BRUTE UDESC

Eliton Machado da Silva, Enzo de Almeida Rodrigues, Eric Grochowicz, João Vitor Frölich, João Marcos de Oliveira e Rafael Granza de Mello

3 de janeiro de 2024

Índice

1	Estr	ruturas-de-Dados	3
	1.1	Operation Queue	3
	1.2	Interval Tree	3
	1.3	Segment Tree	4
	1.4	Disjoint Sparse Table	16
	1.5	Operation Stack	16
	1.6	Fenwick Tree	17
	1.7	Disjoint Set Union	17
	1.8	LiChao Tree	21
	1.9	KD Fenwick Tree	23
	1.10	Ordered Set	23
	1.11	MergeSort Tree	24
	1.12	Sparse Table	27
2	Gra	fos	28
	2.1	Hungarian Algorithm for Bipartite Matching	28
	2.2	Stoer-Wagner	28
	2.3	LCA	29
	2.4	Heavy-Light Decomposition (hld.cpp)	31
	2.5	Kruskal	32
	2.6	Binary Lifting	33
	2.7	Dijkstra	34
	2.8	Fluxo	36
	2.9	Inverse Graph	39
	2.10	2-SAT	40

	2.11	Graph Center	41	
	2.12	Shortest Path Fast Algorithm (SPFA)	42	
0	Gi .		43	
3	String			
	3.1	Aho-Corasick	43	
	3.2	Patricia Tree ou Patricia Trie	44	
	3.3	Prefix Function	44	
	3.4	Hashing	46	
	3.5	Trie	46	
	3.6	Algoritmo de Manacher	47	
	3.7	Lyndon Factorization	48	
	3.8	Suffix Array	49	
1	Dara	adigmas	51	
•		Mo	51	
	4.1	Exponenciação de Matriz	53	
	4.3	Busca Binária Paralela	54	
	4.4	Divide and Conquer	56	
	4.5	Busca Ternária	58	
	4.6	DP de Permutação	58	
	4.7	Convex Hull Trick	59	
	4.8	All Submask	60	
5	Mat	emática	61	
	5.1	Soma do floor(n / i) $\dots \dots $	61	
	5.2	Primos	61	
	5.3	Numeric Theoric Transformation	62	
	5.4	Eliminação Gaussiana	64	
	5.5	Máximo divisor comum	65	
	5.6	Fatoração	66	
	5.7	Teorema do Resto Chinês	67	
	5.8	Transformada rápida de Fourier	68	
	5.9	Exponenciação modular rápida	69	
	5.10	Totiente de Euler	69	
		Modular Inverse	70	

1 Estruturas-de-Dados

1.1 Operation Queue

Fila que armazena o resultado do operatório dos itens.

* Complexidade de tempo (Push): O(1) * Complexidade de tempo (Pop): O(1) template <typename T> struct op queue { 1 2 stack < pair < T, T >> s1, s2; 3 T result; T op(T a, T b) { 4 return a; // TODO: op to compare 5 // min(a, b); 6 7 gcd(a, b);8 lca(a, b); 9 T get() { 10 **if** (s1.empty() || s2.empty()) { 11 return result = s1.empty()? s2.top().second : s1.top().second; 12 13 **return** result = op(s1.top().second, s2.top().second);14 15 16 void add(T element) { 17 18 result = s1.empty() ? element : op(element, s1.top().second); 19 s1.push({element, result}); 20 void remove() { 21 **if** (s2.empty()) { 2223 **while** (!s1.empty()) { 24T elem = s1.top().first;25s1.pop(); T result = s2.empty()? elem : op(elem, s2.top().second); 2627 s2.push({elem, result}); 28 29

1.2 Interval Tree

}

30 31

32

33

};

Por Rafael Granza de Mello

s2.pop();

Capaz de retornar todos os intervalos que intersectam [L, R]. **L e R inclusos** Contém funções insert(L, R, ID), erase(L, R, ID) , overlaps(L, R) e find(L, R, ID). É necessário inserir e apagar indicando tanto os limites quanto o ID do intervalo.

```
- Complexidade de tempo: O(N * log(N)).
```

T remove elem = s2.top().first;

Podem ser usadas as operações em Set:

```
- insert() - erase() - upper_bound() - etc

1  #include <ext/pb_ds/assoc_container.hpp>
2  #include <ext/pb_ds/tree_policy.hpp>
3  using namespace __gnu_pbds;
4
```

```
5
   struct interval {
6
       long long lo, hi, id;
7
       bool operator < (const interval &i) const {
8
            return lo < i.lo || (lo == i.lo && hi < i.hi) || (lo == i.lo && hi == i.hi
               && id < i.id);
9
        }
10
   };
   template <class CNI, class NI, class Cmp Fn, class Allocator> struct
11
       intervals node update {
12
        typedef long long metadata type;
13
        int sz = 0;
        virtual CNI node begin() const = 0;
14
15
        virtual CNI node end() const = 0;
16
17
        inline vector < int > overlaps (const long long 1, const long long r) {
18
            queue < CNI> q;
19
            q.push(node_begin());
20
            vector < int > vec;
21
            while (!q.empty()) {
                CNI it = q.front();
22
23
                q.pop();
24
                if (it == node_end()) { continue; }
25
                if (r >= (*it) -> lo \& l <= (*it) -> hi) \{ vec.push back((*it) -> id); \}
26
                CNI l it = it.get l child();
                long long l_max = (l_it == node_end()) ? -INF : l_it.get_metadata();
27
28
                if (l_max >= 1) { q.push(l_it); }
29
                if ((*it)->lo <= r) { q.push(it.get_r_child()); }
30
31
            return vec;
32
        }
33
34
        inline void operator()(NI it, CNI end it) {
            const long long l max = (it.get l child() == end it) ? -INF :
35
               it.get l child().get metadata();
            const long long r_max = (it.get_r_child() == end_it) ? -INF :
36
               it.get_r_child().get_metadata();
            const cast<long long &>(it.get metadata()) = max((*it)->hi, max(l max,
37
               r max));
        }
38
39
   };
   typedef tree<interval, null type, less<interval>, rb tree tag,
40
       intervals node update> interval tree;
```

1.3 Segment Tree

- # [Seg Tree] (seg tree.cpp) Implementação padrão de Seg Tree
- Complexidade de tempo (Pré-processamento): O(N) Complexidade de tempo (Consulta em intervalo): $O(\log(N))$ Complexidade de tempo (Update em ponto): $O(\log(N))$ Complexidade de espaço: 4*N = O(N)
 - # [Seg Tree Lazy](seg tree lazy.cpp) Implementação padrão de Seg Tree com lazy update
- Complexidade de tempo (Pré-processamento): O(N) Complexidade de tempo (Consulta em intervalo): $O(\log(N))$ Complexidade de tempo (Update em ponto): $O(\log(N))$ Complexidade de tempo (Update em intervalo): $O(\log(N))$ Complexidade de espaço: 2*4*N = O(N)
 - # [Sparse Seg Tree](seg_tree_sparse.cpp) Seg Tree Esparsa:
 - Complexidade de tempo (Pré-processamento): O(1) Complexidade de tempo (Consulta em inter-

