Disentangling Domain and General Representations for Time Series Classification

7237

Dataset 1

21

27

28

29

30

31

32

38

- **Battery charging (CHARGE):** The dataset, provided by 2 Huawei, contains charging records of electric cars. Its 3 task is to predict battery anomalies and identify the spe-4 cific anomaly type. It includes 6 types of abnormal bat-5 teries. To safeguard user privacy, three batches of battery 6 charging time series data (CHARGE1, CHARGE2, and CHARGE3) are used within a synthetic environment de-8 veloped by domain experts. Each batch comprises 10,090 9 cars, with higher ID batches closely resembling real-world 10 scenarios. Each entry consists of 10 charging records for a 11 car with 96 battery cells, and each batch encompasses thou-12 13 sands of cars.
- **Electricity usage (ELEC):** This dataset, provided by State 14 Grid, aims to identify electricity theft. It includes power 15 consumption records from 179,663 users across 5 cities in 16 Zhejiang Province, averaging 35,932 users per city. The 17 focus is on monthly power usage transitions between these 18 cities. 19
- UCIHAR [Reyes-Ortiz et al., 2016]: This dataset contains 20 six daily activities including walking, sitting, lying, standing, walking upstairs and walking downstairs. Volunteers 22 23 wear smartphones with built-in accelerometers and gyroscopes to collect data at 50 Hz. There are 1,318,272 sam-24 ples from 30 users, averaging 343 data pieces per user, with 25 each piece containing 128 time points. 26
 - WISDM [Kwapisz et al., 2011]: This dataset also contains six daily activities like UCIHAR. But the accelerometers decreae to 3, The dataset is collected from 29 users, comprising a total of 1,098,207 samples. Each user contributes 295 data pieces, with each piece containing 128 time points.
- Sleep-EDF [Ragab and Eldele, 2022]: Sleep stage clas-33 sification (SSC) problem aims to classify the electroen-34 cephalography (EEG) signals into five stages. The dataset 35 is collected from 20 users, with each piece containing 128 36 data points manually. 37

Implementation details

For the battery charging dataset and electricity usage dataset, 39 we treat each batch and city as a domain. For public UCI-HAR, WISDM, Sleep-EDF datasets which contain a large

Algorithm 1 Learning algorithm for CADT

- 1: Input: Labeled samples from source domain $\{\mathbf{x}_i^s, y_i^s, \}_{i=1}^{n_s}$, unlabeled samples from target domain $\{\mathbf{x}_i^t\}_{i=1}^{n_t}$, batch iterations T_1, T_2 and batch size N, synthetic data $\{\mathbf{x}_j\}_{j=1}^{\gamma*(n_s+n_t)}$
- 2: **Output:** Target label predictions $\{\hat{y}_i\}_{i=1}^{n_t}$
- 3: REPEAT
- 4: for $t \leftarrow 1$ to T_1 do
- Randomly sample a minibatch of labeled source data and unlabeled target data of size N
- Generate domain-invariant representations \mathbf{h}_s^v , \mathbf{h}_t^v and domain-specific representations \mathbf{h}_{s}^{c} , \mathbf{h}_{t}^{c} respectively by forward propagation
- 7: Update \mathcal{L}_{task} , \mathcal{L}_{net} , \mathcal{L}_{domain} and \mathcal{L}_{sphere}
- 8: Randomly sample a minibatch of synthetic data of
- 9: Generate domain-specific representations \mathbf{h}^c and update \mathcal{L}_{domain}
- 10: end for
- 11: for $t \leftarrow 1$ to T_2 do
- 12: Optimize the discriminator and update \mathcal{L}_{dis}
- 13: **end for**
- 14: UNTIL stopping
- 15: Predict target label \hat{y}_i for $i = 1, \dots, n_t$

number of human domains, we randomly choose 10 pairs of participants for each dataset with the same setting of Co-DATS. The hyperparameter is chosen followed the setting of [Gong et al., 2012]. For our method, the hyperparameter α is set to 1, β is chosen from $\{0.1, 1\}$, and γ is chosen from $\{1, 10, 100\}$. For all baseline methods, we adopt the default network architectures and settings reported in their public papers. For all methods, the batch size is set to $\{32, 64, 128\}$ varying from the size of the dataset. The Adam optimizer is adopted for all methods with the learning rate of 1e-3.

