Homework 18: Eigenspaces

1. §5.1, #5(a)(b)(d), 7, 21, 24, 25.

For Problem 21, there is no need to refer to any tables, as the instructions suggest, and calculations are not required.

- 2. The vector $\mathbf{x} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$ is an eigenvector for $A = \begin{bmatrix} 3 & 6 & 7 \\ 3 & 3 & 7 \\ 5 & 6 & 5 \end{bmatrix}$.
 - (a) Find the eigenvalue λ which corresponds to **x**. Show your work.
 - (b) Let λ be the eigenvalue you found in (a). Is it possible to find another eigenvector \mathbf{y} corresponding to eigenvalue λ such that $\{\mathbf{x}, \mathbf{y}\}$ is linearly independent? Justify. Hint: What is the dimension of the λ -eigenspace of A?