U30299 – Programming Lecture 01 – Writing Simple Programs

Matthew Poole & Nadim Bakhshov moodle.port.ac.uk

School of Computing University of Portsmouth

2020/21

Introduction to Lecture

- This lecture introduces the basic steps involved in programming.
- We'll introduce a simple programming problem (a task to be performed), and then:
 - write down a set of steps (in English) that performs the task;
 - write these steps as a Python program; and
 - check that the program works correctly.
- We'll then study the Python program in detail to introduce the basic elements of the Python language.

A programming problem

• Consider the following programming problem:

Write a weight converter program that transforms a weight measured in kilos (kilograms) into an equivalent weight in pounds.

Task specification

- The first step in writing any program is to make sure that the problem is understood completely.
- For the weight conversion problem, we might simply state:
 - User input: a weight measured in kilos
 - Output to screen: a weight measured in pounds, equivalent to the input weight (see next slide).

Specification — conversion formula

• The following equation relates kilograms and pounds:

$$pounds = 2.2 \times kilos$$

- For example,
 - 1 kilo = 2.2 pounds
 - 10 kilos = 22 pounds
- These two example conversions can be used later to test that the program operates correctly.

Designing the Algorithm

- The next step to **design** an **algorithm** that accomplishes the task.
- An algorithm is a detailed sequence of actions that accomplish some task.
- Algorithms can be written in English or any other language.
- A reasonable algorithm for our task, written in English, is:
 - Obtain a kilos value from the user
 - Calculate a pounds value using $pounds = 2.2 \times kilos$
 - Output the pounds value to the screen

6/8

The Python program

- An algorithm like this can be understood/performed by a human.
- In can also be written, or implemented, in any programming language like C, Python or Java.
- This algorithm is implemented as a Python program as follows:

```
kilos = float(input("Enter a weight in kilos: "))
pounds = 2.2 * kilos
print("The weight in pounds is", pounds)
```

• We'll now test the program before studying it in detail.

Testing the program

 Let's test the program to see how it looks to the user, and to check it gives correct results:

Screen

Enter a weight in kilos:1

The weight in pounds is 2.2

Screen

Enter a weight in kilos: 10

The weight in pounds is 22.0

Program concepts – statements

- Each line of the program is called a command or **statement**.
- The statements of a program are carried out (or **executed**) one after the other.
- Program execution ends after the last statement is executed.

```
kilos = float(input("Enter a weight in kilos: "))
pounds = 2.2 * kilos
print("The weight in pounds is", pounds)
```

Program concepts – variables

- A variable denotes a part of computer memory where a value is stored.
- Variables have names in the program; our program has two variables, kilos and pounds:

```
kilos = float(input("Enter a weight in kilos: "))
pounds = 2.2 * kilos
print("The weight in pounds is", pounds)
```

Program concepts – variables

• We'll often draw pictures to represent the variables and their values in the computer's memory; e.g:

- A statement in the program may:
 - create a new variable
 - use the value of a variable
 - change the value of a variable

Program concepts – assignment statements

- An **assignment statement** is used to assign a value to a variable:
 - This variable appears on the left hand side of the =.
 - The right hand side is an expression, which has a value.

```
kilos = float(input("Enter a weight in kilos: "))
pounds = 2.2 * kilos
print("The weight in pounds is", pounds)
```

Program concepts – assignment statements

- Assignment statements are executed in two steps; they:
 - evaluate the expression on the right hand side (i.e. find out its value)
 - **2** assign this value to the variable on the left hand side.
- If the variable on the left hand side doesn't yet exist, then it is **created**.
- Otherwise (if the variable already exists), its old value is replaced.

5/9

Program concepts – numeric and string values

```
kilos = float(input("Enter a weight in kilos: "))
pounds = 2.2 * kilos
print("The weight in pounds is", pounds)
```

- 2.2 is an example of a **numeric** value.
- "Enter a weight in kilos: " is a **string** value.
- We can use double or single quotes, but we can't mix them; so:
 - "hello" and 'hello' are OK, whereas:
 - "hello' is not!

Program concepts – arithmetic expressions

```
kilos = float(input("Enter a weight in kilos: "))
pounds = 2.2 * kilos
print("The weight in pounds is", pounds)
```

- Python allows standard arithmetic expressions to be formed from +, -, *
 (multiplication), /, and brackets (and).
- An expression is **evaluated** to give a **value**.
- We'll study arithmetic expressions in detail next lecture.

