ERC Usage

LVSRCE/TSMC

2022/01/28

What is ERC (Electrical Rule Checking)

- ERC is a special option for designers. Some errors can be waived, but others may be fatal errors. So, designers must review every error or warning in LVS/ERC report.
- ERC rules included in TSMC official LVS command files are:
 - Soft connect checking
 - Path checking
 - ptap/ntap checking
 - MOS S/D power&ground checking
 - Gate directly connecting to power or ground checking
 - **■** Floating well checking
- ERC report and database are "~.erc.sum" and "~.erc.db" separately.

ERC Report

Get ERC report at LVS stage

Calibre:

% calibre -lvs -hier -spi layout.net calibre_rule_deck Check "calibre_erc.db" and "calibre_erc.sum" files

Soft connect and soft check

N-well and P-well are high resistor materials

- 1. Treat as Short Sig A connect to Sig B
- → If Sig A is a power line and Sig B connects to a IP power, the IP gets a high resistor power but IR drop is very serious.
- → ERROR
- 2. Treat as open Sig A does not connect to Sig B
- → If Sig A is a power signal and sig B is ground signal, power and ground shorts
- → ERROR
- Use soft connect and soft check to highlight the case

What is soft connect and soft checking

- Sconnect definition
 - Pass established connectivity from the upper layer polygons onto specified lower layer polygons (unidirectional) < calibre manual>
- Softchk
 - Help designers to search which contact connects to Well
- ERC result
 - Please confirm each error and warning reported in lvs.rep and lvs.rep.ext.
 - Users can debug this error by using "calibre -rve" to open svdb/ file.

Path Checking

- Purpose
 - Report nodes without a path to top-level power, ground, or pin.
- Four Kinds of Path Checking
 - Nodes with a path to power but not ground
 - Nodes with a path to ground but not power
 - Nodes without a path to both power and ground
 - Nodes without a path to pin

Well to power & ground checking

- Purpose
 - Check whether nwell connects to ground or psub connects to power.
- Checking scope
 - **■** ERC "PPVDD49" for PTAP connected to power.
 - ◆ Except TCDDMY/ICOVL
 - **■** ERC "NPVSS49" for NTAP connected to ground.
 - Except VAR/BJTDMY

MOS S/D power & ground checking

- For N/P MOS, one of source/drain connects to POWER and the other connects to ground
 - Check ERC error "mppg" for PMOS
 - Check ERC error "mnpg" for NMOS
- Exceptions: (only for mnpg/mppg)
 - If N/PMOS have SDI layer covered, they would be excluded from this checking since they are ESD power clamps
 - This exception isn't applied to mnpg-ldd checking

Special MOS LUP Check (1/7)

- For NMOS, source and drain directly connect to Power
 - Check ERC violation "mnpp/mnpp_mpode"
- For PMOS, source and drain directly connect to Ground
 - Check ERC violation "mpgg/mpgg_mpode"

Special MOS LUP Check (2/7)

- Definition of Virtual Power
 - Switch "MNPP_MPGG_VIRT_PWR_ENABLE" //Enable virtual power recognition for mnpp* and mpgg* ERC check
 - When switch ON, ERC flag on:
 - NMOS source and drain directly connect to power (mnpp*)
 - NMOS source and drain connect to virtual power (mnpp*)
 - » Virtual power = internal nets with net information propagated from real power net through single stage PMOS s/d
 - PMOS source and drain directly connect to ground (mpgg*)
 - PMOS source and drain connect to virtual ground (mpgg*)
 - » Virtual ground = internal nets with net information propagated from real ground net through single stage NMOS s/d
 - Notes: When virtual power/virtual ground propagated to same net as real ground/real power, the specific net is recognized as real ground/power.
 - When switch OFF, ERC flag on:
 - NMOS source and drain directly connect to power (mnpp*)
 - PMOS source and drain directly connect to ground (mpgg*)
 - Gate connection: don't care
 - Bulk connection: don't care

Special MOS LUP Check (3/7)

- Below scheme flag by ERC
 - When "MNPP_MPGG_VIRT_PWR_ENABLE" switch ON, ERC flag on:
 - ♦ N1, N2', N3', P1, P1", P2"
 - When "MNPP_MPGG_VIRT_PWR_ENABLE" switch OFF, ERC flag on:
 - ◆ N1, P1 Vdd **⊳- Р2**′ P1']||-– N3' N4' P3' NMOS. **N2**' **N1** P1" -d N3" P3"⊸ N1" P4" N2" -PMOS. **P1**

Vss

Special MOS LUP Check (4/7)

LVS ERC rules switch

Switch	Virtual power switch (MNPP_MPGG_VIRT_PWR_ENABLE)	mnpp, mpgg,	mnpp_mpode, mpgg_mpode,
Regular MOS OFF (REGMOS_MNPP_MPGG_CHECK)	ON or OFF (does not matter)	Do NOT check	
MPODE OFF (MPODE_MNPP_MPGG_CHECK)	ON OF GUOES HOL HIALLER)		
Regular MOS ON (REGMOS_MNPP_MPGG_CHECK)	OFF	Check if connected to real power	n/a
MPODE ON (MPODE_MNPP_MPGG_CHECK)		n/a	Check if connected to real power
Regular MOS ON (REGMOS_MNPP_MPGG_CHECK)	ON	Check if connected to real or virtual power	n/a
MPODE ON (MPODE_MNPP_MPGG_CHECK)		n/a	Check if connected to real or virtual power

Special MOS LUP Check (5/7)

- Additional Exceptions 1:
 - S/D/B tied together at same net (don't care for gate connection)
 - ◆ N1, N2', P1, P1" are exempted.

