Rouyer, Gervais. Boulahia

Espaces de Lebesgue

Analyse en Ondelettes Projet mathématiques-informatique

Chloé Rouyer, Pierre Gervais, Souhaib Boulahia

Université Paris Diderot

12 juin 2017

Introduction

Rouyer, Gervais, Boulahia

Analyse de Hilbert Espaces de Lebesgue

Analyse

Joseph Fourier (1768 -1830) et Yves Meyer (1939-)

Analyse multi-résolution 1 Outils

Analyse de Hilbert

Espaces de Lebesgue

- 2 Première approche : Analyse de Fourier
- 3 Ondelettes et application Analyse multi-résolution

Rouyer, Gervais, Boulahia

Analyse de Hilbert

Espaces de Lebesgue

Analyse de Fourier Ondelettes

Analyse multi-résolution ullet Signaux : fonctions $\mathbb{R}^n o \mathbb{R}^m$

Analyse de Hilbert Espaces de Lebesgue

Espaces de Lebesgue

approc Analys Fourie

Fourier Ondelettes

- Signaux : fonctions $\mathbb{R}^n o \mathbb{R}^m$
- On veut généraliser les outils de la géométrie euclidienne

Analyse multi-résolution • ℓ^2 et la famille $\{x_n = \delta(n - \cdot)\}_n$

- Fourier Ondelettes application
- Analyse multi-résolutio

- ℓ^2 et la famille $\{x_n = \delta(n \cdot)\}_n$
- But : pouvoir écrire

$$u=\sum_{n=0}^{\infty}u_nx_n$$

Rouyer, Gervais, Boulahia

Analyse de Hilbert

Espaces de Lebesgue

approd Analys

Analyse

Un espace de Hilbert est la donnée

Rouyer, Gervais, Boulahia

Analyse de Hilbert Espaces de Lebesgue

approche Analyse d Fourier

Analyse multi-résolutio Un espace de Hilbert est la donnée

• D'un espace vectoriel réel E

Un espace de Hilbert est la donnée

- D'un espace vectoriel réel E
- D'un produit scalaire $\langle \cdot, \cdot \rangle$ défini sur E

Un espace de Hilbert est la donnée

- D'un espace vectoriel réel E
- D'un produit scalaire $\langle \cdot, \cdot \rangle$ défini sur E
- tel que E soit complet pour la norme induite par ce produit scalaire

Analyse de Hilbert

Espaces de Lebesgue

remiere approche : Analyse de ourier

Analyse multi-résolution ℓ^2 avec le produit scalaire défini par $\langle u,v \rangle = \sum_{n=0}^\infty u_n \overline{v_n}$

Analyse de Hilbert

Espaces de Lebesgue

Première pproche : Analyse de Fourier

Analyse multi-résolutio E est dit *séparable* s'il existe $\mathbf{g} = \{g_n\}_{n \in \mathbb{N}}$ tel que $\overline{\mathbf{g}} = E$.

Séparabilité et base hilbertienne

Rouyer, Gervais, Boulahia

Analyse de Hilbert Espaces de Lebesgue

Première approche :

Analyse

E est séparable si et seulement s'il admet une base hilbertienne

Analyse de Hilbert

Analyse multi-résolution E est séparable si et seulement s'il admet une base hilbertienne où une base hilbertienne est une famille orthonormée **totale**, c'est-à-dire une famille orthonormée \mathcal{B} telle que $\text{Vect}(\mathcal{B})$ soit dense dans E.

Analyse de Hilbert

Rouyer, Gervais. Boulahia

 $\mathbf{g} = \{g_n\}_{n \in \mathbb{N}} \subset E \text{ telle que } \overline{\mathbf{g}} = E.$

Analyse de Hilbert

Espaces de Lebesgue

Indelette: Ipplication

Analyse

 $\mathbf{g}=\{g_n\}_{n\in\mathbb{N}}\subset E$ telle que $\overline{\mathbf{g}}=E$. On construit par récurrence $\mathbf{f}=\{f_n\}_{n\in\mathbb{N}}$ de manière à ce que $\{f_0,\cdots f_n\}$ soit orthonormale pour tout n.

