O'REILLY®

Programming Quantum Computers

Eric R. Johnston, Nic Harrigan & Mercedes Gimeno-Segovia

Bookclub Wk1 - ch1

@lynnlangit

Logistics

Format

- Weekly 60 minute live meeting
 - recorded
 - posted to YouTube channel
- Slack
 - #intros
 - #general
 - channels for book sections
- One person is group lead each week
 - o 30-45 min presenting

Goals

Why we are here

- Interest in this topic
- Complexity of topic
- Want to learn together

Introductions

Chapter 1 – Intro

QPU (Quantum Processing Unit) to refer to the device on which our code samples run

The D-Wave QPU is built from a lattice of tiny loops of the metal niobium, each of which is one qubit. Below temperatures of 9.2 kelvin, niobium becomes a superconductor and exhibits quantum mechanical effects.

D-Wave QPU

Coverage of Topic Area

Intro - Info

Math background:

- mathematical functions
- trigonometric functions
- converting between binary and decimal representations
- comprehension of complex numbers

Programming background:

- one or more programming languages
- default book examples in JavaScript

Chapter 1 – Info

Qbit - 1 quantum computational unit

Qbyte - 8 qbits

QPU - quantum processing unit

QCEngine - quantum simulator (JavaScript)

Quantum Circuit - program circuit

Circle-notation - program visualization

Running the code

Programming Quantum Computers

Code Samples

https://oreilly-qc.github.io/

Options for running examples

Library or Language	Language basis	Env	Other
QCEngine	JavaScript	Browser	Circle and Circuit Viz
Qiskit	Python	Notebook	IBM env
OpenQASM	C-style language	Composer	IBM env
Q#	C#/F# - style language	Notebook	Binder -> GKE
Cirq	Python	Notebook	Colab or GCP

Quantum Hardware – public cloud examples

Home >

Create Quantum Workspace

Quantum Workspace

Basics Providers

Tags Review + create

Run your jobs on quantum computers, quantum simulators or using quantum inspired optimizations. See the terminology sheet.

Available providers

+ Add

Providers added to this workspace

Name $\uparrow\downarrow$ Provider type $\uparrow\downarrow$ SKU $\uparrow\downarrow$

Microsoft QIO Microsoft

Optimization

Learn & Develop

Remove

Resources

- Book "Programming Quantum Computers" https://learning.oreilly.com/library/view/progra
 mming-quantum-computers/9781492039679/
- Lynn's 'learning-quantum' GitHub Repo https://github.com/lynnlangit/learning-quantum
- Jeremy's 'programming quantum experiments'
 GitHub Repo https://github.com/jeremybytes/quantum-programming-experiments
- more ???