Arduino Sinus-Generator nach der Direkten Digitalen Synthese (DDS)

Die DDS besteht aus folgende Elementen:

- Referenztakt
- Phasenschritt
- Phasen-Akkumulator
- Sinustabelle
- Digital-Analog-Wandler (DAC)

Referenztakt

Als Referenztakt wird ca. 32 kHz gewählt; diese Frequenz wird vom 16 Mhz - CPU-Takt durch Teilung 16000000/510 = 31372.55 Hz abgeleitet.

Sinustabelle

Die Sinustabelle besteht aus 256 Bytes mit den Werten einer Sinusperiode mit sinus(0) =128 , sinus($\pi/2$) = 255 und sinus($3*\pi/2$) = 0. Da der Ausgang der PWM keine negativen Wert erzeugen kann, erhält der Sinus einen Offset von 128 , entsprechend einem PWM- Ausgang von 2,5 Volt.

Phasen-Akkumulator

Im Phasen-Akkumulator wird bei jedem Takt ein Phasenschritt-Wert aufaddiert. Die Phase wird dargestellt durch eine Zahl von 0 ... 2**32-1 (32 Bit). Das entspricht einem Datentyp 'unsigned long' .

Wertezuordnung:

1101020010110110					
Phasen- Akkumulator N	Index in der Sinustabelle P	Grad	Winkel	sin(Winkel)	Ausgang D
0x0000000	0	0	0	0	127
0x4000000	64	90	0.5*pi	1	255
0x80000000	128	180	pi	0	127
0xc0000000	192	270	1.5 *pi	-1	0
0xFFFFFFF	255	<360	<2*pi	<0	<127
0x00000000	0	360	2*pi	0	127

Die obersten 8 Bits (grau markiert) werden als Index in der Sinus-Tabelle verwendet (0x00 = 1. Wert in der Tabelle , 0xFF= letzter Wert in der Tabelle). Diese Rundung betrifft nur die Sinustabelle, der Phasen-Akkumulator behält seine 32-Bit-Auflösung.

Beim Überlauf des Phasen-Akkumulators von 0xFFFFFFFF auf 0x00000000 ergibt sich automatisch ein Sprung zum Beginn der Sinustabelle.

Mit dem Phasenschritt wird die Frequenz eingestellt: kleine Werte ergeben niedrige Frequenz , große Werte hohe Frequenz.

Es gilt folgende Formel:

f = (Phasenschritt * Taktfrequenz) / 2**32 Taktfrequenz = 31372.55 Hz

f = (Phasenschritt* 31372.55) / 2**32

Aufgelöst nach Phasenschritt:

Phasenschritt= 2**32* f / 31372.55)

Anschauliche Darstellung

Das 'Digital Phase Wheel' demonstriert die Generierung des Sinus mit der DDS- Methode:

Schaltung

frequenzTabelle[16] =

Digital-Analog-Wandler

Die Digital-Analog-Wandlung wird durch eine Pulsweitenmodulation(PWM) gebildet, deren Pulsweite alle 32 us per Interrupt aktualisiert wird. Der nachgeschaltete RC- Tiefpass macht daraus ein Analogsignal.

Programm

```
// Timer2 Interrupt Service at 31372,550 KHz = 32uSec
 // this is the timebase REFCLOCK for the DDS generator
 // FOUT = (M (REFCLK)) / (2 exp 32)
☐ ISR (TIMER2_OVF_vect) {
   // for SIN1
   phaccu_a = phaccu_a + tword_a; // soft DDS, phase accu with 32 bits
   icnt_a = phaccu_a >> 24; // use upper 8 bits for phase accu as frequency information
   // read value from ROM sine table and send to PWM DAC
   OCR2A = pgm read byte near(sine256 + icnt a);
```


