Statistica - 7^a lezione

28 marzo 2023

Teorema del Limite Centrale (versione formale)

Se
$$X_1, X_2, \ldots$$
 sono i.i.d. con $\mathbb{E}[X_i] = \mu$ e $\text{var}[X_i] = \sigma^2$, allora

$$\lim_{n\to\infty}\mathbb{P}\left(\frac{\overline{X}_n-\mu}{\frac{\sigma}{\sqrt{n}}}\right)\leq z\right)=\Phi(z)\qquad\text{per ogni }z\in\mathbb{R}$$

standardizzazione di \overline{X}_n

Qual è la densità di $X_1 + X_2 + ... + X_n$ quando n è grande?

Se X_1, \ldots, X_n sono i.i.d. e n è grande, allora per il TLC

$$\overline{X}_n \approx N \quad \Rightarrow \quad X_1 + \ldots + X_n = n \overline{X}_n \approx N$$

$$Z \sim N \quad \Rightarrow \quad aZ + b \sim N$$

Se X_1, \ldots, X_n sono i.i.d. e n è grande, allora per il TLC

$$\overline{X}_n \approx N \quad \Rightarrow \quad X_1 + \ldots + X_n = n \overline{X}_n \approx N$$

$$Z \sim N \quad \Rightarrow \quad aZ + b \sim N$$

•
$$\mathbb{E}[X_i] = \mu$$

$$\Rightarrow \quad \mathbb{E}\left[X_1+\ldots+X_n\right] = \mathbb{E}\left[X_1\right]+\ldots+\mathbb{E}\left[X_n\right] \qquad \text{linearità di } \mathbb{E}$$

Se X_1, \ldots, X_n sono i.i.d. e n è grande, allora per il TLC

$$\overline{X}_n \approx N \quad \Rightarrow \quad X_1 + \ldots + X_n = n \, \overline{X}_n \approx N$$

$$Z \sim N \quad \Rightarrow \quad aZ + b \sim N$$

•
$$\mathbb{E}[X_i] = \mu$$

 $\Rightarrow \mathbb{E}[X_1 + \ldots + X_n] = \underbrace{\mathbb{E}[X_1]}_{\mu} + \ldots + \underbrace{\mathbb{E}[X_n]}_{\mu}$

Se X_1, \dots, X_n sono i.i.d. e n è grande, allora per il TLC

$$\overline{X}_n \approx N \quad \Rightarrow \quad X_1 + \ldots + X_n = n \, \overline{X}_n \approx N$$

$$Z \sim N \quad \Rightarrow \quad aZ + b \sim N$$

•
$$\mathbb{E}[X_i] = \mu$$

 $\Rightarrow \mathbb{E}[X_1 + \ldots + X_n] = \underbrace{\mathbb{E}[X_1]}_{\mu} + \ldots + \underbrace{\mathbb{E}[X_n]}_{\mu} = n \mu$

Se X_1, \ldots, X_n sono i.i.d. e n è grande, allora per il TLC $\overline{X}_n \approx N \quad \Rightarrow \quad X_1 + \ldots + X_n = n \overline{X}_n \approx N$

$$Z \sim N \quad \Rightarrow \quad aZ + b \sim N$$

•
$$\mathbb{E}[X_i] = \mu$$

 $\Rightarrow \mathbb{E}[X_1 + \ldots + X_n] = n \mu$

Se X_1, \ldots, X_n sono i.i.d. e n è grande, allora per il TLC

$$\overline{X}_n \approx N \quad \Rightarrow \quad X_1 + \ldots + X_n = n \overline{X}_n \approx N$$

$$Z \sim N \quad \Rightarrow \quad aZ + b \sim N$$

•
$$\mathbb{E}[X_i] = \mu$$

 $\Rightarrow \mathbb{E}[X_1 + \ldots + X_n] = n \mu$

•
$$\operatorname{var}[X_i] = \sigma^2$$

$$\Rightarrow$$
 $\operatorname{var}\left[X_{1}+\ldots+X_{n}\right]=\operatorname{var}\left[X_{1}\right]+\ldots+\operatorname{var}\left[X_{n}\right]$ indipendenza delle X_{i}

Se $X_1, ..., X_n$ sono i.i.d. e n è grande, allora per il TLC $\overline{X}_n \approx N \quad \Rightarrow \quad X_1 + ... + X_n = n \overline{X}_n \approx N$

$$Z \sim N \quad \Rightarrow \quad aZ + b \sim N$$

•
$$\mathbb{E}[X_i] = \mu$$

 $\Rightarrow \mathbb{E}[X_1 + \ldots + X_n] = n \mu$

•
$$\operatorname{var}[X_i] = \sigma^2$$

 $\Rightarrow \operatorname{var}[X_1 + \ldots + X_n] = \underbrace{\operatorname{var}[X_1]}_{\sigma^2} + \ldots + \underbrace{\operatorname{var}[X_n]}_{\sigma^2}$

Se X_1, \dots, X_n sono i.i.d. e n è grande, allora per il TLC

$$\overline{X}_n \approx N \quad \Rightarrow \quad X_1 + \ldots + X_n = n \overline{X}_n \approx N$$

$$Z \sim N \quad \Rightarrow \quad aZ + b \sim N$$

•
$$\mathbb{E}[X_i] = \mu$$

 $\Rightarrow \mathbb{E}[X_1 + \ldots + X_n] = n \mu$

•
$$\operatorname{var}[X_i] = \sigma^2$$

$$\Rightarrow \operatorname{var}[X_1 + \ldots + X_n] = \underbrace{\operatorname{var}[X_1]}_{\sigma^2} + \ldots + \underbrace{\operatorname{var}[X_n]}_{\sigma^2} = n \sigma^2$$

Se $X_1, ..., X_n$ sono i.i.d. e n è grande, allora per il TLC $\overline{X}_n \approx N \quad \Rightarrow \quad X_1 + ... + X_n = n \overline{X}_n \approx N$

$$Z \sim N \quad \Rightarrow \quad aZ + b \sim N$$

•
$$\mathbb{E}[X_i] = \mu$$

 $\Rightarrow \mathbb{E}[X_1 + \ldots + X_n] = n \mu$

•
$$\operatorname{var}[X_i] = \sigma^2$$

 $\Rightarrow \operatorname{var}[X_1 + \ldots + X_n] = n\sigma^2$

Se X_1, \ldots, X_n sono i.i.d. e n è grande, allora per il TLC

$$\overline{X}_{n} \approx N \quad \Rightarrow \quad \underline{X}_{1} + \ldots + X_{n} = n \overline{X}_{n} \approx N$$
Herché
$$Z \sim N \quad \Rightarrow \quad aZ + L \sim N$$

$$E[X_{i}] = \mu$$

$$\Rightarrow \quad E[X_{1} + \ldots + X_{n}] = n \mu$$

$$\text{ovar}[X_{i}] = \sigma^{2}$$

$$\Rightarrow \quad \text{var}[X_{1} + \ldots + X_{n}] = n \sigma^{2}$$

$$\Rightarrow \quad \text{var}[X_{1} + \ldots + X_{n}] = n \sigma^{2}$$

$$\Rightarrow \mathbb{E}[X_i] = \mu$$

$$\Rightarrow \mathbb{E}[X_1 + \ldots + X_n] = n \mu$$

•
$$\operatorname{var}[X_i] = \sigma^2$$

$$\Rightarrow X_1 + \ldots + X_n \approx N(n\mu, n\sigma^2)$$

Se X_1, \ldots, X_n sono i.i.d. e *n* è grande, allora per il TLC

$$\overline{X}_n \approx N \quad \Rightarrow \quad \underline{X_1 + \ldots + X_n = n \overline{X}_n \approx N}$$

perché

$$Z \sim N \quad \Rightarrow \quad aZ + k \sim N$$

$$\Rightarrow \mathbb{E}\left[X_1 + \ldots + X_n\right] = n\mu$$

•
$$\operatorname{var}[X_i] = \sigma^2$$

$$\Rightarrow$$
 var $[X_1 + \ldots + X_n] = n \sigma^2$

erché
$$Z \sim N \Rightarrow aZ + t \sim N$$

• $\mathbb{E}[X_i] = \mu$
 $\Rightarrow \mathbb{E}[X_1 + \ldots + X_n] = n\mu$

• $\operatorname{var}[X_i] = \sigma^2$

• $X_1 + \ldots + X_n \approx N(n\mu, n\sigma^2)$

Teorema del Limite Centrale (versione equivalente)

Se $X_1, X_2,...$ sono i.i.d. con $\mathbb{E}[X_i] = \mu$ e $\text{var}[X_i] = \sigma^2$, allora

$$\lim_{n\to\infty}\mathbb{P}\left(\frac{X_1+\ldots+X_n-n\,\mu}{\sqrt{n\,\sigma^2}}\leq z\right)=\Phi(z)\qquad\text{per ogni }z\in\mathbb{R}$$

Se
$$X_1, \ldots, X_n$$
 sono i.i.d. con $X_i \sim B(1, q)$, allora
$$X_1 + \ldots + X_n \sim B(n, q)$$

$$X_1 + \ldots + X_n \sim B(n, q)$$

 $X_1 + \ldots + X_n \approx N(n \mu, n \sigma^2)$

$$\left. \begin{array}{l} X_1 + \ldots + X_n \sim B(n,\,q) \\ X_1 + \ldots + X_n \approx N\left(n\,\mu,\,n\,\sigma^2\right) \end{array} \right\} \ \Rightarrow \ \ B(n,\,q) \simeq N\!\left(n\,\mu,\,n\,\sigma^2\right)$$

Se X_1, \ldots, X_n sono i.i.d. con $X_i \sim B(1, q)$, allora, se n è grande,

$$\left. \begin{array}{l} X_1 + \ldots + X_n \sim \textit{B}(\textit{n}, \, \textit{q}) \\ X_1 + \ldots + X_n \approx \textit{N}\left(\textit{n}\, \mu, \, \textit{n}\, \sigma^2\right) \end{array} \right\} \, \Rightarrow \, \, \textit{B}(\textit{n}, \, \textit{q}) \simeq \textit{N}\left(\textit{n}\, \mu, \, \textit{n}\, \sigma^2\right) \label{eq:special_problem}$$

Quali sono i parametri della gaussiana?

$$\left. \begin{array}{l} X_1 + \ldots + X_n \sim \textit{B}(\textit{n}, \textit{q}) \\ X_1 + \ldots + X_n \approx \textit{N}\left(\textit{n}\,\mu, \, \textit{n}\,\sigma^2\right) \end{array} \right\} \; \Rightarrow \; \; \textit{B}(\textit{n}, \, \textit{q}) \simeq \textit{N}\left(\textit{n}\,\mu, \, \textit{n}\,\sigma^2\right) \label{eq:special_eq}$$

$$\bullet \ \mu = \mathbb{E}\left[X_i\right] = q$$

$$\left. \begin{array}{l} X_1 + \ldots + X_n \sim B(n, q) \\ X_1 + \ldots + X_n \approx N\left(n\mu, \, n\, \sigma^2\right) \end{array} \right\} \ \Rightarrow \ B(n, q) \simeq N(n\, \mu, \, n\, \sigma^2)$$

- $\mu = \mathbb{E}[X_i] = q$
- $\sigma^2 = \text{var}[X_i] = q(1-q)$

$$\left. \begin{array}{l} X_1 + \ldots + X_n \sim \textit{B}(n,\,q) \\ X_1 + \ldots + X_n \approx \textit{N}\left(n\,\mu,\,n\,\sigma^2\right) \end{array} \right\} \; \Rightarrow \; \underbrace{\textit{B}(n,\,q) \simeq \textit{N}\left(n\,\mu,\,n\,\sigma^2\right)}_{\parallel}$$

$$\bullet \ \mu = \mathbb{E}\left[X_i\right] = q$$

$$\sigma^2 = \operatorname{var}[X_i] = q(1-q)$$

$$\bullet \ \mu = \mathbb{E}[X_i] = q$$

$$\bullet \ \sigma^2 = \text{var}[X_i] = q(1-q)$$

$$\Rightarrow \boxed{B(n, q) \simeq N(nq, nq(1-q))}$$

Se X_1, \ldots, X_n sono i.i.d. con $X_i \sim B(1, q)$, allora, se n è grande,

$$\left. \begin{array}{l} X_1 + \ldots + X_n \sim B(n, q) \\ X_1 + \ldots + X_n \approx N\left(n\mu, \, n\, \sigma^2\right) \end{array} \right\} \Rightarrow \underbrace{B(n, q) \simeq N(n\mu, \, n\, \sigma^2)}_{\parallel}$$

$$\bullet \mu = \mathbb{E}[X_i] = q$$

$$\bullet \sigma^2 = \operatorname{var}[X_i] = q(1-q)$$

$$\Rightarrow \boxed{B(n, q) \simeq N(nq, nq(1-q))}$$

Approssimazione gaussiana della binomiale (versione formale)

Se $Y_n \sim B(n,q)$ per ogni n, allora

$$\lim_{n\to\infty} \mathbb{P}\left(\frac{Y_n - nq}{\sqrt{nq(1-q)}} \le z\right) = \Phi(z) \quad \text{per ogni } z \in \mathbb{R}$$

ESEMPIO: Se lancio 30 volte una moneta equilibrata, qual è la probabilità di fare testa meno di 20 volte?

ESEMPIO: Se lancio 30 volte una moneta equilibrata, qual è la probabilità di fare testa meno di 20 volte?

SOLUZIONE: Definisco la v.a.

 Y_{30} = num. di teste nei 30 lanci $\sim B(30, 0.5)$

ESEMPIO: Se lancio 30 volte una moneta equilibrata, qual è la probabilità di fare testa meno di 20 volte?

SOLUZIONE: Definisco la v.a.

 Y_{30} = num. di teste nei 30 lanci $\sim B(30, 0.5)$

$$\mathbb{P}(Y_{30} < 20) = \sum_{k=0}^{19} p_{Y_{30}}(k)$$

ESEMPIO: Se lancio 30 volte una moneta equilibrata, qual è la probabilità di fare testa meno di 20 volte?

SOLUZIONE: Definisco la v.a.

 Y_{30} = num. di teste nei 30 lanci $\sim B(30, 0.5)$

$$\mathbb{P}(Y_{30}<20)=\sum_{k=0}^{19}p_{Y_{30}}(k)$$

ESEMPIO: Se lancio 30 volte una moneta equilibrata, qual è la probabilità di fare testa meno di 20 volte?

SOLUZIONE: Definisco la v.a.

 Y_{30} = num. di teste nei 30 lanci $\sim B(30, 0.5)$

$$\mathbb{P}(Y_{30} < 20) = \sum_{k=0}^{19} p_{Y_{30}}(k) = \sum_{k=0}^{19} {30 \choose k} 0.5^k (1 - 0.5)^{30-k}$$

ESEMPIO: Se lancio 30 volte una moneta equilibrata, qual è la probabilità di fare testa meno di 20 volte?

SOLUZIONE: Definisco la v.a.

 Y_{30} = num. di teste nei 30 lanci $\sim B(30, 0.5)$

$$\mathbb{P}(Y_{30} < 20) = \sum_{k=0}^{19} p_{Y_{30}}(k) = \sum_{k=0}^{19} {30 \choose k} 0.5^k (1 - 0.5)^{30-k} = ???$$

ESEMPIO: Se lancio 30 volte una moneta equilibrata, qual è la probabilità di fare testa meno di 20 volte?

SOLUZIONE: Definisco la v.a.

 Y_{30} = num. di teste nei 30 lanci $\sim B(30, 0.5)$

$$B(30, 0.5) \simeq N(nq, nq(1-q))$$

ESEMPIO: Se lancio 30 volte una moneta equilibrata, qual è la probabilità di fare testa meno di 20 volte?

SOLUZIONE: Definisco la v.a.

 Y_{30} = num. di teste nei 30 lanci $\sim B(30, 0.5)$

$$B(30, 0.5) \simeq N(nq, nq(1-q)) = N(30 \cdot 0.5, 30 \cdot 0.5 \cdot (1-0.5))$$

ESEMPIO: Se lancio 30 volte una moneta equilibrata, qual è la probabilità di fare testa meno di 20 volte?

SOLUZIONE: Definisco la v.a.

 $Y_{30} = \text{num. di teste nei 30 lanci} \sim B(30, 0.5)$

$$B(30, 0.5) \simeq N(nq, nq(1-q)) = N(30 \cdot 0.5, 30 \cdot 0.5 \cdot (1-0.5))$$

 $\mathbb{P}(Y_{30} < 20) = \mathbb{P}\begin{pmatrix} Y_{30} & 20 \end{pmatrix}$

ESEMPIO: Se lancio 30 volte una moneta equilibrata, qual è la probabilità di fare testa meno di 20 volte?

SOLUZIONE: Definisco la v.a.

 Y_{30} = num. di teste nei 30 lanci $\sim B(30, 0.5)$

$$B(30, 0.5) \simeq N(nq, nq(1-q)) = N(30 \cdot 0.5, 30 \cdot 0.5 \cdot (1-0.5))$$

 $\mathbb{P}(Y_{30} < 20) = \mathbb{P}\begin{pmatrix} Y_{30} - nq & 20 - 30 \cdot 0.5 \end{pmatrix}$

ESEMPIO: Se lancio 30 volte una moneta equilibrata, qual è la probabilità di fare testa meno di 20 volte?

SOLUZIONE: Definisco la v.a.

 $Y_{30} =$ num. di teste nei 30 lanci $\sim B(30, 0.5)$

$$B(30, 0.5) \simeq N(nq, nq(1-q)) = N(30 \cdot 0.5, 30 \cdot 0.5 \cdot (1-0.5))$$

$$\mathbb{P}(Y_{30} < 20) = \mathbb{P}\left(\frac{Y_{30} - nq}{\sqrt{nq(1-q)}} < \frac{20 - 30 \cdot 0.5}{\sqrt{30 \cdot 0.5 \cdot (1-0.5)}}\right)$$

ESEMPIO: Se lancio 30 volte una moneta equilibrata, qual è la probabilità di fare testa meno di 20 volte?

SOLUZIONE: Definisco la v.a.

 Y_{30} = num. di teste nei 30 lanci $\sim B(30, 0.5)$

$$B(30, 0.5) \simeq N(nq, nq(1-q)) = N(30 \cdot 0.5, 30 \cdot 0.5 \cdot (1-0.5))$$

$$\mathbb{P}(Y_{30} < 20) = \mathbb{P}\left(\underbrace{\frac{Y_{30} - nq}{\sqrt{nq(1-q)}}}_{N(2d)} < \frac{20 - 30 \cdot 0.5}{\sqrt{30 \cdot 0.5 \cdot (1-0.5)}}\right)$$

ESEMPIO: Se lancio 30 volte una moneta equilibrata, qual è la probabilità di fare testa meno di 20 volte?

SOLUZIONE: Definisco la v.a.