42

43

44

46

47

48

49

50

51

52

53

54

55

2.1 Hyper-parameter Analysis

We further study the effect of different settings of the hyperparameters in our proposed CADT. Both β and γ in the objective play the important role for learning. Specifically, β regularizes how indistinguishable the domain-invariant representations are, while γ controls the degree of con-

Figure 1: Results with different parameters.

straining the source and target representations in the latent space. Fig. 1 shows our CADT performance with parameter β selected from $\{0.1,1\}$ and parameter γ selected from $\{0.1,1.0,10.0,100.0\}$ on two public dataset UCIHAR and WISDM. We notice that CADT is robust to both β and γ since the gaps of average F1-score between the best and the worst are just 3.5% on Ucihar dataset and 2.9% on Wisdom dataset. The best performance for both datasets is achieved with parameter $\beta=0.1.$ The performance on Ucihar dataset decreases when γ is larger than 1.0. On the contrary, the best F1-score on Wisdom dataset is achieved with $\gamma=10.0.$ It shows that the degree of our class-wise hypersphere constraints should be tuned based on the dataset.

3 Recall and F1_score

Table 1: Recall and F1_score of different models on CHARGE dataset.S represents source and T represents target

S T	CNN	RNN	DDNN	MultiRocket	RDANN	VRADA	SASA	CoDATS	DAF	CADT
1 2 1 3 2 3 2 1 3 2	37.35/33.30 37.01/31.67 48.40/43.10 59.75/59.58 43.36/40.74	40.17/36.40 33.90/28.65 54.20/50.62 59.72/61.25 44.01/43.35	24.81/20.01 22.31/17.31 24.73/17.12 34.36/25.02 24.62/22.44	35.13/28.60 25.39/19.80 41.87/36.47 44.53/47.00 32.12/32.93	25.77/39.68 20.86/32.10 25.06/41.21 25.11/57.54 42.62/43.46	42.99/39.06 52.23/50.55 45.24/39.68 67.47/66.43 44.71/42.41	15.59/6.823 14.69/7.017 13.74/6.838 18.06/7.819 14.73/7.372	43.61/92.45 38.24/98.14 46.08/96.44 56.50/98.88 43.73/93.18	16.66/6.550 14.30/4.866 14.28/4.821 20.0/28.765 16.66/6.548	39.20/35.80 42.53/40.09 56.80/57.18 57.50/59.43 51.23/50.19
3 1	27.59/26.12	36.67/34.37	25.74/20.67	34.83/32.00	27.08/35.25	75.73/76.35	18.16/9.296	37.76/99.03	20.11/9.337	48.31/49.99

Table 2: Recall and F1_score of different models on ELEC dataset.S represents source and T represents target

