Seleção natural

Bio 0208 - 2015

Diogo Meyer

Departamento de Genética e Biologia Evolutiva Universidade de São Paulo

Leitura básica: Ridley 5.6, 5.7, 5.10,5.12

Lembremos o quão complexas e ajustadas são as relações mútuas dos seres vivos uns aos outros e às suas condições físicas de vida. Seria então, improvável, pensar que variações úteis de algum modo a cada ser na grande e complexa batalha da vida, devam às vezes surgir ao longo de milhares de gerações? E se isso ocorre, podemos duvidar (lembrando que mais indivíduos nascem do que podem possivelmente sobreviver) que indivíduos com qualquer vantagem, por mais sutil que seja, sobre os outros, teriam uma melhor chance de sobreviver e procriar? Por outro lado, podemos ter certeza que qualquer variação minimamente prejudicial seria rigidamente rejeitada. Essa preservação das variações favoráveis e a rejeição das prejuciais eu chamo de Seleção Natural.

Charles Darwin, em A origem das espécies, 1859

Visão contemporânea

→ se há variação na população

→ se essa variação contribui para a sobrevivência e reprodução diferencial

→ se essa variação é herdável

Haverá seleção natural

Genótipo	AA	Aa	aa

Genótipo	AA	Aa	aa
ao nascimento	150	210	140

Genótipo	AA	Aa	aa
ao nascimento	150	210	140
entre adultos	75	105	70

Genótipo	AA	Aa	aa
ao nascimento	150	210	140
entre adultos	75	105	70
sobrevivência	50%	50%	50%

Genótipo	AA	Aa	aa

Genótipo	AA	Aa	aa
ao nascimento	150	210	140

Genótipo	AA	Aa	aa
ao nascimento	150	210	140
entre adultos	100	140	70

Genótipo	AA	Aa	aa
ao nascimento	150	210	140
entre adultos	100	140	70
sobrevivência	2/3	2/3	1/2

Genótipo	AA	Aa	aa
ao nascimento	150	210	140
entre adultos	100	140	70
sobrevivência	2/3	2/3	1/2
sobrevivência normalizada	1	1	3/4

Genótipo	AA	Aa	aa
ao nascimento	150	210	140
entre adultos	100	140	70
sobrevivência	2/3	2/3	1/2
sobrevivência normalizada	1	1	3/4

Nesse exemplo:

Genótipo	AA	Aa	aa
ao nascimento	150	210	140
entre adultos	100	140	70
sobrevivência	2/3	2/3	1/2
sobrevivência normalizada	1	1	3/4

Nesse exemplo:

• Valores adapativos $W_{AA} = 1$; $W_{Aa} = 1$; $W_{aa} = 3/4$

Genótipo	AA	Aa	aa
ao nascimento	150	210	140
entre adultos	100	140	70
sobrevivência	2/3	2/3	1/2
sobrevivência normalizada	1	1	3/4

Nesse exemplo:

- Valores adapativos $W_{AA} = 1$; $W_{Aa} = 1$; $W_{aa} = 3/4$
- Coeficientes seletivos é s=0,25 para o genótipo "aa".

Genótipo	AA	Aa	aa
ao nascimento	150	210	140
entre adultos	100	140	70
sobrevivência	2/3	2/3	1/2
sobrevivência normalizada	1	1	3/4

Nesse exemplo:

- Valores adapativos $W_{AA} = 1$; $W_{Aa} = 1$; $W_{aa} = 3/4$
- Coeficientes seletivos é s=0,25 para o genótipo "aa".
- "s" Mede decréscimo de sobrevivência devido a seleção.

O modelo genético de seleção

Parâmetro do modelo evolutivo	No modelo de seleção
Tamanho da população	Infinitamente grande
Cruzamento	aleatório
Sobrevivência e reprodução dos genótipos	Diferente entre genótipos
mutação (e migração)	Não há

Genótipo	AA	Aa	aa
Valor adaptativo	1	1	1-s

Genótipo	AA	Aa	aa
nascimento	p ²	2pq	q ²
Aptidão	1	1	1-s
adultos	p ²	2pq	q ² (1-s)

como calcular:

Exemplo de seleção

Redução de forma melânica de biston betularia em regiões sem poluição, na Inglaterra.

