CLAIMS

What is claimed is:

- 1. A method for cutting a non-metallic substrate, comprising the steps of:

 scanning a first laser beam for breaking molecular bonds of the non-metallic

 substrate material on a cutting path formed on the non-metallic substrate to form a

 scribe line having a crack to a desired depth; and

 scanning a second laser beam along a scanning path of the first laser beam to

 propagate the crack in a depth direction of the substrate and to completely separate the

 non-metallic substrate.
- The method of claim 1, wherein the first laser beam has a wavelength
 having an absorptivity of 90% or more with respect to the non-metallic substrate.
- The method of claim 2, wherein the non-metallic substrate is a glass, and the first laser beam is a 4th harmonics YAG laser beam having a wavelength of 266 nm.
 - 4. The method of claim 1, wherein the first laser beam is scanned from a

- starting point of the cutting path to an end point of the cutting path.
- 1 5. The method of claim 1, wherein the second laser beam is a CO₂ laser
- 2 beam.
- 1 6. The method of claim 1, wherein the first laser beam has a width less
- 2 than that of the second laser beam.
- 7. The method of claim 1, wherein the second laser beam is directly
- 2 scanned onto the scribe line.
- 8. An apparatus for cutting a non-metallic substrate, comprising:
- 2 a first laser beam generating means that generates a first laser beam for
- 3 breaking molecular bonds of the non-metallic substrate material so as to heat a cutting
- 4 path formed on the non-metallic substrate and to form a scribe line having a crack to a
- 5 desired depth; and
- 6 a second laser beam generating means that generates a second laser beam for
- 7 propagating the crack along a scanning path of the first laser beam in a depth direction
- 8 of the substrate.

1	9.	The apparatus of claim 8, wherein the first laser beam has a wavelength
2	having an abs	orptivity of 90% or more with respect to the non-metallic substrate.
1	10.	The apparatus of claim 9, wherein the first laser beam is a 4^{th}
2	harmonics YAG laser beam having a wavelength of 266 nm.	
1	11.	The apparatus of claim 8, wherein the second laser beam is a CO2 laser
2	beam.	
		•
3	12.	The apparatus of claim 8, wherein the first laser beam has a width less
2	than that of the second laser beam.	
1		
	13.	The apparatus of claim 8, wherein the second laser beam is directly
	scanned onto the scribe line.	
		٠. ٠. ٠. ٠. ٠. ٠. ٠. ٠. ٠. ٠. ٠. ٠. ٠. ٠