SQL Queries Used

1. GROUP BY & ORDER BY

```
SELECT
language,
title,
SUM(views) AS views
FROM
'bigquery-samples.wikipedia_benchmark.Wiki10B'
WHERE
title LIKE '%Google%'
GROUP BY
language,
title
ORDER BY
views DESC;
```

2. LENGTH

2 USA

```
SELECT
country
FROM
my-first-project-418418.customer_data.customer_address
WHERE
LENGTH(country) > 2
Query results

JOB INFORMATION RESULTS CHART JSON
Row country 

1 USA
```

3. Filter Using WHERE

```
UPDATE
  my-first-project-418418.cars.car_info
SET
  num_of_doors = "four"
WHERE
  make = "dodge"
  AND fuel_type = "gas"
  AND body_style = "sedan";
```

4. Update Query

```
UPDATE
  my-first-project-418418.cars.car_info
SET
  price = 5118
WHERE
  price = 0
```

5. CASTE

```
SELECT
  CAST(purchase_price AS float64)
  #purchase_price
  my-first-project-418418.customer\_data.customer\_purchase
ORDER BY
  CAST(purchase_price AS float64) DESC
   JOB INFORMATION
                            RESULTS
  Row
          f0_ ▼
      1
                    1000.0
      2
                    1000.0
      3
                    1000.0
      4
                    1000.0
      5
                    1000.0
                    1000.0
      6
      7
                    1000.0
      8
                    1000.0
      9
                    1000.0
     10
                    799.99
     11
                    399.95
     12
                    299.99
```

6. FILTER Using Between

```
SELECT
CAST (date AS date) AS date_needed,
purchase_price
FROM
my-first-project-418418.customer_data.customer_purchase
WHERE
date BETWEEN '2020-12-01' AND '2020-12-31'
```

JOB IN	IFORMATION	RESULTS	CHART	JSON
Row	date_needed ▼	purchase_p	rice ▼	h
1	2020-12-12	13.99		
2	2020-12-28	27.98		
3	2020-12-28	160.965		
4	2020-12-30	269.55		

MOVIE DATESET SQL COMMANDS

7. Sort data by one column

```
SELECT *
FROM projectID.movie_data.movies
ORDER BY Release_date;
```

8. Sort data in descending order

```
SELECT *
FROM projectID.movie_data.movies
ORDER BY Release_Date DESC;
```

9. Filter and sort data in descending order

```
SELECT *
FROM projectID.movie_data.movies
WHERE Genre = "Comedy"
ORDER BY Release_Date DESC;
```

10. Filter on two conditions, then sort data in descending order

```
SELECT *
FROM projectID.movie_data.movies
WHERE Genre = "Comedy"
AND Revenue > 30000000
ORDER BY Release_Date DESC;
```

HANDON TASK

11. LOAD THE CBC DATASET

```
SELECT
  *
FROM
  bigquery-public-data.sdoh_cdc_wonder_natality.county_natality
LIMIT
  1000
```

Row	County_of_Residence ▼	County_of_Residence_FIPS ▼	Births ▼	Av
1	Calhoun County, AL	01015	1265	
2	Tulsa County, OK	40143	8933	
3	Carroll County, GA	13045	1540	
4	Saginaw County, MI	26145	2182	
5	Hillsborough County, FL	12057	17126	
6	Lake County, IN	18089	5785	
7	St. Tammany Parish, LA	22103	2932	
8	Osceola County, FL	12097	4437	

12. ORDER BY Births

SELECT

*

FROM

bigquery-public-data.sdoh_cdc_wonder_natality.county_natality

Births

LIMIT

1000

Row /	County_of_Residence ▼	County_of_Residence_FIPS ▼	Births ▼ Ave
1	Tompkins County, NY	36109	735
2	Unidentified Counties, HI	15999	749
3	Tompkins County, NY	36109	767
4	Tompkins County, NY	36109	787
5	Unidentified Counties, MA	25999	802
6	Unidentified Counties, HI	15999	845
7	Washington County, RI	44009	852

13. ORDER BY Births in Descending order

SELECT

*

FROM

 $\label{limits} \mbox{bigquery-public-data.sdoh_cdc_wonder_natality.county_natality} \\ \mbox{ORDER BY}$

Births DESC

LIMIT

1000

14. Country_of_residence grouped and sorted by Births in Desc

SELECT

County_of_Residence,

Births

FROM

 $\label{linear_bigquery} bigquery-public-data.sdoh_cdc_wonder_natality.county_natality\\ \textbf{GROUP BY}$

County_of_Residence,

Births

ORDER BY

Births DESC

LIMIT

1000

15. Used sum to find the total Births count GROUPED BY County_of_residence

```
SELECT
   County_of_Residence,
   SUM(Births) AS Total_Births
FROM
   bigquery-public-data.sdoh_cdc_wonder_natality.county_natality
GROUP BY
   County_of_Residence
ORDER BY
   Total_Births DESC
LIMIT
   1000
```

Row	County_of_Residence ▼	Total_Births ▼
1	Los Angeles County, CA	350313
2	Harris County, TX	207937
3	Cook County, IL	192950
4	Unidentified Counties, TX	172214
5	Maricopa County, AZ	158613
6	Unidentified Counties, GA	124259
7	San Diego County, CA	124020
8	Kings County, NY	118568
9	Dallas County, TX	117824
10	Unidentified Counties, VA	115351

Results per page: 50 ▼ 1 - 50 of 626

16. Query to Sort columns by dates in Desc and Station_Id in Ascending.

```
SELECT
  stn,
  date,
  IF(
    temp=9999.9,
   NULL,
    temp) AS temperature,
    wdsp="999.9",
    NULL,
    CAST(wdsp AS float64)) AS wind_speed,
  IF(
    prcp=99.99,
    prcp) AS precipitation
  bigquery-public-data.noaa_gsod.gsod2020
WHERE
  stn="725030" -- La Guardia
  OR stn="744860" -- JFK
ORDER BY
 date DESC,
  stn ASC
```

JOB IN	FORMATION	RESULTS	CHART .	JSON EXECUT	ION DETAILS	EXECUTION GRAPH
Row	stn ▼	11	date ▼	temperature 🔻	wind_speed ▼	precipitation ▼
1	725030		2020-12-31	45.8	9.8	0.1
2	744860		2020-12-31	44.1	9.9	0.06
3	725030		2020-12-30	35.2	8.7	0.0
4	744860		2020-12-30	32.5	8.3	0.0
5	725030		2020-12-29	42.1	13.6	0.0
6	744860		2020-12-29	39.7	13.8	0.0
7	725030		2020-12-28	42.9	5.3	0.0
8	744860		2020-12-28	41.1	8.6	0.0
9	725030		2020-12-27	31.6	8.0	0.0
10	744860		2020-12-27	29.5	9.0	0.0