Analyse de Hilbert

Espaces de Lebesgue

 $\mathbf{g} = \{g_n\}_{n \in \mathbb{N}} \subset E \text{ telle que } \overline{\mathbf{g}} = E.$ On construit par récurrence $\mathbf{f} = \{f_n\}_{n \in \mathbb{N}}$

On construit par récurrence $\mathbf{f} = \{f_n\}_{n \in \mathbb{N}}$ de manière à ce que $\{f_0, \dots f_n\}$ soit orthonormale pour tout n.

On pose
$$f_0 = \frac{g_0}{\|g_0\|}, \ g_0 \neq 0.$$

Analyse de Hilbert

Espaces de Lebesgue

 $\mathbf{g} = \{g_n\}_{n \in \mathbb{N}} \subset E$ telle que $\overline{\mathbf{g}} = E$. On construit par récurrence $\mathbf{f} = \{f_n\}_{n \in \mathbb{N}}$

On construit par récurrence $\mathbf{f}=\{f_n\}_{n\in\mathbb{N}}$ de manière à ce que $\{f_0,\cdots f_n\}$ soit orthonormale pour tout n.

On pose $f_0 = \frac{g_0}{\|g_0\|}, g_0 \neq 0.$

On construit par récurrence f_{n+1} à l'aide de $f_0, \dots f_n$:

Analyse de Hilbert Espaces de Lebesgue $\mathbf{g} = \{g_n\}_{n \in \mathbb{N}} \subset E \text{ telle que } \overline{\mathbf{g}} = E.$

On construit par récurrence $\mathbf{f}=\{f_n\}_{n\in\mathbb{N}}$ de manière à ce que $\{f_0,\cdots f_n\}$ soit orthonormale pour tout n.

On pose $f_0 = \frac{g_0}{\|g_0\|}, \ g_0 \neq 0.$

On construit par récurrence f_{n+1} à l'aide de $f_0, \dots f_n$:

• on choisit $x \in \text{Vect}(g_0 \cdots g_m) \setminus \text{Vect}(f_0 \cdots f_n)$, avec m le plus petit possible pour que x existe

Analyse de Hilbert Espaces de Lebesgue

$$\mathbf{g} = \{g_n\}_{n \in \mathbb{N}} \subset E \text{ telle que } \overline{\mathbf{g}} = E.$$

On construit par récurrence $\mathbf{f} = \{f_n\}_{n \in \mathbb{N}}$ de manière à ce que $\{f_0, \dots f_n\}$ soit orthonormale pour tout n.

On pose
$$f_0 = \frac{g_0}{\|g_0\|}, g_0 \neq 0.$$

On construit par récurrence f_{n+1} à l'aide de $f_0, \dots f_n$:

 on choisit x ∈ Vect(g₀···g_m) \ Vect(f₀···f_n), avec m le plus petit possible pour que x existe (il existe car E est de dimension infinie).

Analyse de Hilbert Espaces de Lebesgue

$$\mathbf{g} = \{g_n\}_{n \in \mathbb{N}} \subset E \text{ telle que } \overline{\mathbf{g}} = E.$$

On construit par récurrence $\mathbf{f}=\{f_n\}_{n\in\mathbb{N}}$ de manière à ce que $\{f_0,\cdots f_n\}$ soit orthonormale pour tout n.

On pose
$$f_0 = \frac{g_0}{\|g_0\|}, \ g_0 \neq 0.$$

On construit par récurrence f_{n+1} à l'aide de $f_0, \dots f_n$:

• on choisit $x \in \text{Vect}(g_0 \cdots g_m) \setminus \text{Vect}(f_0 \cdots f_n)$, avec m le plus petit possible pour que x existe (il existe car E est de dimension infinie). Ainsi $\text{Vect}(g_0 \cdots g_m) = \text{Vect}(f_0 \cdots f_n, x)$

Analyse de Hilbert Espaces de Lebesgue

$$\mathbf{g} = \{g_n\}_{n \in \mathbb{N}} \subset E \text{ telle que } \overline{\mathbf{g}} = E.$$

On construit par récurrence $\mathbf{f}=\{f_n\}_{n\in\mathbb{N}}$ de manière à ce que $\{f_0,\cdots f_n\}$ soit orthonormale pour tout n.

