Angewandte Industrielle Robotik

Zusammenfassung

Joel von Rotz / Quelldateien

Inhaltsverzeichnis -

Repetition Linear Algebra			2
Vektoren			. 2
Skalarprodukt			. 2
Winkel & Orthogonalität			. 2
Kreuzprodukt			
Matrizen			
Schiefsymmetrische Matrix: $A = -A^T$			
Asymmetrische Matrix: $A = A^T$			
Selektion Untermatrizen oder Vektoren			
Inverse Matrix/Kehrmatrix			
Rotationen & Translationen			4
Rotationsmatrix			•
Aufbau			-
			-
Eigenschaften			
Inverse			
Verkettung			
Homogene Matrizen (Frames)			
Inverse			
Verkettung			
Orienterung durch Euler-Winkel			
Roll Pitch Yaw (Roll Neigung Gier)			
Orientierung durch Drehvektor und -winkel .			. 6
Quaternion			6
Umwandlungen $Q \leftrightarrow EA \leftrightarrow {}^k_i A$			6
Euler zu Quartenion			. 6
Quartenion zu Euler			
Euler zu Rotationsmatrix			
Rotationsmatrix zu Euler			
Quaternion zu Rotationsmatrix			
Rotationsmatrix zu Quaternion			
Denavit-Hartenberg-Konvention			6
			_
Allgemein			
Festlegung $K_i (i = 1, 2,, n-1)$			
Position von K_i			
z_i -Achse von K_i			
x_i -Achse von K_i			
Festlegung K_n			
Als Rotationsmatrix	 •		. 7
Vorwärtstransformation			7
Rückwärtstransformation			8
Mehrdeutigkeit			. 8

Singularität	8
Spaghett	8
Bewegungsort & Interpolation Bahnparameter $s(t)$	8
Software mit Schneebeli	8
Differenzieren von Vektoren in bewegten Koordinatensystemen	8

i Rechtssystem

Robotereffektoren, Armteile, etc. werden im kartesischen Koordinatensystem dargestellt anhand des **Rechtssystems**.

i Drehung mit der Rechtenhandregel

Bei der Rotation von Rechtssystemen kann die rechte Handregel angewendet werden. Der Daumen zeigt in die gleiche Richtung der Drehachse (vom Nullpunkt nach aussen) und die rechstlichen Finger zeigen die Drehrichtung an: **Gegenunzeigersinn!**

Repetition Linear Algebra -

Für das meiste die CLinear Algebra Zusammenfassung anschauen.

Aber sonst das Wichtigste

Vektoren ·····

Skalarprodukt

Das Skalarprodukt entspricht der Multiplikation der Projektion $\overrightarrow{b_a}$ auf \overrightarrow{a} mit \overrightarrow{a}

$$\overrightarrow{a} \bullet \overrightarrow{b} = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} \bullet \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} = a_1 \cdot b_1 + \dots + a_n \cdot b_n = \sum_{i=1}^n a_i \cdot b_i$$

Winkel & Orthogonalität

Beim Berechnen des Winkels zwischen zwei Vektoren

$$\varphi = \arccos \frac{x \bullet y}{\|x\| \cdot \|y\|}$$

Es gilt:

- \overrightarrow{a} \overrightarrow{b} > 0 wenn $\varphi < \frac{\pi}{2}$
- \overrightarrow{a} \overrightarrow{b} < 0 wenn $\varphi > \frac{\pi}{2}$

Definition Orthogonalität

Sind zwei Vektoren *orthogonal/senkrecht* zueinander, ergibt das Skalarprodukt

$$\overrightarrow{a} \bullet \overrightarrow{b} = 0$$
 und $\varphi = \frac{\pi}{2}$

i Richtungswinkel in \mathbb{R}^3

$$\cos \alpha = \frac{a_x}{a} \& \cos \beta = \frac{a_y}{a} \& \cos \gamma = \frac{a_z}{a}$$

