The TM1680 is a memory switching LED display control driver chip with multiple ROW/COM modes (32ROW/8COM and

24ROW/16COM) can be used to drive dot matrix LEDs. The chip provides 16 levels of pulse width modulation control output for software settings, You can adjust the brightness of the LED loop display. Using serial interface (I2C communication interface) serial input, you can easily access the command mode (COMMAND, MDOE) and data mode (DATA, MODE). Communication of TM1680. Through the TM1680, continuous output display can be performed, which has a wide range of applications in the display of LED light, Industrial instrument control, digital clock/thermometer, counter and voltmeter display, readout of meter data, LED display, smart bracelet and other applications. Ben Excellent performance and reliable quality.

Features of the function

□ Operating voltage from 2.4 to 5.5 V Available in 32ROW*8COM and 24R OW*16COM
 □ Integrated display memory - 64*4 display RAM (32ROW*8COM), 96*4 display RAM
 □ (24ROW*16COM) 16 levels of pulse width modulation control brightness Built-in
 □ 256kHz RC oscillator I2C Interface (SDA, SCL) Communication Data mode and
 □ command mode instructions Optional NMOS output channels and PMOS output
 □ channels Package: LQFP48, LQFP52

Frame diagram of the internal structure

© Titan Micro Electronics www.titanmec.com

Pipe arrangement

Pin Function

Pin Name	Pin serial number	I/O	Description of the function
VDD	21	1	Chip Logic Power Supply Positive
VSS	14		Chip Logic Power Supply Negode
LED_VDD	7/38	-/	LED driver power supply positive, each LED_VDD is double key
LED_VSS	25/36	-	LED driver power supply negative, each LED_VSS is double key
ROW0~ROW23	1 ~ 6/8 ~ 13/41 ~ 52	0	LED line drive output
ROW24/COM15 ~ROW31/COM8	31 to 35/37/39/40	0	LED line drives output or common output, each COM pin is double button
COM0 ~ COM7	22 ~ 24/26 ~ 30	O LEI	common output, each COM pin is double button
SYNC	20	I/O	If the main trigger mode or the external extended trigger mode is selected, the sync signal will be removed from the SYNC pin output; if passive mode is selected, the synchronization signal will be input from the SYNC pin.
OSC	15	I/O	When RC oscillation main trigger mode is selected, the system clock is generated by on-chip RC oscillation and is removed from the OSC pin output; if passive mode or external expansion trigger mode is selected, the system clock is controlled by the OSC foot input from outside.
A0	19	I slav	e address expansion bit with built-in pull-up resistor.
A1	18	I slav	e address expansion bit with built-in pull-up resistor.
SCL	17	ı	I2C communication clock input, data on the SDA line is written to TM1680, Built-in pull-up resistor.
SDA	16	I/O I2C (ommunication data input/output ports require external pull-up resistors for applications.

*Note: The pin number in the table above, for example, the LQFP52 package. Different packages, feet are different, please refer to the pin for details Arrange diagram. The 48PIN package is displayed 24*8 and does not support 1/16 degree of brightness.

© Titan Micro Electronics www.titanmec.com

Input Output Equivalents

Integrated circuit system electrostatic sensitive device, easy to use in the dry season or dry environment to generate a large amount of static electricity, electrostatic discharge can be

Can damage the integrated circuit, we recommend taking all appropriate IC preventive measures, improper operation Welding, may cause ESD damage or performance degradation, the chip does not work properly.

Limit parameters (1) (2)

Para	meter Name	Parameter Symbols	Limit value	Single Bit
Logic S	Logic Supply Voltage		VSS-0.3V to VSS+6V	V
Voltage Range at Input SDA, SCL, OSC, SYNC		Vin	VSS-0.3 to VDD+0.3	V
Working	Working temperature range		-40 ~+85	°C
Storage	temperature range	Tstg	-55 to +125	°C

⁽¹⁾ the chip work for a long time in the above limit parameters conditions, may cause device reliability reduction or permanent damage, day microelectronics

It is not recommended that any of these limits be reached or exceeded when used.

(2) All voltage values are tested in relation to the system.

