

Unit 13: Sides and Angles of Triangles

Overview

Theorem 13.1.1

If two sides of a triangle are unequal in length, the longer side has an angle of greater measure opposite to it.

Given:

In $\triangle ABC$, $m\overline{AC} > m\overline{AB}$

To prove

 $m\angle ABC \ge m\angle ACB$

Construction

On \overline{AC} take a point D such that

 $\overline{AD} \cong \overline{AB}$. Join B to D so that $\triangle ADB$ is an isosceles triangle. Label $\angle 1$ and $\angle 2$ as shown in the given figure.

Proof

11001		
Statements Reasons		
In ΔABD	le Ició	
$m \angle 1 = m \angle 2 \dots (i)$	Angles opposite to congruent sides (construction)	
In $\triangle BCD$, m $\angle ACB \le m \angle 2$		
i.e. m\(2 > m\(ACB \) (ii)	(An anterior angle of a triangle is greater than a non adjacent interior angle.)	
∴ m∠1 > m∠ACB(iii)	By (i) and (ii)	
But $m\angle ABC = m\angle 1 + m\angle DBC$	Postulate of addition of angles	
\therefore m \angle ABC > m \angle 1 (iv)		
\therefore m \angle ABC > m \angle 1 > m \angle ACB	By (iii) and (iv)	
Hence $m\angle ABC > m\angle ACB$	(Transitive property of inequality of real number)	

Example 1

Prove that in a scalene triangle, the angle opposite to the largest side is of measure greater than 60° . (i.e., two-third of a right-angle)

Given

In $\triangle ABC$, $m\overline{AC} > m\overline{AB}$, $m\overline{AC} > m\overline{BC}$.

To prove

 $m\angle B > 60^{\circ}$

Proof

Statements	Reasons
$\operatorname{In}\Delta ABC$	
$m\angle B > m\angle C$	$m\overline{AC} > m\overline{AB}$ (given)
$m\angle B > m\angle A$	$m\overline{AC} > m\overline{BC}$ (given)
But $m\angle A + m\angle B + m\angle C = 180^{\circ}$	$\angle A, \angle B, \angle C$ are the angles of $\triangle ABC$
$\therefore m \angle B + m \angle B + m \angle B > 180^{\circ}$	$m \angle B > m \angle C, m \angle B > m \angle A (proved)$
Hence $m\angle B > 60^{\circ}$	$\frac{180^{60^{\circ}}}{3} = 60^{\circ}$

Example 2

In a quadrilateral ABCD, \overline{AB} is the longest side and \overline{CD} is the shortest side. Prove that $\Delta BCD > mBAD$

Given

In quad. ABCD, \overline{AB} is the longest side and \overline{CD} is the shortest side.

To prove

 $m\angle BCD \ge m\angle BAD$

Construction

Joint A to C.

Name the angles $\angle 1, \angle 2, \angle 3$ and $\angle 4$ as shown in the figure.

Statements	Reasons
In $\triangle ABC$, $m \angle 4 > \angle 2(i)$	$m\overline{AB} > m\overline{BC}$ (given)
$In \Delta ACD, m \angle 3 > \angle 1(ii)$	$m\overline{AD} > m\overline{CD}$ (given)
$\therefore m \angle 4 + m \angle 3 > m \angle 2 + m \angle 1$	From (i) and (ii)
Hence $m \angle BCD > m \angle BAD$	$\therefore \begin{cases} m\angle 4 + m\angle 3 = m\angle BCD \\ m\angle 2 + m\angle 1 = m\angle BAD \end{cases}$

Theorem 13.1.2 (Converse of theorem 13.1.1)

If two angles of a triangle are unequal in measure, the side opposite to the greater angle is longer than the side opposite to the smaller angle.

In $\triangle ABC$, $m\angle A \ge m\angle B$

To prove

 $m\overline{BC} > m\overline{AC}$

Proof

Statements	Reasons
If $m\overline{BC} \not> m\overline{AC}$, then	
Either (i) $m\overline{BC} = m\overline{AC}$	(Trichotomy property of real numbers)
Or (ii) $m\overline{BC} < m\overline{AC}$	(Thenotomy property of real numbers)
From (i) if $m\overline{BC} = m\overline{AC}$, then	
$m\angle A = m\angle B$	(Angles opposite to congruent sides are congruent)
Which in not possible	
From (ii) if $m\overline{BC} < m\overline{AC}$, then	
$m\angle A \le m\angle B$	(The angle opposite to longer side is greater than angle opposite to smaller side?
This is also not possible	Contrary to the given
\therefore m $\overline{BC} \neq m\overline{AC}$	
And mBC ≠mAC	Trichotomy property of real numbers.
Thus $m\overline{BC} > m\overline{AC}$	

Corollaries

- (i) The hypotenuse of a right triangle is longer than each of the other two sides.
- (ii) In an obtuse angled triangle, the side opposite to the obtuse angle is longer than each of the other two sides.

