Math 239 Fall 2014 Assignment 1 Solutions

- 1. Let $n \in \mathbb{N}$. Define E_n to be the set of all subsets of [n] of even cardinality, and define O_n to be the set of all subsets of [n] of odd cardinality.
 - (a) {3 marks} Define a bijection $f: E_n \to O_n$. Prove that for any $X \in E_n$, $f(X) \in O_n$. Provide the inverse of f. (Note: The mapping $f(A) = [n] \setminus A$ only works when n is odd. We would like you to come up with a bijection that works for all n.)

Solution. One mapping is $f: E_n \to O_n$ where for any $X \in E_n$,

$$f(X) = \left\{ \begin{array}{ll} X \setminus \{1\} & \text{ when } 1 \in X \\ X \cup \{1\} & \text{ when } 1 \not\in X \end{array} \right.$$

We note that X has even size, and f(X) either removes 1 element from X or adds 1 element to X. So f(X) must have odd size, hence $f(X) \in O_n$.

The inverse function is $f^{-1}: O_n \to E_n$ where for any $Y \in O_n$,

$$f^{-1}(Y) = \left\{ \begin{array}{ll} Y \setminus \{1\} & \text{ when } 1 \in Y \\ Y \cup \{1\} & \text{ when } 1 \not \in Y \end{array} \right.$$

(b) $\{2 \text{ marks}\}\$ Illustrate your bijection by pairing up each element X of E_4 with its image f(X) of O_4 .

(c) $\{2 \text{ marks}\}\$ Determine (with proof) the cardinalities of E_n and O_n .

Solution. Since f is a bijection between E_n and O_n , we can conclude that $|E_n| = |O_n|$. Also, if S is the set of all subsets of [n], then $S = E_n \cup O_n$ is a disjoint union of sets. Therefore, $|S| = |E_n| + |O_n| = 2|E_n|$. Since we know that $|S| = 2^n$, we get $|E_n| = 2^{n-1}$ and $|O_n| = 2^{n-1}$.

(d) {3 marks} Use the results in this question to give a combinatorial proof of the following identity:

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0.$$

Solution. Notice that $(-1)^k = 1$ when k is even, and $(-1)^k = -1$ when k is odd. By moving all the terms for odd k to the right hand side, we can rewrite the identity as

$$\sum_{\substack{k \text{ is even} \\ 0 < k < n}} \binom{n}{k} = \sum_{\substack{k \text{ is odd} \\ 0 < k < n}} \binom{n}{k}.$$

We can prove this identity combinatorially as follows. Let S be the set of all subsets of [n], and let S_k be the set of all subsets of [n] of size k. We see that $E_n = S_0 \cup S_2 \cup \cdots \cup S_{2\lfloor n/2 \rfloor}$ and $O_n = S_1 \cup S_3 \cup \cdots \cup S_{2\lfloor n/2 \rfloor+1}$. Since these are disjoint unions and $|E_n| = |O_n|$, we see that

$$\sum_{\substack{k \text{ is even} \\ 0 < k < n}} |S_k| = \sum_{\substack{k \text{ is odd} \\ 0 < k < n}} |S_k|.$$

Since $|S_k| = \binom{n}{k}$, the result follows.

(e) {2 marks} Give an algebraic proof of the identity in part (d).

Solution. Recall that the Binomial theorem is $(1+x)^n = \sum_{k>0} \binom{n}{k} x^k$. By substituting x=-1, we get

$$\sum_{k>0} \binom{n}{k} (-1)^k = (1+(-1))^n = 0.$$

2. $\{4 \text{ marks}\}\ \text{Let } x,y,z,n$ be positive integers such that $x\leq y\leq z\leq n$. Consider the following set.

$$S=\{(X,Y,Z)\mid X\subseteq Y\subseteq Z\subseteq [n], |X|=x, |Y|=y, |Z|=z\}.$$

By counting S in two different ways, prove that

$$\binom{n}{x}\binom{n-x}{y-x}\binom{n-y}{z-y} = \binom{n}{z}\binom{z}{y}\binom{y}{x}.$$

Solution. We will count the set of all triples in S in two ways.

