Analysis Work Sheet Final

by Toby Chen

August 1, 2024

Contents

1	Sequ	uenc	es	3																					1	
	1.1	Q1																							1	
	1.2	Q2																							1	
	1.3	Q3																							2	
	1.4	Q4																							2	
	1.5	Q_5																							2	
		Q6																								
	1.7	Q7																							3	,
	1.8	Q8																							4	
	1.9	Q9																							5	
	1.10																									
	1.11																									
2	Inte	gral	C	Ca	ılc	cu	ılı	ıs																	5	,
	2.1	Q46	;																						5	
	22	O47	,																						6	

1 Sequences

1.1 Q1

Find the formula for the *n*-th term of the sequence 1, -4, 9, -16, 25.

Answer: Given 1, -4, 9, -16, 25, we can clearly see that it's a sequence of squares with an alternating negative sign,

$$a_n = (-1)^{n-1}(n^2)$$
, for $n \ge 1$.

1.2 Q2

Find a formula for the nth term of the sequence in terms of n, where the sequence is $1, 0, 1, 0, 1, \ldots$

Answer: The sequence is a periodic one which oscillates from 1 to 0. Let us create a table of values to assist in this,

1	2	3	4	5	6
1	0	1	0	1	0
odd	even	odd	even	odd	even

We can see that when n is even, we get a 0, and else is 1. This implies we will have a formula making use of n/2.

Let $a_n = n/2$: $a_n = 1/2, 1, 3/2, 2, 5/2, ...$ It seems that we get closer to our desired result if we let $a_n = (n+1)/2$: $a_n = 1, 3/2, 2, 5/2, 3, ...$

I have just realized that the most suitable function would be sin(x),

$$a_n = \sin\left(\frac{n\pi}{2}\right)^2$$
.

1.3 Q3

Determine if the sequence $\{a_n\}$ converges or diverges. Find the limit if the sequence converges. The sequence is $a_n = 4 + (0.3)^n$

Answer:

$$\lim_{n \to \infty} 4 + 0.3^n = 4$$

1.4 Q4

Determine if the sequence $\{a_n\}$ converges or diverges. Find the limit if the sequence converges. The sequence is $a_n = \left(\frac{n+6}{7n}\right)\left(1 - \frac{6}{n}\right)$.

Answer:

Given
$$a_n = \left(\frac{n+6}{7n}\right) \left(1 - \frac{6}{n}\right),$$

$$\lim_{n \to \infty} \left(\frac{n+6}{7n}\right) \left(1 - \frac{6}{n}\right) = \lim_{n \to \infty} \left(\frac{n+6}{7n}\right) \lim_{n \to \infty} \left(1 - \frac{6}{n}\right),$$

$$= \lim_{n \to \infty} \left(\frac{n+6}{7n}\right) (1) = \lim_{n \to \infty} \left(\frac{\frac{d}{dn}(n+6)}{\frac{d}{dn}(7n)}\right),$$

$$= \lim_{n \to \infty} \left(\frac{1}{7}\right) = \frac{1}{7}.$$

1.5 Q5

Determine if the sequence $\{a_n\}$ converges or diverges. Find the limit if the sequence converges. The sequence is $a_n = \sqrt[n]{4^n n}$.

Answer:

$$\begin{split} &\lim_{n\to\infty}\sqrt[n]{4^nn}=L,\\ &\ln(L)=\ln\left(\lim_{n\to\infty}(4^nn)^{1/n}\right)=\lim_{n\to\infty}\left(\ln\left(4^nn\right)^{\frac{1}{n}}\right),\\ &\ln(L)=\lim_{n\to\infty}\frac{1}{n}\ln\left(4^n\right)+\ln(n)=\lim_{n\to\infty}\frac{1}{n}(n\ln(4)+\ln(n)),\\ &\ln(L)=\frac{\lim_{n\to\infty}(n\ln(4)+\ln(n))}{n}=\lim_{n\to\infty}\ln(4)+\lim_{n\to\infty}\frac{\ln(n)}{n},\\ &\ln(L)=\ln(4)+\lim_{n\to\infty}\frac{\frac{d}{dn}(\ln(n))}{\frac{d}{dn}(n)}=\ln(4)+\lim_{n\to\infty}\frac{1}{n},\\ &\therefore \ln(L)=\ln(4)\implies L=4. \end{split}$$

