SPICE Simulator Tutorial Advanced Analog IC Design - Graduate Level

ECE 6XX - Advanced Analog IC Design

Graduate Course

June 4, 2025

Focus: Comprehensive SPICE Simulation Types & Operating Modes

Target: Graduate Students with Advanced Circuit Design Background

Outline Introduction to SPICE

Historical Context & Versions

Core Algorithm

SPICE Input File Architecture

Line Types

Critical Rules

Token Separation

Advanced Considerations

Common Pitfalls

Netlist Construction

Node Labeling Requirements

Circuit Element Types

MOSFET Modeling

Parasitic Elements

Independent Source Specifications

Multi-Analysis Source Definition

DC Analysis Sources

AC Analysis Sources

Dulco Eunction

Introduction to SPICE

What is SPICE?

SPICE: Simulation Program with Integrated Circuit Emphasis

- Origin: University of California, Berkeley
- ► Major Versions: SPICE2G6 and SPICE3F4
- ► Commercial Variants: PSpice, HSPICE, Spectre, etc.
- ▶ **Open Source:** Ngspice, WinSpice, etc.

Modified Nodal Analysis (MNA)

Matrix-based circuit solving method that forms the mathematical foundation for all SPICE variants

Why This Matters for Advanced IC Design

- Industry standard for analog circuit verification
- Essential for understanding simulation limitations and accuracy
- Critical for advanced topics like noise, mismatch, and process variation analysis
- Foundation for automated design flows and optimization

Advanced Applications

- Statistical yield analysis
- Process corner verification
- Parasitic extraction validation
- Design optimization loops

SPICE Input File Architecture

- ➤ **Title Line:** First line (any text)
- ▶ Comments: * in column 1
- Netlist: Start with letter
- **Control:** . in column 1
- ► Continuation: + in column
 - ► Separators: spaces, =, (), tabs
 - Numbers: 1.23e-5, 0.0000123
 - Strings: alphanumeric sequences
 - ► Parameters: PARAM=VALUE format

- ► First line is ALWAYS title
- Last line must be .end
- Case insensitive
- Line-oriented parsing

File Structure Best Practices

Pro Tip

For advanced simulations, maintain consistent formatting and extensive commenting for complex parameter sweeps and Monte Carlo analyses.

- Use meaningful variable names for complex circuits
- Implement hierarchical commenting structure
- Version control integration
- Automated netlist generation from scripts
- Forgetting title line requirement
- Missing .end statement
- Inconsistent node numbering
- Case sensitivity issues in model names

Netlist Construction

► Ground Node: Must be labeled "0"

▶ **Node Labels:** Positive integers for compatibility

► Every Node: Must have a label, even two-terminal connections

Letter	Element	Syntax Example
V	Voltage Source	V1 1 0 5V
I	Current Source	l1 1 0 1mA
R	Resistor	R1 1 2 1k
C	Capacitor	C1 1 2 1p IC=0V
L	Inductor	L1 1 2 1n IC=0A
D	Diode	D1 1 2 DMODEL
Q	BJT	Q1 c b e QMODEL
М	MOSFET	M1 d g s b MMODEL
Τ	Transmission Line	T1 1 0 2 0 Z0=50 TD=1ns

Advanced Element Considerations

For IC Design

Pay special attention to MOSFET models (Level 1-100 \pm), parasitic capacitances, and substrate connections

- Substrate connection critical for bulk effects
- Model level selection (BSIM3, BSIM4, PSP)
- Temperature dependencies
- Process variation parameters
- ▶ M1 d g s sub NMOS W=10u L=0.18u; Explicit substrate
- Cpd d sub 50f; Drain-substrate cap
- Cgs g s 100f; Gate-source cap

Independent Source Specifications

- ▶ V1 1 0 DC_VALUE AC AC_MAG AC_PHASE TRANSIENT_FUNCTION
- ► I1 1 0 DC_VALUE AC AC_MAG AC_PHASE TRANSIENT_FUNCTION
- VDC 1 0 5; 5V DC source
- ▶ VDC 1 0 DC 5 ; Explicit DC specification
- \blacktriangleright VAC 1 0 0 AC 1 0 ; 1V magnitude, 0° phase
- \blacktriangleright VAC 1 0 DC 0 AC 1 90; 0V DC, 1V AC at 90 $^\circ$

Transient Analysis Functions

PULSE V1 V2 TD TR TF PW PER

- ▶ V1: Initial value
- ▶ V2: Peak value
- ► TD: Delay time
- ► TR: Rise time
- ► TF: Fall time
- PW: Pulse width
- PER: Period
 - PWL (Piecewise Linear) for arbitrary waveforms
 - ► EXP (Exponential) for RC responses
 - ▶ SFFM (Single Frequency FM) for modulation analysis

SIN VO VA FREQ TD THETA

- ▶ VO: Offset voltage
- VA: Amplitude
- FREQ: Frequency
- ► TD: Delay
- ► THETA: Damping factor

Device Models

.MODEL MODELNAME TYPE (PARAM1=VALUE1 PARAM2=VALUE2 ...)

