A Generalized Online Mirror Descent with Applications to Regression

F. Orabona, K. Crammer, N.C. Bianchi

Presented by Akhoury Shauryam

December 2, 2023

Table of Contents

Definitions

Online Optimization

GOMD

Linear Regression

VAW

Regret Bounding

Conclusions

Definitions

• A function f is called convex if $\forall u, v : f(v) \ge f(u) + \langle \nabla f(u), v - u \rangle$

Definitions

- A function f is called convex if $\forall u, v : f(v) \ge f(u) + \langle \nabla f(u), v u \rangle$
- A function is α -strongly convex for a norm $\|\cdot\|$ if $\forall u, v: f(v) \geq f(u) + \langle \nabla f(u), v u \rangle + \frac{\alpha}{2} \|u v\|^2$

Definitions

- A function f is called convex if $\forall u, v : f(v) \ge f(u) + \langle \nabla f(u), v u \rangle$
- A function is α -strongly convex for a norm $\|\cdot\|$ if $\forall u, v: f(v) \geq f(u) + \langle \nabla f(u), v u \rangle + \frac{\alpha}{2} \|u v\|^2$
- A function is β -smooth for a norm $\|\cdot\|$ if $\forall u, v : f(v) \leq f(u) + \langle \nabla f(u), v u \rangle + \frac{\beta}{2} \|u v\|^2$

Fenchel Conjugate

• For a function f, it's Fenchel conjugate f^* is defined as $f^*(u) = \sup(\langle v, u \rangle - f(v))$

- For a function f, it's Fenchel conjugate f^* is defined as $f^*(u) = \sup(\langle v, u \rangle - f(v))$
- A vector x is a subgradient of f at v if $\forall u: f(u) - f(v) \geq \langle u - v, x \rangle$, the set of such x is denoted as $\partial f(v)$

Fenchel Conjugate

- For a function f, it's Fenchel conjugate f^* is defined as $f^*(u) = \sup(\langle v, u \rangle f(v))$
- A vector x is a subgradient of f at v if $\forall u: f(u) f(v) \ge \langle u v, x \rangle$, the set of such x is denoted as $\partial f(v)$
- The Fenchel-Young inequality states that if $x \in \partial f(v)$ then $f(v) + f^*(x) = \langle v, x \rangle$

Fenchel Conjugate Properties

• The Fenchel conjugate f^* of an α -strongly convex function f is everywhere differentiable and $\frac{1}{\alpha}$ -strongly smooth. This means that, for all $u, v \in X$,

$$f^*(v) \le f^*(u) + \langle \nabla f^*(u), v - u \rangle + \frac{1}{2\alpha} ||u - v||^2$$

Fenchel Conjugate Properties

• The Fenchel conjugate f^* of an α -strongly convex function f is everywhere differentiable and $\frac{1}{\alpha}$ -strongly smooth. This means that, for all $u, v \in X$,

$$f^*(v) \le f^*(u) + \langle \nabla f^*(u), v - u \rangle + \frac{1}{2\alpha} ||u - v||^2$$

• $\nabla f^*(u) = \arg\max_{v \in S} \langle v, u \rangle - f(v)$

Online Convex Optimization

In the online convex optimization protocol, an algorithm sequentially chooses elements from a convex set $S \in X$, each time incurring a certain loss. At each step t = 1, 2, ... the algorithm chooses $w_t \in S$ and then observes a convex loss function $l_t : S \Rightarrow R$. The value $l_t(w_t)$ is the loss of the learner at step t, and the goal is to control the regret.

