## **Proof Using Resolution**

#### **Outline**

- I. Rule of resolution
- II. Resolution refutation

<sup>\*</sup> Figures are from the <u>textbook site</u> unless the source is specifically cited.

#### An inference algorithm i is

```
sound if KB \models \alpha whenever KB \vdash_i \alpha
complete if KB \vdash_i \alpha whenever KB \models \alpha
```

#### An inference algorithm i is

```
sound if KB \models \alpha whenever KB \vdash_i \alpha
complete if KB \vdash_i \alpha whenever KB \models \alpha
```

- Inference rules covered so far are sound.
- The inference algorithms using them may not be complete.

#### An inference algorithm i is

```
sound if KB \models \alpha whenever KB \vdash_i \alpha
complete if KB \vdash_i \alpha whenever KB \models \alpha
```

- Inference rules covered so far are sound.
- The inference algorithms using them may not be complete.

resolution + a complete search algorithm = a complete inference algorithm

#### An inference algorithm i is

```
sound if KB \models \alpha whenever KB \vdash_i \alpha
complete if KB \vdash_i \alpha whenever KB \models \alpha
```

- Inference rules covered so far are sound.
- The inference algorithms using them may not be complete.

resolution + a complete search algorithm = a complete inference algorithm

single inference rule

### Wumpus World Revisited

| 1,4              | 2,4              | 3,4    | 4,4 |
|------------------|------------------|--------|-----|
| 1,3 W!           | 2,3              | 3,3    | 4,3 |
| 1,2 A<br>S<br>OK | 2,2<br>OK        | 3,2    | 4,2 |
| 1,1<br>V<br>OK   | 2,1 B<br>V<br>OK | 3,1 P! | 4,1 |

KB:

$$\begin{array}{l} R_1 \colon \neg P_{1,1} \\ \\ R_2 \colon B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1}) \\ \\ R_3 \colon B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1}) \\ \\ R_4 \colon \neg B_{1,1} \\ \\ R_5 \colon B_{2,1} \end{array} \text{Rules}$$

### Wumpus World Revisited

| 1,4                | 2,4        | 3,4    | 4,4 |
|--------------------|------------|--------|-----|
| <sup>1,3</sup> W!  | 2,3        | 3,3    | 4,3 |
| 1,2 A<br>S<br>OK   | 2,2<br>OK  | 3,2    | 4,2 |
| 1,1<br>V ←<br>OK ← | 2,1 B V OK | 3,1 P! | 4,1 |

KB:

$$R_1: \neg P_{1,1}$$
 $R_2: B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1})$ 
 $R_3: B_{2,1} \Leftrightarrow (P_{1,1} \lor P_{2,2} \lor P_{3,1})$  Rules
 $R_4: \neg B_{1,1}$ 
 $R_5: B_{2,1}$ 

Agent:  $[1,1] \rightarrow [2,1] \rightarrow [1,1]$ 

### Wumpus World Revisited

| 1,4               | 2,4        | 3,4    | 4,4 |
|-------------------|------------|--------|-----|
| <sup>1,3</sup> W! | 2,3        | 3,3    | 4,3 |
| 1,2 A<br>S<br>OK  | 2,2<br>OK  | 3,2    | 4,2 |
| 1,1<br>V ←<br>OK  | 2,1 B V OK | 3,1 P! | 4,1 |

Agent:  $[1,1] \rightarrow [2,1] \rightarrow [1,1]$ 

KB:

$$R_1: \neg P_{1,1}$$
 $R_2: B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1})$ 
 $R_3: B_{2,1} \Leftrightarrow (P_{1,1} \lor P_{2,2} \lor P_{3,1})$  Rules
 $R_4: \neg B_{1,1}$ 
 $R_5: B_{2,1}$ 

$$R_{6}: \left(B_{1,1} \Rightarrow \left(P_{1,2} \vee P_{2,1}\right)\right) \wedge \left(\left(P_{1,2} \vee P_{2,1}\right) \Rightarrow B_{1,1}\right)$$

$$R_{7}: \left(P_{1,2} \vee P_{2,1}\right) \Rightarrow B_{1,1}$$

$$R_{8}: \neg B_{1,1} \Rightarrow \neg \left(P_{1,2} \vee P_{2,1}\right)$$

$$R_{9}: \neg \left(P_{1,2} \vee P_{2,1}\right) // R_{4}, R_{8}$$

$$R_{10}: \neg P_{1,2} \wedge \neg P_{2,1}$$

Added to KB via inferences

| 1,4              | 2,4        | 3,4               | 4,4 |
|------------------|------------|-------------------|-----|
| 1,3 W!           | 2,3        | 3,3               | 4,3 |
| 1,2 A<br>S<br>OK | 2,2<br>OK  | 3,2               | 4,2 |
| 1,1<br>V ←<br>OK | 2,1 B V OK | <sup>3,1</sup> P! | 4,1 |

| 1,4                | 2,4        | 3,4               | 4,4 |
|--------------------|------------|-------------------|-----|
| 1,3 W!             | 2,3        | 3,3               | 4,3 |
| 1,2 A<br>S<br>OK ↑ | 2,2<br>OK  | 3,2               | 4,2 |
| 1,1<br>V<br>OK     | 2,1 B V OK | <sup>3,1</sup> P! | 4,1 |

| 1,4               | 2,4        | 3,4    | 4,4 |
|-------------------|------------|--------|-----|
| <sup>1,3</sup> w! | 2,3        | 3,3    | 4,3 |
| 1,2 A S OK •      | 2,2<br>OK  | 3,2    | 4,2 |
| 1,1<br>V<br>OK    | 2,1 B V OK | 3,1 P! | 4,1 |

