COMP 680 Statistics for Computing and Data Science Week 4: Maximun Likelihood Estimate

Su Chen, Assistant Teaching Professor, Rice D2K Lab

Outline

Maximum Likelihood Estimate

Properties of Point Estimate

Confidence Intervals

A Motivating Example

- One-dimensional parametric estimation:
 - let $X_1, X_2, \cdots X_n \overset{\text{i.i.d.}}{\sim} \text{Bernoulli}(p)$ observations. The problem is to estimate the parameter p.
 - if data is 6 Heads out of 10 flips, what would be the "best guess" of *p*, the probability of Head?

A Motivating Example

- One-dimensional parametric estimation:
 - let $X_1, X_2, \cdots X_n \overset{\text{i.i.d.}}{\sim} \text{Bernoulli}(p)$ observations. The problem is to estimate the parameter p.
 - if data is 6 Heads out of 10 flips, what would be the "best guess" of *p*, the probability of Head?
- Intuition of Maximum Likelihood Estimate(MLE)
 - what would be the value of p that most likely to generate the data I have observed?

The Likelihood Function

- The likelihood function is a function of the unknown parameter θ , but also depends on the observed data $X_1, X_2, \dots X_n$.
 - notation: $L(\theta|X_1 = x_1, X_2 = x_2, \dots X_n = x_n) = L_n(\theta|X)$
 - intuition: the "probability" of observing the data as a function of θ .

The Likelihood Function

- The likelihood function is a function of the unknown parameter θ , but also depends on the observed data $X_1, X_2, \dots X_n$.
 - notation: $L(\theta|X_1 = x_1, X_2 = x_2, \dots X_n = x_n) = L_n(\theta|X)$
 - ullet intuition: the "probability" of observing the data as a function of heta.
- $L_n(p|X) = ?$
 - $L_n(p|X)$ is a function of p defined in $p \in [0,1]$
 - how does this function look like?
 - what does it tell us about the "best guess" of p?

MLE

• assume $X_1, X_2, \cdots X_n \stackrel{\text{i.i.d.}}{\sim} f_X(x; \theta)$

$$L_n(\theta|X) = \begin{cases} \prod_{i=1}^n f_X(x_i; \theta) & \text{if } X \text{ is continuous} \\ \prod_{i=1}^n \mathbb{P}(X = x_i; \theta) & \text{if } X \text{ is discrete} \end{cases}$$

MLE

• assume $X_1, X_2, \cdots X_n \stackrel{\text{i.i.d.}}{\sim} f_X(x; \theta)$

$$L_n(\theta|X) = \begin{cases} \prod_{i=1}^n f_X(x_i; \theta) & \text{if } X \text{ is continuous} \\ \prod_{i=1}^n \mathbb{P}(X = x_i; \theta) & \text{if } X \text{ is discrete} \end{cases}$$

- $\hat{ heta}^{MLE} = \mathsf{arg}\,\mathsf{max}_{ heta \in oldsymbol{\Theta}}\, L_n(heta|X)$
 - we need to know the explicit format of the likelihood function in order to maximize it!

MLE

• assume $X_1, X_2, \cdots X_n \stackrel{\text{i.i.d.}}{\sim} f_X(x; \theta)$

$$L_n(\theta|X) = \begin{cases} \prod_{i=1}^n f_X(x_i; \theta) & \text{if } X \text{ is continuous} \\ \prod_{i=1}^n \mathbb{P}(X = x_i; \theta) & \text{if } X \text{ is discrete} \end{cases}$$

- $\hat{ heta}^{MLE} = \operatorname{arg\,max}_{ heta \in oldsymbol{\Theta}} L_n(heta|X)$
 - we need to know the explicit format of the likelihood function in order to maximize it!
- Notice both parameter θ and data X can be multi-dimensional
 - for illustration, we will keep it simple

•
$$X_1, X_2, \cdots X_n \overset{\text{i.i.d.}}{\sim} N(x; \mu, \sigma = 1)$$

• $L(\mu|\cdot) = ?$

- $X_1, X_2, \cdots X_n \stackrel{\text{i.i.d.}}{\sim} N(x; \mu, \sigma = 1)$
 - $L(\mu|\cdot) = ?$
 - what if σ is also unknown? $L(\mu, \sigma|\cdot) = ?$

•
$$X_1, X_2, \cdots X_n \stackrel{\text{i.i.d.}}{\sim} N(x; \mu, \sigma = 1)$$

- $L(\mu|\cdot) = ?$
- what if σ is also unknown? $L(\mu, \sigma|\cdot) = ?$
- $X_1, X_2, \dots X_n \stackrel{\text{i.i.d.}}{\sim} \text{Poission}(x; \theta)$ • $L(\theta|\cdot) = ?$

