20 bài tập - Khoảng cách từ điểm đến mặt phẳng (Dạng 2) - File word có lời giải chi tiết

Câu 1. Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B với AB = BC = a, AD = 2a. Hai mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt phẳng đáy. Tính khoảng cách từ điểm A tới mặt phẳng (SBD)

A.
$$\frac{a}{\sqrt{5}}$$

B.
$$\frac{2a}{\sqrt{5}}$$

C.
$$\frac{3a}{\sqrt{5}}$$

D.
$$\frac{4a}{\sqrt{5}}$$

Câu 2. Cho hình chóp S.ABC có đáy là tam giác đều, hình chiếu vuông góc của đỉnh S trên mặt phẳng đáy là điểm H thuộc cạnh AB sao cho HB=2HA. Biết SC tạo với đáy một góc 45° và cạnh bên $SA=2a\sqrt{2}$. Tính khoảng cách từ điểm C đến mặt phẳng (SAB)

A.
$$\frac{a\sqrt{3}}{2}$$

B.
$$\frac{2a\sqrt{2}}{3}$$

C.
$$\frac{3a\sqrt{3}}{2}$$

D.
$$\frac{a\sqrt{2}}{3}$$

Câu 3. Cho hình chóp S.ABCD có đáy là hình vuông cạnh bằng 2a, ΔSAB là tam giác vuông cân tại Snằm trong mặt phẳng vuông góc với đáy. Khoảng cách từ trung điểm H của AB đến mặt phẳng (SBD) là?

A.
$$\frac{a\sqrt{3}}{3}$$

C.
$$\frac{a\sqrt{3}}{2}$$

C.
$$\frac{a\sqrt{3}}{2}$$
 D. $\frac{a\sqrt{10}}{2}$

Câu 4. Cho hình chóp S.ABC có SA = 3a và $SA \perp (ABC)$. Biết AB = BC = 2a, $ABC = 120^{\circ}$. Tính khoảng cách từ A đến (SBC)?

B.
$$\frac{a}{2}$$

D.
$$\frac{3a}{2}$$

Câu 5. Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, $AC = a\sqrt{3}$, $ABC = 30^{\circ}$, góc giữa SC và mặt phẳng (ABC) bằng 60° . Cạnh bên S vuông góc với đáy. Khoảng cách từ A đến mặt phẳng (SBC)bằng

A.
$$\frac{a\sqrt{6}}{\sqrt{35}}$$

B.
$$\frac{a\sqrt{3}}{\sqrt{35}}$$

C.
$$\frac{3a}{\sqrt{5}}$$

D.
$$\frac{2a\sqrt{3}}{\sqrt{35}}$$

FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

Câu 6. Cho hình lăng trụ ABC.A'B'C' có $AB = a\sqrt{3}$, $ABC = 30^{\circ}$, $ACB = 60^{\circ}$. Hình chiếu vuông góc của A' trên mặt đáy là trung điểm của BC. Thể tích khối chóp A'ABC bằng $\frac{a^3}{6}$. Khoảng cách từ C đến mặt phẳng (A'AB) bằng

A.
$$\frac{a\sqrt{6}}{6}$$

B.
$$\frac{2a}{\sqrt{7}}$$

C.
$$\frac{a\sqrt{6}}{4}$$

D.
$$\frac{a\sqrt{6}}{12}$$

Câu 7. Cho hình chóp đều S.ABC có AB = a, góc giữa mặt bên và mặt đáy bằng 60° . Tính $\frac{4d}{a}$, biết d là khoảng cách từ điểm A đến mặt phẳng (SBC).

B. 5

C. 7

D. 9

Câu 8. Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, $SA \perp (ABCD)$, SA = AB = a và AD = x.a. Gọi E là trung điểm cạnh SC. Tìm x, biết khoảng cách từ điểm E đến mặt phẳng (SBD) là $d = \frac{a}{3}$.

