

Multi-Agent Reinforcement Learning Approaches to Algorithmic Trading with a Hierarchical Agent Structure

COMP0124 Research Project

Group 14

Shomit Basu
Oli Bridge
Isaac Watson

UCL Department of Computer Science

Trading as a Markov Decision Process (MDP)

- \square MDP defined as tuple $\langle \mathcal{S}, \mathcal{A}, \mathbb{P}, R, \gamma \rangle$
 - \circ State space ${\cal S}$ OHLC, current position
 - \circ Action space $\mathcal{A} = \{-1,0,1\}$ sell, hold, buy
 - \circ Transition probabilities ${\mathbb P}$ from market dynamics
 - \circ Rewards $R(s,a,s^\prime)$ e.g. change in portfolio value
 - \circ Discount factor $\gamma \in [0,1]$

- $oldsymbol{\Box}$ Agent wishes to maximise its *discounted return* $G^{(t)} = \sum_{k=0}^{\infty} \gamma^k R^{(t+k+1)}$
- lacksquare Multi-agent extension: Markov Game $\langle N, \mathcal{S}, \mathcal{A}, \mathbb{P}, R, \gamma
 angle$
 - \circ Each agent has action space $\,{\cal A}_i = \{-1,0,1\}\,$
 - o Transition probabilities $\mathbb{P}: \mathcal{S} \times \mathcal{A}_1 \times \ldots \times \mathcal{A}_N \times \mathcal{S} \rightarrow [0,1]$
 - o Individual agent rewards $R_i: \mathcal{S} imes \mathcal{A}_1 imes \ldots imes \mathcal{A}_N o \mathbb{R}$
 - \circ All agents wish to maximise their own return $\,G_{i}\,$

Depend on **all** agents' actions

Literature Review – Previous Work

- □ Single-agent trading
 - o Various DRL algorithms e.g. DQN^[1], DDPG^[2], PPO^[3] etc. have been implemented
 - Trading applications include single-stock trading, portfolio optimisation, marketmaking
- Multi-agent trading
 - Hierarchical and non-episodic approach to Forex trading introduced by Shavandhi and Khedmati^[4]
 - The authors' choice of a non-episodic construct necessitates the use of high latency timeframes with many data points.

^[1] M. Taghian, A. Asadi, and R. Safabakhsh, "Learning Financial Asset-Specific Trading Rules via Deep Reinforcement Learning", (2020)

^[2] X. Liu et al, "Practical Deep Reinforcement Learning Approach for Stock Trading", (2018)

^[3] J. Ge et al, "Single stock trading with deep reinforcement learning: A comparative study", (2022)

^[4] A. Shavandhi, M. Khedmati, "A multi-agent deep reinforcement learning framework for algorithmic trading in financial markets", (2022)

Research Questions

- ☐ Investigate hierarchical multi-agent framework on low-latency trades
 - Can cooperation over multiple longer-term timeframes (daily/weekly etc.) lead to more profitable trading?
 - o Is the performance of the multi-agent setting impacted by the choice of the asset?
 - How does the framework perform in different market conditions (bullish, bearish, high volatility)?
- ☐ Episodic framework to make use of smaller dataset sizes
 - Compare single-agent traders with a multi-agent hierarchical framework

Our Framework – Single Agent RL

- ☐ Single agent learns to trade using the Deep Q-Learning (DQN)^[5] algorithm with a replay memory buffer
 - DQN policy/target networks are multilayer perceptrons (MLPs)
- Episodic framework
 - Agent learns on training data, and implements its learned behaviour on test data
- Environment iterates through time
 - Provides states to the agent (OHLC for a specific timeframe) and rewards
 - Receives actions from the agent

Open, High, Low, Close (OHLC)

Our Framework – Multi-Agent RL

- Low latency hierarchical cooperation
 - Adapt the single agent trading framework to a hierarchical agent setting.
 - o Information is passed from lower frequency agents to higher frequency agents.
 - Aim to improve the signal-to-noise ratio for the highest frequency agent.
 - o This approach has been effective with high latency FX data.
 - We will look to apply to lower frequency stock data.

☐ State space

- Weekly $s_1 = \{O, H, L, C\}_{t_1}$
- o 3-Daily $s_2 = \{a_1, O, H, L, C\}_{t_2}$
- o Daily $s_3 = \{a_1, a_2, O, H, L, C\}_{t_3}$
- \Box Action space $A = \{-1, 0, 1\}$
- □ Reward

$$\circ \quad \mathbf{Buy} \ R_t = \frac{c_{t+n} - c_t}{c_t} \times 100$$

$$\circ \quad \text{Sell} \ R_t = \frac{c_t - c_{t+n}}{c_{t+n}} \times 100$$

Preliminary Results – Single Agent Trading

- Implemented a single stock trading environment with OpenAl Gym API
- Implemented a DQN single agent that learns to trade single stocks
 - Daily OHLC data as input (single timeframe)
 - 10-year training period (Jan 2006 Jan 2016)
 - 2-year testing period (Jan 2016 Jan 2018)

- Bullish stock (Google) and fluctuating stock (IBM)
 - Chosen to see how agent behaves for two differently behaving assets

Preliminary Results – Single Agent Trading

- DQN agent learns to make sensible trading decisions on test data
 - DQN strategy compared to Buy-and-Hold strategy

☐ Google

Project Roadmap

- ☐ Implement a *stock trading environment* for agents to trade on ✓
- ☐ Implement single trading agent ✓
- ☐ Utilise more advanced *rule-based baseline strategies* for comparison
- ☐ Extend to *multi-agent framework* with multiple low-latency timeframes
- ☐ Compare the multi-agent trader with individual agent performances

Thanks for listening!