## **UNIT 5: Reinforcement Learning**

- > Passive reinforcement learning
- > Direct utility estimation
- Adaptive dynamic programming
- > Temporal difference learning
- > Active reinforcement learning- Q learning

## 2 Marks Questions

- ➤ What is rule based learning?
- > Define temporal difference learning.
- > Q-learning algorithm in reinforcement learning
- > Temporal difference learning
- Passive reinforcement learning
- > Adaptive dynamic programming
- ➤ What is Q-learning algorithm in reinforcement learning?
- ➤ What is adaptive dynamic programming?
- > What is reinforcement learning?

## 5 Marks Questions

- Explain adaptive dynamic programming with suitable example.
- Explain Passive reinforcement learning in detail.
- Discuss the Q-learning algorithm in reinforcement learning.

# 10 Marks Questions

- ➤ What do you mean by Reinforcement Learning? Explain practical applications of RL.
- Explain adaptive dynamic programming and active reinforcement learning in detail with appropriate examples.
- ➤ Describe the importance of Q-learning algorithm in reinforcement learning with the help of suitable illustrations.
- Differentiate between active reinforcement learning and passive reinforcement learning.
- Explain Temporal Difference Learning and A\* algorithm.

#### Reinforcement Learning (RL)

- Reinforcement Learning (RL) is a type of machine learning where an agent learns to make decisions by interacting with an environment.
- The agent performs actions, receives feedback in the form of rewards or penalties, and adjusts its strategy to maximize cumulative rewards over time.
- It learns through trial and error, making decisions based on rewards and penalties.

#### **Key Components of Reinforcement Learning**

- Agent: The entity (AI or model) that takes actions in an environment.
- Environment: The external system with which the agent interacts.
- ➤ State (s): A representation of the environment's condition at a given time.
- Action (a): The choices available to the agent at a given state.
- Reward (r): A numerical value given as feedback for the agent's action.
- Policy  $(\pi)$ : The strategy that the agent follows to decide which action to take in a given state.
- ➤ Value Function (V): Estimates the expected long-term reward from a state.
- ➤ Q-Function (Q): Estimates the expected long-term reward for a given state-action pair.

#### **How Reinforcement Learning Works?**

- ➤ Observation: The agent perceives the current state of the environment.
- Action Selection: Based on the state, the agent selects an action using a policy.
- Reward Assignment: The environment provides a reward or penalty based on the action.
- State Transition: The agent moves to a new state based on the action.
- ➤ Policy Update: The agent updates its policy using learning algorithms like Q-learning.
- Repeat: Steps 1-5 are repeated until the agent finds an optimal strategy.

#### Real World Example: Self-Driving Cars 🚙



Scenario: A self-driving car must learn how to drive safely and reach a destination while obeying traffic rules.

- ◆ **Agent:** The AI system controlling the car.
- **Environment:** The roads, traffic lights, pedestrians, and other vehicles.
- **State:** The car's speed, position, lane, distance to other objects, etc.
- Actions: Accelerate, brake, turn left, turn right, change lanes, etc.
- Reward:
- +10 points for following traffic signals.
- -50 points for breaking a red light.
- +100 points for safely reaching the destination.
- -100 points for an accident.
- The self-driving car learns by continuously interacting with the environment. Over time, it improves its policy by maximizing rewards (safe driving) and minimizing penalties (violations or accidents).

# Practical Applications of RL

- **►** Gaming *▶*
- > Self-Driving Cars -
- Finance & Trading
- > Healthcare & Medicine
- Natural Language Processing (NLP)
- > Manufacturing & Industrial Automation

#### **Rule-Based Learning**

- Rule-based learning is a traditional AI approach where decisions are made based on predefined rules or expert knowledge.
- It follows an "if-then" structure, making it less adaptable to dynamic environments compared to machine learning methods like reinforcement learning.

#### Example of Rule-Based Learning: Chatbots

A basic customer service chatbot that answers FAQs is an example of rule-based learning.

#### Rule Example:

- IF the user says: "What are your business hours?"
- THEN the chatbot replies: "Our business hours are 9 AM to 5 PM, Monday to Friday."

#### **\*** Limitations:

- If the user asks, "When do you open?" (a different phrasing), the chatbot might not understand because it follows strict rules.
- It cannot **learn** new responses like a machine learning-based chatbot.

# Comparison: Rule-Based vs. Machine Learning

| Feature         | Rule-Based Learning          | Machine Learning                          |
|-----------------|------------------------------|-------------------------------------------|
| Decision Making | Based on fixed rules         | Learns from data                          |
| Adaptability    | Cannot handle new situations | Adapts to new data                        |
| Example         | Simple chatbots              | Al-powered assistants (e.g., Siri, Alexa) |

#### Passive and Active RL

- Passive Reinforcement Learning is a type of Reinforcement Learning (RL) where an agent follows a fixed policy (predefined set of actions) and learns the value of states without actively exploring new actions.
- Unlike Active RL, where the agent chooses actions to maximize rewards, in Passive RL, the agent only observes and learns how good or bad different states are while following a fixed path.

## **Key Characteristics of Passive RL**

- Fixed Policy: The agent does not choose its actions; it follows a given path.
- Learns State Values: The agent estimates how good each state is (its utility).
- ➤ No Exploration: It does not try new actions to find better rewards.

