Lecture 28: Pivotal quantities

Ciaran Evans

Recap

Confidence set: Let $\theta \in \Theta$ be a parameter of interest, and $X_1,...,X_n$ a sample. A set $C(X_1,...,X_n) \subseteq \Theta$ is a $1-\alpha$ **confidence set** for θ if

$$\inf_{\theta \in \Theta} P_{\theta}(\theta \in C(X_1, ..., X_n)) = 1 - \alpha$$

Inverting a test: Create a confidence set by inverting a test:

$$C(X_1,...,X_n) = \{\theta_0 : (X_1,...,X_n) \notin \mathcal{R}(\theta_0)\}$$

Using confidence sets to test hypotheses

Let 6 GH and let C(X,,..., th) be a 1- & confidence set. For any OOE(H), let A(60) = { (x, ..., x) : 60 & C(x, ..., x)} The kest which rejects $H_0: \Theta = \Theta_0$ when (X1, ..., Xn) (R(O0) is a d-level test-Po. ((x,,,x,) &R(00)) = Po. (0, 2 ((x,,x,))) = 1 - Poo (Oo & C(X1, ..., X2)) 4 1-(1-d) = d

t interval

Suppose
$$X_1, ..., X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$$
. We want to construct a $1 - \alpha$ CI for μ .

Inverting to test;

reject to image when $\left| \frac{\sqrt{1-(X-\mu_0)}}{s} \right| > t_{nn}, \frac{1}{2}$
 $= > 1-\alpha$ CI = $\frac{2}{3}\mu_0$; $-t_{nn}, \frac{1}{2} \leq \frac{\sqrt{1-(X-\mu_0)}}{s} \leq t_{nn}, \frac{1}{2}$

=> 1-a CI = \(\frac{1}{2} \tau_0; -t_m, \frac{1}{2} \ = [X-tm,登底) X+tm,登局] Another way to look at this: $G(X_1,...,X_n, u) = \frac{In(X-u)}{s} u t_{n-1} \leftarrow \frac{Distribution}{does} \frac{does}{does} \frac$ depend or u pivotal quentity

t interval

Suppose
$$X_1, ..., X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$$
. We want to construct a $1 - \alpha$ CI for μ .

Q($X_1, ..., X_n, \mu$) = $\frac{\sqrt{x_1(x_1, \mu)}}{s}$ ~ $\frac{1}{s}$ ~

Pivotal quantities

Let $X_1,...,X_n$ be a sample and θ be an unknown parameter. A function $Q(X_1,...,X_n,\theta)$ is called a **pivot** if the distribution of $Q(X_1,...,X_n,\theta)$ does not depend on θ .

To get a + or confidence set for
$$\Theta$$
:

OFIND a, D St Po (a \subseteq Q(X,,...,Xn, Θ) \subseteq b) = 1-or

2) 1-or confidence set:

 $\{\Theta: a \subseteq Q(X_1,...,X_n,\Theta) \subseteq b\}$

Example

Let $X_1, ..., X_n \stackrel{iid}{\sim} Uniform(0, \theta)$. We want to construct a $1 - \alpha$ CI for θ using a pivotal quantity.

$$\hat{\Theta} = X_{cm}$$
, so maybe we can vse X_{cm} to created confidence set

 $P(X_{cm} = t) = (P(X_{i} + t))^{n} = (\frac{t}{\Theta})^{n}$
 $E(X_{cm}, X_{n}, \Theta) = Q(X_{cm}, \Theta) = \frac{X_{cm}}{\Theta}$
 $E(X_{cm}, X_{n}, \Theta) = Q(X_{cm}, \Theta) = \frac{X_{cm}}{\Theta}$
 $E(X_{cm}, X_{n}, \Theta) = Q(X_{cm}, \Theta) = \frac{X_{cm}}{\Theta}$
 $E(X_{cm}, X_{n}, \Theta) = P(X_{cm} = \Theta t)$
 $E(X_{cm}, X_{m}, \Theta) = P(X_{cm} = \Theta t)$
 $E(X_{cm}, X_{m}, \Theta) = P(X_{cm} = \Theta t$

Example

Let $X_1, ..., X_n \stackrel{iid}{\sim} Uniform(0, \theta)$. We want to construct a $1 - \alpha$ CI for

Find
$$a,b$$
 st $P(a = \frac{x_{cn}}{6} \le b) = 1-d$

$$P(\frac{x_{cn}}{6} \le t) = t^{2}$$

$$P(a = \frac{x_{cn}}{6} \le b) = b^{2} - a^{2} \qquad (a,b)$$

$$P\left(\frac{x_{in}}{G} = t\right) = t$$

$$P\left(\frac{x_{in}}{6} = t\right) = t^{2}$$

$$P\left(a = \frac{x_{in}}{6} = b^{2} - a^{2}\right) = b^{2} - a^{2}$$

$$(a,b)$$

E.g.
$$b = 1$$
 \Rightarrow $1-a^{\circ} = 1-\alpha \Rightarrow \alpha = \lambda^{\frac{1}{\alpha}}$

$$\Rightarrow P(\lambda^{\frac{1}{\alpha}} \leq \frac{x_{(n)}}{6} \leq 1) = 1-\alpha \quad \text{(I)} \quad x_{(n)}$$

$$\Rightarrow P(x_{(n)} \leq 0 \leq \frac{x_{(n)}}{\alpha^{\frac{1}{\alpha}}}) = 1-\alpha \quad \text{(I)} \quad x_{(n)}$$

Example

Let $X_1,...,X_n \stackrel{iid}{\sim} Exponential(\theta)$, with pdf $f(x|\theta) = \theta e^{-\theta x}$. Find a pivotal quantity $Q(X_1,...,X_n,\theta)$ and construct a $1-\alpha$ confidence interval for θ using that quantity.

▶ Begin with the MLE,
$$\widehat{\theta} = \frac{n}{\sum_{i=1}^{n} X_i}$$

▶ If
$$X \sim Exponential(\theta)$$
, then $cX \sim Exponential\left(\frac{\theta}{c}\right)$

So
$$Q(X_1,...,X_n,\Theta) = \Theta \stackrel{2}{\underset{i=1}{2}} X_i$$
 is a pivotal quantity

$$Q(X_1, \dots, X_n, 0) = \Theta \stackrel{?}{\underset{i=1}{2}} X_i$$

Now want a, b st
$$P_{\Theta}(a \leq \Theta \leq i \times i \leq b) = 1-\alpha$$

e.g. $a = Gamma(n, i)_{1-\frac{\alpha}{2}}$ (later $\frac{1}{2}$ quantile)

 $b = Gamma(n, i)_{\frac{\alpha}{2}}$ (upper $\frac{1}{2}$ quantile)

So the
$$I-\alpha$$
 CI is
$$\left[\frac{\alpha}{\xi_i \chi_i}, \frac{b}{\xi_i \chi_i}\right]$$