1.6 Q6

Use the definition of convergence to prove the given limit.

$$\lim_{n \to \infty} \frac{\sin n}{n} = 0$$

 $\lim_{n\to\infty}\frac{\sin n}{n}=0.$ Answer: Let $\epsilon\in\mathbb{R}_+:\ \exists\ N:n>N \implies |a_n-L|<\epsilon$ for L. Given the max of $|\sin n|=1,\ L=0: |a_n|<\epsilon\ \forall\ n>\left\lceil\frac{1}{\epsilon}\right\rceil.$

$\mathbf{Q7}$ 1.7

Find a formula for the nth partial sum of the series and use it to find the series' sum if the series converges.

The sum takes form,

$$\frac{17}{1 \times 2} + \frac{17}{2 \times 3} + \frac{17}{3 \times 4} + \dots + \frac{17}{n(n+1)} + \dots$$

Answer:

$$\frac{17}{1 \times 2} + \frac{17}{2 \times 3} + \frac{17}{3 \times 4} + \dots + \frac{17}{n(n+1)},$$

$$= 17 \left(\frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \dots + \frac{1}{n(n+1)} \right),$$

$$= \left(\frac{17}{(n+1)!} \right) = S_n.$$

Real answer: I made a very silly mistake and assumed the denominators were multiplied, though they obviously are not.

$$=17\left(\frac{1}{1\times 2} + \frac{1}{2\times 3} + \frac{1}{3\times 4} + \dots + \frac{1}{n(n+1)}\right),\,$$

If we produce a table of values we may spot a pattern,

n	1	2	3	4	5	6
S_n	17/2	34/3	51/4	68/5	85/6	102/7
Simplified	17(1/2)	17(2/3)	17(3/4)	17(4/5)	17(5/6)	17(6/7)

We can now very easily see that,

$$S_n = \frac{17n}{n+1}.$$

Now to find the sum, we take the limit,

$$\lim_{n\to\infty}\frac{17n}{n+1}=\lim_{n\to\infty}\frac{17}{1}=17.$$

1.8 Q8

Determine if the geometric series converges or diverges. If a series converges, find its sum.

$$\frac{1}{3} + \frac{1}{3}^2 + \frac{1}{3}^3 + \frac{1}{3}^4 + \dots$$

Answer:

$$\begin{aligned} &\frac{1}{3} + \frac{1}{3}^2 + \frac{1}{3}^3 + \frac{1}{3}^4 + \dots, \\ &= \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \frac{1}{243} + \dots \end{aligned}$$

Lets try to find the *n*-th term, $a_n = \frac{1}{3^n}$.

Now we take the limit,

$$\lim_{n \to \infty} \frac{1}{3^n} = 0.$$

The series therefore does converge to zero. \boldsymbol{X}

Real answer: We need either a formula for the n-th partial sum or we can use the fact that,

$$\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r}, \text{ for } |r| < 1.$$

In light of this, we can recall that a geometric series follows the pattern $a + ar + ar^2 + \dots$ We, in this case, let a = 1/3, and r = 1/3.

|r| < 1 holds, so,

$$S_{\infty} = \frac{1/3}{1 - 1/3} = 0.5.$$

1.9 Q9

Use the nth-term test for divergence to show that the series is divergent, or state that the test is inconclusive.

$$\sum_{n=1}^{\infty} \cos\left(\frac{18}{n}\right).$$

Answer: Recall that the n-th term test asks,

if
$$\lim_{n\to\infty} a_n \neq 0$$
 or $\lim_{n\to\infty} a_n$ is undefined, $\sum_{n=1}^{\infty} a_n$ diverges.

