PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: C12N 1/21, 5/10, 15/33		(11) International Publication Number:	WO 93/17098
C12N 15/82, C07H 21/04 A01H 5/00	A1	(43) International Publication Date:	2 September 1993 (02.09.93)

(21) International Application Number:

PCT/US93/01544

(22) International Filing Date:

18 February 1993 (18.02.93)

(30) Priority data: 838,509

19 February 1992 (19.02.92) US

(71) Applicant: THE STATE OF OREGON acting by and through THE OREGON STATE BOARD OF HIGHER EDUCATION ON BEHALF OF OREGON STATE UNIVERSITY [US/US]; Corvallis, OR 97331 (US).

(72) Inventors: DOUGHERTY, William, G.; 35163 Lillian Drive, Philomath, OR 97370 (US). LINDBO, John, A.; 2910 N.W. Polk Street, #17, Corvallis, OR 97330 (US). (74) Agents: POLLEY, Richard, J. et al.; Klarquist, Sparkman, Campbell, Leigh & Whinston, One World Trade Center, Suite 1600, 121 S.W. Salmon Street, Portland, OR 97204 (US).

(81) Designated States: CA, JP, NO, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

With international search report.

(54) Title: PRODUCTION OF VIRAL RESISTANT PLANTS VIA INTRODUCTION OF UNTRANSLATABLE PLUS SENSE VIRAL RNA

(57) Abstract

Plants, such as tobacco, are made resistant to potyvirus infection by transformation with vectors which include a gene, derived from a potyvirus, mutated to encode an untranslatable plus sense RNA molecule. Mutagenized potyvirus genes and plant transformation vectors containing these genes are also disclosed.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

	A	FR	France	MR	Mauritania
AT	Austria	CA	Gabon	MW	Malawi
ΑU	Australia	_		NL	Netherlands
BB	Barbados	GB	United Kingdom		Norway
BE	Belgium	CN	Guinea	Ю	-
BF	Burkina Faso	GR	Greece	NZ	New Zealand
BC	Bulgaria	HU	Hungary	PL	Poland
BJ	Benin ·	ΙE	Ireland	₽T	Portugal
BR	Brazil	IT	Italy	RO	Romania
CA	Canada	1P	Japan	RU	Russian Federation
_		KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic	121	of Korea	SE	Sweden
CG	Congo			SK	Slovak Republic
CH	Switzerland	KR	Republic of Korea		· ·
CI -	Côte d'Ivoire	ΚZ	Kazakhstan	SN	Senegal
CM	Cameroon	L.I	Liechtenstein	SU	Soviet Union
cs	Czechoslovakia ·	LK	Sri Lunka	TD	Chad
cz	Czech Republic	1.0	Luxembourg	TG	Togo
DE	•	MC	Munaco	UA	Ukraine
-	Germany	MC	Madagascar	US	United States of America
DK	Denmark			VN	Viet Nam
ES	Spain	м1.	Mali .	VIX	7 161 1 76115
FI	Finland	MN	Mongolia		

¥

10

15

20

25

30

"Production of viral resistant plants via introduction of untranslatable plus sense viral RNA"

FIELD OF THE INVENTION

This invention is directed to the production of plants with a reduced susceptibility to virus infection.

BACKGROUND OF THE INVENTION

Plant viruses are responsible for major losses in worldwide crop production. Much effort is directed towards the development of new plant varieties which exhibit increased resistance to viral infection. Until recently such efforts were primarily based on the traditional plant breeding approach, however this approach is often limited by a lack of sources of resistance within the crop species. The advent of modern molecular biology techniques has facilitated the development of new methods of rendering plant varieties resistant to virus attack that are not limited by a requirement for preexisting resistance genes within a species.

Molecular Approaches

Many of these molecular approaches are based on the theory of pathogen derived resistance (Sanford and Johnston, 1985). This theory predicts that a "normal" host (plant) - pathogen (virus) relationship can be disrupted if the host organism expresses essential pathogen derived genes. It has been proposed that host organisms expressing pathogen gene products in excess amounts, at an inappropriate developmental stage, or in a dysfunctional form may disrupt the normal replicative cycle of the pathogen and result in an attenuated or aborted infection of the host.

Two approaches typify this pathogen derived resistance: coat protein mediated resistance and antisense RNA expression. It has been demonstrated that transgenic plants expressing a plant virus coat protein can be resistant to infection by the homologous virus. This coat protein mediated resistance has been

.5

5

10

20

25

30

35

demonstrated for several virus groups. While the mechanism of this resistance is not yet fully understood, it has been suggested that the presence of the plant synthesized coat protein prevents the removal of the protein coat (uncoating) of an invading virus and/or virus movement within the infected plant, leading to resistance.

Plants which express an RNA molecule which is complementary to plus sense RNA species encoded by the virus may show a decreased susceptibility to infection by that virus. Such a complementary RNA molecule is termed antisense RNA. It is thought that the plant encoded antisense RNA binds to the viral RNA and thus inhibits its function.

15 Potyviruses

The Potato Virus Y, or potyvirus, family represents a large number of plant viral pathogens which collectively can infect most crop species including both monocotyledonous and dicotyledonous plants. Potyvirus infection can induce a variety of symptoms including leaf mottling, seed and fruit distortion and can severely compromise crop yield and/or quality (Hollings and Brunt, 1981).

Potyviruses have a single-strand plus sense RNA of circa 10,000 nucleotides which has a viral encoded protein linked to the 5' end and a 3' polyadenylate region. A single open reading frame codes for a 351 kDa polyprotein which is proteolytically processed into mature viral gene products. The RNA is encapsidated by approximately 2,000 copies of a coat protein monomer to form a virion. This capsid protein is encoded by the sequence present at the 3' end of the large open reading frame.

Potyviruses can be transmitted by aphids and other sap feeding insects and in some instances can also be transmitted in the seeds of infected plants.

Replication of the viral RNA is thought to occur in the cytoplasm of infected plant cells after uncoating. The

PCT/US93/01544

10

15

20

25

30

35

5

replication mechanism involves both translation of the plus sense RNA to yield viral gene products (which include a replicase and a proteinase) and also the synthesis of a minus sense RNA strand. This minus sense strand then acts as a template for the synthesis of many plus sense genomes which are subsequently encapsidated in coat protein to yield infectious mature "virions," thus completing the replicative cycle of the virus.

Experiments have been reported in which transgenic plants expressing the coat protein gene of a potyvirus show a reduced susceptibility to virus infection (Lawson et al. 1990; Ling et al. 1991; Stark and Beachy 1989).

SUMMARY OF THE INVENTION

The disclosed invention concerns a method of producing plants with a decreased susceptibility to virus infection. This is achieved by transforming plants with a DNA molecule which includes a gene derived in part from the genome of a plant virus. This gene is specifically constructed to produce an untranslatable version of a plus sense RNA molecule required for viral replication. Thus, expression of the gene within the plant causes the production of this non-functional molecule which then inhibits viral replication within the plant, rendering the plant resistant to viral infection.

In particular, invention provides an alternative and novel approach to rendering plants resistant to potyvirus infection.

Plants are transformed with a gene construct engineered to express an untranslatable form of the plus sense RNA which encodes the coat protein of a potyvirus.

In the case of Tobacco Etch Virus (TEV), it is demonstrated that tobacco plants transformed with such a gene construct accumulate the untranslatable plus sense RNA but do not produce detectable levels of the coat protein. It is further shown that these plants are resistant to TEV infection. It is also shown that

10

15

20

25

30

35

. .

tobacco cells expressing this untranslatable plus sense RNA do not support TEV replication, unlike control tobacco cells and also unlike tobacco cells which are engineered to express the plus sense translatable RNA and which, as a result, accumulate TEV coat protein. Although the exact mechanism is unknown, it is proposed that the untranslatable plus sense RNA inhibits viral replication by binding to the minus sense RNA and preventing the minus sense RNA from functioning in the replication cycle.

It is believed that this approach will be applicable to other potyviruses, to genes other than the coat protein gene and to other plus sense RNA virus families. It is also believed that this means of inhibiting gene function is applicable to other biological systems, including mammalian viruses.

DESCRIPTION OF DRAWINGS

Fig. 1 represents the nucleotide sequence of the Tobacco Etch Virus genome and its deduced amino acid sequence, according to Allison et al. (1986). nucleotide sequence of the plus sense strand of the DNA inserts is given. The first nucleotide (N) could not be determined unequivocally. The predicted amino acid sequence of the large ORF of reading frame three of the viron sense RNA is presented in the nucleotide sequence. This sequence is also set forth in SEQ ID No. 1 of the enclosed sequence listing. The termination codon at the end of the large ORF is marked with a *. The putative cleavage site between the large (54,000 Mw) nuclear inclusion protein and the capsid protein is indicated by the arrow. Oligonucleotide primer binding sites are underlined and labeled.

Fig. 2 is a schematic representation of the construction of pTC:FL, utilized in construction of transformation vectors for the invention. Restriction endonuclease sites were introduced into pTL 37/8595 at positions A, B and C in the diagram. Following these nucleotide changes the mutated pTL 37/8595 was digested

\$

with the restriction enzyme NcoI, the DNA fragment delineated by the restriction enzyme sites at B and C was removed, and the plasmid religated to generate pTC:FL. pTC:FL contains the Tobacco Etch Virus (TEV) coat protein nucleotide sequence flanked by BamHI restriction sites and the TEV 5' and 3' untranslated sequences (UTS). T7 and SP6 promoters are also shown. Abbreviations used in this diagram are as follows: T7, T7 RNA polymerase promoter sequence; SP6, SP6 RNA 10 polymerase promoter sequence; ori, origin of replication; M13 ori, bacteriophage M13 single-stranded origin of replication; amp r , β -lactamase gene. Lightly stippled areas are TEV 5' and 3' untranslated sequences; solid black area, TEV genome cDNA nucleotides 144 to 15 200; striped area, a portion of the TEV NIb gene (TEV nt 8462-8517); heavily stippled areas, cDNA of TEV CP nucleotide sequence (TEV nt 8518-9309).

Fig. 3 is a schematic representation of the forms of the Tobacco Etch Virus coat protein gene 20 inserted into tobacco in the invention. All constructs contained the enhanced CaMV 35S (Enh 35S) promoter, CaMV 35S 5' untranslated sequence (UTS) of 50 bp and the CaMV 35S 3' UTS/polyadenylation site of 110 bp. nomenclature used to describe the transgenic plant lines 25 is presented along with the gene products produced in those plant lines (far right column). Abbreviations are as follows: 35S, transgenic plants containing the CaMV 35S promoter and 5' and 3' UTS only; FL, transgenic plants containing the transgene coding for full-length, 30 AS and RC transgenic plants contain the transgene expressed as an antisense form of the TEV CP gene, or an untranslated sense form of the TEV CP gene, respectively. Stippled areas represent various forms of the TEV CP nucleotide sequence.

Fig. 4 is a graphic representation of the appearance of systemic symptoms in plants infected with Tobacco Etch Virus showing responses of control plants and transformed plants generated as described in the

10

15

25

35

invention. Ten B49 (wild type) plants and ten R2 plants of transgenic plant lines 35S #4, FL #3, FL #24, homozygous for the inserted TEV gene, were mechanically inoculated with 50 μ l of 1:10 dilution of infected plant sap (A). Twenty B49 plants and 20 Rl plants of lines AS #3 and RC #5 were mechanically inoculated with 50 μ l of 5 μ g/ml TEV (B). Plants were examined daily for the appearance of systemic symptoms. Plants were evaluated daily, and any plant displaying systemic symptoms (attenuated or wild-type) were recorded as symptomatic.

SEQUENCE LISTING

The attached sequence listing sets forth nucleotide sequences relevant to the present invention.

SEQ ID No. 1 is the complementary DNA sequence corresponding to the Tobacco Etch Virus Genome.

SEQ ID No. 2 is the nucleotide sequence of the modified Tobacco Etch Virus coat protein gene present in pTC:FL.

SEQ ID No. 3 is the nucleotide sequence of the modified Tobacco Etch Virus coat protein gene present in pTC:RC.

SEQ ID No. 4 is the nucleotide sequence of the modified Tobacco Etch Virus coat protein gene present in pTC:AS. It is the inverse complement of SEQ ID No. 2.

DETAILED DESCRIPTION

The present invention relates to genetically engineered plants which are transformed with a DNA molecule encoding an untranslatable plus sense RNA molecule.

30 <u>Definition of Terms</u>

Susceptible plant: A plant that supports viral replication and displays virus-induced symptoms.

Resistant plant: A plant wherein virus-induced symptoms are attenuated and virus replication is attenuated.

Plus sense RNA (and sense RNA): That form of an RNA which can serve as messenger RNA.

10

15

20

25

30

35

WO 93/17098

Minus sense RNA: That form of RNA used as a template for plus sense RNA production.

Antisense RNA: RNA complementary to plus sense RNA form. $\begin{tabular}{c} \end{tabular}$

Ro generation: Primary transformants.

 R_1 generation: Progeny of primary transformants.

 R_2 generation: Second generation progeny of R_0 generation (i.e., progeny of R_1 generation).

A gene derived in part from a plant virus RNA molecule: At least the portion of the gene encoding the untranslatable RNA molecule is derived from a plant virus RNA molecule.

GENERAL DESCRIPTION

An untranslatable plus sense RNA molecule is encoded by a gene located on the DNA molecule. The gene comprises DNA derived from a plant virus RNA genome and also DNA from heterologous sources. The DNA from heterologous sources includes elements controlling the expression of the virus-derived DNA sequences. The DNA sequence of the gene is specifically altered so as to render the RNA molecule transcribed from the gene untranslatable. The presence of this untranslatable plus sense RNA within the cells of the transformed plant reduces the susceptibility of the plant to viral infection.

More particularly, the portion of the gene which comprises DNA from a plant virus has been derived from a potyvirus. Plants transformed with the DNA molecule containing the gene are less susceptible to infection by potyviruses. Most specifically, the DNA from the potyvirus source has been derived from the coat protein gene of Tobacco Etch Virus and transformed plants are resistant to infection by Tobacco Etch Virus. Plants which can be made resistant to potyvirus infection include, but are not limited to, tobacco.

Accordingly, the present invention provides a method for genetically engineering plants by insertion,

WO 93/17098 PCT/US93/01544

into the plant genome, a DNA construct containing a recombinant gene derived from a potyvirus genome such that the engineered plants display resistance to the potyvirus.

5

10

15

20

25

30

35

In accordance with one aspect of the present invention, genetically transformed plants which are resistant to infection by a plant potyvirus are produced by inserting into the genome of the plant a DNA sequence which causes the production of an untranslatable coat protein RNA of the potyvirus.

In accordance with another aspect of the present invention, a DNA sequence is provided to function in plant cells to cause the production of an untranslatable plus sense RNA molecule. There has also been provided, in accordance with yet another aspect of the present invention, bacterial and transformed plant cells that contain the above-described DNA. In accordance with yet another aspect of the present invention, a differentiated tobacco plant has been provided that comprises transformed tobacco cells which express the untranslatable coat protein RNA of Tobacco Etch Virus and which plants exhibit resistance to infection by Tobacco Etch Virus.

Other features and advantages of the present invention will become apparent from the following description. It should be understood, however, that the detailed description and the specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.

A mechanism by which an untranslatable plus sense RNA molecule, such as described in the current invention can function to inhibit the normal biological function of a minus sense RNA molecule is proposed. One skilled in the art will recognize that the novel approach described herein is not limited to the specific

.

WO 93/17098 PCT/US93/01544

\$:

10

15

experimental example given and will appreciate the wider potential utility of the invention.

The expression of a plant gene which exists in double-stranded DNA form involves transcription of messenger RNA (mRNA) from one strand of the DNA by RNA polymerase enzyme, and the subsequent processing of the mRNA primary transcript inside the nucleus. This processing involves a 3' nontranslated region which causes polyadenylate nucleotides to be added to the 3' end of the viral RNA. Transcription of DNA into mRNA is regulated by a region of DNA usually referred to as the "promoter." The promoter region contains a sequence of bases that signals RNA polymerase to associate with the DNA and to initiate the transcription of mRNA using one of the DNA strands as a template to make a corresponding strand of RNA.

A number of promoters which are active in plant cells have been described in the literature. which are known or are found to cause transcription of 20 viral RNA in plant cells can be used in the present invention. Such promoters may be obtained from plants or viruses and include, but are not limited to, the CaMV 35S promoter. As described below, it is preferred that the particular promoter selected should be capable of 25 causing sufficient expression to result in the production of an effective amount of untranslatable plus sense RNA to render the plant substantially resistant to virus infection. The amount of untranslatable plus sense RNA needed to induce resistance may vary with the 30 plant type. Accordingly, while the 35S promoter is preferred, it should be understood that this promoter may not be the optimal one for all embodiments of the present invention. Furthermore, the promoters used in the DNA constructs of the invention may be modified, if 35 desired, to affect their control characteristics. sequences have been identified which confer regulatory specificity on promoter regions. For example, the small subunit of the ribulose bis-phosphate carboxylase (ss

٠٤.

10

15

20

25

30

35

RUBISCO) gene is expressed in plant leaves but not in root tissues. A sequence motif that represses the expression of the ss RUBISCO gene in the absence of light, to create a promoter which is active in leaves but not in root tissue, has been identified. This and/or other regulatory sequence motifs may be ligated to promoters such as the CaMV 35S promoter to modify the expression patterns of a gene. Chimeric promoters so constructed may be used as described herein. For purposes of this description, the phrase "CaMV 35S promoter" will therefore include all promoters derived by means of ligation with operator regions, random or controlled mutagenesis, as well as tandem or multiple copies of enhancer elements, and the like.

The 3' nontranslated region of genes which are known or are found to function as polyadenylation sites for viral RNA in plant cells can be used in the present invention. Such 3' nontranslated regions include, but are not limited to, the 3' transcribed, nontranslated region of the CaMV 35S gene and the 3' transcribed, nontranslated regions containing the polyadenylation signals of the tumor-inducing (TI) genes of Agrobacterium, such as the tumor morphology large (tml) gene. For purposes of this description, the phrase "CaMV 35S 3' nontranslated region" will therefore include all such appropriate 3' nontranslated regions.

The DNA constructs of the disclosed embodiment contain, in double-stranded DNA form, a portion of a cDNA version of the single-stranded RNA genome of TEV. In potyviruses, including TEV, the viral genome includes genes encoding the coat protein, a replicase enzyme and a proteinase. The disclosed embodiment utilizes the region of the genome encoding the coat protein gene. In considering the present invention and the evidence for the proposed mechanism by which an untranslatable plus sense RNA molecule can inhibit viral replication, those skilled in the art will recognize that other portions of a potyvirus genome could be substituted for the coat

protein gene. Furthermore, it will be apparent that suitable genomic portions are not limited to complete gene sequences.

A disclosed embodiment of the invention utilizes a double-stranded complementary DNA (cDNA) 5 derived from the region of the TEV genome encoding the coat protein gene. To the 5' end of this cDNA is ligated the CaMV 35S promoter and CaMV 35S RNA 5' nontranslated region. To the 3' end is ligated the CaMV 35S 3' nontranslated region. These 5' and 3' sequences 10 are present to cause transcription of the gene in plant cells by the cellular enzyme RNA polymerase to produce an RNA molecule of sequence corresponding to the sequence of the coat protein cDNA sequence. Ordinarily, such an RNA would then be translated by ribosomes which 15 would synthesize a protein of amino acid sequence specified by the nucleotide sequence of the RNA molecule. Particular amino acids are specified by nucleotide triplets termed codons. Codons which stipulate translation initiation and termination are 20 also present in DNA and RNA sequences. The current invention relates to RNA molecules which are In the preferred untranslatable by ribosomes. embodiment the sequence of the TEV cDNA encoding the coat protein is mutated by a standard in vitro 25 mutagenesis technique to produce a frameshift mutation early in the coat protein structural gene immediately followed by three translation termination signal codons. These mutations do not affect the ability of RNA polymerase to transcribe an RNA molecule from the cDNA 30 but prevent translation of the transcribed RNA by Those skilled in the art will recognize that ribosomes. for the disclosed gene and for other genes, DNA sequences can be altered in other ways to cause the DNA to encode an untranslatable plus sense RNA molecule. 35 Thus the disclosed invention is not limited to the mutations disclosed.

¥.

10

15

20

35

A disclosed embodiment utilizes a cDNA encoding the coat protein gene of TEV, mutated so as to encode an untranslatable plus sense RNA. It will be obvious to one skilled in the art that further sequence alteration of the cDNA molecule could be used to confer additional features on the untranslatable plus sense RNA molecule. Additional features include those which would result in increased viral resistance of plants transformed with the cDNA molecule encoding an untranslatable plus sense The inclusion of a ribozyme sequence which causes the RNA catalyzed destruction of the target RNA molecule would constitute one such additional feature. Suitable ribozyme sequences are known, as discussed in Tabler and Tsagris (1991).

