Introduction to word2vec (skip-gram)

Farid Khafizov Aug 19, 2021

http://projector.tensorflow.org/

Content

- 1. Introduction
 - a. Define "meaning"
 - b. Learning (new) words
- 2. Problem statement
- 3. Skip-gram Algorithm [1,2]
- 4. Demonstration
- 5. How technique becomes technology
- 6. Some Fun Examples

Problem statement: identify words with similar meaning

Q1: Can machines learn the meaning of words?

What do we mean by "meaning"?

Winograd schema challenge

- The city councilmen refused the demonstrators a permit because they <u>feared</u> violence.
- The city councilmen refused the demonstrators a permit because they <u>advocated</u> violence.

Natural language understanding (NLU) is central in NLP. Kevin Gimpel: "the biggest open problems (in NLP) are related to natural language understanding. [...] we should develop systems that read and understand text the way a person does"

How do we learn meaning of words?

- He handed her a glass of bardiwac.
- 2. Pete staggered to his feet, face flushed from too much bardiwac.
- 3. Malbec, one of the lesser-known bardiwac grapes, responds well to Australia's sunshine.
- 4. The drinks were delicious: blood-red bardiwac as well as light, sweet Rhenish.
- 5. I dined off bread and cheese and this excellent bardiwac.
- 6. Beef dished are made to complement the bardiwac.

Answer to Q1

• Machines <u>can not</u> learn "meaning" of words. We are not there yet.

 However machines can figure out if a word representation is <u>close</u> to another word's representation in a given context.

Embedding

Text = "Ann was happy to be finally home.

Pete was thrilled to see Ann returned."

One-hot encoding (sparse embedding):

• "ann" =
$$[1,0,...,0,...,0] = v_{ann}$$

• "happy" =
$$[0,0,...,1,...,0,...,0] = v_{happy}$$

• "returned" = [0,0,...,0,...,0,...,1]

Sparse embedding vs

Dense embedding

Which one is better?

Similarity(v_{happy} , $v_{thrilled}$) = 0

Similarity(v_{happy} , $v_{thrilled}$) = 0.98

Illustration

https://turbomaze.github.io/word2vecjson

Similar Words

Enter a word and see words with similar vectors.

happy	List words
happy	1
glad	0.7408889975979509
pleased	0.6632168300400823
thrilled	0.651404662202906
satisfied	0.6437953159801051
proud	0.6360420824282996
delighted	0.6272380305363671
disappointed	0.6269950290513414
excited	0.6247663940787201
happier	0.624462516505867

A simpler problem

Separate words according to their context via embedding words to 2D space.

Note: for us a word embedding is a 2D vector, or a point on a plane

Random Embedding and Desired Embedding

Find embedding reflecting semantics of words in a given context.

GIVEN

- Fish swim in deep water.
- Ocean is very deep.
- TEXT:
- Fish swim in darkness.
 - Birds are high in the sky.
 - Birds fly very high.
 - On a sunny day the sky is full of light.

VOCABULARY (14 words)= ['birds', 'darkness', 'day', 'deep', 'fish', 'fly', 'full', 'high', 'light', 'ocean', 'sky', 'sunny', 'swim', 'water']

and RANDOM embedding:

Find a BETTER embedding:

APPROACH:

- Use context
- WINDOW SIZE = 2
- Embedding Dim=2
- 44 CONTEXT PAIRS

label	input	
swim	fish	0
deep	fish	1
fish	swim	2
deep	swim	3
water	swim	4
full	light	43

Method

Pairs of words for training

• Fish swim in deep water.

• Ocean is very deep.

center context

swim

deep

fish

deep

water

day

sky

light

sky

full

fish

fish

swim

swim

swim

full

full

full

light

light

0

3

39

40

41

42

43

- Fish swim in darkness.
- Birds are high in the sky.
- Birds fly very high.
- On a sunny day the sky is full of light.

