Pinping Guide

THE PIPING GUIDE

FOR THE DESIGN AND DRAFTING OF INDUSTRIAL PIPING SYSTEMS

David R. Sherwood

Member, American Society of Mechanical Engineers Member, Institution of Production Engineers (UK)

Dennis J. Whistance BS. MS

Copyright 1973, David R. Sherwood and Dennis J. Whistance Second Edition, Copyright 1991, Syentek Books Company, Inc.

All rights reserved. No part of this book may be reproduced or transmitted by any means whatsoever

Printed in the United States of America

Published and distributed by: Syentek Inc. PO Box 26588 San Francisco, CA 94126 USA ISBN 0-914-08219-1

The contribution of the companies, designers and engineers who assisted in the development of the **Piping Guide** is gratefully acknowledged. Apart from source material and assistance with production, acknowledged elsewhere, individual acknowledgments are not made, because neither contributors nor the authors or publisher assume liability or responsibility for designs using information presented herein. The user is responsible for complying with the various codes, standards and regulations, National, Federal, State and Municipal, and other legal obligations which may pertain to the construction and safe operation of plants, industrial installations, etc., including modifications to existing facilities.

Due to economic conditions, demand, manufacturing philosophy, business mergers and acquisitions, the availability of items from manufacturers may change, and components obtained from domestic suppliers may not be of domestic origin. Discussion of products does not necessarily imply endorsement.

PART I

CONTENTS:

Ci	hapter
PIPING: Uses, and Plant Construction	i
PIPE, FITTINGS, FLANGES, REINFORCEMENTS: In-line Equipment and Support Equipment2	2
VALVES, PUMPS, COMPRESSORS, and Types of Process Equipment	3
ORGANIZATION OF WORK: Job Responsibilities, Drawing-Office Equipment and Procedures4	1
DRAFTING: PROCESS AND PIPING DRAWINGS including Drawing Symbols, Showing Dimensions, Showing Instrumentation, and Bills of Material	5
DESIGN OF PIPING SYSTEMS: Including Arrangement, Supporting, Insulation, Heating, Venting and Draining of Piping, Vessels and Equipment	6
STANDARDS AND CODES: for Piping Systems, Pipe, Pipe Supports, Flanges, Gaskets, Fittings, Valves, Traps, Pumps, Vessels, Heat Exchangers, Symbols and Screwthreads	7
ABBREVIATIONS: for Piping Drawings and Industrial Chemicals	В
INDEX/GLOSSARY/ACKNOWLEDGMENTS	

Sections, figures, charts and tables in Part I are referred to numerically, and are located by the margin index. Charts and tables in Part II are identified by letter.

The text refers to standards and codes, using designations such as ANSI B31.1, ASTM A-53, ISA S5.1, etc. Full titles of these standards and codes will be found in tables 7.3 thru 7.14.

FOR TERMS NOT EXPLAINED IN THE TEXT, REFER TO THE INDEX.
ABBREVIATIONS ARE GIVEN IN CHAPTER 8.

PIPING: Uses, and Plant Construction

USES OF PIPING

1.1

Piping is used for industrial (process), marine, transportation, civil engineering, and for 'commercial' (plumbing) purposes.

This book is primarily concerned with industrial piping for processing and service systems. *Process piping* is used to transport fluids between storage tanks and processing units. *Service piping* is used to convey steam, air, water, etc., for processing. Piping here defined as 'service' piping is sometimes referred to as 'utility' piping, but, in the Guide, the term 'utility piping' is reserved for major lines supplying water, fuel gases, and fuel oil (that is, for commodities usually purchased from utilities companies and bulk suppliers).

Marine piping for ships is often extensive. Much of it is fabricated from welded and screwed carbon-steel piping, using pipe and fittings described in this book.

Transportation piping is normally large-diameter piping used to convey liquids, slurries and gases, sometimes over hundreds of miles. Crude oils, petroleum products, water, and solid materials such as coal (carried by water) are transported thru pipelines. Different liquids can be transported consecutively in the same pipeline, and branching arrangements are used to divert flows to different destinations.

Civil piping is used to distribute public utilities (water, fuel gases), and to collect rainwater, sewage, and industrial waste waters. Most piping of this type is placed underground.

Plumbing (commercial piping) is piping installed in commercial buildings, schools, hospitals, residences, etc., for distributing water and fuel gases, for collecting waste water, and for other purposes.

COMMISSIONING, DESIGNING, & BUILDING A PLANT

1.2

When a manufacturer decides to build a new plant, or to expand an existing one, the manufacturer will either employ an engineering company to undertake design and construction, or, if the company's own engineering department is large enough, they will do the design work, manage the project, and employ one or more contractors to do the construction work.

In either procedure, the manufacturer supplies information concerning the purposes of buildings, processes, production rates, design criteria for specific requirements, details of existing plant, and site surveys, if any.

Chart 1.1 shows the principals involved, and the flow of information and material.

SCHEMATIC FOR PLANT CONSTRUCTION

CHART 1.1

CHART 1.1 The designing and building of an industrial plant is a complex undertaking. Except for the larger industrial concerns, who may maintain their own design staffs, the design and construction of plants and related facilities is usually undertaken by specialist companies.

The Guide describes in 4.1 the organization and responsibilities of design engineering, with special reference to the duties of individuals engaged in the development of piping designs for plants.

2 .1

PIPE, FITTINGS, FLANGES, REINFORCEMENTS, In-line Equipment and Support Equipment

PROCESS PIPE

2.1

PIPE & TUBE

2.1.1

2.1.2

Tubular products are termed 'tube' or 'pipe'. Tube is customarily specified by its outside diameter and wall thickness, expressed either in BWG (Birmingham wire gage) or in thousandths of an inch. Pipe is customarily identified by 'nominal pipe size', with wall thickness defined by 'schedule number', 'API designation', or 'weight', as explained in 2.1.3. Non-standard pipe is specified by nominal size with wall thickness stated.

The principal uses for tube are in heat exchangers, instrument lines, and small interconnections on equipment such as compressors, boilers, and refrigerators.

SIZES & LENGTHS COMMONLY USED FOR STEEL PIPE

ANSI standard B36.10M establishes wall thicknesses for pipe ranging from 1/8 to 80-inch nominal diameter ('nominal pipe size'). Pipe sizes normally stocked include: 1/2, 3/4, 1, 1/4, 1/2, 2, 2/2, 3, 3/2, 4, 5, 6, 8, 10, 12, 14, 16, 18, 20 and 24. Sizes 1/4, 2/2, 3/2, and 5 inch are seldom used (unusual sizes are sometimes required for connecting to equipment, but piping is normally run in the next larger stock size after connection has been made). 1/8, 1/4, 3/8 and 1/2-inch pipe is usually restricted to instrument lines or to service and other lines which have to mate with equipment. 1/2-inch pipe is extensively used for steam tracing and for auxiliary piping at pumps, etc.

Straight pipe is supplied in 'random' lengths (17 to 25 ft), and sometimes 'double random' lengths (38 to 48 ft), if preferred. The ends of these lengths are normally either plain (PE), beveled for welding (BE), or threaded and supplied with one coupling per length ('threaded and coupled', or 'T&C'). If pipe is ordered 'T&C', the rating of the coupling is specified—see chart 2.3. Other types of ends, such as grooved for special couplings, can be obtained to order.

DIAMETERS & WALL THICKNESSES OF PIPE 2.1.3

The size of all pipe is identified by the nominal pipe size, abbreviated 'NPS', which is seldom equal to the true bore (internal diameter) of the pipe—the difference in some instances is large. NPS 14 and larger pipe has outside diameter equal to the nominal pipe size.

Pipe in the various sizes is made in several wall thicknesses for each size, which have been established by three different sources:—

- (1) The American National Standards Institute, thru 'schedule numbers'
- (2) The American Society of Mechanical Engineers and the American Society for Testing and Materials, thru the designations 'STD' (standard), 'XS' (extra-strong), and 'XXS' (double-extra-strong), drawn from dimensions established by manufacturers. In the Guide, these designations are termed 'manufacturers' weights'
- (3) The American Petroleum Institute, through its standard 5L, for 'Line pipe'. Dimensions in this standard have no references for individual sizes and wall thicknesses

'Manufacturers' weights' (second source) were intended, as long ago as 1939, to be superseded by schedule numbers. However, demand for these wall thicknesses has caused their manufacture to continue. Certain fittings are available only in manufacturers' weights.

Pipe dimensions from the second and third sources are incorporated in American National Standard B36.10M. Tables P-1 list dimensions for welded and seamless steel pipe in this standard, and give derived data.

IRON PIPE SIZES were initially established for wrought-iron pipe, with wall thicknesses designated by the terms 'standard (weight)', 'extra-strong', and 'double-extra-strong'. Before the schedule number scheme for steel pipe was first published by the American Standards Association in 1935, the iron pipe sizes were modified for steel pipe by slightly decreasing the wall thicknesses (leaving the outside diameters constant) so that the weights per foot (lb/ft) equalled the iron pipe weights.