•
$$X_1, X_2, \cdots X_n \stackrel{\text{i.i.d.}}{\sim} N(x; \mu, \sigma = 1)$$

- $L(\mu|\cdot) = ?$
- what if σ is also unknown? $L(\mu, \sigma|\cdot) = ?$
- $X_1, X_2, \dots X_n \stackrel{\text{i.i.d.}}{\sim} \text{Poission}(x; \theta)$ • $L(\theta|\cdot) = ?$
- $X_1, X_2, \cdots X_n \stackrel{\text{i.i.d.}}{\sim} \text{Uniform}[0, \theta]$ • $L(\theta|\cdot) = ?$

MLE in Practice

Maximum Likelihood Estimate

- Once you write down the likelihood function:
 - $\hat{\theta}^{MLE} = \arg\max_{\theta \in \Theta} L_n(\theta|X)$
 - to get $\hat{\theta}^{MLE}$ is to solve an optimization problem

MLE in Practice

Maximum Likelihood Estimate

- Once you write down the likelihood function:
 - $\hat{\theta}^{MLE} = \arg\max_{\theta \in \Theta} L_n(\theta|X)$
 - to get $\hat{\theta}^{MLE}$ is to solve an optimization problem
- Some tricks
 - ullet ignore any "constant" that does not depend on heta
 - take the log transformation before maximize

MLE in Practice

- Once you write down the likelihood function:
 - $\hat{\theta}^{MLE} = \arg\max_{\theta \in \Theta} L_n(\theta|X)$
 - to get $\hat{\theta}^{MLE}$ is to solve an optimization problem
- Some tricks
 - ullet ignore any "constant" that does not depend on heta
 - take the log transformation before maximize
- Need numerical (convex) optimization
 - gradient decent
 - Newton's method

Outline

Maximum Likelihood Estimate

Properties of Point Estimate

Confidence Intervals

• Reminder: a point estimate $\hat{\theta}$ is a function of data $X_1, X_2, \dots X_n$ therefore by definition it is a statistic with a sampling distribution.

- Reminder: a point estimate $\hat{\theta}$ is a function of data $X_1, X_2, \dots X_n$ therefore by definition it is a statistic with a sampling distribution.
- A point estimate $\hat{\theta}$ is:

- Reminder: a point estimate $\hat{\theta}$ is a function of data $X_1, X_2, \dots X_n$ therefore by definition it is a statistic with a sampling distribution.
- A point estimate $\hat{\theta}$ is:
 - unbiased if bias($\hat{\theta}$) = $\mathbb{E}[\hat{\theta}] \theta = 0$

- Reminder: a point estimate $\hat{\theta}$ is a function of data $X_1, X_2, \dots X_n$ therefore by definition it is a statistic with a sampling distribution.
- A point estimate $\hat{\theta}$ is:
 - unbiased if bias $(\hat{\theta}) = \mathbb{E}[\hat{\theta}] \theta = 0$
 - consistent if $\hat{\theta} \stackrel{\mathbb{P}}{\rightarrow} \theta$ as $n \rightarrow \infty$

- Reminder: a point estimate $\hat{\theta}$ is a function of data $X_1, X_2, \dots X_n$ therefore by definition it is a statistic with a sampling distribution.
- A point estimate $\hat{\theta}$ is:
 - unbiased if bias $(\hat{\theta}) = \mathbb{E}[\hat{\theta}] \theta = 0$
 - consistent if $\hat{\theta} \stackrel{\mathbb{P}}{\rightarrow} \theta$ as $n \rightarrow \infty$
- Intuition and examples:
 - unbiased but not consistent:
 - consistent but not unbiased:

The Mean Squared Error

ullet For a point estimate $\hat{ heta}$, what can we say about its accuracy?

The Mean Squared Error

- For a point estimate $\hat{\theta}$, what can we say about its accuracy?
- Accuracy does not depend on bias alone, but on both:
 - $\mathsf{bias}(\hat{ heta}) = \mathbb{E}[\hat{ heta}] heta$
 - variance and standard error: $\mathsf{se}(\hat{ heta}) = \sqrt{\mathsf{Var}(\hat{ heta})}$

