

16/9/4-Channel Video Multiplexer & High Speed H.264 Video SOLO6110 Data Sheets

June 24, 2010

SoftLogic Co., Ltd.

[Notice]

Softlogic Co., Ltd. has all rights herein contents and described this data sheet only to be used for developing purpose using SOLO6110. Without agree to Softlogic with contracting document, distribution and reproduction of all technical resources including data sheet, manual, schematic, software driver, etc may be illegal.

Softlogic Co., Ltd. Tel) +82-70-7500-4410 Fax) +82-31-205-9412

The information contained herein is subject to change without notice.

Contents

Contents		3
Figures		6
Tables		8
1. Gen	eral Description	10
1.1.	Overview	10
1.2.	Key Features	12
1.2.1	Video Input	12
1.2.2	Video Output	12
1.2.3	. H.264 Video CODEC and Motion JPEG Encoder	12
1.2.4	G.723 Voice CODEC	13
1.2.5	PCI/HOST Interface	13
1.2.6	Peripheral	13
1.3.	Device Options	14
1.4.	Block Diagram	15
2. Pin	Description	16
2.1.	System Pins	17
2.2.	Configuration Pins	17
2.3.	JTAG Pins	17
2.4.	Video Input Pins	17
2.5.	Video Output Pins	19
2.6.	Audio Pins	19
2.7.	Peripheral Pins	19
2.8.	Extended GPIO	20
2.9.	SDRAM Pins	20
2.10.	PCI/Host Pins	22
2.11.	Power Pins	23
3. Reg	isters	25
3.1.	System Clock Configuration Registers	25
3.2.	FDMA Clock Configuration Registers	25
3.3.	Video Clock Configuration Registers	26
3.4.	Interrupt Configuration Registers	26
3.5.	Test Mode Registers	28
3.6.	EEPROM Access Register	28
3.7.	PCI Error Register	28

	3.8.	P2M Configuration Registers	28
	3.9.	Video Input Configuration Registers	30
	3.10.	Internal H.264 Video Decoder Playback Controller Registers	31
	3.11.	Video Input Mosaic Registers	31
	3.12.	Window Control Registers	32
	3.13.	Horizontal Expansion Registers	33
	3.14.	Video Input Motion Detection Registers	33
	3.15.	Video Output Configuration Registers	34
	3.16.	Video Output Control Registers	34
	3.17.	Line and Bar Registers	35
	3.18.	Cursor Registers	36
	3.19.	OSG Registers	36
	3.20.	Video Capture Configuration Registers	37
	3.21.	H.264 Video Capture Control Registers	37
	3.22.	H.264 Video Encoder Configuration Registers	38
	3.23.	H.264 Video Encoder Status Registers	39
	3.24.	Motion JPEG Encoder Configuration Registers	40
	3.25.	Video Encoder OSD Registers	40
	3.26.	Video Encoder Configuration Registers	41
	3.27.	H.264 Video Decoder Configuration Registers	43
	3.28.	H.264 Video Decoder Control Registers	44
	3.29.	GPIO Registers	44
	3.30.	I2C Registers	49
	3.31.	SPI Registers	50
	3.32.	PS2 Registers	50
	3.33.	UART Registers	50
	3.34.	Timer Registers	51
	3.35.	ATA Registers	52
	3.36.	Audio Registers	53
4	. Fun	ctional Description	55
	4.1.	System Signals	55
	4.1.1	. System Reset & Clock Sources	55
	4.1.2	PLL Based Clock Generation Module	56
	4.1.3	SDRAM Controller & Fast DMA	58
	4.1.4	Video Clock Configuration	61
	4.1.5	Interrupt Configuration	63

4.1	.6. Chip Option	64
4.2.	PCI and Local Host Interface	64
4.2	.1. PCI	65
4.2	.2. Host Interface	74
4.2	.3. P2M Bridge	75
4.3.	Video Multiplexer	81
4.3	.1. Video Input Interface	81
4.4.	H.264 Video Encoder	102
4.4	.1. Overview	102
4.4	.2. H.264 Video Encoder Configuration	103
4.5.	G.723 Voice CODEC	127
4.6.	Peripherals	133
4.6	.1. GPIO	133
4.6	.2. I2C	137
4.6	.3. SPI	139
4.6	.4. PS2	140
4.6	.5. UART	143
4.6	.6. Timer	145
5. E	lectrical Characteristics	146
5.1.	Absolute Maximum Range	146
5.2.	DC Characteristics	146
5.3.	Power Dissipation	146
6. M	lechanical Specifications	147
7. R	eferences	148

Figures

Fig. 4-1 Timing diagram of system reset	55
Fig. 4-2 Block diagram of PLL Based Clock Generation Module	56
Fig. 4-3 Timing diagram of power up sequence	59
Fig. 4-4 Timing diagram of SDRAM read cycle	60
Fig. 4-5 Timing diagram of SDRAM write cycle	60
Fig. 4-6 PCI Pin List	65
Fig. 4-7 Configuration Read	68
Fig. 4-8 Basic Read Operation	69
Fig. 4-9 Basic Write Operation	70
Fig. 4-10 PCI Configuration EEPROM Timing (AT93C46 of ATMEL)	73
Fig. 4-11 Address Mapping on PCI memory address region	73
Fig. 4-12 Host Writing Timing	75
Fig. 4-13 Host Reading Timing	75
Fig. 4-14 Block Diagram of the P2M Bridge	78
Fig. 4-15 Operation of PCI Target Mode or Local Host Mode	78
Fig. 4-16 Operation of PCI Master Mode	79
Fig. 4-17 DMA Transaction Line by Line	79
Fig. 4-18 Block Diagram of the Color Space Conversion	80
Fig. 4-19 Waveform of Multiplexed Video Input Format	81
Fig. 4-20 Video Matrix Switch	82
Fig. 4-21 Examples of the Video Matrix Switch	83
Fig. 4-22 Video Input Mosaic	85
Fig. 4-23 Examples of Display Control	86
Fig. 4-24 Examples of PIP	87
Fig. 4-25 Video Input Motion Detection	89
Fig. 4-26 Motion Threshold Table Map	90
Fig. 4-27 Example of Motion Threshold Table Programming	91
Fig. 4-28 Motion Interrupt Mode	91
Fig. 4-29 Waveform of 27MHz ITU-R 656 format	93
Fig. 4-30 Video and Graphic Layers	94
Fig. 4-31 Example of Windows Layout and Border/Bar Draw	97
Fig. 4-32 Group of Picture	103
Fig. 4-33 Picture Prediction Method	104
Fig. 4-34 SOLO6110 Encoding Scheme	105
Fig. 4-35 Control Flow of the Video Encoder	105

Fig. 4-36 Code Buffer of H.264 Video and Motion JPEG Encoder	110
Fig. 4-37 H.264 Stream Format	110
Fig. 4-38 H.264 Video Code Encryption	111
Fig. 4-39 Linear feedback shift register example	112
Fig. 4-40 Watermark Embedding Scheme	112
Fig. 4-41 Watermark Process	113
Fig. 4-42 Watermark Key	114
Fig. 4-43 Watermark Detection Process	114
Fig. 4-44 Record OSG	122
Fig. 4-45 Conceptual Flow of the Video Decoder	123
Fig. 4-46 Examples for Display Scale	124
Fig. 4-47 G.723 Simplified Block Diagram	127
Fig. 4-48 Timing Diagram of u-Law	128
Fig. 4-49 I2S Simple System Configurations and Basic Interface Timing	128
Fig. 4-50 Timing Diagram for I2S interface	129
Fig. 4-51 Code Address Structure	129
Fig. 4-52 The Block Diagram of I2C	138
Fig. 4-53 The Waveform of I2C	138
Fig. 4-54 The Waveform of SPI	139
Fig. 4-55 Timing Diagram of PS2 Interface	141
Fig. 4-56 Timing Diagram of UART Frame	143
Fig. 4-57 Block Diagram of UART	143

Tables

Table 4-1 System Clock Configuration Registers	55
Table 4-2 PLL Configuration Register	56
Table 4-3 FDMA Clock Configuration Registers	60
Table 4-4 SDRAM Size	61
Table 4-5 Video Clock Configuration Registers	62
Table 4-6 Interrupt Configuration Registers	63
Table 4-7 Test Mode Registers	64
Table 4-8 PCI Pin Type Definition	66
Table 4-9 EEPROM Access Registers	71
Table 4-10 PCI Configuration Registers	71
Table 4-11 Contents of PCI configuration EEPROM	72
Table 4-12 PCI Error Registers	74
Table 4-13 P2M Configuration Register	76
Table 4-14 The P2M Descriptor	80
Table 4-15 Video Input Configuration Registers	83
Table 4-16 Internal H.264 Video Decoder Controller Registers	85
Table 4-17 Video Input Mosaic Registers	85
Table 4-18 Windows Control Registers	87
Table 4-19 Video Input Motion Detection Registers	92
Table 4-20 Video Output Configuration Registers	95
Table 4-21 Video Output Control Registers	96
Table 4-22 Line and Bar Registers	98
Table 4-23 Cursor Registers	99
Table 4-24 OSG Registers	100
Table 4-25 Configuration Example of the Picture Size Registers	106
Table 4-26 Video Capture Configuration Registers	107
Table 4-27 Frame rate and Frame Period	108
Table 4-28 H.264 Video Capture Control Registers	108
Table 4-29 H.264 Video Encoder Configuration Registers	115
Table 4-30 H.264 Video Encoder Status Registers	116
Table 4-31 Video Encoder Configuration Registers	118
Table 4-32 Motion JPEG Encoder Configuration Registers	121
Table 4-33 Video Record OSG Registers	122
Table 4-34 H.264 Video Decoder Configuration Registers	124
Table 4-35 H.264 Video Decoder Control Registers	126

Table 4-36 I2S Multi Channel Mode	130
Table 4-37 Audio Registers	131
Table 4-38 GPIO Registers	133
Table 4-39 I2C Register	138
Table 4-40 SPI Registers	140
Table 4-41 PS2 Registers	142
Table 4-42 UART Registers	144
Table 4-43 Timer Registers	145

1. General Description

1.1. Overview

SOLO6110 is a high performance, high integrated and cost effective single chip solution designed for used in storage and network surveillance applications such as a DVR (digital video recorder), network camera, network A/V server, video phone and video conference. Most of these devices require video multiplexer, multi stream MPEG4 video CODEC and multi-channel audio. SOLO6110 contains 16 channel video multiplexer, maximum 5 D1 peed multi stream H.264 video encoder, 4 D1 speed multi stream H.264 decoder, 5 D1 speed motion JPEG encoder, 20 channel G.723 voice CODEC, PCI/Host Interface and peripherals (RS232C, RS485, GPIO, SPI, IIC).

SOLO6110 is perfectly pin compatible with SOLO6010. The relating software of SOLO6110 is almost same with that of SOLO6010. The design time and fee will be reduced by reusing the existing hardware and upgrading the existing software. Furthermore, the SOLO6110 has three kinds of option chips – for example, SOLO6110-16 for 16 channel devices, SOLO6110-9 for 9 channel devices and SOLO6110-4 for 4 channel devices. Therefore, the most high performance security systems can be designed easily and cost effectively with the SOLO6110 platform.

SOLO6110 CODEC performance (5 D1 encoding and 4 D1 decoding) is much improved than SOLO6010 (4 D1 encoding and 2 D1 decoding) with maintain pin compatible. The high speed H.264 video encoder and motion JPEG encoder can process 150 fps@D1 for NTSC / 125 fps@D1 for PAL(600 fps@CIF for NTSC / 500fps@CIF for PAL) in real time. Therefore, SOLO6110 can support 1 D1 networking stream as well as 4 D1 recording stream with only single chip.

SOLO6110 can produce the dual video CODEC (H.264 and motion JPEG) and the dual streaming for each video CODEC. Especially, the dual streaming feature of H.264 video encoder can produce two H.264 streams which are different frame size, frame rate, video quality, etc. This feature enables to produce the networking H.264 stream independently from the recoding H.264 stream with 5 D1 coding feature. In other word, 4 D1 speed H.264 video encoder can produce the recoding stream and 1 D1 speed H.264 encoder can produce the networking stream. SOLO6110 can produce the H.264 video stream and the motion JPEG stream simultaneously. The motion JPEG encoding will not affect the H.264 encoding performance because two CODEC are implemented independently. The frame size and the frame rate of the motion JPEG encoding configuration will follow the H.264 video encoding configuration, but the quality of the motion JPEG encoding will be configured independently.

SOLO6110 can support most high, middle-end DVR because it was designed by considering requirements of many DVR systems. SOLO6110 can also support low-end DVR with low cost CPUs which include Ethernet, USB and SATA.

The live and the playback video quality of the 16channel multiplexer were improved compare to SOLO6010.

Full hardware G.723 CODEC process 20 channel encoding/decoding in real time and each channel

can be used encoder or decoder according to applications.

The PCI can directly support both of PCI master and target without any other PCI bridge chip. Host interface can be also supported the CPUs which do not contain PCI. SOLO6110 supports two UART (RS-232C, RS485) for camera pan/tilt/zoom, four IIC for video color decoder/encoder, SPI and GPIO.

SOLO6110 can be used most of video applications such as a stand alone DVR, PCI card for PC based DVR, web monitor, network camera, network audio/video server, video conference and video home gateway.

1.2. Key Features

1.2.1. Video Input

- Accept NTSC/PAL video format
- 16/9/4 channel video input (ITU-R BT, 656 format)

1.2.2. Video Output

- 1 channel output (ITU-R BT,656 format)
- 1, 4, 9, 16, user split display
- Programmable OSG (On Screen Graphic)

1.2.3. H.264 Video CODEC and Motion JPEG Encoder

- ITU-T Rec. H.264 Baseline profile, Level 3
- 5 D1 H.264 Encoding and 4 D1 H.264 Decoding

[Encoding]

```
525/60 (NTSC): 150 fps encoding @ 704x480 (D1)
```

300 fps encoding @ 704x240 (HD1)

600 fps encoding @ 352x240 (CIF)

625/50 (PAL): 125 fps encoding @ 704x576 (D1)

250 fps encoding @ 704x240 (HD1)

500 fps encoding @ 352x288 (CIF)

[Decoding]

525/60 (NTSC): 120 fps decoding @ 704x480 (D1)

240 fps decoding @ 704x240 (Half D1)

480 fps decoding @ 352x240 (CIF)

625/50 (PAL): 100 fps decoding @ 704x576 (D1)

200 fps decoding @ 704x240 (Half D1)

400 fps decoding @ 352x288 (CIF)

- Dual Streaming for the Networking Using 5 D1 H.264 Encoding Performance
- $4\ D1$ and $1\ D1$ speed H.264 encoder can support the recoding and the networking, respectively.

Frame size, frame rate, QP, GOP size are controllable independently.

- Motion JPEG encoded code can be possible for networking

```
525/60 (NTSC): 150 fps encoding @ 704x480 (D1)

300 fps encoding @ 704x240 (HD1)

600 fps encoding @ 352x240 (CIF)
```

 $625/50\ (PAL)$: 125 fps encoding @ $704x576\ (D1)$

250 fps encoding @ 704x240 (HD1)

500 fps encoding @ 352x288 (CIF)

Motion JPEG is implemented with independent hardware core and its encoding performance does not affect H.264 video CODEC performance. However, its frame size should be same as H.264 video CODEC.

1.2.4. G.723 Voice CODEC

- 20 channel G.723 Voice CODEC
- Each channel encoding/decoding can be configured
- I2S master/slave mode interface or PCM interface

1.2.5. PCI/HOST Interface

- PCI Local Bus Specification, Rev. 2.2. 32bit/33MHz(66MHz)
- PCI Master/Target Mode.
- 32bit CPU Host Interface

1.2.6. Peripheral

- RS485 and RS232C for camera pan/tilt/zoom
- Four I2C for video color decoders/encoders
- SPI for micro CPU communication
- 32 bit GPIO for sensor input and relay output

1.3. Device Options

Device Name	Features
SOLO6110-16	16 Channel Video Multiplexer & H.264 Video CODEC
	(16 Channel H.264 Video Encoding and Motion JPEG Encoding)
SOLO6110-9	16 Channel Video Multiplexer & H.264 Video CODEC
	(9 Channel H.264 Video Encoding and Motion JPEG Encoding)
SOLO6110-4	16 Channel Video Multiplexer & H.264 Video CODEC
	(4 Channel H.264 Video Encoding and Motion JPEG Encoding)

1.4. Block Diagram

2. Pin Description

ı	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
Α	GND	ioMD_ 0	ioMD_ 12	ioMD_ 22	ioMD_ 18	ioMD_ 25	ioMD_ 29	oMA_ 2		o_MC S		oMCL K	oMA_ 9	oMA_ 5	ioMD_ 34	ioMD_ 38	ioMD_ 45	ioMD_ 41	ioMD_ 50	ioMD_ 54	ioMD_ 61	GND
В	ioMD_ 4	GND	ioMD_ 11	ioMD_ 23	ioMD_ 19	ioMD_ 24	ioMD_ 28	oMA_ 3	oMA_ 10	oMBA _0	o_MW E	oMCK E	oMA_ 8	oMA_ 4	ioMD_ 35	ioMD_ 39	ioMD_ 44	ioMD_ 40	ioMD_ 51	ioMD_ 55	GND	ioMD_ 58
С	ioMD_ 5	ioMD_ 1	ioMD_ 10	ioMD_ 15	ioMD_ 20	ioMD_ 16	ioMD_ 27	ioMD_ 31	oMA_ 0	oMBA _1	o_MC AS	oMA_ 12	oMA_ 7	ioMD_ 32	ioMD_ 36	ioMD_ 47	ioMD_ 43	ioMD_ 48	ioMD_ 52	ioMD_ 63	ioMD_ 60	ioMD_ 57
D	ioMD_ 6	ioMD_ 2	ioMD_ 9	ioMD_ 14	ioMD_ 21	ioMD_ 17	ioMD_ 26	ioMD_ 30	oMA_ 1	oMD QM	o_MR AS	oMA_ 11	oMA_ 6	ioMD_ 33	ioMD_ 37	ioMD_ 46	ioMD_ 42	ioMD_ 49	ioMD_ 53	ioMD_ 62	ioMD_ 59	ioMD_ 56
Е	ioMD_ 7	ioMD_ 3	ioMD_ 8	ioMD_ 13	ioGPI O_10	ioGPI O_11	ioGPI O_12	ioGPI O_13	ioGPI O_14	ioGPI O_15	VDD	GND	ISCA N_EN	iTEST _MOD E_0	iTEST _MOD E_1	iPCI_ MOD E	iPCI_ CLKD LY_0	iPCI_ CLKD LY_1	ioPCI _AD_ 3	ioPCI _AD_ 2	ioPCI _AD_ 1	ioPCI _AD_ 0
F	iVD_C LK01	iVD_C LK23	iVD_C LK45	iVD_C LK67	ioGPI O_9	VDD	VDD	VDD	VD33	VD33	VD33	VD33	VD33	VD33	VDD	VDD	VDD	iPCI_ EEPR OM	ioPCI _AD_ 7	ioPCI _AD_ 6	ioPCI _AD_ 5	ioPCI _AD_ 4
G	iVD_D 01_0	iVD_D 23_0	iVD_D 45_0	iVD_D 67_0	ioGPI O_8	VDD											VDD	IVDO_ INIT_ SELT	ioPCI _AD_ 10	ioPCI _AD_ 9	ioPCI _AD_ 8	io_PC I_CBE _0
Н	iVD_D 01_1	iVD_D 23_1	iVD_D 45_1	iVD_D 67_1	ioGPI O_7	VDD											VDD	ISYS_ CFG_ 0	ioPCI _AD_ 14	ioPCI _AD_ 13	ioPCI _AD_ 12	ioPCI _AD_ 11
J	iVD_D 01_2	iVD_D 23_2	iVD_D 45_2	iVD_D 67_2	ioGPI O_6	VD33			GND	GND	GND	GND	GND	GND			VD33	ISYS_ CFG_ 1	io_PC I_SER R	ioPCI _PAR	io_PC I_CBE _1	ioPCI _AD_ 15
К	iVD_D 01_3	iVD_D 23_3	iVD_D 45_3	iVD_D 67_3	ioGPI O_5	VD33			GND	GND	GND	GND	GND	GND			VD33	ISYS_ CFG_ 2	io_PC I_DEV SEL	io_PC I_STO P	i_PCI_ LOCK	io_PC I_PER R
L	iVD_D 01_4	iVD_D 23_4	iVD_D 45_4	iVD_D 67_4	ioGPI O_4	VD33			GND	GND	GND	GND	GND	GND			VD33	VD33	io_PC I_CBE _2	io_PC I_FRA ME	io_PC I_IRD Y	io_PC I_TRD Y
М	iVD_D 01_5	iVD_D 23_5	iVD_D 45_5	iVD_D 67_5	PLL_ DVSS	PLL_ DVDD			GND	GND	GND	GND	GND	GND			VD33	GND	ioPCI _AD_ 19	ioPCI _AD_ 18	ioPCI _AD_ 17	ioPCI _AD_ 16
Ν	iVD_D 01_6	iVD_D 23_6	iVD_D 45_6	iVD_D 67_6	ioGPI O_3	PLL_A VSS			GND	GND	GND	GND	GND	GND			VD33	oEE_ PROM _DI	ioPCI _AD_ 22	ioPCI _AD_ 21	ioPCI _AD_ 20	iPCI_I DSEL
Р	iVD_D 01_7	iVD_D 23_7	iVD_D 45_7	iVD_D 67_7	ioGPI O_2	PLL_A VDD			GND	GND	GND	GND	GND	GND			VD33	IEE_P ROM_ DO	io_PC I_CBE _3	ioPCI _AD_ 23	ioPCI _AD_ 24	ioPCI _AD_ 25
R	iVD_C LK89	IVD_C LKAB	iVD_C LKCD	iVD_C LKEF	ioGPI O_1	PLL_I O_VS S											VDD	oEE_ PROM _CS	ioPCI _AD_ 29	ioPCI _AD_ 26	ioPCI _AD_ 27	ioPCI _AD_ 28
Т	iVD_D 89_0	iVD_D AB_0	iVD_D CD_0	iVD_D EF_0	ioGPI O_0	PLL_I O_VD D											VDD	oEE_ PROM _SK	i_PCI_ GNT	o_PCI _REQ	ioPCI _AD_ 31	ioPCI _AD_ 30
U	iVD_D 89_1	iVD_D AB_1		iVD_D EF_1	ISYS_ CLK_I N	VDD	VDD	VDD	VD33	VD33	VD33	VD33	VD33	VD33	VDD	VDD	VDD	ioPC M_SD _9			o_PCI _INT	IPCI_ CLK
٧	iVD_D 89_2	iVD_D AB_2	iVD_D CD_2	iVD_D EF_2	i_SYS _RST_ IN	o_SY S_RS T_OU T	oSYS _CLK_ OUT	i_TRS T	iTCK	iTDI	GND	VDD	oTDO	iTMS	ioPC M_SD _5	ioPC M_SD _6	ioPC M_SD _7	ioPC M_SD _8			o_AT A_RS T	ioATA _DIO_ 12
W	iVD_D 89_3	iVD_D AB_3	iVD_D CD_3	iVD_D EF_3	iVD_D 89_7	iVD_D AB_7	oVE_ D_1	oVE_ D_5	oVE_ D_9	oVE_ D_13	oVE_ D_17	oVS_ D_1	ioPC M_SD _2	ioPC M_SD _3	ioPC M_SD _4	iATA_I NT_0	iATA_I NT_1	oATA _ADR _0	ioATA _DIO_ 1	ioATA _DIO_ 5	ioATA _DIO_ 10	ioATA _DIO_ 13
Υ	iVD_D 89_4	iVD_D AB_4	iVD_D CD_4	iVD_D EF_4	iVD_D CD_7	iVD_D EF_7	oVE_ D_2	oVE_ D_6	oVE_ D_10	oVE_ D_14	oVE_ D_18	oVS_ D_2	oVS_ D_5	ioPC M_SD _0	ioPC M_SD _1	iATA_I ORDY _0	iATA_I ORDY _1	oATA _ADR _1	ioATA _DIO_ 2	ioATA _DIO_ 6	ioATA _DIO_ 11	ioATA _DIO_ 14
AA	iVD_D 89_5	GND	iVD_D AB_5	iVD_D CD_5	iVD_D EF_5	ioVE_ CLK	oVE_ D_3	oVE_ D_7	oVE_ D_11	oVE_ D_15	oVS_ CLK	oVS_ D_3	oVS_ D_6	ioPC M_CL K	o_AT A_DIO R	o_AT A_CS _0	o_AT A_CS _2	oATA _ADR _2	ioATA _DIO_ 3	ioATA _DIO_ 7	GND	ioATA _DIO_ 15
AB	GND	iVD_D 89_6	iVD_D AB_6	iVD_D CD_6	iVD_D EF_6	oVE_ D_0	oVE_ D_4	oVE_ D_8	oVE_ D_12	oVE_ D_16	oVS_ D_0	oVS_ D_4	oVS_ D_7	ioPC M_SY NC	o_AT A_DIO W	o_AT A_CS _1	o_AT A_CS _3	ioATA _DIO_ 0	ioATA _DIO_ 4	ioATA _DIO_ 8	ioATA _DIO_ 9	GND

2.1. System Pins

Symbol	Pin	Type	Description
i_SYS_RST_IN	V5	ı	System Reset. Active LOW.
iSYS_CLK_IN	U5		System Clock.
o_SYS_RST_OUT	V6	0	System Reset Out. Active LOW.
oSYS_CLK_OUT	V7	0	System Clock Out.

2.2. Configuration Pins

Symbol	Pin	Type	Description
iSCAN_EN	E13	- 1	Scan Enable. (Default LOW) The scan enable pin should be set to LOW in normal operation mode.
iTEST_MODE0	E14		Test Mode. (Default LOW)
iTEST_MODE1	E15		Test Mode pins should be set to LOW in normal operation mode.
iVDO_INIT_SELT	G18	I	Video Initial Selection. [0]: NTSC [1]: PAL
iPCI_MODE	E16	1	System Clock. [0]: HOST [1]: PCI
iPCI_CLKDLY0	E17	1	PCI Clock Delay. (Default LOW)
iPCI_CLKDLY1	E18	ı	The PCI clock phase will be controlled by setting these pins.
iPCI_EEPROM	F18	ı	PCI EEPROM. [0]: No use EEPROM [1]: Use EEPROM
iSYS_CFG0	H18		System Configuration. (Default HIGH)
iSYS_CFG1	J18	ı	System Configuration pins should be set to HIGH.
iSYS_CFG2	K18	ı	

2.3. JTAG Pins

Symbol	Pin	Type	Description
i_TRST	V8	- 1	(Not Used)
iTCK	V9	ı	(Not Used)
iTDI	V10	ı	(Not Used)
oTDO	V13	0	(Not Used)
iTMS	V14	ı	(Not Used)

2.4. Video Input Pins

Symbol	Pin	Type	Description
iVD_CLK01	F1	1	Dual Video Clock Input Channel 0,1. The rising edge is the video input clock for channel 0 and the falling edge is the video input clock of channel 1.
iVD_DAT01_0	G1	ı	Dual Video Data Input Channel 0,1.
iVD_DAT01_1	H1		ITU-R656 format stream data input for channel 0 and channel 1.
iVD_DAT01_2	J1		
iVD_DAT01_3	K1		
iVD_DAT01_4	L1		
iVD_DAT01_5	M1		
iVD_DAT01_6	N1		
iVD_DAT01_7	P1		
iVD_CLK23	F2	1	Dual Video Clock Input Channel 2,3. The rising edge is the video input clock for channel 2 and the falling edge is the video input clock of channel 3.
iVD_DAT23_0	G2		Dual Video Data Input Channel 2,3.
iVD_DAT23_1	H2		ITU-R656 format stream data input for channel 2 and channel 3.
iVD_DAT23_2	J2		
iVD_DAT23_3	K2		
iVD_DAT23_4	L2		
iVD_DAT23_5	M2		
iVD_DAT23_6	N2		
iVD_DAT23_7	P2		
iVD_CLK45	F3		Dual Video Clock Input Channel 4,5.

is the video input clock of channel 5.				
ITU-R656 format stream data input for channel 4 and channel 5.				
ITU-R656 format stream data input for channel 4 and channel 5.	iVD_DAT45_0	G3	-	Dual Video Data Input Channel 4,5.
IVD_DAT45_2		Н3		
NVD DAT45 3				'
IVD_DAT45 S				
ND DAT45 5				
IVD_DAT45_6 N3				
IVD_DAT67				
IVD_CLK67				
I	IVD_DAT45_/	Р3		
IVD_DAT67_2	iVD_CLK67	F4	1	The rising edge is the video input clock for channel 6 and the falling edge
IVD_DAT67_2	iVD_DAT67_0	G4	1	Dual Video Data Input Channel 6.7.
IVD DAT67_3				
IVD DAT67_3				
IVD_DAT67_5				
IVD DAT67_5				
IVD DAT67_6				
IVD_DAT67_7				
IVD_CLK89				
Image:	iVD_DAT67_7	P4		
IVD_DAT89_1	_			The rising edge is the video input clock for channel 8,9.
IVD_DAT89_2			- 1	
IVD_DAT89_3	iVD_DAT89_1	U1		ITU-R656 format stream data input for channel 8,9.
IVD_DAT89_4	iVD_DAT89_2	V1		
IVD_DAT89_4	iVD_DAT89_3	W1		
IVD_DAT89_5				
IVD_DAT89_6 AB2 IVD_DAT89_7 W5 IVD_CLKAB R2 I Video Clock Input Channel 10,11. IVD_DATAB_0 T2 IVD_DATAB_1 U2 IVD_DATAB_1 U2 IVD_DATAB_3 W2 IVD_DATAB_5 AA3 IVD_DATAB_5 AA3 IVD_DATAB_7 W6 IVD_DATCD_0 T3 IVD_DATCD_1 U3 IVD_DATCD_2 V3 IVD_DATCD_3 W3 IVD_DATCD_5 AA4 IVD_DATCD_5 AA4 IVD_DATCD_7 Y5 IVD_DATCB_0 T4 IVD_DATCB_0 T4 IVD_DATCB_1 U4 IVD_DATCB_1 U4 IVD_DATCB_1 U4 IVD_DATCB_2 V4 IVD_DATCB_1 U4 IVD_DATCB_2 V4 IVD_DATCB_3 W4 IVD_DATCB_3 W4 IVD_DATCB_3 W4 IVD_DATCB_3 W4 IVD_DATCB_3 W4 IVD_DATCB_5 AA5 IVD_DATCB_4 Y4 IVD_DATCB_5 W4				
IVD_DAT89_7 W5				
IVD_CLKAB				
IVD_DATAB_0 T2 IVD_DATAB_1 U2 IVD_DATAB_1 U2 IVD_DATAB_2 V2 IVD_DATAB_3 W2 IVD_DATAB_3 W2 IVD_DATAB_5 AA3 IVD_DATAB_6 AB3 IVD_DATAB_7 W6 IVD_CLKCD R3 IVD_DATCD_0 T3 IVD_DATCD_1 U3 IVD_DATCD_2 V3 IVD_DATCD_2 V3 IVD_DATCD_3 W3 IVD_DATCD_3 W3 IVD_DATCD_5 AA4 IVD_DATCD_5 AA4 IVD_DATCD_6 AB4 IVD_DATCD_7 Y5 IVD_DATEF_0 T4 IVD_DATEF_1 U4 IVD_DATEF_3 W4 IVD_DATEF_3 W4 IVD_DATEF_3 W4 IVD_DATEF_4 Y4 IVD_DATEF_4 Y4 IVD_DATEF_5 AA5	IVD_DA189_7	VV5		Wide Oleak knowl Observal 40 44
IVD_DATAB_0	iVD_CLKAB	R2	1	
ITU-R656 format stream data input for channel 10,11.	iVD DATAB 0	T2	1	Video Data Input Channel 10.11.
iVD_DATAB_2 V2 iVD_DATAB_3 W2 iVD_DATAB_5 AA3 iVD_DATAB_6 AB3 iVD_DATAB_7 W6 iVD_CLKCD R3 I iVD_DATCD_0 T3 I iVD_DATCD_1 U3 iVD_DATCD_1 U3 iVD_DATCD_1 U3 iVD_DATCD_3 W3 iVD_DATCD_3 W3 iVD_DATCD_4 Y3 iVD_DATCD_5 AA4 iVD_DATCD_7 Y5 iVD_DATCD_7 Y5 iVD_DATEF_0 T4 iVD_DATEF_1 U4 iVD_DATEF_2 V4 iVD_DATEF_3 W4 iVD_DATEF_5 AA5 //dio //dio //dio //dio //dio //dio //dio //dio //dio //dio //dio //dio //dio //dio //dio //dio //dio //dio //dio //dio //dio //dio //dio //dio //dio //dio //dio </td <td></td> <td></td> <td></td> <td></td>				
iVD_DATAB_3 W2 iVD_DATAB_4 Y2 iVD_DATAB_5 AA3 iVD_DATAB_6 AB3 iVD_DATAB_7 W6 iVD_CLKCD R3 iVD_DATCD_0 T3 iVD_DATCD_1 U3 iVD_DATCD_1 U3 iVD_DATCD_2 V3 iVD_DATCD_3 W3 iVD_DATCD_4 Y3 iVD_DATCD_5 AA4 iVD_DATCD_6 AB4 iVD_DATCD_7 Y5 iVD_DATEF_0 T4 iVD_DATEF_1 U4 iVD_DATEF_2 V4 iVD_DATEF_3 W4 iVD_DATEF_4 Y4 iVD_DATEF_5 AA5				
iVD_DATAB_4 Y2 iVD_DATAB_5 AA3 iVD_DATAB_6 AB3 iVD_DATAB_7 W6 iVD_CLKCD R3 I iVD_DATCD_0 T3 I iVD_DATCD_1 U3 iVD_DATCD_1 U3 iVD_DATCD_2 V3 iVD_DATCD_3 W3 iVD_DATCD_4 Y3 iVD_DATCD_5 AA4 iVD_DATCD_6 AB4 iVD_DATEF_0 T4 iVD_DATEF_1 U4 iVD_DATEF_2 V4 iVD_DATEF_3 W4 iVD_DATEF_4 Y4 iVD_DATEF_5 AA5 I Video Clock Input Channel 14,15. The rising edge is the video input clock for channel 14,15. ITU-R656 format stream data input for channel 14,15. ITU-R656				
iVD_DATAB_5 AA3 iVD_DATAB_6 AB3 iVD_DATAB_7 W6 iVD_CLKCD R3 I iVD_DATCD_0 T3 I iVD_DATCD_0 T3 I iVD_DATCD_1 U3 iVD_DATCD_1 U3 iVD_DATCD_2 V3 iVD_DATCD_3 W3 iVD_DATCD_4 Y3 iVD_DATCD_5 AA4 iVD_DATCD_7 Y5 iVD_DATEF_0 T4 iVD_DATEF_1 U4 iVD_DATEF_2 V4 iVD_DATEF_3 W4 iVD_DATEF_4 Y4 iVD_DATEF_5 AA5 **Video Clock Input Channel 14,15. **The rising edge is the video input clock for channel 14,15. **ITU-R656 format stream data input for channel 14,15. *ITU-R656 format stream data input for channel 14,15. **ITU-R656 format stream data input for channel 14,15.				
iVD_DATAB_6 AB3 iVD_DATAB_7 W6 iVD_CLKCD R3 I Video Clock Input Channel 12,13. iVD_DATCD_0 T3 iVD_DATCD_1 U3 iVD_DATCD_1 U3 iVD_DATCD_2 V3 iVD_DATCD_3 W3 iVD_DATCD_5 AA4 iVD_DATCD_6 AB4 iVD_DATCD_7 Y5 iVD_CLKEF R4 I Video Clock Input Channel 14,15. iVD_DATEF_0 T4 iVD_DATEF_1 U4 iVD_DATEF_2 V4 iVD_DATEF_3 W4 iVD_DATEF_5 AA5				
iVD_DATAB_7 W6 iVD_CLKCD R3 I Video Clock Input Channel 12,13. iVD_DATCD_0 T3 iVD_DATCD_1 U3 iVD_DATCD_1 U3 iVD_DATCD_2 V3 iVD_DATCD_3 W3 iVD_DATCD_5 AA4 iVD_DATCD_7 Y5 iVD_CLKEF R4 I Video Clock Input Channel 14,15. iVD_DATEF_0 T4 iVD_DATEF_1 U4 iVD_DATEF_3 W4 iVD_DATEF_3 W4 iVD_DATEF_5 AA5				
iVD_CLKCD R3 I Video Clock Input Channel 12,13. iVD_DATCD_0 T3 iVD_DATCD_1 U3 iVD_DATCD_2 V3 iVD_DATCD_3 W3 iVD_DATCD_5 AA4 iVD_DATCD_6 AB4 iVD_DATCD_7 Y5 iVD_CLKEF R4 I Video Clock Input Channel 14,15. iVD_DATEF_0 T4 iVD_DATEF_1 U4 iVD_DATEF_3 W4 iVD_DATEF_3 W4 iVD_DATEF_5 AA5				
iVD_DATCD_0 T3 iVD_DATCD_1 U3 iVD_DATCD_2 V3 iVD_DATCD_3 W3 iVD_DATCD_5 AA4 iVD_DATCD_7 Y5 iVD_CLKEF R4 I iVD_DATEF_0 T4 iVD_DATEF_1 U4 iVD_DATEF_3 W4 iVD_DATEF_3 W4 iVD_DATEF_5 AA5	iVD_DATAB_7	W6		
iVD_DATCD_0 T3 iVD_DATCD_1 U3 iVD_DATCD_2 V3 iVD_DATCD_3 W3 iVD_DATCD_5 AA4 iVD_DATCD_6 AB4 iVD_DATCD_7 Y5 iVD_CLKEF R4 I iVD_DATEF_0 T4 iVD_DATEF_1 U4 iVD_DATEF_3 W4 iVD_DATEF_3 W4 iVD_DATEF_5 AA5	iVD_CLKCD	R3	1	The rising edge is the video input clock for channel 12,13.
iVD_DATCD_1 U3 iVD_DATCD_2 V3 iVD_DATCD_3 W3 iVD_DATCD_4 Y3 iVD_DATCD_5 AA4 iVD_DATCD_6 AB4 iVD_DATCD_7 Y5 iVD_CLKEF R4 I Video Clock Input Channel 14,15. The rising edge is the video input clock for channel 14,15. IVD_DATEF_0 T4 iVD_DATEF_1 U4 iVD_DATEF_1 U4 iVD_DATEF_2 V4 iVD_DATEF_3 W4 iVD_DATEF_4 Y4 iVD_DATEF_5 AA5	iVD_DATCD_0	T3	I	Video Data Input Channel 12,13.
IVD_DATCD_2				
iVD_DATCD_3 W3 iVD_DATCD_4 Y3 iVD_DATCD_5 AA4 iVD_DATCD_6 AB4 iVD_DATCD_7 Y5 iVD_CLKEF R4 I Video Clock Input Channel 14,15.				·
iVD_DATCD_4 Y3 iVD_DATCD_5 AA4 iVD_DATCD_6 AB4 iVD_DATCD_7 Y5 iVD_CLKEF R4 I iVD_DATEF_0 T4 iVD_DATEF_1 U4 iVD_DATEF_2 V4 iVD_DATEF_3 W4 iVD_DATEF_4 Y4 iVD_DATEF_5 AA5 Video Clock Input Channel 14,15. Video Data Input Channel 14,15. ITU-R656 format stream data input for channel 14,15.				
iVD_DATCD_5				
iVD_DATCD_6 AB4 iVD_DATCD_7 Y5 iVD_CLKEF R4 I Video Clock Input Channel 14,15. The rising edge is the video input clock for channel 14,15. iVD_DATEF_0 T4 I Video Data Input Channel 14,15. ITU-R656 format stream data input for channel 14,15. iVD_DATEF_1 V4 IVD_DATEF_3 W4 iVD_DATEF_4 Y4 iVD_DATEF_5 AA5				
iVD_DATCD_7 Y5 iVD_CLKEF R4 I Video Clock Input Channel 14,15. The rising edge is the video input clock for channel 14,15. iVD_DATEF_0 T4 I Video Data Input Channel 14,15. iVD_DATEF_1 U4 ITU-R656 format stream data input for channel 14,15. iVD_DATEF_3 W4 iVD_DATEF_4 Y4 iVD_DATEF_5 AA5				
iVD_CLKEF R4 I Video Clock Input Channel 14,15. The rising edge is the video input clock for channel 14,15. iVD_DATEF_0 IVD_DATEF_1 U4 iVD_DATEF_2 V4 iVD_DATEF_3 V4 iVD_DATEF_4 V4 iVD_DATEF_5 AA5				
IVD_CLREF R4 I The rising edge is the video input clock for channel 14,15. IVD_DATEF_0 T4 I Video Data Input Channel 14,15. IVD_DATEF_1 U4 IVD_DATEF_2 V4 IVD_DATEF_3 W4 IVD_DATEF_4 Y4 IVD_DATEF_5 AA5	IVU_DATCD_7	Y5		N/1 0/ / / / / / / / / / / / / / / / / /
iVD_DATEF_1 U4 iVD_DATEF_2 V4 iVD_DATEF_3 W4 iVD_DATEF_4 Y4 iVD_DATEF_5 AA5	_			The rising edge is the video input clock for channel 14,15.
iVD_DATEF_2 V4 iVD_DATEF_3 W4 iVD_DATEF_4 Y4 iVD_DATEF_5 AA5		T4	- 1	
iVD_DATEF_2 V4 iVD_DATEF_3 W4 iVD_DATEF_4 Y4 iVD_DATEF_5 AA5	iVD_DATEF_1	U4		ITU-R656 format stream data input for channel 14,15.
iVD_DATEF_3 W4 iVD_DATEF_4 Y4 iVD_DATEF_5 AA5	iVD_DATEF_2			·
iVD_DATEF_4 Y4 iVD_DATEF_5 AA5				
iVD_DATEF_5 AA5				
1/D DATEE 0 ADE				
iVD_DATEF_6 AB5				
iVD_DATEF_7 Y6	iVD_DATEF_7	Y6		

2.5. Video Output Pins

Symbol	Pin	Type	Description
ia\/E_CL//	446	I/O	Video Clock Output.
ioVE_CLK	AA6	1/0	The clock is for the video output data.
oVE _DAT_0	AB6	0	Video Data Output.
oVE _DAT_1	W7		ITU-R656 format stream data output.
oVE _DAT_2	Y7		
oVE _DAT_3	AA7		
oVE _DAT_4	AB7		
oVE _DAT_5	W8		
oVE _DAT_6	Y8		
oVE _DAT_7	AA8		
oVE _DAT_8	AB8	0	Reserved.
oVE _DAT_9	W9		
oVE _DAT_10	Y9		
oVE _DAT_11	AA9		
oVE _DAT_12	AB9		
oVE _DAT_13	W10		
oVE _DAT_14	Y10		
oVE _DAT_15	AA10		
oVE _DAT_16	AB10		
oVE _DAT_17	W11		
oVE _DAT_18	Y11		
oVS_CLK	AA11	0	Reserved.
oVS _DAT_0	AB11		Reserved.
oVS _DAT_1	W12		(Not supported the spot output.)
oVS _DAT_2	Y12		
oVS _DAT_3	AA12	0	
oVS _DAT_4	AB12		
oVS _DAT_5	Y13		
oVS _DAT_6	AA13		
oVS _DAT_7	AB13		

2.6. Audio Pins

Symbol	Pin	Туре	Description
ioPCM_SYNC	AB14	I/O	PCM Sync.
ioPCM_CLK	AA14	I/O	PCM Clock.
ioPCM_S0	Y14	I/O	PCM Serial Data Channel 0.
ioPCM_S1	Y15	I/O	PCM Serial Data Channel 1.
ioPCM_S2	W13	I/O	PCM Serial Data Channel 2.
ioPCM_S3	W14	1/0	PCM Serial Data Channel 3.
ioPCM_S4	W15	1/0	PCM Serial Data Channel 4.
ioPCM_S5	V15	1/0	PCM Serial Data Channel 5.
ioPCM_S6	V16	I/O	PCM Serial Data Channel 6.
ioPCM_S7	V17	I/O	PCM Serial Data Channel 7.
ioPCM_S8	V18	I/O	PCM Serial Data Channel 8.
ioPCM_S9	U18	I/O	PCM Serial Data Channel 9.

2.7. Peripheral Pins

Symbol	Pin	Type	Description
ioGPIO0/SDO	T5	I/O	General Purpose Input/Output Port0/SPI Data Out.
ioGPIO1/SDI	R5	I/O	General Purpose Input/Output Port1/SPI Data In.
ioGPIO2/SCLK	P5	I/O	General Purpose Input/Output Port2/SPI Clock.
ioGPIO3/SSTB	N5	I/O	General Purpose Input/Output Port3/SPI Strobe.
ioGPIO4/SDA2	L5	I/O	General Purpose Input/Output Port4/IIC Data2.
ioGPIO5/SCL2	K5	I/O	General Purpose Input/Output Port5/IIC Clock2.
ioGPIO6/SDA3	J5	I/O	General Purpose Input/Output Port6/IIC Data3.
ioGPIO7/SCL3	H5	I/O	General Purpose Input/Output Port7/IIC Clock3.
ioGPIO8/RXD0	G5	I/O	General Purpose Input/Output Port8/RS485 RxD.
ioGPIO9/TXD0	F5	I/O	General Purpose Input/Output Port9/RS485 TxD.
ioGPIO10/nRXE	E5	I/O	General Purpose Input/Output Port10/RS-485 nRxEn.

N0			
ioGPIO11/TXEN0	E6	I/O	General Purpose Input/Output Port11/RS-485 TxEn.
ioGPIO12/RXD1	E7	I/O	General Purpose Input/Output Port12/RS-232C RxD.
ioGPIO13/TXD1	E8	I/O	General Purpose Input/Output Port13/RS-232C TxD.
ioGPIO14/nCTS1	E9	I/O	General Purpose Input/Output Port14/RS-232C nCTS.
ioGPIO15/nRTS1	E10	I/O	General Purpose Input/Output Port15/RS-232C nRTS.

2.8. Extended GPIO

Symbol	Pin	Туре	Description
oATA_RST	V21	0	Reserved. (Not supported ATA IDE controller)
iATA_INT[0]	W16	I	Reserved.
iATA_INT[1]	W17	-	Reserved.
iATA_IORDY[0]	Y16	- 1	Reserved.
iATA_IORDY[1]	Y17	- 1	Reserved.
o_ATA_DIOR	AA15	0	Reserved.
o_ATA_DIOW	AB15	0	Reserved.
o_ATA_CS[0]	AA16	0	Reserved.
o_ATA_CS[1]	AB16	0	Reserved.
o_ATA_CS[2]	AA17	0	Reserved.
o_ATA_CS[3]	AB17	0	Reserved.
oATA_ADR[0]	W18	0	Reserved.
oATA_ADR[1]	Y18	0	Reserved.
oATA_ADR[2]	AA18	0	Reserved.
ioEXT_GPIO[16]	AB18	1/0	General Purpose Input/Output Port16.
ioEXT_GPIO[17]	W19	1/0	General Purpose Input/Output Port17.
ioEXT_GPIO[18]	Y19	1/0	General Purpose Input/Output Port18.
ioEXT_GPIO[19]	AA19	I/O	General Purpose Input/Output Port19.
ioEXT_GPIO[20]	AB19	I/O	General Purpose Input/Output Port20.
ioEXT_GPIO[21]	W20	1/0	General Purpose Input/Output Port21.
ioEXT_GPIO[22]	Y20	1/0	General Purpose Input/Output Port22.
ioEXT_GPIO[23]	AA20	1/0	General Purpose Input/Output Port23.
ioEXT_GPIO[24]	AB20	1/0	General Purpose Input/Output Port24.
ioEXT_GPIO[25]	AB21	I/O	General Purpose Input/Output Port25.
ioEXT_GPIO[26]	W21	I/O	General Purpose Input/Output Port26.
ioEXT_GPIO[27]	Y21	I/O	General Purpose Input/Output Port27.
ioEXT_GPIO[28]	V22	I/O	General Purpose Input/Output Port28.
ioEXT_GPIO[29]	W22	I/O	General Purpose Input/Output Port29.
ioEXT_GPIO[30]	Y22	I/O	General Purpose Input/Output Port30.
ioEXT_GPIO[31]	AA22	I/O	General Purpose Input/Output Port31.

