2 超関数の演算

2.1 超関数の和・スカラー倍・関数との積

和・スカラー倍

• $T, S \in \mathcal{D}'(\Omega)$ に対して、和 T + S を

$$(T+S)(\varphi) := T(\varphi) + S(\varphi) \ (\varphi \in \mathscr{D}(\Omega))$$

で定義する.

• $T \in \mathcal{D}'(\Omega)$, $\alpha \in \mathbb{C}$ に対してスカラー倍 αT を

$$(\alpha T)(\varphi) := \alpha(T(\varphi)) \ (\varphi \in \mathscr{D}(\Omega))$$

で定義する.

• $column{1}{c}$ $column{1}{c}$ co

関数との積

• $T \in \mathcal{D}'(\Omega), a \in C^{\infty}(\Omega)$ とする. このとき a と T の積 aT を

$$(aT)(\varphi) := T(a\varphi) \tag{2.1}$$

で定義する.

命題 2.1 -

 $T \in \mathcal{D}'(\Omega), a \in C^{\infty}(\Omega)$ のとき (2.1) で定義される aT は $aT \in \mathcal{D}'(\Omega)$ である.

証明

• $\varphi_1, \varphi_2 \in \mathcal{D}(\Omega)$ とすると $a\varphi_i \in \mathcal{D}(\Omega)$ より

$$(aT)(\varphi_1 + \varphi_2) = T(a(\varphi_1 + \varphi_2)) = T(a\varphi_1 + a\varphi_2) = T(a\varphi_1) + T(a\varphi_2)$$
$$= aT(\varphi_1) + aT(\varphi_2)$$

• $\varphi \in \mathcal{D}(\Omega), \alpha \in \mathbb{C}$ に対して

$$aT(\alpha\varphi) = T(a(\alpha\varphi)) = T(\alpha(a\varphi)) = \alpha(T(a\varphi)) = \alpha(aT(\varphi))$$

• 次に連続性を示そう. $\{\varphi_n\}\subset \mathcal{D}(\Omega), \varphi\in \mathcal{D}(\Omega)$ が $\varphi_n\to \varphi$ $(n\to\infty)$ in $\mathcal{D}'(\Omega)$ とする.

• このとき, ある Ω のコンパクト集合 K が存在して $\operatorname{supp}\varphi_n$, $\operatorname{supp}\varphi \subset K$ $(n=1,2,\cdots)$ が成り立ち, さらに, 任意の多重指数 α に対して

$$\lim_{n \to \infty} \sup_{x \in K} |D^{\alpha} \varphi_n - D^{\alpha} \varphi| = 0$$

が成り立つ.

- $a \in C^{\infty}(\Omega)$ より $a\varphi_n, a\varphi \in C_0^{\infty}(\Omega)$ (n = 1, 2, ...) であり、 $\operatorname{supp} a\varphi_n, \operatorname{supp} a\varphi \subset K$ (n = 1, 2, ...) が成り立つ。
- Leibnitz の公式(多変数版)より

$$D^{\alpha}(a\varphi_n) = \sum_{\beta:\beta<\alpha} \binom{\alpha}{\beta} D^{\beta} a D^{\alpha-\beta} \varphi_n, \quad D^{\alpha}(a\varphi) = \sum_{\beta:\beta<\alpha} \binom{\alpha}{\beta} D^{\beta} a D^{\alpha-\beta} \varphi$$

ここで多重指数について、 $\beta \leq \alpha$ とは $\beta_j \leq \alpha_j$ (j = 1, ..., N) が成り立つことであり、

$$\begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \prod_{j=1}^{N} \begin{pmatrix} \alpha_j \\ \beta_j \end{pmatrix}$$

である.

よって

$$D^{\alpha}(a\varphi_n) - D^{\alpha}(a\varphi) = \sum_{\beta:\beta \leq \alpha} {\alpha \choose \beta} D^{\beta} a \{ D^{\alpha-\beta} \varphi_n - D^{\alpha-\beta} \varphi \}$$

$$\sup_{x \in K} |D^{\alpha}(a\varphi_n) - D^{\alpha}(a\varphi)| \leq \sum_{\beta:\beta \leq \alpha} {\alpha \choose \beta} \sup_{x \in K} |D^{\beta} a| \sup_{x \in K} |D^{\alpha-\beta} \varphi_n - D^{\alpha-\beta} \varphi| \to 0 \quad (n \to \infty)$$

