Ch15, ch1.5

EE3230 Lecture 2: CMOS Processing Technology

Ping-Hsuan Hsieh (謝秉璇)

Delta Building R908 EXT 42590 phsieh@ee.nthu.edu.tw

Outline

- CMOS Technology
- Layout Design Rules
- CMOS Process Enhancements
- Manufacturing Issues

CMOS Technologies

- n-well process: p-substrate
- p-well process: n-substrate
- Twin-well process
 - Optimized for each transistor type
- Triple-well process (deep n-well)
 - Good isolation between analog and digital blocks
- BiCMOS process (SiGe)
- Silicon-on-insulator (SOI) process

Process Steps

- Wafer formation
- Photolithography 光管成立!
- Well and channel formation
- Isolation
- Gate oxide
- Gate & source/drain formation
- Contacts and metalization
- Passivation

Schematic and Layout of CMOS Inverter

Cross Section of CMOS Inverter

Photomasks of n-well CMOS Inverter

n-well CMOS Process (I)

(a) (mask #1)
Define n-well diffusion

(c)
LOCOS oxidation(field oxide)

(b) (mask #2)
Define active regions (think oxide)

(d) (mask #3)
Polysilicon gate

n-well CMOS Process (II)

(f) (mask #5) p+ diffusion

(h) (mask #7) Metalization

Cross-Sectional Diagram of MOSFET

Photolithography

- Greek: Photo(light)+lithos(stone)+graph(picture)
 - Carving pictures into stone using light
- Resolution enhancement techniques
 - Optimal proximity correction (OPC): local pre-distortion, phase shift masks (PSM): light diffraction, off-axis illumination: (OAI), contrast enhancement of repetitive pattern

Well and Channel Formation

- Vary portions of donor (n) and acceptor (p)
 - Epitaxy: single-crystal film growth

- process vanidation
- Deposition: chemical vapor deposition + drive-in
- Implantation: ion implantation + diffusion + annealing (standard well and source/drain definition) (する作品)

Silicon Dioxide (SiO₂)

- Wet oxidation
 - Oxidizing atmosphere contains water vapor temp: 900~1000°C, quick for thick field oxide
- Dry oxidation
 - Oxidizing atmosphere is pure oxygen
 temp: ~1200°C, highly controlled thin gate oxide
- Atomic layer deposition
 - Thin chemical layer deposition for various requirement (SiO₂, metal, dielectric)

Isolation: LOCOS

- Local Oxidation of Silicon (LOCOS)
 - Low density, high electrical field: bird's beak shape

Isolation: STI

- Shallow Trench Isolation (STI)
 - High density and better isolation, need chemical mechanical polishing (CMP to planarize the structure

Gate Oxide

thin oxide

- Shorter gate length
 → thinner gate oxide
- Effective Oxide Thickness (EOT)
 - Decrease EOT using stack gate structure with high-k dielectric

Dual gate oxide for core and I/O

Gate & Source/Drain Formation

- Self-aligned poly-silicon (poly) gate
- Lightly doped drain (LDD) structure

LDD & Salicide

lightly-doped drain

LDD

- Short-mannel effect
- Reduce electrical field of drain junction and hot-electron damage
- High sheet resistance
- Salicide: self-aligned silicide
 - Refractory metal to reduce interconnection resistance of gate, source/drain

Chemical mechanical planowization

- CMP
 - Structure planarization for further stack process

Contacts and Metalization

- Contact
 - Poly-to-metal diffusion-to-metal
- VIA
 - Metal-to-metal
- CMP
 - Structure planarization for further stacking processes

Outline

- CMOS Technology
- Layout Design Rules DRC mes
- CMOS Process Enhancements
- Manufacturing Issues

Layout Design Rules (I)

- Design rule: geometric constraint and tolerance for high probability of correct fabrication
 - Feature size, separations, and overlaps
- Well rule: isolation
- Transistor rule: channel quality
 - Poly, active region, n+/p+ implant
- Contact rule: single size for precise process control
- Metal and VIA rule: productivity and conductivity
 - Top metal with wider size, space and VIA rules

Layout Design Rules (II)

N-well process transistors

Layout Design Rules (III)

Layout Design Rules (IV)

Layer	Rule	sign rules for 90nm process Description	90 nm rule
	Rule	Description	90 nm ruie (μm)
Well	1.1	Width	0.75
	1.2	Spacing to well at different potential	1.5
	1.3	Spacing to well at same potential	1.0
Active (diffusion)	2.1	Width	0.15
	2.2	Spacing to active	0.20
	2.3	Source/drain surround by well	0.25
	2.4	Substrate/well contact surround by well	0.25
	2.5	Spacing to active of opposite type	0.30
Poly	3.1	Width	0.09
	3.2	Spacing to poly over field oxide	0.15
	3.2a	Spacing to poly over active	0.15
	3.3	Gate extension beyond active	0.15
	3.4	Active extension beyond poly	0.15
	3.5	Spacing of poly to active	0.10
Select	4.1	Spacing from substrate/well contact to gate	0.25
	4.2	Overlap of active	0.20
	4.3	Overlap of substrate/well contact	0.10
	4.4	Spacing to select	0.30
Contact	5.1, 6.1	Width (exact)	0.12
(to poly or active)	5.2b, 6.2b	Overlap by poly or active	0.01
	5.3, 6.3	Spacing to contact	0.15
	5.4	Spacing to gate	0.10

Design Rule Check (DRC) (I)

- To tolerate non-ideal effects and to guarantee successful device fabrication
- Ex: n-well and active region mask alignment error

Design Rule Check (DRC) (II)

- Exposure and etching variation
- Ex: different contact windows
 - → different contact resistance

alignment rules

resolution rules

Layout vs. Schematic (LVS)

- To esure layout is the same as simulated netlist
 - Check device parameters, interconnects, and I/O ports

Parasitic Extraction (PEX)

• Evaluate RC effects of interconnect (wires)

Gate Layout

- Layout can be very time-consuming
 - Design gates to fit together nicely
 - Build a library of standard cells
- Standard cell design methodology
 - VDD and GND should abut (standard height)
 - Adjacent gates should satisfy design rules
 - NMOS at bottom and PMOS at top
 - All gates include well and substrate contacts

Example: Inverter

Example: NAND3

• 3-input NAND gate

CMOS implementation

