Limits and Continuity of Multivariable Function Quiz

May 27, 2020

Questions

- Q1. Given a function $f: D \to R$, $D \subseteq R^n$, we say that the limit of f (r) as r approaches a exists and has value if and only if for every real number $\epsilon > 0$ there exists a real number $\delta > 0$ such that _____ whenever ____. We then write $\lim_{\mathbf{r} \to a} f(\mathbf{r}) = L$.
 - a. $|f(\mathbf{r}) L| < \epsilon, \ 0 < ||\mathbf{r} a|| < \delta$
 - b. $|f(\mathbf{r}) L| > \epsilon$, $0 < ||\mathbf{r} a|| < \delta$
 - c. $|f(\mathbf{r}) L| > \epsilon$, $0 > ||\mathbf{r} a|| > \delta$
 - d. $|f(\mathbf{r}) L| < \epsilon, \ 0 > ||\mathbf{r} a|| > \delta$
- Q2. What are the Sum and Difference rule for limits of multi variable function?
 - a. $\lim_{(x,y)\to(a,b)} [f(x;y)g(x;y)] = LM$
 - b. $\lim_{(x,y)\to(a,b)} [f(x;y) \pm g(x;y)] = L \pm M$
 - c. $\lim_{(x,y)\to(a,b)} \left[\frac{f(x;y)}{g(x;y)} \right] = \frac{L}{M}$
 - d. $\lim_{(x,y)\to(a,b)} f(x,y)^{\frac{r}{s}} = L^{\frac{r}{s}}$
- Q3. Does $\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^4+y^2}$ exists?
 - a. True
 - b. False
- Q4. A function of many variables $f:D\to R$ is continuous at a point $r_0\subseteq D\subseteq R^n$ if and only if,

- a. $f(r_0) = \lim_{\mathbf{r} \to 0} f(\mathbf{r})$
- b. $f(r_0) = \lim_{\mathbf{r} \to r_0} f(\mathbf{r})$
- c. $f(r) = \lim_{\mathbf{r} \to r_0} f(\mathbf{r})$
- Q5. Is $f(x,y) = x^3y + 3x^5y^5 x + 2y$ continuous at (0,0)?
 - a. True
 - b. False

Answer Key

Q1.
$$|f(\mathbf{r}) - L| < \epsilon$$
, $0 < ||\mathbf{r} - a|| < \delta$

Q2.
$$\lim_{(x,y)\to(a,b)} [f(x;y) \pm g(x;y)] = L \pm M$$

Q4.
$$f(r_0) = \lim_{\mathbf{r} \to r_0} f(\mathbf{r})$$