Back Propagation on Feed Forward Neural Networks

Report and Observations

Group 12:	Sahil Jindal	110020043
	Rohan Gyani	110040001

Abhishek Gupta 110040067

Mridul Ravi Jain 110040083

Assignment Specifications

- Implement back propagation (BP) on feed forward neural n/w (FFNN). Give FFNNs for:
 - 2-input XOR
 - 2-input NAND
 - 5-input palindrome
 - 5-input majority
 - 5-input parity
 - Digit recogniser
- Choose the learning rate judiciously.
- Study convergence time, local minima, saturation, effect of initialization, effect of learning rate and momentum factor.
- 1 and 0 decisions are based on the output being above the high water mark or being below the low water mark.

FFNN Pseudo Code

- Apply the inputs to the network and work out the output.
- Calculate errors of output neurons and then calculate Total Sum of Squares Error
- while(Total Sum of Squares Error > Threshold)
 - Change output layer weights
 - Calculate errors for hidden layer neurons
 - Change hidden layer weights(backpropagation)
 - Apply the inputs to the network and work out the output.
 - Calculate errors of output neurons and then calculate Total Sum of Squares Error

Contents

- Error v/s No of Iterations
 - Effect of Learning Rate
 - Effect of Momentum factor
- Graphs for
 - 2-input XOR
 - 2-input NAND
 - 5-input palindrome
 - 5-input majority
 - 5-input parity
 - Digit recogniser
- Functionality of Hidden Layer Neurons
 - 2-input XOR
 - 3-input Palindrome
 - 5-input Palindrome

Error v/s No. of Iterations (learning rate = 0.1)

Error \sqrt{s} No. of Iterations (learning rate = .20)

Error \sqrt{s} No. of Iterations (learning rate = .25)

Error v/s No. of Iterations (learning rate = .35)

Error v/s No. of Iterations (learning rate = .40)

Error v/s No. of Iterations (learning rate = .45)

Error v/s No. of Iterations (learning rate = .50)

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0

2000

2500

3000

No. of Iterations

Error v/s No. of Iterations (learning rate = .55) "error_vs_numiterations_xor10.txt" using 1:2

3500

4000

4500

Error \sqrt{s} No. of Iterations (learning rate = .60)

Error v/s No. of Iterations (learning rate = .65)

Error v/s No. of Iterations (learning rate = .70)

Error v/s No. of Iterations (learning rate = .75)

Error v/s No. of Iterations (learning rate = .80)

Error v/s No. of Iterations (learning rate = .85)

Error \sqrt{s} No. of Iterations (learning rate = .90)

Error \sqrt{s} No. of Iterations (learning rate = .95)

Error v/s No. of Iterations (learning rate = 0.1)

Error \sqrt{s} No. of Iterations (learning rate = .20)

Error v/s No. of Iterations (learning rate = .35)

Error v/s No. of Iterations (learning rate = .40)

Error v/s No. of Iterations (learning rate = .65)

Error \sqrt{s} No. of Iterations (learning rate = .70)

Error v/s No. of Iterations (learning rate = .75)

Error v/s No. of Iterations (learning rate = .80)

Error v/s No. of Iterations (learning rate = .85)

Error v/s No. of Iterations (learning rate = .90)

Error \sqrt{s} No. of Iterations (learning rate = .95)

Error v/s No. of Iterations (learning rate = .35)

Error \sqrt{s} No. of Iterations (learning rate = .45)

Error v/s No. of Iterations (learning rate = .70)

Error \vee /s No. of Iterations (learning rate = .90)

Eta=0.1 Momentum Factor=0.05

Eta=0.3 Momentum Factor=0.05

Eta=0.5 Momentum Factor=0.05

Eta=0.7, Momentum Factor=0.05

Error vs Iteration No

Eta=0.9, Momentum Factor=0.05

Eta=0.1 Momentum Factor=0.05

Eta=0.3 Momentum Factor=0.05

Eta=0.5 Momentum Factor=0.05

Eta=0.7 Momentum Factor=0.05

Eta=0.9 Momentum Factor=0.05

Effect of Learning Rate

- We varied the learning rate from 0.10 to 0.95 in intervals of 0.05 and observed the effect of learning rate.
- In general, as the learning rate increases, no of iterations required to converge to a solution decreases.
- The speed of convergence of a network can be improved by increasing the learning rate.
- Unfortunately, increasing learning rate usually results in increasing network instability, with weight values oscillating erratically as they converge on a solution.
- Higher values of learning rate may provide faster convergence on a solution, but may also increase instability and may lead to a failure to converge.

Error v/s No. of Iterations (eta = 0.4, Momentum Factor = 0.001)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .051)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .101)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .151)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .201)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .251)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .301)

Error v/s No. of Iterations (eta = 0.4, Momentum Factor = .351)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .401)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .451)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .501)

Error v/s No. of Iterations (eta = 0.4, Momentum Factor = .551)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .601)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .651)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .701)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .751)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .801)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .851)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .901)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .951)

Effect of Momentum Factor (NAND)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = 0.1)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .15)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .20)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .25)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .30)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .35)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .40)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .45)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .50)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .55)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .60)

Error v/s No. of Iterations (eta = 0.4, Momentum Factor = .65)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .70)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .75)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .80)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .85)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .90)

Error v/s No. of Iterations (eta = 0.4, Momentum Factor = .95)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = 1.00)

Error v/s No. of Iterations (eta = 0.4, Momentum Factor = 1.05)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = 0.1)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .15)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .20)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .25)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .30)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .35)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .40)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .45)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .50)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .55)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .60)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .65)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .70)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .75)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .80)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .85)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .90)