 $[1,1] \rightarrow [1,2]$ : stench but no breeze

| 1,4                | 2,4        | 3,4    | 4,4 |
|--------------------|------------|--------|-----|
| <sup>1,3</sup> W!  | 2,3        | 3,3    | 4,3 |
| 1,2 A<br>S<br>OK ↑ | 2,2<br>OK  | 3,2    | 4,2 |
| 1,1<br>V<br>OK     | 2,1 B V OK | 3,1 P! | 4,1 |

 $[1,1] \rightarrow [1,2]$ : stench but no breeze

Add to KB:

$$R_{11}$$
:  $\neg B_{1,2}$ 

$$R_{12}$$
:  $B_{1,2} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{1,3})$ 

| 1,4               | 2,4        | 3,4    | 4,4 |
|-------------------|------------|--------|-----|
| <sup>1,3</sup> w! | 2,3        | 3,3    | 4,3 |
| 1,2A<br>S<br>OK • | 2,2<br>OK  | 3,2    | 4,2 |
| 1,1<br>V<br>OK    | 2,1 B V OK | 3,1 P! | 4,1 |

 $[1,1] \rightarrow [1,2]$ : stench but no breeze

Add to KB:

$$R_{11}$$
:  $\neg B_{1,2}$ 

$$R_{12}$$
:  $B_{1,2} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{1,3})$ 

Similarly, as in deriving  $R_{10}$ 

$$R_{13}$$
:  $\neg P_{2,2}$ 
 $R_{14}$ :  $\neg P_{1,3}$ 

$$R_{14}$$
:  $\neg P_{1,3}$ 

| 1,4               | 2,4        | 3,4    | 4,4 |
|-------------------|------------|--------|-----|
| <sup>1,3</sup> w! | 2,3        | 3,3    | 4,3 |
| 1,2 A S OK •      | 2,2<br>OK  | 3,2    | 4,2 |
| 1,1<br>V<br>OK    | 2,1 B V OK | 3,1 P! | 4,1 |

 $[1,1] \rightarrow [1,2]$ : stench but no breeze

Add to KB:

$$R_{11}$$
:  $\neg B_{1,2}$ 

$$R_{12}$$
:  $B_{1,2} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{1,3})$ 

 $\int \int Similarly, as in deriving R_{10}$ 

$$R_{13}$$
:  $\neg P_{2,2}$ 

$$R_{14}$$
:  $\neg P_{1,3}$ 

$$R_3: B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1})$$

| 1,4               | 2,4        | 3,4    | 4,4 |
|-------------------|------------|--------|-----|
| <sup>1,3</sup> w! | 2,3        | 3,3    | 4,3 |
| 1,2 A S OK •      | 2,2<br>OK  | 3,2    | 4,2 |
| 1,1<br>V<br>OK    | 2,1 B V OK | 3,1 P! | 4,1 |

 $[1,1] \rightarrow [1,2]$ : stench but no breeze

Add to KB:

$$R_{11}$$
:  $\neg B_{1,2}$ 

$$R_{12}$$
:  $B_{1,2} \Leftrightarrow (P_{1,1} \lor P_{2,2} \lor P_{1,3})$ 

 $\int \int Similarly, as in deriving <math>R_{10}$ 

$$R_{13}$$
:  $\neg P_{2,2}$ 

$$R_{14}$$
:  $\neg P_{1,3}$ 

$$R_3$$
:  $B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1})$ 

$$\int_{R_5: B_{2,1}} \text{biconditional elimination}$$

$$R_{15}$$
:  $P_{1,1} \lor P_{2,2} \lor P_{3,1}$ 

 $R_{13}$ :  $\neg P_{2,2}$   $R_{15}$ :  $P_{1,1} \lor P_{2,2} \lor P_{3,1}$ 











$$R_1: \neg P_{1,1}$$
  $R_{16}: P_{1,1} \vee P_{3,1}$ 









$$\frac{l_1 \vee \dots \vee l_i \vee \dots \vee l_k, \qquad m}{l_1 \vee \dots \vee l_{i-1} \vee l_{i+1} \vee \dots \vee l_k}$$

( $l_i$  and m are complementary literals, i.e.,  $l_i = \neg m$  or  $m = \neg l_i$ .)

$$\frac{l_1 \vee \cdots \vee l_i \vee \cdots \vee l_k, \qquad m}{l_1 \vee \cdots \vee l_{i-1} \vee l_{i+1} \vee \cdots \vee l_k} \qquad \text{($l_i$ and $m$ are complementary literals, i.e., $l_i = \neg m$ or $m = \neg l_i$.)}$$

Since m is true, then  $l_i$  must be false. But one of  $l_1, ..., l_k$  must be true. Therefore, we can exclude  $l_i$  and assert that one of the remaining k-1 literals must be true.

$$\frac{l_1 \vee \cdots \vee l_i \vee \cdots \vee l_k, \qquad m}{l_1 \vee \cdots \vee l_{i-1} \vee l_{i+1} \vee \cdots \vee l_k} \qquad \text{($l_i$ and $m$ are complementary literals, i.e., $l_i = \neg m$ or $m = \neg l_i$.)}$$

Since m is true, then  $l_i$  must be false. But one of  $l_1, ..., l_k$  must be true. Therefore, we can exclude  $l_i$  and assert that one of the remaining k-1 literals must be true.

