第五章 留数

孤立奇点 5.1

作业 1. 单选题: (2020 年 A 卷) z = 0 是函数 $f(z) = \frac{e^z - 1}{z}$ 的 (). (A) 一阶极点 (B) 二阶极点 (C) 解析点 (D) 可去奇点 作业 2. 单选题: (2022 年 A 卷) 如果 z_0 是 f(z) 的一阶极点, g(z) 的一阶零点, 则 z_0 是 $f(z)^3 g(z)^2$ 的 ().

(A) 一阶极点 (B) 一阶零点 (C) 可去奇点 (D) 三阶极点

作业 3. 下列函数有哪些奇点? 如果是极点, 请指出它的阶: $(1) \frac{1}{(z-2)^3(z^2+1)^2}; \qquad (2) \frac{\cos z-1}{z^3}; \qquad (3) \frac{1}{z^3+z^2-z-1};$

(4)
$$\frac{\ln(z+1)}{z}$$
; (5) $\frac{z}{(1+z^2)(1+e^{\pi z})}$; (6) $\frac{1}{e^{z-1}}$;

(7)
$$\frac{1}{z^2(e^z-1)}$$
; (8) $\frac{z^6}{1+z^4}$; (9) $\frac{1}{\sin z^2}$.

作业 4. 证明: 如果 z_0 是 f(z) 的 m > 1 阶零点, 那么 z_0 是 f'(z) 的 m - 1 阶零点.

作业 5. 证明: $\frac{\pi i}{2}$ 是 ch z 的一阶零点.

作业 6. 0 是 $(\sin z + \sin z - 2z)^{-2}$ 的几阶极点?

作业 7. 设 $a \in \varphi(z)$ 和 $\psi(z)$ 的 m 阶和 n 阶极点, 则 z = a 是

(1)
$$\varphi(z)\psi(z);$$
 (2) $\frac{\varphi(z)}{\psi(z)};$ (3) $\varphi(z) + \psi(z)$

的什么类型奇点?

5.2 留数

作业 8. 填空题: (2020 年 B 卷) 设 $f(z) = \frac{2021}{z} + \frac{\sin z}{z}$, 则 $\text{Res}[f(z), 0] = \underline{\hspace{1cm}}$. 作业 9. 填空题: (2021 年 B 卷) 设 $f(z) = \frac{z}{\sin z}$, 则 $\text{Res}[f(z), 0] = \underline{\hspace{1cm}}$.

作业 10. (2020 年 A 卷) 求函数 $f(z) = \frac{z - \sin z}{z^8}$ 在有限奇点处的留数.

作业 11. (2020 年 B 卷) 求函数 $f(z) = \frac{e^{iz}}{1+z^2}$ 在有限奇点处的留数.

作业 12. (2022 年 A 卷) 求 $f(z) = \frac{\cos z}{z^2(z^2 - \pi^2)}$ 在有限复平面内的奇点和相应的留数.

作业 13. (2022 年 A 卷) 设 C 为正向圆周 |z-3|=4, 求 $\oint_C \frac{e^{iz}}{z^2-3\pi z+2\pi^2} \,\mathrm{d}z$.

作业 14. (2021 年 A 卷) 设 C 为正向圆周 |z|=2, 求 $\oint_C \frac{\sin z}{z(z-1)} dz$.

作业 15. (2021 年 A 卷) 设 $f(z) = \frac{1}{z^2 \cos z}$, C 为正向圆周 |z| = 2.

- (1) 求 f(z) 在 C 内部的孤立奇点, 并给出其类型.
- (2) 求 f(z) 在上述奇点处的留数.
- (3) $\Re \oint_C f(z) dz$.

作业 16. (2021 年 B 卷) 设函数 $f(z) = \frac{e^z}{z(z-1)^2}$

- (1) 求 f(z) 在复平面上的所有孤立奇点, 并讨论其类型;
- (2) 计算 f(z) 在所有孤立奇点处的留数;
- (3) 计算积分 $\oint_C f(z) dz$, 其中曲线 C 为正向圆周 |z| = 2.

作业 17. 求下列各函数 f(z) 在有限奇点处的留数:

(1)
$$\frac{z-1}{z^2+2z}$$
; (2) $\frac{1-e^{2z}}{z^5}$; (3) $\frac{z}{\cos z}$; (4) $\cos\frac{1}{1-z}$; (5) $\frac{\sin z}{\cot z}$

作业 18. 9 利用留数计算下述积分:

(1)
$$\oint_{|z|=4} \frac{\sin z}{z(z-\pi)} dz;$$
(2)
$$\oint_{|z|=2} \frac{e^{2z}}{z(z-1)^2} dz;$$
(3)
$$\oint_{|z|=\frac{3}{2}} \frac{1-\cos z}{z^5} dz, \quad m \in \mathbb{Z};$$
(4)
$$\oint_{|z|=1} \frac{1}{(z-\frac{1}{2})^9(z-2)^9} dz.$$

作业 19. 函数 $f(z) = \frac{1}{z(z-1)^2}$ 在 z=1 处有一个二阶极点. 这个函数又有下列洛朗展开式

$$\frac{1}{z(z-1)^2} = \dots + \frac{1}{(z-1)^5} - \frac{1}{(z-1)^4} + \frac{1}{(z-1)^3}, \quad |z-1| > 1,$$

所以 "z = 1 又是 f(z) 的本性奇点". 又其中不含 $(z - 1)^{-1}$ 幂, 因此 Res[f(z), 1] = 0. 这些说法对吗?

扩展阅读

该部分作业不需要交, 有兴趣的同学可以做完后交到本人邮箱.

5.2 留数 3

作业 20. 根据辐角原理和下图简要解释下为何路西定理是对的: 设 f(z) 和 g(z) 在闭路 C 及其内部解析, 且在 C 上满足 |f(z)| > |f(z) - g(z)|, 那么在 C 内部 f(z) 和 g(z) 的零点个数相同.

作业 21. 设函数 f(z) 在扩充复平面上的奇点都是极点.

- (1) 证明 f(z) 只有有限多个奇点.
- (2) 设 f(z) 在复平面内的奇点为 z_1, \ldots, z_n , 其中 z_k 为 d_k 阶极点. 定义

$$g(z) = \prod_{k=1}^{n} (z - z_k)^{d_k} f(z).$$

根据 g(z) 在 0 和 ∞ 处的洛朗展开的特点证明 g(z) 是一个多项式, 从而 f(z) 是有理函数. (3) 证明 $\sum_{z\in\mathbb{C}^*} \operatorname{ord}(f,z) = 0$.