დავალებები 1-35-ის პასუხები:

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
5			X				X											X
δ													X		X			
გ						X			X	X							X	
Q					X						X			X		X		
0	X	X		X				X				X						

	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35
5		X		X					X			X					
δ							X			X	X				X	X	
გ	X		X														X
Q					X			X					X				
0						X								X			

დავალებები 1-35-ის შეფასების სქემა: ყოველი დავალების სწორი პასუხი ფასდება 1 ქულით, ხოლო მცდარი პასუხი - 0 ქულით.

36. (**5 ქულა**) ბურთი ჩამოაგდეს უსაწყისო სიჩქარით გარკვეული სიმაღლიდან. იატაკზე დაცემისას მან დაკარგა ენერგიის ნაწილი. შეუსაბამეთ ციფრებით დანომრილ ბურთის მახასიათებელ ფიზიკურ სიდიდეებს მათი t დროზე დამოკიდებულების გამომსახველი თვისებრივი გრაფიკები. პასუხების ფურცელზე ცხრილის სათანადო უჯრებში დასვით ნიშანი \mathbf{X} .

- 1. გავლილი მანძილი
- 2. ბურთის დედამიწასთან ურთიერთქმედების პოტენციალური ენერგია
- 3. კინეტიკური ენერგია
- 4. იმპულსის გეგმილი ვერტიკალურად ზევით მიმართულ ღერძზე
- 5. გადაადგილების მოდული
- 6. სრული მექანიკური ენერგია

	1	2	3	4	5	6
٥					X	
δ	X					
გ		X				
გ დ						X
J			X			
3				X		

მიღებული ქულა უდრის სწორი სვეტების რიცხვს მინუს ერთი. სწორი სვეტები ისეთია, როგორიც მოყვანილ ცხრილშია. განსხვავებული სვეტები მცდარია.

(მაქს. 5 ქულა)

37. (5 ქულა) შეუსაბამეთ ციფრებით დანომრილ სიდიდეებს ასოებით დანომრილი SI სისტემის ძირითადი ერთეულებით გამოსახული მათი განზომილებები. პასუხების ფურცელზე ცხრილის სათანადო უჯრებში დასვით ნიშანი \mathbf{X} .

- 1. წნევა
- 2. სიხისტე
- 3. ძალის მომენტი
- 4. გრავიტაციული მუდმივა
- 5. სითბოს რაოდენობა
- 6. დნობის კუთრი სითბო

- ა. მ³/ (კგ·წმ²)
- ბ. მ²/ (კგ**⋅**წმ²)
- გ. კგ/ $(\partial \cdot \mathring{\eta} \partial^2)$
- φ. 3δ·θ²/ βθ²
- ∂^2 / ∂^2
- 3. 38 / \(\text{\text{F}}\text{\text{O}}^2

	1	2	3	4	5	6
ა				X		
δ						
გ	X					
გ დ			X		X	
ე						X
3		X				

მიღებული ქულა უდრის სწორი სვეტების რიცხვს მინუს ერთი. სწორი სვეტები ისეთია, როგორიც მოყვანილ ცხრილშია. განსხვავებული სვეტები მცდარია.

(მაქს. 5 ქულა)

38. (**5 ქულა**) მუდმივი მასის იდეალურმა აირმა შეასრულა ნახატზე გამოსახული 1-2 პროცესი. საწყის მდგომარეობაში აირის აბსოლუტური ტემპერატურაა T_0 . p_0 და V_0 მოცემული სიდიდეებია.

- რისი ტოლია აირის აბსოლუტური ტემპერატურა საბოლოო მდგომარეობაში?
- 2) დაწერეთ პროცესის p(V) განტოლება.
- 3) დაწერეთ პროცესის T(V) განტოლება.
- 4) განსაზღვრეთ, რომელი მოცულობის დროსაა აირის ტემპერატურა მაქსიმალური და რისი ტოლია ეს ტემპერატურა.

