Employee Salaries Analysis and Regression Model

Project Overview

- Analysed employee salary dataset.
- Cleaned data, visualized key insights, and built regression models.
- Predicted employee salaries using different machine learning algorithms.

Dataset

- Source: Kaggle Employee Salaries.csv
- Contains: Employee salary, department, and other related attributes.

Libraries Used

- pandas
- numpy
- seaborn
- matplotlib
- sklearn

Data Cleaning

- Null Values:
 - Since there is only less than 1% of null values only there in the dataset.
 Checked and removed rows with null values.
- Duplicates:
 - o Identified and removed duplicate rows (more than 5%).

Data Visualization

- Distribution and Outliers:
 - o Box plots and histograms for numeric columns.
 - Insight: Higher salaries could be justified by the roles; no need to treat outliers.

• Department Analysis:

- o Average salary per department.
- o Insight: Significant variation in average salary across departments.
- Employees in the IGR,OLR,ECM departments get higher salary than other department employees.
- o Employees in the OEC,ABS,LIB department get lower salary.

• Department Occurrences:

- o Count of top 10 departments.
- o Insight: Police, Health and Human Services, Fire and Rescue Service, and Transportation Department have the highest number of employees.

• Gender Distribution and Pay Gap:

o Gender distribution and average base salary by gender.

 Insight: Number of male employees is 17% higher than female employees, and male employees have slightly higher salaries.

• Grade Analysis:

- Average base salary by grade.
- o Insight: Salary varies significantly based on grade.

EX0 EX1 EX2 are the highest paid grades whereas 5,10 and N5 are the least paid grades.

• Correlation Analysis:

- o Heatmap for feature correlation.
- o Insight: No independent feature has a high correlation with the dependent feature; the Department attribute has a high correlation with Division.

Example Visualizations

Example Visualizations:

- Box plots and histograms of numeric columns.
- Bar plots for average salary per department.
- Count plots for top departments and divisions.
- Gender distribution and average salary by gender.
- Correlation heatmap.

Data Preprocessing

- Encoding Categorical Variables:
 - o OrdinalEncoder for hierarchical features like Department and Grade.
 - o LabelEncoder for other categorical features like Gender and Division.

Regression Models

- 1. Linear Regression
- 2. Decision Tree Regressor
- 3. Random Forest Regressor
- 4. Gradient Boosting Regressor

Model Evaluation Metrics

- Mean Squared Error (MSE)
- Root Mean Squared Error (RMSE)
- Mean Absolute Error (MAE)
- R-squared (R2) Score

Insights

- Decision Tree Regressor:
 - Higher R2 score for training data but lower for test data when compared with Random forest model.
- Random Forest Regressor:
 - o Good R2 score for both training and test data, indicating better generalization.

Model Results

Random Forest Regressor Results:

• Training Data Metrics:

R2 Score: 0.96

• Test Data Metrics:

R2 Score: 0.89

• Values of test data predicted by the Random Forest model is closer to the actual values when comparing to the other models.

Conclusion

Conclusion:

- Analysis provides insights into salary factors.
- Demonstrates the effectiveness of ensemble methods like Random Forest.
- Future work: Explore additional features and refine models.

How to Run

How to Run:

- 1. Install required libraries.
- 2. Place Employee_Salaries.csv in the specified path.
- 3. Run the provided code for analysis and model building.

Thank You!