Deep Generative Models

Lecture 7

Roman Isachenko

Son Masters

Spring, 2022

Recap of previous lecture

Gaussian autoregressive flow (MAF)

$$\mathbf{x} = g(\mathbf{z}, \boldsymbol{\theta}) \quad \Rightarrow \quad x_i = \sigma_i(\mathbf{x}_{1:i-1}) \cdot z_i + \mu_i(\mathbf{x}_{1:i-1}).$$

$$\mathbf{z} = f(\mathbf{x}, \boldsymbol{\theta}) \quad \Rightarrow \quad z_i = (x_i - \mu_i(\mathbf{x}_{1:i-1})) \cdot \frac{1}{\sigma_i(\mathbf{x}_{1:i-1})}.$$

Generation function $g(\mathbf{z}, \boldsymbol{\theta})$ is **sequential**. Inference function $f(\mathbf{x}, \boldsymbol{\theta})$ is **not sequential**.

Inverse autoregressive flow (IAF)

$$\mathbf{z} = g(\mathbf{z}, \boldsymbol{\theta}) \quad \Rightarrow \quad x_i = \tilde{\sigma}_i(\mathbf{z}_{1:i-1}) \cdot z_i + \tilde{\mu}_i(\mathbf{z}_{1:i-1})$$
 $\mathbf{z} = f(\mathbf{x}, \boldsymbol{\theta}) \quad \Rightarrow \quad z_i = (x_i - \tilde{\mu}_i(\mathbf{z}_{1:i-1})) \cdot \frac{1}{\tilde{\sigma}_i(\mathbf{z}_{1:i-1})}.$

Kingma D. P. et al. Improving Variational Inference with Inverse Autoregressive Flow, 2016

Papamakarios G., Pavlakou T., Murray I. Masked Autoregressive Flow for Density Estimation, 2017

Recap of previous lecture

Autoregressive flows

RealNVP: Affine coupling law

$$\begin{cases} \mathbf{z}_{1:d} = \mathbf{x}_{1:d}; \\ \mathbf{z}_{d:m} = \tau(\mathbf{x}_{d:m}, c(\mathbf{x}_{1:d})); \end{cases} \Leftrightarrow \begin{cases} \mathbf{x}_{1:d} = \mathbf{z}_{1:d}; \\ \mathbf{x}_{d:m} = \tau^{-1}(\mathbf{z}_{d:m}, c(\mathbf{z}_{1:d})). \end{cases}$$

Dinh L., Krueger D., Bengio Y. NICE: Non-linear Independent Components Estimation, 2014 Dinh L., Sohl-Dickstein J., Bengio S. Density estimation using Real NVP, 2016

Outline

Likelihood-based models

Exact likelihood evaluation

- Autoregressive models (PixelCNN, WaveNet);
- ► Flow models (NICE, RealNVP, Glow).

Approximate likelihood evaluation

Latent variable models (VAE).

What are the pros and cons of each of them?

VAE limitations

Poor generative distribution (decoder)

$$p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_{\boldsymbol{\theta}}(\mathbf{z}), \boldsymbol{\sigma}_{\boldsymbol{\theta}}^2(\mathbf{z})).$$

Loose lower bound

$$\log p(\mathbf{x}|\boldsymbol{\theta}) - \mathcal{L}(q,\boldsymbol{\theta}) = (?).$$

Poor prior distribution

$$p(\mathbf{z}) = \mathcal{N}(0, \mathbf{I}).$$

Poor variational posterior distribution (encoder)

$$q(\mathsf{z}|\mathsf{x},\phi) = \mathcal{N}(\mathsf{z}|\boldsymbol{\mu}_{\phi}(\mathsf{x}), \sigma_{\phi}^2(\mathsf{x})).$$