17. Created a new table after Running a SQL query

```
SELECT
 stn,
 date,
 IF(
    temp=9999.9,
   NULL,
    temp) AS temperature,
 IF(
   wdsp="999.9",
    CAST(wdsp AS float64)) AS wind_speed,
 IF(
    prcp=99.99,
    0,
    prcp) AS precipitation
FROM
  `bigquery-public-data.noaa_gsod.gsod2020`
WHERE
 stn="725030" -- La Guardia
 OR stn="744860" -- JFK
ORDER BY
 date DESC,
 stn ASC
```

JOB IN	IFORMATION	RESULTS	CHART .	JSON EXECUT	ION DETAILS E	EXECUTION GRAPH
Row	stn ▼	11	date ▼	temperature ▼	wind_speed ▼	precipitation ▼
1	725030		2020-12-31	45.8	9.8	0.1
2	744860		2020-12-31	44.1	9.9	0.06
3	725030		2020-12-30	35.2	8.7	0.0
4	744860		2020-12-30	32.5	8.3	0.0
5	725030		2020-12-29	42.1	13.6	0.0
6	744860		2020-12-29	39.7	13.8	0.0
7	725030		2020-12-28	42.9	5.3	0.0
8	744860		2020-12-28	41.1	8.6	0.0
9	725030		2020-12-27	31.6	8.0	0.0
10	744860		2020-12-27	29.5	9.0	0.0

After saving the above setting a new table inside "demo2" dataset will be created with the name "nyc_weather"

Combining data from different sources

A. INSERT INTO

Structure of the query

```
INSERT INTO [destination_table_name]
SELECT [column names, separated by commas, or * for all columns]
FROM [source_table_name]
WHERE [condition]
```

Example of Query

```
INSERT INTO customer_promotion
SELECT *
FROM customers
WHERE total_sales = 0 AND postal_code = '12345'
```

B. CONCAT

Structure of the query

```
SELECT CONCAT(field1, " ", field2)
FROM [table_name]

SELECT CONCAT(field1, " ", field2) AS alias
FROM [table_name]
```

Example of the query

```
SELECT CONCAT(first_name, " ", last_name) AS Customer_Name
FROM [table_name]
```

18. Merging using CONCAT

```
SELECT
  usertype,
  CONCAT (start_station_name," to ", end_station_name) AS route,
  COUNT (*) as num_trips,
  ROUND(AVG(cast(tripduration as int64)/60),2) AS duration
FROM
  `bigquery-public-data.new_york_citibike.citibike_trips`
GROUP BY
  start_station_name, end_station_name, usertype
ORDER BY
  num_trips DESC
LIMIT 10
```


Joins Using SQL.

There are four types of JOIN in SQL. Below is the information regarding all the four.

- INNER JOIN: a function that returns records with matching values in both tables
- **LEFT JOIN:** a function that returns all the records from the left table (first mentioned) and only the matching records from the right table (second mentioned)
- **RIGHT JOIN:** a function that returns all records from the right table (second mentioned) and only the matching records from the left table (first mentioned).
- **OUTER JOIN:** a function that combines the **RIGHT JOIN** and **LEFT JOIN** to return all matching records in both tables.


```
SELECT

*

FROM

tableA

LEFT JOIN

tableB

ON

keyA = keyB

SELECT

*

*

FROM

FROM

TableB

tableB

ON

keyA = keyB
```

In the above SS both the queries will return the same result.

19. INNER JOIN

```
SELECT
  employees.name AS employee_name,
  employees.role AS employee_role,
  departments.name AS department_name
FROM
  my-first-project-418418.employee_data.employees AS employees
INNER JOIN
  my-first-project-418418.employee_data.departments AS departments
  ON employees.department_id = departments.department_id
```

JOB IN	IFORMATION	RESULTS	CHART	JSON	E	KECUTION DETAILS
Row	employee_name	,	employee_role	•	/1	department_name ▼
1	Dave Smith		Product Marketin	ng Manager		Marketing
2	Scott Tanner		Director of Dema	nd Gen		Marketing
3	Margaret Lane		VP of Marketing			Marketing
4	Julie Jones		Software Engine	er		Engineering
5	Ted Connors		Software Engine	er		Engineering

20. LEFT JOIN

```
SELECT
  employees.name AS employee_name,
  employees.role AS employee_role,
  departments.name AS department_name
FROM
  my-first-project-418418.employee_data.employees AS employees
LEFT JOIN
  my-first-project-418418.employee_data.departments AS departments
  ON employees.department_id = departments.department_id
```

JOB IN	FORMATION	RESULTS	CHART	JSON	EXECUTION DETAILS	EXECU
Row	employee_name	▼	employee_role	•	department_name ▼	1
1	Dave Smith		Product Market	ing Manager	Marketing	
2	Scott Tanner		Director of Dem	and Gen	Marketing	
3	Margaret Lane		VP of Marketing	ı	Marketing	
4	Julie Jones		Software Engine	eer	Engineering	
5	Ted Connors		Software Engine	eer	Engineering	
6	Mary Martin		Receptionist		null	

21. RIGHT JOIN

SELECT

```
employees.name AS employee_name,
  employees.role AS employee_role,
  departments.name AS department_name
FROM
  my-first-project-418418.employee_data.employees AS employees
RIGHT JOIN
  my-first-project-418418.employee_data.departments AS departments
  ON employees.department_id = departments.department_id
```

JOB IN	IFORMATION	RESULTS	CHART	JSON	EXECUTION DETAILS	EXECL
Row	employee_name	▼	employee_role	▼	department_name ▼	11
1	Dave Smith		Product Marketin	ng Manager	Marketing	
2	Scott Tanner		Director of Dema	and Gen	Marketing	
3	Margaret Lane		VP of Marketing		Marketing	
4	Julie Jones		Software Engine	er	Engineering	
5	Ted Connors		Software Engine	er	Engineering	
6	null		null		Accounting	
7	null		null		Sales	

