NAM	
INMINI	

3-3 Notes

Rate of Change and Slope

Linear Functions have a constant rate of change – also called the slope of the line.

Determine whether each function is linear. Explain.

X	y	
1	-6	\ -7
4	-8	
7	-10	1-2
10	-12) - Z
13	-14	1-2
		4 -8 7 -10 10 -12

	400	1	
b.	x	у	
+2 /	7 -3	10	5 t2
42)	1	12	K II
1-9	1	16	KAL
12	3	18	X+2
4-	5	22	1+4

not a linear functi the rate of change

Finding Slope:

Slope of a Line

 $m = \frac{rise}{run}$ or $m = \frac{y_2 - y_1}{x_2 - x_1}$, where (x_1, y_1) and (x_2, y_2) are the coordinates of any two points on a non-vertical line

Example 1: Find the slope of the line that passes through (-3, 5) and (4, -2).

$$5-(-2) = \frac{7}{-7}$$

Example 2: Find the value of r so that the line through (10, r) and (3, 4) has a slope of $-\frac{2}{7}$.

$$\frac{r-y}{10-3} = \frac{-2}{7}$$

Exercises

Find the slope of the line that passes through each pair of points.

$$\Delta y = \frac{9-6}{4-1} = \frac{3}{3} = \frac{m-1}{3}$$

2.
$$(-4,-1), (-4,-5)$$

 $\Delta y = (-4,-1), (-4,-5)$
 $\Delta x = (-4,-1)$ verticel line
 $(-4,-1)$

$$\frac{\Delta y}{\Delta x} = \frac{-8 - (-6)}{14 - 7} = \frac{-8 + 6}{7} = \frac{-27}{7}$$

$$M = \frac{1}{3}$$

$$\frac{\Delta y}{\Delta x} - \frac{3 - (-3)}{4 - 8} = \frac{0}{4} \quad (m = 0)$$

Find the value of r so the line that passes through each pair of points has the given slope.

5.
$$(6, 8)$$
, $(r, -2)$, $m = 1$

$$x = 6 - \Gamma$$
 $1(6 - \Gamma) = 1(10)$
 $-\frac{1}{4} = \frac{1}{4}$
 $\frac{1}{4} = \frac{1}{4}$

6.
$$(2, 8), (r, -4), m = -3$$

Positive Slope

Negative Slope

Slope = 0

Slope is Undefined

Find the slope of each line.

1)

2)

3)

4)

5)

6)

