1. Aufgabe - Musterlösung

Excercise – Solution

Feilauf g	gabe und Antwort	Punkte
Subtask	and solution	Points
1.1.	+ hohe Leistungsdichte / high power density	
	+ einfache Realisierung von Linearbewegungen / simple realization of linear movement	
	+ gute Steuer- und Regelbarkeit / good controllability	0,5
	+ gutes Zeitverhalten durch niedrige Massenträgheiten / good time response due to low mass inertia	0,2
	+ gute Schmierung und Abfuhr der Verlustwärme durch das Fluid / good lubrication and removal of heat losses via the fluid	
	+ einfache und zuverlässige Absicherung gegen Überlast / simple and dependable overload protection	
	- Wartung des Druckmediums (Schmutzempfindlichkeit und Verschleiß der Komponenten) / preventive maintenance of the pressurizing medium	0,5

(Sensitivity of the components towards contamination and wear)

pollution/damage (noise emission, leakage, fire hazard)

Umwelt (Geräuschabstrahlung, Leckage, ...) / environmental

Blatt/Page: 1

Gesamtpunktzahl: 15

Total points: 15

Toiloufo	abe und Antwort	Punkte
_	and solution	Punkte Points
1.2.	10000	1.5
1.2.		1.0
	<u></u> 1000	
	HVLP 68 - HVLP 68 -	
	<u>E</u> 100 VI-Add tiv	
	ität ität	
	80)	
	<u>≅</u> 10	
	Kin. Viskosität [mm²/s]	
	<u> </u>	
	3	
	-20 0 20 40 60 80	
	Temperatur [°C]	
	Stützpunkt @ 40°C und Verlauf (sinkt linear mit steigender Temperatur) je	
	0,5 Pkt. / support point @ 40°C and course (linear decrease with rising	
	temperature) each 0.5 Pts.	
	HVLP Verlauf flacher als HLP (linear) / HVLP course flatter than HLP	
	(linear) 0.5 Pts.	
1.3.	A: Blende / Orifice B: Drossel / Throttle (0.5 je Pkt / 0.5 Pts. each)	2
	Blende $Q = \alpha_D \cdot A \cdot \sqrt{\frac{2}{p}} \cdot \sqrt{\Delta p}$ Korrekte Formel mit	
	Kennzeichnung und	
	korrekter Verlauf 0,5 Pkt. / correct formula	
	+ + correct course	
	Drossel $Q = \frac{\pi \cdot r^4}{8 \cdot \eta \cdot l} \Delta p$ indication each	
	$p_1 - p_2$	
	Druckdifferenz Δp $\Delta p = p_1 - p_2$	
1.4.	Die Aussage ist falsch / Statement is wrong	0,5
	Leckage steigt an / leakage increases	
	$Q = \frac{D \cdot \pi \cdot \Delta r^3}{12 \cdot \eta \cdot I} \cdot \left[1 + 1.5 \cdot \left(\frac{\mathbf{e}}{\Delta r} \right)^2 \right] \cdot (p_1 - p_2) ; \mathbf{e} > 0 \Rightarrow Q \uparrow$	
<u> </u>	, , , , , , , , , , , , , , , , , , ,	

