Verifying SPLs using parity games expressing variability

Sjef van Loo 6 November, 2019

Msc Thesis Computer Science and Engineering Supervised by T.A.C. Willemse

Outline

- ► Verification & SPLs
- ► Problem statement
- ► Variability Parity Games & algorithms
- ► Experimental results
- ► Conclusions

Verification

- ► Creating correct software is difficult
- ► Even when testing is done rigorously errors can slip in
- ► Mathematically *model the behaviour* of software (LTS)
- ightharpoonup Mathematically *specify a requirement* (modal μ -calculus
- Check if the model satisfies the requirement

Verification

- ► Creating correct software is difficult
- ► Even when testing is done rigorously errors can slip in
- ► Mathematically *model the behaviour* of software (LTS)
- ightharpoonup Mathematically *specify a requirement* (modal μ -calculus)
- Check if the model satisfies the requirement

Verification

- ► Creating correct software is difficult
- ► Even when testing is done rigorously errors can slip in
- ► Mathematically *model the behaviour* of software (LTS)
- ightharpoonup Mathematically *specify a requirement* (modal μ -calculus)
- ► Check if the model satisfies the requirement

Software product lines

- ► Software product lines are configurable systems
- ► Many variants of the same system, i.e. *software products*
- ▶ e.g. an elevator that can be configured to detect overload
- ► FTSs can be used to model the entire system using *features*
- ► An FTS can be transformed to an LTS given a specific feature assignment

Software product lines

- ► Software product lines are configurable systems
- ► Many variants of the same system, i.e. *software products*
- ▶ e.g. an elevator that can be configured to detect overload
- ► FTSs can be used to model the entire system using *features*
- ► An FTS can be transformed to an LTS given a specific feature assignment

Software product lines

- ► Software product lines are configurable systems
- ► Many variants of the same system, i.e. *software products*
- ▶ e.g. an elevator that can be configured to detect overload
- ► FTSs can be used to model the entire system using *features*
- ► An FTS can be transformed to an LTS given a specific feature assignment

Problem statement

► Find all the products in an SPL that satisfy a requirement

▶ Do so more efficiently than verifying every product independently

Parity game: (V, V_0, V_1, E, Ω) Players 0 (even, \diamondsuit) and 1 (odd, \square)

- ▶ Infinite path starting at some vertex
- ► The winner is determined by the parity of the priority occurring infinitely often
- ▶ Player 1 wins $\{v_1, v_3\}$, using $v_3 \mapsto v_1$
- ▶ Player 0 wins $\{v_2, v_4, v_5\}$, using $v_2 \mapsto v_4$
- \triangleright Solving: Partition the vertices in W_0, W_1

- ightharpoonup Played for a specific configuration $c \in \mathfrak{C}$
- $ightharpoonup W_0^{c_2} = \{v_1, v_3\}, W_1^{c_2} = \{v_2, v_4, v_5\}$
- Solving: Partition the vertices in W_0^c, W_1^c , for every $c \in \mathfrak{C}$

Parity game: (V, V_0, V_1, E, Ω) Players 0 (even, \diamondsuit) and 1 (odd, \square)

- ► Infinite path starting at some vertex
- ► The winner is determined by the parity of the priority occurring infinitely often
- ▶ Player 1 wins $\{v_1, v_3\}$, using $v_3 \mapsto v_1$
- ▶ Player 0 wins $\{v_2, v_4, v_5\}$, using $v_2 \mapsto v_4$
- \triangleright Solving: Partition the vertices in W_0, W_1

- ightharpoonup Played for a specific configuration $c \in \mathfrak{C}$
- $V_0^{c_1} = \emptyset, W_1^{c_1} = \{v_1, \dots, v_5\}$
- Solving: Partition the vertices in W_0^c, W_1^c , for every $c \in \mathfrak{C}$

6

Parity game: (V, V_0, V_1, E, Ω) Players 0 (even, \diamondsuit) and 1 (odd, \square)

- ► Infinite path starting at some vertex
- ► The winner is determined by the parity of the priority occurring infinitely often
- ▶ Player 1 wins $\{v_1, v_3\}$, using $v_3 \mapsto v_1$
- ▶ Player 0 wins $\{v_2, v_4, v_5\}$, using $v_2 \mapsto v_4$
- ▶ Solving: Partition the vertices in W_0, W_1

- ▶ Played for a specific configuration $c \in \mathfrak{C}$

- Solving: Partition the vertices in W_0^c, W_1^c , for every $c \in \mathfrak{C}$

Parity game: (V, V_0, V_1, E, Ω) Players 0 (even, \diamondsuit) and 1 (odd, \square)

- ▶ Infinite path starting at some vertex
- ► The winner is determined by the parity of the priority occurring infinitely often
- ▶ Player 1 wins $\{v_1, v_3\}$, using $v_3 \mapsto v_1$
- ▶ Player 0 wins $\{v_2, v_4, v_5\}$, using $v_2 \mapsto v_4$
- ▶ Solving: Partition the vertices in W_0 , W_1

- ▶ Played for a specific configuration $c \in \mathfrak{C}$
- $ightharpoonup W_0^{c_2} = \{v_1, v_3\}, W_1^{c_2} = \{v_2, v_4, v_5\}$
- Solving: Partition the vertices in W_0^c, W_1^c , for every $c \in \mathfrak{C}$

Parity game: (V, V_0, V_1, E, Ω) Players 0 (even, \diamondsuit) and 1 (odd, \square)

- ▶ Infinite path starting at some vertex
- ► The winner is determined by the parity of the priority occurring infinitely often
- ▶ Player 1 wins $\{v_1, v_3\}$, using $v_3 \mapsto v_1$
- ▶ Player 0 wins $\{v_2, v_4, v_5\}$, using $v_2 \mapsto v_4$
- \triangleright Solving: Partition the vertices in W_0, W_1

- ▶ Played for a specific configuration $c \in \mathfrak{C}$

- Solving: Partition the vertices in W_0^c, W_1^c , for every $c \in \mathfrak{C}$

Parity game: (V, V_0, V_1, E, Ω) Players 0 (even, \diamondsuit) and 1 (odd, \square)

