Nested Effects for mechanical strength of XXXX (the product):

We test the strength of 5 machines (A through E), and randomly sample 4 heads from each machine.

Because each head is dependent upon the machine from whence it came, this is nested model; as such:

$$Y_{ijk} = \mu + \tau_i + \beta_{j(i)} + \epsilon_{ijk}$$

Where Y is the strength; \mu is the grand mean; \tau_{i} is the mean effect of the ith machine, it is a fixed effect; \beta_{j(i)} is the mean effect caused by jth head nested in the ith machine, it is a random effect; \epsilon_{ijk} is the random error associated with each observation, they are independent and normally distributed with mean 0 and constant variance (\epsilon_{ijk} iid N(0, \sigma^2))

HEAD	AD Machine A			Machine B			Machine C			Machine D				Machine E						
1	6	13	2	7	10	2	4	0	1	10	8	7	11	5	1	3	2	6	3	3
2	2	3	10	4	9	1	1	3	1	11	5	2	1	10	8	8	4	6	7	1
3	1	9	5	7	7	1	7	4	5	6	0	5	6	8	9	6	7	1	4	2
4	8	8	6	9	12	10	9	1	5	7	7	4	4	3	4	5	9	3	1	2

```
data glass;
do head=1 to 4;
do machine = "A", "B", "C", "D", "E";
do replica=1 to 4;
       input stress @@; output;
       end; end; end;
       cards;
       13
              2
                             10
                                           4
                                                                 10
                                                                                      11
              1
                     3
                             2
                                    6
                                           3
                                                  3
       5
              10
                                                  3
                                                                 11
2
       3
                                    1
                                                         1
       10
                                                  1
1
       9
              5
                     7
                             7
                                    1
                                           7
                                                  4
                                                                 6
                                                                        0
                                                                                      6
       8
              9
                     6
                             7
                                    1
                                                  2
                                           4
                                                  1
8
       8
              6
                     9
                             12
                                    10
                                           9
                                    3
run;
```

```
proc glm data=glass;
class machine head;
model stress = machine head(machine);
random head(machine)/test; run; quit;
```

Source	DF	Type III SS	Mean Square	F Value	Pr > F
machine	4	53.575000	13.393750	1.73	0.1965
Error	15	116.375000	7.758333		

Source	DF	Type III SS	Mean Square	F Value	Pr > F
head(machine)	15	116.375000	7.758333	0.69	0.7794
Error: MS(Error)	60	670.000000	11.166667		

Null hypothesis 1: $au_1= au_2=\ldots= au_5=0$ Alternative hypothesis 1: At least one (1) $au_i\neq 0$

$$F_1 = \frac{MSA}{MSB} = \frac{13.39375}{7.758333} = 1.73$$

This F statistic has an associated p-value of 0.1965. Therefore, we fail to reject the null hypothesis, and thus conclude that there are no statistically significant differences across machines

Null hypothesis 2: $\sigma_{\beta}^2=0$ Alternative hypothesis 2: $\sigma_{\beta}^2>0$

$$F_2 = \frac{MSA}{MSB} = \frac{7.758333}{11.166667} = 0.69$$

This F statistic has an associated p-value of 0.7794. Therefore, we fail to reject the null hypothesis, and thus conclude that the variability across heads (nested within machines) does not statistically differ from 0.