Forecasting natural gas consumption

Abstract: In this study, the results of forecasting monthly natural gas consumption are presented. The developed methodology uses data describing actual natural gas consumption from Romania and state-of-the-art techniques: linear regression, artificial neural networks [MLP], time series [ARIMA, ARIMAX]. The data was augmented with weather [temperature] factors in order to obtain better results. Customers were split in categories and for each category and for each month a model should be created.

Keywords: Forecasting natural gas consumption, predicting natural gas demand, natural gas forecasting models, naïve model, linear regression, artificial neural networks, multi-layer perceptron, time series, ARIMA, ARIMAX.

Introduction

Our task is forecasting natural gas consumption. It is very important for natural gas distribution companies to forecast their customers' natural gas demand accurately. This is due to the fact that such a company has to specify how much quantity of gas their clients need in the next month, quarter and year. If the values provided are too high or too low, a high cost has to be paid.

In our case, the company had data on four localities from Romania: Miroslava, Panciu, Chirnogi, and Odobești. The records were represented by the consumptions of each client in each month. The data from Miroslava included records from September 2015; Odobești – from March 2016; Panciu – from February 2016; Chirnogi – from September 2016.

Related work

This problem has been tackled in various ways, but, as we will see, the main models and input attributes remain the same. In [1], the author proposes an MLP 22-36-1 with calendar [month, day of month, day of week, hour] and weather [temperature] factors in order to predict hourly and daily gas consumption. In [2], an MLP with 20 hidden units is used with input attributes, such as daily minimal and maximal temperatures, the day in week, consumption for previous day, in order to predict daily gas consumption. In [3], beside the MLP approach, there is also mentioned multiple linear regression as another path in forecasting daily demand. The authors write that MLP is better when interpolating [predicting days similar to ones in its training set] and linear regression is good at extrapolating. That is the reason why they decided to take a weighted combination of these models. New input attributes were created: an indicator variable to distinguish between weekdays and weekends, a Friday indicator etc. In [4], there are three approaches mentioned for daily forecasting: linear regression, ARMAX model and ANN [which outperforms the other two]. Input factors include temperature, price of natural gas and number of gas consumers.

Although those papers refer to hourly and/or daily gas consumption, the key techniques are also suitable for monthly or yearly forecasting, as stated in [5]: using linear regression, MLP, AR(I)MA(X) models and including temperature as an additional input attribute. Another summarized description is given below:

Article	Model	Features
[1]	MLP 22-36-1	calendar (month, day of month, day of week, hour)
	It is stated that NAID 22 2C 1	weather (temperature) factors
	It is stated that MLP 22-36-1	
	model can be successfully	
	used to predict gas consumption on any day of	
	the year and any hour of the	
	day.	
[2]	MLP	- historical weather and consumption data
	20 hidden units	 daily minimal and maximal temperatures were included
		 it is mandatory to add information about day in week in the training set
		 consumption for previous day is included in the training set
		1 input – neuron for forecasted maximal temperature of the forecasting day
		1 input – neuron for forecasted minimal temperature of the
		forecasting day
		1 input – neuron for the consumption in previous day
		7 inputs – neurons for the identification of the day in the
		week.
		A day was identified using 1, 0, or 0.5:
		- 1 to appropriate input neuron
		- other inputs are 0
		- Sunday and Saturday with 0.5.
[3]	Most common in this	- HDD – Heating Degree Day
	context: multiple linear	- HDDW – Heating Degree Days adjusted for Wind
	regression and artificial	- Previous day(s) demand(s) => autoregressive
	neural networks.	 A binary indicator variable can be added to the model to distinguish weekdays from weekends.
	- linear regression	- Friday indicator
	extrapolates better than ANNs	 day-of-the-week DOW variable to represent the fundamental seven day frequency
	- ANN intrapolates	- includes both the demand and the
	better	temperature/HDD for the day seven days ago, unless
	=> weighted	the day seven days earlier was a holiday
	combination of these	- Holidays and days around holidays
	models gives better	- Holiday adjustments
	results	- Data weighting
[4]	OLS regression	- temperature
	ARMAX model	 price of natural gas [most important]
	ANN model	- number of gas consumers
	This research concluded that	model 1:
	the neural network model	- consumption
	with backpropagation	- temperature
	outperforms	- squared temperature
	- multiple regression,	- price

	- neural network NeuroShell,	- number of consumers
	- and the ARMAX model for natural gas forecasting	final model: - temperature - squared temperature - price - number of consumers - 12 lags of today's consumption
[5]	Summary of existing articles re	elated to this topic

Table 1: Summary of some approaches

Experimental methodology

a. Models

The purpose of our research activities was the development of models that predict the **monthly** [and yearly] gas consumption **for each client**. The main models we have used so far are:

- Models unrelated to time series: linear regression and ANN [more precisely MLP]
- Time series related models: naïve model, ARIMA and ARIMAX.

