Topic 2

Signal Processing Review

(Some slides are adapted from Bryan Pardo's course slides on Machine Perception of Music)

Recording Sound

Microphones

Cross-Section of Dynamic Microphone

http://www.mediacollege.com/audio/microphones/how-microphones-work.html

Pure Tone = Sine Wave

Reminders

- Frequency, f = 1/T, is measured in cycles per second , a.k.a. *Hertz (Hz)*.
- One cycle contains 2π radians.
- Angular frequency Ω , is measured in radians per second and is related to frequency by $\Omega = 2\pi f$.
- So we can rewrite the sine wave as $x(t) = A \sin(\Omega t + \varphi)$

Fourier Transform

We can also write

Complex Tone = Sine Waves

Frequency Domain

Harmonic Sound

- 1 or more sine waves
- Strong components at integer multiples of a fundamental frequency (F0) in the range of human hearing (20 Hz ~ 20,000 Hz)

- Examples
 - -220 + 660 + 1100 is harmonic
 - -220 + 375 + 770 is not harmonic

Noise

- Lots of sines at random freqs. = NOISE
- Example: 100 sines with random frequencies, such that 100 < f < 10000.

How strong is the signal?

- Instantaneous value?
- Average value?
- Something else?

Acoustical or Electrical

Acoustical

Average intensity
$$I = \frac{1}{\rho c} \frac{1}{T_D} \int_0^{T_D} x^2(t) dt$$
 View $x(t)$ as sound pressure density sound speed

Electrical

Average power
$$P = \frac{1}{R} \frac{1}{T_D} \int_0^{T_D} x^2(t) dt$$
 View $x(t)$ as electric voltage resistance

Root-Mean-Square (RMS)

$$x_{RMS} = \sqrt{\frac{1}{T_D}} \int_0^{T_D} x^2(t) dt$$

- T_D should be long enough.
- x(t) should have 0 mean, otherwise the DC component will be integrated.
- For sinusoids

$$x_{RMS} = \sqrt{\frac{1}{T} \int_0^T A^2 \sin^2(2\pi f t) dt} = \sqrt{A^2/2} = 0.707A$$

Sound Pressure Level (SPL)

- Softest audible sound intensity 0.000000000001 watt/m²
- Threshold of pain is around 1 watt/m²
- 12 orders of magnitude difference
- A log scale helps with this
- The decibel (dB) scale is a log scale, with respect to a reference value

The Decibel

 A logarithmic measurement that expresses the magnitude of a physical quantity (e.g., power or intensity) relative to a specified reference level.

• Since it expresses a ratio of two (same unit) quantities, it is dimensionless.

$$L - I_{ref} = 10 \log_{10} \left(\frac{I}{I_{ref}} \right)$$

$$= 20 \log_{10} \left(\frac{x_{RMS}}{x_{ref,RMS}} \right)$$

$$= CE 477 - Computer Audition, Zhiyao Duan 2019$$

Lots of references!

- **dB-SPL** A measure of sound pressure level. 0dB-SPL is approximately the quietest sound a human can hear, roughly the sound of a mosquito flying 3 meters away.
- **dbFS** relative to digital full-scale. 0 dbFS is the maximum allowable signal. Values typically negative.
- **dBV** relative to 1 Volt RMS. 0dBV = 1V.
- dBu relative to 0.775 Volts RMS with an unloaded, open circuit.
- **dBmV** relative to 1 millivolt across 75 Ω . Widely used in cable television networks.
-

Typical Values

See criquite at Sili	•	Jet engine	at 3m	140 db-SPL
----------------------	---	------------	-------	------------

 Pain threshold 	130 db-SPL
------------------------------------	------------

Digital Sampling

More quantization levels = more dynamic range

Bit Depth and Dynamics

- More bits = more quantization levels = better sound
- Compact Disc: 16 bits = 65,536 levels
- POTS (plain old telephone service): 8 bits = 256 levels
- Signal-to-quantization-noise ratio (SQNR), if the signal is uniformly distributed in the whole range $SQNR = 20 \log_{10} 2^N \approx 6.02N \text{ dB}$
 - E.g., N = 16 bits depth gives about 96dB SQNR.

