Classifier Systems und Defensive Strategies

Seminar Lernen in Spielen 13.06.2006

Inhalt

- □ Learning Classifier Systems
 - Definition und Repräsentation
 - Architektur
 - Vor- und Nachteile
- Verteidigungsstrategien mit genetischen Algorithmen
 - Repräsentation der Aktionsparameter bei Rocket Jumping und Ausweichen von Raketen
 - Genetische Operatoren
 - Evolution und Anwendung
 - Beispielimplementierung in Quake II

Learning Classifier Systems (LCS)

- LCS kombinieren drei Techniken der künstlichen Intelligenz
 - Genetische Algorithmen
 - Regelbasierte Systeme
 - Reinforcement Lernen
- □ Sie können die beste Aktion in der gegeben Situation lernen
 - → Das Klassifizierungsproblem lösen

Repräsentation von LCS

- □ Ein Satz von Regeln, die "Klassifizierer" genannt werden
- Jeder Klassifizierer besteht aus zwei Teilen
 - Head (die Eingabedaten verwerten)
 - Body (eine geeignete Reaktion finden)
- Zusätzliche Informationen
 - von den Regeln gespeichert
 - Nutzen abschätzen
 - Fehlerwahrscheinlichkeit voraussagen

Head und Body

- □ Verarbeitung der Eingabe (*Head*)
 - Modellierung des Klassifizierers mit 3 Werten: "0", "1" und "#" (don't care)
 - Damit wird eine Generalisierung ermöglicht
 - Ein "Match" liegt vor, sobald ein Korrespondierendes Bit 1 oder # ist.
- ☐ Aktionen des Klassifizierers (*Body*)
 - Keine Generalisierung notwendig → 0,1

Weitere Attribute des LCS

- Vorhersage (prediction) korrespondiert mit
- erwartetem Ertrag (return)
 - Über die Zeit aufsummierter Lohn (reward)
 - Güte des Klassifizierers auf lange Sicht
- ☐ Geschätzte Genauigkeit (*accuracy*)
 - Konsistenz des Klassifizierers wird bestimmt
 - Niedrige accuracy → Schlecht bei Vorhersagen
 - Hohe accuracy → Gutes Verständnis der "Welt"
- ☐ Ein Faktor für die *fitness* wird gesucht
 - Früher: Vorhersage des return
 - → Das System wird daran gemessen, wie gut es **denkt**, dass es ist. Führt nicht zu optimalem Ergebnis. Warum?
 - Heute: accuracy

Architektur des LCS

Vor- und Nachteile

- □ LCS gut für die Schätzung des "benifits" von Aktionen
 - Die besten Aktionen werden verwertet
 - Wissen über die "Welt" ist i.d.R gut → funktionierendes Lernv.
 - Wissen des Entwicklers kann einfließen
- □ Binäre Repräsentation ist komplex
 - Schlecht zu lesen
 - Input häufig nicht binär (Fließkommazahlen, Arrays)
 - → müssen (umständlich) konvertiert werden
 - Erweiterung: Symbolmenge statt Binärwerte
- ☐ Vielfältige Einsatzmöglichkeiten in Spielen
 - Anpassung in Online-Anwendungen
 - Kontrollprobleme häufigste Anwendungsform
 - → Das können Regel-Lerner allerdings auch gut

Fazit: Fast überall einsetzbar, aber sehr hoher Ressourcenverbrauch Anwendung: Obstacle Avoidance, Waffenauswahl In der Praxis sind andere Techniken meist eher angebracht

Beispiel in dem LCS "fast" vorkommen: Creatures 1-3

- Classifier System vorhanden
- □ allerdings "hard coded"
- □ Klassifizierung aller Kreaturen
- Genetische Algorithmen im Spiel umgesetzt
 - Zufallsgenerierung
 - Mutation
 - Phänotyp/Genotyp
 - zusätzlich: "Gehirn" etc.

Bsp. "Classifier System"

family	genus	species	name	url
1	1	1	Rock near Norn pool	Masha
1	1	2	Norn door cutaway	Masha
1	1	3	Norn hump cutaway	Masha
1	1	4	Norn entrance to burrow	Masha
3	10	55100	tables	chani
3	10	55101	grabber	chani
3	10	55102	chest	chani
4	1	1	male norn	Masha
4	1	2	female norn	Masha
4	1	1000	pending	serstel

Creatures Screenshot

Inhalt

- Learning Classifier Systems
 - Definition und Repräsentation
 - Architektur
 - Vor- und Nachteile
- Verteidigungsstrategien mit genetischen Algorithmen
 - Repräsentation der Aktionsparameter bei Rocket Jumping und Ausweichen von Raketen
 - Genetische Operatoren
 - Evolution und Anwendung
 - Beispielimplementierung in Quake II

Adaptive Verteidigung mit genetischen Algorithmen

- Verteidigungsstrategien neben Angriffsstrategien auch wichtig für realistisches Spielen
 - Raketen ausweichen (Laufen oder Springen)
 - Rocket Jumping
- ☐ Genetische Algorithmen zur Manipulation von Aktionssequenzen

Aktionen und Parameter

- ☐ Eine Teilmenge aller möglichen Aktionen als Aktionsmenge (z.B. nur grobe Richtung)
 - Einfacher zu entwickeln
 - Macht das Lernen schneller
- Manche Aktionen sind gegebene Parameter
 - Nur wenige parameterlose Aktionen
 - Das "was" und das "wie" werden getrennt
- □ Kombination der Parameter als Sequenzen von Aktionen