 $Y_{30} =$ num. di teste nei 30 lanci $\sim B(30, 0.5)$

$$B(30, 0.5) \simeq N(nq, nq(1-q)) = N(30 \cdot 0.5, 30 \cdot 0.5 \cdot (1-0.5))$$

$$\mathbb{P}(Y_{30} < 20) = \mathbb{P}\left(\underbrace{\frac{Y_{30} - nq}{\sqrt{nq(1-q)}}}_{\approx N(0,1)} < \frac{20 - 30 \cdot 0.5}{\sqrt{30 \cdot 0.5 \cdot (1-0.5)}}\right)$$

$$\simeq \Phi\left(\frac{20 - 30 \cdot 0.5}{\sqrt{30 \cdot 0.5 \cdot (1-0.5)}}\right)$$

ESEMPIO: Se lancio 30 volte una moneta equilibrata, qual è la probabilità di fare testa meno di 20 volte?

SOLUZIONE: Definisco la v.a.

 $Y_{30} =$ num. di teste nei 30 lanci $\sim B(30, 0.5)$

$$B(30, 0.5) \simeq N(nq, nq(1-q)) = N(30 \cdot 0.5, 30 \cdot 0.5 \cdot (1-0.5))$$

$$\mathbb{P}(Y_{30} < 20) = \mathbb{P}\left(\underbrace{\frac{Y_{30} - nq}{\sqrt{nq(1-q)}}}_{\approx N(0,1)} < \frac{20 - 30 \cdot 0.5}{\sqrt{30 \cdot 0.5 \cdot (1-0.5)}}\right)$$

$$\simeq \Phi\left(\frac{20 - 30 \cdot 0.5}{\sqrt{30 \cdot 0.5 \cdot (1-0.5)}}\right) = \Phi(1.826)$$

ESEMPIO: Se lancio 30 volte una moneta equilibrata, qual è la probabilità di fare testa meno di 20 volte?

SOLUZIONE: Definisco la v.a.

 $Y_{30} =$ num. di teste nei 30 lanci $\sim B(30, 0.5)$

Col calcolo approssimato:

$$B(30, 0.5) \simeq N(nq, nq(1-q)) = N(30 \cdot 0.5, 30 \cdot 0.5 \cdot (1-0.5))$$

$$\mathbb{P}(Y_{30} < 20) = \mathbb{P}\left(\underbrace{\frac{Y_{30} - nq}{\sqrt{nq(1-q)}}}_{\approx N(0,1)} < \frac{20 - 30 \cdot 0.5}{\sqrt{30 \cdot 0.5 \cdot (1-0.5)}}\right)$$

$$\simeq \Phi\left(\frac{20 - 30 \cdot 0.5}{\sqrt{30 \cdot 0.5 \cdot (1-0.5)}}\right) = \Phi(1.826) = 96.638\%$$

ESEMPIO: Se lancio 30 volte una moneta equilibrata, qual è la probabilità di fare testa meno di 20 volte?

SOLUZIONE: Definisco la v.a.

 $Y_{30} =$ num. di teste nei 30 lanci $\sim B(30, 0.5)$

Col calcolo approssimato:

$$B(30, 0.5) \simeq N(nq, nq(1-q)) = N(30 \cdot 0.5, 30 \cdot 0.5 \cdot (1-0.5))$$

$$\mathbb{P}(Y_{30} < 20) = \mathbb{P}\left(\underbrace{\frac{Y_{30} - nq}{\sqrt{nq(1-q)}}}_{\approx N(0,1)} < \frac{20 - 30 \cdot 0.5}{\sqrt{30 \cdot 0.5 \cdot (1-0.5)}}\right)$$

$$\simeq \Phi\left(\frac{20 - 30 \cdot 0.5}{\sqrt{30 \cdot 0.5 \cdot (1-0.5)}}\right) = \Phi(1.826) = 96.638\%$$

Correzione di continuità

Per approssimare una v.a. discreta Y con una assolutamente continua, è meglio usare le identità

"Y < 20" = " $Y \le 19$ " = " $Y \le 19$ " = " $Y \le 19$ ".

B(30) dove qui mettere \leq 0 < non fa differenza

$$\mathbb{P}(Y_{30} < 20) = \mathbb{P}\left(\underbrace{\frac{Y_{30} - nq}{\sqrt{nq(1-q)}}}_{\approx N(0,1)} < \frac{20 - 30 \cdot 0.5}{\sqrt{30 \cdot 0.5 \cdot (1-0.5)}}\right)$$

$$\simeq \Phi\left(\frac{20-30\cdot 0.5}{\sqrt{30\cdot 0.5\cdot (1-0.5)}}\right) = \Phi(1.826) = 96.638\%$$

Correzione di continuità

Per approssimare una v.a. discreta Y con una assolutamente continua, è meglio usare le identità

$$"Y < 20" = "Y \le 19" = "Y \le 19"$$

tol calco "Y < 20" = " $Y \le 19$ " = " $Y \le 19$ " = " $Y \le 19$ ".5" B (30, (dove qui mettere \le 0 < non fa differenza

$$\mathbb{P}(Y_{30} < 20) = \mathbb{P}(Y_{30} \le 19.5)$$

$$\simeq \Phi\left(\frac{20-30\cdot 0.5}{\sqrt{30\cdot 0.5\cdot (1-0.5)}}\right) = \Phi(1.826) = 96.638\%$$

Correzione di continuità

Per approssimare una v.a. discreta Y con una assolutamente continua, è meglio usare le identità

"
$$Y < 20$$
" = " $Y \le 19$ " = " $Y \le 19$ ".

fol calco "Y < 20" = " $Y \le 19$ " = " $Y \le 19$ " = " $Y \le 19$.5" B (30, dove qui mettere ≤ 0 < non fa differenza

$$\mathbb{P}(Y_{30} < 20) = \mathbb{P}(Y_{30} \le 19.5)$$

$$\simeq \Phi\left(\frac{19.5 - 30 \cdot 0.5}{\sqrt{30 \cdot 0.5 \cdot (1 - 0.5)}}\right) = \Phi(1.826) = 96.638\%$$

Correzione di continuità

Per approssimare una v.a. discreta Y con una assolutamente continua, è meglio usare le identità

"
$$Y < 20$$
" = " $Y \le 19$ " = " $Y \le 19$ " = " $Y \le 19$ ".

fol calco "Y < 20" = " $Y \le 19$ " = " $Y \le 19$ " = " $Y \le 19$.5" B (30, (dove qui mettere \le 0 < non fa differenza

$$\mathbb{P}(Y_{30} < 20) = \mathbb{P}(Y_{30} \le 19.5)$$

=

$$\simeq \Phi\left(\frac{19.5 - 30 \cdot 0.5}{\sqrt{30 \cdot 0.5 \cdot (1 - 0.5)}}\right) = \Phi(1.643) = 96.638\%$$

Correzione di continuità

Per approssimare una v.a. discreta Y con una assolutamente continua, è meglio usare le identità

"
$$Y < 20$$
" = " $Y \le 19$ " = " $Y \le 19$ ".

fol calco "Y < 20" = " $Y \le 19$ " = " $Y \le 19$ " = " $Y \le 19$.5" B (30, dove qui mettere ≤ 0 < non fa differenza

$$\mathbb{P}(Y_{30} < 20) = \mathbb{P}(Y_{30} \le 19.5)$$
=

$$\simeq \Phi\left(\frac{19.5 - 30 \cdot 0.5}{\sqrt{30 \cdot 0.5 \cdot (1 - 0.5)}}\right) = \Phi(1.643) = 94.950\%$$

Approssimazione gaussiana vs. poissoniana

$$B(n,q) \simeq \left\{egin{array}{ll} N(n\,q,\,n\,q(1-q)) & ext{se} & egin{array}{ll} n\geq 20 \ n\,q\geq 5 \ n(1-q)\geq 5 \end{array}
ight.$$

Approssimazione gaussiana vs. poissoniana

$$B(n,q) \simeq \left\{egin{array}{ll} N(n\,q,\,n\,q(1-q)) & ext{se} & egin{array}{ll} n\geq 20 \\ n\,q\geq 5 \\ n(1-q)\geq 5 \end{array}
ight. \\ \mathcal{P}(n\,q) & ext{se} & egin{array}{ll} n\geq 20 \\ q\leq 0.01 \\ n\,q \simeq 1 \end{array}
ight.$$

Approssimazione gaussiana vs. poissoniana

$$B(n,q) \simeq \left\{egin{array}{ll} N(n\,q,\,n\,q(1-q)) & ext{se} & egin{array}{ll} n\geq 20 \\ n\,q\geq 5 \\ n(1-q)\geq 5 \end{array}
ight. \\ \mathcal{P}(n\,q) & ext{se} & egin{array}{ll} n\geq 20 \\ q\leq 0.01 \\ n\,q\simeq 1 \end{array}
ight.$$

$$\Rightarrow$$
 $\mathcal{P}(\lambda) \simeq \textit{N}(\lambda,\,\lambda)$ se $\lambda \geq 5$

Se misuriamo un lato del tavolo, il risultato sarà la v.a.

$$L = \ell + X_1 + X_2 + \ldots + X_n$$

dove:

 $\ell = \text{lunghezza } vera \text{ del lato } (costante deterministica})$

 $X_1 =$ errore dovuto alla dilatazione termica del tavolo (v.a.)

 $X_2 =$ errore dovuto alla dilatazione termica del metro (v.a.)

 $X_3 =$ errore dovuto all'imprecisione dello sperimentatore (v.a.)

.

Se misuriamo un lato del tavolo, il risultato sarà la v.a.

$$L = \ell + X_1 + X_2 + \ldots + X_n$$

dove:

 $\ell = \text{lunghezza } \textit{vera} \text{ del lato} \quad (\underline{\text{costante deterministica}})$

 X_1 = errore dovuto alla dilatazione termica del tavolo (v.a.)

 X_2 = errore dovuto alla dilatazione termica del metro (v.a.)

 $X_3 =$ errore dovuto all'imprecisione dello sperimentatore (v.a.)

.

IPOTESI: $X_1, X_2, ..., X_n$ sono i.i.d. con $\mathbb{E}[X_i] = 0$ e n è grande

Se misuriamo un lato del tavolo, il risultato sarà la v.a.

$$L = \ell + \underbrace{X_1 + X_2 + \ldots + X_n}_{E}$$

 $\ell = \text{lunghezza } \textit{vera} \text{ del lato} \quad (\text{costante deterministica})$

 X_1 = errore dovuto alla dilatazione termica del tavolo (v.a.)

 X_2 = errore dovuto alla dilatazione termica del metro (v.a.)

 $X_3 =$ errore dovuto all'imprecisione dello sperimentatore (v.a.)

.

dove:

IPOTESI: $X_1, X_2, ..., X_n$ sono i.i.d. con $\mathbb{E}[X_i] = 0$ e n è grande

CONSEGUENZA:
$$E := X_1 + X_2 + ... + X_n \underset{\mathsf{TLC}}{\approx} N(0, \sigma_E^2)$$

 $\operatorname{con} \ \sigma_E^2 = n \operatorname{var} [X_i]$

Se misuriamo un lato del tavolo, il risultato sarà la v.a.

$$L = \ell + X_1 + X_2 + \ldots + X_n = \ell + E \approx N(\ell, \sigma_E^2)$$

dove:

 $\ell = \text{lunghezza } \textit{vera} \text{ del lato} \quad (\underline{\text{costante deterministica}})$

 X_1 = errore dovuto alla dilatazione termica del tavolo (v.a.)

 X_2 = errore dovuto alla dilatazione termica del metro (v.a.)

 X_3 = errore dovuto all'imprecisione dello sperimentatore (v.a.)

.

IPOTESI: $X_1, X_2, ..., X_n$ sono i.i.d. con $\mathbb{E}[X_i] = 0$ e n è grande

CONSEGUENZA:
$$E := X_1 + X_2 + ... + X_n \underset{\mathsf{TLC}}{\approx} N(0, \sigma_E^2)$$

 $\operatorname{con} \ \sigma_E^2 = n \operatorname{var} [X_i]$

Cose da non fare MAI

• Credere che il TLC renda le X_i gaussiane quando n è grande:

È assurdo!

È \overline{X}_n che diventa gaussiana. La densità delle X_i non può cambiare né se n = 1 né se n = 10 né se n = 10000000

Cose da non fare MAI

ullet Credere che il TLC renda le X_i gaussiane quando n è grande:

È assurdo!

È \overline{X}_n che diventa gaussiana. La densità delle X_i non può cambiare né se n=1 né se n=10 né se n=10000000

• Credere che $X_1 + X_2 + ... + X_n$ sia la stessa cosa di nX_1 :

Non ha senso!

Se lancio un dado n = 2 volte ed esce $x_1 = 4$ al primo lancio e $x_2 = 1$ al secondo, la somma dei due lanci non può essere $n x_1 = 8$, ma è piuttosto $x_1 + x_2 = 5$.

Programma

- Statistica descrittiva (riassumere molti dati attraverso poche caratteristiche essenziali)
- Probabilità
 (costruire un modello che preveda il risultato di un esperimento)
- Inferenza statistica
 (tarare i parametri del modello in base ai risultati dell'esperimento)
- Regressione lineare (riconoscere relazioni tra dati di tipo diverso)

Statistica e Probabilità

STATISTICA analisi dei risultati del passato

INFERENZA taratura del modello

PROBABILITÀ previsione dei risultati del futuro

PRIMA dell'esperimento

DOPO l'esperimento

	PRIMA dell'esperimento		DOPO l'esperimento	
variabili	$X_1 = \begin{pmatrix} 0.6 & 0.0 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \end{pmatrix}$	\rightarrow	$x_1 = 1.2$	
aleatorie <	$X_2 = \left(\begin{array}{c} 0.6 \ 7^2 \\ \begin{array}{c} 0.6 \ 7^2 \end{array} \right)$	\rightarrow	$x_2 = 0.6$	realizzazioni
1.1.0.		\rightarrow	• • •	(dati)
densità <	$ig(oxed{X_i \sim f_{ heta}}$	\rightarrow	*	
parametri <	$ heta \in \mathbb{R}$ oppure $ heta \in \mathbb{R}^k$	\rightarrow	$ heta \in \mathbb{R}$ oppure $ heta \in \mathbb{R}^k$	} parametri

	PRIMA dell'esperimento		DOPO l'esperimento	
variabili aleatorie i.i.d.	$X_1 = \begin{pmatrix} 0.6 & 7.2 \\ 7.2 & 7.2 \end{pmatrix}$	\rightarrow	$x_1 = 1.2$	
	$X_2 = \begin{pmatrix} 0.6 & 1/2 \\ 0.6 & 1/2 \end{pmatrix}$	\rightarrow	$x_2 = 0.6$	realizzazioni
		\rightarrow		(dati)
densità	$\left\{ X_i \sim f_{ heta} ight.$	\rightarrow	*	
parametri	$\left\{egin{array}{c} heta \in \mathbb{R} \ ext{oppure } heta \in \mathbb{R}^k \end{array} ight.$	\rightarrow	$ heta \in \mathbb{R}$ oppure $ heta \in \mathbb{R}^k$	} parametri

Vogliamo approssimare θ in base ai dati!

	PRIMA dell'esperimento		DOPO l'esperimento	
variabili aleatorie i.i.d.	$X_1 = \begin{pmatrix} 0.6 & 7 & 29 \\ 7 & 7 & 29 \end{pmatrix}$	\rightarrow	$x_1 = 1.2$	
	$X_2 = \begin{pmatrix} 0.6 & 0.0 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \end{pmatrix}$	\rightarrow	$x_2 = 0.6$	realizzazioni
		\rightarrow	•••	(dati)
densità	$\left\{ -X_{i}\sim N(\mu,\sigma^{2}) ight.$	\rightarrow	*	
parametri	$ \begin{cases} \mu = 1.5 \\ \sigma = 0.8 \end{cases} $	\rightarrow	$\mu =$ 1.5 $\sigma =$ 0.8	} parametri

Vogliamo approssimare μ e σ in base ai dati!

STATISTICA = qualsiasi funzione del campione aleatorio X_1, \ldots, X_n

STATISTICA = qualsiasi funzione del campione aleatorio X_1, \dots, X_n

ESEMPIO: la media campionaria

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

STATISTICA = qualsiasi funzione del campione aleatorio X_1, \dots, X_n

ESEMPIO: la media campionaria

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \equiv h(X_1, ..., X_n)$$
 dove $h(x_1, ..., x_n) = \frac{1}{n} \sum_{i=1}^{n} x_i$

STATISTICA = qualsiasi funzione del campione aleatorio X_1, \dots, X_n

ESEMPIO: la media campionaria

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \equiv h(X_1, ..., X_n)$$
 dove $h(X_1, ..., X_n) = \frac{1}{n} \sum_{i=1}^{n} X_i$

Una statistica è una variabile aleatoria!

STATISTICA = qualsiasi funzione del campione aleatorio X_1, \dots, X_n

ESEMPIO: la media campionaria

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \equiv h(X_1, ..., X_n)$$
 dove $h(X_1, ..., X_n) = \frac{1}{n} \sum_{i=1}^{n} X_i$

 $\frac{\text{STIMATORE}}{\text{statistica usata per approssimare}} = \frac{\text{statistica usata per approssimare}}{\text{un parametro della densità delle } X_i}$

STATISTICA = qualsiasi funzione del campione aleatorio X_1, \dots, X_n

ESEMPIO: la media campionaria

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \equiv h(X_1, ..., X_n)$$
 dove $h(X_1, ..., X_n) = \frac{1}{n} \sum_{i=1}^{n} X_i$

 $\frac{\text{STIMATORE}}{\text{statistica usata per approssimare}} = \frac{\text{statistica usata per approssimare}}{\text{un parametro della densità delle } X_i}$

ESEMPIO: \overline{X} si usa spesso come stimatore di $\mu = \mathbb{E}[X_i]$

STATISTICA = qualsiasi funzione del campione aleatorio X_1, \dots, X_n

ESEMPIO: la media campionaria

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \equiv h(X_1, ..., X_n)$$
 dove $h(X_1, ..., X_n) = \frac{1}{n} \sum_{i=1}^{n} X_i$

STIMATORE = $\frac{\text{statistica usata per approssimare}}{\text{un parametro della densità delle } X_i}$

ESEMPIO: \overline{X} si usa spesso come stimatore di $\mu = \mathbb{E}[X_i]$

Uno stimatore è una variabile aleatoria!

