Drug Dose Calculation

Solved Examples

(Refer and practice)

Module 1

Metric Conversion

1)
$$8 g = ? mg$$

$$\begin{array}{c} \textbf{Sol.} \ 8g \ X \ \underline{1000mg} \\ 1g \end{array}$$

$$Ans = 8000 \ mg$$

2)
$$8 g = ? mcg$$

$$\begin{array}{c} \textbf{Sol.} \ 8g \ X \ \underline{1000mg} \ X \ \underline{1000mcg} \\ 1g \qquad 1mg \end{array}$$

$$Ans = 80,00,000 mcg$$

3)
$$2oz = ? ml$$

$$Ans = 30 ml$$

Standard Method

O - ordered dose; A - available dose; V - volume

4) The physician has ordered 1,500mg of calcium carbonate tablet PO. Available form is 250mg/tab. How many tablets has to be given ?

Sol:

$$O \times V$$

 A
= $1500 \text{ mg} \times 1$ Ans = 6 tablets
 250mg

5) The physician has ordered 500mg of drug. Available form is 0.25 g/tab. How will you administer? **Sol:**

$$500 \text{mg x} \quad \underline{1g} = 0.5 \text{mg} = \underline{O} \text{ x } V = \underline{0.5 \text{ g}} \text{ x 1 Ans} = \mathbf{2 \text{ tablets}}$$

$$1000 \text{mg} \qquad \qquad A \qquad 0.25 \text{g}$$

6) The physician orders Injection Amikacin 5mg/Ib IM q 12 hour. Available form is 0.9g/2ml. How many ml has to be administered to a patient who weights 72.7 kg?

Sol: 72.7 kg x
$$\underline{2.2 \text{ Ibs}} = 159.94 \text{ Ibs}$$
 = 159.94 x 5 = 799.7 mg
 $\underline{1 \text{kg}} = 799.7 \text{ mg x} \underline{1 \text{g}} = 0.7997 \text{ g}$ = $\underline{O} \times V = \underline{0.7997 \text{g}} \times 2 = 1.777...$
 $\underline{A \text{ns}} = 1.8 \text{ ml}$

Intravenous drip calculation (drops/min)

7) The physician has ordered 1L of RL over 8 hours. The drop factor is 15 drops/ml. What will be the flow rate?

Sol: Total vol. in ml x drop factor
$$= 1000 \text{ml} \times 15 = 31.25 \text{ Ans} = 31 \text{ drops/min}$$

Time in min $= 1000 \text{ml} \times 15 = 31.25 \text{ Ans} = 31 \text{ drops/min}$

8) The physician has ordered 300ml of Ringer lactate (RL) over 6 hours. What will be the hourly rate ?

Sol: Total vol. in ml
$$= 300 \text{ ml}$$
 Ans $= 50 \text{ ml/hr}$
Number of hours 6 hours

9) The physician has ordered 2L of NS 1/2 over 48 hours. What will be the hourly rate?

Sol: Total vol. in ml Number of hours
$$= 2000 \text{ml} = 41.66...$$
 Ans $= 42 \text{ ml/hr}$

10) The physician has ordered 1L of RL to infuse at 200ml/hr. Started at 8am when will the infusion complete?

Unit based calculation

11) The consultant has ordered continuous heparin sodium by IV at 1000 units per hour. IV D5W 500ml with 20,000 units of heparin. How many ml/hr?

Sol:
$$\underline{20,000 \text{ units}} = 40 \text{ units/ ml} = \underline{1000 \text{ ml}} = \underline{40 \text{ units}}$$
 Ans = **25 ml/hr** $\underline{40 \text{ units}}$

Module 5

Weight based calculation

12) The physician prescribed Dopamine drip at 10mcg/kg/min. The patients weight is 55kg. Dilution is 800mg /500ml. What will be the infusion rate?

Sol:
$$\underline{O} \times V$$

 $A = \underline{10 \text{ mcg x } 55 \text{ kg x } 60} \times 500 \text{ml}$
 $\underline{800 \text{ mg}}$
 $\underline{10 \text{ mcg x } 55 \text{ kg x } 60} \times 500 \text{ml} = 20.62$ Ans = 21 ml/hr
 $\underline{8,00,000 \text{ mcg}}$

Ratio

13) How many ml of a 1:1000 solution of adrenaline is required to administer 0.5mg of adrenaline to a client with anaphylactic shock?

Therefore, 0.5 mg in 0.5 ml Ans = 0.5 ml

Percentage

14) The physician has ordered to administer 180mg of 2% drug. How much is to be given in ml?

2 gram 2000mg