Stochastic Gradient Descent

Victor Zhou, Thant Zin Oo (Andy)

Machine Learning

- Machine learning, neural networks, and Al
- Real life applications:
 - Image recognition
 - Self driving cars
 - Financial services

Optimization

Gradient descent is the most commonly used optimization method for machine learning and neural networks.

Optimization

Score Function - maps data to scores that describe fit

- Percent match, predicted category, etc.

Loss Function - measures quality of parameters

Compares learning data with training data

Optimization

The goal of optimization is to find a set of parameters to

minimize the loss function.

Gradient Descent

Blindfolded Hiker Analogy - get to the bottom of a hill

Gradient Descent

The partial derivative is the slope of a function parallel to a particular axis.

The gradient is a **vector** that points in the direction of greatest change for a function.

$$abla f = rac{\partial f}{\partial x} \mathbf{i} + rac{\partial f}{\partial y} \mathbf{j} + rac{\partial f}{\partial z} \mathbf{k},$$

Gradient Descent

We should take **bigger** steps if we are far from the solution and **smaller** steps if we are close to the optimal solution.

Convex surfaces

Def: the line segment between any two points lies either above or on the graph

Subtract alpha value because gradient points in direction

of steepest ascent

Learning Rate

The step size **varies** based on the derivative of the loss function.

Step size = Slope * Learning rate

Learning rate sensitivity

Too **small** a value: slow convergence, computationally expensive

Too large a value: can overshoot, premature convergence

Learning rate sensitivity (visualization)

Linear Regression:

Score Function: r(x) = mx+b

Loss Function: $\Sigma(f(x) - r(x))^2$

We want to minimize the loss function to get the line of best fit.

Linear Regression:

Let us do a simple example with the slope fixed at 1, optimizing the *intercept*.

We will do a small sample with 3 data points at (1,2), (4,3), and (5,6).

Loss Function:

$$\Sigma(f(x) - r(x))^2 = \Sigma(y - (x + b))^2$$

$$= (2-(1+b))^2 + (3-(4+b))^2 + (6-(5+b))^2$$

$$= 3b^2 + 2b + 3$$

Loss Function: $3b^2 + 2b + 3$

$$r'(x) = 6b + 2$$

Sample Learning Rate: 0.1

Step size = slope * learning rate

New intercept = Old intercept - Step size

Derivative: r'(x) = 6b - 3

Starting at 0:

$$0 - (-3 * 0.1) = 0.3$$

$$0.42 - (-0.48 * 0.1) = 0.468$$

$$0 \rightarrow 0.3 \rightarrow 0.42 \rightarrow 0.468 \rightarrow 0.487 \rightarrow 0.495 \rightarrow 0.498 \rightarrow 0.499$$

Multiple Variables

Recall a gradient is calculated from multiple partial derivatives.

$$abla f = rac{\partial f}{\partial x} \mathbf{i} + rac{\partial f}{\partial y} \mathbf{j} + rac{\partial f}{\partial z} \mathbf{k},$$

We can optimize functions with multiple parameters simultaneously by taking partial derivative with respect to each variable.

Regularization

Reduce overfitting of data points

 $\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$

Drawbacks

In real life, data sets can be very large.

- Stocks
- Games
- Pictures

Drawbacks

The computation time required grows astronomically.

Example:

100 variables * 100,000 data points * 1,000 steps =

10 billion calculations

Reducing Computation

In real life, many data points are similar to each other.

Small sets of data represent the whole.

Adding Randomness

Mini-batch gradient descent - randomly choose small subset of data to test at each step.

- Much faster parameter updates
- Still very accurate

Stochastic Gradient Descent

/stə kastik/

adjective TECHNICAL

randomly determined; having a random probability distribution or pattern that may be analyzed statistically but may not be predicted precisely.

Stochastic gradient descent is when only 1 data point is used.

In practice, usually small batches are done for efficiency.

Batch / Stochastic / Mini-batch

Batch: iterate over all *m* training samples before updating loss function

Stochastic: update loss based on 1 randomly selected sample

Mini-batch: iterate over *b* training samples

Batch vs Stochastic

Batch

Pros:

- Accuracy
- Vectorization optimizations

Cons:

- Requires larger memory space to fit entire m set of data samples
- Infrequent loss updates

Stochastic

Pros:

- Better with memory limitations, or when data is through input stream
- Faster computationally (most of the time)
- updates loss more frequently

Cons:

- Individual variances in gradient
- Iterative process can be bottleneck during parallelization

Works Cited / Further Reading

- "CS231n Convolutional Neural Networks for Visual Recognition."
 http://cs231n.github.io/optimization-1/.
- Bottou, Léon. "Stochastic Gradient Descent Tricks." In Neural Networks: Tricks of the Trade, edited by Grégoire Montavon, Geneviève B. Orr, and Klaus-Robert Müller, 7700:421–36. Berlin, Heidelberg:
 Springer Berlin Heidelberg, 2012. https://doi.org/10.1007/978-3-642-35289-8
- Cui, Xiaodong, Wei Zhang, Zoltán Tüske, and Michael Picheny. "Evolutionary Stochastic Gradient
 Descent for Optimization of Deep Neural Networks," n.d., 11.
 http://papers.nips.cc/paper/7844-evolutionary-stochastic-gradient-descent-for-optimization-of-deep-n-eural-networks.pdf
- "Optimization Batch Gradient Descent versus Stochastic Gradient Descent." Accessed December 1,
 2019.
 - https://stats.stackexchange.com/questions/49528/batch-gradient-descent-versus-stochastic-gradient-descent.