Wrought-iron pipe (no longer made) has been completely supplanted by steel pipe, but schedule numbers, intended to supplant iron pipe designations did not. Users continued to specify pipe in iron pipe terms, and as the mills responded, these terms are included in ANSI standard B36.10M for steel pipe. Schedule numbers were introduced to establish pipe wall thicknesses by formula, but as wall thicknesses in common use continued to depart from those proposed by the scheme, schedule numbers now identify wall thicknesses of pipe in the different nominal sizes as ANSI B36.10M states "as a convenient designation system for use in ordering".

STAINLESS-STEEL SIZES American National Standard B36.19 established a range of thin-walled sizes for stainless-steel pipe, indentified by schedules 5S and 10S.

MATERIALS FOR PIPE

2.1.4

STEEL PIPE Normally refers to carbon-steel pipe. Seam-welded steel pipe is made from plate. Seamless pipe is made using dies. Common finishes are 'black' ('plain' or 'mill' finish) and galvanized.

Correctly selected steel pipe offers the strength and durability required for the application, and the ductility and machinability required to join it and form it into piping ('spools' -- see 5.2.9). The selected pipe must withstand the conditions of use, especially pressure, temperature and corrosion conditions. These requirements are met by selecting pipe made to an appropriate standard; in almost all instances an ASTM or API standard (see 2.1.3 and table 7.5).

The most-used steel pipe for process lines, and for welding, bending, and coiling, is made to ASTM A-53 or ASTM A-106, principally in wall thicknesses defined by schedules 40, 80, and manufacturers' weights, STD and XS. Both ASTM A-53 and ASTM A-106 pipe is fabricated seamless or seamed, by electrical resistance welding, in Grades A and B. Grades B have the higher tensile strength. Three grades of A-106 are available—Grades A, B, and C, in order of increasing tensile strength.

The most widely stocked pipe is to ASTM A-120 which covers welded and seamless pipe for normal use in steam, water, and gas (including air) service. ASTM A-120 is not intended for bending, coiling or high temperature service. It is not specified for hydrocarbon process lines.

In the oil and natural gas industries, steel pipe used to convey oil and gas is manufactured to the American Petroleum Institute's standard API 5L, which applies tighter control of composition and more testing than ASTM-120.

Steel specifications in other countries may correspond with USA specifications. Some corresponding european standards for carbon steels and stainless steels are listed in table 2.1.

IRON pipe is made from cast-iron and ductile-iron. The principal uses are for water, gas, and sewage lines.

OTHER METALS & ALLOYS Pipe or tube made from copper, lead, nickel, brass, aluminum and various stainless steels can be readily obtained. These materials are relatively expensive and are selected usually either because of their particular corrosion resistance to the process chemical, their good heat transfer, or for their tensile strength at high temperatures. Copper and copper alloys are traditional for instrument lines, food processing, and heat transfer equipment, but stainless steels are increasingly being used for these purposes.

PLASTICS Pipe made from plastics may be used to convey actively corrosive fluids, and is especially useful for handling corrosive or hazardous gases and dilute mineral acids. Plastics are employed in three ways: as all-plastic pipe, as 'filled' plastic materials (glass-fiber-reinforced, carbon-filled, etc.) and as lining or coating materials. Plastic pipe is made from polypropylene, polyethylene (PE), polybutylene (PB), polyvinyl chloride (PVC), acrylonitrile-butadiene-styrene (ABS), cellulose acetate-butyrate (CAB), polyolefins, and polyesters. Pipe made from polyester and epoxy resins is frequently glass-fiber-reinforced ('FRP') and commercial products of this type have good resistance to wear and chemical attack.

		SA & EUROPE <i>A</i> FOR STEEL PII		TABLE 2.1
	USA	UK	W. GERMANY	SWEDEN
	ASTM A53 Grade A SMLS Grade B SMLS	BS 3601 HFS 22 & CDS 22 HFS 27 & CDS 27	DIN 1629 St 35 St 45	SIS 1233-05 SIS 1434-05
	ASTM A53 Grade A ERW Grade B ERW	BS 3601 ERW 22 ERW 27	DIN 1626 Blatt 3 St 34-2 ER Blatt 3 St 37-2 ER	
1	ASTM A53 FBW	BS 3601 BW 22	DIN 1626 Blatt 3 St 34-2 FB	w
	ASTM A106 Grade A Grade 8 Grade C	BS 3602 HFS 23 HFS 27 HFS 35	DIN 17175* St 35-8 St 45-8	SIS 1234-05 SIS 1435-05
	ASTM A134	BS 3601 EFW	DIN 1626 Blatt 2 EFW	
E E	ASTM A135 Grade A Grade B	BS 3601 ERW 22 ERW 27	DIN 1626 Blatt 3 St 34-2 ER Blatt 3 St 37-2 ER	
CARBON-STEEL PIPE	ASTM A139 Grade A Grade B	BS 3601 EFW 22 EFW 27	DIN 1626 Blatt 2 St 37 Blatt 2 St 42	
BON-ST	ASTM A155 Class 2 C 45	BS 3602	DIN 1626, Blatt 3, certification C St 34-2	with
CAR	C 50 C 55 KC 55 KC 60 KC 65 KC 70	EFW 28 EFW 28S	St 37-2 St 42-2 St 42-2 * St 42-2 * St 52-3 St 52-3	
	API 5L Grade A SMLS Grade 8 SMLS	BS 3601 HFS 22 & CDS 22 HFS 27 & CDS 27	DIN 1629 St 35 St 45	SIS 1233-05 SIS 1434-05
	API 5L Grade A ERW Grade B ERW	BS 3601 ERW 22 ERW 27 †	DIN 1625 Blatt 3 St 34-2 ERV Blatt 4 St 37-2 ERV	V SIS 1233-06 V SIS 1434-06 †
	API 5L Grade A EFW	BS 3601 Double-welded EFW 22	DIN 1626 Blatt 3 St 34-2 FW	
	Grade B EFW	EFW 27 †	Blatt 4 St 37-2 FW	
	FBW	BS 3601 BW 22	DIN 1626 Blatt 3 St 34-2 FBV	
	*Specify "Si	killed" †Specify API 5L	Grade B testing proced	ures for these steels
PIPE	ASTM A312 TP 304 TP 304H	BS 3605 Grade 801 Grade 811	WSN Designatio 4301 X 5 CrNi 1	
STAINLESS-STEEL PIPE	TP 304L TP 310 TP 316	Grade 801 L Grade 805 Grade 845	4306 X 2 CrN 1 4841 X 15 CrN 5 4401/ X 5 CrN M 4436	Si 25 20 SIS 2361-02
LESS	TP 316H TP 316L TP 317	Grade 855 Grade 8451	4404 X 2 CrNiM	o 18 10 SIS 2353-02
LAIN	TP 321 TP 321H	Grade 846 Grade 822 Ti Grade 832 Ti	4541 X 10 CrNi1	fi 18 9 SIS 2337-02
S	TP 347 TP 347H	Grade 822 Nb Grade 832 Nb	4550 X 10 CrNin	4b 18 9 SIS 2338-02

The American National Standards Institute has introduced several schedules for pipe made from various plastics. These ANSI standards and others for plastic pipe are listed in table 7.5.

GLASS All-glass piping is used for its chemical resistance, cleanliness and transparency. Glass pipe is not subject to 'crazing' often found in glass-lined pipe and vessels subject to repeated thermal stresses. Pipe, fittings, and hardware are available both for process piping and for drainage. Corning Glass Works offers a Pyrex 'Conical' system for process lines in 1, 1½, 2, 3, 4 and 6-inch sizes (ID) with 450 F as the maximum operating temperature, and pressure ranges 0–65 PSIA (1 in. thru 3 in.), 0–50 PSIA (4 in.) and 0–35 PSIA (6 in.). Glass cocks, strainers and thermowells are available. Pipe fittings and equipment are joined by flange assemblies which bear on the thickened conical ends of pipe lengths and fittings. Corning also offers a Pyrex Acid-Waste Drainline system in 1½, 2, 3, 4 and 6-inch sizes (ID) with beaded ends joined by Teflon-gasketed nylon compression couplings. Both Corning systems are made from the same borosilicate glass.

LININGS & COATINGS Lining or coating carbon-steel pipe with a material able to withstand chemical attack permits its use to carry corrosive fluids. Lengths of lined pipe and fittings are joined by flanges, and elbows, tees, etc., are available already flanged. Linings (rubber, for example) can be applied after fabricating the piping, but pipe is often pre-lined, and manufacturers give instructions for making joints. Linings of various rubbers, plastics, metals and vitreous (glassy) materials are available. Polyvinyl chloride, polypropylene and copolymers are the most common coating materials. Carbon-steel pipe zinc-coated by immersion into molten zinc (hot-dip galvanized) is used for conveying drinking water, instrument air and various other fluids. Rubber lining is often used to handle abrasive fluids.

