Теория вероятностей

Власов Павел Александрович

2019

Оглавление

1	Дво	рйной интеграл
	1.1	Площадь плоской фигуры
	1.2	Задачи, приводящие к понятию двойного интеграла
	1.3	Определение свойства двойного интеграла
	1.4	Повторный интеграл
	1.5	Вычисление двойного интеграла
	1.6	Замена переменных в двойном интеграле
	1.7	Приложения двойного инетграла
2	Tpo	ойной интеграл
	2.1	Понятие кубируемой области
	2.2	Задача о вычислении массы тела
	2.3	Определение тройного интеграла
		2.3.1 Свойства тройного интеграла
	2.4	Вычисление тройного интеграла
	2.5	Замена переменных в тройном итеграле
		2.5.1 Связь цилиндрической и декартовой СК
		2.5.2 Связь сферической и декартовой СК 1.
3	Опр	ределения вероятности 12
	3.1	Случайный эксперимент
	3.2	Операции над событиями
		3.2.1 Свойства операций над событиями
	3.3	

Глава 1

Двойной интеграл

1.1Площадь плоской фигуры

Пусть D - фигура на плоскости.

Как ввести понятие площади фигуры D?

Если D является треугольником (или прямоугольником) понятие площади очевидно.

Если D является многоугольником, то ее можно разбить на треугольники, а площадь области *D* определить как сумму состовляющих ее треугольников.

Что делать если D - произвольная фигура

- а) Рассмотрим множество многоугольников M, каждый из которых целиком содержится в D. Обозначим $S_* = \sup S(m)$, где m - многоугольники, S(m) - площадь многоугольника
- б) Рассмотрим множество многоугольников M, каждый из которых содержит в себе D. Обозначим $S^* = \sup S(M)$

Определение 1.1. Область D на плоскости называется квадрируемой, если \exists конечные значения S_* , S^* причем $S_* = S^*$. При этом число $S = S_* = S^*$ называется площадью области

Определение 1.2. Говорят, что множество D точек плоскости имеет площадь **нуль**, если D можно целиком заключить в многоугольник, сколь угодной площади, т.е. $\forall \varepsilon > 0 \; \exists \;$ многоугольник M площади ε такой, что $D \leq M$

Пример:

- 1) $D = \{A\}, A$ точка
- 2) $D = \{AB\}, AB$ отрезок
- 3) Спрямленная (с конечной длиной) кривая

Теорема 1.1. Пусть D - замкнутая плоская область. Тогда D - квадрируемая граница обла $cmu \Delta. \Leftrightarrow umeem площадь 0. \blacksquare$

Теорема 1.2. Пусть α - плоская спрямленная кривая. Тогда α - имеет площадь нуль. ■

Следствие Пусть 1) D - область на плоскости, 2) D ограничена конечным числом спрямленных кривых. Тогда D - квадрируема.

Замечание 1.1. В дальнейшем мы будем рассматривать только квадрируемые области

1.2 Задачи, приводящие к понятию двойного интеграла

І. Задача об объеме цилиндрического тела

Пусть D - область плоскости Oxy

 $f \colon D \to R$ - функция определенная на множестве D

$$f(x,y) \ge 0 \quad (x,y) \in D$$

Рассмотрим тело T, которое ограничено плоскостью Oxy, графиком функции z=f(x,y) и цилиндрической поверхностью, направляющая которой совпадает с гранью D, а образующие параллельны Oz

1) Разобьем область D на пересекающиеся части

$$D = \bigcup_{i=1}^{n} D_i$$

int
$$D_i \cap \text{int } D_j = \emptyset$$
, при $i \neq j$ (*)

int D_j – множество внутренних точек области D_i

Условие (*) означает, что различные элементы разбиения не имеют общих внутренних точек

- 2) Выберем точку $M_i \in D_i$ $i = \overline{1;n}$
- 3) Считая, что размеры подобласти D_i малы, примем $\Delta V_i \approx f(M_i) \Delta S_i$, где $\Delta S_i = S(D_i)$, ΔV_i объем той части тела T, которая рассматривается под D_i

