Numerical Integration:

The area bounded by the curive f(x) and g(x) and g(x) axis between limit a and g(x) denoted

by
$$I = \int_a^b f(x) dx - - \cdot (1)$$

divide the interval (a,b)into n equal $\frac{1}{10}$ pant with h interval. where, $h = \frac{b-a}{n}$

$$a = x_0$$

$$x_1 = x_0 + h$$

$$x_2 = x_1 + h$$

$$x_1 = x_1 + h$$

$$x_2 = x_1 + h$$

- 1 Trapezoidal Rule
- 2 simpson's 1/3 nule
- 3 Simpson's 3/8 Hule

$$\int_{a}^{b} f(x) dx = \frac{h}{2} \left[y_{0} + 2 \left(y_{1} + y_{2} + \cdots y_{n-1} \right) + y_{n} \right]$$

En Simpson's
$$\frac{1}{3}$$
 nule: $(y_1 + y_3 + ... + y_{n-1})$
 $\int_0^b f(x) dx = \frac{h}{3} \left[y_0 + 4 \left(y_1 + y_3 + ... + y_{n-2} \right) + y_n \right]$
 $+ 2 \left(y_2 + y_4 + ... + y_{n-2} \right)$

Figure 3/8 nule:
$$(n-divisible by)$$

Simpson's 3/8 nule: $(n-divisible by)$

$$\int_{a}^{b} f(x) dx = \frac{3h}{8} \left[y_0 + 3 \left(y_1 + y_2 + y_4 + y_5 + \dots y_{n-2} + y_{n-1} \right) + y_n \right]$$

$$+ 2 \left(y_3 + y_6 + \dots y_{n-3} \right) + y_n$$

74=(4)

x = (6)

Sol":	$h = \frac{6 - 6}{6}$	$0 = 1 ; 7 = \frac{1}{1+x^2}$
	γ	$y = \frac{1}{1+x^{2}}$
	$\chi_o = \bigcirc$	Y ₀ = 1
xoth E	$ \begin{aligned} \chi_1 &= 0 + 1 \\ $	$Y_1 = \frac{1}{1+1} = 0.5$
1	n2=1+1=2	$y_2 = \frac{1}{1+4} = 0.2$
	n3 = 3	$7_3 = \frac{1}{1+9} = 0.1$

a) Trapezoidal Rule:

$$\int_{0}^{6} y dx = \frac{h}{2} \left[y_{0} + 2 \left(y_{1} + y_{2} + y_{3} + y_{4} + y_{5} \right) + y_{6} \right]$$

$$= \frac{1}{2} \left[1 + 2 \left(0.5 + 0.2 + 0.1 + 0.058 + 0.027 \right) + 0.03846 \right) + 0.027 027 \right]$$

 $\gamma_4 = \frac{1}{1+16} = 0.058$

Yo = (0.0270270)

45 = (0.03846)

1.40997-35 $\int_{0}^{6} \frac{f(\pi)}{y} y dx = \frac{h}{3} \left[\frac{y_{0} + 4(y_{1} + y_{3} + y_{5}) + 2(y_{2} + y_{4})}{3(y_{1} + y_{3} + y_{5}) + 2(y_{2} + y_{4})} \right]$ $=\frac{1}{3}\left[1+4\left(0.5+0.1+0.03846\right)+2\left(0.2+0.058\right)+0.027027\right]$ plan=1.365622 graphy = 2000pp 1 (1) $\int_{0}^{6} y dx = \frac{3h}{8} \left[\gamma_{0} + 3 \left(\gamma_{1} + \gamma_{2} + \gamma_{4} + \gamma_{5} \right) + 2 \left(\gamma_{3} \right) + \gamma_{6} \right]$ c) simpson's 3/8 nule: $= \frac{3 \times 1}{8} \left[1 + 3 \left(0.5 + 0.2 + 0.058 + 0.03846 \right) + 2 \left(0.1 \right) \right]$ = 1.356153 The housest i - of 9/00x - (888) but

(Bosson) for Elforgens sat 991

method of estimating 4 Interpolation: unknown values from given set of obsenration.

- -3 formula's:
- 1 Newton's Formand Formula
- @ Newton's Backwand formula
- Lagrange's intempolation formula

a	χ	f(x)
nten	1971	1000
10	1981	1025
P 9 P	(1991	10.80
	2001	1120

<u>s</u> 7	f(x)
2 - 25 25	670
5-(80	685
87	750
90	8-00
99	812

Forward and Backword used

Lagnange's formula used

Fird (1983) - you've to see the progress of forward 1995 - back