- $l t t^n$ $\tau \tau a \varphi_n \to a \varphi (n \to \infty) \text{ in } \mathscr{D}(\Omega)$ $\tau b \delta.$
- $T \in \mathcal{D}'(\Omega)$ であるから

$$aT(\varphi_n) = T(a\varphi_n) \to T(a\varphi) = aT(\varphi) \text{ (as } n \to \infty)$$

• 以上より $aT \in \mathcal{D}'(\Omega)$ である. \square

2.2 超関数の偏微分

• $T \in \mathcal{D}'(\Omega)$ とするとき命題 1.3 より,任意の多重指数 α に対して

$$T_{\alpha}(\varphi) := T(D^{\alpha}\varphi) \quad (\varphi \in \mathscr{D}(\Omega))$$

で定義される T_{α} は $T_{\alpha} \in \mathcal{D}'(\Omega)$ となるのであった.

定義

 $T \in \mathcal{D}'(\Omega)$ に対し

$$D^{\alpha}T(\varphi) := (-1)^{|\alpha|}T(D^{\alpha}\varphi)$$

で定義される, $D^{\alpha}T$ を 超関数 T の α -偏微分という.

例1

- $H(x) = \begin{cases} 1 & (x \ge 0) \\ 0 & (x < 0) \end{cases}$ を Heaviside 関数という.
- ullet $H\in L^1_{\mathrm{loc}}(\mathbb{R})$ より H 自身を超関数とみなしたとき(正確には T_H を考える)

$$\frac{d}{dx}H = \delta$$

が成り立つ (N=1) なので微分記号も通常のものを用いる)ことを示そう.

• $\varphi \in \mathcal{D}(\mathbb{R})$ を任意にとると定義から

$$\left\langle \frac{d}{dx}H,\varphi\right\rangle = -\left\langle H,\frac{d}{dx}\varphi\right\rangle$$
$$= -\int_{-\infty}^{\infty} H(x)\varphi'(x)dx = -\int_{0}^{\infty} \varphi'(x)dx = \varphi(0) = \delta(\varphi)$$

が成り立つ. ここで $\varphi \in C_0^{\infty}(\mathbb{R})$ より $\varphi(\infty) = 0$ に注意.

• φ は任意より $\frac{d}{dx}H = \delta$ である.

例2 $f \in C^1(\mathbb{R} \setminus \{c\})$ $(c \in \mathbb{R})$ とする,つまり,f は $(-\infty, c) \cup (c, \infty)$ の各点で微分可能,かつ,導関数は $(-\infty, c) \cup (c, \infty)$ で連続とする.さらに

$$f(c+0) = \lim_{x \to c+0} f(x), \quad f(c-0) = \lim_{x \to c-0} f(x)$$

がともに存在するとする.このとき $\gamma:=f(c+0)-f(c-0)$ とおくとき,f が定義する超関数 T_f について($f\in L^1_{\mathrm{loc}}(\mathbb{R})$ に注意)

$$\frac{dT_f}{dx} = \gamma \delta + \{f'\}$$

が成り立つ、ただし

$$\{f'\}(x) := \begin{cases} f'(x) & x \neq c, \\ 0 & x = c \end{cases}$$

である. これについては各自確かめよ.

命題 2.2

 $f \in C^1(\mathbb{R}^N)$ のとき、 $|\alpha| = 1$ なる任意の多重指数 α に対して

$$D^{\alpha}T_f = T_{D^{\alpha}f}$$
 in $\mathscr{D}'(\mathbb{R}^N)$

が成り立つ.

補題 2.3(部分積分の公式(多次元))-

U を \mathbb{R}^N の有界開集合, ∂U は滑らかな超曲面とする.このとき $f\in C^1(\overline{U})$ とすると次が成り立つ:

$$\int_{U} f_{x_i} dx = \int_{\partial U} f \nu_i dS.$$

ただし $\nu = (\nu_1, \dots, \nu_N)$ は ∂U の外向き法線ベクトル, 左辺は N 重積分, 右辺は 面積分である (dS は面積要素).

