COMP9418: Advanced Topics in Statistical Machine Learning

MAP Inference

Instructor: Gustavo Batista

University of New South Wales

Introduction

- In this lecture, we study algorithm to compute queries of the form
 - MAP: maximum a posteriori hypothesis
 - MPE: maximum a posteriori explanation
- In these queries, we are interested in finding the most probable instantiations of a subset of variables
- We discuss algorithms to compute MAP and MPE based on different strategies such as
 - Variable elimination
 - Systematic search
 - Belief propagation

Introduction: Example

- Consider a Bayesian network on the right
 - It concerns a population of 55% males and 45% females
 - They can suffer of a medical condition C that is more likely in males
 - There are two diagnosis tests for C, T_1 and T_2
 - T_2 is more effective on females
 - Both tests are equally effective on males

S	C		$\Theta_{S C}$	С	T_1	6	$\Theta_{T_1 C}$	9	5	Θ_S			
\overline{male}	yε		.05	yes	ve		.80	\overline{m}	ale	.55	•		
male	n	$o \mid$.95	yes	\overline{ve}		.20	fen	nale	.45		(S)	
femal	e ye	es	.01	no	ve		.20					'	
femal	e n	$o \mid$.99	no	\overline{ve}		.80				K		
											C)	
S	С	T_2	$\Theta_{T_2 C}$	<u>,s T</u>	' ₁ 7	2	A	$\Theta_{A T_1,T_2}$	T_2				
male	yes			v	e v	e	yes	1		K		4	_
male	yes	\overline{ve}	.20	v	e v	e	no	0	$\left(\cdot \right)$	$\binom{r}{1}$		(T_2)	$\left(\cdot \right)$
male	no	ve	.20	v	$e \overline{v}$	\overline{e}	yes	0	(1				
male	no	\overline{ve}	.80	v	$e \overline{v}$	\overline{e}	no	1					
female	yes	ve	.95	$\overline{ u}$	\overline{e} v	e	yes	0		7			
female	yes	\overline{ve}	.05	$\overline{ u}$	\overline{e} v	re	no	1		7	1	1	
female	no no	ve	.05	$\overline{ u}$	\overline{e} \overline{v}	\overline{e}	yes	1		($\int_{-\infty}^{\pi}$	/	
female	no	\overline{ve}	95	\overline{v}	\overline{e} \overline{v}	\overline{e}	no	0					

Introduction: Example

- We can partition this population in four groups
 - Males and females, with or without the condition
- Suppose a person takes both tests with the same results
 - Leads to the evidence A = yes
- What is the most likely group this individual belongs?
 - This is an example of MAP instantiation
 - The most likely instantiation of S and C given A = yes
 - In this query, S and C are MAP variables
- The answer for this example is
 - S = male and C = no with posterior probability of $\sim 49.3\%$

MAP and Inference

- Variable and factor elimination algorithms can compute MAP instantiations
 - They are efficient with small number of MAP variables
 - We compute the posterior marginal over MAP variables and select the instantiation with maximal probability
- However, this approach is exponential in the number of MAP variables
- Our objective in this lecture is to present algorithms for MAP instantiations
 - Not necessarily exponential in the number of MAP variables

MAP and MPE

- MPE is a special case of MAP when MAP variables contain all unobserved network variables
 - In the previous example, it would result in 16 groups
 - Males and females, with or without the condition and the four possible outcomes for the two tests
- This is the MAP instantiation for S, C, T_1 and T_2
 - The answer is S = female, C = no, $T_1 = \overline{ve}$, $T_2 = \overline{ve}$
 - With posterior probability ~47%

- This case of MAP is known as MPE instantiation
 - MPE instantiations are much easier to compute than MAP
 - That is why they have their own name
- MPE is not the answer for MAP
 - MPE projection on variables S and C is S = female, C = no
 - But the MAP answer of previous slides is S = male and C = no
- Although this technique is sometimes used as an approximation for MAP

Computing MPE

- Given a network
 - lacktriangle The MPE probability for the variables $m{Q}$ of a network given evidence $m{e}$ is defined as

$$MPE_P(\boldsymbol{e}) \stackrel{\text{def}}{=} \max_{\boldsymbol{q}} P(\boldsymbol{q}, \boldsymbol{e})$$

- There may be several instantiations q with maximal probability
 - Each of them is an MPE instantiation
 - The set of such instantiations is defined as

- $MPE(e) \stackrel{\text{def}}{=} argmax P(q, e)$
- lacktriangle MPE instantiations can be characterized as instantiations $m{q}$ that maximize the posterior distribution

$$MPE(e) \stackrel{\text{def}}{=} argmax P(q|e)$$

- Since $P(q|e) = \frac{P(q,e)}{P(e)}$
- P(e) is independent of the instantiation q

- We can compute the joint probability for this Bayesian network
- (Even rows omitted since they have zero probabilities)
- The MPE instantiation (assuming no evidence) is given in row 31
- MPE probability (MPE_P) is .338580

	S	С	T_1	T_2	\boldsymbol{A}	P(.)
1	male	yes	ve	ve	yes	.017600
3	male	yes	ve	\overline{ve}	no	.004400
5	male	yes	\overline{ve}	ve	no	.004400
7	male	yes	\overline{ve}	\overline{ve}	yes	.001100
9	male	no	ve	ve	yes	.020900
11	male	no	ve	\overline{ve}	no	.083600
13	male	no	\overline{ve}	ve	no	.083600
15	male	no	\overline{ve}	\overline{ve}	yes	.334400
17	female	yes	ve	ve	yes	.003420
19	female	yes	ve	\overline{ve}	no	.000180
21	female	yes	\overline{ve}	ve	no	.000855
23	female	yes	\overline{ve}	\overline{ve}	yes	.000045
25	female	no	ve	ve	yes	.004455
27	female	no	ve	\overline{ve}	no	.084645
29	female	no	\overline{ve}	ve	no	.017820
31	female	no	\overline{ve}	\overline{ve}	yes	.338580

- We can compute MPE_p using Variable Elimination
 - However, when eliminating a variable, we maximize out instead of summing it out
- To maximize out a variable B from a factor $\phi(A,B,C)$, we produce another factor over remaining variables A and C
 - By merging all rows that agree on the values of these remaining variables
 - As we merge rows, we drop reference to the maximized variable and assign to the resulting row the maximum probability associated with the merged rows

Α	В	С	$\phi(A,B,C)$	_			
0	0	0	7				1 (4 0)
0	0	1	4.5		Α	С	$\max_{B} \phi(A, C)$
0	1	0	.2		0	0	7
0	1	1	2		0	1	4.5
1	0	0	3		1	0	3
1	0	1	.5		1	1	3
1	1	0	1.2				
1	1	1	3				

- The result of maximizing out variable B from factor ϕ is
 - Another factor, $\max_{B} \phi$ that does not mention B
 - The new factor agrees with the old factor on the MPE probability
- We can continue to maximize out $\max_B \phi$ until we get the trivial factor
 - The probability assigned to this factor is the MPE probability
 - This method can be extended to provide the MPE instantiation (more later)
- Maximization is commutative
 - Allow us to refer to maximizing out a set of variables without specifying the order
 - Also, $\max_X \phi_1 \phi_2 = \phi_1 \max_X \phi_2$ if variable X appears only in ϕ_2

MPE VE: Algorithm

```
m{Q} \leftarrow variables in the network \pi \leftarrow elimination order of variables m{Q} m{S} \leftarrow \{ \phi^{m{e}} \colon \phi \text{ is a factor of the network} \} for i=1 to |m{Q}| do \sigma_i \leftarrow \prod_k \phi_k, where \phi_k belongs to m{S} and mentions variable \pi(i) \tau_i \leftarrow \max_{\pi(i)} \sigma_i replace all factors \phi_k in m{S} by factor \tau_i return trivial factor \prod_{\tau \in S} \tau
```

Notes:

- All factors are eliminated leading to a trivial factor
- ϕ^e is a factor with the rows of factor ϕ that match the evidence e
- Pruning should eliminate edges only since all variables are relevant to the answer
- This algorithm has the same complexity as VE, i.e., the time and space complexity are $O(n \exp(w))$ for n variables and an elimination width w

- Returning to our example
 - Let us run MPE VE on this example
 - With the elimination order $\pi = S, C, A, T_1, T_2$