- ► Infinite path starting at some vertex
- ► The winner is determined by the parity of the priority occurring infinitely often
- ▶ Player 1 wins $\{v_1, v_3\}$, using $v_3 \mapsto v_1$
- ▶ Player 0 wins $\{v_2, v_4, v_5\}$, using $v_2 \mapsto v_4$
- \triangleright Solving: Partition the vertices in W_0, W_1

- ▶ Played for a specific configuration $c \in \mathfrak{C}$

- Solving: Partition the vertices in W_0^c, W_1^c , for every $c \in \mathfrak{C}$

Parity game: (V, V_0, V_1, E, Ω) Players 0 (even, \diamondsuit) and 1 (odd, \square)

- ▶ Infinite path starting at some vertex
- ► The winner is determined by the parity of the priority occurring infinitely often
- ▶ Player 1 wins $\{v_1, v_3\}$, using $v_3 \mapsto v_1$
- ▶ Player 0 wins $\{v_2, v_4, v_5\}$, using $v_2 \mapsto v_4$
- ▶ Solving: Partition the vertices in W_0 , W_1

- ▶ Played for a specific configuration $c \in \mathfrak{C}$
- $ightharpoonup W_0^{c_2} = \{v_1, v_3\}, W_1^{c_2} = \{v_2, v_4, v_5\}$
- Solving: Partition the vertices in W_0^c, W_1^c , for every $c \in \mathfrak{C}$

Parity game: (V, V_0, V_1, E, Ω) Players 0 (even, \diamondsuit) and 1 (odd, \square)

- ► Infinite path starting at some vertex
- ► The winner is determined by the parity of the priority occurring infinitely often
- ▶ Player 1 wins $\{v_1, v_3\}$, using $v_3 \mapsto v_1$
- ▶ Player 0 wins $\{v_2, v_4, v_5\}$, using $v_2 \mapsto v_4$
- \triangleright Solving: Partition the vertices in W_0, W_1

- ▶ Played for a specific configuration $c \in \mathfrak{C}$

- Solving: Partition the vertices in W_0^c, W_1^c , for every $c \in \mathfrak{C}$

6

Parity game: (V, V_0, V_1, E, Ω) Players 0 (even, \diamondsuit) and 1 (odd, \square)

- ► Infinite path starting at some vertex
- ► The winner is determined by the parity of the priority occurring infinitely often
- ▶ Player 1 wins $\{v_1, v_3\}$, using $v_3 \mapsto v_1$
- ▶ Player 0 wins $\{v_2, v_4, v_5\}$, using $v_2 \mapsto v_4$
- \triangleright Solving: Partition the vertices in W_0, W_1

- ▶ Played for a specific configuration $c \in \mathfrak{C}$

- Solving: Partition the vertices in W_0^c, W_1^c , for every $c \in \mathfrak{C}$

Parity game: (V, V_0, V_1, E, Ω) Players 0 (even, \diamondsuit) and 1 (odd, \square)

- ► Infinite path starting at some vertex
- ► The winner is determined by the parity of the priority occurring infinitely often
- ▶ Player 1 wins $\{v_1, v_3\}$, using $v_3 \mapsto v_1$
- ▶ Player 0 wins $\{v_2, v_4, v_5\}$, using $v_2 \mapsto v_4$
- \triangleright Solving: Partition the vertices in W_0, W_1

- ▶ Played for a specific configuration $c \in \mathfrak{C}$

- Solving: Partition the vertices in W_0^c, W_1^c , for every $c \in \mathfrak{C}$

Parity game: (V, V_0, V_1, E, Ω) Players 0 (even, \diamondsuit) and 1 (odd, \square)

- ► Infinite path starting at some vertex
- ► The winner is determined by the parity of the priority occurring infinitely often
- ▶ Player 1 wins $\{v_1, v_3\}$, using $v_3 \mapsto v_1$
- ▶ Player 0 wins $\{v_2, v_4, v_5\}$, using $v_2 \mapsto v_4$
- \triangleright Solving: Partition the vertices in W_0, W_1

- ▶ Played for a specific configuration $c \in \mathcal{C}$

- Solving: Partition the vertices in W_0^c, W_1^c , for every $c \in \mathfrak{C}$

Parity game: (V, V_0, V_1, E, Ω) Players 0 (even, \diamondsuit) and 1 (odd, \square)

- ► Infinite path starting at some vertex
- ► The winner is determined by the parity of the priority occurring infinitely often
- ▶ Player 1 wins $\{v_1, v_3\}$, using $v_3 \mapsto v_1$
- ▶ Player 0 wins $\{v_2, v_4, v_5\}$, using $v_2 \mapsto v_4$
- \triangleright Solving: Partition the vertices in W_0, W_1

- ▶ Played for a specific configuration $c \in \mathcal{C}$
- $V_0^{c_1} = \emptyset, W_1^{c_1} = \{v_1, \dots, v_5\}$
- Solving: Partition the vertices in W_0^c, W_1^c , for every $c \in \mathfrak{C}$

Parity game: (V, V_0, V_1, E, Ω) Players 0 (even, \diamondsuit) and 1 (odd, \square)

- ► Infinite path starting at some vertex
- ► The winner is determined by the parity of the priority occurring infinitely often
- ▶ Player 1 wins $\{v_1, v_3\}$, using $v_3 \mapsto v_1$
- ▶ Player 0 wins $\{v_2, v_4, v_5\}$, using $v_2 \mapsto v_4$
- \triangleright Solving: Partition the vertices in W_0, W_1

 $\mathsf{Variability}\ \mathsf{parity}\ \mathsf{game} : \ (V, V_0, V_1, E, \Omega, \mathfrak{C}, heta)$

- ▶ Played for a specific configuration $c \in \mathfrak{C}$
- $V_0^{c_1} = \emptyset, W_1^{c_1} = \{v_1, \dots, v_5\}$
- Solving: Partition the vertices in W_0^c, W_1^c , for every $c \in \mathfrak{C}$

Parity game: (V, V_0, V_1, E, Ω) Players 0 (even, \diamondsuit) and 1 (odd, \square)

- ► Infinite path starting at some vertex
- ► The winner is determined by the parity of the priority occurring infinitely often
- ▶ Player 1 wins $\{v_1, v_3\}$, using $v_3 \mapsto v_1$
- ▶ Player 0 wins $\{v_2, v_4, v_5\}$, using $v_2 \mapsto v_4$
- \triangleright Solving: Partition the vertices in W_0, W_1