22. OUTER JOIN

```
SELECT
  employees.name AS employee_name,
  employees.role AS employee_role,
  departments.name AS department_name
  my-first-project-418418.employee_data.employees AS employees
FULL OUTER JOIN
  my-first-project-418418.employee_data.departments AS departments
  ON employees.department_id = departments.department_id
  JOB INFORMATION
                        RESULTS
                                      CHART
                                                  JSON
                                                             EXECUTION DETAILS
                                                                                    EXECUTION GRAPH
 Row __ employee_name ▼
                                    employee_role ~
                                                               department_name ▼
     1
        Dave Smith
                                    Product Marketing Manager
                                                               Marketing
                                                               Marketing
     2
        Scott Tanner
                                    Director of Demand Gen
     3
                                    VP of Marketing
                                                               Marketing
         Margaret Lane
         Julie Jones
                                    Software Engineer
                                                               Engineering
     5
         Ted Connors
                                    Software Engineer
                                                               Engineering
         null
                                    null
                                                               Accounting
     6
     7
         null
                                    null
                                                               Sales
         Mary Martin
                                    Receptionist
```

Joins Hands On

23. INNER JOIN

```
SELECT `bigquery-public-
data.world_bank_intl_education.international_education`.country_name,
    `bigquery-public-data.world_bank_intl_education.country_summary`.country_code,
    `bigquery-public-data.world_bank_intl_education.international_education`.value
FROM `bigquery-public-data.world_bank_intl_education.international_education`
INNER JOIN `bigquery-public-data.world_bank_intl_education.country_summary`
ON `bigquery-public-data.world_bank_intl_education.country_summary`.country_code =
`bigquery-public-
data.world_bank_intl_education.international_education`.country_code
```

JOB IN	FORMATION	RESULTS	CHART	JSON	EXECUTION DE	TAILS
Row /	country_name ▼	11	country_code	▼	value ▼	11
1	Aruba		ABW		32	210.0
2	Aruba		ABW		30	59.0
3	Aruba		ABW		31	10.0
4	Aruba		ABW		34	138.0
5	Aruba		ABW		36	78.0
6	Aruba		ABW		33	318.0
7	Aruba		ABW		35	525.0
8	Aruba		ABW		1	24.0
9	Aruba		ABW		8	325.0

24. INNER Join Using Alias. (The same above query using Alias)

```
SELECT
    edu.country_name,
    summary.country_code,
    edu.value
FROM
    `bigquery-public-data.world_bank_intl_education.international_education` AS edu
INNER JOIN
    `bigquery-public-data.world_bank_intl_education.country_summary` AS summary
ON edu.country_code = summary.country_code
```

JOB IN	JOB INFORMATION RESULTS		CHART	EXECUTION DETAILS	
Row	country_name 🔻	le	country_code ▼	h	value ▼
1	Chad		TCD		234686.0
2	Chad		TCD		268384.0
3	Chad		TCD		317174.0
4	Chad		TCD		63307.0
5	Chad		TCD		136113.0
6	Chad		TCD		39666.0
7	Chad		TCD		163925.0
8	Chad		TCD		288763.0
9	Chad		TCD		49578.0
10	Chad		TCD		480761.0

25. Inner Join with Group By

```
SELECT
    edu.country_name,
    summary.country_code,
    SUM(edu.value) edu_Value
FROM
    `bigquery-public-data.world_bank_intl_education.international_education` AS edu
LEFT JOIN
    `bigquery-public-data.world_bank_intl_education.country_summary` AS summary
ON edu.country_code = summary.country_code
GROUP BY
    edu.country_name,
    summary.country_code
ORDER BY
    edu_Value DESC
```

JOB IN	IFORMATION RESULTS	CHART JSON	EXECUTION DETAILS
Row	country_name ▼	country_code ▼	edu_Value ▼
1	World	WLD	1046539591230
2	High income	HIC	6702624096835
3	OECD members	OED	5476384130732
4	Low & middle income	LMY	3.768954542266
5	Middle income	MIC	3704179427556
6	Europe & Central Asia	ECS	3204354660484
7	East Asia & Pacific	EAS	2650826651753
8	Upper middle income	UMC	2646979843186
9	North America	NAC	2462386983890

26. INNER JOIN with WHERE Condition

question: In 2015, how many people were of the official age for secondary education broken down by region of the world?

```
SELECT
summary.region,
SUM(edu.value) secondary_edu_population
FROM
    `bigquery-public-data.world_bank_intl_education.international_education` AS edu
INNER JOIN
    `bigquery-public-data.world_bank_intl_education.country_summary` AS summary
ON edu.country_code = summary.country_code --country_code is our key
    WHERE summary.region IS NOT NULL
    AND edu.indicator_name = 'Population of the official age for secondary
education, both sexes (number)'
    AND edu.year = 2015
GROUP BY summary.region
ORDER BY secondary_edu_population DESC
```

JOB IN	IFORMATION	RESULTS	CHART	JSON
Row	region 🔻	//	secondary_edu_por	ou
1	South Asia		237541684.0	
2	East Asia & Pacif	fic	172016129.0	
3	Sub-Saharan Afri	ca	135639085.0	
4	Europe & Central	Asia	70181959.0	
5	Latin America &	Caribbean	67937467.0	
6	Middle East & No	orth Africa	44318682.0	
7	North America		27003321.0	

27. LEFT JOIN

Consider this scenario: You have been tasked to provide data for a feature sports article on NCAA basketball in the 1990s. The writer wants to include a funny twist about which Division 1 team mascots were the winningest.

SELECT

```
seasons.market AS university,
seasons.name AS team_name,
mascots.mascot AS team_mascot,
AVG(seasons.wins) AS avg_wins,
AVG(seasons.losses) AS avg_losses,
AVG(seasons.ties) AS avg_ties
FROM `bigquery-public-data.ncaa_basketball.mbb_historical_teams_seasons` AS seasons
LEFT JOIN `bigquery-public-data.ncaa_basketball.mascots` AS mascots
ON seasons.team_id = mascots.id
WHERE seasons.season BETWEEN 1990 AND 1999
AND seasons.division = 1
GROUP BY 1,2,3
ORDER BY avg_wins DESC, university
```

JOB IN	IFORMATION	RESULTS	CHART	JSON	EXECUTION DETAILS	EXECU	TION GRAPH		
Row	university 🔻	1,	team_name ▼	11	team_mascot ▼	11	avg_wins ▼	avg_losses ▼	avg_ties ▼
1	University of Ker	ntucky	Wildcats		Wildcat		29.1	5.9	0.0
2	University of Kar	isas	Jayhawks		Jayhawk		28.0	6.5	0.0
3	University of Nor	th Carolina, Ch	Tar Heels		Sheep		27.10000000000	7.9	0.0
4	Duke University		Blue Devils		Devil		27.1	7.4	0.0
5	University of Ariz	zona	Wildcats		Wildcat		25.99999999999	6.399999999999	0.0
6	University of Uta	h	Utes		Red-tailed Hawk		25.7	7.1	0.0
7	University of Cin	cinnati	Bearcats		Bearcat		25.59999999999	7.200000000000	0.0
8	University of Cor	nnecticut	Huskies		Husky		25.10000000000	7.8	0.0
9	University of Ark	ansas, Fayette	Razorbacks		Red Russian Boar		24.90000000000	9.299999999999	0.0
10	University of Cal	ifornia, Los An	Bruins		Brown Bear		24.0	7.8	0.0

