

ADA100496

AFWAL-TR-80-4102 Part I

LEVEL II

PACER LIME: An Environmental Corrosion
Severity Classification System

Robert Summitt
Fred T. Fink
Metallurgy, Mechanics, and Materials Science
Michigan State University
East Lansing, Michigan 48824

August 1980

Technical Report
Final Report for Period 15 Sept. 1978 - 31 Dec. 1979

Approved for public release;
distribution unlimited

MATERIALS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT - PATTERSON AFB, OH 45433

DTIC FILE COPY

816 . 22 017

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

CHARLES T. LYNCH
Project Engineer
Metals Behavior Branch
Metals and Ceramics Division

WALTER H. REIMANN
Acting Branch Chief
Metals Behavior Branch
Metals and Ceramics Division

"If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization please notify AFWAL/MILN, W-PAFB, OH 45433 to help us maintain a current mailing list".

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

19) TR-80-4102-PT-1

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM	
1. REPORT NUMBER AFWAL/TR-80-4102 Part I	2. GOVT ACCESSION NO. AD-A100 496	3. RECIPIENT'S CATALOG NUMBER	
4. TITLE (and Subtitle) PACER LIME: An Environmental Corrosion Severity Classification System Part I.		5. TYPE OF REPORT & PERIOD COVERED Final Report Part I Scope: 1-1000 16. PERFORMING ORG. REPORT NUMBER	
6. AUTHOR(s) Robert Summitt and Frederick T. Fink	7. CONTRACT OR GRANT NUMBER(s) F33615-78-C-5224 <i>new</i>	8. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 39300001 (14) OA /	
9. PERFORMING ORGANIZATION NAME AND ADDRESS Michigan State University Division of Engineering Research East Lansing, MI 48824	10. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office) Materials Laboratory Air Force Wright Aeronautical Laboratories Air Force Systems Command Wright-Patterson AFB, OH 45433	11. REPORT DATE August 1980	12. NUMBER OF PAGES 12 1/2
13. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.	14. SECURITY CLASS. (of this report) Unclassified	15. DECLASSIFICATION/DOWNGRADING SCHEDULE	
16. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)			
17. SUPPLEMENTARY NOTES			
18. KEY WORDS (Continue on reverse side if necessary and identify by block number) Corrosion, environmental severity, aircraft maintenance			
19. ABSTRACT (Continue on reverse side if necessary and identify by block number) A system has been developed for rating the corrosivity of aircraft operational environments. This system takes account of weather, atmospheric pollutant, and geographical factors to compute a severity index for three aspects of corrosion maintenance: aircraft washing, repainting, and repair needs. Computed ratings are in good agreement with aircraft corrosion experience and atmospheric testing programs at several locations.			

PREFACE

This is the Final Report for USAF Aeronautical System Division Contract No. F33615-78-C-5224 (Project 3930 Task 00, Work No. 01) with Michigan State University. The Program described was initiated by personnel of Warner-Robins Air Logistics Center Corrosion Management Office (WR-ALC/MMETC). Its objective is to develop an environmental corrosion severity classification system and to calibrate this system by means of an atmospheric testing program. After several years of development and testing by WR-ALC, analysis of the results was completed by MSU. The Final Report is divided into two parts which are issued separately. This, the first part, discusses the environmental classification system and the second part treats the experimental phase.

This Program has spanned several years and represents the efforts of many people. Particular acknowledgement must be made for several of them. The USAF Project Engineer was Dr. C. T. Lynch, AFWAL/MLLN, and we have benefitted from his continued encouragement as well as that of Col. William Egan and Lt. Col. Garth Cooke, AFLC/LOE, all at Wright-Patterson AFB, Ohio. Several people worked on earlier stages of the program at Robins AFB, Georgia, including Col. (Ret.) Harold L. Beasley, Lt. Col. (Ret.) James Upp, Capt. (Ret.) Terry Rickard, Capt. J. G. Knapik, Lt. Lane Hogue, Mr. William Richardson, Mr. William Thompson, and Mr. Frank Denton. At MSU Graduate Assistants Dave Bursik, Matt Rizai, and Nina Samsami, Undergraduate Assistants Carolyn Wright, Mike Tichvon, Caroline Sokalski, Angelica Bodnar, and Holly Tallon all have made valuable contributions to the research. Finally, Undergraduate Assistant Andrea Cerulli has served as editor for this Report. We thank all for their work.

TABLE OF CONTENTS

Section	Page
1. Introduction	1
II. Corrosion Severity Classification System	4
1. Environmental Variability	4
2. Atmospheric Corrosion in Aircraft	5
3. Factors Affecting the Rate of Corrosion	6
a. Weather	6
b. Pollutants	8
4. Establishing Environmental Quality Standards for Corrosion	12
a. Ranges of Ambient Parameters	14
b. Proximity to the Sea and Other Sources of Salt	17
(1) Salt in Rainwater	18
(2) Particulate Sodium Chloride	19
c. U.S. National Ambient Air Quality Standards (NAAQS)	21
d. Experimental Studies Relating Corrosion to Environment	26
e. Working Environmental Corrosion Standards (WECS)	31
5. Corrosion Severity Algorithms	35
a. The 1971 Corrosion Factor Equation	35
b. Comments on the CF Equation	40
c. Environmental Severity Algorithms for Aircraft Corrosion	41
(1) Corrosion Maintenance in Aircraft	42
(2) Aircraft Washing	42
(3) Painting	43
(4) Corrosion Damage	45
(5) Use of Environmental Algorithms	47
(6) Environmental Applications	47
(7) Environmental Data	49

TABLE OF CONTENTS (CONT.)

Section	Page
d. Comparison of Algorithm Results with Corrosion Maintenance Experience	51
(1) Environmental Factors at C-141A Airbases	52
(2) The USAF Maintenance Data Collection System	52
(3) Results	59
(4) Conclusions	68
e. Comparison with PACER-LIME Experimental Results	68
6. Conclusion	70
References	71
Appendix A	
PACER LIME Interim Corrosion Severity Classification	76
Appendix B	
Programs Developed to Calculate Washing and Repaint Intervals and Expected Corrosion Damage Severity Using the Working Environmental Corrosion Standards	82
Appendix C	
Atmospheric Data and Severity Classifications	93

LIST OF ILLUSTRATIONS

	Page
1. Atmospheric salt particle concentrations vs. distance from seashore	20
2. Surface salt deposits and corrosion of iron vs. distance from sea, Nigeria	22
3. Aircraft Washing Interval Algorithm	44
4. Aircraft Complete Repaint Interval Algorithm	46
5. Aircraft Corrosion Damage Algorithm	48
6. USAF AFTO Form 349 Maintenance Data Collection Record	55
7. USAF AFTO Form 349 Maintenance Data Collection Record (Reverse)	56
8. Cumulative Corrosion Maintenance History of C-141A Serial Number 650266	61
9. Distribution of Field-level Corrosion Maintenance Among Aircraft Continuously Assigned to an Airbase 4Q70-4Q74	65
10. Distribution of Field-level Corrosion Maintenance Among Aircraft Continuously Assigned to an Airbase 1Q75-4Q76	66

LIST OF TABLES

	page
1. Ranges of Environmental Ambient Parameters, Continental U.S.	16
2. National Ambient Air Quality Standards	24
3. Environmental Factors and Levels Used by Haynie, Spence, and Upham	30
4. Corrosion Rates ($\mu\text{m/year}$) of Weathering Steel in Designated Controlled Atmospheres	32
5. Working Environmental Corrosion Standards (WECS)	33
6. Environmental Factors Considered in Developing a Corrosion Severity Index Algorithm	36
7. The Corrosion Factor Equation and Parameter Ranges	37
8. Range of Computed Pacer Lime Corrosion Severity Index	38
9. Environmental Factors for C-141A Airbases Compared with Working Environmental Corrosion Standards and Environmental Ratings	53
10. Distribution of C-141A Force-Wide Corrosion Maintenance Manhours Among Action Taken Codes	57
11. Distribution of C-141A Force-Wide Corrosion Maintenance Manhours Among How-Malfunction Codes	58
12. C-141A Airbase Possession Quarters Compared With Field Level Corrosion Maintenance Manhours	62
13. C-141A Corrosion Maintenance Effort by Airbase	63
14. C-141A Corrosion Maintenance Effort on Selected Aircraft Sections by Airbase	67

I. INTRODUCTION

Several studies have centered on the total costs of corrosion prevention and control within the past few years.¹⁻⁵ The inescapable conclusion is that total corrosion costs for aircraft maintenance and management are an intolerable burden to the Air Force in terms of maintaining force effectiveness at reasonable cost to the taxpayer. Direct costs of corrosion maintenance for major aircraft systems in the field and at depot level have been estimated to be in excess of \$750 million per year, and total corrosion costs, including those for airbase facilities, are estimated to be in excess of \$1 billion per year.⁴ A key factor in controlling these costs is the ability to optimize corrosion repairs based upon need, rather than the current practice to perform them at fixed time intervals, and, in the field or at depot, based upon optimized inspection, need, and time of repair. The current program of fixed time interval depot maintenance of aircraft, under Programed Depot Maintenance (PDM), does not correspond to the actual corrosion damage level of individual units.⁶ Thus, the method results in inefficient and uneconomical use of facilities and resources. The scheduling of depot maintenance could be based, however, on the cumulative exposure to corrosion risks if the risk factors were identified and quantified and the relations between exposure and damage were known.

One approach to quantifying risk factors is to classify the environmental severity according to the nature and intensity of ambient corrosive factors. It has long been acknowledged that some environments are more corrosive than others, and environments are commonly classified as industrial, urban, or marine, thus indicating their approximate severity.^{7,8} It also is established that certain environmental constituents, e.g., sea salt and sulfur dioxide, increase the relative aggressiveness of the environment.^{9,10} An environmental classification, based on the atmospheric

constituents present, might be used as a guide in establishing the maintenance schedules required for complex systems, such as aircraft.

In response to the needs of the Strategic Air Command (SAC), the AF Logistics Command (AFLC) implemented a program* to develop a corrosion severity classification for each operational airbase as part of the Corrosion Prevention and Control (COPCON) program (redesignated as Project RIVET BRIGHT in 1971). Program development began in 1965 and implementation was achieved in 1971. The program was designated PACER LIME in 1972 as an element of RIVET BRIGHT. PACER LIME is a two phase effort: (1) Development of an equation or algorithm for computing a priori a numerical corrosion factor which combines weather and other environmental factors; (2) experimental measurement of corrosion severity at selected locations through atmospheric corrosion tests. The experimental data would be used to "calibrate" the computed corrosion factor.

An initial corrosion factor equation, combining certain weather and geographical factors, was developed in 1971. Interim numerical classifications were published for 39 SAC airbases in 1972, and for 95 USAF and 27 ANG airbases in 1973. A complete list was distributed in 1974 under the title "PACER LIME Interim Corrosion Severity Classification." These interim values were to be compared with corrosion maintenance experience and the results of the PACER LIME atmospheric testing program. The corrosion factor equation then would be modified and used to compute working corrosion severity classifications. The experimental phase produced useful data very slowly, however, and analysis of maintenance experience proved to be more complex than expected. Consequently, revision of the corrosion factor equation has been delayed considerably.

*Records of the Program were the source for the following discussion. These records are the property of USAF Corrosion Management Office, MMETC, Robins AFB, GA.

The need for environmental guidelines was so great, however, that the Interim Classifications were soon used to develop maintenance interval guidelines, e.g., for washing and corrosion inspections. In several cases these guidelines correlated poorly with field-level experience and a few computational errors had occurred. Thus, the validity of the guidelines and the corrosion factor equation was severely questioned.

The experimental phase of PACER LIME would provide a calibration reference point for the corrosion factor equation by measuring corrosion rates at several airbases. The test sites were selected in order to span the range of environments from mildest to most severe. Alloys representative of those used in modern airframe construction were chosen for outdoor exposure. Program planning was completed in 1971, most test stands were installed in 1972, while the remaining stands were installed in 1973 and 1975. Despite numerous difficulties and misfortunes, considerable data was accumulated between 1972 and 1978. Analysis of the data, in terms of environmental parameters, however, proved to be more complex than expected.

In 1978 it was determined that adequate in-house USAF resources could not be made available for the completion of PACER LIME, and the Program was assigned under contract to Michigan State University. The objectives of the MSU effort were to complete the program by analyzing results of the corrosion exposure test program, the Base Corrosion Severity Classification System, and to develop an improved classification system. This improved system was to be applied to the environments of all USAF, AFRES, and ANG airbases in order to provide ratings for each. These objectives have been accomplished and are discussed in this Final Report.

The Report is divided into two parts, which are being published separately. The first part discusses the Corrosion Severity Classification System and the second part the Corrosion Exposure Test Program.

II. THE CORROSION SEVERITY CLASSIFICATION SYSTEM

1. Environmental Variability

The variability of environmental corrosion severity has been well established by atmospheric testing programs.^{8,11-14} Relative severity is commonly indicated by designating an environment as rural, urban, industrial, marine, or an appropriate combination of these terms. Moreover, many studies^{7,9} have shown that certain environmental factors, e.g., moisture, salt, and pollutants, are responsible for the more rapid corrosion observed in environments containing them. Consequently an environmental rating scale which takes into account those factors could provide a more useful indication of relative severity which could be used in management of aerospace systems.*

It would be difficult to devise a general rating system which would predict the corrosion damage to every metal. Different metals display widely diverse behavior in a given environment and also from one environment to another. Some alloys are more resistant in marine locations than industrial, and the reverse is true for others. The several factors which influence corrosion are present in a unique combination for a given site, and precise information relating the corrodibility of a specific alloy to every environmental factor is not available. In the case of aircraft, however, one is concerned with a limited number of alloys, a few each of aluminum, steel, titanium, and magnesium.** In addition, a precise rating scale is not needed for logistic decisions, but merely a relative rating. It is commonly known that aircraft - like automobiles - are corroded more severely in some environments than others. Finally, since military aircraft spend most of their lifetime on the ground at the

*And other systems as well, cf. Scheffer¹⁵.

**The scope of this study is restricted to corrosion of structural alloys, excluding engines and avionics. Materials of these latter systems, however, probably will respond to environmental corrosive factors in a similar way¹⁶.

home airbase,⁶ a system for classifying the severity of air-base environments is quite reasonable.

2. Atmospheric Corrosion in Aircraft

Tomashov⁷ distinguishes the following types of atmospheric corrosion:

(1) "Wet atmospheric corrosion" caused by visible droplets of condensed moisture on the surface. Such moisture may result from dew, frost, rain, snow, or spray;

(2) "Moist atmospheric corrosion", which occurs at relative humidity less than 100%, and proceeds under a very thin, invisible layer of electrolyte formed on the surface by capillary action, physical, or chemical adsorption;

(3) "Dry atmospheric corrosion" which occurs in the complete absence of a moisture film.

Both wet and moist atmospheric corrosion occur in aircraft. Water accumulates on metal surfaces as condensation (dew, fog, from humid air on cold post-flight surfaces), rainfall on exterior surfaces and through open hatches, and various inadvertant spills. Dry atmospheric corrosion, however, is unimportant because aircraft alloys do not corrode in the absence of moisture.

Thus the range of corrosion problems in aircraft may be categorized as:

(1) Wet and moist corrosion of bare, unprotected metal surfaces;

(2) Wet and moist corrosion of protected metal surfaces subsequent to failure of protective coatings. Protective coatings fail because of solar radiation, atmospheric contaminants (mainly ozone and other oxidants, particulates, fuels, and exhaust gases), high speed air ablation, and mechanical abrasion and flexure;

(3) Corrosion caused by contaminants of human origin including spilled beverages, human waste, hydraulic fluids, and battery acids.

The first and second categories of corrosion may be related to the ambient environmental factors which accelerate

corrosion of metals or degradation of protective coatings, hence an environmental rating system would be relevant to them. The third category is a housekeeping problem. Although it should be relatively easy to control and prevent such damage, it is in fact a serious problem in USAF aircraft. The quality of housekeeping varies from one airbase to another⁶ and thus conceivably might be considered an environmental variable. Since it is not easily measured, and it varies unpredictably from time to time, it cannot be considered in a rating system.

3. Factors Affecting the Rate of Corrosion

The rate of metallic corrosion in the atmosphere is determined by three sets of variables:

- (1) Weather conditions, especially those relating to moisture;
- (2) Atmospheric pollutants, both natural and anthropogenic;
- (3) The nature of the metal.

The relationship of weather and pollutants to the corrosion of aircraft alloys of interest in PACER LIME will be discussed in some detail.

a. Weather

Weather parameters include temperature, precipitation, solar radiation, wind direction, wind speed, relative humidity, dew point, cloud cover, and fog.¹⁰ All can affect the rate of corrosion, but water (and therefore those parameters related to water) will produce the largest influence. Vernon^{17,18} has shown that a given metal corrodes rapidly when the relative humidity exceeds a critical value, but corrodes slowly or not at all at lower humidity. The value of the critical humidity varies from one metal to another, and the presence of various pollutants can change the value as well as the corrosion rate. The critical humidity for ferrous alloys is about 70% in the absence of other factors; in the presence of sulfur dioxide, however,

it is reduced to about 60%. Similarly in the presence of SO_2 , the critical RH is about 70% for aluminum. Unfortunately very few data are available for other metals.

A film of moisture will deposit from humid air on metal surfaces of aircraft¹⁹ under several conditions: if the metal is colder than the air (immediately following high altitude flight), if hygroscopic salts (corrosion products, pollutant deposits) are present, or through adsorption. The film thickness, from two or three to several hundred molecular layers, will be determined by the humidity value as well as the nature of the adsorption process.⁷ Consequently, the relative humidity alone is not sufficient to determine completely relative corrosivity, but it can provide a good first approximation.

Dew, fog, and rain, on the other hand, wet exposed surfaces immediately. Dew condensation occurs when air cools to its dew point temperature, corresponding to 100% RH. The air itself need not cool to this point, however, before moisture accumulates. The only requirement is that the metal surface be sufficiently cooler than the surrounding air. At 80% RH, for example, the surface need be only 6°F cooler than the air.¹⁹

There has been much discussion¹⁰ on the effects of rainfall. Rain is thought to promote corrosion by providing moisture and washing away soluble corrosion products. It also is believed to retard corrosion by washing away pollutant deposits. Thus light rain would be harmful, but heavy rain would be beneficial.

The beneficial effects appear to be unimportant in aircraft corrosion, because, generally, paint protects aircraft surfaces exposed to the washing effects of rain, whereas corrosion occurs underneath the paint at cracks, etc., where the washing is ineffective. Interior surfaces carelessly exposed to rain, however, are wetted and not washed, and water is harmful to the less well protected surfaces. Accordingly, rain should be considered a harmful source of moisture.

Air temperature, humidity, solar radiation, cloud cover, and wind speed affect the rate of water evaporation. Also, temperature strongly influences the rate of corrosion reactions, thus corrosion rates would be expected to increase as the temperature rises. But oxygen, dissolved in the water electrolyte, is required for most corrosion reactions and the solubility of gases decreases with increasing temperature.

Rozenfeld⁹ considers in some detail the interaction of temperature and moisture, and points out that the time of wetness will vary with temperature. Thus corrosion rates are greater in northern regions, where temperatures are low, than in warmer southern regions because moisture remains on metal surfaces longer at the cooler northern temperatures, but evaporates faster in southern warm temperatures. A combination of high temperature with prolonged moisture contact, however, will result in severe corrosion. For example, corrosion of marine pilings in summer is rapid near the water surface where they are wetted continually, but quite low at higher points where they are wetted only occasionally by rain. It remains difficult to predict, though, the effect of temperature on corrosion processes in the atmosphere.

b. Pollutants

Atmospheric pollutants are natural and anthropogenic airborne substances present at harmful concentrations. These substances usually are described as follows,²⁰ including only those known to contribute to corrosion:²¹

(1) "Particulates" includes both solid and liquid material in particle sizes from 0.1 to 100 μm . Dust, grit, fly ash, and visible smoke particulates larger than 20 μm settle to the ground somewhat quickly. Smaller particles remain suspended much longer and may be dispersed over extremely wide areas. Thus large particulates potentially might cause corrosion problems close to the source (sea salt-spray is a special case), whereas small particulates

can be important factors at great distances from their source, e.g., dust storms, and farming activities in the U.S. Great Plains result in elevated particulate concentrations downwind in the north east.

Particulates vary widely in chemical composition. They generally are classified according to the source:²² (1) salts from sea spray and salt flats; (2) dusts from agricultural lands; (3) soots from the incineration of agricultural wastes and the burning of fuels; (4) agricultural and industrial dusts. Ninety per cent of airborne particulates originate from natural sources. Very few monitoring stations report the chemical compositions of particulates, but provide only total concentrations. Thus, although the corrosiveness of various particulates may vary widely, there is no way to take account of the differences, because data are not available. Geographical proximity to salt, however, is a notable exception. The corrosivity of salt is well established, but for other particulates, there exist only a few studies²² which show corrosion to be more severe in industrialized areas with high particulate concentrations. These studies are ambiguous, however, because other corrosive factors are present.

The presence of salt greatly increases corrosion rates for nearly all metals,^{7,9} hence the proximity of salt sources will be of much concern. Environments where airborne salt concentrations are high will be high risk environments. When soluble salts, e.g., sodium chloride or ammonium sulfate, are present, corrosion products usually are water soluble and readily removable. Corrosion products which form in the presence of water only, however, usually are weakly soluble, thus not readily removed, and serve a protective function to the underlying metal. In addition, many anions remove primary oxide films or displace oxygen layers which are passivating.⁹

There is a synergistic effect between salt deposits and the atmospheric water content. The deliquescent salts

undergo a phase transformation from dry crystal to a solution droplet when the ambient water vapor pressure exceeds that of a saturated solution of the highest hydrate.⁷ The relative humidities at which this transformation occurs for ammonium sulfate, sodium sulfate, sodium chloride, and ammonium nitrate are 80, 86, 75, and 62 per cent, respectively. Thus salt deposits both attract moisture to metal surfaces and provide the electrolyte solution required for corrosion.

(2) Sulfur, another atmospheric pollutant, enters the atmosphere in a variety of forms, including sulfur dioxide, SO₂, hydrogen sulfide, H₂S, and sulfate salt particulates.²³ About two thirds of all atmospheric sulfur comes from natural sources, mainly as H₂S from bacterial action which later is converted to sulfur dioxide. Estimates of world-wide emissions of sulfur dioxide emitted initially as SO₂, both man-made and natural, show that more than 80% (or 16% of the total in the air at any given time) comes from combustion of sulfur-containing fuels. The smelting of nonferrous metals and petroleum refining account for most of the remaining 20%. The only apparent natural source of sulfur dioxide is a small contribution from volcanoes.

Sulfur dioxide initially is oxidized photochemically to sulfur trioxide, which then combines with water to form sulfuric acid. The primary oxidation process may follow several different paths and can proceed rapidly in polluted atmospheres. In air containing nitrogen dioxide and certain hydrocarbons, sulfur dioxide is oxidized in a photochemical reaction process that produces aerosols containing sulfuric acid. Also, sulfur dioxide can be oxidized in water droplets that contain ammonia, the end product being ammonium sulfate aerosol. Both sulfuric acid and sulfate salts thus formed are removed by precipitation and, to a lesser extent, by gravitational settling.

A large part of the sulfur in the global atmosphere is emitted as hydrogen sulfide produced naturally by decaying organic matter on land and in the oceans and by volcanoes.

Hydrogen sulfide also is emitted by some industrial operations and by catalytic converter-equipped automobiles. Hydrogen sulfide, like sulfur dioxide, is oxidized in the air and eventually converted to sulfur dioxide, sulfuric acid, and sulfate salts.

On a local or regional basis, the mechanisms by which sulfur compounds are removed from the air may produce significant effects. In the early 1960's as the concentration of sulfur compounds in air over Europe began to rise, so did the acidity of precipitation.²⁴ Both phenomena are attributed to increased use of sulfur-containing fuels.

Many materials, in addition to metals, deteriorate in the presence of atmospheric sulfur in one form or another.²³ Ferrous alloys, in particular, corrode more rapidly in the presence of SO₂, the effect apparently being synergistic with moisture. Hydrogen sulfide attacks copper and silver to form a nonconductive sulfide film, causing electrical contacts to fail.

In the U.S., ambient SO₂ levels have decreased in recent years because of reduced usage of coal and enforcement of "environmental protection" legislation.²⁵ It appears likely however, that energy considerations will force the U.S. to use more coal, and SO₂ concentrations probably will reach levels no lower than they are today and may even increase.

(3) Hydrocarbons²⁶ mostly come from natural decomposition of organic matter. Anthropogenic sources are important, however, because they may be highly concentrated geographically where they are not rapidly dispersed. The most notable example is the Los Angeles basin, where the sources are automobile gasoline engines. The fate of the hydrocarbon pollutants involves the reaction with oxides of nitrogen to form photochemical smog, which include a variety of secondary pollutants such as ozone, nitrogen dioxide, and peroxyacetyl nitrates. Hydrocarbons themselves are not

damaging either to metals or protective coatings, but photochemical oxidants are harmful to both.²⁷

(4) Nitrogen oxides,²⁸ NO_x, arise from both natural and anthropogenic sources. The former mainly are organic decomposition, the latter the internal combustion engine. Internal combustion initially yields nitric oxide, NO which by itself is relatively harmless. In the atmosphere, however, NO oxidizes to nitrogen dioxide, NO₂, which is harmful both directly as an irritant and indirectly in the formation of photochemical smog. The chemical reactions occurring in the presence of NO₂, hydrocarbons, and sunlight are complex but yield an atmosphere which is aggressive in the destruction of organic materials such as paint films and protective coatings.

The corrosive effects of NO_x and photochemical oxidants^{27,28} probably are indirect. These pollutants may decompose protective finishes on aircraft resulting in premature failure of the coating and exposure of underlying metal. It should be remembered that the nature of local pollutants is relevant to the type of aircraft corrosion problems to be expected. In the industrial eastern U.S., smog containing SO₂ will produce direct metal corrosion to the interior and exposed exterior metal parts of an aircraft, whereas a Los Angeles photochemical-type smog will damage finishes and seals, followed by corrosion of underlying metal.

4. Establishing Environmental Quality Standards For Corrosion

Corrosion accelerates when the following environmental factors are present:

- (1) Humidity, rainfall, and solar radiation;
- (2) Proximity to the sea or other salt sources; and
- (3) Pollutants, mainly sulfur oxides, particulates, photochemical oxidants, and nitrogen dioxide.

The prevalence of these environmental factors varies widely from one geographical location to another and even within

relatively small areas.²⁹ Moreover, there is much empirical and experimental evidence to show that environmental corrosivity becomes increasingly severe as these factors increase, but at low values, their effects on corrosion are negligible. Thus, it is reasonable to assume the existence of a critical value for each factor, either alone or in combinations, which then could be used to establish environmental severity. The critical value may sharply divide slow and rapid corrosion, such as for iron and aluminum in the presence of S_0_2 , versus humidity (cf. Rozenfeld⁹, pp. 106 and 109). Alternately the variation of damage with the environmental parameter may be gradual, such as the repainting of houses vs. particulate concentration (cf. Stoker and Seager³⁰, p. 98), thus the critical value is less precisely defined. Where such critical values are known, they can be utilized directly as environmental quality standards.

Unfortunately, such data are nearly nonexistent for all environmental factors except possibly humidity. Most laboratory studies of pollutant effects on corrosion have used concentrations much higher than any found in even the most polluted environments, hence, it is difficult to establish their relevance in real environments. Much effort^{22,23,26-28} has been devoted to establishing critical concentration levels with respect to human health, plant, and animal welfare which form the basis of ambient air quality standards. A critical concentration for materials damage, however, may be higher or lower than these. Thus the problem of establishing environmental standards for corrosion is neither simple nor straightforward.

A set of working environmental corrosion standards (WECS) might be developed by consideration of the following:

- (1) The range of values for the several ambient parameters, which will establish the limits of environmental exposure, if not the damage to be expected. Such data include maxima, minima, medians, and percentiles for the

measured parameter. Since the actual environments are known to vary in corrosion severity, it follows that critical concentrations for practical use must be within the range of ambient levels, perhaps near the median values or higher.

(2) Ambient air quality standards established by the Environmental Protection Agency are concerned primarily with human health, as noted above. Nevertheless, they do summarize (presumably) careful consideration of all available evidence by a host of scholars and bureaucrats. The values represent the highest levels believed safe for human health and comfort. Although materials may endure higher concentrations or may suffer damage from long term exposure to lower concentrations, these values are a bench mark for damage to something.

(3) Experimental studies which relate corrosion damage with pollutant concentrations and weather variables may provide information for establishing WECS. Several studies, using both real and simulated environments, have been published.

a. Ranges of Ambient Parameters

Within the United States, a number of weather and air quality parameters are measured by several agencies. Weather data are collected by the National Weather Service, the USAF Environmental Technical Applications Center (ETAC), and others, and summaries are available. Weather data most commonly are measured at aerodromes because weather is a critical factor in aircraft operational safety. Air quality data - measurements of a limited number of pollutants - are collected by federal, state, municipal, and private air monitoring stations, and the results are compiled by state agencies and, nationally, by the U.S. Environmental Protection Agency. The purpose of this program is to evaluate air quality primarily in the most densely populated regions of the country. Thus the results are representative of the population distribution rather than geography. They would not necessarily represent the environments to which aircraft

may be exposed and may not be directly relevant to aircraft corrosion. Moreover, many monitoring stations - especially private ones - were established to track specific pollution sources, e.g., certain manufacturing operations, thus their data may reflect highly localized conditions. Despite these limitations, the national data as compiled by EPA are the only data available to assess the range of exposure.