TEMPERATURE & PRESSURE LIMITS

Carbon steels lose strength at high temperatures. Electric-resistance-welded pipe is not considered satisfactory for service above 750 F, and furnace-butt-welded orpe above about 650 F. For higher temperatures, pipe made from stainless steels or other alloys should be considered.

Pressure ratings for steel pipe at different temperatures are calculated according to the ANSI B31 Code for Pressure Piping (detailed in table 7.2). ANSI B31 gives stress/temperature values for the various steels from which pipe is fabricated.

METHODS FOR JOINING PIPE

2,2

2.1.5

The joints used for most carbon-steel and stainless-steel pipe are:

BUTT-WELDED												SEE 2.3
SOCKET-WELDED												SEE 2.4
SCREWED												SEE 2.5
BOLTED FLANGE							SE	E	2.3.	1, 2	4.	1 & 2.5.1
BOLTED QUICK CO	υc	PL	NO	S							. \$	SEE 2.8.2

Lines NPS 2 and larger are usually butt-welded, this being the most economic leakproof way of joining larger-diameter piping. Usually such lines are subcontracted to a piping fabricator for prefabrication in sections termed 'spools', then transported to the site. Lines NPS 1½ and smaller are usually either screwed or socket-welded, and are normally field-run by the piping contractor from drawings. Field-run and shop-fabricated piping are discussed in 5.2.9.

SOCKET-WELDED JOINTS

2.2.2

Like screwed piping, socket welding is used for lines of smaller sizes, but has the advantage that absence of leaking is assured: this is a valuable factor when flammable, toxic, or radioactive fluids are being conveyed—the use of socket-welded joints is not restricted to such fluids, however.

BOLTED-FLANGE JOINTS

2.2.3

Flanges are expensive and for the most part are used to mate with flanged vessels, equipment, valves, and for process lines which may require periodic cleaning.

Flanged joints are made by bolting together two flanges with a gasket between them to provide a seal. Refer to 2.6 for standard forged-steel flanges and gaskets.

FITTINGS 2.2.4

Fittings permit a change in direction of piping, a change in diameter of pipe, or a branch to be made from the main run of pipe. They are formed from plate or pipe, machined from forged blanks, cast, or molded from plastics.

Chart 2.1 shows the ratings of butt-welding fittings used with pipe of various schedule numbers and manufacturers' weights. For dimensions of butt-welding fittings and flanges, see tables D-1 thru D-6, and tables F-1 thru F-7. Drafting symbols are given in charts 5.3 thru 5.5.

Threaded fittings have Pressure Class designations of: 2000, 3000 and 6000. Socket-welding fittings have Pressure Class designations of: 3000, 6000 and 9000. How these Pressure Class designations relate to schedule numbers and manufacturers' weights for pipe is shown in table 2.2.

CORRELATION OF CLASS OF THREADED & SOCKET-WELDING FITTINGS WITH SCHEDULES/WEIGHTS OF PIPE

TABLE 2.2

	PIPE DESIGNATION SCH/MFR'S							
Pressure Class	2000	3000	6000	9000				
Threaded fittings	80/XS	160	XXS					
Socketed fittings		80/XS	160	XXS				

Sections 2.1.3 thru 2.2.4 have shown that there is a wide variety of differently-rated pipe, fittings and materials from which to make a choice. Charts 2.1 thru 2.3 show how various weights of pipe, fittings and valves can be combined in a piping system.

COMPONENTS FOR BUTT-WELDED PIPING SYSTEMS

2.3

WHERE USED: For most process, utility and service piping

ADVANTAGE OF JOINT: Most practicable way of joining larger pipes and

fittings which offers reliable, leakproof joints

DISADVANTAGE OF JOINT:

Intruding weld metal may affect flow

HOW JOINT IS MADE: The end of the pipe is beveled as shown in

chart 2.1. Fittings are similarly beveled by the manufacturer. The two parts are aligned, properly gapped, tack welded, and then a continuous weld is made to complete the joint

Chart 2.1 shows the ratings of pipe, fittings and valves that are commonly combined or may be used together. It is a guide only, and not a substitute for a project specification.

FITTINGS, BENDS, MITERS & FLANGES FOR BUTT-WELDED SYSTEMS

2.3.1

Refer to tables D, F and W-1 for dimensions and weights of fittings and flanges.

ELBOWS or 'ELLS' make 90- or 45-degree changes in direction of the run of pipe. The elbows normally used are 'long radius' (LR) with centerline radius of curvature equal to 1½ times the nominal pipe size for NPS 3/4 and larger sizes. 'Short radius' (SR) elbows with centerline radius of curvature equal to the nominal pipe size are also available. 90-degree LR elbows with a straight extension at one end ('long tangent') are still available in STD weight, if required.

REDUCING ELBOW makes a 90-degree change in direction with change in line size. Reducing elbows have centerline radius of curvature 1½ times the nominal size of the pipe to be attached to the larger end.

RETURN changes direction of flow thru 180 degrees, and is used to construct heating coils, vents on tanks, etc.

BENDS are made from straight pipe. Common bending radii are 3 and 5 times the pipe size (3R and 5R bends, where R = nominal pipe size—nominal diameter, *not* radius). 3R bends are available from stock. Larger radius bends can be custom made, preferably by hot bending. Only seamless or electric-resistance-welded pipe is suitable for bending.

BUTT-	NELDED PIPIN	3	CHAR	RT 2.1		
CARB	ON-STEEL PIPE & FO	ORGED-ST	EEL FITT	INGS		
JOINING TO	NTION OF PIPE, & METHDD OF BEVEL-ENDED PIPE, FITTING, VE, OR EOUIPMENT		WELD- F GAP* NOTE+	BEVEL-ENDED ITEM SUCH AS PIPE, VALVE, EQUIPMENT, ETC.		
MINIMUM LIN BUTT-WELDED	IE SIZE NORMALLY	NPS 2				
USED. CHOICE HEAVIER-WEE	PIPE & FITTINGS NORMALLY E OF OTHER MATERIALS OR SHIP PIPE & FITTINGS WILL RESSURE, TEMPERATURE &/OR	FOR NOMINAL PIPE SIZE:	NPS 2 to NPS 6	NPS B and larger calculate wall thickness from code		
THE CORROS NPS 2 AND L DERED TO A	ON ALLOWANCE REQUIRED. ARGER PIPE IS USUALLY OR- STM A-53, Grade B. SEE 2.1.4,	SCHEDULE NUMBER	SCH 40	SCH 20 or SCH 30		
UNDER 'STEE!	.S'	MFRS' WEIGHT	STD			
VALVES						
	FOR NPS 2 AND LARGER VALVES	150, 300, 600, 900 AND HIGHER ACCORDING TO SYSTEM PRESSURE				
PRESSURE RATING CLASS	FOR NPS 1½ AND SMALLER VALVES	SEE	CHARTS 2.2 A	ND 2,3		
	FOR CONTROL VALVES	USUALLY	300 MINIMUM	(SEE 3.1.10)		

*See 5.3.5 under 'Dimensioning spools'

FIGURE 2.1

BACKING RING

tA 'backing ring'—sometimes termed a 'chill ring'—may be inserted between any butt-welding joint prior to welding. Preventing weld spatter and spikes ('icicles') of weld metal from forming inside the pipe during welding, the ring also serves as an alignment aid. Normally used for severe service, but should be considered for process fluids such as fibrous suspensions, where weld icicles could result in material collecting at joints and choking lines. See 2.11

REDUCER (or INCREASER) joins a larger pipe to a smaller one. The two available types, concentric and eccentric, are shown. The eccentric reducer is used when it is necessary to keep either the top or the bottom of the line level—offset equals ½ x (larger ID minus smaller ID).

(Of larger pipe)

2 x NPS

REDUCERS FIGURE 2.3

SWAGE is employed to connect butt-welded piping to smaller screwed or socket-welded piping. In butt-welded lines, used as an alternative to the reducer when greater reductions in line size are required. Regular swages in concentric or eccentric form give abrupt change of line size, as do reducers. The 'venturi' swage allows smoother flow. Refer to table 2.3 for specifying swages for joining to socket-welding items, and to table 2.4 for specifying swages for joining to screwed piping. For offset, see 'Reducer'.

SWAGES, or SWAGED NIPPLES

FIGURE 2.4

MITERED ELBOWS are fabricated as required from pipe—they are not fittings. The use of miters to make changes in direction is practically restricted to low-pressure lines 10-inch and larger if the pressure drop is unimportant; for these uses regular elbows would be costlier. A 2-piece, 90-degree miter has four to six times the hydraulic resistance of the corresponding regular long-radius elbow, and should be used with caution. A 3-piece 90-degree miter has about double the resistance to flow of the regular long-radius elbow—refer to table F-10. Constructions for 3-, 4-, and 5-piece miters are shown in tables M-2.