- valo): O(log(N)) Complexidade de tempo (Update em ponto): O(log(N))
 - # [Persistent Seg Tree](seg tree persistent.cpp) Seg Tree Esparsa com histórico de Updates:
- Complexidade de tempo (Pré-processamento): O(N *log(N)) Complexidade de tempo (Consulta em intervalo): O(log(N)) Complexidade de tempo (Update em ponto): O(log(N)) **Para fazer consulta em um tempo específico basta indicar o tempo na query**
 - # [Seg Tree Beats] (seg tree beats.cpp) Seg Tree que suporta update de maximo e query de soma
- Complexidade de tempo (Pré-processamento): O(N) Complexidade de tempo (Consulta em intervalo): $O(\log(N))$ Complexidade de tempo (Update em ponto): $O(\log(N))$ Complexidade de tempo (Update em intervalo): $O(\log(N))$ Complexidade de espaço: 2*4*N = O(N)
- # [Seg Tree Beats Max and Sum update](seg_tree_beats_max_and_sum_update.cpp) Seg Tree que suporta update de maximo, update de soma e query de soma. Utiliza uma fila de lazy para diferenciar os updates
- Complexidade de tempo (Pré-processamento): O(N) Complexidade de tempo (Consulta em intervalo): $O(\log(N))$ Complexidade de tempo (Update em ponto): $O(\log(N))$ Complexidade de tempo (Update em intervalo): $O(\log(N))$ Complexidade de espaço: 2*4*N = O(N)

```
#include <bits/stdc++.h>
 1
   using namespace std;
 3
   #define ll long long
 4
   #define INF 1e9
 5
 6
   struct Node {
7
8
        int m1 = INF, m2 = INF, cont = 0, lazy = 0;
9
        11 \text{ soma} = 0;
10
        void set(int v) {
11
            m1\,=\,v\,;
12
13
            cont = 1;
14
            soma = v;
15
16
        void merge (Node a, Node b) {
17
            m1 = min(a.m1, b.m1);
18
19
            m2 = INF;
            if (a.m1 != b.m1) \{ m2 = min(m2, max(a.m1, b.m1)); \}
20
            if (a.m2 != m1) { m2 = min(m2, a.m2); }
21
22
            if (b.m2 != m1) \{ m2 = min(m2, b.m2); \}
23
            cont = (a.m1 = m1 ? a.cont : 0) + (b.m1 = m1 ? b.cont : 0);
24
            soma = a.soma + b.soma;
25
        }
26
        void print() { printf("%d %d %d %lld %d\n", m1, m2, cont, soma, lazy); }
27
28
   };
29
30
   int n, q;
31
   vector < Node > tree;
32
   int le(int n) \{ return 2 * n + 1; \}
33
   int ri(int n) \{ return 2 * n + 2; \}
34
35
36
   void push(int n, int esq, int dir) {
        if (tree[n].lazy \le tree[n].m1) \{ return; \}
37
        tree[n].soma += (ll)abs(tree[n].m1 - tree[n].lazy) * tree[n].cont;
38
39
        tree[n].m1 = tree[n].lazy;
        if (esq != dir) {
40
```

```
41
             tree[le(n)]. lazy = max(tree[le(n)]. lazy, tree[n]. lazy);
42
             tree[ri(n)]. lazy = max(tree[ri(n)]. lazy, tree[n]. lazy);
43
44
        tree[n].lazy = 0;
45
   }
46
47
   void build (int n, int esq, int dir, vector <int> &v) {
48
        if (esq = dir) {
49
             tree [n]. set (v[esq]);
50
        } else {
             int mid = (esq + dir) / 2;
51
52
             \operatorname{build}(\operatorname{le}(n), \operatorname{esq}, \operatorname{mid}, v);
53
             build(ri(n), mid + 1, dir, v);
54
             tree[n].merge(tree[le(n)], tree[ri(n)]);
55
56
   }
57
   void build (vector <int> &v) { build (0, 0, n - 1, v); }
58
    // ai = max(ai, mi) em [1, r]
59
   void update(int n, int esq, int dir, int l, int r, int mi) {
60
61
        push(n, esq, dir);
62
        if (esq > r \mid \mid dir < l \mid \mid mi \le tree[n].m1) \{ return; \}
63
        if (1 \le esq \&\& dir \le r \&\& mi < tree[n].m2) 
             tree[n].lazy = mi;
64
65
             push(n, esq, dir);
66
        } else {}
67
             int mid = (esq + dir) / 2;
             update\left(\,l\,e\,(n)\;,\;\;esq\;,\;\;mid\,,\;\;l\;,\;\;r\;,\;\;mi\,\right);
68
69
             update(ri(n), mid + 1, dir, l, r, mi);
70
             tree[n].merge(tree[le(n)], tree[ri(n)]);
71
72
   }
73
   void update(int l, int r, int mi) { update(0, 0, n - 1, l, r, mi); }
74
75
    // soma de [1, r]
76
   int query(int n, int esq, int dir, int l, int r) {
77
        push(n, esq, dir);
        if (esq > r \mid | dir < 1) { return 0; }
78
79
        if (1 \le esq \&\& dir \le r) \{ return tree[n].soma; \}
80
        int mid = (esq + dir) / 2;
81
        return query (le(n), esq, mid, l, r) + query (ri(n), mid + 1, dir, l, r);
82
   int query(int l, int r) { return query(0, 0, n - 1, l, r); }
83
84
   int main() {
85
86
        cin >> n;
87
        tree.assign(4 * n, Node());
   }
88
   #include <bits/stdc++.h>
2
   using namespace std;
3
   #define ll long long
   #define INF 1e9
   #define fi first
7
   #define se second
9
   typedef pair <int, int> ii;
10
11
   struct Node {
12
        int m1 = INF, m2 = INF, cont = 0;
```

```
13
          11 \text{ soma} = 0;
14
          queue<ii> lazy;
15
16
          void set(int v) {
17
              m1 = v;
               cont = 1;
18
19
               soma = v;
20
          }
21
22
         void merge(Node a, Node b) {
              m1 \, = \, min \, (\, a \, . \, m1 \, , \  \, b \, . \, m1 ) \; ; \\
23
24
              m2 = INF;
               if (a.m1 != b.m1) \{ m2 = min(m2, max(a.m1, b.m1)); \}
25
               if (a.m2 != m1) { m2 = min(m2, a.m2); }
26
27
               if (b.m2 != m1) \{ m2 = min(m2, b.m2); \}
28
               cont = (a.m1 = m1 ? a.cont : 0) + (b.m1 = m1 ? b.cont : 0);
29
               soma = a.soma + b.soma;
          }
30
31
32
         void print() { printf("%d %d %d %lld\n", m1, m2, cont, soma); }
33
    };
34
35
    int n, q;
    vector < Node > tree;
36
37
    int le(int n) \{ return 2 * n + 1; \}
38
39
    int ri(int n) \{ return 2 * n + 2; \}
40
    \mathbf{void} \ \mathrm{push}(\mathbf{int} \ \mathrm{n}, \ \mathbf{int} \ \mathrm{esq}\,, \ \mathbf{int} \ \mathrm{dir}) \ \{
41
42
          while (!tree[n].lazy.empty()) {
43
               ii p = tree[n].lazy.front();
44
               tree[n].lazy.pop();
               int op = p.fi, v = p.se;
45
               if (op = 0) {
46
47
                    if (v \le tree[n].m1) \{ continue; \}
48
                    tree[n].soma += (11)abs(tree[n].m1 - v) * tree[n].cont;
                    t\,r\,e\,e\,\left[\,n\,\right].\,m1\,=\,v\,;
49
50
                    if (esq != dir) {
51
                          tree [le(n)]. lazy.push(\{0, v\});
52
                          tree [ri(n)]. lazy.push(\{0, v\});
53
               } else if (op == 1) {
54
                    tree[n].soma += v * (dir - esq + 1);
55
56
                    tree[n].m1 += v;
                    \,t\,r\,e\,e\,\left[\,n\,\right].\,m2\,+\!=\,v\,;
57
58
                    if (esq != dir) {
                          tree \left[ \ le \left( n \right) \ \right]. \ lazy \ . \ push \left( \left\{ 1 \ , \ v \right\} \right);
59
                          tree [ri(n)]. lazy.push(\{1, v\});
60
                    }
61
               }
62
         }
63
64
    }
65
66
    void build (int n, int esq, int dir, vector <int> &v) {
67
          if (esq = dir) {
               \texttt{tree}\,[\,n\,]\,.\,\,\texttt{set}\,(\,v\,[\,esq\,]\,)\,\,;
68
69
          } else {}
70
               int mid = (esq + dir) / 2;
71
               build(le(n), esq, mid, v);
72
               build(ri(n), mid + 1, dir, v);
73
               tree[n].merge(tree[le(n)], tree[ri(n)]);
```

```
}
74
75
    }
76
    void build (vector \leq int> \&v) { build (0, 0, n - 1, v); }
77
78
    // ai = max(ai, mi) em [1, r]
79
    void update(int n, int esq, int dir, int l, int r, int mi) {
80
        push(n, esq, dir);
81
         if (esq > r \mid | dir < l \mid | mi \le tree[n].m1)  { return; }
         if (l <= esq && dir <= r && mi < tree[n].m2) {
82
83
             tree[n].soma += (ll)abs(tree[n].m1 - mi) * tree[n].cont;
             tree[n].m1 = mi;
84
85
             if (esq != dir) {
86
                  tree [le(n)]. lazy.push(\{0, mi\});
87
                  tree[ri(n)].lazy.push({0, mi});
88
             }
89
         } else {
90
             int mid = (esq + dir) / 2;
             update(le(n), esq, mid, l, r, mi);
91
92
             update(ri(n), mid + 1, dir, l, r, mi);
93
             tree[n].merge(tree[le(n)], tree[ri(n)]);
94
         }
95
    void update(int l, int r, int mi) { update(0, 0, n-1, l, r, mi); }
96
97
98
    // soma v em [1, r]
    void upsoma(int n, int esq, int dir, int l, int r, int v) {
99
100
         push(n, esq, dir);
101
         if (esq > r \mid \mid dir < 1) \{ return; \}
102
         if (1 \le esq \&\& dir \le r)  {
103
             tree[n].soma += v * (dir - esq + 1);
104
             tree[n].m1 += v;
105
             tree[n].m2 += v;
             if (esq != dir) {
106
                  tree [le(n)].lazy.push({1, v});
107
108
                  tree [ri(n)]. lazy.push (\{1, v\});
109
             }
         } else {
110
111
             int mid = (esq + dir) / 2;
112
             upsoma(le(n), esq, mid, l, r, v);
113
             upsoma(ri(n), mid + 1, dir, l, r, v);
             tree[n].merge(tree[le(n)], tree[ri(n)]);
114
115
116
117
    void upsoma(int l, int r, int v) { upsoma(0, 0, n - 1, l, r, v); }
118
119
    // soma de [1, r]
    int query(int n, int esq, int dir, int l, int r) {
120
121
         push(n, esq, dir);
         if (esq > r \mid \mid dir < 1) \{ return 0; \}
122
123
         if (1 \le esq \&\& dir \le r) \{ return tree[n].soma; \}
         int mid = (esq + dir) / 2;
124
125
         return query (le(n), esq, mid, l, r) + query(ri(n), mid + 1, dir, l, r);
126
127
    int query(int l, int r) { return query(0, 0, n-1, l, r); }
128
129
    int main() {
130
         cin >> n;
131
         tree.assign(4 * n, Node());
132
         build(v);
133
    }
```

```
const int SEGMAX = 8e6 + 5; // should be Q * log(DIR-ESQ+1)
   const 11 ESQ = 0, DIR = 1e9 + 7;
2
3
4
   struct seg {
        ll tree [SEGMAX];
5
        int R[SEGMAX], L[SEGMAX], ptr = 2; // 0 is NULL; 1 is First Root
6
7
        11 op(11 a, 11 b) { return (a + b) % MOD; }
        int le(int i) {
8
            if (L[i] == 0) { L[i] = ptr++; }
9
10
            return L[i];
11
        int ri(int i) {
12
            if (R[i] == 0) { R[i] = ptr++; }
13
14
            return R[i];
15
16
        ll query(ll l, ll r, int n = 1, ll esq = ESQ, ll dir = DIR) {
17
            if (r < esq \mid \mid dir < l) { return 0; }
            if (1 \le esq \&\& dir \le r) \{ return tree[n]; \}
18
19
            11 \quad \mathrm{mid} = (\,\mathrm{esq} \,+\,\mathrm{dir}\,) \ / \ 2;
20
            return op (query(1, r, le(n), esq, mid), query(1, r, ri(n), mid + 1, dir));
21
22
        void update(ll x, ll v, int n = 1, ll esq = ESQ, ll dir = DIR) {
23
            if (esq = dir) {
24
                 tree[n] = (tree[n] + v) \% MOD;
25
            } else {}
                 11 \quad \text{mid} = (\text{esq} + \text{dir}) / 2;
26
27
                 if (x \le mid) 
28
                     update(x, v, le(n), esq, mid);
29
                 } else {
                     update(x, v, ri(n), mid + 1, dir);
30
31
32
                 tree[n] = op(tree[le(n)], tree[ri(n)]);
33
            }
        }
34
35
   };
   const int MAX = 2505;
1
3
   int n, m, mat[MAX][MAX], tree[4 * MAX][4 * MAX];
4
   int le(int x) \{ return 2 * x + 1; \}
5
   int ri(int x) \{ return 2 * x + 2; \}
6
7
   void build_y(int nx, int lx, int rx, int ny, int ly, int ry) {
8
9
        if (ly = ry) {
10
            if (lx = rx) 
                 tree[nx][ny] = mat[lx][ly];
11
12
            } else {}
13
                 tree[nx][ny] = tree[le(nx)][ny] + tree[ri(nx)][ny];
14
        } else {
15
16
            int my = (ly + ry) / 2;
            build y(nx, lx, rx, le(ny), ly, my);
17
18
            build y(nx, lx, rx, ri(ny), my + 1, ry);
            tree[nx][ny] = tree[nx][le(ny)] + tree[nx][ri(ny)];
19
20
        }
21
22
   void build_x(int nx, int lx, int rx) {
        if (lx != rx) {
23
24
            int mx = (1x + rx) / 2;
25
            build x(le(nx), lx, mx);
```

```
26
            build x(ri(nx), mx + 1, rx);
27
28
        build y(nx, lx, rx, 0, 0, m-1);
29
30
   void build() { build x(0, 0, n-1); }
31
32
   void update_y(int nx, int lx, int rx, int ny, int ly, int ry, int x, int y, int v)
        if (ly = ry) {
33
34
            if (lx = rx) {
35
                 tree[nx][ny] = v;
36
            } else {
37
                 tree[nx][ny] = tree[le(nx)][ny] + tree[ri(nx)][ny];
38
39
        } else {
40
            int my = (1y + ry) / 2;
            \mathbf{i}\,\mathbf{f}\ (\,\mathrm{y}\,<=\,\mathrm{my})\ \{\,
41
42
                update y(nx, lx, rx, le(ny), ly, my, x, y, v);
43
            } else {
44
                update y(nx, lx, rx, ri(ny), my + 1, ry, x, y, v);
45
46
            tree[nx][ny] = tree[nx][le(ny)] + tree[nx][ri(ny)];
        }
47
48
   }
   void update_x(int nx, int lx, int rx, int x, int y, int v) {
49
        if (lx != rx) {
50
51
            int mx = (1x + rx) / 2;
52
            if (x \ll mx) 
53
                 update x(le(nx), lx, mx, x, y, v);
54
            } else {
55
                 update x(ri(nx), mx + 1, rx, x, y, v);
56
57
58
        update y(nx, lx, rx, 0, 0, m-1, x, y, v);
59
60
   void update(int x, int y, int v) { update_x(0, 0, n-1, x, y, v); }
61
62
   int sum y(int nx, int ny, int ly, int ry, int qly, int qry) {
63
        if (ry < qly \mid | ly > qry) \{ return 0; \}
64
        if (qly \le ly \&\& ry \le qry) \{ return tree[nx][ny]; \}
65
        int my = (ly + ry) / 2;
        return sum y(nx, le(ny), ly, my, qly, qry) + sum <math>y(nx, ri(ny), my + 1, ry,
66
            qly, qry);
67
   int sum_x(int nx, int lx, int rx, int qlx, int qrx, int qly, int qry) {
68
69
        if (rx < qlx \mid | lx > qrx) \{ return 0; \}
70
        if (qlx \le lx \&\& rx \le qrx) \{ return sum_y(nx, 0, 0, m-1, qly, qry); \}
        \mathbf{int} \ \mathbf{mx} = (\, \mathbf{lx} \ + \ \mathbf{rx}\,) \ / \ 2;
71
        72
            qlx, qrx, qly, qry);
73
74
   int sum(int lx, int rx, int ly, int ry) { return sum x(0, 0, n-1, lx, rx, ly,
       ry); }
1
   namespace seg {
2
        const int MAX = 2e5 + 5;
3
        int n;
        11 tree [4 * MAX];
 4
 5
        11 \text{ merge}(11 \text{ a}, 11 \text{ b}) \{ \text{ return } a + b; \}
 6
        int le(int n) { return 2 * n + 1; }
7
        int ri(int n) \{ return 2 * n + 2; \}
```

```
8
          void build (int n, int esq, int dir, const vector < ll > &v) {
 9
                if (esq = dir) {
                      \,t\,r\,e\,e\,\left[\,n\,\right] \;=\; v\,\left[\,e\,s\,q\,\,\right]\,;
10
11
                } else {
                      int mid = (esq + dir) / 2;
12
13
                      build(le(n), esq, mid, v);
                      build(ri(n), mid + 1, dir, v);
14
15
                      tree[n] = merge(tree[le(n)], tree[ri(n)]);
16
17
           void build (const vector < ll > &v) {
18
19
                n = v.size();
20
                build (0, 0, n - 1, v);
21
22
           ll query(int n, int esq, int dir, int l, int r) {
23
                if (esq > r \mid | dir < 1) { return 0; }
24
                 \textbf{if} \hspace{0.2cm} (\hspace{.05cm} l \hspace{.05cm} <= \hspace{.05cm} \operatorname{esq} \hspace{0.2cm} \&\& \hspace{0.2cm} \operatorname{dir} \hspace{.05cm} <= \hspace{.05cm} r \hspace{.05cm} ) \hspace{0.2cm} \left\{ \hspace{0.2cm} \textbf{return} \hspace{0.2cm} \operatorname{tree} \hspace{.05cm} [\hspace{.05cm} n \hspace{.05cm}] \hspace{.05cm} ; \hspace{0.2cm} \right\} 
                int mid = (esq + dir) / 2;
25
                return merge (query (le(n), esq, mid, l, r), query (ri(n), mid + 1, dir, l,
26
                     r));
27
28
           ll query(int l, int r) { return query(0, 0, n - 1, l, r); }
29
           void update(int n, int esq, int dir, int x, ll v) {
                if (esq > x \mid | dir < x) \{ return; \}
30
31
                if (esq = dir) {
                      \,t\,r\,e\,e\,\left[\,n\,\right] \;=\; v\,;
32
33
                } else {
34
                      int mid = (esq + dir) / 2;
35
                      \mathbf{if} \ (\mathbf{x} \leq \mathbf{mid}) \ \{
36
                            update(le(n), esq, mid, x, v);
37
                      } else {
                            update(ri(n), mid + 1, dir, x, v);
38
39
                      tree[n] = merge(tree[le(n)], tree[ri(n)]);
40
41
42
43
          void update(int x, 11 \text{ v}) { update(0, 0, n - 1, x, v); }
44
    }
 1
     namespace seg {
 2
           \mathbf{const} \ \mathbf{int} \ \mathrm{MAX} = 1\,\mathrm{e}5 \ + \ 5;
 3
           int n;
           11 \text{ tree} [4 * MAX];
 4
           ll merge(ll a, ll b) { return max(a, b); }
 5
 6
           int le(int n) \{ return 2 * n + 1; \}
 7
           int ri(int n) \{ return 2 * n + 2; \}
 8
           void build (int n, int esq, int dir, const vector < ll > &v) {
 9
                if (esq = dir) {
                      tree[n] = v[esq];
10
                } else {
11
12
                      int mid = (esq + dir) / 2;
13
                      build\left(\,l\,e\left(\,n\,\right)\,,\ esq\,,\ mid\,,\ v\,\right);
14
                      build (ri(n), mid + 1, dir, v);
15
                      tree[n] = merge(tree[le(n)], tree[ri(n)]);
16
17
           void build (const vector < ll > &v) {
18
19
                n = v.size();
                build (0, 0, n - 1, v);
20
21
22
           // find fist index greater than k in [1, r]
```

```
23
        ll query(int n, int esq, int dir, int l, int r, ll k) {
             if (esq > r \mid | dir < l) { return -1; }
24
25
             if (l \le esq \&\& dir \le r) {
26
                 if (tree[n] < k) \{ return -1; \}
27
                 \mathbf{while} \ (\mathbf{esq} \ != \mathbf{dir}) \ \{
28
                      int mid = (esq + dir) / 2;
29
                      if (tree[le(n)] >= k) {
30
                          n = le(n), dir = mid;
31
                      } else {
32
                          n = ri(n), esq = mid + 1;
33
34
                 }
35
                 return esq;
36
37
             int mid = (esq + dir) / 2;
38
             int res = query(le(n), esq, mid, l, r, k);
39
             if (res != -1) \{ return res; \}
40
             return query (ri(n), mid + 1, dir, l, r, k);
41
        ll query(int l, int r, ll k) { return query(0, 0, n - 1, l, r, k); }
42
43
        void update(int n, int esq, int dir, int x, 11 v) {
             if (esq > x \mid | dir < x) \{ return; \}
44
45
             if (esq = dir) {
                 tree[n] = v;
46
47
             } else {}
                 int mid = (esq + dir) / 2;
48
49
                 \mathbf{if} \ (\mathbf{x} \leq \mathbf{mid}) \ \{
50
                      update(le(n), esq, mid, x, v);
51
                 } else {
52
                      update(ri(n), mid + 1, dir, x, v);
53
54
                 tree[n] = merge(tree[le(n)], tree[ri(n)]);
55
             }
56
57
        void update(int x, ll v) { update(0, 0, n - 1, x, v); }
58
   }
   struct SegTree {
1
2
        int n;
3
        vector<int> tree;
4
5
        SegTree(int n) : n(n) { tree.assign(4 * n, 0); }
6
7
        int le(int n) \{ return 2 * n + 1; \}
8
        int ri(int n) \{ return 2 * n + 2; \}
9
10
        int query(int n, int esq, int dir, int l, int r) {
             if (esq > r \mid | dir < l) { return 0; }
11
12
             if (1 \le esq \&\& dir \le r) \{ return tree[n]; \}
13
             int mid = (esq + dir) / 2;
14
             return max(query(le(n), esq, mid, l, r), query(ri(n), mid + 1, dir, l, r));
15
16
        int query(int l, int r) { return query(0, 0, n-1, l, r); }
17
18
        void update(int n, int esq, int dir, int x, int v) {
             if (esq > x \mid | dir < x) \{ return; \}
19
20
             if (esq = dir) {
                 tree[n] = v;
21
22
             } else {}
23
                 int mid = (esq + dir) / 2;
24
                 \mathbf{if} \ (\mathbf{x} \leq \mathbf{mid}) \ \{
```

```
25
                        update(le(n), esq, mid, x, v);
26
                   } else {
27
                        update(ri(n), mid + 1, dir, x, v);
28
29
                   tree[n] = max(tree[le(n)], tree[ri(n)]);
30
              }
31
32
         void update(int x, int v) { update(0, 0, n - 1, x, v); }
33
    };
 1
    namespace seg {
 2
         const int MAX = 1e5 + 5;
         struct node {
 3
 4
              ll pref, suff, sum, best;
 5
         };
 6
         node new_node(11 v) \{ return node \{v, v, v, v\}; \}
 7
         const node NEUTRAL = \{0, 0, 0, 0\};
         node tree [4 * MAX];
 8
 9
         node merge (node a, node b) {
10
              11 \text{ pref} = \max(a.\text{pref}, a.\text{sum} + b.\text{pref});
              11 \quad suff = max(b.suff, b.sum + a.suff);
11
12
              11 \text{ sum} = a.\text{sum} + b.\text{sum};
13
              11 best = max(a.suff + b.pref, max(a.best, b.best));
14
              return node{pref, suff, sum, best};
15
         }
16
17
         int n;
         int le(int n) { return 2 * n + 1; }
18
19
         int ri(int n) \{ return 2 * n + 2; \}
20
         void build (int n, int esq, int dir, const vector < ll > &v) {
21
              if (esq = dir) {
22
                   tree[n] = new node(v[esq]);
23
              } else {
                   int mid = (esq + dir) / 2;
24
25
                   build(le(n), esq, mid, v);
26
                   build(ri(n), mid + 1, dir, v);
27
                   tree[n] = merge(tree[le(n)], tree[ri(n)]);
              }
28
29
30
         void build (const vector < ll > &v) {
31
              n = v.size();
32
              build (0, 0, n - 1, v);
33
34
         node query(int n, int esq, int dir, int l, int r) {
              if (esq > r \mid | dir < 1) { return NEUTRAL; }
35
36
              if (l \le esq \&\& dir \le r) \{ return tree[n]; \}
              int mid = (esq + dir) / 2;
37
              \mathbf{return} \ \operatorname{merge}(\operatorname{query}(\operatorname{le}(n), \ \operatorname{esq}, \ \operatorname{mid}, \ 1, \ r), \ \operatorname{query}(\operatorname{ri}(n), \ \operatorname{mid} + 1, \ \operatorname{dir}, \ 1, \ r))
38
                  r));
39
         ll query(int l, int r) { return query(0, 0, n - 1, l, r).best; }
40
         void update(int n, int esq, int dir, int x, ll v) {
41
42
              if (esq > x \mid | dir < x) \{ return; \}
43
              if (esq = dir) {
44
                   tree[n] = new node(v);
45
              } else {}
                   int mid = (esq + dir) / 2;
46
47
                   \mathbf{if} \ (\mathbf{x} \leq \mathbf{mid}) \ \{
                        update(le(n), esq, mid, x, v);
48
49
                   } else {
50
                        update(ri(n), mid + 1, dir, x, v);
```

```
51
                   tree\left[\,n\,\right] \;=\; merge\left(\,tree\left[\,le\left(n\right)\,\right]\,,\;\; tree\left[\,ri\left(n\right)\,\right]\,\right)\,;
52
53
              }
54
55
         void update(int x, ll v) { update(0, 0, n - 1, x, v); }
56
    namespace seg {
1
2
         const int MAX = 2e5 + 5;
3
         const 11 NEUTRAL = 0; // merge(a, neutral) = a
4
         ll merge(ll a, ll b) { return a + b; }
5
         int sz; // size of the array
6
         11 \text{ tree} \left[4 * \text{MAX}\right], \text{ lazy} \left[4 * \text{MAX}\right];
7
         int le(int n) \{ return 2 * n + 1; \}
8
         int ri(int n) \{ return 2 * n + 2; \}
9
         void push(int n, int esq, int dir) {
10
              if (lazy[n] = 0) \{ return; \}
11
              tree[n] += lazy[n] * (dir - esq + 1);
12
              if (esq != dir) {
13
                   lazy[le(n)] += lazy[n];
14
                   lazy[ri(n)] += lazy[n];
15
16
              lazy[n] = 0;
17
18
         void build (span < const ll > v, int n, int esq, int dir) {
19
              if (esq = dir) {
20
                   tree[n] = v[esq];
21
              } else {
22
                   int mid = (esq + dir) / 2;
23
                   build\left(v\,,\ le\left(n\right),\ esq\,,\ mid\right);
24
                   build(v, ri(n), mid + 1, dir);
                   tree[n] = merge(tree[le(n)], tree[ri(n)]);
25
26
              }
27
28
         void build (span < const ll > v) {
29
              sz = v.size();
30
              build (v, 0, 0, sz - 1);
31
32
         ll query(int l, int r, int n = 0, int esq = 0, int dir = sz - 1) {
33
              push(n, esq, dir);
34
              if (esq > r || dir < 1) { return NEUTRAL; }
35
              if (1 \le esq \&\& dir \le r) \{ return tree[n]; \}
              int mid = (esq + dir) / 2;
36
37
              return merge (query (1, r, le(n), esq, mid), query (1, r, ri(n), mid + 1,
                  dir));
38
39
         void update(int l, int r, ll v, int n = 0, int esq = 0, int dir = sz - 1) {
40
              push(n, esq, dir);
41
              if (esq > r \mid | dir < l) { return; }
42
              if (l \le esq \&\& dir \le r)  {
43
                   lazy[n] += v;
44
                   push(n, esq, dir);
45
              } else {}
46
                   int mid = (esq + dir) / 2;
                   update\left(\begin{smallmatrix}1\end{smallmatrix}, & r\end{smallmatrix}, & v\>, & le\left(\begin{smallmatrix}n\end{smallmatrix}\right)\>, & esq\>, & mid\right);
47
                   update(l, r, v, ri(n), mid + 1, dir);
48
49
                   tree[n] = merge(tree[le(n)], tree[ri(n)]);
50
              }
51
         }
52
   }
```

```
1
        namespace seg {
                    const 11 ESQ = 0, DIR = 1e9 + 7;
 2
 3
                    struct node {
                              11 \ v = 0;
  4
                              node *l = NULL, *r = NULL;
  5
  6
                              node() { }
 7
                             node(11 \ v) : v(v) \{ \}
                             node(node *l, node *r) : l(l), r(r) { v = l->v + r->v; }
 8
 9
                              void apply() {
10
                                        if (1 = NULL) \{ 1 = new node(); \}
                                         if (r = NULL) \{ r = new node(); \}
11
12
13
                    };
14
                    vector<node *> roots;
                    void build() { roots.push back(new node()); }
15
16
                    void push(node *n, int esq, int dir) {
17
                              if (esq != dir) { n->apply(); }
                    }
18
                    // sum v on x
19
                   node *update(node *n, int esq, int dir, int x, int v) {
20
21
                              push(n, esq, dir);
22
                              if (esq = dir) \{ return new node(n->v+v); \}
23
                              int mid = (esq + dir) / 2;
24
                              \mathbf{if} (x <= mid) {
25
                                        return new node(update(n\rightarrowl, esq, mid, x, v), n\rightarrowr);
26
                              } else {}
27
                                        return new node (n->1, update(n->r, mid + 1, dir, x, v));
28
29
30
                    int update(int root, int pos, int val) {
31
                              node *novo = update(roots[root], ESQ, DIR, pos, val);
32
                              roots.push back(novo);
33
                              return roots.size() -1;
34
                    }
                    // sum in [L, R]
35
36
                    ll query (node *n, int esq, int dir, int l, int r) {
37
                              push(n, esq, dir);
                              if (esq > r \mid | dir < 1) { return 0; }
38
39
                              if (1 \le esq \&\& dir \le r) \{ return n \rightarrow v; \}
                              int mid = (esq + dir) / 2;
40
                             return query (n\rightarrow l, esq, mid, l, r) + query (n\rightarrow r, mid + 1, dir, l, r);
41
42
                    11 query(int root, int 1, int r) { return query(roots[root], ESQ, DIR, 1, r); }
43
44
                    // kth min number in [L, R] (l_root can not be 0)
                   int kth(node *L, node *R, int esq, int dir, int k) {
45
46
                              push(L, esq, dir);
                              push(R, esq, dir);
47
                              if (esq = dir) \{ return esq; \}
48
                              int mid = (esq + dir) / 2;
49
                              int cont = R -> l -> v - L -> v;
50
                              if (cont >= k) {
51
52
                                        \textbf{return} \hspace{0.2cm} kth\left(L\!\!=\!\!>\!\!l\;,\;\; R\!\!=\!\!>\!\!l\;,\;\; esq\;,\;\; mid\;,\;\; k\right);
53
                              } else {
54
                                        return kth(L\rightarrow r, R\rightarrow r, mid + 1, dir, k - cont);
55
56
                    int kth(int \mid root, int \mid r root, int \mid k) \{ return \mid kth(roots \mid 1 \mid root - 1 \mid, kth(roots \mid 1 \mid root, kth(
57
                            roots[r\_root], ESQ, DIR, k);
58
        };
```

1.4 Disjoint Sparse Table

Resolve Query de range para qualquer operação associativa em **O(1)**.

```
Pré-processamento em **O(Nlog(N))**
   struct dst {
1
2
       const int neutral = 1;
3
   \#define comp(a, b) (a | b)
4
       vector<vector<int>>> t;
5
       dst(vector < int > v) {
6
            int n, k, sz = v.size();
7
            for (n = 1, k = 0; n < sz; n <<= 1, k++)
8
9
            t.assign(k, vector < int > (n));
10
            for (int i = 0; i < n; i++) { t[0][i] = i < sz ? v[i] : neutral; }
            for (int j = 0, len = 1; j \le k; j++, len \iff 1) {
11
12
                for (int s = len; s < n; s += (len << 1)) {
13
                    t[j][s] = v[s];
                    t[j][s-1] = v[s-1];
14
15
                    for (int i = 1; i < len; i++) {
16
                        t[j][s+i] = comp(t[j][s+i-1], v[s+i]);
17
                        t[j][s-1-i] = comp(v[s-1-i], t[j][s-i]);
                    }
18
19
                }
20
            }
21
22
       int query(int 1, int r) {
            if (l = r) \{ return t[0][r]; \}
23
            int i = 31 - \_builtin_clz(l \hat r);
24
            return comp(t[i][1], t[i][r]);
25
26
       }
27
   };
```

1.5 Operation Stack

1

Pilha que armazena o resultado do operatório dos itens.

* Complexidade de tempo (Push): O(1) * Complexidade de tempo (Pop): O(1) template <typename T> struct op stack {

```
2
        stack < pair < T, T >> st;
3
       T result;
4
       T op(T a, T b)  {
5
            return a; // TODO: op to compare
6
            // min(a, b);
7
               gcd(a, b);
8
            // lca(a, b);
9
10
       T get() { return result = st.top().second; }
11
        void add(T element) {
            result = st.empty() ? element : op(element, st.top().second);
12
13
            st.push({element, result});
14
15
        void remove() {
16
            T removed element = st.top().first;
17
            st.pop();
18
        }
19
   };
```

1.6 Fenwick Tree

Consultas e atualizações de soma em intervalo.

O vetor precisa obrigatoriamente estar indexado em 1.

* Complexidade de tempo (Pre-processamento): O(N * log(N)) * Complexidade de tempo (Consulta em intervalo): O(log(N)) * Complexidade de tempo (Update em ponto): O(log(N)) * Complexidade de espaço: 2 * N = O(N)

```
1
   struct FenwickTree {
2
        int n;
 3
        vector<int> tree;
        FenwickTree(int n) : n(n) \{ tree.assign(n, 0); \}
 4
 5
        FenwickTree(vector < int > v) : FenwickTree(v.size()) {
            for (size t i = 1; i < v.size(); i++) { update(i, v[i]); }
 6
 7
        int lsONE(int x) \{ return x & (-x); \}
 8
        int query(int x) {
9
10
            int soma = 0;
11
            for (; x > 0; x = lsONE(x)) \{ soma \neq tree[x]; \}
12
            return soma;
13
        int query(int l, int r) { return query(r) - query(l-1); }
14
15
        void update(int x, int v) {
16
            for (; x < n; x += lsONE(x)) \{ tree[x] += v; \}
17
        }
18
   };
```

1.7 Disjoint Set Union

[DSU Simples](dsu.cpp) Estrutura que trata conjuntos. Verifica se dois itens pertencem a um mesmo grupo.

- Complexidade de tempo: O(1) amortizado.

Une grupos.

