ALGO QCM

- 1. La méthode de recherche la plus naïve est la recherche?
 - a séquentielle
 - (b) dichotomique >
 - (c) autoadaptative w
 - (d) par interpolation
- 2. Dans le cas d'un ajout d'un élément appartenant déjà à un ensemble, la solution retenue?
 - (a) générera une erreur
 - (b) supprimera cet élément
 - (c) ajoutera un autre élément
 - (d) ajoutera l'élément une deuxième fois
 - e ne fera rien
- 3. Lors d'une recherche si la clé recherchée n'est pas trouvée, on parle de recherche?
 - a négative
 - (b) positive
 - (c) affirmative
 - (d) logique
 - (e) cognitive
- 4. L'important dans les ensembles c'est?
 - (a) la position d'un élément dans un ensemble
 - (b) la place d'un élément dans un ensemble
 - (a) l'appartenance d'un élément à un ensemble
 - (d) l'ordre d'un élément dans un ensemble
- 5. la recherche autoadaptative n'est pas implémentable sur?
 - a liste triée croissante
 - 6 liste triée décroissante
 - (c) liste non triée
- 6. La complexité au pire de la recherche négative séquentielle est d'ordre?
 - (a) linéaire
 - (b) logarithmique
 - (c) quadratique
 - (d) constant
- 7. La recherche séquentielle peut se faire sur?
- a (a) liste triée croissante
- ~(b) liste triée décroissante
 - liste non triée

- 8. La recherche autoadaptative ramenant l'élément trouvé à la moitié de la distance le séparant de la première place, préfère ?
 - @ one structure dynamique
 - (b) une structure statique
- 3. Quelle opération permet de récupérer le nombre d'occurrences d'un élément dans un multi-ensemble ?
 - (a) count
 - (b) compte
 - (c) ecc
 - (d) card
 - @ aboccurrences
- 10. Un élément ne peut pas être présent plusieurs fois dans un ensemble?
 - (a) faux
 - (I) vrai

QCM N°13

lundi 4 décembre 2017

Pour tout $(a, b) \in \mathbb{N}^{*2}$, on note $a \wedge b$ le pgcd de a et b.

Question 11

Soient $P = X^4 - 3X^3 + 2X + 1$ et $Q = X^2 + 1$. Alors

- el le quotient de la division euclidienne de P par Q est $X^2 3X 1$.
 - \bullet le quotient de la division euclidienne de P par Q est $X^2 3X + 2$.
 - c. le reste de la division euclidienne de P par Q est 2X+5.
 - d le reste de la division euclidienne de P par Q est 5X + 2.
 - e. rien de ce qui précède

Question 12

$$X^2 + 2$$
 divise $X^4 + X^2 - 2$

b
$$X^2 + 4$$
 divise $X^3 - 3X^2 + 4X - 12$

c.
$$X-1$$
 divise X^2-3X+2

$$\bigcirc$$
 $X-1$ divise X^2-2X+1

e. rien de ce qui précède

Question 13

Soient P et Q deux polynômes quelconques non nuls de $\mathbb{R}[X]$.

$$\mathscr{A}. \ d^{\circ}(P+Q) = d^{\circ}(P) + d^{\circ}(Q)$$

(b)
$$d^{\circ}(P+Q) \leq \operatorname{Max}(d^{\circ}(P), d^{\circ}(Q))$$

$$\textcircled{c} d^{\circ}(PQ) = d^{\circ}(P) + d^{\circ}(Q)$$

+
$$\mathscr{A}$$
 Si $d^{\circ}(P) \neq d^{\circ}(Q)$ alors $d^{\circ}(P+Q) = \operatorname{Max} \left(d^{\circ}(P), d^{\circ}(Q)\right)$

e. rien de ce qui précède

Question 14

Soient P et Q deux polynômes non nuls de $\mathbb{R}[X]$ tels que P divise Q et Q divise P. Alors

$$\bigcirc P = Q$$

- **6** il existe $\lambda \in \mathbb{R}^*$ tel que $P = \lambda Q$
- \bigcirc le reste de la division euclidienne de P par Q est 0
- d. rien de ce qui précède

