- 1. Determine whether each relation is a function and find the domain and the range.
 - a) {(1, 2), (2, 3), (3, 2), (4, 5), (5, 4), (6, 1), (8, 2)}
 - b) $\{(-1, 2), (-2, -3), (3, 2), (5, 5), (5, 4), (-2, 1), (6, 2)\}$
 - c) $\{(1, 2), (2, 3), (3, 2), (4, 4), (5, 4), (6, 1), (7, 2), (-1, 2)\}$
- **2.** Given $g(x) = -2x^2 + x + 6$, find:

- a) g(0) b) g(-4) c) g(2) d) g(x+1)
- For $f(x) = \frac{2x-3}{x-4}$, determine
 - a) f(0)
- b) f(3)
- c) f(x+h) d) f(-4)

- 4. Solve the following equations:
 - a) $6x^2 17x + 12 = 0$
 - b) $3(x-3)^2 = -84$
 - c) $7x = 3 6x^2$
 - d) $3(x-3)^{3/2} = 8$
 - e) $2x^2 + 12x + 3 = 0$
 - f) $x^2 + x + 2 = 0$
 - $9) \frac{3}{5x+7} = -2$

- h) $\sqrt{4x+5} = 2x-5$
- $i) \quad 4x 5 = 16x^3 20x^2$
- $4x^4 x^2 3 = 0$
- k) $x-2\sqrt{x}+1=0$
- 1) $x^{2/3} + x^{1/3} 12 = 0$
- m) $x^{1/2} 4x^{1/4} + 3 = 0$
- $n) \quad 2|5-3m|-4=20$
- 5. Solve the following inequalities and express the solutions in interval notation.
 - a) 2(y+7) > 2(4y+1)-3y
- g) $2x^2 9x + 4 < 0$

b) $\frac{x}{5} + \frac{1}{3} \le \frac{x}{2} + 1$

h) $-x^2 < 5x$

c) $-13 \le 7 + 4x < 17$

i) $2x^2 - 3x - 2 > 0$

d) |3z+1|-9>-2

i) $x^3 + x^2 \ge 48x$

e) |6x+3| < -3

 $k) \quad \frac{3-x}{x+5} \ge 0$

f) $|6x+3| \ge -7$

l) $\frac{x-2}{x+3} \le 4$

- **6.** For $f(x) = -x^2 + 6x 5$, find
 - a) Find the vertex point
 - b) Find the line of symmetry
 - c) State whether there is a maximum or minimum value and find that value
 - d) Find the zeros of f(x)
 - e) Find the range and the domain of the function.
 - f) Graph the function and *label*.
 - g) On what intervals is the function increasing? Decreasing?
- 7. For $g(x) = x^2 + x 6$, find
 - a) Find the vertex point
 - b) Find the line of symmetry
 - c) State whether there is a maximum or minimum value and find that value
 - d) Find the zeros of f(x)
 - e) Find the range and the domain of the function.
 - f) Graph the function and *label*.
 - g) On what intervals is the function increasing? Decreasing?
- 8. The height of a projectile fired upward from the ground with an initial velocity of $128 \, ft./s$ is given by $s = -16t^2 + 128t$, where s is the height in *feet* and t is the time in *seconds*. Find the times at which the projectile will be $192 \, feet$ above the ground.
- **9.** A rancher has 360 *yd.* of fencing with which to enclose two adjacent rectangular corrals, one for sheep and one for cattle. A river forms one side of the corrals. Suppose the width of each corral is *x* yards.

- a) Express the total area of the two corrals as a function of x.
- b) Find the domain of the function.
- c) Find the maximum area
- d) Find the dimensions that maximize the corrals area
- 10. A projectile is fired vertically upward, and its height s(t) in feet after t seconds is given by the function defined by $s(t) = -16t^2 + 800t + 600$
 - a) From what height was the projectile fired?
 - b) After how many seconds will it reach its maximum height?
 - c) What is the maximum height it will reach?

- 11. A ball is thrown upwards, and its height s at time t can be determined by the function $s(t) = -16t^2 + 48t + 8$, where s is measured in feet above the ground and t is the number of seconds of flight. Find:
 - a) The time it takes the ball to reach its maximum height.
 - b) The maximum height the ball attains.
- **12.** The period *T* of the pendulum is the time it takes the pendulum to complete one swing from left to right and back. For a pendulum near the surface of Earth

$$T = 2\pi \sqrt{\frac{L}{32}}$$

Where *T* is measured in *seconds* and *L* is the length of the pendulum in *feet*. Find the length of a pendulum that has a period of 4 *seconds*.

