6. 可编程数字调节器

- 6.1可编程数字调节器组成及特点
- 6.2 KMM调节器功能组态
- 6.3 可编程调节器的应用

可编程数字调节器定义

以微处理器为核心器件,接受标准的连续的电模拟量,输出标准连续的电模拟信号,且以仪表面目出现的一种可由用户编程的,组成各种调节规律的数字式工业控制调节装置。

1、可编程调节器组成

图6-1可编程数字调节器组成框图

(1) 主机最小系统

系统ROM存放监控程序与组态程序,组态程序根据应用要求由用户调用。 用户ROM存放用户编写组态程序。

图6-2可编程数字调节器微机最小系统

- (2) 过程输入通道
- ①模拟输入信号

功能
$$V_X = \frac{V_R}{2^N} \times D$$

选择A/D转换器的原则

根据测控精度选择A/D转换器位数。根据实时性要求确定转换速度及是否加采样保持器。

图6-3 模拟量输入通道结构图

② 数字量信号

(自动/手动切换信号,SP增减信号)经光电隔离、滤波电路滤波后读入,放入存储器中。

"通"、"断"信号在内存中映射为"1"、"0"。

图6-4 数字量输入通道结构图

- (3) 过程输出通道
- ①模拟过输出通道

功能:将数字量转换为1~5VDC或4~20 mADC输出。 $V_0 = \frac{V_R}{2^n} \times D$

②数字量输出通道

经输出缓冲器直接控制负载(指示灯等)。

图6-5 模拟量输出通道结构图

图6-6 数字量输出通道结构图

(4) 人机接口电路

功能:参数设置,工作状态监视。

图6-7 调节器面板图

图6-8 人机接口电路框图

图6-9 调节器接线端子图

(5) 通信接口 与上位机进行信息交互。

有线通信模块: RS232、RS485模块; USB接口模块; CAN总线通信模块。

无线通信模块: CC1100、nfr905等。通信协议蓝牙、ZIGBEE等。

2、软件系统

存储在系统ROM中的系统程序(监控程序、运算控制模块); 存储在用户ROM中的应用程序;

RAM中间数据存储。

图6-11 调节器组成框图

(1) 系统程序

监控程序、中断处理程序、功能模块、输入处理程序。

①监控程序

② 中断处理程序

③ 功能模块

包括PID、加、减、乘、除、开方、高、低限监视等数十种模块。用户根据工艺控制要求选择所需要模块进行组态,实现调节器的运算控制功能。

④ 输入处理程序(实现过程量的输入处理)

过程量检测:温度、压力、压差、流量测量。

线性化: 折线处理模块。

流量测量:温度、压力补偿处理、开方运算模块。

抗干扰:数字滤波模块。

(2) 应用程序

① 功能

用户按工艺流程和控制要求,在功能模块中选用所需模块,按一定规则将这些模块连接起来,即"组态",实现控制任务。

② 功能举例

选择PID1、上下限限幅模块及手动模块,对模块进行软连接,设置模块内部参数,设置输入输出数据表,生成应用程序。

图6-13 功能模块组态示意图

3、可编程调节器的特点

(1) 实现仪表与微机一体化

运算放大器+模拟器件搭建实现PID运算

微机+接口电路组态编程实现PID运算

(2) 具有丰富的运算、控制功能

实明PID 现象值馈匀择杂

- (3) 通用型强,使用方便
- ① 与模拟调节器输入输出信号一致,接线一致。输入输出均为4~20mA模拟信号。
- ②编程简单

填写表格,设置组态参数编程。

(4) 可连接到集散控制系统中

具有通信模块的智能仪表作为节点挂接到网络中,与操作站、上位机进行通信,构成多级系统,实现分散控制。

1、 KMM调节器系统程序组成

图6-14 KMM输入处理、运算处理、输出处理框图

2、KMM调节器用户程序的编写

填写表格方式PID模块内部参数设置,输入输出功能设置。 选用所需要的运算功能模块,进行模块连接--组态。

图6-15 KMM调节器用户程序编写

填写组态表格编程举例—配置PID1模块

0 1 0 3 0 F 功能类型

0.0

模块代码

功能代码

参数值

PID运算数据表

PID运算 PID模块 功能代码

 $F003 - 01 \sim 02 - 01 \sim 16$

	1 003	1 02	O I	10
项 目	设定代码设定范围	代码		PID数据
=			01	02
PID运算式	0, 1**	01	1	
PV输入编号	1-5	02	1	
PV跟踪	0, 1***	03	1	
报警滞后	0.0-100.0%	04	0.0	
比例度*	0.0-799.9%	05	100.0	
积分时间*	0.00-99.99(min)	06	5.00	
微分时间*	0.00-99.99(min)	07	0.00	

填写组态表格编程举例--输入工程量基本信息填写F002

输入温度范围0.0~100.0°C,从模拟2通道输入。 F002~-~01~05~-~01~15

项 目	设定代码设定范围	代码	模拟输入数据通道				
			01	02	03	04	05
输入使用	0, 1	01					
工程单位小数点位置	0, 1, 2, 3	02					
工程单位值下限	-9999-9999	03					
工程单位值上限	-9999-9999	04					
温度补偿用输入号码	0, 1, 2, 3, 4, 5	06					
温度单位	0, 1	07					
设定温度	-9999-9999	08					
压力补偿用输入号码	0, 1, 2, 3, 4, 5	09					
压力单位	0, 1	10					
设定压力	-9999-9999	11					

