CLAIMS

1. A method for yielding transient solutions for the film-blowing process by using a film-blowing process model characterized that the following governing equations in consideration of the viscoelasticity and characteristics of the film are first solved; and then, coordinate transformation, through the free-end-point problem is changed into a fixed-end-point problem; and finally, by introducing Newton's method and OCFE (Orthogonal Collocation on Finite Elements), the transient solution for the film blowing process is obtained:

Equations:

$$\frac{\partial}{\partial t} \left(rw \sqrt{1 + \left(\frac{\partial r}{\partial z} \right)^2} \right) + \frac{\partial}{\partial z} (rwv) = 0$$
...(1)

Here,

5

10

15

20

$$t = \frac{\overline{t}\,\overline{v_0}}{\overline{r_0}}, z = \frac{\overline{z}}{\overline{r_0}}, r = \frac{\overline{r}}{\overline{r_0}}, v = \frac{\overline{v}}{\overline{v_0}}, w = \frac{\overline{w}}{\overline{w_0}}$$

Axial direction:

$$\frac{2rw[(r_{11} - r_{22})] + 2r\sigma_{swf}}{\sqrt{1 + (\partial r/\partial z)^{2}}} + B(r_{F}^{2} - r^{2}) - 2C_{gr} \int_{0}^{z_{L}} rw \sqrt{1 + (\partial r/\partial z)^{2}} dz - 2\int_{0}^{z_{L}} rT_{drag} dz = T_{z}$$
...(2)

Here,

$$T_z = \frac{\overline{T_z}}{2\pi\eta_0\overline{w_0}\overline{v_0}}, \ B = \frac{\overline{r_0^2}\Delta P}{2\eta_0\overline{w_0}\overline{v_0}}, \ \Delta P = \frac{A}{\int_{-0}^{\overline{z_L}}\pi\overline{r^2}d\overline{z}} - P_{a^*} \ \tau_{ij} = \frac{\overline{\tau_{ij}}\overline{\tau_0}}{2\eta_0\overline{v_0}}$$

$$C_{gr} = \frac{\rho g \overline{r_0^2}}{2\eta_0 v_0}, \quad T_{drag} = \frac{\overline{T_{drag}} \overline{r_0^2}}{2\eta_0 v_0 \overline{w_0}}, \quad \sigma_{surf} = \frac{\overline{\sigma_{surf}} \overline{r_0}}{2\eta_0 v_0 \overline{w_0}}$$

5 Circumferential direction:

$$B = \left(\frac{\left[-w(\tau_{11} - \tau_{22}) + 2\sigma_{surf} \right] (\partial^2 r / \partial z^2)}{\left[1 + (\partial r / \partial z)^2 \right]^{3/2}} + \frac{w(\tau_{33} - \tau_{22}) + 2\sigma_{surf}}{r\sqrt{1 + (\partial r / \partial z)^2}} - C_{gr} \frac{\partial r / \partial z}{\sqrt{1 + (\partial r / \partial z)^2}} \right)$$

...(3)

...(4)

10 Constitutive Equation:

$$K\tau + De\left[\frac{\partial \tau}{\partial t} + v \cdot \nabla \tau - L \cdot \tau - \tau \cdot L^{T}\right] = 2\frac{De}{De_{0}}D$$

Here,

$$K = \exp[\epsilon D \epsilon \text{tr} \tau], \ L = \nabla v - \xi D, \ 2D = (\nabla v + \nabla v^2), \ De_0 = \frac{\lambda \overline{v_0}}{\overline{r_0}},$$

$$De = De_0 \exp\left[k\left(\frac{1}{\theta} - 1\right)\right]$$

15

Energy equation:

$$\frac{\partial \theta}{\partial t} + \frac{1}{\sqrt{1 + (\partial \tau / \partial z)^2}} \frac{\partial \theta}{\partial z} + \frac{U}{w} (\theta - \theta_e) + \frac{E}{w} (\theta^1 - \theta_\infty^1) = 0$$
... (5)

Here,

10

15

20

$$\theta = \frac{\overline{\theta}}{\theta_0}, \ \theta_c = \frac{\overline{\theta_c}}{\theta_0}, \ \theta_{\infty} = \frac{\overline{\theta_{\infty}}}{\theta_0}, \ U = \frac{\overline{Ur_0}}{\rho C_p w_0 v_0}, \ \overline{U} = \alpha \left(\frac{k_{air}}{\overline{z}}\right) \left(\frac{\rho_{air} \overline{v_c} \overline{z}}{\eta_{air}}\right)^{\beta}, \ E = \frac{\epsilon_m \sigma_{SB} \overline{\theta_0^4} \overline{r_0}}{\rho C_p w_0 v_0 \theta_0}$$

Boundary conditions:

$$v = w = r = \theta = 1, \tau = \tau_0$$

$$\frac{\partial r}{\partial t} + \frac{\partial r}{\partial z} \frac{v}{\sqrt{1 + (\partial r/\partial z)^2}} = 0, \frac{v}{\sqrt{1 + (\partial r/\partial z)^2}} = D_{R_t} \theta = \theta_F$$
at $z = z_F$... (6b)

wherein, r denotes the dimensionless bubble radius, w the dimensionless film thickness, v the dimensionless fluid velocity, t the dimensionless time, z the dimensionless distance coordinate, ΔP the air pressure difference between inside and outside the bubble, B the dimensionless pressure drop, A the air amount inside the bubble, P_a the atmospheric pressure, T_z the dimensionless axial tension, C_{gr} the gravity coefficient, T_{drag} the aerodynamic drag, σ_{surf} the surface tension, θ the dimensionless film temperature, τ the dimensionless stress tensor, D the dimensionless train rate tensor, ε and ξ the PTT model parameters, D the Deborah number, θ_0 the zeroshear viscosity, K the dimensionless activation energy, U the dimensionless heat transfer coefficient, E the

dimensionless radiation coefficient, k_{air} the thermal conductivity of cooling air, ρ_{air} the density of cooling air, η_{air} the viscosity of cooling air, v_c dimensionless cooling air velocity, α and β parameters of heat transfer coefficient relation, θ_c the dimensionless cooling-air temperature, θ_∞ the dimensionless ambient temperature, ϵ_m the emissivity, σ_{SB} the Stefan-Boltzmamn constant, ρ the density, C_p the heat capacity, D_R the drawdown ratio;

5

20

the assumption was made that no deformation occurred in the film past the freezeline at the boundary conditions; overbars denote the dimensional variables; subscripts 0, F and L denote the die exit, the freezeline conditions and the nip roll conditions, respectively; and subscripts 1, 2 and 3 denote the flow direction, normal direction, and circumferential direction, respectively.

2. The method for yielding transient solutions for the film-blowing process by using a film-blowing process model according to claim 1, wherein the non-isothermal process model is a numerical scheme for yielding transient solutions for the film-blowing process, which has three multiplicities.

3. In a nonlinear stabilization analysis method of a process, the improvement comprising that it is an analysis method that utilizes the temporal pictures obtained from the numerical scheme in Claim 1.

5

10

15

- 4. A method for the optimization of the process which is obtained by use of a sensitivity analysis of the relative effects affecting the stability of each process variable through a transient solution, which was calculated and yielded in the course of deduction of the transient solutions for the film-blowing process in Claim 1.
- 5. An apparatus necessary for the optimization and stabilization of the process, which utilizes the numerical scheme stated in Claim 1.