

MITx 6.86x

Machine Learning with Python-From Linear Models to Deep Learning

Course **Progress** Discussion Dates Resources

A Course / Unit 2. Nonlinear Classification, Linear regression, ... / Lecture 6. No

4. Motivation for Kernels: Computational Efficiency

 \square Bookmark this page

Exercises due Mar 8, 2023 08:59 -03 Completed

Motivation for Kernels: Computational Efficiency

▶ 1.0x

Video

♣ Download video file

Transcripts

- ▲ Download SubRip (.srt) file
- ▲ Download Text (.txt) file

Kernels as Dot Products 1

1/1 point (graded)

Let us go through the computation in the video above. Assume we map x and $x' \in \mathbb{R}^2$ $\phi(x)$ and $\phi(x')$ given by

$$egin{aligned} \phi\left(x
ight) &= \left[x_{1},\,x_{2},\,x_{1}{}^{2},\,\sqrt{2}x_{1}x_{2},\,x_{2}{}^{2}
ight] \ \phi\left(x'
ight) &= \left[x'_{1},\,x'_{2},\,{x'_{1}}^{2},\,\sqrt{2}x'_{1}x'_{2},\,{x'_{2}}^{2}
ight]. \end{aligned}$$

Which of the following equals the dot product $\phi\left(x
ight)\cdot\phi\left(x'
ight)$?

 $\bigcirc x \cdot x'$

1/1 point (graded)

Which of the following feature vectors

produces the kernel

Previous

Next >

edX

About

Affiliates

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

Sitemap

Cookie Policy

Do Not Sell My Personal Information

Connect

Blog

Contact Us

Help Center

Security

Media Kit