S	C	,	$\Theta_{S C}$	С	T_1		$\Theta_{T_1 C}$	S	3	Θ_{S}			
male	yε	- 1	.05	yes	νε		.80	\overline{mc}	ıle	.55	•		
male	n	0	.95	yes	\overline{ve}	5	.20	fem	ale	.45		(S))
femal	e ye	es	.01	no	$v\epsilon$	2	.20					/	
femal	e n	0	.99	no	\overline{ve}	5	.80				K		
										(C)	
S	С	T_2	$\Theta_{T_2 C_r}$	S T	, 1	T_2	\boldsymbol{A}	$\Theta_{A T_1,T_2}$	Γ_2				
\overline{male}	yes			\overline{v}	e	ve	yes	1		K		7	_
male	yes	\overline{ve}	.20	v	e	ve	no	0	(τ)	$\binom{1}{1}$		T_{2}	_)
male	no	ve	.20	v	e	\overline{ve}	yes	0	(1				
male	no	\overline{ve}	.80	v	e	\overline{ve}	no	1					
female	yes	ve	.95	$\overline{ u}$	\overline{e}	ve	yes	0		7			
female	yes	\overline{ve}	.05	$\overline{ u}$	\overline{e}	ve	no	1		7	΄ Λ)	
female	no	ve	.05	$\overline{ u}$	\overline{e}	\overline{ve}	yes	1		(/	
female	no	\overline{ve}	.95	$\overline{ u}$	\overline{e}	\overline{ve}	no	0					

- Returning to our example
 - Let us run MPE VE on this example
 - With the elimination order $\pi = S, C, A, T_1, T_2$

S	С	$ \phi_1(S,C) $	<u>C</u>	T_1	$\phi_2(T_1, C)$	<i>S</i>	$\phi_3(S)$
male	yes	.05	yes	ve	.80	male	.55
male	no	.95	yes	\overline{ve}	.20	female	.45
female	yes	.01	no	ve	.20		
female	no	.99	no	\overline{ve}	.80		

S C	T_2	$\phi_4(T_2, C, S)$	T_1	T_2	\boldsymbol{A}	$ \phi_5(T_1,T_2) $	(2,A)			
male yes	ve	.80	ve	ve	yes	1		•	K	
male yes	\overline{ve}	.20	ve	ve	no	0	$\left(T\right)$		T	
male no	ve	.20	ve	\overline{ve}	yes	0	I_1		$\frac{1}{2}$	
male no	\overline{ve}	.80	ve	\overline{ve}	no	1				
female yes	ve	.95	\overline{ve}	ve	yes	0				
female yes	\overline{ve}	.05	\overline{ve}	ve	no	1				
female no	ve	.05	\overline{ve}	\overline{ve}	yes	1		$\begin{pmatrix} A \end{pmatrix}$		
female no	\overline{ve}	.95	\overline{ve}	\overline{ve}	no	0				

- Let us run MPE VE on this example
- With the elimination order $\pi = S, C, A, T_1, T_2$

	S	$\boldsymbol{\mathcal{C}}$	$\phi_1(S,C)$	$C T_1$	$\phi_2(T_1, C)$
m	ale	yes	.05	yes ve	.80
m	ale	no	.95	yes ve	.20
fer	nale	yes	.01	no ve	.20
fei	male	no	.99	no ve	.80

			C	C T	$\phi_4(T_2, C,$	C)	ς	\mathcal{C}	T_2	$ \sigma_1(T_2, S, C) $	I_1	I_2 A	$\varphi_5(I_1,I_2,F)$
		-	<u> </u>			3)				 1 	ve	ve yes	1
			male	yes ve	.80		male	yes	ve	.440		-	0
C	1 (C)		male	yes ve	.20		male	yes	\overline{ve}	.110		ve no	
	$\phi_3(S)$		male	no ve	.20		male	ກດ	ve	.110	ve	ve yes	0
male	.55	×									ve	ve no	1
female		•	male	$no \overline{ve}$.80	\approx	male	no	\overline{ve}	.440	120	ve yes	0
<i>j</i> = 1.10000	• • •		female	yes ve	.95		female	e yes	ve	.428		•	
			female	•	.05		female	2 1105	$\overline{12\rho}$.023	ve	ve no	1
			,				•	•			\overline{ve}	ve yes	1
			female	no ve	.05		female	e no	ve	.023		\overline{ve} no	
			female	no \overline{ve}	.95		female	e no	\overline{ve}	.428	VE	ve 110	J

- Returning to our example
 - Let us run MPE VE on this example
 - And use the elimination order $\pi = S, C, A, T_1, T_2$

<u>C</u>	T_1	$\phi_2(T_1,C)$
yes	ve	.80
yes	\overline{ve}	.20
no	ve	.20
no	\overline{ve}	.80

			<u>S</u>	<u> </u>	T_2	$\sigma_1(T_2, S, C)$	<u>[]</u>	<u> </u>	<u> </u>	T_2	$\sigma_2(T_2, S, C)$	T_1	T_2	<u>A</u>	$ \phi_5(T_1,T_2,E_3) $	<u>4)</u>
C	\mathcal{C}	$ \phi_1(S,C) $	male	yes	ve	.440		male	yes	ve	.0220	ve	ve	yes	1	
male	ves	$\frac{\varphi_1(3,c)}{.05}$	male	yes	\overline{ve}	.110		male	yes	\overline{ve}	.0055	ve	ve	no	0	
male		.95	male	no	ve	.110		male	no	ve	.1045	ve	\overline{ve}	yes	0	
female	no	X	male	no	\overline{ve}	.440	≈	male	no	\overline{ve}	.4180	ve	\overline{ve}	no	1	
female		.01	female	yes	ve	.428		female	yes	ve	.0043	\overline{ve}	ve	yes	0	
jemaie	no	•77	female	yes	\overline{ve}	.023		female	yes	\overline{ve}	.0002	\overline{ve}	ve	no	1	
			female	e no	ve	.023		female	no	ve	.0228	\overline{ve}	\overline{ve}	yes	1	
			female	e no	\overline{ve}	.428		female	no	\overline{ve}	.4237	\overline{ve}	\overline{ve}	no	0	16

- Let us run MPE VE on this example
- And use the elimination order $\pi = S, C, A, T_1, T_2$

<u>S</u>	С	T_2	$\sigma_2(T_2, S, C)$		
male	yes	ve	.0220		
male	yes	\overline{ve}	.0055	$C T_2$	$\tau_2(T_2, C)$
male	no	ve	.1045	yes ve	.0220
male	no	\overline{ve}	.4180	\longrightarrow yes \overline{ve}	.0055
female	yes	ve	.0043	no ve	.1045
female	yes	\overline{ve}	.0002	\longrightarrow no \overline{ve}	.4237
female	no no	ve	.0228		
female	no no	\overline{ve}	.4237		

- Returning to our example
 - Let us run MPE VE on this example
 - And use the elimination order $\pi = S, C, A, T_1, T_2$

- Returning to our example
 - Let us run MPE VE on this example
 - And use the elimination order $\pi = S, C, A, T_1, T_2$

				\mathcal{C}	T_2	T_1	$\sigma_3(C,T_1,T_2)$
$C T_2$	$ \tau_2(T_2,C) $	$C T_1$	$\phi_2(T_1,C)$	yes	ve	ve	.0176
yes ve		ves ve	.80	yes	ve	\overline{ve}	.0044
yes \overline{ve}		ves ve	.20	yes	\overline{ve}	ve	.0044
no ve		no ve	.20	yes	\overline{ve}	\overline{ve}	.0011
no \overline{ve}	.4237	no \overline{ve}	.80	no	ve	ve	.0209
	1	'		no	ve	\overline{ve}	.0836
				no	\overline{ve}	ve	.0847
				no	\overline{ve}	\overline{ve}	.3390

T_1 T_2 A	$\phi_5(T_1, T_2, A)$
ve ve yes	1
ve ve no	0
ve ve yes	0
ve ve no	1
ve ve yes	0
ve ve no	1 (<i>C</i>)
ve ve yes	1
\overline{ve} \overline{ve} no	0
	T_1 T_2 A
	19

- Let us run MPE VE on this example
- And use the elimination order $\pi = S, C, A, T_1, T_2$