2.9. SDRAM Pins

Symbol	Pin	Type	Description
oMCKE	B12	0	SDRAM Clock Enable.
oMCLK	A12	0	SDRAM Clock.
o_MCS	A10	0	SDRAM Chip Select.
o_MWE	B11	0	SDRAM Chip Select.
o_MRAS	D11	0	SDRAM Row Strobe.
o_MCAS	C11	0	SDRAM Column Strobe.
oMBA0	B10	0	SDRAM Bank Address.
oMBA1	C10	0	
oMA0	C9	0	SDRAM Address.
oMA1	D9	0	
oMA2	A8	0	
oMA3	B8	0	
oMA4	B14	0	
oMA5	A14	0	
oMA6	D13	0	
oMA7	C13	0	
oMA8	B13	0	
oMA9	A13	0	
oMA10	B9	0	
oMA11	D12	0	
oMA12	C12	0	
ioMD0	A2	I/O	SDRAM Data.

ioMD1	Ca	1/0	
ioMD2	C2 D2	I/O I/O	
ioMD3	E2	1/0	
ioMD4	B1	1/0	
ioMD5	C1	I/O	
ioMD6	D1	I/O	
ioMD7	E1	I/O	
ioMD8	E3	I/O	
ioMD9	D3	I/O	
ioMD10	C3	I/O	
ioMD11	B3	I/O	
ioMD12	A3	I/O	
ioMD13	E4	I/O	
ioMD14	D4	I/O	
ioMD15	C4	I/O	
ioMD16	C6	I/O	
ioMD17	D6	I/O	
ioMD18	A5	I/O	
ioMD19	B5	I/O	
ioMD20	C5	I/O	
ioMD21	D5	I/O	
ioMD22	A4	I/O	
ioMD23	B4	1/0	
ioMD24	B6	1/0	
ioMD25	A6	1/0	
ioMD26	D7	1/0	
ioMD27	C7	I/O	
ioMD28	B7	I/O	
ioMD29	A7	I/O	
ioMD30	D8	I/O	
ioMD31	C8	I/O	
ioMD32	C14	I/O	
ioMD33	D14	I/O	
ioMD34	A15	I/O	
ioMD35	B15	I/O	
ioMD36	C15	1/0	
ioMD37	D15	I/O	
ioMD38	A16	I/O	
ioMD39	B16	I/O	
ioMD40	B18	I/O	
ioMD41	A18	I/O	
ioMD42	D17	I/O	
ioMD43	C17	I/O	
ioMD44	B17	I/O	
ioMD45	A17	I/O	
ioMD46	D16	1/0	
ioMD47	C16	1/0	
ioMD48	C18	1/0	
ioMD49	D18	1/0	
ioMD50			
	A19	1/0	
ioMD51	B19	1/0	
ioMD52	C19	1/0	
ioMD53	D19	1/0	
ioMD54	A20	I/O	
ioMD55	B20	I/O	
ioMD56	D22	I/O	
ioMD57	C22	I/O	
ioMD58	B22	I/O	
ioMD59	D21	I/O	
ioMD60	C21	I/O	
ioMD61	A21	I/O	
:-MDCO	D20	I/O	
ioMD62	D20	1, 0	
ioMD63	C20	1/0	

2.10. PCI/Host Pins

Symbol	Pin	Туре	Description
iPCI CLK	U22	i	PCI Clock. 33MHz/66MHz.
ioPCI_AD0/DQ0	E22	I/O	PCI Address/Data.
ioPCI_AD1/DQ1	E21	I/O	PCI Mode : PCI Address/Data.
ioPCI_AD2/DQ2	E20	I/O	Host Mode : Data.
ioPCI_AD3/DQ3	E19	I/O	See iPCI_MODE (Pin E16).
ioPCI_AD4/DQ4	F22	I/O	_
ioPCI_AD5/DQ5	F21	I/O	
ioPCI_AD6/DQ6	F20	I/O	
ioPCI_AD7/DQ7	F19	I/O	
ioPCI_AD8/DQ8	G21	I/O	
ioPCI_AD9/DQ9	G20	I/O	
ioPCI_AD10/DQ10	G19	I/O	
ioPCI_AD11/DQ11	H22	I/O	
ioPCI_AD12/DQ12	H21	I/O	
ioPCI_AD13/DQ13	H20	1/0	
ioPCI_AD13/DQ13	H19	1/0	
ioPCI_AD15/DQ15	J22	1/0	
	M22	1/0	
ioPCI_AD16/DQ16	M21	1/0	
ioPCI_AD17/DQ17			
ioPCI_AD18/DQ18	M20	I/O	
ioPCI_AD19/DQ19	M19	I/O	
ioPCI_AD20/DQ20	N21	I/O	
ioPCI_AD21/DQ21	N20	I/O	
ioPCI_AD22/DQ22	N19	I/O	
ioPCI_AD23/DQ23	P20	I/O	
ioPCI_AD24/DQ24	P21	I/O	
ioPCI_AD25/DQ25	P22	I/O	
ioPCI_AD26/DQ26	R20	I/O	
ioPCI_AD27/DQ27	R21	I/O	
ioPCI_AD28/DQ28	R22	I/O	
ioPCI_AD29/DQ29	R19	I/O	
ioPCI_AD30/DQ30	T22	I/O	
ioPCI_AD31/DQ31	T21	I/O	
ioPCI_CBE0/A2	G22	I/O	PCI Command_Byte Enable/Address.
ioPCI_CBE1/A3	J21	I/O	PCI Mode : PCI Command/Bye Enable.
ioPCI_CBE2/A4	L19	I/O	Host Mode : Address.
ioPCI_CBE3/A5	P19	I/O	
			PCI Parity/Address.
ioPCI_PAR/A6	J20	I/O	PCI Mode: PCI Parity.
			Host Mode: Address.
			PCI Frame/Address.
ioPCI_FRAME/A7	L20	I/O	PCI Mode : PCI Frame. Active LOW.
			Host Mode : Address.
			PCI Master Ready/Address.
ioPCI_IRDY/A8	L21	I/O	PCI Mode : PCI Master Ready. Active LOW.
			Host Mode : Address.
			PCI Target Ready/Address.
ioPCI_TRDY/A9	L22	I/O	PCI Mode : PCI Target Ready. Active LOW.
			Host Mode : Address.
			PCI Stop/Address.
ioCI_STOP/A10	K20	I/O	PCI Mode : PCI Stop. Active LOW.
			Host Mode : Address.
			PCI Lock/Output Enable.
i_LOCK/i_OE	K21	I	PCI Mode: PCI Lock. Active LOW.
			Host Mode : Output Enable. Active LOW.
			PCI ID Selection/Write Enable.
i_PCI_IDSEL/i_WE	N22	- 1	PCI Mode : PCI ID Selection.
			Host Mode : Write Enable. Active LOW.
io_PCI_DEVSEL/A			PCI Device Selection/Address.
11	K19	I/O	PCI Mode : PCI Device Selection. Active LOW.
	ļ		Host Mode : Address.
			PCI Parity Error/Address.
io_PCI_PERR/A12	K22	I/O	PCI Mode : PCI Parity Error. Active LOW.
			Host Mode : Address.
io_PCI_SERR/A13	J19	I/O	PCI System Error/Address.

			PCI Mode : PCI System Error. Active LOW.
			Host Mode: Address.
			PCI Interrupt Request/Interrupt Request.
o_PCI_INT/i_INTR	U21	0	PCI Mode : PCI Interrupt Request. Active LOW.
			Host Mode: Interrupt request. Active LOW.
o PCI REQ	T20	0	PCI Request.
0_PCI_REQ	120		PCI Request. Active LOW.
			PCI Grant/Chip Select.
i_PCI_GNT/i_CS	T19	I	PCI Mode : PCI Grant. Active LOW.
			Host Mode : Chip Select. Active LOW.
oEEPROM_DI	N18	0	PCI Configuration EEPROM Data In.
iEEPROM_DO	P18	I	PCI Configuration EEPROM Data Out.
oEEPROM_CS	R18	0	PCI Configuration EEPROM Chip Selection.
oEEPROM_SK	T18	0	PCI Configuration EEPROM Clock.

2.11. Power Pins

		-	
Symbol	Pin	Туре	Description
PLL_AVDD	P6	I	Analog Power 1.2V.
PLL_AVSS	N6	ı	Analog Ground.
PLL_DVDD	M6		Power 1.2V.
PLL_DVSS	M5		Ground.
PLL_IO_VDD	T6	ı	Power 3.3V.
PLL_IO_VSS	R6	ı	Ground.
VDD33	F9	ı	Power 3.3V.
VDD33	F10	ı	
VDD33	F11	ı	
VDD33	F12	ı	
VDD33	F13	-	
VDD33	F14	-	
VDD33	J6		
VDD33	J17	ı	
VDD33	K6	I	
VDD33	K17	I	
VDD33	L6	I	
VDD33	L17	ı	
VDD33	L18	I	
VDD33	M17	ı	
VDD33	N17	ı	
VDD33	P17	ı	
VDD33	U9	-	
VDD33	U10		
VDD33	U11		
VDD33	U12	ı	
VDD33	U13	i	
VDD33	U14	i	
VDD	E11	i	Power 1.2V.
VDD	F6	i	7 6 7 7 2 7 7
VDD	F7	i	
VDD	F8	i	
VDD	F15	i	
VDD	F16	i	
VDD	F17	i	
VDD	G6		
VDD	G17	i	
VDD	H6	ı	
VDD	H17		
VDD	R17	ı	
VDD	T17	ı	
VDD	U6	i	
VDD	U7	i	
VDD	U8	<u> </u>	
VDD	U15		
		1	
VDD	U16	l l	
VDD	U17	l l	
VDD	V12	I	

VSS	A1	ı	Ground.
VSS	A22	i	
VSS	B2	i	
VSS	B21	i	
VSS	E12	i	
VSS	J9	i	
VSS	J10	i	
VSS	J11	i	
VSS	J12	<u> </u>	
VSS	J12	l i	
VSS	J13		
VSS	K9	 	
VSS			
	K10	I	
VSS	K11	I	
VSS	K12		
VSS	K13	l l	
VSS	K14	l l	
VSS	L9	l l	
VSS	L10	I	
VSS	L11	ı	
VSS	L12	ı	
VSS	L13	ı	
VSS	L14	I	
VSS	M9	I	
VSS	M10	ı	
VSS	M11	- 1	
VSS	M12	- 1	
VSS	M13	ı	
VSS	M14		
VSS	M18		
VSS	N9	ı	
VSS	N10	ı	
VSS	N11	ı	
VSS	N12	ı	
VSS	N13	i	
VSS	N14		
VSS	P9	i	
VSS	P10	i	
VSS	P11	i	
VSS	P12	i	
VSS	P13	i	
VSS	P14	i	
VSS	V11	i	
VSS	AA2	i	
VSS	AA21	<u> </u>	
VSS	AB1	l	
VSS	AB22	<u> </u>	
voo	ADZZ		

3. Registers

3.1. System Clock Configuration Registers

Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x0000	SYS_CONFIG	RW	[31]	FDMA Reset. Active HIGH. [0]: Normal operation. [1]: SDRAM controller reset. [1]→[0]: Initializing SDRAM and power-up sequence.	0
			[30]	SDRAM Bit Width Selection. [0]: Not used. [1]: 64bit Interface with SDRAM.	1
			[29:28]	Reserved.	0
			[27:26]	Positive FDMA Clock Delay. Factory Default.	0
			[25:24]	Negative FDMA Clock Delay. Factory Default.	0
			[23:22]	Live o Play back Clock Source Selection. [0]: iSYS_CLK_IN/2 [1]: iSYS_CLK_IN [2]: iSYS_CLK [3]: iSYS_CLK/2 iSYS_CLK_IN: pin U5 (normally 54MHz) iSYS_CLK: PLL output clock (normally 135MHz)	0
			[21:20]	Reserved.	0
			[19]	System Clock Divider Control	0
			[18:14]	Not Used.	0
			[13:5]	Net Used.	0
			[4:3] [2]	Not Used. Not Used.	0
			[<u>2]</u> [1]	Not Used.	1
			[0]	Not Used.	0

Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x0020	PLL_CONFIG	RW	[22:20]	RANGE[2:0]. PLL Filter Range. [000]: Bypass [100]: 21 to 42MHz [001]: 5 to 10MHz [101]: 34 to 68MHz [010]: 8 to 16MHz [110]: 54 to 108MHz [011]: 13 to 26MHz [111]: 88 to 200MHz This sets the PLL loop filter to work with the post-reference divider frequency. Choose the highest valid range for best jitter performance.	0
			[19:15]	DIVR[4:0]. Reference divider Value. (Binary value+1, so 0000 means "1") Both REF and divided REF must be within the range of 5MHz to 200MHz.	0
			[14:12]	DIVQ[2:0]. Output Divider Value. (2^ Binary value, so 000 means "1") VCO must be within the range of 500MHz to 1000MHz.	0
			[11:4]	DIVF[7:0]. Feedback Divider Value. (Binary value+1, so 00000000 means "1")	0
			[3]	RESET. PLL Internal Reset.	0
			[2]	BYPASS. PLL Bypass Enable.	1
			[1]	FSEN. Frequency Synthesizer Enable.	1
			[0]	FB. Feedback Clock.	0

3.2. FDMA Clock Configuration Registers

Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x0004	FDMA_CONFIG		[16]	SDRAM Refresh Cycle Mode*.	0
				[0] : Refresh Cycle	
				[1]: Refresh Cycle/16	

			[15:8]	SDRAM Refresh Cycle*. (Factory Default) SDRAM Controller will execute refresh every collapsed time setting value. The unit of setting value will be 256 times of system clock cycle.	0x10
			[7:6]	SDRAM Size. [00]: 4 * 16bit 64Mbit SDRAM 2 * 32bit 64Mbit SDRAM [01]: 4 * 16bit 128Mbit SDRAM 2 * 32bit 128Mbit SDRAM [10]: 4 * 16bit 128Mbit SDRAM [10]: 4 * 16bit 256Mbit SDRAM [11]: 4 * 16bit 512Mbit SDRAM	2
			[5]	SDRAM Clock Inversion*. (Factory Default)	1
			[4]	FDMA Read Data Strobe Selection*. (Factory Default) The register is only effective in 32-bit FDMA interface mode.	1
			[3]	FDMA Read Data Selection*. (Factory Default)	1
			[2]	FDMA Read Data Clock Inversion*. (Factory Default)	0
			[1:0]	FDMA Read Latency*. (Factory Default)	1
0x0008	DMA_CTRL1	RW	[5:2]	Reserved. (BT Cycle)	0
			[1]	Reserved. (MultiMode_n)	0
			[0]	Reserved. (SeqMode_n)	0

3.3. Video Clock Configuration Registers

Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x000C	VDO_CLK_CONIFG	RW	[22]	Video Output Clock Inversion. (Factory Default)	0
			[21:20]	Video Output Clock Selection. (Factory Default)	0
				[0] : SYS_CLK/4	
				[1]: SYS_CLK/2	
				[2] : iSYS_CLK_IN/2	
				[3] : EXT_CLK (from pin ioVE_CLK)	_
			[19]	Reserved. (Video Spot Output Clock Inversion)	0
			[18]	Video Input Clock Selection. (Factory Default)	0
				[0]: 54MHz Dual ITU-R BT 656 format	
			[47.40]	[1]: 27MHz Single ITU-R BT 656 format	
			[17:16]	Reserved.	0
			[15:14]	Video Input Clock Delay for Channel 14, 15.	0
			[13:11]	(Factory Default) Video Input Clock Delay for Channel 12, 13.	0
			[13.11]	(Factory Default)	0
			[11:10]	Video Input Clock Delay for Channel 10, 11.	0
			[11.10]	(Factory Default)	0
			[9:8]	Video Input Clock Delay for Channel 8, 9.	0
				(Factory Default)	
			[7:6]	Video Input Clock Delay for Channel 6, 7.	0
				(Factory Default)	
			[5:4]	Video Input Clock Delay for Channel 4, 5.	0
				(Factory Default)	
			[3:2]	Video Input Clock Delay for Channel 2, 3.	0
				(Factory Default)	
			[1:0]	Video Input Clock Delay for Channel 0, 1. (Factory Default)	0

3.4. Interrupt Configuration Registers

Register Address	Register Name	Туре	Bit Field	Description	Initial State				
0x0010	SYS_INT_STA_ACK	RW	[20]	P2M3 Interrupt Status/Ack. Read Mode: P2M3 Interrupt Status. Write Mode: P2M3 Interrupt Acknowledge.	0				
			[19]	P2M2 Interrupt Status/Ack. Read Mode: P2M2 Interrupt Status. Write Mode: P2M2 Interrupt Acknowledge.	0				

	Ī		[40]	DOMA Intervient Chatter /A-Is	
			[18]	P2M1 Interrupt Status/Ack. Read Mode: P2M1 Interrupt Status.	0
				Write Mode: P2M1 Interrupt Status. Write Mode: P2M1 Interrupt Acknowledge.	
			[17]	P2M0 Interrupt Status/Ack.	0
			[17]	Read Mode : P2M0 Interrupt Status.	U
				Write Mode: P2M0 Interrupt Status. Write Mode: P2M0 Interrupt Acknowledge.	
			[16]	GPIO Interrupt Status/Ack.	0
			[10]	Read Mode : GPIO Interrupt Status.	U
				Write Mode : GPIO Interrupt Acknowledge.	
			[15]	Reserved.	0
	i		[15]		
			[14]	Video Output Sync Interrupt Status/Ack.	0
				Read Mode: Video Input Interrupt Status.	
				Write Mode: Video Input Interrupt Acknowledge.	
			[13]	Video Motion Interrupt Status/Ack.	0
				Read Mode: Video Motion Interrupt Status.	
				Write Mode : Video Motion Interrupt	
				Acknowledge.	
			[12]	ATA Command Interrupt Status/Ack.	0
				Read Mode : ATA Command Interrupt Status.	
				Write Mode : ATA Command Interrupt	
				Acknowledge.	
			[11]	ATA Direction Interrupt Status/Ack.	0
				Read Mode: ATA Direction Interrupt Status.	
				Write Mode: ATA Direction Interrupt	
				Acknowledge.	
			[10]	PCI Error Interrupt Status/Ack.	0
				Read Mode : Fatal Interrupt Status.	
				Write Mode : Fatal Interrupt Acknowledge.	
			[9]	PS2_1 Interrupt Status/Ack.	0
				Read Mode: PS2 Interrupt Status.	
				Write Mode: PS2 Interrupt Acknowledge.	
			[8]	PS2_0 Interrupt Status/Ack.	0
				Read Mode : PCI ERROR Interrupt Status.	
				Write Mode: PCI ERROR Interrupt Acknowledge.	
			[7]	SPI Interrupt Status/Ack.	0
				Read Mode : SPI Interrupt Status.	
				Write Mode: SPI Interrupt Acknowledge.	
			[6]	I2C Interrupt Status/Ack.	0
				Read Mode : I2C Interrupt Status.	
				Write Mode: I2C Interrupt Acknowledge.	
			[5]	UART1 Interrupt Status/Ack.	0
				Read Mode: UART1 Interrupt Status.	
				Write Mode: UART1 Interrupt Acknowledge.	
			[4]	UART0 Interrupt Status/Ack.	0
			-	Read Mode: UART0 Interrupt Status.	
				Write Mode: UART0 Interrupt Acknowledge.	
			[3]	Audio Interrupt Status/Ack.	0
				Read Mode: Audio Interrupt Status.	
				Write Mode : Audio Interrupt Acknowledge.	
			[2]	Reserved.	
			[1]	Decoder Interrupt Status/Ack.	0
				Read Mode: Decoder Interrupt Status.	
			L_	Write Mode: Decoder Interrupt Acknowledge.	
			[0]	Encoder Interrupt Status/Ack.	0
				Read Mode: Encoder Interrupt Status.	
				Write Mode: Encoder Interrupt Acknowledge.	
0x0014	SYS_INT_EN	RW	[20]	P2M3 Interrupt Enable.	0
			[19]	P2M2 Interrupt Enable.	0
			[18]	P2M1 Interrupt Enable.	0
			[17]	P2M0 Interrupt Enable.	0
			[16]	GPIO Interrupt Enable.	0
				,	
			[15]	Reserved.	0
		1	[14]	Video Input Interrupt Enable.	0
			[13]	Video Motion Interrupt Enable.	0
			[12]	Reserved. (ATA Command Interrupt Enable)	0
			[12] [11]	Reserved. (ATA Command Interrupt Enable) Reserved. (ATA Direction Interrupt Enable)	
			[12]	Reserved. (ATA Command Interrupt Enable)	0

[8]	PS2_0 Interrupt Enable.	0
[7]	SPI Interrupt Enable.	0
[6]	I2C Interrupt Enable.	0
[5]	UART1 Interrupt Enable.	0
[4]	UART0 Interrupt Enable.	0
[3]	Audio Interrupt Enable.	0
[2]	Reserved.	0
[1]	Decoder Interrupt Enable.	0
[0]	Encoder Interrupt Enable.	0

3.5. Test Mode Registers

Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x001C	TEST_MODE	RW	[15:8]	Reserved.	0
		RO	[2:0]	Chip Option. [111]: SOLO6110-16 [110]: SOLO6110-9 [101]: SOLO6110-4	-

3.6. EEPROM Access Register

Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x0060	EEPROM_ACC	RW	[7]	PCI Configuration EEPROM Access Enable.	0
			[3]	PCI Configuration EEPROM Chip Select.	0
			[2]	PCI Configuration EEPROM Serial Clock.	0
			[1]	PCI Configuration EEPROM Data Output.	0
		RO	[0]	PCI Configuration EEPROM Data Input.	-

3.7. PCI Error Register

Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x0070	PCI_ERROR	RW	[31]	Timeout Error Enable.	0
		RO	[28:24]	Reserved. (FSM2 for Debugging)	-
			[23:20]	Reserved. (FSM1 for Debugging)	-
			[19:16]	Reserved. (FSM0 for Debugging)	-
			[15:7]	Reserved.	-
			[6]	P2M Descriptor Master Application.	-
			[5]	ATA Active in PCI Master Application.	-
			[4]	P2M Active as PCI Master Application.	
			[3]	Timeout Error.	-
			[2]	Target Abort Error.	-
			[1]	Parity Error.	-
			[0]	Fatal Error.	-

3.8. P2M Configuration Registers

Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x0080 0x00A0 0x00C0	P2M_CONFIG0 P2M_CONFIG1 P2M_CONFIG2	RW	[10:6]	DMA Waiting Interval. (N*64 clocks) The interval between burst transaction is controlled by setting the value.	0
0x00E0	P2M_CONFIG3		[5]	Byte Reorder. [0]: RGB to RGB [1]: BGR to RGB	0
			[4]	16bit RGB Mode. [0]: {xrrr rrgg gggb bbbb} [1]: {rrrr rggg gggb bbbb}	0
			[3]	Chroma Swap. [0]: {Cb Y0 Cr Y1} [1]: {Cr Y0 Cb Y1}	0

	•		T		
			[2]	PCI Master Mode.	0
				[0] : PCI Target/Host Mode.	
				[1] : PCI Master Mode.	
			[1]	Descriptor Interrupt Mode.	0
				[0] : Each Command Finish.	
				[1] : Descriptor Queue Empty.	
			[0]	Descriptor Mode. Active HIGH.	0
0x0084	P2M_DES_ADR0	RW	[31:0]	Descriptor Base Address.	0
0x00A4	P2M_DES_ADR1			The descriptor queue will be store on CPU memory.	
0x00C4	P2M_DES_ADR2			The registers will points the addresses to be stored	
0x00E4	P2M DES ADR3			the 256 depth descriptor queues of which size are	
				4,096 bytes, respectively.	
0x0088	P2M BYTE SWAP0	RW	[7:0]	Endian Selection.	0
0x00x0	P2M_BYTE_SWAP1	1	[7.0]	[0] : bypass	U
0x00C8	P2M_BYTE_SWAP2				
				[1]: 4 byte big endian	
0x00E8	P2M_BYTE_SWAP3			[2]: 2 byte big endian	
0x008C	P2M_STATUS0	RO	[8]	Command Done.	-
0x00AC	P2M_STATUS1			The register will be asserted at the interrupt	
0x00CC	P2M_STATUS2			request status.	
0x00EC	P2M_STATUS3		[7:0]	Current Descriptor ID.	-
				The register value will point the descriptor ID	
				which is operated currently.	
0x0090	P2M CONTROL0	RW	[31:20]	Host Memory Increase Size (TI). (DWORD)	0
0x00B0	P2M_CONTROL1		[19:10]	Repeat Number (RP).	0
0x00D0	P2M_CONTROL2		[9:7]	Burst Size. (Bytes)	0
0x00F0	P2M CONTROL3		[3.7]	[1]: 256	U
0,0001 0	1 ZW_CONTROLS				
				[2] : 128	
				[3] : 64	
				[4]: 32	
				[5]: 128 (2 page mode)	
			[6]	When Color Space Conversion is asserted.	0
				RGB Bit Width.	
				[0] : 24bit	
				[1]: 16bit	
				When Color Space Conversion is de-asserted.	
				VGA OSG Alpha Blending.	
				[0] : Off	
				[1] : On	
			[5:4]	When Color Space Conversion is asserted.	0
				[0] : Y[0] <=0 (Off)	
				[1]: Y[0] <=1	
				[2] : Y[0] <= G[0]	
				[3] : Y[0] <= Bit[15]	
				When Color Space Conversion is de-asserted.	
				[0]: Y[0] <= 0	
				[1]:[15] <= 1	
				[2]: [15] <= [5]	
			Ic.	[3]: [15] <= [15]	
			[3]	Color Space Conversion On.	0
			[2]	Reserved.	0
			[1]	Write Enable.	0
				[0] : Read	
				[1] : Write	
			[0]	Transaction On.	0
0x0094	P2M_EXT_CFG0	RW	[31:20]	External Memory Increase Size (FI). (DWORD)	0
0x0094 0x00B4	P2M_EXT_CFG1	1744			
			[19:0]	External Memory Copy Size (FC). (DWORD)	0
0x00D4	P2M_EXT_CFG2				
0x00F4	P2M_EXT_CFG3				
0x0098	P2M_TAR_ADR0	RW	[31:0]	Host Memory Base Address (TA).	0
0x00B8	P2M_TAR_ADR1				
	P2M_TAR_ADR2				
0x00D8					
	I PZWI IAR ADRO			Fistowal Manager Door Address (FA)	0
0x00F8	P2M_TAR_ADR3 P2M_EXT_ADR0	RW	[31:0]	External Memory Base Andress (EA)	
0x00F8 0x009C	P2M_EXT_ADR0	RW	[31:0]	External Memory Base Address (FA).	U
0x00F8 0x009C 0x00BC	P2M_EXT_ADR0 P2M_EXT_ADR1	RW	[31:0]	External Memory Base Address (FA).	U
0x00F8 0x009C	P2M_EXT_ADR0	RW	[31:0]	External Memory Base Address (FA).	U

3.9. Video Input Configuration Registers

Address Register Name Type Field Description 0x0100 VI_CH_SWITCH0 RW [29:25] Video Input Channel Number for Internal [24:20] [19:15] Video Input Channel Number for Internal [19:15] Video Input Channel Number for Internal [19:5] [19:5] Video Input Channel Number for Internal [19:5] [19:5] Video Input Channel Number for Internal [19:5] [19:5] Video Input Channel Number for Internal [24:20] [19:15] Video Input Channel Number for Internal [19:15] [19:15] Video Input Channel Number for Internal [19:15]	Video Ch4. 4 Video Ch3. 3
[24:20] Video Input Channel Number for Internal [19:15] Video Input Channel Number for Internal [14:10] Video Input Channel Number for Internal [19:5] Video Input Channel Number for Internal [4:0] Video Input Channel Number for Internal [4:0] Video Input Channel Number for Internal [29:25] Video Input Channel Number for Internal [24:20] Video Input Channel Number for Internal [19:15] Video Input Channel Number for Internal	Video Ch4. 4 Video Ch3. 3
0x0104 VI_CH_SWITCH1 RW [29:25] Video Input Channel Number for Internal [19:15] Video Input Channel Number for Internal [19:24:20] Video Input Channel Number for Internal [24:20] Video Input Channel Number for Internal	Video Ch3. 3
0x0104 VI_CH_SWITCH1 RW [29:25] Video Input Channel Number for Internal [4:0] Video Input Channel Number for Internal [24:20] Video Input Channel Number for Internal [24:20] Video Input Channel Number for Internal [24:20] Video Input Channel Number for Internal [19:15] Video Input Channel Number for Internal	
[19:5] Video Input Channel Number for Internal [4:0] Video Input Channel Number for Internal 0x0104 VI_CH_SWITCH1 RW [29:25] Video Input Channel Number for Internal [24:20] Video Input Channel Number for Internal [19:15] Video Input Channel Number for Internal	Video Ch2. 2
0x0104 VI_CH_SWITCH1 RW [29:25] Video Input Channel Number for Internal [24:20] Video Input Channel Number for Internal [24:20] Video Input Channel Number for Internal [19:15] Video Input Channel Number for Internal	
0x0104 VI_CH_SWITCH1 RW [29:25] Video Input Channel Number for Internal [24:20] Video Input Channel Number for Internal [19:15] Video Input Channel Number for Internal	
[24:20] Video Input Channel Number for Internal [19:15] Video Input Channel Number for Internal	
[19:15] Video Input Channel Number for Internal	
	Video Ch9. 9
[14:10] Video Input Channel Number for Internal	
[19:5] Video Input Channel Number for Internal	Video Ch7. 7
[4:0] Video Input Channel Number for Internal	Video Ch6. 6
0x0108 VI_CH_SWITCH2 RW [24:20] Reserved.	16
[19:15] Video Input Channel Number for Internal	Video Ch15. 15
[14:10] Video Input Channel Number for Internal	Video Ch14. 14
[19:5] Video Input Channel Number for Internal	Video Ch13. 13
[4:0] Video Input Channel Number for Internal	
0x010C VI_CH_ENA RW [15:0] Video Input Channel Enable. Active HIGI	
Bit[15:0] : {Ch15, Ch14, Ch13,, Ch0	
0x0110 VI_CH_FORMAT RW [31:16] Video Input Format Decoder Selection1.	0
Bit[15:0] : {Ch15, Ch14, Ch13,, Ch0	D}
[0] : Primary	
[1]: Secondary	0
[15:0] Video Input Format Decoder Selection0. Bit[15:0] : {Ch15, Ch14, Ch13,, Ch0	0
[0] : Interlace	⁷ 3
[1]: Progressive	
[1].1 logicssive	
0x011C : VIN{Primary, Interlaced}	
0x0120 : VIN{Secondary, Interlaced}	
0x0124 : VIN{Don't care, Progressive}	
0x0114 VI_FMT_CFG RW [31] Vertical Line Check.	0
The register is effective for all video input	
The video standard or stability is	
counting vertical line. The response for a	
channels will be stored o	0
VI_STATUS1[15:0]. Refer to regist	ter address
0x012C. [30] Horizontal Pixel Check.	0
[30] Horizontal Pixel Check. The register is effective for all video input	
Video standard or stability is checked	
horizontal pixel. The response for all	
channels will be stored o	
VI_STATUS1[15:0]. Refer to regis	
0x 0 12C.	
[29] Reserved. (Video Standard or Unstable 0	
[28] Test Signal Generation. (Only for Test)	0
[27] Video In Mask Set to Black and White.	0
[26] Video In Mask Horizontal Length.	
[0]:16	
[1]: 32	
[25:22] Video In Mask Darkness Strength.	0
The brightness in mosaic area is con	trolled by the
registers.	
R = 0 >> N Where R is the result. O is the origin.	al video data
Where, R is the result, O is the original N is the value on the register.	ai viueu uala,
[21:11] Display Horizontal Offset.	0
The register is effective for all video input	
The register is encoure for all video inpe	0
[10:0] Compression Horizontal Offset.	

0.6115	\" DAGE SHITS::	D:	104.04	FIRST CONTRACTOR	0.00
0x0118	VI_PAGE_SWITCH	RW	[31:24]	FI Position Inversion for Input Pair.	0x00
				bit[24]: Channel 0 and 1.	
				bit[25]: Channel 2 and 3.	
				bit[26]: Channel 4 and 5.	
				bit[27] : Channel 6 and 7.	
				bit[28]: Channel 8 and 9.	
				bit[29] : Channel 10 and 11.	
				bit[30]: Channel 12 and 13.	
				bit[31]: Channel 14 and 15.	
			[16]	Reserved. (Input Synchronization on Field Index)	0
			[15]	Reserved. (Input Field Index for Calculation)	0
			[14]	Reserved. (Output Field Index for Calculation)	0
			[1:0]	Writing Page Distance.	2
			,	Four frame buffers are used to display video	
1				output. For avoiding the frame overlapping,	
0x011C	VI_ACT_PRI_INT	RW	[31]	Field Index Inversion.	0
OXO 110	1.5.6.5.1		[30]	Reserved. (Test Mode)	0
			[29:21]	Horizontal Start.	8
			[20:11]	Vertical Start.	0
			[10:0]	Vertical End.	242(N)
			[10.0]	vertical End.	242(N) 290(P)
0x0120	VI_ACT_SEC_INT	RW	[24]	Field Index Inversion.	
000120	VI_ACT_SEC_INT	KVV	[31]	Reserved. (Test Mode)	0
			[29:21]	Horizontal Start.	8
				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
			[20:11]	Vertical Start.	0
			[10:0]	Vertical End.	242(N)
	\" AGT DD! DDG		70.43	5	290(P)
0x0124	VI_ACT_PRI_PRG	RW	[31]	Field Index Inversion.	0
			[30]	Reserved. (Test Mode)	0
			[29:21]	Horizontal Start.	8
			[20:11]	Vertical Start.	0
			[10:0]	Vertical End.	242(N)
					290(P)
0x0128	VI_STATUS0	RO	[11:4]	Reserved. (Field Free Count)	-
ĺ			[3]	Video Display Fl.	-
				The register shows the current displaying field	
ĺ				index.	
			[2:0]	Video Display Page.	-
ĺ				The register shows the current displaying page.	
0x012C	VI_STATUS1	RO	[27:24]	Reserved. (DMA Status)	_
		1	[23:16]	Reserved. (Capture Queue Status)	_
			[15:0]	Standard and Stability Flag.	_
ĺ			[10.0]	The registers show if the video input signal is	
				standard or loss. However, the loss detection function	
				of the video color decoder is strongly recommended	
				for loss detection.	
				וטו וטפט עבובטנוטוו.	

3.10. Internal H.264 Video Decoder Playback Controller Registers

Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x0130	VI_PB_CONFIG	RW	[1]	Playback Video Mode.	
				[0] : Default	
				[1]: User Programming	
			[0]	Playback Video System.	
				[0] : NTSC	
				[1] : PAL	
0x0134	VI_PB_RANGE_HV	RW	[21:12]	Playback Horizontal Size.	
			[11:0]	Playback Vertical Size.	
0x0138	VI_PB_ACT_H	RW	[21:12]	Playback Horizontal Size.	
			[11:0]	Playback Vertical Size.	
0x013C	VI_PB_ACT_V	RW	[21:12]	Playback Horizontal Size.	
			[11:0]	Playback Vertical Size.	

3.11. Video Input Mosaic Registers

Register Register Name Type Bit Description	Initial
---	---------

Address			Field		State
0x0140	VI_WIN_MOSAIC0	RW	[31:24]	Horizontal Start * 16.	0
0x0144	VI_WIN_MOSAIC1		[23:16]	Horizontal End * 16.	0
0x0148	VI_WIN_MOSAIC2		[15:8]	Vertical Start * 8.	0
0x014C	VI_WIN_MOSAIC3		[7:0]	Vertical End * 8.	0
0x0150	VI_WIN_MOSAIC4		' '		
0x0154	VI_WIN_MOSAIC5				
0x0158	VI_WIN_MOSAIC6				
0x015C	VI_WIN_MOSAIC7				
0x0160	VI_WIN_MOSAIC8				
0x0164	VI_WIN_MOSAIC9				
0x0168	VI_WIN_MOSAIC10				
0x016C	VI_WIN_MOSAIC11				
0x0170	VI_WIN_MOSAIC12				
0x0174	VI_WIN_MOSAIC13				
0x0178	VI_WIN_MOSAIC14				
0x017C	VI_WIN_MOSAIC15				

3.12. Window Control Registers

Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x0180	VI_WIN_CTRL0	RW	[31:28]	Live Channel ID for Window.	0
0x0184	VI_WIN_CTRL1		-		
0x0188	VI_WIN_CTRL2		[27]	PIP On.	0
0x018C	VI_WIN_CTRL3		[26:24]	Scale Mode.	0
0x0190	VI_WIN_CTRL4		-	[0] : Off	
0x0194	VI_WIN_CTRL5			[1] : H=1/1, V=1/1	
0x0198	VI_WIN_CTRL6			[2] : H=1/2, V=1/1	
0x019C	VI_WIN_CTRL7			[3] : H=1/2, V=1/2	
0x01A0	VI_WIN_CTRL8			[4] : H=1/3, V=1/3	
0x01A4	VI_WIN_CTRL9			[5] : H=1/4, V=1/4	
0x01A8	VI_WIN_CTRL10			[6]: H=2/3, V=2/3	
0x01AC	VI_WIN_CTRL11			[7] : H=3/4, V=3/4	
0x01B0	VI_WIN_CTRL12			[8]~[15] : H=1/1, V=1/1 for PIP	
0x01B4	VI_WIN_CTRL13		[23:12]	Window Horizontal Start * 4.	0
0x01B8	VI_WIN_CTRL14		[11:0]	Window Horizontal End * 4.	0
0x01BC	VI_WIN_CTRL15				
0.0100	W WIN OTRI O	DIA	[00.40]	Window Marked Otars	0
0x01C0 0x01C4	VI_WIN_CTRL0	RW	[23:12]	Window Vertical Start.	0
0x01C4 0x01C8	VI_WIN_CTRL1 VI_WIN_CTRL2		[11:0]	Window Vertical End.	0
0x01C6	VI_WIN_CTRL2				
0x01CC	VI_WIN_CTRL3				
0x01D0	VI_WIN_CTRL4				
0x01D4	VI_WIN_CTRL5				
0x01D0	VI_WIN_CTRL7				
0x01E0	VI_WIN_CTRL8				
0x01E0	VI_WIN_CTRL9				
0x01E4	VI_WIN_CTRL10				
0x01EC	VI_WIN_CTRL11				
0x01F0	VI_WIN_CTRL12				
0x01F4	VI_WIN_CTRL13				
0x01F8	VI WIN CTRL14				
0x01FC	VI WIN CTRL15				
0x0200	VI_WIN_ON0	RW	[1]	Playback On.	0

0x0204	VI_WIN_ON1		[0]	Live On.	0
0x0208	VI_WIN_ON2				
0x020C	VI_WIN_ON3				
0x0210	VI_WIN_ON4				
0x0214	VI_WIN_ON5				
0x0218	VI_WIN_ON6				
0x021C	VI_WIN_ON7				
0x0220	VI_WIN_ON8				
0x0224	VI_WIN_ON9				
0x0228	VI_WIN_ON10				
0x022C	VI_WIN_ON11				
0x0230	VI_WIN_ON12				
0x0234	VI_WIN_ON13				
0x0238	VI_WIN_ON14				
0x023C	VI_WIN_ON15				
0x0240	VI_WIN_SW	RW	[4:0]	Live On Delay. (Frame Interval)	0
0x0244	VI_WIN_MUTE	RW	[0]	Live Auto Mute.	0

3.13. Horizontal Expansion Registers

Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x0250	VO_HOR_EXAND0	RW	[12]	Horizontal Expansion On.	0
			[11:0]	Horizontal Position.	0
0x0254	VO_HOR_EXAND1	RW	[12]	Horizontal Expansion On.	0
			[11:0]	Horizontal Position.	0
0x0258	VO_HOR_EXAND2	RW	[12]	Horizontal Expansion On.	0
			[11:0]	Horizontal Position.	0
0x025C	VO_HOR_EXAND3	RW	[12]	Horizontal Expansion On.	0
			[11:0]	Horizontal Position.	0

3.14. Video Input Motion Detection Registers

Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x0260	VI_MOTION_ADR	RW	[31:16]	Motion Detection Enable. Bit[31:16] = {Ch15, Ch14,, Ch0}	0
			[15:0]	Motion Base Address.	0
0x0264	VI MOTION CTRL	RW	[31:24]	Motion Sustain Frame Count.	0
			[21:16]	Maximum Sample Length.	0
			[15]	Interrupt Mode. [0]: Every Motion Event [1]: Start/Stop Motion Event.	0
			[14]	Freeze Motion Data.	0
			[13:0]	Minimum Detected Sample Count.	0
0x0268	VI_MOTION_CLEAR	RW	[15:0]	Motion Flag Clear.	0
0x026C	VI_MOTION_STA	RO	[15:0]	Motion Detected Flag. Bit[15:0] = {ch15, ch14, ch13,, ch0} [0] : Non motion detected video input channel [1] : Motion detected video input channel	-
0x0270	VI MOTION BDR	RW	[29]	Border Y Set On.	0
			[28]	Border Y Addition On.	0
			[27]	Border CB Set On.	0
			[26]	Border CB Addition On.	0
			[25]	Border CR Set On.	0
			[24]	Border CR Addition On.	0
			[23:16]	Border Y Value.	0
			[15:8]	Border CB Value.	0
			[7:0]	Border CR Value.	0
0x0274	VI_MOTION_BAR	RW	[29]	Bar Y Set On.	0
			[28]	Bar Y Addition On.	0
			[27]	Bar CB Set On.	0
			[26]	Bar CB Addition On.	0
			[25]	Bar CR Set On.	0
			[24]	Bar CR Addition On.	0
			[23:16]	Bar Y Value.	0

	[15:8]	Bar CB Value.	0
	[7:0]	Bar CR Value.	0

3.15. Video Output Configuration Registers

Register	Register Name	Туре	Bit	Description	Initial
Address			Field		State
0x02F4	VO_USER656_F0	RW	[29:24]	Field Index Transition Position F0.	0
			[23:17]	VSYNC Start Position F0.	0
			[16:11]	VSYNC End Position F0.	0
			[10:0]	Number of Vertical Line F0.	0
0x02F8	VO_USER656_F1	RW	[29:24]	Field Index Transition Position F1.	0
			[23:17]	VSYNC Start Position F1.	0
			[16:11]	VSYNC End Position F1.	0
			[10:0]	Number of Vertical Line F1.	0
0x0300	VO_FMT_ENC	RW	[31]	Reserved.	0
			[30]	Video System.	0
				[0] : NTSC	
				[1] : PAL	
			[29]	User 656 Format Enable.	0
				[0] : Standard 656 format	
				[1]: User Programmed 656 format	
			[28]	Reserved.	0
			[26]	Reserved.	0
			[25]	Reserved.	0
			[23:0]	User Frame Size Clock Count. (When 26 is on)	0
			[20]	FI, V Change Enable. (When SAV)	0
			[19]	User Color Set for VSYNC.	0
			[18]	User Color Set for HSYNC.	0
			[17]	User Color Set for Non Active of H.	0
			[16]	User Color Set for Non Active of V.	0
			[15:8]	Non Active Color for Y.	0
			[7:4]	Non Active Color for CB/16.	0
			[3:0]	Non Active Color for CR/16.	0
0x0304	VO_ACT_H	RW	[31:22]	H Blank Size.	0
			[21:11]	H Start Position.	6
			[10:0]	H End Position.	710
0x0308	VO_ACT_V	RW	[31:22]	V Blank Size.	0
			[21:11]	V Start Position.	8
			[10:0]	V End Position.	248(N)
					296(P)
0x030C	VO_RANGE_HV	RW	[24]	SYNC Inversion.	0
			[23]	HSYNC Inversion.	0
			[22]	VSYNC Inversion.	0
			[21:11]	Horizontal Size.	704
			[10:0]	Vertical Size.	240(N)
					288(P)

3.16. Video Output Control Registers

Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x0310	VO DISP CFG	RW	[31]	Display On.	0
0,0010	VO_DIGI _GI G	1244	[27:24]	Erase Frame Count. (After ease off to on)	4
			[22]	Double Scan.	0
				[0] : 30Hz	
				[1] : 60Hz	
			[21]	Display Single Page.	0
			[15:0]	Display Base Address.	0
0x0314	VO_DISP_ERASE	RW	[1]	Display Erase On.	1
0x0318	VO_ZOOM_CTRL	RW	[31]	Frame Mode Zoom On.	0
			[24]	Vertical Zoom On.	0
			[23]	Horizontal Zoom On.	0
			[22]	Vertical Compensation. (When Vertical Zoom)	0
			[21:11]	Zoom Offset of Horizontal*2.	0
			[10:0]	Zoom Vertical Offset.	0

0x031C	VO_FREEZE_CTRL	RW	[1]	Freeze Live.	0
			[0]	Freeze Live Interpolation.	0
0x0320	VO_BGK_COLOR	RW	[23:16]	Y.	0x10
			[15:8]	U.	0x80
			[7:0]	V.	0x80
0x0324	VO_DEINTERLACE	RW	[19:8]	Reserved.	0
			[7:0]	Reserved.	0

3.17. Line and Bar Registers

Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x0330	VO_BDG_COLOR	RW	[31:24]	Border Ext Y.	0x80
			[23:20]	Border Ext U*16.	0x8
			[19:16]	Border Ext V*16.	0x8
			[15:18]	Border Cell Y.	0x10
			[8:4]	Border Cell U*16.	0x8
			[3:0]	Border Cell V*16.	0x8
0x0334	VO_BAR_COLOR	RW	[31:24]	Bar Ext Y.	0x80
			[23:20]	Bar Ext U*16.	0x8
			[19:16]	Bar Ext V*16.	0x8
			[15:18]	Bar Cell Y.	0x10
			[8:4]	Bar Cell U*16.	0x8
			[3:0]	Bar Cell V*16.	0x8
0x0338	VO_LINE_MASK_C	RW	[15]	Border On 15.	0
	ELL		[14]	Border On 14.	0
			[13]	Border On 13.	0
			[12]	Border On 12	0
			[11]	Border On 11.	0
			[10]	Border On 10.	0
			[9]	Border On 9.	0
			[8]	Border On 8.	0
			[7]	Border On 7.	0
			[6]	Border On 6.	0
			[5]	Border On 5.	0
			[4]	Border On 4.	0
			[3]	Border On 3.	0
			[2]	Border On 2.	0
			[1]	Border On 1.	0
			[0]	Border On 0.	0
0x033C	VO_BAR_MASK_CE	RW	[15]	Bar On 15.	0
	LL		[14]	Bar On 14.	0
			[13]	Bar On 13.	0
			[12]	Bar On 12.	0
			[11]	Bar On 11.	0
			[10]	Bar On 10.	0
			[9]	Bar On 9.	0
			[8]	Bar On 8.	0
			[7]	Bar On 7.	0
			[6]	Bar On 6.	0
			[5]	Bar On 5.	0
			[4]	Bar On 4.	0
			[3]	Bar On 3.	0
			[2]	Bar On 2.	0
			[1]	Bar On 1.	0
			[0]	Bar On 0.	0
0x0340 0x0344 0x0348 0x034C 0x0350	VO_CELL_X0 VO_CELL_X1 VO_CELL_X2 VO_CELL_X3 VO_CELL_X4	RW	[9:0]	Cell Position of X1, X2, X3, X4, X5.	0
0x0354 0x0354 0x0358 0x035C 0x0360 0x0364 0x0368	VO_CELL_YO VO_CELL_YO VO_CELL_Y1 VO_CELL_Y2 VO_CELL_Y3 VO_CELL_Y4 VO_CELL_EXT_SET	RW RW	[9:0] [1]	Cell Position of Y1, Y2, Y3, Y4, Y5. Ext Border On1.	0
0,0300	VO_OLLL_LAI_SEI	1744	[נין	LAL BOIDE OIT.	