A DNA construct in accordance with the present invention is introduced, via a suitable vector and transformation method as described below, into plant cells and plants transformed with the introduced DNA are regenerated. Various methods exist for transforming plant cells and thereby generating transgenic plants. Methods which are known or are found to be suitable for creating stably transformed plants can be used in this invention. The choice of method will vary with the type of plant to be transformed; those skilled in the art will recognize the suitability of particular methods for 25 given plant types. Suitable methods may include, but are not limited to: electroporation of plant protoplasts; liposome mediated transformation; polyethylene mediated transformation; transformation using viruses; microinjection of plant cells; 30 microprojectile bombardment of plant cells and Agrobacterium tumefaciens (AT) mediated transformation. The latter technique is the method of choice for the disclosed preferred embodiment of the present invention.

In an embodiment of the current invention, the DNA sequences comprising the CaMV 35S promoter and CaMV 35S nontranslated 3' region and the mutated cDNA encoding an untranslatable plus sense RNA derived from

15

20

25

30

5

the TEV coat protein gene are combined in a single cloning vector. This vector is subsequently transformed into AT cells and the resultant cells are used to transform cultured tobacco cells.

Vectors suitable for the AT mediated transformation of plants with the DNA of the invention are disclosed. It will be obvious to one skilled in the art that a range of suitable vectors is available, including those disclosed by Bevan (1983),

Herrera-Estrella (1983), Klee (1985) and EPO publication 12,516 (Schilpercort et al.). Suitable vectors are available on a commercial basis from Clontech (Palo Alto, CA) and Pharmacia LKB (Pleasant Hill, CA) and other sources.

Following the transformation of plant cells and regeneration of transformed plants with the DNA molecules as described, regenerated plants are tested for increased virus resistance. Plants are preferably exposed to the virus at a concentration within a range where the rate of disease development correlates linearly with virus concentration. Methods for virus inoculation are well known to those skilled in the art and are reviewed by Kado and Agrawai (1972). One such method includes abrading a leaf surface with an aqueous suspension containing an abrasive material such as carborundrum and virus or dusting leaves with such an abrasive material and subsequently applying the virus onto the leaf surface. A virus suspension can be directly inoculated into leaf veins or alternatively plants can be inoculated using insect vectors. virus suspension may comprise purified virus particles, or alternatively, sap from virus infected plants may be utilized.

Transformed plants are then assessed for

resistance to the virus. The assessment of resistance or reduced susceptibility may be manifest in different ways dependant on the particular virus type and plant type. Those skilled in the art will realize that a

WO 93/17098 PCT/US93/01544

-14-

comparison of symptom development on a number of inoculated intransformed plants with symptom development on similarly inoculated transformed plants will provide a preferred method of determining the effects of transformation with the specified DNA molecule on plant resistance. Symptoms of infection include, but are not limited to leaf mottling, chlorosis and etching. Plants showing increased viral resistance may be recognized by delay in appearance of such symptoms or attenuation or total lack of such symptoms.

Example

10

15

Work with tobacco plants and the Tobacco Etch Virus (TEV) is illustrative of the invention.

Construction of gene encoding untranslatable plus sense RNA molecule.

The Highly Aphid Transmissible (HAT) isolate of Tobacco Etch Virus (TEV) was obtained from Dr. Tom Pirone (University of Kentucky) and maintained in Nicotiana tabacum (Burley 21). The virus was purified from Nicotiana tabacum (Burley 21) 20 to 30 days 20 following inoculation. Viral purification and RNA isolation procedures have been described (Dougherty and Hiebert (1980a). Complementary DNA (cDNA) was synthesized, made double-stranded and inserted into the bacterial plasmid pBR322 as described by Allison et al. 25 (1985a, 1985b, 1986), herein incorporated by reference. cDNA synthesis was accomplished as follows: Purified viral RNA primed with oligo(dT_{12-18}) served as a template for single-strand cDNA synthesis by reverse transcriptase. Following the addition of homopolymeric 30 tracts of deoxycytidine 5' monophosphate, second-strand synthesis, primed with oligo(dG_{12-18}), was completed with DNA polymerase I. SalI and EcoRI linkers were ligated to the double-stranded cDNA and inserted into the bacterial plasmid pBR322 (Kurtz and Nicodemus 1981). 35 resulting cDNA clones were screened by colony hybridization (Hanahan and Meselson 1980) with oligo(dT_{12-18}) primed, ^{32}P -labeled single-stranded TEV

3

10

15

20

5

Plasmid DNA was isolated from colonies which hybridized with the probe, and the Sall/EcoRI cDNA inserts were sized by electrophoresis in a 0.8% (w/v) agarose gel using a horizontal water-cooled gel apparatus.

The Sall/EcoRI inserts from the recombinant molecules were isolated from an agarose gel with NA45 membrane (Schleicher & Schuell, Keene, NH) according to the manufacturer's protocol. The following restriction enzymes were used either alone or in combination to digest the isolated cDNA insert: HindIII, XhoI, AluI, HaeIII, RsaI, Sau3A, and TaqI. Restriction enzyme digestion products were inserted into the DNA of an appropriate M13 bacteriophage (Messing 1983) selected for the presence of corresponding polylinker restriction sites, and their nucleotide sequences were determined by dideoxy chain termination.

Plasmid pTL 37/8595 (Carrington and Dougherty 1987; Carrington et al. 1987, herein incorporated by reference) contains a cDNA copy of the genomic sequence of HAT TEV corresponding to nucleotides (nt) 1-200 and nt 8462-9495 (Fig. 2). (Numbering of the TEV genome nucleotides is according to that presented in Allison et al. 1986). The nucleotide sequence and deduced amino acid sequence of the Tobacco Etch Virus genome and the 25 numbering system utilized by Allison et al. (1986) and herein is shown in Fig. 1 and SEQ ID No. 1 in the attached sequence listing. The first and last codons of the coat protein (CP) coding region in the TEV genome are nt 8518-8520 (encoding the amino acid serine) and 30 9307-9309 (opal stop codon) respectively. pTL 37/8595 was subject to in vitro site-directed mutagenesis as described by Taylor et al. (1985a, 1985b) herein incorporated by reference. In all cases, nucleotide changes were confirmed by dideoxy-nucleotide sequencing 35 (Sanger et al. 1977).

TEV nt 9312-9317 were first mutated (Fig. 2) to generate a BamHI restriction site (GGATCC). TEV nt

. 35

10

15

20

25

30

35

8516-8521 were then altered to generate an Ncol site (CCATGG), changing the first codon of the TEV CP coding region from AGT (Ser), to ATG (Met). A single oligonucleotide was then used to mutate TEV nt 133-138 to a BamHI restriction site (GGATCC), nt 143-148 to an NcoI restriction site (CCATGG) and nt 142 to a deoxyadenylate residue. These mutations generated an NcoI site centered on the first codon of the TEV ORF and in a good translational start context as described by Kozak (1984). Digestion of the resulting plasmid with the restriction enzyme NcoI; removing TEV nt # 143-200/8462-8516, and religation generated plasmid pTC:FL. pTC:FL contained only the TEV CP gene flanked by BamHI restriction sites and TEV 5' and 3' The nucleotide untranslated sequences (see Fig. 2). sequence of the TEV CP gene in pTC:FL produced by this mutagenesis scheme is shown in SEQ ID No. 2 in the attached sequence listing.

Plasmid pTC:RC (RNA Control, producing untranslatable plus sense RNA) was generated by insertion of a single deoxythymidylate residue after TEV nt 8529, and point mutations of TEV nt 8522 (G to C), 8534 (C to A), 8542 (G to A), and 8543 (A to G) to create a frameshift mutation immediately followed by three stop codons. An NheI restriction site (GCTAGC) was simultaneously generated, for screening purposes, at nt 8539-8544. The nucleotide sequence of the TEV CP gene in pTC:RC produced by this mutagenesis scheme is shown in SEQ ID No. 3 in the attached sequence listing.

All plasmids described above were linearized with HindIII, transcribed with T7 RNA polymerase (Melton et al. 1984), and translated in a rabbit reticulocyte lysate containing 35 Methionine (Dougherty and Hiebert 1980a). Radiolabeled translation products were analyzed by electrophoretic separation on a 12.5% acrylamide gel containing SDS (Laemmli 1970) and detected by autoradiography. Transcripts of plasmid pTC:RC produced

10

no detectable protein products, while transcripts from pTC:FL produced proteins of the expected sizes.

The various forms of the CP nucleotide sequence were then inserted as BamHI cassettes into the plant expression vector pPEV (see below and Fig. 3).

The full length TEV CP open reading frame of pTC:FL was inserted in the reverse orientation to make the antisense (AS) construct pTC:AS. The nucleotide sequence of the TEV CP gene in pTC:AS is shown in SEQ ID No. 4 in the attached sequence listing.

Transformation Vector Construction

Construction of pPEV. The vector pPEV is part of a binary vector system for Agrobacterium tumefaciens mediated plant cell transformation. Plasmid pPEV was constructed from the plasmids pCGN 2113 (Calgene), pCIB 15 710 and pCIB 200 (Ciba Geigy Corp.). pCGN 2113 contains the "enhanced" Cauliflower Mosaic Virus (CaMV) 35S promoter (CaMV sequences -941 to 90/-363 to +2, relative to the transcription start site) in a pUC derived plasmid backbone. pCIB 710 has been described 20 (Rothstein et al. 1987) and pCIB 200 is a derivative of the wide host range plasmid pTJS 75 (Schmidhauser and Helinski 1985) which contains left and right A. tumefaciens T37 DNA borders, the plant selectable NOS/NPT II chimeric gene from the plasmid Bin 6 (Bevan 25 1984) and part of a pUC polylinker. The small EcoRI-EcoRV DNA fragment of pCIB 710 (Rothstein et al. 1987) was ligated into EcoRI-EcoRV digested pCGN 2113. This regenerated the enhanced CaMV 35S promoter (Kay et al. 1987) of pCGN 2113 and introduced the CaMV 35S 5' 30 and 3' untranslated sequences into pCGN 2113. 35S promoterterminator cassette of the resulting plasmid was isolated as an EcoRI-XbaI DNA fragment and ligated into EcoRI-XbaI digested pCIB 200 to generate pPEV. nucleotide sequences from PTC:FL, pTC:RC, and pTC:AS 35 were cloned as BamHI cassettes into BamHI digested pPEV and orientation of inserts confirmed by digestion with appropriate restriction endonucleases.

15

20

25

30

35

Transformation and Regeneration of Tobacco

pPEV plasmids containing TEV CP ORFs were mobilized from *E. coli* HB101 into *A. tumefaciens* A136 containing plasmid pCIB 542 (Ciba Geigy), using the helper plasmid pRK 2013 in *E. coli* HB101 and the tri-parental mating system of Ditta et al. (1980). Plasmid pCIB 42 supplied *vir* functions necessary for T-DNA transfer.

Leaf discs of Nicotiana tabacum cv Burley 49 were transformed and whole plants regenerated according to Horsch et al. (1985). Transformed tissue was selected by culturing callus on MS plates (Murashige and Skoog 1962) containing 1 μ g/ml 6-benzylaminopurine (Sigma Corp.), 01 μ g/ml α -naphthaleneacetic acid (Sigma Corp.), 500 μ g/ml carbenicillin and 100 μ g/ml Kanamycin sulfate (Sigma Corp.). Shoots were rooted on MS plates containing 500 μ g/ml carbenicillin and 100 μ g/ml kanamycin sulfate, and plantlets were transplanted into soil and transferred directly into the greenhouse approximately 2-3 weeks after rooting.

R0, R1 and R2 generation plants were screened by western and/or northern blot analyses. R2 seed (ca. 100 seeds per R2 plant) was screened for the kanamycin-resistant phenotype (kan^r) by surface sterilizing seed in 10% bleach for 5 min., washing twice in sterile water and germinating on MS plates containing 100 μ g/ml kanamycin sulfate. R2 seed lines which were 100% kanamycin resistant were screened by western blot analysis for expression of TEV coat protein. Those transgenic plant lines generated and their nomenclature are presented in Fig. 3.

Molecular Analyses of Transgenic Plants

Transgenic tobacco plants were analyzed by western and northern blot analyses to determine the nature of protein and RNA products produced respectively. Total RNA samples isolated from the various transgenic lines were analyzed in northern blot hybridization studies. Total nucleic acids were

10

\$.

isolated from tissue and RNA precipitated with LiCl as described by Verwoerd et al. (1989). RNAs were electrophoretically separated on 1.2% agarose gels containing 6% (v/v) formaldehyde and transferred to nitrocellulose. Prehybridization and hybridization conditions were as described in Sambrook et al. (1989). Strand specific riboprobes were generated from SP6 or T7 DNA dependent RNA polymerase transcription reactions of pTL 37/8595 linearized with the restriction enzymes Asp718 (Boehringer Mannheim, Indianapolis, IN) or HindIII, respectively, using α -labelled ^{32}P -CTP ribonucleotide and suggested procedures (Promega, Madison, WI).

An RNA transcript of approximately 1,000 nt was expected with all transgenic plant lines. Such a TEV CP 15 transcript was detected in CP expressing plant lines by using a minus sense riboprobe containing the TEV CP sequence. A similar transcript was detected in AS plants by using a plus sense riboprobe containing the TEV CP sequence. The transcript in the RC line, while 20 detected with a minus sense riboprobe, may have migrated as a slightly larger (ca 1,100-1,200 nt) RNA species, possibly due to termination at an alternately selected site and/or a longer poly-A tail on the transcript. Differing levels of CP transcript accumulation were 25 observed among different transgenic plant lines. Transgenic plant lines expressing the coat protein of TEV were identified by western blot analysis using polyclonal antisera to TEV CP. Tissue samples of regenerated plants were ground in 10 volumes of 2X 30 Laemmli (Tris-glicine) runner buffer (Laemmli 1970) and clarified by centrifugation in a microcentrifuge for 10 min. at 10,000xg. Protein concentration was estimated by the dye binding procedure of Bradford (1976) using BSA as a standard. Protein samples (50 μ g total 35 protein) were separated on a 12.5% polyacrylamide gel containing SDS and subjected to the immunoblot transfer procedures described by Towbin et al. (1979). Anti-TEV WO 93/17098 PCT/US93/01544

-20-

coat protein polyclonal primary antibodies, alkaline phosphatase conjugated secondary antibodies and the chromogenic substrates NBT (para-nitro blue tetrazolium chloride) and BCIP (5-bromo-4-chloro-3-indoyl phosphate para-toluidine salt) were used to detect bound antigen.

Coat protein products produced in FL plants were stable and accumulated to different levels in individual transgenic plant lines. It was estimated by western blot analysis that between 0.01% to 0.001% of total extracted protein was TEV CP.

Assessment of Resistance to TEV

5

10

15

20

25

35

Eight-week-old (circa 15 cm tall) R1 and R2 plants were inoculated with either purified virus preparations or infected plant sap. Inoculum was applied with sterile, premoistened cotton swabs. Infected plant sap inoculum was prepared by grinding TEV-infected N. tabacum Burley 21 leaf tissue (2 weeks postinoculation) in carborundum and 50 mM sodium phosphate buffer (pH 7.8) at a ratio of lgm:02gm:10mls, respectively, and filtering the homogenate through cheesecloth. TEV virons were purified as described by Dougherty and Hiebert (1980b). One leaf per plant was dusted lightly with carborundum (320 grit) and inoculated at two interveinal locations with 50 μ l (total) of inoculum. Inoculated plants were examined daily and the appearance and severity of systemic symptoms recorded. Symptoms on any leaf above the inoculated leaf were considered to be systemic.

Typically, inoculation of Burley 49 plants with 30 TEV (either purified virus or plant sap) resulted in severe chlorosis and mosaic and mottle on systemically infected leaves approximately 6-7 days after inoculation. Severe etching of the leaf followed within a few days. It was observed that transgenic plants containing only the CaMV promoter and untranslated sequences (i.e., 35S plant line) responded to challenge inoculation in a manner similar to wild type Burley 49, developing extensive chlorosis and etching at the same

1

15

20

25

30

35

5

rate (Fig. 4A). Plant lines which expressed FL TEV CP showed little or no delay in the appearance of symptoms when inoculated with infected plant sap. However, FL transgenic plants did show a slight attenuation of symptoms and eventually (2-4 weeks after initial appearance of symptoms), younger leaf tissue emerged devoid of symptoms and virus as demonstrated by back inoculation experiments. Typically chlorosis and etching on older systemic leaves was limited.

Ten independently transformed RC lines and seven independently transformed AS lines were obtained. Progeny from three of the RC lines, including line RC #5 and from one of the AS lines, including AS #3, showed an altered response to viral infection relative to control plants. All of these lines were verified to be transformed and were producing expected RNA products. A possible explanation for the variation in observed phenotype is the previously noted "position effect" whereby the expression of genes from identical DNA sequences integrated at different locations within the genome show varying patterns of tissue specificity.

Ten R2 expressing plants of the FL expressing line were inoculated with infected plant sap, and 20 R1 plants of lines AS #3 and RC #5 were inoculated with 50 μ l of a 5 μ g/ml solution of purified TEV. Identical results to those obtained by purified TEV inoculation were obtained when AS #3 and RC #5 R1 plants were inoculated with TEV-infected plant sap, as described above.

#5, expressing only TEV CP related RNA sequences, showed a delay in the appearance of symptoms and a modification of symptoms when inoculated with TEV (Fig. 4B). Since the 20 R1 plants were not screened for expression of CP RNA prior to inoculation, some of the symptomatic plants represented non-expressing plants in which the gene of interest had been lost during Mendelian segregation. Modified symptoms on AS #3 plants appeared as small

.

5

10

15

20

25

30

35

chlorotic lesions often associated with a vein. Most of the leaves were devoid of symptoms and virus (determined by back inoculation experiments). Approximately 15% of RC #5 plants showed symptoms which were identical to those of infected Burley 49. However, the remaining RC #5 plants were entirely asymptomatic, and virus was not detected in back inoculation studies.

Plants from TEV resistant AS and RC lines showed no increased resistance, relative to untransformed controls, to infection by two other members of the potyvirus family, namely Tobacco Vein Mottling Virus and Potato Virus Y.

 R_2 generation plants derived from TEV-resistant RC plants showed the expected Mendelian pattern of inheritance of the TEV-resistant phenotype. Analysis of TEV Replication in Protoplasts Derived from Transgenic Plant Lines

In an attempt to explain the results obtained when AS and RC transgenic plants were challenged with TEV, it was sought to determine if all of the transgenic plant lines would support virus replication at a level comparable to Burley 49. Accumulation of viral encoded proteins was used as an indirect indicator of viral replication. Protoplasts were derived from leaf tissue of homozygous CP expressing plants and electroporated according to the procedure of Luciano et al. (1987) with Protoplasts were prepared from transgenic plants and electroporated according to the procedure of Luciano et al. (1987). Protoplasts (1 X 106) were resuspended in 450 μ l electroporation buffer (330 mM mannitol, 1 mM KPO, pH 7.0, 150 mM KCl) and electroporated using a BTX Transfector 300 (BTX San Diego, CA) (950 micro Farads, 130-volt pulse amplitude, 3.5 mm electrode gap) in the presence or absence of 6 μ g of purified TEV RNA. After electroporation, protoplasts were incubated for 96 hours in incubation medium as described in Luciano et al. (1987). Protoplasts were extracted in 2X Laemmli (Trisglycine) running buffer,

25

30

35

\$

and 5 x 104 extracted protoplasts were then subjected to western blot analysis as described above. Protoplast viability was measured by dye exclusion as described in Luciano et al. (1987). All electroporated protoplast samples had equivalent viability counts. The results indicated that protoplasts from all FL plant lines supported virus replication at levels comparable to wild type Burley 49 protoplasts. R1 transgenic plants from lines AS #3 and RC #5 were initially screened by northern analysis, and leaves from positive expressors 10 were used in the production of protoplasts. Transfected protoplasts derived from AS #3 plants supported TEV replication, albeit at a reduced level. Protoplasts derived from RC #5 transgenic plant leaf tissue did not support TEV replication at a detectable level. 15 results, and those presented in the whole plant inoculation series, suggested AS and RC plants interfere with TEV replication.

Discussion of Data

The above example indicates that varying degrees of protection from TEV infection can be achieved by overexpression of coat protein and by expression of an antisense RNA. The current invention which comprises the expression of an untranslatable plus sense RNA molecule provides protection against TEV infection that is more effective than either of these two methods. Plants of line RC #5, transformed with the disclosed DNA molecule encoding an untranslatable plus sense RNA derived from the TEV coat protein gene, were asymptomatic and appear to be completely protected from virus infection. The disclosed invention therefore represents a new and effective way of generating potyvirus resistant germplasm.

Tobacco protoplasts derived from plants expressing the antisense RNA supported a reduced level of TEV replication compared to control cells derived from untransformed plants. In contrast, tobacco protoplasts derived from plants of line RC #5,

10

15

20

25

30

35

expressing the untranslatable plus sense RNA did not support detectable TEV replication. This suggests that the untranslatable plus sense RNA was more effective at blocking TEV replication in the cells of those transformed plants tested.

