STATISTICS CHEAT SHEET

GORDON MCDONALD, 2017

1. Least Squares Regression

Trying to estimate the coefficients β in $\mathbf{y} = \mathbf{X}\beta + \epsilon$ is done by

(1)
$$\beta = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

This is analogous to finding the projection $\mathbf{y} * = \beta \hat{\mathbf{x}} + \mathbf{r}$ of the vector \mathbf{y} on the vector \mathbf{x} :

$$\beta = \frac{\mathbf{x} \cdot \mathbf{y}}{\mathbf{x} \cdot \mathbf{x}}$$

If you wish to include a diagonal weight matrix \mathbf{W} this is done by

(3)
$$\beta = (\mathbf{X}^T \mathbf{W} \mathbf{X})^{-1} \mathbf{X}^T \mathbf{W} \mathbf{y}$$

and in the case that $\mathbf{W} = \mathbf{I}$ this reduces to (1). One would ordinarily choose the weight matrix to be e.g. $\mathbf{W} = \operatorname{diag}(1/\sigma_i^2)$ if the uncertanties σ_i for each point y_i are known. Alternatively for survey data for example, $\mathbf{W} = \operatorname{diag}(n_i)$ if the population n_i of each district for which the statistic x_i was measured. In the first case, an estimate of the variance is given by the square residuals, divided by the number of points minus the number of parameters, e.g.

$$\hat{\sigma}^2 = \frac{1}{n-p} |\epsilon|^2$$

$$= \frac{1}{n-p} \left| \mathbf{y} - \mathbf{X} \hat{\beta} \right|^2$$

The covariance matrix Σ for β is given by

(6)
$$\mathbf{\Sigma} = (\mathbf{X}^T \mathbf{W} \mathbf{X})^{-1} \hat{\sigma}^2$$

(7)
$$= (\mathbf{X}^T \mathbf{W} \mathbf{X})^{-1} \frac{1}{n-p} \left| \mathbf{y} - \mathbf{X} \hat{\beta} \right|^2$$

where n is the number of data points and p is the number of parameters, i.e. $\nu = n - p$ is the degrees of freedom. An estimate of the variance of each parameter β_i is given by the diagonal entries of Σ ,

(8)
$$Var(\beta_i) = \Sigma_{ii}$$

and assuming they are either normally distributed (for large n) or t-distributed for small n, we can work out confidence intervals for the parameter by using either of the following

(9)
$$\beta_i = \hat{\beta}_i \pm z^* \sqrt{\Sigma_{ii}}$$

$$\beta_i = \hat{\beta}_i \pm t^* \sqrt{\Sigma_{ii}}$$

where

$$(11) p = \operatorname{erf}\left(\frac{z_p^*}{\sqrt{2}}\right)$$

(12)
$$= \frac{1}{\sqrt{2\pi}} \int_{\frac{-z_p^*}{\frac{z_0^*}{2}}}^{\frac{z_p^*}{\sqrt{2}}} e^{-t^2} dt$$

$$=\Phi\left(z_{p}^{*}\right)-\Phi\left(-z_{p}^{*}\right)$$

is the confidence (probability) that the true value will lie in this range for the normal distribution, and t_p^* is defined similarly but for Student's t-distribution.

The variance of a particular estimated new value of \hat{y} (for input vector **x**) is given by

(14)
$$Var(y) = \mathbf{x}^T \cdot \mathbf{\Sigma} \cdot \mathbf{x}$$

So, to work out the bounds on a given fit, use the covariance matrix thusly

(15)
$$\operatorname{Var}(\hat{y}) = \operatorname{diag}\left(\mathbf{X}\mathbf{\Sigma}\mathbf{X}^{T}\right)$$

so the standard deviation is given by

(16)
$$\sigma_{\hat{y}} = \sqrt{\operatorname{diag}\left(\mathbf{X}\mathbf{\Sigma}\mathbf{X}^{T}\right)}$$

and the 100p%-confidence interval is given by

$$\hat{y} \pm t_p^* \sigma_{\hat{y}}$$

which is a function of x.

In the case that you have two or more disjoint subsets of points $(\mathbf{X}_a, \mathbf{y}_a)$ and $(\mathbf{X}_b, \mathbf{y}_b)$ each with estimates for parameters β respectively of β_a and β_b - the correct way to combine these to form an overall estimate is the following

(18)
$$\mathbf{X}_{\text{tot}}^T \mathbf{X}_{\text{tot}} = \mathbf{X}_a^T \mathbf{X}_a + \mathbf{X}_b^T \mathbf{X}_b$$

(19)
$$\beta_{\text{total}} = \left(\mathbf{X}_{\text{tot}}^T \mathbf{X}_{\text{tot}}\right)^{-1} \left(\mathbf{X}_a^T \mathbf{X}_a \beta_a + \mathbf{X}_b^T \mathbf{X}_b \beta_b\right)$$

Or for an arbitrary number

(20)
$$\mathbf{X}_{\text{tot}}^T \mathbf{X}_{\text{tot}} = \sum_{i} \mathbf{X}_i^T \mathbf{X}_i$$

(21)
$$\beta_{\text{total}} = \left(\mathbf{X}_{\text{tot}}^T \mathbf{X}_{\text{tot}}\right)^{-1} \sum_{i} \mathbf{X}_{i}^T \mathbf{X}_{i} \beta_{i}$$

this has the advantage of saving and or computing with only $p \times p$ symmetric matricies, where p is the number of parameters i.e. the length of β . So you only need to save (p+2)p values. The computation of the inverse matrix will probably be the bottleneck and go as $\mathcal{O}(p^3)$.