Course Code: MAT2001	Course Title: Numerical Methods for Engineers	TPC 2	2 2	3				
Version No.	1.0	110 2	. 4	13				
Course Pre-requisites/ Co-	1.0							
requisites/ anti-requisites								
(if any).								
Objectives:	1. The aim of this course is to cover certain basic, important computer							
Objectives.	oriented numerical methods for analysing problems that arise in							
	engineering and physical sciences.							
	engineering and physical sciences.							
	2. The students are expected to use MATLAB as the primary computer							
	language to obtain solutions to a few assigned problems.							
Expected Outcome:	On completion of this course the students will be able							
	1. to appreciate the power of numerical methods and use them to analyse							
	the problems connected with data analysis, and solution of ordinary and							
	partial differential equations that arise in their courses.	respective	engn	leering				
	2. To understand the processes of numerical	simulation	mo	deling				
	optimization, identification, and visualization of engineering systems							
Module No. 1	Algebraic and Transcendental Equations	5 Hours						
Computer arithmetic & errors, General iterative method- rates of convergence- Secant method - Newton – Raphson								
	ar equations by Newton's method							
Module No. 2	System of Linear Equations and Eigen Value Problems	4 Hours	;					
Gauss –Seidel iteration method. Convergence analysis of iterative methods - LU Decomposition -Tri diagonal system								
	Eigen values of a matrix by Power and Jacobi methods.			•				
Module No. 3	Interpolation	5 Hours						
	vton's Forward-Newton's Backward interpolation formulae-	Central dif	feren	ices-				
Stirling's interpolation - Lagrange's interpolation – Inverse Interpolation-Newton's divided difference -								
Interpolation with cubic splines.								
	T	T						
Module No. 4	Numerical Differentiation and Integration	4 Hours						
Numerical differentiation with interpolation polynomials-maxima and minima for tabulated Values-Trapezoidal rule,								
Simpsons 1/3rd and 3/8 th rules. Two and Three point Gaussian quadrature formula.								
Module No. 5	Numerical Solution of Ordinary Differential	6 Hours						
	Equations							
Picard's method -Taylor series method - Fourth order Runge-Kutta method. Finite difference solution for the second								
I rear a billedilea Taylor series if	Total france Runge Rund memod. I fille difference	Solution 10	1 1110	Second				

order ordinary differential equations.

Module No. 6 **Numerical Solution Partial Differential Equations** 6 Hours

Finite Difference Method partial differential equations - Laplace equation - Libman's Method - One dimensional heat equation - Schmidt explicit method - Crank-Nicolson implicit method - One dimensional wave equation -Explicit method

Text Book

1. Steven C. Chapra and Ra P. Canale, Numerical Methods for Engineers with Programming and Software Applications, 7th Edition, Tata McGraw Hill, 2014.

References

1. M. K. Jain, S. R. K. Iyengar and R. K. Jain, Numerical Methods for Scientific and Engineering, New Age International Ltd., 5th Edition, 2010.

- 2. G. D. Smith, Numerical Solution of Partial Differential Equations: Finite Difference Methods, Third Edition, Oxford University Press, 1985.
- 3. C. F. Gerald and P.V. Wheatley Applied Numerical Analysis, Addition-Wesley, 7th Edition, 2004.
- 4. S. S. Sastry, Introductory Methods of Numerical Analysis, PHI Pvt. Ltd., 5th Edition, New Delhi, 2009.
- 5. W.Y. Yang, W. Cao, T.S. Chung and J. Morris, Applied Numerical Methods Using MATLAB, Wiley India Edition., 2007.
- 6. R. L. Burden and J. D. Faires, Numerical Analysis, 4th Edition, Brooks Cole, 2012.

Laboratory exercises using MATLAB

Understanding of the concepts through mathematics lab - 10 experiments such as

- 1. Root Finding using Bracket Methods: Finding the mass of the bungee jumper.
- 2. Root Finding using Open methods: Determining fluid flow through pipes and tubes
- 3. Applications of Root Finding Methods: Velocity of a Rocket
- 4. Implementing Gauss Elimination to solve physical Problems.
- 5. Solution of diffusion equation.
- 6. Implementing the power method to evaluate the largest and smallest eigenvalues and their respective eigenvectors
- 7. Applications of Eigenvalues in stability analysis/earthquakes etc.
- 8. Implementing polynomial interpolation techniques: Applications to Truncated signals, Growth Rate of Bacteria, Pollutant Uptake etc.
- 9. Numerical Integration and Differentiation: Applications on Rate of Change, Area, Volume, Work
- 10. Numerical Integration on Mass-Density etc.
- 11. Numerical Solutions to Ordinary Differential Equations and Applications: Electrical Circuits, Mass Spring Systems etc.
- 12. Numerical Solutions to Ordinary Differential Equations and Applications: Diffusion–Reaction Problem, Heat Transfer in a Rod, etc.
- 13. Other applications related to Computer Science in domains such as computer vision, graphics, image processing and machine learning.

processing and machine learning.							
Mode of Evaluation	Continuous Assessment (Quizzes, CATs, Assignments etc.).						
	CAT-1	Weightage (in %)	20				
	CAT-2	Weightage (in %)	20				
	CAT-3	Weightage (in %)	20				
	Lab	Weightage (in %)	25				
	Assignment	Weightage (in %)	5				
	Quiz-1	Weightage (in %)	5				
	Quiz-2	Weightage (in %)	5				
		Total	100				
Recommended by the	1st July 2018	•					
Board of Studies on	-						
Date of Approval by the	21 st July 2018			·			
Academic Council							