Tогда объем тела T:

$$V = \sum_{i=1}^{n} \Delta V_i \approx \sum_{i=1}^{n} f(M_i) \Delta S_i$$

Эта формула тем точнее, чем меньше размеры D_i , поэтому естественно перейти к пределу

$$V = \lim_{\substack{\text{max diam} (D_i) \to 0 \\ i=1 \text{ } n}} \sum_{i=1}^{n} f(M_i) \Delta S_i,$$

$$\operatorname{diam}(D) = \sup_{M,N \in D} ||\overline{MN}|| - \operatorname{диаметр} \ \operatorname{множества} \ D$$

II. Задача о вычислении массы пластины

Пусть:

- 1) Пластина занимает область D на плоскости
- 2) $T(x,y) \ge 0$ плоскость поверхности материала пластины в точке M(x,y)

Нужно найти массу m этой частички

1) Разобьем область D на непересекающей части

$$D = \bigcup_{i=1}^{n} D_i$$

int
$$D_i \cap \text{int } D_j = \emptyset, i \neq j$$

- 2) В пределах D_i выберем точку M_i , $i = \overline{1, n}$
- 3) Считая, что размеры D_i малы, можно принять, что в пределах каждой из оластей D_i плотность пластины меняется незначительно, поэтому во всех точках области D_i плотность $\approx f(M_i)$ Тогда масса части D_i : $\Delta m_i \approx f(M_i) \Delta S_i$, где $\Delta S_i = S(D_i)$, $i = \overline{1,m}$

4) Тогда масса всей пластины

$$m = \sum_{i=1}^{n} \Delta m_i \approx \sum_{i=1}^{n} f(M_i) \Delta S_i$$

Полученная формула тем точнее, чем меньше размеры D_i , поэтому собственно

$$m = \lim_{\substack{\text{max } \text{diam} \\ i=1,n}} \sum_{i=1}^{n} f(M_i) \Delta S_i$$

1.3 Определение свойства двойного интеграла

Пусть D - квадратичная замкнутая плоская область

Определение 1.3. *Разбиение области* D называется множество $R = \{D_1, ... D_n\}$, где

- 1) $D = \bigcup_{i=1}^{n} D_i$
- 2) int $D_i \cap int \ D_j = \emptyset$, $npu \ i \neq j$
- 3) D_i квадрируема, $i = \overline{1, n}$

Определение 1.4. Диаметром разбиения $R = \{D_1, ... D_n\}$ называется число

$$d(R) = \max_{i=\overline{1,n}} \underline{diam}(D_i)$$

Пусть D - квадратичная замкнутая область на плоскости $Oxy, f: D \to R$ (f является функцией двух переменных, т.к. D - область на плоскости)

Определение 1.5. Двойным интегралом функции f по области D называется число

$$\iint\limits_{D} f(x,y)dxdy = \lim_{d(R)\to 0} \sum f(n_i)\Delta S_i, \ \epsilon \partial e$$

 $R = \{D_1, ... D_n\}$ - разбиение области D

 $M_i \in D_i, i = \overline{1,n}$ - отмеченные точки

$$\Delta S_i = S(D_i)$$

Определение 1.6. В определении подразумевается, что указанный предел существует, конечен и не зависит от разбиения R области D и способа выбора отмеченных точек

Определение 1.7. Функции f, для которых существует $\iint_{\Delta} f dx dy$, называются **интегрируе-мыми** в D

Свойства двойного интеграла:

- 1) $\iint_D 1 dx dy = S(D)$
- 2) Линейность

Если f,g - интегрируемы в D функции, то

- а) $f \pm g$ интегрируема в D, $\iint_D (f \pm g) dx dy = \iint_D f dx dy \pm \iint_D g dx dy$
- б) $c \cdot f, c$ = const интегрируема, $\iint_D c \cdot f dx dy = c \iint_D f dx dy$
- 3) Аддитивность

Пусть

- 1. D_1, D_2 плоские квадратичные области
- $2. \ f$ интегрируема в D_1 и D_2
- 3. int $D_1 \cap \text{int } D_2 = \emptyset$

Тогда f интегрируема в D = $D_1 \cup D_2$

$$\iint\limits_{D} f dx dy = \iint\limits_{D_1} f dx dy + \iint\limits_{D_2} f dx dy$$

4) О сохранении интегралом знака функции

Пусть

- 1. $F(x,y) \ge 0$ в D
- $2. \ f$ интегрируема в D

тогда

$$\iint\limits_{D} F(x,y) dx dy \ge 0$$

- 5) Пусть
 - 1. $f(x,y) \ge g(x,y)$
 - $2. \ f,g$ интегрируемы в D

тогда

$$\iint\limits_{D} f dx dy \ge \iint\limits_{D} g dx dy$$

6) Теорема об оценке модуля двойного интеграла

Пусть f интегрируема в D, тогда |f| - интегрируем в D

$$|\iint\limits_{D} f dx dy| \le \iint\limits_{D} |f| dx dy$$

7) Теорема об оценке двойного интеграла (обобщенная теорема)

