- Introduction
- Basics (sets, mappings, and numbers)
- 3 Proof techniques
- Sequences and series
- Functions
 - Continuity
 - Applications for continuous functions
- Differentiation in 1d
- Integration in 1d
- 8 Summary outlook and review

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Continuity

Applications for continuous functions

Differentiation in 1d

Integration in 1d

Analysis 1

S.-J. Kimmerle

Functions: Operations for creating new functions

Let $f, g : A \to \mathbb{R}$ functions with $A \subseteq \mathbb{R}$.

Let $h: B \to \mathbb{R}$ functions with $B \subseteq \mathbb{R}$.

We obtain new functions by

$$f \pm g : A \rightarrow \mathbb{R}, \ x \rightarrow f(x) \pm g(x)$$

$$f \cdot g : A \to \mathbb{R}, \ x \to f(x) \cdot g(x)$$

$$\lambda g: A \to \mathbb{R}, \ x \to \lambda g(x) \quad \text{ for } \lambda \in \mathbb{R}$$

$$\frac{f}{g}: \tilde{A} \to \mathbb{R}, \ X \to \frac{f(X)}{g(X)} \quad \text{for } \tilde{A} := \{X \in A \mid g(X) \neq 0\}$$

$$h \circ f : A \to \mathbb{R}, \ x \to h(f(x)) \quad \text{ for } f(A) \subseteq B$$

The latter is the **concatenation of functions**.

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Continuity

Applications for continuous functions

Differentiation in 1d

Integration in 1d

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Continuity

Applications for continuous functions

Differentiation in 1d

Integration in 1d

Summary - outlook and review

Continuity

We combine the concepts of limits and functions.

S.-J. Kimmerle

Definition (Limit of a function)

Let $f: A \to \mathbb{R}$ a function, $A \subset \mathbb{R}$.

Let $a \in \mathbb{R}$ the limit of at least one sequence $\{a_n\}_{n \geq n_0}$ of real numbers in A.

If for any such sequence $\{a_n\}_{n\geq n_0}$ with $\lim_{n\to\infty}a_n=a$, we have

$$\lim_{n\to\infty} f(a_n) = b \text{ with } b\in\mathbb{R},$$

then we define b as the **limit of the function** f at the **point** a and we write

$$\lim_{x\to a} f(x) := b.$$

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Continuity

Applications for continuous functions

Differentiation in 1d

Integration in 1d

Moreover, we introduce analogously:

$$\lim_{x\downarrow a} f(x) = b$$
 for sequences from the right only

$$\lim_{x \uparrow a} f(x) = b$$
 for sequences from the left only

$$\lim_{x\to\infty} f(x) = b$$
 for sequences unbounded from above

$$\lim_{x\to -\infty} f(x) = b$$
 for sequences unbounded from below

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Continuity

Applications for continuous functions

Differentiation in 1d

Integration in 1d

S.-J. Kimmerle

Definition (Continuous function)

Let $A \subseteq \mathbb{R}$, $a \in A$ and $f : A \to \mathbb{R}$ a function.

lf

$$\lim_{x \to a} f(x) = f(a) \tag{1}$$

then f is called **continuous in** a.

If f is continuous in any point of A, then f is called **continuous on** A.

However, in order to verify the continuity, it is not always necessary to check (1) for every a in A. Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Continuity

Applications for continuous functions

Differentiation in 1d

Integration in 1d

Continuity by operations on functions

Theorem (Continuity of composed functions)

Let $f, g : \mathbb{R} \supseteq A \to \mathbb{R}$ a function, being continuous in $a \in A$, let $h : \mathbb{R} \supseteq A \to \mathbb{R}$ a function, being continuous in $f(a) \in B$, then

$$f \pm g : A \rightarrow \mathbb{R}, \ x \rightarrow f(x) \pm g(x)$$

$$f \cdot g : A \to \mathbb{R}, \ x \to f(x) \cdot g(x)$$

$$\lambda g: A \to \mathbb{R}, \ x \to \lambda g(x) \quad \text{for } \lambda \in \mathbb{R}$$

$$\frac{f}{g}: \tilde{A} \to \mathbb{R}, \ x \to \frac{f(x)}{g(x)} \quad \text{for } \tilde{A} := \{x \in A \mid g(x) \neq 0\}$$

$$h \circ f : A \to \mathbb{R}, \ x \to h(f(x)) \quad \text{for } f(A) \subseteq B$$

are continuous in a.

