# Opdracht 5 - I<sup>2</sup>C

Deze opdracht loopt over 2 labosessies.

# **Opgaves**

Sluit de l<sup>2</sup>C temperatuursensor (TMP102) als volgt aan:

- verbind VCC van de sensor met de 3,3V pin van de Arduino (NIET op 5V)
- sluit een pull-down weerstand van 100k aan op de SDA en SCL lijn
- verbind de adrespin (ADD0) met GND zodat je het basisadres kan gebruiken voor de sensor



### **Temperatuur**

- ontwerp een functie getTemp() die de temperatuur van de sensor uitleest:
  - stel het pointer-register in op 0x00
  - vraag 2 bytes op van de sensor
  - lees de 2 bytes in van de sensor (MSB en LSB)
  - doe de nodige bewerkingen
  - return de temperatuurwaarde als kommagetal
- in de loop lees je m.b.v. de functie om de seconde de temperatuur uit een geef je die via de seriële poort weer

Wyns - Sanders

## Verwarming

- stel de thermostaat registers in  $(T_{LOW}$  en  $T_{HIGH})$  op respectievelijk 2 en 3 graden hoger dan de gemeten temperatuur in oefening 1
- je mag gehele getallen gebruiken, cijfers na de komma zijn dus niet nodig
- maak hiervoor een functie setConf() waarin je de parameters instelt
- lees in de loop nog steeds de gemeten temperatuur uit
- sluit een LED aan met weerstand op de ALT-pin (ALERT) van de temperatuursensor en ga de werking na

#### Ventilator

- verander het gedrag van de LED uit oefening 2 zodat hij werkt als ventilator i.p.v. verwarming
- de LED moet dus aangaan bij een te warme temperatuur
- zoek in de datasheet op welke bit je moet veranderen in het configurieregister om dit te bekomen

#### **Uitleessnelheid**

- pas de CR-bits aan zodat de temperatuursensor een meting doet om de seconde i.p.v. 4x per seconde
- lees de sensor 4x uit per seconde en controleer

#### 13-bit mode

- lees de temperatuur uit in 13-bit mode (Extended Mode)
- stel hiervoor het configuratieregister correct in
- schrijf een nieuwe functie getTempEM() die de waarde correct uitleest in 13-bit mode
- stel ook de thermostaatregisters opnieuw in in Extended Mode zodat je de functionaliteit uit oefening 2 bekomt

### Stroombesparing

- voeg een drukknop toe aan je schakeling
- stel de sensor in zodat hij niet continu meet maar in shutdown-mode gaat
- geef een signaal om te meten via de OS-bit aan de sensor bij een druk op de knop
- schrijf hiervoor een functie oneShot() die kan opgeroepen worden
- voer in je loop lus continu metingen uit, de waarde zou enkel mogen veranderen bij een druk op de knop

2 Wyns - Sanders