STATISTICA = qualsiasi funzione del campione aleatorio X_1, \dots, X_n

ESEMPIO: la media campionaria

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \equiv h(X_1, ..., X_n)$$
 dove $h(X_1, ..., X_n) = \frac{1}{n} \sum_{i=1}^{n} X_i$

STIMATORE = $\frac{\text{statistica usata per approssimare}}{\text{un parametro della densità delle } X_i}$

ESEMPIO: \overline{X} si usa spesso come stimatore di $\mu = \mathbb{E}\left[X_i\right]$

STIMA = realizzazione di uno stimatore dopo l'esperimento aleatorio

STATISTICA = qualsiasi funzione del campione aleatorio X_1, \dots, X_n

ESEMPIO: la media campionaria

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \equiv h(X_1, ..., X_n)$$
 dove $h(X_1, ..., X_n) = \frac{1}{n} \sum_{i=1}^{n} X_i$

STIMATORE = $\frac{\text{statistica usata per approssimare}}{\text{un parametro della densità delle } X_i}$

ESEMPIO: \overline{X} si usa spesso come stimatore di $\mu = \mathbb{E}[X_i]$

STIMA = realizzazione di uno stimatore dopo l'esperimento aleatorio

ESEMPIO: dopo n = 3 misure trovo $x_1 = 1.2, x_2 = 0.6, x_3 = 2.9$

Stima puntuale

STATISTICA = qualsiasi funzione del campione aleatorio X_1, \dots, X_n

ESEMPIO: la media campionaria

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \equiv h(X_1, ..., X_n)$$
 dove $h(X_1, ..., X_n) = \frac{1}{n} \sum_{i=1}^{n} X_i$

STIMATORE = $\frac{\text{statistica usata per approssimare}}{\text{un parametro della densità delle } X_i}$

ESEMPIO: \overline{X} si usa spesso come stimatore di $\mu = \mathbb{E}[X_i]$

STIMA = realizzazione di uno stimatore dopo l'esperimento aleatorio

ESEMPIO: dopo
$$n = 3$$
 misure trovo $x_1 = 1.2$, $x_2 = 0.6$, $x_3 = 2.9$

$$\Rightarrow$$
 $\overline{x} = \frac{1.2 + 0.6 + 2.9}{3} = 1.567$ è una stima di μ

Stima puntuale

STATISTICA = qualsiasi funzione del campione aleatorio X_1, \dots, X_n

ESEMPIO: la media campionaria

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \equiv h(X_1, ..., X_n)$$
 dove $h(X_1, ..., X_n) = \frac{1}{n} \sum_{i=1}^{n} X_i$

STIMATORE = $\frac{\text{statistica usata per approssimare}}{\text{un parametro della densità delle } X_i}$

ESEMPIO: \overline{X} si usa spesso come stimatore di $\mu = \mathbb{E}[X_i]$

STIMA = realizzazione di uno stimatore dopo l'esperimento aleatorio

ESEMPIO: dopo
$$n = 3$$
 misure trovo $x_1 = 1.2$, $x_2 = 0.6$, $x_3 = 2.9$

$$\Rightarrow$$
 $\overline{x} = \frac{1.2 + 0.6 + 2.9}{3} = 1.567$ è una stima di μ

Una stima è un numero!

	PRIMA dell'esperimento		DOPO l'esperimento	
variabili	$X_1 = \begin{pmatrix} x_1 & x_2 \\ 0 & x_3 \end{pmatrix}$	\rightarrow	$x_1 = 1.2$	
aleatorie {	$X_2 = (x_0 x_1 x_2)$	\rightarrow	$x_2 = 0.6$	realizzazioni
i.i.d.	•••	\rightarrow	•••	(dati)
densità {	$X_i \sim f_{ heta}$	\rightarrow	*	
parametri {	$ heta \in \mathbb{R}$ oppure $ heta \in \mathbb{R}^k$	\rightarrow	$ heta \in \mathbb{R}$ oppure $ heta \in \mathbb{R}^k$	} parametri

	PRIMA dell'esperimento		DOPO l'esperimento	
variabili aleatorie ‹ i.i.d.	$X_1 = \left(\begin{array}{c} 0.6 $	\rightarrow	$x_1 = 1.2$	
	$X_2 = \begin{pmatrix} 0.6 & 7^2 \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 1 \end{pmatrix}$	\rightarrow	$x_2 = 0.6$	realizzazioni (dati)
		\rightarrow		
densità {	$igg(oxed{X_i \sim f_ heta}$	\rightarrow	*	
			$ heta \in \mathbb{R}$ oppure $ heta \in \mathbb{R}^k$	
stimatore {	$\hat{\Theta}=h(X_1,X_2,\ldots)$	\rightarrow	$\hat{\theta} = h(1.2, 0.6, \ldots)$	stima

 θ non si può misurare, ma $\hat{\Theta}$ sì!

	PRIMA dell'esperimento		DOPO l'esperimento	
variabili aleatorie ‹ i.i.d.	$X_1 = \begin{pmatrix} 0.6 & 72 \\ 0.6 & 72 \end{pmatrix}$	\rightarrow	$x_1 = 1.2$	
	$X_2 = \left(\begin{array}{c} 0.6 \\ \begin{array}{c} 0.6 \end{array} \right)^2$	\rightarrow	$x_2 = 0.6$	realizzazioni (dati)
	$X_3 = \left(\begin{array}{c} 0.6 \\ 0.6 \\ 0.6 \end{array} \right)^2$	\rightarrow	$x_3 = 2.9$) (daii)
densità {	$X_i \sim N(\mu, \sigma^2)$	\rightarrow	*	
parametri {	$\mu=$ 1.5 $\sigma=$ 0.8	\rightarrow	$\mu=$ 1.5 $\sigma=$ 0.8	} parametri
stimatore {	$\overline{X} = \frac{X_1 + X_2 + X_3}{3}$	\rightarrow	$\overline{X} = \frac{1.2 + 0.6 + 2.9}{3}$	} stima

Se $\hat{\Theta}$ è un buono stimatore del parametro incognito θ :

ullet $\hat{\Theta}$ non deve dipendere da heta

- ullet $\hat{\Theta}$ non deve dipendere da heta
 - ⇒ si vede a occhio

- ullet $\hat{\Theta}$ non deve dipendere da heta
 - ⇒ si vede a occhio
- ullet la densità di $\hat{\Theta}$ deve essere centrata in heta

- ullet $\hat{\Theta}$ non deve dipendere da θ
 - ⇒ si vede a occhio
- la densità di $\hat{\Theta}$ deve essere centrata in θ

$$\Rightarrow$$
 $\mathbb{E}[\hat{\Theta}] \simeq \theta$

- ullet $\hat{\Theta}$ non deve dipendere da heta
 - ⇒ si vede a occhio
- la densità di $\hat{\Theta}$ deve essere centrata in θ

$$\Rightarrow$$
 $\mathbb{E}[\hat{\Theta}] \simeq \theta \Rightarrow \mathbf{0} \simeq \mathbb{E}[\hat{\Theta}] - \theta$

- ullet $\hat{\Theta}$ non deve dipendere da heta
 - ⇒ si vede a occhio
- la densità di $\hat{\Theta}$ deve essere centrata in θ

$$\Rightarrow \quad \mathbb{E}[\hat{\Theta}] \simeq \theta \quad \Rightarrow \quad 0 \simeq \mathbb{E}[\hat{\Theta}] - \theta =: \underbrace{\text{bias}(\hat{\Theta}; \theta)}_{\text{distorsione}}$$

Se $\hat{\Theta}$ è un buono stimatore del parametro incognito θ :

- ullet $\hat{\Theta}$ non deve dipendere da heta
 - ⇒ si vede a occhio
- la densità di $\hat{\Theta}$ deve essere centrata in θ

$$\Rightarrow$$
 $\mathbb{E}[\hat{\Theta}] \simeq \theta \Rightarrow 0 \simeq \mathbb{E}[\hat{\Theta}] - \theta =: bias(\hat{\Theta}; \theta)$

 $bias(\hat{\Theta}; \theta) = 0 \Leftrightarrow \hat{\Theta} \Leftrightarrow non-distorto (o corretto)$

Se $\hat{\Theta}$ è un buono stimatore del parametro incognito θ :

- ullet $\hat{\Theta}$ non deve dipendere da heta
 - ⇒ si vede a occhio
- la densità di $\hat{\Theta}$ deve essere centrata in θ

$$\Rightarrow \quad \mathbb{E}[\hat{\Theta}] \simeq \theta \quad \Rightarrow \quad 0 \simeq \mathbb{E}[\hat{\Theta}] - \theta =: bias(\hat{\Theta}; \theta)$$
$$bias(\hat{\Theta}; \theta) = 0 \quad \Leftrightarrow \quad \hat{\Theta} \quad \text{è non-distorto (o corretto)}$$

Se $\hat{\Theta}$ è un buono stimatore del parametro incognito θ :

- ullet $\hat{\Theta}$ non deve dipendere da heta
 - ⇒ si vede a occhio
- ullet la densità di $\hat{\Theta}$ deve essere centrata in heta

$$\Rightarrow \quad \mathbb{E}[\hat{\Theta}] \simeq \theta \quad \Rightarrow \quad 0 \simeq \mathbb{E}[\hat{\Theta}] - \theta =: bias(\hat{\Theta}; \theta)$$
$$bias(\hat{\Theta}; \theta) = 0 \quad \Leftrightarrow \quad \hat{\Theta} \quad \text{è non-distorto (o corretto)}$$

$$\Rightarrow \underbrace{\operatorname{mse}(\hat{\Theta}; \theta)}_{\substack{\text{errore} \\ \text{quadratico} \\ \text{medio}}} := \mathbb{E}[(\hat{\Theta} - \theta)^2] \qquad \text{deve esser piccolo}$$

Se $\hat{\Theta}$ è un buono stimatore del parametro incognito θ :

- ullet $\hat{\Theta}$ non deve dipendere da heta
 - ⇒ si vede a occhio
- la densità di $\hat{\Theta}$ deve essere centrata in θ

$$\Rightarrow \quad \mathbb{E}[\hat{\Theta}] \simeq \theta \quad \Rightarrow \quad 0 \simeq \mathbb{E}[\hat{\Theta}] - \theta =: bias(\hat{\Theta}; \theta)$$
$$bias(\hat{\Theta}; \theta) = 0 \quad \Leftrightarrow \quad \hat{\Theta} \quad \text{è non-distorto (o corretto)}$$

$$\Rightarrow \underbrace{ \underbrace{ \operatorname{mse}(\hat{\Theta}; \theta) }_{\substack{\text{mean} \\ \text{square} \\ \text{error}}} := \mathbb{E}[(\hat{\Theta} - \theta)^2] \qquad \text{deve esser piccolo}$$

Se $\hat{\Theta}$ è un buono stimatore del parametro incognito θ :

- ullet $\hat{\Theta}$ non deve dipendere da heta
 - ⇒ si vede a occhio
- la densità di $\hat{\Theta}$ deve essere centrata in θ

$$\Rightarrow \quad \mathbb{E}[\hat{\Theta}] \simeq \theta \quad \Rightarrow \quad 0 \simeq \mathbb{E}[\hat{\Theta}] - \theta =: \text{bias}(\hat{\Theta}; \theta)$$
$$\text{bias}(\hat{\Theta}; \theta) = 0 \quad \Leftrightarrow \quad \hat{\Theta} \quad \hat{\Theta} \quad \text{enon-distorto (o corretto)}$$

$$\Rightarrow$$
 mse $(\hat{\Theta}; \theta) := \mathbb{E}[(\hat{\Theta} - \theta)^2]$ deve esser piccolo
Se $\hat{\Theta}_n = h_n(X_1, \dots, X_n)$, allora

$$\operatorname{mse}(\hat{\Theta}_n; \theta) \underset{n \to \infty}{\longrightarrow} 0 \Leftrightarrow \hat{\Theta}_n \text{ è consistente in media quadratica}$$

Se $\hat{\Theta}_n$ è un buono stimatore del parametro incognito θ :

- \bullet $\hat{\Theta}_n$ non deve dipendere da θ
 - ⇒ si vede a occhio
- ullet la densità di \hat{eta} deve essere centrata in heta

$$\Rightarrow$$
 $\mathbb{E}[\hat{\Theta}] \simeq \theta \Rightarrow 0 \simeq \mathbb{E}[\hat{\Theta}] - \theta =: bias(\hat{\Theta}; \theta)$

 $bias(\hat{\Theta}; \theta) = 0 \Leftrightarrow \hat{\Theta}_n \text{ è non-distorto (o corretto)}$

$$\Rightarrow \operatorname{mse}(\hat{\Theta}; \theta) := \mathbb{E}[(\hat{\Theta} - \theta)^2]$$
 deve esser piccolo

Se
$$\hat{\Theta}_n = h_n(X_1, \dots, X_n)$$
, allora

$$\operatorname{mse}(\hat{\Theta}_n;\theta) \underset{n \to \infty}{\longrightarrow} 0 \quad \Leftrightarrow \quad \hat{\Theta}_n \text{ è consistente in media quadratica}$$

$$\begin{aligned} \text{bias}(\hat{\Theta}; \theta) &= \mathbb{E}[\hat{\Theta}] - \theta \\ \text{mse}(\hat{\Theta}; \theta) &= \mathbb{E}[(\hat{\Theta} - \theta)^2] \end{aligned}$$

DISTORSIONE
ERRORE QUADRATICO MEDIO

bias(
$$\hat{\Theta}$$
; θ) = $\mathbb{E}[\hat{\Theta}] - \theta$
mse($\hat{\Theta}$; θ) = $\mathbb{E}[(\hat{\Theta} - \theta)^2]$

- \bullet bias($\hat{\Theta}$; θ) \in ($-\infty$, $+\infty$)

DISTORSIONE
ERRORE QUADRATICO MEDIO

bias(
$$\hat{\Theta}$$
; θ) = $\mathbb{E}[\hat{\Theta}] - \theta$
mse($\hat{\Theta}$; θ) = $\mathbb{E}[(\hat{\Theta} - \theta)^2]$

DISTORSIONE ERRORE QUADRATICO MEDIO

- **1** bias($\hat{\Theta}$; θ) \in ($-\infty$, $+\infty$)

bias(
$$\hat{\Theta}$$
; θ) = $\mathbb{E}[\hat{\Theta}] - \theta$
mse($\hat{\Theta}$; θ) = $\mathbb{E}[(\hat{\Theta} - \theta)^2]$

DISTORSIONE
ERRORE QUADRATICO MEDIO

- **1** bias($\hat{\Theta}$; θ) \in ($-\infty$, $+\infty$)

perché mse ≥ 0

$$\begin{split} & \text{bias}(\hat{\Theta};\theta) = \mathbb{E}[\hat{\Theta}] - \theta & \text{DISTORSIONE} \\ & \text{mse}(\hat{\Theta};\theta) = \mathbb{E}[(\hat{\Theta} - \theta)^2] & \text{ERRORE QUADRATICO MEDIO} \end{split}$$

- **1** bias($\hat{\Theta}$; θ) $\in (-\infty, +\infty)$

$$\operatorname{mse}(\hat{\Theta}; \theta) = \mathbb{E}\left[\hat{\Theta}^2 - 2\,\theta\,\hat{\Theta} + \theta^2\right]$$

$$\begin{split} & \text{bias}(\hat{\Theta};\theta) = \mathbb{E}[\hat{\Theta}] - \theta & \text{DISTORSIONE} \\ & \text{mse}(\hat{\Theta};\theta) = \mathbb{E}[(\hat{\Theta} - \theta)^2] & \text{ERRORE QUADRATICO MEDIO} \end{split}$$

- **1** bias($\hat{\Theta}$; θ) \in ($-\infty$, $+\infty$)

$$\begin{split} \text{bias}(\hat{\Theta};\theta) &= \mathbb{E}[\hat{\Theta}] - \theta \\ \text{mse}(\hat{\Theta};\theta) &= \mathbb{E}[(\hat{\Theta} - \theta)^2] \end{split} \quad \text{ERRORE QUADRATICO MEDIO} \end{split}$$

- **1** bias($\hat{\Theta}$; θ) \in ($-\infty$, $+\infty$)

$$\begin{aligned} \text{bias}(\hat{\Theta};\theta) &= \mathbb{E}[\hat{\Theta}] - \theta & \text{DISTORSIONE} \\ \text{mse}(\hat{\Theta};\theta) &= \mathbb{E}[(\hat{\Theta} - \theta)^2] & \text{ERRORE QUADRATICO MEDIO} \end{aligned}$$

- **1** bias($\hat{\Theta}$; θ) $\in (-\infty, +\infty)$

$$\begin{aligned} \text{bias}(\hat{\Theta};\theta) &= \mathbb{E}[\hat{\Theta}] - \theta \\ \text{mse}(\hat{\Theta};\theta) &= \mathbb{E}[(\hat{\Theta} - \theta)^2] \end{aligned} \quad \text{ERRORE QUADRATICO MEDIO}$$

- **1** bias($\hat{\Theta}$; θ) \in ($-\infty$, $+\infty$)

bias
$$(\hat{\Theta}; \theta) = \mathbb{E}[\hat{\Theta}] - \theta$$
 DISTORSIONE
mse $(\hat{\Theta}; \theta) = \mathbb{E}[(\hat{\Theta} - \theta)^2]$ ERRORE QUADRATICO MEDIO

- **1** bias($\hat{\Theta}$; θ) $\in (-\infty, +\infty)$

- $\left\{ \begin{array}{c} \hat{\Theta}_n \text{ non-distorto per ogni } n \\ \hat{\Theta}_n \text{ consistente in media quadratica} \end{array} \right\} \quad \Rightarrow \quad \hat{\Theta}_n \xrightarrow[n \to \infty]{\mathbb{P}} \theta$

bias
$$(\hat{\Theta}; \theta) = \mathbb{E}[\hat{\Theta}] - \theta$$
 DISTORSIONE
mse $(\hat{\Theta}; \theta) = \mathbb{E}[(\hat{\Theta} - \theta)^2]$ ERRORE QUADRATICO MEDIO

- **1** bias($\hat{\Theta}$; θ) \in ($-\infty$, $+\infty$)

- $\left\{ \begin{array}{c} \hat{\Theta}_n \text{ non-distorto per ogni } n \\ \hat{\Theta}_n \text{ consistente in media quadratica} \end{array} \right\} \quad \Rightarrow \quad \hat{\Theta}_n \xrightarrow[n \to \infty]{\mathbb{P}} \theta :$

$$1 \underset{\mathbb{P}(E) \leq 1}{\geq} \mathbb{P}\left(\left|\hat{\Theta}_{n} - \theta\right| < \varepsilon\right)$$

$$\begin{aligned} \text{bias}(\hat{\Theta};\theta) &= \mathbb{E}[\hat{\Theta}] - \theta & \text{DISTORSIONE} \\ \text{mse}(\hat{\Theta};\theta) &= \mathbb{E}[(\hat{\Theta} - \theta)^2] & \text{ERRORE QUADRATICO MEDIO} \end{aligned}$$

