

نظم تحلیل و طراحی

محسن محمدي نژاد

متدولوژي RUP

نظم تحلیل و طراحی

- □ تبدیل نیاز مندی ها به توصیفی که نحوه پیاده سازی سیستم را بیان می کند.
 - □ تكامل معماري مستحكمي براي سيستم

هدف تحليل

□ تبدیل نیازمندی ها به صورتی مناسب برای طراحی (کلاس های تفصیلی و زیرسیستم ها)

□ تحلیل توسط موارد کاربری راهبری می شود.

□ مدل تحلیل یک مدل ایده آل از سیستم بوده که در آن نیازمندی های غیروظیفه مندی و محدودیت های پیاده سازی نادیده گرفته می شود.

هدف طراحي

□ انتقال مدل تحلیل از حالت ایده آل به واقعیت با اعمال محدودیتهای پیاده سازی و نیازمندی های غیر وظیفه مندی

به طور کلی هدف نظم تحلیل و طراحی

تبدیل نیازمندیها به مشخصات تفصیلی است به شکلی که نحوه پیادهسازی سیستم را برای برنامهنویسان به اندازه کافی بیان نماید.

نقش های مهم نظم تحلیل و طراحی

- معمار نرمافزار (Software Architect) وظیفه: هماهنگی فعالیتهای فنی و تولید فرآوردهها در طول پروژه + به دست آوردن ساختار کلی هر دید معماری
- Use-Case Use-Case Subsystem Class Design Test Classes Design Design Design and Packages
- طراح (Designer)
 وظیفه: تشخیص مسئولیتها، اعمال،
 صفات و روابط حاکم بین کلاسها +
 انجام تغییرات لازم جهت پیادهسازی
 مناسب کلاسها

Database Designer

فرآورده های مهم نظم تحلیل و طراحی

- مدل طراحی (Design Model)

 طرح کلی سیستم
 (System Blueprint) شامل کلاسها و روابط آنها را ارائه میدهد
 - مستند معماری نرمافزار (Software) Architecture Document
 - بیان دیدهای گوناگون معماری

مدلسازي

مدلسازی در مرکز همه فعالیتهایی قرار دارد که ما را به سوی تولید نرمافـزار خوب هدایت میکند در واقع مدل میسازیم تا با ساختار و رفتار دلخـواه سیستم مورد نظرمان ارتباط برقرار کنیم، قادر به مصورسازی و کنترل معماری سیستم باشیم، درک بهتری از سیستمی که میسازیم به دسـت بیاوریم به گونهای که بتوانیم فرصتهایی برای سادهسازی و استفاده مجدد فراهم نماییم و مدیریت خطر انجام دهیم.

Grady Booch

چرا مدلسازی می کنیم؟

ا مدلسازی می کنیم تا به درک بهتری از سیستمی که توسعه میدهیم دست یابیم.
آ با مدلسازی چهار هدف حاصل می شود:
□ مدلها در مصورسازی سیستم موجود یا مطلوب به ما کمک می کنند.
🗖 مدل ها امكان تشريح ساختار و رفتار سيستم را فراهم مي آورند.
🗖 مدلها قالبی را در اختیار ما قرار می دهند که در ساخت سیستم ما را راهنمایی می کند.

□ مدلها تصميمات اتخاذ شده را مستند مي كنند

نکاتی در خصوص مدلسازی نرم افزار

- □ انتخاب مدلهای مناسب بر نحوه برخورد با مسئله و شکل گیری راه حل تاثیر به سزایی دارد.
 - □ هر مدل ممكن است با دقت متفاوت و در سطوح مختلفي از جزئيات بيان شود.
 - □ بهترین مدلها آنهایی هستند که به واقعیت مرتبط هستند.
- 🗖 هیچ مدلی به تنهایی کافی نبیست برای مدلسازی یک سیستم به مجموعهای از مدلها نیاز داریم.

سطوح مختلف مدلسازی در مهندسی نرم افزار

متفاوت تجريد	سطوح	مختلف در	با مدلهای	یک سیستم	🗖 امكان نمايش
--------------	------	----------	-----------	----------	---------------

- 🗖 افزايش قدرت
- مسیر یافتن راهکار برای مسئله
- □ مدلسازی نرم افزار از سطوح تجرید بالا به پایین، مسیر دستیابی از صورت مسئله به سمت کد را نشان می دهد.
 - □ هیچ مدلی به تنهایی کافی نیست برای مدلسازی یک سیستم به مجموعهای از مدلها نیاز داریم.

مدلسازي درسطوح تجريد مختلف

مدل کلاس در سطح تجرید بالا

شركت	01	کار میکند برای		فرد
نام: رشته متنی آدرس: رشته متنی	شركت		كارمند	نام: رشته متنی شماره ملی: رشته متنی آدرس: رشته متنی

(الف)

(·)

کد معادل در سطح تجرید پایین

```
class Company {
public:
   String name;
   String address;
   Collection<Person*> employee;
}

class Person {
   public:
    String name;
   String iD;
   String address;
   Company* company;
}
```


زبان مدلسازی نرم افزار UML

 زبانی گرافیکی برای مصورسازی، تصریح، ساخت و مستندسازی فرآوردههای سیستمهای نرمافزاری

■ ارائه در دهه ۹۰ میلادی توسط Grady Booch، سیلادی توسط Jacobson و James Rumaugh

موجب تسهیل ارتباطات، مذاکرات،
 مستندسازی و ارائه سناریوهای مختلف از
 سیستمهای بزرگ و پیچیده شده است

بلوک های سازنده UML

نمودار استقرار

انواع نمودارهای UML

نمودار کلاس

🗖 مجموعه ای از کلاس ها، رابط ها و همکاری های آن ها

□ كلاس: مجموعه اى از اشياء كه داراى ساختار و رفتار مشترك باشند.

سفارش -شماره: عدد صحیح -زمان ثبت: تاریخ -پیشپرداخت: دارد/ندارد -وضعیت: رشته متنی +لغو () +محلسبه هزینه کل سفارش ()

مثالی از نمودار کلاس در UML

مثالی از نمودار کلاس در UML

نمودار مورد کاربری

🗖 مجموعهای از موارد کاربری، بازیگران و ارتباطات میان آنها

🗖 مورد كاربرى: دنبالهاي از عملياتي كه يك سيستم انجام ميدهد تا يك نتيجه قابل مشاهده و

ارزشمند برای فرد استفاده کننده از سیستم فراهم شود.

□ بازیگر: شیء خارج از حیطه سیستم است که مستقیماً با آن در ارتباط است.

□ بیان رفتار سیستم، زیرسیستم یا کلاسها از دیدگاه کاربران

مثالی از نمودار مورد کاربری در UML

