Pauta Ayudantía 9 Estructuras Algebraicas

Profesor: Pedro Montero **Ayudante:** Sebastián Fuentes

16 de mayo de 2023

Definición (módulo noetheriano). Sea A un anillo. Decimos que un A-módulo M es noetheriano si para toda cadena creciente de submódulos

$$M_1 \subset M_2 \subset M_3 \subset \cdots$$

existe $n \in \mathbb{N}^{\geq 1}$ tal que $M_n = M_{n+k}$ para todo $k \in \mathbb{N}^{\geq 1}$.

Observación. Note que el concepto de anillo noetheriano cabe dentro de la definición anterior, pues si tomamos M = A (el cual es naturalmente un A-módulo) entonces sus A-submódulos corresponden a los ideales y por lo tanto se recupera esta definición.

A continuación se enuncia un resultado referente a A-módulos noetherianos(y que asumiremos como verdaderas pues su demostración no difiere tanto de resultados vistos en cátedra).

Teorema. Sea A un anillo, M un A-módulo y $N \subseteq M$ un A-submódulo.

- 1. M es noetheriano si y solo si todo A-submódulo de M es finitamente generado.
- 2. M es noetheriano si y solo si N y M/N son noetherianos (ver Tarea 2).
- 3. Si A es un anillo noetheriano entonces todo A-módulo finitamente generado es noetheriano.

Problema 1. El objetivo de este problema es demostrar que la propiedad de noetherianidad de un anillo se puede medir únicamente mirando sus ideales primos. Sea A un anillo. Suponga que todo ideal primo de A es finitamente generado y concluya por contradicción que A es noetheriano realizando los siguientes pasos:

- (a) Demuestre que si la colección de ideales de A que no son finitamente generados es no vacía, entonces contiene un elemento maximal I, y que A/I es un anillo noetheriano. Indicación: Para lo pultimo pruebe que todo ideal de A/I es finitamente generado.
- (b) Pruebe que existen ideales J_1 y J_2 finitamente generados que contienen I con $J_1J_2 \subseteq I$ y que J_1J_2 es finitamente generado. *Indicacion:* Note que I no es primo y elija elementos adecuados. Extienda I usando dichos elementos.
- (c) Muestre que I/J_1J_2 es un A/I—submódulo finitamente generado de J_1/J_1J_2 . Indicación: Utilice la parte 3. del Teorema.
- (d) Demuestre que I es finitamente generado sobre A y concluya que A es noetheriano.

Demostración.

(a) Sabemos que si A es noetheriano entonces todo ideal es finitamente generado. Si suponemos entonces por contradicción que A no es noetheriano entonces existe al menos un ideal que no es finitamente generado. Denotemos por S el conjunto de ideales de A que no son finitamente generados, parcialmente ordenado por la inclusión, y sea $\{I_{\alpha}\}_{\alpha\in\Lambda}\subseteq S$ un subcnjunto totalmente ordenado. Definimos $I:=\bigcup_{\alpha\in\Lambda}I_{\alpha}$ el cual sabemos que es un ideal y es además no finitamente generado. En efecto, si $I=\langle a_1,\ldots,a_n\rangle$ para ciertos $a_1,\ldots,a_n\in A$ para cada $i=1,\ldots,n$ existe $\alpha_i\in\Lambda$ tal que $a_i\in I_{\alpha_i}$. Ahora, como $\{I_{\alpha}\}_{\alpha\in\Lambda}$ es totalmente ordenado por la inclusión existe un $\alpha\in\Lambda$ tal que $\alpha_i\in I_{\alpha}$ para todo $i=1,\ldots,n$ y por definición de I tenemos $I=I_{\alpha}$, lo cual supone una contradicción pues I_{α} es no finitamente generado. Así, tenemos que $I\in S$. Es claro entonces que I es una cota superior para $\{I_{\alpha}\}_{\alpha\in\Lambda}$ pues $I_{\alpha}\subseteq I$ para todo $\alpha\in\Lambda$. El lema de Zorn afirma entonces que existe un elemento maximal I de S. Por maximalidad entonces todo ideal de A/I es finitamente generado, pues de lo contrario dada la correspondencia entre ideales de A que contienen a I e ideales de A/I obtendríamos un ideal finitamente generado de A conteniendo a A. Así, todo ideal de A es finitamente generado y en consencuencia es noetheriano.