The Mean Squared Error

- For a point estimate $\hat{\theta}$, what can we say about its accuracy?
- Accuracy does not depend on bias alone, but on both:
 - bias $(\hat{ heta}) = \mathbb{E}[\hat{ heta}] heta$
 - variance and standard error: $\operatorname{se}(\hat{\theta}) = \sqrt{\operatorname{Var}(\hat{\theta})}$
- Thus the quality of a point estimate is often assessed by the Mean Squared Error (MSE):

$$\mathsf{MSE} = \mathbb{E}[(\hat{\theta} - \theta)^2]$$

Bias and Variance Decomposition

Not surprisingly, the MSE can be written as

$$\mathsf{MSE} = \mathsf{bias}^2(\hat{\theta}) + \mathsf{Var}(\hat{\theta})$$

Bias and Variance Decomposition

Not surprisingly, the MSE can be written as

$$\mathsf{MSE} = \mathsf{bias}^2(\hat{\theta}) + \mathsf{Var}(\hat{\theta})$$

Proof:

Bias and Variance Decomposition

Not surprisingly, the MSE can be written as

$$\mathsf{MSE} = \mathsf{bias}^2(\hat{ heta}) + \mathsf{Var}(\hat{ heta})$$

- Proof:
- A criteria to compare two point estimates:
 - In general, there is the bias and variance trade-off

Asymptotic Normality

A point estimate is Asymptotically Normal if

$$rac{\hat{ heta}- heta}{\mathsf{se}(\hat{ heta})}\stackrel{\mathbb{D}}{
ightarrow}\mathsf{N}(0,1)$$

Asymptotic Normality

A point estimate is Asymptotically Normal if

$$rac{\hat{ heta}- heta}{\mathsf{se}(\hat{ heta})}\stackrel{\mathbb{D}}{
ightarrow}\mathsf{N}(0,1)$$

- Connection to Central Limit Theorem:
 - many $\hat{ heta}$ involves sample mean

Asymptotic Normality

A point estimate is Asymptotically Normal if

$$\frac{\hat{ heta}- heta}{\mathsf{se}(\hat{ heta})}\stackrel{\mathbb{D}}{
ightarrow}\mathsf{N}(0,1)$$

- Connection to Central Limit Theorem:
 - many $\hat{ heta}$ involves sample mean
- Asymptotic Normality of MLE
 - in general true, under some mild regularity conditions

Outline

Maximum Likelihood Estimate

Properties of Point Estimate

Confidence Intervals

Definition

• A $1 - \alpha$ confidence interval (CI) for a parameter θ is an interval C = [a, b] where both a and b are functions of the data, such that:

$$\mathbb{P}(\theta \in C) \ge 1 - \alpha$$

Definition

• A $1 - \alpha$ confidence interval (CI) for a parameter θ is an interval C = [a, b] where both a and b are functions of the data, such that:

$$\mathbb{P}(\theta \in C) \ge 1 - \alpha$$

- Please notice in the above statement:
 - the interval C is random
 - θ is fixed (unknown parameter)

Definition

• A $1 - \alpha$ confidence interval (CI) for a parameter θ is an interval C = [a, b] where both a and b are functions of the data, such that:

$$\mathbb{P}(\theta \in C) \ge 1 - \alpha$$

- Please notice in the above statement:
 - the interval C is random
 - θ is fixed (unknown parameter)
- $\alpha = 0.05(0.1) \rightarrow 95\%$ (90%) Confidence Interval

Interpretation

Interpretation is the key!!!

Interpretation

- Interpretation is the key!!!
- It is not a probability statement about θ !
 - why?

Week 4 COMP 680 15 / 18

Interpretation

- Interpretation is the key!!!
- It is not a probability statement about θ !
 - why?
- Textbook interpretation:
 - if repeatedly draw data from they population many times and construct a CI each time
 - about $1-\alpha$ of the times, the CI will contain true θ value

Week 4 **COMP 680** 15 / 18

Interpretation

- Interpretation is the key!!!
- It is not a probability statement about θ !
 - why?
- Textbook interpretation:
 - if repeatedly draw data from they population many times and construct
 a CI each time
 - about $1-\alpha$ of the times, the CI will contain true θ value
- Real life interpretation???
 - ullet interval estimate of parameter heta
 - what is wrong with point estimate?
 - quantify uncertainty

Recall CLT

Central Limit Theorem: "asymptotic normality of sample mean"

Week 4 COMP 680 16 / 18

Recall CLT

- Central Limit Theorem: "asymptotic normality of sample mean"
- **IF** $X_1, X_2, \cdots X_n \overset{\text{i.i.d.}}{\sim} f_X(\cdot)$ with mean μ and variance σ^2 , then:

$$\frac{\sqrt{n}(\bar{X}_n-\mu)}{\sigma}\stackrel{\mathbb{D}}{\to} N(0,1)$$

Week 4 **COMP 680** 16 / 18

Recall CLT

- Central Limit Theorem: "asymptotic normality of sample mean"
- **IF** $X_1, X_2, \dots X_n \overset{\text{i.i.d.}}{\sim} f_X(\cdot)$ with mean μ and variance σ^2 , then:

$$\frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma} \stackrel{\mathbb{D}}{\to} N(0, 1)$$