Random initialization of W0

vocab	init_embedding				
birds	[0.04, 0.15]				
darkness	[-0.8, -0.68]				
day	[0.27, 1.54]				
deep	[1.57, -0.06]				
fish	[0.61, 1.68]				
fly	[1.2, 1.08]				
full	[-1.68, -2.54]				
high	[-0.83, 0.72]				
light	[0.69, -0.93]				
ocean	[-1.5 <mark>1</mark> , -3.47]				
sky	[-0.54, 0.37]				
sunny	[-0.97, -0.8]				
swim	[-1.3, -0.15]				
water	[0.89, 0.31]				

Sketch of the Training Process

```
For ('birds', 'fly')
     birds: x \longrightarrow x = W_0[0,:] = (0.5, -0.4)
                                                                                                       0.5 - 0.3
     fly: y \longrightarrow y' = W_1[:,5] = (-0.5, 0.5)^t
                                                                                                    [0.5 - 0.1]
                                                                                                    [-0.4 - 0.4]
                                                                                         W_0 =
                                                                                                     [-0.2 - 0.2]
                                                                                                    [0.2 0.5]
                                                                                                    [-0.2 \quad 0.1]
                                                                                                    [0.1 - 0.1]
                                                                                                    [ 0.5 0.1]
                                                                                                    [-0.6 - 0.1]
                                                                                                    [0.3 - 0.2]
                                                                                                    [-0.6 - 0.]
W_1 = \begin{bmatrix} -0.2 & 0.5 & 0. & 0.5 & -0.3 & -0.5 & -0.1 & 0.1 & 0.2 & -0.1 & -0.3 & -0.5 & -0.1 & 0.2 \\ [-0.3 & -0.2 & -0.6 & -0.6 & 0.6 & 0.5 & 0.3 & 0.3 & 0.6 & 0.1 & -0.1 & 0.1 & 0.1 \end{bmatrix}
```


y' = W₁[:,5] x.y' Compute Utility Function (average log likelihood)

Optimize Weights W₀, W₁

x.y'

Целевая функция

$$P(w_{context}|w_{center}) = P(y|x) = \frac{\exp(x \cdot y')}{\sum_{v=1}^{|V|} \exp(x \cdot y'_v)} = \frac{\exp(x \cdot y')}{D(x, W_1)}$$

$$\log P(y_{t+j}|x_t) = x_t \cdot y'_{t+j} - \log D(x_t, W_1)$$

$$U(W_0, W_1) = \frac{1}{T} \sum_{t=1}^{T} \sum_{-c \le j \le c, j \ne 0} \log P(y_{t+j} | x_t)$$

Given a sequence of training words $w_1, w_2, w_3, \ldots, w_T$, the objective of the Skip-gram model is to maximize $U(W_0, W_1)$.

$$\max_{W_0,W_1} U(W_0,W_1)$$

Results

Q2: Can we simplify skip-gram?

Let $W_1 = W_0^t$

```
For ('birds', 'fly')
birds: x \longrightarrow x = W_0[0,:] = (0.5, -0.4)
fly: y \longrightarrow y' = W_0^t[:,5] = (0.2, -0.2)^t
```


Part4: Demo

https://github.com/fkhafizov/w2v intro

How technique becomes technology

Q3: How to scale?

How many words are out there?

- 470k in Webser's 3rd New International Dictionary
- 170k in current use per Oxford English Dictionary
- 20k-35k used by average native speaker

Technique ==> Technology

- 1. Distributed architecture and vocab optimization
- 2. Subsampling frequent words ==> Speed up computation Idea: Discard each training word w_i with probability $P(w_i)$

$$P(w_i) = \begin{cases} \sqrt{1 - \frac{t}{f(w_i)}} &, & \text{if } f(w_i) > t \\ 0 &, & \text{otherwise} \end{cases}$$

3. Negative sampling (NEG) ==> Improves optimization.

Idea: add words from "negative" sample to computation of utility function

Subsampling of frequent words

In very large corpora, the most frequent words can easily occur hundreds of millions of times (e.g., "in", "the", and "a"). Such words usually provide less information value than the rare words. For example, while the Skip-gram model benefits from observing the co-occurrences of "France" and "Paris", it benefits much less from observing the frequent co-occurrences of "France" and "the", as nearly every word co-occurs frequently within a sentence with "the". This idea can also be applied in the opposite direction; the vector representations of frequent words do not change significantly after training on several million examples.