Online Convex Optimization

In the online convex optimization protocol, an algorithm sequentially chooses elements from a convex set $S \in X$, each time incurring a certain loss. At each step t = 1, 2, ... the algorithm chooses $w_t \in S$ and then observes a convex loss function $l_t : S \Rightarrow R$. The value $l_t(w_t)$ is the loss of the learner at step t, and the goal is to control the regret. Regret here is defined as:

$$R_T(u) = \sum_{t=1}^{T} l_t(w_t) - \sum_{t=1}^{T} l_t(u)$$

Online Convex Optimization

In the online convex optimization protocol, an algorithm sequentially chooses elements from a convex set $S \in X$, each time incurring a certain loss. At each step t = 1, 2, ... the algorithm chooses $w_t \in S$ and then observes a convex loss function $l_t : S \Rightarrow R$. The value $l_t(w_t)$ is the loss of the learner at step t, and the goal is to control the regret. Regret here is defined as:

$$R_T(u) = \sum_{t=1}^{T} l_t(w_t) - \sum_{t=1}^{T} l_t(u)$$

So we try to fine tune our algorithm to select w_t which minimises the Regret over all u.

The standard Online Mirror Descent looks like:

The standard Online Mirror Descent looks like:

Algorithm OMD

- 1: **Input:** parameter $\eta > 0$, regularization function R(x).
- 2: Let y_1 be such that $\nabla R(y_1) = 0$ and $x_1 = \operatorname{argmin} B_R(x||y_1)$.
- 3: for t = 1 to T do
- 4: Play x_t .
- 5: Observe the loss function f_t and let $\nabla_t = \nabla f_t(x_t)$.
- 6: Update y_{t+1} according to the rule:
- Lazy: $\nabla R(y_{t+1}) = \nabla R(y_t) \eta \nabla_t$ Agile: $\nabla R(y_{t+1}) = \nabla R(x_t) - \eta \nabla_t$
- 7: Project: $x_{t+1} = \operatorname{argmin} B_R(x || y_{t+1})$

• In OMD the gradient update is carried out in a "dual" space on the choice of the regularization.

- In OMD the gradient update is carried out in a "dual" space on the choice of the regularization.
- This transformation enables better bounds depending on what space we begin with.

Generalized Online Mirror Descent

The OMD algorithm is generalized into:

Generalized Online Mirror Descent

The OMD algorithm is generalized into:

Algorithm General Online Mirror Descent

- 1: **Parameters:** A sequence of strongly convex functions f_1, f_2, \ldots defined on a common convex domain $S \subseteq X$.
- 2: Initialize: $\theta_1 = 0 \in X$
- 3: **for** $t = 1, 2, \dots$ **do**
- 4: Choose $w_t = \nabla f_t^*(\theta_t)$
- 5: Observe $z_t \in X$
- 6: Update $\theta_{t+1} = \theta_t + z_t$

Assume OMD is run with functions f_1, f_2, \ldots, f_T defined on a common convex domain $S \subseteq X$

Assume OMD is run with functions f_1, f_2, \ldots, f_T defined on a common convex domain $S \subseteq X$

And each f_t is α_t -strongly convex with respect to the norm $\|\cdot\|_t$. Let $\|\cdot\|_t^*$ be the dual norm of $\|\cdot\|_t$, for t = 1, 2, ..., T. Then, for any $u \in S$

Assume OMD is run with functions f_1, f_2, \ldots, f_T defined on a common convex domain $S \subseteq X$

And each f_t is α_t -strongly convex with respect to the norm $\|\cdot\|_t$. Let $\|\cdot\|_t^*$ be the dual norm of $\|\cdot\|_t$, for t = 1, 2, ..., T. Then, for any $u \in S$

$$\sum_{t=1}^{T} \langle z_t, u - w_t \rangle \le f_T(u) + \sum_{t=1}^{T} \frac{\|z_t\|_{t,*}^2}{2\alpha_t} + f_t^*(\theta_t) - f_{t-1}^*(\theta_t)$$

Where we set $f_0^*(0) = 0$.

