Data Mining Association Rules: Advanced Concepts and Algorithms

Thanks to [Tan,Steinbach, Kumar]

Examples of Sequence Data

Sequence Database	Sequence	Element (Transaction)	Event (Item)
Customer	Purchase history of a given customer	A set of items bought by a customer at time t	Books, diary products, CDs, etc
Web Data	Browsing activity of a particular Web visitor	A collection of files viewed by a Web visitor after a single mouse click	Home page, index page, contact info, etc
Event data	History of events generated by a given sensor	Events triggered by a sensor at time t	Types of alarms generated by sensors
Genome sequences	DNA sequence of a particular species	An element of the DNA sequence	Bases A,T,G,C

Formal Definition of a Sequence

 A sequence is an ordered list of elements (transactions)

$$s = < e_1 e_2 e_3 ... >$$

- Each element contains a collection of events (items)

$$e_i = \{i_1, i_2, ..., i_k\}$$

- Each element is attributed to a specific time or location
- Length of a sequence, |s|, is given by the number of elements of the sequence
- A k-sequence is a sequence that contains k events (items)

Examples of Sequence

- Web sequence:
 - < {Homepage} {Electronics} {Digital Cameras} {Canon Digital Camera} {Shopping Cart} {Order Confirmation} {Return to Shopping} >
- Sequence of initiating events causing the nuclear accident at 3-mile Island:

(http://stellar-one.com/nuclear/staff reports/summary SOE the initiating event.htm)

- < {clogged resin} {outlet valve closure} {loss of feedwater} {condenser polisher outlet valve shut} {booster pumps trip} {main waterpump trips} {main turbine trips} {reactor pressure increases}>
- Sequence of books checked out at a library:

<{Fellowship of the Ring} {The Two Towers} {Return of the King}>

Sequential Pattern Mining: Definition

- Given:
 - a database of sequences
 - a user-specified minimum support threshold, minsup
- Task:
 - Find all subsequences with support ≥ minsup

Formal Definition of a Subsequence

• A sequence $<a_1 a_2 \dots a_n>$ is contained in another sequence $<bb_1 b_2 \dots b_m>$ $(m \ge n)$ if there exist integers $i_1 < i_2 < \dots < i_n$ such that $a_1 \subseteq b_{i1}$, $a_2 \subseteq b_{i2}$, ..., $a_n \subseteq b_{in}$

Data sequence	Subsequence	Contain?
< {2,4} {3,5,6} {8} >	< {2} {3,5} >	Yes
< {1,2} {3,4} >	< {1} {2} >	No
< {2,4} {2,4} {2,5} >	< {2} {4} >	Yes

- The support of a subsequence w is defined as the fraction of data sequences that contain w
- A sequential pattern is a frequent subsequence (i.e., a subsequence whose support is ≥ minsup)

Sequential Pattern Mining: Challenge

- Given a sequence: <{a b} {c d e} {f} {g h i}>
 - Examples of subsequences:

$$\{a\} \{c d\} \{f\} \{g\} >, \{c d e\} >, \{b\} \{g\} >, etc.$$

 How many k-subsequences can be extracted from a given n-sequence?

Sequential Pattern Mining: Example

Object	Timestamp	Events
Α	1	1,2,4
Α	2	2,3
Α	3	5
В	1	1,2
В	2	2,3,4 1, 2 2,3,4 2,4,5
С	1	1, 2
C	2	2,3,4
С	3	2,4,5
D	1	2
D	2	2 3, 4
D	3	4, 5
E	1	1, 3
E	2	2. 4. 5

Examples of Frequent Subsequences:				

Generalized Sequential Pattern (GSP)

- Step 1:
 - Make the first pass over the sequence database D to yield all the 1element frequent sequences
- Step 2:

Repeat until no new frequent sequences are found

- Candidate Generation:
 - Merge pairs of frequent subsequences found in the (k-1)th pass to generate candidate sequences that contain k items
- Candidate Pruning:
 - ◆ Prune candidate k-sequences that contain infrequent (k-1)-subsequences
- Support Counting:
 - Make a new pass over the sequence database D to find the support for these candidate sequences
- Candidate Elimination:
 - Eliminate candidate k-sequences whose actual support is less than minsup

Extracting Sequential Patterns

- Given n events: i₁, i₂, i₃, ..., i_n
- Candidate 1-subsequences:

$$\{i_1\}>, \{i_2\}>, \{i_3\}>, ..., \{i_n\}>$$

Candidate 2-subsequences:

$$\{i_1, i_2\}$$
>, $\{i_1, i_3\}$ >, ..., $\{i_1\}$ $\{i_1\}$ >, $\{i_1\}$ $\{i_2\}$ >, ..., $\{i_n\}$ $\{i_n\}$ >

• Candidate 3-subsequences:

$$\{i_1, i_2, i_3\}$$
, $\{i_1, i_2, i_4\}$, ..., $\{i_1, i_2\}\{i_1\}$, $\{i_1, i_2\}\{i_2\}$, ..., $\{i_1\}\{i_1, i_2\}$, $\{i_1\}\{i_1, i_3\}$, ..., $\{i_1\}\{i_1\}\{i_1\}$, $\{i_1\}\{i_2\}$, ...