Question 15

Soit $(a,b)\in \mathbb{N}^{*2}$ tel que $a\equiv 4[6]$ et $b\equiv 4[6].$ Alors

- $a+b \equiv 2[6]$
- \bigcirc 6 divise a-4
- d. rien de ce qui précède

Question 16

Soient p un nombre premier et $n \in \mathbb{N}$ tel que $n \neq p$. Alors

- $n \wedge p = 1 \Longrightarrow n$ premier
- - c. rien de ce qui précède

Question 17

Soient p premier et $n\in\mathbb{N}.$ Le petit théorème de Fermat dit

- a. $n^p \equiv p[n]_{\nearrow}$
- - \mathscr{L} . $n^p \equiv 1[p]$
 - $\not x. p^n \equiv 1[p]$
 - e. rien de ce qui précède

Question 18

Soit $(a, b) \in \mathbb{N}^{*2}$ tel que 3a = 2b. Alors

- 3 3 b
- (b) a divise 2b
- a divise b
- d. $a \wedge b = 1$
- e. rien de ce qui précède

Question 19

Soit $(a, b, c) \in \mathbb{N}^{*3}$. Alors

- (a) $a \mid b \Longrightarrow a \mid bc$
- $\textcircled{ b } \left[\forall (u,v) \in \mathbb{Z}^2, \, c \mid au+bv \right] \Longrightarrow \left[c \mid a \text{ et } c \mid b \right]$
- d. rien de ce qui précède

Question 20

Soit $(a,b,c) \in \mathbb{N}^{*3}$. Alors

Si b | a et c | a, alors bc | a

K. Sib | a ou e | a, alors be | a

Si be | a, alors b | a et c | a

d. rien de ce qui précède

	N 4		\sim	
ю	M	ren	ΘI	107.1
	BLALE.		-	

21. The side-effect of the exploding interest in coding courses has been
a) the appearance of online coding classes
b)the appearance of lots of computer programmers
c) an explosion of high-tech plagiarism
d)the reduction in the costs of such courses
22. Way(s) taken by computer science professors to stop plagiarism is/are
at stop assigning projects
b) warning at the beginning of each course
c) use software to flag plaigiarism
1 both b and c
23. In Harvard, an Honor Council is a committee that
a) rewards the students for exceptional work
(b) reviews allegations of academic dishonesty
c) interviews students for admission
d) honors the students at the end of the year
24. One of the reasons why students cheat in coding (as mentioned in the article) is
a) it is very time-consuming
b) it is very difficult
(Dit is easier to copy
d) because they get better grades
25. One reason, as cited in the article, for the large number of plagiarism cases is
à) students cheat more and more
b) students have gotten cleverer
teachers scrutinize students more
None of the above

26. A 'gray area' is an	
a) area that is not ambiguous	
(b) area of confusion	
c) area outside of a school	
d) area inside of a school	
27. Some charges were bed	cause the students confessed to having cheated.
a) given	
b) borrowed ~	
≰) drawn	
(a) withdrawn $ o$	
28. Finding a path through a	could be extremely difficult.
(a) maze	
b) syllabus	
c) snippet	
d) routine	
29. The school, college or university v	where one has studied is called a/an
a) syllabus	
b) guidelines	
c) alma mater	
d) fluke	
30. The students of Epita have to do a	lot of
a) syllabus	
b) assignments	
c) policies	
d) cribbing	

Reading Pain in a Human Face (part 2)