- **1** bias($\hat{\Theta}$; θ) $\in (-\infty, +\infty)$

- $\left\{ \begin{array}{c} \hat{\Theta}_n \text{ non-distorto per ogni } n \\ \hat{\Theta}_n \text{ consistente in media quadratica} \end{array} \right\} \quad \Rightarrow \quad \hat{\Theta}_n \xrightarrow[n \to \infty]{\mathbb{P}} \theta :$

$$1 \geq \mathbb{P}\left(\left|\hat{\Theta}_{n} - \theta\right| < \varepsilon\right) \underset{\mathbb{E}[\hat{\Theta}_{n}] = \theta}{=} \mathbb{P}\left(\left|\hat{\Theta}_{n} - \mathbb{E}[\hat{\Theta}_{n}]\right| < \varepsilon\right)$$

$$\begin{aligned} \text{bias}(\hat{\Theta};\theta) &= \mathbb{E}[\hat{\Theta}] - \theta \\ \text{mse}(\hat{\Theta};\theta) &= \mathbb{E}[(\hat{\Theta} - \theta)^2] \end{aligned} \end{aligned} \quad \text{ERRORE QUADRATICO MEDIO}$$

- **1** bias($\hat{\Theta}$; θ) \in ($-\infty$, $+\infty$)

- $\left\{ \begin{array}{c} \hat{\Theta}_n \text{ non-distorto per ogni } n \\ \hat{\Theta}_n \text{ consistente in media quadratica} \end{array} \right\} \quad \Rightarrow \quad \hat{\Theta}_n \xrightarrow[n \to \infty]{\mathbb{P}} \theta :$

$$\begin{array}{ccc} \mathbf{1} & \geq & \mathbb{P}\left(\left|\hat{\Theta}_{n} - \theta\right| < \varepsilon\right) & = & \mathbb{P}\left(\left|\hat{\Theta}_{n} - \mathbb{E}[\hat{\Theta}_{n}]\right| < \varepsilon\right) \\ \\ & \geq & 1 - \frac{\mathrm{var}[\hat{\Theta}_{n}]}{\varepsilon^{2}} \end{array}$$

$$\begin{aligned} \text{bias}(\hat{\Theta};\theta) &= \mathbb{E}[\hat{\Theta}] - \theta \\ \text{mse}(\hat{\Theta};\theta) &= \mathbb{E}[(\hat{\Theta} - \theta)^2] \end{aligned} \quad \text{ERRORE QUADRATICO MEDIO}$$

- **1** bias($\hat{\Theta}$; θ) $\in (-\infty, +\infty)$

- $\left\{ \begin{array}{c} \hat{\Theta}_n \text{ non-distorto per ogni } n \\ \hat{\Theta}_n \text{ consistente in media quadratica} \end{array} \right\} \quad \Rightarrow \quad \hat{\Theta}_n \xrightarrow[n \to \infty]{\mathbb{P}} \theta :$

$$1 \geq \mathbb{P}\left(\left|\hat{\Theta}_{n} - \theta\right| < \varepsilon\right) = \mathbb{P}\left(\left|\hat{\Theta}_{n} - \mathbb{E}[\hat{\Theta}_{n}]\right| < \varepsilon\right)$$
$$\geq 1 - \frac{\operatorname{var}[\hat{\Theta}_{n}]}{\varepsilon^{2}} = 1 - \frac{\operatorname{mse}(\hat{\Theta}_{n}; \theta)}{\varepsilon^{2}}$$

$$\begin{aligned} \text{bias}(\hat{\Theta};\theta) &= \mathbb{E}[\hat{\Theta}] - \theta \\ \text{mse}(\hat{\Theta};\theta) &= \mathbb{E}[(\hat{\Theta} - \theta)^2] \end{aligned} \quad \text{ERRORE QUADRATICO MEDIO}$$

- **1** bias($\hat{\Theta}$; θ) $\in (-\infty, +\infty)$

- $\left\{ \begin{array}{c} \hat{\Theta}_n \text{ non-distorto per ogni } n \\ \hat{\Theta}_n \text{ consistente in media quadratica} \end{array} \right\} \quad \Rightarrow \quad \hat{\Theta}_n \xrightarrow[n \to \infty]{\mathbb{P}} \theta :$

$$1 \geq \mathbb{P}\left(\left|\hat{\Theta}_{n} - \theta\right| < \varepsilon\right) = \mathbb{P}\left(\left|\hat{\Theta}_{n} - \mathbb{E}[\hat{\Theta}_{n}]\right| < \varepsilon\right)$$
$$\geq 1 - \frac{\operatorname{var}[\hat{\Theta}_{n}]}{\varepsilon^{2}} = 1 - \frac{\operatorname{mse}(\hat{\Theta}_{n}; \theta)}{\varepsilon^{2}}$$

$$\begin{split} & \text{bias}(\hat{\Theta};\theta) = \mathbb{E}[\hat{\Theta}] - \theta & \text{DISTORSIONE} \\ & \text{mse}(\hat{\Theta};\theta) = \mathbb{E}[(\hat{\Theta} - \theta)^2] & \text{ERRORE QUADRATICO MEDIO} \end{split}$$

- **1** bias($\hat{\Theta}$; θ) $\in (-\infty, +\infty)$

- $\left\{ \begin{array}{c} \hat{\Theta}_n \text{ non-distorto per ogni } n \\ \hat{\Theta}_n \text{ consistente in media quadratica} \end{array} \right\} \quad \Rightarrow \quad \hat{\Theta}_n \xrightarrow[n \to \infty]{\mathbb{P}} \theta :$

$$1 \ge \mathbb{P}\left(\left|\hat{\Theta}_n - \theta\right| < \varepsilon\right) \ge 1 - \frac{\operatorname{mse}(\hat{\Theta}_n; \theta)}{\varepsilon^2}$$

Proprietà di bias e mse

$$\begin{aligned} \text{bias}(\hat{\Theta};\theta) &= \mathbb{E}[\hat{\Theta}] - \theta \\ \text{mse}(\hat{\Theta};\theta) &= \mathbb{E}[(\hat{\Theta} - \theta)^2] \end{aligned} \end{aligned} \quad \text{ERRORE QUADRATICO MEDIO}$$

- **1** bias($\hat{\Theta}$; θ) $\in (-\infty, +\infty)$

- $\left\{ \begin{array}{c} \hat{\Theta}_n \text{ non-distorto per ogni } n \\ \hat{\Theta}_n \text{ consistente in media quadratica} \end{array} \right\} \quad \Rightarrow \quad \hat{\Theta}_n \xrightarrow[n \to \infty]{\mathbb{P}} \theta :$

$$1 \geq \mathbb{P}\left(\left|\hat{\Theta}_{n} - \theta\right| < \varepsilon\right) \geq 1 - \frac{\operatorname{mse}(\hat{\Theta}_{n}; \theta)}{\varepsilon^{2}} \xrightarrow[n \to \infty]{} 1$$

perché
$$\operatorname{mse}(\hat{\Theta}_n; \theta) \xrightarrow[n \to \infty]{} 0$$

Proprietà di bias e mse

$$\begin{aligned} \text{bias}(\hat{\Theta};\theta) &= \mathbb{E}[\hat{\Theta}] - \theta & \text{DISTORSIONE} \\ \text{mse}(\hat{\Theta};\theta) &= \mathbb{E}[(\hat{\Theta} - \theta)^2] & \text{ERRORE QUADRATICO MEDIO} \end{aligned}$$

- **1** bias($\hat{\Theta}$; θ) $\in (-\infty, +\infty)$

- $\left\{ \begin{array}{c} \hat{\Theta}_n \text{ non-distorto per ogni } n \\ \hat{\Theta}_n \text{ consistente in media quadratica} \end{array} \right\} \quad \Rightarrow \quad \hat{\Theta}_n \xrightarrow[n \to \infty]{\mathbb{P}} \theta :$

$$1 \geq \mathbb{P}\left(\left|\hat{\Theta}_{n} - \theta\right| < \varepsilon\right) \geq 1 - \frac{\operatorname{mse}(\hat{\Theta}_{n}; \theta)}{\varepsilon^{2}} \xrightarrow[n \to \infty]{} 1$$

$$\Rightarrow \lim_{n \to \infty} \mathbb{P}\left(\left|\hat{\Theta}_{n} - \theta\right| < \varepsilon\right) = 1$$

Proprietà di bias e mse

$$bias(\hat{\Theta}; \theta) = \mathbb{E}[\hat{\Theta}] - \theta$$
 DISTORSIONE $mse(\hat{\Theta}; \theta) = \mathbb{E}[(\hat{\Theta} - \theta)^2]$ ERRORE QUADRATICO MEDIO

- **1** bias($\hat{\Theta}$; θ) $\in (-\infty, +\infty)$

- $\left\{ \begin{array}{c} \hat{\Theta}_n \text{ non-distorto per ogni } n \\ \hat{\Theta}_n \text{ consistente in media quadratica} \end{array} \right\} \quad \Rightarrow \quad \hat{\Theta}_n \xrightarrow[n \to \infty]{\mathbb{P}} \theta$

Vogliamo stimare il parametro $\mu := \mathbb{E}\left[X_i\right]$ usando gli stimatori

$$\hat{M}_{n} = \mu$$

$$\hat{M}'_n = X_3$$

$$\hat{M}_n'' = \overline{X}_n$$

Vogliamo stimare il parametro $\mu := \mathbb{E}[X_i]$ usando gli stimatori

$$\hat{M}_n = \mu$$
 $\hat{M}'_n = X_3$ $\hat{M}''_n = \overline{X}_n$

Vogliamo stimare il parametro $\mu := \mathbb{E}[X_i]$ usando gli stimatori

$$\hat{M}_n = \mu$$
 $\hat{M}'_n = X_3$ $\hat{M}''_n = \overline{X}_n$

$$\hat{M}_n$$
 NO

Vogliamo stimare il parametro $\mu := \mathbb{E}[X_i]$ usando gli stimatori

$$\hat{M}_n = \mu$$

$$\hat{M}'_n = X_3$$

$$\hat{M}_n'' = \overline{X}_n$$

$$\hat{M}_n$$
 NO

$$\hat{M}'_n$$
 Sì

Vogliamo stimare il parametro $\mu := \mathbb{E}[X_i]$ usando gli stimatori

$$\hat{M}_n = \mu$$

$$\hat{M}'_n=X_3$$

$$\hat{M}_n'' = \overline{X}_n$$

$$\hat{M}_n$$
 NO

$$\hat{M}'_n$$
 SÌ

$$\hat{M}_n''$$
 SÌ

Vogliamo stimare il parametro $\mu := \mathbb{E}[X_i]$ usando gli stimatori

$$\hat{M}'_n = X_3$$

$$\hat{M}_n'' = \overline{X}_n$$

$$\hat{M}_n$$
 NO

$$\hat{M}'_n$$
 SÌ

$$\hat{M}_n''$$
 SÌ

Vogliamo stimare il parametro $\mu := \mathbb{E}[X_i]$ usando gli stimatori

$$\hat{M}_{n} \leq \mu$$

$$\hat{M}'_n = X_3$$

$$\hat{M}_n'' = \overline{X}_n$$

• Lo stimatore è indipendente da μ ?

$$\hat{M}_n$$
 NO

$$\hat{M}'_n$$
 SÌ

$$\hat{M}_n''$$
 SÌ

Vogliamo stimare il parametro $\mu := \mathbb{E}\left[X_i\right]$ usando gli stimatori

$$\hat{M}'_n = X_3$$

$$\hat{M}_n'' = \overline{X}_n$$

• Lo stimatore è indipendente da μ ?

$$\hat{M}_n$$
 NO

$$\hat{M}'_n$$
 Sì

$$\hat{M}_n''$$
 SÌ

$$\mathbb{E}[\hat{M}_n] = \mu$$
 Sì

Vogliamo stimare il parametro $\mu := \mathbb{E}[X_i]$ usando gli stimatori

$$\hat{M}_{n} \leq \mu$$

$$\hat{M}'_n = X_3$$

$$\hat{M}_n^{\prime\prime} = \overline{X}_n$$

• Lo stimatore è indipendente da μ ?

$$\hat{M}_n$$
 NO

$$\hat{M}'_n$$
 Sì

$$\hat{M}_n''$$
 SÌ

$$\mathbb{E}[\hat{M}_n] = \mu \quad \mathsf{S}$$

$$\mathbb{E}[\hat{M}_n] = \mu \quad \text{Si} \qquad \qquad \mathbb{E}[\hat{M}'_n] = \mu \quad \text{Si}$$

Vogliamo stimare il parametro $\mu := \mathbb{E}[X_i]$ usando gli stimatori

$$\hat{M}_{n} = \mu$$

$$\hat{M}'_n = X_3$$

$$\hat{M}_n'' = \overline{X}_n$$

• Lo stimatore è indipendente da μ ?

$$\hat{M}_n$$
 NO

$$\hat{M}'_n$$
 SÌ

$$\hat{M}_n''$$
 SÌ

$$\mathbb{E}[\hat{M}_n] = \mu$$
 Sì

$$\mathbb{E}[\hat{M}_n] = \mu \quad \text{Si} \qquad \qquad \mathbb{E}[\hat{M}'_n] = \mu \quad \text{Si}$$

$$\mathbb{E}[\hat{M}_n''] = \mu$$
 Sì

Vogliamo stimare il parametro $\mu := \mathbb{E}[X_i]$ usando gli stimatori

$$\hat{M}_{n} = \mu$$

$$\hat{M}'_n=X_3$$

$$\hat{M}_n^{\prime\prime}=\overline{X}_n$$

• Lo stimatore è indipendente da μ ?

$$\hat{M}_n$$
 NO

$$\hat{M}'_n$$
 Sì

$$\hat{M}_n''$$
 SÌ

$$\mathbb{E}[\hat{M}_n] = \mu$$
 Sì

$$\mathbb{E}[\hat{M}_n] = \mu \quad \text{Si} \qquad \qquad \mathbb{E}[\hat{M}'_n] = \mu \quad \text{Si}$$

$$\mathbb{E}[\hat{M}_n''] = \mu$$
 SÌ

Vogliamo stimare il parametro $\mu := \mathbb{E}[X_i]$ usando gli stimatori

$$\hat{M}_n = X_3$$

$$\hat{M}'_n = X_3$$

$$\hat{M}_n'' = \overline{X}_n$$

• Lo stimatore è indipendente da μ ?

$$\hat{M}_n$$
 NO

$$\hat{M}'_n$$
 Sì

$$\hat{M}_n''$$
 SÌ

Lo stimatore è non-distorto?

$$\mathbb{E}[\hat{M}_n] = \mu$$
 Sì $\mathbb{E}[\hat{M}'_n] = \mu$ Sì

$$\mathbb{E}[\hat{M}'_n] = \mu \quad \mathsf{S}\hat{\mathsf{I}}$$

$$\mathbb{E}[\hat{M}_n''] = \mu$$
 SÌ

Vogliamo stimare il parametro $\mu := \mathbb{E}[X_i]$ usando gli stimatori

$$\hat{M}'_n = X_3$$

$$\hat{M}'_n = X_3$$

$$\hat{M}_n^{\prime\prime}=\overline{X}_n$$

• Lo stimatore è indipendente da μ ?

$$\hat{M}_n$$
 NO

$$\hat{M}'_n$$
 Sì

$$\hat{M}_n''$$
 SÌ

Lo stimatore è non-distorto?

$$\mathbb{E}[\hat{M}_n] = \mu \quad \mathsf{S}\hat{\mathsf{I}}$$

$$\mathbb{E}[\hat{M}_n] = \mu \quad \text{Si} \qquad \qquad \mathbb{E}[\hat{M}'_n] = \mu \quad \text{Si}$$

$$\mathbb{E}[\hat{M}_n''] = \mu$$
 Sì

$$\operatorname{mse}(\hat{M}_n; \mu) = \mathbb{E}\left[(\mu - \mu)^2\right] = 0$$

Vogliamo stimare il parametro $\mu := \mathbb{E}[X_i]$ usando gli stimatori

$$\hat{M}'_n = X_3$$

$$\hat{M}_n^{\prime\prime} = \overline{X}_n$$

• Lo stimatore è indipendente da μ ?

$$\hat{M}_n$$
 NO

$$\hat{M}'_n$$
 SÌ

$$\hat{M}_n''$$
 SÌ

SÌ

Lo stimatore è non-distorto?

$$\mathbb{E}[\hat{M}_n] = \mu$$
 SÌ

$$\mathbb{E}[\hat{M}_n] = \mu \quad \text{Si} \qquad \qquad \mathbb{E}[\hat{M}'_n] = \mu \quad \text{Si}$$

$$\mathbb{E}[\hat{M}_n''] = \mu$$
 Sì

$$\operatorname{mse}(\hat{M}_n; \mu) = \mathbb{E}\left[(\mu - \mu)^2\right] = 0 \underset{n \to \infty}{\longrightarrow} 0$$

Vogliamo stimare il parametro $\mu := \mathbb{E}[X_i]$ usando gli stimatori

$$\hat{M}_{n} = \mu$$

$$\hat{M}'_n = X_3$$

$$\hat{M}_n'' = \overline{X}_n$$

• Lo stimatore è indipendente da μ ?

$$\hat{M}_n$$
 NO

$$\hat{M}'_n$$
 Sì

$$\hat{M}_n''$$
 SÌ

SÌ

Lo stimatore è non-distorto?

$$\mathbb{E}[\hat{M}_n] = \mu$$
 SÌ

$$\mathbb{E}[\hat{M}_n] = \mu \quad \text{Si} \qquad \qquad \mathbb{E}[\hat{M}'_n] = \mu \quad \text{Si}$$

$$\mathbb{E}[\hat{M}_n''] = \mu$$
 Sì

$$\operatorname{mse}(\hat{M}_n; \mu) = \mathbb{E}\left[(\mu - \mu)^2\right] = 0 \underset{n \to \infty}{\longrightarrow} 0$$

$$\operatorname{mse}(\hat{M}'_n; \mu) = \mathbb{E}\left[(X_3 - \mu)^2 \right] = \operatorname{var}\left[X_3 \right]$$

Vogliamo stimare il parametro $\mu := \mathbb{E}[X_i]$ usando gli stimatori

$$\hat{M}_{n} = \mu$$

$$\hat{M}'_n = X_3$$

$$\hat{M}_n^{\prime\prime} = \overline{X}_n$$

• Lo stimatore è indipendente da μ ?

$$\hat{M}_n$$
 NO

$$\hat{M}'_n$$
 SÌ

$$\hat{M}_n''$$
 SÌ

Lo stimatore è non-distorto?

$$\mathbb{E}[\hat{M}_n] = \mu$$
 Sì $\mathbb{E}[\hat{M}'_n] = \mu$ Sì

$$\mathbb{E}[\hat{M}'_n] = \mu \quad \text{Sì}$$

$$\mathbb{E}[\hat{M}_n''] = \mu$$
 Sì

$$\operatorname{mse}(\hat{M}_n; \mu) = \mathbb{E}\left[(\mu - \mu)^2\right] = 0 \xrightarrow[n \to \infty]{} 0$$
 Sì

$$\operatorname{mse}(\hat{M}'_n; \mu) = \mathbb{E}\left[(X_3 - \mu)^2 \right] = \operatorname{var}\left[X_3 \right] \xrightarrow[n \to \infty]{} \operatorname{var}\left[X_3 \right]$$
 NO