3、输入处理功能组态(组态表F002 F004)

温度、压力、流量检测:填写F002表。

过程量测量范围、单位、精度;流量温度压力补偿;数字滤波。

输入信号线性化: 填写F004表拐点数据,调用折线模块。

图6-15 KMM输入处理功能框图

(1) 温度、压力(压差) 检测

练习1:从模拟量1通道输入压力信号,压力范围0.0~100.0kPa,设定压力55.0kpa,不进行开方处理,数字滤波常数1min,传感器异常报警。填写组态表。

ſ	项 目	设定代码设定范围	代码	模拟输入数据通道				
l				01	02	03	04	05
	输入使用	0, 1	01					
	工程单位小数点位置	0, 1, 2, 3	02					
Ī	工程单位值下限	-9999-9999	03					
Ī	工程单位值上限	-9999-9999	04					
I	压力单位	0, 1	10					
	设定压力	-9999-9999	11					
	开方处理	0, 1	12					
	开方处理小信号切除	0.0-100.0%	13					
ı	数字滤波常数	0.0-999.98	14					
	传感器异常诊断	0,1	15					

练习1: 从模拟量1通道输入压力信号,压力范围0.0~100.0kPa,设定压力55.0kpa,不进行开方处理,数字滤波常数1min,传感器异常报警。填写组态表。

项目	设定代码设定范围	代码	模拟输入数据通道				
			01	02	03	04	05
输入使用	0, 1	01	1				
工程单位小数点位置	0, 1, 2, 3	02	1				
工程单位值下限	-9999-9999	03	0.0				
工程单位值上限	-9999-9999	04	100.0				
压力单位	0, 1	10	0				
设定压力	-9999-9999	11	55.0				
开方处理	0, 1	12	0				
开方处理小信号切除	0.0-100.0%	13					
数字滤波常数	0.0-999.98	14	60.0				
传感器异常诊断	0,1	15	1				

练习2: 从模拟量2通道输入温度信号,温度范围0.0~100.0°C,设定温度65.0°C,不进行开方处理,数字滤波常数2min,传感器异常报警。填写组态表。

项 目	设定代码设定范围	代码	模拟输入数据通道				
			01	02	03	04	05
输入使用	0, 1	01					
工程单位小数点位置	0, 1, 2, 3	02					
工程单位值下限	-9999-9999	03					
工程单位值上限	-9999-9999	04					
温度单位	0, 1	07					
设定温度	-9999-9999	08					
数字滤波常数	0.0-999.98	14					
传感器异常诊断	0,1	15					

项 目	设定代码设定范围	代码	模拟输入数据通道				
			01	02	03	04	05
输入使用	0, 1	01		1			
工程单位小数点位置	0, 1, 2, 3	02		1			
工程单位值下限	-9999-9999	03		0.0			
工程单位值上限	-9999-9999	04		100.0			
温度单位	0, 1	07		0			
设定温度	-9999-9999	08		65.0			
数字滤波常数	0.0-999.9S	14		120.0			
传感器异常诊断	0,1	15		1			

数字滤波(D.F)

$$Y = \frac{1}{TS + 1}X$$

$$F002 - 02 - 14 \to 5.0 \quad T = 5S$$

(2) 用差压变送器流量检测

设计条件下质量流量 $M_n = K\sqrt{P_n} \times \Delta P_n / T_n$ $M = K\sqrt{P \times \Delta P / T}$ 使用条件下质量流量 $M_n = M$ $\rightarrow \Delta P_n = \frac{T_n}{T} \times \frac{P}{P} \times \Delta P$ $\rightarrow \text{ if } \mathcal{D}_n$ AIR1**KMM**

图6-16 差压变送器流量检测原理框图

$$M_n = M \longrightarrow \Delta P_n = \frac{T_n}{T} \times \frac{P}{P_n} \times \Delta P$$

压力一定时温度补偿下的质量流量

$$\Delta P_n = \frac{t_n + C}{t + C} \times \Delta P \quad C = \begin{cases} 273(^{\circ}C \text{为单位}) \\ 523.4(F \text{为单位}) \end{cases}$$

温度一定时压力补偿下的质量流量

$$\Delta P_n = \frac{P+C}{P_n+C} \times \Delta P \qquad C = \begin{cases} 101.3(kpa 为 单位) \\ 10330(mmH_2O 为 单位) \end{cases}$$

①温度补偿

差压测量范围0~1000kPa,温度测量范围0~100℃,设定温度为60℃,差压信号进行开方处理,1%的小信号切除。滤波时间常数1min。

$$\Delta P_n = \frac{t+C}{t_n+C} \times \Delta P$$

项 目	设定代码设定范围	代码	模拟输入数据通道				
			01	02	03	04	05
输入使用	0, 1	01					
工程单位小数点位置	0, 1, 2, 3	02					
工程单位值下限	-9999-9999	03					
工程单位值上限	-9999-9999	04					
温度补偿用输入号码	0, 1, 2, 3, 4, 5	06					
温度单位	0, 1	07					
设定温度	-9999-9999	08					
开方处理	0, 1	12					
开方处理小信号切除	0.0-100.0%	13					
数字滤波常数	0.0-999.98	14					
传感器异常诊断	0,1	15					