Bsp. Aktionsmenge

Aktion	Parameter
Look	Richtung
Move	Gewichte
Fire	-
Jump	_

□ Timing

- Relativ → Offset zur vorherigen Aktion
- Absolut → Unabhängig von anderen Aktionen

Genetische Operatoren

- Die Basis-Operatoren für genetische Algorithmen werden eingesetzt
- ☐ Zufällige Generation
 - Time offset \rightarrow Fließkommazahl mit MAX (z.B. 2 Sek.)
 - Aktionstyp → Zufällig generiertes Symbol (z.B. Move)
 - Parameter → Abhängig von Aktionen (z.B. weg von Rakete)
- ☐ Kreuzen (Crossover)
 - Ein-Punkt-Kreuzung → Zufälliger Split zwischen 2 Eltern und Zusammensetzen von 2 Kindern (in Bsp. verwendet)
 - Große Wahrscheinlichkeit für gute Sequenzen nach der Kreuzung zusammenzubleiben
- Mutation
 - 2 Arten von Mutation
 - Die Länge einer Sequenz durch Hinzufügen oder Wegnehmen von Aktionen verändern
 - Die Aktionen selbst werden durch Verändern der Werte mutiert

Evolutionäre Anpassung

- Konstante Größe der Population
 - → Speichereffizienz
- zu Beginn: Population zufällig generiert
- Evolutionsschritte auf Anfrage
 - Jedes Individuum ohne Fitness-Wert wird aus der Population gezogen und evolviert
 - Später: 2 Eltern werden mit der Wahrscheinlichkeit ihrer Fitness gekreuzt und ggf. mutiert
 - → Entstehende ,Kinder' werden evolviert
- Entfernen von Individuen
 - Mit Wahrscheinlichkeit von 1-(relative Fitness)
 - Ähnlichkeit mit anderen Sequenzen verstärkt Wahrscheinlichkeit entfernt zu werden
 - → Abwägen zwischen Elite und Unterschiedlichkeit

Die Fitness berechnen

- Rocket Jumping
 - Ziel ist es, besonders hoch zu springen
 - → Reward steigt quadratisch mit der Höhe
- □ Raketen ausweichen
 - Distanz zwischen Spieler und Explosionspunkt maximieren
 - Stehenbleiben (in gewisser Distanz) sollte vermieden werden
 - → Unterschied in der Distanz wird maximiert
 - Schaden wird von der Fitness abgezogen

Variablen zur Ergebnisoptimierung

Anwendung

- Die vom genetischen Algorithmus gegebenen Kandidaten-Sequenzen müssen vom "Animat" mit konkretem Verhalten getestet werden
- Rocket Jumping und Raketen ausweichen separat lernen, da diese sowieso unabhängig sind. 2 Alternativen
 - Eine Fitness Funktion, verschiedene Phasen
 - Zwei Fitness Funktionen, die gleichzeitig gelernt werden
- ☐ Ergebnis: Zum Ausweichen vor Raketen wird ein Rocket Jump ausgeführt

Evaluation

- Rocket Jumping wird schnell gelernt, sobald der Animat gelernt hat, dass Raketen den Sprung verbessern
- Ausweichen wird auch recht schnell gelernt, da die Repräsentation einfach gehalten wurde (allerdings unvollständig)
- ☐ Fitness als Fließkomma-Wert zu implementieren ist von großem Nutzen
 - → Besser als boolsche Werte
- LCS wären nicht gut für dieses Problem geeignet. Warum?

Umsetzung in Quake II

- Animat, der Rocket Jumping und Ausweichen lernt ("Kanga")
- Schnelle Umsetzung
 - → nach etwa 50 Sprüngen hohe Fitness für Rocket Jump
- Repräsentation mit 2 Fitness Funktionen
- Praxis etwas schwieriger als Theorie
 - Rocket Jumping verursacht Schaden → Lernen dauert etwas länger
 - Raketenwerfer wird benötigt für Rocket Jump
 - Für Ausweichen wird schießender Spieler benötigt

Rocket Jumping Fitness

Rocket Jumping Average

Quellen

Alex J. Champandard: AI Game Development, New Riders Publishing, 2003, Chapters 32 (Genetic Algortihms), 33 (Learning classifier systems, 34 (Adaptive defensive strategies) http://aigamedev.com/ und http://aigamedev.com/Forum/ (Implementierung der Quake II Bsp. aus dem Buch) http://fear.sourceforge.net/ Foundations for Genuine Game AI (Implementierung Quake II teilweise aktueller) http://en.wikipedia.org/wiki/Learning classifier system Definition http://lcsweb.cs.bath.ac.uk/papers/Reveley2002a LCS-Implementierung für Poker http://www.cems.uwe.ac.uk/lcsg/ Learning Classifier Systems Group (Anwendungs-Bsp.) Seredynski, F., Cichosz, P., & Klebus, G. P. (1995). Learning classifier systems in multi-agent environments (http://www.ise.pw.edu.pl/~cichosz/pubs/) eher Spieltheorie classifier http://creatures.wikia.com/wiki/Creatures Wiki Homepage Informationen über Creatures