- ▶ **D**: Diode models
- ► NPN/PNP: BJT models
- NMOS/PMOS: MOSFET models
- ► NJF/PJF: JFET models

- ▶ .MODEL DCLAMP D(
- ▶ + IS=1e-14
- ► + RS=0.1
- ► + CJO=1p
- ► + VJ=0.7
- \rightarrow + M=0.5)

Advanced MOSFET Models for IC Design

Industry Models

BSIM3, BSIM4, PSP, HiSIM

Key Parameters: VT0, KP, LAMBDA, GAMMA, PHI, TOX, LD, WD

Process Variations: Statistical models, corner models, Monte Carlo parameters

- .MODEL NMOS NMOS (LEVEL=49 VERSION=3.3.0
- + TOX=1.4E-8 XJ=1E-7 NCH=2.3549E17 VTH0=0.3691
- ► + K1=0.5810697 K2=4.774618E-3 K3=0.0431669
- + ... [hundreds of parameters for advanced models])
- ► Level 1: Simple square-law model
- Level 49: BSIM3v3 Industry standard
- ► Level 54: BSIM4 Advanced short-channel effects
- ► Statistical parameters for yield analysis

DC Analysis

- DC SRCNAME VSTART VSTOP VINCR [SRC2NAME VSTART2 VSTOP2 VINCR2]
- ▶ .DC V1 -5 5 0.1; Single source sweep
- ▶ .DC V1 0 5 0.1 TEMP -40 125 25; Nested sweep with temperature
- Transfer characteristics (VTC curves)
- Bias point analysis
- Process corner verification
- Temperature coefficient analysis
- Multi-dimensional parameter sweeps
- Operating point extraction
- ► Small-signal parameter calculation
- Convergence analysis for complex circuits

AC Analysis

- ► .AC DEC|OCT|LIN NP FSTART FSTOP
- .AC DEC 100 1 1G; Logarithmic frequency sweep
- AC LIN 1000 1k 100k; Linear frequency sweep
- ► Gain-bandwidth analysis
- Stability analysis (phase/gain margins)
- Input/output impedance
- Frequency response optimization

Stability Analysis

Use AC analysis with loop breaking to determine:

- ▶ Phase margin ¿ 60° for stability
- ▶ Gain margin ¿ 10dB
- ► Unity gain frequency

Transient Analysis

- TRAN TSTEP TSTOP [TSTART [TMAX]] [UIC]
- .TRAN 1n 100n 0 0.1n UIC
 - ► TSTEP: Print step interval
 - ► TSTOP: Final time
 - ► TSTART: Start time for printing (default 0)
 - TMAX: Maximum internal timestep
 - UIC: Use Initial Conditions
- ► Rule of thumb: TSTEP ≤ Period/100
- High-speed circuits: Consider rise/fall times
- Oscillators: Multiple periods for settling

- Settling time analysis
- Slew rate measurements
- Power-up sequences
- Clock jitter analysis

Initial Conditions and Advanced Transient

- ► C1 1 2 1p IC=2.5V; Capacitor initial voltage
- ▶ L1 1 2 1n IC=OA; Inductor initial current
- ▶ .IC V(3)=1.2V V(4)=0V; Node initial conditions

Advanced Tip

Use .IC for complex bias networks, UIC for charge-sharing analysis

- Adaptive timestep algorithms
- Breakpoint insertion for discontinuities
- Interpolation methods for output
- Memory management for long simulations

Noise Analysis

- ► .NOISE V(OUTPUT) VIN DEC 100 1 1G
- .NOISE V(5) VIN OCT 20 1k 1MEG 1
- Output node: Where noise is measured
- ▶ **Input source:** Reference for input-referred noise
- Applications: LNA design, ADC noise analysis, oscillator phase noise
- Thermal noise (4kTR)
- Shot noise (2ql)
- ► Flicker noise (1/f)
- Induced gate noise in MOSFETs

Noise Optimization

Critical for low-noise amplifiers, precision references, and high-resolution converters

Monte Carlo and Sensitivity Analysis

- .MC 100 TRAN 1n 100n YMAX V(out); 100 runs, find max V(out)
- ▶ .PARAM R1_VAR=GAUSS(1k,50,3); Gaussian distribution
- ► .SENS V(5); DC sensitivity
- .SENS V(out,5k); AC sensitivity at 5kHz

Process Variation Analysis

Statistical Models: Mismatch parameters, process corners **Key Applications:** Yield optimization, design centering, worst-case analysis

