MA3G6 Commutative algebra :: Lecture notes

Lecturer: Diane Maclagan

October 19, 2023

Contents

1	Gröbner basis	2
	1.1 Division algorithm	3
2	Noetherian ring	5
	2.1 Every ideal I in $\mathbb{C}[x_1,\ldots,x_n]$ has a finite Gröbner basis \ldots	7
3	General commutative rings	8

What is this module about?

- Continuation of MA249,
- Back engine for algebraic geometry and (algebraic) number theory,
- Connection to other areas (combinatorics, applied maths, ...),
- Fun in its own right.

Recall

Definition 0.0.1. A ring $(R, +, \times)$ is a set R with binary operations $+: R \times R \to R$, $\times: R \times R \to R$ such that

- 1. (R, +) is an abelian group (identity denoted 0_R or given clear context simply 0),
- 2. \times is associative and distributes over +,
- 3. $\exists 1_R \in R : 1_R \cdot a = a \cdot 1_R = a \ \forall a \in R$.

Within context of module, we always add a 4th axiom:

4. $ab = ba \ \forall a, b \in \mathbb{R}$ commutativity

Example 0.0.2. • \mathbb{Z}

- Polynomial ring
- $S = \mathbb{C}[x_1, \dots, x_n], \ f \in S, \ f = \sum_{u \in \mathbb{N}^n} c_u x^u, \ c_u \in \mathbb{C}, \ x^u = x_1^{u_1} x_2^{u_2} \cdots x_n^{u_n}$ (this is called multiindex notation) and only finitely many $c_u \neq 0$. e.g. $x_1 x_3 + 7 x_2 \in \mathbb{C}[x_1, x_2, x_3]$ is written as $x^{(1,0,1)} + 7x^{(0,2,0)}$. One can also replace \mathbb{C} with any field.

Definition 0.0.3. A ring homomorphism is a function $\varphi: R \to S$ where R, S rings that respects addition and multiplication: $\varphi(a+b) = \varphi(a) + \varphi(b)$, $\varphi(ab) = \varphi(a)\varphi(b)$ and $\varphi(1_R) = 1_S$.

The definition implies that homomorphisms preserve 0.

Definition 0.0.4. The kernel of a homomorphism φ is $\ker(\varphi) = \{a \in R : \varphi(a) = 0_S\}$.

Definition 0.0.5. A nonempty $I \subseteq R$ is an *ideal* if $a, b \in I \Rightarrow a + b \in I$ and $a \in I, r \in R \Rightarrow ra \in I$.

It immediately follows from the definition that kernel of $\varphi: R \to S$ is an ideal of R.

Example 0.0.6. $\varphi : \mathbb{Z} \to \mathbb{Z}/5\mathbb{Z}$ by $\varphi(n) = n \mod 5$.

Definition 0.0.7. We say I is generated by $f_1, \ldots, f_s \in R$ if

$$I = \left\{ \sum_{i=1}^{s} h_i f_i : h_i \in R \right\} =: \langle f_1, \dots, f_s \rangle$$

More generally, I is generated by $G \subseteq R$ if

$$I = \left\{ \sum_{i=1}^{s} h_i f_i : h_i \in R, f_i \in G, s \ge 0 \right\}.$$

This is closed under addition and multiplication by an element of R, hence an ideal.

Week 1, lecture 2 starts here

1 Gröbner basis

Example 1.0.1 (Motivating questions). 1. Is $14 \in \langle 6, 26 \rangle \subseteq \mathbb{Z}$? Yes, since $14 = -2 \times 6 + 26$. Do note that \mathbb{Z} is a PID, and $\langle 6, 26 \rangle = \langle 2 \rangle$ where $2 = \gcd(6, 26)$.

- 2. Is $x + 7 \in \langle x^2 4x + 3, x^2 + x 2 \rangle \subseteq \mathbb{Z}[x]$? No, since $x^2 4x + 3 = (x 1)(x 3)$ and $x^2 + x 2 = (x 1)(x + 2)$, and $x 1 \nmid x + 7$.
- 3. Is $x + 3y 2z \in \langle x + y z, y z \rangle$? No, since any linear combination of the two generators have same coefficients for y and z. In linear algebra jargon, (1,3,-2) is not in rowspace of $\begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & -1 \end{pmatrix}$.

We do have enough specific knowledge to solve these, but not their general forms.

Example 1.0.2. Is $xy^2 - x \in \langle xy + 1, y^2 - 1 \rangle$?