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$$

Kreuzprodukt

Mit dem Kreuzprodukt kann ein **orthogonaler** Vektor Teil eines Rechtssystems bestummen werden.

$$\vec{\mathbf{c}} = \vec{\mathbf{a}} \times \vec{\mathbf{b}} = \begin{bmatrix} c_X \\ c_y \\ c_z \end{bmatrix} = \begin{bmatrix} \mathbf{a}_y \cdot \mathbf{b}_z - \mathbf{a}_z \cdot \mathbf{b}_y \\ \mathbf{a}_z \cdot \mathbf{b}_x - \mathbf{a}_x \cdot \mathbf{b}_z \\ \mathbf{a}_x \cdot \mathbf{b}_y - \mathbf{a}_y \cdot \mathbf{b}_x \end{bmatrix}$$

Der Mittelfinger der beiden Vektoren ist das Kreuzprodukt. Je nach Betrachtung des Systems zeigt der Normalvektor in die andere Richtung

Matrizen ·····

Schiefsymmetrische Matrix: $A = -A^T$

$$A^{T} = -A \quad \Rightarrow \quad \begin{bmatrix} \mathbf{0} & 7 & 23 \\ -7 & \mathbf{0} & -4 \\ -23 & 4 & \mathbf{0} \end{bmatrix}^{T} = \begin{bmatrix} \mathbf{0} & -7 & -23 \\ 7 & \mathbf{0} & 4 \\ 23 & -4 & \mathbf{0} \end{bmatrix}$$

Asymmetrische Matrix: $A = A^T$

$$A^{T} = -A \quad \Rightarrow \quad \begin{bmatrix} \mathbf{0} & \mathbf{1} & \mathbf{2} \\ 1 & \mathbf{0} & \mathbf{3} \\ 2 & 3 & \mathbf{0} \end{bmatrix}^{T} = \begin{bmatrix} \mathbf{0} & 1 & 2 \\ 1 & \mathbf{0} & \mathbf{3} \\ 2 & 3 & \mathbf{0} \end{bmatrix}$$

Selektion Untermatrizen oder Vektoren

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

$$A(1:2,1:2)$$
 $A(:,3)$

Inverse Matrix/Kehrmatrix

Für 2×2 Matrizen:

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$A^{-1} = \frac{1}{\det A} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Anhand der Adjunkte adj(B) um 3×3 Matrizen zu invertieren (auch grössere möglich).

$$B = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$

$$\operatorname{inv}(B) = B^{-1} = \frac{1}{\det(B)} \cdot \operatorname{adj}(B) \quad \operatorname{adj}(B) = [\operatorname{cof}(B)]^T$$

Bevor diese Berechnung gemacht werden kann, muss die Matrix auf die Invertierbarkeit geprüft werden \to Determinante $\det(B) \neq 0$

$$B = \begin{bmatrix} a^{+} & b^{-} & c^{+} \\ d^{-} & e^{+} & f^{-} \\ g^{+} & h^{-} & i^{+} \end{bmatrix} \text{ adj}(B) = \begin{bmatrix} + \det(\begin{bmatrix} e & f \\ h & i \end{bmatrix}) & \cdots & \cdots \\ - \det(\begin{bmatrix} b & c \\ h & i \end{bmatrix}) & + \det(\begin{bmatrix} a & c \\ g & i \end{bmatrix}) & \cdots \\ \vdots & & \ddots \end{bmatrix}^{T}$$

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$

$$E = \begin{bmatrix} -2 & 4 & 1 \\ 4 & -1 & 0 \\ 1 & 0 & 4 \end{bmatrix}$$

$$inv(E) = E^{-1} = \frac{adj(E)}{det(E)}$$

Rotationen & Translationen -

Rotationsmatrix

Rotationsmatrix beschreibt eine **Rotation** und wird in Form ^a_bR dargestellt. Das $\frac{a}{b}$ beschreibt Rotationsmatrix von **a** nach **b**.

