

수능개념 수학

민고보는! 세식쌤의 기하나 베타

수능개념 수학

민고 보는! 세식쨈의 기하와 벡터

▶ 강사 **김세식** 선생님

약력

- 풍생고등학교 교사
- 전국수학교사모임 정회원
- 1급 정교사 연수 강사
- EBS 수능 강의 연구센터 전속교사
- YTN Science 수다학
- EBS 강사

저서

- 세식쌤과 함께 하는 수학여행: 기하와 벡터 (2014.11)
- 세식 샘과 함께하는 수학여행: 수학 I (B형) (2013,11)
- 세식 샘과 함께하는 수학여행: 적분과 통계 (2013.11)
- 연계교재 최종점검: 수학 B형 (2013.09)
- 수능개념: 포기를 모르는 세식샘의 수학 II (2012.12)
- 핵심 쏙쏙 실력 쑥쑥 심화미적 핵심 topic 30(2010,08)
- 움직이는 수학: 기하와 벡터(2010.08)
- 원뿔에서 태어난 이차곡선(2001.11)
- GSP 사용설명서(ver 4.0)(번역) (2002.12)
- GSP 101과제, GSP 첫걸음, GSP 수업활동25 (2002.12)
- 한글판 GSP사용설명서 ver 3.0 번역 (1999.04)
- 예제로 배우는 한글 GSP(1999.06)

Contents

단원명	강 강의명	페이지
	제 01 강 - 포물선	6
***************************************	제 01 강 - 포물선 제 02 강 - 타원	13
	제 02 당 - 다원 제 03 강 - 쌍곡선	19
I. 이차곡선	제 00 8 8 7년 제 04 강 - 평면곡선의 접선(1)	25
1. 기시 기간	제 05 강 - 평면곡선의 접선(2)	31
*****	제 06 강 - 이차곡선 특강	34
	제 07 강 - 이차곡선 연습문제	39
	제 08 강 - 벡터의 뜻과 연산	46
	제 09 강 - 벡터의 평행과 위치벡터	53
	제 10 강 - 위치벡터와 벡터의 성분	59
 	제 11 강 - 평면벡터의 내적(1)	66
II. 평면벡터	제 12 강 - 평면벡터의 내적(2)	72
	제 13 강 - 직선과 원의 방정식	77
******	제 14 강 - 평면운동	85
	제 15 강 - 평면벡터 연습문제	92
	제 16 강 - 직선과 평면	98
	제 17 강 - 삼수선의 정리와 이면각	103
*****	제 18 강 - 정다면체 특강	109
*****	제 19 강 - 정사영	115
<u></u>	제 20 강 - 공간좌표	120
	제 21 강 - 구의 방정식	127
Ⅲ. 공간도형과 🗕	제 22 강 - 공간도형과 공간좌표 연습문제	133
v – • ·	제 23 강 - 공간벡터의 성분과 연산	137
공간벡터	제 24 강 - 직선의 방정식(1)	145
	제 25 강 - 직선의 방정식(2)	150
*****	제 26 강 — 평면의 방정식(1)	155
	제 27 강 - 평면의 방정식(2)	160
	제 28 강 - 평면의 방정식(3)	165
<u></u>	제 29 강 - 직선과 평면의 방정식 특강	171
	제 30 강 - 공간벡터 연습문제	176
	정답	181

나의 학습계획

	_		
나의 꿈, 다짐, 목	亚		

()일 완강계획서

				A	·:

()일 완강계획서

				AL	
			18		

평면곡선

제 01 강 -	포물선
제 02 강 -	타원
제 03 강 -	쌍곡선
제 04 강 -	평면곡선의 접선(1)
제 05 강 -	평면곡선의 접선(2)
제 06 강 -	이차곡선 특강
제 07 강 -	이차곡선 연습문제

01강

포물선

포물선의 정의

평면 위의 한 정점 F와 F를 지나지 않는 한 정직선 l이 주어질 때, 점 F와 직선 l에 이르는 거리가 같은 점들의 집합

예제 01 점 $\mathrm{F}(1,0)$ 과 직선 x=-1로부터 같은 거리에 있는 점 P(x, y)의 자취의 방정식을 구하여라.

$oldsymbol{2}$ 포물선의 방정식 (단, $p \neq 0$)

- (1) 초점 F(p,0), 준선 x=-p인 포물선의 방정식 $\implies y^2=4px$
- (2) 초점 F(0,p), 준선 y=-p인 포물선의 방정식 \Rightarrow $x^2=4py$

참고 그래프 개형

(1)
$$y^2 = 4px(p \neq 0)$$
에서

$y^2 =$	4px
p > 0	p < 0
	\bigwedge

$(2) x^2 = 4py(p \neq 0)$ 에서

$x^2 =$	4py
p > 0	p < 0

예제 02

- (1) 초점이 (2,0)이고, 준선이 x=-2인 포물선의 방정식을 구하여라.
- (2) 초점이 (-3,0)이고, 준선이 x=3인 포물선의 방정식을 구하여라.
- (3) $y^2 = x$ 일 때, 초점의 좌표, 준선의 방정식을 구하여라.
- (4) $y^2 = -2x$ 일 때, 초점의 좌표, 준선의 방정식을 구하여라.

풀이

예제 03

- (1) 초점이 (0,1)이고, 준선이 y=-1인 포물선의 방정식을 구하여라.
- (2) 초점이 (0,-2)이고, 준선이 y=2인 포물선의 방정식을 구하여라.
- (3) $x^2 = 8y$ 일 때, 초점의 좌표, 준선의 방정식을 구하여라.
- (4) $x^2 = -4y$ 일 때, 초점의 좌표, 준선의 방정식을 구하여라.

3 포물선의 평행이동

- (1) 포물선 $y^2 = 4px$ 를 x축의 방향으로 m만큼, y축의 방향으로 n만큼 평행이동한 포물선의 방정식 $\Rightarrow (y-n)^2 = 4p(x-m)$
- (2) 포물선 $x^2 = 4py$ 를 x축의 방향으로 m만큼, y축의 방향으로 n만큼 평행이동한 포물선의 방정식 $\Rightarrow (x-m)^2 = 4p(y-n)$

예제 04 포물선 $y^2=4x$ 를 x축의 방향으로 2만큼, y축의 방향으로 1만큼 평행이동 된 포물선에 대해 다음을 구하여라.

- (1) 포물선의 방정식 (2) 꼭짓점의 좌표
- (3) 초점의 좌표 (4) 준선의 방정식
- (5) 축의 방정식

풀이

참고

	$(y-n)^2 = 4p(x-m)$	$(x-m)^2 = 4p(y-n)$
평행이동	포물선 $y^2 = 4px$ 를 x 축의 방향으로 m 만큼, y 축의 방향으로 n 만큼 평행이동한 포물선	포물선 $x^2 = 4py$ 를 x 축의 방향으로 m 만큼, y 축의 방향으로 n 만큼 평행이동한 포물선
초점	(p+m,n)	(m, p+n)
준선	x = -p + m	y = -p + n
꼭짓점	(m, n)	(m, n)
축	y=n	x=m
그래프	$ \begin{array}{c c} y \\ \hline & \\ & \\$	$ \begin{array}{c c} y \\ F(m, p+n) \\ y = -p+n \\ \hline 0 & m \\ x = m \end{array} $

예제 05 다음 포물선에 대하여 물음에 답하여라.

(1)
$$(y-2)^2 = 4(x-1)$$

- ① 꼭짓점의 좌표 :
- ② 초점의 좌표 :
- ③ 준선의 방정식 :
- ④ 축의 방정식 :

(2)
$$(x+2)^2 = 8(y-1)$$

- ① 꼭짓점의 좌표 :
- ② 초점의 좌표 :
- ③ 준선의 방정식 :
- ④ 축의 방정식 :

$$(3) \ y^2 - 4y + 4x = 0$$

- ① 꼭짓점의 좌표 :
- ② 초점의 좌표 :
- ③ 준선의 방정식 :
- ④ 축의 방정식 :

(4)
$$x^2 - 2x - 4y + 9 = 0$$

- ① 꼭짓점의 좌표 :
- ② 초점의 좌표 :
- ③ 준선의 방정식 :
- ④ 축의 방정식 :

공부는 정리다. 오늘의 핵심을 써보자.

핵심정리	

02강

타윈

1 타원의 정의

평면 위의 서로 다른 두 정점 F, F' 으로부터 거리의 합이 일정한 점들의 집합

장축 : $\overline{AA'}$ 단축 : $\overline{{\sf BB}'}$

예제 01 두 점 F(3,0), F'(-3,0)에서 거리의 합이 10인 점 P(x, y)의 자취의 방정식을 구하여라.

2 타원<u>의 방정식(1)</u>

- 두 초점이 x축 위에 있는 경우

두 정점 (c,0),(-c,0)에서의 거리의 합이 2a인 타원의 방정식

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 (단, $a > b > 0$, $b^2 = a^2 - c^2$)

①장축의 길이 : 2a ②단축의 길이 : 2b

참고

위의 그림에서 점 P가 (0,b)에 있어도 $\overline{PF} + \overline{PF'} = 2a$ 이다.

y축 대칭이므로, $\overline{PF} = \overline{PF'} = a$ 가 된다.

$$\therefore a^2 = b^2 + c^2$$
이 성립한다.

예제 02 두 점 F(3,0), F'(-3,0)에서 거리의 합이 10인 타원의 방정식을 구하여라.

풀이

예제 03 $x^2 + 4y^2 = 4$ 의 장축의 길이, 단축의 길이와 초점의 좌표를 구하여라.

풀이

3 타원의 방정식(2)

- 두 초점이 y축 위에 있는 경우

두 정점 (0,c),(0,-c)에서의 거리의 합이 2b인 타원의 방정식

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 (단, $b > a > 0$, $a^2 = b^2 - c^2$)

①장축의 길이 : 2b ②단축의 길이 : 2a

예제 04 다음 타원의 초점의 좌표, 단축의 길이, 장축의 길이를 구하여라.

(1)
$$\frac{x^2}{16} + \frac{y^2}{25} = 1$$
 (2) $4x^2 + y^2 = 1$

(2)
$$4x^2 + y^2 = 1$$

풀이

4 타원의 평행이동

타원 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 을 x축의 방향으로 m만큼, y축의 방향으로 n만큼

평행이동한 타원의 방정식은 $\frac{(x-m)^2}{a^2} + \frac{(y-n)^2}{b^2} = 1$ 이다.

참고

평행이동	타원 $\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=$ 1을 x 축의 방향으로 m 만큼, y 축의 방향 $\dfrac{(x-m)^2}{a^2}$ -	당으로 n 만큼 평행이동한 타원의 방정식은 $+rac{(y-n)^2}{b^2}=1$
	$a\!>\!b\!>\!0$ 이고 $c^2\!\!=\!a^2\!-\!b^2$ 일 때	$b>a>0$ 이고 $c^2=b^2-a^2$ 일 때
초점	F(c+m, n), F'(-c+m, n)	F(m, c+n), F'(m, -c+n)
꼭짓점	(a+m, n), (-a+m, n),	(m, b+n), (m, -b+n)
장축의 길이	2a	2b
단축의 길이	2b	2a
그래프	$ \frac{(x-m)^{2}}{a^{2}} + \frac{(y-n)^{2}}{b^{2}} = 1 $ $ \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1 $	$ \frac{y}{a^{2}} + \frac{(y-n)^{2}}{b^{2}} = 1 $ $ \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1 $

예제 05
$$\frac{(x-3)^2}{25} + \frac{(y-2)^2}{16} = 1$$
 의 초점의 좌표를 구하여라.

풀이

예제 06
$$4x^2 + 9y^2 - 8x - 36y + 24 = 0$$
이 나타내는 도형은 무엇인가?

공부는 정리다. 오늘의 핵심을 써보자.

핵심정리			
	l		

상(

쌍곡선

8 쌍곡선의 정의

평면 위의 서로 다른 두 정점 F, F'으로부터 거리의 차가 일정한 점들의 집합

주축 : $\overline{AA'}$

예제 01 좌표평면 위의 두 점 A(-5, 0), B(5, 0)에서의 거리의 차가 4인 점 P(x, y)의 자취의 방정식은?

8 쌍곡선의 방정식(1)

- 두 초점이 x축 위에 있는 경우
- 두 정점 $\mathbf{F}(c,\,0),\mathbf{F}'(-\,c,\,0)$ 에서의 거리의 차가 2a인 쌍곡선의 방정식

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 (단, $c > a > 0$, $b^2 = c^2 - a^2$)

- ① 초점 : $(\pm \sqrt{a^2 + b^2}, 0)$ ② 주축의 길이 : 2a
- ③ 점근선의 방정식 : $y=\pm \frac{b}{a}x$ ④ 꼭짓점 : (a,0),(-a,0)
- **예제 02** 두 점 (3, 0), (-3, 0)에서의 거리의 차가 4인 점의 자취의 방정식을 구하여라.

풀이

예제 03 초점의 좌표가 $(\pm \sqrt{5}, 0)$ 이고, 점근선이 $y = \pm \frac{1}{2}x$ 인 쌍곡선의 주축의 길이를 구하여라.

3 쌍곡선의 방정식(2)

- 두 초점이 y축 위에 있는 경우

두 정점 F(0, c), F'(0, -c)에서의 거리의 차가 2b인 쌍곡선의 방정식

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$$
 (단, $c > b > 0$, $a^2 = c^2 - b^2$)

① 초점 : $(0, \pm \sqrt{a^2+b^2})$ ② 주축의 길이 : 2b

③ 점근선 : $y = \pm \frac{b}{a}x$ ④ 꼭짓점 : (0, b), (0, -b)

예제 04 두 점 (0, 3), (0, -3)에서의 거리의 차가 4인 점의 자취의 방정식을 구하여라.

풀이

예제 05 초점의 좌표가 $(0, \pm \sqrt{5})$ 이고, 점근선이 $y=\pm \frac{1}{2}x$ 인 쌍곡선의 주축의 길이는?

참고 쌍곡선 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ 의 점근선

4 쌍곡선의 평행이동

쌍곡선
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
, $\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$ 을

x축의 방향으로 m만큼 y축의 방향으로 n만큼

평행이동한 쌍곡선의 방정식은 각각

$$\frac{(x-m)^2}{a^2} - \frac{(y-n)^2}{b^2} = 1, \quad \frac{(x-m)^2}{a^2} - \frac{(y-n)^2}{b^2} = -1$$

참고

	$\frac{(x-m)^2}{a^2} - \frac{(y-n)^2}{b^2} = 1$	$\frac{(x-m)^2}{a^2} - \frac{(y-n)^2}{b^2} = -1$
평행이동	쌍곡선 $\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=$ 1을 x 축의 방향으로 m 만큼, y 축의	쌍곡선 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$ 을 x 축의 방향으로 m 만큼, y 축
	방향으로 n만큼 평행이동한 쌍곡선	의 방향으로 n 만큼 평행이동한 쌍곡선
	$a>0$, $b>0이고 c^2=a^2+b^2일 때$	
초점	F(c+m, n), F'(-c+m, n)	F(m, c+n), F'(m, -c+n)
꼭짓점	(a+m, n), (-a+m, n)	(m, b+n), (m, -b+n)
주축의 길이	2a	2b
점근선의 방정식	$y = \pm \frac{b}{a}(x-m) + n$	
그래프	$ \frac{(x-m)^{2}}{a^{2}} - \frac{(y-n)^{2}}{b^{2}} = 1 $ $ \frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1 $	$\frac{(x-m)^2}{a^2} - \frac{(y-n)^2}{b^2} = -1$ $\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$

예제 06 다음 방정식으로 나타내어지는 쌍곡선의 초점, 꼭짓점의 좌표, 주축의 길이, 점근선의 방정식을 구하여라.

$$x^2 + 2x - y^2 + 2 = 0$$

공부는 정리다. 오늘의 핵심을 써보자. 핵심정리

04강

평면곡선의 접선(1)

음함수의 미분법

음함수 표현 f(x, y) = 0에서 y를 x의 함수로 생각하고 각 항을 x에 대하여 미분하여 $\frac{dy}{dx}$ 를 구한다.

설명

방정식 f(x, y) = 0에서 x, y가 정의되는 구간을 적당히 정하면 y를 x의 함수로 생각할 수 있다. 이와 같은 의미로, 방정식 f(x, y) = 0에서 $y \equiv x$ 의 함수로 생 각할 때, 이 방정식을 y의 x에 대한 **음함수** 표현이라고 한다.

예를 들어 $x^2+y^2=1$, $y^2=4x$, $\frac{x^2}{16}+\frac{y^2}{25}=1$, $\frac{x^2}{4}-\frac{y^2}{9}=1$ 과 같은 이차곡선의 방정식은 음함수 표현이다.

보기 방정식 $x^2+y^2=1$ 에서 y를 x의 함수로 생각할 때 $\dfrac{dy}{dx}$ 를 구해 보자.

 $x^2 + y^2 = 1$ 에서 각 항을 x에 대하여 미분하면 합성함수의 미분법에 의하여

$$\frac{d}{dx}(x^2) + \frac{d}{dx}(y^2) = \frac{d}{dx}(1)$$

$$2x + 2y\frac{dy}{dx} = 0$$

$$\frac{dy}{dx} = -\frac{x}{y}(y \neq 0)$$

 $\frac{d}{dx}(y^2)$ $= \left\{ \frac{d}{dy} (y^2) \right\} \frac{dy}{dx}$ 예제 01 다음에서 $\frac{dy}{dx}$ 를 구하여라.

- (1) $x^2 y^2 = 1$ (2) xy = 1

풀이

예제 02 다음 접선의 방정식을 구하여라.

- (1) $x^2 + y^2 = 1$ 위의 점 $(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$ 에서의 접선
- (2) $y^2 = 4x$ 위의 점 (1, 2)에서의 접선 (3) $\frac{x^2}{12} + \frac{y^2}{16} = 1$ 위의 점 (3, 2)에서의 접선
- (4) $x^2 4y^2 = 1$ 위의 점 $\left(2, \frac{\sqrt{3}}{2}\right)$ 에서의 접선

풀이

음함수의 미분법 을 이용하면 여러 가지 평면 곡선의 접선의 방정식을 구할 수 있다.

예제 03 다음 접선의 방정식을 구하여라.

- (1) 원 $x^2 + y^2 = r^2$ 위의 점 (x_1, y_1) 에서의 접선
- (2) 포물선 $y^2 = 4px$ 위의 점 (x_1, y_1) 에서의 접선
- (3) 타원 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 위의 점 (x_1, y_1) 에서의 접선
- (4) 쌍곡선 $\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1$ 위의 점 $(x_1,\ y_1)$ 에서의 접선

예제 04 점 (-2,1)에서 포물선 $y^2=4x$ 에 그은 접선의 방정식을 구하여라.

풀이

예제 05 점 (-2, 0)에서 타원 $2x^2 + 3y^2 = 6$ 에 그은 접선의 방정식을 구하여라.

예제 06 점 (1, 0)을 지나고 쌍곡선 $\frac{x^2}{4} - y^2 = 1$ 에 접하는 직선의 방정식을 구하여라.

공부는 정리다. 오늘의 핵심을 써보자. 핵심정리

05강

평면곡선의 접선(2)

매개변수로 나타낸 함수의 미분법

매개변수로 나타낸 함수 $y=f(t),\ y=g(t)$ 가 t에 대하여 미분가능하 고 $f'(t) \neq 0$ 이면

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{g'(t)}{f'(t)}$$

좌표평면 위를 움직이는 어떤 점 P(x, y)의 좌표가 다음과 같다고 한다.

$$x = t - 1$$
, $y = t^2$

위의 식에서 t를 소거하면 $y = (x+1)^2$ 을 얻는다.

위와 같이 두 변수 x, y 사이의 관계를 변수 t를 매개로 하여

$$x = f(t), y = g(t)$$
 1

의 꼴로 나타낼 때, 변수 t를 **매개변수**라고 하며,

①을 매개변수로 나타낸 함수라고 한다.

보기 매개변수로 나타낸 함수 x=3t-4, $y=t^2-3t$ 에서 $\frac{dy}{dx}$ 를 구하여라.

풀이
$$\frac{dx}{dt}$$
 = 3, $\frac{dy}{dt}$ = $2t-3$ 이고 $\frac{dx}{dt}$ $\neq 0$ 이므로

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{2t - 3}{3}$$

예제 01 다음 매개변수로 나타낸 함수에서 $\dfrac{dy}{dx}$ 를 구하여라.

(1)
$$x = t - \frac{1}{t}$$
, $y = t + \frac{1}{t}$ (2) $\begin{cases} x = \theta - \sin \theta \\ y = 1 - \cos \theta \end{cases}$

(2)
$$\begin{cases} x = \theta - \sin \theta \\ y = 1 - \cos \theta \end{cases}$$

풀이

보기 곡선 $x=1+t^2,\ y=2-t-t^2$ 위의 점 (2, 0)에서의 접선의 기울기를 구하여라.