Assume OMD is run with functions f_1, f_2, \ldots, f_T defined on a common convex domain $S \subseteq X$

And each f_t is α_t -strongly convex with respect to the norm $\|\cdot\|_t$. Let $\|\cdot\|_t^*$ be the dual norm of $\|\cdot\|_t$, for t = 1, 2, ..., T. Then, for any $u \in S$

$$\sum_{t=1}^{T} \langle z_t, u - w_t \rangle \le f_T(u) + \sum_{t=1}^{T} \frac{\|z_t\|_{t,*}^2}{2\alpha_t} + f_t^*(\theta_t) - f_{t-1}^*(\theta_t)$$

Where we set $f_0^*(0) = 0$. Moreover, for all $t \ge 1$, we have

Identities for GOMD

Lemma 1

Assume OMD is run with functions f_1, f_2, \dots, f_T defined on a common convex domain $S \subseteq X$

And each f_t is α_t -strongly convex with respect to the norm $\|\cdot\|_t$. Let $\|\cdot\|_t^*$ be the dual norm of $\|\cdot\|_t$, for t = 1, 2, ..., T. Then, for any $u \in S$

$$\sum_{t=1}^{T} \langle z_t, u - w_t \rangle \le f_T(u) + \sum_{t=1}^{T} \frac{\|z_t\|_{t,*}^2}{2\alpha_t} + f_t^*(\theta_t) - f_{t-1}^*(\theta_t)$$

Where we set $f_0^*(0) = 0$. Moreover, for all $t \ge 1$, we have

$$f_t^*(\theta_t) - f_{t-1}^*(\theta_t) \le f_{t-1}(w_t) - f_t(w_t)$$

Let
$$\Delta_t = f_t^*(\theta_{t+1}) - f_{t-1}^*(\theta_t)$$
. Then,

Let
$$\Delta_t = f_t^*(\theta_{t+1}) - f_{t-1}^*(\theta_t)$$
. Then,

$$\sum_{t=1}^{T} \Delta_t = f_T^*(\theta_{T+1}) - f_0^*(\theta_1) = f_T^*(\theta_{T+1})$$

Let
$$\Delta_t = f_t^*(\theta_{t+1}) - f_{t-1}^*(\theta_t)$$
. Then,

$$\sum_{t=1}^{T} \Delta_t = f_T^*(\theta_{T+1}) - f_0^*(\theta_1) = f_T^*(\theta_{T+1})$$

Let
$$\Delta_t = f_t^*(\theta_{t+1}) - f_{t-1}^*(\theta_t)$$
. Then,

$$\sum_{t=1}^{T} \Delta_t = f_T^*(\theta_{T+1}) - f_0^*(\theta_1) = f_T^*(\theta_{T+1})$$

$$\Delta_t = f_t^*(\theta_{t+1}) - f_t^*(\theta_t) + f_t^*(\theta_t) - f_{t-1}^*(\theta_t)$$

Let
$$\Delta_t = f_t^*(\theta_{t+1}) - f_{t-1}^*(\theta_t)$$
. Then,

$$\sum_{t=1}^{T} \Delta_t = f_T^*(\theta_{T+1}) - f_0^*(\theta_1) = f_T^*(\theta_{T+1})$$

$$\Delta_t = f_t^*(\theta_{t+1}) - f_t^*(\theta_t) + f_t^*(\theta_t) - f_{t-1}^*(\theta_t)$$

$$\leq f_t^*(\theta_t) - f_{t-1}^*(\theta_t) + \langle \nabla f_t^*(\theta_t), z_t \rangle + \frac{1}{2\alpha_t} \|z_t\|_{t,*}^2$$

Let
$$\Delta_t = f_t^*(\theta_{t+1}) - f_{t-1}^*(\theta_t)$$
. Then,

$$\sum_{t=1}^{T} \Delta_t = f_T^*(\theta_{T+1}) - f_0^*(\theta_1) = f_T^*(\theta_{T+1})$$

$$\Delta_{t} = f_{t}^{*}(\theta_{t+1}) - f_{t}^{*}(\theta_{t}) + f_{t}^{*}(\theta_{t}) - f_{t-1}^{*}(\theta_{t})$$

$$\leq f_{t}^{*}(\theta_{t}) - f_{t-1}^{*}(\theta_{t}) + \langle \nabla f_{t}^{*}(\theta_{t}), z_{t} \rangle + \frac{1}{2\alpha_{t}} \|z_{t}\|_{t,*}^{2}$$

$$= f_{t}^{*}(\theta_{t}) - f_{t-1}^{*}(\theta_{t}) + \langle w_{t}, z_{t} \rangle + \frac{1}{2\alpha_{t}} \|z_{t}\|_{t,*}^{2}.$$

