Module 1: Data validation and preprocessing

```
In [1]:
         import numpy as n
         import pandas as p
         from sklearn.preprocessing import LabelEncoder
         import matplotlib.pyplot as plt
         import seaborn as s
In [2]:
         import warnings
         warnings.filterwarnings('ignore')
In [3]:
         df = p.read_csv('crop.csv') #load the dataset as dataframe
In [4]:
         df.columns #Returns columns of dataframe
        dtype='object')
In [5]:
         df.info() #Returns basic description of dataframe
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 2200 entries, 0 to 2199
        Data columns (total 8 columns):
                         Non-Null Count
         #
             Column
                                         Dtype
         0
                         2200 non-null
             nitrogen
                                         int64
                                         int64
         1
             phosphorus
                         2200 non-null
                                         int64
                         2200 non-null
             potassium
         3
             temperature 2200 non-null
                                         float64
         4
             humidity
                         2200 non-null
                                         float64
         5
                          2200 non-null
                                         float64
         6
                                         float64
             rainfall
                         2200 non-null
             label
                         2200 non-null
                                         object
        dtypes: float64(4), int64(3), object(1)
        memory usage: 137.6+ KB
In [6]:
         df.head(3) #Returns first 3 rows of data
                                                   humidity
                                                                       rainfall label
Out[6]:
          nitrogen phosphorus potassium temperature
                                                                ph
        0
                90
                          42
                                          20.879744 82.002744 6.502985
                                    43
                                                                    202.935536
                                                                               rice
        1
                85
                          58
                                    41
                                         21.770462 80.319644 7.038096
                                                                    226.655537
                                                                               rice
        2
                60
                          55
                                    44
                                         23.004459 82.320763 7.840207 263.964248
                                                                               rice
In [7]:
         df.shape #dimension of dataframe
Out[7]: (2200, 8)
         df.isnull() #returns True if value is NULL else returns False
```

Out[8]:		nitrogen	phosphorus	potassium	temperature	humidity	ph	rainfall	label
	0	False	False	False	False	False	False	False	False
	1	False	False	False	False	False	False	False	False
	2	False	False	False	False	False	False	False	False
	3	False	False	False	False	False	False	False	False
	4	False	False	False	False	False	False	False	False
	•••								
	2195	False	False	False	False	False	False	False	False
	2196	False	False	False	False	False	False	False	False
	2197	False	False	False	False	False	False	False	False
	2198	False	False	False	False	False	False	False	False
	2199	False	False	False	False	False	False	False	False

2200 rows × 8 columns

potassium 0
temperature 0
humidity 0
ph 0
rainfall 0
label 0
dtype: int64

In [10]:

df.describe() #Returns numerical description

Out[10]:		nitrogen	phosphorus	potassium	temperature	humidity	ph	rainfall
	count	2200.000000	2200.000000	2200.000000	2200.000000	2200.000000	2200.000000	2200.000000
	mean	50.551818	53.362727	48.149091	25.616244	71.481779	6.469480	103.463655
	std	36.917334	32.985883	50.647931	5.063749	22.263812	0.773938	54.958389
	min	0.000000	5.000000	5.000000	8.825675	14.258040	3.504752	20.211267
	25%	21.000000	28.000000	20.000000	22.769375	60.261953	5.971693	64.551686
	50%	37.000000	51.000000	32.000000	25.598693	80.473146	6.425045	94.867624
	75%	84.250000	68.000000	49.000000	28.561654	89.948771	6.923643	124.267508
	max	140.000000	145.000000	205.000000	43.675493	99.981876	9.935091	298.560117

In [11]: sum(df.duplicated()) #Returns sum of duplicate data

Out[11]: 0

```
In [12]:
           df.nitrogen.unique() #Returns unique values of nitrogen
Out[12]: array([ 90,
                                     74,
                                                                            93,
                         85,
                               60,
                                          78,
                                                69,
                                                      94,
                                                           89,
                                                                 68,
                                                                       91,
                                                                                  77,
                                                                                        88,
                                                97,
                                                           73,
                                                                 92,
                                                                       95,
                               83,
                                     98,
                                                      84,
                                                                            99,
                                                                                  63,
                                                                                        62,
                   76,
                         67,
                                          66,
                         82,
                                          75,
                                                71,
                               79,
                                                      72,
                                                                            81,
                                                                                  80,
                    64,
                                     65,
                                                           70,
                                                                 86,
                                                                       61,
                                                                                       100,
                   87,
                         96,
                                                22,
                               40,
                                     23,
                                          39,
                                                      36,
                                                           32,
                                                                 58,
                                                                       59,
                                                                            42,
                                                                                  28,
                                                                                        43,
                   27,
                               25,
                                                                            35,
                         50,
                                     31,
                                          26,
                                                54,
                                                      57,
                                                           49,
                                                                 46,
                                                                       38,
                                                                                  52,
                                                                                        44,
                   24,
                         29,
                               20,
                                     56,
                                                51,
                                                                            47,
                                          37,
                                                      41,
                                                           34,
                                                                 30,
                                                                       33,
                                                                                  53,
                                                                                        45,
                                    17,
                   48,
                                2,
                                                 6,
                                                     10,
                                                           19,
                                                                 11,
                         13,
                                          12,
                                                                       18,
                                                                            21,
                                                                                  16,
                                                      5,
                                                 4,
                                                                15,
                          7,
                                     0,
                                           3,
                                                                      55, 105, 108,
                     1,
                                8,
                                                           14,
                                                                                      118,
                  101, 106, 109, 117, 114, 110, 112, 111, 102, 116, 119, 107, 104,
                  103, 120, 113, 115, 133, 136, 126, 121, 129, 122, 140, 131, 135,
                  123, 125, 139, 132, 127, 130, 134], dtype=int64)
In [13]:
           df['label'].unique() #Returns unique labels
Out[13]: array(['rice', 'maize', 'chickpea', 'kidneybeans', 'pigeonpeas',
                   mothbeans', 'mungbean', 'blackgram', 'lentil', 'pomegranate',
                  'banana', 'mango', 'grapes', 'watermelon', 'muskmelon', 'apple', 'orange', 'papaya', 'coconut', 'cotton', 'jute', 'coffee'],
                 dtype=object)
In [14]:
           df.potassium.sort_values().unique() #Returns unique values of potassium after sortin
                                      8,
                                           9,
                                                10,
                                                      11,
          array([
                          6,
                                                           12,
                                                                 13,
                                                                       14.
Out[14]:
                   18,
                         19,
                               20,
                                     21,
                                          22,
                                                23,
                                                      24,
                                                           25,
                                                                 26,
                                                                       27,
                                                                            28,
                                                                                  29,
                         32,
                               33,
                                     34,
                                          35,
                                                36,
                                                      37,
                                                           38,
                                                                 39,
                                                                       40,
                                                                            41,
                                                                                  42,
                                                                                        43,
                    31,
                         45,
                               46,
                                     47,
                                          48,
                                                49,
                                                      50,
                                                           51,
                                                                 52,
                                                                       53,
                                                                            54,
                                                                                  55,
                                                                                        75,
                   76,
                         77,
                               78,
                                     79,
                                          80,
                                                81,
                                                      82,
                                                           83,
                                                                 84,
                                                                       85, 195, 196, 197,
                  198, 199, 200, 201, 202, 203, 204, 205], dtype=int64)
In [15]:
           df['label'].value_counts() #Returns number of instances of each unique label(crop ty
Out[15]: blackgram
                           100
           jute
                           100
          mungbean
                           100
           kidneybeans
                           100
          mango
                           100
          lentil
                           100
          maize
                           100
          chickpea
                           100
          apple
                           100
           coconut
                           100
           cotton
                           100
           coffee
                           100
          pomegranate
                           100
                           100
          grapes
          muskmelon
                           100
          pigeonpeas
                           100
          banana
                           100
          watermelon
                           100
          orange
                           100
          papaya
                           100
          mothbeans
                           100
          rice
                           100
          Name: label, dtype: int64
In [16]:
           df.corr() #Returns pairwise correlation of the columns
Out[16]:
                        nitrogen
                                  phosphorus
                                              potassium temperature
                                                                       humidity
                                                                                       ph
                                                                                              rainfall
              nitrogen
                        1.000000
                                    -0.231460
                                               -0.140512
                                                             0.026504
                                                                        0.190688
                                                                                  0.096683
                                                                                            0.059020
```

