Departamento de Matemática FCT-UNL 1° semestre - 2014/2015

Ficha de Exercícios: "Determinantes"

1. Calcule o determinante das seguintes matrizes:

(a)
$$[3] \in \mathcal{M}_{1\times 1}(\mathbb{R});$$

(b) $\begin{bmatrix} 2 & 5 \\ 2 & 0 \end{bmatrix} \in \mathcal{M}_{2\times 2}(\mathbb{R});$
(c) $\begin{bmatrix} 2 & i \\ 2 & 6 \end{bmatrix} \in \mathcal{M}_{2\times 2}(\mathbb{C});$
(d) $\begin{bmatrix} 0 & 1 & 0 \\ 5 & 0 & i \\ 0 & 0 & 6 \end{bmatrix} \in \mathcal{M}_{3\times 3}(\mathbb{C});$
(e) $\begin{bmatrix} 3 & -1 & 4 \\ 2 & 5 & i \\ 2 & 0 & 6 \end{bmatrix} \in \mathcal{M}_{3\times 3}(\mathbb{C}).$

- 2. Determine o(s) valor(es) de $k \in \mathbb{R}$ para os quais a matriz $A = \begin{bmatrix} 2 & 4 \\ 3 & k \end{bmatrix}$ satisfaz $\det(A) = -6$.
- 3. Considere uma matriz $M \in \mathcal{M}_2(\mathbb{R})$. Mostre que $\det(M) = \frac{1}{2}(trM)^2 \frac{1}{2}tr(M^2)$.
- 4. Considere a matriz

$$A = \left[\begin{array}{rrr} 1 & 2 & 1 \\ 2 & 0 & 1 \\ 2 & 3 & 0 \end{array} \right].$$

Usando o Teorema de Laplace, calcule o determinante da matriz A

- (a) através da segunda linha de A;
- (b) através da primeira coluna de A;
- (c) através da terceira linha de A.
- 5. Aplique o Teorema de Laplace, preferencialmente a uma linha ou coluna com um número máximo de zeros, no cálculo do determinante da seguinte matriz:

$$A = \left[\begin{array}{ccccc} 2 & 3 & 0 & 2 & 1 \\ 0 & 1 & 1 & 1 & 2 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 1 & 2 & 1 & 0 \\ 0 & 0 & 1 & 1 & 2 \end{array} \right].$$

- 6. Determine, sem efectuar cálculos e apenas utilizando algumas das propriedades dos determinantes:
 - (a) $\det(A^T)$, onde A é matriz do exercício anterior; (c) $\begin{vmatrix} 4 & 0 & 0 & 0 \\ 9 & 1 & 0 & 0 \\ 21 & 3 & 9 & 0 \\ 98 & 13 & -2 & -1 \end{vmatrix}$

(b)
$$\begin{vmatrix} 2 & 0 & 4 & 0 \\ 1 & 0 & \cos(2,701) & 0 \\ 2 & 0 & 0 & 6 \\ \pi & 0 & 6 & e^3 \end{vmatrix}$$
 (d)
$$\begin{vmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{vmatrix}$$

(e)
$$\begin{vmatrix} -1 & 0 & 1 \\ 3 & 2 & 3 \\ -1 & 0 & 1 \end{vmatrix}$$

$$(f) \left| \begin{array}{cccccc} 1 & -3 & -1 & 1 & 2 \\ 3 & 8 & -6 & 3 & 0 \\ 5 & 1 & 0 & 5 & 0 \\ 5 & 5 & 5 & 5 & 5 \\ 9 & -1 & 2 & 9 & 0 \end{array} \right|$$

7. Calcule o determinante das seguintes matrizes, usando transformações elementares:

(a)
$$A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 2 & 4 \\ 1 & 2 & 3 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ -1 & 3 & 0 & 2 \\ 2 & 0 & 1 & 4 \\ 0 & 3 & 1 & 2 \end{bmatrix}$$