Clause: a disjunction of literals.

$$R_{15}$$
:  $P_{1,1} \vee P_{2,2} \vee P_{3,1}$ 

$$\frac{l_1 \vee \cdots \vee l_i \vee \cdots \vee l_k, \qquad m}{l_1 \vee \cdots \vee l_{i-1} \vee l_{i+1} \vee \cdots \vee l_k} \qquad \text{($l_i$ and $m$ are complementary literals, i.e., $l_i = \neg m$ or $m = \neg l_i$.)}$$

Since m is true, then  $l_i$  must be false. But one of  $l_1, ..., l_k$  must be true. Therefore, we can exclude  $l_i$  and assert that one of the remaining k-1 literals must be true.

Clause: a disjunction of literals.

$$R_{15}$$
:  $P_{1,1} \vee P_{2,2} \vee P_{3,1}$ 

$$\frac{l_1 \vee \cdots \vee l_i \vee \cdots \vee l_k, \qquad m}{l_1 \vee \cdots \vee l_{i-1} \vee l_{i+1} \vee \cdots \vee l_k} \qquad \text{($l_i$ and $m$ are complementary literals, i.e., $l_i = \neg m$ or $m = \neg l_i$.)}$$

Since m is true, then  $l_i$  must be false. But one of  $l_1, ..., l_k$  must be true. Therefore, we can exclude  $l_i$  and assert that one of the remaining k-1 literals must be true.

Clause: a disjunction of literals.

$$R_{15}$$
:  $P_{1,1} \vee P_{2,2} \vee P_{3,1}$ 

Unit clause: a single literal.

$$\frac{l_1 \vee \cdots \vee l_i \vee \cdots \vee l_k, \qquad m}{l_1 \vee \cdots \vee l_{i-1} \vee l_{i+1} \vee \cdots \vee l_k} \qquad \text{($l_i$ and $m$ are complementary literals, i.e., $l_i = \neg m$ or $m = \neg l_i$.)}$$

Since m is true, then  $l_i$  must be false. But one of  $l_1, ..., l_k$  must be true. Therefore, we can exclude  $l_i$  and assert that one of the remaining k-1 literals must be true.

Clause: a disjunction of literals.

$$R_{15}$$
:  $P_{1,1} \vee P_{2,2} \vee P_{3,1}$ 

Unit clause: a single literal.

$$R_1: \neg P_{2,2} \qquad R_5: B_{2,1}$$

$$\frac{l_1 \vee \dots \vee l_i \vee \dots \vee l_k, \quad m}{l_1 \vee \dots \vee l_{i-1} \vee l_{i+1} \vee \dots \vee l_k}$$

 $(l_i \text{ and } m \text{ are complementary } literals, i.e., l_i = \neg m \text{ or } m = \neg l_i.)$ 

Since m is true, then  $l_i$  must be false. But one of  $l_1, ..., l_k$  must be true. Therefore, we can exclude  $l_i$  and assert that one of the remaining k-1 literals must be true.

Clause: a disjunction of literals.

$$R_{15}$$
:  $P_{1,1} \vee P_{2,2} \vee P_{3,1}$ 

$$P_{1,1} \lor P_{2,2} \lor P_{3,1}, \neg P_{2,2}$$
 $P_{1,1} \lor P_{3,1}$ 

Unit clause: a single literal.

$$R_1: \neg P_{2,2} \qquad R_5: B_{2,1}$$

#### Full Resolution Rule

 $l_i$  and  $m_i$  are complementary literals:

$$\frac{l_1 \vee \cdots \vee l_i \vee \cdots \vee l_k, \qquad m_1 \vee \cdots \vee m_j \vee \cdots \vee m_k}{l_1 \vee \cdots \vee l_{i-1} \vee l_{i+1} \vee \cdots \vee l_k \vee m_1 \vee \cdots \vee m_{j-1} \vee m_{j+1} \vee \cdots \vee m_n}$$

#### Full Resolution Rule

 $l_i$  and  $m_i$  are complementary literals:

$$\frac{l_1 \vee \cdots \vee l_i \vee \cdots \vee l_k, \qquad m_1 \vee \cdots \vee m_j \vee \cdots \vee m_k}{l_1 \vee \cdots \vee l_{i-1} \vee l_{i+1} \vee \cdots \vee l_k \vee m_1 \vee \cdots \vee m_{i-1} \vee m_{i+1} \vee \cdots \vee m_n}$$

If  $l_i$  is true, then  $m_j$  is false. Hence  $m_1 \vee \cdots \vee m_{j-1} \vee m_{j+1} \vee \cdots \vee m_n$  must be true. If  $l_i$  is false, then  $l_1 \vee \cdots \vee l_{i-1} \vee l_{i+1} \vee \cdots \vee l_k$  must be true.