Graedel and Schwartz³¹ analyzed ambient atmospheric conditions and quality based on National Weather Service and EPA data. Weather data spanned 30 years from more than 200 measuring sites, and air quality data, mostly from CY 1973, represented as few as 82 to as many as 3760 measuring sites for the several pollutants. Graedel and Schwartz's objective was to determine the range of environmental parameters to which materials are exposed in the U.S. and thus establish "bench marks" for laboratory or field testing. Weather data analyzed by the authors were mean annual temperature and mean annual absolute humidity. Pollutant data were the annual median of hourly averaged continuous data for each measuring site.

We note three results of Graedel and Schwartz for each atmospheric parameter: the median of the 50th percentiles, the median of the 99th percentiles, and the maximum value reported (Table 1). The 50th percentile median represents "average of averages" values reported, whereas the 99th percentile median is the level exceeded at only 1% of all air quality sites. Graedel and Schwartz define the 99th percentile medians as Atmospheric Upper Limit Values, AULV, or "mean high water marks" which may be used for design purposes with the expectation that 99% of the applications will encounter levels below the AULV. The maximum value was the highest mean reported.

The distribution of means as shown by Graedel and Schwartz is more-or-less Poisson-like for all factors except ozone and SO₂. For ozone, a large number of sites reported values below 20 $\mu\text{g}/\text{m}^3$ and a substantial number were grouped

TABLE 1. RANGES OF ENVIRONMENTAL
AMBIENT PARAMETERS, CONTINENTAL U.S.³¹

	50th Percentile	99th Percentile	Maximum Reported
Total Suspended Particulates, $\mu\text{g}/\text{m}^3$	61	185	500
Sulfur Dioxide, $\mu\text{g}/\text{m}^3$	43	186	410
Photochemical Oxidants, as ozone, $\mu\text{g}/\text{m}^3$	36	90	110
Nitrogen Oxides as NO, $\mu\text{g}/\text{m}^3$	25	88	98
as NO_2 , $\mu\text{g}/\text{m}^3$	72	135	150
Temperature, $^{\circ}\text{C}$	11.8	23.3	25.7
Humidity, absolute, g/m^3	7.1	16.5	18.3

between 30 and 60 $\mu\text{g}/\text{m}^3$. Nevertheless, the median, 36 $\mu\text{g}/\text{m}^3$, probably is a valid demarcation between high and low concentration sites. Sulfur dioxide data from 447 monitoring sites, however, was highly skewed toward low values. Indeed, the maximum number of sites reported values at the median and mean value of 43 $\mu\text{g}/\text{m}^3$, and only 17% of monitoring stations reported means greater than 53 $\mu\text{g}/\text{m}^3$. Because of this, the significance of the median value for SO_2 is placed in a different light than for the other parameters. This is especially unfortunate because of the peculiar role of SO_2 in corrosion.

Critical levels of atmospheric factors probably are somewhere between the median values and the worst-case maxima or even the AULV's. Clearly the AULV's represent the most hostile environments for individual atmospheric factors in the CONUS, and this worst 10% level would be inappropriate to use in a practical environmental rating scale. To be sure, a design engineer might wish to plan for all but the most hostile environments, as Graedel and Schwartz suggest, but experience shows that this has not been the case in the past. It may be noted that the list of monitoring stations (their Table 2) which exceed the AULV's includes San Bernardino, CA only once (for nitrate ion particulates), whereas Travis, CA and Charleston, SC are not mentioned. All three of these have been shown to be severe environments, the first for paint degradation and the latter two for metallic corrosion.^{6,32*}

b. Proximity to the Sea and Other Sources of Salt

Several studies^{8,11,13,33,34} have shown that accelerated atmospheric corrosion near the seashore is correlated with airborne sea salt. Establishing a critical distance from the shore, however, is difficult because there is little quantitative information relating corrosion to atmospheric

*The corrosive severity of Travis and Charleston has been attributed primarily to their proximity to salt water, which in turn should indicate high concentration of sea salt. Graedel and Schwartz's list does include several sites near the ocean which exceed their particulate AULV.

salt concentrations, or even relating salt concentrations to distance from the shore. Sea salt is a primary concern because there are few other sources of airborne salt. Coastal salt flats, however, such as those south of Brownsville, TX, have been shown to contribute atmospheric chloride downwind.³⁵

The study of atmospheric aerosols³⁶ has centered mostly on the distribution of particle sizes, rather than the mass of aerosol per unit volume, i.e., micrograms per cubic meter of particulate, as measured at air monitoring stations. The upper limit of aerosol particle size is determined by sedimentation processes. Particles larger than 20 μm radius remain airborne for a short time and are found only in the vicinity of their source. Hence, an atmospheric aerosol by definition consists of particles between 0.1 μm and 20 μm radius. Aerosol particles commonly are classified as "Aitken" particles, $\leq 0.1 \mu\text{m}$ radius, "large" particles, 0.1 - 1.0 μm radius, and "giant" particles $> 1 \mu\text{m}$ radius in size. Larger particles settle from the air rapidly whereas smaller particles persist in the atmosphere for long times and travel large distances, and serve as condensation points for rainwater precipitation. Consequently, chloride in rainwater is correlated with small particles, whereas direct settling of large particles occurs near the shore. Thus measurements of sodium chloride in rainwater and of atmospheric sodium chloride particulates vs. distance from the sea may suggest values for the critical distance.

(1) Salt in Rainwater

The concentration of sodium chloride in rainwater is high near and over the ocean, but diminishes inland,³⁵ as would be expected. Concentrations over the sea are 8.0 $\mu\text{g/l}$, and over land in the central U.S. are 0.1 $\mu\text{g/l}$.³⁵ The concentration decreases logarithmically with distance from the sea up to 500 km in the U.S., and is constant at greater distances. In Europe, the concentration decreases logarithmically up to 300 km, but increases slightly beyond that

distance apparently because of the influence of the Baltic Sea.

It is unlikely, however, that chloride in rainwater is relevant to aircraft corrosion. The exterior surfaces of aircraft exposed to rain are protected by paint, whereas most interior surfaces are not exposed to rain. Moreover, the decrease of chloride in rainwater occurs over large distances, whereas the decrease in corrosion damage is quite abrupt.^{9,11} Corrosion rates 10 km from the shore are approximately the same as corrosion rates far inland. Consequently, the critical proximity should not be determined from rainwater chloride concentrations.

(2) Particulate Sodium Chloride

Duce et al.³⁷ have measured the concentration of particulate sodium chloride and other ions in the air at various elevations and distances from the sea-shore on Hawaii Island, HI. All measuring sites were downwind of offshore trade winds. Their results show chloride concentrations at all sites varying widely with ambient weather conditions. Their primary interest was the variation of chloride and other ionic components with elevation above sea level, rather than distance from shore. Nevertheless, the results show a consistent, monotonic decrease in chloride concentration with increasing distance from the shore.

The results of Duce et al. are reproduced in part in Figure 1. Also included are two additional reported values for giant particle chloride concentrations, one over the ocean and one near the shore in Massachusetts. The over-ocean values should be compared with Junge's summary³⁶ (p. 162) of salt concentration vs wind velocity measurements, which illustrate the wide variability of such data.

Hudson and Stanner³⁴ found in Nigeria that sodium chloride concentration in the air varies within wide limits and depends strongly on the distance from the shore. The sodium chloride content in the air is about .22 milligrams per cubic meter. The amount of salt that settles out on

Figure 1. Atmospheric Salt Particle Concentration
vs. Distance From Seashore

the surface under these conditions reaches values from 10 to 1000 milligrams per square meter per year. Corrosion tests were conducted at various distances from the shore with simultaneous determination of airborne salt concentration. The relationship between salt deposits and distance from the sea as well as corrosion rates vs. distance from the sea are shown in Figure 2.

Available evidence shows that giant particle chloride concentrations in the atmosphere are reduced by about 1 order of magnitude at a distance of 3/4 km from breaking surf. At distances of about 15 km the concentration reaches a value which remains nearly constant further inland.

Junge³⁶ (p. 176) has drawn together the available data on giant salt particulates vs. distance from sea. Values of 5 $\mu\text{g}/\text{m}^3$ correspond to near-shore and approach 0.5 $\mu\text{g}/\text{m}^3$ at distant points inland.

The available data on atmospheric corrosion near marine environments suggests that the decrease in corrosion rate parallels this decrease in giant salt particulates, and "marine atmospheres are aggressive in direct proportion to the concentration of (airborne) NaCl particles" (Rozenfeld⁹).

Most studies suggest a critical distance of less than 1.5 km for sites where strong off-shore winds are not prevalent. Allowing for the variability of weather, however, it seems prudent to extend this to 4.5 km.

c. U. S. National Ambient Air Quality Standards (NAAQS)

The Federal Clean Air Act (Public Law 91-640) directed the Environmental Protection Agency (EPA)

"to publish proposed national primary and secondary ambient air quality standards based upon air quality criteria [also issued by EPA]. Primary ambient air quality standards define levels of air quality which [the EPA judges] necessary, based on the air quality criteria and allowing an adequate margin of safety, to protect the public health. Secondary ambient air quality standards define levels of air quality which [EPA] judges necessary, based on the air

Figure 2. Surface Salt Deposits and Corrosion of Iron vs. Distance From Sea, Nigeria
(after Rozenfeld 1972, p. 122)

quality criteria to protect the public welfare from any known or anticipated adverse effects of an air pollutant."⁴⁰

Air quality criteria published by EPA summarize the scientific knowledge relating pollutant concentrations and their adverse effects. They were issued to assist the development of air quality standards. Air quality criteria merely describe effects that have been observed when the ambient air level of a pollutant has reached or exceeded a specific value for a specific time interval. In developing criteria many factors were considered, including the chemical and physical characteristics of the pollutants, the techniques available for measuring them, exposure time, relative humidity, and other conditions of the environment. The criteria attempted to consider the contribution of all variables to the effect of air pollution on human health, agriculture, materials, visibility, and climate. Air Quality Standards on the other hand legislate pollutant concentrations that the government determines should not be exceeded in a specified geographic area. Primary standards were intended to protect public health, whereas secondary standards were intended to protect public welfare. Public welfare includes effects of pollutants on soil, water, vegetation, materials, animals, weather, visibility, and human comfort. (Materials significantly are not important.) In the case of some pollutants, the primary and secondary standards are the same, whereas for others, notably sulfur oxides and particulates, the secondary standards are lower. These standards are listed in Table 2.

It is difficult to determine how EPA based the NAAQS on the respective Air Quality Criteria.^{22,23,26-28} Comments submitted to EPA, subsequent to the first publication of standards, "reflected divergences of opinion among interested and informed persons as to the proper interpretation of available data on the public health and welfare effects of the six pollutants . . . "⁴¹, suggesting that others

TABLE 2. NATIONAL AMBIENT AIR
QUALITY STANDARDS⁴¹

	<u>Primary</u>	<u>Secondary^a</u>
Sulfur dioxide	80	60 $\mu\text{g}/\text{m}^3$, annual arithmetic mean
	365	260 ^b $\mu\text{g}/\text{m}^3$, 24-hour maximum
		1300 $\mu\text{g}/\text{m}^3$, 3-hour maximum
Particulate matter	75	60 $\mu\text{g}/\text{m}^3$, annual geometric mean
	260	150 ^c $\mu\text{g}/\text{m}^3$, 24-hour maximum
Carbon monoxide	10	10 mg/m^3 , 8-hour maximum
	40	40 mg/m^3 , 1-hour maximum
Photochemical oxidants	160	160 $\mu\text{g}/\text{m}^3$, 1-hour maximum
Hydrocarbons	160	160 $\mu\text{g}/\text{m}^3$, 6 to 9 AM maximum
Nitrogendioxide	100	100 $\mu\text{g}/\text{m}^3$, annual arithmetic mean

^aMaximum values are not to be exceeded more than once per year.

^b"... as a guide to be used in assessing implementation plans to achieve the annual standard."

^c"... as a guide to be used in assessing implementation plans to achieve the 24-hour standard."

could not follow the logic used in developing standards. "In reviewing the proposed standards, the Environmental Protection Agency limited its consideration to comments concerning the validity of the scientific basis of the standards.

"Current scientific knowledge of the health and welfare hazards of these air pollutants is imperfect."⁴¹ Indeed! The Clean Air Act, however, required the promulgation of standards by a specific date. Accordingly EPA had no choice but to base these standards on the available data. That data as quoted in the Air Quality Criteria are sketchy and contradictory. Using the available scientific evidence, any standard value could be established within a wide range.

In responding to comments on the initial standards, EPA did state the basis for setting several of the standards.

The standard for carbon monoxide

"was based on evidence that low levels of carboxyhemoglobin in human blood may be associated with impairment of ability to discriminate time intervals . . . In the comments, serious questions were raised about the soundness of this evidence [and] extensive consideration was given to this matter. The conclusions reached were that the evidence regarding impaired time-interval discrimination have not been refuted and that a less restrictive national standard for carbon monoxide would therefore not provide the margin of safety which may be needed to protect the health of persons especially sensitive to the effects of elevated carboxyhemoglobin levels. The only change made in the national standards for carbon monoxide was a modification of the 1-hour value. The revised standard affords protection from the same low levels of blood carboxyhemoglobin as a result of short-term exposure. The national standards for carbon monoxide, as set forth below, are intended to protect against the occurrence of carboxyhemoglobin levels above 2%.

"National standards for photochemical oxidants have also been revised. The revised national primary standard of 160 micrograms per cubic meter is based on evidence of increased frequency of asthma attacks in some asthmatic subjects on days when estimated hourly average concentration of photochemical oxidant reached 200 micrograms

per cubic meter. A number of comments raised serious questions about the validity of data used to suggest impairment of athletic performance at lower oxidant concentrations. The revised primary standard includes a margin of safety which is substantially below the most likely threshold level suggested by this data.

"National standards for hydrocarbons have been revised to make these standards consistent with the above modifications of the national standard for photochemical oxidants. Hydrocarbons are a precursor of photochemical oxidants. The sole purpose of providing a hydrocarbon standard is to control photochemical oxidants. Accordingly the above described revision of the national standards for photochemical oxidants necessitated a corresponding revision of the hydrocarbon standards.

"National standards for nitrogen dioxide have been revised to eliminate the proposed 24-hour average value. No adverse effects on public welfare have been associated with short term exposure to nitrogen dioxide at levels which have been observed to occur in the ambient air. Attainment of the annual average will, in the judgment of the EPA, provide an adequate safety margin for the protection of public health and will protect against known and anticipated adverse effects on public welfare."

We conclude that the NAAQS are of little relevance to corrosion in aircraft.

d. Experimental Studies Relating Corrosion to Environment

Several studies have attempted to develop quantitative relations between corrosion and environmental parameters. These will be discussed as possible indications of critical values.

Upham⁴² conducted atmospheric exposure studies at established air monitoring sites in St. Louis and Chicago. His results showed approximately linear relationships between corrosion rates and SO₂, TSP, and surface sulfation rates for low-carbon, low-copper mild steel panels.

Mansfield^{43,44} has extended this work to a wider variety of

materials at St. Louis sites, but analysis of the results is not complete.

Guttman²¹ conducted a long term exposure program using zinc at a single site and compared the results with environmental conditions. He showed that the most important factors are time of wetness and the atmospheric concentration of SO₂, and, further, that the time of wetness is a consequence of ambient relative humidity. He found temperature not to be important. Using a curve-fitting technique, Guttman obtained an empirical equation

$$y = 0.00546 A^{0.815} (B + 0.0289),$$

where

y = corrosion loss, mg/3x5-in panel,

A = time of wetness, hr., and

B = SO₂ concentration during the time panels were wet, ppm.

This equation suggests a linear dependence of corrosion damage on SO₂ concentration, which would imply that there is no critical concentration. Guttman did not relate time of wetness to weather parameters, thus it doesn't help this study.

Haynie and Upham⁴⁵, in an extension of Guttman's work with zinc, assumed a linear dependence of corrosion on mean relative humidity and mean SO₂ concentration. Zinc specimens were exposed at a number of U.S. Public Health Service Continuous Air Monitoring Program (CAMP) sites. Corrosion damage to the samples was compared with CAMP pollutant data and weather data from the nearest weather station. Statistical analysis yielded

$$y = 0.00104 (\text{RH} - 49.2) \text{SO}_2 - 0.00664 (\text{RH} - 76.5)$$

where

y = zinc corrosion rate, $\mu\text{m}/\text{yr.}$,

RH = mean relative humidity, %, and

SO₂ = mean SO₂ concentration, $\mu\text{g}/\text{m}^3$.

This equation suggests that zinc will not be wet below RH of 76.5% in the absence of SO_2 and, furthermore, increasing humidity above that point inhibits corrosion. Haynie and Upham view this as consistent with the formation of a protective carbonate film. In the presence of SO_2 , however, their equation indicates a linear dependence on the product of RH with SO_2 and a linear dependence on SO_2 . Again, critical values of each parameter are not indicated.

Equations such as these can be used to predict the useful life of galvanized iron products which are scrapped when the zinc coating is perforated. Haynie and Upham have made such predictions for various environments and their results compare well with experience.

Haynie and Upham⁴⁶ conducted a more extensive study of the corrosion of enameling steel and atmospheric factors. Specimens were exposed at 57 sites of the National Air Sampling Network (NASN) coordinated by the EPA. Weight loss data were obtained at one year and two years and were correlated with mean weather data (RH and temperature) and pollutant concentrations (SO_2 , TSP, sulfate ion $\text{SO}_4^{=}$, and nitrate ion NO_3^-). Correlation analysis identified the variable set which was used in multiple regression analysis. Haynie and Upham found that corrosion of steel is a function primarily of $\text{SO}_4^=$, NO_3^- , RH, and time. Temperature, TSP, and SO_2 appeared to be insignificant. Because of an observed covariance between $\text{SO}_4^=$, and SO_2 , together with many other studies which had shown a relation between corrosion and SO_2 , Haynie and Upham suggested that $\text{SO}_4^=$ may be merely a "proxy" variable for SO_2 . When $\text{SO}_4^=$ data were excluded from their analyses, the empirical fit was nearly as good with SO_2 as with $\text{SO}_4^=$.

The relation between corrosion for this steel and the environmental factors considered was best expressed as

$$\text{corr.} = 183.5 \sqrt{t} \exp(0.0642 \text{ Sul} - 163.2/\text{RH}),$$

where

t = time, yr.,

S_{ul} = mean concentration $SO_4^{=}$ or SO_2 , $\mu g/m^3$, and

RH = relative humidity, per cent.

By transposing the time factor to the left hand side, Haynie and Upham show the dependence of "pseudocorrosion rate", $corr./\sqrt{t}$, on SO_2 concentration and relative humidity.

Environments where RH and SO_2 are high should be more corrosive and maintenance to equipment will be required more frequently. The frequency of a given maintenance operation would be inversely proportional to the time required for corrosion to reach a specified depth. Thus a crude estimate of the ratio of maintenance frequency in a SO_2 polluted environment to that in a cleaner environment is given by Haynie and Upham as

$$MFR = \exp(.006 SO_2),$$

or

$$MFR = \exp[.006 (SO_{2a} - SO_{2b})],$$

where MFR = maintenance frequency ratio, and a, b refer to two different environments.

Haynie, Spence, and Upham⁴⁷ have studied the corrosion of weathering steel and galvanized steel in a laboratory chamber with various combinations of humidity, radiation, and pollutants. Experiments were conducted in atmospheres containing SO_2 , NO_2 , O_3 , and water vapor, each at two different concentrations as listed in Table 3, and the results were compared with corrosion rates in clean humid air. This two-level factorial arrangement was selected to identify environmental factors statistically. It may be noted from Table 3 that the three "low" pollutant concentrations are essentially equal to the primary NAAQS values, and considerably higher than the 50th percentiles of Graedel and Schwartz³¹. Absolute humidities are very high compared with the ambient 50th percentiles. The "high" values of the several factors are many times greater than the extreme values of the U.S.

TABLE 3. ENVIRONMENTAL FACTORS AND
LEVELS USED BY HAYNIE, SPENCE,
AND UPHAM⁴⁷

<u>Environmental Factors</u>	<u>Level</u>	
	Low	High
Sulfur dioxide, $\mu\text{g}/\text{m}^3$	79	1310
Nitrogen dioxide, $\mu\text{g}/\text{m}^3$	94	940
Ozone, $\mu\text{g}/\text{m}^3$	157	980
Absolute humidity, g/m^3	19.8	35.7
RH (at 35°C)	50	90

Analyzing the results, Haynie *et. al.* conclude that only SO_2 , humidity, and their interaction are significant factors in the corrosion of weathering steel. For galvanized steel, only the direct effects of the two were of importance. Thus, they view NO_2 and O_3 as having little or no effect on the corrosion of these alloys.

Their corrosion rate results, reproduced in part in Table 4 however, suggest otherwise. (We must admit we do not have access to their complete analysis.) Corrosion rates in the atmospheres containing the three pollutants and moisture are significantly increased over those in humid air alone. Raising each pollutant to the "high" value one at a time again results in strikingly increased corrosion rates, the largest increase being for SO_2 . From these data, it appears that NO_2 and O_3 do accelerate corrosion rates, although not as much as SO_2 .

e. Working Environmental Corrosion Standards (WECS)

After considering the existing literature on materials degradation and environmental factors, we conclude that there are no firm guidelines for setting WECS, with the exception of humidity. Metallic corrosion is definitely accelerated in the presence of SO_2 and high humidity, and probably accelerated by NO_2 , oxidants, and many particulates. Organic protective finishes are deteriorated by solar radiation, oxidants, some particulates, and possibly by NO_x and SO_2 . Published research does not tell us, however, at what level these factors become significantly damaging.

Accordingly, we adopt the view that critical values lie within the range of ambient values, because accelerated corrosion has been observed in existing environments. We adopt two sets of WECS based on the analysis of Graedel and Schwartz⁷. The first set are their 50th percentile values and the second set are the 50th percentile values plus 20 percent of the difference between the 99th and 50th percentiles. These are listed in Table 5. The values for proximity to salt or sea are based on the analysis presented

TABLE 4. CORROSION RATES ($\mu\text{m}/\text{YEAR}$) OF
WEATHERING STEEL IN DESIGNATED
CONTROLLED ATMOSPHERES (AFTER
HAYNIE, SPENCE, AND UPHAM⁴⁷)

<u>Low RH Only</u>	<u>Low RH, O₃, NO₂, and SO₂</u>	<u>High, Others Low</u>
28	84	RH 147
		O ₃ 123
		NO ₂ 162
		SO ₂ 371

<u>High RH Only</u>	<u>High RH, low O₃, NO₂, and SO₂</u>	<u>High RH, High , Others Low</u>
86	147	O ₃ 230
		NO ₂ 178
		SO ₂ 656

TABLE 5. WORKING ENVIRONMENTAL
CORROSION STANDARDS (WECS)

	Annual Mean		<u>Secondary</u>
	I	II	
Suspended Particulates, $\mu\text{g}/\text{m}^3$	61	86	
Sulfur dioxide, $\mu\text{g}/\text{m}^3$	43	72	
Ozone, $\mu\text{g}/\text{m}^3$	36	47	79
Nitrogen dioxide, $\mu\text{g}/\text{m}^3$	64	78	122
Absolute humidity,* g/ m^3	7.1	9.0	
Proximity to sea or salt source, km.	4.5	2	
Solar radiation, July (Langleys)	600	650	
Rainfall, cm. total	125	150	

*Absolute humidity is the product of relative humidity and the mass of water in one cubic meter of water-saturated air⁴⁸ at a given temperature.

earlier of published data. The solar radiation values are based on the mean (July) values for the continental U.S.

These WECS have been used in the Corrosion Severity Index Algorithms (described in a subsequent section) and the results compared with experimental environmental ratings. The agreement is sufficiently good that the values of Table 5 together with the Algorithms may be used to compute accurate relative environmental severity for corrosion in aircraft.

5. Corrosion Severity Algorithms

a. The 1971 Corrosion Factor Equation

Evolution of the 1971 CF equation spanned several years. Many factors were considered (Table 6) which might be used to derive a three-step rating scale (mild, moderate, severe).

"Parameter limits were established by relating 10-20 years of corrosion data for nonferrous metals from ASTM to the appropriate parameter. The air pollutant data was obtained from the Department of HEW and is representative of five year averages. We also used six months of air frame corrosion data...The most weight in the rating is given to relative humidity..."⁴⁹

Other parameters considered were general climate rating, prevailing wind, water content of the air, number of days with dense fog, the amount of precipitation, the number of thunderstorms, and the number of cloudy days. Foggy, wet days were considered harmful, but heavy thunderstorms in arid areas as beneficial.

The 1971 CF equation, however, did not include pollutant data, probably because the information available at that time was inadequate or unreliable.

The 1971 CF equation is

$$CF = [2(RH) + 2(PS) + DP + NC + HR + WV] / 6,$$

where the several factors are related to relative humidity, proximity to the sea, dew point, no ceiling (sunshine), heavy rain, and wind velocity, respectively. Each factor is an integer (1, 2, or 3) representing a range of values for the relevant parameters; they do not represent the parameters directly. These value ranges are detailed in Table 7.

Interim numerical classifications were derived from the CF equation from nine years of climate data (1961-1970) compiled by USAF Environmental Technical Application Center (ETAC).⁵⁰ Numerical indices were published for 39 SAC airbases in 1972, and for 95 USAF and 27 ANG airbases in 1973. A complete list was distributed in 1974 under the title "PACER LIME Interim Corrosion Severity Classification." These values are reproduced in Appendix A.

TABLE 6. ENVIRONMENTAL FACTORS CONSIDERED IN DEVELOPING
A CORROSION SEVERITY INDEX ALGORITHM

Moisture

Relative humidity
Water content of air
Thunderstorms
Amount of precipitation
Fog

Airborne contaminants

Proximity to sea (salt)
 $\text{SO}_4^=$, SO_2
Suspended particulates (hygroscopic)

Climate (other than moisture)

Cloud cover
Wind direction, speed

Local geographical factors

Soil type
Topography (plains, mountains, swamp)
Nearest city, its size, direction

TABLE 7. THE CORROSION FACTOR EQUATION AND PARAMETER RANGES

$$CF = \frac{(2(RH) + 2(PS) + DP + NC + HF + WV)}{6}$$

<u>Average Rel. Humidity RH</u>	<u>Distance PS</u>	<u>Days Per Month DP</u>	<u>Average Wind Velocity WV</u>
RH is the average relative humidity parameter under all weather conditions.	PS is the proximity to the sea parameter.	DP is the dew point parameter, determined by the number of days per month when the temperature is within 4°F of the dew point for three or more consecutive hours.	WV is the average wind velocity parameter.
1 100-70.01%	5 miles or less	more than 10	
2 70.00-50.00	5 to 80 miles	more than 5 but less than 10	
3 49.99-0	greater than 80 miles	fewer than 5	
<u>Days Per Month NC</u>	<u>Days Per Month HR</u>		
NC is the no ceiling (sunshine) value determined by the number of days per month with six or more hours of no ceiling.	HR is the moderate to heavy precipitation parameter. Moderate precipitation is 0.11 to 0.3 inches of rain in the preceding hour or 0.01 to 0.03 inches in a 6 minute interval.		
1 5 or less	0-1.50	1-1.50 mph	
2 5.10-12	1.51-6	1.51-6.00	
3 more than 12	6.01 or more	6.01 or more	

TABLE 8
RANGE OF COMPUTED PACER LIME CORROSION SEVERITY INDEX

<u>Scale</u>	<u>CSI</u>	<u>Classification</u>	<u>Number in Atmospheric Exposure Test</u>
		3.75	
0	3.33		1
1	3.17	mild	
2	3.00		1
		2.86	
		2.85	
3	2.83		3
4	2.67		1
5	2.50	moderate	3
6	2.33		
7	2.17		
		2.01	
8	2.00	2.00	
9	1.83	severe	2
10	1.67		
		1.00	

The CF values were calculated to two decimal places. Since the independent parameters in the equation are integers, however, the CF equation is in fact an integral scale of seventeen steps. The computed list for actual airbase environments includes only eleven steps. Thus the CSI scale could be represented by a zero to ten scale (CF Table 8), but was compressed to a three-step scale:

CF = 1.00 to 2.00*	Severe
2.01 to 2.85	Moderate
2.86 to 3.75*	Mild.

The CF equation ranks the following factors as harmful:

- (a) Relative humidity above 70%;
- (b) location within five miles of the sea, without reference to wind direction;
- (c) temperature within 4°F of dew point for three or more consecutive hours and more than ten days per month;
- (d) five days or fewer per month with six or more hours of no ceiling (sunshine), without reference to temperature;
- (e) five days or fewer per month with moderate or heavy rain;
- (f) wind velocity less than 1.5 mph.