- (b) A', onde $A \xrightarrow{3l_2} A'$;
- 8. Considere uma matriz $A \in \mathcal{M}_n(\mathbb{R})$ onde A_k , a linha k de A, é da forma $aA_i + bA_j$, sendo $a, b \in \mathbb{R}$ e A_i, A_j as linhas i e j de A, respectivamente, com i, j, k distintos. Mostre que $\det(A) = 0$.
- 9. Sem calcular explicitamente o determinante, mostre que para x=0 e x=2 temos

$$\left| \begin{array}{ccc} x & x^2 & 2 \\ 1 & 2 & 1 \\ 0 & 0 & -3 \end{array} \right| = 0$$

10. Sem calcular explicitamente o determinante, mostre que

$$\begin{vmatrix} b+c & a & b+a \\ 1 & 1 & 1 \\ a & b+c & c \end{vmatrix} = 0$$

11. Considere a matriz

$$B = \begin{bmatrix} 4-x & -4 & -4 \\ 2 & -2-x & -4 \\ 3 & -3 & -4-x \end{bmatrix}.$$

Determine os valores de x para os quais a matriz B é invertível.

- 12. Considere matrizes E_1 , E_2 e E_3 tais que $I_n \xrightarrow[l_2 \leftrightarrow l_4]{} E_1$, $I_n \xrightarrow[l_2 + (-4)l_3]{} E_2$ e $I_n \xrightarrow[2l_3]{} E_3$. Seja A uma matriz quadrada de ordem n > 3 de determinante 7. Calcule:
 - (a) $\det(E_1A)$;
- (b) $\det(E_2A)$;
- (c) $\det(E_3A)$.
- 13. Sabendo que A é uma matriz 5×5 sobre $\mathbb C$ tal que $\det(A) = 7i$, calcule:
 - (a) $\det(-A)$;

(c) $\det(\overline{A}^T)$;

(b) det(2A);

- (d) $\det(A^{-1})$.
- 14. Seja A uma matriz de ordem n > 1. Indique, justificando, se as seguintes afirmações são verdadeiras ou falsas:

 2

- (a) $\det(A I_n) = \det(A) 1$;
- (c) $\det(5A) = 5 \det(A)$;
- (b) $\det(A + A) = 2^n \det(A)$;
- (d) $\det(A^T A) > 0$;
- (e) Se $A^2 = A$ então det(A) = 0;
- (f) Se $\det(A) = 0$, então o sistema homogéneo AX = 0 é possível e indeterminado;
- (g) Se $\det(A) \neq 0$, então o sistema AX = B, onde B é uma qualquer matriz coluna, é possível determinado.
- 15. Sejam A, B matrizes de ordem n. Indique, justificando, se as seguintes afirmações são verdadeiras ou falsas:
 - (a) Se A é invertível e det(ABA) = 0, então det(B) = 0;
 - (b) Se A é invertível e $A^{-1} = A$, então $|A| = \pm 1$;
 - (c) Se B é invertível, então $det(B^{-1}AB) = det(A)$;
 - (d) Se a forma de escada reduzida de A tem uma linha nula, então |A|=0;
 - (e) Não existe $A \in \mathcal{M}_n(\mathbb{C})$ tal que $|AA^\top| = 1$.;
 - (f) Se $|A| \neq 0$, então A pode escrever-se como produto de matrizes elementares.
- 16. Considere a matriz A no exercício 4.
 - (a) Determine \widehat{A} , a matriz dos complementos algébricos de A.
 - (b) Calcule $A(\operatorname{adj} A)$.
- 17. Para cada uma das seguintes matrizes, calcule a matriz adjunta e a sua inversa:

(a)
$$\begin{bmatrix} 0 & -2 & -1 \\ 3 & 0 & 0 \\ -1 & 1 & 1 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 1 & 0 & 0 \\ 5 & 2 & 0 \\ 3 & 5 & 1 \end{bmatrix}$$