- Complexidade de tempo: O(1) amortizado.
- # [DSU Bipartido](bipartite_dsu.cpp) DSU para grafo bipartido, é possível verificar se uma aresta é possível antes de adicioná-la. Para todas as operações:
 - Complexidade de tempo: O(1) amortizado.
 - # [DSU com Rollback](rollback dsu.cpp) Desfaz as últimas K uniões
 - Complexidade de tempo: O(K).

É possivel usar um checkpoint, bastando chamar **rollback()** para ir até o último checkpoint. O rollback não altera a complexidade, uma vez que K <= queries. **Só funciona sem compressão de caminho**

- Complexidade de tempo: O(log(N))
- # [DSU Completo](full_dsu.cpp) DSU com capacidade de adicionar e remover vértices. **EXTRE-MAMENTE PODEROSO!** Funciona de maneira off-line, recebendo as operações e dando as respostas das consultas no retorno da função **solve()**
- Complexidade de tempo: O(Q * log(Q) * log(N)); Onde Q é o número de consultas e N o número de nodos

Roda em 0.6ms para $3*10^5$ queries e nodos com printf e scanf. Possivelmente aguenta 10^6 em 3s struct DSU { 1 2 vector < int > pa, sz; $DSU(\,\mathbf{int}\ n)\ :\ pa\,(n\,+\,1)\,\,,\ sz\,(n\,+\,1\,,\ 1)\ \left\{\ iota\,(\,pa.\,begin\,(\,)\,\,,\ pa.\,end\,(\,)\,\,,\ 0\,)\,;\ \right\}$ 3 4 $int root(int a) \{ return pa[a] = (a == pa[a] ? a : root(pa[a])); \}$ $\textbf{bool} \ \operatorname{find}(\textbf{int} \ a, \ \textbf{int} \ b) \ \{ \ \textbf{return} \ \operatorname{root}(a) = \operatorname{root}(b); \ \}$ 5 6 void uni(int a, int b) { 7 int ra = root(a), rb = root(b);8 **if** (ra == rb) { **return**; } 9 if (sz[ra] > sz[rb]) { swap(ra, rb); } 10 pa[ra] = rb;11 sz[rb] += sz[ra];12 } 13 **}**; struct rollback_dsu { 1 2 struct change { int node, old size; 3 4 5 stack<change> changes; 6 vector < int > parent, size; 7 int number of sets; 8 9 rollback dsu(int n) { 10 size.resize(n + 5, 1); $number_of_sets = n;$ 11 12 for (int i = 0; i < n + 5; ++i) { parent.push back(i); } 13 } 14 15 int get(int a) { return (a == parent[a]) ? a : get(parent[a]); } 16 **bool** same(int a, int b) { return get(a) = get(b); } **void** checkpoint() { changes.push($\{-2, 0\}$); } 17 18 19 void join(int a, int b) { 20 a = get(a);21 b = get(b);22 if (a = b) { 23 changes.push $(\{-1, -1\})$; 24return; 25 if $(size[a] > size[b]) \{ swap(a, b); \}$ 26 27 changes.push($\{a, size[b]\}$); 28 parent[a] = b;29 size[b] += size[a];30 —number_of_sets; } 31 32 33 void rollback (int qnt = 1 << 31) { for (int i = 0; i < qnt; ++i) { 34auto ch = changes.top(); 35 36 changes.pop(); 37 if $(ch.node = -1) \{ continue; \}$ 38 if (ch.node == -2) { 39 **if** $(qnt = 1 \ll 31) \{ break; \}$ 40 —i: 41 continue; 42size [parent [ch.node]] = ch.old size; 43 44 parent[ch.node] = ch.node;45 ++number_of_sets; } 46

```
47
        }
48
   };
   struct bipartite dsu {
2
        vector < int > parent;
3
        vector<int> color;
4
        int size;
 5
        bipartite dsu(int n) {
6
             size = n;
7
             color.resize(n + 5, 0);
             \mbox{for (int $i = 0$; $i < n + 5$; $+\!\!+\!\!i$) { parent.push\_back($i$); }}
8
9
        }
10
11
        pair < int, bool > get(int a) {
12
             if (parent[a] = a) \{ return \{a, 0\}; \}
13
            auto val = get(parent[a]);
14
            parent[a] = val.fi;
            color[a] = (color[a] + val.se) \% 2;
15
16
            return {parent[a], color[a]};
17
        }
18
19
        bool same color(int a, int b) {
20
            get (a);
21
            get (b);
22
            return color[a] = color[b];
23
24
        bool same_group(int a, int b) {
25
            get (a);
26
            get (b);
27
            return parent[a] == parent[b];
28
        bool possible_edge(int a, int b) { return !same_color(a, b) || !same_group(a,
29
           b); }
30
        void join(int a, int b) {
31
32
            auto val_a = get(a), val_b = get(b);
33
            parent [val_a.fi] = val_b.fi;
             color[val a.fi] = (val a.se + val b.se + 1) \% 2;
34
35
        }
36
    };
    struct full_dsu {
1
        struct change {
2
3
            int node, old size;
4
        };
 5
        struct query {
6
            int 1, r, u, v, type;
7
        };
8
        stack<change> changes;
9
        map<pair < int , int > , vector < query >> edges;
10
        vector<query> queries;
        vector < int > parent, size;
11
12
        int number of sets, time;
13
14
        full dsu(int n) {
15
            time = 0;
16
             size.resize(n + 5, 1);
17
            number_of_sets = n;
18
            loop(i, 0, n + 5) parent.push_back(i);
19
        }
20
```

```
21
         int get(int a) { return (parent[a] == a ? a : get(parent[a])); }
         \mathbf{bool} \ \mathbf{same}(\mathbf{int} \ \mathbf{a}, \ \mathbf{int} \ \mathbf{b}) \ \{ \ \mathbf{return} \ \mathbf{get}(\mathbf{a}) = \mathbf{get}(\mathbf{b}); \ \}
22
23
         void checkpoint() { changes.push(\{-2, 0\}); }
24
25
         void join(int a, int b) {
26
              a = get(a);
27
              b = get(b);
28
              if (a = b) { return; }
              if (size[a] > size[b]) \{ swap(a, b); \}
29
30
              changes.push({a, size[b]});
31
              parent[a] = b;
32
              size[b] += size[a];
33
              —number of sets;
34
         }
35
         void rollback() {
36
37
              while (!changes.empty()) {
38
                   auto ch = changes.top();
39
                   changes.pop();
                   \mathbf{if} \ (\operatorname{ch.node} = -2) \ \{ \ \mathbf{break}; \ \}
40
41
                   size [parent [ch.node]] = ch.old_size;
42
                   parent[ch.node] = ch.node;
43
                   ++number of sets;
44
              }
45
         }
46
47
         void ord(int &a, int &b) {
48
              if (a > b) \{ swap(a, b); \}
49
50
51
         void add(int u, int v) {
52
              ord(u, v);
53
              edges[{u, v}].push back({time++, (int)1e9, u, v, 0});
54
55
56
         void remove(int u, int v) {
57
              ord(u, v);
58
              edges[\{u, v\}].back().r = time++;
59
         }
60
61
         // consulta se dois vertices estao no mesmo grupo
62
         void question(int u, int v) {
63
              ord(u, v);
64
              queries.push back({time, time, u, v, 1});
65
              ++time;
         }
66
67
68
         // consulta a quantidade de grupos distintos
69
         void question() {
70
              queries.push back(\{time, time, 0, 0, 1\});
71
              ++time;
72
         }
73
74
         vector<int> solve() {
              for (auto [p, v] : edges) { queries.insert(queries.end(), all(v)); }
75
              \operatorname{vector} < \operatorname{int} > \operatorname{vec} (\operatorname{time}, -1), \operatorname{ans};
76
77
              run(queries, 0, time, vec);
78
              for (int i : vec) {
79
                   if (i != -1) \{ ans.push\_back(i); \}
80
81
              return ans;
```

```
}
82
83
          void run(const vector<query> &qrs, int 1, int r, vector<int> &ans) {
84
85
               if (l > r) { return; }
               checkpoint();
86
               vector<query> qrs_aux;
87
               for (auto &q : qrs) {
88
                    if (!q.type \&\& q.l <= l \&\& r <= q.r) {
89
90
                         join(q.u, q.v);
                    else\ if\ (r < q.l | | l > q.r) 
91
92
                         continue;
93
                    } else {
94
                         qrs aux.push back(q);
95
96
               if (l == r) {
97
98
                    for (auto &q : qrs) {
                         if (q.type && q.l == 1) {
99
                              ans[1] = number_of_sets; // numero de grupos nesse tempo
100
                              // \operatorname{ans}[1] = \operatorname{same}(q.u, q.v); // \operatorname{se} u \in v \operatorname{estao} \operatorname{no} \operatorname{mesmo} \operatorname{grupo}
101
102
103
                    rollback();
104
                    return;
105
106
               int m = (1 + r) / 2;
107
               run(qrs aux, l, m, ans);
108
109
               run(qrs_aux, m + 1, r, ans);
110
               rollback();
111
112
     };
```

1.8 LiChao Tree

Uma árvore de Funções. Retorna o F(x) máximo em um ponto X.

Para retornar o minimo deve-se inserir o negativo da função e pegar o negativo do resultado.

Está pronta para usar função linear do tipo F(x) = mx + b.

Funciona para funções com a seguinte propriedade, sejam duas funções f(x) e g(x), uma vez que f(x) ganha/perde de g(x), f(x) vai continuar ganhando/perdendo de g(x), ou seja f(x) e g(x) se intersectam apenas uma vez.

```
* Complexidade de consulta : O(log(N)) * Complexidade de update: O(log(N))
```

```
# [LiChao Tree Sparse](lichao tree sparse.cpp)
```

O mesmo que a superior, no entanto suporta consultas com $|x| \le 1e18$.

* Complexidade de consulta : $O(\log(tamanho do intervalo))$ * Complexidade de update: $O(\log(tamanho do intervalo))$

```
1 typedef long long ll;
2
3 const ll MAXN = 1e5 + 5, INF = 1e18 + 9;
4
5 struct Line {
6     ll a, b = -INF;
7     ll operator()(ll x) { return a * x + b; }
8 } tree[4 * MAXN];
```

```
9
10
    int le(int n) \{ return 2 * n + 1; \}
    int ri(int n) { return 2 * n + 2; }
11
12
    {f void} insert (Line line, {f int} n = 0, {f int} l = 0, {f int} r = MAXN) {
13
          int \ mid = (1 + r) / 2;
14
15
          bool bl = line(1) < tree[n](1);
16
          bool bm = line(mid) < tree[n](mid);
          if (!bm) { swap(tree[n], line); }
17
18
          if (1 == r) { return; }
          if (bl != bm) {
19
20
               insert(line, le(n), l, mid);
21
          } else {}
22
               insert(line, ri(n), mid + 1, r);
23
24
    }
25
26
        query (int x, int n = 0, int l = 0, int r = MAXN) {
27
          if (l = r) { return tree [n](x); }
28
          \mathbf{int} \ \mathrm{mid} = (1 + \mathrm{r}) / 2;
29
          if (x < mid) {
30
               return max(tree[n](x), query(x, le(n), l, mid));
31
32
               return \max(\text{tree}[n](x), \text{query}(x, \text{ri}(n), \text{mid} + 1, r));
33
34
    }
    typedef long long 11;
1
3
    const 11 MAXN = 1e5 + 5, INF = 1e18 + 9, MAXR = 1e18;
4
    struct Line {
5
6
          11 a, b = -INF;
7
           int128 operator()(ll x) { return ( int128)a * x + b; }
    } tree [4 * MAXN];
8
    \mathbf{int} \ \ \mathrm{idx} \ = \ 0 \, , \ \ \mathrm{L} \big[ 4 \ * \ \mathrm{MAXN} \big] \, , \ \ \mathrm{R} \big[ 4 \ * \ \mathrm{MAXN} \big] \, ;
9
10
11
    int le(int n) {
12
          if (!L[n]) \{ L[n] = ++idx; \}
13
          return L[n];
14
    int ri(int n) {
15
          if (!R[n]) \{ R[n] = ++idx; \}
16
17
          return R|n|;
18
    }
19
20
    \mathbf{void} insert (Line line, \mathbf{int} n = 0, ll l = -MAXR, ll r = MAXR) {
21
          11 \mod = (1 + r) / 2;
22
          bool bl = line(1) < tree[n](1);
23
          bool bm = line(mid) < tree[n](mid);
24
          if (!bm) { swap(tree[n], line); }
25
          if (l = r) \{ return; \}
          if (bl != bm) {
26
27
               insert(line, le(n), l, mid);
28
          } else {
29
               insert(line, ri(n), mid + 1, r);
30
31
    }
32
33
      = - int 128 \; \mathrm{query} \left( \left. \mathbf{int} \; \; \mathbf{x} \; , \; \; \mathbf{int} \; \; \mathbf{n} \; = \; 0 \; , \; \; 11 \; \; 1 \; = \; - \! \mathrm{MAXR} , \; \; 11 \; \; \mathbf{r} \; = \; \mathrm{MAXR} 
ight) \; \left\{ 
ight.
34
          if (l = r) { return tree [n](x); }
```

1.9 KD Fenwick Tree

Fenwick Tree em K dimensoes.

```
* Complexidade de update: O(log^k(N)). * Complexidade de query: O(log^k(N)).
```

```
const int MAX = 10;
    11 tree [MAX] [MAX] [MAX] [MAX] [MAX] [MAX] [MAX] [MAX]; // insira a quantidade necessaria
 2
       de dimensoes
 3
   int lsONE(int x) \{ return x & (-x); \}
 4
 5
6
    11 query(vector<int> s, int pos) {
7
        11 \text{ sum} = 0;
8
        while (s[pos] > 0) {
             if (pos < s.size() - 1) {
9
10
                 sum += query(s, pos + 1);
11
             } else {
12
                 sum += tree[s[0]][s[1]][s[2]][s[3]][s[4]][s[5]][s[6]][s[7]];
13
            s[pos] = lsONE(s[pos]);
14
15
16
        return sum;
    }
17
18
   void update(vector<int> s, int pos, int v) {
19
20
        while (s [pos] < MAX + 1) {
21
             if (pos < s.size() - 1)  {
22
                 update(s\,,\ pos\ +\ 1\,,\ v)\,;
23
            } else {}
                 tree[s[0]][s[1]][s[2]][s[3]][s[4]][s[5]][s[6]][s[7]] += v;
24
25
26
27
            s[pos] += lsONE(s[pos]);
28
        }
29
   }
```

1.10 Ordered Set

Pode ser usado como um set normal, a principal diferença são duas novas operações possíveis:

- $find_by_order(x)$: retorna o item na posição x. - $order_of_key(k)$: retorna o número de elementos menores que k. (o índice de k)

```
## Exemplo

1 #include <ext/pb_ds/assoc_container.hpp>
2 #include <ext/pb_ds/trie_policy.hpp>
3

4 using namespace gnu pbds;
```

```
typedef tree<int, null type, less<int>, rb tree tag,
                tree_order_statistics_node_update> ordered_set;
 6
  7
       ordered set X;
       X. insert (1);
 8
 9
      X.insert(2);
10 X. insert (4);
11 X. insert (8);
12 X. insert (16);
13
       cout << *X. find by order(1) << endl; // 2
14
       cout << *X. find_by_order(2) << endl; // 4
15
       cout << *X. find by order (4) << endl; // 16
16
       cout << (end(X) = X. find_by_order(6)) << endl; // true
17
18
19
      cout \ll X.order of key(-5) \ll endl;
20 \quad cout << X.order\_of\_key(1) << endl;
       cout << X.order of key(3) << endl;
21
       cout << X.order_of_key(4) << endl;
cout << X.order_of_key(400) << endl;
22
       #include <ext/pb ds/assoc container.hpp>
       #include <ext/pb_ds/trie_policy.hpp>
 3
       using namespace __gnu_pbds;
  4
 5
       template <typename T> typedef tree<T, null_type, less<T>, rb_tree_tag,
                tree order statistics node update> ordered set;
       1.11
                       MergeSort Tree
       Resolve Queries que envolvam ordenação em Range. (**SEM UPDATE**)
              - Complexidade de construção : O(N * log(N)) - Complexidade de consulta : O(log^2(N))
               # [MergeSort Tree com Update Pontual] (mergesort tree update.cpp)
               Resolve Queries que envolvam ordenação em Range. (**COM UPDATE**) **1 segundo para vetores
       de tamanho 3 * 10^{5**}
              - Complexidade de construção : O(N*log^2(N)) - Complexidade de consulta : O(log^2(N)) - O
       xidade de update : O(log^2(N))
       \#include < \! ext/pb\_ds/assoc\_container.hpp \! >
  1
       #include <ext/pb_ds/tree_policy.hpp>
 3
 4
       using namespace __gnu_pbds;
 5
  6
       namespace mergesort {
  7
                 {\bf typedef} \;\; {\rm tree}{<}{\rm ii} \;, \;\; {\rm null\_type} \;, \;\; {\rm less}{<}{\rm ii}>, \; {\rm rb\_tree\_tag} \;,
                          tree_order_statistics_node_update> ordered set;
  8
                 \mathbf{const} \ \mathbf{int} \ \mathrm{MAX} = 1\,\mathrm{e}5 \ + \ 5;
 9
10
                  int n;
                  ordered set mgtree [4 * MAX];
11
12
                  vi values;
13
14
                 int le(int n) \{ return 2 * n + 1; \}
15
                 int ri(int n) \{ return 2 * n + 2; \}
```

16

```
17
        ordered set join (ordered set set 1, ordered set set r) {
18
             for (auto v : set_r) { set_l.insert(v); }
19
             return set 1;
20
        }
21
22
        void build(int n, int esq, int dir) {
23
             if (esq = dir) {
24
                 mgtree[n].insert(ii(values[esq], esq));
25
             } else {
26
                 int mid = (esq + dir) / 2;
                 \operatorname{build}(\operatorname{le}(n), \operatorname{esq}, \operatorname{mid});
27
28
                 build(ri(n), mid + 1, dir);
29
                 mgtree[n] = join(mgtree[le(n)], mgtree[ri(n)]);
30
31
        }
32
        void build (vi &v) {
33
            n = v.size();
34
             values = v;
             build (0, 0, n-1);
35
36
        }
37
38
        int less (int n, int esq, int dir, int l, int r, int k) {
             if (esq > r \mid | dir < 1) { return 0; }
39
             if (1 \le esq \&\& dir \le r) \{ return mgtree[n].order_of_key(\{k, -1\}); \}
40
41
             int mid = (esq + dir) / 2;
             return less(le(n), esq, mid, l, r, k) + less(ri(n), mid + 1, dir, l, r, k);
42
43
        int less (int l, int r, int k) { return less (0, 0, n-1, l, r, k); }
44
45
46
        void update(int n, int esq, int dir, int x, int v) {
47
             if (esq > x \mid | dir < x) \{ return; \}
48
             if (esq = dir) 
                 mgtree[n].clear(), mgtree[n].insert(ii(v, x));
49
             } else {
50
51
                 int mid = (esq + dir) / 2;
52
                 \mathbf{if} \ (\mathbf{x} \leq \mathbf{mid}) \ \{
53
                      update(le(n), esq, mid, x, v);
54
                      update(ri(n), mid + 1, dir, x, v);
55
56
57
                 mgtree [n]. erase (ii (values [x], x));
                 mgtree[n].insert(ii(v, x));
58
59
             }
60
61
        void update(int x, int v) {
62
             update(0, 0, n - 1, x, v);
63
             values[x] = v;
        }
64
65
           ordered_set debug_query(int n, int esq, int dir, int l, int r) {
66
67
                if (esq > r || dir < l) return ordered_set();
68
                if (l \le esq \&\& dir \le r) return mgtree[n];
69
                int mid = (esq + dir) / 2;
70
                return join (debug query (le (n), esq, mid, l, r), debug query (ri(n),
            mid+1, dir, l, r);
71
        // ordered set debug query(int l, int r) {return debug query(0, 0, n-1, l, r);}
72
73
74
        // int greater(int n, int esq, int dir, int 1, int r, int k) {
75
                if (esq > r \mid | dir < 1) return 0;
76
                if (l \le esq \&\& dir \le r) return (r-l+1) - mgtree[n].order_of_key({k, return})
```

```
1e8});
77
               int mid = (esq + dir) / 2;
78
               return greater(le(n), esq, mid, l, r, k) + greater(ri(n), mid+1, dir,
79
80
        // int greater(int l, int r, int k) {return greater(0, 0, n-1, l, r, k);}
81
   };
1
   namespace mergesort {
2
        const int MAX = 1e5 + 5;
3
4
        int n;
5
        vi mgtree [4 * MAX];
6
7
        int le(int n) \{ return 2 * n + 1; \}
8
        int ri(int n) \{ return 2 * n + 2; \}
9
10
        void build (int n, int esq, int dir, vi &v) {
            mgtree[n] = vi(dir - esq + 1, 0);
11
12
            if (esq = dir) {
13
                mgtree[n][0] = v[esq];
14
            } else {}
15
                int mid = (esq + dir) / 2;
16
                build(le(n), esq, mid, v);
17
                build(ri(n), mid + 1, dir, v);
18
                merge (mgtree [le(n)].begin(),
19
                       mgtree[le(n)].end(),
20
                       mgtree [ri(n)]. begin(),
21
                       mgtree [ri(n)].end(),
22
                       mgtree[n].begin());
23
            }
24
25
        void build (vi &v) {
26
            n = v.size();
27
            build (0, 0, n - 1, v);
28
29
30
        int less (int n, int esq, int dir, int l, int r, int k) {
            if (esq > r \mid | dir < l)  { return 0; }
31
            if (1 \le esq \&\& dir \le r) \{ return lower\_bound(mgtree[n].begin(),
32
                mgtree[n].end(), k) - mgtree[n].begin();
33
            int mid = (esq + dir) / 2;
34
            return less (le(n), esq, mid, l, r, k) + less (ri(n), mid + 1, dir, l, r, k);
35
36
        int less (int 1, int r, int k) { return less (0, 0, n-1, 1, r, k); }
37
38
           vi debug_query(int n, int esq, int dir, int l, int r) {
39
               if (esq > r \mid \mid dir < l) return vi();
40
               if (1 \le esq \&\& dir \le r) return mgtree[n];
41
               int mid = (esq + dir) / 2;
42
               auto vl = debug query(le(n), esq, mid, l, r);
43
               auto vr = debug query(ri(n), mid+1, dir, l, r);
44
               vi ans = vi(vl.size() + vr.size());
45
               merge(vl.begin(), vl.end(),
46
                    vr.begin(), vr.end(),
                   ans.begin());
47
48
               return ans;
49
        // vi debug query(int l, int r) {return debug_query(0, 0, n-1, l, r);}
50
51
   };
```

1.12 Sparse Table

Responde consultas de maneira eficiente em um conjunto de dados estáticos. Realiza um pré-processamento para diminuir o tempo de cada consulta.

