ECN 7060, Cours 2

William McCausland

2022-09-14

Plan de route, Chapitre 2

- 2.1 Définition d'un espace de probabilité
- ▶ 2.2 Construction de (Ω, \mathcal{F}, P) , possiblement indénombrable, à partir de
 - une semi-algèbre $\mathcal{J}\subseteq 2^{\Omega}$ et
 - une $P \colon \mathcal{J} \to [0,1]$ superadditive et dénombrablement monotone.
- ▶ 2.3 Théorème d'extension : pour montrer que \mathcal{F} est une tribu et que P est une probabilité sur l'espace mesurable (Ω, \mathcal{F}) .
- ▶ 2.4 Application du théorème pour $\Omega = [0, 1]$.
- 2.5 Variations du théorème (conditions alternatives)
- ightharpoonup 2.6 Application du théorème pour d'autres Ω
 - suites de tirages à pile ou face $\Omega = \{(r_1, r_2, \dots) : r_i \in \{0, 1\}\}$
 - produits cartésien $\Omega = \Omega_1 \times \Omega_2$.

Théorème d'extension I

Application : spécifier Ω , une semi-algèbre \mathcal{J} , une proto-probabilité $P\colon \mathcal{J}\to [0,1]$, puis obtenir (Ω,\mathcal{F},P) .

Conditions sur Ω , \mathcal{J} et $P \colon \mathcal{J} \to [0,1]$:

- 1. $\mathcal J$ est une semi-algèbre sur Ω , c'est à dire
 - a. $\emptyset \in \mathcal{J}$, $\Omega \in \mathcal{J}$,
 - b. \mathcal{J} est stable pour les intersections finies,
 - c. Si $A \in \mathcal{J}$, A^c est une réunion disjointe finie des éléments de \mathcal{J} .
- 2. $P(\emptyset) = 0$ et $P(\Omega) = 1$.
- 3. P est finiement superadditive : pour $A_1, \ldots, A_k \in \mathcal{J}$ disjoints tels que $\bigcup_{i=1}^k A_i \in \mathcal{J}$,

$$P\left(\bigcup_{i=1}^k A_i\right) \geq \sum_{i=1}^k P(A_i).$$

4. P est dénombrablement monotone : pour chaque suite $A_n \in \mathcal{J}$ telle que $A \equiv \bigcup_n A_n \in \mathcal{J}$, $P(A) \leq \sum_n P(A_n)$.

Théorème d'extension II

Si les conditions 1-4 tiennent, il y a une tribu $\mathcal M$ sur Ω et une probabilité P^* sur $\mathcal M$ telles que

- 1. $\mathcal{J}\subseteq\mathcal{M}$,
- 2. $P^*(A) = P(A)$ pour chaque $A \in \mathcal{J}$.

Un résultat utile

Soit $\Omega \neq \emptyset$. Alors

- \triangleright 2^{Ω} est une tribu.
- ▶ Pour chaque collection de tribus $\{\mathcal{F}_i : i \in I\}$ sur Ω , l'intersection $\bigcap_{i \in I} \mathcal{F}_i$ est une tribu.
- Pour n'importe quel ensemble $\mathcal{A} \subseteq 2^{\Omega}$ de parties de Ω il y a toujours une seule tribu (dénoté $\sigma(\mathcal{A})$) qui est la tribu la plus petite qui contient \mathcal{A} .

Deux tribus sur $\Omega = \mathbb{R}$ (Exercice 2.4.5)

- Un intervalle de \mathbb{R} est n'importe [a, b], [a, b), (a, b] ou (a, b), où $a, b \in \mathbb{R} \cup \{\infty, -\infty\}$. (Si a > b, l'intervalle est vide.)
- ▶ Soit A_2 l'ensemble de tous les intervalles de \mathbb{R} .
 - $ightharpoonup \mathcal{A}_2$ est-elle une semi-algèbre?
 - A₂ plus toutes les réunions dénombrables n'est pas une tribu. L'ensemble de Cantor (pages 16-17) est le complément d'une réunion dénombrable d'intervalles mais n'est pas une réunion dénombrable d'intervalles.
 - Soit $\mathcal{B} \equiv \sigma(\mathcal{A}_2)$, la tribu la plus petite qui contient \mathcal{A}_2 .
 - ▶ La spécification directe de $P: A_2 \rightarrow [0,1]$ est ardue.
- ▶ Soit $A_1 = \{(-\infty, x] : x \in \mathbb{R}\}.$
 - $ightharpoonup \mathcal{A}_1$ est-elle une semi-algèbre?
 - Pourquoi A_1 est-elle utile?
- ▶ Prochaine diapo : démonstration que $\sigma(A_1) = \mathcal{B}$.

