Introduction

Math 4B: Differential Equations

Lecture 15: Nonhomogeneous ODEs

- Solving Nonhomogeneous ODEs,
- The Method of Undetermined Coefficients,
- Some examples & More!

© 2021 Peter M. Garfield

Please do not distribute outside of this course.

Solutions of Nonhomogeneous ODEs

Today we're going to talk about solutions to the nonhomogeneous second order linear ODE

$$y'' + p(t)y' + q(t)y = g(t). (*)$$

Two Solutions of Equation (*)

Suppose Y_1 and Y_2 are solutions to the nonhomogeneous second order linear ODE (*). Then Y_1-Y_2 is a solution to the corresponding homogeneous ODE

$$y'' + p(t)y' + q(t)y = 0. (**)$$

Thus, if $\{y_1, y_2\}$ is a fundamental set of solutions to (**), then $Y_1 = Y_2 + c_1y_1 + c_2y_2$ for some constants c_1 and c_2 .

Idea:
$$(Y_1 - Y_2)'' + p(t)(Y_1 - Y_2)' + q(t)(Y_1 - Y_2)$$

$$= (Y_1'' + p(t)Y_1' + q(t)Y_1) - (Y_2'' + p(t)Y_2' + q(t)Y_2)$$

$$= q(t) - q(t) = 0.$$

General Solution of Nonhomogeneous Second Order Linear ODEs

The general solution of

$$y'' + p(t)y' + q(t)y = g(t)$$
 (*)

can be found via the following steps.

1. Find the general solution of the corresponding homogeneous equation

$$y'' + p(t)y' + q(t)y = 0. (**)$$

as $c_1y_1 + c_2y_2$. This is often called the **complemen**tary solution y_c .

- Find a particular solution y_p of (*).
- 3. The general solution of (*) is then

$$y = y_p + y_c$$
 or $y = y_p + c_1 y_1 + c_2 y_2$.

Finding a Particular Solution

Question: How do we find a particular solution of

$$y'' + p(t)y' + q(t)y = g(t)?$$

When

- p(t), q(t) are constant, and
- g(t) is a polynomial or exponential or sine or cosine

then we use the *method of undetermined coefficients* (also known as *guess and check*):

- Guess the form of the solution, and
- Check which coefficients work.

Example 1

Find the general solution of the ODE

$$y'' + 5y' + 6y = 3t^2.$$

Solution:

- 1. The complementary solution is $c_1e^{-3t} + c_2e^{-2t}$.
- 2. For the particular solution, we guess

$$y_p = At^2 + Bt + C.$$

Then $y'_n = 2At + B$ and $y''_n = 2A$, so

$$y_p'' + 5y_p' + 6y_p = 2A + 5(2At + B) + 6(At^2 + Bt + C)$$
$$= 6At^2 + (10A + 6B)t + (2A + 5B + 6C)$$
$$= 3t^2 + 0t + 0.$$

So A = 1/2, B = -5/6, C = 19/36. This means $y_p = \frac{1}{2}t^2 - \frac{5}{6}t + \frac{19}{36}$.

3. Thus
$$y = \frac{1}{2}t^2 - \frac{5}{6}t + \frac{19}{36} + c_1e^{-3t} + c_2e^{-2t}$$
.

$$y_p = \frac{1}{2}t^2 - \frac{5}{6}t + \frac{19}{36}$$
.

Example 2

2. Find the general solution of the ODE

$$y'' + 5y' + 6y = 4e^{-t}.$$

Solution:

- 1. The complementary solution is again $c_1e^{-3t} + c_2e^{-2t}$.
- **2.** For the particular solution, we guess

$$y_p = Ae^{-t}$$

Then $y_p' = -Ae^{-t}$ and $y_p'' = Ae^{-t}$, so

$$y_p'' + 5y_p' + 6y_p = Ae^{-t} - 5Ae^{-t} + 6Ae^{-t}$$

= $2Ae^{-t} = 4e^{-t}$.

So
$$A = 2$$
 and $y_p = 2e^{-t}$.

