Горелкина РК6-32Б Вариант №4

Домашнее задание №4 по курсу теории вероятностей и математической статистики.

Генератор случайных чисел. Имитационное моделирование.

Исходные данные

Задание 1.

Постройте свой генератор с параметрами $a=R_1,\ c=G_1,\ X_0=B_1,\ m=100$ Составьте таблицу элементов последовательности до первого повторения, определите период генератора.

Постройте свой генератор с рационально выбранными параметрами $a=41,\ c=53,\ X_0=B_1,\ m=100$ Составьте таблицу элементов последовательности до первого повторения, убедитесь в достижении максимального периода генератора.

Возьмите первые n=50 значений из ранее полученной таблицы. Разбейте отрезок [0, 99] на r=10 равных частей $[0, 9], [10, 19], \ldots, [90, 99]$. Определите число элементов усечённой последовательности n_i , попавших в соответствующий диапазон и постройте гистограмму.

Требуется определить такое значение уровня значимости, с которым можно принять гипотезу о том, что статистическая выборка соответствует равномерному распределению. Полученный уровень значимости можно будет рассматривать как характеристику качества работы генератора случайных чисел, с помощью которого была получена статистическая выборка.

Требуется рассчитать выборочные характеристики (выборочное среднее, смещённую и исправленную оценки выборочной дисперсии) для $n=5,10,25,50\mathrm{n}=5,10,25$ и сравнить их с соответствующими характеристиками теоретического равномерного распределения (математическим ожиданием и дисперсией). Результаты свести в таблицу, с указанием величины отклонений от теоретических значений.

Решение

По условию
$$\lambda=\frac{1}{T_c},~\mu=\frac{1}{T_s},~\nu=\frac{60}{T_w}.$$
 Положим $\rho=\frac{\lambda}{\mu},~\beta=\frac{\nu}{\mu}.$

Рассмотрим общий случай, когда в системе имеется n операторов, m ячеек в очереди.

Вероятность того, что все каналы свободны:
$$P_0 = \left(\sum_{k=0}^n \frac{\rho^k}{k!} + \frac{\rho^n}{n!} \cdot \sum_{q=1}^m \frac{\rho^q}{\prod_{j=1}^q n + j\beta}\right)^{-1}$$
.

Вероятность отказа:
$$P_{n+m} = \frac{\rho^n}{n!} \cdot \frac{\rho^m}{\displaystyle\prod_{j=1}^m n + j\beta} \cdot P_0.$$

Вероятность существования очереди:
$$P_m = \frac{\rho^n}{n!} \cdot \sum_{q=1}^{m-1} \frac{\rho^q}{\displaystyle\prod_{i=1}^q n + j\beta} \cdot P_0.$$

Математическое ожидание числа занятых операторов: $E_n = \sum_{k=1}^n P_k \cdot k + \sum_{j=1}^m P_{n+1} \cdot n$.

Математическое ожидание длины очереди: $E_m = \sum_{k=1}^m P_{n+1} \cdot k$.

Коэффициент загрузки операторов $K_o = \frac{E_n}{n}$. Коэффициент занятости очереди $K_q = \frac{E_m}{m}$.

Решим задание, рассматривая каждую из задач как частный случай, с помощью предельных переходов (в случае бесконечных очередей) будем находить нужные показатели.

1. Рассмотрим систему без очереди: $M_{\lambda}|M_{\mu}|n|0$

Относиельная пропускная способность $Q=1-P_n$, абсолютная пропускная способность $A=\lambda\cdot Q$. Математическое ожидание числа занятых операторов $E_n=\frac{A}{\mu}=\frac{\lambda\cdot Q}{\mu}=\rho\cdot (1-P_n)$.

2. Рассмотрим систему с ограниченной очередью: $M_{\lambda}|M_{\mu}|n|m$

Вероятность существования очереди $P_m = \frac{\rho^n}{n!} \cdot \frac{1 - \rho^m \cdot n^{-m}}{1 - \rho \cdot n} \cdot P_0.$

3. Рассмотрим систему без ограничений на длину очереди: $M_{\lambda}|M_{\mu}|n|\infty$

Вероятность отказа $P_n = 0$, тогда Q = 1, $A = \lambda$, $E_n = \rho$, $K_n = \frac{E_n}{n}$. Формула для P_0 получается при предельном переходе $m \mapsto \infty$ для P_0 из предыдущего пункта, то есть $P_0 = \left(\sum_{k=0}^n \frac{\rho^k}{k!} + \frac{\rho^{n+1}}{n \cdot n!} \cdot \frac{1}{n-\rho}\right)^{-1}$. Вероятность существования очереди $P_m = \frac{\rho^n}{n!} \cdot \frac{1}{n-\rho} \cdot P_0$.

Математическое ожидание длины очереди $E_m = \frac{\rho^{n+1}}{n!} \cdot \frac{1}{(n-\rho)^2} \cdot P_0.$

4. Рассмотрим систему без ограничений на длину очереди, учитывающей фактор ухода клиентов из очереди: $M_{\lambda}|M_{\mu}|n|\infty_{\nu}$

$$P_{0} = \lim_{m \to \infty} \left(\sum_{k=0}^{n} \frac{\rho^{k}}{k!} + \frac{\rho^{n}}{n!} \cdot \sum_{q=1}^{m} \frac{\rho^{q}}{\prod_{j=1}^{q} n + j\beta} \right)^{-1}.$$

Все дальнейшие вычисления и посторения графиков реализованы с помощью языка программирования Python и находятся в файле prob3_clac.pdf.