그런데 $2=1+t^2$ 이고, $0=2-t-t^2$ 에서 t=1t=1에서의 접선의 기울기는 $-\frac{3}{2}$ 이다.

예제 02 평면 곡선 $x=\sin t$, $y=\cos t$ $(0\leq t\leq 2\pi)$ 위의 점 $\left(\frac{\sqrt{3}}{2},\ \frac{1}{2}\right)$ 에서의 접선의 방정식을 구하여라.

구할 수 있다.

공부는 정리다. 오늘의 핵심을 써보자.

핵심정리

68

이차곡선 특강

지금까지 배운 원, 포물선, 타원, 쌍곡선의 방정식은 모두 x, y에 대한 이차방정 식이다. 일반적으로 계수가 실수인 두 일차식의 곱으로 인수분해 되지 않는 x, y에 대한 이차방정식

$$Ax^{2} + By^{2} + Cxy + Dx + Ey + F = 0$$

이 나타내는 평면 곡선을 이차곡선이라고 한다.

$$(1) \ x^2 + y^2 - 4 = 0$$

(2)
$$2y^2 + 2x - 4y + 1 = 0$$

(3)
$$x^2 + 3y^2 - 9 = 0$$

(4)
$$x^2 - 2y^2 + 4x = 0$$

참고

(1)
$$x^2 - xy - 6y^2 = 0 \cong (x + 2y)(x - 3y) = 0$$
 old.

참고 이차곡선 다시 보기

#포물선

#타원

#쌍곡선

참고 원뿔곡선

예제 01 포물선 $y=\frac{3}{2}x^2$ 위의 세 점 A, B, C를 꼭짓점으로 하는 \triangle ABC 의 무게중심 G의 좌표가 $\left(-1,\,\frac{5}{2}\right)$ 이다. 이 포물선의 초점을 F라고 할 때, $\overline{AF}+\overline{BF}+\overline{CF}$ 의 값을 구하여라.

예제 02 그림과 같이 y축 위의 점 $\mathrm{A}\left(0,a
ight)$ 와 두 점 F,F' 을 초점으로 하는 타원 $\frac{x^2}{25} + \frac{y^2}{9} = 1$ 위를 움직이는 점 P가 있다.

 $\overline{\mathrm{AP}}-\overline{\mathrm{FP}}$ 의 최솟값이 1일 때, a^2 의 값을 구하시오.

풀이

예제 03 좌표평면 위에서 점 $A(-6,\ 0)$ 을 지나는 직선이 쌍곡선 $\frac{x^2}{25} - \frac{y^2}{11} = 1$ 과 두 점 P,Q에서 만난다. $\overline{PQ} = 4$ 일 때, 두 점 P,Q와 점 B(6, 0)을 꼭짓점으로 하는 삼각형 BQP의 둘레의 길이는?

공부는 정리다. 오늘의 핵심을 써보자.

핵심정리

07강

이차곡선 연습문제

 $\mathbf{01}$ 포물선 $y^2=nx$ 의 초점과 포물선 위의 점 $(n,\ n)$ 에서의 접선 사이의 거리를 d 라 하자. $d^2 \ge 40$ 을 만족시키는 자연수 n 의 최솟값을 구하시오.

 $oldsymbol{02}$ 그림과 같이 포물선 $y^2=12x$ 의 초점 F를 지나는 직선과 포물선이 만나 는 두 점 A, B에서 준선 l에 내린 수선의 발을 각각 C, D라 하자. $\overline{AC} = 4$ 일 때, 선분 BD의 길이는?

- ① 12 ② $\frac{25}{2}$
- $3 \ 13$ $4 \ \frac{27}{2}$ $5 \ 14$

03 타원 $\frac{x^2}{9} + \frac{y^2}{4} = 1$ 의 두 초점 중 x좌표가 양수인 점을 F, 음수인 점을 F'이라 하자. 이 타원 위의 점 P를 \angle FPF $'=\frac{\pi}{2}$ 가 되도록 제 1사분면 에서 잡고, 선분 FP의 연장선 위에 y좌표가 양수인 점 Q를 $\overline{FQ} = 6$ 이 되도록 잡는다. 삼각형 QF'F의 넓이를 구하시오.

 $oldsymbol{04}$ 그림과 같이 두 초점이 ${
m F, F'}$ 인 타원 $3x^2 + 4y^2 = 12$ 위를 움직이는 제1사분 면 위의 점 P에서의 접선 l이 x축과 만나는 점을 Q, 점 P에서 접선 l과 수 직인 직선을 그어 x축과 만나는 점을 R라 하자. 세 삼각형 PRF, PF'R, PFQ의 넓이가 이 순서대로 등차수열을 이룰 때, 점 P의 x좌표는?

- **05** 쌍곡선 $x^2 4y^2 = a$ 위의 점 (b, 1)에서의 접선이 쌍곡선의 한 점근선과 수 직이다. a+b의 값은? (단, a, b는 양수이다.)
 - ① 68
- 2 77

- **4** 95
- (5) 104

 $\frac{\mathbf{66}}{2}$ 그림과 같이 쌍곡선 $\frac{4x^2}{9} - \frac{y^2}{40} = 1$ 의 두 초점은 F, F'이고, 점 F 를 중 심으로 하는 원 C는 쌍곡선과 한 점에서 만난다. 제 2 사분면에 있는 쌍곡선 위의 점 P 에서 원 C에 접선을 그었을 때 접점을 Q 라 하자. PQ = 12 일 때, 선분 PF'의 길이는?

- ① 10 ② $\frac{21}{2}$ ③ 11 ④ $\frac{23}{2}$ ⑤ 12

07 1보다 큰 실수 a에 대하여 타원 $x^2 + \frac{y^2}{a^2} = 1$ 의 두 초점과 쌍곡선 $x^2-y^2=1$ 의 두 초점을 꼭짓점으로 하는 사각형의 넓이가 12일 때, a^2 의 값을 구하시오.

공부는 정리다. 오늘의 핵심을 써보자.

핵심정리

MEMO	

평면벡터

제 08 강 - 벡터의 뜻과 연산

제 09 강 - 벡터의 평행과 위치벡터

제 10 강 - 위치벡터와 벡터의 성분

제 11 강 - 평면벡터의 내적(1)

제 12 강 - 평면벡터의 내적(2)

제 13 강 - 직선과 원의 방정식

제 14 강 - 평면운동

제 15 강 - 평면벡터 연습문제

08강

벡터의 뜻과 연산

1 벡터

- (1) 벡터 : 크기와 방향을 함께 갖는 양 예) 힘, 속도, 가속도 등
- (2) 벡터의 표현

벡터를 그림으로 나타낼 때는 그림과 같이 선분에 화살표를 붙인 방향을 갖는 선분으로 나타낸다. 점 \overrightarrow{A} 에서 점 \overrightarrow{B} 로 향하는 방향을 갖는 선분 \overrightarrow{A} B로 나타내어지는 벡터를 기호로 \overrightarrow{A} B 또는 \overrightarrow{a} 와 같이 나타내고, 점 \overrightarrow{A} 를 \overrightarrow{A} B의 시점, 점 \overrightarrow{B} 를 \overrightarrow{A} B의 종점이라고 한다.

(3) 벡터의 크기 벡터는 방향이 주어진 선분으로 나타낸다. $\overrightarrow{AB} = \overrightarrow{a}$ 에서 방향을 가지는 선분의 길이를 벡터의 크기라 하고, 기호로 $|\overrightarrow{a}|$ 또는 $|\overrightarrow{AB}|$ 로 나타낸다.

- (4) 벡터의 종류
 - ① 단위벡터 : 크기가 1인 벡터
 - ② 영벡터

벡터 \overrightarrow{AA} , \overrightarrow{BB} 등과 같이 시점과 종점이 일치하는 벡터를 영벡터라고 하며, 기호로 $\overrightarrow{0}$ 와 같이 나타낸다. 영벡터의 크기는 0이고 방향은 생각하지 않는다.

참고 벡터의 정의는 평면과 공간에서 마찬가지로 적용된다. 이를 구별할 때는 평면벡터, 공간벡터라 한다.

보기 그림과 같이 한 변의 길이가 1인 정사각형 ABCD에서 벡터 \overrightarrow{AC} 의 시점은 A이고 종점은 C이다.

 $|\overrightarrow{AB}| = 1$, $|\overrightarrow{AC}| = \sqrt{2}$, $|\overrightarrow{AD}| = 1$ 이고, 두 벡터 \overrightarrow{AB} , \overrightarrow{AD} 는 단위벡터이다.

길이, 넓이, 부피, 속력 등은 그 양을 하나의 실수로 나타낼수 있다. 크기만을 갖는 양을 스칼라 (scalar)라고 한다.

벡터를 한 문자로 나 타낼 때에는 기호로 $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}, \cdots$ 와 같이 나타낸다.

예제 01 한 변의 길이가 1인 정육각형 ABCDEF의 꼭짓점을 시점과 종점으로 하는 벡터 중에서 서로 다른 단위벡터의 개수를 구하여라.

풀이

2 서로 같은 벡터

두 벡터 \vec{a} 와 \vec{b} 의 크기와 방향이 같을 때, 두 벡터는 서로 같다고 하고. 기호로 $\vec{a} = \vec{b}$ 로 나타낸다.

설명 그림에서 \overrightarrow{AB} 를 평행이동 하면 \overrightarrow{CD} 와 포개지므로 두 벡터는 시점의 위치는 다르지만 그 크기와 방향이 각각 같다. 따라서 \overrightarrow{AB} = \overrightarrow{CD} 이다.

한 벡터를 평행이동 하여 포개지는 벡터 는 모두 같은 벡터 이다.

3 크기가 같고 방향은 반대인 벡터

그림에서 두 벡터 \overrightarrow{AB} 와 \overrightarrow{BA} 는 크기는 같지만 방향은 반대이다. 이와 같이 벡터 \overrightarrow{a} 와 크기는 같지만 방향이 반대인 벡터를 기호로 $-\overrightarrow{a}$ 와 같이 나타낸다.

벡터 \overrightarrow{AB} 에 대하여 $\overrightarrow{BA} = -\overrightarrow{AB}$, $|\overrightarrow{AB}| = |-\overrightarrow{AB}|$ 이다.

예제 02 그림의 직사각형 OABC에서 $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = \overrightarrow{b}$, $\overrightarrow{OC} = \overrightarrow{c}$ 라 할 때, 다음 벡터를 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 로 나타내어라.

- (1) AB와 같은 벡터
- (2) \overrightarrow{BC} 와 크기는 같지만 방향이 반대인 벡터

풀이

4 벡터의 덧셈

(1) 두 벡터 \vec{a} , \vec{b} 에 대하여 그림과 같이 $\vec{a} = \overrightarrow{AB}$, $\vec{b} = \overrightarrow{BC}$ 가 되도록 세 점 A, B, C를 정할 때 벡터 $\vec{c} = \overrightarrow{AC}$ 를 두 벡터 \vec{a} , \vec{b} 의 합이라 하고 기호로 $\vec{a} + \vec{b} = \vec{c}$ 또는 $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$ 와 같이 나타낸다.

(2) 평행사변형을 이용하여 두 벡터의 합을 나타낼 수도 있다. 그림과 같이 $\overrightarrow{a} = \overrightarrow{AB}$, $\overrightarrow{b} = \overrightarrow{AC}$ 가 되도록 세 점 A, B, C를 정하고, 사각형 ACDB가 평행사변형이 되도록 점 D를 정하면 $\overrightarrow{AC} = \overrightarrow{BD}$ 이므로 $\overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BD} = \overrightarrow{AD}$ 이다.

삼각형을 이용하여 두 벡터 $\stackrel{\rightarrow}{a}$, $\stackrel{\rightarrow}{b}$ 의 합을 구할 때는 $\stackrel{\rightarrow}{a}$ 의 종점과 $\stackrel{\rightarrow}{b}$ 의 시점을 일치시킨다.

평행사변형을 이용 하여 두 벡터 $\stackrel{\rightarrow}{a}$, $\stackrel{\rightarrow}{b}$ 의 합을 구할 때는 $\stackrel{\rightarrow}{a}$, $\stackrel{\rightarrow}{b}$ 의 시점을 일 치시킨다.

5 벡터의 <u>덧셈에 대한 성질</u>

임의의 세 벡터 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 와 영벡터 $\overrightarrow{0}$ 에 대하여

- ① $\vec{a} + \vec{b} = \vec{b} + \vec{a}$ (교환법칙)
- ② $(\overrightarrow{a} + \overrightarrow{b}) + \overrightarrow{c} = \overrightarrow{a} + (\overrightarrow{b} + \overrightarrow{c})$ (결합법칙)
- $\vec{a} + \vec{0} = \vec{0} + \vec{a} = \vec{a}$
- $\vec{a} + (-\vec{a}) = (-\vec{a}) + \vec{a} = \vec{0}$

설명 (1)
$$\vec{a} + \vec{b} = \vec{b} + \vec{a}$$

임의의 벡터 $\stackrel{
ightarrow}{a}$ 에 대하여 $\stackrel{
ightarrow}{a}=\stackrel{
ightarrow}{
m AB}$ 라고 하면

- (3) $\overrightarrow{a} + \overrightarrow{0} = \overrightarrow{AB} + \overrightarrow{BB} = \overrightarrow{AB} = \overrightarrow{a}$
- (4) $\overrightarrow{a} + (-\overrightarrow{a}) = \overrightarrow{AB} + \overrightarrow{BA} = \overrightarrow{AA} = \overrightarrow{0}$

$$\overrightarrow{AB} + \overrightarrow{CD} + \overrightarrow{BC} = \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} = \overrightarrow{AC} + \overrightarrow{CD} = \overrightarrow{AD}$$

예제 03 한 변의 길이가 1인 정사각형 ABCD에 대하여 벡터 $\overrightarrow{AB} + \overrightarrow{BD} + \overrightarrow{DC}$ 의 크기는?

6 벡터의 뺄셈

두 벡터 \vec{a} , \vec{b} 에 대하여 $\vec{b}+\vec{x}=\vec{a}$ 를 만족하는 벡터 \vec{x} 를 \vec{a} 에서 \vec{b} 를 뺀 차라 하고, 기호로 $\vec{x}=\vec{a}-\vec{b}$ 와 같이 나타낸다.

그림과 같이 삼각형 ABC에서 $\overrightarrow{AB} = \overrightarrow{a}, \overrightarrow{AC} = \overrightarrow{b}$ 라고 하면 $\overrightarrow{AC} + \overrightarrow{CB} = \overrightarrow{AB}$ 이므로 $\overrightarrow{a} - \overrightarrow{b} = \overrightarrow{AB} - \overrightarrow{AC} = \overrightarrow{CB}$ 이다.

즉, 같은 점을 시점으로 하는 두 벡터 \vec{a} , \vec{b} 에 대하여 \vec{a} $-\vec{b}$ 는 \vec{b} 의 종점을 시점으로 하고, \vec{a} 의 종점을 종점으로 하는 벡터이다.

한편 오른쪽 그림과 같이 사각형 ABDC가 평행사변형이 되도록 점 D를 잡으면

$$\overrightarrow{a} - \overrightarrow{b} = \overrightarrow{CB} = \overrightarrow{CD} + \overrightarrow{DB} = \overrightarrow{a} + (-\overrightarrow{b})$$

이다. 따라서 $\overrightarrow{a} - \overrightarrow{b}$ 는 두 벡터 \overrightarrow{a} 와 $-\overrightarrow{b}$ 의 합과 같다.

명행사변형 ABCD의 대각선의 교점을 O라 하고 $\overrightarrow{OA} = \overrightarrow{a}, \overrightarrow{OB} = \overrightarrow{b}$ 라 하자.

- (1) $\overrightarrow{AB} = \overrightarrow{OB} \overrightarrow{OA} = \overrightarrow{b} \overrightarrow{a}$
- (2) $\overrightarrow{CB} = \overrightarrow{OB} \overrightarrow{OC} = \overrightarrow{OB} (-\overrightarrow{OA}) = \overrightarrow{OB} + \overrightarrow{OA} = \overrightarrow{b} + \overrightarrow{a}$

예제 04 다음 정육각형 ABCDEF에서 $\overrightarrow{AB} = \overrightarrow{a}, \overrightarrow{BC} = \overrightarrow{b}$ 라 할 때,

다음 벡터를 $\overset{
ightarrow}{a}, \overset{
ightarrow}{b}$ 로 나타내어라.

(1) $\overrightarrow{\mathrm{EF}}$ (2) $\overrightarrow{\mathrm{BO}}$ (3) $\overrightarrow{\mathrm{DF}}$

풀이

예제 05 AD #BC 인 사다리꼴

ABCD 에서 $\overline{BC} = 2\overline{AD}$ 이다. $\overrightarrow{AB} = \overrightarrow{a}, \overrightarrow{AD} = \overrightarrow{b}$ 라 할 때, 벡터 $\overrightarrow{BD} + \overrightarrow{AC}$ 를 \overrightarrow{a} , \overrightarrow{b} 로

나타낸 것은?

 $\begin{tabular}{lll} \hline \end{tabular} \begin{tabular}{lll} \hline \end{tabular} \begin{t$

 $(4) \ 2\vec{a} + 2\vec{b}$ $(5) \ 3\vec{a} + 3\vec{b}$

풀이

예제 06 그림과 같이 서로 합동인 2 개의

정육각형이 한 변을 공유하고 있다.

 $\overrightarrow{OA} = \overrightarrow{a}, \overrightarrow{OB} = \overrightarrow{b}$ 라 할 때,

 $\overrightarrow{\mathrm{BP}}$ 를 \overrightarrow{a} 와 \overrightarrow{b} 로 나타낸 것은?

- $\vec{3} \vec{a} + 2\vec{b}$
- $\textcircled{4} \ \overrightarrow{3a} + \overrightarrow{b}$
- (5) $2\vec{a}+4\vec{b}$

공부는 정리다. 오늘의 핵심을 써보자. 핵심정리

09강

벡터의 평행과 위치벡터

 $|\vec{ka}| = |\vec{k}||\vec{a}|$

1 벡터의 실수배

- (1) 임의의 실수 k와 벡터 $\stackrel{
 ightarrow}{a}$ 의 곱 $\stackrel{
 ightarrow}{ka}$ 를 벡터 $\stackrel{
 ightarrow}{a}$ 의 실수배라고 한다.
- (2) $\overrightarrow{a} \neq 0$ 일 때.
 - ① k > 0 : \vec{a} 와 방향이 같고, 크기가 $k|\vec{a}|$
 - ② k < 0 : \overrightarrow{a} 와 방향이 반대이고, 크기가 $|k||\overrightarrow{a}|$
 - (3) $k = 0 : \vec{0}$

(3) 벡터의 실수배에 대한 연산법칙

임의의 실수 k, l과 두 벡터 $\overset{
ightarrow}{a}, \overset{
ightarrow}{b}$ 에 대해 다음이 성립한다.

① 결합법칙 : $(kl)\overrightarrow{a} = k(l\overrightarrow{a})$

② 분배법칙 : $(k+l)\vec{a} = k\vec{a} + l\vec{a}$, $k(\vec{a} + \vec{b}) = k\vec{a} + k\vec{b}$

참고 벡터 \overrightarrow{a} 와 실수 k에 대하여 다음이 성립한다.

$$\overrightarrow{1a} = \overrightarrow{a}$$
, $(-1)\overrightarrow{a} = -\overrightarrow{a}$, $\overrightarrow{0a} = \overrightarrow{0}$, $\overrightarrow{k0} = \overrightarrow{0}$

설명

$$\vec{a} + \vec{a} = 2\vec{a}, \quad (-\vec{a}) + (-\vec{a}) = -2\vec{a}$$

 $3(2\vec{a}) = 6\vec{a}$

 $2\vec{a} + 3\vec{a} = 5\vec{a}$

 $-2\vec{a}-2\vec{b}=-2(\vec{a}+\vec{b})$

 $3(\vec{3a}-\vec{2b})+2(\vec{a}+\vec{2b})=\vec{9a}-\vec{6b}+\vec{2a}+\vec{4b}=\vec{9a}+\vec{2a}-\vec{6b}+\vec{4b}$ $=(9+2)\vec{a}+(-6+4)\vec{b}=11\vec{a}-2\vec{b}$

예제 01 다음 식을 간단히 하여라. $-(\vec{a}-2\vec{b})-2(-2\vec{a}+3\vec{b})$

풀이

예제 02 다음 등식을 만족하는 $\overset{
ightarrow}{x}$ 를 $\overset{
ightarrow}{a}, \overset{
ightarrow}{b}$ 로 나타내어라. $4\overrightarrow{x} - 3\overrightarrow{a} = 2\overrightarrow{b} + 2\overrightarrow{x}$

풀이

예제 03 $\vec{3x}+\vec{2y}=\vec{a}, \ \vec{2x}-\vec{3y}=\vec{b}$ 를 만족시키는 두 벡터 $\vec{x}, \ \vec{y}$ 에 대하여 $\overrightarrow{x}+\overrightarrow{y}=\overrightarrow{ka}+\overrightarrow{lb}$ 가 성립할 때, k+l 의 값을 구하여라.(단, k, l은 실수이고, 영벡터가 아닌 두 벡터 $\stackrel{
ightarrow}{a},\;\stackrel{
ightarrow}{b}$ 는 서로 평행하지 않다.)

