Level Diff. SMM

Here we explore the relationship between the level difficulty and log(tries_taken).

We construct a figure with two histograms of log_tries_taken.

We can model the relationship between $\log_$ tries $_$ taken and level difficulty non-parametrically by calculating proportions.

In addition, for partition we construct a table.

```
# #######
# REDACTED
# #######
```

##		lower	upper	num_levels	num_easy_levels	prop
##	1	9.0	9.5	56	56	1.0000000
##	2	9.5	10.0	218	218	1.0000000
##	3	10.0	10.5	198	197	0.9949495
##	4	10.5	11.0	169	147	0.8698225
##	5	11.0	11.5	156	106	0.6794872
##	6	11.5	12.0	203	87	0.4285714
##	7	12.0	12.5	212	57	0.2688679
##	8	12.5	13.0	151	40	0.2649007
##	9	13.0	13.5	109	22	0.2018349
##	10	13.5	14.0	64	9	0.1406250
##	11	14.0	14.5	54	9	0.1666667
##	12	14.5	15.0	26	3	0.1153846
##	13	15.0	15.5	8	0	0.0000000
##	14	15.5	16.0	5	0	0.0000000
##	15	16.0	16.5	3	0	0.0000000
##	16	16.5	17.0	1	0	0.0000000

Bin width = 0.5

Varying bin width

##		lower	upper	num_levels	num_easy_levels	prop
## 1	1 9	000000	9.630431	102	102	1.0000000
## 2	2 9	0.630431	9.867705	102	102	1.0000000

```
9.867705 10.060705
## 3
                                  102
                                                  102 1.0000000
## 4
     10.060705 10.309985
                                  102
                                                  102 1.0000000
     10.309985 10.619765
                                                   98 0.9607843
                                  102
     10.619765 10.923147
                                  102
                                                   93 0.9117647
     10.923147 11.221088
                                  102
                                                   79 0.7745098
## 8
     11.221088 11.560038
                                                   57 0.5588235
                                  102
## 9 11.560038 11.785217
                                 102
                                                   45 0.4411765
## 10 11.785217 12.043048
                                                   37 0.3627451
                                  102
## 11 12.043048 12.302582
                                  102
                                                   28 0.2745098
## 12 12.302582 12.533111
                                                   27 0.2647059
                                  102
## 13 12.533111 12.848332
                                  102
                                                   29 0.2843137
## 14 12.848332 13.248395
                                  102
                                                   21 0.2058824
## 15 13.248395 13.980168
                                  102
                                                   17 0.1666667
## 16 13.980168 16.578554
                                  102
                                                   12 0.1176471
```

Another approach is to model the proportion using a parametric model. We will consider using the the cumulative distribution function of the standard normal distribution denoted by Φ and is also known as the inverse probit function. We plot the Φ function over the range [-6, 6].

```
# #######
# REDACTED
# #######
```

##		lower	upper	num_levels	num_easy_levels	prop
##	1	9.000000	9.630431	102	102	1.0000000
##	2	9.630431	9.867705	102	102	1.0000000
##	3	9.867705	10.060705	102	102	1.0000000
##	4	10.060705	10.309985	102	102	1.0000000
##	5	10.309985	10.619765	102	98	0.9607843
##	6	10.619765	10.923147	102	93	0.9117647
##	7	10.923147	11.221088	102	79	0.7745098
##	8	11.221088	11.560038	102	57	0.5588235
##	9	11.560038	11.785217	102	45	0.4411765
##	10	11.785217	12.043048	102	37	0.3627451
##	11	12.043048	12.302582	102	28	0.2745098
##	12	12.302582	12.533111	102	27	0.2647059
##	13	12.533111	12.848332	102	29	0.2843137
##	14	12.848332	13.248395	102	21	0.2058824
##	15	13.248395	13.980168	102	17	0.1666667
##	16	13.980168	16.578554	102	12	0.1176471

Varying bin width

