This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7:
H01P 1/203, 7/08, H01G 7/06
A1
(43) International Publication Number: WO 00/62367
(43) International Publication Date: 19 October 2000 (19.10.00)

(21) International Application Number: PCT/SE00/00685

(22) International Filing Date: 11 April 2000 (11.04.00)

(30) Priority Data:

9901297-3 13 April 1999 (13.04.99) SE

(71) Applicant: TELEFONAKTIEBOLAGET LM ERICSSON (publ) [SE/SE]; S-126 25 Stockholm (SE).

(72) Inventors: CARLSSON, Erik; Toltorpsgatan 39C, S-431 39 Mölndal (SE). PETROV, Peter; Chalmers Tekniska Högskola, Mikrloelektronik, S-412 96 Göteborg (SE). VENDIK, Orest; Korabelostroitelay 42, apt, S.Petersburg, 199155 (RU). WIKBORG, Erland; Lundblads väg 3, S-182 33 Danderyd (SE). IVANOV, Zdravko; Mölndalsvägen 41, S-412 63 Göteborg (SE).

(74) Agents: BERGENTALL, Annika et al.; Cegumark AB, P.O. Box 53047, S-400 14 Göteborg (SE). (81) Designated States: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: TUNABLE MICROWAVE DEVICES

(57) Abstract

The present invention relates to an electrically tunable device (10), particularly for microwaves. It comprises a carrier substrate

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
Bj	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL,	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Vict Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		•
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

1

E29 P66PCT AB/ej 00-04-06

Title:

5 TUNABLE MICROWAVE DEVICES

FIELD OF THE INVENTION

The present invention relates to electrically tunable devices particularly for microwaves, which are based on a ferroelectric structure.

STATE OF THE ART

electrically tunable devices, such as capacitors (varactors) and which are based on ferroelectric structures do indeed have a high tuning range but the losses at microwave 15 frequencies are high thus limiting their applicability. Typical ratios between the maximum and the minimum values of the dielectric constant (without and with applied electric fields) ranges from n=1.5 to 3 and the loss tangents ranges from 0.02 to 20 10 GHz. This is not satisfactory for microwave applications requiring a low loss. Then e.g. a quality factor of about 1000-2000 is needed. WO 94/13028 discloses a tunable planar capacitor with ferroelectric layers. However, the losses are high at microwave frequencies.

25

30

10

US-A-5 640 042 shows another tunable varactor. Also in this case the losses are too high Losses across the interface dielectric material-conductor are produced which are high and furthermore the free surface between the conductors results in the ferroelectric material being exposed during processing (e.g. etching, patterning) which produce losses since the crystal structure can be damaged.

2

SUMMARY OF THE INVENTION

What is needed is therefore a tunable microwave device having a high tuning range in combination with low losses at microwave frequencies. A device is also needed which has a quality factor at microwave frequencies such as for example up to 1000-2000. A device is also needed in which the ferroelectric layer is stabilized and a device which shows a performance which is stable with the time, i.e. the performance does not vary and become deteriorated with time.

10

5

Furthermore a device is needed which is protected against avalanche electric breakdown in the tunable ferroelectric material.

- 15 Further yet a device is needed which is easy to fabricate. A device is also needed which is insensitive to external factors as temperature, humidity etc. Therefore an electrically tunable device, particularly for microwaves, is provided which comprises a carrier substrate, conducting means and at least one tunable ferroelectric layer. Between the/each (or at least a number of) conducting means and a tunable ferroelectric layer a buffer layer structure is provided which comprises a thin film structure comprising a non-ferroelectric material.
- According to one embodiment the thin film structure comprises a thin non-ferroelectric layer. In an alternative embodiment the thin film structure comprises a multi-layer structure including a number of non-ferroelectric layers. In still further embodiments a multilayer structure including a number of non-ferroelectric layers arranged in an alternating manner with ferroelectric layers (such that a non-ferroelectric layer always is provided adjacent the/a conducting means.