- Complexidade de tempo (Pré-processamento): O(N * log(N)) - Complexidade de tempo (Consulta para operações sem sobreposição amigável): O(N * log(N)) - Complexidade de tempo (Consulta para operações com sobreposição amigável): O(1) - Complexidade de espaço: O(N * log(N))

Exemplo de operações com sobreposição amigável: max(), min(), gcd(), f(x, y) = x

```
1
    struct SparseTable {
 2
        int n, e;
 3
        vector < vector < int >> st;
        SparseTable(vector < int > &v) : n(v.size()), e(floor(log2(n))) 
 4
             st.assign(e + 1, vector < int > (n));
 5
 6
             for (int i = 0; i < n; i++) { st[0][i] = v[i]; }
             for (int i = 1; i <= e; i++) {
    for (int j = 0; j + (1 << i) <= n; j++) { st[i][j] = min(st[i - 1][j],
 7
 8
                     st[i - 1][j + (1 << (i - 1))]; 
9
             }
10
        }
11
        // O(log(N)) Query for non overlap friendly operations
12
        int logquery(int 1, int r) {
             int res = 2e9;
13
             for (int i = e; i >= 0; i---) {
14
15
                  if ((1 << i) <= r - 1 + 1) {
                      res = min(res, st[i][1]);
16
                      l \ +\!\! = \ 1 \ <\!\!< \ i \ ;
17
18
                  }
19
             }
20
             return res;
21
        // O(1) Query for overlab friendly operations
22
23
        // \exp : \max(), \min(), \gcd(), f(x, y) = x
24
        int query(int 1, int r) {
25
             // if (l > r) return 2e9;
26
             int i = ilogb(r - l + 1);
27
             return \min(st[i][1], st[i][r - (1 << i) + 1]);
28
        }
29
    };
```

<div style=page-break-after: always; ></div>

 $+ **[DSU (Disjoint Set Union)](DSU/)** Consultas e atualizações em grupos de objetos. \\ + **[DST (Disjoint Sparse Table)](Disjoint%20Sparse%20Table)** Consultas diversas em intervalo em **O(1)**. \\ **SEM ATUALIZAÇÂO** + **[Fenwick Tree](Fenwick%20Tree)** Consultas e atualizações de soma em intervalo. **COM ATUALIZAÇÂO** + **[Interval Tree](Interval%20Tree) (Autoral)** Responde quantos intervalos intersectam com outro. **COM ATUALIZAÇÂO** + **[KD Fenwick Tree](KD%20Fenwick%20Tree)* Fenwick Tree em K dimensões. **COM ATUALIZAÇÂO** + **[LiChao Tree](LiChao%20Tree)** Retorna valor máximo ou mínimo de um conjunto de retas em um intervalo. **COM ATUALIZAÇÂO** + **[MergeSort Tree](MergeSort%20Tree)** Retorna quantidade de valores em um range que são menores que K. **COM E SEM ATUALIZAÇÂO** + **[Odered Set](Ordered%20Set)** Set com possibilidade de retornar a ordem da chave, e o item em uma posição específica. + **[Operation Stack](Operation%20Stack)/[Queue] Pilha/Fila que armazena o resultado do operatório dos itens. + **[Segment Tree](Segment%20Tree)** Consultas e atualizações diversos em intervalo. + **[Sparse Table](Sparse%20Table/)** Consultas diversas em intervalo. **SEM ATUALIZAÇÂO**$

2 Grafos

2.1 Hungarian Algorithm for Bipartite Matching

Resolve o problema de Matching para uma matriz A[n][m], onde $n \leq m$.

A implementação minimiza os custos, para maximizar basta multiplicar os pesos por -1.

A matriz de entrada precisa ser indexada em 1 !!!

O vetor result guarda os pares do matching.

Complexidade de tempo: $O(n^2 * m)$

```
const 11 \text{ INF} = 1e18 + 18;
 1
 2
 3
     vector<pair<int, int>> result;
 4
 5
     ll hungarian(int n, int m, vector<vector<int>>> &A) {
 6
           vector < int > u(n + 1), v(m + 1), p(m + 1), way(m + 1);
 7
           for (int i = 1; i \le n; i++) {
 8
                 p[0] = i;
9
                 int j0 = 0;
10
                 vector < int > minv(m + 1, INF);
                  vector < char > used(m + 1, false);
11
12
                 do {
13
                        used[j0] = true;
14
                        11 \ i0 = p[j0], \ delta = INF, \ j1;
15
                        for (int j = 1; j <= m; j++) {
16
                              if (!used[j]) {
17
                                    int cur = A[i0][j] - u[i0] - v[j];
                                    if (cur < minv[j]) { minv[j] = cur, way[j] = j0; }
18
19
                                    if (minv[j] < delta) \{ delta = minv[j], j1 = j; \}
                              }
20
21
22
                        for (int j = 0; j \le m; j++) {
23
                              if (used[j]) {
24
                                    u\hspace{.05cm}[\hspace{.05cm} p\hspace{.05cm}[\hspace{.05cm} j\hspace{.05cm}]\hspace{.1cm} \hspace{.1cm} +\hspace{-.1cm}=\hspace{.1cm} d\hspace{.05cm} e\hspace{.05cm} l\hspace{.05cm} t\hspace{.05cm} a \hspace{.05cm}; \hspace{.1cm} v\hspace{.05cm}[\hspace{.05cm} j\hspace{.05cm}] \hspace{.1cm} -\hspace{-.1cm}=\hspace{.1cm} d\hspace{.05cm} e\hspace{.05cm} l\hspace{.05cm} t\hspace{.05cm} a \hspace{.05cm};
25
                              } else {
26
                                    minv[j] -= delta;
27
28
                       j\,0\ =\ j\,1\ ;
29
30
                  } while (p[j0] != 0);
31
32
                        int j1 = way[j0];
33
                       p[j0] = p[j1];
34
                       j0 = j1;
35
                  } while (j0);
36
37
           for (int i = 1; i \le m; i++) { result.emplace_back(p[i], i); }
38
           return -v[0];
39
    }
```

2.2 Stoer-Wagner

O algoritmo de Stoer-Wagner é um algoritmo para resolver o problema de corte mínimo em grafos não direcionados com pesos não negativos. A ideia essencial deste algoritmo é encolher o grafo mesclando os vértices mais intensos até que o grafo contenha apenas dois conjuntos de vértices combinados

```
Complexidade de tempo: O(V^3)
   const int MAXN = 555, INF = 1e9 + 7;
 1
 2
 3
   int n, e, adj [MAXN] [MAXN];
4
   vector<int> bestCut;
5
 6
   int mincut() {
7
       int bestCost = INF;
8
        vector < int > v[MAXN];
        \mbox{for (int $i = 0$; $i < n$; $i++) { $v[i]$. assign(1, $i$)$; }}
9
        {f int} \ \ {
m w[MAXN]} \ , \ \ {
m sel} \ ;
10
11
       bool exist [MAXN], added [MAXN];
       memset(exist, true, sizeof(exist));
12
13
        for (int phase = 0; phase < n - 1; phase++) {
14
            memset(added, false, sizeof(added));
            memset(w, 0, sizeof(w));
15
16
            for (int j = 0, prev; j < n - phase; j++) {
                sel = -1;
17
                for (int i = 0; i < n; i++) {
18
                    19
                        i; }
20
21
                if (j = n - phase - 1) {
                    if (w[sel] < bestCost) {
22
                         bestCost = w[sel];
23
                         bestCut = v[sel];
24
25
26
                    v[prev].insert(v[prev].end(), v[sel].begin(), v[sel].end());
27
                    for (int i = 0; i < n; i++) { adj[prev][i] = adj[i][prev] +=
                        adj [sel][i]; }
                    exist[sel] = false;
28
29
                } else {
30
                    added[sel] = true;
                    for (int i = 0; i < n; i++) { w[i] += adj[sel][i]; }
31
32
                    prev = sel;
33
34
            }
35
36
       return bestCost;
37
   }
   2.3
        LCA
   Algoritmo de Lowest Common Ancestor usando EulerTour e Sparse Table
      Complexidade de tempo:
      - O(Nlog(N)) Preprocessing - O(1) Query LCA
```

```
29
```

Complexidade de espaço: O(Nlog(N))

#include <bits/stdc++.h>

typedef pair<int, int> ii;

using namespace std;

#define INF 1e9

#define fi first

#define se second

1

3

4

5 6

7 8

9

```
vector < int > tin, tout;
   vector < vector < int >> adj;
11
12
   vector<ii> prof;
13
   vector < vector < ii >> st;
14
15
   int n, timer;
16
17
   void SparseTable(vector<ii> &v) {
18
        int n = v.size();
19
        int e = floor(log2(n));
20
        st.assign(e + 1, vector < ii > (n));
         \mbox{for $(int \ i = 0; \ i < n; \ i++) { st[0][i] = v[i]; } } 
21
        \label{eq:formula} \mbox{for } (\mbox{int} \ \ i \ = \ 1; \ \ i \ <= \ e \ ; \ \ i++) \ \{
22
23
             st[i-1][j+(1 << (i-1))]; 
24
        }
25
   }
26
27
   void et dfs(int u, int p, int h) {
28
        tin[u] = timer++;
29
        prof.emplace_back(h, u);
        \quad \textbf{for} \ (\textbf{int} \ v \ : \ \mathrm{adj} \, [\, u \, ] \, ) \ \{
30
31
             if (v != p) {
32
                 et dfs(v, u, h + 1);
33
                  prof.emplace_back(h, u);
             }
34
35
36
        tout[u] = timer++;
37
   }
38
39
   void build (int root = 0) {
40
        tin.assign(n, 0);
41
        tout.assign(n, 0);
42
        prof.clear();
43
        timer = 0;
44
        et_dfs(root, root, 0);
45
        SparseTable(prof);
46
   }
47
48
   int lca(int u, int v) {
        int l = tout[u], r = tin[v];
49
        if (l > r) {swap(l, r);}
50
51
        int i = floor(log2(r - 1 + 1));
52
        return \min(st[i][1], st[i][r - (1 << i) + 1]).se;
53
   }
54
55
   int main() {
56
        cin >> n;
57
        adj.assign(n, vector < int > (0));
58
59
60
        for (int i = 0; i < n - 1; i++) {
61
             int a, b;
62
             cin \gg a \gg b;
63
             adj[a].push back(b);
64
             adj[b].push_back(a);
65
        }
66
67
        build();
68
   }
```

2.4 Heavy-Light Decomposition (hld.cpp)

Técnica usada para otimizar a execução de operações em árvores.

- Pré-Processamento: O(N) - Range Query/Update: O(Log(N)) * O(Complexidade de query da estrutura) - Point Query/Update: O(Complexidade de query da estrutura) - LCA: O(Log(N)) - Subtree Query: O(Complexidade de query da estrutura) - Complexidade de espaço: O(N)

```
namespace hld {
 1
 2
         const int MAX = 2e5 + 5;
         int t, sz [MAX], pos [MAX], pai [MAX], head [MAX];
 3
 4
         bool e = 0;
         ll merge(ll a, ll b) { return max(a, b); } // how to merge paths
 5
 6
         void dfs_sz(int u, int p = -1) {
             sz[u] = 1;
 7
             for (int &v : adj[u]) {
 8
 9
                  if (v != p) {
                       dfs sz(v, u);
10
11
                       sz[u] += sz[v];
                       if (sz[v] > sz[adj[u][0]] || adj[u][0] == p) { swap(v, adj[u][0]);}
12
13
                  }
14
             }
15
16
         void dfs hld(int u, int p = -1) {
17
             pos[u] = t++;
18
             for (int v : adj[u]) {
                  if (v != p) {
19
20
                       pai[v] = u;
                       head[v] = (v = adj[u][0] ? head[u] : v);
21
22
                       dfs hld(v, u);
23
                  }
             }
24
25
26
         void build(int root) {
27
             dfs_sz(root);
28
             t = 0;
29
             pai[root] = root;
30
             head [root] = root;
31
             dfs hld(root);
32
         void build(int root, vector<ll> &v) {
33
34
             build (root);
35
             vector<ll> aux(v.size());
              \mbox{for } (\mbox{int } i = 0; \ i < (\mbox{int}) v. \, size (); \ i++) \ \{ \ aux [\,pos [\,i\,]] = v [\,i\,]; \ \} 
36
37
             seg::build(aux);
38
         }
         void build(int root, vector <i3> &edges) { // use this if weighted edges
39
             build (root);
40
41
             e = 1;
             vector<ll> aux(edges.size() + 1);
42
43
             for (auto [u, v, w] : edges) {
                  if (pos[u] > pos[v]) { swap(u, v); }
44
45
                  \operatorname{aux}[\operatorname{pos}[v]] = w;
46
             seg::build(aux);
47
48
         11 query(int u, int v) {
49
             if (pos[u] > pos[v]) \{ swap(u, v); \}
50
             \mathbf{if} \ (\mathrm{head} [\mathrm{u}] = \mathrm{head} [\mathrm{v}]) \ \{
51
                  return seg :: query(pos[u] + e, pos[v]);
52
```

```
53
               } else {
54
                     11 qv = seg :: query(pos[head[v]], pos[v]);
                     11 qu = query(u, pai[head[v]]);
55
56
                     return merge(qu, qv);
57
                }
58
          void update(int u, int v, ll k) {
59
60
                if (pos[u] > pos[v]) { swap(u, v); }
                if (head[u] = head[v]) {
61
62
                     seg::update(pos[u] + e, pos[v], k);
63
               } else {
                     \operatorname{seg} :: \operatorname{update} \left( \operatorname{pos} \left[ \operatorname{head} \left[ \operatorname{v} \right] \right] \right., \ \operatorname{pos} \left[ \operatorname{v} \right], \ k \right);
64
65
                     update(u, pai[head[v]], k);
66
                }
67
68
          int lca(int u, int v) {
69
                if (pos[u] > pos[v]) { swap(u, v); }
70
               return (head [u] = head [v] ? u : lca(u, pai [head [v]]);
71
          Il query subtree(int u) { return seg::query(pos[u], pos[u] + sz[u] - 1); }
72
73
    }
```

2.5 Kruskal

30 31

for (Edge e : edges) {

 $Utiliza \ [DSU] (.../../Estruturas\%20 de\%20 Dados/DSU/dsu.cpp) - (disjoint set union) - para construir MST - (minimum spanning tree)$

```
1
   struct Edge {
2
        int u, v, w;
3
        bool operator < (Edge const & other) { return w < other.w; }
   };
4
5
6
   vector < Edge > edges , result ;
7
   int cost;
8
9
   struct DSU {
10
        vector < int > pa, sz;
11
       DSU(int n) {
12
            sz.assign(n + 5, 1);
            for (int i = 0; i < n + 5; i++) { pa.push back(i); }
13
14
        int root(int a) { return pa[a] = (a = pa[a] ? a : root(pa[a])); }
15
16
       bool find (int a, int b) { return root(a) = root(b); }
17
        void uni(int a, int b) {
18
            int ra = root(a), rb = root(b);
19
            if (ra == rb) { return; }
20
            if (sz[ra] > sz[rb]) { swap(ra, rb); }
21
            pa[ra] = rb;
22
            sz[rb] += sz[ra];
23
        }
24
   };
25
26
   void kruskal(int m, int n) {
27
       DSU dsu(n);
28
29
        sort(edges.begin(), edges.end());
```

- Complexidade de tempo (Construção): O(M log N)

Algoritmo que acha pontes utilizando uma dfs

Complexidade de tempo: O(N + M)

```
1 int n;
                               // number of
                                               17
                                                                low[u] = min(low[u],
       nodes
                                                                    low [v]);
    vector < vector < int >> adj; // adjacency
                                                                if (low[v] > tin[u]) {
 2
                                               18
       list of graph
                                               19
                                                                     // edge UV is a bridge
 3
                                               20
                                                                     // do_something(u, v)
                                               21
                                                                }
    vector < bool > visited;
 4
5
    vector < int > tin, low;
                                               22
                                                            }
                                               23
                                                       }
 6
   int timer;
                                               24
                                                   }
7
   void dfs (int u, int p = -1) {
                                               25
9
        visited[u] = true;
                                               26
                                                   void find bridges() {
10
        tin[u] = low[u] = timer++;
                                               27
                                                       timer = 0;
        for (int v : adj[u]) {
                                               28
                                                        visited.assign(n, false);
11
                                               29
12
             if (v = p) \{ continue; \}
                                                       tin.assign(n, -1);
             if (visited[v]) {
13
                                               30
                                                       low.assign(n, -1);
14
                 low[u] = min(low[u],
                                               31
                                                       for (int i = 0; i < n; ++i) {
                                               32
                     tin [v]);
                                                            if (!visited[i]) { dfs(i); }
15
             } else {
                                               33
                                               34
                                                   }
16
                 dfs(v, u);
```

2.6 Binary Lifting

Usa uma sparse table para calcular o k-ésimo ancestral de u. Pode ser usada com o algoritmo de EulerTour para calcular o LCA.

Complexidade de tempo:

- Pré-processamento: O(N*log(N)) - Consulta do k-ésimo ancestral de u: O(log(N)) - LCA: O(log(N))

Complexidade de espaço: O(Nlog(N))

```
namespace st {
 1
 2
        int n, me, timer;
 3
        vector < int > tin , tout;
        vector < vector < int >> st;
 4
        void et_dfs(int u, int p) {
 5
             tin[u] = ++timer;
 6
 7
             st[u][0] = p;
 8
             for (int i = 1; i \le me; i++) { st[u][i] = st[st[u][i-1]][i-1]; }
 9
             for (int v : adj[u]) {
                  if (v != p) \{ et_dfs(v, u); \}
10
11
             tout[u] = ++timer;
12
13
        void build (int n, int root = 0) {
14
15
            n \, = \, \underline{\ } n;
16
             tin.assign(n, 0);
17
             tout.assign(n, 0);
```

```
18
              timer = 0;
19
              me = floor(log2(n));
20
              st.assign(n, vector < int > (me + 1, 0));
21
              et dfs(root, root);
22
23
         bool is ancestor (int u, int v) { return tin [u] <= tin [v] && tout [u] >=
             tout[v]; }
24
         int lca(int u, int v) {
              if (is_ancestor(u, v)) { return u; }
25
26
              if (is ancestor(v, u)) { return v; }
27
              for (int i = me; i >= 0; i--) {
                    \  \, \textbf{if} \  \, (!\,is\_ancestor\,(\,st\,[\,u\,]\,[\,i\,]\,,\ v)\,) \  \, \{\ u\,=\,st\,[\,u\,]\,[\,i\,]\,;\  \, \} \\
28
29
30
              return st [u][0];
31
32
         int ancestor (int u, int k) { // k-th ancestor of u
33
              for (int i = me; i >= 0; i---) {
                   if ((1 \ll i) \& k) \{ u = st[u][i]; \}
34
35
36
              return u;
37
         }
38
    }
1
    namespace st {
 2
         int n, me;
3
         {\tt vector}{<\hspace{-1.5pt}{\rm vector}}{<\hspace{-1.5pt}{\rm int}}{>\hspace{-1.5pt}>>} {\tt st};
 4
         void bl dfs(int u, int p) {
 5
              st[u][0] = p;
 6
              for (int i = 1; i \le me; i++) { st[u][i] = st[st[u][i-1]][i-1]; }
 7
              for (int v : adj[u]) {
8
                   if (v != p) \{ bl dfs(v, u); \}
9
10
11
         void build(int _n, int root = 0) {
12
              n = _n;
13
              me = floor(log2(n));
14
              st.assign(n, vector < int > (me + 1, 0));
15
              bl dfs(root, root);
16
         int ancestor (int u, int k) { // k—th ancestor of u
17
              for (int i = me; i >= 0; i---) {
18
19
                   if ((1 << i) \& k) \{ u = st[u][i]; \}
20
              }
21
              return u;
22
         }
23
    }
```

2.7 Dijkstra

Computa o menor caminho entre nós de um grafo.

```
## Dijkstra 1:1
```

Dado dois nós u e v, computa o menor caminho de u para v.