Recommended working conditions

Parameter Name	Parameter S	ymbol Minin	ıum Typical	Maximum	
Working voltage	VD D	2.4	5.0	5.5	V
Input Low Voltage	Vil	0	-	0.3 VDD	V
Input High Voltage	Vih	0.7VDD	-	5	V

Test at VDD=2.4~5.5V and Ta=+25°C, unless otherwise stated					TM1680		
Parameter Name	Parameter symbol VDD		Test Condition	Minimum	Typical N	Vaximum	
Working Current	IDD	5.0V on-c	hip RC, no load, open display		0.3	0.6	mA
Standby Current	ISTB	5.0V	Power saving mode, no load		0.1	10	μΑ
OSC, SYNC, SDA Sink Current	IOL1	5.0V	Vol=0.5V	18	25	-	mA
OSC, SYNC, SDA Pull Current	IOH1	5.0V	Voh = 4.5 V	-10.	-13.	-	mA
ROW Sink Current	IOL2	5.0V	Vol=0.5V	12	16	-	mA
ROW pull current	IOH2	5.0V	Voh = 4.5 V	-50.	-70.	-	mA
COM sink current	IOL3	5.0V	Vol=0.5V	250	350	-	mA
COM pull current	IOH3	5.0V	Voh = 4.5 V	-45.	-60.	-	mA
pull-up resistance	Rph	5.0V SI	A, SCL, OSC, SYNC	18	27	40	ΚΩ

Switches Features

Test at operating temperature of 25°C, unless otherwise stated			VDD=2.4V~5.5V VDD=3.0V~5.5V				units
Parameter Name	Parameter Symbols	Test Conditions	Minimum ma	Minimum maximum maximum maximum			
Clock Frequency	FSCL	Chip Internal Clock		100	-	400	kHz
Bus idle time	TBUF	Bus at the next time The clock before the arrival of the empty Free time	4.7		1.3	-	μs
Start Signal Hold Time	THD: STA	-	4	-	0.6	-	μs
SCL Low Time	TLOW		4.7	-	1.3	-	μs
SCL High Time	Thigh	<i></i>	4	-	0.6	-	μs
Start Signal Set up Time	TSU: STA		4.7	-	0.6	-	μs
Data retention time	THD: DAT	-	0	-	0	-	μs
Data creation time	TSU: DAT		250	-	100	-	ns
SDA/SCL Rise Time	tr	-	-	1	-	0.3	μs
SDA/SCL Drop Time	tf	-	-	0.3	-	0.3	μs
Stop signal set up time	TSU: STO	-	4	-	0.6	-	μs
Denoising at SDA/SCL Input Time	TSP	Denoising Time	-	20	-	20	ns

1 Display Memory (RAM)

Static display memory consists of 64*4-bit and 96*4-bit formats to store the data you need to display. If the pattern 32ROW/8COM-mode is

, RAM has 64*4 bits of storage, and 96*4 bits of RAM if mode 24ROW/16COM mode is selected. RAM directly to the LED display drive, and if the RAM data is set to "1", the corresponding LED will be lit. Figures 5 and 6 below give Out is a map of RAM to LED:

32 ROW & 8 COM for 64 × 4 Display RAM

24 ROW & 16 COM for 96 × 4 Display RAM

2 System clock

The TM1680's system clock is used to generate the clock frequency at which the system operates. LED driver clock, system clock can be taken from on-chip RC

Figure 6

oscillator (256kHz) or an external clock input using S/W settings. The system oscillator is constructed as shown in Figure 7 when the SYS DIS command is When executed, the system clock stops and the LED operating cycle is closed (this instruction can only be applied with the on-chip RC oscillator). Once the system is When the clock stops, the LED appears blank and the timebase loses its function. LED_OFF command is used to turn off the LED working cycle, LED working After the loop is closed, use the SYS DIS command to save power costs and act as a power-saving command; if an off-chip clock source is selected, It is not possible to turn off the oscillator and perform power-saving mode using the SYS DIS command. Crystal oscillator can provide clock frequency via OSC pin rate, in which case the system will not be able to enter power-saving mode. When the system is powered on, the TM1680 is in the SYS DIS state by default.

3 LED driver

The TM1680 contains 256 (32*8) and 384 (24*16) LED drivers, which can be set to 32*8 or 24*16 $\,\Box$ In the mode, N-MOS or P-MOS output channels can be selected via the COM port output. These features make the TM1680 adaptable to different for LED applications. The LED driver clock is derived from the system clock. The clock is usually driven by an on-chip RC oscillator 256kHz or Extended external oscillator. See the command overview table for detailed setup commands.