Vogliamo stimare il parametro $\mu := \mathbb{E}[X_i]$ usando gli stimatori

$$\hat{M}_{n} = \mu$$

$$\hat{M}'_n = X_3$$

$$\hat{M}_n'' = \overline{X}_n$$

• Lo stimatore è indipendente da μ ?

$$\hat{M}_n$$
 NO

$$\hat{M}'_n$$
 Sì

$$\hat{M}_n''$$
 SÌ

Lo stimatore è non-distorto?

$$\mathbb{E}[\hat{M}_n] = \mu$$
 SÌ

$$\mathbb{E}[\hat{M}_n] = \mu \quad \text{Si} \qquad \qquad \mathbb{E}[\hat{M}'_n] = \mu \quad \text{Si}$$

$$\mathbb{E}[\hat{M}_n''] = \mu$$
 SÌ

NO

$$\operatorname{mse}(\hat{M}_n; \mu) = \mathbb{E}\left[(\mu - \mu)^2\right] = 0 \underset{n \to \infty}{\longrightarrow} 0 \qquad \text{Si}$$

$$\operatorname{mse}(\hat{M}'_{n}; \mu) = \mathbb{E}\left[(X_{3} - \mu)^{2}\right] = \operatorname{var}\left[X_{3}\right] \xrightarrow[n \to \infty]{} \operatorname{var}\left[X_{3}\right]$$

$$\operatorname{mse}(\hat{M}_{n}^{"}; \mu) = \operatorname{var}\left[\overline{X}_{n}\right] + \operatorname{bias}(\overline{X}_{n}; \mu)^{2}$$

Vogliamo stimare il parametro $\mu := \mathbb{E}[X_i]$ usando gli stimatori

$$\hat{M}_{n}$$

$$\hat{M}'_n = X_3$$

$$\hat{M}_n'' = \overline{X}_n$$

• Lo stimatore è indipendente da μ ?

$$\hat{M}_n$$
 NO

$$\hat{M}'_n$$
 SÌ

$$\hat{M}_n''$$
 SÌ

Lo stimatore è non-distorto?

$$\mathbb{E}[\hat{M}_n] = \mu$$
 Sì

$$\mathbb{E}[\hat{M}_n] = \mu \quad \text{Si} \qquad \qquad \mathbb{E}[\hat{M}'_n] = \mu \quad \text{Si}$$

$$\mathbb{E}[\hat{M}_n''] = \mu$$
 Sì

NO

$$\operatorname{mse}(\hat{M}_n; \mu) = \mathbb{E}\left[(\mu - \mu)^2\right] = 0 \underset{n \to \infty}{\longrightarrow} 0$$
 S

$$\operatorname{mse}(\hat{M}'_n; \mu) = \mathbb{E}\left[(X_3 - \mu)^2\right] = \operatorname{var}\left[X_3\right] \xrightarrow[n \to \infty]{} \operatorname{var}\left[X_3\right]$$

$$\operatorname{mse}(\hat{M}_{n}'';\mu) = \operatorname{var}\left[\overline{X}_{n}\right] + \operatorname{bias}(\overline{X}_{n};\mu)^{2} = \frac{\operatorname{var}\left[X_{i}\right]}{n}$$

Vogliamo stimare il parametro $\mu := \mathbb{E}[X_i]$ usando gli stimatori

$$\hat{M}_{n} \leq \mu$$

$$\hat{M}'_n = X_3$$

$$\hat{M}_n'' = \overline{X}_n$$

• Lo stimatore è indipendente da μ ?

$$\hat{M}_n$$
 NO

$$\hat{M}'_n$$
 SÌ

$$\hat{M}_n''$$
 Sì

Lo stimatore è non-distorto?

$$\mathbb{E}[\hat{M}_n] = \mu$$
 SÌ

$$\mathbb{E}[\hat{M}_n] = \mu$$
 Sì $\mathbb{E}[\hat{M}'_n] = \mu$ Sì

$$\mathbb{E}[\hat{M}_n''] = \mu$$
 SÌ

NO

$$\operatorname{mse}(\hat{M}_n; \mu) = \mathbb{E}\left[(\mu - \mu)^2\right] = 0 \underset{n \to \infty}{\longrightarrow} 0$$

$$\operatorname{mse}(\hat{M}'_{n}; \mu) = \mathbb{E}\left[(X_{3} - \mu)^{2}\right] = \operatorname{var}\left[X_{3}\right] \xrightarrow[n \to \infty]{} \operatorname{var}\left[X_{3}\right]$$

$$\operatorname{mse}(\hat{M}_{n}'';\mu) = \operatorname{var}\left[\overline{X}_{n}\right] + \operatorname{bias}(\overline{X}_{n};\mu)^{2} = \frac{\operatorname{var}\left[X_{i}\right]}{n} \underset{n \to \infty}{\longrightarrow} 0 \qquad \text{S} \hat{I}$$

Vogliamo stimare il parametro $\mu := \mathbb{E}[X_i]$ usando gli stimatori

$$\hat{M}_n = \overline{X}_n$$

• Lo stimatore è indipendente da μ ?

$$\hat{M}_n$$
 NO \hat{M}'_n Sì \hat{M}''_n Sì

Lo stimatore è non-distorto?

$$\mathbb{E}[\hat{M}_n] = \mu \quad \text{Si} \qquad \qquad \mathbb{E}[\hat{M}''_n] = \mu \quad \text{Si} \qquad \qquad \mathbb{E}[\hat{M}''_n] = \mu \quad \text{Si}$$

$$\operatorname{mse}(\hat{M}_{n}; \mu) = \mathbb{E}\left[(\mu - \mu)^{2}\right] = 0 \underset{n \to \infty}{\longrightarrow} 0 \quad \text{Si}$$

$$\operatorname{mse}(\hat{M}'_{n}; \mu) = \mathbb{E}\left[(X_{3} - \mu)^{2}\right] = \operatorname{var}\left[X_{3}\right] \underset{n \to \infty}{\longrightarrow} \operatorname{var}\left[X_{3}\right] \quad \text{NO}$$

$$\operatorname{mse}(\hat{M}''_{n}; \mu) = \operatorname{var}\left[\overline{X}_{n}\right] + \operatorname{bias}(\overline{X}_{n}; \mu)^{2} = \frac{\operatorname{var}\left[X_{i}\right]}{n} \underset{n \to \infty}{\longrightarrow} 0 \quad \text{Si}$$

Vogliamo stimare il parametro $\,\mu:=\mathbb{E}\left[X_{i}
ight]\,$ usando gli stimatori

$$\hat{M}_n = \overline{X}_n$$

• Lo stimatore è indipendente da μ ?

$$\widehat{X}_n$$
 è lo stimatore migliore di $\mu=\mathbb{E}\left[X_i
ight]$

Lo stimatore è non-distorto?

$$\mathbb{E}[\hat{M}_n] = \mu$$
 Sì $\mathbb{E}[\hat{M}_n'] = \mu$ Sì $\mathbb{E}[\hat{M}_n''] = \mu$ Sì

$$\operatorname{mse}(\hat{M}_n; \mu) = \mathbb{E}\left[(\mu - \mu)^2\right] = 0 \underset{n \to \infty}{\longrightarrow} 0 \qquad \text{Sì}$$

$$\operatorname{mse}(\hat{M}'_n; \mu) = \mathbb{E}\left[(X_3 - \mu)^2\right] = \operatorname{var}\left[X_3\right] \underset{n \to \infty}{\longrightarrow} \operatorname{var}\left[X_3\right] \qquad \text{NC}$$

$$\operatorname{mse}(\hat{M}''_n; \mu) = \operatorname{var}\left[\overline{X}_n\right] + \operatorname{bias}(\overline{X}_n; \mu)^2 = \frac{\operatorname{var}\left[X_i\right]}{n} \underset{n \to \infty}{\longrightarrow} 0$$

Altre quantità

• ERRORE STANDARD =
$$\underbrace{\operatorname{se}(\hat{\Theta}; \theta)}_{\substack{\text{standard} \\ \text{error}}} := \sqrt{\operatorname{mse}(\hat{\Theta}; \theta)}$$

Altre quantità

- ERRORE STANDARD = $se(\hat{\Theta}; \theta) := \sqrt{mse(\hat{\Theta}; \theta)}$
- EFFICIENZA RELATIVA di $\hat{\Theta}$ contro $\hat{\Theta}' := \frac{\operatorname{mse}(\hat{\Theta}'; \theta)}{\operatorname{mse}(\hat{\Theta}; \theta)}$

Altre quantità

- ERRORE STANDARD = $se(\hat{\Theta}; \theta) := \sqrt{mse(\hat{\Theta}; \theta)}$
- EFFICIENZA RELATIVA di $\hat{\Theta}$ contro $\hat{\Theta}' := \frac{\operatorname{mse}(\hat{\Theta}'; \theta)}{\operatorname{mse}(\hat{\Theta}; \theta)}$

Se supera 1, lo stimatore $\hat{\Theta}$ è meglio di $\hat{\Theta}'$ in termini di mse

Vogliamo stimare $\sigma^2 := \text{var}[X_i]$ con la *varianza campionaria*

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$$

Vogliamo stimare $\sigma^2 := var[X_i]$ con la *varianza campionaria*

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \left(\sum_{i=1}^n X_i^2 \right) - n \cdot \overline{X}_n^2 \right\}$$

Vogliamo stimare $\sigma^2 := var[X_i]$ con la *varianza campionaria*

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

Vogliamo stimare $\sigma^2 := \text{var}[X_i]$ con la *varianza campionaria*

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

• Lo stimatore è indipendente da σ^2 ?

Vogliamo stimare $\sigma^2 := var[X_i]$ con la *varianza campionaria*

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

• Lo stimatore è indipendente da σ^2 ?

Vogliamo stimare $\sigma^2 := var[X_i]$ con la *varianza campionaria*

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da σ^2 ?
- Lo stimatore è non-distorto?

Vogliamo stimare $\sigma^2 := var[X_i]$ con la *varianza campionaria*

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da σ^2 ?
- Lo stimatore è non-distorto?

$$\mathbb{E}\left[S_n^2\right] = ???$$

Vogliamo stimare $\sigma^2 := \text{var}[X_i]$ con la *varianza campionaria*

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da σ^2 ?
- Lo stimatore è non-distorto?

$$\mathbb{E}\left[S_n^2\right] = \frac{1}{n-1} \left\{ \sum \mathbb{E}\left[X_i^2\right] - n \mathbb{E}\left[\overline{X}_n^2\right] \right\}$$

Vogliamo stimare $\sigma^2 := \text{var}[X_i]$ con la *varianza campionaria*

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da σ^2 ?
- Lo stimatore è non-distorto?

$$\mathbb{E}\left[S_n^2\right] = \frac{1}{n-1} \left\{ \sum \mathbb{E}\left[X_i^2\right] - n\mathbb{E}\left[\overline{X}_n^2\right] \right\}$$

$$\operatorname{var}\left[Z\right] = \mathbb{E}\left[Z^2\right] - \mathbb{E}\left[Z\right]^2$$

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da σ^2 ? Sì
- Lo stimatore è non-distorto?

$$\mathbb{E}\left[S_n^2\right] = \frac{1}{n-1} \left\{ \sum \mathbb{E}\left[X_i^2\right] - n\mathbb{E}\left[\overline{X}_n^2\right] \right\}$$

$$\operatorname{var}\left[Z\right] = \mathbb{E}\left[Z^2\right] - \mathbb{E}\left[Z\right]^2 \quad \Rightarrow \quad \mathbb{E}\left[Z^2\right] = \operatorname{var}\left[Z\right] + \mathbb{E}\left[Z\right]^2$$

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da σ^2 ?
- Lo stimatore è non-distorto?

$$\mathbb{E}\left[S_n^2\right] = \frac{1}{n-1} \left\{ \sum \mathbb{E}\left[X_i^2\right] - n\mathbb{E}\left[\overline{X}_n^2\right] \right\}$$

$$\operatorname{var}[Z] = \mathbb{E}\left[Z^{2}\right] - \mathbb{E}\left[Z\right]^{2} \quad \Rightarrow \quad \mathbb{E}\left[Z^{2}\right] = \operatorname{var}\left[Z\right] + \mathbb{E}\left[Z\right]^{2}$$

$$\Rightarrow \quad \mathbb{E}\left[X_{i}^{2}\right] = \operatorname{var}\left[X_{i}\right] + \mathbb{E}\left[X_{i}\right]^{2}$$

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da σ^2 ?
- Lo stimatore è non-distorto?

$$\mathbb{E}\left[S_n^2\right] = \frac{1}{n-1} \left\{ \sum \mathbb{E}\left[X_i^2\right] - n\mathbb{E}\left[\overline{X}_n^2\right] \right\}$$

$$\operatorname{var}[Z] = \mathbb{E}\left[Z^{2}\right] - \mathbb{E}\left[Z\right]^{2} \quad \Rightarrow \quad \mathbb{E}\left[Z^{2}\right] = \operatorname{var}\left[Z\right] + \mathbb{E}\left[Z\right]^{2}$$

$$\Rightarrow \quad \mathbb{E}\left[X_{i}^{2}\right] = \operatorname{var}\left[X_{i}\right] + \mathbb{E}\left[X_{i}\right]^{2} = \sigma^{2} + \mu^{2}$$

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da σ^2 ?
- Lo stimatore è non-distorto?

$$\mathbb{E}\left[S_n^2\right] = \frac{1}{n-1} \left\{ \sum \mathbb{E}\left[X_i^2\right] - n\mathbb{E}\left[\overline{X}_n^2\right] \right\}$$
$$= \frac{1}{n-1} \left\{ \sum \left(\sigma^2 + \mu^2\right) \right\}$$

$$\operatorname{var}[Z] = \mathbb{E}\left[Z^{2}\right] - \mathbb{E}\left[Z\right]^{2} \quad \Rightarrow \quad \mathbb{E}\left[Z^{2}\right] = \operatorname{var}\left[Z\right] + \mathbb{E}\left[Z\right]^{2}$$

$$\Rightarrow \quad \mathbb{E}\left[X_{i}^{2}\right] = \operatorname{var}\left[X_{i}\right] + \mathbb{E}\left[X_{i}\right]^{2} = \sigma^{2} + \mu^{2}$$

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da σ^2 ?
- Lo stimatore è non-distorto?

$$\mathbb{E}\left[S_n^2\right] = \frac{1}{n-1} \left\{ \sum \mathbb{E}\left[X_i^2\right] - n\mathbb{E}\left[\overline{X}_n^2\right] \right\}$$
$$= \frac{1}{n-1} \left\{ \sum \left(\sigma^2 + \mu^2\right) \right\}$$

$$\operatorname{var}\left[Z\right] = \mathbb{E}\left[Z^{2}\right] - \mathbb{E}\left[Z\right]^{2} \quad \Rightarrow \quad \mathbb{E}\left[Z^{2}\right] = \operatorname{var}\left[Z\right] + \mathbb{E}\left[Z\right]^{2}$$

$$\Rightarrow \quad \mathbb{E}\left[\overline{X}_{n}^{2}\right] = \operatorname{var}\left[\overline{X}_{n}\right] + \mathbb{E}\left[\overline{X}_{n}\right]^{2}$$

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da σ^2 ?
- Lo stimatore è non-distorto?

$$\mathbb{E}\left[S_n^2\right] = \frac{1}{n-1} \left\{ \sum \mathbb{E}\left[X_i^2\right] - n\mathbb{E}\left[\overline{X}_n^2\right] \right\}$$
$$= \frac{1}{n-1} \left\{ \sum \left(\sigma^2 + \mu^2\right) \right\}$$

$$\operatorname{var}[Z] = \mathbb{E}\left[Z^{2}\right] - \mathbb{E}\left[Z\right]^{2} \quad \Rightarrow \quad \mathbb{E}\left[Z^{2}\right] = \operatorname{var}\left[Z\right] + \mathbb{E}\left[Z\right]^{2}$$

$$\Rightarrow \quad \mathbb{E}\left[\overline{X}_{n}^{2}\right] = \operatorname{var}\left[\overline{X}_{n}\right] + \mathbb{E}\left[\overline{X}_{n}\right]^{2} = \frac{\sigma^{2}}{n} + \mu^{2}$$

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da σ^2 ? Sì
- Lo stimatore è non-distorto?

$$\mathbb{E}\left[S_{n}^{2}\right] = \frac{1}{n-1} \left\{ \sum \mathbb{E}\left[X_{i}^{2}\right] - n\mathbb{E}\left[\overline{X}_{n}^{2}\right] \right\}$$

$$= \frac{1}{n-1} \left\{ \sum \left(\sigma^{2} + \mu^{2}\right) - n\left(\frac{\sigma^{2}}{n} + \mu^{2}\right) \right\}$$

$$\operatorname{var}\left[Z\right] = \mathbb{E}\left[Z^{2}\right] - \mathbb{E}\left[Z\right]^{2} \quad \Rightarrow \quad \mathbb{E}\left[Z^{2}\right] = \operatorname{var}\left[Z\right] + \mathbb{E}\left[Z\right]^{2}$$

$$\Rightarrow \quad \mathbb{E}\left[\overline{X}_{n}^{2}\right] = \operatorname{var}\left[\overline{X}_{n}\right] + \mathbb{E}\left[\overline{X}_{n}\right]^{2} = \frac{\sigma^{2}}{n} + \mu^{2}$$

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da σ^2 ? Sì
- Lo stimatore è non-distorto?

$$\mathbb{E}\left[S_n^2\right] = \frac{1}{n-1} \left\{ \sum \mathbb{E}\left[X_i^2\right] - n\mathbb{E}\left[\overline{X}_n^2\right] \right\}$$
$$= \frac{1}{n-1} \left\{ \sum \left(\sigma^2 + \mu^2\right) - n\left(\frac{\sigma^2}{n} + \mu^2\right) \right\}$$
$$= \frac{1}{n-1} \left\{ n\left(\sigma^2 + \mu^2\right) - \left(\sigma^2 + n\mu^2\right) \right\}$$

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da σ^2 ?
- Lo stimatore è non-distorto?

$$\mathbb{E}\left[S_n^2\right] = \frac{1}{n-1} \left\{ \sum \mathbb{E}\left[X_i^2\right] - n\mathbb{E}\left[\overline{X}_n^2\right] \right\}$$
$$= \frac{1}{n-1} \left\{ \sum \left(\sigma^2 + \mu^2\right) - n\left(\frac{\sigma^2}{n} + \mu^2\right) \right\}$$
$$= \frac{1}{n-1} \left\{ n\left(\sigma^2 + \mu^2\right) - \left(\sigma^2 + p\mu^2\right) \right\}$$

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da σ^2 ?
- Lo stimatore è non-distorto?

$$\mathbb{E}\left[S_n^2\right] = \frac{1}{n-1} \left\{ \sum \mathbb{E}\left[X_i^2\right] - n\mathbb{E}\left[\overline{X}_n^2\right] \right\}$$

$$= \frac{1}{n-1} \left\{ \sum \left(\sigma^2 + \mu^2\right) - n\left(\frac{\sigma^2}{n} + \mu^2\right) \right\}$$

$$= \frac{1}{n-1} \left\{ n\left(\sigma^2 + \mu^2\right) - \left(\sigma^2 + p\mu^2\right) \right\}$$

$$= \frac{1}{n-1} (n-1) \sigma^2$$

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da σ^2 ?
- Lo stimatore è non-distorto?

$$\mathbb{E}\left[S_n^2\right] = \frac{1}{n-1} \left\{ \sum \mathbb{E}\left[X_i^2\right] - n \mathbb{E}\left[\overline{X}_n^2\right] \right\}$$

$$= \frac{1}{n-1} \left\{ \sum \left(\sigma^2 + \mu^2\right) - n\left(\frac{\sigma^2}{n} + \mu^2\right) \right\}$$

$$= \frac{1}{n-1} \left\{ n\left(\sigma^2 + \mu^2\right) - \left(\sigma^2 + n\mu^2\right) \right\}$$

$$= \frac{1}{n-1} \left(n-1\right) \sigma^2 = \sigma^2$$

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da σ^2 ?
- Lo stimatore è non-distorto?

$$\mathbb{E}\left[S_n^2\right] = \frac{1}{n-1} \left\{ \sum \mathbb{E}\left[X_i^2\right] - n\mathbb{E}\left[\overline{X}_n^2\right] \right\}$$

$$= \frac{1}{n-1} \left\{ \sum \left(\sigma^2 + \mu^2\right) - n\left(\frac{\sigma^2}{n} + \mu^2\right) \right\}$$

$$= \frac{1}{n-1} \left\{ n\left(\sigma^2 + \mu^2\right) - \left(\sigma^2 + n\mu^2\right) \right\}$$

$$= \frac{1}{n-1} \left(n-1\right) \sigma^2 = \sigma^2$$

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da σ^2 ?
- Lo stimatore è non-distorto?
- Lo stimatore è consistente in media quadratica?

