Autoencoder

14 Mar 2019

Definition

Autoencoders are neural networks that are trained to copy their inputs to their outputs.

Usually constrained in particular ways to make this task more difficult.

Encoder and Decoder

- Encoder: Encodes its input x_i into a hidden representation h $h = g(W_1x_i + b)$
- Decodes the input again from this hidden representation $\widehat{x_i} = f(W_2h + c)$
- The model is trained to minimize a loss function which will ensure that $\hat{x_i}$ is close to x_i

Undercomplete autoencoder

1. $\dim(h) < \dim(x_i)$

Network must model x in lower dim.
 space + map latent space accurately back to input space.

Encoder network:

- hidden layer "compresses" the input
- will compress well only for the training distribution

Undercomplete autoencoder

1. $\dim(h) < \dim(x_i)$

If network has only linear transformations, encoder learns PCA. With typical non-linearities, network learns generalized, more powerful version of PCA.

$$h = g(W_1x_i + b)$$

$$\widehat{x_i} = f(W_2h + c)$$

Link between PCA and Autoencoders

- the encoder part of an autoencoder is equivalent to PCA if we
 - use a linear encoder
 - use a linear decoder
 - use squared error loss function
 - normalize the inputs to

$$\widehat{x}_{ij} = \frac{1}{\sqrt{m}} \left(x_{ij} - \frac{1}{m} \sum_{k=1}^{m} x_{kj} \right)$$

Overcomplete Autoencoder

- 2. $\dim(h) > \dim(x_i)$
 - no compression in hidden layer
 - each hidden unit could copy a different input component
- No guarantee that the hidden units will extract meaningful structure

Binary Inputs

$$x_{ij} \in \{0,1\}$$

Decoder: use logistic function

Encoder: use sigmoid function

Real Inputs

$$x_{ij} \in R$$

Decoder: use linear function

Encoder: use sigmoid function

Loss Function: Real Inputs

$$x_{ij} \in R$$

$$\min_{W_1, W_2, b, c} \frac{1}{m} \sum_{i=1}^{m} \sum_{j=1}^{n} (\hat{x}_{ij} - x_{ij})^2$$

$$h = g(W_1 x_i + b)$$

$$\widehat{x_i} = f(W_2h + c)$$

Loss Function: Binary Inputs

$$x_{ij} \in \{0,1\}$$

 For a single n-dimensional ith input we can use the following loss function

$$\min \left\{ -\sum_{j=1}^{n} \left(x_{ij} \log \hat{x}_{ij} + \left(1 - x_{ij} \right) \log \left(1 - \hat{x}_{ij} \right) \right) \right\}$$

$$h = g(W_1 x_i + b)$$

$$\widehat{x_i} = f(W_2h + c)$$

Regularization in autoencoders

- While poor generalization could happen even in undercomplete autoencoders it is an even more serious problem for overcomplete auto encoders
- To avoid poor generalization, we need to introduce regularization

Denoising Autoencoders

Corrupts the input data using a

1. probabilistic process $(P(\tilde{x}_{ij}|x_{ij}))$ before feeding it to the network $P(\tilde{x}_{ij}|x_{ij}) = a$

$$P(\tilde{x}_{ij} = 0 | x_{ij}) = q$$

$$P(\tilde{x}_{ij} = x_{ij} | x_{ij}) = 1 - q$$

2. Gaussian additive noise $\tilde{x}_{ij} = x_{ij} + \mathcal{N}(0,1)$

Denoising Autoencoders

- the objective is to reconstruct the original (uncorrupted) x_i
- By having to remove noise, model must know difference between noise and actual image.

Denoising Autoencoder

- The corrupting function C(.) can corrupt in any direction
- autoencoder must learn "location" of data manifold and its distribution $p_{data}(x)$

Application of AE

Task: Hand-written digit recognition

Contractive Autoencoders

- Contractive Autoencoders are explicitly encouraged to learn a manifold through their loss function.
- Desirable property: Points close to each other in input space maintain that property in the latent space.
- objective is to have a robust learned representation which is less sensitive to small variation in the data.
- We wish to extract features that only reflect variations observed in the training set -- we'd like to be invariant to the other variations
- Robustness of the representation for the data is done by applying a penalty term to the loss function. The penalty term is Frobenius norm of the Jacobian matrix.