3. Thus $y = 2e^{-t} + c_1e^{-3t} + c_2e^{-2t}$.

Example 3

3. Find the general solution of the ODE

$$y'' + 5y' + 6y = 78\sin(3t)$$

Solution:

- 1. The complementary solution is again $c_1e^{-3t} + c_2e^{-2t}$.
- **2.** For the particular solution, we guess

$$y_p = A\sin(3t)$$

Then
$$y'_p = 3A\cos(3t)$$
 and $y''_p = -9A\sin(3t)$, so
$$y''_p + 5y'_p + 6y_p = -9A\sin(3t) + 15A\cos(3t) + 6A\sin(3t)$$
$$= -3A\sin(3t) + 15A\cos(3t) = 78\sin(3t).$$

But this doesn't work!!!!

Example 3 Again

3. Find the general solution of the ODE

$$y'' + 5y' + 6y = 78\sin(3t)$$

Solution:

- 1. The complementary solution is again $c_1e^{-3t} + c_2e^{-2t}$.
- 2. For the particular solution, we NOW guess

$$y_p = A\sin(3t) + B\cos(3t)$$

Then $y'_p = 3A\cos(3t) - 3B\sin(3t)$ and $y''_p = -9A\sin(3t) - 9B\cos(3t)$, so

$$y_p'' + 5y_p' + 6y_p = (-3A - 15B)\sin(3t) + (15A - 3B)\cos(3t) = 78\sin(3t).$$

So we get the linear system

$$-3A - 15B = 78$$

 $15A - 3B = 0$. $\implies A = -1, B = -5$.

Thus
$$y = c_1 e^{-3t} + c_2 e^{-2t} - \sin(3t) - 5\cos(3t)$$
.

General Approach

Right-hand side $(g(t))$	Guess
Polynomial e^{kt}	Polynomial of the same degree Ae^{kt} [See Notes!]
$\sin(\beta t)$ or $\cos(\beta t)$ $e^{\alpha t}\sin(\beta t)$ or $e^{\alpha t}\cos(\beta t)$	$A\sin(\beta t) + B\cos(\beta t)$ $Ae^{\alpha t}\sin(\beta t) + Be^{\alpha t}\cos(\beta t)$

Notes:

- **1.** If e^{kt} is a solution to the homogeneous equation (that is, if k is a root of the characteristic polynomial), the guess should be te^{kt} .
- 2. If e^{kt} and te^{kt} are solutions to the homogeneous equation (that is, if k is a double root of the characteristic polynomial), the guess should be t^2e^{kt} .

Second-to-Last Comment

Question: How can we find the solution to

$$y'' + 5y' + 6y = 4e^{-t} + 78\sin(3t)$$
?

Answer: Let L[y] = y'' + 5y' + 6y. Then we know that

$$L[e^{-3t}] = 0$$

$$L[e^{-2t}] = 0$$

$$L[2e^{-t}] = 4e^{-t}$$

$$L[-\sin(3t) - 5\cos(3t)] = 78\sin(3t).$$

So

$$L\left[c_1e^{-3t} + c_2e^{-2t} + 2e^{-t} - \sin(3t) - 5\cos(3t)\right] = 4e^{-t} + 78\sin(3t).$$

Moral: To solve $L[y] = g_1(t) + g_2(t)$, solve $L[y] = g_1(t)$ and $L[y] = g_2(t)$ first.

This is the same as Linear Algebra!

Linear Algebra

How do we solve $A\mathbf{v} = \mathbf{b}$?

Diff'l Eq'ns

How do we solve L[y] = g(t)?

1. Find *one* solution to the equation.

Find \mathbf{v}_p with $A\mathbf{v}_p = \mathbf{b}$.

Find
$$y_p$$
 with $L[y_p] = g(t)$.

2. Find all solutions to the corresponding homogeneous equation.

Find a basis $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ of the Null Space; that is, all solutions of $A\mathbf{v} = \mathbf{0}$.

Find a fundamental set of solutions $\{y_1, y_2\}$ of the homogeneous equation L[y] = 0.

3. Write down all solutions to the nonhomogeneous equation.

$$\mathbf{v} = \mathbf{v}_p + c_1 \mathbf{v}_1 + \dots + c_k \mathbf{v}_k$$

$$y = y_p + c_1 y_1 + c_2 y_2$$