<u></u>	T_2	T_1	$\sigma_3(C, T_1, T_2)$			
yes	ve	ve	.0176			
yes	ve	\overline{ve}	.0044	T_2	T_1	$\tau_3(T_2,T_1)$
yes	\overline{ve}	ve	.0044	ve	ve	.0209
yes	\overline{ve}	\overline{ve}	.0011	> ve	\overline{ve}	.0836
no	ve	ve	.0209	\overline{ve}	ve	.0847
no	ve	\overline{ve}	.0836	\overline{ve}	\overline{ve}	.3390
no	\overline{ve}	ve	.0847			
no	\overline{ve}	\overline{ve}	.3390			

- Returning to our example
 - Let us run MPE VE on this example
 - And use the elimination order $\pi = S, C, A, T_1, T_2$

T_2	T_1	$\tau_3(T_2,T_1)$
ve	ve	.0209
ve	\overline{ve}	.0836
\overline{ve}	ve	.0847
\overline{ve}	\overline{ve}	.3390

T_1	T_2	Α	$\phi_5(T_1,T_2,T_3)$	4)_
ve	ve	yes	1	
ve	ve	no	0	(T_1) (T_2)
ve	\overline{ve}	yes	0	
ve	\overline{ve}	no	1	
\overline{ve}	ve	yes	0	
\overline{ve}	ve	no	1	(A)
\overline{ve}	\overline{ve}	yes	1	
\overline{ve}	\overline{ve}	no	0	

- Let us run MPE VE on this example
- And use the elimination order $\pi = S, C, A, T_1, T_2$

T_1 T_2 A	$\phi_5(T_1,T_2,A)$			
ve ve yes	1			
ve ve no	0	T_1	T_2	$\tau_4(T_1,T_2)$
ve ve yes	0	ve	ve	1
ve ve no	1	ve	\overline{ve}	1
ve yes	0	\overline{ve}	ve	1
ve ve no	1	\overline{ve}	\overline{ve}	1
ve ve yes	1			
\overline{ve} \overline{ve} no	0			

T_2	T_1	$\tau_3(T_2,T_1)$
ve	ve	.0209
ve	\overline{ve}	.0836
\overline{ve}	ve	.0847
\overline{ve}	\overline{ve}	.3390

- Let us run MPE VE on this example
- And use the elimination order $\pi = S, C, A, T_1, T_2$

T_1	T_2	$\tau_4(T_1,T_2)$	T_2	T_1	$\tau_3(T_2,T_1)$
ve	ve	1	ve	ve	.0209
ve	\overline{ve}	1	ve	\overline{ve}	.0836
\overline{ve}	ve	1	\overline{ve}	ve	.0847
\overline{ve}	\overline{ve}	1	\overline{ve}	\overline{ve}	.3390

- Let us run MPE VE on this example
- And use the elimination order $\pi = S, C, A, T_1, T_2$

T_1	T_2	$ au_4(T_1,T_2) $	2)	T_2	T_1	$\tau_3(T_2,T_1)$	_	T_1	T_2	$\sigma_5(T_1,T_2)$
ve	ve	1		ve	ve	.0209		ve	ve	.0209
ve	\overline{ve}	1	×	ve	\overline{ve}	.0836	=	ve	\overline{ve}	.0847
\overline{ve}	ve	1		\overline{ve}	ve	.0847		\overline{ve}	ve	.0836
\overline{ve}	\overline{ve}	1		\overline{ve}	\overline{ve}	.3390		\overline{ve}	\overline{ve}	.3390

- Let us run MPE VE on this example
- And use the elimination order $\pi = S, C, A, T_1, T_2$

T_1	T_2	$\sigma_5(T_1,T_2)$		
ve	ve	.0209	T_2	$\tau_5(T_2)$
ve	\overline{ve}	.0847		
\overline{ve}	ve	.0836	\overline{ve}	.3390
\overline{ve}	\overline{ve}	.3390		

- Let us run MPE VE on this example
- And use the elimination order $\pi = S, C, A, T_1, T_2$

$$T_2$$
 $\tau_5(T_2)$
 ve .0836
 \overline{ve} .3390

- Returning to our example
 - Let us run MPE VE on this example
 - And use the elimination order $\pi = S, C, A, T_1, T_2$
 - $MPE_P \approx 0.3390$

- We can also be interested in the MPE instantiation
 - However, we lost this piece of information during the elimination

Recovering MPE Instantiation

- We can modify the previous algorithm to compute the MPE instantiation
 - In addition to the MPE probability
- The idea is to use extended factors
 - It assigns to each instantiation a number and an instantiation
- We use $\phi[x]$ to denote the instantiation
 - While continuing to use $\phi(x)$ for denoting the number
 - The instantiation $\phi[x]$ is used to record the MPE instantiation as it is being constructed

S	С	T_2	$\phi(.)$
male	yes	ve	.0220
male	yes	\overline{ve}	$\begin{array}{c cccc} C & T_2 & \phi(.) & \phi[.] \end{array}$
male	no	ve	.1045 yes ve .0220 male
male	no	\overline{ve}	.4180 $yes \overline{ve}$.0055 $male$
female	yes	ve	.0043 no ve .1045 male
female	-		
female	no	ve	.0228
female	no	\overline{ve}	.4237

Returning to our example

S	C	'	$\Theta_{C S}$	C	T_1	$_{\mathbf{l}}$ $ \Theta$	$T_1 C$	S	Θ_{S}		_	
male	ye		.05	yes	ve	- 1	.80	mai	le . 55	_		,)
male	n	o	.95	yes	$\overline{v\epsilon}$	5	.20	femo	ale .45		\sum_{s}	J
female	e ye	es	.01	no	ve	e	.20					
female	e no	o	.99	no	$\overline{v\epsilon}$	5	.80			K		
										(c)		
ς	С	T_{-}	$\left \Theta_{T_2}\right C$. 7	 1	T_2	A	(A) (T)	П		くし	
			1	<u>,S 1</u>	1	12		$\Theta_{A T_1,T}$	2			
male	yes	ve	.80	v	e	ve	yes	1	K		3	
male	yes	\overline{ve}	.20	υ	e	ve	no	0	$\left(T_{1}\right)$		T_{2}	_)
male	no	ve	.20	r	e	\overline{ve}	yes	0	11			
male	no	\overline{ve}	.80	r	e	\overline{ve}	no	1	\			,
female	yes	ve	.95	\overline{v}	\overline{e}	ve	yes	0	·	/_		
female	yes	\overline{ve}	.05	$\overline{\imath}$	\overline{e}	ve	no	1		\mathcal{L}_{Δ}	7	
female	no	ve	.05	\overline{v}	\overline{e}	\overline{ve}	yes	1				
female	no	\overline{ve}	95	\overline{v}	\overline{e}	\overline{ve}	no	0				

Returning to our example

S	С	$ \phi_1(S,C) $	С	T_1	$\phi_2(7)$	(Γ_1, C)	S	$\phi_3(S)$		
male	yes	.05	yes			30	male	.55	$\int_{\mathcal{C}}$	
male	no	.95	yes	\overline{ve}	.2	20	female	.45	$\int S$	
female	yes	.01	no	ve	.2	20			/	
female	no	.99	no	\overline{ve}	3.	30				
								(C)		
<u>S</u> C	$T_2 \phi_2$	$_4(T_2,C,S)$	T_1	T_2	A	$\phi_5(T_1)$	$T_2,A)$			
male yes	ve	.80	ve	ve	yes		1		X	
male yesī	\overline{ve}	.20	ve	ve	no		$\begin{bmatrix} 0 \\ 0 \end{bmatrix} \left(T_1 \right)$		T_2	
male no	ve	.20	ve	\overline{ve}	yes		$0 \begin{array}{c} I_1 \\ \end{array}$		$\frac{12}{2}$	
male no ī	\overline{ve}	.80	ve	\overline{ve}	no		1			
female yes	ve	.95	\overline{ve}	ve	yes		0			
female yes ī	\overline{ve}	.05	\overline{ve}	ve	no		1	γ_{Λ}	١	
female no	ve	.05	\overline{ve}	\overline{ve}	yes		1	$\begin{pmatrix} A \end{pmatrix}$	/	
female no ī	$\overline{ve} \mid$.95	\overline{ve}	\overline{ve}	no		0			