In the first method, we will choose X first. Since X is an x-subset of [n], there are $\binom{n}{x}$ ways to pick X. After we have picked X, we note that Y must include X, so out of the y elements of Y, x of them are chosen. So we need to choose y-x elements out of $[n]\setminus X$, which has size n-x. So for every X, there are $\binom{n-x}{y-x}$ possible Y. After we have picked X,Y, we note that Z must include Y, so out of the z elements of Z, y of them are chosen. So we need to choose z-y elements out of $[n]\setminus Y$, which has size n-y. So for every choice of X and Y, there are $\binom{n-y}{z-y}$ ways to choose Z. In total, $|S| = \binom{n}{x}\binom{n-x}{y-x}\binom{n-y}{z-y}$.

In the second method, we will choose Z first. Since Z is a z-subset of [n], there are $\binom{n}{z}$ ways to pick Z. After we have picked Z, we see that Y is a y-subset of Z, so there are $\binom{z}{y}$ ways to choose Y. After we have picked Y, we see that X is an x-subset of Y, so there are $\binom{y}{x}$ ways to choose X. In total, $|S| = \binom{n}{z}\binom{z}{y}\binom{y}{x}$, hence the identity holds.

3. {4 marks} Give a combinatorial proof of the following identity.

$$3^{n} = \sum_{i=0}^{n} \binom{n}{i} 2^{n-i}.$$

(Hint: Start by finding a set whose cardinality is 3^n .)

Solution. Consider the set $S = \{1, 2, 3\}^n$, which consist of all *n*-tuples (a_1, \ldots, a_n) where each $a_i \in \{1, 2, 3\}$. Clearly $|S| = 3^n$.

We partition S into n+1 sets S_0, \ldots, S_n where for each $i=0,\ldots,n,$ S_i is the set of elements of S that contains exactly i 1's. We can count S_i by first deciding which i of the n spots are 1's, then fill in the remaining n-i spots with either 2 or 3. There are $\binom{n}{i}$ ways to choose the i spots, and 2^{n-i} ways to fill in the remaining spots. So $|S_i| = \binom{n}{i} 2^{n-i}$.

Since $S = S_0 \cup \cdots \cup S_n$ is a disjoint union,

$$3^{n} = \sum_{i=0}^{n} \binom{n}{i} 2^{n-i}.$$

- 4. Let S be the set of all subsets of [3].
 - (a) $\{2 \text{ marks}\}\$ Let w be the weight function on S such that $w(\emptyset) = 0$, and for any nonempty set $A \in S$, w(A) is the largest element in A. Determine the generating series $\Phi_S(x)$ with respect to w.

Solution. We can check the weight of each subset of [3]:

$$w(\emptyset)=0,\quad w(\{1\})=1,\quad w(\{2\})=2,\quad w(\{3\})=3,$$

$$w(\{1,2\})=2,\quad w(\{1,3\})=3,\quad w(\{2,3\})=3,\quad w(\{1,2,3\})=3.$$

Using these weights, we see that

$$\Phi_S(x) = 1 + x + 2x^2 + 4x^3$$
.

(b) $\{2 \text{ marks}\}\ \text{Let } w^* \text{ be the weight function on } S \text{ such that for any } A \in S, \ w^*(A) = 3w(A) + 1.$ Determine the generating series $\Phi_S^*(x)$ with respect to w^* .

Solution. The new weights are

$$w(\emptyset)=1,\quad w(\{1\})=4,\quad w(\{2\})=7,\quad w(\{3\})=10,$$

$$w(\{1,2\})=7,\quad w(\{1,3\})=10,\quad w(\{2,3\})=10,\quad w(\{1,2,3\})=10.$$

Using these weights, we see that

$$\Phi_S(x) = x + x^4 + 2x^7 + 4x^{10}$$
.

(c) {3 marks} In general, let T be a set and let w be a weight function on T. Let $\Phi_T(x)$ be the generating series with respect to w. For positive integers k, m, define w^* to be the weight function on T where for any $a \in T$, $w^*(a) = k \cdot w(a) + m$. Let $\Phi_T^*(x)$ be the generating series with respect to w^* . Use the definition of generating series to determine a relationship between $\Phi_T(x)$ and $\Phi_T^*(x)$.

Solution. Using the definition of generating series, we have

$$\Phi_T^*(x) = \sum_{\sigma \in T} x^{w^*(\sigma)}$$

$$= \sum_{\sigma \in T} x^{k \cdot w(\sigma) + m}$$

$$= \sum_{\sigma \in T} x^m \cdot (x^k)^{w(\sigma)}$$

$$= x^m \Phi_T(x^k).$$