If we were not careful, we would try to divide $xy^2 - x$ by xy + 1 which leads to $xy^2 - x = y(xy + 1) + (-x - y)$, a dead end. But note that $xy^2 - x = x(y^2 - 1)$, which means it is in the ideal.

We now want to know how we can be 'careful'.

Definition 1.0.3. A term order (or monomial order) is a total order on monomials x^u in $S = K[x_1, \ldots, x_n]$ (where K is a field) such that

- 1. $1 \prec x^u \ \forall u \neq 0$
- 2. $x^u \prec x^v \Rightarrow x^{u+w} \prec x^{v+w} \ \forall u, v, w \in \mathbb{N}^n$

Example 1.0.4. 1. Lexicographic term order: $x^u \prec x^v$ if the first nonzero element of v-u is positive.

e.g. $x_2^2 \prec x_2^{10} \prec x_1 x_3 \prec x_1^2$. We can write them in multiindex notation:

$$x^{(0,2,0)}, x^{(0,10,0)}, x^{(1,0,1)}, x^{(2,0,0)}$$

and the result is clear. This is analogous to how we order words in a dictionary.

- 2. Degree lexicographic order: $x^u \prec x^v$ if $\deg(x^u) < \deg(x^v) = v_1 + \ldots + v_n$, or if they are equal, $x^u \prec_{\text{lex}} x^v$. e.g. $x_2^2 \prec x_1 x_3 \prec x_1^2 \prec x_2^{10}$.
- 3. (Degree) reverse lexicographic order (revlex): $x^u \prec x^v$ if $\deg(x^u) < \deg(x^v) = v_1 + \ldots + v_n$, or if they are equal, the last nonzero entry of v-u is negative. e.g. $x_1x_3 \prec x_2^2 \prec x_1^2 \prec x_2^{10}$.

Definition 1.0.5. Fix a term order \prec on $K[x_1, \ldots, x_n]$. The *initial term* in $_{\prec}(f)$ of a polynomial $f = \sum c_u x^u$ is $c_v x^v$ if $x^v = \max_{\prec} \{x^u : c_u \neq 0\}$.

Example 1.0.6. Let $f = 3x^2 - 8xz^9 + 9y^{10}$. Then

- If $\leq = \text{lex}$, in $\zeta(f) = 3x^2$
- If $\prec = \text{deglex}, \text{in}_{\prec}(f) = -8xz^9$
- If $\prec = \text{revlex}, \text{in}_{\prec}(f) = 9y^{10}$

Definition 1.0.7. Let $I \subseteq S$ be an ideal. The *initial ideal* of I is $\operatorname{in}_{\prec}(I) := \langle \operatorname{in}_{\prec}(f) : f \in I \rangle$.

Remark. If $I = \langle f_1, \dots, f_s \rangle$ then $\langle \operatorname{in}_{\prec}(f_1), \dots, \operatorname{in}_{\prec}(f_s) \rangle \subseteq \operatorname{in}_{\prec}(I)$, but not necessarily equal.

Example 1.0.8. $I = \langle x+y+z, x+2y+3z \rangle$. Then $\operatorname{in}_{\prec}(f_1) = \operatorname{in}_{\prec}(f_2) = x$, so $\langle \operatorname{in}_{\prec}(f_1) \operatorname{in}_{\prec}(f_2) \rangle = \langle x \rangle$, but $y+2z \in I$, $\operatorname{in}_{\prec}(y+2z) = y \notin \langle x \rangle$.

Definition 1.0.9. A set $\{g_1, \ldots, g_s\} \subseteq I$ is a *Gröbner basis* for I if $\operatorname{in}_{\prec}(I) = \langle \operatorname{in}_{\prec}(g_1), \ldots, \operatorname{in}_{\prec}(g_s) \rangle$.

With this language, we can express Example 1.0.8 by saying $\{x + y + z, x + 2y + 3z\}$ is not a Gröbner basis of the ideal'. We will see that every ideal in S has a Gröbner basis, and long division using a Gröbner basis solves the ideal membership problem $(f \in I)$ iff the remainder on dividing by the Gröbner basis is 0).

Week 2, lecture 1 starts here

1.1 Division algorithm

Let $S = K[x_1, \ldots, x_n]$.