Teilaufgabe und Antwort		Punkte
Subtask	and solution	Points
1.5.	Leckage steigt an / leakage increases	0,5
	$Q = \frac{D \cdot \pi \cdot \Delta r^3}{12 \cdot \eta \cdot l} \cdot \left[1 + 1.5 \cdot \left(\frac{e}{\Delta r} \right)^2 \right] \cdot (\rho_1 - \rho_2) \; ; \qquad T \uparrow \Rightarrow \eta \downarrow \Rightarrow Q \uparrow$	
1.6.	$\ddot{x}m = c_1(x_{01} - x) - c_2(x_{02} + x) + pA \Rightarrow \dot{x}(c_2 + c_1) = \dot{p}A$	0,5
	$pprox 0$ vernachlässigbar $Q=\dot{x}A \ C_H=rac{Q}{\dot{p}}=rac{\dot{x}A^2}{\dot{x}(c_2+c_1)}=rac{(1000mm^2)^2}{\left(7500\cdot 10^3rac{N}{m} ight)}$	0,5
	$C_H = 0.0008 \frac{\frac{\iota}{\min}}{\frac{bar}{s}}$	0,5
1.7.	$\rho = \frac{\rho_o}{1 + \gamma \cdot \Delta \theta}$	
	$\Delta \rho = \rho_0 \left(\frac{1}{1 + \gamma \Delta \theta} - 1 \right) = 880 \frac{kg}{m^3} \left(\frac{1}{1 + 0.0008 \frac{1}{C^{\circ}} 35C^{\circ}C} - 1 \right)$	0,5
		0,5
1.8.	$\Delta \rho = -23,97 \frac{kg}{m^3}$ $p_1 = \frac{F}{A_1} = \frac{1N}{10mm^2} = 1bar$	0,5
	$p_2 = \frac{p_v(A_4 - A_3 - A_2) + p_1(A_3 + A_2)}{A_5}$	0,5
	$p_2 = \frac{5bar(40mm^2 - 10mm^2 - 10mm^2) + 1bar(10mm^2 + 10mm^2)}{60mm^2}$	
	$p_2 = 2bar$	0,5
1.9.	P ₂ , A ₅ A ₄ A ₃ A ₂ A ₁ , p ₁	0,5
1.10.	$L_H = rac{\Delta p}{\dot{Q}} = \ddot{x}(m_1 + m_2)$	
	$L_H = \frac{\ddot{x}(m_1 + m_2)}{\ddot{x}(A_1 + A_2)} = \frac{m_1 + m_2}{(A_1 + A_2)^2} = \frac{m_1 + m_2}{9A}$	0,5

Teilaufgabe und Anty Subtask and solution	vort	Punkte Points
1.11.		1 Othus
1.11.	$\frac{\Delta p}{L_H} = \frac{p_1 - p_T}{L_{H,Zyl}} = \dot{Q}_1 (1)$	0,5
	$Q_{1} = \frac{p_{2} - p_{1}}{R_{H}} (2)$ $\dot{Q}_{1} = \frac{\dot{p}_{2} - \dot{p}_{1}}{R_{H}} (2a)$ $\ddot{Q}_{1} = \frac{\ddot{p}_{2} - \ddot{p}_{1}}{R_{H}} (2b)$	0.5
	$\dot{p}_2 = \frac{nV_P - Q_1}{C_H} (2b)$ $\dot{p}_2 = \frac{nV_P - Q_1}{C_H} (3)$	0,5
	$\ddot{p}_2 = -\frac{\dot{Q}_1}{C_H} (3a)$ Alternative 1	0,5
(1)&(2a)	$\frac{p_1}{L_{H,Zyl}} = \frac{\dot{p_2} - \dot{p_1}}{R_H}$	0,5
(1)&(3a)	$\frac{\dot{p}_1}{L_{H,Zyl}} = \frac{\ddot{p}_2 - \ddot{p}_1}{R_H} $ (4)	0,5
(5)&(6)	$\ddot{p}_2 = -\frac{p_1}{C_H L_{H,Zyl}} \tag{5}$	0,5
	$\ddot{p}_1 + \frac{\dot{p}_1 R H}{L_{H,Zyl}} + \frac{p_1}{L_{H,Zyl} C_H} = 0$ Alternative 2	
(1)&(3a)	$\frac{p_1}{L_{H,Zyl}} + \ddot{p}_2 C_H = 0 \ (6)$	0,5
(6)&(2b)	$(\ddot{Q}_1 R_H + \ddot{p}_1) C_H + \frac{p_1}{L_{H,Zyl}} = 0 (7)$	0,5
(7)&(3a)	$\ddot{p}_1 + \frac{\dot{p}_1 R H}{L_{H,Zyl}} + \frac{p_1}{L_{H,Zyl} C_H} = 0$	0,5

Teilaufg	Teilaufgabe und Antwort	
Subtask	and solution	Points
1.12.	Ja / yes	0,5
	(Die bewegte Masse bleibt gleich, aber die durckbeauschlagte Fläche wird kleiner. Die	
	Kraft zur Beschleunigung des Zylinders wird kleiner und der Zylinder fährt langsamer	
	aus.) Der Pumpenvolumenstrom bleibt konstant, der vom Zylinder abgenommen	
	Volumenstrom ist nun geringer. Es kommt anfänglich zu einem höhreren Druck. → Das	0,5
	DBV löst daher aus.	
	(The mass does not change but the pressurized area becomes smaler leading to a smaler	
	accelerating force. The piston moves slower.) The supplied flow by the pump remains	
	constat while the flow taken form the cylinder decreases. Initially the pressure level will be	
	higher → the PRV is active.	
1.13.	stationär / steady state:	
	$Q_P = \dot{x}_{A_1 \& A_2} (A_1 + A_2) = \dot{x}_{A_1} A_1$	
	$\frac{\dot{x}_{A_1}}{\dot{x}_{A_1 \& A_2}} = \frac{A_1 + A_2}{A_1} = \frac{A + 2A}{A} = 3$	0,5