Returning to our example

S		С	$ \phi_1(S,C) $	С	T_{4}	$ \phi_2(7) $	$G_{\bullet}(C)$	S	$ \phi_3(S) $		
$\frac{-s}{mal}$	le	yes	.05	yes			30	male	.55		
mal	le	no	.95	yes	\overline{ve}	.2	20	female	e .45	(S)	
femo	ale	yes	.01	no	ve	.2	20			/	
femo	ale	no	.99	no	\overline{ve}	3.	30			<u> </u>	
									(<i>C</i>)	
S	C	$T_2 \phi$	$_4(T_2,C,S)$	T_1	T_2	$a \mid$	$\phi_5(T_1)$	$T_{2},a)$		$\langle \cdot $	
_	es 1		.80			yes		1		V	_
male y	es ī	\overline{e}	.20	ve	\overline{ve}	yes	($\int_{0}^{0} T$		\int_{T}	
male n	10	ve	.20	\overline{ve}	ve	yes	($0 \begin{pmatrix} 1 \\ 1 \end{pmatrix}$		T_2	² /
male n	เด โ	\overline{e}	.80	\overline{ve}	\overline{ve}	yes		1			
female y	es 1	ve	.95						_		
female y	es ī	\overline{e}	.05							7	
female n	10	ve	.05						A		
female n	เо เ	\overline{e}	.95							-	

Returning to our example

<i>S</i>	С	$\phi_1(S,C)$	С	T_1	$\phi_2(T_1,C)$
male	yes	.05	yes	ve	.80
male	no	.95	yes	\overline{ve}	.20
female	yes	.01	no	ve	.20
female	no	.99	no	\overline{ve}	.80

	1
<u>S</u>	$\phi_3(S)$
male	.55
female	.45
	•

S	С	T_2	$\phi_4(T_2,C,S)$	S	С	T_2	$\sigma_1(T_2, S, C)$
male	yes	ve	.80	male	yes	ve	.440
male	yes	\overline{ve}	.20	male	yes	\overline{ve}	.110
male	no	ve	.20	male	no	ve	.110
$_{X}$ male	no	\overline{ve}	.80 ≈	male	no	\overline{ve}	.440
female	yes	ve	.95	female	yes yes	ve	.428
female	yes	\overline{ve}	.05	female	yes yes	\overline{ve}	.023
female	no	ve	.05	female	e no	ve	.023
female	no	\overline{ve}	.95	female	e no	\overline{ve}	.428

T_1	T_2	а	$\phi_5(T_1,T_2,a)$
ve	ve	yes	1
ve	\overline{ve}	yes yes	0
\overline{ve}	ve	yes	0
\overline{ve}	\overline{ve}	yes	1

Returning to our example

_ <i>C</i>	T_1	$\phi_2(T_1, C)$
yes	ve	.80
yes	\overline{ve}	.20
no	ve	.20
no	\overline{ve}	.80

		<u>S</u>	С	T_2	$\sigma_1(T_2, S, C)$	<u> </u>	S	С	T_2	$\sigma_2(T_2, S, C)$					
s c	$\phi_1(S,C)$	male	yes	ve	.440		male	yes	ve	.0220	T_1	T_2	a	$ \phi_5(T_1,T_2,$	a)
male ye.		male	yes	\overline{ve}	.110		male	yes	\overline{ve}	.0055	ve	ve	yes	 	
male no		male	no	ve	.110		male	no	ve	.1045	ve	\overline{ve}	yes	0	
female ye.	X	male	no	\overline{ve}	.440	\approx	male	no	\overline{ve}	.4180	\overline{ve}	ve	yes	0	
female no		female	yes	ve	.428		female	yes	ve	.0043	\overline{ve}	\overline{ve}	yes	1	
jemaie no	, , ,	female	yes yes	\overline{ve}	.023		female	yes	\overline{ve}	.0002				•	
		female	e no	ve	.023		female	no	ve	.0228					
		female	e no	\overline{ve}	.428		female	no	\overline{ve}	.4237					33

Returning to our example

T_1 T_2 a	$\phi_5(T_1, T_2, a)$	C T_1	$\phi_2(T_1,C)$
ve ve yes	1	yes ve	.80
ve ve yes	0	yes ve	.20
ve ve yes	0	no ve	.20
\overline{ve} \overline{ve} yes	1	no \overline{ve}	.80

<i>S</i>	С	T_2	$\sigma_2(T_2, S, C)$				
male	yes	ve	.0220				
male	yes	\overline{ve}	.0055	_ <i>C</i>	T_2	$\tau_2(T_2, C)$	
male	no	ve	.1045	yes	ve	.0220	male
male	no	\overline{ve}	.4180	yes	\overline{ve}	.0055	male
female	yes	ve	.0043	no	ve	.1045	male
female	yes	\overline{ve}	.0002	no	\overline{ve}	.4237	female
female	no	ve	.0228				
female	no	\overline{ve}	.4237				

Returning to our example

T_1	T_2	а	$\phi_5(T_1,T_2,a)$
ve	ve	yes	1
		yes	0
\overline{ve}	ve	yes	0
\overline{ve}	\overline{ve}	yes	1

	T_2	$\tau_2(T_2,C)$		<u></u>	T_1	$\phi_2(T_1,C)$
yes	ve	.0220	male	yes		.80
yes	\overline{ve}	.0055	\mid male $_{ imes}$	yes	\overline{ve}	.20 ≈
no	ve	.1045	male ^	no	ve	.20 ~
no	\overline{ve}	.4237	female	no	\overline{ve}	.80

					-
		T_2	T_1	$\sigma_3(C,T_1,T_2)$	
	yes	ve	ve	.0176	male
	yes	ve	\overline{ve}	.0044	male
	yes	\overline{ve}	ve	.0044	male
,	yes	\overline{ve}	\overline{ve}	.0011	male
	no	ve	ve	.0209	male
	no	ve	\overline{ve}	.0836	male
	no	\overline{ve}	ve	.0847	female
	no	\overline{ve}	\overline{ve}	.3390	female

Returning to our example

			$ \phi_5(T_1,T_2,a) $
ve	ve	yes	1
ve	\overline{ve}	yes yes	0
\overline{ve}	ve	yes	0
\overline{ve}	ve	yes	1

C T_2 T_1 $\sigma_3(C, T_1, T_2)$	
yes ve ve .0176 male	!
yes ve \overline{ve} .0044 male	
yes \overline{ve} ve .0044 male	
yes \overline{ve} \overline{ve} .0011 male	
no ve ve .0209 male	
no ve \overline{ve} .0836 male	
no \overline{ve} ve .0847 female	le –
no \overline{ve} \overline{ve} .3390 female	le e

T_2 T_1	$\left \tau_3(T_2, T_1) \right $	
>ve ve	.0209	male, no
>ve ⊽e	.0836	male, no
> ve ve	.0847	female, no
> ve ve	.3390	female, no

Returning to our example

T_2 T_1	$\tau_3(T_2,T_1)$	
ve ve	.0209	male, no
ve \overline{ve}	.0836	male, no
ve ve	.0847	female, no
\overline{ve} \overline{ve}	.3390	female, no

T_1 T_2 a	$\phi_5(T_1,T_2,a)$	T_1 T_2	$\tau_4(T_1,T_2)$
ve ve yes	1 —	ve ve	2 1
ve ve yes	0	$ve \overline{ve}$	ē 0
ve ve yes	0 —	\overline{ve} ve	e 0
ve ve yes	1 —	\overline{ve} \overline{ve}	ē 1

Returning to our example

T_2 T_1	$ \tau_3(T_2,T_1) $		T_1 T_2	$\tau_4(T_1, T_2)$		T_1	T_2	$\sigma_5(T_1,T_2)$		T_1	$ T_2$	
ve ve	.0209	male, no	ve ve	1		ve	ve	.0209	male, no			
ve ve	.0836	male, no	\sqrt{ve}	0	~	ve	\overline{ve}	0	female, no			
ve ve	.0847	female, no	$\hat{v}e ve$	0	≈	\overline{ve}	ve	0	male, no			
\overline{ve} \overline{ve}	.3390	female, no	\overline{ve} \overline{ve}	1		\overline{ve}	\overline{ve}	.3390	female, no			

Returning to our example

T_1	T_2	$\sigma_5(T_1,T_2)$					
ve	ve	.0209	male,no 🚤	_	T_2	$\tau_5(T_2)$	
ve	\overline{ve}	0	female, no		ve	.0290	male, no, ve
\overline{ve}	ve	0	male, no		\overline{ve}	.3390	$female, no, \overline{ve}$
\overline{ve}	\overline{ve}	.3390	female, no 🖊			-	

Returning to our example

T_2	$\tau_5(T_2)$			
ve	.0290	male, no, ve	$ au_6$	
\overline{ve}	.3390	$female, no, \overline{ve}$.3390	$female, no, \overline{ve}, \overline{ve}$