MAT214 UTFSM

(b) Por hipótesis todo ideal primo de A es no finitamente generado y por lo tanto I no es primo, así que existen $x,y\in A$ tales que $x\notin I,y\notin I$ pero $xy\in I$. Tenemos entonces que los ideales $J_1=I+\langle x\rangle,J_2=I+\langle y\rangle$ contienen a I y por maximalidad entonces son finitamente generados, y además

$$J_1J_2 = (I + \langle x \rangle)(I + \langle y \rangle) = I^2 + xI + yI + \langle xy \rangle \subseteq I$$

y dado que el producto de ideales finitamente generados es finitamente generado (ejercicio) entonces J_1J_2 es finitamente generado.

- (c) Por teoría general sabemos que los ideales de A son A-submódulos y por lo tanto podemos dotar a I/J_1J_2 de estructura de A-módulo mediante $a \cdot [b] := [ab]$, y como $I \subseteq J_1$ entonces I/J_1J_2 es un A-submódulo de J_1/J_1J_2 . Ahora, como $IJ_1 \subseteq J_1J_2$ entonces I anula a J_1/J_1J_2 y por lo tanto tiene estructura de A/I-módulo. De forma similar I/J_1J_2 es un A/I- módulo y $I/J_1J_2 \subseteq J_1/J_1J_2$. Como J_1 es finitamente generado como A-submódulo, J_1/J_1J_2 es finitamente generado como A-módulo, y por lo tanto también es finitamente generado como A/I-módulo (los generadores son los mismos). Finalmente, como A/I es un anillo noetheriano por el Problema 1. tenemos que J_1/J_1J_2 es un A/I-módulo noetheriano y por lo tanto I/J_1J_2 es finitamente generado como A/I-módulo.
- (d) La parte anterior implica que I/J_1J_2 es finitamente generado también como A-módulo, y como J_1J_2 es también finitamente generado entonces I es finitamente generado, lo cual es una contradicción. Así, todo ideal de A es finitamente generado y por lo tanto es noetheriano.

Problema 2. Sea A anillo (conmutativo con unidad), M un A-módulo. Demuestre que $\operatorname{Hom}_A(A,M) \cong M$.

Demostración. Definimos el siguiente morfismo:

$$\Phi: \operatorname{Hom}_A(A, M) \to M, \quad \varphi \mapsto \varphi(1)$$

el cual claramente es un morfismo de A-módulos pues

$$\Phi(\varphi + \lambda \psi) = (\varphi + \lambda \psi)(1) = \varphi(1) + \lambda \psi(1) = \Phi(\varphi) + \lambda \Phi(\psi) \quad \forall \varphi, \psi \in \operatorname{Hom}_A(A, M), \lambda \in A$$

Notemos ahora que

$$\varphi(1) = 0 \iff \varphi(\lambda) = \lambda \varphi(1) = 0 \quad \forall \lambda \in A \iff \varphi = 0$$

y por lo tanto

$$\ker(\Phi) = \{ \varphi \in \operatorname{Hom}_A(A, M) : \varphi(1) = 0 \} = 0$$

Ahora, para $m \in M$ dado, podemos definir el morfismo de A-módulos $\varphi : A \to M, a \mapsto am$, ie, $\varphi \in \operatorname{Hom}_A(A, M)$ y tenemos $m = \varphi(1) = \Phi(\varphi)$, de donde vemos que Φ es un isomorfismo.

Problema 3. Sea M un A-módulo noetheriano y $\varphi: M \to M$ un endomorfismo de M. Demuestre que si φ es sobreyectiva, entonces φ es un isomorfismo.

Demostraci'on. Notar que tenemos una cadena natural de submódulos asociada a φ dada por

$$\ker(\varphi) \subseteq \ker(\varphi^2) \subseteq \dots \subseteq \ker(\varphi^n) \subseteq \dots$$

y por noetherianidad existe $n \in \mathbb{N}$ tal que $\ker(\varphi^n) \subseteq \ker(\varphi^{n+1})$. Por otro lado, notar que como φ es sobreyectivo entonces φ^n es sobreyectivo para todo $n \in \mathbb{N}$. Así, si $m \in \ker(\varphi)$ entonces existe $m' \in M$ tal que $\varphi^n(m') = m$ y luego $0 = \varphi(m) = \varphi(\varphi^n(m')) = \varphi^{n+1}(m')$ así que $m' \in \ker(\varphi^{n+1}) = \ker(\varphi^n)$ de donde m = 0, lo que muestra $\ker(\varphi) = \{0\}$ y en consecuencia φ es inyectiva.