L> compound Interest - Amount = P(1+ B) 4 5% annually compounded quarterly, now R= R/4 t= tx4

LA Multiplus, differed between 2 multiplus is also a multiple. Eg - Il R, K+200, K+350 an multiple of P, what is P

-> Trapezoid area = b,+b2. h

These both should be multiples of P

- Prime number trick, to test it any no. less than loo is a prime, check it it is divisible by any prime numbers less than 10
- Factors of large numbers trick
 - meitasivotop unial O el
 - La @ list all exponents of prime factors
 - 13 3 add I to each

- La Inequality on absolute value
 - -> Express -3 < x < 11 as absolute inequality
 - → Take midpoint -3+11 = 4
 - 1x-41 & (11-4) & right value)
 - 1x-41 & 7
 - -> Sum of ongles in a sided polygon (n-2) ×180
 - -> Diagonals ob on noided polygon U (U-3)

xvetom slowed a

	TURA TYPEB		
Type I	٥	Ь	946
Type 2	د	λ	c+d
	مدر	p+q	0+6+

Sum of multiples in a honge
$$\Rightarrow$$
 No. of terms = N

 $a_1 \Rightarrow beginning of honge$
 $a_N \Rightarrow bash number in honge$

$$\Rightarrow (a_1 + a_N) \times N$$

Examples \Rightarrow Sum of multiples of S bigger than 100 & less than 200.

 \Rightarrow So $a_1 = 10S$
 $a_1 = 19S$
 $a_1 = 19S$
 $a_2 = 19S \Rightarrow 19$
 $a_3 = 19S \Rightarrow 19$
 $a_4 = 19S \Rightarrow 19$

-> Repeats every 4, 123904 -> 3, Uncle third no in pattern = 3

 \rightarrow 5ct of n items with b identical items $N = \frac{n!}{b!}$

Surface area Rb box = 2(wl + hl + hw)

- y tilonoitrogary + → Directly a= Rb > Inversity a = x
- if $\frac{a}{b} > \frac{5}{4}$ then 9-5>0 is true but ad > cb is not always true since any of those would be negative and nequire sign Change

→ 7.583 in fraction

→ 7.58 + 0.003

→ 758 + 0.3 × 0.01

→ 759 +
$$(\frac{1}{3})(\frac{1}{100})$$

→ 759 + $\frac{1}{300}$ → $\frac{2275}{300}$

→ 91

12

x do viknewag 1 1 % & X

$$\Rightarrow$$
 for how many integer value is
$$f(x) = \frac{\sqrt{x-2}}{x} \quad \text{en defined}$$
when $x = 0$

when x=0 አ_ጉ ነ X = -1,-1,-3, ... , - 00 INFINITE VALUES

→ 5 is how many fifths of 10

• fifth of →
$$\frac{x}{5}$$
 $\frac{x}{5} \times 10 = 5$
 $x = 2.5$

- · Set of all positive number
 - -> multiply all numbers with 1 \$ 50
 - -> Smallest no increased to be median USD
 - → Smallest no. increased to become largest USD 150
 - > Largest number is doubled 150

- Probability Question " at least" > 1-2

-> Phon bus = 11th ogram with 4 equal sides Square = Largest shombus of a given size

Standard demiation

A: 10,20,30,40,50 } Dis \$ 10 B: 10,30,50,70,90 300 W 20

B has a higher SD