

Fundada en 1936

CÁLCULO DIFERENCIAL

Centro de Ciencia Básica Universidad Pontificia Bolivariana

Vigilada Mineducación

Fundada en 1936

ENCUENTRO 7.2

Sección 2.2: Límite de una función, límites laterales, límites infinitos.

Límite de una función

Vamos a investigar el comportamiento de la función f definida por $f(x) = x^2 - x + 2$ para valores de x cercanos a 2. La siguiente tabla muestra los valores de f(x) para valores de x cercanos a 2, pero no iguales a 2.

х	f(x)	X	f(x)
1.0	2.000000	3.0	8.000000
1.5 1.8	2.750000 3.440000	2.5 2.2	5.750000 4.640000
1.9	3.710000	2.1	4.310000
1.95 1.99	3.852500 3.970100	2.05 2.01	4.152500 4.030100
1.995 1.999	3.985025 3.997001	2.005	4.015025
1.999	3.997001	2.001	4.003001

De la tabla y la gráfica de f (una parábola) que se muestra en la figura 1, vemos que cuando x se aproxima a 2 (por ambos lados de 2), f(x) se aproxima a 4. De hecho, parece que podemos hacer que los valores de f(x) estén tan cerca de 4 como queramos, tomando x suficientemente cercano a 2. Esto lo expresamos diciendo que "el límite de la función $f(x) = x^2 - x + 2$ cuando x tiende a 2 es igual a 4". La notación para esto es

$$\lim_{x \to 2} (x^2 - x + 2) = 4$$

FIGURA 1

Cuando *x* se aproxima a 2,

Fundada en 1936

1 Definición Supongamos que f(x) está definida cuando x está cerca del número a. (Esto significa que f está definida en algún intervalo abierto que contiene a a, excepto posiblemente en a misma.) Entonces escribimos

$$\lim_{x \to a} f(x) = L$$

y decimos que "el límite de f(x), cuando x tiende a a, es igual a L"

si podemos hacer que los valores de f(x) estén arbitrariamente cercanos a L (tan cercanos a L como queramos), tomando valores de x suficientemente cerca de a (por ambos lados de a), pero no iguales a a.

La figura 2 muestra las gráficas de tres funciones. Observe que en el inciso c), f(a) no está definida y, en el inciso b), $f(a) \neq L$. Sin embargo, en cada caso, independientemente de lo que sucede en a, es cierto que $\lim_{x\to a} f(x) = L$.

FIGURA 2 $\lim_{x \to a} f(x) = L$ en los tres casos

1. Explique con sus propias palabras cuál es el significado de la ecuación

$$\lim_{x \to 2} f(x) = 5$$

¿Es posible que se cumpla con esta proposición y que aún f(2) = 3 sea verdadero? Explique.

Límites laterales

2 Definición Cuando escribimos

$$\lim_{x \to a^{-}} f(x) = L$$

Fundada en 1936

estamos diciendo que el **límite izquierdo de** f(x) **cuando** x **se aproxima a** a [o **el límite de** f(x) **cuando** x **tiende a** a **por la izquierda**] es igual a L si podemos hacer que los valores de f(x) se acerquen arbitrariamente a L, tanto como queramos, tomando x suficientemente cercanos a a, pero menores que a.

Observe que la definición 2 difiere de la definición 1 sólo en el hecho de que x sea necesariamente menor que a. Del mismo modo, si se requiere que x sea mayor que a, se obtiene "el **límite de** f(x) **cuando** x **tiende a** a **por la derecha** es igual a L" y escribimos

$$\lim_{x \to a^+} f(x) = L$$

Fundada en 1936

a)
$$\lim_{x \to a^{-}} f(x) = L$$

b)
$$\lim_{x \to a^+} f(x) = L$$

Al comparar la definición 1 con las de los límites laterales, vemos que se cumple con lo siguiente.

$$\lim_{x \to a} f(x) = L \quad \text{si y solo si} \quad \lim_{x \to a^{-}} f(x)$$

$$\lim_{x \to a} f(x) = L \quad \text{si y s\'olo si} \quad \lim_{x \to a^{-}} f(x) = L \quad \text{y} \quad \lim_{x \to a^{+}} f(x) = L$$

2. Explique qué significa decir que

$$\lim_{x \to 1^{-}} f(x) = 3 \qquad \text{y} \qquad \lim_{x \to 1^{+}} f(x) = 7$$

En esta situación, ¿es posible que lím $_{x\to 1} f(x)$ exista? Explique.

