Computación neuronal y evolutiva: Prácticas

Prácitca 1 (parte 2): clasificador lineal

APELLIDOS, NOMBRE:	
(mayúsculas)	

1. Enunciado

Desde el análisis de varias muestras de pizarra se infiere que el material se puede clasificar en dos categorías \mathcal{P}_1 y \mathcal{P}_2 desde la medición de tres variables (x_1, x_2, x_3) . El equipo de ingenieros y y científicos propone entrenar un perceptrón para formar la clasificación de forma automatizada.

Utilizando la regla de aprendizaje de Hebb dada por

$$\mathbf{w}(n+1) = \mathbf{w}(n) + (d^{(k)} - y)\mathbf{x}^{(k)}$$
(1.1)

donde $y = \sigma(u)$ siendo $u = \mathbf{w} \cdot \mathbf{x}$. Considerando una constante de aprendizaje $\eta = 0.01$ se pide

- 1. Ejecutar cinco series de entrenamientos del perceptrón inicializando los pesos {w} con valores aleatorios (inicializando para cada sesión de entrenamiento si necesario). Los datos de entrenamiento se pueden descargar de la página del curso
- 2. escribir los resultados del entrenamiento en una tabla donde se representen los valores de los pesos iniciales y finales para cada una de la sesiones de entrenamiento
- 3. Después de haber entrenado el perceptrón clasificar los datos de la table 1 indicando la clase para cada entrada obtenida para las 5 sesiones.
- 4. explicar por qué el número de épocas de entrenamiento varía cada vez que el perceptrón se entrena

Sample	$ x_1 $	x_2	x_3	y (T1)	y (T2)	y (T3)	y (T4)	y (T5)
1	-0.3665	0.0620	5.9891					
2	-0.7842	1.1267	5.5912					
3	0.3012	0.5611	5.8234					
4	0.7757	1.0648	8.0677					
5	0.1570	0.8028	6.3040					