ELBO interpretations

$$egin{aligned} \log p(\mathbf{x}|oldsymbol{ heta}) &= \mathcal{L}(\phi,oldsymbol{ heta}) + \mathit{KL}(q(\mathbf{z}|\mathbf{x},\phi)||p(\mathbf{z}|\mathbf{x},oldsymbol{ heta})) \geq \mathcal{L}(\phi,oldsymbol{ heta}). \ & \mathcal{L}(\phi,oldsymbol{ heta}) &= \int q(\mathbf{z}|\mathbf{x},\phi) \log rac{p(\mathbf{x},\mathbf{z}|oldsymbol{ heta})}{q(\mathbf{z}|\mathbf{x},\phi)} d\mathbf{z}. \end{aligned}$$

Evidence minus posterior KL

$$\mathcal{L}(\phi, \theta) = \log p(\mathbf{x}|\theta) - KL(q(\mathbf{z}|\mathbf{x}, \phi)||p(\mathbf{z}|\mathbf{x}, \theta)).$$

Average reconstruction loss with regularizer (prior KL)

$$\mathcal{L}(\phi, \theta) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, \phi)} \left[\log p(\mathbf{x}|\mathbf{z}, \theta) + \log p(\mathbf{z}) - \log q(\mathbf{z}|\mathbf{x}, \phi) \right]$$
$$= \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, \phi)} \log p(\mathbf{x}|\mathbf{z}, \theta) - KL(q(\mathbf{z}|\mathbf{x}, \phi)||p(\mathbf{z})).$$

ELBO surgery

$$\frac{1}{n}\sum_{i=1}^{n}\mathcal{L}_{i}(q,\theta) = \frac{1}{n}\sum_{i=1}^{n}\left[\mathbb{E}_{q(\mathbf{z}|\mathbf{x}_{i})}\log p(\mathbf{x}_{i}|\mathbf{z},\theta) - \mathit{KL}(q(\mathbf{z}|\mathbf{x}_{i})||p(\mathbf{z}))\right].$$

Theorem

$$\frac{1}{n}\sum_{i=1}^{n} KL(q(\mathbf{z}|\mathbf{x}_i)||p(\mathbf{z})) = KL(q(\mathbf{z})||p(\mathbf{z})) + \mathbb{I}_q[\mathbf{x},\mathbf{z}],$$

- $\mathbf{p} = q(\mathbf{z}) = \frac{1}{n} \sum_{i=1}^{n} q(\mathbf{z}|\mathbf{x}_i) \mathbf{aggregated}$ posterior distribution.
- ▶ $\mathbb{I}_q[\mathbf{x}, \mathbf{z}]$ mutual information between \mathbf{x} and \mathbf{z} under empirical data distribution and distribution $q(\mathbf{z}|\mathbf{x})$.
- First term pushes q(z) towards the prior p(z).
- Second term reduces the amount of information about x stored in z.

Hoffman M. D., Johnson M. J. ELBO surgery: yet another way to carve up the variational evidence lower bound. 2016

ELBO surgery

Theorem

$$\frac{1}{n}\sum_{i=1}^{n} KL(q(\mathbf{z}|\mathbf{x}_{i})||p(\mathbf{z})) = KL(q(\mathbf{z})||p(\mathbf{z})) + \mathbb{I}_{q}[\mathbf{x},\mathbf{z}].$$

Proof

$$\frac{1}{n} \sum_{i=1}^{n} KL(q(\mathbf{z}|\mathbf{x}_{i})||p(\mathbf{z})) = \frac{1}{n} \sum_{i=1}^{n} \int q(\mathbf{z}|\mathbf{x}_{i}) \log \frac{q(\mathbf{z}|\mathbf{x}_{i})}{p(\mathbf{z})} d\mathbf{z} =
= \frac{1}{n} \sum_{i=1}^{n} \int q(\mathbf{z}|\mathbf{x}_{i}) \log \frac{q(\mathbf{z})q(\mathbf{z}|\mathbf{x}_{i})}{p(\mathbf{z})q(\mathbf{z})} d\mathbf{z} = \int \frac{1}{n} \sum_{i=1}^{n} q(\mathbf{z}|\mathbf{x}_{i}) \log \frac{q(\mathbf{z})}{p(\mathbf{z})} d\mathbf{z} +
+ \frac{1}{n} \sum_{i=1}^{n} \int q(\mathbf{z}|\mathbf{x}_{i}) \log \frac{q(\mathbf{z}|\mathbf{x}_{i})}{q(\mathbf{z})} d\mathbf{z} = KL(q(\mathbf{z})||p(\mathbf{z})) + \frac{1}{n} \sum_{i=1}^{n} KL(q(\mathbf{z}|\mathbf{x}_{i})||q(\mathbf{z}))$$

