

Model Validation

- Internal validation: Check validity using the same data used to fit the model.
- External validation: Check validity using new data either newly collected or a holdout sample.
- Compare results with theoretical expectations, previous results, and simulation results.

Internal Validation

than
$$SSE_{\rho}$$
 as

$$|d_{i}| = |Y_{i} - \widehat{Y}_{i(i)}| = |\frac{Y_{i} - \widehat{Y}_{i}}{1 - h_{ii}}| \ge |Y_{i} - \widehat{Y}_{i}| = |e_{i}|, \quad i = 1, \dots, n.$$

 Pressp/n can be viewed as an estimator of the (out-of-sample) mean squared prediction error:

$$mspe := E((\hat{y} - y)^2).$$

- It is a measure of the model.
- Presso not much larger than SSE_b means there is by the model.
- $C_p \approx p$ indicates $C_p >> p$ indicates in the model, whereas model bias.

of the

Internal Validation

Press_p is always larger than SSE_p as

$$|d_i| = |Y_i - \widehat{Y}_{i(i)}| = |\frac{Y_i - \widehat{Y}_i}{1 - h_{ii}}| \ge |Y_i - \widehat{Y}_i| = |e_i|, \quad i = 1, \dots, n.$$

 Press, / n can be viewed as an estimator of the (out-of-sample) mean squared prediction error:

$$mspe := E((\hat{y} - y)^2).$$

- It is a measure of the predictive ability of the model.
- Press_p not much larger than SSE_p means there is no severe overfitting by the model.
- $C_p \approx p$ indicates little bias in the model, whereas $C_p >> p$ indicates substantial model bias.

Training Data vs. Validation Data

When sample size is sufficiently large, we can split the data into two sets, a training data used to build the model and a validation data used to check model validity.

- Validation data is used to check consistency of the fitted parameters and predictive ability.
- Training data should be sufficiently large (e.g., n/P at least 6) so that a reliable model can be built based on it. Sometimes, the validation data will have to be smaller.
- Once a final model has been validated and chosen, it is a common practice to use the entire data set to re-fit the final model.

Mean Squared Prediction Error

$$MSPE_{v} = rac{\sum_{j=1}^{m} (Y_{j} - \widehat{Y}_{j})^{2}}{m}.$$

m is the sample size of the validation data, Y_j is the jth observation in the validation data, and \widehat{Y}_j is the predicted value of the jth case based on the model fitted on the training data.

- MSPE_v can be viewed as an estimator of the (out-of-sample)
 mean squared prediction error and thus a measure for the predictive ability of the model.
- MSPE_v is usually than SSE/n, since the model is fitted on the training data and thus it naturally would fit the training data than it fits the validation data.
- If MSPE_v is not much larger than SSE/n, then there is by the model.

Mean Squared Prediction Error

$$extit{MSPE}_{ extstyle v} = rac{\sum_{j=1}^m (Y_j - \widehat{Y}_j)^2}{m}.$$

m is the sample size of the validation data, Y_j is the jth observation in the validation data, and \widehat{Y}_j is the predicted value of the jth case in the validation data based on the model fitted on the training data.

- MSPE_v can be viewed as an estimator of the (out-of-sample)
 mean squared prediction error and thus a measure for the
 predictive ability of the model.
- MSPE_v is usually larger than SSE/n, since the model is fitted on the training data and thus it naturally would fit the training data better than it fits the validation data.
- If MSPE_v is not much larger than SSE/n, then there is no severe overfitting by the model.

Surgical Unit: Internal Validation

Three "best" models according to various criteria.

- By BIC_p and Press_p: Model 1, log Y ~ X₁, X₂, X₃, X₈.
 - p = 5, $SSE_p = 2.178$, $C_p = 5.734$, $Press_p = 2.736$.
- By C_n: Model 2, log Y ~ X₁, X₂, X₃, X₆, X₈.
 - p = 6, $SSE_p = 2.081$, $C_p = 5.528$, $Press_p = 2.782$.
- By $R_{a,p}^2$ and AIC_p : Model 3, log $Y \sim X_1, X_2, X_3, X_5, X_6, X_8$. • p = 7, $SSE_p = 2.004$, $C_p = 5.772$, $Press_p = 2.771$.
- For all three models, Press, and S\$E, are reasonably close and $C_p \approx p$, supporting their validity.