The Fenchel-Young inequality implies

$$\sum_{t=1}^{T} \Delta_t = f_T^*(\theta_{T+1}) \ge \langle u, \theta_{T+1} \rangle - f_T(u) = \sum_{t=1}^{T} \langle u, z_t \rangle - f_T(u).$$

The Fenchel-Young inequality implies

$$\sum_{t=1}^{T} \Delta_t = f_T^*(\theta_{T+1}) \ge \langle u, \theta_{T+1} \rangle - f_T(u) = \sum_{t=1}^{T} \langle u, z_t \rangle - f_T(u).$$

Summing the last 2 inequalities, we get:

The Fenchel-Young inequality implies

$$\sum_{t=1}^{T} \Delta_t = f_T^*(\theta_{T+1}) \ge \langle u, \theta_{T+1} \rangle - f_T(u) = \sum_{t=1}^{T} \langle u, z_t \rangle - f_T(u).$$

Summing the last 2 inequalities, we get:

$$\sum_{t=1}^{T} \langle u, z_t \rangle - f_T(u) \le \sum_{t=1}^{T} \Delta_t$$

So combining the two sum inequalities, we get:

So combining the two sum inequalities, we get:

$$\sum_{t=1}^{T} \langle u, z_t \rangle - f_T(u) \le \sum_{t=1}^{T} \left(f_t^*(\theta_t) - f_{t-1}^*(\theta_t) + \langle w_t, z_t \rangle + \frac{1}{2\beta_t} \|z_t\|_t^2 \right).$$

So combining the two sum inequalities, we get:

$$\sum_{t=1}^{T} \langle u, z_t \rangle - f_T(u) \le \sum_{t=1}^{T} \left(f_t^*(\theta_t) - f_{t-1}^*(\theta_t) + \langle w_t, z_t \rangle + \frac{1}{2\beta_t} \|z_t\|_t^2 \right).$$

Rearranging this we get the proof for Lemma 1

We now prove the second statement.

We now prove the second statement. Recalling again the definition of w_t , we have that $f_t^*(\theta_t) = \langle w_t, \theta_t \rangle - f_t(w_t)$.

We now prove the second statement.

Recalling again the definition of w_t , we have that

$$f_t^*(\theta_t) = \langle w_t, \theta_t \rangle - f_t(w_t).$$

On the other hand, the Fenchel-Young inequality implies that

$$-f_{t-1}^*(\theta_t) \le f_{t-1}(w_t) - \langle w_t, \theta_t \rangle.$$

We now prove the second statement.

Recalling again the definition of w_t , we have that

$$f_t^*(\theta_t) = \langle w_t, \theta_t \rangle - f_t(w_t).$$

On the other hand, the Fenchel-Young inequality implies that

$$-f_{t-1}^*(\theta_t) \le f_{t-1}(w_t) - \langle w_t, \theta_t \rangle.$$

Combining the two, we get

$$f_t^*(\theta_t) - f_{t-1}^*(\theta_t) \le f_{t-1}(w_t) - f_t(w_t)$$
, as desired.

Linear Regression

• Linear regression is a method that utilizes a linear framework to model the predictive association between a single response variable and one or more explanatory variables.

Linear Regression

- Linear regression is a method that utilizes a linear framework to model the predictive association between a single response variable and one or more explanatory variables.
- We are given pairs of x_t, y_t where $y_t = u^{\top} x_t + \nu_t$ where ν_t is a random noise and our goal is to recover u.

At time step t = 1, 2, ..., T, we recieve (x_t, y_t) .