18. Se possível, resolva os seguintes sistemas, usando a Regra de Cramer.

(a)
$$\begin{cases} 3x - 2y = 7 \\ -5x + 6y = -5 \end{cases}$$

(b)
$$\begin{cases} 2x + y = 7 \\ -3x + z = -8 \\ y + 2z = -3 \end{cases}$$

19. Encontre o valor de x sem resolver o sistema para as restantes incógnitas:

$$\begin{cases} x + 2y = 0 \\ -x + y + z = 1 \\ x + 2y + 3z = 0 \end{cases}$$

- 20. Indique, justificando, se as seguintes afirmações são verdadeiras ou falsas:
 - (a) Se A é uma matriz de ordem $n \geq 2$, então A adj(A) é uma matriz diagonal.
 - (b) A regra de Cramer pode ser usada para resolver qualquer sistema em que o número de equações é igual ao número de incógnitas.
 - (c) Se A é uma matriz de ordem $n \geq 2$ invertível, então a adj(A) também é invertível.
 - (d) Se A é uma matriz de ordem $n \geq 2$ com uma linha nula, então a adj(A) também tem uma coluna nula.
- 21. Sejam $p, n \in \mathbb{N}$, com n > p, $A \in \mathcal{M}_{n \times p}(\mathbb{K})$ e $B \in \mathcal{M}_{p \times n}(\mathbb{K})$. Mostre que $\det(AB) = 0$.

3

Departamento de Matemática FCT-UNL 1° semestre - 2014/2015

Ficha de Exercícios: "Espaços Vectoriais"

1. Considere em \mathbb{R}^2 a adição usual de vectores e uma multiplicação externa \odot de $\mathbb{R} \times \mathbb{R}^2$ em \mathbb{R}^2 definida do seguinte modo:

$$\alpha \odot (x, y) = (\alpha x, y),$$

para quaisquer $\alpha \in \mathbb{R}$ e $(x,y) \in \mathbb{R}^2$. Mostre que $(\mathbb{R}^2,+,\odot)$ não é um espaço vectorial.

- 2. Sejam E um espaço vectorial sobre \mathbb{K} , $n \in \mathbb{N}$, $\alpha, \alpha_1, \ldots, \alpha_n \in \mathbb{K}$ e $u, u_1, \ldots, u_n \in E$. Mostre que:
 - (a) $\alpha(u_1 + \dots + u_n) = \alpha u_1 + \dots + \alpha u_n$; (b) $(\alpha_1 + \dots + \alpha_n)u = \alpha_1 u + \dots + \alpha_n u$.
- 3. Mostre que cada um dos seguintes conjuntos não é um subespaço vectorial de \mathbb{R}^3 :
 - (c) $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 < 1\}.$ (a) \mathbb{O}^3 :
 - (b) $\{(x, y, z) \in \mathbb{R}^3 : x^2 y^2 z^2 = 0\}$;
- 4. Mostre que é um subespaço vectorial de \mathbb{R}^3 o conjunto:
 - (a) $\{(x, y, z) \in \mathbb{R}^3 : x + 2y + 3z = 0, y + z = 0, z = 0\};$
 - (b) $\{(a, b, 2a + 3b) : a, b \in \mathbb{R}\}.$
- 5. Determine quais dos seguintes conjuntos são subespaços vectoriais de \mathbb{R}^3 :

 - $\begin{array}{ll} \text{(a) } \{(x,y,z) \in \mathbb{R}^3: x = yz\}; \\ \text{(b) } \{(x,y,z) \in \mathbb{R}^3: x = 3y 4z\}; \\ \end{array} \\ \text{(c) } \{(a,b,2a+3b+4): a,b \in \mathbb{R}\}; \\ \text{(d) } \{(a-1,b+1,2a+3b+1): a,b \in \mathbb{R}\}. \\ \end{array}$
- 6. Mostre que o subconjunto de $\mathcal{M}_n(\mathbb{K})$ formado pelas matrizes indicadas é um subespaço de $\mathcal{M}_n(\mathbb{K})$:
 - (a) Simétricas;

- (b) Hemi-simétricas.
- 7. Mostre que o subconjunto de $\mathcal{M}_n(\mathbb{K})$ formado pelas matrizes não invertíveis não é um subespaço de $\mathcal{M}_n(\mathbb{K})$.
- 8. Em \mathbb{R}^2 considere os subespaços

$$F = \{(x, y) \in \mathbb{R}^2 : x = y\}$$
 e $G = \{(x, y) \in \mathbb{R}^2 : x = -y\}.$