RMS

The red dots form the discrete signal x[n]

$$x_{RMS} = \sqrt{\frac{1}{N} \sum_{n=0}^{N-1} x^2 [n]}$$

Aliasing and Nyquist

Aliasing and Nyquist

Aliasing and Nyquist

Nyquist-Shannon Sampling Theorem

- You can't reproduce the signal if your sample rate isn't faster than twice the highest frequency in the signal.
- Nyquist rate: twice the frequency of the highest frequency in the signal.
 - A property of the continuous-time signal.
- Nyquist frequency: half of the sampling rate
 - A property of the discrete-time system.

Discrete-Time Fourier Transform (DTFT)

The red dots form the discrete signal x[n], where $n = 0, \pm 1, \pm 2, ...$

 $X(\omega)$ is Periodic. We often only show $[-\pi, \pi]$

$$X(\omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

 ω is a continuous variable

Relation between FT and DTFT

Sampling: $x[n] = x_c(nT)$

FT:
$$X_c(\Omega) = \int_{-\infty}^{\infty} x_c(t) e^{-j\Omega t} dt$$

DTFT: $X(\omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$

$$X(\omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c \left(\frac{\omega}{T} + \frac{2\pi k}{T} \right)$$

- Scaling: $\omega = \Omega T$, i.e., $\omega = 2\pi$ corresponds to $\Omega = \frac{2\pi}{T} = 2\pi f_S$, which corresponds to $f = f_S$.
- Repetition: $X(\omega)$ contains infinite copies of X_c , spaced by 2π .

Aliasing

Fourier Series

- FT and DTFT do not require the signal to be periodic,
 i.e., the signal may contain arbitrary frequencies, which
 is why the frequency domain is continuous.
- Now, if the signal is periodic:

$$x(t + mT) = x(t) \quad \forall m \in \mathbb{Z}$$

 It can be reproduced by a series of sine and cosine functions:

$$x(t) = A_0 + \sum_{n=1}^{\infty} [A_n \cos(\Omega_n t) + B_n \sin(\Omega_n t)]$$

• In other words, the frequency domain is discrete.

Discrete Fourier Transform (DFT)

- FT and DTFT are great, but the infinite integral or summations are hard to deal with.
- In digital computers, everything is discrete, including both the signal and its spectrum.

DFT and IDFT

DFT:
$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j2\pi kn/N}$$

IDFT:
$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j2\pi kn/N}$$

- Both x[n] and X[k] are discrete and of length N.
- Treats x[n] as if it were infinite and periodic.
- Treats X[k] as if it were infinite and periodic.
- Only one period is involved in calculation.

Discrete Fourier Transform

• If the time-domain signal has no imaginary part (like an audio signal) then the frequency-domain signal is conjugate symmetric around N/2.

Kinds of Fourier Transforms

Duality

Time domain

continuous

discrete

continuous discrete

Fourier Transform	DTFT
Fourier Series	DFT

aperiodic

periodic

ime dom

aperiodic

periodic

Frequency domain

The FFT

- Fast Fourier Transform
 - A much, much faster way to do the DFT
 - Introduced by Carl F. Gauss in 1805
 - Rediscovered by J.W. Cooley and John Tukey in 1965
 - The Cooley-Tukey algorithm is the one we use today (mostly)
 - Big O notation for this is O(N log N)
 - Matlab functions fft and ifft are standard.

Windowing

- A function that is zero-valued outside of some chosen interval.
 - When a signal (data) is multiplied by a window function, the product is zero-valued outside the interval: all that is left is the "view" through the window.

Example: windowing x[n] with a rectangular window

Some famous windows

• Rectangular w[n] = 1

Note: we assume w[n] = 0 outside some range [0, N]

Triangular (Bartlett)

$$w[n] = \frac{2}{N-1} \left(\frac{N-1}{2} - \left| n - \frac{N-1}{2} \right| \right)$$

Hann

$$w[n] = 0.5 \left(1 - \cos\left(\frac{2\pi n}{N-1}\right) \right)$$

Why window shape matters

- Don't forget that a DFT assumes the signal in the window is periodic
- The boundary conditions mess things up...unless you manage to have a window whose length is exactly 1 period of your signal
- Making the edges of the window less prominent helps suppress undesirable artifacts

Fourier Transform of Windows

We want

- Narrow main lobe
- Low sidelobes

Which window is better?