2. Aufgabe - Musterlösung

Excercise – Solution

Gesamtpunktzahl: 10

Total points: 10

Teilau	fgabe und Antwort	Punkte
Subta	sk and solution	Points
2.1	Handbetätigtes, federzentriertes 5/3-Wege-Proportionalventil	0,5
	Manualy actuated, spring centered 5/3-way proportional valve	
2.2	Eine Vorsteuerstufe kann hohe Betätigungskräfte bei Ventilen großer	0,5
	Nennweite überwinden.	
	An additional acuating stage is needed to overcome high flow forces in	
	case of a valve of a big nominal size	
2.3	2-Wege-Stromregelventil mit vorgeschalteter Druckwaage (0,5 Punkte für	0,5
	korrekte Bezeichnung und Skizze)	
	2-way pressure compensated valve with upstream pressure compensator	
	(0,5 points for correct name and drawing)	

Teilaufgabe und Antwort		Punkte
Subtask	and solution	Points
2.4	2-Wege-Stromregelventil mit nachgeschalteter Druckwaage (0,5 Punkte für korrekte Bezeichnung und Skizze) 2-way pressure compensated valve with downstream pressure compensator (0,5 points for correct name and drawing)	0,5
2.5	3-Wege-Stromregelventil (0,5 Punkte für korrekte Bezeichnung und Skizze)	0,5
	3-way pressure compensated valve (0,5 points for correct name and drawing)	

Talland	ooka wad Anteriorit	Dombés
	gabe und Antwort	Punkte
	and solution	Points
2.6	Corner power of the pump	0.5
	p_{PRV} \uparrow	0,5
	Ois Ois	
	p _{Load}	
	p _{Load}	0,5
	Use	
	Q_{FCV} Q_{Pump}	
	Nutzanteil und Verlustanteil richtig eingezeichnet (0,5 Punkte)	
	Eckleistung der Pumpe richtig eingezeichnet (0,5 Punkte)	
	Use and dissipation correct (0,5 points)	
	Corner power of the pump correct (0,5 points)	
	Orte der Verlustentstehung: Druckwaage, Messblende, DBV	
	Components where dissipation occurs: pressure compensator, measuring	0,5
	orifice, pressure relief valve	
2.7	Ein 2-Wege-Stromregelventil sollte verwendet werden. Bei Verwendung	1,0
	eines 3-Wege-Stromregelventils wird der Systemdruck für alle weiteren	
	parallel geschalteten Verbraucher durch den Verbraucher mit dem	
	niedrigsten Lastdruck definiert.	
	A 2-way pressure compensated valve should be used. If a 3-way pressure	
	compensated valve is used with multiple loads, the load with the lowest	
	load pressure defines the pressure for all other loads.	

