a) Bask considerar o AFD que aceits precisamente as palavres de L1.

b) Se L2 posse regular, pelo leurs de bombesem, existina KEIN tal que, se WEL2 com |W|> K ento W=W1W2W3 com |W1W2| ≤ K, W2 ≠ E e W1W2W3 EL2 para qualquer IENO.

Dado k, considere-se $w=a^kb^k\in L_2$. Entro ter-se-ia $w_1=a^j$, $w_2=a^l$ e $w_3=a^{k-(j+l)}b^k$ con $l\neq 0$. Logo, por exemplo, $w_1w_2w_2w_2w_3=a^{k+2l}b^k\not\in L_2$ pois a diferensa centre o ne de as e bs seria $2l \geqslant 2$.

C) Baska considerar o AP que aceita precisamente
as palavras de L2.

a,e>a
b,e>b
a,b>e
b,a>e
Crese

Teoria da Computação

Março 2022 MAP30–1A.1 Duração: 30m

Nome:	Número:
-------	---------

Considere o alfabeto $\Sigma = \{a, b, c\}$ e as linguagens $L_1, L_2 \subseteq \Sigma^*$ tais que:

 L_1 : conjunto das palavras em que o número de ocorrências da subpalavra ab é par

 L_2 : conjunto das palavras em que a diferença entre o número de as e o número de bs é no máximo 1

Por exemplo, a palavra cabbab pertence a L_1 , pois ab ocorre duas vezes, e também pertence a L_2 , pois o número de as é 2 e o número de bs é 3 (a diferença é 1).

- a) (1.5 valores) Mostre (construindo um AFD) que L_1 é uma linguagem regular.
- b) (1.5 valores) Mostre que L_2 não é uma linguagem regular.
- c) (1.0 valores) Mostre (construindo um AP) que L_2 é independente do contexto.

Teoria da Computação

Considere o alfabeto $\Sigma = \{a, b, c\}$ e as linguagens $L_1, L_2 \subseteq \Sigma^*$ tais que:

 L_1 : conjunto das palavras em que o número de ocorrências da subpalavra ba é par

 L_2 : conjunto das palavras em que a diferença entre o número de bs e o número de cs é no máximo 1

Por exemplo, a palavra ccbabba pertence a L_1 , pois ba ocorre duas vezes, e também pertence a L_2 , pois o número de cs é 2 e o número de bs é 3 (a diferença é 1).

- a) (1.5 valores) Mostre (construindo um AFD) que L_1 é uma linguagem regular.
- b) (1.5 valores) Mostre que L_2 não é uma linguagem regular.
- c) (1.0 valores) Mostre (construindo um AP) que L_2 é independente do contexto.

Teoria da Computação

Março 2022	MAP30–1B.1	Duração: 30m
------------	------------	--------------

Considere o alfabeto $\Sigma = \{a, b, c\}$ e as linguagens $L_1, L_2 \subseteq \Sigma^*$ tais que:

 L_1 : conjunto das palavras em que o número de ocorrências da subpalavra bc é impar

 L_2 : conjunto das palavras em que a diferença entre número de as e o número de bs é 1

Por exemplo, a palavra *abcbbaa* pertence a L_1 , pois bc ocorre uma vez, mas não pertence a L_2 , pois o número de as e o número de bs é igual (a diferença é 0).

- a) (1.5 valores) Mostre (construindo um AFD) que L_1 é uma linguagem regular.
- b) (1.5 valores) Mostre que L_2 não é uma linguagem regular.
- c) (1.0 valores) Mostre (construindo um AP) que L_2 é independente do contexto.

Teoria da Computação

Março 2022 MAP30–1B.2	Duração: 30m
-----------------------	--------------

Nome:	Número:	

Considere o alfabeto $\Sigma = \{a, b, c\}$ e as linguagens $L_1, L_2 \subseteq \Sigma^*$ tais que:

 L_1 : conjunto das palavras em que o número de ocorrências da subpalavra ac é impar

 L_2 : conjunto das palavras em que a diferença entre número de cs e o número de bs é 1

Por exemplo, a palavra *abcbaca* pertence a L_1 , pois *ac* ocorre uma vez, mas não pertence a L_2 , pois o número de *c*s e o número de *b*s é igual (a diferença é 0).