命題 2.2 の証明

- $\varphi \in \mathcal{D}(\mathbb{R}^N)$ を任意にとると $\operatorname{supp} \varphi \subset B_R(0)$ なる R > 0 をとることができ、このとき $\varphi = 0$ ($|x| \geq R$) が成り立つ。
- $|\alpha|=1$ より $D^{\alpha}=\partial_{x_i}$ と表すと

$$\langle D^{\alpha}T_f, \varphi \rangle = -\langle T_f, D^{\alpha}\varphi \rangle = -\int_{B_R(0)} f\varphi_{x_i} dx$$

である.

• $(f\varphi)_{x_i}=f_{x_i}\varphi+f\varphi_{x_i}$ だから、 $U=B_R(0)$ として部分積分の公式を用いると

$$\langle D^{\alpha}T_f, \varphi \rangle = -\int_{B_R(0)} (f\varphi)_{x_i} dx + \int_{B_R(0)} f_{x_i} \varphi dx$$
$$= -\int_{\partial B_R(0)} f\varphi \nu_i dS + \int_{B_R(0)} f_{x_i} \varphi dx$$
$$= \int_{B_R(0)} (D^{\alpha}f) \varphi dx = \langle T_{D^{\alpha}f}, \varphi \rangle$$

• したがって $D^{\alpha}T_f = T_{D^{\alpha}f}$ in $\mathscr{D}'(\mathbb{R}^N)$ である.

注 $f \in C_0^1\Omega$) であっても $\varphi \in \mathcal{D}(\Omega)$ をとれば $\operatorname{supp} \varphi \subset K$ なる Ω のコンパクト集合 K が取れる. K と $\partial\Omega$ の間に「隙間」があるので $K \subset U \subset \Omega$ なる ∂U が滑らかな超曲面となる有界開集合 U を取ればいいので, Ω 上の超関数として同じ等式が成り立つ.

ラプラシアンの基本解

補題 2.4(Green の定理)

 $U\subset\mathbb{R}^N$ を有界開集合, ∂U は滑らかな \mathbb{R}^N の超曲面とする. $f,g\in C^2(\overline{\Omega})$ とする. このとき

$$\int_{U} (\Delta f) g dx - \int_{U} f(\Delta g) dx = \int_{\partial U} f \frac{\partial g}{\partial \nu} dS - \int_{\partial U} \frac{\partial f}{\partial \nu} g dS$$

が成り立つ. ここで ν は ∂U の外向き法線ベクトル, $\frac{\partial f}{\partial \nu} = \nabla f \cdot \nu$ である.

命題 2.5

$$N=2, E(x)=rac{1}{2\pi}\log|x| \; (|x|=\sqrt{x_1^2+x_2^2})$$
 とすると

$$\Delta E = \delta$$
 in $\mathscr{D}'(\mathbb{R}^2)$

つまり

$$\langle \Delta E, \varphi \rangle = \varphi(0) \quad (\forall \varphi \in \mathscr{D}(\mathbb{R}^2))$$

である.

$$\int_{\overline{B_r(0)}} |E(x)| dx = \lim_{\varepsilon \downarrow 0} \int_{\varepsilon \le |x| \le r} |E(x)| dx < \infty$$

である(各自確かめよ).

証明

- 直接計算により $\Delta E = 0 \ (x \in \mathbb{R}^2 \setminus \{0\})$ が成り立つ.
- $\varphi \in \mathcal{D}(\mathbb{R}^2)$ を任意にとる. $\operatorname{supp} \varphi \subset B_R(0)$ なる R > 0 をとり

$$\Omega_{\varepsilon,R} = \{ x \in \mathbb{R}^2 : \varepsilon < |x| < R \}$$

とおく.

• $\Omega_{\varepsilon,R}$ において Green の定理を用いると

$$\int_{\Omega_{\varepsilon\,R}} E\Delta\varphi dx - \int_{\Omega_{\varepsilon\,R}} (\Delta E)\varphi dx = \int_{\partial\Omega_{\varepsilon\,R}} E\frac{\partial\varphi}{\partial\nu} dS - \int_{\partial\Omega_{\varepsilon\,R}} \frac{\partial E}{\partial\nu}\varphi dS$$

• $\varphi = 0$, $\frac{\partial \varphi}{\partial \nu} = 0$ on $\partial B_R(0)$ に注意すると

右辺 =
$$\int_{|x|=\varepsilon} E \frac{\partial \varphi}{\partial \nu} dS - \int_{|x|=\varepsilon} \frac{\partial E}{\partial \nu} \varphi dS = I_{\varepsilon} + II_{\varepsilon}$$

である.

