Introducción a la cuantificación escalar y vectorial

Procesado de sonido

Universidad de Vigo

Régimen binario

- Cada muestra se codifica con n bits.
- Cada $T_s = 1/f_s$ segundos se envían n bits.
- El régimen binario en el canal se calcula como $R_b = n \cdot f_s$.
- Ejemplo: con $f_s = 8 \text{ kHz} \text{ y } n = 8, R_b = 8 \cdot 8000 = 64 \text{ kbps}.$

Régimen binario

- En ausencia de errores de canal $\hat{y}[n] = \hat{x}[n]$.
- En la simulación normalmente obviaremos los bloques en naranja.

Cuantificación uniforme (mid-riser)¹

- Discretiza el eje de amplitudes.
- Caracterizado por:
 - n : número de bits (2ⁿ niveles de cuantificación).
 - x_{sc}: valor de sobrecarga del cuantificador.
 - $\Delta = \frac{2x_{SC}}{2R}$: escalón de cuantificación

- Error de cuantificación: $e[n] = x[n] \hat{x}[n]$
 - Menor cuanto mayor sea n
 - Menor cuanto menor sea el escalon de cuantificación.
 - En ausencia de error de sobrecarga, e[n] puede aproximarse por una v.a. uniforme en el intervalo $(-\Delta/2, \Delta/2)$, siendo su potencia $\Delta^2/12$.

¹Leer apuntes tema 3, apartado 5.1.1

Cuantificación uniforme (mid-tread)^{2 3}

- Discretiza el eje de amplitudes.
- Caracterizado por:
 - n: número de bits (2ⁿ 1 niveles de cuantificación)
 - x_{sc}: valor de sobrecarga del cuantificador.
 - $\Delta = \frac{2x_{SC}}{2^{n}-1}$: escalón de cuantificación

- Error de cuantificación: $e[n] = x[n] \hat{x}[n]$
 - Menor cuanto mayor sea n
 - Menor cuanto menor sea el escalon de cuantificación.
 - En ausencia de error de sobrecarga, e[n] puede aproximarse por una v.a. uniforme en el intervalo $(-\Delta/2, \Delta/2)$, siendo su potencia $\Delta^2/12$.

²Leer apuntes tema 3, apartado 5.1.1.

³En este trabajo, por sencillez, descartaremos un nivel de cuantificación. En caso contrario el cuantificador no sería simétrico.

Cuantificación uniforme (mid-tread)

Ejemplo mid-tread 3 bits

- Niveles de cuantificación: $L = 2^3 1 = 7$
- Si $x_{sc}=1$, el escalón es: $\Delta=2x_{sc}/7\approx0,29$
- El máximo valor cuantificado es $3\Delta \approx 0.857$
- El mínimo valor cuantificado es −3∆
- Error de sobrecarga si $|x| > x_{sc}$.

Tarea 1: Cuantificación uniforme en Matlab

Comprender la función:

[y, e]=qmidriser(x,xsc,n)

- x : vector de muestras de entrada (longitud arbitraria)
- xsc : valor de sobrecarga del cuantificador
- n : número de bits
- y : vector con valores cuantificados
- e : error de cuantificación , x-y

$$\Delta = 2x_{sc}/2^n$$

•
$$k = \lfloor |x|/\Delta \rfloor$$

•
$$y = \operatorname{sign}(x) \cdot \Delta \cdot (k + 0.5)$$

• La salida está limitada por los valores de salida correspondientes a los límites de sobrecarga (por ejemplo, si $x>x_{sc}\Rightarrow y=Q(x_{sc})$)

Tarea 1: Cuantificación uniforme en Matlab

Comprender la función:

[y, e]=qmidtread(x,xsc,n)

- x : vector de muestras de entrada (longitud arbitraria)
- xsc : valor de sobrecarga del cuantificador
- n : número de bits
- y : vector con valores cuantificados
- e : error de cuantificación , x-y

•
$$\Delta = 2x_{sc}/(2^n - 1)$$

•
$$k = \operatorname{round}(|x|/\Delta)$$

•
$$y = sign(x) \cdot \Delta \cdot k$$

Hay que tener en cuenta los límites de la salida.

