MA 523: Homework 7

Carlos Salinas

October 31, 2016

CARLOS SALINAS PROBLEM 7.1

Problem 7.1

Solve the Dirichlet problem for the Laplace equation in \mathbb{R}^2

$$\begin{cases} \Delta u = 0 & \text{in } 1 < |x| < 2, \\ u = x_1 & \text{on } |x| = 1, \\ u = 1 + x_1 x_2 & \text{on } |x| = 2. \end{cases}$$

(Hint: Use Laurent series.)

Solution. Suppose u is a solution to the Dirichlet problem above with the form

$$u(x_1, x_2) = a \ln |x| + \text{Re}(L(x_1, x_2))$$

where

$$L(x_1, x_2) = \sum_{n \in \mathbb{Z}} a_n (x_1 + ix_2)^n$$

is an honest Laurent series. Make a change of variables $x_1 + \mathrm{i} x_2 \mapsto r \mathrm{e}^{\mathrm{i} n \theta}$ and rewrite the solution u in terms of our new variables

$$u(re^{in\theta}) = b \ln r + \sum_{n \in \mathbb{Z}} (a_n r^n + \overline{a_{-n}} r^{-n}) e^{in\theta}.$$
 (7.1)

Since u is harmonic, applying Laplace's equation to (7.1)

$$0 = \Delta u$$

$$= u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta}$$

$$= b \ln r + \sum_{n \in \mathbb{Z}} (a_n r^n + \overline{a_{-n}} r^{-n}) e^{in\theta}$$

CARLOS SALINAS PROBLEM 7.2

Problem 7.2

Let Ω be a bounded domain with a C^1 boundary, $g \in C^2(\partial \Omega)$ and $f \in C(\bar{\Omega})$. Consider the so called *Neumann problem*

$$\begin{cases}
-\Delta u = f & \text{in } \Omega, \\
\frac{\partial u}{\partial \nu} = g & \text{on } \partial \Omega,
\end{cases}$$
(*)

where ν is the outer normal on $\partial\Omega$. Show that the solution of (*) in $C^2(\Omega) \cap C^1(\bar{\Omega})$ is unique up to a constant; i.e., if u_1 and u_2 are both solutions of (*), then $u_2 = u_1 + \text{const.}$ in Ω . (*Hint:* Look at the proof of the uniqueness for the Dirichlet problem by energy methods [E, 2.2.5a].)

SOLUTION. Suppose u_1 and u_2 are solutions to the Neumann problem (*). Define $v:=u_1-u_2$. Then v is harmonic in Ω and $\frac{\partial v}{\partial \nu}=0$ on $\partial\Omega$. Consider the energy functional

$$E[v] = \frac{1}{2} \int_{\Omega} |Dv|^2 dx.$$

By Green's formula version (ii),

$$\begin{split} E[v] &= \frac{1}{2} \int_{\Omega} |Dv|^2 \, dx \\ &= -\frac{1}{2} \int_{\Omega} v \Delta v \, dx + \int_{\partial U} \frac{\partial v}{\partial \nu} v \, dS(x) \\ &= 0. \end{split}$$

This implies that $|Dv|^2 = Dv \cdot Dv = 0$ which, since the standard inner product on \mathbb{R}^n is positive-definite, implies that $Dw \equiv 0$. It follows that $u_1 = u_2 + \text{const}$, i.e., the solution u to (*) is unique up to a constant.

CARLOS SALINAS PROBLEM 7.3

Problem 7.3

Write down an explicit formula for a solution of

$$\begin{cases} u_t - \Delta u + cu = f & \text{in } \mathbb{R}^n \times (0, \infty), \\ u = g & \text{on } \mathbb{R}^n \times \{ t = 0 \}, \end{cases}$$

where $c \in \mathbb{R}$.

(*Hint:* Rewrite the problem in terms of $v(x,t) := e^{ct}u(x,t)$.)

SOLUTION.