Пусть

- 1. f,g интегрируемы в D
- 2. $m \le f(x,y) \le M$
- 3. $g(x,y) \ge 0$

тогда

$$m\iint\limits_{D}g(x,y)dxdy\leq\iint\limits_{D}f(x,y)dxdy\leq M\iint\limits_{D}g(x,y)dxdy$$

Следствие Если $g(x,y) \equiv 1$ в D, то получаем "просто" теорема об оценке двойного интеграла

$$m \cdot S \le \iint\limits_D f(x,y) dx dy \le M \cdot S$$
, где $S = S(D)$

8) Теорема о среднем значении

Определение 1.8. Средним значением функции f в плоскости D называется

$$\langle f \rangle = \frac{1}{S(D)} \iint_D f(x, y) dx dy$$

Свойство Пусть

- 1. D линейно связная замкнутая область (т.е. граница D является связным множеством)
- $2. \ f$ непрерывна в D

Тогда существует $M_0 \in D$, такая что $f(M_0) = \langle f \rangle$

 Обобщенная теорема о среднем значении Пусть

- 1. f непрерывна в D
- $2.\,\,g$ интегрируема в D
- 3. g знакопостоянна
- 4. D линейно связанной множество (если f непрерывна в D, то f интегрируема в D)

тогда существует $M_0 \in D$ такая, что

$$\iint_{d} f(x,y)g(x,y)dxdy = f(M_0)\iint_{d} g(x,y)dxdy$$

<u>Замечание</u> Свойство (8) является частным случаем свойства (9) для g(x,y) = 1

1.4 Повторный интеграл

Определение 1.9. Повторным интегралом называется выражение $\int_a^b dx \int_{\varphi_1(x)}^{\varphi_2(x)} f(x,y) dy$, значение I_{nosm} которого определяется правилом $I_{nosm} = \int_a^b F(x) dx$, где $F(x) = \int_{\varphi_1(x)}^{\varphi_2(x)} f(x,y) dy$, $x \in [a,b], x = const$

Вычислить

$$I_{\text{повт}} = \int_{1}^{\ln(2)} dx \int_{1}^{\frac{1}{x}} x e^{xy} dy$$

$$a) F(x) = \int_{1}^{\frac{1}{x}} x e^{xy} dy = e^{xy} \Big|_{y=1}^{y=\frac{1}{x}} = e - e^{x}$$

$$6) I_{\text{повт}} = \int_{1}^{\ln(2)} F(x) dx = \int_{1}^{\ln(2)} (e - e^{x}) dx = e(\ln(2) - 1) - e^{x} \Big|_{1}^{\ln(2)} = e\ln(2) - 2$$

1.5 Вычисление двойного интеграла

Определение 1.10. Область D на плоскости Oxy называется y - прав., если любая прямая, параллельная Oy, пересекает границу D не более, чем в двух точках, либо содержит участок границы области D целиком

Замечание 1.2. 1. у-прав. можно задать в следующем виде:

$$D = \{(x, y) : a \le x \le b, \varphi_1(x) \le y \le \varphi(x)\}$$

2. х - прав. определеяется аналогично

Теорема 1.3. Пусть

- 1. $\exists \iint_{\mathcal{D}} f(x,y) dx dy = I$
- 2. D является у-прав. и задается соотношением (*)
- 3. $\forall x \in [a;b] \exists \int_{\varphi_1(x)}^{\varphi_2(x)} f(x,y) dy = F(x)$

Тогда

1. З повторный интеграл

$$\int_{a}^{b} \int_{\varphi_{1}(x)}^{\varphi_{2}(x)} f(x,y) = I_{noem}$$

2.
$$I = I_{nosm}$$

Замечание 1.3. Если область D не является правильной в направлении какой-нибудь из координатных осей, то ее можно разбить на правильные части и воспользоваться свойством аддитивности двойного интеграла