On pose
$$f_0 = \frac{g_0}{\|g_0\|}, \ g_0 \neq 0.$$

On construit par récurrence f_{n+1} à l'aide de $f_0, \dots f_n$:

- on choisit x ∈ Vect(g₀ ··· g_m) \ Vect(f₀ ··· f_n), avec m le plus petit possible pour que x existe (il existe car E est de dimension infinie). Ainsi Vect(g₀ ··· g_m) = Vect(f₀ ··· f_n, x)
- on orthogonalise la nouvelle famille : $y = x \sum_{k=0}^{n} \langle y, f_k \rangle f_k$

Analyse de Hilbert Espaces de Lebesgue $\mathbf{g} = \{g_n\}_{n \in \mathbb{N}} \subset E \text{ telle que } \overline{\mathbf{g}} = E.$

On construit par récurrence $\mathbf{f} = \{f_n\}_{n \in \mathbb{N}}$ de manière à ce que $\{f_0, \dots f_n\}$ soit orthonormale pour tout n.

On pose $f_0 = \frac{g_0}{\|g_0\|}, g_0 \neq 0.$

On construit par récurrence f_{n+1} à l'aide de $f_0, \dots f_n$:

- on choisit x ∈ Vect(g₀ ··· g_m) \ Vect(f₀ ··· f_n), avec m le plus petit possible pour que x existe (il existe car E est de dimension infinie). Ainsi Vect(g₀ ··· g_m) = Vect(f₀ ··· f_n, x)
- on orthogonalise la nouvelle famille : $y = x \sum_{k=0}^{n} \langle y, f_k \rangle f_k$
- on normalise le nouveau vecteur : $f_{n+1} = \frac{y}{\|y\|}$

Analyse de Hilbert Espaces de Lebesgue

$$\mathbf{g} = \{g_n\}_{n \in \mathbb{N}} \subset E \text{ telle que } \overline{\mathbf{g}} = E.$$

On construit par récurrence $\mathbf{f} = \{f_n\}_{n \in \mathbb{N}}$ de manière à ce que $\{f_0, \dots f_n\}$ soit orthonormale pour tout n.

On pose
$$f_0 = \frac{g_0}{\|g_0\|}, g_0 \neq 0.$$

On construit par récurrence f_{n+1} à l'aide de $f_0, \dots f_n$:

- on choisit x ∈ Vect(g₀ ··· g_m) \ Vect(f₀ ··· f_n), avec m le plus petit possible pour que x existe (il existe car E est de dimension infinie). Ainsi Vect(g₀ ··· g_m) = Vect(f₀ ··· f_n, x)
- on orthogonalise la nouvelle famille : $y = x \sum_{k=0}^{n} \langle y, f_k \rangle f_k$
- on normalise le nouveau vecteur : $f_{n+1} = \frac{y}{\|y\|}$

En passant à l'adhérence : $E = \overline{\mathbf{g}} \subset \overline{\text{Vect}(\mathbf{f})} \subset E$

Espaces de Lebesgue

Rouyer, Gervais, Boulahia

Analyse de Hilbert Espaces de Lebesgue

Première approche :

Analyse

Soit (X, \mathcal{A}, μ) un espace mesuré.

Analyse multi-résolution Soit (X, \mathcal{A}, μ) un espace mesuré.

$$\mathcal{L}^p(X) = \left\{ f : X \to \mathbb{C} \text{ mesurable } | \int_X |f|^p d\mu < \infty
ight\}$$

Soit (X, A, μ) un espace mesuré.

$$\mathcal{L}^p(X) = \left\{f \ : \ X o \mathbb{C} \ \mathrm{mesurable} \ | \ \int_X |f|^p d\mu < \infty
ight\}$$

$$\|f\|_p = \left(\int_X |f|^p d\mu \right)^{\frac{1}{p}}$$

Espaces de Lebesgue

Rouyer, Gervais, Boulahia

Analyse de Hilbert Espaces de Lebesgue

Première approche :

Analyse multi-résolution Soit la relation d'équivalence définie par $f\mathcal{R}g \Longleftrightarrow f \equiv g$ p.p.

