

Learning Options using Constrained Return Variance

Arushi Jain¹, Doina Precup^{1,2}

Mila and McGill University, 2 Google Deepmind, Montreal

Overview

Problem: Modelling **safe temporal abstractions** that can avoid regions of state-space with high uncertainty.

Solution: We model a hierarchical reinforcement learning algorithm that minimizes the effects of *model uncertainty* on the expected return in addition to maximizing it.

Main Contributions:

- Propose a new objective in **Option-Critic** framework which uses **variance in the return** as a regularizer.
- Use the above objective to derive the policy-gradient for automatically learning "risk averse" options.
- Experimentally demonstrate the effective of algorithm in tabular and Mujoco environments.

Background

Options:

MDP = $\{S, A, r, \gamma, \mathbb{P}, \}$. We use discounted optimality criteria here. An option $w \in W$ is a triple of - {initiation set I_w ; internal policy π_w ; termination condition β_w }. The intra-option Bellman update for Q value:

$$Q(s, w, a) = r(s, a) + \gamma \mathbb{P}(s'|s, a) \{ (1 - \beta_w(s))Q(s', w) + \beta_w(s)V_W(s') \}$$

We define **safe** behaviour as the ability of the agent to avoid regions with high model uncertainty.

Our Contribution

Safe OC

Taking inspiration from [1], we derived the variance in return for a given augmented state (state-option) space $z \in Z$ as:

$$\sigma(z,a) = \mathbb{E}_{\pi,\mu}[\delta_t^2 + \gamma^2 \sigma(Z_{t+1},A_{t+1})|Z_t = z,A_t = a]$$

where $\mu(w|s)$ is policy over options and δ_t is the single-step TD error.

We define the new objective function which desires to maximize the mean performance, but also, minimize the variance in the return of the policy for **Safe OC** architecture as:

$$oldsymbol{J}_{\mathrm{Safe}}(oldsymbol{\Theta}) = \mathbb{E}_{d \sim (s_0, w_0)}[Q_{\Theta}(s_0, w_0) - \underbrace{\psi \, \sigma_{\Theta}(s_0, w_0)}_{\mathrm{Regularization Term}}]$$

where-

 ψ : is regularization constant controlling risk-sensitive behavior,

 Θ : is the vector of parameterized internal policy, policy over options and termination condition.

Experiments - Tabular Environment

Figure: Return in FourRooms Environment

Option Critic

 $\begin{array}{c} \downarrow & \leftarrow & S \\ \downarrow & \downarrow \\ \downarrow & \rightarrow & \rightarrow \\ \downarrow & \rightarrow & \rightarrow \\ \rightarrow & \rightarrow & \uparrow \\ & \rightarrow & \rightarrow & \uparrow \\ \end{array}$

Policy

Safe Option Critic

State Frequency

Variance

The purple patch above denotes the unsafe frozen region F in one of the hallways which safe policy learns to avoid. The switch in colors in sampled policy denotes the 4 options.

Experiments - Mujoco Environment

Added safe architecture on PPOC [2] framework which is inspired from PPO in primitive actions.

Conclusion & Future Work

- Proposed a **novel** safe hierarchical policy learning framework for **Options** where the **regularization** is placed on the **variance in return**.
- Its on online, generic and **scalable** approach which also includes **non-linear function approximations**.

Future Work

• Learn diverse skills/options using mix of risk sensitive/averse policies.

References

- [1] C. Sherstan, D. R. Ashley, B. Bennett, K. Young, A. White, M. White, and R. S. Sutton, "Comparing direct and indirect temporal-difference methods for estimating the variance of the return.," in *UAI*, pp. 63–72, 2018.
- [2] M. Klissarov, P.-L. Bacon, J. Harb, and D. Precup, "Learnings options end-to-end for continuous action tasks," arXiv preprint arXiv:1712.00004, 2017.
- [3] P.-L. Bacon, J. Harb, and D. Precup, "The option-critic architecture.," in AAAI, pp. 1726–1734, 2017.
- [4] D. Amodei, C. Olah, J. Steinhardt, P. F. Christiano, J. Schulman, and D. Mané, "Concrete problems in AI safety," CoRR, 2016.