MTGA Data

Oscar Monroy

11/29/2021

Name: Name of the card

Color: Color of the cards.

U = Blue, G = Green, B = Black, W = White, R = Red

Rarity: Rarity of the cards; dictates chances of earning the card

C = Common, U = Uncommon, R = Rare, M = Mythic

GPWR: Win Rate when Maindecked

OHWR: Win Rate in Opening Hand

GIHWR: Win Rate in Hand (Opener or Drawn)

IWD: Win Rate Improvement When Drawn

1) Importing and Cleaning the Data

```
if(sum(i == c(9, 11, 13, 15, 17)) == 1) {
    mtg[, i] <- as.numeric(substr(mtg[, i], start = 1, stop = 5)) / 100</pre>
  }
}
mtg$IWD <- as.numeric(gsub("[^0-9.-]", "", mtg$IWD)) # More regex to extract numbers
# Here, I'll be removeing data that contains cards with more than one
# color and also without color (colorless). The reasoning is that we want the data
# to only contain monocolored cards as many cards with multiple colors. For example,
# this card:
{\it \# https://gatherer.wizards.com/Pages/Card/Details.aspx?name=Chatterfang\%2C+Squirrel+General}
# is supposed to be primarily green, however due to the black mana symbol in the text,
# it would be counted as "GB" in this data, which is somewhat wrong and convolutes
# the data. With colorless cards, we're removing them because we're only examining
# the main 5 colors in the game.
mtga <- mtg[-which(nchar(as.character(mtg$Color)) > 1), ] # Removes multicolor cards
mv <- which(nchar(as.character(mtga$Color)) < 1) # Index of colorless cards
mtga$Color <- as.character(mtga$Color)</pre>
mtga <- mtga[-mv, ] # Removes colorless cards</pre>
mtga$Color <- as.factor(mtga$Color)</pre>
# Finally, we'll remove variables from the data that don't
# tell us anything about the success of a card.
mtga \leftarrow mtga[, -c(4, 5, 6, 7, 8, 10, 12, 14, 16, 17)]
head(mtga, 10)
```

```
##
                    Name Color Rarity GPWR OHWR GDWR GIHWR IWD
## 1
       Acclaimed Contender
                            W
                                  R 0.572
                                            NA
                                                  NA 0.591
## 3
        All That Glitters
                            W
                                  U 0.517 0.535 0.492 0.513 -0.7
      Archon of Absolution
                                  U 0.554 0.580 0.580 0.582 5.4
## 5
                            W
## 7
        Ardenvale Paladin
                            W
                                  C 0.527 0.519 0.511 0.517 -1.7
## 9
       Ardenvale Tactician
                            W
                                  C 0.551 0.551 0.572 0.563 1.8
## 11
             Bartered Cow W
                                  С
                                       NA
                                            NA
                                                  NA 0.473
## 13
         Beloved Princess
                          W
                                  C 0.517 0.545 0.480 0.510 -0.6
W
                                  R
                                       NA
                                            NA
                                                  NA 0.556 1.0
                            W
                                  M
                                       NΑ
                                            NΑ
                                                  NΑ
                                                       NΑ
                                                           NΑ
                                  U
## 19
        Deafening Silence
                                       NA
                                            NA
                                                  NA
                                                       NA
                                                           NA
```

2) Visualizations Using Boxplots

3

U:408

Duress

```
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 3.6.3
summary(mtga) # Summary statistics of each variable
                                                                     OHWR.
##
                      Name
                                Color
                                        Rarity
                                                    GPWR
## Plummet
                            4
                                B:415
                                        : 0
                                                      :0.4370
                                                                       :0.3670
                       :
                                               Min.
                                                                Min.
## Return to Nature
                       : 4
                                G:406
                                        B: 10
                                                1st Qu.:0.5280
                                                                1st Qu.:0.5190
                                R:412
                                       C:910
## Thrill of Possibility:
                            4
                                               Median :0.5470
                                                                Median :0.5510
```