ამოხსნა:

1) აირის მდგომარეობის განტოლებიდან გვაქვს: $4p_0 \cdot V_0 / T_0 = p_0 \cdot 4V_0 / T_2$. აქედან $T_2 = T_0$.

(1 ქულა)

- 2) გრაფიკის V ღერძთან დახრის კუთხის ტანგენსია $(-\frac{p_0}{V_0})$. ამიტომ $p(V)=b+(-\frac{p_0}{V_0})V$. გრაფიკის 1 წერტილისთვის გვაქვს $4p_0=b+(-\frac{p_0}{V_0})V_0$, საიდანაც $b=5p_0$. ამიტომ საზოლოოდ $p(V)=(-\frac{p_0}{V_0})V+5p_0$.
- 3) მდგომარეობის განტოლებიდან $p\cdot V/T=4p_0\cdot V_0/T_0$, საიდანაც $p=4p_0\cdot V_0\cdot T/(T_0\cdot V)$. შევიტანოთ ეს p(V) განტოლებაში და მივიღებთ $4p_0\cdot V_0\cdot T/(T_0\cdot V)=(-\frac{p_0}{V_0})V+5p_0$. აქედან საბოლოდდ $T(V)=(-\frac{T_0}{4{V_0}^2})V^2+(\frac{5T_0}{4{V_0}})V$. (1 ქულა)
- 4) მიღებული T(V) დამოკიდებულება კვადრატულია, ამიტომ მაქსიმალური ტემპერატურა პარაბოლის წვეროს შეესაბამება (პარაბოლის შტოები ქვევითაა მიმართული). წვეროს შესაბამისი მოცულობაა $V_m = -(\frac{5T_0}{4V_0}): [2\cdot(-\frac{T_0}{4V_0^2})] = 5V_0/2$ (1 ქულა), ხოლო მაქსიმალური ტემპერატურაა $T_m = T(V_m) = (-\frac{T_0}{4V_0^2})V_{m^2} + (\frac{5T_0}{4V_0})V_m = 25T_0/16$ (1 ქულა).

39. (**5 ქულა**) ნახატზე გამოსახულ სქემაში დენის წყაროს ემ ძალაა $\mathcal{E} = 48$ ვ, შიგა წინაღობაა r=1 ომი, ხოლო კონდენსატორის ტევადობაა C=1 მკფ. წრედში დამყარებულია მუდმივი დენი. განსაზღვრეთ:

- 1) გარე წრედის წინაღობა;
- 2) დენის წყაროში გამავალი დენის ძალა;
- 3) R₂ წინაღობაში გამოყოფილი სიმძლავრე;
- 4) დენის ძალა R_5 წინაღობაში;
- 5) კონდენსატორის მუხტი.

ამოხსნა:

1) $R' = \frac{18 \, \text{man}}{2} = 9 \, \text{man}$ (არ ვითვალისწინებთ R_1 წინაღობას, რადგან მასთან მიმდევრობით ჩართულია კონდენსატორი და მასში დენი არ გადის).

$$\frac{1}{R"} = \frac{1}{R_5} + \frac{1}{R_6} \implies R" = 4 \,\text{mdo}, \, R = R' + R_4 + R" = 15 \,\text{mdo}$$
 (1 ქულა)

3)
$$R_2$$
 წინაღობაში დენის ძალაა $I_2=I/2=1,5$ ა. $P_2=I_2^2R_2=40,5$ ვტ (1 ქულა)

4)
$$I_5/I_6 = R_6/R_5 = 2$$
, $I_5 + I_6 = I \Rightarrow I_5 = 2$ ა (1 ქულა)

5) კონდესატორი პარალელურადაა შეერთებული R_2 წინაღობასთან. ამიტომ მასზე მოდებული ძაბვაა $U=I_2$ $R_2=27$ ვ, ხოლო მუხტი - q=UC=27 მკვ. (1 ქულა)