Tarea 1: Cuantificación uniforme en Matlab

veer opentes

- Para x=-2:0.001:2 , xsc=1 y n=3
 - Representad la salida y el error de cuantificación de los dos cuantificadores respecto a la entrada x.
 - Indicad la zona de error granular y la zona de error de sobrecarga.
 - Ajustad adecuadamente los límites de las gráficas (funciones axis, xlim, ylim,...).
- Archivos Afonso 8kHz.wav y Gala 8kHz.wav, muestreados a 8 kHz y 16 bits (128 kbps).
 - Se pueden cargar con la función audioread()
 - Se pueden escuchar con sound() o soundsc()
- Cuantificación a 8, 4 y 2 bits, con qmidriser() y qmidtread(), xsc=1.
 - Escuchad y comentad los resultados. (Afonso y Gala)
 - Representad el error de cuantificación (Gala) y comentad los resultados.
- Repetir para 8 bits, xsc=0.5 y xsc=0.3, con ambos cuantificadores.
 - Representad el error de cuantificación (Gala). Comentad los resultados.

en función de n y unix mediate

- En un cuantificador uniforme, en ausencia de error de sobrecarga, consideramos el error aprox. uniforme en el intervalo $(-\Delta/2, \Delta/2)$.
- En este caso la potencia de error (ruido de cuantificación) se aproxima a $\Delta^2/12$
- ullet Entonces la relación señal-ruido (con P_s la potencia de la señal a cuantificar): ullet

$$SNR(dB) = 10 \log \left(\frac{P_s}{\Delta^2/12} \right)$$

- Mid-riser: $\Delta = 2x_{sc}/(2^n) \Rightarrow SNR(dB) = 6,02n 20 \log \left(\frac{X_{sc}}{\sqrt{3P_s}}\right)$
 - Para una variable aleatoria uniforme entre $-x_{sc}$ y x_{sc} : $P_s = x_{sc}^2/3$

$$SNR(dB) = 6,02n \longrightarrow SNR_1$$

• Para una variable aleatoria $N(0,\sqrt{P_s})$ y considerando $x_{sc}\approx 4\sqrt{P_s}$ $(P[|x|]>x_{sc}]\approx 6e-5)$:

$$SNR(dB) = 6.02n - 7.27 \longrightarrow SNR_2$$

Ejemplo 1

- En la práctica la SNR global se calcula: $SNR(dB) = 10 \log_{10} \left[\frac{\sum x^2(n)}{\sum (x[n] \bar{x}[n])^2} \right]$
- Relación señal a ruido por tramas:
 - Se calcula dividiendo la señal en tramas o segmentos de longitud L.
 - Para cada trama se aplica la misma fórmula.
 - Si se divide x[n] en N tramas de L muestras, se obtienen N valores de la SNR que pueden representarse junto con la señal.
 - La SNR por tramas, SNRm , permite observar la evolución temporal de la SNR.
- Se define la SNR segmental, SNRseg, como el valor medio de la SNR por tramas. (El promedio se realiza directamente en dBs)

Ejemplo 2

obbevor echo

Tarea 2: Relación señal-ruido de cuantificación

men rolar god

permite la doserv la crd. tempored la crd. tempored

Programad dos funciones para el cálculo de la relación señal ruido:

• Global: **SNRq=SNR(x,xq)** con x señal original, xq señal cuantificada, S relación señal ruido.