A.
$$x = 1$$

B. x = 2

C. x = 3

D. x = 4

Câu 9. Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh bằng a, $SA \perp (ABCD)$, $SA = a\sqrt{3}$. Tính theo a khoảng cách từ điểm O đến mặt phẳng (SBC).

A.
$$\frac{a}{2}$$

B.
$$\frac{a\sqrt{3}}{4}$$

C.
$$\frac{a\sqrt{5}}{6}$$

D.
$$\frac{a\sqrt{7}}{8}$$

Câu 10. Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, $SA \perp (ABCD)$, SA = AB = a và AD = 2a. Gọi F là trung điểm cạnh CD. Tính $\frac{33d}{a}$, biết d là khoảng cách từ điểm A đến mặt phẳng (SBF).

A.
$$2\sqrt{33}$$

B.
$$4\sqrt{33}$$

C.
$$2\sqrt{11}$$

D.
$$4\sqrt{11}$$

FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

Câu 11. Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 4a. Gọi H là điểm thuộc đường thẳng AB sao cho $3\overrightarrow{HA} + \overrightarrow{HB} = 0$. Hai mặt phẳng (SAB) và (SHC) đều vuông góc với mặt phẳng đáy. Tính khoảng cách từ B đến mặt phẳng (SHC).

A.
$$\frac{5a}{12}$$

B.
$$\frac{5a}{6}$$

C.
$$\frac{12a}{5}$$

D.
$$\frac{6a}{5}$$

Câu 12. Cho hình chóp đều S.ABCD có cạnh đáy bằng a. Gọi O là giao điểm của hai đường chéo, M là trung điểm của CD. Tính khoảng cách từ C đến mặt phẳng (SOM)

B.
$$\frac{a}{2}$$

C.
$$\frac{a}{4}$$

D.
$$\frac{a}{8}$$

Câu 13. Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. Tam giác SAB là tam giác đều cạnh a và nằm trong mặt phẳng vuông góc với đáy. Gọi O là giao điểm của hai đường chéo. Tính khoảng cách từ điểm O tới mặt phẳng (SHC) biết thể tích khối chóp S.ABCD là $\frac{a^3\sqrt{3}}{3}$

A.
$$\frac{a}{\sqrt{17}}$$

B.
$$\frac{2a}{\sqrt{17}}$$

C.
$$\frac{a}{\sqrt{27}}$$

D.
$$\frac{2a}{\sqrt{27}}$$

Câu 14. Cho hình hộp đứng ABCD.A'B'C'D' có đáy là hình vuông, tam giác A'AC vuông cân tại A, cạnh A'C = 2a. Tính khoảng cách từ A đến mặt phẳng (BCD') theo a?

A.
$$\frac{a\sqrt{3}}{3}$$

B.
$$\frac{a\sqrt{6}}{3}$$

C.
$$\frac{a\sqrt{2}}{2}$$

D.
$$\frac{a\sqrt{3}}{2}$$

Câu 15. Cho hình chóp S.ABC có SA = 3a và $SA \perp (ABC)$. Giả sử AB = BC = 2a, góc $ABC = 120^{\circ}$. Tìm khoảng cách từ A đến mặt phẳng (SBC)?

A.
$$\frac{a}{2}$$

C.
$$\frac{3a}{2}$$

Câu 16. Cho hình chóp S.ABC có đáy ABC là tam giác với $AB = a, AC = 2a, BAC = 120^{\circ}$. Cạnh SA vuông góc với mặt phẳng đáy và (SBC) tạo với đáy một góc 60° . Khoảng cách từ điểm A đến mặt phẳng (SBC) là:

FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

A.
$$\frac{3a}{2\sqrt{7}}$$

B.
$$\frac{3\sqrt{7}a}{2}$$

C.
$$\frac{a\sqrt{7}}{2}$$

D.
$$\frac{2\sqrt{7}a}{3}$$

Câu 17. Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. SA vuông góc với mặt phẳng đáy. Cạnh SC hợp với đáy một góc 60° . Gọi h là khoảng cách từ điểm A đến mặt phẳng (SBD). Tỉ số $\frac{h}{a}$ bằng

