Przetwarzanie współbieżne. Programowanie równoległe i rozproszone Laboratorium 1.

Cel:

- przeprowadzenie pomiaru czasu CPU i zegarowego wykonania operacji
- organizacja środowiska tworzenia oprogramowania w systemie Linux (make, cc itp.)

Zajęcia_1:

- 1. Utworzenie katalogu roboczego (np. PR_lab).
- 2. Utworzenie podkatalogu roboczego (np. lab_1).
- 3. Skopiowanie do katalogu roboczego pliku "pomiar_czasu.tgz"
- 4. Rozpakowanie plików (tar xvzf pomiar_czasu.tgz): pliku Makefile sterującego programem "make", kodu źródłowego procedur pomiaru czasu: pomiar_czasu.c oraz odpowiadającego pliku nagłówkowego: pomiar czasu.h.
- 5. Pobranie programu moj_program.c, będącego prostym szablonem dla kodów źródłowych w C, zawierającego:
 - a) pętlę, w której realizowana jest operacja arytmetyczna
 - b) pętlę, w której realizowana jest operacja wejścia/wyjścia
- 6. Umożliwienie dokonania pomiaru czasu realizacji pętli poprzez:
 - a) włączenie pliku nagłówkowego pomiar_czasu.h z deklaracjami procedur pomiaru czasu
 - b) wywołanie przed wykonaniem pętli:
 - inicjuj_czas() (dla pętli pierwszej) oraz t1=czas_zegara(); t2=czas_CPU() (dla pętli drugiej)
 - c) wywołanie po wykonaniu pętli:
 - drukuj_czas() (dla pętli pierwszej) oraz t1=czas_zegara()-t1; t2=czas_CPU()-t2 (dla pętli drugiej)
 - d) w efekcie jedna z pętli ma być mierzona za pomocą jednej wersji, a druga za pomocą drugiej
- Modyfikacja pliku Makefile pozwalająca na skompilowanie napisanego programu z wykorzystaniem procedur pomiaru czasu
 - a) dodanie zależności dla końcowego pliku wykonywalnego i pliku pośredniego napisanego programu (plik pośredni ma być zależny także od pliku nagłówkowego "pomiar_czasu.h", a plik wynikowy od pliku pośredniego "pomiar_czasu.o")
 - b) dodanie poleceń umożliwiających utworzenie pliku wykonywalnego i pliku pośredniego dla napisanego programu
- 8. Kompilacja poleceniem "make"
- 9. Uruchomienie programu i dokonanie pomiaru czasu wykonania pętli za pomocą **obu** interfejsów.
- 10. Sformatowanie wydruku czasu realizacji drugiej pętli tak jak pierwszej (z wykorzystaniem funkcji printf).
- 11. Przeprowadzenie pomiaru czasu realizacji dla wersji do debugowania oraz wersji zoptymalizowanej.
- 12. Zgłoszenie wykonania pierwszej części zadania.
- 13. Analiza wyników: skąd biorą się różnice w czasach mierzonych dla obu pętli?

Dalsze kroki dla podniesienia oceny (w przypadku nie wykonania zadania w trakcie laboratorium należy je zrealizować przed kolejnymi zajęciami – jest to wymagane dla następnego tematu):

- 1. Przeniesienie plików związanych z pomiarem czasu do osobnego katalogu (o nazwie np. "pomiar_czasu") na tym samym poziomie co lab_1 (lab_1 i pomiar_czasu powinny być podkatalogami katalogu roboczego PR_lab). W katalogu lab_1 nie powinien pozostać żaden plik pomiar_czasu.*
- 2. Utworzenie w katalogu "pomiar_czasu" poleceniem "*ar -rs libpomiar_czasu.a pomiar_czasu.o*" statycznej biblioteki z procedurami pomiaru czasu (biblioteka i plik nagłówkowy pozostają w katalogu "pomiar_czasu")
- 3. Modyfikacja pliku Makefile, tak aby umożliwiał korzystanie z biblioteki dodanie opcji -I wskazującej na lokalizację plików nagłówowych i -L wskazującej na lokalizację bibliotek oraz wykomentowanie fragmentów związanych z kompilacją pomiar_czasu.c i linkowaniem pomiar_czasu.o (należy tez w pliku Makefile i kodzie źródłowym zmodyfikować lokalizację pliku nagłówkowego pomiar_czasu.h)
- 4. Wyczyszczenie poprzednich plików pośrednich poleceniem "make clean"
- 5. Ponowna kompilacja i wykonanie.

Warunki zaliczenia:

- 1. Obecność na zajęciach i wykonanie co najmniej kroków 1-12
- 2. Oddanie napisanego odręcznie sprawozdania z opisem zadania (cel, zrealizowane kroki, wnioski), kodem źródłowym procedury w C i zawartością pliku Makefile (obie wersje pliku Makefile dla kompilacji z wykorzystaniem pliku źródłowego "pomiar_czasu.c" i dla korzystania z biblioteki "libpomiar_czasu.a"). We wnioskach zwrócenie uwagi na różnice między czasem wykonania operacji arytmetycznych a czasem wykonania operacji we/wy oraz czasem CPU wykonywanych pętli i czasem zegara (zewnętrznym), a także czasami wersji do debugowania oraz wersji zoptymalizowanej.