By Jan Hoffman, April 28, 2014

- 1. Then researchers provided an hour of training to a new group of observers. They were shown videos, asked to guess who was really in pain, and told immediately whom they had identified correctly. Then the observers were shown more videos and again asked to judge. But the training made little difference: The rate of accuracy scarcely improved, to 55 percent.
- 2. Then a computer took on the challenge. Using a program that the San Diego researchers have named CERT, for computer expression recognition toolbox, it measured the presence, absence and frequency of 20 facial muscle movements in each of the 1,800 frames of one-minute videos. The computer assessed the same 50 videos that had been shown to the original, untrained human observers.
- 3. The computer learned to identify cues that were so small and swift that they eluded the human eye. Although the same muscles were often engaged by fakers and those in real pain, the computer could detect speed, smoothness and duration of the muscle contractions that pointed toward or away from deception. When the person was experiencing real pain, for instance, the length of time the mouth was open varied; when the person faked pain, the time the mouth opened was regular and consistent. Other combinations of muscle movements were the furrowing between eyebrows, the tightening of the orbital muscles around the eyes, and the deepening of the furrows on either side of the nose.
- 4. The computer's accuracy: about 85 percent.
- 5. Jeffrey Cohn, a University of Pittsburgh professor of psychology who also conducts research on computers and facial expressions, said the CERT study addressed "an important problem, medically and socially," referring to the difficulty of assessing patients who claim to be in pain. But he noted that the study's observers were university students, not pain specialists.
- 6. Dr. Bartlett said she didn't mean to imply that doctors or nurses do not perceive pain accurately. But "we shouldn't assume human perception is better than it is," she said. "There are signals in nonverbal behavior that our perceptual system may not detect or we don't attend to them."
- 7. Dr. Turk said that among the study's limitations were that all the faces had the same frontal view and lighting. "No one is wearing sunglasses or hasn't shaved for five days," he said.
- 8. Dr. Bartlett and Dr. Cohn are working on applying facial expression technology to health care. Dr. Bartlett is working with a San Diego hospital to refine a program that will detect pain intensity in children.
- 9. "Kids don't realize they can ask for pain medication, and the younger ones can't communicate," she said. A child could sit in front of a computer camera, she said, referring to a current project, and "the computer could sample the child's facial expression and get estimates of pain. The prognosis is better for the patient if the pain is managed well and early."
- 10. Dr. Cohn noted that his colleagues have been working with the University of Pittsburgh Medical Center's psychiatry department, focusing on severe depression. One project is for a computer to identify changing patterns in vocal sounds and facial expressions throughout a patient's therapy as an objective aid to the therapist.
- 11. "We have found that depression in the facial muscles serves the function of keeping others away, of signaling, 'Leave me alone,' " Dr. Cohn said. The tight-lipped smiles of the severely depressed, he said, were tinged with contempt or disgust, keeping others at bay.
- 12. "As they become less depressed, their faces show more sadness," he said. Those expressions reveal that the patient is implicitly asking for solace and help, he added. That is one way the computer can signal to the therapist that the patient is getting better.

- 31. Which statement is true?
 - of Observers could train for as long as they wanted.
 - be Observers could not train for the experiment.
 - . No observers needed more than an hour for this experiment.
 - d) None of the above.
- 32. Humans cannot easily detect details in facial expressions when they are:
 - a. Too small.
 - b. Too quick.
 - c. Too subtle.
 - All of the above.
- 33. Computers are able to analyze real pain because they can detect:
 - a. speed, smoothness and duration of contractions.
 - b. tight inner eye movements.
 - c. which muscle is moving.
 - d) All of the above.
- 34. This study has its limitation because:
 - a. Everyone wore sunglasses.
 - **b.** No one shaved before the study.
 - All the faces had the same lighting and view angle.
 - Reople were naked.
- 35. Why would it be useful to detect pain intensity with children?
 - (a) Kids do not realize they can ask for medication.
 - b. Kids do not like to talk about pain.
 - c. Kids lie about how much pain they are in.
 - d. All of the above.
- 36. Why did Dr. Bartlett say that doctors and nurses could not perceive pain accurately?
 - (a.) She never said that.
 - b. Because computers do it better.
 - c. Because humans are focused properly.
 - d. None of the above.
- 37. What is one sign of people getting better from a depression?
 - a. Depression in the facial muscles.
 - (b.) Their faces show more sadness.
 - c. People cry out loud.
 - d. All of the above.
- 38. What is the use of the software developed with that study?
 - To teach computers to simulate pain.
 - b. To identify vocal patterns.
 - Differentiate fake from real pain in humans.
 - d. None of the above.
- 39. What are "nonverbal cues"?
 - (d) Facial expressions.
 - b. Noises.
 - e. Sign language.
 - d. None of the above.
- 40. Which statement is true?
 - The same videos were shown to the observers and the computers.
 - De Observers were always guessing.
 - Computers always analyzed the expressions right.
 - d. None of the above.

Q.C.M n°7 de Physique

41- La valeur algébrique du moment du poids \vec{P} de la poutre par rapport au point d'appui du triangle est:

- $\bigcirc P.L/4$
- et P.L/4
- d) nulle
- 42- La condition d'équilibre de rotation de la poutre par rapport au point d'appui (voir schéma de la question 41) donne :

 - (a) T.3L/4 P.L/4 = 0(b) T.3L/4 P.L/4 + R = 0
 - T.L/4 P.3L/4 = 0
- 43- La norme de la réaction du point d'appui sur la poutre (voir schéma de la question 41) est

 - A) R = T b) R = T P
- © $R = \frac{2}{3}.P$ d) $R = \frac{1}{3}P$
- 44- La valeur algébrique du moment de la force \vec{F}_1 par rapport au centre de l'écrou est :

- (A) $-F_1.L$ (B) $F_1.d$ (C) $-F_1.d$

45- La valeur algébrique du moment de \vec{F} , qui fait tourner la barre AB autour de l'axe (Δ) (perpendiculaire au plan de la feuille et passant par A) est :

46- Le moment du poids dans le pendule simple (rotation autour d'un axe perpendiculaire à la feuille et passant par le point O) est :

- a) nul b) $-P. \ell. \cos(\theta)$ \bigcirc $-P. \ell. \sin(\theta)$,
- 47- La deuxième loi de Newton s'écrit comme :

a)
$$\Sigma \vec{F}_{ext} = m \cdot \frac{dO\vec{M}}{dt}$$
 b) $\Sigma \vec{F}_{ext} = m \cdot \frac{d^2\vec{F}_{ext}}{dt}$ c) $\Sigma \vec{F}_{ext} = m \cdot \vec{V}$ $\Sigma \vec{F}_{ext} = \frac{d\vec{p}}{dt}$

- 48- Qu'appelle-t-on une force de contact?
 - a) une force de répulsion entre deux corps
 - (b) une réaction à une action de type contact
 - a) la poussée d'Archimède
- 49- Qu'est-ce qu'une force de rappel?
 - a) une force de frottement
 - Dune force qui s'oppose au déplacement
 - c) une force qui accompagne le mouvement
- 50- Donner un exemple de force à distance
 - a) la force de rappel
 - b) une réaction à une action
 - l'interaction électrostatique

QCM Electronique - InfoS1

Pensez à bien lire les questions ET les réponses proposées

Q1. Une résistance court-circuitée a :

a- un courant infini qui la traverse

あ- une tension infinie à ses bornes

- c une tension nulle à ses bornes
 - d- Aucune de ces réponses
- Q2. I_1 et I_2 sont deux générateurs de courant. On peut les remplacer par un seul générateur I si I_1 et I_2 sont :

a- En série

c- Rien tout cela

- 6 En parallèle
- Q3. E_1 et E_2 sont deux générateurs de tension On peut les remplacer par un seul générateur E si E_1 et E_2 sont :

a En parallèle

e Rien tout cela

- 6 En série
- Q4. Le théorème de Thévenin permet de remplacer un dipôle générateur complexe par une :
 - (a) source de tension idéale en série avec une résistance
 - b- source de tension idéale en parallèle avec une résistance
 - source de courant idéale en parallèle avec une résistance
 - source de courant idéale en série avec une résistance

Soit le circuit ci contre. (Q5&Q6)

Q5. Quelle est l'expression de U_4 lorsqu'on annule E et qu'on conserve I_2 ?

