20104169 - SUMESH R

Importing Libraries

```
In [1]:
```

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

In [2]:

```
from google.colab import drive
drive.mount('/content/drive')
df=pd.read_csv("/content/drive/MyDrive/mydatasets/csvs_per_year/madrid_2003.csv")
df
```

Mounted at /content/drive

Out[2]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	ОХҮ	0_3	PM10	PXY	SO_2	тсн	1
0	2003- 03-01 01:00:00	NaN	1.72	NaN	NaN	NaN	73.900002	316.299988	NaN	10.550000	55.209999	NaN	24.299999	NaN	N
1	2003- 03-01 01:00:00	NaN	1.45	NaN	NaN	0.26	72.110001	250.000000	0.73	6.720000	52.389999	NaN	14.230000	1.55	١
2	2003- 03-01 01:00:00	NaN	1.57	NaN	NaN	NaN	80.559998	224.199997	NaN	21.049999	63.240002	NaN	17.879999	NaN	ı
3	2003- 03-01 01:00:00	NaN	2.45	NaN	NaN	NaN	78.370003	450.399994	NaN	4.220000	67.839996	NaN	24.900000	NaN	ı
4	2003- 03-01 01:00:00	NaN	3.26	NaN	NaN	NaN	96.250000	479.100006	NaN	8.460000	95.779999	NaN	18.750000	NaN	ı
243979	2003- 10-01 00:00:00	0.20	0.16	2.01	3.17	0.02	31.799999	32.299999	1.68	34.049999	7.380000	1.20	4.870000	1.27	1
243980	2003- 10-01 00:00:00	0.32	0.08	0.36	0.72	NaN	10.450000	14.760000	1.00	34.610001	7.400000	0.50	8.360000	NaN	(
243981	2003- 10-01 00:00:00	NaN	NaN	NaN	NaN	0.07	34.639999	50.810001	NaN	32.160000	16.830000	NaN	5.330000	1.55	ı
243982	2003- 10-01 00:00:00	NaN	NaN	NaN	NaN	0.07	32.580002	41.020000	NaN	NaN	13.570000	NaN	6.830000	1.27	ı
243983	2003- 10-01 00:00:00	1.00	0.29	2.15	6.41	0.07	37.150002	56.849998	2.28	21.480000	12.350000	2.43	6.060000	1.32	ŧ

243984 rows × 16 columns

Data Cleaning and Data Preprocessing

243983 0.29 28079099

```
In [3]:
df=df.dropna()
In [4]:
df.columns
Out[4]:
dtype='object')
In [5]:
df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 33010 entries, 5 to 243983
Data columns (total 16 columns):
   Column
            Non-Null Count Dtype
    date
             33010 non-null object
             33010 non-null float64
33010 non-null float64
1
   BEN
 2
    CO
 3
   EBE
             33010 non-null float64
 4 MXY
             33010 non-null float64
 5 NMHC
             33010 non-null float64
 6 NO 2
             33010 non-null float64
 7 NOx
             33010 non-null float64
 8 OXY
             33010 non-null float64
 9 0 3
             33010 non-null float64
10 PM10
             33010 non-null float64
             33010 non-null float64
11 PXY
             33010 non-null float64
12 SO 2
13 TCH
             33010 non-null float64
             33010 non-null float64
14 TOL
15 station 33010 non-null int64
dtypes: float64(14), int64(1), object(1)
memory usage: 4.3+ MB
In [6]:
data=df[['CO' ,'station']]
data
Out[6]:
      CO
           station
    5 1.94 28079006
   23 1.27 28079024
   27 1.79 28079099
   33 1.47 28079006
   51 1.29 28079024
243955 0.41 28079099
243957 0.60 28079035
243961 0.82 28079006
243979 0.16 28079024
```

Line chart

```
In [7]:
```

```
data.plot.line(subplots=True)
```

Out[7]:

```
array([<Axes: >, <Axes: >], dtype=object)
```


Line chart

In [8]:

```
data.plot.line()
```

Out[8]:

<Axes: >


```
0.0 -
                                                               250000
                50000
                           100000
                                       150000
                                                   200000
```

Bar chart

```
In [9]:
b=data[0:50]
In [10]:
b.plot.bar()
Out[10]:
<Axes: >
     1e7
                                                             CO
                                                             station
 2.5
```