差压测量范围0~1000kPa,温度测量范围0~100℃,设定温度为60℃,差压信号进行开方处理,1%的小信号切除。滤波时间常数1min。

 F002-01-01
 填1
 F002-03-01
 填1
 AIR1, AIR3输入处理

 F002-03-06
 填1
 AIR1温度对AIR3流量进行温度补偿。

项 目	设定代码设定范围	代码	模拟输入数据通道				
			01	02	03	04	05
输入使用	0, 1	01	1		1		
工程单位小数点位置	0, 1, 2, 3	02	0		0		
工程单位值下限	-9999-9999	03	0		0		
工程单位值上限	-9999-9999	04	100		1000		
温度补偿用输入号码	0, 1, 2, 3, 4, 5	06			1		
温度单位	0, 1	07			0		
设定温度	-9999-9999	08			60		
开方处理	0, 1	12			1		
开方处理小信号切除	0.0-100.0%	13			1.0		
数字滤波常数	0.0-999.9S	14	60.0		60.0		
传感器异常诊断	0,1	15	1		1		

② 压力补偿

差压测量范围0~1000kPa,压力测量范围0~100kPa,设定压力为80 kPa,差压信号进行开方处理,2%的小信号切除。滤波时间常数10S。

项 目	设定代码设定范围	代码	模拟输入数据	
			02	03
输入使用	0, 1	01		
工程单位小数点位置	0, 1, 2, 3	02		
工程单位值下限	-9999-9999	03		
工程单位值上限	-9999-9999	04		
压力补偿用输入号码	0, 1, 2, 3, 4, 5	09		
压力单位	0, 1	10		
设定压力	-9999-9999	11		
开方处理	0, 1	12		
开方处理小信号切除	0.0-100.0%	13		
数字滤波常数	0.0-999.98	14		
传感器异常诊断	0,1	15		

② 压力补偿

差压测量范围0~1000kPa,压力测量范围0~100kPa,设定压力为80 kPa, 差压信号进行开方处理,2%的小信号切除。滤波时间常数10S。

项 目	设定代码设定范围	代码	模拟输入数据	
			02	03
输入使用	0, 1	01	1	1
工程单位小数点位置	0, 1, 2, 3	02	0	0
工程单位值下限	-9999-9999	03	0	0
工程单位值上限	-9999-9999	04	100	1000
压力补偿用输入号码	0, 1, 2, 3, 4, 5	09		2
压力单位	0, 1	10	0	
设定压力	-9999-9999	11		80
开方处理	0, 1	12		1
开方处理小信号切除	0.0-100.0%	13		2.0
数字滤波常数	0.0-999.98	14	10.0	10.0
传感器异常诊断	0,1	15	1	_ 1

(3) 线性化(对过程量进行线性化处理)

F004 01或02或03 X: 01-10 Y: 11-20

	折点	代码		折线数据表	
			01	02	03
X	X1	01	10.1		
轴	X2	02	20.1		
	Х3	03	56.7		
	X4	04	799.9		
	•••	•••			
	X10	10			
Y	Y 1	11	10.2		
轴	Y2	12	23.5		
TIS ARIO	Y3	13	60.8		
	Y4	14	60.8	4 2 5 7 5 7	
	•••	•••			
	Y10	20			

4、运算处理功能

调节器基本参数设置F001:控制类型,运算周期,通信等。调节器PID参数设置F003:比例度、积分时间、微分时间等。调节器运算常数、系数设置F005。 功能模块(连接)组态 F101~F130。

(1)调节器基本参数设置F001

控制类型,运算周期,与上位机是否通信

 $F001 - 01 - 01\square 07$

			_	
项	目	设定代码设定范围	代码	数据
PROM		(*1)	01	
运算周期		0, 1, 2, 3, 4, 5 (*2)	02	
控制类型		0, 1, 2, 3	03	
PV报警的PID-	号码	1, 2	04	
调节器编号		1 [~] 50	05	
上位机控制力	方式	0, 1, 2 (*3)	06	
上位机异常控制	訓方式	0, 1 (*4)	07	

- (*2) 1-100ms 2-200ms 3-300ms 4-400ms 5-500ms, 取决于程序量大小
- (*3) 0-无通信 1-有通信无控制 2-有通信有控制
- (*4) 0-M 1-A

① 控制类型

控制类型0

内给定单回 路PID控制

控制类型2

串级控制

图6-17控制类型0,2

图6-18控制类型1,3

② 通信功能

通信类型0:无通信

通信类型1: 与上位机有通信,上位机进行参数设置,不进行直接控制。

通信类型2: 与上位机有通信,上位机进行参数设置,直接控制。

项	目	设定代码设定范围	代码	数据
PROM		(*1)	01	
运算周期		0, 1, 2, 3, 4, 5 (*2)	02	
控制类型		0, 1, 2, 3	03	
PV报警的PID号	码	1, 2	04	
调节器编号		1 [~] 50	05	
上位机控制方法	式	0, 1, 2 (*3)	06	
上位机异常控制	方式	0, 1 (*4)	07	