V EJEMPLO 7 La gráfica de una función *g* se muestra en la figura 10. Utilícela para establecer los valores (si existen) de lo siguiente:

Fundada en 1936

a) $\lim_{x \to 2^-} g(x)$

- b) $\lim_{x \to 2^+} g(x)$
- c) $\lim_{x\to 2} g(x)$

d) $\lim_{x \to 5^-} g(x)$

- e) $\lim_{x \to 5^+} g(x)$
- f) $\lim_{x\to 5} g(x)$

FIGURA 10

SOLUCIÓN En la gráfica vemos que los valores de g(x) tienden a 3 conforme x tiende a 2 por la izquierda, pero se acercan a 1 a medida x tiende a 2 por la derecha. Por tanto,

a)
$$\lim_{x \to 2^{-}} g(x) = 3$$
 y b) $\lim_{x \to 2^{+}} g(x) = 1$

c) Dado que los límites por la izquierda y por la derecha son diferentes, llegamos a la conclusión de $\boxed{3}$ que lím $_{x\to 2} g(x)$ no existe.

La gráfica también muestra que

d)
$$\lim_{x \to 5^{-}} g(x) = 2$$
 y e) $\lim_{x \to 5^{+}} g(x) = 2$

f) Esta vez los límites por la izquierda y por la derecha son los mismos, así que, por 3, tenemos

$$\lim_{x \to 5} g(x) = 2$$

A pesar de esto, observe que $g(5) \neq 2$

4. Utilice la gráfica de f para establecer el valor de cada cantidad si ésta existe. Si no existe, explique por qué.

Fundada en 1936

a)
$$\lim_{x \to 2^-} f(x)$$

- a) $\lim_{x \to 2^{-}} f(x)$ b) $\lim_{x \to 2^{+}} f(x)$ c) $\lim_{x \to 2} f(x)$
- d) f(2) e) $\lim_{x \to 4} f(x)$ f) f(4)

Solución

a)
$$\lim_{x \to 3^-} f(x) = 3$$

a)
$$\lim_{x \to 2^{-}} f(x) = 3$$
 b) $\lim_{x \to 2^{+}} f(x) = 1$ c) $\lim_{x \to 2} f(x) \not\equiv$

c)
$$\lim_{x\to 2} f(x) \neq 0$$

$$f(2) = 3$$

$$e) \lim_{x \to 4} f(x) = 4 \qquad f) f(4) \not\exists$$

$$f) f(4) \not\exists$$

V EJEMPLO 4 Investigue
$$\lim_{x\to 0} \operatorname{sen} \frac{\pi}{x}$$
.

SOLUCIÓN Una vez más la función $f(x) = \text{sen}(\pi/x)$ no está definida en 0. Evaluando la función para algunos valores pequeños de x, obtenemos

$$f(1) = \sin \pi = 0$$
 $f(\frac{1}{2}) = \sin 2\pi = 0$ $f(\frac{1}{3}) = \sin 3\pi = 0$ $f(\frac{1}{4}) = \sin 4\pi = 0$ $f(0.1) = \sin 10\pi = 0$ $f(0.01) = \sin 100\pi = 0$

Del mismo modo, f(0.001) = f(0.0001) = 0. Sobre la base de esta información podríamos estar tentados a suponer que

$$\lim_{x \to 0} \operatorname{sen} \frac{\pi}{x} = 0$$

pero esta vez nuestra suposición es errónea. Tenga en cuenta que, aunque $f(1/n) = \sin n \pi = 0$ para cualquier entero n, también es cierto que f(x) = 1 para muchos valores de x cercanos a 0. Esto puede verse en la gráfica de f que se muestra en la figura 7.

Las líneas punteadas, cerca del eje y indican que los valores del sen (π/x) oscilan infinitamente entre 1 y -1 cuando x tiende a 0. (Véase el ejercicio 45.)