3-PIECE & 2-PIECE MITERS

3-PIECE MITER

FIGURE 2.5

2-PIECE MITER

THE 2-PIECE MITER HAS HIGH FLOW RESISTANCE (See TABLE F-10)

CHART 2.1

FIGURES 2.1-2.5

The following five flange types are used for butt-welded lines. The different flange facings available are discussed in 2.6.

WELDING-NECK FLANGE, REGULAR & LONG Regular welding-neck flanges are used with butt-welding fittings. Long welding-neck flanges are primarily used for vessel and equipment nozzles, rarely for pipe. Suitable where extreme temperature, shear, impact and vibratory stresses apply. Regularity of the bore is maintained. Refer to tables F for bore diameters of these flanges.

WELDING-NECK FLANGE

FIGURE 2.6

SLIP-ON FLANGE is properly used to flange pipe. Slip-on flanges can be used with long-tangent elbows, reducers, and swages (not usual practice). The internal weld is slightly more subject to corrosion than the butt weld. The flange has poor resistance to shock and vibration. It introduces irregularity in the bore. It is cheaper to buy than the welding-neck flange, but is costlier to assemble. It is easier to align than the welding-neck flange. Calculated strengths under internal pressure are about one third that of the corresponding welding-neck flanges. The pipe or fitting is set back from the face of the flange a distance equal to the wall thickness -0'' + 1/16''.

SLIP-ON FLANGE FIGURE 2.7

REDUCING FLANGE Suitable for changing line size, but should not be used if abrupt transition would create undesirable turbulence, as at pump connections. Available to order in welding-neck and eccentric types, and usually from stock in slip-on type. Specify by nominal pipe sizes, stating the size of the larger pipe first. Example: a slip-on reducing flange to connect a NPS 4 pipe to a Class 150 NPS 6 line-size flange is specified:

RED FLG NPS 6 x 4 Class 150 SO

For a welding-neck reducing flange, correct bore is obtained by giving the pipe schedule number or manufacturers' weight of the pipe to be welded on.

REDUCING SLIP-ON FLANGE

FIGURE 2.8

EXPANDER FLANGE Application as for welding-neck flange—see above. Increases pipe size to first or second larger size. Alternative to using reducer and welding-neck flange. Useful for connecting to valves, compressors and pumps. Pressure ratings and dimensions are in accord with ANSI B16.5.

EXPANDER (or INCREASER) FLANGE

FIGURE 2.9

LAP-JOINT, or 'VAN STONE', FLANGE Economical if costly pipe such as stainless steel is used, as the flange can be of carbon steel and only the lap-joint stub end need be of the line material. A stub end must be used in a lap joint, and the cost of the two items must be considered. If both stub and flange are of the same material they will be more expensive than a welding-neck flange. Useful where alignment of bolt holes is difficult, as with spools to be attached to flanged nozzles of vessels.

LAP-JOINT FLANGE (with Stub-end)

FIGURE 2.10

BUTT-WELDING FITTINGS FOR BRANCHING FROM BUTT-WELDED SYSTEMS

2.3.2

FIGURE 2.11

STUB-IN Term for a branch pipe welded directly into the side of the main pipe run—it is not a fitting. This is the commonest and least expensive method of welding a full-size or reducing branch for pipe 2-inch and larger. A stub-in can be reinforced by means set out in 2.11.

STUB-IN

BUTT-WELDING TEES, STRAIGHT or REDUCING, are employed to make 90-degree branches from the main run of pipe. Straight tees, with branch the same size as the run, are readily available. Reducing tees have branch smaller than the run. Bullhead tees have branch larger than the run, and are very seldom used but can be made to special order. None of these tees requires reinforcement. Reducing tees are ordered as follows:—

SPECIFYING SIZE OF BUTT-WELDING REDUCING TEES

HOW TO SPECIFY TEES:	RUN INLET	RUN OUTLET	BRANCH	EXAMPLE
REOUCING ON BRANCH	6"	6"	4"	RED TEE 6 x 6 x 4

BUTT-WELDING TEES

FIGURE 2.12

STRAIGHT BUTT-WELDING TEE

REDUCING BUTT-WELDING TEE

The next four branching fittings are made by Bonney Forge.

These fittings offer an alternate means of connecting into the main run, and do not require reinforcement. They are preshaped to the curvature of the run pipe.

WELDOLET makes a 90-degree branch, full-size or reducing, on straight pipe. Closer manifolding is possible than with tees. Flat-based weldolets are available for connecting to pipe caps and vessel heads.

WELDOLET FIGURE 2.13

FIGURES 2.6-2.13

BUTT-WELDING LATROLET FIGURE 2.15

BUTT-WELDING LATROLET makes a 45-degree reducing branch on straight pipe.

SWEEPOLET makes a 90-degree reducing branch from the main run of pipe. Primarily developed for high-yield pipe used in oil and gas transmission lines. Provides good flow pattern, and optimum stress distribution.

SWEEPOLET FIGURE 2.16

The next three fittings are usually used for special designs:

CROSS, STRAIGHT or REDUCING Straight crosses are usually stock items. Reducing crosses may not be readily available. For economy, availability and to minimize the number of items in inventory, it is preferred to use tees, etc., and not crosses, except where space is restricted, as in marine piping or 'revamp' work. Reinforcement is not needed.

LATERAL, STRAIGHT or REDUCING, permits odd-angled entry into the pipe run where low resistance to flow is important. Straight laterals with branch bore equal to run bore are available in STD and XS weights. Reducing laterals and laterals at angles other than 45 degrees are usually available only to special order. Reinforcement is required where it is necessary to restore the strength of the joint to the full strength of the pipe. Reducing laterals are ordered similarly to butt-welding tees, except that the angle between branch and run is also stated.

SHAPED NIPPLE Now rarely used, but can be obtained from stock in 90-and 45-degree angles, and in any size and angle, including offset, to special order. The run is field-cut, using the nipple as template. Needs reinforcement if it is necessary to bring the strength of the joint up to the full strength of the pipe.

SHAPED NIPPLE

FIGURE 2.19

CAP is used to seal the end of pipe. (See figure 2.20(a).)

FLAT CLOSURES Flat plates are normally cut especially from platestock by the fabricator or erector. (See figure 2.20 (b) and (c).)

THREE WELDED CLOSURES

FIGURE 2.20

2.3.3

(a) BUTT-WELDING CAP

(b) FLAT CLOSURE (c) FLAT CLOSURE

ELLIPSOIDAL, or DISHED, HEADS are used to close pipes of large diameter, and are similar to those used for constructing vessels.

COMPONENTS FOR SOCKET-WELDED PIPING SYSTEMS

2.4

WHERE USED:

For lines conveying flammable, toxic, or expensive material, where no leakage can be permitted. For steam: 300 to 600 PSI, and sometimes 150 PSI steam. For corrosive conditions, see Index under 'Corrosion'

ADVANTAGES OF JOINT:

- (1) Easier alignment on small lines than butt welding. Tack welding is unnecessary
- No weld metal can enter bore
- Joint will not leak, when properly made

- DISADVANTAGES OF JOINT: (1) The 1/16-inch recess in joint (see chart 2.2) pockets liquid
 - (2) Use not permitted by ANSI B31.1 -1989 if severe vibration or crevice corrosion is anticipated

HOW JOINT IS MADE:

The end of the pipe is finished flat, as shown in chart 2.2. It is located in the fitting, valve, flange, etc., and a continuous fillet weld is made around the circumference

Chart 2.2 shows the ratings of pipe, fittings and valves that are commonly combined, or may be used together. The chart is a guide only, and not a substitute for a project specification.