思考:运算周期200ms,常规 PID控制,PID1模块PV报警, 调节器在组态图里编号2,有 通信上位机不参与控制,上位 机异常切到手动。填写组态表。

(2) 调节器PID参数设置 F003

F003 01(02) 01-16

项 目	设定代码设定范围	代码	PID数据	
			01	02
PID运算式	0, 1**	01	0	1
PV输入编号	1-5	02	1	2
PV跟踪	0, 1***	03	1	1
报警滞后	0.0-100.0%	04	1.0	1.0
比例度*	0.0-799.9%	05	100.0	50.0
积分时间*	0.00-99.99(min)	06	2.00	1.00
微分时间*	0.00-99.99(min)	07	0.00	0.00
积分下限限幅*	-200.0-200.0%	08	0.0	0.0
积分上限限幅*	-200.0-200.0%	09	100.0	100.0
比率*	-699.9-799.9%	10	100.0	100.0
偏置*	-699.9-799.9%	11	0.0	0.0
偏差不灵敏区*	0.0-100.0%	12	0.0	0.0
输出变化率限制*	0.0-100.0%	13	100.0	100.0
偏差报警*	0.0-100.0%	14	10.0	10.0
PV下限报警*	-6.9-106.9%	15	0.0	0.0
PV上限报警*	-6.9-106.9%	16	80.0	90.0

微分先行PID参数设置 F003

F003 01(02) 01-16

项 目	设定代码设定范围	代码	PID数据		
			01	02	
PID运算式	0, 1**	01	0	1	
PV输入编号	1-5	02	1	2	
PV跟踪	0, 1***	03	1	1	
报警滞后	0.0-100.0%	04	1.0	1.0	
比例度*	0.0-799.9%	05	100.0	50.0	
积分时间*	0.00-99.99(min)	06	2.00	1.00	
微分时间*	0.00-99.99(min)	07	0.00	0.00	
积分下限限幅*	-200.0-200.0%	08	0.0	0.0	
积分上限限幅*	-200.0-200.0%	09	100.0	100.0	
比率*	-699.9-799.9%	10	100.0	100.0	
偏置*	-699.9-799.9%	11	0.0	0.0	
偏差不灵敏区*	0.0-100.0%	12	0.0	0.0	
输出变化率限制*	0.0-100.0%	13	100.0	100.0	
偏差报警*	0.0-100.0%	14	10.0	10.0	
PV下限报警*	-6.9-106.9%	15	0.0	0.0	
PV上限报警*	-6.9-106.9%	16	80.0	90.0	

练习1:要求PID1模块比例度100%,积分时间2min,微分时间0。积分下限限幅0.0,积分上限限幅100%。PV下限报警0.0%,PV上限报警80.0%。填写F003表格。

项 目	设定代码设定范围	代码	PID数据	
			01	02
PID运算式	0, 1**	01		
PV输入编号	1-5	02		
PV跟踪	0, 1***	03		
报警滞后	0.0-100.0%	04		
比例度*	0.0-799.9%	05		
积分时间*	0.00-99.99(min)	06		
微分时间*	0.00-99.99(min)	07		
积分下限限幅*	-200.0-200.0%	08		
积分上限限幅*	-200.0-200.0%	09		
比率*	-699.9-799.9%	10		
偏置*	-699.9-799.9%	11		
偏差不灵敏区*	0.0-100.0%	12		
输出变化率限制*	0.0-100.0%	13		
偏差报警*	0.0-100.0%	14		
PV下限报警*	-6.9-106.9%	15		
PV上限报警*	-6.9-106.9%	16		

练习2:要求PID2模块比例度50%,积分时间1min,微分时间0。积分下限限幅0.0,积分上限限幅100%。PV下限报警0.0%,PV上限报警90.0%。填写F003表格。

项 目	设定代码设定范围	代码	PID数据	
			01	02
PID运算式	0, 1**	01		
PV输入编号	1-5	02		
PV跟踪	0, 1***	03		
报警滞后	0.0-100.0%	04		
比例度*	0.0-799.9%	05		
积分时间*	0.00-99.99(min)	06		
微分时间*	0.00-99.99(min)	07		
积分下限限幅*	-200.0-200.0%	08		
积分上限限幅*	-200.0-200.0%	09		
比率*	-699.9-799.9%	10		
偏置*	-699.9-799.9%	11		
偏差不灵敏区*	0.0-100.0%	12		
输出变化率限制*	0.0-100.0%	13		
偏差报警*	0.0-100.0%	14		
PV下限报警*	-6.9-106.9%	15		
PV上限报警*	-6.9-106.9%	16		

- (3) 功能模块(连接)组态 F101~F130
- ①功能模块: 以见文思义图标形式出现的功能模块。

软端子: 功能模块与外部信号连接的端子。

软端子类型:百分比型,开关型,时间型

内部信号(118个):可修改的参数,输入输出信息,操作的开关信号,通信信息等。注记符和机器码表示

功能模块: 以见文思义图标形式出现的功能模块。

②常用功能模块

A、PID运算模块(PID1、PID2)(调节类)

