10]
[40]: array(['24160', '113781', '113781', '113781', '113781', '19952', '13502',
             '112050', '11769', 'PC 17609'], dtype=object)
     because the ticket column is of the object data type, I will convert it to numeric
[41]: # convert ticket column to float
      df.ticket = pd.to_numeric(df.ticket, errors='coerce')
[42]: # checking the dtype for ticket column
      df.ticket.dtypes
[42]: dtype('float64')
[43]: # checking null value
      df.isnull().sum()
[43]: pclass
                    0
      sex
                    0
                  263
      age
      sibsp
                    0
```

parch

int64

```
ticket
                  352
      fare
                    1
      embarked
      survived
      dtype: int64
[44]: # checking null value for age column
      df[df.age.isnull()]
[44]:
            pclass
                                  sibsp parch
                                                  ticket
                                                              fare embarked survived
                       sex
                            age
      15
                 1
                      male
                            NaN
                                                      NaN
                                                           25.9250
                                                                          S
                                                                                     0
      37
                                                111427.0
                                                          26.5500
                                                                          S
                                                                                     1
                 1
                      male
                            {\tt NaN}
                                      0
                                             0
                                                                          C
      40
                 1
                      male
                            NaN
                                      0
                                                112379.0
                                                          39.6000
                                                                                     0
      46
                 1
                      male
                            NaN
                                      0
                                                113798.0 31.0000
                                                                          S
                                                                                     0
      59
                 1 female NaN
                                      0
                                                 17770.0 27.7208
                                                                          С
                                                                                     1
      1293
                 3
                      male NaN
                                      0
                                             0
                                                      \mathtt{NaN}
                                                            8.0500
                                                                          S
                                                                                     0
      1297
                      male NaN
                                                            7.2500
                                                                          S
                 3
                                             0
                                                      NaN
                                                                                     0
      1302
                 3
                      male
                            NaN
                                             0
                                                  2647.0
                                                            7.2250
                                                                          C
                                                                                     0
                                      0
                                                  2627.0 14.4583
      1303
                 3
                      male NaN
                                      0
                                             0
                                                                          С
                                                                                     0
      1305
                 3 female NaN
                                                  2665.0 14.4542
      [263 rows x 9 columns]
[45]: # Replace the null value in the 'age' column with the mean
      df.age.fillna(df.age.mean(), inplace=True)
      df.age.isnull().sum()
[45]: 0
[46]: # drop null value fot ticket column
      df.dropna(subset=['ticket'], inplace=True)
      df.ticket.isnull().sum()
[46]: 0
[47]: # checking nullvalue for fare and embarked column
      df[(df.fare.isnull()) | (df.embarked.isnull())]
[47]:
                                                   ticket fare embarked survived
            pclass
                       sex
                              age
                                   sibsp parch
      168
                 1 female
                            38.0
                                       0
                                              0
                                                113572.0
                                                            80.0
                                                                      NaN
                                                                                   1
      284
                 1 female 62.0
                                       0
                                              0
                                                 113572.0 80.0
                                                                      NaN
                                                                                   1
      1225
                 3
                      male 60.5
                                              0
                                                   3701.0
                                                             NaN
                                                                        S
                                                                                   0
                                       0
[48]: # Replace the null value in the 'fare' column with the mean
      df.fare.fillna(df.fare.mean(), inplace=True)
```

parch

0