M:133

Mean :0.5447

Mean

:0.5509

```
## Opt
                      : 3 W:410 R:396
                                            3rd Qu.:0.5630 3rd Qu.:0.5800
                                     U:602
## Revitalize
                          3
                                            Max. :0.6240 Max.
                                                                   :0.7700
                     :
  (Other)
                                             NA's :262
                                                            NA's
                                                                   :469
##
                      :2030
##
        GDWR
                      GIHWR
                                       IWD
                         :0.3670 Min. :-13.800
## Min. :0.3990 Min.
## 1st Qu.:0.5300
                  1st Qu.:0.5262 1st Qu.: -1.200
## Median :0.5580
                  Median: 0.5540 Median: 1.150
                        :0.5537 Mean : 1.675
## Mean
        :0.5574
                   Mean
## 3rd Qu.:0.5820
                   3rd Qu.:0.5800
                                  3rd Qu.: 4.000
## Max. :0.7190
                   Max. :0.7050
                                  Max. : 27.300
## NA's
          :293
                   NA's
                        :201
                                  NA's :217
table(mtga$Color) # Checks amount of cards per colors
##
##
    В
      G R U W
## 415 406 412 408 410
# Now we'll build boxplots to see a visualization of the
# success rate of each color depending on the turn
# the cards were drawn/time of usage. Each graph will have
# self-explanatory axis names and titles.
ggplot(mtga, aes(x = Color, y = IWD)) +
 geom_boxplot(outlier.colour = "red", outlier.shape = 8,
              outlier.size = 1.5) +
 ylab("Win Rate Improvement When Drawn") +
 ggtitle("Win Rate Chances When Drawing Cards of Certain Colors")
```

Warning: Removed 217 rows containing non-finite values (stat_boxplot).

Win Rate Chances When Drawing Cards of Certain Colors

Warning: Removed 262 rows containing non-finite values (stat_boxplot).

Win Rate When Adding Cards of Certain Color into the Maindeck

Warning: Removed 293 rows containing non-finite values (stat_boxplot).

Win Rate When Drawing Cards of Certain Color Turn 1 or Later

Warning: Removed 469 rows containing non-finite values (stat_boxplot).

Win Rate When Card of Certain Color is in Opening Hand

Warning: Removed 201 rows containing non-finite values (stat_boxplot).

Win Rate When Card of Certain Color is in Hand at any Time

Win Rate Chances When Drawing Cards of Certain Colors

Win Rate When Adding Cards of Certain Color into the Maindeck

Win Rate When Drawing Cards of Certain Color Turn 1 or Later

Win Rate When Card of Certain Color is in Opening Hand

Win Rate When Card of Certain Color is in Hand at any Time


```
# There doesn't seem to be much noticable difference from the graphs using
# the data with the NA's, so we'll continue to use that data.

# Here, we're just gonna use histograms on the predictor variables
# to see their distribution.
par(mfrow = c(2, 3))
hist(mtga$IWD)
hist(mtga$GPWR)
hist(mtga$GDWR)
hist(mtga$GHWR)

# Looks like they all follow normal distribution.
```

Histogram of mtga\$IWD

Histogram of mtga\$GPWR

Histogram of mtga\$GDWR

Histogram of mtga\$OHWR

Histogram of mtga\$GIHWR

3) Statistical Tests

ANOVA shows significance in Color.

Tukey multiple comparisons of means

95% family-wise confidence level

TukeyHSD(iwd_aov)