Aufbau

Die Matrix wird folgend beschrieben.

$$_{b}^{a}R = \begin{bmatrix} x_{a}^{(b)} & y_{a}^{(b)} & z_{a}^{(b)} \end{bmatrix}$$

Vektor $v_{s,k}^{(0)}$ wird im 0 Koordinatensystem dargestellt, nun wird es mit ${}_{k}^{0}T$ multipliziert. Das Endprodukt ist immer noch der gleiche Vektor, einfach nun im Bezug zum Koordinatensystem k

Eigenschaften

- Zeilen- & Spaltenvektoren sind orthogonal zueinander
- Determinante $\det \binom{k}{0}A = 1$
- Betrag von Spalten & Zeilen = 1

Inverse

$$\binom{k}{0}A)^{-1} = {}^{0}_{k}A = {}^{k}_{0}A^{T}$$

Verkettung

$$_{i}^{k}A = _{i+1}^{i+1}A \cdot _{i+1}^{i+2}A \cdot \cdots \cdot _{k-2}^{k-1}A \cdot _{k-1}^{k}A$$

und einer inverse Verkettung:

$$\stackrel{i}{k}A = \left[\stackrel{k}{i}A\right]^{T} = {}\stackrel{k}{k-1}A^{T} \cdot {}\stackrel{k-1}{k-2}A^{T} \cdot \cdots \cdot {}\stackrel{i+2}{i+1}A^{T} \cdot {}^{i+1}{}_{i}A^{T}
= {}^{k-1}{}_{k}A \cdot {}^{k-2}{}_{k-1}A \cdot \cdots \cdot {}^{i+1}{}_{i+2}A \cdot {}_{i+1}{}^{i}A$$

Beispiel

$$_{1}^{3}A = _{1}^{2}A \cdot _{2}^{3}A$$

$${}_{3}^{1}A = {}_{2}^{3}A^{T} \cdot {}_{1}^{2}A^{T} = {}_{3}^{2}A \cdot {}_{2}^{1}A$$

Homogene Matrizen (Frames)

Damit die Lage des Effektors im Raum eindeutig bestimmbar ist, wird die Rotationsmatrix mit einem Verschiebungsvektor erweitert. Dadurch ist **Orientierung** und **Position** bestimmbar.

$$a^{(k)} = \zeta_k^0 T \cdot a^{(0)}$$

Vom Bergspitz 0 aus den See a anschauen, dann via dem Wanderweg LT zum Bergspitz k und von dort auf denselben See a schauen.

Die homogene Matrix/Frame besteht aus einer Rotation, einer **Translation** und einem sehr markanten **1**.

$${}_{i}^{k}T = \begin{bmatrix} x_{k}^{(i)} & y_{k}^{(i)} & z_{k}^{(i)} & \mathbf{p}_{ik}^{(i)} \\ 0 & 0 & 0 & \mathbf{1} \end{bmatrix}$$

Die Verschiebung wird genutzt um ein Frame auf eine Position zu setzen, z.B. am TCP des Werkzeugs.

Beispiel

Vektor a wird vom Koordinatensystem K_k ins System K_i überführt. Bei Freien Vektor wird der Wert in der vierten Zeile auf **0** gesetzt, da die Position des Vektors nicht wichtig ist → Rotation würde genügen

$${}_{i}^{k}T = \begin{bmatrix} 0 & 0 & -1 & 0 \\ -1 & 0 & 0 & 4 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad a^{(k)} = \begin{bmatrix} 1 \\ 2 \\ 0 \\ \mathbf{0} \end{bmatrix}$$

$$a^{(i)} = {}_{i}^{k} T \cdot a^{(k)} = \begin{bmatrix} 0 & 0 & -1 & \mathbf{0} \\ -1 & 0 & 0 & \mathbf{4} \\ 0 & 1 & 0 & \mathbf{2} \\ 0 & 0 & 0 & \mathbf{1} \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \\ 0 \\ \mathbf{0} \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ 2 \\ 0 \end{bmatrix}$$

