Geographic Information Systems

ESM 263 - Winter 2023

Data Collection

- Capture: becomes digital
 - o primary: "born digital"
 - secondary: digitized
- Transfer: acquired/digitized by someone else
- Either way, you still may have to
 - Edit and Clean
 - Re-project
 - Generalize

Data Collection Techniques

Raster

- Primary
 - o digital remote sensing
- Secondary
 - scanned photographs
 - scanned maps
 - DEMs from maps

Vector

- Primary
 - o GPS
 - Surveying
- Secondary
 - topographic surveys
 - toponomy from text

Raster Primary Data Capture

Remote sensing

- Passive
 - o optical scanners
 - microwave radiometers
- Active
 - o Radar
 - Lidar

Resolution

- Spatial
 - o cell size
 - swath width
- Spectral
 - Bandwidth
 - #bands
- Temporal
 - repeat cycle
- Radiometric
 - Range
 - o precision

MODIS (MODerate-resolution Imaging Spectrometer)

- Platforms
 - EOS Terra (since Feb 2000)
 - EOS Aqua (since May 2002)
- Spatial resolution
 - o 2330 km swath
 - o 250 ... 1000 m / pixel
- Spectral bands
 - o 36 visible, near-IR, thermal
- Temporal resolution
 - every 1 ... 2 days
 - o 100% duty cycle

Landsat Satellites

Sattelite	Sensor	Data Start	Data Stop	
Landsat 4	TM	1982	1993	
Landsat 5	TM	1984	2011	
Landsat 6	ETM+	1993	Partial since 2003	
Landsat 8	OLI	2013	ongoing	
Landsat 9	OLI	2021	ongoing	

Spatial Resolution

- 185 km Swath
- o 30 m / pixel

Temporal resolution

- every 16 days
- every 8 days since 2013: most recent 2 Landsats; 8 days apart

Landsat Spectral Bands

Planet Labs

Platform	Spatial Resolution	Spectral Resolution (Bands)	Temporal Resolution
Dove / SuperDove	3.7 m	4/8	Daily
Rapid Eye	5 m	5	Daily
SkySat	<= 1 m	4	Tasked

Also: DigitalGlobe / Maxar Technologies https://en.wikipedia.org/wiki/DigitalGlobe

Mt Dukono 2016-08-24

Planet Labs
Dove Sattelites

Mt Dukono 2016-08-25

Planet Labs
Dove Sattelites

Mt Dukono 2017-03-29

Planet Labs
Dove Sattelites

Vector Primary Data Capture

- Surveying
 - Angle and distance measurements from known locations
 - Expensive field equipment and crews
 - Most accurate method for large scale, small areas
- Global navigation satellite systems (GNSS)
 - Collection of satellites used to fix location re: Earth center
 - GPS (US)
 - GLONASS (Russia)
 - BeiDou (China)
 - Galileo (EU)

GPS: Satellites

24 satellites

- 4 satellites / orbit
- 6 orbits
 - o 26 km
 - 55° inclination

→ Always > 4 satellites visible / above horizon

GNSS: How It Works

\$2-r

 a) with a range measurement from one satellite, the receiver is positioned somewhere on the sphere defined by the satellite position and the range distance, r

b) with two satellites, the receiver is somewhere on a circle where the two spheres intersect

c) with three satellites the receiver is at one of two points where the three spheres intersect

Niklas Griessbaum - ESM 263 - Winter 2023

GNSS: It's Not Perfect

Fig. 5-10, p. 201 Bolstad 7th Edition

Niklas Griessbaum - ESM 263 - Winter 2023

Differential GNSS

Fig. 5-14, 5-15, p. 205, 206 Bolstad 7th Edition

Wide Area Augmentation System

GNSS: Accuracy

Secondary Data Capture

- Data collected for other purposes can be converted for use in GIS
- Raster conversion
 - Scanning of maps, aerial photographs, documents, etc.
 - Important parameters:
 - spatial resolution (dots per inch)
 - radiometric resolution (bits per pixel)

Scanning Example: US Topo

- USGS topo maps in PDF / GeoTIF
 - "GeoPDF" metadata
- New & historical
 - o new: multi layers
 - o old: single scan
- Mix of projections and scan methods

Scanning maps: orientation issues

Boundaries

o meridians and parallels

Projection

- o conformal conic (older)
- UTM (newer)
- o meridians pinch; parallels curve

Map sheet

- quad bounding rectangle
- not projection-aligned

Figure 6. Plane grid, quadrangle neatline, and map sheet relationships.

Vector Secondary Data Capture

Manual

- Keyboard
- Transcription
- "heads-up" digitizing
 - see also Bolstad ch. 4
- Coordinate digitizer
 - Point
 - o Stream

Automatic

- Scan
 - vector = line_detect(raster)
- OCR
 - extract placenames or coordinates from scanned text

Figure Credits

- GIS Fundamentals, 6th ed.
 - o ISBN 978-1-59399-552-2
- Geographic Information Systems and Science, 2nd ed.
 - ISBN 978-0470870013
- Introduction to Geographic Information Systems, 4th ed.
 - o ISBN 978-0-07-305115-2
- Using ArcGIS Spatial Analyst
- Wikimedia Commons
- NASA Landsat Science