United Airlines

Customer Calls prediction

Team: LinkedOut

October 9, 2024

United Airlines Call Center Optimization & Prediction

United Airlines Call Center Optimization & Prediction

- Objective: Improve Average Handle Time (AHT) and Average Speed to Answer (AST)
- **Focus**: Enhance customer satisfaction and operational efficiency
- **Kev Metrics**
 - Average Handle Time (AHT): Total Number of Calls Total Waiting Time
 Average Speed to Answer (AST): Total Waiting Time

Datasets Used

- calls.csv: Call details
- **customers.csv**: Customer information
- reason.csv: Call reasons
- sentiment_statistics.csv: Sentiment analysis
- **test.csv**: Test data for predictions

Initial Data Exploration

- Loaded datasets using Pandas
- Displayed basic information about each dataset

```
Calls Dataset:
Data columns (total 7 columns):
    Column.
                             Non-Null Count Dtupe
    call id
                             71810 non-null
                                             int64
    customer id
                             71810 non-null
                                             int64
    agent id
                             71810 non-null int64
    call_start_datetime
                             71810 non-null
                                             object
    agent assigned datetime
                            71810 non-null
                                             object
    call end datetime
                             71810 non-null
                                             object
    call transcript
                             71810 non-null
                                             object
dtypes: int64(3), object(4)
Customers Dataset:
RangeIndex: 71810 entries, 0 to 71809
Data columns (total 3 columns):
                      Non-Null Count Dtupe
     Column.
    customer id
                      71810 non-null int64
    customer name
                      71810 non-null
                                      object
```

Analysis of Call Durations

- The Average Handle Time (AHT) for a call is ≈ 697.05 seconds.
- The Average Speed to Answer (AST) for a call is ≈ 437.07 seconds .

Figure 1: AHT Analysis

Analysis of Elite level of customers

Analysis of Elite level of customers

- Had discrete values (NaN were filled with zeroes) [0, 1, 2, 3, 4, 5]
- Note the outliers

Analysis of Silence and Sentiment

• Silence Percentage: Average silence in calls is $\approx 0.29\%$

Categorizing Call Reasons

- Analyzed dataset to uncover patterns in call reasons
- Extracted the training data from the calls dataset
- Preprocessed the transcript data using stop word removal for LDA and Bigram analysis. Reason categories were normalized for feature identification.

Bigram Wordcloud

Extracted and created a bigram wordcloud for each primary call reason

Bigram Wordcloud


```
Word Cloud for Digital support
  Word Cloud for Post-flight
```

Topic Modeling

- Used Latent Dirichlet Allocation (LDA) to identify topics in call transcripts
- Identify recurring problems that could be resolved via self-service options
- Preprocessed call transcripts and extracted key phrases using TF-IDF and NMF.
- Displayed the top words for each topic and mapped topics to primary call reasons.
- Identified recurring problems that could be resolved via self-service options.

Topic 1:

looks like understand frustration agent understand customer ugh earlier flight let know let check customer hi today customer \hookrightarrow agent youre

Topic 2:

agent youre welcome looks like agent problem let look san francisco customer hi today customer im calling let pull Topic 3:

looks like understand frustration agent youre today customer im sorry travel voucher customer yeah help today let know \hookrightarrow customer service

Topic 4:

change fee looks like agent youre youre welcome really appreciate let look let know rest day agent understand customer hi ...

Recurring Problems

The following are the top words for each topic:

Refund, Monday, Lost, Sunday, Voucher, Return, Frustration,
Dates, Class, Bag, Wanted, La, San, Sf, Hours, Day, Francisco, Thursday, Took,
Returning, Seat, Check, Friday, London, Missed, Aisle, Tonight, Date, York,
Schedule, Delay, Smith, Standby, Delays, 500, Upgrade, Tuesday, Denver, Seats,
Need, Days, Tomorrow, Instead, Fee, Earlier, Meeting, Economy, Work,
Confirmation, Experience, Saturday, Ugh, Checked, Row, Waive, Chicago, Booked,
Delivered, Baggage, Booking, Weather, Sir, New, Change, Time, Delayed, Luggage,
Bags, Reservation, Scheduled, Travel, Sfo, Following, Wednesday, Claim, Fare,
Forecast, 150, Double, American, Assignment, Legroom

Reason Investigation

- Utilized Gemini-1.5-pro-preview to infer an actionable summary of call reasons for each category
- Please refer to the detailed report in the submitted reasons.md file

```
**Irrops Call Driver Analysis:** ...
Customers frequently contact support due to disruptions (Irrops) stemming from:
- **Flight Schedule Changes: **
- **Baggage Issues:**
- **Compensation and Refunds:** ...
**Recommended Actions:**
- **Proactive Communication: ** Implement automated notifications for flight
 changes and delays with clear rebooking options.
- **Streamlined Rebooking: ** Develop a user-friendly online rebooking system
 with flexible search options for alternative flights and seat selection. ...
```

Model Predictions

Predicting Primary Call Reasons

Split into testing and training datasets

```
Training Data Shape: (66653, 10)
Testing Data Shape: (5157, 9)
```

- We use the Meta Llama-3.2-1B Instruct Fine-Tuned model to predict primary call reasons
- Utilized a prompt-based approach for inference with refined conversation context for better predictions
- 5157 predictions with ~.45s/inference latency
- All of the training and inference was done on 2 notebooks on Kaggle with 2xT4 GPUs ran parallelly.
- Due to time constraints we are still in the process of fine-tuning the model on the training dataset.

Recommendations

Actionable Insights

- Reduce AHT: Streamline processes and improve agent training
- Enhance IVR System: Implement self-service options for recurring issues
- Categorize Call Reasons: Improve call routing and reduce manual tagging through automation using SOTA ML models.

Further Investigation

- Explore additional data sources
- Conduct deeper sentiment analysis
- Implement finetuned models for better predictions

Please find the source code at ${f GitHub}$: github.com/KorigamiK/calls.

Thank You!