Linear regression simply assumes that the predicted value is a linear combination of the input attributes:

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_m x_m + \varepsilon$$

where y is the predicted value, m is the number of input attributes, x_1 , ..., x_m are the input values [of m attributes], β_0 , β_1 , ..., β_m are the parameters to be set, $\varepsilon \sim N(0, \sigma^2)$ [called white noise]. The method used to estimate the *parameters* is called *OLS* – ordinary least squares.

Artificial neural networks [ANN], in general, and Multi-Layer Perceptrons [MLP], in particular, are constructed using a basic unit called neuron. There is a strong resemblance between a neuron and linear regression. More precisely, linear regression is a neuron of a certain kind [in this context, β_0 is called bias]. A neuron has a number of inputs and a single output. Each input has a weight which tells the importance of that particular attribute. Then the corresponding linear combination is computed. The difference from the linear regression model is that the output of the neuron is not represented by the linear combination, but by the value of a function [called activation function] applied to that combination. Those neurons are interconnected and the result is an artificial neural network. MLP is a certain ANN architecture: there is an input layer [of neurons], an output layer and 0, 1 or more inbetween layers called hidden layers. Each neuron in connected to all and only to the neurons in the next layer. The parameters for this model are represented by the weights of each neuron. The method used to estimate the parameters is called BackPropagation [with Gradient Descent]. An important note is that this method is non-deterministic [because the weights are random initialized] and, as a result, multiple runs should be taken into consideration. This method can be optimised using one of the following variations: momentum, RMSProp, Adam, AdaDelta, AdaGrad etc. To avoid overfitting, one can make use of regularization techniques [L1, L2, DropOut etc.]. The hyper-parameters of this model are: initialization method, number of hidden layers, number of units in a hidden layer, activation functions, learning rate [or other hyper-parameters from optimization algorithms], hyper-parameters for regularization techniques, loss function, number of epochs, batch size [if mini-batch mode is used].

The **time series** models are client-oriented. For each client, the monthly gas consumption was recorded, thus a time series can be generated. The purpose is to *continue* each plot [as shown later, it is useful for a time series to be plotted], that is to predict the consumption in the following h months. If h equals 1, then the **naïve method** tells us that the predicted value is equal to the value recorded that month last year.

The AR [auto-regressive] model assumes that the predicted value is a linear combination of the past p values [p is called number of lags], that is:

$$y_t = \beta_0 + \beta_1 y_{t-1} + \dots + \beta_p y_{t-p} + \varepsilon_t$$

where y_t is the predicted value [at moment t], p is the number of lags, β_0 , β_1 , ..., β_p are the parameters to be set, $\varepsilon_t \sim N(0, \sigma^2)$ [called *white noise*].

The MA [simple moving average] model assumes that the predicted value is a linear combination of the past q [white] noises, that is:

$$n_t = \alpha_0 + \alpha_1 \varepsilon_{t-1} + \dots + \alpha_a \varepsilon_{t-a} + \varepsilon_t$$

where n_t is the predicted value [at moment t], q is the number of lags, α_0 , α_1 , ..., α_q are the parameters to be set $\varepsilon_t \sim N(0, \sigma^2)$ [called white noise]. n_t can be seen as a new kind of noise.

The ARMA model combines AR and MA models:

$$\begin{aligned} y_t &= \beta_0 + \beta_1 y_{t-1} + \dots + \beta_k y_{t-p} + n_t \\ y_t &= \beta_0 + \beta_1 y_{t-1} + \dots + \beta_k y_{t-p} + \alpha_0 + \alpha_1 \varepsilon_{t-1} + \dots + \alpha_q \varepsilon_{t-q} + \varepsilon_t \end{aligned}$$