28. INNER JOIN for Handson activity

```
SELECT
```

*

FROM

my-first-project-418418.warehouse_orders.orders AS orders

my-first-project-418418.warehouse_orders.warehouse warehouse

orders.warehouse_id = warehouse.warehouse_id

JOB IN	IFORMATION	RESULTS	CHA	RT JSON	EXECUTION DETA	AILS EXECUTI	ON GRAPH		
Row	order_id ▼	customer_id	· /	warehouse_id ▼ //	order_date ▼	shipper_date ▼	warehouse_id_1 ▼	warehouse_alias ▼	maximum_capacit
1	789		3731	8118	2019-01-01	2019-01-04	8118	Ann Arbor Fulfillment Center	780
2	790		3486	8118	2019-01-01	2019-01-04	8118	Ann Arbor Fulfillment Center	780
3	791		2623	8118	2019-01-01	2019-01-04	8118	Ann Arbor Fulfillment Center	780
4	792		9869	8118	2019-01-01	2019-01-04	8118	Ann Arbor Fulfillment Center	780
5	793		6866	8118	2019-01-01	2019-01-04	8118	Ann Arbor Fulfillment Center	780
6	794		8055	8118	2019-01-01	2019-01-04	8118	Ann Arbor Fulfillment Center	780
7	795		1152	8118	2019-01-01	2019-01-04	8118	Ann Arbor Fulfillment Center	780
8	796		5765	8118	2019-01-01	2019-01-04	8118	Ann Arbor Fulfillment Center	78

29. Taking All the columns from Orders but only 2 columns from Warehouse

```
SELECT
  orders.*,
  warehouse.warehouse_alias,
  warehouse.state
FROM
  my-first-project-418418.warehouse_orders.orders AS orders
JOIN
  my-first-project-418418.warehouse_orders.warehouse warehouse
ON
  orders.warehouse_id = warehouse.warehouse_id
```

JOB IN	IFORMATION	R	ESULTS	CHA	ART JSON	EXECUTION DETA	AILS EXECUTI	ON GRAPH	
Row /	order_id ▼	/1	customer_id	· /	warehouse_id ▼ //	order_date ▼	shipper_date ▼	warehouse_alias ▼	state ▼
1	789	9		3731	8118	2019-01-01	2019-01-04	Ann Arbor Fulfillment Center	MI
2	790)		3486	8118	2019-01-01	2019-01-04	Ann Arbor Fulfillment Center	MI
3	791			2623	8118	2019-01-01	2019-01-04	Ann Arbor Fulfillment Center	MI
4	792	2		9869	8118	2019-01-01	2019-01-04	Ann Arbor Fulfillment Center	MI
5	793	3		6866	8118	2019-01-01	2019-01-04	Ann Arbor Fulfillment Center	MI
6	794	1		8055	8118	2019-01-01	2019-01-04	Ann Arbor Fulfillment Center	MI
7	795	5		1152	8118	2019-01-01	2019-01-04	Ann Arbor Fulfillment Center	MI
8	796	5		5765	8118	2019-01-01	2019-01-04	Ann Arbor Fulfillment Center	MI
9	797	7		6709	8118	2019-01-01	2019-01-04	Ann Arbor Fulfillment Center	MI

30. Using COUNT with INNER Join

```
SELECT
COUNT(warehouse.state) AS num_States
FROM
my-first-project-418418.warehouse_orders.orders AS orders
JOIN
my-first-project-418418.warehouse_orders.warehouse warehouse
ON
orders.warehouse_id = warehouse.warehouse_id

JOB INFORMATION RESULTS CHART JSON
```


31. Using DISTINCT COUNT with INNER Join

SELECT
COUNT (DISTINCT warehouse.state) AS num_States

FROM
my-first-project-418418.warehouse_orders.orders AS orders

JOIN
my-first-project-418418.warehouse_orders.warehouse warehouse
ON
orders.warehouse_id = warehouse.warehouse_id

Quei	ry results				
JOB II	NFORMATION	F	RESULTS	CHART	JSON
Row	num_States	▼			
1		3			

```
32.USING GROUP BY & ORDER BY & JOIN & COUNT
SELECT
  warehouse.warehouse_id,
  warehouse.state AS State,
  COUNT (warehouse.state) AS num_States
FROM
  my-first-project-418418.warehouse_orders.orders AS orders
JOIN
  my-first-project-418418.warehouse_orders.warehouse warehouse
ON
  orders.warehouse_id = warehouse.warehouse_id
GROUP BY
  warehouse.state,
  warehouse.warehouse_id
ORDER BY
  num_States DESC
```

JOR IV	IFORMATION	RESULIS	CHARI J	SON	EXECUII	ON DETAILS
Row	warehouse_id ▼	State ▼	le	num_States	▼	
1	2666	MI			3178	
2	8118	MI			3027	
3	6509	TN			2403	
4	1543	KY			548	
5	9080	KY			500	
6	4338	TN			343	

CHADT

IOON

EVECUTION DETAILS

NESTED QUERIES

IOD INFORMATION DECLIETE

Please find the explaining in the Hands-On Folder of Data Analytics. I have created a word file which has the explanation for each of the below three queries.

```
33. USE A SubQuery In a SELECT statement
```

```
SELECT
    station_id,
    num_bikes_available,
    (SELECT
        AVG(num_bikes_available)
    FROM bigquery-public-
data.new_york.citibike_stations) AS avg_num_bikes_available
FROM bigquery-public-data.new_york.citibike_stations;
```


34. Use a subquery in a FROM statement

```
SELECT.
 station_id,
 name,
 number_of_rides AS number_of_rides_starting_at_station #This column is not
present either in Citibike_trips or Citibike_station so we have created a temporary
table with the name as "station_num_trips" and from that table we are extracting
"number_of_rides".
FROM
 (
    SELECT
      CAST(start_station_id AS STRING) AS start_station_id_str,
      COUNT(*) AS number_of_rides
    FROM
      bigquery-public-data.new_york.citibike_trips
    GROUP BY
      CAST(start_station_id AS STRING)
  ) AS station_num_trips
  INNER JOIN
    bigquery-public-data.new_york.citibike_stations
 ON
    station_num_trips.start_station_id_str = station_id
  ORDER BY
    station_num_trips.number_of_rides DESC
```