Por segmentos: [SNRseg, SNRm, m] =SNRS(x,xq,L) con x señal original, xq señal cuantificada, L longitud del segmento, SNRm relación señal ruido por tramas (vector), SNRseg relación señal a ruido segmental, m vector de referencia en tiempo discreto para S

 El vector m debe contener unos índices temporales de referencia (el de la última muestra de cada segmento) de la SNRm de manera que se pueda representar con plot(m,SNRm)

Le los de los

Tarea 2: Relación señal-ruido de cuantificación

- Para el fichero Gala_8kHz.wav, con qmidriser() y qmidtread() de la tarea 1 con xsc=1.
 - Obtened la SNR global, la SNR segmental y SNR por tramas. Representad junto a la señal original de forma análoga a "Ejemplo 2". Utilizad n = 6 y L = 160.
 - Explicad las variaciones de la SNR por tramas. ¿En qué tramos de la señal es mayor? ¿Es posible que en alguna trama sea cero?
- Repetid el apartado anterior para xsc=0.5 y xsc=0.3. Comparad y comentad los resultados.
- Para los ficheros Gala_8kHz.wav e Afonso_8kHz.wav, con n=1:8, xsc=1.
 - Obtened la SNR global en todos los casos, considerando qmidriser() y qmidtread().
 - Representad resultados como en la gráfica de la diapositiva "Ejemplo 3".
 - Repetid para n=1:8, xsc=0.5 y xsc=0.3. En este apartado sólo con qmidriser().
 - Explicad los resultados obtenidos.
- Requisitos de las gráficas. Todas las gráficas deben:
 - Estar referenciadas en el texto
 - Tener etiquetas en eies x e v
 - Tener pie de figura explicativo
 - Es muy importante comentar todos los resultados e intentar extraer todas las conclusiones posibles.

plot(Rb,SNR1,k',Rb,...); ax = gca; ax.XTick = Rb; grid

Introducción a la cuantificación vectorial (VQ)

- En vez de cuantificar valores aislados vamos a considerar vectores de muestras (o coeficientes).
- Formamos, por ejemplo, vectores de dos muestras consecutivas de voz y los representamos.

- ¡Gran parte de los niveles desaprovechados!
- ¿Cómo mejorar la cuantificación?

- Ajustar el valor de sobrecarga.
- ¿Es la mejor solución?

Introducción a la cuantificación vectorial (VQ)

Ejemplo de diseño de un VQ de 2 bits

¿A qué converge?

Introducción a la cuantificación vectorial (VQ)

Ejemplo de diseño de un VQ de 4 bits

- En este caso no son vectores de muestras de voz, pero el método de diseño es idéntico.
- ¿Qué hemos logrado?

Diseño de un VQ : algoritmo K-means

Necesita datos:

- Datos (vectores) de entrenamiento → Obtención del VQ.
- Datos de prueba (test) → Comprobar funcionamiento del VQ.

Algoritmo:

- Inicialización. Selecciona arbitrariamente K vectores de los datos de entrenamiento, que serán los centroides iniciales del VQ.
- Asignación de centroides. Para cada vector de entrenamiento calcula el centroide más próximo e incluye el vector de entrenamiento en su grupo (cluster) o celda.
- Actualización de los centroides. Calcula el centroide de cada celda y actualiza el VQ. El centroide es el vector medio de cada celda (suma de todos los vectores de la celda dividida por el número de vectores en dicha celda).
- Iteración. Repite los pasos 2 y 3 hasta que la medida de distorsión del cuantificador apenas sufra variación entre iteraciones.

Algoritmo K-means programado

function [VQ vDist no_asig] = Kmeans(data, nbits, VQini, umbral, display)

Algunas funciones Matlab utilizadas: randperm(), mean(A), siendo A una matriz.

