H05

A

14.3

58. Find the value of $\partial x/\partial z$ at the point (1, -1, -3) if the equation

$$xz + y \ln x - x^2 + 4 = 0$$

defines x as a function of the two independent variables y and z and the partial derivative exists.

Exercises 59 and 60 are about the triangle shown here.

- **59.** Express A implicitly as a function of a, b, and c and calculate $\partial A/\partial a$ and $\partial A/\partial b$.
- **60.** Express a implicitly as a function of A, b, and B and calculate $\partial a/\partial A$ and $\partial a/\partial B$.

B

14.4

In Exercises 1–6, (a) express dw/dt as a function of t, both by using the Chain Rule and by expressing w in terms of t and differentiating directly with respect to t. Then (b) evaluate dw/dt at the given value of t.

1.
$$w = x^2 + y^2$$
, $x = \cos t$, $y = \sin t$; $t = \pi$

2.
$$w = x^2 + y^2$$
, $x = \cos t + \sin t$, $y = \cos t - \sin t$; $t = 0$

3.
$$w = \frac{x}{z} + \frac{y}{z}$$
, $x = \cos^2 t$, $y = \sin^2 t$, $z = 1/t$; $t = 3$

4.
$$w = \ln(x^2 + y^2 + z^2)$$
, $x = \cos t$, $y = \sin t$, $z = 4\sqrt{t}$; $t = 3$

5.
$$w = 2ye^x - \ln z$$
, $x = \ln (t^2 + 1)$, $y = \tan^{-1} t$, $z = e^t$; $t = 1$

C

14.3

If we stand on an ocean shore and take a snapshot of the waves, the picture shows a regular pattern of peaks and valleys in an instant of time. We see periodic vertical motion in space, with respect to distance. If we stand in the water, we can feel the rise and fall of the water as the waves go by. We see periodic vertical motion in time. In physics, this beautiful symmetry is expressed by the **one-dimensional wave equation**

$$\frac{\partial^2 w}{\partial t^2} = c^2 \frac{\partial^2 w}{\partial x^2},$$

where w is the wave height, x is the distance variable, t is the time variable, and c is the velocity with which the waves are propagated.

In our example, x is the distance across the ocean's surface, but in other applications, x might be the distance along a vibrating string, distance through air (sound waves), or distance through space (light waves). The number c varies with the medium and type of wave.

Show that the functions in Exercises 69–75 are all solutions of the wave equation.

69.
$$w = \sin(x + ct)$$
 70. $w = \cos(2x + 2ct)$

71.
$$w = \sin(x + ct) + \cos(2x + 2ct)$$

72.
$$w = \ln(2x + 2ct)$$
 73. $w = \tan(2x - 2ct)$

 \Box

In Exercises 13–24, draw a tree diagram and write a Chain Rule formula for each derivative.

14.4

13.
$$\frac{dz}{dt}$$
 for $z = f(x, y)$, $x = g(t)$, $y = h(t)$

14.
$$\frac{dz}{dt}$$
 for $z = f(u, v, w)$, $u = g(t)$, $v = h(t)$, $w = k(t)$

15.
$$\frac{\partial w}{\partial u}$$
 and $\frac{\partial w}{\partial v}$ for $w = h(x, y, z)$, $x = f(u, v)$, $y = g(u, v)$, $z = k(u, v)$

16.
$$\frac{\partial w}{\partial x}$$
 and $\frac{\partial w}{\partial y}$ for $w = f(r, s, t)$, $r = g(x, y)$, $s = h(x, y)$, $t = k(x, y)$

17.
$$\frac{\partial w}{\partial u}$$
 and $\frac{\partial w}{\partial v}$ for $w = g(x, y)$, $x = h(u, v)$, $y = k(u, v)$

Assuming that the equations in Exercises 25–28 define y as a differentiable function of x, use Theorem 8 to find the value of dy/dx at the given point.

25.
$$x^3 - 2y^2 + xy = 0$$
, (1, 1)

26.
$$xy + y^2 - 3x - 3 = 0$$
, $(-1, 1)$

27.
$$x^2 + xy + y^2 - 7 = 0$$
, (1, 2)

28.
$$xe^y + \sin xy + y - \ln 2 = 0$$
, $(0, \ln 2)$

Theorem 8 can be generalized to functions of three variables and even more. The three-variable version goes like this: If the equation F(x, y, z) = 0 determines z as a differentiable function of x and y, then, at points where $F_z \neq 0$,

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}$$
 and $\frac{\partial z}{\partial y} = -\frac{F_y}{F_z}$.

Use these equations to find the values of $\partial z/\partial x$ and $\partial z/\partial y$ at the points in Exercises 29–32.

29.
$$z^3 - xy + yz + y^3 - 2 = 0$$
, (1, 1, 1)

F

In Exercises 9–16, find the derivative of the function at P_0 in the direction of \mathbf{A} .

14.5

9.
$$f(x, y) = 2xy - 3y^2$$
, $P_0(5, 5)$, $\mathbf{A} = 4\mathbf{i} + 3\mathbf{j}$

10.
$$f(x, y) = 2x^2 + y^2$$
, $P_0(-1, 1)$, $\mathbf{A} = 3\mathbf{i} - 4\mathbf{j}$

11.
$$g(x, y) = x - (y^2/x) + \sqrt{3} \sec^{-1}(2xy), P_0(1, 1),$$

 $\mathbf{A} = 12\mathbf{i} + 5\mathbf{j}$

12.
$$h(x, y) = \tan^{-1}(y/x) + \sqrt{3}\sin^{-1}(xy/2), P_0(1, 1),$$

 $\mathbf{A} = 3\mathbf{i} - 2\mathbf{j}$

13.
$$f(x, y, z) = xy + yz + zx$$
, $P_0(1, -1, 2)$, $\mathbf{A} = 3\mathbf{i} + 6\mathbf{j} - 2\mathbf{k}$

39. Changing voltage in a circuit The voltage V in a circuit that satisfies the law V = IR is slowly dropping as the battery wears out. At the same time, the resistance R is increasing as the resistor heats up. Use the equation

$$\frac{dV}{dt} = \frac{\partial V}{\partial I}\frac{dI}{dt} + \frac{\partial V}{\partial R}\frac{dR}{dt}$$

to find how the current is changing at the instant when R = 600 ohms, I = 0.04 amp, dR/dt = 0.5 ohm/sec, and dV/dt = -0.01 volt/sec.

- **40. Changing dimensions in a box** The lengths a, b, and c of the edges of a rectangular box are changing with time. At the instant in question, a = 1 m, b = 2 m, c = 3 m, da/dt = db/dt = 1 m/sec, and dc/dt = -3 m/sec. At what rates are the box's volume V and surface area S changing at that instant? Are the box's interior diagonals increasing in length or decreasing?
- **41.** If f(u, v, w) is differentiable and u = x y, v = y z, and w = z x, show that

$$\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} + \frac{\partial f}{\partial z} = 0.$$

H

14.5

In Exercises 17–22, find the directions in which the functions increase and decrease most rapidly at P_0 . Then find the derivatives of the functions in these directions.

17.
$$f(x, y) = x^2 + xy + y^2$$
, $P_0(-1, 1)$

18.
$$f(x, y) = x^2y + e^{xy}\sin y$$
, $P_0(1, 0)$

19.
$$f(x, y, z) = (x/y) - yz$$
, $P_0(4, 1, 1)$

20.
$$g(x, y, z) = xe^y + z^2$$
, $P_0(1, \ln 2, 1/2)$

21.
$$f(x, y, z) = \ln xy + \ln yz + \ln xz$$
, $P_0(1, 1, 1)$