		nitrogen	phosphorus	potassium	temperature	humidity	ph	rainfall
р	phosphorus	-0.231460	1.000000	0.736232	-0.127541	-0.118734	-0.138019	-0.063839
	potassium	-0.140512	0.736232	1.000000	-0.160387	0.190859	-0.169503	-0.053461
te	emperature	0.026504	-0.127541	-0.160387	1.000000	0.205320	-0.017795	-0.030084
	humidity	0.190688	-0.118734	0.190859	0.205320	1.000000	-0.008483	0.094423
	ph	0.096683	-0.138019	-0.169503	-0.017795	-0.008483	1.000000	-0.109069
	rainfall	0.059020	-0.063839	-0.053461	-0.030084	0.094423	-0.109069	1.000000
1		Encoder()	#method to	encode an	nd set value:	between	0 and k-1	l for k dis
[10].	le = Label f or i in co	Encoder() ol_to_be_ = le.fit_	#method to encoded: transform(d		nd set value: vpe(int) #Re			
[18]: c	le = Label for i in co	Encoder() ol_to_be_ = le.fit_].unique(#method to encoded: transform(d	f[i]).asty		turns enco	oded Label	ls as int a
[18]: c	le = Label for i in co	Encoder() pol_to_be_ = le.fit_].unique(11, 3, 4, 6,	#method to encoded: transform(d	f[i]).asty	pe(int) #Re	turns enco	oded Label	ls as int a
[18]: c	le = Label for i in co	Encoder() ol_to_be_ = le.fit_].unique(11, 3, 4, 6, #Returns	#method to encoded: transform(d) 9, 18, 13, 8, 5]) Last 3 tup	f[i]).asty 14, 2, 10 Les of dat	pe(int) #Re	turns enco	oded Label	ls as int a
[18]: c t[18]: ar [19]: c t[19]:	le = Label for i in co	Encoder() ol_to_be_ = le.fit_].unique(11, 3, 4, 6, #Returns	#method to encoded: transform(d) 9, 18, 13, 8, 5]) Last 3 tup	f[i]).asty 14, 2, 10 les of dat um temper	pe(int) #Re	turns enco	oded Label	16,
[18]: c t[18]: ar [19]: c t[19]:	le = Label for i in co	Encoder() col_to_be_ encoder() col_to_be_ encoder() col_to_be_ encoder() enc	#method to encoded: transform(d) 9, 18, 13, 8, 5]) last 3 tup	f[i]).asty 14, 2, 10 Les of dat um temper 30 24.13	pe(int) #Re	ity p	oded Label , 15, 0, oh rain 08 173.3228	16, fall label

Module 2: Exploratory data analysis and data visualization

```
In [20]: df = df.dropna() #Drop NULL values
In [21]: fig, ax = plt.subplots(figsize=(13,6))
    s.heatmap(df.corr(), ax=ax, annot=True) #Heatmap to show correlation between feature
Out[21]: <AxesSubplot:>
```



```
df['rainfall'].hist(figsize=(8,5), color='purple')
plt.title('Rainfall range with count of crops')
plt.xlabel('Rainfall Range')
plt.ylabel('Total Count')
```

Out[22]: Text(0, 0.5, 'Total Count')


```
df['ph'].hist(figsize=(8,5), color='#288BA8')
plt.title('PH values with Count of crops')
plt.xlabel('PH Range')
plt.ylabel('Total Count')
```

Out[23]: Text(0, 0.5, 'Total Count')


```
fig, ax = plt.subplots(figsize=(8,5))
ax.scatter(df['humidity'],df['rainfall'],color='#41AC44')
ax.set_title('Humidity and Rainfall')
ax.set_xlabel('Humidity')
ax.set_ylabel('Rainfall')
plt.show()
```



```
In [25]: s.boxplot(df['phosphorus'], color='yellow')
```

Out[25]: <AxesSubplot:xlabel='phosphorus'>


```
In [26]:
s.boxplot(df['nitrogen'], color='#000080')
```

Out[26]: <AxesSubplot:xlabel='nitrogen'>


```
In [27]:
s.boxplot(df['potassium'], color='darkgreen')
```

Out[27]: <AxesSubplot:xlabel='potassium'>


```
In [28]: s.histplot(df['temperature'])
```

Out[28]: <AxesSubplot:xlabel='temperature', ylabel='Count'>


```
def PropByVar(df,variable): #Propagation by variable
    pie_var = df[variable].value_counts()
    ax = pie_var.plot.pie(figsize=(8,8), fontsize =8)
    return "Different types of crops"
PropByVar(df,'label')
```

Out[29]: 'Different types of crops'

Algorithm Implementation

```
In [30]:
    from sklearn.model_selection import train_test_split
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.naive_bayes import GaussianNB
```

```
from sklearn.ensemble import AdaBoostClassifier
from sklearn.ensemble import VotingClassifier
from sklearn.metrics import confusion_matrix, classification_report, accuracy_score,
import joblib
from sklearn.model_selection import cross_val_score
```

```
inputs = df.drop(labels='label', axis=1) #takes all features except label as input
output = df.loc[:,'label'] #Returns label(crop type) as output
```

```
In [32]:
X_train, X_test, y_train, y_test = train_test_split(inputs, output, test_size=0.3, r
print("Number of Training Datasets: ", len(X_train))
print("Number of Testing Dataset: ", len(X_test))
print("Total Number of Datasets: ", len(X_train)+len(X_test))
```

Number of Training Datasets: 1540 Number of Testing Dataset: 660 Total Number of Datasets: 2200

Module 3 Decision Tree Classifier

```
In [33]: #Model Training
    dt = DecisionTreeClassifier()
    dt.fit(X_train,y_train)
    predicted_dt = dt.predict(X_test)
```

```
In [34]:
#Getting Accuracy
accuracy = accuracy_score(y_test,predicted_dt) # accuracy: (tp + tn) / (p + n)
print('Accuracy of Decision Tree Classifier is: ',accuracy*100)
```

Accuracy of Decision Tree Classifier is: 99.39393939393939

```
In [35]:
    DT1=accuracy.mean() *100
    def graph():
        data=[DT1]
        alg="Decision Tree Classification"
        plt.figure(figsize=(3,2))
        b=plt.bar(alg,data,color=("#450000"))
        plt.title("Accuracy of Crop Prediction",fontsize=15)
        plt.legend(b,data,fontsize=9)
        graph()
```

