Deadlock Avoidance (Banker's Algorithm)

	Allocation			Max		Weed		Available			
	A	B	_	AB	c	A	BC		A	B	C
Po	0	1	0	75	3	7	43		3	3	2
P	2	0	0	3 2	_ 2	1	22				
P2_	3	0	2	. 9 0	2_	6	0 0				
P3	2	1		2 2	- 2	0	(
Py	0	6	2	4 3	3 _3	17	3 1				
								1			

Is the system safe?

work = available = (3 3 2)

Finish = (false, false, false, false, false)

1. Finish[1] = false, Need, = (1 2 2) < (3 3 2)

work = work + allocation, = (3 3 2) + (200)

Finish[1] = true = (532)

2. Finish[3]=false, Need3=(011) < (532

Finish[3]=true;

work = work + allo cation 3 = (5 3 2) + (2 1 1) = (7 4 3)

3. Finish[4] = false, Needy = (4 3 1) 5 (7 4 3) Finish[4] = true work= work + allocation = (7 4 3) + (0 0 2) 2 (7 4 5) 4. Finish[2]=false; Nced2=(600) <(7 45) Rinish[2]=true; works work + allocation, = (7 4 5) + (3 0 2) = (10 4 7) 5. Finish[0] = false; Needo = (7 4 3) 5(10 4 7) Finish[0] = true; work = work + allocations = (10 4 7) + (0 1 0) = (10 5 7) . . Safe with sequence

	Alloc	Mar	N Ted	Available A B C
Po	0 10	753	7 4 3	3 3 2
P	2 0 0	3 2 2	122	
P2_	3 0 2	902	600	
P3	2 ((222	0 ()	
P	002	4 3 3	4 3 (

Let Py has request > (3 3 0)

Requesty = (3 3 0)

Needy = (4 3 1)

O requesty & needy -

(3 3 0) \ (3 3 2)

3 Available = Available - Requesty = (3 3 2) - (3 3 0) = (0 0 2)

(2) Allocation 4 = Allocation 4 + Request 4 = (0 0 2) + (3 3 0)

= (3 3 2)

(3) Needy = Needy - Requesty = (4 3 1) - (3 30) = (1 0 1)

Now, the current state of the system