A.
$$\frac{\sqrt{18}}{12}$$

B.
$$\frac{\sqrt{78}}{13}$$

C.
$$\frac{\sqrt{58}}{13}$$

D.
$$\frac{\sqrt{38}}{13}$$

Câu 18. Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B; AD = 2AB = 2BC; BC = a; $SA \perp (ABCD)$ và SB hợp với mặt phẳng đáy một góc 45°. Tính $\frac{d(A,(SDC))}{a}$

A.
$$\frac{2\sqrt{6}}{3}$$

B.
$$\frac{2\sqrt{3}}{3}$$

C.
$$\frac{\sqrt{2}}{3}$$

D.
$$\frac{\sqrt{6}}{3}$$

Câu 19. Cho hình chóp S.ABCD có đáy ABCD là hình thang $ABC = BAD = 90^{\circ}$, BA = BC = a; AD = 2a. Cạnh bên SA vuông góc với đáy. Góc tạo bởi giữa SC và (SAD) bằng 30° . Tính khoagnr cách từ A đến (SCD).

B.
$$a\sqrt{2}$$

C.
$$\frac{a}{2}$$

D.
$$a\sqrt{3}$$

Câu 20. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a có $BAD = 120^{\circ}$. Cho $SA \perp (ABCD)$. Gọi M là trung điểm của BC; biết $SMA = 45^{\circ}$. Tính d(B,(SDC))?

A.
$$\frac{a\sqrt{6}}{4}$$

B.
$$\frac{a\sqrt{6}}{2}$$

C.
$$\frac{a\sqrt{3}}{2}$$

D.
$$\frac{a\sqrt{3}}{8}$$

FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

HƯỚNG DẪN GIẢI

Câu 1. Chọn đáp án B

Ta có
$$\begin{cases} (SAC) \perp (ABCD) \\ (SBD) \perp (ABCD) \end{cases}$$

$$va (SAC) \cap (SBD) = SO$$

$$\Rightarrow$$
 $SO \perp (ABCD)$ với $O = AC \cap BD$

Kẻ
$$AH \perp BD$$
 ta có $\begin{cases} AH \perp BD \\ AH \perp SO \end{cases} \Rightarrow AH \perp (SBD)$

Ta có
$$\frac{1}{AH^2} = \frac{1}{AB^2} + \frac{1}{AD^2} = \frac{5}{4a^2} \Rightarrow AH = \frac{2a}{\sqrt{5}}$$

$$\Rightarrow d(A,(SBD)) = \frac{2a}{\sqrt{5}}$$

Câu 2. Chọn đáp án C

Ta có
$$(SC, (ABC)) = SCH = 45^{\circ}$$

Giả sử
$$AB = BC = CA = 3x$$

Ta có
$$CH = \sqrt{AH^2 + AC^2 - 2AH.AC.\cos 60^\circ} = x\sqrt{7}$$

Ta lại có
$$SA^2 = SH^2 + AH^2 \Leftrightarrow 8a^2 = 8x^2 \Leftrightarrow x = a$$

$$\Rightarrow AB = BC = CA = 3a$$

Kẻ
$$CK \perp AB$$
 ta có
$$\begin{cases} CK \perp AB \\ CK \perp SH \end{cases} \Rightarrow CK \perp (SAB)$$

Mà
$$CK = \frac{3a\sqrt{3}}{2} \Rightarrow d(C,(SAB)) = \frac{3a\sqrt{3}}{2}$$

Câu 3. Chọn đáp án A

Vì ΔSAB là tam giác vuông cân tại S nên $SH \perp (ABCD)$.

https://www.facebook.com/Adoba.com.vn/ - FanPa

FANPAGE: ADOBA – TÀI LIỆU LUYỆN THI SỐ 1 VIÊ

FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

Từ H kẻ $HI \perp BD$, từ H kẻ $HK \perp SI$ với $I \in BD, K \in SI$.

