Linearkombinationer og spænd, Afsnit 1.3–1.5

06. februar 2021

SLIAL

Forår 2021

Del I Repetition

Pivotsøjler

Lad A være en matrix, og lad R være dens reducerede trappeform.

De søjler i A, hvor B har pivotindgange, kaldes pivotsøjler

For et konsistent ligningssystem $A|\mathbf{b}$, hvor \mathbf{a}_i et i'te søjle i A, kaldes den tilhørende variabel x_i for.

► dousis maniabel

hvis a; er en pivotsøjle

Iri variable

hvis a; ikke er en pivotsøjle

Antal løsninger

Fra trappeformen kan vi også afgøre, om ligningssystemet har nogen løsninger

Sætning

Lad $[R|\mathbf{c}]$ være trappeformen af totalmatricen $[A|\mathbf{b}]$ for et ligningssystem. Da gælder

- ► Hvis [R|c] har pivot i sidste søjle, er systemet inkonsistent.
- ► Hvis [R|c] ikke har pivot i sidste søjle, er systemet konsistent. Systemet har da uendeligt mange løsninger, hvis der er mindst én fri variabel. Ellers har det en entydig løsning.

Nulrækker er OK

Nulrækker kan ikke bruges til at afgøre, om systemet har løsninger eller ej

$$\begin{bmatrix}
1 & 2 & 4 \\
1 & 0 & 7 & 0 & 3 \\
0 & 1 & 2 & 0 & -1 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

Særlige matricer

Definition

En $n \times 1$ -matrix kaldes en <u>søjlevektor</u>, og en $1 \times n$ -matrix kaldes en <u>rækkevektor</u>.

Ofte undlades 'søjle' og 'række', så vi bare kalder dem vektorer

Vektorer i mange dimensioner

I kender måske allerede vektorer i...

- ► planet (2 dimensioner)
- ► rummet (3 dimensioner)

Vi kan og skal sagtens arbejde i n dimensioner, hvor n > 3.

Rum af vektorer

Mængden af alle $m \times 1$ -vektorer med reelle indgange betegnes \mathbb{R}^{r}

Det vil sige, at

 $ightharpoonup \mathbb{R}^2$ er planet $ightharpoonup \mathbb{R}^3$ er $ightharpoonup \mathbb{R}^3$

Et eksempel på en vektor i \mathbb{R}^7 er

Vektoraddition

Vektorer kan lægges sammen og ganges med skalarer (reelle tal)

 \triangleright Summen $\mathbf{u} + \mathbf{v}$ udregnes elementvist

$$\begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix} + \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} = \begin{bmatrix} u_1 + v_1 \\ \vdots \\ u_n + v_n \end{bmatrix} \in \mathbb{R}^n$$

► For en skalar c er cu den vektor, hvor hvert element i u er ganget med c c

$$C \left(\begin{array}{c} \mu^{1} \\ \vdots \\ \mu^{2} \end{array} \right) = \left(\begin{array}{c} \mu^{1} \\ \vdots \\ \mu^{2} \end{array} \right) \in \mathbb{R}^{2}$$

Linearkombinationer

Definition

Lad $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ være vektorer i \mathbb{R}^n og c_1, c_2, \dots, c_k skalarer i \mathbb{R} . Da siges

$$\mathbf{y} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_k \mathbf{v}_k \in \mathbb{R}$$

at være en *linearkombination* af $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ med koefficienter (el. vægte) c_1, c_2, \dots, c_k .

Eksempel

Lad $v_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ og $v_2 = \begin{bmatrix} 6 \\ 7 \end{bmatrix}$. En linearkombination af v_1 og v_2 er

$$S = \frac{4}{12} + \frac{5}{12} = \frac{4}{12} + \frac{5}{12} = \frac{4}{12} + \frac{5}{12} = \frac{4}{12} + \frac{5}{12} = \frac{5}{12} = \frac{34}{12} = \frac{34}{12}$$

Vektorspænd

Definition

Lad $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ være vektorer i \mathbb{R}^n . Mængden af alle linearkombinationer af $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ kaldes *spændet* af vektorerne og betegnes $\text{Span}\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$.