```
# drop null value for embarked column
      df.dropna(subset=['embarked'], inplace=True)
[49]: # checking null value again
      df.isnull().sum()
[49]: pclass
                  0
                  0
      sex
      age
                  0
      sibsp
                   0
      parch
                   0
      ticket
                   0
      fare
                  0
                  0
      embarked
                  0
      survived
      dtype: int64
     Because all columns no longer have null values, will be do checking duplicated values
[50]: # checking duplicated values
      df[df.duplicated()]
[50]:
            pclass
                                                                     fare embarked
                                                                                     \
                                   age
                                        sibsp
                                                parch
                                                         ticket
      384
                 2
                       male
                             29.881138
                                             0
                                                       239853.0
                                                                   0.0000
                                                                                  S
                 2
      438
                                                    2
                                                                 65.0000
                                                                                  S
                    female
                             24.000000
                                             1
                                                       220845.0
      528
                 2
                       male 29.881138
                                             0
                                                    0
                                                       239853.0
                                                                   0.0000
                                                                                  S
                 3
                                             2
                                                         2666.0 19.2583
                                                                                  С
      658
                    female
                             0.750000
                                                    1
                                                                                  S
      714
                 3
                       male 32.000000
                                             0
                                                    0
                                                         1601.0 56.4958
      858
                 3
                      male 29.881138
                                             0
                                                    0
                                                         1601.0 56.4958
                                                                                  S
                       male 29.881138
                                                                                  S
                 3
      945
                                             0
                                                    0
                                                         1601.0 56.4958
                                                                                  S
      956
                 3
                    female 29.881138
                                             3
                                                         4133.0 25.4667
                                                    1
      957
                 3
                    female 29.881138
                                             3
                                                    1
                                                         4133.0 25.4667
                                                                                  S
      1002
                 3
                    female 29.881138
                                             2
                                                    0
                                                       367226.0 23.2500
                                                                                  Q
      1035
                 3
                       male 29.881138
                                             1
                                                         2661.0 15.2458
                                                                                  C
                                                    1
      1043
                 3
                    female 29.881138
                                                       367230.0 15.5000
                                             1
                                                    0
                                                                                  Q
      1185
                 3
                       male 29.881138
                                             2
                                                    0
                                                         2662.0 21.6792
                                                                                  C
                 3
                                                                                  С
      1186
                       male 29.881138
                                             2
                                                    0
                                                         2662.0 21.6792
            survived
      384
                   0
      438
                   1
      528
                   0
      658
                   1
                   1
      714
      858
                    1
```

945

1

```
      956
      0

      957
      0

      1002
      1

      1035
      1

      1043
      1

      1185
      0

      1186
      0
```

In my opinion, it is not necessary to delete duplicate values, so we continue to the next step

```
[51]: # descriptive statistics
df.describe(include='all')
```

[51]:		pclass	sex	age	sibsp	parch	ticket	\
	count	955.000000	955	955.000000	955.000000	955.000000	9.550000e+02	
	unique	NaN	2	NaN	NaN	NaN	NaN	
	top	NaN	${\tt male}$	NaN	NaN	NaN	NaN	
	freq	NaN	615	NaN	NaN	NaN	NaN	
	mean	2.342408	NaN	29.657154	0.450262	0.341361	2.493228e+05	
	std	0.831150	NaN	12.765045	0.840776	0.765282	4.431056e+05	
	min	1.000000	NaN	0.330000	0.000000	0.000000	6.800000e+02	
	25%	2.000000	NaN	22.000000	0.000000	0.000000	1.995000e+04	
	50%	3.000000	NaN	29.881138	0.000000	0.000000	2.346860e+05	
	75%	3.000000	NaN	34.000000	1.000000	0.000000	3.474685e+05	
	max	3.000000	NaN	80.000000	4.000000	5.000000	3.101298e+06	

	fare	embarked	survived
count	955.000000	955	955.000000
unique	NaN	3	NaN
top	NaN	S	NaN
freq	NaN	662	NaN
mean	27.701066	NaN	0.378010
std	37.832230	NaN	0.485144
min	0.000000	NaN	0.000000
25%	7.883350	NaN	0.000000
50%	13.000000	NaN	0.000000
75%	27.900000	NaN	1.000000
max	263.000000	NaN	1.000000

0.4 Eksploratory Data Analysis (EDA)

```
[53]: plt.figure(figsize=(6,6))
    df['survived'].value_counts().plot(kind='pie', autopct='%.2f%%', labels=['no', u o'yes'])
    plt.title('Survived vs Not Survived Distribution')
    plt.show()
```

Survived vs Not Survived Distribution


```
[55]: plt.figure(figsize=(15,5))
    sns.countplot(data=df, x='pclass', hue='survived', palette='rocket')
    plt.title('Survival Count by Pclass')
    plt.show()
```



```
[56]: plt.figure(figsize=(15,5))
    sns.countplot(data=df, x='parch', hue='survived', palette='rocket')
    plt.title('Survival Count by Parch')
    plt.show()
```



```
[57]: plt.figure(figsize=(15,5))
    sns.countplot(data=df, x='embarked', hue='survived', palette='rocket')
    plt.title('Survival Count by Embarked')
    plt.show()
```



```
[58]: plt.figure(figsize=(15, 5))
sns.histplot(data=df, x='age', hue='survived', multiple='stack',kde=True)
plt.title('Survived Distribution by Age')
plt.xlim(0,100)
plt.show()
```


0.5 Data Preprocessing Part 2

```
[59]: # filter columns that have the object data type
for col in df:
   if df[col].dtypes == 'object':
      print(f'{col} : {df[col].unique()}')
```

sex : ['female' 'male']
embarked : ['S' 'C' 'Q']

