Amendments to the Claims

This listing of the claims will replace all prior versions and listings of the claims in this application.

Listing of the Claims

Please amend the claims as follows:

- 1. (Cancelled)
- 2. (Cancelled)
- 3. (Currently Amended) A compound of formula I according to claim 1 wherein said compound is-selected from the group consisting of:
 - 4,8-dimethyl-2,3,4,9,10,11-hexahydro-1,6-dioxa-4,13-diaza-8-azonia-pentacen chloride; 8-ethyl-4-methyl-2,3,4,9,10,11-hexahydro-1,6-dioxa-4,13-diaza-8-azonia-pentacen chloride;
 - 4,8-dimethyl-3,8,9,10-tetrahydro-2H-1,6,11-trioxa-8,13-diaza-4-azonia-pentacen tetrafluoroborate;
 - 4,8-dimethyl-2,3,9,10-tetrahydro-4H-1,6-dioxa-11-thia-4,13-diaza-8-azonia-pentacen chloride; and
 - 8-(3-ethoxycarbonyl-propyl)-4-methyl-3,8,9,10-tetrahydro-2H-1,6,11-trioxa-8,13-diaza-4-azonia-pentacen chloride

in free base form or acid addition salt form.

- 4. (Currently Amended) A composition comprising a compound according to <u>claim 3of claim 1</u> and a pharmaceutically acceptable excipient or diluent.
- 5. (Currently Amended) A process for the production of a compound according to claim 3of formula I or a salt thereof, comprising the steps of reacting a phenol derivative of formula III

wherein the radicals and symbols A, X, R₁, R₂, R₅, R₆, R₁₄ and o have the <u>following</u> meanings: as defined in claim 1 for a compound of formula I,

p represents 0 or 1;

A represents $(CR_3R_4)_p$;

X represents CH, CH₂ or a divalent or trivalent heteroatom,;

o represents 0 or 1;

 R_{17} represents hydrogen or (C_{14}) alkyl;

 R_5 , R_{15} and R_{16} are independently of each other hydrogen, (C_{1-4}) alkyl, (C_{1-4}) alkyl, (C_{1-4}) alkyl or (reactive group)- (C_{1-4}) alkyl;

R₆ and R₁₄ denote independently of each other hydrogen, halogen, (C₁₋₄)alkyl, (C₁₋₄)alkylSO₂, SO₃H, carboxy, (C₁₋₄)alkoxy carbonyl, (C₁₋₄)alkoxy, OH or NR₁₅R₁₆; and R₁ and R₂ denote independently of each other hydrogen, (C₁₋₄)alkyl, carboxy, (C₁₋₄)alkoxy carbonyl or (C₁₋₄)alkoxy, or, when X is CH or CH₂ then R₁ and R₂ can also be OH or NR₁₅R₁₆;

with a nitroso or diazo compound of formula IV

wherein the radicals and symbols Q, Y, R₇, R₈, R₁₁, R₁₂, R₁₃ and m have the <u>following meanings:</u> as defined in claim 1 for a compound of formula I,

n represents 0 or 1;

Q represents $(CR_9R_{10})_n$;

Y represents CH, CH₂ or a divalent or trivalent heteroatom;

m represents 0 or 1;

 R_{17} represents hydrogen or (C_{1-4}) alkyl;

- R_8 , R_{15} and R_{16} are independently of each other hydrogen, (C_{1-4}) alkyl, (C_{1-4}) alkoxy, $R_{17}OC(O)$ - (C_{1-4}) alkyl or (reactive group)- (C_{1-4}) alkyl;
- R₇ and R₁₃ denote independently of each other hydrogen, halogen, (C₁₋₄)alkyl, (C₁₋₄)alkyl, (C₁₋₄)alkylSO₂, SO₃H, carboxy, (C₁₋₄)alkoxy carbonyl, (C₁₋₄)alkoxy, OH or NR₁₅R₁₆;
- R_{11} and R_{12} denote independently of each other hydrogen, (C_{1-4}) alkyl, carboxy, (C_{1-4}) alkoxy carbonyl or (C_{1-4}) alkoxy, or, when Y is CH or CH_2 then R_{11} , R_{12} can also be OH or $NR_{15}R_{16}$; and
- R_{18} represents oxo or p-nitrophenyl-N= and R_{19} represents hydroxy; and recovering the resulting compound of formula I in free base form or in form of an acid addition salt.
- 6. (Withdrawn Currently Amended) A method of labeling target structures in the brain comprising:
- (i) applying a composition comprising a compound according to claim 3 of formula I

wherein X and Y represent CH, CH₂ or a divalent or trivalent heteroatom under the proviso that X and Y are not simultaneously CH or CH₂;

m and o represent independently of each other 0 or 1, with the proviso that

- if m is 0 then the dotted line between Y and the neighboring C atom represents a bond and Y is CH or a trivalent heteroatom.
- if m is 1 then the dotted line between Y and the neighboring C atom is absent and Y is CH₂ or a divalent heteroatom.
- if o is 0 then the dotted line between X and the neighboring C atom represents a bond and X is CH or a trivalent heteroatom.

