

Augusto Nery de Lima Neto Felipe Haruo Murakami Havena Louise Pavão

RELATÓRIO DE INSTRUMENTAÇÃO ELETRÔNICA: LABORATÓRIO 5

Resumo

O objetivo deste experimento foi montar dois circuitos de proteção contra sobre-tensão e condicionar um sensor termo-resistivo utilizando corrente constante.

Sumário

R	esum	10	1
			3
	1.1	Prática 1	3
	1.2	Prática 2	4
		1.2.1 Diodo de silício	4
		1.2.2 Diodo de germânio	5
	1.3	Prática 3	

1 Resultados e Análise de Dados

1.1 Prática 1

Na primeira etapa do experimento montamos o circuito da Figura 1, para o qual consideramos $V_Z = 5.1V$, $V_{in} = 7.1V$, $I_{max_{zener}} = 80mA$. O valor de R_z foi calculado da seguinte

Figura 1: Circuito 1

forma:

$$\frac{V_{in}-V_o}{R_z}=I_{max}$$

$$R_z=\frac{7.1-5.1}{80m}$$

$$R_z=\frac{2}{80m}=25\Omega$$

Portanto foi utilizado o valor comercial maior e mais próximo, ou seja, $R_z=27\Omega$. Foram anotados valores de V_o para diferentes valores de V_{in} , tais valores serão apresentados na tabela a seguir:

$V_{in}(V)$	0	0.33	0.82	1.22	1.90
$V_o(V)$	0	0.326	0.824	1.215	1.89
$V_{in}(V)$	2.34	2.91	3.10	3.52	3.95
$V_o(V)$	2.34	2.90	3.09	3.51	3.95
$V_{in}(V)$	4.2	4.64	5.10	5.55	5.94
$V_o(V)$	4.19	4.64	5.03	5.21	5.25
$V_{in}(V)$	6.09	6.29	6.77	7.1	
$V_o(V)$	5.29	5.31	5.36	5.41	

Tabela 1: Valores de V_{in} e V_o

Os valores acima são apresentados no gráfico abaixo:

Figura 2: Gráfico de $V_{in} \times V_o$

1.2 Prática 2

Na segunda etapa do experimento montamos o circuito da Figura 2, primeiramente com um diodo de silício, e em seguida com um diodo de germânio. O resistor R_z foi adicionado para proteção do circuito. Foram considerados $V_CC=5V$ e $I_{max}=1\mu A$, e com tais valores foi possível calcular o valor de R_z :

$$V_{in} = R_z.I_{max}$$

$$R_z = \frac{2}{1\mu}$$

$$R_z = 2M\Omega$$

Foi utilizado o resistor de valor comercial igual a $1M\Omega$.

Figura 3: Circuito 2

1.2.1 Diodo de silício

Com os valores obtidos para V_{in} e V_o foi possível montar a tabela e o gráfico a seguir:

$V_{in}(V)$	0	0.36	0.90	1.10	1.60
$V_o(V)$	0	0.32	0.81	1.00	1.45
$V_{in}(V)$	1.81	2.03	2.52	2.95	3.40
$V_o(V)$	1.64	1.86	2.30	2.70	3.1
$V_{in}(V)$	3.85	4.31	4.77	5.01	5.46
$V_o(V)$	3.53	3.94	4.33	4.55	4.95
$V_{in}(V)$	5.95	6.36	6.63	7.1	_
$V_o(V)$	5.2	5.25	5.28	5.29	

Tabela 2: Valores de V_{in} e V_o para o diodo de silício

Figura 4: Gráfico $V_{in} \times V_o$ para o diodo de silício

1.2.2 Diodo de germânio

Dados obtidos com o diodo de germânio:

$V_{in}(V)$	0	0.40	0.91	1.51	1.85
$V_o(V)$	0	0.49	0.56	0.63	0.67
$V_{in}(V)$	2.17	2.68	3.06	3.59	3.96
$V_o(V)$	0.71	0.78	0.83	0.89	0.95
$V_{in}(V)$	4.45	4.96	5.21	5.92	6.34
$V_o(V)$	1.04	1.10	1.14	1.25	1.32
$V_{in}(V)$	6.79	7.10		_	
$V_o(V)$	1.40	1.45			

Tabela 3: Valores de V_{in} e V_o para o diodo de germânio

Figura 5: Gráfico $V_{in} \times V_o$ para o diodo de germânio

1.3 Prática 3

O circuito abaixo foi montado na última prática, com $V_{ref}=12V,\,R=4.7k\Omega$ e R_s sendo um sensor NTC, com resistência nominal igual a $10k\Omega$. Os valores obtidos são apresentados na tabela.

Figura 6: Circuito 3

n	$T_s(^{\circ}C)$	$V_o(V)$	n	$T_s(^{\circ}C)$	$V_o(V)$
1	26	7.35	11	43	3.64
2	28	6.92	12	46	3.34
3	30	6.61	13	47	1.67
4	31	6.18	14	50	3.06
5	32	5.72	15	51	0.33
6	33	6.32	16	52	1.35
7	34	5.85	17	54	1.88
8	35	5.47	18	56	1.19
9	39	4.25	19	63	0.99
10	42	3.85	20	68	0.93

Tabela 4: Valores de T_s e V_o

Abaixo é mostrado graficamente os dados da tabela acima:

Figura 7: Gráfico $T_s \times V_o$