A Smart Cyber Security and Trust Management Solution for the Internet of Things (IoT)

Mohammad Dahman Alshehri

University of Technology Sydney (UTS), Centre for Artificial Intelligence (CAI)

S ***

1 Introduction

- The large number of IoT devices increases the risk of security threats such as (but not limited to) viruses or cyber-attacks.
- There is no research in ensuring that the developed IoT trust solutions are scalable across billions of IoT nodes.
- We propose a methodology for scalable trust management solution in the IoT. The methodology addresses practical and pressing issues related to IoT trust management such as trust-based IoT clustering, intelligent methods for countering bad-mouthing attacks on trust systems, issues of memory-efficient trust computation and trust-based migration of IoT nodes from one cluster to another. Experimental results demonstrate the effectiveness of the proposed approaches.

2 Motivation

Smart clustering based approach, wherein IoT nodes are intelligent grouped into clusters based on their trust value

➤ Overcome memory shortage induced by extreme memory usage of node services during the storage and computation of trust computations

Explores and develops methods to counter bad-mouthing attacks

➤ IoT nodes scalability

3 Challenges

 Inability to scale trust solutions to billions of geographically dispersed IoT nodes

Node memory shortage for IoT nodes

Risks associated with cyber attacks on IoT

Results for the Proposed Base Cases IoT-TM

Results of IoT-TM Bad-Mouthing Attacks

Parameter	Value
Number of nodes	343
Number of clusters	9
Simulation time	200s
Master/Cluster node memory	32 bytes
Memory rate	0.5
Trigger Outliers	Switched
Trigger Bad-Mouths	True
Trigger Memory Thresholds	True
Trigger Balanced Node Distribution	False

Results of Countering Extreme Memory

cluster with outliers

cluster nodes for each

Overlap values

0 11.5 23 34.5 46 46 57.5 69 80.5 92 115 115 116 116 116 117 126.5 149.5 184 184 184 184 184

Parameter	Value
Number of nodes	343
Number of clusters	9
Simulation time	200s
Master/Cluster node memory	32 bytes
Memory rate	0.9775
Trigger Outliers	True
Trigger Bad-Mouths	False
Trigger Memory Thresholds	Switched
Trigger Balanced Node Distribution	True

Research Achievements

0.5 1 1.5 2 2.5

Smart solution for enabling IoT trusted platforms

Recognizes badmouthing attacks and protects IoT platforms

More effective memory storage for IoT nodes

✓ IoT scalability ensured