Without proof:

$$\mathbb{I}_q[\mathsf{x},\mathsf{z}] = \frac{1}{n} \sum_{i=1}^n \mathsf{KL}(q(\mathsf{z}|\mathsf{x}_i)||q(\mathsf{z})) \in [0,\log n].$$

ELBO surgery

ELBO revisiting

$$\frac{1}{n} \sum_{i=1}^{n} \mathcal{L}_{i}(q, \theta) = \frac{1}{n} \sum_{i=1}^{n} \left[\mathbb{E}_{q(\mathbf{z}|\mathbf{x}_{i})} \log p(\mathbf{x}_{i}|\mathbf{z}, \theta) - KL(q(\mathbf{z}|\mathbf{x}_{i})||p(\mathbf{z})) \right] =$$

$$= \underbrace{\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{q(\mathbf{z}|\mathbf{x}_{i})} \log p(\mathbf{x}_{i}|\mathbf{z}, \theta) - \mathbb{I}_{q}[\mathbf{x}, \mathbf{z}] - KL(q(\mathbf{z})||p(\mathbf{z}))}_{\text{Reconstruction loss}} \underbrace{\text{MI}}_{\text{Marginal KL}}$$

Prior distribution p(z) is only in the last term.

Optimal VAE prior

$$KL(q(\mathbf{z})||p(\mathbf{z})) = 0 \quad \Leftrightarrow \quad p(\mathbf{z}) = q(\mathbf{z}) = \frac{1}{n} \sum_{i=1}^{n} q(\mathbf{z}|\mathbf{x}_i).$$

The optimal prior $p(\mathbf{z})$ is the aggregated posterior $q(\mathbf{z})$.

Hoffman M. D., Johnson M. J. ELBO surgery: yet another way to carve up the variational evidence lower bound, 2016

Optimal VAE prior

How to choose the optimal p(z)?

- ▶ Standard Gaussian $p(\mathbf{z}) = \mathcal{N}(0, I) \Rightarrow$ over-regularization;
- ▶ $p(\mathbf{z}) = q(\mathbf{z}) = \frac{1}{n} \sum_{i=1}^{n} q(\mathbf{z}|\mathbf{x}_i) \Rightarrow$ overfitting and highly expensive.

Non learnable prior $p(\mathbf{z})$ Learnable prior $p(\mathbf{z}|\lambda)$

Learnable VAE prior

Optimal prior

$$KL(q(\mathbf{z})||p(\mathbf{z})) = 0 \quad \Leftrightarrow \quad p(\mathbf{z}) = q(\mathbf{z}) = \frac{1}{n} \sum_{i=1}^{n} q(\mathbf{z}|\mathbf{x}_i).$$

Mixture of Gaussians

$$p(\mathbf{z}|\boldsymbol{\lambda}) = \sum_{k=1}^{K} w_k \mathcal{N}(\mathbf{z}|\boldsymbol{\mu}_k, \boldsymbol{\sigma}_k^2), \quad \boldsymbol{\lambda} = \{w_k, \boldsymbol{\mu}_k, \boldsymbol{\sigma}_k\}_{k=1}^{K}.$$

Variational Mixture of posteriors (VampPrior)

$$p(\mathbf{z}|\lambda) = \frac{1}{K} \sum_{k=1}^{K} q(\mathbf{z}|\mathbf{u}_k),$$

where $\lambda = \{u_1, \dots, u_K\}$ are trainable pseudo-inputs.

- ► Multimodal ⇒ prevents over-regularization;.
- $ightharpoonup K \ll n \Rightarrow$ prevents from potential overfitting + less expensive to train.

VampPrior

- Do we really need the multimodal prior?
- ▶ Is it beneficial to couple the prior with the variational posterior or the MoG prior is enough?