S	T	CNN	RNN	DDNN	MultiRocket	RDANN	VRADA	SASA	CoDATS	DAF	CADT
Е	B	52.46/20.75	50.75/5.960	51.63/39.47	14.68/10.42	50.15/1.803	48.95/48.95	47.94/34.25	61.64/38.77	91.05/89.12	81.04/79.30
В	A	56.07/37.52	50.97/5.250	54.24/46.00	14.68/11.28	50.43/3.535	62.13/62.13	62.53/62.47	71.54/61.46	76.84/70.48	82.72/82.70
C	E	56.37/30.56	51.19/5.514	53.01/44.05	15.29/13.10	50.43/2.431	85.05/85.05	57.63/56.38	64.66/45.58	83.16/79.10	94.10/94.64
C	В	57.99/37.12	50.45/2.992	51.09/36.05	15.13/11.68	50.13/1.264	85.29/85.29	51.41/38.84	61.22/37.26	68.81/57.76	85.28/84.23
В	E	57.79/35.28	51.56/7.842	53.65/45.63	14.93/12.01	50.52/3.233	60.89/60.89	56.36/54.63	69.78/56.66	69.22/60.37	85.38/85.98
D	E	53.51/22.85	51.78/8.261	52.75/43.73	14.50/11.09	50.94/4.883	50.63/50.63	65.95/65.82	65.82/48.15	88.61/85.87	90.42/91.26
A	C	51.16/8.038	51.02/5.607	51.26/42.20	14.61/11.84	50.36/2.528	52.86/52.86	67.98/68.22	55.25/19.64	71.65/66.95	66.64/67.05
D	C	51.27/12.92	51.29/6.367	51.24/42.23	14.56/11.95	50.32/2.238	57.54/57.54	62.79/61.68	64.59/45.76	77.24/72.86	91.96/93.17
C	D	52.48/22.60	50.80/4.106	50.80/37.46	14.79/11.78	50.15/1.426	75.05/75.05	55.11/53.13	60.89/36.94	74.16/67.96	89.55/89.86
D	В	55.70/32.65	50.85/4.764	51.78/37.95	14.77/10.55	50.56/3.658	52.82/52.82	49.47/42.85	65.83/48.75	91.03/89.21	86.43/85.77
В	D	53.92/30.17	51.32/6.685	53.04/44.81	14.96/11.65	50.77/4.428	69.68/69.68	61.08/59.08	63.28/42.25	68.66/59.16	79.66/79.76
A	E	51.28/8.639	50.62/3.590	52.65/42.95	17.39/12.78	50.32/2.431	51.75/51.75	51.15/48.04	55.16/19.28	81.17/80.17	73.44/73.77
E	D	53.11/19.43	50.98/5.789	52.25/41.14	14.72/11.28	50.57/3.388	48.28/48.28	58.01/57.53	56.01/22.81	77.65/71.52	81.97/82.05
A	В	50.72/8.136	50.38/2.966	51.06/35.84	14.35/9.397	50.06/1.554	52.95/52.95	54.40/46.87	54.91/19.50	72.11/64.31	74.04/71.89
E	A	54.00/27.11	50.97/6.282	53.97/45.60	14.55/11.46	50.72/4.982	50.38/50.38	57.02/54.80	59.29/33.22	88.86/87.39	80.57/80.63
D	A	54.30/29.41	51.15/5.879	52.21/41.54	14.79/11.74	50.43/3.080	54.24/54.24	58.78/57.96	66.73/51.79	75.11/70.48	87.93/88.28
A	D	50.50/5.873	50.70/4.166	50.63/36.99	15.11/11.12	50.34/2.275	51.19/51.19	63.60/63.85	55.87/21.12	81.49/79.71	68.63/68.16
В	C	54.85/26.28	51.13/6.087	51.57/43.47	14.73/12.28	50.33/2.207	66.73/66.73	73.69/63.75	64.47/45.54	72.51/66.97	80.83/81.64
C	A	58.24/40.03	51.33/6.219	52.91/41.98	15.68/13.57	50.81/4.584	60.16/60.16	63.77/61.16	63.63/44.56	67.80/58.61	83.99/84.19
Е	C	54.11/22.45	51.04/6.026	53.45/47.39	15.42/13.66	50.40/2.739	53.08/53.08	70.59/70.43	58.99/31.09	77.11/72.75	85.56/87.46

Table 3: Recall and F1_score of different models using UCIHAR dataset.S represents source and T represents target