2.0 1.5 1.0 0.5 0.0 -

Histogram

25000

20000 -edneuc 15000 -

```
In [11]:
data.plot.hist()
Out[11]:
<Axes: ylabel='Frequency'>
   30000
```


Area chart

```
In [12]:
data.plot.area()
Out[12]:
<Axes: >
     1e7
 2.5 -
 2.0
 1.5 -
 1.0 -
 0.5
            CO
            station
 0.0
                 50000
                             100000
                                         150000
                                                     200000
                                                                 250000
```

Box chart

```
In [13]:
```


Pie chart

```
In [14]:
```

```
b.plot.pie(y='station')
```

Out[14]:

<Axes: ylabel='station'>

Scatter chart

```
In [15]:
```

```
data.plot.scatter(x='CO', y='station')
```

Out[15]:

<Axes: xlabel='CO', ylabel='station'>

In [16]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 33010 entries, 5 to 243983
Data columns (total 16 columns):
```

		•	,
#	Column	Non-Null Count	Dtype
0	date	33010 non-null	object
1	BEN	33010 non-null	float64
2	$C \cap$	33010 non-null	float6/

```
JOOTO HOH HATT
    \cup
                             ııuaıvı
 3
    EBE
              33010 non-null
                             float64
 4
    MXY
                             float64
              33010 non-null
    NMHC
 5
              33010 non-null float64
 6
    NO 2
              33010 non-null float64
 7
             33010 non-null float64
    NOx
 8
    OXY
              33010 non-null float64
 9
    0 3
             33010 non-null float64
10 PM10
             33010 non-null float64
              33010 non-null float64
12 SO 2
             33010 non-null
              33010 non-null float64
13 TCH
14 TOL
              33010 non-null float64
15 station 33010 non-null int64
dtypes: float64(14), int64(1), object(1)
memory usage: 4.3+ MB
```

In [17]:

df.describe()

Out[17]:

	BEN	со	EBE	MXY	NMHC	NO_2	NOx	ОХҮ	
count	33010.000000	33010.000000	33010.000000	33010.000000	33010.000000	33010.000000	33010.000000	33010.000000	330
mean	2.192633	0.759868	2.639726	5.838414	0.137177	57.328049	120.153676	2.684084	
std	2.064160	0.545999	2.825194	6.267296	0.127863	31.811082	104.521700	2.717832	
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	0.900000	0.430000	1.010000	1.880000	0.060000	34.529999	49.070000	1.000000	
50%	1.610000	0.620000	1.890000	4.070000	0.110000	55.105000	92.779999	1.790000	
75%	2.810000	0.930000	3.300000	7.530000	0.170000	76.160004	160.100006	3.340000	
max	66.389999	7.920000	92.589996	177.600006	2.180000	342.700012	1246.000000	88.180000	1
4									

In [18]:

```
df1=df[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3', 'PM10', 'PXY', 'SO_2', 'TCH', 'TOL', 'station']]
```

EDA AND VISUALIZATION

In [19]:

```
sns.pairplot(df1[0:50])
```

Out[19]:

<seaborn.axisgrid.PairGrid at 0x789e946231f0>

In [20]:

Out[20]:

<Axes: xlabel='station', ylabel='Density'>


```
0.00 0 20 40 60 80 100 station +2.8079e7
```

```
In [21]:
```

```
sns.heatmap(df1.corr())
```

Out[21]:

<Axes: >

TO TRAIN THE MODEL AND MODEL BULDING

```
In [22]:
```

In [23]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear Regression

```
In [24]:
```

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[24]:

```
▼ LinearRegression
LinearRegression()
```

```
Co-efficient
         1.422345
 BEN
  CO
        -37.828081
 EBE
         -1.629962
 MXY
         0.129792
NMHC 150.117500
NO_2
         0.164140
         -0.072211
 NOx
 OXY
         -1.290530
  0_3
         -0.008479
PM10
         -0.067689
 PXY
         1.548522
 SO_2
         0.863726
 TCH
        36.485332
 TOL
         -0.822906
```

In [25]:

Out[25]:

In [26]:

Out[26]:

coeff

lr.intercept

28079000.00250134

In [27]:

```
prediction =lr.predict(x_test)
plt.scatter(y_test, prediction)
```

Out[27]:

 ${\tt <matplotlib.collections.PathCollection}$ at $0x789e7b5b5150{\tt >}$

coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])

20 40 60 80 100 +2.8079e7

ACCURACY

```
In [31]:

rr=Ridge(alpha=10)
```

```
rr.fit(x_train,y_train)
```

```
▼ Ridge
```

Out[31]:

Ridge(alpha=10)

Lasso

Lasso(alpha=10)

Accuracy(Ridge)

```
In [32]:
    rr.score(x_test,y_test)
Out[32]:
    0.1732610422406159
In [33]:
    rr.score(x_train,y_train)
Out[33]:
    0.17524457166834073
In [34]:
    la=Lasso(alpha=10)
    la.fit(x_train,y_train)
Out[34]:
```

```
In [35]:
la.score(x train, y train)
Out[35]:
0.036881185460887145
Accuracy(Lasso)
In [36]:
la.score(x test, y test)
Out[36]:
0.03369913728742602
In [37]:
from sklearn.linear model import ElasticNet
en=ElasticNet()
en.fit(x train, y train)
Out[37]:
▼ ElasticNet
ElasticNet()
In [38]:
en.coef
Out[38]:
                  , -0.2613577 , 0.05170798, -0.04653734, 0.1248526 ,
array([ 0.
        0.1502707 , -0.06931803 , -1.2610245 , -0.04399248 , 0.06465597 ,
        0.23553947, 0.76815569, 1.61950313, -0.43112076])
In [39]:
en.intercept
Out[39]:
28079037.99552147
In [40]:
prediction=en.predict(x test)
In [41]:
en.score(x test, y test)
Out[41]:
0.045639839248231784
Evaluation Metrics
In [42]:
from sklearn import metrics
print(metrics.mean_absolute_error(y_test,prediction))
print(metrics.mean_squared_error(y_test,prediction))
```

print(np.sqrt(metrics.mean_squared_error(y_test,prediction)))

29 030141230399117

1172.9763939722272 34.248742954628675

Logistic Regression

```
In [43]:
from sklearn.linear model import LogisticRegression
In [44]:
feature_matrix=df[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3',
       'PM10', 'PXY', 'SO 2', 'TCH', 'TOL']]
target vector=df[ 'station']
In [45]:
feature matrix.shape
Out[45]:
(33010, 14)
In [46]:
target vector.shape
Out[46]:
(33010,)
In [47]:
from sklearn.preprocessing import StandardScaler
In [48]:
fs=StandardScaler().fit transform(feature matrix)
In [49]:
logr=LogisticRegression(max iter=10000)
logr.fit(fs, target vector)
Out[49]:
        LogisticRegression
LogisticRegression (max iter=10000)
In [50]:
observation=[[1,2,3,4,5,6,7,8,9,10,11,12,13,14]]
In [51]:
prediction=logr.predict(observation)
print(prediction)
[28079035]
In [52]:
logr.classes
Out[52]:
array([28079006, 28079024, 28079035, 28079099])
```

```
In [53]:
logr.score(fs, target vector)
Out[53]:
0.7584974250227204
In [54]:
logr.predict proba(observation)[0][0]
Out[54]:
2.3306153253214888e-23
In [55]:
logr.predict proba(observation)
Out[55]:
array([[2.33061533e-23, 1.44436075e-55, 1.00000000e+00, 6.68457490e-16]])
Random Forest
In [56]:
from sklearn.ensemble import RandomForestClassifier
In [57]:
rfc=RandomForestClassifier()
rfc.fit(x train, y train)
Out [57]:
▼ RandomForestClassifier
RandomForestClassifier()
In [58]:
parameters={ 'max depth': [1,2,3,4,5],
            'min samples leaf':[5,10,15,20,25],
            'n estimators':[10,20,30,40,50]
In [59]:
from sklearn.model selection import GridSearchCV
grid search =GridSearchCV(estimator=rfc,param grid=parameters,cv=2,scoring="accuracy")
grid_search.fit(x_train,y_train)
Out[59]:
             GridSearchCV
 ▶ estimator: RandomForestClassifier
      RandomForestClassifier
In [60]:
grid search.best score
Out[60]:
0.7290865021814479
Tn [611•
```

rfc best=grid search.best estimator

In [62]:

```
from sklearn.tree import plot_tree

plt.figure(figsize=(80,40))
plot_tree(rfc_best.estimators_[5], feature_names=x.columns, class_names=['a','b','c','d'], filled=True)
```

Out[62]:

```
[\text{Text}(0.46875, 0.916666666666666666, 'OXY <= 1.015 \text{ ngini} = 0.749 \text{ nsamples} = 14589 \text{ nvalue} = 
 [5183, 5843, 6054, 6027] \nclass = c'),
    Text(0.22321428571428573, 0.75, 'BEN <= 1.235 \setminus 1 = 0.582 \setminus 1 = 4075 \setminus 1 = 18
5, 3394, 2335, 517] \nclass = b'),
    Text(0.11607142857142858, 0.5833333333333334, 'PXY <= 1.005 \ngini = 0.524 \nsamples = 331
1\nvalue = [165, 3292, 1437, 339]\nclass = b'),
     Text(0.07142857142857142, 0.41666666666666667, 'NOx <= 38.88 \ngini = 0.483 \nsamples = 305
9\nvalue = [163, 3279, 1064, 311]\nclass = b'),
     Text(0.03571428571428571, 0.25, 'CO <= 0.375 \\ line = 0.339 \\ line = 1981 \\ line = [41, 198] \\ line = 1981 \\ lin
2504, 434, 152]\nclass = b'),
     Text(0.017857142857142856, 0.0833333333333333333, 'gini = 0.575 \nsamples = 858 \nvalue = [4]
1, 769, 402, 136]\nclass = b'),
     Text(0.05357142857142857, 0.08333333333333333333, 'gini = 0.053 \nsamples = 1123 \nvalue = [0.053]
, 1735, 32, 16]\nclass = b'),
     Text(0.10714285714285714, 0.25, 'SO_2 \le 7.11 = 0.635 = 1078 = 1078 = 1286 = 1078 = 1286 = 1078 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1286 = 1
2, 775, 630, 159] \nclass = b'),
     Text(0.08928571428571429, 0.08333333333333333333, 'gini = 0.341 \nsamples = 493 \nvalue = [44]
, 625, 90, 21]\nclass = b'),
     8] \nclass = c'),
     Text(0.16071428571428573, 0.41666666666666667, 'BEN <= 0.445 \ngini = 0.191 \nsamples = 252
\nvalue = [2, 13, 373, 28] \setminus class = c'),
    Text(0.14285714285714285, 0.25, 'gini = 0.643 \nsamples = 15 \nvalue = [2, 10, 9, 2] \nclassical text (0.14285714285, 0.25, 'gini = 0.643 \nsamples = 15 \nvalue = [2, 10, 9, 2] \nclassical text (0.14285714285, 0.25, 10) \nclassical text (
s = b'),
    Text(0.17857142857142858, 0.25, 'NO 2 \le 27.43 = 0.138 = 237 = [0, 17857142858]
3, 364, 26]\nclass = c'),
     Text(0.16071428571428573, 0.08333333333333333333, 'gini = 0.375 \ nsamples = 15 \ nvalue = [0, 16071428573]
0, 21, 7] \nclass = c'),
    Text(0.19642857142857142, 0.0833333333333333333, 'gini = 0.114 \nsamples = 222 \nvalue = [0, 0.114]
3, 343, 19]\nclass = c'),
     Text(0.33035714285714285, 0.5833333333333334, 'MXY <= 2.595 \ = 0.409 \ = 764