PI运算

$$P_2 = ON$$
, $U(n) = P_1 + \Delta U(n)$

P.控制信号跟踪输入。

PID运算

$$P_2 = OFF$$
, $U(n) = U(n-1) + \Delta U(n)$

水位信号经过PID运算,高低限幅,手动模块输出

思考: 反馈线作用。

B、手动输出模块(MAN)(调节类)

自动: U=H₁

手动: $U(n) = U(n-1) + \triangle MV$

跟踪: U=H₂

图6-20 手动 输出结构

C、运行方式切换模块MOD (调节类)

图6-21 运行切换模块

$$H_1$$
= OFF, H_2 = ON,手动方式(M);
 H_1 = OFF, H_2 = OFF, P_1 = ON时,自动方式(A);
 H_1 = OFF, H_2 = OFF, P_1 = OFF, P_2 = ON时,串级方式(C)
 H_1 = ON,跟踪方式(F); H_1 = OFF 恢复跟踪前状态。

D、控制变量更改模块PMD (PMD1和PMD2)

在线修改PID模块内部参数。

当 P_1 = ON时,可改变PID变量;

 $P_1 = OFF$ 时,不能改变PID变量。

百分数型变量=H₁内部信号

时间型变量= $0.2048 \times H_1$ (min)

EXT.NO	控制参数	输入H1(%)	被更改参数值范围
1	比例度	0.0~799、9	0.0~799、9
2	积分时间	0.0~488.2	0.00~99.99min
3	微分时间	0.0~488.2	0.00~99.99min

线性对象开环 放大倍数不变

 $K_C K_0 K_B K_V$ 不变

给定値x_s 偏 ε 调节器 执行器 独控变量 測量値 x_i 変送器

非线性对象 开环放大倍数变化

 $K_{C}K_{O}K_{B}K_{V}$ 变化

 $PV \uparrow \to K_0 \uparrow$, 对策 $PV \uparrow \to K_C \downarrow$, 开环放大倍数不变

例:非线性对象,对象增益 K_0 随着测量值PV增大而增大且成非线性关系。已知 K_B 和 K_V ,设计测量值变比例度控制,使系统开环放大倍数不变。

$$K_{\text{开环}} = K_{C} K_{o} K_{B} K_{V}$$
 PV增大, $K_{\text{开环}} = K_{C} \downarrow K_{o} \uparrow K_{B} K_{V}$

由PV与 K_0 的关系曲线,可建立PV与 δ 关系。

$$\delta = \frac{K_B K_V}{K_{\text{HFF}}} K_0 = \frac{K_B K_V}{K_{\text{HFF}}} K_{\text{HFF}} PV$$

$$K_0 = K_{\parallel \parallel} PV$$

图6-22 变比例度组态图

E、超前/滯后模块(L/L)

作用:调节微分、积分作用的强弱。前馈动态控制。

图6-23 L/L特性曲线

运算关系
$$U = \frac{1 + P_1 S}{1 + P_2 S} H_1$$
 $U + P_2 \frac{dU}{dt} = H_1 + P_1 \frac{dH_1}{dt}$

$$U + P_2 \frac{dU}{dt} = H_1 + P_1 \frac{dH_1}{dt}$$

$$P_2 < T$$
, $P_2 = T$; $P_1 > 16P_2$, $P_1 = 16P_2$

F、高值监视模块(HMS)(监视类) 如热水锅炉水位高低限报警。温度高低限报警。

p, 滞回宽度 H, 设定值 H, 输入值

$$H_1 \ge H_2$$
时, $U = ON(报警)$
$$H_1 \le (H_2 - P_2)$$
 时, $U = OFF(解除报警)$

例:某一热水锅炉水位监控。设水位测量范围为0~3m。当水位高于3.0m)(100.0%)时,上限报警,水位低于0.6m(20.0%)时,下限报警。设计监控系统组态图。

 ϕH , PPAR1(20.0) P_2 PPAR 2(1.0) LMS U1报警灯1 $QH_2 PPAR3(100.0)$ $P_{2} = PPAR4(1.0)$ **HMS**

图6-25 水位上下限报警

G、斜波信号模块(时间类)

程序自动控制温度、流量。

H₁: 控制端; H2: 斜坡/保持控制端;

P1: 斜坡斜率设置端

$$H_1 = OFF, U = 0\%$$

$$H_1 = ON, H_2 = OFF, U = \frac{100}{60P_1} \% / \min$$

$$H_1 = ON, H_2 = ON, U不变。$$

图6-25 RMP特性曲线

思考: RMP特性曲线功能

例:加热炉炉温控制

热处理工件加热消除内应力。炉温程序控制曲线如图6-26。加温、保温、降温过程,时间和斜率可控。用斜波模块与折线模块组合实现之。

图6-26 加热炉炉温控制曲线

$$H_1 = ON, H_2 = OFF, \quad t_1 < t < t_2 \quad U_1 = \frac{100}{60P_1} \% / \min$$

$$H_1 = ON, H_2 = ON, t_2 < t < t_3 U_1$$
保持

图4-27炉温变化特性曲线

E、脉冲宽度调制模块(时间类)

控制变频器等开关型执行器。

H₁: 高电平时间控制端;