• I_{ε} については

$$|I_{\varepsilon}| \leq \frac{1}{2\pi} |\log \varepsilon| |\nabla \varphi| 2\pi \varepsilon \to 0 \text{ as } \varepsilon \to 0$$

である.

• Claim: $\lim_{\varepsilon \downarrow 0} II_{\varepsilon} = \varphi(0)$

• φ は x=0 で連続より、任意の $\rho>0$ に対し、ある $\varepsilon_0>0$ が存在して

$$|x| < \varepsilon_0 \implies |\varphi(x) - \varphi(0)| < \rho$$

が成り立つ.

• $\Omega_{\varepsilon,R}$ の $|x|=\varepsilon$ における外向き法線ベクトルは $-x/|x|=-x/\varepsilon$ より

$$\frac{\partial E}{\partial \nu} = \nabla E \cdot \nu = -\frac{1}{2\pi |x|} = \frac{1}{2\pi \varepsilon}$$
 on $|x| = \varepsilon$

である.

・したがって

$$II_{\varepsilon} = \frac{1}{2\pi\varepsilon} \int_{|x|=\varepsilon} \varphi(x) dS$$

• $\varphi(0) = \frac{1}{2\pi\varepsilon} \int_{|x|=\varepsilon} \varphi(0) dx$ を用いると

$$|II_{\varepsilon} - \varphi(0)| \le \frac{1}{2\pi\varepsilon} \int_{|x|=\varepsilon} |\varphi(x) - \varphi(0)| dS$$

である.

• $0 < \varepsilon < \varepsilon_0$ ならば $|\varphi(x) - \varphi(0)| < \rho$ より

$$|II_{\varepsilon} - \varphi(0)| \le \frac{1}{2\pi\varepsilon} \int_{|x|=\varepsilon} \rho dS = \rho$$

を得る.これは $\lim_{\varepsilon\downarrow 0}II_{\varepsilon}=\varphi(0)$ を意味する.

• 以上より

$$\langle E, \Delta \varphi \rangle = \lim_{\epsilon \downarrow 0} \int_{\Omega_{\epsilon,R}} E \Delta \varphi dx = \varphi(0)$$

を得る. □

同様に次を示すことができる.

命題 2.6 -

 $N \geq 3$ を自然数とし $E(x) = -\frac{1}{(N-2)\omega_{N-1}|x|^{N-2}}$ とすると

$$\Delta E = \delta$$
 in $\mathscr{D}'(\mathbb{R}^N)$

つまり

$$\langle \Delta E, \varphi \rangle = \varphi(0) \quad (\forall \varphi \in \mathscr{D}(\mathbb{R}^N))$$

である。ここで ω_N は N 次元単位球の体積で $N\omega_N$ は N 次元単位球面の表面積となる。

2.3 超関数の収束

定義 -

 $\{T_n\}\subset \mathscr{D}'(\Omega),\,T\in \mathscr{D}'(\Omega)$ とする.

$$\lim_{n \to \infty} T_n(\varphi) = T(\varphi) \quad (\forall \varphi \in \mathscr{D}(\Omega))$$

が成り立つとき、 $\{T_n\}$ は $\mathcal{D}'(\Omega)$ の意味で T に**収束する**といい

$$T_n \to T \ (n \to \infty) \ \text{in} \ \mathscr{D}'(\Omega)$$

と表す。

- 定理 2.7 -

 $\{T_n\}\subset \mathcal{D}'(\Omega)$ とする. 任意の $\varphi\in \mathcal{D}(\Omega)$ に対し $\{T_n(\varphi)\}\subset \mathbb{C}$ は Cauchy 列(したがって収束列)であるとする. このとき

$$T(\varphi) := \lim_{n \to \infty} T_n(\varphi) \ (\varphi \in \mathscr{D}(\Omega))$$

とすると, $T \in \mathcal{D}'(\Omega)$ となる.

この証明には Baire のカテゴリー定理から導かれる Banach-Steinhaus の定理を用いるためここでは述べない.

