Class 07: Accumulated Change: More with Graphs

Calculus II

College of the Atlantic. January 20, 2025

1. Let r(t) be the rate, in people per minute, at which people arrive at the dining hall for dinner, where t is measured in minutes past 5:30. Consider the following integral:

$$\int_0^{30} r(t) \, dt \ . \tag{1}$$

- (a) What are the units of the above integral?
- (b) What is the practical interpretation of the above integral?
- (c) What are the units of $\frac{dr}{dt}$?
- (d) What is the practical interpretation of $\frac{dr}{dt}$?

- 2. A function f(x) is shown above. Note the location of the vertical zero axis. Use the graph to determine values of the following:
 - (a) $\int_{-4}^{-2} f(x) dx$
 - (b) $\int_{-2}^{0} f(x) dx$
 - (c) $\int_{-4}^{0} f(x) dx$
 - (d) $\int_0^2 f(x) dx$
 - (e) $\int_2^3 f(x) \, dx$

Figure 1: Three different rates of change of the biomass of unicorns.

- 3. The plots in Fig. 1 show three different possible functions for u(x), the rate of change of unicorn biomass, in units of kg/day.
 - (a) For each u(x) make a quantitatively accurate sketch of U(t), the total unicorn biomass as a function of time. Assume that U(t) = 3. (Evidently these are very small unicorns.)
 - (b) Repeat the above problem, but assume that U(t) = 4.

- 4. Let u(t) represent the rate of change, in kg/day, of the biomass of unicorns on an island. The time t is measured in days since Jan 1, 2025.
 - (a) What do the following quantities represent in practical terms?

$$\int_0^{10} u(t) \, dt \; . \tag{2}$$

$$\int_0^{10} u(z) \, dz \ . \tag{3}$$

$$\int_{10}^{20} u(t) dt . (4)$$

$$\int_0^{10} u(t) \, dt \ . \tag{5}$$

(b) Now consider the following function of t:

$$U(t) = \int_0^t u(z) dz. \tag{6}$$

- i. What does U(t) represent in practical terms? What are its units?
- ii. What is the meaning of $\frac{d}{dt}U(t)$? Muse on this for a while.
- 5. Let F(t) represent the total change, given a rate of change f(t). That is:

$$F(t) = \int_0^t f(z) dz , \qquad (7)$$

Where f(t) is the function plotted on the first page of this handout. Make a reasonably accurate sketch of F(t). Assume that F(0) = 1.