Fast Rates for Exp-concave Empirial Risk Minimization

Tomer Koren, Kfir Y. Levy Presenter: Zhe Li

September 16, 2016

High Level Idea

- Why could we use Regularized Empirical Risk Minimization?
 - Learning theory perspective

- If we could use Regularized Empirical Risk Minimization, how to solve?
 - Optimization algorithms

Consider the problem of minimizing a stochastic objective

$$F(w) = \mathbb{E}[f(w, Z)]$$

• $w \in \mathcal{W} \subseteq \mathbb{R}^d$, a closed and convex domain \mathcal{W}

Consider the problem of minimizing a stochastic objective

$$F(w) = \mathbb{E}[f(w, Z)]$$

- $w \in \mathcal{W} \subseteq \mathbb{R}^d$, a closed and convex domain \mathcal{W}
- random variable Z distributed according to an unknow distribution over a parameter space \mathcal{Z}

Consider the problem of minimizing a stochastic objective

$$F(w) = \mathbb{E}[f(w, Z)]$$

- $w \in \mathcal{W} \subseteq \mathbb{R}^d$, a closed and convex domain \mathcal{W}
- random variable Z distributed according to an unknow distribution over a parameter space $\mathcal Z$
- given *n* samples z_1, \dots, z_n of the random variable Z

Consider the problem of minimizing a stochastic objective

$$F(w) = \mathbb{E}[f(w, Z)]$$

- $w \in \mathcal{W} \subseteq \mathbb{R}^d$, a closed and convex domain \mathcal{W}
- random variable Z distributed according to an unknow distribution over a parameter space $\mathcal Z$
- given *n* samples z_1, \dots, z_n of the random variable Z
- the goal: to produce an estimate $\hat{w} \in \mathcal{W}$ such that

$$\mathbb{E}[F(\hat{w})] - \min_{w} F(w)$$

is small.

Assumptions

- $f(\cdot,z)$ is α -exp-concave over the domain $\mathcal W$ for some $\alpha>0$.
 - discuss later.
- $f(\cdot, z)$ is β -smooth over \mathcal{W} with repect to Euclidean norm.
- $f(\cdot, z)$ is bounded over W.

Main results

How to construct an estimate \hat{w} ?

• Based on the sample z_1, \dots, z_n , construct

$$\hat{w} = \underset{w \in \mathcal{W}}{\operatorname{argmin}} \hat{F}(w)$$

where

$$\hat{F}(w) = \frac{1}{n} \sum_{i=1}^{n} f(w, z_i) + \frac{1}{n} R(w)$$

• $R(w): \mathcal{W} \mapsto \mathbb{R}$: a regularizer, 1-strongly-convex w.r.t Euclidean norm. Assump that $|R(w) - R(w')| \leq B$ for all $w, w' \in W$ for constant B > 0

Main results

Theorem

Let $f: \mathcal{W} \times \mathcal{Z} \mapsto \mathbb{R}$ be a loss function defined over a closed and convex domain $\mathcal{W} \subseteq \mathbb{R}^d$, which α -exp-concave, β -smooth and C bounded w.r.t its first argument. Let $R: \mathcal{W} \mapsto \mathbb{R}$ be a 1-strongly-convex and B-bounded regularization function. Then for the regularized ERM estimate \hat{w} based on an i.i.d samples z_1, \cdots, z_n , the expected excess loss is bounded as

$$\mathbb{E}[F(\hat{w})] - \min_{\mathbf{w} \in \mathcal{W}} F(\mathbf{w}) \le \frac{24\beta d}{\alpha n} + \frac{100Cd}{n} + \frac{B}{n} = \mathcal{O}(d/n)$$

- Don't care about whatever optimazition algorithms
- Care about the learning framework

Proof Technique

- Uniform Stability
- Average leave-one-out stablity
- Rademancher Complexity
- Local Rademancher Complexity

Average leave-one-out stablity

• Define the empirical leave-one-out risk for each $i=1,\cdots,n$

$$\hat{F}_i(w) = \frac{1}{n} \sum_{j \neq i} f(w, z_j) + \frac{1}{n} R(w)$$

- Let $\hat{w}_i = \underset{w \in \mathcal{W}}{\operatorname{argmin}} \hat{F}_i(w)$
- The average leave-one-out stability of \hat{w} is defined as

$$\frac{1}{n}\sum_{i=1}^n (f(\hat{w}_i,z_i)-f(\hat{w},z_i))$$

Average leave-one-out stablity

Theorem

(Average leave-one-out stability). For any $z_1, \dots, z_n \in \mathcal{Z}$ and for $\hat{w}_1, \dots, \hat{w}_n$ and \hat{w} as defined previously, we have

$$\frac{1}{n}\sum_{i=1}^{n}(f(\hat{w}_i,z_i)-f(\hat{w},z_i))\leq \frac{24\beta d}{\alpha n}+\frac{100Cd}{n}$$