Ta có

$$\begin{cases} SH \perp BD \\ HI \perp BD \end{cases} \Rightarrow BD \perp (SHI) \Rightarrow BD \perp HK \Rightarrow HK \perp (SBD).$$

Do đó
$$d(H,(SBD)) = HK$$
. Mặt khác $\frac{1}{HI^2} + \frac{1}{SH^2} = \frac{1}{HK^2}$.

Mà
$$HI = \frac{1}{2}d(A,BD) = \frac{a}{\sqrt{2}}$$
 và $SH = \frac{AB}{2} = a$.

Nên
$$\frac{1}{HK^2} = \frac{1}{\left(\frac{a}{\sqrt{2}}\right)^2} + \frac{1}{a^2} = \frac{3}{a^2} \Rightarrow HK = \frac{a}{\sqrt{3}}$$

Câu 4. Chon đáp án D

Từ A kẻ $AH \perp BC$, kẻ $AK \perp SH$ với $H \in BC, K \in SH$.

Ta có

$$\begin{cases} SA \perp BC \\ AH \perp BC \end{cases} \Rightarrow BC \perp (SAH) \Rightarrow BC \perp AK \Rightarrow AK \perp (SBC)$$

Do đó
$$d(A,(SBC)) = AK$$
 thỏa mãn $\frac{1}{SA^2} + \frac{1}{AH^2} = \frac{1}{AK^2}$.

Mà
$$SA = 3a$$
 và $AH = \sin 60^{\circ}.AB = \frac{\sqrt{3}}{2}.2a = a\sqrt{3}$

Nên

$$\frac{1}{AK^2} = \frac{1}{9a^2} + \frac{1}{3a^2} = \frac{4}{9a^2} \Rightarrow AK = \frac{3a}{2} \Rightarrow d\left(A, (SBC)\right) = \frac{3a}{2}$$

Câu 5. Chọn đáp án C

Kė
$$AE \perp BC, AK \perp SE(E \in BC, K \in SE)$$
.

Chứng minh
$$AK \perp (SBC) \Rightarrow AK = d(A,(SBC))$$
.

 \mathbf{E}

https://www.facebook.com/Adoba.com.vn

FANPAGE: ADOBA – TÀI LIÊU LUYÊN THI

Xét tam giác SAE vuông tại A ta có:

$$AK = \frac{SA.AE}{\sqrt{SA^2 + AE^2}}.$$

Tính SA, AE:

Xét hai tam giác vuông ABC và SAC: AB = SA = 3a.

Xét tam giác vuông ABC: $AE = \frac{3a}{2}$.

$$\Rightarrow d(A,(SBC)) = HK = \frac{3a}{\sqrt{5}}.$$

FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

Câu 6. Chọn đáp án B

Gọi E là trung điểm của AB.

Ta có
$$AC = AB \cdot \tan 30^\circ = a \Rightarrow HE = \frac{a}{2}$$
.

$$V_{A'ABC} = \frac{1}{3}A'H.S_{ABC} = \frac{a^3}{6} \Rightarrow A'H = \frac{a}{\sqrt{3}}$$

Kė
$$HK \perp A'E \Rightarrow HK = d(H,(A'AB)) = \frac{a}{\sqrt{7}}$$

$$\Rightarrow d(C,(A'AB)) = 2d(H,(A'AB)) = \frac{2a}{\sqrt{7}}$$

Gọi O là tâm của tam giác ABC và H là trung điểm của BC.

Có

$$\begin{cases} SO \perp BC \\ AH \perp BC \end{cases} \Rightarrow BC \perp (SAH) \Rightarrow ((SBC), (ABC)) = (SH, AH) = SHA$$

Kė
$$OK \perp SH$$
 suy ra $OK \perp (SBC) \Rightarrow d(O,(SBC)) = OK$.