#### **Full Resolution Rule**

 $l_i$  and  $m_i$  are complementary literals:

$$l_1 \vee \cdots \vee l_i \vee \cdots \vee l_k, \qquad m_1 \vee \cdots \vee m_j \vee \cdots \vee m_k$$

$$l_1 \vee \cdots \vee l_{i-1} \vee l_{i+1} \vee \cdots \vee l_k \vee m_1 \vee \cdots \vee m_{j-1} \vee m_{j+1} \vee \cdots \vee m_n$$

If  $l_i$  is true, then  $m_j$  is false. Hence  $m_1 \vee \cdots \vee m_{j-1} \vee m_{j+1} \vee \cdots \vee m_n$  must be true. If  $l_i$  is false, then  $l_1 \vee \cdots \vee l_{i-1} \vee l_{i+1} \vee \cdots \vee l_k$  must be true.

$$P_{1,1} \lor P_{3,1}, \quad \neg P_{1,1} \lor \neg P_{2,2}$$

$$P_{3,1} \lor \neg P_{2,2}$$

### One Pair at a Time

Only one pair of complementary literals can be resolved at each step.

$$P \vee \neg Q \vee R$$
,  $\neg P \vee Q$ 

#### One Pair at a Time

Only one pair of complementary literals can be resolved at each step.

#### One Pair at a Time

Only one pair of complementary literals can be resolved at each step.

$$P \lor \neg Q \lor R, \qquad \neg P \lor Q$$

$$\neg Q \lor R \lor Q \equiv true$$

Only one pair of complementary literals can be resolved at each step.

$$\frac{P \vee \neg Q \vee R, \qquad \neg P \vee Q}{\neg Q \vee R \vee Q \equiv true}$$

Only one pair of complementary literals can be resolved at each step.

$$P \vee \neg Q \vee R, \qquad \neg P \vee Q$$

$$\neg Q \vee R \vee Q \equiv true$$



$$P \lor \neg Q \lor R$$
,  $\neg P \lor Q$ 

Only one pair of complementary literals can be resolved at each step.

$$\begin{array}{ccc}
P \lor \neg Q \lor R, & \neg P \lor Q \\
\hline
\neg Q \lor R \lor Q \equiv true
\end{array}$$



$$P \lor \neg Q \lor R$$
,  $\neg P \lor Q$ 

Incorrect conclusion!

Only one pair of complementary literals can be resolved at each step.

$$\begin{array}{ccc}
P \lor \neg Q \lor R, & \neg P \lor Q \\
\hline
\neg Q \lor R \lor Q \equiv true
\end{array}$$



$$P \lor \neg Q \lor R$$
,  $\neg P \lor Q$ 



Incorrect conclusion!

#### Conjunctive Normal Form

The resolution rule applies to clauses only.

Conjunctive normal form (CNF): a conjunction of clauses

#### Conjunctive Normal Form

The resolution rule applies to clauses only.

Conjunctive normal form (CNF): a conjunction of clauses

```
CNFSentence \rightarrow Clause_1 \wedge \cdots \wedge Clause_n
Clause \rightarrow Literal_1 \vee \cdots \vee Literal_m
Fact \rightarrow Symbol
Literal \rightarrow Symbol \mid \neg Symbol
Symbol \rightarrow P \mid Q \mid R \mid \cdots
```

#### Conjunctive Normal Form

The resolution rule applies to clauses only.

Conjunctive normal form (CNF): a conjunction of clauses

```
\begin{array}{cccc} \mathit{CNFSentence} & \rightarrow & \mathit{Clause}_1 \wedge \cdots \wedge \mathit{Clause}_n \\ & \mathit{Clause} & \rightarrow & \mathit{Literal}_1 \vee \cdots \vee \mathit{Literal}_m \\ & \mathit{Fact} & \rightarrow & \mathit{Symbol} \\ & \mathit{Literal} & \rightarrow & \mathit{Symbol} \mid \neg \mathit{Symbol} \\ & \mathit{Symbol} & \rightarrow & \mathit{P} \mid \mathit{Q} \mid \mathit{R} \mid \ldots \end{array}
```

Every sentence of propositional logic is equivalent to a CNF.

