Publication: April 6th

Presentation of solutions: April 14th

Applied Data Analysis

Exercise Sheet 1

Exercise 1

Let $A \in \mathbb{R}^{p \times p}$ be a symmetric matrix with eigenvalues $\lambda_1, \ldots, \lambda_p$. Show the following statements:

- (a) The identity $rank(A) = |\{i \in \{1, ..., p\} | \lambda_i \neq 0\}|$ holds.
- (b) A is non-negative definite iff $\lambda_i \geq 0$ for all $i \in \{1, \ldots, p\}$.
- (c) A is positive definite iff $\lambda_i > 0$ for all $i \in \{1, ..., p\}$.

If a matrix is symmetric, its rank is the number of eigenvalues that do not equal to zero

The non-negativity(positiv-definity) depends on whether the eigenvalues are greather(or equal) to zero

Exercise 2

Let $A \in \mathbb{R}^{p \times p}$ be a non-negative definite matrix with singular value decomposition $A = V\Lambda V'$, where $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_p) \in \mathbb{R}^{p \times p}$, $\lambda_1 \geq \ldots \geq \lambda_p \geq 0$ and $V \in \mathbb{R}^{p \times p}$ is orthogonal. Show the following statements:

(a) The matrix $A^{1/2}$ defined by

$$A^{1/2} := V\Lambda^{1/2}V'$$
 with $\Lambda^{1/2} := \operatorname{diag}(\lambda_1^{1/2}, \dots, \lambda_p^{1/2})$

is non-negative definite with $A^{1/2}A^{1/2}=A$.

- (b) If additionally A is positive definite, then $A^{1/2}$ is positive definite too and the following equations hold:
 - (i) $A^{-1/2}A^{-1/2} = A^{-1}$
 - (ii) $A^{1/2}A^{-1/2} = I_p = A^{-1/2}A^{1/2}$,
 - (iii) $A^{1/2}A^{-1}A^{1/2} = I_p = A^{-1/2}AA^{-1/2}$.

Exercise 3

Let $A \in \mathbb{R}^{p \times p}$. Show the following statements:

- (a) If A is non-negative definite, then there exists exactly one non-negative definite matrix $B \in \mathbb{R}^{p \times p}$ with $A = BB' = B^2$.
- (b) If A = BB' for some (arbitrary) matrix $B \in \mathbb{R}^{p \times q}$, then A is non-negative definite.
- **Hint to (a):** To proof uniqueness of B, use the following identity for arbitrary matrices $M_1, M_2 \in \mathbb{R}^{p \times p}$:

$$M_1^2 - M_2^2 = \frac{1}{2} ((M_1 + M_2)(M_1 - M_2) + (M_1 - M_2)(M_1 + M_2)).$$

Exercise 4

Let $A \in \mathbb{R}^{p \times p}$, $B \in \mathbb{R}^{p \times q}$, $C \in \mathbb{R}^{q \times p}$ and $D \in \mathbb{R}^{q \times q}$.

(a) If A is regular the following identity for the considered determinants holds:

$$\det \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det(A) \det(D - CA^{-1}B).$$

(b) Define the matrix $\Sigma \in \mathbb{R}^{(p+q)\times(p+q)}$ by

$$\Sigma := \left(\begin{array}{cc} A & B \\ B' & D \end{array} \right) .$$

Show that if A is symmetric and regular and additionally $E := D - B'A^{-1}B$ is regular, then Σ is regular and the inverse is given by

$$\Sigma^{-1} = \begin{pmatrix} A^{-1} + FE^{-1}F' & -FE^{-1} \\ -E^{-1}F' & E^{-1} \end{pmatrix} ,$$

where F is defined by $F := A^{-1}B$.

Hints: Use the following identities for partitioned matrices (without proof):

(i) Let $M_1, N_1 \in \mathbb{R}^{p \times p}$, $M_2, N_2 \in \mathbb{R}^{p \times q}$, $M_3, N_3 \in \mathbb{R}^{q \times p}$ and $M_4, N_4 \in \mathbb{R}^{q \times q}$. Then, it holds:

$$\begin{pmatrix} M_1 & M_2 \\ M_3 & M_4 \end{pmatrix} \begin{pmatrix} N_1 & N_2 \\ N_3 & N_4 \end{pmatrix} = \begin{pmatrix} M_1 N_1 + M_2 N_3 & M_1 N_2 + M_2 N_4 \\ M_3 N_1 + M_4 N_3 & M_3 N_2 + M_4 N_4 \end{pmatrix}.$$

(ii) Let $M_1 \in \mathbb{R}^{p \times p}$, $M_2 \in \mathbb{R}^{p \times q}$ and $M_3 \in \mathbb{R}^{q \times q}$. Then, it holds:

$$\det \begin{pmatrix} M_1 & M_2 \\ 0_{q \times p} & M_3 \end{pmatrix} = \det(M_1) \det(M_3) .$$

Furthermore, in (a) calculate

$$\det\left(\left(\begin{array}{cc}I_p & 0_{p\times q}\\-CA^{-1} & I_q\end{array}\right)\left(\begin{array}{cc}A & B\\C & D\end{array}\right)\right).$$

2

Exercise 5

Let $A \in \mathbb{R}^{n \times n}$. Show the following statements:

Eigenvalue 0 -> kernel

- (a) If A is idempotent, then all its eigenvalues are in $\{0,1\}$ and rank(A) = trace(A).
- (b) If A is symmetric and all its eigenvalues are in $\{0,1\}$, then A is idempotent. Proof by choice of a counterexample that the condition of symmetry is necessary.
- (c) If A is symmetric and idempotent, then both A and $I_n A$ are non-negative definite.

Hint to (a): Show under the assumptions of (a) that for each $\mathbf{x} \in \mathbb{R}^n$ there exist unique vectors $\mathbf{x_1} \in \text{Im}(A)$ and $\mathbf{x_0} \in \text{Ker}(A)$ with $\mathbf{x} = \mathbf{x_1} + \mathbf{x_0}$, i.e.

$$\mathbb{R}^n = \operatorname{Im}(A) \oplus \operatorname{Ker}(A)$$
.

Use this result to derive a singular value decomposition of A analogous to the diagonalization of symmetric matrices.

Exercise 6

For $n \in \mathbb{N}$, show the following properties of the ortho-projection matrix $E_n := I_n - \frac{1}{n} \mathbb{1}_{n \times n}$:

- (a) E_n is symmetric and idempotent.
- (b) $Rank(E_n) = n 1$.
- (c) The kernel of E_n is given by $\operatorname{Ker}(E_n) = \{ \mathbf{x} \in \mathbb{R}^n \mid \exists \lambda \in \mathbb{R} \text{ with } \mathbf{x} = \lambda \mathbb{1}_{n \times 1} \}.$