3

In a particular embodiment the ferroelectric layer is arranged on top of the carrier substrate and the non-ferroelectric thin film structure, including one or more layers, is arranged on top of the ferroelectric layer the conducting means in turn being arranged on top of the non-ferroelectric structure. In an alternative embodiment the ferroelectric layer is arranged above the non-ferroelectric structure including one or more non-ferroelectric layers, which is arranged on top of the conducting means. The conducting means particularly comprise (at least) two longitudinally arranged electrodes between which electrodes or conductors a gap is provided. According to different embodiments the non-ferroelectric structure is deposited in-situ on the ferroelectric layer or deposited ex-situ on the ferroelectric layer.

15

20

25

10

5

The deposition of the non-ferroelectric layer may be performed using different techniques such as for examples laser deposition, sputtering, physical or chemical vapour deposition or through the use of sol-gel techniques. Of course also other techniques which are suitable can be used.

Advantageously the ferroelectric and the non-ferroelectric structures have lattice matching crystal structures. The non-ferroelectric structure is particularly arranged so as to cover also the gap between the conductors or the electrodes. In a particular implementation the device comprises an electrically tunable capacitor or a varactor.

In another embodiment the device includes two layers of ferroelectric material provided on each side of the carrier substrate and two conducting means, non-ferroelectric thin film structures being arranged between the respective ferroelectric and non-ferroelectric structures in such a way that the device

4

forms a resonator. According to different implementations the device of the invention may comprise microwave filters or be used in microwave filters. Also devices such as phase shifters etc. can be provided using the inventive concept

Different materials can be used; one example of a ferroelectric material is STO (SrTiO₃). The non-ferroelectric material may for example comprise CeO_2 or a similar material or $SrTiO_3$ which is doped in a such a way that it is not ferroelectric. An advantageous use of a device as disclosed is in wireless communication systems.

BRIEF DESCRIPTION OF THE DRAWINGS

5

10

20

25

The invention will in the following be further described in a non-limiting way and with reference to the accompanying drawings in which:

- Fig 1 shows a cross-sectional view of a tunable device according to a first embodiment of the invention,
- Fig 2 schematically illustrates a planar capacitor similar to the embodiment of Fig 1,
- Fig 3 shows a second embodiment of an inventive device,
- Fig 4 shows still another embodiment in which a structure comprising alternating layers is used,
- Fig 5 $\,$ illustrates a fourth embodiment of a device according to the invention,

5

- Fig 6 schematically illustrates an experimental dependence of the tunability as a function of the capacitance for a number of material thicknesses, and
- $_{5}$ $_{\mathrm{Fig}}$ 7 shows the experimental results relating to the loss factor when using a non-dielectric layer according to the invention.

DETAILED DESCRIPTION OF THE INVENTION

- Through the invention devices are disclosed through which it is 10 possible to achieve a high tunability in combination with low losses at microwave frequencies. In general terms this achieved through a design in which a thin non-ferroelectric. dielectric layer (or layers) is (are) arranged between conducting layer and a tunable ferroelectric layer. The non-1.5 ferroelectric layer will as cover for the also act a ferroelectric layer in the gap between the conducting means or the electrodes. The non-ferroelectric layer can be deposited "in-situ" or "ex-situ" on the ferroelectric layer by laser deposition, sputtering, physical vapour deposition, chemical 20 vapour deposition, sol-gel or any other convenient technique. The non-ferroelectric layer should be oriented and have a good lattice match to the crystal structure of the ferroelectric layer. Further it should have low microwave losses. embodiments as referred to below or not explicitly disclosed, 25 the non-ferroelectric layer structure may be a single layered structure or it may comprise a multilayered structure.
- The thin non-ferroelectric structure will reduce the total capacitance of the device due to the presence of two capacitances of the thin non-ferroelectric structures in series with the tunable capacitance resulting from the ferroelectric layer. Even if the total capacitance is reduced, which is wanted

6

in most applications, the tunability will only decrease slightly since the change in the dielectric constant of the ferroelectric layer will redistribute the electric field and change the series capacitances due to the thin non-ferroelectric structure.