Hann window

$$w[n] = 0.5 \left(1 - \cos\left(\frac{2\pi n}{N - 1}\right) \right)$$

Hamming window

$$w[n] = 0.54 - 0.46 \times \cos\left(\frac{2\pi n}{N-1}\right)$$

Multiplication v.s. Convolution

Time domain	Frequency Domain
$x[n] \cdot y[n]$	$\frac{1}{N}X[k]*Y[k]$
x[n] * y[n]	$X[k] \cdot Y[k]$

- Windowing is multiplication in time domain, so the spectrum will be a convolution between the signal's spectrum and the window's spectrum
- Convolution in time domain takes $O(N^2)$, but if we perform in the frequency domain...
 - FFT takes $O(N \log N)$
 - Multiplication takes O(N)
 - IFFT takes $O(N \log N)$

Windowed Signal

```
fs = 10000; % sampling rate
f1 = 1000; % fisrt sinusoid 1000Hz
f2 = 1500; % second sinusoid 1500Hz
t = 0:1/fs:3; % 3 seconds long
x1 = sin(2*pi*f1*t); % first signal
x2 = 2*sin(2*pi*f2*t); % second signal
               % mixture signal
x = x1+x2:
                   % window length
L = 100:
fftLen = L*4;
               % fft length
w = hamming(L); % window
wx = w'.*x(101:100+L); % windowed signal
% magnitude spectrum of windowed signal
wxf = 20*log10(abs(fft(wx, fftLen)));
% show spectrum (only the positive frequencies)
figure; h = axes('FontSize', 16);
plot(h, (0:fftLen/2)*fs/fftLen, wxf(1:fftLen/2+1));
grid on;
xlabel('Frequency (Hz)');
vlabel('Amplitude (dB)');
```

Spectrum of Windowed Signal

- Two sinusoids: 1000Hz + 1500Hz
- Sampling rate: 10KHz
- Window length: 100 (i.e. 100/10K = 0.01s)
- FFT length: 400 (i.e. 4 times zero padding)

Zero Padding

- Add zeros after (or before) the signal to make it longer
- Perform DFT on the padded signal

Why Zero Padding?

- Zero padding in time domain gives the ideal interpolation in the frequency domain.
- It doesn't increase (the real) frequency resolution!
 - 4 times is generally enough
 - Here the resolution is always fs/L=100Hz

How to increase frequency resolution?

Time-frequency resolution tradeoff

$$\Delta t \cdot \Delta f = 1$$
 (second) (Hz)

Short time Fourier Transform

The Spectrogram

• There is a "spectrogram" function in matlab.

A Fun Example

ECE 477 - Computer Audition, Zhiyao Duan 2019

Overlap-Add Synthesis

- IDFT on each spectrum.
 - Use the complex, full spectrum.
 - Don't forget the phase (often using the original phase).
 - If you do it right, the time signal you get is real.
- (optional) Multiply with a synthesis window
 (e.g., Hamming) to suppress signals at edges.
 - Not dividing the analysis window
- Overlap and add different frames together.

Constant Overlap Add (COLA)

 Windows of all frames add up to a constant function. Perfect reconstruction!

- Requires special design of w and R

 - Triangular window: $R = \frac{L}{k}$, $k \ge 2$, $k \in \mathbb{N}$
 - Hamming/hann window: $R = \frac{L}{2k}$, $k \in \mathbb{N}$

Shepard Tones

Continuous Risset scale

Shepard Tones

- Make a sound composed of sine waves spaced at octave intervals.
- Control their amplitudes by imposing a Gaussian (or something like it) filter in the log-frequency dimension.
- Move all the sine waves up a musical ½ step.
- Wrap around in frequency.