Returning to our example

• Since
$$P(e) = P(A = yes) = .7205$$

•
$$MPE_p(Q|e) = 47\%$$

_	T_2	$\tau_5(T_2)$			
	ve	.0290	male, no, ve	$ au_6$	
	\overline{ve}	.3390	$female, no, \overline{ve}$.3390	$female, no, \overline{ve}, \overline{ve}$

MPE and HMM

- We have seen MPE queries in the context of HMM
 - If we apply the MPE algorithm with elimination order $\pi = O_1, S_1, O_2, S_2, \dots, O_n, S_n$, we obtain the Viterbi algorithm
 - If we apply the VE algorithm with same order, we obtain the Forward algorithm
- This elimination order has width = 1 for HMMs
 - Therefore both algorithms have linear time and space complexity

Computing MPE by Systematic Search

- We now consider a different class of algorithms for Bayesian networks
 - Based on systematic search
 - They can be more efficient than algorithms based on VE
- Suppose we want to find an MPE instantiation given A = true
 - We can use depth-first search on the tree on right side
 - The leaf nodes are instantiations of unobserved variables

Computing MPE by Systematic Search

- Each non-leaf is a partial instantiation
 - This node represents S = male, C = yes
 - The children of this node are extensions of this instantiation
- We can traverse this search tree using depth-first search
 - With n unobserved variables, the search takes O(n) space and $O(n \exp(n))$ time

DFS MPE: Algorithm

```
main:
  Q \leftarrow variables in the network distinct from variables E
  s \leftarrow network instantiation compatible with evidence e
                                                                   # global variable
                                                                   # global variable
  p \leftarrow \text{probability of instantiation } s
  DFS MPE(e, Q)
  return s
DFS MPE(i, X)
if X is empty then
                                                         # i is a network instantiation
  if P(i) > p then
                                                       P(i) can be computed in linear time
    s \leftarrow i
                                                       using the chain rule for Bayesian networks
    p \leftarrow P(i)
else
   X \leftarrow a variable in X
   for each value x of variable X do
     DFS MPE(ix, X \setminus \{X\})
```

- We can prune the search tree using an upper bound on the MPE probability
 - Suppose we are exploring a search node corresponding to instantiation i
 - If we have visited a leaf node corresponding to the instantiation s with probability p
 - And we know that every completion of *i* will not have higher probability
 - We can abandon the search node i as it will not lead to improvement over s

New best so far found!

- We can prune the search tree using an upper bound on the MPE probability
 - Suppose we are exploring a search node corresponding to instantiation i
 - If we have visited a leaf node corresponding to the instantiation s with probability p
 - And we know that every completion of i will not have higher probability
 - We can abandon the search node i as it will not lead to improvement over s

since we will multiply by

values in [0,1]. Prune.

- We can prune the search tree using an upper bound on the MPE probability
 - Suppose we are exploring a search node corresponding to instantiation i
 - If we have visited a leaf node corresponding to the instantiation s with probability p
 - And we know that every completion of i will not have higher probability
 - We can abandon the search node i as it will not lead to improvement over s

We cannot improve this since we will multiply by values in [0,1]. Prune.

- We can prune the search tree using an upper bound on the MPE probability
 - Suppose we are exploring a search node corresponding to instantiation i
 - If we have visited a leaf node corresponding to the instantiation s with probability p
 - And we know that every completion of i will not have higher probability
 - We can abandon the search node i as it will not lead to improvement over s

- We can prune the search tree using an upper bound on the MPE probability
 - Suppose we are exploring a search node corresponding to instantiation i
 - If we have visited a leaf node corresponding to the instantiation s with probability p
 - And we know that every completion of *i* will not have higher probability
 - We can abandon the search node i as it will not lead to improvement over s

We cannot improve this since we will multiply by values in [0,1]. Prune.

- We can prune the search tree using an upper bound on the MPE probability
 - Suppose we are exploring a search node corresponding to instantiation i
 - If we have visited a leaf node corresponding to the instantiation s with probability p
 - And we know that every completion of *i* will not have higher probability
 - We can abandon the search node *i* as it will not lead to improvement over *s*
- The efficiency of this algorithm depends on the tightness of the upper bounds and the time to compute them

We cannot improve this since we will multiply by values in [0,1]. Prune.

DFS Branch-and-Bound MPE: Algorithm

```
main:
  Q \leftarrow variables in the Bayes Net distinct from variables E
  s \leftarrow network instantiation compatible with evidence e
                                                                       # global variable
  p \leftarrow \text{probability of instantiation } s
                                                                       # global variable
  DFS MPE(e, Q)
  return s
DFS MPE(i, X)
  if X is empty then
                                                         # i is a network instantiation
     if P(i) > p then
       s \leftarrow i; p \leftarrow P(i)
  else
                                                                       MPE_u(i) stands for the
     if MPE_u(i) \leq p then return
                                                                       computed upper bound on
     X \leftarrow a variable in X
                                                                       the MPE probability
     for each value x of variable X do
        DFS MPE(ix, X \setminus \{X\})
```

Upper Bounds by Node Splitting

- We discuss a technique that allows to generate a spectrum of upper bounds
 - In which we can trade off the bound tightness with the time it takes to compute it
- Consider the example network and a corresponding transformation
 - The tail edge $S \to T_2$ has been cloned by variable \hat{S}
 - Similarly, the tail of edge $T_1 \to A$ has been cloned by variable \widehat{T}_1
 - Both clone variables are roots and have uniform CPTs
 - All other variables maintain their original CPTs (except that we need to replace S by its clone in the CPT of T_2 . Similarly for the CPT of A)

Upper Bounds by Node Splitting

- These transformations can be used to reduce the treewidth of a network
 - To a point where applying algorithms such as VE becomes feasible
 - However, the transformed network does not induce the same distribution of the original network
 - But it does produce upper bounds on MPE probabilities

Upper Bounds by Node Splitting

- Suppose that e is the given evidence and ê is the instantiation of clone variables implied by e
 - For every variable X instantiated to x in e, its clone \hat{X} will also be instantiated to x in e.
- The following is guaranteed to hold

$$MPE_p(\boldsymbol{e}) \leq \beta MPE'_p(\boldsymbol{e}, \hat{\boldsymbol{e}})$$

- $MPE_p(e)$ and $MPE'_p(e, \hat{e})$ are MPE probabilities for the original and transformed networks
- lacksquare is the total number of instantiations for the cloned variables
- Therefore, we can compute an upper bound by performing inference on the transformed network
 - Which usually has low treewidth by design

The Effect of Node Splitting on Networks

- Let us analyse a simple case of node splitting
 - With only two variables
 - We computed the join P(A, B)

A	B	P(A,B)
a	b	.02
a	\overline{b}	.18
\bar{a}	b	.56
\bar{a}	\overline{b}	.24

The Effect of Node Splitting on Networks

- Let us analyse a simple case of node splitting
 - With only two variables
 - We computed the join P(A, B)
- Now, we split node A according to B
 - \hat{A} has a uniform distribution, i.e., $P(\hat{A}_i) = \frac{1}{|\hat{A}|}$
 - Notice $P'(A, \hat{A}, B)|\hat{A}| = P(A, B)$ for the matching instantiations of A and \hat{A}

The Effect of Node Splitting on Networks

- Considering the split cardinality as
 - $\beta = \prod_{C \in \mathcal{C}} |C|$, where \mathcal{C} is the set of clone nodes
 - If we compute $P'(A, \hat{A}, B) \times \beta$ we can recover P(A, B)including its MPE probability
 - However, the MPE probability in $P'(A, \hat{A}, B) \times \beta$ is an upper bound for the MPE probability in P(A, B)

<u>A</u>	Â	В	$P'(A, \hat{A}, B)$	$P'(A, \hat{A}, B)\beta$
a	â	b	.01	.02
a	â	\overline{b}	.09	.18
a	$\overline{\hat{a}}$	b	.07	.14
а	$\overline{\hat{a}}$	\overline{b}	.03	.06
\bar{a}	â	b	.04	.08
\bar{a}	â	\overline{b}	.36	.72
\bar{a}	$\bar{\hat{a}}$	b	.28	.56
\bar{a}	$\bar{\widehat{a}}$	\bar{b}	.12	.24