Eksempel

Lad
$$v_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 og $v_2 = \begin{bmatrix} 6 \\ 7 \end{bmatrix}$ som før. Span $\{\mathbf{v}_1, \mathbf{v}_2\}$ består af alle vektorer. . .

C₁
$$V_1$$
+ C₁ V_2 = C₁[2]+ C₂[6]² [7·C₁+6·C₂] where

Espon {v, v,) how shives sadon

Geometrisk fortolkning

Spændet af vektorer har en naturlig geometrisk fortolkning i \mathbb{R}^2 og \mathbb{R}^3

Ligger en vektor i spændet?

Vi så, at Span
$$\left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 6\\7 \end{bmatrix} \right\} = c_1 \begin{bmatrix} 1\\2 \end{bmatrix} + c_2 \begin{bmatrix} 6\\7 \end{bmatrix}$$

Kan vi afgøre, om $\mathbf{b} = \begin{bmatrix} 9\\8 \end{bmatrix} \in \operatorname{Span} \left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 6\\7 \end{bmatrix} \right\}$?

$$\begin{bmatrix} 1 \cdot c_1 + c_2 \cdot c_1 \\ c_1 \end{bmatrix} \in \mathbb{R}$$

$$\begin{bmatrix} 1 \cdot c_1 + c_2 \cdot c_1 \\ c_2 \end{bmatrix} \in \mathbb{R}$$

Ligner det noget, vi kender?

Vektorligninger

$$A \sim m \times n$$

$$A = \left[a_1 a_2 \quad a_m \right] m$$

Sætning

Lad A være en $m \times n$ -matrix med søjler $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ (i \mathbb{R}^m), og lad \mathbf{b} være en vektor i \mathbb{R}^m . Vektorligningen

$$x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + \dots + x_n \mathbf{a}_n = \mathbf{b}$$
 (be specified)

har samme løsningsmængde som det lineære ligningssystem med totalmatrix $[A|\mathbf{b}]$.

Hvilke vektorer ligger i spændet?

Vi kunne også undersøge: Ligger alle vektorer **b** i Span $\{v_1, v_2, \dots, v_m\}$?

Hvis nej, hvilke gør så/gør så ikke?

Hvilke vektorer ligger i spændet?

Matrix-vektor-produkt

I lineær algebra tænker vi ofte på et ligningssystem som et produkt mellem en matrix og en vektor

Definition

Lad A være en $m \times n$ -matrix med søjler $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ (i \mathbb{R}^m), og lad \mathbf{v} være en vektor i \mathbb{R}^n . Vi definerer da *matrix-vektor-produktet* mellem A og \mathbf{v} til at være

$$A\mathbf{v} = v_1 \mathbf{a}_1 + v_2 \mathbf{a}_2 + \dots + v_n \mathbf{a}_n.$$

$$\left[\mathbf{o}_{11} - \mathbf{a}_{12}\right] = v_1 \mathbf{a}_1 + \dots + v_n \mathbf{a}_n.$$

Bemærk, at størrelserne skal passe sammen: \mathbf{v} skal have ligeså mange rækker som A har søjler.