Soit la relation d'équivalence définie par $f\mathcal{R}g \Longleftrightarrow f \equiv g$ p.p.

$$L^p(X)=\mathcal{L}^p(X)/\mathcal{R}$$

Soit la relation d'équivalence définie par $f\mathcal{R}g \Longleftrightarrow f \equiv g$ p.p.

$$L^p(X) = \mathcal{L}^p(X)/\mathcal{R}$$

 $(L^p(X), \|\cdot\|_p)$ est alors normé ...

Soit la relation d'équivalence définie par $f\mathcal{R}g \Longleftrightarrow f \equiv g$ p.p.

$$L^p(X) = \mathcal{L}^p(X)/\mathcal{R}$$

 $(L^p(X), \|\cdot\|_p)$ est alors normé ... et complet!

Analyse de Hilbert Espaces de Lebesgue

Première approche Analyse d Fourier

Analyse multi-résolution S'applique aux fonctions périodiques. Dans $L^2(\mathbb{T})$

• Les $\{e^{-ikt}\}$ forment une base Hilbertienne

S'applique aux fonctions périodiques. Dans $L^2(\mathbb{T})$

- Les $\{e^{-ikt}\}$ forment une base Hilbertienne
- $\forall f \in L^2(\mathbb{T})$ on a $S_N(f) = \sum_{k=-N}^N \langle f, e_k \rangle e_k = \sum_{k=-N}^N c_k(f) e^{-ikt}$

S'applique aux fonctions périodiques. Dans $L^2(\mathbb{T})$

- Les $\{e^{-ikt}\}$ forment une base Hilbertienne
- $\forall f \in L^2(\mathbb{T})$ on a $S_N(f) = \sum_{k=-N}^N \langle f, e_k \rangle e_k = \sum_{k=-N}^N c_k(f) e^{-ikt}$
- Toute fonction de $L^2(\mathbb{T})$ se décompose dans la base des $\{e^{-ikt}\}$

Analyse multi-résolution S'applique aux fonctions périodiques. Dans $L^2(\mathbb{T})$

- Les $\{e^{-ikt}\}$ forment une base Hilbertienne
- $\forall f \in L^2(\mathbb{T})$ on a $S_N(f) = \sum_{k=-N}^N \langle f, e_k \rangle e_k = \sum_{k=-N}^N c_k(f) e^{-ikt}$
- Toute fonction de $L^2(\mathbb{T})$ se décompose dans la base des $\{e^{-ikt}\}$
- Et $\lim_{N\to\infty} \|S_N(f) f\|_2 = f$

Preuve de
$$\lim_{N\to\infty} ||S_N(f) - f||_2 = f$$

Soit $f\in L^2(\mathbb{T})$, soit $\varepsilon>0$. Soit $f_0\in L^2(\mathbb{T})$ une fonction continue telle que $\|f_0-f\|<\varepsilon$ Analyse multi-résolutio

Preuve de $\lim_{N\to\infty} ||S_N(f) - f||_2 = f$

Soit $f \in L^2(\mathbb{T})$, soit $\varepsilon > 0$. Soit $f_0 \in L^2(\mathbb{T})$ une fonction continue telle que $\|f_0 - f\| < \varepsilon$ Soit F_0 tel que $f_0 = F_0(e^{it})$ Il existe un polynôme P tel que pour tout t, $\|f_0(t) - P(t)\| < \varepsilon$ Ce qui permet de déduire que :