*The minimum and maximum values the CF equation can yield are 1.33 and 4.00, which correspond to the following climates:

1.33--High humidity, the temperature is frequently close to the dew point, location near the sea, winds nearly calm, generally cloudy and overcast, but heavy rainfalls are infrequent, and
4.00--Arid, windy, skies clear, more than 80 miles from the sea, but heavy rainfalls are frequent.

Thus heavy rains are considered beneficial because of washing effects, and high winds and sunny days are beneficial because of their drying effects.

b. Comments on the CF Equation

The manner in which humidity, dew point, and rainfall data are included in the CSI is contradictory, since, as discussed earlier, all three contribute moisture and promote corrosion in aircraft. All moisture sources should be considered harmful to aircraft, particularly rainfall since it frequently finds its way into areas where it should not be. Dew point and relative humidity are related; temperatures at or near the dew point result in condensation on aircraft surfaces, and moisture will condense from humid air on cold aircraft surfaces.

Proximity to the sea considers distances up to 80 miles as harmful, but significant airborne salt concentrations are found only quite near the shore in normal weather, and the concentration decreases rapidly with distance from the sea up to about 15 km and is constant beyond that point. Heavy storms can carry salt considerably farther inland, but these are relatively infrequent, so that aircraft washing and corrosion treatment schedules could be changed temporarily following such an event. Thus, emphasis on PS can be reduced, considering it harmful only if aircraft are normally within 1 to 4 km of sea water. At greater distances it may be neglected.

It is difficult to assess the value of sunshine as in the use of a no ceiling, NC, factor. It is true that direct sunshine accelerates moisture evaporation, but its efficacy also depends strongly on temperature. Further, intense solar radiation is highly damaging to protective finishes, so much that solar damage vs the benefits of solar drying may be an unequal tradeoff.

The value of wind as a drying agent also must be weighed against the harm it may cause by transporting pollutants to aircraft. In the CF equation, wind is beneficial because of its moisture removal effect. Only the aircraft exterior is accessible to such wind effects, whose surfaces are protected by paint. Moisture inside the aircraft, where it is most

damaging, would be affected little by wind.

Wind could have a damaging abrasive effect through the action of airborne sand. Wind velocities are negligible, however, compared with takeoff and landing speeds, the damaging effects of which are visible on the leading surfaces and obviously are a more serious corrosion threat than surface winds.

In summary, the CF equation centers almost entirely on the atmospheric conditions which produce or remove moisture. The only other corrosion-related factor is sea salt, included indirectly via proximity to the sea. In addition to the contradictory use of rainfall, moisture factors are over-emphasized in some cases and, in others, included in a form that is not related clearly to corrosion. As a moisture-plus-sea-salt parameter, the CF equation was a reasonable first step toward the development of a corrosion severity rating system. The next steps would have included:

- comparing the CF results with maintenance experience-- both field and depot--via AFM 66-1 data;
- comparing the CF results with atmospheric test data which, as noted, have not been available in usable form until now;
- modifying the equation to include the now-available pollutant data.

c. Environmental Severity Algorithms for Aircraft Corrosion

We propose an alternative set of algorithms, based on locally-measured environmental factors and which rely in part on maintenance experience as contained in AFM 66-1 records. A particular feature of this approach is that the authority to set maintenance intervals is left in the hands of local management. These decisions would be based on locally measured meteorologic and pollutant conditions and would be subject to changes dictated by local experience. Effective use of the decision-making tools could be monitored easily by MAJCOM and AFLC analysis of MDCS data.

(1) Corrosion Maintenance in Aircraft

Excluding housekeeping, corrosion maintenance involves

- (1) washing of exterior surfaces,
- (2) repair or replacement of protective coatings and sealants, and
- (3) treatment and repair of corroded components.

Environmental elements which corrode metal are not necessarily the same as those which deteriorate paint and sealants. Humidity, SO_2 , and certain other contaminants corrode bare metal,²¹ whereas paint films deteriorate under the action of sunlight, photochemical oxidants, and a few other pollutants.^{22, 26-28} Soil deposits also are harmful to paint films, are related to suspended particulates, and their damaging effects are accelerated by contaminants such as SO_2 .⁵¹

Consequently, no single algorithm can classify an environment with respect to all three corrosion problems. Instead three decision algorithms are required to determine intervals for:

- aircraft washing
- complete repainting, and
- corrosion inspection/maintenance.

Each algorithm would assess the level of local contaminants and, via a decision-map, lead to recommended intervals for each maintenance cycle.

(2) Aircraft Washing

Aircraft are washed both to maintain appearance and to remove soil deposits which may damage the paint. There are several sources of soil: engine exhausts, fuels, and lubricants; airborne particulates; and the workers' shoesoles during maintenance and servicing operations. Soil deposits will attract and retain moisture from humid air and gaseous pollutants, particularly SO_2 . Thus, the damaging effects of soil are compounded by high humidity and pollutant concentrations. It is not likely that surface soils accelerate paint degradation by sunlight or gaseous oxidants, but there is no evidence to support this view. Thus, aircraft washing intervals selected to protect

the paint and exposed metal should be related to particulates (and proximity to the sea), SO_2 , (possibly) NO_2 , and humidity. It is likely that cosmetic purposes will be served by the same intervals. USAF recommended washing intervals, for several years, have been 45, 60, and 90 days, depending on local conditions. At many airbases, where indoor washing facilities are not available and winters are severe, even the 90 day wash interval is impractical. Other airbases plan 30-day intervals. Practical washing intervals, which are consistent both with environmental risk factors and rigorous climates, are 30, 60, and 120 days. We designate these as A, B, and C, respectively.

The Washing Algorithm (Figure 3) first determines if the distance to the sea is less than the WECS distance. If it is, washing interval A is recommended; if not, particulate concentrations are compared with WECS. If the ambient level exceeds the standard, then the ambient SO_2 concentration is checked. If SO_2 is higher than WECS, interval A is recommended; if lower, interval B.

If particulates are below the standard, SO_2 concentration again is queried: If high, interval B is recommended; if low, moisture factors are considered. High moisture values--either RH or rainfall greater than WECS--lead to interval B recommendation; low values yield interval C.

(3) Painting

Aircraft are painted primarily to protect metal surfaces, although operational and cosmetic factors are significant. Protective finish maintenance is effected at three levels: (a) minor touchup; (b) major touchup; and (c) complete strip-repaint. Minor and major touchup are effected at field or intermediate level maintenance, whereas complete repaint is authorized only at depot-level for large aircraft.⁵² Minor touchup is accomplished to repair ablation and similar damage. Major touchup is applied to fasteners, runway-damaged lower surfaces, and solar-damaged upper surfaces. The need for touchup painting must be determined at field-level inspections: an environment-based algorithm should not be used. The following

WASHING INTERVALS

- A 30 days
- B 60 days
- C 120 days

Figure 3. Aircraft Washing Interval Algorithm. Working Environmental Corrosion Standards I (see Table 5) Are Used. Units For TSP, And SO₂ Are ug/m³, For AH g/m³, And For Rainfall, Annual Total cm.

paint-interval algorithm refers to complete strip/repaint maintenance.

As before, three intervals, A, B, and C, are recommended. Paint systems currently in use--epoxy or polysulfide primers and polyurethane finish coat--should provide a service life of 10+ years in the mildest environments.⁵³ Consequently, the A, B, and C intervals may be equated to 36, 72, and 120 months, respectively. These intervals may not correspond to the PDM intervals for a particular aircraft system. For example, C-141A aircraft currently are on a 42 month cycle, and B-52's are on 48 months. Consequently, repaint schedules should be coordinated with the PDM cycle established for each aircraft fleet/force by the appropriate Maintenance Requirements Review Board. If 120 months is the maximum expected service life for the paint finish, and the PDM interval is y months, then y should be compared with the intervals recommended by the Repaint Algorithm, i.e., 36, 72, or 120 months. The interval closest to the PDM interval should be selected.

Environmental factors which deteriorate paint are, in order of severity, solar radiation, oxidants, and sulfur dioxide absorbed on soil deposits. Soil deposits themselves might be included, but there is insufficient information to relate repaint schedules to the nature of the soils. Thus, only sun-light, oxidants, and SO_2 are considered. The repaint algorithm (Figure 4) compares the solar radiation level, ozone, and sulfur dioxide concentrations with the WECs values. High values for all three result in the A interval recommendation, whereas low values for all three lead to the C interval. Various combinations of high values lead to the B interval.

(4) Corrosion Damage

The Corrosion Damage algorithm (CDA) is of a different nature than those for washing and repainting, which recommend maintenance intervals appropriate to the environment. Although CDA might be used in this same way, such use is unlikely. Corrosion repairs routinely are effected simultaneously with phased and isochronal maintenance efforts, and it would be

Repaint Intervals

- A 36 months
- B 72 months
- C 120 months

Figure 4. Aircraft Complete Repaint Interval Algorithm.
 Working Environmental Corrosion Standard I (see Table 5) Are Used. Units For radiation, $h\nu$, Are Langley (July), For Ozone And SO_2 , $\mu g/m^3$.

both undesirable and difficult to impact their scheduling.

Accordingly, the CDA is intended as a guide for anticipating the extent of corrosion damage and for planning the personnel complement and time required to effect their repairs. The guidelines at this point are of a general nature. Eventually they should be incorporated into the Reliability Centered Maintenance phase schedules for specific aircraft systems.

The Algorithm (Figure 5) considers first distance to salt water (or slat flats), leading either to the very severe (AA) rating or a consideration of moisture factors. After moisture factors, pollutant concentrations are compared with WECS either for SO₂, TSP, or O₃. High values for any one of the three pollutants together with a high moisture factor leads to the A rating, but if all are low, together with high moisture factor, the severe (B) rating results. Low moisture factors with a high pollutant value result in the moderate (B) rating, whereas if all are low, rating (C) results.

(5) Use of Environmental Algorithms

The above algorithms are readily compared with the appropriate local environmental parameters to yield corrosion maintenance ratings; the use of a computer obviously is not necessary. The algorithms could be used in modified form within the base-level computer system and, with appropriate automatic data input, can provide monthly revisions for maintenance needs recommendations.

To complete this study, it was necessary to develop ratings for a substantial number of airbases. Since the task would be more easily performed by computer, the algorithms have been programmed for such use. The relevant programs together with the necessary documentation, are included in Appendix 2.

(6) Environmental Applications

Environmental Severity Algorithms have been used to establish preliminary ratings for most airbases of interest to USAF. These ratings are listed in Appendix 3. These ratings are based essentially on comparisons of the Working Environmental

Expected Corrosion Damage

- AA very severe
- A severe
- B moderate
- C mild

Figure 5. Aircraft Corrosion Damage Algorithm. Working Environmental Standard I (see Table 5) Are Used. Units For RH And 7.1 g/m³, For Rainfall, Total Annual cm, For SO₂, O₃, And TSP, ug/m³.

Corrosion Standards with local geographical and environmental data. Slight modifications to the algorithms were necessary in order to use the available data format, but the results are not significantly affected. The ratings published herein are based on the most complete data available to us. No responsibility is assumed for the accuracy of the data, particularly with respect to its relevance to a specific airbase, since the monitoring site may have been located at some distance from the airbase in question. If more accurate and reliable data should become available, they may be used to compute more appropriate ratings.

These algorithms rate environments for maintenance purposes under the assumption that aircraft are parked outdoors and are exposed to all risk factors. Wherever these conditions are different, appropriate consideration should be given. For example, hangared aircraft are exposed to minimal solar damage and rainfall, consequently the ambient solar radiation level and rainfall are not relevant.

(7) Environmental Data

The following environmental data were collected for USAF, AFRES, and ANG airbases, from the sources indicated.

- (1) Mean annual relative humidity, mean annual temperature, mean annual rainfall. Source: USAF Environmental Technical Applications Center, "Worldwide Airfield Climatic Data," Vols. I-VIII, 1970.⁵⁴
- (2) Mean solar radiation for July.
Source: Baldwin, J. L., "Climate of the United States," U.S. Department of Commerce, Washington, D.C., 1973.⁵⁵
- (3) Ambient concentrations of SO_2 , particulates, NO_2 , and O_3 .
Source: U.S. Environmental Protection Agency, "Air Quality Data--1976 Annual Statistics," March 1978, EPA-450/2-78-009.⁵⁶

(4) Distance to salt water or other salt source and prevalent wind direction with respect to nearest urban/industrial area.

Source: U.S. Department of Commerce, "Sectional Aeronautical Charts," Washington, D.C., 1979.⁵⁷

Additional discussion of some of these points is required. Data were collected only for continental US airbases because pollutant data were available only for them. The algorithms could be used in abbreviated form with only weather and geographical data. In some cases this would lead to useful results. For example, Anderson AFB, Guam would receive A, (probably) B, and AA ratings for washing, repaint, and corrosion severity, respectively, based only on these parameters. Ratings for less unique environments, however, would be ambiguous, and we chose not to compute them.

Weather data reported by ETAC are variable-year averages of hourly measurements and were obtained by weather stations located at the specific airbase in question. These stations did not report solar radiation measurements, hence the source listed in item (3) was used. These latter data are mean values for wide geographical regions and were computed from US Weather Bureau measurements. Values for July are used because these are near the maximum for the northern hemisphere. July values would be inappropriate elsewhere. Mean annual RH and temperature were used to compute mean annual absolute humidity.

Sulfur dioxide and particulate concentrations were available in the cited EPA documents as mean annual values and thus are directly compared with WECS. In the case of the NO₂ and O₃, however, available data frequently provided only first and second hourly maxima, which cannot be compared with the WECS annual mean values. Accordingly, we have substituted for these pollutants a secondary WECS equal to the 50-th percentile of Graedel and Schwartz²⁹ plus 0.8 of the difference between their 99-th and 50-th percentiles. The modified algorithm compares this secondary WECS with the reported hourly maximum.

Unlike the ETAC data, EPA's pollutant data were not measured at the airbase in question. We have selected data from the nearest EPA monitoring station and upwind of the airbase wherever possible. In the data listings (Appendix 3), latitude and longitude of both the relevant monitoring station and the airbase are included, together with the wind direction from the airbase.

d. Comparison of Algorithm Results with Corrosion Maintenance Experience

In-service testing usually involves a single component or test coupon and is conducted to evaluate: (a) the corrodibility of candidate alloys, (b) environmental corrosiveness, or (c) the effectiveness of maintenance. It is possible to derive similar information from the operational corrosion experience of complete systems, provided sufficiently detailed records of corrosion maintenance and repair are collected. Over the years, the U.S. Air Force has developed an extensive Maintenance Data Collection System (MDCS)⁵⁸ which routinely documents virtually every facet of maintenance on its aerospace systems. The resultant data files are a rich source of information for failure analysis, particularly with respect to corrosion. The maintenance and operational histories of the USAF C-141A Force have been analyzed.^{6,30} The major thrust was a determination of relative environmental corrosiveness.

As of January 1976, 271 of these aircraft in the Military Aircraft Command were stationed at Altus OK, Charleston, SC, McChord, WA, McGuire, NJ, Norton, CA, and Travis, CA. Formerly, some were stationed at Dover, DE and Robins, GA. Occasionally individual aircraft are transferred from one airbase to another, but frequent or large reassessments are rare. Within the time period of study, transfer of significant numbers of units occurred twice as a result of reorganizations. Individual unit transfers are effected in order to spread the wear and tear of training-base missions over the entire force. Despite these transfers, approximately 250 units were stationed at not more than two airbases, and more than 100 at a single airbase during the same time period under study. The number of aircraft at

- any particular airbase ranges from fewer than twenty to as many as sixty.

With the exception of a training squadron, the bulk of the C-141A Force is oriented to airlift missions. Such missions account for about 80% of flying hours, while training and miscellaneous missions account for 9% and 11%, respectively. A comparison of cumulative flying hours with age shows that these aircraft spend at least 80% of their time on the ground, most of that at the home station airbase. Accordingly, environmental factors at the home station will dominate the corrosion experience of these aircraft.

(1) Environmental Factors at C-141A Airbases

Environmental factors for the six current C-141A airbases from Appendix 4 are compared with the WECS values in Table 9. From this comparison and the use of the Corrosion Damage Algorithm, the relative corrosion severity of these airbases would be ranked as:

Travis, Charleston > McChord > Norton, Altus > McGuire

where Travis is the most severe and McGuire is the mildest. Those separated by commas are relatively close in their ratings. A combined average severity, using the results from all three algorithms yields the rankings

Travis, Charleston, Norton > McChord > Altus > McGuire

The increased severity of Norton results from the Los Angeles based smog factors.

(2) The USAF Maintenance Data Collection System

Thoroughly detailed records are kept by the Air Force for a wide variety of maintenance actions. Generally, actions which correct failures or defects and those which modify aircraft are documented. Routine servicing, e. g., washing, cleaning, touchup painting, is not. The data used in this study were extracted from the permanent maintenance records maintained on magnetic tape by the AF Logistics Command. Procedures and rules for data collection are detailed in the relevant AF manuals.⁵⁸

An aircraft maintenance action begins with a discrepancy

TABLE 9. ENVIRONMENTAL FACTORS FOR C-141A AIRBASES COMPARED WITH WORKING ENVIRONMENTAL CORROSION STANDARDS AND ENVIRONMENTAL RATINGS

Airbase	Environmental Factors ¹						Environmental Ratings ²		
	D2C	TSP	SO ₂	PCOX	AH	RF	h	wash	repaint
Altus OK	4.5	61	43 ²	79	7.1	1250	600		corrosion
Charleston SC	4	53	5	?	9.1	(610)	600	B	(C)
McChord WA	10	69	17	59	7.9	1043	550	A	(C)
McGuire NJ	>4.5	(<75)	?	(320)	7.7	1105	500	B	AA
Norton CA	>4.5	113	23	588	16.1	293	650	B	A (A)
Travis CA	4	(<75)	?	255	9.0	(410)	424	A	AA

¹ Environmental Factors D2C, TSP, SO₂, PCOX, AH, RF, and h_v are distance to sea (km), total suspended particulates (ug/m³, annual mean), sulfur dioxide (ug/m³, annual mean), photochemical oxidants as ozone (second 1-hour maximum), absolute humidity (g/m³), rainfall (mm, annual mean), and solar radiation (Langley's, mean July). WECS values are listed at the top of each column. Question marks indicate no data available. Values in parentheses are estimates from Reference 55 or 56.

² Environmental Ratings are based on the algorithms of Figures 3, 4, and 5.

report (or a modification technical order), the majority of which are generated at a regularly-scheduled inspection. These inspections occur at isochronal intervals varying from 15 days to 36 months. They also vary in the depth of inspection, the most thorough being the Programmed Depot Maintenance and the Mid-Interval inspection.

A discrepancy report and subsequent maintenance events are recorded on AFTO form 349 (Figures 6, 7). Periodically these are key-punched and entered into the airbase computer system. Portions of this data are forwarded to AFLC where they are analyzed and deposited into the permanent record files. Certain categories of maintenance data, essentially those which can be considered as "overhead" costs and not failure-related, are not entered into the permanent files. Information entered on the AFTO 349 form which reaches the permanent files and is relevant are discussed as follows:

(1) The Work Unit Code identifies the system, subsystem, and component on which maintenance is effected. Certain work unit codes identify tasks of a general "overhead" nature and are used to record labor costs only and have only base-level significance.

(2) Action Taken Code indicates the specific kind of maintenance action effected, e.g., removal and replacement.

(3) How-malfunctioned Code identifies the nature of the defect rather than the cause of the discrepancy. Thus maintenance personnel are required to perform a certain amount of diagnosis.

In general, these records provide the journalists' "what, where, when, why, and how" answers with respect to maintenance actions on aircraft. Of particular interest is the opportunity to perform cost-analyses based on the manhours expended for various tasks at a given airbase and to make comparisons from one airbase to another. These comparisons in turn can be coupled with the relevant environmental factors to determine the relative corrosivity of a given airbase.

1. INC IDENT. NO.	2. WORK CENTER	3. PROJ. IDENT.	4. MOS	5. MO NO. & SUFF.	6. TIME	7. PM	8. SOURCE ID.	9. LOCATION
10. INST.	11. CAG/CAT I.D.	12. INST. I.D.	13. INST. ENG. I.D.	14.	15.	16.	17. TIME SPIC MSG N. JOB SIS.	
18. INC	19. PART NUMBER	20. SER. NO./OPR. TIME	21. SER. NO./OPR. TIME	22. TAG NO.	23. INST. ITEM PART NO.	24. SERIAL NUMBER	25. CATE. TIME	
26. AND ITLS NO. ITEM MATERIAL			27. WORK UNIT CODE ACTION TABLE			28. NORMAL WHICH DISC		
1	11CRA	2	170	3		START DAY	STOP DAY	CATE SIZE HOUR
2								
3								
4								
5								
29. DISCREPANCY								
30. CORRECTIVE ACTION								
31. RECORDS ACTION								

MAINTENANCE DATA COLLECTION RECORD

M & W INC. 468-16014

Figure 6. USAF AFTO Form 349 Maintenance Data Collection Record.

AFTO FORM 349

Figure 7. USAF AFTO Form 349 Maintenance Data Collection Record (reverse)

TABLE 10. DISTRIBUTION OF C-141A FORCE-WIDE CORROSION MAINTENANCE MANHOURS AMONG ACTION TAKEN CODES.³²

Action Taken	<u>4Q70-4Q74%</u>	<u>1Q75-4Q76%</u>
Repairs and/or Replacement of minor parts, etc.	45.2	41.4
Corrosion (Repair)	11.0	14.3
Clean	8.9	12.8
Repair	8.5	3.8
Remove and Replace	17.7	18.1
Removed	5.7	5.4

TABLE 11. DISTRIBUTION OF C-141A FORCE-WIDE CORROSION
MAINTENANCE MANIOURS AMONG HOW-MALFUNCTION CODES.³²

<u>How Malfunction</u>	<u>4Q70-4Q74%</u>	<u>1Q75-4Q76%</u>
Corrosion*	37.4	42.2
Cracked	34.1	36.3
Coating, sealant failure	17.9	7.7
Other related codes	8.7	10.9

*Includes corroded, deteriorated, and delaminated.

Data base. The permanent maintenance records of C-141A aircraft were provided on magnetic tape and spanned two time periods: fourth calendar quarter 1970 through fourth quarter 1974; and first quarter 1975 through fourth quarter 1976. These records included both organizational (field) level and depot-level maintenance. The two data sets were analyzed separately using the second to check predictions made from the first.

Two smaller files of corrosion-related data were created from these data files by selecting records containing one of several corrosion how-malfunctioned codes or action-take codes. The resulting corrosion data base, in two-parts, consisted of

- (a) 4Q70-4Q74, 234, 046 records, 890, 502 manhours, and
- (b) 1Q75-4Q76, 90, 933 records, 273, 555 manhours

As discussed earlier, aircraft corrosion maintenance may be divided into three distinctly different categories: (a) washing and cleaning as preventive maintenance; (b) maintenance of protective coatings and repainting; (c) repair of corrosion damage. The permanent files of the USAF MDCS should not contain any records relating to the first two categories because corrosion prevention, in effect, is not documented. The distribution of the data base among major corrosion how-malfunction codes is shown in Table 10, and among action taken codes in Table 11.

In addition to the maintenance data files, operational histories of each aircraft were provided. These histories detailed chronologically airbase assignments and flight information over the same time periods.

(3) Results

One would expect the maintenance manhours to be distributed among the several airbases more or less in proportion to the number of aircraft assigned to each base. Airbase assignments for each aircraft, which were included in the operational histories, were available on a calendar quarter basis. Reassignments did not occur exactly at the end of any given quarter, of course, but the calendar quarter possessions for each airbase were used for comparative purposes. Thus the percent of aircraft possession quarters for a given airbase represents that

airbase's share of maintenance responsibility for the C-141A force, all other factors being equal. If its actual share of the maintenance effort is larger or smaller than its responsibility, then one would look for other factors, e.g., environmental, which would cause the discrepancy.

Possession quarters and corrosion manhours are listed in Table 12 as percents of the totals for the two time periods considered. In three cases, e.g., Altus, McGuire and McChord, the actual figures are quite close to the responsibility values. In the other three, Travis, Charleston, and Norton, there are considerable differences. Thus there is clear indication of base-to-base variations in the amount of corrosion maintenance effort expended per aircraft. Airbase comparisons using the data format of Table 10 are not useful, however, because of distortions introduced when one or two airbases contribute an abnormally high or low input to the data files. This occurred in the second time period where large amounts of data turned out to be missing for Norton AFB. The result is to inflate the apparent share of the data base for every other airbase.

The rate of field corrosion maintenance, i.e., the slope of manhours vs. time Figure 8, was found to be essentially linear. Moreover, the rate was constant for all aircraft assigned to a given airbase, but varied from one airbase to another. Average repair rates for all aircraft assigned to a given airbase were computed and are shown in Table 13 where the data are listed as manhours per aircraft per calendar quarter. Repair rates and their trends of slight change were used to compute predicted repair rates for the second time period. These predicted values are also listed in Table 13. Actual values and predicted values are in quite good agreement, with the exception of Norton AFB, for which, as has been noted, large gaps were found in the data files.

A statistical comparison was made of maintenance efforts on those individual aircraft which were stationed continuously at a given airbase, the results of which are shown in Figures 9 and 10. These figures show corrosion manhours per quarter

Figure 8. Cumulative Corrosion Maintenance History of C-141A Serial Number 650266

TABLE 12. C-141A AIRBASE POSSESSION QUARTERS COMPARED WITH FIELD LEVEL CORROSION MAINTENANCE MANHOURS.³²

<u>Airbase</u>	4Q70-4Q74*		1Q75-4Q76	
	<u>Possession Quarters, %</u>	<u>Corrosion Manhours, %</u>	<u>Possession Quarters, %</u>	<u>Corrosion Manhours, %</u>
1. Altus	6.7	6.5	6.4	5.2
2. Charleston	16.9	18.5	21.8	30.4
3. McChord	14.6	14.4	13.9	12.5
4. McGuire	21.2	18.1	20.7	20.0
5. Norton	19.1	15.5	22.2	8.4
6. Travis	16.4	21.8	15.0	23.6

*Total is less than 100% because Dover AFB data is not listed.

TABLE 13. C-141A CORROSION MAINTENANCE EFFORT BY AIRBASE.³²

	<u>Manhours per Aircraft per Quarter</u>	
	4Q1970-4Q1974	1Q1975-4Q1976*
1. Altus, OK	98.8	63.7 (84.3)
2. Charleston, SC	113.2	110.0 (105.6)
3. McChord, WA	101.2	70.8 (52.8)
4. McGuire, NJ	87.7	76.1 (79.5)
5. Norton, CA	84.4	29.7** (58.8)
6. Travis, CA	133.0	124.0 (101.4)

*Values in parentheses were projected from those of first time period.

**Data files were incomplete.

for individual aircraft vs. the percent of total population. Variations from one airbase to another are clearly apparent, with Travis aircraft showing the highest and Norton the lowest maintenance efforts. (Altus AFB is not included because only one aircraft was stationed there continuously during either time period.) Indeed, the one aircraft at Travis which received the fewest maintenance manhours, received more than that at Norton receiving the largest in the first time period (for which Norton data were complete). In other words, the most poorly-maintained Travis airplane received more corrosion repair maintenance than the best-maintained Norton unit. Moreover, the average Travis aircraft received, in 1970-74, approximately 150 manhours per quarter--more than any airplane received at McGuire, McChord, and Norton, and more than 90% of the airplanes at Charleston! The results for 1975-76 are essentially the same.*

Field maintenance effort also was compared for selected areas of the aircraft (according to work unit codes). Shown in Table 14 are the average corrosion manhours per aircraft per quarter spent on forward and center fuselage, center wing-box beam, and wings. These regions were selected for illustration here so that mission-related damage is separated. For example, training-oriented missions at Altus AFB are especially severe on components related to take off and landing such as landing gear and wing flaps. The same general patterns of maintenance effort are observed.

In summary, field maintenance data consistently rank these six airbases as

Travis, Charleston > McChord, McGuire > Altus > Norton, from highest to lowest. Some minor shuffling is observed between McGuire and McChord, and Norton, Altus, and McGuire is rated

*The value of Figures 9 and 10 differ slightly from those of Table 13 because the latter includes all aircraft stationed at a given airbase, whereas the figures include only those continuously stationed (i.e., not transferred) during the respective time periods. Maintenance rates are distorted slightly at transfer.

Figure 9. Distribution of Field-level Corrosion Maintenance Among Aircraft Continuously Assigned to an Airbase 4Q70-4Q74. Numbers Indicate Size of Sample.³²

Figure 10. Distribution of Field-level Corrosion Maintenance Among Aircraft Continuously Assigned to an Airbase 1Q75-4Q76. Numbers Indicate Size of Sample³²

TABLE 14. C-141A CORROSION MAINTENANCE EFFORT* ON SELECTED AIRCRAFT SECTIONS BY AIRBASE.³²

	Forward and Center Fuselage		Wing and Wing Box Beam		<u>Totals</u>	
	4Q70-	1Q75-	4Q70-	4Q74-	4Q70-	4Q75-
	<u>4Q74</u>	<u>4Q76</u>	<u>4Q74</u>	<u>4Q76</u>	<u>4Q74</u>	<u>4Q76</u>
1. Altus, OK	7.6	5.0	6.7	10.6	14.3	15.6
2. Charleston, SC	20.1	23.5	14.0	19.6	34.1	43.1
3. McChord, WA	17.3	7.3	11.1	19.2	28.4	26.5
4. McGuire, NJ	13.0	7.1	7.5	10.4	20.5	17.5
5. Norton, CA	12.9	**	6.4	**	19.3	**
6. Travis, CA	19.8	17.6	15.0	22.1	34.8	39.7

*Manhours per aircraft per quarter.