Proof of Main Theorem

• fix an arbitrary $w^* \in \mathcal{W}$, we have

$$F(w^*) + \frac{1}{n}R(w^*) = \mathbb{E}[\hat{F}(w^*)] \ge \mathbb{E}[\hat{F}(\hat{w})]$$

$$\downarrow \downarrow$$

$$\mathbb{E}[F(\hat{w}_n)] - F(w^*) \le \mathbb{E}[F(\hat{w}_n) - \hat{F}(\hat{w})] + \frac{1}{n}R(w^*)$$

• since the random variable $\hat{w}_1, \dots, \hat{w}_n$ have same distribution:

$$\mathbb{E}[F(\hat{w}_n)] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[F(\hat{w}_i)] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[f(\hat{w}_i, z_i)]$$

Proof of Main Theorem

- $\mathbb{E}[\hat{F}(\hat{w})] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[f(\hat{w}, z_i)] + \frac{1}{n} \mathbb{E}[R(\hat{w})]$
- Combining the above inqualities,

$$\mathbb{E}[F(\hat{w}_n)] - F(w^*)$$

$$\leq \frac{1}{n} \sum_{i=1}^n \mathbb{E}[f(\hat{w}_i, z_i) - f(\hat{w}, z_i)] + \frac{1}{n} \mathbb{E}[R(w^*) - R(\hat{w})]$$

$$\leq \frac{24\beta d}{\alpha n} + \frac{100Cd}{n} + \frac{B}{n} = \mathcal{O}(\frac{d}{n})$$

using the average leave-one-out stability theorem and the assumption.

• 🗆

Proof of Average Leave-one-out Stability Theorem

Local Strongly Convexity and Stability

Definition

(Local strong convexity). We say that a function $g:\mathcal{K}\mapsto\mathbb{R}$ is locally δ -strongly convex over a domain $\mathcal{K}\subseteq\mathbb{R}^d$ at x with respect to a norm $||\cdot||$,if

$$\forall y \in \mathcal{K}, g(y) \ge g(x) + \nabla g(x)(y-x) + \frac{\delta}{2}||y-x||^2$$

Local Strongly Convexity and Stability

Lemma

(Lemma 5). Let $g_1,g_2:\mathcal{K}\mapsto\mathbb{R}$ be two convex functions defined over a closed and convex domain $\mathcal{K}\subseteq\mathbb{R}^d$, and let $x_1\in \underset{x\in\mathcal{K}}{\operatorname{argmin}}g_1(x)$ and $x_2\in \underset{x\in\mathcal{K}}{\operatorname{argmin}}g_2(x)$. Assume that g_2 is locally δ -strongly convex at x_1 with repect to a norm $||\cdot||$. Then, for $h=g_2-g_1$ we have

$$||x_2-x_1|| \leq \frac{2}{\delta}||\nabla h(x_1)||^*$$

Futhermore, if *h* is convex then

$$0 \le h(x_1) - h(x_2) \le \frac{2}{\delta} (||\nabla h(x_1)||^*)^2 \tag{1}$$

Average Stability Analysis

Some Definitions

- $f_i(\cdot) = f(\cdot, z_i)$ for all $i, h_i = \nabla f_i(\hat{w})$
- $H = \frac{1}{\delta}I_d + \sum_{i=1}^n h_i h_i^T$ and $H_i = \frac{1}{\delta}I_d + \sum_{j \neq i}^n h_i h_i^T$
- $||x||_M = \sqrt{x^T M x}$ denotes the norm induced by a positive definite matrix M, dual norm $||x||_M^* = \sqrt{x^T M^{-1} x}$

Lemma

(Lemma 6) For all $i=1,\cdots,n$ it holds that

$$f_i(\hat{w}_i) - f_i(\hat{w}) \leq \frac{6\beta}{\delta} (||h_i||_{H_i}^*)^2$$

Average Stability Analysis

Lemma

(Lemma 8) Let $\mathcal{I}=\{i\in[n]:||h_i||_H^*>\frac{1}{2}\}.$ Then $|\mathcal{I}|\leq 2d$ and we have

$$\sum_{i \notin \mathcal{I}} (||h_i||_{H_i}^*)^2 \le 2d$$

Lemma 6 + Lemma 8 ⇒ Stability Theorem

Proof:

- $\frac{1}{n}\sum_{i\in\mathcal{I}}(f_i(\hat{w}_i)-f_i(\hat{w}))\leq \frac{C|\mathcal{I}|}{n}\leq \frac{2Cd}{n}$
- $\frac{1}{n} \sum_{i \notin \mathcal{I}} (f_i(\hat{w}_i) f_i(\hat{w})) \le \frac{6\beta}{\delta n} \sum_{i \notin \mathcal{I}} (||h_i||_{H_i}^*)^2 \le \frac{12\beta d}{\delta n}$
- summing up. □

Continue to prove of Lemma 6 and Lemma 8?