Query results CHART PREVIEW JSON JOB INFORMATION RESULTS **EXECUTION DETAILS** Row station_id name 🕶 number_of_rides_sta E 17 St & Broadway Lafayette St & E 8 St W 21 St & 6 Ave West St & Chambers St Broadway & E 14 St Cleveland PI & Spring St 8 Ave & W 33 St Greenwich Ave & 8 Ave Carmine St & 6 Ave W 41 St & 8 Ave Vesey PI & River Terrace

Christopher St & Greenwich St

35. Use a subquery in a WHERE statement

Query results

JOB II	NFORMATION	RESULTS	CHART PREVIEW	JSON	EXECUTION DETAILS
Row	station_id ▼	4	name ▼	4	
1	3134		3 Ave & E 62 St		
2	257		Lispenard St & Broad	way	
3	3048		Putnam Ave & Nostra	nd Ave	
4	3083		Bushwick Ave & Powe	ers St	
5	3127		9 St & 44 Rd		
6	232		Cadman Plaza E & Til	lary St	
7	3416		7 Ave & Park Pl		
8	3397		Court St & Nelson St		
9	3117		Franklin St & Dupont	St	
10	216		Columbia Heights & 0	Cranberry St	
11	3349		Grand Army Plaza & F	Plaza St W	

HANDS ON Activity

Data Set used : citibike_trips (Public Data Set)

Scenario: To complete this task, you will create three different subqueries, which will allow you to gather information about the average trip duration by station, compare trip duration by station, and determine the five stations with the longest mean trip durations.

36. Query 1 to calculate "average trip duration by station" (Nested SELECT inside FROM)

```
SELECT
    subquery.start_station_id,
    subquery.avg_duration
FROM
    SELECT
         start_station_id,
         AVG(tripduration) as avg_duration
FROM bigquery-public-data.new_york_citibike.citibike_trips
GROUP BY start_station_id) as subquery
ORDER BY avg_duration DESC;
                               CHART
  JOB INFORMATION RESULTS
 Row start_station_id ▼ avg_duration ▼
    1
              3633
                       71800.0
    2
                3040
                      38351.69230769...
    3
                3590
                      23327.95028409...
                3017
                      22982.66666666...
    5
                3649
                      15286.27756286...
                3042
                      14540 52892629
    6
                      13802.34808259...
    8
                3596
                      11686.22916666...
                3036
                      11445.09090909...
```

```
37. Query 2 compare "trip duration by station" (Nested SELECT inside SELECT)
SELECT
    starttime,
    start_station_id,
    tripduration,
        SELECT ROUND(AVG(tripduration),2) #the nested ones are runned when a row
for 1st three columns are ready
        FROM bigguery-public-data.new_york_citibike.citibike_trips
        WHERE start_station_id = outer_trips.start_station_id
    ) AS avg_duration_for_station,
    ROUND(outer_trips.tripduration - (
        SELECT AVG(tripduration)
        FROM bigquery-public-data.new_york_citibike.citibike_trips
        WHERE start_station_id = outer_trips.start_station_id), 2) AS
difference_from_avg
{\tt FROM}\ bigquery-public-data.new\_york\_citibike\_citibike\_trips\ AS\ outer\_trips
ORDER BY difference_from_avg DESC
LIMIT 25:
```

Regarding 1st **Subquery :** This subquery is used to calculate the average trip duration for trips starting at the same station as the current trip (outer_trips.start_station_id).

JOB IN	JOB INFORMATION R		CHART J	SON EXECUTI	ION DETAILS	EXECUTION GRAPH
Row	starttime ▼	le	start_station_id ▼	tripduration ▼	avg_duration_for_sta	difference_from_avg
1	2018-01-22T18:2	0:27.512000	3082	19510049	2061.72	19507987.28
2	2018-02-21T14:1	5:10.932000	3349	15962256	2908.95	15959347.05
3	2018-03-15T18:2	1:38.801000	3041	15020934	11295.05	15009638.95
4	2018-02-21T15:3	0:02.388000	3042	13931824	14540.53	13917283.47
5	2018-02-12T15:3	8:54.233000	3042	13586276	14540.53	13571735.47
6	2018-03-11T03:5	2:30.296000	3383	12479323	1780.86	12477542.14
7	2018-02-08T21:4	6:47.029000	3064	11749576	2566.28	11747009.72

38. QUERY 3 compose a new query to filter the data to include only the trips from the five stations with the longest mean trip duration.

```
SELECT.
    tripduration,
    start_station_id
FROM bigquery-public-data.new_york_citibike.citibike_trips
WHERE start_station_id IN
    (
        SELECT
            start_station_id
        FROM
        (
            SELECT
                start_station_id,
                AVG(tripduration) AS avg_duration
            FROM bigquery-public-data.new_york_citibike.citibike_trips
            GROUP BY start_station_id
        ) AS top_five
        ORDER BY avg_duration DESC
        LIMIT 5
    );
```

300 11	II OKWATION	KESOLIS	OHA	uv i	33014
Row	tripduration ▼	start_station_	_id 🔻		
1	2430		3649		
2	286		3649		
3	1871		3649		
4	372		3649		
5	1774		3649		
6	392		3649		
7	447		3649		
8	2553		3649		

RESULTS

CHART

JSON

39. Using CASE to categorize the data.

JOB INFORMATION

The use of CASE is very similar to using IF ELSE or SWITCH CASE in java/python programming.

```
SELECT
```

```
warehouse.warehouse_id,
 CONCAT(warehouse.state,': ',warehouse.warehouse_alias) AS warehouse_name,
 COUNT(orders.order_id) AS number_of_orders,
  (SELECT COUNT(*) FROM my-first-project-418418.warehouse_orders.orders AS orders)
AS total_orders,
 CASE
    WHEN COUNT(orders.order_id)/(SELECT COUNT(*) FROM my-first-project-
418418.warehouse_orders.orders AS orders) <= 0.2
    THEN 'Fullfillment is 0-20%'
    WHEN COUNT(orders.order_id)/(SELECT COUNT(*) FROM my-first-project-
418418.warehouse_orders.orders AS orders) > 20
    AND COUNT(orders.order_id)/(SELECT COUNT(*) FROM my-first-project-
418418.warehouse_orders.orders AS orders) <= 60
    THEN 'Fullfillment is 21-60%'
    ELSE 'Fullfillment is more than 60% of orders'
 END AS fullfillment_summary
FROM my-first-project-418418.warehouse_orders.warehouse AS warehouse
LEFT JOIN my-first-project-418418.warehouse_orders.orders AS orders
ON orders.warehouse_id = warehouse.warehouse_id
GROUP BY
 warehouse.warehouse_id,
 warehouse_name
HAVING
 COUNT(orders.order_id) > 0
```

