1 Handout-14

1.1 Plan

Discuss vector valued integrals and complex line integrals.

1.2 Recap

• Let's recall how we find anti-derivative or primitive of a function in calculus of one-variable.

Question: Let $f:[a,b] \to \mathbb{R}$. Is it possible to find $F:[a,b] \to \mathbb{R}$ such that F'(x) = f(x) for all $x \in [a,b]$?

Answer: Yes, it is possible. A sufficient condition is to have f be Riemann integrable on [a, b] such that

$$F(x) = \int_{a}^{x} f(t) dt.$$

Question: If $f: D \to \mathbb{C}$ where $D \subseteq \mathbb{C}$, can we find $F: D \to \mathbb{C}$ such that F'(z) = f(z) for all z?

Answer: Not obvious. First note that f = u + iv. Thus, if we want to mimick the real case, then we need to be able to discuss on integral of a "vector" valued function over a line segment. But a careful set up will allows us to use some of the ideas from calculus and real analysis.

• **Digression:** Vector valued integrals: Let $f:[a,b] \to \mathbb{R}^2$, $f(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$. We say that f is integrable on [a,b] if both u and v are integrable in the sense of real analysis; that is,

$$\int_a^b |x(t)| \ dt \ \ \text{and} \quad \int_a^b |y(t)| \ dt \ \ \text{exist.}$$

We define

$$\int_a^b f(t) \ dt = \begin{pmatrix} \int_a^b x(t) \ dt \\ \int_a^b y(t) \ dt \end{pmatrix}.$$

We can show

- (i) Linearity of the integral.
- (ii) Let $F:[a,b]\to\mathbb{R}^2$ such that F'(t)=f(t) for all $t\in[a,b]$. Then

$$\int_{a}^{b} f(t) dt = F(b) - F(a) \in \mathbb{R}^{2}$$

assuming all quantities exist.

• Integration of functions of the form $f:[a,b]\to\mathbb{C}$ with f(t)=x(t)+iy(t) are integrable and define

$$\int_a^b f(t) \ dt = \int_a^b x(t) \ dt + i \int_a^b y(t) \ dt.$$

Example. Let $f:[0,1]\to\mathbb{C}$ be defined by $f(t)=3t^2+2it$. Then one can easily check that

$$\int_0^1 f(t) \ dt = 1 + i.$$

Let $\mathcal{F} = \{f : [a, b] \to \mathbb{C} \text{ such that } f \text{ is integrable}\}.$

(i) Then the map $I: \mathcal{F} \to \mathbb{C}$ defined by

$$I(f) = \int_a^b f(t) dt$$
 is \mathbb{C} -linear.

1

Indeed, it follows immediately that for any $f_1, f_2 \in \mathcal{F}$, we have

$$I(f_1 + f_2) = I(f_1) + I(f_2).$$

For any $\alpha \in \mathbb{R}$ and $f \in \mathcal{F}$, we have

$$\begin{split} I(\alpha f) &= \int_a^b \left[\Re(\alpha)x(t) - \Im(\alpha)y(t) + i(\Re(\alpha)y(t) + \Im(\alpha)x(t))\right] \, dt \\ &= \Re(\alpha) \int_a^b x(t) \, \, dt - \Im(\alpha) \int_a^b y(t) \, \, dt \\ &+ i[\Re(\alpha) \int_a^b y(t) \, \, dt + \Im(\alpha) \int_a^b x(t) \, \, dt] \\ &= \alpha \int_a^b f(t) \, \, dt. \end{split}$$

- (ii) Let $F:[a,b]\to\mathbb{C}$ such that F'(t=f(t)) for all $t\in[a,b]$. Then $\int_a^b f(t)\ dt=F(b)-F(a)$.
- (iii) Let I_1, I_2 be two intervals in \mathbb{R} , $\varphi: I_1 \to I_2$ continuous differentiable, $f: I_2 \to \mathbb{C}$ integrable. Let $a, b \in I_1, a < b$. Then

$$\int_{\varphi(a)}^{\varphi(b)} f(s) \ ds = \int_{a}^{b} f(\varphi(t))\varphi'(t) \ dt.$$

(iv) Let $f, g : [a, b] \to \mathbb{C}$, f and g are continuously differentiable (i.e $\Re(f), \Im(f), \Re(g), \Im(g)$ are continuously differentiable). Then

$$\int_{a}^{b} f(t)g'(t) dt = f(b)g(b) - f(a)g(a) - \int_{a}^{b} f'(t)g(t) dt.$$

The key point here is that if we have a complex valued function defined on $I \subseteq \mathbb{R}$, then the integral enjoys properties similar to that of a real valued function defined on I.

1.3 Complex Line Integrals

We would like to define the integral of a complex-valued f function along a curve in $\mathbb C$ in the same way we defined a line integral of a function in multivariable calculus.

We will start by introducing some basic terminologies.