A	B	P(A,B)
a	b	.02
a	\overline{b}	.18
\bar{a}	b	.56
ā	\overline{b}	.24
		58

Upper Bounds by Node Splitting: Example

• If evidence e is $\{S = male, A = yes\}$, then \hat{e} is $\{\hat{S} = male\}$

$$MPE_p(\mathbf{e}) = .3344$$

 $MPE'_p(\mathbf{e}, \hat{\mathbf{e}}) = .0836$
 $\beta = 4$

Leading to

$$.3344 \le (4)(.0836) = .3344$$

Therefore the upper bound is exact in this case

Upper Bounds by Node Splitting: Example

• If evidence e is only $\{A = yes\}$, then \hat{e} is empty

$$MPE_p(\mathbf{e}) = .33858$$

 $MPE'_p(\mathbf{e}, \hat{\mathbf{e}}) = .099275$
 $\beta = 4$

Leading to

$$.33858 \le (4)(.099275) = .3971$$

MPE Complexity Analysis

- Using VE, we can solve MPE problems
 - In time and space $O(n \exp(w))$ for n variables
- For branch-and-bound
 - Where we split m variables leading to a model with n+m variables
 - An elimination order of width w' and use MPE VE for inference
 - The complexity of inference on the split network is $O((n+m)\exp(w'))$
 - As inference is performed in each node of the search tree and the search tree has $O(\exp(n))$ nodes
 - Total time complexity of $O((n+m)\exp(n+w'))$
- It does not look favourable to branch-and-bound, but we should note
 - Branch-and-bound reduces the exponential component from w to w' by splitting loops
 - The time complexity of VE is its worst and best-case. For branch-and-bound it is only the worst-case since pruning can improve the average-case

Computing MAP

- Given a network
 - The MAP probability for the variables M given evidence e is defined as

$$MAP_P(\mathbf{M}, \mathbf{e}) \stackrel{\text{def}}{=} \max_{\mathbf{m}} P(\mathbf{m}, \mathbf{e})$$

- There may be several instantiations m with maximal probability
 - Each of them is a MAP instantiation
 - The set of such instantiations is defined as
- MPE instantiations can be characterized as instantiations m that maximize the posterior distribution P(m|e)

• Since
$$P(\boldsymbol{m}|\boldsymbol{e}) = \frac{P(\boldsymbol{m},\boldsymbol{e})}{P(\boldsymbol{e})}$$

• P(e) is independent of the instantiation m

$$MAP(\mathbf{M}, \mathbf{e}) \stackrel{\text{def}}{=} \underset{m}{argmax} P(\mathbf{m}, \mathbf{e})$$

$$MAP(\mathbf{M}, \mathbf{e}) \stackrel{\text{def}}{=} \underset{a}{argmax} P(\mathbf{q}|\mathbf{e})$$

Computing MAP by Variable Elimination

- We can compute the MAP probability $MAP_P(\pmb{M}, \pmb{e})$ using the VE algorithm
 - First, summing out all non-MAP variables: computes the marginal $P(\mathbf{M}, \mathbf{e})$ in factored form
 - Second, maximizing out MAP variables M: solve MPE problem over the resulting marginal
- The resulting algorithm can be thought of a combination of MPE and VE algorithms
- We can use extended factors just as when computing an MPE instantiation

MAP VE: Algorithm

```
Q \leftarrow \text{variables in the network}
\pi \leftarrow elimination order of variables Q in which variables M appear last
S \leftarrow \{\phi^e : \phi \text{ is a factor of the network}\}\
for i = 1 to length of order \pi do
      \sigma_i \leftarrow \prod_k \phi_k, where \phi_k belongs to S and mentions variable \pi(i)
      if \pi(i) \in M then
             \tau_i \leftarrow \max_{\pi(i)} \sigma_i
       else
             \tau_i \leftarrow \sum_{\pi(i)} \sigma_i
       replace all factors \phi_k in S by factor \tau_i
return trivial factor \prod_{\tau \in S} \tau
```

Notes:

- If the network is a Bayesian network, you can prune nodes and edges
- The elimination is special in the sense the MAP variables appear last
- The algorithm perform both types of elimination: maximizing-out MAP variables and summing-out non-MAP variables

MAP VE Complexity

- Given n variables and an elimination order of width w
 - The time and space complexity of MAP is $O(n \exp(w))$
 - Like MPE VE algorithm
- However, MAP variable order is constrained
 - It requires MAP variables to be last in the order
 - This means that we may not be able to use a good ordering because low-width orders do not satisfy this constraint
- For example, the polytree structure on the right
 - It has treewidth of 2 since it has at most two parents per node
 - If we want to compute MAP for variables $M = \{Y_1, ..., Y_n\}$, any order that M comes last has $width \ge n$
 - Therefore, MPE VE is linear, but MAP VE is exponential in this case

MAP VE Complexity

- In general, we cannot use arbitrary elimination orders
 - We cannot interleave variables that are summing out with those maximizing out
 - Maximization does not commute with summation

$$\left[\sum_{X} \max_{Y} f\right](\mathbf{z}) \ge \left[\max_{Y} \sum_{X} f\right](\mathbf{z})$$

for all instantiations z

- The complexity of MAP VE is at best exponential in the constrained treewidth
 - A variable order π is **M**-constrained iff variables **M** appear last in the order π .
 - The *M-constrained treewidth* of a graph is the width of its best *M-constrained variable order*
- Computing MAP is therefore more difficult than computing MPE in the context of VE

S	C		$\Theta_{C S}$	C	T_1	E	$T_1 C$	S		$\Theta_{\mathcal{S}}$		_	
male	yes		.05	yes	ve		.80	mai	le	.55		(c	
male	no		.95	yes	\overline{ve}		.20	femo	ale	.45		\sum_{j}	\mathcal{J}
female	e yes	s	.01	no	ve		.20					' T	
female	e no		.99	no	\overline{ve}		.80				K		
										(C		
S	С	T_2	$\Theta_{T_2 C_s}$	s T	' ₁ 7	7	\boldsymbol{A}	$\Theta_{A T_1,T}$,				
male				$\overline{}$ $\overline{}$	e^{-v}	e e	yes	1		K		Y	_
male	yes ī	\overline{ve}	.20	v	e v	e	no	0		$\left(\frac{1}{2} \right)$		$\binom{T}{T}$	
male	no	ve	.20	v	$e \overline{v}$	\overline{e}	yes	0				T_2	
male	no $\bar{1}$	\overline{ve}	.80	v	$e \overline{v}$	\overline{e}	no	1					
female	yes	ve	.95	$\overline{ u}$	\overline{e} v	e	yes	0		7			
female	yes ī	\overline{ve}	.05	$\overline{ u}$	\overline{e} v	e	no	1		7			
female	no	ve	.05	$\overline{ u}$	\overline{e} \overline{v}	\overline{e}	yes	1				1	
female	$no \overline{1}$	\overline{ve}	.95	$\overline{ u}$	\overline{e} \overline{v}	\overline{e}	no	0					

Let us run MAP VE with evidence A = yes and MAP variables Sand C, and elimination order $\pi = A, T_1, T_2, S, C$

<u>_</u>	S	С	$\phi_1(S,C)$	<u>C</u>	T_1	$\phi_2(T_1,C)$	S	$\phi_3(S)$
	male	yes	.05	yes	ve	.80	male	.55
	male	no	.95	yes	\overline{ve}	.20	female	.45
Ĵ	female	yes	.01	no	ve	.20		
Ĵ	female	no	.99	no	\overline{ve}	.80		
J	emule	no	• / /	110	VE	.00		

S	С	T_2	$\phi_4(T_2,C,S)$	T_1	T_2	A	$\phi_5(T_1,T_2,T_3)$
male	yes	ve	.80	ve	ve	yes	1
male	yes	\overline{ve}	.20	ve	ve	no	0
male	no	ve	.20	ve	\overline{ve}	yes	0
male	no	\overline{ve}	.80	ve	\overline{ve}	no	1
female	yes	ve	.95	\overline{ve}	ve	yes	0
female	yes	\overline{ve}	.05	\overline{ve}	ve	no	1
female	no	ve	.05	\overline{ve}	\overline{ve}	yes	1
female	no	\overline{ve}	.95	\overline{ve}	\overline{ve}	no	0

 $\phi_3(S)$

• Let us run MAP VE with evidence A = yes and MAP variables S and C, and elimination order $\pi = A, T_1, T_2, S, C$