CARBON-STEEL PIPE & FORGED-STEEL FITTINGS 1/16" EXPANSION PLAIN END-END PREPARATION OF PIPE, AND BORE METHOD OF JOINING TO FITTING. FLANGE, VALVE, OR EQUIPMENT SOCKET-ENDED ITEM SUCH AS COUPLING, EQUIPMENT, VALVE, Etc. MAXIMUM LINE SIZE NORMALLY NPS 11/2 SOCKET WELDED (NPS 2½ IN MARINE PIPING) AVAILABILITY OF FORGED-STEEL NPS 1/B to NPS 4 SOCKET-WELDING FITTINGS SCHEDULE SCH 160 SCH BO NUMBER MFRS' WEIGHTS OF PIPE XS XXS WEIGHT AND PRESSURE CLASSES OF FITTING FITTINGS WHICH 6000 9000 3000 CLASS ARE COMPATIBLE FITTING SCH 160 XXS SCH 40 BORED MOST COMMON COMBINATION: CHOICE OF MATERIAL OR HEAVIER-WEIGHT PIPE AND FITTING WILL DEPEND ON PRESSURE, TEMPERATURE AND/OR CORROSION ALLOW-ANCE REQUIRED. PIPE NPS 11/2 AND SMALLER IS USUALLY ORDERED TO ASTM SPECIFICATION A-106 Grade B. REFER TO 2.1.4, UNDER 'STEELS' VALVES CONTROL VALVES USUALLY 300 (SEE 3.1.10) MINIMUM (USUALLY FLANGED) PRESSURE (RATING) 600 (ANSI) VALVES OTHER THAN CLASS 800 (API) CONTROL VALVES

- * ANSI B16.11 recommends a 1/16th-inch gap to prevent weld from cracking under thermal stress
- † Socket-ended fittings are now only made in classes 3000 6000 and 9000 (ANSI B16.11)

CHART 2.2

FIGURES 2.14-2.20

2.4.1

Dimensions of fittings and flanges are given in tables D-8 and F-1 thru F-6.

FULL-COUPLING (termed 'COUPLING) joins pipe to pipe, or to a nipple, swage, etc.

FULL-COUPLING

FIGURE 2.21

REDUCER joins two different diameters of pipe.

REDUCER

FIGURE 2.22

REDUCER INSERT A reducing fitting used for connecting a small pipe to a larger fitting. Socket-ended reducer inserts can be made in any reduction by boring standard forged blanks.

SOCKET-WELDING REDUCING INSERTS

FIGURE 2.23

UNION is used primarily for maintenance and installation purposes. This is a screwed joint designed for use with socket-welded piping systems. See explanation in 2.5.1 of uses given under 'threaded union'. Union should be screwed tight before the ends are welded, to minimize warping of the seat.

SOCKET-WELDING UNION

FIGURE 2.24

SWAGED NIPPLES According to type, these allow joining: (1) Socket-ended items of different sizes—this type of swaged nipple has both ends plain (PBE) for insertion into socket ends. (2) A socket-ended item to a larger butt-welding pipe or fitting—this type of swaged nipple has the larger end beveled (BLE) and the smaller end plain (PSE) for insertion into a socket-ended item. A swaged nipple is also referred to as a 'swage' (pronounced 'swedge') abbreviated on drawings as 'SWG' or 'SWG NIPP'. When ordering a swage, state the weight designations of the pipes to be joined. For example, NPS 2 (SCH 40) x NPS 1 (SCH 80). Examples of the different end terminations that may be specified are as follows:-

SPECIFYING SIZE & END FINISH OF SOCKET-WELDING SWAGES

TABLE 2.3

SWAGE FOR JOINING— LARGER t	o SMALLER	EXAMPLE NOTE ON DRAWING			
SW ITEM BW FITTING or PIPE	SW ITEM SW ITEM	SWG 1½ x 1 PBE SWG 2 x 1 BLE-PSE			
ABBREVIATIONS:	PBE = Plain	t welding BW = Butt welding both ends PLE = Plain large end small end BLE = Bevel large end			

SWAGE (PBE)

FIGURE 2.25

SOCKET-WELDING FLANGE Regular type is available from stock. Reducing type is available to order. For example, a reducing flange to connect a NPS 1 pipe to a Class 150 NPS 1½ line-size flange is specified:

RED FLG NPS 1½ x 1 Class 150 SW

SOCKET-WELDING FLANGE

FIGURE 2.27

FITTINGS FOR BRANCHING FROM SOCKET-WELDED SYSTEMS

2.4.2

BRANCH FROM SOCKET-WELDED RUN

TEE, STRAIGHT or REDUCING, makes 90-degree branch from the main run of pipe. Reducing tees are custom-fabricated by boring standard forged blanks.

SPECIFYING SIZE OF SOCKET-WELDING TEES

HOW TO SPECIFY TEES:	RUN INLET	RUN OUTLET	BRANCH	EXAMPLE
REDUCING ON BRANCH	11"	7 <u>1</u> "]"	RED TEE 1½ × 1½ × 1
REDUCING ON RUN (SPECIAL APPLICATIONS ONLY)	$\frac{1}{2}$ "]"] <u>1</u> "	RED TEE 11/2 x 1 x 11/2

LATERAL makes full-size 45-degree branch from the main run of pipe.

SOCKET-WELDING LATERAL

FIGURE 2.29

CROSS Remarks for butt-welding cross apply—see 2.3.2. Reducing crosses are custom-fabricated by boring standard forged blanks.

SOCKET-WELDING CROSS

FIGURE 2.30

FIGURES 2.21-2.30

> TABLE 2.3

FITTINGS FOR SOCKET-WELDED BRANCH FROM VESSEL OR BUTT-WELDED MAIN RUN

2.4.3

HALF-COUPLING The full-coupling is not used for branching or for vessel connections, as the half-coupling is the same length and is stronger. The half-coupling permits 90-degree entry into a larger pipe or vessel wall. The sockolet is more practicable as shaping is necessary with the coupling.

SOCKET-WELDING HALF-COUPLING

FIGURE 2.31

The next four fittings are made by Bonney Forge and offer an alternate method of entering the main pipe run. They have the advantage that the beveled welding ends are shaped to the curvature of the run pipe. Reinforcement for the butt-welded piping or vessel is not required.

SOCKOLET makes a 90-degree branch, full-size or reducing, on straight pipe. Flat-based sockolets are available for branch connections on pipe caps and and vessel heads.

SOCKOLET FIGURE 2.32

SOCKET-WELDING ELBOLET makes a reducing tangent branch on long-radius and short-radius elbows.

SOCKET-WELDING ELBOLET

FIGURE 2.33

SOCKET-WELDING LATROLET makes a 45-degree reducing branch on straight pipe.

SOCKET-WELDING LATROLET

FIGURE 2.34

NIPOLET A variant of the sockolet, having integral plain nipple. Primarily developed for small valved connections—see figure 6.47.

NIPOLET

FIGURE 2.35

STUB-IN See comments in 2.3.2. Not preferred for lines under 2-inch due to risk of weld metal entering line and restricting flow.

CLOSURE 2.4.4

SOCKET-WELDING CAP seals plain-ended pipe.

SOCKET-WELDING CAP

FIGURE 2.36

WHERE USED:

For lines conveying services, and for smaller process piping

ADVANTAGES:

- (1) Easily made from pipe and fittings on site
- (2) Minimizes fire hazard when installing piping in areas where flammable gases or liquids are present

DISADVANTAGES:

- (1)* Use not permitted by ANSI B31.1-1989, if severe erosion, crevice corrosion, shock, or vibration is anticipated, nor at temperatures over 925 F. (Also see footnote table F-9)
- (2) Possible leakage of joint
- (3) * Seal welding may be required—see footnote to chart 2.3
- (4) Strength of the pipe is reduced, as forming the screwthread reduces the wall thickness

FITTINGS & FLANGES FOR SCREWED SYSTEMS

2.5.1

Screwed piping is piping assembled from threaded pipe and fittings.

Threaded malleable-iron and cast-iron fittings are extensively used for plumbing in buildings. In industrial applications, Class 150 and 300 galvanized malleable-iron fittings and similarly rated valves are used for drinking water and air lines. Dimensions of malleable-iron fittings are given in table D-11.

In process piping, forged-steel fittings are preferred over cast-iron and malleable-iron fittings (although their pressure/temperature ratings may be suitable), for their greater mechanical strength. To simplify material specifications, drafting, checking, purchasing and warehousing, the overall economics are in favor of utilizing as few different types of threaded fittings as possible. Dimensions of forged-steel threaded fittings are given in table D-9.

FULL-COUPLING (termed 'COUPLING') joins pipe or items with threaded ends.

FULL-COUPLING FIGURE 2.37

Chart 2.3 shows the ratings of pipe, fittings and valves that are commonly combined, or may be used together. The chart is a guide only, and not a substitute for a project specification.