- Input: $f_1, \ldots, f_s, f \in S$ and \prec the term order
- Output: an expression $f = \sum_{i=1}^{s} h_i f_i + r$, where
 - 1. $h_i, r \in S, r = \sum c_u x^u$
 - 2. If $c_n \neq 0$, then x^n is not divisible by any $\operatorname{in}_{\prec}(f_i)$
 - 3. If $\operatorname{in}_{\prec}(f) = c_u x^u$, $\operatorname{in}_{\prec}(h_i f_i) = c_{v_i} x^{v_i}$ then $x^u \succeq x^{v_i} \ \forall i$
- The algorithm:
 - 1. Initialize: $h_1, ..., h_s = 0, r = 0, p = f, f = p + \sum h_i f_i + r$.
 - 2. Loop: At each stage, if $\operatorname{in}_{\prec}(p)$ is divisible by some $\operatorname{in}_{\prec}(f_i)$, subtract $\frac{\operatorname{in}_{\prec}(p)}{\operatorname{in}_{\prec}(f_i)}f_i$ from p and add $\frac{\operatorname{in}_{\prec}(p)}{\operatorname{in}_{\prec}(f_i)}$ to h_i .

If $\operatorname{in}_{\prec}(p)$ is not divisible by any $\operatorname{in}_{\prec}(f_i)$, subtract it from p and add it to r.

3. Termination: stop when p = 0 and output h_1, \ldots, h_s, r .

Example 1.1.1. $f = \underline{x} + 2y + 3z$, $f_1 = \underline{x} + y + z$, $f_2 = 5y + 3z$, term order is \prec_{lex} and $x \succ y \succ z$.

- 1. Initialize: $h_1 = h_2 = r = 0$, p = x + 2y + 3z
- 2. 1st loop: The underlined are initial terms, and $\operatorname{in}_{\prec}(p) = x$ is divisible by $\operatorname{in}_{\prec}(f_1) = x$, so

$$p = p - \frac{\operatorname{in}_{\prec}(p)}{\operatorname{in}_{\prec}(f_1)} f_1 = x + 2y + 3z - (x + y + z) = y + 2z$$

and $h_1 = 0 + \frac{\operatorname{in}_{\prec}(p)}{\operatorname{in}_{\prec}(f_1)} = 1$.

3. 2nd loop: $\operatorname{in}_{\prec}(p) = y$ is divisible by $\operatorname{in}_{\prec}(f_2) = 5y$, so

$$p = p - \frac{\operatorname{in}_{\prec}(p)}{\operatorname{in}_{\prec}(f_2)} f_2 = y + 2z - \frac{1}{5} (5y + 3z) = \frac{7}{5} z$$

and $h_2 = 0 + \frac{\operatorname{in}_{\prec}(p)}{\operatorname{in}_{\prec}(f_2)} = \frac{1}{5}$.

4. Termination: $\operatorname{in}_{\prec}(p) = \frac{7}{5}z$ is not divisible by any $\operatorname{in}_{\prec}(f_i)$, so

$$p - \text{in}_{\prec}(p) = 0, \ r = \text{in}_{\prec}(p) = \frac{7}{5}z$$

and we have the expression

$$x + 2y + 3z = 1(x + y + z) + \frac{1}{5}(5y + 3z) + \frac{7}{5}z.$$

Example 1.1.2. Divide $f = x^2$ by $f_1 = x + y + z$ and $f_2 = y - z$ with \prec_{lex} and $x \succ y \succ z$.

- 1. $h_1 = h_2 = r = 0$, $p = f = x^2$
- 2. $p = p \frac{\ln_{\prec}(p)}{\ln_{\prec}(f_1)} f_1 = x^2 \frac{x^2}{x} (x + y + z) = -xy xz, \ h_1 = 0 + x = x$
- 3. $p = p \frac{\inf_{x \to (p)} f_1}{\inf_{x \to (f_1)} f_1} = -xy xz (-y)(x + y + z) = -xz + y^2 + yz, \ h_1 = h_1 y = x y$
- 4. $p = p \frac{\inf_{x \in (p)} f_1}{\inf_{x \in (f_1)} f_1} = -xz + y^2 + yz + z(x+y+z) = y^2 + 2yz + z^2, \ h_1 = h_1 z = x y z$
- 5. $p = p \frac{\ln_{\prec}(p)}{\ln_{\prec}(f_2)} f_2 = y^2 + 2yz + z^2 y(y z) = 3yz + z^2, \ h_2 = 0 + y = y$
- 6. $p = p \frac{\ln \langle (p) \rangle}{\ln \langle (f_2) \rangle} f_2 = 3yz + z^2 3z(y-z) = 4z^2, \ h_2 = h_2 + 3z = y + 3z$
- 7. $4z^2$ not divisible by any $\operatorname{in}_{\prec}(f_i)$, so terminate. $p=p-\operatorname{in}_{\prec}(p),\ r=\operatorname{in}_{\prec}(p)$, output $h_1=x-y-z,\ h_2=y+3z,\ r=4z^2$, and check:

$$x^{2} = (x - y - z)(x + y + z) + (y + 3z)(y - z) + 4z^{2}.$$

The coming punchline is that if f_i 's are a Gröbner basis then remainder r is unique.