Preuve de
$$\lim_{N\to\infty} ||S_N(f) - f||_2 = f$$

Soit $f \in L^2(\mathbb{T})$, soit $\varepsilon > 0$. Soit $f_0 \in L^2(\mathbb{T})$ une fonction continue telle que $\|f_0 - f\| < \varepsilon$ Soit F_0 tel que $f_0 = F_0(e^{it})$ Il existe un polynôme P tel que pour tout t, $\|f_0(t) - P(t)\| < \varepsilon$ Ce qui permet de déduire que :

$$||S_{N}(f) - f||_{2} \leq ||S_{N}(f) - S_{N}(P)||_{2} + ||S_{N}(P) - P||_{2} + ||f - P||_{2}$$

$$\leq 2||f - P||_{2} + ||S_{N}(P) - P||_{2}$$

$$\leq 2||f - P||_{2}$$

$$\leq 2||f - f_{0}||_{2} + 2||f_{0} - P||_{2}$$

$$\leq 4\varepsilon$$

pproche : analyse de ourier

Analyse multi-résolution Une analyse multi-résolution de $L^2(\mathbb{R})$ est une famille de sous-espaces fermés $\{V_n\}_{n\in\mathbb{Z}}\subset L^2(\mathbb{R})$ telle que

$$\forall n \in \mathbb{Z}, \ V_n \subset V_{n+1}$$

$$\forall n \in \mathbb{Z}, \ V_n \subset V_{n+1}$$

$$\forall n \in \mathbb{Z}, \forall f \in L^2(\mathbb{R}), f \in V_n \iff f(2 \cdot) \in V_{n+1}$$

Analyse multi-résolution Une analyse multi-résolution de $L^2(\mathbb{R})$ est une famille de sous-espaces fermés $\{V_n\}_{n\in\mathbb{Z}}\subset L^2(\mathbb{R})$ telle que

$$\forall n \in \mathbb{Z}, \ V_n \subset V_{n+1}$$

$$\forall n \in \mathbb{Z}, \forall f \in L^2(\mathbb{R}), f \in V_n \iff f(2 \cdot) \in V_{n+1}$$

Il existe φ telle que $\{\varphi_k = \varphi(\cdot + k)\}_{k \in \mathbb{Z}}$ forme une base orthonormée de V_0

$$\forall n \in \mathbb{Z}, \ V_n \subset V_{n+1}$$

$$\forall n \in \mathbb{Z}, \forall f \in L^2(\mathbb{R}), \ f \in V_n \Longleftrightarrow f(2 \cdot) \in V_{n+1}$$

Il existe φ telle que $\{\varphi_k = \varphi(\cdot + k)\}_{k \in \mathbb{Z}}$ forme une base orthonormée de V_0

$$\overline{\bigcup V} = L^2(\mathbb{R})$$

$$\forall n \in \mathbb{Z}, \ V_n \subset V_{n+1}$$

$$\forall n \in \mathbb{Z}, \forall f \in L^2(\mathbb{R}), \ f \in V_n \Longleftrightarrow f(2 \cdot) \in V_{n+1}$$

Il existe φ telle que $\{\varphi_k = \varphi(\cdot + k)\}_{k \in \mathbb{Z}}$ forme une base orthonormée de V_0

$$\overline{\bigcup V} = L^2(\mathbb{R})$$

$$\bigcap V = \{0\}$$

$$\forall n \in \mathbb{Z}, \ V_n \subset V_{n+1}$$

$$\forall n \in \mathbb{Z}, \forall f \in L^2(\mathbb{R}), \ f \in V_n \Longleftrightarrow f(2 \cdot) \in V_{n+1}$$

Il existe φ telle que $\{\varphi_k = \varphi(\cdot + k)\}_{k \in \mathbb{Z}}$ forme une base orthonormée de V_0

$$\overline{\bigcup V} = L^2(\mathbb{R})$$

$$\bigcap V = \{0\}$$

 φ est appelée fonction d'échelle.

Rouyer, Gervais, Boulahia

Analyse de Hilbert Espaces de Lebesgue

Anaryse de Fourier Ondelettes

Analyse multi-résolution L'espace V_{n+1} est plus "fin" que V_n .

Rouyer, Gervais, Boulahia

Analyse de Hilbert Espaces de Lebesgue

Analyse multi-résolution L'espace V_{n+1} est plus "fin" que V_n .