    \text{(nvalue = [20, 102, 898, 178]} \\
    \text{(nvalue = [20, 102, 898, 178]} \\
   \text{(nvalue = [20, 102, 898, 178]} \\
   \text{(nvalue = [20, 102, 898, 178]} \\
   \text{(nvalue = [20, 102, 898, 178]} \\
   \text{(nvalue = [20
     Text(0.2857142857142857, 0.41666666666666667, '0_3 <= 12.215 \\ line = 0.689 \\ line = 234 \\ lin

    | value = [20, 100, 95, 142] \\
    | value = [20, 100, 95, 95, 95] \\
    | value = [20, 100, 95, 95] \\
    | value = [20, 100, 95] \\
    | value = [20, 10
    Text(0.25, 0.25, 'PXY \le 0.91 \text{ in} = 0.619 \text{ samples} = 55 \text{ invalue} = [9, 33, 42, 4] \text{ inclass}
= c'),
    Text(0.23214285714285715, 0.08333333333333333333, 'gini = 0.47 \nsamples = 28 \nvalue = [1, 3]
2, 9, 4] \setminus ass = b'),
    Text(0.26785714285714285, 0.08333333333333333333, 'qini = 0.346 \nsamples = 27 \nvalue = [8, ]
1, 33, 0]\nclass = c'),
     Text(0.32142857142857145, 0.25, 'SO 2 <= 7.755 \ngini = 0.634 \nsamples = 179 \nvalue = [11]
, 67, 53, 138]\nclass = d'),
    Text(0.30357142857142855, 0.08333333333333333333, 'gini = 0.417 \nsamples = 43 \nvalue = [0, 0.08333333333333333]
40, 6, 8]\nclass = b'),
     Text(0.3392857142857143, 0.08333333333333333333, 'gini = 0.568 \nsamples = 136 \nvalue = [11, 12]
27, 47, 130]\nclass = d'),
     Text(0.375, 0.41666666666666667, 'OXY \le 0.715 = 0.086 = 530 = [0, 0.375, 0.41666666666666]
2, 803, 36] \nclass = c'),
     Text(0.35714285714285715, 0.25, 'gini = 0.0 \nsamples = 156 \nvalue = [0, 0, 250, 0] \nclassical terms of the contract of th
s = c'),
     Text(0.39285714285714285, 0.25, 'BEN <= 4.105 / ngini = 0.121 / nsamples = 374 / nvalue = [0, 1.25]
2, 553, 36] \nclass = c'),
    class = c'),
    Text(0.4107142857142857, 0.083333333333333333333, 'gini = 0.375 \nsamples = 41 \nvalue = [0, 0]
, 45, 15]\nclass = c'),
     Text(0.7142857142857143, 0.75, 'MXY <= 7.235\nqini = 0.73\nsamples = 10514\nvalue = [499]
8, 2449, 3719, 5510] \nclass = d'),
     Text(0.5714285714285714, 0.583333333333333334, '0 3 <= 7.535 \ngini = 0.72 \nsamples = 6858 \nsamples = 68
```

```
nvalue = [2001, 2164, 2389, 4344] \setminus nclass = d'),
  Text(0.5, 0.41666666666666667, 'TOL <= 9.52 \ngini = 0.656 \nsamples = 758 \nvalue = [41, 55]
4, 405, 245]\nclass = b'),
  Text(0.4642857142857143, 0.25, 'CO \le 1.25 \le 0.559 \le 366 \le 366 \le [15, 35]
6, 184, 54]\nclass = b'),
  Text(0.44642857142857145, 0.0833333333333333333, 'gini = 0.531 \nsamples = 340 \nvalue = [11]
, 349, 163, 43]\nclass = b'),
  Text(0.48214285714285715, 0.08333333333333333333, 'gini = 0.661 \nsamples = 26 \nvalue = [4, 1]
7, 21, 11]\nclass = c'),
  Text(0.5357142857142857, 0.25, 'PXY \le 2.245 \neq 0.69 \Rightarrow 392 \Rightarrow [26, 1]
98, 221, 191]\nclass = c'),
  Text(0.5178571428571429, 0.08333333333333333, 'gini = 0.637 \nsamples = 190 \nvalue = [6, 10.5178571428571428, 0.08333333333333]
147, 73, 71]\nclass = b'),
  51, 148, 120]\nclass = c'),
  Text(0.6428571428571429, 0.41666666666666667, 'OXY <= 2.355 \ngini = 0.708 \nsamples = 6100
\nvalue = [1960, 1610, 1984, 4099] \nclass = d'),
  Text(0.6071428571428571, 0.25, 'CO \le 0.175 = 0.693 = 4281 = [1005]
, 1377, 1352, 3103]\nclass = d'),
  Text(0.5892857142857143, 0.083333333333333333, 'gini = 0.133\nsamples = 101\nvalue = [0, 0.08333333333333]
142, 0, 11]\nclass = b'),
  2, 3092] \nclass = d'),
  Text(0.6785714285714286, 0.25, 'SO 2 \le 7.425 = 0.703 = 1819 = 1819 = [95]
5, 233, 632, 996] \nclass = d'),
  Text(0.6607142857142857, 0.0833333333333333333, 'gini = 0.625 \nsamples = 376 \nvalue = [308]
, 95, 167, 24]\nclass = a'),
  Text(0.6964285714285714, 0.08333333333333333333, 'gini = 0.676 \nsamples = 1443 \nvalue = [64]
7, 138, 465, 972]\nclass = d'),
  Text(0.8571428571428571, 0.5833333333333333334, 'BEN <= 3.365 \ngini = 0.635 \nsamples = 3656

