SI

51h

reacting the compound of formula (XVI) with a silylated R_2 -compound, in the presence of a Lewis acid, whereby said leaving group is displaced, to produce a compound of formula (XVII):

$$R_yO_2C$$
 Z
 $(XVII)$

wherein

Z is S;

R₂ is selected from the following group:

Sub 15

k.

X is oxygen or sulfur;

Y is oxygen or sulfur;

 R_3 and R_4 are independently selected from hydrogen, hydroxyl, amino, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, and C_{1-10} acyl or aracyl;

 R_5 and R_6 are independently selected hydrogen, halogen, hydroxyl, amino, cyano, carboxy, carbamoyl, alkoxycarbonyl, hydroxymethyl, trifluoromethyl, thioaryl, C_{1-6} alkyl, C_{2-6} alkynyl, and C_{1-10} acyloxy;

 R_7 and R_8 are independently selected from hydrogen, hydroxy, alkoxy, thiol, thioalkyl, amino, halogen, cyano, carboxy, alkoxycarbonyl, carbamoyl, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, and C_{1-10} acyloxy; and

 R_9 and R_{10} are independently selected from the hydrogen, hydroxy, alkoxy, amino, halogen, azido, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, and C_{1-10} acyloxy.

75, A process comprising:

reacting a mercaptoacetaldehyde with a compound of formula R_wOCH_2CHO , under neutral or basic conditions, wherein R_w is hydrogen or a hydroxyl protecting group to obtain a compound of formula (XIII)

converting the hydroxyl of the compound of formula (XIII) to a leaving group L to obtain a compound of formula (XIV):

reacting the compound of formula (XIV) with a silylated purine or pyrimidine base or derivative thereof R₂, in the presence of a Lewis acid, said leaving group is displaced, to produce a compound of formula (IX):

wherein

Z is S, and

R₂ is selected from the following group:

IAF-1/2 C11

IAF-1/2 C11 6

S. M.

$$R_{s}$$

E1 50b ps

$$R_9$$
 N
 N
 N
 N
 N

X is oxygen or sulfur;

Y is oxygen or sulfur;

 R_3 and R_4 are independently selected from hydrogen, hydroxyl, amino, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, and C_{1-10} acyl or aracyl,

 R_5 and R_6 are independently selected hydrogen, halogen, hydroxyl, amino, cyano, carboxy, carbamoyl, alkoxycarbonyl, hydroxymethyl, trifluoromethyl, thioaryl, C_{1-6} alkyl, C_{2-6} alkynyl, and C_{1-10} acyloxy;

 R_7 and R_8 are independently selected from hydrogen, hydroxy, alkoxy, thiol, thioalkyl, amino, halogen, cyano, carboxy, alkoxycarbonyl, carbamoyl, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, and C_{1-10} acyloxy; and

 R_9 and R_{10} are independently selected from the hydrogen, hydroxy, alkoxy, amino, halogen, azido, C_{1-6} alkyl, C_{2-6} alkynyl, and C_{1-10} acyloxy.