

Supervised vs Unsupervised Learning

Cesar Acosta Ph.D.

Department of Industrial and Systems Engineering University of Southern California

- □ Construct a model relating a response y with predictors $x_1, x_2,...,x_p$ to
 - predict the response y for new observations
 - understand the relationship between the response and the predictors
- Response and predictors may be numeric or categorical

Regression

Regression

Blue for numeric predictor Red for categorical predictor

Regression

Response is numeric in Regression problems

Regression vs Classification

Response is categorical in Classification problems

Linear Regression

- Response is numeric for linear Regression models
- Regression models assume the response is a normal r. variable

Linear Models

Response random variable assumption

- Normal
- Bernoulli
- Binomial
- Negative binomial
- Multinomial
- Poisson

Model

- Linear Regression
- Logistic regression
- Binomial regression
- Negative binomial regression
- Multinomial regression
- Poisson regression

Linear Models

Response random variable assumption

- Normal
- Bernoulli
- Binomial
- Negative binomial
- Multinomial
- Poisson

Generalized linear Models (GLM)

- Logistic regression
- Binomial regression
- Negative binomial regression
- Multinomial regression
- Poisson regression

- Observations include features (numerical and categorical) but no associated response
- Unsupervised since there is no response that can supervise the analysis

Supervised learning problem

Response may be numeric or categorical

Unsupervised learning

There is no response

- ☐ There is no response that can supervise the analysis Example
- To determine the performance of a supervised learning model compare predictions with observed Y values

- ☐ There is no response that can supervise the analysis Example
- To determine the performance of a supervised learning model compare predictions with observed Y values
- This is not possible for unsupervised learning models
- Cannot determine the performance of an unsupervised model since we do not know the true Y values

- ☐ Even though there is no response (target) variable we still want to understand the
 - relationship among variables (columns)
 - relationship among observations (rows)

UNSUPERVISED LEARNING METHODS

☐ Clustering

Find groups of observations with common characteristics (values or categories)

UNSUPERVISED LEARNING METHODS

- Clustering
 Find groups of observations with common characteristics (values or categories)
- Principal Component Analysis (PCA)
 Identify new variables before clustering, supervised learning modeling, dimensionality reduction, data visualization

Classification problem - Example

- Response will pay, will not pay
- Borrowers attributes
 - o age group
 - o gender
 - location
 - o ses
 - student
 - married

Clustering problem - Example

- Group
- Borrowers attributes
 - o age group
 - o gender
 - location
 - o ses
 - student
 - married