- a) (1.5 valores) Mostre (construindo um AFD) que L_1 é uma linguagem regular.
- b) (1.5 valores) Mostre que L_2 não é uma linguagem regular.
- c) (1.0 valores) Mostre (construindo um AP) que L_2 é independente do contexto.

Teoria da Computação

MAP30-1C.1 Março 2022 Duração: 30m

Nome:	Número:
Considere o alfabeto $\Sigma = \{a, b, c\}$ e as lingu	uagens $L_1, L_2 \subseteq \Sigma^*$ tais que:

 L_1 : conjunto das palavras em que o número de ocorrências da subpalavra cc é impar

 L_2 : conjunto das palavras em que o número de as é mais um que o número de bs

Por exemplo, a palavra cccaccab pertence a L_1 , pois cc ocorre três vezes, e também pertence a L_2 , pois o número de as é 2 e o número de bs é 1.

- a) (1.5 valores) Mostre (construindo um AFD) que L_1 é uma linguagem regular.
- b) (1.5 valores) Mostre que L_2 não é uma linguagem regular.
- c) (1.0 valores) Mostre (construindo um AP) que L_2 é independente do contexto.

Teoria da Computação

Março 2022 MAP30–1C.2	Duração: 30m
-----------------------	--------------

Nome: _	Número:

Considere o alfabeto $\Sigma = \{a, b, c\}$ e as linguagens $L_1, L_2 \subseteq \Sigma^*$ tais que:

 L_1 : conjunto das palavras em que o número de ocorrências da subpalavra bb é impar

 L_2 : conjunto das palavras em que o número de as é mais um que o número de cs

Por exemplo, a palavra bbbabbac pertence a L_1 , pois bb ocorre três vezes, e também pertence a L_2 , pois o número de as é 2 e o número de cs é 1.

- a) (1.5 valores) Mostre (construindo um AFD) que L_1 é uma linguagem regular.
- b) (1.5 valores) Mostre que L_2 não é uma linguagem regular.
- c) (1.0 valores) Mostre (construindo um AP) que L_2 é independente do contexto.

Teoria da Computação

Considere o alfabeto $\Sigma = \{a, b, c\}$ e as linguagens $L_1, L_2 \subseteq \Sigma^*$ tais que:

 L_1 : conjunto das palavras em que nunca ocorrem dois símbolos consecutivos iguais

 L_2 : conjunto das palavras da forma a^nb^{n+1} com $n\in\mathbb{N}_0$

Por exemplo, a palavra abaccba não pertence a L_1 , pois ocorre cc, enquanto a palavra abb pertence a L_2 .

- a) (1.5 valores) Mostre (construindo um AFD) que L_1 é uma linguagem regular.
- b) (1.5 valores) Mostre que L_2 não é uma linguagem regular.
- c) (1.0 valores) Mostre (construindo um AP) que L_2 é independente do contexto.

Teoria da Computação

Março 2022 MAP30–1D.2	Duração: 30m
-----------------------	--------------

Considere o alfabeto $\Sigma = \{a, b, c\}$ e as linguagens $L_1, L_2 \subseteq \Sigma^*$ tais que:

 L_1 : conjunto das palavras em que quaisquer dois símbolos consecutivos são sempre diferentes

 L_2 : conjunto das palavras da forma $c^n a^{n+1}$ com $n \in \mathbb{N}_0$

Por exemplo, a palavra ababbca não pertence a L_1 , pois ocorre bb, enquanto a palavra caa pertence a L_2 .

- a) (1.5 valores) Mostre (construindo um AFD) que L_1 é uma linguagem regular.
- b) (1.5 valores) Mostre que L_2 não é uma linguagem regular.
- c) (1.0 valores) Mostre (construindo um AP) que L_2 é independente do contexto.