Démonstration de $\sigma(A_1) = \mathcal{B} \equiv \sigma(A_2)$

- $ightharpoonup \mathcal{A}_1 \subset \mathcal{A}_2$ alors $\sigma(\mathcal{A}_1) \subseteq \sigma(\mathcal{A}_2)$.
- ▶ L'autre direction, $\sigma(A_2) \subseteq \sigma(A_1)$:
 - Les intervalles suivants doivent être des éléments de $\sigma(\mathcal{A}_1)$:

$$(a, \infty) = (-\infty, a]^{c},$$

$$(-\infty, b) = \bigcup_{n} (-\infty, b - 1/n],$$

$$[a, \infty) = (-\infty, a)^{c}.$$

- Alors
 - $(a,b] = (-\infty,b] \cap (a,\infty) \in \sigma(\mathcal{A}_1),$
 - $(a,b)=(-\infty,b)\cap(a,\infty)\in\sigma(\mathcal{A}_1),$
 - $[a,b] = (-\infty,b] \cap [a,\infty) \in \sigma(\mathcal{A}_1),$
 - $[a,b) = (-\infty,b) \cap [a,\infty) \in \sigma(\mathcal{A}_1).$
- Alors $\sigma(A_1) = \mathcal{B} \equiv \sigma(A_2)$.

Une semi-algèbre pour $\Omega = \{(r_1, r_2, \ldots) : r_i \in \{0, 1\}\}$

- $ightharpoonup \Omega$ est l'ensemble de suites infinies des tirages à pile ou face.
- ▶ Soit $A_{a_1a_2...a_n} \equiv \{(r_1, r_2, ...) \in \Omega \colon r_i = a_i, 1 \leq i \leq n\} \subseteq \Omega$.
- ► $A_{a_1 a_2 ... a_n}$ est l'ensemble de suites infinies avec l'histoire initial $a_1 a_2 ... a_n$.
- ▶ $\mathcal{J} \equiv \{A_{a_1 a_2 ... a_n} : n \in \mathbb{N}, a_1, ..., a_n \in \{0, 1\}\} \cup \{\emptyset, \Omega\}.$
- $ightharpoonup A_{a_1a_2...a_n}$ comme un interval de [0,1).
- \blacktriangleright $A_{01011} \cap A_{0110000} = ?$, $A_{01} \cap A_{01101} = ?$, $A_{a_1 a_2 \dots a_n} \cap A_{b_1 b_2 \dots b_{n'}} = ?$
- $A_{010}^c = ?, A_{a_1 a_2 \dots a_n}^c = ?$
- $ightharpoonup \mathcal{J}$ est-elle une semi-algèbre?

Une proto-probabilité pour $\Omega = \{(r_1, r_2, \ldots) : r_i \in \{0, 1\}\}$

Une 'proto-probabilité' $P \colon \mathcal{J} \cup \{\emptyset, \Omega\} \to [0, 1]$:

$$P(A_{a_1a_2...a_n}) = 1/2^n$$
, $P(\emptyset) = 0$, $P(\Omega) = 1$.

- ▶ Soit $D_1, ..., D_n \in \mathcal{J}$ tel que $D \equiv \bigcup_{i=1}^n D_i \in \mathcal{J}$.
- ▶ Vérification d'additivité fini de $P: \mathcal{J} \to \mathbb{R}$.
- ▶ If y a un $k \in \mathbb{N}$ tell que $D = A_{a_1 a_2 \dots a_k}$ et $P(D) = 2^{-k}$.
- $P(A_{a_1a_2...a_n}) = 2^{-n} = P(A_{a_1a_2...a_n0}) + P(A_{a_1a_2...a_n1}) = 2 \cdot 2^{-n-1}$
- Traversez l'arborescence de bas en haut.
- Pourquoi le cas d'additivité dénombrable n'est pas trivial?