Der Nutzen des Frames ist bei Ortsvektoren ersichtlich. Bei diesen Vektoren wird der vierte Wert auf $\mathbf{1}$ gesetzt. Vektor $u_{kP}^{(k)}$ zeigt auf Punkt P und wird nun im Bezug zu K_i in $u_{iP}^{(i)}$ transformiert.

$$u_{kP}^{(k)} = \begin{bmatrix} -2\\-1\\0\\1 \end{bmatrix}$$

$$u_{iP}^{(i)} = {}_{i}^{k} T \cdot u_{kP}^{(k)} = \begin{bmatrix} 0 & 0 & -1 & \mathbf{0} \\ -1 & 0 & 0 & \mathbf{4} \\ 0 & 1 & 0 & \mathbf{2} \\ 0 & 0 & 0 & \mathbf{1} \end{bmatrix} \cdot \begin{bmatrix} -2 \\ -1 \\ 0 \\ \mathbf{1} \end{bmatrix} = \begin{bmatrix} 0 \\ 6 \\ 1 \\ 1 \end{bmatrix}$$

Während ein freier Vektor sich nicht verändert, ändern sich Ortsvektoren zu komplett neuen Vektoren $(|u_{kP}^{(k)}| \neq |u_{iP}^{(i)}|)$.

Inverse

Zu **jeder** homogenen Matrix ist **immer** die inverse homogene Matrix gegeben und es gilt speziell:

$$_{k}^{i}T=(_{i}^{k}T)^{-1}=\begin{bmatrix} _{i}^{k}A^{T} & -_{i}^{k}A^{T}\cdot p_{ik}^{(i)} \\ \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} & 1 \end{bmatrix}$$

Verkettung

$$_{i}^{k}T=_{i}^{i+1}T\cdot_{i+1}^{i+2}T\cdot\cdots\cdot_{k-2}^{k-1}T\cdot_{k-1}^{k}T$$

und einer inverse Verkettung:

Da die homogene Matrix nicht einfach so transponiert werden darf, muss die spezielle Umformung verwendet werden!

Orienterung durch Euler-Winkel ·····

Eine Drehung eines Frames im Bezug zu einem anderen ist durch **drei** Winkel angegeben. Diese drei Winkel werden **Euler**-

Winkel genannt, wenn diese nacheinander ausgeführt werden.

$$R_{\text{ZYX}} = {}^{W}_{R}A = \begin{pmatrix} x_{W}^{(R)} & y_{W}^{(R)} & z_{W}^{(R)} \end{pmatrix} = \underbrace{R_{\text{Z}}(A)}_{3} \cdot \underbrace{R_{\text{Y}}(B)}_{2} \cdot \underbrace{R_{\text{X}}(C)}_{1}$$

$$= \begin{bmatrix} C_{A} & -S_{A} & 0 \\ S_{A} & C_{A} & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} C_{B} & 0 & S_{B} \\ 0 & 1 & 0 \\ -S_{B} & 0 & C_{B} \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & C_{C} & -S_{C} \\ 0 & S_{C} & C_{C} \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{C}_{A} \cdot \mathbf{C}_{B} & -S_{A} \cdot C_{C} + C_{A} \cdot S_{B} \cdot S_{C} & S_{A} \cdot S_{C} + C_{A} \cdot S_{B} \cdot C_{C} \\ \mathbf{S}_{A} \cdot \mathbf{C}_{B} & C_{A} \cdot C_{C} + S_{A} \cdot S_{B} \cdot S_{C} & -C_{A} \cdot S_{C} + S_{A} \cdot S_{B} \cdot C_{C} \\ -\mathbf{S}_{B} & \mathbf{C}_{B} \cdot \mathbf{S}_{C} & \mathbf{C}_{B} \cdot \mathbf{C}_{C} \end{bmatrix}$$