S	С	$\phi_1(S,C)$	<u>C</u>	T_1	$\phi_2(T_1,C)$
male	yes	.05	yes	ve	.80
male	no	.95	yes	\overline{ve}	.20
female	yes	.01	no	ve	.20
female	no	.99	no	\overline{ve}	.80

S	$\boldsymbol{\mathcal{C}}$	T_2	$\phi_4(T_2,C,S)$	T_1	T_2	а	$\phi_5(T_1,T_2,$, a)
male	yes	ve	.80	ve	ve	yes	1	
male	yes	\overline{ve}	.20	ve	\overline{ve}	yes	0	\int_{T}
male	no	ve	.20	\overline{ve}	ve	yes	0	
male	no	\overline{ve}	.80	\overline{ve}	\overline{ve}	yes	1	
female	yes	ve	.95					
female	yes	\overline{ve}	.05					
female	no	ve	.05					
female	no	\overline{ve}	.95					

 $\phi_3(S)$

.55

male

female .45

T_1	T_2	а	$\phi_5(T_1, T_2, a)$	T_1	T_2	$\tau_1(T_1,T_2)$
ve	ve	yes	1	ve	ve	1
ve	\overline{ve}	yes	0	ve	\overline{ve}	0
\overline{ve}	ve	yes	0	\overline{ve}	ve	0
\overline{ve}	\overline{ve}	yes	1 —	\overline{ve}	\overline{ve}	1

					<u></u>	T_1	T_2	$\sigma_2(T_1,T_2,C)$
					yes	ve	ve	.80
					yes	ve	\overline{ve}	0
T_1	T_2	$\tau_1(T_1,T_2)$	C T_1	$\phi_2(T_1, \mathcal{C})$	yes	\overline{ve}	ve	0
ve	ve	1	yes ve	.80	yes	\overline{ve}	\overline{ve}	.20
ve	\overline{ve}	0 ×	yes ve	.20 =	no	ve	ve	.20
\overline{ve}	ve	0	no ve	.20	no	ve	\overline{ve}	0
\overline{ve}	\overline{ve}	1	no ve	.80	no	\overline{ve}	ve	0
					no	\overline{ve}	\overline{ve}	.80

<u></u>	T_1	T_2	$\sigma_2(T_1,T_2,C)$			
yes	ve	ve	.80			
yes	ve	\overline{ve}	0	<u></u>	T_2	$\tau_2(T_2,C)$
yes	\overline{ve}	ve	0	yes	ve	.80
yes	\overline{ve}	\overline{ve}	.20	yes	\overline{ve}	.20
no	ve	ve	.20	no	ve	.20
no	ve	\overline{ve}	0	no	\overline{ve}	.80
no	\overline{ve}	ve	0			
no	\overline{ve}	\overline{ve}	.80			

			S	С	T_2	$ \phi_4(T_2,C,S) $)	S	С	T_2	$\sigma_3(T_2, S, C)$
			male	yes	ve	.80		male	yes	ve	.64
<u></u>	T_2	$\tau_2(T_2,C)$	male	yes	\overline{ve}	.20		male	yes	\overline{ve}	.04
yes	ve	.80	male	no	ve	.20		male	no	ve	.04
yes	\overline{ve}	.20 ×	male	no	\overline{ve}	.80	=	male	no	\overline{ve}	.64
no	ve	.20	female	yes	ve	.95		female	yes	ve	.76
no	\overline{ve}	.80	female	yes	\overline{ve}	.05		female	yes	\overline{ve}	.01
			female	no	ve	.05		female	no	ve	.01
			female	no	\overline{ve}	.95		female	no	\overline{ve}	.76

<i>S</i>	С	T_2	$\sigma_3(T_2, S, C)$			
male	yes	ve	.64			
male	yes	\overline{ve}	.04	<u></u>	С	$\tau_3(C,S)$
male	no	ve	.04	male	yes	.68
male	no	\overline{ve}	.64	m ale	no	.68
female	yes	ve	.76	female	yes	.77
female	yes	\overline{ve}	.01	female	no	.77
female	no no	ve	.01			
female	no no	\overline{ve}	.76			

<i>S</i>	С	$\tau_3(C,S)$	_				S	С	$\sigma_4(C,S)$
male	yes	.68		S	$\phi_3(S)$		male	yes	.37
male	no	.68	×	male	.55	- ≈	male	no	.37
female	yes	.77	^	female	.45	, •	female	yes	.35
female	no	.77		•	1		female	no	.35

<i>S</i>	$\boldsymbol{\mathcal{C}}$	$ \sigma_4(C,S) $	_	<i>S</i>	$\boldsymbol{\mathcal{C}}$	$\phi_1(S,C)$	<u>S</u>	С	$\sigma_5(C,S)$
male	yes	.37		male	yes	.05	male	yes	.018
male	no	.37	~	male	no	.95	male	no	.351
female	yes	.35	^	female	yes	.01	female	yes	.004
female	no	.35		female	no	<u>.</u> 99	female	no	.347

- Let us run MAP VE with evidence A = yes and MAP variables S and C, and elimination order $\pi = A, T_1, T_2, S, C$
- Since P(e) = P(A = yes) = .7205
 - $MAP_p(S, C|e) \approx 49\%$

	$\tau_5(\mathcal{C})$			1
yes	.018	male —	$_{-} au_{6}$	
_		male —	.351	male, no

Computing MAP by Systematic Search

- MAP can be solved with depth-first branch-and-bound search
 - Similar to MPE
- The upper bound can be computed based on the split network
 - However, the quality for this upper bound is somewhat loose in practice
 - Compared to the MPE case
- We later introduce a different upper bound for MAP

DFS MAP: Algorithm

```
main:
  m \leftarrow some instantiation of variables M
                                                                   # global variable
  p \leftarrow \text{probability of instantiation } \boldsymbol{m}, \boldsymbol{e}
                                                                   # global variable
  DFS MAP(e, M)
  return m
DFS_MAP(i, X)
  if X is empty then
                                                                    # leaf node
     if P(i) > p then
                                                      P(i) does not involve all variables anymore.
       m \leftarrow i
                                                      We will need to do inference to compute this
       p \leftarrow P(i)
  else if MAP_u(X, i) > p then
                                                       The previous bound based on network splitting
      X \leftarrow a variable in X
                                                      is shown to be less tight than for the MPE case.
      for each value x of variable X do
                                                      We will explore a new bound
        DFS MAP(ix, X \setminus \{X\})
```

Computing P(i) for MPE and MAP

- In MPE, all variables but the evidence are in the query
 - Therefore, computing P(i) is linear time for any instantiation i
 - For instance, $P(male, no, \overline{ve}, \overline{ve}, yes) =$ $.95 \times .80 \times .55 \times .80 \times 1 = .3344$

S	\mathcal{C}	7	$\Theta_{C S}$	<u></u>	T_1	($\Theta_{T_1 C}$	S	$\Theta_{\mathcal{S}}$	_	_	_
male	ye	- 1	.05	yes	ve		.80	mal		_		
male	n	$o \mid$.95	yes	\overline{ve}		.20	fema	le .45	•		s J
femal	e ye	25	.01	no	ve		.20					$ \uparrow $
femal	e n	$o \mid$.99	no	\overline{ve}		.80				K	
,		'									(C)	
S	С	T_{α}	$\left \Theta_{T_2}\right $	7	$r_1 = 7$	п 2	\boldsymbol{A}	$ \Theta_{A} _{T=T}$	r.	\rightarrow		
								$\Theta_{A T_1,T_1}$	2			
male	yes	ve	.80	ι	e v	<i>e</i>	yes	1				
male	yes	\overline{ve}	.20	r	e v	e	no	0	(T_1)		(,	r_{-}
male	no	ve	.20	υ	$ve \overline{v}$	\overline{e}	yes	0	I_1			I_2
male	no	\overline{ve}	.80	ι	$ve \overline{v}$	\overline{e}	no	1	_			
female	yes	ve	.95	$\overline{\imath}$	\overline{e} v	e	yes	0				
female	yes	\overline{ve}	.05	$\bar{\imath}$	\overline{e} v	e	no	1		7	1	
female	no	ve	.05	$\bar{\imath}$	$\overline{v}e$ \overline{v}	\overline{e}	yes	1				
female	no no	\overline{ve}	.95	$\overline{\imath}$	$\overline{v}e$ \overline{v}	\overline{e}	no	0				