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Continuity

Applications for continuous functions

Differentiation in 1d

Integration in 1d

Continuity of concatenated functions

Proof.

Let $\{a_n\}_{n\geq n_0}$ a real sequence in A with $\lim_{n\to\infty} a_n = a$. Since f is continuous in a, we have

$$\lim_{n\to\infty} f(a_n) = f(a).$$

Due to the assumption $\{b_n\}_{n\geq n_0}$ with $b_n=f(a_n)$ is a real sequence in B.

Since h is continuous in b = f(a), we have

$$\lim_{n\to\infty}h(f(a_n))=\lim_{n\to\infty}h(b_n)=h(b)=h(f(a)).$$

Thus there holds

$$\lim_{n\to\infty}(h\circ f)(a_n)=\lim_{n\to\infty}h(f(a_n))=h(f(a)).\quad \Box$$

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Continuity

Applications for continuous functions

Differentiation in 1d

Integration in 1d

Alternative definition of continuity

Another, equivalent definition of continuity that does not rely on the concept of limits, can be found in many books (for that reason).

Theorem (ε - δ formulation of continuity)

Let $f : \mathbb{R} \supseteq A \to \mathbb{R}$ be a function. f is continuous in $x_0 \in A$, iff for any $\varepsilon > 0$ there exists a $\delta > 0$, s.t.

 $|f(x) - f(x_0)| < \varepsilon$ for all $x \in A$ with $|x - x_0| < \delta$.

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Continuity

Applications for continuous functions

Differentiation in 1d

Integration in 1d

Applications of continuity

In this subsection we proof important results that hold for continuous functions.

Theorem (Intermediate value theorem (1st version))

Let $f : [a, b] \to \mathbb{R}$ be a continuous function with f(a) < 0 and f(b) > 0 or with f(a) > 0 and f(b) < 0, then there exists a $\xi \in (a, b)$ s.t.

$$f(\xi)=0.$$

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Continuity

Applications for continuous functions

Differentiation in 1d

Integration in 1d

Corollary (Intermediate value theorem)

Let $f : [a, b] \to \mathbb{R}$ be a continuous function and $c \in \mathbb{R}$ with $f(a) \le c \le f(b)$ or with $f(a) \ge c \ge f(b)$, then there exists $a \xi \in [a, b]$ s.t.

$$f(\xi) = c$$
.

Corollary (Image of an interval)

Let $I \subseteq \mathbb{R}$ be an interval and $f: I \to \mathbb{R}$ a continuous function, then f(I) is again an interval.

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Continuity

Applications for continuous functions

Differentiation in 1d

Integration in 1d

S.-J. Kimmerle

Definition (Bounded function)

Let $f: A \to \mathbb{R}$ be a function and f(A) is bounded (from above and below)

then f is called a **bounded function**.

Definition (Compact interval)

Let $a, b \in \mathbb{R}$, then a closed and bounded interval [a, b]is called a **compact interval**. Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Continuity

Applications for continuous functions

Differentiation in 1d

Integration in 1d

Theorem (Continuous functions on compact intervals (Weierstrass))

Any continuous function $f : [a, b] \to \mathbb{R}$ (with $a \le b$)

is bounded and

takes its maximum & minimum, i.e. there exists \overline{x} & \underline{x} s.t.

$$f(\overline{x}) = \sup_{x \in [a,b]} f(x),$$

 $f(\underline{x}) = \inf_{x \in [a,b]} f(x).$

Note this theorem does not hold for open or semi-open (semi-closed) intervals.

This result may be generalized to higher dimensions.

It is of key importance in optimization.

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Continuity

Applications for continuous functions

Differentiation in 1d

Integration in 1d