In light of this,

$$\lim_{n\to\infty}\cos\left(\frac{18}{n}\right)=1\implies \text{ Sum diverges}.$$

1.10 Q10

Determine whether the series converges or diverges. If it converges, find its sum.

$$\sum_{n=0}^{\infty} e^{\frac{-5n}{2}}.$$

Answer: We can see that the series converges because the limit tends to 0.

$$\sum_{n=0}^{\infty} e^{\frac{-5n}{2}} = \sum_{n=0}^{\infty} \frac{1}{e^{\frac{5n}{2}}}.$$

This series is indeed a geometric one, as shown, with $a=1,\ r=1/e^{\frac{5}{2}}.$ This therefore means that,

$$S_{\infty} = \frac{a}{1-r} = \frac{1}{1 - \frac{1}{e^{\frac{5}{2}}}} = \frac{e^{\frac{5}{2}}}{e^{\frac{5}{2}} - 1}.$$

1.11 Q11

2 Integral Calculus

2.1 Q46

Evaluate the integral,

$$\int_{-2}^{0} \int_{-2}^{2} 7x + 8y + 5 \ dx \ dy.$$

Answer:

$$\int_{-2}^{0} \int_{-2}^{2} 7x + 8y + 5 \, dx \, dy = \int_{-2}^{0} [7xy + 4y^{2} + 5y]_{-2}^{2} \, dy,$$

$$= \int_{-2}^{0} 28y + 8y^{2} + 10y \, dy = \left[14y^{2} + \frac{8y^{2}}{3} + 5y^{2} \right]_{-2}^{0},$$

$$= 14(2)^{2} + \frac{8(2)^{2}}{3} + 5(2)^{2} = 14(4) + \frac{32}{3} + 20,$$

$$= \frac{260}{3}.$$

Real answer: I accidentally did two integrations by y. To redo, simply integrate by x then y.

X

$$\int_{-2}^{0} \int_{-2}^{2} 7x + 8y + 5 \, dx \, dy = \int_{-2}^{0} \left[\frac{7x^{2}}{2} + 8xy + 5x \right]_{-2}^{2} \, dy,$$

$$= \int_{-2}^{0} \frac{7(2)^{2}}{2} + 8(2)y + 5(2) - \left(\frac{7(-2)^{2}}{2} + 8(-2)y + 5(-2) \right) \, dy,$$

$$= \int_{-2}^{0} 24 + 16y - (4 - 16y) \, dy = \int_{-2}^{0} 20 + 32y \, dy = \left[20y + 16y^{2} \right]_{-2}^{0},$$

$$= -(20(-2) + 16(-2)^{2}) = -(-40 + 16(4)) = -24.$$

2.2 Q47

Evaluate the double integral over the given region R.

$$\int \int_{R} 9y^{2} - 6x \, dA, \text{ for } R : 0 \le x \le 3, 0 \le y \le 2.$$

Answer:

$$\int \int_{R} 9y^{2} - 6x \, dA = \int_{0}^{3} \int_{0}^{2} 9y^{2} - 6x \, dx \, dy = \int_{0}^{3} \left[9y^{2}x - 3x^{2} \right]_{0}^{2} \, dy$$
$$= \int_{0}^{3} 18y^{2} - 12 \, dy = \left[\frac{18y^{3}}{3} - 12y \right]_{0}^{3} = \frac{18(3)^{3}}{3} - 12(3) = 126.$$

Real answer: The substitution of the limits is wrong,

$$\int \int_{R} 9y^{2} - 6x \, dA = \int_{0}^{2} \int_{0}^{3} 9y^{2} - 6x \, dx \, dy = \int_{0}^{2} \left[9y^{2}x - 3x^{2} \right]_{0}^{3} \, dy$$
$$= \int_{0}^{2} 27y^{2} - 27 \, dy = \left[\frac{27y^{3}}{3} - 27y \right]_{0}^{2} = \frac{27(2)^{3}}{3} - 27(2) = 18.$$