Algorithms Design

Chap02-Basics of Algorithm Analysis

College of Computer Science

Nankai University

Tianjin, P.R.China

Outline

- 2.1 Computational Tractability
- 2.2 Asymptotic Order of Growth
- 2.3 Survey of Common Running Times

Brute force.

For many non-trivial problems, there is a natural brute force search algorithm that checks every possible solution.

- Typically takes 2^N time or worse for inputs of size N.
- Unacceptable in practice.

E.g. Stable Matching Problem: test all n! perfect matchings for stability.

Desirable scaling property. When the input size doubles, the algorithm should only slow down by some constant factor *C*.

There exists constants c > 0 and d > 0 such that on every input of size N, its running time is bounded by cN^d steps.

Def.(2-1) An algorithm is poly-time if the above scaling property holds.

We say that an algorithm is **efficient** if it has a polynomial running time.

Practice. It really works!

- The poly-time algorithms that people develop have both small constants and small exponents.
- Breaking through the exponential barrier of brute force typically exposes some crucial structure of the problem.

Worst case. Running time guarantee for any input of size n.

- Generally captures efficiency in practice.
- Draconian view, but hard to find effective alternative.

Exceptions.

Some exponential-time algorithms are used widely in practice because the worst-case instances don't arise. E.g. Unit grep, simplex algorithm.

Other types of analyses

Probabilistic. Expected running time of a randomized algorithm.

• E.g. The expected number of compares to quicksort n elements is about 2nlog(n)

Amortized. Worst-case running time for any sequence of *n* operations.

 Starting from an empty stack, any sequence of n push and pop operations takes O(n) primitive computational steps using a resizing array.

Why does it make sense?

Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10²⁵ years, we simply record the algorithm as taking a very long time.

	п	$n \log_2 n$	n^2	n^3	1.5^{n}	2^n	n!
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10^{25} years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10^{17} years	very long
n = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
n = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

Upper bounds. f(n) is O(g(n)) if there exist constants c > 0 and $n_0 \ge 0$ such that $0 \le f(n) \le c \cdot g(n)$ for all $n \ge n_0$.

E.g.
$$f(n) = 32n^2 + 17n + 1$$

- f(n) is $O(n^2)$. When c = 50, $n_0 = 1$
- f(n) is neither O(n) nor $O(n\log n)$.

Practical usage

• Insertion sort makes $O(n^2)$ compares to sort n elements.

Quiz 2-1

Let $f(n) = 3n^2 + 17n \log_2(n) + 1000$. Which of the following are true?

A.
$$f(n)$$
 is $O(n^2)$.

B.
$$f(n)$$
 is $O(n^3)$.

C. Both A and B.

D. Neither A nor B.

O(g(n)) is a set of functions, but computer scientists often write f(n) = O(g(n)) instead of $f(n) \in O(g(n))$. f(n) is order of g(n).

• f is asymptotically upper bounded by g.

E.g. $g_1(n) = 5n^3$ and $g_2(n) = 3n^2$.

- We have $g_1(n) = O(n^3)$ and $g_2(n) = O(n^3)$
- But, do not conclude $g_1(n) = g_2(n)$.

Note O() expresses only an upper bound, not the exact growth rate of the function.

Big O notation: properties

- Reflexivity: f is O(f).
- •Constants: If f is O(g) and c > 0, then $c \cdot f$ is O(g).
- Products: If f_1 is $O(g_1)$ and f_2 is $O(g_2)$, then $f_1 \cdot f_2$ is $O(g_1g_2)$.
- •Sums: If f_1 is $O(g_1)$ and f2 is $O(g_2)$, then $f_1 + f_2$ is $O(\max\{g_1, g_2\})$.
- Transitivity. If f is O(g) and g is O(h) then f is O(h).

Quiz 2-2

$$f(n) = 5n^3 + 3n^2 + n + 1234$$
. Which one is correct?

$$A. f(n) = O(n^3)$$

B.
$$f(n) = O(n^2)$$

C.
$$f(n) = O(n)$$

D.
$$f(n) = O(1)$$

Lower bounds. f(n) is $\Omega(g(n))$ if there exist constants c > o and $n_0 \ge 0$

such that $f(n) \ge c \cdot g(n) \ge 0$ for all $n \ge n_0$.

• f is asymptotically lower bounded by g.

E.g.
$$f(n) = 32n^2 + 17n + 1$$
.

- f(n) is both $\Omega(n^2)$ and $\Omega(n)$.
- f(n) is not $\Omega(n^3)$.

