Digital Electronies Paper

Brace Godfrey dg b8!

ab	ā	ā·b	b_	b.a	n	
00	1		1	-	*	0
01	0		0	0	b	
11/	0		0		Th	0

2.

a)
$$a.b.C + a.b.\overline{c}$$

 $= a.b.(C + \overline{e})$
 $= a.b.1$

b)
$$a \cdot (\bar{a} + b)$$

 $a = a \cdot \bar{a} + a \cdot b$
 $a = 0 + a \cdot b$

= d.h

$$= (a.\overline{a} + a.\overline{b}) + (a.\overline{a} + a.\overline{c})$$

$$(a+e), (\bar{a}+h)$$

$$= a.a + a.b + a.e + e.b$$

a)
$$(a+c) \cdot (a+a) \cdot (b+e) \cdot (b+a)$$

= $(a \cdot a + a \cdot d + c \cdot a + c \cdot d) \cdot (b \cdot b + b \cdot d + c \cdot b + c \cdot d)$

[$(a \cdot a \cdot d + a \cdot c) \cdot (b \cdot d + b \cdot c)$

= $(a \cdot a + a \cdot c) \cdot (b \cdot d + b \cdot c)$

= $(a \cdot a \cdot d + a \cdot c + c \cdot d) \cdot (b + b \cdot d + b \cdot c + c \cdot d)$

= $(a \cdot b + a \cdot c) \cdot (b \cdot c \cdot d) \cdot (b + b \cdot d + b \cdot c + c \cdot d)$

= $(a \cdot (1 + d + c) + c \cdot d) \cdot (b \cdot (1 + d + c) + c \cdot d)$

= $(a \cdot (1 + c \cdot d) \cdot (b \cdot c \cdot d) \cdot (b \cdot c \cdot d)$

= $(a \cdot b + c \cdot d) \cdot (b \cdot c \cdot d)$

= $(a \cdot b + c \cdot d) \cdot (b \cdot c \cdot d)$

= $(a \cdot b + c \cdot d) \cdot (b \cdot c \cdot d)$

= $(a \cdot b + c \cdot d) \cdot (b \cdot c \cdot d)$

= $(a \cdot b + c \cdot d) \cdot (b \cdot c \cdot d)$

= $(a \cdot b + c \cdot d) \cdot (b \cdot c \cdot d)$

= $(a \cdot b + c \cdot d) \cdot (b \cdot c \cdot d)$

$$-b+a.\bar{a}+a.\bar{b}+a.\bar{c}$$

$$-a+b$$

(4) V=a.b.c+a.b.d+a.c.d+b.c.d+a.x.c.x

a) Currently in Soffm
$$aDM \bar{a.b} = \bar{a} + \bar{b}$$

$$7 V = (\bar{a} + \bar{b} + \bar{c}) + (\bar{a} + \bar{b} + \bar{a}) + (\bar{a} + \bar{z} + \bar{a})$$

$$+ (\bar{b} + \bar{c} + \bar{a})$$

$$= \bar{a.b.c} + \bar{a.b.d} + \bar{a.c.d} + \bar{b.c.d}$$

 $-\frac{d.b.l.a.b.d}{t.d.b.k.d} + \frac{a.k.d.b.k.d}{u.cl}$ $-\frac{d.d}{u.cl} + \frac{u.cl}{a.b.e.d}$ $-\frac{a.b.e.d}{a.b.e.d} = \frac{a.k.d.b.k.d}{a.b.e.d}$

Into circuit:

7 th st

b)
$$g = \overline{a} + (\overline{c} \cdot \overline{b})$$
 $g = \overline{a} + \overline{c+b}$
 $g = \overline{a} \cdot (\overline{c+b})$
 $g = (a) \cdot (c+b)$

8 Q-M method

0121, 0100, 011, 1000, 1010, 1911, 100,
1121, 110, 1111

		2	3	4	
7	10001	10-01	10		
	$O \cup O \cup$	1-001	and		
	01011	01-01	- -		
	01101	-1011	MARIO		
	10101	011-1	-11-		
	11001	-1101	1-1-		
	01111	101-1	1		
	1011	1-101			
	11011	11-01			
	1110]	-111 1			
	1111	11-1 }			X
	'	111- 1			

Jan, Feb, Mar, April, Sep, Oel, Non Dee

9 0001,0010,0011,0100, 0000, 1000, 1000, 1010, 1010, 1011

There may be a static Q harand becase (\(\bar{t}+a\), (e+h)

May not change to 1 if t changes before 3't,

even though the potput should're changed

b)
$$z=(\bar{c}+a)\cdot(c+b)$$

$$\overline{z} = (c \cdot \overline{a}) + (\overline{c} \cdot \overline{b})$$

AMON. An or qute should be added to "connect" the Resential prime implicants, so so

7 7 should become:

