Aplicaciones Telemáticas

0.1. Introducción a la asignatura

J. E. López Patiño, F. J. Martínez Zaldívar

Objetivos de la asignatura

- Aprendizaje de técnicas básicas y herramientas de programación
 - Terminales móviles (Android —Java—, iOS)
 - Pequeños dispositivos con sensores (Arduino y Raspberry Pi)
 - Entornos genéricos (Python)
- Entorno Android:
 - · Compilación y depuración en PC (Windows, Linux, OS-X)
 - Emulación en PC
 - Ejecución en dispositivos reales
- Entorno Arduino:
 - Compilación en PC (Windows, Linux, OS-X)
 - Ejecución en dispositivos Arduino
- Python:
 - Compilación y ejecuión en PC (Windows, Linux, OS-X)
 - Entornos Anaconda, . . .
 - Uso de librerías científicas, ...
- Arquitectura Raspberry:
 - Linux introductorio
 - Plataforma
- Entorno iOS:
 - Compilación, depuración y emulación en dispositivos con OS-X
 - Ejecución en dispostivos iOS.

Objetivos de la asignatura

- Programación de aplicaciones de perfil telemático
 - Familiarización con sistemas de control de versiones (git y GitHub)
 - Interacción con usuario
 - Localización y visualización geográfica
 - Aplicaciones multimedia
 - Acceso a bases de datos
 - Sockets
 - Servicios web
 - Redes sociales
 - Gestión de llamadas, SMS, ... (dispositivos móviles)
 - Toma de datos y volcado en la *nube* (IoT —*Internet of Things*—)
 - Aplicaciones de carácter científico (uso en machine learning, big data, ...)
 - ...

Unidades didácticas

- Unidad 0: Presentación (6 h)
 - Introducción a la asignaturaGit y GitHub
- Unidad 1: Fundamentos (8 h)
 - Repaso de programación en Java
 - XML v JSON
- Unidad 2: Android (13 h)
 - Introducción a la programación en Android
 - a Interfaz de Usuario
 - Controles de la interfaz del usuario
 - Tareas asíncronas
 - Sensores y geolocalización
 - Mapas
 - Servicios, notificaciones y receptores de anuncios
 - Almacenamiento de datos
 - Sockets, HTTP y servicios web
 - Bluetooth, redes y Wi-Fi
 - Telefonía v SMS
 - · Publicación de aplicaciones
 - Redes sociales
 - a .
- Unidad 3: Conceptos de IoT (2 h)
 - Plataforma Arduino
 - Plataforma RaspberryPi
- Unidad 4: Programación en Python (8 h)
 - · Conceptos de programación en Python
 - Librerías y entornos

Clases de teoría y problemas de aula

- 3 horas de aula a la semana (3,7 créditos): teoría y problemas de aula
 - Grupos:

Grupo A3	M	Mi
Aula B.2 (edif. 4D)	10.15 h – 12.15 h	11.15 h – 12.15 h
Grupo B3	L	M
Aula 1.6 (edif. 4D)	15.00 h – 17.00 h	17.15 h – 18.15 h

- Inicio: 28 (B3) / 29 (A3) de enero
- Fin: 14 (B3) / 15 (A3) de mayo

Prácticas de laboratorio

- 1 hora de prácticas de laboratorio (0,8 créditos): 2 h en semanas *alternas*
 - Equipos de 1 ó 2 alumnos
 - Laboratorio de Redes Telemáticas (edificio 4D, 2.ª planta)

	Mi	J	V
	27F, 27M, 10A, 8My/ 6M, 3A, 17A, 15My	28F, 28M, 11A, 9My / 7M, 4A, 2My, 16My	1M, 29M, 12A, 10My / 8M, 5A, 3My, 17My
12.15 h - 14.15 h	A3B/A3A		A3D/A3C
15.00 h - 17.00 h	A3E	B3B/B3A	
17.15 h - 19.15 h		B3D/B3C	

Semana Impa Semana Par

Evaluación

- 2 Actos de evaluación de tipo test (65 %) y una recuperación total:
 - 1.er acto de evaluación: viernes 22 de marzo (tarde)
 - 2.o acto de evaluación: jueves, 23 de mayo (mañana)
 - Nota de teoría: media de ambos actos
 - Recuperación voluntaria : jueves 6 de junio (tarde)
 - Nota final de teoría: máximo de Nota de teoría y Nota de Recuperación voluntaria
- 4 Trabajos académicos memorias de prácticas— (15%)
 - Norma general de tiempo de entrega: 24 h máximo tras realización de práctica
- 1 Proyecto (20%)
 - Grupos de 1 a 4 alumnos
 - Valoración: número de alumnos y complejidad
 - Plataforma Android v tema libre
 - Entrega de software y documento explicativo del trabajo
 - Fecha tope de entrega: 17 de junio

GITST TEORÍA 2018-19

- Fecha examen
- Fecha tope entrega proyecto asigntura

Aula

- Clases teórico-prácticas con fuerte componente práctico
- Asistencia obligatoria (mínimo 40 %)
- Sugerencia:
 - Cada alumno con su portátil (no es estrictamente necesario)
 - Instalación de software:
 - Sublime
 - Git
 - JDK de Oracle
 - Android Studio
 - IDF Arduino
 - Anaconda
 - Anaconda
 - ...
 - Seguimiento de ejemplos
 - Resolución de problemas in-situ

Laboratorio

- Lectura previa de la memoria de la práctica antes de la realización de la misma
- Realizar los ejercicios propuestos
- Entregar memoria y resultados en GitHub
 - Si equipo con más de un integrante:
 - Entrega individual y replicada
 - Indicación explícita de integrantes
- Cambios de grupo

Bibliografía

- Jesús Tomás Gironés
 El gran libro de Android
 Marcombo
- Sayed Hashimi, Satya Komatineni, Dave MacLean Pro Android 2 Apress
- Reto Meyer
 Professional Android 2 Application Development
 Wros
- Scott McCracken
 Android. Curso de desarrollo de aplicaciones
 Inforbooks S. L.
- Abraham Gutiérrez y Raúl Martínez XML a través de ejemplos Ra-Ma