Surgical Unit: External Validation

Figure: Distributions of variables in training (n = 54) and validation (n = 54) sets.

No big difference in how variables are distributed in these two sets.

All three models have: Consistency in parameter estimation: same sign and similar magnitude between the two sets of estimated coefficients and their standard errors. MSPE_v based on the validation data is not much larger than SSE/n and Press/n based on the training data.

Surgical Unit: Model 1 External Validation

Surgical Unit: Model 1 External Validation (Cont'd)

		ining																				
		imate																				
		tercer	t)				. 193		.635		0.2											
	X1				73		.019		.096		0.0											
	X2				14		.002		.016		0.0											
	Х3				15		.001		.016		0.0											
	X8			0.3	53	0	.077	0	. 186		0.0	6										
	sse	mse	R2.	a pr	ess j	ress	/n i	nspe														
		i <mark>n</mark> ing									-											
	Val:	idatic	n 3.	794 0	. 077	0.68	2	_		6	.077											
															4 4		= .	. =		=	りの	6
i														4	 7 LP	F 4	_	1 =	P	_	- 7 4	N .

Surgical Unit: Model 2 External Validation

	Trair					/alid																	
						imat																	
	(Inte	rcep	t)	3.8	67	0	.191	3	.614		0.7	291											
	X1			0.0	71	0	.019	0	.100		0.0	932											
	X2			0.0			.002		.016			002											
	Х3			0.0	15	0	.001	0	.015		0.0	002											
	X6			0.0			.058		.073			9 <mark>7</mark> 9											
	Х8			0.3	63	0	.077	0	. 189		0.0	97											
	sse Trair	ning	2.0	81 0	.043	ress 0.82	1 2.7	782	0.0														
	Valid	latio	n 3.7	728 0	. 078	0.68	2			0.	. 076												
														4	□ ▶	4 ₽	▶ ∢	≣ ト	4 ≧	Þ	E.	りの	(~

Surgical Unit: Model 3 External Validation

	nate S			r Est		e St	d. Er															
	ercept	:)				.235		.470		0.3												
X1			0.0			.019		.099		0.0												
X2			0.0			.002		.016		0.0												
X 3			0.0			.001		.016		0.0												
X5			-0.0			.003		.003		0.0												
Х6			0.0			.058		.073		0.0												
Х8			0.3	51	0	.076	0	. 193		0.0	97											
sse	mse ning				ress			0.0	C 1													
	dation									079												
													4	□ ト	∢ <i>⋳</i>	> 4	≣ >	∢ ≣	Þ	1	99	0

Surgical Unit: Choice of Final Model

- MSPE_v of the three models have similar values, indicating that they have similar predictive ability.
- Model 3 has one estimated regression coefficient changing sign from training data to validation data, probably due to relatively large SE of this coefficient. So it is eliminated from further consideration.
- Models 1 and 2 perform similarly in validation. Based on the principle of parsimony, we choose Model 1 as the final model.
- Fit Model 1 on all data (n = 108):

$$\log$$
 (Survial Time) = 3.76 + 0.084 × clotting score

$$+$$
 0.015 × prognostic index + 0.016 × enzyme score

$$+$$
 0.265 \times I(severe use of alcohol).