2 벡터의 평행

- (1) 영벡터가 아닌 두 벡터 \overrightarrow{a} , \overrightarrow{b} 의 방향이 서로 같거나 반대일 때, \overrightarrow{a} 와 \overrightarrow{b} 는 서로 평행이라 하고, 기호로 다음과 같이 나타낸다. \overrightarrow{a} $//\overrightarrow{b}$
- (2) $\vec{a} \neq \vec{0}$, $\vec{b} \neq \vec{0}$ 일 때, \vec{a} / \vec{b} $\Leftrightarrow \vec{b} = k\vec{a}$ (단, $k \neq 0$ 인 실수)

- 보기 영벡터가 아닌 두 벡터 $\stackrel{\rightarrow}{p},\stackrel{\rightarrow}{q}$ 에 대하여 $\stackrel{\rightarrow}{p}=3\stackrel{\rightarrow}{a}-2\stackrel{\rightarrow}{b},\stackrel{\rightarrow}{q}=6\stackrel{\rightarrow}{a}-4\stackrel{\rightarrow}{b}$ 이면 $\stackrel{\rightarrow}{q}=2\stackrel{\rightarrow}{p}$ 이므로 $\stackrel{\rightarrow}{p}$ // $\stackrel{\rightarrow}{q}$
- **참고** 평행하지 않은 두 벡터 \overrightarrow{a} , \overrightarrow{b} ($\overrightarrow{a} \neq \overrightarrow{0}$, $\overrightarrow{b} \neq \overrightarrow{0}$)에 대하여 $\overrightarrow{ka+lb} = \overrightarrow{ma} + \overrightarrow{nb} \iff k=m, \ l=n$ (단, $k, \ l, \ m, \ n$ 은 실수이다.)
- 예제 04 세 벡터 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 중 어느 두 벡터도 서로 평행하지 않고, 벡터 $\overrightarrow{a}+3\overrightarrow{b}-\overrightarrow{c}$ 와 벡터 $3\overrightarrow{a}+k\overrightarrow{b}+l\overrightarrow{c}$ 가 평행할 때, 두 실수 k, l 의 합 k+l 의 값을 구하여라.(단, $\overrightarrow{a}\neq\overrightarrow{0}$, $\overrightarrow{b}\neq\overrightarrow{0}$, $\overrightarrow{c}\neq\overrightarrow{0}$)

참고 세 점이 한 직선 위에 있을 조건

서로 다른 세 점 A, B, C에 대하여 $\overrightarrow{AC} = k\overrightarrow{AB}$ 를 만족하는 0이 아닌 실수 k가 존재하면 $\overrightarrow{AB}//\overrightarrow{AC}$ 이 므로 세 점 A, B, C는 한 직선 위에 있다.

역으로 M 점 A, B, C가 한 직선 위에 있으면 $\overrightarrow{AC} = k\overrightarrow{AB}$ 를 만족하는 0이 아닌 실수 k가 존재한다.

같은 뜻을 가진 다른 표현

- (1) $\overrightarrow{OC} = m\overrightarrow{OA} + n\overrightarrow{OB}$ (단, m+n=1)
- (2) $\overrightarrow{OC} = t\overrightarrow{OA} + (1-t)\overrightarrow{OB}$ (단. t는 실수)
- 평면 위의 서로 다른 네 점 O, A, B, C에 대하여 $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = \overrightarrow{b}$, $\overrightarrow{OC} = 2\overrightarrow{a} \overrightarrow{b}$

일 때, 세 점 A, B, C가 한 직선 위에 있음을 보여라.

풀이 \overrightarrow{AB} , \overrightarrow{AC} 를 각각 \overrightarrow{a} , \overrightarrow{b} 로 나타내면 $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = -\overrightarrow{a} + \overrightarrow{b}$ $\overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA} = \overrightarrow{a} - \overrightarrow{b}$ 즉, $\overrightarrow{AC} = -\overrightarrow{AB}$ 따라서 세 점 A, B, C는 한 직선 위에 있다.

예제 05 평행하지 않은 두 벡터 \vec{a} , \vec{b} 에 대하여 서로 다른 네 점 O, A, B, C가 $\overrightarrow{OA} = \vec{a}$, $\overrightarrow{OB} = 2\vec{b}$, $\overrightarrow{OC} = -\vec{a} + k\vec{b}$ 를 만족시킨다. 이때, 세 점 A, B, C가 한 직선 위에 있도록 하는 실수 k의 값은?

예제 06 길이가 6인 선분 AB 위의 한 점 P에 대하여 $\overrightarrow{AP} = -2\overrightarrow{BP}$ 가 성

립할 때, $|\overrightarrow{AP}|$ 의 값은?

- ① 1 ② 2 ③ 3

- **4** 4 **5** 5

풀이

예제 07 서로 다른 5개의 점 A, B, C, D, E가 $\overrightarrow{AB} + \overrightarrow{BC} - \overrightarrow{DC} = 3\overrightarrow{ED}$ 를

만족시킬 때, $\frac{|\overrightarrow{AE}|}{|\overrightarrow{AD}|}$ 의 값은?

- ② $\frac{2}{3}$
 - **③** 1
- **(5)** 2

풀이

예제 08 한 변의 길이가 4인 정사각형 ABCD의 변 BC 위의 점 P가

 $\overrightarrow{PC} = -3\overrightarrow{PB}$ 를 만족시킨다. 변 CD 위의 점 Q에 대하여 $\overrightarrow{PQ} = k\overrightarrow{BD}$ 를 만족시키는 실수 k가 존재할 때, | PQ | 의 값은?

- ① $2\sqrt{2}$ ② $2\sqrt{3}$
- $3 \ 3\sqrt{2}$ $4 \ 2\sqrt{5}$
- ⑤ $3\sqrt{3}$

공부는 정리다. 오늘의 핵심을 써보자.

핵심정리

10강

위치벡터와 벡터의 정분

1 위치벡터

- (1) 평면에서 한 점 O를 시점으로 하는 벡터 \overrightarrow{OP} 를 점 O에 대한 점 P의 위치벡터라고 한다.
- (2) 벡터 \overrightarrow{AB} 를 점 \overrightarrow{A} 와 점 \overrightarrow{B} 의 위치벡터로 나타내어 보자. 그림과 같이 두 점 \overrightarrow{A} , \overrightarrow{B} 의 위치벡터를 각각 \overrightarrow{a} , \overrightarrow{b} 라고 하면 $\overrightarrow{a} = \overrightarrow{OA}$, $\overrightarrow{b} = \overrightarrow{OB}$ 이므로 벡터 \overrightarrow{AB} 를 \overrightarrow{a} 와 \overrightarrow{b} 로 다음과 같이 나타낼 수 있다.

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \overrightarrow{b} - \overrightarrow{a}$$

원점 O 에 대한 점 P 의 위치벡터를 간단히 점 P 의 위치벡터라고 한다. 예제 01 두 점 A,B의 위치벡터를 각각 $\stackrel{
ightarrow}{a},\stackrel{
ightarrow}{b}$ 라고 할 때, 선분 AB를 m:n 으로 내분하는 점 P의 위치벡터 $\stackrel{
ightarrow}{p}$ 는 $\overrightarrow{p} = \frac{\overrightarrow{mb+na}}{\underbrace{m+n}}(m>0,n>0)$ 임을 보여라.

풀이

두 점 A , B의 위치 벡터를 각각 $\stackrel{\rightarrow}{a}$, $\stackrel{\rightarrow}{b}$ 라고 할 때, 선분 AB의 중점 M의 위치벡터 $\stackrel{\longrightarrow}{m}$ 은 다 음과 같다.

$$\overrightarrow{m} = \frac{\overrightarrow{a} + \overrightarrow{b}}{2}$$

두 섬 죠, ~ 위치벡터를 각각 두 점 A, B의 $\stackrel{
ightarrow}{a}$, $\stackrel{
ightarrow}{b}$ 라고 할 때, 선분 AB를 m:n으로 외분하는 점 \mathbb{Q} 의 위치벡터 $\overset{
ightarrow}{q}$ 는

$$\vec{q} = \frac{\vec{mb} - \vec{na}}{m - n}$$
$$(m > 0, n > 0)$$

예제 02 세 점 A, B, C의 위치벡터를 각각 $\stackrel{
ightarrow}{a},\stackrel{
ightarrow}{b},\stackrel{
ightarrow}{c}$ 라고 할 때, ΔABC 의 무게중심 G의 위치벡터 $\overset{
ightarrow}{g}$ 는

 $\vec{g} = \frac{\vec{a} + \vec{b} + \vec{c}}{3}$ 임을 보여라.

2 평면벡터의 성분

(1) 좌표평면 위의 두 점 $E_1(1,0)$, $E_2(0,1)$ 의 위치벡터를 각각 $\overrightarrow{e_1} = \overrightarrow{OE_1}$, $\overrightarrow{e_2} = \overrightarrow{OE_2}$ 로 나타낸다.

(2) 좌표평면 위의 임의의 점 $\mathbf{A}(a_1,a_2)$ 의 위치벡터 $\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$ 를 $\overrightarrow{e_1}$, $\overrightarrow{e_2}$ 로 나타내어 보자.

점 A에서 x축, y축에 내린 수선의 발을 각각

$$\mathbf{A}_1(a_1,\,\mathbf{0})$$
, $\mathbf{A}_2(\mathbf{0},\,a_2)$ 라고 하면 $\overrightarrow{\mathrm{OA}_1} = a_1\overrightarrow{e_1}$, $\overrightarrow{\mathrm{OA}_2} = a_2\overrightarrow{e_2}$ 이므로 $\overrightarrow{a} = \overrightarrow{\mathrm{OA}} = \overrightarrow{\mathrm{OA}} = \overrightarrow{\mathrm{OA}} + \overrightarrow{\mathrm{OA}_2} = a_1\overrightarrow{e_1} + a_2\overrightarrow{e_2}$

와 같이 나타낼 수 있다.

이때 a_1 , a_2 를 벡터 $\stackrel{\rightarrow}{a}$ 의 성분이라 하고,

 a_1 , a_2 를 각각 벡터 $\overset{
ightarrow}{a}$ 의 x성분, y성분이라고 한다.

벡터 \vec{a} 는 성분을 이용하여

$$\overrightarrow{a} = (a_1, a_2)$$

와 같이 나타낸다.

보기 점 A(3, -2)과 벡터 $\overrightarrow{e_1} = (1, 0), \overrightarrow{e_2} = (0, 1)$ 에 대하여 $\overrightarrow{OA} = (3, -2) = 3\overrightarrow{e_1} - 2\overrightarrow{e_2}$

3 평면벡터의 연산

 $\overrightarrow{\mathrm{OA}} = \overrightarrow{a} = (a_1, a_2), \overrightarrow{\mathrm{OB}} = \overrightarrow{b} = (b_1, b_2)$ 일 때,

- (1) 두 평면벡터가 같을 조건 $\overrightarrow{a} = \overrightarrow{b} \quad \Leftrightarrow \quad a_1 = b_1 \ , \ a_2 = b_2$
- (2) 평면벡터의 크기 : $|\vec{a}| = \sqrt{{a_1}^2 + {a_2}^2}$

- (3) 평면벡터의 성분에 의한 연산

 - $\label{eq:alpha} \bigcirc \stackrel{\rightarrow}{a} + \stackrel{\rightarrow}{b} = (a_1 + b_1, a_2 + b_2)$
 - $\ \, \stackrel{\rightarrow}{\boxdot} \stackrel{\rightarrow}{a-} \stackrel{\rightarrow}{b} = (a_1-b_1\,,\,a_2-b_2\,)$
- (4) $\overrightarrow{AB} = (b_1 a_1, b_2 a_2)$
- (5) $|\overrightarrow{AB}| = \sqrt{(b_1 a_1)^2 + (b_2 a_2)^2}$

예제 03 두 점 A(-2, 3), B(4, 1)에 대하여 벡터 \overrightarrow{AB} 의 성분과 크기 [AB]를 구하여라.

풀이

예제 04 평면의 두 벡터 $\stackrel{\rightarrow}{a}=(9,\ 2t),\ \stackrel{\rightarrow}{b}=(8t,\ 1)$ 이 서로 평행할 때, 양수 t의 값은?

풀이

- 예제 05 정삼각형 OAB 의 변 OA 가 x 축 위에 있다. $|\overrightarrow{OB}| = 2$ 일 때, \overrightarrow{AB} =(a, b)이다. 이때, a+b의 값은? (단, O 는 원점이고, 점 B 는 제1 사분면의 점이다.)
 - ① $-1-\sqrt{3}$ ② $-1+\sqrt{3}$ ③ $1-\sqrt{3}$

- **4** $1+\sqrt{3}$
- (5) $2\sqrt{3}$

공부는 정리다. 오늘의 핵심을 써보자.

핵심정리

11강

평면벡터의 내꺽(1)

평면벡터의 내적

영벡터가 아닌 두 평면벡터 $\stackrel{
ightarrow}{a},\stackrel{
ightarrow}{b}$ 에 대하여 $\stackrel{
ightarrow}{a=OA},\stackrel{
ightarrow}{b=OB}$ 인 세 점 O, A, B를 잡을 때, $\angle AOB = \theta$ $(0 \le \theta \le \pi)$ 를 두 벡터 $\overrightarrow{a}, \overrightarrow{b}$ 가 이루는 각의 크기라고 한다.

평면에서 영벡터가 아닌 두 벡터 $\overset{
ightarrow}{a},\;\overset{
ightarrow}{b}$ 가 이루는 각의 크기가 θ 일 때,

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos\theta$$

를 두 벡터의 내적이라고 한다.

보기 $|\vec{a}|=3$, $|\vec{b}|=2$ 인 두 평면벡터 \vec{a} , \vec{b} 가 이루는 각의 크기가 $\frac{\pi}{3}$ 일 때,

$$\vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}|\cos{\frac{\pi}{3}} = 3 \times 2 \times \frac{1}{2} = 3$$

참고 벡터의 내적의 기하학적 의미

$$\textcircled{1} \ \ 0 \leq \theta \leq \frac{\pi}{2} \ \ \textcircled{2} \ \ \textcircled{III} \quad \overrightarrow{OA} \cdot \overrightarrow{OB} = \overrightarrow{OH} \times \overrightarrow{OB}$$

②
$$\frac{\pi}{2} < \theta \le \pi$$
 일 때 $\overrightarrow{OA} \cdot \overrightarrow{OB} = -\overrightarrow{OH} \times \overrightarrow{OB}$

예제 01 한 변의 길이가 2인 정삼각형 ABC에서 내적 $\overrightarrow{AB} \cdot \overrightarrow{AC} = 7 \Rightarrow 0$

풀이

예제 02 한 변의 길이가 4인 정삼각형 ABC 에서 $\overrightarrow{AB \cdot BC}$ 의 값은?

- $\bigcirc 1 8$ $\bigcirc 2 4$ $\bigcirc 3 2$ $\bigcirc 4 \ 4$ $\bigcirc 5 \ 8$

풀이

예제 03 세 점 A, B, C 가 다음 조건을 만족시킨다.

- (기) $|\overrightarrow{AC}| = 5$, $|\overrightarrow{BC}| = 4$
- (L) $\overrightarrow{BA} \cdot \overrightarrow{BC} = 0$

이때, $\overrightarrow{AB} \cdot \overrightarrow{AC}$ 의 값은?

- ① 9 ② 12 ③ 15 ④ 16 ⑤ 25

예제 04 좌표평면 위의 원 $x^2 + y^2 = 1$ 위를 움직이는 점을 P,

원 $x^2 + y^2 = 4$ 위를 움직이는 점을 Q 라 하자.

 $\overrightarrow{OP} \cdot \overrightarrow{PQ} = 0$ 일 때, $\overrightarrow{QP} \cdot \overrightarrow{OQ}$ 의 값은?

- ① -3 ② $-\sqrt{3}$ ③ 0 ④ $\sqrt{3}$ ⑤ 3

풀이

예제 05 반지름의 길이가 4인 원 밖의 한 점 P에 서 그은 직선이 원과 점 Q에서 접한다. 점 P를 지 나고 원의 중심 0를 지나는 직선이 원과 만나는 두 점을 각각 A, B라 하자. $\overline{PQ} = 3$ 일 때,

 $\overrightarrow{PA} \cdot \overrightarrow{PQ}$ 의 값은? (단, $\overrightarrow{PA} < \overrightarrow{PB}$)

- ① $\frac{3}{5}$ ② 1 ③ $\frac{7}{5}$

풀이

 $\bigcirc 5 \frac{11}{5}$

2 평면벡터의 내적과 성분

$$\overrightarrow{a} = (a_1, a_2), \quad \overrightarrow{b} = (b_1, b_2)$$
일 때,
$$\overrightarrow{a} \cdot \overrightarrow{b} = a_1b_1 + a_2b_2$$

설명 벡터의 내적을 성분을 이용하여 나타내어보자.

- 보기 \vec{a} = (1, 2), \vec{b} = (1, -1) 일 때, $\vec{a} \cdot \vec{b}$ = $1 \times 1 + 2 \times (-1) = -1$
- **예제 06** 세 점 $\mathrm{A}(1,\,-1),\;\mathrm{B}(3,\,2),\;\mathrm{C}(-1,\,3)$ 에 대하여

AB·BC 의 값은?

- ① -5
- ② -4
- 3 3

- (4) 2
- \bigcirc -1

5 등 평면벡터가 이루는 각

두 평면벡터 $\stackrel{
ightharpoonup}{a}=(a_1,a_2),\;\stackrel{
ightharpoonup}{b}=(b_1,b_2)$ 가 이루는 각의 크기를 $\theta~(0 \leq \theta \leq \pi)$ 라고 하면 $\cos\theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|} = \frac{a_1 b_1 + a_2 b_2}{\sqrt{a_1^2 + a_2^2} \sqrt{b_1^2 + b_2^2}}$

예제 07 두 벡터 $\stackrel{\rightarrow}{a}=(1,\ 2),\ \stackrel{\rightarrow}{b}=(-1,\ 3)$ 이 이루는 각의 크기를 구하여라.

공부는 정리다. 오늘의 핵심을 써보자.

핵심정리

12강 평면벡터의 내적(2)

 $\overrightarrow{a} = (a_1, a_2),$

 $a_1 b_1 + a_2 b_2 = 0$

 $\iff b_1 = ta_1,$

 $(t \neq 0 인 실수)$

 $b_2 = t a_2$

(1) $\overrightarrow{a} \perp \overrightarrow{b}$

(2) $\overrightarrow{a} / / \overrightarrow{b}$ $\iff \vec{b} = t\vec{a}$

명면벡터의 내적과 수직, 평행조건

 $\overrightarrow{a} \neq \overrightarrow{0}$. $\overrightarrow{b} \neq \overrightarrow{0}$ 일 때.

(1) 수직조건 : $\vec{a} \perp \vec{b} \iff \vec{a} \cdot \vec{b} = 0$

(2) 평행조건 : $\vec{a} /\!\!/ \vec{b} \iff \vec{a} \cdot \vec{b} = \pm \mid \vec{a} \mid \mid \vec{b} \mid$

설명

(1) 두 평면벡터 \vec{a} , \vec{b} 가 서로 수직이면 $\vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}|\cos\frac{\pi}{2} = 0$

(2) \vec{a} 와 \vec{b} 의 방향이 같을 때 $\theta = 0$ \overrightarrow{a} 와 \overrightarrow{b} 의 방향이 반대일 때 $\theta=\pi$ 이때 $\cos 0 = 1$, $\cos \pi = -1$ 이므로 $\vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}|$ 또는 $\vec{a} \cdot \vec{b} = -|\vec{a}||\vec{b}|$

보기 $\vec{a} = (3, 6), \vec{b} = (4, -2)$ 일 때, $\vec{a} \cdot \vec{b} = 3 \times 4 + 6 \times (-2) = 0$ 이므로 $\vec{a} \perp \vec{b}$

예제 01 다음 두 벡터 \overrightarrow{a} , \overrightarrow{b} 가 수직일 때, k의 값을 구하여라. $\vec{a} = (1, -2), \quad \vec{b} = (k+3, -k+6)$

풀이

예제 02 다음 두 벡터가 서로 평행할 때, 실수 k의 값을 구하여라. $\vec{a} = (1, 3), \vec{b} = (2, k)$

2 평면벡터의 내적의 성질

- (1) 교환법칙 : $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$
- (2) 분배법칙 : $\vec{a}\cdot(\vec{b}+\vec{c}\)=\vec{a}\cdot\vec{b}+\vec{a}\cdot\vec{c}$
 - $(\vec{a} + \vec{b}) \cdot \vec{c} = \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c}$
- (3) 결합법칙 : $(\vec{ka}) \cdot \vec{b} = \vec{a} \cdot (\vec{kb}) = \vec{k} (\vec{a} \cdot \vec{b})$

예제 03 다음이 성립함을 보여라.