There are also *Seasonal AR/MA* models when one looks not only one step behind. ARMA models can only be applied to stationary time series [constant mean, variance and autocorrelation]. One can calculate a difference of a time series in order to make the mean constant ($z_t = y_t - y_{t-1}$) or to make the autocorrelation constant ($z_t = y_t - y_{t-12}$). **ARIMA** models first calculate a difference of the time series and then apply an ARMA model to the new time series. In order to make variance constant, a log transformation or, more generally, a Box-Cox transformation is applied to a time series. **ARIMAX** models also include external factors [just like in a normal linear regression]. The *hyper-parameters* of this model are: p [number of lags for AR], q [number of lags for MA], number for times of differencing the time series [often called d], P [number of lags for Seasonal AR], Q [number of lags for Seasonal MA], number for times of seasonal differencing the time series [often called D], and Box-Cox coefficient, if used.

b. Data

Experimental data were represented by the monthly consumptions of clients from 4 localities. Their distribution is given below:

	Miroslava	Panciu	Chirnogi	Odobești	Total
B1-NonHousehold	117	46	14	27	204
B1-Household	1690	911	267	631	3499
B2-NonHousehold	19	20	0	12	51
B2-Household	121	37	9	38	205
B3-NonHousehold	6	15	0	5	26
B3-Household	0	1	0	6	7
B4-NonHousehold	1	0	0	2	3
B4-Household	0	0	0	1	1
Total	1954	1030	290	722	3996

Table 2: Number of clients: by category and by locality

The first starting date differs from locality to locality. The earliest dates are from Miroslava starting from September 2015. The next plots show the gas consumptions [for the most representative groups of clients] as time series.

Figure 1: Plots of time series for different categories of clients

As those plots highlight, the data needed to be *pre-processed* in order to remove the negative consumptions [which were a result from bad records]. Moreover, the gas meter was not always read and, in such months, some estimations were made. In the latter case, the errors are corrected in the next months.

Additional data on weather were included. The data for those 4 localities were extracted from the which indicates the values following website daily temperature: https://www.ogimet.com/gsodc.phtml.en . The stations corresponding to those localities were identified by asking the specialists in meteorology from Faculty of Geography and Geology within Alexandru Ioan Cuza University of Iași. This is mandatory because not only the distances between localities and stations matter, but also the landforms. The data from the following stations were taken to be analysed: Miroslava - Iaşi station, Chirnogi - Olteniţa station; Panciu and Odobeşti - Focşani station. More specifically, we gathered monthly statistics: minimum, maximum, median and average [mean]. In the end we only used the average as a predictor. The temperature is the principal external factor that influences the consumption: for household clients of type B1, the Pearson correlation between the monthly average consumption and the monthly average temperature for the 25 months recorded is -0.96 and for the other household clients is over -0.97. The linear correlation between the average consumption and the monthly average temperature is also significant for some non-household clients [but is reduced in absolute value]. The visible exception is for the only client of type B4. This type of correlation is one extra criterion in dividing the clients in categories. Separate models should be derived for each category.

High accuracy predictions of consumption depend on realistic temperature forecast. The problem is that only the 10-day forecast is reliable. Because of this, our prediction models of consumption were developed and evaluated in two different situations: the ideal case when the real monthly temperatures are available, and the case when no temperature data is known.

Because the first consumption record was on September 2015 and the last on November 2017 [with the possibility of updating the data with December 2017 and January 2018 records], and so the amount of data was not that big, the decision of splitting data in train, validation/development, and test sets was not easy. Ideally, for each month there should be such a tuple (train, validation, test).

For models unrelated to time series, the predictor variables were: lagged consumptions [1 or many before the month you want to forecast] and/or type of client [B1, B2, B3, or B4] and/or month when you want to forecast and/or differences [consumption this month minus consumption this month last year; as many as possible] and/or temperature on the month when you want to forecast. For every client and for every month [of every year], those datasets were created. As a result, such a dataset can be

identified only specifying the month. The maximum number of lags we considered was 13. This leaded us to the following data splitting [regarding ANN models, 10 runs were considered for October and November 2017 and 1 run for the rest of the months]:

Monthly forecasting [Left aligned] Yearly forecasting on a monthly basis in order to compare results with monthly forecasting					
Train set	[Right aligned] Validation/Development set	Test set			
2016-11-01 [not for time series]	2017-11-01	-			
2016-10-01 [not for time series]	2017-10-01	-			
2015-09-01 to 2016-11-01	2016-12-01	Possible December 2017			
2015-09-01 to 2016-11-01	2017-01-01	Possible January 2018			
2015-09-01 to 2016-12-01	2017-01-01	Possible January 2018			
2015-09-01 to 2016-11-01	2017-02-01	-			
2015-09-01 to 2017-01-01	2017-02-01	-			
2015-09-01 to 2016-11-01	2017-03-01	-			
2015-09-01 to 2017-02-01	2017-03-01	-			
2015-09-01 to 2016-11-01	2017-04-01	-			
2015-09-01 to 2017-03-01	2017-04-01	-			
2015-09-01 to 2016-11-01	2017-05-01	-			
2015-09-01 to 2017-04-01	2017-05-01	-			
2015-09-01 to 2016-11-01	2017-06-01	-			
2015-09-01 to 2017-05-01	2017-06-01	-			
2015-09-01 to 2016-11-01	2017-07-01	-			
2015-09-01 to 2017-06-01	2017-07-01	-			
2015-09-01 to 2016-11-01	2017-08-01	-			
2015-09-01 to 2017-07-01	2017-08-01	-			
2015-09-01 to 2016-11-01	2017-09-01	-			
2015-09-01 to 2017-08-01	2017-09-01	-			
2015-09-01 to 2016-11-01	2017-10-01	-			
2015-09-01 to 2017-09-01	2017-10-01	-			
2015-09-01 to 2016-11-01	2017-11-01	-			
2015-09-01 to 2017-10-01	2017-11-01	-			

Table 3: Train, validation and test sets identified by month

For *models related to time series*, the predictor variables were: lagged consumptions and/or lagged temperatures [1 or many before the month you want to forecast]. This leaded us to the same data splitting as above. As noted, the first two entries are not suitable for time series analysis.

A summary regarding the types of clients and the types of models needed to be developed can be seen in the following tables. For each type of clients there are two types of models that should be created. There are also mentioned the types of models between which one should choose.

Types of models needed to be developed	
Without temperature – For the next month	
With temperature – For the next month	

Table 4: Types of models needed to be developed

Types of clients [only Household clients considered]					
From Miroslava – Correlated with temperature From Miroslava – Uncorrelated with temperatur					
From Panciu – Correlated with temperature	From Panciu – Uncorrelated with temperature				
From Chirnogi – Correlated with temperature	From Chirnogi – Uncorrelated with temperature				
From Odobești – Correlated with temperature	From Odobești – Uncorrelated with temperature				

Table 5: Types of clients

Types of models between which to choose				
Models unrelated to time series Time series related models				
Linear regression	Naïve model			
ANN (MLP)	ARIMA(X)			

Table 6: Types of models between which to choose

Experiments

The metrics used to evaluate the models were [y – real consumption value; \hat{y} – predicted value; n – number of clients considered]:

Metric	Formula/Observation
Mean Squared Error	$MSE = mean((y - \hat{y})^2) = \frac{\sum (y - \hat{y})^2}{n}$
Mean Absolute Error	$MAE = mean(y - \hat{y}) = \frac{\sum y - \hat{y} }{n}$
Median Absolute Error	$MdAE = median(y - \hat{y})$
Linear Correlation between real and predicted values	$Corr = cor(y, \hat{y})$
Absolute Difference between real average monthly consumption and predicted average monthly consumption	An average time series is created and sent as input to the model

Table 7: Metrics used to evaluate a model

The whole process was implemented in the R programming language. The main packages used were:

- forecast [with auto.arima, forecast, BoxCox.lambda functions] [6]: to fit ARIMA(X) models
- **stats** [with *Im* and *predict.Im* functions] [7]: to fit linear regression models
- keras [with multiple functions] [8]: to fit MLP models

For models unrelated to time series, as mentioned earlier, we tried models with temperature and without temperature [as a predictor], with and without differences, with and without the month, with or without the type of client. The number of lags considered ranged from 1 to 13 with a step of 2. The format of some input predictors also mattered. There are models with the month specified as a number and models with the month specified as a one-hot vector, e.g. if the month was February there were created 12 predictors; all but the second were set to zero; the second was set to one: 0, 1, 0, 0, 0, 0, 0, 0, 0, 0. The type of client predictor was treated in the same manner [numeric or one-hot vector].

For the *linear regression* model, there were no hyper-parameters to be set.