Surgical Unit: Final Model Fitted on All Data

Ca lm		ula =	log(Y	r) ~ 1	X1 +	X2 +	X3 +	Х8,	data	= rl	ind(data.	ο,							
	ta.v) sidua																			
Mi: -0		1Q 9 -0.1		lian 0.00	9977	3Q 0.13		Max 0.57	7726											
		ients: e Std.		rtv	value	Pr(ltl)													
(I: X 1		ept) 3	.7562 .0837																	
X2 X3			.0149																	
X8 	-		.2650			0045														
Re	sidua	c <mark>odes</mark> l star	dard	erro	r: 0.	2446	on 1	03 de	gree	s of	free									
F-:	stati:	e R-sq stic:	83.45																	
		(fit1. s of V	1 -	ce Ta	able															
		e: log																		
X1			1.0	809	1.08	0 9 1	8.06	4 4.7												
X2 X3		1	6.5 11.1	859	11.18	59 18	6.94	0 < 2	2.2e-	16 *	**									
	sidua:	1 ls 103	1.1 6.1				19.49	2 2.4	198e-	0 5 *:	* #									
Si,		codes	: 0	?**?(0.001	?*?(0.01	??0.0	95 ??	0.1	??1									
															=	 	. =	_	00	3.

Outlying Cases

Data may contain cases that are outlying or extreme:

- A case may be outlying with respect to its Y value and/or its X value(s).
- Some (but not necessarily all) outlying cases may have an unduly strong influence on the fitted regression function.

 These are called *influential cases*.
- It is important to identify outlying cases and to investigate their effects in order to decide whether they should be retained or eliminated.

with the regression

influential:

influential: Its Y value is

Cases 3 and 4 are

relation suggested by other cases.

They are outlying in X and their Y values are

with the regression relation suggested by other cases.

Examples of Outlying Cases

- Case 2 is outlying in X, but also not very influential. Its Y value is consistent with the regression relation suggested by other cases.
- Cases 3 and 4 are likely to be very influential: They are outlying in X and their Y values are not consistent with the regression relation suggested by other cases.

Identify Outlying Cases

- With one or two X variables, outlying cases can be identified by graphs such as scatter plots, boxplots, etc.
- With multiple X variables, univariate outliers may not be extreme under the multivariate context, and, conversely, multivariate outliers may not be detectable using single- or bivariate- analyses.
- Outlying Y observations are identified through examining residuals.
- Outlying X observations are identified through examining the diagonal elements h_{ii} of the hat matrix, called leverage values.

Residuals

$$\mathbf{e} = \mathbf{Y} - \widehat{\mathbf{Y}} = (\mathbf{I}_n - \mathbf{H})\mathbf{Y}.$$

Assume
$$Var(\mathbf{Y}) = \sigma^2 \mathbf{I}_n$$
, then $\sigma^2 \{\mathbf{e}\} = \mathbf{v}$, $\mathbf{s}^2 \{\mathbf{e}\} = \mathbf{v}$

- If the model is correct, then E{e} =
- Variance of the ith residual:

$$\sigma^2\{e_i\} = \sigma^2(1-h_{ii}), \quad i=1,\cdots,n.$$

- Residual variances are in between
- The cases with larger h_{ii} have residual variances.

Residuals

$$\mathbf{e} = \mathbf{Y} - \widehat{\mathbf{Y}} = (\mathbf{I}_n - \mathbf{H})\mathbf{Y}$$

- Assume $Var(\mathbf{Y}) = \sigma^2 \mathbf{I}_n$, then $\sigma^2 \{\mathbf{e}\} = \sigma^2 \times (\mathbf{I}_n \mathbf{H}), \quad \mathbf{s}^2 \{\mathbf{e}\} = MSE \times (\mathbf{I}_n \mathbf{H}).$
- If the model is correct, then $\mathbf{E}\{\mathbf{e}\} = \mathbf{0}_n$.
- Variance of the ith residual:

$$\sigma^2\{\mathbf{e}_i\} = \sigma^2(1-h_{ii}), \quad i=1,\cdots,n.$$

- Residual variances are in between 0 and σ^2 .
- The cases with larger h_{ii} have smaller residual variances.

Studentized Residuals

$$r_i = rac{e_i}{s\{e_i\}} = rac{e_i}{\sqrt{MSE(1-h_{ii})}}, \quad i = 1, \cdots, n.$$

- Studentized residuals have (roughly) constant variance across cases and thus are comparable to one another.
- In the R function plot.lm(), the residuals QQ plot (which=2), scale-location plot (which=3) and residuals vs. leverage plot (which=5) use studentized residuals.