P1: 脉宽周期

U: 占空比S

$$S = \frac{t_{ON}}{P_1} \times 100\% \propto H_1$$

$$H_1 = 0\%, S = 0\%$$

 $H_1 = 100\%, S = 100\%$

图6-28脉冲宽度调制模块

例:直流电机PWM调速

图6-29 PWM电机调速原理图

③ 运算模块组态 组态位置编号 F101-F130

功能模块之间连接(内部信号与功能模块软端子连接)—组态

运算单元编号 端子号 位置 接内部数据代码 编号 $LSP1 \rightarrow H1$ P0001 *F*101 H2 P0301F101 20 $AIR1 \rightarrow H2$ U0003 $U3 \rightarrow P1$ P1*F*101 $P0502 OFF \rightarrow P2$ F101P2U0001 $U1 \rightarrow H1$ F102 19 H1

组态:将运算模块与内部信号进行组合连接,生成用户应用程序。

(4) 可变参数设置 F005

设置在运算处理中使用的系数、常数等。

百分比型

功能代码 变量代码(内部信号)

 $F005 - 01 - 01 \square 20$

 $PPAR1 \leftrightarrow P0101(0.0)$

 $PPAR2 \leftrightarrow P0102(100.0)$

时间型

功能代码 变量代码(内部信号)

 $F005 - 02 - 01\square 05$

 $TPAR1 \leftrightarrow P0201(2.0)$ T_I

 $TPAR2 \leftrightarrow P0202(0.0)$ T_D

- 5、输出处理功能
- (1) 决定输出通道。

(2) 确定输出端子与内部信号之间的连接关系。填写输出处理数据表。

F006 01 01 U0006 U0006经AO1端子输出

输出处理数据表F006-		-	
	_		

箱	计类型	代码 /	输出端	代码	连接内部 信号名称	
					信号名	代码
	模拟	01	A01	01	U6	U0006
			AO2	02		
			AO3	03		
	数字	02	DO1	01	PVL1	P0702
			DO2	02	PVH1	P0703
			DO3	03		

6、自诊断功能

A组自诊断, 轻度故障 (可恢复)

B组自诊断, 重度故障 (硬故障)

切换到联锁手动方式IM,复位,手动再自动。由自

由自动切换到准备状态S,手动操作输出。修复后自动。

7、KMM调节器编程举例1

(1) 生产工艺要求

天燃气储罐压力控制系统原理图如图6-30。要求控制天燃气储罐的压力一定。 控制器采用KMM调节器,检测管道进气流量和温度,储罐压力。进气流量送 入上位机进行理论统计,计费。

图6-30压力控制系统原理图

- (2) 控制要求
- ① 压力控制

参数检测范围: 0.0~600.0kPa

设计压力: 445.0kPa

保护: 压力报警上下限350.0~450.0kPa

$$\frac{450}{600} \times 100\% = 75.0\% \quad \frac{350}{600} \times 100\% = 58.3\%$$

控制方式

$$x_i - x_S > \varepsilon_{oxtless}$$
 M $x_i - x_S < \varepsilon_{oxtless}$ $A 或 M$

② 流量检测(累计流量)

参数检测:流量: 0.00~70.00t/h;温度: 0.0~100.0℃;压力: 0.0~600.0kPa

流量温度压力补偿:

孔板设计温度t_n: 32.2℃ 孔板设计压力p_n: 445.0kPa 温度补偿范围: 10.0~40.0 ℃; 压力补偿范围: 350.0 ~ 500.0kPa

- (3) 画组态图 按流程图和控制要求绘出组态图。
- ① 压力PID控制组态图

PID控制:第二路经过处理后测量值AI2与设定值比较,对偏差进行常规PID运算,结果经过高低限限幅。最后经过手动模块输出。手动、自动无扰动切换。

图6-31压力控制组态图

② 压力控制方式组态图

要求:
$$PV-SP > \varepsilon_{ii}$$
 M, $PV-SP < \varepsilon_{iij}$ A或M $\varepsilon_{iij} = 15.0$

图6-32压力控制方式组态图

③ 天然气储罐控制组态图

- (4) 填写组态表
- ① 调节器基本参数设置F001 控制类型,运算周期,通信方式等。

运算周期400mS,上位机监视但不参与控制,上位机异常切换到手动。

基本数据 F001 - 01 - 01□07

项目	设定代码设定范围	代码	数 据
PROM	(*1)	01	1001
运算周期	0, 1, 2, 3, 4, 5 (*2)	02	
控制类型	0, 1, 2, 3	03	
PV报警的PID号码	1, 2	04	
调节器编号	1-50	05	
上位机控制方式	0, 1, 2 (*3)	06	
上位机异常控制方式	0, 1 (*4)	07	

②输入工程量信息F002 温度、压力、流量检测温度、压力补偿 (工程量单位,测量范围,精度,温度、压力补偿,开方,滤波等)

参数检测范围: 温度测量范围0.0-100.0℃, 压力测量范围0.0-600.0kPa, 流量测量范围0.00-70.00t/h。 流量温度、压力补偿:设计温度t_n: 32.2℃,设计压力p_n: 445.0kPa。1%小信号切除。 滤波时间常数2min

