Name: Kirtoria Ward

Batch Code: LISUM38

Submission Date: 11/21/2024

Submitted to: GitHub

## Introduction

The Pass/Fail Predictor project is a Flask-based machine learning application designed to predict whether a student will pass or fail based on two grades. This project involved selecting a toy dataset, training a Logistic Regression model, deploying it on Heroku, and creating an API-based and web app interface. The live app URL is <a href="https://ward-pass-fail-">https://ward-pass-fail-</a>

c7779ab7c92c.herokuapp.com/.

The purpose of this report is to document the steps taken to complete the deployment and showcase the functionality of the deployed app.

# **Steps for Deployment**

#### 1. Selecting the Toy Data

The dataset used for this project included two features, Grade1 and Grade2, and a binary label, Result. The label indicates whether a student passed (1) or failed (0). The dataset is as follows:

```
# Creating dataset with two grades

data = {
    'Grade1': [50, 55, 65, 70, 85, 45, 90, 56, 60, 76], # First grade
    'Grade2': [48, 60, 66, 75, 80, 50, 92, 54, 62, 78], # Second grade
    'Result': [0, 0, 1, 1, 1, 0, 1, 0, 1, 1] # 1 = Pass, 0 = Fail
```

The toy dataset is small and simple, making it ideal for this assignment. It represents a basic classification problem where the Grade1 and Grade2 features are used to predict the Result.

### 2. Training and Saving the Model

The Logistic Regression model was trained using the above dataset. The train model.py script:

- 1. Prepared the data for training by separating features (Grade1 and Grade2) and the target variable (Result).
- 2. Split the dataset into training and testing sets (80% for training, 20% for testing).
- 3. Trained a Logistic Regression model to predict whether a student would pass or fail.
- 4. Saved the trained model as pass fail model.pkl using the pickle library.

#### 3. Deploying the Model on Heroku

The Flask app was developed using app.py to handle predictions via an API and a web form.

The app was prepared for deployment with the following steps:

- 1. Created necessary files:
  - o requirements.txt: Listed dependencies like Flask, Scikit-learn, and Gunicorn.
  - o Procfile: Configured Gunicorn to serve the app.
  - o runtime.txt: Specified the Python version.

- o templates/index.html: Defined the web interface for inputs and predictions.
- Deployed the app on Heroku using Git. The terminal output confirmed successful deployment.

```
Windows PowerShell

Copyright (C) Microsoft Corporation. All rights reserved.

Install the latest PowerShell for new features and improvements! <a href="https://aka.ms/PSWindows">https://aka.ms/PSWindows</a>

(venv) PS C:\Users\kirto\PycharmProjects\pythonProject5> git push heroku main

Everything up-to-date
(venv) PS C:\Users\kirto\PycharmProjects\pythonProject5>
```

# 4. Testing the App

After deployment, the app was tested both locally and on Heroku:

Locally: The app was accessed via http://127.0.0.1:5000/ to confirm it worked before
deployment.



• **Live**: The app was accessed at <a href="https://ward-pass-fail-c7779ab7c92c.herokuapp.com/">https://ward-pass-fail-c7779ab7c92c.herokuapp.com/</a>.

Predictions were tested with valid and invalid inputs. Predictions are shown below:

1. A prediction where the student has a passing grade



2. A prediction where the student has a failing grade



3. Handling invalid inputs – Negative inputs



4. Handling invalid inputs – Numbers over 100



#### 5. Heroku Dashboard Overview

The Heroku Dashboard confirmed the app was successfully deployed and running. The app and status were verified.



#### **Conclusion**

The Pass/Fail Predictor project was successfully completed. The Logistic Regression model was trained, and the Flask app was deployed on Heroku. The app is live and accessible at <a href="https://ward-pass-fail-c7779ab7c92c.herokuapp.com/">https://ward-pass-fail-c7779ab7c92c.herokuapp.com/</a>. The deployment demonstrated effective use of Flask, machine learning, and cloud platforms for real-world applications.