

CORRELATION

RESEARCH PROBLEM

What about if we want to see if a relationship exists between two variables, but have too many categories/attributes within the variable?

What about if those categories were interval-ratio?

RESEARCH PROBLEM

If interval-ratio, we can be more sophisticated... we <u>can say much more than</u> how the categories overlap.

- Equal intervals/steps between values means we can talk about degree of relationship between the variables
 - How the two variables move together (up, down, or opposite directions)
 - Can talk about the <u>strength</u> or <u>direction</u> of the association between two variables

IT'S A CO-RELATION

Moving together

- "Co-relation":
 - The relationship between two interval-ratio variables
- Correlation:
 - Describes strength and direction of relationships in a linear fashion

LOGIC OF CORRELATION

Examines <u>how much</u> two variables move together, <u>which direction</u> they're moving (and the calculation <u>constrains</u> that value)

LOGIC OF CORRELATION

Examines <u>how much</u> two variables move together, <u>which direction</u> they're moving (and the calculation <u>constrains</u> that value)

- Which direction?
 - As the X variable increases, does the Y increase or decrease?

- How much: how strongly are variables related/moving together?
 - Can we perfectly predict Y from X, or not?
 - For example, is Y = 2X?

We know that both are associated because the taller a person is, the more they tend to weigh

TWO KEY COMPONENTS OF CORRELATION

Strength of relationship

Direction of relationship (linear)

STRENGTH OF CORRELATION

Correlations vary in strength

Can visualize strength using scatterplot

- Independent variable (predictor) on X axis, dependent variable (outcome) on Y axis
- Easier to call one variable X (IV) and the other Y (DV)

Strength increases as the points on the scatterplot more closely form an imaginary line

STRENGTH OF CORRELATION

Strong correlation: points are closer to imaginary line

• Perfect correlation: each point falls directly on the imaginary line

Weak Correlation: points are further from imaginary line

• No correlation: no points touch the line

Perfect correlations and no correlations rarely seen in the real world

STRENGTH OF CORRELATION

DIRECTION OF CORRELATION

Positive correlation

- Relationships in the SAME direction
 - As one variable increases, the other variable increases
 - As one variable decreases, the other variable decreases

Negative correlation

- relationships in the OPPOSITE direction; inverse relationship
 - as the score for one variable increases, the other decreases (vice versa)

DIRECTION OF CORRELATION

(a) Years of School and Income

(b) Years of School and Prejudice

A NOTE ON NONLINEAR RELATIONSHIPS

Not all relationships between X and Y form a straight line/are linear

Curvilinear correlation

• one variable increases as the other increases until the relationship reverses itself

CORRELATION

Pearson's Product-Moment Correlation Coefficient (r)

- Examines the <u>strength</u> and <u>direction</u> of two interval-ratio variables
- Constrained to range from -1.0 to +1.0

CORRELATION (RESEARCH QUESTION)

Is variation in X related to variation in Y?

CORRELATION (VARIABLE TYPES)

IV: interval-ratio (e.g. continuous)

DV: interval-ratio (e.g. continuous)

CORRELATION (ASSUMPTIONS)

1. Linearity

- · Variables move together in a linear fashion.
 - Visual inspection of scatterplot

2. Normality

- Distribution must be relatively normal
 - Visual inspection of...
 - Histogram
 - Box-and-Whiskers plots
 - Normality (Q-Q) plots

3. Absence of Range Restrictions

- Values on variables cannot be restricted to small range
- 4. Absence of Heterogeneous Subsamples
 - Not having groups that have extremely different values (e.g. for which a t-test/ANOVA might appropriately identify)

CORRELATION (HYPOTHESES)

Null hypothesis (H₀)

- No relationship between the variables (in the population)
 - H_0 : $\rho = 0$

Research hypothesis (H₁)

- There is a relationship between the variables (in the population)
 - $H_1: \rho \neq 0$

Rejecting H₀ means:

• there is a significant relationship between the X and Y variables

PEARSON'S CORRELATION COEFFICIENT (1)

Strength:

• The closer to ± 1.0 , the stronger the relationship

Direction:

• Ranges from -1.0 to +1.0

Negative: negative correlation

• Positive: positive correlation

-0.7 and +0.7 have the same strength, but different directions

CORRELATION STRENGTH CUTOFFS (COHEN 1988)

Weak/Small Correlation

• *r* less than/equal to |.29| $(r \le |.29|)$

Moderate Correlation

• r between |.30| and |.49| (|.30| $\leq r \leq$ |.49|)

Strong Correlation

• r greater than/equal to |.50| ($r \ge |.50|$)

CALCULATING THE PEARSON'S CORRELATION COEFFICIENT (*)

Relies on concept of <u>covariance</u>: how much, on average, two variables *vary* together

$$cov_{XY} = \frac{\Sigma (X - \bar{X})(Y - \bar{Y})}{N - 1}$$

- Uses the product of X and Y deviations from their means
 - Deviation of $X(X-\overline{X})$
 - Example: tells us how much more or less education a person has from the mean education
 - Deviation of Y $(Y \overline{Y})$
 - Example: tells us how much more or less income a person makes than the mean income

CALCULATING THE PEARSON'S CORRELATION COEFFICIENT (*)

But because cov_{XY} is a function of the SD for each variable, we have to constrain it

 e.g. it is highly related to the variability within each variable – is extremely large when variables have large SDs

To constrain, we divide cov_{XY} by the product of X and Y SDs, which is an estimate of how the variability of both variables moves together...