F002 01 - 05 01 - 15

项目	设定代码设定范围	代码		模拟输入	数据
			01	02	03
输入使用	0, 1	01			
工程单位小数点位置	0, 1, 2, 3	02			
工程单位值下限	-9999-9999	03			
工程单位值上限	-9999-9999	04			
折线表号码	0, 1, 2, 3	05			
温度补偿用输入号码	0, 1, 2, 3, 4, 5	06			
温度单位	0, 1	07			
设定温度	-9999-9999	08			
压力补偿用输入号码	0, 1, 2, 3, 4, 5	09			
压力单位	0, 1	10			
设定压力	-9999-9999	11			
开方处理	0, 1	12			
开方处理小信号切除	0.0-100.0%	13			
数字滤波常数	0.0-999.9S	14			
传感器异常诊断	0,1	15			

③ 流量检测温度压力补偿F004

温度补偿范围10.0~40.0℃

$$\Delta P_n' = \frac{t_n + C}{t + C} \times \Delta P$$

超过温度范围

$$t = t_n \quad \Delta P_n = \Delta P$$

图6-34 温度补偿模块输入输出

压力补偿范围350.0~500.0kPa

$$\Delta P_n = \frac{P+C}{P_n+C} \times \Delta P_n$$

超过压力范围

$$P = P_n \quad \Delta P_n = \Delta P_n$$

图6-35 压力补偿模块输入输出

图4-36 温压补偿组态图

填写折线数据表 F004 01 (02) 01-10 11-20

	折点	代码	折线数据表					
			01	02	03			
	X1	01						
V	X2	02						
X 轴	Х3	03						
	X4	04						
	X5	05						
	Y1	11						
	Y2	12						
Y	Y3	13						
轴	Y4	14						
	Y5	15						

```
TBL1 (10.0, 32.2) (10.1, 10.1) (39.9, 39.9) (40.0, 32.2) (799.9, 32.2) TBL2 (58.3, 74.2) (58.4, 58.4) (83.2, 83.2) (83.3, 74.2) (799.9, 74.2)
```

(4) F003设置PID参数(PID参数、积分上下限幅、PV上下限报警等)

比例度100%,积分时间2min,微分时间0。压力报警上下限350.0~450.0kPa。

 $\frac{450}{600} \times 100\% = 75.0\%$

 $\frac{350}{600} \times 100\% = 58.3\%$

F003

01 - 02

01 - 16

F 000		$\frac{01 - 10}{1000}$		Not.	
项 目	设定代码设定范围	代码	I	PID数据	
			01	02	
PID运算式	0, 1**	01			
PV输入编号	1-5	02			
PV跟踪	0, 1***	03			
报警滞后	0.0-100.0%	04			
比例度*	0.0-799.9%	05			
积分时间*	0.00-99.99(min)	06			
微分时间*	0.00-99.99(min)	07			
积分下限限幅*	-200.0-200.0%	08			
积分上限限幅*	-200.0-200.0%	09			
比率*	-699.9-799.9%	10			
偏置*	-699.9-799.9%	11			
偏差不灵敏区*	0.0-100.0%	12			
输出变化率限制*	0.0-100.0%	13			
偏差报警*	0.0-100.0%	14			
PV下限报警*	-6.9-106.9%	15			
PV上限报警*	-6.9-106.9%	16			

F005 设置可变参数 (PV上下限,偏差阈值)

(5)设置可变变量。F005 PV高低限设置,偏差监视值设置。

百分比型

功能代码 变量代码

 $F005 - 01 - 01 \sim 20$

 $PPAR1 \leftrightarrow P0101(0.0)$

 $PPAR2 \leftrightarrow P0102(100.0)$

 $PPAR3 \leftrightarrow P0103(15.0)$

 $PPAR4 \leftrightarrow P0104(0.0)$

F006: 模拟信号、开关信号输出组态

(6) 压力、流量输出F006

输出处理数据表 F006- □□-□□									
输出	类型	代码	输出端	′ 代码	连接内部	信号名称			
					信号名	代码			
模	拟	01	AO1	01	U4	U0004			
			AO2	02	AI3	P0403			
			AO3	03					
数	字	02	DO1	01					
			DO2	02					
\$ 23.61			DO3	03					

F101~130: 运算模块组态

(7) 功能模块组态F101~130

对各个功能模块连接。内部数据与功能模块软端子连接。

功能模块列表规定功能模块编号、名称及端子连接内部数据

运算 模块	运算式		H1输入信号		H2输入信号 P1输入		P1输入信	介入信号 P2年		22输入信号	
编号	名称	编号	信号名称	代码	信号名称	代码	信号名 称	代码	信号名称	代码	
1	PID1	20	SP1	P0001	AI2	P0402	U4	U0004	OFF	P0502	
2	LLM	11	U1	U0001	PPAR1	P0101					
3	HLM	13	U2	U0002	PPAR2	P0102					
4	MAN	19	U3	U0003							
5	DMS	16	SP1	P0001	AI2	P0402	PPAR3	P0103	PPAR4	P0104	
6	NOT	30	U5	U0005							
7	OR	28	MSW	P1001	U5	U0005					
8	AND	27	ASW	P1002	U6	U0006					
9	MOD	45	OFF	P0502	U7	U0007	U8	U0008	OFF	P0502	