At time step t = 1, 2, ..., T, we recieve (x_t, y_t) . Use w_t based on the history.

At time step t = 1, 2, ..., T, we recieve (x_t, y_t) . Use w_t based on the history. Incur a loss based on the Square Loss:

At time step t = 1, 2, ..., T, we recieve (x_t, y_t) . Use w_t based on the history. Incur a loss based on the Square Loss:

$$l_t(u) = \frac{(y_t - u^{\top} x_t)^2}{2}$$

At time step t = 1, 2, ..., T, we recieve (x_t, y_t) . Use w_t based on the history. Incur a loss based on the Square Loss:

$$l_t(u) = \frac{(y_t - u^{\mathsf{T}} x_t)^2}{2}$$

Update w_{t+1} accordingly

At time step t = 1, 2, ..., T, we recieve (x_t, y_t) . Use w_t based on the history. Incur a loss based on the Square Loss:

$$l_t(u) = \frac{(y_t - u^{\mathsf{T}} x_t)^2}{2}$$

Update w_{t+1} accordingly Here $x_t \in \mathbb{R}^d$ and $y_t \in \mathbb{R}$

Vovk-Azoury-Warmuth Algorithm for Online Regression

$$= \arg\min_{w} \left(\frac{a}{2} \|w\|^2 + \frac{1}{2} \sum_{s=1}^{t-1} \left(y_s - w^{\top} x_s \right)^2 + \frac{1}{2} (w^{\top} x_t)^2 \right)$$

Vovk-Azoury-Warmuth Algorithm for Online Regression

$$= \arg\min_{w} \left(\frac{a}{2} \|w\|^2 + \frac{1}{2} \sum_{s=1}^{t-1} \left(y_s - w^\top x_s \right)^2 + \frac{1}{2} (w^\top x_t)^2 \right)$$
$$= \arg\min_{w} \left(\frac{a}{2} \|w\|^2 + \frac{1}{2} \sum_{s=1}^{t-1} (w^\top x_s)^2 - \sum_{s=1}^{t-1} y_{s'} w^\top x_s \right)$$

Vovk-Azoury-Warmuth Algorithm for Online Regression

$$= \arg\min_{w} \left(\frac{a}{2} \|w\|^{2} + \frac{1}{2} \sum_{s=1}^{t-1} \left(y_{s} - w^{\top} x_{s} \right)^{2} + \frac{1}{2} (w^{\top} x_{t})^{2} \right)$$

$$= \arg\min_{w} \left(\frac{a}{2} \|w\|^{2} + \frac{1}{2} \sum_{s=1}^{t-1} (w^{\top} x_{s})^{2} - \sum_{s=1}^{t-1} y_{s'} w^{\top} x_{s} \right)$$

$$= \arg\min_{w} \left(\frac{1}{2} w^{\top} \left(aI + \sum_{i=1}^{t-1} x_{s} x_{s}^{\top} \right) w - \sum_{s=1}^{t-1} y_{s} w^{\top} x_{s} \right)$$

$$= \arg\min_{w} \left(\frac{a}{2} \|w\|^{2} + \frac{1}{2} \sum_{s=1}^{t-1} \left(y_{s} - w^{\top} x_{s} \right)^{2} + \frac{1}{2} (w^{\top} x_{t})^{2} \right)$$

$$= \arg\min_{w} \left(\frac{a}{2} \|w\|^{2} + \frac{1}{2} \sum_{s=1}^{t-1} (w^{\top} x_{s})^{2} - \sum_{s=1}^{t-1} y_{s'} w^{\top} x_{s} \right)$$

$$= \arg\min_{w} \left(\frac{1}{2} w^{\top} \left(aI + \sum_{i=1}^{t-1} x_{s} x_{s}^{\top} \right) w - \sum_{s=1}^{t-1} y_{s} w^{\top} x_{s} \right)$$

$$= \left(aI + \sum_{s=1}^{t-1} x_{s} x_{s}^{\top} \right)^{-1} \sum_{i=1}^{t-1} y_{i} \cdot x_{i}$$