Computing P(i) for MPE and MAP

- In MPE, all variables but the evidence are in the query
 - Therefore, computing P(i) is linear time for any instantiation i
 - For instance, $P(male, no, \overline{ve}, \overline{ve}, yes) =$ $.95 \times .80 \times .55 \times .80 \times 1 = .3344$
- In MAP, MAP variables are a subset of all variables
 - Computing P(i) such as P(S = male, C = yes | A = yes) involves variable elimination
 - $P(S = male, C = yes | A = yes) \approx$.0260

1			1_		ı		
$S \qquad C \mid \Theta$	$\Theta_{C S}$ C	T_1	$\Theta_{T_1 C}$	<u>S</u>	$\Theta_{\mathcal{S}}$	_	
	.05 ye	es ve	.80	male	.55		\bigcap
male no	.95 <i>ye</i>	es ve	.20	female	.45	(5	' <i>)</i>
female yes	01 n	o ve	.20				
female no	.99 n	o ve	.80			K	
,					($\left(\begin{array}{c} c \end{array} \right)$	
a a m	ام			ام	>		
S C T_2	$\Theta_{T_2 C,S}$	T_1 T_2	<u> </u>	$\Theta_{A T_1,T_2}$			i
male yes ve	.80	ve ve		1	K	Y	
male yes ve	.20	ve ve	e no	0 (T_1	\int_{T}	
male no ve	.20	$ve \overline{ve}$	ē yes	0	I_1	T	
male no ve	.80	$ve \overline{ve}$	ē no	1			
female yes ve	.95	\overline{ve} ve	e yes	0	7		
female yes \overline{ve}	.05	\overline{ve} $v\epsilon$	e no	1	7		
female no ve	.05	\overline{ve} \overline{ve}	ē yes	1		\mathcal{A}	
female no \overline{ve}	.95	\overline{ve} \overline{ve}	ē no	0			

Upper Bound for MAP

- We propose a different upper bound for MAP queries. It comes from the following observation
 - If we use an arbitrary elimination order on Line 2 of algorithm MAP VE, the number q it returns satisfies
- Remember that maximization does not commute with summation
 - If we precede some maximizations of summations, we get an upper bound
- We cannot use arbitrary elimination orders for computing MAP
 - But we can use such an order to compute an upper bound
 - Some orders produce better upper bounds than others
 - The goal is to find an order that produces one of the better bounds

$$MAP_p(\mathbf{M}, \mathbf{e}) \le q \le P(\mathbf{e})$$

$$\left[\sum_{X} \max_{Y} f\right](\mathbf{z}) \ge \left[\max_{Y} \sum_{X} f\right](\mathbf{z})$$

MAP VE: Algorithm

```
Q \leftarrow \text{variables in the network}
\pi \leftarrow elimination order of variables Q in which variables M appear last
S \leftarrow \{\phi^e : \phi \text{ is a factor of the PGM}\}
                                                                  \pi is now an arbitrary order, not M-constrained
for i = 1 to length of order \pi do
             \sigma_i \leftarrow \prod_k \phi_k, where \phi_k belongs to S and mentions variable \pi(i)
             if \pi(i) \in M then
                           \tau_i \leftarrow \max_{\pi(i)} \sigma_i
             else
                          \tau_i \leftarrow \sum_{\pi(i)} \sigma_i
             replace all factors \phi_k in S by factor \tau_i
return trivial factor \prod_{\tau \in S} \tau

    We are calling this quantity q
```

Upper Bound for MAP

- We propose a different upper bound for MAP queries. It comes from the following observation
 - If we use an arbitrary elimination order on Line 2 of algorithm MAP VE, the number q it returns satisfies
- Remember that maximization does not commute with summation
 - If we precede some maximizations of summations, we get an upper bound
- We cannot use arbitrary elimination orders for computing MAP
 - But we can use such an order to compute an upper bound
 - Some orders produce better upper bounds than others
 - The goal is to find an order that produces one of the better bounds

$$MAP_p(\mathbf{M}, \mathbf{e}) \le q \le P(\mathbf{e})$$

$$\left[\sum_{X} \max_{Y} f\right](\mathbf{z}) \ge \left[\max_{Y} \sum_{X} f\right](\mathbf{z})$$

MAP Complexity Analysis

- Suppose we have
 - n variables
 - an elimination order of width w
 - a constrained elimination order of w + c
- MAP variable elimination takes $O(n \exp(w + c))$
- DFS MAP
 - The search tree has $O(\exp(m))$, where m is the number of MAP variables
 - The computation of P(i) for each leaf node takes $O(n \exp(w))$ time and space with VE
 - The computation of the upper bound, MAP_{u} , has a similar complexity
 - Therefore, the algorithm has
 - Space complexity of $O(n \exp(w))$
 - Time complexity of $O(n \exp(w + m))$

MAP Complexity Analysis

- Comparing DFS MAP and MAP VE
 - DFS MAP has better space complexity
 - The time complexity depends on the constrained width w + c and number of MAP variables m
- Even if m > c, DFS MAP may perform better
 - The complexity of variable elimination is the best and worst case at the same time
 - The complexity for DFS MAP is the worst case
 - The pruning may lead to better average complexity in practice

- As mentioned before, any elimination order can be used to produce an upper bound
 - But some orders will produce better upper bounds than others
 - The closer is the order to the constrained order, the tighter the bound tends to be
- A technique to select one of the better unconstrained orders
 - Remember, we can convert jointrees to elimination orders
 - For instance, considering the jointree on the right, we can generate several elimination orders, including
 - $\pi_1 = D, Z, B, W, A, Y, C, X$
 - $\pi_2 = Z, D, W, B, Y, A, X, C$

- Suppose that MAP variables are W, X, Y, Z
 - Neither π_1 nor π_2 are m-constrained
 - But π_1 will produce better bound as MAP variables appear later
- We can transform a jointree of width w into another jointree
 - With the same width w
 - That induces elimination orders closer to a constrained order
- The idea is to promote MAP variables toward the root without increasing the jointree width w
 - Let C_k and C_i be two adjacent clusters where C_i is closer to the root
 - Any MAP variable that appears in C_k is added to C_i as long the new cluster size does not exceed w+1
 - This is the "add variable" operation over jointrees

$$\pi_1 = D, \mathbf{Z}, B, \mathbf{W}, A, \mathbf{Y}, C, \mathbf{X}$$

$$\pi_2 = \mathbf{Z}, D, \mathbf{W}, B, \mathbf{Y}, A, \mathbf{X}, C$$

- π_3 is closer to the constrained order than π_1
 - Because MAP variables Y and Z appear later in the order
- Each time a MAP variable is promoted to a cluster closer to the root
 - The elimination of that variable is postponed
 - Pushing it past all non-MAP variables that are eliminated in original cluster
- This has a monotonic effect in the upper bound
 - Although in rare cases, the upper bound remains the same
- This technique improves the bounds computed by elimination orders that are induced by the jointree and a selected root
 - The quality induced by some other root may worsen

MPE and Belief Propagation

- We can easily adapt the jointree algorithm to compute MPE assignments
 - We messages will be computed using maximization and multiplication operations
 - We frequently call this approach as the max-product algorithm
 - While the original algorithm for computing marginal probabilities is known as sum-product algorithm
- However, it also very common to convert the probabilities to logprobabilities
 - The max-product algorithm becomes *max-sum algorithm*
 - Usually numerically more stable than max-product

X	Y	P
0	0	8
0	1	1
1	0	0.5
1	1	2

X	Y	$\log_2 P$
0	0	3
0	1	0
1	0	-1
1	1	1

Factor Summation

- We need to define a new operation: factor summation
 - Similar to factor multiplication
 - We match rows based on common variables (if any) creating a new factor
 - Add add the rows according to the value of the variables

Max-Sum in Jointrees

Max-Sum in Jointrees

Max-Sum: Simple Example

Max-Sum: Simple Example

Conclusion

- MPE and MAP queries can be answered with simple adaptations of the VE and FE algorithms
 - We introduced an elimination operation with max
- In MPE, we operate only with multiplication and maximization operations
 - We can easily replace probabilities with log-probabilities
 - This creates numerically stable algorithms, since multiplying several small numbers can lead to underflows
- We also studied algorithms based on systematic search
 - Although the worst-case analysis of these algorithms tend to show a large time complexity
 - They can perform better than VE on the average case due to pruning
- We discussed two techniques for creating upper-bounds
 - Node splitting is used with MPE
 - Jointrees are used to create low width elimination orders similar to constrained ones for MAP
- Task
 - Read chapter 10 of the textbook