5

10

15

20

25

Fig. 1 shows a first embodiment of a device 10 according to the invention which comprises a substrate 1 or which a ferroelectric material 2, which is tunable, is provided. On said tunable ferroelectric material 2, a non-ferroelectric layer deposited, for example using any of the techniques as referred to above. Two conducting means comprising a first conductor or electrode 3A and a second conductor or electrode 3B are arranged on the non-ferroelectric layer 4. Between the first and second electrodes 3A, 3E there is a gap. As can be seen from the figure non-ferroelectric structure 4 covers the ferroelectric structure 2 across the gap between the conductors 3A. 3B. The surface of the ferroelectric structure 4 is thus protected by the non-ferroelectric structure 4 in a finished state but also during processing, i.e. when the device is fabricated. Since the ferroelectric structure 2 is protected in this manner, the ferroelectric structure will be stabilized and its performance will be stable with the time, i.e. it does not deteriorate with the time. Furthermore the losses will decrease since there will be a higher control of the interface of the ferroelectric structure and there will be less defects on the surface layer of the ferroelectric material. Instead of two electrodes, the conducting means may include more than two electrodes e.g. one or more electrodes provided between the electrodes 3A,3B.

30

Furthermore the non-ferroelectric layer will provide a protection against avalanche electric breakdown in the tunable ferroelectric material.

PCT/SE00/00685 WO 00/62367

7

Although the non-ferroelectric structure 4 is shown comprising a merely one layer, it should be clear that it also may comprise a multilayer structure.

5

10

Fig 2. shows an embodiment relating to a planar capacitor 20. Relating to this embodiment some figures are given relating to dimensions, values etc. which here of course only are given for illustrative purposes. The device includes a substrate 1' for example of $LaAlO_3$ having a thickness H of for example 0.5 mm, and with a dielectric permittivity $\epsilon_s = 25$. On top of the substrate a ferroelectric layer 2' for example of STO is arranged which here has a thickness $h_{\rm f}$ of 0.25 μm and with a dielectric permittivity $\epsilon_{\rm f} = 1500$. Thereon the protective buffer layer 4', which is a nonferroelectric e.g. dielectric layer, is arranged having a

15

dielectric permittivity &=10.

alternatively comprise a single layer.

In Fig. 3 an alternative device 30 is disclosed in which a non-20

ferroelectric structure 4", here comprising a multiple of sublayers, are arranged on top of conducting electrodes, 3A', 3B' which are arranged on substrate 1". The non-ferroelectric multilayer structure is deposited on (below) a tunable ferroelectric material 2". The functioning is substantially the

25

same as that as described with reference to Fig. 1, only it is an inverted structure as the ferroelectric is arranged above the non-ferroelectric layer, i.e. above the electrodes. Furthermore the non-ferroelectric layer comprises a multilayer structure. Of course in this embodiment the non-ferroelectric structure may

30

Fig 4 shows a tunable capacitor 40 in which a structure comprising ferroelectric layers 2A₃ 2A₁, 2A₂, ferroelectric layers $4A_1$, $4A_2$, $4A_3$ which are arranged in an

10

alternating manner. The number of layers can of course be any and is not limited to three of each kind as illustrated in Fig. 4, the main thing being that a non-ferroelectric layer (here $4A_1$) is arranged in contact with the conducting means $3A_1$, $3B_1$; also covering a ferroelectric layer (here $2A_1$) in the gap between the electrodes.

Such an alternating arrangement can of course also be used in the "inverted" structure as disclosed in Fig. 3.

- Fig. 5 shows yet another device 50 in which first conducting means $3A_2$, $3B_2$ in the form of electrodes are arranged on a non-ferroelectric layer 4C, which in turn is deposited on a ferroelectric, active, layer 2C. Below the ferroelectric layer 2C a further non-ferroelectric layer 4D is provided on the opposite side of which second conducting means $3A_3$, $3B_3$ are arranged, which in turn are arranged on a substrate 1C. Also in this case may an alternating structure as in Fig. 4 be used.
- Any of the materials mentioned above can be used also in these implementations. The non-ferroelectric material can be dielectric, but it does not have to be such a material. Still further it may be ferromagnetic.
- The active ferroelectric layer structure of any embodiment may for example comprise any of SrTiO₃, BaTiO₃, Ba_xSr_{1-x}TiO₃, PZT (Lead Zirconate Titanate) as well as ferromagnetic materials. The buffer layer or the protective non-ferroelectric structure may e.g. comprise any of the following materials: CeO₂, MgO, YSZ (Ytterium Stabilized Zirconium), LaAlO₃ or any other non-conducting material with an appropriate crystal structure, for example PrBCO (PrBa₂Cu₃O_{7-x}), non-conductive YBa₂Cu₃O_{7-x} etc. The substrate may comprise LaAlO₃, MgO, R-cut or M-cut sapphire,