— if o is 1 then the dotted line between X and the neighboring C atom is absent and X is CH₂ or a divalent heteroatom;

A represents (CR₃R₄)_p and Q represents (CR₉R₁₀)_n;

n and p represent independently of each other 0 or 1;

R₆, R₇, R₁₃, and R₁₄ denote independently of each other hydrogen, halogen, (C₁₋₄)alkyl, (C₁₋₄)alkyl, (C₁₋₄)alkoxy, OH or NR₁₅R₁₆;

R₁, R₂, R₃, R₄, R₉, R₁₀, R₁₁ and R₁₂ denote independently of each other hydrogen, (C₁₋₄)alkyl, earboxy, (C₁₋₄)alkoxy carbonyl or (C₁₋₄)alkoxy, or, when X is CH or CH₂ then R₁ and R₂ can also be OH or NR₁₅R₁₆, or when Y is CH or CH₂ then R₁₁, R₁₂ can also be OH or NR₁₅R₁₆;

 R_{5} , R_{8} , R_{15} and R_{16} are independently of each other hydrogen, (C_{1-4}) alkyl, (C_{1-4}) alkoxy, $R_{17}OC(O)$ -- (C_{1-4}) alkyl or (reactive group)- (C_{1-4}) alkyl; and

R₁₇ represents hydrogen or (C₁₋₄)alkyl;

in free base or acid addition salt form, or

of formula II

wherein

R₆, R₇, R₁₃, and R₁₄ denote independently of each other hydrogen, halogen, (C₁₋₄)alkyl, (C₁₋₄)alkylSO₂, SO₃H, earboxy, (C₁₋₄)alkoxy earbonyl, (C₁₋₄)alkoxy, OH or NR₁₅R₁₆, and R₂₁ and R₂₂ are hydrogen, (C₁₋₄)alkyl, (C₁₋₄)alkoxy, phenyl, phenylalkyl, carboxy or halogen; R₁₄ and R₂₂ together with the carbon atoms to which they are attached can also form a saturated or unsaturated ring;

R₂₁ and R₁₃ together with the carbon atoms to which they are attached can also form a saturated or unsaturated ring:

 R_5 , R_8 , R_{20} and R_{23} are hydrogen, (C_{1-4})alkyl, (C_{1-4})alkoxy, polyoxyhydrocarbyl, phenyl, phenylalkyl;

- R₈ and R₂₀ together with the nitrogen atom to which they are attached can form a saturated or unsaturated ring,
- R₂₃-and R₅-together with the nitrogen atom to which they are attached can form a saturated or unsaturated ring,
- R₂₂-and R₂₃ together with the atoms to which they are attached can form a saturated or unsaturated ring,
- R₅ together with R₆ together with the atoms to which they are attached can form a saturated or unsaturated ring,
- R₇ together with R₈ together with the atoms to which they are attached can form a saturated or unsaturated ring,
- R₂₀ together with R₂₁ together with the atoms to which they are attached can form a saturated or unsaturated ring,
- (ii) allowing sufficient time for said compound to be chemically associated with the target structure in the brain, and
- (iii) detecting said compound using near-infrared radiation.
- 7. (Withdrawn Currently Amended) The method according to claim 6 wherein said target structures comprise [[are]] amyloid plaques.
- 8. (Withdrawn Currently Amended) The method according to claim 7, further comprising [[for]] identifying diseases related to amyloid plaque generation and/or aggregation.
- 9. (Withdrawn Currently Amended) The method according to claim 7, further comprising [[for]] identifying Alzheimer's disease.
- 10. (Cancelled)
- 11. (Cancelled)
- 12. (Cancelled)

- 13. (Withdrawn Currently Amended) A conjugate comprising a compound of formula I according to claim 3[[1]] covalently linked to a biomolecule through a reactive group.
- 14. (Withdrawn) A conjugate according to claim 13 wherein the biomolecule is selected from the group consisting of nucleoside, nucleotide, oligonucleotide, nucleic acid, protein, peptide, amino acid, polysaccharide, oligosaccharide, monosaccharide, drug or a small molecule having a molecular weight of less than 500.
- 15. (Withdrawn) A conjugate according to claim 13 capable of being detected using near-infrared radiation.
- 16. (New) A compound according to claim 3, wherein the compound is 4,8-dimethyl-2,3,4,9,10,11-hexahydro-1,6-dioxa-4,13-diaza-8-azonia-pentacen chloride.
- 17. (New) A compound according to claim 3, wherein the compound is 8-ethyl-4-methyl-2,3,4,9,10,11-hexahydro-1,6-dioxa-4,13-diaza-8-azonia-pentacen chloride.
- 18. (New) A compound according to claim 3, wherein the compound is 4,8-dimethyl-3,8,9,10-tetrahydro-2H-1,6,11-trioxa-8,13-diaza-4-azonia-pentacen tetrafluoroborate.
- 19. (New) A compound according to claim 3, wherein the compound is 4,8-dimethyl-2,3,9,10-tetrahydro-4H-1,6-dioxa-11-thia-4,13-diaza-8-azonia-pentacen chloride.
- 20. (New) A compound according to claim 3, wherein the compound is 8-(3-ethoxycarbonyl-propyl)-4-methyl-3,8,9,10-tetrahydro-2H-1,6,11-trioxa-8,13-diaza-4-azonia-pentacen chloride.