- ▶ Played for a specific configuration $c \in \mathfrak{C}$

- Solving: Partition the vertices in W_0^c, W_1^c , for every $c \in \mathfrak{C}$

Parity game: (V, V_0, V_1, E, Ω) Players 0 (even, \diamondsuit) and 1 (odd, \square)

- ► Infinite path starting at some vertex
- ► The winner is determined by the parity of the priority occurring infinitely often
- ▶ Player 1 wins $\{v_1, v_3\}$, using $v_3 \mapsto v_1$
- ▶ Player 0 wins $\{v_2, v_4, v_5\}$, using $v_2 \mapsto v_4$
- \triangleright Solving: Partition the vertices in W_0, W_1

- ▶ Played for a specific configuration $c \in \mathcal{C}$

- Solving: Partition the vertices in W_0^c, W_1^c , for every $c \in \mathfrak{C}$

Parity game: (V, V_0, V_1, E, Ω) Players 0 (even, \diamondsuit) and 1 (odd, \square)

- ► Infinite path starting at some vertex
- ► The winner is determined by the parity of the priority occurring infinitely often
- ▶ Player 1 wins $\{v_1, v_3\}$, using $v_3 \mapsto v_1$
- ▶ Player 0 wins $\{v_2, v_4, v_5\}$, using $v_2 \mapsto v_4$
- ▶ Solving: Partition the vertices in W_0, W_1

- ▶ Played for a specific configuration $c \in \mathfrak{C}$

- Solving: Partition the vertices in W_0^c, W_1^c , for every $c \in \mathfrak{C}$

Parity game: (V, V_0, V_1, E, Ω) Players 0 (even, \diamondsuit) and 1 (odd, \square)

- ► Infinite path starting at some vertex
- ► The winner is determined by the parity of the priority occurring infinitely often
- ▶ Player 1 wins $\{v_1, v_3\}$, using $v_3 \mapsto v_1$
- ▶ Player 0 wins $\{v_2, v_4, v_5\}$, using $v_2 \mapsto v_4$
- ► Solving: Partition the vertices in W_0 , W_1

- ▶ Played for a specific configuration $c \in \mathfrak{C}$
- $V_0^{c_1} = \emptyset, W_1^{c_1} = \{v_1, \dots, v_5\}$
- Solving: Partition the vertices in W_0^c, W_1^c , for every $c \in \mathfrak{C}$

Parity game: (V, V_0, V_1, E, Ω) Players 0 (even, \diamondsuit) and 1 (odd, \square)

- ► Infinite path starting at some vertex
- ► The winner is determined by the parity of the priority occurring infinitely often
- ▶ Player 1 wins $\{v_1, v_3\}$, using $v_3 \mapsto v_1$
- ▶ Player 0 wins $\{v_2, v_4, v_5\}$, using $v_2 \mapsto v_4$
- ► Solving: Partition the vertices in W_0 , W_1

$$(V, V_0, V_1, E, \Omega, \mathfrak{C}, \theta)$$

$$v_1 \longrightarrow \{c_1\} \longrightarrow \{c_2\}$$

$$v_3 \longrightarrow \{c_2\}$$

$$v_4 \longrightarrow \{c_2\}$$

$$v_5 \longrightarrow \{c_2\}$$

$$v_5 \longrightarrow \{c_2\}$$

- ▶ Played for a specific configuration $c \in \mathfrak{C}$

- Solving: Partition the vertices in W_0^c, W_1^c , for every $c \in \mathfrak{C}$

Parity game: (V, V_0, V_1, E, Ω) Players 0 (even, \diamondsuit) and 1 (odd, \square)

- Infinite path starting at some vertex
- ► The winner is determined by the parity of the priority occurring infinitely often
- ightharpoonup Player 1 wins $\{v_1, v_3\}$, using $v_3 \mapsto v_1$
- ightharpoonup Player 0 wins $\{v_2, v_4, v_5\}$, using $v_2 \mapsto v_4$
- ► Solving: Partition the vertices in W_0 , W_1

$$(V, V_0, V_1, \vec{E}, \Omega, \mathfrak{C}, \theta)$$

 $v_1 \stackrel{\frown}{\searrow} \{c_1\} \stackrel{\frown}{\smile} 0 \stackrel{\frown}{\searrow} v_2$ $\mathfrak{C} =$

- Played for a specific configuration $c \in \mathfrak{C}$
- $V_0^{c_1} = \emptyset, W_1^{c_1} = \{v_1, \dots, v_5\}$
- $V_0^{c_2} = \{v_1, v_3\}, W_1^{c_2} = \{v_2, v_4, v_5\}$

Parity game: (V, V_0, V_1, E, Ω) Players 0 (even, \diamondsuit) and 1 (odd, \square)

- ► Infinite path starting at some vertex
- ► The winner is determined by the parity of the priority occurring infinitely often
- ▶ Player 1 wins $\{v_1, v_3\}$, using $v_3 \mapsto v_1$
- ▶ Player 0 wins $\{v_2, v_4, v_5\}$, using $v_2 \mapsto v_4$
- ► Solving: Partition the vertices in W_0 , W_1

$$(V, V_0, V_1, E, \Omega, \mathfrak{C}, \theta)$$

$$v_1 \xrightarrow{3} \{c_1\} \xrightarrow{0} v_2 \mathfrak{C} = \{c_1, c_2\}$$

$$\mathfrak{C} \xrightarrow{\mathfrak{C}} \{c_2\} \xrightarrow{\mathfrak{C}} 1 v_5$$

- lacktriangle Played for a specific configuration $c\in\mathfrak{C}$
- $ightharpoonup W_0^{c_1} = \emptyset, W_1^{c_1} = \{v_1, \dots, v_5\}$
- ▶ Solving: Partition the vertices in W_0^c , W_1^c , for every $c \in \mathfrak{C}$

Parity game: (V, V_0, V_1, E, Ω) Players 0 (even, \diamondsuit) and 1 (odd, \square)