1.6 Замена переменных в двойном интеграле

Пусть

1. $I = \iint_{D_{xy}} f(x,y) dx dy$

2. $\varphi: D_{uv} \to D_{xu}$

$$\varphi: \begin{cases} x = x(u, v) \\ y = y(u, v) \end{cases}$$

Теорема 1.4. О замене переменных в двойном инетеграле Пусть

- 1. $D_{xy} = \varphi(D_{uv})$
- $2. \varphi$ биективно
- 3. φ непрерывна и непрерывано дифф. в D_{uv}
- 4. $I_{\varphi} \neq 0$ в D_{uv} , где
- 5. f интегрируема в D_{xy}

Тогда

- 1. $f(x(u,v),y(u,v))|I_{\varphi}(u,v)|$ истина в D_{uv}
- 2. $\iint_{D_{xy}} f(x,y) dx dy = \iint_{D_{uv}} f(x(u,v),y(y,v)) \cdot |I_{\varphi}(u,v)| du dv$

Замечание 1.4. 1. Теорема остается справедливой и в том случае, если условия 2,3,4 нарушаются в отдельных точках области D_{uv} или вдоль отдельных кривых, лежащих в D_{uv} и имеющих площадь нуль

1.7 Приложения двойного инетграла

І. Вычисление площади плоской фигуры

$$S(D) = \iint_D 1 dx dy$$

II. Вычисление массы пластины

Пусть

- 1) Пластина занимает обалсть D на плоскости Oxy
- 2) f(x,y) значение плотности материала пластины

Тогда масса пластины

$$M = \iint\limits_D f(x,y) dx dy$$

III. Вычисление оъема тела

Пусть

1) Тело
$$T \colon T = \{(x,y,z) : (x,y) \in D_{xy}, z_1(x,y) \le z \le z_2(x,y)\}$$

Тогда объем тела T можно найти по формуле

$$V(T) = \iint\limits_{D_{xy}} \left[z_2(x,y) - z_1(x,y) \right] dx dy$$

Глава 2

Тройной интеграл

2.1 Понятие кубируемой области

Рассмотрим область $G \subseteq \mathbb{R}^3$

Как ввести понятие объема тела, которое занимает эту область? Понятие объема легко ввести для параллелепипеда или, более общо, многогранника в R^3 . Что делать, если $G \subseteq R^3$ - произвольная область?

1. Рассмотрим множество многогранников q, целиком содеожащихся в G, и обозначим

$$V_* = \sup_q V(q)$$

2. Рассмотрим множество многогранников Q, целико содержащих в себе G, и обозначим

$$V^* = \inf_{Q} V(Q)$$

Определение 2.1. Трехмерная область G называется кубируемой, если \exists конечные значения V_*, V^* , причем $V_* = V^*$. При этом значение $V = V_* = V^*$ называется бъемом области G

Определение 2.2. Говорят, что множество точек в R^3 имеет объем нуль, если все точки этого множества можно заключить в многогранник сколь угодно малого объема.

2.2 Задача о вычислении массы тела

Пусть

- 1. Тело T занимает область $G \subset \mathbb{R}^3$
- 2. $f(x,y,z) \ge 0$ значение плотности материала этого тела в точке (x,y,z)

Требуется: Найти массу m(T) тела T

1. Разобьем область G на части:

$$G = U_{i=1}^n G_i$$
, int $G_i \cap \text{int } G_j = 0$, при $i \neq j$

- 2. В пределах кажддой из подобластей выберем отмеченную точку $M_i \in G_i, i = \overline{1;n}$
- 3. Считая, что размеры G_i малы:

$$\Delta m_i = m(G_i) \approx f(M_i) \Delta V_i$$
, где $\Delta V_i = V(G_i)$

масса тела, занимающего подобласть G_i

4. Масса тела T тогда:

$$m(T) = \sum_{i=1}^{n} \Delta m_i \approx \sum_{i=1}^{n} f(M_i) \Delta V_i$$

5. Эта формула тем точнее, чем меньше размеры G_i , поэтому естественно перейти к пределу:

$$m(T) = \lim_{\substack{\text{max diam} \to 0 \ i=1}} \sum_{i=1}^{n} f(M_i) \Delta V_i$$

2.3 Определение тройного интеграла

Пусть

- 1. $G \subseteq \mathbb{R}^3$ тело
- 2. $f: G \to R$ функция

Разоьем область G на части так, как это было сделано в задаче о вычислении массы тела Обозначим: $R = \{G_1, ..., G_n\}$ - разбиение тела G

