12 BONUS: Systolic Arrays [35 points]

A systolic array consists of 4x4 Processing Elements (PEs), interconnected as shown in Figure 1. The inputs of the systolic array are labeled as H_0 , H_1 , H_2 , H_3 and V_0 , V_1 , V_2 , V_3 . Figure 2 shows the PE logic, which performs a multiply and accumulate MAC operation and saves the result to an internal register (reg). Figure 2 also shows how each PE propagates its inputs. We make the following assumptions:

- The latency of each MAC operation is one cycle.
- The propagation of the values from i_0 to o_0 , and from i_1 to o_1 , takes one cycle.
- The initial values of all internal registers is zero.

Figure 1: PE array

Processing Element (PE)

Figure 2: Processing Element (PE)

Your goal is to use the example systolic array shown in Figure 1 to perform the convolution (*) of a 3x3 image (matrix I_{3x3}) with four 2x2 filters (matrices A_{2x2} , B_{2x2} , C_{2x2} , and D_{2x2}), to obtain four 2x2outputs (matrices W_{2x2} , X_{2x2} , Y_{2x2} , and Z_{2x2}):

As an example, the convolution of the matrix I_{3x3} with the filter A_{2x2} is computed as follows:

- $W_{00} = I_{00} * A_{00} + I_{01} * A_{01} + I_{10} * A_{10} + I_{11} * A_{11}$
- $W_{01} = I_{01} * A_{00} + I_{02} * A_{01} + I_{11} * A_{10} + I_{12} * A_{11}$
- $W_{10} = I_{10} * A_{00} + I_{11} * A_{01} + I_{20} * A_{10} + I_{21} * A_{11}$
- $W_{11} = I_{11} * A_{00} + I_{12} * A_{01} + I_{21} * A_{10} + I_{22} * A_{11}$

Final Exam Page 26 of 27 You should compute the four convolutions in the minimum possible number of cycles. Fill the following table with:

- 1. The input elements (from matrices I_{3x3} , A_{2x2} , B_{2x2} , C_{2x2} , and D_{2x2}) in the correct input ports of the systolic array (H_0 , H_1 , H_2 , H_3 and V_0 , V_1 , V_2 , V_3). (Hint: If necessary, an input element can be concurrently streamed into several input ports of the array.)
- 2. The output values and the corresponding PE where the output elements (of matrices W_{2x2} , X_{2x2} , Y_{2x2} , and Z_{2x2}) are generated.

Fill the blanks only with relevant information.

cycle	H0	H1	H2	Н3	$\mathbf{V0}$	V1	V2	V3	$ PE_{00} $	PE_{01}	PE_{02}	PE_{03}	PE_{10}	PE_{11}	PE_{12}	PE_{13}	PE_{20}	PE_{21}	PE_{22}	PE_{23}	PE_{30}	PE_{31}	PE_{32}	PE_{33}
0	$ A_{00} $				I_{00}																			
1	A_{01}	B_{00}			I_{01}	I_{01}																		
	A_{10}				I_{10}																			
3									W_{00}															
4				D_{01}		I_{12}	I_{20}	I_{12}		W_{01}			X_{00}											
5			C_{11}	D_{10}			I_{21}	I_{21}			W_{10}			X_{01}			Y_{00}							
6				D_{11}				I_{22}				W_{11}			X_{10}			Y_{01}			Z_{00}			
7																X_{11}			Y_{10}			Z_{01}		İ
8																				Y_{11}			Z_{10}	ĺ
9																								Z_{11}
10																								
11																								
12																								
13																								
14																								
15																								

Final Exam Page 27 of 27