$$B = \arcsin(-\mathbf{R}_{31})$$

$$A = \operatorname{atan2}(\mathbf{R}_{21}, \mathbf{R}_{11})$$

$$C = \operatorname{atan2}(\mathbf{R}_{32}, \mathbf{R}_{33})$$

Tipp

Da cos eine gerade Funktion ist, ergeben $\cos(\pm\alpha)$ den gleichen Wert, z.B. $\cos(\pm 45^\circ) = \frac{1}{\sqrt{2}}$ sin ist ungerade und daher ist der sin-Wert immer verkehrt $\sin(\pm\alpha) = \mp a$

$$\operatorname{atan2}(x,y) = \begin{cases} \operatorname{arctan}\left(\frac{y}{x}\right) & \text{wenn } x > 0, \\ \operatorname{arctan}\left(\frac{y}{x}\right) + \pi & \text{wenn } x < 0 \text{ und } y \geq 0, \\ \operatorname{arctan}\left(\frac{y}{x}\right) - \pi & \text{wenn } x < 0 \text{ und } y < 0, \\ + \frac{\pi}{2} & \text{wenn } x = 0 \text{ und } y > 0, \\ - \frac{\pi}{2} & \text{wenn } x = 0 \text{ und } y < 0, \\ \operatorname{undefiniert} & \text{wenn } x = 0 \text{ und } y = 0. \end{cases}$$

Roll Pitch Yaw (Roll Neigung Gier)

- Drehung um die x-Basisachse mit dem Winkel ψ (yaw)
- Drehung um die y-**Basis**achse mit dem Winkel θ (**pitch**)
- Drehung um die z-**Basis**achse mit dem Winkel ϕ (**roll**)

$$\mathbf{R}(\psi, \theta, \phi) = {}^{W}_{R}A = \begin{pmatrix} x_{W}^{(R)} & y_{W}^{(R)} & z_{W}^{(R)} \end{pmatrix}$$

$$= \begin{bmatrix} C_{A} \cdot C_{\theta} & -S_{A} \cdot C_{C} + C_{A} \cdot S_{\theta} \cdot S_{C} & S_{A} \cdot S_{C} + C_{A} \cdot S_{\theta} \cdot C_{C} \\ S_{A} \cdot C_{\theta} & C_{A} \cdot C_{C} + S_{A} \cdot S_{\theta} \cdot S_{C} & -C_{A} \cdot S_{C} + S_{A} \cdot S_{\theta} \cdot C_{C} \\ -S_{\theta} & C_{\theta} \cdot S_{C} & C_{\theta} \cdot C_{C} \end{bmatrix}$$

Unterschied RPY & Euler

Während bei <u>Euler Drehungen</u> immer <u>vom neuen Koordinatensystem gedreht</u> wird, werden bei <u>RPY Drehungen</u> immer vom Ursprünglichen Koordinatensystem gedreht

Euler Winkel

Orientierung durch Drehvektor und -winkel

Drehung wird um einen Drehvektor gemacht ightarrow den $\mathit{direkten}$ Weg

$$\varphi_R = 2 \cdot \arccos(qt_1)$$
 $e_R = \begin{bmatrix} qt_2 \\ qt_3 \\ qt_4 \end{bmatrix} / \sin(0.5 \cdot \varphi_R)$

Da die Ermittelung des Drehvektors e_R und des Drehwinkels φ_R aufwendig ist, wird meistens mit Euler-Winkeln gearbeitet. Ein **Vorteil** von Drehvektor & -winkel bei der Bahnsteuerung/kontinuierliche Veränderung \rightarrow Dies wird auch mit **Quarternions** gemacht!

Quaternion

Mit Quaternion können Drehungen in kompakter Form dargestellt werden, analog zu komplexen Zahlmultiplikation für Rotationen. Zusätzlich gibt es kein *Gimbal-Lock* (Zwei Rotationsachsen sind gleich und daher hat man ein Freiheitsgrad weniger). In AROB wird mit Einheitsquaternion gearbeitet: $\sqrt{qt_1^2+qt_2^2+qt_3^2+qt_4^2}=1.$

$$q = \begin{bmatrix} qt_1 \\ qt_2 \\ qt_3 \\ at_4 \end{bmatrix} = \underbrace{qt_1}_{\text{real/Skalar Komp.}} + \underbrace{qt_2 \ i + qt_3 \ j + qt_4 \ k}_{\text{imaginär/Vektor Komp.}}$$