- (1) $|\vec{a} + \vec{b}|^2 = |\vec{a}|^2 + 2\vec{a} \cdot \vec{b} + |\vec{b}|^2$
- (2) $|\vec{a} \vec{b}|^2 = |\vec{a}|^2 2\vec{a} \cdot \vec{b} + |\vec{b}|^2$
- (3) $(\vec{a} + \vec{b}) \cdot (\vec{a} \vec{b}) = |\vec{a}|^2 |\vec{b}|^2$

$|\vec{a}|^2 = \vec{a} \cdot \vec{a}$

- 예제 04 벡터 $\stackrel{\rightarrow}{a},\stackrel{\rightarrow}{b}$ 에 대하여 $|\stackrel{\rightarrow}{a}|=2,\;|\stackrel{\rightarrow}{b}|=3,\;|\stackrel{\rightarrow}{a}-2\stackrel{\rightarrow}{b}|=6$ 일 때, 내적 $\overrightarrow{a \cdot b}$ 의 값은?
- 풀이

- 예제 05 $|\vec{a}|=3, \ |\vec{b}|=1, \ |\vec{a}-\vec{b}|=\sqrt{7}$ 일 때, 두 벡터 $\vec{a}, \ \vec{b}$ 가 이루는 각의 크기는?
- 풀이

- 예제 06 $|\vec{a}|=2$, $|\vec{b}|=1$ 이고, $\vec{a}+\vec{b}$ 와 $2\vec{a}-5\vec{b}$ 가 수직일 때, 두 벡터 $\overset{
 ightarrow}{a},\;\overset{
 ightarrow}{b}$ 가 이루는 각의 크기는?
- 풀이

참고 삼각형의 넓이와 벡터의 내적

그림과 같이 \triangle OAB의 세 꼭짓점이 O(0,0), A (a_1,a_2) , B (b_1,b_2) 이고 $\overrightarrow{OA} = \overrightarrow{a}, \overrightarrow{OB} = \overrightarrow{b}$ 일 때, \triangle OAB의 넓이 S는 다음과 같다.

$$S = \frac{1}{2} \sqrt{\mid \vec{a} \mid^2 \mid \vec{b} \mid^2 - (\vec{a} \cdot \vec{b})^2} \ = \frac{1}{2} |a_1 b_2 - a_2 b_1|$$

공부는 정리다. 오늘의 핵심을 써보자. 핵심정리

13강

직선과 원의 방정식

1 방향벡터를 이용한 직선의 방정식

점 $\mathbf{A}(x_1,\ y_1)$ 을 지나고 방향벡터가 $\overset{
ightarrow}{u}=(u_1,\ u_2)$ 인 직선의 방정식은

$$\frac{x-x_1}{u_1} = \frac{y-y_1}{u_2}$$
 (단, $u_1u_2 \neq 0$)

보기 점 $(2,\ 3)$ 을 지나고 방향벡터가 $\stackrel{
ightharpoonup}{u}=(4,\ 5)$ 인 직선의 방정식은

$$\frac{x-2}{4} = \frac{y-3}{5}$$

- **참고** 점 $\mathbf{P}_0(x_0, y_0)$ 을 지나고, 방향벡터 $\overset{
 ightarrow}{u} = (a, b)$ 에 평행한 직선의 방정식에서 ab=0인 경우의 직선의 방정식
 - (1) $a \neq 0$, b = 0일 때, 방향벡터 $\overrightarrow{u} = (a, 0)$ 은 x축에 평행하므로 직선의 방정식은 $y = y_0$
 - (2) $a=0,\ b\neq 0$ 일 때, 방향벡터 $\stackrel{\rightarrow}{u}=(0,\ b)$ 는 y축에 평행하므로 직선의 방정식은 $x = x_0$
- 예제 01 점 A(1, 2)을 지나고 $\stackrel{
 ightarrow}{u}=(-2,\ 1)$ 에 평행한 직선의 방정식을 구하여라.

풀이

예제 02 점 (0, 2)을 지나고, 직선 $\frac{x+1}{2} = y-3$ 에 평행한 직선의 방정식을 구하여라.

풀이

예제 03 점 A(1, 2)을 지나고 $\overrightarrow{u} = (0, 3)$ 에 평행한 직선의 방정식을 구하여라.

풀이

예제 04 점 A(1, 2)을 지나고 $\overrightarrow{u} = (1, 0)$ 에 평행한 직선의 방정식을 구하여라.

2 두 점을 지나는 직선의 방정식

두 점 $\mathbf{A}\left(x_{1},\,y_{1}\right)$, $\mathbf{B}\left(x_{2},\,y_{2}\right)$ 를 지나는 직선의 방정식

$$\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1}$$
 (단, $x_1 \neq x_2$, $y_1 \neq y_2$)

설명 두 점 A $(x_1,\,y_1)$, B $(x_2,\,y_2)$ 를 지나는 직선의 방정식의

방향벡터는 $\overrightarrow{\mathrm{AB}} = (x_2 - x_1, y_2 - y_1)$ 이다.

위의 직선은 한 점 $\mathbf{A}\left(x_{1},y_{1}\right)$ 을 지나고, 방향벡터가 $\overrightarrow{\mathrm{AB}}$ 인 직선이다.

예제 05 두 점 A(1, 3), B(-1, 0)을 지나는 직선의 방정식을 구하여라.

풀이

예제 06 A(1, 0), B(1, 2)을 지나는 직선의 방정식을 구하여라.

풀이

예제 **07** A(0, 1), B(3, 1)을 지나는 직선의 방정식을 구하여라.

- 3 법선벡터를 이용한 직선의 방정식
 - 점 $\mathbf{A}(x_1,\ y_1)$ 을 지나고 법선벡터가 $\overset{
 ightarrow}{n}=(a,\ b)$ 인 직선의 방정식은 $a(x-x_1)+b(y-y_1)=0$

- 예제 08 다음 직선의 방정식을 구하여라.
 - (1) 점 (2, 3)을 지나고 법선벡터가 $\stackrel{\rightarrow}{n}=(5, 4)$ 인 직선
 - (2) 점 (3, -4)를 지나고 벡터 $\overrightarrow{n} = (-2, -5)$ 에 수직인 직선

4 두 직선이 이루는 각의 크기

두 직선이 이루는 각의 크기는 두 직선의 방향벡터가 이루는 각의 크 기와 같다.

두 직선 $l_1,\; l_2$ 의 방향벡터가 각각 $\overrightarrow{u_1}=(a_1,b_1),\; \overrightarrow{u_2}=(a_2,b_2)$ 일 때, 두 직선이 이루는 각의 크기를 $\theta(0 \le \theta \le \frac{\pi}{2})$ 라 하면

$$\cos \theta = \frac{|\overrightarrow{u_1} \cdot \overrightarrow{u_2}|}{|\overrightarrow{u_1}| |\overrightarrow{u_2}|} = \frac{|a_1 a_2 + b_1 b_2|}{\sqrt{a_1^2 + b_1^2} \sqrt{a_2^2 + b_2^2}}$$

참고 두 직선이 이루는 각은 두 가지이나 주로 두 각 중 크지 않은 각을 말한다.

예제 09 좌표평면에서 두 직선

$$x-1 = \frac{y-3}{2}$$
, $\frac{x-5}{3} = \frac{3-y}{4}$

가 이루는 예각의 크기 θ 라고 할 때, $\cos\theta$ 의 값을 구하여라.

풀이

예제 $oldsymbol{10}$ 다음 두 직선 $l_1,\ l_2$ 가 이루는 예각의 크기 heta의 값을 구하여라.

$$l_1: \begin{cases} x = 1 + 2t \\ y = 2 - 3t \end{cases}, \qquad l_2: \begin{cases} x = 4 - 5s \\ y = 2 + s \end{cases}$$

5 두 직선의 수직, 평행조건

두 직선 $g_1,\;g_2$ 의 방향벡터가 각각 $\overrightarrow{u_1}=(a_1,b_1),\;\overrightarrow{u_2}=(a_2,b_2)$ 일 때

(1) 두 직선이 평행

$$g_1 /\!\!/ g_2 \Leftrightarrow \overrightarrow{u_1} /\!\!/ \overrightarrow{u_2}$$
 $\Leftrightarrow \overrightarrow{u_1} = t\overrightarrow{u_2}$ $\Leftrightarrow (a_1, b_1) = t(a_2, b_2)$ (단, t 는 0이 아닌 실수)

(2) 두 직선이 수직

$$g_1 \perp g_2 \iff \overrightarrow{u_1} \perp \overrightarrow{u_2} \iff \overrightarrow{u_1} \cdot \overrightarrow{u_2} = 0$$
$$\iff (a_1, b_1) \cdot (a_2, b_2) = 0$$
$$\iff a_1 a_2 + b_1 b_2 = 0$$

두 직선이 평행하면 두 직선의 방향벡터 도 평행하고,

두 직선이 서로 수 직이면 두 직선의 방향벡터도 서로 수 직이다.

- **예제 11** 두 직선 $\frac{2-x}{3} = \frac{y+1}{a+1}$, $\frac{x-1}{2} = \frac{y}{a}$ 이 수직일 때, 양수 a의 값은?
- 풀이

- 예제 12 두 직선 $l_1: \frac{x-2}{4} = \frac{y+2}{2a}, \ l_2: \frac{x+4}{3} = \frac{y-3}{-2}$ 가 서로 평행할 때, 실수 a의 값은?
- 풀이

6 평면벡터를 이용한 원의 방정식

점 $\mathrm{C}(a,\,b)$ 을 중심으로 하고 반지름의 길이가 r인 원 위의 한 점을 P(x, y)라고 하면 $|\overrightarrow{CP}| = r$ 따라서, 원의 방정식은

 $(x-a)^2 + (y-b)^2 = r^2$

예제 13 두 점 A(-1,4), B(5,-2)를 지름의 양 끝점으로 하는 원의 방정식을 구하여라.

공부는 정리다. 오늘의 핵심을 써보자.

핵심정리		

14강

평면 운동

직선 운동에서의 속도와 가속도

수직선 위를 움직이는 점 P의 시각 t에서의 위치 x가 x=f(t)일 때, 시각 t에서 점 \mathbf{P} 의 속도 v(t)와 가속도 a(t)는 다음과 같다.

$$v(t) = \frac{dx}{dt} = f'(t), \qquad a(t) = \frac{d}{dt}v(t) = f''(t)$$

예제 01 수직선 위를 움직이는 점 P의 시각 t에서의 위치 x=f(t)가 $f(t)=2\cos t$ 이다. $t=\frac{\pi}{6}$ 일 때, 점 P의 속도와 가속도를 구하여라.

2 평면 운동에서의 속도와 가속도

좌표평면 위를 움직이는 점 P의 좌표 (x, y)가 시각 t의 함수 x = f(t), y = g(t)로 주어질 때,

(1) 속도 : $\overrightarrow{v} = (v_x, v_y) = (f'(t), g'(t))$ (2) 가속도 : $\overrightarrow{a} = (a_x, a_y) = (f''(t), g''(t))$

참고 속력 : $|\overrightarrow{v}| = \sqrt{{v_x}^2 + {v_y}^2} = \sqrt{\{f'(t)\}^2 + \{g'(t)\}^2}$

가속도의 크기 : $|\overrightarrow{a}| = \sqrt{{a_x}^2 + {a_y}^2} = \sqrt{\{f''(t)\}^2 + \{g''(t)\}^2}$

보기 좌표평면 위를 움직이는 점 P의 시각 t에서 위치벡터의 성분이 $(x\,,\,y)$ 이고, x=3t, $y=t^2-2t$ 로 나타내어질 때, 시각 t에서 점 P의 속도, 가속도를 각각 구하여라.

물이
$$\frac{dx}{dt} = 3$$
, $\frac{dy}{dt} = 2t - 2$ 이므로 시각 t 에서 점 P의 속도를 \overrightarrow{v} 라고 하면 $\overrightarrow{v} = (3, 2t - 2)$ 또 $\frac{d^2x}{dt^2} = 0$, $\frac{d^2y}{dt^2} = 2$ 이므로 시각 t 에서 점 P의 가속도를 \overrightarrow{a} 라고 하면 $\overrightarrow{a} = (0, 2)$

예제 02 평면 위를 움직이는 점 P의 시각 t에서의 좌표 (x,y)가 $(x, y) = (4\cos t, 2\sin t)$ 로 주어질 때, 다음을 구하여라.

(1) 속도

(2) 가속도

3 직선 위를 움직이는 점의 위치와 이동거리

수직선 위를 움직이는 점 P의 시각 t에서의 속도를 v(t), 시각 a에서의 점 P의 위치를 s(a)라고 할 때,

(1) 시각 t에서의 점 P의 위치는

$$s(t) = s(a) + \int_{a}^{t} v(t) dt$$

(2) 시각 t=a에서 t=b까지의 점 P의 위치의 변화량은

$$\int_{a}^{b} \!\! v(t) \; dt$$

(3) 시각 t=a에서 t=b까지 점 ${\bf P}$ 가 움직인 거리 s는

$$s = \int_{a}^{b} |v(t)| \, dt$$

예제 03 원점을 출발하여 수직선 위를 움직이는 점 P의 시각 t 에서의 속 도가 $v = \cos \frac{\pi}{4} t$ 일 때, 시각 t = 6 에서의 점 P의 위치를 구하여라.

풀이

예제 04 수직선 위를 움직이는 점 P의 시각 t에서의 속도가 $v=(1-t)e^t$ 으로 주어질 때, 점 P가 시각 t=0에서 t=1까지 실제로 움직인 거리는?

- ① e-2
- ② e-1
- \bigcirc \bigcirc \bigcirc \bigcirc

- **4** e+1
- ⑤ e+2

4 평면 위를 움직이는 점의 이동거리

(1) 평면 운동에서의 움직인 거리

시각 t에서의 점 P의 위치가 x = f(t), y = g(t)일 때,

t=a에서 t=b까지 점 P가 움직인 거리 s는

$$s = \int_a^b |\overrightarrow{v}| dt = \int_a^b \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$
$$= \int_a^b \sqrt{\{f'(t)\}^2 + \{g'(t)\}^2} dt$$

- (2) 곡선의 길이
 - ① 시각 t에서의 점 P의 위치가 x = f(t), y = g(t)일 때, t = a에서 t=b까지 점 P가 그리는 곡선의 길이 l은 점 P가 움직인 경로가 겹치지 않으면 점 P가 움직인 거리와 같다.

$$l = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$$

② x = a에서 x = b 까지의 곡선 y = f(x)의 길이 l은

$$l = \int_{a}^{b} \sqrt{1 + \{f'(x)\}^2} \, dx$$

 $oldsymbol{orange}$ 좌표평면 위를 움직이는 점 P 의 시각 t 에서의 위치 $(x,\ y)$ 가

$$x = t^2$$
, $y = \frac{t^3}{3} - t$

일 때, 점 P 가 t=0에서 t=3까지 움직인 거리를 구하시오.

풀이 점 P 가 움직인 거리를 s 라 하면

$$s = \int_0^3 \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt = \int_0^3 \sqrt{(2t)^2 + (t^2 - 1)^2} dt$$
$$= \int_0^3 \sqrt{t^4 + 2t^2 + 1} dt = \int_0^3 (t^2 + 1) dt = \left[\frac{1}{3}t^3 + t\right]_0^3$$
$$= (9+3) - (0+0) = 12$$

예제 05 곡선 $y=\frac{e^x+e^{-x}}{2}$ 의 x=-1에서 x=1까지의 길이 s를 구하시오.

공부는 정리다. 오늘의 핵심을 써보자.

핵심정리

15강

평면벡터 연습문제

이 서로 평행하지 않은 두 벡터 \vec{a} , \vec{b} 에 대하여 $|\vec{a}| = 2$ 이고, $\vec{a} \cdot \vec{b} = 2$ 일 때, 두 벡터 \vec{a} 와 $\vec{a} - t\vec{b}$ 가 서로 수직이 되도록 하는 실수 t 의 값은?

 O2
 삼각형 ABC에서 AB=2, ∠B=90°, ∠C=30°이다. 점 P가 PB+PC=0를 만족시킬 때, |PA|²의 값은?

 ① 5
 ② 6
 ③ 7
 ④ 8
 ⑤ 9

03한 변의 길이가 3인 정삼각형 ABC에서 변 AB를 2:1로 내분하는 점을D라 하고, 변 AC를 3:1과 1:3으로 내분하는 점을 각각 E,F라 할 때, $|\overrightarrow{BF} + \overrightarrow{DE}|^2$ 의 값은 ?

① 17 ② 18 ③ 19 ④ 20 ⑤ 21

04 한 변의 길이가 2인 정삼각형 ABC의 꼭짓점 A에서 변 BC에 내린 수선의 발을 H라 하자. 점 P가 선분 AH 위를 움직일 때,

 $|\overrightarrow{\mathrm{PA}} \cdot \overrightarrow{\mathrm{PB}}|$ 의 최댓값은 $\frac{q}{p}$ 이다. p+q의 값을 구하시오.

(단, p와 q는 서로소인 자연수이다.)

 $oldsymbol{05}$ 좌표평면 위를 움직이는 점 P의 시각 t에서의 위치벡터를 $\overrightarrow{p}=(x,y)$ 라 하면

$$x = \frac{e^t + e^{-t}}{2}, \ y = \frac{e^t - e^{-t}}{2}$$

이 성립한다. 이때, 옳은 것만을 <보기>에서 있는 대로 고른 것은?

____ < 보 기 > __

- ㄱ. t=1에서 점 \mathbf{P} 의 속도 $\overset{
 ightarrow}{v}$ 와 위치벡터 $\overset{
 ightarrow}{p}$ 는 서로 수직이다.
- ㄴ. 임의의 시각 t에서 점 P 의 가속도 $\overset{
 ightarrow}{a}$ 와 위치벡터 $\overset{
 ightarrow}{p}$ 는 서로 같다.
- \Box . 점 P가 t=0에서 t=1까지 움직인 거리는 1 이상이다.
- ① ¬
- ③ ¬, ⊏

- ④ ∟. ⊏
- ⑤ ¬. ∟. ⊏

전 P는 원점 O를 출발하여 곡선 $y = \sqrt{x}$ 를 따라 원점에서 멀어지고 있다. 점 P의 x 좌표가 매초 2의 속도로 일정하게 변할 때, 직선 OP의 기울기가 10이 되는 순간 점 P의 y 좌표의 시간(초)에 대한 순간변화율을 구하시오.

공부는 정리다. 오늘의 핵심을 써보자.

핵심정리

MEMO	

	•••••

	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••

공간도형과 공간벡터

제 16 강 - 직선과 평면

제 17 강 - 삼수선의 정리와 이면각

제 18 강 - 정다면체 특강

제 19 강 - 정사영

제 20 강 - 공간좌표

제 21 강 - 공간좌표

제 22 강 - 공간도형과 공간좌표 연습문제

제 23 강 - 공간벡터의 성분과 연산

제 24 강 - 직선의 방정식(1)

제 25 강 - 평면의 방정식(1)

제 26 강 - 평면의 방정식(1)

제 27 강 - 평면의 방정식(2)

제 28 강 - 평면의 방정식(3)

제 29 강 - 직선과 평면의 방정식 특강

제 30 강 - 공간벡터 연습문제

16강

직선과 평면

1 평면의 결정조건

- (1) 한 직선 위에 있지 않은 세 점
- (2) 한 직선과 그 위에 있지 않은 한 점
- (3) 한 점에서 만나는 두 직선
- (4) 평행한 두 직선

2 두 직선의 위치관계

(1) 만난다. (2) 평행하다. (3) 꼬인 위치에 있다.

한 평면을 결정한다.

한 평면을 결정하지 않는다.

두 직선 l,m이 평행 할 때, 이것을 기호로 $l/\!\!/m$ 과 같이 나타 낸다.

참고 두 직선이 이루는 각

- ① 만나는 두 직선은 한 평면 위에 있으므로 그 평면 위에서 두 직선이 이루는 각이 정해진다.
- ② 꼬인 위치에 있는 두 직선 l, m이 이루는 각

그림과 같이 직선 l을 직선 m과 한 점에서 만나도록 평행이동한 직선을 l'이라고 하면 두 직선 l'과 m은 한 평면을 결정한다.

이때 두 직선 l'과 m이 이루는 각을 두 직선 l, m이 이루는 각이라고 한다. \vdots 가 작은 쪽의 각을 생

꼬인 위치에 있는 두 직선은 만나지도 않 고, 평행하지도 않다.

: 두 직선이 이루는 각 의 크기는 보통 크기 각한다.

예제 01 그림과 같은 직육면체에 대하여 다음을 구하여라.

- (1)모서리 AB와 만나는 모서리
- (2)모서리 BC와 평행한 모서리
- (3)모서리 BF와 꼬인 위치에 있는 모서리

풀이

풀이

예제 03 정육면체 ABCD-EFGH에서 두 선분 AF와 EG가 이루는 각의 크기를 구하여라.

풀이

선분이 이루는 각의 크기는 그 선분을 연 장한 직선이 이루는 각의 크기와 같다.

보통 점은 A,B,C,\cdots 와 같이 대문자로 나타내고, 직선은 a,b,c,\cdots 와 같이 소문자로 나타낸다. 평면은 $\alpha,\beta,\gamma,\cdots$ 로 나타낸다.

참고

- ① 직선 l과 평면 α 가 평행하면 직선 l은 평면 α 위에 있는 어떤 직선과도 만나지 않는다.
- ② 두 직선 l과 m이 평행할 때, 직선 m을 포함하고 직선 l을 포함하지 않는 평면 α 는 직선 l과 평행하다.

참고 평면 α , β 가 서로 평행하면 평면 α 위에 있는 모든 직선은 평면 β 와 평행하다.

5 직선과 평면이 이루는 각

직선 l이 평면 α 와 점 O에서 만나고 l 위의 한 점 A에서 평면 α 에 내린 수선의 발을 H라고 하면 직각삼각형 AOH에서 ∠AOH를 직선 l과 평면 α 가 이루는 각이라 한다.

ho 직선 l이 평면 lpha위의 모든 직선과 수직일 때,

직선 l과 평면 α 는 수직이라 하고, 기호로 $l\perp \alpha$ 로 나타낸다.

6 직선과 평면의 수직

직선 l이 평면 lpha와 만나고, 그 교점 0를 지나는 lpha 위의 두 직선 a, b와 수직이면 직선 l은 평면 α 와 수직이다.

예제 04 정사면체 ABCD에서 점 M은 모서리 BC의 중점이다. 이때, 다음이 성립함을 보여라.

- (1) BC ⊥ (평면AMD)
- (2) $\overline{BC} \perp \overline{AD}$

공부는 정리다. 오늘의 핵심을 써보자.

핵심정리

17강

삼수선의 정리와 이면각

- 1 삼수선의 정리
 - (1) $\overline{\mathrm{PQ}} \perp \alpha$, $\overline{\mathrm{QA}} \perp l$ 이면 $\overline{\mathrm{PA}} \perp l$
 - (2) $\overline{\mathrm{PQ}} \perp \alpha$, $\overline{\mathrm{PA}} \perp l$ 이면 $\overline{\mathrm{QA}} \perp l$
 - (3) $\overline{\mathrm{PA}}\perp l$, $\overline{\mathrm{QA}}\perp l$, $\overline{\mathrm{PQ}}\perp\overline{\mathrm{QA}}$ 이면 $\overline{\mathrm{PQ}}\perp\alpha$

예제 01 다음 그림과 같은 직육면체에서 $\overline{AB} = \overline{AE} = 2, \ \overline{AD} = 1$ 일 때, \overline{D} 에서 \overline{EG} 에 내린 수선 \overline{DI} 의 길이를 구하여라.

풀이

예제 02 공간에서 평면 lpha위에 세 변의 길이가 $\overline{AB}=\overline{AC}=10,\ \overline{BC}=12$ 인 삼각형 ABC가 있다. 점 A 를 지나고 평면 α 에 수직인 직선 l위의 점 D 에 대하여 $\overline{\mathrm{AD}} = 6$ 이 되도록 점 D 를 잡을 때 ΔDBC 의 넓이를 구하시오.

2 이면각

두 평면 α , β 의 교선을 l이라 할 때 l을 공유하는 두 반평면 α , β 로 이루어지는 도형을 이면각이라고 한다.

교선 l을 이면각의 변, 두 반평면 α, β 를 이면각의 면이라고 한다.

3 두 평면이 이루는 각의 크기

이면각의 변 l위의 한 점 \bigcirc 로부터 l에 수직이고 각 면 α,β 에 포함되 는 반직선 OA, OB를 그으면 ∠AOB의 크기는 점 O의 위치에 관계없 이 일정하다. 이 각의 크기를 이면각의 크기라 한다.

두 평면이 만나면 네 개의 이면각이 생기는데, 이 중 한 이면각의 크기 를 두 평면이 이루는 각의 크기라고 한다. (보통 크기가 작은 쪽의 각 을 택한다.)

참고 이면각의 크기가 직각일 때, 두 평면 lpha,eta는 서로 수직이라 하고, 기호로 $\alpha \perp \beta$ 와 같이 나타낸다.

예제 03 정사면체의 이웃하는 두 면이 이루는 각의 크기를 heta라 할 때, $\cos \theta$ 의 값은?

풀이

예제 04 정팔면체의 이웃하는 두 면이 이루는 각의 크기를 heta라 할 때, $\cos\theta$ 의 값은?

<mark>예제 05</mark> 정육면체 ABCD — EFGH에서 평면 AFG와 평면 AGH가 이루는 각의 크기를 θ 라 할 때, $\cos^2\theta$ 의 값은?

- $\textcircled{1} \frac{1}{6}$
- $2 \frac{1}{5}$
- $4 \frac{1}{3}$
- ⑤ $\frac{1}{2}$

공부는 정리다. 오늘의 핵심을 써보자.

4		
	핵심정리	

18강

정다면제 특강

1 정다면체

예제 01 다음 표를 채우시오

정다면체	한 면을 이루는 변의 개수	한 꼭짓점에 모인 면의 개수	면의 개수	꼭짓점의 개수	모서리의 개수
정사면체	3	3	4	4	6
정육면체	4	3	6	8	12
정팔면체			8		
정십이면체			12		
정이십면체			20		

2 Sierpinski 정사면체

sierpinski 정사면체는 정사면체의 각 모서리의 중점을 연결하였을 때 생기는 네 개의 작은 정사면체를 제외한 나머지 부분을 제거하는 과정 을 무한히 반복했을 때 생기는 프랙탈 형태의 입체도형을 말한다.

1단계

2단계

3단계

예제 02 다음 물음에 답하여라.

- (1) 1단계 sierpinski 정사면체에서 빈 공간은 무엇인가?
- (2) 1단계에서 정사면체 4개의 부피와 빈 공간의 부피의 비는?

3 정육면체의 단면

예제 03 그림과 같은 정육면체를 평면으로 자른 단면의 모양은 <보기> 중 몇 가지가 될 수 있는가?

----- <보 기> -

- ·삼각형
- ·정사각형이 아닌 직사각형
- ·정사각형이 아닌 마름모
- ·오각형
- ·육각형

① 1 가지 ② 2 가지 ③ 3 가지 ④ 4 가지 ⑤ 5 가지

- 4 정사면체의 두 변이 이루는 각과 이면각
- (1) 정사면체에서 두 변이 이루는 각의 크기 : 60°, 90°
- (2) 정사면체에서 이웃하는 두 면이 이루는 각의 크기 $\theta \Rightarrow \cos\theta = \frac{1}{3}$

예제 04

정사면체 ABCD에서 변 BC의 중점을 E라 하고, 꼭지점 A 에서 \overline{DE} 에 내린 수선의 발을 H라 할 때, AH는 ΔBCD와 수직이다. 다음은 이를 이용하여 점 H가 ΔBCD 의 무게중심임을 증명한 것이다. $_{\mathbf{R}_{\mathbf{q}}}$ 안에 알맞은 것을 순서대로 나열하면?

 $\overline{\mathsf{AB}}$ 의 중점을 M 이라 하면 $\Delta\mathsf{ABD},\ \Delta\mathsf{ABC}$ 는 정삼각형이므로 $\overline{\mathrm{MD}} \perp \overline{\mathrm{AB}}$, $\overline{\mathrm{AB}}$

- ∴ \overline{AB} \bot (평면 MCD) ∴ \overline{AB} \bot $\overline{}$ \bigcirc
- 또한 AH _ △BCD 이므로 AH _ CD ······ ©
- ⑤, ⓒ에 의하여 ☐ ⊥CD 이므로 BH⊥CD
- ΔBCD 도 정삼각형이므로 \overline{BH} 는 ΔBCD 의 중선이고
- $\overline{\rm DE}$ 도 중선이므로 점 ${
 m H}$ 는 $\Delta {
 m BCD}$ 의 무게중심이다.
- ① MC, CD, 평면 ABH ② MC, BD, 평면 ABC
- ③ MC, CD, 평면 ABE ④ AB, CD, 평면 ABH
- ⑤ \overline{AB} , \overline{BD} , 평면 ABE

- _________ (1) 정팔면체에서 두 변이 이루는 각의 크기 : 60˚, 90˚, 평행
- (2) 정팔면체에서 이웃하는 두 면이 이루는 각의 크기 heta \Rightarrow $\cos heta = -rac{1}{3}$

예제 05 오른쪽 그림과 같이 정육면체 위에 정사각뿔을 올려놓은 도형이 있다. 이 도형의 모 든 모서리의 길이가 2이고, 면PAB와 면 AEFB가 이루는 각의 크기가 heta일 때, $\cos heta$ 의 A_f 값은? (단, $\frac{\pi}{2} < \theta < \pi$)

$$3 - \frac{1}{3}$$

$$4 - \frac{\sqrt{3}}{2}$$
 $5 - \frac{\sqrt{2}}{2}$

(5)
$$-\frac{\sqrt{2}}{2}$$

공부는 정리다. 오늘의 핵심을 써보자. 핵심정리

19강

쟁사영

1 정사영

평면 lpha 위에 있지 않은 점 A에서 평면 lpha에 내린 수선의 발을 A'이라 고 할 때, 점 A'을 점 A의 평면 α 위로의 정사영이라고 한다.

도형 F에 속하는 각 점의 평면 lpha위로의 정사영으로 이루어진 도형 F'을 도형 F의 평면 α 위로의 정사영이라고 한다.

예제 01 그림의 정육면체에서 다음을 구하여라.

- (1) 대각선 AG의 면 EFGH 위로의 정사영
- (2) △AFD의 면 EFGH 위로의 정사영

풀이

2 직선과 평면이 이루는 <u>각의 크기</u>

직선 l과 평면 lpha가 한 점에서 만나고 수직이 아닐 때, 직선 l의 평면 α 위로의 정사영 l'과 직선 l이 이루는 각을 직선 l과 평면 α 가 이루는 각이라고 한다.

정사영의 길이

선분 AB의 평면 α 위로의 정사영을 선분 A'B', 직선 AB와 평면 α 가 이루는 각의 크기를 θ 라고 하면

 $\overline{A'B'} = \overline{AB} \cos \theta$

예제 02 직선 l위의 선분 $\overline{
m AB}$ 의 평면 lpha위로의 정사영을 $\overline{
m A'B'}$ 라 한다. $\overline{AB} = 10$ 이고, 직선 l과 평면 α 가 이루는 각이 30° 일 때, 선분 $\overline{A'B'}$ 의 길이를 구하여라.

풀이

4 정사영의 넓이

평면 β 위의 넓이가 S인 도형 F의 평면 α 위로의 정사영 F'의 넓이를 S'이라 할 때, 두 평면 α 와 β 가 이루는 예각의 크기를 θ 라 하면

 $S' = S\cos\theta$

예제 03 두 평면 lpha, eta가 이루는 각의 크기가 $30\,^\circ$ 이고, 평면 lpha위에 있는 반지름이 2인 원의 평면 β 위로의 정사영의 넓이를 구하여라.

예제 04 다음 그림의 정육면체에서 평면 AFC와 평면 EFGH가 이루는 각의 크기를 θ 라고 할 때, $\cos \theta$ 의 값은?

풀이

예제 05 그림과 같이 한 모서리의 길이가 2인 정육면체 ABCD-EFGH 에서 삼각형 EFG 의 평면 ADG 위로의 정사영의 넓이는?

- ① 1 ② $\sqrt{2}$ ③ $\sqrt{3}$
- (4) 2 (5) $\sqrt{5}$

예제 06 그림과 같이 한 모서리의 길이가 2인

정사면체 OABC 에서 \overline{OA} , \overline{AB} , \overline{OC} 의 중점을 각각 P, Q, R 라 하자. 평면 PQR 와 평면 ABC 가 이루는 예각의 크기를 θ 라 할 때, $\cos\theta$ 의 값은?

- ① $\frac{1}{4}$ ② $\frac{1}{3}$ ③ $\frac{1}{2}$

풀이

참고

공부는 정리다. 오늘의 핵심을 써보자.

핵심정리		
120		

20강

공간짴표

1 좌표축과 좌표평면

(1) 좌표축

공간의 한 점 ()(원점)에서 서로 직교하는 세 수직선을 그었을 때, 이 들 세 수직선을 각각 x축, y축, z축이라 하고, 이들을 통틀어 좌표축 이라고 한다.

(2) 좌표평면

x축과 y축, y축과 z축, z축과 x축으로 결정되는 평면을 각각 xy평면, yz평면, zx평면이라 하고, 이 세 평면을 통틀어 좌표평면이라 한다.

2 공간좌표

공간의 한 점 P에 대응하는 세 실수의 순서쌍 (a, b, c)를 점 P의 공간좌표라 하고, 기호로 P(a, b, c)와 같이 나타낸다.

이때, a, b, c를 각각 점 P의 x좌표, y좌표, z좌표라고 한다.

이와 같이 임의의 점 P의 좌표가 주어진 공간을 좌표공간이라고 한다.

예제 $oldsymbol{01}$ 다음 좌표공간의 한 점 $\mathrm{P}\left(a,\,b,\,c
ight)$ 에서 다음을 구하여라. (1) x축에 내린 수선의 발 : (, , (2) y축에 내린 수선의 발 : (, ,)

(3) z축에 내린 수선의 발 : (,

(4) xy평면에 내린 수선의 발 : (, ,)

(5) yz평면에 내린 수선의 발 : (, ,)

(6) zx평면에 내린 수선의 발 : (,

예제 $\mathbf{02}$ 다음 좌표공간의 한 점 $\mathbf{P}\left(a,\,b,\,c\right)$ 에서 다음을 구하여라.

(1) x축에 대하여 대칭인 점 : (, ,)

(2) y축에 대하여 대칭인 점 : (, ,

(3) z축에 대하여 대칭인 점 : (, , ,)

(4) 원점에 대하여 대칭인 점 : (, ,)

(5) xy평면에 대하여 대칭인 점 : (, ,

(6) yz평면에 대하여 대칭인 점 : (, ,

(7) zx평면에 대하여 대칭인 점 : (, ,

예제 03 점 P(-1, 0, 2)의 대칭점에 대한 보기 설명 중 옳은 것만을 있는 대로 고른 것은?

<보기>

ㄱ. xy평면에 대한 대칭점은 (1, 0, 2)이다.

∟. *zx* 평면에 대한 대칭점은 (-1, 0, 2)이다.

ㄷ. x축에 대한 대칭점은 (-1, 0, -2)이다.

① ¬, ∟

② ∟, ⊏

③ ¬, ⊏

④ ¬, ∟, ⊏

⑤ ¬

5 두 점 사이의 거리

두 점 $\mathrm{A}(x_1,y_1,z_1)$, $\mathrm{B}(x_2,y_2,z_2)$ 사이의 거리는 $\overline{\rm AB} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$

참고 특히, 원점 O와 점 A(x, y, z)사이의 거리는 $\overline{OA} = \sqrt{x^2 + y^2 + z^2}$

예제 04 다음 주어진 두 점 사이의 거리를 구하여라.

- (1) P(1, -2, 3), Q(2, 3, 5) (2) O(0,0,0) P(2, -1, 3)

풀이

예제 05 좌표공간의 두 점 A(4, 2, -3), B(2, -1, 2)에서 같은 거리에 있는 z축 위의 점 P의 좌표는?

예제 06 두 정점 A(2, 1, 4), B(3, -2, 1)과 xy평면 위의 점 P가 있다. 이 때, $\overline{AP} + \overline{BP}$ 의 최솟값은?

풀이

예제 07 점 P(3, 4, 6)의 xy평면에 대한 대칭점을 Q, z축에 대한 대칭점을 R라 할 때, △PQR의 넓이는?

4 선분의 내분점과 외분점

(1) $\mathrm{A}(x_1,y_1,z_1)$, $\mathrm{B}(x_2,y_2,z_2)$ 에서 선분 AB 를 m:n으로 내분하는 점을 P, 외분하는 점을 Q라 하면 좌표는 다음과 같다.

$$\mathbf{P}\ (\frac{mx_2+nx_1}{m+n}\,,\,\frac{my_2+ny_1}{m+n}\,,\,\frac{mz_2+nz_1}{m+n}\,)$$

$$\mathbf{Q}\;(\frac{mx_2-nx_1}{m-n}\,,\,\frac{my_2-ny_1}{m-n}\,,\,\frac{mz_2-nz_1}{m-n})$$

(2) $\mathrm{A}(x_1,y_1,z_1)$, $\mathrm{B}(x_2,y_2,z_2)$ 에서 $\overline{\mathrm{AB}}$ 의 중점을 M이라 하면

$$\mathbf{M}\,(\frac{x_{1}+x_{2}}{2}\,,\frac{y_{1}+y_{2}}{2}\,,\frac{z_{1}+z_{2}}{2}\,)$$

참고

예제 08 두 점 A(2, 2, 3), B(-4, -4, 3)에 대하여 다음 좌표를 구하여라.

(1) 선분 AB를 1:2로 내분하는 점 P

(2) 선분 AB를 3:1로 외분하는 점 Q

예제 09 평행사변형 ABCD에서 A(1, 4, 2), B(2, 5, -1)이고 대각선 AC, BD의 교점이 (1, 3, -2)일 때 C, D의 좌표를 구하여라.

풀이

예제 10 세 점 A $(x_1,\ y_1,\ z_1)$, B $(x_2,\ y_2,\ z_2)$, C $(x_3,\ y_3,\ z_3)$ 를 꼭짓점으로 하는 △ABC의 무게중심 G의 좌표를 구하여라.

공부는 정리다. 오늘의 핵심을 써보자.

핵심정리

21강

구의 방정식

1 구의 방정식

점 $C\left(a,b,c\right)$ 를 중심으로 하고 반지름이 r인 구의 방정식 $(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2$

ightharpoons ho (1) 원점을 중심으로 하고, 반지름이 r인 구의 방정식은

$$\Rightarrow x^2 + y^2 + z^2 = r^2$$

(2) 구의 방정식의 일반형

$$(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2$$
을 전개하여 정리하면
 $\Rightarrow x^2 + y^2 + z^2 + Ax + By + Cz + D = 0$ 의 꼴이 된다.

2 구와 평면

구와 평면의 교선은 원

참고 $(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2$ 에 서

- (1) xy평면과의 교선은 z=0을 대입한다. 교선은 $(x-a)^2 + (y-b)^2 = r^2 - c^2$ 이다.
- (2) yz평면과의 교선은 x=0을 대입한다. 교선은 $(y-b)^2 + (z-c)^2 = r^2 - a^2$ 이다.
- (3) zx평면과의 교선은 y=0을 대입한다. 교선은 $(x-a)^2 + (z-c)^2 = r^2 - b^2$ 이다.

참고 구 $(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2$ 이 좌표축 또는 좌표평면과 접할 조건을 찾아보자.

 $x=a, (y-b)^2+(z-c)^2=r^2$ [x축에 접하는 구의 단면]

[xy 평면에 접하는 구의 단면]

예제 01 중심이 점 (-1, 1, 2) 이고, 반지름의 길이가 2인 구의 방정식을 구하여라.

풀이

예제 02 방정식 $x^2 + y^2 + z^2 - 4x + 2y - 4 = 0$ 은 어떤 도형을 나타내는가?

풀이

예제 03 공간 위의 네 점 O(0, 0, 0), A(2, 0, 0), B(0, 4, 0), C(0, 0, 6)을 지나는 구의 반지름의 길이는?

예제 04 중심이 (1, -5, 2)이고 xy평면에 접하는 구의 방정식은?

