Алгоритмы. HW#9

Тураев Тимур, 504 (SE)

2 По заданным комплексным z_i и неотрицательным целым a_i посчитайте коэффициенты полинома $\prod_i (x-z_i)^{a_i}$. Пусть $n=\sum a_i$. Решите задачу за $O(n\log n)$

Можно действовать чуть иначе: сразу применим подсказку про «разделяй и властвуй»: разобьем вычисляемый многочлен пополам на 2 многочлена и посчитаем их тем же методом: получим 2 многочлена какой-то степени (не больше n). Их можно перемножить за $O(n \log n)$. Получим рекуррентное соотношение: $T(n) = 2 \cdot T(n/2) + cn \log n$

Проблема в том, что мастер-метод к такому соотношению неприменим, поэтому придется считать руками: всего уровней у дерева, ясно, $\log n$. На каждом уровне стоимость: $k \cdot c(n/k) \log(n/k) = cn \log n - cn \log k$, где k это степень двойки. Значит:

$$T(n) = cn \log n \cdot \log n - cn (\log 2 + \log 4 + \log 8 + \ldots + \log 2^{\log n}) = cn \log^2 n - cn \log(2 \cdot 4 \cdot \ldots \cdot 2^{\log n}) = cn \log^2 n - cn \log(2^{1 + 2 + \ldots + \log n})$$

$$T(n) = cn \log^2 n - cn \log(2^{(\log n \cdot (\log n + 1))/2}) = cn \log^2 n - \frac{cn (\log n \cdot (\log n + 1))}{2 \cdot \log_2 10} = O(n \cdot \log^2 n)$$