1. Eliminate ⇔.

$$\alpha \Leftrightarrow \beta$$

1. Eliminate  $\Leftrightarrow$ .

$$\alpha \Leftrightarrow \beta$$
 replaced with  $\downarrow$  
$$(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$$

1. Eliminate  $\Leftrightarrow$ .

$$\alpha \Leftrightarrow \beta$$
 replaced with  $\downarrow$  
$$(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$$

$$B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$$

$$\downarrow \\ (B_{1,1} \Rightarrow (P_{1,2} \vee P_{2,1})) \wedge ((P_{1,2} \vee P_{2,1}) \Longrightarrow B_{1,1})$$

1. Eliminate  $\Leftrightarrow$ .

$$\alpha \Leftrightarrow \beta$$
 replaced with  $\downarrow$  
$$(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$$

$$B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$$

$$\downarrow \\ (B_{1,1} \Rightarrow (P_{1,2} \vee P_{2,1})) \wedge ((P_{1,2} \vee P_{2,1}) \Longrightarrow B_{1,1})$$

2. Eliminate  $\Rightarrow$ .

1. Eliminate  $\Leftrightarrow$ .

$$\alpha \Leftrightarrow \beta$$
replaced with  $\downarrow$ 

$$(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$$

 $B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$   $\downarrow \\ (B_{1,1} \Rightarrow (P_{1,2} \vee P_{2,1})) \wedge ((P_{1,2} \vee P_{2,1}) \Longrightarrow B_{1,1})$ 

2. Eliminate  $\Rightarrow$ .

$$\alpha \Rightarrow \beta$$

$$\downarrow \\ \neg \alpha \lor \beta$$

1. Eliminate  $\Leftrightarrow$ .

$$\alpha \Leftrightarrow \beta$$
 replaced with  $\downarrow$  
$$(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$$

2. Eliminate  $\Rightarrow$ .





1. Eliminate  $\Leftrightarrow$ .

$$\alpha \Leftrightarrow \beta$$
 replaced with  $\downarrow$  
$$(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$$

2. Eliminate  $\Rightarrow$ .





3. Move ¬ inwards, repeatedly applying

$$\neg(\neg \alpha) \equiv \alpha$$

$$\neg(\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta)$$

$$\neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta)$$

1. Eliminate  $\Leftrightarrow$ .

$$\alpha \Leftrightarrow \beta$$
 replaced with  $\downarrow$  
$$(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$$

2. Eliminate  $\Rightarrow$ .



3. Move ¬ inwards, repeatedly applying

$$\neg(\neg \alpha) \equiv \alpha$$

$$\neg(\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta)$$

$$\neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta)$$

$$(\neg B \ 1,1 \lor \neg P \ 1,2 \lor P \ 2,1) \land ((\neg P \ 1,2 \land \neg, P \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1$$

1. Eliminate  $\Leftrightarrow$ .

$$\alpha \Leftrightarrow \beta$$
 replaced with  $\downarrow$  
$$(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$$

2. Eliminate  $\Rightarrow$ .

$$\alpha \Rightarrow \beta$$

$$\uparrow$$

$$\neg \alpha \lor \beta$$



3. Move - inwards, repeatedly applying

$$\neg(\neg \alpha) \equiv \alpha$$

$$\neg(\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta)$$

$$\neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta)$$

$$(\neg B \ 1,1 \lor \neg P \ 1,2 \lor P \ 2,1) \land ((\neg P \ 1,2 \land \neg,P \ 1,1 \ 1 \ 1,1 \ 1 \ 1,1 \ 1 \ 2,1 \ 2 \ 1,2 \ 1 \ 2,1 \ 2 \ 1,2 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,1 \ 1,$$

4. Apply the distributivity law

1. Eliminate  $\Leftrightarrow$ .

$$\alpha \Leftrightarrow \beta$$
 replaced with  $\downarrow$  
$$(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$$

2. Eliminate  $\Rightarrow$ .





 $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$ 

3. Move ¬ inwards, repeatedly applying

$$\neg(\neg \alpha) \equiv \alpha$$

$$\neg(\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta)$$

$$\neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta)$$

 $\neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta) \qquad (\neg B \ 1,1 \lor \neg P \ 1,2 \lor P \ 2,1) \land ((\neg P \ 1,2 \land \neg P \ 1,2 \lor P \ 2,1)) \land ((\neg P \ 1,2 \land \neg P \ 1,2 \lor P \ 2,1))$ 1,1 1 1,1 , 1 1 2,1 2<sub>1</sub>1,2 1 2,1 , 2 2 1,2 1,1 1,1 1

