Séries de Fonctions

1. Définitions et exemples.

- Dans toute ce paragraphe, X et Y sont des parties de \mathbb{C} , $X \subset Y$.
- Pour tout entier n, f_n est une fonction définie sur Y à valeurs dans $C, f_n : Y \longrightarrow C$.
- On s'intéresse à la limite lorsque $n \to \infty$ de la suite de fonctions $(S_n)_{n>0}$:

$$\forall x \in Y, \qquad S_n(x) = f_0(x) + f_1(x) + \ldots + f_n(x) = \sum_{k=0}^n f_k(x)$$

1.1. Convergence simple.

Définition. La suite de fonctions $(S_n)_{n\geq 0}$ définies sur Y par

$$\forall x \in Y, \quad \forall n \in \mathbf{N}, \qquad S_n(x) = f_0(x) + f_1(x) + \dots + f_n(x) = \sum_{k=0}^n f_k(x)$$

est appelée la série de fonctions de terme général $(f_n)_{n\geq 0}$.

Pour chaque entier n, S_n est la n^e somme partielle de la série de fonctions.

• On désigne la suite de fonctions $(S_n)_{n\geq 0}$ par $\sum f_n$.

Définition. On dit que la série de fonctions $\sum f_n$ converge simplement sur $X \subset Y$ si, pour tout $x \in X$, la série numérique $\sum f_n(x)$ est convergente.

Dans ce cas, on désigne par S(x), la valeur de la limite :

$$\forall x \in X, \qquad S(x) = \lim_{n \to +\infty} S_n(x).$$

• Lorsqu'on étudie la convergence simple de $\sum f_n$, c'est à dire lorsqu'on étudie la convergence de la série $\sum f_n(x)$ à x fixé tous les résultats sur les séries numériques sont applicables.

Exemple. 1. $Y = \mathbb{C}$, $f_n(x) = x^n$. La série de t.g. $\sum x^n$ est absolument convergente si |x| < 1, grossièrement divergente si $|x| \ge 1$. $\sum f_n$ converge simplement sur B(0,1) et

$$\forall |x| < 1,$$
 $S(x) = \lim_{n \to \infty} \sum_{k=0}^{n} x^k = \lim_{n \to \infty} \frac{1 - x^{n+1}}{1 - x} = \frac{1}{1 - x}.$

- 2. $Y = \mathbf{C}$, $f_n(x) = x^n/n!$. D'après la règle de d'Alembert, pour tout $x \in \mathbf{C}$, $\sum f_n(x)$ converge absolument. $\sum f_n$ converge simplement sur \mathbf{C} .
- 3. $Y = \mathbf{R}$, $f_n(x) = (-1)^n/\sqrt{x^2 + n^2}$. D'après le critère des séries alternées, pour tout $x \in \mathbf{R}$, $\sum f_n(x)$ est convergente. $\sum f_n$ converge simplement sur \mathbf{R} .
- Si $\sum f_n$ converge simplement sur X, alors $\lim_{n\to\infty} f_n(x) = 0$, pour tout $x \in X$.
- La réciproque est fausse; prendre f_n constante égale à 1/n.

1.2. Convergence uniforme.

Définition. La série de fonctions $\sum f_n$ converge uniformément vers S sur X si,

$$\lim_{n \to +\infty} \sup_{x \in X} |S_n(x) - S(x)| = 0,$$

ce qui signifie qu'il existe une suite $(\alpha_n)_{n>0}$ telle que

- 1. $\lim_{n\to\infty} \alpha_n = 0$;
- 2. pour tout $n \ge 0$, pour tout $x \in X$, $|S_n(x) S(x)| \le \alpha_n$.
- La convergence uniforme de la série $\sum f_n$ entraı̂ne sa convergence simple
- Si $\sum f_n$ converge uniformément sur X, $(f_n)_{n\geq 0}$ converge uniformément sur X vers 0.
 - * Réciproque fausse

Exemple. La série de fonctions de terme général $f_n(x) = (-1)^n / \sqrt{n^2 + x^2}$ est uniformément convergente sur \mathbf{R} .

- 1. Nous avons déjà dit que $\sum f_n$ était simplement convergente sur **R**.
- 2. D'après le théorème sur les séries alternées, pour tout $n \ge 1$,

$$\forall x \in \mathbf{R}, \qquad |S_n(x) - S(x)| \le |f_{n+1}(x)| = \frac{1}{\sqrt{(n+1)^2 + x^2}} \le \frac{1}{n+1}.$$

- En pratique, l'étude de la convergence uniforme de $\sum f_n$ n'est pas toujours facile.
 - * On introduit une autre notion de convergence de la série $\sum f_n$

2011/2012 : fin du cours 7 _

1.3. Convergence normale.

Définition. La série de fonctions $\sum f_n$ est normalement convergente sur X si la série numérique de terme général $\sup_{x\in X} |f_n(x)|$ est convergente.

- Ceci signifie qu'il existe une suite $(u_n)_{n\geq 0}$ à termes positifs telle que :
 - 1. pour tout $n \ge 0$ et tout $x \in X$, $|f_n(x)| \le u_n$;
 - 2. $\sum u_n$ est convergente.

Exemple. La série $\sum \frac{1}{n^{\alpha} + x^4}$ est normalement convergente sur **R** dès que $\alpha > 1$.

Proposition. Si la série de fonctions $\sum f_n$ converge normalement sur X alors $\sum f_n$ converge uniformément sur X.

- Attention la réciproque est fausse.
 - * $f_n(x) = (-1)^n / \sqrt{n^2 + x^2}$; $\sup_{x \in \mathbf{R}} |f_n(x)| = 1/n$.

