

Cyber Integration, Message Fabric and Streaming Analytics

SCRE Workshop

November 17, 2015

Why a Message Fabric for Cyber Integration?

- Abstraction (Pub-Sub, Request / Response, Queuing)
 - Separate physical systems from communication;
 use any infrastructure without changing system behavior
 - Single point of web-based management
- Modularity
 - Quickly add new technologies/algorithms to stay ahead
- Efficiency
 - Instant response needed? Maybe not, but latency matters!
- Functionality
 - Discovery, connectivity, reliable exchange of data
 - Guaranteed delivery, fault tolerance, load balancing
 - Commodity hardware = lower entry and O&M costs

The Race to Respond

why speed is critical for Cyber Defense

The Race to the Exchange

why speed is critical for Capital Markets

Market Data Growth = Data Deluge

Aggregated One Minute Peak *Messages Per Second* Rates Arca, CTS, CQS, OPRA, NQDS (in *thousands*)

Legacy Messaging Architectures

Broker Based Design 4 Data Hops

2004 – Need for a State Change

- Motivations / Challenges
 - Not scaling to today's needs (yet alone tomorrow's!)
 - Availability at risk due to single points of failure
- Brokers are a bottleneck
 - Broker is a source of contention that limits scaling
 - Broker failure disastrous to latency and stability

Remove the Broker from the Message Path!

Case Study: Direct Edge

3rd Largest US Stock Exchange in 2008 (after NYSE and NASDAQ)

Source: Direct Edge 2008-2009

- √75% lower latency
- ✓Increased resiliency

- √50% reduction in hardware cost
 - ✓ Predictable performance

Near Real-Time Financial Data Analytics Framework

Counterparty Risk Assessment

Current State – Disparate Data Siloes

End-of-day extracts and long load/processing times

Desired State – Correlation across all Data

An Open "Single Source of Truth" for Financial Data

Near Real-Time Data Analytics

Real-time & Historical Stock Data with Near Real-time Query

Sample Trade Workbench Real-Time Dashboard

Not a Production View

What about real-time?

Streaming Analytics and Processing at the Edge

Processing "at the Edge" (and elsewhere)

- Considerations
 - Aggregation and correlation necessary for "big picture"
 - More distributed processing power than centralized
 - Raw data is necessary for some types of analysis
 - Is it more efficient to send raw + processed or process later?
- Strategies
 - Derive as much as possible as early as possible
 - Continuous computation counters, distribution statistics
 - Enrich (tag/classify unstructured events, add provenance details

 origin, identity, versioning, chain of custody)
 - Exception monitoring deviations from norm, trending up/down to exceed thresholds
 - Filter, summarize, compress, transform, mask, encrypt
 - Focus on state changes (111100001110011100)
 - No-change is data too, but heartbeats may be enough

Scalable Deployment w/ Distributed Nodes

AFOC, DCGS-A, DCGS-AF, NATO, IC

What we want in a Message Fabric

Peer-to-Peer Message Fabric

Network

Just 2 steps to move from A to B!!!

Less is more!!

Benefits

- efficient (single data hop)
- maximizes performance
- no single points of failure
 - scalable and flexible
 - easier to administer

Zero System Downtime! Zero Latency Failover!

Receiver recovers with no impact to live message stream, then rejoins the live stream!

Extended Enterprise

Considerations:

- Availability
- Authentication
- Authorization
- Bandwidth
- Encryption
- Filtering
- Firewalls
- Protocols
- Routing

Dynamic Routing - Least Cost Path

= WAN / firewall

= Message Router

= Sender / Receiver

Dynamic Routing - Least Cost Path

How can you combine a peer to peer message fabric with standardized interfaces and centralized management?

Streaming data collection...

WEB LOG DATA SERVER LOG DATA SENSOR DATA 00:00:46: %LINK-3-UPDOWN: Interface Port-channel1, changed state to up 00:00:47: %LINK-3-UPDOWN: Interface GigabitEthernet0/1, changed state to up 00:00:47: %LINK-3-UPDOWN: Interface GigabitEthernet0/2, changed state to up 00:00:48: %LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan1, changed state to down 00:00:48: %LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/1, changed state to down 2 *Mar 1 18:46:11: %SYS-5-CONFIG_I: Configured from console by vty2 (10.34.195.36) 18:47:02: %SYS-5-CONFIG_I: Configured from console by vty2 (10.34.195.36) *Mar 1 18:48:50.483 UTC: %SYS-5-CONFIG I: Configured from console by vty2 (10.34.) 00:00:46: %LINK-3-UPDOWN: Interface Port-channel1, changed s 00:00:47: %LINK-3-UPDOWN: Interface GigabitEthernet0/1, chang 00:00:47: %LINK-3-UPDOWN: Interface GigabitEthernet0/2, changeu state to up 00:00:48: %LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan1, changed state to down 00:00:48: %LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/1, changed state to down 2 EVENT DATA Sense *Mar 1 18:46:11: %SYS-5-CONFIG I: Configured from console by vtv2 (10.34.195.36) 18:47:02: %SYS-5-CONFIG_I: Configured from console by vty2 (10.34.195.36) Making *Mar 1 18:48:50.483 UTC: %SYS-5-CONFIG I: Configured from console by vty2 (10.34.195.36)

LOCATION DATA

DEVICE DATA

How do you manage this?

Centralized management, peer to peer data flow

Summary: Essential Characteristics

- No daemons or servers in delivery path
 - Maximize speed and scalability
 - No single points of failure
- Choice of protocols (data "payload" agnostic)
 - TCP, UDP, AMQP, unicast, multicast, shared memory, etc.
- Secure transports, handshakes and storage
 - Integrity, with or without confidentiality
- Secure message routing for extended enterprise
 - Intelligently bridge segmented networks and applications
- Centralized monitoring (with API)
 - Integrated insight from every endpoint (other layers too!)

Summary: Essential Characteristics (cont'd)

- Dynamic service and peer discovery
 - Move applications without changing configuration or code
 - Establish data flows out-of-band to minimize overhead
- Full range of qualities of service
 - From reliable (best-effort) to durable (guaranteed)
- Standards-based interfaces
 - Easily plug in third-party products and services
- Centralized management (with API)
 - Configure top-down; implement locally
- No custom hardware
 - Pure software to always run on best infrastructure

Thank You!

Gay Adams gadams@informatica.com cell: 301-980-9148

