HANDS-ON MACHINE LEARNING (HOME)

Lecture/Lab - 2

An Introduction to Machine Learning Using LLMs as an Example

Goal: Run an LLM (Mistral 7B or Llama 2) on a local machine and chat with it

Ghulam Rasool, PhD

Department of Machine Learning, Moffitt Cancer Center

OVERVIEW

- Review of LLMs
- Running LLMs on Local Machines
 - LM Studio
 - Ollama
- Graphical User Interface
 - Open WebUI
 - Docker
- Llama.cpp and gguf
- Prompting and Retrieval Augmented Generation (RAG)
 - LangChain
 - LlamaIndex

Brief History

Large

Higher capacity to learn

Billion of variables to store the learned knowledge

Larger datasets

Trillions of bytes of data to learn from

How to train your LLM

What does training mean?

Predict the next word

She is moving to Tampa for her job.

Gradient Descent Algorithm

She is moving to Tampa for her job.

She is moving to Tampa for her family.

- Correct Pat
- Incorrect Punish

She is moving to Tampa for her car.

She is moving to Tampa for her alligator.

As a result of the training, we have

She is moving to Tampa for her	
	Job 49%
What is the most probable next word?	Family 49%
	Car 0.5%
	Alligator 1.5%

As a result of the training, we have

8

How to train your LLM

The model understands human preferences.

How to train your LLM

Chemotherapy is the standard of care in cancer treatment.

```
Ch
                 20394
##em
                 5521
##otherapy
                 20939
is
                 1110
the
                 1103
standard
                 2530
of
                 1104
                 1920
care
in
                 1107
                 4182
cancer
treatment
                 3252
                 119
```

```
Embedding: tensor([-4.0514e-01, 3.2718e-01, 2.3717e-01, 3.2862e-01, 3.6550e-01,
        2.1226e-02, 6.9171e-01, 7.1098e-02, -9.7321e-03, -7.7804e-01,
        -8.0872e-01, -1.8547e-01, -5.6361e-02, 4.9584e-01, 1.3878e-01,
        6.7449e-01, 3.7221e-01, -7.5023e-01, -9.9605e-02, -3.0082e-01,
        -6.1156e-02, -6.8750e-02, 2.5605e-01, -2.1948e-01, 1.1133e-01,
        -3.5326e-01, 3.8680e-01, 7.2568e-01, -5.1890e-01, -2.8369e-01,
        -2.8277e-02, 3.2367e-01, 3.0425e-01, 9.0662e-01, -9.2147e-01,
        6.3722e-01, 8.4916e-01, -1.2166e-01, 6.7056e-01, -3.6339e-01,
        -1.4453e-01, 5.5456e-01, -2.1817e-01, -4.5966e-01, 4.9136e-02,
        -3.3405e-01, -1.9264e-01, -2.6836e-01, 9.8193e-02, -9.1319e-01,
        3.9529e-01, 6.3396e-01, 1.0694e+00, -4.0752e-01, -1.1956e-01,
        8.3672e-01, -3.2265e-01, 4.9057e-02, -1.8049e-01, 1.2337e-01,
        1.1135e+00, -2.1958e-01, 5.2144e-01, -3.5725e-02, 7.7396e-01,
        -2.3286e-01, -1.0921e+00, -1.0853e-01, -1.2074e+00, -4.5416e-02,
        -1.0770e-01, -8.7412e-02, 4.6003e-01, 1.7978e-01, -4.7101e-01,
        -2.9541e-01, -2.0189e-01, 2.7894e-01, 3.8826e-01, -2.8794e-01,
        -3.1304e-01, 3.1930e-01, 4.5050e-02, 1.0765e+00, 7.8386e-01,
        -7.8647e-01, -7.8930e-02, 5.2840e-02, -3.3437e-01, 7.0197e-01,
        -5.4875e-01, 4.5861e-02, -4.2728e-01, -4.2825e-01, 4.4960e-03,
        3.8803e-01, 1.3139e-01, 1.1247e-01, -3.1398e-01, -3.5722e-01,
        4.6070e-01, -1.7379e-01, 2.8147e-01, -7.9178e-01, -2.5676e-01,
        5.5337e-02, 2.9408e-01, -5.4813e-01, 2.5966e-02, -2.5847e-01,
        -6.7750e-01, 3.4987e-01, -5.6569e-01, -3.4727e-02, 6.8431e-02,
        -1.2239e-01, 4.4732e-01, -3.6277e-01, -1.3723e-01, -2.1545e-01,
        1.1014e-01, -7.5589e-01, -4.8585e-01, -6.5725e-01, -7.1004e-01,
        1.9709e-01, 3.6595e-01, 4.9644e-01])
```