##

##

##

```
# Since we've shown that the variables are indeed normal dist., we'll be
# using one-way ANOVA, TukeyHSD, and pairwise t-tests to see
# if the differences in sucess rate of each color are significant (< 0.05).
iwd_aov <- aov(mtga$IWD ~ mtga$Color)</pre>
summary(iwd_aov)
                 Df Sum Sq Mean Sq F value Pr(>F)
## mtga$Color
                      1874
                             468.6
                                      24.3 <2e-16 ***
## Residuals
                     35264
                              19.3
               1829
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## 217 observations deleted due to missingness
```

```
## Fit: aov(formula = mtga$IWD ~ mtga$Color)
##
## $\mtga$Color\
##
            diff
                        lwr
                                    upr
                                             p adj
## G-B -0.5302778 -1.4147578 0.35420216 0.4737787
## R-B -1.9197069 -2.8066101 -1.03280362 0.0000000
## U-B 0.9798651 0.0917327 1.86799753 0.0220574
## W-B -1.3414300 -2.2229450 -0.45991508 0.0003280
## R-G -1.3894290 -2.2757320 -0.50312606 0.0001903
## U-G 1.5101429 0.6226099 2.39767593 0.0000357
## W-G -0.8111522 -1.6920633 0.06975881 0.0878787
## U-R 2.8995720 2.0096240 3.78951993 0.0000000
## W-R 0.5782768 -0.3050673 1.46162092 0.3811394
## W-U -2.3212952 -3.2058734 -1.43671693 0.0000000
# We see signicance in almost every color pairing except G-B, W-G,
# and W-R. Looking at the boxplot, we can see that
# these results do appear to be the case although W-R seem
# decptively different at first glance.
pairwise.t.test(mtga$IWD, mtga$Color)
##
##
  Pairwise comparisons using t tests with pooled SD
## data: mtga$IWD and mtga$Color
##
##
    В
            G
                     R
                            U
## G 0.14804 -
## R 3.3e-08 0.00012 -
## U 0.01051 2.5e-05 < 2e-16 -
## W 0.00017 0.03604 0.14804 1.0e-11
## P value adjustment method: holm
# The t-tests seem to confirm the results with one important
# exception: W-G. Here, that pairing is significant, granted
# it barely is since the value is at 0.036. This discrepancy
# can possibly be due to the differences in the test methods.
gp_aov <- aov(mtga$GPWR ~ mtga$Color)</pre>
summary(gp_aov)
##
                 Df Sum Sq Mean Sq F value Pr(>F)
                 4 0.0922 0.02305
                                    31.59 <2e-16 ***
## mtga$Color
## Residuals
              1784 1.3016 0.00073
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## 262 observations deleted due to missingness
# ANOVA shows significance in Color.
TukeyHSD(gp_aov)
```

```
##
     Tukey multiple comparisons of means
##
       95% family-wise confidence level
##
## Fit: aov(formula = mtga$GPWR ~ mtga$Color)
##
## $\mtga$Color\
              diff
                              lwr
                                           upr
                                                   p adj
## G-B -0.009568026 -0.0150550950 -0.004080958 0.0000205
## R-B -0.002581659 -0.0080608552 0.002897538 0.6995720
## U-B -0.017301170 -0.0228082630 -0.011794077 0.0000000
## W-B 0.002592678 -0.0028671723 0.008052528 0.6933455
## R-G 0.006986368 0.0014504629 0.012522272 0.0052658
## U-G -0.007733144 -0.0132966605 -0.002169627 0.0014316
## W-G 0.012160704 0.0066439469 0.017677461 0.0000000
## U-R -0.014719512 -0.0202752644 -0.009163759 0.0000000
## W-R 0.005174336 -0.0003345911 0.010683264 0.0774441
## W-U 0.019893848 0.0143571742 0.025430522 0.0000000
# We see signicance in almost every color pairing except R-B, W-B,
# and W-R. Looking at the boxplot, we can see that
# these results do appear to be the case.
pairwise.t.test(mtga$GPWR, mtga$Color)
##
##
  Pairwise comparisons using t tests with pooled SD
## data: mtga$GPWR and mtga$Color
##
##
                     R
                            Ħ
    В
            G
## G 1.2e-05 -
## R 0.38984 0.00233 -
## U < 2e-16 0.00076 5.5e-12 -
## W 0.38984 1.5e-08 0.03122 < 2e-16
## P value adjustment method: holm
# The t-tests seem to confirm the results with one important
# exception: W-R. Here, that pairing is significant, granted
# it barely is since the value is at 0.031. Once again, this discrepancy
# can possibly be due to the differences in the test methods.
gd_aov <- aov(mtga$GDWR ~ mtga$Color)</pre>
summary(gd_aov)
                 Df Sum Sq Mean Sq F value
## mtga$Color
                  4 0.060 0.015008
                                    8.302 1.24e-06 ***
              1753 3.169 0.001808
## Residuals
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## 293 observations deleted due to missingness
```

```
TukeyHSD(gd_aov)
##
     Tukey multiple comparisons of means
       95% family-wise confidence level
##
##
## Fit: aov(formula = mtga$GDWR ~ mtga$Color)
##
## $`mtga$Color`
##
              diff
                              lwr
                                            upr
                                                    p adj
## G-B -0.013304071 -0.0220804222 -0.0045277204 0.0003514
## R-B -0.017418396 -0.0262011398 -0.0086356514 0.0000007
## U-B -0.008960944 -0.0177058048 -0.0002160823 0.0414579
## W-B -0.012192320 -0.0208883935 -0.0034962461 0.0012581
## R-G -0.004114324 -0.0129345740 0.0047059254 0.7074594
## U-G 0.004343128 -0.0044394007 0.0131256563 0.6595982
## W-G 0.001111752 -0.0076221998 0.0098457029 0.9968705
## U-R 0.008457452 -0.0003314653 0.0172463694 0.0658629
## W-R 0.005226076 -0.0035142999 0.0139664515 0.4765523
## W-U -0.003231376 -0.0119336845 0.0054709320 0.8490460
# We see signicance in only color pairings with B, which makes
# sense as the boxplots clearly show black being superior
# in this category.
pairwise.t.test(mtga$GDWR, mtga$Color)
##
##
  Pairwise comparisons using t tests with pooled SD
##
## data: mtga$GDWR and mtga$Color
##
##
     В
             G
                     R.
                             U
## G 0.00033 -
## R 7e-07
           0.70832 -
## U 0.03638 0.70832 0.05204 -
## W 0.00107 0.72820 0.51356 0.70832
##
## P value adjustment method: holm
# Shows similar results to the TukeyHSD across the board.
oh_aov <- aov(mtga$OHWR ~ mtga$Color)</pre>
summary(oh_aov)
##
                 Df Sum Sq Mean Sq F value
                                             Pr(>F)
## mtga$Color
                  4 0.134 0.03343
                                     15.63 1.49e-12 ***
## Residuals
              1577 3.372 0.00214
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## 469 observations deleted due to missingness
```