Contractive Autoencoders

- Desirable property: Points close to each other in input space maintain that property in the latent space.
- This will be true if f(x) = h is continuous, has small derivatives.
- Robustness of the representation for the data is done by applying a penalty term to the loss function. The penalty term is Frobenius norm of the Jacobian matrix.

$$L(\theta) + \Omega(\theta)$$

$$\Omega(\theta) = \|J_{x}(h)\|_{F}^{2}$$

 $J_{\chi}(h)$ is a Jacobian of the encoder.

Jacobian and Frobenius Norm

If the input has n dimensions and the hidden layer has k dimensions then

dden layer has k dimensions then
$$J_x(h) = \begin{bmatrix} \frac{\partial h_1}{\partial x_1} & \dots & \frac{\partial h_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial h_k}{\partial x_1} & \dots & \frac{\partial h_1}{\partial x_n} \end{bmatrix}$$
• $\frac{\partial h_1}{\partial x_1} = 0$ means that this neuron is not very sensitive to variations cutting-edge the input x1.
• $L(\theta)$ capture inportant variations in dta

The Frobenius Norm for a matrix M:

$$||J_x(h)||_F^2 = \sum_{i=1}^n \sum_{l=1}^k \frac{\partial h_l}{\partial x_j}$$

- Consider $\frac{\partial h_1}{\partial x_1}$
- variations in dta
- $\Omega(\theta)$ do not capture variations in data

- Called contractive because they contract neighborhood of input space into smaller, localized group in latent space.
- This contractive effect is designed to only occur locally.
- The Jacobian Matrix will see most of its eigenvalues drop below 1 → contracted directions
- But some directions will have eigenvalues (signicantly)
 above 1 → directions that explain most of the variance
 in data

The Big Idea of Regularized Autoencoders

- Previous slides underscore the central balance of regularized autoencoders:
- Be sensitive to inputs (reconstruction loss) >
 generate good reconstructions of data drawn from
 data distribution
- Be insensitive to inputs (regularization penalty) → learn actual data distribution

Sparse Autoencoders

- A hidden neuron with sigmoid activation will have values between 0 and 1
- We say that the neuron is activated when its output is close to 1 and not activated when its output is close to 0.
- A sparse autoencoder tries to ensure the neuron is inactive most of the times.

The average value of the activation of a neuron l is given by

$$\hat{\rho}_l = \frac{1}{m} \sum_{i=1}^m h(x_i) l$$

If the neuron l is sparse (i.e. mostly inactive) then

$$\hat{\rho}_l \to 0$$

A sparse autoencoder uses a small value of sparsity parameter ρ (say, 0.005) and tries to enforce the constraint $\hat{\rho}_l = \rho$

 One way of ensuring this is to add the following term to the objective function

$$\Omega(\theta) = \sum_{l=1}^{k} \rho \log \frac{\rho}{\hat{\rho}_l} + (1 - \rho) \log \frac{1 - \rho}{1 - \hat{\rho}_l}$$

The sparsity function

The function will reach its minimum value(s) when $\hat{\rho}_l = \rho$.

Sparse Autoencoders

• A sparse autoencoder involves a sparsity penalty $\Omega(h)$ on the code layer h, in addition to the reconstruction error:

$$L(x, g(f(x)) + \Omega(h))$$

• Regularized maximum likelihood corresponds to maximizing $p(\theta \mid x)$, which is equivalent to maximizing

$$\log p(x|\theta) + \log p(\theta)$$

 The log p(x | θ) term is the usual data log-likelihood term and the log p(θ) term, the log-prior over parameters, incorporates the preference over particular values of θ.

$$\Omega(\theta) = \sum_{l=1}^{N} \rho \log \frac{\rho}{\hat{\rho}_l} + (1 - \rho) \log \frac{1 - \rho}{1 - \hat{\rho}_l}$$

Can be re-written as

$$\Omega(\theta) = \sum_{k}^{k} \rho \log \rho - \rho \log \hat{\rho}_{l} + (1 - \rho) \log(1 - \rho) - (1 - \rho) \log(1 - \rho)$$

$$\Omega(heta) = \sum_{l=1}^k
ho log rac{
ho}{\hat{
ho}_l} + (1-
ho) log rac{1-
ho}{1-\hat{
ho}_l}$$