Определение 2.3. Диаметром разбиения R тела G называется число

$$d(R) = \max_{i=\overline{1:n}} \underline{diam} \ G_i$$

Определение 2.4. Тройным интегралом по функции f(x,y,z) по области G называется число

$$\iiint\limits_{G} f(x,y,z)dxdydz = \lim_{d(R)\to 0} \sum_{i=1}^{n} f(M_i)\Delta V_i$$

, где $M_i, \Delta V_i$ имееют тот же смысл, что и в задаче о вычислении массы тела

Замечание 2.1. Если указанный в определении тройного интеграла предел \exists и конечен, то функция f называется интегрируемой в области

2.3.1 Свойства тройного интеграла

Эти свойства полностью аналогичны свойствам 1 - 9 двойного интеграла; при их записи нужно вместо $f(x,y) \mapsto f(x,y,z), \iint_D f(x,y) dx dy \mapsto \iiint_G f(x,y,z) dx dy dz \ D \mapsto G.$

2.4 Вычисление тройного интеграла

Основная идея - сведение к повторному интегралу

Определение 2.5. Область $G \subseteq R^3$ называется z-правильной, если любая прямая, параллельная Oz, пересекает границу G не более чем в двух точках или содержит участок границы целиком.

z-правильная область G можно задать в виде:

$$G = \{(x, y, z) : (x, y) \in D_{xy}, z_1(x, y) \le z \le Z_2(x, y)\}$$

Теорема 2.1. Пусть

- 1. $\exists \iiint_C f(x,y,z) dx dy dz$
- 2. G является z-прав и задается (*)
- 3. Для каждой фиксированной точки $(x,y) \in D_{xy}$

$$\exists \int_{z_1(x,y)}^{z_2(x,y)} f(x,y,z) dz = F(x,y)$$

Tог ∂a

1. З повторный интеграл

$$I_{noom} = \iint_{D_{xy}} F(x,y) dxdy = \iint_{D_{xy}} dxdy \int_{z_1(x,y)}^{z_2(x,y)} f(x,y,z) dz$$

2.
$$u I_{nosm} = I$$

Замечание 2.2. Если в условии * сформулированной теоремы область D_{xy} является у-правильной и задается в виде:

$$D_{xy} = \{(x, y) : a \le x \le b, \varphi_1(x) \le y \le \varphi_2(x)\}$$

mo

$$\iiint\limits_{C} f(x,y,z)dxdyd = \int_{a}^{b} dx \int_{\varphi_{1}(x)}^{\varphi_{2}(x)} dy \int_{z_{1}(x,y)}^{z_{2}(x,y)} f(x,y,z)dz$$

2.5 Замена переменных в тройном итеграле

Теорема 2.2. Пусть

1. $G_{xyz} = \varphi(G_{uv\omega})$

2. $\varphi: G_{uv\omega} \to G_{xuz}$

$$\varphi: \begin{cases} x = x(u, v, \omega) \\ y = y(u, v, \omega) \\ z = z(u, v, \omega) \end{cases}$$

3. Отображение φ биективно

4. φ непрерывно и непрырывно дифференцируемо в $G_{uv\omega}$

5.

$$J_{\varphi}(u, v, \omega) = \begin{vmatrix} x'_u & x'_v & x'_\omega \\ y'_u & y'_v & y'_\omega \\ z'_u & z'_v & z'_\omega \end{vmatrix} \neq 0$$

6. f(x,y,z) интегрируема в G_{xyz}

Tог ∂a

$$\iint\limits_{G_{xyz}} f(x,y,z) dx dy dz = \iint\limits_{G_{uv\omega}} f(x(u,v,\omega),y(u,v,\omega),z(u,v,\omega)) |J_{\varphi}(u,v,\omega)| du dv d\omega$$

2.5.1 Связь цилиндрической и декартовой СК

$$\begin{cases} x = \rho \cos(\varphi) \\ y = \rho \sin(\varphi) \\ z = z \end{cases}$$

$$J_{\text{цил}} = \begin{vmatrix} \cos(\varphi) & -\rho \sin(\varphi) & 0 \\ \sin(\varphi) & \rho \cos(\varphi) & 0 \\ 0 & 0 & 1 \end{vmatrix} = \rho$$

2.5.2 Связь сферической и декартовой СК

$$\begin{cases} x = r\cos(\Theta)\cos(\varphi) \\ y = r\cos(\Theta)\sin(\varphi) \\ z = r\sin(\Theta) \end{cases}$$

$$|J_{c\phi}| = \cdots = r^2 \cos(\Theta)$$

Глава 3

Определения вероятности

3.1 Случайный эксперимент

Определение 3.1. Случайным называется эксперимент, результат которого невозможно предсказать.