SCREW	ED PI	PING		CHA	RT 2.3		
CARBO)N-STE	EL PIPE &	FORGED-S	TEEL FITT	INGS		
END PREPAR METHOD OF FLANGE, VA	JOINING T	O FITTING,	PIPE NPT - OPTIONAL SEAL WELO *	ENGAGEMENT	ITEM SUCH AS VALVE, COUPLING, EQUIPMENT, ETC.		
MAXIMUM L THREADED	INE SIZE N	ORMALLY		NPS 1½			
AVAILABILI THREADED		GED-STEEL	NPS 1/B to NPS 4				
WEIGHTS OF PIR	PIPE	SCHEDULE NUMBER	SCH 40	SCH B0			
AND PRESSURE CLASSES OF FITTINGS WHIC		MFRS' WEIGHT	STD	xs	xxs		
ARE COMPATIB	1	FITTING CLASS	2000	3000	6000		
MOST COMMON COMBINATION: THE MINIMUM CLASS FOR FITTINGS PREFERRED IN MOST INSTANCES FOR MECHANICAL STRENGTH IS 3000. CHOICE OF MATERIAL OR HEAVIER-WEIGHT PIPE & FITTING WILL DEPEND ON PRESSURE, TEMPERATURE AND /OR CORROSION ALLOWANCE REQUIRED. PIPE NPS 1½ AND SMALLER IS USUALLY ORDERED TO ASTM SPECIFICATION A-106 Grade B. REFER TO 2.1.4, UNDER 'STEELS'							
		VA	LVES				
MINIMUM PRESSURE	1	DL VALVES LY FLANGED)	USUA	ALLY 300 (SEE	3.1.10)		
(RATING) CLASS		OTHER THAN	600 (ANSI) 800 (API)				

ANSI B31.1.0 states that seal welding shall not be considered to contribute to the strength of the joint
 SEAL WELDING APPLICATIONS

On-plot: On all screwed connections within battery limits, with the exception of piping carrying air or other inert gas, and water Off-plot: On screwed lines for hydrocarbon service and for lines conveying dangerous, toxic, corrosive or valuable fluids

CHART 2.3

FIGURES 2.31-2.37

^{*}These remarks apply to systems using forged-steel fittings.

REDUCING COUPLING, or REDUCER, joins threaded pipes of different sizes. Can be made in any reduction by boring and tapping standard forged blanks.

REDUCING COUPLING

FIGURE 2.38

NIPPLES join unions, valves, strainers, fittings, etc. Basically a short length of pipe either fully threaded (close nipple) or threaded both ends (TBE), or plain one end and threaded one end (POE—TOE). Available in various lengths -refer to table D-11. Nipples can be obtained with a Victaulic groove at one end.

NIPPLES FOR THREADED ITEMS

FIGURE 2.39

TANK NIPPLE is used for making a screwed connection to a non-pressure vessel or tank in low-pressure service. Overall length is usually 6 inches with a standard taper pipe thread at each end. On one end only, the taper pipe thread runs into a ANSI lock-nut thread.

UNION makes a joint which permits easy installation, removal or replacement of lengths of pipe, valves or vessels in screwed piping systems. Examples: to remove a valve it must have at least one adjacent union, and to remove piping from a vessel with threaded connections, each outlet from the vessel should have one union between valve and vessel. Ground-faced joints are preferred, although other facings are available.

THREADED UNION

FIGURE 2.40

PIPE-TO-TUBE CONNECTOR For joining threaded pipe to tube. Figure 2.41 shows a connector fitted to specially-flared tube. Other types are available.

PIPE-TO-TUBE CONNECTOR

FIGURE 2.41

HEXAGON BUSHING A reducing fitting used for connecting a smaller pipe into a larger threaded fitting or nozzle. Has many applications to instrument connections. Reducing fittings can be made in any reduction by boring and tapping standard forged blanks. Normally not used for high-pressure service.

HEXAGON BUSHING

FIGURE 2.42

SWAGED NIPPLE This is a reducing fitting, used for joining larger diameter to smaller diameter pipe. Also referred to as a 'swage (pronounced 'swedge') and abbreviated as 'SWG' or 'SWG NIPP' on drawings. When ordering a swage, state the weight designations of the pipes to be joined: for example, NPS 2 (SCH 40) x NPS 1 (SCH 80). A swage may be used for joining: (1) Screwed piping to screwed piping. (2) Screwed piping to butt-welded piping. (3) Butt-welded piping to a threaded nozzle on equipment. It is necessary to specify on the piping drawing the terminations required.

SPECIFYING SIZE & END FINISH OF THREADED SWAGES

TABLE 2.4

SWAGE FOR JOINI LARGE	NGR to SMALLER	EXAMPLE NOTE ON DRAWING
THRD ITEM BW ITEM or PIPE THRD ITEM	THRD ITEM	SWG 1½ x 1 TBE SWG 2 x 1 BLE-TSE SWG 3 x 2 TLE-BSE
ABBREVIATIONS:	BW = Butt welding THRD = Threaded TBE = Threaded both TSE = Threaded small	

^{*} A larger threaded item is seldom joined to a smaller buttwelding item. However, the connection of a buttwelded line to a threaded nozzle on a vessel is an example.

SWAGED NIPPLES, TBE and BLE-TSE

FIGURE 2.43

ELBOWS make 90- or 45-degree changes in direction of the run of pipe. Street elbows having a integral nipple at one end (see table D-11), are available

THREADED ELBOWS, 45 and 90 DEGREE

FIGURE 2.44

THREADED FLANGES are used to connect threaded pipe to flanged items. Regular and reducing types are available from stock. For example, a reducing flange to connect a NPS 1 pipe to a Class 150 NPS 1½ line-size flange is specified:

RED FLG NPS 11/2 x 1 Class 150 THRD

THREADED FLANGE

FIGURE 2.45

FITTINGS FOR BRANCHING FROM SCREWED SYSTEMS

2.5.2

BRANCH FROM SCREWED MAIN RUN

TEE, STRAIGHT or REDUCING, makes a 90-degree branch from the run of pipe. Reducing tees are made by boring and tapping standard forged blanks.

SPECIFYING SIZE OF THREADED REDUCING TEES

HOW TO SPECIFY TEES:	RUN INLET	RUN OUTLET	BRANCH	EXAMPLE
REDUCING ON BRANCH	11"] <u>1</u> "]"	RED TEE 1% x 1% x 1
REOUCING ON RUN (SPECIAL APPLICATIONS ONLY)] <u>] "</u>]"] 1 "	RED TEE 1% x 1 x 1%

THREADED TEES, STRAIGHT and REDUCING

FIGURE 2.46

STRAIGHT TEE

REDUCING TEE

FIGURES 2.38-2.46

.5.2

TABLE **2.4**

LATERAL makes full-size 45-degree branch from the main run of pipe.

THREADED LATERAL

FIGURE 2.47

CROSS Remarks for butt-welding cross apply - see 2.3.2. Reducing crosses are made by boring and tapping standard forged blanks.

THREADED CROSS

FIGURE 2.48

FITTINGS FOR SCREWED BRANCH FROM VESSEL OR BUTT-WELDED MAIN RUN 2.5.3

HALF-COUPLING can be used to make 90-degree threaded connections to pipes for instruments, or for vessel nozzles. Welding heat may cause embrittlement of the threads of this short fitting. Requires shaping.

THREADED HALF-COUPLING & FULL-COUPLING

FIGURE 2.49

FULL-COUPLING Superior to half-coupling. Also requires shaping for connecting to pipe.

TANK NIPPLE See 2.5.1, figure 2.39(d).

The next four fittings for branching are made by Bonny Forge. These fittings offer a means of joining screwed piping to a welded run, and for making instrument connections. The advantages are that the welding end does not require reinforcement and that the ends are shaped to the curvature of the run pipe.

THREDOLET makes a 90-degree branch, full or reducing, on straight pipe. Flat-based thredolets are available for branch connections on pipe caps and vessel heads.

THREDOLET

FIGURE 2.50

THREADED ELBOLET makes reducing tangent branch on long-radius and short radius elbows.

THREADED ELBOLET

FIGURE 2.51

THREADED LATROLET makes a 45-degree reducing branch on a straight pipe.

THREADED LATROLET

FIGURE 2.52

STUB-IN See comments in 2.3.2. Not preferred for branching from pipe smaller than NPS 2 as weld metal may restrict flow.

CLOSURES

CAP seals the threaded end of pipe.

THREADED CAP

FIGURE 2.54

2.5.4

BARSTOCK PLUG seals the threaded end of a fitting. Also termed 'round-head plug'.

BARSTOCK PLUG (IN TEE)

FIGURE 2.55

PIPE THREADS 2.5.5

Standard ANSI/ASME B1.20.1 defines general purpose pipe threads: tapered and straight threads for pipe (and fittings, etc.). For the same nominal pipe size, the number of threads per inch is the same for straight and tapered threads. Most pipe joints are made using the tapered thread form.

Tapered and straight threads will mate. Taper/taper and taper/straight (both types) joints are self sealing with the use of pipe dope (a compound spread on the threads which lubricates and seals the joint on assembly), or plastic tape (Teflon). Tape is wrapped around the external thread before the joint is assembled. A straight/straight screwed joint requires locknuts and gaskets to ensure sealing - see fig. 2.39 (d).

Standard ANSI B1.20.3 defines 'dryseal' threads. Dryseal threads seal against line pressure without the use of pipe dope or tape. The seal is obtained by using a modified thread form of sharp crest and flat root. This causes interference (metal-to-metal contact) between the engaged threads, and prevents leakage through the spiral cavity of mating threads.