Program concepts – built-in functions

```
kilos = float(input("Enter a weight in kilos: "))
pounds = 2.2 * kilos
print("The weight in pounds is", pounds)
```

- A **built-in function** is an algorithm that is part of the Python language, and can be accessed by using its **name**.
- The **input** built-in function:
 - Displays a prompt on the screen;
 - Waits for the user to enter a value;
 - Gives us the value that the user entered.

Program concepts – built-in functions

```
kilos = float(input("Enter a weight in kilos: "))
pounds = 2.2 * kilos
print("The weight in pounds is", pounds)
```

- We'll see more what the float built-in function does later.
- The **print** built-in function displays information on the screen.

Explanation

About to start program execution

- > kilos = float(input("Enter a weight in kilos: "))
- > pounds = 2.2 * kilos
- > print("The weight in pounds is", pounds)

Screen

Explanation

- > kilos = float(input("Enter a weight in kilos: "))
- > pounds = 2.2 * kilos
- > print("The weight in pounds is", pounds)

Screen

Explanation

Message is displayed; wait for the user to enter a value

- > kilos = float(input("Enter a weight in kilos: "))
- > pounds = 2.2 * kilos
- > print("The weight in pounds is", pounds)

Screen

Explanation

Message is displayed; wait for the user to enter a value

- > kilos = float(input("Enter a weight in kilos: "))
- > pounds = 2.2 * kilos
- > print("The weight in pounds is", pounds)

Screen

Enter a weight in kilos:

Explanation

User enters a value, let's say 10

```
> kilos = float(input("Enter a weight in kilos: "))
```

- > pounds = 2.2 * kilos
- > print("The weight in pounds is", pounds)

Screen

Enter a weight in kilos:

Explanation

User enters a value, let's say 10

```
> kilos = float(input("Enter a weight in kilos: "))
```

- > pounds = 2.2 * kilos
- > print("The weight in pounds is", pounds)

Screen

Enter a weight in kilos: 10

Explanation

A variable with name kilos is created, and given the value 10.0

- > kilos = float(input("Enter a weight in kilos: "))
- > pounds = 2.2 * kilos
- > print("The weight in pounds is", pounds)

Screen

Enter a weight in kilos: 10

Explanation

A variable with name kilos is created, and given the value 10.0

- > kilos = float(input("Enter a weight in kilos: "))
- > pounds = 2.2 * kilos
- > print("The weight in pounds is", pounds)

Screen

Explanation

```
> kilos = float(input("Enter a weight in kilos: "))
```

- > pounds = 2.2 * kilos
- > print("The weight in pounds is", pounds)

Screen

Explanation

Expression is evaluated ...

```
> kilos = float(input("Enter a weight in kilos: "))
```

- > pounds = 2.2 * kilos
- > print("The weight in pounds is", pounds)

Screen

Explanation

Expression is evaluated ... to 22.0

```
> kilos = float(input("Enter a weight in kilos: "))
```

- > pounds = 2.2 * kilos
- > print("The weight in pounds is", pounds)

Screen

Explanation

A variable with name pounds is created, and given the value 22.0

```
> kilos = float(input("Enter a weight in kilos: "))
```

- > pounds = 2.2 * kilos
- > print("The weight in pounds is", pounds)

Screen

Explanation

A variable with name pounds is created, and given the value 22.0

```
> kilos = float(input("Enter a weight in kilos: "))
```

- > pounds = 2.2 * kilos
- > print("The weight in pounds is", pounds)

Screen

Explanation

```
> kilos = float(input("Enter a weight in kilos: "))
```

- > pounds = 2.2 * kilos
- > print("The weight in pounds is", pounds)

Screen

Explanation

A message and the value of pounds is displayed

```
> kilos = float(input("Enter a weight in kilos: "))
```

- > pounds = 2.2 * kilos
- > print("The weight in pounds is", pounds)

Screen

Explanation

A message and the value of pounds is displayed

```
> kilos = float(input("Enter a weight in kilos: "))
```

- > pounds = 2.2 * kilos
- > print("The weight in pounds is", pounds)

Screen

Enter a weight in kilos: 10

The weight in pounds is 22.0

Explanation

Program execution completed

```
> kilos = float(input("Enter a weight in kilos: "))
```

- > pounds = 2.2 * kilos
- > print("The weight in pounds is", pounds)

Screen

Enter a weight in kilos: 10

The weight in pounds is 22.0