S	T	CNN	RNN	DDNN	MultiRocket	RDANN	VRADA	SASA	CoDATS	DAF	CADT
2	4	51.33/48.60	46.90/45.86	54.85/46.57	39.34/39.08	38.29/35.93	44.44/35.07	51.78/44.95	76.95/75.90	27.30/19.42	87.74/87.41
26	3	45.48/43.60	45.10/43.91	59.52/52.77	21.40/9.034	37.68/34.33	51.72/44.47	46.72/42.19	74.56/74.71	27.06/21.78	84.24/83.83
7	25	37.11/31.94	33.71/32.19	62.12/54.96	27.02/23.46	27.40/20.33	39.23/31.76	53.63/49.06	57.08/54.31	27.59/20.59	82.33/80.73
16	9	48.99/47.35	56.84/56.52	53.39/47.23	68.34/68.95	38.72/34.23	39.93/30.26	50.07/49.23	78.33/78.12	27.86/22.61	82.79/81.67
6	23	50.60/47.23	46.55/45.85	71.90/66.75	39.50/38.84	37.24/34.05	46.83/38.58	57.47/56.19	71.23/69.60	30.83/21.12	91.67/91.46
7	8	53.30/48.55	58.26/57.73	73.32/70.52	13.84/10.44	45.94/44.22	43.40/33.18	64.86/63.24	79.79/78.58	38.15/35.64	85.07/83.74
13	7	65.76/63.23	69.41/68.73	77.92/73.93	28.47/28.30	68.75/67.78	47.81/37.90	72.02/70.88	88.11/87.99	42.46/39.13	90.73/90.32
16	10	34.83/31.58	28.35/27.19	44.58/38.45	58.53/55.38	23.72/18.78	33.79/24.67	36.24/35.89	46.00/44.75	24.90/19.61	72.80/72.65
29	14	44.00/38.81	42.13/37.80	63.01/57.69	33.21/29.22	33.47/26.88	39.79/29.53	37.22/34.55	56.52/51.85	29.46/21.80	83.76/82.85
13	29	53.15/49.32	57.46/57.02	68.29/62.19	14.90/13.03	47.45/44.56	46.85/38.75	61.45/58.09	83.68/83.32	38.51/34.44	88.79/87.58

Table 4: Recall and F1_score of different models using WISDM dataset.S represents source and T represents target

S	T	CNN	RNN	DDNN	MultiRocket	RDANN	VRADA	SASA	CoDATS	DAF	CADT
9	18	32.25/25.32	41.24/37.45	34.44/28.35	74.07/71.73	31.17/25.08	21.38/15.36	21.23/16.07	67.93/62.75	16.93/8.952	54.55/51.30
31	11	31.42/22.86	22.51/16.10	41.38/33.51	40.83/33.47	19.64/15.61	28.69/19.88	26.71/21.28	32.01/29.26	25.0/013.81	41.80/35.93
2	6	33.77/28.30	31.88/22.95	40.42/36.29	48.00/42.64	31.25/26.00	37.45/31.84	29.71/25.41	70.38/67.64	21.80/16.58	65.54/63.83
7	25	24.73/18.85	40.08/37.15	32.73/26.30	28.13/23.52	30.92/27.56	25.42/20.03	17.42/9.946	54.96/46.38	22.66/16.40	67.55/63.84
3	27	25.46/20.00	41.55/40.58	33.38/26.38	39.66/35.96	35.08/33.04	26.19/21.03	25.61/24.58	60.93/59.06	17.45/10.18	52.54/50.64
22	8	47.88/42.49	26.81/20.91	41.22/35.48	26.29/16.83	26.72/18.82	32.01/25.36	34.17/34.35	37.25/33.11	28.47/20.49	76.41/76.18
6	23	28.86/24.05	29.54/27.48	35.36/30.45	38.31/37.63	30.67/26.63	31.84/26.67	29.65/28.58	44.36/41.51	24.53/18.92	62.89/59.70
27	20	40.78/33.70	37.53/34.90	45.96/38.42	38.12/33.11	31.57/27.11	37.52/30.74	28.29/28.00	74.37/70.32	34.82/25.65	91.25/92.05
15	19	29.51/20.75	25.44/18.20	45.89/36.82	12.58/14.30	28.19/20.91	38.61/28.40	8.823/9.098	27.08/20.17	29.73/20.45	41.87/33.40
16	7	35.12/29.73	32.73/30.08	39.66/34.54	36.89/35.86	29.05/25.46	26.05/20.82	29.78/28.98	39.89/34.67	26.44/20.07	60.31/60.41

Table 5: The performance of not using domain adaptation (CNN), not using coupled interactive networks (w/o CIN), class-wise hyperspheres (w/o CH).