풀이

예제 05 좌표공간의 x축이 구 $x^2+y^2+z^2-4x-6y-8z=20$ 에 의하여 잘리는 선분의 길이를 l이라고 하자. 이 때, l^2 의 값을 구하여라.

예제 06 점 P(-1, 2, 3)에서 구 $(x-3)^2 + (y-1)^2 + (z+2)^2 = 3^2$ 에 그은 접선의 길이는?

풀이

예제 07 구 $x^2 + y^2 + z^2 - 4x + 8y - 10z = 19$ 가 xy 평면과 만나서 생기는 원의 넓이는?

공부는 정리다. 오늘의 핵심을 써보자.

핵심정리	l		
110 1	l .		

22강

공간도형과 공간작표 연습문제

90 평면 α 위에 $\angle A=90\,^\circ$ 이고, $\overline{BC}=6$ 인 직각이등변삼각형 ABC가 있다. 평면 α 밖의 한 점 P에서 이 평면까지 거리가 4이고, 점 P에서 평면 α 에 내린 수선의 발이 점 A일 때, 점 P에서 직선 BC까지 거리는?

①2 좌표공간에서 xy 평면, yz 평면, zx 평면은 공간을 8개의 부분으로 나눈다. 이 8개의 부분 중에서 구 $(x+2)^2+(y-3)^2+(z-4)^2=24$ 가 지나는 부분의 개수는? ① 8 ② 7 ③ 6 ④ 5 ⑤ 4 03 오른쪽 그림과 같이 한 모서리의 길이가 3 인 정육면체 ABCD — EFGH 의 세 모서리 AD, BC, FG 위에 $\overline{DP} = \overline{BQ} = \overline{GR} = 1$ 인 세 점 P, Q, R 가 있다. 평면 PQR 와 평면 CGHD 가 이루는 각의 크기를 θ 라 할 때,

 $\cos\theta$ 의 값은? (단, $0 < \theta < \frac{\pi}{2}$)

- $\bigcirc 1 \ \, \frac{3\sqrt{11}}{11} \qquad \bigcirc 2 \ \, \frac{2\sqrt{11}}{11} \qquad \bigcirc 3 \ \, \frac{\sqrt{11}}{11} \qquad \bigcirc 4 \ \, \frac{\sqrt{10}}{10} \qquad \bigcirc 5 \ \, \frac{\sqrt{10}}{5}$

 $oldsymbol{04}$ 한 변의 길이가 6인 정사면체 OABC가 있다. 세 삼각형 riangleOAB, riangleOBC, △OCA에 각각 내접하는 세 원의 평면ABC 위로의 정사영을 각각 S_1 , S_2 , S_3 이라 하자. 그림과 같이 세 도형 S_1 , S_2 , S_3 으로 둘러싸인 어두운 부분의 넓이를 S라 할 때, $(S+\pi)^2$ 의 값을 구하시오.

- $oldsymbol{05}$ 좌표공간에서 두 점 $A(a,\ 1,\ 3),\ B(a+6,\ 4,\ 12)$ 에 대하여 선분 AB 를 1:2 로 내분하는 점의 좌표가 (5, 2, b) 이다. a+b 의 값은? ① 7 ② 8 ③ 9 ④ 10 ⑤ 11
- 06 좌표공간에 점 A $(9,\ 0,\ 5)$ 가 있고, xy 평면위에 타원 $\frac{x^2}{9}+y^2=1$ 이 있다. 타원위의 점 P 에 대하여 AP 의 최댓값을 구하시오.

 $oldsymbol{07}$ 좌표공간에서 중심의 x 좌표, y 좌표, z 좌표가 모두 양수인 구 S 가 x 축과 y 축에 각각 접하고 z 축과 서로 다른 두 점에서 만난다. 구 S 가 xy 평면과 만나서 생기는 원의 넓이가 64π 이고 z 축과 만나는 두 점 사이의 거리가 8일 때, 구의 반지름의 길이는? ① 11 ② 12 ③ 13 ④ 14 ⑤ 15

공부는 정리다. 오늘의 핵심을 써보자.

핵심정리

23강

공간벡터의 정분과 연산

공간벡터

공간에 주어진 벡터를 공간벡터라 한다.

참고 벡터의 정의는 평면과 공간에서 마찬가지로 적용된다. 이를 구별할 때는 평면벡터, 공간벡터라 한다.

예제 01 그림의 직육면체에 대하여 다음을 구하여라.

- (1) AB와 같은 벡터
- (2) AC와 크기가 같은 벡터

풀이

예제 02 직육면체 ABCD-EFGH에서

 $\overline{AB} = 3$, $\overline{AE} = 2$, $\overline{AD} = 2$ 라 할 때, 다음을 구하여라.

(1) $|\overrightarrow{AB}|$ (2) $|\overrightarrow{AC}|$ (3) $|\overrightarrow{AG}|$

풀이

예제 03 다음 직육면체에서

 $\overrightarrow{OA} = \overrightarrow{a}, \overrightarrow{OB} = \overrightarrow{b}, \overrightarrow{OC} = \overrightarrow{c}$ 라 할 때,

다음 벡터를 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 로 나타내어라.

(1) \overrightarrow{BO} (2) \overrightarrow{DF} (3) \overrightarrow{EF}

2 공간벡터의 성분

(1) 좌표공간 위의 세 점 $E_1(1,0,0), E_2(0,1,0), E_3(0,0,1)$ 의 위치벡 터를 각각 $\overrightarrow{e_1} = \overrightarrow{OE_1}, \overrightarrow{e_2} = \overrightarrow{OE_2}, \overrightarrow{e_3} = \overrightarrow{OE_3}$ 로 나타낸다.

(2) 좌표공간 위의 임의의 점 $A(a_1, a_2, a_3)$ 의 위치벡터 $\overrightarrow{a} = \overrightarrow{OA}$ 를 $\overrightarrow{e_1}$, $\overrightarrow{e_2}$, $\overrightarrow{e_3}$ 으로 나타내어 보자.

점 A에서 x축, y축, z축에 내린 수선의 발을 각각 $\mathbf{A}_1(a_1,0,0),\ \mathbf{A}_2(0,a_2,0),\ \mathbf{A}_3(0,0,a_3)$ 이라고 하면 벡터 \overrightarrow{a} 는

$$\overrightarrow{a} = \overrightarrow{OA_1} + \overrightarrow{OA_2} + \overrightarrow{OA_3} = a_1 \overrightarrow{e_1} + a_2 \overrightarrow{e_2} + a_3 \overrightarrow{e_3}$$

과 같이 나타낼 수 있다.

이때 a_1 , a_2 , a_3 을 통틀어 벡터 $\stackrel{\rightarrow}{a}$ 의 성분이라 하고, a_1 , a_2 , a_3 을 각각 벡터 $\stackrel{\rightarrow}{a}$ 의 x성분, y성분, z성분이라 한다. 공간벡터 $\stackrel{\rightarrow}{a}$ 는 성분을 이용하여

$$\stackrel{\rightarrow}{a}=(a_1,\,a_2,\,a_3)$$

과 같이 나타낸다.

3 공간벡터의 연산

 $\overrightarrow{OA} = \overrightarrow{a} = (a_1, a_2, a_3), \overrightarrow{OB} = \overrightarrow{b} = (b_1, b_2, b_3) \cong \mathbb{H},$

- (1) 두 공간벡터가 같을 조건 $\overrightarrow{a}=\overrightarrow{b} \quad \Leftrightarrow \quad a_1=b_1 \ , \ a_2=b_2, \ a_3=b_3$
- (2) 공간벡터의 크기 : $|\vec{a}| = \sqrt{{a_1}^2 + {a_2}^2 + {a_3}^2}$
- (3) 공간벡터의 성분에 의한 연산
 - $\overrightarrow{\bigcirc} \ \overrightarrow{ma} = (ma_1, \ ma_2, \ ma_3)$
 - $\bigcirc \vec{a} + \vec{b} = (a_1 + b_1, a_2 + b_2, a_3 + b_3)$
- (4) $\overrightarrow{AB} = (b_1 a_1, b_2 a_2, b_3 a_3)$
- (5) $|\overrightarrow{AB}| = \sqrt{(b_1 a_1)^2 + (b_2 a_2)^2 + (b_3 a_3)^2}$

에제 04 \vec{a} = (2, 1, 3), \vec{b} = (-1, 2, 4), \vec{c} = (0, 4, 5)일 때, $(\vec{a}+3\vec{b}-\vec{c})-(2\vec{c}-\vec{a})$ 의 크기를 구하시오.

예제 05 평행사변형 ABCD의 네 꼭짓점이 각각 A(2, 3, 1), B(4, 3, 1), C(6, -5, 3), D(a, b, c)일 때, a+b+c의 값은?

풀이

예제 06 좌표공간에서 두 점 A(3, 1, 5), B(2, 3, 7)이 있다. 이 때, 벡터 \overrightarrow{AB} 와 평행한 단위벡터를 $\overrightarrow{e}=(a, b, c)$ 라고 할 때, a+b+c의 값은?

풀이

- 예제 $\overrightarrow{07}$ 벡터 \overrightarrow{a} = $(-2,\,1,\,2)$ 와 방향이 반대이고 크기가 9 인 벡터를 $\overrightarrow{b} = (x, y, z)$ 라 할 때, x+y+z의 값은?

 - $\bigcirc 1 5$ $\bigcirc 2 3$ $\bigcirc 3 \bigcirc 0$

- **4** 3
- **⑤** 5

예제 08 두 벡터 $\vec{a} = (-4, -2, 2), \vec{b} = (1, 3, -2)$ 에 대하여

 $|\vec{a}+t\vec{b}|$ 의 값은 $t=\alpha$ 일 때, 최솟값 β 를 갖는다. $\alpha\beta$ 의 값은?

- $\bigcirc \sqrt{6}$
- ② $\sqrt{10}$
- $3 2 \sqrt{6}$
- (4) $2\sqrt{10}$ (5) $4\sqrt{6}$

풀이

4 공간벡터의 내적

두 공간벡터 $\stackrel{\rightarrow}{a}=(a_1,\ a_2,\ a_3),\ \stackrel{\rightarrow}{b}=(b_1,\ b_2,\ b_3)$ 이 이루는 각의 크기를 $heta(0 \leq heta \leq \pi)$ 라고 할 때,

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$$
$$= a_1 b_1 + a_2 b_2 + a_3 b_3$$

예제 09 그림과 같이 한 모서리의 길이가 3인 정육면체에서 다음을 구하여라.

- (1) $\overrightarrow{AB} \cdot \overrightarrow{AC}$
- (2) $\overrightarrow{AB} \cdot \overrightarrow{AH}$
- (3) $\overrightarrow{AC} \cdot \overrightarrow{AH}$

- 에제 10 다음 두 벡터의 내적을 구하여라. $\vec{a} = (3, -1, -2), \vec{b} = (2, -3, 1)$
- 풀이
 - 5 두 공간벡터가 이루는 각의 크기

두 공간벡터 $\overrightarrow{a}=(a_1,a_2,a_3), \ \overrightarrow{b}=(b_1,b_2,b_3)$ 가 이루는 각의 크기를 $\theta (0 \le \theta \le \pi)$ 라고 하면

$$\cos\theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} = \frac{a_1b_1 + a_2b_2 + a_3b_3}{\sqrt{a_1^2 + a_2^2 + a_3^2} \sqrt{b_1^2 + b_2^2 + b_3^2}}$$

6 공간벡터의 내적과 수직, 평행

 $\vec{a} \neq \vec{0}, \quad \vec{b} \neq \vec{0} \quad \text{2} \quad \text{II},$

- (1) 수직조건 : $\vec{a} \perp \vec{b} \iff \vec{a} \cdot \vec{b} = 0$
- (2) 평행조건 : $\vec{a} /\!\!/ \vec{b} \Leftrightarrow \vec{a} \cdot \vec{b} = \pm |\vec{a}| |\vec{b}|$
- 예제 11 두 벡터 $\vec{a}=(2,\ -1,5),\ \vec{b}=(6,\ -3,\ -3)$ 이 이루는 각의 크기를 구하여라.
- 풀이
- 예제 12 다음 두 벡터 \overrightarrow{a} , \overrightarrow{b} 가 수직일 때, k의 값을 구하여라. $\vec{a} = (3, 5, k), \quad \vec{b} = (10, k, 1)$
- 풀이

7 공간벡터의 내적의 성질 (1) 교환법칙 : $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$

- (2) 분배법칙 : $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$

$$(\vec{a} + \vec{b}) \cdot \vec{c} = \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c}$$

(3) 결합법칙 : $(\vec{ka}) \cdot \vec{b} = \vec{a} \cdot (\vec{kb}) = \vec{k} (\vec{a} \cdot \vec{b})$

참고

- (1) $|\vec{a} + \vec{b}|^2 = |\vec{a}|^2 + 2\vec{a} \cdot \vec{b} + |\vec{b}|^2$
- (2) $|\vec{a} \vec{b}|^2 = |\vec{a}|^2 2\vec{a} \cdot \vec{b} + |\vec{b}|^2$
- (3) $(\vec{a} + \vec{b}) \cdot (\vec{a} \vec{b}) = |\vec{a}|^2 |\vec{b}|^2$
- 예제 13 정사면체 OABC에서 꼬인 위치에 있는 두 모서리 OA와 BC는 서로 수직임을 증명하여라.

공부는 정리다. 오늘의 핵심을 써보자.

핵심정리	

직선의 방정식(1)

1 직선의 벡터방정식과 방향벡터

그림과 같이 좌표공간에 점 $\mathrm{P}_0(x_0,\,y_0,\,z_0)$ 을 지나고 영벡터가 아닌 벡 터 $\stackrel{\rightarrow}{u}=(a,\ b,\ c)$ 에 평행한 직선 l위의 임의의 점을 $\mathrm{P}(x,\ y,\ z)$ 라고 하면 $\overrightarrow{P_0P} / \overrightarrow{u}$ 이므로

 $\overrightarrow{P_0P} = \overrightarrow{tu}$ (단, t는 실수), $\overrightarrow{OP_0} = \overrightarrow{p_0}$, $\overrightarrow{OP} = \overrightarrow{p}$ 라고 하면,

$$\overrightarrow{\mathbf{P}_0\mathbf{P}} = \overrightarrow{p} - \overrightarrow{p_0} = t\overrightarrow{u} \text{ ,}$$

$$rac{\overrightarrow{p}}{p} = \overrightarrow{p_0} + \overrightarrow{tu} \quad \cdots \quad \boxed{1}$$

이때, ①을 직선 l의 벡터방정식이라고 하며

벡터 $\stackrel{\rightarrow}{u}=(a,\ b,\ c)$ 를 직선 l의 방향벡터라고 한다.

한 점을 지나고 주어진 벡터에 평행한 직선의 방정식

점 $\mathbf{P}_0(x_0,\,y_0,\,z_0)$ 을 지나고, 방향벡터 $\overrightarrow{u}=(a,b,c)$ 에 평행한 직선의 방정식

$$\frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c}$$
 (단, $abc \neq 0$)

설명 위의 그림에서 $\overset{
ightarrow}{p=}\overset{
ightarrow}{p_0}+\overset{
ightarrow}{tu}$ 를 성분을 이용하여 나타내면

$$(x, y, z) = (x_0 + at, y_0 + bt, z_0 + ct)$$

$$x = x_0 + at$$
, $y = y_0 + bt$, $z = z_0 + ct$

여기서, $abc \neq 0$ 일 때, t를 소거하면

$$\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$$

- **참고** 점 $\mathbf{P}_0(x_0,\,y_0,\,z_0)$ 을 지나고, 방향벡터 $\overset{
 ightarrow}{u}=(a,b,c)$ 에 평행한 직선의 방정식에서 abc=0인 경우의 직선의 방정식
 - (1) a,b,c중 하나만 0인 경우

예)
$$a \neq 0, \ b \neq 0, \ c = 0$$
일 때, $\frac{x - x_0}{a} = \frac{y - y_0}{b}, \quad z = z_0$

- (2) a,b,c중 두 개가 0인 경우 예) $a \neq 0$, b=0, c=0일 때, $y=y_0$, $z=z_0$
- **예제 01** 점 A(1, 2, 3)을 지나고 $\stackrel{
 ightarrow}{u}=(-\,2,\ 1,\ 2)$ 에 평행한 직선의 방정식을 구하여라.
- 풀이
- 예제 02 점 A(1, 2, 3)을 지나고 $\overrightarrow{u} = (0, 3, 4)$ 에 평행한 직선의 방정식을 구하여라.
- 풀이
- **예제 03** 점 A(1, 2, 3)을 지나고 $\overrightarrow{u} = (0, 0, 1)$ 에 평행한 직선의 방정식을 구하여라.
- 풀이
- **예제 04** 점 (0, 2, -3)을 지나고, 직선 $\frac{x+1}{2} = y 3 = \frac{2-z}{3}$ 에 평행한 직선의 방정식을 구하여라.
- 풀이

3 두 점을 지나는 직선의 방정식

두 점 A (x_1,y_1,z_1) , B (x_2,y_2,z_2) 를 지나는 직선의 방정식

$$\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1} = \frac{z-z_1}{z_2-z_1} \text{ (단,} x_1 \neq x_2, \ y_1 \neq y_2, \ z_1 \neq z_2\text{)}$$

설명 두 점 A (x_1,y_1,z_1) , B (x_2,y_2,z_2) 를 지나는 직선의 방정식의 방향벡터는 $\overrightarrow{AB} = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$ 이다. 위의 직선은 한 점 $\mathrm{A}\left(x_{1},y_{1},z_{1}
ight)$ 을 지나고, 방향벡터가 $\overrightarrow{\mathrm{AB}}$ 인 직선이다.

예제 05 두 점 A(1, 3, 2), B(-1, 0, 1)을 지나는 직선의 방정식을 구하여라.

풀이

예제 06 A(1, 0, 3), B(1, 2, −1)을 지나는 직선의 방정식을 구하여라.

풀이

예제 07 A(1, 0, 3), B(1, 2, 3)을 지나는 직선의 방정식을 구하여라.

풀이

 $oxedge{ exttt{9M}}$ $oxedge{ exttt{08}}$ 좌표공간에서 점 $(1,\,-2,\,3)$ 을 지나고 y 축과 수직으로 만나는 직선 l의 방정식은?

『참고》 y=x, z=0

공부는 정리다. 오늘의 핵심을 써보자.

핵심정리

직선의 방정식(2)

1 두 직선이 이루는 각의 크기

두 직선이 이루는 각의 크기는 두 직선의 방향벡터가 이루는 각의 크 기와 같다.

두 직선 $g_1,\ g_2$ 의 방향벡터가 각각 $\overrightarrow{u_1}=(a_1,b_1,c_1)$, $\overrightarrow{u_2}=(a_2,b_2,c_2)$ 일

때, 두 직선이 이루는 각의 크기를 $\theta(0 \leq \theta \leq \frac{\pi}{2})$ 라 하면

$$\cos\theta = \frac{|\overrightarrow{u_1} \cdot \overrightarrow{u_2}|}{|\overrightarrow{u_1}| |\overrightarrow{u_2}|} = \frac{|a_1a_2 + b_1b_2 + c_1c_2|}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}}$$

참고 두 직선이 이루는 각은 두 가지이나 주로 두 각 중 크지 않은 각을 말한다.

예제 01 좌표공간에서 두 직선

$$l_1: x-3 = \frac{y-1}{2} = \frac{z+2}{-3}, \ l_2: \frac{x+1}{-2} = \frac{y-1}{3} = 1-z$$

가 이루는 예각의 크기 θ 는?

풀이

<u>예제 02</u> 다음 두 직선이 이루는 예각의 크기는?

$$x-4 = y+2 = -2(z+3)$$

$$x+3=-(z-1), y=2$$

2 두 직선의 수직, 평행조건

두 직선 $g_1,\ g_2$ 의 방향벡터가 각각 $\overrightarrow{u_1}=(a_1,b_1,c_1),\ \overrightarrow{u_2}=(a_2,b_2,c_2)$ 일 때

(1) 두 직선이 평행

$$g_1 /\!\!/ g_2 \Leftrightarrow \overrightarrow{u_1} /\!\!/ \overrightarrow{u_2}$$
 $\Leftrightarrow \overrightarrow{u_1} = t\overrightarrow{u_2}$ $\Leftrightarrow (a_1, b_1, c_1) = t(a_2, b_2, c_2)$ (단, t 는 0이 아닌 실수)

(2) 두 직선이 수직

$$\begin{split} g_1 \bot \ g_2 \ \Leftrightarrow \ \overrightarrow{u_1} \bot \overrightarrow{u_2} \ \Leftrightarrow \ \overrightarrow{u_1} \cdot \overrightarrow{u_2} = 0 \\ \Leftrightarrow \ (a_1, b_1, c_1) \cdot (a_2, b_2, c_2) = 0 \\ \Leftrightarrow \ a_1 a_2 + b_1 b_2 + c_1 c_2 = 0 \end{split}$$

예제 03 두 직선
$$\frac{x-2}{3} = \frac{y+1}{a+1} = \frac{z}{-2}$$
, $\frac{x-1}{2} = \frac{y}{a} = \frac{z-3}{a+4}$ 이 수직일 때, 양수 a 의 값은?

