Chapter 7

Section 7.1

- 1. T
- 3. Answers will vary.
- 5. 16/3
- 7. π
- 9. $2\sqrt{2}$
- 11. 4.5
- 13. $2 \pi/2$
- 15. 1/6
- 17. On regions such as $[\pi/6, 5\pi/6]$, the area is $3\sqrt{3}/2$. On regions such as $[-\pi/2, \pi/6]$, the area is $3\sqrt{3}/4$.
- 19. 5/3
- 21. 9/4
- 23. 1
- 25. 4
- 27. 219,000 ft²

Section 7.2

- 1. T
- Recall that "dx" does not just "sit there;" it is multiplied by A(x) and represents the thickness of a small slice of the solid.
 Therefore dx has units of in, giving A(x) dx the units of in³.
- 5. $175\pi/3 \text{ units}^3$
- 7. $\pi/6 \text{ units}^3$
- 9. $35\pi/3 \text{ units}^3$
- 11. $2\pi/15 \text{ units}^3$
- 13. (a) $512\pi/15$
 - (b) $256\pi/5$
 - (c) $832\pi/15$
 - (d) $128\pi/3$
- 15. (a) $104\pi/15$
 - (b) $64\pi/15$
 - (c) $32\pi/5$
- 17. (a) 8π
 - . . . -
 - (b) 8π
 - (c) $16\pi/3$
 - (d) $8\pi/3$
- 19. The cross–sections of this cone are the same as the cone in Exercise 18. Thus they have the same volume of $250\pi/3$ units³.
- 21. Orient the solid so that the x-axis is parallel to long side of the base. All cross–sections are trapezoids (at the far left, the trapezoid is a square; at the far right, the trapezoid has a top length of 0, making it a triangle). The area of the trapezoid at x is A(x) = 1/2(-1/2x+5+5)(5) = -5/4x+25. The volume is 187.5 units³.
- 23. (a) Answers may vary.
 - (b) $V = \frac{1}{3}\pi h r^2$

Section 7.3

- 1. T
- 3. F
- 5. $9\pi/2 \text{ units}^3$
- 7. $\pi^2 2\pi \text{ units}^3$
- 9. $48\pi\sqrt{3}/5 \text{ units}^3$
- 11. $\pi^2/4 \text{ units}^3$
- 13. (a) $4\pi/5$
 - (b) $8\pi/15$
 - (c) $\pi/2$
 - (d) $5\pi/6$
- 15. (a) $4\pi/3$
 - (b) $\pi/3$
 - (c) $4\pi/3$
 - (d) $2\pi/3$
- 17. (a) $2\pi \left(\sqrt{2}-1\right)$
 - (b) $2\pi \left(1 \sqrt{2} + \ln \left(1 + \sqrt{2}\right)\right)$

Section 7.4

- 1. T
- 3. $\sqrt{2}$
- 5. 4/3
- 7. 109/2
- 9. 12/5
- 11. $-\ln(2-\sqrt{3})\approx 1.31696$
- 13. $\int_0^1 \sqrt{1+4x^2} \, dx$
- 15. $\int_0^1 \sqrt{1 + \frac{1}{4x}} dx$
- 17. $\int_{-1}^{1} \sqrt{1 + \frac{x^2}{1 x^2}} \, dx$
- 19. $\int_1^2 \sqrt{1 + \frac{1}{x^4}} \, dx$
- 21. 1.4790
- 23. Simpson's Rule fails, as it requires one to divide by 0. However, recognize the answer should be the same as for $y=x^2$; why?
- 25. Simpson's Rule fails.
- 27. 1.4058
- 29. $2\pi \int_0^1 2x\sqrt{5} dx = 2\pi\sqrt{5}$
- 31. $2\pi \int_0^1 x^3 \sqrt{1+9x^4} dx = \pi/27(10\sqrt{10}-1)$
- 33. $2\pi \int_0^1 \sqrt{1-x^2} \sqrt{1+x/(1-x^2)} dx = 4\pi$

Section 7.5

- In SI units, it is one joule, i.e., one Newton–meter, or kg·m/s²·m. In Imperial Units, it is ft–lb.
- 3. Smaller.
- 5. (a) 2450 J
 - (b) 1568 J
- 7. 735 J
- 9. 11,100 ft-lb
- 11. 125 ft-lb
- 13. 12.5 ft-lb
- 15. 10/3 ft = 40 in
- 17. $f \cdot d/2$ Joules

- 19. 5 ft-lb
- 21. (a) 52,929.6 ft-lb
 - (b) 18,525.3 ft-lb
 - (c) When 3.83 ft of water have been pumped from the tank, leaving about 2.17 ft in the tank.
- 23. 212,135 ft-lb
- 25. 187,214 ft-lb
- 27. 4,917,150 J