Complexidade de tempo: O((E + V) * log(E))

Dijkstra 1:N

Dado um nó u, computa o menor caminho de u para todos os nós.

```
Complexidade de tempo: O((E + V) * log(E))
       ## Dijkstra N:N
       Computa o menor caminho de todos os nós para todos os nós
       Complexidade de tempo: O(V * ((E + V) * log(E)))
    const int MAX = 505, INF = 1e9 + 9;
 1
 2
 3
    vector < ii > adj [MAX];
 4
    int dist[MAX][MAX];
 5
   void dk(int n) {
 6
7
        for (int i = 0; i < n; i++) {
 8
             for (int j = 0; j < n; j++) { dist[i][j] = INF; }
 9
10
        for (int s = 0; s < n; s++) {
             priority_queue<ii , vector<ii>>, greater<ii>>> fila;
11
12
             dist[s][s] = 0;
13
             fila.emplace(dist[s][s], s);
14
             while (!fila.empty()) {
15
                  auto [d, u] = fila.top();
16
                  fila.pop();
17
                  if (d != dist[s][u]) \{ continue; \}
                  for (auto [w, v] : adj[u]) {
18
                       if (dist[s][v] > d + w) {
19
20
                           dist[s][v] = d + w;
21
                           fila.emplace(dist[s][v], v);
22
23
                  }
             }
24
25
        }
26
   }
    const int MAX = 1e5 + 5, INF = 1e9 + 9; 12
 1
                                                               auto [d, u] = fila.top();
 2
                                                               fila.pop();
    vector < ii > adj[MAX];
                                                               if (d != dist[u]) { continue; }
 3
                                                 14
   int dist[MAX];
                                                 15
                                                               for (auto [w, v] : adj[u]) {
 4
                                                                    \mathbf{if} (dist[v] > d + w) {
                                                 16
 5
                                                                        dist[v] = d + w;
 6
    void dk(int s) {
                                                 17
 7
        priority_queue<ii, vector<ii>,
                                                                        fila.emplace(dist[v],
            greater < ii >> fila;
                                                                            v);
 8
         fill (begin (dist), end (dist), INF); 19
 9
        dist[s] = 0;
                                                 20
                                                               }
         fila.emplace(dist[s], s);
                                                 21
                                                          }
10
                                                 22
                                                     }
11
        while (!fila.empty()) {
 1
    const int MAX = 1e5 + 5, INF = 1e9 + 9; 13
                                                               fila.pop();
 2
                                                 14
                                                               if (u = t) { return dist[t]; }
 3
    vector < ii > adj [MAX];
                                                 15
                                                               if (d != dist[u]) { continue; }
                                                               \quad \textbf{for} \ (\textbf{auto} \ [\textbf{w}, \ \textbf{v}] \ : \ \textbf{adj} \, [\textbf{u}]) \ \{
 4
   int dist [MAX];
                                                 16
                                                                    \mathbf{if} (dist[v] > d + w) {
                                                 17
 5
    int dk(int s, int t) {
                                                                        dist[v] = d + w;
                                                 18
 6
 7
        priority_queue<ii , vector<ii>>,
                                                 19
                                                                        fila.emplace(dist[v],
                                                                            \mathbf{v});
            greater<ii>>> fila;
 8
         fill (begin (dist), end (dist), INF); 20
                                                                   }
                                                               }
 9
        dist[s] = 0;
                                                 21
        fila.emplace(dist[s], s);
10
                                                 22
11
        while (!fila.empty()) {
                                                 23
                                                          return -1;
             auto [d, u] = fila.top();
                                                 24 | \}
12
```

2.8 Fluxo

 $1\\2\\3$

4

5 6

7

8 9

10

11 12

13

14

15 16

17

18

19 20

21

 $\frac{22}{23}$

24

25

26

2728

 $\frac{29}{30}$

31

32

33

34 35

36

37

38

39 40

41

42

Conjunto de algoritmos para calcular o fluxo máximo em problemas relacionados de fluxo ## Dinic Muito útil para grafos bipartidos e para grafos com muitas arestas Complexidade de tempo: O(V² * E), mas em grafo bipartido a complexidade é O(sqrt(V) * E) ## Edmonds Karp Útil para grafos com poucas arestas Complexidade de tempo: $O(V * E^2)$ ## Min Cost Max Flow Computa o fluxo máximo com custo mínimo Complexidade de tempo: $O(V^2 * E^2)$ const long long INF = 1e18; struct FlowEdge { int u, v; long long cap, flow = 0;FlowEdge(int u, int v, long long cap) : u(u), v(v), cap(cap) { } **}**; struct EdmondsKarp { int n, s, t, m = 0, vistoken = 0;vector <FlowEdge> edges; vector < vector < int >> adj; vector < int > visto; EdmondsKarp(int n, int s, int t) : n(n), s(s), t(t) { adj.resize(n); visto.resize(n); } void add edge(int u, int v, long long cap) { edges.emplace back(u, v, cap); edges.emplace back(v, u, 0); $adj[u].push_back(m);$ adj[v].push back(m + 1);m += 2;} int bfs() { vistoken++;queue<int> fila; fila.push(s); vector < int > pego(n, -1);while (!fila.empty()) { int u = fila.front(); $if (u = t) \{ break; \}$ fila.pop(); visto[u] = vistoken; for (int id : adj[u]) { $\mathbf{if} \ \left(\, \mathrm{edges}\, [\, \mathrm{id}\,]\, .\, \mathrm{cap}\, -\, \mathrm{edges}\, [\, \mathrm{id}\,]\, .\, \mathrm{flow}\, <\, 1\right) \ \left\{\, \begin{array}{l} \mathbf{continue}\, ; \end{array}\, \right\}$ int v = edges[id].v;if $(visto[v] = -1) \{ continue; \}$ fila.push(v);

```
43
                       pego[v] = id;
                  }
44
45
46
              if (pego[t] = -1) \{ return 0; \}
             long long f = INF;
47
48
              for (int id = pego[t]; id != -1; id = pego[edges[id].u]) { f = min(f, f)
                  edges [id].cap - edges [id].flow); }
49
              for (int id = pego[t]; id != -1; id = pego[edges[id].u]) {
                   edges[id].flow += f;
50
                   edges [id ^1]. flow = f;
51
52
53
              return f;
54
         }
55
56
         long long flow() {
57
              long long maxflow = 0;
58
              while (long long f = bfs()) { maxflow \neq f; }
59
              return maxflow;
         }
60
61
    };
    struct MinCostMaxFlow {
1
 2
         int n, s, t, m = 0;
         11 \text{ maxflow} = 0, \text{ mincost} = 0;
 3
 4
         vector<FlowEdge> edges;
 5
         vector < vector < int >> adj;
 6
 7
         MinCostMaxFlow(int n, int s, int t) : n(n), s(s), t(t) { adj.resize(n); }
 8
 9
         void add edge(int u, int v, 11 cap, 11 cost) {
10
              edges.emplace back(u, v, cap, cost);
11
              edges.emplace back(v, u, 0, -cost);
              adj[u].push back(m);
12
              adj[v].push back(m + 1);
13
             m += 2;
14
15
         }
16
         bool spfa() {
17
              vector < int > pego(n, -1);
18
19
              vector<ll> dis(n, INF);
20
              vector < bool > inq(n, false);
21
              queue < int > fila;
22
              fila.push(s);
23
              dis[s] = 0;
24
              inq[s] = 1;
25
              while (! fila.empty()) {
26
                  int u = fila.front();
27
                   fila.pop();
                  inq[u] = false;
28
                   29
                       \mathbf{if} \ \left(\, \mathrm{edges}\, [\, \mathrm{id}\, ]\, .\, \mathrm{cap}\, -\, \mathrm{edges}\, [\, \mathrm{id}\, ]\, .\, \mathrm{flow}\, <\, 1\right) \ \left\{\, \begin{array}{l} \mathbf{continue}\, ; \end{array}\, \right\}
30
31
                       int v = edges[id].v;
32
                       if (dis[v] > dis[u] + edges[id].cost) {
33
                            dis[v] = dis[u] + edges[id].cost;
                            pego[v] = id;
34
35
                            if (!inq[v]) {
                                 inq[v] = true;
36
37
                                 fila.push(v);
38
                            }
39
                       }
                  }
40
```

```
}
41
42
43
              if (pego[t] = -1) \{ return 0; \}
44
              11 	ext{ f} = INF;
45
             for (int id = pego[t]; id != -1; id = pego[edges[id].u]) {
46
                  f = min(f, edges[id].cap - edges[id].flow);
                  mincost += edges[id].cost;
47
48
             for (int id = pego[t]; id != -1; id = pego[edges[id].u]) {
49
50
                  edges[id].flow += f;
                  edges [id ^{\circ} 1]. flow -= f;
51
52
53
             \max flow += f;
54
             return 1;
55
        }
56
57
         11 flow() {
58
             while (spfa())
59
60
             return maxflow;
61
         }
62
    };
1
   typedef long long 11;
3
   const 11 \text{ INF} = 1e18;
4
5
   struct FlowEdge {
6
        int u, v;
7
         11 \text{ cap}, \text{ flow} = 0;
8
        FlowEdge(int u, int v, ll cap) : u(u), v(v), cap(cap) { }
9
    };
10
   struct Dinic {
11
12
         vector < Flow Edge > edges;
13
         vector < vector < int>> adj;
14
         int n, s, t, m = 0;
15
         vector < int > level, ptr;
16
         queue<int> q;
17
18
         Dinic (int n, int s, int t) : n(n), s(s), t(t) {
19
              adj.resize(n);
20
              level.resize(n);
21
              ptr.resize(n);
22
        }
23
24
        void add_edge(int u, int v, ll cap) {
25
              edges.emplace_back(u, v, cap);
26
              edges.emplace_back(v, u, 0);
27
              adj [u].push_back(m);
28
             adj[v].push_back(m + 1);
29
             m += 2;
30
         }
31
32
         bool bfs() {
33
              \mathbf{while} (!q.empty())  {
34
                  int u = q.front();
35
                  q.pop();
                  \quad \mathbf{for} \ (\mathbf{int} \ \mathrm{id} \ : \ \mathrm{adj} \left[ \mathbf{u} \right]) \ \{
36
37
                       if (edges[id].cap - edges[id].flow < 1) { continue; }
38
                       int v = edges[id].v;
```

```
39
                     if (level[v] != -1) \{ continue; \}
                     level[v] = level[u] + 1;
40
41
                     q.push(v);
                 }
42
43
44
            return level [t] != -1;
        }
45
46
        ll dfs(int u, ll f) {
47
            if (f = 0) \{ return 0; \}
48
            if (u == t) { return f; }
49
            for (int &cid = ptr[u]; cid < (int)adj[u].size(); cid++) {
50
                 int id = adj[u][cid];
51
                 int v = edges[id].v;
52
                 if (level[u] + 1 != level[v] || edges[id].cap - edges[id].flow < 1) {
53
                    continue; }
54
                 11 	ext{ tr} = dfs(v, min(f, edges[id].cap - edges[id].flow));
                 if (tr = 0) \{ continue; \}
55
                 edges[id].flow += tr;
56
57
                 edges[id ^1].flow = tr;
58
                 return tr;
59
60
            return 0;
61
        }
62
        11 flow() {
63
64
            11 \text{ maxflow} = 0;
            while (true) {
65
66
                 fill(level.begin(), level.end(), -1);
                 level[s] = 0;
67
68
                 q.push(s);
69
                 if (! bfs()) { break; }
70
                 fill(ptr.begin(), ptr.end(), 0);
                 while (11 f = dfs(s, INF)) { maxflow += f; }
71
72
73
            return maxflow;
74
        }
75
   };
```

2.9 Inverse Graph

Resolve problemas em que se deseja encontrar as componentes conexas quando são dadas as arestas que não pertencem ao grafo

- Complexidade de tempo: O(N log N + N log M)

```
#include <bits/stdc++.h>
   using namespace std;
 2
 3
 4
   set < int > nodes;
   vector < set < int >> adj;
5
 6
   void bfs(int s) {
 7
        queue<int> f;
 8
9
        f.push(s);
10
        nodes.erase(s);
11
        set < int > aux;
12
        while (!f.empty()) {
13
             int x = f.front();
14
             f.pop();
```

```
15
            for (int y : nodes) {
                 if (adj[x].count(y) == 0) \{ aux.insert(y); \}
16
17
18
            for (int y : aux) {
19
                 f.push(y);
20
                 nodes.erase(y);
21
22
            aux.clear();
23
        }
24
   }
```

2.10 2-SAT

Resolve problema do 2-SAT.

- Complexidade de tempo (caso médio): O(N + M)

N é o número de variáveis e M é o número de cláusulas. A configuração da solução fica guardada no vetor *assignment*.

Em relaçõa ao sinal, tanto faz se 0 liga ou desliga, apenas siga o mesmo padrão.

```
struct sat2 {
1
2
        int n;
3
        vector < vector < int>> g, gt;
4
        vector < bool > used;
5
        vector < int > order, comp;
6
        vector < bool > assignment;
7
8
        // number of variables
9
        sat2(int _n) {

\hat{n} = 2 * (\underline{n} + 5);

10
            g.assign(n, vector < int > ());
11
12
            gt.assign(n, vector<int>());
13
        void add_edge(int v, int u, bool v_sign, bool u_sign) {
14
            g[2 * v + v sign].push back(2 * u + !u sign);
15
16
            g[2 * u + u\_sign].push\_back(2 * v + !v\_sign);
            gt[2 * u + !u sign].push back(2 * v + v sign);
17
            gt[2 * v + !v sign].push back(2 * u + u sign);
18
19
        void dfs1(int v) {
20
21
            used[v] = true;
22
            for (int u : g[v]) {
23
                 if (!used[u]) { dfs1(u); }
24
25
            order.push_back(v);
26
        void dfs2(int v, int cl) {
27
28
            comp[v] = cl;
29
            for (int u : gt[v]) {
30
                 if (comp[u] = -1) \{ dfs2(u, cl); \}
31
32
33
        bool solve() {
34
            order.clear();
35
            used.assign(n, false);
36
            for (int i = 0; i < n; ++i) {
37
                 if (!used[i]) { dfs1(i); }
38
            }
```

```
39
40
            comp. assign (n, -1);
            for (int i = 0, j = 0; i < n; ++i) {
41
                int v = order[n - i - 1];
42
                if (comp[v] = -1) \{ dfs2(v, j++); \}
43
44
            }
45
46
            assignment.assign(n / 2, false);
            for (int i = 0; i < n; i += 2) {
47
                if (comp[i] = comp[i + 1]) { return false; }
48
                assignment [i / 2] = comp[i] > comp[i + 1];
49
50
51
            return true;
52
        }
53
   };
```

2.11 Graph Center

Encontra o centro e o diâmetro de um grafo

```
Complexidade de tempo: O(N)
```

```
const int INF = 1e9 + 9;
 1
 2
 3
    vector < vector < int >> adj;
 4
    struct GraphCenter {
 5
 6
         int n, diam = 0;
 7
         vector < int > centros, dist, pai;
 8
         int bfs(int s) {
 9
              queue < int > q;
10
              q. push(s);
11
              dist.assign(n + 5, INF);
12
              pai.assign (n + 5, -1);
13
              dist[s] = 0;
              int maxidist = 0, maxinode = 0;
14
15
              while (!q.empty()) {
                   int u = q. front();
16
17
                   q.pop();
                   if (dist[u] >= maxidist) \{ maxidist = dist[u], maxinode = u; \}
18
                   \quad \textbf{for} \ (\, \textbf{int} \ v \ : \ \text{adj} \, [\, u \, ] \, ) \ \ \{ \,
19
                        if (dist[u] + 1 < dist[v]) {
20
                            dist\left[\,v\,\right] \;=\; dist\left[\,u\,\right] \;+\; 1;
21
22
                            pai[v] = u;
23
                            q.push(v);
24
                        }
                   }
25
26
27
              diam = max(diam, maxidist);
28
              return maxinode;
29
         GraphCenter(int st = 0) : n(adj.size()) 
30
31
              int d1 = bfs(st);
              int d2 = bfs(d1);
32
33
              vector < int > path;
              for (int u = d2; u != -1; u = pai[u]) { path.push back(u); }
34
35
              int len = path.size();
36
              if (len \% 2 == 1) {
37
                   centros.push_back(path[len / 2]);
38
              } else {
```

2.12 Shortest Path Fast Algorithm (SPFA)

Encontra o caminho mais curto entre um vértice e todos os outros vértices de um grafo.

Detecta ciclos negativos.

```
Complexidade de tempo: O(|V| * |E|)
    const int MAX = 1e4 + 4;
    \mathbf{const} \ 11 \ INF = 1e18 \ + \ 18;
 3
 4
    vector < ii > adj [MAX];
 5
    ll dist [MAX];
 6
7
    void spfa(int s, int n) {
8
         fill(dist, dist + n, INF);
9
         vector < int > cnt(n, 0);
10
         vector < bool > inq(n, false);
11
        queue < int > fila;
12
         fila.push(s);
13
        inq[s] = true;
         dist[s] = 0;
14
         while (! fila . empty()) {
15
16
             int u = fila.front();
17
             fila.pop();
18
             inq[u] = false;
19
             for (auto [w, v] : adj[u]) {
                  ll newd = (dist[u] = -INF ? -INF : max(w + dist[u], -INF));
20
                  if (newd < dist[v]) 
21
22
                       dist[v] = newd;
23
                       if (!inq[v]) 
24
                            fila.push(v);
                           inq[v] = true;
25
                           \operatorname{cnt}[v]++;
26
27
                           if (cnt[v] > n) { // negative cycle}
28
                                dist[v] = -INF;
                           }
29
30
                      }
                  }
31
32
             }
33
        }
34
   }
```

- [**2-SAT**](2-SAT) Resolve o problema do 2-SAT. - [**Bridge**](Bridge) Algoritimo que acha pontes. - [**Binary Lifting**](Binary%20Lifting) Busca por antepassados em uma árvore. - [**Dijkstra**](Dijkstra) Caminho mínimo de 1 para todos. - [**SPFA**](SPFA) Caminho mínimo de 1 para todos. Detecta ciclos negativos. - [**Fluxo**](Fluxo) Problemas sobre fluxo - [**Graph Center**](Graph%20Center) Encontra o centro do grafo. - [**HLD (Heavy Light Decomposition)**](HLD) Quebra uma árvore em cadeias e facilita consultas. - [**LCA (Lowest Common Ancestor)**](LCA) Encontra o menor ancetral comum de dois vétices em uma árvore. - [**Matching**](Matching) Encontra o conjunto de pares com o min/max custo em um grafo bipartido. - [**Kruskal**](Kruskal) Monta a Minimum Spanning Tree. - [**Stoer-Wagner minimum cut**](Stoer-Wagner%20minimum%20cut) Resolver o problema de corte mínimo em gráficos não direcionados com pesos não negativos

3 String

3.1 Aho-Corasick

Constrói uma estrutura de dados semelhante a um trie com links adicionais e, em seguida, constrói uma máquina de estados finitos (autômato). Útil para pattern matching de um set de strings em um texto.

Complexidade de tempo: O(|S|+|T|), onde |S| é o somatório do tamanho das strings e |T| é o tamanho do texto

```
const int K = 26;
 1
 2
 3
   struct Vertex {
        int next[K], p = -1, link = -1, exi = -1, go[K], cont = 0;
 4
        \mathbf{bool} \ \mathrm{term} \ = \ \mathbf{false} \, ;
5
6
        vector<int> idxs;
7
        char pch;
        Vertex(int p = -1, char ch = '\$') : p(p), pch(ch) {
8
9
             fill(begin(next), end(next), -1);
10
             fill(begin(go), end(go), -1);
        }
11
12
    };
13
    vector < Vertex > aho(1);
   void add string (const string &s, int idx) {
14
        int v = 0;
15
        for (char ch : s) {
16
            int c = ch - \dot{a};
17
            if (aho[v]. next[c] = -1) {
18
19
                 aho[v]. next[c] = aho. size();
20
                 aho.emplace back(v, ch);
21
22
            v = aho[v].next[c];
23
24
        aho[v].term = true;
25
        aho[v].idxs.push_back(idx);
26
27
   int go(int u, char ch);
28
   int get link(int u) {
29
        if (aho[u].link = -1) {
             if (u = 0 | | aho[u].p = 0) {
30
31
                 aho[u]. link = 0;
32
             } else {}
33
                 aho[u]. link = go(get link(aho[u].p), aho[u].pch);
34
35
36
        return aho[u].link;
37
   int go(int u, char ch) {
38
        int c = ch - 'a';
39
40
        if (aho[u].go[c] = -1) {
             if (aho[u].next[c] != -1) {
41
                 aho[u].go[c] = aho[u].next[c];
42
43
                 aho[u].go[c] = u = 0 ? 0 : go(get link(u), ch);
44
45
46
47
        return aho[u].go[c];
48
49
   int exi(int u) {
        if (aho[u]. exi != -1) \{ return aho[u]. exi; \}
50
```

```
51
        int v = get link(u);
52
        return aho[u]. exi = (v == 0 \mid | aho[v]. term ? v : exi(v));
53
   }
54
   void process(const string &s) {
        int st = 0;
55
        for (char c : s) {
56
57
            st = go(st, c);
            for (int aux = st; aux; aux = exi(aux)) { aho[aux].cont++; }
58
59
60
        for (int st = 1; st < aho_sz; st++) {
            if (!aho[st].term) { continue; }
61
62
            for (int i : aho[st].idxs) {
                // Do something here
63
64
                // idx i ocurs + aho[st].cont times
65
                h[i] += aho[st].cont;
            }
66
67
        }
68
   }
```

3.2 Patricia Tree ou Patricia Trie

Implementação PB-DS, extremamente curta e confusa:

- Criar: patricia_tree pat; - Inserir: pat.insert("sei la"); - Remover: pat.erase("sei la"); - Verificar existência: pat.find("sei la") != pat.end(); - Pegar palavras que começam com um prefixo: auto match = pat.prefix_range("sei"); - Percorrer *match*: for(auto it = match.first; it != match.second; ++it); - Pegar menor elemento lexicográfico *maior ou igual* ao prefixo: *pat.lower_bound("sei"); - Pegar menor elemento lexicográfico *maior* ao prefixo: *pat.upper_bound("sei");

TODAS AS OPERAÇÕES EM O(|S|) **NÃO ACEITA ELEMENTOS REPETIDOS**

3.3 Prefix Function

Para cada prefixo k de uma dada string s, calcula o maior prefixo que tambem é sufixo de k.