Matrix-vektor-produkt Eksempler

Eksempel
$$\begin{bmatrix} \frac{4}{7} & \frac{1}{0} & -\frac{1}{3} & \frac{0}{2} \\ \frac{1}{6} & -2 & -3 & 2 \end{bmatrix} \begin{bmatrix} \frac{1}{2} \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} \frac{4}{3} \\ \frac{1}{6} \\ \frac{1}{2} \\ 0 \\ -1 \end{bmatrix} + \begin{bmatrix} \frac{1}{2} \\ 0 \\ \frac{1}{6} \\ \frac{1}{2} \\ 0 \\ -1 \end{bmatrix} + 2 \begin{bmatrix} \frac{1}{2} \\ 0 \\ -1 \\ 0 \end{bmatrix} + (-1) \begin{bmatrix} \frac{1}{2} \\ 0 \\ -1 \end{bmatrix} + (-1) \begin{bmatrix} \frac{1}{2} \\ 0 \\ -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 2 & 1 & 3 \end{bmatrix} \begin{bmatrix} -2 \\ 1 \\ 3 \end{bmatrix} = (-1) \begin{bmatrix} 1 \\ 3 \end{bmatrix} + (-1) \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix} + 3 \begin{bmatrix} 3 \\ 3 \end{bmatrix} = \begin{bmatrix} -2 \cdot 1 + 1 \cdot 2 + 3 \cdot 3 \\ -2 \cdot 3 + 1 \cdot 2 + 3 \cdot 1 \\ -2 \cdot 2 + 1 \cdot 1 + 2 \cdot 3 \end{bmatrix} = \begin{bmatrix} -3 \\ -1 \\ 6 \end{bmatrix}$$

Matrix-vektor-produkt

Observation

Det i'te element i Av er givet ved i'te element i

$$v_1\mathbf{a}_1+v_2\mathbf{a}_2+\cdots+v_n\mathbf{a}_n$$
.

Dette element er

$$v_1 a_{i1} + v_2 a_{i2} + \cdots + v_n a_{in} = [a_{i1} a_{i2} \cdots a_{in}] \cdot \mathbf{v}$$

Altså: Det i'te element i Av er givet ved... prik produkt/slubprod

Egenskaber

Sætning

Lad A være en $m \times n$ -matrix, \mathbf{u} og \mathbf{v} være vektorer i \mathbb{R}^n og c være et reelt tal. Da gælder

$$A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v}$$

$$A(\mathbf{v}) = c(A\mathbf{v})$$

$$A = [x, -x_n]$$

- \rightarrow $Ae_i = a_i$, hvor e_i har 1 i indgang i og 0 i alle andre
 - ► $O_n \mathbf{v} = \mathbf{0}$, hvor O_n er $n \times n$ -matricen med 0 i alle indgange
 - ▶ $I_n \mathbf{v} = \mathbf{v}$, hvor I_n er $n \times n$ -matricen med indgang (i,j) lig 1, hvis i = j, og 0 ellers

Egenskaber

Vi kan særligt bemærke, at de første to punkter giver

Korollar

Lad $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_s$ være vektorer i \mathbb{R}^n , og lad c_1, c_2, \dots, c_s være reelle tal. Da gælder

$$A(c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots+c_s\mathbf{v}_s)=c_1A\mathbf{v}_1+c_2A\mathbf{v}_2+\cdots+c_sA\mathbf{v}_s$$

Med andre ord: Matrix-vektorproduktet mellem A og en linearkombination af $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_s$ giver linearkombinationen af $A\mathbf{v}_1, A\mathbf{v}_2, \dots, A\mathbf{v}_s$ med samme koefficienter.

Matrixligninger

Hvis
$$A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n]$$
 og $\mathbf{x} \in \mathbb{R}^n$, har vi

$$Ax = x_1 x_1 + x_2 x_3 + \dots \times_{n-1} x_n$$

Det vil sige, at matrixligningen $A\mathbf{x} = \mathbf{b}$, har samme løsninger som...

$$x_1\vec{a}_1 + x_2\vec{a}_2 + ... + x_n\vec{a}_n = \vec{b}$$
 - veletor libring

Tre ækvivalente repræsentationer

Sætning

Lad $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n]$ være en $m \times n$ -matrix, og lad **b** være en vektor i \mathbb{R}^m . Løsningsmængderne for følgende systemer er ens.