It is proposed that the untranslatable plus sense RNA inhibits viral replication by hybridizing to the minus sense RNA replicative template of TEV. The finding that plants expressing untranslatable plus sense RNA derived from the TEV coat protein gene are not protected from infection by Potato Virus Y or Tobacco Vein Mottling Virus is therefore explained by the circa 40-50% amino acid sequence divergence between the coat proteins of these viruses and TEV (Allison et al. 1986; Robaglia et al. 1989; Domier et al. 1986).

From the above-described findings, it would be reasonable and entirely predictable that if plants were transformed with a gene encoding an untranslatable plus sense RNA derived from a gene which was highly conserved between viruses of the potyvirus family, that these plants would be protected from infection by a wide range of viruses. Regions of the potyvirus genome which are sufficiently conserved between potyvirus types to be potentially useful in such an approach may be readily determined by one skilled in the art. Highly conserved regions may be determined by reference to published sequence data (Allison et al. 1986; Robaglia et al. 1989; Domier et al. 1986; Lain et al. 1989; Maiss et al. The utility of the identified regions could be readily determined using the methodologies described above and substituting the defined region for the TEV coat protein gene.

Regions of the potyvirus genome potentially suitable include, but are not limited to the genes encoding the viral replicase and the viral proteinase. Furthermore, it will be apparent to one skilled in the art that highly conserved portions of a particular gene may also serve in this role.

\$:

It will also be apparent to one skilled in the art that the described invention may also be used to produce plants resistant to viruses outside of the potyvirus family in instances where these viruses also produce a minus sense RNA replicative template.

BIBLIOGRAPHY

Allison et al. 1985a. <u>Virology 147</u>:309-316. Allison et al. 1985b. <u>Proc. Natl. Acad. Sci. USA 82</u>:3969-3972.

10 Allison et al. 1986. <u>Virology</u> 154:9-20.

Bevan 1984. <u>Nucl. Acids Res.</u> 12:8711-8721.

Bradford 1976. <u>Nucl. Acids Res.</u> 12:8711-8721.

Carrington and Dougherty 1987. <u>J. Virol.</u>

61:2540-2548.

15 Carrington et al. 1987. Nucl. Acids Res. 15:10066.

Ditta et al. 1980. <u>Proc. Natl. Acad. Sci. USA</u>
77:7347-7351.

Domier et al. 1986. Nucl. Acids Res.

20 14:5417-5430.

30

Dougherty and Hiebert 1980a. <u>Virology</u> 101:466-474.

Dougherty and Hiebert 1980b. <u>Virology</u> 104:183-194.

25 Hanahan and Meselson 1980. <u>Gene 10</u>:63-67.

Herrera-Estrella et al. 1983. <u>Nature</u> (London)

303:209-213.

Hollings and Brunt 1981. <u>Commonwealth</u>

<u>Mycological Institute/Association of Applied Biologists</u>

<u>Descrip. Plant Viruses</u>, No. 245.

Horsch et al. 1985. <u>Science</u> <u>227</u>:1229-1231.

Kado and Agrawai 1972. <u>Principles and</u>

<u>Techniques in Plant Virology</u>.

Kay et al. 1987. <u>Science 236</u>:1299-1302.

Kozak 1984. <u>Nature</u> (London) <u>308</u>:241-246.

Kurtz and Nicodemus 1981. <u>Gene 13</u>:145-152.

Laemmli 1970. <u>Nature</u> (London) <u>227</u>:680-685.

Lain et al. 1989. <u>Virus Res.</u> <u>13</u>:157-172.

Lawson et al. 1990. <u>Bio/Technology</u> 8:127-134. Ling et al. 1991. <u>Bio/Technology</u> 9:752-758. Luciano et al. 1987. <u>Plant Science</u> 51:295-303. Maiss et al. 1989. <u>J. Gen. Virol.</u> 70:513-524.

5 Melton et al. 1984. <u>Nucl. Acids Res.</u>

12:7145-7156.

Messing 1983. "Methods in Enzymology" (R. Wu, L. Grossman, and K. Moldave, eds.). Vol. 101c, pp. 20-78. Academic Press, New York.

Murashige and Skoog 1962. Plant Physiol. 15:473-497.

Robaglia et al. 1989. <u>J. Gen. Virol.</u> 70:935-947.

Rothstein et al. 1987. Gene 53:153-161.

15 Sambrook et al. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratories, Cold Spring Harbor, New York.

Sanford and Johnston 1985. <u>J. Theor. Biol.</u> 113:395-405.

20 Sanger et al. 1977. <u>Proc. Natl. Acad. Sci. USA</u>
74:5463-5467.

Schmidhauser and Helinski 1985. <u>J. Bact.</u> 164:446-455.

Stark and Beachy 1989. Bio/Technology

25 7:1257-1262.

Tabler and Tsagris 1991. <u>Gene 100</u>:175-183.

Taylor et al. 1985a. <u>Nucl. Acids Res.</u>

13:8749-8764.

Taylor et al. 1985b. Nucl. Acids Res.

30 <u>13</u>:8765-8785.

Towbin et al. 1979. <u>Proc. Natl. Acad. Sci. USA</u> 76:4350-4354.

Verwoerd et al. 1989. Nucl. Acids Res. 17:2372.

PCT/US93/01544

SEQUENCE LISTING

	. (1) GENERAL INFORMATION:	
	(i)	APPLICANT: William G. Dougherty and John A. Lindbo	
5	(ii)	TITLE OF INVENTION: Production of Plan Showing Immunity to Viral Infection via Introduction of Genes Encoding Untrans Plus Sense RNA Molecules	l
	(iii)	NUMBER OF SEQUENCES: 4	
10	(iv)	CORRESPONDENCE ADDRESS:	•
		(A) ADDRESSEE: Richard J. Polley	r ·
		(B) STREET: One World Trade Cent 121 S.W. Salmon Street, Suite	er 1600
		(C) CITY: Portland	
15		(D) STATE: Oregon	
		(E) COUNTRY: United States of Ar	nerica
•		(F) ZIP: 97204	
	(v)	COMPUTER READABLE FORM:	
		(A) MEDIUM TYPE: Diskette, 5.25	inch
20		(B) COMPUTER: IBM PC Compatible	
	•	(C) OPERATING SYSTEM: MS DOS	
		(D) SOFTWARE: WordPerfect 5.1	•
	(vi)	CURRENT APPLICATION DATA:	
	•	(A) APPLICATION NUMBER: 07/838,	509
25		(B) FILING DATE: February 19, 19	92
		(C) CLASSIFICATION: 435	
	(vi)	PRIOR APPLICATION DATA: None	
	(vii)	ATTORNEY/AGENT INFORMATION	
		(A) NAME: Richard J. Polley, Esc	1.
30		(B) REGISTRATION NUMBER: 28,107	
		(C) REFERENCE/DOCKET NUMBER: 245-35829/RJP	
	(viii)	TELECOMMUNICATION INFORMATION:	
		(A) TELEPHONE: (503) 226-7391	
35		(B) TELEFAX: (503) 228-9446	
		(2) INFORMATION FOR SEQ ID NO: 1:	
	(i)	SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 9495	•
		(B) TYPE: Nucleic Acid	
40		(C) STRANDEDNESS: Single	

		(D) TOPOLOGY: Linear
	(ii)	MOLECULE TYPE:
	•	(A) DESCRIPTION: cDNA to genomic RNA
	(iii)	HYPOTHETICAL: No
5	(iv)	ANTI-SENSE: No
	(v)	FRAGMENT TYPE: N/A
	(vi)	ORIGINAL SOURCE:
		(A) ORGANISM: Tobacco Etch Virus (TEV)
10		(B) STRAIN: Highly Aphid Transmitted (HAT)
	(vii)	IMMEDIATE SOURCE: TEV propagated in N. tabacum Burley 49
	(viii)	POSITION IN GENOME: N/A
	(ix)	FEATURE:
15		(A) NAME/KEY: Coat protein gene
		(B) LOCATION: Genomic nucleotides 8518-9306
		(C) IDENTIFICATION METHOD:
20		(D) OTHER INFORMATION: SEQ. ID No. 1 is the cDNA corresponding to the Tobacco Etch Virus Genome.
	(x)	PUBLICATION INFORMATION:
		(A) AUTHORS: Allison et al.
25		(B) TITLE: The nucleotide sequence of the coding region of Tobacco Etch Virus Genomic RNA: Evidence for the Synthesis of a Single Polyprotein
		(C) JOURNAL: Virology
	•	(D) VOLUME: 154
30		(E) ISSUE:
		(F) PAGES: 9-20
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 1:
	NAAATAACAA	ATCTCAACAC AACATATACA AAACAAACGA ATCTCAAGCA ATCAAGCATT 60
	CTACTTCTAT	TGCAGCAATT TAAATCATTT CTTTTAAAGC AAAAGCAATT TTCTGAAAAT 120
5	TTTCACCATT	TACGAACGAT AGCA ATG GCA CTG ATC TTT GGC ACA GTC AAC GCT Met Ala Leu Ile Phe Gly Thr Val Asn Ala 1 5 10
10	AAC ATC CT Asn Ile Le	G AAG GAA GTG TTC GGT GGA GCT CGT ATG GCT TGC GTT ACC u Lys Glu Val Phe Gly Gly Ala Arg Met Ala Cys Val Thr 15 20 25

.

	AGC Ser	GCA Ala	CAT His	ATG Met 30	GCT Ala	GGA Gly	GCG Ala	AAT Asn	GGA Gly 35	AGC Ser	ATT Ile	TTG Leu	AAG Lys	AAG Lys 40	GCA Ala	GAA Glu	270
5	GAG Glu	ACC Thr	TCT Ser 45	CGT Arg	GCA Ala	ATC Ile	ATG Met	CAC His 50	rya Yyy	CCA Pro	GTG Val	ATC Ile	TTC Phe 55	GGA Gly	GAA Glu	GAC Asp	318
10	TAC Tyr	ATT Ile 60	ACC Thr	GAG Glu	GCA Ala	GAC Asp	TTG Leu 65	CCT Pro	TAC Tyr	ACA Thr	CCA Pro	CTC Leu 70	CAT His	TTA Leu	GAG Glu	GTC Val	366
15	GAT Asp 75	GCT Ala	GAA Glu	ATG Met	GAG Glu	CGG Arg 80	ATG Met	TAT Tyr	TAT Tyr	CTT Leu	GGT Gly 85	CGT Arg	CGC Arg	GCG Ala	CTC	ACC Thr 90	414
	CAT His	GGC Gly	AAG Lys	AGA Arg	CGC Arg 95	AAA Lys	GTT Val	TCT Ser	GTG Val	AAT Asn 100	AAC Asn	AAG '	AGG Arg	AAC Asn	AGG Arg 105	AGA Arg	462
20	AGG Arg	rya Tya	GTG Val	GCC Ala 110	AAA Lys	ACG Thr	TAC Tyr	GTG Val	GGG Gly 115	CGT Arg	GAT Asp	TCC Ser	ATT Ile	GTT Val 120	GAG Glu	AAG Lys	510
25	ATT Ile	GTA Val	GTG Val 125	CCC Pro	CAC His	ACC Thr	GAG Glu	AGA Arg 130	Lys	GTT Val	GAT Asp	ACC Thr	ACA Thr 135	GCA Ala	GCA Ala	GTG Val	558
30	GAA Glu	GAC Asp 140	Ile	TGC	AAT Asn	GAA Glu	GCT Ala 145	ACC Thr	ACT Thr	CAA Gln	CTT Leu	GTG Val 150	CAT His	AAT Asn	AGT Ser	ATG Met	606
.35	CCA Pro 155	Lys	CGT Arg	AAG Lys	AAG Lys	CAG Gln 160	AAA Lys	AAC Asn	TTC Phe	TTG Leu	CCC Pro 165	GCC Ala	ACT Thr	TCA Ser	CTA	AGT Ser 170	654
	AAC Asn	GTG Val	TAT	GCC Ala	CAA Gln 175	Thr	TGG Trp	AGC Ser	ATA Ile	GTG Val 180	Arg	AAA Lys	CGC	CAT	ATG Met 185	CAG Gln	702
40	GTG Val	GAG Glu	ATC	ATT Ile 190	Ser	AAG Lys	AAG Lys	AGC Ser	GTC Val 195	CGA Arg	GCG Ala	AGG Arg	GTC Val	AAG Lys 200	AGA Arg	TTT Phe	750
45	GAG Glu	GGC Gly	TCG Ser 205	Val	CAA Gln	TTG Leu	TTC Phe	GCA Ala 210	Ser	GTG Val	CGT	CAC His	ATG Met 215	Tyr	GTA	GAG Glu	798
50	AGG Arg	AAA Lys 220	Arg	GTG Val	GAC Asp	TTA Leu	CGT Arg 225	Ile	GAC Asp	AAC Asn	TGG	CAG Gln 230	Gln	GAG Glu	ACA Thr	Leu	846
55	CTA Leu 235	Asp	CTT Lev	GCT Ala	AAA Lys	A AGA Arg 240	Phe	AAG Lys	AAT B Asn	GAG Glu	AGA Arg 245	, Val	GAT	CAA Gljn	TCG	Lys 250	894
	CTC Lev	ACT Thi	TTI Phe	GGT Gly	TCF Ser 255	Ser	GGC Gly	CTA Leu	A GTI 1 Val	Leu 260	Arg	CAA Gln	GGC Gly	TCG Ser	TAC Tyr 265	GGA Gly	942
60	CC1 Pro	GCC Ala	G CAT a His	TGG Try	э Туз	r CGA	CAT His	GG!	T ATO Y Met 275	. Phe	ATI E Ile	r GTA e Val	CGC Arg	GGT Gly 280	ALC	; TCG ; Ser	990
65	GA.	r GG p Gl	G ATO Y Med 28	t Le	G GTO	G GAT L Asi	GC1	CG: A Are	g Ala	AAC A Lys	GTA Val	A ACC	TTC Phe 295	ALE	GTT a Val	TGT Cys	1038

CAC TCA ATG ACA CAT TAT AGC GAC AAA TCA ATC TCT GAG GCA TTC TTC 1086 His Ser Met Thr His Tyr Ser Asp Lys Ser Ile Ser Glu Ala Phe Phe 300 ATA CCA TAC TCT AAG AAA TTC TTG GAG TTG AGA CCA GAT GGA ATC TCC 1134 Ile Pro Tyr Ser Lys Lys Phe Leu Glu Leu Arg Pro Asp Gly Ile Ser CAT GAG TGT ACA AGA GGA GTA TCA GTT GAG CGG TGC GGT GAG GTG GCT 1182 His Glu Cys Thr Arg Gly Val Ser Val Glu Arg Cys Gly Glu Val Ala 335 GCA ATC CTG ACA CAA GCA CTT TCA CCG TGT GGT AAG ATC ACA TGC AAA 1230 Ala Ile Leu Thr Gln Ala Leu Ser Pro Cys Gly Lys Ile Thr Cys Lys 15 CGT TGC ATG GTT GAA ACA CCT GAC ATT GTT GAG GGT GAG TCG GGA GAA 1278 Arg Cys Met Val Glu Thr Pro Asp Ile Val Glu Gly Glu Ser Gly Glu 20 AGT GTC ACC AAC CAA GGT AAG CTC CTA GCA ATG CTG AAA GAA CAG TAT 1326 Ser Val Thr Asn Gln Gly Lys Leu Leu Ala Met Leu Lys Glu Gln Tyr 385 CCA GAT TTC CCA ATG GCC GAG AAA CTA CTC ACA AGG TTT TTG CAA CAG 1374 Pro Asp Phe Pro Met Ala Glu Lys Leu Leu Thr Arg Phe Leu Gln Gln 405 395 AAA TCA CTA GTA AAT ACA AAT TTG ACA GCC TGC GTG AGC GTC AAA CAA 1422 Lys Ser Leu Val Asn Thr Asn Leu Thr Ala Cys Val Ser Val Lys Gin CTC ATT GGT GAC CGC AAA CAA GCT CCA TTC ACA CAC GTA CTG GCT GTC 1470 Leu Ile Gly Asp Arg Lys Gln Ala Pro Phe Thr His Val Leu Ala Val 435 35 AGC GAA ATT CTG TTT AAA GGC AAT AAA CTA ACA GGG GCT GAT CTC GAA 1518 Ser Glu Ile Leu Phe Lys Gly Asn Lys Leu Thr Gly Ala Asp Leu Glu 40 GAG GCA AGC ACA CAT ATG CTT GAA ATA GCA AGG TTC TTG AAC AAT CGC 1566 Glu Ala Ser Thr His Met Leu Glu Ile Ala Arg Phe Leu Asn Asn Arg 1614 ACT GAA AAT ATG CGC ATT GGC CAC CTT GGT TCT TTC AGA AAT AAA ATC 45 Thr Glu Asn Met Arg Ile Gly His Leu Gly Ser Phe Arg Asn Lys Ile 485 480 TCA TCG AAG GCC CAT GTG AAT AAC GCA CTC ATG TGT GAT AAT CAA CTT 1662 Ser Ser Lys Ala His Val Asn Asn Ala Leu Met Cys Asp Asn Gln Leu 50 500 GAT CAG AAT GGG AAT TIT ATT TGG GGA CTA AGG GGT GCA CAC GCA AAG 1710 Asp Gln Asn Gly Asn Phe Ile Trp Gly Leu Arg Gly Ala His Ala Lys 515 55 AGG TTT CTT AAA GGA TTT TTC ACT GAG ATT GAC CCA AAT GAA GGA TAC 1758 Arg Phe Leu Lys Gly Phe Phe Thr Glu Ile Asp Pro Asn Glu Gly Tyr GAT AAG TAT GTT ATC AGG AAA CAT ATC AGG GGT AGC AGA AAG CTA GCA 1806 Asp Lys Tyr Val Ile Arg Lys His Ile Arg Gly Ser Arg Lys Leu Ala ATT GGC AAT TTG ATA ATG TCA ACT GAC TTC CAG ACG CTC AGG CAA CAA 1854 Ile Gly Asn Leu Ile Met Ser Thr Asp Phe Gln Thr Leu Arg Gln Gln 560

7

WO 93/17098

	ATT Ile	CAA Gln	GGC Gly	GAA Glu	ACT Thr 575	ATT Ile	GAG Glu	CGT Arg	AAA Lys	GAA Glu 580	ATT Ile	GGG Gly	AAT Asn	CAC His	TGC Cys 585	ATT Ile		1902
5 .	TCA Ser	ATG Met	CGG Arg	AAT Asn 590	GGT Gly	AAT Asn	TAC Tyr	GTG Val	TAC Tyr 595	CCA Pro	Cys	CYB	TGT Cys	GTT Val 600	ACT Thr	CTT Leu	•	1950
10	GAA Glu	GAT Asp	GGT Gly 605	AAG Lys	GCT Ala	CAA Gln	TAT Tyr	TCG Ser 610	GAT Asp	CTA Leu	AAG Lys	CAC His	CCA Pro 615	ACG Thr	AAG Lys	AGA Arg		1998
15	CAT His	CTG Leu 620	GTC. Val	ATT	GGC Gly	AAC Asn	TCT Ser 625	GGC Gly	GAT Asp	TCA Ser	AAG Lys	TAC Tyr 630	CTA Leu	GAC Asp	CTT Leu	CCA Pro		2046
20	GTT Val 635	CTC Leu	AAT Asn	GAA Glu	GAG Glu	AAA Lys 640	ATG Met	TAT Tyr	ATA Ile	GCT Ala	AAT Asn 645	GAA Glu	GLY GLY	TAT Tyr	TGC Cys	TAC Tyr 650		2094
20	ATG Met	AAC Asn	ATT Ile	TTC Phe	TTT Phe 655	GCT Ala	CTA Leu	CTA Leu	GTG Val	TAA Asn 660	GTC Val	AAG Lys	GAA Glu	GAG Glu	GAT Asp 665	GCA Ala		2142
25	AAG Lys	GAC Asp	TTC Phe	ACC Thr 670	AAG Lys	TTT Phe	ATA Ile	AGG Arg	GAC Asp 675	ACA Thr	ATT Ile	GTT Val	CCA Pro	AAG Lys 680	CTT Leu	GGA Gly		2190
30	GCG Ala	TGG Trp	CCA Pro 685	ACA Thr	ATG Met	CAA Gln	GAT Asp	GTT Val 690	GCA Ala	ACT	GCA Ala	TGC Cys	TAC Tyr 695	TTA Leu	Leu	TCC Ser	•	2238
35	ATT Ile	CTT Leu 700	TAC Tyr	CCA Pro	GAT Asp	GTC Val	CTG Leu 705	AGA Arg	GCT Ala	GAA Glu	CTA Leu	CCC Pro 710	AGA Arg	ATT	TTG Leu	GTT Val		2286
40	GAT Asp 715	CAT His	GAC Asp	AAC Asn	AAA Lys	ACA Thr 720	ATG Met	CAT His	GTT Val	TTG Leu	GAT Asp 725	TCG Ser	TAT Tyr	GGG Gly	TCT	AGA Arg 730		2334
40	ACG Thr	ACA Thr	GGA Gly	TAC Tyr	CAC His 735	ATG Met	TTG Leu	AAA Lys	ATG Met	AAC Asn 740	ACA Thr	ACA Thr	TCC Ser	CAG Gln	CTA Leu 745	ATT Ile	-	2382
45	GAA Glu	TTC Phe	GTT Val	CAT His 750	Ser	GGT Gly	TTG Leu	GAA Glu	TCC Ser 755	GAA Glu	ATG Met	AAA Lys	ACT Thr	TAC Tyr 760	Asn	GTT Val		2430
50	GGA Gly	GGG Gly	ATG Met 765	Asn	CGA Arg	GAT Asp	GTG Val	GTC Val 770	Thr	CAA Gln	GGT Gly	GCA Ala	ATT Ile 775	Glu	ATC Met	TTG Leu		2478
55	ATC Ile	AAG Lys 780	Ser	ATA Ile	TAC	AAA Lys	CCA Pro 785	His	CTC Leu	ATG Met	AAG Lys	CAG Gln 790	Leu	CTT Leu	GAG Glu	GAA Glu		2526
	GAG Glu 795	CCA Pro	TAC	ATA Ile	ATT Ile	GTC Val 800	Leu	GCA Ala	ATA Ile	GTC Val	TCC Ser 805	Pro	TCA Ser	ATT	TTA Leu	ATT Ile 810		2574
60	GCC Ala	ATG Met	TAC	AAC Asn	TCT Ser 815	Gly	ACT Thr	TTI	GAG Glu	CAG Glm 820		TTA Leu	CAA Gln	ATG Met	TGG Trp 825	Leu		2622
65	CCA Pro	AAT Asn	ACA Thr	ATG Met	Arc	TTA Leu	GCT	AAC ABT	CTC Leu 835	Ala	GCC	ATC Ile	TTG Leu	TCA Ser 840	Ala	TTA Leu		2670