Accuracy of Crop Prediction


```
In [36]: #Getting Precision
precision = precision_score(y_test,predicted_dt,average='weighted') # precision tp /
#weighted average takes mean of all classes' scores
print('Precision of Decision Tree Classifier is: ',precision*100)
```

Precision of Decision Tree Classifier is: 99.42265395894427

```
In [37]:
    DT2=precision.mean() *100
    def graph():
        data=[DT2]
        alg="Decision Tree Classification"
        plt.figure(figsize=(3,2))
        b=plt.bar(alg,data,color=("green"))
        plt.title("Precision of Crop Prediction",fontsize=15)
        plt.legend(b,data,fontsize=9)
    graph()
```

Precision of Crop Prediction


```
In [38]: #Getting Recall
    recall = recall_score(y_test,predicted_dt,average='weighted') # recall: tp / (tp + f
    print('Recall of Decision Tree Classifier is: ',recall*100)
```

Recall of Decision Tree Classifier is: 99.39393939393939

```
In [39]:
    DT3=recall.mean() *100
    def graph():
        data=[DT3]
        alg="Decision Tree Classification"
        plt.figure(figsize=(3,2))
        b=plt.bar(alg,data,color=("yellow"))
        plt.title("Recall of Crop Prediction",fontsize=15)
        plt.legend(b,data,fontsize=9)
        graph()
```

Recall of Crop Prediction


```
In [40]: #Getting F1 Score
f1 = f1_score(y_test,predicted_dt,average='weighted') # f1: 2 tp / (2 tp + fp + fn)
print('F1 Score of Decision Tree Classifier is: ',f1*100)
```

F1 Score of Decision Tree Classifier is: 99.396174727584

```
In [41]: DT4=f1.mean() *100
    def graph():
        data=[DT4]
        alg="Decision Tree Classification"
        plt.figure(figsize=(3,2))
```

```
b=plt.bar(alg,data,color=("#000080"))
plt.title("F1 Score of Crop Prediction",fontsize=15)
plt.legend(b,data,fontsize=9)
graph()
```

F1 Score of Crop Prediction

```
99.396174727584
75 - 50 - 25 - 0
Decision Tree Classification
```

```
In [42]:
```

```
#Classification Report
cr = classification_report(y_test,predicted_dt)
print('Classification report\n',cr)
```

Classification report

	precision	recall	f1-score	support
0	1.00	1.00	1.00	30
1	1.00	1.00	1.00	30
2	0.94	1.00	0.97	30
3	1.00	1.00	1.00	30
4	1.00	0.97	0.98	30
5	1.00	0.97	0.98	30
6	0.97	1.00	0.98	30
7	1.00	1.00	1.00	30
8	1.00	1.00	1.00	30
9	1.00	1.00	1.00	30
10	1.00	1.00	1.00	30
11	1.00	0.97	0.98	30
12	1.00	1.00	1.00	30
13	1.00	0.97	0.98	30
14	1.00	1.00	1.00	30
15	1.00	1.00	1.00	30
16	0.97	1.00	0.98	30
17	1.00	1.00	1.00	30
18	1.00	1.00	1.00	30
19	1.00	1.00	1.00	30
20	1.00	1.00	1.00	30
21	1.00	1.00	1.00	30
accuracy			0.99	660
macro avg	0.99	0.99	0.99	660
weighted avg	0.99	0.99	0.99	660

In [43]:

```
#Confusion Matrix
cm = confusion_matrix(y_test,predicted_dt)
print('Confusion matrix\n',cm)
```

```
Confusion matrix
```

```
0
                      0
                         0
                            0
                               0
                                  0
                                                               01
[[30 0
        0 0 0
                 0
[ 0 30 0 0
             0
                0
                     0
                        0
                           0
                              0
                                 0
                                                           0
                                                              01
                                    0
 0
    0 30
          0
             0
                                                              01
                                                           0
 0
    0
       0 30
             0
                0
                                                              01
                  0
                     0
                        0
                              0
                                                        0 0
 0
    0
       0
         0 29
                0
                  0
                     0
                                                              01
                        0
                           0
                              0
                                 0
                                    0
                                               1
                                                  0 0 0 0
 0
    0
       1
          0
             0 29
                  0
                     0
                                                              01
                        0
                           0
                              0
                                 0
                                    0
                                       0
                                                  0 0 0 0
 0
    0
       0
          0
             0
                0 30
                     0
                                                              01
                        0
                           0
                              0
                                 0
                                    0
                                       0
                                          0
                                               0
                                                  0 0 0 0
 0
    0
       0
          0
             0
                0
                  0 30
                        0
                                                              01
                           0
                              0
                                 0
                                    0
                                       0
                                          0
                                             0
                                               0
                                                  0
                                                     0
                                                        0
                                                          0
 0
    0
       0
          0
                  0
                                                              0]
             0
                0
                     0 30
                           0
                              0
                                 0
                                    0
                                       0
                                          0
                                             0
                                               0
                                                  0
                                                     0 0 0
       0
          0
             0
                0
 0
    0
                  0
                     0
                        0 30
                                                              0]
```

```
a
    0
       0
           0
               0
                   0
                       0
                           0
                                     30
                                                                              0
                               0
                                   0
                                           a
                                               a
                                                                      0
                                                                          0
                                                                                  0]
                                                   а
                                         29
a
    0
       0
           a
               a
                   a
                           a
                               0
                                   9
                                       a
                                               a
                                                                              0
                                                                                  0]
                       1
                                                   a
0
    0
               0
                   a
                           a
                               0
                                   9
                                       0
                                           0
                                             30
                                                                                  0]
       0
           0
                       0
                                                   a
                                                       a
                                                              0
                                                                              0
                                                 29
0
    0
               0
                           0
                               0
                                   0
                                       0
                                           0
                                               a
       1
           0
                   0
                       0
                                                       a
                                                          0
                                                              0
                                                                              0
                                                                                  0]
0
    0
       0
           0
               0
                   0
                                               0
                                                   0
                                                     30
                       0
                           0
                               0
                                   0
                                       0
                                           0
                                                          0
                                                              0
                                                                  0
                                                                              0
                                                                                  0]
0
    0
       0
           0
               0
                   0
                       0
                           0
                               0
                                   0
                                       0
                                           0
                                               0
                                                   0
                                                       0
                                                         30
                                                              0
                                                                                  0]
0
    0
       0
           0
               0
                   0
                       0
                           0
                               0
                                   0
                                       0
                                           0
                                               0
                                                   0
                                                       0
                                                          0 30
                                                                  0
                                                                                  0]
0
    0
       0
           0
               0
                   0
                       0
                           0
                               0
                                   0
                                       0
                                           0
                                               0
                                                   0
                                                       0
                                                          0
                                                              0 30
                                                                      0
                                                                                  0]
0
    0
       0
           0
               0
                   0
                       0
                           0
                               0
                                   0
                                       0
                                           0
                                               0
                                                       0
                                                          0
                                                              0
                                                                  0 30
                                                                          0
                                                                                  0]
                                                   0
0
    0
       0
           0
               0
                   0
                       0
                           0
                               0
                                   0
                                       0
                                           0
                                               0
                                                   0
                                                       0
                                                          0
                                                              0
                                                                  0
                                                                      0 30
                                                                              0
                                                                                  0]
           0
0
   0
       0
               0
                   0
                       0
                           0
                               0
                                   0
                                       0
                                           0
                                               0
                                                   0
                                                       0
                                                          0
                                                              0
                                                                  0
                                                                      0
                                                                          0 30
                                                                                  0]
                   0
                       0
0
    0
       0
           0
               0
                           0
                               0
                                   0
                                       0
                                           0
                                               0
                                                   0
                                                       0
                                                          0
                                                                          0
                                                              0
                                                                  0
                                                                      0
                                                                              0 30]]
```

```
fig, ax = plt.subplots(figsize=(8,8))
    plot_confusion_matrix(dt, X_test, y_test, ax=ax)
    plt.title('Confusion Matrix of Decision Tree Classifier')
    plt.show()
```



```
In [45]:
DF1 = p.DataFrame()
DF1["y_test"] = y_test
DF1["predicted"] = predicted_dt
DF1.reset_index(inplace=True)
plt.figure(figsize=(20, 5))
plt.plot(DF1["predicted"][:150], marker='x', linestyle='dashed', color='red')
plt.plot(DF1["y_test"][:150], marker='o', linestyle='dashed', color='green')
plt.show()
```

```
20 - 15 - 10 - 20 - 40 - 60 - 80 - 100 - 120 - 140
```

```
In [46]: #Saving ModeL
  joblib.dump(dt,'dt.pkl')
Out[46]: ['dt.pkl']
```