Section 7.6

- 1. Answers will vary.
- 3. 499.2 lb
- 5. 6739.2 lb
- 7. 3920.7 lb
- 9. 2496 lb
- 11. 602.59 lb
- 13. (a) 2340 lb
 - (b) 5625 lb
- 15. (a) 1597.44 lb
 - (b) 3840 lb
- 17. (a) 56.42 lb
 - (b) 135.62 lb
- 19. 5.1 ft

Section 7.7

- 1. $\left(\frac{6}{5}, \frac{15}{7}\right)$
- 3. $\left(0, -\frac{14}{3\pi+18}\right)$
- 5. $\left(\frac{\pi}{2} 1, \frac{\pi}{8}\right)$
- 7. $\left(0, \frac{4\pi 3\sqrt{3}}{4\pi 6\ln(2 + \sqrt{3})}\right)$
- 9. $\left(\frac{b-a}{3},\frac{c}{3}\right)$

Chapter 8

Section 8.1

- 1. Answers will vary.
- 3. Answers will vary.
- 5. $2, \frac{8}{3}, \frac{8}{3}, \frac{32}{15}, \frac{64}{45}$
- 7. $\frac{1}{3}$, 2, $\frac{81}{5}$, $\frac{512}{3}$, $\frac{15625}{7}$
- 9. $a_n = 3n + 1$
- 11. $a_n = 10 \cdot 2^{n-1}$
- 13. 1/7
- 15. 0
- 17. diverges
- 19. converges to 0
- 21. diverges
- 23. converges to e
- 25. converges to 0

- 27. converges to 2
- 29. bounded
- 31. bounded
- 33. neither bounded above or below
- 35. monotonically increasing
- 37. never monotonic
- 39. Let $\{a_n\}$ be given such that $\lim_{n\to\infty}|a_n|=0$. By the definition of the limit of a sequence, given any $\varepsilon>0$, there is a m such that for all $n>m, ||a_n|-0|<\varepsilon$. Since $||a_n|-0|=|a_n-0|$, this directly implies that for all $n>m, |a_n-0|<\varepsilon$, meaning that $\lim_{n\to\infty}a_n=0$.
- 41. Left to reader

Section 8.2

- 1. Answers will vary.
- 3. One sequence is the sequence of terms $\{a_n\}$. The other is the sequence of n^{th} partial sums, $\{S_n\}=\{\sum_{i=1}^n a_i\}$.
- 5. F
- 7. (a) $1, \frac{5}{4}, \frac{49}{36}, \frac{205}{144}, \frac{5269}{3600}$
 - (b) Plot omitted
- 9. (a) 1, 3, 6, 10, 15
 - (b) Plot omitted
- 11. (a) $\frac{1}{3}$, $\frac{4}{9}$, $\frac{13}{27}$, $\frac{40}{81}$, $\frac{121}{243}$
 - (b) Plot omitted
- 13. (a) 0.1, 0.11, 0.111, 0.1111, 0.11111
 - (b) Plot omitted
- 15. $\lim_{n\to\infty} a_n = \infty$; by Theorem 64 the series diverges.
- 17. $\lim_{n\to\infty} a_n = 1$; by Theorem 64 the series diverges.
- 19. $\lim_{n\to\infty} a_n = e$; by Theorem 64 the series diverges.
- 21. Diverges
- 23. Converges
- 25. (a) $S_n = \frac{1 (1/4)^n}{3/4}$
 - (b) Converges to 4/3.
- 27. (a) $S_n = \left\{ \begin{array}{ll} \frac{n+1}{2} & \text{n is odd} \\ -\frac{n}{2} & \text{n is even} \end{array} \right.$
 - (b) Diverges
- 29. (a) $S_n = \frac{1 (1/e)^{n+1}}{1 1/e}$.
 - (b) Converges to 1/(1-1/e) = e/(e-1).
- 31. (a) With partial fractions, $a_n = \frac{1}{n} \frac{1}{n+1}$. Thus $S_n = 1 \frac{1}{n+1}$.
 - (b) Converges to 1.
- 33. (a) Use partial fraction decomposition to recognize the telescoping series: $a_n = \frac{1}{2} \left(\frac{1}{2n-1} \frac{1}{2n+1} \right)$. Then $S_n = \frac{n}{2n+1}$.
 - (b) Converges to 1/2.
- 35. (a) $S_n = 1 \frac{1}{(n+1)^2}$
 - (b) Converges to 1.
- 37. (a) $a_n = 1/2^n + 1/3^n$ for $n \ge 0$. Thus $S_n = \frac{1 1/2^2}{1/2} + \frac{1 1/3^n}{2/3}$.
 - (b) Converges to 2 + 3/2 = 7/2.
- 39. (a) $S_n = \frac{1 (\sin 1)^{n+1}}{1 \sin 1}$
 - (b) Converges to $\frac{1}{1-\sin 1}$...