	GCG Ala	CAA Gln	AAG Lys 845	TTA Leu	ACT Th r	TTG Leu	GCA Ala	GAT Asp 850	TTG Leu	TTC Phe	GTC Val	CAG Gln	CAG Gln 855	CGT Arg	AAT ABN	TTG Leu	2718
5	ATT Ile	AAT Asn 860	GAG Glu	TAT Tyr	GCG Ala	Gln	GTA Val 865	ATT Ile	TTG Leu	GAC Asp	TAA neA	CTG Leu 870	ATT Ile	GAC Asp	GGT Gly	GTC Val	2766
10	AGG Arg 875	GTT Val	TAA Asn	CAT His	TCG Ser	CTA Leu 880	TCC Ser	CTA Leu	GCA Ala	ATG Met	GAA Glu 885	ATT Ile	GTT Val	ACT Thr	ATT Ile	AAG Lys 890	2814
15	CTG Leu	GCC Ala	ACC Thr	CAA Gln	GAG Glu 895	ATG Met	yab	ATG Met	GCG Ala	TTG Leu 900	AGG Arg	GAA Glu	GGT Gly	GGC Gly	TAT Tyr 905	GCT Ala	2862
	GTG Val	ACC Thr	TCT Ser	GAA Glu 910	AAG Lys	GTG Val	CAT His	GAA Glu	ATG Met 915	TTG Leu	GAA Glu	Lys Lys	AAC Asn	TAT Tyr 920	GTA Val	AAG Lys	2910
20	GCT Ala	TTG Leu	AAG Lys 925	GAT Asp	GCA Ala	TGG Trp	GAC Asp	GAA Glu 930	TTA Leu	ACT Thr	TGG Trp	TTG Leu	GAA Glu 935	AAA Lys	TTC Phe	TCC Ser	2958
25	GCA Ala	ATC Ile 940	AGG Arg	CAT His	TCA Ser	AGA Arg	AAG Lys 945	CTC Leu	TTG Leu	rya	TTT Phe	GGG Gly 950	CGA Arg	AAG Lys	CCT Pro	TTA Leu	3006
30	ATC Ile 955	ATG Met	AAA Lys	AAC Asn	ACC Thr	GTA Val 960	GAT Asp	TGC Cys	GGC Gly	GGA Gly	CAT His 965	ATA Ile	GAC Asp	TTG Leu	TCT Ser	GTG Val 970	3054
35	AAA Lys	TCG Ser	CTT Leu	TTC Phe	AAG Lys 975	TTC Phe	CAC His	TTG Leu	GAA Glu	CTC Leu 980	CTG Leu	AAG Lys	GGA Gly	ACC Thr	ATC Ile 985	TCA Ser	3102
	AGA Arg	GCC Ala	GTA Val	AAT Asn 990	Gly	GCC	GCA Ala	AGA Arg	AAG Lys 995	Val	AGA Arg	GTA Val	GCG Ala	AAG Lys	_Asn	GCC Ala	3150
40	ATG Met	ACA Thr	AAA Lys 100	Gly	GTT Val	TTT	CTC	Lys 101	Ile	TAC	AGC Ser	ATG Met	CTT Leu 101	Pro	GAC Asp	GTC Val	3198
45	TAC Tyr	AAG Lys 102	Phe	ATC Ile	ACA Thr	GTC Val	TCG Ser 102	Ser	GTC Val	CTI Leu	TCC	TTG Leu 103	Leu	TTG Leu	ACA Thr	TTC Phe	3246
50	TTA Leu 103	Phe	CAA Gln	ATT Ile	GAC Asp	TGC Cys	Met	ATA : Ile	AGG Arg	GCA Ala	CAC His	Arg	GAG Glu	GCG Ala	AAG Lys	GTT Val 1050	3294
55	GCT Ala	GCF Ala	A CAC	TTG Leu	CAC Glr 105	ı Lys	GAG	AGC Ser	GAG	TGG Tri) Ast	AAT Asr	ATC	ATC Ile	AAT ASI 106	AGA Arg 55	3342
	AC1 Thr	TTC Phe	CAC Glr	TAT TYP 107	Sei	AAC Lys	CTI Leu	GA/	A AAT 1 Asr 107	l Pro	TATI TILE	GGC Gly	TAI Tyr	CGC Arg	Ser	ACA Thr	3390
60	GCC Ala	G GAG	GAZ 1 Glu 108	a Arq	CTO	C CAF	A TCI	GAI Gli 10	ı His	C CCC	GAC Glu	GCT 1 Ala	TTC Phe 109	GIU	TAC Tyr	TAC Tyr	3438
65	AA(3 TT: 3 Pho 110	e Cy	C ATI	r GG e Gl	A AAC Y Ly:	G GAI	ı Ası	C CTO	C GT	r GAI L Glu	A CAC 1 Gl: 11:	1 Ala	A AAA Lys	A CAI	A CCG A Pro	3486

\$

	GAG ATA GCA Glu Ile Ala 1115	TAC TTT GAA Tyr Phe Glu 1120	Lys Ile Ile	GCT TTC ATC Ala Phe Ile 1	ACA CTT GTA Thr Leu Val	TTA 3534 Leu 1130
5	ATG GCT TTT Met Ala Phe	GAC GCT GAG Asp Ala Glu 1135	CGG AGT GAT Arg Ser Asp	GGA GTG TTC : Gly Val Phe : 1140	AAG ATA CTC Lys Ile Leu 1145	Asn
10	AAG TTC AAA Lys Phe Lys	GGA ATA CTG Gly Ile Leu 1150	AGC TCA ACG Ser Ser Thr 115	GAG AGG GAG Glu Arg Glu 5	ATC ATC TAC Ile Ile Tyr 1160	ACG 3630 Thr
15	CAG AGT TTG Gln Ser Leu 116	Asp Asp Tyr	GTT ACA ACC Val Thr Thr 1170	TTT GAT GAC	AAT ATG ACA Asn Met Thr 1175	ATC 3678 Ile
20	AAC CTC GAG ABN Leu Glu 1180	TTG AAT ATG Leu Asn Met	GAT GAA CTC Asp Glu Leu 1185	CAC AAG ACG His Lys Thr 1190	AGC CTT CCT Ser Leu Pro	GGA 3726 Gly
20	GTC ACT TTT Val Thr Phe 1195	AAG CAA TGG Lys Gln Trp 120	Trp Asn Asr	CAA ATC AGC Gln Ile Ser 1205	CGA GGC AAC Arg Gly Asn	GTG 3774 Val 1210
25	AAG CCA CAT Lys Pro His	TAT AGA ACT Tyr Arg Thr 1215	GAG GGG CAG Glu Gly His	TTC ATG GAG Phe Met Glu 1220	TTT ACC AGA Phe Thr Arg 1225	Asp
30	ACT GCG GCA Thr Ala Ala	TCG GTT GCC Ser Val Ala 1230	AGC GAG ATA Ser Glu Ile 123	TCA CAC TCA Ser His Ser 5	CCC GCA AGA Pro Ala Arg 1240	GAT 3870 Asp
35	TTT CTT GTG Phe Leu Val 124	Arg Gly Ala	GTT GGA TCT Val Gly Ser 1250	GGA AAA TCC Gly Lys Ser	ACA GGA CTT Thr Gly Leu 1255	CCA 3918 Pro
40	TAC CAT TTA Tyr His Leu 1260	TCA AAG AGA Ser Lys Arg	GGG AGA GTO Gly Arg Val 1265	TTA ATG CTT Leu Met Leu 1270	Glu Pro Thr	AGA 3966 Arg
40	CCA CTC ACA Pro Leu Thr 1275	GAT AAC ATG Asp Asn Met 128	His Lys Gl	CTG AGA AGT Leu Arg Ser 1285	GAA CCA TTT Glu Pro Phe	AAC 4014 Asn 1290
45	TGC TTC CCA	ACT TTG AGG Thr Leu Arg 1295	ATG AGA GGG Met Arg Gl	AAG TCA ACT Lys Ser Thr 1300	TTT GGG TCA Phe Gly Ser 130	Ser
50	CCG ATC ACA Pro Ile Thr	GTC ATG ACT Val Met Thr 1310	AGT GGA TTO Ser Gly Pho 13	GCT TTA CAC Ala Leu His L5	CAC TTT GCA His Phe Ala 1320	CGA 4110 Arg
55	AAC ATA GCT Asn Ile Ala 132	. Glu Val Lys	ACA TAC GA Thr Tyr As 1330	T TTT GTC ATA Phe Val Ile	ATT GAT GAA Ile Asp Glu 1335	TGT 4158 Cys
	CAT GTG AAT His Val Asn 1340	GAT GCT TCT Asp Ala Ser	GCT ATA GC Ala Ile Al 1345	G TTT AGG AAT A Phe Arg Asn 1350	Leu Leu Phe	GAA 4206 Glu
60	CAT GAA TTT His Glu Phe 1355	GAA GGA AAA Glu Gly Lys	. Val Leu Ly	A GTG TCA GCC s Val Ser Ala 1365	ACA CCA CCA Thr Pro Pro	GGT 4254 Gly 1370
65 ·	AGA GAA GTT Arg Glu Val	GAA TTT ACE Glu Phe The 1375	ACT CAG TT Thr Gln Ph	r CCC GTG AAA e Pro Val Lys 1380	CTC AAG ATA Leu Lys Ile 138	Gin

	GAG GCT Glu Ala	CTT Leu	AGC Ser 1390	Phe	CAG Gln	GAA ' Glu '	TTT Phe	GTA Val 1395	ser	TTA Leu	CAA Gln	GGG Gly	ACA Thr 1400	GLY	GCC Ala	4350
5	AAC GCC Asn Ala	GAT Asp 1405	Val	ATT . Ile	AGT Ser	Cys	GGC Gly 1410	Asp	AAC Asn	ATA Ile	Leu	GTA Val 1415	TYE	GTT Val	GCT Ala	4398
10	AGC TAC Ser Tyr 1420	Asn	GAT Asp	GTT Val	Asp	AGT Ser 1425	Leu	GGC Gly	AAG Lys	Leu	CTT Leu 1430	Val	CAA Gln	AAG Lys	GGA Gly	4446
15	TAC AAA Tyr Lys 1435	GTG Val	TCG Ser	AAG Lys	ATT Ile 1440	Asp	GGA Gly	AGA Arg	ACA Thr	ATG Met 1445	ГÄа	AGT Ser	GGA Gly	GGA Gly	ACT Thr 1450	4494
	GAA ATA Glu Ile	ATC Ile	ACT Thr	GAA Glu 1455	Gly	ACT Thr	TCA Ser	GTG Val	AAA Lys 1460	TAR	CAT His	TTC Phe	ATA Ile	GTC Val 1465	ALU .	4542
20	ACT AAC Thr Asn	ATT Ile	ATT Ile 1470	Glu	TAA Asn	gġt Gly	GTA Val	ACC Thr 1475	Ile	GAC Asp	ATT Ile	GAT Asp	GTA Val 1480	vaı	GTG Val	4590
25	GAT TTT Asp Phe	GGG Gly 148	Thr	AAG Lys	GTT Val	GTA Val	CCA Pro 1490	Val	TTG Leu	GAT Asp	GTG Val	GAC Asp 149	Asn	AGA Arg	GCG Ala	4638
30	GTG CAG Val Gln 150	Tyr	AAC Asn	AAA Lys	ACT Thr	GTG Val 150	Val	AGT Ser	TAT Tyr	GGG Gly	GAG Glu 151	Arg	ATC Ile	CAA Gln	TAa TYA	4686
35	CTC GGT Leu Gly 1515	AGA Arg	GTT Val	GGG Gly	CGA Arg 152	His	FÅ2 TÅ2	GAA Glu	GGA Gly	GTA Val 152	Ala	CTT Leu	CGA Arg	ATT	GGC Gly 1530	4734
	CAA ACA Gln Thr	TAA :	AAA Lys	ACA Thr 153	Leu	GTT Val	GAA Glu	ATT	CCA Pro 154	Glu	ATG Met	GTT Val	GCC Ala	ACT Thr 154	GIU	4782
40	GCT GCC Ala Ala	: TTT Phe	CTA Leu 155	Cys	TTC Phe	ATG Met	TAC	AAT Asn 155	Leu	CCA Pro	GTG Val	ACA Thr	ACA Thr 156	GIR	AGT Ser	4830
45	GTT TCA Val Ser	ACC Thr 156	Thr	CTG Leu	CTG Leu	GAA Glu	AAT Asn 157	Ala	ACA Thr	TTA Leu	TTA Leu	CAA Gln 157	ALA	AGA Arg	ACT	4878
50	ATG GCI Met Ala 158	Glr	TTT Phe	GAG Glu	CTA Leu	TCA Ser 158	Tyr	TTI Phe	TAC	Thr	ATT Ile 159	Asn	TTT Phe	GTG Val	CGA Arg	4926
55	TTT GAT Phe Asp 1595	r GG1 p Gly	AGT Ser	ATG Met	CAT His	Pro	GTC Val	ATA Ile	CAT His	GAC Asp 160	Lys	CTG Leu	AAG Lys	CGC	Phe 1610	4974
•	AAG CTI Lys Le	A CAC u His	C ACT	TGI Cys 161	Glu	ACA Thr	TTC	C CTC	CAA : ASI 162	ı Lye	TTG Lev	GCG Ala	ATC	CCA Pro 162	ASII	5022
60	AAA GG Lys Gl	C TTI Y Lei	A TCC i Ser 163	Ser	TGC Tri	CTI Leu	ACC Thi	AGT Sei 16	c Gly	A GAG Y Glu	TAT	AAC Lys	G CGA Arg 164	, red	GGT Gly	5070
65	TAC AT Tyr Il	A GC e Ala 16	a Glı	G GAT	r GCT	GGC GL	2 ATI 7 Ile 16	e Ar	A ATO	C CCI	TTC Phe	GT(Val 169	L Cys	C AAF	A GAA 3 Glu	5118

	ATT CCI	qaA c	TCC Ser	TTG Leu	CAT His	GAG Glu 1665	Glu	ATT Ile	TGG Trp	His	ATT Ile 1670	vaı	GTC Val	GCC Ala	CAT His	5166
5	AAA GG Lys Gl 1675	r GAC y Asp	TCG Ser	GGT Gly	ATT Ile 1680	Gly	AGG Arg	CTC Leu	ACT Thr	AGC Ser 1685	Val	CAG Gln	GCA Ala	GCA Ala	AAG Lys 1690	5214
10	GTT GT	r tat l Tyr	ACT Thr	CTG Leu 1695	Gln	ACG Thr	GAT Asp	GTG Val	CAC His 1700	Ser	ATT Ile	GCG Ala	AGG Arg	ACT Thr 1705	Leu	5262
15	GCA TG	C ATC	AAT Asn 1710	Arg	CGC Arg	ATA Ile	GCA Ala	GAT Asp 1715	Glu	CAA Gln	ATG Met	AAG Lys	CAG Gln 1720	Ser	CAT His	5310
	TTT GA	A GCC u Ala 172!	Ala	ACT Thr	GGG Gly	AGA Arg	GCA Ala 1730	Phe	TCC Ser	TTC Phe	ACA Thr	AAT Asn 1735	TYE	TCA Ser	ATA Ile	5358
20	CAA AG Gln Se 17	r Ile	TTT Phe	GAC Asp	ACG Thr	CTG Leu 1745	Lys	GCA Ala	AAT Asn	TAT Tyr	GCT Ala 1750	Thr	AAG Lys	CAT His	ACG Thr	5406
25	AAA GA Lys Gl 1755	A AAT u Asn	ATT Ile	GCA Ala	GTG Val 1760	Leu	CAG Gln	CAG Gln	GCA Ala	AAA Lys 1765	Asp	CAA Gln	TTG Leu	CTA Leu	GAG Glu 1770	5454
30	TTT TC Phe Se	G AAC r Asn	CTA Leu	GCA Ala 177	Lys	GAT Asp	CAA Gln	GAT Asp	GTC Val 1780	Thr	GGT Gly	ATC Ile	ATC	CAA Gln 1785	Asp	5502
35	TTC AA Phe As	T CAC n His	CTG Leu 179	Glu	ACT Thr	ATC Ile	TAT Tyr	CTC Leu 179!	Gln	TCA Ser	GAT Asp	AGC Ser	GAA Glu 180	vaı	GCT Ala	5550
	AAG CA Lys Hi	T CTG s Leu 180	Lys	CTT Leu	AAA Lys	AGT Ser	CAC His 181	Trp	AAT Asn	AAA Lys	AGC Ser	CAA Gln 181	Ile	ACT Thr	AGG Arg	5598
40	GAC AT Asp Il	C ATA e Ile 20	ATA Ile	GCT Ala	TTG Leu	TCT Ser 182	Val	TTA Leu	ATT	GGT Gly	GGT Gly 1830	Gly	TGG Trp	ATG Met	CTT . Leu	5646
45	GCA AC Ala Th	G TAC	TTC Phe	AAG Lys	GAC Asp 184	Lys	TTC Phe	AAT Asn	GAA Glu	CCA Pro 184	Val	TAT Tyr	TTC Phe	CAA Gln	GGG Gly 1850	5694
50	AAG AA	AG AAT 78 Asn	CAG Gln	AAG Lys 185	His	AAG Lys	CTT	AAG Lys	ATG Met 186	Arg	GAG Glu	GCG Ala	CGT Arg	GGG Gly 186	ATA	5742
55	AGA GO	G CAR Ly Glr	TAT	Glu	GTT Val	GCA Ala	GCG Ala	GAG Glu 187	Pro	GAG Glu	GCG Ala	CTA	GAA Glu 188	HIB	TAC Tyr	5790
	TTT GO	GA AGO ly Ser 188	: Ala	TAT Tyr	AAT Asn	AAC	AAA Lys 189	Gly	AAG	CGC Arg	AAG Lys	GGC Gly 189	Thr	ACG Thr	AGA Arg	5838
60	GGA A' Gly M	rg gg:	r GC2	AAG Lys	TCT Ser	CGG Arg	Lys	TTC Phe	ATA	AAC Asn	ATG Met 191	Tyr	GGG	TTT Phe	GAT Asp	5886
65	CCA A Pro T 1915	CT GAT hr Asj	r TTI o Phe	TCA Ser	TAC Tyr 192	Ile	AGG Arg	TTI Phe	GTG Val	GAT Asp 192	Pro	. TTG . Leu	ACA Thr	GGT Gly	CAC His 1930	5934
			-					•								