Module 4 Gaussian Naive Bayes

```
In [47]:
          #Model Training
          nb = GaussianNB()
          nb.fit(X_train,y_train)
          predicted_nb = nb.predict(X_test)
In [48]:
          #Getting Accuracy
          accuracy = accuracy\_score(y\_test,predicted\_nb) # accuracy: (tp + tn) / (p + n)
          print('Accuracy of Naive Bayes is: ',accuracy*100)
         Accuracy of Naive Bayes is: 99.39393939393939
In [49]:
          NB1=accuracy.mean() *100
          def graph():
              data=[NB1]
              alg="Naive Bayes Classification"
              plt.figure(figsize=(3,2))
```

Accuracy of Crop Prediction

graph()


```
In [50]: #Getting Precision
precision = precision_score(y_test,predicted_nb,average='weighted') # precision tp /
print('Precision of Naive Bayes is: ',precision*100)
```

Precision of Naive Bayes is: 99.40337749014054

b=plt.bar(alg,data,color=("#450000"))

plt.legend(b,data,fontsize=9)

plt.title("Accuracy of Crop Prediction",fontsize=15)

```
In [51]:

NB2=precision.mean() *100
def graph():
    data=[NB2]
    alg="Naive Bayes Classification"
    plt.figure(figsize=(3,2))
    b=plt.bar(alg,data,color=("green"))
    plt.title("Precision of Crop Prediction",fontsize=15)
    plt.legend(b,data,fontsize=9)
    graph()
```

Precision of Crop Prediction


```
In [52]: #Getting Recall
    recall = recall_score(y_test,predicted_nb,average='weighted') # recall: tp / (tp + f
    print('Recall of Naive Bayes is: ',recall*100)
```

Recall of Naive Bayes is: 99.39393939393939

```
In [53]:

NB3=recall.mean() *100
def graph():
    data=[NB3]
    alg="Naive Bayes Classification"
    plt.figure(figsize=(3,2))
    b=plt.bar(alg,data,color=("yellow"))
    plt.title("Recall of Crop Prediction",fontsize=15)
    plt.legend(b,data,fontsize=9)
    graph()
```

Recall of Crop Prediction


```
In [54]: #Getting F1 Score
f1 = f1_score(y_test,predicted_nb,average='weighted') # f1: 2 tp / (2 tp + fp + fn)
print('F1 Score of Naive Bayes is: ',f1*100)
```

F1 Score of Naive Bayes is: 99.3937709969941

```
In [55]:
     NB4=f1.mean() *100
     def graph():
          data=[NB4]
          alg="Naive Bayes Classification"
          plt.figure(figsize=(3,2))
          b=plt.bar(alg,data,color=("#000080"))
```

```
plt.title("F1 Score of Crop Prediction",fontsize=15)
  plt.legend(b,data,fontsize=9)
graph()
```

F1 Score of Crop Prediction

```
99.3937709969941
75 -
50 -
25 -
0
Naive Bayes Classification
```

In [56]:

```
#Classification Report
cr = classification_report(y_test,predicted_nb)
print('Classification report\n',cr)
```

