Structures de données : arbres

Benjamin Monmege

Exemples d'utilisation des arbres

Arbre syntaxique d'une expression arithmétique

Arbre syntaxique analysant une phrase

Arbre généalogique

Arbre lexicographique (ou en parties communes, ou dictionnaire)

main male mie mite pic pile pis port porte

Arbre de décision

Arbre de versions git

Arbre phylogénétique

Arbre phylogénétique

Définitions d'un arbre enraciné

Définition ensembliste

Un arbre est un ensemble organisé de nœuds :

- chaque nœud a un unique parent,
- sauf un seul nœud, la racine, qui n'a pas de parent.

Les nœuds ayant un nœud p comme parent sont appelés les enfants de p.

Les feuilles sont les nœuds qui n'ont pas d'enfants.

Définition récursive

Un arbre est constitué :

- d'un nœud p, sa racine,
- et d'une suite de sous-arbres (a_1, a_2, \ldots, a_k) (avec k non fixé a priori).

Les racines des arbres a_1, a_2, \ldots, a_k sont les *enfants* de p.

Les mots des arbres

Parcours

Parcourir un arbre (ou un graphe...), c'est visiter la totalité des nœuds de celui-ci, dans un certain ordre, pour appliquer un éventuel traitement: affichage, évaluation, recherche...

Parcours en profondeur

Parcours en largeur

Arbres binaires

Définition

Chaque nœud a au plus 2 enfants : l'enfant gauche et l'enfant droit

Hauteur et taille d'un arbre binaire

Arbre binaire complet de hauteur h (hauteur = nombre de niveaux):

- à la profondeur p on a 2^p nœuds
- ullet le nombre total de nœuds est donc $\sum_{i=0}^{h-1} 2^i = 2^h 1$

Un arbre quelconque de hauteur h contient au plus $2^h - 1$ nœuds.

Parcours en profondeur d'un arbre binaire

Parcours préfixe : traitement du nœud avant les sous-arbres

Parcours infixe : traitement du nœud entre les deux sous-arbres

Parcours postfixe : traitement du nœud après les sous-arbres

Structure de données abstraite : ensemble dynamique

- Recherche d'un élément dans un ensemble
- Insertion d'un nouvel élément
- Suppression d'un élément
- Test du vide de l'ensemble

Interface:

```
set.contains(element) # true or false
set.insert(element) # modifies set
set.suppress(element) # modifies set
set.isempty() # true or false
```

• Recherche d'un élément dans un ensemble: recherche dichotomique

• Recherche d'un élément dans un ensemble: recherche dichotomique $O(\log(n))$

• Insertion d'un nouvel élément: recherche puis décalage

• Recherche d'un élément dans un ensemble: recherche dichotomique

$$O(\log(n))$$

Insertion d'un nouvel élément: recherche puis décalage

Suppression d'un élément: recherche puis décalage

• Recherche d'un élément dans un ensemble: recherche dichotomique

$$O(\log(n))$$

• Insertion d'un nouvel élément: recherche puis décalage

Suppression d'un élément: recherche puis décalage

Test du vide de l'ensemble: test de longueur

• Recherche d'un élément dans un ensemble: recherche dichotomique

$$O(\log(n))$$

Insertion d'un nouvel élément: recherche puis décalage

• Suppression d'un élément: recherche puis décalage

Test du vide de l'ensemble: test de longueur

Seconde implémentation : arbre binaire de recherche dans le cas où les éléments sont comparables

Arbre binaire étiqueté par les éléments tel que pour tout nœud p d'étiquette x:

- toutes les étiquettes de l'enfant gauche de p sont inférieures à x
- toutes les étiquettes de l'enfant droit de p sont supérieures à x

Seconde implémentation : arbre binaire de recherche dans le cas où les éléments sont comparables

Arbre binaire étiqueté par les éléments tel que pour tout nœud p d'étiquette x:

- toutes les étiquettes de l'enfant gauche de p sont inférieures à x
- toutes les étiquettes de l'enfant droit de p sont supérieures à x

Algorithmes et complexité: bloc 5 !

Principe:

• appliquer une fonction de hachage (ou dispersion) permettant d'associer à chaque élément un indice *i* dans un intervalle restreint de valeurs

Principe:

- appliquer une fonction de hachage (ou dispersion) permettant d'associer à chaque élément un indice *i* dans un intervalle restreint de valeurs
- ranger l'élément dans la case d'indice *i* d'une liste (appelée table de hachage)

Principe:

- appliquer une fonction de hachage (ou dispersion) permettant d'associer à chaque élément un indice i dans un intervalle restreint de valeurs
- ranger l'élément dans la case d'indice *i* d'une liste (appelée table de hachage)
- en cas de collision (deux éléments à insérer de même fonction de hachage), on stocke une liste d'éléments dans la case d'indice i

Principe:

- appliquer une fonction de hachage (ou dispersion) permettant d'associer à chaque élément un indice *i* dans un intervalle restreint de valeurs
- ranger l'élément dans la case d'indice *i* d'une liste (appelée table de hachage)
- en cas de collision (deux éléments à insérer de même fonction de hachage), on stocke une liste d'éléments dans la case d'indice *i*

Structures utilisée pour les dictionnaires Python