Protocols

Write a protocol's full name and the layer it belongs to.

Protocol	Full name	TCP/IP Layer
Ethernet	Ethernet	Link
ARP	Address Resolution Protocol	Link
DNS	Domain Name Service	Application
HTTP	Hypertext Transfer Protocol	Application
ICMP	Internet Control Message Protocol	Internet
IPv4	Internet Protocol version 4	Internet
IPv6	Internet Protocol version 6	Internet
POP3	Post Office Protocol version 3	Application
TCP	Transmission Control Protocol	Transport
TFTP	Trivial File Transfer Protocol	Application
UDP	User Datagram Protocol	Transport

Look up protocols and the TCP/IP model.

Protocols (2)

Analyze the packet bytes captured by Wireshark and answer the following questions. Circle the corresponding bytes.

1.	What version of IP is being used?								IPv4 (byte 14)								
2.	What transport layer protocol is being used?							TCP (byte 23)									
3.	What application layer protocol is being used?						?		Te	lnet (byte	s 36 -3	37)				
4.	Wh	at is t	the tr	ansm	itted	mess	sage?					IA	(byte	es 5 4	-55)		
5.	5. Is the sender a client or a server?						Cli	ent (l	ytes	34-3	7)						
000	0	60	e3	27	49	2e	ee	30	85	a9	8c	dd	52	08	00	45	00
001	0	00	2a	6b	с6	40	00	80	06	1c	ff	с0	a8	01	6e	26	66
002	0	89	8c	с6	66	00	17	45	b0	58	f4	a2	4d	2e	93	50	18
003	0	01	91	bd	7c	00	99	49	41								

Look up format of the header of IPv4, IPv6, and ICMP.

Protocol headers

What is the smallest size of an Ethernet frame sent into the wire, if the frame contains 384 bytes of data inside UDP datagram inside IP packet?

Look up size of a header of the following protocols: Ethernet, IP, IPv6, ICMP, TCP, and UDP.

$$384 + 8 + 20 + 14 + 4 = 430$$

Protocol headers (2)

What can you say about an IP datagram if the value of the first byte of its header is 0x44? Why isn't it a valid IPv4 or IPv6 datagram?

Look up format of the header of IPv4, IPv6, and ICMP.

Not IPv6 (should be 0x60); too short for IPv4 (should be 0x45)

Internet Protocol, version 6

Imagine a block of 10 billion (1 billion = 10^9) IPv6 addresses allocated every picosecond. How many years (1 year = 365 days) will pass until IPv6 address space is depleted? Look up an approximate number of available IPv6 addresses, common prefixes for small (up to 10^{-12}) and large (up to 10^{12}) values.

$$\frac{10^{38.5}}{\frac{10^{9}}{10^{-12}}} = 10^{17.5} sec = > \frac{10^{17.5}}{10^{7.5}} = 10^{10} = 10 \ billion \ years$$

Internet Protocol, version 6 (2)

Are the following valid IPv6 addresses? Explain why not.

IPv6 address	Valid or not	Why not?
FF0C::B1	Yes	
2001:310:AB12:67:FFFFF:0:1523:1	No	fffff
2a03:2880:10:8f01:face:b00c:0:25	Yes	
2607:f8b0:4009:802:1004	No	Too short

Look up the format of IPv6 address.

Error messages

What is the type/code of an ICMP message sent, if any, in case of an IP checksum error? Look up common types of ICMP messages.

No ICMP message is sent in case of an error. It's not clear where to send it to.

Forwarding

Consider the following forwarding table:

Prefix	Interface
11100000 00	0
11100000 01000000	1
1110000	2
Default	3

Complete the following table

Address	Outgoing interface
200.145.81.85	3
225.64.195.60	2
225.128.17.119	2

Look up longest prefix matching.

LS Routing (Dijkstra)

Use Dijkstra's algorithm to find the shortest paths from \mathbf{v} to every other node in the network. Print each path and its cost in the following format (a path of cost 10 from a to d via b and c): a-b-c-d (10).

Look up Dijkstra's Shortest Path Algorithm.

Throughput

Amazon Snowmobile can carry 100PB of data in a 45-foot long ruggedized shipping container, pulled by a semi-trailer truck. What is the throughput of this truck as it drives from Decorah to San Francisco (2700 km) at the average speed of 90 km/h?

Look up units and conversion.

Subnetting

Five departments of the company X requested 10, 15, 25, 30, and 35 host addresses respectively. Can this request be accommodated if the available subnet is 192.168.10.0/24

Department	Requested size	Allocated hosts	Subnet Address	Mask
Accounting	25	30	192.168.10.96	/27
Marketing	35	62	192.168.10.0	/26
Human Resources	30	30	192.168.10.64	/27
Shipping	10	14	192.168.10.160	/28
IT	15	30	192.168.10.128	/27

Look up subnetting.

This is one of many possible solutions.

Subnetting (2)

Fill the empty cells in the table. Use dotted-decimal notation for a subnet mask.

Subnet ID	Subnet Mask	Mask Bits	Host Addresses	Broadcast Address
10.0.0.0	255.255.240.0	/20	4094	10.0.16.255
3.1.0.0	255.255.255.252	/30	2	3.1.0.3
172.16.0.0	255.255.255.128	/25	126	172.16.0.127
191.168.100.0	255.255.255.240	/28	14	191.168.100.15
130.210.3.0	255.255.252.0	/22	1022	130.210.6.255

Look up subnetting.

Subnetting (3)

Luther network administrators are trying to trying to split / subnet between Olin, Valders, Miller, Dieseth, and Jenson-Noble buildings. The requested address space is as follows: Miller and Dieseth buildings – 1500 addresses each, Valders and Olin – 800 each, Jensen-Noble – 400 addresses. Additionally, each building needs 100 addresses reserved for network equipment. Considering each building will be on the same subnet, divide a 74.207.32.0/19 network to meet the needs. Print subnet ID and the broadcast address of each subnet.

Building	Subnet ID	Broadcast
Dieseth	74.207.32.0	74.207.39.255
Jensen-Noble	74.207.56.0	74.207.57.255
Miller	74.207.40.0	74.207.47.255
Olin	74.207.48.0	74.207.51.255
Valders	74.207.52.0	74.207.55.255

Look up subnetting.

This is one of many possible solutions.

Number conversion

Fill the blanks in the following table:

Binary	Octal	Decimal	Hexadecimal
11111111	377	255	FF
11111110	376	254	FE
100011000	430	280	118
110101110	656	430	1AE
10000110000	2060	1072	430

Look up numbering systems.