Classification report precision recall f1-score support 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 1.00 0.98 1.00 1.00 1.00 0.97 0.93 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.98 1.00 0.94 0.97 0.95 1.00 1.00 1.00 0.99 accuracy 0.99 0.99 0.99 macro avg 0.99 weighted avg 0.99 0.99

```
In [57]:
```

```
#Confusion Matrix
cm = confusion_matrix(y_test,predicted_nb)
print('Confusion matrix\n',cm)
```

```
Confusion matrix
```

```
[[30
                                                                            0
                                                                                0
                                                                                    0]
       0
          0
              0
                  0
                      0
                          0
                              0
                                  0
                                      0
                                         0
                                             0
                                                 0
                                                     0
                                                         0
                                                             0
                                                                 0
                                                                     0
                                                                        0
  0 30
         0
             0
                 0
                     0
                         0
                             0
                                 0
                                    0
                                        0
                                            0
                                                0
                                                    0
                                                        0
                                                            0
                                                               0
                                                                   0
                                                                       0
                                                                           0
                                                                               0
                                                                                   0]
  0
      0
        30
             0
                 0
                     0
                         0
                             0
                                 0
                                    0
                                        0
                                            0
                                                0
                                                    0
                                                        0
                                                            0
                                                               0
                                                                   0
                                                                       0
                                                                           0
                                                                               0
                                                                                   0]
  0
     0
         0
            30
                 0
                     0
                         0
                             0
                                 0
                                    0
                                        0
                                            0
                                                0
                                                    0
                                                        0
                                                            0
                                                               0
                                                                   0
                                                                       0
                                                                           0
                                                                               0
                                                                                   0]
  0
      0
         0
             0 30
                     0
                         0
                             0
                                 0
                                    0
                                        0
                                            0
                                                0
                                                    0
                                                        0
                                                            0
                                                               0
                                                                   0
                                                                       0
                                                                           0
                                                                               0
                                                                                   0]
  0
      0
         0
             0
                 0 30
                         0
                             0
                                0
                                    0
                                        0
                                            0
                                                0
                                                    0
                                                        0
                                                            0
                                                               0
                                                                   0
                                                                       0
                                                                           0
                                                                               0
                                                                                   0]
  0
      0
         0
             0
                 0
                     0
                       30
                             0
                                0
                                    0
                                        0
                                            0
                                                0
                                                    0
                                                        0
                                                            0
                                                               0
                                                                   0
                                                                       0
                                                                           0
                                                                               0
                                                                                   0]
  0
      0
         0
             0
                 0
                     0
                         0
                           30
                                0
                                    0
                                        0
                                            0
                                                0
                                                    0
                                                        0
                                                            0
                                                               0
                                                                   0
                                                                       0
                                                                           0
                                                                               0
                                                                                   0]
  0
      0
         0
             0
                 0
                     0
                         0
                             0
                               28
                                    0
                                        0
                                            0
                                                0
                                                    0
                                                        0
                                                            0
                                                               0
                                                                   0
                                                                       0
                                                                           0
                                                                               2
                                                                                   0]
  0
      0
         0
             0
                 0
                     0
                         0
                             0
                                 0
                                   30
                                        0
                                            0
                                                0
                                                    0
                                                        0
                                                            0
                                                               0
                                                                   0
                                                                       0
                                                                           0
                                                                               0
                                                                                   0]
  0
      0
         0
             0
                 0
                     0
                         0
                             0
                                0
                                    0
                                       30
                                            0
                                                0
                                                    0
                                                        0
                                                            0
                                                               0
                                                                   0
                                                                       0
                                                                           0
                                                                               0
                                                                                   0]
  0
      0
         0
             0
                 0
                     0
                         1
                             0
                                0
                                    0
                                        0
                                           29
                                                0
                                                        0
                                                                               0
                                                                                   0]
```

```
a
   0
       0
           0
               0
                   0
                       0
                          0
                              0
                                                                             0
                                   0
                                      0
                                          0
                                             30
                                                  a
                                                                     0
                                                                         0
                                                                                 0]
a
   0
       0
           a
               a
                   a
                       0
                           0
                              0
                                   0
                                      0
                                              a
                                                                             0
                                                                                 0]
                                          0
                                                 30
                                                      a
0
   0
               a
                           a
                              0
                                   0
                                      0
                                          0
                                              a
                                                                                 0]
       0
           0
                   0
                       0
                                                  0
                                                    30
                                                          0
                                                              0
                                                                             0
0
           0
               0
                              0
                                  0
                                      0
                                                        30
   0
       0
                   0
                       0
                           0
                                          0
                                              0
                                                  a
                                                      a
                                                             0
                                                                             0
                                                                                 0]
0
       0
           0
               0
   0
                   0
                       0
                           0
                              0
                                  0
                                      0
                                          0
                                              0
                                                  0
                                                      0
                                                          0 30
                                                                 0
                                                                             0
                                                                                 0]
0
   0
       0
           0
               0
                   0
                       0
                          0
                              0
                                  0
                                      0
                                          0
                                              0
                                                      0
                                                          0
                                                             0 30
                                                                     0
                                                                                 0]
                                                  0
0
   0
       0
           0
               0
                   0
                       0
                          0
                              0
                                  0
                                      0
                                          0
                                              0
                                                      0
                                                          0
                                                             0
                                                                 0 30
                                                                                 0]
                                                  0
0
   0
       0
           0
               0
                   0
                       0
                          0
                              0
                                  0
                                      0
                                          0
                                              0
                                                  0
                                                      0
                                                          0
                                                             0
                                                                 0
                                                                     0 30
                                                                             0
                                                                                 0]
0
   0
       0
           0
               0
                   0
                       0
                          0
                              1
                                  0
                                      0
                                          0
                                              0
                                                  0
                                                      0
                                                          0
                                                             0
                                                                 0
                                                                     0
                                                                         0 29
                                                                                 0]
0
           0
                   0
                       0
                           0
   0
       0
               0
                              0
                                  0
                                      0
                                          0
                                              0
                                                  0
                                                      0
                                                          0
                                                              0
                                                                             0 30]]
                                                                 0
                                                                     0
```

```
fig, ax = plt.subplots(figsize=(8,8))
plot_confusion_matrix(nb, X_test, y_test, ax=ax)
plt.title('Confusion Matrix of Gaussian Naive Bayes')
plt.show()
```



```
In [59]: DF2 = p.DataFrame()
    DF2["y_test"] = y_test
    DF2["predicted"] = predicted_nb
    DF2.reset_index(inplace=True)
    plt.figure(figsize=(20, 5))
    plt.plot(DF2["predicted"][:150], marker='x', linestyle='dashed', color='red')
    plt.plot(DF2["y_test"][:150], marker='o', linestyle='dashed', color='green')
    plt.show()
```

```
20 - 15 - 10 - 20 - 40 - 60 - 80 - 100 - 120 - 140
```

```
In [60]: #Saving ModeL
  joblib.dump(nb,'nb.pkl')
Out[60]: ['nb.pkl']
```

Module 5 AdaBoost classifier

```
In [61]: #Model Training
  ab = AdaBoostClassifier()
  ab.fit(X_train,y_train)
  predicted_ab = ab.predict(X_test)
```

```
In [62]: #Getting Accuracy
accuracy = accuracy_score(y_test,predicted_ab) # accuracy: (tp + tn) / (p + n)
print('Accuracy of Ada Boost Classifier is: ',accuracy*100)
```

Accuracy of Ada Boost Classifier is: 18.1818181818183

```
In [63]:
    AB1=accuracy.mean() *100
    def graph():
        data=[AB1]
        alg="Ada Boost Classifier"
        plt.figure(figsize=(3,2))
        b=plt.bar(alg,data,color=("#450000"))
        plt.title("Accuracy of Crop Prediction",fontsize=15)
        plt.legend(b,data,fontsize=9)
        graph()
```

Accuracy of Crop Prediction


```
In [64]: #Getting Precision
precision = precision_score(y_test,predicted_ab,average='weighted') # precision tp print('Precision of Ada Boost Classifier is: ',precision*100)
```

Precision of Ada Boost Classifier is: 9.358288770053475

```
In [65]:
AB2=precision.mean() *100
def graph():
    data=[AB2]
    alg="Ada Boost Classifier"
    plt.figure(figsize=(3,2))
    b=plt.bar(alg,data,color=("green"))
    plt.title("Precision of Crop Prediction",fontsize=15)
    plt.legend(b,data,fontsize=9)
    graph()
```

Precision of Crop Prediction


```
In [66]: #Getting Recall
    recall = recall_score(y_test,predicted_ab,average='weighted') # recall: tp / (tp + f
    print('Recall of Ada Boost Classifier is: ',recall*100)
```

Recall of Ada Boost Classifier is: 18.1818181818183

```
In [67]:

AB3=recall.mean() *100

def graph():
    data=[AB3]
    alg="Ada Boost Classifier"
    plt.figure(figsize=(3,2))
    b=plt.bar(alg,data,color=("yellow"))
    plt.title("Recall of Crop Prediction",fontsize=15)
    plt.legend(b,data,fontsize=9)
    graph()
```

Recall of Crop Prediction


```
In [68]: #Getting F1 Score
f1 = f1_score(y_test,predicted_ab,average='weighted') # f1: 2 tp / (2 tp + fp + fn)
print('F1 Score of Ada Boost Classifier is: ',f1*100)
```

F1 Score of Ada Boost Classifier is: 11.11111111111111

```
In [69]:
AB4=f1.mean() *100
def graph():
    data=[AB4]
    alg="Ada Boost Classifier"
    plt.figure(figsize=(3,2))
    b=plt.bar(alg,data,color=("#000080"))
```

```
plt.title("F1 Score of Crop Prediction",fontsize=15)
  plt.legend(b,data,fontsize=9)
graph()
```