	1		[0]	Ext Bar On1.	0
0x036C	VO_CELL_EXT_STA	RW	[19:10]	Ext Start X1.	0
	RT1		[9:0]	Ext Start Y1.	0
0x0370	VO_CELL_EXT_EN	RW	[19:10]	Ext End X1.	0
	D1		[9:0]	Ext End Y1.	0
0x0374	VO_CELL_EXT_SET	RW	[1]	Ext Border On2.	0
	2		[0]	Ext Bar On2.	0
0x0378	VO_CELL_EXT_STA	RW	[19:10]	Ext Start X2.	0
	RT2		[9:0]	Ext Start Y2.	0
0x37C	VO_CELL_EXT_EN	RW	[19:10]	Ext End X2.	0
	D2		[9:0]	Ext End Y2.	0

3.18. Cursor Registers

Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x0380	VO CURSOR POS	RW	[21:11]	Start X.	0
			[10:0]	Start Y.	0
0x0384	VO_CURSOR_CLR1	RW	[31:24]	1st Color Y.	0x10
			[23:20]	1st Color U*16.	0x8
			[19:16]	1st Color V*16.	0x8
			[15:8]	2nd Color Y.	0x10
			[7:4]	2nd Color U*16.	0x8
			[3:0]	2nd Color V*16.	0x8
0x0388	VO_CURSOR_CLR2	RW	[15:8]	3rd Color Y.	0x10
			[7:4]	3rd Color U*16.	0x8
			[3:0]	3rd Color V*16.	0x8
0x0390	VO_CUR_MASK1	RW	[31:30]	Color of 1st Pixel on Horizontal.	
0x0394	VO_CUR_MASK2		[29:28]	Color of 2nd Pixel on Horizontal.	
0x0398	VO_CUR_MASK3		[27:26]	Color of 3rd Pixel on Horizontal.	
0x039C	VO_CUR_MASK4		[25:24]	Color of 4th Pixel on Horizontal.	
0x03A0	VO_CUR_MASK5		[23:22]	Color of 5th Pixel on Horizontal.	
0x03A4	VO_CUR_MASK6		[21:20]	Color of 6th Pixel on Horizontal.	
0x03A8	VO_CUR_MASK7		[19:18]	Color of 7th Pixel on Horizontal.	
0x03AC	VO_CUR_MASK8		[17:16]	Color of 8th Pixel on Horizontal.	
0x03B0 0x03B4	VO_CUR_MASK9 VO_CUR_MASK10		[15:14]	Color of 9th Pixel on Horizontal.	
0x03B4 0x03B8	VO_CUR_MASK10		[13:12]	Color of 10th Pixel on Horizontal.	
0x03BC	VO_CUR_MASK12		[11:10]	Color of 11th Pixel on Horizontal.	
0x03BC	VO_CUR_MASK12		[9:8]	Color of 12th Pixel on Horizontal.	
0x03C4	VO_CUR_MASK14		[7:6]	Color of 13th Pixel on Horizontal.	
0x03C8	VO CUR MASK15		[5:4]	Color of 14th Pixel on Horizontal.	
0x03CC	VO CUR MASK16		[3:2]	Color of 15th Pixel on Horizontal.	
0x03D0	VO CUR MASK17		[1:0]	Color of 16th Pixel on Horizontal.	
0x03D4	VO CUR MASK18		· •		
0x03D8	VO_CUR_MASK19				
0x03DC	VO_CUR_MASK20				

3.19. OSG Registers

Register	Register Name	Туре	Bit	Description	Initial
Address			Field		State
0x03E0	VO_OSG_CFG	RW	[31]	OSG On.	0
			[28]	Color Mute.	0
			[27:22]	Alpha Blending OSG Strength.	0
			[21:16]	Alpha Blending Video Strength.	0
			[15:0]	OSG Base Address.	0
0x03E4	VO_ERASE	RW	[31:24]	OSG Erase On.	0
0x03E8	VO_OSG_BLINK	RW	[15:8]	OSG Blink On.	0
			[7:4]	OSG Blink Interval.	0
				[0] : 15 frame	
				[1] : 18 frame	

0x0550	VO_PB_PAGE	RW	[7:0]	Manual Decode Page for Window N	0x00
0x0558					
0x0560					
0x0568					
0x0570					
0x0578					
0x0580					
0x0588					
0x0590					
0x0598					
0x05A0					
0x05A8					
0x05B0					
0x05B8					
0x05C0					
0x05C8					

3.20. Video Capture Configuration Registers

				Tation registers	
Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x0400	CAP BASE	RW	[31:16]	Maximum Page for Capture.	0
	_		[15:0]	Capture Base Address.	0
0x0404	CAP_BTW	RW	[13:8]	Bandwidth Value for Progressive Video.	0
	_		[7:0]	Maximum Bandwidth.	0
0x0408	CAP_DIM_SCALE1	RW	[23:16]	Vertical Picture Size for Frame1.	
			[15:8]	Vertical Picture Size for Field1.	
			[7:0]	Horizontal Picture Size1.	
0x040C	CAP_DIM_SCALE2	RW	[23:16]	Vertical Picture Size for Frame2.	
			[15:8]	Vertical Picture Size for Field2.	
			[7:0]	Horizontal Picture Size2.	
0x0410	CAP_DIM_SCALE3	RW	[23:16]	Vertical Picture Size for Frame3.	
			[15:8]	Vertical Picture Size for Field3.	
			[7:0]	Horizontal Picture Size3.	
0x0414	CAP_DIM_SCALE4	RW	[23:16]	Vertical Picture Size for Frame4.	
			[15:8]	Vertical Picture Size for Field4.	
			[7:0]	Horizontal Picture Size4.	
0x0418	CAP_DIM_SCALE5	RW	[23:16]	Vertical Picture Size for Frame5.	
			[15:8]	Vertical Picture Size for Field5.	
			[7:0]	Horizontal Picture Size5.	
0x041C	CAP_DIM_PROG	RW	[31:24]	Vertical Picture Size for 1/3 Horizontal Scale.	
			[23:16]	Horizontal Picture Size for 1/3 Vertical Scale.	
			[15:8]	Vertical Picture Size.	
			[7:0]	Horizontal Picture Size.	
0x0420	CAP_STATUS	RO	[31:28]	Encoding Req Queue Write Address.	-
			[27:24]	Encoding Req Queue Read Address.	-
			[21:16]	Current Bandwidth Value.	-
			[15:0]	Vertical Page Offset.	-

3.21. H.264 Video Capture Control Registers

Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x0440	CAP_SCALE0	RW	[3]	Frame Mode.	0

0x0444	CAP_SCALE1		[2:0]	Scale Mode.	0
0x0448	CAP_SCALE2			[000] : No Encoding	
0x044C	CAP_SCALE3			[001]: H=1/1, V=1/1 (Frame/Field Mode)	
0x0450	CAP_SCALE4			[010]: H=1/2, V=1/1 (Only Field Mode)	
0x0454	CAP_SCALE5			[011]: H=1/2, V=1/2 (Only Encoding)	
0x0458	CAP_SCALE6			[100]: H=1/3, V=1/3 (Only Encoding)	
0x045C	CAP_SCALE7			[101]: H=1/4, V=1/2 (Only Field Mode)	
				[101]:11=1/4, v=1/2 (Offig Freid Wode)	
0x0460	CAP_SCALE8				
0x0464	CAP_SCALE9				
0x0468	CAP_SCALE10				
0x046C	CAP_SCALE11				
0x0470	CAP_SCALE12				
0x0474	CAP_SCALE13				
0x0478	CAP_SCALE14				
0x047C	CAP_SCALE15				
0x0480	CAP_SCALE_E0	R/W	[3:0]	Scale Mode for Extended Channel 16~31.	0
0x0484	CAP_SCALE_E1		[0.0]	Extended H.264 video encoding channel will be	Ŭ
				activated by asserting the register.	
0x0488	CAP_SCALE_E2			activated by asserting the register.	
0x048C	CAP_SCALE_E3				
0x0490	CAP_SCALE_E4				
0x0494	CAP_SCALE_E5				
0x0498	CAP_SCALE_E6				
0x049C	CAP_SCALE_E7				
0x04A0	CAP_SCALE_E8				
0x04A4	CAP_SCALE_E9				
0x04A8	CAP_SCALE_E10				
0x04AC	CAP_SCALE_E11				
0x04B0	CAP_SCALE_E12				
	CAP_SCALE_E12				
0x04B4					
0x04B8	CAP_SCALE_E14				
0x04BC	CAP_SCALE_E15				_
0x04C0	CAP_INTERVAL0	R/W	[9]	Interval Mode.	0
0x04C4	CAP_INTERVAL1			[0] : Skip Mode	
0x04C8	CAP_INTERVAL2			[1] : Drop Mode	
0x04CC	CAP_INTERVAL3		[8:0]	Interval Value.	0
0x04D0	CAP_INTERVAL4				
0x04D4	CAP_INTERVAL5				
0x04D8	CAP_INTERVAL6				
0x04DC	CAP INTERVAL7				
0x04E0	CAP_INTERVAL8				
0x04E4	CAP_INTERVAL9				
0x04E8	CAP_INTERVAL10				
0x04EC	CAP_INTERVAL11				
0x04F0	CAP_INTERVAL12				
0x04F4	CAP_INTERVAL13				
0x04F8	CAP_INTERVAL14				
0x04FC	CAP_INTERVAL15				
0x0500	CAP_INTERVALE0	R/W	[9]	Extended Interval Mode.	0
0x0504	CAP_INTERVALE1			[0] : Skip Mode	
0x0508	CAP_INTERVALE2			[1] : Drop Mode	
0x050C	CAP INTERVALE3		[8:0]	Extended Interval Value.	0
0x0510	CAP_INTERVALE4		[0.0]	Exteriora interval value.	3
0x0510	CAP_INTERVALE5				
0x0518	CAP_INTERVALE6				
0x051C	CAP_INTERVALE7				
0x0520	CAP_INTERVALE8				
0x0524	CAP_INTERVALE9				
0x0528	CAP_INTERVALE10				
0x052C	CAP_INTERVALE11				
0x0530	CAP_INTERVALE12				
0x0534	CAP_INTERVALE13				
0x0538	CAP INTERVALE14				
0x053C	CAP INTERVALE15				
		i			i l

3.22. H.264 Video Encoder Configuration Registers

Register Address	Register Name	Туре	Bit Field	Description	Initial State	
---------------------	---------------	------	--------------	-------------	------------------	--

00040	L VE CECO	DW	[04]	Code Control Mode	
0x0610	VE_CFG0	RW	[31]	Code Control Mode.	0
				[0] : Multi Page Mode	
			100.041	[1] : Two Page Mode	
			[29:24]	Interrupt Mode.	0
				[0] : Interrupt asserted every frame	
				[1] : Interrupt asserted every 2 frames	
				[2]: Interrupt asserted every 3 frames	
				[3] : Interrupt asserted every 4 frames	
			[23:16]	H.264 Block Size. (64kB)	0
			[15:0]	H.264 Block Base Address. (64kB)	0
0x0614	VE_CFG1	RW	[31:28]	MSB of H.264 Code Buffer Size.	0
				16MByte * N	
			[23:20]	MSB of JPEG Code Buffer Size.	
				16MByte * N	
			[19]	Index Insertion for JPEG.	
			[18]	Index Insertion for H.264.	0
			[17:16]	Motion Flag Data Insertion.	0
				[0] : Off	
				[1] : After index 256 bytes	
				[2] : User Setting.	
			[15:0]	Motion Flag Data Base Address.	0
0x061C	VE_WMARK_KEY	RW	[31:0]	Watermark Initial Key Value.	0
0x0620	VE_WMARK_POLY	RW	[31:0]	Watermark Generic Polynomial.	0
0x0624	VE_WMARK_CTRL	RW	[11:8]	Normal Watermark Insertion Position (Skip 0	0
				coefficient).	
		RW	[7:4]	Forced Watermark Insertion Position.	0
		RW	[3:0]	The Number of Forced Watermark Samples.	0
0x0628	VE_ENCR_POLY	RW	[31:0]	Encryption Generic Polynomial.	0
0x062C	VE_ENCR_KEY	RW	[31:0]	Encryption Initial Key Value.	0
0x0630	VE ATTR	RW	[31]	Byte Order.	0
			[30]	VOP Round.	0
			[29:27]	VOP F. Code.	0
			[26:25]	VOP Time Increment.	0
			[20.20]	[00]: 60Hz (500) for NTSC field mode	J
				[01]: 30Hz (1000) for NTSC frame mode	
				[10]: 50Hz (600) for PAL field mode	
				[11]: 25Hz (1200) for PAL frame mode	
			[24:21]	VOP Time Increment Bit Width.	0
			[20:16]	DCT Block Interval.	0
0x0634	VE_COMPT_MOT	RW	[22:20]	And Mask.	0
0,0004	V =_00 V 1 V 1 V 1 V 1 V 1 V V	1244	[22.20]	[22] : Motion.	U
				[21] : Diff.	
				[21] : Dill: [20] : MV	
			[18:16]	Or Mask.	0
			[10.10]	[18] : Motion	U
				[17] : Diff	
				[17] : Dill [16] : MV	
			[15:8]	Diff Threshold (between SAD0 and SAD MV)	0
1			[7:0]	Motion Threshold (SAD0)	0
1	I	İ	[/.0]	WOUGH THESHOU (SADU)	U

3.23. H.264 Video Encoder Status Registers

Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x0640	VE_STATUS0	RW	[31]	Progressive.	0
			[30]	Interlace.	0
			[29]	Source Field Index.	0
			[28:24]	Video Channel.	0
			[23:22]	VOP Type.	0
			[21]	Video Motion Flag.	0
			[20]	SAD Motion Flag.	0
			[19:0]	H.264 Encoded Code Size.	0
0x0644	VE_STATUS1	RW	[31:28]	Scale.	0
			[19:16]	Last Queue Position.	0
			[15:8]	Horizontal Picture Size.	0
			[7:0]	Vertical Picture Size.	0
0x0648	VE_STATUS2	RW	[31:0]	H.264 Code Data Offset.	0
0x064C	VE_STATUS3	RW	[31:0]	JPEG Code Data Offset.	0

0x0650	VE_STATUS4	RW	[29:20]	Interval.	0
			[19:0]	JPEG Code Size.	0
0x0654	VE_STATUS5	RW	[31:0]	Time. (sec)	0
0x0658	VE_STATUS6	RW	[31:0]	Time. (usec)	0
0x065C	VE_STATUS7	RW	[31:0]	Encryption Status.	0
0x0660	VE_STATUS8	RW	[31:0]	Watermark Status.	0
0x0664	VE_STATUS9	RW	[4:0]	Channel.	0
0x0668	VE_STATUS10	RW	[19:0]	H.264 Code Size.	0
0x066C	VE_STATUS11	RW	[7:0]	Last Queue Position	0

3.24. Motion JPEG Encoder Configuration Registers

Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x0670	VE_JPEG_QS	RW	[28:24]	Quantization Step3.	0
			[20:16]	Quantization Step2.	0
			[12:8]	Quantization Step1.	0
			[4:0]	Quantization Step0.	0
0x0674	VE_JPEG_QS_CH0	RW	[31:30]	Quantization Step Table ID for Channel15.	0
			[29:28]	Quantization Step Table ID for Channel14.	0
			[27:26]	Quantization Step Table ID for Channel 13.	0
			[25:24]	Quantization Step Table ID for Channel12.	0
			[23:22]	Quantization Step Table ID for Channel11.	0
			[21:20]	Quantization Step Table ID for Channel10.	0
			[19:18]	Quantization Step Table ID for Channel9.	0
			[17:16]	Quantization Step Table ID for Channel8.	0
			[15:14]	Quantization Step Table ID for Channel7.	0
			[13:12]	Quantization Step Table ID for Channel6.	0
			[11:10]	Quantization Step Table ID for Channel5.	0
			[9:8]	Quantization Step Table ID for Channel4.	0
			[7:6]	Quantization Step Table ID for Channel3.	0
			[5:4]	Quantization Step Table ID for Channel2.	0
			[3:2]	Quantization Step Table ID for Channel1.	0
			[1:0]	Quantization Step Table ID for Channel0.	0
0x0678	VE_JPEG_QS_CH1	RW	[31:30]	Extended Quantization Step Table ID for Channel31.	0
			[29:28]	Extended Quantization Step Table ID for Channel30.	0
			[27:26]	Extended Quantization Step Table ID for Channel29.	0
			[25:24]	Extended Quantization Step Table ID for Channel28.	0
			[23:22]	Extended Quantization Step Table ID for Channel27.	0
			[21:20]	Extended Quantization Step Table ID for Channel26.	0
			[19:18]	Extended Quantization Step Table ID for Channel25.	0
			[17:16]	Extended Quantization Step Table ID for Channel24.	0
			[15:14]	Extended Quantization Step Table ID for Channel23.	0
			[13:12]	Extended Quantization Step Table ID for Channel22.	0
			[11:10]	Extended Quantization Step Table ID for Channel21.	0
			[9:8]	Extended Quantization Step Table ID for Channel20.	0
			[7:6]	Extended Quantization Step Table ID for Channel 19.	0
			[5:4]	Extended Quantization Step Table ID for Channel 18.	0
			[3:2]	Extended Quantization Step Table ID for Channel 17.	0
			[1:0]	Extended Quantization Step Table ID for Channel 16.	0
0x067C	VE_JPEG_CFG	RW	[23:16]	JPEG Page Size.	0
			[15:0]	JPEG Page Base.	
0x0680	VE_JPEG_CTRL	RW	[31:0]	JPEG Code Enable for Channel 31~0.	0
0x0684	VE_CODE_ENCRY PT	RW	[31:0]	Channel Encryption Enable for Channel 31~0.	
0x0688	VE_JPEG_CFG	RW	[23:16]	Mute Queue.	0
			[15:8]	Mute Sample.	0
			[7:0]	Mute Pos.	0
0x068C	VE_WATERMARK_ ON	RW	[31:0]	Watermark Enable for Channel 31~0.	0

3.25. Video Encoder OSD Registers

Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x0690	VE_OSD_CH	RW	[31:0]	Record OSG Enable.	0

0x0694	VE_OSD_BASE	RW	[15:0]	Record OSG Base Address.	0
0x0698	VE_OSD_CLR	RW	[23:16]	Record OSG Y.	0
			[15:8]	Record OSG U.	0
			[7:0]	Record OSG V.	0
0x069C	VE_OSD_OPT	RW	[16]	Record OSG Vertical Doubling.	0
			[15]	Record OSG Horizontal Shadow.	0
			[14]	Record OSG Vertical Shadow.	0
			[13:7]	Record OSG Horizontal Offset * 16.	0
			[6:0]	Record OSG Vertical Offset * 16.	0

3.26. Video Encoder Configuration Registers

Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x0700	VE_CH_INTL0	RW	[1]	Intra Picture Based Prediction.	0
0x0704	VE_CH_INTL1		[0]	Interlace.	0
0x0708	VE_CH_INTL2				
0x070C	VE_CH_INTL3				
0x0710	VE_CH_INTL4				
0x0714	VE_CH_INTL5				
0x0718	VE_CH_INTL6				
0x071C	VE_CH_INTL7				
0x0720	VE_CH_INTL8				
0x0724	VE_CH_INTL9				
0x0728	VE_CH_INTL10				
0x072C	VE_CH_INTL11				
0x0730	VE_CH_INTL12				
0x0734	VE_CH_INTL13				
0x0738	VE_CH_INTL14				
0x073C	VE_CH_INTL15				
0x0740	VE_CH_MOT0		_	Not Used.	
0x0744	VE_CH_MOT1				
0x0748	VE_CH_MOT2				
0x074C	VE_CH_MOT3				
0x0750	VE_CH_MOT4				
0x0754	VE_CH_MOT5				
0x0758	VE_CH_MOT6				
0x075C	VE_CH_MOT7				
0x0760	VE_CH_MOT8				
0x0764	VE_CH_MOT9				
0x0768	VE_CH_MOT10				
0x076C	VE_CH_MOT11				
0x0770	VE_CH_MOT12				
0x0774	VE_CH_MOT13				
0x0778	VE_CH_MOT14				
0x077C	VE_CH_MOT15				
0x0780	VE_CH_QP0	RW	[4:0]	Quantization Parameter.	0
0x0784	VE_CH_QP1		_ •		
0x0788	VE_CH_QP2				
0x078C	VE_CH_QP3				
0x0790	VE_CH_QP4				
0x0794	VE_CH_QP5				
0x0798	VE_CH_QP6				
0x079C	VE_CH_QP7				
0x07A0	VE_CH_QP8				
0x07A4	VE_CH_QP9				
0x07A8	VE_CH_QP10				
0x07AC	VE_CH_QP11				
0x07B0	VE_CH_QP12				
0x07B4	VE_CH_QP13				
0x07B8	VE_CH_QP14				
0x07BC	VE_CH_QP15				

Ox07CO
0x077C8 VE_CH_QP_E3 0x07C8 VE_CH_QP_E3 0x07C9 0x077D0 VE_CH_QP_E5 0x07D1 0x07D1 0x07D1 0x07D1 0x07D1 0x07D1 0x07D1 0x07D1 0x07D1 0x07E0 0x
0x077C8 VE_CH_QP_E3 0x07C8 VE_CH_QP_E3 0x07C9 0x077D0 VE_CH_QP_E5 0x07D1 0x07D1 0x07D1 0x07D1 0x07D1 0x07D1 0x07D1 0x07D1 0x07D1 0x07E0 0x
DOUTCC VE_CH_OP_E4 DOUTCC VE_CH_OP_E4 DOUTCC VE_CH_OP_E4 DOUTCD DOUT
0x07700 VE_CH_QP_E4 0x07708 VE_CH_QP_E5 0x07726 VE_CH_QP_E7 0x07726 VE_CH_QP_E8 0x07726 VE_CH_QP_E9 0x07726 VE_CH_QP_E10 0x07726 VE_CH_QP_E11 0x07727 VE_CH_QP_E12 0x0774 VE_CH_QP_E12 0x0774 VE_CH_QP_E12 0x0776 VE_CH_QP_E14 0x0776 VE_CH_QP_E14 0x0776 VE_CH_QP_E14 0x0776 VE_CH_QP_E14 0x0776 VE_CH_QP_E14 0x0800 VE_CH_GOP0 RW 0x0800 VE_CH_GOP0 RW 0x0800 VE_CH_GOP2 0x0800 VE_CH_GOP2 0x0801 VE_CH_GOP4 0x0814 VE_CH_GOP5 0x0816 VE_CH_GOP6 0x0816 VE_CH_GOP6 0x0824 VE_CH_GOP6 0x0824 VE_CH_GOP1 0x0820 VE_CH_GOP1 0x0820 VE_CH_GOP1 0x0821 VE_CH_GOP1 0x0820 VE_CH_GOP1 0x0821 VE_CH_GOP1 0x0822 VE_CH_GOP1 0x0823 VE_CH_GOP1 0x0824 VE_CH_GOP1 0x0826 VE_CH_GOP1 0x0827 VE_CH_GOP1 0x0828 VE_CH_GOP_E1 0x0848 VE_CH_GOP_E1 0x0848 VE_CH_GOP_E1 0x0848 VE_CH_GOP_E1 0x0850 VE_CH_GOP_E1 0x0850 VE_CH_GOP_E1 0x0850 VE_CH_GOP_E1 0x0860
Ox07704 VE_CH_OP_E6 Ox0726 Ox0726 VE_CH_OP_E8 Ox0726 Ox0726 VE_CH_OP_E8 Ox0726 VE_CH_OP_E8 Ox0726 VE_CH_OP_E10 Ox0726 VE_CH_OP_E11 Ox0776 VE_CH_OP_E13 Ox0776 VE_CH_OP_E13 Ox0776 VE_CH_OP_E13 Ox0776 VE_CH_OP_E13 Ox0776 VE_CH_OP_E13 Ox0776 VE_CH_OP_E15 Ox0800 VE_CH_GOP Ox0804 VE_CH_GOP Ox0802 VE_CH_GOP_E Ox0802 Ox0802 VE_CH_GOP_E Ox0802 Ox0802 Ox0802 Ox0802 Ox0802
0x07708 VE_CH_QP_E6 0x0726 VE_CH_QP_E7 0x0726 VE_CH_QP_E9 0x0728 VE_CH_QP_E10 0x0726 VE_CH_QP_E10 0x0726 VE_CH_QP_E11 0x0776 VE_CH_QP_E12 0x0774 VE_CH_QP_E14 0x0776 VE_CH_QP_E14 0x0776 VE_CH_QP_E14 0x0776 VE_CH_QP_E14 0x0776 VE_CH_QP_E14 0x0776 VE_CH_QP_E14 0x0808 VE_CH_GOP0 RW [7:0] GOP Size. 0 0 0x0804 VE_CH_GOP1 0x0808 VE_CH_GOP2 0x0800 VE_CH_GOP5 0x0818 VE_CH_GOP5 0x0818 VE_CH_GOP5 0x0818 VE_CH_GOP5 0x0820 VE_CH_GOP9 0x0820 VE_CH_GOP9 0x0822 VE_CH_GOP1 0x0820 VE_CH_GOP5 0x0824 VE_CH_GOP15 0x0826 VE_CH_GOP15 0x0826 VE_CH_GOP15 0x0826 VE_CH_GOP_E1 0x0824 VE_CH_GOP_E2 0x0824 VE_CH_GOP_E2 0x0824 VE_CH_GOP_E3 0x0826 VE_CH_GOP_E3 0x0826 VE_CH_GOP_E3 0x0826 VE_CH_GOP_E3 0x0826 VE_CH_GOP_E3 0x0826 VE_CH_GOP_E1 0x0827 VE_
DAYDE VE_CH_QP_E8 DAYDER DAYDER DAYDER VE_CH_QP_E9 DAYDER VE_CH_QP_E9 DAYDER VE_CH_QP_E11 DAYDER VE_CH_QP_E13 DAYDER VE_CH_QP_E14 DAYDER DAYDE
Ox07E0 VE_CH_QP_E8 Ox07E4 VE_CH_QP_E9 Ox07E6 VE_CH_QP_E10 Ox07E0 VE_CH_QP_E11 Ox07F0 VE_CH_QP_E12 Ox07F4 VE_CH_QP_E13 Ox07F6 VE_CH_QP_E14 Ox07F0 VE_CH_QP_E14 Ox07F0 VE_CH_QP_E14 Ox07F0 VE_CH_QP_E15 Ox0800 VE_CH_GOP0 Ox0804 VE_CH_GOP2 Ox0804 VE_CH_GOP2 Ox0806 VE_CH_GOP4 Ox0814 VE_CH_GOP4 Ox0818 VE_CH_GOP6 Ox0814 VE_CH_GOP6 Ox0820 VE_CH_GOP7 Ox0820 VE_CH_GOP9 Ox0828 VE_CH_GOP1 Ox0820 VE_CH_GOP_E1 Ox0820 VE_CH_GOP_E1 Ox0820 VE_CH_GOP_E2 Ox0824 VE_CH_GOP_E1 Ox0820 VE_CH_GOP_E1
DXO7E4 VE.CH. OP.E9 DXO7E8 VE.CH. OP.E10 DXO7EC VE.CH. OP.E11 DXO7FC VE.CH. OP.E12 DXO7F6 VE.CH. OP.E12 DXO7F6 VE.CH. OP.E13 DXO7F6 VE.CH. OP.E14 DXO7F6 VE.CH. OP.E14 DXO7F6 VE.CH. OP.E14 DXO800 VE.CH. GOP.E14 DXO800 VE.CH. GOP.E14 DXO800 VE.CH. GOP2 DXO800 VE.CH. GOP3 DXO814 VE.CH. GOP4 DXO814 VE.CH. GOP6 DXO814 VE.CH. GOP6 DXO814 VE.CH. GOP6 DXO822 VE.CH. GOP9 DXO822 VE.CH. GOP9 DXO822 VE.CH. GOP1 DXO823 VE.CH. GOP10 DXO824 VE.CH. GOP10 DXO825 VE.CH. GOP10 DXO825 VE.CH. GOP10 DXO825 VE.CH. GOP10 DXO826 VE.CH. GOP10 DXO826 VE.CH. GOP10 DXO826 VE.CH. GOP10 DXO826 VE.CH. GOP12 DXO826 VE.CH. GOP15 DXO826 VE.CH. GOP.E1 DXO826 VE.CH. GOP.E1 DXO826 VE.CH. GOP.E1 DXO826 VE.CH. GOP.E2 DXO826 VE.CH. GOP.E3 DXO826 VE.CH. GOP.E5 DXO826 VE.CH. GOP.E1 DXO827 DXO827 DXO
DNOTES VE_CH_OP_E11 DNOTES VE_CH_OP_E12 DNOTES VE_CH_OP_E13 DNOTES VE_CH_OP_E13 DNOTES VE_CH_OP_E14 DNOTES VE_CH_OP_E14 DNOTES VE_CH_OP_E15 DNOTES VE_CH_OP_E15 DNOTES VE_CH_OP_E15 DNOTES VE_CH_OP_E15 DNOTES VE_CH_OP_E15 DNOTES VE_CH_OP_E15 DNOTES D
Ox07EC
Ox07F0
0x07F4
Ox07F6
Ox07FC VE_CH_GOPE15 Ox0800 VE_CH_GOP1 Ox0804 VE_CH_GOP1 Ox0808 VE_CH_GOP2 Ox080C VE_CH_GOP3 Ox080C VE_CH_GOP5 Ox080C VE_CH_GOP6 Ox081C VE_CH_GOP8 Ox0822 VE_CH_GOP8 Ox0822 VE_CH_GOP9 Ox0822 VE_CH_GOP1 Ox0822 VE_CH_GOP1 Ox0822 VE_CH_GOP1 Ox0822 VE_CH_GOP1 Ox0823 VE_CH_GOP13 Ox0833 VE_CH_GOP13 Ox0838 VE_CH_GOP15 Ox0834 VE_CH_GOP15 Ox0835 VE_CH_REFB1 Ox0835 VE_CH_REFB1 Ox0835 VE_CH_REFB2 Ox0835 VE_CH_REFB5 Ox0835 Ox0835 VE_CH_REFB5 Ox0835 VE_CH_REFB5
Ox07FC VE_CH_GOPE15 Ox0800 VE_CH_GOP1 Ox0804 VE_CH_GOP1 Ox0808 VE_CH_GOP2 Ox080C VE_CH_GOP3 Ox080C VE_CH_GOP5 Ox080C VE_CH_GOP6 Ox081C VE_CH_GOP8 Ox0822 VE_CH_GOP8 Ox0822 VE_CH_GOP9 Ox0822 VE_CH_GOP1 Ox0822 VE_CH_GOP1 Ox0822 VE_CH_GOP1 Ox0822 VE_CH_GOP1 Ox0823 VE_CH_GOP13 Ox0833 VE_CH_GOP13 Ox0838 VE_CH_GOP15 Ox0834 VE_CH_GOP15 Ox0835 VE_CH_REFB1 Ox0835 VE_CH_REFB1 Ox0835 VE_CH_REFB2 Ox0835 VE_CH_REFB5 Ox0835 Ox0835 VE_CH_REFB5 Ox0835 VE_CH_REFB5
DX0800
0x0804 VE_CH_GOP1 0x0808 VE_CH_GOP2 0x080C VE_CH_GOP3 0x0810 VE_CH_GOP4 0x0814 VE_CH_GOP5 0x0816 VE_CH_GOP6 0x0816 VE_CH_GOP6 0x0816 VE_CH_GOP9 0x0828 VE_CH_GOP9 0x0828 VE_CH_GOP10 0x082C VE_CH_GOP11 0x082C VE_CH_GOP11 0x0830 VE_CH_GOP12 0x0838 VE_CH_GOP14 0x0836 VE_CH_GOP15 0x0838 VE_CH_GOP15 0x0844 VE_CH_GOP_E1 0x0844 VE_CH_GOP_E1 0x0844 VE_CH_GOP_E1 0x0848 VE_CH_GOP_E2 0x0844 VE_CH_GOP_E3 0x0850 VE_CH_GOP_E4 0x0854 VE_CH_GOP_E5 0x0856 VE_CH_GOP_E6 0x0856 VE_CH_GOP_E6 0x0856 VE_CH_GOP_E8 0x0856 VE_CH_GOP_E9 0x0868 VE_CH_GOP_E1 0x0866 VE_CH_GOP_E1 0x0866 VE_CH_GOP_E1 0x0866 VE_CH_GOP_E1 0x0874 VE_CH_GOP_E1 0x0874 VE_CH_GOP_E1 0x0874 VE_CH_GOP_E1 0x0874 VE_CH_GOP_E1 0x0874 VE_CH_GOP_E1 0x0874 VE_CH_GOP_E1 0x0876 VE_CH_GOP_E1 0x0876 VE_CH_GOP_E1 0x0876 VE_CH_GOP_E1 0x0876 VE_CH_GOP_E1 0x0877 VE_CH_GOP_E1 0x0877 VE_CH_GOP_E1 0x0877 VE_CH_GOP_E1 0x08874 VE_CH_GOP_E1 0x08875 VE_CH_GOP_E1 0x08876 VE_CH_GOP_E1 0x0876 0x08876 VE_CH_GOP_E1 0x0876 0x08876 VE_CH_GOP_E1 0x0876 0x08876 VE_CH_GOP_E1 0x0876
0x0808
0x080C
0x0810 VE_CH_GOP4 0x0814 VE_CH_GOP5 0x0818 VE_CH_GOP6 0x081C VE_CH_GOP7 0x0820 VE_CH_GOP8 0x0822 VE_CH_GOP10 0x0832 VE_CH_GOP11 0x0834 VE_CH_GOP12 0x0834 VE_CH_GOP14 0x0834 VE_CH_GOP15 0x0836 VE_CH_GOP15 0x0840 VE_CH_GOP_E1 0x0844 VE_CH_GOP_E2 0x0845 VE_CH_GOP_E2 0x0846 VE_CH_GOP_E5 0x0857 VE_CH_GOP_E5 0x0858 VE_CH_GOP_E6 0x0859 VE_CH_GOP_E10 0x0860 VE_CH_GOP_E11 0x0860 VE_CH_GOP_E11 0x0870 VE_CH_GOP_E13 0x0871 VE_CH_GOP_E15 0x0872 VE_CH_GOP_E15 0x0873 VE_CH_GOP_E15 0x0874 VE_CH_GOP_E15 0x0875 VE_CH_GOP_E15 0x0876 VE_CH_REFB1 0x0884 VE_CH_REFB2
0x0814
DX081C
0x081C
0x0820 VE_CH_GOP8 0x0824 VE_CH_GOP9 0x0828 VE_CH_GOP10 0x082C VE_CH_GOP11 0x0833 VE_CH_GOP13 0x0834 VE_CH_GOP14 0x0840 VE_CH_GOP_E0 0x0844 VE_CH_GOP_E1 0x0848 VE_CH_GOP_E2 0x0850 VE_CH_GOP_E3 0x0850 VE_CH_GOP_E5 0x0851 VE_CH_GOP_E6 0x0852 VE_CH_GOP_E7 0x0853 VE_CH_GOP_E7 0x0854 VE_CH_GOP_E8 0x0855 VE_CH_GOP_E10 0x0866 VE_CH_GOP_E10 0x0867 VE_CH_GOP_E11 0x0870 VE_CH_GOP_E12 0x0871 VE_CH_GOP_E15 0x0872 VE_CH_GOP_E15 0x0883 VE_CH_GOP_E15 0x0884 VE_CH_GOP_E15 0x0875 VE_CH_GOP_E15 0x0886 VE_CH_REFB8 0x0887 VE_CH_REFB8 0x0888 VE_CH_REFB8 0x0880 VE_CH_REFB8
0x0824
0x0828 VE_CH_GOP10 0x082C VE_CH_GOP11 0x0830 VE_CH_GOP12 0x0834 VE_CH_GOP13 0x0838 VE_CH_GOP15 0x0840 VE_CH_GOP15 0x0844 VE_CH_GOP_E1 0x0848 VE_CH_GOP_E3 0x0840 VE_CH_GOP_E3 0x0841 VE_CH_GOP_E3 0x0842 VE_CH_GOP_E3 0x0854 VE_CH_GOP_E4 0x0855 VE_CH_GOP_E6 0x0856 VE_CH_GOP_E7 0x0860 VE_CH_GOP_E10 0x0861 VE_CH_GOP_E11 0x0870 VE_CH_GOP_E11 0x0871 VE_CH_GOP_E13 0x0872 VE_CH_GOP_E14 0x0873 VE_CH_GOP_E15 0x0884 VE_CH_REFB0 RW 0x0885 VE_CH_REFB1 0x0886 VE_CH_REFB2 0x0887 VE_CH_REFB3 0x0888 VE_CH_REFB5 0x08894 VE_CH_REFB5 0x0898 VE_CH_REFB6
0x0828 VE_CH_GOP10 0x082C VE_CH_GOP11 0x0830 VE_CH_GOP12 0x0834 VE_CH_GOP13 0x0838 VE_CH_GOP14 0x0840 VE_CH_GOP15 0x0844 VE_CH_GOP_E1 0x0848 VE_CH_GOP_E2 0x0840 VE_CH_GOP_E3 0x0841 VE_CH_GOP_E3 0x0842 VE_CH_GOP_E3 0x0853 VE_CH_GOP_E4 0x0854 VE_CH_GOP_E5 0x0856 VE_CH_GOP_E7 0x0860 VE_CH_GOP_E8 0x0860 VE_CH_GOP_E10 0x0861 VE_CH_GOP_E11 0x0870 VE_CH_GOP_E13 0x0871 VE_CH_GOP_E14 0x0872 VE_CH_GOP_E15 0x0884 VE_CH_REFB0 RW 0x0885 VE_CH_REFB1 0x0886 VE_CH_REFB2 0x0887 VE_CH_REFB3 0x0888 VE_CH_REFB5 0x08894 VE_CH_REFB6
0x082C VE_CH_GOP11 0x0834 VE_CH_GOP13 0x0834 VE_CH_GOP13 0x0838 VE_CH_GOP14 0x083C VE_CH_GOP_E0 0x0840 VE_CH_GOP_E0 0x0844 VE_CH_GOP_E1 0x0845 VE_CH_GOP_E2 0x0846 VE_CH_GOP_E5 0x0850 VE_CH_GOP_E6 0x0851 VE_CH_GOP_E6 0x0852 VE_CH_GOP_E7 0x0863 VE_CH_GOP_E10 0x0864 VE_CH_GOP_E10 0x0865 VE_CH_GOP_E11 0x0866 VE_CH_GOP_E13 0x0874 VE_CH_GOP_E13 0x0875 VE_CH_GOP_E14 0x0876 VE_CH_GOP_E15 0x0877 VE_CH_GOP_E15 0x0880 VE_CH_REFB1 0x0884 VE_CH_REFB2 0x0886 VE_CH_REFB3 0x0887 VE_CH_REFB4 0x08894 VE_CH_REFB5 0x08984 VE_CH_REFB6
0x0830
0x0834 VE_CH_GOP13 Ve_CH_GOP15 0x083C VE_CH_GOPE0 RW [7:0] Extended GOP Size. 0 0x0844 VE_CH_GOP_E0 RW [7:0] Extended GOP Size. 0 0x0844 VE_CH_GOP_E1 VE_CH_GOP_E3 0 0 0x0845 VE_CH_GOP_E3 0 0 0 0x0850 VE_CH_GOP_E5 0 0 0 0 0 0x0854 VE_CH_GOP_E5 0
0x0838 VE_CH_GOP14 VE_CH_GOP15 0x0840 VE_CH_GOP_E0 0x0844 0x0844 VE_CH_GOP_E1 0x0844 0x0844 VE_CH_GOP_E1 0x0844 0x0845 0x0846 0x0
0x083C VE_CH_GOP_E0 RW [7:0] Extended GOP Size. 0 0x0840 VE_CH_GOP_E1 RW [7:0] Extended GOP Size. 0 0x0848 VE_CH_GOP_E2 0 0 0 0x0840 VE_CH_GOP_E3 0 0 0 0x0850 VE_CH_GOP_E4 0 <td< td=""></td<>
Ox0840
0x0844 VE_CH_GOP_E1 0x0848 VE_CH_GOP_E3 0x0850 VE_CH_GOP_E4 0x0854 VE_CH_GOP_E5 0x0858 VE_CH_GOP_E6 0x0850 VE_CH_GOP_E7 0x0860 VE_CH_GOP_E8 0x0861 VE_CH_GOP_E10 0x0862 VE_CH_GOP_E11 0x0870 VE_CH_GOP_E12 0x0871 VE_CH_GOP_E13 0x0872 VE_CH_GOP_E15 0x0880 VE_CH_REFB0 0x0884 VE_CH_REFB1 0x0888 VE_CH_REFB3 0x0890 VE_CH_REFB4 0x0894 VE_CH_REFB5 0x0898 VE_CH_REFB5 0x0898 VE_CH_REFB6
0x0848 VE_CH_GOP_E2 0x084C VE_CH_GOP_E3 0x0850 VE_CH_GOP_E4 0x0854 VE_CH_GOP_E5 0x0858 VE_CH_GOP_E6 0x085C VE_CH_GOP_E7 0x0860 VE_CH_GOP_E8 0x0864 VE_CH_GOP_E10 0x0870 VE_CH_GOP_E11 0x0871 VE_CH_GOP_E12 0x0872 VE_CH_GOP_E15 0x0880 VE_CH_GOP_E15 0x0880 VE_CH_REFB0 0x0881 VE_CH_REFB1 0x0882 VE_CH_REFB2 0x0880 VE_CH_REFB3 0x0890 VE_CH_REFB5 0x0894 VE_CH_REFB5 0x0898 VE_CH_REFB6
0x084C VE_CH_GOP_E3 0x0850 VE_CH_GOP_E4 0x0854 VE_CH_GOP_E5 0x0858 VE_CH_GOP_E6 0x085C VE_CH_GOP_E7 0x0860 VE_CH_GOP_E8 0x0864 VE_CH_GOP_E10 0x0876 VE_CH_GOP_E11 0x0877 VE_CH_GOP_E13 0x0878 VE_CH_GOP_E14 0x0870 VE_CH_GOP_E15 0x0880 VE_CH_REFB1 0x0884 VE_CH_REFB1 0x0888 VE_CH_REFB2 0x0880 VE_CH_REFB3 0x0890 VE_CH_REFB4 0x0894 VE_CH_REFB5 0x0898 VE_CH_REFB6
0x0850 VE_CH_GOP_E4 0x0854 VE_CH_GOP_E5 0x0858 VE_CH_GOP_E6 0x0860 VE_CH_GOP_E7 0x0860 VE_CH_GOP_E8 0x0864 VE_CH_GOP_E9 0x0866 VE_CH_GOP_E11 0x0870 VE_CH_GOP_E12 0x0874 VE_CH_GOP_E13 0x0878 VE_CH_GOP_E15 0x0880 VE_CH_REFB0 0x0884 VE_CH_REFB1 0x0888 VE_CH_REFB2 0x0880 VE_CH_REFB3 0x0890 VE_CH_REFB4 0x0894 VE_CH_REFB5 0x0898 VE_CH_REFB5 0x0898 VE_CH_REFB6
0x0854 VE_CH_GOP_E5 0x0858 VE_CH_GOP_E6 0x085C VE_CH_GOP_E7 0x0860 VE_CH_GOP_E8 0x0864 VE_CH_GOP_E9 0x0868 VE_CH_GOP_E10 0x0870 VE_CH_GOP_E11 0x0874 VE_CH_GOP_E13 0x0878 VE_CH_GOP_E14 0x0870 VE_CH_GOP_E15 0x0880 VE_CH_REFB0 0x0881 VE_CH_REFB1 0x0882 VE_CH_REFB1 0x0883 VE_CH_REFB3 0x0894 VE_CH_REFB5 0x0895 VE_CH_REFB5 0x0898 VE_CH_REFB6
0x0858 VE_CH_GOP_E6 0x085C VE_CH_GOP_E7 0x0860 VE_CH_GOP_E8 0x0864 VE_CH_GOP_E9 0x0868 VE_CH_GOP_E10 0x0870 VE_CH_GOP_E11 0x0874 VE_CH_GOP_E13 0x0878 VE_CH_GOP_E14 0x0870 VE_CH_GOP_E15 0x0880 VE_CH_REFB0 RW 0x0880 VE_CH_REFB1 Reference Base Address. 0x0884 VE_CH_REFB2 0x0885 VE_CH_REFB3 0x0890 VE_CH_REFB4 0x0894 VE_CH_REFB5 0x0898 VE_CH_REFB6
0x085C VE_CH_GOP_E7 0x0860 VE_CH_GOP_E8 0x0864 VE_CH_GOP_E9 0x0868 VE_CH_GOP_E10 0x0870 VE_CH_GOP_E11 0x0871 VE_CH_GOP_E12 0x0872 VE_CH_GOP_E14 0x0873 VE_CH_GOP_E15 0x0880 VE_CH_REFB0 0x0884 VE_CH_REFB1 0x0888 VE_CH_REFB2 0x0880 VE_CH_REFB3 0x0890 VE_CH_REFB4 0x0894 VE_CH_REFB5 0x0898 VE_CH_REFB6
0x085C VE_CH_GOP_E7 0x0860 VE_CH_GOP_E8 0x0864 VE_CH_GOP_E9 0x0868 VE_CH_GOP_E10 0x0870 VE_CH_GOP_E11 0x0871 VE_CH_GOP_E12 0x0872 VE_CH_GOP_E14 0x0873 VE_CH_GOP_E15 0x0880 VE_CH_REFB0 0x0884 VE_CH_REFB1 0x0888 VE_CH_REFB2 0x0880 VE_CH_REFB3 0x0890 VE_CH_REFB4 0x0894 VE_CH_REFB5 0x0898 VE_CH_REFB6
0x0860 VE_CH_GOP_E8 0x0864 VE_CH_GOP_E9 0x0868 VE_CH_GOP_E10 0x0870 VE_CH_GOP_E11 0x0874 VE_CH_GOP_E13 0x0878 VE_CH_GOP_E14 0x0870 VE_CH_GOP_E15 0x0880 VE_CH_REFB0 RW 0x0884 VE_CH_REFB1 0x0886 0x0888 VE_CH_REFB3 0x0890 0x0894 VE_CH_REFB5 0x0898 0x0898 VE_CH_REFB6
0x0864 VE_CH_GOP_E9 0x0868 VE_CH_GOP_E10 0x086C VE_CH_GOP_E11 0x0870 VE_CH_GOP_E12 0x0874 VE_CH_GOP_E13 0x0878 VE_CH_GOP_E14 0x0870 VE_CH_GOP_E15 0x0880 VE_CH_REFB0 RW 0x0884 VE_CH_REFB1 0x0888 0x0888 VE_CH_REFB3 0x0890 0x0894 VE_CH_REFB5 0x0898 0x0898 VE_CH_REFB6
0x0868 VE_CH_GOP_E10 0x086C VE_CH_GOP_E11 0x0870 VE_CH_GOP_E12 0x0874 VE_CH_GOP_E13 0x0878 VE_CH_GOP_E14 0x0870 VE_CH_GOP_E15 0x0880 VE_CH_REFB0 RW 0x0884 VE_CH_REFB1 0x0886 0x0888 VE_CH_REFB2 0x0886 0x0890 VE_CH_REFB4 0x0894 0x0894 VE_CH_REFB5 0x0898 0x0898 VE_CH_REFB6
0x086C VE_CH_GOP_E11 0x0870 VE_CH_GOP_E12 0x0874 VE_CH_GOP_E13 0x0878 VE_CH_GOP_E14 0x087C VE_CH_GOP_E15 0x0880 VE_CH_REFB0 RW [15:0] 0x0884 VE_CH_REFB1 0x0888 VE_CH_REFB2 0x0880 VE_CH_REFB3 0x0890 VE_CH_REFB4 0x0894 VE_CH_REFB5 0x0898 VE_CH_REFB6
0x0870 VE_CH_GOP_E12 0x0874 VE_CH_GOP_E13 0x0878 VE_CH_GOP_E14 0x087C VE_CH_GOP_E15 0x0880 VE_CH_REFB0 RW [15:0] 0x0884 VE_CH_REFB1 0x0888 VE_CH_REFB2 0x088C VE_CH_REFB3 0x0890 VE_CH_REFB4 0x0894 VE_CH_REFB5 0x0898 VE_CH_REFB6
0x0874 VE_CH_GOP_E13 0x0878 VE_CH_GOP_E14 0x087C VE_CH_GOP_E15 0x0880 VE_CH_REFB0 RW [15:0] Reference Base Address. 0 0x0884 VE_CH_REFB1 0x0888 VE_CH_REFB2 0x088C VE_CH_REFB3 0x0890 VE_CH_REFB4 0x0894 VE_CH_REFB5 0x0899 VE_CH_REFB6 VE_CH_REFB6 0x0898 VE_CH_REFB6 0x0896 VE_CH_REFB6 0x0897 VE_CH_REFB6 0x0896 VE_CH_REFB6 0x0897 VE_CH_REFB6 0x0896 VE_CH_REFB6 0x0897 VE_CH_REFB6 0x0896 0x0896 0x0896
0x0878 VE_CH_GOP_E14 0x087C VE_CH_GOP_E15 0x0880 VE_CH_REFB0 RW [15:0] Reference Base Address. 0 0x0884 VE_CH_REFB1 0x0888 VE_CH_REFB2 0x088C VE_CH_REFB3 0x0890 VE_CH_REFB4 0x0894 VE_CH_REFB5 0x0898 VE_CH_REFB6 0x0898 VE_CH_REFB6 0x0898 0x0898 VE_CH_REFB6 0x0898 0x0
0x087C VE_CH_GOP_E15 0x0880 VE_CH_REFB0 RW [15:0] Reference Base Address. 0 0x0884 VE_CH_REFB1 0x0888 VE_CH_REFB2 0x088C VE_CH_REFB3 0x0890 VE_CH_REFB4 0x0894 VE_CH_REFB5 0x0898 VE_CH_REFB6 0x0898 VE_CH_REFB6 0x0898 0x08988 0x08988 0x08988<
0x0880 VE_CH_REFB0 RW [15:0] Reference Base Address. 0 0x0884 VE_CH_REFB1 0 0 0 0x0888 VE_CH_REFB2 0 0 0x0890 VE_CH_REFB3 0 0 0x0894 VE_CH_REFB5 0 0 0x0898 VE_CH_REFB6 0 0
0x0884 VE_CH_REFB1 0x0888 VE_CH_REFB2 0x088C VE_CH_REFB3 0x0890 VE_CH_REFB4 0x0894 VE_CH_REFB5 0x0898 VE_CH_REFB6
0x0888 VE_CH_REFB2 0x088C VE_CH_REFB3 0x0890 VE_CH_REFB4 0x0894 VE_CH_REFB5 0x0898 VE_CH_REFB6
0x088C VE_CH_REFB3 0x0890 VE_CH_REFB4 0x0894 VE_CH_REFB5 0x0898 VE_CH_REFB6
0x0890 VE_CH_REFB4 0x0894 VE_CH_REFB5 0x0898 VE_CH_REFB6
0x0890 VE_CH_REFB4 0x0894 VE_CH_REFB5 0x0898 VE_CH_REFB6
0x0894
0x0898 VE_CH_REFB6
0x08A0
0x08A8 VE_CH_REFB10
0x08AC VE_CH_REFB11
0x08B0 VE_CH_REFB12
0x08B4 VE_CH_REFB13
0x08B8
0x08BC