4. Apply the distributivity law

 $(\neg B \ 1, 1 \lor \neg P \ 1, 2 \lor P \ 2, 1) \land (\neg P \ 1, 2 \lor B \ 1, 1) \land (\neg P \ 1, 2 \lor B \ 1, 1) \land (\neg P \ 1, 2 \lor B \ 1, 1) \land (\neg P \ 1, 2 \lor B \ 1, 1) \land (\neg P \ 1, 2 \lor B \ 1, 1) \land (\neg P \ 1, 2 \lor B \ 1, 1) \land (\neg P \ 1, 2 \lor B \ 1, 1) \land (\neg P \ 1, 2 \lor B \ 1, 1) \land (\neg P \ 1, 2 \lor B \ 1, 1) \land (\neg P \ 1, 2 \lor B \ 1, 1) \land (\neg P \ 1, 2 \lor B \ 1, 1) \land (\neg P \ 1, 2 \lor B \ 1, 1) \land (\neg P \ 1, 2 \lor B \ 1, 1) \land (\neg P \ 1, 2 \lor B \ 1, 1) \land (\neg P \ 1, 2 \lor B \ 1, 1) \land (\neg P \ 1, 2 \lor B \ 1, 1) \land (\neg P \ 1, 2 \lor B \ 1, 1) \land (\neg P \ 1, 2 \lor B \ 1, 1) \land (\neg P \ 1, 2 \lor B \ 1, 1) \land (\neg P \ 1, 2 \lor B \ 1, 1) \land (\neg P \ 1, 2 \lor B \ 1, 1) \land (\neg P \ 1, 2 \lor B \ 1, 1) \land (\neg P \ 1, 2 \lor B \ 1, 1) \land (\neg P \ 1, 2 \lor B \ 1, 1) \land (\neg P \ 1, 2 \lor B \ 1, 1) \land (\neg P \ 1, 2 \lor B \ 1, 1) \land (\neg P \ 1, 2 \lor B \ 1, 1) \land (\neg P \ 1, 2 \lor B \ 1, 1) \land (\neg P \ 1, 2 \lor B \ 1, 1) \land (\neg P \ 1, 2 \lor B \ 1, 1) \land (\neg P \ 1, 2 \lor B \ 1, 1) \land (\neg P \ 1, 2 \lor B \ 1, 1) \land (\neg P \ 1, 2 \lor B \ 1, 1) \land (\neg P \ 1, 2 \lor B \ 1, 1) \land (\neg P \ 1, 2 \lor B \ 1, 1) \land (\neg P \ 1, 2 \lor B \ 1, 1) \land (\neg P \ 1, 2 \lor B \ 1, 1) \land (\neg P \ 1, 2 \lor B \ 1, 1) \land (\neg P \ 1, 2 \lor B \ 1, 1) \land (\neg P \ 1, 2 \lor B \ 1, 1) \land (\neg P \ 1, 2 \lor B \ 1, 1) \land (\neg P \ 1, 2 \lor B \ 1, 1) \land (\neg P \ 1, 2 \lor B \ 1, 2) \land (\neg P \ 1, 2 \lor B \ 1, 2) \land (\neg P \ 1, 2 \lor B \ 1, 2) \land (\neg P \ 1, 2 \lor B \ 1, 2) \land (\neg P \ 1, 2 \lor B \ 1, 2) \land (\neg P \ 1, 2 \lor B \ 1, 2) \land (\neg P \ 1, 2 \lor B \ 1, 2) \land (\neg P \ 1, 2 \lor B \ 1, 2) \land (\neg P \ 1, 2 \lor B \ 1, 2) \land (\neg P \ 1, 2 \lor B \ 1, 2) \land (\neg P \ 1, 2 \lor B \ 1, 2) \land (\neg P \ 1, 2 \lor B \ 1, 2) \land (\neg P \ 1, 2 \lor B \ 1, 2) \land (\neg P \ 1, 2 \lor B \ 1, 2) \land (\neg P \ 1, 2 \lor B \ 1, 2) \land (\neg P \ 1, 2)$ 

1. Eliminate  $\Leftrightarrow$ .

$$\alpha \Leftrightarrow \beta$$
 replaced with  $\downarrow$  
$$(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$$

2. Eliminate  $\Rightarrow$ .





 $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$ 

3. Move ¬ inwards, repeatedly applying

1,1 1 1,1 ,1 1 2,1 2<sub>1</sub>1,2 1 2,1 ,2 2 1,2 1,1 1,1 1

4. Apply the distributivity law

$$P$$

$$P \to (Q \lor R)$$

$$Q \to S$$

$$R \to (S \land T)$$

$$P$$

$$P \to (Q \lor R) \longrightarrow \neg P \lor Q \lor R$$

$$Q \to S$$

$$R \to (S \land T)$$

$$P$$

$$P \to (Q \lor R) \longrightarrow \neg P \lor Q \lor R$$

$$Q \to S \longrightarrow \neg Q \lor S$$

$$R \to (S \land T)$$

$$P$$

$$P \to (Q \lor R) \qquad ---- \rightarrow \neg P \lor Q \lor R$$

$$Q \to S \qquad ---- \rightarrow \neg Q \lor S$$

$$R \to (S \land T) \qquad ---- \rightarrow \neg R \lor (S \land T)$$

$$P$$

$$P \to (Q \lor R) \qquad ---- \to \neg P \lor Q \lor R$$

$$Q \to S \qquad ---- \to \neg Q \lor S$$

$$R \to (S \land T) \qquad ---- \to \neg R \lor (S \land T)$$

$$---- \to (\neg R \lor S) \land (\neg R \lor T)$$

KB:

$$P$$

$$P \to (Q \lor R)$$

$$Q \to S$$

$$R \to (S \land T)$$

$$---- \land \neg R \lor (S \land T)$$

$$---- \land (\neg R \lor S) \land (\neg R \lor T)$$

 $Q: KB \vdash S$ ?

KB:

$$P$$

$$P \to (Q \lor R) \qquad ---- \to \neg P \lor Q \lor R$$

$$Q \to S \qquad ---- \to \neg Q \lor S$$

$$R \to (S \land T) \qquad ---- \to \neg R \lor (S \land T)$$

$$---- \to (\neg R \lor S) \land (\neg R \lor T)$$

 $Q: KB \vdash S$ ?