Seja n o tamanho do texto e m o tamanho do padrão.

```
\label{eq:continuous} \begin{split} \#\# & [KMP](KMP.cpp) \\ String matching em & O(n+m). \\ \#\# & [Autômato de KMP](aut\_kmp.cpp) \\ String matching em & O(n) com O(m) de pré-processamento. \\ \#\# & [Prefix Count](prefix\_count.cpp) \end{split}
```

Dada uma string s, calcula quantas vezes cada prefixo de s aparece em s com complexidade de tempo de O(n).

```
1 vector<int> pi(string &s) {
2 vector<int> p(s.size());
```

```
3
        for (int i = 1, j = 0; i < s.size(); i++) {
             while (j > 0 \&\& s[i] != s[j]) \{ j = p[j-1]; \}
4
             if (s[i] = s[j]) \{ j++; \}
5
 6
            p[i] = j;
7
 8
        return p;
 9
   }
1
    vector < int > pi (string &s) {
2
        vector < int > p(s.size());
        \mbox{for (int $i = 1$, $j = 0$; $i < s.size()$; $i++)$ } \{
3
4
             while (j > 0 \&\& s[i] != s[j]) \{ j = p[j-1]; \}
5
             if (s[i] == s[j]) { j++; }
6
            p[i] = j;
7
        {\bf return}\ p\,;
8
9
   }
10
   vector < int > kmp(string &s, string t) {
11
12
        t += '$';
        vector < int > p = pi(t), match;
13
        for (int i = 0, j = 0; i < s.size(); i++) {
14
             while (j > 0 \&\& s[i] != t[j]) \{ j = p[j-1]; \}
15
             if \ (s\,[\,i\,] \ = \ t\,[\,j\,]) \ \{\ j\,+\!+;\ \}
16
17
             if (j = t.size() - 1) \{ match.push_back(i - j + 1); \}
18
19
        return match;
20
   }
1
    vector<int> pi(string s) {
2
        vector < int > p(s.size());
3
        for (int i = 1, j = 0; i < s.size(); i++) {
             while (j > 0 \&\& s[i] != s[j]) \{ j = p[j-1]; \}
4
             if (s[i] == s[j]) { j++; }
5
            p[i] = j;
6
7
8
        return p;
9
   }
10
11
    vector < int > prefixCount(string s) {
12
        vector < int > p = pi(s + '\#');
13
        int n = s.size();
14
        vector < int > cnt(n + 1, 0);
15
        for (int i = 0; i < n; i++) { cnt[p[i]]++; }
16
        for (int i = n - 1; i > 0; i—) { cnt[p[i - 1]] += cnt[i]; }
        for (int i = 0; i \le n; i++) { cnt[i]++; }
17
18
        return cnt;
   }
19
    struct AutKMP {
1
2
        vector < vector < int >> nxt;
3
4
        vector < int > pi(string &s) {
5
             vector < int > p(s.size());
6
             for (int i = 1, j = 0; i < s.size(); i++) {
7
                 while (j > 0 \&\& s[i] != s[j]) \{ j = p[j-1]; \}
                 if (s[i] = s[j]) \{ j++; \}
8
9
                 p[i] = j;
10
11
             return p;
12
        }
```

```
13
       void setString(string s) {
14
          s += '#';
15
          nxt.assign(s.size(), vector < int > (26));
16
17
          vector < int > p = pi(s);
          for (int c = 0; c < 26; c++) { nxt[0][c] = ('a' + c == s[0]); }
18
          for (int i = 1; i < s.size(); i++) {
19
              20
                 nxt[p[i - 1]][c];
21
          }
22
       }
23
24
       vector<int> kmp(string &s, string &t) {
25
           vector < int > match;
26
           for (int i = 0, j = 0; i < s.size(); i++) {
              j = nxt[j][s[i] - 'a'];
27
              if (j = t.size()) \{ match.push_back(i - j + 1); \}
28
29
30
          return match;
31
       }
32
   } aut;
```

3.4 Hashing

Hashing para testar igualdade de duas strings A função ***range(i, j)*** retorna o hash da substring nesse range. Pode ser necessário usar pares de hash para evitar colisões.

```
* Complexidade de tempo (Construção): O(N) * Complexidade de tempo (Consulta de range): O(1)
```

```
1
   struct hashing {
2
        \mathbf{const} \ \mathbf{long} \ \mathbf{long} \ \mathrm{LIM} = 1000006;
3
        long long p, m;
 4
        vector < long long > pw, hsh;
        hashing(long long _p, long long _m) : p(_p), m( m) {
 5
 6
            pw.resize(LIM);
 7
            hsh.resize(LIM);
 8
            pw[0] = 1;
             for (int i = 1; i < LIM; i++) { pw[i] = (pw[i-1] * p) % m; }
9
10
        void set string(string &s) {
11
12
             hsh[0] = s[0];
13
             for (int i = 1; i < s.size(); i++) { hsh[i] = (hsh[i-1] * p + s[i]) % m;
                }
14
15
        long long range (int esq, int dir) {
             long long ans = hsh[dir];
16
             if (esq > 0) \{ ans = (ans - (hsh[esq - 1] * pw[dir - esq + 1] \% m) + m) \%
17
18
             return ans;
19
        }
20
    };
```

3.5 Trie

Estrutura que guarda informações indexadas por palavra. Útil encontrar todos os prefixos inseridos anteriormente de uma palavra específica.

^{*} Complexidade de tempo (Update): O(|S|) * Complexidade de tempo (Consulta de palavra): O(|S|)

```
struct trie {
1
2
        map<char, int> trie[100005];
        int value [100005];
3
 4
        int n nodes = 0;
        void insert(string &s, int v) {
5
 6
            int id = 0;
7
            for (char c : s) {
                 if (! trie[id].count(c)) \{ trie[id][c] = ++n nodes; \}
8
9
                 id = trie[id][c];
10
            value[id] = v;
11
12
13
        int get_value(string &s) {
            int id = 0;
14
15
            for (char c : s) {
16
                 if (! trie[id].count(c)) \{ return -1; \}
17
                 id = trie[id][c];
18
19
            return value[id];
20
        }
21
   };
```

3.6 Algoritmo de Manacher

Dada uma string s de tamanho n, encontra todos os pares (i,j) tal que a substring s

i...j

seja um palindromo.

* Complexidade de tempo: O(N) struct manacher { 1 2 long long n, count; 3 vector < int > d1, d2;long long solve (string &s) { 4 5 n = s.size(), count = 0;6 solve odd(s); 7 solve even(s); 8 return count; 9 10 void solve odd(string &s) { 11 d1. resize(n); for (int i = 0, l = 0, r = -1; i < n; i++) { 12 13 int k = (i > r) ? 1 : min(d1[l + r - i], r - i + 1); while $(0 \le i - k \&\& i + k \le n \&\& s[i - k] == s[i + k]) \{ k++; \}$ 14 count += d1[i] = k--;15 $if (i + k > r) {$ 16 17 l = i - k;r = i + k;18 19 } } 20 21void solve even(string &s) { 22 23 d2. resize(n); for (int i = 0, l = 0, r = -1; i < n; i++) { 24 $\textbf{int} \;\; k \, = \, (\, i \, > \, r\,) \;\; ? \;\; 0 \;\; : \;\; \min \big(\, d2 \, [\, l \, + \, r \, - \, i \, + \, 1\,] \, , \;\; r \, - \, i \, + \, 1 \big) \, ;$ 25**while** $(0 \le i - k - 1 \&\& i + k < n \&\& s[i - k - 1] == s[i + k]) \{ k++; \}$ 26 27 count += d2[i] = k--;

3.7 Lyndon Factorization

Strings em decomposição única em subcadeias que são ordenadas lexicograficamente e não podem ser mais reduzidas.

```
## [Duval](duval.cpp)
```

Gera a Lyndon Factorization de uma string

* Complexidade de tempo: O(N)

```
## [Min Cyclic Shift](min cyclic shift.cpp)
```

Gera a menor rotação circular da string original que pode ser obtida por meio de deslocamentos cíclicos dos caracteres.

* Complexidade de tempo: O(N)

```
string min_cyclic_shift(string s) {
                                                                                } else {
 1
                                                          11
 2
                                                           12
          s += s;
 3
          int n = s.size();
                                                           13
 4
          int i = 0, ans = 0;
                                                           14
                                                                                j++;
          while (i < n / 2) {
 5
                                                           15
                                                                          \mathbf{while} \ (i <= k) \ \{ i += j - k; \}
 6
                ans = i;
                                                           16
 7
               int j = i + 1, k = i;
               \mathbf{while} \ (\, \mathbf{j} \ < \ \mathbf{n} \ \&\& \ \mathbf{s} \, [\, \mathbf{k} \, ] \ <= \ \mathbf{s} \, [\, \mathbf{j} \, ]\,) \ \{18
 8
                                                                    return s.substr(ans, n / 2);
 9
                     if (s[k] < s[j]) {
                                                           19
                                                               }
10
                          k = i;
    vector<string> duval(string const &s) {
 1
 2
          int n = s.size();
 3
          int i = 0;
 4
          vector < string > factorization;
 5
          \mathbf{while} \ (i < n) \ \{
 6
               int j = i + 1, k = i;
                \mathbf{while} \ (j < n \&\& s[k] <= s[j]) \ \{
 7
                     if (s[k] < s[j]) {
 8
 9
                           k = i;
10
                     } else {
11
                          k++;
12
13
                     j++;
14
15
               while (i \le k) {
                     factorization.push back(s.substr(i, j - k));
16
                     i \ +\!\! = \ j \ - \ k \, ;
17
18
19
          }
20
          return factorization;
21
    }
```

3.8 Suffix Array

Estrutura que conterá inteiros que representam os índices iniciais de todos os sufixos ordenados de uma determinada string.

Tambem Constroi a tabela LCP(Longest common prefix).

* Complexidade de tempo (Pré-Processamento): O(|S|*log(|S|)) * Complexidade de tempo (Contar ocorrencias de S em T): O(|S|*log(|T|))

```
pair < int, int > busca (string &t, int i, pair < int, int > &range) {
1
2
        int esq = range.first, dir = range.second, L = -1, R = -1;
3
        while (esq \le dir) {
            int mid = (esq + dir) / 2;
 4
            if \ (s \, [\, sa \, [\, mid \, ] \, + \, i \, ] \, = \, t \, [\, i \, ]) \ \{ \ L \, = \, mid \, ; \ \}
 5
6
            if (s[sa[mid] + i] < t[i]) {
7
                esq = mid + 1;
8
            } else {
9
                 dir = mid - 1;
10
        }
11
12
        esq = range.first, dir = range.second;
13
        while (esq \le dir) {
14
            int mid = (esq + dir) / 2;
            15
            if (s[sa[mid] + i] <= t[i]) {
16
17
                esq = mid + 1;
18
            } else {}
19
                 dir = mid - 1;
20
21
22
        return {L, R};
23
24
   // count ocurences of s on t
25
   int busca string (string &t) {
        pair < int, int > range = \{0, n - 1\};
26
        for (int i = 0; i < t.size(); i++) {
27
            range = busca(t, i, range);
28
29
            if (range.first = -1) \{ return 0; \}
30
31
        return range.second - range.first + 1;
32
   }
   const int MAX N = 5e5 + 5;
1
2
 3
   struct suffix array {
4
        string s;
        int n, sum, r, ra [MAX_N], sa [MAX_N], auxra [MAX_N], auxsa [MAX_N], c [MAX_N],
5
           lcp [MAX N];
 6
        void counting_sort(int k) {
            memset(c, 0, sizeof(c));
 7
            for (int i = 0; i < n; i++) { c[(i + k < n) ? ra[i + k] : 0]++; }
 8
            for (int i = sum = 0; i < max(256, n); i++) { sum += c[i], c[i] = sum -
 9
                c[i]; }
            for (int i = 0; i < n; i++) { auxsa[c[sa[i] + k < n ? ra[sa[i] + k] :
10
                0]++] = sa[i];
            for (int i = 0; i < n; i++) { sa[i] = auxsa[i]; }
11
12
13
        void build_sa() {
14
            for (int k = 1; k < n; k <<= 1) {
15
                counting sort(k);
```

```
16
                                                             counting sort(0);
                                                             auxra[sa[0]] = r = 0;
17
                                                             for (int i = 1; i < n; i++) {
18
                                                                            auxra[sa[i]] = (ra[sa[i]] = ra[sa[i-1]] & ra[sa[i] + k] = ra[sa[i]] & ra[sa[
19
                                                                                         ra[sa[i - 1] + k])? r : ++r;
20
                                                             for (int i = 0; i < n; i++) { ra[i] = auxra[i]; }
21
                                                             if (ra[sa[n-1]] = n-1) { break; }
22
23
                                             }
24
25
                             void build lcp() {
                                             for (int i = 0, k = 0; i < n - 1; i++) {
26
27
                                                             int j = sa[ra[i] - 1];
                                                             while (s[i + k] = s[j + k]) \{ k++; \}
28
                                                             lcp[ra[i]] = k;
29
30
                                                             if (k) { k—; }
                                            }
31
32
                             void set string(string s) {
33
34
                                            s = _s + '$';
35
                                            n = s.size();
                                            for (int i = 0; i < n; i++) { ra[i] = s[i], sa[i] = i; }
36
37
38
                                            build lcp();
                                             // for (int i = 0; i < n; i++) printf("%2d: %s\n", sa[i], s.c str() +
39
                                                         sa[i]);
40
41
                             int operator[](int i) { return sa[i]; }
42
            } sa;
```

- **Aho-Corasick** Constrói uma estrutura de dados semelhante a um trie com links adicionais e, em seguida, constrói uma máquina de estados finitos (autômato). Útil para pattern matching de um set de strings em um texto.
- **Manacher** Dado string s com tamanho n. Encontre todos os pares (i, j) tal que a substring s [i...j] seja um palíndromo.
 - **Hashing** Hasha Strings e faz comparações em O(1).
 - **[Patricia Tree](Patricia%20Tree)** Trie Rápida. (Não guarda valores para cada string)
- **[Prefix Function](Prefix%20Function)** Algoritmos usando a Prefix Function, como KMP e PrefixCount.
 - **[Suffix Array](Suffix%20Array)** Trabalha com todos os sufixos sem precisar criá-los.
- **Trie** Estrutura para trabalhar com Strings e encontrar prefixos. Pode servir para converter uma String em outro valor em O(|S|)
- **[Lyndon Factorization](Lyndon%20Factorization)** Strings em decomposição única em subcadeias que são ordenadas lexicograficamente e não podem ser mais reduzidas.

Paradigmas 4

4.1 Mo

Resolve Queries Complicadas Offline de forma rápida. É preciso manter uma estrutura que adicione e remova elementos nas extremeidades de um range (tipo janela).

```
- Complexidade de tempo (Query offline): O(N * sqrt(N))
# [Mo com Update](mo update.cpp)
```

Resolve Queries Complicadas Offline de forma rápida. Permite que existam **UPDATES PONTU-AIS!** É preciso manter uma estrutura que adicione e remova elementos nas extremidades de um range (tipo janela).

- Complexidade de tempo: $O(Q * N^{(2/3)})$

```
typedef pair<int, int> ii;
   int block sz; // Better if 'const';
 2
3
   namespace mo {
4
5
        struct query {
6
            int l, r, idx;
 7
            bool operator < (query q) const {
8
                 int l = l / block_sz;
                 int _ql = q.l / block_sz;
9
                 return ii(_l, (_l & 1 ? -r : r)) < ii(_ql, (_ql & 1 ? -q.r : q.r));
10
11
12
        };
13
        vector < query > queries;
14
        void build(int n) {
15
            block sz = (int) sqrt(n);
16
            // TODO: initialize data structure
17
18
19
        inline void add_query(int 1, int r) { queries.push_back({1, r,
            (int) queries.size()}); }
20
        inline void remove(int idx) {
21
            // TODO: remove value at idx from data structure
22
23
        inline void add(int idx) {
24
            // TODO: add value at idx from data structure
25
26
        inline int get answer() {
            // TODO: extract the current answer of the data structure
27
28
            return 0;
29
        }
30
31
        vector<int> run() {
32
            vector < int > answers (queries.size());
            sort(queries.begin(), queries.end());
33
34
            int L = 0;
35
            int R = -1;
36
            for (query q : queries) {
                 \mathbf{while} \ (L > q.l) \ \{ \ \mathrm{add}(--L); \ \}
37
                 while (R < q.r) \{ add(++R); \}
38
39
                 while (L < q.l) { remove (L++); }
40
                 while (R > q.r) { remove (R--); }
41
                 answers[q.idx] = get answer();
42
43
            return answers;
```

```
44
         }
45
46
   };
1
    typedef pair<int, int> ii;
    typedef tuple<int, int, int> iii;
    int block_sz; // Better if 'const';
    vector < int > vec;
5
    namespace mo {
6
         struct query {
7
               int l, r, t, idx;
8
              bool operator < (query q) const {
9
                    int _l = l / block_sz;
10
                    int _r = r / block_sz;
11
                    int _ql = q.l / block_sz;
12
                    int _qr = q.r / block_sz;
13
                    iii \left( \begin{matrix} -ql \\ -ql \end{matrix}, \begin{matrix} (-ql & 1 ? - -qr \\ -qr \end{matrix}; -qr \right), \quad \left( \begin{matrix} -qr & k & 1 ? & q.t \\ -q.t \\ -q.t \end{matrix}) \right);
14
               }
15
16
          };
17
         vector < query > queries;
18
         vector<ii> updates;
19
20
         void build(int n) {
21
               block sz = pow(1.4142 * n, 2.0 / 3);
22
               // TODO: initialize data structure
23
          \begin{array}{lll} \textbf{inline void} & \text{add\_query}(\textbf{int } 1 \,, \ \textbf{int } r) \end{array} \hspace{0.1cm} \{ \begin{array}{lll} \text{queries.push\_back}(\{1 \,, \ r \,, \\ \end{array} ) \end{array} 
24
              (int) updates. size(), (int) queries. size() }); }
25
         inline void add update(int x, int v) { updates.push back(\{x, v\}); }
26
         inline void remove(int idx) {
27
               // TODO: remove value at idx from data structure
28
29
         inline void add(int idx) {
30
              // TODO: add value at idx from data structure
31
32
         inline void update(int 1, int r, int t) {
33
              auto &[x, v] = updates[t];
34
              if (1 \le x \&\& x \le r) \{ remove(x); \}
35
              swap(vec[x], v);
36
               if (l \le x \&\& x \le r) \{ add(x); \}
37
         inline int get answer() {
38
39
               // TODO: extract the current answer from the data structure
40
              return 0;
41
         }
42
43
         vector < int > run() {
44
               vector < int > answers (queries.size());
45
               sort(queries.begin(), queries.end());
46
              int L = 0;
47
              int R = -1;
              int T = 0;
48
49
               for (query q : queries) {
                    \mathbf{while} \ (T < q.t) \ \left\{ \ update(L, R, T\!+\!+\!); \ \right\}
50
                    while (T > q.t) { update(L, R, —T); }
51
52
                    while (L > q.l) \{ add(--L); \}
                    \mathbf{while} \ (\mathrm{R} < \mathrm{q.r}) \ \left\{ \ \mathrm{add}(++\mathrm{R}) \, ; \ \right\}
53
54
                    while (L < q.1) { remove (L++); }
55
                    while (R > q.r) { remove (R--); }
56
                    answers[q.idx] = get answer();
```

```
57 }
58 return answers;
59 }
60 };
```

4.2 Exponenciação de Matriz

Otimização para DP de prefixo quando o valor atual está em função dos últimos K valores já calculados. * Complexidade de tempo: $O(log(n) * k^3)$

É preciso mapear a DP para uma exponenciação de matriz.

Uso Comum

DP:

$$dp[n] = \sum_{i=1}^{n} i = 1^k c[i] \cdot dp[n-i]$$

Mapeamento:

$$\begin{pmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ c[k] & c[k-1] & c[k-2] & \dots & c[1] & 0 \end{pmatrix}^n \times \begin{pmatrix} dp[0] \\ dp[1] \\ dp[2] \\ \dots \\ dp[k-1] \end{pmatrix}$$

— ### Variação que dependa de **constantes** e do **índice**

Exemplo de DP:

$$dp[i] = dp[i-1] + 2 \cdot i^2 + 3 \cdot i + 5$$

Nesses casos é preciso fazer uma linha para manter cada constante e potência do índice.