Proof of Lemma 8

Lemma

(Lemma 8) Let $\mathcal{I} = \{i \in [n] : ||h_i||_H^* > \frac{1}{2}\}$. Then $|\mathcal{I}| \leq 2d$ and we have

$$\sum_{i \notin \mathcal{I}} (||h_i||_{H_i}^*)^2 \le 2d$$

Proof:

- $a_i = h_i^T H^{-1} h_i$ for $i = 1, \dots, n, a_i > 0$.
- $\sum_i a_i \leq d$
- $|\mathcal{I}| \leq 2d$.
- $(||h_i||_{H_i}^*)^2 = h_i^T H_i^{-1} h_i^T = a_i + \frac{a_i^2}{1 a_i} \le 2a_i$
- $\sum_{i \notin \mathcal{I}} (||h_i||_{H_i}^*)^2 \le 2 \sum_{i \notin \mathcal{I}} a_i \le \sum_i a_i = 2d$

Proof of Lemma 6

Lemma

(Lemma 6) For all $i = 1, \dots, n$ it holds that

$$f_i(\hat{w}_i) - f_i(\hat{w}) \leq \frac{6\beta}{\delta} (||h_i||_{H_i}^*)^2$$

Proof:

- Using property of α -exp-concave of function.
- Smoothness Assumption.
- Lemma 5.

α -exp-concave function

Definition

The function f(w) is α -exp-concave over the domain \mathcal{W} for some $\alpha > 0$, if that the function $\exp(-\alpha f(w))$ is concave over \mathcal{W} .

Lemma

(Lemma 7) Let $f: \mathcal{K} \mapsto \mathbb{R}$ be an α -exp-concave function over a convex domain $\mathcal{K} \subseteq \mathbb{R}^d$ such that $|f(x) - f(y)| \leq C$ for any $x,y \in \mathcal{K}$. Then for any $\delta \leq \frac{1}{2} \min\{\frac{1}{4C},\alpha\}$, it holds that

$$\forall x, y \in \mathcal{K}, f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{\delta}{2} (\nabla f(x)^T (y - x))^2$$

Proof of Lemma 6

Proof:

- Let $g_1 = \hat{F}$ and $g_2 = \hat{F}_i$, $h_i = -\frac{1}{n}f_i$ $\stackrel{Lemma7}{\Longrightarrow} \hat{F}_i \text{ is locally } (\delta/n) \text{ strongly convex at } \hat{w} \text{ w.r.t } ||\cdot||_{H_i}$ $\stackrel{Lemma5}{\Longrightarrow} ||\hat{w}_i \hat{w}||_{H_i} \leq \frac{2n}{\delta} ||\nabla h(\hat{w})||_{H_i}^* = \frac{2}{\delta} ||h_i||_{H_i}^*$
- f_i is convex

$$f_i(\hat{w}_i) - f_i(\hat{w}) \leq \nabla f_i(\hat{w}_i)^T (\hat{w}_i - \hat{w})$$

= $\nabla f_i(\hat{w})^T (\hat{w}_i - \hat{w}) + (\nabla f_i(\hat{w}_i) - \nabla f_i(\hat{w}))^T (\hat{w}_i - \hat{w})$

Proof of Lemma 6

•
$$\nabla f_i(\hat{w})^T(\hat{w}_i - \hat{w}) = h_i^T(\hat{w})^T(\hat{w}_i - \hat{w}) \le ||h_i||_{H_i}^* \cdot ||\hat{w}_i - \hat{w}||_{H_i} \le \frac{2}{\delta}(||h_i||_{H_i}^*)^2$$

- $(\nabla f_i(\hat{w}_i) \nabla f_i(\hat{w}))^T (\hat{w}_i \hat{w}) \leq \beta ||\hat{w}_i \hat{w}||_2^2$
- $||\hat{w}_i \hat{w}||_2^2 \le \delta ||\hat{w}_i \hat{w}||_{H_i}^2 \le \frac{4}{\delta} (||h_i||_{H_i}^*)^2$, by using $H_i \ge (1/\delta)I_d$.

Open Question

- Is smoothness assumption necessary?
 - not necessary from online-batch convertion.
 - limition of the analysis?
- Excess risk with high probability?
 - Morkov's inequality?

Open Question

- Is smoothness assumption necessary?
 - not necessary from online-batch convertion.
 - limition of the analysis?
- Excess risk with high probability?
 - Morkov's inequality? X