Example

ABC is an isosceles triangle with base \overline{BC} . On \overline{BC} a point D is taken away from C. A line segment through D cuts \overline{AC} at L and \overline{AB} at M.

Given

In $\triangle ABC$, $\overline{AB} \cong \overline{AC}$

D is a point on \overrightarrow{BC} away from C

A line segment through D cuts \overline{AC} at L and \overline{AB} at M.

To Prove

 $m\overline{\rm AL} > m\overline{\rm AM}$

Proof

But $m \angle 3 \cong m \angle 4(vi)$	Vertical angles
$\therefore m \angle 1 > m \angle 4$	From (v) and (vi)
Hence $m\overline{AL} > m\overline{AM}$	In $\triangle ALM$, $m \angle 1 > m \angle 4$ (proved)

Theorem 13.1.3

The sum of the lengths of any two sides of a triangle is greater than the length of third side.

Given $\triangle ABC$

To prove

- (i) $m\overline{AB} + m\overline{AC} > m\overline{BC}$
- (ii) $m\overline{AB} + m\overline{BC} > m\overline{AC}$
- (iii) $m\overline{BC} + m\overline{AC} > m\overline{AB}$

Construction

Take a point D on CA such that $AD \cong AB$ join B to D and name the angles $\angle 1$, $\angle 2$ as shown in the given figure.

Example 1

Which of the following sets of lengths can be the lengths of the sides of a triangle?

- (a) 2cm, 3cm, 5cm (b) 3cm, 4cm, 5cm, (c) 2cm, 4cm, 7cm,
- (a) :: 2+3=5
 - This set of lengths cannot be those of the sides of a triangle.
- (b) : 3+4>5, 3+5>4, 4+5>3
 - This set can form a triangle
- (c) : 2+4 < 7
 - This set of lengths cannot be the sides of a triangle.

Example 2

Prove that the sum of the measures of two sides of a triangle is greater than twice the measure of the median which bisects the third side.

In $\triangle ABC$, median AD bisects side \overline{BC} at D.

To prove

$$m\overline{BC} + \overline{AC} > 2m\overline{AD}$$
.

Construction

On \overrightarrow{AD} , Take a point E, such that $\overrightarrow{DE} = \overrightarrow{AD}$.

Join C to E. Name the angles $\angle 1, \angle 2$ as shown in the figure.

Proof

11001	
Statements	Reasons
In $\triangle ABD \leftrightarrow \triangle ECD$	
$\overline{BD} \cong \overline{CD}$	Given
∠1 ≅ ∠2	Vertical angles
$\overline{AD} \cong \overline{ED}$	Construction
$\Delta ABD \cong \Delta ECD$	S.A.S. Postulate
$\overline{AB} \cong \overline{EC}(i)$	Corresponding sides of≅∆s
$m\overline{AC} + m\overline{EC} > m\overline{AE}(ii)$	ACE is a triangle
$m\overline{AC} + m\overline{AB} > m\overline{AE}(ii)$	From (i) and (ii)
Hence $m\overline{AC} + m\overline{AB} > 2m\overline{AD}$	$m\overline{AE} = 2m\overline{AD}$ (Construction)

Example 3

Prove that the difference of measures of two sides of a triangle is less than the measure of the third side.

Given

ΔΑΒC

To Prove

$$m\overline{AC} - m\overline{AB} < m\overline{BC}$$

 $m\overline{BC} - m\overline{AB} < m\overline{AC}$
 $m\overline{BC} - m\overline{AC} < m\overline{AB}$

Proof

Statements	Reasons
$m\overline{AB} + m\overline{BC} > m\overline{AC}$	ABC is a triangle
$\left(p \overline{AB} + m \overline{BC} - p \overline{AB} \right) > \left(m \overline{AC} - m \overline{AB} \right)$	Subtracting $m\overline{AB}$ from both sides
$\therefore m\overline{BC} > \left(m\overline{AC} - m\overline{AB}\right)$	
or $m\overline{AC}$ - $m\overline{AB}$ < $m\overline{BC}$ (i)	$a > b \Rightarrow b < a$
Similarly	
$m\overline{BC} - m\overline{AB} < m\overline{AC}$ $m\overline{BC} - m\overline{AC} < m\overline{AB}$	Reason similar to (i)

Report any mistake at freeilm786@gmail.com

[WEBSITE: WWW.FREEILM.COM] [EMAIL: FREEILM786@GMAIL.COM] [PAGE: <u>6 OF 6</u>]