

CLAIMS

WHAT IS CLAIMED IS:

	WHAT IS CLAIMED IS:	
1	1. A method for removing organic sulfur compounds from a vent gas s	tream
2	comprising the following steps:	
3	contacting the vent gas stream with liquid hydrocarbon stream; and	
4	absorbing a portion of the organic sulfur compounds from the ver	nt gas
5	stream into the liquid hydrocarbon stream to form an exiting vent gas s	tream.
1	2. The method as described in claim 1, wherein the liquid hydrocarbon s	stream
2	comprises one or more liquid hydrocarbons.	
1	The method as described in claim 2, wherein the hydrocarbon	stream
2	comprises two or more liquid hydrocarbons.	
1	4. The method as described in claim 1, wherein at least one of the	liquid
2	hydrocarbons having a boiling point of between about 180°F and about 430 °F.	
1	5. 1/ The method as described in claim 4, wherein the at least one of the	iquid :
2	hydrocarbons comprises benzene, xylene, toluene, hexane, heptane, octane, non	ane, or
3	mixtures thereof.	
1	6. The method as described in claim 4, wherein the at least one of th	e liquid
2	hydrocarbons comprises a hydrogenated naphtha.	
1	7. The method as described in claim 1, wherein the sulfur concentration	n of the
2	exiting vent gas stream is less than one percent of the sulfur concentration of the	vent gas
3	stream.	

1	8.	The method as described in claim 7, wherein the sulfur concentration is less
2	than 0.5% of t	he sulfur concentration of the vent gas stream.
1	9.	The method of claim 1 further comprising after step (b):
2		hydrotreating the hydrocarbon stream.
1	10.	The method of claim 1 further comprising after step (b):
2		routing the exiting vent gas stream to an incinerator or a heater.
1	11:/	The method of claim 1, wherein the organic sulfur compound removed is a
2	sulfide.	
1	12.	The method of claim 11, wherein the organic sulfur compound removed is a
2	disulfide oil.	
1	13.	A method for removing organic sulfur compounds from a vent gas stream
2	having organ	ic sulfur compounds, the vent gas stream further having an initial organic sulfur
3	compound co	oncentration, comprising the following steps:
4		(a) providing a scrubber, the scrubber having a shell, the shell having
5	an interior	cavity, a diameter, a vent gas entry port, a vent gas exit port, and a
6	hydrocarbor	entry port;
7		(b) introducing a hydrocarbon stream into the scrubber through the
8	hydrocarboi	n entry port;
9		(c) introducing the vent gas stream into the scrubber through the vent
10	gas entry po	ort;
11		(d) absorbing a portion of the organic sulfur compounds from the vent
12	gas stream	into the hydrocarbon stream to form an exiting vent gas stream; and

13	(e) removing the exiting vent gas stream from the scrubber through the
14	vent gas exit port.
1	14. The method of claim 13, wherein the scrubber further comprises gas/liquid
2	contact material, the gas/liquid contact material within the interior cavity of the scrubber.
1	15. The method of claim 14, wherein the gas/liquid contact material comprises
2	packing, trays, or fiber film contactor.
1	16. The method of claim 15, wherein the gas/liquid contact material comprises
2	structured packing or ring-shaped packing.
1	17. The method of claim 16, wherein the gas/liquid contact material comprises
2	either raschig rings or nutter rings, the raschig rings or nutter rings having a diameter.
1	18. The method of claim 17, wherein the raschig rings or nutter rings are
2	comprised of carbon steel, stainless steel, carbon, or ceramic.
1	195 The method of claim 17, wherein the raschig rings or nutter rings have a
2	nominal diameter of between 1/2" and 2".
1	20. The method of claim 14, wherein the scrubber further comprises a packing
2	support, the packing support located within the interior cavity of the shell and able to
3	support the gas/liquid contact material.
1	21. The method of claim 13, wherein the diameter of the shell is between about
2	6" and 24".
1	22. The method of claim 13, wherein the shell comprises carbon steel, stainless
2	steel, ceramic, or an Inconel alloy.

	The method of claim 13, wherein the scrubber further comprises a liquid
1	istributor, the liquid distributor located within the interior cavity of the shell and in the
2	istributor, the liquid distributor located within functional
3	ame plane as the diameter of the shell, the liquid distributor further being within functional
4	proximity of the hydrocarbon entry port.
1	24. The method of claim 13, wherein the vent gas entry port of the scrubber is
2	mounted on a disulfide separator.
1	25. A method for removing disulfide oils from a vent gas stream having
2	disulfide oils, comprising the following steps:
3	(a) providing a scrubber, the scrubber having a shell, the shell having
4	an interior cavity, a diameter, a vent gas entry port, a vent gas exit port, a hydrocarbon
5	entry port, and gas/liquid contact material, the gas/liquid contact material located within
6	the interior cavity of the scrubber;
7	(b) introducing a hydrocarbon stream into the scrubber through the
8	hydrocarbon entry port, the hydrocarbon stream comprising a least one hydrocarbon, the
9	at least one hydrocarbon having a boiling point of between about 180°F and about 430 °F;
10	(c) introducing the vent gas stream into the scrubber through the vent
11	gas entry port;
12	(d) absorbing a portion of the disulfide oils from the vent gas stream
13	into the hydrocarbon stream to form an exiting vent gas stream; and
14	(e) removing the exiting vent gas stream from the scrubber through the
15	vent gas exit port.