# 1 近似分布学习: 算法与数值实验

### 1.1 近似分布学习

#### 1.2 算法实现细节

本次作业中,我们实现了经验重放的近似分布学习 Double DQN 算法,在 OpenAI gym 环境下对 Atari 游戏 Alien 进行学习,并与 OpenAI Baselines:DQN 算法在相同机器上进行了效果比较。

我们实现的算法有如下值得提及的细节:

- 智能体在其生命周期内,分为三个行为阶段:观察阶段、探索阶段和学习阶段 1。
  - 1. 智能体的前 N。个时间步为观察阶段。在这一阶段,智能体完全随机选择每一步的行动  $a_t$ ,并将观测到的转换组 ( $\phi_t$ ,  $a_t$ ,  $r_t$ ,  $\phi_{t+1}$ ) 存入重放缓存中。此时的智能体不进行网络的 训练;
  - 2. 智能体在观察阶段后的  $N_e$  个时间步内为探索阶段。在探索阶段,智能体仍然完全随机选择每一步的行动,并存储相应的转换组作为经验。但此时的智能体开始初步学习,训练网络;
  - 3. 智能体在探索阶段后进入训练阶段。此时的智能体按照  $\epsilon$ -贪心方法选择动作  $a_t$ , 仍然存储经验并训练网络。值得注意的是,在前两个阶段,随机选择行动  $a_t$  相当于参数  $\epsilon = 1$  的  $\epsilon$ -贪心方法。在训练阶段,我们并不给定一个固定的  $\epsilon$  值,而是以

$$\epsilon \leftarrow \epsilon_0 - \min\left(1, \frac{t - (N_{\rm o} + N_{\rm e})}{f_{\rm e}M}\right) \cdot (\epsilon_0 - \epsilon_{\min})$$

来确定  $\epsilon$ 。其中  $\epsilon_0=1$ , $\epsilon_{\min}$  为  $\epsilon$  最小值, $N_{\rm e}$  分别是观察和探索步数,M 为最大行动步数, $f_{\rm e}$  为衰减系数。可见, $\epsilon$  以线性方式由 1 衰减至最小值  $\epsilon_{\min}$ ,而后保持不变。

- 值分布的支集  $\{z_i = V_{\min} + i\Delta z : 0 \le i < N_{\text{atom}}\}$  上的概率  $\{p_i(x, a)\}$  由神经网络参数化,具体的网络结构如下:
  - 1. 输入层: 从环境 gym 中得到的游戏画面数据,图片像素的行数、列数和信道数随游戏 而改变,样本数为 batch size 和记忆大小两者的较小值;
  - 2. 第一隐藏层:2维卷积层,filters=32,kernel\_size=(8,8),strides=(4,4),activation='relu';
  - 3. 第二隐藏层:2维卷积层,filters=64,kernel\_size=(4,4),strides=(2,2),activation='relu';
  - 4. 第三隐藏层:2维卷积层,filters=64,kernel\_size=(3,3),strides=(1,1),activation='relu';
  - 5. 第四隐藏层: Flatten 层;
  - 6. 第五隐藏层: 全连接层, units=256;

<sup>&</sup>lt;sup>1</sup>该想法参考了 https://github.com/flyyufelix/C51-DDQN-Keras

7. 输出层:  $N_a$  个共享隐藏层的全连接层,每个全连接层的神经元数目 units= $N_{\rm atom}$ ,激活函数 actication='softmax'。其中  $N_a$  为从 gym 环境得到的当前游戏中全部可能行动的数目。

网络损失函数的形式为 categorical\_crossentropy。

#### • 参数设置:

| $V_{ m min}$ | $V_{ m max}$ | $N_{ m atom}$ | $N_{ m o}$ | $N_{ m e}$ | M      | $f_{ m e}$ | $\epsilon_0$ | $\epsilon_{\mathrm{min}}$ | $\gamma$ |
|--------------|--------------|---------------|------------|------------|--------|------------|--------------|---------------------------|----------|
| 0            | 1000         | 51            | 10000      | 40000      | 500000 | 0.2        | 1            | 0.01                      | 0.99     |

## 1.3 数值实验

我们用来学习的硬件信息为:

- Intel(R) Core(TM) i7-4790 CPU@3.60GHz, 1 物理处理器,4 核心,8 线程;
- RAM:16GB
- 无独立显卡

经过 578 个 episodes 的学习,近似分布学习方法的训练得分如下:



智能体在 100 次测试中得分表现为:



与随机行动时的得分相比,可见智能体的表现有着显著的提高:



从测试表现中可以看出,训练后的智能体得分分别集中在500分附近和1000分附近。通过

观察游戏画面,我们发现,两个得分范围的差别主要在于游戏主角是否杀死过敌人。如果有更好的硬件设备进行更长时间的训练,我们有信心将测试平均分提升到 1000 分左右。