**Datafiles incomplete.

lower by the algorithms than by maintenance. The listing based on environmental parameters as discussed earlier. The maintenance data could be used in a quantitative comparison, but the environmental ratings are not directly suitable for such treatment.

(4) Conclusions

The results show clearly that detailed corrosion maintenance records of complex systems correlated well with environmental severity indexes derived from the CSI Algorithm based on the known corrosive factors. Indeed it appears that a numerical corrosion severity index can be formulated from such data. Such an index would be at least as precise as any developed from atmospheric testing of alloys. Moreover, it should be possible to focus attention on specific alloys in the system rather than applying to a variety of alloys as we have done so far.

There are a few problems relating to the USAF Maintenance Data Collection System, however, which make further progress difficult at this time. These problems mainly are the loss of certain kinds of data which, in most cases, is inherent to the system itself. Another problem is the variability of data reporting practices from one repair facility to another. These problems are the subject of continuing study at Michigan State University.

e. Comparison With PACER LIME Experimental Results

The experimental phase of PACER LIME was expected to provide test data for "calibrating" the Corrosion Factor equation. Alloys representative of airframe construction were fastened to outdoor test racks at several airbases spanning the range of mildest to most severe environments. These alloy panels were removed and weighed at six month intervals. The data from these tests have been analyzed and the results are reported in Part II of this report.

The experimental results are not as useful as one might have hoped..

(1) Some of the alloys tested were not suitable for the program. Specifically, the aluminum alloys (2024-T3 alclad,

7075-T6, and 7079-T6 alclad) are relatively resistant to general corrosion and weight losses over the time period tested were quite small, thus subject to large experimental error. The titanium alloy (Ti-6Al-4V) was essentially corrosion resistant and thus provided no useful data.

(2) The environments for which data were available are fairly comparable; no data were obtained from the most severe environments.

(3) Methods for cleaning panels prior to weighing (mechanical scrubbing) are not reproducibly effective in removing corrosion products, thus results are widely variable from one technician to another.

(4) Although this was a large and complex program, a disproportionate share of misfortune plagued it.

When all these factors are considered, it is difficult to give serious weight to the apparent relative corrosivity of each testing site as reflected in these test data. Nevertheless, these results show the sites tested to be ranked as

Andrews, Wright-Patterson, Barksdale > Robins > F.E. Warren, from worst to mildest, for those sites which yielded any data.

These experimental corrosion severity rankings should be most comparable with the rankings obtained from the Corrosion Damage Algorithm. Using that algorithm, the same airbases are ranked as

Andrews, Wright-Patterson, Robins, > Barksdale > F.E. Warren

The rankings based on the experimental test program and those based on the Corrosion Damage Algorithm are seen to be in excellent agreement, except for the reversal of Barksdale and Robins. While we find this agreement comforting, at the same time we are aware of the severe confidence limitations that must be placed on the experimental results. It is our view that the experimental test results should not be interpreted as strongly supportive of the algorithm rankings, but, nevertheless, do not present contradictory evidence which must be "explained away." Therefore, the experimental and algorithm are considered to be in good agreement.

6. Conclusion

The concept of an Environmental Corrosion Severity Classification was proposed by USAF AFLC personnel at Warner-Robins AMA in 1971. This classification was to be used for anticipating corrosion damage to aircraft and scheduling appropriate repairs. The USAF Interim classification method has been extended to the algorithm format described in this report. Using these algorithms, airbase classifications have been obtained which are in excellent agreement with USAF maintenance experience, as contained within the AFM 66-1 maintenance records, and in good agreement with an experimental testing program conducted by USAF. As research on aircraft corrosion problems continues, modifications to these algorithms can be expected. At this time, they are considered to be the best tools available for relating environmental risk to aircraft maintenance, and, accordingly are recommended to USAF as working tools for corrosion management.

REFERENCES

1. Bennett, L. H., Kurger, J., Parker, R. L., Passaglia, E., Reimann, C., Ruff, A. W., and Yakowitz, H., "Economic effects of metallic corrosion in the United States," U.S. Department of Commerce, National Bureau of Standards, March 1970.
2. Hahin, C., "Corrosion costs of Air Force and Army facilities and construction of a cost prediction model," U.S. Army Construction Engineering Research Laboratory, Technical Report M-224, July 1977.
3. Hahin, C., "Predicting the metallic corrosion costs of operating and maintaining buildings and utilities systems," Materials Performance 17, 31-34 (1978).
4. Setter, L. C., "AFLC's corrosion and maintenance problems," Proceedings of AFOSR/AFML Corrosion Workshop, October 1977, AFML-TR-77-175.
5. Upp, J. R., "The Air Force corrosion program," "Proceedings of the 1976 Tri-Service Conference on Corrosion," Ketcham, S. J., Ed., 26-28 October, 1976, Metals and Ceramics Information Center, Battelle, Columbus, Ohio, MCIC Report 77-33.
6. Summitt, R., "Corrosion tracking and prediction for C-141A aircraft maintenance scheduling," AFML-TR-78-29, Air Force Materials Laboratory, Wright-Patterson AFB, OH, 1978.
7. Tomashov, N. D., "Theory of corrosion and protection of metals," Translated and edited by Tytell, E. H., Geld, I., and Preiser, H. S., McMillan, New York, 1966.
8. Ailor, W. H., "ASTM atmospheric corrosion testing: 1906 to 1976," "Atmospheric Factors Affecting the Corrosion of Engineering Metals, ASTM STP 646," S. K. Coburn, Ed., American Society for Testing and Materials, 129-151, 1978.
9. Rozenfeld, I. L., "Atmospheric corrosion of metals," B. H. Tytell, transl., National Association for Corrosion Engineers, Houston, TX, 1972.
10. Sereda, P. J., "Weather factors affecting corrosion of metals," "Corrosion in Natural Environments, ASTM STP 558," American Society for Testing and Materials, 7-22, 1974.

11. ASTM, "Corrosiveness of various atmospheric test sites as measured by specimens of steel and zinc," "Metal Corrosion in the Atmosphere, ASTM STP 435," American Society for Testing and Materials, 360-391, 1968.
12. Ailor, W. H., Jr., "Performance of aluminum alloys at other test sites," "Metal Corrosion in the Atmosphere, ASTM STP 435," American Society for Testing and Materials, 285-307, 1968.
13. Ailor, W. H., "Seven-year exposure at Point Reyes, California," "Corrosion in Natural Environments, ASTM STP 558," American Society for Testing and Materials, 75-81, 1974.
14. Baboian, R., "Final report on the ASTM study: Atmospheric galvanic corrosion of magnesium coupled to other metals," "Atmospheric Factors Affecting the Corrosion of Engineering Metals, ASTM STP 646," S. K. Coburn, Ed., American Society for Testing and Materials, 17-29, 1978.
15. Scheffer, T. C., "A climate index for estimating potential for decay in wood structures above ground," Forest Products J. 21, 25-31 (1971).
16. Moore, T. K., "Environmental effects on maintenance costs for aircraft equipment," AFML TR-76-31, AF Wright Aeronautical Laboratories, Wright-Patterson AFB, OH, 1976.
17. Vernon, W. H. J., Trans. Faraday Soc. 27, 265-277, (1931).
18. Vernon, W. H. J., Trans. Faraday Soc. 31, 1668-1700, (1935).
19. Grossman, P. R., "Investigation of atmospheric exposure factor that determine time-of-wetness of outdoor structures," "Atmospheric Factors Affecting the Corrosion of Engineering Metals, ASTM STP 646," S. K. Coburn, Ed., American Society for Testing and Materials, 1978.
20. Oke, T. R., "Boundary layer climates," Methuen, London, 1978.
21. Guttman, H., and Sereda, P. J., "Measurement of atmospheric factors affecting the corrosion of metals," "Metal Corrosion in the Atmosphere, ASTM STP 435," American Society for Testing and Materials, 326-359, 1968.

22. U.S. Department of Health, Education and Welfare, "Air quality criteria for particulate matter," January 1969, National Air Pollution Control Administration Publication AP-49.
23. U.S. Department of Health, Education and Welfare, "Air quality criteria for sulfur oxides," January 1969, National Air Pollution Control Administration Publication AP-50.
24. Likens, G. E., "Acid precipitation," Chemical and Engineering News, Nov. 22, 1976, 29-44.
25. Gillette, D. G., 1975, "Sulfur dioxide and material damage," J. Air Pollution Control Assoc. 25, 1238-1243 (1975).
26. U.S. Department of Health, Education and Welfare, "Air quality criteria for hydrocarbons," March 1970, National Air Pollution Control Administration Publication AP-64.
27. U.S. Department of Health, Education and Welfare, "Air quality criteria for photochemical oxidants," March 1970, National Air Pollution Control Administration Publication AP-63.
28. U.S. Environmental Protection Agency, "Air quality criteria for nitrogen oxides," January 1971, National Air Pollution Control Administration Publication AP-84.
29. U.S. Environmental Protection Agency, "National air quality and emissions trend report, 1976," EPA-450/1-77-002.
30. Stoker, H. S., and Seager, S. L., "Environmental chemistry: air and water pollution," 2nd edn., Scott, Foresman and Co., Glenview, IL, 1976.
31. Graedel, T. E., and Schwartz, N., "Air quality reference data for corrosion assessment," Materials Performance 16, 17-25, August, 1977.
32. Summitt, R., "Forecasting corrosion damage and maintenance costs for systems of large aircraft: Environmental corrosiveness," CORROSION/80, Chicago, March 6-10, 1980.
33. Shaw, T. R., "Corrosion maps of the British Isles," "Atmospheric Factors Affecting the Corrosion of Engineering Metals, ASTM STP 646," S. K. Coburn, Ed., American Society for Testing and Materials, 204-215, 1978.

34. Hudson, J. C., and Stanner, J. F., *J. Iron and Steel Inst.* 180, 271 (1955).
35. Junge, C. E., and Gustafson, "On the distribution of sea salt over the United States and removal by precipitation," *Tellus* 9, 164 (1957).
36. Junge, C. E., "Air chemistry and radioactivity," Academic Press, New York, 1963.
37. Duce, R. A., Winchester, J. W., and Van Nahl, T. W., "Iodine, bromine, and chlorine in the Hawaiian marine atmosphere," *J. Geophysical Res.* 70, 1775 (1965).
38. Pueschel, R. S., Charlson, R. J., and Ahlquist, N. C., 1969, "On the anomalous deliquescence of sea-spray aerosols," *J. Appl. Meteorol.* 8, 995-998 (1969).
39. Junge, C. E., "The chemical composition of atmospheric aerosols I: Measurements at Round Hill Field Station, June-July 1953," *J. Meteorol.* 11, 323-333 (1954).
40. Federal Register 36, 1502 (1971).
41. Federal Register 36, 8186 (1971).
42. Upham, J. B., 1967, "Atmospheric corrosion studies in two metropolitan areas," *J. Air Pollution Control Assoc.* 17, 398-403 (1967).
43. Mansfield, F., "Results of thirty-six months exposure study in St. Louis, MO," *CORROSION/78*, Houston, TX, 1978.
44. Mansfield, F., "Regional air pollution study effects of airborne sulfur pollutants on materials," *EPA-600/4-80-007*, January 1980.
45. Haynie, F. H., and Upham, J. B., "Effects of atmospheric sulfur dioxide on the corrosion of zinc," *Materials Performance* 9, 35-40 (1970).
46. Haynie, F. H., and Upham, J. B., "Correlation between corrosion behavior of steel and atmospheric data," "Corrosion in Natural Environments, ASTM STP 558, American Society for Testing and Materials, 33-51, 1974.
47. Haynie, F. H., Spence, J. W., and Upham, J. B., "Effects of air pollutants on weathering steel and galvanized steel: a chamber study," "Atmospheric Factors Affecting the Corrosion of Engineering Materials, ASTM STP 646," S. K. Coburn, Ed., American Society for Testing and Materials, 30-47, 1978.

48. Weast, R. C., ed., "Handbook of chemistry and physics," 51st edn., CRC Press, W. Palm Beach, FL, E-5, 1971.
49. Hairston, F. H., "Assignment of environmental areas for SAC KC-135/B-52 bases," unpublished, 1956.
50. Richard, O. E., and Snelling, H. J., "Weather data and its use in corrosion studies," "Proceedings of the 1974 Triservice Corrosion of Military Equipment Conference, 29-31 October 1974," Volume II, 325-327, 1975.
51. Jellinek, H. H. G., 1979, *J. Air Pollution Control Assoc.* 20, 672 (1979).
52. United States Air Force, "Exterior finishes, insignia, and markings applicable to USAF aircraft," T. O. 1-1-4, 1973.
53. Cohen, B., private communication, 1976.
54. United States Air Force Environmental Technical Applications Center, "Worldwide airfield climatic data," Vols. I-VIII, Washington. D.C., 1970.
55. Baldwin, J. L., "Climates of the United States," U.S. Department of Commerce, Washington, D.C., 1973.
56. U. S. Environmental Protection Agency, "Air quality data - 1976 annual statistics," March 1978, EPA-450/2-78-009.
57. U. S. Department of Commerce, "Sectional aeronautical charts," Washington, D.C., 1979.
58. "The maintenance data collection system," USAF T0 00-20-2, Secretary of the Air Force, Washington, 1975.
59. National Climatic Center, Asheville, NC, "WBAN station numbers master list," August 1978.
60. United States Air Force AFM 300-4 Volume XV, 15 April 1975.
61. U. S. Environmental Protection Agency, "Directory of air quality monitoring sites active in 1976," EPA-450/2-78-002, February 1978.

APPENDIX A

PACER LIME Interim
Corrosion Severity Classification

PACER LIME INTERIM CORROSION SEVERITY CLASSIFICATION

1= AL ANG BIRMINGHAM MUNI APRT AL	2.50 MOD
2= ALBROOK AFB BALBOA CANAL ZONE	1.87 SEV
3= ALTUS AFB OK	2.83 MOD
4= ANDERSEN AFB GUAM	2.17 MOD
5= ANDREWS AFB WASHINGTON DC	2.50 MOD
6= AR ANG FORT SMITH MUNI APRT AR	2.33 MOD
7= BARKSDALE AFB LA	2.83 MOD
8= BEALE AFB CA	2.83 MOD
9= BERGSTROM AFB AUSTIN TX	2.50 MOD
10= BLYTHEVILLE AFB AR	2.50 MOD
11= BUCKLEY ANGB DENVER CO	3.00 MIL
12= CA ANG FRESNO CA	2.67 MIL
13= CA ANG OAKLAND CA	1.67 SEV
14= CA ANG VAN NUYS CA	2.33 MOD
15= CANNON AFB CLOVIS NM	3.17 MIL
16= CARSWELL AFB TX	3.00 MIL
17= CASTLE AFB CA	2.83 MOD
18= CHARLESTON AFB SC	2.50 MOD
19= COLUMBUS AFB MS	2.50 MOD
20= CRAIG AFB SELMA AL	2.67 MOD
21= CT ANG BRADLEY FLD WINSOR LOCKS CT	2.50 MOD
22= DAVIS MONTHAN AFB AZ	3.33 MIL
23= DE ANG GREATER WILMINGTON APRT NEW CASTLE DE	2.17 MOD
24= DOBBINS AFB GA	2.50 MOD
25= DOVER AFB DE	1.83 SEV
26= DULUTH INTL APRT MN	2.67 MOD
27= DYESS AFB TX	3.17 MIL
28= EDWARDS AFB CA	3.33 MIL
29= EGLIN AFB VALPARAISO FL	1.83 SEV
30= EIELSON AFB AK	2.67 MOD
31= ELLSWORTH AFB SD	2.67 MOD
32= ELMENDORF AFB ANCHORAGE AK	1.83 SEV

33=	ENGLAND AFB ALEXANDRIA LA	2.50 MOD
34=	FAIRCHILD AFB WA	2.67 MOD
35=	FL ANG JACKSONVILLE FL	2.17 MOD
36=	FORBES AFB TOPEKA KS	2.67 MOD
37=	FRANCIS E WARREN AFB WY	3.00 MIL
38=	GA ANG TRAVIS FLD SAVANNAH GA	2.17 SEV*
39=	GEORGE AFB VICTORVILLE CA	3.33 MIL
40=	GOODFELLOW AFB SAN ANGELO TX	2.83 MOD
41=	GRAND FORKS AFB ND	2.50 MOD
42=	GRIFFISS AFB NY	2.50 MOD
43=	GRISCOM AFB IN	2.33 MOD
44=	HAMILTON AFB SAN RAFAEL CA	1.67 SEV
45=	HANSCOM AFB BEDFORD MA	2.00 SEV
46=	HICKAM AFB HI	2.50 MOD
47=	HILL AFB OGDEN UT	3.33 MIL
48=	HOLLOMAN AFB ALAMOGORDO NM	3.33 MIL
49=	HOMESTEAD AFB FLA	2.00 SEV
50=	HOWARD AFB CANAL ZONE	1.83 SEV
51=	IA ANG DES MOINES IA	2.33 MOD
52=	IA ANG SIOUX CITY MUNI APRT SERGEANTS BLUFF IA	2.33 MOD
53=	ID ANG BOISE ID	2.83 MOD
54=	IL ANG CAPITAL MUNI APRT SPRINGFIELD IL	2.50 MOD
55=	IL ANG GREATER PEORIA APRT IL	2.50 MOD
56=	IL ANG OHARE INTL APRT CHICAGO IL	2.33 MOD
57=	IN ANG BAER FLD FT WAYNE IN	2.17 MOD
58=	IN ANG HULMAN FLD TERRE HAUTE IN	2.50 MOD
59=	K I SAWYER AFB MI	2.33 MOD
60=	KEESLER AFB BILOXI MS	1.83 SEV
61=	KELL FLD WICHITA FALLS TX	3.00 MIL
62=	KELLY AFB SAN ANTONIO TX	2.83 MOD
63=	KINCHELOE AFB HI	2.17 MOD
64=	KINGSLEY FLD Klamath Falls OR	2.83 MOD
65=	KIRTLAND AFB ALBUQUERQUE NM	3.33 MIL
66=	KY ANG LOUISVILLE KY	2.33 MOD
67=	LA ANG NEW ORLEANS NAS LA	1.83 MOD
68=	LANGLEY AFB HAMPTON VA	1.83 SEV

69=	LAREDO AFB TX	2.67 MOD
70=	LAUGHLIN AFB DEL RIO TX	3.00 MIL
71=	LITTLE ROCK AFB JACKSONVILLE AR	2.83 MOD
72=	LOCKBOURNE AFB OH	2.67 MOD
73=	LORING AFB ME	2.50 MOD
74=	LOS ANGELES INTL APRT CA	2.00 SEV
75=	LUKE AFB PHOENIX AZ	3.33 MIL
76=	MA ANG BARNES MUNI APRT WESTFIELD MA	2.50 MOD
77=	MACDILL AFB TAMPA FL	1.83 SEV
78=	MARCH AFB CA	2.50 MOD
79=	MATHER AFB CA	2.83 MOD
80=	MAXWELL AFB MONTGOMERY AL	2.50 MOD
81=	MCCHORD AFB TACOMA WA	2.00 SEV
82=	MCCALLAN AFB SACRAMENTO CA	2.50 MOD
83=	MCCONNELL AFB KS	3.00 MIL
84=	MCCOY AFB FL	2.17 MOD
85=	MCGUIRE AFB WRIGHTSTOWN NJ	2.33 MOD
86=	MD ANG BALTIMORE MD	2.17 MOD
87=	ME ANG BANGOR INTL APRT ME	1.83 SEV
88=	MI ANG BATTLE CREEK MI	2.17 MOD
89=	MI ANG SELFRIDGE ANG BASE MI	2.17 MOD
90=	MINOT AFB ND	3.17 MIL
91=	MN ANG MINN-ST PAUL INTL APRT MN	2.67 MOD
92=	MO ANG ROSECRANS MEMORIAL APRT MO	2.67 MOD
93=	MOODY AFB VALDOSTA GA	2.50 MOD
94=	MOUNTAIN HOME AFB ID	2.83 MOD
95=	MS ANG JACKSON MUNI APRT MS	2.33 MOD
96=	MS ANG KEY FLD MERIDIAN MS	2.50 MOD
97=	MT ANG GREAT FALLS INTL APRT MT	3.17 MIL
98=	MYRTLE BEACH AFB SC	1.83 SEV
99=	NC ANG DOUGLAS MUNI APRT CHARLOTTE NC	2.83 MOD
100=	ND ANG STATE UNIVERSITY STN FARGO ND	2.67 MOD
101=	NE ANG BASE LINCOLN NE	2.33 MOD
102=	NELLIS AFB LAS VEGAS NV	3.33 MIL
103=	NJ ANG ATLANTIC CITY NJ	1.83 SEV
104=	NORTON SAN BERNADINO CA	2.50 MOD

105=	NU ANG RENO MUNI APRT NV	2.17 MOD
106=	NY ANG HANCOCK FLD SYRACUSE NY	2.33 MOD
107=	NY ANG NIAGARA FALLS INTL APRT NY	2.17 MOD
108=	NY ANG SCHENECTADY CO APRT NY	2.33 MOD
109=	NY ANG SUFFOLK CO ANG BASE NY	2.17 MOD
110=	NY ANG WESTCHESTER CO APRT NY	2.00 SEV
111=	OFFUTT AFB NE	3.00 MIL
112=	OH ANG MANSFIELD LAHM APRT OH	2.17 MOD
113=	OH ANG TOLEDO EXPRESS APRT SWANTON OH	2.33 MOD
114=	OK ANG TULSA OK	2.83 MOD
115=	OR ANG PORTLAND INTL APRT OR	2.00 SEV
116=	OTIS AFB FALMOUTH MA	1.83 SEV
117=	PA ANG GREATER PITTSBURGH APRT PA	2.17 MOD
118=	PA ANG MIDDLETOWN PA	2.83 MOD
119=	PA ANG WILLOW GROVE NAS PA	2.50 MOD
120=	PATRICK AFB COCOA BEACH FL	2.00 SEV
121=	PEASE AFB NH	2.00 SEV
122=	PETERSON FLD COLORADO SPRINGS CO	3.17 MIL
123=	PLATTSBURGH AFB NY	2.67 MOD
124=	POPE AFB FAYETTEVILLE NC	2.83 MOD
125=	RANDOLPH AFB SAN ANTONIO TX	2.83 MOD
126=	REESE AFB LUBBOCK TX	3.33 MIL
127=	RI ANG THEODORE GREEN APRT WARWICK RI	1.83 SEV
128=	RICHARDS GEBAUER AFB GRANDVIEW MD	2.83 MOD
129=	ROBINS AFB GA	2.83 MOD
130=	SC ANG MCENTIRE ANG BASE EASTOVER SC	2.50 MOD
131=	SCOTT AFB BELLEVILLE IL	2.50 MOD
132=	SD ANG JOE FOSS FLD SIOUX FALLS SD	2.67 MOD
133=	SEYMOUR JOHNSON AFB NC	2.33 MOD
134=	SHAW AFB SUMTER SC	2.83 MOD
135=	SHEMSEA AFB AK	1.67 SEV
136=	TINKER AFB OKLAHOMA CITY OK	2.83 MOD
137=	TN ANG MCGHEE TYSON APRT KNOXVILLE TN	2.50 MOD
138=	TN ANG MEMPHIS MUNI APRT TN	2.83 MOD
139=	TN ANG NASHVILLE APRT STN TN	2.50 MOD
140=	TRAVIS AFB CA	2.50 MOD

141= TX ANG HOUSTON TX	2.17 MOD
142= TYNDALL AFB PANAMA CITY FL	1.83 SEV
143= VA ANG BYRD FLD SANDSTON VA	2.17 MOD
144= VANCE AFB ENID OK	2.83 MOD
145= VANDENBERG AFB CA	1.67 SEV
146= VT ANG BURLINGTON INTL APRT VT	2.33 MOD
147= WA ANG SPOKANE INTL APRT WA	2.67 MOD
148= WEBB AFB BIG SPRING TX	3.00 MIL
149= WESTOVER AFB MA	2.50 MOD
150= WHITEMAN AFB MO	2.83 MOD
151= WI ANG GEN MITCHELL ANG BASE MILWAUKEE WI	2.33 MOD
152= WI ANG MADISON WI	2.33 MOD
153= WI ANG VOLK FLD ANG BASE CAMP DOUGLAS WI	2.33 MOD
154= WILLIAMS AFB CHANDLER AZ	3.33 MIL
155= WRIGHT PATTERSON AFB OH	2.67 MOD
156= WURTSFITH AFB MI	2.17 MOD
157= WV ANG KANAWHA CO APRT CHARLESTON WV	2.17 MOD
158= WV ANG MARTINSBURG MUNI APRT WV	2.17 MOD

APPENDIX B

Programs developed to calculate
Washing and Repaint intervals
and Expected Corrosion Damage
severity using the Working
Environmental Corrosion Standards


```

75      C          HUMIDITY.                                840
76      C          18-APR-80 DJB                                850
77      C          ADD CODE FOR REPAINT AND CORROSION SEVERITY ALGORITHMS 860
78      C          EXISTING PROGRAM.                         870
79      C          880
80      C          890
81      C          06-MAY-80 MR/DJB                            900
82      C          ADD CODE TO PROCESS BOTH SETS OF THRESHOLD VALUES. 910
83      C          920
84      C-----C 930
85      C-----C 940
86      C-----C 950
87      C-----C 960
88      C          VARIABLE DECLARATIONS                  970
89      C-----C 980
90      C-----C 990
91      C          IMPLICIT INTEGER (A-Z)                 1000
92      C          1010
93      C          1020
94      C          REAL TSP(3),SO2(3),PCOX(2),NO2(3),RH,HV,RAIN,D2C,DEWPT,TEMP 1030
95      C          REAL TSPT(2),SO2T(2),PCOXT(2),NO2T(2),RHT(2),HVT(2),RAINT(2),D2CT(1040
96      C          +2),DEWPTT(2),TEMPT(2)                         1050
97      C          REAL AH,AHT(2),ABSHUM                      1060
98      C          1070
99      C          CHARACTER*30 BASENAM,STATE,COUNTY,EPAST,STATYPE 1080
100     C          CHARACTER*20 PLATLON,FLATLON                1090
101     C          CHARACTER*10 WASHINT(2),REPAINT(2),CORSEV(2),GELOC 1100
102     C          1110
103     C          LOGICAL NEARSEA,SULFOX,SUSPART,WET           1120
104     C          LOGICAL SUNNY,OZONE,ANYPOLL                  1130
105     C          LOGICAL EOF                           1140
106     C          1150
107     C          PARAMETER (PARNU=3,PRINTU=2,DATAU=1)        1160
108     C          1170
109     C          COMMON/EXECMSG/DUMMY                      1180
110     C          COMMON/PARMS/TSP,SO2T,PCOXT,NO2T,RHT,HVT,RAINT,D2CT,DEWPTT,TEMPT 1190
111     C          COMMON/PARH2/AHT                      1200
112     C          COMMON/INREC1/BASENAM,STATE,COUNTY,PLATLON,EPAST,STATYPE 1210
113     C          COMMON/INREC2/WBAN,TSP,SO2,PCOX,NO2            1220
114     C          COMMON/INREC2S/ELATLON                   1230
115     C          COMMON/INREC3/RH,AH,HV,RAIN,D2C,DEWPT,TEMP 1240
116     C          COMMON/INREC3S/GELOC                     1250
117     C          1260
118     C          DATA BASECT/0/                          1270
119     C          1280
120     C-----C 1290
121     C          1300
122     C          PROCEDURE                               1310
123     C-----C 1320
124     C-----C 1330
125     C          1340
126     C          C READ THRESHOLDS FROM PARAMETER FILE       1350
127     C          1360
128     C          CALL READPAR(PARNU,PRINTU)                 1370
129     C          1380
130     C          C READ DATA FOR BASE                      1390
131     C          1400
132     C          1410
133     C          100 CALL READIN(DATAU,EOF)                 1420
134     C          IF (EOF) GOTO 990                         1430
135     C          1440
136     C          C PERFORM DECISION ALGORITHMS ON BOTH SETS OF PARAMETERS 1450
137     C          1460
138     C          DO 110 I=1,2                           1470
139     C          1480
140     C          C DEFINE PREDICATES                      1490
141     C          1500
142     C          NEARSEA=D2C.LE.D2CT(I)                  1510
143     C          SUSPART=TSP(3).GT.TSPT(I)                1520
144     C          SULFOX=SO2(3).GT.SO2T(I)                 1530
145     C          WCT=(AH.GT.AHT(I)).OR.(RAIN.GT.RAINT(I)) 1540
146     C          SUNNY=HV.GT.HVT(I)                     1550
147     C          OZONE=PCOX(2).GT.PCOXT(I)               1560
148     C          ANYPOLL=SULFOX.OR.SUSPART.OR.OZONE       1570

