Практическое занятие 1

Вычисление вероятностей сложных событий

Литература

- 1. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистики. М.: Издательство «Юрайт», 2016.
- 2. Решетов С.В., Суслина И.А. Задачи для самостоятельного решения по теории вероятностей и математической статистике СПб: НИУ ИТМО, 2014.

Классическая схема

Урновые схемы

Пусть есть ящик, в котором N занумерованных шаров: 1,2,..., N Эксперимент: выбор k шаров.

Возникает четыре схемы выбора:

1. выбор без возвращения с учетом порядка, тогда общее число исходов $n=A_N^k$ (число размещений из N по k);

- 2. выбор без возвращения и без учета порядка, тогда общее число исходов $n=\mathbb{C}_N^k$ (число сочетаний из N по k);
- 3. выбор с возвращением и с учетом порядка, тогда общее число исходов $n=\overline{A_N}^k$ (число размещений с повторениями из N по k);
- 4. выбор с возвращением и без учета порядка, тогда общее число исходов $n = \overline{\mathbb{C}}_N^k$ (число сочетаний с повторениями из N по k).

Формула полной вероятности. Формула Байеса

Пусть события $H_1, H_2, ..., H_n$:

- 1. образуют полную группу,
- 2. попарно несовместны.

Событие A может осуществиться лишь вместе с одним из событий H_i , где $i=1\div n$.

События, удовлетворяющие условиям 1, 2, называются гипотезами.

Пусть известны вероятности гипотез:

$$P(H_1), P(H_2), \dots, P(H_n),$$
 причем $P(H_i) \neq 0, i = 1 \div n.$

Пусть известны

$$P(A/H_1), P(A/H_2), ..., P(A/H_n)$$

- условные вероятности события A при условии осуществления каждой из гипотез.

Теорема

Вероятность события A вычисляется по формуле:

$$P(A) = P(H_1) \cdot P(A/H_1) + P(H_2) \cdot P(A/H_2) + \dots + P(H_n) \cdot P(A/H_n).$$

$$P(A) = \sum_{i=1}^{n} P(H_i) \cdot P(A/H_i). \tag{1}$$

формула полной вероятности.

 $P(H_i)$ – априорная вероятность гипотезы H_i .

Теорема (гипотез)

Для любого $i=1\div n$ условную вероятность события H_i при условии, что событие A произошло, вычисляют по формуле:

$$P(H_i/A) = \frac{P(H_i) \cdot P(A/H_i)}{\sum_{i=1}^{n} P(H_i) \cdot P(A/H_i)}$$
(2)

формула Байеса.

 $P(H_i/A)$ – апостериорная вероятность гипотезы H_i .