a.
$$U_4 = R_2, I_2$$

b.
$$U_4 = -\frac{R_2.R_4}{R_1 + R_2 + R_3 + R_4} I_2$$

$$\mathscr{C}. \quad U_4 = -\frac{R_4}{R_1 + R_2 + R_3 + R_4} I_2$$

Le générateur de Thévenin vu par R₄ est :

a-
$$E_{th} = E$$

(b)
$$E_{th} = E + (R_1 + R_2 + R_3).I_2$$

c-
$$E_{th} = E - (R_1 + R_2 + R_3).l_2$$

$$d-\ E_{th}=0$$

Dans le théorème de Norton, le courant I_N du générateur est aussi appelé : Q7.

a- Le courant à vide

c- Aucune de ces réponses

b- Le courant de court-circuit

Soit le circuit ci-contre (Q8 à Q10) :

Le générateur de Thévenin vu par R_3 est :

a.
$$E_{th} = \frac{R_1 \cdot R_2}{R_3 + R_4} \cdot V_0$$

b.
$$E_{th} = \frac{R_1 \cdot R_2}{R_1 + R_2} \cdot V_0$$

C.
$$E_{th} = \frac{R_4}{R_1 + R_2 + R_4} \cdot V_0$$

d.
$$E_{th} = \frac{R_3.R_4}{(R_1+R_2).(R_3+R_4)+R_3.R_4}.V_0$$

La résistance de Thévenin vu par R4 est : Q9.

a.
$$R_{th} = \frac{R_1.R_2.R_3}{R_1.R_2 + R_1.R_3 + R_2.R_3}$$

$$R_{th} = \frac{(R_1 + R_2).R_4}{R_1.R_2 + R_1.R_3 + R_2.R_3}$$

Q10. La source idéale de courant du générateur de Norton vu par R_3 délivre un courant d'intensité :

(a)
$$I_N = \frac{V_0}{R_1 + R_2}$$

$$I_N = \frac{V_0}{R_1 + R_2 + R_4}$$

$$I_N = \frac{V_0.(R3 + R_4)}{(R_1 + R_2).(R_3 + R_4) + R_3.R_4}$$

$$d_{N} I_{N} = \frac{V_{0}}{R_{1} + R_{2} + R_{3}}$$

QCM 7

Architecture des ordinateurs

Lundi 4 décembre 2017

11. $X = \overline{C} + A.B.$

Quelle est la première forme canonique de X?

$$(A + B + \overline{C}).(A + \overline{B} + \overline{C}).(\overline{A} + B + \overline{C})$$

B.
$$(\overline{A} + \overline{B} + C).(\overline{A} + B + C).(\overline{A} + \overline{B} + C)$$

C. A.B.C + A.
$$\overline{B}$$
.C + \overline{A} .B.C + \overline{A} . \overline{B} .C + \overline{A} . \overline{B} . \overline{C}

$$\overline{A}.\overline{B}.\overline{C} + \overline{A}.B.\overline{C} + A.\overline{B}.\overline{C} + A.B.\overline{C} + A.B.C$$

12. $X = \overline{C} + A.B$

Quelle est la seconde forme canonique de X?

$$(A + B + \overline{C}).(A + \overline{B} + \overline{C}).(\overline{A} + B + \overline{C})$$

$$A.\overline{B}.\overline{C} + \overline{A}.B.\overline{C} + A.\overline{B}.\overline{C} + A.B.\overline{C} + A.B.C$$

$$(\overline{A} + \overline{B} + C).(\overline{A} + B + C).(A + \overline{B} + C)$$

$$A.B.C + A.\overline{B}.C + \overline{A}.B.C + \overline{A}.\overline{B}.C + \overline{A}.\overline{B}.\overline{C}$$

Soit la table de vérité ci-dessous.