Lemma 1.1.3. Let $I = \langle x^u : u \in A \rangle$ for some $A \subseteq \mathbb{N}^n$, then

- 1. $x^v \in I$ iff $x^u \mid x^v$ for some $u \in A$
- 2. if $f = \sum c_v x^v \in I$, then each x^v is divisible by x^u for some $u \in A$

Proposition 1.1.4. If $\{g_1, \ldots, g_s\}$ is a Gröbner basis for I with respect to \prec , then $f \in I$ iff the division algorithm dividing f by g_1, \ldots, g_s gives remainder 0.

Proof. \Rightarrow Division algorithm writes $f = \sum h_i g_i + r$, so if r = 0 we have $f \in I$.

 \Leftarrow We prove the contrapositive: suppose $r \neq 0$. If $f \in I$ then $r \in I$, so $\operatorname{in}_{\prec}(r) \in \operatorname{in}_{\prec}(I)$. But by construction, $\operatorname{in}_{\prec}(r)$ is not divisible by $\operatorname{in}_{\prec}(g_i)$ for any i. This contradicts that $\operatorname{in}_{\prec}(I) = \langle \operatorname{in}_{\prec}(g_1), \ldots, \operatorname{in}_{\prec}(g_s) \rangle$.

Week 2, lecture 2 starts here (Chunyi Li)

2 Noetherian ring

Definition 2.0.1. A ring R is *Noetherian* if every ideal of R is finitely generated.

Example 2.0.2. 1. \mathbb{R} and \mathbb{C} are fields, so they only have two ideals $\langle 0 \rangle, \langle 1 \rangle$, so Noetherian.

- 2. \mathbb{Z} and $\mathbb{C}[x]$ are principal ideal domains, this implies they are Noetherian.
- 3. $\mathbb{C}[x,y]$ and $\mathbb{Z}[x]$?
- 4. $R := \{f : \mathbb{R} \to \mathbb{R} : f \text{ continuous}\}, \text{ probably not}?$
- 5. $\mathbb{C}[x_1,\ldots,x_n,\ldots]=\bigcup_{n=1}^{\infty}\mathbb{C}[x_1,\ldots,x_n]$, a polynomial ring which has infinite variables but finite nonzero terms.

Definition 2.0.3. A ring R satisfies ascending chain condition (ACC) if every chain of ideals $I_1 \subseteq I_2 \subseteq \cdots \subseteq I_n \subseteq \cdots$ eventually stabilizes, i.e. $\exists n \in \mathbb{N} : I_m = I_n \ \forall m \geq n$, i.e. \nexists strictly ascending chain of ideals $I_1 \subsetneq I_2 \subsetneq \cdots \subsetneq I_n \subsetneq$.

Proposition 2.0.4. R is Noetherian iff R satisfies ACC.

- Proof. \Rightarrow Let $I_1 \subseteq I_2 \subseteq \cdots \subseteq I_n \subseteq \cdots \lhd R$ and consider $J = \bigcup_{k=1}^{\infty} I_k$. Note $\forall r, s \in J, r \in I_j, s \in I_t$. WLOG assume $j \leq t$, then $r, s \in I_t$ and $r \pm s \in I_t \subset J$, and more generally $J \lhd R$. Since J is finitely generated, we write $J = \langle f_1, \ldots, f_m \rangle$. By definition $f_i \in I_{n_i}$, so $\exists N : f_i \in I_N \ \forall i$, implying $J \subseteq I_N$. But J is already the union of all ideals, so the chain must stabilize at I_N .
 - \Leftarrow Let $I \lhd R$ and suppose I is not finitely generated. We know $\exists f_1 \neq 0 \in I$ and $I \neq \langle f_1 \rangle$, also $\exists f_2 \in I \setminus \langle f_1 \rangle$ and $I \neq \langle f_1, f_2 \rangle$. We can keep doing this and in general

$$\exists f_{n+1} \subset I \setminus \langle f_1, \dots, f_n \rangle \Rightarrow I \neq \langle f_1, \dots, f_{n+1} \rangle \quad \forall n \in \mathbb{N}$$

This gives us a strictly ascending chain $\langle f_1 \rangle \subsetneq \langle f_1, f_2 \rangle \subsetneq \cdots \subsetneq \langle f_1, \dots, f_n \rangle \subsetneq \cdots$ which is a contradiction.