- ► Infinite path starting at some vertex
- ► The winner is determined by the parity of the priority occurring infinitely often
- ▶ Player 1 wins $\{v_1, v_3\}$, using $v_3 \mapsto v_1$
- ▶ Player 0 wins $\{v_2, v_4, v_5\}$, using $v_2 \mapsto v_4$
- ► Solving: Partition the vertices in W_0 , W_1

$$(V, V_0, V_1, E, \Omega, \mathfrak{C}, \theta)$$

$$v_1 \underbrace{3}_{\mathfrak{C}_1} \underbrace{\{c_1\}}_{\mathfrak{C}_2} \underbrace{0}_{\mathfrak{C}_2} \underbrace{v_3}_{\mathfrak{C}_2} \underbrace{1}_{\mathfrak{C}_3} v_5$$

- lacktriangle Played for a specific configuration $c\in \mathfrak{C}$
- $W_0^{c_1} = \emptyset, W_1^{c_1} = \{v_1, \dots, v_5\}$
- $\qquad \qquad \bullet \quad W_0^{c_2} = \{v_1, v_3\}, W_1^{c_2} = \{v_2, v_4, v_5\}$
- ▶ Solving: Partition the vertices in W_0^c , W_1^c , for every $c \in \mathfrak{C}$

Parity game: (V, V_0, V_1, E, Ω) Players 0 (even, \diamondsuit) and 1 (odd, \square)

- ► Infinite path starting at some vertex
- ► The winner is determined by the parity of the priority occurring infinitely often
- ▶ Player 1 wins $\{v_1, v_3\}$, using $v_3 \mapsto v_1$
- ▶ Player 0 wins $\{v_2, v_4, v_5\}$, using $v_2 \mapsto v_4$
- ► Solving: Partition the vertices in W_0 , W_1

$$(V, V_0, V_1, E, \Omega, \mathfrak{C}, \theta)$$

$$v_1 \searrow \{c_1\} \qquad 0 \qquad v_2 \qquad \mathfrak{C} = \{c_1, c_2\}$$

$$\mathfrak{C} \qquad \mathfrak{C} \qquad \{c_2\} \qquad 1 \qquad v_5$$

$$v_3 \searrow 2 \qquad \mathfrak{C} \qquad 4 \qquad v_4$$

- lackbox Played for a specific configuration $c\in\mathfrak{C}$
- $\qquad \qquad \blacktriangleright \ \ W_0^{c_1} = \emptyset, W_1^{c_1} = \{v_1, \dots, v_5\}$
- $\qquad \qquad \bullet \quad W_0^{c_2} = \{v_1, v_3\}, W_1^{c_2} = \{v_2, v_4, v_5\}$
- ▶ Solving: Partition the vertices in W_0^c, W_1^c , for every $c \in \mathfrak{C}$

Theorem

A parity game can be constructed from an LTS and a modal μ -calculus formula φ such that M satisfies φ iff special vertex v_0 is won by player 0 in the resulting parity game.

Theorem

Theorem

A parity game can be constructed from an LTS and a modal μ -calculus formula φ such that M satisfies φ iff special vertex v_0 is won by player 0 in the resulting parity game.

Theorem

Theorem

A parity game can be constructed from an LTS and a modal μ -calculus formula φ such that M satisfies φ iff special vertex v_0 is won by player 0 in the resulting parity game.

Which products in M satisfy φ ?

Theorem

Theorem

A parity game can be constructed from an LTS and a modal μ -calculus formula φ such that M satisfies φ iff special vertex v_0 is won by player 0 in the resulting parity game.

Which products in M satisfy φ ?

Theorem

Theorem

A parity game can be constructed from an LTS and a modal μ -calculus formula φ such that M satisfies φ iff special vertex v_0 is won by player 0 in the resulting parity game.

Theorem

Variability parity game

Theorem

A parity game can be constructed from an LTS and a modal μ -calculus formula φ such that M satisfies φ iff special vertex v_0 is won by player 0 in the resulting parity game.

Theorem

A VPG can be constructed from an FTS and a modal μ -calculus formula φ such that M satisfies φ for product p iff special vertex v_0 is won by player 0 in the resulting VPG played for p.

VPG algorithms

- ► Solve VPGs independently; solve every parity game expressed by the VPG
- ► Solve VPGs *collectively*; solve the VPG as a whole
- ► Introduced two collective algorithms
 - ► Recursive algorithm
 - ► Incremental pre-solve algorithm
- ▶ Evaluate performance of independent approach vs collective approach

VPG algorithms

- ► Solve VPGs independently; solve every parity game expressed by the VPG
- ► Solve VPGs *collectively*; solve the VPG as a whole
- ► Introduced two collective algorithms
 - ► Recursive algorithm
 - ► Incremental pre-solve algorithm
- ► Evaluate performance of independent approach vs collective approach

Attractor calculation: Find all vertices from where player α can force the play to a vertex in U.

Example: $\alpha = 0, U = \{v_4\}$

$$A_0 = U, A = \bigcup_{i \ge 0} A_i$$

$$A_{i+1} = A_i \cup \{ v \in V_\alpha \mid \exists_w : (v, w) \in E \land w \in A_i \}$$

$$\cup \{ v \notin V_\alpha \mid \forall_w : (v, w) \in E \implies w \in A_i \}$$

Attractor calculation: Find all vertices from where player α can force the play to a vertex in U.

Example: $\alpha = 0$, $U = \{v_4\}$

 $A_0 = U, A = \bigcup_{i \ge 0} A_i$ $A_{i+1} = A_i \cup \{ v \in V_\alpha \mid \exists_w : (v, w) \in E \land w \in A_i \}$ $\cup \{ v \notin V_\alpha \mid \forall_w : (v, w) \in E \implies w \in A_i \}$

Attractor calculation: Find all vertices from where player α can force the play to a vertex in U.

	v _I	v 2	<i>v</i> 3	V4	<i>V</i> 5	<i>v</i> ₆	<i>V</i> 7	<i>v</i> ₈
Α				√				

Example:
$$\alpha = 0, U = \{v_4\}$$

 $A_{0} = U, A = \bigcup_{i \geq 0} A_{i}$ $A_{i+1} = A_{i} \cup \{v \in V_{\alpha} \mid \exists_{w} : (v, w) \in E \land w \in A_{i}\}$ $\cup \{v \notin V_{\alpha} \mid \forall_{w} : (v, w) \in E \implies w \in A_{i}\}$

Attractor calculation: Find all vertices from where player α can force the play to a vertex in U.

	v_1	<i>V</i> ₂	<i>V</i> 3	V4	<i>V</i> 5	<i>V</i> ₆	<i>V</i> 7	<i>v</i> ₈
A				√	√			\checkmark

Example:
$$\alpha = 0, U = \{v_4\}$$

 $A_0 = U, A = \bigcup_{i \ge 0} A_i$ $A_{i+1} = A_i \cup \{ v \in V_\alpha \mid \exists_w : (v, w) \in E \land w \in A_i \}$ $\cup \{ v \notin V_\alpha \mid \forall_w : (v, w) \in E \implies w \in A_i \}$

Attractor calculation: Find all vertices from where player α can force the play to a vertex in U.