- Latin Hypercube Sampling
- Importance sampling for rare events
- Response surface modeling
- Design of experiments (DOE)

Output Control and Data Extraction

- .PRINT DC V(1) V(2) I(VDD); DC print
- ▶ .PRINT AC VM(5) VP(5) VDB(5); AC magnitude, phase, dB
- ▶ .PRINT TRAN V(out) I(R1) P(M1); Transient variables
- ► VDB(5); 20*log10(—V(5)—)
- ▶ VP(5); Phase of V(5)
- ► VM(5); Magnitude of V(5)
- \triangleright VR(5); Real part of V(5)
- ► VI(5); Imaginary part of V(5)

- @M1 [gm] ;
 Transconductance
- @M1[gds]; Output conductance
- ▶ @M1[id]; Drain current
- @M1[vgs]; Gate-source voltage
- @M1[vth] ; Threshold voltage

Modern Graphical Output

Graphical Post-Processing

PSpice: .PROBE statement generates data for Probe viewer **Other SPICE variants:** Automatic generation of plot data files **Post-processing:** Python/MATLAB scripts for custom analysis

- Automated measurement functions
- Statistical data analysis
- Multi-dimensional plotting
- Export to standard formats (CSV, HDF5)
- .MEAS TRAN trise TRIG V(out) VAL=0.1 RISE=1
- ► + TARG V(out) VAL=0.9 RISE=1
- ▶ .MEAS AC bandwidth WHEN VDB(out)=-3

SPICE Operating Modes

- spice3 -b input.cir > output.txt # Background batch
- pspice input.cir # PSpice batch
- hspice input.sp # HSPICE batch
- spice3 # Start interactive session
- spice 1 -> source input.cir # Load circuit
- spice 2 -> run # Execute analyses
- ▶ spice 3 -> setplot tran1 # Select analysis
- spice 4 -> plot v(out) # Generate plot
- ▶ spice 5 -> print v(out) # Print values
- ▶ spice 6 -> quit # Exit

Interactive Commands

- **▶ run:** Execute analyses
- **stop:** Halt simulation
- resume: Continue simulation
- reset: Clear all data

- setplot: Choose analysis dataset
- display: Show available variables
- ▶ **let:** Define new variables
- alter: Modify circuit parameters
- Real-time parameter modification
- Interactive debugging
- Custom function definition
- Script execution within interactive mode

GUI vs Command Line Interfaces

- Visual schematic entry
- Interactive simulation control
- ► Real-time plotting
- Parameter sweeping tools
- Built-in calculators

- Cadence Virtuoso
- Mentor Graphics ADS
- Synopsys HSPICE
- LTspice (free)
- Ngspice + KiCad

Command Line Benefits

Automation: Scripting, batch processing, parameter optimization

Precision: Exact parameter control, repeatable simulations

Integration: Design flows, version control, continuous integration

Performance: Faster execution, lower memory overhead

Best Practices for IC Design

- ► **Initial Design:** Use GUI for rapid prototyping and visualization
- ▶ **Verification:** Command line for automated corner analysis
- Optimization: Scripted parameter sweeps and yield analysis
- ▶ **Documentation:** Netlist-based approach for reproducibility
- Version control systems (Git, SVN)
- Continuous integration pipelines
- Automated regression testing
- Design database management

Professional Workflow

Combine GUI for design entry with command-line automation for verification and optimization

Complete SPICE Example: Diode Clamp Circuit

Circuit Description

Application: Voltage clamping circuit with RC time constant analysis

Components: Pulse source, capacitor, diode, load resistor

SPICE sample circuit - diode clamp

*comment lines begin with asterisks

*independent voltage source with DC value, AC value, and

*transient square wave value:

V1 1 0 1 AC 1 pulse -10 20 0 1.e-8 1.e-8 1e-3 2e-3

*the square wave defined above has -10V to +20V extent, wi

*a period of 2 milliseconds

*capacitor for clamping

C1 1 2 1e-6

*diode for clamp - model name is dclamp

D1 2 0 dclamp

*load resistor - large enough that RC >> 2 ms

R1 2 0 1e5

Diode Clamp Example - Analysis Commands

- *DC transfer function generated for this circuit .DC V1 -20 20 .1
- *AC frequency sweep assumes circuit is biased with V1 = : .AC OCT 20 10 1e2 1e4
- *frequency is swept logarithmically from 100Hz to 10000Hz
- *transient analysis will show clamping
- .TRAN 1e-4 8e-3 0 1e-5
- *start at time zero, go for 8 ms, make internal steps 10 m
- *save print data at .1 ms intervals
- *that's all folks
- .end
 - DC analysis reveals clamping threshold
 - ► AC analysis shows frequency response limitations
 - Transient analysis demonstrates dynamic clamping behavior
 - ► Time constants validate RC ¿¿ switching period