Teoria da Computação

Março 2022 MAP30–1E.1 Duração: 3	30m
----------------------------------	-----

Nome:	Número:
-------	---------

Considere o alfabeto $\Sigma = \{a, b, c\}$ e as linguagens $L_1, L_2 \subseteq \Sigma^*$ tais que:

 L_1 : conjunto das palavras em que não ocorre a subpalavra aaaa

 L_2 : conjunto das palavras da forma $a^{n+1}b^n$ com $n \in \mathbb{N}_0$

Por exemplo, a palavra aaacbb pertence a L_1 , pois não ocorre aaaa, mas não pertence a L_2 , pois ocorre c (pertenceria se c não ocorresse).

- a) (1.5 valores) Mostre (construindo um AFD) que L_1 é uma linguagem regular.
- b) (1.5 valores) Mostre que L_2 não é uma linguagem regular.
- c) (1.0 valores) Mostre (construindo um AP) que L_2 é independente do contexto.

Teoria da Computação

Março 2022 MAP30–1E.2 Duração: 30	$30 \mathrm{m}$
-----------------------------------	-----------------

Nome:	Número:	

Considere o alfabeto $\Sigma = \{a, b, c\}$ e as linguagens $L_1, L_2 \subseteq \Sigma^*$ tais que:

 L_1 : conjunto das palavras em que não ocorre a subpalavra bbbb

 L_2 : conjunto das palavras da forma $b^{n+1}a^n$ com $n \in \mathbb{N}_0$

Por exemplo, a palavra bbbcaa pertence a L_1 , pois não ocorre bbbb, mas não pertence a L_2 , pois ocorre c (pertenceria se c não ocorresse).

- a) (1.5 valores) Mostre (construindo um AFD) que L_1 é uma linguagem regular.
- b) (1.5 valores) Mostre que L_2 não é uma linguagem regular.
- c) (1.0 valores) Mostre (construindo um AP) que L_2 é independente do contexto.

Teoria da Computação

Março 2022	MAP30–1F.1	Duração: 30m
------------	------------	--------------

Nome:	Número:
-------	---------

Considere o alfabeto $\Sigma = \{a, b, c\}$ e as linguagens $L_1, L_2 \subseteq \Sigma^*$ tais que:

 L_1 : conjunto das palavras em que não ocorre a subpalavra abba

 L_2 : conjunto das palavras da forma $a^nb^nc^m$ com $n,m\in\mathbb{N}_0$

Por exemplo, a palavra cabbba pertence a L_1 , pois não ocorre abba, e a palavra aabbc pertence a L_2 (com n=2 e m=1).

- a) (1.5 valores) Mostre (construindo um AFD) que L_1 é uma linguagem regular.
- b) (1.5 valores) Mostre que L_2 não é uma linguagem regular.
- c) (1.0 valores) Mostre (construindo um AP) que L_2 é independente do contexto.

Teoria da Computação

Março 2022 N	IAP30–1F.2	Duração:	$30 \mathrm{m}$
--------------	------------	----------	-----------------

Nome:	Número:

Considere o alfabeto $\Sigma = \{a, b, c\}$ e as linguagens $L_1, L_2 \subseteq \Sigma^*$ tais que:

 L_1 : conjunto das palavras em que não ocorre a subpalavra bccb

 L_2 : conjunto das palavras da forma $b^nc^na^m$ com $n,m\in\mathbb{N}_0$

Por exemplo, a palavra cbcbca pertence a L_1 , pois não ocorre bccb, e a palavra bbcca pertence a L_2 (com n=2 e m=1).

- a) (1.5 valores) Mostre (construindo um AFD) que L_1 é uma linguagem regular.
- b) (1.5 valores) Mostre que L_2 não é uma linguagem regular.
- c) (1.0 valores) Mostre (construindo um AP) que L_2 é independente do contexto.