Билет 35

Теорема Вейерштрасса

Теорема Вейерштрасса

f — непрерывна на $[a;b] \Rightarrow f$ — ограничена на [a;b] и достигает своих минимума и максимума

Доказательство

1. f — ограничена на [a;b], если она непрерывна на [a;b]

f равномерно непрерывна на [a;b] (по т. Кантора):

$$\exists \varepsilon = 1 \ \exists \delta > 0 : (\forall x, x' \in [a; b] : (|x - x'| < \delta)) |f(x) - f(x')| < 1$$

Разделим [a;b] на n частей: $\frac{b-a}{n}<\delta$

$$a_0 := a$$

$$a_{i+1} - a_i = \frac{b - a}{n}$$

$$a_n := b$$

$$a_{i+1} - a_i < \delta$$

$$|a_{i+1} - a_i| < \delta \Rightarrow |f(x) - f(a_i)| < 1 \ \forall x \in [a_{i-1}; a_i] \Rightarrow |f(x)| < 1 + |f(a_i)| \ \forall x \in [a_{i-1}; a_i]$$
 $A := \max\{1 + |f(a_i)| \ | \ i = \overline{1, n}\} \Rightarrow |f(x)| < A \ \forall x \in [a; b] \Rightarrow f$ — ограничена на $[a; b]$

2. f достигает своих минимума и максимума

f — ограничена на $[a;b] \Rightarrow \exists M := \sup f([a;b]), \exists m := \inf f([a;b])$

Покажем, что M и m достигаются на [a;b]. Пойдем от противного, пусть это не так, тогда: