3

 \mathbf{a}

Рассмотрим равномерную раздачу (каждый клиент получает файлы на скорости $\frac{u_s}{N}$).

Известно, что $\frac{u_s}{N} \le d_{min} \Leftrightarrow u_s \le N d_{min} \Leftrightarrow \frac{NF}{u_s} \ge \frac{F}{d_{min}}$. Тогда, по формуле с лекции, ответ $\frac{NF}{u_s}$.

б

Рассмотрим равномерную раздачу (каждый клиент получает файлы на скорости $\frac{u_s}{N}$).

Известно, что $\frac{u_s}{N} \ge d_{min} \Leftrightarrow u_s \ge N d_{min} \Leftrightarrow \frac{NF}{u_s} \le \frac{F}{d_{min}}$. Тогда, по формуле с лекции, ответ $\frac{F}{d_{min}}$.

 \mathbf{B}

Из лекции известно, что время передачи точно не меньше $\max\left(\frac{NF}{u_s}, \frac{F}{d_{min}}\right)$. В случае из пункта а) можно сделать так, чтобы время передачи было равно $\frac{NF}{u_s}$, что не меньше $\frac{F}{d_{min}}$. В случае из пункта б) можно сделать так, чтобы время передачи было равно $\frac{F}{d_{min}}$, что не меньше $\frac{NF}{u_s}$. Т. е. в обоих случаях можно сделать так, чтобы время передачи было равно $\max\left(\frac{NF}{u_s}, \frac{F}{d_{min}}\right)$.