Algoritmo K-means programado

vector centroides indical

function [VQ vDist no_asig] = Kmeans(data, nbits, VQini, umbral, display)

- Inicialización. Si VQini vacío, inicializamos el cuantificador con vectores elegidos aleatoriamente de entre los datos de data. Es útil la función Matlab randperm.
- Medida de distorsión: Mean Square Error (MSE). A partir de los vectores de entrenamiento

Medida de distorsion: Medif Square Error (MSE). A partir de
$$x_1, x_2, \dots, x_M \in \mathbb{R}^N$$
 y de esos vectores cuantificados $\{y_i\}_{i=1}^M$

$$MSE = \frac{1}{M} \sum_{i=1}^M \|x_i - y_i\|^2$$

Normalizamos por la dimensión del vector (a efectos de comparación)

$$N$$
 Dist = MSE/N

Criterio de parada: varios posibles. Utilizaremos

$$\left| \frac{\textit{Dist}(it) - \textit{Dist}(it - 1)}{\textit{Dist}(it)} \right| < \textit{umbral}$$

Tarea 3: entrenamiento del algoritmo K-means

```
Inicializar ejecución en paralelo (requiere Parallel Computing Toolbox)
end
```

Con los datos en traindata.mat:

- Diseñar un VQ de 6 bits, utilizando un umbral de parada de 0,001 y VQini = [].
- display=1 para representar los datos de partida, la evolución de los centroides en cada iteración y los centroides resultantes.
- Representa cómo varía la distorsión obtenida, vDist, en función de la iteración.
- Ejecuta el algoritmo Kmeans 20 veces⁴. Guarda el tiempo de ejecución y la distorsión de la última iteración de cada ejecución. Represéntalos gráficamente. (Ayuda: funciones Matlab clock y etime)

Con el fichero tvg training 20s.wav:

- Forma la matriz training que contenga pares, no solapados, de muestras consecutivas por filas. Cada fila será un vector de datos de dimensión 2.
- Diseñar un VQ de 6 bits (VQ6) con umbral=0.01.
- Sobre una misma gráfica representar los datos de partida y los centroides del VQ resultante.
- Representa cómo varía la distorsión obtenida en función de la iteración.

⁴Antes de la primera ejecución inicializa parpool, como se indica arriba, fuera de Kmeans.

Tarea 4: aplicación de un VQ previamente entrenado

function [y, Dist] = VQuantize(x,VQ)

```
% y: matriz con los vectores resultantes de la cuantificación
% Dist: Error cuadrático medio entre la dimensión del vector.
%
% x : matriz con vectores a cuantificar por fila.
% VQ: Matriz con los centroides del VQ por filas.
```

Cada fila de y es el centroide más próximo en distancia euclídea a cada fila de x.

- Considera los ficheros tvg_training_20s.wav y tvg_test_20s.wav.
- Compara las distorsiones obtenidas al aplicar VQ6 sobre el conjunto de vectores de entrenamiento y de test.
- Para ambos conjuntos reordena las salidas del VQ de forma que se puedan escuchar las señales cuantificadas.
- En ambos casos estima la SNR de cuantificación global en dB.

Avance Sesión 2. Tarea 1: Comparación SNR algoritmo K-means

Los resultados de esta tarea formarán parte del segundo informe de progreso.

Vamos a comparar la SNR obtenida con cuantificación escalar y vectorial en función de R_b .

Tarea 1a. Utilizando como datos la matriz *training*:

- Obtén con Kmeans cuantificadores vectoriales de 1 a 16 bits (umbral = 0,01).
- Almacena los 16 VQs en una única matriz VQt de forma que las dos primeras filas se correspondan con los centroides del VQ de 1 bit, las cuatro siguientes con los centroides del VQ de 2 bits, etc.
- Registra el tiempo que tarda en estimarse cada uno de los 16 VQs y represéntalo en función del número de bits.
- Guarda la matriz VQt y los tiempos registrados en el fichero VQt.mat.

Tarea 1b. Considerando como señal de test *tvg_training_5s.wav* (fragmento de *tvg_training_20s.wav*):

- Representa la SNR global obtenida con los VQs en función del régimen binario. ¿Cuál es ahora el número de bits por muestra?
- Compárala con las gráficas que se obtienen con qmidriser y las aproximaciones SNR1 y SNR2.

Tarea 1c. Repite la tarea 1b considerando la señal en *tvg_test_5s.wav*. Compara los resultados de ambas tareas y justifica las diferencias encontradas (puede ser útil idear alguna gráfica adicional).