When
$$c = 32$$
, $n_0 = 1$

Practical Usage

• Any compare-based sorting algorithm requires $\Omega(n \log n)$ compares in the worst case.

Quiz 2-3

Which is an equivalent definition of asymptotically lower bounds?

- A. f(n) is $\Omega(g(n))$ iff g(n) is O(f(n)).
- B. f(n) is $\Omega(g(n))$ iff there exists a constant c > 0 such that $f(n) \ge c \cdot g(n) \ge 0$ for infinitely many n.
- C. Both A and B.
- D. Neither A nor B.

Tight bounds. f(n) is $\Theta(g(n))$ if there exist constants $c_1 > 0$, $c_2 > 0$, and $n_0 \ge 0$ such that $0 \le c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$ for all $n \ge n_0$.

• g(n) is asymptotically tight bound for f(n).

E.g.
$$f(n) = 32n^2 + 17n + 1$$

• $f(n)$ is $\Theta(n^2)$.

• f(n) is neither $\Theta(n)$ nor $\Theta(n^3)$.

Practical Usage

• Mergesort makes $\Theta(n \log n)$ compares to sort n elements.

Quiz 2-3

Which is an equivalent definition of tight bound?

A. f(n) is $\Theta(g(n))$ iff f(n) is both O(g(n)) and $\Omega(g(n))$.

B. f(n) is $\Theta(g(n))$ iff $\lim_{n \to \infty} \left(\frac{f(n)}{g(n)} \right) = c$ for some constant $0 < c < \infty$.

C. Both A and B.

D. Neither A nor B.

Asymptotic bounds and limits

- If $\lim_{n \to \infty} \left(\frac{f(n)}{g(n)} \right) = c$ for some constant $0 < c < \infty$, then f(n) is $\Theta(g(n))$.
- If $\lim_{n \to \infty} \left(\frac{f(n)}{g(n)} \right) = 0$, then f(n) is 0(g(n)).
- If $\lim_{n \to \infty} \left(\frac{f(n)}{g(n)} \right) = \infty$, then f(n) is $\Omega(g(n))$.

Transitivity

- If f = O(g) and g = O(h) then f = O(h).
- If $f = \Omega(g)$ and $g = \Omega(h)$ then $f = \Omega(h)$.
- If $f = \Theta(g)$ and $g = \Theta(h)$ then $f = \Theta(h)$.

Additivity

- If f = O(g) and g = O(h) then f + g = O(h).
- If $f = \Omega(g)$ and $g = \Omega(h)$ then $f + g = \Omega(h)$.
- If $f = \Theta(g)$ and $g = \Theta(h)$ then $f + g = \Theta(h)$.

Asymptotic bounds for some common functions

Polynomials

• Let $f(n) = a_0 + a_1 n + \dots + a_d n^d$ with $a_d > 0$. Then, f(n) is $O(n^d)$.

Logarithms

- $log_a n$ is $\Theta(log_b n)$ for every a > 1 and every b > 1.
- $log_a n$ is $O(n^x)$ for every a > 1 and every x > 0.

Exponentials

• r^n is $\Omega(n^d)$ for every r > 1 and every d > 0.

Factorials

- n! is $2^{\Theta(nlogn)}$.
- Pf. Stirling's formula: $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$

Upper bounds with multiple variables

• f(m,n) is O(g(m,n)) if there exist constants c > 0, $m_0 \ge 0$, and $n_0 \ge 0$ such that $0 \le f(m,n) \le c \cdot g(m,n)$ for all $n \ge n_0$ or $m \ge m_0$.

E.g. $f(m,n) = 32mn^2 + 17mn + 32n^3$

- f(m,n) is both $O(mn^2 + n^3)$ and $O(mn^3)$.
- f(m, n) is $O(n^3)$ if a precondition to the problem implies $m \le n$.
- f(m, n) is neither $O(n^3)$ nor $O(mn^2)$.

Practical usage

• In the worst case, breadth-first search takes O(m + n) time to find a shortest path from s to t in a digraph with n nodes and m edges.

Constant time.

- Running time is O(1).
- bounded by a constant, which does not depend on input size n

Examples.

- Conditional branch.
- Arithmetic/logic operation.
- Declare/initialize a variable.
- Follow a link in a linked list.
- Access element i in an array.
- Compare/exchange two elements in an array.

• • • •

Logarithmic time.

•Running time is O(log n).

Search in a sorted array.