Deleted Residuals

To be more effective in detecting outlying Y, when calculating the residual of the ith case, we use the fitted regression function based on

Such residuals are called deleted residuals:

$$d_i := Y_i - \widehat{Y}_{i(i)}, \quad i = 1, \cdots, n.$$

- If Y_i is far outlying, then the fitted regression function based on all cases could be by the ith case to be to Y such that e may be and fail to detect Y as outlying.
- If the ith case is excluded in fitting the regression function, then the fitted value for the ith case would be influenced by Y_i and the corresponding residual is to detect Y_i if it is outlying.

Deleted Residuals

To be more effective in detecting outlying Y, when calculating the residual of the ith case, we use the fitted regression function based on all but the ith case.

Such residuals are called deleted residuals:

$$d_i := Y_i - \widehat{Y}_{i(i)}, \quad i = 1, \cdots, n.$$

- If Y_i is far outlying, then the fitted regression function based on all cases could be "dragged" by the ith case to be close to Yi such that ei may be small and fail to detect Yi as outlying.
- If the ith case is excluded in fitting the regression function, then the fitted value for the ith case would not be influenced by Y_i and the corresponding residual is more likely to detect Y_i if it is outlying.

The deleted residual for the *ith* case equals to:

- The larger is h_{ii} , the the deleted residual d_i compared with the ordinary residual e_i .
- Sometimes deleted residuals will identify outlying Y observations not identified by ordinary residuals (when h_{ii} large) and sometimes they result in same identification as ordinary residuals (when h_{ii} small).

The deleted residual for the ith case equals to:

$$d_i = \frac{e_i}{1 - h_{ii}}, \quad i = 1, \cdots n.$$

- The larger is h_{ii} , the larger the deleted residual d_i compared with the ordinary residual ei.
- Sometimes deleted residuals will identify outlying Y observations not identified by ordinary residuals (when hij large) and sometimes they result in same identification as ordinary residuals (when hij small).

Studentized Deleted Residuals

The studentized deleted residuals (a.k.a. externally studentized residuals):

$$t_i = \frac{d_i}{s\{d_i\}} = \frac{d_i}{\sqrt{MSE_{(i)}/(1-h_{ii})}}, \quad i = 1, \dots, n,$$

where $MSE_{(i)}$ is the MSE of the regression fit based on cases excluding case *i*.

 Studentized deleted residuals can be computed from the regression fit based on all cases:

$$t_i = e_i \sqrt{\frac{n-p-1}{SSE(1-h_{ii})-e_i^2}}, i = 1, \dots, n.$$

Identify Outlying Y

Under H₀: The model is correct and all cases follow the model

$$t_i = \frac{d_i}{s\{d_i\}} \sum_{H_0} t_{(n-p-1)}, i = 1, \cdots, n.$$

The d.f. is n - p - 1 since the deleted residuals are from regression fits based on n - 1 cases.

- Outlying Y observations are identified by large |t_i|.
- Since we are testing for n cases, we need to adjust for multiple comparison.
- Given significance level α , the **Bonferroni's procedure** controls the family-wise-typel-error-rate at α by identifying cases with

$$|t_i| > t(1 - \alpha/(2n); n - p - 1)$$

as outlying Y observations.

Body Fat: Model 3 $Y \sim X_1, X_2$

Cases with top three largest studentized deleted residuals are marked by *.