Special MOS LUP Check (6/7)

- Additional Exceptions 2:
 - IO N/PMOS [covered by OD2] is excluded from rule check
- Additional Exceptions 3:
 - S/D/G tied together at same net (don't care for bulk connection)
 - ♦ N1, P1 are exempted.

Special MOS LUP Check (7/7)

Recommended ERC Switch Settings

ERC switch	Switch Description	Default setting	Recommended setting
MNPP_MPGG_VIRT_PWR_ENABLE	Turn on to enable virtual power recognition for mnpp and mpgg related check	Disable	Disable
REGMOS_MNPP_MPGG_CHECK	Perform mnpp and mpgg related check for all MOS devices	Enable	Enable
MPODE_MNPP_MPGG_CHECK	Perform mnpp and mpgg related check for MPODE device which is covered by PODE_GATE(206;28) layer	Enable	Enable

Security C -

Gate directly connects to power/ground

Flagged conditions:

- The core voltage MOS gate (OD only; not OD_12) directly connects to Power and either source or drain directly connects to Ground.
- The core voltage MOS gate (OD only; not OD_12) directly connects to Ground and either source or drain directly connects to Power.

Exceptions:

- Decoupling capacitor: source/drain/bulk directly connects to Power (GND) and gate directly connects to GND (Power).
- GGNMOS/GDPMOS across power-ground:
 - GGNMOS case: Gate, bulk, and either drain or source directly connect to ground while the leftover drain or source directly connects to power.
 - ◆ GDPMOS case: Gate, bulk, and either drain or source directly connect to power while the leftover drain or source directly connects to ground.

Floating Well Check

- No power connecting to NWELL
 - Highlight nwell which has no path to power
 - Check ERC error "floating.nxwell" for NWELL
- No ground connecting to PSUB
 - Highlight psub which has no path to ground
 - Check ERC error "floating.psub" for PSUB
- No POWER or GROUND signal in the layout might abort this check.
 - For example, the following messages means no POWER nets present in the layout and ERC "floating.nxwell_float" doesn't function at all.

lvs.rep.ext

WARNING: Invalid PATHCHK request "! POWER": no POWER nets present, operation aborted.

erc.sum

RULECHECK floating.nxwell float ... TOTAL Result Count = 0 (0) FAILED PATHCHK IN LAYER DERIVATION

Layout Example

<u>~.sum</u>

--- RULECHECK RESULTS STATISTICS

RULECHECK mppg TOTAL Result Count = 1
RULECHECK mnpg TOTAL Result Count = 0
RULECHECK ppvdd49 ... TOTAL Result Count = 0
RULECHECK npvss49 ... TOTAL Result Count = 1

<u>~.ext</u>

WARNING: Stamping conflict in SCONNECT - Multiple source nets stamp one target net.

Use LVS REPORT OPTION S or LVS SOFTCHK statement to obtain detailed information.

ERC: Unexpected SHDMIM device

- ERC : UnexpectedDev.SHDMIM
 - Purpose : To highlight SHDMIM device in the layout
 - Switch: unexpected_device_checking_SHDMIM (default is ON)
- Usage for LVS
 - Suggest to turn on this switch when there is no shdmimcap in RC techfile
- Example :
 - A SHDMIM device in the layout

ERC report

RULECHECK UnexpectedDev.SHDMIM TOTAL Result Count = 1 (1)

ERC: Unexpected SHPMIM client device

- ERC : UnexpectedDev.SHPMIM_client
 - Purpose : To highlight SHPMIM client device in the layout
 - Switch: unexpected_device_checking_SHPMIM_client (default is ON)
- Usage for LVS
 - Suggest to turn on this switch when there is no shpmimcap client in RC techfile
- Example :
 - A SHPMIM client device in the layout

ERC report

RULECHECK UnexpectedDev.SHPMIM_client ... TOTAL Result Count = 1 (1)

tsinc i

TSMC Secret

ERC: Unexpected SHPMIM server device

- ERC : UnexpectedDev.SHPMIM_server
 - Purpose : To highlight SHPMIM server device in the layout
 - Switch: unexpected_device_checking_SHPMIM_server (default is ON)
- Usage for LVS
 - Suggest to turn on this switch when there is no shpmimcap server in RC techfile
- Example :
 - A SHPMIM server device in the layout

■ ERC report

RULECHECK UnexpectedDev.SHPMIM_server ... TOTAL Result Count = 1 (1)

Summary for ERC Checker

- Please confirm every error or warning of these three files:
 "~.rep", "~.rep.ext" and "svdb/~.rep" for Calibre
- Every soft connect error must be fixed
- Other ERC errors/warnings need to be reviewed by circuit designers