TRIGONOMETRY Chapter 2

Sistemas De Medición Angular II

Ladistanciaentre los sueños y la realidad se llama disciplina.

HELICOTHEORY

¿QUÉ ES UN FACTOR DE CONVERSIÓN?

Es una equivalencia entre dos valores de sistemas diferentes. Generalmente están en forma de fracción cuando se realizan los cálculos de conversión.

Conversión del sistema sexagesimal al sistema radial

Para eso multiplicamos por el factor de conversión:

 $\frac{\Pi rad}{180}$

Conversión del sistema radial al sistema sexagesimal

Para eso multiplicamos por el factor de conversión

180°

Пrad

Convierta los siguientes ángulos al sistema radial :

a) 150° b) 140° c) 100°

Recordar:

Para pasar del sistema sexagesimal al sistema radial se multiplica por $\frac{\Pi rad}{180^{\circ}}$

RESOLUCIÓN:

$$150 \times \frac{\Pi rad}{180^9} = \frac{5\Pi rad}{6}$$

$$140 \times \frac{\Pi rad}{180} = \frac{7\Pi rad}{9}$$

$$100^6 \times \frac{\pi rad}{180^9} = \frac{5\pi rad}{9}$$

Convierta los siguientes ángulos al sistema sexagesimal:

(a)
$$\frac{2\pi}{9}$$
 rad

(b)
$$\frac{3\Pi}{10}$$
 rad

(c)
$$\frac{5\pi}{18}$$
 rad

RESOLUCIÓN:

Recordar:

Para pasar del sistema radial al sistema sexagesimal se multiplica por $\frac{180^{\circ}}{\Pi rad}$

(a)
$$\frac{2\Pi rad}{9} \times \frac{180^{\circ}}{\Pi rad} = 40^{\circ}$$

(b)
$$\frac{3 \pi r a d}{10} \times \frac{180^{\circ}}{\pi r a d} = 54^{\circ}$$

(c)
$$\frac{5\Pi rad}{18} \times \frac{180^{\circ}}{\Pi rad} = 50^{\circ}$$

Calcule la medida del ángulo ß en el sistema radial.

$$\beta = 7^{\circ} + 46^{\circ} + 27^{\circ} + 10^{\circ}$$

Resolución:

Procedemos a realizar la suma:

$$\beta = 7^{\circ} + 46^{\circ} + 27^{\circ} + 10^{\circ} = 90^{\circ}$$

Luego lo pasamos al sistema radial:

$$\beta = 90^{\circ} \times \frac{\pi rad}{180^{\circ}} = \frac{\pi rad}{2}$$

cule la medida del ángulo en el sistema sexagesimal:

$$\mathbf{B} = \frac{4\Pi}{9} rad + \frac{\Pi}{3} rad + \frac{\Pi}{15} rad$$

Recordar:

Para pasar al sistema sexagesimal multiplicar por $\frac{180^{\circ}}{\pi rad}$

Resolución:

$$\frac{4\Pi rad}{9} \times \frac{180^{\circ}}{\Pi rad} = 80^{\circ}$$

$$\frac{\Pi rad}{3} \times \frac{180^{\circ}}{\Pi rad} = 60^{\circ}$$

$$\frac{\Pi rad}{15} \times \frac{180^{\circ}}{\Pi rad} = 12^{\circ}$$

Procedemos a sumar:

$$B = 80 \circ + 60 \circ + 12 \circ$$

$$B = 152^{\circ}$$

Calcular:

$$K = \sqrt{a+b}$$

$$si: (\overline{ab})^{\circ} <> \frac{\pi}{5} rad$$

Recordar:

Para pasar al sistema sexagesimal

multiplicar por $\frac{180^{\circ}}{\Pi rad}$

Resolución:

$$\frac{\pi rad}{5} \times \frac{180^{\circ}}{\pi rad} = 36^{\circ}$$

Del dato:
$$(ab) = 36$$

$$\implies a = 3 \quad y \quad b = 6$$

Nos piden calcular

$$K = \sqrt{a+b} = \sqrt{3+6}$$

$$\therefore K = 3$$

Calcule el valor de

$$\mathsf{P} = \frac{120^{\circ}}{\frac{2\pi}{9} rad} + 5$$

Recordar:

Para pasar al sistema sexagesimal

multiplicar por $\frac{360^{\circ}}{2\Pi rad}$

Resolución:

$$P = \frac{120^{\circ}}{\frac{2\pi rad}{9} \times \frac{360^{\circ}}{2\pi rad}} + 5$$

$$P = \frac{120^{\circ}}{40^{\circ}} + 5$$

$$P = 3 + 5$$

$$\therefore P = 8$$

HELICO | PRACTICE

inventario del En un laboratorio de matemática, Fabián se encuentra con dos cajas

Siendo "x" el número de reglas e "y" el número de lapiceros.

- a. ¿Cuántos lapiceros contiene la caja **B**?
- b. ¿Cuántas reglas contiene la caja **A?**

Resolución:

De la caja B:
$$\frac{8\pi}{9} rad - y^{\circ} = \frac{5\pi}{18} rad$$

Convertimos todo al sistema sexagesimal

$$\frac{8\pi rad}{9} \times \frac{180}{\pi rad} - y = \frac{5\pi rad}{18} \times \frac{180}{\pi rad}$$

Cant. de lapiceros en la caja B

$$y = 110$$

De la caja A:
$$x^{\circ} + \frac{\pi}{6} rad = 50^{\circ}$$

Convertimos todo al sistema sexagesimal

$$x^{2} + \frac{\pi rad}{6} \times \frac{180}{\pi rad} = 50^{2}$$
Cant. de reglas en la caja A
$$x + 30 = 50$$

$$x = 20$$

En el triángulo mostrado, calcular el valor de ϕ en el sistema sexagesimal:

Recordar:

Resolución:

En el triángulo

$$\frac{2\pi}{5}rad + \frac{\pi}{3}rad + \phi = 180^{\circ}$$

Convertimos todo al sistema sexagesimal

$$\frac{2\pi rad}{5} \times \frac{180^{\circ}}{\pi rad} + \frac{\pi rad}{3} \times \frac{180^{\circ}}{\pi rad} + \phi = 180^{\circ}$$

$$\dot{\phi} = 48^{\circ}$$