PC-Value-Estimator

Alexander Kim

Project Motivation + Architecture Pipeline

- Develop a containerized web app to estimate fair market prices for user-selected CPUs and GPUs, based on benchmark data from similar components
- The application will integrate a Streamlit front-end with a Flask-based API, containerized using Docker, and deployed on Google Cloud Run

Dataset

- Data Collect: BeautifulSoup and Requests
 - o 5140 CPU scores and prices from cpubenchmark.net
 - 2695 GPU scores and prices from <u>videocardbenchmark.net</u>
- Data Cleaning
 - Filtered out "Engineering Sample" and "Unknown" entries
 - Removed extreme outliers (e.g., CPUs priced over \$1000), and normalized price
- Scraped Attributes:
 - Device name (CPU/GPU)
 - PassMark benchmark score
 - Rank
 - Value score
 - Price

Model

- Trained CatBoost Regressor model separately for CPU and GPU
 - Strong performance on tabular data and native support for categorical variables
 - Features: PassMark Score, ValueScore, Rank, Brand
 - Target: Log-transformed price
- Achieved reliable estimates with low RMSE
 - o CPU RMSE: \$44.10
 - GPU RMSE: \$39.61
- Residuals close to 0.

Reliable predictions for most components, minor overprediction in high-end cases

Application + Demo

- App allows users to select a CPU and GPU and get estimated fair prices
- Estimated predictions are compared with 4 components closest in price
- Deployed app is accessible at:
 - https://pc-value-estimator-135418392758.us-central1.run.app