Exemple. La série de t.g. $f_n(x) = \sin(x/n)/n$ est normalement convergente sur [-a, a].

Plan d'étude d'une série de fonctions.

- On commence par étudier la convergence simple de $\sum f_n$
 - \star On détermine à cette étape l'ensemble X
- On étudie la convergence normale de $\sum f_n$ sur X ou sur une partie de X
- Si les résultats de convergence normale ne sont pas suffisants, on étudie la convergence uniforme de $\sum f_n$ sur X ou sur une partie de X

2. Traduction des résultats sur les suites de fonctions.

• Les théorèmes d'interversion de symboles se traduisent aisément dans le cadre des séries de fonctions

Théorème (Interversion des limites). Soient $\sum f_n$ une série de fonctions uniformément convergente sur X et a un point adhérent à X.

Si, pour tout $n \geq 0$, $\lim_{x \to a} f_n(x) = u_n$, alors la série $\sum u_n$ est convergente et

$$\lim_{x \to a} \sum_{n > 0} f_n(x) = \sum_{n > 0} \lim_{x \to a} f_n(x) = \sum_{n > 0} u_n.$$

Corollaire. Supposons que la série de fonctions $\sum f_n$ converge uniformément sur X et notons $S = \sum_{n\geq 0} f_n$.

- 1. Si toutes les fonctions f_n sont continues au point $x_0 \in X$, S est continue en x_0 ;
- 2. Si toutes les fonctions f_n sont continues sur X, S est continue sur X

Exemple. • $f_n(x) = \frac{1}{n^2 + x^4}$; $\sum f_n$ converge normalement et donc uniformément sur **R**.

- * Pour tout $n \ge 1$, $\lim_{x \to +\infty} f_n(x) = 0$.
- $\star \lim_{x \to +\infty} \sum_{n \ge 0} f_n(x) = \sum_{n > 0} 0 = 0$
- $f_n(x) = \frac{(-1)^n}{n(1+nx)}$, $x \ge 0$; $\sum f_n$ converge normalement sur $[a, +\infty[$ pour tout a > 0 (et $\sum f_n$ converge simplement sur $[0, +\infty[$). Comme toutes les f_n sont continues sur $[a, +\infty[$, $\sum_{n\ge 1} f_n$ est continue sur $[a, +\infty[$; ceci étant vrai pour tout a > 0, $\sum_{n\ge 1} f_n$ est convergente sur $[0, +\infty[$.

Théorème. Si la série de fonctions $\sum f_n$ converge uniformément sur [a,b] (f_n continues par morceaux), alors

$$\int_{a}^{b} \sum_{n>0} f_n(t) dt = \sum_{n>0} \int_{a}^{b} f_n(t) dt.$$

Remarque. Plus généralement, si la série de fonctions $\sum f_n$ converge uniformément (resp. normalement) sur [a,b] (f_n continues par morceaux), alors la série de fonctions de terme général $x \mapsto \int_a^x f_n(t) dt$ est uniformément (resp. normalement) convergente sur [a,b] et pour tout $x \in [a,b]$,

$$\int_{a}^{x} \sum_{n>0} f_n(t) dt = \sum_{n>0} \int_{a}^{x} f_n(t) dt.$$

Théorème. Soient I un intervalle de \mathbf{R} non réduit à un point et $\sum f_n$ une série de fonctions dérivables (resp. \mathcal{C}^1) qui converge simplement sur I. Si la série de fonctions $\sum f'_n$ converge uniformément sur I, alors $\sum_{n\geq 0} f_n$ est dérivable (resp. \mathcal{C}^1) sur I et

$$\forall x \in I, \qquad \left(\sum_{n\geq 0} f_n(x)\right)' = \sum_{n\geq 0} f'_n(x).$$

3. Transformation d'Abel.

• Le critère des séries alternées et la transformation d'Abel s'appliquent également pour les séries de fonctions

Proposition (Séries alternées de fonctions). Soit $(f_n)_{n\geq 0}$ une suite de fonctions réelles définies X. On suppose que, pour tout $n\geq 0$ et pour tout $x\in X$,

- 1. $f_n(x) \times f_{n+1}(x) \le 0$;
- 2. $|f_{n+1}(x)| \le |f_n(x)|$;
- 3. $(f_n)_{n\geq 0}$ converge uniformément sur X vers 0.

Alors $\sum f_n$ converge uniformément sur X; plus précisément, pour tout $x \in X$ et tout $n \in \mathbb{N}$,

- 1. $|S(x) S_n(x)| \le |f_{n+1}(x)|$,
- 2. $S(x) S_n(x)$ est du signe de $f_{n+1}(x)$.

Proposition (Transformation d'Abel). Pour $n \ge 0$ et $x \in X$, $f_n(x) = g_n(x)h_n(x)$ où g_n est une fonction réelle. On suppose qu'il existe K tel que, pour tout $n \ge 0$, et tout $x \in X$,

- 1. $(g_n)_{n>0}$ converge uniformément vers 0,
- 2. $g_{n+1}(x) \le g_n(x)$,
- $3. |\sum_{k=0}^{n} h_k(x)| \le K.$

Alors $\sum f_n$ converge uniformément sur X

Corollaire. Soit $(a_n)_{n\geq 0}$ une suite réelle décroissante qui converge vers 0.

Les séries $\sum a_n \cos(nx)$ et $\sum a_n \sin(nx)$ converge uniformément sur $[\alpha, 2\pi - \alpha]$, pour tout $0 < \alpha < \pi$.

2011/2012 : fin du cours 8