	<i>v</i> ₁	<i>V</i> ₂	<i>V</i> 3	<i>V</i> 4	<i>V</i> 5	<i>V</i> ₆	<i>V</i> 7	<i>v</i> ₈
Α			√	√	√			√

$$v_1$$
 v_2
 v_3
 v_4
 v_5
 v_5

Example: $\alpha = 0, U = \{v_4\}$

 $A_0 = U, A = \bigcup_{i \ge 0} A_i$ $A_{i+1} = A_i \cup \{ v \in V_\alpha \mid \exists_w : (v, w) \in E \land w \in A_i \}$ $\cup \{ v \notin V_\alpha \mid \forall_w : (v, w) \in E \implies w \in A_i \}$

	<i>v</i> ₁	<i>V</i> ₂	<i>V</i> 3	V4	<i>V</i> ₅	<i>v</i> ₆	<i>V</i> 7	<i>v</i> ₈
A			√	√	√	√		√

Example:
$$\alpha = 0$$
, $U = \{v_4\}$

$$A_{0} = U, A = \bigcup_{i \geq 0} A_{i}$$

$$A_{i+1} = A_{i} \cup \{ v \in V_{\alpha} \mid \exists_{w} : (v, w) \in E \land w \in A_{i} \}$$

$$\cup \{ v \notin V_{\alpha} \mid \forall_{w} : (v, w) \in E \implies w \in A_{i} \}$$

	<i>v</i> ₁	<i>V</i> ₂	<i>V</i> 3	V4	<i>V</i> ₅	<i>v</i> ₆	<i>V</i> 7	<i>v</i> ₈
Α			√	√	√	√	√	√

Example:
$$\alpha = 0, U = \{v_4\}$$
 v_1
 v_2
 v_3
 v_4
 v_5
 v_4
 v_5

$$A_{0} = U, A = \bigcup_{i \geq 0} A_{i}$$

$$A_{i+1} = A_{i} \cup \{v \in V_{\alpha} \mid \exists_{w} : (v, w) \in E \land w \in A_{i}\}$$

$$\cup \{v \notin V_{\alpha} \mid \forall_{w} : (v, w) \in E \implies w \in A_{i}\}$$

	v_1	<i>V</i> ₂	<i>V</i> 3	V4	<i>V</i> ₅	<i>v</i> ₆	<i>V</i> 7	<i>v</i> ₈
4			√	√	√	√	√	√

Example:
$$\alpha = 0, U = \{v_4\}$$
 v_1
 v_2
 v_3
 v_4
 v_5
 v_6
 v_7
 v_8

$$A_0 = U, A = \bigcup_{i \ge 0} A_i$$

$$A_{i+1} = A_i \cup \{ v \in V_\alpha \mid \exists_w : (v, w) \in E \land w \in A_i \}$$

$$\cup \{ v \notin V_\alpha \mid \forall_w : (v, w) \in E \implies w \in A_i \}$$

	v_1	v ₂	<i>V</i> 3	V4	<i>V</i> 5	<i>v</i> ₆	<i>V</i> 7	<i>v</i> ₈
A_0				√				
A_1				√	√			√
A_2			√	√	√			√
A_3			√	√	√	√		√
A_4			√	√	√	√	√	√
A_5			√	√	√	√	√	√

$$A_0 = U, A = \bigcup_{i \ge 0} A_i$$

$$A_{i+1} = A_i \cup \{ v \in V_\alpha \mid \exists_w : (v, w) \in E \land w \in A_i \}$$

$$\cup \{ v \notin V_\alpha \mid \forall_w : (v, w) \in E \implies w \in A_i \}$$

$$A:V\to 2^{\mathfrak{C}}$$

$$A_{i+1}(v) = A_i(v) \cup \begin{cases} \bigcup_{(v,w) \in E} (\theta(v,w) \cap A_i(w)) & \text{if } v \in V_{\alpha} \\ \bigcap_{(v,w) \in E} ((\mathfrak{C} \setminus \theta(v,w)) \cup A_i(w)) & \text{if } v \notin V_{\alpha} \end{cases}$$

^{*:} Simplified version of the attractor definition presented in the report

Find a set of configurations for every

 $A:V\to 2^{\mathfrak{C}}$

$$A_{i+1}(v) = A_i(v) \cup \begin{cases} \bigcup_{(v,w) \in E} (\theta(v,w) \cap A_i(w)) & \text{if } v \in V_\alpha^* \\ \bigcap_{(v,w) \in E} ((\mathfrak{C} \setminus \theta(v,w)) \cup A_i(w)) & \text{if } v \notin V_\alpha \end{cases}$$

^{*:} Simplified version of the attractor definition presented in the report

$$\mathfrak{C} = \{c_1, c_2\}$$

<u>A: V</u>	$A:V\to 2^{\mathfrak{C}}$											
	V 1	V 2	<i>V</i> 3	V 4	<i>V</i> 5	V 6	V 7	V 8				
A_0				C								

$$A_{i+1}(v) = A_i(v) \cup \begin{cases} \bigcup_{(v,w) \in E} (\theta(v,w) \cap A_i(w)) & \text{if } v \in V_\alpha^* \\ \bigcap_{(v,w) \in E} ((\mathfrak{C} \setminus \theta(v,w)) \cup A_i(w)) & \text{if } v \notin V_\alpha \end{cases}$$

