

OBJECTIVES

- Structure of Relational Databases
- Database Schema
- Keys
- Schema Diagrams
- Relational Query Languages
- Relational Operations

STRUCTURE OF RELATIONAL DATABASES

A relational
 database consists of
 a collection of
 tables, each of
 which is assigned a
 unique name

ID	пате	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000
32343	El Said	History	60000
33456	Gold	Physics	87000
45565	Katz	Comp. Sci.	75000
58583	Califieri	History	62000
76543	Singh	Finance	80000
76766	Crick	Biology	72000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000

attributes(or columns)

tuples (or rows)

©LXD

Table: instructor

STRUCTURE OF RELATIONAL DATABASES

- Relational database
 - consists of a collection of tables, each of which is assigned a unique name
 - Table: Relation
 - Row: Tuple
 - Column: attribute
 - Domain(域)*: a set of permitted values for one attribute

STRUCTURE OF RELATIONAL DATABASES

- ATTRIBUTE TYPES
- Domain
 - a set of allowed values for one attribute
- Attribute values are (normally) required to be atomic; that is, indivisible(不可在分)
- The special value null is a member of every domain.
 Indicated that the value is "unknown"
- The null value causes complications in the definition of many operations

RELATION, RELATION SCHEMA AND INSTANCE - RELATION

- $A_1, A_2, ..., A_n$ are attributes
- given sets D_1 , D_2 , D_n a relation r is a subset of $D_1 \times D_2 \times ... \times D_n$
- Thus, a relation is a set of n-tuples (a1, a2, ..., an) where each at \in Di
- An element t of r is a tuple, represented by a row in a table

RELATION, RELATION SCHEMA AND INSTANCE - RELATION SCHEMA关系模式

- $A_1, A_2, ..., A_n$ are attributes
- R = (A₁, A₂, ..., A_n) is a relation schema(关系模式)

Example: instructor = (ID, name, dept_name, salary)

RELATION SCHEMA: CASES

- student (ID, name, dept_name, tot_cred)
- advisor (s_id, i_id)
- takes (ID, course_id, sec_id, semester, year, grade)
- classroom (building, room_number, capacity)
- time_slot (time_slot_id, day, start_time, end_time)

RELATION, RELATION SCHEMA AND INSTANCE - RELATION INSTANCE

- Relation Instance关系实例
 - A specific instance of a relation, i.e., containing a specific set of rows

RELATION INSTANCE: CASE

Course table

course_id	title	dept_name	credits
BIO-101	Intro. to Biology	Biology	4
BIO-301	Genetics	Biology	4
BIO-399	Computational Biology	Biology	3
CS-101	Intro. to Computer Science	Comp. Sci.	4
CS-190	Game Design	Comp. Sci.	4
CS-315	Robotics	Comp. Sci.	3
CS-319	Image Processing	Comp. Sci.	3
CS-347	Database System Concepts	Comp. Sci.	3
EE-181	Intro. to Digital Systems	Elec. Eng.	3
FIN-201	Investment Banking	Finance	3
HIS-351	World History	History	3
MU-199	Music Video Production	Music	3
PHY-101	Physical Principles	Physics	4

RELATION INSTANCE: CASE

Prereq table

course_id	prereq_id
BIO-301	BIO-101
BIO-399	BIO-101
CS-190	CS-101
CS-315	CS-101
CS-319	CS-101
CS-347	CS-101
EE-181	PHY-101

RELATIONS ARE UNORDERED

- Order of tuples is irrelevant (tuples may be stored in an arbitrary order)
- Example: instructor relation with unordered tuples

ID	name	dept_name	salary
22222	Einstein	Physics	95000
12121	Wu	Finance	90000
32343	El Said	History	60000
45565	Katz	Comp. Sci.	75000
98345	Kim	Elec. Eng.	80000
76766	Crick	Biology	72000
10101	Srinivasan	Comp. Sci.	65000
58583	Califieri	History	62000
83821	Brandt	Comp. Sci.	92000
15151	Mozart	Music	40000
33456	Gold	Physics	87000
76543	Singh	Finance	80000

KEYS码/键

- Let $K \subseteq R$
- K is a superkey H of R if values for K are sufficient to identify a unique tuple of each possible relation r(R)
 - Example: {ID} and {ID,name} are both superkeys of instructor.
- Superkey *K* is a candidate key ***** if *K* is minimal Example: {*ID*} is a candidate key for *Instructor*
- One of the candidate keys is selected to be the primary key主情.*

WHICH ONE IS PRIMARY KEY?

- If two candidate keys
 - {ID}
 - {name, dept_name}

ID	пате	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000
32343	El Said	History	60000
33456	Gold	Physics	87000
45565	Katz	Comp. Sci.	75000
58583	Califieri	History	62000
76543	Singh	Finance	80000
76766	Crick	Biology	72000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000

©LXD

Table: instructor

KEYS

- PRIMARY KEY

- Primary keys
 - It denote a candidate key that is chosen by the database designer as the principal means of identifying tuples within a relation
 - It must be chosen with care
 - Example: the name of a person is obviously not sufficient

KEYS

- FOREIGN KEY
 - Foreign key外码
 - the key constraint: Value in one relation must appear in another
 - Referencing relation参照关系
 - Referenced relation被参照关系
 - Example dept_name in instructor is a foreign key from instructor referencing department
 - Referential integrity constraint参照完整性约束

SCHEMA DIAGRAM

- Schema diagram模式图
 - A database schema, along with primary key and foreign key dependencies, can be depicted by schema diagrams
 - Each relation appears as a box
 - with the relation name at the top in blue
 - And the attributed listed inside the box
 - Primary key attributed are shown underlined
 - Foreign key dependencies appear as arrows from the foreign key attributes
 of the referencing relation to the primary key of the referenced relation