For $\alpha=0.1$, $t(1-\alpha/40;20-3-1)=3.25$, so there is no significant outliers. However, we may still want to investigate the top few cases.

n=nro																						
p=3 #	# nu	mber	o± p	arame	eters																	
fit3=	-1m(V	~Y1_1	(2 d	2+2-	fa+)	## M/	labo	2														
MSE=a									Mode	13	fit											
res=1								_ 01	11040													
hh =	infl	uence	(fit	3)\$ha	at ##	dia	gonal	of	the h	at m	atrix	: lev	erag	e val	lues							
stu.ı	es=r	es/so	ırt(M	SE*(1-hh)) ##	stud	enti	zed r	esid	uals											
					-																	
res.c			l-nn)	##a	erete	a res	s1dua	IS														
libra stu.ı			udno	c (fi	-27 #	# c+v	dont	izod	dolo	tod.	rocid											
alpha			uuie	5(11)	(3) #	# 511	uuent	ızeu	uere	teu .	resiu	uais										
bon.			alpa	h/(2 ³	n).	n-p-	1) ##	Bon	ferro	ni's	thre	sholo	at	alpha	a							
				, .			-							-								
## re																						
plot											"resi	dual'	,									
+ cez																						
point												-\										
point ablir										ð, c	ex=1.	5)										
ablir								y=2)														
ablir																						
ubili	ic (11–	DOIL.	cill C	, IW	L,	_ cy =.	,															
														4	□ ▶	√ 5	▶ ∢	≣ →	4 ∄	Þ	=	9

Leverage Values

The *ith* diagonal element h_{ii} of the hat matrix **H** is called the *leverage* of the *ith* case.

• The fitted value \widehat{Y}_i :

$$\widehat{\mathbf{Y}}_i = \sum_{j=1}^n \mathbf{h}_{ij} \mathbf{Y}_j = \mathbf{h}_{ii} \mathbf{Y}_i + \sum_{j \neq i} \mathbf{h}_{ij} \mathbf{Y}_j.$$

- Recall $h_{ii} + \sum_{j \neq i} h_{ij} = 1$ and $1/n \le h_{ii} \le 1$: The larger h_{ii} is, the more important Y_i is in determining \widehat{Y}_i .
- h_{ii} measures the role of the X values in terms of determining the fitted value \widehat{Y}_i .

Identify Outlying X by Leverage

$$h_{ii} = x_i^T (X^T X)^{-1} x_i = \frac{1}{n} + \mathbf{x}_i^{*T} (\mathbf{r}_{XX})^{-1} \mathbf{x}_i^{*}$$

$$\mathbf{x}_i^{*T} = \frac{1}{\sqrt{n-1}} (X_{i1} - \overline{X}_1, \dots, X_{i,p-1} - \overline{X}_{p-1}).$$

- the ith case $\begin{bmatrix} X_{i1} & X_{i2} & \cdots & X_{i,p-1} \end{bmatrix}^T$ and the sample mean of the X values (center of X): $\overline{\mathbf{x}} = \begin{bmatrix} \overline{X}_1 & \overline{X}_2 & \cdots & \overline{X}_{p+1} \end{bmatrix}^T$.
 - A large value of h_{ii} indicates that the X values of the ith case is the center of X when taking into account of the shape of the observed data cloud.
 - A large leverage value is an indication of

Identify Outlying X by Leverage

$$h_{ii} = x_i^T (X^T X)^{-1} x_i = \frac{1}{n} + \mathbf{x}_i^{*T} (\mathbf{r}_{XX})^{-1} \mathbf{x}_i^{*} \mathbf{x}_i^{*T} = \frac{1}{\sqrt{n-1}} (X_{i1} - \overline{X}_1, \dots, X_{i,p-1} - \overline{X}_{p-1}).$$

- the X values (center of X): $\overline{\mathbf{x}} = \begin{bmatrix} \overline{X}_1 & \overline{X}_2 & \cdots & \overline{X}_{D-1} \end{bmatrix}^T$.
 - A large value of h_{ii} indicates that the X values of the ith case is far away from the center of X when taking into account of the shape of the observed data cloud.
 - A large leverage value is an indication of potential outlying in X.

Geometric Interpretation of Leverage

Having the same Euclidean distance from $\overline{\mathbf{x}}$, points along the major direction of the data cloud have values of h_{ii} than points along the minor direction of the data cloud. In this sense, points along the major direction are the center $\overline{\mathbf{x}}$.

From S. Weisberg, Applied linear regression

Geometric Interpretation of Leverage

Having the same Euclidean distance from $\overline{\mathbf{x}}$, points along the major direction of the data cloud have smaller values of h_{ii} than points along the minor direction of the data cloud. In this sense, points along the major direction are closer to the center $\overline{\mathbf{x}}$.