Ya que los valores de f(x) no se acercan a un número fijo cuando x tiende a 0,

$$\lim_{x \to 0} \operatorname{sen} \frac{\pi}{x} \quad \text{no existe}$$

6. Para la función *h* cuya gráfica está dada, establezca el valor de cada una de las siguientes cantidades. Si no existe, explique por qué.

d) h(-3) e) $\lim_{x\to 0^{-}} h(x)$ f) $\lim_{x\to 0^{+}} h(x)$

- g) $\lim_{x \to 0} h(x)$ h) h(0) i) $\lim_{x \to 2} h(x)$

- h(2) k) $\lim_{x \to 5^+} h(x)$ 1) $\lim_{x \to 5^-} h(x)$

- 7. Para la función g cuya gráfica está dada, establezca el valor de cada una de las siguientes cantidades si existe. Si no, explique por qué.
- $\lim_{t\to 0^-} g(t) \qquad \qquad \text{b)} \quad \lim_{t\to 0^+} g(t) \qquad \qquad \text{c)} \quad \lim_{t\to 0} g(t)$
- d) $\lim_{t\to 2^-} g(t)$ e) $\lim_{t\to 2^+} g(t)$ f) $\lim_{t\to 2} g(t)$

h) $\lim_{t\to 4} g(t)$

10. Un paciente recibe una inyección de 150 mg de un medicamento cada 4 horas. La gráfica muestra la cantidad f(t) del medicamento en el torrente sanguíneo después de t horas. Encuentre

$$\lim_{t \to 12^{-}} f(t) \qquad \text{y} \qquad \lim_{t \to 12^{+}} f(t)$$

y explique el significado de estos límites laterales.

11-12 Trace la gráfica de cada una de las siguientes funciones y utilícela para determinar los valores de a para los cuales $\lim_{x\to a} f(x)$ existe.

11.
$$f(x) = \begin{cases} 1 + x & \text{si } x < -1 \\ x^2 & \text{si } -1 \le x < 1 \\ 2 - x & \text{si } x \ge 1 \end{cases}$$

$$\mathbf{12.} \ f(x) = \begin{cases} 1 + \sin x & \text{si } x < 0 \\ \cos x & \text{si } 0 \le x \le \pi \\ \sin x & \text{si } x > \pi \end{cases}$$

15-18 Trace la gráfica de un ejemplo de una función *f* que cumpla con todas las condiciones dadas.

15.
$$\lim_{x \to 0^{-}} f(x) = -1$$
, $\lim_{x \to 0^{+}} f(x) = 2$, $f(0) = 1$

16.
$$\lim_{x \to 0} f(x) = 1$$
, $\lim_{x \to 3^{-}} f(x) = -2$, $\lim_{x \to 3^{+}} f(x) = 2$, $f(0) = -1$, $f(3) = 1$

- 17. $\lim_{x \to 3^+} f(x) = 4$, $\lim_{x \to 3^-} f(x) = 2$, $\lim_{x \to -2} f(x) = 2$, f(3) = 3, f(-2) = 1
- **18.** $\lim_{x \to 0^{-}} f(x) = 2$, $\lim_{x \to 0^{+}} f(x) = 0$, $\lim_{x \to 4^{-}} f(x) = 3$, $\lim_{x \to 4^{+}} f(x) = 0$, f(0) = 2, f(4) = 1

Límites infinitos

EJEMPLO 8 Encuentre $\lim_{x\to 0} \frac{1}{x^2}$ si existe.

SOLUCIÓN Conforme x se acerca a 0, x^2 también se acerca a 0, y $1/x^2$ se hace muy		
grande. (Véase la tabla en el margen.) De hecho, se desprende de la gráfica de la función		
$f(x) = 1/x^2$ en la figura 11, que los valores de $f(x)$ pueden ser arbitrariamente grandes,		
tomando x lo suficientemente cercano a 0. Así, los valores de $f(x)$ no se aproximan		
a un número, por lo que $\lim_{x\to 0} (1/x^2)$ no existe.		

