Tandetna seria tekstów matemetycznych

Ciekawe rzeczy o średnich

19 sierpnia 2024

1 $\mathbf{W}\mathbf{step}$

Ala pije po 2 piwa w soboty i niedziele a Bob — 1 piwo w patrzyste dni i pół w nieparzyste. Kto pije więcej? **Rozwiązanie.** Ala pije średnio $\frac{0+0+0+0+0+2+2}{7} = \frac{4}{7}$ piwa dziennie a Bob — $\frac{1+0.5}{2} = \frac{3}{4}$. Oczywiście $\frac{3}{4} > \frac{4}{7}$ więc Bob pije więcej.

Ten przykład pokazuje do czego można użyć średnich w prawdziwym życiu. Teraz do rzeczy:

Średnia 2

To słowo bez kontekstu oznacza średnią arytmetyczną, czyli

$$\bar{a} = \frac{a_1 + a_2 + \dots + a_n}{n}$$

albo $\frac{1}{n}\sum a_i$. Elementy ciągu a nazywamy danymi. Ewentualnie jeśli nie chodzi nam o ciąg tylko o całą funkcję o dziedzinie $(0, \Delta x)$:

$$\bar{f} = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n} f(x_i) = \frac{1}{\Delta x} \int_{0}^{\Delta x} f(x) dx = \frac{\Delta F}{\Delta x}$$

dla $x_i = \frac{i}{n} \cdot \Delta x$ i F'(x) = f(x). Przedział $(0, \Delta x)$ można zastąpić przez (a, b) ale wtedy wzory będą brzydsze. Zwykle nazywa się to wartością średnią funkcji f(x), np jeśli przyjmiemy taką zmianę oznaczeń:

współrzedna
$$x \to \operatorname{czas} t$$

funkcja
$$f(x) \rightarrow \text{prędkość } v(t)$$

funkcja F(x) której pochodną jest $F'(x) = f(x) \rightarrow \text{droga } s(t)$ której pochodną jest s'(t) = v(t)

$$\bar{f} = \frac{1}{\Delta x} \int_0^{\Delta x} f(x) dx = \frac{\Delta F}{\Delta x} \to v_{\text{sr}} = \frac{1}{\Delta t} \int_0^{\Delta t} v(t) dt = \frac{\Delta s}{\Delta t}$$

... to będziemy ją nazywać średnią wartością prędkości albo prędkością średnią. Tak samo działa to dla średniego ciśnienia $(\frac{\Delta F}{\Delta S})$, natężenia prądu $(\frac{\Delta q}{\Delta t})$, gęstości $(\frac{\Delta m}{\Delta V})$ itd. Dalej będziemy oznaczać średnie funkcji przez \bar{a} , a średnie danych a_1, a_2, \cdots, a_n przez $\mu(a_1, a_2, \cdots, a_n)$

Średnia ważona 2.1

Kiedy chcemy żeby ta sama dana trafiła do średniej ileś razy, tak jak trójka przy $\frac{3+3+3+3+2+2+5}{7}$ to przypisujemy jej wagę, w tym wypadku 4 bo są 4 trójki. Ogólnie wzór na średnią ważoną wygląda tak:

$$\bar{a} = \frac{\sum w_i a_i}{\sum w_i}$$

Gdzie w_i jest wagą danej a_i , która domyślnie wynosi 1.

2.2 Łączenie średnich

jeśli weźmiemy ciąg (a_1, a_2, \cdots) , po czym podzielimy go na n podciągów równej długości $(a_1, \cdots, a_n), (a_{n+1}, \cdots, a_{2n}), \cdots$ o średnich odpowiednio s_1, s_2, \cdots , to wartość średnia całego ciągu wynosi

$$\bar{a} = \frac{s_1 + s_2 + \dots}{n}$$

Jeżeli ich długości nie będą takie same, tylko i-ty podciąg będzie miał długość ℓ_i , to

$$\bar{a} = \frac{\ell_1 s_1 + \ell_2 s_2 + \cdots}{\ell_1 + \ell_2 + \cdots}$$

Jeżeli dodatkowo dodamy wagi, a suma wag w i-tym podciąg będzie miał wynosić W_i , to

$$\bar{a} = \frac{W_1 s_1 + W_2 s_2 + \cdots}{W_1 + W_2 + \cdots}$$

W skrócie chodzi o to, że średnia średnich jest średnią, tak samo jak suma sum jest sumą. W ten sposób można definiować średnie dla rzeczy których nie da się zsumować.