1. Подброс монетки

$$\Omega = \{\Gamma, P\}$$

$$|\Omega| = 2$$

2. Бросают игральную кость

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

$$|\Omega| = 6$$

3. Бросают монету до первого появления герба

$$\Omega = \{1, 2, 3, \dots\}$$

$$|\Omega| = \aleph_0$$

Омега является счетным множеством, т.е. в нем столько же элементов, сколько существует натуральных чисел.

4. Производят стрельбу по плоской мишени размеры которой 1м х 1м (координаты - точки попадания)

$$\Omega = \{(x,y): |x| \le \frac{1}{2}; |y| \le \frac{1}{2}\}$$

$$|\Omega| = c$$

Омега имеет можность континуума

Определение 3.2. Множество Ω всех исходов данного случайного эксперимента называется пространством элементов исхода

Замечание 3.1. При рассматривании пространства элементов исходов предполагается, что

- 1. Каждый элемент исхода неделим, т.е. не может быть "разложен"на более мелкие исходы
- $2.\,\,B$ результате случайного эксперимента всегда происходит ровно один элемент исхода из Ω

Определение 3.3. (Нестрогое) Событием называется (любое) подмножество множества Ω

Определение 3.4. Говорят, что в результате случайного эксперимента происходит событие А. если в результате этого эксперимента произошел один из входящих в А элементов исхода.

Бросают игральную кость

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

$$A = \{2, 4, 6\}$$

Если выпало 2 очко, то наступило A

Определение 3.5. Событие A называется следствием события B, если наступление события B влечет наступление события A, т.е. $B \subseteq A$

Замечание 3.2. Любое множество Ω содержит в качестве подмножеств \emptyset и Ω соответствующие события называются невозможным (\emptyset) и достоверным (Ω) . Оба этих события называют несобственными. Все остальные события называют собственными.

В урне находится 2 красных и 3 синих шара. Из урны извлекают 1 шар

$$A = \{$$
извлеченный шар - зеленый $\} = \emptyset$

B = {извлеченный шар - красный или синий} = Ω

3.2 Операции над событиями

События - множества (подмножества множества Ω) $\Rightarrow \cup, \cap, \overline{a}, \setminus, \Delta$

Определение 3.6. Суммой событий $A, B \subseteq \Omega$ называют событие

$$A + B = A \cup B$$

Определение 3.7. Произведением событий $A, B \subseteq \Omega$ называют событие

$$A \cdot B = A \cap B$$

Определение 3.8. $A \backslash B$ называется разностью событий A и B

Определение 3.9. \overline{A} называется событием, противоположным A

3.2.1 Свойства операций над событиями

Смотреть теоретико-множеств. тождества (осно.)

Определение 3.10. События $A, B \in \Omega$ называются несовместными, если $AB = \emptyset$. В противоположном случае события A и B называются совместными.

Определение 3.11. События A_1, \ldots, A_n, \ldots называются попарнонесовместимимы, если $A_i A_j = \emptyset$, $i \neq j$ - несовместимыми в совокупности $A_1 \cdots A_n = \emptyset$

3.3 Классическое определение вероятности

Пусть

- 1. $|\Omega| = N < \infty$
- 2. по условиям сложности эксперимента нет оснований предпочесть тот или иной исход остальных (в этом случае говорят, что все элементы исхода равновозможны)
- 3. $A \subseteq \Omega$, $|A| = N_A$

Определение 3.12. Вероятностью осуществления события А называют число

$$P(A) = \frac{N_A}{N}$$

2 раза бросают игральную кость

 $A = \{$ сумма выпавших очков $\}$

$$P(A) = ?$$

Решение:

Исход: (x_1, x_2) , где x_i - количество выпавших при i-м броске

$$\Omega = \{(1,1), (1,2), \dots, (6,6)\}$$

$$|\Omega|$$
 = 36 = N

$$A = \{(5,6), (6,5), (6,6)\}$$

$$N_A = |A| = 3$$

$$P(A) = \frac{N_A}{N} = \frac{3}{36} = \frac{1}{12}$$