	ATA C	lis	TCA Ser 2205	Ala	TCG Ser	AAT Asn	TTC Phe	ACC Thr 2210	Asn	ACA Thr	AAC Asn	AAT Asn	TAT Tyr 2215	Phe	ACA Thr	AGC Ser	6798
5	GTG C Val P	CG Pro	Lys	AAC Asn	TTC Phe	Met	GAA Glu 2225	Leu	TTG Leu	ACA Thr	TAA Asn	CAG Gln 2230	Glu	GCG Ala	CAG Gln	CAG Gln	6846
10	TGG G Trp V 2235	TT Val	AGT Ser	GGT Gly	TGG Trp	CGA Arg 2240	Leu	TAA Asn	GCT Ala	GAC Asp	TCA Ser 2245	Val	TTG Leu	TGG Trp	GGG Gly	GGC Gly 2250	6894
15	CAT A	'ÀB 'YY	GTT Val	TTC Phe	ATG Met 2255	Ser	AAA Lys	CCT Pro	GAA Glu	GAG Glu 2260	Pro	TTT Phe	CAG Gln	CCA Pro	GTT Val 226	Lys	6942
	GAA G Glu A	CG Ma	ACT Thr	CAA Gln 2270	Leu	ATG Met	TAA ABN	GAA Glu	TTG Leu 2275	Val	TAC Tyr	TCG Ser	CAA Gln	GGG Gly 2280	Glu	rya Tya	6990
20	AGG A	_ys	TGG Trp 2285	Val	GTG Val	GAA Glu	GCA Ala	CTG Leu 2290	Ser	GGG Gly	AAC Asn	TTG Leu	AGG Arg 2295	Pro	GTG Val	GCT Ala	7038
25	GAG T	rgr Cys 2300	Pro	AGT Ser	CAG Gln	TTA Leu	GTC Val 230	Thr	AAG Lys	CAT His	GTG Val	GTT Val 231	Lys	GGA Gly	AAG Lys	TGT Cys	7086
30	CCC C Pro I 2315	CTC Leu	TTT Phe	GAG Glu	CTC Leu	TAC Tyr 2320	Leu	CAG Gln	TTG Leu	AAT Asn	CCA Pro 2325	Glu	AAG Lys	GAA Glu	GCA Ala	TAT Tyr 2330	7134
3.5	TTT A	AAA Lys	CCG Pro	ATG Met	ATG Met 233	Gly	GCA Ala	TAT	AÁG Lys	CCA Pro 2340	Ser	CGA Arg	CTT	AAT Asn	AGA Arg 234	Glu	7182
	GCG :	TTC Phe	CTC Leu	AAG Lys 2350	Asp	ATT Ile	CTA Leu	AAA Lys	TAT Tyr 235	Ala	AGT Ser	GAA Glu	ATT Ile	GAG Glu 236	Ile	GGG G1y	7230 [.]
40	AAT (Asn '	GTG Val	GAT Asp 236	Cys	GAC Asp	TTG Leu	CTG Leu	GAG Glu 237	Leu	GCA Ala	ATA Ile	Ser	ATG Met 237	Leu	GTC Val	ACA Thr	72 7 8
45	AAG (CTC Leu 238(Lys	GCG Ala	TTA Leu	GGA Gly	TTC Phe 238	Pro	ACT Thr	GTG Val	AAC Asn	TAC Tyr 239	Ile	ACT	GAC	CCA Pro	7326
50	GAG Glu 2395	Glu	ATT Ile	TTT Phe	AGT Ser	GCA Ala 240	Leu	AAT Asn	ATG Met	AAA Lys	GCA Ala 240	Ala	ATG Met	GGA Gly	GCA Ala	CTA Leu 2410	7374
55	TAC Tyr	AAA Lys	GGC Gly	AAG Lys	AAG Lys 241	Lys	GAA Glu	GCT Ala	CTC Leu	AGC Ser 242	Glu	CTC Leu	ACA Thr	CTA	GAT Asp 242	Glu	7422
	CAG Gln	GAG Glu	GCA Ala	ATG Met 243	Leu	Lys	GCA Ala	AGT Ser	TGC Cys 243	Leu	CGA Arg	CTG Leu	TAT Tyr	ACG Thr 244	GLY	AAG Lys	7470
60	TTG Leu	GGA Gly	ATT Ile 244	Trp	AAT Asn	GGC	TCA Ser	TTG Leu 245	Lys	GCA Ala	GAG Glu	TTG Leu	CGT Arg 245	Pro	ATT	GAG Glu	7518
65	Lys	GTT Val 246	Glu	AAC Asn	AAC Asn	AAA Lys	ACG Thr 246	Arg	ACT Thr	TTC Phe	ACA Thr	GCA Ala 247	Ala	CCA Pro	ATA	GAC Asp	7566

3

	ACT CTT CTT GCT GGT AAA GTT TGC GTG GAT GAT TTC AAC AAT CAA TTT Thr Leu Leu Ala Gly Lys Val Cys Val Asp Asp Phe Asn Asn Gln Phe 2475 2480 2485 2485	7614
5	TAT GAT CTC AAC ATA AAG GCA CCA TGG ACA GTT GGT ATG ACT AAG TTT Tyr Asp Leu Asn Ile Lys Ala Pro Trp Thr Val Gly Met Thr Lys Phe 2495 . 2500 2505	7662
10	TAT CAG GGG TGG AAT GAA TTG ATG GAG GCT TTA CCA AGT GGG TGG GTG Tyr Gln Gly Trp Asn Glu Leu Met Glu Ala Leu Pro Ser Gly Trp Val 2510 2515 2520	7710
15	TAT TGT GAC GCT GAT GGT TCG CAA TTC GAC AGT TCC TTG ACT CCA TTC TYT Cys Asp Ala Asp Gly Ser Gln Phe Asp Ser Ser Leu Thr Pro Phe 2525 2530 2535	7758
20	CTC ATT AAT GCT GTA TTG AAA GTG CGA CTT GCC TTC ATG GAG GAA TGG Leu Ile Asn Ala Val Leu Lys Val Arg Leu Ala Phe Met Glu Glu Trp 2540 2545 2550	7806
20	GAT ATT GGT GAG CAA ATG CTG CGA AAT TTG TAC ACT GAG ATA GTG TAT Asp Ile Gly Glu Gln Met Leu Arg Asn Leu Tyr Thr Glu Ile Val Tyr 2555 2560 2565 2570	7854
25	ACA CCA ATC CTC ACA CCG GAT GGT ACT ATC ATT AAG AAG CAT AAA GGC Thr Pro Ile Leu Thr Pro Asp Gly Thr Ile Ile Lys Lys His Lys Gly 2575 2580 2585	7902
30	AAC AAT AGC GGG CAA CCT TCA ACA GTG GTG GAC AAC ACA CTC ATG GTC Asn Asn Ser Gly Gln Pro Ser Thr Val Val Asp Asn Thr Leu Met Val 2590 2595 2600	7950
35	ATT ATT GCA ATG TTA TAC ACA TGT GAG AAG TGT GGA ATC AAC AAG GAA Ile Ile Ala Met Leu Tyr Thr Cys Glu Lys Cys Gly Ile Asn Lys Glu 2605 2610 2615	7998
	GAG ATT GTG TAT TAC GTC AAT GGC GAT GAC CTA TTG ATT GCC ATT CAC Glu Ile Val Tyr Tyr Val Asn Gly Asp Asp Leu Leu Ile Ala Ile His 2620 2625 2630	8046
40	CCA GAT AAA GCT GAG AGG TTG AGT AGA TTC AAA GAA TCT TTC GGA GAG Pro Asp Lys Ala Glu Arg Leu Ser Arg Phe Lys Glu Ser Phe Gly Glu 2635 2640 2645 2650	8094
45	TTG GGC CTG AAA TAT GAA TTT GAC TGT ACC ACC AGG GAC AAG ACA CAG Leu Gly Leu Lys Tyr Glu Phe Asp Cys Thr Thr Arg Asp Lys Thr Gln 2655 2660 2665	8142
50	TTG TGG TTC ATG TCA CAC AGG GCT TTG GAG AGG GAT GGC ATG TAT ATA Leu Trp Phe Met Ser His Arg Ala Leu Glu Arg Asp Gly Met Tyr Ile 2670 2675 2680	8190
55	CCA AAG CTA GAA GAA AGG ATT GTT TCT ATT TTG GAA TGG GAC AGA Pro Lys Leu Glu Glu Arg Ile Val Ser Ile Leu Glu Trp Asp Arg 2685 2690 2695	8238
60	TCC AAA GAG CCG TCA CAT AGG CTT GAA GCC ATC TGT GCA TCA ATG ATT Ser Lys Glu Pro Ser His Arg Leu Glu Ala Ile Cys Ala Ser Met Ile 2700 2705 2710	8286
60	GAA GCA TGG GGT TAT GAC AAG CTG GTT GAA GAA ATC CGC AAT TTC TAT Glu Ala Trp Gly Tyr Asp Lys Leu Val Glu Glu Ile Arg Asn Phe Tyr 2715 2720 2725 2730	8334
65	GCA TGG GTT TTG GAA CAA GCG CCG TAT TCA CAG CTT GCA GAA GGA Ala Trp Val Leu Glu Gln Ala Pro Tyr Ser Gln Leu Ala Glu Glu Gly 2735 2740 2745	8382

	AAG Lys	GCG Ala	CCA Pro	TAT Tyr 2750	Leu	GCT Ala	GAG Glu	ACT Thr	GCG Ala 2755	Leu	AAG Lys	TTT Phe	TTG Leu	TAC Tyr 2760	THE	TCT Ser	8430
5	CAG Gln	CAC His	GGA Gly 2765	Thr	AAC Asn	TCT Ser	GAG Glu	ATA Ile 2770	Glu	GAG Glu	TAT Tyr	TTA Leu	AAA Lys 2775	var	TTG Leu	TAT Tyr	8478
10	Asp	Tyr 2780	Asp	Ile	Pro	Thr	Thr 2785	Glu	Asn	Leu	Tyr	2790		ser	GIĀ	THE	8526
15	GTG Val 2795	Asp	GCT Ala	GGT Gly	GCT Ala	GAC Asp 2800	Ala	GGT Gly	AAG Lys	AÀG Lys	AAA Lys 2805	Asp	CAA Gln	AAG Lys	GAT Asp	GAT Asp 2810	8574
20	Lys Lys	GTC Val	GCT Ala	GAG Glu	CAG Gln 2815	Ala	TCA Ser	AAG Lys	GAT Asp	AGG Arg 2820	Asp	GTT Val	AAT Asn	GCT Ala	GGA Gly 2825	1117	8622
20	TCA Ser	GGA Gly	ACA Thr	TTC Phe 2830	Ser	GTT Val	CCA Pro	CGA Arg	ATA Ile 2835	Asn	GCT Ala	ATG Met	GCC Ala	ACA Thr 2840	гав	CTT Leu .	8670
25	CAA Gln	TAT Tyr	CCA Pro 284	Arg	ATG Met	AGG Arg	GGA Gly	GAG Glu 285	Val	GTT Val	GTA Val	AAC Asn	TTG Leu 2855	Asn	CAC His	CTT	8718
30	TTA Leu	GGA Gly 286	Tyr	AAG Lys	CCA Pro	CAG Gln	CAA Gln 286	Ile	GAT Asp	TTG Leu	TCA Ser	AAT Asn 2870	GCT Ala)	CGA Arg	GCC Ala	ACA Thr	8766
35	CAT His 287	Glu	CAG Gln	TTT Phe	GCC Ala	GCG Ala 288	Trp	CAT	CAG	GCA Ala	GTG Val 288	Met	ACA Thr	GCC Ala	TYE	GGA Gly 2890	8814
40	GTG Val	AAT Asn	GAA Glu	GAG Glu	CAA Gln 289	Met	AAA Lys	ATA Ile	TTG Leu	CTA Leu 2900	yau.	GGA Gly	TTT Phe	ATG Met	GTG Val 290	Trp	8862
40	TGC	ATA Ile	GAA Glu	AAT Asn 291	Gly	ACT Thr	TCC	CCA Pro	AAT Asn 291	Leu	AAC Asn	GGA Gly	ACT	TGG Trp 292	AT	ATG Met	8910
45	ATG Met	GAT Asp	GGT Gly 292	Glu	GAT Asp	CAA Gln	GTT Val	TCA Ser 293	Tyr	CCG Pro	CTG Leu	AAA Lys	CCA Pro 293	Met	GTT Val	GAA Glu	8958
50	OAA neA	GCG Ala 294	Gln	CCA Pro	ACA Thr	CTG Leu	AGG Arg 294	_Gln	ATT	ATG Met	ACA Thr	CAC His 295	TTC Phe O	AGT Ser	GAC Asp	CTG Leu	9006
55	GCT Ala 295	. Glu	GCG Ala	TAT	ATT	GAG Glu 296	Met	AGG Arg	TAA ; Asn	AGG Arg	GAG Glu 296	Arg	CCA Pro	TAC	ATG Met	CCT Pro 2970	9054
50	Arc	TAT TYP	GGI GLY	CTA Leu	CAG Gln 297	Arg	AAC ABD	ATI Ile	ACA Thr	GAC Asp 298	Met	AGT Ser	TTG Leu	TCA Ser	CGC Arg 298	TAL	9102
60	GCC	TTC A Phe	GAC Asp	TTC Phe 299	Туг	GAC Glu	CTA Leu	ACI Thr	TCA Ser 299	Lys	ACA Thr	CCT Pro	GTT Val	AGA Arg 300	. ATS	AGG Arg	9150
65	GA(G GCC	CAT His 300	Met	CAA Glr	ATC Met	AAA Lys	GCT Ala 301	a Ala	GCA Ala	GTA Val	. CGA	AAC Asn 301	ser	GGA Gly	ACT	9198

	- 40 -	
	AGG TTA TTT GGT CTT GAT GGC AAC GTG GGT ACT GCA GAG GAT ASP TATAL AND STATE OF THE ANGLE OF THE	9246
5	GAA CGG CAC ACA GCG CAC GAT GTG AAC CGT AAC ATG CAC ACA CTA TO GIV Arg His Thr Ala His Asp Val Asn Arg Asn Met His Thr Leu Leu 3050 3035	9294
10	GGG GTC CGC CAG TGA TAGTTTCTGC GTGTCTTTGC TTTCCGCTTT TAAGCTTATT Gly Val Arg Gln	9349
	GTAATATATA TGAATAGCTA TTCACAGTGG GACTTGGTCT TGTGTTGAAT AGTATCTTAT	9409
	ATATTTTAAT ATGTCTTATT AGTCTCATTA CTTAGGCGAA CGACAAAGTG AGGTCACCTC	9469
15	GGTCTAATTC TCCTATGTAG TGCGAG	9495
	(3) INFORMATION FOR SEQ ID NO: 2:	
	(i) SEQUENCE CHARACTERISTICS:	
20	(A) LENGTH: 792	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Circular	
	(ii) MOLECULE TYPE: cDNA to genomic RNA	
25	(iii) HYPOTHETICAL: No	
•	(iv) ANTI-SENSE: No	
	(V) FRAGMENT TYPE: N/A	
	(vi) ORIGINAL SOURCE: (A) ORGANISM: Tobacco Etch Virus	
	(B) STRAIN: Highly Aphid Transmitted	
30	(C) INDIVIDUAL ISOLATE: N/A	
	(Vii) IMMEDIATE SOURCE:	
	(A) LIBRARY: NO	
	(B) CLONE: pTC:FL	
35	(Viii) POSITION IN GENOME: N/A	
	(ix) FEATURE:	
40	initiating methionine codon.	es te
	(B) LOCATION: Nucleotides 1-3 of SEQ ID No. 2	
	(C) IDENTIFICATION METHOD:	_
4:	(D) OTHER INFORMATION: SEQ ID NO: 2 in the modified Tobacco Etch Virus comprotein gene present in pTC:FL.	.s at

	(x)			PUE	BLIC	ATI	I NO	NFO	RMA:	CION	:						
					(A)	AUI	HOR	s:	All	iso	n e	t al	L •			
5			-		(B)	cod	omi	red c Ri	gion NA:	of Ev	Tol	bacc nce	o E for	tch th	Vir	
					(C)	JOU	IRNA	L:	Vir	olo	дХ					
					(D)	VOI	UME	: :	154							
·					(E)	ISS	UE:		-		•					
10					(F)	PAG	ES:	9.	-20							
					(A)	ניטא	HOR	s:	Lin	dbo	an	d Do	ough	ert	У .	
15					•	B)	the ger	e to ne s	eque	ntra co e ence tch	nsl tch ca vir	ata vi n i us	ble rus nter repl	Tra coa fer lica	nsc t p e w	ript rote	
		•			(C)	JOU	JRNA	L:	Vir	olo	дХ					
					(D)	VOI	LUME	:	189							ı
20					(E)	ISS	SUE:	_	-							
					(F)	PAG	ES:	7	25-7	733						
	(xi)		SE	QUEN	CE	DES	CRIP	TIO	N:	SEQ] ID	NO		2:		_
25											•			-	GGC		9
	GTG Val	GAT Asp 5	GCT Ala	GGT Gly	GCT Ala	GAC Asp	GCT Ala 10	GGT Gly	AAG Lys	AAG Lys	AAA Lys	GAT Asp 15	CAA Gln	AAG Lys	GAT Asp	GAT Asp	57
30	AAA Lys 20	GTC Val	GCT Ala	GAG Glu	CAG Gln	GCT Ala 25	TCA Ser	AAG Lys	GAT Asp	AGG Arg	GAT Asp 30	GTT Val	TAA Asn	GCT Ala	GGA Gly	ACT Thr 35	105
35	TCA Ser	GGA Gly	ACA Thr	TTC Phe	TCA Ser 40	GTT Val	CCA Pro	CGA Arg	ATA Ile	AAT Asn 45	GCT Ala	ATG Met	GCC Ala	ACA Thr	AAA Lys 50	CTT Leu	153
40	CAA Gln	TAT Tyr	CCA Pro	AGG Arg 55	ATG Met	AGG Arg	GGA Gly	GAG Glu	GTG Val 60	GTT Val	GTA Val	AAC Asn	TTG Leu	AAT Asn 65	CAC His	CTT	201
45	TTA Leu	GGA Gly	TAC Tyr 70	Lys	CCA Pro	ČAG Gln	CAA Gln	ATT Ile 75	GAT Asp	TTG Leu	TCA Ser	AAT Asn	GCT Ala 80	CGA Arg	GCC Ala	ACA Thr	249
50	CAT His	GAG Glu 85	CAG Gln	TTT Phe	GCC Ala	GCG Ala	TGG Trp 90	CAT His	CAG Gln	GCA Ala	GTG Val	ATG Met 95	ACA Thr	GCC Ala	TAT Tyr	GGA Gly	297
50	GTG Val 100	AAT Asn	GAA Glu	GAG Glu	CAA Gln	ATG .Met 105	AAA Lys	ATA Ile	TTG Leu	CTA	AAT Asn 110	GGA Gly	TTT	ATG Met	GTG Val	TGG Trp 115	345
55	TGC Cys	ATA Ile	GAA Glu	AAT Asn	GGG Gly 120	Thr	TCC Ser	CCA Pro	AAT Asn	TTG Leu 125	AAC	GGA Gly	ACT Thr	TGG Trp	GTT Val 130	ATG Met	393

	ATG GAT Met Asp	GGT Gly	GAG Glu 135	GAT Asp	CAA Gln	GTT Val	TCA Ser	TAC Tyr 140	CCG Pro	CTG Leu	FAS FYS	CCA Pro	ATG Met 145	GTT Val	GAA Glu	441
5	AAC GCG Asn Ala	CAG Gln 150	CCA Pro	ACA Thr	CTG Leu	AGG Arg	CAA Gln 155	ATT Ile	ATG Met	ACA Thr	CAC His	TTC Phe 160	AGT Ser	GAC Asp	CTG Leu	489
10	GCT GAR Ala Glu 165	Ala	TAT Tyr	ATT Ile	GAG Glu	ATG Met 170	AGG Arg	AAT Asn	AGG Arg	GAG Glu	CGA Arg 175	CCA Pro	TAC Tyr	ATG Met	CCT Pro	537
15	AGG TAT Arg Tyr 180	GGT Gly	CTA Leu	CAG Gln	AGA Arg 185	AAC Asn	ATT Ile	ACA Thr	GAC Asp	ATG Met 190	AGT Ser	TTG Leu	TCA Ser	CGC Arg	TAT Tyr 195	585
	GCG TTO	GAC	TTC Phe	TAT Tyr 200	GAG Glu	CTA Leu	ACT Thr	TCA Ser	AAA Lys 205	ACA Thr	CCT Pro	GTT Val	AGA Arg	GCG Ala 210	9	633
20	GAG GCC Glu Ala	CAT His	ATG Met 215	Gln	ATG Met	AAA Lys	GCT Ala	GCT Ala 220	GCA Ala	GTA Val	CGA Arg	AAC	AGT Ser 225	227	ACT	681
25	AGG TT	A TTT u Phe 230	Cly	CTT Leu	GAT Asp	GGC	AAC Asn 235	Val	GGT	ACT	GCA Ala	GAG Glu 240	GIG	GAC Asp	ACT Thr	729
30	GAA CG Glu Ar 24	g His	ACA Thr	GCG Ala	CAC His	GAT Asp 250	Val	DAA :	CGT Arg	AAC Asn	ATG Met 255	. ni=	ACA Thr	CTA Leu	TTA Leu	777
35	GGG GTC CGC CAG TGA Gly Val Arg Gln 260															792
40	(4) INFORMATION FOR SEQ ID NO: 3: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 793 (B) TYPE: Nucleic Acid (C) STRANDEDNESS: Double															
					(C) (D)	T	0P01	LOGY	: (Circ	ula	r				
	(ii)			YPO:					NA ·	to c	genc	mic	RNZ	A.		
45	(iii) (iv)			NTI:												
	(v)		F	RAG	MENT	TY	PE:	N/	Ά							
	(vi)		0	RIG	INAI									•		
					(A)								ch '			
50													N/A		nitted	
	(vii	,	1	MME					تتطر	150	LITT.	••	,			
	(^ T T	1	4	نابلابلوس				ARY	: N	o o						
					-				pTC							
55	(vii	i)	1	osi	-	-			E:							