Example 2.0.5. 1. We now know the 4th of Example 2.0.2 is not Noetherian, since

$$\langle \sin x \rangle \subsetneq \langle \sin \frac{x}{2} \rangle \subsetneq \langle \sin \frac{x}{4} \rangle \subsetneq \cdots \subsetneq \langle \sin \frac{x}{2^n} \rangle \subsetneq \cdots$$

is a strictly ascending chain or ideals.

2. Also,

$$\langle x_1 \rangle \subsetneq \langle x_1, x_2 \rangle \subsetneq \cdots \subsetneq \langle x_1, \dots, x_n \rangle \subsetneq \cdots$$

so the 5th is also not Noetherian.

 $r \mapsto r + I$. Note that $I = \ker \varphi$, so this is a isomorphism.

Theorem 2.0.6 (1st isomorphism theorem). Let R, S be rings. If $\varphi : R \to S$ is a ring homomorphism then im $\varphi \cong R/\ker \varphi$. If φ is surjective then im $\varphi = S$ so we have $S \cong R/\ker \varphi$. $\forall I \lhd R, R/I$ is a ring, and there is a natural surjective homomorphism $\varphi : R \to R/I$ defined by

Theorem 2.0.7 (4th isomorphism theorem). For the same φ as above, there is a 1-1 correspondence

$$\varphi^{-1}: \{J \lhd R/I\} \to \{\tilde{J} \lhd R: J \supseteq I \lhd R\}.$$

Proposition 2.0.8. If R is Noetherian then R/I is Noetherian $\forall I \triangleleft R$.

Week 2, lecture 3 starts here

Proof. Suppose $\exists J_1 \subsetneq \cdots \subsetneq J_n \subsetneq \cdots \lhd R/I$. Then by 4th isomorphism theorem,

$$\exists \varphi^{-1}(J_1) \subsetneq \cdots \subsetneq \varphi^{-1}(J_n) \subsetneq \cdots \lhd R,$$

a contradiction. \Box

Theorem 2.0.9 (Hilbert basis theorem). If R is Noetherian then R[x] is Noetherian.

Proof (nonexaminable). Let $I \triangleleft R[x]$. Suppose I is not finitely generated. $\exists f_1 \in I$ with the minimal degree such that $I \neq \langle f_1 \rangle$. Now choose $f_2 \in I \setminus \langle f_1 \rangle$ with the minimal degree so that $I \neq \langle f_1, f_2 \rangle$. We proceed inductively and have

$$\exists f_{n+1} \in I \setminus \langle f_1, \dots, f_n \rangle$$
 with minimal degree so that $I \neq \langle f_1, \dots, f_{n+1} \rangle$.

For every f_i we can write $f_i = r_i x^{n_i}$ +lower degree terms and $n_1 \leq n_2 \leq \cdots n_m \leq \cdots$. We now claim that

$$\langle r_1 \rangle \subsetneq \langle r_1, r_2 \rangle \subsetneq \cdots \subsetneq \langle r_1, \dots, r_m \rangle \subsetneq \cdots$$

is a strictly ascending chain of ideals in R, which gives a contradiction. To see this, suppose $r_{m+1} \in \langle r_1, \ldots, r_m \rangle$, i.e.

$$r_{m+1} = s_1 r_1 + \dots + s_m r_m$$
 for some $s_1, \dots, s_m \in R$,

Now consider

$$\tilde{f}_{m+1}(x) := f_{m+1}(x) - s_1 x^{n_{m+1} - n_1} f_1(x) - s_2 x^{n_{m+1} - n_2} f_2(x) - \dots - s_m x^{n_{m+1} - n_m} f_m(x),$$

whose leading terms cancel and $\deg \tilde{f}_{m+1} < \deg f_{m+1}$. But \tilde{f}_{m+1} still satisfies that it's not in $\langle f_1, \ldots, f_m \rangle$, contradicting the minimality of $\deg f_{m+1}$.

Corollary 2.0.10. If R is Noetherian then $R[x_1, \ldots, x_n]$ is Noetherian.

Proof. One knows R[x] is Noetherian. Now assume $R[x_1, \ldots, x_m]$ is Noetherian. Then

$$R[x_1,\ldots,x_{m+1}] = (R[x_1,\ldots,x_m])[x_{m+1}]$$

is Noetherian, so by induction one has what's desired.