JOB IN	IFORMATION	RESULTS CHART	JSON	EXECUTION	N DETAILS E	XECUTION GRAPH
Row /	warehouse_id ▼	warehouse_name ▼	numbe	r_of_orders	total_orders ▼	fullfillment_summary ▼
1	1543	KY: Somerset Fulfillment (Center	548	9999	Fullfillment is 0-20%
2	9080	KY: Frankfort Fulfillment C	Center	500	9999	Fullfillment is 0-20%
3	2666	MI: Lansing Fulfillment Ce	nter	3178	9999	Fullfillment is more than 60% o
4	8118	MI: Ann Arbor Fulfillment	Center	3027	9999	Fullfillment is more than 60% o
5	4338	TN: Knoxville Fulfillment C	enter	343	9999	Fullfillment is 0-20%
6	6509	TN: Memphis Fulfillment (Center	2403	9999	Fullfillment is more than 60% o

40. Using CASE to categorize the data without HAVING

```
SELECT
 warehouse.warehouse_id,
 CONCAT(warehouse.state,': ',warehouse.warehouse_alias) AS warehouse_name,
 COUNT(orders.order_id) AS number_of_orders,
  (SELECT COUNT(*) FROM my-first-project-418418.warehouse_orders.orders AS orders)
AS total_orders,
 CASE
    WHEN COUNT(orders.order_id)/(SELECT COUNT(*) FROM my-first-project-
418418.warehouse_orders.orders AS orders) <= 0.2
    THEN 'Fullfillment is 0-20%'
    WHEN COUNT(orders.order_id)/(SELECT COUNT(*) FROM my-first-project-
418418.warehouse_orders.orders AS orders) > 20
    AND COUNT(orders.order_id)/(SELECT COUNT(*) FROM my-first-project-
418418.warehouse_orders.orders AS orders) <= 60
    THEN 'Fullfillment is 21-60%'
    ELSE 'Fullfillment is more than 60% of orders'
 END AS fullfillment_summary
FROM my-first-project-418418.warehouse_orders.warehouse AS warehouse
LEFT JOIN my-first-project-418418.warehouse_orders.orders AS orders
ON orders.warehouse_id = warehouse.warehouse_id
GROUP BY
 warehouse.warehouse_id,
 warehouse_name
#HAVTNG
# COUNT(orders.order_id) > 0
```

Row /	warehouse_id ▼ //	warehouse_name ▼	number_of_orders	total_orders ▼	fullfillment_summary ▼
1	1543	KY: Somerset Fulfillment Center	548	9999	Fullfillment is 0-20%
2	2270	KY: Bowling Green Warehouse	0	9999	Fullfillment is 0-20%
3	9080	KY: Frankfort Fulfillment Center	500	9999	Fullfillment is 0-20%
4	2666	MI: Lansing Fulfillment Center	3178	9999	Fullfillment is more than 60% o
5	3961	MI: Lansing Storage Warehouse	0	9999	Fullfillment is 0-20%
6	8118	MI: Ann Arbor Fulfillment Center	3027	9999	Fullfillment is more than 60% o
7	3417	TN: Gatlinburg Warehouse	0	9999	Fullfillment is 0-20%
8	4338	TN: Knoxville Fulfillment Center	343	9999	Fullfillment is 0-20%
9	6509	TN: Memphis Fulfillment Center	2403	9999	Fullfillment is more than 60% o
10	9831	TN: Clarsvill Warehouse	0	9999	Fullfillment is 0-20%

Here the number_of_orders column is blank because there are some warehouse_id numbers which are not present in the orders table.

HANDS ON SCENARIO:

In this scenario, you are a junior data analyst for a multinational food and beverage manufacturer. You and your team are responsible for maintaining the safety of a wide array of food products. Because of the overwhelming number of products on the market, you have been asked to prioritize which products need to be reviewed by your stakeholders.

While it's useful to know which food industries receive the most complaints, the more critical aspect to consider is identifying the complaints that lead to severe health consequences, such as hospital visits.

41. Getting the top 10 Products having most Report Counts.

<pre>SELECT products_industry_name, COUNT(report_number) AS count_reports FROM `bigquery-public-data.fda_food.food_events` GROUP BY products_industry_name ORDER BY count_reports DESC LIMIT 10;</pre>							
JOB IN	IFORMATION	RESULTS	CHART	JSON			
Row	products_industry	_name ▼	count_reports ▼	/			
1	Vit/Min/Prot/Unco	onv Diet(Hum	85736				
2	Cosmetics		80169				
3	Nuts/Edible Seed		5459				
4	Vegetables/Veget	able Products	4521				
5	Soft Drink/Water		3387				
6	Bakery Prod/Doug	h/Mix/Icing	3343				
7	Fruit/Fruit Prod		3091				
8	Fishery/Seafood F	Prod	2870				
9	Cereal Prep/Break	fast Food	2305				
10	Dietary Convention	nal Foods/M	2268				

42. Getting the top 10 Products having Most Reports as well as those that have most hospitalizations.

```
SELECT
  products_industry_name,
  COUNT(report_number) AS count_reports
FROM
  bigquery-public-data.fda_food.food_events
WHERE
  products_industry_name IN
  (
    SELECT
    products_industry_name,
    -- COUNT(report_number) AS count_reports
  FROM
        'bigquery-public-data.fda_food.food_events'
  GROUP BY
        products_industry_name
  ORDER BY
        COUNT(report_number) DESC
```

```
LIMIT 10
  ) AND outcomes LIKE '%Hospitalization%'
GROUP BY
  products_industry_name
ORDER BY
  count_reports DESC
   JOB INFORMATION
                             RESULTS
                                             CHART
                                                           JSON
 Row
           products_industry_name ~
                                           count_reports ▼
      1
           Vit/Min/Prot/Unconv Diet(Hum...
                                                     22608
      2
           Cosmetics
                                                      9947
      3
           Dietary Conventional Foods/M...
                                                       768
      4
           Fishery/Seafood Prod
                                                       398
      5
           Nuts/Edible Seed
                                                       346
           Vegetables/Vegetable Products
      6
                                                       311
      7
           Soft Drink/Water
                                                       253
           Bakery Prod/Dough/Mix/Icing
      8
                                                       191
      9
           Fruit/Fruit Prod
                                                       154
           Cereal Prep/Breakfast Food
     10
                                                       117
```

