Set of equidistant points: N(x, y, Z	
TP to N = N - P	
$=\langle x+4, \gamma, z \rangle$	/ > x
$ \vec{r} _{p \neq 0} = \sqrt{(\chi + 4)^2 + \chi^2 + z^2}$	
rq 10 N= V-Q =(x-6, y, z)	Finding a plane whoes Prints are equal distance from p and Q.
$ \vec{r}_{a+0} = \sqrt{(x-6)^2 + 7^2 + 2^2}$	
Let r pro N = r aro N	
$\sqrt{(\chi+4)^2+\gamma^2+2^2} = \sqrt{(\chi-6)^2+7^2+2^2}$	
$(x+4)^2 + y^4 + 2x = (x-6)^2 + y^2 + 2x$	
$x^{2} + 8x + 16 = x^{2} - 12x + 36$ $20x = 20$	
$\chi = $	

Define the ne	w plete with	h normal	veeter n	and pain	1 10.
				2	
$\hat{N} = \langle 0, 1, 0 \rangle$)				
				4	1
P = (0,-13,0	77				
Equation for				, , ,	
Laration to	a plave		V	1,7	1
1(y+13)=0			X	prefeud	this is in
				-y divec	ticn
y + 13 = 0					
12					
y = - 13					
equation of the plane that passes through	gh the point $P_0 = (7, 4, 4)$ and i	s parallel to the <i>xy-</i> plane	2.		
the plane.					
			7		
7=4					
			2-9		→

Find equations of the line that is parallel to the z-axis and passes through the midpoint between the two points (0, -3, 3) and (-6, 4, 5). (Enter your answers as a comma-separated list of equations.)

$$\rho = \text{Midpein} + cY (0, -3, 3) \text{ and } (-6, 4, 5) \\
\rho = (\frac{-6}{2}, \frac{4-3}{2}, \frac{5+3}{2}) \\
= (-3, \frac{1}{2}, 4)$$

$$\chi = -3, y = \frac{1}{2}$$

$$x = -3, y = \frac{1}{2}$$

Determine an equation of the sphere with center P(1, 2, -7) that passes through the point Q(2, 4, -9).

$$(x-h)^{2}+(y-k)^{2}+(z-i)^{2}=y^{2}$$
Center at $(1, 2, -7)$

$$(x-1)^{2}+(y-2)^{2}+(z+7)^{2}=y^{2}$$

Passes through
$$(2,4,-9)$$
, solve for r
 $(2-1)^2 + (4-2)^2 + (-9+7)^2 = r^2$
 $1+4+4=r^2$
 $r^2=9$

Final Equation

 $(x-1)^2 + (y-2)^2 + (z+7)^2 = 9$

Find the perpendicular distance from the point P(1, 6, 5) to the y-axis.

Defive point Q as the point on the y-axis closest to P

$$Q = (0,6,0)$$
 $\vec{r}_{a to p} = P - Q$
 $|\vec{r}_{a to p}| = \sqrt{26}$

$$x^2 + y^2 + z^2 + 6x - 10y - 2z = -26$$

Complete the square with the following equations:
$y^2 - _{0y} = 0$ $y^2 - _{0y} + 2S = 2S$
$(\gamma - 5)^2 = 25$ $2^2 - 2 \neq = 6$
$\frac{2^{2}-2z+1}{(z-1)^{2}-1}$
Equation of the sphere
$(x+3)^{2} + (y-5)^{2} + (z-1)^{2} = -26 + 9 + 25 + 1$ $(x+3)^{2} + (y-5)^{2} + (z-1)^{2} = 9$
Center of sphere C= C-3,5,1)
$\overrightarrow{\Upsilon}_{c \text{ fo } p} = C - p$ $= (-8 - 4 - 3)$