40. (**5** ქულა) h=6r სიმაღლიდან ღარში ჩამოსრიალებული m მასის პატარა მელაკი მოძრაობს r რადიუსიან "მკვდარ მარყუჟზე". ხახუნი უგულებელყავით.განსაზღვრეთ:

- 1) მელაკის სიჩქარე მარყუჟის ზედა A წერტილში;
- 2) რა ძალით აწვება ძელაკი მარყუჟს ზედა A წერტილში;
- 3) რა ძალით აწვება ძელაკი მარყუჟს ქვედა B წერტილში;

5) რა მინიმალური სიმაღლიდან უნდა ჩამოსრიალდეს მელაკი, რომ ${\bf r}$ რადიუსიანი "მკვდარი მარყუჟი" გაიაროს.

ამოხსნა:

$$1) \ mV_{A^2}/2 = mg(h - h_A) = 4mgr, საიდანაც V_A = \sqrt{8gr}$$
 (1 ქულა)

- 2) მარყუჟი მელაკს აწვება ქვევით მიმართული N_A მალით, რომელიც სიმძიმის მალასთან ერთად მელაკს ანიჭებს ცენტრისკენულ აჩქარებას: $N_A + mg = mV_A^2/r$, საიდანაც $N_A = 7mg$. N_A , როგორც მოსალოდნელი იყო, არაუარყოფითი მივიღეთ, რაც იმის მაჩვენებელია, რომ მელაკი A წერტილს ნამდვილად მიაღწევს; (1 ქულა)
- 3) ძელაკის სიჩქარე B წერტილში ტოლია $V_B = \sqrt{2gh} = \sqrt{12gr}$. მარყუჟის რეაქციის N_B ძალა მიმართულია ზევით და აკმაყოფილებს განტოლებას N_B $mg = mV_B{}^2/r$, საიდანაც $N_B = 13mg$; (1 ქულა)
- 4) ძელაკის სიჩქარე C წერტილში ტოლია $V_{\text{C}} = \sqrt{2g(h-h_{\text{C}})} = \sqrt{10gr}$. ამ შემთხვევაში ძელაკს ცენტრისკენულ აჩქარებას მხოლოდ მარყუჟის რეაქციის N_{C} მალა ანიჭებს, სიმძიმის ძალა აქ არ მონაწილეობს. ამიტომ N_{C} მალა აკმაყოფილებს განტოლებას $N_{\text{C}} = \text{mV}_{\text{C}}^2/\text{r}$, საიდანაც $N_{\text{C}} = 10\text{mg}$;
- 5) მელაკი "მკვდარ მარყუჟს" გაივლის, თუკი მიაღწევს A წერტილს. ზღვრულ შემთხვევაში ამ წერტილში მარყუჟის N_A რეაქციის მალა წულის ტოლი უნდა იყოს, ანუ უნდა დაკმაყოფილდეს განტოლება $mg=mV_{AMin^2}/r$ (იხ. მე-2 პუნქტი). აქედან $V_{AMin^2}=gr$. მეორეს მხრივ, $mV_{AMin^2}/2=mg(h_{Min}-h_A)$, საიდანაც $h_{Min}=2$,5r. (1 ქულა)

- **41.** (**5 ქულა**) F ფოკუსური მანძილის მქონე შემკრები ლინზის პარალელური ღერო თანაბრად მოძრაობს ლინზისაკენ. საწყის მომენტში ღერო ლინზიდან **3**F მანძილზეა, ხოლო t დროის შემდეგ გადის ფოკუსში. განსაზღვრეთ:
- 1) მანძილი ლინზიდან გამოსახულებამდე საწყის მომენტში;
- 2) ლინზის გადიდება საწყის მომენტში;
- 3) ლინზის გადიდება საწყისი მომენტიდან 1,25 t დროის შემდეგ;
- 4) საწყის მომენტში ღეროს გამოსახულების ლინზიდან დაშორების მყისი სიჩქარე.