- (a) Mostre que $F \oplus G = \mathbb{R}^2$.
- (b) Determine a projecção, sobre F segundo G, do vector (2,3) de \mathbb{R}^2 .
- 9. Sejam E um espaço vectorial sobre um corpo \mathbb{K} e $v_1, v_2 \in E$. Indique, justificando, se as seguintes afirmações são verdadeiras ou falsas:
 - (a) Se (v_1, v_2) é linearmente dependente, então para quaisquer $\alpha, \beta \in \mathbb{K}$, $\alpha v_1 + \beta v_2 =$ 0_E ;

- (b) Se $0v_1 + 0v_2 = 0_E$, então (v_1, v_2) é linearmente dependente;
- (c) Se (v_1, v_2) é linearmente independente, então existem $\alpha, \beta \in \mathbb{K}$ tais que $\alpha v_1 + \beta v_2 \neq 0_E$;
- (d) Se para quaisquer $\alpha, \beta \in \mathbb{K}$, $\alpha v_1 + \beta v_2 = 0_E$, então (v_1, v_2) é linearmente independente;
- (e) Se existem $\alpha, \beta \in \mathbb{K}$ tais que $\alpha v_1 + \beta v_2 \neq 0_E$, então (v_1, v_2) é linearmente dependente.
- 10. Considere os vectores $u_1 = (1, 1, 0, 0), u_2 = (1, 0, 1, 0), u_3 = (0, 0, 1, 1)$ e $u_4 = (0, 1, 0, 1)$ de \mathbb{R}^4 . Mostre que:
 - (a) u_4 é combinação linear de u_1, u_2, u_3 ;
 - (b) (u_1, u_2, u_3, u_4) é uma sequência linearmente dependente;
 - (c) (u_1, u_2, u_3) é uma sequência linearmente independente.
- 11. Considere os elementos $p(x) = x^2 2x 3$, $q(x) = 2x^2 3x + 4$ e $r(x) = ax^2 1$ de $\mathbb{R}_2[x]$, sendo $a \in \mathbb{R}$. Determine o valor de a de modo a que a sequência (p, q, r) seja linearmente dependente.
- 12. Sejam $a, b \in c$ valores reais distintos. Mostre que a sequência $((1, 1, 1), (a, b, c), (a^2, b^2, c^2))$ é uma base de \mathbb{R}^3 .
- 13. Considere cada um dos seguintes subconjuntos do espaço vectorial indicado:

$$F = \left\{ \begin{bmatrix} a & 0 \\ b & c \end{bmatrix} \in \mathcal{M}_2(\mathbb{R}) : a + b + c = 0 \right\} \quad \text{em } \mathcal{M}_2(\mathbb{R}),$$

$$G = \left\{ ax^2 + bx + c \in \mathbb{R}_2[x] : a + b + c = 0 \right\} \quad \text{em } \mathbb{R}_2[x] \quad \text{e}$$

$$H = \left\{ (a, b, c) \in \mathbb{R}^3 : a - 2b + c = 0 \right\} \quad \text{em } \mathbb{R}^2.$$

- (a) Justifique que cada um dos conjuntos é um subespaço do espaço vectorial indicado, apresentando uma sequência geradora.
- (b) Indique, justificando, uma base de cada um dos subespaços.
- (c) Indique a dimensão de cada um dos subespaços.
- 14. Indique uma base do subespaço vectorial de $\mathcal{M}_3(\mathbb{R})$ formado pelas matrizes simétricas.
- 15. Sejam E um espaço vectorial real e $(e_1, e_2, e_3, e_4, e_5)$ uma base de E. Considere em E os seguintes subespaços:

$$F = \langle e_1 + e_2, e_1 + e_2 + e_3, e_4, e_1 + e_2 + e_4 \rangle$$
 e $G = \langle e_5 \rangle$.

- (a) Indique duas bases de G distintas.
- (b) Mostre que $F = \langle e_1 + e_2, e_1 + e_2 + e_3, e_4 \rangle$.
- (c) Mostre que $F = \langle e_1 + e_2, e_3, e_4 \rangle$.
- (d) Justifique que a sequência $(e_1 + e_2, e_3, e_4)$ é linearmente independente.
- (e) Determine a dimensão de F e a dimensão de G.