Shows significance in Color.

```
# Shows significance in Color.
TukeyHSD(oh_aov)
     Tukey multiple comparisons of means
##
##
      95% family-wise confidence level
##
## Fit: aov(formula = mtga$OHWR ~ mtga$Color)
##
## $`mtga$Color`
##
              diff
                             lwr
                                           upr
                                                   p adj
## G-B -0.011263663 -0.021320949 -0.0012063763 0.0191730
## R-B -0.009398703 -0.019374204  0.0005767977  0.0758834
## U-B -0.023392157 -0.033457878 -0.0133264359 0.0000000
## W-B 0.002561653 -0.007328937 0.0124522432 0.9548759
## R-G 0.001864960 -0.008246208 0.0119761271 0.9870167
## U-G -0.012128494 -0.022328682 -0.0019283064 0.0104451
## W-G 0.013825316 0.003797910 0.0238527214 0.0016163
## U-R -0.013993454 -0.024113011 -0.0038738965 0.0015482
## W-R 0.011960356 0.002014982 0.0219057306 0.0092288
## W-U 0.025953810 0.015917945 0.0359896753 0.0000000
# We see signicance in almost every color pairing except R-B, W-B,
# and R-G. Looking at the boxplot, we can see that
# these results do appear to be the case.
pairwise.t.test(mtga$OHWR, mtga$Color)
##
##
  Pairwise comparisons using t tests with pooled SD
## data: mtga$OHWR and mtga$Color
##
##
    В
            G
                           IJ
## G 0.0090 -
## R 0.0305 0.9590 -
## U 2.6e-09 0.0063 0.0013 -
## W 0.9590 0.0013 0.0063 2.4e-11
##
## P value adjustment method: holm
# The t-tests seem to confirm the results with one important
# exception: R-B. Here, that pairing is significant, however
# its significance is at 0.03.
gih_aov <- aov(mtga$GIHWR ~ mtga$Color)</pre>
summary(gih_aov)
                 Df Sum Sq Mean Sq F value
                 4 0.062 0.015570
## mtga$Color
                                    8.188 1.53e-06 ***
## Residuals
              1845 3.508 0.001902
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## 201 observations deleted due to missingness
```

```
# Shows significance in Color.
TukeyHSD(gih_aov)
##
     Tukey multiple comparisons of means
##
       95% family-wise confidence level
## Fit: aov(formula = mtga$GIHWR ~ mtga$Color)
##
## $`mtga$Color`
##
                diff
                               lwr
                                            upr
                                                    p adj
## G-B -0.0129002938 -0.0216662661 -0.004134321 0.0005831
## R-B -0.0146711957 -0.0234490380 -0.005893353 0.0000526
## U-B -0.0152701948 -0.0240600205 -0.006480369 0.0000223
## W-B -0.0066681044 -0.0153876990 0.002051490 0.2255939
## R-G -0.0017709019 -0.0105368742
                                    0.006995070 0.9817576
## U-G -0.0023699010 -0.0111478730 0.006408071 0.9477849
## W-G 0.0062321893 -0.0024754558 0.014939834 0.2891369
## U-R -0.0005989992 -0.0093888249 0.008190827 0.9997325
## W-R 0.0080030912 -0.0007165033 0.016722686 0.0896669
## W-U 0.0086020904 -0.0001295675 0.017333748 0.0558104
# We see signicance in only color pairing with B, which makes
# sense as the boxplots clearly show black being superior
# in this category as similary seen with GDWR.
pairwise.t.test(mtga$GIHWR, mtga$Color)
##
##
   Pairwise comparisons using t tests with pooled SD
## data: mtga$GIHWR and mtga$Color
##
##
     В
             G
                     R.
                             U
## G 0.00049 -
## R 4.8e-05 1.00000 -
## U 2.3e-05 1.00000 1.00000 -
## W 0.18464 0.20329 0.07375 0.05047
##
## P value adjustment method: holm
# Shows similar results to the TukeyHSD across the board, although,
# W-U comes very close to being significant being at 0.05047.
```