- Construct CI for sample mean:
 - relies on "knowing" the sampling distribution

Week 4 **COMP 680** 16 / 18

•
$$X_1, X_2, \cdots X_n \stackrel{\text{i.i.d.}}{\sim} N(\mu, \sigma^2)$$

Week 4 COMP 680 17 / 18

- $X_1, X_2, \cdots X_n \stackrel{\text{i.i.d.}}{\sim} N(\mu, \sigma^2)$
 - **IF** σ is known, then we have Normal CI for μ :

$$\left[\bar{X}_n + \frac{\sigma}{\sqrt{n}} z_{\alpha/2}, \bar{X}_n + \frac{\sigma}{\sqrt{n}} z_{1-\alpha/2}\right] \approx \left[\bar{X}_n - 2\frac{\sigma}{\sqrt{n}}, \bar{X}_n + 2\frac{\sigma}{\sqrt{n}}\right]$$

Week 4 COMP 680 17 / 18

- $X_1, X_2, \cdots X_n \stackrel{\text{i.i.d.}}{\sim} N(\mu, \sigma^2)$
 - **IF** σ is known, then we have Normal CI for μ :

$$\left[\bar{X}_n + \frac{\sigma}{\sqrt{n}} z_{\alpha/2}, \bar{X}_n + \frac{\sigma}{\sqrt{n}} z_{1-\alpha/2}\right] \approx \left[\bar{X}_n - 2\frac{\sigma}{\sqrt{n}}, \bar{X}_n + 2\frac{\sigma}{\sqrt{n}}\right]$$

• IF σ is unknown and s^2 is sample variance, then we have t-Cl for μ :

$$\left[\bar{X}_n + \frac{s}{\sqrt{n}}t_{\alpha/2}, \bar{X}_n + \frac{s}{\sqrt{n}}t_{1-\alpha/2}\right]$$

Week 4

- $X_1, X_2, \cdots X_n \stackrel{\text{i.i.d.}}{\sim} N(\mu, \sigma^2)$
 - **IF** σ is known, then we have Normal CI for μ :

$$\left[\bar{X}_n + \frac{\sigma}{\sqrt{n}} z_{\alpha/2}, \bar{X}_n + \frac{\sigma}{\sqrt{n}} z_{1-\alpha/2}\right] \approx \left[\bar{X}_n - 2\frac{\sigma}{\sqrt{n}}, \bar{X}_n + 2\frac{\sigma}{\sqrt{n}}\right]$$

• **IF** σ is unknown and s^2 is sample variance, then we have t-CI for μ :

$$\left[\bar{X}_n + \frac{s}{\sqrt{n}}t_{\alpha/2}, \bar{X}_n + \frac{s}{\sqrt{n}}t_{1-\alpha/2}\right]$$

- If population distribution is not normal:
 - asymptotic Normal CI for population mean.

- If \bar{X}_n has a limiting Normal distribution
- If g is differentiable and $g'(\mu)
 eq 0$

- If \bar{X}_n has a limiting Normal distribution
- If g is differentiable and $g'(\mu)
 eq 0$

$$\frac{\sqrt{n}(g(\bar{X}_n)-g(\mu))}{|g'(\mu)|\sigma}\stackrel{\mathbb{D}}{\to} N(0,1)$$

- If \bar{X}_n has a limiting Normal distribution
- If g is differentiable and $g'(\mu) \neq 0$

$$\frac{\sqrt{n}(g(\bar{X}_n)-g(\mu))}{|g'(\mu)|\sigma} \stackrel{\mathbb{D}}{\to} \textit{N}(0,1)$$

In other words.

$$ar{X}_n pprox \mathit{N}\left(\mu, rac{\sigma^2}{n}
ight)$$
 implies $g(ar{X}_n) pprox \mathit{N}\left(g(\mu), g'(\mu)^2 rac{\sigma^2}{n}
ight)$

Week 4 COMP 680 18 / 18

- If \bar{X}_n has a limiting Normal distribution
- If g is differentiable and $g'(\mu) \neq 0$

$$\frac{\sqrt{n}(g(\bar{X}_n)-g(\mu))}{|g'(\mu)|\sigma} \stackrel{\mathbb{D}}{\to} \textit{N}(0,1)$$

In other words,

$$ar{X}_n pprox N\left(\mu, rac{\sigma^2}{n}
ight)$$
 implies $g(ar{X}_n) pprox N\left(g(\mu), g'(\mu)^2 rac{\sigma^2}{n}
ight)$

Intuition: propagation of uncertainty