SCHEMA DIAGRAM: CASE - UNIVERSITY DATABASE

SCHEMA OF THE UNIVERSITY DATABASE

```
classroom(building, <u>room_number</u>, capacity)
department(dept_name, building, budget)
course(course_id, title, dept_name, credits)
instructor(ID, name, dept_name, salary)
section(course_id, sec_id, semester, year, building, room_number, time_slot_id)
teaches(ID, course_id, sec_id, semester, year)
student(ID, name, dept_name, tot_cred)
takes(ID, course_id, sec_id, semester, year, grade)
advisor(s_ID, i_ID)
time_slot(<u>time_slot_id</u>, day, <u>start_time</u>, end_time)
prereq(course_id, prereq_id)
```

RELATIONAL QUERY LANGUAGES

- Query language
 - A language in which a user requests information from the database
- Categories
 - Procedural language 过程式语言
 - Non procedural language: declarative

RELATIONAL QUERY LANGUAGES

- "Pure" languages:
 - Relational algebra关系代数
 - (belong to procedural language)
 - Tuple relational calculus元祖关系演算
 - Domain relational calculus域关系演算
- The above 3 pure languages are equivalent in computing power
 - Relational operations: 6 basic operations*

- Relational Operations
 - Select specific tuples fro a single relation
 - Select certain attributed from a relation
 - Combine two relations by merging pairs of tuples
 - A set union of two similarly structured tables

- SELECTION: SELECTION OF ROWS (TUPLES)
 - Relation r

$$\blacksquare \sigma_{A=B \land D > 5}(r)$$

- SELECTION: SELECTION OF COLUMNS (ATTRIBUTES)

• Relation *r*:

$$\prod_{A,C} (r)$$

- UNION OF TWO RELATIONS
 - Relations r, s:

 $r \cup s$:

					. 4
A	В			A	В
α	1			α β	2 3
α α β	1 2			β	3
β	1			į	3
1	7				
		\boldsymbol{A}	В		
		α	1		
			2		
		α β β	1 3		
		β	3		

- SET DIFFERENCE OF TWO RELATIONS
 - Relations *r*, *s*:

$$\blacksquare r - s$$

- SET INTERSECTION OF TWO RELATIONS

• Relation *r, s*:

 $\bullet r \cap s$

Note: $r \cap s = r - (r - s)$

- JOIN: CARTESIAN-PRODUCT笛卡尔积

■ Relations *r, s*:

 $\blacksquare r \times s$:

Note: Regardless of whether or not they have the same values on common attributed

- JOIN: CARTESIAN-PRODUCT->NAMING ISSUE

■ Relations *r*, *s*:

 $\blacksquare r \times s$:

ا ر	_/	11	11	IV	Ш	VC
A	В			C	D	Ε
α	1			α	10	a
β	2	g.		β β	10	a
1	r			β	20	b
				γ	10	b
					s	
A	В	C	D	E		
α	1	α	10	a		
α	1	β	10	a		
α	1	β β	20	b		
α	1	γ α β	10	b		
β	2	α	10	a		
^အ အ အ	1 2 2 2 2	β	10	a		
B	2	β	20	b		
	260	1545		Ъ		

CARTESIAN 笛卡尔

I think; therefore I am

- RENAMING A TABLE

Allows us to refer to a relation, (say E) by more than one name.

$$\rho_{x}(E)$$
 returns the expression E under the name X

Relations r

 $\blacksquare r \times \rho_s(r)$

r.A	r.B	s.A	s.B
α	1	α	1
α	1	β	2
β	2	α	1
β	2	β	2

- JOIN: NATURAL JOIN 自然连接
 - Let r and s be relations on schemas R and s respectively. Then, the "natural join" of relations s and s is a relation on schema s s obtained as follows:
 - Consider each pair of tuples t_r from r and t_s from s.
 - If t_r and t_s have the same value on each of the attributes in R $\cap S$, add a tuple t to the result, where
 - t has the same value as t_r on r
 - t has the same value as t_s on s

- JOIN: NATURAL JOIN -> CASES
 - Relations r, s:
 - Natural Join

$$r \bowtie s$$

$$\prod_{A, r.B, C, r.D, E} (\sigma_{r.B=s.B \land r.D=s.D} (r \times s)))$$

NOTES ABOUT RELATIONAL LANGUAGES

- Each Query input is a table (or set of tables)
- Each query output is a table.
- All data in the output table appears in one of the input tables
- Relational Algebra is not Turning complete
- Can we compute:
 - SUM, AVG, MAX, MIN

Symbol (Name)	Example of Use
σ	$\sigma_{\text{salary}>=85000}(instructor)$
(Selection)	Return rows of the input relation that satisfy
	the predicate.
П	$\Pi_{ID,salary}(instructor)$
(Projection)	Output specified attributes from all rows of
	the input relation. Remove duplicate tuples
	from the output.
\bowtie	$instructor \bowtie department$
(Natural join)	Output pairs of rows from the two input rela-
	tions that have the same value on all attributes
	that have the same name.
×	$instructor \times department$
(Cartesian product)	Output all pairs of rows from the two input
	relations (regardless of whether or not they
	have the same values on common attributes)
U	$\Pi_{name}(instructor) \cup \Pi_{name}(student)$
(Union)	Output the union of tuples from the two input
	relations.

SUMMARY

- Structure of Relational Databases
- Database Schema
- Keys
- Schema Diagrams
- Relational Query Languages
- Relational Operations

Q&A?