4 cascade operations

When cascading operations, the first chip in the cascade is set to host mode with pins SYNC and OSC used as outputs; the second chip in the cascade

The chip is set to slave mode, its pin SYNC and OSC are used as inputs and are connected to the SYNC and OSC feet of the host chip. Device Ground of TM1680 Address contains 2 bit external address selection bits A1, A0, so you can connect up to 4 TM1680 to the same bus. Please refer to Cascade for detailed settings Application circuit diagram.

© Titan Micro Electronics www.titanmec.com

5 LED drive mode output waveform

 32×8 N-MOS open-drain output drive mode output waveform is shown below (Tclk=1/Fsys):

 24×16 P-MOS open-drain output drive mode (Tclk= 1/Fsys, COM pin plus transistor):

6 flash

The TM1680 has a flashing function that allows all LEDs to flicker at a certain frequency. The flicker rate can be set via the Blink command. to be divided into 2Hz/1Hz/0.5Hz. The following is the output waveform with a flashing frequency of 2Hz:

7 brightness adjustment settings

The TM1680 can be controlled by setting the PWM drive pulse width at the ROW end. Figure 11 below shows the COM and Output waveform at ROW end: (1) $T=20 \times Tclk$ (32 × 8 drive mode); (2) $T=10 \times Tclk$ (24 × 16 drive mode); (3) Tclk = 1/Fsys

This chip must follow these steps when entering commands or displaying data: (1) Formation of the starting conditions (2) Send slave address (3) Command, display the transmission of data (4) Formation of stop conditions

9 I2C Serial Interface

This chip is transmitted by the I2C protocol 2-wire serial interface, containing a serial data line SDA and clock line SCL, within two lines The pull-up resistor is high when the bus is idle.

A starting signal is generated by the controller for each data transfer, using synchronous serial transmission, TM1680 per byte received

After all responded to an ACK answer signal. Each byte sent to the SDA line must be 8 bits and the number of bytes that can be sent per transfer No restrictions. Each byte must be followed by an ACK response signal, which falls from the 8th edge of the SCL signal when the ACK signal is not needed A low "L" is required until the ninth signal descending edge. When data is transmitted from the highest bit, the controller generates a stop signal by to terminate the bus transfer, while the start signal is resent during data transmission without a stop signal.

Data on the SDA remains stable when SCL is HIGH; SDA changes are allowed when SCL is LOW. If SCL is high, the

A descending edge is generated on the SDA, and a rising edge on the SDA is considered a stop signal if the SCL is high. As shown in the figure below:

Time sequence

1 Write command operation

As shown in Figure 15, the 8-bit slave device is fixed to 111001 from the high 6-bit address byte, and the next 2-bit A1 and A0 are ground outside the device

Address.

2-byte write operation

Application circuit

Low power LED application (direct drive mode): Example diagram of 32ROW*8COM mode 19 TM1680 ROW0 ROW31 SCL ROW29 SDA A0 SDA A0 A1 A1 VSS VSS osc СОМО LED array COM7

www.titanmec.com

Figure 19

Low Power LED Application (Direct Drive Mode): Example of 24ROW*16COM Mode

Figure 20

Medium power LED application (COM plus transistor drive mode): 3 2ROW*8COM mode example diagram

21

www.titanmec.com

Medium power LED application (COM plus transistor drive mode): 2 4ROW*16COM mode example diagram

High power LED applications (ROW and COM plus transistor drive mode): Example diagram of 32ROW*8COM mode

23

Figure 23

11 © Titan Micro Electronics www.titanmec.com

V1.1

VDD

4.7k

VDD

SCL

A0 Α1

VSS

MCU SDA 4.7k

32*8 & 24*16 LED driver chip TM1680

High power LED applications (ROW and COM plus transistor drive mode): examples of 24ROW*16COM mode

Cascade application (direct drive mode): 32ROW*8COM mode example diagram 25

Figure 24

12 © Titan Micro Electronics www.titanmec.com

V1.1

Cascade application (COM plus transistor drive mode): Example diagram of 32ROW*8COM mode

