Lecture 11: Polynomial Regression STAT 432, Spring 2021

Salary Data Set

- ▶ For this example we consider a salary data set with n = 143 observations and two variables.
- ▶ We want to develop a regression model between *y*, salary (in thousands of dollars), and *x*, the number of years of experience. We are interested in using the model to make predictions and prediction intervals.
- Since the variables have a nonlinear, quadratic association we consider a polynomial regression model.

Fitting a straight line obviously does not capture the trend in the data.

Quadratic Polynomial Regression Model

Since a quadratic relationship is evident, we consider the following polynomial regression model:

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \epsilon$$

where y = salary, x = years of experience, and $\epsilon \sim N(0, \sigma^2)$ is the random error.

```
> lm2 <- lm(Salary ~ Experience + I(Experience^2), data=profsalary)
> summary(lm2)
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 34.720498 0.828724 41.90 <2e-16 ***

Experience 2.872275 0.095697 30.01 <2e-16 ***
I(Experience^2) -0.053316 0.002477 -21.53 <2e-16 ***
---
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '. 0.1 ' 1
```

Residual standard error: 2.817 on 140 degrees of freedom Multiple R-squared: 0.9247, Adjusted R-squared: 0.9236 F-statistic: 859.3 on 2 and 140 DF, p-value: < 2.2e-16

Fitted quadratic regression model:

$$\hat{y} = 34.720 + 2.872x - 0.053x^2$$

Prediction when x = 10:

$$\hat{y} = 34.720 + 2.872(10) - 0.053(10^2) = 58.14$$

Using R:

The graphics package ggplot2 provides a convenient way to visualize the quadratic regression model.

```
library(ggplot2)
ggplot(profsalary, aes(x = Experience, y = Salary)) +
  geom_point() +
  geom_smooth(method = "lm", formula = y ~ poly(x, 2), se=F) +
  xlab("Years of Experience") + ylab("Salary")
```


The residual plot for the quadratic regression model shows no trend and the points are randomly scattered around zero. Thus, the conditions for regression appear satisfied.

Polynomial Regression (in general)

In general, a polynomial regression model of degree p can be written as

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_p x^p + \epsilon$$

- ▶ One way to choose p is to keep adding terms until the added (highest order) term is no longer significant.
- ▶ It is recommended to keep all lower order terms in the model, even if they are not statistically significant. For example, if we fit a quadratic model, then we should keep the x term in the model.

We can consider a third degree (cubic) polynomial regression model for the salary data set.

```
> summary(lm3)

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 35.8319735 1.1579671 30.944 <2e-16 ***
Experience 2.5406068 0.2602417 9.762 <2e-16 ***
I(Experience^2) -0.0313332 0.0162368 -1.930 0.0557 .
I(Experience^3) -0.0003957 0.0002888 -1.370 0.1730 ---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.808 on 139 degrees of freedom
Multiple R-squared: 0.9257,Adjusted R-squared: 0.9241
F-statistic: 577.1 on 3 and 139 DF, p-value: < 2.2e-16
```

> lm3 <- lm(Salary ~ Experience + I(Experience^2) + I(Experience^3), data=profsalary)

However, the coefficient for the cubic term is not significant (p-value > 0.05), so there is no improvement over the quadratic model.