```

149	C SET DEFAULT WASHING INTERVAL	1580
150		1590
151	WASHINT(I)='B'	1600
152		1610
153	C TEST FOR EXCEPTIONS	1620
154		1630
155	IF (NEARSEA) WASHINT(I)='A'	1640
156		1650
157	IF (.NOT.NEARSEA.AND.SUSPART.AND.SULFOX) WASHINT(I)='A'	1660
158		1670
159	IF (.NOT.NEARSEA 160 + .AND..NOT.SUSPART	1680
161	+ .AND..NOT.SULFOX	1690
162	+ .AND..NOT.WET) WASHINT(I)='C'	1700
163		1710
164	C SET DEFAULT REPAINT INTERVAL	1720
165		1730
166	REPAINT(I)='B'	1740
167		1750
168	C TEST FOR EXCEPTIONS	1760
169		1770
170	IF (.NOT.SUNNY	1780
171	+ .AND..NOT.OZONE	1790
172	+ .AND..NOT.SULFOX) REPAINT(I)='C'	1800
173		1810
174	IF (SUNNY.AND.OZONE) REPAINT(I)='A'	1820
175		1830
176	IF (SUNNY 177 + .AND..NOT.OZONE	1840
178	+ .AND.SULFOX) REPAINT(I)='A'	1850
179		1860
180	C DEFINE CORROSION SEVERITY	1870
181		1880
182	IF (NEARSEA) CORSEV(I)='AA'	1890
183		1900
184	IF (.NOT.NEARSEA	1910
185	+ .AND.WET	1920
186	+ .AND.ANYPOLL) CORSEV(I)='A'	1930
187		1940
188	IF (.NOT.NEARSEA	1950
189	+ .AND.WET	1960
190	+ .AND..NOT.ANYPOLL) CORSEV(I)='B'	1970
191		1980
192	IF (.NOT.NEARSEA	1990
193	+ .AND..NOT.WET	2000
194	+ .AND.ANYPOLL) CORSEV(I)='B'	2010
195		2020
196	IF (.NOT.NEARSEA	2030
197	+ .AND..NOT.WET	2040
198	+ .AND..NOT.ANYPOLL) CORSEV(I)='C'	2050
199		2060
200	110 CONTINUE	2070
201		2080
202	C PRINT RESULTS	2090
203		2100
204	CALL WRITOUT(PRINTU)	2110
205		2120
206	WRITE(PRINTU,9000) WASHINT,REPAINT,CORSEV	2130
207		2140
208	BASECT=BASECT+1	2150
209	IF (MOD(BASECT,6).EQ.0) CALL LINES(PRINTU,16)	2160
210		2170
211	C LOOP BACK FOR NEXT BASE	2180
212		2190
213	GOTO 160	2200
214		2210
215		2220
216		2230
217	C-----C	2240
218	C EXCEPTION PROCESSING	2250
219		2260
220	C-----C	2270
221	C END-OF-FILE ON INPUT	2280
222		2290
		2300
		2310

223		2320
224	990 CALL LINES(PRINTU,88)	2330
225	CALL EXIT	2340
226		2350
227	C-----C	2360
228	C	2370
229	C FORMAT STATEMENTS	2380
230	C	2390
231	C-----C	2400
232		2410
233	9000 FORMAT ('0','WASHING INTERVAL= ',A2,',', 'A2,	2420
234	+T40,'REPAINT INTERVAL= ',A2,',', 'A2,	2430
235	+T80,'EXPECTED CORROSION DAMAGE= ',A2,',', 'A2,	2440
236	+/'0')	2450
237	END	2460
238		2470

```

1      SUBROUTINE READPAR(IUNIT,OUNIT)          100
2      C-----C                                         110
3      C-----C                                         120
4      C-----C SUBROUTINE TO READ AND PRINT PARAMETERS FROM DATA FILE 130
5      C-----C GIVEN BY IUNIT UPON OUNIT.                         140
6      C-----C                                         150
7      C-----C WRITTEN BY MATT RIZAI AND DAVID J. BURSIK        160
8      C-----C MICHIGAN STATE UNIVERSITY                   170
9      C-----C     08-APR-80                                180
10     C-----C                                         190
11     C-----C                                         200
12     C-----C                                         210
13     C-----C VARIABLE DECLARATIONS                  220
14     C-----C                                         230
15     C-----C                                         240
16     C-----C                                         250
17     C-----C IMPLICIT INTEGER (A-Z)                 260
18     C-----C                                         270
19     C-----C REAL TSF(3),SO2(3),PCOX(2),NO2(3),RH,HV,RAIN,D2C,DEWPT,TEMP 280
20     C-----C REAL APMHUM,AH,AHT(2)                      290
21     C-----C REAL TSFT(2),SO2T(2),PCOXT(2),NO2T(2),RHT(2),HVT(2),RAINT(2),D2CT(300
22     C-----C +2),DEWPTT(2),TEMPT(2)                     310
23     C-----C                                         320
24     C-----C CHARACTER$30 BASENAM,STATE,COUNTY,EPAST,STATYPE    330
25     C-----C CHARACTER$20 BLATLON,ELATLON                  340
26     C-----C CHARACTER$10 WASHINT,GELOC                  350
27     C-----C CHARACTER$60 TITLE,UNDER                  360
28     C-----C                                         370
29     C-----C LOGICAL EOF                           380
30     C-----C                                         390
31     C-----C PARAMETER (PARMU=3,PRINTU=2,DATAU=1)       400
32     C-----C                                         410
33     C-----C COMMON/PARMS/TSFT,SO2T,PCOXT,NO2T,RHT,HVT,RAINT,D2CT,DEWPTT,TEMPT 420
34     C-----C COMMON/FARM2/AHT                      430
35     C-----C COMMON/INREC1/BASENAM,STATE,COUNTY,BLATLON,EPAST,STATYPE    440
36     C-----C COMMON/INREC2/MBAN,TSF,SO2,PCOX,NO2           450
37     C-----C COMMON/INREC3$/ELATLON                  460
38     C-----C COMMON/INREC3/RH,AH,HV,RAIN,D2C,DEWPT,TEMP 470
39     C-----C COMMON/INREC3$/GELOC                  480
40     C-----C                                         490
41     C-----C                                         500
42     C-----C                                         510
43     C-----C PROCEDURE                         520
44     C-----C                                         530
45     C-----C                                         540
46     C-----C                                         550
47     C-----C REWIND IUNIT                      560
48     C-----C                                         570
49     C-----C READ(IUNIT,8)TSFT,SO2T,PCOXT,NO2T,AHT,HVT,RAINT,D2CT,DEWPTT,TEMPT 580
50     C-----C                                         590
51     C-----C AHT(1)=APMHUM(RHT(1),TEMPT(1))            600
52     C-----C AHT(2)=APMHUM(RHT(2),TEMPT(2))            610
53     C-----C                                         620
54     C-----C CALL LINES(OUNIT,10)                    630
55     C-----C                                         640
56     C-----C TITLE='ATMOSPHERIC DATA AND SEVERITY CALCULATIONS' 650
57     C-----C UNDER='-----'                         660
58     C-----C WRITE(OUNIT,9010) TITLE,UNDER,UNDER      670
59     C-----C                                         680
60     C-----C CALL LINES(OUNIT,13)                    690
61     C-----C                                         700
62     C-----C WRITE(OUNIT,9060)TSFT,SO2T,PCOXT,NO2T,AHT,HVT,RAINT,D2CT,DEWPTT,TE710
63     C-----C HVT                                     720
64     C-----C                                         730
65     C-----C CALL LINES(OUNIT,58)                    740
66     C-----C                                         750
67     C-----C 9000 FORMAT(10X,'THRESHOLD VALUES:/'          760
68     C-----C 110X,'-----'//                         770
69     C-----C 110X,'TOTAL SUSPENDED PARTICULATES (TSF, US/PB83)':'F7.1','F7.1/780
70     C-----C 110X,'SULFUR DIOXIDE (SO2, US/PB83)':'F7.1','F7.1/790
71     C-----C 110X,'PHOTOCHEMICAL OXIDANTS (PCOX, US/PB83)':'F7.1','F7.1/800
72     C-----C 110X,'NITROGEN OXIDES (NO2, US/PB83)':'F7.1','F7.1/810
73     C-----C 110X,'ABSOLUTE HUMIDITY (AH, G/NB83)':'F7.1','F7.1/820
74     C-----C 110X,'SUNLIGHT (HV, LANGLEYS)':'F7.1','F7.1/830

```

75	+10Y,'RAINFALL (RAIN, MM)''',F7.1,' ,',F7.1/	840
76	+10X,'DISTANCE TO SEA (D2C, KM)''',F7.1,' ,',F7.1/	850
77	+10X,'DEWPCTINT (DEWPT, DEG-C)''',F7.1,' ,',F7.1/	860
78	+10X,'TEMPERATURE (TEMP, DEG-C)''',F7.1,' ,',F7.1)	870
79		880
80	9010 FORMAT (T3B,A60//'',T38,A60/T38,A60//'',T38,A60)	890
81		900
82	RETURN	910
83	END	920

75 C READ RECORD 1670
76 1680
77 1690
78 READ(UNIT,1,END=999)BASENAM,STATE,COUNTY,PLATLON,EPAST,STATYPE, 1700
79 ↓ WNAME,ELATLON,TSP,S02,PCOX,N02, 1710
80 ↓ GELOC,RH,HV,RAIN,D2C,DEWPT,TEMP 1720
81 1730
82 AH:ABSHUM(RH,TEMP) 1740
83 1750
84 RETURN 1760
85 1770
86 999 EOF=.TRUE. 1780
87 1790
88 RETURN 1800
89 1810
90 END 1820

```

1      SUBROUTINE WRITOUT(UNIT)          1830
2                                         -C 1840
3                                         C 1850
4      SUBROUTINE TO PRINT ATMOSPHERIC DATA RECORDS TO FILE 1860
5      GIVEN BY UNIT.                                         1870
6                                         C 1880
7      WRITTEN BY MATT RIZAI AND DAVID J. BUNSIK           1890
8      MICHIGAN STATE UNIVERSITY                      1900
9      08-APR-80                                         1910
10                                         C 1920
11                                         -C 1930
12                                         C 1940
13      VARIABLE DECLARATIONS                  1950
14                                         C 1960
15                                         -C 1970
16                                         C 1980
17      IMPLICIT INTEGER (A-Z)                 1990
18                                         C 2000
19      REAL TSP(3),SO2(3),PCDX(2),NO2(3),RH,HV,RAIN,D2C,DEWPT,TEMP 2010
20      REAL ARSHUM,AH,AHT(2)                      2020
21      REAL TSPT(2),SO2T(2),PCOXT(2),NO2T(2),RHT(2),HVT(2),RAINT(2),D2CT(2030
22      +2),DEWPTT(2),TEHPT(2)                      2040
23                                         C 2050
24      CHARACTER*30 BASENAM,STATE,COUNTY,EPAST,STATYPE 2060
25      CHARACTER*20 BLATLON,ELATLON                2070
26      CHARACTER*10 WASHINT,GELOC                  2080
27                                         C 2090
28      LOGICAL EOF                                2100
29                                         C 2110
30      PARAMETER (PARMU=3,PRINTU=2,DATAU=1)        2120
31                                         C 2130
32      COMMON/PARMS/TSPT,SO2T,PCOXT,NO2T,RHT,HVT,RAINT,D2CT,DEWPTT,TEMP 2140
33      COMMON/PARM2/AHT                           2150
34      COMMON/INREC1/BASENAM,STATE,COUNTY,BLATLON,EPAST,STATYPE 2160
35      COMMON/INREC2/WBAN,TSP,SO2,PCOX,NO2            2170
36      COMMON/INREC3S/ELATLON                     2180
37      COMMON/INREC3/RH,AH,HV,RAIN,D2C,DEWPT,TEMP 2190
38      COMMON/INREC3S/GELOC                      2200
39                                         C 2210
40                                         -C 2220
41                                         C 2230
42      PROCEDURE                               2240
43                                         C 2250
44                                         -C 2260
45                                         C 2270
46      WRITE(UNIT,9000)BASENAM,STATE,COUNTY,BLATLON,WRAH,GELOC, 2280
47      +EPAST,STATYPE,ELATLON,TSP,SO2,PCOX,NO2,AH,HV,RAIN, 2290
48      +D2C,DEWPT,TEMP                           2300
49                                         C 2310
50      9000 FORMAT('0',A30,10X,'STATE: ',A2,3X,' COUNTY: ',A15,5X,' LOC: ', 2320
51      +A15/ 2330
52      +1X,12('-----')// 2340
53      +1X,'WBAN: ',I5.5,' GELOC: ',A4,T26,'EPA STATION: ',A30,T76, 2350
54      +' TYPE: ',A10,T100,'LOC: ',A15/ 2360
55      +1X,'TSP: ',3F6.1,T26,'SO2: ',3F6.1,T52, 2370
56      +'PCOX: ',2F6.1,T76,'NO2: ',3F6.1/ 2380
57      +1X,'AH: ',F6.1,T14,'HV: ',F5.1,T26,'RAIN: ',F7.1,T52,'D2C: ',F7.1,2390
58      +'T76,'DEWPT: ',F5.1,T100,'TEMP: ',F5.1/ 2400
59      +1X,12('-----') 2410
60                                         C 2420
61      RETURN                                2430
62                                         C 2440
63      END                                     2450

```

```

1      REAL FUNCTION ABSHUM(RH,TEMP)          2460
2      C-----C
3      C-----C
4      C      FUNCTION TO CONVERT RELATIVE HUMIDITY (RH, PERCENT) TO 2470
5      C      ABSOLUTE HUMIDITY (G/M**3) GIVEN TEMPERATURE (TEMP, DEG-C). 2480
6      C-----C
7      C      WRITTEN BY DAVID J. BURSIK           2490
8      C      MICHIGAN STATE UNIVERSITY          2500
9      C      08-APR-80                          2510
10     C-----C
11     C-----C
12     REAL RH,TEMP,XLATE(69)                2520
13
14     INTEGER TADJ                         2530
15
16     DATA XLATE/                          2540
17     +.496,.542,.592,.646,.705,.768,.836,.909,.988,1.047, 2550
18     +1.165,1.264,1.369,1.483,1.605,1.736,1.876,2.026,2.186,2.358, 2560
19     +2.541,2.737,2.946,3.169,3.407,3.660,3.930,4.217,4.523, 2570
20     +4.847, 2580
21     +5.192,5.559,5.947,6.360,6.797,7.260,7.750,8.270,8.819, 2590
22     +9.399,10.01,10.66,11.35,12.07,12.83,13.63,14.44,15.37,16.21, 2600
23     +17.30,18.34,19.43,20.58,21.78,23.05,24.38,25.78,27.24,28.78, 2610
24     +30.38,32.07,33.03,35.68,37.61,39.63,41.75,43.96,46.26,48.67 2620
25     +/ 2630
26
27     C CONVERT TEMPERATURE TO INTEGER INDEX IN RANGE 1-69 2640
28
29     TADJ=IFIX(TEMP+30.5) 2650
30
31     IF (TADJ.LT.1) TADJ=1 2660
32
33     IF (TADJ.GT.69) TADJ=69 2670
34
35     C COMPUTE ABSOLUTE HUMIDITY 2680
36
37     ABSHUM= (RH/100.) * XLATE(TADJ) 2690
38
39
40     RETURN 2700
41     END 2710

```

APPENDIX C

Atmospheric Data and Severity Classifications U.S. Air Force and Air National Guard Airbases in the Continental U.S.: Environmental Data and Corrosion Maintenance Interval Recommendations.

Listed below are threshold values for the various environmental factors used in the corrosion maintenance algorithms. Following these are the reported values for each airbase and the computed maintenance intervals. The methods used to establish the First and Second threshold values are discussed in paragraph 4e. of the main text of this Report. Values in this Appendix, the source from which they were taken, the units, and other information included in the Appendix follows.

All airbases listed on the PACER LIME Interim Severity Classification list (Appendix A) are included in this Appendix with the exception of Albrook AFB Balboa Canal Zone, Anderson AFB Guam, Howard AFB Canal Zone, Kincheloe AFB MI, and Shemya AFB AK. Lockbourne AFB has been renamed Rickenbacker AFB. Base locations and WBAN numbers were taken from the WBAN Station Numbers Master List⁵⁹ prepared at the National Climatic Center, Asheville, NC, August 1978. Geographical Location Codes, GELOC, are from AFM 300-4 Volume XII pages 12-234.002 to 12-234.145.⁶⁰

Environmental Protection Agency, EPA, Monitoring Stations are from EPA-450/2-78-002 "Directory of Air Quality Monitoring Sites Active in 1976."⁶¹ Station type and station location are from the same source.

<u>Station types include:</u>	<u>Abbreviated as:</u>
Commercial	: COMM
Downtown	: DOWNTOWN
Industrial	: IND
Mobile	: MOBILE
Info. not available	: NA
Residential	: RES
Rural	: RURAL

Values for pollutant data are from EPA-450/2-78-002 Part II. Total Suspended Particulates (TSP) values are the first and second 24 hour maximum, and the arithmetic mean in micrograms per cubic meter. Sulfur Dioxide (SO_2) values are the first and second 24 hour maximum, and the arithmetic mean in micrograms per cubic meter. Photochemical oxidants (PCOX) as ozone values are the first and second 1 hour maximum in micrograms per cubic meter. Mean values are not available. Nitrogen Dioxide (NO_2) values are the first and second 24 hour maximum, and the arithmetic mean in micrograms per cubic meter. In cases where only the arithmetic mean was available, the mean is recorded with 0.0 listed for the two maxima.

Absolute Humidity (AH) is the product of relative humidity and the mass of water per cubic meter of water-saturated air at a given temperature.⁴⁸ Mean annual relative humidity (%) and mean annual temperature ($^{\circ}C$) values are from USAF Environmental Technical Applications Center, "Worldwide Airfield Climatic

Data," Vols. I-VIII, 1970.⁵⁴ Dew point (DEWPT) °C values come from USAF ETAC.⁵⁴ Temperature (TEMP) °C, see Absolute Humidity above for source. Solar radiation ($h\nu$) is the mean solar radiation for July in Langley's, and values are from Baldwin, J.L., "Climates of the United States."⁵⁵ Rain data is in millimeters. See Absolute Humidity for source.

Distance to the sea (D2C), kilometers, is from U.S. Department of Commerce, "Sectional Aeronautical Charts."⁵⁷ The value 10,000 is entered if the distance is greater than 4.5 km for computational purposes.

Wherever data was not available, -1.0 is listed for numeric fields and NA for alpha fields.

Maintenance Recommendations:

WASHING INTERVAL = The first letter is the calculated interval using threshold values I. The second letter is the calculated interval using threshold values II.

REPAINT INTERVAL = Same as above.

EXPECTED CORROSION DAMAGE = Same as above.

N.B. These recommendations are based on the listed data, and their validity is subject to the accuracy and availability of such data. If more accurate or more complete data are available, they may be used directly in the Maintenance Algorithms to compute revised recommendations.

ATMOSPHERIC DATA AND SEVERITY CALCULATIONS

THRESHOLD VALUES:

TOTAL SUSPENDED PARTICULATES (TSP, UG/M³): 61.0 , 86.0
SULFUR OXIDES (SO₂, UG/M³): 43.0 , 72.0
PHOTOCHEMICAL OXIDANTS (PODX, UG/M³): 36.0 , 47.0
NITROGEN OXIDES (NO₂, UG/M³): 64.0 , 78.0
ABSOLUTE HUMIDITY (AH, G/M³): 7.1 , 9.0
SUNLIGHT (HV, LANGLEY'S): 599.0 , 649.0
RAINFALL (RAIN, MM): 1250.0 , 1500.0
DISTANCE TO SEA (D2C, KM): 4.5 , 2.0
DEWPPOINT (DEWPT, DEG-C): -1.0 , -1.0
TEMPERATURE (TEMP, DEG-C): 11.0 , 13.0

AL ANG BIRMINGHAM	STATE: AL COUNTY: JEFFERSON	LOC: 03335W 08645W
WBAN: 13818 GELOC: BMKR EPA STATION: BIRMINGHAM TSP: 268.0 232.0 93.0 SO2: 52.0 15.0 6.0 AH: 10.6 HV: 500.0 RAIN: 1346.0	PCDX: 298.0 298.0 D2C: 10000.0	TYPE: DOWNTOWN LOC: 03331N 08648W NO2: 147.0 145.0 60.0 DEWPT: 11.0 TEMP: 18.0
WASHING INTERVAL= B , B	REPAINT INTERVAL= B , B	EXPECTED CORROSION DAMAGE= A , A
ALTUS AFB	STATE: OK COUNTY: JACKSON	LOC: 03440W 09916W
WBAN: 13902 GELOC: AGGN EPA STATION: ALTUS TSP: 142.0 129.0 67.0 SO2: -1.0 -1.0 -1.0 AH: 9.1 HV: 600.0 RAIN: -1.0	PCDX: -1.0 -1.0 D2C: 10000.0	TYPE: COMM LOC: 03439W 09920W NO2: -1.0 -1.0 -1.0 DEWPT: 10.0 TEMP: 18.0
WASHING INTERVAL= B , B	REPAINT INTERVAL= B , C	EXPECTED CORROSION DAMAGE= A , B
ANDREWS AFB	STATE: MD COUNTY: PRINCE GEORGES	LOC: 03849W 07652W
WBAN: 13705 GELOC: AJXF EPA STATION: DC TSP: 354.0 189.0 89.0 SO2: 273.0 246.0 108.0 AH: 7.8 HV: 500.0 RAIN: 1047.0	PCDX: 392.0 333.0 D2C: 10000.0	TYPE: COMM LOC: 03701N 07454W NO2: -1.0 -1.0 -1.0 DEWPT: 10.0 TEMP: 13.0
WASHING INTERVAL= A , A	REPAINT INTERVAL= B , B	EXPECTED CORROSION DAMAGE= A , B
AR ANG FORT SMITH	STATE: AR COUNTY: SEBASTIAN	LOC: 03520W 09422W
WBAN: 03926 GELOC: HMRZ EPA STATION: FT SMITH TSP: 161.0 112.0 81.0 SO2: 11.0 10.0 3.0 AH: 10.2 HV: 550.0 RAIN: 1057.0	PCDX: -1.0 -1.0 D2C: 10000.0	TYPE: COMM LOC: 03523W 05.25W NO2: 75.0 74.0 36.0 DEWPT: 9.0 TEMP: 17.0
WASHING INTERVAL= B , B	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= B , B
BARKSDALE AFB	STATE: LA COUNTY: CADDOBOSSEIER	LOC: 03230W 09340W
WBAN: 13944 GELOC: AMAB EPA STATION: SHREVEPORT TSP: 160.0 145.0 75.0 SO2: 7.0 2.0 3.0 AH: 11.3 HV: 550.0 RAIN: 1168.0	PCDX: -1.0 -1.0 D2C: 10000.0	TYPE: COMM LOC: 03229W 09343W NO2: 73.0 58.0 29.0 DEWPT: 12.0 TEMP: 19.0
WASHING INTERVAL= B , B	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= A , B
DEALE AFB	STATE: CA COUNTY: SUTTER	LOC: 03908W 12124W
WBAN: 93218 GELOC: BAEY EPA STATION: LIVE OAK TSP: 242.0 187.0 121.0 SO2: -1.0 -1.0 -1.0 AH: -1.0 HV: -1.0 RAIN: -1.0	PCDX: -1.0 -1.0 D2C: 10000.0	TYPE: RES LOC: 03916W 12140W NO2: -1.0 -1.0 -1.0 DEWPT: -1.0 TEMP: 0.0
WASHING INTERVAL= B , B	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= B , B

BERGSTROM AFB	STATE: TX COUNTY: TRAVIS	LOC: 03013N 09740W
WBAN: 13904 GELOC: BJRZ EPA STATION: AUSTIN TSP: 193.0 180.0 63.0 SO2: 146.0 76.0 6.0 AH: 12.1 HV: 600.0 RAIN: 772.0	PCDX: 286.0 271.0 BCI: 10000.0	TYPE: COMB NO2: 93.0 79.0 24.0 DEWPT: 13.0 LOC: 03022N 09744W TEMP: 21.0
WASHING INTERVAL= B , B	REPAINT INTERVAL= A , B	EXPECTED CORROSION DAMAGE= A , A
BLYTHEVILLE AFB	STATE: AR COUNTY: MISSISSIPPI	LOC: 03555N 08957W
WBAN: 13814 GELOC: BMR EPA STATION: BLYTHEVILLE TSP: 215.0 147.0 74.0 SO2: 32.0 16.0 4.0 AH: 9.0 HV: 550.0 RAIN: 1217.0	PCDX: -1.0 -1.0 BCI: 10000.0	TYPE: COMB NO2: 74.0 64.0 34.0 DEWPT: 9.0 LOC: 03556N 08334W TEMP: 16.0
WASHING INTERVAL= B , B	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= A , B
BUCKLEY ANGB DENVER	STATE: CO COUNTY: DENVER	LOC: 03945N 10500W
WBAN: 93002 GELOC: CRMU EPA STATION: DENVER TSP: 456.0 381.0 139.0 SO2: 162.0 158.0 29.0 AH: 4.6 HV: 550.0 RAIN: 381.0	PCDX: 329.0 292.0 BCI: 10000.0	TYPE: COMB NO2: 204.0 185.0 67.0 DEWPT: 2.0 LOC: 03945N 10459W TEMP: 9.0
WASHING INTERVAL= B , B	REPAINT INTERVAL= B , B	EXPECTED CORROSION DAMAGE= B , B
CA ANG FRESNO	STATE: CA COUNTY: FRESNO	LOC: 03646N 11942W
WBAN: 23104 GELOC: HAYW EPA STATION: FRESNO TSP: 307.0 285.0 132.0 SO2: 12.0 12.0 3.0 AH: 9.1 HV: 650.0 RAIN: 264.0	PCDX: 431.0 372.0 BCI: 10000.0	TYPE: COMB NO2: 147.0 133.0 58.0 DEWPT: 10.0 LOC: 03646N 11945W TEMP: 17.0
WASHING INTERVAL= B , B	REPAINT INTERVAL= A , A	EXPECTED CORROSION DAMAGE= A , A
CA ANG OAKLAND	STATE: CA COUNTY: ALAMEDA	LOC: 03748N 12220W
WBAN: 23205 GELOC: SERH EPA STATION: OAKLAND TSP: 167.0 164.0 63.0 SO2: 12.0 11.0 4.0 AH: 8.8 HV: 650.0 RAIN: 439.0	PCDX: -1.0 -1.0 BCI: 15	TYPE: COMB NO2: 243.0 194.0 60.0 DEWPT: 8.0 LOC: 03748N 12216W TEMP: 14.0
WASHING INTERVAL= A , A	REPAINT INTERVAL= B , B	EXPECTED CORROSION DAMAGE= AA, AA
CA ANG VAN NUYS	STATE: CA COUNTY: LOS ANGELES	LOC: 03413N 11830W
WBAN: 23130 GELOC: XBTB EPN STATION: LOS ANGELES TSP: 240.0 235.0 109.0 SO2: 185.0 194.0 52.0 AH: 9.3 HV: 650.0 RAIN: 287.9	PCDX: -1.0 -1.0 BCI: 10000.0	TYPE: COMB NO2: 349.0 279.0 135.0 DEWPT: 10.0 LOC: 03403N 11815W TEMP: 17.0
WASHING INTERVAL= A , B	REPAINT INTERVAL= A , B	EXPECTED CORROSION DAMAGE= A , A