Charles of the later of the lat	CONTRACTOR DESIGNATION OF			
A	В	C	Z	
0	0	0	1	1
0	0	1	1)
0	1	0	0	4
0	1	1	0	
1	0	0	1	1
1	0	1	0	
1	1	0	0	1
1	1	1	1)

13. Quelle est la première forme canonique de Z?

$$A$$
, $(\overline{A} + B + \overline{C}).(\overline{A} + B + C).(A + \overline{B} + C).(A + B + \overline{C})$

$$R$$
. $(A + \overline{B} + C).(A + \overline{B} + \overline{C}).(\overline{A} + B + \overline{C}).(\overline{A} + \overline{B} + C)$

$$\overline{C}$$
 $\overline{A}.\overline{B}.\overline{C} + \overline{A}.\overline{B}.C + A.\overline{B}.\overline{C} + A.B.C$

D.
$$A.B.C + A.\overline{B}.\overline{C} + \overline{A}.\overline{B}.C + A.\overline{B}.C$$

14. Quelle est la seconde forme canonique de Z?

$$A$$
. A.B.C + A. \overline{B} . \overline{C} + \overline{A} . \overline{B} .C + A. \overline{B} . \overline{C}

B.
$$(\overline{A} + B + \overline{C}).(\overline{A} + B + C).(A + \overline{B} + C).(A + B + \overline{C})$$

$$(A + \overline{B} + C).(A + \overline{B} + \overline{C}).(\overline{A} + B + \overline{C}).(\overline{A} + \overline{B} + C)$$

$$\overline{A}$$
. \overline{A} . \overline{B} . \overline{C} + \overline{A} . \overline{B} . \overline{C} + \overline{A} . \overline{B} . \overline{C} + \overline{A} . \overline{B} . \overline{C}

Architecture des ordinateurs - EPITA - S1 - 2017/2018

- 15. Dans un tableau de Karnaugh:
 - N Plus le nombre de bulles est petit, plus le nombre de termes de l'expression est grand.
- Plus une bulle est petite, plus le nombre de variables dans le terme est grand.
 - 2. Plus le nombre de bulles est petit, plus le nombre de variables dans un terme est grand.
 - D. Plus une bulle est petite, plus le nombre de termes de l'expression est grand.

16.
$$\overline{B}.\overline{C} + A.\overline{C} + \overline{A}.\overline{B} =$$

A.
$$\overline{B}.\overline{C} + A.\overline{C}$$

B.
$$\overline{B}.\overline{C} + \overline{A}.\overline{B}$$

$$\begin{array}{ccc}
C. & A + \overline{B} + \overline{C} \\
\hline
D. & A.\overline{C} + \overline{A}.\overline{B}
\end{array}$$

Soit les quatre diagrammes de Karnaugh suivants :

	BC					
	W	00	01	11	10	
. [0	1	1	0	0	
A	1	1	1	0	0	

	X	0	1
AB	00	0	0
	01	0	T
	11	1	1
	10	1	1

	CD				
	Y	00	01	11	10
	00	1	0	0	1
	01	0	0	0	0
AB	11	0	0	0	0
	10	1	0	0	1 0

	CD					
	Z	00	01	11	10	
AB -	00	0	0	0	1	
	01	0	0	0	0	
	11	0	0	0	0	
	10	1	0	0	0	

17. Quelle est la forme la plus simplifiée de W?

A.
$$\overline{B} + \overline{A \oplus C}$$

B.
$$\overline{B} + (A \oplus C)$$

C.
$$\overline{B} + A.C + \overline{A}.\overline{C}$$

18. Quelle est la forme la plus simplifiée de X?

B.
$$A.\overline{B} + A.\overline{C} + B.C$$

- e. $A.\overline{B} + A.\overline{C} + \overline{A}.B.C$
- (D.) A + B.C
- 19. Quelle est la forme la plus simplifiée de Y?

A.
$$\overline{B}.\overline{D} + B.D$$

B.
$$\overline{B}.\overline{C}.\overline{D} + \overline{B}.C.\overline{D}$$

- C. $\overline{A}.\overline{B}.\overline{D} + A.\overline{B}.\overline{D}$
- $\overline{\mathbb{D}}$ $\overline{\mathbb{B}}.\overline{\mathbb{D}}$
- 20. Quelle est la forme la plus simplifiée de Z?

A.
$$\overline{A}.\overline{B} + \overline{C}.\overline{D}$$

B.
$$A.\overline{B} + C.\overline{D}$$

(C) B.D.(A⊕C)