Definition (Curve). A curve in \mathbb{C} is a continuous map $\alpha : [a, b] \to \mathbb{C}$, where [a, b] is an interval in \mathbb{R} . We call $\alpha(a)$ the starting point and $\alpha(b)$ the end point of α .

Definition (Trace of a Curve). The set

$$\operatorname{tr}(\alpha) = \{\alpha(t) : t \in [a, b]\} \subseteq \mathbb{C}$$

is called the trace or the image of α .

Example. (i) Let $z, w \in \mathbb{C}$ and define $\alpha : [0, 1] \to \mathbb{C}$ by

$$\alpha(t) = (1 - t)z + tw, \quad \alpha(0) = z, \ \alpha(1) = w.$$

(ii) Let $\alpha:[0,1]\to\mathbb{C}$ be defined by $\alpha(t)=e^{2\pi it}$ with $\alpha(0)=1$ and $\alpha(1)=1$.

Definition (Smooth Curve). A curve α is smooth if it is continuously differentiable.

Definition (Piecewise Smooth Curve). A curve $\alpha:[a,b]\to\mathbb{C}$ is **piecewise smooth** if there is a partition $a=a_0< a_1< \cdots < a_n=b$ such that $\alpha|_{[a_{i-1},a_i]}$ is smooth for $i=1,2,\ldots,n$.

Definition (Integral of Curve in terms of its Parametrization). Let $\alpha : [a,b] \to \mathbb{C}$ be a smooth curve, $f: D \to \mathbb{C}$ continuous, $\alpha([a,b]) \subseteq D$. Then, we define

$$\int_{\alpha} f = \int_{\alpha} f(z) \, dz = \int_{a}^{b} f(\alpha(t))\alpha'(t) \, dt \tag{*}$$

where the integrand of the above equation is a complex valued function defined on [a, b]. We call (*) the line integral of f along α .

Definition (Integral of a Piecewise Smooth Curve). Assume $\alpha:[a,b]\to\mathbb{C}$ is a piecewise smooth curve with partition

$$a = a_0 < a_1 < \dots < a_n = b$$

such that $\alpha|_{[a_{i-1},a_i]}$ smooth for $i=1,2,\ldots,n$. Let $f:D\to\mathbb{C}$ be a continuous function and $\alpha([a,b])\subseteq D$. Then we define

$$\int_{\alpha} f(z) \ dz = \sum_{i=1}^{n} \int_{\alpha|_{[a_{i-1}, a_{i}]}} f(z) \ dz. \tag{**}$$

We call (**) the integral along the piecewise curve α .

Lemma. Let $\alpha:[a,b]\to\mathbb{C}$ be a piecewise smooth curve. Let $a=a_0<\cdots< a_n=b$ be a partition of [a,b] such that $\alpha|_{[a_{i-1},a_i]}$ is smooth for $i=1,2,\ldots,n$. Let $a=a_0'< a_1'<\cdots< a_m'=b$ be another partition of [a,b] such that $\alpha|_{[a_{j-1},a_j]}$ is smooth. Assume that $f:D\to\mathbb{C}$ continuous and $\alpha([a,b])\subseteq\mathbb{C}$. Then

$$\sum_{j=1}^m \int_{\alpha|_{[a'_{j-1},a'_j]}} f(z) \ dz = \sum_{i=1}^n \int_{\alpha|_{[a_{i-1},a_i]}} f(z) \ dz.$$

Proof. Our goal is to show that for any smooth curve $\gamma : [c,d] \to \mathbb{C}$ and c < f < d, we have

$$\int_{\gamma} f(z) \ dz = \int_{\gamma|_{[c,f]}} f(z) \ dz + \int_{\gamma|_{[f,d]}} f(z) \ dz. \tag{\dagger}$$

Note that (*) follows immediately from the properties of integrals of complex valued functions defined on an interval. Indeed, without loss of generality, assume that m = n + 1 and

$$a_0 = a'_0 < a'_1 < a_1 = a'_2 < a_2 = a'_3 < \dots < a_{n-1} = a'_n < a_n = a'_{n+1}.$$

By (*), we have

$$\int_{\alpha|_{[a_0,a_1]}} f = \int_{\alpha|_{[a_0,a_1']}} f + \int_{\alpha|_{[a_1',a_2']}} f.$$

Thus,

$$\sum_{i=1}^{n} \int_{\alpha|_{[a_{i-1},a_i]}} f = \sum_{j=1}^{n} \int_{\alpha|_{[a'_{j-1},a'_j]}} f.$$

The lemma above shows us that (*) is well-defined.

Definition (Arc Length). Let $\alpha:[a,b]\to\mathbb{C}$ be a smooth curve. Then we define

$$\ell(\alpha) = \int_a^b |\alpha'(t)| \ dt.$$

If α is piecewise smooth then we define

 $\ell(\alpha) = \text{sum of arc lengths of smooth arcs of } \alpha.$