9

 ${\rm SiSrRuO_3}$ or any other convenient material. It should be clear that the lot of examples is not exhaustive and that also other possibilities exist.

5 In Fig. 6 the dynamic capacitance is illustrated as a function of the voltage for three different thicknesses of the non-ferroelectric buffer layer 4' which here is dielectric. In this case the length of the planar capacitor is supposed to be 0.5 mm whereas the gap between the conductors 3A', 3B' is 4μm. A magnetic wall can be said to be formed between the substrate and the ferroelectric layer 2'.

The capacitance is illustrated as a function of the voltage applied between the electrodes for three different values, namely $h_{10}=10\,\mathrm{nm}$, $h_{30}=30\,\mathrm{mm}$ and $h_{100}=100\,\mathrm{nm}$ of the dielectric nonferroelectric buffer layer 4'. The capacitance is also illustrated for the case when there is no buffer layer between the conducting means and the ferroelectric layer, curve h_0 . This is thus supposed to illustrate how the tunability is reduced through the introduction of a buffer layer 4' for a number of thicknesses as compared to the case when there is no buffer layer. As can be seen the reduction in tunability is not significant.

Fig. 7 shows the Q value for a capacitance depending on voltage when a buffer layer is provided, corresponding to the upper curve A, and the case when there is no buffer layer, corresponding to the lower curve B. Thus, as can be seen from the experimental behavior, the Q value for a capacitor is considerably increased through the introduction of a buffer layer.

10

In addition to the advantages as already referred to above, it is an advantage in using a buffer layer across the active (tunable) ferroelectric layer since when a conductive pattern is etched, some etching will also occur in the subsequent, underlying, layer. Thus damages may be produced in the top layer of the ferroelectric material in the gap if it is not protected.

5

10

15

The inventive concept can also be applied to resonators, such as for example the ones disclosed in "Tunable Microwave Devices" which is a Swedish patent application with application No. 9502137-4, by the same applicant, which hereby is incorporated herein by reference. The inventive concept can also be used in microwave filters of different kinds. A number of other applications are of course also possible. As in other aspects the invention is not limited to the particularly illustrated embodiments but can be varied in a number of ways within the scope of the claims.

PCT/SE00/00685

15

20

25

11

CLAIMS

1. An electrically tunable device (10;20;30;40;50), e.g. for
5 microwaves, comprising a carrier substrate (1;1';1";1A-1C),
conducting means (3A,3B;3A',3B';3A",3B";3A₁,3B₁;3A₂,3B₂;3A₃,3B₃)
and at least one active ferroelectric layer
(2;2';2";2A₁,2A₂,2A₃),

characterized in that

- between at least a number of conducting means (3A,3B;3A',3B';3A",3B";3A₁,3B₁;3A₂,3B₂;3A₃,3B₃) and a ferroelectric layer (2;2';2";2A₁,2A₂,2A₃) a buffer layer (4;4';4";4A₁,4A₂,4A₃;4C,4D) consisting of a thin film structure comprising a non-ferroelectric material is arranged.
 - 2. A device according to claim 1, c h a r a c t e r i z e d i n t h a t the thin film structure $(4;4';4'';4A_1,4A_2,4A_3;4C,4D)$ comprises a thin non-ferroelectric layer.
 - 3. A device according to claim 1, characterized in that the thin film structure comprises a multi-layer structure (4";4A1,4A2,4A3) including a number of non-ferroelectric layers.
- 4. A device according to claim 2 or 3, c h a r a c t e r i z e d i n that a number of ferroelectric layers $(2A_1, 2A_2, 2A_3)$ and non-ferroelectric layers $(4A_1, 4A_2, 4A_3)$ are arranged in an alternative manner adjacent to the conducting means $(3A_1, 3B_1)$.
 - 5. A device according to any one of claims 1-3, characterized in that