From S. Weisberg, Applied linear regression

In practice, a leverage value is often considered to be large if it is more than twice as large as the mean leverage value \bar{h} :

$$\bar{h} = \frac{1}{n} \sum_{i=1}^{n} h_{ii} = \frac{p}{n}.$$

- If $h_{ii} > \frac{2p}{n}$, then the *ith* case is identified as outlying with regard to its X values.
- The above rule is only applicable when the sample size n is not too small.

Body Fat: Model 3 Leverage Values

Figure Body Fat: Scatter plot of X_2 vs. X_1 . Data points are identified by case numbers. Numbers in parenthesis are leverage values. Black triangle is the center of X values.

Here n = 20, p = 3, $\frac{2p}{n} = 0.3$. Two cases, 15 and 3, have leverage values greater than 0.3.

- Case 15 is outlying in terms of low end of the range for X_2 . $h_{15,15} = 0.333$.
- Case 3 is outlying in terms of

, though it is $h_{33} = 0.372$.

• The third and fourth largest leverage values are $h_{55} = 0.248$ and $h_{11} = 0.201$ which are substantially smaller than h_{33} and $h_{15.15}$. From the plot, cases 1 and 5 are somewhat outlying.

for either X_1 or X_2 individually.

and is at the

- Case 15 is outlying in terms of X_1 and is at the low end of the range for X_2 . $h_{15,15} = 0.333$.
- Case 3 is outlying in terms of the pattern of association between X_1 and X_2 , though it is not outlying for either X_1 or X_2 individually. $h_{33} = 0.372$.
- The third and fourth largest leverage values are $h_{55}=0.248$ and $h_{11}=0.201$ which are substantially smaller than h_{33} and $h_{15,15}$. From the plot, cases 1 and 5 are somewhat outlying.

Hidden Extrapolations

- Extrapolation occurs when the response variable/estimating the mean response for X values the region of the X in the data used to fit the model.
- With more than one X variables, the levels of the range of the observations. One can not merely look at the region of each X variable separately.
- With more than two X variables, we can utilize the leverage calculation to identify extrapolation.

Hidden Extrapolations

- Extrapolation occurs when predicting the response variable/estimating the mean response for X values lying outside the region of the X in the data used to fit the model.
- With more than one X variables, the levels of all X variables
 jointly define the region of the observations. One can not
 merely look at the range of each X variable separately.
- With more than two X variables, we can utilize the leverage calculation to identify extrapolation.

Identify Hidden Extrapolation by Leverage

Leverage calculation for a new X:

- \mathbf{x}_{new} is the column vector containing the new X and X is the design matrix of the data used to fit the regression model.
- If h_{new new} is of leverage values hii for cases in the data set, then no extrapolation occurs.
- If $h_{new,new}$ is the leverage values h_{ii} , then an extrapolation is indicated.

Identify Hidden Extrapolation by Leverage

Leverage calculation for a new X:

$$h_{new,new} = \mathbf{x}_{new}^{\mathsf{T}} (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{x}_{new}.$$

- \mathbf{x}_{new} is the column vector containing the new X and X is the design matrix of the data used to fit the regression model.
- If hnew new is within the range of leverage values hii for cases in the data set, then no extrapolation occurs.
- If $h_{new,new}$ is much greater than the leverage values h_{ii} , then an extrapolation is indicated.

Body Fat: Hidden Extrapolations

				Figu	ıre:	Во	dy	Fat:	Hie	dde	n E	xtra	pol	atio	ns							
		9											18().197 ₇); _{0.1}	156.)	•						
														041090112								
	ą	55										7(0.106)	16/47-896									
	X9.thick circumference									6(0 10(0	129) 11)			л)								
	-									2 0(0.08	i)	8 (0.096)	3 (0.372)								
	e e	50						9(0.118		(0.059)												
		`				3(0.178)		19(0	.067)													
		45								•												
			15(0.333	3)——		1(0.																
			15			5(0.248				25			30			3:	5					
			.5			20		<1: trice			hickne	ss	30			J.						
													4	□ ▶	4 ₽	▶ ∢	≣ >	∢ ≣	Þ	₹.	99	C~

Identify Influential Cases

We want to determine whether the outlying cases (in Y and/or in X) are influential in determining the fitted regression function.