Mapeamento:

$$\begin{pmatrix} 1 & 5 & 3 & 2 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 2 & 1 \end{pmatrix}^{n} \times \begin{pmatrix} dp[0] \\ 1 \\ 1 \\ 1 \end{pmatrix} \begin{array}{c} mantm \ dp[i] \\ mantm \ i \\ mantm \ i \\ mantm \ i \end{pmatrix}$$

Variação Multiplicativa

Exemplo de DP:

$$dp[n] = c \times \prod _i = 1^k dp[n-i]$$

Nesses casos é preciso trabalhar com o logaritmo e temos o caso padrão:

$$\log(dp[n]) = \log(c) + \sum_{i} i = 1^{k} \log(dp[n-i])$$

Se a resposta precisar ser inteira, deve-se fatorar a constante e os valores inicias e então fazer uma exponenciação para cada fator primo. Depois é só juntar a resposta no final.

```
11 dp [100];
2
   mat T;
3
4
   #define MOD 1000000007
5
6
   mat mult(mat a, mat b) {
7
       mat res(a.size(), vi(b[0].size()));
8
        for (int i = 0; i < a.size(); i++) {
9
            for (int j = 0; j < b[0].size(); j++) {
10
                for (int k = 0; k < b.size(); k++) {
                    res[i][j] += a[i][k] * b[k][j] % MOD;
11
                    res[i][j] %= MOD;
12
13
14
            }
15
        }
16
       return res;
17
   }
18
   mat exp mod(mat b, ll exp) {
19
20
       mat res(b.size(), vi(b.size()));
21
       22
23
        while (exp) {
24
            if (\exp \& 1) \{ res = mult(res, b); \}
25
            b = mult(b, b);
26
            \exp /= 2;
27
28
       return res;
29
   }
30
31
   // MUDA MUITO DE ACORDO COM O PROBLEMA
32
      LEIA COMO FAZER O MAPEAMENTO NO README
33
   ll solve(ll exp, ll dim) {
34
        if (\exp < \dim) \{ \operatorname{return} \operatorname{dp} [\exp]; \}
35
36
       T. assign(dim, vi(dim));
37
        // TO DO: Preencher a Matriz que vai ser exponenciada
        // T[0][1] = 1;
38
        // T[1][0] = 1;
39
        // T[1][1] = 1;
40
41
42
       mat prod = exp mod(T, exp);
43
44
       mat vec;
45
        vec.assign(dim, vi(1));
46
        for (int i = 0; i < \dim; i++) {
47
            vec[i][0] = dp[i]; // Valores iniciais
48
49
       mat ans = mult(prod, vec);
50
51
       return ans [0][0];
52
   }
```

4.3 Busca Binária Paralela

Faz a busca binária para múltiplas consultas quando a busca binária é muito pesada.

- Complexidade de tempo: $O((N+Q)\log(N)*O(F))$, onde N é o tamanho do espaço de busca, Q é o número de consultas e O(F), o custo de avaliação da função.

```
1
   namespace parallel_binary_search {
2
        typedef tuple<int, int, long long, long long> query; //{value, id, l, r}
3
 4
        vector < query > queries [1123456];
                                                                 // pode ser um mapa se
           for muito esparso
 5
       long long ans [1123456];
                                                                 // definir pro tamanho
           das queries
 6
       long long l, r, mid;
7
        int id = 0;
        void set lim search (long long n) {
8
            1 = 0;
9
10
            r = n;
            mid = (1 + r) / 2;
11
12
13
       void add query(long long v) { queries [mid]. push back(\{v, id++, 1, r\}); }
14
15
16
        void advance search(long long v) {
17
            // advance search
        }
18
19
20
       bool satisfies (long long mid, int v, long long l, long long r) {
21
            // implement the evaluation
22
        }
23
24
        bool get_ans() {
25
            // implement the get ans
26
27
28
       void parallel binary search(long long l, long long r) {
29
30
            bool go = 1;
31
            while (go) {
32
                go = 0;
33
                int i = 0; // outra logica se for usar um mapa
34
                for (auto &vec : queries) {
35
                     advance_search(i++);
36
                     for (auto q : vec) {
37
                         auto [v, id, l, r] = q;
                         if (l > r) \{ continue; \}
38
39
                         go = 1;
40
                         // return while satisfies
41
                         if (satisfies(i, v, l, r)) {
42
                             ans[i] = get_ans();
43
                             long long mid = (i + 1) / 2;
44
                             queries[mid] = query(v, id, l, i - 1);
45
                         } else {
46
                             long long mid = (i + r) / 2;
                             queries[mid] = query(v, id, i + 1, r);
47
                         }
48
49
50
                    vec.clear();
                }
51
52
            }
53
54
55
   } // namespace name
```

4.4 Divide and Conquer

Otimização para DP de prefixo quando se pretende separar o vetor em K subgrupos. É preciso fazer a função query(i, j) que computa o custo do subgrupo

i, j

- . * Complexidade de tempo: O(n * k * log(n) * O(query))
 - # [Divide and Conquer com Query on demand](dc query ondemand.cpp)

Usado para evitar queries pesadas ou o custo de pré-processamento. É preciso fazer as funções da estrutura **janela**, eles adicionam e removem itens um a um como uma janela flutuante.

* Complexidade de tempo: O(n * k * log(n) * O(update da janela))

```
1
   namespace DC {
2
        vi dp before, dp_cur;
3
        void compute(int 1, int r, int optl, int optr) {
4
            5
            int mid = (1 + r) >> 1;
6
            pair < ll, int > best = \{0, -1\}; // \{INF, -1\}  se quiser minimizar
7
            for (int i = optl; i \le min(mid, optr); i++) {
8
                best = max(best, \{(i ? dp\_before[i - 1] : 0) + query(i, mid), i\}); //
                    min() se quiser minimizar
9
10
            dp cur[mid] = best.first;
11
            int opt = best.second;
12
            compute(l, mid - 1, optl, opt);
13
            compute(mid + 1, r, opt, optr);
14
       }
15
16
        ll solve(int n, int k) {
17
            dp before. assign (n + 5, 0);
            dp_cur.assign(n + 5, 0);
18
            \mbox{for (int $i = 0$; $i < n$; $i++) { dp\_before[i] = query(0, i); } }
19
20
            for (int i = 1; i < k; i++) {
21
                compute (0, n - 1, 0, n - 1);
22
                dp before = dp cur;
23
24
            return dp before [n-1];
25
        }
26
   };
   namespace DC {
1
        struct range { // eh preciso definir a forma de calcular o range
2
3
            vi freq;
4
            11 \text{ sum} = 0;
5
            int l = 0, r = -1;
6
            void back_l(int v) { // Mover o 'l' do range para a esquerda
7
                sum += freq[v];
8
                freq[v]++;
9
                1--:
10
            void advance r(int v) { // Mover o 'r' do range para a direita
11
12
                sum += freq[v];
13
                freq[v]++;
14
                r++;
15
            void advance_l(int v) { // Mover o 'l' do range para a direita
16
17
                freq[v]--;
18
                sum = freq[v];
```

```
19
                  1++;
             }
20
21
             void back_r(int v) { // Mover o 'r' do range para a esquerda
22
                  freq[v]--;
23
                  sum = freq[v];
24
                  r--;
25
26
             void clear(int n) { // Limpar range
27
                  1 = 0:
28
                  r = -1;
                  sum = 0;
29
30
                  freq.assign(n + 5, 0);
31
32
         } s;
33
34
         vi dp before, dp cur;
35
         void compute(int 1, int r, int optl, int optr) {
             if (l > r) { return; }
36
             int mid = (l + r) \gg 1;
37
             pair < ll, int > best = \{0, -1\}; // \{INF, -1\}  se quiser minimizar
38
39
40
             while (s.l < optl) \{ s.advance_l(v[s.l]); \}
             \mathbf{while} \ (s.l > optl) \ \{ \ s.back\_l(v[s.l - 1]); \ \}
41
42
             while (s.r < mid) \{ s.advance_r(v[s.r + 1]); \}
43
             while (s.r > mid) \{ s.back_r(v[s.r]); \}
44
45
             vi removed;
             \mbox{ for } \mbox{ (int } \mbox{ i } = \mbox{ optl} \, ; \mbox{ i } <= \mbox{ min(mid} \, , \mbox{ optr} \, ) \, ; \mbox{ i++) } \, \{
46
                  best = \min(\text{best}, \{(i ? \text{dp before}[i-1] : 0) + \text{s.sum}, i\}); // \min() \text{ se}
47
                      quiser minimizar
48
                  removed.push back(v[s.l]);
                  s.advance l(v[s.l]);
49
50
             for (int rem : removed) { s.back l(v[s.l-1]); }
51
52
53
             dp_cur[mid] = best.first;
             int opt = best.second;
54
             compute(l, mid - 1, optl, opt);
55
56
             compute(mid + 1, r, opt, optr);
57
        }
58
         ll solve(int n, int k) {
59
60
             dp before.assign(n, 0);
61
             dp_cur.assign(n, 0);
             s.clear(n);
62
63
             for (int i = 0; i < n; i++) {
                  s.advance r(v[i]);
64
                  dp_before[i] = s.sum;
65
66
             for (int i = 1; i < k; i++) {
67
                  s.clear(n);
68
69
                  compute (0, n - 1, 0, n - 1);
70
                  dp before = dp cur;
71
72
             return dp before [n-1];
73
         }
74
    };
```

4.5 Busca Ternária

Encontra um ponto ótimo em uma função que pode ser separada em duas funções estritamente monotônicas (e.g. parábolas).

- Complexidade de tempo: O(log(N) * O(eval)). Onde N é o tamanho do espaço de busca e O(eval) o custo de avaliação da função.

```
\# [Busca Ternária em Espaço Discreto](busca_ternaria_discreta.cpp)
```

Encontra um ponto ótimo em uma função que pode ser separada em duas funções estritamente monotônicas (e.g. parábolas). Versão para espaços discretos.

- Complexidade de tempo: O(log(N) * O(eval)). Onde N é o tamanho do espaço de busca e O(eval) o custo de avaliação da função.

```
1
                                              12
2
   double eval (double mid) {
                                              13
                                                          // minimizing. To maximize use
3
        // implement the evaluation
                                                              >= to compare
4
                                              14
                                                          if (eval(mid 1) \le eval(mid 2))
5
6
   double ternary search (double 1, double 15
                                                               r = mid 2;
                                                            else {
        int k = 100;
7
                                              17
                                                               1 = mid 1;
8
        while (k--) {
                                              18
9
            double step = (1 + r) / 3;
                                              19
10
            double mid_1 = 1 + step;
                                              20
                                                      return 1;
            double mid_2 = r - step;
                                              21
11
1
2
   long long eval (long long mid) {
3
        // implement the evaluation
4
   }
5
   long long discrete_ternary_search(long long 1, long long r) {
6
7
        long long ans = -1;
8
        r--; // to not space r
9
        while (l \ll r) {
10
            long long mid = (l + r) / 2;
11
            // minimizing. To maximize use >= to compare
12
13
            if (eval(mid) \le eval(mid + 1)) 
14
                ans = mid;
                r = mid - 1;
15
16
            } else {
17
                 l = mid + 1;
18
19
20
        return ans;
21
   }
```

4.6 DP de Permutação

Otimização do problema do Caixeiro Viajante

```
* Complexidade de tempo: O(n^2 * 2^n)
```

Para rodar a função basta setar a matriz de adjacência 'dist' e chamar solve(0,0,n).

```
// setar para o maximo de itens
   const int \lim = 17;
   long double dist[lim][lim]; // eh preciso dar as distancias de n para n
   long double dp[lim][1 << lim];
 3
   int limMask = (1 \ll lim) - 1; // 2**(maximo de itens) - 1
5
   long double solve(int atual, int mask, int n) {
6
        if (dp[atual][mask] != 0) { return dp[atual][mask]; }
7
8
        if (mask = (1 << n) - 1) {
            return dp[atual][mask] = 0; // o que fazer quando chega no final
9
10
11
12
       long double res = 1e13; // pode ser maior se precisar
        for (int i = 0; i < n; i++) {
13
14
            if (!(mask & (1 << i))) {
                long double aux = solve(i, mask | (1 \ll i), n);
15
16
                if (mask) \{ aux += dist[atual][i]; \}
17
                res = min(res, aux);
            }
18
19
20
       return dp[atual][mask] = res;
21
   }
```

4.7 Convex Hull Trick

Otimização de DP onde se mantém as retas que formam um Convex Hull em uma estrutura que permite consultar qual o melhor valor para um determinado x.

Só funciona quando as retas são monotônicas. Caso não forem, usar LiChao Tree para guardar as retas

Complexidade de tempo:

- Inserir reta: O(1) amortizado - Consultar x: $O(\log(N))$ - Consultar x quando x tem crescimento monotônico: O(1)

```
const 11 INF = 1e18 + 18;
 1
 2
   bool op(ll a, ll b) {
 3
        return a >= b; // either >= or <=
   }
 4
   struct line {
 5
 6
        ll a, b;
7
        ll get(ll x) { return a * x + b; }
        11 intersect(line 1) {
8
            return (1.b - b + a - 1.a) / (a - 1.a); // rounds up for integer only
9
10
        }
11
    };
   deque<pair<line, ll>> fila;
12
   void add_line(ll a, ll b) {
13
        line nova = \{a, b\};
14
        if (!fila.empty() && fila.back().first.a == a && fila.back().first.b == b) {
15
            return; }
        while (!fila.empty() && op(fila.back().second,
16
            nova.intersect(fila.back().first))) { fila.pop back(); }
        11 x = fila.empty() ? -INF : nova.intersect(fila.back().first);
17
        fila.emplace back(nova, x);
18
19
20
    11 get_binary_search(ll x) {
21
        int esq = 0, dir = fila.size() - 1, r = -1;
        \mathbf{while} \ (\operatorname{esq} <= \operatorname{dir}) \ \{
22
23
            int mid = (esq + dir) / 2;
```

```
if (op(x, fila[mid].second)) {
24
25
                 esq = mid + 1;
26
                r = mid;
27
            } else {}
28
                dir = mid - 1;
29
30
        return fila[r].first.get(x);
31
32
   // O(1), use only when QUERIES are monotonic!
33
   11 get(11 x) {
34
        while (fila.size() >= 2 \&\& op(x, fila[1].second)) \{ fila.pop front(); \}
35
36
        return fila.front().first.get(x);
37
   }
```

4.8 All Submask

Percorre todas as submáscaras de uma máscara de tamanho N

* Complexidade de tempo: $O(3^N)$

```
1 int mask;
2 for (int sub = mask; sub; sub = (sub -
```

+ **[All Submasks](All%20Submasks)** Percorre todas as submáscaras de uma máscara de bits. + **[Busca Binária Paralela](Busca%20Binaria%20Paralela)** Faz a busca binária para múltiplas consultas quando a busca binaria é muito pesada. + **[Busca Ternária](Busca%20Ternaria)** Encontra um ponto ótimo em uma função que pode ser separada em duas funções estritamente monotônicas (e.g. parábolas). + **[Convex Hull Trick](Convex%20Hull%20Trick)** Otimização para DP utilizando retas monotônicas que formam um Convex Hull. + **[Divide and Conquer](Divide%20and%20Conquer)** Otimização para DP de prefixo quando se pretende separar o vetor em K subgrupos. + **[DP de Permutação](DP%20de%20Permutacao)** Simula todas as permutações de um grupo. Resolve o caxeiro viajante 'rápido'. + **[Exponeciação de Matriz](Exponencia%C3%A7%C3%A3o%20de%20Matriz)** Otimização para DP de prefixo quando o valor atual está em função dos últimos K valores já calculados. + **Mo** Resolve operações em range Offline. **COM E SEM ATUALIZAÇÂO**

5 Matemática

5.1 Soma do floor(n / i)

Computa o somatório de n dividido de 1 a n (divisão arredondado pra baixo).

```
- Complexidade de tempo: O( \operatorname{sqrt}(n) ).
```

```
const int MOD = 1e9 + 7;
 1
 2
    long long sumoffloor (long long n) {
 3
         long long answer = 0, i;
 4
         for (i = 1; i * i \le n; i++) {
 5
              answer += n / i;
 6
 7
              answer %= MOD;
 8
         }
 9
         i ---;
10
         for (int j = 1; n / (j + 1) >= i; j++) {
              answer \; +\!\! = \; (((n \; / \; j \; - \; n \; / \; (j \; + \; 1)) \; \% \; MOD) \; * \; j) \; \% \; MOD;
11
12
              answer %= MOD;
13
14
         return answer;
    }
15
```

5.2 Primos

[Crivo de Eratóstenes](sieve.cpp) Computa a primalidade de todos os números até N, quase tão rápido quanto o crivo linear.

- Complexidade de tempo: O(N * log(log(N)))

Demora 1 segundo para LIM igual a $3 * 10^7$.

- # [Miller-Rabin] (miller rabin.cpp) Teste de primalidade garantido para números menores do que 2⁶4.
- Complexidade de tempo: O(log(N))
- # [Teste Ingênuo] (naive is prime.cpp) Computa a primalidade de um número N.
- Complexidade de tempo: $O(N^{(1/2)})$

```
vector < bool > sieve (int n) {
 1
 2
         vector < bool > is_prime(n + 5, true);
         is_prime[0] = false;
 3
 4
         is_prime[1] = false;
         \textbf{long long } sq \ = \ sqrt\left(n \ + \ 5\right);
 5
 6
         for (long long i = 2; i \le sq; i++) {
 7
              if (is prime[i]) {
                   for (long long j = i * i; j < n; j += i) { is prime[j] = false; }
 8
 9
10
         return is prime;
11
    }
12
    bool is prime(int n) {
 2
         \quad \textbf{for} \ (\textbf{long long} \ d = 2; \ d * d <= n;
                                                             return true;
              if (n \% d = 0) \{ return false; 6 | \}
 3
```

```
long long power(long long base, long long e, long long mod) {
2
        long long result = 1;
        base \ \%\!\!=\! \bmod;
3
 4
        while (e) {
 5
             if (e \& 1) \{ result = (\_int128) result * base \% mod; \}
 6
             base = (\__{int128}) base * base % mod;
7
             e >>= 1;
8
9
        return result;
10
   }
11
   bool is composite (long long n, long long a, long long d, int s) {
12
13
        \mathbf{long} \ \mathbf{long} \ \mathbf{x} = \mathbf{power}(\mathbf{a}, \ \mathbf{d}, \ \mathbf{n});
14
        if (x = 1 \mid | x = n - 1) \{ return false; \}
15
        for (int r = 1; r < s; r++) {
16
             x = (\_int128)x * x % n;
17
             if (x = n - 1) { return false; }
18
19
        return true;
20
   }
21
22
   bool miller rabin (long long n) {
        if (n < 2) { return false; }
23
24
        int r = 0;
        long long d = n - 1;
25
        while ((d \& 1) == 0) \{ d >>= 1, ++r; \}
26
        for (int a : {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37}) {
27
28
             if (n == a) \{ return true; \}
29
             if (is composite(n, a, d, r)) { return false; }
30
31
        return true;
32
   }
```

5.3 Numeric Theoric Transformation

Computa multiplicação de polinômino; **Somente para inteiros**.