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da σ^2 ?
- Lo stimatore è non-distorto?
- Lo stimatore è consistente in media quadratica?

$$\operatorname{mse}(S_n^2; \sigma^2) = \operatorname{var}\left[S_n^2\right] + \operatorname{bias}(S_n^2; \sigma^2)^2$$

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da σ^2 ?
- Lo stimatore è non-distorto?
- Lo stimatore è consistente in media quadratica?

$$\operatorname{mse}(S_n^2; \sigma^2) = \operatorname{var}\left[S_n^2\right] + \operatorname{bias}(S_n^2; \sigma^2)^2$$

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da σ^2 ? SÌ
- Lo stimatore è non-distorto?
- Lo stimatore è consistente in media quadratica?

$$\operatorname{mse}(S_n^2; \sigma^2) = \operatorname{var}\left[S_n^2\right] + \underbrace{\operatorname{bias}(S_n^2; \sigma^2)^2}$$

$$= \frac{1}{n} \mathbb{E}\left[(X_i - \mu)^4\right] - \frac{\sigma^4(n-3)}{n(n-1)} \qquad \text{(più complicato)}$$

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da σ^2 ? SÌ
- Lo stimatore è non-distorto?
- Lo stimatore è consistente in media quadratica?

$$\operatorname{mse}(S_n^2; \sigma^2) = \operatorname{var}\left[S_n^2\right] + \operatorname{bias}(S_n^2; \sigma^2)^2$$
$$= \frac{1}{n} \mathbb{E}\left[(X_i - \mu)^4\right] - \frac{\sigma^4(n-3)}{n(n-1)} \xrightarrow[n \to \infty]{} 0$$

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da σ^2 ? SÌ
- Lo stimatore è non-distorto?
- Lo stimatore è consistente in media quadratica?

$$\operatorname{mse}(S_n^2; \sigma^2) = \operatorname{var}\left[S_n^2\right] + \operatorname{bias}(S_n^2; \sigma^2)^2$$
$$= \frac{1}{n} \mathbb{E}\left[(X_i - \mu)^4\right] - \frac{\sigma^4(n-3)}{n(n-1)} \xrightarrow[n \to \infty]{0}$$

Vogliamo stimare $\sigma^2 := var[X_i]$ con la *varianza campionaria*

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da σ^2 ?
- Lo stimatore è non-distorto?
- Lo stimatore è consistente in media quadratica?

 S_n^2 è un buono stimatore di σ^2

IPOTESI: $\left\{ \begin{array}{ll} - & \alpha,\,\beta,\,\theta \;\; {\sf parametri}\; {\sf con}\;\; \theta = {\it g}(\alpha,\beta) \\ \end{array} \right.$

IPOTESI: $\begin{cases} -& \alpha,\,\beta,\,\theta \text{ parametri con } \theta = g(\alpha,\beta) \\ -& \hat{A} \text{ stimatore non-distorto di } \alpha \\ -& \hat{B} \text{ stimatore non-distorto di } \beta \end{cases}$

 $\mbox{IPOTESI:} \quad \left\{ \begin{array}{ll} - & \alpha,\,\beta,\,\theta \ \ \mbox{parametri con} \ \ \theta = g(\alpha,\beta) \\ - & \hat{A} \ \mbox{stimatore non-distorto di} \ \ \alpha \\ - & \hat{B} \ \mbox{stimatore non-distorto di} \ \ \beta \end{array} \right.$

Qual è uno stimatore non distorto di θ ?

```
 \mbox{IPOTESI:} \quad \left\{ \begin{array}{ll} - & \alpha,\,\beta,\,\theta & \mbox{parametri con} & \theta = g(\alpha,\beta) \\ - & \hat{A} & \mbox{stimatore non-distorto di} & \alpha \\ - & \hat{B} & \mbox{stimatore non-distorto di} & \beta \end{array} \right.
```

 $\hat{\Theta} := g(\hat{A},\hat{B})$ è uno stimatore approssimativamente non-distorto di heta

 $\mathbb{E}[\hat{\Theta}] = \mathbb{E}[g(\hat{A}, \hat{B})]$

```
 \text{IPOTESI:} \begin{array}{l} \left\{ \begin{array}{l} \text{-} & \alpha,\beta,\,\theta \text{ parametri con } \theta=g(\alpha,\beta) \\ \text{-} & \hat{A} \text{ stimatore non-distorto di } \alpha \\ \text{-} & \hat{B} \text{ stimatore non-distorto di } \beta \end{array} \right. \\ \hat{\Theta}:=g(\hat{A},\hat{B}) \text{ è uno stimatore approssimativamente non-distorto di } \theta:
```

```
 \begin{tabular}{ll} \begin{tabular}{ll} \begin{tabular}{ll} -\alpha,\beta,\theta & parametric con $\theta=g(\alpha,\beta)$\\ -\hat{A} & stimatore non-distorto di $\alpha$\\ -\hat{B} & stimatore non-distorto di $\beta$\\ \end{tabular}
```

 $\hat{\Theta} := g(\hat{A},\hat{B})$ è uno stimatore approssimativamente non-distorto di heta :

$$\mathbb{E}[\hat{\Theta}] \ = \ \mathbb{E}[g(\hat{A}, \hat{B})] \underset{\text{metodo} \\ \text{delta}}{\simeq} \ g\big(\mathbb{E}[\hat{A}], \ \mathbb{E}[\hat{B}]\big)$$

```
 \mbox{IPOTESI:} \quad \left\{ \begin{array}{ll} - & \alpha,\,\beta,\,\theta \ \ \mbox{parametri con} \ \ \theta = g(\alpha,\beta) \\ - & \hat{A} \ \mbox{stimatore non-distorto di} \ \ \alpha \\ - & \hat{B} \ \mbox{stimatore non-distorto di} \ \ \beta \end{array} \right.
```

 $\hat{\Theta}:=g(\hat{A},\hat{B})$ è uno stimatore approssimativamente non-distorto di $\, heta$:

$$\mathbb{E}[\hat{\Theta}] = \mathbb{E}[g(\hat{A}, \hat{B})] \simeq g(\mathbb{E}[\hat{A}], \mathbb{E}[\hat{B}]) = g(\alpha, \beta)$$

```
IPOTESI:  \begin{cases} -\alpha, \beta, \theta \text{ parametri con } \theta = g(\alpha, \beta) \\ -\hat{A} \text{ stimatore non-distorto di } \alpha \\ -\hat{B} \text{ stimatore non-distorto di } \beta \end{cases}
```

$$\hat{\Theta}:=g(\hat{A},\hat{B})$$
 è uno stimatore approssimativamente non-distorto di $\, heta$:

$$\mathbb{E}[\hat{\Theta}] = \mathbb{E}[g(\hat{A}, \hat{B})] \simeq g(\mathbb{E}[\hat{A}], \mathbb{E}[\hat{B}]) = g(\alpha, \beta) = \theta$$

```
 \mbox{IPOTESI:} \quad \left\{ \begin{array}{ll} - & \alpha,\,\beta,\,\theta \ \ \mbox{parametri con} \ \ \theta = g(\alpha,\beta) \\ - & \hat{A} \ \mbox{stimatore non-distorto di} \ \ \alpha \\ - & \hat{B} \ \mbox{stimatore non-distorto di} \ \ \beta \end{array} \right.
```

 $\hat{\Theta}:=g(\hat{A},\hat{B})$ è uno stimatore approssimativamente non-distorto di $\, heta$:

$$\mathbb{E}[\hat{\Theta}] = \mathbb{E}[g(\hat{A}, \hat{B})] \simeq g(\mathbb{E}[\hat{A}], \mathbb{E}[\hat{B}]) = g(\alpha, \beta) = \theta$$

$$\Rightarrow \operatorname{bias}(\hat{\Theta}; \theta) = \mathbb{E}[\hat{\Theta}] - \theta \simeq 0$$

IPOTESI:
$$\begin{cases} -& \alpha,\,\beta,\,\theta \text{ parametri con } \theta = g(\alpha,\beta) \\ -& \hat{A} \text{ stimatore non-distorto di } \alpha \\ -& \hat{B} \text{ stimatore non-distorto di } \beta \end{cases}$$

 $\hat{\Theta}:=g(\hat{A},\hat{B})$ è uno stimatore approssimativamente non-distorto di $\, heta$:

$$\mathbb{E}[\hat{\Theta}] = \mathbb{E}[g(\hat{A}, \hat{B})] \simeq g(\mathbb{E}[\hat{A}], \mathbb{E}[\hat{B}]) = g(\alpha, \beta) = \theta$$

$$\Rightarrow \operatorname{bias}(\hat{\Theta}; \theta) = \mathbb{E}[\hat{\Theta}] - \theta \simeq 0$$

OSSERVAZIONE:

$$\theta = a\alpha + b\beta$$
 \Rightarrow $\hat{\Theta} = a\hat{A} + b\hat{B}$ è esattamente non-distorto

IPOTESI:
$$\begin{cases} -& \alpha,\,\beta,\,\theta \text{ parametri con } \theta = g(\alpha,\beta) \\ -& \hat{A} \text{ stimatore non-distorto di } \alpha \\ -& \hat{B} \text{ stimatore non-distorto di } \beta \end{cases}$$

 $\hat{\Theta}:=g(\hat{A},\hat{B})$ è uno stimatore approssimativamente non-distorto di $\, heta$:

$$\mathbb{E}[\hat{\Theta}] = \mathbb{E}[g(\hat{A}, \hat{B})] \simeq g(\mathbb{E}[\hat{A}], \mathbb{E}[\hat{B}]) = g(\alpha, \beta) = \theta$$

$$\Rightarrow \operatorname{bias}(\hat{\Theta}; \theta) = \mathbb{E}[\hat{\Theta}] - \theta \simeq 0$$

OSSERVAZIONE:

$$\theta = a\alpha + b\beta \quad \Rightarrow \quad \hat{\Theta} = a\hat{A} + b\hat{B} \;\; \hat{\mathbf{e}} \;\; \text{esattamente non-distorto}$$

E per stimare l'errore $mse(\hat{\Theta}; \theta)$?

```
IPOTESI: \begin{cases} -&\alpha,\beta,\,\theta \text{ parametri con }\theta=g(\alpha,\beta)\\ -&\hat{A} \text{ stimatore non-distorto di }\alpha\\ -&\hat{B} \text{ stimatore non-distorto di }\beta \end{cases} \hat{\Theta}:=g(\hat{A},\hat{B}) \text{ è uno stimatore approssimativamente non-distorto di }\theta
```

 $\operatorname{mse}(\hat{\Theta}; \theta) = e(\alpha, \beta, \operatorname{var}[\hat{A}], \operatorname{var}[\hat{B}])$ con e funzione opportuna

IPOTESI:
$$\begin{cases} -& \alpha,\,\beta,\,\theta \text{ parametri con } \theta = g(\alpha,\beta) \\ -& \hat{A} \text{ stimatore non-distorto di } \alpha \\ -& \hat{B} \text{ stimatore non-distorto di } \beta \end{cases}$$

$$\hat{\Theta}:=g(\hat{A},\hat{B})$$
 è uno stimatore approssimativamente non-distorto di θ
$$\mathrm{mse}(\hat{\Theta};\theta)=e\left(\alpha,\beta,\mathrm{var}[\hat{A}],\mathrm{var}[\hat{B}]\right) \quad \mathrm{con} \ \ e \ \ \mathrm{funzione} \ \mathrm{opportuna}$$

IPOTESI ULTERIORI:
$$\begin{cases} - & S_A^2 \text{ stimatore non-distorto di } \text{var}[\hat{A}] \\ - & S_B^2 \text{ stimatore non-distorto di } \text{var}[\hat{B}] \end{cases}$$

$$\mbox{IPOTESI:} \quad \left\{ \begin{array}{ll} - & \alpha,\,\beta,\,\theta \ \ \mbox{parametri con} \ \ \theta = g(\alpha,\beta) \\ - & \hat{A} \ \mbox{stimatore non-distorto di} \ \ \alpha \\ - & \hat{B} \ \mbox{stimatore non-distorto di} \ \ \beta \end{array} \right.$$

 $\hat{\Theta} := g(\hat{A}, \hat{B})$ è uno stimatore approssimativamente non-distorto di θ $mse(\hat{\Theta}; \theta) = e(\alpha, \beta, var[\hat{A}], var[\hat{B}])$ con e funzione opportuna

IPOTESI ULTERIORI: $\begin{cases} - & S_A^2 \text{ stimatore non-distorto di } \text{var}[\hat{A}] \\ - & S_B^2 \text{ stimatore non-distorto di } \text{var}[\hat{B}] \end{cases}$

$$\widehat{\mathrm{MSE}} := e(\hat{A}, \hat{B}, S_A^2, S_B^2)$$

 $\widehat{\text{MSE}} := e\left(\hat{A}, \hat{B}, S_A^2, S_B^2\right) \quad \text{stimatore approssimativamente} \\ \quad \text{non-distorto di } \mathsf{mse}(\hat{\Theta}; \theta)$

ESEMPIO

ESEMPIO

m=5 misure di tensione V_1,\ldots,V_5 i.i.d. no errore sistematico \Rightarrow $\mathbb{E}\left[V_i\right]=v$

ESEMPIO

m=5 misure di tensione V_1,\ldots,V_5 i.i.d. no errore sistematico $\Rightarrow \mathbb{E}\left[V_i\right]=v$ n=3 misure di corrente I_1,I_2,I_3 i.i.d. no errore sistematico $\Rightarrow \mathbb{E}\left[I_i\right]=i$

m=5 misure di tensione V_1,\ldots,V_5 i.i.d. no errore sistematico $\Rightarrow \mathbb{E}\left[V_i\right]=v$ n=3 misure di corrente I_1,I_2,I_3 i.i.d. no errore sistematico $\Rightarrow \mathbb{E}\left[I_i\right]=i$

• $\overline{V} = \frac{1}{5}(V_1 + ... + V_5)$ è uno stimatore non-distorto di v

m=5 misure di tensione V_1,\ldots,V_5 i.i.d. no errore sistematico $\Rightarrow \mathbb{E}\left[V_i\right]=v$ n=3 misure di corrente I_1,I_2,I_3 i.i.d. no errore sistematico $\Rightarrow \mathbb{E}\left[I_i\right]=i$

• $\overline{V} = \frac{1}{5}(V_1 + \ldots + V_5)$ è uno stimatore non-distorto di v, perché $\mathbb{E}[\overline{V}] = \mathbb{E}[V_i]$

m=5 misure di tensione V_1,\ldots,V_5 i.i.d. no errore sistematico $\Rightarrow \mathbb{E}\left[V_i\right]=v$ n=3 misure di corrente I_1,I_2,I_3 i.i.d. no errore sistematico $\Rightarrow \mathbb{E}\left[I_i\right]=i$

• $\overline{V} = \frac{1}{5}(V_1 + \ldots + V_5)$ è uno stimatore non-distorto di v, perché $\mathbb{E}[\overline{V}] = \mathbb{E}[V_i] = v$

m=5 misure di tensione V_1,\ldots,V_5 i.i.d. no errore sistematico $\Rightarrow \mathbb{E}\left[V_i\right]=v$ n=3 misure di corrente I_1,I_2,I_3 i.i.d. no errore sistematico $\Rightarrow \mathbb{E}\left[I_i\right]=i$

• $\overline{V} = \frac{1}{5}(V_1 + \ldots + V_5)$ è uno stimatore non-distorto di v, perché $\mathbb{E}[\overline{V}] = \mathbb{E}[V_i] = v \quad \Rightarrow \quad \text{bias}(\overline{V}; v) = 0$

m=5 misure di tensione V_1,\ldots,V_5 i.i.d. no errore sistematico $\Rightarrow \mathbb{E}\left[V_i\right]=v$ n=3 misure di corrente I_1,I_2,I_3 i.i.d. no errore sistematico $\Rightarrow \mathbb{E}\left[I_i\right]=i$

- $\overline{V} = \frac{1}{5}(V_1 + \ldots + V_5)$ è uno stimatore non-distorto di v, perché $\mathbb{E}\left[\overline{V}\right] = \mathbb{E}\left[V_i\right] = v \quad \Rightarrow \quad \mathrm{bias}(\overline{V}; v) = 0$
- $\bar{I} = \frac{1}{3}(I_1 + I_2 + I_3)$ è uno stimatore non-distorto di i (idem)

m = 5 misure di tensione V_1, \ldots, V_5 i.i.d. $r = \frac{v}{i}$ no errore sistematico $\Rightarrow \mathbb{E}[V_i] = v$ n = 3 misure di corrente I_1, I_2, I_3 i.i.d. no errore sistematico \Rightarrow $\mathbb{E}[I_i] = i$