CANNON AFB	STATE: NM	COUNTY: CURREY	LOC: 0342SW 1030SW
MWAN: 23077 GELOC: CZQZ EPA STATION: CLOVIS TSP: 253.0 241.0 98.0 SO2: -1.0 -1.0 -1.0 AH: 6.2 HV: 640.0 RAIN: 384.0	PDOX: -1.0 -1.0 B2C: 10000.0	TYPE: COMM NO2: -1.0 -1.0 -1.0 DEMPt: 2.0	LOC: 0342NW 10312W TEMP: 14.0
WASHING INTERVAL= B + B		REPAINT INTERVAL= B + C	EXPECTED CORROSION DAMAGE= B + B
CARSWELL AFB	STATE: TX	COUNTY: TARRANT	LOC: 0324SW 0972SW
MWAN: 13911 GELOC: DDPF EPA STATION: FTWORTH TSP: 141.0 108.0 60.0 SO2: 5.0 7.0 3.0 AH: 10.1 HV: 600.0 RAIN: 772.0	PDOX: 363.0 353.0 B2C: 10000.0	TYPE: RES NO2: 244.0 244.0 25.0 DEMPt: 11.0	LOC: 0324SW 09721W TEMP: 19.0
WASHING INTERVAL= B + B		REPAINT INTERVAL= A + B	EXPECTED CORROSION DAMAGE= A + A
CASTLE AFB	STATE: CA	COUNTY: MERCED	LOC: 0372SW 12034W
MWAN: 23202 GELOC: MRSR EPA STATION: MERCED TSP: 293.0 266.0 132.0 SO2: -1.0 -1.0 -1.0 AH: 9.1 HV: 650.0 RAIN: 279.0	PDOX: 274.0 274.0 B2C: 10000.0	TYPE: COMM NO2: -1.0 -1.0 -1.0 DEMPt: 8.0	LOC: 0371SW 12030W TEMP: 17.0
WASHING INTERVAL= B + B		REPAINT INTERVAL= A + A	EXPECTED CORROSION DAMAGE= A + A
CHARLESTON AFB	STATE: SC	COUNTY: CHARLESTON	LOC: 0325SW 08002W
MWAN: 03857 GELOC: BAFX EPA STATION: CHARLESTON TSP: 124.0 99.0 53.0 SO2: 35.0 35.0 5.0 AH: 12.3 HV: 500.0 RAIN: 1196.0	PDOX: -1.0 -1.0 B2C: 4.0	TYPE: COMM NO2: 99.0 91.0 44.0 DEMPt: 13.0	LOC: 0324SW 08000W TEMP: 19.0
WASHING INTERVAL= A + B		REPAINT INTERVAL= C + C	EXPECTED CORROSION DAMAGE= AA + B
COLUMBUS AFB	STATE: MS	COUNTY: LOWNDES	LOC: 0333SW 08827W
MWAN: 13825 GELOC: EEPZ EPA STATION: COLUMBUS TSP: 123.0 116.0 48.0 SO2: -1.0 -1.0 -1.0 AH: 10.5 HV: 500.0 RAIN: 1245.0	PDOX: -1.0 -1.0 B2C: 10000.0	TYPE: RES NO2: -1.0 -1.0 -1.0 DEMPt: 11.0	LOC: 0332SW 08825W TEMP: 17.0
WASHING INTERVAL= B + B		REPAINT INTERVAL= C + C	EXPECTED CORROSION DAMAGE= B + B
CRAIG AFB	STATE: AL	COUNTY: BALLAS	LOC: 0322SW 08655W
MWAN: 13850 GELOC: EAAB EPA STATION: SELMA TSP: 120.0 117.0 73.0 SO2: -1.0 -1.0 -1.0 AH: 11.3 HV: 509.0 RAIN: 1298.0	PDOX: -1.0 -1.0 B2C: 10000.0	TYPE: COMM NO2: -1.0 -1.0 -1.0 DEMPt: 13.0	LOC: 0322NW 08701W TEMP: 19.0
WASHING INTERVAL= B + B		REPAINT INTERVAL= C + C	EXPECTED CORROSION DAMAGE= A + B

CT ANG BRADLEY	STATE: CT COUNTY: HARTFORD	LOC: 04156N 07241W
URAN: 54721 GELOC: CEXT EPA STATION: EAST WINDSOR TSP: 144.0 115.0 75.0 SO2: 50.0 29.0 12.0 AH: 6.3 HV: 450.0 RAIN: 1095.0	PCDX: -1.0 -1.0 B2C: 10000.0	TYPE: IND LOC: 04155N 07237W NO2: 123.0 98.0 60.0 DEPT: 3.0 TEMP: 10.0
WASHING INTERVAL= B + C	REPAINT INTERVAL= C + C	EXPECTED CORROSION DAMAGE= B + C
DAVIS MONTHAN AFB	STATE: AZ COUNTY: PIKA	LOC: 03210W 11053W
URAN: 23109 GELOC: FIMV EPA STATION: TUCSON TSP: 264.0 151.0 78.0 SO2: -1.0 -1.0 -1.0 AH: 7.0 HV: 600.0 RAIN: 249.0	PCDX: -1.0 -1.0 B2C: 10000.0	TYPE: COMM LOC: 03212W 11052W NO2: -1.0 -1.0 -1.0 DEPT: 3.0 TEMP: 21.0
WASHING INTERVAL= B + C	REPAINT INTERVAL= B + C	EXPECTED CORROSION DAMAGE= B + C
DE ANG WILMINGTON	STATE: DE COUNTY: NEW CASTLE	LOC: 03941N 07536W
URAN: 13708 GELOC: ZBZU EPA STATION: WILMINGTON TSP: 165.0 131.0 92.0 SO2: 148.0 116.0 44.0 AH: 8.1 HV: 500.0 RAIN: 1113.0	PCDX: -1.0 -1.0 B2C: 2.8	TYPE: COMM LOC: 03944N 07533W NO2: -1.0 -1.0 -1.0 DEPT: 7.0 TEMP: 13.0
WASHING INTERVAL= A + B	REPAINT INTERVAL= B + C	EXPECTED CORROSION DAMAGE= AA, B
DODDINS AFB	STATE: GA COUNTY: CORDELE	LOC: 03355W 08431W
URAN: 13864 GELOC: FENW EPA STATION: MARIETTA TSP: 77.0 76.0 43.0 SO2: -1.0 -1.0 -1.0 AH: 9.8 HV: 500.0 RAIN: 1171.0	PCDX: -1.0 -1.0 B2C: 10000.0	TYPE: COMM LOC: 03357W 08432W NO2: -1.0 -1.0 -1.0 DEPT: 10.0 TEMP: 16.0
WASHING INTERVAL= B + D	REPAINT INTERVAL= C + C	EXPECTED CORROSION DAMAGE= B + D
DOVER AFB	STATE: DE COUNTY: KENT	LOC: 03909W 07528W
URAN: 13707 GELOC: FJXT EPA STATION: DOVER TSP: 154.0 139.0 67.0 SO2: 15.0 15.0 6.0 AH: 8.3 HV: 500.0 RAIN: 1128.0	PCDX: -1.0 -1.0 B2C: 3.5	TYPE: COMM LOC: 03909W 07530W NO2: -1.0 -1.0 -1.0 DEPT: 8.0 TEMP: 13.0
WASHING INTERVAL= A + C	REPAINT INTERVAL= C + C	EXPECTED CORROSION DAMAGE= AA, C
DULUTH ANG	STATE: MN COUNTY: ST LOUIS	LOC: 04650W 09211W
URAN: 14913 GELOC: FIMH EPA STATION: DULUTH TSP: 180.0 161.0 43.0 SO2: 11.0 10.0 6.0 AH: 4.7 HV: 550.0 RAIN: 757.0	PCDX: -1.0 -1.0 B2C: 10000.0	TYPE: COMM LOC: 04647W 09206W NO2: 62.0 45.0 29.0 DEPT: 1.0 TEMP: 4.0
WASHING INTERVAL= C + C	REPAINT INTERVAL= C + C	EXPECTED CORROSION DAMAGE= C + C

DYESS AFB	STATE: TX COUNTY: TAYLOR	LOC: 03226N 09951W
WDMN: 13910 GELOC: FMWZ EPA STATION: ADILENE TSP: 137.0 133.0 60.0 SO2: 2.0 2.0 3.0 PCOX: -1.0 -1.0 AH: 8.8 HV: 600.0 RAIN: 643.0 D2C: 10000.0	TYPE: RES NO2: 57.0 46.0 21.0 DEWPT: 8.0	LOC: 03227N 09940W TEMP: 18.0
WASHING INTERVAL= B , C	REPAINT INTERVAL= B , C	EXPECTED CORROSION DAMAGE= B , C
EDWARDS AFB	STATE: CA COUNTY: KERN	LOC: 03454N 11752W
WDMN: 23114 GELOC: FSPM EPA STATION: BAKERSFIELD TSP: 416.0 409.0 171.0 SO2: -1.0 -1.0 -1.0 PCOX: -1.0 -1.0 AH: 6.7 HV: 700.0 RAIN: 89.0 D2C: 10000.0	TYPE: COMM NO2: -1.0 -1.0 -1.0 DEWPT: 2.0	LOC: 03521N 11901W TEMP: 17.0
WASHING INTERVAL= B , D	REPAINT INTERVAL= B , B	EXPECTED CORROSION DAMAGE= B , B
ED.IW	STATE: FL COUNTY: ESCAMBIA	LOC: 03040W 08422W
WDMN: 03842 GELOC: FTFA EPA STATION: PENSACOLA TSP: 183.0 103.0 45.0 SO2: 202.0 179.0 26.0 PCOX: 314.0 306.0 AH: -,0 HV: -1.0 RAIN: -1.0 D2C: 2.0	TYPE: COMM NO2: 110.0 64.0 32.0 DEWPT: -1.0	LOC: 03032N 08712W TEMP: 0.0
WASHING INTERVAL= A , A	REPAINT INTERVAL= B , B	EXPECTED CORROSION DAMAGE= AA, AA
EIELSON AFB	STATE: AK COUNTY: FAIRBANKS	LOC: 06440N 14706W
WDMN: 28407 GELOC: FTOW EPA STATION: FAIRBANKS TSP: 284.0 251.0 123.0 SO2: 22.0 21.0 12.0 PCOX: -1.0 -1.0 AH: 6.4 HV: -1.0 RAIN: 376.0 D2C: 10000.0	TYPE: COMM NO2: 110.0 1P3.0 59.0 DEWPT: 8.0	LOC: 06450N 14743W TEMP: 9.0
WASHING INTERVAL= B , B	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= B , B
ELLSWORTH AFB	STATE: SD COUNTY: MEADE	LOC: 04405N 10303W
WDMN: 24008 GELOC: FXRM EPA STATION: RAPID CITY TSP: 334.0 259.0 95.0 SO2: 2.0 2.0 3.0 PCOX: -1.0 -1.0 AH: 4.9 HV: 600.0 RAIN: 309.0 D2C: 10000.0	TYPE: COMM NO2: -1.0 -1.0 -1.0 DEWPT: 0.0	LOC: 04405N 10315W TEMP: 6.0
WASHING INTERVAL= B , B	REPAINT INTERVAL= B , C	EXPECTED CORROSION DAMAGE= B , B
ELMENDORF AFB	STATE: AK COUNTY: ANCHORAGE	LOC: 06115N 14945W
WDMN: 24401 GELOC: FXSP EPA STATION: ANCHORAGE TSP: -1.0 -1.0 -1.0 SO2: 32.0 25.0 7.0 PCOX: -1.0 -1.0 AH: 4.1 HV: -1.0 RAIN: 430.0 D2C: 1.0	TYPE: IND NO2: -1.0 -1.0 -1.0 DEWPT: 3.0	LOC: 06115N 14959W TEMP: 2.0
WASHING INTERVAL= A , A	REPAINT INTERVAL= C , E	EXPECTED CORROSION DAMAGE= AA, AA

ENGLAND AFB	STATE: LA COUNTY: RAPIDES	LOC: 03120N 09233W
WBAN: 13934 GELOC: GAMM EPA STATION: ALEXANDRIA TSP: 96.0 81.0 41.0 SO2: 10.0 8.0 3.0 PCOX: -1.0 -1.0 AH: 11.7 HV: 500.0 RAIN: 1379.0 D2C: 10000.0	TYPE: COMM NO2: 54.0 53.0 23.0 DEUMPT: 13.0	LOC: 03117N 09228W TEMP: 19.0
WASHING INTERVAL= B , B	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= B , B
FAIRCHILD AFB	STATE: WA COUNTY: SPOKANE	LOC: 04738N 11739W
WBAN: 24114 GELOC: G.MZ EPA STATION: SPOKANE TSP: 235.0 228.0 99.0 SO2: 108.0 107.0 25.0 PCOX: 176.0 137.0 AH: 5.5 HV: 650.0 RAIN: 363.0 D2C: 10000.0	TYPE: RES NO2: 0.0 0.0 48.0 DEUMPT: 1.0	LOC: 04740N 11725W TEMP: 8.0
WASHING INTERVAL= B , B	REPAINT INTERVAL= A , A	EXPECTED CORROSION DAMAGE= B , B
FL ANG JACKSONVILLE	STATE: FL COUNTY: DUVAL	LOC: 03014N 08141W
WBAN: 93837 GELOC: LSGA EPA STATION: JACKSONVILLE TSP: 68.0 68.0 33.0 SO2: 207.0 141.0 28.0 PCOX: -1.0 -1.0 AH: 14.4 HV: 500.0 RAIN: 1168.0 D2C: .5	TYPE: IND NO2: 50.0 35.0 23.0 DEUMPT: 16.0	LOC: 03024N 08134W TEMP: 22.0
WASHING INTERVAL= A , A	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= AA, AA
FORBES AFB	STATE: KS COUNTY: SHAWNEE	LOC: 03857N 09540W
WBAN: 13920 GELOC: GUDE EPA STATION: TOPEKA TSP: 142.0 134.0 70.0 SO2: 9.0 9.0 3.0 PCOX: -1.0 -1.0 AH: 7.6 HV: 550.0 RAIN: 755.0 D2C: 10000.0	TYPE: RES NO2: 74.0 43.0 24.0 DEUMPT: 6.0	LOC: 03902N 09541W TEMP: 13.0
WASHING INTERVAL= B , C	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= A , C
FRANCIS E WARREN AFB	STATE: WY COUNTY: LARAMIE	LOC: 04109N 10448W
WBAN: 94006 GELOC: BYHQ EPA STATION: CHEYENNE TSP: 88.0 78.0 34.0 SO2: 18.0 16.0 4.0 PCOX: -1.0 -1.0 AH: 4.5 HV: 600.0 RAIN: 386.0 D2C: 10000.0	TYPE: COMM NO2: -1.0 -1.0 -1.0 DEUMPT: 3.0	LOC: 04106N 10449W TEMP: 8.0
WASHING INTERVAL= C , C	REPAINT INTERVAL= B , C	EXPECTED CORROSION DAMAGE= C , C
GA ANG TRAVIS	STATE: GA COUNTY: CHATHAM	LOC: 03208N 08112W
WBAN: 03822 GELOC: XBBW EPA STATION: SAVANNAH TSP: 158.0 119.0 64.0 SO2: 10.0 8.0 3.0 PCOX: -1.0 -1.0 AH: -.0 HV: 500.0 RAIN: -1.0 D2C: 10000.0	TYPE: COMM NO2: 84.0 63.0 36.0 DEUMPT: -1.0	LOC: 03205N 08105W TEMP: 0.0
WASHING INTERVAL= B , C	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= B , C

GEORGE AFB	STATE: CA	COUNTY: SAN BERNARDINO	LOC: 03435N 11723W
WEAN: 23131 GELOC: HUUM EPA STATION: VICTORYVILLE TSP: 160.0 133.0 104.0 SD2: -1.0 -1.0 -1.0 AH: 6.2 HV: 650.0 RAIN: 86.0	PCDX: -1.0 -1.0 B2C: 10000.0	TYPE: COMM NO2: 0.0 0.0 34.0 DEWPT: 1.0	LOC: 03432N 11716W TEMP: 17.0
WASHING INTERVAL= B , B	REPAINT INTERVAL= B , B	EXPECTED CORROSION DAMAGE= B , B	
GOODFELLOW AFB	STATE: TX	COUNTY: TOM GREEN	LOC: 03124N 10024W
WEAN: 23017 GELOC: JCSU EPA STATION: SAN ANGELO TSP: 107.0 51.0 55.0 SD2: 2.0 2.0 3.0 AH: 2.6 HV: 600.0 RAIN: 376.0	PCDX: -1.0 -1.0 B2C: 10000.0	TYPE: COMM NO2: 36.0 34.0 14.0 DEWPT: -1.0	LOC: 03128N 10026W TEMP: 0.0
WASHING INTERVAL= C , C	REPAINT INTERVAL= B , C	EXPECTED CORROSION DAMAGE= C , C	
GRAND FORKS AFB	STATE: ND	COUNTY: GRAND FORKS	LOC: 04757N 09724W
WEAN: 94925 GELOC: JFSD EPA STATION: FARSO TSP: 125.0 123.0 67.0 SD2: 2.0 2.0 5.0 AH: 4.5 HV: 550.0 RAIN: 47.0	PCDX: -1.0 -1.0 B2C: 10000.0	TYPE: COMM NO2: 56.0 56.0 53.0 DEWPT: 2.0	LOC: 04652N 09647W TEMP: 4.0
WASHING INTERVAL= B , C	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= B , C	
GRIFFISS AFB	STATE: NY	COUNTY: ONEIDA	LOC: 04314N 07524W
WEAN: 14717 GELOC: JREZ EPA STATION: ROME TSP: 163.0 105.0 59.0 SD2: 57.0 55.0 9.0 AH: 6.2 HV: 450.0 RAIN: 1100.0	PCDX: -1.0 -1.0 B2C: 10000.0	TYPE: COMM NO2: -1.0 -1.0 -1.0 DEWPT: 4.0	LOC: 04313N 07527W TEMP: 8.0
WASHING INTERVAL= C , C	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= C , C	
GRISOM AFB	STATE: IN	COUNTY: MIAMI	LOC: 04039N 08609W
WEAN: 94833 GELOC: CTGC EPA STATION: KOKOMO TSP: 193.0 114.0 66.0 SD2: 74.0 51.0 15.0 AH: 7.0 HV: 500.0 RAIN: 1100.0	PCDX: -1.0 -1.0 B2C: 10000.0	TYPE: COMM NO2: 56.0 40.0 28.0 DEWPT: 5.0	LOC: 04030N 08607W TEMP: 10.0
WASHING INTERVAL= B , C	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= B , C	
HAMILTON AFB	STATE: CA	COUNTY: MARIN	LOC: 03904N 12230W
WEAN: 23211 GELOC: JTZJ EPA STATION: SAN RAFAEL TSP: 170.0 111.0 48.0 SD2: -1.0 -1.0 -1.0 AH: 9.1 HV: 650.0 RAIN: 659.0	PCDX: -1.0 -1.0 B2C: 10000.0	TYPE: COMM NO2: 0.0 0.0 54.0 DEWPT: 9.0	LOC: 03758N 12231W TEMP: 14.0
WASHING INTERVAL= B , B	REPAINT INTERVAL= B , B	EXPECTED CORROSION DAMAGE= B , B	

HANSCOM AFB	STATE: MA	COUNTY: MIDDLESEX	LOC: 04220N 07117W
WBAN: 14702 GELOC: MCNZ EPA STATION: WOMURN TSP: 129.0 90.0 49.0 SO2: 18.0 13.0 8.0 PCDX: -1.0 -1.0 AH: 6.3 HV: 500.0 RAIN: 1199.0 BZC: 10000.0	TYPE: COMM NO2: 85.0 64.0 35.0 DEMPt: 4.0	LOC: 04220N 07109W TEMP: 9.0	
WASHING INTERVAL= C , C	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= C , C	
HICKAM AFB	STATE: HI	COUNTY: HONOLULU	LOC: 02120N 15757W
WBAN: 22504 GELOC: KMB EPA STATION: HONOLULU TSP: 113.0 95.0 52.0 SO2: 32.0 12.0 3.0 PCDX: -1.0 -1.0 AH: 16.1 HV: -1.0 RAIN: 467.0 BZC: .5	TYPE: COMM NO2: 67.0 64.0 37.0 DEMPt: 18.0	LOC: 02119N 15753W TEMP: 25.0	
WASHING INTERVAL= A , A	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= AA, AA	
HILL AFB	STATE: UT	COUNTY: SAN JUAN	LOC: 04107N 11158W
WBAN: 24101 GELOC: KSH EPA STATION: OSBEN TSP: 320.0 301.0 102.0 SO2: 81.0 75.0 21.0 PCDX: -1.0 -1.0 AH: 5.2 HV: 600.0 RAIN: 427.0 BZC: 10000.0	TYPE: COMM NO2: 0.0 0.0 49.0 DEMPt: 1.0	LOC: 04113N 11158W TEMP: 11.0	
WASHING INTERVAL= B , B	REPAINT INTERVAL= B , C	EXPECTED CORROSION DAMAGE= B , B	
HOLLOWAY AFB	STATE: NM	COUNTY: OTERO	LOC: 03251N 10606W
WBAN: 23002 GELOC: KWD EPA STATION: ALAMOGORDO TSP: 478.0 248.0 70.0 SO2: -1.0 -1.0 -1.0 PCDX: -1.0 -1.0 AH: 6.1 HV: 650.0 RAIN: 170.0 BZC: 10000.0	TYPE: COMM NO2: -1.0 -1.0 -1.0 DEMPt: 2.0	LOC: 03254N 10657W TEMP: 17.0	
WASHING INTERVAL= B , C	REPAINT INTERVAL= B , B	EXPECTED CORROSION DAMAGE= B , C	
HONESTEAD AFB	STATE: FL	COUNTY: BAKER	LOC: 02529N 08024W
WBAN: 12826 GELOC: KYL EPA STATION: HONESTEAD TSP: 78.0 72.0 42.0 SO2: 35.0 20.0 7.0 PCDX: -1.0 -1.0 AH: 15.6 HV: 500.0 RAIN: 1607.0 BZC: 2.5	TYPE: COMM NO2: 40.0 36.0 16.0 DEMPt: 19.0	LOC: 02528N 08029W TEMP: 23.0	
WASHING INTERVAL= A , B	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= AA, B	
IA ANG DES MOINES	STATE: IA	COUNTY: POLK	LOC: 04135N 09337W
WBAN: 14987 GELOC: FFAN EPA STATION: DES MOINES TSP: 173.0 158.0 86.0 SO2: 97.0 93.0 6.0 PCDX: -1.0 -1.0 AH: 6.6 HV: 500.0 RAIN: 796.0 BZC: 10000.0	TYPE: IND NO2: 47.0 45.0 26.0 DEMPt: 4.0	LOC: 04135N 09334W TEMP: 10.0	
WASHING INTERVAL= B , C	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= B , C	

IA ANG SIOUX CITY	STATE: IA COUNTY: WOODBURY	LOC: 04224W 09623N
WBAN: 14906 GELOC: VSSB EPA STATION: SIOUX CITY TSP: 190.0 142.0 72.0 SO2: 12.0 12.0 8.0 AH: 6.3 HV: 550.0 RAIN: 670.0	PCDX: -1.0 -1.0 B2C: 10000.0	TYPE: COMM NO2: -1.0 -1.0 -1.0 DEPT: 3.0 TEMP: 9.0 LOC: 04230W 09024N
WASHING INTERVAL= B , C	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= B , C
IP ANG BOISE	STATE: ID COUNTY: ADA	LOC: 04334W 11613N
WBAN: 24131 GELOC: BXRH EPA STATION: BOISE TSP: -1.0 -1.0 -1.0 SO2: 51.0 49.0 18.0 AH: 5.7 HV: 650.0 RAIN: 340.0	PCDX: -1.0 -1.0 B2C: 10000.0	TYPE: COMM NO2: 96.0 83.0 50.0 DEPT: 1.0 TEMP: 11.0 LOC: 04337W 11612N
WASHING INTERVAL= C , C	REPAINT INTERVAL= B , B	EXPECTED CORROSION DAMAGE= C , C
IL ANG CAPITAL	STATE: IL COUNTY: SANGAMON	LOC: 03950W 08945N
WBAN: 93822 GELOC: BCFT EPA STATION: SPRINGFIELD TSP: 315.0 209.6 95.0 SO2: 352.0 131.0 27.0 AH: 7.5 HV: 500.0 RAIN: 854.0	PCDX: 214.0 208.0 B2C: 10000.0	TYPE: COMM NO2: 60.0 53.0 30.0 DEPT: 6.0 TEMP: 12.0 LOC: 03949W 08935N
WASHING INTERVAL= B , B	REPAINT INTERVAL= B , B	EXPECTED CORROSION DAMAGE= A , B
IL ANG CHICAGO	STATE: IL COUNTY: COOK	LOC: 04159W 08754N
WBAN: 94846 GELOC: WPMB EPA STATION: CHICAGO TSP: 451.0 259.0 74.0 SO2: 133.0 96.0 16.0 AH: 6.3 HV: 500.0 RAIN: 746.0	PCDX: -1.0 -1.0 B2C: 10000.0	TYPE: RES NO2: 350.0 184.0 72.0 DEPT: 3.0 TEMP: 9.0 LOC: 04159W 08747N
WASHING INTERVAL= B , C	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= B , C
IL ANG PEORIA	STATE: IL COUNTY: PEORIA	LOC: 04040W 08941N
WBAN: 14842 GELOC: 1BBT EPA STATION: PEORIA TSP: -1.0 -1.0 -1.0 SO2: 523.0 485.0 140.0 AH: 7.0 HV: 500.0 RAIN: 979.0	PCDX: 208.0 171.0 B2C: 10000.0	TYPE: COMM NO2: -1.0 -1.0 -1.0 DEPT: 5.0 TEMP: 11.0 LOC: 04042W 08935N
WASHING INTERVAL= B , B	REPAINT INTERVAL= B , B	EXPECTED CORROSION DAMAGE= B , B
IN ANG BAKER	STATE: IN COUNTY: ALLEN	LOC: 04101W 08511N
WBAN: 14805 GELOC: ATQZ EPA STATION: FT WAYNE TSP: 191.0 156.0 68.0 SO2: 94.0 84.0 25.0 AH: 6.9 HV: 550.0 RAIN: 973.0	PCDX: -1.0 -1.0 B2C: 10000.0	TYPE: RES NO2: 66.0 65.0 41.0 DEPT: 5.0 TEMP: 10.0 LOC: 04104W 08508N
WASHING INTERVAL= B , C	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= B , C

IN AFB HULMAN	STATE: IN COUNTY: VIGO	LOC: 03927N 08717W
WBAN: 03868 GELOC: LDXF EPA STATION: TERRE HAUTE TSP: 150.0 144.0 75.0 SO2: 107.0 97.0 20.0 AH: 7.7 HV: 550.0 RAIN: 1016.0	PCDX: -1.0 -1.0 D2C: 10000.0	TYPE: CONN LOC: 03928N 08724W NO2: 88.0 86.0 32.0 DEPT: 6.0 TEMP: 12.0
WASHING INTERVAL= B , C	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= A , C
K I SAWYER AFB	STATE: MI COUNTY: MARQUETTE	LOC: 04621N 08724W
WBAN: 14851 GELOC: LMRC EPA STATION: MARQUETTE TSP: 231.0 114.0 45.0 SO2: 62.0 57.0 18.0 AH: 4.8 HV: 500.0 RAIN: 790.0	PCDX: 372.0 294.0 D2C: 10000.0	TYPE: NA LOC: 04632N 08723W NO2: 61.0 54.0 27.0 DEPT: 1.0 TEMP: 4.0
WASHING INTERVAL= C , C	REPAINT INTERVAL= B , B	EXPECTED CORROSION DAMAGE= B , B
KEESLER AFB	STATE: MS COUNTY: JACKSON	LOC: 03025N 08855W
WBAN: 13820 GELOC: MHNG EPA STATION: BILOXI TSP: 103.0 76.0 45.0 SO2: 45.0 41.0 8.0 AH: 12.8 HV: 500.0 RAIN: 1527.0	PCDX: -1.0 -1.0 D2C: 1.0	TYPE: RES LOC: 03024N 08852W NO2: -1.0 -1.0 -1.0 DEPT: 15.0 TEMP: 20.0
WASHING INTERVAL= A , A	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= AA, AA
KELL FLD	STATE: TX COUNTY: WICHITA	LOC: 03358N 09856W
WBAN: 13966 GELOC: YXND EPA STATION: WICHITA FALLS TSP: 201.0 161.0 71.0 SO2: 2.0 2.0 3.0 AH: 8.9 HV: 600.0 RAIN: 684.0	PCDX: -1.0 -1.0 D2C: 10000.0	TYPE: CONN LOC: 03354N 09830W NO2: 53.0 49.0 21.0 DEPT: 8.0 TEMP: 18.0
WASHING INTERVAL= B , C	REPAINT INTERVAL= B , C	EXPECTED CORROSION DAMAGE= A , C
KELLY AFB	STATE: TX COUNTY: BEXAR	LOC: 02923N 09035W
WBAN: 12909 GELOC: KMPJ EPA STATION: SAN ANTONIO TSP: 315.0 130.0 68.0 SO2: 14.0 7.0 3.0 AH: 11.9 HV: 600.0 RAIN: 592.0	PCDX: -1.0 -1.0 D2C: 10000.0	TYPE: CONN LOC: 02925N 09029W NO2: 82.0 73.0 29.0 DEPT: 13.0 TEMP: 21.0
WASHING INTERVAL= B , B	REPAINT INTERVAL= B , C	EXPECTED CORROSION DAMAGE= A , B
KINGSLEY FLD	STATE: OR COUNTY: KLAATH	LOC: 04210N 12144W
WBAN: 94236 GELOC: NFMN EPA STATION: KLAATH FALLS TSP: 200.0 190.0 77.0 SO2: 65.0 15.0 14.0 AH: 5.6 HV: 650.0 RAIN: 538.0	PCDX: -1.0 -1.0 D2C: 10000.0	TYPE: CONN LOC: 04212N 12144W NO2: -1.0 -1.0 -1.0 DEPT: 0.0 TEMP: 9.0
WASHING INTERVAL= B , C	REPAINT INTERVAL= B , B	EXPECTED CORROSION DAMAGE= B , C

