ЗАДАНИЕ ПО КОМПЛЕКСУ ПРЕДМЕТОВ ФИЗИКА, ИНФОРМАТИКА, МАТЕМАТИКА ВАРИАНТ 41111 для 11 класса

Как известно, новый сорт арбуза "Полосатые пузики" очень удобен при транспортировке: при падении эти арбузы не разбиваются, а отскакивают целыми и невредимыми. При этом степень упругости удара зависит, помимо прочего, от сахаристости плода, что упрощает сортировку арбузов по степени зрелости.

Рассмотрим арбуз фиксированной сахаристости. Пусть он падает на горизонтальный пол с высоты $H_0=1.5$ м без начальной скорости. Если к моменту удара арбуз имеет скорость, по модулю равную v, то после удара о пол модуль скорости станет равен $k\cdot v$, где k – так называемый коэффициент потерь. К несчастью, коэффициент потерь зависит от скорости, что существенно усложняет расчет прыжков "Полосатых пузиков". Эту зависимость можно описать экспериментально подобранной формулой $k(v)=\frac{1}{1+0.1\sqrt{v}}$. Указанные изменения происходят при каждом ударе о пол, а когда квадрат скорости удара становится меньше, чем величина $W=0.1~{\rm m}^2/{\rm c}^2$, то очередной прыжок не происходит, и движение останавливается.

- 1. Определите высоту первого и второго подскоков "Полосатого пузика".
- 2. Определите время, в течение которого будут происходить прыжки, а также общее количество прыжков "Полосатого пузика".
- 3. Определите (с точностью до 1 м), во сколько раз нужно увеличить начальную высоту H_0 арбуза, чтобы полное время его движения увеличилось в 2 раза.

Дополнения

- А. Значение ускорения свободного падения при расчетах следует взять равным $g=9.807~{\rm m/c^2}.$
- Б. В приведенном выше описании скачущий "Полосатый пузик" рассматривается как материальная точка. Справедливости ради, следует заметить, что это достаточно грубое приближение, поскольку размеры арбуза (которые здесь не учитываются) сравнимы с первоначальной высотой его падения. Тем не менее, полученные числовые результаты можно рассматривать как грубое, но адекватное приближение к соответствующим реальным показателям.

РЕШЕНИЕ ВАРИАНТА 41111 для 11 класса

Обозначим

через H_k высоту подъема на k-ом подскоке (после k-го удара о пол),

через t_k время подъема при k-ом подскоке,

через v_k скорость тела непосредственно после k-го удара о пол.

Везде ниже будем под словом "скорость" подразумевать модуль скорости, с которой движется тело.

1. Все начинается с того, что "пузик" падает с высоты H_0 без начальной скорости. Обозначим через v_0 скорость, которую он приобретет к моменту удара о пол. Из закона сохранения механической энергии

$$mg H_0 = \frac{m v_0^2}{2}$$

находим

$$v_0 = \sqrt{2gH_0},$$

Поскольку арбуз движется равноускоренно (с ускорением g), то время первого падения будет равно

 $t_0 = \frac{v_0}{q}.$

2. Во время удара о пол, согласно условию, скорость уменьшается в k_1 раз, где коэффициент $k_1=k(v_0)=\frac{1}{1+0.1\sqrt{v_0}}$. В результате арбуз начинает лететь вверх с начальной скоростью

$$v_1 = k(v_0) \cdot v_0$$

Из закона сохранения механической энергии

$$mgH_1 = \frac{mv_1^2}{2}$$

получаем высоту подъема

$$H_1 = \frac{v_1^2}{2q}.$$

Так как в верхней точке скорость равна нулю, а движение вверх – равнозамедленное, то время подъема

$$t_1 = \frac{v_1}{g}.$$

Столько же занимает спуск, поэтому при подсчете общего времени величину t_1 необходимо будет удвоить.

Поскольку во время полета потерь энергии не происходит, то скорость приземления будет равна скорости взлета v_1 .

3. Аналогичным образом можно описать второй подскок "пузика". Затем третий и так далее. Напишем общие формулы для подскока с номером n.

Непосредственно перед ударом о пол арбуз имел скорость v_{n-1} . Во время удара о пол, согласно условию, скорость уменьшается в k_n раз, где коэффициент

$$k_n = k(v_{n-1}) = \frac{1}{1 + 0.1\sqrt{v_{n-1}}}.$$

В результате арбуз начинает лететь вверх с начальной скоростью

$$v_n = k(v_{n-1}) \cdot v_{n-1}.$$

Он достигает высоты

$$H_n = \frac{v_n^2}{2g}$$

и затрачивает на это время

$$t_n = \frac{v_n}{q},$$

а затем еще ровно столько же времени на спуск.

- 4. Дополнительно при переходе к следующему скачку необходимо учитывать возможность его совершения. Если значение v_n^2 окажется меньше, чем заданная в условии величина W, то движение прекращается. Это условие будет ниже условием прекращения расчетов.
 - 5. Теперь можно сформулировать алгоритм расчета прыжков арбуза

Алгоритм "Полосатые пузики"

Bход: H_0

Начало алгоритма

Положить
$$v_0 := \sqrt{2gH_0};$$
 $t_0 := \frac{v_0}{g};$ $T := t_0;$ $n := 1;$ $W := 0.1;$ ПОКА $v_{n-1}^2 \ge W$

Вычислить новую скорость $v_n = k(v_{n-1}) \cdot v_{n-1};$

Вычислить высоту $H_n = \frac{v_n^2}{2g};$

Вычислить время $t_n = \frac{v_n}{q};$

Увеличить общее время $T = T + 2 t_n;$

Увеличить счетчик n := n + 1;

КОНЕЦ ПОКА

Вывести первую и вторую высоты H_1 и H_2 ;

Вывести время T;

Вывести количество подскоков n-1;

Конец алгоритма

5. Для ответа на третий вопрос нужно сначала с помощью реализованного на компьютере алгоритма получить ответ на второй вопрос. Затем вычислить удвоенное время $T_2 = T \cdot 2$ (где T – время, выданное алгоритмом).

Далее следует запускать тот же алгоритм, подавая в него на вход различные начальные высоты \widetilde{H}_0 . Например, можно начать с последовательности 5 м, 10 м, 20 м, 40 м и т.д. Ясно, что с большей начальной высотой движение будет продолжаться дольше. Поэтому сначала будут получены времена, меньшие T_2 , а затем – превышающие его.

Как только превышение произойдет, будут найдены границы диапазона для искомой начальной высоты. В этом диапазоне ее следует подобрать с точностью 1 м. Это можно сделать различными методами, например, последовательным сокращением диапазона вдвое или простым перебором с шагом 1 м.

6. Если провести расчеты по приведенным алгоритмам, то получим следующий округленный

Ответ:

- 1. $H_1 = 0.99 \text{ M}, H_2 = 0,67 \text{ M}.$
- 2. Все движение займет T = 7.47 с и будет состоять из 26 подскоков.
- 3. Чтобы увеличить время движения вдвое, необходимо увеличить начальную высоту примерно в 9 раз (эта высота больше 13 м, но меньше 14 м).