Results

Top row: generated images by PixelHVAE + VampPrior for chosen pseudo-input in the left top corner.

Bottom row: pseudo-inputs for different datasets.

Flows-based VAE prior

Flow model in latent space

$$\log p(\mathbf{z}|\boldsymbol{\lambda}) = \log p(\epsilon) + \log \det \left| \frac{d\epsilon}{d\mathbf{z}} \right| = \log p(\epsilon) + \log \det \left| \frac{\partial f(\mathbf{z}, \boldsymbol{\lambda})}{\partial \mathbf{z}} \right|$$

$$\mathbf{z} = g(\boldsymbol{\epsilon}, \boldsymbol{\lambda}) = f^{-1}(\boldsymbol{\epsilon}, \boldsymbol{\lambda})$$

- RealNVP flow.
- Autoregressive flow (MAF).

Why it is not a good idea to use IAF for VAE prior?

ELBO with flow-based VAE prior

$$egin{aligned} \mathcal{L}(oldsymbol{\phi}, oldsymbol{ heta}) &= \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, oldsymbol{\phi})} \left[\log p(\mathbf{x}|\mathbf{z}, oldsymbol{\phi}) + \log p(\mathbf{z}|oldsymbol{\lambda}) - \log q(\mathbf{z}|\mathbf{x}, oldsymbol{\phi})
ight] \ &= \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, oldsymbol{\phi})} \left[\log p(\mathbf{x}|\mathbf{z}, oldsymbol{\phi}) + \underbrace{\left(\log p(f(\mathbf{z}, oldsymbol{\lambda})) + \log \left| \det \frac{\partial f(\mathbf{z}, oldsymbol{\lambda})}{\partial \mathbf{z}}
ight| \right)}_{ ext{flow-based prior}} - \log q(\mathbf{z}|\mathbf{x}, oldsymbol{\phi})
ight] \end{aligned}$$

VAE limitations

Poor generative distribution (decoder)

$$p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_{\boldsymbol{\theta}}(\mathbf{z}), \boldsymbol{\sigma}_{\boldsymbol{\theta}}^2(\mathbf{z})).$$

Loose lower bound

$$\log p(\mathbf{x}|\boldsymbol{\theta}) - \mathcal{L}(q,\boldsymbol{\theta}) = (?).$$

Poor prior distribution

$$p(\mathbf{z}) = \mathcal{N}(0, \mathbf{I}).$$

Poor variational posterior distribution (encoder)

$$q(\mathsf{z}|\mathsf{x},\phi) = \mathcal{N}(\mathsf{z}|\boldsymbol{\mu}_{\phi}(\mathsf{x}), \sigma_{\phi}^2(\mathsf{x})).$$

Variational posterior

ELBO

$$\log p(\mathbf{x}|\theta) = \mathcal{L}(q,\theta) + KL(q(\mathbf{z}|\mathbf{x},\phi)||p(\mathbf{z}|\mathbf{x},\theta)).$$

- In E-step of EM-algorithm we wish $KL(q(\mathbf{z}|\mathbf{x},\phi)||p(\mathbf{z}|\mathbf{x},\theta))=0.$ (In this case the lower bound is tight $\log p(\mathbf{x}|\theta)=\mathcal{L}(q,\theta)$).
- Normal variational distribution $q(\mathbf{z}|\mathbf{x},\phi) = \mathcal{N}(\mathbf{z}|\boldsymbol{\mu}_{\phi}(\mathbf{x}), \boldsymbol{\sigma}_{\phi}^2(\mathbf{x}))$ is poor (e.g. has only one mode).
- ► Flows models convert a simple base distribution to a complex one using invertible transformation with simple Jacobian. How to use flows in VAE posterior?

Summary

► The ELBO surgery reveals insights about a prior distribution in VAE. The optimal prior is the aggregated posterior.

► VampPrior proposes to use a variational mixture of posteriors as the prior to approximate the aggregated posterior.

We could use flow-based prior in VAE (moreover, autoregressive) as well as flow-based posterior (next lecture).