1. Converting sentences to CNF

KB:

$$P$$

$$P \to (Q \lor R) \qquad ---- \to \neg P \lor Q \lor R$$

$$Q \to S \qquad ---- \to \neg Q \lor S$$

$$R \to (S \land T) \qquad ---- \to \neg R \lor (S \land T)$$

$$---- \to (\neg R \lor S) \land (\neg R \lor T)$$

 $Q: KB \vdash S$ ?

1. Converting sentences to CNF

KB: 
$$P$$

$$\neg P \lor Q \lor R$$

$$\neg Q \lor S$$

$$(\neg R \lor S) \land (\neg R \lor T)$$

KB:

$$P$$

$$P \to (Q \lor R) \qquad ---- \to \neg P \lor Q \lor R$$

$$Q \to S \qquad ---- \to \neg Q \lor S$$

$$R \to (S \land T) \qquad ---- \to \neg R \lor (S \land T)$$

$$---- \to (\neg R \lor S) \land (\neg R \lor T)$$

$$Q: KB \vdash S$$
?

1. Converting sentences to CNF 2. Spilt each conjunction into clauses.

KB: 
$$P$$

$$\neg P \lor Q \lor R$$

$$\neg Q \lor S$$

$$(\neg R \lor S) \land (\neg R \lor T)$$

KB:

$$P$$

$$P \to (Q \lor R) \qquad ---- \to \neg P \lor Q \lor R$$

$$Q \to S \qquad ---- \to \neg Q \lor S$$

$$R \to (S \land T) \qquad ---- \to \neg R \lor (S \land T)$$

$$---- \to (\neg R \lor S) \land (\neg R \lor T)$$

$$Q: KB \vdash S$$
?

1. Converting sentences to CNF 2. Spilt each conjunction into clauses.

KB: 
$$P$$

$$\neg P \lor Q \lor R$$

$$\neg Q \lor S$$

$$(\neg R \lor S) \land (\neg R \lor T)$$

$$\neg R \lor S$$

$$P$$

$$P \to (Q \lor R) \longrightarrow \neg P \lor Q \lor R$$

$$Q \to S \longrightarrow \neg Q \lor S$$

$$R \to (S \land T) \longrightarrow \neg R \lor (S \land T)$$

$$---- (\neg R \lor S) \land (\neg R \lor T)$$

$$Q: KB \vdash S$$
?

- 1. Converting sentences to CNF
  - 2. Spilt each conjunction into clauses.

KB: 
$$P$$
 KB:  $P$   $\neg P \lor Q \lor R$   $\neg P \lor Q \lor R$   $\neg Q \lor S$   $\neg Q \lor S$   $\neg R \lor S$ 

- (1) *P*
- (2)  $\neg P \lor Q \lor R$
- (3)  $\neg Q \lor S$
- (4)  $\neg R \lor S$
- (5)  $\neg R \lor T$

- $(1) \quad P \qquad \qquad (2) \quad \neg P \lor Q \lor R$

- (1) P
- (2)  $\neg P \lor Q \lor R$
- (3)  $\neg Q \lor S$
- (4)  $\neg R \lor S$
- (5)  $\neg R \lor T$



- (1) P
- (2)  $\neg P \lor Q \lor R$
- (3)  $\neg Q \lor S$
- (4)  $\neg R \lor S$
- (5)  $\neg R \lor T$



- (1) P
- $(2) \quad \neg P \lor Q \lor R$
- (3)  $\neg Q \lor S$
- (4)  $\neg R \lor S$
- (5)  $\neg R \lor T$



- (1) P
- (2)  $\neg P \lor Q \lor R$
- (3)  $\neg Q \lor S$
- (4)  $\neg R \lor S$
- $(5) \quad \neg R \lor T$



- (1) P
- (2)  $\neg P \lor Q \lor R$
- (3)  $\neg Q \lor S$
- (4)  $\neg R \lor S$
- (5)  $\neg R \lor T$



- (1) P
- (2)  $\neg P \lor Q \lor R$
- (3)  $\neg Q \lor S$
- $(4) \quad \neg R \lor S$
- (5)  $\neg R \lor T$



## Resolution Refutation

(Proof by contradiction)

To show that  $KB \models \alpha$ , we show that  $KB \land \neg \alpha$  is unsatisfiable. .

#### Resolution Refutation

#### (Proof by contradiction)

To show that  $KB \models \alpha$ , we show that  $KB \land \neg \alpha$  is unsatisfiable. .

#### KB (about a summer day):

- (1) If it is raining and you are outside then you will get wet.
- (2) If it is warm and there is no rain then it is a pleasant day.
- (3) You are not wet.
- (4) You are outside.
- (5) It is a warm day.

<sup>\*</sup> Example taken from <a href="http://watson.latech.edu/book/intelligence/intelligenceApproaches2b2.html">http://watson.latech.edu/book/intelligence/intelligenceApproaches2b2.html</a>

#### Resolution Refutation

#### (Proof by contradiction)

To show that  $KB \models \alpha$ , we show that  $KB \land \neg \alpha$  is unsatisfiable. .