F1 Score of Crop Prediction

```
10.0 - 11.1111111111111 | 7.5 - 5.0 - 2.5 - 0.0 | Ada Boost Classifier
```

In [70]:

```
#Classification Report
cr = classification_report(y_test,predicted_ab)
print('Classification report\n',cr)
```

Classification	report			
	precision	recall	f1-score	support
0	0.50	1.00	0.67	30
1	0.06	1.00	0.11	30
2	0.00	0.00	0.00	30
3	0.50	1.00	0.67	30
4	0.00	0.00	0.00	30
5	0.00	0.00	0.00	30
6	0.00	0.00	0.00	30
7	0.00	0.00	0.00	30
8	0.00	0.00	0.00	30
9	0.00	0.00	0.00	30
10	0.00	0.00	0.00	30
11	0.00	0.00	0.00	30
12	0.00	0.00	0.00	30
13	0.00	0.00	0.00	30
14	0.00	0.00	0.00	30
15	1.00	1.00	1.00	30
16	0.00	0.00	0.00	30
17	0.00	0.00	0.00	30
18	0.00	0.00	0.00	30
19	0.00	0.00	0.00	30
20	0.00	0.00	0.00	30
21	0.00	0.00	0.00	30
accuracy			0.18	660
macro avg	0.09	0.18	0.11	660
weighted avg	0.09	0.18	0.11	660

In [71]:

```
#Confusion Matrix
cm = confusion_matrix(y_test,predicted_ab)
print('Confusion matrix\n',cm)
```

```
Confusion matrix
```

```
0
                                                                            0]
[[30
         0
             0
                0
                    0
                        0
                           0
                               0
                                  0
                                      0
                                         0
                                             0
                                                0
                                                    0
                                                       0
                                                           0
                                                              0
                                                                  0
  0 30
        0
            0
                0
                   0
                       0
                                                   0
                                                      0
                                                          0
                                                             0
                                                                        0
                                                                           0]
  0
    30
         0
            0
                0
                   0
                       0
                          0
                              0
                                 0
                                     0
                                        0
                                            0
                                                                           0]
  0
     0
         0 30
                0
                   0
                       0
                          0
                              0
                                 0
                                     0
                                                                           0]
  0 30
         0
            0
                0
                   0
                       0
                          0
                              0
                                 0
                                     0
                                        0
                                                                           0]
  0
    30
         0
            0
                0
                   0
                       0
                          0
                              0
                                 0
                                     0
                                        0
                                            0
                                                                           0]
  0
    30
         0
            0
                0
                   0
                       0
                          0
                              0
                                 0
                                     0
                                        0
                                            0
                                                                           0]
[30
     0
         0
            0
                0
                   0
                       0
                          0
                              0
                                 0
                                     0
                                        0
                                                                           0]
  0 30
         0
            0
                0
                   0
                       0
                          0
                              0
                                 0
                                     0
                                        0
                                            0
                                                      0
                                                          0
                                                                        0
                                                                           0]
  0
     0
        0 30
                0
                   0
                      0
                          0
                             0
                                 0
                                    0
                                        0
                                           0
                                               0
                                                   0
                                                      0
                                                          0
                                                             0
                                                                    0
                                                                        0
                                                                           0]
 0 30
        0
            0
                0
                   0
                      0
                          0
                             0
                                 0
                                    0
                                        0
                                           0
                                               0
                                                   0
                                                      0
                                                                    0
                                                                        0
                                                                           0]
 0 30
        0
            0
                0
                   0
                      0
                          0
                             0
                                 0
                                    0
                                        0
                                           0
                                                                           0]
```

```
0 30
       0
          0
              0
                  0
                                                                         0
                     0
                         0
                             0
                                0
                                    0
                                                                     0
                                                                            0]
       0
          0
              0
                  0
                         0
                             0
                                0
                                    0
                                                                            0]
  30
                     0
                  0
                     0
                             0
                                0
                                    0
                                        0
                                                                            0]
       0
          0
              0
                  0
                     0
                         0
                             0
                                0
                                    0
                                        0
                                                   0
                                                                            0]
0
  30
       0
          0
              0
                  0
                     0
                         0
                             0
                                0
                                    0
                                        0
                                           0
                                               0
                                                                        0
                                                                            0]
  30
       0
          0
              0
                  0
                     0
                         0
                             0
                                0
                                    0
                                        0
                                           0
                                                                            0]
  30
       0
          0
              0
                  0
                     0
                         0
                             0
                                0
                                    0
                                        0
                                                                            0]
                         0
                             0
                                                                            0]
  30
       0
          0
              0
                  0
                     0
                         0
                             0
                                0
                                    0
                                        0
                                           0
                                                      0
                                                          0
                                                              0
                                                                     0
                                                                        0
                                                                            0]
                                               0
                                                   0
0
  30
                                                                            0]]
```

```
fig, ax = plt.subplots(figsize=(7,7))
plot_confusion_matrix(ab, X_test, y_test, ax=ax)
plt.title('Confusion Matrix of AdaBoost Classifier')
plt.show()
```



```
In [73]:
    DF3= p.DataFrame()
    DF3["y_test"] = y_test
    DF3["predicted"] = predicted_ab
    DF3.reset_index(inplace=True)
    plt.figure(figsize=(20, 5))
    plt.plot(DF3["predicted"][:400], marker='x', linestyle='dashed', color='red')
    plt.plot(DF3["y_test"][:400], marker='o', linestyle='dashed', color='green')
    plt.show()
```



```
In [74]:
          #Saving Model\
          joblib.dump(ab, 'ab.pkl')
Out[74]: ['ab.pkl']
```

Module 6 Voting Classifier

```
In [75]:
          vot_clf = VotingClassifier(estimators=[('DecisionTree', dt), ('NaiveBayes', nb), ('A
In [76]:
          vot_clf.fit(X_train, y_train)
          pred_vtng = vot_clf.predict(X_test)
In [77]:
          #Getting Accuracy
          accuracy = accuracy\_score(y\_test,pred\_vtng) # accuracy: (tp + tn) / (p + n)
          print('Accuracy of Voting Classifier is: ',accuracy*100)
         Accuracy of Voting Classifier is: 98.63636363636363
In [78]:
          VC1=accuracy.mean() *100
          def graph():
              data=[VC1]
              alg="Voting Classifier"
              plt.figure(figsize=(3,2))
              b=plt.bar(alg,data,color=("#450000"))
              plt.title("Accuracy of Crop Prediction", fontsize=15)
              plt.legend(b,data,fontsize=9)
          graph()
           Accuracy of Crop Prediction
                     98.63636363636363
           75
           50
           25
                    Voting Classifier
```

```
In [79]:
          #Getting Precision
          precision = precision_score(y_test,pred_vtng,average='weighted') # precision tp / (t
          print('Precision of Voting Classifier is: ',precision*100)
```

Precision of Voting Classifier is: 98.89643463497454

```
In [80]:
          VC2=precision.mean() *100
          def graph():
              data=[VC2]
              alg="Voting Classifier"
              plt.figure(figsize=(3,2))
              b=plt.bar(alg,data,color=("green"))
              plt.title("Precision of Crop Prediction",fontsize=15)
              plt.legend(b,data,fontsize=9)
          graph()
```