[TODO]

Umwandlungen $Q \leftrightarrow EA \leftrightarrow {}^k_i A$ —

[TODO]

Euler zu Quartenion

[TODO]

Quartenion zu Euler

[TOD0]

Euler zu Rotationsmatrix

[TODO]

Rotationsmatrix zu Euler

[TODO]

Quaternion zu Rotationsmatrix

[TODO]

$$_{0}^{W}A = \begin{bmatrix} 2 \cdot (qt_{1}^{2} + qt_{2}^{2}) - 1 & 2 \cdot (qt_{2} \cdot qt_{3} - qt_{1} \cdot qt_{4}) \end{bmatrix}$$

[TODO]

Rotationsmatrix zu Quaternion

$${}^{k}_{i}A = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix}$$

$$\begin{bmatrix} qt_1 \\ qt_2 \\ qt_3 \\ qt_4 \end{bmatrix} = \begin{bmatrix} 0.5 \cdot \sqrt{A_{11} + A_{22} + A_{33} + 1} \\ 0.5 \cdot \text{sgn}(A_{32} - A_{23}) \cdot \sqrt{A_{11} - A_{22} - A_{33} + 1} \\ 0.5 \cdot \text{sgn}(A_{13} - A_{31}) \cdot \sqrt{A_{22} - A_{33} - A_{11} + 1} \\ 0.5 \cdot \text{sgn}(A_{21} - A_{12}) \cdot \sqrt{A_{33} - A_{11} - A_{22} + 1} \end{bmatrix}$$

Denavit-Hartenberg-Konvention

Die DH-Konvention beschreibt die Achsen-Zusammenhänge mit vier Parametern (zwei Rotationen und zwei Translationen), welche in folgender Reihenfolge abgearbeitet wird.

- 1. $\theta_i/^{\circ}$: Drehung an der z_i -Achse
- 2. d_i/m : Verschiebung Richtung z_i -Achse
- 3. a_i/m : Verschiebung Richtung x_i -Achse
- 4. $\alpha_i/^{\circ}$: Drehung an der x_i -Achse

Allgemein ·····

Jedes Armteil i(i = 0, 1, ..., n) eines Robotes mit n Gelenken wird mit einem Koordinatensystem K_i versehen. K_i ist mit Armteil i fest verbunden.

Die DH Parameter sind so auszulegen, das man K_i in K_{i+1} überführt werden kann.

Festlegung Weltsystem K_0

- K_0 ist fest mit ruhender Basis (AT0) verbunden
- Positon von K_0 irgendwo auf 1.Gelenkachse \rightarrow möglichst nahe AT1

• z_0 -Achse zeigt entlang 1.Gelenkachse $\rightarrow x_0$ - & y_0 -Achse frei wählbar solange **Rechtssystem**

Festlegung $K_i (i = 1, 2, ..., n - 1)$

Allgemein: K_i liegt auf Gelenkachse i + 1

Position von K_i

- K_i liegt im Schnittpunkt von Gelenkachse i & i + 1
- **oder** verlaufen Gelenkachsen i & i + 1 parallel, dann K_i irgendwo auf Gelenkachse i + 1
 - $\underline{\text{sinnvoll:}}$ zuerst K_{i+1} festlegen, danach K_i so legen, dass Abstand minimal ist.
- oder Gelenkachsen i & i + 1 nicht parallel und nicht schneidend, dann K_i auf Schnittpunkt der Normalen der Gelenkachsen setzen.

z_i -Achse von K_i

• z_i -Achse entlang der Gelenkachse $i+1 \rightarrow 2$ Möglichkeiten

x_i -Achse von K_i

- Wenn z_{i-1} & z_i -Achse schneiden: x_i -Achse parallel zum Kreuzprodukt von $z_{i-1} \times z_i \to 2$ Möglichkeiten
- Wenn z_{i-1} & z_i -Achse **nicht** schneiden: x_i -Achse entlang gemeinsame Normalen von Achsen i & i+1
- z_{i-1} -Achse auf z_i -Achse: x_i -Achse = x_{i-1} -Achse