2.3 Uśrednianie punktów

Średnia punktów A i B to środek odcinka AB. Za to ich średnia ważona o wagach w_A i w_B to taki punkt M na tym odcinku że sotsunek jego odległości od każdego z końców jest taki sam jak stosunek wag, tj.

$$\frac{MB}{MA} = \frac{w_A}{w_B}$$

Obrazek:

$$M = \mu(A, B)$$

$$M = \mu(A, B)$$

$$B$$

$$A \qquad N = \mu(3A, B) = \frac{3}{4}A + \frac{1}{4}B$$

Jeśli stosunek $\frac{w_A}{w_B}$ jest wymierny, to można równie dobrze korzystać ze wzorów na nie-ważoną średnią i łączenie średnich, np N można policzyć jako $\mu(A,M)$. Oczywiście, to samo wyszłoby gdybyśmy uśrednili współrzędne punktów (tzn. współrzędna x punktu m to śrenia współrzędnych x punktów x i x0, o ile mamy jakiś układ współrzędnych.

Czasami średnią 2 punktów nazywa się (uwaga długie słowo) interpolacją liniową (LERP-em od linear interpolacion); wtedy zamiast wag podaje się ile % ich sumy zajmuje 1 z nich.

Za to średnią 3 punktów liczymy tak:

Twierdzenie 1. Odcinki łączące środki boków trójkąta z wierzchołkami naprzeciwko nich przecinają się w 1 punkcie, który:

- 1) istnieje,
- 2) dzieli każdy z nich w stosunku 1:2,
- 3) jest średnia wierzchołków trójkata (barycentrum).

Dowód. Oznaczmy wierzchołki A, B, i C w dowolnej kolejności. Śrenia wierzchołków A i B to środek odcnika AB (dalej M), a średnia wszystkich wierzchołków (G) to średnia M z wagą 2 i C z wagą 1, tj.

$$G = \frac{2M + C}{3}$$

A więc leży na odcinku MC, 2 razy bliżej do M niż do C. Ponieważ wierzchołki oznaczyliśmy dowolnie a punkt G jest tylko 1, to odcinki z MC i spółka przecinają się w 1 punkcie \square .

Podobnie to liczymy dla n punktów; tutaj ciekawym faktem jest że ich średnia zawsze będzie we wnętrzu ich otoczki wypukłej, tzn figury o najmniejszym obwodzie która je zawiera. Dowód jest łatwy przez indukcję. Poza tym:

Twierdzenie 1 ciąg dalszy. Punkt G:

4) jest średnią wszystkich jego punktów (tzn z wewnętrzem). Dowód.

Niech trójkąt ABC przystaje do trójkątów A'CB, B'AC i C'BA. Oznaczmy średnią jego punktów przez \tilde{G} , a średnie punktów jego kopii — \tilde{G}_A , \tilde{G}_B i \tilde{G}_C . ABC jest podobny w skali 2 do A'B'C' a więc średnia jego punktów musi leżeć 2 razy dalej od A' niż \tilde{G}_A , 2 razy dalej od B' niż \tilde{G}_B i 2 razy dalej od C' niż \tilde{G}_C , czyli na przecięciu prostych $A'\tilde{G}_A$, $B'\tilde{G}_B$ i $C'\tilde{G}_C$. Jednak musi też leżeć na odcinku łączącym barycentrum trójkąta $\tilde{G}_A\tilde{G}_B\tilde{G}_C$ i punkt \tilde{G} — a to jest niemożliwe, a dlaczego proszę samemu się domyśleć :)

d-wymiarowe uogólnienie trójkąta (jako otoczki wypukłej d+1=3 niewspółliniowych punktów) nazywamy d-sympleksem. Ogólniejsza wersja twierdzenia 1:

Twierdzenie 1.1. Średnia wierzchołków (przy okazji wszystkich punktów) d-sympleksu leży na przecięciu odcinków łączących jego wierczhołki z barycentrami ścian naprzeciwko, i dzieli te odcinki w stosunku 1:d.

Dowód bo jest taki sam jak dla trójkatów.

3 f-średnia

Czasami trzeba uśrednić nie zmienną a coś co od niej zależy, np często używa się wartości napięcia (U) dla którego moc $(P=U^2/R)$ będzie miała swoją średnią wartość (akurat tu nazywa się to wartością skuteczną napięcia). W tym wypadku uśredniamy (na przedziale długości T) kwadrat wartości funkcji u(t), a potem bierzemy odpowiednią wartość u, tj

$$U_s = \sqrt{\overline{u^2(t)}} = \sqrt{\frac{1}{T} \int_0^T (u(t))^2 dt}$$

i ogólnie oprócz kwadratowania można to robić z każdą inną funkcją (o ile jest odwracalna):

$$\mu_f(a) = f^{-1}\Big(\overline{f(a)}\Big)$$

3.1 Nierówności między f-średnimi

Na potrzeby tego pdf-u $\mu_f > \mu_g$ będzie oznaczać $\mu_f(a_1, a_2, \cdots, a_n) > \mu_g(a_1, a_2, \cdots, a_n)$ dla dowolnej ilości dowolnych danych.

