初等数论自测题四 参考答案与评分标准

一、名词解释				
1. $g(a,b) = ab - a - b$.		••••••	••••••	3分
2. Let m be a positive integer(In	1 fact, $m = 2$	$2,4,p^{l},2p^{l}, p$	is an odd pri	me, l is a
positive integer.), a is an integer of	coprime to m	, if $o_m(a) = \phi(n)$	$(o_m(a))$ is the	ne order of
$a \mod m$, ϕ is the Euler fu	nction), then	_		
		••••••	••••••	3分
3. $\phi(n) = (p_1^{a_1} - p_1^{a_1-1})(p_2^{a_2} - p_2^{a_2-1})$	$\cdots (p_l^{a_l} - p_l^{a_l-1})$	••••••	••••••	4分
二、应用题 4.				
Sol:				
Assume each farmer have x pour integral solution of the following sy		-		m positive
		-		
$\begin{cases} x \equiv 1 \end{cases}$	68(mod 110) 38(mod 120) 8(mod 135)			
$x \equiv x$	8(<i>mod</i> 135)			
				3 分
Since 110, 120, 135 are not pairwequations, we get·····参考课	ise coprime, r	earrange the syst		
······将以上同余方程组转换 余方程组的过程 5 分、答案 2 分			呈组4分、求	解新的同
Each farmer have 5678 pounds of ri	ce at least.	•••••	••••••	•••1分
5. Sol:	安日 " TY "			

参考课上例题与出求解过程,答案是"TV" …………………前三个过程每个4分、最后的转码过程1分、答案2分(需作答)

三、计算题

6.

Sol:

参考课上例题写出求解过程

 $x \equiv 108 \pmod{2022}$, $x \equiv 1119 \pmod{2022}$.

······解方程的过程 6 分、答案 4 分 (每个解 2 分)

7.

Sol:

Let $x = 2022^{2021^{2020}} \pmod{666}$, by Chinese Remainder Theorem, x is the minimum nonnegative integral solution of the following system of congruence equations.

$$\begin{cases} x \equiv 2022^{2021^{2020}} \pmod{2} \\ x \equiv 2022^{2021^{2020}} \pmod{9} \\ x \equiv 2022^{2021^{2020}} \pmod{37} \end{cases}$$

······2分

Use properties of congruence, we have:

$$\begin{cases} x \equiv 0^{2021^{2020}} \equiv 0 \pmod{2} \\ x \equiv 6^{2021^{2020}} \equiv 0 \pmod{9} \\ x \equiv 24^{2021^{2020}} \pmod{37} \end{cases}$$

Since 24 is coprime to 37, by Fermat's Little Theorem, $24^{36} \equiv 1 \pmod{37}$. We need to calculate $2021^{2020} \pmod{36}$.

Note that $2021^{2020} \equiv 1^{2020} \equiv 1 \pmod{4}$,

 $2021^{2020} \equiv 5^{2020} (mod 9)$, Since 5 is coprime to 9 and $\phi(9) = 6$, by Euler's Theorem,

 $5^6 \equiv 1 \pmod{9}$, so $2021^{2020} \equiv 5^{2020} \equiv 4 \pmod{9}$.

Thus $2021^{2020} \equiv 13 \pmod{36}$.

Hence $24^{2021^{2020}} \equiv 24^{13} \equiv 18 \pmod{37}$ (Here we use the repeated squaring Method)

The system of congruence equations converts to

$$\begin{cases} x \equiv 0^{2021^{2020}} \equiv 0 \pmod{2} \\ x \equiv 6^{2021^{2020}} \equiv 0 \pmod{9} \\ x \equiv 18 \pmod{37} \end{cases}$$

·····整个转换过程 8 分

Use Chinese Remainder Theorem, we find $x = 18 \pmod{666}$.

四、证明题

8.

Proof:

So $\tau(n)$ is odd if and only if for all $i(1 \le i \le l)$, $a_i + 1$ is odd, which equivalents to for all $i(1 \le i \le l)$, a_i is even, which by part a), is equivalent to n is a square. $\cdots \cdot \cdot \cdot \cdot 4$

9.

Proof:

a) Let x be an integer,

if x = 2k is even(where k is an integer), then

if x = 2k + 1 is odd(where k is an integer), then

Thus
$$n^2 + (n+1)^2 + (n+2)^2 + (n+3)^2 \equiv 0^2 + 1^2 + 2^2 + 3^2 \equiv 2 \pmod{4}$$
. $3 \implies 3$

But by part a), the remainder of every square divided by 4 is either 0 or 1.

1	Λ	
1	U	١.

Proof:

Use induction on k.

If k = 2, then $Q_k a - P_k b = q_2 a - (1 + q_1 q_2) b = -r_2 = (-1)^{2+1} r_k$, the statement also holds.

------3分

(注意归纳初始要验证两个情形)

When k = l + 1, we have:

$$(-1)^{l+2} r_{l+1} = (-1)^l (r_{l-1} - q_{l+1} r_l) \qquad \cdots \qquad 2 \ \text{f}$$

By induction hypothesis,

By induction, we get the consequence.