

LECTURA DE PLANOS ELÉCTRICOS (BÁSICO).

WEBINAR.

CONTENIDO.

1. ¿Qué es la electricidad?. 3. ¿ Planos Eléctricos?.

- a) El átomo.
- b) Aislantes y conductores / Corriente eléctrica
- c) Magnitudes y unidades eléctricas de medición.
- d) Componentes de un circuito / Ley de ohm.
- e) Defectos en circuitos.

- a) Plano eléctrico de K2.
- b) Plano eléctrico de K5.
- c) Plano eléctrico de HD 6/15.
- d) HD 10/21.

2. Multímetro.

- a) Partes del multímetro.
- b) Como medir correctamente.

¿QUÉ ES LA ELECTRICIDAD?.

¿QUÉ ES LA ELECTRICIDAD?.

- <u>Protón</u>: Partícula sub atómica que forma el núcleo del átomo. Tiene carga positiva
- <u>Neutrón</u>: Partícula sub atómica que junto con el protón forma el núcleo del átomo. Carece de carga eléctrica.
- <u>Electrón:</u> Partícula sub atómica de carga negativa. Gira en órbita alrededor del núcleo.

Ley de cargas eléctricas.

- Un protón (+) repele otro protón (+).
- Un electrón (-) repele otro electrón (-).
- Un protón (+) atrae otro electrón (-).

¿QUÉ ES LA ELECTRICIDAD?. AISLANTES Y CONDUCTORES / CORRIENTE ELÉCTRICA.

Aislantes.

- Cuanto mayor la cantidad de electrones en su última órbita, mayor cantidad de energía habrá que aportar para extraer o liberar un electrón.
- Buenos conductores poseen 7 electrones en su última capa.

Conductores.

~ CONDUCTOR ~

- Solo tienen un solo electrón en su última capa.
- Se requiere menos energía para aportar o extraer electrones.

Átomo de Cobre (Cu)

Átomo de Argón (Ar)

1 Electrón en la última capa

~ AISLANTE ~

- Para generar una corriente eléctrica, los electrones libres deben desplazarse y en la misma dirección.
- Esto se puede lograr aplicando cargas eléctricas de diferente polaridad en los extremos del conductor.

¿QUÉ ES LA ELECTRICIDAD?. MAGNITUDES Y UNIDADES ELÉCTRICAS DE MEDICIÓN.

Tensión:

 Cuando dos cargas están sometidas a una diferencia de potencial, se crea una fuerza que impulsa a los electrones a desplazarse y formar la corriente eléctrica. Esa fuerza (fuerza electromotriz), se mide en Voltios. [V].

Intensidad de Corriente:

La intensidad de corriente es la cantidad de electrones que pasan por un punto dado en un segundo y se mide en Amperios. A

Resistencia eléctrica.

Representa la oposición de un material al paso de la corriente eléctrica. $[\Omega]$.

¿QUÉ ES LA ELECTRICIDAD?. COMPONENTES DE UN CIRCUITO / LEY DE OHM.

 El circuito eléctrico simple se compone de una fuente de tensión, un interruptor cerrado y una carga eléctrica.

- Relación entre tensión, corriente y resistencia.
- La corriente es directamente proporcional a la tensión.
- La corriente es inversamente proporcional a la resistencia.

¿QUÉ ES LA ELECTRICIDAD?. DEFECTOS EN CIRCUITOS.

Circuito abierto

Corto-circuito

Cross-section of conductor in mm ²	Current in A
0.75	12
1	15
1.5	18
2.5	26
4	34
6	44
10	61

Values for ambient temperatures up to 30°C

2 MULTÍMETRO.

MULTÍMETRO. PARTES DEL MULTÍMETRO.

Punta roja.
Punta negra.

Punta roja.
Punta negra.

Punta roja.
Punta negra.

MULTÍMETRO. COMO MEDIR CORRECTAMENTE.

 Las mediciones de tensiones deben realizarse siempre en paralelo.

 El amperímetro siempre y sin excepción alguna, ha de realizar la medida en serie con el circuito o elemento que se quiere medir.

3

PLANOS ELÉCTRICOS.

PLANOS ELÉCTRICOS. K2.

PLANOS ELÉCTRICOS. K5.

PLANOS ELÉCTRICOS. HD 6/15.

PLANOS ELÉCTRICOS. HD 10/21.

KÄRCHER MAKES A DIFFERENCE

