PROBABILITY BASICS

MARCELLO DI BELLO

1. THE MEANING OF PROBABILITY

What do we mean when we say there is x percent chance/probability that...?

There are different interpretations of probability, such as:

classical

frequency

epistemic

QUESTION: Which interpretation is the most fitting for gambling? Weather forecasting? Medical diagnoses? Trial verdicts?

2. THE MATHEMATICS OF PROBABILITY

P is a probability function provided:

(normality) $0 \le P(A) \le 1$, for any proposition A;

(certaintity) $P(\top) = 1$, with \top any tautology; and

(additivity) $P(A \vee B) = P(A) + P(B)$, with A, B inconsistent propositions.

The *conditional probability* of A given some other proposition B is defined as follows:

(conditional probability)
$$P(A|B) = \frac{P(A \wedge B)}{P(B)}$$
.

Simple corollaries follow, such as:

(negation)
$$P(\neg A) = 1 - P(A)$$
;

(product)
$$P(A \wedge B) = P(A|B)P(B)$$
;

(product*)
$$P(A \wedge B) = P(A)P(B)$$
 if $P(A|B) = P(A)$;

Notation: The symbol '¬' stands for negation, ' \land ' for conjunction, and ' \lor ' for disjunction.

3. BAYES' THEOREM

Confusing P(A|B) and P(B|A) is known as the *inversion fallacy*. Bayes' theorem shows how the two probabilities are related, as follows:

$$P(A|B) = \frac{P(B|A)}{P(B)}P(A) = \frac{P(B|A)}{P(B|A)P(A) + P(B|\neg A)P(\neg A)}P(A).$$

Bayes' theorem allows us to calculate the *conditional* probability of *A* given *B* from:

- (i) the probability P(A) regardless of B;
- (ii) the probability P(B), where $P(B) = P(B|A)P(A) + P(B|\neg A)P(\neg A)$;
- (iii) the *likelihood* P(B|A), i.e. the probability of B given A.