

Code No.: 5344/N

(25 Marks)

2

## **FACULTY OF ENGINEERING** B.E. 2/4 (CSE) | Semester (New) (Main) Examination, December 2011

## **BASIC ELECTRONICS**

Time: 3 Hours] [Max. Marks: 75

**Note**: Answer all questions from Pat A. Answer any five questions from Part B.

1. Differentiate between conductors, insulators and semiconductors by drawing energy

PART - A

level diagrams. 3 2. What are the applications of Hall effect? 2

3. What is the maximum conversion efficiency of a Full wave Rectifier and on what factors does it depend upon? 3

4. Why is that a FET has a high input impedance and is known as a unipolar device. 3 5. Define regulation and explain about the best regulation numerically. 3

6. Draw the frequency versus gain characteristics of an amplifier with and without negative feedback. 3

7. Draw the equivalent circuit of a crystal to be used in an oscillator. 2 8. What are the important characteristics of an LCD? 2 9. What is mobility? How does it vary with the electric field? 2

10. Draw the truth table of an exclusive OR gate. PART - B (50 Marks)

11. a) Explain Hall effect. Explain the significance of all the terms used in the expression for Hall Voltage.

b) A HWR circuit supplies 100 mA dc to a 250  $\Omega$  load. Find the DC output voltage, PIV rating of the diode and the rms voltage of the transformer secondary.

- - 12. a) Draw the hybrid equivalent circuit of an npn-BJT in CE configuration. Derive
    - expressions for  $A_v$ ,  $A_i$ ,  $R_i$  and  $R_o$ .
    - b) Compare the characteristics of a BJT with those of FET.
  - 13. a) Draw a neat circuit diagram of an RC phase shift oscillator using BJT and explain
    - its working principle.

    - b) In which type of Electronic circuits, positive and negative feedback are used? Show
      - by neat sketches the four types of connections of negative feedback amplifiers,

      - indicating the advantages of each type of amplifier.
- 14. a) Describe the characteristics of an ideal op-amp. A 5 mv, 1 KHz sine signal is applied

  - to the input of an op-amp integrator for which  $R_1$  = 100  $k\Omega$  , and C = 1  $\mu F.$  Find the output voltage.

  - b) State and prove De-Morgan's theorems. Discuss the working of half adder and full
    - adder and give their truth tables.
- 15. a) What is an LVDT? By means of a neat sketch. Explain how a LVDT is used in
  - measurements.
  - b) Give a block diagram of a CRO, explaining the importance of each block.
- 16. a) In connection with rectifies define ripple, efficiency and regulation for HWR and FWR circuits.
- b) Explain about an Instrumentation amplifier.
- 17. Write short notes on any three:

  - a) Universal gates

  - b) Crystal oscillators

  - c) UJT
  - d) IC regulators.

## **FACULTY OF ENGINEERING**

## B.E. 2/4 (CSE) I-Semester (Main) Examination, November / December 2012

Subject : Data Structures Using C++

| Time: 3 Hours Max. Marks: 75 |                                                                                                                                                               |       |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|                              | Note: Answer all questions of Part - A and answer any five questions from Part-B.                                                                             |       |
| PART – A (25 Marks)          |                                                                                                                                                               |       |
| 1.                           | What is the time complexity of insertion into an array? Compare the time complexity with insertion into linked list.                                          | (3)   |
| 2.                           | What is a sparse matrix? Explain the sparse matrix representation.                                                                                            | (3)   |
| 3.                           | What are the applications of stacks?                                                                                                                          | (2)   |
| 4.                           | Evaluate the given post fix evaluation: 6 2 3 + - 3 8 2 / + * 2 3 / +                                                                                         |       |
|                              | What is the stack top after evaluating the given expression?                                                                                                  | (2)   |
| 5.                           | Write down the code snippet to count the number of nodes in a single linked list.                                                                             | (3)   |
| 6.                           | What is the graph called in which every node u in G is adjacent to every other node v in G?                                                                   | (2)   |
| 7.                           | What is minimum and maximum number of elements in an m-way search tree of height h?                                                                           | (2)   |
| 8.                           | What is meant by minimum-cost spanning tree?                                                                                                                  | (2)   |
| 9.                           | Explain LL and LR rotation to balance the AVL tree with an example.                                                                                           | (3)   |
| 10                           | Consider an array of 100 sorted numbers. Atmost how many searcher are needed to search an element using Binary Search. Justify your answer.                   | (3)   |
| PART - B (5x10=50 Marks)     |                                                                                                                                                               |       |
| 11                           | . Write a function to add two polynomials using arrays.                                                                                                       | (10)  |
| 12                           | .(a) Convert the given infix expression into postfix expression and explain the representation of stacks used for conversion. A ↑ B *C – D + E /(F + (G + H)) | (5)   |
|                              | (b) What is a circular Queue? Explain the need of taking an array of size one more than the size of Queue.                                                    | (5)   |
| 13                           | . Write a function to insert and delete the element in a sorted single linked list.                                                                           | (10)  |
| 14                           | .(a) Consider an array of size $N-1$ that contains all numbers except one. Design an algorithm that finds the missing number.                                 | (5)   |
|                              | (b) What is BFS and DFS? Explain with an example.                                                                                                             | (5)   |
| 15                           | . Consider the Hash function H(i) = (2i + 5) % 11 Insert the keys 3, 8, 102, 23, 4, 10, 9,                                                                    |       |
|                              | 12, 44, 23 and construct the 11 item hash table by using Dynamic hashing.                                                                                     | (10)  |
| 16                           | Construct a B-tree of order 5 by inserting the following items one by one.  CNGAHEKOMFWLTZDPR                                                                 | (10)  |
| 17                           | .Write short notes on : (a) Splay trees (b) Threaded Binary Trees                                                                                             | (5+5) |

\*\*\*\*