x	$\frac{1}{x^2}$	
±1	1	
±0.5	4	
±0.2	25	
±0.1	100	
±0.05	400	
±0.01	10 000	
±0.001	1 000 000	

Para indicar el tipo de comportamiento exhibido en el ejemplo 8, se usa la notación

$$\lim_{x \to 0} \frac{1}{x^2} = \infty$$

Esto no quiere decir que estemos considerando a ∞ como un número. Tampoco significa que el límite existe. Simplemente expresa la forma particular en que el límite no existe: $1/x^2$ puede hacerse tan grande como queramos, tomando a x suficientemente cerca de 0. En general, podemos escribir simbólicamente

$$\lim_{x \to a} f(x) = \infty$$

para indicar que los valores de f(x) tienden a ser más y más grandes (o "crecen sin límite") a medida que x se acerca más y más a a.

Definición Sea f una función definida por ambos lados de a, excepto posiblemente en la misma a. Entonces

$$\lim_{x \to a} f(x) = \infty$$

significa que los valores de f(x) pueden ser arbitrariamente grandes (tan grandes como queramos), tomando x suficientemente cerca de a, pero no igual a a.

Definición Sea f definida por ambos lados de a, excepto posiblemente en a misma. Entonces

Fundada en 1936

$$\lim_{x \to a} f(x) = -\infty$$

significa que los valores de f(x) pueden ser negativos arbitrariamente grandes, tomando x suficientemente cerca de a, pero no igual a a.

FIGURA 13

$$\lim_{x \to a} f(x) = -\infty$$

- **3.** Explique el significado de cada una de las siguientes proposiciones.
 - a) $\lim_{x \to -3} f(x) = \infty$

b) $\lim_{x \to 4^+} f(x) = -\infty$

29-37 Determine cada uno de los siguientes límites infinitos.

29.
$$\lim_{x \to -3^+} \frac{x+2}{x+3}$$

31.
$$\lim_{x \to 1} \frac{2 - x}{(x - 1)^2}$$

33.
$$\lim_{x \to 3^+} \ln(x^2 - 9)$$

35.
$$\lim_{x \to 2\pi^{-}} x \csc x$$

37.
$$\lim_{x \to 2^+} \frac{x^2 - 2x - 8}{x^2 - 5x + 6}$$

30.
$$\lim_{x \to -3^{-}} \frac{x+2}{x+3}$$

32.
$$\lim_{x \to 5^{-}} \frac{e^x}{(x-5)^3}$$

34.
$$\lim_{x \to \pi^{-}} \cot x$$

36.
$$\lim_{x \to 2^{-}} \frac{x^2 - 2x}{x^2 - 4x + 4}$$

Asíntota vertical

Definición La recta x = a se llama **asíntota vertical** de la curva y = f(x) si al menos una de las siguientes afirmaciones son verdaderas:

$$\lim_{x \to a} f(x) = \infty$$

$$\lim_{x \to a^{-}} f(x) = \infty$$

$$\lim_{x \to a^+} f(x) = \infty$$

$$\lim_{x \to a} f(x) = -\infty$$

$$\lim_{x \to \infty} f(x) = -\infty$$

$$\lim_{x \to a^+} f(x) = -\infty$$

d)
$$\lim_{x \to a^+} f(x) = -\infty$$

EJEMPLO 9 Encuentre
$$\lim_{x\to 3^+} \frac{2x}{x-3}$$
 y $\lim_{x\to 3^-} \frac{2x}{x-3}$.

SOLUCIÓN Si x tiende a 3 con valores mayores que 3, entonces el denominador x-3es un número positivo muy pequeño y 2x está muy cerca de 6, así que el cociente 2x/(x-3) es un número *positivo* muy grande. Por tanto, intuitivamente, podemos ver que

Fundada en 1936

$$\lim_{x \to 3^+} \frac{2x}{x - 3} = \infty$$

Asimismo, si x es cercano a 3, pero con valores menores que 3, entonces x-3es un número negativo pequeño, pero 2x es aún un número positivo (cercano a 6). Así, 2x/(x-3) es un número *negativo* muy grande. Por tanto,

$$\lim_{x \to 3^-} \frac{2x}{x - 3} = -\infty$$

La gráfica de la curva y = 2x/(x-3) se ilustra en la figura 15. La recta x=3es una asíntota vertical.