			1	·	,
0x08C0	VE_CH_REFB_E0	RW	[15:0]	Extended Reference Base Address.	0
0x08C4	VE_CH_REFB_E1				
0x08C8	VE_CH_REFB_E2				
0x08CC	VE_CH_REFB_E3				
0x08D0	VE_CH_REFB_E4				
0x08D4	VE CH REFB E5				
0x08D8	VE_CH_REFB_E6				
0x08DC	VE_CH_REFB_E7				
0x08E0	VE_CH_REFB_E8				
0x08E4	VE CH REFB E9				
0x08E8	VE_CH_REFB_E10				
0x08EC	VE_CH_REFB_E11				
0x08F0	VE_CH_REFB_E12				
0x08F4	VE_CH_REFB_E13				
0x08F8	VE_CH_REFB_E14				
0x08FC	VE_CH_REFB_E15				
0x0A00	VE_H.264_QUE	RW	[31]	Motion Flag.	0
0x0A08			[30:29]	VOP Type.	0
0x0A10			[28:24]	Channel.	0
0x0A18			[23:0]	H.264 Code Address Offset.	0
0x0A20			[===]		
0x0A28					
0x0A30					
0x0A38					
0x0A40					
0x0A48					
0x0A50					
0x0A58					
0x0A36					
0x0A68					
0x0A70					
0x0A78					_
0x0A04	VE_JPEG_QUE	RW	[23:0]	JPEG Code Address Offset.	0
0x0A0C					
0x0A14					
0x0A1C					
0x0A24					
0x0A2C					
0x0A34					
0x0A3C					
0x0A44					
0x0A4C					
0x0A54					
0x0A5C					
0x0A64					
0x0A6C					
0x0A0C					
0x0A7C					

3.27. H.264 Video Decoder Configuration Registers

Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x0900	VD_CFG0	RW	[28]	Decoding Start Lock Enable for Every Display Sync.	0
			[27]	LF Off.	0
			[26]	Interpolation Enable for Decoding Scale 2&3	0
			[25]	NAL Off.	0
			[24]	No Display When Decoding Error.	0
			[23]	Busy Wait When Code Busy.	0
			[22]	Busy Wait When Res Write.	0
			[21]	Busy Wait When Ref Read.	0
			[20]	Busy Wait When Macroblock Read.	0
			[18]	Decode Mode	0
				[0] : Multi	
				[1] : Single	
			[17]	Display Control Mode.	0
				[0] : Auto	
				[1] : User	

			[16]	Display Page Control Mode.	0
				[0] : 2 page auto	
				[1] : User	
			[15]	Byte Order.	0
			[14]	Decode Start Field Index.	0
			[13]	Decode Lock When Error.	0
			[12]	Error Interrupt Enable.	0
			[11:8]	Time Width.	0
			[7:0]	DCT Interval.	0
0x0904	VD_CFG1	RW	[31:26]	Allowed Maximum Number of Horizontal Macroblock	0
			[25:20]	Allowed Maximum Number of Vertical Macroblock	0
			[19:16]	Auto Emergency Decoder Reset Count if Continuous	0
				Unknown Decode Error.	
			[15:0]	Decode Video Write Base Memory Address when	0
				Play Back to Live Mode.	
0x0908	VD_DEINTERLACE	RW	[21:20]	Deflickering Filter Threshold.	0
			[21:20]	Deflickering Filter Shift.	0
			[19:8]	Deinterlace Filter Threshold.	0
			[7:0]	Deinterlace Filter Edge Value.	0

3.28. H.264 Video Decoder Control Registers

Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x090C	VD_CODE_ADDR	RW	[31:0]	Code Address.	0
0x0910	VD_CTRL	RW	[31]	Decoder On.	0
			[11:0]	Max Item Count When Multiple Decode Mode.	0
0x0920	VD_STATUS0	RO	[22]	Interrupt by Command Ack.	-
			[21]	Interrupt by Command Empty.	-
			[20]	Interrupt by Decode Error.	-
			[11:0]	Rest Number of Reserved Decoding.	-
				Only for multiple Decode Mode.	
0x0924	VD_STATUS1	RO	[23:20]	Internal VLD Error Flags.	-
			[19:0]	Decoded Byte Count.	
0x0930	VD_IDX0	RW	[31]	Progressive.	0
			[30]	Interlace.	0
			[29]	Source FI.	0
			[27:24]	Source Channel ID.	0
			[23:22]	VOP Type.	0
			[21]	Decode Page Stop.	0
			[20]	Sync Start.	0
			[19:0]	H.264 Code Size.	0
0x0934	VD_IDX1	RW	[31:28]	Source Scale.	0
			[27:24]	Target Window ID.	0
			[16]	Frame Interpolation On.	0
			[15:8]	Horizontal Macroblock Size.	0
			[7:0]	Vertical Macroblock Size.	0
0x0938	VD_IDX2	RW	[31]	Ref Address Horizontal Offset.	0
				[0] : 0	
				[1]: 512 (When use CIF)	
			[15:0]	Ref Base Address.	0
0x093C	VD_IDX3	RW	[31:28]	User Set Macro Scale Mode.	0
			[27]	User Set Macro Interlace Write.	0
			[26]	User Set Macro Read Interpolation.	0
			[25]	User Set Display Horizontal Zoom.	0
			[24]	Reserved.	0
			[23:12]	User Set Display SX.	0
			[11:0]	User Set Display SY.	0
0x0940	VD_IDX4	RW	[15:8]	User Set Decode Write Page.	0
			[7:0]	User Set Display Read Page.	0
0x0944	VD_IDX5	RW	[31:0]	Next Code Address	0

3.29. GPIO Registers

Register	Register Name	Type	Bit	Description	Initial
Address	Register Name	Туре	Field	Description	State

0x0B00	GPIO_CONFIG0	RW	[31:30]	GPIO[15] Configuration.	0
OXODOO	0110_00111100	IXVV	[01.00]	[0] : Input	
				[1] : Output	
				[2]: I2C_SCL7	
			[29:28]	[3]: RS_nRTS1 GPIO[14] Configuration.	0
			[23.20]	[0] : Input	O
				[1] : Output	
				[2] : I2C_SDA7	
				[3]: RS_nCTS1	_
			[27:26]	GPIO[13] Configuration.	0
				[0] : Input [1] : Output	
				[2]: I2C_SCL6	
				[3] : RS_TXD1	
			[25:24]	GPIO[12] Configuration.	0
				[0] : Input	
				[1] : Output	
				[2]: I2C_SDA6 [3]: RS_nRXD1	
			[23:22]	GPIO[11] Configuration.	0
		1	[]	[0]: Input	
				[1] : Output	
		1		[2]: I2C_SCL5	
			[04.00]	[3] : RS_TxEn0	
			[21:20]	GPIO[10] Configuration. [0] : Input	0
				[1] : Output	
				[2]: I2C_SDA5	
				[3] : RS_RxEn0	
			[19:18]	GPIO[9] Configuration.	0
				[0] : Input	
				[1]: Output [2]: I2C_SCL4	
				[3] : RS_TxD0	
			[17:16]	GPIO[8] Configuration.	0
			-	[0] : Input	
				[1] : Output	
				[2] : I2C_SDA4	
			[45,44]	[3]: RS_RxD0	0
			[15:14]	GPIO[7] Configuration. [0] : Input	0
				[1] : Output	
				[2]: I2C_SCL3	
				[3]: PS2_C1	
			[13:12]	GPIO[6] Configuration.	0
				[0] : Input	
				[1]: Output [2]: I2C_SDA3	
		1		[3]: PS2_D1	
			[11:10]	GPIO[5] Configuration.	0
		1		[0] : Input	
				[1] : Output	
		1		[2]: I2C_SCL2 [3]: PS2_C0	
			[9:8]	GPIO[4] Configuration.	0
			[0.0]	[0] : Input	
		1		[1] : Output	
				[2]: I2C_SDA2	
		1	[7.0]	[3]: PS2_D0	
			[7:6]	GPIO[3] Configuration.	0
		1		[0] : Input [1] : Output	
		1		[2] : I2C_SCL1	
				[3] : SPI_STB	
			[5:4]	GPIO[2] Configuration.	0
				[0] : Input	
		1		[1] : Output	
		1		[2]: I2C_SDA1 [3]: SPI_CLK	
	1		l	[J] . JF1_OLI\	

		ı	T -		,
			[3:2]	GPIO[1] Configuration.	0
				[0] : Input	
				[1] : Output	
				[2]: I2C_SCL0	
			[4.0]	[3]: SPI_SDI	0
			[1:0]	GPIO[0] Configuration.	0
				[0] : Input	
				[1] : Output [2] : I2C_SDA0	
				[2] : 12C_SDA0 [3] : SPI_SDO	
0x0B04	GPIO_CONFIG1	RW	[31:16]	GPIO[31:16] Enable.	0
000004	GFIO_CONFIG	IXVV	[31.10]	[0] : ATA DIO[15:0]	U
Ì				[1] : GPIO[31:16]	
			[15]	GPIO[31] Configuration.	0
			[10]	[0] : Input	
				[1] : Output	
			[14]	GPIO[30] Configuration.	0
			[]	[0] : Input	
				[1] : Output	
			[13]	GPIO[29] Configuration.	0
			,	[0] : Input	
				[1] : Output	
			[12]	GPIO[28] Configuration.	0
				[0] : Input	
				[1]: Output	
			[11]	GPIO[27] Configuration.	0
				[0] : Input	
				[1] : Output	
			[10]	GPIO[26] Configuration.	0
				[0] : Input	
				[1] : Output	
			[9]	GPIO[25] Configuration.	0
				[0] : Input	
				[1] : Output	
			[8]	GPIO[24] Configuration.	0
				[0] : Input	
				[1] : Output	
			[7]	GPIO[23] Configuration.	0
				[0] : Input	
			[0]	[1] : Output	
			[6]	GPIO[22] Configuration.	0
				[0] : Input	
			[6]	[1] : Output	0
			[5]	GPIO[21] Configuration.	0
				[0] : Input [1] : Output	
			[41	GPIO[20] Configuration.	
			[4]		0
				[0] : Input [1] : Output	
			[3]	GPIO[19] Configuration.	0
			ری	[0] : Input	
				[1]: Output	
			[2]	GPIO[18] Configuration.	0
			[4]	[0] : Input	
				[1] : Output	
		[1]	GPI0[17] Configuration.	0	
		1,1	[0] : Input		
			[1] : Output		
			[0]	GPIO[16] Configuration.	0
			رما	[0] : Input	
				[1] : Output	
	GPIO_DATA_OUT	RW	[31:0]	GPIO Output Data.	0xffff_ffff
0x0R08	0.10_D/.1/_001	RW	[31:0]	GPIO Input Data.	-
0x0B08	GPIO DATA IN		[01.0]		
0x0B0C	GPIO_DATA_IN GPIO_INT_STA/ACK			GPIO Interrupt Status/Ack	Λ
	GPIO_DATA_IN GPIO_INT_STA/ACK	RW	[31:0]	GPIO Interrupt Status/Ack. Read Mode: GPIOI31:01 Interrupt Status	0
0x0B0C				Read Mode: GPIO[31:0] Interrupt Status.	0
0x0B0C					0

0x0B18	GPIO_INT_CFG0	RW		GPIO[15] Interrupt Configuration.	
			[31:30]	[0] : Rising Edge	0
				[1]: Falling Edge	
				[2] : Both Edge	
			[29:28]	[3]: Low Level GPIO[14] Interrupt Configuration.	0
			[20.20]	[0] : Rising Edge	
				[1] : Falling Edge	
				[2] : Both Edge	
			[07.00]	[3]: Low Level	
			[27:26]	GPIO[13] Interrupt Configuration. [0]: Rising Edge	0
				[0] . Kising Edge	
				[2] : Both Edge	
				[3] : Low Level	
			[25:24]	GPIO[12] Interrupt Configuration.	0
				[0] : Rising Edge	
				[1]: Falling Edge [2]: Both Edge	
				[3]: Low Level	
			[23:22]	GPIO[11] Interrupt Configuration.	0
]	[0] : Rising Edge	
				[1]: Falling Edge	
				[2] : Both Edge [3] : Low Level	
			[21:20]	GPIO[10] Interrupt Configuration.	0
			[0]	[0] : Rising Edge	
				[1] : Falling Edge	
				[2] : Both Edge	
			[40.40]	[3]: Low Level	0
			[19:18]	GPIO[9] Interrupt Configuration. [0]: Rising Edge	0
				[1]: Falling Edge	
				[2] : Both Edge	
				[3] : Low Level	
			[17:16]	GPIO[8] Interrupt Configuration.	0
				[0] : Rising Edge [1] : Falling Edge	
				[2]: Both Edge	
				[3] : Low Level	
			[15:14]	GPIO[7] Interrupt Configuration.	0
				[0] : Rising Edge	
				[1]: Falling Edge [2]: Both Edge	
				[3]: Low Level	
			[13:12]	GPIO[6] Interrupt Configuration.	0
				[0] : Rising Edge	
				[1]: Falling Edge	
				[2] : Both Edge [3] : Low Level	
			[11:10]	GPIO[5] Interrupt Configuration.	0
				[0] : Rising Edge	
				[1]: Falling Edge	
				[2] : Both Edge	
			[9:8]	[3] : Low Level GPIO[4] Interrupt Configuration.	0
			[5.0]	[0] : Rising Edge	
				[1] : Falling Edge	
				[2] : Both Edge	
			[7:0]	[3]: Low Level	
			[7:6]	GPIO[3] Interrupt Configuration. [0]: Rising Edge	0
				[1]: Falling Edge	
				[2]: Both Edge	
				[3]: Low Level	
			[5:4]	GPIO[2] Interrupt Configuration.	0
				[0] : Rising Edge	
1				[1]: Falling Edge [2]: Both Edge	

	T		ro 01	000000000000000000000000000000000000000	1 0						
			[3:2]	GPIO[1] Interrupt Configuration. [0]: Rising Edge	0						
				[1]: Falling Edge [2]: Both Edge							
				[3] : Low Level							
			[1:0]	GPIO[0] Interrupt Configuration.	0						
				[0] : Rising Edge [1] : Falling Edge							
				[2] : Both Edge							
0x0B1C	GPIO_INT_CFG1	RW	[31:30]	[3] : Low Level GPI0[31] Interrupt Configuration.	0						
OXOBIC	GFIO_INT_CFGT	IXVV	[31.30]	[0] : Rising Edge	0						
				[1]: Falling Edge							
				[2] : Both Edge [3] : Low Level							
			[29:28]	GPIO[30] Interrupt Configuration.	0						
				[0] : Rising Edge							
				[1]: Falling Edge [2]: Both Edge							
				[3] : Low Level							
			[27:26]	GPI0[29] Interrupt Configuration. [0] : Rising Edge	0						
				[1]: Falling Edge							
				[2] : Both Edge [3] : Low Level							
			[25:24]	GPIO[28] Interrupt Configuration.	0						
			`	[0] : Rising Edge							
				[1]: Falling Edge [2]: Both Edge							
				[3] : Low Level							
			[23:22]	GPIO[27] Interrupt Configuration.	0						
				[0] : Rising Edge [1] : Falling Edge							
				[2] : Both Edge							
			[21:20]	[3] : Low Level GPI0[26] Interrupt Configuration.	0						
			[21.20]	[0] : Rising Edge							
				[1]: Falling Edge [2]: Both Edge							
				[3] : Low Level							
			-	[19:18]	GPIO[25] Interrupt Configuration.	0					
				[0] : Rising Edge [1] : Falling Edge							
					[2] : Both Edge						
									[17:16]	[3] : Low Level GPI0[24] Interrupt Configuration.	0
									[17.10]	[0] : Rising Edge	
									[1] : Falling Edge	1	
				[2] : Both Edge [3] : Low Level	1						
			[15:14]	GPIO[23] Interrupt Configuration.	0						
				[0] : Rising Edge [1] : Falling Edge							
				[2] : Both Edge							
			[40.40]	[3] : Low Level							
			[13:12]	GPI0[22] Interrupt Configuration. [0] : Rising Edge	0						
			[1] : Falling Edge	1							
				[2] : Both Edge [3] : Low Level							
			[11:10]	GPIO[21] Interrupt Configuration.	0						
				[0] : Rising Edge	1						
				[1]: Falling Edge [2]: Both Edge	1						
				[3] : Low Level							
			[9:8]	GPIO[20] Interrupt Configuration. [0]: Rising Edge	0						
				[1] : Falling Edge							
				[2] : Both Edge	1						
<u> </u>		L	1	[3]: Low Level							

	[7:6]	GPIO[19] Interrupt Configuration.	0
		[0] : Rising Edge	
		[1]: Falling Edge	
		[2] : Both Edge	
		[3] : Low Level	
	[5:4]	GPIO[18] Interrupt Configuration.	0
		[0] : Rising Edge	
		[1] : Falling Edge	
		[2] : Both Edge	
		[3] : Low Level	
	[3:2]	GPIO[17] Interrupt Configuration.	0
		[0] : Rising Edge	
		[1] : Falling Edge	
		[2] : Both Edge	
		[3] : Low Level	
	[1:0]	GPIO[16] Interrupt Configuration.	0
		[0] : Rising Edge	
		[1] : Falling Edge	
		[2] : Both Edge	
		[3] : Low Level	

3.30. I2C Registers

Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x0B20	IIC_CFG	RW	[8]	I2C Module Enable.	0
			[7:0]	Clock Pre-Scale.	8
				(SYS_CLK/5) / (PR[7:0] * 16+1)	
0xB24	IIC_CTRL	RO	[20]	Auto Clear Request.	-
				The register sets to "1" to clear START, STOP,	
				READ and WRITE.	
			[19]	Received Acknowledge from Slave.	-
				[0] : ACK received	
				[1] : ACK not received	
			[18]	I2C bus Busy.	-
				[0] : after STOP signal detected	
			F 4 = 3	[1] : after START signal detected	
			[17]	Arbitration Lost.	-
				a) STOP Signal is detected, but none requested.	
				b) The master drives SDA high, but SDA low.	
			[16]	Transfer in Progress.	-
				[0] : Complete	
		DW	[7.5]	[1] : Transferring	
		RW	[7:5]	Channel Select.	0
				[000] : Channel 0	
				[001] : Channel 1	
				[010] : Channel 2	
				[011] : Channel 3 [100] : Channel 4	
				[100] : Channel 4	
				[101] : Channel 6	
				[110] : Channel 7	
			[4]	ACK.	0
			[+]	It should be set to appropriate value if receiver is	U
				set to ACK=0 or ACK=1.	
			[3]	START.	0
			[0]	The register is set or reset by user or reset by Auto	O
				Clear Request.	
			[2]	STOP.	0
			[-]	The register is set or reset by user or reset by Auto	O
				Clear Request.	
			[1]	READ.	0
			[.]	The register is set or reset by user or reset by Auto	•
				Clear Request.	
			[0]	WRITE.	0
			[~]	The register is set or reset by user or reset by Auto	•
				Clear Request.	
0x0B28	IIC TXD	RW	[7:0]	Tx Data.	0
0x0B2C	IIC_RXD	RO	[7:0]	Rx Data.	-

3.31. SPI Registers

Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x0B40	SPI_TXD0	R/W	[31:0]	SPI Tx Data[31:0].	0
0x0B44	SPI_TXD1	R/W	[31:0]	SPI Tx Data[63:32].	0
0x0B48	SPI_TXD2	R/W	[15:0]	SPI Tx Data[79:64].	0
0x0B50	SPI_RXD0	R	[31:0]	SPI Rx Data[31:0].	-
0x0B54	SPI_RXD1	R	[31:0]	SPI Rx Data[63:32].	-
0x0B58	SPI RXD2	R	[15:0]	SPI Rx Data[79:64].	-

3.32. PS2 Registers

Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x0B60 0x0B80	PS2_CFG0 PS2_CFG1	RW	[31:24]	PS2 Tx Timeout Limitation. Sampling Period * (n+1)	0x10
		RW	[23:16]	PS2 Rx Timeout Limitation. Sampling Period * (n+1)	0x08
		RW	[15:8]	PS2 Tx Clock Holding Time. Sampling Period * (n+1)	0x10
		RW	[6:4]	PS2 Sampling Period. Clock Dividing: 2^(n+6) * SYS_CLK period Where, 0 <= n <= 5	0x04
		RW	[3]	PS2 Tx Data Interrupt Enable.	0
		RW	[2]	PS2 Rx Data Interrupt Enable.	0
		RW	[1]	PS2 Error Interrupt Enable.	0
		RW	[0]	PS2 Enable.	0
0x0B64 0x0B84	PS2_STA0 PS2_STA1	RO	[26:24]	PS2 Tx Buffer Status. [0] : Full [4] : Empty	-
		RO	[23]	PS2 Tx Data End.	-
		RO	[22]	PS2 Tx Buffer Full.	-
		RO	[21]	PS2 Tx Busy.	-
		RO	[20]	PS2 Tx Timeout. Cleared by Core Reset.	-
		RO	[19:16]	PS2 Tx Status of FSM.	-
		RO	[15:10]	PS2 Rx Buffer Status. [0] : Full [4] : Empty	-
		RO	[9]	PS2 Rx Data End.	-
		RO	[8]	PS2 Rx Buffer Empty.	-
		RO	[7]	PS2 Rx Busy.	-
		RO	[6]	PS2 Rx Timeout. Cleared by Core Reset.	-
		RO	[5]	PS2 Rx Overflow. Cleared by Core Reset.	-
		RO	[4]	PS2 Rx Parity Error. Cleared by Core Reset.	-
		RO	[3:0]	PS2 Rx Status of FSM.	-
0x0B68	PS2_TXD0	RW	[8]	PS2 Tx Push.	0
0x0B88	PS2_TXD1	RW	[7:0]	PS2 Tx Data[7:0].	0
0x0B6C	PS2_RXD0	RW	[8]	PS2 Rx Push.	0
0x0B8C	PS2_RXD1	RO	[7:0]	PS2 Rx Data[7:0].	-

3.33. UART Registers

Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x0BA0 0x0BC0	UART_CTRL0 UART_CTRL1	RW	[28:24]	Divide Number. [0x07]: System Clock = 27MHz [0x09]: System Clock = 33MHz [0x0f]: System Clock = 54MHz (Default) [0x13]: System Clock = 66MHz	0
			[20]	CTS & RTS Enable.	0

			[18]	Parity Error Data Drop Enable.	0
			[17]	Error Interrupt Enable.	0
			[16]	Rx Interrupt Enable.	0
			[15]	Tx Interrupt Enable.	0
			[14]	Rx Module Enable.	0
			[13]	Tx Module Enable.	0
			[12]	Half Duplex.	0
			[11]	Loop Back.	0
			[10:9]	Baud Rate1.	0
			[10.3]	The register is only effective when Baud Rate0	U
				register is set to [110].	
				[00]: 4800	
				[01]: 2400	
				[10]:1200	
				[11]: 300	
			[8:6]	Baud Rate0.	0
			[0.0]	[000]: 230400	-
				[001] : 115200	
				[010] :57600	
				[011] : 38400	
				[100] : 19200	
				[101] : 9600	
				[110] : below 9600	
			[5:4]	Data Size.	0
				[00] : 5 bit	
				[01] : 6 bit	
				[10] : 7 bit	
				[11] : 8 bit	
			[3:2]	Stop Bit Size.	0
				[00] : 1 bit	
				[01] : 2 bit	
				[10], [11]: 1.5 bit	
			[1:0]	Parity Mode.	0
				[00], [01] : NONE	
				[10] : Even	
000 4	LIADT CTAO	DO.	[4.5]	[11] : Odd	
	UART_STA0	RO	[15]	CTS.	-
0x0BC4	UART_STA1		[14]	Rx Busy.	-
			[13]	Overrun. (Rx Buffer Full & Rx Frame Input)	-
			[12]	Frame Error.	-
			[11]	Parity Error.	
			[10:6]	Rx Buffer State.	
			[10.0]	The register indicates the number of remained	
				data in Rx Buffer. Zero means empty.	
			[5]	Tx Line Busy.	-
			[4:0]	Tx Buffer State.	8
			[]	The register indicates the number of remained	•
				data in Tx Buffer. Zero means full.	
0x0BA8	UART_TXD0	RW	[7:0]	Tx Data.	0
	UART_TXD1			Push signal is generated automatically when CPU	
0x0BC8	_			writes Tx data.	
UXUBC8				Willes IX data.	
0x0BAC	UART_RXD0	RO	[7:0]	Rx Data.	-
0x0BAC	UART_RXD0 UART_RXD1	RO	[7:0]		-

3.34. Timer Registers

Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x0BE0	TIMER_CLK_NUM	RW	[8:0]	Clock Number for uSec.	107
				(SYS_CLK / 1MHz) -1	
0x0BE4	TIMER_WATCHDOG	RW	[8]	Watchdog Enable.	1
			[7:0]	Watchdog Second Count.	0xff
				Write: Set	
				Read : Status	
0x0BE8	TIMER_USEC	RW	[9:0]	Watchdog Second Count.	107999
				Write : Set	
				Read : Status	

0x0BEC	TIMER_SEC	RW	[31:0]	Watchdog Second Count. Write: Set Read: Status	0
0x0D20	TIMER_USEC_LSB	RO	[7:0]	LSB Value of Micro Second of Timer	0x0

3.35. ATA Registers

Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x0C00	ATA_CMD	RW	[31]	Macro Mode Enable.	0
			[30]	Slave Mode.	0
				[0] : Master Mode	
				[1] : Slave Mode	
			[29]	Write Enable.	0
			[28]	Macro Command Skip.	0
			[27:26]	Mode.	0
				[0] : DMA (PIO4 Protocol) [3] : Direct	
			[25:24]	Multi Selector.	0
				[0] : 8	
				[1]: 16	
				[2]: 24	
				[3] : 128	
			[23]	IDE Bus Selection.	0
				[0] : CS0, CS1	
			raai	[1]: CS2, CS3	
			[22]	ATA Path.	0
				[0] : PCI to ATA	
			[04]	[1] : FDMA to ATA 48Bit LBA Mode.	0
			[21]	Clock Divide.	0
			[20.19]	[0] : x1	U
				[0] . X1 [1] : x2	
				[2] : x4	
				[3] : x8	
			[18]	Slow Data.	0
			[10]	Doubling PM_LEN, PM_TNS, PM_LTH values.	U
			[17:16]	Timeout.	0
			[17.10]	[0] : Off	0
				[1]: 32M clocks	
				[2] : 64M clocks	
				[3] : 96M clocks	
			[15:0]	Sector Counter.	0
0x0C04	ATA TIMING CFG	RW	[31:28]	CMD_CS_LEN.	0xf
				Length of CS0, CS.	
			[27:24]	CMD_CS_FALL.	0x2
				Falling Point of CS0, CS1 (at CS_LEN rising edge)	
			[23:20]	CMD_RW_FALL.	0x9
				Falling Point of RD, WR.	
			[19:16]	CMD_RW_RISE.	0xd
				Rising Point of RD, WR.	
			[15:12]	CMD_RD_LTH.	0xb
			F44 03	Storing Point of DIO (Input Data).	
			[11:8]	DAT_PM_LEN.	0x7
			[7.4]	Period of RD, WR.	0.0
			[7:4]	DAT_PM_TNS.	0x6
			[2.0]	Rising Point of RD, WR	Ove
			[3:0]	DAT_PM_LTH.	0x6
0,000	ATA TAD ADD	RW	[24.0]	Storing Point of DIO (Input Data)	0
0x0C08 0x0C0C	ATA_TAR_ADR ATA_EXT_ADR	RW	[31:0]	PCI Target Start Address. External Memory Start Address.	0
0x0C0C	ATA_STR_SEC0		[31:0]		0
0x0C10 0x0C14	ATA_STR_SEC0	RW RW	[31:0] [31:0]	ATA Start Sector[31:0]. ATA Start Sector[47:32]	0
0x0C14 0x0C18	ATA_DIR_STA	RO	[31:0]	Timeout.	U
0.00010	VIV_DIK_914	KU			-
			[30]	HDD Error State. Command End.	-
			[29]		-
			[28:26]	Reserved.	-
1			[25]	INT pin. (IDE BUS 1)	-
			[24]	INT pin. (IDE BUS 0)	-

		WO	[23]	RESET pin.	-
			[22]	READ pin.	-
			[21]	WRITE pin.	-
			[20]	CS1 pin.	-
			[19]	CS0 pin.	-
			[18]	ADR2 pin.	-
			[17]	ADR1 pin.	-
			[16]	ADR0 pin.	-
			[15:0]	DATA bus.	-
0x0C1C	ATA_FSM_STA	RO	[18:13]	DMA IO Status.	-
			[12:9]	DMA Control Status.	-
			[8:4]	Command Status.	-
			[3:0]	Control Status.	-

3.36. Audio Registers

Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x0D00	ADO_CTRL0	RW	[31]	Audio CODEC Enable.	0
			[30]	Master Mode.	0
				[0] : CLK/SYNC IN	
				[1]: CLK/SYNC OUT	
			[29]	Interface Mode.	0
				[0] : u-Law	
ļ			[00]	[1]: 128	
			[28]	Reserved.	0
			[27] [26]	Left-Right Word Swap. Only for I2S mode. Bit Width. Only for I2S.	0
			[20]	[0] : 16bit	U
ļ				[1] : 8bit	
			[25:24]	Multi Channel. Only for I2S slave mode.	0
ļ			[20.24]	[0]: 2 Channel	O
				[1]: 4 Channel	
ļ				[2] : 8 Channel	
				[3] : 16 Channel	
ļ			[23]	Mix Enable for Ch9 ~ Ch0.	0
			[22:20]	Decoding Volume Control for Ch9 ~ Ch0.	0
			[19]	Mix Enable for Ch19 ~ Ch10.	0
ļ			[18:16]	Decoding Volume Control for Ch19 ~ Ch10.	0
ļ			[9:0]	Channel I/O Mode.	0
ļ				PCM mode : [Ch9, Ch8, Ch7,, Ch0]	
				Ch(x) = 0: Encoding	
				Ch(x) = 1 : Decoding	
				100 made (100h40, 0h40) (0h47, 0h40)	
ļ				I2S mode : [{Ch19, Ch18}, {Ch17, Ch16}, {Ch15, Ch14},, {Ch1, Ch0}]	
ļ				$\{Ch(x1),Ch(x0)\} = 0 : Encoding$	
				$\{Ch(x1),Ch(x0)\}=0$. Encoding $\{Ch(x1),Ch(x0)\}=1$: Decoding	
0x0D04	ADO_SAMPLING	RW	[31]	Short Mode for Simulation. Only for Test.	0
ONODO!	7150_0711111 21110	'''	[30]	EE Mode for Testing. Only for Test.	0
			[29:25]	EE Mode Encoding Channel for Testing. Only for	0
ļ			[=====]	Test	•
			[24:16]	Serial Clock Number. (Only for I2S Master Mode)	0x18
ļ				M (Clock Frequency / Sampling)	
			[8:0]	Clock Divider. (Only for I2S Master Mode)	0x1A5
				N (Clock Frequency = SYS_CLK / (N*2) Hz)	
0x0D08	ADO_FDMA_INTR	RW	[31:19]	DMA Wait Interval.	
ļ			[18:16]	Interrupt Page Count Mode.	
ļ				The range will be allowed 0~4.	
ļ			[45.0]	2^n pages will be applied.	^
0,0000	ALIDIO EVOLO	DW	[15:0]	External Memory Base Address.	0
0x0D0C	AUDIO_EVOL0	RW	[29:27]	Encoding Volume Control for Ch9. [000]: x1 [100]: x1	U
				[000] : x1	
i			ı	[UU1]. AZ	
ĺ				[010] · v4 [110] · v1/4	
				[010] : x4 [110] : x1/4 [011] : x8 [111] : x1/8	
			[26:24]	[010] : x4 [110] : x1/4 [011] : x8 [111] : x1/8 Encoding Volume Control for C8.	0

			[20:18]	Encoding Volume Control for Ch6.	0
			[17:15]	Encoding Volume Control for Ch5.	0
			[14:12]	Encoding Volume Control for Ch4.	0
			[11:9]	Encoding Volume Control for Ch3.	0
			[8:6]	Encoding Volume Control for Ch2.	0
			[5:3]	Encoding Volume Control for Ch1.	0
			[2:0]	Encoding Volume Control for Ch0.	0
0x0D10	AUDIO_EVOL1	RW	[29:27]	Encoding Volume Control for Ch19.	0
				[000] : x1 [100] : x1	
				[001] : x2 [101] : x1/2	
				[010] : x4 [110] : x1/4	
				[011] : x8 [111] : x1/8	
			[26:24]	Encoding Volume Control for Ch18.	0
			[23:21]	Encoding Volume Control for Ch17.	0
			[20:18]	Encoding Volume Control for Ch16.	0
			[17:15]	Encoding Volume Control for Ch15.	0
			[14:12]	Encoding Volume Control for Ch14.	0
			[11:9]	Encoding Volume Control for Ch13.	0
			[8:6]	Encoding Volume Control for Ch12.	0
			[5:3]	Encoding Volume Control for Ch11.	0
			[2:0]	Encoding Volume Control for Ch10.	0
0x0D14	ADO_STA	RW	[31:10]	Reserved. (FSM for Debugging.)	0
			[9:5]	Channel Count. (Accessing Channel 0 ~ 19)	0
			[4:0]	Page Count. (Accessing Page 0 ~ 31)	0

4. Functional Description

4.1. System Signals

4.1.1. System Reset & Clock Sources

The asynchronous system reset pin i_SYS_RST_IN is active LOW. Although the SOLO6110 is designed with full hardwired logic and has no restrictions for the width of system reset pulse to reset internal flip flops, it should be delayed enough to guarantee stable clock sources to initialize the SDRAM with predefined power up sequence and to synchronize internal PLL. 1 msec delay is recommended after power-up. Fig. 4-1 shows the timing diagram of the system clock iSYS_CLK_IN and the asynchronous system reset i_SYS_RST_IN.

Fig. 4-1 Timing diagram of system reset

The SOLO6110 contains the internal PLL based clock generation module which is doubling input system clock iSYS_CLK_IN. In initial mode, input system clock 27MHz or 54MHz iSYS_CLK_IN will be bypass the PLL, but the output of PLL based clock generation module can be used for the internal system clock by configuring the PLL configuration register [0x0000]. More detail operation of the PLL based clock generation module will be described in the next section.

In normal operation, iSYS_CLK_IN accepts 27MHz or 54MHz frequency oscillator clock sources with 50% HIGH and 50% LOW clock duty and internal 135MHz(5*27HHz) system clock will be generated by PLL based clock generation module using accepted iSYS_CLK_IN. Most glue logic of the SOLO6110 is designed to be used internal 135MHz system clock (SYS clock), and this feature enables the performance of 5D1 H.264 video encoding and 4D1 H.264 video decoding performance. The video output for the live video output and PCI module is designed to be used 27MHz video output clock (VOUT clock) and 33MHz/66MHz PCI clock (PCI clock), respectively.

Table 4-1 System Clock Configuration Registers

Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x0000	SYS_CONFIG	RW	[31]	FDMA Reset. Active HIGH. [0]: Normal operation. [1]: SDRAM controller reset. [1]→[0]: Initializing SDRAM and power-up sequence.	0
			[30]	SDRAM Bit Width Selection. [0]: Not used. [1]: 64bit Interface with SDRAM.	1
			[29:28]	Reserved.	0
			[27:26]	Positive FDMA Clock Delay. Factory Default.	0
			[25:24]	Negative FDMA Clock Delay. Factory Default.	0

[23:22]	Reserved.	0
[21:20]	Reserved.	0
[19]	System Clock Divider Control	0
[18:14]	Not Used.	0
[13:5]	Net Used.	0
[4:3]	Not Used.	0
[2]	Not Used.	0
[1]	Not Used.	1
[0]	Not Used.	0

As shown in Table 4-1, *System Configuration Registers* [0x0000] control the SDRAM interface and the internal PLL clock generation for the system clock. *FDMA Reset Register* [0x0000] is active HIGH. The SDRAM controller will be reset when it is asserted and initialize power-up sequence on external SDRAM when it is deasserted. The external SDRAM of the SOLO6110 is interfaced with 64bit. It does not support 32bit interface. *SDRAM Bit Width Selection Register* [0x0000] configures the external SDRAM interface bit width. However, it only supports 64bit, not 32bit if *SDRAM Bit Width Selection Register* [0x0000]. 64bit SDRAM interface configuration will bring to system with 5D1 H.264 encoding and 4D1 H.264 decoding performance. The FDMA clock phase regarding to SYS clock is controlled by *Positive FDMA Clock Delay Register* [0x0000] and *Negative FDMA Clock Delay Register* [0x0000]. Proper values on these registers are defined in SOLO6110 driver software.

4.1.2. PLL Based Clock Generation Module

Fig. 4-2 shows the block diagram of PLL based clock generation module. The PLL can accept input frequencies from 5 MHz to 200 MHz. Because of the wide input frequency range and comprehensive divider options, several control bits are provided to set the operating mode of the PLL. The value that the bits need to be set at will be determined by the user's specified operating range, as detailed in Table 4-2.

Fig. 4-2 Block diagram of PLL Based Clock Generation Module

Table 4-2 PLL Configuration Register

Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x0020	PLL_CONFIG	RW	[22:20]	RANGE[2:0]. PLL Filter Range. [000]: Bypass [100]: 21 to 42MHz [001]: 5 to 10MHz [101]: 34 to 68MHz [010]: 8 to 16MHz [110]: 54 to 108MHz [011]: 13 to 26MHz [111]: 88 to 200MHz This sets the PLL loop filter to work with the post-reference divider frequency. Choose the highest valid range for best jitter performance. Recommended Value: 1	0
			[19:15]	DIVR[4:0]. Reference divider Value. (Binary value+1, so 0000 means "1") Both REF and divided REF must be within the range of 5MHz to 200MHz. Recommended Value: 8	0
			[14:12]	DIVQ[2:0]. Output Divider Value. (2^ Binary value, so 000 means "1") VCO must be within the range of 500MHz to 1000MHz. Recommended Value: 2	0
			[11:4]	DIVF[7:0]. Feedback Divider Value. (Binary value+1, so 00000000 means "1") Recommended Value: 89	0
			[3]	RESET. PLL Internal Reset. Recommended Value : 0	0
			[2]	BYPASS. PLL Bypass Enable. Recommended Value : 0	1
			[1]	FSEN. Frequency Synthesizer Enable. Recommended Value : 1	1
			[0]	FB. Feedback Clock. Recommended Value : 0	0

• PLL normal operation:

- 1. All operation should commence from the reset o bypass state (RESET=1 or BYPASS=1) with the reference clock running stably and the clock feedback path intact.
- 2. Set normal operating mode (RESET=0 and BYPASS=0).
- 3. Wait the specified lock time.
- 4. It is normal for the LOCK signal to come high before the specified lock time, and may glitch as jitter is acquired. This shows that the PLL has achieved a lock, bt it will continue adjusting itself to a more perfect operating point. In ajittery environment, it is possible that LOCK will not assert, but this does not mean that the PLL is not working.
- 5. To leave normal operating mode, assert RESET or BYPASS.

In Normal Mode operation, it is necessary to set suitable divider values to make sure PLL functional:

• PLL Divider Value Setting

There are 3 divider values (DIVR, DIVF, DIVQ, RANGE) to set the PLL output clock frequency FOUT:

- Input Divider Value DIVR
 DIVR = 16*R4+8*R3+4*R2+2*R1+R0+1
- o Feedback Divider Value DIVF

```
DIVF = 128*F7+64*F6+32*F5+16*F4+8*F3+4*F2+2*F1+F0+1
```

Output Divider Value(DIVQ)

```
DIVQ = 2^{4}F2+2*F1+F0+1
```

• PLL Output Clock Frequency Setting

```
FOUT = [FIN * DIVF] / [DIVR * DIVQ]
```

The recommended PLL setting values are defined in Table 4-2.

The PLL gives good performance based on proper divider settings. However, whether the divider setting is proper or not is determined by application. VCO stability and loop bandwidth play important roles on the quality of PLL's output clock. Of cause one should give VCO (and whole PLL) clean power, and pay more place-and-route consideration to avoid noise polluting. On the other hand, loop bandwidth selection (divider setting selection) may not be so strait-forward. Narrower loop bandwidth (larger NF divider value, and usually with lower comparison frequency) makes PLL less sensitive to input clock jitter, leaves the PLL's performance simply determined by VCO. It usually gives good short-term jitter performance if the VCO is in a quiet circumstance. But in some applications the long-term jitter performance is of main concern. It is known that increasing the loop bandwidth (set lower NF value and increase the comparison frequency) could give good long-term jitter result. So there are different "proper settings" in different applications and situation (power, noise, and input clock quality). Please find the proper divider setting value according to application, implement condition, and our silicon report.

4.1.3. SDRAM Controller & Fast DMA

All data for 16chnannel video multiplexer, H.264 video encoder, H.264 video decoder and 20channel G.723 audio CODEC are stored on the external SDRAM. SOLO6110 contains only one high bandwidth SDRAM controller, which can reduce the number of SDRAM components as well as the SDRAM memory space with efficient memory management. SDRAM should be powered up and initialized in a predefined manner as shown in Fig. 4-3. Once power is applied to VDD and VDDQ simultaneously and the clock is stable, the SDRAM requires a 100us delay prior to issuing any command than a COMMAND INHIBIT or a NOP. Once the 100us delay has been satisfied with at least one COMMAND INHIBIT or NOP command having been applied, a PRECHARGE command should be applied. All banks must be precharged, thereby placing the device in the all banks idle state.

Once in the idle state, two auto refresh cycles must be performed. After the auto refresh cycles are complete, the SDRAM is ready for mode register programming. Because the mode register will power up in an unknown state, it should be loaded prior to applying any operational command.

The mode register is used to define the specific mode of operation of the SDRAM. Although the SDRAM is designed to be used for various applications, SOLO6110 includes the selection of a burst

length(4), a burst type(sequential), a CAS latency(3 or 2), an operating mode(standard operation) and a write burst mode(programmed burst length).

Fig. 4-3 Timing diagram of power up sequence

SOLO6110 initialize SDRAM with power up sequence automatically when i_SYS_RST_IN is deasserted. (See Fig. 4-1.) Host CPU is able to initialize SDRAM with power up sequence using *FDMA Reset Register* [0x0000].

Fig. 4-4 shows timing diagram of SDRAM read cycle. As shown in Fig. 4-4, SOLO6110 uses 4 non-interleaved burst. Fig. 4-5 shows timing diagram of SDRAM write cycle. As shown in Fig. 4-5, SOLO6110 uses 4 non-interleaved burst.

The ACTIVE command is used to open (or activate) a row in a particular bank for a subsequent access. The READ command is used to initiate a burst read access to an active row. The WRITE command is used to initiate a burst write access to an active row.

Fig. 4-5 Timing diagram of SDRAM write cycle

Table 4-3 FDMA Clock Configuration Registers

Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x0004	FDMA_CONFIG		[16]	SDRAM Refresh Cycle Mode*. [0]: Refresh Cycle [1]: Refresh Cycle/16	0
			[15:8]	SDRAM Refresh Cycle*. (Factory Default) SDRAM Controller will execute refresh every collapsed time setting value. The unit of setting value will be 256 times of system clock cycle.	0x10

			[7:6]	SDRAM Size.	2
				[00] : 4 * 16bit 64Mbit SDRAM	
				2 * 32bit 64Mbit SDRAM	
				[01]: 4 * 16bit 128Mbit SDRAM	
				2 * 32bit 128Mbit SDRAM	
				[10] : 4 * 16bit 256Mbit SDRAM	
				[11]: 4 * 16bit 512Mbit SDRAM	
			[5]	SDRAM Clock Inversion*. (Factory Default)	1
			[4]	FDMA Read Data Strobe Selection*. (Factory	1
				Default)	
				The register is only effective in 32-bit FDMA	
				interface mode.	
			[3]	FDMA Read Data Selection*. (Factory Default)	1
			[2]	FDMA Read Data Clock Inversion*. (Factory	0
				Default)	
			[1:0]	FDMA Read Latency*. (Factory Default)	1
0x0008	DMA_CTRL1	RW	[5:2]	Reserved. (BT Cycle)	0
			[1]	Reserved. (MultiMode_n)	0
			[0]	Reserved. (SeqMode_n)	0

As shown in Table 4-3, *System FDMA Registers* [0x0004~0x0008] are accessed on high frequency clock source (135MHz) with SOLO6110. SOLO6110 generated predefined auto refresh cycle automatically during normal operation. The auto refresh period will be controlled by the value of *SDRAM Refresh Cycle Register* [0x0004] and its value is defined in SOLO6110 software driver. *SDRAM Size Register* [0x0004] will define the SDRAMs which is interface with SOLO6110. SOLO6110 is interface 64bit data bus or 32bit data bus and the available SDRAMs are listed in Table 4-4. *SDRAM Clock Inversion Register* [0x0004], *FDMA Read Data Strobe Selection Register* [0x0004], *FDMA Read Data Clock Inversion Register* [0x0004] and *FDMA Read Latency Register* [0x0004] are used for stable SDRAM interface. The appropriate values will be defined in SOLO6110 driver software.

