

Ciencia de DATOS

Regresión Lineal Simple y Múltiple

PASOS PARA UN ANÁLISIS DE REGRESIÓN

Un análisis de Regresión Lineal tiene lugar cuando deseamos explicar a qué se debe el comportamiento de una **variable de interés** (y) y suponemos una posible relación con otras variables que pueden estar influyendo sobre ella $(x_1, x_2, ..., x_k)$. De esta manera, el análisis de regresión consiste principalmente en ir respondiendo preguntas con respecto a esta posible relación, las cuales son contestadas en cada caso con una prueba o método estadístico.

De manera general, podemos listar las siguientes preguntas a responder con sus correspondientes herramientas para darles respuesta:

Cuando todas las preguntas anteriores han sido contestadas y se ha obtenido un modelo que ajuste satisfactoriamente el comportamiento de y en función de la o las variables x's, entonces pueden estimarse los valores de y para diferentes valores de x, de manera puntual y por intervalos. A continuación, se describe cada paso descrito en el esquema anterior.

1. Gráfico de Dispersión

Esta imagen muestra cómo interpretar la relación entre las variables de acuerdo a su apariencia en el gráfico de dispersión. En el gráfico 6 se representa solo un posible caso de relación no lineal, pero pueden existir otros patrones que indiquen una posible relación exponencial, logarítmica, polinomial, entre otros.

2. Modelo de regresión

A través del método de mínimos cuadrados se obtienen los **coeficientes de regresión** β_o , β_1 , β_2 , ..., β_k que definen el modelo de regresión.

$$y = \beta_0 + \beta_1 x$$

 $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$

en el caso de Regresión Lineal Simple en el caso de Regresión Lineal Múltiple

Donde k es el número de variables regresoras (x) que incluye el modelo.

3. Prueba de Significancia

Con un análisis de varianza o una prueba t, se prueban las hipótesis:

 $H_0: \beta_i = 0$ No existe una relación significativa entre las variables y y x_i

 $H_1: \beta_i \neq 0$ Existe una relación significativa entre las variables y y x_i

 H_0 : $\beta_1 = \beta_2 = \cdots = \beta_k = 0$ Ninguna x tiene una relación significativa con y. $H_1: \beta_i \neq 0$ para al menos unai con i = 1, 2, ..., k

Al menos una x tiene una relación significativa con y.

Rechazar Ho también implica que la variable x tiene un efecto significativo sobre el comportamiento de la variable y.

Prueba individual

Prueba general para Regresión Lineal

4. Coeficiente de Determinación

El coeficiente de Determinación mide la variabilidad de y que puede ser explicada a partir de x; puede tomar valores de 0 a 1, es decir, $0 \le R^2 \le 1$.

Un valor de ${\bf 0}$ indica que la variable regresora (o las variables regresoras) no aportan información para explicar el comportamiento de la variable dependiente, mientras que un valor del ${\bf 1}$, implicaría que el ${\bf 100}\%$ de la variabilidad de ${\bf y}$, puede ser explicada a partir de las variables ${\bf x}$.

5. Coeficiente de Correlación

El coeficiente de correlación mide qué tan fuerte es la relación lineal entre las variables; puede tomar valores de -1 a 1, es decir, $-1 \le R \le 1$.

Un valor de -1 indica que la existe una relación lineal fuerte, pero **negativa** (tendencia descendente \rightarrow si x aumenta, y disminuye), un valor de 1 indica que existe una relación lineal fuerte, **positiva** (tendencia ascendente \rightarrow si x aumenta, y también aumenta), valores de 0 indican una relación lineal **nula**.

En esta imagen se pueden ver algunos valores de R y lo que podría interpretarse con respecto a la relación entre las variables.

6. Verificación de Supuestos Estadísticos

Los métodos de prueba de Significancia y estimación de valores de y en función de x, están basados en los siguientes supuestos estadísticos:

- a) Los residuos e_i , siguen una distribución normal $N(0, \sigma_e^2)$.
- b) Los residuos e_i son independientes con respecto a x.
- c) Los residuos e_i son independientes con respecto a los valores estimados \hat{y}_i .
- d) Los residuos e_j son independientes con respecto al orden en que se obtuvieron las $\bf n$ observaciones.

Estos supuestos se prueban a partir de un **análisis de residuales** y en caso de que se cumplan **todos y cada uno de ellos**, se concluye que el modelo de regresión es adecuado para predecir a y en función de x, además que los resultados obtenidos en las pruebas de significancia son confiables.

Una vez comprobado lo anterior, pueden hacerse predicciones para la variable de interés a partir de la información disponible de las variables regresoras.