	Teilaufgabe und Antwort Subtask and solution	
		Points
2.8	Volumenstrom für den Haspelantrieb:	
	Flow rate of the reel drive: $Q = n_{reel} \cdot V_{reel drive} = 15 \frac{l}{min}$	0,5
	Druckabfall über die Messblende:	
	Pressure drop over the measuring orifice:	
	• • • • • • • • • • • • • • • • • • • •	
	$Q = K_{MO} \cdot \sqrt{\Delta p_{MO}}$ $\Leftrightarrow \Delta p_{MO} = \left(\frac{Q}{K_{MO}}\right)^2 = 14,06 \ bar$	0,5
	Kräftegleichgewicht am Ventilschieber unter Berücksichtigung der Strömungskraft:	
	Equilibrium of forces of the valve spool taking into account flow force:	
	$F_S + p_A \cdot A = p_1 \cdot A + F_{fl}$	0,5
	Federkraft in Abhängigkeit vom Ventilschieberweg:	
	Spring-force depending on the spool deflection:	0.5
	$F_S = c_S \cdot \left((x_{max} - x) + x_{pre} \right)$	0,5
	Druckabfall über die Druckwaage und Ventilschieberauslenkung:	
	Pressure drop over the pressure compensator and spool deflection:	
	$Q = \alpha_{D,PC} \cdot \pi \cdot D_{PC} \cdot x \cdot \sqrt{\frac{2 \cdot \Delta p_{PC}}{\rho_{Oil}}}$	
	$\Leftrightarrow x = \frac{Q}{\alpha_{D,PC} \cdot \pi \cdot \sqrt{\frac{4 \cdot A}{\pi}}} \cdot \sqrt{\frac{\rho_{Oil}}{2 \cdot (p_0 - p_1)}}$	
	$\Leftrightarrow x = \frac{15\frac{l}{min}}{0.6 \cdot \pi \cdot \sqrt{\frac{4 \cdot 12.6mm^2}{\pi}}} \cdot \sqrt{\frac{890\frac{kg}{m^3}}{2 \cdot (220 \ bar - 14.06 \ bar - 200 \ bar)}}$	
	$\Leftrightarrow x = 0.91 mm$	0,5
	Strömungskraft auf den Ventilschieber:	
	Flow force on the spool:	
	$F_{fl} = \rho_{0il} \cdot \frac{Q^2}{A_S} \cdot \frac{\cos(\varepsilon_1)}{\sin(\varepsilon_1)}$	
	$F_{fl} = \rho_{0il} \cdot \frac{Q^2}{A_S} \cdot \frac{\cos(\varepsilon_1)}{\sin(\varepsilon_1)}$ $= 890 \frac{kg}{m^3} \cdot \frac{\left(15 \frac{l}{min}\right)^2}{11,4mm^2} \cdot \frac{\cos(30^\circ)}{\sin(30^\circ)} = 8,45 N$	0,5

Teilaufgabe und Antwort		Punkte
Subtask	and solution	Points
2.9	Federkraft, Ventilschieberauslenkung und Kräftegleichgewicht:	
	Spring force, spool deflection and equilibrium of forces: $x_{pre} = \frac{(p_1 - p_A) \cdot A + F_{fl}}{c_S} + x - x_{max}$ 14.06 har: 12.6 mm ² + 8.45 N	
	$\Leftrightarrow x_{pre} = \frac{14,06 \ bar \cdot 12,6 \ mm^2 + 8,45 \ N}{2,5 \ \frac{N}{mm}} + 0,91 \ mm - 2 \ mm$ $= 9,37 \ mm$	0,5
	Richtung der Strömungskraft auf den Ventilschieber:	0,3
	Direction of the flow force on the vavle spool:	
	F_{fl}	0,5
2.10	Energieverluste an der Druckwaage:	
	Energy loss at the pressure compensator:	
	$P_{hyd,PC} = \Delta p_{PC} \cdot Q$	
	$\Leftrightarrow P_{hyd,PC} = 5.94 \ bar \cdot 15 \frac{l}{min} = 148.5 \ W$	0,5
	Energieverluste an der Messblende:	
	Energy loss at the measuring orifice:	
	$P_{hyd,MO} = \Delta p_{MO} \cdot Q$	
	$\Leftrightarrow P_{hyd,MO} = 14,06 \ bar \cdot 15 \frac{l}{min} = 351,5 \ W$	0,5