^{*:} Simplified version of the attractor definition presented in the report

$$\mathfrak{C} = \{c_1, c_2\}$$

$$v_1 \qquad v_2 \qquad v_3 \qquad v_4 \qquad \mathfrak{C}$$

$$\mathfrak{C} \qquad \mathfrak{C} \qquad \mathfrak{C} \qquad \mathfrak{C}$$

$$\mathfrak{C} \qquad \mathfrak{C} \qquad \mathfrak{C} \qquad \mathfrak{C}$$

$$\mathfrak{C} \qquad \mathfrak{C} \qquad \mathfrak{C} \qquad \mathfrak{C}$$

$$\mathfrak{C} \qquad \mathfrak{C}$$

$A: V \to 2^{\mathfrak{C}}$											
	V 1	V 2	<i>V</i> 3	<i>V</i> 4	V 5	V 6	V 7	<i>V</i> 8			
A_0				C							
A_1			$\{c_2\}$	C	C			$\{c_1\}$			

$$A_1(v_5) = A_0(v_5) \cup (\theta(v_5, v_4) \cap A_0(v_4))$$

= $\emptyset \cup (\mathfrak{C} \cap \mathfrak{C}) = \mathfrak{C}$

$$A_{i+1}(v) = A_i(v) \cup \begin{cases} \bigcup_{(v,w) \in E} (\theta(v,w) \cap A_i(w)) & \text{if } v \in V_\alpha^* \\ \bigcap_{(v,w) \in E} ((\mathfrak{C} \setminus \theta(v,w)) \cup A_i(w)) & \text{if } v \notin V_\alpha \end{cases}$$

^{*:} Simplified version of the attractor definition presented in the report

$$\mathfrak{C} = \{c_1, c_2\}$$

$$v_1 \\ \mathfrak{C}$$

$$\mathfrak{C}$$

$$\mathfrak{$$

$A:V\to 2^{\mathfrak{C}}$											
	V 1	V 2	<i>V</i> 3	<i>V</i> 4	V 5	V 6	V 7	<i>V</i> 8			
A_0				C							
A_1			$\{c_2\}$	C	C			$\{c_1\}$			

$$A_1(v_8) = A_0(v_8) \cup (\theta(v_8, v_8) \cap A_0(v_8))$$

$$\cup (\theta(v_8, v_4) \cap A_0(v_4))$$

$$= \emptyset \cup (\mathfrak{C} \cap \emptyset) \cup (\{c_1\} \cap \mathfrak{C}) = \{c_1\}$$

$$A_{i+1}(v) = A_i(v) \cup \begin{cases} \bigcup_{(v,w) \in E} (\theta(v,w) \cap A_i(w)) & \text{if } v \in V_\alpha^* \\ \bigcap_{(v,w) \in E} ((\mathfrak{C} \setminus \theta(v,w)) \cup A_i(w)) & \text{if } v \notin V_\alpha \end{cases}$$

^{*:} Simplified version of the attractor definition presented in the report

$$\mathfrak{C} = \{c_1, c_2\}$$

$$v_1 \qquad v_2 \qquad v_3 \qquad v_4 \qquad \mathfrak{C}$$

$$\mathfrak{C} \qquad \mathfrak{C} \qquad \mathfrak{C} \qquad \mathfrak{C}$$

$A:V\to 2^{\mathfrak{C}}$											
		V 1	V 2	<i>V</i> 3	<i>V</i> 4	V 5	V 6	V 7	V 8		
A	4 0				C						
A	41			$\{c_2\}$	C	C			$\{c_1\}$		

$$A_1(v_3) = A_0(v_3) \cup ($$

$$((\mathfrak{C} \setminus \theta(v_3, v_4)) \cup A_0(v_4)) \cap$$

$$((\mathfrak{C} \setminus \theta(v_3, v_8)) \cup A_0(v_8)))$$

$$= \emptyset \cup ((\emptyset \cup \mathfrak{C}) \cap (\{c_2\} \cup \emptyset)) = \{c_2\}$$

$$A_{i+1}(v) = A_i(v) \cup \begin{cases} \bigcup_{(v,w) \in E} (\theta(v,w) \cap A_i(w)) & \text{if } v \in V_\alpha^* \\ \bigcap_{(v,w) \in E} ((\mathfrak{C} \setminus \theta(v,w)) \cup A_i(w)) & \text{if } v \notin V_\alpha \end{cases}$$

^{*:} Simplified version of the attractor definition presented in the report

$$\mathfrak{C} = \{c_1, c_2\}$$

$$v_1 \qquad v_2 \qquad v_3 \qquad v_4 \qquad \mathfrak{C}$$

$$\mathfrak{C} \qquad \mathfrak{C} \qquad \mathfrak{C} \qquad \mathfrak{C}$$

$$\mathfrak{C} \qquad \mathfrak{C} \qquad \mathfrak{C}$$

<u>A :</u>	$A: V \to 2^{\mathfrak{C}}$											
	<i>V</i> 1	V 2	<i>V</i> 3	<i>V</i> 4	V 5	<i>V</i> ₆	V 7	V 8				
A_0				C								
A_1			{c ₂ }	C	C			$\{c_1\}$				
A_2			C	C	C	$\{c_2\}$		$\{c_1\}$				

$$A_{i+1}(v) = A_i(v) \cup \begin{cases} \bigcup_{(v,w) \in E} (\theta(v,w) \cap A_i(w)) & \text{if } v \in V_\alpha^* \\ \bigcap_{(v,w) \in E} ((\mathfrak{C} \setminus \theta(v,w)) \cup A_i(w)) & \text{if } v \notin V_\alpha \end{cases}$$

^{*:} Simplified version of the attractor definition presented in the report

$$\mathfrak{C} = \{c_1, c_2\}$$

$$v_1$$

$$\mathfrak{C}$$

$A: \mathcal{V}$	$/ \rightarrow$	2 ^e						
	V 1	V 2	<i>V</i> 3	<i>V</i> 4	V 5	<i>V</i> ₆	V 7	V 8
A_0				C				
A_1			$\{c_2\}$	C	C			$\{c_1\}$
A_2			C	C	C	$\{c_2\}$		$\{c_1\}$
A_3			C	C	C	C		$\{c_1\}$

$$A_{i+1}(v) = A_i(v) \cup \begin{cases} \bigcup_{(v,w) \in E} (\theta(v,w) \cap A_i(w)) & \text{if } v \in V_\alpha^* \\ \bigcap_{(v,w) \in E} ((\mathfrak{C} \setminus \theta(v,w)) \cup A_i(w)) & \text{if } v \notin V_\alpha \end{cases}$$