Cascade application (direct drive mode): examples of 24ROW*16COM mode 27

13 © Titan Micro Electronics www.titanmec.com

V1.1

Cascade application (COM plus transistor drive mode): examples of 24ROW*16COM mode

General design flow chart

Command overview tables

Command Name	Command Code	D/C	Description of the function	Default
WRITE	1110-01A1A0	D	Write the address of the slave machine	
Data Address (I2C)	0 A6 A5 A4 A3 A2 A0	D	Write RAM Address	
The data format (I2C)	D ₃ D ₂ D ₃ D ₃ D ₂ D ₃ D ₀	D A	-A0 high 4 bits, B3-B0 low 4 bits	
SYS DIS	1000-0000	C sh	uts off system clock and LED loop √	
SYS EN	1000-0001	С	Turn on the system oscillator	
LED OFF	1000-0010	С	Turn off LED loop	$\sqrt{}$
LED ON	1000-0011	С	Turn on the LED loop	
BLINK OFF	1000-1000	С	Turn off the blinking function	V
Blink 2Hz	1000-1001	С	LED blinks at a frequency of 2Hz	
Blink_1Hz	1000-1010	С	LED blinks at a frequency of 1Hz	
Blink_0.5Hz	1000-1011	С	LED blinks at a frequency of 0.5Hz	
SLAVE MODE	1001-0Xxx		nal oscillation, the clock is input from the OSC pin.	
SERVE MODE	1001-0XXX		Synchronous signal input by SYN pin	
RC Master	1001-100X		-in oscillation, OSC stays low, synchronized	V
Mode0			The signal remains high at the SYN pin and should only be	
Modeo			For Single Chip	
RC Master		C inter	al oscillation, internal frequency at the OSC output,	
Mode1	1001-101X		Synchronous signal output at SYN pin	
110001				
EXT CLK		C exter	hal oscillation, the clock is input from the OSC pin.	$\sqrt{}$
Master Mode0	1001-110X		The synchronization signal is maintained high by the SYN pin.	
			Only referenced to a single chip	
EXT CLK	1001-111X	C exter	hal oscillation, the clock is input from the OSC pin.	
Master Mode1	1001-111X		Synchronous signal output from SYN pin	
		C w	en ab=00, 8COM Nmos;	
COM Option	1010-ABXX		when ab=01, 16COM Nmos;	
COM Option	IUIU-ADAA		8COM Pmos when ab=10;	00
			16COM Pmos when ab=11;	
		C abco	changes from 0-F respectively correspond	
PWM Duty	1011-abcd		16-order luminance of 1/16—16/16 LED	F
			section	

Note: 1, X does not care, it is recommended to write "0". 2, A6 ~ A0 memory address. 3, D0~D3 memory data. 4, D/C data/command mode. 5, default: the state of the chip after power-up reset

Package diagram (LQFP48 7m*7mm)

Cymbol	Dimensions In	Millimeters	Dimensions In Inchets	
Symbol	Min	Max	Min	Max
Α		1.600		0.063
A1	0.050	0.150	0.002	0.006
A2	13.5	1.500	0.053	0.059
b	0.180	0.270	0.007	0.010
С	0.130	0.180	0.005	0.007
D	6.900	7.100	0.272	0.280
D1	8.800	9.200	0.346	0.362
E	6.900	7.100	0.272	0.280
E1	8.800	9.200	0.346	0.362
е	0.500 (BSC)		0.020	(BSC)
L	0.450	0.750	0.018	0.030
θ	0°	7°	0°	7°

Package diagram (QFP52 14m*14mm)

Symbol	Dimensions In	Millimeters	Dimensions In Inchets		
	Min	Max	Min	Max	
A		1.600	_	0.063	
A1	0.1	00	0.	004	
A2	133500	1.500	0.053	0.059	
b	0.400	(BSC)	0.016 (BSC)		
D	13.900	14.100	0.547	0.555	
D1	15.800	16.200	0.622	0.638	
E	13.900	14.100	0.547	0.555	
E1	15.800	16.200	0.622	0.638	
е	1.000 (BSC)		0.039	9 (BSC)	
L	0.450	0.750	0.018	0.030	
θ	0°	7°	0°	7°	

All specs and applications are above subject to change withou t prior notice. (The above circuit and specifications are for reference only, if amended by the Company without prior notice)