PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ FACULTAD DE CIENCIAS SOCIALES Especialidad de Economía Ciclo 2012 - II

PRACTICA CALIFICADA 1

Econometría I Profesor: Gabriel Rodríguez Jefe de Prácticas: Augusto Delgado

1. Nivel I (40 puntos)

- 1. Sea el modelo de regresión lineal clásico de muestras finitas: $y_t = x_t \beta + \epsilon_t$, se sabe que la matríz x_t es una matriz no estocástica. Suponga además que $\epsilon_t \sim iid(k, \sigma^2)$. Demuestre que $\hat{\beta}$ es sesgado.
- 2. Defina el error tipo I y tipo II. Indique si existe alguna relación entre ambos.
- 3. Plantee la forma del t-calculado y grafíque el contraste de hipótesis (indicando las zonas de rechazo y no rechazo al 95 % de confianza) cuando se desea contrastar que: $\hat{\beta} = a$, siendo a una constante no nula $(a \neq 0, a \in \mathbb{R})$.
- A. Demuestre que $M = I_T X(X'X)^{-1}X'$ es simétrica e idempotente.
- 5. Suponga que tiene dos estimadores insesgados independientes del mismo parámetro θ , digamos $\widehat{\theta}_1$ y $\widehat{\theta}_2$, con diferentes varianzas v_1 y v_2 . Diga si el estimador $\widehat{\theta} = c_1 \widehat{\theta}_1 + c_2 \widehat{\theta}_2$ es el estimador insesgado de mínima varianza de θ .
- 6. Dada la siguiente ecuación $y_t = \rho y_{t-1} + \varepsilon_t$. Demuestre que el estimador $\hat{\rho}$ hallado mediante MCO es la correlación entre y_t y y_{t-1} .
- 7. Para el modelo de regresión lineal simple $y_t = \mu + \varepsilon_t$, donde $\varepsilon_t \sim iidN (0, \sigma^2)$. ¿Es el estimador de μ la media muestral de la variable endógena?. Demuestre.
- 8. Si el verdadero proceso generador de datos es: $y_t = x_t \beta + z_t \delta + \epsilon_t$. Sin embargo, por error se estima el siguiente proceso: $y_t = x_t \beta + \epsilon_t$. ¿Es el estimador $\hat{\beta}$ insesgado?

2. Nivel II (40 puntos)

1. Un grupo de alumnos del curso de econometría I necesitar realizar una estimación para la Práctica Calificada 2, para lo cual poseen un conjunto de datos consistente en T observaciones en X_T y Y_T . El estimador resultante por MCO es $b_T = (X_T' X_T)^{-1} X_T' Y_T$. A pocos días de la entrega del trabajo se percatan que otras observaciones adicionales, x_s y y_s estában disponibles. Muestre que el estimador computado por MCO, usando los datos adicionales, es:

$$b_{T,s} = b_T + \frac{1}{1 + x_s' \left(X_T' X_T \right)^{-1} x_s} \left(X_T' X_T \right)^{-1} x_s \left[y_s - x_s' b_T \right]$$

Note que el último término es e_s , el residuo de la predicción de y_s usando los coeficientes basados en x_s y b_n . [Ayuda: tenga en cuenta lo siguiente $[A\pm bb']^{-1}=A^{-1}\mp\left[\frac{1}{1\pm b'A^{-1}b}\right]A^{-1}bb'A^{-1}$, note que los signos iniciales se invierten.]

$$y_t = X\beta + \delta z_t + u_t$$

se especifica el modelo:

$$y_t = X\beta + \gamma s_t + v_t$$

se tiene $E(\hat{\beta}) = \beta + a\delta$ y $E(\hat{\gamma}) = b\delta$, donde a (vector con k-1 componentes) y b (escalar) contienen los coeficientes estimados de una regresión de z_t sobre las variables en X junto con la variable s_t .

3. Nivel III (40 puntos)

Asuma que $Y=X\beta+\epsilon$. Todos los supuestos del modelo de regresión lineal múltiple se cumplen a excepción que $Cov(X,\epsilon)=0$. Asuma que X contiene K variables tales que $Cov(X,\epsilon)\neq 0$ y Z contiene L variables tales que $Cov(Z,\epsilon)=0$ donde $L\geq K$. Asimismo considere $E\left[\epsilon_{t}|x_{t}\right]=\eta_{t}, E\left[\eta_{t}\right]=0, Var\left[\eta_{t}\right]=k^{2}<\infty$. Finalmente considere los siguientes supuestos: i) $\left[X_{t},Z_{t},\epsilon_{t}\right], \ \forall t=1,2,..,T$ son secuencias de variables aleatorias i.i.d.; ii) $E\left[X_{tk}^{2}\right]=Q_{xx,kk}<\infty, \ \forall k=1,2,..,K$; iii) $E\left[Z_{tl}^{2}\right]=Q_{zz,ll}<\infty, \ \forall l=1,2,..,L$; iv) $E\left[Z_{tl},X_{tk}\right]=Q_{zx,lk}<\infty, \ \forall l=1,2,..,L; k=1,2,..,K$; v) $E\left[\epsilon_{t}|Z_{t}\right]=0$. Estos supuestos implican que: i) $P\lim T^{-1}Z'Z=Q_{zz}$; ii) $P\lim T^{-1}Z'X=Q_{zx}$; iii) . $P\lim T^{-1}Z'\epsilon=0$.

- 1. Encuentre la distribución asintótica de $\widehat{\beta}_{MCO}$.
- 2. Asuma el siguiente estimador: $\widehat{\beta}_{IV} = (Z'X)^{-1}(Z'Y)$. En tal sentido encuentre la distribución asintótica de $\widehat{\beta}_{IV}$.

8. See the electrodes are properly assumed the classes on the collection of the section of the section of the section