Week 3 (Cont.) Artificial Neural Networks: A very brief introduction

Nhung Nguyen slides courtesy of Phong Le

Machine learning (supervised learning definition)

- Given an input x, find an output y
- Classification: y is one of N classes

```
<u>Training</u>: learn function y = f(x) given n examples D_{train} = \{(x_1, y_1), ..., (x_n, y_n)\}
```

<u>Modelling</u>: $f(x;\theta)$ is often parameterized (e.g., a neural network)

<u>Testing</u>: $f("I'm a big fan of Tom Hanks"; \theta) = ?$

x (input)	y (output)
I love the movie.	1 (positive)
The movie is horrible.	0 (negative)
The main actor is awesome.	1
Don't watch this movie.	0

Neurons

An artificial neuron is a computation unit which is loosely inspired by a biological

neuron

$$z = \sum_{i=1}^{n} w_i x_i + b = w_1 x_1 + w_2 x_2 + \dots + w_n x_n + b \qquad z = \mathbf{w}^T \mathbf{x} + b \; ; \quad y = f(z)$$

$$y = f(z)$$

Matrix-vector form (widely used in NN research)

Activation function *f*

Figure 2.2: Activation functions: sigmoid $(x) = \frac{1}{1+e^{-x}}$, $\tanh(x) = \frac{e^{2x}-1}{e^{2x}+1}$, softsign $(x) = \frac{x}{1+|x|}$.

Multi-layer Neural Networks

Weight matrices (parameters to learn) $\mathbf{y}^{(0)} = \mathbf{x}$ $\mathbf{z}^{(1)} = \mathbf{W}_1 \mathbf{y}^{(0)} + \mathbf{b}_1 \; ; \; \; \mathbf{y}^{(1)} = f(\mathbf{z}^{(1)})$ $\mathbf{z}^{(2)} = \mathbf{W}_2 \mathbf{y}^{(1)} + \mathbf{b}_2 \; ; \; \; \mathbf{y}^{(2)} = f(\mathbf{z}^{(2)})$ $\mathbf{y} = \mathbf{y}^{(2)}$

A feed-forward neural network

How many hidden layers do we need?

At least one

In theory, one hidden layer is enough: two-layer neural networks are *universal approximators* (they are capable of approximating any continuous function to any desired degree of accuracy).

Figure 2.4: The role of the hidden layer in a two-layer feed-forward neural network is to project the data onto another vector space in which they are now linearly separable.

How many hidden layers do we need? (cont.)

In practice (deep learning), "deep" structures are prefered

Figure 2.5: A four-layer neural network for face recognition. Higher layers (i.e. closer to the output layer) can extract more abstract features: the first hidden layer detects low level features such as edges and simple shapes; the second layer can identify more complex shapes like noses, eyes; and so on.

Classification task

- Assigning class c, one of N predefined classes
 C={c₁,...,c_N}, to x
- Compute probability Pr(c|x) using softmax

$$Pr(c|\mathbf{x}) = \operatorname{softmax}(c) = \frac{e^{u(c,\mathbf{y}_{L-1})}}{\sum_{c' \in C} e^{u(c',\mathbf{y}_{L-1})}}$$
$$[u(c_1,\mathbf{y}_{L-1}), ..., u(c_N,\mathbf{y}_{L-1})]^T = \mathbf{W}\mathbf{y}_{L-1} + \mathbf{b}$$

• If c_{true} is the correct class of \mathbf{x} , we want $Pr(c_{true}|\mathbf{x})$ the highest.

Training a neural net (for classification)

- Training set: $D_{train} = \{(\mathbf{x}_1, \mathbf{c}_1), ..., (\mathbf{x}_n, \mathbf{c}_n)\}$, a set of pair \mathbf{x} and its correct class \mathbf{c}
- Our neural network has parameters θ (the set of all the weight matrices)
- Minimize the cross-entropy loss (i.e., negative log-likelihood)

$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} -\log y_{i,c_i} + \frac{\lambda}{2} ||\theta||_2^2 \equiv -\frac{1}{n} \underbrace{\sum_{i=1}^{n} \log Pr(c_i|\mathbf{x}_i)}_{\text{log likelihood}} + \underbrace{\frac{\lambda}{2} ||\theta||_2^2}_{L_2 \text{ regularization}}$$

(Minibatch) Stochastic gradient descent

- 1. sample a minibatch D' of *m* examples from the training set D,
- 2. compute $J(\theta)$ on D',
- 3. update the parameters:
- $\theta \leftarrow \theta \eta \partial J/\partial \theta$
- 4. if stopping criteria are not met, jump to step 1.

Figure 2.6: The gradient descent method. We iteratively update θ by adding to it an amount of $-\eta \frac{\partial J}{\partial \theta}$ until J converges. In this way, J gets smaller and smaller until it reaches a local minimum. This is similar to rolling a ball downhill.

Computing gradients: error back-propagation

• Key: the chain rule $\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \frac{\partial \mathbf{z}}{\partial \mathbf{x}} \frac{\partial \mathbf{y}}{\partial \mathbf{z}}$

$$\mathbf{x} = \begin{bmatrix} \mathbf{w}_1 & \mathbf{w}_2 & \frac{\partial J}{\partial \mathbf{y}^{(2)}} = \frac{\partial J}{\partial \mathbf{y}} \\ \frac{\partial J}{\partial \mathbf{z}^{(2)}} = \frac{\partial J}{\partial \mathbf{z}^{(2)}} \frac{\partial J}{\partial \mathbf{y}^{(2)}} ; \quad \frac{\partial J}{\partial \mathbf{W}_2} = \frac{\partial J}{\partial \mathbf{z}^{(2)}} \mathbf{y}^{(1)T} ; \quad \frac{\partial J}{\partial \mathbf{y}^{(1)}} = \mathbf{W}_2^T \frac{\partial J}{\partial \mathbf{z}^{(2)}} \\ \frac{\partial J}{\partial \mathbf{z}^{(1)}} = \frac{\partial J}{\partial \mathbf{z}^{(1)}} \frac{\partial J}{\partial \mathbf{y}^{(1)}} ; \quad \frac{\partial J}{\partial \mathbf{W}_1} = \frac{\partial J}{\partial \mathbf{z}^{(1)}} \mathbf{y}^{(0)T} ; \quad \frac{\partial J}{\partial \mathbf{y}^{(0)}} = \mathbf{W}_1^T \frac{\partial J}{\partial \mathbf{z}^{(1)}} \\ \frac{\partial J}{\partial \mathbf{x}} = \frac{\partial J}{\partial \mathbf{y}^{(0)}}$$

Summary

Important parts of a neural network:

- Activation function
- Number of layers
- Training:
 - Loss function
 - Stochastic gradient descent

Further reading

 Chapter 7: Dan Jurafsky and James H. Martin. Speech and Language Processing (3rd ed. draft). https://web.stanford.edu/~jurafsky/slp3/