Instituto Artek

Probabilidad

Abril 20

${\rm \acute{I}ndice}$

1.	Tema matemático: Funciones	2
2.	Propiedades de la probabilidad clásica	9

1. Tema matemático: Funciones

Una función es una relación que a cada elemento de un conjunto A le asocia un elemento en un conjunto B. La notación es la siguiente,

$$f: A \to B$$

 $a \mapsto b$

la relación entre los elementos de los conjuntos se denota usualmente como

$$f(a) = b$$

en la que se expresa la dependencia de un elemento b en B por a en A mediante f. Las funciones cumplen el papel de transformar un conjunto en otro para nuestra conveniencia. En general no hay restricciones sobre las funciones salvo,

- Todo elemento de A está asociado de manera única a un elemento de B, esto se escribe como para $a \in A$ existe un único $b \in B$ de manera que b = f(a).
- Mientras que para cada $b \in B$ existe un elemento $a \in A$ tal que f(a) = b.
- 1. $f: \mathbb{R} \to \mathbb{R}$ tal que $f(x) = x^2$. Es una función.
- 2. $g: \mathbb{R} \to \mathbb{R}$ tal que $f(x) = \sqrt{x}$. No es una función.

Asociado a una función, tenemos la **gráfica de una función** como el subconjunto de $A \times B$ definido como

$$Graf(f) = \{(a, b) : b = f(a)\}\$$

las gráficas son una idea visual que nos permite entender como un conjunto se transforma dentro de otro. Como mediante f un conjunto cambia. En general es necesario hacer varias transformaciones.

Composición de funciones

La composición de funciones es una manera resumida de aplicar diferentes funciones y seguir el flujo de la transformación de un conjunto en varios otros.

Dadas dos funciones $f:A\to B$ y $g:B\to C$. La **composición de funciones** denotada por el símbolo $g\circ f$ es la función

$$g \circ f : A \to C$$

 $a \mapsto c($ **donde** $c = f(b))$

la relación entre elementos se escribe como $f \circ g(a) = g(f(a))$.

Figura 1: Flujo de transformación

- 1. $f: \mathbb{R} \to \mathbb{R}$ dada por f(x) = x 10 y $g: \mathbb{R} \to \mathbb{R}$ dada por g(x) = x 11.
- 2. $f: \mathbb{R} \to \mathbb{R}$ dada por $f(x) = x^2$ y $g: \mathbb{R} \to \mathbb{R}$ dada por $g(x) = \sqrt{x}$.

Ejercicios Introductorios

- 1. ¿De cuantas forma distintas pueden asignarse los premios, primero, segundo y tercero en una rifa de 10 boletos numerados de 1 al 10?
- 2. ¿Cuántos equipos distintos de 4 personas pueden escogerse de un grupo de 6 personas?

2. Propiedades de la probabilidad clásica

Definición:

Un **experimento aleatorio** es aquel que, cuando se le repite bajo las mismas condiciones, el resultado que se observa no siempre es el mismo y tampoco es predecible. En ocasiones se entiende a un experimento aleatorio el cual tiene un mecanismo de azar de manera intrínseca.

Definición:

El espacio muestral, también llamado espacio muestra, de un experimento aleatorio es el conjunto de todos los posibles resultados del experimento y se le denota, generalmente, por la letra griega Ω (omega mayúscula). A un resultado particular del experimento se le denota por la letra ω (omega minúscula).

Propiedad: Para cualquier evento A, se tiene que,

$$\mathbb{P}(A^c) = 1 - \mathbb{P}(A).$$

Propiedad: $\mathbb{P}(\emptyset) = 0$.

Propiedad: Si $A \subset B$, se tiene que

$$\mathbb{P}(A) \leq \mathbb{P}(B)$$
.

Propiedad: Si $A \subset B$, se tiene que,

$$\mathbb{P}(B \setminus A) = \mathbb{P}(B) - \mathbb{P}(A).$$

Propiedad: Dados eventos A, B, se tiene que,

$$\mathbb{P}(A \cup B) = \mathbb{P}(B) + \mathbb{P}(A) - \mathbb{P}(A \cap B).$$