16. Considere os subespaços de \mathbb{R}^3

$$W = \langle (1,2,2), (0,-1,1) \rangle$$
 e $U = \langle (2,1,7), (1,0,4) \rangle$.

Mostre que W = U.

17. No espaço vectorial $\mathcal{M}_{4\times 1}(\mathbb{R})$ considere a sequência de vectores

$$\mathcal{S} = \left(\begin{bmatrix} 1\\3\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\2\\1 \end{bmatrix}, \begin{bmatrix} 3\\4\\1\\3 \end{bmatrix} \right)$$

e seja F o subespaço gerado por S.

- (a) Verifique que S não é uma base de F.
- (b) Determine uma subsequência de S que seja uma base de F.
- (c) Mostre que $\begin{bmatrix} 2 \\ 6 \\ 5 \\ 2 \end{bmatrix}$ pertence a F indicando a sequência das coordenadas do vector

na base indicada na alínea anterior.

- (d) Indique uma base de $\mathcal{M}_{4\times 1}(\mathbb{R})$ à qual pertençam os vectores da base de F indicada em (b).
- (e) Determine um subespaço G de $\mathcal{M}_{4\times 1}(\mathbb{R})$ tal que $F \oplus G = \mathcal{M}_{4\times 1}(\mathbb{R})$.
- 18. Sejam E um espaço vectorial real e $(e_1, e_2, e_3, e_4, e_5)$ uma base de E. Considere os subespaços de E:

$$F = \langle e_1 + e_3 - e_4, e_3, e_1 - e_4, e_5 \rangle$$
 e $G = \langle e_2, e_1 + e_2, e_2 + e_3 \rangle$.

- (a) Determine a dimensão de F+G.
- (b) Mostre que $F \cap G = \langle e_3 \rangle$.
- 19. Considere os subespaços vectoriais de $\mathcal{M}_2(\mathbb{R})$:

$$F = \left\{ \left[\begin{array}{cc} u & -u - x \\ 0 & x \end{array} \right] : u, x \in \mathbb{R} \right\}$$

e
$$G = \left\{ \begin{bmatrix} v & 0 \\ w & -v \end{bmatrix} : v, w \in \mathbb{R} \right\}.$$

Determine uma base de F, G, F + G e $F \cap G$.

20. Considere a matriz

$$A = \left[\begin{array}{ccccc} 2 & 2 & 1 & -1 & 4 \\ -2 & -1 & 1 & 2 & -3 \\ 2 & 2 & 2 & 1 & 2 \\ 0 & 1 & 3 & 3 & -1 \end{array} \right].$$

6

- (a) Determine uma base de $\mathcal{L}(A)$, o espaço das linhas de A.
- (b) Verifique se o vector (2,1,1,2,1) per tence a $\mathcal{L}(A)$.

- (c) Indique qual a nulidade (dimensão de $\mathcal{N}(A)$) de A.
- (d) Determine uma base de $\mathcal{N}(A)$.
- 21. Indique, justificando, quais das afirmações seguintes são verdadeiras ou falsas:
 - (a) Seja E um espaço vectorial de dimensão 1 sobre um corpo \mathbb{K} e seja F um subespaço de E. Então F=E;
 - (b) Seja E um espaço vectorial sobre um corpo \mathbb{K} . Se $X,Y\subset E$ são tais que $\langle X\rangle=\langle Y\rangle=E$, então tem de ser $X\cap Y\neq\emptyset$;
 - (c) Se u_1, u_2, u_3 são vectores linearmente dependentes num espaço vectorial E sobre um corpo \mathbb{K} , então existem $i \neq j$, onde $i, j \in \{1, 2, 3\}$, tais que u_i é combinação linear de u_j ;
- 22. Seja E um espaço vectorial sobre um corpo \mathbb{K} de dimensão $n \in \mathbb{N}$, com $n \geq 3$. Sejam F e G subespaços de E tais que $\dim(F) = 2$ e $\dim(G) = n 1$. Mostre que ou $F \subseteq G$ ou $\dim(F \cap G) = 1$.