To counter the imbalance between the rare and frequent words, we used a simple subsampling approach: each word w_i in the training set is discarded with probability computed by the formula

$$P(w_i) = 1 - \sqrt{\frac{t}{f(w_i)}} \tag{5}$$

where $f(w_i)$ is the frequency of word w_i and t is a chosen threshold, typically around 10^{-5} . We chose this subsampling formula because it aggressively subsamples words whose frequency is greater than t while preserving the ranking of the frequencies. Although this subsampling formula was chosen heuristically, we found it to work well in practice. It accelerates learning and even significantly improves the accuracy of the learned vectors of the rare words, as will be shown in the following sections.

[Mikolov 2013.10]

Negative Sampling

simplify NCE as long as the vector representations retain their quality. We define Negative sampling (NEG) by the objective

$$\log \sigma(v_{w_O}^{\prime \top} v_{w_I}) + \sum_{i=1}^k \mathbb{E}_{w_i \sim P_n(w)} \left[\log \sigma(-v_{w_i}^{\prime \top} v_{w_I}) \right]$$

$$\tag{4}$$

which is used to replace every $\log P(w_O|w_I)$ term in the Skip-gram objective. Thus the task is to distinguish the target word w_O from draws from the noise distribution $P_n(w)$ using logistic regression, where there are k negative samples for each data sample. Our experiments indicate that values of k in the range 5–20 are useful for small training datasets, while for large datasets the k can be as small as 2–5. The main difference between the Negative sampling and NCE is that NCE needs both

[Mikolov 2013.10]

```
BAD SOLUTION: w_i=x='birds' w_o=y='ocean' w_n=n='fly' x= [ 1.1 -3.9] x= [ 0.1 -4.0] x= 15.7, x= sig(-xn)=1.5e-07, x= [ 1.1 -3.9] x= [-0.1 3.2] x= -12.6, x= sig(xy)=3.4e-06, x= [ 1.1 -3.9] x= [ 0.1 -4.0] x= 15.7, x= sig(xy)=0.99, x= [ 1.1 -3.9] x= [ 0.1 -4.0] x= 15.7, x= sig(xy)=0.99, x= [ 1.1 -3.9] x= [-0.1 3.2] x= -12.6, x= sig(-xn)=0.99, x= sig(-xn)=0.9
```

More details on NEG can be found in section 2 of [Goldberg, 2014.02] https://arxiv.org/pdf/1402.3722.pdf

"Word Embedding" search trend

Fun stuff and Interesting observations

 $v(\text{king}) - v(\text{man}) + v(\text{woman}) \approx v(\text{queen})$


```
v(Russia) + v(river) ≈ v(Volga River)
v(Germany) + v(capital) ≈ v(Berlin)
```

Word Algebra

```
France + (Moscow - Russia) = X
```

$$X =$$
?

Geographical Words

Word Embedding Demo

https://turbomaze.github.io/word2vecjson/

Similar Words

Enter a word and see words with similar vectors.

doctor		List words
doctor	1.0000000000	0000002
physician	0.780601912	7031032
doctors	0.747656873	1527384
surgeon	0.679339371	4387082
dentist	0.678544211	7848048
nurse	0.631952422	7288814
psychiatris	t 0.6147038503	361634
medical	0.5671389130	0686404
clinic	0.549980491	0039348
therapist	0.528334663	6619084

Word Algebra

Enter all three words, the first two, or the last two and see the words that result.

madrid	+ (russia	-	moscow) =	Get result
spain	0.7905075552539405				
madrid	0.7650632609053115				

Word Algebra

Enter all three words, the first two, or the last two and see the words that result.

china	+ (1	moscow] -	russia) =	Get result
shanghai	0.779147686225549					
china	0.7691120887831315	5				
chinese	0.6720659726186436	5				
hu	0.5964189163973439	9				
yuan	0.5946876191518002	2				

PCA projection of the 1000-dimensional Skip-gram vectors

References

- [0] Mikolov et al, 2013, Linguistic Regularities in Continuous Space Word Representations, https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/rvecs.pdf
- [1] Mikolov et al 2013.09 https://arxiv.org/pdf/1301.3781.pdf
- [2] Mikolov et al 2013.10 https://arxiv.org/pdf/1310.4546.pdf