Model Training

All or part of the model parameters are updated

- Transfer Learning
- Unsupervised Learning
- Supervised Learning
- Curriculum Learning

Adapter Training

Original model parameters are frozen

- Add additional small models, called adapters
- Train "adapters" for individual tasks tasks.
- Low-Rank Adaptation
- Parameter-Efficient Fine-Tuning

Prompt Engineering

Model parameters are frozen

- No adapters are added
- Add more context to the prompt
- Zero-shot
- Few-shot
- Retrieval Augmented Generation (RAG)

Traditional NLP/ML

- Needs labelled data
 - Cost of data collection/labeling
 - Legal/Privacy concerns around using data
- 1 model per task results in
 - Increased model development/tuning cost
 - Increased operational costs
 - Increased money spent on sourcing data
- Relatively Limited generalization
- Computationally cheaper (~300 Million parameters)

Modern NLP/ML

- Need a small amount of labeled data
- A single generic model can do more than one task
- More generalized: Besides language, it learns higher-level concepts, styles, etc.
- Computationally Expensive (~500 Billion parameters)

Leveraging more compute to get a general model without significant data/labeling cost

Running LLMs on Local Machines

- LM Studio
- ·Ollama
- Open WebUI

LM STUDIO

- Run LLMs on local computers entirely offline
- Use models through the in-app Chat
 UI or an OpenAI-compatible local
 server
- Download any compatible model files from Hugging Face repositories

LM STUDIO

- Quantization
 - · Quantization refers to a set of techniques that enable running models on resource-constrained platforms
 - Q2_K, Q4_K_M, Q5_0, Q8_0
- · Chat UI
- GPU Offload
- Context Length

LM STUDIO - LOCAL INFERENCE SERVER

- Serve the model on the local machine
 - http://localhost:1234/
 - http://127.0.0.1:1234
- How do I use it?

```
# Example: reuse your existing OpenAI setup
   from openai import OpenAI
   # Point to the local server
   client = OpenAI(base url="http://localhost:1234/v1", api key="not-needed")
   completion = client.chat.completions.create(
     model="local-model", # this field is currently unused
     messages=[
       {"role": "system", "content": "Always answer in rhymes."},
       {"role": "user", "content": "Introduce yourself."}
     temperature=0.7,
   print(completion.choices[0].message.content)

√ 2.4s

In verse and rhyme, I'm here to entertain,
A friendly AI, with a poetic brain.
Delighted to meet you, may our chat remain,
A joyful exchange of words, so calm and sane.
```

LM STUDIO - LOCAL INFERENCE SERVER

- Serve the model on the local machine
 - http://localhost:1234/
 - http://127.0.0.1:1234
- How do I use it?
 - Chatbot
 - VLM Chatbot
 - Llava Base Model
 - Vision Adapter

OLLAMA

https://ollama.com/

Running LLMs, locally

OLLAMA

https://ollama.com/

- Running LLMs, locally
- http://localhost:11434

OPEN WEBUI

https://openwebui.com/

https://github.com/open-webui/open-webui

http://localhost:3000

Download and Install Docker

https://docs.docker.com/desktop/install/windo
ws-install/