Reverse engineering a Turing machine

Robin Visser

University of Amsterdam

Recap: Turing machine (definition)

Definition

A Turing machine is a 9-tuple $M = (Q, \Sigma, \Gamma, \vdash, \sqcup, \delta, s, t, r)$ where;

- Q is a finite set (the states)
- \bullet Σ is a finite set (the input alphabet)
- ullet Γ is a finite set (the tape alphabet) containing Σ as a subset
- $\sqcup \in \Gamma \Sigma$, the blank symbol
- ullet $\vdash \in \Gamma \Sigma$, the left endmarker
- $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$, the transition function
- $s \in Q$, the start state
- $t \in Q$, the accept state
- $r \in Q$, the reject state, $r \neq t$

Recap: Turing machine (step)

Transition function

$$\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$$

TM Step:

- Read from the current cell
- Change state
- Write to the current cell
- Move (either left or right)

Recap: Turing machine (execution trace)

Proposition

Execution trace as a list of TM steps

Definition: Turing machine execution trace

A space-separated ordered list containing a finite amount of event representations.

Possible event representations are:

event representation	event description	
<	Move head one cell to the left	
>	Move head one cell to the right	
_	Read (next event representation is input)	
+	Write (next event representation is output)	
<symbol literal=""></symbol>	A literal representation of a symbol $\in \Gamma$	

Recap: Turing machine (execution trace, example)

Example

Consider a 4-state TM which erases its input "abaa":

event repr.	event descr.
<	Move left
>	Move right
_	Read
+	Write
<symbol literal=""></symbol>	$symbol \in \Gamma$

$$- \vdash + \vdash >$$
 $- a + \sqcup >$
 $- b + \sqcup >$
 $- a + \sqcup >$
 $- a + \sqcup >$
 $- u + \sqcup >$

Note: Newlines added for readability!

Actual execution trace

$$-\vdash+\vdash>-a+\sqcup>-b+\sqcup>-a+\sqcup>-a+\sqcup>-....$$

Dissecting the execution trace: input extraction

• The input is the only parameter that determines what a certain TM is going to do, and it is embedded in the resulting execution trace.

Input extraction algorithm

- Emulate the TM using the execution trace
- Keep track of position
- Whenever the TM lands on a cell for the first time, store contents.

 \rightarrow Any input read by the TM is extracted by the algorithm!

Dissecting the execution trace: Input extraction

An execution trace may not contain the entire input

Example

Consider a TM that attempts to find a '1' in bitstrings

event repr.	event descr.
<	Move left
>	Move right
_	Read
+	Write
<symbol literal=""></symbol>	$symbol \in \Gamma$

$$- \vdash + \vdash >$$

 $- 0 + 0 >$
 $- 0 + 0 >$
 $- 1 + 1 >$

Input could have been "001", "0010" or "001110010"

Dissecting the execution trace: output extraction

Definition

The output of a TM is defined as the longest possible finite string after the left endmarker whose last symbol is not '□' (the output could be empty)

Output extraction algorithm (direct approach)

Emulate all the write operations of the TM on an empty tape

Output extraction algorithm (efficient approach)

- Start at the back of the execution trace
 - Reverse emulate the TM
 - Store only the last write operation on a given cell

Dissecting the execution trace: input/output completeness

- The extracted input is not necessarily complete
- The extracted output is not necessarily complete

Theorem (Input/Output Completeness)

An execution trace's input is complete if and only if the execution trace's output is complete

Assignment

Assume TM uses it's entire input \rightarrow all traces are complete.

Reverse engineering: manually

Concept

Recreating a functional TM from multiple coherent execution traces.

Approach

- Try to determine the design goal. (by using input/output extraction).
- Try to understand the algorithm used to achieve this goal.
 (by visualizing trace execution step by step)
- Mirror the algorithm step by step in a new TM. (Creating states/transitions where necessary)
- Verify that the new TM produces the exact same execution traces.

Result

(Relatively) efficient TM with acceptable amount of states.

Reverse engineering: generic

Concept

Recreating any TM from multiple coherent execution traces.

Algorithm

- Extract Sigma and Gamma.
- Reverse engineer a single trace.
- Reverse engineer another trace and combine the results.
- Repeat step 3 until there are no traces left.
- Verify that the new TM produces the exact same execution traces.

Result

(Relatively) inefficient TM with a lot of states.