• Now, by letting $A_0 = aI$, $A_t = A_{t-1} + x_t x_t^{\top}$ for $t \geq 1$, and $z_s = y_s \cdot x_s$, we obtain the OMD update $w_t = A_t^{-1} \theta_t = \nabla f_t^*(\theta_t)$

- Now, by letting $A_0 = aI$, $A_t = A_{t-1} + x_t x_t^{\top}$ for $t \geq 1$, and $z_s = y_s \cdot x_s$, we obtain the OMD update $w_t = A_t^{-1} \theta_t = \nabla f_t^*(\theta_t)$
- Where $f_t(u) = \frac{1}{2}u^{\top}A_tu$ and $f_t^*(\theta) = \frac{1}{2}\theta^{\top}A_t^{-1}\theta$.

- Now, by letting $A_0 = aI$, $A_t = A_{t-1} + x_t x_t^{\top}$ for $t \geq 1$, and $z_s = y_s \cdot x_s$, we obtain the OMD update $w_t = A_t^{-1} \theta_t = \nabla f_t^*(\theta_t)$
- Where $f_t(u) = \frac{1}{2}u^{\top}A_tu$ and $f_t^*(\theta) = \frac{1}{2}\theta^{\top}A_t^{-1}\theta$.
- The regret bound of this algorithm is recovered from Lemma 1 by noting that f_t is 1-strongly convex with respect to the norm $||u||_t = \sqrt{u^\top A_t u}$.

- Now, by letting $A_0 = aI$, $A_t = A_{t-1} + x_t x_t^{\top}$ for $t \geq 1$, and $z_s = y_s \cdot x_s$, we obtain the OMD update $w_t = A_t^{-1} \theta_t = \nabla f_t^*(\theta_t)$
- Where $f_t(u) = \frac{1}{2}u^{\top}A_tu$ and $f_t^*(\theta) = \frac{1}{2}\theta^{\top}A_t^{-1}\theta$.
- The regret bound of this algorithm is recovered from Lemma 1 by noting that f_t is 1-strongly convex with respect to the norm $||u||_t = \sqrt{u^{\top} A_t u}$.

Hence, the regret $R_T(u)$ is controlled as follows:

$$R_T(u) = \frac{1}{2} \sum_{t=1}^{T} (y_t - w_t^{\top} x_t)^2 - \frac{1}{2} \sum_{t=1}^{T} (y_t - u^{\top} x_t)^2$$

$$R_T(u) = \frac{1}{2} \sum_{t=1}^{T} (y_t - w_t^{\top} x_t)^2 - \frac{1}{2} \sum_{t=1}^{T} (y_t - u^{\top} x_t)^2$$

$$= \sum_{t=1}^{T} (y_t u^{\top} x_t - y_t w_t^{\top} x_t) - f_T(u) + \frac{a}{2} ||u||_2^2 + \frac{1}{2} \sum_{t=1}^{T} (w_t^{\top} x_t)^2$$

 $R_T(u) = \frac{1}{2} \sum_{t=1}^{T} (y_t - w_t^{\top} x_t)^2 - \frac{1}{2} \sum_{t=1}^{T} (y_t - u^{\top} x_t)^2$

$$= \sum_{t=1}^{T} (y_t u^{\top} x_t - y_t w_t^{\top} x_t) - f_T(u) + \frac{a}{2} \|u\|_2^2 + \frac{1}{2} \sum_{t=1}^{T} (w_t^{\top} x_t)^2$$

$$\leq f_T(u) + \sum_{t=1}^{T} y_t^2 \|x_t\|_{2t,*}^2 + f_t^*(\theta_t) - f_{t-1}^*(\theta_t) - f_T(u) + \frac{a}{2} \|u\|_2^2 + \frac{1}{2} \sum_{t=1}^{T} (w_t^{\top} x_t)$$