Xét $\triangle OKH$ vuông tại K, có

$$OK = \sin 60^{\circ}.OH = \frac{\sqrt{3}}{2}.OH = \frac{\sqrt{3}}{6}.AH = \frac{a}{4}$$

Do đó
$$d(A,(SBC)) = 3d(H,(SBC)) = \frac{3a}{4} = d \Leftrightarrow \frac{4d}{a} = 3$$
.

Ta có
$$d(E,(SBD)) = \frac{1}{2}d(A,(SBD)) = \frac{a}{3} \Rightarrow d(A,(SBD)) = \frac{2a}{3}$$
.

Gọi H là hình chiếu của A lên BD. Và K là hình chiếu của A lên SH.

Ta được
$$AK \perp (SBD) \Rightarrow AK = d(A,(SBD)) = \frac{2a}{3}$$
.

Mà
$$AH.BD = AB.AD \Leftrightarrow AH = \frac{AB.AD}{\sqrt{AB^2 + BD^2}} = \frac{x.a^2}{\sqrt{a^2 + x^2a^2}}$$

Do đó
$$\frac{1}{AK^2} = \frac{1}{SA^2} + \frac{1}{AH^2} \Leftrightarrow \frac{9}{4a^2} = \frac{1}{a^2} + \frac{a^2 + x^2a^2}{x^2a^4}$$
.

$$\Leftrightarrow \frac{5}{4} = \frac{1+x^2}{x^2} \Leftrightarrow x^2 = 4 \Leftrightarrow x = 2 \text{ vi } x > 0.$$

Câu 9. Chọn đáp án B

Ta có
$$d(A,(SBC)) = 2d(O,(SBC))$$

Gọi H là hình chiếu của A lên SB.

Ta có
$$\begin{cases} SA \perp BC \\ AB \perp BC \end{cases} \Rightarrow BC \perp (SAB) \Rightarrow BC \perp AH \Rightarrow AH \perp (SBC)$$

Mà
$$\frac{1}{AH^2} = \frac{1}{SA^2} + \frac{1}{AB^2} = \frac{1}{3a^2} + \frac{1}{a^2} = \frac{4}{3a^2} \Rightarrow AH = \frac{a\sqrt{3}}{2}$$

Do đó
$$d(O,(SBC)) = \frac{1}{2}d(A,(SBC)) = \frac{1}{2}AH = \frac{a\sqrt{3}}{4}$$

Câu 10. Chọn đáp án B

Gọi H là hình chiếu của A lên BF. Và K là hình chiếu của A lên SH.

Ta có

$$\begin{cases} SA \perp BF \\ AH \perp BF \end{cases} \Rightarrow BF \perp (SAH) \Rightarrow BF \perp AK \Rightarrow AK \perp (SBF).$$

Do đó
$$d = d(A,(SBF)) = AK$$
.

Mà
$$BF = \sqrt{BC^2 + CF^2} = \frac{a\sqrt{17}}{2}$$
.

Nên
$$AH.BF = AD.AB \Leftrightarrow AH = \frac{AB.AD}{BF} = \frac{2a^2}{a\sqrt{17}} = \frac{4a}{\sqrt{17}}.$$

Khi đó
$$\frac{1}{AK^2} = \frac{1}{SA^2} + \frac{1}{AH^2} = \frac{1}{a^2} + \frac{17}{16a^2} = \frac{33}{16a^2} \Leftrightarrow AK = \frac{4a}{\sqrt{33}}.$$

$$V_{ay} \frac{33d}{a} = \frac{33. \frac{4a}{\sqrt{33}}}{a} = 4\sqrt{33}$$

FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

Câu 11. Chọn đáp án C

Ta có
$$\begin{cases} (SAB) \perp (ABCD) \\ (SHC) \perp (ABCD) \end{cases} \text{ mà } (SAB) \cap (SHC) = SH$$

$$\Rightarrow$$
 SH \perp (ABCD)