SIMPLE Calculations using SQL

43. Simple Addition

```
SELECT
  Date,
  Region,
  Region,
  Small_bags,
  Large_bags,
  XLarge_bags,
  Total_bags,
  Total_bags + Large_bags + XLarge_bags AS Total_bags_calc
FROM
  `my-first-project-418418.avocado_data.avocado_prices`
```

JOB INI	FORMATION RESULTS	CHART JS	SON EXECUTION	ON DETAILS E	XECUTION GRAPH	
Row	Region ▼	Small_bags ▼	Large_bags ▼	XLarge_bags ▼	Total_bags ▼	Total_bags_calc ▼
1	Albany	8603.62	93.25	0.0	8696.87	8696.87
2	Atlanta	48605.95	17748.36	0.0	66354.31	66354.31
3	BaltimoreWashington	142543.88	2367.22	0.0	144911.1	144911.1
4	Boise	23520.19	5.69	35.22	23561.1	23561.1
5	Boston	85913.6	99.26	0.0	86012.86	86012.86
6	BuffaloRochester	55236.68	0.0	0.0	55236.68	55236.68
7	California	1090140.07	110737.35	11829.59	1212707.01	1212707.010000
8	Charlotte	35130.42	2499.62	0.0	37630.04	37630.04

44. Simple Division to calculate percentage

```
SELECT
  Date,
  Region,
  Total_bags,
  Small_bags,
  (Small_bags / Total_bags)*100 AS Small_bags_percent
   `my-first-project-418418.avocado_data.avocado_prices`
WHERE
  Total_bags <> 0
  JOB INFORMATION
                          RESULTS
                                                      JSON
                                                                 EXECUTION DETAILS
                                                                                          EXECUTION GRAPH
                                        CHART
         Date ▼
                           Region ▼
                                                        Total_bags ▼
                                                                          Small_bags ▼
                                                                                            Small_bags_percent,
     1
         2015-12-27
                           Albany
                                                                 8696.87
                                                                                  8603.62
                                                                                            98.92777516508...
     2
         2015-12-27
                           Atlanta
                                                                                            73.25213689962...
                                                               66354.31
                                                                                 48605.95
     3
         2015-12-27
                           BaltimoreWashington
                                                                144911.1
                                                                                 142543.88
                                                                                            98.36643293715...
         2015-12-27
                           Boise
                                                                 23561.1
                                                                                 23520.19
                                                                                            99.82636634113...
     4
     5
         2015-12-27
                           Boston
                                                               86012.86
                                                                                  85913.6
                                                                                             99.884598651876
         2015-12-27
                           BuffaloRochester
                                                                55236.68
                                                                                 55236.68
                                                                                                       100.0
     7
         2015-12-27
                           California
                                                              1212707.01
                                                                                1090140.07
                                                                                            89.89311193970...
         2015-12-27
                           Charlotte
     8
                                                               37630.04
                                                                                 35130.42
                                                                                            93.35738149627...
```

94741.09

83066.75

87.67763807657...

45. Use of EXTRACT

2015-12-27

In the below query we have used EXTRACT to get the year from the "starttime" column.

```
SELECT
  EXTRACT(YEAR FROM starttime) AS year,
  COUNT(*) AS number_of_rides
FROM
  `bigquery-public-data.new_york.citibike_trips`
GROUP BY
  year
ORDER BY
  year
```

Chicago

JOB IN	IFORMATION	RESULTS	CHART	JSON
Row	year ▼	number_of	f_rides 🔻	
1	201	3 ;	5037185	
2	201	4 8	3081216	
3	201	5	9937969	
4	201	6 10	0262649	

46. HANDSON For basic calculations using SQL.

Subtraction

```
SELECT
```

station_name, ridership_2013, ridership_2014, ridership_2014 - ridership_2013 AS change_2014_raw

`bigquery-public-data.new_york_subway_ridership_2013_present`

JOB IN	NFORMATION	RESULTS	CHART	JSON	EXECUTION	ON DETAILS	EXECUTIO
Row	station_name ▼	li	ridership_2013 🔻	ridership_	2014 ▼	change_2014_raw	
1	36 St		12059	9	12497	438	
2	W 4 St - Washing	ton Sq	40798	3	41968	1170	
3	Jay St - MetroTeo	h	40183	3	41405	1222	
4	Times Sq - 42 St	/ 42 St	197696	5	204908	7212	
5	4 Av		13156	5	12835	-321	
6	Lorimer St / Metr	opolitan Av	14004	4	14573	569	
7	New Utrecht Av /	62 St	5159	9	5270	111	
8	Lexington Av/53	St / 51 St	69973	3	70606	633	
9	5 Av/53 St		25939	9	26761	822	
10	59 St - Columbus	Circle	72236	5	74572	2336	

Results per page: 50 ▼ 1 - 50 of 430

47. Calculating AVERAGE

SELECT

station_name, ridership_2013, ridership_2014, ridership_2015, ridership_2016, $(ridership_2013 + ridership_2014 + ridership_2015 + ridership_2016)/4$ AS average FROM `bigquery-public-data.new_york_subway.subway_ridership_2013_present`

Row	station_name ▼	ridership_2013 ▼	ridership_2014 ▼	ridership_2015 ▼	ridership_2016 ▼	average 🔻
1	36 St	12059	12497	12810	13180	12636.5
2	W 4 St - Washington Sq	40798	41968	42760	42755	42070.2
3	Jay St - MetroTech	40183	41405	43456	44267	42327.75
4	Times Sq - 42 St / 42 St	197696	204908	206247	202363	202803.
5	4 Av	13156	12835	13126	13116	13058.2
6	Lorimer St / Metropolitan Av	14004	14573	15131	15082	14697.5
7	New Utrecht Av / 62 St	5159	5270	5551	5602	5395.5
8	Lexington Av/53 St / 51 St	69973	70606	70686	69750	70253.75
9	5 Av/53 St	25939	26761	26955	26566	26555.25
10	50 St - Columbus Circle	72226	7/1572	72054	72926	726/0

48. Filtering based on Year, Month, ProductID and StoreID

```
SELECT
EXTRACT(YEAR FROM Date) AS Year
, EXTRACT(MONTH FROM Date) AS Month
, ProductId
, StoreId
, SUM(Quantity) AS UnitsSold
, AVG(UnitPrice) AS UnitPriceProxy
, COUNT(DISTINCT SalesId) AS NumTransactions
FROM
my-second-project-421106.sales.sales
GROUP BY
Year, Month, ProductId, StoreId
ORDER BY
Year, Month, ProductId, StoreId
```

