

강 의 계 획 서(Syllabus)

2024 년도 1 학기

2024년 5월 20일 월요일

교과목명	알고	알고리즘			담당교수명	김영호				
학수번호	CSE4	204-004	학점:3.0		교과목영문명	Algorithm				
강의시간표	하-2	22:수4,5	5,6,금4,5,6		강좌평가방법	상대평가				
기타정보	선수	과목 ▷선택(CSE2102(자료구조)/CSE2112(자료구조) 중 택 1)								
전공능력 및 핵심역량	능력	능력] 의적 프로그래밍 :다양한 정보와 지식의 관계성을 파악하고 프로젝트를 창의적으로 수행할 수 있는 프로그래밍 퓨터 지식 이해:컴퓨터 관련 기초 지식, 하드웨어와 소프트웨어 동작 원리, 그리고 데이터 지식을 이해하는 능								
첨부파일										
교수프로		yhkim85@inha.ac.kr 하이테크 1010호 알고리즘, 바이오인포매틱스								
강의목표	E	1. 컴퓨터 이해를 위한 수학 및 공학 지식을 습득한다. 2. 자료구조 및 알고리즘을 분석 및 설계하는 기법을 학습한다. 3. 다양한 문제를 효율적으로 <mark>해결</mark> 하고 표현할 <mark>수 있는</mark> 능력을 개발한다.								
강의개요		본 강의의 주된 학습 내용은 다음과 같다. 1. 기본 자료구조 및 고급 자료구조 2. 알고리즘 설계 기술 및 방법 - Divide and conquer - Greedy technique - Dynamic programming 3. 다양한 알고리즘 - 정렬알고리즘 - 그래프 알고리즘 - 문자열 알고리즘 4. 복잡도 이론								
교재		서명:Computer Algorithms 저자: Sara Baase, Allen Van Gelder 출판사: Addison Wesley 출판년도: 2000 ISBN: 89-450-0625-7								
부교재및참고도서		서명:Algorithm Design 저자: Michael T. Goodrich, Roberto Tamassia 출판사: WILEY 출판년도: 2002 ISBN: 0-471-38365-1								
강의진행방식		- 교재 중심 강의								
수업 방법		강의식								
- 자료구조 선수강 - 기본적인 수학 및 프로그래밍 지수 - 프로그래밍 언어는 C++로 진행 - 부정행위 시, F 학점 - 수업시수의 1/4회 이상 결석 시, F - 3학년 이상의 컴퓨터공학과 전공 한 이후 여석이 있을 시, 복수전공/5			++로 진행 상 결석 시, F 학 공학과 전공 학생	점 남들만 수강 신청		학 주전공 학생	들이 수강 신청			
공학인증관	ŀ련									
특별지원관련		장애학생의 원활한 수강을 위하여 지원이 필요한 경우 담당교원 및 장애학생지원센터(☎860-7067) 와 사전에 협의할 수 있습니다.								
Office Hour (상담시간)		수요일 14:00 ~ 16:00								
평 가 기 준										
중간고사	중간고사 기밀		출석	과제	퀴즈	토론	기타	계		
35 %	3	35 %	10 %	20 %	0 %	0 %	0 %	100 %		
평가기준 세부내역										

강의진행계획서

주 차	구분	내 용	강의방식
1	강의주제	알고리즘 기본 설명	
	강의내용	- 알고리즘의 정의 및 개념	
	시험및과제		
2	강의주제	알고리즘 분석 기초	
	강의내용	- 기본 자료구조 설명 및 증명 방법	
	시험및과제		
3	강의주제	알고리즘 분석 방법 및 정렬 알고리즘 1	
	강의내용	- 알고리즘 분석 방법 - Insertion sort	
	시험및과제	FII	
4	강의주제	정렬 알고리즘 2	
	강의내용	- Divide and conquer - Quicksort	
	시험및과제		
	강의주제	정렬 알고리즘 3	
5	강의내용	- Merge sort - Heapsort - Radix sort	
	시험및과제		
	강의주제	Dynamic sets	
6	강의내용	- Amortized analysis - Red-black trees	
	시험및과제		
	강의주제	Dynamic sets	
7	강의내용	- Red-black trees - Priority queues	
	시험및과제	//Am/r	
	강의주제	중간고사	
8	강의내용	중간고사	
	시험및과제		
	강의주제	그래프 알고리즘 1	
9	강의내용	- 그래프 기초 - DFS, BFS - Strongly connected components	
	시험및과제	과제 1	
	강의주제	그래프 알고리즘 2	
10	강의내용	- Minimum spanning trees	
	시험및과제		
	강의주제	그래프 알고리즘 3	
11	강의내용	- Shortest path	
	시험및과제		
12	강의주제	동적프로그래밍 기법	
	강의내용	- 동적프로그래밍 기법의 정의 - 동적프로그래밍 적용 예	
	시험및과제	과제 2	

	강의주제	문자열 매칭	
13	강의내용	- Knuth-Morris-Pratt 알고리즘 - Boyer-Moore 알고리즘	
	시험및과제		
14	강의주제	NP-완전	
	강의내용	- P와 NP - NP-completeness	
	시험및과제		
15	강의주제	기말고사	
	강의내용	기말고사	
	시험및과제		
16	강의주제	보강실시, 기초교양필수 기말고사	
	강의내용	20240410 제22대 국회의원 선거 - 휴업일 수업 20240426 70주년 개교기념 휴업일 - 휴업일 수업 20240515 부처님오신날 - 휴업일 수업	
	시험및과제		