Symbols used for specifying threads:

N = American National Standard Thread Form, P = Pipe, T = Taper,

C = Coupling, F = Fuel & Oil, H = Hose coupling, I = Intermediate,

L = Locknut, M = Mechancal, R= Railing fittings, S = Straight

ANSI B1.20.1: PIPE THREADS, GENERAL PURPOSE

Taper Pipe Thread	NPT
- Rigid mechanical joint for Railings	NPTR
Straight Pipe Thread:	
- Internal, in Pipe Couplings	NPSC
- Free-fitting, Mechanical Joints for Fixtures	NPSM
- Loose-fitting, Mechanical Joints with Locknuts	NPSL
- Loose-fitting, Mechanical Joints for Hose Couplings	NPSH

ANSI B1.20.3: DRYSEAL PIPE THREADS

Taper Pipe Thread:

- Dryseal Standard NPTF

- Dryseal SAE Short (NPTF type, shortened by one thread) PTF-SAE SHORT Straight Pipe Thread (internal only):

Dryseal, Fuel (for use in soft/ductile materials)
 Dryseal, Intermediate (for use in hard/brittle materials)

NPSI

(NPTF is the only type that ensures sealing against line pressure. If there is no objection to its use, pipe dope may be used with all threads to improve sealing, and lessen galling of the threads.)

Specify pipe threads by: NPS - Threads per inch - Thread type

Example: 3-8 NPT

.5.2 .5.5

FLANGE FACINGS & FINISHES

2.6.1

Many facings for flanges are offered by flange manufacturers, including various 'tongue and groove' types which must be used in pairs. However, only four types of facing are widely used, and these are shown in figure 2.56.

The raised face is used for about 80% of all flanges. The ring-joint facing, employed with either an oval-section or octagon-section gasket, is used mainly in the petrochemical industry.

THE MOST-USED FLANGE FACINGS

FIGURE 2.56

The **RAISED FACE** is 1/16-inch high for Classes 150 and 300 flanges, and 1/4-inch high for all other classes. Class 250 cast-iron flanges and flanged fittings also have the 1/16-inch raised face.

Suppliers' catalogs give 'length thru hub' dimensions which include the 0.06-inch raised face on flanges in Classes 150 and 300, but exclude the 0.25-inch raised face on flanges in Classes 400 thru 2500. Tables F include the raised face for all flange Classes.

FLAT FACE Most common uses are for mating with non-steel flanges on bodies of pumps, etc. and for mating with Class 125 cast-iron valves and fittings. Flat-faced flanges are used with a gasket whose outer diameter equals that of the flange — this reduces the danger of cracking a cast-iron, bronze or plastic flange when the assembly is tightened.

RING-JOINT FACING is a more expensive facing, and considered the most efficient for high-temperature and high-pressure service. Both flanges of a pair are alike. The ring-joint facing is not prone to damage in handling as the surfaces in contact with the gasket are recessed. Use of facings of this type may increase as hollow metal 0-rings gain acceptance for process chemical seals.

LAP-JOINT FLANGE is shaped to accommodate the stub end. The combination of flange and stub end presents similar geometry to the raised-face flange and can be used where severe bending stresses will not occur. Advantages of this flange are stated in 2.3.1,

The term 'finish' refers to the type of surface produced by machining the flange face which contacts the gasket. Two principal types of finish are produced, the 'serrated' and 'smooth'.

Forged-steel flanges with raised-face are usually machined to give a 'serrated-concentric' groove, or a 'serrated-spiral' groove finish to the raised-face of the flange. The serrated-spiral finish is the more common and may be termed the 'stock' or 'standard finish' available from suppliers.

The pitch of the groove and the surface finish vary depending on the size and class of the flange. For raised-face steel flanges, the pitch varies from 24 to 40 per inch. It is made using a cutting tool having a minimum radius at the tip of 0.06-inch. The maximum roughness of surface finish is 125-500 microinches.

'Smooth' finish is usually specially-ordered, and is available in two qualities. (1) A fine machined finish leaving no definite tool marks. (2) A 'mirror-finish', primarily intended for use without askets.

BOLT HOLES IN FLANGES

2.6.2

Bolt holes in flanges are equally spaced. Specifying the number of holes, diameter of the bolt circle and hole size sets the bolting configuration. Number of bolt holes per flange is given in tables F.

Flanges are positioned so that bolts straddle vertical and horizontal centerlines. This is the normal position of bolt holes on all flanged items.

BOLTS FOR FLANGES

2.6.3

Two types of bolting are available: the studbolt using two nuts, and the machine bolt using one nut. Both boltings are illustrated in figure 2.57. Studbolt thread lengths and diameters are given in tables F.

Studbolts have largely displaced regular bolts for bolting flanged piping joints. Three advantages of using studbolts are:

- (1) The studbolt is more easily removed if corroded
- (2) Confusion with other bolts at the site is avoided
- 3) Studbolts in the less frequently used sizes and materials can be readily made from round stock

SQUARE-HEAD MACHINE BOLT		STUDBOLT	
	HEX NUT	HEX NUT	HEX NUT
			mummun) — u

UNIFIED INCH SCREW THREADS (UN AND UNR THREAD FORM) UNR indicates rounded root contour, and applies to external threads only. Flat, or rounded root is optional with the UN thread. There are four Unified Screw Threads: Unified Coarse (UNC/ UNCR), Unified Fine (UNF/UNFR), Unified Extra-fine (UNEF/UNEFR) and Unified Selected (UNS/UNSR), with three classes of fit: 1A, 2A and 3A for external threads; 1B, 2B, and 3B for internal threads. (Class 3 has the least clearance.) The standard is ANSI B1.1. which incorporates a metric translation.

UNC (Class 2 medium fit bolt and nut) is used for bolts and studbolts in piping, and specified in the following order:

Diameter - Threads per inch - Thread - Class of fit.

Example:

BOLT: NUT: ½ - 13 UNC 2A ½ - 13 UNC 2B

GASKETS 2.6.4

Gaskets are used to make a fluid-resistant seal between two surfaces. The common gasket patterns for pipe flanges are the full-face and ring types, for use with flat-faced and raised-face flanges respectively. Refer to figure 2.56. Widely-used materials for gaskets are compressed asbestos (1/16-inch thick) and asbestos-filled metal ('spiral-wound', 0.175-inch thick). The filled-metal gasket is especially useful if maintenance requires repeated uncoupling of flanges, as the gasket separates cleanly and is often reusable.

Choice of gasket is decided by:

- (1) Temperature, pressure and corrosive nature of the conveyed fluid
- 2) Whether maintenance or operation requires repeated uncoupling
- (3) Code/environmental requirements that may apply
- (4) Cost

Garlock Incorporated's publication 'Engineered gasketing products' provides information on the suitability of gasket materials for different applications. Tables 2.5 gives some characteristics of gaskets, to aid selection.

It may be required that adjacent parts of a line are electrically insulated from one another, and this may be effected by inserting a flanged joint fitted with an insulating gasket set between the parts. A gasket electrically insulates the flange faces, and sleeves and washers insulate the bolts from one or both flanges, as illustrated in figure 2.58.

GASKET MATERIAL	EXAMPLE USE	MAXIMUM TEMPERATURE (Deg F)	MAXIMUM 'TP' FACTOR Temperature x Pressure (Deg F x PSI)	AVAILABLE THICKNESS (INCHES)	
Synthetic rubbers	Water, Air	250	15,000	1/32,1/16,3/32,1/8,1/4	
Vegetable fiber	Oil	250	40,000	1/64,1/32,1/16,3/32,1/8	
Synthetic rubbers with cloth insert ('Cl')	Water, Air	250	125,000	1/32,1/16,3/32,1/8,1/4	
Solid Teflon	Chemicals	500	150,000	1/32,1/16,3/32,1/8	
Compressed asbestos	Most	750	250,000	1/64,1/32,1/16,1/8	
Carbon steel	High-pressure fluids	750	1,600,000	For ring-joint gaskets, refer to part II	
Stainless steel	High-pressure &/or corrosive fluids	1200	3,000,000		
Spiral-wound: SS/Teflon CS/Asbestos SS/Asbestos SS/Ceramic	Chemicals Most Corrosive Hot gases	500 750 1200 1900	}250,000÷	Most-used thickness for spiral-wound gaskets is 0.175, Alternative gasket thickness: 0.125,	

INSULATING GASKET SET

FIGURE 2.58

TEMPORARY CLOSURES FOR LINES

2.7

IN-LINE CLOSURES

2.7.1

A completely leak-proof means of stopping flow in lines is necessary in piping systems when: (1) A change in process material to flow in the line is to be made and cross-contamination is to be avoided. (2) Periodic maintenance is to be carried out, and a hazard would be presented by flammable and/or toxic material passing a valve.