5

12

the ferroelectric layer $(2;2';2A_3)$ is arranged on top of the carrier substrate (1;1';1A), the non-ferroelectric thin film structure $(4;4';4A_1)$ being arranged on top of the ferroelectric layer and in that the conducting means $(3A,3B;3A',3B';3A_1,3B_1)$ are arranged on top of the non-ferroelectric structure.

- 6. A device according to any one of claims 1-3, c h a r a c t e r i z e d i n t h a t the ferroelectric layer (2") arranged above the nonferroelectric structure (4") which is arranged on top of the conducting means (3A", 3B") being arranged on the substrate.
 - 7. A device according to any one of the preceding claims, characterized in that
- the conducting means comprise two longitudinally arranged electrodes $(3A,3B;3A',3B';3A'',3B'';3A_1,3B_1;3A_2,3B_2;3A_3,3B_3)$ between which a gap is provided.
 - 8. A device according to any one of claims 1-4,
- 20 characterized in that second conducting means $(3A_3,3B_3)$ are provided and in that a non-ferroelectric layer (4D) is arranged between said second conducting means $(3A_3,3B_3)$ and the ferroelectric layer (2C).
- 9. A device according to any one of the preceding claims, c h a r a c t e r i z e d i n t h a t the non-ferroelectric buffer layer structure is deposited insitu on the ferroelectric layer.
- 30 10. A device according to any one of claims 1-6, c h a r a c t e r i z e d i n t h a t the non-ferroelectric buffer layer structure is deposited exsitu on the ferroelectric layer.

13

- 11. A device according to claim 7 or 8, c h a r a c t e r i z e d i n t h a t the non-ferroelectric buffer layer structure is deposited through the use of laser deposition, sputtering, physical or chemical vapour deposition or sol-gel techniques.
- 12. A device according to any one of the preceding claims, c h a r a c t e r i z e d i n t h a t to the ferroelectric and the non-ferroelectric structures have
- 10 the ferroelectric and the non-ferroelectric structures have lattice matching crystal structures.
 - 13. A device at least according to claim 7, characterized in that

5

30

- the non-ferroelectric buffer layer structure $(3A,3B;3A',3B';3A'',3B'';3A_1,3B_1;3A_2,3B_2;3A_3,3B_3)$ is arranged to cover the gap between the conductors/electrodes.
- 14. A device according to any one of the preceding claims, 20 characterized in that it comprises an electrically tunable capacitor (varactor).
 - 15. A device according to any one of the preceding claims,
- characterized in that

 it comprises two layers of a ferroelectric material provided on
 each side of the carrier substrate and two conducting means,
 non-ferroelectric thin film structures being arranged between
 the respective ferroelectric and non-ferroelectric structures.

the device forming a resonator.

16. A device according to any one of the preceding claims, $c\ h\ a\ r\ a\ c\ t\ e\ r\ i\ z\ e\ d\ i\ n$

14

that the non-ferroelectric material of the buffer layer structure is a dielectricum.

17. A device according to any one of claims 1-16,5 c h a r a c t e r i z e d i nthat the non-ferroelectric material is ferromagnetic.

15

- - 19. A device according to any one of the preceding claims, c h a r a c t e r i z e d i n t h a t the ferroelectric material comprises STO (SrTiO $_3$).
- 20. A device according to any one of the preceding claims, c h a r a c t e r i z e d i n t h a t the non-ferroelectric material comprises CeO₂ or a similar material or SrTiO₃ doped in a such a way that it is not ferroelectric.
 - 21. Use of a device as in any one of the preceding claims in wireless communication system.

1/3

2/3

3/3

Fig.6

INTERNATIONAL SEARCH REPORT

International application No.