Soit $P_n: V_{n+1} o V_n$ la projection orthogonale

Analyse multi-résolution L'espace V_{n+1} est plus "fin" que V_n .

Soit $P_n: V_{n+1} o V_n$ la projection orthogonale

$$W_n = \ker(P_n)$$

L'espace V_{n+1} est plus "fin" que V_n .

Soit $P_n: V_{n+1} o V_n$ la projection orthogonale

$$W_n = \ker(P_n) = V_{n+1} \cap V_n^{\perp}$$

L'espace V_{n+1} est plus "fin" que V_n .

Soit $P_n: V_{n+1} o V_n$ la projection orthogonale

$$W_n = \ker(P_n) = V_{n+1} \cap V_n^{\perp}$$

On définit l'espace de détails par

$$V_{n+1} = W_n \oplus V_n$$

Rouyer, Gervais, Boulahia

Analyse de Hilbert Espaces de Lebesgue

Analyse de Fourier

$$V_n = V_{n-1} \oplus W_{n-1}$$

Rouyer, Gervais, Boulahia

Analyse de Hilbert Espaces de Lebesgue

$$V_n = V_{n-1} \oplus W_{n-1}$$
$$= V_{n-2} \oplus W_{n-2} \oplus W_{n-1}$$

Rouyer, Gervais, Boulahia

Analyse de Hilbert Espaces de Lebesgue

$$V_{n} = V_{n-1} \oplus W_{n-1}$$

$$= V_{n-2} \oplus W_{n-2} \oplus W_{n-1}$$

$$= V_{n-3} \oplus W_{n-3} \oplus W_{n-2} \oplus W_{n-1}$$

Analyse multi-résolution $V_{n} = V_{n-1} \oplus W_{n-1}$ $= V_{n-2} \oplus W_{n-2} \oplus W_{n-1}$ $= V_{n-3} \oplus W_{n-3} \oplus W_{n-2} \oplus W_{n-1}$ \vdots $= \underbrace{\bigcap_{k \in \mathbb{N}} V}_{k} \oplus \left(\bigoplus_{k < n} W_{k} \right)$

Analyse multi-résolution

$$V_{n} = V_{n-1} \oplus W_{n-1}$$

$$= V_{n-2} \oplus W_{n-2} \oplus W_{n-1}$$

$$= V_{n-3} \oplus W_{n-3} \oplus W_{n-2} \oplus W_{n-1}$$

$$\vdots$$

$$= \underbrace{\bigcap_{k \in I} V}_{n} \oplus \left(\bigoplus_{k < n} W_{k}\right)$$

Et en faisant l'union pour tout $n \in \mathbb{Z}$ à droite et à gauche

$$\bigcup_{n\in\mathbb{Z}}V_n=\bigoplus_{n\in\mathbb{Z}}W_n$$

Analyse multi-résolution

$$V_{n} = V_{n-1} \oplus W_{n-1}$$

$$= V_{n-2} \oplus W_{n-2} \oplus W_{n-1}$$

$$= V_{n-3} \oplus W_{n-3} \oplus W_{n-2} \oplus W_{n-1}$$

$$\vdots$$

$$= \underbrace{\bigcap V}_{k < n} \bigoplus \underbrace{\bigoplus_{k < n} W_{k}}_{k}$$

Et en faisant l'union pour tout $n \in \mathbb{Z}$ à droite et à gauche

$$\bigcup_{n\in\mathbb{Z}}V_n=\bigoplus_{n\in\mathbb{Z}}W_n=V_0\oplus\left(\bigoplus_{n\in\mathbb{N}}W_n\right)$$

approche : Analyse de Fourier

Analyse multi-résolution $\{W_n\}_{n\in\mathbb{Z}}$ n'est pas une suite croissante mais on conserve l'auto-similarité.