Twierdzenie 2. $\mu_f > \mu_g$ jeśli f jest funkcją rosnącą a $g(f^{-1}(x))$ — wypukłą Dowód. Niech:

- 1) danymi będą a_1, \dots, a_n ,
- 2) $\alpha_i = f^{-1}(a_i),$
- 3) $g(f^{-1}(x)) = h(x)$ (oczywiście jest funkcją wypukłą).

Wtedy $f(\mu_f(\alpha_1, \dots, \alpha_n)) = \mu(a_1, \dots, a_n)$, a $f(\mu_g(\alpha_1, \dots, \alpha_n)) = \mu_h(a_1, \dots, a_n)$. Rysujemy:

- 1) wykres funkcji h,
- 2) n prostych, gdzie *i*-ta z nich ma równanie $x = a_i$,
- 3) punkty (w sensie kropki) A_1, \dots, A_n w przecięciach prostych z wykresem,
- 4) punkty B_1, \dots, B_n w przecięciach prostych z odcinkiem A_1A_n ,
- 5) prostą o równaniu $x = \mu(a_1, \dots, a_n)$ przecinającą odcinek w punkcie M.

Punkt M jest śrenią punktów B_1, \cdots, B_n , bo leży na odcinku B_1B_n i jego współrzędna x się zgadza (jest tylko 1 taki punkt). Liczba $\mu_h(a_1, \cdots, a_n)$ to taka x że h(x) jest współrzędną y średniej punktów A_1, \cdots, A_n . Ta średnia leży pod punktem M (bo ma tą samą współrzędną x i leży w otoczce wypukłej punktów A_1, \cdots, A_n), a więc prosta pozioma przechodząca przez nią przecina wykres funkcji h gdzieś po prawo, tj. dla większej wartości x niż współrzędna x punktu M. A ponieważ ta pierwsza wynosi $f(\mu_g(\alpha_1, \cdots, \alpha_n))$ a druga $-f(\mu_f(\alpha_1, \cdots, \alpha_n))$ (a f jest rosnąca), to istotnie $\mu_f(\alpha_1, \cdots, \alpha_n)$) $> \mu_g(\alpha_1, \cdots, \alpha_n)$ \square

To samo zadziała jeśli f będzie malejąca a h — wklęsła; za to oba warunki na raz można zapisać $f' \cdot (g \circ f^{-1})' > 0$. Jeśli f i g są ciągłe (zazwyczaj są) i odwracalne (muszą takie być żeby dało się robić f-średnią) to muszą być albo rosnące albo malejące w całej dziedzinie, a warunek $f' \cdot (g \circ f^{-1})' > 0$ robi się (tak to się ładnie nazywa) konieczny i wystarczający.

Teraz kilka uszczególnień, na ich potrzeby będziemy używali takiego symbolu:

- $\mu_a := \mu_{x^a}$ dla $a \neq 0$,
- $\mu_0 := \lim_{a \to 0} \mu_a = \mu_{\ln(x)} = \sqrt[n]{a_1 a_2 \cdots a_n}$ (średnia geometryczna),
- $\mu_{+\infty} := \lim_{a \to +\infty} \mu_a = \max a_1, a_2, \cdots, a_n \text{ (maksimum)},$
- $\mu_{-\infty} := \lim_{a \to -\infty} \mu_a = \min a_1, a_2, \cdots, a_n$ (minimum).

Twierdzenie 3. $\mu_a > \mu_b$ iff a > b

Dowód dla $b \neq 1$:

oczywiście funkcja x^a jest rosnąca a funkcja x^{a-b} jest wklęsła iff a>b \square

Dowód dla b = 1:

funkcja e^{ax} jest wklęsła iff a > 0

Dowód dla $b = +\infty$:

niech ciąg a_1, a_2, \cdots, a_n będzie nierosnący. Wtedy $\frac{1}{\sqrt{n}} \sqrt[a]{a_1, a_2, \cdots, a_n} < \frac{1}{\sqrt[a]{n}} \sqrt[a]{a_1, a_2, \cdots, a_n} = a_1 \square$.

Dowód dla $b = -\infty$:

niech ciąg a_1, a_2, \dots, a_n będzie niemalejący. Wtedy $\frac{1}{\sqrt{n}} \sqrt[n]{a_1, a_2 \cdots, a_n} > \frac{1}{\sqrt[n]{n}} \sqrt[n]{a_1, a_1, \cdots, a_1} = a_1 \square$. Jeśli $a_1 = a_2 = \dots = a_n$ to zamiast znaku < mamy znak = (uprzednio zakładaliśmy że dane nie są wszystkie takie same).

W szczególności:

$$\mu_{x^2} > \mu_x > \mu_{\ln(x)} > \mu \frac{1}{x}$$

innymi słowy