```
[60]: # label encoding
     from sklearn.preprocessing import LabelEncoder
     var = ['sex', 'embarked']
     le = LabelEncoder()
     for i in var:
         le.fit(df[i].unique())
         df[i]=le.transform(df[i])
         print(i,df[i].unique())
     sex [0 1]
     embarked [2 0 1]
[61]: df.sample(5)
[61]:
          pclass sex
                             age sibsp parch
                                                  ticket
                                                             fare embarked \
     589
               2
                    0 29.000000
                                      0
                                                 29103.0 23.0000
     469
               2
                                      0
                                             0 226593.0 12.3500
                    0 29.881138
                                                                          1
     440
               2 0 48.000000
                                      1
                                             2 220845.0 65.0000
                                                                          2
                                            1 349256.0 13.4167
                                                                          0
     916
               3
                        4.000000
                                      0
     128
                    1 47.000000
                                      0
                                             0 111320.0 38.5000
                                                                          2
          survived
     589
     469
     440
                 1
     916
                 1
     128
                 0
[62]: # normalize the continuous variables
     from sklearn.preprocessing import MinMaxScaler
     scaler = MinMaxScaler()
     df[['ticket', 'fare']] = scaler.fit_transform(df[['ticket', 'fare']])
[63]: # correlation matrix
     plt.figure(figsize=(10,10))
     sns.heatmap(df.corr(),annot=True,cmap='BuPu')
     plt.title('Correlation Matrix')
     plt.show()
```



```
[64]: X = df.drop('survived', axis=1)
y = df['survived']

[65]: # train test split
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, u_srandom_state=42)
```

```
[66]: len(X_train.columns)
```

[66]: 8

to predict whether the titanic people survived or not i will use the ANN model

```
[71]: import tensorflow as tf
    from tensorflow import keras

# define the ANN model
model = keras.Sequential([
        keras.layers.Dense(64, input_shape=(8,), activation='relu'),
        keras.layers.Dense(32, activation='relu'),
        keras.layers.Dense(1, activation='sigmoid')
])

# compile the model
model.compile(
    optimizer='adam',
    loss='binary_crossentropy',
    metrics=['accuracy']
)

# fitting the model
model.fit(X_train, y_train, epochs=10)
```

```
Epoch 1/10
0.5157
Epoch 2/10
0.5929
Epoch 3/10
0.6453
Epoch 4/10
0.6662
Epoch 5/10
0.6859
Epoch 6/10
0.6963
Epoch 7/10
0.7055
Epoch 8/10
```

```
0.7160
   Epoch 9/10
   0.7474
   Epoch 10/10
   0.7421
[71]: <keras.src.callbacks.History at 0x7e0acc469c30>
[90]: # evaluate the model
    model.evaluate(X_test, y_test)
   0.7801
[90]: [0.5317214131355286, 0.7801046967506409]
[91]: # do a predict and show 5 result the predict
    yp = model.predict(X_test)
    yp[:5]
   6/6 [=======] - 0s 2ms/step
[91]: array([[0.59424615],
        [0.7199342],
        [0.21613458],
        [0.4685506],
        [0.22969034]], dtype=float32)
[92]: # filtering where val < 0.5 convert to 0 and else convert to 1
    y_pred = []
    for i in yp:
     if i < 0.5:
      y_pred.append(0)
     else:
      y_pred.append(1)
[93]: # show 5 pred result
    y_pred[:5]
[93]: [1, 1, 0, 0, 0]
[94]: # show 5 the test result
    y_test[:5]
```

of the 5 samples we took, it can be seen that only 3 predictions were correct for the 5 samples taken

0.6 Model Evaluation

```
[84]: # classification report
from sklearn.metrics import confusion_matrix, classification_report
print(classification_report(y_test, y_pred))
```

```
precision
                           recall f1-score
                                               support
           0
                   0.76
                             0.91
                                        0.83
                                                   113
                              0.59
           1
                   0.82
                                        0.69
                                                    78
   accuracy
                                        0.78
                                                   191
                   0.79
                              0.75
                                        0.76
                                                   191
  macro avg
weighted avg
                   0.79
                              0.78
                                        0.77
                                                   191
```

```
[83]: # confusion metrix heatmap
plt.figure(figsize=(8,6))
sns.heatmap(confusion_matrix(y_test,y_pred),annot=True,fmt='d',cmap='Blues')
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.title('Confusion Matrix for ANN Model')
plt.show()
```



```
[95]: # distribution plot
ax = sns.distplot(y_test, hist=False, color='r', label='Actual Value')
sns.distplot(y_pred, hist=False, color='b', label='Predicted Values', ax=ax)
plt.legend()
```

[95]: <matplotlib.legend.Legend at 0x7e0abfe789d0>