- Complexidade de tempo: O(N * log(N))

Constantes finais devem ser menor do que 10^9 . Para constantes entre 10^9 e 10^{18} é necessário codar também [big convolution](big convolution.cpp).

```
typedef long long 11;
 2
    typedef vector<ll> poly;
 3
    11 \mod [3] = \{998244353LL, 1004535809LL, 1092616193LL\};
    11 \text{ root } [3] = \{102292LL, 12289LL, 23747LL\};
 5
    11 \text{ root}_1[3] = \{116744195LL, 313564925LL, 642907570LL\};
 6
    11 \text{ root}_pw[3] = \{1LL \ll 23, 1LL \ll 21, 1LL \ll 21\};
 7
8
9
    ll modInv(ll b, ll m) {
10
         11 e = m - 2;
11
         11 \text{ res} = 1;
12
         while (e) {
13
             if (e & 1) { res = (res * b) \% m; }
14
             e /= 2;
             b = (b * b) \% m;
15
16
17
        return res;
18
   }
```

```
19
20
   void ntt(poly &a, bool invert, int id) {
21
        11 n = (11)a.size(), m = mod[id];
22
        for (11 i = 1, j = 0; i < n; ++i) {
23
            11 \text{ bit} = n \gg 1;
24
            for (; j >= bit; bit >>= 1) { j -= bit; }
25
            j += bit;
26
            if (i < j) \{ swap(a[i], a[j]); \}
27
28
        for (ll len = 2, wlen; len \leq n; len \leq 1) {
            wlen = invert ? root 1[id] : root[id];
29
            \label{eq:formula} \mbox{for (ll $i = len$; $i < root_pw[id]$; $i <<= 1)$ { when = (when * when) \% m; }}
30
31
            for (ll i = 0; i < n; i += len) {
32
                 11 \text{ w} = 1;
33
                 for (ll j = 0; j < len / 2; j++) {
34
                     11 u = a[i + j], v = (a[i + j + len / 2] * w) % m;
                     a[i + j] = (u + v) \% m;
35
                     a[i + j + len / 2] = (u - v + m) \% m;
36
                     w = (w * wlen) \% m;
37
                 }
38
39
            }
40
        if (invert) {
41
42
            11 \text{ inv} = \text{modInv}(n, m);
            43
        }
44
45
    }
46
    poly convolution (poly a, poly b, int id = 0) {
47
48
        11 n = 1LL, len = (1LL + a.size() + b.size());
49
        while (n < len) \{ n \neq 2; \}
50
        a.resize(n);
        b.resize(n);
51
        ntt(a, 0, id);
52
        ntt(b, 0, id);
53
54
        poly answer(n);
        for (11 i = 0; i < n; i++) \{ answer[i] = (a[i] * b[i]); \}
55
56
        ntt (answer, 1, id);
57
        return answer;
58
   }
    ll mod_mul(ll a, ll b, ll m) { return (__int128)a * b % m; }
2
    11 \ \text{ext\_gcd}(11 \ a, \ 11 \ b, \ 11 \ \&x, \ 11 \ \&y)  {
3
        if (!b) {
4
5
            x = 1;
6
            y = 0;
7
            return a;
8
        } else {
9
            11 g = ext_gcd(b, a \% b, y, x);
10
            y = a / b * x;
            return g;
11
12
        }
13
   }
14
   // convolution mod 1,097,572,091,361,755,137
15
16
    poly big convolution (poly a, poly b) {
17
        poly r0, r1, answer;
18
        r0 = convolution(a, b, 1);
19
        r1 = convolution(a, b, 2);
20
```

```
21
                                                                   11 s, r, p = mod[1] * mod[2];
22
                                                                  \operatorname{ext} \operatorname{gcd} (\operatorname{mod} [1], \operatorname{mod} [2], r, s);
23
24
                                                                  answer.resize(r0.size());
25
                                                                  for (int i = 0; i < (int) answer. size(); i++) {
26
                                                                                                     answer[i] = (mod_mul((s * mod[2] + p) \% p, r0[i], p) + mod_mul((r * mod[1] + p) \% p, r0[i], p) + mod_mul((r * mod[1] + p) \% p, r0[i], p) + mod_mul((r * mod[1] + p) \% p, r0[i], p) + mod_mul((r * mod[1] + p) \% p, r0[i], p) + mod_mul((r * mod[1] + p) \% p, r0[i], p) + mod_mul((r * mod[1] + p) \% p, r0[i], p) + mod_mul((r * mod[1] + p) \% p, r0[i], p) + mod_mul((r * mod[1] + p) \% p, r0[i], p) + mod_mul((r * mod[1] + p) \% p, r0[i], p) + mod_mul((r * mod[1] + p) \% p, r0[i], p) + mod_mul((r * mod[1] + p) \% p, r0[i], p) + mod_mul((r * mod[1] + p) \% p, r0[i], p) + mod_mul((r * mod[1] + p) \% p, r0[i], p) + mod_mul((r * mod[1] + p) \% p, r0[i], p) + mod_mul((r * mod[1] + p) \% p, r0[i], p) + mod_mul((r * mod[1] + p) \% p, r0[i], p) + mod_mul((r * mod[1] + p) \% p, r0[i], p) + mod_mul((r * mod[1] + p) \% p, r0[i], p) + mod_mul((r * mod[1] + p) \% p, r0[i], p) + mod_mul((r * mod[1] + p) \% p, r0[i], p) + mod_mul((r * mod[1] + p) \% p, r0[i], p) + mod_mul((r * mod[1] + p) \% p, r0[i], p) + mod_mul((r * mod[1] + p) \% p, r0[i], p) + mod_mul((r * mod[1] + p) \% p, r0[i], p) + mod_mul((r * mod[1] + p) \% p, r0[i], p) + mod_mul((r * mod[1] + p) \% p, r0[i], p) + mod_mul((r * mod[1] + p) \% p, r0[i], p) + mod_mul((r * mod[1] + p) \% p, r0[i], p) + mod_mul((r * mod[1] + p) \% p, r0[i], p) + mod_mul((r * mod[1] + p) \% p, r0[i], p) + mod_mul((r * mod[1] + p) \% p, r0[i], p) + mod_mul((r * mod[1] + p) \% p, r0[i], p) + mod_mul((r * mod[1] + p) \% p, r0[i], p) + mod_mul((r * mod[1] + p) \% p, r0[i], p) + mod_mul((r * mod[1] + p) \% p, r0[i], p) + mod_mul((r * mod[1] + p) \% p, r0[i], p) + mod_mul((r * mod[1] + p) \% p, r0[i], p) + mod_mul((r * mod[1] + p) \% p, r0[i], p) + mod_mul((r * mod[1] + p) \% p, r0[i], p) + mod_mul((r * mod[1] + p) \% p, r0[i], p) + mod_mul((r * mod[1] + p) \% p, r0[i], p) + mod_mul((r * mod[1] + p)
                                                                                                                               + p) \% p, r1[i], p) + p) \% p;
27
28
                                                                 return answer;
29
                            }
```

5.4 Eliminação Gaussiana

Método de eliminação gaussiana para resolução de sistemas lineares.

- Complexidade de tempo: $O(n^3)$.

Dica: Se os valores forem apenas 0 e 1 o algoritmo [gauss_mod2](gauss_mod2.cpp) é muito mais rápido.

```
const double EPS = 1e-9;
1
   const int INF = 2; // it doesn't actually have to be infinity or a big number
3
4
   int gauss (vector < vector < double >> a, vector < double > & ans) {
5
        int n = (int)a.size();
6
       int m = (int)a[0].size() - 1;
7
8
        vector < int > where (m, -1);
9
        for (int col = 0, row = 0; col < m && row < n; ++col) {
10
            int sel = row;
11
            for (int i = row; i < n; ++i) {
12
                if (abs(a[i][col]) > abs(a[sel][col])) { sel = i; }
13
14
            if (abs(a[sel][col]) < EPS) \{ continue; \}
15
            16
            where [col] = row;
17
18
            for (int i = 0; i < n; ++i) {
19
                if (i != row) {
                    double c = a[i][col] / a[row][col];
20
21
                    for (int j = col; j \le m; ++j) { a[i][j] -= a[row][j] * c; }
22
23
            }
24
            ++row;
        }
25
26
27
        ans. assign (m, 0);
28
        for (int i = 0; i < m; ++i) {
            if (\text{where } [i] != -1) \{ \text{ans } [i] = a [\text{where } [i]] [m] / a [\text{where } [i]] [i]; \}
29
30
31
        for (int i = 0; i < n; ++i) {
32
            double sum = 0;
            for (int j = 0; j < m; ++j) { sum += ans[j] * a[i][j]; }
33
34
            if (abs(sum - a[i][m]) > EPS) \{ return 0; \}
35
       }
36
37
        for (int i = 0; i < m; ++i) {
38
            if (where[i] = -1) \{ return INF; \}
39
40
       return 1;
```

```
41 }
   const int N = 105;
1
   const int INF = 2; // tanto faz
3
4
   // n -> numero de equações, m -> numero de variaveis
    // a[i][j] para j em [0, m-1] \rightarrow coeficiente da variavel j na iesima equacao
 5
6
   // a[i][j] para j == m -> resultado da equação da iesima linha
7
   // ans \rightarrow bitset vazio, que retornara a solucao do sistema (caso exista)
   int gauss (vector < bitset < N>> a, int n, int m, bitset < N>> & ans) {
8
9
        vector < int > where (m, -1);
10
        for (int col = 0, row = 0; col < m && row < n; col++) {
11
12
            for (int i = row; i < n; i++) {
                 if (a[i][col]) {
13
14
                     swap(a[i], a[row]);
15
                     break;
16
17
            if (!a[row][col]) { continue; }
18
19
            where [col] = row;
20
            for (int i = 0; i < n; i++) {
21
                 if (i != row && a[i][col]) { a[i] ^= a[row]; }
22
23
24
            row++;
        }
25
26
27
        for (int i = 0; i < m; i++) {
28
            if (\text{where}[i] != -1) \{ \text{ans}[i] = a[\text{where}[i]][m] / a[\text{where}[i]][i]; \}
29
        for (int i = 0; i < n; i++) {
30
31
            int sum = 0;
            for (int j = 0; j < m; j++) { sum += ans [j] * a[i][j]; }
32
33
            if (abs(sum - a[i][m]) > 0) {
34
                 return 0; // Sem solucao
35
        }
36
37
38
        for (int i = 0; i < m; i++) {
39
            if (where [i] == -1) {
                 return INF; // Infinitas solucoes
40
41
42
        return 1; // Unica solucao (retornada no bitset ans)
43
   }
44
```

5.5 Máximo divisor comum

```
# [Algoritmo de Euclides](gcd.cpp)
```

Computa o Máximo Divisor Comum (MDC em português; GCD em inglês).

- Complexidade de tempo: O(log(n))

Mais demorado que usar a função do compilador C++ gcd(a,b).

[Algoritmo de Euclides Estendido](extended gcd.cpp)

Algoritmo extendido de euclides que computa o Máximo Divisor Comum e os valores x e y tal que a * x + b * y = gcd(a, b).

- Complexidade de tempo: O(log(n))

```
1 long long gcd(long long a, long long b) { return (b == 0) ? a : gcd(b, a % b); }
   int extended gcd(int a, int b, int &x,
                                                          tie(y, y1) = make tuple(y1, y -
      int &y) {
                                                             q * y1);
2
       x = 1, y = 0;
                                                          tie(a, b) = make tuple(b, a - q)
                                              8
3
       int x1 = 0, y1 = 1;
                                              9
4
       while (b) {
                                                     }
5
                                             10
           int q = a / b;
                                                     return a;
6
           tie(x, x1) = make\_tuple(x1, x-11)
               q * x1);
   ll extended_gcd(ll a, ll b, ll &x, ll
                                                          11 g = \text{extended } \gcd(b, a \% b,
1
                                                             y, x);
2
       if (b = 0) {
                                              8
                                                          y = a / b * x;
3
           x = 1;
                                              9
                                                          return g;
4
           y = 0;
                                             10
                                                     }
                                                 }
5
           return a;
                                             11
6
       } else {}
```

5.6 Fatoração

- # [Fatoração Simples](naive_factorize.cpp) Fatora um número N.
 - Complexidade de tempo: $O(\sqrt{n})$
- # [Crivo Linear](linear_sieve_factorize.cpp) Pré-computa todos os fatores primos até MAX. Utilizado para fatorar um número N menor que MAX.
- Complexidade de tempo: Pré-processamento O(MAX) Complexidade de tempo: Fatoraração O(quantidade de fatores de N) Complexidade de espaço: O(MAX)
- # [Fatoração Rápida](fast_factorize.cpp) Utiliza Pollar-Rho e Miller-Rabin (ver em Primos) para fatorar um número N.
 - Complexidade de tempo: $O(N^{1/4} \cdot log(N))$
 - # [Pollard-Rho](pollard-rho.cpp) Descobre um divisor de um número N.
 - Complexidade de tempo: $O(N^{1/4} \cdot log(N))$ Complexidade de espaço: $O(N^{1/2})$

```
7
   vector<int> factorize(int n) {
1
2
        vector<int> factors;
3
        for (long long d = 2; d * d \le n;
                                               9
                                                       if (n != 1) { factors.push_back(n);
           d++) {
            while (n \% d == 0)  {
4
                                              10
                                                       return factors;
                 factors.push back(d);
                                                  }
5
                                              11
6
                n /= d;
1
   namespace sieve {
2
        const int MAX = 1e4;
3
        int lp [MAX + 1], factor [MAX + 1];
4
        vector < int > pr;
5
        void build() {
6
            for (int i = 2; i \le MAX; ++i) {
7
                 if (lp[i] = 0) {
8
                     lp[i] = i;
9
                     pr.push\_back(i);
10
                 }
```

```
11
                 for (int j = 0; i * pr[j] \leq MAX; ++j) {
12
                     lp[i * pr[j]] = pr[j];
                     factor[i * pr[j]] = i;
13
14
                     if (pr[j] = lp[i]) \{ break; \}
                }
15
16
            }
17
        vector < int > factorize (int x) {
18
            if (x < 2) \{ return \{ \}; \}
19
20
            vector < int > v;
            for (int lpx = lp[x]; x >= lpx; x = factor[x]) { v.emplace back(<math>lp[x]); }
21
22
            return v;
23
        }
   }
24
1
   long long mod_mul(long long a, long long b, long long m) { return (__int128)a * b
       % m; }
2
   long long pollard rho(long long n) {
 3
4
        auto f = [n](long long x) {
5
            return mod mul(x, x, n) + 1;
 6
7
        long long x = 0, y = 0, t = 30, prd = 2, i = 1, q;
8
        while (t++\% 40 | | \_gcd(prd, n) == 1)  {
9
            if (x == y) \{ x = ++i, y = f(x); \}
            if ((q = mod_mul(prd, max(x, y) - min(x, y), n))) { prd = q; }
10
11
            x = f(x), y = f(f(y));
12
13
        return gcd(prd, n);
14
   }
   // usa miller rabin.cpp!! olhar em
                                               6
                                                      if (miller_rabin(n)) { return {n}; }
       matematica/primos
                                                      long long x = pollard rho(n);
 2
   // usa pollar_rho.cpp!! olhar em
                                               8
                                                      auto l = factorize(x), r =
       matematica/fatoracao
                                                          factorize (n / x);
 3
                                                      1. insert (l.end(), all(r));
   vector<long long> factorize (long long
                                              10
 4
                                                      return 1;
                                                 }
                                              11
 5
        if (n = 1) \{ return \{ \}; \}
   5.7
         Teorema do Resto Chinês
   Resolve em O(n * log(n)) o sistema **(x = rem
                                                i
   \% mod
                                                i
   )** para i entre *0* e *n*
```

Generalizado!!! Retorna -1 se a resposta não existir

 $11 g = \text{extended } \gcd(b, a \% b, y, x);$

11 extended gcd(11 a, 11 b, 11 &x, 11 &y) {

if (b = 0){

x = 1;

y = 0;

} else {

return a;

1

2 3

4

5

6

```
8
            y = a / b * x;
9
            return g;
10
        }
11
   }
12
13
   ll crt(vector<ll> rem, vector<ll> mod) {
14
        int n = rem. size();
15
        if (n = 0) { return 0; }
          int128 \text{ ans} = rem[0], m = mod[0];
16
17
        for (int i = 1; i < n; i++) {
18
             11 x, y;
             11 g = \text{extended } \gcd(\text{mod}[i], m, x, y);
19
20
             if ((ans - rem[i]) \% g != 0) \{ return -1; \}
21
             ans = ans + (\_int128)1 * (rem[i] - ans) * (m / g) * y;
22
            m = (mt128) (mod[i] / g) * (m / g) * g;
23
            ans = (ans \% m + m) \% m;
24
        }
25
        return ans;
26
   }
```

5.8 Transformada rápida de Fourier

Computa multiplicação de polinômio.

- Complexidade de tempo (caso médio): O(N * log(N)) - Complexidade de tempo (considerando alto overhead): $O(n*log^2(n)*log(log(n)))$

Garante que não haja erro de precisão para polinômios com grau até $3*10^5$ e constantes até 10^6 .

```
typedef complex<double> cd;
   typedef vector < cd > poly;
   const double PI = acos(-1);
3
   void fft (poly &a, bool invert = 0) {
5
        int n = a.size(), log_n = 0;
6
7
        \mathbf{while} \ ((1 << \log_{n}) < n) \ \{ \ \log_{n} ++; \ \}
8
9
        for (int i = 1, j = 0; i < n; ++i) {
10
            int bit = n \gg 1;
            for (; j >= bit; bit >>= 1) { j -= bit; }
11
12
            j += bit;
13
            if (i < j) \{ swap(a[i], a[j]); \}
14
        }
15
16
        double angle = 2 * PI / n * (invert ? -1 : 1);
17
        poly root (n / 2);
        for (int i = 0; i < n / 2; ++i) { root[i] = cd(cos(angle * i), sin(angle *
18
            i)); }
19
        for (long long len = 2; len \leq n; len \leq 1) {
20
21
            long long step = n / len;
22
            long long aux = len / 2;
23
            for (long long i = 0; i < n; i += len) {
24
                 for (int j = 0; j < aux; ++j) {
25
                     cd\ u = a[i + j],\ v = a[i + j + aux] * root[step * j];
26
                     a | i + j | = u + v;
27
                     a[i + j + aux] = u - v;
28
                 }
29
            }
30
        }
```

```
31
        if (invert) {
32
            for (int i = 0; i < n; ++i) { a[i] /= n; }
33
        }
34
   }
35
36
   vector < long long > convolution (vector < long long > &a, vector < long long > &b) {
37
        int n = 1, len = a.size() + b.size();
38
        while (n < len) \{ n <<= 1; \}
39
        a.resize(n);
40
        b.resize(n);
        poly fft a(a.begin(), a.end());
41
42
        fft (fft_a);
43
        poly fft_b(b.begin(), b.end());
44
        fft (fft b);
45
46
        poly c(n);
47
        for (int i = 0; i < n; ++i) { c[i] = fft \ a[i] * fft \ b[i]; }
48
        fft (c, 1);
49
50
        vector<long long> res(n);
51
        for (int i = 0; i < n; ++i) {
52
            res[i] = round(c[i].real()); // res = c[i].real(); se for vector de double
53
        // while(size(res) > 1 && res.back() == 0) res.pop back(); // apenas para
           quando os zeros direita nao importarem
55
        return res;
56
   }
```

5.9 Exponenciação modular rápida

Computa $(base^exp)\%mod$. - Complexidade de tempo: O(log(exp)). - Complexidade de espaço: O(1)

5.10 Totiente de Euler

[Totiente de Euler (Phi) para um número](phi.cpp) Computa o totiente para um único número N.

- Complexidade de tempo: $O(N^{(1/2)})$
- # [Totiente de Euler (Phi) entre 1 e N](phi 1 to n.cpp) Computa o totiente entre 1 e N.
- Complexidade de tempo: O(N * log(log(N)))

```
vector<int> phi_1_to_n(int n) {
1
2
        vector < int > phi(n + 1);
3
        for (int i = 0; i \le n; i++) { phi[i] = i; }
4
        for (int i = 2; i \le n; i++) {
            if (phi[i] == i) {
5
                for (int j = i; j \le n; j += i) { phi[j] -= phi[j] / i; }
6
7
8
9
       return phi;
10
   }
```

```
6
1
   int phi(int n) {
                                                                                 result — result / i;
2
                                                                           }
         int result = n;
                                                            7
3
         for (int i = 2; i * i <= n; i++) {
               if (n % i == 0) {
                                                                      if (n > 1) \{ result = result / n; \}
4
                     \mathbf{while} \ (\mathtt{n} \ \% \ \mathtt{i} \ = \ \mathtt{0}) \ \{ \ \mathtt{n} \ / \!\! =
5
                                                                      return result;
```

5.11 Modular Inverse

The modular inverse of an integer a is another integer x such that a * x is congruent to 1 (mod MOD).

```
# [Modular Inverse](modular inverse.cpp)
```

Calculates the modular inverse of a.

Uses the [exp_mod](/Matemática/Exponenciação%20Modular%20Rápida/exp_mod.cpp) algorithm, thus expects MOD to be prime.

```
* Time Complexity: O(log(MOD)). * Space Complexity: O(1).
```

[Modular Inverse by Extended GDC] (modular inverse coprime.cpp)

Calculates the modular inverse of a.

Uses the [extended_gcd](/Matemática/GCD/extended_gcd.cpp) algorithm, thus expects MOD to be coprime with a.

Returns -1 if this assumption is broken.

```
* Time Complexity: O(log(MOD)). * Space Complexity: O(1).
```

[Modular Inverse for 1 to MAX](modular inverse linear.cpp)

Calculates the modular inverse for all numbers between 1 and MAX.

expects MOD to be prime.

```
* Time Complexity: O(MAX). * Space Complexity: O(MAX).
```

[Modular Inverse for all powers](modular inverse pow.cpp)

Let b be any integer.

Calculates the modular inverse for all powers of b between b^0 and b^MAX.

Needs you calculate beforehand the modular inverse of b, for 2 it is always (MOD+1)/2.

expects MOD to be coprime with b.

```
* Time Complexity: O(MAX). * Space Complexity: O(MAX).
```

```
1
  ll inv [MAX];
2
3
  void compute inv(const ll m = MOD) {
4
       inv[1] = 1;
       for (int i = 2; i < MAX; i++) { inv[i] = m - (m / i) * <math>inv[m \% i] \% m; }
5
6
  }
  const 11 INVB = (MOD + 1) / 2; // Modular inverse of the base, for 2 it is
1
      (MOD+1)/2
   ll inv[MAX]; // Modular inverse of b^i
4
  void compute inv() {
5
       inv[0] = 1;
```

```
for (int i = 1; i < MAX; i++) { inv[i] = inv[i - 1] * INVB % MOD; }

1 ll inv(ll a) { return exp_mod(a, MOD - | 2); }

1 int inv(int a) {
2    int x, y;
3    int g = extended_gcd(a, MOD, x, y); 6
4    if (g == 1) { return (x % m + m) %</pre>
```

- [**Eliminação Gaussiana**](Elimina%C3%A7%C3%A3o%20Gaussiana) Resolve sistema linear de equações. - [**Exponenciação Modular Rápida**](Exponencia%C3%A7%C3%A3o%20Modular%20R%C3%A1pida Computa potenciação rápido. - [**FFT (Fast Fourier Transform)**](FFT) Multiplica dois polinômios. **double** - [**Fatoração**](Fatora%C3%A7%C3%A3o) Fatora inteiros. - [**GCD (Greatest Common Divisor)**](GCD) Encontra o maior divisor comum. - [**Inverso Modular**](Inverso%20Modular) Calcula o inverso modular. - [**NTT (Numeric Theoric Transform)**](NTT) Multiplica polinômios. **long long** - [**Primos**](Primos) Testes de Primalidade. - [**Sum of floor(n / i)**](Sum%20of%20floor(n%20div%20i) Encontra a soma de n dividido de 1 a n - [**Totiente de Euler**](Totiente%20de%20Euler) Computa o totiente. - [**Teorema do resto Chines**](Teorema%20do%20resto%20Chines) Computa congruencias lineares usando o teorema do resto chines.