Metrics for the Closed Loop Track of the INTERPRET Challenge

The metric for the closed-loop track is based on the closed-loop performance of the "prediction \rightarrow planning" pipeline on the ego agent. Let $d_i \in \{sim_i, gt_i\}$ represent the source of data for scenario i, where sim_i is the close loop simulation and gt_i is the ground truth. For all testing scenarios, with the total number as n_s , We consider the following five metrics:

- 1. The number of collision scenarios, represented by n_{col} , quantifies safety performance of the testing perdition method.
- 2. "Efficiency" of the ego agent, represented by S_{eff} , quantifies how efficient the ego agent is. Let Δs^{d_i} be the distance that the ego agent traveled along the reference at the end of corresponding data for scenario i, We measure the efficiency via the ratio of Δs^{d_i} in the simulation and in the ground-truth.

$$S_{eff} = \frac{1}{n_s} \sum_{i=1}^{n_s} \frac{\Delta s^{sim_i}}{\Delta s^{gt_i}} \tag{1}$$

3. "Jerk" of the ego agent, represented by S_{jer} , is the average jerk of the trajectory of the ego agent. Let $v \in \{ego, target\}$ represent the agent that is evaluated, where ego is the ego agent, target is the reactive agent. Then, let $j_k^{d_i,v}$ be the jerk of the evaluated agent at time step k in corresponding data for scenario i. Assume that $t_s^{d_i}$, $t_e^{d_i}$ are the starting time step and the ending time step of corresponding data. The "Jerk" score of a evaluated agent is defined as

$$s_{jer}(d_i, v) = \sqrt{\frac{1}{t_e^{d_i} - t_s^{d_i}} \sum_{k=t_s^{d_i}}^{t_e^{d_i}} (j_k^{d_i, v})^2}$$
 (2)

Thus, the S_{jer} is defined as

$$S_{jer} = \frac{1}{n_s} \sum_{i=1}^{n_s} s_{jer}(sim_i, ego)$$
(3)

4. "Velocity" of the trajectory of the ego agent, represented by S_{vel} , is the average difference between the current speed and the desired speed, represented by v_d , if the current speed is smaller than the desired speed.

Assume $v_k^{d_i,v}$ represent the speed of the evaluated agent at time step k in corresponding data for scenario i. The "Velocity" score of a evaluated agent is defined as

$$s_{vel}(d_i, v) = \sqrt{\frac{1}{t_e^{d_i} - t_s^{d_i}} \sum_{k=t_s^{d_i}}^{t_e^{d_i}} (\min\{v_k^{d_i, v} - v_d, 0\})^2}$$
(4)

Thus, the S_{vel} is defined as

$$S_{vel} = \frac{1}{n_s} \sum_{i=1}^{n_s} s_{vel}(sim_i, ego)$$
 (5)

5. "Courtesy" of the trajectory of the ego agent, represented by S_{cou} is considering cases if the ego agent does not have the "right-of-way". The "Courtesy" is defined as the increased cost (in terms of the jerk cost and velocity-related cost) of the other agents due to the actions of the ego agent compared to the ground-truth cost. Hence, the "Courtesy" score of scenario i for the ego agent without "right-of-way" is given by

$$s_{cou}(i) = s_{jer}(sim_i, target) - s_{jer}(gt_i, target) + s_{vel}(sim_i, target) - s_{vel}(gt_i, target)$$

$$(6)$$

note that the ground-truth score terms of the target agent are same for all different predictors, Therefore, we will ignore them from the metric, i.e.,

$$s_{cou}(i) = s_{jer}(sim_i, target) + s_{vel}(sim_i, target)$$
 (7)

If the ego agent in a test case has the right-of-way, we define its "courtesy" score as zero. Thus, the S_{cou} is defined as

$$S_{cou} = \frac{1}{n_s} \sum_{i=1}^{n_s} s_{cou}(i)$$
 (8)

The final score, represented by S, of one prediction method is defined as sum of the weighted score of the above metrics. It is given as follows:

$$Score = w_{eff} S_{eff} + w_{ier} S_{ier} + w_{vel} S_{vel} + w_{cou} S_{cou}$$
 (9)

where $w_{eff} = 10$, $w_{jer} = -1$, $w_{vel} = -1$, $w_{cou} = -1$ are the weights.