SOLUCIÓN Ya que

$$\tan x = \frac{\sin x}{\cos x}$$

Fundada en 1936

hay posibles asíntotas verticales donde $\cos x = 0$. De hecho, puesto que $\cos x \to a^+$ cuando $x \to (\pi/2)^-$ y $\cos x \to 0^-$ a medida que $x \to (\pi/2)^+$, mientras sen x es positivo cuando x está cerca de $\pi/2$, tenemos

$$\lim_{x \to (\pi/2)^{-}} \tan x = \infty \qquad \qquad y \qquad \lim_{x \to (\pi/2)^{+}} \tan x = -\infty$$

Esto muestra que la recta $x = \pi/2$ es una asíntota vertical. Un razonamiento similar, muestra que las rectas $x = (2n + 1)\pi/2$, donde n es un número entero, son todas asíntotas verticales de $f(x) = \tan x$. La gráfica en la figura 16 confirma esto.

FIGURA 16 $y = \tan x$

Otro ejemplo de una función cuya gráfica tiene una asíntota vertical es la función logaritmo natural $y = \ln x$. En la figura 17 vemos que

Fundada en 1936

$$\lim_{\to 0^+} \ln x = -\infty$$

y así, la recta x = 0 (el eje y) es una asíntota vertical. De hecho, lo mismo es cierto para $y = \log_a x$ siempre que a > 1. (Véanse las figuras 11 y 12 en la sección 1.6.)

FIGURA 17

El eje y es una asíntota vertical de la función logaritmo natural.

- **9.** Para la función f cuya gráfica se muestra, establezca lo siguiente.
- a) $\lim_{x \to -7} f(x)$ b) $\lim_{x \to -3} f(x)$ c) $\lim_{x \to 0} f(x)$
- d) $\lim_{x \to 6^{-}} f(x)$ e) $\lim_{x \to 6^{+}} f(x)$
- f) Las ecuaciones de las asíntotas verticales.

Fundada en 1936

Solución

$$a) \lim_{x \to -7} f(x) = -\infty$$

$$b) \lim_{x \to -3} f(x) = \infty$$

$$c) \lim_{x\to 0} f(x) = \infty$$

$$d) \lim_{x \to 6^-} f(x) = -\infty$$

$$e) \lim_{x \to 6^+} f(x) = \infty$$

$$f) x = -7, x = -3, x = 0, x = 6$$

- **8.** Para la función *R* cuya gráfica se muestra, establezca lo siguiente.
 - a) $\lim_{x\to 2} R(x)$

b) $\lim_{x\to 5} R(x)$

c) $\lim_{x\to -3^-} R(x)$

- d) $\lim_{x \to -3^+} R(x)$
- e) Las ecuaciones de las asíntotas verticales.

38. a) Encuentre las asíntotas verticales de la función

$$y = \frac{x^2 + 1}{3x - 2x^2}$$

Fundada en 1936

Solución

Hay posibles asíntotas verticales en x = 0 y $x = \frac{3}{2}$

Para comprobarlo y observar el comportamiento en torno a la asíntota.

$$\lim_{x \to 0^+} \frac{x^2 + 1}{x(3 - 2x)} = \infty \qquad \qquad \lim_{x \to 0^-} \frac{x^2 + 1}{x(3 - 2x)} = -\infty$$

$$\lim_{x \to \frac{3}{2}} \frac{x^2 + 1}{x(3 - 2x)} = \infty \qquad \lim_{x \to \frac{3}{2}^+} \frac{x^2 + 1}{x(3 - 2x)} = -\infty$$

46. En la teoría de la relatividad, la masa de una partícula con velocidad v es

$$m = \frac{m_0}{\sqrt{1 - v^2/c^2}}$$

donde m_0 es la masa de la partícula en reposo y c es la rapidez de la luz. ¿Qué pasa cuando $v \rightarrow c^-$?

REFERENCIA

Fundada en 1936

Stewart, J., Cálculo de una variable Trascendentes tempranas, Cengage Learning. Octava edición, 2018.

Formación integral para la transformación social y humana

