Градиент.

Любую функцию от n переменных можно считать функцией из \mathbb{R}^n в \mathbb{R} . Пусть у нас есть величина $q(\mathbf{u})$, зависящая от вектора $\mathbf{u} \in \mathbb{R}^n$. Будем говорить, что $q(\mathbf{u}) = o(\mathbf{u})$ (читается " $q(\mathbf{u})$ есть о маленькое от \mathbf{u} "), если для любой последовательности ненулевых векторов $\mathbf{u}_1, \mathbf{u}_2, \ldots \in \mathbb{R}^n$ такой, что $\|\mathbf{u}_i\| \to 0$, последовательность $q(\mathbf{u}_i)/\|\mathbf{u}_i\|$ стремится к нулю.

 Φ ункция f om n переменных ∂ ифференцируема в точке \mathbf{x} , если существует такой век $mop \ \mathbf{a} \in \mathbb{R}^n$, что для любого $\mathbf{v} \in \mathbb{R}^n$

$$f(\mathbf{x} + \mathbf{v}) = f(\mathbf{x}) + \langle \mathbf{v}, \mathbf{a} \rangle + o(\mathbf{v})$$

Вектор а называется градиентом функции f в точке \mathbf{x} и обозначается $\nabla f(\mathbf{x})$.

Задача 1. Убедитесь, что для n=1 новое определение дифференцируемости совпадает с уже знакомым определением дифференцируемости функции из $\mathbb R$ в $\mathbb R$.

Задача 2. Докажите, что в локальном оптимуме градиент равен 0.

Частная производная функции $f: \mathbb{R}^n \to \mathbb{R}$ по i-той переменной в точке \mathbf{x} это:

$$\frac{\partial f(\mathbf{x})}{\partial x_i} = \lim_{\varepsilon \to 0} \frac{f(x_1, \dots, x_i + \varepsilon, \dots, x_n) - f(x_1, \dots, x_i, \dots, x_n)}{\varepsilon}$$

Иными словами мы фиксируем все переменные кроме і-той, рассматриваем f как функцию от одной переменной и берем ее производную в точке x_i .

Задача 3. Пусть $f: \mathbb{R}^n \to \mathbb{R}$ дифференцируема в точке **х**. Докажите что:

$$\nabla f(\mathbf{x}) = \left(\frac{\partial f(\mathbf{x})}{\partial x_1}, \dots, \frac{\partial f(\mathbf{x})}{\partial x_n}\right).$$

Задача 4^* . Докажите, что f дифференцируема в точке \mathbf{x} , если ее частные производные определены в некоторой окрестности ${\bf x}$ и непрерывны в ${\bf x}$.

Задача 5. Пусть мы находимся в точке $\mathbf{a}, \nabla f(\mathbf{a}) = \mathbf{g} \neq \overrightarrow{\mathbf{0}}$. Для любого вектора \mathbf{v} обозначим через \mathbf{v}_{δ} вектор $\delta \cdot \frac{\mathbf{v}}{\|\mathbf{v}\|}$ (шаг в направлении \mathbf{v} длины δ). Попробуем сдвинуться на δ так, чтобы функция f возросла как можно больше. Докажите, что для любого направления ${f v}$, непропорционального градиенту ${f g}$ выполнено $f({f a}+{f v}_\delta)< f({f a}+{f g}_\delta)$ при достаточно маленьком δ . Таким образом, градиент указывает направление вдоль которого функция возрастает максимально быстро.

Определение 1. Градиентный спуск – это процесс "жадной" минимизации функции, действующий по правилу вида $\mathbf{x_{t+1}} = \mathbf{x_t} - \lambda \cdot \nabla f(\mathbf{x_t})$. Здесь λ – это параметр, который в машинном обучении называют learning rate. Он как правило меняется в процессе (в зависимости от конкретной реализации).

Задача 6. Пусть f и g – дифференцируемые функции из \mathbb{R} в \mathbb{R} и из \mathbb{R}^n в \mathbb{R} соответственно. Докажите, что $f(g(\mathbf{x}))$ – дифференцируемая функция из \mathbb{R}^n в \mathbb{R} .

Задача 7. Пусть f и g – дифференцируемые функции из \mathbb{R}^n в \mathbb{R} . Докажите, что следующие функции дифференцируемы (и выразите их градиенты, через градиенты f и q):

- a) f+g
- $\mathbf{6}$) $f \cdot g$
- **в**) f/g (в точках **x**, где $g(\mathbf{x}) \neq 0$)

Задача 8. Докажите, что $f(g_1(\mathbf{x}),\dots,g_m(\mathbf{x}))$ – всюду дифференцируемая функция из \mathbb{R}^n в \mathbb{R} , если $g_i:\mathbb{R}^n\to\mathbb{R}$ и $f:\mathbb{R}^m\to\mathbb{R}$ всюду дифференцируемы.

Задача 9. Докажите, что следующие функции $\mathbb{R}^n \to \mathbb{R}$ дифференцируемы по **х**:

- a) $x_1 \cdot \ldots \cdot x_n$
- б) $\sin(x_1 + ... + x_n)$
- в) $\log(\sigma(\langle \mathbf{x}, \mathbf{w} \rangle))$, где $\sigma(x) = \frac{1}{1+e^{-x}} = \frac{e^x}{1+e^x}$. г) И эта функция $\mathbb{R}^n \to \mathbb{R}^n$: softmax $(\mathbf{x}) = \frac{(e^{x_1}, \dots, e^{x_n})}{e^{x_1} + \dots + e^{x_n}}$

 $[\]overline{\ }^1$ Комментарий к обозначению: в записи $\nabla f(\mathbf{x})$ опущены скобки. Более подробная запись такая: $(\nabla f)(\mathbf{x})$, где ∇f – это функция из \mathbb{R}^n в \mathbb{R}^n , которая по точке $\mathbf{x} \in \mathbb{R}^n$ выдает градиент функции f в точке \mathbf{x} .