Table 4-4 SDRAM Size

SDRAM	Manager	Data Bua	Address Bus	Caluman	SDRAM(No.)		
Size	Memory	Data Bus Width	Width	Column Size	64bit	32bit	
Size	Space	wiath	wiath	Size	interface	Interface	
00	64Mbit	16bit	12bit	8bit	4	2	
	64Mbit	32bit	11bit	8bit	2	1	
01	128Mbit	16bit	12bit	9bit	4	2	
	128Mbit	32bit	11bit	9bit	2	1	
02	256Mbit	16bit	13bit	9bit	4	2	
03	512Mbit	16bit	13bit	10bit	4	2	

4.1.4. Video Clock Configuration

SOLO6110 includes the internal PLL which is generating the internal 135MHz SYS clock (SYS_CLK) in normal operation. The VOUT clock for the video color encoder can be generated to pin ioVE_CLK by

the SYS clock or accepted from pin ioVE_CLK by the external clock module.

As shown in Table 4-5, the video input clock and output clock are controlled by Video Clock Configuration Registers [0x000C]. Video Output Clock Selection Register [0x000C] will decide the generating method of VOUT clock. In normal operation, the frequency of SYS clock is 135MHz and the frequency of VOUT clock will be 27MHz by setting 0 on Video Output Clock Selection Register [0x000C]. If the frequency of SYS clock is set to 54MHz, 27MHz according to special application, the frequency of VOUT clock will always be 27MHz by setting 1, 2 on Video Output Clock Selection Register [0x000C], respectively. If the frequency of SYS clock is set to other frequency expect 108MHz, 54MHz, 27Mhz, VOUT clock will be accepted the external 27MHz clock from pin ioVE_CLK by setting 3 on Video Output Clock Selection Register [0x000C]. Video Output Clock Inversion Register [0x000C] is used for stable interface with video color encoder chips and its value will be defined in the SOLO6110 software driver. The SOLO6110 has 8 video input ports to accept the video input, which will accept 16 channel video input with 54MHz Dual ITU-R BT 656 format. In case of accept 27MHz Single ITU-R BT 656 format, the SOLO6110 will accept only 8 channel video input by asserting 1 on Video Input Clock Selection Register [0x000C]. Video Input Clock Delay Register [0x000C] for each video input channel is used for stable interface with video color decoder and their value will be defined in the SOLO6110 driver software.

Table 4-5 Video Clock Configuration Registers

Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x000C	VDO_CLK_CONIFG	RW	[22]	Video Output Clock Inversion. (Factory Default)	0
			[21:20]	Video Output Clock Selection. (Factory Default) [0]: SYS_CLK/4 [1]: SYS_CLK/2 [2]: iSYS_CLK_IN/2	0
				[3] : EXT_CLK (from pin ioVE_CLK)	
			[19]	Reserved. (Video Spot Output Clock Inversion)	0
			[18]	Video Input Clock Selection. (Factory Default) [0]: 54MHz Dual ITU-R BT 656 format [1]: 27MHz Single ITU-R BT 656 format	0
			[17:16]	Reserved.	0
			[15:14]	Video Input Clock Delay for Channel 14, 15. (Factory Default)	0
			[13:11]	Video Input Clock Delay for Channel 12, 13. (Factory Default)	0
			[11:10]	Video Input Clock Delay for Channel 10, 11. (Factory Default)	0
			[9:8]	Video Input Clock Delay for Channel 8, 9. (Factory Default)	0
			[7:6]	Video Input Clock Delay for Channel 6, 7. (Factory Default)	0
			[5:4]	Video Input Clock Delay for Channel 4, 5. (Factory Default)	0
			[3:2]	Video Input Clock Delay for Channel 2, 3. (Factory Default)	0
			[1:0]	Video Input Clock Delay for Channel 0, 1. (Factory Default)	0

4.1.5. Interrupt Configuration

As shown in Table 4-6, the Interrupt controller of SOLO6110 has *System Interrupt Status Registers* [0x0010], *System Interrupt Acknowledge Registers* [0x0010] and *System Interrupt Enable Registers* [0x0014] for 21 different system interrupt sources. Each interrupt source can be active by asserting *System Interrupt Enable Register* [0x0014] bit. *System Interrupt Status* and *Acknowledge Registers* [0x0010] are interrupt status when they are read and interrupt acknowledge when they are written. The host CPU writes 1 on *System Interrupt Acknowledge Registers* [0x0010] to clear interrupt

Table 4-6 Interrupt Configuration Registers

Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x0010	SYS_INT_STA_ACK	RW	[20]	P2M3 Interrupt Status/Ack. Read Mode: P2M3 Interrupt Status. Write Mode: P2M3 Interrupt Acknowledge.	0
			[19]	P2M2 Interrupt Status/Ack. Read Mode: P2M2 Interrupt Status. Write Mode: P2M2 Interrupt Acknowledge.	0
			[18]	P2M1 Interrupt Status/Ack. Read Mode: P2M1 Interrupt Status. Write Mode: P2M1 Interrupt Acknowledge.	0
			[17]	P2M0 Interrupt Status/Ack. Read Mode: P2M0 Interrupt Status. Write Mode: P2M0 Interrupt Acknowledge.	0
			[16]	GPIO Interrupt Status/Ack. Read Mode: GPIO Interrupt Status. Write Mode: GPIO Interrupt Acknowledge.	0
			[15]	Reserved.	0
			[14]	Video Output Sync Interrupt Status/Ack. Read Mode: Video Input Interrupt Status. Write Mode: Video Input Interrupt Acknowledge.	0
			[13]	Video Motion Interrupt Status/Ack. Read Mode: Video Motion Interrupt Status. Write Mode: Video Motion Interrupt Acknowledge.	0
			[12]	ATA Command Interrupt Status/Ack. Read Mode: ATA Command Interrupt Status. Write Mode: ATA Command Interrupt Acknowledge.	0
			[11]	ATA Direction Interrupt Status/Ack. Read Mode: ATA Direction Interrupt Status. Write Mode: ATA Direction Interrupt Acknowledge.	0
			[10]	PCI Error Interrupt Status/Ack. Read Mode: Fatal Interrupt Status. Write Mode: Fatal Interrupt Acknowledge.	0
			[9]	PS2_1 Interrupt Status/Ack. Read Mode: PS2 Interrupt Status. Write Mode: PS2 Interrupt Acknowledge.	0
			[8]	PS2_0 Interrupt Status/Ack. Read Mode: PCI ERROR Interrupt Status. Write Mode: PCI ERROR Interrupt Acknowledge.	0
			[7]	SPI Interrupt Status/Ack. Read Mode: SPI Interrupt Status. Write Mode: SPI Interrupt Acknowledge.	0
			[6]	I2C Interrupt Status/Ack. Read Mode: I2C Interrupt Status. Write Mode: I2C Interrupt Acknowledge.	0
			[5]	UART1 Interrupt Status/Ack. Read Mode: UART1 Interrupt Status. Write Mode: UART1 Interrupt Acknowledge.	0

			[4]	UART0 Interrupt Status/Ack.	0
				Read Mode : UART0 Interrupt Status.	
				Write Mode: UART0 Interrupt Acknowledge.	
			[3]	Audio Interrupt Status/Ack.	0
				Read Mode : Audio Interrupt Status.	
				Write Mode: Audio Interrupt Acknowledge.	
			[2]	Reserved.	
			[1]	Decoder Interrupt Status/Ack.	0
				Read Mode : Decoder Interrupt Status.	
				Write Mode : Decoder Interrupt Acknowledge.	
			[0]	Encoder Interrupt Status/Ack.	0
				Read Mode : Encoder Interrupt Status.	
0.0044	OVO INT EN	D\A/	[00]	Write Mode: Encoder Interrupt Acknowledge.	0
0x0014	SYS_INT_EN	RW	[20]	P2M3 Interrupt Enable.	0
			[19]	P2M2 Interrupt Enable.	0
			[18]	P2M1 Interrupt Enable.	0
			[17]	P2M0 Interrupt Enable.	0
			[16]	GPIO Interrupt Enable.	0
			[15]	Reserved.	0
			[14]	Video Input Interrupt Enable.	0
			[13]	Video Motion Interrupt Enable.	0
			[12]	Reserved. (ATA Command Interrupt Enable)	0
			[11]	Reserved. (ATA Direction Interrupt Enable)	0
			[10]	PCI Error Interrupt Enable.	0
			[9]	PS2_1 Interrupt Enable.	0
			[8]	PS2_0 Interrupt Enable.	0
			[7]	SPI Interrupt Enable.	0
			[6]	I2C Interrupt Enable.	0
			[5]	UART1 Interrupt Enable.	0
			[4]	UART0 Interrupt Enable.	0
			[3]	Audio Interrupt Enable.	0
			[2]	Reserved.	0
			[1]	Decoder Interrupt Enable.	0
			[0]	Encoder Interrupt Enable.	0

4.1.6. Chip Option

As shown in Table 4-7, the value of the *Chip Option Register* [0x001C] will represent 7 for SOLO6110-16, 6 for SOLO6110-9, 5 for SOLO6110-4, respectively. SOLO6110 enables to develop 16, 8/9, 4 channel DVR or NVS with only one platform easily. Therefore, only one application software using *Chip Option register* [0x001C] is possible to develop 16, 8/9, 4 channel DVR or NVS. This feature will bring to reduce system development and maintenance cost.

Table 4-7 Test Mode Registers

Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x001C	TEST_MODE	RW	[15:8]	Reserved.	0
		RO	[2:0]	Chip Option. [111]: SOLO6110-16 [110]: SOLO6110-9 [101]: SOLO6110-4	-

4.2. PCI and Local Host Interface

SOLO6110 supports PCI or 32bit local host interface by the pin iPCI_MODE configuration. iPCI_MODE pin is set to HIGH to active PCI or LOW to active 32bit local host interface. The PCI of SOLO6110 supports very powerful four channel DMA functions in PCI master mode. Therefore, the host

CPUs with PCI are strongly recommended to support the very high performance SOLO6110 which has 5 D1 H.264 video Encoder and 4 D1 H.264 video Decoder.

4.2.1. PCI

The PCI of SOLO6110 is designed to be satisfied with the protocol and electrical features of the PCI Local Bus Specification, Revision 2.2 32bit/33MHz (66MHz). The PCI interface requires a minimum of 47 pins for a target-only device and 49 pins for a master to handle data and addressing, interface control, arbitration, and system functions. The direction indication on signals in Fig. 4-6 assumes a combination master/target device.

Fig. 4-6 PCI Pin List

PCI signal is defined in Table 4-8.

in *Input* is a standard input-only signal.

out Totem Pole Output is a standard active driver.

t/s Tri-State is a bi-directional, tri-state input/output pin.

s/t/s Sustained Tri-State is an active low tri-state signal owned and driven

by one and only one agent at a time. The agent that drives an s/t/s pin low must drive it high for at least one clock before letting it float. A new agent cannot start driving a s/t/s signal any sooner than one clock after the previous owner tri-states it. A pullup is required to sustain

the inactive state until another agent drives it and must be provided by the central resource.

o/d

Open Drain allows multiple devices to share as a wire-OR. A pull-up is required to sustain the inactive state until another agent drives it and must be provided by the central resource.

Table 4-8 PCI Pin Type Definition

System Pins		
CLK	in	Clock provides timing for all transactions on PCI and is an input to every PCI device. All other PCI signals, except nRST, and nINTD, are sampled on the rising edge of CLK and all other timing parameters are defined with respect to this edge. PCI operates up to 33 MHz and, in general, the minimum frequency is DC (0 Hz).
nRST	in	Reset is used to bring PCI-specific registers, sequencers, and signals to a consistent state. What effect nRST has on a device beyond the PCI sequencer is beyond the scope of this specification, except for reset states of required PCI configuration registers. A device that can wake the system while in a powered down bus state has additional requirements related to nRST. Refer to the PCI Power Management Interface Specification for details. Anytime nRST is asserted, all PCI output signals must be driven to their benign state. In general, this means they must be asynchronously tri-stated. nREQ and nGNT must both be tristated (they cannot be driven low or high during reset). To prevent AD, nC/BE, and PAR signals from floating during reset, the central resource may drive these lines during reset (bus parking) but only to a logic low level; they may not be driven high. nRST may be asynchronous to CLK when asserted or deasserted. Although asynchronous, deassertion is guaranteed to be a clean, bounce-free edge. Except for configuration accesses, only devices that are required to boot the system will respond after reset.
Address and D	ata Pins	
AD[31:0]	t/s	Address and Data are multiplexed on the same PCI pins. A bus transaction consists of an address2 phase followed by one or more data phases. PCI supports both read and write bursts. The address phase is the first clock cycle in which nFRAME is asserted. During the address phase, AD[31:0] contain a physical address (32 bits). For I/O, this is a byte address; for configuration and memory, it is a DWORD address. During data phases, AD[07:0] contain the least significant byte (Isb) and AD[31:24] contain the most significant byte (msb). Write data is stable and valid when nIRDY is asserted; read data is stable and valid when nTRDY is asserted. Data is transferred during those clocks where both nIRDY and nTRDY are asserted.
nC/BE[3:0]	t/s	Bus Command and Byte Enables are multiplexed on the same PCI pins. During the address phase of a transaction, nC/BE[3:0] define the bus command. During the data phase, nC/BE[3:0] are used as Byte Enables. The Byte Enables are valid for the entire data phase and determine which byte lanes carry meaningful data. nC/BE[0] applies to byte 0 (lsb) and nC/BE[3] applies to byte 3 (msb).
PAR	t/s	Parity is even3 parity across AD[31:0] and nC/BE[3:0]. Parity generation is required by all PCI agents. PAR is stable and valid one clock after each address phase. For data phases, PAR is stable and valid one clock after either nIRDY is asserted on a write transaction or nTRDY is asserted on a read transaction. Once PAR is valid, it remains valid until one clock after the completion of the current data phase. (PAR has the same timing as AD[31:0], but it is delayed by one clock.) The master drives PAR for address and write data phases; the target drives PAR for read data phases.
Interface Contr	ol Pins	
nFRAME	s/t/s	Cycle Frame is driven by the current master to indicate the beginning and duration of an access. nFRAME is asserted to indicate a bus transaction is beginning. While nFRAME is asserted, data transfers continue. When nFRAME is deasserted, the transaction is in the final data phase or has completed.
nIRDY	s/t/s	Initiator Ready indicates the initiating agent's (bus master's) ability to complete the current data phase of the transaction. nIRDY is used in conjunction with nTRDY. A data phase is completed on any clock both nIRDY and nTRDY are

		asserted. During a write, nIRDY indicates that valid data is present on AD[31:0] . During a read, it indicates the master is prepared to accept data. Wait cycles are inserted until both nIRDY and nTRDY are asserted together.
nTRDY	s/t/s	Target Ready indicates the target agent's (selected device's) ability to complete the current data phase of the transaction. nTRDY is used in conjunction with nIRDY. A data phase is completed on any clock both nTRDY and nIRDY are asserted. During a read, nTRDY indicates that valid data is present on AD[31:0]. During a write, it indicates the target is prepared to accept data. Wait cycles are inserted until both nIRDY and nTRDY are asserted together.
nSTOP	s/t/s	Stop indicates the current target is requesting the master to stop the current transaction.
nLOCK	s/t/s	Lock indicates an atomic operation to a bridge that may require multiple transactions to complete. When nLOCK is asserted, non-exclusive transactions may proceed to a bridge that is not currently locked. A grant to start a transaction on PCI does not guarantee control of nLOCK . Control of nLOCK is obtained under its own protocol in conjunction with nGNT . It is possible for different agents to use PCI while a single master retains ownership of nLOCK . Locked transactions may be initiated only by host bridges, PCI-to-PCI bridges, and expansion bus bridges. Refer to Appendix F for details on the requirements of nLOCK .
IDSEL	in	Initialization Device Select is used as a chip select during configuration read and write transactions.
nDEVSEL	s/t/s	Device Select, when actively driven, indicates the driving device has decoded its address as the target of the current access. As an input, nDEVSEL indicates whether any device on the bus has been selected.
Arbitration Pins	(Bus Ma	sters Only)
nREQ	t/s	Request indicates to the arbiter that this agent desires use of the bus. This is a point-to-point signal. Every master has its own nREQ which must be tri-stated while nRST is asserted.
nGNT	t/s	Grant indicates to the agent that access to the bus has been granted. This is a point-to-point signal. Every master has its own nGNT which must be ignored while nRST is asserted.
Error Reporting	Pins	
nPERR	s/t/s	Parity Error is only for the reporting of data parity errors during all PCI transactions except a Special Cycle. The nPERR pin is sustained tri-state and must be driven active by the agent receiving data (when enabled) two clocks following the data when a data parity error is detected. The minimum duration of nPERR is one clock for each data phase that a data parity error is detected. (If sequential data phases each have a data parity error, the nPERR signal will be asserted for more than a single clock.) nPERR must be driven high for one clock before being tri-stated as with all sustained tri-state signals.
nSERR	o/d	System Error is for reporting address parity errors, data parity errors on the Special Cycle command, or any other system error where the result will be catastrophic. If an agent does not want a non-maskable interrupt (NMI) to be generated, a different reporting mechanism is required. nSERR is pure open drain and is actively driven for a single PCI clock by the agent reporting the error. The assertion of nSERR is synchronous to the clock and meets the setup and hold times of all bused signals. However, the restoring of nSERR to the deasserted state is accomplished by a weak pullup (same value as used for s/t/s) which is provided by the central resource not by the signaling agent. This pullup may take two to three clock periods to fully restore nSERR. The agent that reports nSERR to the operating system does so anytime nSERR is asserted.
Interrupt Pins (C	Optional)	
nINT	o/d	Interrupt is used to request an interrupt.

Exactly how the IDSEL pin is driven is left to the discretion of the host/memory bridge or system designer. This signal has been designed to allow its connection to one of the upper 21 address lines, which are not otherwise used in a configuration access. However, there is no specified way of determining IDSEL from the upper 21 address bits. Therefore, the IDSEL pin must be supported by all targets. Devices must not make an internal connection between an AD line and an internal IDSEL signal in order to save a pin. The only exception is the host bridge, since it defines how IDSELs are mapped. IDSEL

generation behind a PCI-to-PCI bridge is specified in the PCI-to-PCI Bridge Architecture Specification.

How a system generates IDSEL is system specific; however, if no other mapping is required, the following example may be used. The IDSEL signal associated with Device Number 0 is connected to AD[16], IDSEL of Device Number 1 is connected to AD[17], and so forth until IDSEL of Device Number 15 is connected to AD[31]. For Device Number 17-31, the host bridge should execute the transaction but not assert any of the AD[31:16] lines but allow the access to be terminated with Master-Abort.

Twenty-one different devices can be uniquely selected for configuration accesses by connecting a different address line to each device an asserting one of the AD[31:11] lines at a time. The issue with connecting one of the upper 21 AD lines to IDSEL to the appropriate AD line. This does, however, create a very slow slew rate on IDSEL, causing it to be in an invalid logic state most of the time, as shown in Fig. 4-7 with "XXXX" marks.

Fig. 4-7 Configuration Read

Fig. 4-8 illustrates a real transaction and starts with an address phase which occurs when nFRAME is asserted for the first time and occurs on clock2. During the address phase, AD[31:0] contain a valid address and nC/BE[3:0] contain a valid bus command.

Fig. 4-8 Basic Read Operation

The first clock of the first data phase is clock3. During the data phase, nC/BE indicate which byte lanes are involved in the current data phase. A data phase may consist of wait cycles and a data transfer. The nC/BE output buffers must remain enabled (for both read and writes) form the fist clock of the data phase through the end of the transaction. This ensures nC/BE are not left floating for long intervals. The nC/BE lines contain valid byte enable information during the entire data phase independent of the state of nIRDY. The nC/BE lines contain the byte enable information for data phase N+1 on the clock following the completion of the data phase N. This is not shown in Fig. 4-8 because a burst read transaction typically has all byte enables asserted; however, it is shown in Fig. 4-9. Notice on clock 5 in Fig. 4-9, the master inserted a wait state by deasserting nIRDY. However, the byte enables for data phase 3 are valid on clock 5 and remain valid until the data phase completes on clock 8.

The fist data phase on a read transaction requites a turnaround-cycle (enforced by the target via nTRDY). In this case, the address is valid on clock2 and then the master stops driving AD. The earliest the target can provide valid data is clock 4. The target must drive the AD lines following the turnaround cycle when nDEVSEL is asserted. Once enabled, the output buffers must stay enabled through the end of the transaction. (This ensures that the AD lines are not left floating for lone intervals.)

One way for a data phase to complete is when data is transferred, which occurs when both nIRDY and nTRDY are asserted on the same rising clock edge. There are other conditions that complete a data phase. (nTRDY cannot be driven until nDEVSEL is asserted.) When either nIRDY or nTRDY is deasseted, a wait cycle is inserted and no data is transferred. As noted in Fig. 4-8, data is successfully transferred on clocks 4, 6, and 8 and wait cycles are inserted on clock 3, 5, and 7. The first data phase completes in the minimum time for a read transaction. The second data phase is extended on clock 5 because nTRDY is

deasserted. The last data phase is extended because nIRDY was deasserted on clock 7.

The master knows at clock 7 that the next data phase is the last. However, because the master is not ready to complete the last transfer (nIRDY is deasserted on clock 7), nFRAME stays asserted. Only when nIRDY is asserted can nFRAME be deasserted as occurs on clock 8, indicating to the target that this is the last data phase of the transaction.

Fig. 4-9 illustrates a write transaction. The transaction starts when nFRAME is asserted for the first time which occurs on clock 2. A write transaction is similar to a read transaction except no turnaround cycle is required following the address phase because the master provides both address and data. Data phases work the same for both read and write transactions.

Fig. 4-9 Basic Write Operation

In Fig. 4-9, the first and second data phases complete with zero wait cycles. However, the third data phase has three wait cycles inserted by the target. Notice both agents insert a wait cycle on clock 5. nIRDY must be asserted when nFRAME is deasserted indicating the last data phase.

The date transfer was delayed by the master on clock 5 because nIRDY was deasserted. The last data phase is signaled by the master on clock 6, but it does not complete until clock 8.

The PCI configuration registers of the SOLO6110 have default values and are updated values using PCI configuration EEPROM. iPCI_EEPROM pin is set to HIGH to use PCI configuration EEPROM and the PCI configuration registers are loaded after the pin i_SYS_RST_IN is reset. As shown in Table 4-9, PCI Configuration EEPROM Access Enable Register [0x0060] should be set to 1 to access the PCI configuration EEPROM. PCI Configuration EEPROM Chip Selection Register [0x0060], PCI Configuration EEPROM Serial Clock [0x0060], PCI Configuration EEPROM Data Output Register

[0x0060] and *PCI Configuration EEPROM Data Input Register* [0x0060] are used to interface with PCI configuration through oEEPROM_CS, oEEPROM_SK, oEEPROM_DO and iEEPROM_DI, respectively.

Table 4-9 EEPROM Access Registers

Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x0060	EEPROM_ACC	RW	[7]	[7] PCI Configuration EEPROM Access Enable.	
			[3]	PCI Configuration EEPROM Chip Select.	0
			[2]	PCI Configuration EEPROM Serial Clock.	0
			[1]	PCI Configuration EEPROM Data Output.	0
		RO	[0]	PCI Configuration EEPROM Data Input.	-

Table 4-10 shows PCI configuration registers, which is listed up initial values. Device ID, Vendor ID, Subsys ID, Subsys Vendor ID, Class Code, Rev ID, Header Type, Max Lat, Min Gnt and Int Pin of PCI configuration registers can be update by only PCI configuration EEPROM. Command, Status, Latency Timer, Cache Line Size, Memory Base Address, Interrupt Line, Retry Timeout and TRDY Timeout of PCI configuration registers can be update by PCI configuration write as shown as Fig. 4-7. In this case, PCI command needs to be change as PCI configuration write instead of PCI configuration read. In addition, PCI configuration read is used to read PCI configuration registers for checking initial value and updated value.

Table 4-10 PCI Configuration Registers

31		Offset	Initial Value		
Dev	ice ID	Ve	endor ID	00h	6110_9413h
St	atus	Co	ommand	04h	02a0_0000h
	Class Code		Revision ID	08h	040000_00h
BIST	Header Type	Latency Timer	Cache line Size	0Ch	00_00_20_00h
	Memory B	ase Address		10h	00_00000_8h
	Res	served		14h	
	Res	served		18h	
	Res	served		1Ch	
	Res	served		20h	
	Res	served		24h	
	Res	served		28h	
Subsy	stem ID	2Ch	6110_9413h		
	Res	30h			
	Res	34h			
	Res	served		38h	

Max_Lat	Min_Gnt	Interrupt Pin	Interrupt Line	3Ch	0x01_00_01_00
Reserved		Retry Timeout	TRDY Timeout	40h	0x0000_80_80

Table 4-11 Contents of PCI configuration EEPROM

Address	Contents			
00h	Vend	lor ID		
04h	Device ID			
58h	Subsystem Vendor ID			
5Ch	Subsystem ID			
78h	Interrupt Pin			
7Ch	Max_Lat	Min_Gnt		

Pin iPCI_EEPROM should be set to HIGH to update the PCI configuration registers from PCI configuration EEPROM. The configuration registers are updated automatically after system reset. PCI configuration EEPROM can be access using EEPROM_ACC register. The PCI Configuration EEPROM Access Enable should be set to 1 to access PCI configuration EEPROM. Fig. 4-10 shows an example of PCI configuration EEPROM timing.

(a) Read Timing

(b) Write Timing

Fig. 4-10 PCI Configuration EEPROM Timing (AT93C46 of ATMEL)

Fig. 4-11 shows the address mapping on PCI memory address region. The host CPU accesses the registers to control SOLO6110 and the P2M buffer to exchange many amount of data efficiently with SOLO6110. The PCI master mode operation will be explained in clause 4.2.3.

Fig. 4-11 Address Mapping on PCI memory address region

If the PCI error is occurred, SOLO6110 will assert the PCI error interrupt on the *PCI Error Interrupt Status/Ack Register* [0x0010]. In case of error interrupt, *PCI Error Registers* [0x0070] will store PCI error statuses which are classified as PCI fatal error, PCI parity error, PCI target abort error and PCI timeout error. SOLO6110 driver software will include the handling methods for these PCI errors.

When SOLO6110 is operated in master mode, SOLO6110 can meet a PCI fatal error. In this case, SOLO6110 will assert *PCI fatal Error interrupt Register* [0x0010]. The PCI fatal error will occur in the following cases:

- If the requested PCI target does not respond. This error usually indicates an invalid address. SOLO6110 will execute a Master Abort cycle.
- 2. If the requested PCI target terminates the cycle with a target abort.

- 3. If the requested PCI target responds with a PCI_DEVSEL#, but does not follow with PCI_TRDY or PCI_STOP to allow the cycle to complete. SOLO6110 provides a programmable timer. TRDY_TIMEOUT to determinate at what point the master should abandon the cycle. (Bus Lookup Prevention)
- 4. If the PCI target device retries beyond the retry count. SOLO6110 provides a programmable timer, RETRY_TIMEOUT to determine at what point the master should abandon the cycle. (Bus Lookup Prevention)

The PCI master parity error can be occurred during SOLO6110 is writing in the PCI master operation. SOLO6110 will assert io_PCI_PERR for the PCI data parity error and io_PCI_SERR for the PCI address parity error in the PCI target operation.

SOLO6110 will assert the PCI Target Abort Error if the PCI address parity error or bytes enable error was occurred.

SOLO6110 will wait 65,536 cycles in PCI master operation until occupying the PCI bus. SOLO6110 will assert the PCI timeout error if it cannot occupy the PCI bus during 65,536 cycles. If the Timeout Error Enable register is asserted, SOLO6110 will assert the interrupt as other error conditions.

Table 4-12 PCI Error Registers

Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x0070	PCI_ERROR	RW	[31]	Timeout Error Enable.	0
		RO	[28:24]	Reserved. (FSM2 for Debugging)	-
			[23:20]	Reserved. (FSM1 for Debugging)	-
			[19:16]	Reserved. (FSM0 for Debugging)	-
			[15:7]	Reserved.	-
			[6]	P2M Descriptor Master Application.	-
			[5]	ATA Active in PCI Master Application.	-
			[4]	P2M Active as PCI Master Application.	
			[3]	Timeout Error.	-
			[2]	Target Abort Error.	-
			[1]	Parity Error.	-
			[0]	Fatal Error.	-

4.2.2. Host Interface

Fig. 4-12 shows host writing timing. The host interface is designed by synchronized on internal SYS clock. Therefore, control signal, address and data need to be maintained at least three clock cycles for two clock cycles for the setup time and one clock cycle for the hold time. For example, one clock cycle is about 7.58nsec if SYS clock is set to 132MHz (clock period is about 7.58nsec) clock source.

Fig. 4-12 Host Writing Timing

Fig. 4-13 show host reading timing. Control signal, address and data need to be maintained at least four clock cycles for two clock cycles for the setup time and two clock cycles for the hold time.

Fig. 4-13 Host Reading Timing

4.2.3. P2M Bridge

SOLO6110 includes the P2M (PCI to Memory) bridge which exchanges the data between the host CPU memory and SOLO6110 external memory. It will enable to transfer data very efficiently using DMA (Direct Memory Access) in the PCI master operation mode. However, it is impossible to use the DMA in the PCI target operation mode or in the host interface mode. The powerful DMA of SOLO6110 will bring reducing the relative CPU cost as well as the upgraded system performance. In other word, it is very important to support the 5D1 encoding/4D1 Decoding H.264 CODEC without any interface restrictions in PCI master mode applications.

As shown in Table 4-13, SOLO6110 supports four DMA channels for the P2M bridge and includes four set of registers to configure *P2M Configuration Registers* [0x0080~0x00FC]. Each P2M bridge channel can be allocated for the H.264 video encoder, the H.264 video decoder, the OSG write and the live image, respectively. Therefore, the entire system performance regarding the DMA will be increased

because four different DMA will be operated simultaneously.

Table 4-13 P2M Configuration Register

Register Address	Register Name	Туре	Bit Field	Description	Initial State		
0x0080 0x00A0 0x00C0	P2M_CONFIG0 P2M_CONFIG1 P2M_CONFIG2	RW	[10:6]	DMA Waiting Interval. (N*64 clocks) The interval between burst transaction is	0		
0x00E0	P2M_CONFIG2 P2M_CONFIG3		[5]	controlled by setting the value. Byte Reorder. [0]: RGB to RGB	0		
			[4]	[1] : BGR to RGB 16bit RGB Mode. [0] : {xrrr rrgg gggb bbbb}	0		
					[3]	[1] : {rrrr rggg gggb bbbb} Chroma Swap. [0] : {Cb Y0 Cr Y1}	0
			[2]	[1] : {Cr Y0 Cb Y1} PCI Master Mode. [0] : PCI Target/Host Mode.	0		
			[1]	[1] : PCI Master Mode. Descriptor Interrupt Mode. [0] : Each Command Finish.	0		
			[0]	[1] : Descriptor Queue Empty.			
0x0084 0x00A4 0x00C4 0x00E4	P2M_DES_ADR0 P2M_DES_ADR1 P2M_DES_ADR2 P2M_DES_ADR3	RW	[0] [31:0]	Descriptor Mode. Active HIGH. Descriptor Base Address. The descriptor queue will be store on CPU memory. The registers will points the addresses to be stored the 256 depth descriptor queues of which size are 4,096 bytes, respectively.	0		
0x0088 0x00A8 0x00C8 0x00E8	P2M_BYTE_SWAP0 P2M_BYTE_SWAP1 P2M_BYTE_SWAP2 P2M_BYTE_SWAP3	RW	[7:0]	Endian Selection. [0]: bypass [1]: 4 byte big endian [2]: 2 byte big endian	0		
0x008C 0x00AC 0x00CC	P2M_STATUS0 P2M_STATUS1 P2M_STATUS2	RO	[8]	Command Done. The register will be asserted at the interrupt request status.	-		
0x00EC	P2M_STATUS3		[7:0]	Current Descriptor ID. The register value will point the descriptor ID which is operated currently.	-		
0x0090 0x00B0	P2M_CONTROL0 P2M_CONTROL1	RW	[31:20] [19:10]	Host Memory Increase Size (TI). (DWORD) Repeat Number (RP).	0		
0x00D0 0x00D0 0x00F0	P2M_CONTROL2 P2M_CONTROL3		[9:7]	Burst Size. (Bytes) [1]: 256 [2]: 128 [3]: 64 [4]: 32 [5]: 128 (2 page mode)	0		
			[6]	When Color Space Conversion is asserted. RGB Bit Width. [0]: 24bit [1]: 16bit When Color Space Conversion is de-asserted. VGA OSG Alpha Blending. [0]: Off [1]: On	0		
			[5:4] [3] [2]	When Color Space Conversion is asserted. [0]: Y[0] <=0 (Off) [1]: Y[0] <=1 [2]: Y[0] <= G[0] [3]: Y[0] <= Bit[15] When Color Space Conversion is de-asserted. [0]: Y[0] <= 0 [1]: [15] <= 1 [2]: [15] <= [5] [3]: [15] <= [15] Color Space Conversion On. Reserved.	0 0		

			[1]	Write Enable. [0]: Read [11: Write	0
			[0]	Transaction On.	0
0x0094	P2M_EXT_CFG0	RW	[31:20]	External Memory Increase Size (FI). (DWORD)	0
0x00B4	P2M_EXT_CFG1		[19:0]	External Memory Copy Size (FC). (DWORD)	0
0x00D4	P2M_EXT_CFG2				
0x00F4	P2M_EXT_CFG3				
0x0098	P2M_TAR_ADR0	RW	[31:0]	Host Memory Base Address (TA).	0
0x00B8	P2M_TAR_ADR1				
0x00D8	P2M_TAR_ADR2				
0x00F8	P2M_TAR_ADR3				
0x009C	P2M_EXT_ADR0	RW	[31:0]	External Memory Base Address (FA).	0
0x00BC	P2M_EXT_ADR1			, ,	
0x00DC	P2M_EXT_ADR2				
0x00FC	P2M_EXT_ADR3				

SOLO6110 supports the DMA descriptor, which can reduce the waiting time between the P2M transaction and increase the transaction efficiency. This feature is only effective in PCI master operation. This feature will make more powerful system performance for the OSG or the live video overlay of PC based DVR because the discontinuous data on the external SDRAM addressing will be transacted like as the continuous data. As shown in Fig. 4-11, the buffer memory for the P2M bridge is allocation on 0x2000 in PCI addressing region.

Fig. 4-14 shows the block diagram of P2M bridge. In PCI target mode and local host interface mode, the host CPUs accesses the registers, P2M buffer and G.723 code buffer. The DMA in P2M bridge transfers data in burst mode during the SOLO6110 is operated in PCI master mode.

(b) Local Host Interface Mode

G.723

Fig. 4-14 Block Diagram of the P2M Bridge

PCI Target and Host Mode Operation

As shown in Fig. 4-15, the host CPU reads or writes SDRAM data of SOLO6110 by the unit of the burst size at one transaction in PCI target mode or local host mode operation. The CPU can acquire the end of transaction by using P2M transaction done register with polling mode or P2M interrupt status register with interrupt mode. That feature may reduce transaction efficiency and increase CPU load.

Fig. 4-15 Operation of PCI Target Mode or Local Host Mode

In PCI target and Local Host Mode operation, two pages can be used when *Burst Size Register* [0x0090, 0x00B0, 0x00D0, 0x00F0] is set to 5. The P2M FIFO in Fig. 4-14 will be split to two buffers. One is used to buffer data from SDRAM while the other is used to buffer data to CPU. The transaction efficiency will be better about 10% than that of one page modes.

PCI Master Mode Operation

As shown in Fig. 4-16, SOLO6110 transfers a large amount of data by the unit of the burst size repeatedly in PCI master mode operation. The CPU can acquire the end of transaction by using P2M transaction done register with polling mode or P2M interrupt status register with interrupt mode. That feature can increase transaction efficiency and reduce CPU load.

Fig. 4-16 Operation of PCI Master Mode

In normal operation, the data will be transacted in continuous memory address. However, the video live read or OSG data write will be transacted line by line. SOLO6110 includes the P2M bridge transact the data line by line. Fig. 4-17 illustrates DMA transaction line by line.

Fig. 4-17 DMA Transaction Line by Line

FA: External Memory Base Address (P2M_EXT_ADR)

TA: Host Memory Base Address (P2M_TAR_ADR)

FC: External Memory Copy Size (P2M_EXT_CFG[19:0]), DWORD

TC: Host Memory Copy Size, (Not defined) DWORD

FI: External Memory Increase Size (P2M_EXT_CFG[31:20]), DWORD

TI: Host Memory Increase Size (P2M_CTRL[31:20]), DWORD

RP: Repeat Number (P2M_CTROL[19:10])

When the user set the registers, the set values should be sufficient the following conditions.

- 1) FI >= FC, TI >= TC
- 2) If CSC Mode, FC=TC*2/3

Otherwise, FC=TC

Although SOLO6110 supports the DMA operation, it will take quite a long for the host CPU to response the interrupt and to set the next DMA operation register. SOLO6110 supports the description mode to reduce the interval between transactions. If the host CPU stores the P2M descriptors in the P2M description queue on the host addressing region, and starts the description operation, SOLO6110 will get the P2M descriptor on the PCI master mode and process the P2M descriptor one by one until the description queue is empty. Each P2M description queue size will be 4k bytes and store 256 P2M descriptors which are 16 bytes as shown in Table 4-14. This feature will improve the entire system performance because it needs not to wait finishing every P2M command and to set the next command.

Table 4-14 The P2M Descriptor

Offset	31	20	19	10	9	0
0x00	Host Memory Increase Number[TI] (DWORD)		Repeat Number (Line Moo	le)	Controls	
0x04	External Memory Increase Number[FI] (DWOR	D)	External Memory Copy Siz	ze [FC]	(DWORD)	
0x08	Host Memory Base Address [TA]					
0x0C	Ext Memory Base Address [FA]					

Controls

9	8	7	6	5	4	3	2	1	0
	Burst		16	A M	lode	CSC	INT	WR	ON

Color Space Conversion (CSC)

The P2M bridge includes the RGB to YUV color space conversion which converts RGB to YUV format automatically during writing the RGB OSB data on the external memory region. Fig. 4-18 shows the block diagram of the color space conversion.

Fig. 4-18 Block Diagram of the Color Space Conversion

4.3. Video Multiplexer

4.3.1. Video Input Interface

SOLO6110 has 8 video input ports which accept 16 video input streams with 54MHz dual ITU-R BT 656 format. Dual ITU-R BT 656 format enables two video input channel data to be accepted through one video input port using time multiplexing. Therefore, dual ITU-R BT 656 format is very useful for security applications which need multi video input ports because video input ports can be reduced.

Fig. 4-19(a) shows 54MHz dual ITU-R BT 656 format for video input port 0 to 15 and Fig. 4-19(b) shows normal ITU-R BT 656 format which is used for the video output port. As shown in Fig. 4-19(a), the video input channel 0 is accepted at the rising edge of the video clock and the video input channel 1 is accepted at the falling edge of the video clock. The video input clock can be delayed to avoid setup/hold timing violation by setting *Video Clock Configuration Registers* [0x000C]. The appropriate value will be defined in SOLO6110 driver software.

(a) 54MHz Dual ITU-R BT656 format

Fig. 4-19 Waveform of Multiplexed Video Input Format

SOLO6110 contains the video matrix switch between the video input ports and the video multiplexer input ports. The video matrix enables the video input channel to be changed virtually and to be used to produce the multiple H.264 video streams. Fig. 4-21 shows the structure of the video matrix switch of SOLO6110.

Fig. 4-20 Video Matrix Switch

Fig. 4-21 shows examples of the video matrix switch. Fig. 4-21(a), (b) and (c) illustrate a normal connection at the initial condition, double connection using SOLO6110-9 and quadruple connection using SOLO6110-4. The multiple connections enable to produce more various H.264 video streams with virtual video channel encoding which is very important to support the network clients on various internet environments. Although SOLO6110-9 and SOLO6110-4 are restricted to encoding video channel, it is possible to encode 16channel H.264 encoding using the multiple connections. As shown in Table 4-15, *Internal Input Video Ch0 Registers* to *Internal Input Video Ch15 Registers* [0x0100~0x0108] is used to control the video matrix switch.

Fig. 4-21 Examples of the Video Matrix Switch

Table 4-15 Video Input Configuration Registers

Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x0100	VI_CH_SWITCH0	RW	[29:25]	Video Input Channel Number for Internal Video Ch5.	5
			[24:20]	Video Input Channel Number for Internal Video Ch4.	4
			[19:15]	Video Input Channel Number for Internal Video Ch3.	3
			[14:10]	Video Input Channel Number for Internal Video Ch2.	2
			[19:5]	Video Input Channel Number for Internal Video Ch1.	1
			[4:0]	Video Input Channel Number for Internal Video Ch0.	0
0x0104	VI_CH_SWITCH1	RW	[29:25]	Video Input Channel Number for Internal Video Ch11.	11
			[24:20]	Video Input Channel Number for Internal Video Ch10.	10
			[19:15]	Video Input Channel Number for Internal Video Ch9.	9
			[14:10]	Video Input Channel Number for Internal Video Ch8.	8
			[19:5]	Video Input Channel Number for Internal Video Ch7.	7
			[4:0]	Video Input Channel Number for Internal Video Ch6.	6
0x0108	VI_CH_SWITCH2	RW	[24:20]	Reserved.	16
			[19:15]	Video Input Channel Number for Internal Video Ch15.	15
			[14:10]	Video Input Channel Number for Internal Video Ch14.	14
			[19:5]	Video Input Channel Number for Internal Video Ch13.	13
			[4:0]	Video Input Channel Number for Internal Video Ch12.	12
0x010C	VI_CH_ENA	RW	[15:0]	Video Input Channel Enable. Active HIGH. Bit[15:0] : {Ch15, Ch14, Ch13,, Ch0}	1
0x0110	VI_CH_FORMAT	RW	[31:16]	Video Input Format Decoder Selection1. Bit[15:0] : {Ch15, Ch14, Ch13,, Ch0} [0] : Primary [1] : Secondary	0
			[15:0]	Video Input Format Decoder Selection0. Bit[15:0]: {Ch15, Ch14, Ch13,, Ch0} [0]: Interlace [1]: Progressive 0x011C: VIN{Primary, Interlaced} 0x0120: VIN{Secondary, Interlaced} 0x0124: VIN{Don't care, Progressive}	0
0x0114	VI_FMT_CFG	RW	[31]	Vertical Line Check. The register is effective for all video input channels. The video standard or stability is checked by counting vertical line. The response for all video input channels will be stored on register VI_STATUS1[15:0]. Refer to register address 0x012C.	0

	1	1	[00]	Havinantal Dival Chaoli	
			[30]	Horizontal Pixel Check. The register is effective for all video input channels.	0
				Video standard or stability is checked by counting	
				horizontal pixel. The response for all video input	
				channels will be stored on register	
				VI_STATUS1[15:0]. Refer to register address	
				0x012C.	
			[29]	Reserved. (Video Standard or Unstable Check)	0
			[28]	Test Signal Generation. (Only for Test)	0
			[27]	Video In Mask Set to Black and White.	0
			[26]	Video In Mask Horizontal Length.	0
				[0]: 16	
			[25:22]	[1] : 32 Mosaic Darkness Strength.	0
			[23.22]	The brightness in mosaic area is controlled by the	U
				registers.	
				R = 0 >> N	
				Where, R is the result, O is the original video data,	
				N is the value on the register.	
			[21:11]	Display Horizontal Offset.	0
			[40.0]	The register is effective for all video input channels.	
			[10:0]	Compression Horizontal Offset. The register is effective for all video input channels.	0
0x0118	VI_PAGE_SWITCH	RW	[31:24]	The register is effective for all video input channels. FI Position Inversion for Input Pair.	0x00
070110	VI_I AGE_SWITCH	1200	[01.24]	bit[24] : Channel 0 and 1.	UAUU
				bit[25]: Channel 2 and 3.	
				bit[26] : Channel 4 and 5.	
				bit[27]: Channel 6 and 7.	
				bit[28]: Channel 8 and 9.	
				bit[29] : Channel 10 and 11.	
				bit[30] : Channel 12 and 13.	
			[16]	bit[31] : Channel 14 and 15. Reserved. (Input Synchronization on Field Index)	0
			[15]	Reserved. (Input Field Index for Calculation)	0
			[14]	Reserved. (Output Field Index for Calculation)	0
			[1:0]	Writing Page Distance.	2
			[]	Four frame buffers are used to display video	
				output. For avoiding the frame overlapping,	
0x011C	VI_ACT_PRI_INT	RW	[31]	Field Index Inversion.	0
			[30]	Reserved. (Test Mode)	0
			[29:21]	Horizontal Start.	8
			[20:11]	Vertical Start. Vertical End.	0
			[10:0]	vertical End.	242(N) 290(P)
0x0120	VI_ACT_SEC_INT	RW	[31]	Field Index Inversion.	0
0.0120	V/\C_\\C_\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1.00	[30]	Reserved. (Test Mode)	0
			[29:21]		8
			[20:11]	Vertical Start.	0
			[10:0]	Vertical End.	242(N)
					290(P)
0x0124	VI_ACT_PRI_PRG	RW	[31]	Field Index Inversion.	0
			[30]	Reserved. (Test Mode)	0
			[29:21]	Horizontal Start.	8
			[20:11]	Vertical Start.	0 (0.10)
			[10:0]	Vertical End.	242(N) 290(P)
0x0128	VI_STATUS0	RO	[11:4]	Reserved. (Field Free Count)	290(P) -
5A0120	101/11000		[3]	Video Display Fl.	-
			رحا	The register shows the current displaying field	
				index.	
			[2:0]	Video Display Page.	-
				The register shows the current displaying page.	
0x012C	VI_STATUS1	RO	[27:24]	Reserved. (DMA Status)	-
			[23:16]	Reserved. (Capture Queue Status)	-
			[15:0]	Standard and Stability Flag.	-
				The registers show if the video input signal is	
				standard or loss. However, the loss detection function of the video color decoder is strongly recommended	
				for loss detection.	
	L	1	<u> </u>	ior iodo dotootion.	

Table 4-16 shows *Internal H.264 Video Decoder Controller Registers* [0x0130~0x013C].

Table 4-16 Internal H.264 Video Decoder Controller Registers

Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x0130	VI_PB_CONFIG	RW	[1]	Playback Video Mode.	
				[0] : Default	
				[1]: User Programming	
			[0]	Playback Video System.	
				[0] : NTSC	
				[1] : PAL	
0x0134	VI_PB_RANGE_HV	RW	[21:12]	Playback Horizontal Size.	
			[11:0]	Playback Vertical Size.	
0x0138	VI_PB_ACT_H	RW	[21:12]	Playback Horizontal Size.	
			[11:0]	Playback Vertical Size.	
0x013C	VI_PB_ACT_V	RW	[21:12]	Playback Horizontal Size.	
			[11:0]	Playback Vertical Size.	

SOLO6110 supports mosaic for privacy area. Table 4-17 shows *Video Input Mosaic Registers* [0x0140~0x017C]. Fig. 4-22 illustrates the video input mosaic, which is only one mosaic area effective for each video input channel.

Fig. 4-22 Video Input Mosaic

Horizontal Start * 16 Register [0x0140, 0x0144, 0x0148, 0x014C, 0x0150, 0x0154, 0x0158, 0x015C, 0x0160, 0x0164, 0x0168, 0x016C, 0x0170, 0x0174, 0x0178, 0x017C] points x1 in Fig. 4-22. Horizontal End * 16 Register [0x0140, 0x0144, 0x0148, 0x014C, 0x0150, 0x0154, 0x0158, 0x015C, 0x0160, 0x0164, 0x0168, 0x016C, 0x0170, 0x0174, 0x0178, 0x017C] points x2 in Fig. 4-22. Vertical Start * 8 Register [0x0140, 0x0144, 0x0148, 0x014C, 0x0150, 0x0154, 0x0158, 0x015C, 0x0160, 0x0164, 0x0168, 0x016C, 0x0170, 0x0174, 0x0178, 0x017C] points y1 in Fig. 4-22. Vertical End * 8 Register [0x0140, 0x0144, 0x0148, 0x014C, 0x0150, 0x0158, 0x015C, 0x0160, 0x0164, 0x0160, 0x0174, 0x0174, 0x0178, 0x017C] points y2 in Fig. 4-22.