$$R_{T}(u) = \frac{1}{2} \sum_{t=1}^{T} (y_{t} - w_{t}^{\top} x_{t})^{2} - \frac{1}{2} \sum_{t=1}^{T} (y_{t} - u^{\top} x_{t})^{2}$$

$$= \sum_{t=1}^{T} (y_{t} u^{\top} x_{t} - y_{t} w_{t}^{\top} x_{t}) - f_{T}(u) + \frac{a}{2} \|u\|_{2}^{2} + \frac{1}{2} \sum_{t=1}^{T} (w_{t}^{\top} x_{t})^{2}$$

$$\leq f_{T}(u) + \sum_{t=1}^{T} y_{t}^{2} \|x_{t}\|_{2t,*}^{2} + f_{t}^{*}(\theta_{t}) - f_{t-1}^{*}(\theta_{t}) - f_{T}(u) + \frac{a}{2} \|u\|_{2}^{2} + \frac{1}{2} \sum_{t=1}^{T} (w_{t}^{\top} x_{t})$$

$$\leq \frac{a}{2} \|u\|^{2} + \frac{Y^{2}}{2} \sum_{t=1}^{T} x_{t}^{\top} A_{t}^{-1} x_{t}, \text{ where, } \{Y = \max \|y_{t}\|_{t}\}$$

$$R_{T}(u) = \frac{1}{2} \sum_{t=1}^{T} (y_{t} - w_{t}^{\top} x_{t})^{2} - \frac{1}{2} \sum_{t=1}^{T} (y_{t} - u^{\top} x_{t})^{2}$$

$$= \sum_{t=1}^{T} (y_{t} u^{\top} x_{t} - y_{t} w_{t}^{\top} x_{t}) - f_{T}(u) + \frac{a}{2} \|u\|_{2}^{2} + \frac{1}{2} \sum_{t=1}^{T} (w_{t}^{\top} x_{t})^{2}$$

$$\leq f_{T}(u) + \sum_{t=1}^{T} y_{t}^{2} \|x_{t}\|_{2t,*}^{2} + f_{t}^{*}(\theta_{t}) - f_{t-1}^{*}(\theta_{t}) - f_{T}(u) + \frac{a}{2} \|u\|_{2}^{2} + \frac{1}{2} \sum_{t=1}^{T} (w_{t}^{\top} x_{t})^{2}$$

$$\leq \frac{a}{2} \|u\|^{2} + \frac{Y^{2}}{2} \sum_{t=1}^{T} x_{t}^{\top} A_{t}^{-1} x_{t}, \text{ where, } \{Y = \max \|y_{t}\|_{t}\}$$

since
$$f_t^*(\theta_t) - f_{t-1}^*(\theta_t) \le f_{t-1}(w_t) - f_t(w_t) = -\frac{1}{2}(w_t^\top x_t)^2$$

We use a new variant of Regret named the AF-Regret, defined as follows:

We use a new variant of Regret named the AF-Regret, defined as follows:

$$R_T^{AF}(u) = \sum_{t=1}^{T} (w_t^{\top} x_t - u^{\top} x_t)^2$$

Notice that
$$R_T(u) + \frac{1}{2}R_T^{AF}(u) =$$

We use a new variant of Regret named the AF-Regret, defined as follows:

$$R_T^{AF}(u) = \sum_{t=1}^T (w_t^{\top} x_t - u^{\top} x_t)^2$$

Notice that $R_T(u) + \frac{1}{2}R_T^{AF}(u) =$

$$\sum_{t=1}^{T} \left((y_t - w_t^{\top} x_t)^2 - (y_t - u^{\top} x_t)^2 + \frac{1}{2} (w_t^{\top} x_t - u^{\top} x_t)^2 \right)$$

