

Metode Pembuktian: Pengenalan

Pembuktian Matematis

 Pembuktian menghasilkan sebuah argumentasi valid (disebut bukti/proof) yang menunjukkan kebenaran dari sebuah pernyataan.

- Dalam matematika, ilmu komputer, dan disiplin ilmu terkait, pembuktian biasanya dilakukan secara "informal" (vs. "formal" seperti yang dilakukan pada inferensi sebelumnya):
 - Menerapkan lebih dari satu aturan inferensi dalam satu langkah (beberapa aturan inferensi dapat diabaikan/diterapkan secara implisit)
- (+) Lebih mudah dipahami dan untuk dijelaskan ke pembaca
- (-) Tapi ... juga lebih rentan terhadap kesalahan

Aplikasi Pembuktian Matematis

- Verifikasi bahwa algoritma/program yang dibuat benar
- Verifikasi bahwa sistem operasi aman
- Pengembangan sistem cerdas berbasis pengetahuan

Teorema

- Teorema adalah pernyataan yang dapat ditunjukkan kebenarannya melalui pembuktian menggunakan:
 - definisi
 - teorema lainnya (yang sudah dibuktikan)
 - aksioma (pernyataan yang tidak perlu dibuktikan)
 - aturan inferensi
- Contoh: "Unique Factorization Theorem"

Every integer greater than 1 either is a prime number itself or can be represented as the product of prime numbers and that, moreover, this representation is unique, up to (except for) the order of the factors.

Lemma

- Lemma adalah 'teorema pembantu' yang dibuktikan dan digunakan untuk membuktikan teorema.
 - Bukan hal utama yang ingin dibuktikan, tapi hanya memudahkan proses pembuktian teorema yang menjadi target.

Contoh:

- Untuk membuktikan "Unique Factorization Theorem" sebelumnya, dibuktikan lemma yang dikenal dengan nama "Euclid's Lemma":
 - If a prime p divides the product ab of two integers a and b, then p must divide at least one of those integers a and b.
- Euclid's lemma (yang sudah dibuktikan) digunakan dalam dalam proses pembuktian "Unique Factorization Theorem" (memudahkan proses pembuktian teorema ini).

Corollary

 Corollary adalah pernyataan yang dapat diturunkan secara langsung atau merupakan bentuk khusus dari teorema.

- Contoh:
 - Teorema:

"Jika perkalian dua bilangan bulat n dan m merupakan bilangan genap, maka n atau m adalah bilangan genap"

– Corrolary:

"Diberikan bilangan bulat n. Jika n² merupakan bilangan genap, maka n adalah bilangan genap"

Corollary di atas diperoleh dengan mengambil nilai n=m.

Conjecture

Conjecture adalah pernyataan yang dianggap benar namun masih perludibuktikan.

- Jika bukti dari conjecture ditemukan, maka menjadi teorema.
 - Ada kemungkinan conjecture terbukti salah.
- Contoh: Fermat's Last Theorem (diajukan tahun 1637)
 "No three positive integers a, b, and c satisfy the equation aⁿ + bⁿ = cⁿ for any integer value of n greater than 2"
- Baru terbukti pada tahun 1994 oleh Sir Andrew John Wiles!

Apa yang sudah dipelajari?

- Pembuktian matematis
- Aplikasi pembuktian matematis
- Terminologi dalam pembuktian
 - Lemma, Teorema, Corollary, Conjecture

Topik selanjutnya: Trivial, Vacuous, Direct Proof

Metode Pembuktian: Trivial Proof, Vacuous Proof, Direct Proof

Bentuk Teorema

- Teorema umumnya menyatakan suatu sifat yang dipenuhi oleh setiap elemen dari suatu domain: bilangan bulat, bilangan riil, atau struktur diskret lainnya.
- Kuantor universal (yang diperlukan pada teorema) biasanya implisit.

Contoh:

"Jika x > y, di mana x dan y bilangan riil positif, maka $x^2 > y^2$ " pada dasarnya yang dimaksud adalah:

"Untuk setiap bilangan riil positif x dan y, jika x > y, maka $x^2 > y^2$."