Kẻ
$$BK \perp CH$$
 ta có $\begin{cases} BK \perp CH \\ BK \perp SH \end{cases} \Rightarrow BK \perp (SHC)$

Ta có
$$\frac{1}{BK^2} = \frac{1}{BH^2} + \frac{1}{BC^2} = \frac{25}{144a^2} \Rightarrow BK = \frac{12a}{5}$$

$$\Rightarrow d(B,(SHC)) = \frac{12a}{5}$$

Do hình chóp S.ABCD là hình chóp đều nên $SO \perp (ABCD)$

Ta có
$$\begin{cases} CM \perp OM \\ CM \perp SO \end{cases} \Rightarrow CM \perp (SOM)$$

Mà
$$CM = \frac{a}{2} \Rightarrow d(C, (SOM)) = \frac{a}{2}$$

Gọi H là trung điểm của $AB \Rightarrow SH \perp (ABCD)$ và

$$SH = \frac{a\sqrt{3}}{2}$$

Ta có

$$V_{S.ABCD} = \frac{1}{3}SH.S_{ABCD} = \frac{1}{3}SH.AB.BC = \frac{1}{3}.\frac{a\sqrt{3}}{2}.a.BC = \frac{a^2\sqrt{3}.BC}{6}$$

Mà
$$V_{S.ABCD} = \frac{a^3 \sqrt{3}}{3} \Rightarrow \frac{a^2 \sqrt{3}}{6}.BC = \frac{a^3 \sqrt{3}}{3} \Leftrightarrow BC = 2a$$

Kẻ
$$OK \perp CH$$
 ta có $\begin{cases} OK \perp CH \\ OK \perp SH \end{cases} \Rightarrow OK \perp (SCH)$

Ta tính được
$$OK = \frac{a}{\sqrt{17}} \Rightarrow d(O,(SCH)) = \frac{a}{\sqrt{17}}$$

FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

Câu 14. Chọn đáp án B

+) Ke
$$AP \perp A'B \Rightarrow d(A,(BCD')) = d(A,(A'BC)) = AP$$

+) $\Delta A'AC$ vuông cân tại

$$A \Rightarrow A'A = AC = \frac{A'C}{\sqrt{2}} = \frac{2a}{\sqrt{2}} = a\sqrt{2}$$
.

Tứ giác ABCD là hình vuông

$$\Rightarrow AB = \frac{AC}{\sqrt{2}} = a \Rightarrow \frac{1}{AP^2} = \frac{1}{A'A^2} + \frac{1}{AB^2} = \frac{1}{2a^2} + \frac{1}{a^2} = \frac{3}{2a^2}$$

$$\Rightarrow AP = \frac{a\sqrt{2}}{\sqrt{3}} = \frac{a\sqrt{6}}{3} \Rightarrow d\left(A, \left(BCD'\right)\right) = \frac{a\sqrt{6}}{3}$$

+) Trên mặt phẳng đáy, qua A kẻ một đường thẳng vuông góc với AC, đường thẳng này cắt BC tại P.

Đặt
$$d(A,(SBC)) = d(A,(SPC)) = h$$
, tứ diện vuông $S.APC$

$$\Rightarrow \frac{1}{h^2} = \frac{1}{AS^2} + \frac{1}{AC^2} + \frac{1}{AP^2}.$$

+) ∆ABP đều

$$\Rightarrow \begin{cases} AP = BA = 2a \\ \tan 60^{\circ} = \frac{AC}{AP} = \sqrt{3} \end{cases} \Rightarrow \begin{cases} AP = 2a \\ AC = 2a\sqrt{3} \end{cases}$$

$$\Rightarrow \frac{1}{h^2} = \frac{1}{9a^2} + \frac{1}{12a^2} + \frac{1}{4a^2} = \frac{4}{9a^2} \Rightarrow h = \frac{3a}{2}$$

Ta có:
$$BC = \sqrt{AB^2 + AC^2 - 2AB \cdot AC \cdot \cos 120^\circ} = a\sqrt{7}$$

