15-122: Principles of Imperative Computation

Iliano Cervesato, Pat Virtue

http://cs.cmu.edu/~15122

http://c0.typesafety.net/

Overview

- Goals of this course
- Interactions
 - Lectures, labs, recitations, office hours
- Assessment
 - Quizzes, homework (written, prog.), exams

The course begins ...

Activity

T	A	В	L	E		B L
R	E	P	L	Y		P I A
H	A	N	D	L	E	C L
В	E	L	0	W		s T U
D	E	F	I	N	E	D A

- Copy these words on a sheet of paper
- Complete the blanks to create new words (in any language)
- Turn the sheet of paper over and leave it that way

Goals

Programming Skills

- Transforming algorithmic ideas to code
 - Code that works the first time around
 - Deliberate programming
 - Well, nearly the first time around
 - Writing tests
- Imperative programming in C and C0
- Basic Unix survival

Algorithmic Ideas

- Asymptotic complexity
 - time/space
 - worst case/average case/amortized analysis
 - important classes: O(1), $O(\log n)$, $O(n \log n)$, $O(n^k)$, $O(2^n)$
- Important ideas like order and randomness
- Lots of fundamental data structures

(Psst... this is often what tech interviews test on!)

Computational Thinking

- "Thinking like a computer scientist" is important for lots of people, not just computer scientists!
 - Systematic approach to solving a problem
 - Finding solutions that are correct
 - Finding solutions that are efficient
- Develop vocabulary and tool kit

The Big Picture

- Pre- or co-requisites
 - either 15-151 (Math Foundations for CS)
 - or 21-127 (Concepts of Mathematics)
- Counterpart
 - 15-150 (Principles of Functional Programming)
- Pre-requisite for
 - 15-213 (Introduction to Computer Systems)
 - 15-210 (Parallel and Sequential Data Structures and Algorithms)
 - 15-214 (Principles of Software System Construction)

Overview

- Goals of this course
- Interactions
 - Lectures, recitations, office hours
- Assessment
 - Quizzes, homework, exams
- The course begins ...

Online Resources

- Course home page
 - http://cs.cmu.edu/~15122
 - Schedule, lecture notes, calendar, contact info...
 - Office hours start soon
- C0 home page
 - http://c0.typesafety.net/
 - Tutorial, reference, examples, binaries

Lectures

- Tuesday and Thursday
- Please be here, please be active
 - Ask and answer questions, pay attention
 - Lecture notes for review
 - NEW! a <u>few</u> online modules (optional)
- Laptops for note-taking only
 - No surfing, email, games, ...
 - Work on your homework elsewhere
 - If you can see board from the back row, be there
 - Too distracting for other students

Labs and Recitations

- Labs Monday (programming exercises)
- Recitations Friday (review & written exercises)

- **Collaborative** problem solving
 - Help others if you are done early!
- How-to programming and tool support
- Attend the lab/recitation you're registered for

Getting-started Help

- Laptop setup office hours
 - Wednesday 4:30 to 6:30pm, Porter Hall 100
 - Set up using the C0 tools with Andrew Linux
 - Format: drop in for half an hour
 (or do it yourself: http://c0.typesafety.net/tutorial/C0-at-CMU.html)
- Linux workshops
 - Thursday and Tuesday 7 to 9pm, Doherty Hall 2315
 - Learn useful Linux commands

Online communication

- Autolab and Gradescope for homework
- Grades from web page
- Piazza for announcements, questions, and communication with course staff
 - Get help, help each other!
- Cluster Linux machines and SSH to shared machines for assignments

Overview

- Goals of this course
- Interactions
 - Lectures, recitations, office hours
- Assessment
 - Quizzes, homework, exams
- The course begins ...

Assessment

- 50% Exams (2 midterms and a final)
- 45% Weekly Homework
 - Written due Monday by 9pm through Gradescope
 - No late days: 50% penalty if handed in within 12 hours
 - ∞ submissions
 - Programming due Thursday 9pm through Autolab
 - Download assignments and code from Autolab
 - 3 late days, at most 1 per homework
 - No extensions
- 5% Quizzes and lab/recitation participation
 - Quizzes in lecture and recitation
 - Basically: attend, make a good effort, get full credit

Grades

Academic integrity

- Quizzes, exams, homework must be your own
- You must hand in your work
 - OK: discussing course material, practice problems, study sessions, going over handed-back homework in groups
 - Not OK: copying or discussing answers, looking at or copying code or tests (even parts)
 - Not OK: talking through the assignment as you code with a classmate
- Whiteboard policy
 - OK: discussing approaches to solving a problem
 - Wait at least 4 hours, write solutions individually
 - Not OK: taking notes or pictures, memorizing answers
- Never OK: sharing/writing code together (even pseudocode)
 - We use MOSS to catch code duplication across semesters

If you make a mistake, come to us, don't let us come to you

How to do Well in this Course

- Do not stress over grades
- Participate
- Manage your time wisely
 - Don't use late days in 1st half of course
- Start homework early
- Get all the help you need
- Make time for fun

Activity debrief

 Without looking at your paper, write down as many of those words as you can recall

- How many people got more from the left column?
- From the right column?
- It's going to be a lot easier if you take good handwritten notes

Overview

- Goals of this course
- Interactions
 - Lectures, recitations, office hours
- Assessment
 - Quizzes, homework, exams
- The course begins ...

A Mysterious Function Approaches ...