4) RandomForest Model

```
# Now that we see that there are plenty of significant differences
# in each color (with black having a major advantage), now we want to
# see if we can build a model that can predict card colors by simply
# using their success rate, and we can accomplish this with
# RandomForest which should be able to differentiate between the
```

```
# the characteristics in success between each card and color.
library(randomForest)
## Warning: package 'randomForest' was built under R version 3.6.3
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
## Attaching package: 'randomForest'
## The following object is masked from 'package:ggplot2':
##
##
       margin
set.seed(1) # Set seed for replication
# We want a training and testing set with a 60/40 split.
train <- sample(dim(mtga)[1], dim(mtga)[1] * 0.60, replace = F)</pre>
mtg_train <- mtga[train, ] # Training set</pre>
mtg_test <- mtga[-train, ] # Testing set</pre>
mtg_rf <- randomForest(Color ~ ., mtg_train[, -1], mtry = 6,</pre>
                        importance = T, na.action = na.omit)
# Using the model, we'll the testing eubset to make predictions.
mtg_pred <- predict(mtg_rf, mtg_test)</pre>
varImpPlot(mtg_rf) # Shows the most important variable from top to bottom
```

mtg_rf


```
# Shows a table with the avccuacy. Successful prediction are from
# top-left to bottom-right with the other results being wrong prediction.
t_mtg <- table(mtga$Color[-train], mtg_pred)
t_mtg # Confusion matrix of predictions</pre>
```

```
##     B     G     R     U     W
##     B     36     23     25     19     23
##     G     15     37     20     28     15
##     R     28     27     36     16     32
##     U     26     20     7     49     14
##     W     30     29     28     15     35

accuracy <- sum(diag(t_mtg)) / sum(t_mtg)
accuracy # Calculation of the prediction accuracy.</pre>
```

[1] 0.3048973

mtg_pred

##

```
# As we can see, the model doesn't really make many accurate predictions
# despite the statistical tests showing plenty of differences in each
# color's win rates. But to be fair, the majority of the significance came from
# black being the most successful while most other color pairings were in
# similar standing. While the model failed, we can still come out from this with
# the knowledge that black is very successful, at least in the quick draft format.
```