Precision of Crop Prediction

```
98.89643463497454
75 -
50 -
25 -
0 Voting Classifier
```

```
In [81]: #Getting Recall
    recall = recall_score(y_test,pred_vtng,average='weighted') # recall: tp / (tp + fn)
    print('Recall of Voting Classifier is: ',recall*100)
```

Recall of Voting Classifier is: 98.63636363636363

```
In [82]:

VC3=recall.mean() *100

def graph():
    data=[VC3]
    alg="Voting Classifier"
    plt.figure(figsize=(3,2))
    b=plt.bar(alg,data,color=("yellow"))
    plt.title("Recall of Crop Prediction",fontsize=15)
    plt.legend(b,data,fontsize=9)
    graph()
```


Voting Classifier

Λ

```
In [83]: #Getting F1 Score
f1 = f1_score(y_test,pred_vtng,average='weighted') # f1: 2 tp / (2 tp + fp + fn)
print('F1 Score of Voting Classifier is: ',f1*100)
```

F1 Score of Voting Classifier is: 98.69203735727399

```
In [84]:

VC4=f1.mean() *100

def graph():
         data=[VC4]
         alg="Voting Classifier"
         plt.figure(figsize=(3,2))
         b=plt.bar(alg,data,color=("#000080"))
         plt.title("F1 Score of Crop Prediction",fontsize=15)
         plt.legend(b,data,fontsize=9)
         graph()
```

```
F1 Score of Crop Prediction
```

```
98.69203735727399
75 -
50 -
25 -
Voting Classifier
```

```
In [85]:
```

```
#Classification Report
cr = classification_report(y_test,pred_vtng)
print('Classification report\n',cr)
```

```
Classification report
                precision
                               recall f1-score
                                                    support
            0
                     1.00
                                1.00
                                           1.00
                                                         30
                     0.79
                                1.00
                                           0.88
                                                         30
            1
            2
                                1.00
                                           1.00
                                                         30
                     1.00
                     1.00
                                1.00
                                           1.00
                                                         30
            3
                     1.00
                                0.97
                                           0.98
                                                         30
            4
            5
                     1.00
                                0.97
                                           0.98
                                                         30
                     0.97
                                1.00
                                           0.98
                                                         30
            6
            7
                                                         30
                     1.00
                                1.00
                                           1.00
            8
                                           0.97
                                                         30
                     1.00
                                0.93
            9
                                                         30
                     1.00
                                1.00
                                           1.00
                                                         30
           10
                     1.00
                                1.00
                                           1.00
                                           0.98
                                                         30
           11
                     1.00
                                0.97
                                                         30
           12
                     1.00
                                1.00
                                           1.00
                                           0.98
           13
                     1.00
                                0.97
                                                         30
           14
                     1.00
                                1.00
                                           1.00
                                                         30
           15
                     1.00
                                1.00
                                           1.00
                                                         30
                     1.00
                                1.00
                                           1.00
                                                         30
           16
                     1.00
                                0.93
                                           0.97
                                                         30
           17
                     1.00
                                1.00
                                           1.00
                                                         30
           18
           19
                     1.00
                                           1.00
                                                         30
                                1.00
           20
                     1.00
                                           0.98
                                                         30
                                0.97
           21
                                                         30
                     1.00
                                1.00
                                           1.00
    accuracy
                                           0.99
                                                        660
                     0.99
                                0.99
                                           0.99
   macro avg
                                                        660
                     0.99
                                           0.99
weighted avg
                                0.99
                                                        660
```

```
In [86]:
```

```
#Confusion Matrix
cm = confusion_matrix(y_test,pred_vtng)
print('Confusion matrix\n',cm)
```

```
Confusion matrix
```

```
[[30
                          0
                              0
                                  0
                                      0
                                          0
                                              0
                                                  0
                                                      0
                                                         0
                                                             0
                                                                 0
                                                                     0
                                                                         0
                                                                             0
                                                                                 0
                                                                                    0]
       a
           a
               0
                   0
                       0
  0 30
          0
             0
                 0
                     0
                         0
                             0
                                                        0
                                                            0
                                                                0
                                                                    0
                                                                                0
                                                                                   01
                                 0
                                     0
                                         0
                                             0
                                                0
                                                    0
                                                                        0
                                                                            a
  0
      0
        30
             0
                 0
                     0
                                                                                   0]
                         0
                             0
                                 0
                                     0
                                         0
                                             0
                                                0
                                                    0
                                                        0
                                                            0
                                                                0
                                                                    a
                                                                        0
                                                                            0
                                                                                0
                                                                                   0]
  0
      0
          0
            30
                 0
                     0
                         0
                             0
                                 0
                                     0
                                         0
                                             0
                                                0
                                                    0
                                                        0
                                                            0
                                                                0
                                                                    0
                                                                        0
                                                                            0
                                                                                0
  0
      1
          0
             0
                29
                     0
                         0
                             0
                                                                                   01
                                 0
                                     0
                                         0
                                             0
                                                0
                                                    0
                                                        0
                                                            0
                                                                0
                                                                    0
                                                                        0
                                                                            0
                                                                                0
  0
      1
          0
             0
                 0
                    29
                         0
                             0
                                 0
                                                                                   01
                                     0
                                         0
                                             0
                                                0
                                                    0
                                                        0
                                                            0
                                                                0
                                                                    0
                                                                        0
                                                                            0
                                                                                0
                                                                                   0]
  0
      0
          0
             0
                 0
                     0
                        30
                             0
                                 0
                                     0
                                         0
                                             0
                                                0
                                                    0
                                                        0
                                                            0
                                                                0
                                                                    0
                                                                        0
                                                                            0
                                                                                0
  0
      0
          0
             0
                            30
                                 0
                 0
                     0
                         0
                                     0
                                         0
                                             0
                                                0
                                                    0
                                                        0
                                                            0
                                                                0
                                                                    0
                                                                        0
                                                                            0
                                                                                0
                                                                                   0]
  0
      2
          0
             0
                                28
                 0
                     0
                         0
                             0
                                     0
                                         0
                                             0
                                                0
                                                    0
                                                        0
                                                            0
                                                                0
                                                                    0
                                                                        0
                                                                            0
                                                                                0
                                                                                   0]
  0
      0
          0
             0
                 0
                     0
                         0
                             0
                                 0
                                    30
                                         0
                                             0
                                                0
                                                    0
                                                        0
                                                            0
                                                                0
                                                                    0
                                                                        0
                                                                            0
                                                                                0
                                                                                   0]
  0
      0
          0
             0
                 0
                     0
                         0
                             0
                                 0
                                     0
                                       30
                                             0
                                                0
                                                    0
                                                        0
                                                            0
                                                                0
                                                                    0
                                                                        0
                                                                            0
                                                                                0
                                                                                   0]
  0
      0
          0
             0
                 0
                     0
                         1
                             0
                                 0
                                     0
                                         0
                                           29
                                                0
                                                    0
                                                        0
                                                            0
                                                                0
                                                                    0
                                                                        0
                                                                            0
                                                                               0
                                                                                   0]
  0
      0
          0
             0
                 0
                     0
                         0
                             0
                                 0
                                     0
                                         0
                                             0
                                               30
                                                    0
                                                        0
                                                            0
                                                                0
                                                                    0
                                                                        0
                                                                            0
                                                                               0
                                                                                   0]
  0
      1
          0
             0
                 0
                     0
                         0
                             0
                                 0
                                     0
                                         0
                                            0
                                                0
                                                   29
                                                        0
                                                            0
                                                                0
                                                                    0
                                                                        0
                                                                            0
                                                                                0
                                                                                   0]
  0
      0
          0
             0
                 0
                     0
                         0
                             0
                                 0
                                     0
                                        0
                                            0
                                                0
                                                    0
                                                       30
                                                                                0
                                                                                   0]
```

```
0
      0
          0
             0
                 0
                                                                      0
                    0
                        0
                           0
                               0
                                   0
                                                   30
                                                               0
                                                                         0]
   0
             0
                 0
                     0
                        0
                           0
                               0
                                   0
                                                                         0]
                     0
                        0
                           0
                               0
                                   0
                                      0
                 0
                                                                         0]
   0
             0
                 0
                     0
                        0
                           0
                               0
                                   0
                                      0
       0
          0
                                                                         0]
0
      0
          0
             0
                 0
                    0
                        0
                           0
                               0
                                                                         0]
   0
                                   0
                                      0
                                          0
                                                              0 30
                                                                      0
0
   1
      0
          0
             0
                 0
                    0
                        0
                           0
                               0
                                   0
                                      0
                                          0
                                             0
                                                 0
                                                    0
                                                        0
                                                           0
                                                               0
                                                                  0 29
                                                                         0]
                                                                      0 30]]
```

```
fig, ax = plt.subplots(figsize=(7,7))
plot_confusion_matrix(vot_clf, X_test, y_test, ax=ax)
plt.title('Confusion Matrix of Voting Classifier')
plt.show()
```



```
In [88]:
    DF4 = p.DataFrame()
    DF4["y_test"] = y_test
    DF4["predicted"] = pred_vtng
    DF4.reset_index(inplace=True)
    plt.figure(figsize=(20, 5))
    plt.plot(DF4["predicted"][:150], marker='x', linestyle='dashed', color='red')
    plt.plot(DF4["y_test"][:150], marker='o', linestyle='dashed', color='green')
    plt.show()
```

```
20
15
10
5
0 20 40 60 80 100 120 140
```

```
In [89]: #Saving Model
    joblib.dump(vot_clf,'vot_clf.pkl')
```

```
Out[89]: ['vot_clf.pkl']
```

```
def graph():
    data=[DT1,AB1,NB1,VC1]
    alg=["DecisionTreeClassifier","AdaBoostClassifier","NaiveBayesClassifier","Votin
    plt.figure(figsize=(8,4))
    b=plt.barh(alg,data,height=0.3, color=['lightgreen','pink','lightblue','#D7A1F9'
    plt.title("Accuracy comparison",fontsize=15)
    plt.legend(b,data,fontsize=9, bbox_to_anchor=(1.0, 0.5))
    graph()
```



```
def graph():
    data=[DT2,AB2,NB2,VC2]
    alg=["DecisionTreeClassifier","AdaBoostClassifier","NaiveBayesClassifier","Votin
    plt.figure(figsize=(8,4))
    b=plt.barh(alg,data,height=0.3, color=['lightgreen','pink','lightblue','#D7A1F9'
    plt.title("Precision comparison",fontsize=15)
    plt.legend(b,data,fontsize=9,bbox_to_anchor=(1.0, 0.5))
graph()
```



```
def graph():
    data=[DT3,AB3,NB3,VC3]
    alg=["DecisionTreeClassifier","AdaBoostClassifier","NaiveBayesClassifier","Votin
    plt.figure(figsize=(8,4))
    b=plt.barh(alg,data,height=0.3, color=['lightgreen','pink','lightblue','#D7A1F9'
    plt.title("Recall comparison",fontsize=15)
```

```
plt.legend(b,data,fontsize=9,bbox_to_anchor=(1.0, 0.5))
graph()
```



```
def graph():
    data=[DT4,AB4,NB4,VC4]
    alg=["DecisionTreeClassifier","AdaBoostClassifier","NaiveBayesClassifier","Votin
    plt.figure(figsize=(8,4))
    b=plt.barh(alg,data,height=0.3, color=['lightgreen','pink','lightblue','#D7A1F9'
    plt.title("F1 score comparison",fontsize=15)
    plt.legend(b,data,fontsize=9, bbox_to_anchor=(1.0, 0.5))
    graph()
```



```
In [94]:
          plt.figure(figsize=(15,6))
          plt.subplot(2, 2, 1)
          plt.title("DecisionTreeClassifier")
          plt.plot(DF1["predicted"][:150],color='red')
          plt.subplot(2,2,3)
          plt.title("NaiveBayesClassifer")
          plt.plot(DF2["predicted"][:150],color='green')
          plt.subplot(2, 2, 2)
          plt.title("AdaBoostClassifier")
          plt.plot(DF3["predicted"][:400],color='blue')
          plt.subplot(2,2,4)
          plt.title("VotingClassifier")
          plt.plot(DF4["predicted"][:150],color='black')
          plt.tight_layout(4)
          plt.show()
```



```
finalaccuracy_dt = cross_val_score(dt, inputs, output, scoring='accuracy')
print('Cross validation test results of accuracy of DecisionTreeClassifier:')
print(finalaccuracy_dt)
finalaccuracy_ab = cross_val_score(ab, inputs, output, scoring='accuracy')
print('Cross validation test results of accuracy of AdaBoostClassifier:')
print(finalaccuracy_ab)
finalaccuracy_nb = cross_val_score(nb, inputs, output, scoring='accuracy')
print('Cross validation test results of accuracy of NaiveBayesClassifier:')
print(finalaccuracy_nb)
finalaccuracy_vt = cross_val_score(vot_clf, inputs, output, scoring='accuracy')
print('Cross validation test results of accuracy of VotingClassifier:')
print(finalaccuracy_vt)
```