For the *MLP* architecture, two models were adopted empirically only taking into consideration data generated for validation on October 2017 [the first model for data without temperature and the second for data with temperature]:

Hyper-parameter (Type) Model	MLP50-50-1	MLP30-20-1		
	[2 hidden layers]	[2 hidden layers]		
Initialization method	Default:			
	For weights: 0	Glorot uniform		
	For bia	s: Zeros		
Activation functions	Hidden la	yers: <i>ReLu</i>		
	Output lay	er: Identity		
Optimizer	Adam with default values:			
	lr = 0.001, beta_1 = 0.9, bet	a_2 = 0.999, epsilon = 1e-08		
Regularization	Droj	oOut		
	1 st hidden layer: [PropOut rate = 0.5		
	2 nd hidden layer:	No DropOut		
	DropOut rate = 0.5			
Loss function	MSE			
Batch size	128 32			
Number of epochs	50 30			

Table 8: Specific hyper-parameters for the two chosen MLP models

For models related to time series, as mentioned earlier, we tried models with temperature [ARIMAX] and without temperature [naïve and ARIMA]. Moreover, for ARIMA(X), we considered models with and without a Box-Cox transformation, with and without D [number for times of seasonal – here, S=12 – differencing the time series] set to 1, and we also created a model by using the default behaviour of the forecast function from forecast package in R. In order to set the hyper-parameters p, d, q, P, D [although we set it to 1 manually in certain situations], Q the function auto.arima was used [for each client]. This function uses the Hyndman-Khandakar algorithm to find those hyper-parameters. In the call of auto.arima function, we set max.p and max.q to 12, stepwise and approximation to FALSE. The Box-Cox coefficient was automatically identified by the function BoxCox.lambda.

Results

Our research was focused on a specific type of clients [Household – From Miroslava – Correlated with temperature] and the following results are only for this category. For each month we showed only the best model [based on MSE] without temperature and the best model with temperature.

Model	MSE	MAE	MdAE	Corr	Abs. Avg. Diff.			
	Validation on December 2016							
MLP50-50-1 withTemp: N Train Period: 2015-09 to 2016-11 #Lags: 13 typeMonth: one hot typeClient: one hot withDiff: Y #Runs: 1 #Records: 765	0.3798351	0.4314502	0.3268276	0.9227971	0.234341900			
MLP50-50-1 withTemp: Y	0.3801115	0.4244243	0.3111872	0.9167776	0.049795906			

Train Period: 2015-09 to 2016-11 #Lags: 13 typeMonth: one hot typeClient: none withDiff: Y						
#Runs: 1 #Records: 765						
#Records. 705		Validation on	lanuary 2017			
Linear regression		validation on	January 2017			
withTemp: N Train Period: 2015-09 to 2016-11 #Lags: 13 typeMonth: number typeClient: one hot withDiff: Y #Runs: 1 #Records: 796	0.6465580	0.5723214	0.4344356	0.9220211	0.1732643772	
Linear regression						
withTemp: Y Train Period: 2015-09 to 2016-11 #Lags: 13 typeMonth: number typeClient: one hot withDiff: Y #Runs: 1 #Records: 796	0.6465580	0.5723214	0.4344356	0.9220211	0.1732643772	
miccords. 750		Validation on F	ehruary 2017			
MLP30-20-1		validation on i	ebidary 2017			
withTemp: N Train Period: 2015-09 to 2017-01 #Lags: 11 typeMonth: number typeClient: number withDiff: Y #Runs: 1 #Records: 849	0.3258726	0.3245447	0.1960771	0.9180510	0.0150069537	
MLP30-20-1 withTemp: Y Train Period: 2015-09 to 2017-01 #Lags: 11 typeMonth: one hot typeClient: number withDiff: Y #Runs: 1 #Records: 849	0.3559487	0.3384806	0.2096799	0.9095106	0.0015570464	
Validation on March 2017						
MLP30-20-1 withTemp: N Train Period: 2015-09 to 2016-11 #Lags: 13 typeMonth: number typeClient: number withDiff: N #Runs: 1 #Records: 837	0.1694180	0.2725083	0.1912206	0.9200467	0.1128368908	
MLP50-50-1 withTemp: Y Train Period: 2015-09 to 2016-11 #Lags: 13	0.1767478	0.2715254	0.1724784	0.9132073	0.0213095480	