13. If a projectile is launched from ground level with an initial velocity of 96 *ft* per *sec*, its height in feet *t seconds* after launching is *s feet*, where

$$s = -16t^2 + 96t$$

When will the projectile be greater than 80 feet above the ground?

14. You can rent a car for the day from Company *A* for \$29.00 plus \$0.12 a *mile*. Company *B* charges \$22.00 plus \$0.21 a *mile*. Find the number of miles *m* per day for which it is cheaper to rent from Company *A*.

Solution

a) Function; Domain = $\{1, 2, 3, 4, 5, 6, 8\}$ Range = $\{1, 2, 3, 4, 5\}$ 1.

- b) Not a function; Domain = $\{-2, -1, 1, 3, 5, 6\}$ Range = $\{-3, 1, 2, 4, 5\}$
- c) Function; $Domain = \{-1,1,2,3,4,5,6,7\}$ $Range = \{1,2,3,4\}$

2. *a*) 6 *b*) −30

c) 0

d) $-2x^2 - 3x + 5$

a) $\frac{3}{4}$ b) -3 c) $\frac{2x+2h-3}{x+h-4}$ d) $\frac{11}{8}$

4.

a) $x = \left\{ \frac{4}{3}, \frac{3}{2} \right\}$

h) x = 5

b) $x = 3 + 2i\sqrt{7}$

i) $x = \left\{ \frac{5}{4}, \pm \frac{1}{2} \right\}$

c) $x = \left\{-\frac{3}{2}, \frac{1}{3}\right\}$

 $j) \quad x = \left\{ \pm 1, \ \frac{\pm i\sqrt{3}}{2} \right\}$

d) $x = 3 + \frac{4}{\sqrt[3]{q}}$ or $x = 3 + \frac{4}{3}\sqrt[3]{3}$

k) x=1

e) $\frac{-6 \pm \sqrt{30}}{2}$

l) $x = \{-64, 27\}$

f) $-\frac{1}{2} \pm \frac{\sqrt{7}}{2}i$

m) x = 1, 81

y(x) = -3

 $m = \left\{-\frac{17}{3}, \frac{7}{3}\right\}$

5.

a) $(-\infty,4)$

f) $(-\infty, \infty)$

j) $\left[\frac{-1-\sqrt{193}}{2},\ 0\right] \cup \left[\frac{-1+\sqrt{193}}{2},\ \infty\right]$

b) $\left|\frac{20}{9},\infty\right|$

g) $\left[\frac{1}{2}, 4\right]$

k) (-5, 3]

c) $\left[-5, \frac{5}{2}\right)$

h) $(-\infty, -5) \cup (0, \infty)$

l) $\left(-\infty, -\frac{14}{3}\right] \cup \left(-3, \infty\right)$

d) $(2,\infty)$

i) $\left(-\infty, -\frac{1}{2}\right) \cup \left(2, \infty\right)$

e) No Solution

6. Vertex: $x = -\frac{b}{2a}$ $f(x) = -x^2 + 6x - 5$ $= -\frac{6}{2(-1)}$ = 3 $y = f(3) = -(3)^2 + 6(3) - 5$

Vertex point: (3,4)

Axis of symmetry: x = 3

Maximum point @ (3,4)

x-intercept: x = 1,5

y-intercept: y = -5

Domain: $(-\infty, \infty)$

Range: $(-\infty, 4]$

Increasing: $(-\infty,3)$

Decreasing: $(3,\infty)$

7. Vertex: $x = -\frac{1}{2(1)} = -\frac{1}{2}$

$$y = f\left(-\frac{1}{2}\right) = \left(-\frac{1}{2}\right)^2 + \left(-\frac{1}{2}\right) - 6 = -\frac{25}{4}$$

Vertex point: $\left(-\frac{1}{2}, -\frac{25}{4}\right)$

Axis of symmetry: $x = -\frac{1}{2}$

Maximum point @ $\left(-\frac{1}{2}, -\frac{25}{4}\right)$

x-intercept: x = -3, 2

y-intercept: y = -6

Domain: $(-\infty, \infty)$

Range: $\left[-\frac{25}{4}, \infty\right)$

Increasing: $\left(-\frac{1}{2},\infty\right)$

Decreasing: $\left(-\infty, -\frac{1}{2}\right)$

8. t = 2 and 6 sec. height 192 ft

a) $A(x) = 360x - 3x^2$ 9.

b) Domain: 0 < x < 120

c) 10800 yd^2 d) 60 by 180 yd.

c) Max. Height: 10,600 feet.

10. a) Height = 600 ft. (t = 0) *b*) t = 25 sec.

11. *a*) t = 1.5 secs b) Max height is 44 feet.

12. $L = \frac{128}{\pi^2}$ feet

(1, 5)**13.**

14. $\frac{700}{9}$ days

6