Cross validation test results of accuracy of DecisionTreeClassifier: [0.98636364 0.98409091 0.98863636 0.99090909 0.98181818]
Cross validation test results of accuracy of AdaBoostClassifier: [0.22727273 0.18181818 0.18181818 0.18181818 0.18181818]
Cross validation test results of accuracy of NaiveBayesClassifier: [0.99772727 0.99545455 0.99545455 0.99545455 0.99090909]
Cross validation test results of accuracy of VotingClassifier: [1. 0.98636364 0.98636364 0.98863636 0.97954545]

```
In [96]:
    a=[1,2,3,4,5]
    plt.figure(figsize=(8,10))
    plt.subplot(2,1,1)
    plt_d=plt.plot(finalaccuracy_dt, a, color = 'r')
    #plt.legend(plt_d, "DecisionTreeClassifier", fontsize=9, loc='center left', bbox_to_anc
    plt_n=plt.plot(finalaccuracy_nb, a, color = 'y')
    #plt.legend(plt_n, "NaiveBayesClassifier", fontsize=9, loc='center left', bbox_to_ancho
    plt_v=plt.plot(finalaccuracy_vt, a, color = 'g')
    plt.subplot(2,1,2)
    plt_a=plt.plot(finalaccuracy_ab, a, color = 'b')
    plt_arr=[plt_d,plt_n,plt_v,plt_a]
    n_arr=["DecisionTreeClassifier", "NaiveBayesClassifier", "VotingClassifier", "AdaBoostC
    plt.show()
```


