MEPCO SCHLENK ENGINEERING COLLEGE

Department of Electronics and Communication Engineering

IBM NALAIYA THIRAN

Project Development Phase

TEAM ID : PNT2022TMID18128

TITLE : Smart Farmer- IoT Enabled Smart Farming Application

DOMAIN NAME : Internet of Things

LEADER NAME : NAMEERA NAZININ M

MEMBER NAME: DEVI PRIYA S

SIVA HARITHA S

BHUVANESHWARI N

MENTOR NAME : VARUN PRAKASH R

SPRINT 2

5,Building Project

5.1 Connecting IoT Simulator to IBM Watson IoT Platform

Open link provided in above section 4.3

Give the credentials of your device in IBM Watson IoT Platform Click on connect

My credentials given to simulator are:

api: a-xyvmsr-dqrgveab0i

Device type: abcd

Token: a-xyvmsr-dqrgveab0i

You can see the received data in graphs by creating cards in Boards tab

> You will receive the simulator data in cloud

- ➤ You can see the received data in Recent Events under your device
- ➤ Data received in this format(json)

```
{
  "d": {
  "name": "abcd",
  "temperature": 17,
  "humidity": 76,
  "Moisture ": 25
  }
}
```

5.2 Configuration of Node-Red to collect IBM cloud data

The node IBM IoT App In is added to Node-Red workflow. Then the appropriate device credentials obtained earlier are entered into the node to connect and fetch device telemetry to Node-Red.

Once it is connected Node-Red receives data from the deviceDisplay the data using debug node for verification

Connect function node and write the Java script code to get each readingseparately.

The Java script code for the function node is:

msg.payload=msg.payload.d.temperature return msg;

Finally connect Gauge nodes from dashboard to see the data in UI

```
Published Temperature = 109 C Humidity = 64 % to IBM Watson
Published Temperature = 105 C Humidity = 86 % to IBM Watson
Published Temperature = 105 C Humidity = 86 % to IBM Watson
Published Temperature = 108 C Humidity = 86 % to IBM Watson
Published Temperature = 108 C Humidity = 80 % to IBM Watson
Published Temperature = 106 C Humidity = 85 % to IBM Watson
Published Temperature = 106 C Humidity = 85 % to IBM Watson
Published Temperature = 106 C Humidity = 84 % to IBM Watson
Published Temperature = 95 C Humidity = 74 % to IBM Watson
Published Temperature = 95 C Humidity = 73 % to IBM Watson
Published Temperature = 92 C Humidity = 73 % to IBM Watson
Published Temperature = 98 C Humidity = 82 % to IBM Watson
Published Temperature = 98 C Humidity = 80 % to IBM Watson
Published Temperature = 98 C Humidity = 71 % to IBM Watson
Published Temperature = 94 C Humidity = 76 % to IBM Watson
Published Temperature = 98 C Humidity = 76 % to IBM Watson
Published Temperature = 98 C Humidity = 76 % to IBM Watson
Published Temperature = 98 C Humidity = 76 % to IBM Watson
Published Temperature = 98 C Humidity = 76 % to IBM Watson
Published Temperature = 99 C Humidity = 76 % to IBM Watson
Published Temperature = 99 C Humidity = 76 % to IBM Watson
Published Temperature = 99 C Humidity = 76 % to IBM Watson
Published Temperature = 99 C Humidity = 76 % to IBM Watson
Published Temperature = 99 C Humidity = 76 % to IBM Watson
Published Temperature = 99 C Humidity = 76 % to IBM Watson
Published Temperature = 99 C Humidity = 76 % to IBM Watson
```

Data received from the cloud in Node-Red console

Nodes connected in following manner to get each reading separately

This is the Java script code I written for the function node to get Temperature separately.

5.3 Configuration of Node-Red to collect data from OpenWeather The Node-Red also receive data from the OpenWeather API by HTTP GET request. An inject trigger is added to perform HTTP request for every certain

interval. HTTP request node is configured with URL we saved before in section 4.4 The data we receive from OpenWeather after request is in below JSON

 $format: \{"coord": \{"lon": 79.85, "lat": 14.13\}, "weather": [\{"id": 803, "main": "Clouds", "description": "brokenclouds", "icon": "04n"\}], "base": "stations", "main": \{"temp": 307.59, "feels_like": 305.5, "temp_min": 307.59, "temp_max": 307.59, "pressure": 1002, "humidity": 35, "sea_level": 1002, "grnd_level": 1000\}, "wind": \{"speed": 6.23, "deg": 170\}\}$

,"clouds":{"all":68},"dt":1589991979,"sys":{"country":"IN","sunrise":158993355 3,

"sunset":1589979720},"timezone":19800,"id":1270791,"name":"Gūdūr","cod":20 $0\}$

In order to parse the JSON string we use Java script functions and get each parameters

var temperature = msg.payload.main.temp;

temperature = temperature-273.15;

retu

rn

{payload : temperature.toFixed(2)};

In the above Java script code we take temperature parameter into a new variable and convert it from kelvin to Celsius

Then we add Gauge and text nodes to represent data visually in UI