- A case is considered to be influential if its exclusion leads to major changes of the fitted regression function.
- Cook's distance.
 - It measures the aggregate influence on all fitted values that is made by the omission of a single case in the fitting process.

Cook's Distance

$$D_i := \frac{\sum_{j=1}^{n} (\widehat{Y}_j - \widehat{Y}_{j(i)})^2}{p \times MSE}, \quad i = 1, \cdots, n.$$

- \bullet \widehat{Y}_i is the fitted value for the jth case when all cases are used to derive the fitted regression function.
- $\widehat{Y}_{i(i)}$ is the fitted value for the jth case when the ith case is excluded from the fitting process.
- $p \times MSE$ serves as a standardization quantity.
- In practice, $D_i > \frac{4}{n-p}$ is often used as an indicator for being a potential influential case.
- A more conservative approach is to use $D_i > 1$ as the cutoff for influential cases.

Cook's distance can be computed from the regression fit based on all cases:

$$D_{i} = \frac{e_{i}^{2}}{\rho \times MSE} \frac{h_{ii}}{(1 - h_{ii})^{2}} = \frac{r_{i}^{2}}{\rho} \frac{h_{ii}}{(1 - h_{ii})},$$

where $r_i = e_i / \sqrt{MSE(1 + h_{ii})}$ is the *i*th studentized residual.

- If case i follows the same regression relation as other cases, then $E(D_i) \approx \frac{h_{ii}}{n(1-h_{ii})} \sim \frac{1}{n-n}$ when n is large (as $h_{ii} \sim p/n$ and $E(r_i^2) \approx 1$).
 - The magnitude of D_i depends on two factors (i) the studentized residual r_i ; and (ii) the leverage value h_{ii} . The
- larger |ri| and/or hii is, the D_i tends to be. So an influential case could be due to either

or both.

- On the other hand, outlying in Y or outlying in X alone

or

Cook's distance can be computed from the regression fit based on all cases:

$$D_{i} = \frac{e_{i}^{2}}{p \times MSE} \frac{h_{ii}}{(1 - h_{ii})^{2}} = \frac{r_{i}^{2}}{p} \frac{h_{ii}}{(1 - h_{ii})},$$

where $r_i = e_i / \sqrt{MSE(1 - h_{ii})}$ is the *i*th studentized residual.

- If case i follows the same regression relation as other cases, then $E(D_i) \approx \frac{h_{ii}}{p(1+h_{ii})} \sim \frac{1}{n-p}$ when n is large (as $h_{ii} \sim p/n$).
- The magnitude of D_i depends on two factors (i) the size of the studentized residual r_i ; and (ii) the leverage value h_{ii} . The larger $|r_i|$ and/or h_{ii} is, the larger D_i tends to be.
- So an influential case could be due to either outlying in Y (a large studentized residual) or outlying in X (a large leverage value) or both.
- On the other hand, outlying in Y or outlying in X alone does not necessarily make a case influential.

Body Fat: Cook's Distance

Consider Cook's distance for case 3. It has a residual $e_3 = -3.176$ and leverage value $h_{33} = 0.372$. Also p = 3 and MSE = 6.47. So

$$D_3 = \frac{(-3.176)^2}{3 \times 6.47} \frac{0.372}{(1 - 0.372)^2} = 0.49.$$

- To assess the magnitude of D₃, we compare it with $\frac{4}{n-p} = \frac{4}{20-3} = 0.23.$
- Therefore, case 3 has some aggregated influence on all the fitted values and may need further investigation.

Cook's Distance: Index Influence Plot

according to Cook's distance measure. plot(fit3, which=4) ## cook's distance