Analyse multi-résolution $\{W_n\}_{n\in\mathbb{Z}}$ n'est pas une suite croissante mais on conserve l'auto-similarité.

$$f \in W_0 \Longleftrightarrow f(2\cdot) \in W_1 \Longleftrightarrow f(2^n \cdot) \in W_n$$

$$f \in W_0 \Longleftrightarrow f(2\cdot) \in W_1 \Longleftrightarrow f(2^n \cdot) \in W_n$$

Il existe $\psi \in W_0$ tel que

$$f \in W_0 \Longleftrightarrow f(2\cdot) \in W_1 \Longleftrightarrow f(2^n \cdot) \in W_n$$

Il existe $\psi \in W_0$ tel que

• $\{\psi(\cdot+k)\}_{k\in\mathbb{Z}}$ est une base orthonormée de W_0

$$f \in W_0 \Longleftrightarrow f(2\cdot) \in W_1 \Longleftrightarrow f(2^n \cdot) \in W_n$$

Il existe $\psi \in W_0$ tel que

- $\{\psi(\cdot+k)\}_{k\in\mathbb{Z}}$ est une base orthonormée de W_0
- $\int_{\mathbb{R}} \psi(t)dt = 0$

$$f \in W_0 \iff f(2\cdot) \in W_1 \iff f(2^n \cdot) \in W_n$$

Il existe $\psi \in W_0$ tel que

- $\{\psi(\cdot+k)\}_{k\in\mathbb{Z}}$ est une base orthonormée de W_0
- $\int_{\mathbb{R}} \psi(t) dt = 0$

 $\{\sqrt{2^n}\psi(2^n\cdot -k)\}_{k\in\mathbb{Z}}$ est une base orthonormée de W_n .

$$f \in W_0 \Longleftrightarrow f(2\cdot) \in W_1 \Longleftrightarrow f(2^n \cdot) \in W_n$$

Il existe $\psi \in W_0$ tel que

- $\{\psi(\cdot+k)\}_{k\in\mathbb{Z}}$ est une base orthonormée de W_0
- $\int_{\mathbb{R}} \psi(t) dt = 0$

 $\{\sqrt{2^n}\psi(2^n\cdot -k)\}_{k\in\mathbb{Z}}$ est une base orthonormée de W_n . La famille définie par $\psi_{n,k}(t)=\sqrt{2^n}(2^nt-k)$ forme une famille orthonormée de $\bigoplus_{n\in\mathbb{Z}^n}W_n$

$$f \in W_0 \Longleftrightarrow f(2\cdot) \in W_1 \Longleftrightarrow f(2^n \cdot) \in W_n$$

Il existe $\psi \in W_0$ tel que

- $\{\psi(\cdot+k)\}_{k\in\mathbb{Z}}$ est une base orthonormée de W_0
- $\int_{\mathbb{R}} \psi(t) dt = 0$

 $\{\sqrt{2^n}\psi(2^n\cdot -k)\}_{k\in\mathbb{Z}}$ est une base orthonormée de W_n . La famille définie par $\psi_{n,k}(t)=\sqrt{2^n}(2^nt-k)$ forme une famille orthonormée de $\bigoplus_{n \in \mathbb{Z}} W_n$

 $\{\psi_{n,k}\}_{n,k\in\mathbb{Z}}$ est une base hilbertienne de $L^2(\mathbb{R})$!

Rouyer, Gervais, Boulahia

Espaces de Lebesgue

De
$$\bigcup_{n\in\mathbb{Z}}V_n=\bigoplus_{n\in\mathbb{Z}}W_n=V_0\oplus\left(\bigoplus_{n\in\mathbb{N}}W_n\right)$$

De
$$\bigcup_{n\in\mathbb{Z}}V_n=\bigoplus_{n\in\mathbb{Z}}W_n=V_0\oplus\left(\bigoplus_{n\in\mathbb{N}}W_n\right)$$
 on déduit pour tout $f\in L^2(\mathbb{R})$

$$f = \sum_{\substack{k \in \mathbb{Z} \\ n \in \mathbb{Z}}} \langle \psi_{n,k}, f \rangle \psi_{n,k} = \sum_{k \in \mathbb{Z}} \langle \varphi_k, f \rangle \varphi_k + \sum_{\substack{k \in \mathbb{Z} \\ n \in \mathbb{N}}} \langle \psi_{n,k}, f \rangle \psi_{n,k}$$