typeMonth: number typeClient: none					
withDiff: N					
#Runs: 1					
#Records: 837		Validation or			
MLP50-50-1		Validation of	April 2017		
withTemp: N Train Period: 2015-09 to 2016-11 #Lags: 13 typeMonth: number typeClient: one hot withDiff: Y #Runs: 1 #Records: 849	0.1161291	0.2531113	0.1965794	0.9153764	0.0195189609
MLP30-20-1 withTemp: Y					
Train Period: 2015-09 to 2016-11 #Lags: 13 typeMonth: none typeClient: one hot withDiff: N #Runs: 1 #Records: 849	0.1292791	0.2601808	0.1998312	0.8982608	0.0195189609
		Validation o	n May 2017		
MLP30-20-1			•		
withTemp: N Train Period: 2015-09 to 2016-11 #Lags: 9 typeMonth: none typeClient: number withDiff: N #Runs: 1 #Records: 973	0.02511915	0.0990081	0.06759772	0.6546035	0.0838767070
MLP50-50-1 withTemp: Y Train Period: 2015-09 to 2016-11 #Lags: 11 typeMonth: number typeClient: none withDiff: Y #Runs: 1 #Records: 913	0.02357950	0.1133989	0.09047573	0.6869828	0.0176222206
		Validation or	n June 2017		
Linear regression withTemp: N Train Period: 2015-09 to 2016-11 #Lags: 1 typeMonth: number typeClient: none withDiff: Y #Runs: 1 #Records: 1161	0.002580885	0.01317062	0.009098499	0.9664575	0.012162390
Linear regression withTemp: Y Train Period: 2015-09 to 2017-05 #Lags: 3 typeMonth: one hot typeClient: none withDiff: Y	0.009466020	0.05861918	0.036816036	0.8649442	0.005596707

#Runs: 1					
#Records: 1156		Validation o	n July 2017		
Linear regression withTemp: N Train Period: 2015-09 to 2016-11 #Lags: 1 typeMonth: one hot typeClient: none withDiff: Y #Runs: 1 #Records: 1161	0.004868201	0.05178946	0.04446680	0.9647579	0.0475990728
Linear regression withTemp: Y Train Period: 2015-09 to 2017-06 #Lags: 1 typeMonth: one hot typeClient: none withDiff: Y #Runs: 1 #Records: 1161	0.003983435	0.03877782	0.02984545	0.9647579	0.0178273296
		Validation on	August 2017		
Linear regression withTemp: N Train Period: 2015-09 to 2017-07 #Lags: 1 typeMonth: one hot typeClient: none withDiff: Y #Runs: 1 #Records: 1161	0.01002398	0.06686699	0.04711231	0.7967213	0.0021343099
Linear regression withTemp: Y Train Period: 2015-09 to 2016-11 #Lags: 3 typeMonth: number typeClient: none withDiff: Y #Runs: 1 #Records: 1161	0.01011272	0.06611762	0.04452621	0.7949303	0.0072216099
		Validation on Se	eptember 2017		•
MLP30-20-1 withTemp: N Train Period: 2015-09 to 2016-11 #Lags: 1 typeMonth: one hot typeClient: none withDiff: Y #Runs: 1 #Records: 1160	0.009392238	0.05245531	4.152874e-02	0.8717407	0.0232097816
Linear regression withTemp: Y Train Period: 2015-09 to 2017-08 #Lags: 1 typeMonth: none typeClient: none withDiff: Y #Runs: 1 #Records: 1160	0.012335522	0.07018557	5.854899e-02	0.8841417	0.0298735000

Validation on October 2017						
MLP50-50-1 withTemp: N Train Period: 2016-10 #Lags: 7 typeMonth: - typeClient: one hot withDiff: N #Runs: 10 #Records: 1155	0.1605943	0.2813402	0.2123464	0.8238079	0.018119066	
MLP30-20-1 withTemp: Y Train Period: 2015-09 to 2016-11 #Lags: 13 typeMonth: number typeClient: none withDiff: N #Runs: 1 #Records: 1008	0.1467143	0.2654860	0.1997132	0.8349680	0.096687903	
		Validation on N	ovember 2017			
MLP50-50-1 withTemp: N Train Period: 2015-09 to 2016-11 #Lags: 11 typeMonth: one hot typeClient: one hot withDiff: Y #Runs: 1 #Records: 1123	0.2441576	0.3064871	0.1991085	0.8883574	0.011081485	
Linear regression withTemp: Y Train Period: 2015-09 to 2016-11 #Lags: 9 typeMonth: number typeClient: one hot withDiff: Y #Runs: 1 #Records: 1150	0.2700347	0.3408615	0.2299223	0.8772789	0.069081164	

Table 9: Experimental results: the best two models for each month – with and without temperature

Because the results regarding ARIMA(X) models are not present above, we introduce some of them below:

Model	MSE	MAE	MdAE	Corr	Abs. Avg. Diff.	
ARIMA [withTemp = N]						
Validation on October 2017						
Train Period: 2015-09 to 2017-09 typeD: none typeLambda: none #Records: 1158	0.4193413	0.4566618	0.3204010	0.6371408	0.08836832	
Train Period: 2015-09 to 2017-09 typeD: none typeLambda:box.cox #Records: 1158	0.6659137	0.6000043	0.5188793	0.4575220	0.53448372	
Train Period: 2015-09 to 2017-09 typeD: 1 typeLambda: none #Records: 1158	1.0408777	0.7422500	0.6306670	0.6081971	0.68593220	
Train Period: 2015-09 to 2017-09 typeD: 1 typeLambda:box.cox #Records: 1158	1.6023854	0.7650985	0.6120121	0.5245753	0.45529435	
Train Period: 2015-09 to 2016-11 typeD: none typeLambda: none #Records: 1090	6.8322081	0.9974210	0.5629849	0.2048947	0.24322983	
Train Period: 2015-09 to 2016-11 typeD: none typeLambda:box.cox #Records: 1090	6.6681629	0.8676305	0.3863384	0.1288010	0.03609095	
Train Period: 2015-09 to 2016-11 typeD: 1 typeLambda: none #Records: 1090	14.5602471	1.4178933	0.7952093	0.2577753	0.72277694	
Train Period: 2015-09 to 2016-11 typeD: 1 typeLambda:box.cox #Records: 1090	13.9384277	1.3647141	0.7360651	0.2580828	0.72277696	

Table 10: ARIMA results on October 2017

Model	MSE	MAE	MdAE	Corr	Abs. Avg. Diff.
ARIMAX					
[withTemp = Y]		Validation on	October 2017		
		Validation on	October 2017		1
Train Period: 2015-09 to 2017-09 typeD: none typeLambda: none #Records: 1158	0.2455896	0.3619071	0.2790151	0.7898674	0.273375772
Train Period: 2015-09 to 2017-09 typeD: none typeLambda:box.cox #Records: 1158	0.4005065	0.4391740	0.3383696	0.5367043	0.255035362
Train Period: 2015-09 to 2017-09 typeD: 1 typeLambda: none #Records: 1158	0.4601337	0.4540237	0.3011008	0.6456592	0.107478962
Train Period: 2015-09 to 2017-09 typeD: 1 typeLambda:box.cox #Records: 1158	3886.7337413	2.4691901	0.3062334	0.1708928	0.109419810
Train Period: 2015-09 to 2016-11 typeD: none typeLambda: none #Records: 1090	1.9789074	0.5466996	0.3244657	0.3389013	0.218520357
Train Period: 2015-09 to 2016-11 typeD: none typeLambda:box.cox #Records: 1090	1.9647882	0.5373997	0.3164582	0.3413335	0.218520357
Train Period: 2015-09 to 2016-11 typeD: 1 typeLambda: none #Records: 1090	2.4144374	0.9515351	0.6307901	0.1008984	0.754183607
Train Period: 2015-09 to 2016-11 typeD: 1 typeLambda:box.cox #Records: 1090	2.4667573	0.9608803	0.6376161	0.0980574	0.754183607

Table 11: ARIMAX results on October 2017

Model	MSE	MAE	MdAE	Corr	Abs. Avg. Diff.	
ARIMA [withTemp = N]						
Validation on November 2017						
Train Period: 2015-09 to 2017-10 typeD: none typeLambda: none #Records: 1158	0.6554094	0.6147501	0.4801120	0.83612771	0.329490872	
Train Period: 2015-09 to 2017-10 typeD: none typeLambda:box.cox #Records: 1158	446.9893619	1.6902317	0.6044768	0.06521988	0.248492305	
Train Period: 2015-09 to 2017-10 typeD: 1 typeLambda: none #Records: 1158	6.2271071	0.8798864	0.4235224	0.40562785	0.487279437	
Train Period: 2015-09 to 2017-10 typeD: 1 typeLambda:box.cox #Records: 1158	24.7541915	1.1890974	0.4637374	0.25256117	0.305636749	
Train Period: 2015-09 to 2016-11 typeD: none typeLambda: none #Records: 1090	8.1492590	1.3592469	0.9113088	0.20373432	0.648420597	
Train Period: 2015-09 to 2016-11 typeD: none typeLambda:box.cox #Records: 1090	7.7791150	1.2124225	0.7636013	0.14494744	0.853118375	
Train Period: 2015-09 to 2016-11 typeD: 1 typeLambda: none #Records: 1090	15.0335763	1.4296311	0.6871125	0.34690792	0.563400272	
Train Period: 2015-09 to 2016-11 typeD: 1 typeLambda:box.cox #Records: 1090	14.3449943	1.3732307	0.6752813	0.35049304	0.563400292	