Example 2.0.11. 1. \mathbb{Z} is a PID, so Noetherian, so $\mathbb{Z}[x]$ is Noetherian.

- 2. $\mathbb{Z}[\sqrt{5}] \cong \mathbb{Z}[x]/\langle x^2 5 \rangle$ is Noetherian.
- 3. $\mathbb{Z}[\sqrt{5}, \sqrt[4]{7}] \cong \mathbb{Z}[x, y]/\langle x^2 5, x^4 7 \rangle$ is Noetherian.
- 4. We have already seen that all fields are Noetherian, and any ring is a subring of its field of fractions. So it's not true that a subring of a Noetherian ring is Noetherian.

Definition 2.0.12. An ideal $I \triangleleft R$ is *prime* if

- 1. $I \neq R$
- 2. $\forall fg \in I, f \text{ or } g \in I$

Example 2.0.13. In \mathbb{Z} , $\langle p \rangle$ where p prime is a prime ideal by Euclid's lemma. Also $\langle 0 \rangle$ is prime, but $\langle 1 \rangle$ is not since it's the whole ring.

Week 3, lecture 1 starts here

2.1 Every ideal I in $\mathbb{C}[x_1,\ldots,x_n]$ has a finite Gröbner basis

Proof of Lemma 1.1.3. Note that 1 is a special case of 2, so it suffices to prove the latter.

If $f \in I$ write $f = \sum c_v x^v = \sum_{u \in A} h_u x^u$ with only finitely many $h_u \neq 0$. We expand the RHS as a sum of monomials, each monomial is divisible by some x^u with $u \in A$. Hence the same is true for x^v with $c_v \neq 0$ since these are terms remaining after cancellation.

Theorem 2.1.1 (Dickson's lemma). Let $I = \langle x^u : u \in A \rangle \subseteq S = K[x_1, \dots, x_n]$ for some $A \subseteq \mathbb{N}^n$. Then $\exists a_1, \dots, a_s \in A$ with $I = \langle x^{a_1}, \dots, x^{a_s} \rangle$.

Before diving into the proof let's think about two special cases.

- n=1 Consider $I=\langle x_1^3,x_1^7,x_1^{70000},x_1^{1234},\ldots\rangle$. One can see that x_1^3 is sufficient to generate the whole I.
- n=2 Consider $u,v\in\mathbb{N}^2$ as points on a lattice grid. Then x^u is divisible by x^v if it's top right of it, so we can get rid of unnecessary ones in a similar fashion.

Now let's turn these intuitions into a general proof.

Proof by induction. Straightforwardly, when $n=1,\ I=\langle x_1^{\alpha_1}\rangle$ for $\alpha=\min\{j:x_j^I\}$. Now assume n>1 and the theorem is true for n-1.

Write the variables in S as x_1, \ldots, x_{n-1}, y and let I be an ideal in S. Let $J = \langle x^u : x^u y^c \in I$ for some $c \geq 0 \rangle \subseteq K[x_1, \ldots, x_{n-1}]$. By inductive hypothesis, J is finitely generated, so write $J = \langle x^{a_{m_1}}, \ldots, x^{a_{m_r}} \rangle$ for $x^{a_{m_i}} y^{m_i} \in I$.

Let $m = \max\{m_i\}$. For $0 \le l \le m-1$, let $J_l = \langle x^u : x^u y^l \in I \rangle \subseteq K[x_1, \ldots, x_{n-1}]$. Again J_l is finitely generated and write $J_l = \langle x^{a_{j_1}}, \ldots, x^{a_{j_{r_l}}} \rangle$. We claim that I is generated by $\{x^{a_{m_i}}y^{m_i}: 1 \le i \le r\} \cup \{x^{a_{j_i}}y^j: 1 \le j \le m-1, 1 \le i \le r_j\}$. Indeed, if $x^u y^j \in I$ then either

- 1. j < m, so $x^u \in J_i$, so $x^{j_i} \mid x^u$ for some i, and so $x^{a_{j_i}}y^j \mid x^uy^j$.
- 2. $j \geq m$, so $x^u \in J$, so $x^{a_{m_i}} \mid x^u$ for some i, and so since $m_i \leq m$, $x^{a_{m_i}} y^{m_i} \mid x^u y^j$.

So every monomial in I is a multiple of one of the claimed generators.

If any of these generators is not in our original set A, we can replace it by a monomial with exponent in A, and by Lemma 1.1.3 if they generate all monomials then they generate the whole I.