- $\overline{V} = \frac{1}{5}(V_1 + ... + V_5)$ è uno stimatore non-distorto di V, perché $\mathbb{E}\left[\overline{V}\right] = \mathbb{E}\left[V_i\right] = V \quad \Rightarrow \quad \operatorname{bias}(\overline{V}; V) = 0$
- $\bar{l} = \frac{1}{3}(l_1 + l_2 + l_3)$ è uno stimatore non-distorto di *i* (idem)
- $\hat{R} = \frac{\overline{V}}{\overline{I}}$ è uno stimatore approx. non-distorto di r

m = 5 misure di tensione V_1, \ldots, V_5 i.i.d. $r = \frac{v}{i}$ no errore sistematico $\Rightarrow \mathbb{E}[V_i] = v$ n = 3 misure di corrente I_1, I_2, I_3 i.i.d. no errore sistematico \Rightarrow $\mathbb{E}[I_i] = i$

- $\overline{V} = \frac{1}{5}(V_1 + ... + V_5)$ è uno stimatore non-distorto di V, perché $\mathbb{E}\left[\overline{V}\right] = \mathbb{E}\left[V_i\right] = V \quad \Rightarrow \quad \text{bias}(\overline{V}; V) = 0$
- $\bar{l} = \frac{1}{3}(l_1 + l_2 + l_3)$ è uno stimatore non-distorto di i (idem)
- $\hat{R} = \frac{\overline{V}}{\overline{I}}$ è uno stimatore approx. non-distorto di r, perché

$$\mathbb{E}[\hat{R}] = \mathbb{E}\left[\frac{\overline{V}}{\overline{I}}\right]$$

m = 5 misure di tensione V_1, \ldots, V_5 i.i.d. $r = \frac{v}{i}$ $no errore sistematico <math>\Rightarrow \mathbb{E}[V_i] = v$ $n = 3 \text{ misure di corrente } I_1, I_2, I_3 \text{ i.i.d.}$ no errore sistematico \Rightarrow $\mathbb{E}[I_i] = i$

- $\overline{V} = \frac{1}{5}(V_1 + ... + V_5)$ è uno stimatore non-distorto di V, perché $\mathbb{E}\left[\overline{V}\right] = \mathbb{E}\left[V_i\right] = V \quad \Rightarrow \quad \text{bias}(\overline{V}; V) = 0$
- $\bar{l} = \frac{1}{3}(l_1 + l_2 + l_3)$ è uno stimatore non-distorto di i (idem)
- $\hat{R} = \frac{\overline{V}}{\overline{I}}$ è uno stimatore approx. non-distorto di r, perché

$$\mathbb{E}[\hat{R}] = \mathbb{E}\left[\frac{\overline{V}}{\overline{I}}\right] \underset{\text{metodo} \\ \text{delta}}{\simeq} \frac{\mathbb{E}[\overline{V}]}{\mathbb{E}[\overline{I}]}$$

m = 5 misure di tensione V_1, \ldots, V_5 i.i.d. $r = \frac{v}{i}$ $no errore sistematico <math>\Rightarrow \mathbb{E}[V_i] = v$ $n = 3 \text{ misure di corrente } I_1, I_2, I_3 \text{ i.i.d.}$ no errore sistematico \Rightarrow $\mathbb{E}[I_i] = i$

- $\overline{V} = \frac{1}{5}(V_1 + ... + V_5)$ è uno stimatore non-distorto di V, perché $\mathbb{E}\left[\overline{V}\right] = \mathbb{E}\left[V_i\right] = v \quad \Rightarrow \quad \text{bias}(\overline{V}; v) = 0$
- $\bar{l} = \frac{1}{3}(l_1 + l_2 + l_3)$ è uno stimatore non-distorto di *i* (idem)
- $\hat{R} = \frac{\overline{V}}{\overline{I}}$ è uno stimatore approx. non-distorto di r, perché

$$\mathbb{E}[\hat{R}] = \mathbb{E}\left|\frac{\overline{V}}{\overline{I}}\right| \underset{\text{delta}}{\sim} \frac{\mathbb{E}[\overline{V}]}{\mathbb{E}[\overline{I}]} = \frac{v}{i}$$

m = 5 misure di tensione V_1, \ldots, V_5 i.i.d. $r = \frac{v}{i}$ no errore sistematico $\Rightarrow \mathbb{E}[V_i] = v$ i n = 3 misure di corrente I_1, I_2, I_3 i.i.d. no errore sistematico \Rightarrow $\mathbb{E}[I_i] = i$

- $\overline{V} = \frac{1}{5}(V_1 + ... + V_5)$ è uno stimatore non-distorto di V, perché $\mathbb{E}\left[\overline{V}\right] = \mathbb{E}\left[V_i\right] = V \quad \Rightarrow \quad \text{bias}(\overline{V}; V) = 0$
- $\bar{l} = \frac{1}{3}(l_1 + l_2 + l_3)$ è uno stimatore non-distorto di i (idem)
- $\hat{R} = \frac{\overline{V}}{\overline{I}}$ è uno stimatore approx. non-distorto di r, perché

$$\mathbb{E}[\hat{R}] = \mathbb{E}\left|\frac{\overline{V}}{\overline{I}}\right| \underset{\text{metodo}}{\sim} \frac{\mathbb{E}[\overline{V}]}{\mathbb{E}[\overline{I}]} = \frac{v}{i} = r$$

m = 5 misure di tensione V_1, \ldots, V_5 i.i.d. $r = \frac{v}{i}$ $no errore sistematico \Rightarrow \mathbb{E}[V_i] = v$ $n = 3 \text{ misure di corrente } I_1, I_2, I_3 \text{ i.i.d.}$ no errore sistematico \Rightarrow $\mathbb{E}[I_i] = i$

- $\overline{V} = \frac{1}{5}(V_1 + ... + V_5)$ è uno stimatore non-distorto di V, perché $\mathbb{E}\left[\overline{V}\right] = \mathbb{E}\left[V_i\right] = V \quad \Rightarrow \quad \text{bias}(\overline{V}; V) = 0$
- $\bar{l} = \frac{1}{3}(l_1 + l_2 + l_3)$ è uno stimatore non-distorto di i (idem)
- $\hat{R} = \frac{\overline{V}}{\overline{I}}$ è uno stimatore approx. non-distorto di r, perché

$$\mathbb{E}[\hat{R}] = \mathbb{E}\left|\frac{\overline{V}}{\overline{I}}\right| \underset{\text{metodo}}{\overset{\sim}{\sim}} \frac{\mathbb{E}[\overline{V}]}{\mathbb{E}[\overline{I}]} = \frac{v}{i} = r$$

-
$$S_V^2 = \frac{1}{m-1} \sum_i (V_i - \overline{V})^2$$
 non-distorto di $\sigma_V^2 = \text{var}[V_i]$

-
$$S_V^2 = \frac{1}{m-1} \sum_i (V_i - \overline{V})^2$$
 non-distorto di $\sigma_V^2 = \text{var}[V_i]$

-
$$S_I^2 = \frac{1}{n-1} \sum_j (I_j - \bar{I})^2$$
 non-distorto di $\sigma_I^2 = \text{var}\left[I_j\right]$

- $S_V^2 = \frac{1}{m-1} \sum_i (V_i \overline{V})^2$ non-distorto di $\sigma_V^2 = \text{var}[V_i]$
- $S_I^2 = \frac{1}{n-1} \sum_j (I_j \bar{I})^2$ non-distorto di $\sigma_I^2 = \mathrm{var}\left[I_j\right]$
- $\operatorname{mse}(\overline{V}; v) = \operatorname{var}[\overline{V}] + \operatorname{bias}(\overline{V}; v)^2$

- $S_V^2 = \frac{1}{m-1} \sum_i (V_i \overline{V})^2$ non-distorto di $\sigma_V^2 = \text{var}[V_i]$
- $S_I^2 = \frac{1}{n-1} \sum_j (I_j \bar{I})^2$ non-distorto di $\sigma_I^2 = \text{var}\left[I_j\right]$
- $\operatorname{mse}(\overline{V}; v) = \operatorname{var}[\overline{V}] + \operatorname{bias}(\overline{V}; v)^2 = \operatorname{var}[\overline{V}]$

- $S_V^2 = \frac{1}{m-1} \sum_i (V_i \overline{V})^2$ non-distorto di $\sigma_V^2 = \text{var}[V_i]$
- $S_I^2 = \frac{1}{n-1} \sum_j (I_j \bar{I})^2$ non-distorto di $\sigma_I^2 = \text{var}\left[I_j\right]$
- $\operatorname{mse}(\overline{V}; V) = \operatorname{var}[\overline{V}] + \operatorname{bias}(\overline{V}; V)^2 = \operatorname{var}[\overline{V}] = \frac{\sigma_V^2}{m}$

-
$$S_V^2 = \frac{1}{m-1} \sum_i (V_i - \overline{V})^2$$
 non-distorto di $\sigma_V^2 = \text{var}[V_i]$

-
$$S_I^2 = \frac{1}{n-1} \sum_j (I_j - \bar{I})^2$$
 non-distorto di $\sigma_I^2 = \mathrm{var}\left[I_j\right]$

•
$$\operatorname{mse}(\overline{V}; v) = \operatorname{var}[\overline{V}] + \operatorname{bias}(\overline{V}; v)^2 = \operatorname{var}[\overline{V}] = \frac{\sigma_V^2}{m}$$

 $\Rightarrow \widehat{MSE}_V := \frac{S_V^2}{m}$ è uno stimatore non-distorto di $\operatorname{mse}(\overline{V}; v)$

- $S_V^2 = \frac{1}{m-1} \sum_i (V_i \overline{V})^2$ non-distorto di $\sigma_V^2 = \text{var}[V_i]$
- $S_I^2 = \frac{1}{n-1} \sum_j (I_j \bar{I})^2$ non-distorto di $\sigma_I^2 = \mathrm{var}\left[I_j\right]$
- $\operatorname{mse}(\overline{V}; v) = \operatorname{var}[\overline{V}] + \underline{\operatorname{bias}}(\overline{V}; v)^2 = \operatorname{var}[\overline{V}] = \frac{\sigma_V^2}{m}$ $\Rightarrow \widehat{\mathrm{MSE}}_V := \frac{S_V^2}{m}$ è uno stimatore non-distorto di $\operatorname{mse}(\overline{V}; v)$
- $\operatorname{mse}(\bar{l}; i) = \ldots = \frac{\sigma_l^2}{n}$

- $S_V^2 = \frac{1}{m-1} \sum_i (V_i \overline{V})^2$ non-distorto di $\sigma_V^2 = \text{var}[V_i]$
- $S_I^2 = \frac{1}{n-1} \sum_j (I_j \bar{I})^2$ non-distorto di $\sigma_I^2 = \text{var} \left[I_j \right]$
- $\operatorname{mse}(\overline{V}; v) = \operatorname{var}[\overline{V}] + \underline{\operatorname{bias}}(\overline{V}; v)^2 = \operatorname{var}[\overline{V}] = \frac{\sigma_V^2}{m}$ $\Rightarrow \widehat{\mathrm{MSE}}_V := \frac{S_V^2}{m}$ è uno stimatore non-distorto di $\operatorname{mse}(\overline{V}; v)$
- $\operatorname{mse}(\bar{I}; i) = \ldots = \frac{\sigma_{\bar{I}}^2}{n}$ $\Rightarrow \widehat{\mathrm{MSE}}_I := \frac{S_I^2}{n}$ è uno stimatore non-distorto di $\operatorname{mse}(\bar{I}; i)$

-
$$S_V^2 = \frac{1}{m-1} \sum_i (V_i - \overline{V})^2$$
 non-distorto di $\sigma_V^2 = \text{var}[V_i]$

-
$$S_I^2 = \frac{1}{n-1} \sum_j (I_j - \bar{I})^2$$
 non-distorto di $\sigma_I^2 = \text{var}\left[I_j\right]$

-
$$\hat{R} = \frac{\overline{V}}{\overline{I}}$$
 approx. non-distorto di $r = \frac{V}{\overline{I}}$

- $S_V^2 = \frac{1}{m-1} \sum_i (V_i \overline{V})^2$ non-distorto di $\sigma_V^2 = \text{var}[V_i]$
- $S_I^2 = \frac{1}{n-1} \sum_j (I_j \bar{I})^2$ non-distorto di $\sigma_I^2 = \text{var}\left[I_j\right]$
- $\hat{R} = \frac{\overline{V}}{\overline{I}}$ approx. non-distorto di $r = \frac{v}{\overline{I}}$
- $\operatorname{mse}(\hat{R}; r) = \operatorname{var}[\hat{R}] + \operatorname{bias}(\hat{R}; r)^2$

-
$$S_V^2 = \frac{1}{m-1} \sum_i (V_i - \overline{V})^2$$
 non-distorto di $\sigma_V^2 = \text{var}[V_i]$

-
$$S_I^2 = \frac{1}{n-1} \sum_j (I_j - \bar{I})^2$$
 non-distorto di $\sigma_I^2 = \mathrm{var}\left[I_j\right]$

-
$$\hat{R} = \frac{\overline{V}}{\overline{I}}$$
 approx. non-distorto di $r = \frac{v}{\overline{I}}$

•
$$\operatorname{mse}(\hat{R}; r) = \operatorname{var}[\hat{R}] + \underbrace{\operatorname{bias}(\hat{R}; r)^2}_{\simeq 0}$$

-
$$S_V^2 = \frac{1}{m-1} \sum_i (V_i - \overline{V})^2$$
 non-distorto di $\sigma_V^2 = \text{var}[V_i]$

-
$$S_I^2 = \frac{1}{n-1} \sum_j (I_j - \bar{I})^2$$
 non-distorto di $\sigma_I^2 = \text{var}\left[I_j\right]$

-
$$\hat{R} = \frac{\overline{V}}{\overline{I}}$$
 approx. non-distorto di $r = \frac{v}{\overline{I}}$

•
$$\operatorname{mse}(\hat{R}; r) = \operatorname{var}[\hat{R}] + \underbrace{\operatorname{bias}(\hat{R}; r)^2}_{\approx 0} \simeq \operatorname{var}[\hat{R}]$$

- $S_V^2 = \frac{1}{m-1} \sum_i (V_i \overline{V})^2$ non-distorto di $\sigma_V^2 = \text{var}[V_i]$
- $S_I^2 = \frac{1}{n-1} \sum_j (I_j \bar{I})^2$ non-distorto di $\sigma_I^2 = \text{var}\left[I_j\right]$
- $\hat{R} = \frac{\overline{V}}{\overline{I}} = g(\overline{V}, \overline{I})$ approx. non-distorto di $r = \frac{V}{\overline{I}} = g(V, I)$
- $\operatorname{mse}(\hat{R}; r) = \operatorname{var}[\hat{R}] + \operatorname{bias}(\hat{R}; r)^2 \simeq \operatorname{var}[\hat{R}] = \operatorname{var}[g(\overline{V}, \overline{I})]$

- $S_V^2 = \frac{1}{m-1} \sum_i (V_i \overline{V})^2$ non-distorto di $\sigma_V^2 = \text{var}[V_i]$
- $S_I^2 = \frac{1}{n-1} \sum_j (I_j \bar{I})^2$ non-distorto di $\sigma_I^2 = \text{var}\left[I_j\right]$
- $\hat{R}=rac{\overline{V}}{\overline{I}}=g\left(\overline{V},\overline{I}
 ight)$ approx. non-distorto di $r=rac{V}{\overline{I}}=g\left(V,I
 ight)$
- $\operatorname{mse}(\hat{R}; r) = \operatorname{var}[\hat{R}] + \operatorname{bias}(\hat{R}; r)^2 \simeq \operatorname{var}[\hat{R}] = \operatorname{var}[g(\overline{V}, \overline{I})]$

$$\underset{\text{delta}}{\simeq} \left[\partial_{1} g \left(\mathbb{E} \left[\overline{V} \right], \mathbb{E} \left[\overline{I} \right] \right) \right]^{2} \text{var} \left[\overline{V} \right] + \left[\partial_{2} g \left(\mathbb{E} \left[\overline{V} \right], \mathbb{E} \left[\overline{I} \right] \right) \right]^{2} \text{var} \left[\overline{I} \right]$$

- $S_V^2 = \frac{1}{m-1} \sum_i (V_i \overline{V})^2$ non-distorto di $\sigma_V^2 = \text{var}[V_i]$
- $S_I^2 = \frac{1}{n-1} \sum_j (I_j \bar{I})^2$ non-distorto di $\sigma_I^2 = \text{var}\left[I_j\right]$
- $\hat{R} = \frac{\overline{V}}{\overline{I}} = g\left(\overline{V},\overline{I}\right)$ approx. non-distorto di $r = \frac{\overline{V}}{\overline{I}} = g\left(\overline{V},\overline{I}\right)$
- $\operatorname{mse}(\hat{R}; r) = \operatorname{var}[\hat{R}] + \operatorname{bias}(\hat{R}; r)^{2} \simeq \operatorname{var}[\hat{R}] = \operatorname{var}[g(\overline{V}, \overline{I})]$ $\simeq [\partial_{1}g(\mathbb{E}[\overline{V}], \mathbb{E}[\overline{I}])]^{2} \operatorname{var}[\overline{V}] + [\partial_{2}g(\mathbb{E}[\overline{V}], \mathbb{E}[\overline{I}])]^{2} \operatorname{var}[\overline{I}]$

$$\partial_1 g(x,y) = \frac{\partial}{\partial x} \left(\frac{x}{y} \right) = \frac{1}{y} \qquad \partial_2 g(x,y) = \frac{\partial}{\partial y} \left(\frac{x}{y} \right) = -\frac{x}{y^2}$$

-
$$S_V^2 = \frac{1}{m-1} \sum_i (V_i - \overline{V})^2$$
 non-distorto di $\sigma_V^2 = \text{var}[V_i]$

-
$$S_I^2 = \frac{1}{n-1} \sum_j (I_j - \bar{I})^2$$
 non-distorto di $\sigma_I^2 = \text{var} \left[I_j \right]$

-
$$\hat{R} = \frac{\overline{V}}{\overline{I}} = g(\overline{V}, \overline{I})$$
 approx. non-distorto di $r = \frac{V}{\overline{I}} = g(V, \overline{I})$