Table 12: ARIMA results on November 2017

Model	MSE	MAE	MdAE	Corr	Abs. Avg. Diff.		
ARIMAX [withTemp = Y]							
Validation on November 2017							
Train Period:		vandation on it	Overnider 2017				
2015-09 to 2017-10 typeD: none typeLambda: none #Records: 1158	3.708000e-01	0.3784989	0.2341639	0.831287993	0.092999434		
Train Period: 2015-09 to 2017-10 typeD: none typeLambda:box.cox #Records: 1158	2.245661e+04	5.3750411	0.3974761	0.006898835	0.524683455		
Train Period: 2015-09 to 2017-10 typeD: 1 typeLambda: none #Records: 1158	5.345873e-01	0.4580276	0.2831699	0.777938216	0.148471183		
Train Period: 2015-09 to 2017-10 typeD: 1 typeLambda:box.cox #Records: 1158	1.578799e+01	0.8623973	0.3243840	0.308394534	0.099438771		
Train Period: 2015-09 to 2016-11 typeD: none typeLambda: none #Records: 1090	2.277845	0.5648860	0.2517588	0.471630717	0.005391859		
Train Period: 2015-09 to 2016-11 typeD: none typeLambda:box.cox #Records: 1090	2.258035	0.5602095	0.2574237	0.474030504	0.005391859		
Train Period: 2015-09 to 2016-11 typeD: 1 typeLambda: none #Records: 1090	1.361205	0.7857227	0.5423968	0.525490744	0.565460299		
Train Period: 2015-09 to 2016-11 typeD: 1 typeLambda:box.cox #Records: 1090	1.382433	0.7969392	0.5484855	0.523716991	0.565460299		

Table 13: ARIMAX results on November 2017

Figure 2: Average consumption time series when forecasting: October 2017 and November 2017

As it can be seen from the above tables, adding temperature data was useful in the case of three months: May, July, and October. Linear regression obtains the best score in the summer. An important note is that the naïve model [which was our benchmark] does not have the lowest MSE in any month. Moreover, we can generalize and say that time series models [including ARIMA(X)] are not suitable in this methodology.

Conclusions and Further Work

The objective of the discussed and presented results of the study was to obtain forecasts of natural gas consumption. The data used was from 4 localities from Romania. The methodology included time series related models [naïve model, ARIMA(X)] and models unrelated to time series [linear regression, MLP]. The main problem was the lack of sufficient data to split it in train, validation and test sets. The highlight was put on monthly forecasts, although yearly forecasts on a monthly basis were also used. The results mainly show that: models unrelated to time series are more suitable in this methodology, the temperature data is useful only for 2-3 months, and linear regression gets the best results for summer months.

As *further work*, this methodology should be applied also to the other categories of clients [household or not; from other localities, not only Miroslava; both correlated and uncorrelated with temperature]. Furthermore, the result on each month could be processed in such a way that the adopted model would be an ensemble [weighted combination] of the top models [ordering them not only by MSE, but also taking into consideration the other computed metrics].

References

- 1. Jolanta Szoplik, Forecasting of natural gas consumption with artificial neural networks
- 2. Dejan Ivezic, Short-term natural gas consumption forecast
- 3. Steven Vitullo, Ronald Brown, George Corliss, Brian Marx, Mathematical models for natural gas forecasting
- 4. Omer Fahrettin DEMIREL, Selim ZAIM, Ahmet CALISKAN, Pınar OZUYAR, Forecasting natural gas consumption in Istanbul using neural networks and multivariate time series methods
- 5. Bozidar Soldo, Forecasting natural gas consumption
- 6. https://cran.r-project.org/web/packages/forecast/forecast.pdf
- 7. https://stat.ethz.ch/R-manual/R-devel/library/stats/html/00Index.html
- 8. https://cran.r-project.org/web/packages/keras/keras.pdf
- 9. https://www.datacamp.com/courses/introduction-to-time-series-analysis
- 10. https://www.datacamp.com/courses/arima-modeling-with-r
- 11. https://www.datacamp.com/courses/forecasting-using-r