

Static and Dynamic Stiffness of the Milling Machine

Department of Industrial, Systems and Manufacturing Engineering

By: Getachew Ambaye

August 30, 2023

Introduction

- According to Zhang et al. [1]
 - 30% to 50% static stiffness of a machine tool depends on stiffness of joints,
 - The damping of a machine tool is derived from joints more than 90% and
 - More than 60% vibration problems that appear on a machine tool originate in joints

- There are two types of joints in the feed system:
 - Fixed joints (bolted joints) and
 - Rolling joints (ball screw assembly, rolling guide paired, and bearing jointed.)

Figure: Feed system of a 3-axis CNC milling machine [2]

Static Stiffness

Figure: kinematic chain of the cross table with critical contact points marked with a circle. [3]

Dynamic Modeling of Feed System

• Wang et al. [2] proposed stiffness calculation methods

Modal orders	1	2	3	4
Measured results (Hz)	279.0	360.3	396.4	429.7
Theoretical results (Hz)	281.9	363.1	388.6	417.5
Relative error (%)	-1.03	-0.77	2.07	2.92

Figure: Structure (left) & dynamic modeling of the feed system (right) [2]

Stiffness of Rolling Guide Pair

Figure: Force analysis of rolling guide joint [2]

- The pretightened force:
 - normal force (P_0) ,
 - initial deformation (δ_0) of each ball

Pretightened force with z number of balls:

$$F_0 = \sqrt{2}zP_0\sin\beta$$

Under external force (F):

Vertical (δ_n) & Tangential (δ_t) displacement:

$$\delta_n = (\delta_U - \delta_0) \sin\beta = (\delta_0 - \delta_L) \sin\beta$$

$$\delta_t = (\delta_H - \delta_0) \cos \beta$$

Normal stiffness: $K_n = \frac{F}{\delta_n}$

Tangential stiffness: $K_t = \frac{zP_0\cos\beta}{2\delta_t}$

Equivalent Stiffness of Axial Feed Unit

Figure: Dynamic model of ball screw feed unit [2]

The axial stiffness of the deep groove ball bearing used at the simple end of screw is so small (neglected).

$$\frac{1}{k_{x}} = \frac{1}{k_{s}} + \frac{1}{k_{a}} + \frac{1}{k_{b}}$$

 k_x equivalent axial stiffness

 k_s is screw axial stiffness;

 k_a is ball screw assembly axial stiffness;

 k_b is bearings axial stiffness

Screw Axial Stiffness:

Figure: Schematic diagram of screw support mode [2]

$$k_s = \pi d^2 E/4I = \pi d^2 E/2L$$

d is minor diameter of the screw thread

Ball Screw Assembly Axial Stiffness

Figure: Force analysis of ball screw joint [2]

$$K_a = \frac{F_a}{\delta_a}$$

where:

 δ_1 -deformation of the contact between ball and nut groove, and

 δ_2 -deformation of the contact between ball and screw groove

$$\delta_{\mathsf{a}} = (\delta_1 + \delta_2)/\mathsf{sin}\beta\mathsf{cos}\phi$$

$$\delta_i = \frac{K_i}{\pi a_i} \left(\frac{3P}{2} \left(\frac{1 - u_1^2}{E_1} + \frac{1 - u_2^2}{E_2} \right) \right)^{2/3} \left(\sum \rho_i \right)^{1/3}$$

$$\sum \rho_1 = \frac{2}{d_b} + \frac{2}{d_b} - \frac{1}{d_b f_1} - \frac{2 cos \alpha cos \phi}{d + d_b cos \alpha}$$

$$\sum \rho_2 = \frac{2}{d_b} + \frac{2}{d_b} - \frac{1}{d_b f_2} - \frac{2 cos \alpha cos \phi}{d + d_b cos \alpha}$$

 f_i is a form factor, ratio of radius of curvatures d_b s diameter of ball

Bearing Axial Stiffness

Figure: Force analysis of bearing joint [2]

- Bearing is comprised of inner ring, balls, outer ring
- Assumptions for Hertz contact
 - centrifugal force and gyroscopic moment induced by ball rotation are so small that can be ignored;
 - axial load is evenly distributed between all backing balls

$$K_b = rac{F_a}{\delta_a}$$
 where: $\delta_a = (\delta_1 + \delta_2)/\sin\!eta$

References I

- G. Zhang, Y. Huang, W. Shi, and W. Fu, "Predicting dynamic behaviours of a whole machine tool structure based on computer-aided engineering," *International Journal of Machine Tools and Manufacture*, vol. 43, no. 7, pp. 699–706, 2003.
- [2] D. Wang, Y. Lu, T. Zhang, K. Wang, A. Rinoshika, et al., "Effect of stiffness of rolling joints on the dynamic characteristic of ball screw feed systems in a milling machine," Shock and Vibration, vol. 2015, 2015.
- [3] T. Stejskal, J. Svetlík, M. Dovica, P. Demeč, and J. Kráľ, "Measurement of static stiffness after motion on a three-axis cnc milling table," *Applied Sciences*, vol. 8, no. 1, p. 15, 2017.

Thank you!