Непрерывные случайные величины. Плотность.

Классная работа

1. Случайная величина ξ имеет функцию распределения F_{ξ} , определенную равенством

 $F_{\xi}(x) = \begin{cases} 4^x, & x \le 0\\ 1, & x > 0 \end{cases}$

Найдите вероятности $P(\xi \ge -2)$ и $P(-1 < \xi < 0)$. Найдите плотность $\rho_{\xi}(x)$.

- 2. Случайная величина ξ имеет непрерывную функцию распределения $F_{\xi}(x)$. Найдите функцию распределения случайной величины $\eta=3-2\xi$.
- 3. Вспомним задачу о двух лыжниках. 2 лыжника условились о встрече в промежуток времени [0,1]. Момент прихода на встречу каждым выбирается равновероятно. Пусть $\theta = |t_1 t_2|$. Найдите:
 - (a) функцию распределения $F_{\theta}(x)$
 - (b) плотность вероятности $\rho_{\theta}(x)$
 - (c) матожидание $E\theta$
 - (d) дисперсию $E\theta$
- 4. Функция распределения случайной величины ξ имеет вид $F_{\xi}(x) = a + b \arctan(x)$. Найдите:
 - (а) параметры a и b
 - (b) плотность вероятности.
- 5. Дана плотность вероятности $\rho_{\xi} = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$. Доказать что:

1

- (a) $E_{\xi} = \mu$
- (b) $\sigma_{\xi} = \sigma$

Непрерывные случайные величины. Плотность.

Домашняя работа

- 1. (0.56)В квадрате $[0,1]^2$ наугад выбирается точка $\omega = (\omega_1, \omega_2)$. Случайная величина ξ задается равенством $\xi(\omega) = \omega_1 + \omega_2$. Найдите функцию распределения $F_{\xi}(x)$.
- 2. (0.56)Случайная величина ξ имеет непрерывную функцию распределения $F_{\xi}(x)$. Найдите функцию распределения случайной величины $\eta = 1 3\xi^2$.
- 3. (16) Плотность распределения случайной величины ξ задана формулой

$$f_{\xi}(x) = \begin{cases} Cx^{-3/2}, & x \ge 1\\ 0, & x < 1 \end{cases}$$

Найти:

- (a) постоянную C;
- (b) плотность распределения $\eta = 1/\xi$
- (c) $P\{0, 1 < \eta < 0, 2\}.$
- 4. (0.756)Случайная величина ξ имеет распределение Коши с плотностью $\rho_{\xi}(x)=\frac{1}{\pi(1+x^2)}$. Найдите плотность и функцию распределения случайной величины $\eta=\frac{1}{1+\xi^2}$.
- 5. (0.756)Случайная точка A имеет в круге радиуса R равномерное распределение. Найти математическое ожидание и дисперсию расстояния точки A от центра.
- 6. (26)3 лыжника условились о встрече в промежуток времени [0, 1]. Момент прихода на встречу каждым выбирается наудачу в пределах указанного часа. $\theta = \max(|t_1 t_2|, |t_2 t_3|, |t_1 t_3|)$ Найдите:

2

- (a) функцию распределения $F_{\theta}(x)$
- (b) плотность вероятности $\rho_{\theta}(x)$
- (c) матожидание $E\theta$
- (d) дисперсию $E\theta$