## How Passive RL Works?

- The agent starts in a given environment.
- > It follows a fixed policy (predefined actions).
- It observes rewards received for reaching different states.
- ➤ Over time, it learns the value of states (how beneficial a state is).

# Main approaches to Passive RL

- ➤ Direct Utility Estimation The agent calculates the average reward of each state based on past experiences.
- Adaptive Dynamic Programming (ADP) Uses a model of the environment to calculate state utilities using the Bellman Equation.
- ► Temporal Difference (TD) Learning Updates state values using the difference between estimated and actual rewards.

## Example of Passive RL: A Robot 🗑 on a Fixed Path

- Imagine a **robot vacuum cleaner** moving in a house. It follows a **fixed path** (policy) and does **not decide** where to go. It only **learns** which areas are more beneficial (cleaner) based on rewards.
- States: Different locations in the house (e.g., kitchen, bedroom, living room).
- > Fixed Policy: Always moves in the same direction.
- > Rewards:
- +10 points for cleaning a dirty spot.
- -5 points for bumping into furniture.
- 0 points for moving normally.

#### What the Robot Learns

- The robot does not change its path but learns that some areas (like under the table) have higher rewards (more dirt collected).
- It updates its understanding of state values without making new decisions.

# Active Reinforcement Learning

- Active Reinforcement Learning (Active RL) is a type of **Reinforcement Learning** (**RL**) where an **agent actively explores** different actions to **find the best policy** (the best way to behave).
- Unlike Passive RL, where the agent follows a fixed path, Active RL allows the agent to make decisions to maximize long-term rewards.

# Key Characteristics of Active RL

- Learns an Optimal Policy: The agent does not follow a fixed path but instead learns the best actions to take.
- Explores and Experiments: The agent tries different actions to discover the most rewarding ones.
- Maximizes Future Rewards: The goal is to take actions that lead to the highest total reward over time.

## How Active RL Works?

- The agent starts in an **environment** with **unknown** rewards.
- > It chooses actions and observes the rewards received.
- ➤ It explores different actions to find the best way to behave.
- > Over time, it learns the best policy (optimal set of actions).
- Active RL often uses Q-learning, a method where the agent stores and updates values for state-action pairs to determine the best action in each state.

## Example of Active RL: A Self-Driving Car



Imagine a self-driving car learning to navigate a city.

States: The car's location on road. the Actions: Move forward, turn left, turn right, stop. **Rewards:** 

- +10 points for reaching the destination safely.
- -5 points for taking a longer route.
- -100 points for crashing.

#### How Active RL Works in This Case:

- At first, the car tries random routes (exploration).
- It learns from experience which paths are safe and efficient.
- Over time, it chooses the best route to reach its goal quickly and safely.

# Difference Between Active and Passive RL

| Feature     | Passive RL         | Active RL             |
|-------------|--------------------|-----------------------|
| Policy      | Fixed              | Learns optimal policy |
| Exploration | No                 | Yes                   |
| Goal        | Learn state values | Learn optimal actions |

# Temporal Difference (TD) Learning

- TD learning is an RL method that updates state values based on the difference between estimated and observed rewards.
- It combines ideas from Monte Carlo methods and Dynamic Programming to learn without needing a model of the environment.

# Temporal Difference (TD) Learning

#### Formula:

$$U(s) \leftarrow U(s) + lpha(r + \gamma U(s') - U(s))$$

#### Where:

- U(s) = Utility of state s
- $\alpha$  = Learning rate
- $\gamma$  = Discount factor
- r = Immediate reward
- U(s') = Utility of the next state

### Comparison of TD Learning and A\* Algorithm

- TD Learning is used in reinforcement learning, focusing on estimating future rewards dynamically.
- A Algorithm\* is used in pathfinding, finding the shortest path using heuristics.

# Adaptive Dynamic Programming (ADP)

- ADP is an approach in RL that uses a model of the environment (transition probabilities and rewards) to compute state values using Bellman equations.
- Example of Adaptive Dynamic Programming
- ➤• Chess AI: The model learns the value of board positions using past game data and optimizes strategies based on probability models.

# Q-Learning Algorithm

➤ Q-learning is a model-free RL algorithm that learns the value of actions in each state to determine the optimal policy.

# Q-Learning Algorithm

#### **Q-Learning Formula:**

$$Q(s,a) \leftarrow Q(s,a) + lpha(r + \gamma \max_{a'} Q(s',a') - Q(s,a))$$

#### Where:

- Q(s,a) = Quality of action a in state s
- r = Immediate reward
- γ = Discount factor (future reward weight)
- α = Learning rate
- $\max_{a'} Q(s', a')$  = Best possible future reward

# Importance of Q-Learning

- It learns optimal policies even when the environment model is unknown.
- It is widely used in robotics, game AI, and self-driving cars.

## **Illustration of Q-Learning Process**

- 1. The agent selects an action based on the Q-table.
- 2. It receives a reward and updates the Q-value.
- 3. It explores different actions and refines its policy over time.

#### Conclusion

- Reinforcement learning provides powerful methods for solving complex decision-making problems.
- ➤ Q-learning and Temporal Difference Learning are key techniques that allow agents to learn optimal strategies through trial and error.
- ➤ ADP further enhances learning by incorporating environment models.
- These concepts are fundamental to developing AI systems in robotics, gaming, and autonomous control.