Une semi-algèbre pour $\Omega_1 \times \Omega_2$

- ▶ Soit $(\Omega_1, \mathcal{F}_1, P_1)$ et $(\Omega_2, \mathcal{F}_2, P_2)$ deux espaces de probabilité.
- Nous voulons construire une semi-algèbre pour $\Omega = \Omega_1 \times \Omega_2$.
- ▶ Soit $\mathcal{J} \equiv \{A \times B \colon A \in \mathcal{F}_1, B \in \mathcal{F}_2\}.$
- \triangleright \emptyset , $\Omega \in \mathcal{J}$?
- $(A_1 \times B_1) \cap (A_2 \times B_2) = ?$
- $(A \times B)^c = ?$

Une proto-probabilité pour $\Omega_1 \times \Omega_2$

Une 'proto-probabilité' $P \colon \mathcal{J} \to [0,1] \colon P(A \times B) \equiv P_1(A)P_2(B)$.

Vérification d'additivité finie (dénombrable plus tard) :

▶ Si $\bigcup_{i=1}^{n} (A_i \times B_i) \in \mathcal{J}$ alors il existe $\{\alpha_i : j \in J\} \subseteq \mathcal{F}_1$ et $\{\beta_k : k \in K\} \subseteq \mathcal{F}_2$ tels que

$$\cup_{i=1}^n (A_i \times B_i) = (\cup_{j \in J} \alpha_i) \times (\cup_{k \in K} \beta_i) \equiv A \times B.$$

$$P(A \times B) = P_1(A)P_2(B) = \left(\sum_{j \in J} P_1(\alpha_j)\right) \left(\sum_{k \in K} P_2(\beta_j)\right),$$

$$\sum_{i=1}^{n} P(A_i \times B_i) = \sum_{j \in J} \sum_{k \in K} P(\alpha_j \times \beta_k)$$

$$= \sum_{j \in J} \sum_{k \in K} P_1(\alpha_j) P_2(\beta_k)$$

$$= \left(\sum_{i \in J} P_1(\alpha_i)\right) \left(\sum_{k \in K} P_2(\beta_k)\right) = P(A \times B).$$

Aperçu du Chapitre 3, partie I

- ▶ Définition d'une variable aléatoire : $X : \Omega \to \mathbb{R}$ telle que $\{X \le x\} \in \mathcal{F}$ pour chaque $x \in \mathbb{R}$.
- ightharpoonup Quelques fonctions sur Ω qui sont des variables aléatoires :
 - les indicateurs $1_A(\omega)$, où $A \in \mathcal{F}$,
 - la somme de deux variables aléatoires, les multiples scalaires des variables aléatoires,
 - les limites des variables aléatoires: $(Z(\omega) \equiv \lim_{n\to\infty} Z_n(\omega)$ pour $\omega \in \Omega)$).
- Indépendence
 - d'événements (du même espace de probabilité)
 - de collections d'évènements
 - de variables aléatoires

Aperçu du Chapitre 3, partie II

Convergence monotone d'événements (exemples) :

- Pour $A_n \equiv [0, 1/n], A_n \searrow \cap_n [0, 1/n] = \{0\}.$
- Pour $A_n \equiv [0, 1 1/n], A_n \nearrow \cup_n [0, 1 1/n] = [0, 1).$

Par convergence de probabilités (un théorème),

- ▶ $\lim_{n\to\infty} P([0,1/n]) = P(\{0\}),$
- $| \lim_{n \to \infty} P([0, 1 1/n]) = P([0, 1)),$

Aperçu du Chapitre 3, partie III

Pour les suites réelles,

- $| \lim \inf_{n \to \infty} x_n \equiv \lim_{n \to \infty} (\inf_{m \ge n} x_m)$
- $| \lim \sup_{n \to \infty} x_n \equiv \lim_{n \to \infty} (\sup_{m \ge n} x_m)$

Exemple :
$$x_n \equiv (-1)^n (1 + 1/n) = 2, -3/2, 4/3, -5/4, \dots$$

Pour les suites d'événements, pas forcément monotone,

- $\blacktriangleright \ \operatorname{lim} \inf_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k$
- $\blacktriangleright \ \mathsf{lim}\,\mathsf{sup}_{n\to\infty}\,A_n = \cap_{n=1}^\infty \cup_{k=n}^\infty A_k$

Exemple : $H_n \equiv \{(r_1, r_2, \ldots) \in \Omega \colon r_n = 1\}$, où $\Omega = \{(r_1, r_2, \ldots) \colon r_i \in \{0, 1\}\}$. Trouvez $\liminf_n H_n$ (H_n presque toujours) et $\limsup_n H_n$ (H_n infiniment souvent).