	ON GRAPH	AILS EXECUTION	EXECUTION DETA	ART JSON	RESULTS CHA	FORMATION	JOB IN
NumTransactions	UnitPriceProxy ▼	UnitsSold ▼	StoreId ▼	ProductId ▼	Month ▼	Year ▼	Row /
1	5.2325	17	21724	2	1	2017	1
2	5.2325	36	22623	2	1	2017	2
1	5.2325	79	22726	2	1	2017	3
1	5.2325	38	22749	2	1	2017	4
1	5.2325	61	85123	2	1	2017	5
1	0.2975	84	21755	3	1	2017	6
1	0.2975	83	22623	3	1	2017	7
1	0.2975	73	71053	3	1	2017	8
2	0.2975	187	84029	3	1	2017	9
1	9.24	89	22752	4	1	2017	10

49. NESTED Query

```
with sales_history as (
 SELECT
    EXTRACT(YEAR FROM Date) AS YEAR --time grouping
  , EXTRACT(MONTH FROM Date) AS MONTH --time grouping
  , ProductId --need to know which products are sold
  , StoreID --need to know which stores are selling
  , SUM(quantity) AS UnitsSold --how many (impacts inventory)
  , AVG(UnitPrice) AS UnitPriceProxy --can be interesting
  , COUNT(DISTINCT salesID) AS NumTransactions --unique transactions can be
interesting
 FROM my-second-project-421106.sales.sales
 GROUP BY YEAR, MONTH, ProductId, StoreID
SELECT
inventory.*
 , (SELECT AVG(UnitsSold) FROM sales_history
      WHERE inventory.ProductID=sales_history.ProductID
      AND inventory.StoreID=sales_history.StoreID) AS avg_quantity_sold_in_a_month
FROM my-second-project-421106.sales.Inventory AS inventory
```


50. Revised Query using ChatGPT with LEFT JOIN

```
WITH sales_history AS (
  SELECT
    EXTRACT(YEAR FROM Date) AS YEAR, -- Extracts the year from the date
    EXTRACT(MONTH FROM Date) AS MONTH, -- Extracts the month from the date
    ProductId, -- Product ID
    StoreID, -- Store ID
    SUM(quantity) AS UnitsSold, -- Total units sold
    AVG(UnitPrice) AS UnitPriceProxy, -- Average unit price
    COUNT(DISTINCT salesID) AS NumTransactions -- Number of unique transactions
  FROM my-second-project-421106.sales.sales
  GROUP BY YEAR, MONTH, ProductId, StoreID
)
SELECT
  inventory.*,
 COALESCE(avg_sales.avg_quantity_sold_in_a_month, 0) AS
avg_quantity_sold_in_a_month
  my-second-project-421106.sales.Inventory AS inventory
LEFT JOIN (
 SELECT
   ProductId,
    StoreID,
    AVG(UnitsSold) AS avg_quantity_sold_in_a_month
 FROM sales_history
 GROUP BY ProductId, StoreID
) AS avg_sales
ON inventory.ProductID = avg_sales.ProductID
AND inventory.StoreID = avg_sales.StoreID;
```

JOB IN	IFORMATION	RESULTS CHA	ART JSON EXECUT	ION DETAILS EXECUTION G	SRAPH		
Row /	ProductId ▼	Storeld ▼	StoreName ▼	Address ▼	neighborhood ▼	QuantityAvailable >	avg_quantity_sold_i
1	29	21777	Walmart	2 Laurel Drive	Sabina-Mattfeldt	5	53.2
2	69	21777	Walmart	6 Ridgeway Hill	Sabina-Mattfeldt	6	42.2
3	161	21777	Walmart	9630 Dahle Hill	Sabina-Mattfeldt	3	71.33333333333
4	171	21777	Walmart	2514 Summit Court	Sabina-Mattfeldt	3	38.25
5	181	21777	Walmart	82167 Russell Junction	Sabina-Mattfeldt	12	44.5
6	192	21777	Walmart	655 Union Center	Sabina-Mattfeldt	1	61.375
7	196	21777	Walmart	57004 Sauthoff Avenue	Sabina-Mattfeldt	12	83.125
8	277	21777	Walmart	1830 Forest Dale Parkway	Sabina-Mattfeldt	5	61.6

51. Hands-On to find the bikeld having the highest trip duration (Using TEMP Table).

```
WITH longest_bike_duration AS (
    SELECT
        bike_id,
        SUM(duration_minutes) AS trip_duration
FROM
        'bigquery-public-data.austin_bikeshare.bikeshare_trips`
GROUP BY
        bike_id
ORDER BY
        trip_duration DESC LIMIT 1
)
```

Finding out which bikeid has the highest tripduration

SELECT * FROM longest_bike_duration

JOB IN	FORMATION	RESULTS	CHART	JSON
Row	bike_id ▼	- /-	trip_duration	· //
1	370		137	641

52. SQL query to find the name of the station where that bike can most likely be found, so they ask you to determine which bike is used most often.

```
WITH longest_bike_duration AS (
    SELECT
    bike_id,
    SUM(duration_minutes) AS trip_duration
FROM
    `bigquery-public-data.austin_bikeshare.bikeshare_trips`
GROUP BY
    bike_id
ORDER BY
    trip_duration DESC LIMIT 1
)
```

Finding out which bikeid has the highest tripduration

```
SELECT
  trips.bike_id,
  trips.start_station_id,
  COUNT(*) AS trip_count
FROM longest_bike_duration AS longest
INNER JOIN
  `bigquery-public-data.austin_bikeshare.bikeshare_trips` AS trips
ON trips.bike_id = longest.bike_id
GROUP BY start_station_id, trips.bike_id
ORDER BY trip_count DESC
LIMIT 1
```

JOB INFORMATION	RESULTS	CHART J	SON EXECUT	ION DETAILS
Row _/ bike_id ▼	11	start_station_id ▼	trip_count ▼	
1 370		3798	177	

All the below queries actually create a temporary tables into the backend but the WITH ... AS Command doesn't actually create a temporary table In the back but mimics the temporary table.

53. SELECT INTO

(BigQuery currently doesn't recognize the SELECT INTO command currently below is the example of how the SELECT INTO might look for other RDBMS system)

```
SELECT

*
INTO

AfricaSales

FROM

GlobalSales

WHERE

Region = "Africa"
```

```
CREATE TABLE AfricaSales AS
(
SELECT *
FROM GlobalSales
WHERE Region = "Africa"
)
```

3 Ways to create a Temporary Table

How to create temporary tables:

- WITH clauses
- SELECT INTO statements
- CREATE TABLE statements