ამოხსნა:

2) ლინზის გადიდება საწყის მომენტში $\Gamma = \frac{f}{d} = \frac{1}{2}$; (1 ქულა)

3) ღეროს მოძრაობის სიჩქარეა $V=\frac{2F}{t}$. ამიტომ მოძრაობის დაწყებიდან 1,25 t დროის განმავლობაში ღერო გაივლის 2,5F მანძილს და აღმოჩნდება ლინზიდან $d_1=0,5F$ - ით დაშორებულ წერტილში. ვინაიდან $d_1< F$, ლინზის ფორმულა ჩაიწერება როგორც $\frac{1}{F}=\frac{1}{d_1}-\frac{1}{f_1}$. აქედან $f_1=F$ და გადიდება $\Gamma_1=\frac{f_1}{d_1}=2;$ (1 ქულა)

4) პირველი პუნქტის ლინზის ფორმულის $\, {
m t}$ - თი გაწარმოებით მივიღებთ $\, 0 = - \, \frac{{
m d}}{{
m d}^2} - \frac{{
m f}}{{
m f}^2} \, .$ აქ $\, U = \dot {
m f} \,$ ღეროს გამოსახულების ლინზიდან დაშორების საძიებელი სიჩქარეა, ხოლო $\, \dot d \,$ - ლინზიდან ღეროს დაშორების სიჩქარე. შევნიშნოთ, რომ ღერო ლინზას უახლოვდება, ამიტომ $\, \dot d = - \, {
m V} \,$ და $\, U = \dot f = - \, \frac{{
m f}^2}{{
m d}^2} \, \dot {
m d} \, = \Gamma^2 \, {
m V} = \frac{{
m F}}{2{
m t}} \, .$

მყისი სიჩქარის საპოვნელად სწორი მიდგომა (1 ქულა) სწორი საბოლოო შედეგი (1 ქულა) **42.** (2 ქულა) m მასის სხეულზე მოქმედი დამამუხრუჭებელი ძალის მოდული სიჩქარეზე დამოკიდებულია კანონით: $F=Av^2$, სადაც A მოცემული დადებითი ნიშნის მუდმივაა. განსაზღვრეთ, რა დროში შემცირდება სხეულის სიჩქარე v_0 -დან v_0 /3-მდე.

ამოხსნა:

ნიუტონის მეორე კანონის თანახმად
$$-\mathrm{Av}^2=\mathrm{m}\frac{\mathrm{d} v}{\mathrm{d} t}$$
 (1 ქულა)

საიდანაც
$$\mathrm{d}t = -rac{\mathrm{m}}{\mathrm{A}}rac{\mathrm{d}\mathrm{v}}{\mathrm{v}^2}$$
 და $\mathrm{t} = -rac{\mathrm{m}}{\mathrm{A}}\int_{\mathrm{v}_0}^{\mathrm{v}_0/3}rac{\mathrm{d}\mathrm{v}}{\mathrm{v}^2} = rac{\mathrm{m}}{\mathrm{A}}\left(rac{3}{\mathrm{v}_0} - rac{1}{\mathrm{v}_0}\right) = rac{2\mathrm{m}}{\mathrm{A}\mathrm{v}_0}$ (1 ქულა)

43. (3 ქულა) X ღერმზე სხეულის იმპულსის გეგმილი დროის მიხედვით იცვლება ვანონით: $p_x=A\sqrt[3]{t^2}+B$ $\cos \omega t$, სადაც A, B ω ω მოცემული მუდმივებია. განსაზღვრეთ, რა ვანონით იცვლება დროის მიხედვით სხეულზე მოქმედი ძალის გეგმილი X ღერმზე.

ამოხსნა:

$$F_x = \frac{dp_x}{dt}$$
 (1 ქულა)

$$F_{x} = \frac{2}{3} \frac{A}{\sqrt[3]{t}} - \omega B \sin \omega t$$