DISEQUAZIONI

Una disuguaglianza tra due espressioni letterari verificate per valori numerici assegnati alle lettere si chiamano disequazione

Risolvere una disequazione significa trovare tutti i valori incogniti

La soluzione consiste in tutte le soluzioni che sostituite alla disequazione la rendono vera.

RAPPRESENTAZIONE GRAFICA DELLA SOLUZIONE DI UNA DISEQUAZIONE

In generale una disequazione è verificata per un infinità di valori numerici.

$$-2 < x < +1$$
 \rightarrow -3 -2 -1 0 $+1$ $+2$ $+3$

DISEQUAZIONI E METODI DELLA VERIFICA

Poiché una disequazione può essere verificata per un infinità di valori, il metodo di verifica non è applicabile.

DISEQUAZIONI EQUIVALENTI

Due equazioni si dicono equivalenti quando ammettono la stessa soluzione.

Aggiungere o sottrarre a entrambi i membri di una disequazione un valori, si otterrà un disequazione equivalente a quella data

Moltiplicando o dividendo per un valore positivo e che mantenga definita l'espressione, si otterrà una disequazione equivalente a quella data e con lo stesso verso

Moltiplicando o dividendo per un valore negativo e che mantenga definita l'espressione, si otterrà una disequazione equivalente a quella data e con il verso opposto

DISEQUAZIONI INTERE DI PRIMO GRADO

Una disequazione intera di primo grado può sempre essere ricondotta a una di queste formule:

- -ax+b<0
- ax + b > 0

SEGNO DI UN PRODOTTO O DI UN QUOZIENTE

Comportamento del segno di due espressioni A e B se:

- Si fa il prodotto di A e B
 - A*B > 0 → A e B sono concordi
 - A*B < 0 → A e B sono discordi
- Si fa il quoziente di A e B:
 - A/B > 0 \rightarrow A e B sono concordi
 - A/B < 0 \rightarrow A e B sono discordi

DISEQUAZIONI FRAZIONARIE DI PRIMO GRADO

Una disequazione viene detta frazionaria quando l'incognita compare al denominatore.

Il metodo seguito per risolvere le equazioni frazionarie non è applicabile alle disequazioni in quanto non si è a conoscenza del segno.

Per risolvere questo tipo di disequazione occorre:

- Portare tutti i termini al primo membro per poi calcolare il denominatore comune
- Si cerca il valore della x che rendono il numeratore e denominatore (trovati separatamente) positivo (il numeratore può comprendere anche lo 0.

$$N \ge 0 \rightarrow x + 1 \ge 0 \rightarrow x \ge -1$$

D>0 \rightarrow x - 1 > 0 \rightarrow x > 1

- Si tramutano i risultati ottenuti graficamente. Poi tramite la regola dei segni si calcolano gli intervalli dove la disequazione assumerà i valori positivi o negativi.

SEGNO DI UN TRINOMIO DI SECONDO GRADO E DISEQUAZIONI

Le disequazioni di secondo grado si presentano sotto forma di $ax^2 + bx + c >< 0$

Sia $\Delta = b^2 - 4ac$ il discriminante del trinomio: con l'ipotesi di a > 0 si presentano i 3 casi rappresentati in tabella

	Radici del trinomio $ax^2 + bx + c$	$ax^2 + bx + c > 0$ è soddisfatta da:	$ax^2 + bx + c < 0$ è soddisfatta da:
$\Delta > 0$	due radici distinte $x_1 e x_2 con x_1 < x_2$	$x < x_1$ e $x > x_2$	$x_1 < x < x_2$
$\Delta = 0$	due radici coincidenti $x_{1,2} = -b/2a$	x ≠ -b/2a	non ammette soluzioni
Δ < 0	nessuna radice reale	tutti i valori di x	non ammette soluzioni

Nel caso la disequazione ammetta anche l'uguaglianza la tabella si tramuterà in questo modo:

	Radici del trinomio ax² + bx + c	$ax^2 + bx + c \ge 0$ è soddisfatta da:	$ax^2 + bx + c \le 0$ è soddisfatta da:
$\Delta > 0$	due radici distinte $x_1 \in x_2 \operatorname{con} x_1 < x_2$	$x \le x_1$ e $x \ge x_2$	$x_1 \le x \le x_2$
$\Delta = 0$	due radici coincidenti $x_{1,2} = -b/2a$	tutti i valori di x	x = -b/2a
Δ < 0	nessuna radice reale	tutti i valori di x	non ammette soluzioni

DISEQUAZIONI INTERE DI SECONDO GRADO

Con le istruzioni e tabelle fornite nel paragrafo precedente risulterà molto semplice risolvere un equazione del tipo $ax^2 + bx + c > 0$

DISEQUAZIONI FRAZIONARIE DI SECONDO GRADO

Per risolvere una disequazione di secondo grado del tipo $\frac{\frac{x^2-2x}{x^2-1}<0}{x^2-1}$ si procede inizialmente calcolando i segni come visto in precedenza (Disequazioni frazionarie di primo grado), per poi vedere dove i segni sono concordi o discordi a seconda della richiesta iniziale.

DISEQUAZIONI DI GRADO SUPERIORE AL SECONDO

Nel caso si ha una disequazione di grado superiore al secondo si procede con il raccoglimento dei termini fino a ottenere il prodotto di 2 o più termini di grado 1 o 2. In seguito si procederà come nei paragrafi precedenti confrontando poi quando i risultati risulteranno concordi o discordi a seconda della richiesta.