Effect of Momentum Factor (Majority)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .95)

Effect of Momentum Factor (Majority)

Error v/s No. of Iterations (eta = 0.4, Momentum Factor = 1.00)

Effect of Momentum Factor (Majority)

Error v/s No. of Iterations (eta = 0.4, Momentum Factor = 1.05)

Error v/s No. of Iterations (eta = 0.4, Momentum Factor = 0.1)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .15)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .20)

Error v/s No. of Iterations (eta = 0.4, Momentum Factor = .25)

Error v/s No. of Iterations (eta = 0.4, Momentum Factor = .30)

Error v/s No. of Iterations (eta = 0.4, Momentum Factor = .35)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .40)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .45)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .50)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .55)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .60)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .65)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .70)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .75)

Error v/s No. of Iterations (eta = 0.4, Momentum Factor = .80)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .85)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .90)

Error \sqrt{s} No. of Iterations (eta = 0.4, Momentum Factor = .95)

Error v/s No. of Iterations (eta = 0.4, Momentum Factor = 1.00)

Effect of Momentum Factor (Parity)

Eta=0.3 Momentum Factor=0.05

Effect of Momentum Factor (Parity)

Eta=0.3 Momentum Factor=0.1

Effect of Momentum Factor (Parity)

Eta=0.3 Momentum Factor=1

Effect of Momentum Factor(Palindrome)

Eta = 0.3 Momentum Factor = 0.05

Effect of Momentum Factor(Palindrome)

Eta = 0.3 Momentum Factor = 0.1

Effect of Momentum Factor(Palindrome)

Eta = 0.3 Momentum Factor = 1

Effect of Momentum Factor

- We observed the effect of increasing the momentum too from close to 0 (0. 001) to close to 1(1.05) in steps of 0.05
- In general, as the momentum factor increased the no of iterations required to converge to a solution also decreased.
- We also observed that as the momentum factor increases, iteration-to-iteration variation in error was greatly increased.

Functionality of Hidden Layer Neurons 2-Input XOR

Input1	Input2	HiddenLayerOp1	HiddenLayerOp2	Output
0	0	0	0	0
0	1	1	0	1
1	0	1	0	1
1	1	1	1	0

- HiddenLayerOp1 = Input1 OR Input2
- HiddenLayerOp2 = Input1 AND Input2
- Output = HiddenLayerOp1 AND (NOT (HiddenLayerOp2))

Functionality of Hidden Layer Neurons 2-Input XOR

Input1	Input2	Input3	HiddenLayerOp1	HiddenLayerOp2	Output
0	0	0	1	1	1
0	0	1	1	0	0
0	1	0	1	1	1
0	1	1	1	0	0
1	0	0	1	0	0
1	0	1	0	0	1
1	1	0	1	0	0
1	1	1	0	0	1

- HiddenLayerOp1: NOT(Input1) OR NOT(Input3)
- HiddenLayerOp2: NOT(Input1) AND NOT(Input3)
- Output = NOT(HiddenLayerOp1) OR HiddenLayerOp1

For Palindrome, the X2 should not matter. Interestingly, X2 is not even taken into consideration in hidden layer.

Input 1	Input 2	Input 3	Input 4	Input 5	HiddenLayerO p1	HiddenLayerO p2	Output
0	0	0	0	0	0	0	1
0	0	0	0	1	1	0	0
0	0	0	1	0	1	0	0
0	0	0	1	1	1	0	0
0	0	1	0	0	0	0	1
0	0	1	0	1	1	0	0
0	0	1	1	0	1	0	0
0	0	1	1	1	1	0	0

Error Threshold = 5%
Initial Weights = Random between -1 & 1
Learning Rate = 0.34

Input 1	Input 2	Input 3	Input 4	Input 5	HiddenLayerO p1	HiddenLayerO p2	Output
0	1	0	0	0	0	1	1
0	1	0	0	1	0	1	0
0	1	0	1	0	0	0	0
0	1	0	1	1	1	0	0
0	1	1	0	0	0	1	1
0	1	1	0	1	0	1	0
0	1	1	1	0	0	0	0
0	1	1	1	1	1	0	0

Error Threshold = 5%
Initial Weights = Random between -1 & 1
Learning Rate = 0.34

Input 1	Input 2	Input 3	Input 4	Input 5	HiddenLayerO p1	HiddenLayerO p2	Output
1	0	0	0	0	0	1	0
1	0	0	0	1	0	0	1
1	0	0	1	0	1	0	0
1	0	0	1	1	1	0	0
1	0	1	0	0	0	1	0
1	0	1	0	1	0	0	1
1	0	1	1	0	1	1	0
1	0	1	1	1	1	0	0

Error Threshold = 5%
Initial Weights = Random between -1 & 1
Learning Rate = 0.34

Input 1	Input 2	Input 3	Input 4	Input 5	HiddenLayerO p1	HiddenLayerO p2	Output
1	1	0	0	0	0	1	0
1	1	0	0	1	0	1	0
1	1	0	1	0	0	1	0
1	1	0	1	1	0	0	1
1	1	1	0	0	0	1	0
1	1	1	0	1	0	1	0
1	1	1	1	0	0	1	0
1	1	1	1	1	0	0	1

After Solving through Karnaugh Map, we get Output = (H1 NOR H2)

For Palindrome, the X2 should not matter. Interestingly, X2 is not even taken into consideration in hidden layer.