^{*:} Simplified version of the attractor definition presented in the report

$$\mathfrak{C} = \{c_1, c_2\}$$

$$v_1 \qquad \mathfrak{C} \qquad 3 \qquad \mathfrak{C} \qquad 4 \qquad \mathfrak{C} \qquad 2$$

$$\mathfrak{C} \qquad \mathfrak{C} \qquad \mathfrak{C}$$

<u> </u>	\rightarrow	2 ^e						
	v_1	V 2	<i>V</i> 3	<i>V</i> 4	<i>V</i> 5	<i>V</i> ₆	<i>V</i> 7	<i>V</i> 8
A_0				C				
A_1			$\{c_2\}$	C	C			$\{c_1\}$
A_2			C	C	C	$\{c_2\}$		$\{c_1\}$
A_3			C	C	C	C		$\{c_1\}$
A_4			C	C	C	C	$\{c_1\}$	$\{c_1\}$

$$A_{i+1}(v) = A_i(v) \cup \begin{cases} \bigcup_{(v,w) \in E} (\theta(v,w) \cap A_i(w)) & \text{if } v \in V_\alpha \\ \bigcap_{(v,w) \in E} ((\mathfrak{C} \setminus \theta(v,w)) \cup A_i(w)) & \text{if } v \notin V_\alpha \end{cases}$$

^{*:} Simplified version of the attractor definition presented in the report

- Represent sets simply as a collection of all its elements (explicit)
- Alternatively, represent sets as boolean formulas (symbolic)
- ► Example: $S = \{s_0, ..., s_7\}$, $T = \{s_2, s_4, s_6, s_7\}$
- ▶ Boolean variables: x_2, x_1, x_0

- Represent sets simply as a collection of all its elements (explicit)
- Alternatively, represent sets as boolean formulas (symbolic)
- ► Example: $S = \{s_0, ..., s_7\}$, $T = \{s_2, s_4, s_6, s_7\}$
- ▶ Boolean variables: x_2, x_1, x_0

- Represent sets simply as a collection of all its elements (explicit)
- ► Alternatively, represent sets as boolean formulas (*symbolic*)
- ► Example: $S = \{s_0, ..., s_7\}$, $T = \{s_2, s_4, s_6, s_7\}$
- ▶ Boolean variables: x_2, x_1, x_0

Boolean formula:

$$F(x_2,x_1,x_0) = (\neg x_2 \land x_1 \land \neg x_0) \lor (x_2 \land (x_1 \lor \neg x_0))$$

$x_2x_1x_0$	$F(x_2,x_1,x_0)$
000	0
001	0
010	1
011	0
100	1
101	0
110	1
111	1

- Represent sets simply as a collection of all its elements (explicit)
- Alternatively, represent sets as boolean formulas (symbolic)
- ► Example: $S = \{s_0, ..., s_7\}$, $T = \{s_2, s_4, s_6, s_7\}$
- ▶ Boolean variables: x_2, x_1, x_0
- Boolean formulas can be very small
- e.g. $T = \{s_0, \dots, s_3\}$ can be expressed as $\neg x_2$
- ► e.g. S can be expressed as **true**

Boolean formula:

$$F(x_2,x_1,x_0) = (\neg x_2 \land x_1 \land \neg x_0) \lor (x_2 \land (x_1 \lor \neg x_0))$$

$x_2x_1x_0$	$F(x_2,x_1,x_0)$
000	0
001	0
010	1
011	0
100	1
101	0
110	1
111	1

- Represent sets simply as a collection of all its elements (explicit)
- ► Alternatively, represent sets as boolean formulas (symbolic)
- ► Example: $S = \{s_0, ..., s_7\}$, $T = \{s_2, s_4, s_6, s_7\}$
- ▶ Boolean variables: x_2, x_1, x_0
- ▶ Boolean formulas can be very small
- e.g. $T = \{s_0, \dots, s_3\}$ can be expressed as $\neg x_2$
- ► e.g. S can be expressed as **true**
- ▶ Boolean operators \lor , \land coincide with set operators \cup , \cap

Boolean formula:

$$F(x_2,x_1,x_0) = (\neg x_2 \land x_1 \land \neg x_0) \lor (x_2 \land (x_1 \lor \neg x_0))$$

$x_2x_1x_0$	$F(x_2,x_1,x_0)$
000	0
001	0
010	1
011	0
100	1
101	0
110	1
111	1

- ▶ Boolean formulas can be expressed as BDDs
- lacktriangle Simple formulas \Longrightarrow small BDDs \Longrightarrow quick set operators
- ► FTSs use features
- ► FTSs use boolean formulas to enable/disable parts of the system
- ▶ VPGs are constructed such that every edge either:
 - admits all configurations, or
 - ▶ is guarded by a set that coincides with a formula from the FTS

- ► Boolean formulas can be expressed as BDDs
- lacktriangle Simple formulas \Longrightarrow small BDDs \Longrightarrow quick set operators
- ► FTSs use features
- ► FTSs use boolean formulas to enable/disable parts of the system
- ▶ VPGs are constructed such that every edge either:
 - admits all configurations, or
 - ▶ is guarded by a set that coincides with a formula from the FTS

- ▶ Boolean formulas can be expressed as BDDs
- lacktriangle Simple formulas \Longrightarrow small BDDs \Longrightarrow quick set operators
- ► FTSs use features
- ► FTSs use boolean formulas to enable/disable parts of the system
- ► VPGs are constructed such that every edge either:
 - admits all configurations, or
 - ▶ is guarded by a set that coincides with a formula from the FTS

VPG algorithms - Recursive algorithm - Set operations

- ▶ Explicitly: O(c)
- ► Symbolically: $O(c^2)$
- ► In practice, if the BDDs are small then a symbolic representation outperforms an explicit representation