KIRTLAND AFB	STATE: NM	COUNTY: MERMILLO	LOC: 03503N 10636W
WBAN: 23004 GELOC: MMWV EPA STATION: ALBUQUERQUE TSP: 197.0 169.0 89.0 SO2: 28.0 26.0 18.0 AH: 5.4 HV: 650.0 RAIN: 153.0	PCDX1: -1.0 -1.0 D2C: 10000.0	TYPE: CONN NO2: 55.0 46.0 30.0 DEPT: 0.0	LOC: 03504N 10634W TEMP: 14.0
WASHING INTERVAL= B , B		REPAINT INTERVAL= B , B	EXPECTED CORROSION DAMAGE= B , B
KY ANG LOUISVILLE	STATE: KY	COUNTY: JEFFERSON	LOC: 03815N 08545W
WBAN: 93893 GELOC: NSOM EPA STATION: LOUISVILLE TSP: 211.0 175.0 96.0 SO2: 335.0 259.0 40.0 AH: 7.8 HV: 500.0 RAIN: 1102.0	PCDX1: 176.0 167.0 D2C: 10000.0	TYPE: CONN NO2: 303.0 143.0 68.0 DEPT: 7.0	LOC: 03815N 08545W TEMP: 13.0
WASHING INTERVAL= B , B		REPAINT INTERVAL= B , B	EXPECTED CORROSION DAMAGE= A , B
LA ANG NEW ORLEANS	STATE: LA	COUNTY: ORLEANS	LOC: 03002N 09004W
WBAN: 93906 GELOC: ROLH EPA STATION: NEW ORLEANS TSP: 119.0 115.0 65.0 SO2: 6.0 6.0 3.0 AH: 13.8 HV: 450.0 RAIN: 1458.0	PCDX1: 231.0 214.0 D2C: 3.0	TYPE: CONN NO2: 48.0 46.0 19.0 DEPT: 15.0	LOC: 02957N 09004W TEMP: 21.0
WASHING INTERVAL= A , B		REPAINT INTERVAL= B , B	EXPECTED CORROSION DAMAGE= AA, A
LANGLEY AFB	STATE: VA	COUNTY: NA	LOC: 03705N 07621W
WBAN: 13702 GELOC: MUHJ EPA STATION: HAMPTON TSP: 109.0 103.0 50.0 SO2: 107.0 100.0 35.0 AH: 9.8 HV: 500.0 RAIN: 1041.0	PCDX1: 249.0 249.0 D2C: .5	TYPE: IND NO2: -1.0 -1.0 -1.0 DEPT: 10.0	LOC: 03700N 07624W TEMP: 16.0
WASHING INTERVAL= A , A		REPAINT INTERVAL= B , B	EXPECTED CORROSION DAMAGE= AA, AA
LAREDO AFB	STATE: TX	COUNTY: MEDO	LOC: 02734N 09931W
WBAN: 12907 GELOC: MUJR EPA STATION: LAREDO TSP: 190.0 144.0 79.0 SO2: -1.0 -1.0 -1.0 AH: 13.5 HV: 600.0 RAIN: 473.0	PCDX1: -1.0 -1.0 D2C: 10000.0	TYPE: CONN NO2: -1.0 -1.0 -1.0 DEPT: 14.0	LOC: 02733N 09930W TEMP: 24.0
WASHING INTERVAL= B , B		REPAINT INTERVAL= B , C	EXPECTED CORROSION DAMAGE= A , B
LAUGHLIN AFB	STATE: TX	COUNTY: VAL VERNE	LOC: 02922N 10047W
WBAN: 22001 GELOC: KQDP EPA STATION: DEL RIO TSP: 78.0 72.0 64.0 SO2: -1.0 -1.0 -1.0 AH: 11.2 HV: 600.0 RAIN: 543.0	PCDX1: -1.0 -1.0 D2C: 10000.0	TYPE: RES NO2: -1.0 -1.0 -1.0 DEPT: 12.0	LOC: 02922N 10055W TEMP: 21.0
WASHING INTERVAL= B , B		REPAINT INTERVAL= B , C	EXPECTED CORROSION DAMAGE= A , B

LITTLE ROCK AFB	STATE: AR COUNTY: PULASKI	LOC: 0345SW 0920SW
WBMN: 03930 GELOC: NWAK EPA STATION: JACKSONVILLE TSP: 109.0 106.0 53.0 SO2: -1.0 -1.0 -1.0 PCOX: -1.0 -1.0 AH: 10.1 HV: 550.0 RAIN: 1278.0 D2C: 10000.0	TYPE: COMM NO2: -1.0 -1.0 -1.0 DEPT: 9.0	LOC: 03452N 09207W TEMP: 17.9
WASHING INTERVAL= B , B	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= B , B
LOCKHOURNE- SEE RICKENBACKER	STATE: MA COUNTY: MA	LOC: MA
WBMN: 03003 GELOC: MA EPA STATION: MA TSP: -1.0 -1.0 -1.0 SO2: -1.0 -1.0 -1.0 PCOX: -1.0 -1.0 AH: -0 HV: -1.0 RAIN: -1.0 D2C: 10000.0	TYPE: MA NO2: -1.0 -1.0 -1.0 DEPT: -1.0	LOC: MA TEMP: -1.0
WASHING INTERVAL= C , C	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= C , C
LORING AFB	STATE: ME COUNTY: AROOSTOOK	LOC: 04657N 06753W
WBMN: 14623 GELOC: NRCH EPA STATION: PRESQUE ISLE TSP: 265.0 239.0 99.0 SO2: 59.0 51.0 9.0 PCOX: -1.0 -1.0 AH: 4.8 HV: 500.0 RAIN: 1005.0 D2C: 10000.0	TYPE: COMM NO2: -1.0 -1.0 -1.0 DEPT: 0.0	LOC: 04641N 06759W TEMP: 4.0
WASHING INTERVAL= B , B	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= B , B
LOS ANGELES AFS	STATE: CA COUNTY: LOS ANGELES	LOC: 03356W 11823W
WBMN: 23145 GELOC: NSAB EPA STATION: LOS ANGELES TSP: 240.0 235.0 109.0 SO2: 51.0 45.0 19.0 PCOX: -1.0 -1.0 AH: 10.5 HV: 600.0 RAIN: 318.0 D2C: .5	TYPE: COMM NO2: 349.0 279.0 135.0 DEPT: 11.0	LOC: 03403N 11815W TEMP: 17.0
WASHING INTERVAL= A , A	REPAINT INTERVAL= B , C	EXPECTED CORROSION DAMAGE= AA, AA
LUKE AFB	STATE: AZ COUNTY: MARICOPA	LOC: 03335N 11222W
WBMN: 23111 GELOC: NUEX EPA STATION: PHOENIX TSP: 346.0 297.0 162.0 SO2: 27.0 23.0 6.0 PCOX: 265.0 235.0 AH: 7.8 HV: 600.0 RAIN: 163.0 D2C: 10000.0	TYPE: COMM NO2: 199.0 187.0 82.0 DEPT: 5.0	LOC: 03327N 11204W TEMP: 22.0
WASHING INTERVAL= B , B	REPAINT INTERVAL= A , B	EXPECTED CORROSION DAMAGE= A , B
MA ANG BARNES	STATE: MA COUNTY: PIONEER VALLEY	LOC: 04210W 07243W
WBMN: 14775 GELOC: AXDQ EPA STATION: HOLYoke TSP: 139.0 128.0 58.0 SO2: 117.0 84.0 25.0 PCOX: -1.0 -1.0 AH: 6.2 HV: 450.0 RAIN: 1174.0 D2C: 10000.0	TYPE: IND NO2: 164.0 132.0 62.0 DEPT: 4.0	LOC: 04212N 07238W TEMP: 9.0
WASHING INTERVAL= C , C	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= C , C

MACDILL AFB	STATE: FL COUNTY: HILLSBOROUGH	LOC: 02751N 08231W
WBAN: 12810 GELOC: WYZR EPA STATION: TAMPA TSP: 72.0 66.0 39.0 SO2: 28.0 21.0 6.0 PCOX: -1.0 -1.0 AH: 15.0 HV: 500.0 RAIN: 1130.0 D2C: 1.0	TYPE: MOBILE NO2: 64.0 38.0 17.0 DEWPT: 17.0	LOC: 02750N 08228W TEMP: 23.0
WASHING INTERVAL= A , A	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= AA, AA
MARCH AFB	STATE: CA COUNTY: RIVERSIDE	LOC: 03354N 11715W
WBAN: 23119 GELOC: PCZP EPA STATION: RIVERSIDE TSP: 308.0 233.0 126.0 SO2: -1.0 -1.0 -1.0 PCOX: 666.0 627.0 AH: 8.5 HV: 600.0 RAIN: 224.0 D2C: 10000.0	TYPE: RES NO2: 0.0 0.0 92.0 DEWPT: 6.0	LOC: 03354N 11723W TEMP: 17.0
WASHING INTERVAL= B , B	REPAINT INTERVAL= A , B	EXPECTED CORROSION DAMAGE= A , B
MATHER AFB	STATE: CA COUNTY: SACRAMENTO	LOC: 03834N 12118W
WBAN: 23206 GELOC: PLXL EPA STATION: SACRAMENTO TSP: 156.0 153.0 77.0 SO2: -1.0 -1.0 -1.0 PCOX: 255.0 235.0 AH: 9.3 HV: 650.0 RAIN: 447.0 D2C: 10000.0	TYPE: COMM NO2: 0.0 0.0 50.0 DEWPT: 8.0	LOC: 03834N 12129W TEMP: 17.0
WASHING INTERVAL= B , B	REPAINT INTERVAL= A , A	EXPECTED CORROSION DAMAGE= A , A
MAXWELL AFB	STATE: AL COUNTY: MONTGOMERY	LOC: 03223N 08622W
WBAN: 13821 GELOC: PWRS EPA STATION: MONTGOMERY TSP: 89.0 80.0 46.0 SO2: 17.0 16.0 6.0 PCOX: -1.0 -1.0 AH: 11.2 HV: 500.0 RAIN: 1255.0 D2C: 10000.0	TYPE: COMM NO2: 83.0 81.0 55.0 DEWPT: 13.0	LOC: 03223N 08619W TEMP: 19.0
WASHING INTERVAL= B , B	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= B , B
MCCHORD AFB	STATE: WA COUNTY: PIERCE	LOC: 04709N 12229W
WBAN: 24207 GELOC: PNY EPA STATION: TACOMA TSP: 208.0 188.0 69.0 SO2: 78.0 76.0 17.0 PCOX: -1.0 -1.0 AH: 7.9 HV: 550.0 RAIN: 1043.0 D2C: 10000.0	TYPE: RES NO2: -1.0 -1.0 -1.0 DEWPT: 6.0	LOC: 04714N 12226W TEMP: 11.0
WASHING INTERVAL= B , C	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= A , C
MCLELLAN AFB	STATE: CA COUNTY: SACRAMENTO	LOC: 03840N 12124W
WBAN: 23208 GELOC: PRJY EPA STATION: SACRAMENTO TSP: 184.0 156.0 62.0 SO2: 13.0 11.0 4.0 PCOX: -1.0 -1.0 AH: 9.2 HV: 650.0 RAIN: 587.0 D2C: 10000.0	TYPE: RES NO2: 188.0 141.0 63.0 DEWPT: 8.0	LOC: 03835N 13127W TEMP: 17.0
WASHING INTERVAL= B , B	REPAINT INTERVAL= B , B	EXPECTED CORROSION DAMAGE= A , B

MCCONNELL AFB	STATE: KS COUNTY: BERNICK	LOC: 03737W 09716W
HRAN: 03923 GELOC: PROE EPA STATION: WICHITA TSP: 189.0 145.0 62.0 SO2: 20.0 11.0 4.0 PCDX: -1.0 -1.0 AH: 7.8 HV: 550.0 RAIN: 805.0 B2C: 10000.0	TYPE: COMM NO2: 58.0 57.0 27.0 DEWPT: 6.0	LOC: 03739W 09718W TEMP: 14.0
WASHING INTERVAL= B + C	REPAINT INTERVAL= C + C	EXPECTED CORROSION DAMAGE= A + C
MCCOY AFB	STATE: FL COUNTY: ORANGE	LOC: 02827W 08118W
HRAN: 12841 GELOC: PSAX EPA STATION: ORLANDO TSP: 94.0 86.0 51.0 SO2: 29.0 20.0 6.0 PCDX: 0.0 0.0 AH: 16.3 HV: 500.0 RAIN: 1161.0 B2C: 10000.0	TYPE: COMM NO2: 91.0 76.0 32.0 DEWPT: 16.0	LOC: 02833W 08120W TEMP: 24.0
WASHING INTERVAL= B + B	REPAINT INTERVAL= C + C	EXPECTED CORROSION DAMAGE= B + B
MCGUIRE AFB	STATE: NJ COUNTY: BURLINGTON	LOC: 34331N 07436W
HRAN: 14773 GELOC: PTFL EPA STATION: MA TSP: -1.0 -1.0 -1.0 SO2: -1.0 -1.0 -1.0 PCDX: -1.0 -1.0 AH: 7.7 HV: 500.0 RAIN: 1105.0 B2C: 10000.0	TYPE: MA NO2: -1.0 -1.0 -1.0 DEWPT: 7.0	LOC: MA TEMP: 12.0
WASHING INTERVAL= B + C	REPAINT INTERVAL= C + C	EXPECTED CORROSION DAMAGE= B + C
MD ANG BALTIMORE	STATE: MD COUNTY: BALTIMORE	LOC: 03917W 07637W
HRAN: 13777 GELOC: AYCA EPA STATION: BALTIMORE TSP: -1.0 -1.0 -1.0 SO2: 99.0 88.0 19.0 PCDX: 333.0 314.0 AH: 7.2 HV: 500.0 RAIN: 1087.0 B2C: 10000.0	TYPE: COMM NO2: 0.0 0.0 38.0 DEWPT: 7.0	LOC: 03917W 07637W TEMP: 13.0
WASHING INTERVAL= B + C	REPAINT INTERVAL= B + B	EXPECTED CORROSION DAMAGE= A + B
ME ANG BANGOR	STATE: ME COUNTY: PENOBSCOT	LOC: 04448W 06849W
HRAN: 14806 GELOC: FQMN EPA STATION: BANGOR TSP: 202.0 191.0 71.0 SO2: 197.0 167.0 43.0 PCDX: -1.0 -1.0 AH: 5.7 HV: 500.0 RAIN: 1120.0 B2C: 10000.0	TYPE: COMM NO2: 126.0 103.0 51.0 DEWPT: 2.0	LOC: 04448W 06846W TEMP: 7.0
WASHING INTERVAL= B + C	REPAINT INTERVAL= C + C	EXPECTED CORROSION DAMAGE= B + C
MI ANG BATTLE CREEK	STATE: MI COUNTY: CALHOUN	LOC: 04215W 08510W
HRAN: 94829 GELOC: AYZZ EPA STATION: BATTLE CREEK TSP: 187.0 184.0 58.0 SO2: -1.0 -1.0 -1.0 PCDX: -1.0 -1.0 AH: 6.3 HV: 500.0 RAIN: 848.0 B2C: 10000.0	TYPE: COMM NO2: -1.0 -1.0 -1.0 DEWPT: 4.0	LOC: 04215W 08511W TEMP: 9.0
WASHING INTERVAL= C + C	REPAINT INTERVAL= C + C	EXPECTED CORROSION DAMAGE= C + C

MI ANG SELFRIDGE	STATE: MI	COUNTY: MACOMB	LOC: 04236N 08250W
WBAN: 14804 GELOC: VGM EPA STATION: MT CLEMENS TSP: 148.0 125.0 55.0 SO2: 30.0 26.0 11.0 AH: 6.3 HV: 550.0 RAIN: 717.0	PCDX: -1.0 -1.0 B2C: 10000.0	TYPE: MA NO2: 87.0 63.0 39.0 DEWPT: 4.0	LOC: 04237N 08253W TEMP: 9.0
WASHING INTERVAL= C , C		REPAINT INTERVAL= C , C	
EXPECTED CORROSION DAMAGE= C , C			
MN ANG AFB	STATE: ND	COUNTY: MARD	LOC: 04825N 10121W
WBAN: 94011 GELOC: QAF EPA STATION: MINOT TSP: 204.0 144.0 94.0 SO2: -1.0 -1.0 -1.0 AH: 4.1 HV: 600.0 RAIN: 409.0	PCDX: -1.0 -1.0 B2C: 10000.0	TYPE: COMM NO2: -1.0 -1.0 -1.0 DEWPT: 2.0	LOC: 04815N 10118W TEMP: 4.0
WASHING INTERVAL= B , B		REPAINT INTERVAL= B , C	
EXPECTED CORROSION DAMAGE= B , B			
MN ANG MI STP	STATE: MN	COUNTY: RAMSEY	LOC: 04453N 09313W
WBAN: 14922 GELOC: WDEY EPA STATION: ST PAUL TSP: 272.0 192.0 85.0 SO2: 120.0 68.0 16.0 AH: 5.3 HV: 550.0 RAIN: 727.0	PCDX: -1.0 -1.0 B2C: 10000.0	TYPE: IND NO2: 103.0 100.0 56.0 DEWPT: 1.0	LOC: MA TEMP: 7.0
WASHING INTERVAL= B , C		REPAINT INTERVAL= C , C	
EXPECTED CORROSION DAMAGE= B , C			
MO ANG ROSECRANS	STATE: MO	COUNTY: BUCHANAN	LOC: 03946N 09455W
WBAN: 13993 GELOC: VLYB EPA STATION: ST JOSEPH TSP: 233.0 204.0 89.0 SO2: 0.0 0.0 0.0 AH: 7.2 HV: 550.0 RAIN: 866.0	PCDX: 0.0 0.0 B2C: 10000.0	TYPE: COMM NO2: 0.0 0.0 0.0 DEWPT: 5.0	LOC: 03945N 09450W TEMP: 12.0
WASHING INTERVAL= B , B		REPAINT INTERVAL= C , C	
EXPECTED CORROSION DAMAGE= A , B			
MOODY AFB	STATE: GA	COUNTY: LOWNDES	LOC: 03058N 08312W
WBAN: 13857 GELOC: QSEU EPA STATION: WALDOGA TSP: 87.0 78.0 42.0 SO2: 7.0 7.0 3.0 AH: 12.3 HV: 500.0 RAIN: 1164.0	PCDX: -1.0 -1.0 B2C: 10000.0	TYPE: RES NO2: 54.0 53.0 30.0 DEWPT: 13.0	LOC: 03052N 08317W TEMP: 20.0
WASHING INTERVAL= B , B		REPAINT INTERVAL= C , C	
EXPECTED CORROSION DAMAGE= B , B			
MS ANG JACKSON	STATE: MS	COUNTY: HINRS	LOC: 03228N 09013W
WBAN: 13956 GELOC: LRXY EPA STATION: JACKSON TSP: 150.0 128.0 59.0 SO2: 41.0 39.0 17.0 AH: 11.3 HV: 500.0 RAIN: 1287.0	PCDX: -1.0 -1.0 B2C: 10000.0	TYPE: COMM NO2: -1.0 -1.0 -1.0 DEWPT: 12.0	LOC: 03218N 09011W TEMP: 19.0
WASHING INTERVAL= B , B		REPAINT INTERVAL= C , C	
EXPECTED CORROSION DAMAGE= B , B			

MS AMG KEY FLD	STATE: MS COUNTY: LAUDERDALE	LOC: 03220N 08845W
WDM: 18817 GELOC: M11V EPA STATION: MERIDIAN TSP: 92.0 85.0 46.0 SO2: 26.0 17.0 4.0 PCOX: -1.0 -1.0 AH: 11.2 HV: 500.0 RAIN: 1359.0 B2C: 10000.0	TYPE: RES NO2: -1.0 -1.0 -1.0 DEPT: 12.0	LOC: 03222N 08842W TEMP: 18.0
WASHING INTERVAL= B , B	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= B , B
MT AMG ST FALLS	STATE: MT COUNTY: CASCADE	LOC: 04729N 11122W
WDM: 24143 GELOC: JKSE EPA STATION: ST FALLS TSP: 124.0 124.0 45.0 SO2: -1.0 -1.0 -1.0 PCOX: -1.0 -1.0 AH: 4.5 HV: 600.0 RAIN: 369.0 B2C: 10000.0	TYPE: IND NO2: -1.0 -1.0 -1.0 DEPT: 3.0	LOC: 04729N 11117W TEMP: 8.0
WASHING INTERVAL= C , C	REPAINT INTERVAL= B , C	EXPECTED CORROSION DAMAGE= C , C
MT HOME AFB	STATE: ID COUNTY: ELMORE	LOC: 04303N 11552W
WDM: 24106 GELOC: QYZH EPA STATION: MT HOME TSP: 272.0 170.0 84.0 SO2: 8.0 6.0 3.0 PCOX: -1.0 -1.0 AH: 2.8 HV: -1.0 RAIN: 100.0 B2C: 10000.0	TYPE: COMM NO2: -1.0 -1.0 -1.0 DEPT: 1.0	LOC: 04308N 11541W TEMP: 1.0
WASHING INTERVAL= B , C	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= B , C
NYRTLE BEACH AFB	STATE: SC COUNTY: Horry	LOC: 03341N 07854W
WDM: 13717 GELOC: RBDP EPA STATION: CONWAY TSP: 99.0 78.0 43.0 SO2: 28.9 23.0 4.0 PCOX: -1.0 -1.0 AH: 11.4 HV: 500.0 RAIN: 1309.0 B2C: .5	TYPE: COMM NO2: 64.0 48.0 20.0 DEPT: 13.0	LOC: 03350N 07902W TEMP: 17.0
WASHING INTERVAL= A , A	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= AA, AA
NC AMG DOUGLAS	STATE: NC COUNTY: MECKLENBURG	LOC: 03513N 08068W
WDM: 13881 GELOC: FJRP EPA STATION: CHARLOTTE TSP: 81.0 79.0 43.0 SO2: 46.0 36.0 11.0 PCOX: -1.0 -1.0 AH: 9.3 HV: 500.0 RAIN: 1087.0 B2C: 10000.0	TYPE: IND NO2: 77.0 68.0 39.0 DEPT: 9.0	LOC: 03504N 08054W TEMP: 16.0
WASHING INTERVAL= B , B	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= B , B
ND AMG ST UNIV	STATE: ND COUNTY: CASS	LOC: 04454N 09842W
WDM: 14914 GELOC: GWM EPA STATION: FARGO TSP: 125.0 123.0 67.0 SO2: 2.0 2.0 5.0 PCOX: -1.0 -1.0 AH: 4.8 HV: 550.0 RAIN: 543.0 B2C: 10000.0	TYPE: COMM NO2: 56.0 56.0 53.0 DEPT: 1.0	LOC: 04453N 09847W TEMP: 5.0
WASHING INTERVAL= B , C	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= B , C

NE ANG LINCOLN	STATE: NE COUNTY: LANCASTER	LOC: 04051W 09646N
HRAN: 14904 GELOC: NSCB EPA STATION: LINCOLN TSP: 190.0 160.0 78.0 SO2: 47.0 26.0 6.0 PCOX: -1.0 -1.0 AH: 6.8 HV: 550.0 RAIN: 747.0 D2C: 10000.0	TYPE: COMM NO2: 112.0 91.0 46.0 DEPT: 4.0	LOC: 04058W 09642N TEMP: 11.0
WASHING INTERVAL= B + C	REPAINT INTERVAL= C + C	EXPECTED CORROSION DAMAGE= B + C
MELLIS AFB	STATE: NV COUNTY: CLARK	LOC: 03615W 11502N
HRAN: 23112 GELOC: R40F EPA STATION: LAS VEGAS TSP: 334.0 306.0 134.0 SO2: 49.0 42.0 10.0 PCOX: -1.0 -1.0 AH: 5.0 HV: 650.0 RAIN: 92.0 D2C: 10000.0	TYPE: COMM NO2: 0.0 0.0 34.0 DEPT: 1.0	LOC: 03609W 11509N TEMP: 19.0
WASHING INTERVAL= B + B	REPAINT INTERVAL= B + B	EXPECTED CORROSION DAMAGE= B + B
NJ ANG ATLANTIC CITY	STATE: NJ COUNTY: MA	LOC: 03927W 07435N
HRAN: 13753 GELOC: ADRC EPA STATION: MA TSP: -1.0 -1.0 -1.0 SO2: -1.0 -1.0 -1.0 PCOX: -1.0 -1.0 AH: 8.0 HV: 500.0 RAIN: 1037.0 D2C: 10000.0	TYPE: NA NO2: -1.0 -1.0 -1.0 DEPT: 6.0	LOC: NA TEMP: 12.0
WASHING INTERVAL= B + C	REPAINT INTERVAL= C + C	EXPECTED CORROSION DAMAGE= B + C
MORTON AFB	STATE: CA COUNTY: SAN BERNARDINO	LOC: 03406W 11714N
HRAN: 23122 GELOC: SCEY EPA STATION: SAN BERNARDINO TSP: 242.0 232.0 113.0 SO2: 91.0 79.0 23.0 PCOX: 627.0 588.0 AH: 9.1 HV: 650.0 RAIN: 293.0 D2C: 10000.0	TYPE: COMM NO2: 156.0 154.0 85.0 DEPT: 7.0	LOC: 03404W 11717N TEMP: 18.0
WASHING INTERVAL= B + B	REPAINT INTERVAL= A + A	EXPECTED CORROSION DAMAGE= A + A
NU ANG RENO	STATE: NV COUNTY: WASHOE	LOC: 03930W 11947N
HRAN: 23185 GELOC: UETL EPA STATION: RENO TSP: -1.0 -1.0 -1.0 SO2: 28.0 13.0 4.0 PCOX: 184.0 173.0 AH: 5.3 HV: 650.0 RAIN: 180.0 D2C: 10000.0	TYPE: COMM NO2: 0.0 0.0 139.0 DEPT: 2.0	LOC: 03931W 11946N TEMP: 11.0
WASHING INTERVAL= C + C	REPAINT INTERVAL= A + A	EXPECTED CORROSION DAMAGE= G + D
NY ANG HANCOCK	STATE: NY COUNTY: ONEIDA	LOC: 04307W 07407N
HRAN: 14720 GELOC: KDMT EPA STATION: SYRACUSE TSP: 199.0 142.0 70.0 SO2: 102.0 100.0 44.0 PCOX: 78.0 69.0 AH: 6.5 HV: 500.0 RAIN: 958.0 D2C: 10000.0	TYPE: MOBILE NO2: 0.0 0.0 49.0 DEPT: 3.0	LOC: 04303W 07609N TEMP: 9.0
WASHING INTERVAL= A + C	REPAINT INTERVAL= B + B	EXPECTED CORROSION DAMAGE= B + B

NY ANG NIAGARA FALLS	STATE: NY COUNTY: NIAGARA	LOC: 04304N 07857W
MMAN: 04728 GELOC: RVJV EPA STATION: NIAGARA FALLS TSP: 140.0 133.0 64.0 SO2: 175.0 149.0 30.0 AH: 6.6 HV: 500.0 RAIN: 867.0	PCDX: -1.0 -1.0 D2C: 10000.0	TYPE: COMM NO2: -1.0 -1.0 -1.0 DEWPT: 4.0 LOC: 04304N 07903W TEMP: 9.0
WASHING INTERVAL= B , C	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= B , C
NY ANG SCHENECTADY	STATE: NY COUNTY: SCHENECTADY	LOC: 04251N 07356W
MMAN: 04782 GELOC: VVDZ EPA STATION: SCHENECTADY TSP: -1.0 -1.0 -1.0 SO2: 139.0 134.0 38.0 AH: 6.3 HV: 450.0 RAIN: 901.0	PCDX: 98.0 92.0 D2C: 10000.0	TYPE: RES NO2: 0.0 0.0 31.0 DEWPT: 3.0 LOC: 04248N 07356W TEMP: 9.0
WASHING INTERVAL= C , C	REPAINT INTERVAL= B , B	EXPECTED CORROSION DAMAGE= B , B
NY ANG SUFFOLK	STATE: NY COUNTY: SUFFOLK	LOC: 04052N 07253W
MMAN: 94703 GELOC: WKVJ EPA STATION: SUFFOLK TSP: 93.0 79.0 37.0 SO2: 18.0 18.0 6.0 AH: 7.6 HV: 500.0 RAIN: 874.0	PCDX: -1.0 -1.0 D2C: 10000.0	TYPE: COMM NO2: -1.0 -1.0 -1.0 DEWPT: 3.0 LOC: 04102N 07157W TEMP: 11.0
WASHING INTERVAL= B , C	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= B , C
NY ANG WESTCHESTER	STATE: NY COUNTY: WESTCHESTER	LOC: 04104N 07343W
MMAN: 94745 GELOC: YSSF EPA STATION: WT PLAINS TSP: 115.0 110.0 53.0 SO2: 125.0 99.0 29.0 AH: 7.2 HV: 450.0 RAIN: 1300.0	PCDX: -1.0 -1.0 D2C: 10000.0	TYPE: COMM NO2: -1.0 -1.0 -1.0 DEWPT: 6.0 LOC: 04102N 07346W TEMP: 11.0
WASHING INTERVAL= B , C	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= B , C
OFFUTT AFB	STATE: NB COUNTY: DOUGLAS	LOC: 04107N 09554W
MMAN: 14949 GELOC: S6BP EPA STATION: OMAHA TSP: 211.0 145.0 98.0 SO2: 33.0 33.0 8.0 AH: 6.9 HV: 550.0 RAIN: 760.0	PCDX: -1.0 -1.0 D2C: 10000.0	TYPE: COMM NO2: 72.0 71.0 33.0 DEWPT: 4.0 LOC: 04112N 09554W TEMP: 11.0
WASHING INTERVAL= B , B	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= B , B
OH ANG MANSFIELD	STATE: OH COUNTY: RICHLAND	LOC: 04047N 08231W
MMAN: 14891 GELOC: PDXF EPA STATION: MANSFIELD TSP: 193.0 189.0 69.0 SO2: 103.0 45.0 13.0 AH: 6.7 HV: 500.0 RAIN: 654.0	PCDX: -1.0 -1.0 D2C: 10000.0	TYPE: IND NO2: 204.0 84.0 38.0 DEWPT: 5.0 LOC: 04047N 08231W TEMP: 9.0
WASHING INTERVAL= B , C	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= B , C

