Введение в анализ данных: Анализ ссылок

Юля Киселёва juliakiseleva@yandex-team.ru Школа анализа данных

План на сегодня

- Структура Интернета
- Page Rank

Насколько большой Интернет?

- Насколько большой интернет?
 - Технически, интернет бесконечный
 - Большая часть это дубликаты (30-40%)
 - Соответственно наилучшая оценка сделана существующими поисковыми компаниями:
 - Google = 8 млрд страниц, Yahoo = 20 млрд страниц
- Какова структура интернета? Как он организован?

Интернет – это граф

- Какова структура Интернета?
- Как он организован?

Я преподаю класс по Анализ Данных

> У курса есть страница

> > На странице есть ссылка на статью Microsoft

> > > Microsoft home page

Интернет – это граф

- Какова структура Интернета?
- Как он организован?

Microsoft home page

Направленный граф

- Два типа направленных графов:
 - Направленный непериодический граф (ННГ):
 - не имеет цикла: если из *u* можно достигнуть *v*, тогда из *v* нельзя достичь *u*
 - Строго связанный граф:
 - Из любой вершины можно достичь любой вершины
- Любой направленный граф может быть описан с помощью этих двух типов графа

Строго связанный компонент

- Строго связанный компонент (ССК) это набор узлов S:
 - из каждого узла S можно достигнуть другого узла
 - Не существует больше набора, содержащего S, которое обладает таким же свойством

- Любой направленный граф – это ННГ или ССК:
 - Каждый ССК это суперузел

Бабочка структуры Интернета

250 million webpages, 1.5 billion links [Altavista]

Степени значимости в реальных сетях

- Распределение Out-/In- уровней значимости:
 - $-\ p_k$ доля узлов с k out-/in связей

Степени значимости в реальных сетях (2)

Ранжирование узлов в графе

- Веб-страницы не все одинаково «важны»
 - Например:

www.joe-schmoe.com vs. www.stanford.edu

• Так как существует большое разнообразие в

связях Интернет-графа мы можем ранжировать страницы, используя структуру связей

План на сегодня

- Структура Интернета
- Page Rank

Алгоритмы анализа ссылок

- Существуют следующие методы для анализа ссылок для подсчета важности узлов в графе:
 - PageRank
 - Topic-Specific page Rank

Рассмотрим ссылки как голоса

- Предположение: Страница более важна, если имеет много ссылок:
 - Входящие ссылки? Исходящие ссылки?
- Рассмотрим входящие связи как голоса:
 - www.stanford.edu имеет 23 400 входящих ссылок
 - www.joe-schmoe.com имеет 1 входящую ссылок
- Все ли входящие ссылки равнозначны?

Простое рекурсивное определение значимости

- Каждый голос ссылки пропорционален важности исходной страницы
- Если страница Р с важностью х иммет п выходных ссылок, каждая ссылка получает х/п голосов
- Важность самой страницы P это сумма всех голосов

Простая модель

$$y = y/2 + a/2$$

 $a = y/2 + m$
 $m = a/2$

Решение полученного уравнения

- 3 уравнения, 3 неизвестных, нет констант
 - Нет единственного решения
- Вводим дополнительные константы
 - -y + a + m = 1
 - -y=2/5, a=2/5, m=1/5
- Метод Гаусса работает хорошо для небольших примеров, но нам нужен лучше метод для большого Интернет-графа

Марковский процесс

- *Марковская цепь* это дискретный вероятностный процесс
- Марковский процесс состоит из N состояний => каждый сайт это состояние
- Марковский процесс характеризуется матрицей вероятностей перехода Р:

$$\forall i, j, P_{ij} \in [0,1]$$

$$\forall i, \sum_{j=1}^{i} P_{ij} = 1$$

• Вероятностная (стохастическая) матрица

Марковский процесс. Пример

	А	В	С
А	0	0.5	0.5
В	1	0	0
С	1	0	0

Матричная формулировка

- В матрице **М** каждая строка и каждый столбец описывают одну веб-страницу
- Предположим у страницы ј n выходных ссылок:
 - если j -> i => Mij = 1/n
 - иначе *Mij* = 0
- М это вероятностная матрица

Матричная формулировка (2)

- Предположим *r* это вектор, в котором каждая координата определяет страницу:
 - Координат rj это оценка важности страницы i (pageRank)
 - Назовем этот вектор вектором ранжирования
 - -|r|=1

Пример

• Предположим страница *j* связана с 3 страницами, включая *i*

Устойчивое состояние

Определение: Марковская цепь называется *эргодической*, если ј положительное число *То*, при котором все пары состояний *i, j* в Марковской цепи верно: если процесс начинается в состоянии *i* в момент времени 0, тогда для всех *t > To* вероятность быть в состоянии *j* в момент времени *T* больше 0.

Устойчивое состояние (2)

Теорема: Для любой эргодической Марковской цепи $\frac{1}{2}$ уникальное устойчивое состояние, определяемое вектором $\pi(i)$, который является левым собственный вектором матрицы P:

$$\lim_{t\to\infty}\frac{\eta(i,t)}{t}=\pi(i)$$

где $\,\eta(i,t)\,$ - это число визитов в состояние i за t шагов

Напоминание: левый собственный вектор матрицы: $\overset{\longrightarrow}{y}^T C = \lambda \overset{\longrightarrow}{y}^T$

Устойчивое состояние(3)

По теореме:

•
$$\overrightarrow{\pi}P = \lambda \overrightarrow{\pi}$$
 собственное число = 1 => $\overrightarrow{\pi}P = 1\overrightarrow{\pi}$

- Power Iteration method
-] N веб-страниц
- Инициализируем $\mathbf{r}^0 = [1/N,....,1/N]^T$
- Итерируем $r_{k+1} = r_k P^{k+1}$
- Останавливаемся $|r_{k+1} r_k| < \varepsilon$

Существующие проблемы

- Некоторые страницы являются «dead-end» (нет исходящих ссылок)
- «Ловушка для паука» (все ссылки внутри одной группы)

27

Решение: teleports

- Google решение > teleports
- В любой момент времени, обходчик имеет две возможности:
 - с вероятностью β , пойти по случайной ссылки
 - с вероятностью 1- β , перейти на случайную страницу
 - Обычно β принимает значения 0.9 или 0.8

Работа с dead-ends

- Предобработка графа с целью удаления dead-end
- Возможно необходимо несколько циклов
- Вычисление page rank на основе уменьшенного графа

Формализация матрицы

Пусть у нас N веб-страниц

- Рассмотрим страницу *j* с набором выходящих страниц *O(j)*
- M(i,j) = 1/|O(j)|, если i->j. Иначе M(i,j)=0
- Teleport эквивалентен:
 - Добавлению ссылки между j на любую другую страницу с вероятностью (1- β)/N
 - Уменьшению 1/|Oj| до $\beta/|Oj|$

Как посчитать pageRank?

- Строим матрицу A N x N :
 - Aij = β Mij + $(1 \beta)/N$
- Контролируем, что матрица А вероятностная (стохастическая)
- Page Rank вектор удовлетворяет:
 - -r=A*r

Резюме

- Узнали немного про структуру интернета
- Узнали/вспомнили про ссылочное ранжирование