- (i) Matrixligningen $A\mathbf{x} = \mathbf{b}$
- (ii) Vektorligningen $x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n = \mathbf{b}$
- (iii) Det lineære ligningssystem med totalmatrix $[\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n \ | \ \mathbf{b}]$

Tre ækvivalente repræsentationer Eksempel

Eksempel

Oversæt matrixligningen $\begin{bmatrix} 0 & 4 & 2 & -1 \\ 2 & 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 9 \\ 3 \end{bmatrix}$ til en

vektorligning og til totalmatricen for et lineært ligningssystem.

$$x_1\begin{bmatrix}0\\2\end{bmatrix} + x_2\begin{bmatrix}1\\1\end{bmatrix} + x_3\begin{bmatrix}2\\1\end{bmatrix} + x_4\begin{bmatrix}-1\\0\end{bmatrix} = \begin{bmatrix}3\\3\end{bmatrix}$$

Konsistens og spænd

Ækvivalensen mellem matrixligninger og vektorligninger giver derfor:

Ligningen $A\mathbf{x} = \mathbf{b}$ har en løsning, hvis og kun hvis \mathbf{b} er en linearkombination af $\mathbf{a}_1, \mathbf{a}_2 \cdots \mathbf{a}_n$

Med andre ord: Ligningen er konsistent, hvis og kun hvis

Homogene ligningssystemer

En matrixligning på formen $A\mathbf{x} = \mathbf{0}$ kaldes homogen

Har denne altid en løsning?

Parametrisk form

Sidste gang så vi, at systemet med totalmatrix har løsningerne givet ved

har løsningerne givet ved
$$\begin{cases} x_1 = -2x_2 + x_4 \\ x_2 \text{ er fri} \\ x_3 = 3x_4 \\ x_4 \text{ er fri} \end{cases}$$
 Dette kan også skrives på formen

Parametrisk form

Betragter vi i stedet totalmatricen $\begin{bmatrix} 1 & 2 & 0 & -1 & | & 4 \\ 0 & 0 & 1 & -3 & | & 5 \end{bmatrix}$ bliver løsningerne i stedet

$$\begin{cases} x_1 = 4 - 2x_2 + x_4 \\ x_2 \text{ er fri} \\ x_3 = 5 + 3x_4 \\ x_4 \text{ er fri} \end{cases}$$
 (5, \dark \) = (\dark \cdot \cdot

På parametrisk er dette

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \\ 5 \\ 0 \end{bmatrix} + 5 \begin{bmatrix} -2 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} 0 \\ 3 \\ 0 \end{bmatrix}$$
span $\begin{bmatrix} -2 \\ 3 \\ 0 \end{bmatrix}$

Inhomogene systemer

$$A_{x_1} = b$$

$$A_{x_2} = b$$

$$A_{(x_1 - x_2)} = A_{x_1} - A_{x_2} = b - b = 0$$

$$A_{(x_1 - x_2)} = A_{x_1} - A_{x_2} = b - b = 0$$
Dette leder til følgende karakterisering af den *inhomogene* ligning

 $A\mathbf{x} = \mathbf{b}$, hvor $\mathbf{b} \neq \mathbf{0}$.

Sætning

Lad $A\mathbf{x} = \mathbf{b}$ være et konsistent ligningssystem, hvor $\mathbf{b} \neq \mathbf{0}$, og lad \mathbf{p} være en (hvilken som helst) løsning.

Løsningsmængden for $A\mathbf{x} = \mathbf{b}$ er da alle vektorer \mathbf{w} på formen

$$\underline{\mathbf{w}} = \mathbf{p} + \mathbf{v}_{\underline{h}},$$

hvor \mathbf{v}_h er en løsning til det homogene system $A\mathbf{x} = \mathbf{0}$.

$$Aw = A(p + v_1) = Ap + Au_1 = b + 0 = 6$$

Geometrisk fortolkning

Vi kan tænke på løsningerne til det inhomogene system som en parallelforskydning af løsningerne til det homogene