Can be re-written as

$$\Omega(heta) = \sum_{l=1}^k
ho log
ho -
ho log \hat{
ho}_l + (1-
ho) log (1-
ho) - (1-
ho) log (1-\hat{
ho}_l)$$

By Chain rule:

$$\frac{\partial \Omega(\theta)}{\partial W} = \frac{\partial \Omega(\theta)}{\partial \hat{\rho}} \cdot \frac{\partial \hat{\rho}}{\partial W}$$

$$rac{\partial \Omega(heta)}{\partial \hat{
ho}} = \left[rac{\partial \Omega(heta)}{\partial \hat{
ho}_1}, rac{\partial \Omega(heta)}{\partial \hat{
ho}_2}, \ldots rac{\partial \Omega(heta)}{\partial \hat{
ho}_k}
ight]^T$$

For each neuron $l \in 1 \dots k$ in hidden layer, we have

$$rac{\partial \Omega(heta)}{\partial \hat{
ho}_l} = -rac{
ho}{\hat{
ho}_l} + rac{(1-
ho)}{1-\hat{
ho}_l}$$

and $\frac{\partial \hat{\rho}_l}{\partial W} = \mathbf{x}_i (g'(W^T \mathbf{x}_i + \mathbf{b}))^T \text{(see next slide)}$

Now,

$$\hat{\mathscr{L}}(\theta) = \mathscr{L}(\theta) + \Omega(\theta)$$

- $\mathcal{L}(\theta)$ is the squared error loss or cross entropy loss and $\Omega(\theta)$ is the sparsity constraint.
- We already know how to calculate $\frac{\partial \mathcal{L}(\theta)}{\partial W}$
- Let us see how to calculate $\frac{\partial \Omega(\theta)}{\partial W}$.
- Finally,

$$\frac{\partial \hat{\mathcal{L}}(\theta)}{\partial W} = \frac{\partial \mathcal{L}(\theta)}{\partial W} + \frac{\partial \Omega(\theta)}{\partial W}$$

(and we know how to calculate both terms on R.H.S)

Derivation

$$\frac{\partial \hat{
ho}}{\partial W} = \begin{bmatrix} \frac{\partial \hat{
ho}_1}{\partial W} & \frac{\partial \hat{
ho}_2}{\partial W} \dots \frac{\partial \hat{
ho}_k}{\partial W} \end{bmatrix}$$

For each element in the above equation we can calculate $\frac{\partial \hat{\rho}_l}{\partial W}$ (which is the partial derivative of a scalar w.r.t. a matrix = matrix). For a single element of a matrix W_{jl} :-

$$\begin{split} \frac{\partial \hat{\rho}_{l}}{\partial W_{jl}} &= \frac{\partial \left[\frac{1}{m} \sum_{i=1}^{m} g\left(W_{:,l}^{T} \mathbf{x}_{i} + b_{l}\right)\right]}{\partial W_{jl}} \\ &= \frac{1}{m} \sum_{i=1}^{m} \frac{\partial \left[g\left(W_{:,l}^{T} \mathbf{x}_{i} + b_{l}\right)\right]}{\partial W_{jl}} \\ &= \frac{1}{m} \sum_{i=1}^{m} g'\left(W_{:,l}^{T} \mathbf{x}_{i} + b_{l}\right) x_{ij} \end{split}$$

So in matrix notation we can write it as:

$$\frac{\partial \hat{\rho}_l}{\partial W} = \mathbf{x}_i (g'(W^T \mathbf{x}_i + \mathbf{b}))^T$$

Representational Power, Layer Size and Depth

- Deeper autoencoders tend to generalize better and train more efficiently than shallow ones.
 - Common strategy: greedily pre-train layers and stack them
 - For contractive autoencoders, calculating Jacobian for deep networks is expensive. Good idea to do layer-bylayer.

Applications of Autoencoders

- Dimensionality Reduction: Make high-quality, low-dimension representation of data
- Information Retrieval: Locate value in database which is just autoencoded key.