Dựng
$$AE \perp BC$$
; $AF \perp SE$ khi đó $d(A,(SBC)) = AF$

E

Ta có:
$$AE = \frac{2S_{ABC}}{BC} = \frac{AB.AC\sin BAC}{BC} = \frac{a\sqrt{21}}{7}$$

Mặt khác
$$\begin{cases} BC \perp SA \\ BC \perp AE \end{cases} \Rightarrow BC \perp (SAE) \Rightarrow SEA = 60^{\circ}$$

Suy ra
$$d = AF = AE \sin 60^\circ = \frac{a\sqrt{21}}{7} \cdot \frac{\sqrt{3}}{2} = \frac{3a}{2\sqrt{7}}$$

Câu 17. Chọn đáp án B

Do ABCD là hình vuông nên $AC \perp BD$ tại tâm O của hình vuông có $AC = a\sqrt{2}$; $OA = \frac{a\sqrt{2}}{2}$

Do

$$SA \perp (ABCD) \Rightarrow SAC = 60^{\circ} \Rightarrow SA = AC \tan 60^{\circ} = a\sqrt{6}$$

Dựng

$$AH \perp SO \Rightarrow d(A,(SBD)) = AH = \frac{SA.AO}{\sqrt{SA^2 + OA^2}} = \frac{a\sqrt{78}}{13}$$

Do đó
$$\frac{h}{a} = \frac{\sqrt{78}}{13}$$

Ta có:
$$SA \perp (ABCD)$$
 nên $SBA = (SB, (ABCD)) = 45^{\circ}$

Khi đó $SA=AB\tan 45^\circ=a$. Gọi E là trung điểm của AD khi đó ABCE là hình vuông cạnh a. Do $CE=\frac{1}{2}AD$ nên tam giác ACD vuông tại C suy ra $AC\perp CD$, dựng $AF\perp SC$

Ta có:

$$AC = a\sqrt{2}, d\left(A, (SCD)\right) = AF = \frac{SA.SC}{\sqrt{SA^2 + AC^2}} = \frac{a\sqrt{6}}{3}$$
$$d\left(A, (SCD)\right) = \sqrt{6}$$

Do đó
$$\frac{d(A,(SCD))}{a} = \frac{\sqrt{6}}{3}$$

FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

Câu 19. Chọn đáp án A

Gọi E là trung điểm của AD khi đó ABCE là hình vuông cạnh a suy ra $CE \perp AD$, lại có $CE \perp SA$

Do đó
$$CE \perp (SAD) \Rightarrow CSE = (SC, (SAD)) = 30^{\circ}$$
.

Lai có:
$$SC \sin 30^\circ = CE = a \Rightarrow SC = 2a$$

$$\Rightarrow SA = \sqrt{SC^2 - AC^2} = a\sqrt{2}$$
. Do $CE = \frac{1}{2}AD$ nên tam

giác ACD vuông tại C suy ra $AC \perp CD$, dựng $AF \perp SC$.

Ta có:
$$d(A,(SCD)) = AF = \frac{SA.SC}{SC} = a$$
.

Câu 20. Chọn đáp án A

Do ABCD là hình thoi có $BAD = 120^{\circ}$ nên tam giác ABC và ACD là các tam giác đều.

Khi đó
$$AM = \frac{a\sqrt{3}}{2}$$
, dựng $AE \perp CD \Rightarrow AE = \frac{a\sqrt{3}}{2}$,

dựng $AF \perp SE$ suy ra d(A,(SCD)) = AF.

Do
$$SMA = 45^{\circ} \Rightarrow SA = AM \tan 45^{\circ} = \frac{a\sqrt{3}}{2}$$

Măt khác

$$AB / CD \Rightarrow d(B,(SCD)) = d(A,(SCD)) = AF$$

$$=\frac{SA.SE}{\sqrt{SA^2 + AE^2}} = \frac{a\sqrt{6}}{4}$$