CALCULATING THE PEARSON'S CORRELATION COEFFICIENT (*)

$$r = \frac{cov_{XY}}{SD_XSD_Y}$$

ANOTHER CALCULATION FOR PEARSON'S r

$$r = \frac{\sum (X - \bar{X})(Y - \bar{Y})}{\sqrt{\sum (X - \bar{X})^2 \sum (Y - \bar{Y})^2}} = \frac{SP}{\sqrt{SS_X SS_Y}}$$

X	Y	$(X-\overline{X})$	$(Y-\overline{Y})$	$(X\text{-}\overline{X})(Y\text{-}\overline{Y})$	$(X\text{-}\overline{X})^2$	$(Y-\overline{Y})^2$

ANOTHER CALCULATION FOR PEARSON'S r

$$r = \frac{\sum XY - N\bar{X}\bar{Y}}{\sqrt{(\sum X^2 - N\bar{X}^2)(\sum Y^2 - N\bar{Y}^2)}}$$

CORRELATION AND THE /-DISTRIBUTION

The <u>r-distribution</u> (sort of like normal distribution) <u>has multiple curves</u>

- Each curve based on degrees of freedom (e.g. sample size)
 - Looks more like normal distribution if sample size is large enough ($N \ge 30$)

$$r = \frac{cov_{XY}}{SD_XSD_Y}$$

$$\mathcal{O}f = N - 2$$

HYPOTHESIS TESTING (IS THE r EXTREME?)

The logic is the same as usual, compare our calculated r (obtained) value to the critical r value (<u>r Table</u>)

- If $r_{\text{obtained}} \ge r_{\text{critical}}$, reject the null hypothesis
- If $r_{\text{obtained}} < r_{\text{critical}}$, fail to reject the null hypothesis

HYPOTHESIS TESTING (IS THE r EXTREME?)

To find critical r, we need alpha (α) and degrees of freedom df.

- Select the column based on α (usually $\alpha = .05$)
- Select the row based on df (df = N-2)
 - Where they intersect is the critical r value, $r_{\rm critical}$

If
$$r_{\text{obtained}} \ge r_{\text{critical}}$$
, reject H_0

HYPOTHESIS TESTING (IS THE r EXTREME?)

- If $|r_{\text{obtained}}| \geq |r_{\text{critical}}|$, then...
- Relationship between X and Y is so extremely different from 0 (no relationship) that we can't blame
 it on sampling error, therefore... H₀ is probably not true, so...
- r_{obtained} is in rejection region
- Reject H₀
- $p \leq \alpha$
- Statistically significant relationship

We can also convert our r_{obtained} test into a t-test, and use the t-test instead (\underline{t} Table)

- If $t_{\text{obtained}} \ge t_{\text{critical}}$, reject the null hypothesis
- If $t_{\rm obtained} < t_{\rm critical}$, fail to reject the null hypothesis

To convert *r* test into a *t*-test, we do the following:

$$t = \frac{r\sqrt{N-2}}{\sqrt{1-r^2}} = \frac{r\sqrt{df}}{\sqrt{1-r^2}}$$

Then we need to find critical t, using alpha (α) and degrees of freedom df.

- Select the column based on α (usually $\alpha = .05$)
- Select the row based on df (df = n1 + n2 2; df = N 2)
 - Where they intersect is the critical t value, $t_{\rm critical}$

If
$$t_{\text{obtained}} \geq t_{\text{critical}}$$
, reject H_0

So, applied to *t*-Test:

- If $|t_{\text{obtained}}| \geq |t_{\text{critical}}|$, then...
 - Relationship between X and Y is so extremely different from 0 (no relationship) that we can't blame it on sampling error, therefore... H₀ is probably not true, so...
 - t_{obtained} is in rejection region
 - Reject H₀
 - $\rho \leq \alpha$
 - Statistically significant difference

REPORTING R

Report

- The test used
- If you reject or fail to reject the null hypothesis
- The variables used in the analysis
- The degrees of freedom, calculated value of the test, and p-value
 - $r(\underline{df}) = \underline{r}_{obtained}$, <u>p-value</u>
- "Using the Pearson correlation, I <u>reject/fail to reject</u> the null hypothesis that there is no relationship between <u>the independent variable</u> and <u>the dependent variable</u>, in the population, r(?) = ?, p? .05"
- (if significant, follow with...)
 - "We have a [strength] [direction] relationship between [X] and [Y]"

PEARSON'S r AND r2 (EFFECT SIZE)

Pearson's product moment correlation coefficient is the basis for regression analysis.

- In correlation we find r, in regression we use r, but we square it to tell us "how much variation in Y is explained by variation in X"
- This is known as effect size (r2), tells us how much X affects Y

r² tells us how much percent of variation in Y is explained by variation in X

- r² is a proportion, so convert it to percentage
 - If $r^2 = .159$, that means that 15.9% of the variation in Y is explained by variation in X

Overlap in Variance=Variance Explained

x

y

15.9%