Table 4-17 Video Input Mosaic Registers

Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x0140	VI_WIN_MOSAIC0	RW	[31:24]	Horizontal Start * 16.	0

0x0144	VI_WIN_MOSAIC1	[23:16]	Horizontal End * 16.	0
0x0148	VI_WIN_MOSAIC2	[15:8]	Vertical Start * 8.	0
0x014C	VI_WIN_MOSAIC3	[7:0]	Vertical End * 8.	0
0x0150	VI_WIN_MOSAIC4			
0x0154	VI_WIN_MOSAIC5			
0x0158	VI_WIN_MOSAIC6			
0x015C	VI_WIN_MOSAIC7			
0x0160	VI_WIN_MOSAIC8			
0x0164	VI_WIN_MOSAIC9			
0x0168	VI_WIN_MOSAIC10			
0x016C	VI_WIN_MOSAIC11			
0x0170	VI_WIN_MOSAIC12			
0x0174	VI_WIN_MOSAIC13			
0x0178	VI_WIN_MOSAIC14			
0x017C	VI_WIN_MOSAIC15			

Table 4-18 shows *Windows Control Registers* [0x0180~0x0244]. The display window layout can be displayed as examples in Fig. 4-23. Each display windows contains channel ID and scale mode, and display only one of live or playback video for each video input channel. Therefore, each live or playback video channel will be displayed fitted to given window scale mode of given channel ID. However, PIP window contains totally independent window and should be set to its own position and scale mode.

Yellow circles and the number in center points channel ID and video scale mode in Fig. 4-23, respectively.

Fig. 4-23 Examples of Display Control

Fig. 4-24 shows examples of PIP. Fig. 4-24(a) and (b) illustrate 1/3 scale and 1/4 scale PIP display, respectively.

Fig. 4-24 Examples of PIP

Live Channel ID for Window Register [0x0180, 0x0184, 0x0188, 0x018C, 0x0190, 0x0194, 0x0198, 0x019C, 0x01A0, 0x01A4, 0x01A8, 0x01AC, 0x01B0, 0x01B4, 0x01B8, 0x01BC] means channel ID as shown in Fig. 4-23 and Fig. 4-24. PIP On Register [0x0180, 0x0184, 0x0188, 0x018C, 0x0190, 0x0194, 0x0198, 0x019C, 0x01A0, 0x01A4, 0x01A8, 0x01AC, 0x01B0, 0x01B4, 0x01B8, 0x01BC] is needed to be set to 1 to activate PIP mode as shown in Fig. 4-24. Scale Mode Register [0x0180, 0x0184, 0x0188, 0x018C, 0x0190, 0x0194, 0x0198, 0x019C, 0x01A0, 0x01A4, 0x01A8, 0x01AC, 0x01B0, 0x01B4, 0x01B8, 0x01BC] determines the picture size on video display output by controlling video scale. Window Horizontal Start * 4 Register [0x0180, 0x0184, 0x0188, 0x018C, 0x0190, 0x0194, 0x0198, 0x019C, 0x01A0, 0x01A4, 0x01A8, 0x01AC, 0x01B0, 0x01B4, 0x01B8, 0x01BC] and Window Horizontal End *4 Register [0x0180, 0x0184, 0x0188, 0x018C, 0x0190, 0x0194, 0x0198, 0x019C, 0x01A0, 0x01A4, 0x01A8, 0x01AC, 0x01B0, 0x01B4, 0x01B8, 0x01BC] points the horizontal position as shown in Fig. 4-23 and Fig. 4-24. Window Vertical Start * 4 Register [0x01C0, 0x01C4, 0x01C8, 0x01CC, 0x01D0, 0x01D4, 0x01D8, 0x01DC, 0x01E0, 0x01E4, 0x01E8, 0x01EC, 0x01F0, 0x01F4, 0x01F8, 0x01FC] and Window Vertical End *4 Register [0x01C0, 0x01C4, 0x01C8, 0x01CC, 0x01D0, 0x01D4, 0x01D8, 0x01DC, 0x01E0, 0x01E4, 0x01E8, 0x01EC, 0x01F0, 0x01F4, 0x01F8, 0x01FC] points the vertical position as shown in Fig. 4-23 and Fig. 4-24.

Playback On Register [0x0200, 0x0204, 0x0208, 0x020C, 0x0210, 0x0214, 0x0218, 0x021C, 0x0220, 0x0224, 0x0228, 0x022C, 0x0230, 0x0234, 0x0238, 0x023C] and Live On Register [0x0200, 0x0204, 0x0208, 0x020C, 0x0210, 0x0214, 0x0218, 0x021C, 0x0220, 0x0224, 0x0228, 0x022C, 0x0230, 0x0234, 0x0238, 0x023C] are for window display source selection. One of live or playback can be displayed on each window.

Live On Delay Register [0x0240] is used to delay prior to display live video output when switching it because the garbage data can be displayed when switching the live video output. Live Auto Mute Register [0x0244] will force to mute the live video output for nonstandard or unstable video input signal when it is set to 1. However, it cannot detect video loss when the video decoder chip is set to auto free running. For video loss detection, the video loss detection function of the video decoder is strongly recommended.

Table 4-18 Windows Control Registers

Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x0180	VI_WIN_CTRL0	RW	[31:28]	Live Channel ID for Window.	0
0x0184	VI_WIN_CTRL1				1
0x0188	VI WIN CTRL2		[27]	PIP On.	0

0x018C 0x0190 0x0194 0x0198 0x019C 0x01A0 0x01A4 0x01A8 0x01AC 0x01B0 0x01B4 0x01B8	VI_WIN_CTRL3 VI_WIN_CTRL4 VI_WIN_CTRL5 VI_WIN_CTRL6 VI_WIN_CTRL7 VI_WIN_CTRL8 VI_WIN_CTRL9 VI_WIN_CTRL10 VI_WIN_CTRL11 VI_WIN_CTRL11 VI_WIN_CTRL12 VI_WIN_CTRL13 VI_WIN_CTRL14 VI_WIN_CTRL14 VI_WIN_CTRL15		[26:24] [23:12] [11:0]	Scale Mode. [0]: Off [1]: H=1/1, V=1/1 [2]: H=1/2, V=1/1 [3]: H=1/2, V=1/2 [4]: H=1/3, V=1/3 [5]: H=1/4, V=1/4 [6]: H=2/3, V=2/3 [7]: H=3/4, V=3/4 [8]~[15]: H=1/1, V=1/1 for PIP Window Horizontal Start * 4. Window Horizontal End * 4.	0 0 0
0x01C0	VI_WIN_CTRL0	RW	[23:12]	Window Vertical Start.	0
0x01C0	VI_WIN_CTRLU VI_WIN_CTRL1	KVV			_
0x01C8 0x01CC 0x01D0 0x01D4 0x01D8 0x01DC 0x01E0 0x01E4 0x01EC 0x01F0 0x01F4 0x01F8 0x01FC	VI_WIN_CTRL2 VI_WIN_CTRL3 VI_WIN_CTRL4 VI_WIN_CTRL5 VI_WIN_CTRL6 VI_WIN_CTRL7 VI_WIN_CTRL8 VI_WIN_CTRL9 VI_WIN_CTRL10 VI_WIN_CTRL11 VI_WIN_CTRL11 VI_WIN_CTRL12 VI_WIN_CTRL13 VI_WIN_CTRL14 VI_WIN_CTRL15		[11:0]	Window Vertical End.	0
0x0200	VI_WIN_ON0	RW	[1]	Playback On.	0
0x0204	VI_WIN_ON1		[0]	Live On.	0
0x0208	VI_WIN_ON2				
0x020C 0x0210	VI_WIN_ON3 VI WIN ON4				
0x0210 0x0214	VI_WIN_ON4				
0x0214 0x0218	VI_WIN_ONS				
0x021C	VI_WIN_ON7				
0x0220	VI_WIN_ON8				
0x0224	VI_WIN_ON9				
0x0228	VI_WIN_ON10				
0x022C 0x0230	VI_WIN_ON11 VI WIN ON12				
0x0230	VI_WIN_ON13				
0x0234 0x0238	VI_WIN_ON14				
0x023C	VI_WIN_ON15				
0x0240	VI_WIN_SW	RW	[4:0]	Live On Delay. (Frame Interval)	0
0x0244	VI_WIN_MUTE	RW	[0]	Live Auto Mute.	0

Fig. 4-25 shows the video input motion detection. The motion grid is 16 pixels by 16 pixels and the motion detection flags are 64 samples by 64 samples. Therefore, the motion detection engine will cover 1,024 pixels by 1,024 pixels sized picture for each 16 channel video input. The left figure in Fig. 4-25 represents the memory allocation map for the external SDRAM. The memory structure is composed of the motion flag table area (512 bytes per channel), threshold table (8,192 bytes per channel) and working cache (8,192 bytes per channel) as shown in Fig. 4-25. The structure of each motion flag is 64 samples by 64 samples as shown as the right figure in Fig. 4-25. Therefore, 44 samples by 30 samples will be needed for NTSC video input, and 44 samples by 36 samples will be needed for PAL video input.

Fig. 4-25 Video Input Motion Detection

The motion threshold table is reserved to 64 samples by 64 samples fixed size as mentioned above. However, the actual working size for a system is smaller as shown in Fig. 4-26.

Fig. 4-26 Motion Threshold Table Map

Fig. 4-27 shows an example of motion threshold table programming. The range of motion threshold is 0 to 65,536. The smaller value is needed to be set for higher motion sensitivity. Each motion threshold can have different value for configuring different sensitivity for any motion area.

Fig. 4-27 Example of Motion Threshold Table Programming

Fig. 4-28 shows motion interrupt mode. Motion detection interrupt will be asserted for every motion event when Interrupt Mode Register [0x0264] is set to 0. Motion detection interrupt will be asserted for the first motion event and sustained during the predefined frame sustain period after the last motion event. The predefined frame sustain period is defined on *Motion Sustain Frame Count Register* [0x0264].

Fig. 4-28 Motion Interrupt Mode

Table 4-19 shows *Video Input Motion Detection Registers* [0x0260~0x0274]. *Motion Detection Enable Register* [0x0260] is set to 1 to activate video input motion detection function for each video input channel. *Motion Base Address Register* [0x0260] points the base address on the external memory that the motion detected flags are stored. When *Interrupt Mode Register* [0x0264] is set to 1, the detected motion data are sustained as the value of *Motion Sustain Frame Count Register* [0x0264] for CPU to read them stably. *Maximum Sample Length Register* [0x0264] should be set as horizontal picture size/16. When *Interrupt Mode Register* [0x0264] is set to 0, the motion detection interrupt will be asserted for every motion event. When *Interrupt Mode Register* [0x0264] is set to 1, the motion detection interrupt will be

asserted and sustained during the time as long as the value of *Motion Sustain Frame Count Register* [0x0264]. When Freeze Motion Data Register [0x0264] is set to 1, the motion data will be kept after motion event. Minimum Detected Sample Count Register [0x0264] points the threshold value to avoid misdetection by noise. Motion Flag Clear Register [x0268] is used to clear the motion detected data for each video input channel. Motion Detected Flag Register [0x026C] will the motion detection result for each video input channel.

Motion detection cells are consisted of 64 by 64 pixels. Motion detection result can be displayed with border and bar. When *Border Y Set On Register* [0x0270], *Border CR Set On Register* [0x0270] and *Border CB Set On Register* [0x0270] are set to 1, the border will be displayed with the values of *Border Y Value Register* [0x0270], *Border CB Value Register* [0x0270] and *Border CB Value Register* [0x0270]. When *Border Y Addition On Register* [0x0270], *Border CR Addition On Register* [0x0270] and *Border CB Addition On Register* [0x0270] are set to 1, the border will be displayed with adding the values of *Border Y Value Register* [0x0270], *Border CB Value Register* [0x0270] and *Border CB Value Register* [0x0270].

When *Bar Y Set On Register* [0x0270], *Bar CR Set On Register* [0x0270] and *Bar CB Set On Register* [0x0270] are set to 1, the border will be displayed with the values of *Bar Y Value Register* [0x0270], *Bar CB Value Register* [0x0270] and *Bar CB Value Register* [0x0270]. When *Bar Y Addition On Register* [0x0270], *Bar CR Addition On Register* [0x0270] and *Bar CB Addition On Register* [0x0270] are set to 1, the border will be displayed with adding the values of *Bar Y Value Register* [0x0270], *Bar CB Value Register* [0x0270] and *Bar CB Value Register* [0x0270].

Table 4-19 Video Input Motion Detection Registers

Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x0260	VI_MOTION_ADR	RW	[31:16]	Motion Detection Enable.	0
				Bit[31:16] = {Ch15, Ch14,, Ch0}	
			[15:0]	Motion Base Address.	0
0x0264	VI_MOTION_CTRL	RW	[31:24]	Motion Sustain Frame Count.	0
			[21:16]	Maximum Sample Length.	0
			[15]	Interrupt Mode.	0
				[0] : Every Motion Event	
				[1] : Start/Stop Motion Event.	
			[14]	Freeze Motion Data.	0
			[13:0]	Minimum Detected Sample Count.	0
0x0268	VI_MOTION_CLEAR	RW	[15:0]	Motion Flag Clear.	0
0x026C	VI MOTION STA	RO	[15:0]	Motion Detected Flag.	-
			[]	Bit[15:0] = {ch15, ch14, ch13,, ch0}	
				[0]: Non motion detected video input channel	
				[1] : Motion detected video input channel	
0x0270	VI_MOTION_BDR	RW	[29]	Border Y Set On.	0
			[28]	Border Y Addition On.	0
			[27]	Border CB Set On.	0
			[26]	Border CB Addition On.	0
			[25]	Border CR Set On.	0
			[24]	Border CR Addition On.	0
			[23:16]	Border Y Value.	0
			[15:8]	Border CB Value.	0
			[7:0]	Border CR Value.	0

0x0274	VI_MOTION_BAR	RW	[29]	Bar Y Set On.	0
			[28]	Bar Y Addition On.	0
			[27]	Bar CB Set On.	0
			[26]	Bar CB Addition On.	0
			[25]	Bar CR Set On.	0
			[24]	Bar CR Addition On.	0
			[23:16]	Bar Y Value.	0
			[15:8]	Bar CB Value.	0
			[7:0]	Bar CR Value.	0

Fig. 4-29 shows the waveform of 27MHz ITU-R 656 format. Pin iVDO_INIT_SELT (G18) is needed to set to 0 or 1 for NTSC or PAL system, respectively. The memory size for the video output requires 4 display buffer pages. Each display buffer size is 480 x 2,048 for NTSC system or 576 x 2,048 for PAL system. The video output includes background auto erase to erase all display memory with background color, digital x2 zoom with vertical video quality compensation, freeze with interpolation, and interpolation for the live freeze and the decoded video.

Fig. 4-29 Waveform of 27MHz ITU-R 656 format

Fig. 4-30 shows the video and layers of the video output. At the video point, the layer order is Cursor, OSG, Border, PIP Video and Normal Video.

Fig. 4-30 Video and Graphic Layers

Table 4-20 shows Video Output Configuration Registers [0x02F4~0x030C]. Field Index Transition Position F0 Register [0x02F4], VSYNC Start Position F0 Register [0x02F4], VSYNC End Position F0 [0x02F4] and Number of Vertical Line F0 [0x02F4] will determine the waveform for field0. Field Index Transition Position F1 Register [0x02F4], VSYNC Start Position F1 Register [0x02F4], VSYNC End Position F1 [0x02F4] and Number of Vertical Line F1 [0x02F4] will determine the waveform for field1. These values are only effective when User 656 Format Register [0x0300] is set to 1 and the appropriate values are defined in the SOLO6110 driver software. Video System Register [0x0300] is set to 0 for NTSC system or 1 for PAL system. FI, V Change Enable Register [0x0300] is set to 1 to change the position of field0 and field1. User Color Set for VSYNC Register [0x0300], User Color Set for VSYNC Register [0x0300], User Color Set for Non Active of H Register [0x0300] and User Color Set for Non Active of V Register [0x0300] are set to 1 to define the color as Non Active Color for Y Register [0x0300], Non Active Color for CB/16 Register [0x0300] and Non Active Color for CR/16 Register [0x0300] is configured. H Blank Size Register [0x0304], H Start Position Register [0x0304], H End Position Register [0x0304], V Blank Size Register [0x0308], V Start Position Register [0x0308] and V End Position Register [0x0308] are used to define the vertical blank sizes and the horizontal picture positions. SYNC Inversion Register [0x030C], HSYNC Inversion Register [0x030C] and VSYNC Inversion Register [0x030C] are used to inverse the polarity of the video synchronization signals and effective for VGA interface.

Table 4-20 Video Output Configuration Registers

Register	Register Name	Туре	Bit	Description	Initial
Address	1/0 //055050 50	5147	Field		State
0x02F4	VO_USER656_F0	RW	[29:24]	Field Index Transition Position F0.	0
			[23:17]	VSYNC Start Position F0.	0
			[16:11]	VSYNC End Position F0.	0
			[10:0]	Number of Vertical Line F0.	0
0x02F8	VO_USER656_F1	RW	[29:24]	Field Index Transition Position F1.	0
			[23:17]	VSYNC Start Position F1.	0
			[16:11]	VSYNC End Position F1.	0
			[10:0]	Number of Vertical Line F1.	0
0x0300	VO_FMT_ENC	RW	[31]	Reserved.	0
			[30]	Video System.	0
				[0] : NTSC	
				[1] : PAL	
			[29]	User 656 Format Enable.	0
				[0] : Standard 656 format	
				[1]: User Programmed 656 format	_
			[28]	Reserved.	0
			[26]	Reserved.	0
			[25]	Reserved.	0
			[23:0]	User Frame Size Clock Count. (When 26 is on)	0
			[20]	FI, V Change Enable. (When SAV)	0
			[19]	User Color Set for VSYNC.	0
			[18]	User Color Set for HSYNC.	0
			[17]	User Color Set for Non Active of H.	0
			[16]	User Color Set for Non Active of V.	0
			[15:8]	Non Active Color for Y.	0
			[7:4]	Non Active Color for CB/16.	0
			[3:0]	Non Active Color for CR/16.	0
0x0304	VO_ACT_H	RW	[31:22]	H Blank Size.	0
			[21:11]	H Start Position.	6
			[10:0]	H End Position.	710
0x0308	VO_ACT_V	RW	[31:22]	V Blank Size.	0
			[21:11]	V Start Position.	8
			[10:0]	V End Position.	248(N)
		<u> </u>			296(P)
0x030C	VO_RANGE_HV	RW	[24]	SYNC Inversion.	0
			[23]	HSYNC Inversion.	0
			[22]	VSYNC Inversion.	0
			[21:11]	Horizontal Size.	704
			[10:0]	Vertical Size.	240(N)
		<u> </u>			288(P)

Table 4-21 shows Video Output Control Registers [0x0310~0x0324]. Display On Register [0x0310] is set to 1 to activate the video output. Erase Frame Count Register [0x0310] is used to delay after erasing display using Display Erase On Register [0x0314]. Display Base Address Register [0x0310] points the base address on external SDRAM. Vertical Zoom On Register [0x0318] and Horizontal Zoom On Register [0x0318] is set to 1 for the vertical and horizontal digital x2 zoom. When Vertical Compensation Register [0x0318] is set to 1, the vertical video compensation algorithm will be applied to improve the vertical video quality automatically. Zoom Offset of Horizontal*2 Register [0x0318] and Zoom Offset of Vertical Register [0x0318] will determine the position of the zoomed video. Freeze Live Register [0x031C] is set to freeze the video. When Freeze Live Interpolation Register [0x031C] is set to 1, the video output will be interpolated using one field to remove the tremble effect by time difference of two video fields. Background Color Y Register [0x0320], Background Color U Register [0x0320] and

Background Color V Register [0x0320] will determine the background video color.

Table 4-21 Video Output Control Registers

Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x0310	VO_DISP_CFG	RW	[31]	Display On.	0
			[27:24]	Erase Frame Count. (After ease off to on)	4
			[22]	Double Scan.	0
				[0] : 30Hz	
				[1] : 60Hz	
			[21]	Display Single Page.	0
			[15:0]	Display Base Address.	0
0x0314	VO_DISP_ERASE	RW	[1]	Display Erase On.	1
0x0318	VO_ZOOM_CTRL	RW	[31]	Frame Mode Zoom On.	0
			[24]	Vertical Zoom On.	0
			[23]	Horizontal Zoom On.	0
			[22]	Vertical Compensation. (When Vertical Zoom)	0
			[21:11]	Zoom Offset of Horizontal*2.	0
			[10:0]	Zoom Offset of Vertical.	0
0x031C	VO_FREEZE_CTRL	RW	[1]	Freeze Live.	0
			[0]	Freeze Live Interpolation.	0
0x0320	VO_BGK_COLOR	RW	[23:16]	Background Color Y.	0x10
			[15:8]	Background Color U.	0x80
			[7:0]	Background Color V.	0x80
0x0324	VO_DEINTERLACE	RW	[19:8]	Reserved.	0
			[7:0]	Reserved.	0

Table 4-22 shows *Line and Bar Registers* [0x0330~0x037C]. *Border Ext Y Register* [0x0330], *Border Ext U*16 Register* [0x0330] and *Border Ext V*16 Register* [0x0330] will determine the color of external borders. *Bar Cell Y Register* [0x0330], *Bar Cell U*16 Register* [0x0330] and *Bar Cell V*16 Register* [0x0330] will determine the color of cell borders.

Border On 15 Register [0x0338], Border On 14 Register [0x0338], Border On 13 Register [0x0338], Border On 12 Register [0x0338], Border On 11 Register [0x0338], Border On 10 Register [0x0338], Border On 9 Register [0x0338], Border On 8 Register [0x0338], Border On 7 Register [0x0338], Border On 6 Register [0x0338], Border On 5 Register [0x0338], Border On 4 Register [0x0338], Border On 3 Register [0x0338], Border On 2 Register [0x0338], Border On 1 Register [0x0338] and Border On 0 Register [0x0338] are set to 1 to display cell borders of window video channel 15, window video channel 14, window video channel 17, window video channel 18, window video channel 19, window video channel 19, window video channel 19, window video channel 3, window video channel 3, window video channel 2, window video channel 3, window video channel 3, window video channel 2, window video channel 1 and window video channel 0, respectively.

Bar On 15 Register [0x0338], Bar On 14 Register [0x0338], Bar On 13 Register [0x0338], Bar On 12 Register [0x0338], Bar On 11 Register [0x0338], Bar On 10 Register [0x0338], Bar On 9 Register [0x0338], Bar On 8 Register [0x0338], Bar On 7 Register [0x0338], Bar On 6 Register [0x0338], Bar On 5 Register [0x0338], Bar On 4 Register [0x0338], Bar On 3 Register [0x0338], Bar On 2 Register [0x0338], Bar On 1 Register [0x0338] and Bar On 0 Register [0x0338] are set to 1 to display cell bar of window video channel 15, window video channel 14, window video channel

12, window video channel 11, window video channel 10, window video channel 9, window video channel 8, window video channel 6, window video channel 5, window video channel 4, window video channel 3, window video channel 2, window video channel 1 and window video channel 0, respectively.

Cell Position of X1, X2, X3, X4, X5 Register [0x0340, 0x0344, 0x0348, 0x034C, 0x0350] points the cell horizontal positions from left to right. Cell Position of Y1, Y2, Y3, Y4, Y5 Register [0x0340, 0x0344, 0x034C, 0x0350] points the cell vertical positions from top to bottom.

Two external borders and two external bars are supported to draw outside border and PIP border or highlight for particular position. *Ext Border On1 Register* [0x0368] and *Ext Bar On1 Register* [0x0368] are set to 1 to draw the first external border and bar. *Ext Start X1 Register* [0x036C] and *Ext Start Y1 Register* [0x036C], *Ext End X1 Register* [0x0370] and *Ext Y1 Register* [0x0370] determined the potion of the first external border and bar. *Ext Border On2 Register* [0x0374] and *Ext Bar On2 Register* [0x0374] are set to 1 to draw the second external border and bar. *Ext Start X2 Register* [0x0378], *Ext Start Y2 Register* [0x0378], *Ext End X2 Register* [0x037C] and *Ext Y2 Register* [0x037C] determined the potion of the second external border and bar.

Fig. 4-31 shows an example of windows layout and border/bar draw. Fig. 4-31 (a), (b) and (c) show window layout, live or playback on/off and display, respectively. Fig. 4-31 (d), (e) and (f) show cell layout, border or bar mask draw and external border draw, respectively. At this example, cell border and cell bar should be set to 0 for cell 0, 1, 2, 4, 5, 6, 8, 9 and 10. Cell border should be set to 1 and cell bar should be set to 0 for cell 3, 7, 11, 12, 13 and 15. Cell border should be set to 1 and cell bar should be set to 1 for cell 14. Finally, the video output will display the picture as Fig. 4-31 (g).

Fig. 4-31 Example of Windows Layout and Border/Bar Draw

Table 4-22 Line and Bar Registers

Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x0330	VO_BDG_COLOR	RW	[31:24]	Border Ext Y.	0x80
			[23:20]	Border Ext U*16.	0x8
			[19:16]	Border Ext V*16.	0x8
			[15:18]	Border Cell Y.	0x10
			[8:4]	Border Cell U*16.	0x8
			[3:0]	Border Cell V*16.	0x8
0x0334	VO_BAR_COLOR	RW	[31:24]	Bar Ext Y.	0x80
			[23:20]	Bar Ext U*16.	0x8
			[19:16]	Bar Ext V*16.	0x8
			[15:18]	Bar Cell Y.	0x10
			[8:4]	Bar Cell U*16.	0x8
			[3:0]	Bar Cell V*16.	0x8
0x0338	VO_LINE_MASK_C	RW	[15]	Border On 15.	0
	ELL		[14]	Border On 14.	0
			[13]	Border On 13.	0
			[12]	Border On 12	0
			[11]	Border On 11.	0
			[10]	Border On 10.	0
			[9]	Border On 9.	0
			[8]	Border On 8.	0
			[7]	Border On 7.	0
			[6]	Border On 6.	0
			[5]	Border On 5.	0
			[4]	Border On 4.	0
			[3]	Border On 3.	0
			[2]	Border On 2.	0
			[1]	Border On 1.	0
			[0]	Border On 0.	0
0x033C	VO_BAR_MASK_CE	RW	[15]	Bar On 15.	0
	LL		[14]	Bar On 14.	0
			[13]	Bar On 13.	0
			[12]	Bar On 12.	0
			[11]	Bar On 11.	0
			[10]	Bar On 10.	0
			[9]	Bar On 9.	0
			[8]	Bar On 8.	0
			[7]	Bar On 7.	0
			[6]	Bar On 6.	0
			[5]	Bar On 5.	0
			[4]	Bar On 4.	0
			[3]	Bar On 3.	0
			[2]	Bar On 2.	0
			[1]	Bar On 1.	0
			[0]	Bar On 0.	0
0x0340	VO_CELL_X0	RW	[9:0]	Cell Position of X1, X2, X3, X4, X5.	0
0x0344	VO_CELL_X1		[0.0]	_,,	
0x0348	VO_CELL_X2				
0x034C	VO_CELL_X3				
0x0350	VO_CELL_X4				
0x0354	VO_CELL_Y0	RW	[9:0]	Cell Position of Y1, Y2, Y3, Y4, Y5.	0
0x0358	VO_CELL_Y1				
0x035C	VO_CELL_Y2				
0x0360	VO_CELL_Y3				
0x0364	VO_CELL_Y4				
0x0368	VO_CELL_EXT_SET	RW	[1]	Ext Border On1.	0
	1		[0]	Ext Bar On1.	0
0x036C	VO_CELL_EXT_STA	RW	[19:10]	Ext Start X1.	0
	RT1		[9:0]	Ext Start Y1.	0
0x0370	VO_CELL_EXT_EN	RW	[19:10]	Ext End X1.	0
	D1	<u></u>	[9:0]	Ext End Y1.	0
0x0374	VO_CELL_EXT_SET	RW	[1]	Ext Border On2.	0
				Ext Bar On2.	

0x0378	VO_CELL_EXT_STA	RW	[19:10]	Ext Start X2.	0
	RT2		[9:0]	Ext Start Y2.	0
0x37C	VO_CELL_EXT_EN	RW	[19:10]	Ext End X2.	0
	D2		[9:0]	Ext End Y2.	0

Table 4-23 shows *Cursor Registers* [0x0380~0x03DC]. The cursor is composed of 16 pixels by 20 lines with 3 different colors. *Position X Register* [0x0380] and *Position Y Register* [0x0380] point the position of the cursor. *1st Color Y Register* [0x0384], *1st Color U*16 Register* [0x0384] and *1st Color V*16 Register* [0x0384] store the first cursor pixel color. *2nd Color Y Register* [0x0384], *2nd Color U*16 Register* [0x0384] and *2nd Color V*16 Register* [0x0384] store the second cursor pixel color. *3rd Color Y Register* [0x0388], *3rd Color U*16 Register* [0x0388] and *3rd Color V*16 Register* [0x0388] store the third cursor pixel color.

Color of 1st Pixel on Horizontal Register [0x0390~0x03DC], Color of 2nd Pixel on Horizontal Register [0x0390~0x03DC], Color of 3rd Pixel on Horizontal Register [0x0390~0x03DC], Color of 4th Pixel on Horizontal Register [0x0390~0x03DC], Color of 5th Pixel on Horizontal Register [0x0390~0x03DC], Color of 6th Pixel on Horizontal Register [0x0390~0x03DC], Color of 7th Pixel on Horizontal Register [0x0390~0x03DC], Color of 8th Pixel on Horizontal Register [0x0390~0x03DC], Color of 9th Pixel on Horizontal Register [0x0390~0x03DC], Color of 10th Pixel on Horizontal Register [0x0390~0x03DC], Color of 12th Pixel on Horizontal Register [0x0390~0x03DC], Color of 12th Pixel on Horizontal Register [0x0390~0x03DC], Color of 15th P

Table 4-23 Cursor Registers

Register Address	Register Name	Type	Bit Field	Description	Initial State
0x0380	VO_CURSOR_POS	RW	[21:11]	Position X.	0
			[10:0]	Position Y.	0
0x0384	VO_CURSOR_CLR1	RW	[31:24]	1st Color Y.	0x10
			[23:20]	1st Color U*16.	0x8
			[19:16]	1st Color V*16.	0x8
			[15:8]	2nd Color Y.	0x10
			[7:4]	2nd Color U*16.	0x8
			[3:0]	2nd Color V*16.	0x8
0x0388	VO_CURSOR_CLR2	RW	[15:8]	3rd Color Y.	0x10
			[7:4]	3rd Color U*16.	0x8
			[3:0]	3rd Color V*16.	0x8
0x0390	VO_CUR_MASK1	RW	[31:30]	Color of 1st Pixel on Horizontal.	
0x0394	VO_CUR_MASK2		[29:28]	Color of 2nd Pixel on Horizontal.	
0x0398	VO_CUR_MASK3		[27:26]	Color of 3rd Pixel on Horizontal.	
0x039C	VO_CUR_MASK4		[25:24]	Color of 4th Pixel on Horizontal.	
0x03A0	VO_CUR_MASK5		[23:22]	Color of 5th Pixel on Horizontal.	
0x03A4	VO_CUR_MASK6		[21:20]	Color of 6th Pixel on Horizontal.	
0x03A8	VO_CUR_MASK7		[19:18]	Color of 7th Pixel on Horizontal.	

0x03AC	VO CUR MASK8	[17:1	61 Color of 8th Pixel on Horizontal.
0x03B0	VO_CUR_MASK9	[15:1	
0x03B4	VO_CUR_MASK10	[13:1	2] Color of 10th Pixel on Horizontal.
0x03B8	VO_CUR_MASK11	[11:1	Color of 11th Pixel on Horizontal.
0x03BC	VO_CUR_MASK12	[9:8]	Color of 12th Pixel on Horizontal.
0x03C0	VO_CUR_MASK13	[7:6]	Color of 13th Pixel on Horizontal.
0x03C4	VO_CUR_MASK14	[5:4]	Color of 14th Pixel on Horizontal.
0x03C8	VO_CUR_MASK15	[3:2	Color of 15th Pixel on Horizontal.
0x03CC	VO_CUR_MASK16	[1:0]	Color of 16th Pixel on Horizontal.
0x03D0	VO_CUR_MASK17		
0x03D4 0x03D8	VO_CUR_MASK18 VO_CUR_MASK19		
0x03D6	VO_CUR_MASK19 VO_CUR_MASK20		

The video output supports 16 bit full color YUV 4:2:2 OSG which is same size as the video display. The alpha blending supports 64 levels and its relationship is as following equation.

D = if O is zero, then Y (no OSG)

= if O is even, then O (OSG without alpha blending)

= else, then $(V * V_A) / 64 + (O * O_A) / 64$ (OSG with alpha blending)

Where.

D: Displayed output data

O : OSG source data
V : Video source data

O_A: Alpha blending OSG strength

Y_A: Alpha blending video strength

Table 4-24 shows OSG Registers [0x03E0~0x03E8]. OSG On Register [0x03E0] is set to 1 to activate the video output OSG. Color Mute Register [0x03E0] is set to 1 to display black and white OSG. Alpha Blending OSG Strength Register [0x03E0] and Alpha Blending Video Strength Register [0x03E0] are configured with the values as the above equation. OSG Base Address Register [0x03E0] points the base address on external SDRAM. OSG Erase On Register [0x03E4] is used to erase the OSG automatically. OSG Blink On Register [0x03E8] is used to blink OSG display and its blink interval is configured using OSG Blink Interval Register [0x03E8].

Table 4-24 OSG Registers

Register	Register Name	Type	Bit	Description	Initial
Address			Field		State
0x03E0	VO_OSG_CFG	RW	[31]	OSG On.	0
			[28]	Color Mute.	0
			[27:22]	Alpha Blending OSG Strength.	0
			[21:16]	Alpha Blending Video Strength.	0
			[15:0]	OSG Base Address.	0
0x03E4	VO_ERASE	RW	[31:24]	OSG Erase On.	0
0x03E8	VO_OSG_BLINK	RW	[15:8]	OSG Blink On.	0
			[7:4]	OSG Blink Interval.	0
				[0] : 15 frame	
				[1] : 18 frame	

0x0550	VO_PB_PAGE	RW	[7:0]	Manual Decode Page for Window N	0x00
0x0558					
0x0560					
0x0568					
0x0570					
0x0578					
0x0580					
0x0588					
0x0590					
0x0598					
0x05A0					
0x05A8					
0x05B0					
0x05B8					
0x05C0					
0x05C8					

4.4. H.264 Video Encoder

4.4.1. Overview

SOLO6110 includes very high speed full hardware H.264 CODEC which is an ISO/IEC standard developed by MPEG (Moving Picture Experts Group). H.264 video is standardized for video storage and transmission in many multimedia environments. H.264 video of the SOLO6110 is developed full hardwired core. Full search motion estimation, intra prediction, DCT, quantization and CAVLC (Context based Adaptive Variable Length Coding) can process one pixel every clock cycle with pipeline. These features enable to process 5 D1 H.264 video encoding and 4 D1 H.264 video decoding at the same time. Especially, SOLO6110 supports the dual stream with the different picture size, which will be enable to allocate the recoding stream(4 D1) and the network stream(1 D1) with one chip. Therefore, SOLO6110 will be a cost effective solution for the high end function.

FEATURE

- ITU-T Rec. H.264 Baseline profile, Level 3
- Support all 13 intra prediction modes (9 4x4 modes and 4 16x16 modes)
- Full search motion estimation with half-pel resolution
- Use CAVLC for bit stream coding
- Loop filter
- Scaled video size: D1, HD1, CIF, QCIF (only for encoding)
- Video interval: N, N/2, N/3, ..., N/255 or N-1, N-2, N-3, ... where N=30 in NTSC and N=25 PAL
- Key picture interval(GOP size) Control: 1-255
- Watermarking & compressed video encryption

The video encoder of the SOLO6110 supports motion JPEG as well as H.264 for various network applications. The H.264 video stream which has GOP structure needs long recovery duration against network transmission errors. Therefore, the H.264 video client should wait until receiving the next I picture. Using the SOLO6110, the low bit rate H.264 video stream can be used for the storage and the motion JPEG can be transmitted for the network. Moreover the SOLO6110 supports the virtual video channel which encodes two different H.264 video bit stream for each video channel under guaranteed H.264 encoding and decoding specification. Therefore, it is possible to use one H.264 video stream for storage and the other H.264 video stream for network in DVR applications. In this case, recording H.264 video stream and networking H.264 video stream can be controlled independently. The SOLO6110 also support I picture based prediction for the next solution. However, the virtual H.264 video encoding and motion JPEG features will be better solution with the SOLO6110.

4.4.2. H.264 Video Encoder Configuration

Fig. 4-32 shows GOP (group of picture) structure, which means the interval between I-pictures. Its configuration range is 1 to 255. Although the SOLO6110 supports only P-picture, the H.264 encoders supporting B-pictures need a great amount of memory space to store P-picture and all B-picture for each video channel. Therefore, H.264 encoders supporting B-Picture may require 3-4times external SDRAM space, and increase the cost of system. However, the SOLO6110 is implemented with full searching motion estimation algorithm to reduce bit rate without wasting memory space and reducing frame delay to encode H.264 video. Full search algorithm will result the optimal compression ratio because its results are same as software simulation results theoretically. Therefore, the SOLO6110 has merits for security solutions which need multi stream H.264 video encoder.

Fig. 4-32 Group of Picture

Picture Interval register controls the picture interval of security applications to save memory space for DVR or to fit bandwidth for network server or camera. Picture Interval should be set to 0 to encode real time frame mode pictures with 30frame per second, and 1 to encode field mode pictures with 30field per second. In frame mode, 2 or 3 will encode pictures with 10frame per second or 7.5frame per second, respectively. In field mode, 2 or 3 will encode pictures with 15field per second or 10field per second, respectively.

Intra Picture Based Prediction is not H.264 standard, but most commercial H.264 video CODECs support this feature to avoid picture drop on network transmission. However, its inheritance – non standard – cannot support commercial H.264 standard video clients and compression ratio is worse for big motion pictures. Although the SOLO6110 supports this feature, it is not recommend because the most important reason of H.264 video CODEC used for system is compression efficiency and compatibility for commercial H.264 standard video clients. Fig. 4-33 shows standard H.264 picture prediction and intra picture based picture prediction.

(b) Intra Picture Based Picture Prediction

Fig. 4-33 Picture Prediction Method

Extended H.264 video encoding and motion JPEG encoding features of SOLO6110 are good solution for network transmission for network sever or network camera or DVR. That features mean the SOLO6110 produces two H.264 video streams and motion JPEG. One H.264 video bit stream can be used for local network clients or the other H.264 video bit stream can be used for remote network clients on internet for network application. Networking function of recent DVR system is very important feature. Therefore, one H.264 video streams can be stored in storage and the other H.264 video bit stream can be transmitted for network clients.

Fig. 4-34 shows the SOLO6110 encoding scheme. For using extended H.264 video stream, the SOLO6110 needs more extended SDRAM storage and rooms of total quadruple encoding performance. However, the encoding performance of motion JPEG is independent H.264 video encoding performance because the SOLO6110 contains the independent motion JPEG hardware core.

Fig. 4-34 SOLO6110 Encoding Scheme

Fig. 4-35 shows the conceptual control flow of the video encoder. The video encoder capture part controls the interval (frame rate) for the encoding video channels. The Video encoder scaler part controls the resolution (frame size) for the encoding video channels. The H.264 video encoder part controls the quantization parameter (picture quality) and GOP size (I picture interval), and the motion JPEG encoder part controls the picture quality.

Fig. 4-35 Control Flow of the Video Encoder

As shown in Table 4-26, *Video Capture Configuration Registers* [0x0400~0x0420] are used to define the video dimensions to be encoded. *Maximum Page for Capture Register* [0x0400] defines the memory space to store the pictures to be encoded. *Capture Base Address* [0x0400] points the base address to store the pictures on the extended SDRAM of the SOLO6110. The memory space to store one pixel needs two bytes composed of luminance and chrominance data. Therefore, the memory space to store one line needs 1,440 bytes (720*2), but SOLO6110 needs 2,048 bytes to reduce design complexity. As a result, memory space to store one PAL frame needs 1,779,648 bytes. The base address pointer of the SOLO6110 is used higher 16bits. Therefore, 18(1,779,648/65,536) memory segments are needed to store one PAL frame by the unit of 64kbyte memory block. As similar method, 9, 15 and 8 memory segments are needed to store PAL field, NTSC frame and NTSC field, respectively. In addition, 5(1024*288/65,536) and

4(1024*240/65,536) memory segments are needed to store PAL and NTSC CIF field. When SOLO6110 is operated with changing frame, field and CIF, the biggest segment should be configured. If it is not configured with enough memory space, each channel data can be mixed. This calculation method can be applied to configure all memory offset (or base address) to store pictures on external SDRAM.

SOLO6110 contains 5 different video scale mode for frame and field mode, respectively, where 0 is set not to encode corresponding video for each channel. Each video scale mode can have 5 horizontal video sizes and 10 vertical video sizes because horizontal video size is only different according to frame or field mode. Each video size is preset on these compression dimension registers. During operating, Compression Video Scale register can be updated for application. The video sizes regarding Compression Video Scale register are referenced on compression dimension register. The video sizes are divided by 16 and its divided values are configured on this registers. However, only D1, HD1 or CIF picture size are available for play back display in DVR applications. Table 4-25 shows the configuration example of the picture size registers [0x0408~0x0418]. The detail application of these registers will be described in *Scale Mode Register* [0x0440, 0x0444, 0x0448, 0x044C, 0x0450, 0x0454, 0x0458, 0x045C, 0x0460, 0x0460, 0x0464, 0x0468, 0x046C, 0x0470, 0x0474, 0x0478, 0x047C].

Table 4-25 Configuration Example of the Picture Size Registers

Scale Mode	Picture Size Register	NTSC	PAL
0	No Encoding	-	-
1	Vertical Picture Size for Frame1	480/16	576/16
	Vertical Picture Size for Field1	240/16	288/16
	Horizontal Picture Size1	704/16	704/16
2	Vertical Picture Size for Frame2	480/16	576/16
	Vertical Picture Size for Field2	240/16	288/16
	Horizontal Picture Size2	352/16	352/16
3	Vertical Picture Size for Frame3	240/16	288/16
	Vertical Picture Size for Field3	112/16	144/16
	Horizontal Picture Size3	352/16	352/16
4	Vertical Picture Size for Frame4	160/16	192/16
	Vertical Picture Size for Field4	80/16	96/16
	Horizontal Picture Size4	224/16	224/16
5	Vertical Picture Size for Frame5	240/16	288/16
	Vertical Picture Size for Field5	112/16	144/16
	Horizontal Picture Size5	176/16	176/16

Progressive Vertical Picture Size for 1/3 Horizontal Scale Register [0x041C], Progressive Horizontal Picture Size for 1/3 Vertical Scale Register [0x041C], Progressive Vertical Picture Size Register [0x041C] and Progressive Horizontal Picture Size Register [0x041C] are reserved for the future applications.

Table 4-26 Video Capture Configuration Registers

Register Address	Register Name	Туре	Bit Field	Description	Initial State
	CAD DACE	DW		Marrian ya Dana fan Cantura	
0x0400	CAP_BASE	RW	[31:16]	Maximum Page for Capture.	0
0.0101	CAR BEN	D)A/	[15:0]	Capture Base Address.	0
0x0404	CAP_BTW	RW	[13:8]	Bandwidth Value for Progressive Video.	0
			[7:0]	Maximum Bandwidth.	0
0x0408	CAP_DIM_SCALE1	RW	[23:16]	Vertical Picture Size for Frame1.	
			[15:8]	Vertical Picture Size for Field1.	
			[7:0]	Horizontal Picture Size1.	
0x040C	CAP_DIM_SCALE2	RW	[23:16]	Vertical Picture Size for Frame2.	
			[15:8]	Vertical Picture Size for Field2.	
			[7:0]	Horizontal Picture Size2.	
0x0410	CAP_DIM_SCALE3	RW	[23:16]	Vertical Picture Size for Frame3.	
			[15:8]	Vertical Picture Size for Field3.	
			[7:0]	Horizontal Picture Size3.	
0x0414	CAP_DIM_SCALE4	RW	[23:16]	Vertical Picture Size for Frame4.	
			[15:8]	Vertical Picture Size for Field4.	
			[7:0]	Horizontal Picture Size4.	
0x0418	CAP_DIM_SCALE5	RW	[23:16]	Vertical Picture Size for Frame5.	
			[15:8]	Vertical Picture Size for Field5.	
			[7:0]	Horizontal Picture Size5.	
0x041C	CAP_DIM_PROG	RW	[31:24]	Vertical Picture Size for 1/3 Horizontal Scale.	
			[23:16]	Horizontal Picture Size for 1/3 Vertical Scale.	
			[15:8]	Vertical Picture Size.	
			[7:0]	Horizontal Picture Size.	
0x0420	CAP_STATUS	RO	[31:28]	Encoding Reg Queue Write Address.	-
	_		[27:24]	Encoding Req Queue Read Address.	-
			[21:16]	Current Bandwidth Value.	-
			[15:0]	Vertical Page Offset.	-

As shown in Table 4-28, *H.264 Video Capture Control Registers* [0x0440~0x053C] are used to control frame size or frame interval to be encoded. *Frame Mode Register* [0x0440, 0x0444, 0x0448, 0x044C, 0x0450, 0x0454, 0x0458, 0x045C, 0x0460, 0x0464, 0x0468, 0x046C, 0x0470, 0x0474, 0x0478, 0x047C] is set to 0 for field or 1 for frame encoding for each video input channel. *Scale Mode Register* [0x0440, 0x0444, 0x0448, 0x044C, 0x0450, 0x0454, 0x0458, 0x045C, 0x0460, 0x0464, 0x0468, 0x046C, 0x0470, 0x0474, 0x0478, 0x047C] is set to 0 for no encoding and non zero for H.264 video encoding for each video input channel. When Scale Mode Register [0x0440, 0x0444, 0x0448, 0x044C, 0x0450, 0x0454, 0x0458, 0x045C, 0x0460, 0x0464, 0x0468, 0x046C, 0x0470, 0x0474, 0x0478, 0x047C] is set to 1, 2, 3, 4 or 5 for each video input channel, the picture size is referred as defined on scale mode1, scale mode2, scale mode3, scale mode4 or scale mode5 in Table 4-25, respectively.

Extended Encoding On Register [0x0480, 0x0484, 0x0488, 0x048C, 0x0490, 0x0494, 0x0498, 0x049C, 0x04A0, 0x04A4, 0x04A8, 0x04AC, 0x04B0, 0x04B4, 0x04B8, 0x04BC] is set to 1 to activate extended H.264 video encoding.

For the frame rate control, the video encoder capture control has two modes. Skip mode captures skip sampling the encoding picture except for N-1'th frames or fields. Drop mode captures drop every N-1'th

frames or fields. *Interval Mode Register* [0x04C0, 0x04C4, 0x04C8, 0x04CC, 0x04D0, 0x04D4, 0x04D8, 0x04DC, 0x04E0, 0x04E4, 0x04E8, 0x04EC, 0x04F0, 0x04F4, 0x04F8, 0x04FC] and *Extended Interval Mode Register* [0x0500, 0x0504, 0x0508, 0x005C, 0x0510, 0x0514, 0x0518, 0x051C, 0x0520, 0x0524, 0x0528, 0x052C, 0x0530, 0x53F4, 0x053R, 0x053C] are set to 0 for skip mode and 1 for drop mode.