풀이

예제 04 두 직선
$$l_1: \frac{x-2}{4}=\frac{y+2}{2a}=\frac{z}{b-2},\ l_2: \frac{x+4}{3}=\frac{y-3}{-2}=\frac{z-2}{-2}$$
 가 서로 평행할 때, 두 실수 $a,\ b$ 의 합 $a+b$ 의 값은?

에제 05 원점 O 에서 직선 $x-1=\frac{y+1}{2}=-z+1$ 에 내린 수선의 발을 H 라 할 때, 선분 OH의 길이는?

풀이1

예제 06 직선 $x-4=\frac{y}{2}=z+1$ 과 구 $x^2+y^2+z^2=17$ 이 만나는 두 점의 중점의 좌표를 (a, b, c)라 할 때, a+b+c의 값은?

① -1 ② $-\frac{1}{2}$ ③ 0 ④ $\frac{1}{2}$ ⑤ 1

풀이

예제 07 두 직선 $x+1=\frac{y-3}{2}=4-z, \ \frac{x-1}{2}=y+4=z+2$ 에 모두 수직이고 점 (1, 2, -3)을 지나는 직선이 zx평면과 만나는 점의 좌표를 (a, b, c)라 할 때, a+b+c의 값은?

#	공부는 정리다. 오늘의 핵심을 써보자.	
	핵심정리	

명면의 방정식(1)

명면의 방정식

점 $P_0(x_0, y_0, z_0)$ 를 지나고, $\stackrel{\rightarrow}{n}=(a,b,c)$ 에 수직인 평면의 방정식 $a(x-x_0) + b(y-y_0) + c(z-z_0) = 0$

 $n = (a, b, c) \equiv$ 평면의 법선벡터라 한다.

참고
$$a(x-x_0)+b(y-y_0)+c(z-z_0)=0$$
을 전개하면
$$ax+by+cz-(ax_0+by_0+cz_0)=0$$
이다.
$$-(ax_0+by_0+cz_0)=d$$
라 하면 $ax+by+cz+d=0$ 이다.

절명 $\mathrm{P}_0(x_0,\,y_0,\,z_0)$ 를 지나고, $\stackrel{
ightharpoonup}{n}=(a,b,c)$ 에 수직인 평면 lpha를 구하여 보자.

평면 α 의 임의의 점 $\mathbf{P}(x,y,z)$ 라고 하면 $\overrightarrow{\mathbf{P}_0\mathbf{P}}\cdot\overrightarrow{n}=0$ $\overrightarrow{\mathrm{OP}_0} = \overrightarrow{p_0}$, $\overrightarrow{\mathrm{OP}} = \overrightarrow{p}$ 라 하면 $(\overrightarrow{p} - \overrightarrow{p_0}) \cdot \overrightarrow{n} = 0 \cdots$ ①을 성분으로 나타내면 $a(x-x_0)+b(y-y_0)+c(z-z_0)=0$

예제 $oldsymbol{\mathsf{O1}}$ 점 $\mathsf{A}(\mathsf{1,\ 2,\ 0})$ 을 지나고 벡터 $\overset{
ightarrow}{h}$ =(-1, 2, 1)에 수직인 평면의 방정식을 구하여라.

예제 02 점 P(1, 2, 3)을 지나고 직선 $2-x=\frac{y-1}{2}=z+3$ 에 수직인 평면의 방정식을 구하여라.

풀이

예제 03 두 점 P(2, 3, 4), Q(1, 4, 3)을 지나는 직선에 수직이고, 점 P를 지나는 평면의 방정식을 구하여라.

풀이

예제 04 직선 $\frac{x-1}{-3} = \frac{y+2}{b} = \frac{z}{-1}$ 와 평면 ax-3y+3z-1=0이 평행할 때, a+b의 값을 구하여라.

풀이

예제 05 구 $x^2 + (y-1)^2 + (z+2)^2 = 3$ 위의 점 (p, 0, -1)을 지나고 이 구에 접하는 평면의 방정식은 x + ay + bz + c = 0이다. 실수 a, b, c의 합 a + b + c의 값은? (단, p > 0) ① -2 ② -1 ③ 0 ④ 1 ⑤ 2

예제 06 세 점 (a, 0, 0), (0, b, 0), (0, 0, c)을 지나는 평면의 방정식은 $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ 임을 보여라. (단, $abc \neq 0$)

예제 07 세 점 A(1, 1, -1), B(0, 1, -3), C(4, 3, 1)을 지나는 평면의 방정식을 구하여라.

공부는 정리다. 오늘의 핵심을 써보자.

4				
	핵심정리			
-		l		

평면의 방정식(2)

T F 평면<u>이 이루는 각의 크기</u>

두 평면이 이루는 각의 크기는 두 평면의 법선벡터가 이루는 각의 크기 와 같다. 두 평면 α , β 의 법선벡터가 각각 $\overrightarrow{n_1} = (a_1, b_1, c_1)$,

 $\overrightarrow{n_2} = (a_2,b_2,c_2)$ 일 때, 두 평면이 이루는 각의 크기를

$$heta(0 \leq heta \leq rac{\pi}{2})$$
라 하면

$$\cos\theta = \frac{\overrightarrow{|n_1|} \cdot \overrightarrow{n_2}|}{|\overrightarrow{n_1|}| |\overrightarrow{n_2|}|} = \frac{|a_1a_2 + b_1b_2 + c_1c_2|}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}}$$

예제 01 다음 두 평면이 이루는 각의 크기는?

3x + 4y + 5z = 1, -x + 7y + 10z = 5

2 두 평면의 수직, 평행조건

두 평면 lpha, eta의 법선벡터가 각각 $\overrightarrow{n_1} = (a_1,b_1,c_1),$ $\overrightarrow{n_2} = (a_2,b_2,c_2)$ 일 때

(1) 두 평면이 평행

$$\alpha /\!\!/ \beta \iff \overrightarrow{n_1} /\!\!/ \overrightarrow{n_2} \\ \iff \overrightarrow{n_1} = t \overrightarrow{n_2}$$

 \Leftrightarrow $(a_1,b_1,c_1)=t(a_2,b_2,c_2)$ (단, t는 0이 아닌 실수)

(2) 두 평면이 수직

$$\alpha \perp \beta \iff \overrightarrow{n_1} \perp \overrightarrow{n_2} \iff \overrightarrow{n_1} \cdot \overrightarrow{n_2} = 0$$
$$\iff (a_1, b_1, c_1) \cdot (a_2, b_2, c_2) = 0$$

 $\Leftrightarrow \ a_1 a_2 + b_1 b_2 + c_1 c_2 = 0$

참고

예제 02 두 평면 $\alpha: 2x + ay + 6z + 1 = 0$, $\beta: x - y + bz + 2 = 0$ 이 평행할 때, a, b의 값을 구하여라.

풀이

예제 03 두 평면 $\alpha:(a-2)x-2y+z=3,\; \beta:2x-(a+1)y+2z=1$ 이 수직이 되도록 하는 상수 a의 값을 구하여라.

예제 04 평면 2x-y=0과 평면 x-3y+kz+2=0이 이루는 각의 크기가 60° 일 때, 양의 상수 k의 값은?

풀이

3 평면과 직선이 이루는 각

직선의 방향벡터가 $\overset{
ightarrow}{u}$, 평면의 법선벡터가 $\overset{
ightarrow}{n}$ 일 때, 평면과 직선이 이루는 각의 크기를 $heta(0 \le heta \le \frac{\pi}{2})$ 라 하면

$$\cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta = \frac{|\overrightarrow{u} \cdot \overrightarrow{n}|}{|\overrightarrow{u}| |\overrightarrow{n}|}$$

참고

(1) 직선과 평면이 평행

(2) 직선과 평면이 수직

 $g \perp \alpha \iff \overrightarrow{u} /\!\!/ \overrightarrow{n} \iff \overrightarrow{u} = \overrightarrow{kn}$

예제 05 직선 $\frac{x+1}{3} = \frac{y-1}{2} = z$ 과 평면 3x + 2y - z = 2가 이루는 각의 크기를 θ 라 할 때, $\sin \theta$ 의 값을 구하여라.

풀이

예제 06 좌표공간에서 두 점 $\mathrm{A}\left(0,\,-1,3\right)$, $\mathrm{B}\left(1,1,2\right)$ 와 평면 2x+y+z=4에 대하여 선분 AB의 평면 α 위로의 정사영의 길이는?

풀이

예제 07 평면 x-2y+2z=5 위에 반지름의 길이가 3인 원이 있다.

- 이 원의 xy 평면 위로의 정사영이 넓이는?

- ① $6\sqrt{2}\pi$ ② 6π ③ $3\sqrt{3}\pi$
- 4 3π
- ⑤ $2\sqrt{3}\pi$

공부는 정리다. 오늘의 핵심을 써보자.

핵심정리

평면의 방정식(3)

점과 평면사이의 거리

점 $P(x_1, y_1, z_1)$ 와 평면 ax+by+cz+d=0사이의 거리는

$$\frac{\left|\left|ax_1+by_1+cz_1+d\right.\right|}{\sqrt{a^2+b^2+c^2}}$$

예제 01 점 P(1, 3, 2)와 평면 3x-2y+6z-2=0 사이의 거리를 구하여라.

풀이

예제 02 평행한 두 평면 2x+y-2z-5=0과 2x + y - 2z + 10 = 0 사이의 거리를 구하면?

풀이

참고 구와 평면

예제 $\mathbf{03}$ 원점과의 거리가 $2\sqrt{3}$ 인 평면 $\alpha:x+y+z+a=0$ 이 구 $(x-1)^2 + (y+2)^2 + (z-1)^2 = 25$ 와 만나서 생기는 원의 넓이는?(단, *a* > 0)

- ① 12π
- ② 13π
- 314π
- 4 15π
- \bigcirc 16π

풀이

예제 04 좌표공간에서 원점을 중심으로 하고 반지름의 길이가 9인 구가 세 점 A(18,0,0), B(0,9,0), C(0,0,9)를 지나는 평면에 의하여 잘린 도형의 넓이는 $a\pi$ 이다. 이때, a의 값을 구하시오.

- 예제 05 반지름의 길이가 5인 구 S가 있다. 구 S를 xy평면으로 자른 단면의 방정식이 $(x-1)^2 + (y-1)^2 = 9$ 일 때, 구 S의 중심의 좌표를 구하여라.
- 풀이

- 평면 x+y+z=10에 이르는 거리의 최솟값은?
- 풀이

2 공간벡터를 이용한 구의 방정식

점 $\mathrm{C}(a,\,b,\,c)$ 을 중심으로 하고 반지름의 길이가 r인 구 위의 한 점을 P(x, y, z)라고 하면 $|\overrightarrow{\mathsf{CP}}| = r$ 따라서, 구의 방정식은

$$(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2$$

예제 07 두 점 A(1, 2, -3), B(-1, 2, 1) 에 대하여 $\overrightarrow{AP} \cdot \overrightarrow{BP} = 0$ 을 만 족시키는 점 P가 나타내는 도형의 방정식을 구하여라.

# 공부는 정리다. 오늘의 핵심을 써보자.	
핵심정리	

찍선과 평면의 방정식 특강

두 평면의 교선

평행하지 않은 두 평면의 교선은 직선이다.

[참고] y=x, z=0

예제 01 다음 두 평면의 교선의 방정식을 구하여라.

x+y-z-1=0, 2x+y-3z-4=0

2 축을 포함하는 평면의 방정식

ax + by + cz = 0 0 1

- (1) $a=0,\ bc\neq 0$ 이면 by+cz=0 : x축 포함하는 평면
- (2) b=0, $ac \neq 0$ 이면 ax+cz=0: y축 포함하는 평면
- (3) c=0, $ab \neq 0$ 이면 ax+by=0 : z축 포함하는 평면
- 보기 y=x : z축을 포함하는 평면

참고 2015 수능완성 실전모의고사 1회 29번

29 좌표공간에서 구

3 정팔면체와 평면

|x| + |y| + |z| = 1

z=0이면 |x| + |y| = 1

참고 세 점 $(a,0,0),\ (0,b,0),\ (0,0,c)$ 을 지나는 평면의 방정식은

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

참고 2015.10월 시행 교육청 모의고사 19번

19. 그림과 같이 한 변의 길이가 2인 정팔면체 ABCDEF가 있다. 두 삼각형 ABC, CBF의 평면 BEF 위로의 정사영의 넓이를 각각 S_1 , S_2 라 할 때, $S_1 + S_2$ 의 값은? [4점]

- $\textcircled{4} \quad \frac{5\sqrt{3}}{3}$
- ⑤ $2\sqrt{3}$

<mark>예제 02</mark> 정육면체 ABCD — EFGH에서 평면 AFG와 평면 AGH가 이루는 각의 크기를 θ 라 할 때, $\cos^2\theta$ 의 값은?

- $\textcircled{1} \ \frac{1}{6}$
- $2 \frac{1}{5}$
- $\bigcirc \frac{1}{3}$
- ⑤ $\frac{1}{2}$

공부는 정리다. 오늘의 핵심을 써보자.

핵심정리

공간벡터 연습문제

 $\overline{\mathbf{O1}}$ 그림과 같이 $\overline{AB} = \overline{AD} = 4$, $\overline{AE} = 8$ 인 직육면체 ABCD $\pm FGH$ 에서 모서리 AE를 1:3으로 내분하는 점을 P, 모서리 AB, AD, FG의 중점을 각각 Q,R,S라 하자. 선분 QR의 중점을 T라 할 때, 벡터 \overrightarrow{TP} 와 벡터 \overrightarrow{QS} 의 내적 $\overrightarrow{TP} \cdot \overrightarrow{QS}$ 의 값을 구하시오.

 $oldsymbol{02}$ 좌표공간의 점 ${
m A}\,(3,\,6,\,0)$ 에서 평면 $\sqrt{3}\,y-z=0$ 에 내린 수선의 발을 B라 할 때, $\overrightarrow{OA} \cdot \overrightarrow{OB}$ 의 값을 구하시오.

03 구 $x^2+y^2+z^2=1$ 위의 점 $\left(\frac{4}{5},\ \frac{3}{5},\ 0\right)$ 에서 구에 접하는 평면을 α , 점 $\left(0,\ \frac{3}{5},\ \frac{4}{5}\right)$ 에서 구에 접하는 평면을 β라 한다. 평면 α 위에 있는, 넓이가 100인 삼각형을 평면 β 위로 정사영시켜 얻은 도형의 넓이를 구하여라.

- **04** 좌표공간에서 직선 $l: \frac{x}{2} = 6 y = z 6$ 과 평면 α 가 점 $\mathrm{P}(2,\,5,\,7)$ 에서 수직으로 만난다. 직선 l 위의 점 $\mathrm{A}(a,\,b,\,c)$ 와 평면 lpha 위의 점 Q에 대 하여 $\overrightarrow{\mathrm{AP}} \cdot \overrightarrow{\mathrm{AQ}} = 6$ 일 때, a+b+c의 값은? (단, a>0)

 - ① 15 ② 16 ③ 17 ④ 18 ⑤ 19

05 좌표공간에서 직선 $\frac{x}{2} = y = z + 3$ 과 평면 $\alpha : x + 2y + 2z = 6$ 의 교점을 A라 하자. 중심이 점 (1, -1, 5)이고 점 A를 지나는 구가 평면 α 와 만나서 생기는 도형의 넓이는 $k\pi$ 이다. k의 값을 구하시오.

- $oldsymbol{06}$ 좌표공간에서 정사면체 ABCD의 한 면 ABC는 평면 2x-y+z=4 위에 있고, 꼭짓점 D는 평면 x+y+z=3 위에 있다 삼각형 ABC의 무게중심의 좌표가 (1, 1, 3)일 때, 정사면체 ABCD의 한 모서리의 길이는?

- (1) $2\sqrt{2}$ (2) 3 (3) $2\sqrt{3}$ (4) 4 (5) $3\sqrt{2}$

07좌표공간에 네 점 A(2, 0, 0), B(0, 1, 0), C(-3, 0, 0), D(0, 0, 2) 를꼭짓점으로 하는 사면체 ABCD가 있다. 모서리 BD 위를 움직이는점 P에 대하여 $\overline{PA}^2 + \overline{PC}^2$ 의 값을 최소로 하는 점 P의 좌표를(a, b, c)라 할 때, $a+b+c=\frac{q}{p}$ 이다. p+q의 값을 구하시오.(단, p, q는 서로소인 자연수이다.)

MEMO	
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••

정답

예제 $oldsymbol{\mathsf{01}}$ 구하는 점을 $\mathrm{P}(x,y)$ 라 하면 점 P 에서 직선 x=-1에서 내린 수선의 발을 H라 할 때. $\overline{PF} = \overline{PH}$ 이므로 $\sqrt{(x-1)^2+y^2} = \sqrt{(x+1)^2+(y-y)^2} = |x+1|$ OICI. 양변을 제곱하면 $(x-1)^2 + y^2 = (x+1)^2$ 이므로 정리하면 $y^2 = 4x$ 이다.

(2) $y^2 = 4(-3)x = -12x$ 예제 02 (1) $y^2 = 4 \cdot 2 \cdot x = 8x$ (3) 초점의 좌표 : $(\frac{1}{4},0)$, 준선의 방정식 : $x=-\frac{1}{4}$

(4) 초점의 좌표 : $(-\frac{1}{2},0)$, 준선의 방정식 : $x=\frac{1}{2}$

예제 03 (1) $x^2 = 4(1)y = 4y$ (2) $x^2 = 4(-2)y = -8y$ (3) 초점의 좌표 : (0,2) , 준선의 방정식 : y=-2(4) 초점의 좌표 : (0,-1), 준선의 방정식 : y=1

예제 04 (1) 포물선의 방정식 : $y^2 = 4x \rightarrow (y-1)^2 = 4(x-2)$ (2) 꼭짓점의 좌표 : (0,0) → (2,1) (3) 초점의 좌표 : (1,0) → (1+2,1)

(4) 준선의 방정식 $: x = -1 \rightarrow x = -1 + 2$

(5) 축의 방정식 : y=0 \rightarrow y=1

예제 05

(1) $(y-2)^2 = 4(x-1)$ ① 꼭짓점의 좌표 : (1, 2) ① 꼭짓점의 좌표 : (-2, 1)

② 초점의 좌표 : (2, 2) ② 초점의 좌표 : (-2.3)

(2) $(x+2)^2 = 8(y-1)$

③ 준선의 방정식 : x = 0③ 준선의 방정식 : y = -1

④ 축의 방정식 : y = 2④ 축의 방정식 : x = -2

(4) $x^2 - 2x - 4y + 9 = 0$ (3) $y^2 - 4y + 4x = 0$

① 꼭짓점의 좌표: (1, 2) ① 꼭짓점의 좌표: (1, 2)

② 초점의 좌표 : (0, 2) ② 초점의 좌표 : (1, 3)

③ 준선의 방정식 : x=2③ 준선의 방정식 : y = 1

④ 축의 방정식 : y=2④ 축의 방정식 : x=1

예제 01 구하는 점을 P(x,y)로 놓으면 $\overline{PF} + \overline{PF'} = 10$ 에서

$$\sqrt{(x-3)^2+y^2} + \sqrt{(x+3)^2+y^2} = 10$$
 이므로,

$$\sqrt{(x-3)^2 + y^2} = 10 - \sqrt{(x+3)^2 + y^2}$$

양변 제곱하여 정리하면 $3x + 25 = 5\sqrt{(x+3)^2 + y^2}$ 이다.

다시 양변 제곱하여 정리하면 $16x^2 + 25y^2 = 400$ 이므로

$$\therefore \quad \frac{x^2}{25} + \frac{y^2}{16} = 1$$

예제 02 $\frac{x^2}{25} + \frac{y^2}{16} = 1$

예제 $oldsymbol{03}$ 장축의 길이 : 4, 단축의 길이 : 2, 조점의 좌표 : $(\sqrt{3},0),(-\sqrt{3},0)$

예제 04 (1) 초점의 좌표 : (0,3), (0,-3), 단축의 길이 : 8, 장축의 길이 : 10

(2) 초점의 좌표 : $(0, \frac{\sqrt{3}}{2})$, $(0, -\frac{\sqrt{3}}{2})$, 단축의 길이 : 1, 장축의 길이 : 2

예제 **05** (6,2),(0,2)

에제 06 주어진 식을 정리하면 $4(x-1)^2+9(y-2)^2=16$ 이다.

