

## S.E. (Comp.) (Semester – III) (RC) Examination, November/December 2010 LOGIC DESIGN

Duration: 3 Hours
Total Marks: 100

Instructions: i) Answer five full questions, atleast one full question from each Module.

ii) Make suitable assumptions wherever necessary.

## MODULE – I

| 1. |    | Represent the following decimal numbers in eight bit i) Sign magnitude form ii) Sign 1's complement form and iii) Sign 2's complement form i) +27 |               |
|----|----|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|    |    | ii) - 36.                                                                                                                                         | 6             |
|    | b) | What is meant by reflected code? Give an example.                                                                                                 | 4             |
|    | c) | Draw the logic diagram and construct the truth table for the following expression:                                                                |               |
|    |    | $Y = (AB)(\overline{A+B}) + \overline{EF}$                                                                                                        | 4             |
|    | d) | Obtain the set of prime implicants using the tabular method for the expression                                                                    |               |
|    |    | $\sum$ m (0, 2, 3, 6, 7, 8, 10, 11, 12, 15).                                                                                                      | 6             |
| 2. | a) | Detect and correct errors, if any in the following even parity Hamming code                                                                       |               |
|    |    | word 0 1 0 1 1 0 1.                                                                                                                               | 6             |
|    |    | Obtain the minimal POS expression for $\pi$ M (0, 1, 2, 4, 5, 6, 9, 11, 12, 13, 14, 15) using K-map and implement it in NOR logic.                | 8             |
|    |    |                                                                                                                                                   | _             |
|    | C) | Reduce the following Boolean expression $(X + Y + Z)(\overline{X} + \overline{Y} + \overline{Z})X$ .                                              | 4             |
|    | d) | How do you obtain the dual of a boolean function?                                                                                                 | 2             |
|    |    | <b>P.</b> 7                                                                                                                                       | r. <b>O</b> . |



## MODULE - II

| 3. | a) | When is a carry generated and when is a carry propagated in a carry look ahead adder?                                                                                                                         | 4 |
|----|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|    | b) | Construct a 16 to 1 line multiplexer using 2 to 1 line and 4 to 1 line multiplexers.                                                                                                                          | 8 |
|    | c) | Convert J-K to S-R flip-flop.                                                                                                                                                                                 | 6 |
|    | d) | What is meant by toggling?                                                                                                                                                                                    | 2 |
| 4. | a) | Write the truth table for a 4 to 2 line priority encoder with a valid output where the highest priority is given to the input having the highest index.  Determine the minimal sum equations for the outputs. | 8 |
|    | b) | Explain the operation of edge triggered D flip-flop with a neat diagram.                                                                                                                                      | 6 |
|    |    | What is an odd parity generator and an even parity generator?                                                                                                                                                 | 6 |
|    |    | MODULE – III                                                                                                                                                                                                  |   |
| 5. | a) | Design a mod-7 counter with asynchronous inputs for an up operation. Draw the relevant output waveform.                                                                                                       | 6 |
|    | b) | With a neat diagram explain the working of bidirectional shift register.                                                                                                                                      | 6 |
|    | c) | Design a synchronous counter to produce the following binary sequence.  Use JK flip flops.                                                                                                                    |   |
|    |    | 1, 3, 5, 7, 1                                                                                                                                                                                                 | 8 |
| 6. | a) | With neat diagram, explain the working of serial-in-parallel-out shift register.                                                                                                                              | 6 |
|    |    | With neat diagram, explain the operation of ring counter. Also sketch the output waveform.                                                                                                                    | 6 |
|    |    | Design a 3 bit up/down counter which counts up when the control signal $M = 1$ and counts down when $M = 0$ .                                                                                                 | 8 |
|    |    |                                                                                                                                                                                                               |   |



## MODULE – IV

| 7. |    | Draw the state diagram, state table and excitation table of D flip flop and J-K flip flop.                                                                                                                                                                                          | 8 |
|----|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|    |    | A long sequence of pulses enters a 2-input 2-output synchronous sequential circuit which produces an output pulse $Z = 1$ , whenever the sequence 10010 occurs. The overlapping sequences are accepted. Draw the state diagram, select an assignment and show the excitation table. | 8 |
|    | c) | What are the advantages of programmable logic devices?                                                                                                                                                                                                                              | 4 |
| 8. | a) | Design a PAL programmed for the following 3 variable logic function:                                                                                                                                                                                                                |   |
|    |    | $X = ABC + \overline{A}C + A\overline{B} + \overline{B}\overline{C}$                                                                                                                                                                                                                | 6 |
|    | b) | Design FPLA as a 3 bit gray to binary code converter.                                                                                                                                                                                                                               | 8 |
|    | c) | How is FPLA architecture different from the PAL?                                                                                                                                                                                                                                    | 4 |
|    | d) | What does PAL 12 L 8 indicate?                                                                                                                                                                                                                                                      | 2 |