•
$$\operatorname{mse}(\hat{R}; r) = \operatorname{var}[\hat{R}] + \operatorname{bias}(\hat{R}; r)^{2} \simeq \operatorname{var}[\hat{R}] = \operatorname{var}[g(\overline{V}, \overline{I})]$$

$$\simeq [\partial_{1}g(\mathbb{E}[\overline{V}], \mathbb{E}[\overline{I}])]^{2} \operatorname{var}[\overline{V}] + [\partial_{2}g(\mathbb{E}[\overline{V}], \mathbb{E}[\overline{I}])]^{2} \operatorname{var}[\overline{I}]$$

$$\partial_{1}g(x,y) = \frac{\partial}{\partial x}\left(\frac{x}{y}\right) = \frac{1}{y} \qquad \partial_{2}g(x,y) = \frac{\partial}{\partial y}\left(\frac{x}{y}\right) = -\frac{x}{y^{2}}$$

$$\mathbb{E}\left[\overline{V}\right] = v \qquad \mathbb{E}\left[\overline{I}\right] = i$$

-
$$S_V^2 = rac{1}{m-1} \sum_i (V_i - \overline{V})^2$$
 non-distorto di $\sigma_V^2 = ext{var} \left[V_i
ight]$

-
$$S_I^2 = \frac{1}{n-1} \sum_j (I_j - \bar{I})^2$$
 non-distorto di $\sigma_I^2 = \text{var}\left[I_j\right]$

-
$$\hat{R} = rac{\overline{V}}{\overline{I}} = g\left(\overline{V},\overline{I}
ight)$$
 approx. non-distorto di $r = rac{v}{\overline{I}} = g\left(v,\overline{I}
ight)$

•
$$\operatorname{mse}(\hat{R}; r) = \operatorname{var}[\hat{R}] + \operatorname{bias}(\hat{R}; r)^{2} \simeq \operatorname{var}[\hat{R}] = \operatorname{var}[g(\overline{V}, \overline{I})]$$

$$\simeq [\partial_{1}g(\mathbb{E}[\overline{V}], \mathbb{E}[\overline{I}])]^{2} \operatorname{var}[\overline{V}] + [\partial_{2}g(\mathbb{E}[\overline{V}], \mathbb{E}[\overline{I}])]^{2} \operatorname{var}[\overline{I}]$$

$$\partial_{1}g(x,y) = \frac{\partial}{\partial x}\left(\frac{x}{y}\right) = \frac{1}{y} \qquad \partial_{2}g(x,y) = \frac{\partial}{\partial y}\left(\frac{x}{y}\right) = -\frac{x}{y^{2}}$$
$$\mathbb{E}\left[\overline{V}\right] = v \qquad \mathbb{E}\left[\overline{I}\right] = i \qquad \operatorname{var}\left[\overline{V}\right] = \frac{\sigma_{V}^{2}}{m} \qquad \operatorname{var}\left[\overline{I}\right] = \frac{\sigma_{I}^{2}}{n}$$

Per stimare gli mse, ricordiamo gli stimatori

-
$$S_V^2 = rac{1}{m-1} \sum_i (V_i - \overline{V})^2$$
 non-distorto di $\sigma_V^2 = ext{var} \left[V_i
ight]$

-
$$S_I^2 = \frac{1}{n-1} \sum_j (I_j - \bar{I})^2$$
 non-distorto di $\sigma_I^2 = \text{var} [I_j]$

-
$$\hat{R} = rac{\overline{V}}{\overline{I}} = g\left(\overline{V},\overline{I}
ight)$$
 approx. non-distorto di $r = rac{v}{\overline{I}} = g\left(v,\overline{I}
ight)$

•
$$\operatorname{mse}(\hat{R}; r) = \operatorname{var}[\hat{R}] + \operatorname{bias}(\hat{R}; r)^2 \simeq \operatorname{var}[\hat{R}] = \operatorname{var}[g(\overline{V}, \overline{I})]$$

$$\simeq \left[\partial_1 g(\mathbb{E}[\overline{V}], \mathbb{E}[\overline{I}])\right]^2 \operatorname{var}[\overline{V}] + \left[\partial_2 g(\mathbb{E}[\overline{V}], \mathbb{E}[\overline{I}])\right]^2 \operatorname{var}[\overline{I}]$$

$$\left[1\right]^2 \sigma_V^2 = \left[V\right]^2 \sigma_I^2$$

$$= \left[\frac{1}{i}\right]^2 \cdot \frac{\sigma_V^2}{m} + \left[-\frac{v}{i^2}\right]^2 \cdot \frac{\sigma_I^2}{n}$$

$$\frac{1}{I} \left[\frac{1}{I} \right] \cdot \frac{1}{M} + \left[\frac{1}{I^2} \right] \cdot \frac{1}{N}$$

$$\frac{1}{I} \partial_1 g(x, y) = \frac{\partial}{\partial x} \left(\frac{x}{y} \right) = \frac{1}{y} \qquad \frac{\partial}{\partial y} g(x, y) = \frac{\partial}{\partial y} \left(\frac{x}{y} \right) = -\frac{x}{y^2}$$

$$\mathbb{E} \left[\overline{V} \right] = V \qquad \mathbb{E} \left[\overline{I} \right] = i \qquad \text{var} \left[\overline{V} \right] = \frac{\sigma_V^2}{M} \qquad \text{var} \left[\overline{I} \right] = \frac{\sigma_I^2}{N}$$

21/22

Per stimare gli mse, ricordiamo gli stimatori

-
$$S_V^2 = \frac{1}{m-1} \sum_i (V_i - \overline{V})^2$$
 non-distorto di $\sigma_V^2 = \operatorname{var}\left[V_i\right]$

-
$$S_I^2 = \frac{1}{n-1} \sum_j (I_j - \bar{I})^2$$
 non-distorto di $\sigma_I^2 = \text{var}\left[I_j\right]$

-
$$\hat{R} = rac{\overline{V}}{\overline{I}} = g\left(\overline{V},\overline{I}
ight)$$
 approx. non-distorto di $r = rac{V}{\overline{I}} = g\left(V,I
ight)$

•
$$\operatorname{mse}(\hat{R}; r) = \operatorname{var}[\hat{R}] + \operatorname{bias}(\hat{R}; r)^{2} \simeq \operatorname{var}[\hat{R}] = \operatorname{var}[g(\overline{V}, \overline{I})]$$

$$\simeq \left[\partial_{1}g(\mathbb{E}[\overline{V}], \mathbb{E}[\overline{I}])\right]^{2} \operatorname{var}[\overline{V}] + \left[\partial_{2}g(\mathbb{E}[\overline{V}], \mathbb{E}[\overline{I}])\right]^{2} \operatorname{var}[\overline{I}]$$

$$= \left[\frac{1}{i}\right]^{2} \cdot \frac{\sigma_{V}^{2}}{m} + \left[-\frac{V}{i^{2}}\right]^{2} \cdot \frac{\sigma_{I}^{2}}{n}$$

$$\partial_{1}g(x,y) = \frac{\partial}{\partial x}\left(\frac{x}{y}\right) = \frac{1}{y} \qquad \partial_{2}g(x,y) = \frac{\partial}{\partial y}\left(\frac{x}{y}\right) = -\frac{x}{y^{2}}$$

$$\mathbb{E}\left[\overline{V}\right] = v \qquad \mathbb{E}\left[\overline{I}\right] = i \qquad \operatorname{var}\left[\overline{V}\right] = \frac{\sigma_{V}^{2}}{m} \qquad \operatorname{var}\left[\overline{I}\right] = \frac{\sigma_{I}^{2}}{n}$$

21/22

-
$$S_V^2 = \frac{1}{m-1} \sum_i (V_i - \overline{V})^2$$
 non-distorto di $\sigma_V^2 = \text{var}[V_i]$

-
$$S_I^2 = \frac{1}{n-1} \sum_j (I_j - \bar{I})^2$$
 non-distorto di $\sigma_I^2 = \text{var} \left[I_j \right]$

-
$$\hat{R} = \frac{\overline{V}}{\overline{I}} = g\left(\overline{V},\overline{I}\right)$$
 approx. non-distorto di $r = \frac{v}{\overline{I}} = g\left(v,\overline{I}\right)$

- \overline{V} non-distorto di v
- \bar{I} non-distorto di i

-
$$S_V^2 = \frac{1}{m-1} \sum_i (V_i - \overline{V})^2$$
 non-distorto di $\sigma_V^2 = \text{var}[V_i]$

-
$$S_I^2 = \frac{1}{n-1} \sum_j (I_j - \bar{I})^2$$
 non-distorto di $\sigma_I^2 = \text{var}\left[I_j\right]$

-
$$\hat{R} = \frac{\overline{V}}{\overline{I}} = g(\overline{V}, \overline{I})$$
 approx. non-distorto di $r = \frac{V}{\overline{I}} = g(V, I)$

- \overline{V} non-distorto di v
- \bar{I} non-distorto di i

•
$$\operatorname{mse}(\hat{R}; r) \simeq \left[\frac{1}{i}\right]^2 \cdot \frac{\sigma_V^2}{m} + \left[-\frac{V}{i^2}\right]^2 \cdot \frac{\sigma_I^2}{n}$$

-
$$S_V^2 = \frac{1}{m-1} \sum_i (V_i - \overline{V})^2$$
 non-distorto di $\sigma_V^2 = \text{var}[V_i]$

-
$$S_I^2 = \frac{1}{n-1} \sum_j (I_j - \bar{I})^2$$
 non-distorto di $\sigma_I^2 = \text{var}\left[I_j\right]$

-
$$\hat{R} = \frac{\overline{V}}{\overline{I}} = g(\overline{V}, \overline{I})$$
 approx. non-distorto di $r = \frac{V}{\overline{I}} = g(V, I)$

- \overline{V} non-distorto di v
- \bar{I} non-distorto di i

•
$$\operatorname{mse}(\hat{R}; r) \simeq \left[\frac{1}{i}\right]^2 \cdot \frac{\sigma_V^2}{m} + \left[-\frac{v}{i^2}\right]^2 \cdot \frac{\sigma_I^2}{n} = e(v, i, \sigma_V^2, \sigma_I^2)$$

-
$$S_V^2 = \frac{1}{m-1} \sum_i (V_i - \overline{V})^2$$
 non-distorto di $\sigma_V^2 = \text{var}[V_i]$

-
$$S_I^2 = \frac{1}{n-1} \sum_j (I_j - \bar{I})^2$$
 non-distorto di $\sigma_I^2 = \text{var} \left[I_j \right]$

-
$$\hat{R} = \frac{\overline{V}}{\overline{I}} = g(\overline{V}, \overline{I})$$
 approx. non-distorto di $r = \frac{V}{\overline{I}} = g(V, I)$

- \overline{V} non-distorto di v
- \bar{I} non-distorto di i

•
$$\operatorname{mse}(\hat{R}; r) \simeq \left[\frac{1}{i}\right]^2 \cdot \frac{\sigma_V^2}{m} + \left[-\frac{v}{i^2}\right]^2 \cdot \frac{\sigma_I^2}{n} = e\left(v, i, \sigma_V^2, \sigma_I^2\right)$$

$$\Rightarrow$$
 $\widehat{\mathrm{MSE}}_R := e(\overline{V}, \overline{I}, S_V^2, S_I^2)$ è uno stimatore approx. non-distorto di $\mathrm{mse}(\widehat{R}; r)$

-
$$S_V^2 = \frac{1}{m-1} \sum_i (V_i - \overline{V})^2$$
 non-distorto di $\sigma_V^2 = \text{var}[V_i]$

-
$$S_I^2 = \frac{1}{n-1} \sum_j (I_j - \bar{I})^2$$
 non-distorto di $\sigma_I^2 = \text{var}\left[I_j\right]$

-
$$\hat{R} = \frac{\overline{V}}{\overline{I}} = g(\overline{V}, \overline{I})$$
 approx. non-distorto di $r = \frac{v}{\overline{I}} = g(v, I)$

- \overline{V} non-distorto di v
- \bar{I} non-distorto di i

•
$$\operatorname{mse}(\hat{R}; r) \simeq \left[\frac{1}{i}\right]^{2} \cdot \frac{\sigma_{V}^{2}}{m} + \left[-\frac{v}{i^{2}}\right]^{2} \cdot \frac{\sigma_{I}^{2}}{n} = e\left(v, i, \sigma_{V}^{2}, \sigma_{I}^{2}\right)$$

$$\Rightarrow \widehat{MSE}_{R} := e\left(\overline{V}, \overline{I}, S_{V}^{2}, S_{I}^{2}\right)$$

$$= \left[\frac{1}{\overline{I}}\right]^{2} \cdot \frac{S_{V}^{2}}{m} + \left[-\frac{\overline{V}}{\overline{I}^{2}}\right]^{2} \cdot \frac{S_{I}^{2}}{n}$$

-
$$S_V^2 = \frac{1}{m-1} \sum_i (V_i - \overline{V})^2$$
 non-distorto di $\sigma_V^2 = \text{var}[V_i]$

-
$$S_I^2 = \frac{1}{n-1} \sum_j (I_j - \bar{I})^2$$
 non-distorto di $\sigma_I^2 = \text{var}\left[I_j\right]$

-
$$\hat{R} = \frac{\overline{V}}{\overline{I}} = g(\overline{V}, \overline{I})$$
 approx. non-distorto di $r = \frac{v}{\overline{I}} = g(v, I)$

- \overline{V} non-distorto di v
- \bar{I} non-distorto di i

•
$$\operatorname{mse}(\hat{R}; r) \simeq \left[\frac{1}{i}\right]^2 \cdot \frac{\sigma_V^2}{m} + \left[-\frac{v}{i^2}\right]^2 \cdot \frac{\sigma_I^2}{n} = e\left(v, i, \sigma_V^2, \sigma_I^2\right)$$

$$\Rightarrow \widehat{MSE}_R := e\left(\overline{V}, \overline{I}, S_V^2, S_I^2\right)$$

$$= \frac{1}{\overline{I}^2} \cdot \frac{S_V^2}{m} + \frac{\overline{V}^2}{\overline{I}^4} \cdot \frac{S_I^2}{n}$$

$$v_1 = 3.4$$
 $v_2 = 3.3$ $v_3 = 2.7$ $\Rightarrow \begin{cases} \overline{v} = 3.12 \\ s_V^2 = 0.092 \end{cases}$

Dopo le misure:

$$v_1 = 3.4$$
 $v_2 = 3.3$ $v_3 = 2.7$ $\Rightarrow \begin{cases} \overline{v} = 3.12 \\ s_V^2 = 0.092 \end{cases}$ $i_1 = 1.8$ $i_2 = 1.5$ $i_3 = 2.2$ $\Rightarrow \begin{cases} \bar{i} = 1.83 \\ s_I^2 = 0.123 \end{cases}$

Dopo le misure:
$$v_1 = 3.4$$
 $v_2 = 3.3$ $v_3 = 2.7$ $\Rightarrow \begin{cases} \overline{v} = 3.12 \\ s_V^2 = 0.092 \end{cases}$ $i_1 = 1.8$ $i_2 = 1.5$ $i_3 = 2.2$ $\Rightarrow \begin{cases} \bar{i} = 1.83 \\ s_I^2 = 0.123 \end{cases}$

$$i_1 = 1.8$$
 $i_2 = 1.5$ $i_3 = 2.2$ $\Rightarrow \begin{cases} \bar{i} = 1.83 \\ s_I^2 = 0.123 \end{cases}$

parametro	stimatore	
V	\overline{V}	
i	7	
r	$\frac{\overline{V}}{\overline{I}}$	
$\operatorname{mse}(\overline{V}; v)$	$\frac{S_V^2}{m}$	
$mse(\overline{I}; i)$	$\frac{S_l^2}{n}$	
$mse(\hat{R}; r)$	$\frac{1}{\overline{f}^2} \cdot \frac{S_V^2}{\overline{m}} + \frac{\overline{V}^2}{\overline{f}^4} \cdot \frac{S_I^2}{\overline{n}}$	
	$\overline{}$	

prima dell'esperimento

V	\overline{V}	3.12
i	7	1.83
r	$\frac{\overline{V}}{\overline{I}}$	
$\operatorname{mse}(\overline{V}; v)$	$\frac{S_V^2}{m}$	
$mse(\bar{I}; i)$	$\frac{S_l^2}{n}$	
$mse(\hat{R}; r)$	$\frac{1}{\overline{l}^2} \cdot \frac{S_V^2}{\overline{m}} + \frac{\overline{V}^2}{\overline{l}^4} \cdot \frac{S_I^2}{\overline{n}}$	

prima dell'esperimento

Dopo le misure:
$$v_1 = 3.4$$
 $v_2 = 3.3$ $v_3 = 2.7$ $\Rightarrow \begin{cases} \overline{v} = 3.12 \\ s_V^2 = 0.092 \end{cases}$ $i_1 = 1.8$ $i_2 = 1.5$ $i_3 = 2.2$ $\Rightarrow \begin{cases} \overline{i} = 1.83 \\ s_I^2 = 0.123 \end{cases}$

parametro	stimatore	stima
V	\overline{V}	3.12
i	7	1.83
r	$\frac{\overline{V}}{\overline{I}}$	$\frac{3.12}{1.83} = 1.70$
$\operatorname{mse}(\overline{V}; v)$	$\frac{S_V^2}{m}$	
$mse(\overline{I}; i)$	$\frac{S_l^2}{n}$	
$mse(\hat{R}; r)$	$\frac{1}{\overline{l}^2} \cdot \frac{S_V^2}{\overline{l}} + \frac{\overline{V}^2}{\overline{l}^4} \cdot \frac{S_I^2}{\overline{l}}$	
	$\overline{}$	$\overline{}$

prima dell'esperimento

22/22

V	\overline{V}	3.12
i	7	1.83
r	$\frac{\overline{V}}{\overline{I}}$	$\frac{3.12}{1.83} = 1.70$
$\operatorname{mse}(\overline{V}; v)$	$\frac{S_V^2}{m}$	$\frac{0.092}{5} = 0.018$
$mse(\overline{I}; i)$	$\frac{S_l^2}{n}$	$\frac{0.123}{3} = 0.041$
$mse(\hat{R}; r)$	$\frac{1}{\overline{l}^2} \cdot \frac{S_V^2}{\overline{m}} + \frac{\overline{V}^2}{\overline{l}^4} \cdot \frac{S_I^2}{\overline{n}}$	
	$\overline{}$	

prima dell'esperimento

V	V	3.12
i	7	1.83
r	$\frac{\overline{V}}{\overline{I}}$	$\frac{3.12}{1.83} = 1.70$
$\operatorname{mse}(\overline{V}; v)$	$\frac{S_V^2}{m}$	$\frac{0.092}{5} = 0.018$
$mse(\overline{I}; i)$	$\frac{S_l^2}{n}$	$\frac{0.123}{3} = 0.041$
$mse(\hat{R}; r)$	$\frac{\frac{1}{\overline{l}^2} \cdot \frac{S_V^2}{\overline{n}} + \frac{\overline{V}^2}{\overline{l}^4} \cdot \frac{S_I^2}{\overline{n}}}{}$	$\frac{1}{1.83^2} \cdot \frac{0.092}{5} + \frac{3.12^2}{1.83^4} \cdot \frac{0.123}{3} = 0.041$
	vine a dell'e an evine ent	dona l'agravimenta

prima dell'esperimento