PCT/US93/01544

	(ix)	FEATURE:	
•		(A)	NAME/KEY: Mutation of AGT-GGC (Ser-Gly) to ATG-GCC (Met-Ser)
5	•	(B)	LOCATION: Nucleotides 1-6 of SEQ ID NO. 3 (corresponding to nucleotides 8518-8523 of SEQ ID NO. 1)
		(A)	NAME/KEY: Frameshift mutation (insertion of T) producing stop codon
10		(B)	LOCATION: Nucleotide 13 of SEQ ID No. 3 (corresponding to position between nucleotides 8529 and 8530 of SEQ. ID No. 1)
15		(D)	OTHER INFORMATION: SEQ ID No: 3 is the modified Tobacco Etch Virus coat protein gene present in pTC:RC.
	(x)	PUBLICATI	ON INFORMATION:
		(A)	AUTHORS: J. A. Lindbo and W. G. Dougherty
20		(B)	TITLE: Pathogen-Derived Resistance to a Potyvirus: Immune and Resistant Phenotypes in Transgenic Tobacco Expressing Altered Forms of a Potyvirus Coat Protein Nucleotide Sequence
25		(C)	JOURNAL: Molecular Plant-Microbe Interactions
		(D)	VOLUME: 5
	,	(E)	ISSUE: 2
		(F)	PAGES: 144-153
30			
		(A)	W. G. Dougherty
		(B)	TITLE: Untranslatable Transcripts of the Tobacco Etch Virus Coat Protein
35		•	Gene Sequence Can Interfere with Tobacco Etch Virus Replication in
•		(0)	Transgenic Plants and Protoplasts
		(C)	
			VOLUME: 189
40		•	ISSUE: PAGES: 725-733
	(ari)		DESCRIPTION: SEQ ID NO: 3:
	(xi)	SEQUENCE	ATG GCC ACT Met Ser Thr
45	GTG TGA TGA 'Val	TGGTGCTAGC	GCTGGTAAGA AGAAAGATCA AAAGGATGAT 58
	·		

w	O 93/17098	PCT/US9	3/01544
••	0 70. 1.070	- 44 -	
	AAAGTCGCTG	AGCAGGCTTC AAAGGATAGG GATGTTAATG CTGGAACTTC	108
	AGGAACATTC	TCAGTTCCAC GAATAAATGC TATGGCCACA AAACTTCAAT	158
5	ATCCAAGGAT	GAGGGGAGAG GTGGTTGTAA ACTTGAATCA CCTTTTAGGA	208
	TACAAGCCAC	AGCAAATTGA TTTGTCAAAT GCTCGAGCCA CACATGAGCA	258
	GTTTGCCGCG	TGGCATCAGG CAGTGATGAC AGCCTATGGA GTGAATGAAG	308
10	AGCAAATGAA	AATATTGCTA AATGGATTTA TGGTGTGGTG CATAGAAAAT	358
	GGGACTTCCC	CAAATTIGAA CGGAACTIGG GTTATGATGG ATGGTGAGGA	408
15	TCAAGTTTCA	TACCCGCTGA AACCAATGGT TGAAAACGCG CAGCCAACAC	458
	TGAGGCAAAT	TATGACACAC TTCAGTGACC TGGCTGAAGC GTATATTGAG	508
	ATGAGGAATA	GGGAGCGACC ATACATGCCT AGGTATGGTC TACAGAGAAA	558
20	CATTACAGAC	ATGAGTTTGT CACGCTATGC GTTCGACTTC TATGAGCTAA	608
	CTTCAAAAAC	ACCTGTTAGA GCGAGGGAGG CGCATATGCA AATGAAAGCT	658
25	GCTGCAGTAC	GARACAGTGG AACTAGGTTA TTTGGTCTTG ATGGCAACGT	708
•	GGGTACTGCA	GAGGAAGACA CTGAACGGCA CACAGCGCAC GATGTGAACC	758
	GTAACATGCA	CACACTATTA GGGGTCCGCC AGTGA	793
30			
		(5) INFORMATION FOR SEQ ID NO: 4	
	(i)	SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 792	
35		(B) TYPE: Nucleic acid	
		(C) STRANDEDNESS: Double	
		(D) TOPOLOGY: Circular	
	(ii)	MOLECULE TYPE: cDNA to genomic RNA	
	•	HYPOTHETICAL: No	
40		ANTI-SENSE: Yes	
	(v)	FRAGMENT TYPE: N/A	
	(vi)	ORIGINAL SOURCE:	
	(/	(A) ORGANISM: Tobacco Etch Virus	
		(B) STRAIN: Highly Aphid Transmitted	
45		(C) INDIVIDUAL ISOLATE: N/A	
	(vii)	IMMEDIATE SOURCE:	
	(411)	(A) LIBRARY: No	
		(B) CLONE: pTC:AS	
	(viii)	37.13	•
50		FEATURE:	
50	(4.6.)	(A) NAME/KEY:	
		(B) LOCATION:	
		(C) IDENTIFICATION METHOD:	
		(C) IDENTIFICATION MANAGED	

600

660

720

780

792

\$:

(D) OTHER INFORMATION: SEQ ID No. 4 is the modified Tobacco Etch Virus Coat protein gene present in pTC:AS. It is the inverse complement of SEQ ID No. 2.

PUBLICATION INFORMATION: (x)J. A. Lindbo and AUTHORS: (A) W. G. Dougherty Untranslatable Transcripts of TITLE: (B) the Tobacco Etch Virus Coat Protein Gene Sequence Can Interfere with Tobacco Etch 10 Virus Replication in Transgenic Plants and Protoplasts JOURNAL: Virology (C) **VOLUME:** 189 (D) ISSUE: (E) 15 PAGES: 725-733 (F) J. A. Lindbo and (A) AUTHORS: W. G. Dougherty Pathogen-Derived Resistance to a TITLE: 20 (B) Potyvirus: Immune and Resistant Phenotypes in Transgenic Tobacco Expressing Altered Forms of a Potyvirus Coat Protein Nucleotide Sequence Molecular Plant-Microbe JOURNAL: (C) 25 Interactions 5 VOLUME: (D) 2 ISSUE: (E) 144-153 (F) PAGES: SEO ID NO: SEQUENCE DESCRIPTION: 30 (xi) . 60 TCACTGGCGG ACCCCTAATA GTGTGTGCAT GTTACGGTTC ACATCGTGCG CTGTGTGCCG 120 TTCAGTGTCT TCCTCTGCAG TACCCACGTT GCCATCAAGA CCAAATAACC TAGTTCCACT 180 GTTTCGTACT GCAGCAGCTT TCATTTGCAT ATGCGCCTCC CTCGCTCTAA CAGGTGTTTT 240 TGAAGTTAGC TCATAGAAGT CGAACGCATA GCGTGACAAA CTCATGTCTG TAATGTTTCT 300 35 CTGTAGACCA TACCTAGGCA TGTATGGTCG CTCCCTATTC CTCATCTCAA TATACGCTTC 360 AGCCAGGTCA CTGAAGTGTG TCATAATTTG CCTCAGTGTT GGCTGCGCGT TTTCAACCAT 420 TGGTTTCAGC GGGTATGAAA CTTGATCCTC ACCATCCATC ATAACCCAAG TTCCGTTCAA 480 ATTTGGGGAA GTCCCATTTT CTATGCACCA CACCATAAAT CCATTTAGCA ATATTTTCAT 540 TIGCTCTTCA TICACTCCAT AGGCTGTCAT CACTGCCTGA TGCCACGCGG CAAACTGGTC

ATGTGTGGCT CGAGCATTTG ACAAATCAAT TTGCTGTGGC TTGTATCCTA AAAGGTGATT

CAAGTTTACA ACCACCTCTC CCCTCATCCT TGGATATTGA AGTTTTGTGG CCATAGGATT

TATTCGTGGA ACTGAGAATG TTCGTGAAGT TCCAGCATTA ACATCCCTAT CCTTTGAAGC
CTGCTCAGCG ACTTTATCAT CCTTTTGATC TTTCTTCTTA CCAGCGTCAG CACCAGCATC

CACAGTGCCC AT

PCT/US93/01544

WO 93/17098 -46-

CLAIMS

- A plant-transformation vector comprising a DNA molecule that includes a gene derived, in part, from a plant virus RNA molecule, wherein the gene is mutated to encode an untranslatable plus sense RNA molecule.
- The vector of claim 1 wherein the gene is derived, in part, from potyvirus RNA.

5

10

15

20

25

30

35

- The vector of claim 2 wherein the potyvirus is Tobacco Etch Virus.
- The vector of claim 2 wherein the gene is derived, in part, from a coat protein gene of a potyvirus.
 - The vector of claim 4 wherein the gene is derived, in part, from the coat protein gene of Tobacco Etch Virus.
 - 6. A bacterial cell containing the vector of claim 1.
 - 7. The bacterial cell of claim 8 wherein the bacterial cell is an Agrobacterium tumefaciens cell.
 - 8. A transformed plant cell comprising a heterologous DNA chromosomal insert that includes a gene derived from a plant virus RNA molecule, wherein the gene is mutated to encode an untranslatable plus sense RNA molecule.
 - The plant cell of claim 8 wherein the gene is derived from potyvirus RNA.
 - The plant cell of claim 9 wherein the potyvirus is Tobacco Etch Virus.
 - The plant cell of claim 10 wherein the gene is derived from a coat protein gene of a potyvirus.
 - The plant cell of claim 10 wherein the gene is derived from the coat protein gene of Tobacco Etch Virus and the plant cell is a tobacco plant cell.
 - A differentiated plant comprising 13. transformed plant cells of claim 8.
 - A differentiated plant comprising transformed plant cells of claim 9.

10

15

20

25

30

35

\$

- 15. A differentiated plant comprising transformed plant cells of claim 10.
- 16. A differentiated plant comprising transformed plant cells of claim 11.
- 17. A differentiated plant comprising transformed plant cells of claim 12.
- 18. A recombinant gene comprising: control regions which regulate transcription of the gene; and
- a region, derived from a plant virus, mutated so as to render the RNA transcribed from the gene untranslatable.
 - 19. The recombinant gene of claim 18 wherein the plant virus is a potyvirus.
 - 20. The recombinant gene of claim 19 wherein the virus-derived region is derived from the region of the viral genome encoding a coat protein.
 - 21. The recombinant gene of claim 20 wherein the potyvirus is Tobacco Etch Virus.
- 22. A method of producing plants with a reduced susceptibility to viral infection, comprising:

 forming a recombinant gene derived, in part, from viral RNA wherein the gene is mutated to encode an untranslatable plus sense RNA molecule; and transforming plants with the recombinant gene.
 - 23. The method of claim 22 wherein the method of producing plants comprises:
 - constructing a recombinant gene comprising a region of a viral genome capable of being transcribed in a plant;

mutating the recombinant gene to encode an untranslatable plus sense RNA molecule;

cloning the recombinant untranslatable gene into a plant transformation vector;

transforming plant cells with the transformation vector; and

PCT/US93/01544

5

culturing transformed cells under conditions suitable for regeneration of transformed plants.

- 24. The method of claim 23 wherein the viral genome is a potyvirus genome.
- 25. The method of claim 24 wherein the region of the viral genome encodes a coat protein.
- 26. The method of claim 25 wherein the viral genome is the Tobacco Etch Virus genome.
- 27. The method of claim 26 wherein the plants are tobacco plants.

																•	
NAAA'	TAAC	AA A	TCTC	AACA	C AA	CATA	TACA	AAA	CAAA	CGA	ATCT	CAAG	CA A	TCAA	GCAT	T .	60
CTAC	TTCT	AT _. T	GCAG	CAAT	T TA	AATC	ATTT	CTT	TTAA	AGC	AAAA	GCAA	TT T	TCTG	AAAA	T	120
TTTC	ACCA	TT T	ACGA	ACGA	T AG	CA A M	TG G et A l	CA C la L	TG A eu I	TC T le P	TT G he G 5	GC A ly T	CA G hr V	TC A	AC G .sn A	CT la 10	174
AAC . Asn	ATC Ile	CTG Leu	AAG Lys	GAA Glu 15	GTG Val	TTC Phe	GGT Gly	GGA Gly	GCT Ala 20	CGT Arg	ATG Met	GCT Ala	TGC Cys	GTT Val 25	ACC Thr		222
AGC (GCA Ala	CAT His	ATG Met 30	GCT Ala	GGA Gly	GCG Ala	TAA neA	GGA Gly 35	AGC Ser	ATT Ile	TTG Leu	AAG Lys	AAG Lys 40	GCA Ala	GAA Glu	.•	270
GAG . Glu	ACC Thr	TCT Ser 45	CGT Arg	GCA Ala	ATC	ATG Met	CAC His 50	AAA Lys	CCA Pro	GTG Val	ATC Ile	TTC Phe 55	GGA Gly	GAA Glu	GAC Asp		318
TAC Tyr	ATT Ile 60	ACC Thr	GAG Glu	GCA Ala	GAC Asp	TTG Leu 65	CCT Pro	TAC Tyr	ACA Thr	CCA Pro	CTC Leu 70	CAT His	TTA Leu	GAG Glu	GTC Val		366
GAT Asp 75	GCT Ala	GAA Glu	ATG Met	GAG Glu	CGG Arg 80	ATG Met	TAT Tyr	TAT Tyr	CTT Leu	GGT Gly 85	CGT Arg	CGC Arg	GCG Ala	CTC Leu	ACC Thr 90		414
CAT His	GGC Gly	AAG Lys	AGA Arg	CGC Arg 95	AAA Lys	GTT Val	TCT Ser	GTG Val	AAT Asn 100	AAC Asn	AAG Lys	AGG Arg	AAC Asn	AGG Arg 105	AGA Arg	•	462
AGG Arg	AAA Lys	GTG Val	GCC Ala 110	AAA Lys	ACG Thr	TAC Tyr	GTG Val	GGG Gly 115	CGT Arg	GAT Asp	TCC	ATT Ile	GTT Val 120	GAG Glu	AAG Lys		510
ATT Ile	GTA Val	GTG Val 125	CCC Pro	CAC His	ACC Thr	GAG Glu	AGA Arg 130	AAG Lys	GTT Val	GAT Asp	ACC Thr	ACA Thr 135	GCA Ala	GCA Ala	GTG Val		558
GAA Glu	GAC Asp 140	ATT Ile	TGC Cys	AAT Asn	GAA Glu	GCT Ala 145	ACC Thr	ACT Thr	CAA Gln	CTT Leu	GTG Val 150	CAT His	AAT Asn	AGT Ser	ATG Met		606
CCA Pro 155	Lys	CGT Arg	AAG Lys	AAG Lys	CAG Gln 160	AAA Lys	AAC Asn	TTC Phe	TTG Leu	CCC Pro 165	GCC Ala	ACT	TCA Ser	CTA Leu	AGT Ser 170		654
AAC Asn	GTG Val	TAT Tyr	GCC Ala	CAA Gln 175	ACT Thr	TGG Trp	AGC Ser	ATA Ile	GTG Val 180	CGC Arg	AAA Lys	CGC Arg	CAT His	ATG Met 185	CAG Gln		702
GTG Val	GAG Glu	ATC Ile	ATT Ile 190	AGC Ser	AAG Lys	AAG Lys	AGC Ser	GTC Val 195	Arg	GCG Ala	AGG Arg	GTC Val	AAG Lys 200	Arg	TTT Phe	••	_750
GAG Glu	GGC	TCG Ser 205	Val	CAA Gln	TTG Leu	TTC Phe	GCA Ala 210	Ser	GTG Val	CGT Arg	CAC His	ATG Met 215	Tyr	GGC Gly	GAG Glu		798
AGG Arg	AAA Lys 220	Arg	GTG Val	GAC Asp	TTA Leu	CGT Arg 225	Ile	GAC	AAC Asn	TGG Trp	CAG Gln 230	Gln	GAG Glu	ACA Thr	CTT		846

FIG. 1

CTA Leu 235	GAC Asp	CTT Leu	GCT Ala	Lys	AGA Arg 240	TTT A	AAG Lys	AAT Asn	GAG /	AGA (Arg ' 245	GTG (Val)	GAT (Asp (CAA S	rcg Ser	AAG Lys 250	894
CTC Leu	ACT Thr	TTT Phe	GGT Gly	TCA Ser 255	AGT Ser	GGC (CTA Leu	GTT Val	TTG Leu 260	AGG Arg	CAA (Gln (GGC :		TAC Tyr 265	GGA Gly	942
CCT Pro	GCG Ala	CAT His	TGG Trp 270	TAT Tyr	CGA Arg	CAT His	GGT Gly	ATG Met 275	TTC Phe	ATT Ile	GTA Val	ary '	GGT Gly 280	CGG Arg	TCG Ser	990
GAT Asp	G1A GGG	ATG Met 285	TTG Leu	GTG Val	GAT Asp	GCT Ala	CGT Arg 290	GCG Ala	AAG Lys	GTA Val	1111	TTC Phe 295	GCT Ala	GTT Val	TGT Cys	1038
CAC His	TCA Ser 300	ATG Met	ACA Thr	CAT His	TAT Tyr	AGC Ser 305	GAC Asp	AAA Lys	TCA Ser	ATC Ile	TCT Ser 310	GAG Glu	GCA Ala	TTC Phe	TTC Phe	1086
ATA Ile 315	CCA Pro	TAC Tyr	TCT Ser	AAG Lys	AAA Lys 320	TTC Phe	TTG Leu	GAG Glu	TTG Leu	AGA Arg 325	CCA Pro	GAT Asp	GGA Gly	ATC Ile	TCC Ser 330	1134
CAT His	GAG Glu	TGT Cys	ACA Thr	AGA Arg 335	GGA Gly	GTA Val	TCA Ser	GTT Val	GAG Glu 340	CGG Arg	TGC Cys	GGT Gly	GAG Glu	GTG Val 345		1182
GCA Ala	ATC Ile	CTG Leu	ACA Thr 350	Gln	GCA Ala	CTT Leu	TCA Ser	CCG Pro 355	Cys	GGT Gly	AAG Lys	ATC Ile	ACA Thr 360	Cys	AAA Lys	1230
CGT Arg	TGC	ATG Met	. Val	GAA Glu	ACA Thr	CCT	GAC Asp 370	Ile	GTT Val	GAG Glu	GGT Gly	GAG Glu 375	TCG Ser	GGA Gly	GAA Glu	1278
AGT	GT0	Thi	AA C	CAA Glr	GGT Gly	AAG Lys 385	Lev	CTA Leu	GCA Ala	ATG Met	CTG Leu 390	Lys	GAA Glu	CAG Gln	TAT	1326
CCF Pro 395) Asj	r TTC p Phe	C CC	A ATO	GCC Ala	Glu	AAF Lys	A CTA	A CTC	ACA Thr 405	Arg	TTT Phe	TTG	CAA Glr	CAG Gln 410	1374
AAI Lys	A TC	A CT	u Va	A AAS 1 Asi 41	n Thi	AAA c Asi	TTC	3 ACI	A GCC E Ala 420	ı Cys	GTG Val	AGC Ser	GTC Val	Lys 425	A CAA s Gln	1422
CT	C AT	T GG e Gl	T GA y As 43	p Ar	C AA	A CAL	A GC	T CC a Pr 43	O PUG	C ACI	A CAC	C GTA s Val	CTC Leu 440	, nt	r GTC a Val	1470
Se	r Gl	u Il 44	e Le 5	u Ph	e Ly	s Gl	y As 45	n Ly	s Le	u Th	r Gry	455	i naj	, ne	C GAA u Glu	1518
Gl	u Al	a Se	r Th	r Hi	s Me	t Le 46	u GI 5	u li	e at	a ar	47	0	ı no.		T CGC n Arg	1566
AC Th	r Gl	A AA Lu As	T AT an Me	rg cg et Ar	G AT G I1 48	e Gl	C CA y Hi	C CI s Le	T GG eu Gl	т тс у Se 48	I PII	C AG	A AA' g As	T AA n Ly	A ATC s Ile 490	1614