Musterlösung zur Aufgabe: 3 Gesamtpunktzahl: 10

Teilaufgabe und Antwort		Punkte
Subtasi	k and solution	Points
3.1	Taumelscheiben-, Schrägscheiben-, Schrägachsenmaschine (jeweils 0,5)	1,5
	Wobble plate machine, swash plate machine, bent axis machine (0,5 each)	
3.2	Schrägscheibenmaschine	0,5
	Swash plate machine	
3.3	Die kinematische Pulsation fällt bei einer ungeraden Anzahl an Kolben	1
	deutlich geringer aus.	
	The kinematic flow ripple is less sever when using an uneven number of	
	pistons $\delta'_{gerade} = 1 - \cos\left(\frac{180^{\circ}}{7}\right) > 1 - \cos\left(\frac{90^{\circ}}{7}\right) = \delta'_{ungerade}$	
3.4	$\left[\Sigma \frac{dV_K}{d\omega}\right] = -\left[\Sigma \frac{dV_K}{d\omega}\right]$	0,5
	$\delta = \frac{\left[\Sigma \frac{dV_K}{d\varphi}\right]_{max} - \left[\Sigma \frac{dV_K}{d\varphi}\right]_{min}}{\left[\Sigma \frac{dV_K}{d\varphi}\right]_{mittel}} \cdot 100\%$	
	$\delta = \frac{\frac{h_{max}}{2} A_K \left[\sin(\varphi) + \sin\left(\varphi + \frac{2\pi}{z}\right) + \sin\left(\varphi + \frac{4\pi}{z}\right) - \sin(2\varphi) - \sin\left(2\varphi + \frac{2\pi}{z}\right) \right]}{A_K h_{max} \frac{z}{2\pi}} \cdot 100\%$	0,5
	$[\sin(30^\circ) + \sin(90^\circ) + \sin(150^\circ) - \sin(60^\circ) - \sin(120^\circ)]$	0,5
	$\delta = \frac{\left[\sin(30^\circ) + \sin(90^\circ) + \sin(150^\circ) - \sin(60^\circ) - \sin(120^\circ)\right]}{\frac{6}{\pi}} \cdot 100\%$,
	$\delta = \frac{1}{6}\pi \left[0.5 + 1 + 0.5 - \frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2} \right] \cdot 100\% = 14\%$	0,5
	$\delta' = \left(1 - \cos\left(\frac{180^{\circ}}{z}\right)\right) \cdot 100\% = 13,4\%$	0,5
3.5	Nein, da für den Fördervolumenstrom lediglich das angetriebene Rad	1
	maßgeblich ist und laut Aufgabenstellung sind diese identisch.	
	No, since the driving cog is determining the flow rate, which is the same for both pumps.	

Teilaufgabe und Antwort	Punkte
Subtask and solution	
3.6 $ \frac{\eta_{1 \text{ vol}} \qquad \eta_{1 \text{ hm}}}{\eta_{1 \text{ ges}}} $ $ 0 \qquad \frac{\Delta p}{\Delta p_{\text{max}}} \qquad 1 $	Jeweils 0,5 / 0,5 each
Stator HD: Niederdruck; low pressure HD: Hochdruck; high pressure Punkte für; point for: Gehäuseform; correct form (0,5) 4 Druckanschlüsse; 4 ports (0,5) Richtige Anschlussbenennung; correct port labels (0,5) Bewegliche Flügel; movable vanes (0,5) Rotor und Stator benennen; naming of rotor and stator (0,5)	2,5

Musterlösung zur Aufgabe: 4 Gesamtpunktzahl: 10

Unter- punkt	Kürzel Aufgabensteller: Di			Punkte
4.1	$v_2/v_1 = -2$			0,5
	$v_3/1$	ν ₁ :	=2	0,5
4.2	Steuerung			0,5 für
	Ď.	Aufgeprägter Volumenstrom	Widerstandssteuerung Verdrängersteuerung X, X, F III Pmax Verdrängersteuerung	Steuer- ung / for control 0,5 für Speisung
	Speisung	Aufgeprägter Druck	$\begin{array}{c c} & x, \dot{x}, F \\ \hline \\ & & \\ & $	/for supply
	Control			
			Resistive control Positive displacement control	
	hly	Volume flow supply	I x, \dot{x}, F III x, \dot{x}, F $Q_p = const.$	
	Supply	Pressure supply	$\begin{array}{c} II \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	

Unter- punkt		Punkte
4.3	0,5 jeweils für / each for:	
	-Vorsteuerventil: proportional und richtig angeschlossen / pilot valve:	0,5
	proportional and correctly connected	ŕ
	-Druckminderventil oder funktionierendes äquivalent / pressure reducing	0,5
	valve or something equivalent working	
	-Speicher und korrekte Verbindung mit dem Zylinder / accumulator with	0,5
	correct connection to the cylinder	
	-Druckabschaltung mit Ventil und Rückschlagventil oder funktionierende	0,5
	Alternative / Freewheeling function with switch off valve and check valve	
	or woring alternative	
	-Nebenkreis sinnvoll und an Hauptpumpe / sensible secondary circuit at	0,5
	main pump	
	-Filter und Kühler sinnvoll / Filter and cooler	0,5

