

1 Objectives

- \bullet To characterize the SQ-85 photovoltaic panel, and find numerical parameters of the equivalent circuit model
- To test the sine wave inverter provided
- To charge the deep-discharge lead-acid battery using the Direct Energy Transfer approach

This report is structured in the same order as the sequence of tasks given in the Experiment 1 procedure document.

2 Experimental Data

2.1 SQ-85 PV Panel Nameplate Details

Parameter	Value
Maximum Power Output	85 W
Short Circuit Current	
Rated Current	4
Maximum Open Circuit Voltage	600 V (UL) / 715 V (TUV)
Open Circuit Voltage	22.2 V
Rated Voltage	
Fire Rating	Class C
Series Fuse	20 A
Field Wiring	14 AWG (min)
	Insulated for 90°C

2.2 Initial Readings

Time of Day	
Battery Open-Circuit Voltage	
AC Voltage	
AC Current	
AC Power	
AC Frequency	

2.3 PV Panel Measurements (all cells uniformly irradiated)

Solar irradiance measured with pyranometer = W/m².

2.3.1 Maximum Power Readings

Maximum Power	
Panel Voltage at MPP	
Panel Current at MPP	
Time of Day	

2.3.2 v_{PV} vs. i_{PV}

$v_{PV} [V]$	i_{PV} [A]
0 (SC)	
2.07	
5.8	
7.0	
8.0	
11.5	
13.5	
14.6	
15.8	
16.67	
16.86	
17.0	
17.2	
17.3	
17.6	

17.7	
17.85	
18.0	
18.14	
18.46	
18.6	
18.86	
19.0	
19.25	
19.4	
19.53	
19.7	
19.8	
19.84	
19.9	
20.0	
20.1	
20.64	

2.4 PV Panel Measurements (4 cells shaded along left side)

2.4.1 Maximum Power Readings

Maximum Power	
Panel Voltage at MPP	
Panel Current at MPP	
Time of Day	

2.4.2 v_{PV} vs. i_{PV}

$v_{PV} [V]$	i_{PV} [A]
0 (SC)	
2.5	
4.3	
6.0	
7.3	
7.95	

8.45	
8.84	
9.02	
9.15	
9.25	
9.4	
9.55	
9.63	
19.0	

2.5 Final Readings

2.5.1 After measuring PV characteristics

AC Energy Consumed	
Battery Voltage (Loaded)	
Battery Voltage (Open-Circuited)	
Time of Day	

2.5.2 After removing AC load and connecting PV panel to battery

Panel Voltage	
Panel Current	

Observation:
power at this o
maximum power

3 Calculations and Observations

3.1 PV Panel Efficiency

Maximum por estimated from Panel area, A $\Rightarrow \text{Input Power}$ Maximum PV $\Rightarrow \text{Estimated}$

3.2 Measured i - v Curves

3.2.1 With all cells uniformly irradiated

Figure 1: PV voltage vs. current for uniform irradiation

3.2.2 With 4 cells shaded along left side

Figure 2: PV voltage vs. current for partial shading

Observation: Under good current, and the op

3.3 Calculation of PV Circuit Model Parameters

Figure 3: Equivalent circuit model of a PV cell

 $V_{OC,cell}$.

These equations were solved for I_0 and I_{D0} numerically using MATLAB. Values obtained for the four circuit parameters are listed below:

R_s	Ω
R_p	
I_0	A
I_{D0}	ıA

3.4 Comparison of Measured and Model-Predicted i-v Curves with Uniform Irradiation

Figure 4: Measured and model-predicted i-v curves

The two curves are shown overlaid in 4, with short-circuit currents, open-circuit voltages and maximum power points marked.

Observation: As can be seen in Fig. 4, the short-circuit current predicted by the model is voltage of the model is slightly lower than st significant deviation is in the maximum

Explanation: Deviations between modeled and measured curves may be explained as under:

- er of acies
- The demode juncti

3.5 Modeled i-v and Power-Voltage Curves for Various Values of Insolation (Uniform Irradiation)

Figure 5: Modeled i-v curves for various values of solar insolation

Figure 6: Modeled power vs. voltage curves for various values of solar irradiance

3.6 Comparison of Measured and Model-Predicted i-v Curves with 4 Cells Shaded

Figure 7: Circuit model implemented in ADS software for partial shading condition

Figure 8: Measured vs. modeled i-v curves for partial shading condition

Figure 9: Measured and modeled power vs. voltage curves for partial shading condition

3.7 Battery Discharge Calculations

⇒ Average battery current
 Time elapsed between initia
 ⇒ Average ampere-hours su

Figure 10: Battery open-circuit voltage vs. SOC

Battery open-circuit voltage vs. SOC characteristics were plotted using the data from Table 1, and additional data provided regarding maximum and minimum open-circuit voltage ($6 \times 2.4 \text{ V}$ and $6 \times 1.7 \text{ V}$). This is shown in Fig. 10.

Final op \Rightarrow As sh

3.8 PV Operating Point during Direct Energy Transfer

Figure 11: Direct Energy Transfer Operating Point

As recorded in Section 2.5.2, when battery was connected directly to the PV panel output, \mathbf{A} . This operating point is shown on the measured i-v curve in Fig. 11. The PV output power at this operating point, $P_{PV,DT} = V_{PV,DT} \times \mathbf{A}$.

3.8.1 Comparison with MPPT Implementation

With MPPT implementation using a buck converter, PV panel will now operate at its

3.8.2 MPPT under Partial Shading Conditions

As is observed in Section 3.6, for both the measured and modeled i-v curves under partial

4 Conclusions

The both tions chan appr
Und imur SEP
The powe the c