We use a new variant of Regret named the AF-Regret, defined as follows:

$$R_T^{AF}(u) = \sum_{t=1}^T (w_t^{\top} x_t - u^{\top} x_t)^2$$

Notice that $R_T(u) + \frac{1}{2}R_T^{AF}(u) =$

$$\sum_{t=1}^{T} \left((y_t - w_t^{\top} x_t)^2 - (y_t - u^{\top} x_t)^2 + \frac{1}{2} (w_t^{\top} x_t - u^{\top} x_t)^2 \right)$$

$$= \sum_{t=1}^{T} \left((y_t - w_t^{\top} x_t) u^{\top} x_t - (y_t - w_t^{\top} x_t) w_t^{\top} x_t \right)$$

We use a new variant of Regret named the AF-Regret, defined as follows:

$$R_T^{AF}(u) = \sum_{t=1}^T (w_t^{\top} x_t - u^{\top} x_t)^2$$

Notice that $R_T(u) + \frac{1}{2}R_T^{AF}(u) =$

$$\sum_{t=1}^{T} \left((y_t - w_t^{\top} x_t)^2 - (y_t - u^{\top} x_t)^2 + \frac{1}{2} (w_t^{\top} x_t - u^{\top} x_t)^2 \right)$$

$$= \sum_{t=1}^{T} \left((y_t - w_t^{\top} x_t) u^{\top} x_t - (y_t - w_t^{\top} x_t) w_t^{\top} x_t \right)$$

$$= \sum_{t=1}^{T} (u - w_t)^{\top} z_t$$

We set z_t to equal $-(y_t - w_t^{\top} x_t) x_t$

We set z_t to equal $-(y_t - w_t^{\top} x_t) x_t$ Now, pick any function f which is 1-strongly convex with respect to some norm $\|\cdot\|$, and let $f_t(u) = X_t^2 f(u)$, where $X_t = \max_{s < t} \|x_s\|_*$

We set z_t to equal $-(y_t - w_t^{\top} x_t) x_t$ Now, pick any function f which is 1-strongly convex with respect to some norm $\|\cdot\|$, and let $f_t(u) = X_t^2 f(u)$, where $X_t = \max_{s \leq t} \|x_s\|_*$

$$\sum_{t=1}^{T} \langle u - w_t, z_t \rangle \le f_T(u) + \frac{1}{2} \sum_{t=1}^{T} (y_t - w_t^{\top} x_t)^2$$

We set z_t to equal $-(y_t - w_t^{\top} x_t) x_t$ Now, pick any function f which is 1-strongly convex with respect to some norm $\|\cdot\|$, and let $f_t(u) = X_t^2 f(u)$, where $X_t = \max_{s \le t} \|x_s\|_*$ Lemma 1 then immediately implies that

$$\sum_{i=1}^{T} (1 - i \sum_{i=1}^{T} (1 - i \sum_{i=1}^{T}$$

$$\sum_{t=1}^{I} \langle u - w_t, z_t \rangle \le f_T(u) + \frac{1}{2} \sum_{t=1}^{I} (y_t - w_t^{\top} x_t)^2$$

Where we used the X_t^2 -strong convexity of f_t and the fact that $f_{t} > f_{t-1}$.

Combining previous inequalities and the bound for $R_T(u)$, we get:

$$R_T^{AF}(u) \le 2X_T^2 f(u) + \sum_{t=1}^T (y_t - u^\top x_t)^2$$

• The Authors have generalized Online Mirror Descent for time-varying regularizer.

- The Authors have generalized Online Mirror Descent for time-varying regularizer.
- They modeled Linear Regression into an Online Learning scenario to analyze regret bounds.

- The Authors have generalized Online Mirror Descent for time-varying regularizer.
- They modeled Linear Regression into an Online Learning scenario to analyze regret bounds.
- Relating to the VAW Algorithm, they fit the GOMD model and found tighter bounds for the Regret and AF-Regret.

- The Authors have generalized Online Mirror Descent for time-varying regularizer.
- They modeled Linear Regression into an Online Learning scenario to analyze regret bounds.
- Relating to the VAW Algorithm, they fit the GOMD model and found tighter bounds for the Regret and AF-Regret.
- They further expanded upon this to work for Classification models using GOMD.

Thank You!