Musterlösung zur Aufgabe: 5 Gesamtpunktzahl: 15

Unter- punkt	Me			Pun kte
5.1	Flachs	itz (0,5) Kegelsitz (0,5) Cone seat		1
5.2	Statischer Druck: static	Druck, der senkrecht zur Strömungsrichtung wirkt pressure acting orthogonal to the flow direction	(0,5)	1,5
	pressure: Dynamischer Druck:	Sich ergebender Druckanstieg, wenn kinetische Energie eines gleichförmig strömenden Gases vollständig und verlustfrei (isentrop) in Druck umgewandelt wird $(\frac{1}{2}\rho v^2)$	(0,5)	
	dynamic pressure:	Resulting rise of pressure due to the transformation of the kinetic energy of a homogenously flowing gas into pressure according to $p = \frac{1}{2} \rho v^2$ (without loss; isentropic)		
	Gesamtdruck: total pressure:	Summe aus statischem und dynamischem Druck sum of static and dynamic pressure	(0,5)	

Eigenschaft	Vorteil	Nachteil
Property	Advantage	Disadvantage
Hohe Kompressibilität high compressibility	Energiespeicherung energy storage	geringe Steifigkeit bei der Steuerung low static and dynamic stiffness in open loop control
Geringe Viskosität Low Viscosity	Geringe Strömungsverluste Low flow losses in tubing hohe Arbeits-geschwindigkeit high working speed	Große Leckage high leakage loss schlechte Dämpfung poor damping
Geringer Arbeitsdruck low working pressure	Druckfestigkeit der Bauteile unproblematisch pressure strength of components without problems Verwendung von Schläuchen möglich use of tubing lines possible	Geringere Kräfte und Momente als in der Hydraulik lower force and torque compared to hydraulics
Wartung des Druckmediums maintenance of pressure medium	keine Alterung no aging keine Umweltbelastung durch Leckagen no environmental stress by leakage	Filtern, Nebelschmierung, Geräuschdämpfung oder Trocknung erfordrerlich Filtering, mist lubrication, silencer or drying necessary
Systemaufbau	einfache Erzeugung von Kräften keine Rückleitung Überlastsicherheit Explosionsschutz easy generation of force no return line overload protection explosion protection	

5.4	3/3-Wege-Proportionalventil (mit mechanischer Verstellung)	1
	3/3-way-proportionalvalve (with mechanical actuation)	
5.5	F	
	$F = p \cdot A \Rightarrow p = rac{F}{A}$ $p = m_{Load} \cdot g \cdot rac{4}{D^2 \pi}$	0,5
	$p = 12,2 \ bar$	0,5
	mit Berücksichtigung von p _u : p =13,2 bar	
5.6	langsam → isotherme Zustandsänderung	
	slow \Rightarrow isothermal change of change $\frac{p_1}{p_2} = \left(\frac{V_2}{V_1}\right)$ $\Rightarrow V_2 = V_1 \cdot \left(\frac{p_1}{p_2}\right)$	0,5
	$p_2 = (m_{Load} + 400kg) \cdot g \cdot \frac{4}{D^2 \pi} = 14,15 \ bar$	0,5
	$V_1 = A \cdot x_{max}$ $V_2 = A \cdot (x_{max} - \Delta x)$	0,5
	$x_{max} - \Delta x = x_{max} \cdot \left(\frac{p_1}{p_2}\right)$ $\Delta x = 16,53 \ mm$ mit Berücksichtigung p _u : 15,45 mm	0,5
5.7	$\frac{\Delta V_0}{\Delta V_{cyl}} = \left(\frac{p_2}{p_0}\right)$	0,5
	$\Delta V_0 = \left(\frac{14,15 \text{ bar}}{1 \text{ bar}}\right) \cdot 0,1653 \text{dm} \cdot (1,6 \text{dm})^2 \cdot \frac{\pi}{4}$ $\Delta V_0 = 4,7 \text{ Nl}$ $\text{mit } p_2 = 20 \text{ bar } \text{und } \Delta x = 20 \text{ mm}:$	0,5
	$\Delta V_0 = 8,04 \ Nl$	