- Given a sorted array A of n distinct integers and an integer x, find index of x in array. $lo \leftarrow 1; hi \leftarrow n$.
- $O(\log n)$ algorithm
 - Binary search

After k iterations of WHILE loop, $(hi - lo + 1) \le n / 2^k \implies k \le 1 + \log_2 n$

```
lo \leftarrow 1; hi \leftarrow n.

WHILE (lo \leq hi)

mid \leftarrow \lfloor (lo + hi) / 2 \rfloor.

IF (x < A[mid]) \ hi \leftarrow mid - 1.

ELSE IF (x > A[mid]) \ lo \leftarrow mid + 1.

ELSE RETURN mid.

RETURN -1.
```

Linear time.

• Running time is O(n).

Merge two sorted lists.

Combine two sorted linked lists

$$A = [a_1, a_2, ..., a_n]$$
 and $B = [b_1, b_2, ..., b_n]$ into a sorted list.

```
    i ← 1; j ← 1.
    WHILE (both lists are nonempty)
    IF (a<sub>i</sub> ≤ b<sub>j</sub>) append a<sub>i</sub> to output list and increment i.
    ELSE append b<sub>j</sub> to output list and increment j.
    Append remaining elements from nonempty list to output list.
```

TARGET-SUM

- •Given a sorted array of *n* distinct integers and an integer *T*, find two that sum to exactly *T*?
- $O(n^2)$ algorithm.
 - Try all pairs.
- O(n) algorithm.
 - Exploit sorted order.

Linearithmic time.

• Running time is $O(n \log n)$.

Sorting

- Given an array of *n* elements, rearrange them in ascending order.
- $O(n \log n)$ algorithm
 - Mergesort.

Largest-Empty-Interval

- Given n timestamps x_1, \dots, x^n on which copies of a file arrive at a server, what is largest interval when no copies of file arrive?
- O(n log n) algorithm

Quadratic time.

•Running time is $O(n^2)$.

Closest pair of points.

•Given a list of n points in the plane $\{(x_1, y_1), \dots, (x_n, y_n), \text{ find the pair that is closest to each other.}$

• $O(n^2)$ algorithm

FOR
$$i = 1$$
 TO n
FOR $j = i + 1$ TO n
 $d \leftarrow (x_i - x_j)^2 + (y_i - y_j)^2$.
IF $(d < min)$
 $min \leftarrow d$.

Cubic time.

• Running time is $O(n^3)$.

3-Sum

- Given an array of *n* distinct integers, find three that sum to 0.
- $O(n^3)$ algorithm
- $O(n^2)$ algorithm

FOR
$$i = 1$$
 TO n
FOR $j = i + 1$ TO n
FOR $k = j + 1$ TO n
IF $(a_i + a_j + a_k = 0)$
RETURN (a_i, a_j, a_k) .

- **3-SUM**. Given an array of n distinct integers, find three that sum to 0.
- $O(n^3)$ algorithm. Try all triples.
- $O(n^2)$ algorithm.
 - Sort the array a.
- For each integer a_i : solve TARGET-SUM on the array containing all elements except a_i with the target sum $T = -a_i$.

Set Disjointness. Given n sets S_1, \dots, S_n each of which is a subset of $\{1, 2, \dots, n\}$, is there some pair of these which are disjoint?

 $O(n^3)$ solution. For each pairs of sets, determine if they are disjoint.

```
foreach set S<sub>i</sub> {
    foreach other set S<sub>j</sub> {
        foreach element p of S<sub>i</sub> {
            determine whether p also belongs to S<sub>j</sub>
        }
        if (no element of S<sub>i</sub> belongs to S<sub>j</sub>)
            report that S<sub>i</sub> and S<sub>j</sub> are disjoint
    }
}
```

Polynomial time.

•Running time is $O(n^k)$ for some constant k > 0.

Independent set of size k

• Given a graph, find k nodes such that no two are joined by an edge.

 $O(n^k)$ algorithm. Enumerate all subsets of k nodes.

FOREACH subset *S* of *k* nodes:

Check whether *S* is an independent set.

IF (*S* is an independent set)

RETURN S.

- Check whether S is an independent set of size k takes $O(k^2)$ time.
- # k-element subsets = $C_n^k \le \frac{n(n-1)\cdots(n-k+1)}{k(k-1)\cdots 1} \le \frac{n^k}{k!}$

$$\bullet O\left(\frac{k^2 n^k}{k!}\right) = O(n^k)$$

Exponential Time

Independent set. Given a graph, what is maximum size of an independent set?

 $O(n^2 2^n)$ solution. Enumerate all subsets.

```
S* ← φ
foreach subset S of nodes {
   check whether S in an independent set
   if (S is largest independent set seen so far)
      update S* ← S
   }
}
```