Week 3, lecture 2 starts here

Corollary 2.1.2. Every ideal in $S = K[x_1, \ldots, x_n]$ has a finite Gröbner basis with respect to a term order.

Proof. The initial ideal in $\operatorname{in}_{\prec}(I) = \langle \operatorname{in}_{\prec}(f) : f \in I \rangle$ is a monomial ideal (using that coefficients can be omitted since we are in a field). By Dickson's lemma, there are $g_1, \ldots, g_s \in I$ with $\langle \operatorname{in}_{\prec}(g_1), \ldots, \operatorname{in}_{\prec}(g_s) \rangle = \operatorname{in}_{\prec}(I)$. Thus $\{g_1, \ldots, g_s\}$ is a Gröbner basis for I by definition. \square

Proposition 2.1.3. If $\{g_1, \ldots, g_2\}$ is a Gröbner basis for I with respect to \prec , then $I = \langle g_1, \ldots, g_2 \rangle$.

Proof. By division algorithm, any $f \in I$ can be written as $f = \sum h_i g_i$ with remainder 0 since $f \in I$. It follows that $f \in \langle g_1, \dots, g_s \rangle$, which gives the desired since f is arbitrary. \square

Corollary 2.1.4 (Special case of Hilbert basis theorem). Every ideal in $S = K[x_1, \ldots, x_n]$ is finitely generated.

Proof. Immediate from previous two results.

Exercise 2.1.5. Claim: $y = \left\{\underline{x_2^2} - x_1x_3, \underline{x_2x_3} - x_1x_4, \underline{x_3^2} - x_2x_4\right\}$ is a Gröbner basis with respect to revlex. Find the remainder on dividing $x_2^2x_3^2$ by y.

$$f_1: x_2^2 x_3^2 \xrightarrow{f_1} x_1 x_3 \xrightarrow{f_3} x_1 x_2 x_3 x_4 \xrightarrow{f_2} x_1^2 x_4^2$$

$$f_2: x_2^2 x_3^2 \xrightarrow{f_2} x_1 x_2 x_3 x_4 \xrightarrow{f_2} x_1^2 x_4^2$$

$$f_3: x_2^2 x_3^2 \xrightarrow{f_3} x_2^3 x_4 \xrightarrow{f_1} x_1 x_2 x_3 x_4 \xrightarrow{f_2} x_1^2 x_4^2$$

The remainders are the same: this shouldn't surprise us. But we haven't proved it, so why did this work?

3 General commutative rings

Definition 3.0.1. An ideal $I \subseteq R$ is *prime* if it's proper and $f, g \in I \Rightarrow f$ or $g \in I$.

Notation. Spec $(R) := \{ \text{prime ideals in } R \}.$

Example 3.0.2. $R = \mathbb{Z}/6\mathbb{Z}$, $\operatorname{Spec}(R) = \{\langle 2 \rangle, \langle 3 \rangle\}$. Note that although 5 is prime but $\langle 5 \rangle$ is not a prime ideal since $5^2 = 1$ in $\mathbb{Z}/6\mathbb{Z}$ so it's not proper.

Lemma 3.0.3. An ideal $P \subseteq R$ is prime iff R/P is a domain.

Proof. P is prime iff

$$fg \in P \Rightarrow f \text{ or } g \in P.$$
 (*)

R/P is a domain iff $fg + P = 0 + P \Rightarrow f + P$ or g + P = 0 + P, which is equivalent to (*). \square

Definition 3.0.4. An ideal $I \subseteq R$ is maximal if it's proper and there is no ideal $J : I \subsetneq J \subsetneq R$.

Do maximal ideals always exist? Yes, if we assume axiom of choice.

Recall: a partially ordered set is a set S with transitive, reflexive binary relation \leq (e.g. \leq on $\mathbb R$ or power set (inclusion)). Given a subset $U \subseteq S$, an upper bound for U is $s \in S$ with $u \leq s \ \forall u \in U$. An element $m \in S$ is maximal if $\nexists s \in S$ with s > m.

Axiom 3.0.5 (Zorn's lemma). Let S be a nonempty partially ordered set with the property that any totally ordered subset $U \subseteq S$ (a 'chain') has an upper bound. Then S has a maximal element.

This is equivalent to:

- 1. The axiom of choice: every product $\prod_{a \in A} S_a$ of nonempty sets is nonempty.
- 2. Well-ordering principle: every set can be well-ordered.

Week 3, lecture 3 starts here

Proposition 3.0.6. Let R be a ring and let I be a proper ideal of R. Then there is a maximal ideal M containing I.