5.8		
	$W_{zu} = m_{zu} \cdot w_{t,12}$	0,5
		0,5
	$W_{zu} = \Delta V_0 \cdot \rho_0 \cdot \frac{\kappa}{\kappa - 1} p_0 v_0 \left(\left(\frac{p_{comp}}{p_0} \right)^{\frac{\kappa - 1}{\kappa}} - 1 \right)$	
	$= \Delta V_0 \cdot \frac{\kappa}{\kappa - 1} p_0 \left(\left(\frac{p_{comp}}{p_0} \right)^{\frac{\kappa - 1}{\kappa}} - 1 \right)$	
	= 2226,6 J	0,5
	$mit \Delta V_0 = 6 Nl:$	
	2842,4 <i>J</i>	
5.9	AYZ	
	$Q = \frac{\Delta V}{\Delta t}$	
	$\dot{m}_{cyl} = \overset{\Delta \iota}{Q} \cdot ho_{cyl}$	0,5
	T_{\circ}	
	$\dot{m}_{V2} = C \cdot p_{cyl} \cdot \rho_0 \sqrt{\frac{T_0}{T_{cyl}}}$	
	$\dot{m}_{Cyl}=\dot{m}_{V2}$	
	$\Rightarrow C = \frac{Q \cdot \rho_{cyl}}{\rho_0 \cdot p_{cy}}$	0,5
	$ ho_0 \cdot p_{cy}$	0,2
	$\frac{\rho_{cyl}}{\rho_{c}} = \frac{p_{cyl}}{n_{c}}$	
	$C = \frac{p_0}{p_0} = \frac{\Delta V}{\Delta t \cdot p_0}$	
	$C \equiv \frac{1}{p_0} \equiv \frac{1}{\Delta t \cdot p_0}$	
	$=48,25\frac{Nl}{minbar}$	0,5
	Summe/Sum:	1.5
	Summe/Sum:	15

Musterlösung zur Aufgabe: 6

Gesamtpunktzahl: 10

Unter-	Wr	Punkte
punkt		Points
6.1	$\sum_{m_{glas}} F = m \cdot a_{max}$ $m_{glas} \cdot (g + a_{max}) + p_S \cdot A = p_u \cdot A (1)$ $p_S = p_u - \frac{4 \cdot m_{glas} \cdot (g + a_{max})}{\pi \cdot d^2} (0,5)$ $p_S = 0,8434 \ bar (0,5)$	2
6.2-6-4	Bauteil richtig benannt / Component correctly named (0,5) 6.2 ejector 0,5P	3
6.5	$\sum_{p_{a} \cdot A = F_{vor/pre} + c \cdot s + p_{u} \cdot A (0,5)} p_{a} = \frac{4}{\pi \cdot d^{2}} (F_{vor/pre} + c \cdot s) + p_{u} = 2,783 \ bar (0,5)$	1
6.6	Druckverhältnis $b = \frac{p_a}{p_e} = \frac{2,783}{7} = 0,398 (0,5)$ (Alternativ: $b = \frac{p_a}{p_e} = \frac{3}{7} = 0,429$) Strömungszustand / flow state = Überkritisch / Supercritical (0,5)	1

6.7	Volumenstrombilanz / Volume flow balance	3
	$\dot{m}^* = \frac{V}{t} \cdot (\rho_a - \rho_0) \tag{1}$	
	Technischer Normzustand Dichte / Technical standard reference density	
	$\rho_0 = 1{,}1845 kg/m^3$	
	Isotherme Zustandsänderung / Isothermal change of state	
	$ ho_a = ho_e \cdot rac{ ho_a}{ ho_e}$	
	Ideale Gasgleichung / Ideal gas law	
	$\rho_e = \frac{p_e}{R \cdot T_e}$	
	$\Rightarrow \rho_a = \frac{p_a}{R \cdot T_e} (0,5)$	
	Überkrit. Massenstrom / Supercritical mass flow	
	$\dot{m}^* = \alpha_D \cdot \psi_{max} \cdot \mathbf{A} \cdot p_e \cdot \sqrt{\frac{2}{R \cdot T_e}} (0.5)$	
	Benötiger Drosselquerschnitt / Necessary throttle diameter	
	$A = \frac{V}{t} \cdot \left(\frac{p_a}{R \cdot T_e} - \rho_0\right) \cdot \frac{1}{\alpha_D \cdot \psi_{max} \cdot p_e} \cdot \sqrt{\frac{T_e \cdot R}{2}} (0,5)$	
	$A = 0.0689 \ mm^2 \ (0.5)$	
	(Alternativ: A = 0,0773 mm^2 bei $p_a = 3$ bar)	
	Summe/Sum:	10