Lesson 34: Practice Problems - Variation of Parameters for Systems

ODE 1 - Prof. Adi Ditkowski

Part A: Finding Fundamental Matrices

- 1. Find the fundamental matrix for $\mathbf{x}' = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix} \mathbf{x}$
- 2. Compute $\Phi(t)$ and $\Phi^{-1}(t)$ for $\mathbf{x}' = \begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix} \mathbf{x}$
- 3. Find the fundamental matrix for $\mathbf{x}' = \begin{pmatrix} 0 & 1 \\ -4 & 0 \end{pmatrix} \mathbf{x}$
- 4. Given $\Phi(t) = \begin{pmatrix} e^t & e^{2t} \\ e^t & 2e^{2t} \end{pmatrix}$, find $\Phi^{-1}(t)$
- 5. Verify that $\Phi(t) = \begin{pmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{pmatrix}$ is a fundamental matrix and find its inverse.

Part B: Basic Variation of Parameters

6. Solve
$$\mathbf{x}' = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \mathbf{x} + \begin{pmatrix} e^{3t} \\ 0 \end{pmatrix}$$

- 7. Find a particular solution: $\mathbf{x}' = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \mathbf{x} + \begin{pmatrix} 0 \\ t \end{pmatrix}$
- 8. Solve $\mathbf{x}' = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} \mathbf{x} + \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
- 9. Find $\mathbf{x}_p for \mathbf{x}' = \begin{pmatrix} -1 & 0 \\ 0 & -2 \end{pmatrix} \mathbf{x} + \begin{pmatrix} e^t \\ e^{2t} \end{pmatrix}$

10. Solve
$$\mathbf{x}' = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \mathbf{x} + \begin{pmatrix} t \\ 0 \end{pmatrix}$$

Part C: Systems with Trigonometric Forcing

11. Solve
$$\mathbf{x}' = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \mathbf{x} + \begin{pmatrix} \sin t \\ 0 \end{pmatrix}$$

12. Find a particular solution:
$$\mathbf{x}' = \begin{pmatrix} 0 & -2 \\ 2 & 0 \end{pmatrix} \mathbf{x} + \begin{pmatrix} \cos(3t) \\ \sin(3t) \end{pmatrix}$$

13. Solve
$$\mathbf{x}' = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \mathbf{x} + \begin{pmatrix} e^t \cos t \\ 0 \end{pmatrix}$$

14. Find the general solution:
$$\mathbf{x}' = \begin{pmatrix} 0 & 1 \\ -4 & 0 \end{pmatrix} \mathbf{x} + \begin{pmatrix} 0 \\ \sin(2t) \end{pmatrix}$$
 (resonance!)

15. Solve
$$\mathbf{x}' = \begin{pmatrix} -1 & 2 \\ -2 & -1 \end{pmatrix} \mathbf{x} + \begin{pmatrix} e^{-t} \cos(2t) \\ e^{-t} \sin(2t) \end{pmatrix}$$

Part D: Initial Value Problems

16. Solve the IVP:
$$\mathbf{x}' = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix} \mathbf{x} + \begin{pmatrix} e^{2t} \\ 0 \end{pmatrix}, \mathbf{x}(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

17. Find the solution:
$$\mathbf{x}' = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \mathbf{x} + \begin{pmatrix} t \\ t \end{pmatrix}, \mathbf{x}(0) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

18. Solve:
$$\mathbf{x}' = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \mathbf{x} + \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \mathbf{x}(0) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

19. Find
$$\mathbf{x}(1)$$
 for: $\mathbf{x}' = \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix} \mathbf{x} + \begin{pmatrix} e^{3t} \\ e^{2t} \end{pmatrix}$, $\mathbf{x}(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

20. Solve the IVP:
$$\mathbf{x}' = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \mathbf{x} + \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \mathbf{x}(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Part E: 3×3Systems

21. Find a particular solution:
$$\mathbf{x}' = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix} \mathbf{x} + \begin{pmatrix} e^t \\ e^{2t} \\ e^{3t} \end{pmatrix}$$

22. Solve:
$$\mathbf{x}' = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \mathbf{x} + \begin{pmatrix} 0 \\ 0 \\ t \end{pmatrix}$$

23. Find
$$\mathbf{x}_p for : \mathbf{x}' = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix} \mathbf{x} + \begin{pmatrix} e^{2t} \\ 0 \\ 0 \end{pmatrix}$$

24. Solve:
$$\mathbf{x}' = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \mathbf{x} + \begin{pmatrix} 1 \\ \cos t \\ \sin t \end{pmatrix}$$

25. Find the general solution:
$$\mathbf{x}' = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -3 \end{pmatrix} \mathbf{x} + \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

Part F: Special Methods and Applications

- 26. Use undetermined coefficients to solve: $\mathbf{x}' = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \mathbf{x} + \begin{pmatrix} e^{3t} \\ e^{4t} \end{pmatrix}$
- 27. For the system $\mathbf{x}' = \begin{pmatrix} 0 & 1 \\ -\omega^2 & 0 \end{pmatrix} \mathbf{x} + \begin{pmatrix} 0 \\ F\cos(\omega t) \end{pmatrix}$, find the resonant solution.
- 28. A coupled tank system: $\mathbf{x}' = \begin{pmatrix} -2 & 1 \\ 1 & -2 \end{pmatrix} \mathbf{x} + \begin{pmatrix} 10 \\ 5 \end{pmatrix}$ where \mathbf{x} represents salt concentrations. Find the steady-state solution
- 29. Verify that variation of parameters gives the correct particular solution for: \mathbf{x}' $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \mathbf{x} + \begin{pmatrix} 0 \\ 1 \end{pmatrix}$
- 30. Challenge: Show that if $\mathbf{f}(t) = \mathbf{f}_0$ is constant and A is invertible, then $\mathbf{x}_p = -\mathbf{A}^{-1}\mathbf{f}_0$ is a particular solution.

Solutions and Hints

Problem 1: $\Phi(t) = e^{2t} \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$ Problem 6: $\mathbf{x}_p = \begin{pmatrix} \frac{1}{2}e^{3t} \\ 0 \end{pmatrix}$

Problem 7: Use $\Phi(t) = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$, get $\mathbf{x}_p = \begin{pmatrix} t^3/6 \\ t^2/2 \end{pmatrix}$

Problem 11: Resonance occurs! Solution involves $t \cos t$ and $t \sin t$ terms.

Problem 16: Particular solution has $te^{2t}termsduetore peated eigenvalue$.

Problem 26: Try $\mathbf{x}_p = \begin{pmatrix} ae^{3t} \\ be^{4t} \end{pmatrix}$ and solve for a, b.

Problem 28: Steady-state: $\mathbf{x}_p = \begin{pmatrix} 5 \\ 5 \end{pmatrix}$

Key Strategy: Always find the fundamental matrix first. For constant coefficient systems, this is e^{At} . Then apply the variation formula systematically.

Verification: Always check that $\mathbf{x}_p' = A\mathbf{x}_p + f(t)$.