Dataset	Source	Target	CNN	w/o CH	w/o CIN	CADT
	1	2	44.46±4.719	41.60±3.504	46.43±2.397	44.70±2.253
	1	3	42.43±3.919	39.62±3.398	48.13±3.015	49.72±2.964
CHARCE	2	3	52.27±3.596	52.53±5.687	64.43±1.491	60.86±6.784
CHARGE	2	1	65.56±13.64	59.96±7.196	69.31±2.633	70.44±4.136
	3	2	54.70±3.941	53.28±1.653	55.88±1.126	54.77±2.191
	3	1	34.84±21.93	50.64±2.761	57.59±1.779	58.49±2.355
	2	4	53.08±5.009	82.96±2.876	87.81±1.510	88.67±1.104
	26	3	45.65±7.630	74.87±4.955	83.75±0.684	84.31±1.159
	7	25	37.73±6.472	67.18±5.568	81.87±0.650	82.23±2.059
	16	9	49.21±7.000	75.62±1.842	81.79±3.437	82.65±3.568
UCIHAR	6	23	51.0±5.526	80.31±2.460	91.18±1.610	90.93±2.857
UCITIAN	7	8	53.86±7.023	80.31±4.011	87.03±4.039	85.39±3.428
	13	7	66.56±7.434	90.15±0.904	92.03±1.174	91.40±2.407
	16	10	35.27±7.841	66.48±3.039	74.45±3.652	73.98±4.409
	29	14	44.59±3.217	68.31±7.217	82.37±12.70	83.56±9.197
	13	29	51.34±7.241	81.87±0.861	88.12±5.929	88.62±5.125
	9	18	61.99±3.463	71.87±2.237	72.57±2.361	72.65±2.250
	31	11	45.82±11.51	72.5±1.494	72.26±1.397	73.28±0.312
	2	6	66.53±1.197	78.49±4.277	75.87±3.146	81.81±5.166
	7	25	49.72±12.26	67.26±11.64	85.07±4.517	89.53±1.220
WISDM	3	27	55.68±12.93	66.12±5.754	76.56±4.419	70.87±7.731
WISDM	22	8	75.57±5.514	77.70±3.747	88.02±1.358	87.29±1.301
	6	23	61.05±3.831	72.34±5.196	75.31±9.547	78.90±7.316
	27	20	62.23±7.961	80.0±11.03	92.70±4.320	95.72±1.450
	15	19	40.15±7.884	47.5±11.06	46.87±10.02	50.31±9.639
	16	7	61.75±3.068	77.26±5.053	84.76±0.741	85.54±1.235

References	72
[Gong et al., 2012] Boqing Gong, Yuan Shi, Fei Sha, and Kristen Grauman. Geodesic flow kernel for unsupervised domain adaptation. In 2012 IEEE conference on computer vision and pattern recognition, pages 2066–2073. IEEE, 2012.	73 74
ACMC, VDD E. J. C. N. J. W. 1000 2011	75 76
[Ragab and Eldele, 2022] Mohamed Ragab and Emadeldeen Eldele. Subject-wise Sleep Stage Data, 2022.	77
[Reyes-Ortiz <i>et al.</i> , 2016] Jorge-L Reyes-Ortiz, Luca Oneto, Albert Samà, Xavier Parra, and Davide Anguita. Transition-aware human activity recognition using smartphones. <i>Neurocomputing</i> , 171:754–767, 2016.	78 79