    | value = [2997, 285, 1330, 1166] \\
    | value = [2997, 285, 1166] \\

  nvalue = [721, 154, 579, 574] \setminus nclass = a'),
  class = c'),
  Text(0.7321428571428571, 0.083333333333333333, 'qini = 0.461 \nsamples = 60 \nvalue = [22, 12]
0, 59, 5] \setminus nclass = c'),
  Text(0.7678571428571429, 0.0833333333333333333, 'gini = 0.671 \nsamples = 259 \nvalue = [11, 0.08333333333333333]
97, 148, 157]\nclass = d'),
  Text(0.8214285714285714, 0.25, 'NMHC <= 0.085 \ngini = 0.664 \nsamples = 964 \nvalue = [688]
, 57, 372, 412]\nclass = a'),
  Text(0.8035714285714286, 0.08333333333333333333, 'gini = 0.188 \nsamples = 252 \nvalue = [353]
, 6, 27, 7]\n = a'),
  Text(0.8392857142857143, 0.083333333333333333, 'gini = 0.692 \n samples = 712 \nvalue = [335]
, 51, 345, 405]\nclass = d'),
  Text(0.9285714285714286, 0.41666666666666667, 'TCH <= 1.485 \ngini = 0.565 \nsamples = 2373

    | value = [2276, 131, 751, 592] \\
    | value = [2276, 131, 751, 751, 751, 751] \\
    | value = [2276, 131, 751, 751, 751] \\
    | value = [2276, 131, 751, 751] \\
    | value = [2276, 131, 751, 751] \\
    | value = [2276, 131, 751] \\
    | value = [2276, 131] \\
    | value
  Text(0.8928571428571429, 0.25, 'PM10 \le 21.87 / ngini = 0.317 / nsamples = 1047 / nvalue = [13] / nvalue = [13] / nvalue = [13] / nvalue = [13] / nvalue = [14] / nvalue = [1
31, 7, 235, 64]\nclass = a'),
  class = a'),
  Text(0.9107142857142857, 0.08333333333333333333, 'qini = 0.268 \nsamples = 921 \nvalue = [121]
5, 7, 155, 56] \nclass = a'),
  Text(0.9642857142857143, 0.25, 'BEN <= 4.515 \setminus gini = 0.674 \setminus samples = 1326 \setminus gini = 1945
, 124, 516, 528]\nclass = a'),
  Text(0.9464285714285714, 0.0833333333333333333, 'gini = 0.699 \nsamples = 358 \nvalue = [127]
, 51, 170, 231]\nclass = d'),
  Text(0.9821428571428571, 0.08333333333333333333, 'gini = 0.625 \nsamples = 968 \nvalue = [818]
, 73, 346, 297]\nclass = a')]
```


Conclusion

In [63]:

```
print("Linear Regression:",lr.score(x_test,y_test))
print("Ridge Regression:",rr.score(x_test,y_test))
print("Lasso Regression",la.score(x_test,y_test))
print("ElasticNet Regression:",en.score(x_test,y_test))
print("Logistic Regression:",logr.score(fs,target_vector))
print("Random Forest:",grid_search.best_score_)
```

Linear Regression: 0.17549329134935188 Ridge Regression: 0.1732610422406159 Lasso Regression 0.03369913728742602

ElasticNet Regression: 0.045639839248231784 Logistic Regression: 0.7584974250227204 Random Forest: 0.7290865021814479

Logistic Regression is suitable for this dataset