VPG algorithms - Recursive algorithm - Time complexities

- n: # vertices, e: # edges, d: # distinct priorities, c # configurations
 - ► Original recursive algorithm: $O(e * n^d)$
 - ▶ Independently solving a VPG, i.e. solve c parity games: $O(c * e * n^d)$
 - ► Collective recursive algorithm:
 - with explicit configuration sets: $O(n*c^2*e*n^d)$
 - with symbolic configuration sets: $O(n*c^3*e*n^d)$

VPG algorithms - Recursive algorithm - Time complexities

n: # vertices, e: # edges, d: # distinct priorities, c # configurations

- ▶ Original recursive algorithm: $O(e * n^d)$
- ▶ Independently solving a VPG, i.e. solve c parity games: $O(c * e * n^d)$
- ► Collective recursive algorithm:
 - with explicit configuration sets: $O(n * c^2 * e * n^d)$
 - with symbolic configuration sets: $O(n * c^3 * e * n^d)$

Minepump SPL

- ► Keep a mine shaft free from water
- ► 10 features that change the sensor/actor setup
- ▶ 128 valid feature assignments
- ▶ 600 states and 1400 transitions
- ▶ 9 requirements
- ▶ 9 VPGs ranging from 3000 to 9200 vertices and 2 to 4 distinct priorities

- ► Elevator travelling between five floor
- ► 5 features, including overload detection and parking
- 64 valid feature assignments
- ► 34k states and 200k
- ► 7 requirements
- ▶ 7 VPGs ranging from 440k and 1.85m vertices and 2 to 3 distinct priorities

Minepump SPL

- ► Keep a mine shaft free from water
- ► 10 features that change the sensor/actor setup
- ► 128 valid feature assignments
- ► 600 states and 1400 transitions
- ▶ 9 requirements
- ▶ 9 VPGs ranging from 3000 to 9200 vertices and 2 to 4 distinct priorities

- ► Elevator travelling between five floor
- ► 5 features, including overload detection and parking
- ► 64 valid feature assignments
- ▶ 34k states and 200k
- ► 7 requirements
- ➤ 7 VPGs ranging from 440k and 1.85m vertices and 2 to 3 distinct priorities

Minepump SPL

- ► Keep a mine shaft free from water
- ► 10 features that change the sensor/actor setup
- ► 128 valid feature assignments
- ► 600 states and 1400 transitions
- ▶ 9 requirements
- ▶ 9 VPGs ranging from 3000 to 9200 vertices and 2 to 4 distinct priorities

- ► Elevator travelling between five floor
- 5 features, including overload detection and parking
- ► 64 valid feature assignments
- ▶ 34k states and 200k
- ► 7 requirements
- ➤ 7 VPGs ranging from 440k and 1.85m vertices and 2 to 3 distinct priorities

Minepump SPL

- ► Keep a mine shaft free from water
- ► 10 features that change the sensor/actor setup
- ▶ 128 valid feature assignments
- ► 600 states and 1400 transitions
- ▶ 9 requirements
- ▶ 9 VPGs ranging from 3000 to 9200 vertices and 2 to 4 distinct priorities

- ► Elevator travelling between five floor
- ► 5 features, including overload detection and parking
- ► 64 valid feature assignments
- ► 34k states and 200k
- ► 7 requirements
- ➤ 7 VPGs ranging from 440k and 1.85m vertices and 2 to 3 distinct priorities

Figure: Running times, in ms, on the minepump games.

Figure: Running times, in ms, on the elevator games.

Independent recursive algorithm
 Collective recursive algorithm with a symbolic representation of configurations
 Collective recursive algorithm with an explicit representation of configurations

Discussion

Collective recursive algorithm:

- ► Symbolic variant increases performance 3-18 times (SPL games)
- ► For certain random games the symbolic performance drops rapidly, explicit performance is steady

Incremental pre-solve algorithm

- ► Slightly increases performance of SPL games and random games
- ► Not consistent or very significant

Discussion

Collective recursive algorithm:

- ► Symbolic variant increases performance 3-18 times (SPL games)
- ► For certain random games the symbolic performance drops rapidly, explicit performance is steady

Incremental pre-solve algorithm:

- ► Slightly increases performance of SPL games and random games
- ► Not consistent or very significant

- ▶ Parity games: Terminate when special vertex v_0 is solved
- \triangleright VPGs: Terminate when special vertex v_0 is solved for all configurations
- Introduced local variants of existing algorithms and of the novel VPG algorithms
- ▶ Relative performance: How much quicker are the collective algorithms?
- ▶ Is the relative local performance greater than the relative global performance?

Results

- ▶ Recursive algorithms: no significant increase in relative performance
- ► Incremental pre-solve algorithm: increases relative performance for random games

- ightharpoonup Parity games: Terminate when special vertex v_0 is solved
- \triangleright VPGs: Terminate when special vertex v_0 is solved for all configurations
- ▶ Introduced local variants of existing algorithms and of the novel VPG algorithms
- Relative performance: How much quicker are the collective algorithms?
- Is the relative local performance greater than the relative global performance?

Results

- ▶ Recursive algorithms: no significant increase in relative performance
- ► Incremental pre-solve algorithm: increases relative performance for random games

- ightharpoonup Parity games: Terminate when special vertex v_0 is solved
- \blacktriangleright VPGs: Terminate when special vertex v_0 is solved for all configurations
- ▶ Introduced local variants of existing algorithms and of the novel VPG algorithms
- ► Relative performance: How much quicker are the collective algorithms?
- ▶ Is the relative local performance greater than the relative global performance?

Results

- ► Recursive algorithms: no significant increase in relative performance
- ► Incremental pre-solve algorithm: increases relative performance for random games

- ightharpoonup Parity games: Terminate when special vertex v_0 is solved
- \triangleright VPGs: Terminate when special vertex v_0 is solved for all configurations
- ▶ Introduced local variants of existing algorithms and of the novel VPG algorithms
- ▶ Relative performance: How much quicker are the collective algorithms?
- ▶ Is the relative local performance greater than the relative global performance?

Results:

- ► Recursive algorithms: no significant increase in relative performance
- ► Incremental pre-solve algorithm: increases relative performance for random games

Conclusions

- ► VPGs can be used to verify SPLs
- ► Collective approaches outperform independent approaches
- ► Locally solving VPGs can increase performance (more so than locally solving parity games does)