Festlegung K_n

- z_n -Achse separat von z_{n-1} : x_n -Achse zeigt von Gelenkachse n-1 zu n.
- z_n -Achse auf z_{n-1} -Achse: x_n -Achse zeigt in gleiche Richtung wie x_{n-1} -Achse

[TODO]

Beispiel

Folgender Roboter wird in DH Parametern beschrieben.

- 1. Weltsystem K_0 bestimmen (z.B. Ende des 1.Gelenkes)
- 2.

Gelenk	$ heta_i$ / $^\circ$	d_i /m	a_i /m	α_i / $^{\circ}$
1	0	0	l_{11}	-90
2	-90	0	l_2	0

Als Rotationsmatrix

$$egin{aligned} & egin{aligned} & egi$$

Vorwärtstransformation -

Sind die Gelenkkoordinaten (Winkel) bekannt, kann die Lage des TCP und Orientierung des Effektors eindeutig beschrieben werden.

$$T_W(q) = {}_0^n T(q) = {}_0^1 T(q_1) \cdot {}_1^2 T(q_2) \cdot \cdot \cdot {}_{n-2}^{n-1} T(q_{n-1}) \cdot {}_{n-1}^n T(q_n)$$

Ist ein Ortsvektor $u_{(i)}$, welcher mit Armteil i verbunden ist und auf Punkt P zeigt, gegeben, kann dieser im Raum berechnet (4.Komponente = 1):

$$u_{0P}^{(0)} = {}_{0}^{i}T(q) \cdot u_{iP}^{(i)} = {}_{0}^{1}T(q_1) \cdot {}_{1}^{2}T(q_2) \cdot \cdot \cdot {}_{i-1}^{i}T(q_i) \cdot u(i)_{iP}^{i}$$

$$\alpha = \operatorname{arctan2}(p_y^{(0)}, p_x^{(0)})$$

Пı

Rückwärtstransformation

Mehrdeutigkeit

Mehrere Lösungen von Gelenkkoordinaten für die Lage des TCP (Orientierung & Position).

Singularität

Beispiel: $q_4 \& q_6$ verfügen über unendlich viele Lösungen.

Ein Ansatz wäre das **Gütekriterium**, in welche man eine Lösung nimmt, welche am nächsten zur vorhergehenden Lösung liegt.

$$f(q_4, q_6) = c_1 \cdot (q_{4,A} - q_4)^2 + c_2 \cdot (q_{6,A} - q_6)^2 \stackrel{!}{=} MIN$$

Geometrischer Ansatz ······

$$s_1^2 = s_2^2 + s_3^2 - 2 \cdot s_2 \cdot s_3 \cdot \cos \varphi_1$$

$$s_2^2 = s_1^2 + s_3^2 - 2 \cdot s_1 \cdot s_3 \cdot \cos \varphi_2$$

$$s_3^2 = s_1^2 + s_2^2 - 2 \cdot s_1 \cdot s_2 \cdot \cos \varphi_3$$

Spaghett

Bewegungsort & Interpolation

Steuerung und Gelenkregelung müssen dafür sorgen, dass die Gelenkkoordinaten die Werte der Zieillage einnehmen.

- Die Zielwerte für die Gelenke werden nicht sprungförmig geändert
- Drehmoment auf einem Maximalwert begrenzen (mechanische Belastung, Schwingungen)

Bahnparameter s(t)

Bahnparameter s(t) - Zurückgelegte Wegstrecke bei einem Schubgelenk, bzw. der Winkel bei einem Drehgelenk

$$S(t_e) = s_e = |q_z - q_{St}|$$

Software mit Schneebeli -

Differenzieren von Vektoren in bewegten Koordinatensystemen