FIG. 1

TCA Ser	TCG Ser	AAG Lys	GCC Ala	CAT His 495	GTG Val	AAT Asn	AAC Asn	GCA Ala	CTC Leu 500	ATG Met	TGT	GAT Asp	AAT Asn	CAA Gln 505	CTT Leu	1662
GAT Asp	CAG Gln	AAT Asn	GGG Gly 510	AAT Asn	TTT Phe	ATT	TGG Trp	GGA Gly 515	CTA Leu	AGG Arg	GGT Gly	GCA Ala	CAC His 520	GCA Ala	AAG Lys	1710
AGG Arg	TTT Phe	CTT Leu 525	AAA Lys	GGA Gly	TTT Phe	TTC Phe	ACT Thr 530	GAG Glu	ATT Ile	GAC Asp	CCA Pro	AAT Asn 535	GAA Glu	GGA Gly	TAC Tyr	1758
GAT Asp	AAG Lys 540	TAT Tyr	GTT Val	ATC Ile	AGG Arg	AAA Lys 545	CAT His	ATC Ile	AGG Arg	GGT Gly	AGC Ser 550	AGA Arg	AAG Lys	CTA Leu	GCA Ala	1806
ATT Ile 555	GC	AAT Asn	TTG Leu	ATA Ile	ATG Met 560	TCA Ser	ACT Thr	GAC Asp	TTC Phe	CAG Gln 565	ACG Thr	CTC Leu	AGG Arg	CAA Gln	CAA Gln 570	1854
ATT Ile	CAA Gln	GGC	GAA Glu	ACT Thr 575	ATT Ile	GAG Glu	CGT Arg	AAA Lys	GAA Glu 580	ATT Ile	GGG Gly	AAT Asn	CAC His	TGC Cys 585	ATT Ile	1902
TCA Ser	ATG Met	CGG Arg	AAT Asn 590	GGT Gly	TAA Asn	TAC Tyr	GTG Val	TAC Tyr 595	CCA Pro	TGT Cys	TGT Cys	TGT Cys	GTT Val 600	ACT Thr	CTT Leu	1950
GAA Glu	GAT Asp	GGT Gly 605	F T T T T	GCT Ala	CAA Gln	TAT Tyr	TCG Ser 610	GAT Asp	CTA Leu	AAG Lys	CAC	CCA Pro 615	ACG Thr	AAG Lys	AGA Arg	1998
His	CTG Leu 620	GTC Val	ATT Ile	GGC Gly	AAC Asn	TCT Ser 625	GGC Gly	GAT Asp	TCA Ser	AAG Lys	TAC Tyr 630	CTA Leu	GAC Asp	CTT Leu	CCA Pro	2046
GTT Val 635	CTC Leu	TAA Taa	GAA Glu	GAG Glu	AAA Lys 640	ATG Met	TAT Tyr	ATA Ile	GCT Ala	AAT Asn 645	GAA Glu	GGT Gly	TAT Tyr	Cys	TAC Tyr 650	2094
ATG Met	AAC Asn	ATT Ile	TTC Phe	TTT Phe 655	Ala	CTA Leu	CTA Leu	GTG Val	AAT Asn 660	GTC Val	AAG Lys	GAA Glu	GAG Glu	GAT Asp 665	GCA Ala	2142
AAG Lys	GAC Asp	TTC Phe	ACC Thr 670	Lys	TTT Phe	ATA Ile	AGG Arg	GAC Asp 675	ACA Thr	ATT	GTT Val	CCA Pro	AAG Lys 680	CTT	GGA Gly	2190
GCG Ala	TGG Trp	CCA Pro 685	Thr	ATG Met	CAA Gln	GAT Asp	GTT Val 690	Ala	ACT Thr	GCA Ala	TGC Cys	TAC Tyr 695	Leu	CTT	TCC Ser	2238
ATT Ile	CTT Leu 700	Tyr	CCA Pro	GAT Asp	GTC Val	CTG Leu 705	Arg	GCT Ala	GAA Glu	CTA Leu	CCC Pro 710	Arg	ATT	TTG Leu	GTT Val	2286
GAT Asp 715	His	GAC A sp	AAC Asn	AAA Lys	ACA Thr 720	Met	CAT His	GTT Val	TTG Leu	GAT Asp 725	Ser	TAT	GGG Gly	TCT Ser	AGA Arg 730	2334
ACG Thr	ACA Thr	GGA Gly	TAC	CAC His 735	Met	TTG Leu	AAA Lys	ATG Met	AAC Asn 740	Thr	ACA Thr	TCC	CAG Gln	CTA Leu 745	ATT	2382

FIG. 1

GAA Glu	TTC Phe	GTT Val	CAT His	TCA Ser	GGT Glv	TTG Leu	GAA Glu	TCC Ser	GAA Glu	ATG Met	AAA Lys	ACT Thr	TAC Tyr	AAT Asn	GTT Val		2430
			750		•			755			-		760 ⁻				
			AAC Asn														2478
ATC Ile	AAG Lys 780	TCT Ser	ATA Ile	TAC Tyr	AAA Lys	CCA Pro 785	CAT His	CTC Leu	ATG Met	AAG Lys	CAG Gln 790	TTA Leu	CTT Leu	GAG Glu	GAA Glu		2526
GAG Glu 795	CCA Pro	TAC Tyr	ATA Ile	ATT Ile	GTC Val 800	CTG Leu	GCA Ala	ATA Ile	GTC Val	TCC Ser 805	CCT Pro	TCA Ser	ATT Ile	TTA Leu	ATT Ile 810	.•	2574
GCC Ala	ATG Met	TAC Tyr	AAC Asn	TCT Ser 815	GGA Gly	ACT Thr	TTT Phe	GAG Glu	CAG Gln 820	GCG Ala	TTA Leu	CAA Gln	ATG Met	TGG Trp 825	TTG Leu		2622
			ATG Met 830														2670
GCG Ala	CAA Gln	AAG Lys 845	TTA Leu	ACT Thr	TTG Leu	GCA Ala	GAT Asp 850	TTG Leu	TTC Phe	GTC Val	CAG Gln	CAG Gln 855	CGT Arg	AAT Asn	TTG Leu		2718
			TAT												_		2766
			CAT His														2814
CTG Leu	GCC Ala	ACC Thr	CAA Gln	GAG Glu 895	ATG Met	GAC Asp	ATG Met	GCG Ala	TTG Leu 900	AGG Arg	GAA Glu	GGT Gly	GGC Gly	TAT Tyr 905	GCT Ala		2862
															AAG Lys		2910
			Asp					Leu							TCC Ser		2958
		Arg										Arg			TTA Leu		3006
						Asp									GTG Val 970		3054
AAA Lys	TCG Ser	CTT Leu	TTC Phe	AAG Lys 975	Phe	CAC His	TTG Leu	GAA Glu	CTC Leu 980	Leu	AAG Lys	GGA Gly	ACC Thr	ATC Ile 985	TCA Ser		3102
AGA Arg	GCC	GTA Val	AAT Asn 990	Gly	GCC	GCA Ala	AGA Arg	AAG Lys 995	Val	AGA Arg	GTA Val	GCG Ala	AAG Lys 100	Asn	GCC		3150

FIG. 1

			Gly					Ile				CTT Leu 1015	Pro			3198	
TAC Tyr	AAG Lys 1020	Phe	ATC Ile	ACA Thr	GTC Val	TCG Ser 1025	Ser	GTC Val	CTT Leu	TCC Ser	TTG Leu 1030	TTG Leu)	TTG Leu	ACA Thr	TTC Phe	3246	
TTA Leu 1035	Phe	CAA Gln	ATT Ile	GAC Asp	TGC Cys 1040	Met	ATA Ile	AGG Arg	GCA Ala	CAC His 1045	Arg	GAG Glu	GCG Ala	AAG Lys	GTT Val 1050	3294	
GCT Ala	GCA Ala	CAG Gln	TTG Leu	CAG Gln 1055	Lys	GAG Glu	AGC Ser	GAG Glu	TGG Trp 1060	Asp	AAT Asn	ATC Ile	ATC Ile	AAT Asn 1065	Arg	3342	
				Ser					Pro			TAT Tyr		Ser		3390	
			Arg					His				TTC Phe 1095	Glu			3438	
		Cys					Asp					GCA Ala				3486	
	Ile					Lys					Ile	ACA Thr				3534	
					Glu					Val		AAG Lys			Asn	3582	
AAG Lys	TTC Phe	AAA Lys	GGA Gly 1150	Ile	CTG Leu	AGC Ser	TCA Ser	ACG Thr 1159	Glu	AGG Arg	GAG Glu	ATC Ile	ATC Ile 1160	Tyr	ACG Thr	3630	•
CAG Gln	AGT Ser	TTG Leu 1165	Asp	GAT Asp	TAC Tyr	GTT Val	ACA Thr 1170	Thr	TTT Phe	GAT Asp	GAC Asp	AAT Asn 1175	Met.	ACA Thr	ATC Ile	3678	
AAC Asn	CTC Leu 1180	Glu	TTG Leu	AAT Asn	ATG Met	GAT Asp 118	Glu	CTC Leu	CAC His	AAG Lys	ACG Thr 1190	AGC Ser	CTT Leu	CCT Pro	GGA Gly	3726	
GTC Val 1195	Thr	TTT Phe	AAG Lys	CAA Gln	TGG Trp 1200	Trp	AAC Asn	AAC Asn	CAA Gln	ATC Ile 120	Ser	CGA Arg	GGC Gly	AAC Asn	GTG Val 1210	3774	
AAG Lys	CCA Pro	CAT His	TAT Tyr	AGA Arg 121	Thr	GAG Glu	GGG Gly	CAC His	TTC Phe 122	Met	GAG Glu	TTT Phe	ACC Thr	AGA Arg 122	Asp	3822	
ACT Thr	GCG Ala	GCA Ala	TCG Ser 123	Val	GCC Ala	AGC Ser	GAG Glu	ATA Ile 123	Ser	CAC His	TCA Ser	CCC Pro	GCA Ala 1240	Arg	GAT Asp	3870	
TTT Phe	CTT Leu	GTG Val 124	Arg	GGT Gly	GCT Ala	GTT Val	GGA Gly 125	Ser	GGA Gly	AAA Lys	TCC Ser	ACA Thr 125	Gly	CTT Leu	CCA Pro	3918	

TAC Tyr	CAT His 1260	Leu	TCA Ser	AAG Lys	Arg	GGG Gly 1265	Arg	GTG Val	TTA Leu	ATG Met	CTT Leu 1270	Glu	CCT Pro	ACC Thr	AGA Arg	3966
CCA Pro 1275	Leu	ACÀ Thr	GAT Asp	AAC Asn	ATG Met 1280	His	AAG Lys	CAA Gln	CTG Leu	AGA Arg 1285	Ser	GAA Glu	CCA Pro	TTT Phe	AAC Asn 1290	4014
TGC Cys	TTC Phe	CCA Pro	ACT Thr	TTG Leu 1295	Arg	ATG Met	AGA Arg	GGG Gly	AAG Lys 1300	Ser	ACT Thr	TTT Phe	GGG Gly	TCA Ser 1305	Ser	4062
CCG Pro	ATC Ile	ACA Thr	GTC Val 1310	Met	ACT Thr	AGT Ser	GGA Gly	TTC Phe 1315	Ala	TTA Leu	CAC His	CAC His	TTT Phe 1320	Ala	CGA Arg	4110
AAC Asn	ATA Ile	GCT Ala 1325	Glu	GTA Val	AAA Lys	ACA Thr	TAC Tyr 1330	GAT Asp)	TTT Phe	GTC Val	ATA Ile	ATT Ile 1335	Asp	GAA Glu	Cya Cya	4158
CAT His	GTG Val 1340	Asn	GAT Asp	GCT Ala	TCT Ser	GCT Ala 1345	Ile	GCG Ala	TTT Phe	AGG Arg	AAT Asn 1350	Leu	CTG Leu	TTT Phe	GAA Glu	4206
CAT His 1359	Glu	TTT Phe	GAA Glu	GGA Gly	AAA Lys 1360	Val	CTC Leu	AAA Lys	GTG Val	TCA Ser 1365	Ala	ACA Thr	CCA Pro	CCA Pro	GGT Gly 1370	4254
AGA Arg	GAA Glu	GTT Val	GAA Glu	TTT Phe 1379	Thr	ACT Thr	CAG Gln	TTT Phe	CCC Pro 1380	Val	AAA Lys	CTC Leu	AAG Lys	ATA Ile 138	GAA Glu 5	4302
GAG Glu	GCT Ala	CTT Leu	AGC Ser 1390	Phe	CAG Gln	GAA Glu	TTT Phe	GTA Val 1399	Ser	TTA Leu	CAA Gln	GGG Gly	ACA Thr 140	Gly	GCC Ala	4350
AAC Asn	GCC Ala	GAT Asp 140	Val	ATT Ile	AGT Ser	TGT Cys	GGC Gly 141	GAC Asp O	AAC Asn	ATA Ile	CTA Leu	GTA Val 141	Tyr	GTT Val	GCT Ala	4398
AGC Ser	TAC Tyr 142	Asn	GAT Asp	GTT Val	GAT Asp	AGT Ser 142	Leu	GGC Gly	AAG Lys	CTC Leu	CTT Leu 143	Val	CAA Gln	AAG Lys	GGA Gly	4446
TAC Tyr 143	Lys	GTG Val	TCG Ser	AAG Lys	ATT Ile 144	Asp	GGA Gly	AGA Arg	ACA Thr	ATG Met 144	Lys	AGT Ser	GGA Gly	GGA Gly	ACT Thr 1450	4494
GAA Glu	ATA Ile	ATC Ile	ACT Thr	GAA Glu 145	Gly	ACT Thr	TCA Ser	GTG Val	AAA Lys 146	Lys	CAT His	TTC Phe	ATA Ile	GTC Val 146	GCA Ala 5	4542
ACT Thr	AAC Asn	ATT Ile	ATT Ile 147	Glu	AAT Asn	GGT Gly	GTA Val	ACC Thr 147	Ile	GAC Asp	ATT Ile	GAT Asp	GTA Val 148	Val	GTG Val	4590
GAT Asp	TTT Phe	GGG Gly 148	Thr	AAG Lys	GTT Val	GTA Val	CCA Pro 149	Val	TTG Leu	GAT Asp	GTG Val	GAC Asp 149	Asn	AGA Arg	GCG Ala	4638
GTG Val	CAG Gln 150	Tyr	AAC Asn	AAA Lys	ACT Thr	GTG Val 150	Val	AGT Ser	TAT	GGG Gly	GAG Glu 151	Arg	ATC	CAA Gln	AAA Lys	4686

FIG. 1

2

r GGG CGA CAC AAG l Gly Arg His Lys 1520		Ala Leu Arg Ile	
A ACA CTG GTT GA Thr Leu Val Glu 1535			Glu
A TGC TTC ATG TAG 1 Cys Phe Met Ty: 50			
A CTG CTG GAA AAT r Leu Leu Glu Asr 157	Ala Thr Leu		
r GAG CTA TCA TAT Glu Leu Ser Tyr 1585			
r ATG CAT CCA GTO r Met His Pro Val 1600		Lys Leu Lys Arg	
r TGT GAG ACA TTO r Cys Glu Thr Phe 1615			Asn
C TCT TGG CTT ACC r Ser Trp Leu Thi 30			
G GAT GCT GGC ATA Asp Ala Gly Ile 165	Arg Ile Pro		
C TTG CAT GAG GAI r Leu His Glu Glu 1665			
G GGT ATT GGG AGG r Gly Ile Gly Arg 1680		Val Gln Ala Ala	
r CTG CAA ACG GA? r Leu Gln Thr As; 1695			Leu
r AGA CGC ATA GCA n Arg Arg Ile Ala 10	Asp Glu Gln		
A ACT GGG AGA GCA a Thr Gly Arg Ala 17:	Phe Ser Phe		
T GAC ACG CTG AAA		Ala Thr Lys His	
1745		1750	

*

TTT Phe	TCG Ser	AAC Asn	CTA Leu	GCA Ala 1775	Lys	GAT Asp	CAA Gln	GAT Asp	GTC Val 1780	Thr	GGT Gly	ATC Ile	ATC Ile	CAA Gln 1785	Asp	5502
TTC Phe	AAT Asn	CAĊ His	CTG Leu 1790	Glu	ACT Thr	ATC Ile	TAT Tyr	CTC Leu 1795	Gln	TCA Ser	GAT Asp	AGC Ser	GAA Glu 1800	Val	GCT Ala	5550
AAG Lys	CAT His	CTG Leu 1805	Lys	CTT Leu	AAA Lys	AGT Ser	CAC His 1810	Trp	AAT Asn	AAA Lys	AGC Ser	CAA Gln 1815	ITE	ACT Thr	AGG Arg	5598
GAC Asp	ATC Ile 1820	Ile	ATA Ile	GCT Ala	TTG Leu	TCT Ser 1825	Val	TTA Leu	ATT Ile	GGT Gly	GGT Gly 1830	Gly	TGG Trp	ATG Met	CTT Leu	5646
GCA Ala 1835	Thr	TAC Tyr	TTC Phe	AAG Lys	GAC Asp 1840	Lys	TTC Phe	AAT Asn	GAA Glu	CCA Pro 1845	Val	TAT Tyr	TTC Phe	CAA Gln	GGG Gly 1850	5694
AAG Lys	AAG Lys	AAT Asn	CAG Gln	AAG Lys 185	His	AAG Lys	CTT Leu	AAG Lys	ATG Met 1860	Arg	GAG Glu	GCG Ala	CGT Arg	GGG Gly 186	Ala	5742
AGA Arg	G1y	CAA Gln	TAT Tyr 1870	Glu	GTT Val	GCA Ala	GCG Ala	GAG Glu 187	Pro	GAG Glu	GCG Ala	CTA Leu	GAA Glu 1880	His	TAC Tyr	5790
TTT Phe	GGA Gly	AGC Ser 188	Ala	TAT Tyr	AAT Asn	AAC Asn	AAA Lys 1890	GGA Gly O	AAG Lys	CGC Arg	AAG Lys	GGC Gly 189	Thr	ACG Thr	AGA Arg	5838
GGA Gly	ATG Met 190	Gly	GCA Ala	AAG Lys	TCT Ser	CGG Arg 190	Lys	TTC Phe	ATA Ile	AAC Asn	ATG Met 191	Tyr	GCG	TTT Phe	GAT Asp	5886
CCA Pro 191	Thr	GAT Asp	TTT Phe	TCA Ser	TAC Tyr 192	Ile	AGG Arg	TTT Phe	GTG Val	GAT Asp 192	Pro	TTG Leu	ACA Thr	GGT Gly	CAC His 1930	5934
ACT Thr	ATT Ile	GAT Asp	GAG Glu	TCC Ser 193	Thr	AAC Asn	GCA Ala	CCT Pro	ATT Ile 194	Asp	TTA Leu	GTG Val	CAG Gln	CAT His 194	Glu	5982
TTT Phe	GGA Gly	AAG Lys	GTT Val 195	Arg	ACA Thr	CGC Arg	ATG Met	TTA Leu 195	Ile	GAC Asp	GAT Asp	GAG Glu	ATA Ile 196	Glu	CCT Pro	6030
CAA	» Cm	CTT	AGC	ACC	CAC	ACC	ACA	ATC	CAT	GCT	TAT	ТŤG	GTG	AAT	AGT	6078
Gln	Ser	Leu 196	Ser	Thr	His	Thr	Thr 197		His	Ala	Tyr	Leu 197		Asn	ser	
GGC	Ser	Leu 196 AAG Lys	Ser 5 AAA	Thr	His CTT	AAG	197 GTT Val	O GAT	TTA	ACA	CCA	197 CAC His	5 TCG	TCG	CTA Leu	6126
GGC Gly CGT	ACG Thr 198 GCG Ala	Leu 196 AAG Lys O	Ser 5 AAA Lys	GTT Val	His CTT Leu	AAG Lys 198 ACA	197 GTT Val 5	O GAT Asp	TTA Leu	ACA Thr	CCA Pro 199 TTT Phe	CAC His O	TCG Ser	TCG Ser	CTA	6126 6174