OH ANG TOLEDO	STATE: OH COUNTY: LUCAS	LOC: 04139W 08332W
WIND: 14889 GELOC: WYTB EPA STATION: TOLEDO TSP: 136.0 110.0 64.0 SO2: 144.0 75.0 32.0 AH: 6.4 HV: 550.0 RAIN: 732.0	PCOX: -1.0 -1.0 D2C: 10000.0	TYPE: COMM LOC: 04139W 08332W NO2: 106.0 105.0 57.0 DEWPT: 4.0 TEMP: 9.0
WASHING INTERVAL= B , C	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= B , C
OK ANG TULSA	STATE: OK COUNTY: TULSA	LOC: 03612W 09554W
WIND: 13968 GELOC: XHZ6 EPA STATION: TULSA TSP: 192.0 123.0 61.0 SO2: 30.0 14.0 4.0 AH: 8.9 HV: 550.0 RAIN: 930.0	PCOX: -1.0 -1.0 D2C: 10000.0	TYPE: RURAL LOC: 03607W 09551W NO2: 763.0 418.0 132.0 DEWPT: 8.0 TEMP: 16.0
WASHING INTERVAL= B , C	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= B , C
OR ANG PORTLAND	STATE: OR COUNTY: MULTNOMAH	LOC: 04532W 12240W
WIND: 20274 GELOC: TBFJ EPA STATION: PORTLAND TSP: 125.0 105.0 5.0 SO2: 119.0 86.0 19.0 AH: 8.0 HV: 550.0 RAIN: 1723.0	PCOX: -1.0 -1.0 D2C: 10000.0	TYPE: COMM LOC: 04531W 12240W NO2: 102.0 98.0 57.0 DEWPT: 7.0 TEMP: 12.0
WASHING INTERVAL= B , B	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= B , B
OTIS AFB	STATE: MA COUNTY: SE MASS	LOC: 04139W 07031W
WIND: 14704 GELOC: SPBN EPA STATION: FALMOUTH TSP: 100.0 71.0 35.0 SO2: 29.0 28.0 7.0 AH: 7.7 HV: 500.0 RAIN: 1243.0	PCOX: -1.0 -1.0 D2C: 10000.0	TYPE: RES LOC: 04139W 07034W NO2: 49.0 41.0 19.0 DEWPT: 6.0 TEMP: 11.0
WASHING INTERVAL= B , C	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= B , C
PA ANG MIDDLETON	STATE: PA COUNTY: DAUPHIN	LOC: 04012W 07645W
WIND: 14711 GELOC: GERS EPA STATION: MIDDLETON TSP: 183.0 157.0 66.0 SO2: -1.0 -1.0 -1.0 AH: 7.5 HV: 500.0 RAIN: 1016.0	PCOX: -1.0 -1.0 D2C: 10000.0	TYPE: COMM LOC: 04012W 07644W NO2: -1.0 -1.0 -1.0 DEWPT: 6.0 TEMP: 12.0
WASHING INTERVAL= B , C	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= A , C
PA ANG PITTSBURGH	STATE: PA COUNTY: ALLEGHENY	LOC: 04039W 08013W
WIND: 94823 GELOC: THBC EPA STATION: PITTSBURGH TSP: 226.0 165.0 95.0 SO2: 168.0 139.0 54.0 AH: 6.9 HV: 450.0 RAIN: 690.0	PCOX: -1.0 -1.0 D2C: 10000.0	TYPE: COMM LOC: 04026W 08000W NO2: 205.0 129.0 83.0 DEWPT: 4.0 TEMP: 11.0
WASHING INTERVAL= A , B	REPAINT INTERVAL= B , C	EXPECTED CORROSION DAMAGE= B , B

PA ANG WILLOW GROVE	STATE: PA	COUNTY: PHILADELPHIA	LOC: 04012N 07508W
WBAN: 14793 GELOC: ZMM EPA STATION: PHILADELPHIA TSP: 186.0 185.0 81.0 SO2: 291.0 291.0 63.0 PCOX: 333.0 333.0 AH: 6.9 HV: 500.0 RAIN: 1310.0 D2C: 10000.0	Type: RES NO2: 0.0 0.0 81.0 DEPNT: 6.0	LOC: 04000N 07505W TEMP: 12.0	
WASHING INTERVAL= A , C	REPAINT INTERVAL= B , B		EXPECTED CORROSION DAMAGE= A , B
PATRICK AFB	STATE: FL	COUNTY: BREVARD	LOC: 02814N 08036W
WBAN: 12867 GELOC: SXHT EPA STATION: MERRITT IS TSP: 88.0 82.0 35.0 SO2: -1.0 -1.0 -1.0 PCOX: -1.0 -1.0 AH: 16.1 HV: 500.0 RAIN: 1184.0 D2C: .5	Type: CONN NO2: -1.0 -1.0 -1.0 DEPNT: 18.0	LOC: 02837N 08042W TEMP: 23.0	
WASHING INTERVAL= A , A	REPAINT INTERVAL= C , C		EXPECTED CORROSION DAMAGE= AA, AA
PEASE AFB	STATE: NH	COUNTY: ROCKINGHAM	LOC: 04305N 07049W
WBAN: 04743 GELOC: SZDT EPA STATION: PORTSMOUTH TSP: 76.0 74.0 35.0 SO2: 72.0 70.0 22.0 PCOX: -1.0 -1.0 AH: 6.1 HV: 500.0 RAIN: 1123.0 D2C: 1.0	Type: RES NO2: 100.0 90.0 39.0 DEPNT: 3.0	LOC: 04305N 07047W TEMP: 9.0	
WASHING INTERVAL= A , A	REPAINT INTERVAL= C , C		EXPECTED CORROSION DAMAGE= AA, AA
PETERSON AFB	STATE: CO	COUNTY: EL PASO	LOC: 03849N 10442W
WBAN: 23029 GELOC: TDKA EPA STATION: COLORADO SPRINGS TSP: 254.0 236.0 92.0 SO2: -1.0 -1.0 -1.0 PCOX: -1.0 -1.0 AH: 4.8 HV: 600.0 RAIN: 369.0 D2C: 10000.0	Type: CONN NO2: -1.0 -1.0 -1.0 DEPNT: 1.0	LOC: 03849N 10530W TEMP: 9.0	
WASHING INTERVAL= B , B	REPAINT INTERVAL= B , C		EXPECTED CORROSION DAMAGE= B , B
PLATTSBURGH AFB	STATE: NY	COUNTY: CLINTON	LOC: 04441N 07331W
WBAN: 94733 GELOC: THWA EPA STATION: PLATTSBURGH TSP: 57.0 50.0 30.0 SO2: -1.0 -1.0 -1.0 PCOX: -1.0 -1.0 AH: 5.4 HV: 450.0 RAIN: 773.0 D2C: 10000.0	Type: RES NO2: -1.0 -1.0 -1.0 DEPNT: 2.0	LOC: 04442N 07328W TEMP: 7.0	
WASHING INTERVAL= C , C	REPAINT INTERVAL= C , C		EXPECTED CORROSION DAMAGE= C , C
POPE AFB	STATE: NC	COUNTY: CUMBERLAND	LOC: 03500N 07853W
WBAN: 93740 GELOC: TMHK EPA STATION: FAYETTEVILLE TSP: 283.0 158.0 81.0 SO2: 82.0 63.0 11.0 PCOX: -1.0 -1.0 AH: 10.5 HV: 550.0 RAIN: 1210.0 D2C: 10000.0	Type: RES NO2: 81.0 72.0 42.0 DEPNT: 11.0	LOC: 03505N 07850W TEMP: 17.0	
WASHING INTERVAL= B , B	REPAINT INTERVAL= C , C		EXPECTED CORROSION DAMAGE= A , B

RANDOLPH AFB	STATE: TX COUNTY: BEXAR	LOC: 02932N 09817W
WBAN: 12911 GELOC: TYMX EPA STATION: SAN ANTONIO TSP: 283.0 120.0 59.0 SO2: 3.0 3.0 3.0 PCOX: 370.0 347.0 AH: 12.1 HV: 600.0 RAIN: 676.0 D2C: 10000.0	TYPE: RES NO2: 77.0 61.0 23.0 DEWPT: 13.0	LOC: 02930N 09832W TEMP: 21.0
WASHING INTERVAL= B , B	REPAINT INTERVAL= A , B	EXPECTED CORROSION DAMAGE= A , A
REESE AFB	STATE: TX COUNTY: LUBBOCK	LOC: 03336N 10203W
WBAN: 23021 GELOC: UBNY EPA STATION: LUBBOCK TSP: 199.0 190.0 81.0 SO2: 2.0 2.0 3.0 PCOX: -1.0 -1.0 AH: 7.2 HV: 600.0 RAIN: 406.0 D2C: 10000.0	TYPE: COMM NO2: 47.0 40.0 18.0 DEWPT: 4.0	LOC: 03335N 10151W TEMP: 16.0
WASHING INTERVAL= B , C	REPAINT INTERVAL= B , C	EXPECTED CORROSION DAMAGE= A , C
RI ANG THEO GREEN	STATE: RI COUNTY: KENT	LOC: 04144N 07126W
WBAN: 14765 GELOC: WVAI EPA STATION: WARWICK TSP: 80.0 56.0 50.0 SO2: 2.0 2.0 3.0 PCOX: -1.0 -1.0 AH: 6.6 HV: 500.0 RAIN: 1085.0 D2C: 3.5	TYPE: COMM NO2: 22.0 17.0 12.0 DEWPT: 4.0	LOC: 04144N 07124W TEMP: 10.0
WASHING INTERVAL= A , C	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= AA, C
RICHARDS GEBAUER AFB	STATE: MO COUNTY: JACKSON	LOC: 03851N 09433W
WBAN: 03929 GELOC: UEDL EPA STATION: GRANDVIEW TSP: 85.0 83.0 62.0 SO2: -1.0 -1.0 -1.0 PCOX: -1.0 -1.0 AH: 7.7 HV: 550.0 RAIN: 884.0 D2C: 10000.0	TYPE: COMM NO2: -1.0 -1.0 -1.0 DEWPT: 6.0	LOC: 03853N 09432W TEMP: 13.0
WASHING INTERVAL= B , C	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= A , C
RICKENBACKER AFB	STATE: OH COUNTY: FRANKLIN	LOC: 03949N 08255W
WBAN: 13812 GELOC: NLZT EPA STATION: COLUMBUS TSP: 146.0 108.0 53.0 SO2: 0.0 0.0 0.0 PCOX: 0.0 0.0 AH: 7.7 HV: 500.0 RAIN: 871.0 D2C: 10000.0	TYPE: COMM NO2: 0.0 0.0 0.0 DEWPT: 6.0	LOC: 03955N 08253W TEMP: 12.0
WASHING INTERVAL= B , C	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= B , C
ROBINS AFB	STATE: GA COUNTY: BIBB	LOC: 03250N 08338W
WBAN: 93853 GELOC: UHMZ EPA STATION: MACON TSP: 164.0 147.0 65.0 SO2: 25.0 21.0 5.0 PCOX: -1.0 -1.0 AH: 11.3 HV: 500.0 RAIN: 1005.0 D2C: 10000.0	TYPE: RES NO2: 109.0 85.0 40.0 DEWPT: 12.0	LOC: 03248N 08338W TEMP: 19.0
WASHING INTERVAL= B , B	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= A , B

SC ANG MCENTIRE	STATE: SC COUNTY: RICHLAND	LOC: 03358N 08046W
WBAN: 03858 GELOC: PSTE EPA STATION: COLUMBIA TSP: 92.0 87.0 48.0 SO2: 75.0 6.0 4.0 PCOX: -1.0 -1.0 AH: 10.5 HV: 500.0 RAIN: 1092.0 D2C: 10000.0	TYPE: COMM NO2: 73.0 73.0 37.0 DEUPT: 11.0	LOC: 03400W 08103W TEMP: 18.0
WASHING INTERVAL= B , B	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= B , B
SCOTT AFB	STATE: IL COUNTY: ST CLAIR	LOC: 03833N 08951W
WBAN: 13802 GELOC: VDTD EPA STATION: E ST LOUIS TSP: -1.0 -1.0 -1.0 SO2: 261.0 239.0 61.0 PCOX: 302.0 282.0 AH: 7.8 HV: 550.0 RAIN: 1008.0 D2C: 10000.0	TYPE: IND NO2: 100.0 83.0 53.0 DEUPT: 7.0	LOC: 03837N 09009W TEMP: 13.0
WASHING INTERVAL= B , C	REPAINT INTERVAL= B , B	EXPECTED CORROSION DAMAGE= A , B
SD ANG JOE FOSS	STATE: SD COUNTY: MINNEHAHA	LOC: 04334N 09644W
WBAN: 14944 GELOC: LUXC EPA STATION: SIOUX FALLS TSP: 202.0 122.0 60.0 SO2: 49.0 42.0 6.0 PCOX: -1.0 -1.0 AH: 5.4 HV: 550.0 RAIN: 622.0 D2C: 10000.0	TYPE: COMM NO2: -1.0 -1.0 -1.0 DEUPT: 1.0	LOC: 04335N 09644W TEMP: 8.0
WASHING INTERVAL= C , C	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= C , C
SEYMORE JOHNSON AFB	STATE: NC COUNTY: WAYNE	LOC: 03520N 07758W
WBAN: 13713 GELOC: VKAG EPA STATION: GOLDSBORD TSP: 170.0 135.0 74.0 SO2: 36.0 11.0 6.0 PCOX: -1.0 -1.0 AH: 9.7 HV: 500.0 RAIN: 1325.0 D2C: 10000.0	TYPE: COMM NO2: 69.0 67.0 22.0 DEUPT: 10.0	LOC: 03523N 07759W TEMP: 16.0
WASHING INTERVAL= B , B	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= A , B
SHAW AFB	STATE: SC COUNTY: SUMTER	LOC: 03358N 08028W
WBAN: 13849 GELOC: VLSB EPA STATION: SUMTER TSP: 327.0 203.0 70.0 SO2: 74.0 43.0 4.0 PCOX: -1.0 -1.0 AH: 10.5 HV: 500.0 RAIN: 1092.0 D2C: 10000.0	TYPE: COMM NO2: 76.0 62.0 33.0 DEUPT: 11.0	LOC: 03355N 08020W TEMP: 18.0
WASHING INTERVAL= B , B	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= A , B
TINKER AFB	STATE: OK COUNTY: OKLAHOMA	LOC: 03325N 09723W
WBAN: 13919 GELOC: WYK EPA STATION: OKLAHOMA CITY TSP: 135.0 111.0 58.0 SO2: 3.0 5.0 5.0 PCOX: -1.0 -1.0 AH: 8.4 HV: 550.0 RAIN: 631.0 D2C: 10000.0	TYPE: COMM NO2: 67.0 64.0 31.0 DEUPT: 8.0	LOC: 03324N 09729W TEMP: 16.0
WASHING INTERVAL= B , C	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= B , C

TN ANG MCSHEE TYSO	STATE: TN	COUNTY: KNOX	LOC: 03549W 08400N
WBAN: 03851 GELOC: PSXE EPA STATION: KNOXVILLE TSP: 163.0 138.0 78.0 SO2: 44.0 35.0 8.0 AH: 10.2 HV: 500.0 RAIN: 1300.0	PCDX: -1.0 -1.0 D2C: 10000.0	TYPE: IND NO2: 83.0 75.0 44.0 DEWPT: 19.0	LOC: 03546W 08338N TEMP: 17.0
WASHING INTERVAL= B , B	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= A , B	
TN ANG MEMPHIS	STATE: TN	COUNTY: SHELBY	LOC: 03504W 08959N
WBAN: 13862 GELOC: PYJX EPA STATION: MEMPHIS TSP: 113.0 73.0 77.0 SO2: 50.0 33.0 30.0 AH: 10.1 HV: 500.0 RAIN: 1300.0	PCDX: -1.0 -1.0 D2C: 10000.0	TYPE: RES NO2: 123.0 171.0 68.0 DEWPT: 10.0	LOC: 03508W 08959N TEMP: 17.0
WASHING INTERVAL= B , B	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= A , B	
TN ANG NASHVILLE	STATE: TN	COUNTY: DAVIDSON	LOC: 03610W 08647N
WBAN: 93858 GELOC: RHQD EPA STATION: NASHVILLE TSP: 211.0 161.0 87.0 SO2: 49.0 44.0 16.0 AH: 9.7 HV: 500.0 RAIN: 1156.0	PCDX: -1.0 -1.0 D2C: 10000.0	TYPE: IND NO2: 115.0 107.0 65.0 DEWPT: 9.0	LOC: 03611W 08648N TEMP: 16.0
WASHING INTERVAL= B , B	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= A , A	
TRAVIS AFB	STATE: CA	COUNTY: SOLANO	LOC: 03816N 12256W
WBAN: 23202 GELOC: XDAT EPA STATION: VALLEJO TSP: 176.0 136.0 69.0 SO2: 35.0 31.0 5.0 AH: 9.0 HV: 650.0 RAIN: 424.0	PCDX: 372.0 274.0 D2C: 4.0	TYPE: COMM NO2: 0.0 0.0 59.0 DEWPT: 8.0	LOC: 03806N 122.4W TEMP: 16.0
WASHING INTERVAL= A , B	REPAINT INTERVAL= A , A	EXPECTED CORROSION DAMAGE= AA, A	
TX ANG HOUSTON	STATE: TX	COUNTY: HARRIS	LOC: 02946N 09522W
WBAN: 12945 GELOC: CCNN EPA STATION: HOUSTON TSP: 198.0 162.0 95.0 SO2: 56.0 38.0 5.0 AH: 13.6 HV: 550.0 RAIN: 1161.0	PCDX: 582.0 523.0 D2C: 10000.0	TYPE: RES NO2: 106.0 101.0 37.0 DEWPT: 15.0	LOC: 02946N 09513W TEMP: 21.0
WASHING INTERVAL= B , B	REPAINT INTERVAL= B , B	EXPECTED CORROSION DAMAGE= A , A	
TYNDALL AFB	STATE: FL	COUNTY: BAY	LOC: 03004W 08585N
WBAN: 13846 GELOC: XLWU EPA STATION: PANAMA CITY TSP: 137.0 129.0 53.0 SO2: 128.0 20.0 7.0 AH: 13.8 HV: 500.0 RAIN: 1359.0	PCDX: -1.0 -1.0 D2C: 2.0	TYPE: RES NO2: 81.0 28.0 11.0 DEWPT: 16.0	LOC: 03012W 08541W TEMP: 21.0
WASHING INTERVAL= A , A	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= AA, AA	

VA ANG BYRD FLD	STATE: VA	COUNTY: ROANOKE	LOC: 03730N 07720W
WBAN: 13703 GELOC: CVVM EPA STATION: RICHMOND TSP: 158.0 128.0 90.0 SO2: 65.0 57.0 27.0 AH: 8.2 HV: 500.0 RAIN: 1052.0	PCDX: -1.0 -1.0 D2C: 10000.0	TYPE: IND NO2: 105.0 92.0 61.0 DEWPT: 8.0	LOC: 03731N 07726W TEMP: 14.0
WASHING INTERVAL= B , B		REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= A , B
VANCE AFB	STATE: OK	COUNTY: GARFIELD	LOC: 03621N 09755W
WBAN: 13909 GELOC: XTLF EPA STATION: EWID TSP: 140.0 137.0 73.0 SO2: -1.0 -1.0 -1.0 AH: 8.7 HV: 600.0 RAIN: 714.0	PCDX: -1.0 -1.0 D2C: 10000.0	TYPE: COMM NO2: -1.0 -1.0 -1.0 DEWPT: 7.0	LOC: 03623N 09754W TEMP: 16.0
WASHING INTERVAL= B , C		REPAINT INTERVAL= B , C	EXPECTED CORROSION DAMAGE= A , C
VANDENBERG AFB	STATE: CA	COUNTY: SANTA BARBARA	LOC: 03443N 12034W
WBAN: 93223 GELOC: XUMU EPA STATION: SANTA MARIA TSP: 161.0 133.0 89.0 SO2: -1.0 -1.0 -1.0 AH: 8.9 HV: 650.0 RAIN: 315.0	PCDX: -1.0 -1.0 D2C: 2.5	TYPE: COMM NO2: -1.0 -1.0 -1.0 DEWPT: 8.0	LOC: 03450N 12030W TEMP: 13.0
WASHING INTERVAL= A , B		REPAINT INTERVAL= B , B	EXPECTED CORROSION DAMAGE= AA, B
VT ANG BURLINGTON	STATE: VT	COUNTY: CHITTENDEN	LOC: 04428N 07309W
WBAN: 14742 GELOC: CURZ EPA STATION: BURLINGTON TSP: 117.0 105.0 64.0 SO2: 107.0 94.0 24.0 AH: 5.9 HV: 450.0 RAIN: 859.0	PCDX: 196.0 196.0 D2C: 10000.0	TYPE: COMM NO2: -1.0 -1.0 -1.0 DEWPT: 2.0	LOC: 04429N 07312W TEMP: 8.0
WASHING INTERVAL= B , C		REPAINT INTERVAL= B , B	EXPECTED CORROSION DAMAGE= B , B
WA ANG SPOKANE	STATE: WA	COUNTY: SPOKANE	LOC: 04738N 11732W
WBAN: 24157 GELOC: VZBT EPA STATION: SPOKANE TSP: 163.0 162.0 92.0 SO2: -1.0 -1.0 -1.0 AH: 5.7 HV: 650.0 RAIN: 460.0	PCDX: -1.0 -1.0 D2C: 10000.0	TYPE: MOBILE NO2: -1.0 -1.0 -1.0 DEWPT: 1.0	LOC: 04739N 11739W TEMP: 9.0
WASHING INTERVAL= B , B		REPAINT INTERVAL= B , B	EXPECTED CORROSION DAMAGE= B , B
WEBB AFB	STATE: TX	COUNTY: HOWARD	LOC: 03213N 10131W
WBAN: 23005 GELOC: YQAZ EPA STATION: BIG SPRING TSP: 200.0 119.0 68.0 SO2: 2.0 2.0 3.0 AH: 6.1 HV: 600.0 RAIN: 422.0	PCDX: -1.0 -1.0 D2C: 10000.0	TYPE: COMM NO2: 40.0 36.0 19.0 DEWPT: 6.0	LOC: 03215N 10128W TEMP: 16.0
WASHING INTERVAL= B , C		REPAINT INTERVAL= B , C	EXPECTED CORROSION DAMAGE= A , C

WESTOVER AFB	STATE: MA COUNTY: PIONEER VALLEY	LOC: 04212W 07232W
WBAN: 14703 GELOC: YTPM EPA STATION: CHICOPEE TSP: 137.0 121.0 55.0 SO2: 94.0 76.0 27.0 AH: 6.2 HV: 450.0 RAIN: 1151.0	PCOX: -1.0 -1.0 D2C: 10000.0	TYPE: IND NO2: 149.0 134.0 62.0 DEWPT: 4.0 LOC: 04211W 07236W TEMP: 9.0
WASHING INTERVAL= C , C	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= C , C
WHITENAM AFB	STATE: MO COUNTY: BETTIS	LOC: 03843W 09333W
WBAN: 13930 GELOC: YMNG EPA STATION: SEDALIA TSP: 256.0 146.0 63.0 SO2: -1.0 -1.0 -1.0 AH: 7.6 HV: 550.0 RAIN: 874.0	PCOX: -1.0 -1.0 D2C: 10000.0	TYPE: IND NO2: -1.0 -1.0 -1.0 DEWPT: 6.0 LOC: 03841W 09317W TEMP: 13.0
WASHING INTERVAL= B , C	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= A , C
WI ANG GEN MITCHELL	STATE: WI COUNTY: MILWAUKEE	LOC: 04257W 08754W
WBAN: 14839 GELOC: HTUV EPA STATION: MILWAUKEE TSP: 78.0 77.0 47.0 SO2: 8.0 5.0 5.0 AH: 6.0 HV: 500.0 RAIN: 747.0	PCOX: -1.0 -1.0 D2C: 10000.0	TYPE: COMM NO2: 83.0 73.0 47.0 DEWPT: 3.0 LOC: 04302W 08755W TEMP: 8.0
WASHING INTERVAL= C , C	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= C , C
WI ANG MADISON	STATE: WI COUNTY: DANE	LOC: 04308W 08920W
WBAN: 94811 GELOC: NXHE EPA STATION: MADISON TSP: 266.0 120.0 57.0 SO2: 27.0 20.0 12.0 AH: 5.9 HV: 500.0 RAIN: 780.0	PCOX: -1.0 -1.0 D2C: 10000.0	TYPE: COMM NO2: 54.0 52.0 33.0 DEWPT: 3.0 LOC: 04304W 08922W TEMP: 8.0
WASHING INTERVAL= C , C	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= C , C
WI ANG VOLK FLD	STATE: WI COUNTY: LA CROSSE	LOC: 04352W 09115W
WBAN: 14920 GELOC: YAOF EPA STATION: LA CROSSE TSP: 375.0 314.0 101.0 SO2: 34.0 32.0 15.0 AH: 5.9 HV: 500.0 RAIN: 750.0	PCOX: -1.0 -1.0 D2C: 10000.0	TYPE: COMM NO2: 76.0 67.0 42.0 DEWPT: 2.0 LOC: NA TEMP: 8.0
WASHING INTERVAL= B , B	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= B , B
WILLIAMS AFB	STATE: AZ COUNTY: MARICOPA	LOC: 03318W 11140W
WBAN: 23104 GELOC: YZJU EPA STATION: MESA TSP: 264.0 233.0 101.0 SO2: 42.0 40.0 8.0 AH: 7.6 HV: 600.0 RAIN: 186.0	PCOX: -1.0 -1.0 D2C: 10000.0	TYPE: COMM NO2: -1.0 -1.0 -1.0 DEWPT: 4.0 LOC: NA TEMP: 22.0
WASHING INTERVAL= B , B	REPAINT INTERVAL= B , C	EXPECTED CORROSION DAMAGE= A , B

WRIGHT PATTERSON AFB	STATE: OH	COUNTY: MONTGOMERY	LOC: 03949N 08403W
WBAN: 13840 GELOC: ZHTV EPA STATION: DAYTON TSP: 140.0 120.0 71.0 SD2: 205.0 182.0 22.0 AH: 7.5 HV: 550.0 RAIN: 879.0	PCDX: 372.0 353.0 D2C: 10000.0	TYPE: RES NO2: 0.0 0.0 47.0 DEWPT: 6.0	LOC: 03948N 06411W TEMP: 12.0
WASHING INTERVAL= B , C	REPAINT INTERVAL= B , B	EXPECTED CORROSION DAMAGE= A , B	
MURTSWICH AFB	STATE: MI	COUNTY: OSCODA	LOC: 04427N 08324W
WBAN: 14808 GELOC: ZJXD EPA STATION: ALPENA TSP: 440.0 307.0 76.0 SD2: -1.0 -1.0 -1.0 AH: 5.9 HV: 500.0 RAIN: 750.0	PCDX: -1.0 -1.0 D2C: 10000.0	TYPE: NA NO2: -1.0 -1.0 -1.0 DEWPT: 3.0	LOC: 04504N 08325W TEMP: 7.0
WASHING INTERVAL= B , C	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= B , C	
WV ANG KANAWHA CO APRT	STATE: WV	COUNTY: KANAWHA	LOC: 03822N 08134W
WBAN: 13866 GELOC: LYBH EPA STATION: CHARLESTON TSP: 124.0 106.0 54.0 SD2: -1.0 -1.0 -1.0 AH: 8.3 HV: 500.0 RAIN: 1113.0	PCDX: -1.0 -1.0 D2C: 10000.0	TYPE: MOBILE NO2: -1.0 -1.0 -1.0 DEWPT: 7.0	LOC: 03822N 08135W TEMP: 14.0
WASHING INTERVAL= B , C	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= B , C	
WV ANG MARTINSBURG MUNI APRT	STATE: WV	COUNTY: MINERAL	LOC: 03124N 07759W
WBAN: 13734 GELOC: PJYV EPA STATION: KEYSER TSP: 104.0 93.0 51.0 SD2: -1.0 -1.0 -1.0 AH: 7.7 HV: 450.0 RAIN: 923.0	PCDX: -1.0 -1.0 D2C: 10000.0	TYPE: RES NO2: -1.0 -1.0 -1.0 DEWPT: 6.0	LOC: 03926N 07859W TEMP: 12.0
WASHING INTERVAL= B , C	REPAINT INTERVAL= C , C	EXPECTED CORROSION DAMAGE= B , C	