Subjective Questions

Question 1:

- 1) What is the optimal value of alpha for ridge and lasso regression?
- 2) What will be the changes in the model if you choose to double the value of alpha for both ridge and lasso?
- 3) What will be the most important predictor variables after the change is implemented?

Solution:

- 1) Optimal Value of Alpha for:
 - a. Ridge Regression: 4
 - b. Lasso Regression: 0.0001
- 2) Observation when Alpha was doubled for both Ridge & Lass [Details in Jupyter Notebook]

a. Ridge:

Parameters	Obs	ervation				Comments	
Model	:	Metric	Doubled A	lpha (Optimal Alpha	Both train	
Metrics	0	R2 Score (Train)	0	.900	0.906	and test data	
	1	R2 Score (Test)	0	.869	0.876	the R2 score	
	2	RSS (Train)	1	.085	1.013	value has	
	3	RSS (Test)	1	.044	0.992	dropped and MSE and RSS	
	4	MSE (Train)	0	.034	0.033	has increased	
	5	MSE (Test)	C	0.051	0.049	mas mercasea	
Model	Alpl	na: 8				On doubling	
Coefficients			Feature	Coe	f	the alpha,	
) MS	SSubClass	0.053	3	the model coefficients	
		1 0\	/erallCond	0.052	2		
	14	1 Bsr	ntFullBath	0.046	6	has reduced.	
	70	Neighborhoo	d_NridgHt	0.044	4		
	1		2ndFlrSF	0.042			
			smtFinSF2				
	1:		QualFinSF				
			asVnrArea				
	7	7 Neighborhoo	od_Timber	0.032	2		
	10)	1stFlrSF	0.032	2		
	Alpl	na: 4					

:	Feature	Coef
0	MSSubClass	0.092
14	BsmtFullBath	0.060
4	OverallCond	0.060
12	LowQualFinSF	0.054
11	2ndFlrSF	0.053
70	Neighborhood_NridgHt	0.048
7	BsmtFinSF2	0.047
5	MasVnrArea	0.043
77	Neighborhood_Timber	0.039
10	1stFlrSF	0.037

a. Lasso Regression:

Parameter	0	bs	ervation		·		Comments
Model Metrics	:		Metric	Doubled Alpha	Optima	l Alpha	On doubling alpha the for
		0	R2 Score (Train)	0.897		0.905	both train
		1	R2 Score (Test)	0.881		0.883	and test data
		2	RSS (Train)	1.118		1.030	the R2 score
		3	RSS (Test)	0.949		0.934	has reduced slightly and
		4	MSE (Train)	0.034		0.033	the MSE has
		5	MSE (Test)	0.048		0.048	increased
Model Coefficients	A	lpł	na: 0.0002				On doubling alpha the
	1			Feature	Coef		model
		1	14	BsmtFullBath	0.218		coefficients has increased
			4	OverallCond	0.089		nas mercasca
		7	'0 Neighborh	nood_NridgHt	0.051		
			7	BsmtFinSF2	0.051		
			5	MasVnrArea	0.049		
		14	12	ExterQual_Fa	0.045		
		7	77 Neighbor	hood_Timber	0.041		
		1	10	1stFlrSF	0.034		
		19	9 7 Kit	tchenQual_Fa	0.032		
		-	71 Neighborh	ood_OldTown	0.029		

Alph	Alpha: 0.0001		
	Feature	Coef	
14	BsmtFullBath	0.225	
4	OverallCond	0.082	
70	Neighborhood_NridgHt	0.053	
5	MasVnrArea	0.052	
77	Neighborhood_Timber	0.047	
7	BsmtFinSF2	0.047	
142	ExterQual_Fa	0.046	
3	OverallQual	0.043	
10	1stFlrSF	0.041	
71	Neighborhood_OldTown	0.031	

3) Most Important Variable after change is implemented [alpha is doubled]:

a. Ridge Regression:

	Feature	Coef
0	MSSubClass	0.053
4	OverallCond	0.052
14	BsmtFullBath	0.046
70	Neighborhood_NridgHt	0.044
11	2ndFlrSF	0.042
7	BsmtFinSF2	0.042
12	LowQualFinSF	0.040
5	MasVnrArea	0.036
77	Neighborhood_Timber	0.032
10	1stFlrSF	0.032

b. Lasso Regression:

i.

	Feature	Coef
14	BsmtFullBath	0.218
4	OverallCond	0.089
70	Neighborhood_NridgHt	0.051
7	BsmtFinSF2	0.051
5	MasVnrArea	0.049
142	ExterQual_Fa	0.045
77	Neighborhood_Timber	0.041
10	1stFlrSF	0.034
197	KitchenQual_Fa	0.032
71	Neighborhood_OldTown	0.029

Question 2:

i.

You have determined the optimal value of lambda for ridge and lasso regression during the assignment. Now, which one will you choose to apply and why?

Solution:

Comparing R2 Score(test) for Lasso vs Ridge, [0.883 vs 0.876] and other metrics, Lasso has an edge over Ridge. Therefore we will work with Lasso as it gives the option of feature selection along with regularization. It removes unwanted features from the model without affecting the model accuracy. In Lasso, some of the coefficients become 0, thus resulting in feature selection and, hence, easier interpretation, particularly when the number of coefficients is very large.

Question 3:

After building the model, you realised that the five most important predictor variables in the lasso model are not available in the incoming data. You will now have to create another model excluding the five most important predictor variables. Which are the five most important predictor variables now?

Solution:

Top 5 Variables identified by Lasso are:

	Feature	Coef
14	BsmtFullBath	0.225
4	OverallCond	0.082
70	Neighborhood_NridgHt	0.053
5	MasVnrArea	0.052
77	Neighborhood_Timber	0.047

If we exclude these variables, the new five most important predictor variables are[refer Jupyter Notebook]:

	Feature	Coef
12	BsmtHalfBath	0.211
4	BsmtFinSF1	0.096
5	BsmtFinSF2	0.053
137	ExterQual_Fa	0.051
67	Neighborhood_OldTown	0.050

Metrics:

R2 train: 0.8989486557032434 R2 test: 0.8760921599704945 RSS train: 1.0933267728297622 RSS test: 0.9907016254405436 MSS train: 0.0011496601186432832 MSS test: 0.002428190258432705

Question 4:

How can you make sure that a model is robust and generalisable? What are the implications of the same for the accuracy of the model and why?

Solution:

A robust and generalisable model is one which has low training error and low testing error. It can be also understood using the Bias-Variance trade-off. The simpler the model the more the bias but less variance and more generalizable.

To make such model following things are essential:

1. Avoiding overfitting by doing Regularization while model making. In overfitting, a model fits the training data but fails to generalize and hence, cannot be used as the model to predict on new data or out-of-sample data. Regularization helps to avoid overfitting as well underfitting, keeping bias & variance trade off at its best. We use regularization because we want our models to work well with unseen data, without missing out on identifying underlying patterns in the data

Implications on model accuracy

By making robust and generalized model i.e. by introducing regularization we compromise accuracy to some extent as we allow a little bias for a significant reduction in variance. A robust and generalisable model will perform equally well on both training and test data i.e. the accuracy does not change much for training and test data.

Reason for this implication

This happens because Regularization introduces a penalty, which grows in relation to the size of the coefficients and reduces its impact, thus making the model less sensitive to small changes in the variables. More extreme model coefficients values gives better accuracy but lead to a large variance. Regularization prevents this by shrinking the coefficients towards 0.