FIG. 1

							•	
TTG CCA CC Leu Pro Pr	A AAG AAT o Lys Asn 2030	GAG GAC Glu Asp	TTG ACG Leu Thr 2035	Phe Glu	GGA GAA Gly Glu	AGC TTG Ser Leu 2040	TTT Phe	6270
AAG GGA CC Lys Gly Pr 20	A CGT GAT o Arg Asp 45	Tyr Asn	CCG ATA Pro Ile 2050	TCG AGC Ser Ser	ACC ATT Thr Ile 2055	CAR HIR	TTG Leu	6318
ACG AAT GA Thr Asn Gl 2060	A TCT GAT u Ser Asp	GGG CAC Gly His 2065	Thr Thr	TCG TTG Ser Leu	TAT GGT Tyr Gly 2070	ATT GGA Ile Gly	TTT Phe	6366
GGT CCC TI Gly Pro Ph 2075	C ATC ATT e Ile Ile	ACA AAC Thr Asn 2080	AAG CAC Lys His	TTG TTT Leu Phe 208	Arg Arg	AAT AAT Asn Asn	GGA Gly 2090	6414
ACA CTG TT Thr Leu Le	G GTC CAA u Val Gln 209	Ser Leu	CAT GGT His Gly	GTA TTC Val Phe 2100	AAG GTC Lys Val	AAG AAC Lys Asn 210	Thr	6462
ACG ACT TT Thr Thr Le	G CAA CAA au Gln Gln 2110	CAC CTC His Leu	ATT GAT Ile Asp 211	Gly Arg	GAC ATG Asp Met	ATA ATT Ile Ile 2120	ATT Ile	6510
CGC ATG CC Arg Met Pr 21	T AAG GAT O Lys Asp .25	TTC CCA Phe Pro	CCA TTT Pro Phe 2130	CCT CAA Pro Gln	AAG CTG Lys Leu 213	Lys Phe	AGA Arg	6558
GAG CCA CA Glu Pro Gl 2140	A AGG GAP n Arg Glu	GAG CGC Glu Arg 2145	Ile Cys	CTT GTG Leu Val	ACA ACC Thr Thr 2150	AAC TTC Asn Phe	CAA Gln	6606
ACT AAG AG Thr Lys Se 2155	GC ATG TC1 er Met Sei	AGC ATG Ser Met 2160	GTG TCA Val Ser	GAC ACT Asp Thr 216	ser Cys	ACA TTC Thr Phe	CCT Pro 2170	6654
TCA TCT GA	AT GGC ATA sp Gly Ile 217	e Phe Trp	AAG CAT Lys His	TGG ATT Trp Ile 2180	CAA ACC Gln Thr	AAG GAT Lys Asp 218	GLY	6702
CAG TGT GG Gln Cys G	GC AGT CC Ly Ser Pro 2190	A TTA GTA D Leu Val	TCA ACT Ser Thr 219	Arg Asp	GGG TTC Gly Phe	ATT GTT Ile Val 2200	GGT	6750
ATA CAC TO	CA GCA TCO er Ala Se: 205	G AAT TTC r Asn Phe	ACC AAC Thr Asn 2210	ACA AAC	AAT TAT Asn Tyr 221	Phe Thr	AGC Ser	6798
GTG CCG A Val Pro L 2220	AA AAC TT ys Asn Ph	C ATG GAA e Met Glu 222	_Leu Leu	ACA AAT	CAG GAG Gln Glu 2230	GCG CAG	CAG Gln	6846
TGG GTT A Trp Val S 2235	GT GGT TG er Gly Tr	G CGA TTA p Arg Leu 2240	AAT GCT Asn Ala	GAC TCA Asp Ser 224	Val Leu	TGG GGG	GGC Gly 2250	6894
CAT AAA G His Lys V	TT TTC AT al Phe Me 22	t Ser Lys	CCT GAA	GAG CCT Glu Pro 2260	TTT CAG Phe Gln	CCA GTT Pro Val 226	Lys	6942
GAA GCG A Glu Ala T	CT CAA CT hr Gln Le 2270	C ATG AAT u Met Asn	GAA TTO Glu Leu 227	ı Val Tyı	TCG CAA	GGG GAG Gly Glu 2280	AAG Lys	6990

AGG A Arg L	ys T	GG GT rp Va 285					Ser					Pro			7038
GAG T Glu C 2						Thr					Lys				7086
CCC C Pro L 2315					Leu					Glu					7134
TTT A Phe L		CG ATO		Gly					Ser					Glu	7182
GCG T Ala P			asp					Ala					Ile		7230
AAT G Asn V	al A	AT TG sp Cy 365					Leu					Leu			7278
Lys L		AG GC Ys Al				Pro					Ile				7326
		TT TT le Ph			Leu					Ala					7374
		GC AA ly Ly		Lys					Glu					Glu .	7422
		CA AT la Me 24	Leu					Leu					Gly		7470
TTG G Leu G		TT TG		GGC	TCA	mmo									
	2	445	o Asn	Gly			Lys					Pro			7518
Lys V	STT G		C AAC	AAA	Ser	Leu 2450 CGA Arg	Lys) ACT	Ala	Glu ACA	Leu	Arg 2459 GCA Ala	Pro CCA	Ile	Glu GAC	7518 7566
Lys V	GTT G Val G 2460 CTT-C	445 AA AA	C AAC n Asn r GGT	AAA Lys	ACG Thr 246	Leu 2450 CGA Arg TGC	Lys ACT Thr	TTC Phe	Glu ACA Thr	GCA Ala 2470 TTC Phe	Arg 2459 GCA Ala AAC	Pro CCA Pro	ATA Ile CAA	GAC Asp	
ACT CT Thr I 2475	GTT G Val G 2460 CTT C Leu L	445 AA AA lu As	C AAC n Asn r GGT a Gly	AAA Lys AAA Lys 248 AAG Lys	ACG Thr 246 GTT Val	Leu 2450 CGA Arg TGC Cys	ACT Thr GTG Val	TTC Phe GAT Asp	ACA Thr GAT Asp 2489	GCA Ala 2470 TTC Phe	Arg 2459 GCA Ala AAC ASD	Pro CCA Pro AAT Asn	ATA Ile CAA Gln	GAC Asp TTT Phe 2490 TTT Phe	7566
ACT COTHER IS ACT COTHER IN TAT COTHER IS ACT COTHER IS AC	GTT G Val G 2460 CTT C Leu L GAT C Asp L	445 AA AA Iu As ETT GC eu Al	C AAC n Asn r GGT a Gly C ATA n Ile 249 G AAT p Asn	AAA Lys AAA Lys 248 AAG Lys 5	ACG Thr 246 GTT Val O GCA Ala	Leu 2450 CGA Arg TGC Cys	ACT Thr GTG Val TGG Trp	TTC Phe GAT Asp ACA Thr 2500 GCT Ala	Glu ACA Thr GAT Asp 248! GTT Val	GCA Ala 2470 TTC Phe 5 GGT Gly	Arg 2459 GCA Ala AAC Asn ATG Met	Pro CCA Pro AAT Asn ACT Thr	ATA Ile CAA Gln AAG Lys 250 TGG	GAC Asp TTT Phe 2490 TTT Phe 5	7566 7614

FIG. 1

. 5.

CTC Leu	ATT Ile 2540	Asn	GCT Ala	GTA Val	TTG Leu	AAA Lys 2545	Val	CGA Arg	CTT Leu	GCC Ala	TTC Phe 2550	Met	GAG Glu	GAA Glu	TGG Trp	7	806
GAT Asp 2555	Ile	GGT Gly	GAG Glu	CAA Gln	ATG Met 2560	Leu	CGA Arg	AAT Asn	TTG Leu	TAC Tyr 2565	Thr	GAG Glu	ATA Ile	GTG Val	TAT Tyr 2570		7854
ACA Thr	CCA Pro	ATC Ile	CTC Leu	ACA Thr 2575	CCG Pro	GAT Asp	GGT Gly	ACT Thr	ATC Ile 2580	Ile	AAG Lys	AAG Lys	CAT His	AAA Lys 2585	GIÀ	-	7902
AAC Asn	AAT Asn	AGC Ser	GGG Gly 2590	Gln	CCT Pro	TCA Ser	ACA Thr	GTG Val 2595	Val	GAC Asp	AAC Asn	ACA Thr	CTC Leu 2600	Wer	GTC Val	•	7950
ATT Ile	ATT Ile	GCA Ala 260	Met	TTA Leu	TAC Tyr	aca Thr	TGT Cys 2610	Glu	AAG Lys	TGT Cys	gga Gly	ATC Ile 261	Asn	AAG Lyb	GAA Glu	•	7998
GAG Glu	ATT Ile 2620	GTG Val	тат	TAC Tyr	GTC Val	AAT Asn 2625	Gly	GAT Asp	GAC Asp	CTA Leu	TTG Leu 2630	Ile	GCC Ala	ATT Ile	CAC His	1	во46
CCA Pro 263	GAT Asp	AAA	GCT Ala	GAG Glu	AGG Arg 2640	Leu	AGT Ser	AGA Arg	TTC Phe	AAA Lys 264	Glu	TCT Ser	TTC Phe	GGA Gly	GAG Glu 2650		8094
ጥጥር	GGC	CTG Leu	AAA Lys	TAT Tyr 265	GAA Glu 5	TTT Phe	GAC Asp	TGT Cys	ACC Thr 266	Thr	AGG Arg	GAC Asp	AAG Lys	ACA Thr 266	GIn	1	8142
TTG Leu	TGG Trp	TTC Phe	ATG Met 267	Ser	CAC His	AGG Arg	GCT Ala	TTG Leu 267!	Glu	AGG Arg	GAT Asp	GGC Gly	ATG Met 268	Tyr	ATA Ile		8190
CCA Pro	AAG Lys	CTA Leu 268	Glu	GAA Glu	GAA Glu	AGG Arg	ATT Ile 269	Val	TCT Ser	ATT Ile	Leu	GAA Glu 269	Trp	GAC Asp	AGA Arg		8238
TCC Ser	AAA Lys 270	Glu	CCG Pro	TCA Ser	CAT His	AGG Arg 270!	Leu	GAA Glu	GCC Ala	ATC Ile	TGT Cys 271	Ala	TCA Ser	ATG Met	ATT Ile		8286
GAA Glu 271	GCA Ala	TGG	GGT Gly	TAT	GAC Asp 272	Lys	CTG Leu	GTT Val	GAA Glu	GAA Glu 272	Ile	CGC Arg	TAAT	TTC Phe	TAT Tyr 2730		8334
GCA	TCC	GTT Val	TTG Leu	GAA Glu 273	Gln	GCG Ala	CCG Pro	TAT Tyr	TCA Ser 274	Gln	CTT Leu	GCA Ala	GLu	GAA Glu 274	GGA Gly		8382
AAG Lys	GCG Ala	CCA Pro	TAT Tyr 275	CTG	:	GAG Glu	ACT Thr	GCG Ala 275	. Leu	AAG Lys	TTT Phe	TTG Leu	TAC Tyr 276	Thr	TCT		8430
CAG Gln	CAC His	GGA Gly 276	Thr	AAC	TCT Ser	GAG Glu	ATA Ile 277	: Glu	GAG	TAT	TTA	AAA Lys	val	TTG Leu	TAT	. ,	8478
GAT Asp	TAC Tyr 278	GAT Asi	חיית יו	CCA Pro	ACG Thr	ACT Thr 278	Glu	AAT Asn	CTI Lev	TAT Tyr	TTI Phe	GIT	AGT Ser	GGC Gly	ACT Thr		8526

GTG GAT GCT GG Val Asp Ala Gl 2795	T GCT GAC 6 y Ala Asp A 2800	GCT GGT AAG Ala Gly Lys	AAG AAA GAT Lys Lys Asp 2805	CAA AAG GAT Gln Lys Asp	GAT 8574 Asp 2810
AAA GTC GCT GA Lys Val Ala Gl	G CAG GCT T u Gln Ala S 2815	rca AAG GAT Ser Lys Asp	AGG GAT GTT Arg Asp Val 2820	AAT GCT GGA Asn Ala Gly 2825	Thr
TCA GGA ACA TT Ser Gly Thr Ph 28	e Ser Val E	CCA CGA ATA Pro Arg Ile 2835	Asn Ala Met	GCC ACA AAA Ala Thr Lys 2840	CTT 8670 Leu
CAA TAT CCA AG Gln Tyr Pro Ar 2845	G ATG AGG (g Met Arg (GGA GAG GTG Gly Glu Val 2850	GTT GTA AAC Val Val Asn	TTG AAT CAC Leu Asn His 2855	CTT 8718 Leu
TTA GGA TAC AA Leu Gly Tyr Ly 2860	s Pro Gln (CAA ATT GAT Gln Ile Asp 2865	TTG TCA AAT Leu Ser Asn 287	Ala Arg Ala	ACA 87.66 Thr
CAT GAG CAG TT His Glu Gln Ph 2875	T GCC GCG ? e Ala Ala ? 2880	TGG CAT CAG Trp His Gln	GCA GTG ATG Ala Val Met 2885	ACA GCC TAT Thr Ala Tyr	GGA 8814 Gly 2890
GTG AAT GAA GA Val Asn Glu Gl	G CAA ATG 1 u Gln Met 1 2895	AAA ATA TTG Lys Ile Leu	CTA AAT GGA Leu Asn Gly 2900	TTT ATG GTG Phe Met Val 290	Trp
TGC ATA GAA AA Cys Ile Glu As 29	T GGG ACT to Gly Thr	TCC CCA AAT Ser Pro Asn 291	Leu Asn Gly	ACT TGG GTT Thr Trp Val 2920	ATG 8910 Met
ATG GAT GGT GA Met Asp Gly GB 2925	G GAT CAA (u Asp Gln '	GTT TCA TAC Val Ser Tyr 2930	CCG CTG AAA Pro Leu Lys	CCA ATG GTT Pro Met Val 2935	GAA 8958 Glu
AAC GCG CAG CO Asn Ala Gln Pi 2940	o Thr Leu .	AGG CAA ATT Arg Gln Ile 2945	ATG ACA CAC Met Thr His 295	Phe Ser Asp	CTG 9006 Leu
GCT GAA GCG TA Ala Glu Ala Ta 2955	AT ATT GAG r Ile Glu 2960	Met Arg Asn	AGG GAG CGA Arg Glu Arg 2965	CCA TAC ATG Pro Tyr Met	CCT 9054 Pro 2970
AGG TAT GGT C'Arg Tyr Gly Lo	CAG AGA eu Gln Arg 2975	AAC ATT ACA Asn Ile Thr	GAC ATG AGT Asp Met Ser 2980	TTG TCA CGC Leu Ser Arg 298	Tyr
GCG TTC GAC TO Ala Phe Asp Pi	ne Tyr Glu	Leu Thr Ser	AAA ACA CCI Lys Thr Pro 5	o Val Arg Ala	AGG 9150 Arg
GAG GCG CAT A Glu Ala His M 3005	rg CAA ATG et Gln Met	AAA GCT GCT Lys Ala Ala 3010	GCA GTA CGA Ala Val Arç	A AAC AGT GGA J Asn Ser Gly 3015	ACT 9198
AGG TTA TTT G Arg Leu Phe G 3020	GT CTT GAT Ly Leu Asp	Gly Asn Val	GGT ACT GCF Gly Thr Ala 303	a Glu Glu Asp	ACT 9246 Thr
		3025	303	30	_

FIG. 1

SUBSTITUTE SHEET

GGG GTC CGC CAG TGA TA Gly Val Arg Gln	AGTTTCTGC GT	rgtetttge ti	PTCCGCTTT T	AAGCTTATT	9349
GTAATATATA TGAATAGCTA	TTCACAGTGG	GACTTGGTCT	TGTGTTGAÅT	AGTATCTTAT	9409
ATATTTTAAT ATGTCTTATT	AGTETCATTA	CTTAGGCGAA	CGACAAAGTG	AGGTCACCTC	9469
GGTCTAATTC TCCTATGTAG	TGCGAG	-			9495

pTL 37/8595

- GENERATE BamHI SITE
 1. AT A(nt 93 | 2-93 | 7)
- 2. GENERATE Nool SITE AT B (nt 8516-8521)
- ³GENERATE BamHI SITE (nt 133-138) Nool SITE (nt 143-148) AND DEOXYADENYLATE: RESIDUE (at nt 142) at C.

4

DIGEST WITH Nool

REMOVE TEV NUCLEOTIDES 143-200/8462-8516 (FLANKED BY SITES B AND C)AND RELIGATE.

pTC:FL

FIG. 2

. 5

SUBSTITUTE SHEET

INTERNATIONAL SEARCH REPORT

International Application No. PCT/US93/01544

A. CLAS	SSIFICATION OF SUBJECT MATTER	
. IPC(5) :	C12N 1/21, 5/10, 15/33, 15/82; C07H 21/04; A01H	5/00
US CL :	435/172.3, 240.4, 252.3, 320.1; 536/23.72; 800/205 International Patent Classification (IPC) or to both n	ational classification and IPC
	DS SEARCHED	
	ocumentation searched (classification system followed	by classification symbols)
	·	
U.S. : 4	335/172.3, 240.4, 252.3, 320.1; 536/23.72; 800/205	
Documentati	on searched other than minimum documentation to the	extent that such documents are included in the fields scarched
Doodaionaa		
	•	
Electronic de	ata base consulted during the international search (nam	ne of data base and, where practicable, search terms used)
APS, DIA		1
	ms: virus or viral, untranslat?, resistan?	
C. DOC	UMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where app	propriate, of the relevant passages Relevant to claim No.
X,P	Molecular Plant-Microbe Interactions,	Volume 5, No. 2, issued 1-27
12,2	March 1992, Lindbo et al, "Pathog	en-derived resistance to a
	potyvirus: immune and resistant pheno	types in transgenic tobacco
	expressing altered forms of a potyvi	rus coat protein nucleotide
	sequence", pages 144-153, see entire d	ocument.
	•	
X,P	Virology, Volume 189, No. 2, issued	August 1992, Lindbo et al, 1-27
	"Untranslatable transcripts of the toba	cco etch virus coat protein
	gene sequence can interfere with tobac	cco etch virus replication in
	transgenic plants and protoplasts",	pages 725-733, see entire
	document.	
· •		
l		
1	·	
X Furt	her documents are listed in the continuation of Box C.	
	pecial estegories of cited documents:	•T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the
.V. qe	ocument defining the general state of the art which is not considered be part of particular relevance	principle or theory underlying the invention
•	arlier document published on or after the international filing date	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step
	ocument which may throw doubts on priority claim(s) or which is	when the document is taken alone
ci 45	ited to establish the publication date of another citation or other pecial reason (as specified)	"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is
	ocument referring to an oral disclosure, use, exhibition or other	combined with one or more other such documents, such combination being obvious to a person skilled in the art
·p· d	ocument published prior to the international filing date but later than	"&" document member of the same patent family
	e actual completion of the international search	Date of mailing of the international search cort
03 May	·	26 MAY 1933/
		Authorized officer
Commissi	mailing address of the ISA/US ioner of Patents and Trademarks	/M Jame
Box PCT	on, D.C. 20231	P. MOODY
	No. NOT APPLICABLE	Telephone No. (703) 308-0196

INTERNATIONAL SEARCH REPORT

International application No. PCT/US93/01544

C (Continue	tion). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X Y	Molecular Plant-Microbe Interactions, Volume 4, No. 3, issued May 1991, Kawchuk et al, "Sense and antisense RNA-mediated resistance to potato leafroll virus in russet burbank potato plants", pages 247-253, see entire document.	1, 6-8, 13, 18, 22-23 2-5, 9-12, 14-17, 19-21, 24-27
X Y	Plant Molecular Biology, Volume 17, issued 1991, van der Wilk et al, "Expression of the potato leafroll luteovirus coat protein gene in transgenic potato plants inhibits viral infection", pages 431-439, see entire document.	1, 6-8, 13, 18, 22-23 2-5, 9-12, 14-17, 19-21, 24-27
X Y	Journal of General Virology, Volume 72, issued August 1991, Marsh et al, "Artificial defective interfering RNAs derived from brome mosaic virus", pages 1787-1792, see entire document.	1, 6-8, 13, 18, 22-23 2-5, 9-12, 14-17, 19-21, 24-27
X Y	Proceedings of the National Academy of Sciences USA, Volume 88, issued August 1991, Day et al, "Expression of an antisense viral gene in transgenic tobacco confers resistance to the DNA virus tomato golden mosaic virus", pages 6721-6725, see entire document.	1, 6-8, 13, 18, 22-23 2-5, 9-12, 14-17, 19-21, 24-27
х	Virology, Volume 175, issued 1990, Powell et al, "Protection against tobacco mosaic virus infection in transgenic plants requires accumulation of coat protein rather than coat protein RNA sequences", pages 124-130, see entire document.	1, 6-8, 13, 18, 22-23
Y	Virology, Volume 154, issued 1986, Allison et al, "The nucleotide sequence of the coding region of tobacco etch virus genomic RNA: evidence for the synthesis of a single polyprotein", pages 9-20, see entire document.	2-5, 9-12, 14-17, 19-21, 24-27
Y	Trends in Genetics, Volume 5, No. 2, issued February 1989, Baulcombe, "Strategies for virus resistance in plants", pages 56-60, see entire document.	2-5, 9-12, 14-17, 19-21, 24-27

Form PCT/ISA/210 (continuation of second sheet)(July 1992)+