양변을 16으로 나누어 정리하면 $\frac{(x-1)^2}{2^2} + \frac{(y-2)^2}{\left(\frac{4}{3}\right)^2} = 1$ 이다.

평행이동한 타원임을 알 수 있다.

주어진 타원은 $\frac{x^2}{2^2} + \frac{y^2}{\left(\frac{4}{3}\right)^2} = 1$ 을 x축으로 1만큼

y축으로 2만큼 평행이동한 타원이다.

3강

예제 01 $|\overline{PA} - \overline{PB}| = 4$ 에서 $\overline{PA} = \overline{PB} \pm 4$ 이므로,

$$\sqrt{(x+5)^2 + y^2} = \sqrt{(x-5)^2 + y^2} \pm 4$$

양변을 제곱하여 정리하면, $5x-4=\pm 2\sqrt{(x-5)^2+y^2}$

다시 양변을 제곱하여 정리하면,

$$21x^2 - 4y^2 = 84$$
, $\therefore \frac{x^2}{4} - \frac{y^2}{21} = 1$

•• 믿고 보는! 세식 쌤의 기하와 벡터••

예제 02
$$\frac{x^2}{4} - \frac{y^2}{5} = 1$$

예제 03 4

예제 04)
$$\frac{x^2}{5} - \frac{y^2}{4} = -1$$

예제 05 2

예제 06 주어진 쌍곡선은 $x^2-y^2=-1$ 을 x축으로 -1만큼 평행이동한 쌍곡선이다.

	$x^2 - y^2 = -1$	$(x+1)^2 - y^2 = -1$
초점의 좌표	$(0, \pm \sqrt{2})$	$(-1, \pm \sqrt{2})$
꼭짓점의 좌표	(0,1), (0, -1)	(-1, 1), (-1, -1)
주축의 길이	2	2
점근선의 방정식	$y = \pm x$	$y = \pm (x+1)$

예제 01 (1)
$$\frac{dy}{dx} = \frac{x}{y}(y \neq 0)$$
 (2) $\frac{dy}{dx} = -\frac{y}{x}(x \neq 0)$

(2)
$$\frac{dy}{dx} = -\frac{y}{x}(x \neq 0)$$

예제 02 (1)
$$x+y=\sqrt{2}$$
 (2) $y=x+1$ (3) $2x+y=8$ (4) $2x-2\sqrt{3}y=1$

(2)
$$y = x + 1$$

(3)
$$2x + y = 8$$

(4)
$$2x - 2\sqrt{3}y = 1$$

예제 03 강의 참고

(1)
$$x_1x + y_1y = r^2$$

(2)
$$y_1 y = 2p(x + x_1)$$

(3)
$$\frac{x_1x}{a^2} + \frac{y_1y}{b^2} =$$

(1)
$$x_1x + y_1y = r^2$$
 (2) $y_1y = 2p(x+x_1)$ (3) $\frac{x_1x}{a^2} + \frac{y_1y}{b^2} = 1$ (4) $\frac{x_1x}{a^2} - \frac{y_1y}{b^2} = 1$

예제 04 y = -x - 1, $y = \frac{1}{2}x + 2$

예제 05
$$y = \pm \sqrt{2}(x+2)$$

예제 06
$$y = \pm \frac{1}{\sqrt{3}}(x-1)$$

5강

পোমা 01 (1) $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{1 - \frac{1}{t^2}}{1 + \frac{1}{t^2}} = \frac{t^2 - 1}{t^2 + 1}$

(2)
$$\frac{dx}{d\theta} = 1 - \cos\theta$$
, $\frac{dy}{d\theta} = \sin\theta$ 이므로 $\frac{dy}{dx} = \frac{dy}{d\theta} \cdot \frac{d\theta}{dx} = \frac{\sin\theta}{1 - \cos\theta}$

예제 02
$$y = -\sqrt{3}x + 2$$

예제 01 8 예제 02 $a^2 = 105$

예제 03 28

7강

01 ₁₂ **02** _① **03** ₁₂

04 4

05 ① **06** ① **07** $a^2 = 19$

8강

예제 01 6개 예제 02 (1) $\overrightarrow{AB} = \overrightarrow{OC} = \overrightarrow{c}$ (2) $-\overrightarrow{BC} = \overrightarrow{CB} = \overrightarrow{OA} = \overrightarrow{a}$

예제 03 $\sqrt{2}$

예제 04 (1) $\overrightarrow{\mathrm{EF}} = -\overrightarrow{b}$ (2) $\overrightarrow{\mathrm{BO}} = \overrightarrow{\mathrm{BC}} + \overrightarrow{\mathrm{CO}} = \overrightarrow{b} + (-\overrightarrow{a}) = -\overrightarrow{a} + \overrightarrow{b}$

(3) $\overrightarrow{DF} = \overrightarrow{DE} + \overrightarrow{EF} = -\overrightarrow{a} - \overrightarrow{b}$

예제 05 ②

예제 06 ②

예제 01 $\vec{3a-4b}$

예제 02 $x = \frac{3}{2}\vec{a} + \vec{b}$ 예제 03 $\frac{4}{13}$

예제 05 k=4

예제 06 4

예제 07 ②

예제 08 ③

예제 01 $\vec{a} = \overrightarrow{\mathrm{OA}}, \ \vec{b} = \overrightarrow{\mathrm{OB}}, \ \vec{p} = \overrightarrow{\mathrm{OP}}$ 라고 하면 $\overrightarrow{\mathrm{AP}} = \vec{p} - \vec{a}, \ \overrightarrow{\mathrm{AB}} = \vec{b} - \vec{a}$ $\overrightarrow{AP} = \frac{m}{m+n} \overrightarrow{AB} \text{ OI 므로} \qquad \overrightarrow{p} - \overrightarrow{a} = \frac{m}{m+n} (\overrightarrow{b} - \overrightarrow{a})$

예제 02 그림에서 변 BC의 중점을 M이라 하고, M의 위치벡터를 \overrightarrow{m} 이라고 하면 $\overrightarrow{m}=\frac{\overrightarrow{b}+\overrightarrow{c}}{2}$

또 ΔABC의 무게중심 G는 중선 AM을 2 : 1 로 내분하는 점이므로

$$\overrightarrow{g} = \frac{2 \cdot \overrightarrow{m} + 1 \cdot \overrightarrow{a}}{2 + 1} = \frac{2 \cdot \overrightarrow{m} + \overrightarrow{a}}{3}$$

그런데 $\overrightarrow{m}=\frac{\overrightarrow{b}+\overrightarrow{c}}{2}$ 에서 $2\overrightarrow{m}=\overrightarrow{b}+\overrightarrow{c}$ 이므로 $\overrightarrow{g}=\frac{\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}}{3}$

예제 03 $\overrightarrow{AB} = (6, -2)$, $|\overrightarrow{AB}| = 2\sqrt{10}$

(예제 04) $t = \frac{3}{4}$ (예제 05) ②

11강

예제 01 2

예제 02 ①

예제 03 ①

예제 04 ①

예제 05 ④

예제 06 ①

예제 01 3 예제 02 6

예제 03 (1)
$$|\vec{a} + \vec{b}|^2 = (\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b})$$

 $= \vec{a} \cdot \vec{a} + \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{b}$
 $= |\vec{a}|^2 + 2\vec{a} \cdot \vec{b} + |\vec{b}|^2$

(2)
$$|\vec{a} - \vec{b}|^2 = (\vec{a} - \vec{b}) \cdot (\vec{a} - \vec{b})$$

$$= \vec{a} \cdot \vec{a} - \vec{a} \cdot \vec{b} - \vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{b}$$

$$= |\vec{a}|^2 - 2\vec{a} \cdot \vec{b} + |\vec{b}|^2$$

(3)
$$(\overrightarrow{a} + \overrightarrow{b}) \cdot (\overrightarrow{a} - \overrightarrow{b}) = \overrightarrow{a} \cdot \overrightarrow{a} - \overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{a} - \overrightarrow{b} \cdot \overrightarrow{b}$$

$$= |\overrightarrow{a}|^2 - |\overrightarrow{b}|^2$$

예제 05
$$\theta=6$$

예제 05
$$heta=60$$
 $^{\circ}$ 예제 06 $heta=60$ $^{\circ}$

13강

예제 01
$$\frac{x-1}{-2} = \frac{y-2}{1}$$
 예제 02 $\frac{x}{2} = y-2$ 예제 03 $x=1$ 예제 04 $y=2$

예제 02
$$\frac{x}{2} = y - 2$$

예제
$$03$$
 $r=1$

예제 04
$$y=2$$

예제 05
$$\frac{x-1}{2} = \frac{y-3}{3}$$
 예제 06 $x=1$

예제 06
$$x=1$$

예제 07
$$y=1$$

예제 08 (1)
$$5(x-2)+4(y-3)=0$$
 (2) $-2(x-3)-5(y+4)=0$

$$(2) - 2(x-3) - 5(y+4) = 0$$

예제 09
$$\frac{\sqrt{5}}{5}$$
 예제 10 $heta=\frac{\pi}{4}$ 예제 11 2

예제 10
$$\theta = \frac{\pi}{4}$$

예제 12
$$a = -\frac{4}{3}$$

예제 13
$$(x-2)^2 + (y-1)^2 = 18$$

14강

이 이
$$v\left(\frac{\pi}{6}\right) = -2\sin\frac{\pi}{6} = -1$$
, $a\left(\frac{\pi}{6}\right) = -2\cos\frac{\pi}{6} = -\sqrt{3}$

예제 02 (1) 속도 :
$$\overrightarrow{v} = (f'(t), g'(t)) = (-4\sin t, 2\cos t)$$

(2) 가속도 :
$$\vec{a} = (f''(t), g''(t)) = (-4\cos t, -2\sin t)$$

예제 03
$$-\frac{4}{\pi}$$

예제 04 ①
$$e-2$$

예제 05
$$e-rac{1}{e}$$

01 ②

02 ③

03 ③

04 7 **05** 4 **06** 10

16강

예제 01 (1) \overline{AE} , \overline{AD} , \overline{BF} , \overline{BC}

(2) \overline{AD} , \overline{EH} , \overline{FG}

(3) $\overline{\text{CD}}$, $\overline{\text{GH}}$, $\overline{\text{EH}}$, $\overline{\text{AD}}$

예제 02 AB와 CD, AC와 BD, AD와 BC

예제 03 _{60°}

예제 04 (1) BC⊥AM, BC⊥DM 이므로 BC⊥(평면AMD)

(2) $\overline{BC} \perp (\overline{BC} + \overline{BC})$ (명면AMD)이므로 \overline{BC} 는 평면AMD의 모든 직선과 수직이다. 따라서, $\overline{BC} \perp \overline{AD}$ 이다.

예제 02 60

예제 03 $\frac{1}{3}$ 예제 04 $-\frac{1}{3}$

예제 05 ③

18강

예제 01

정다면체	한 면을 이루는 변의개수	한 꼭짓점에 모인 면의 개수	면의 개수	꼭짓점의 개수	모서리의 개수
정사면체	3	3	4	4	6
정육면체	4	3	6	8	12
정팔면체	3	4	8	6	12
정십이면체	5	3	12	20	30
정이십면체	3	5	20	12	30

예제 02 (1) 정팔면체 (2) 1:1

예제 03 ⑤

예제 04 ①

예제 05 ①

19강

예제 01 (1) EG

(2) △EFH

예제 02 $5\sqrt{3}$

예제 03 $2\sqrt{3}\pi$

예제 04 ③

예제 05 ②

예제 06 ⑤

20강

예제 01 (1) x축에 내린 수선의 발 : (a, 0, 0)

(2) y축에 내린 수선의 발 : (0, b, 0)

(3) z축에 내린 수선의 발 : (0, 0, c)

(4) xy평면에 내린 수선의 발 : (a, b, 0)

(5) yz평면에 내린 수선의 발 : (0, b, c)

(6) zx 평면에 내린 수선의 발 : (a, 0, c)

예제 02 (1) x축에 대하여 대칭인 점 : (a,-b,-c)

(2) y축에 대하여 대칭인 점 : (-a, b, -c)

(3) z축에 대하여 대칭인 점 : (-a, -b, c)

(4) 원점에 대하여 대칭인 점 : (-a, -b, -c)

(5) xy평면에 대하여 대칭인 점 : (a, b, -c)

(6) yz평면에 대하여 대칭인 점 : (-a, b, c)

(7) zx평면에 대하여 대칭인 점 : (a, -b, c)

예제 03 ②

예제 04 (1) $\sqrt{30}$

(2) $\sqrt{14}$

예제 05 P(0, 0, -2)

예제 06 $\sqrt{35}$

예제 07 60

예제 08 (1) (0, 0, 3)

(2) (-7, -7, 3)

예제 **09** C(1, 2, -6), D(0, 1, -3)

 $\overline{\mathrm{BC}}$ 의 중점을 M이라 하면, $\mathrm{M}\left(\frac{x_2+x_3}{2},\,\,\frac{y_2+y_3}{2},\,\,\frac{z_2+z_3}{2}\right)$

한편, 무게중심 G는 $\overline{\mathrm{AM}}$ 을 2:1로 내분하는 점이므로 G $(x,\ y,\ z)$ 는

$$x = \frac{2 \times \frac{x_2 + x_3}{2} + 1 \times x_1}{2 + 1} = \frac{x_1 + x_2 + x_3}{3}$$

같은 방법으로 ,
$$y=\dfrac{y_1+y_2+y_3}{3},\ z=\dfrac{z_1+z_2+z_3}{3}$$

$$\therefore \ G\left(\frac{x_1+x_2+x_3}{3}, \ \frac{y_1+y_2+y_3}{3}, \ \frac{z_1+z_2+z_3}{3}\right)$$

21강

예제 01
$$(x+1)^2 + (y-1)^2 + (z-2)^2 = 4$$

예제 02 정리하면
$$(x-2)^2 + (y+1)^2 + z^2 = 9$$
 이다.

따라서, 중심이 점 (2, -1, 0)이고, 반지름의 길이가 3인 구를 나타낸다.

예제 03
$$\sqrt{14}$$

예제 04
$$(x-1)^2 + (y+5)^2 + (z-2)^2 = 2^2$$

예제 05
$$_{96}$$

22강

- **03** ₁

- \bigcirc (1) \overrightarrow{DC} , \overrightarrow{HG} , \overrightarrow{EF} (2) \overrightarrow{CA} , \overrightarrow{DB} , \overrightarrow{BD} , \overrightarrow{EG} , \overrightarrow{GE} , \overrightarrow{HF} , \overrightarrow{FH}
- 예제 02 (1) $|\overrightarrow{AB}| = 3$ (2) $|\overrightarrow{AC}| = \sqrt{13}$ (3) $|\overrightarrow{AG}| = \sqrt{17}$

- 예제 03 (1) $\overrightarrow{\mathrm{BO}} = -\overrightarrow{b}$ (2) $\overrightarrow{\mathrm{DF}} = \overrightarrow{\mathrm{DA}} + \overrightarrow{\mathrm{AF}} = -\overrightarrow{b} + \overrightarrow{c}$ (3) $\overrightarrow{\mathrm{EF}} = \overrightarrow{\mathrm{EC}} + \overrightarrow{\mathrm{CF}} = -\overrightarrow{b} + \overrightarrow{a}$
- 예제 04 $\sqrt{26}$ 예제 05 2 예제 06 1 예제 07 ②

- 예제 08 ②
- 예제 09 (1) 9 (2) 0 (3) 9

- 예제 10 7
- 예제 11 $\frac{\pi}{2}$ 예제 12 -5
- 예제 13 $\overrightarrow{\mathrm{OA}} = \overrightarrow{a}, \overrightarrow{\mathrm{OB}} = \overrightarrow{b}, \overrightarrow{\mathrm{OC}} = \overrightarrow{c}$ 라고 하면 $|\overrightarrow{a}| = |\overrightarrow{b}| = |\overrightarrow{c}|$ 두 벡터 $\overset{
 ightarrow}{a},\overset{
 ightarrow}{b}$ 가 이루는 각의 크기와 두 벡터 $\overset{
 ightarrow}{a},\overset{
 ightarrow}{c}$ 가 이루는 각의 크기는 모두 $60\,^\circ$ 이므로 $\stackrel{
 ightarrow}{a} \cdot \stackrel{
 ightarrow}{b} = \stackrel{
 ightarrow}{a} \cdot \stackrel{
 ightarrow}{c}$ $\overrightarrow{OA} \cdot \overrightarrow{BC} = \overrightarrow{a} \cdot (\overrightarrow{c} - \overrightarrow{b}) = \overrightarrow{a} \cdot \overrightarrow{c} - \overrightarrow{a} \cdot \overrightarrow{b} = 0$ When $\overrightarrow{OA} \perp \overrightarrow{BC}$

24강

- 예제 01 $\frac{x-1}{-2} = \frac{y-2}{1} = \frac{z-3}{2}$ 예제 02 x=1, $\frac{y-2}{3} = \frac{z-3}{4}$
- 예제 03 $x=1, \quad y=2$ 예제 04 $\frac{x}{2}=y-2=\frac{z+3}{-3}$
- 예제 05 $\frac{x-1}{2} = \frac{y-3}{3} = z-2$ 예제 06 x=1, $y = \frac{z-3}{-2}$
- 예제 07 x=1, z=3
- 「예제 08] z=3x, y=-2

- 예제 01 $heta=60\,^\circ$
- 예제 02 $heta=45\,^\circ$
- 예제 03 2
- 예제 04 -2

- 예제 05 $\frac{\sqrt{21}}{3}$
- 예제 06 ⑤
- 예제 07 -2

예제 01
$$x-2y-z+3=0$$

예제 02
$$x-2y-z+6=0$$

$$\begin{bmatrix} \mathsf{q} \mathsf{M} & \mathsf{O3} \end{bmatrix}$$
 $x - y + z - 3 = 0$

예제 04 -1

예제 05 ③

예제 $| \mathbf{06} |$ 세 점을 지나는 평면의 방정식을 px+qy+rz+s=0이라 하자.

세 점(a, 0, 0), (0, b, 0), (0, 0, c)을 차례대로 평면의 방정식에 대입하면 다음의 방정식을 얻는다.

pa + s = 0, qb + s = 0, rc + s = 0 OII A

 $abc \neq 0$ 이므로 a,b,c는 모두 0이 아니므로 위 식을 a,b,c로 나눌 수 있다.

 $p=-rac{s}{a},\ q=-rac{s}{b},\ r=-rac{s}{c}$ 을 평면의 방정식에 대입,

 $-\frac{s}{a}x-\frac{s}{b}y-\frac{s}{c}z+s=0$ 이 된다.

만약, s=0이 되면 p,q,r이 모두 0이 되어 평면이 될 수 없다.

따라서 $s \neq 0$ 이므로 s로 양변을 나누어 주면

 $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ 이 됨을 알 수 있다.

예제 07 2x-2y-z-1=0

27강

예제 01 $\frac{\pi}{6}$

$$\frac{\pi}{6}$$

예제 02 a=-2, b=3

예제 03
$$a = 0$$

예제 05 $\frac{6}{7}$

예제 06
$$\frac{3\sqrt{2}}{2}$$

예제 07 ②

28강

예제 01 1

예제 02 5

예제 03 ②

예제 04 45

예제 05 (1, 1, ±4)

예제 06 $\frac{4\sqrt{3}-3}{3}$ 예제 07 $x^2+(y-2)^2+(z+1)^2=5$

예제 01 $\frac{x-3}{2} = \frac{y+2}{-1} = z$

참고 2015 수능완성 실전모의고사 1회 29번 : 72

참고 2015.10월 시행 교육청 모의고사 19번 : ①

예제 02 ③

30강

01 12

02 18

03 36

04 2

05 53

06 2

07 11

MEMO	

	•••••

	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••

EBS2TV 사교육비 경감 교육격차 해소

초·중·고 학습 프로그램 맞춤형 실용 영어교육 프로그램 다문화·통일교육 프로그램

시청 방법 | 전국 어디에서나 TV 안테나를 이용, 채널 10-2번으로 시청 ※ EBS 홈페이지(www.ebs.co.kr) 및 모바일 탭(EBS TV)으로도 시청 가능

시청 문의 | 1588-1580[ARS ①번 → ⑦번 EBS2TV]

수능개념 수학

믿고 보는! 세식쌤의 기하와 벡터

ABRIES & BEER VOD EN

TE: 1889-1980 Valve: 18100-1980

🔛 교육 구입 문의

TEL (10500-0470) MW-40 (00100-1000)

(2) 全体 电影

2017 在METER TOTAL SPACE

원고 보는 세 사람이 기하다 먹다

WHEN DIVISION OF THE

展现内阁也,明朝 1世纪8月1日约点