Interval Value Register [0x04C0, 0x04C4, 0x04C8, 0x04CC, 0x04D0, 0x04D4, 0x04D8, 0x04DC, 0x04E0, 0x04E4, 0x04E8, 0x04EC, 0x04F0, 0x04F4, 0x04F8, 0x04FC] and Extended Interval Value Register [0x0500, 0x0504, 0x0508, 0x005C, 0x0510, 0x0514, 0x0518, 0x051C, 0x0520, 0x0524, 0x0528, 0x052C, 0x0530, 0x53F4, 0x0538, 0x053C] are configure the values to control the frame rate as following equations. Table 4-27 shows the frame rate and frame period.

Skip mode frame rate : T = M / (N + P)

Drop mode frame rate : T = M * (N/(N + 1))

Where, T = frame rate

N = Interval

M = 30 for NTSC, 25 for PAL

P = 1 for frame, 0 for field

Table 4-27 Frame rate and Frame Period

Sampling rate : FPS

Skip	mode	

	picture	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
NTSC	frame	30,00	15,00	10,00	7,50	6,00	5,00	4,29	3,75	3,33	3,00	273	250	2,31	214	200
	field	60,00	30,00	15,00	10,00	7,50	6,00	5,00	4,29	3,75	3,33	3,00	2,73	250	2,31	214
D.A.I	frame	25,00	1250	8,33	6,25	5,00	4,17	3,57	3,13	278	250	2,27	208	1,92	1,79	1,67
PAL	field	50,00	25,00	12,50	8,33	6,25	5,00	4,17	3,57	3,13	2,78	250	2,27	2,08	1,92	1,79

system	picture	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
NTSC	frame	30,00	15,00	20,00	22,50	24,00	25,00	25,71	26,25	26,67	27,00	27,27	27,50	27,69	27,86	28,00
	field	60,00	30,00	40,00	45,00	48,00	50,00	51,43	52,50	53,33	54,00	54,55	55,00	55,38	55,71	56,00
PAL	frame	25,00	1250	16,67	18,75	20,00	20,83	21,43	21,88	22,22	22,50	22,73	22,92	23,08	23,21	23,33
	field	50,00	25,00	33,33	37,50	40,00	41,67	42,86	43,75	44,44	45,00	45,45	45,83	46,15	46,43	46,67

Samplig period: mili second

Skip	mode

system	picture	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
NTSC	frame	33,3	66,7	100,0	133,3	166,7	200,0	233,3	266,7	300,0	333,3	366,7	400,0	433,3	466,7	500,0
I NISC	field	16,7	33,3	66,7	100,0	133,3	166,7	200,0	233,3	266,7	300,0	333,3	366,7	400,0	433,3	466,7
PAL	frame	40,0	80,0	120,0	160,0	200,0	240,0	280,0	320,0	360,0	400,0	440,0	480,0	520,0	560,0	600,0
PAL	field	20,0	40,0	80,0	120,0	160,0	200,0	240,0	280,0	320,0	360,0	400,0	440,0	480,0	520,0	560,0

Drop mode	!															
system	picture	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
NTSC	frame	33,3	66,7	50,0	44,4	41,7	40,0	38,9	38,1	37,5	37,0	36,7	36,4	36,1	35,9	35,7
	field	16,7	33,3	25,0	22,2	20,8	20,0	19,4	19,0	18,8	18,5	18,3	18,2	18,1	17,9	17,9
PAL	frame	40,0	80,0	60,0	53,3	50,0	48,0	46,7	45,7	45,0	44,4	44,0	43,6	43,3	43,1	42,9
	field	20.0	40.0	30.0	26.7	25.0	24.0	23.3	22.9	22.5	22.2	22.0	21.8	21.7	21.5	21.4

Table 4-28 H.264 Video Capture Control Registers

Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x0440	CAP SCALE0	RW	[3]	Frame Mode.	0
0x0444	CAP_SCALE1		[2:0]	Scale Mode.	0
0x0448	CAP_SCALE2		[2.0]	[000] : No Encoding	Ü
0x044C	CAP_SCALE3			[001] : H=1/1, V=1/1 (Frame/Field Mode)	
0x0450	CAP_SCALE4			[010] : H=1/2, V=1/1 (Only Field Mode)	
0x0454	CAP_SCALE5			[011]: H=1/2, V=1/2 (Only Encoding)	
0x0458	CAP_SCALE6			[100] : H=1/3, V=1/3 (Only Encoding)	
0x045C	CAP_SCALE7			[101] : H=1/4, V=1/2 (Only Field Mode)	
0x0460	CAP_SCALE8			[101]:11=1/1, V=1/2 (Olly 1 lold Mode)	
0x0464	CAP_SCALE9				
0x0468	CAP SCALE10				
0x046C	CAP SCALE11				
0x0470	CAP_SCALE12				
0x0474	CAP SCALE13				
0x0478	CAP_SCALE14				
0x047C	CAP_SCALE15				
0x0480	CAP_SCALE_E0	R/W	[3:0]	Scale Mode for Extended Channel 16~31.	0
0x0484	CAP_SCALE_E1			Extended H.264 video encoding channel will be	
0x0488	CAP_SCALE_E2			activated by asserting the register.	
0x048C	CAP_SCALE_E3			, , ,	
0x0490	CAP_SCALE_E4				
0x0494	CAP_SCALE_E5				
0x0498	CAP_SCALE_E6				
0x049C	CAP_SCALE_E7				
0x04A0	CAP SCALE E8				
0x04A4	CAP_SCALE_E9				
0x04A8	CAP SCALE E10				
0x04AC	CAP_SCALE_E11				
0x04B0	CAP_SCALE_E12				
0x04B4	CAP_SCALE_E13				
0x04B8	CAP_SCALE_E14				
0x04BC	CAP_SCALE_E15				
0x04C0	CAP_INTERVAL0	R/W	[9]	Interval Mode.	0
0x04C4	CAP_INTERVAL1			[0] : Skip Mode	
0x04C8	CAP_INTERVAL2			[1] : Drop Mode	
0x04CC	CAP_INTERVAL3		[8:0]	Interval Value.	0
0x04D0	CAP_INTERVAL4				
0x04D4	CAP_INTERVAL5				
0x04D8	CAP_INTERVAL6				
0x04DC	CAP_INTERVAL7				
0x04E0	CAP_INTERVAL8				
0x04E4	CAP_INTERVAL9				
0x04E8	CAP_INTERVAL10				
0x04EC	CAP_INTERVAL11				
0x04F0	CAP_INTERVAL12				
0x04F4	CAP_INTERVAL13				
0x04F8	CAP_INTERVAL14				
0x04FC	CAP_INTERVAL15				
0x0500	CAP_INTERVALE0	R/W	[9]	Extended Interval Mode.	0
0x0504	CAP_INTERVALE1			[0] : Skip Mode	
0x0508	CAP_INTERVALE2			[1] : Drop Mode	
0x050C	CAP_INTERVALE3		[8:0]	Extended Interval Value.	0
0x0510	CAP_INTERVALE4				
0x0514	CAP_INTERVALE5				
0x0518	CAP_INTERVALE6				
0x051C	CAP_INTERVALE7				
0x0520	CAP_INTERVALE8				
0x0524	CAP_INTERVALE9				
0x0528	CAP_INTERVALE10				
0x052C	CAP_INTERVALE11				
0x0530	CAP_INTERVALE12				
0x0534	CAP_INTERVALE13				
0x0538	CAP_INTERVALE14				
0x053C	CAP_INTERVALE15				

Fig. 4-36 shows the code buffer of H.264 video encoder and motion JPEG encoder. 2 page mode

generates interrupt whenever the video encoder is done and uses only 2 code buffer. However, multi page mode generates interrupt whenever the video encoder is done after processing predefine frames and uses unlimited external SDRAM memory space up to the remained memory size.

Fig. 4-36 Code Buffer of H.264 Video and Motion JPEG Encoder

Fig. 4-37 shows the H.264 stream format. Header includes index structure based stream information and stuffing is appended for internal cash buffer allocation.

Fig. 4-37 H.264 Stream Format

H.264 Video Encoder Configuration Registers [0x0610~0x0630] is used to control H.264 video encoder, watermark and code encryption. Code Control Mode Register [0x0610] is set to 0 for multi frame page mode and 1 for two page mode. Interrupt Mode Register [0x0610] is set to 0, 1, 2 and 3 for interrupt asserted every frame, 2 frames, 3 frames and 4 frames, respectively. H.264 Block Size Register [0x0610] is used to define the code block size. H.264 Block Base Address Register [0x0610] points the base address on the external SDRAM. Byte Aligns Register [0x0614] is set to 0, 1, 2, and 3 to align 8 bytes, 16 bytes, 32 bytes and 64 bytes. Motion Flag Data Insertion Register [0x0614] is set to 0 for no motion flag, 1 for inserting after 256 bytes and 2 for user setting. In case of user setting, Motion Flag Data Base Address Register [0x0614] points the address on external SDRAM to be stored the motion flags.

The SOLO6110 supports H.264 video encoded code encryption and watermark. Watermark Generic Polynomial Register [0x061C], Watermark Initial Key Value Register [0x0620], and Watermark Strength Register [0x0624] need to be set for activate watermark function. Watermark Generic Polynomial Register [0x061C] and Watermark Initial Key Value Register [0x0620] can be used as system secure value. Watermark Strength Register [0x0624] can be used to embedding strength. The SOLO6110 watermark feature enables system to decide if H.264 video encoded picture is manipulated. The pass rate of the

watermark detection algorithm will be higher but the picture quality will be lower if the value of Watermark Strength Register [0x0624] increased. Otherwise, the watermark pass rate will be lower and the picture quality will be higher.

Encryption of H.264 video coded data is also important for secure system when encoded video data is transmitted on internet. Fig. 4-38 shows concept of H.264 video code encryption. As shown in Fig. 4-38, 0x23(0010 0011), 0xA0(1010 0000), 0x17(0001 0111), and 0x0E(0000 1110) are assumed as original input sequence to transmit. 0x11(0001 0001), 0x012(0001 0010), 0x13(0001 0011), and 0xF0(1111 0000) are assumed as key sequence. Original input sequence is operated with bitwise exclusive OR by encryption block. 0x32(0011 0010), 0xB2(1011 0010), 0x04(0000 0100), and 0xFE(1111 1110) are encrypted sequence. The encrypted sequence is transmitted on internet and is operated with bitwise exclusive OR by the same key sequence which is used in the encryption. The decrypted output sequence is resulted to same sequence as original sequence. If key sequence is unknown in decryption, it is impossible to decrypt the encrypted sequence. Therefore, it is very important to generate the key generation algorithm.

Fig. 4-38 H.264 Video Code Encryption

The SOLO6110 contains two logics for generating shift register sequences, which is used for embedding watermark and encrypting H.264 video coded data, respectively. The shift register sequences are very simple to implement hardware logic and satisfy random property. Random property of the key sequence is very important for secure system because the key sequence should not be analyzed. If the key sequence is analyzed easily, the encrypted sequence would be decrypted easily by an unauthorized listener.

The sequence which is generated shift register is pseudo random sequence. A truly random signal cannot be predicted. Its future variations can only be described in a statistical sense. However, a pseudorandom signal is not random at all. It is a deterministic periodic signal that is known to both the transmitter and receiver. Even though the signal is deterministic, it appears to have the statistical properties of sampled white noise. It appears, to an unauthorized listener, to be a truly random signal.

Fig. 4-39 shows linear feedback shift register example. It is made up of a four-stage register for storage and shifting, a modulo-2 adder, and a feedback path from the adder to the input of the register. The shift register operation is controlled by a sequence register is shifted one stage to the right.

Fig. 4-39 Linear feedback shift register example

Assume that $\{X_1, X_2, X_3, X_4\}$ are filled with $\{1, 0, 0, 0\}$, that is, the initial state of the register is $\{1, 0, 0, 0, 0\}$. We can see that the succession of register states will be $\{1, 0, 0, 0\}$, $\{0, 1, 0, 0\}$, $\{0, 0, 1, 0\}$, $\{1, 1, 0, 0\}$, $\{1, 1, 0, 0\}$, $\{1, 1, 0, 1\}$, $\{1, 1, 0, 1\}$, $\{1, 1, 0, 1\}$, $\{1, 1, 1, 0\}$, $\{1, 1, 1, 1\}$, $\{0, 1, 1, 1\}$, $\{0, 0, 1, 1\}$, $\{0, 0, 0, 1\}$, and $\{1, 0, 0, 0\}$.

Since the last state, $\{1, 0, 0, 0\}$, corresponds to the initial state, we see that the register repeats the foregoing sequence after 15 clock pulses. The shift register generator produces sequences that depend on the number of stages, the feedback tap connections, and initial conditions. The maximal length sequences have the property that for an n-stage linear feedback shift register the sequence repetition period in clock pulses p is $p = 2^n - 1$.

The shift register of the SOLO6110 is composed of 32 stage shift register, that is, the maximal length sequences is 4,294,967,295 (2³²-1). The generic polynomial and initial key value are set by user.

Watermarking is an important issue for security system to detect malice manipulation for legal evidence. The watermark information is embedded in the block coefficients which passed DCT and quantization process as shown in Fig. 4-40.

Fig. 4-40 Watermark Embedding Scheme

The watermark information is added in the coefficients of luminance AC block that passed DCT and quantization process. Fig. 4-41 shows a pseudo random noise code for watermark information addition. The SOLO6110 includes only watermark embedding scheme but users need to understand watermark extraction scheme for application software.

In Fig. 4-41, bufDCTQ[i] means the coefficients of luminance AC block that passed DCT and quantization process. The variable NWIP, FWI and NFWS indicates the 3 configuration variables – Normal Watermark Insertion Position[11:8], Forced Watermark Insertion Position[7:4] and The Number of Forced Watermark Samples[3:0] of the *Watermark Configuration Register [0x0624]*, respectively The "WKEY" variables means the watermark key value. T

SOFTLOGIC Co., Ltd. 112 June 24, 2010

Fig. 4-41 Watermark Process

In Fig. **4-42** Watermark KeyFig. 4-42, variable WINITKEY means *Watermark Initial Key Register*[0x061C] and variable WPOLY means *Watermark Polynomial Register*[0x0620]. The watermark key value is set as WINITKEY when encoding start, (set "scale" parameter as non-zero value) and is updated by encoder on every watermark process.

According to above pseudo code, if the "NWIP" value goes lower, the watermark information is added more. But, if the coefficient value is 0, then the watermark information is not added regardless of the NWIP value. In case of low bit-rate sequence, all coefficients in a luminance AC block can be 0, and then the watermark information is not added. You can avoid this situation by adjusting the FWI and NFWS variable. However the coefficient value is 0, if the FWI and NFWS is set as non-zero value, then the watermark information is added by force. But the FWI and NFWS variables are adjusted carefully. Generally, the quality of encoded stream gets worse and the size of encoded stream grows bigger when the watermark information is added. The NWIP variable is less effective on quality degradation and size growth but the FWI and NFWS variables are very effective on quality degradation and size growth.

Fig. 4-42 Watermark Key

The watermark detection process is similar as the Watermark addition process. Fig. 4-43 shows a pseudo code for watermark detection process. When the bChecked variable is FALSE in all luminance AC block, it means there is no watermark information added in this macroblock.

Fig. 4-43 Watermark Detection Process

The SOLO6110 produces VOP header of H.264 video stream and the SOLO6110 driver software appends VOL header of H.264 video stream. *VOP Time Increment Register* [0x0630] and *VOP Time Increment Bit Width Register* [0x0630] are used for time stamp for VOP header automatically. Time information is important to decode H.264 video stream commercial client or viewer for compatibility. *VOP Round Register* [0x0630] should be set to 0, *VOP F. Code Register* [0x0630] should be set to 1, and *VOP Time Increment Bit Width Register* [0x0630] should be set to 15, respectively for normal applications. The H.264 video encoder of the SOLO6110 can process the quadruple D1 speed H.264 video encoding performance when the internal system clock is set to 108MHz and *DCT Block Interval Register* [0x0630] is set to 9. In network camera or network video server applications, the internal system clock can be set to 54MHz for reducing the SOLO6110 surface temperature. In this case, the H.264 video encoder will process the twice D1 speed H.264 video encoding performance.

Table 4-29 H.264 Video Encoder Configuration Registers

Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x0610	VE_CFG0	RW	[31]	Code Control Mode.	0
				[0] : Multi Page Mode	
				[1] : Two Page Mode	
			[29:24]	Interrupt Mode.	0
				[0] : Interrupt asserted every frame	
				[1]: Interrupt asserted every 2 frames	
				[2] : Interrupt asserted every 3 frames	
				[3] : Interrupt asserted every 4 frames	
			[23:16]	H.264 Block Size. (64kB)	0
			[15:0]	H.264 Block Base Address. (64kB)	0
0x0614	VE_CFG1	RW	[31:28]	MSB of H.264 Code Buffer Size.	0
				16MByte * N	
			[23:20]	MSB of JPEG Code Buffer Size.	0
				16MByte * N	
			[19]	Index Insertion for JPEG.	0
			[18]	Index Insertion for H.264.	0
			[17:16]	Motion Flag Data Insertion.	0
				[0] : Off	
				[1] : After index 256 bytes	
				[2] : User Setting.	
			[15:0]	Motion Flag Data Base Address.	0
0x061C	VE_WMARK_KEY	RW	[31:0]	Watermark Initial Key Value.	0
0x0620	VE_WMARK_POLY	RW	[31:0]	Watermark Generic Polynomial.	0
0x0624	VE_WMARK_CTRL	RW	[11:8]	Normal Watermark Insertion Position (Skip 0	0
				coefficient).	
			[7:4]	Forced Watermark Insertion Position.	0
			[3:0]	The Number of Forced Watermark Samples.	0
0x0628	VE_ENCR_POLY	RW	[31:0]	Encryption Generic Polynomial.	0
0x062C	VE_ENCR_KEY	RW	[31:0]	Encryption Initial Key Value.	0
0x0630	VE_ATTR	RW	[31]	Byte Order.	0
			[30]	VOP Round.	0
			[29:27]	VOP F. Code.	0
			[26:25]	VOP Time Increment.	0
				[00] : 60Hz (500) for NTSC field mode	
				[01] : 30Hz (1000) for NTSC frame mode	
				[10] : 50Hz (600) for PAL field mode	
				[11] : 25Hz (1200) for PAL frame mode	
			[24:21]	VOP Time Increment Bit Width.	0
			[20:16]	DCT Block Interval.	0

0x0634	VE_COMPT_MOT	RW	[22:20]	And Mask.	0
				[22] : Motion.	
				[21] : Diff.	
				[20] : MV	
			[18:16]	Or Mask.	0
				[18] : Motion	
				[17] : Diff	
				[16] : MV	
			[15:8]	Diff Threshold (between SAD0 and SAD MV)	0
			[7:0]	Motion Threshold (SAD0)	0

As shown in Table 4-30, *H.264 Video Status Registers* [0x0640~0x066C] indicate information such as Video Channel, VOP Type, H.264 Encoded Code Size, etc when the picture is encoded. *Progressive Register* [0x0640] indicates if the H.264 encoded picture is progressive mode for the current encoded picture. *Interlace Register* [0x0640] indicates if the H.264 encoded picture is interface or not for the current encoded picture. *Source Field Index Register* [0x0640] indicates if the H.264 encoded picture is odd or even field for the current encoded picture. *Video Channel Register* [0x0640] indicates the video input channel identification of the encoded H.264 video stream for the current encoded picture. *VOP Type Register* [0x0640] indicates 0 for I Picture or 1 for P Picture for the current encoded picture.

Video Motion Flag Register [0x0640] indicates if the video motion is detected for the current encoded picture. SAD Motion Flag Register [0x0640] indicates if the SAD motion is detected for the current encoded picture. H.264 Encoded Code Size Register [0x0640] is the code size for the current encoded picture. Scale Register [0x0644] indicates the scale for the current encoded picture.

Horizontal Picture Size Register [0x0644] indicates the picture horizontal size for the current encoded picture. Vertical Picture Size Register [0x0644] indicates the picture vertical size for the current encoded picture. H.264 Code Data Offset Register [0x0648] indicates the H.264 code data offset on the external SDRAM for the current encoded picture. JPEG Code Data Offset Register [0x064C] indicates the motion JPEG code data offset on the external SDRAM for the current encoded picture. Interval Register [0x0650] indicates the interval for the current encoded picture. JPEG Code Size Register [0x0650] indicates the JPEG code size for the current encoded picture. Time Second Register [0x0654] and Time Micro Second Register [0x0658] indicate the time information for the current encoded picture. Watermark Status Register [0x065C] indicates watermark synchronization status information for the current encoded picture. Encryption Status Register [0x0660] indicates encryption synchronization status information for the current encoded picture. Channel Register [0x0664] indicates the channel number for the current encoded picture. H.264 Code Size Register [0x0668] indicates the H.264 code size for the current encoded picture.

Table 4-30 H.264 Video Encoder Status Registers

Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x0640	VE_STATUS0	RO	[31]	Progressive.	0
			[30]	Interlace.	0
			[29]	Source Field Index.	0
			[28:24]	Video Channel.	0
			[23:22]	VOP Type.	0

			[21]	Video Motion Flag.	0
			[20]	SAD Motion Flag.	0
			[19:0]	H.264 Encoded Code Size.	0
0x0644	VE_STATUS1	RO	[31:28]	Scale.	0
			[19:16]	Last Queue Position.	0
			[15:8]	Horizontal Picture Size.	0
			[7:0]	Vertical Picture Size.	0
0x0648	VE_STATUS2	RO	[31:0]	H.264 Code Data Offset.	0
0x064C	VE_STATUS3	RO	[31:0]	JPEG Code Data Offset.	0
0x0650	VE_STATUS4	RO	[29:20]	Interval.	0
			[19:0]	JPEG Code Size.	0
0x0654	VE_STATUS5	RO	[31:0]	Time. (sec)	0
0x0658	VE_STATUS6	RO	[31:0]	Time. (usec)	0
0x065C	VE_STATUS7	RO	[31:0]	Encryption Status.	0
0x0660	VE_STATUS8	RO	[31:0]	Watermark Status.	0
0x0664	VE_STATUS9	RO	[4:0]	Channel.	0
0x0668	VE_STATUS10	RO	[19:0]	H.264 Code Size.	0
0x066C	VE_STATUS11	RO	[7:0]	Last Queue Position	0

As shown in Table 4-31, *Video Encoder Configuration Registers* [0x0700~0x0A04] are used to control H.264 video encoder parameters. Intra picture based prediction will be activated for each video input channel by asserting *Intra Picture Based Prediction register* [0x0700, 0x0704, 0x0708, 0x070C, 0x0710, 0x0714, 0x0718, 0x071C, 0x0720, 0x0724, 0x0728, 0x072C, 0x0730, 0x0734, 0x0738, 0x073C].

Adaptive frame/field DCT type decision of each video input channel will be applied by asserting *Interlace register* [0x0700, 0x0704, 0x0708, 0x070C, 0x0710, 0x0714, 0x0718, 0x071C, 0x0720, 0x0724, 0x0728, 0x072C, 0x0730, 0x0734, 0x0738, 0x073C]. The SOLO6110 H.264 video encoder support H.264 video advanced simple profile. However, adaptive frame/field DCT type is applied in H.264 video main profile. Therefore, adaptive frame/field DCT type should be deasserted in advanced simple profile applications.

The SOLO6110 supports motion detection using SAD (sum of absolute difference) in ME (motion estimation) as well as video multiplexer motion detection. The motion sensitivity can be controlled independently for each video input channel. *Motion Threshold register* [0x0740, 0x0744, 0x0748, 0x074C, 0x0750, 0x0754, 0x0758, 0x075C, 0x0760, 0x0764, 0x0768, 0x076C, 0x0770, 0x0774, 0x0778, 0x077C] controls the motion sensitivity for each video input channel.

Quantization Parameter register [0x0780, 0x0784, 0x0788, 0x078C, 0x0790, 0x0794, 0x0798, 0x079C, 0x07A0, 0x07A4, 0x07A8, 0x07AC, 0x07B0, 0x07B4, 0x07B8, 0x07BC] controls the video picture quality or bit rate of H.264 video encoder for each video input channel. *Extended Quantization Parameter register* [0x0780, 0x0784, 0x0788, 0x078C, 0x0790, 0x0794, 0x0798, 0x079C, 0x07A0, 0x07A4, 0x07A8, 0x07AC, 0x07B0, 0x07B4, 0x07B8, 0x07BC] is applied for virtual H.264 video stream for each video input channel.

GOP Size register [0x0800, 0x0804, 0x0808, 0x080C, 0x0810, 0x0814, 0x0818, 0x081C, 0x0820, 0x0824, 0x0828, 0x082C, 0x0830, 0x0834, 0x0838, 0x083C] controls the interval of I pictures for each video input channel. Extended GOP Size register [0x0840, 0x0844, 0x0848, 0x084C, 0x0850, 0x0854, 0x0858, 0x085C, 0x0860, 0x0864, 0x0868, 0x086C, 0x0870, 0x0874, 0x0878, 0x087C] is applied for virtual H.264 video stream for each video input channel.

Reference Base Address register [0x0880, 0x0884, 0x0888, 0x088C, 0x0890, 0x0894, 0x0898, 0x089C, 0x08A0, 0x08A4, 0x08A8, 0x08AC, 0x08B0, 0x08B4, 0x08B8, 0x08BC] points the base address to be stored previous picture for encoding P picture for each video input channel. Extended Reference Base Address register [0x0880, 0x0884, 0x0888, 0x088C, 0x0890, 0x0894, 0x0898, 0x089C, 0x08A0, 0x08A4, 0x08A8, 0x08AC, 0x08B0, 0x08B4, 0x08B8, 0x08BC] is applied for virtual H.264 video stream for each video input channel.

Table 4-31 Video Encoder Configuration Registers

Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x0700	VE_CH_INTL0	RW	[1]	Intra Picture Based Prediction.	0
0x0704	VE_CH_INTL1		[0]	Interlace.	0
0x0708	VE_CH_INTL2				
0x070C	VE_CH_INTL3				
0x0710	VE_CH_INTL4				
0x0714	VE_CH_INTL5				
0x0718	VE_CH_INTL6				
0x071C	VE_CH_INTL7				
0x0720	VE_CH_INTL8				
0x0724	VE_CH_INTL9				
0x0728	VE_CH_INTL10				
0x072C	VE_CH_INTL11				
0x0730	VE_CH_INTL12				
0x0734	VE_CH_INTL13				
0x0738	VE_CH_INTL14				
0x073C	VE_CH_INTL15				
0x0740	VE CH MOTO			Not Used.	
0x0744	VE CH MOT1				
0x0748	VE_CH_MOT2				
0x074C	VE CH MOT3				
0x0750	VE_CH_MOT4				
0x0754	VE CH MOT5				
0x0758	VE_CH_MOT6				
0x075C	VE CH MOT7				
0x0760	VE_CH_MOT8				
0x0764	VE CH MOT9				
0x0768	VE_CH_MOT10				
0x076C	VE CH MOT11				
0x0770	VE_CH_MOT12				
0x0774	VE_CH_MOT13				
0x0778	VE CH MOT14				
0x077C	VE_CH_MOT15				
0x0780	VE CH QP0	RW	[4:0]	Quantization Parameter.	0
0x0784	VE_CH_QP1		[]		[]
0x0788	VE_CH_QP2				
0x078C	VE_CH_QP3				
0x0790	VE_CH_QP4				
0x0794	VE_CH_QP5				
0x0798	VE_CH_QP6				
0x079C	VE_CH_QP7				
0x07A0	VE_CH_QP8				
0x07A4	VE_CH_QP9				
0x07A8	VE_CH_QP10				
0x07AC	VE_CH_QP11				
0x07B0	VE_CH_QP12				
0x07B0	VE_CH_QP13				
0x07B8	VE_CH_QP14				
0x07BC	VE_CH_QP15				

0x07C0	VE_CH_QP_E0	RW	[4:0]	Extended Quantization Parameter.	0
0x07C4	VE_CH_QP_E1				
0x07C8	VE_CH_QP_E2				
0x07CC	VE_CH_QP_E3				
0x07D0	VE_CH_QP_E4				
0x07D4	VE_CH_QP_E5				
0x07D8	VE_CH_QP_E6				
0x07DC	VE_CH_QP_E7				
0x07E0	VE_CH_QP_E8				
0x07E4	VE_CH_QP_E9				
0x07E8	VE_CH_QP_E10				
0x07EC	VE CH QP E11				
0x07F0	VE CH QP E12				
0x07F4	VE_CH_QP_E13				
0x07F8	VE CH QP E14				
0x07FC	VE_CH_QP_E15				
0x0800	VE_GH_GIP_E15	RW	[7:0]	GOP Size.	0
0x0804	VE_CH_GOP1	IXVV	[7.0]	GOF Size.	U
	VE_CH_GOP1 VE_CH_GOP2				
0x0808					
0x080C	VE_CH_GOP3				
0x0810	VE_CH_GOP4				
0x0814	VE_CH_GOP5				
0x0818	VE_CH_GOP6				
0x081C	VE_CH_GOP7				
0x0820	VE_CH_GOP8				
0x0824	VE_CH_GOP9				
0x0828	VE_CH_GOP10				
0x082C	VE_CH_GOP11				
0x0830	VE_CH_GOP12				
0x0834	VE_CH_GOP13				
0x0838	VE_CH_GOP14				
0x083C	VE_CH_GOP15				
0x0840	VE_CH_GOP_E0	RW	[7:0]	Extended GOP Size.	0
0x0844	VE_CH_GOP_E1				
0x0848	VE_CH_GOP_E2				
0x084C	VE_CH_GOP_E3				
0x0850	VE_CH_GOP_E4				
0x0854	VE_CH_GOP_E5				
0x0858	VE_CH_GOP_E6				
0x085C	VE_CH_GOP_E7				
0x0860	VE_CH_GOP_E8				
0x0864	VE_CH_GOP_E9				
0x0868	VE_CH_GOP_E10				
0x086C	VE_CH_GOP_E11				
0x0870	VE_GH_GOP_E12				
0x0874	VE_CH_GOP_E13				
0x0878	VE_CH_GOP_E14				
0x087C	VE CH GOP E15				
0x0880	VE_CH_REFB0	RW	[15:0]	Reference Base Address.	0
0x0884	VE_CH_REFB1		[.5.0]	1.5.5.5.700 2000 / 100/000/	
0x0888	VE_CH_REFB2				
0x088C	VE_CH_REFB3				
0x0890	VE_CH_REFB4				
0x0894	VE_CH_REFB5				
0x0898	VE_CH_REFB6				
0x089C	VE_CH_REFB7				
0x08A0	VE_CH_REFB8				
0x08A4	VE_CH_REFB9				
0x08A8	VE_CH_REFB10				
0x08AC	VE_CH_REFB11				
0x08B0	VE_CH_REFB12				
0x08B4	VE_CH_REFB13				
0x08B8 0x08BC	VE_CH_REFB14				
	VE_CH_REFB15	1		1	

			_		•
0x08C0	VE_CH_REFB_E0	RW	[15:0]	Extended Reference Base Address.	0
0x08C4	VE_CH_REFB_E1				
0x08C8	VE_CH_REFB_E2				
0x08CC	VE_CH_REFB_E3				
0x08D0	VE_CH_REFB_E4				
0x08D4	VE_CH_REFB_E5				
0x08D8	VE_CH_REFB_E6				
0x08DC	VE_CH_REFB_E7				
0x08E0	VE_CH_REFB_E8				
0x08E4	VE CH REFB E9				
0x08E8	VE_CH_REFB_E10				
0x08EC	VE_CH_REFB_E11				
0x08F0	VE_CH_REFB_E12				
0x08F4	VE_CH_REFB_E13				
0x08F8	VE_CH_REFB_E14				
0x08FC	VE_CH_REFB_E15				
0x0A00	VE_H.264_QUE	RW	[31]	Motion Flag.	0
0x0A08			[30:29]	VOP Type.	0
0x0A10			[28:24]	Channel.	0
0x0A18			[23:0]	H.264 Code Address Offset.	0
0x0A20			[23.0]	11.204 Code Address Offset.	U
0x0A28					
0x0A30					
0x0A38					
0x0A40					
0x0A48					
0x0A50					
0x0A58					
0x0A60					
0x0A68					
0x0A00					
0x0A70					
0x0A78	VE_JPEG_QUE	RW	[23:0]	JPEG Code Address Offset.	0
0x0A04 0x0A0C	VL_UFLG_QUE	IZVV	[23.0]	or Lo code Address Offset.	U
0x0A0C 0x0A14					
0x0A1C					
0x0A24					
0x0A2C					
0x0A34					
0x0A3C					
0x0A44					
0x0A4C					
0x0A54					
0x0A5C					
0x0A64					
0x0A6C					
0x0A74					
0x0A7C					

Table 4-32 shows Motion JPEG Encoder Configuration Registers [0x0670~0x0680]. The motion JPEG code size is controlled by quantization step size. The SOLO6110 supports 5 (1 to 5) level quantization step size control. Quantization step sizes are predefined on Quantization Step0 register [0x0670], Quantization Step1 register [0x0670], Quantization Step2 register [0x0670] and Quantization Step3 register [0x0670], respectively. Quantization step for each video input channel is set on Quantization Step Table ID0 register [0x0674], Quantization Step Table ID1 register [0x0674], Quantization Step Table ID3 register [0x0674], Quantization Step Table ID4 register [0x0674], Quantization Step Table ID5 register [0x0674], Quantization Step Table ID6 register [0x0674], Quantization Step Table ID7 register [0x0674], Quantization Step Table ID8 register [0x0674], Quantization Step Table ID9 register [0x0674], Quantization Step Table ID10 register [0x0674], Quantization Step Table ID11 register [0x0674], Quantization Step Table ID12 register [0x0674], Quantization Step Table ID11 register [0x0674], Quantization Step Table ID12 register [0x0674], Quantization Step Table ID11 register [0x0674], Quantization Step Table ID12 register [0x0674],

Quantization Step Table ID13 register [0x0674], Quantization Step Table ID14 register [0x0674] and Quantization Step Table ID15 register [0x0674], respectively. Furthermore, the SOLO6110 produces two different quality motion JPEG codes for each video input channel. Quantization step for each extended video input channel is set on Extended Quantization Step Table ID16 register [0x0678], respectively.

JPEG Page Size Register [0x067C] is configured with the JPEG page size. JPEG Page Base Register [0x067C] points the base address on the external SDRAM. JPEG Encoder Enable Register [0x0680] is set to 1 to activate motion JPEG encoder for video input channel0 to 31.

Table 4-32 Motion JPEG Encoder Configuration Registers

Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x0670	VE_JPEG_QS	RW	[28:24]	Quantization Step3.	0
			[20:16]	Quantization Step2.	0
			[12:8]	Quantization Step1.	0
			[4:0]	Quantization Step0.	0
0x0674	VE_JPEG_QS_CH0	RW	[31:30]	Quantization Step Table ID15.	0
			[29:28]	Quantization Step Table ID14.	0
			[27:26]	Quantization Step Table ID13.	0
			[25:24]	Quantization Step Table ID12.	0
			[23:22]	Quantization Step Table ID11.	0
			[21:20]	Quantization Step Table ID10.	0
			[19:18]	Quantization Step Table ID9.	0
			[17:16]	Quantization Step Table ID8.	0
			[15:14]	Quantization Step Table ID7.	0
			[13:12]	Quantization Step Table ID6.	0
			[11:10]	Quantization Step Table ID5.	0
			[9:8]	Quantization Step Table ID4.	0
			[7:6]	Quantization Step Table ID3.	0
			[5:4]	Quantization Step Table ID2.	0
			[3:2]	Quantization Step Table ID1.	0
			[1:0]	Quantization Step Table ID0.	0
0x0678	VE_JPEG_QS_CH1	RW	[31:30]	Extended Quantization Step Table ID31.	0
			[29:28]	Extended Quantization Step Table ID30.	0
			[27:26]	Extended Quantization Step Table ID29.	0
			[25:24]	Extended Quantization Step Table ID28.	0
			[23:22]	Extended Quantization Step Table ID27.	0
			[21:20]	Extended Quantization Step Table ID26.	0
			[19:18]	Extended Quantization Step Table ID25.	0
			[17:16]	Extended Quantization Step Table ID24.	0
			[15:14]	Extended Quantization Step Table ID23.	0
			[13:12]	Extended Quantization Step Table ID22.	0
			[11:10]	Extended Quantization Step Table ID21.	0
			[9:8]	Extended Quantization Step Table ID20.	0

			[7:6]	Extended Quantization Step Table ID19.	0
			[5:4]	Extended Quantization Step Table ID18.	0
			[3:2]	Extended Quantization Step Table ID17.	0
			[1:0]	Extended Quantization Step Table ID16.	0
0x067C	VE_JPEG_CFG	RW	[23:16]	JPEG Page Size.	0
			[15:0]	JPEG Page Base.	
0x0680	VE_JPEG_CTRL	RW	[31:0]	JPEG Encoder Enable.	0
0x0684	VE_CODE_ENCRY	RW	[31:0]	Channel Encryption Enable for Channel 31~0.	0
	PT				
0x0688	VE_JPEG_CFG	RW	[23:16]	Mute Queue.	0
			[15:8]	Mute Sample.	0
			[7:0]	Mute Pos.	0
0x068C	VE_WATERMARK_	RW	[31:0]	Watermark Enable for Channel 31~0.	0
	ON				

Fig. **4-44** shows the record OSG. The record OSG with 16 by 16 font format with 1 bit resolution is supported for 32 video input channels including 16 extended video input channels for the virtual channels. The dimension for a character is 16 x16 pixels (32 bytes). Each video input channel is covered the dimension with 1,024 x 512. Therefore, the memory space for each video input channel is 64 k bytes.

Fig. 4-44 Record OSG

Table 4-33 shows *Video Record OSG Registers* [0x0690~0x069C]. *Record OSG Enable Register* [0x0690] is used to activate the video record OSG for each video input channel. *Record OSG Base Address Register* [0x0694] points the base address on the external SDRAM. *Record OSG Y Register* [0x0698], *Record OSG U Register* [0x0698] and *Record OSG V Register* [0x0698] determine the record OSG color.

Table 4-33 Video Record OSG Registers

Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x0690	VE_OSG_CH	RW	[31:0]	Record OSG Enable.	0
0x0694	VE_OSG_BASE	RW	[15:0]	Record OSG Base Address.	0
0x0698	VE_OSG_CLR	RW	[23:16]	Record OSG Y.	0
			[15:8]	Record OSG U.	0
			[7:0]	Record OSG V.	0
0x069C	VE_OSG_OPT	RW	[16]	Record OSG Vertical Doubling.	0
			[15]	Record OSG Horizontal Shadow.	0
			[14]	Record OSG Vertical Shadow.	0
			[13:7]	Record OSG Horizontal Offset * 16.	0
			[6:0]	Record OSG Vertical Offset * 16.	0

Fig. 4-45 shows the conceptual flow of the video decoder. Although the video encoder supports D1 (704 x 480 for NTSC, 704 x 576 for PAL), HD1 (704 x 240 for NTSC, 704 x 288 for PAL), CIF (352 x 240 for NTSC, 352 x 288 for PAL) and QCIF (176 x 120 for NTSC, 176 x 144 for PAL), the vide decoder supports only D1, HD1 and CIF resolution video because of the video display resolution. The video decoder scaler in Fig. 4-45 includes the auto adaptive scale processor by comparing source scale with target scale. The video display processor in Fig. 4-45 includes the interpolation, deinterlaced filter and horizontal x2 scaler.

Fig. 4-45 Conceptual Flow of the Video Decoder

Fig. 4-46 (a), (b) and (c) show example when source scale is D1 real time, HD1 less than 30fps for NTSC or 25fps for PAL, CIF less than 30fps for NTSC or 25fps for PAL, respectively. Fig. 4-46 (b) should be work with interlace write and display interpolation for target scale 1, and Fig. 4-46 (c) should be worked with interlace write, display interpolation and display horizontal x2 for target scale 1, respectively.

N: Macro Scale IW: Interlace Write DIP: Display Interpolation D2H: Display Horizontal x2

Fig. 4-46 Examples for Display Scale

Table 4-34 shows H.264 Video Decoder Configuration Registers [0x0900~0x0908]. No Write if No Window Register [0x0900] is set to 1 to protect decoding if no window ID. Busy Wait When Code Busy Register [0x0900], Busy Wait When Res. Write Register [0x0900], Busy Wait When Ref. Read Register [0x0900] and Busy Wait When Macroblock Read Register [0x0900] are used to distribute the FDMA bandwidth. Decode Mode Register [0x0900] is set to 1 to decode single H.264 video stream and 0 to decode multi H.264 video stream. Display Control Mode Register [0x0900] is set to 0 for auto display control and 1 for user defined display control. Display Page Control Mode Register [0x0900] is set to 0 for 2 page display mode and 1 for user defined page display mode. Byte Order Register [0x0900] should be set 0. Decode Start Field Index Register [0x0900] defines the field index to be decoded H.264 video stream. Decode Lock When Error Register [0x0900] is set to 1 for locking H.264 video decoder when decoder error is occurred. Error Interrupt Enable Register [0x0900] is set to 1 to use error interrupt mode. Time Width Register [0x0900] defined the bit width of H.264 VOP header time information. DCT Interval Register [0x0900] defines the decoding interval between macroblocks.

Table 4-34 H.264 Video Decoder Configuration Registers

Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x0900	VD_CFG0	RW	[28]	Decoding Start Lock Enable for Every Display Sync.	0
			[27]	LF Off.	0
			[26]	Interpolation Enable for Decoding Scale 2&3	0
			[25]	NAL Off.	0
			[24]	No Display When Decoding Error.	0
			[23]	Busy Wait When Code Busy.	0
			[22]	Busy Wait When Res Write.	0
			[21]	Busy Wait When Ref Read.	0

			[20]	Busy Wait When Macroblock Read.	0
			[18]	Decode Mode	0
			' '	[0] : Multi	
				[1] : Single	
			[17]	Display Control Mode.	0
				[0] : Auto	
				[1] : User	
			[16]	Display Page Control Mode.	0
				[0] : 2 page auto	
				[1] : User	
			[15]	Byte Order.	0
			[14]	Decode Start Field Index.	0
			[13]	Decode Lock When Error.	0
			[12]	Error Interrupt Enable.	0
			[11:8]	Time Width.	0
			[7:0]	DCT Interval.	0
0x0904	VD_CFG1	RW	[31:26]	Allowed Maximum Number of Horizontal Macroblock	0
			[25:20]	Allowed Maximum Number of Vertical Macroblock	0
			[19:16]	Auto Emergency Decoder Reset Count if Continuous	0
				Unknown Decode Error.	
			[15:0]	Decode Video Write Base Memory Address when	0
				Play Back to Live Mode.	
0x0908	VD_DEINTERLACE	RW	[31:24]	Deflickering Filter Threshold.	0
			[23:22]	Deflickering Filter Shift.	0
			[19:8]	Deinterlace Filter Threshold.	0
			[7:0]	Deinterlace Filter Edge Value.	0

Table 4-35 shows *H.264 Video Decoder Control Registers* [0x090C~0x0940]. *Code Address Register* [0x090C] points the address to be decoded H.264 currently video code on the external SDRAM. *Decode On Register* [0x0910] is set to 1 to activate the H.264 video decoder. *Max Item Count When Multi Decode Mode Register* [0x0910] will determine the number of picture decoding at one time when multi page mode. *Interrupt by Command Ack. Register* [0x0920] will be asserted when the H.264 decoder is done. *Interrupt by Command Empty Register* [0x0920] will be asserted when the code buffer is empty. *Interrupt by Decode Error Register* [0x0920] will be asserted when H.264 video decoder meets errors. *Internal VLD Error Flags Register* [0x0924] will be asserted when internal VLD errors are occurred. *Decoded Byte Count Register* [0x0924] shows the actual decoded byte count. *Progressive Register* [0x0930] indicates progressive for the H.264 video decoding currently.

Interlace Register [0x0930] is set to 1 for interlaced video decoding. Source FI Register [0x0930] set to 0 or 1 for field0 or field1, respectively. Source Channel ID Register [0x0930] is configured with source video channel ID. VOP Type Register [0x0930] is configured with VOP type for the H.264. Decode H.264 Code Size Register [0x0930] is configured with H.264 code size. Source Scale Register [0x0934] is configured with H.264 source scale. Target Window ID Register [0x0934] is configured with target window channel ID. Frame Interpolation On Register [0x0934] is set 1 to process interpolation. Horizontal Macroblock Size Register [0x0934] and Vertical Macroblock Size Register [0x0934] are configured with the horizontal Macroblock size and vertical Macroblock size of the picture. Ref. Address Horizontal Offset Register [0x0938]. Ref. Base Address Register [0x0938]. User Set Macro Scale Mode Register [0x093C]. User Set Macro Interlace Write Register [0x093C]. User Set Macro Read Interpolation Register [0x093C]. User Set Display Horizontal Zoom Register [0x093C]. User Set Display

SX Register [0x093C]. User Set Display SY Register [0x093C]. User Set Decode Write Page Register [0x0940]. User Set Decode Read Page Register [0x0940]. Next Code Address Register [0x0944]

Table 4-35 H.264 Video Decoder Control Registers

Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x090C	VD_CODE_ADDR	RW	[31:0]	Code Address.	0
0x0910	VD_CTRL	RW	[31]	Decoder On.	0
			[11:0]	Max Item Count When Multiple Decode Mode.	0
0x0920	VD_STATUS0	RO	[22]	Interrupt by Command Ack.	-
			[21]	Interrupt by Command Empty.	-
			[20]	Interrupt by Decode Error.	-
			[11:0]	Rest Number of Reserved Decoding.	-
				Only for multiple Decode Mode.	
0x0924	VD_STATUS1	RO	[23:20]	Internal VLD Error Flags.	-
			[19:0]	Decoded Byte Count.	
0x0930	VD_IDX0	RW	[31]	Progressive.	0
			[30]	Interlace.	0
			[29]	Source FI.	0
			[27:24]	Source Channel ID.	0
			[23:22]	VOP Type.	0
			[21]	Decode Page Stop.	0
			[20]	Sync Start.	0
			[19:0]	H.264 Code Size.	0
0x0934	VD_IDX1	RW	[31:28]	Source Scale.	0
			[27:24]	Target Window ID.	0
			[16]	Frame Interpolation On.	0
			[15:8]	Horizontal Macroblock Size.	0
			[7:0]	Vertical Macroblock Size.	0
0x0938	VD_IDX2	D_IDX2 RW	[31]	Ref Address Horizontal Offset. [0]: 0	0
				[1]: 512 (When use CIF)	
			[15:0]	Ref Base Address.	0
0x093C	VD_IDX3	RW	[31:28]	User Set Macro Scale Mode.	0
			[27]	User Set Macro Interlace Write.	0
			[26]	User Set Macro Read Interpolation.	0
			[25]	User Set Display Horizontal Zoom.	0
			[24]	Reserved.	0
			[23:12]	User Set Display SX.	0
			[11:0]	User Set Display SY.	0
0x0940	VD_IDX4	RW	[15:8]	User Set Decode Write Page.	0
			[7:0]	User Set Display Read Page.	0
0x0944	VD_IDX5	RW	[31:0]	Next Code Address	0

4.5. G.723 Voice CODEC

The SOLO6110 has two full hardware 10 channel G.723 voice CODEC engines to support total 20 channels which are an ITU-T recommendation for voice CODECs that use the ADPCM method and provides quality audio at 20 or 40 Kbps. Fig. 4-47 shows G.723 simplified block diagram. The voice CODEC engines support I2S slave/master interface and u-Law interface according to register configuration. When it is used on I2S master interface, multi channel interface is possible though only channel 0 (pin ioPCM_S0). The sampling rate should be less than 10 kHz on 54MHz system clock and 20 kHz on 108MHz system clock.

Fig. 4-47 G.723 Simplified Block Diagram

Fig. 4-48 shows the timing diagram of u-Law, where ioPCM_SYNC, ioPCM_CLK and ioPCM_SD represent synchronization, serial clock signal and serial data signal at w-Law, respectively. In case of u-Law, one serial data pin can interface with one channel. Therefore, only 10 channels are supported at u-Law interface. Otherwise, 20 channels are supported at I2S interface because one data pin interface with two channels (right and left channels).

Fig. 4-48 Timing Diagram of u-Law

Fig. 4-49 shows the simple system configurations and basic interface timing.

ioPCM_SD

Fig. 4-49 I2S Simple System Configurations and Basic Interface Timing

Fig. 4-50 shows the timing diagram for I2S interface.