Proof. Let \mathcal{I} be the set of proper ideals in R containing I, ordered by inclusion $(J_1 \leq J_2)$ if $J_1 \subseteq J_2$). Note that if $\{J_\alpha : \alpha \in A\}$ is a totally ordered (any two are comparable) subset of \mathcal{I} then $J = \bigcup_{\alpha \in A} J_\alpha$ is an ideal. [$\frac{1}{2}$ this uses the total order, e.g. in K[x,y], $\langle x \rangle \cup \langle y \rangle$ is not an ideal since x + y is not in there.] Since $J_\alpha \subseteq J \ \forall \alpha$ and $I \subseteq J$, one has $J \in \mathcal{I}$. Hence J is an upper bound for $\{J_\alpha\}$. Thus by Zorn's lemma, \mathcal{I} has a maximal element.

Lemma 3.0.7. $I \subseteq R$ is maximal iff R/I is a field.

Proof. Exercise (see Algebra II notes).

Corollary 3.0.8. Maximal ideals are prime.

Proof. If I is maximal then R/I is a field, and in particular a domain.

Definition 3.0.9. A ring R is *local* if it has a unique maximal ideal M.

Example 3.0.10. Every field is local. \mathbb{Z} is not local since $\langle 2 \rangle, \langle 3 \rangle$ are both maximal.

Consider

$$\mathbb{Z}_{\langle 2 \rangle} := \left\{ \frac{a}{b} \in \mathbb{Q} : a, b \in \mathbb{Z}, \ 2 \nmid b \right\}.$$

This is a subring of \mathbb{Q} . Note that proper ideals are those generated by even integers, but $\langle 6 \rangle = \langle 2 \rangle$ since $\frac{1}{3} \in \mathbb{Z}_{\langle 2 \rangle}$. So in fact they are all generated by powers of 2, and $\langle 2 \rangle$ is maximal, so $\mathbb{Z}_{\langle 2 \rangle}$ is local.

 $\mathbb{C}[x]$ is not local, since we can build (at least two) quotient rings which is a field by first isomorphism theorem, e.g. $\varphi_1: x \to 1$ and $\varphi_2: x \to i$.

Now consider

$$\mathbb{C}[x]_{\langle x \rangle} := \left\{ \frac{f}{g} : f,g \in \mathbb{C}[x], \ x \nmid g \right\}.$$

This is analogous to $\mathbb{Z}_{\langle x \rangle}$ and its proper ideals are of the form $\langle x^j \rangle$ with $\langle x \rangle$ being maximal.

Definition 3.0.11. A set $U \subseteq R$ is multiplicatively closed if $1 \in U$ and $f, g \in U \Rightarrow fg \in U$.

Example 3.0.12. In any R with $f \in R$, $U = \{1, f, f^2, \ldots\}$ is multiplicatively closed.

Suppose $P \subseteq R$ is prime. Then $1 \notin P$, i.e. $1 \in R \setminus P$, and $fg \in P \Rightarrow f$ or $g \in P$, so $f, g \in R \setminus P \Rightarrow fg \in R \setminus P$. By definition this means R/P is multiplicatively closed.

 $U = \{r \in R : \exists s \in R : rs = 1\} = \{\text{units of } R\}$ is multiplicatively closed. In particular, if R is a domain then $U = R \setminus \{0\}$ is.

Definition 3.0.13. Let R be a ring and let $U \subseteq R$ be multiplicatively closed. Then

$$R\left[U^{-1}\right]:=\left\{\frac{r}{u}:r\in R,u\in U\right\}$$

modulo the equivalence relation \sim

$$\frac{r}{u} \sim \frac{r'}{u'}$$
 if $\exists \tilde{u} \in U : \tilde{u}(ru' - r'u) = 0$.

Example 3.0.14. $R = \mathbb{Z}, \ U = \mathbb{Z} \setminus \{0\}$. Then $\mathbb{R} \left[U^{-1} \right] = \mathbb{Q}$. We don't have to worry about the \tilde{u} condition since \mathbb{Z} is a domain.

 $R = \mathbb{Z}, \ U = \mathbb{Z} \backslash \langle 2 \rangle. \ \text{Then} \ R[U^{-1}] = \mathbb{Z}_{\langle 2 \rangle}.$

 $R=\mathbb{C}[x],\ U=\mathbb{C}[x]\backslash\langle x\rangle.$ Then $R[U^{-1}]=\mathbb{C}[x]_{\langle x\rangle}.$