δ 関数の近似列

例3
$$f_n(x)=rac{n}{1+n^2x^2}\;(x\in\mathbb{R})$$
 とする。このとき $T_{f_n} o\pi\delta\;(n o\infty)\;\; ext{in}\;\;\mathscr{D}'(\mathbb{R})$

証明

• $\varphi \in \mathcal{D}(\mathbb{R})$ を任意にとると

$$T_{f_n}(\varphi) = \int_{-\infty}^{\infty} \frac{n}{1 + n^2 x^2} \varphi(x) dx = \int_{-\infty}^{\infty} \frac{1}{1 + y^2} \varphi\left(\frac{y}{n}\right) dy$$

・ここで

$$\int_{-\infty}^{\infty} \frac{1}{1+y^2} dy = \pi \quad \text{\sharp 0} \quad \pi\varphi(0) = \int_{-\infty}^{\infty} \frac{1}{1+y^2} \varphi(0) dy$$
$$T_{f_n}(\varphi) - \pi\varphi(0) = \int_{-\infty}^{\infty} \frac{1}{1+y^2} \left\{ \varphi\left(\frac{y}{n}\right) - \varphi(0) \right\} dy$$

- Claim: $\lim_{n\to\infty} \int_{-\infty}^{\infty} \frac{1}{1+y^2} \left\{ \varphi\left(\frac{y}{n}\right) \varphi(0) \right\} dy = 0$
- $\varphi \in \mathcal{D}(\mathbb{R})$ より $M := \sup_{\mathbb{R}} |\varphi| < \infty$ である.
- $\varepsilon > 0$ を任意にとる. このとき, ある L > 0 が存在して

$$2M \int_{|y| \ge L} \frac{1}{1 + y^2} dy < \frac{\varepsilon}{2}$$

が成り立つ.

このとき

$$|T_{f_n}(\varphi) - \pi \varphi(0)| = \left| \int_{-\infty}^{\infty} \frac{1}{1 + y^2} \left\{ \varphi\left(\frac{y}{n}\right) - \varphi(0) \right\} dy \right|$$

$$\leq \int_{|y| \leq L} \frac{1}{1 + y^2} \left| \varphi\left(\frac{y}{n}\right) - \varphi(0) \right| dy + \int_{|y| \geq L} \frac{1}{1 + y^2} \left| \varphi\left(\frac{y}{n}\right) - \varphi(0) \right| dy$$

$$\leq \int_{|y| \leq L} \frac{1}{1 + y^2} \left| \varphi\left(\frac{y}{n}\right) - \varphi(0) \right| dy + \int_{|y| \geq L} \frac{1}{1 + y^2} 2M dy$$

$$\leq \int_{|y| \leq L} \frac{1}{1 + y^2} \left| \varphi\left(\frac{y}{n}\right) - \varphi(0) \right| dy + \frac{\varepsilon}{2}$$

• 次に φ は x=0 で連続より、上の $\varepsilon>0$ に対して、ある $\delta>0$ が存在して

$$|x| < \delta \implies |\varphi(x) - \varphi(0)| < \frac{\varepsilon}{2\pi}$$

が成り立つ。このとき, $N \in \mathbb{N}$ を $\frac{L}{N} < \delta$ とすると

$$n \ge N, \ |y| \le L \ \Rightarrow \ \left|\frac{y}{n}\right| < \delta$$

であるので

$$n \ge N, \quad |y| \le L \quad \Rightarrow \quad \left| \varphi\left(\frac{y}{n}\right) - \varphi(0) \right| < \frac{\varepsilon}{2\pi}$$

が成り立つ.

• したがって $n \ge N$ ならば

$$|T_{f_n}(\varphi) - \pi \varphi(0)| \le \int_{|y| \le L} \frac{1}{1 + y^2} \left| \varphi\left(\frac{y}{n}\right) - \varphi(0) \right| dy + \frac{\varepsilon}{2} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

である.これは $\lim_{n \to \infty} T_{f_n}(arphi) = \pi arphi(0)$ を意味する.

• φ は任意なので $T_{f_n} \to \pi \delta \ (n \to \infty)$ in $\mathscr{D}'(\mathbb{R})$ である. \square

同様にして次のことがわかる:

命題 2.8

$$f\geq 0,\,f\in L^1(\mathbb{R}^N)$$
, $\int_{\mathbb{R}^N}fdx=1$ とする.このとぎ $f_n(x)=nf(nx)$ とすると

$$T_{f_n}(\varphi) \to \delta \ (n \to \infty) \ \text{in } \mathscr{D}'(\mathbb{R}^N)$$

が成り立つ.