Fig. 4-50 Timing Diagram for I2S interface

Fig. 4-51 shows the code address structure of 20 channel G.723 voice CODEC. The memory space allocated on the external SDRAM is 64 kyte. The encoding code area is allocated on lower 32 kByte and the decoding code area is allocated on upper 32 kByte. Each area is composed of 32 pages and its size is 1 kByte. Each page includes 960 Byte (20 channel * 48 Byte) and 64 Byte dummy space. One page size is the code size for every interrupt when *Interrupt Page Count Mode Register* [0x0D08] is set to 0. In other word, 48 byte is the code size for 128 code (16msec on 8 kHz sampling, 8msec on 16 kHz sampling).

Fig. 4-51 Code Address Structure

Table 4-37 shows Audio Registers [0x0D00~0x0D14]. Audio CODEC Enable Register [0x0D00]

SOFTLOGIC Co., Ltd. 129 June 24, 2010

should be set to 1 to activate G.723 Voice CODEC. *Master Mode Register* [0x0D00] is set to 0 when pin ioPCM_CLK and ioPCM_SYNC are used as input pin for I2S slave mode, and 1 when pin ioPCM_CLK and ioPCM_SYNC are used as output pin for I2S master mode. *Interface Mode Register* [0x0D00] is set to 0 for u-Law interface and 1 for I2S interface. *Left-Right Word Swap Register* [0x0D00] is effective only for I2S interface and used to swap left right word at input and output interface. *Bit Width Register* [0x0D00] will decide the word width as 16 bit for 0 and 8 bit for 1. However, u-Law interface supports only 8 bit interface. *Multi Channel Register* [0x0D00] is only effective IS2 slave encoding mode. Table 4-36 shows multi channel mode.

Table 4-36 I2S Multi Channel Mode

IO DIN	Ch. (Code)									
IO PIN	[25:24] = 0	[25:24] = 1	[25:24] = 2	[25:24] = 3						
ioPCM_S0	0, 1	0, 1, 2, 3	0 ~ 7	0 ~ 15						
ioPCM_S1	2, 3	-	-	-						
ioPCM_S2	4, 5	4, 5, 6, 7	-	-						
ioPCM_S3	6, 7	-	-	-						
ioPCM_S4	8, 9	8, 9, 10, 11	8 ~ 15	-						
ioPCM_S5	10, 11	-	-	-						
ioPCM_S6	12, 13	12, 13, 14, 15	-	-						
ioPCM_S7	14, 15	-	-	-						
ioPCM_S8	16, 17	16, 17	16, 17	16, 17						
ioPCM_S9	18, 19	18, 19	18, 19	18, 19						

Mix Enable for Ch9~Ch0 Register [0x0D00] can be set to 1 to mix Ch0 to Ch9 all audio signal to output Ch9 when Ch9 is set as decoding mode. Decoding Volume Control for Ch19~Ch10 Register [0x0D00] is used to control the audio output volume for Ch0 to Ch9. Mix Enable for Ch19~Ch10 Register [0x0D00] can be set to 1 to mix Ch19 to Ch10 all audio signal to output Ch19 when Ch19 is set as decoding mode. Decoding Volume Control for Ch19~Ch10 Register [0x0D00] is used to control the audio output volume for Ch19 to Ch10. Channel I/O Mode Register [0x0D00] configures input or output mode.

Serial Clock Number Register [0x0D04] is only effective for I2S master mode and its value decides the clock number for one period ioPCM_SYNC signal. Clock Divider Register [0x0D04] is only effective for I2S master mode and used to adjust the sampling rate which can be set to 8 kHz or 16 kHz. The sample rate should be set as less than 10 kHz at 54 MHz system clock mode and 20 kHz at 108 MHz system clock mode. The serial clock range is different according to audio AD/DA chips. The serial clock

can be configured to the appropriate value and the clock number can be defined after determining the serial clock. Theses value should be set to the appropriate value to operating normally. The calculation examples are shown as followings.

Ex1) Sampling frequency = 16 kHz M = 384 bit => Clock frequency = <math>16 * 384 = 6.144 MHz $N = 108/9.184 = 8.78 \approx 9$ Ex2) Sampling frequency = 8 kHz M = 256 bit => Clock frequency = <math>8 * 256 = 2.048 MHz $N = 108/4.092 = 26.39 \approx 26$ Ex3) Sampling frequency = 8 kHzClock frequency = 200 kHz => M = 200/8 = 25

DMA Wait Interval Register [0x0D08] will define the interval (clock number) between each channel to transact code data with external SDRAM. Interrupt Page Count Mode Register [0x0D08] decide the number page. The interrupt interval will be longer and the length of transaction at one time will be more according to bigger value. External Memory Base Address Register [0x0D08] points the base address on external SDRAM.

Encoding Volume Control for Ch0~Ch9 [0x0D0C] and Encoding Volume Control for Ch10~Ch19 [0x0D10] are used to control the volume for each channel. Channel Count Register [0x0D14] and Page Count Register [0x0D14] will inform the current access channel and page, respectively.

Table 4-37 Audio Registers

N = 108/0.4 = 270

Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x0D00	ADO_CTRL0	RW	[31]	Audio CODEC Enable.	0
			[30]	Master Mode.	0
				[0] : CLK/SYNC IN	
				[1]: CLK/SYNC OUT	
			[29]	Interface Mode.	0
				[0] : u-Law	
				[1] : I2S	
			[28]	Reserved.	0
			[27]	Left-Right Word Swap. Only for I2S mode.	0
			[26]	Bit Width. Only for I2S.	0
				[0] : 16bit	
				[1]: 8bit	
			[25:24]	Multi Channel. Only for I2S slave mode.	0
				[0] : 2 Channel	
				[1]: 4 Channel	
				[2] : 8 Channel	
				[3] : 16 Channel	
			[23]	Mix Enable for Ch9 ~ Ch0.	0
			[22:20]	Decoding Volume Control for Ch9 ~ Ch0.	0
			[19]	Mix Enable for Ch19 ~ Ch10.	0
			[18:16]	Decoding Volume Control for Ch19 ~ Ch10.	0

	T		[0.0]	Channal I/O Mada	
			[9:0]	Channel I/O Mode. PCM mode: [Ch9, Ch8, Ch7,, Ch0]	0
				Ch(x) = 0 : Encoding	
				Ch(x) = 0 : Effecting Ch(x) = 1 : Decoding	
				On(x) = 1 . Beddaing	
				I2S mode : [{Ch19, Ch18}, {Ch17, Ch16},	
				{Ch15, Ch14},, {Ch1, Ch0}]	
				$\{Ch(x1),Ch(x0)\}=0$: Encoding	
				$\{Ch(x1),Ch(x0)\}=1$: Decoding	
0x0D04	ADO_SAMPLING	RW	[31]	Short Mode for Simulation. Only for Test.	0
			[30]	EE Mode for Testing. Only for Test.	0
			[29:25]	EE Mode Encoding Channel for Testing. Only for	0
				Test	
			[24:16]	Serial Clock Number. (Only for I2S Master Mode)	0x18
				M (Clock Frequency / Sampling)	
			[8:0]	Clock Divider. (Only for I2S Master Mode)	0x1A5
				N (Clock Frequency = SYS_CLK / (N*2) Hz)	
0x0D08	ADO_FDMA_INTR	RW	[31:19]	DMA Wait Interval.	
			[18:16]	Interrupt Page Count Mode.	
				The range will be allowed 0~4.	
			[45.0]	2^n pages will be applied.	
00000	ALIDIO EVOLO	DW	[15:0]	External Memory Base Address.	0
0x0D0C	AUDIO_EVOL0	RW	[29:27]	Encoding Volume Control for Ch9. [000]: x1 [100]: x1	0
				[000] : x1	
				[001] : x2 [101] : x1/2 [110] : x1/4	
				[010]: x4 [110]: x1/4 [011]: x8 [111]: x1/8	
			[26:24]	Encoding Volume Control for C8.	0
			[23:21]	Encoding Volume Control for Ch7.	0
			[20:18]	Encoding Volume Control for Ch6.	0
			[17:15]	Encoding Volume Control for Ch5.	0
			[14:12]	Encoding Volume Control for Ch4.	0
			[11:9]	Encoding Volume Control for Ch3.	0
			[8:6]	Encoding Volume Control for Ch2.	0
			[5:3]	Encoding Volume Control for Ch1.	0
			[2:0]	Encoding Volume Control for Ch0.	0
0x0D10	AUDIO_EVOL1	RW	[29:27]	Encoding Volume Control for Ch19.	0
0.02.0	7.02.0_2.02.		[20:2:]	[000] : x1 [100] : x1	ŭ
				[001] : x2 [101] : x1/2	
				[010] : x4 [110] : x1/4	
				[011] : x8 [111] : x1/8	
			[26:24]	Encoding Volume Control for Ch18.	0
			[23:21]	Encoding Volume Control for Ch17.	0
			[20:18]	Encoding Volume Control for Ch16.	0
			[17:15]	Encoding Volume Control for Ch15.	0
			[14:12]	Encoding Volume Control for Ch14.	0
			[11:9]	Encoding Volume Control for Ch13.	0
			[8:6]	Encoding Volume Control for Ch12.	0
			[5:3]	Encoding Volume Control for Ch11.	0
			[2:0]	Encoding Volume Control for Ch10.	0
0x0D14	ADO_STA	RW	[31:10]	Reserved. (FSM for Debugging.)	0
	_		[9:5]	Channel Count. (Accessing Channel 0 ~ 19)	0
	ĺ	1	[4:0]	Page Count. (Accessing Page 0 ~ 31)	0

4.6. Peripherals

4.6.1. GPIO

SOLO6110 supports two 16bit GPIO for sensor input or relay output. ioGPIO[15:0] is designed overlapped with I2C, UART, PS2 or SPI. ioGPIO[31:16] is designed for only extended GPIO. Table 4-38 shows *GPIO Registers* [0x0B00~0x0B1C]. The configuration method of ioGPIO[15:0] is explained detail in *GPIO[15:0] Configuration Register* [0x0B00] of Table 4-38. *GPIO[31:16] Enable Register* [0x0B04] should be set to 1 for each bit in order to use ioGPIO[31:16]. The configuration method of ioGPIO[31:16] is explained in *GPIO[31:16] Configuration Register* [0x0B04] of Table 4-38.

GPIO Output Data Register [0x0B08] is used to write GPIO output data. GPIO Input Data Register [0x0B0C] is used to read GPIO input data. GPIO Interrupt Status/Ack Register [0x0B10] is worked as status when read and acknowledge when written. GPIO Interrupt Enable Register [0x0B14] needs to be set to use GPIO interrupt. The GPIO interrupt events are configured as rising edge, falling edge, both edge or low level. GPIO[15:0] Interrupt Configuration Register [0x0B18] and GPIO[31:16] Interrupt Configuration Register [0x0B1C] is used for GPIO interrupt configuration as shown in Table 4-38.

Table 4-38 GPIO Registers

Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x0B00	GPIO_CONFIG0	RW	[31:30]	GPIO[15] Configuration.	0
				[0] : Input	
				[1] : Output	
				[2]: I2C_SCL7	
				[3] : RS_nRTS1	_
			[29:28]	GPIO[14] Configuration.	0
				[0] : Input	
				[1] : Output	
				[2] : I2C_SCL7	
				[3] : RS_nCTS1	
			[27:26]	GPIO[13] Configuration.	0
				[0] : Input	
				[1] : Output	
				[2] : I2C_SCL6	
			[05.04]	[3] : RS_TXD1	
			[25:24]	GPIO[12] Configuration.	0
				[0] : Input	
				[1] : Output	
				[2]: I2C_SCL6	
			[23:22]	[3] : RS_nRXD1 GPI0[11] Configuration.	0
			[23.22]		U
				[0] : Input	
				[1] : Output [2] : I2C_SCL5	
				[3] : RS_TxEn0	
			[21:20]	GPIO[10] Configuration.	0
			[21.20]	[0] : Input	U
				[1]: Output	
				[2]: I2C_SCL5	
				[3] : RS_RxEn0	
			[19:18]	GPIO[9] Configuration.	0
			[10.10]	[0] : Input	
				[1]: Output	
				[2]: I2C_SCL4	
				[3] : RS_TxD0	[

			[17:16]	GPIO[8] Configuration.	0
				[0] : Input	
				[1] : Output	
				[2]: I2C_SCL4	
				[3] : RS_RxD0	
			[15:14]	GPIO[7] Configuration.	0
			[10.14]	[0] : Input	
				[1] : Output	
				[2] : I2C_SCL3	
				[3] : PS2_C1	
			[13:12]	GPIO[6] Configuration.	0
				[0] : Input	
				[1] : Output	
				[2]: I2C_SCL3	
			F44 401	[3]: PS2_D1	
			[11:10]	GPIO[5] Configuration.	0
				[0] : Input	
				[1] : Output	
				[2] : I2C_SCL2	
				[3] : PS2_C0	
		1	[9:8]	GPIO[4] Configuration.	0
1			[9.0]		U
			1	[0] : Input	
		1		[1] : Output	
		1		[2]: I2C_SCL2	
				[3] : PS2_D0	
			[7:6]	GPIO[3] Configuration.	0
			[]	[0] : Input	
				[1] : Output	
				[2] : I2C_SCL1	
				[3] : SPI_STB	
			[5:4]	GPIO[2] Configuration.	0
				[0] : Input	
				[1] : Output	
				[2] : I2C_SCL1	
				[3]: SPI_CLK	
			[3:2]	GPIO[1] Configuration.	0
				[0] : Input	
				[1] : Output	
				[2]: I2C_SCL0	
				[3] : SPI_SDI	
			[1:0]	GPIO[0] Configuration.	0
			[1.0]		U
				[0] : Input	
				[1] : Output	
				[2]: I2C_SCL0	
			1	[3]: SPI_SDO	
0x0B04	GPIO_CONFIG1	RW	[31:16]	GPIO[31:16] Enable.	0
5550-	55_ 55.11 151		[[0] : ATA DIO[15:0]	
		1			
			[4.5]	[1] : GPIO[31:16]	_
			[15]	GPIO[31] Configuration.	0
			1	[0] : Input	
		1		[1]: Output	1
			[14]	GPIO[30] Configuration.	0
			' '	[0] : Input	
		1		[1] : Output	
Ì		1	[40]	CDIO(20) Configuration	1
	1		[13]	GPIO[29] Configuration.	0
		1		[0] : Input	
				[1] : Output	
				[.]. output	
			[12]	GPIO[28] Configuration.	0
			[12]	GPIO[28] Configuration.	0
			[12]	GPIO[28] Configuration. [0] : Input	0
				GPIO[28] Configuration. [0] : Input [1] : Output	
			[12]	GPIO[28] Configuration. [0] : Input [1] : Output GPIO[27] Configuration.	0
				GPIO[28] Configuration. [0] : Input [1] : Output GPIO[27] Configuration. [0] : Input	
			[11]	GPIO[28] Configuration. [0]: Input [1]: Output GPIO[27] Configuration. [0]: Input [1]: Output	0
				GPIO[28] Configuration. [0]: Input [1]: Output GPIO[27] Configuration. [0]: Input [1]: Output GPIO[26] Configuration.	
			[11]	GPIO[28] Configuration. [0]: Input [1]: Output GPIO[27] Configuration. [0]: Input [1]: Output GPIO[26] Configuration. [0]: Input [0]: Input	0
			[11]	GPIO[28] Configuration. [0]: Input [1]: Output GPIO[27] Configuration. [0]: Input [1]: Output GPIO[26] Configuration. [0]: Input [1]: Output	0
			[11]	GPIO[28] Configuration. [0]: Input [1]: Output GPIO[27] Configuration. [0]: Input [1]: Output GPIO[26] Configuration. [0]: Input [1]: Output	0
			[11]	GPIO[28] Configuration. [0]: Input [1]: Output GPIO[27] Configuration. [0]: Input [1]: Output GPIO[26] Configuration. [0]: Input [1]: Output GPIO[25] Configuration.	0
			[11]	GPIO[28] Configuration. [0]: Input [1]: Output GPIO[27] Configuration. [0]: Input [1]: Output GPIO[26] Configuration. [0]: Input [1]: Output	0

		ı	[0]	CRIORAL Configuration	
			[8]	GPI0[24] Configuration. [0] : Input	0
				[1]: Output	
			[7]	GPI0[23] Configuration.	0
				[0] : Input	
			F01	[1] : Output	
			[6]	GPIO[22] Configuration.	0
				[0] : Input [1] : Output	
			[5]	GPIO[21] Configuration.	0
			[0]	[0] : Input	
				[1] : Output	
			[4]	GPIO[20] Configuration.	0
				[0] : Input	
			[0]	[1] : Output	
			[3]	GPIO[19] Configuration. [0] : Input	0
				[1]: Output	
			[2]	GPIO[18] Configuration.	0
			[-]	[0] : Input	
				[1] : Output	
			[1]	GPIO[17] Configuration.	0
				[0] : Input	
			ra1	[1] : Output	
			[0]	GPIO[16] Configuration.	0
				[0] : Input [1] : Output	
0x0B08	GPIO_DATA_OUT	RW	[31:0]	GPIO Output Data.	0xffff_ffff
0x0B0C	GPIO_DATA_IN	RW	[31:0]	GPIO Input Data.	- UXIIII_IIII
0x0B10	GPIO_INT_STA/ACK	RW	[31:0]	GPIO Interrupt Status/Ack.	0
			[00]	Read Mode: GPIO[31:0] Interrupt Status.	
				Write Mode: GPIO[31:0] Interrupt Ack.	
0x0B14	GPIO_INT_ENA	RW	[31:0]	GPIO Interrupt Enable.	0
0.0040	0010 1117 0000	514	ro (o o)	GPIO[31:0] Interrupt Enable.	
0x0B18	GPIO_INT_CFG0	RW	[31:30]	GPIO[15] Interrupt Configuration.	0
				[0] : Rising Edge [1] : Falling Edge	
				[2]: Both Edge	
				[3]: Low Level	
			[29:28]	GPIO[14] Interrupt Configuration.	0
			-	[0] : Rising Edge	
				[1] : Falling Edge	
				[2] : Both Edge	
				[3] : Low Level	
			107.001	ODIO[40] Intermed On officer and the m	
			[27:26]	GPIO[13] Interrupt Configuration.	0
, I			[27:26]	[0] : Rising Edge	0
			[27:26]	[0] : Rising Edge [1] : Falling Edge	0
			[27:26]	[0] : Rising Edge	0
			[27:26]	[0] : Rising Edge [1] : Falling Edge [2] : Both Edge [3] : Low Level GPIO[12] Interrupt Configuration.	0
				[0]: Rising Edge [1]: Falling Edge [2]: Both Edge [3]: Low Level GPIO[12] Interrupt Configuration. [0]: Rising Edge	
				[0]: Rising Edge [1]: Falling Edge [2]: Both Edge [3]: Low Level GPIO[12] Interrupt Configuration. [0]: Rising Edge [1]: Falling Edge	
				[0]: Rising Edge [1]: Falling Edge [2]: Both Edge [3]: Low Level GPIO[12] Interrupt Configuration. [0]: Rising Edge [1]: Falling Edge [2]: Both Edge	
			[25:24]	[0]: Rising Edge [1]: Falling Edge [2]: Both Edge [3]: Low Level GPIO[12] Interrupt Configuration. [0]: Rising Edge [1]: Falling Edge [2]: Both Edge [3]: Low Level	0
				[0]: Rising Edge [1]: Falling Edge [2]: Both Edge [3]: Low Level GPIO[12] Interrupt Configuration. [0]: Rising Edge [1]: Falling Edge [2]: Both Edge [3]: Low Level GPIO[11] Interrupt Configuration.	
			[25:24]	[0]: Rising Edge [1]: Falling Edge [2]: Both Edge [3]: Low Level GPIO[12] Interrupt Configuration. [0]: Rising Edge [1]: Falling Edge [2]: Both Edge [3]: Low Level GPIO[11] Interrupt Configuration. [0]: Rising Edge	0
			[25:24]	[0]: Rising Edge [1]: Falling Edge [2]: Both Edge [3]: Low Level GPIO[12] Interrupt Configuration. [0]: Rising Edge [1]: Falling Edge [2]: Both Edge [3]: Low Level GPIO[11] Interrupt Configuration. [0]: Rising Edge [1]: Falling Edge	0
			[25:24]	[0]: Rising Edge [1]: Falling Edge [2]: Both Edge [3]: Low Level GPIO[12] Interrupt Configuration. [0]: Rising Edge [1]: Falling Edge [2]: Both Edge [3]: Low Level GPIO[11] Interrupt Configuration. [0]: Rising Edge [1]: Falling Edge [2]: Both Edge [2]: Both Edge	0
			[25:24]	[0]: Rising Edge [1]: Falling Edge [2]: Both Edge [3]: Low Level GPIO[12] Interrupt Configuration. [0]: Rising Edge [1]: Falling Edge [2]: Both Edge [3]: Low Level GPIO[11] Interrupt Configuration. [0]: Rising Edge [1]: Falling Edge [2]: Both Edge [3]: Low Level GPIO[10] Interrupt Configuration.	0
			[25:24]	[0]: Rising Edge [1]: Falling Edge [2]: Both Edge [3]: Low Level GPIO[12] Interrupt Configuration. [0]: Rising Edge [1]: Falling Edge [2]: Both Edge [3]: Low Level GPIO[11] Interrupt Configuration. [0]: Rising Edge [1]: Falling Edge [2]: Both Edge [3]: Low Level GPIO[10] Interrupt Configuration. [0]: Rising Edge [3]: Low Level	0
			[25:24]	[0]: Rising Edge [1]: Falling Edge [2]: Both Edge [3]: Low Level GPIO[12] Interrupt Configuration. [0]: Rising Edge [1]: Falling Edge [2]: Both Edge [3]: Low Level GPIO[11] Interrupt Configuration. [0]: Rising Edge [1]: Falling Edge [2]: Both Edge [3]: Low Level GPIO[10] Interrupt Configuration. [0]: Rising Edge [3]: Low Level	0
			[25:24]	[0]: Rising Edge [1]: Falling Edge [2]: Both Edge [3]: Low Level GPIO[12] Interrupt Configuration. [0]: Rising Edge [1]: Falling Edge [2]: Both Edge [3]: Low Level GPIO[11] Interrupt Configuration. [0]: Rising Edge [1]: Falling Edge [2]: Both Edge [3]: Low Level GPIO[10] Interrupt Configuration. [0]: Rising Edge [1]: Falling Edge [2]: Both Edge [1]: Falling Edge [1]: Falling Edge [2]: Both Edge	0
			[25:24]	[0]: Rising Edge [1]: Falling Edge [2]: Both Edge [3]: Low Level GPIO[12] Interrupt Configuration. [0]: Rising Edge [1]: Falling Edge [2]: Both Edge [3]: Low Level GPIO[11] Interrupt Configuration. [0]: Rising Edge [1]: Falling Edge [2]: Both Edge [3]: Low Level GPIO[10] Interrupt Configuration. [0]: Rising Edge [1]: Falling Edge [3]: Low Level GPIO[10] Interrupt Configuration. [0]: Rising Edge [1]: Falling Edge [2]: Both Edge [3]: Low Level	0
			[25:24]	[0]: Rising Edge [1]: Falling Edge [2]: Both Edge [3]: Low Level GPIO[12] Interrupt Configuration. [0]: Rising Edge [1]: Falling Edge [2]: Both Edge [3]: Low Level GPIO[11] Interrupt Configuration. [0]: Rising Edge [1]: Falling Edge [2]: Both Edge [3]: Low Level GPIO[10] Interrupt Configuration. [0]: Rising Edge [1]: Falling Edge [2]: Both Edge [3]: Low Level GPIO[10] Interrupt Configuration. [0]: Rising Edge [1]: Falling Edge [3]: Low Level GPIO[9] Interrupt Configuration.	0
			[25:24]	[0]: Rising Edge [1]: Falling Edge [2]: Both Edge [3]: Low Level GPIO[12] Interrupt Configuration. [0]: Rising Edge [1]: Falling Edge [2]: Both Edge [3]: Low Level GPIO[11] Interrupt Configuration. [0]: Rising Edge [1]: Falling Edge [2]: Both Edge [3]: Low Level GPIO[10] Interrupt Configuration. [0]: Rising Edge [1]: Falling Edge [2]: Both Edge [3]: Low Level GPIO[10] Interrupt Configuration. [0]: Rising Edge [1]: Falling Edge [2]: Both Edge [3]: Low Level GPIO[9] Interrupt Configuration. [0]: Rising Edge	0
			[25:24]	[0]: Rising Edge [1]: Falling Edge [2]: Both Edge [3]: Low Level GPIO[12] Interrupt Configuration. [0]: Rising Edge [1]: Falling Edge [2]: Both Edge [3]: Low Level GPIO[11] Interrupt Configuration. [0]: Rising Edge [1]: Falling Edge [2]: Both Edge [3]: Low Level GPIO[10] Interrupt Configuration. [0]: Rising Edge [1]: Falling Edge [2]: Both Edge [3]: Low Level GPIO[10] Interrupt Configuration. [0]: Rising Edge [1]: Falling Edge [3]: Low Level GPIO[9] Interrupt Configuration.	0

			-	_	
			[17:16]	GPIO[8] Interrupt Configuration. [0]: Rising Edge	0
				[1]: Falling Edge [2]: Both Edge [3]: Low Level	
			[15:14]	GPIO[7] Interrupt Configuration.	0
				[0] : Rising Edge [1] : Falling Edge	
				[2] : Both Edge [3] : Low Level	
			[13:12]	GPIO[6] Interrupt Configuration. [0]: Rising Edge	0
				[1]: Falling Edge [2]: Both Edge	
			[11:10]	[3] : Low Level GPI0[5] Interrupt Configuration.	0
				[0] : Rising Edge [1] : Falling Edge	
				[2] : Both Edge [3] : Low Level	
			[9:8]	GPIO[4] Interrupt Configuration. [0] : Rising Edge	0
				[1] : Falling Edge [2] : Both Edge	
			[7:6]	[3] : Low Level GPIO[3] Interrupt Configuration.	0
			[7.0]	[0]: Rising Edge [1]: Falling Edge	
				[2] : Both Edge [3] : Low Level	
			[5:4]	GPIO[2] Interrupt Configuration. [0] : Rising Edge	0
				[0] : Rising Edge [1] : Falling Edge [2] : Both Edge	
			[2,0]	[3] : Low Level	0
			[3:2]	GPIO[1] Interrupt Configuration. [0]: Rising Edge	0
				[1]: Falling Edge [2]: Both Edge	
			[1:0]	[3]: Low Level GPIO[0] Interrupt Configuration.	0
				[0] : Rising Edge [1] : Falling Edge	
0.0010	ODIO INT. OFO.	D)A/	[04.00]	[2] : Both Edge [3] : Low Level	
0x0B1C	GPIO_INT_CFG1	RW	[31:30]	GPIO[31] Interrupt Configuration. [0]: Rising Edge	0
				[1]: Falling Edge [2]: Both Edge	
			[29:28]	[3] : Low Level GPIO[30] Interrupt Configuration.	0
				[0] : Rising Edge [1] : Falling Edge	
				[2] : Both Edge [3] : Low Level	
			[27:26]	GPI0[29] Interrupt Configuration. [0]: Rising Edge	0
				[1]: Falling Edge [2]: Both Edge	
			[25:24]	[3]: Low Level GPIO[28] Interrupt Configuration.	0
				[0] : Rising Edge [1] : Falling Edge	
				[2] : Both Edge [3] : Low Level	
			[23:22]	GPIO[27] Interrupt Configuration. [0]: Rising Edge	0
				[0] : Namy Edge [1] : Falling Edge [2] : Both Edge	
				[3]: Low Level	

[21:20]	GPIO[26] Interrupt Configuration. [0]: Rising Edge [1]: Falling Edge [2]: Both Edge	0
[19:18]	[3]: Low Level GPIO[25] Interrupt Configuration. [0]: Rising Edge [1]: Falling Edge [2]: Both Edge	0
[17:16]	[3]: Low Level GPIO[24] Interrupt Configuration. [0]: Rising Edge [1]: Falling Edge [2]: Both Edge [3]: Low Level	0
[15:14]	GPIO[23] Interrupt Configuration. [0]: Rising Edge [1]: Falling Edge [2]: Both Edge [3]: Low Level	0
[13:12]	GPIO[22] Interrupt Configuration. [0]: Rising Edge [1]: Falling Edge [2]: Both Edge [3]: Low Level	0
[11:10]	GPIO[21] Interrupt Configuration. [0]: Rising Edge [1]: Falling Edge [2]: Both Edge [3]: Low Level	0
[9:8]	GPI0[20] Interrupt Configuration. [0]: Rising Edge [1]: Falling Edge [2]: Both Edge [3]: Low Level	0
[7:6]	GPIO[19] Interrupt Configuration. [0]: Rising Edge [1]: Falling Edge [2]: Both Edge [3]: Low Level	0
[5:4]	GPIO[18] Interrupt Configuration. [0]: Rising Edge [1]: Falling Edge [2]: Both Edge [3]: Low Level	0
[3:2]	GPIO[17] Interrupt Configuration. [0]: Rising Edge [1]: Falling Edge [2]: Both Edge [3]: Low Level	0
[1:0]	GPIO[16] Interrupt Configuration. [0]: Rising Edge [1]: Falling Edge [2]: Both Edge [3]: Low Level	0

4.6.2. I2C

The SOLO6110 contains 8 I2C channels which are able to support only one channel at one time because the I2C core is extended 8 channels. In order to activate I2C pins, refer to *GPIO[15:0] Configuration Register* [0x0B00] in Table 4-38. The SOLO6110 can transfer one byte at one time using control signals (Ack, Start, Stop, Read, Write) and data signals (Tx Data, Rx Data) though I2C. The host CPU can use the interrupt to indicate arbitration lost when one byte transfer is finished. Fig. 4-52 and Fig. 4-53 show the block diagram and the waveform of IIC.

Fig. 4-52 The Block Diagram of I2C

Fig. 4-53 The Waveform of I2C

I2C Module Enable Register [0x0B20] is use to activate I2C core. Clock Pre-Scale Register [0x0B20] is use to control I2C clock frequency. Auto Clear Request Register [0x0B24], Received Acknowledge from Slave Register [0x0B24], I2C Bus Busy Register [0x0B24], Arbitration Lost Register [0x0B24] and Transfer in Progress Register [0x0B24] are use to read I2C core status. ACK Register [0x0B24], START Register [0x0B24], STOP Register [0x0B24], READ Register [0x0B24] and WRITE Register [0x0B24] are use to control I2C core. Tx Data Register [0x0B28] is used to send data and Rx Data Register [0x0B2C] is used to receive data.

Table 4-39 I2C Register

Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x0B20	IIC_CFG	RW	[8]	I2C Module Enable.	0
			[7:0]	Clock Pre-Scale.	8
				(SYS_CLK/5) / (PR[7:0] * 16+1)	
0xB24	IIC_CTRL	RO	[20]	Auto Clear Request.	-
				The register sets to "1" to clear START, STOP,	
				READ and WRITE.	

			[19]	Received Acknowledge from Slave.	-
			' '	[0] : ACK received	
				[1]: ACK not received	
			[18]	I2C bus Busy.	-
				[0] : after STOP signal detected	
				[1] : after START signal detected	
			[17]	Arbitration Lost.	_
			[]	a) STOP Signal is detected, but none requested.	
				b) The master drives SDA high, but SDA low.	
			[16]	Transfer in Progress.	_
			[]	[0] : Complete	
				[1]: Transferring	
		RW	[7:5]	Channel Select.	0
			[]	[000] : Channel 0	•
				[001] : Channel 1	
				[010] : Channel 2	
				[011] : Channel 3	
				[100] : Channel 4	
				[101] : Channel 5	
				[110] : Channel 6	
				[111] : Channel 7	
			[4]	ACK.	0
			1.1	It should be set to appropriate value if receiver is	-
				set to ACK=0 or ACK=1.	
			[3]	START.	0
			[0]	The register is set or reset by user or reset by Auto	Ü
				Clear Request.	
			[2]	STOP.	0
			[-]	The register is set or reset by user or reset by Auto	Ü
				Clear Request.	
			[1]	READ.	0
			[.,]	The register is set or reset by user or reset by Auto	J
				Clear Request.	
			[0]	WRITE.	0
			[0]	The register is set or reset by user or reset by Auto	3
				Clear Request.	
0x0B28	IIC_TXD	RW	[7:0]	Tx Data.	0
0x0B2C	IIC_RXD	RO	[7:0]	Rx Data.	-
3			[]		

4.6.3. SPI

The SOLO6110 supports SPI salve. In order to activate SPI pins, refer to *GPIO[15:0] Configuration Register* [0x0B00] in Table 4-38. Fig. 4-54 shows the waveform of SPI. SPI_STB, SPI_CK, SPI_DO and SPI_DI are strobe, clock, output and input, respectively.

Fig. 4-54 The Waveform of SPI

SPI Tx Data[31:0] Register [0x0B40], SPI Tx Data[63:32] Register [0x0B44] and SPI Tx

Data[79:64] Register [0x0B48] are use to send 80bit data. SPI Rx Data[31:0] Register [0x0B50], SPI Rx Data[63:32] Register [0x0B54] and SPI Rx Data[79:64] Register [0x0B58] are use to send 80bit data.

Table 4-40 SPI Registers

Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x0B40	SPI_TXD0	R/W	[31:0]	SPI Tx Data[31:0].	0
0x0B44	SPI_TXD1	R/W	[31:0]	SPI Tx Data[63:32].	0
0x0B48	SPI_TXD2	R/W	[15:0]	SPI Tx Data[79:64].	0
0x0B50	SPI_RXD0	R	[31:0]	SPI Rx Data[31:0].	-
0x0B54	SPI_RXD1	R	[31:0]	SPI Rx Data[63:32].	-
0x0B58	SPI_RXD2	R	[15:0]	SPI Rx Data[79:64].	-

4.6.4. PS2

The SOLO6110 supports two PS2 channels. In order to activate PS2 pins, refer to *GPIO[15:0] Configuration Register* [0x0B00] in Table 4-38. There are differences between two PS2 channels. PS2 channel0 contains 32 depth Rx Buffer and RS2 channel1 contains 8 depth Rx Buffer. Therefore, PS2 channel0 is strongly recommended for mouse interface and PS2 channel1 is recommended for key board interface.

Fig. 4-55 shows the timing diagram of PS2 Interface. PS2 clock frequency should be 10 to 16.7kHz. The following timing specification should be kept.

a > 5 usec

5usec < b < 25usec

100usec < c < 15msec

d < 2msec

e > 15usec (experimentally)

(b) Transmit

Fig. 4-55 Timing Diagram of PS2 Interface

Table 4-41 shows *PS2 Enable Registers* [0x0B60~0x0B8C]. *PS2 Enable Register* [0x0B60, 0x0B80] should be set to 1 to activate PS2. Rx Data End, Tx Data End and Error interrupts are possible for PS2 interface. For detecting PS2 error, Tx Timeout, Rx Timeout, Rx Overflow and Rx Parity Error are able to be detected using PS2 status registers. *PS2 Tx Data Interrupt Enable Register* [0x0B60, 0x0B80], *PS2 Rx Data Interrupt Enable Register* [0x0B60, 0x0B80] and *PS2 Error Interrupt Register* [0x0B60, 0x0B80] should be set to 1 to use interrupt.

PS2 Sampling Period Register [0x0B60, 0x0B80] is used to determine the clock enable period of PS2 core. As shown in Fig. 4-55, the frequency range should be controlled from 10 kHz to 16.7 kHz. The value of the register is 0x3 for 54MHz system clock or 0x4 for 108MHz system clock.

The setting values for PS2 Tx Clock Holding Time Register [0x0B60, 0x0B80], PS2 Rx Timeout Limitation Register [0x0B60, 0x0B80] and PS2 Tx Timeout Limitation Register [0x0B60, 0x0B80] are recommended as 150usec, 300usec and 300usec, respectively. The appropriate configuration values are

coded in the SOLO6110 driver software.

The status registers of the PS2 are defined as *PS2 Tx Buffer Status Register* [0x0B64, 0x0B84], *PS2 Rx Data End Register* [0x0B64, 0x0B84], *PS2 Tx Buffer Full Register* [0x0B64, 0x0B84], *PS2 Tx Busy Register* [0x0B64, 0x0B84], *PS2 Tx Timeout Register* [0x0B64, 0x0B84], *PS2 Rx Buffer Status Register* [0x0B64, 0x0B84], *PS2 Rx Data End Register* [0x0B64, 0x0B84], *PS2 Rx Buffer Empty Register* [0x0B64, 0x0B84], *PS2 Rx Busy Register* [0x0B64, 0x0B84], *PS2 Rx Timeout Register* [0x0B64, 0x0B84], *PS2 Rx Overflow Register* [0x0B64, 0x0B84] and *PS2 Rx Parity Error Register* [0x0B64, 0x0B84]. These status registers inform the end of operation or error status and the error status will be remained until *PS2 Enable Registers* [0x0B60] is set to 0.

The data will be stored on the internal buffer after writing data *PS2 Tx Data Register* [0x0B68, 0x0B88], and setting and resetting on *PS2 Tx Push Register* [0x0B68, 0x0B88]. Similarly, the data will be read from the internal buffer after reading the value of *PS2 Rx Data Register* [0x0B6C, 0x0B8C], and setting and resetting on *PS2 Rx Push Register* [0x0B6C, 0x0B8C].

Table 4-41 PS2 Registers

Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x0B60 0x0B80	PS2_CFG0 PS2_CFG1	RW	[31:24]	PS2 Tx Timeout Limitation. Sampling Period * (n+1)	0x10
		RW	[23:16]	PS2 Rx Timeout Limitation. Sampling Period * (n+1)	80x0
		RW	[15:8]	PS2 Tx Clock Holding Time. Sampling Period * (n+1)	0x10
		RW	[6:4]	PS2 Sampling Period. Clock Dividing: 2^(n+6) * SYS_CLK period Where, 0 <= n <= 5	0x04
		RW	[3]	PS2 Tx Data Interrupt Enable.	0
		RW	[2]	PS2 Rx Data Interrupt Enable.	0
		RW	[1]	PS2 Error Interrupt Enable.	0
		RW	[0]	PS2 Enable.	0
0x0B64 0x0B84	PS2_STA0 PS2_STA1	RO	[26:24]	PS2 Tx Buffer Status. [0] : Full [4] : Empty	-
		RO	[23]	PS2 Tx Data End.	-
		RO	[22]	PS2 Tx Buffer Full.	-
		RO	[21]	PS2 Tx Busy.	-
		RO	[20]	PS2 Tx Timeout. Cleared by Core Reset.	-
		RO	[19:16]	PS2 Tx Status of FSM. Only for Debugging.	-
		RO	[15:10]	PS2 Rx Buffer Status. [0] : Full [4] : Empty	-
		RO	[9]	PS2 Rx Data End.	-
		RO	[8]	PS2 Rx Buffer Empty.	-
		RO	[7]	PS2 Rx Busy.	-
		RO	[6]	PS2 Rx Timeout. Cleared by Core Reset.	-
		RO	[5]	PS2 Rx Overflow. Cleared by Core Reset.	-
		RO	[4]	PS2 Rx Parity Error. Cleared by Core Reset.	-
		RO	[3:0]	PS2 Rx Status of FSM. Only for Debugging.	-
0x0B68	PS2_TXD0	RW	[8]	PS2 Tx Push.	0
0x0B88	PS2_TXD1	RW	[7:0]	PS2 Tx Data.	0
0x0B6C	PS2_RXD0	RW	[8]	PS2 Rx Push.	0

4.6.5. UART

The SOLO6110 contains two UARTs for camera pan/tilt/zoom. UART0 supports for RS485 (TxEn, RxEn) and UART1 supports for RS232C (RTS, CTS). The FIFO depth for transmitting or receiving is 8, respectively. In order to activate UART pins, refer to *GPIO[15:0] Configuration Register* [0x0B00] in Table 4-38.

Fig. 4-56 shows the timing diagram of UART frame which is transmitted or received as start, data, parity and stop. Start bit is level HIGH, and Stop bit level LOW. The number of data bit, parity bit and the number of stop bit can be configured using *UART Registers* [0x0BA0~0x0BCC]. Fig. 4-57 shows the block diagram of UART.

Fig. 4-56 Timing Diagram of UART Frame

Fig. 4-57 Block Diagram of UART

Table 4-42 shows *UART Registers* [0x0BA0~0x0BCC]. Each UART supports Rx Data, Tx Data Error interrupts by activating *Rx Interrupt Enable Register* [0x0BA0, 0x0BC0], *Tx Interrupt Enable Register* [0x0BA0, 0x0BC0], and *Error Interrupt Enable Register* [0x0BA0, 0x0BC0]. Using error interrupt, Rx Parity Error, Rx Frame Error and Overflow Error can be detected. Baud Rate is configured by setting *Baud Rate1 Register* [0x0BA0, 0x0BC0] and *Baud Rate0 Register* [0x0BA0, 0x0BC0].

The data will be stored on the internal buffer after writing data *Tx Data Register* [0x0BA8, 0x0BC8], and setting and resetting on *Tx Push Register* [0x0BA8, 0x0BC8]. Similarly, the data will be read from the internal buffer after reading the value of *Rx Data Register* [0x0BAC, 0x0BCC], and setting and resetting on *Rx Push Register* [0x0BAC, 0x0BCC].

Table 4-42 UART Registers

Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x0BA0 0x0BC0	UART_CTRL0 UART_CTRL1	RW	[28:24]	Divide Number. [0x07]: System Clock = 27MHz [0x09]: System Clock = 33MHz [0x0f]: System Clock = 54MHz (Default)	0
				[0x13] : System Clock = 66MHz	
			[20]	CTS & RTS Enable.	0
			[18]	Parity Error Data Drop Enable.	0
			[17]	Error Interrupt Enable.	0
			[16]	Rx Interrupt Enable.	0
			[15]	Tx Interrupt Enable. Rx Module Enable.	0
			[14] [13]	Tx Module Enable.	0
			[12]	Half Duplex.	0
			[11]	Loop Back.	0
			[10:9]	Baud Rate1.	0
			[1000]	The register is only effective when Baud Rate0 register is set to [110]. [00]: 4800 [01]: 2400 [10]: 1200 [11]: 300	
			[8:6]	Baud Rate0. [000]: 230400 [001]: 115200 [010]: 57600 [011]: 38400 [100]: 19200 [101]: 9600 [110]: below 9600	0
			[5:4]	Data Size. [00] : 5 bit [01] : 6 bit [10] : 7 bit [11] : 8 bit	0
			[3:2]	Stop Bit Size. [00] : 1 bit [01] : 2 bit [10], [11]: 1.5 bit	0
			[1:0]	Parity Mode. [00], [01] : NONE [10] : Even [11] : Odd	0
0x0BA4	UART_STA0	RO	[15]	CTS.	-
0x0BC4	UART_STA1		[14]	Rx Busy.	-
			[13]	Overrun. (Rx Buffer Full & Rx Frame Input)	-
			[12]	Frame Error.	-
			[11]	Parity Error.	-
			[10:6]	Rx Buffer State. The register indicates the number of remained data in Rx Buffer. Zero means empty.	-
			[5]	Tx Line Busy.	-
			[4:0]	Tx Buffer State. The register indicates the number of remained data in Tx Buffer. Zero means full.	8
0x0BA8	UART_TXD0	RW	[8]	Tx Push.	0

0x0BC8	UART_TXD1	RW	[7:0]	Tx Data.	0
0x0BAC	UART_RXD0	RW	[8]	Rx Pop.	0
0x0BCC	UART_RXD1	RO	[7:0]	Rx Data.	-

4.6.6. Timer

Table 4-43 shows *Timer Registers* [0x0BE0~0x0BEC]. Timer function which composes 32bit *Second Counter Register* [0x0BEC] and 20bit *Micro-Second Counter Register* [0x0BE8]. *Time Second Register* [0x0654] and *Time Micro-Second Register* [0x0658] at H.264 Video Encoder Status Registers refer these registers to represent time information for H.264 video encoder.

To support watchdog reset out using pin o_SYS_RST_OUT, *Micro-Second Clock Number Register* [0x0BE0], *Watchdog Enable Register* [0x0BE4] and *Watchdog Second Counter Register* [0x0BE4] should be set. System watchdog is very useful to the security applications, which improves reliability and stability of embedded system. System watchdog monitors if the host CPU is operated in normal and restarts the host CPU if it has a fatal error. When *Watchdog Enable Register* [0x0BE4] is enabled, *Watchdog Second Counter Register* [0x0BE4] will be decreased every one second automatically and the CPU should update the value not to be zero. If the CPU has a fatal error and cannot update the register value, pin o_SYS_RST_OUT will be LOW to reset the CPU. *Watchdog Enable Register* [0x0BE4] is set to 1 and *Watchdog Second Counter Register* [0x0BE4] is set to 255 by default. Therefore, *Watchdog Enable Register* [0x0BE4] should be updated to 0 in 255 seconds if watchdog is not used.

Table 4-43 Timer Registers

Register Address	Register Name	Туре	Bit Field	Description	Initial State
0x0BE0	TIMER_CLK_NUM	RW	[8:0]	Micro-Second Clock Number. (SYS_CLK / 1MHz) -1	107
0x0BE4	TIMER_WATCHDOG	RW	[8]	Watchdog Enable.	1
			[7:0]	Watchdog Second Counter. Write: Set Read: Status	0xff
0x0BE8	TIMER_USEC	RW	[19:0]	Micro-Second Counter. Write: Set Read: Status	107999
0x0BEC	TIMER_SEC	RW	[31:0]	Second Counter. Write: Set Read: Status	0
0x0D20	TIMER_USEC_LSB	RO	[7:0]	LSB Value of Micro Second of Timer	0x0

5. Electrical Characteristics

5.1. Absolute Maximum Range

Parameter	Description	Value	Units
V_{VDD}	Core supply voltage range	-0.5 to 1.6	V
V_{DVDD}	I/O supply voltage range	-0.5 to 3.8	V
V _{PAD}	Voltage range at PAD	-0.5 to (V _{DVDD} +0.5)	V
$T_{\rm J}$	Operating ambient temperature	-55 to 150	℃

5.2. DC Characteristics

Symbol	Description	MIN.	TYP.	MAX.	UNIT
V_{VDD}	Core supply voltage	1.08	1.2	1.32	V
V_{DVDD}	I/O supply voltage	2.97	3.3	3.63	V
T_{A}	Ambient operating temperature	0	25	100	${\mathfrak C}$
T_{J}	Junction temperature	-40	25	125	${\mathcal C}$
V_{PAD}	Voltage at PAD	0		V_{DVDD}	V
V_{IH}	High-level input voltage at PAD	$0.7 V_{DVDD}$		-	V
V_{IL}	Low-level input voltage at PAD	-		$0.2~\mathrm{V_{DVDD}}$	V

5.3. Power Dissipation

Maximum 0.6W @ (1.2V, core supply voltage), 135MHz(core speed)

Maximum about 48 degree surface temperature @ 25 degree environment

0 1 0 111	135 MHz					
Operating Condition	Idle	5 D1 H.264 Encoding	5 D1 H.264 Encoding & 4 D1 H.264 Decoding			
1.2V	180mA	480mA	500mA			
3.3V	50mA	50mA	50mA			
Surface Temperature 44degree		48degree	48degree			

6. Mechanical Specifications

7. References

- [1] ITU-T, "Advanced video coding for generic audiovisual services", ITU-T Recommendation H.264, Mar. 2005.
- [2] ISO/IEC JTC1/SC29/WG11, "Information Technology Coding of Audio-Visual Objects Part 2: Visual," ISO/IEC 14496-2, International Standard, 2nd Edition, Dec. 2001.
- [3] ITU-R, BT 656.
- [4] ITU-T, "Extensions of Recommendation G.721 adaptive differential pulse code modulation to 24 and 40 kbit/s for digital circuit multiplication equipment application," International Recommendation, 2nd Edition, Nov. 1988. The content of 1988 edition of ITU-T G.723 is now covered by ITU-T G.726.
- [5] PCI Special Interest Group, "PCI Local Bus Specification," Rev. 2.2, Dec. 1998.