Hierarchical Design

- SUBCKT OPAMP 1 2 3 4 5; Non-inv, Inv, Out, VDD, VSS
- * Internal circuitry here
- ► .ENDS OPAMP
- X1 in1 in2 out vdd vss OPAMP; Instantiate subcircuit
- ▶ .SUBCKT DIFFPAIR 1 2 3 4 PARAMS: W=10u L=0.18u
- ► M1 3 1 5 4 NMOS W={W} L={L}
- ► M2 3 2 6 4 NMOS W={W} L={L}
- ► .ENDS
- ▶ X1 in+ in- out vss DIFFPAIR W=20u L=0.25u
- Multi-level subcircuit nesting
- ► Global parameter propagation
- Conditional circuit topology
- ► Library management

Process Corners and Statistical Analysis

- .LIB '/path/to/models' TT; Typical-Typical
- .LIB '/path/to/models' FF; Fast-Fast
- .LIB '/path/to/models' SS; Slow-Slow
- .LIB '/path/to/models' SF; Slow-Fast
- .LIB '/path/to/models' FS; Fast-Slow

Statistical Analysis

Mismatch Analysis: Device-to-device variations within the same die

Process Variations: Die-to-die and wafer-to-wafer variations **Environmental Stress:** Temperature, voltage, aging effects

- Systematic corner verification
- Statistical yield prediction
- Design centering optimization
- Robustness validation

Convergence Options

- .OPTIONS GMIN=1e-12; Minimum conductance
- .OPTIONS ABSTOL=1e-12; Absolute current tolerance
- .OPTIONS RELTOL=1e-3; Relative tolerance
- .OPTIONS VNTOL=1e-6; Voltage tolerance
- .OPTIONS ITL1=100; DC iteration limit
- .OPTIONS ITL2=50; DC transfer curve iteration limit
- .OPTIONS ITL4=10 ; Transient iteration limit
- Poor initial guesses
- Floating nodes
- Large signal discontinuities
- Unrealistic device models
- Numerical precision limits

- Add .NODESET statements
- Use .IC for difficult bias points
- Ramp sources gradually
- Check model parameters
- Adjust solver tolerances

Advanced Solver Options

- .OPTIONS METHOD=GEAR; Integration method
- .OPTIONS MAXORD=2; Maximum integration order
- .OPTIONS PIVREL=1e-3; Relative pivot threshold
- .OPTIONS PIVTOL=1e-13; Absolute pivot threshold
- ► **GEAR:** Implicit multi-step method for stiff systems
- ► TRAPEZOIDAL: Second-order accurate, A-stable
- ▶ **EULER:** First-order, simple but less accurate

Convergence Strategy

Start with relaxed tolerances, then tighten for accuracy. Use source ramping and initial conditions for difficult circuits.

Simulation Strategy

- Hand Calculations Initial sizing
- Simplified Models -Topology verification
- Detailed Models -Performance optimization
- Corner Analysis -Robustness verification
- Statistical Analysis Yield prediction

- Unit Cells Individual stages
- Functional Blocks -Combined stages
- System Level Complete circuits
- Layout Parasitic -Post-layout verification
- Silicon Correlation Model validation

Documentation and Version Control

Simulation Decks: Maintain versioned, commented netlist libraries

Model Management: Centralized, validated device model libraries **Results Archival:** Automated result storage with simulation metadata

Performance Optimization

- ▶ Parallel Simulation: Multi-core utilization for corner analysis
- ▶ Incremental Updates: Only re-simulate changed portions
- ▶ Checkpoint/Restart: Resume long simulations efficiently
- ► Smart Convergence: Adaptive solver settings
- Scripted parameter sweeps
- Automated measurement extraction
- Statistical post-processing
- Design optimization loops

Modern Workflows

Integration with machine learning for design space exploration and automated optimization

Summary and Key Takeaways

Critical Knowledge for Advanced IC Design

SPICE Fundamentals: Understanding MNA, convergence, and accuracy limitations

Analysis Types: DC, AC, Transient, Noise, Monte Carlo applications

Operating Modes: Strategic use of GUI vs. command line approaches

- Advanced device modeling
- Statistical analysis interpretation
- Convergence troubleshooting
- ► Performance optimization

- Simulation methodology
- Documentation standards
- Version control practices
- ► Cross-platform compatibility

Next Steps

- 1. Hands-on Practice: Implement complex analog circuits using multiple SPICE variants
- Advanced Topics: Noise optimization, mismatch analysis, yield modeling
- Integration: SPICE in automated design flows and optimization loops
- 4. **Research Applications:** Custom models, algorithm development, emerging devices

Remember

SPICE is a tool to validate and optimize your designs, not replace fundamental analog design intuition and understanding.

Questions and Discussion