PCT/SE 00/00685

۸	(.1	ASSIETC	ATTON OF	SUBJECT	MATTER

IPC7: H01P 1/203, H01P 7/08, H01G 7/06 According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC7: H01G, H01P, H01Q

Documentation scarched other than minimum documentation to the extent that such documents are included in the fields searched

SE,DK,FI,NO classes as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 5524092 A (JEA K PARK), 4 June 1996 (04.06.96)	1,2,6
		
A	EP 0518117 A1 (RAMTRON INTERNATIONAL CORPORATION), 16 December 1992 (16.12.92)	1,6,8,9,14
		
A	WO 9413028 A1 (SUPERCONDUCTING CORE TECHNOLOGIES, INC), 9 June 1994 (09.06.94), cited in the application	1-21
A	US 5640042 A (THOMAS E. KOSCICA ET AL), 17 June 1997 (17.06.97), cited in the application	1-21
	<u></u>	

	Further documents are listed in the continuation of B	Box C.
--	---	--------

See patent family annex.

- Special categories of cited documents
- document defining the general state of the art which is not considered to be of particular relevance
- "E" erlier document but published on or after the international filing date
- document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other
- special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other
- means document published prior to the international filing date but later than the priority date claimed
- later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

29 -08- 2000

24 August 2000

INTERNATIONAL SEARCH REPORT

Information on patent family members

08/05/00

International application No.

PCT/SE 00/00685

Patent document cited in search report			Publication date	Patent family member(s)		Publication date	
US	5524092	A	04/06/96	NONE			
EP	0518117	A1	16/12/92	DE	69203395 D,T	21/12/95	
				JP	4367211 A	18/12/92	
				US	5142437 A	25/08/92	
KO	9413028	A1	09/06/94	AU	680866 B	14/08/97	
_		-		AU	5897394 A	22/06/94	
				CA	2150690 A	09/06/94	
				EP	0672308 A	20/09/95	
				FI	953834 A	14/08/95	
				JP	8509103 T	24/09/96	
				US	5694134 A	02/12/97	
				US	5472935 A	05/12/95	
				US	5589845 A	31/12/96	
				US	5721194 A	24/02/98	
US	5640042	Α	17/06/97	NONE			

CORRECTED VERSION

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 19 October 2000 (19.10.2000)

(10) International Publication Number WO 00/62367 A1

(51) International Patent Classification7: 7/08. H01G 7/06

(21) International Application Number: PCT/SE00/00685

(22) International Filing Date: 11 April 2000 (11.04.2000)

(25) Filing Language:

English

H01P 1/203.

(26) Publication Language:

English

(30) Priority Data:

9901297-3

13 April 1999 (13.04.1999)

(71) Applicant: TELEFONAKTIEBOLAGET LM ERICS-SON (publ) [SE/SE]; S-126 25 Stockholm (SE).

(72) Inventors: CARLSSON, Erik; Toltorpsgatan 39C, S-431 39 Mölndal (SE). PETROV, Peter; Chalmers Tekniska Högskola, Mikrloelektronik, S-412 96 Göteborg (SE). VENDIK, Orest; Korabelostroitelay 42, apt, S.Petersburg, 199155 (RU). WIKBORG, Erland; Lundblads väg 3, S-182 33 Danderyd (SE). IVANOV, Zdravko; Mölndalsvägen 41, S-412 63 Göteborg (SE).

(74) Agents: BERGENTALL, Annika et al.; Cegumark AB, P.O. Box 53047, S-400 14 Göteborg (SE).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- With international search report.
- (48) Date of publication of this corrected version:

29 March 2001

(15) Information about Correction: see PCT Gazette No. 13/2001 of 29 March 2001, Section

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: TUNABLE MICROWAVE DEVICES

(57) Abstract: The present invention relates to an electrically tunable device (10), particularly for microwaves. It comprises a carrier substrate (1), conducting means (3A, 3B) and at least one tunable ferroelectric layer (2). Between the conducting means (3A, 3B) and the tunable ferroelectric layer (2) a buffer layer (4) consisting of a thin film structure comprising a non-ferroelectric material is arranged.