Candidate Generation

- Base case (k=2):
 - Merging two frequent 1-sequences <\(i_1\)> and <\(i_2\)> will produce two candidate 2-sequences: <\(i_1\) \(i_2\)> and <\(i_1 i_2\)>
- General case (k>2):
 - A frequent (k-1)-sequence w₁ is merged with another frequent (k-1)-sequence w₂ to produce a candidate k-sequence if the subsequence obtained by removing the first event in w₁ is the same as the subsequence obtained by removing the last event in w₂
 - The resulting candidate after merging is given by the sequence w₁ extended with the last event of w₂.
 - $-\,$ If the last two events in w_2 belong to the same element, then the last event in w_2 becomes part of the last element in w_1
 - Otherwise, the last event in w_2 becomes a separate element appended to the end of w_1

Candidate Generation Examples

- Merging the sequences $w_1=<\{1\}$ {2 3} {4}> and $w_2=<\{2\ 3\}$ {4 5}> will produce the candidate sequence < {1} {2 3} {4 5}> because the last two events in w_2 (4 and 5) belong to the same element
- Merging the sequences w_1 =<{1} {2 3} {4}> and w_2 =<{2 3} {4} {5}> will produce the candidate sequence < {1} {2 3} {4} {5}> because the last two events in w_2 (4 and 5) do not belong to the same element
- We do not have to merge the sequences $w_1 = <\{1\} \{2 \ 6\} \{4\}>$ and $w_2 = <\{1\} \{2 \ 6\} \{4 \ 5\}>$ to produce the candidate $<\{1\} \{2 \ 6\} \{4 \ 5\}>$ because if the latter is a viable candidate, then it can be obtained by merging w_1 with $<\{2 \ 6\} \{4 \ 5\}>$

Timing Constraints (I)

x_a: max-gap

n_q: min-gap

m_s: maximum span

$$x_a = 2$$
, $n_a = 0$, $m_s = 4$

Data sequence	Subsequence	Contain?
< {2,4} {3,5,6} {4,7} {4,5} {8} >	< {6} {5} >	Yes
< {1} {2} {3} {4} {5}>	< {1} {4} >	No
< {1} {2,3} {3,4} {4,5}>	< {2} {3} {5} >	Yes
< {1,2} {3} {2,3} {3,4} {2,4} {4,5}>	< {1,2} {5} >	No

Mining Sequential Patterns with Timing Constraints

- Approach 1:
 - Mine sequential patterns without timing constraints
 - Postprocess the discovered patterns
- Approach 2:
 - Modify GSP to directly prune candidates that violate timing constraints
 - Question:
 - ◆ Does Apriori principle still hold?

Apriori Principle for Sequence Data

Object	Timestamp	Events
Α	1	1,2,4
Α	2	2,3
Α	3	5
В	1	1,2
В	2	2,3,4 1, 2
С	1	1, 2
С	2	2,3,4 2,4,5
С	3	2,4,5
D	1	2
D	2	3, 4
D	3	4, 5
E	1	1, 3 2, 4, 5
E	2	2, 4, 5

Suppose:

$$x_g = 1 \text{ (max-gap)}$$

 $n_g = 0 \text{ (min-gap)}$
 $m_s = 5 \text{ (maximum span)}$
 $minsup = 60\%$

Problem exists because of max-gap constraint No such problem if max-gap is infinite

Modified Candidate Pruning Step

- Without maxgap constraint:
 - A candidate k-sequence is pruned if at least one of its (k-1)-subsequences is infrequent
- With maxgap constraint:
 - A candidate k-sequence is pruned if at least one of its contiguous (k-1)-subsequences is infrequent

Contiguous Subsequences

• s is a contiguous subsequence of

$$W = \langle e_1 \rangle \langle e_2 \rangle ... \langle e_k \rangle$$

if any of the following conditions hold:

- 1. s is obtained from w by deleting an item from either e₁ or e_k
- 2. s is obtained from w by deleting an item from any element \mathbf{e}_i that contains more than 2 items
- 3. s is a contiguous subsequence of s' and s' is a contiguous subsequence of w (recursive definition)
- Examples: s = < {1} {2} >
 - is a contiguous subsequence of

is not a contiguous subsequence of < {1} {3} {2}> and < {2} {1} {3} {2}>

Timing Constraints (II)

x_g: max-gap

n_a: min-gap

ws: window size

m_s: maximum span

$$x_a = 2$$
, $n_a = 0$, ws = 1, $m_s = 5$

Data sequence	Subsequence	Contain?
< {2,4} {3,5,6} {4,7} {4,6} {8} >	< {3} {5} >	No
< {1} {2} {3} {4} {5}>	< {1,2} {3} >	Yes
< {1,2} {2,3} {3,4} {4,5}>	< {1,2} {3,4} >	Yes

Modified Support Counting Step

- Given a candidate pattern: <{a, c}>
 - Any data sequences that contain

```
<... {a c} ... >, 
<... {a} ... {c}...> ( where time({c}) – time({a}) \leq ws) 
<...{c} ... {a} ...> (where time({a}) – time({c}) \leq ws)
```

will contribute to the support count of candidate pattern

General Support Counting Schemes

Other Formulation

- In some domains, we may have only one very long time series
 - Example:
 - monitoring network traffic events for attacks
 - monitoring telecommunication alarm signals
- Goal is to find frequent sequences of events in the time series
 - This problem is also known as frequent episode mining

Pattern: <E1> <E3>