Membuktikan Teorema

Teorema umumnya dapat dinyatakan dalam bentuk:

$$\forall x (P(x) \to Q(x))$$

 Untuk membuktikan, kita tunjukkan untuk sembarang elemen c dari domain:

$$P(c) \to Q(c)$$

- Artinya, kita membuktikan pernyaataan berkondisi (formula berbentuk implikasi):

$$p \rightarrow q$$

• Dengan aturan inferensi "universal generalization", dapat disimpulkan bahwa teorema yang diberikan $\forall x(P(x) \to Q(x))$ berlaku.

Membuktikan Pernyataan Berkondisi: $p \rightarrow q$ (Trivial Proof dan Vacuous Proof)

- Trivial Proof: Jika diketahui q benar, maka
 p → q bernilai benar.
 - "Jika hari ini hujan maka 1=1."
- Vacuous Proof: Jika diketahui p salah, maka
 p → q bernilai benar.
 "Jika saya miskin dan kaya maka 2 + 2 = 4."
- Trivial and vacuous proofs sering bermanfaat pada pembuktian induksi matematis yang akan kita pelajari.

Membuktikan Pernyataan Berkondisi: $p \rightarrow q$ (Direct Proof)

Buktikan:

"Jika *n* bilangan bulat ganjil, maka *n*² juga adalah bilangan bulat ganjil."

• Direct Proof: Asumsikan p bernilai benar. Gunakan definisi, aksioma, aturan inferensi, dan ekivalensi untuk menunjukkan q benar.

Contoh 1: Direct Proof

Buktikan:

"Jika *n* bilangan bulat ganjil, maka *n*² juga adalah bilangan bulat ganjil."

Untuk membuktikan, kita manfaatkan definisi bilangan bulat ganjil & genap:

Bilangan bulat n genap jika terdapat bilangan bulat k sedemikian hingga n=2k, sedangkan n adalah bilangan ganjil jika terdapat bilangan bulat k, sedemikian hingga

n = 2k + 1. Setiap bilangan bulat adalah bilangan genap atau ganjil, namun tidak kedua-duanya.

Bukti:

Asumsikan *n* bilangan bulat ganjil.

Berdasarkan definisi bilangan bulat ganjil, n = 2k + 1 untuk suatu bilangan bulat k.

Mengambil kuadrat pada kedua sisi dari persamaan tersebut diperoleh:

$$n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1 = 2r + 1$$

Karena n^2 bisa dinyatakan sebagai $n^2 = 2r + 1$ di mana $r = 2k^2 + 2k$, dan r adalah bilangan bulat, maka n^2 adalah bilangan bulat ganjil.

Terbukti bahwa, jika n bilangan bulat ganjil, maka n^2 juga adalah bilangan bulat ganjil.

Contoh 2: Direct Proof

Buktikan bahwa penjumlahan dua bilangan rasional adalah juga bilangan rasional.

Untuk membuktikan, kita manfaatkan definisi bilangan rasional:

Bilangan riil r adalah bilangan rasional jika terdapat bilangan bulat p dan q di mana $q \neq 0$, sedemikian hingga r = p/q.

Pernyataan: "Jika r dan s adalah bilangan rasional, maka r+s juga bilangan rasional"

Bukti:

Asumsikan *r* dan *s* bilangan rasional.

Berdasarkan definisi bilangan rasional, terdapat bilangan bulat *p, q* dan juga *t, u*, sehingga:

$$r = p/q, \quad s = t/u, \quad u \neq 0, \quad q \neq 0$$

$$r + s = \frac{p}{q} + \frac{t}{u} = \frac{pu + qt}{qu} = \frac{v}{w}$$

Karena r+s bisa dinyatakan dalam $r+s=\frac{v}{w}$ di mana v=pu+qt dan $w=qu\neq 0$ maka r+s adalah bilangan rasional.

Terbukti bahwa, penjumlahan dua bilangan rasional adalah juga bilangan rasional.

Apa yang sudah dipelajari?

Pembuktian Pernyataan Berkondisi $p \rightarrow q$

- Trivial Proof
- Vacuous Proof
- Direct Proof

Topik selanjutnya: Indirect Proof