Step-1

Singular Value Decomposition (SVD) for any m by n matrix A is as follows

$$A = U \sum V^{T}$$

$$= \begin{pmatrix} \text{orthogonal} \\ U \text{ is } m \times m \end{pmatrix} \begin{pmatrix} m \times n \text{ matrix } \sum \\ \sigma_{1} \cdots \sigma_{r} \text{ on diagonal} \end{pmatrix} \begin{pmatrix} \text{orthogonal} \\ V \text{ is } n \times n \end{pmatrix}$$

Here eigenvectors of AA^T are in U, eigenvectors of A^TA are in V.

The r singular-values on the diagonal of Σ are the square roots of the nonzero eigenvalues of both AA^T and A^TA .

Step-2

That is
$$\sigma_r = \sqrt{\lambda_r}$$

Step-3

Suppose the SVD for A+I involve $\Sigma+I$, then we have

$$\begin{split} U\left(\Sigma + I\right)V^T &= U\sum V^T + UIV^T \\ &= U\sum V^T + UV^T \\ &\neq A + I \end{split}$$

Step-4

We know that the r singular-values on the diagonal of Σ are the square roots of the nonzero eigenvalues of A^TA .

So, singular-values A+I are not σ_r+1 .

The singular-values A+I come from the eigenvalues of $(A+I)^T(A+I)$.

Therefore, the SVD for A+I just not use $\Sigma+I$.