#### KB (about a summer day):

- (1) If it is raining and you are outside then you will get wet.
- (2) If it is warm and there is no rain then it is a pleasant day.
- (3) You are not wet.
- (4) You are outside.
- (5) It is a warm day.

#### Prove

It is a pleasant day.

<sup>\*</sup> Example taken from <a href="http://watson.latech.edu/book/intelligence/intelligenceApproaches2b2.html">http://watson.latech.edu/book/intelligence/intelligenceApproaches2b2.html</a>

## KB in Propositional Sentences

#### KB (rewritten):

```
(1) ( rain ∧ outside ) ⇒ wet
(2) ( warm ∧ ¬rain ) ⇒ pleasant
(3) ¬wet
(4) outside
(5) warm
```

## KB in Propositional Sentences

#### KB (rewritten):

```
(1) ( rain ∧ outside ) ⇒ wet
(2) ( warm ∧ ¬rain ) ⇒ pleasant
(3) ¬wet
(4) outside
(5) warm
```

```
converted into clauses
```

```
(1) ¬rain V ¬outside V wet
(2) ¬warm V rain V pleasant
(3) ¬wet
(4) outside
(5) warm
```

## KB in Propositional Sentences

#### KB (rewritten):

```
(1) ( rain ∧ outside ) ⇒ wet
(2) ( warm ∧ ¬rain ) ⇒ pleasant
(3) ¬wet
(4) outside
(5) warm
```

converted into clauses

```
(1) ¬rain V ¬outside V wet
(2) ¬warm V rain V pleasant
(3) ¬wet
(4) outside
(5) warm
```

We add ¬pleasant to KB and try to derive false.

¬pleasant

(2) ¬warm V rain V pleasant





















# Proving $\neg P_{1,2}$ in the Wumpus World



| 1,4              | 2,4        | 3,4    | 4,4 |
|------------------|------------|--------|-----|
| 1,3 W!           | 2,3        | 3,3    | 4,3 |
| 1,2 A<br>S<br>OK | 2,2<br>OK  | 3,2    | 4,2 |
| 1,1<br>V<br>OK   | 2,1 B V OK | 3,1 P! | 4,1 |

## Resolution Algorithm

```
function PL-RESOLUTION(KB, \alpha) returns true or false inputs: KB, the knowledge base, a sentence in propositional logic \alpha, the query, a sentence in propositional logic clauses \leftarrow the set of clauses in the CNF representation of KB \land \neg \alpha new \leftarrow \{\} while true do

for each pair of clauses C_i, C_j in clauses do

resolvents \leftarrow PL-RESOLVE(C_i, C_j)

if resolvents contains the empty clause then return true new \leftarrow new \cup resolvents

if new \subseteq clauses then return false // no new clauses can be added. clauses \leftarrow clauses \cup new
```

The process ends in one of two situations below:

- No new clauses can be added, in which case *KB* does not entail  $\alpha$ ;
- Two clauses resolve to yield the empty clause, in which case *KB* entails  $\alpha$ .

Given a set of clauses S, its *resolution closure* RC(S) includes all the clauses in S as well as all the resolvents from repeated applications of the resolution rule.

Given a set of clauses S, its *resolution closure* RC(S) includes all the clauses in S as well as all the resolvents from repeated applications of the resolution rule.

RC(S) is finite because only  $3^n$  distinct clauses can be constructed out of n propositional symbols appearing in S.

Given a set of clauses S, its *resolution closure* RC(S) includes all the clauses in S as well as all the resolvents from repeated applications of the resolution rule.

RC(S) is finite because only  $3^n$  distinct clauses can be constructed out of n propositional symbols appearing in S.

**Ground Resolution Theorem**: If S is unsatisfiable, then RC(S) contains the empty clause  $\emptyset$ .

Given a set of clauses S, its *resolution closure* RC(S) includes all the clauses in S as well as all the resolvents from repeated applications of the resolution rule.

RC(S) is finite because only  $3^n$  distinct clauses can be constructed out of n propositional symbols appearing in S.

**Ground Resolution Theorem**: If S is unsatisfiable, then RC(S) contains the empty clause  $\emptyset$ .

Constructive proof by explicitly generating an assignment for S if  $\emptyset \notin RC(S)$ .

Given a set of clauses S, its *resolution closure* RC(S) includes all the clauses in S as well as all the resolvents from repeated applications of the resolution rule.

RC(S) is finite because only  $3^n$  distinct clauses can be constructed out of n propositional symbols appearing in S.

**Ground Resolution Theorem**: If S is unsatisfiable, then RC(S) contains the empty clause  $\emptyset$ .

Constructive proof by explicitly generating an assignment for S if  $\emptyset \notin RC(S)$ .

Given a set of clauses S, its *resolution closure* RC(S) includes all the clauses in S as well as all the resolvents from repeated applications of the resolution rule.

RC(S) is finite because only  $3^n$  distinct clauses can be constructed out of n propositional symbols appearing in S.

**Ground Resolution Theorem**: If S is unsatisfiable, then RC(S) contains the empty clause  $\emptyset$ .

Constructive proof by explicitly generating an assignment for S if  $\emptyset \notin RC(S)$ .