	AA	Aa	aa
Ao nascimento	p^2	2pq	q^2
Valor adaptativo	W_{AA}	W_{Aa}	W_{aa}
Entre adultos	p^2W_{AA}	$2pqW_{Aa}$	q^2W_{aa}
Entre adultos normalizado	$\frac{p^2 W_{AA}}{\bar{W}}$	$\frac{2pqW_{Aa}}{\bar{W}}$	$\frac{q^2W_{aa}}{\bar{W}}$

	AA	Aa	aa
Ao nascimento	p^2	2pq	q^2
Valor adaptativo	W_{AA}	W_{Aa}	W_{aa}
Entre adultos	p^2W_{AA}	$2pqW_{Aa}$	q^2W_{aa}
Entre adultos normalizado	$\frac{p^2W_{AA}}{\bar{W}}$	$\frac{2pqW_{Aa}}{\bar{W}}$	$\frac{q^2 W_{aa}}{\bar{W}}$

$$\bar{W} = p^2 W_{AA} + 2pq W_{Aa} + q^2 W_{aa}$$

	AA	Aa	aa
Ao nascimento	p^2	2pq	q^2
Valor adaptativo	W_{AA}	W_{Aa}	W_{aa}
Entre adultos	p^2W_{AA}	$2pqW_{Aa}$	q^2W_{aa}
Entre adultos normalizado	$\frac{p^2W_{AA}}{\bar{W}}$	$\frac{2pqW_{Aa}}{\bar{W}}$	$\frac{q^2 W_{aa}}{\bar{W}}$

$$\bar{W} = p^2 W_{AA} + 2pq W_{Aa} + q^2 W_{aa}$$

$$p' = \frac{p^2 W_{AA} + pq W_{Aa}}{\bar{W}}$$

$$q' = \frac{q^2 W_{aa} + pq W_{Aa}}{\bar{W}}$$

AA	Aa	aa	

AA	Aa	aa	
1	1	1-s	dominância

AA	Aa	aa	
1	1	1-s	dominância
1	1-s	1-s	recessividade

AA	Aa	aa	
1	1	1-s	dominância
1	1-s	1-s	recessividade
1	1-s/2	1-s	aditivo

AA	Aa	aa	
1	1	1-s	dominância
1	1-s	1-s	recessividade
1	1-s/2	1-s	aditivo
1-s	1	1-t	vantagem do heterozigoto

Efeito da seleção num lócus: homogeneidade

Um exemplo de homogeneidade: lactase em humanos

Um exemplo de homogeneidade: lactase em humanos

Detectando seleção: diferenciação

Seleção natural em populações humanas

Comparando Tibetanos e Chineses:

Gene EPAS1:

Frequência do alelo A em Chineses: 10 % Frequência do alelo A em Tibetanos: 90%

Como saber se diferença resulta de seleção?

Seleção natural em populações humanas

Comparando Tibetanos e Chineses:

Gene EPAS1:

Frequência do alelo A em Chineses: 10 % Frequência do alelo A em Tibetanos: 90%

Como saber se diferença resulta de seleção?

→ ver se deriva explicaria tamanha diferença

<u>Yi et al., 2010</u>

Alta diferenciação: gene SLC24A5

Alta diferenciação: gene SLC24A5

Alta diferenciação: evidência de evolução adaptativa da **pigmentação** (Northon et al., 2007). Nesse caso o alelo comum na Europa e parte da Ásia contribui para a pigmentação cara, e foi favorecido nessas regiões.

Detectando seleção: distribuição geográfica

Detectando seleção: distribuição geográfica

Sobrevivência em zonas de malária

 $W_{SS} = 0.88$

 $W_{AS} = 1,00$

 $W_{SS} = 0.14$

Limites da seleção natural: carona de deletérias

Limites da seleção natural: carona de deletérias

Limites da seleão natural: pleotropia

Com antibiótico:

Com alelos de resistência: W=1 Sem alelo de resistência W=0

Sem antibiótico:

Com alelos de resistência: W=0,5 Sem alelo de resistência W=1

AA	Aa	aa	

AA	Aa	aa	
1-s	1	1-t	vantagem do heterozigoto

AA	Aa	aa	
1-s	1	1-t	vantagem do heterozigoto

A população com valor adaptativo médio máximo seria uma só de heterozigotos.

Mas ela nunca se manterá, pois sempre se formam homozgitos, apesar deles serem menos vantajosos.

Conceitos chave

- Há diferentes tipos de seleção:
 - direcional (com diferentes graus de dominância)
 - vantagem de heterozigoto
- Podemos etabelecer um model determinístico de seleção, que prevê mudança de p
- No mundo real, usamos várias abordagens para detectar seleção
- Operação de seleção não garante "perfeição": casos de pleiotropia, carona, vantagem de heterozigoto.