压力PID控制组态

F101	20	H_{1}	P0001
F101	20	H_2	P0402
F101	20	P_1	U0004
F101	20	P_2	P0502
F102	11	LI	U0001
F 102	11	H_{1}	0 0001
F102	11	H_2	P0101
F103	13	$H_{\scriptscriptstyle 1}$	U0002
F103	13	H_2	P0102
F104	19	H_1	U0003

压力越限报警组态

F105	16	H_1	P0001
F105	16	H_2	P0402
F105	16	P_1	P0103
F105	16	P_2	P0104
F106	30	$H_{\scriptscriptstyle 1}$	U0005
F107	28	H_1	P1001
F107	28	H_2	U0005
F108	27	H_{1}	P1002
F108	27	H_2	U0006
F109	45	H_{1}	P0502
F109	45	H_2	U0007
F109	45	P_{1}	U0008
<i>F</i> 109	45	P_2	P0502

功能模块列表 规定功能模块编号、名称及端子连接内部数据

运算 模块	运算式		H1输入	H1输入信号 H2输入		言号 P1输入信号		P2输入信号		
编号	名称	编号	信号名 称	代码	信号名 称	代码	信号名 称	代码	信号名 称	代码
1	PID1	20	SP1	P0001	AI2	P0402	U4	U0004	OFF	P0502
2	LLM	11	U1	U0001	PPAR1	P0101				
3	HLM	13	U2	U0002	PPAR2	P0102				
4	MAN	19	U3	U0003						
5	DMS	16	SP1	P0001	AI2	P0402	PPAR3	P0103	PPAR4	P0104
6	NOT	30	U5	U0005						
7	OR	28	MSW	P1001	U5	U0005				
8	AND	27	ASW	P1002	U6	U0006				
9	MOD	45	OFF	P0502	U7	U0007	U8	U0008	OFF	P0502

压力PID控制组态

$$F101$$
 20 H_1 $P0001$
 $F101$ 20 H_2 $P0402$
 $F101$ 20 P_1 $U0004$
 $F101$ 20 P_2 $P0502$
 $F102$ 11 H_1 $U0001$
 $F102$ 11 H_2 $P0101$
 $F103$ 13 H_1 $U0002$
 $F103$ 13 H_2 $P0102$
 $F104$ 19 H_1 $U0003$

功能模块列表规定功能模块编号、名称及端子连接内部数据

运算 模块	运算式		H1输入	信号	H2输入信号		P1输入信号		P2输入信号	
编号	名称	编号	信号名 称	代码	信号名 称	代码	信号名 称	代码	信号名 称	代码
1	PID1	20	SP1	P0001	AI2	P0402	U4	U0004	OFF	P0502
2	LLM	11	U1	U0001	PPAR1	P0101				
3	HLM	13	U2	U0002	PPAR2	P0102				
4	MAN	19	U3	U0003						
5	DMS	16	SP1	P0001	AI2	P0402	PPAR3	P0103	PPAR4	P0104
6	NOT	30	U5	U0005						
7	OR	28	MSW	P1001	U5	U0005				
8	AND	27	ASW	P1002	U6	U0006				
9	MOD	45	OFF	P0502	U7	U0007	U8	U0008	OFF	P0502

F105	16	H_1	P0001
F105	16	H_2	P0402
F105	16	P_1	P0103
F105	16	P_2	P0104
F106	30	H_1	U0005
F107	28	H_1	P1001
F107	28	H_2	U0005
F108	27	H_1	P1002
F108	27	H_2	U0006
F109	45	H_1	P0502
F109	45	H_2	U0007
F109	45	P_1	U0008
F109	45	P_2	P0502

8、KMM调节器编程举例2

(1) 锅炉汽包液位三冲量控制系统工作原理

图6-37锅炉汽包液位三冲量控制系统原理图

(2) 控制规律

液位-冷水流量串级控制+蒸汽流量前馈控制

图6-38锅炉汽包液位三冲量控制系统方框图

(3) 控制系统组态

图6-39锅炉汽包液位三冲量控制系统组态图

①冷水流量单回路控制

PID2模块给定端切换到A, 单回路PID控制。 U₅与PID2模块的P₁连线实现 手动与自动无扰动切换。

② 液位-冷水流量串级控制

控制方式2。 主调节器PID1模块定值控制, 副调节器PID2模块随动控制。 PID2模块给定端切到C。 U₅与PID2模块的P₁连线实现手 动与自动无扰动切换。

③ 液位-冷水流量-蒸汽流量串级-前馈控制

控制方式2。 主调节器PID1模块定值控制, 副调节器PID2模块随动控制。 PID2模块给定端切到C。 U₅与PID2模块的P₁连线实现手 动与自动无扰动切换。 增加ADD与SUB模块,实现加 前馈控制后,PID2模块串级与 自动之间无扰动切换。

A→C, RSP2跟踪LSP2。

 $RSP2 = U_2 = K_1U_1 + K_2AI2$ = $K_1(K_3LSP2 - KAI2) + K_2AI2$ = LSP2

串级工作后,前馈信号加入。

C→A, LSP2跟踪RSP2。