Задание 13 (на 06.12, в письменном виде).

[ML 64.] Будем говорить, что замкнутая формула ϕ семантически следует из теории T, если любая модель теории T является моделью формулы ϕ , обозначение: $T \models \phi$. Покажите, что ϕ семантически следует из T тогда и только тогда, когда ϕ выводима из T. Коротко: $T \models \phi \iff T \vdash \phi$.

ML 65. Пусть теория T имеет модель со сколь угодно большим носителем. Докажите, что T имеет модель с бесконечным носителем.

ML 66. В алгебре вам доказывали, что если K — некоторое поле, а многочлен $f \in K[x]$ неприводим, то существует K' надполе поля K, в котором многочлен f имеет корень (в качестве поля K' можно взять K[x]/<f>, это кольцо является полем как фактор-кольцо по максимальному идеалу). С помощью теоремы о компактности покажите, что для всякого поля K существует его надполе K' такое, что каждый неконстантный многочлен с коэффициентами из K имеет корень в K'.

[ML 67.] С помощью теоремы о компактности докажите, что любой частичный порядок на множестве можно продолжить до линейного порядка (т.е. до порядка, в котором любые два элемента сравнимы).

ML 68. Предъявите алгоритм, который по всякой формуле ϕ сигнатуры σ выдаст Σ_2 -формулу ψ сигнатуры σ с добавленными предикатными символами, что формула ϕ общезначима тогда и только тогда, когда формула ψ общезначима.

[ML 59.] Пусть сигнатура содержит только одноместные предикатные символы. Покажите, что:

- (a) всякая выполнимая формула, содержащая n предикатных символов, выполнима и в интерпретации, в носителе которой не более 2^n элементов;
- (б) существует алгоритм, проверяющий выполнимость таких формул.

[ML 63.] Построите две неизоморфные интерпретации теории $Th(\mathbb{Q},<,=)$ (плотный линейный порядок без первого и последнего элемента) мощности континуум.