The valves described in 3.1 may not offer complete security against leakage, and one of the following methods of temporary closure can be used: Lineblind valve, line blind (including special types-for use with ring-joint flanges), spectacle plate (so-called from its shape), 'double block and bleed', and blind flanges replacing a removable spool. The last three closures are illustrated in figures 2.59 thru 2.61.

FIGURES 2.56-2.58

FIGURE 2.59

DOUBLE-BLOCK-AND-BLEED

FIGURE 2.60

REMOVABLE SPOOL

FIGURE 2.61

If a line is to be temporarily closed down with double-block-and-bleed, both valves are closed, and the fluid between drawn off with the bleed valve. The bleed valve is then left open to show whether the other valves are tightly shut.

Figure 2.60 shows the bleed ring connected to a bleed valve—see 3.1.11. The use of a tapped valve rather than a bleed ring should be considered, as it is a more economic arrangement, and usually can be specified merely by adding a suffix to the valve ordering number.

A line-blind valve is not illustrated as construction varies. This type of valve incorporates a spectacle plate sandwiched between two flanges which may be expanded or tightened (by some easy means), allowing the spectacle plate to be reversed. Constant-length line-blind valves are also available, made to ANSI dimensions for run length.

Table 2.6 compares the advantages of the four in-line temporary closures:

IN-LINE CLOSURES

TABLE 2.6

CLOSURE	LINE BLIND VALVE	SPECTACLE PLATE, or LINE BLIND	DOUBLE BLOCK, & BLEED	REMOVABLE SPOOL
RELATIVE OVERALL COST	LEAST EXPENSIVE	MEDIUM EXPENSE, DEPENDING ON FREQUENCY OF CHANGEOVER		MOST EXPENSIVE
MANHOURS FOR DOUBLE CHANGEOVER	NEGLIGIBLE	1 to 3	NEGLIGIBLE	2 to 6
INITIAL COST	FAIRLY HIGH	LOW	VERY HIGH	нібн
CERTAINTY OF SHUT-OFF	COMPLETE	COMPLETE	DOUBTFUL	COMPLETE
VISUAL INDICATION?	YES	YES	YES, BUT SUSPECT	YES
WHO OPERATES?	PLANT OPERATOR	PIPEFITTER	PLANT OPERATOR	PIPEFITTER

CLOSURES FOR PIPE ENDS & VESSEL OPENINGS

2.7.2

Temporary bolted closures include blind flanges using flat gaskets or ring joints, T-bolt closures, welded-on closures with hinged doors — including the boltless manhole cover (Robert Jenkins, England) and closures primarily intended for vessels, such as the Lanape range (Bonney Forge) which may also be used with pipe of large diameter. The blind flange is mostly used with a view to future expansion of the piping system, or for cleaning, inspection, etc. Hinged closures are often installed on vessels; infrequently on pipe.

QUICK CONNECTORS & COUPLINGS

2.8

QUICK CONNECTORS

2.8.1

Two forms of connector specifically designed for temporary use are: (1) Lever type with double lever clamping, such as Evertite 'Standard' and Victaulic 'Snap Joint'. (2) Screw type with captive nut — 'hose connector'.

Typical use is for connecting temporarily to tank cars, trucks or process vessels. Inter-trades agreements permit plant operators to attach and uncouple these boltless connectors. Certain temporary connectors have built-in valves. Evertite manufactures a double shut-off connector for liquids, and Schrader a valved connector for air lines.

2.8.2

Connections of this type may be suitable for either permanent or temporary use, depending on the joint and gasket, and service conditions. Piping can be built rapidly with them, and they are especially useful for making repairs to lines, for constructing short-run process installations such as pilot plants, and for process modification.

COUPLINGS FOR GROOVED COMPONENTS & PIPE

Couplings of this type are manufactured by the Victaulic Company of America for use with steel, cast-iron, FRP or plastic pipe, either having grooved ends, or with Victaulic collars welded or cemented to the pipe ends.

The following special fittings with grooved ends are available: elbow, tee (all types), lateral, cross, reducer, nipple, and cap. Groove-ended valves and valve adaptors are also available. Advantages: (1) Quick fitting and removal. (2) Joint can take up some deflection and expansion. (3) Suitable for many uses, with correct gaskets.

The manufacturer states that the biggest uses are for permanent plant air, water (drinking, service, process, waste) and lubricant lines.

compression sleeve couplings are extensively used for air, water, oil and gas. Well-known manufacturers include Victaulic, Dresser and Smith-Blair. Advantages: (1) Quick fitting and removal. (2) Joint may take up some deflection and expansion. (3) End preparation of pipe is not needed.

VICTAULIC COMPRESSION SLEEVE COUPLING

FIGURE 2.62

EXPANSION JOINTS & FLEXIBLE PIPING

2.9

EXPANSION JOINTS

2.9.1

Figures 2.63 thru 2.66 show methods of accommodating movement in piping due to temperature changes, if such movement cannot be taken up by:

(1) Re-routing or re-spacing the line. (2) Expansion loops—see figure 6.1. (3) Calculated placement of anchors. (4) Cold springing—see 6.1. Bellows-type

expansion joints of the type shown in figure 2.63 are also used to absorb vibration.

SIMPLE BELLOWS FIGURE 2.63

ARTICULATED BELLOWS

FIGURE 2.64

ARTICULATED TWIN-BELLOWS ASSEMBLY

FIGURE 2.65

FIGURES 2.59-2.65

2.6

FLEXIBLE PIPING 2.9.2

For filling and emptying railcars, tankers, etc., thru rigid pipe, it is necessary to design articulated piping, using 'swiveling' joints, or 'ball' joints (the latter is a 'universal' joint). Flexible hose has many uses especially where there is a need for temporary connections, or where vibration or movement occurs. Chemical-resistant and/or armored hoses are available in regular or jacketed forms (see figure 6.39).

SEPARATORS, STRAINERS, SCREENS & DRIPLEGS 2.10

COLLECTING UNWANTED MATERIAL FROM THE FLOW 2.10.1

Devices are included in process and service lines to separate and collect undesirable solid or liquid material. Pipe scale, loose weld metal, unreacted or decomposed process material, precipitates, lubricants, oils, or water may harm either equipment or the process.

Common forms of line-installed separator are illustrated in figures 2.67 and 2.68. Other more elaborate separators mentioned in 3.3.3 are available, but these fall more into the category of process equipment, normally selected by the process engineer.

Air and some other gases in liquid-bearing lines are normally self-collecting at piping high points and at the remote ends of headers, and are vented by discharge valves — see 3.1.9.

SEPARATORS 2.10.2

These permanent devices are used to collect droplets from a gaseous stream, for example, to collect oil droplets from compressed air, or condensate droplets from wet steam. Figure 2.67 shows a separator in which droplets in the stream collect in chevroned grooves in the barrier and drain to the small well. Collected liquid is discharged via a trap—see 3.1.9 and 6.10.7.

Inserted in lines immediately upstream of sensitive equipment, strainers collect solid particles in the approximate size range 0.02–0.5 inch, which can be separated by passing the fluid bearing them thru the strainer's screen. Typical locations for strainers are before a control valve, pump, turbine, or traps on steam systems. 20-mesh strainers are used for steam, water, and heavy or medium oils. 40-mesh is suitable for steam, air, other gases, and light oils.

The commonest strainer is the illustrated wye type where the screen is cylindric and retains the particles within. This type of strainer is easily dismantled. Some strainers can be fitted with a valve to facilitate blowing out collected material without shutting the line down—see figure 6.9, for example. Jacketed strainers are available.

SEPARATOR FIGURE 2.67

STRAINER FIGURE 2.68

Simple temporary strainers made from perforated sheet metal and/or wire mesh are used for startup operations on the suction side of pumps and comppressors, especially where there is a long run of piping before the unit that may contain weld spatter or material inadvertently left in the pipe. After startup, the screen usually is removed.

It may be necessary to arrange for a small removable spool to accommodate the screen. It is important that the flow in suction lines should not be restricted. Cone-shaped screens are therefor preferred, with cylindric types as second choice. Flat screens are better reserved for low-suction heads.

SCREEN BETWEEN FLANGES

FIGURE 2.69

DRIPLEG CONSTRUCTION

FIGURE 2.70

2.10.5 DRIPLEGS

Often made from pipe and fittings, the dripleg is an inexpensive means of collecting condensate. Figure 2.70 shows a dripleg fitted to a horizontal pipe. Removal of condensate from steam lines is discussed in 6.10. Recommended sizes for driplegs are given in table 6.10.

BRANCH CONNECTIONS

REINFORCEMENTS

'Reinforcement' is the addition of extra metal at a branch connection made from a pipe or vessel wall. The added metal compensates for the structural weakening due to the hole.

Stub-ins may be reinforced with regular or wraparound saddles, as shown in figure 2.71. Rings made from platestock are used to reinforce branches made with welded laterals and butt-welded connections to vessels. Small welded connections may be reinforced by adding extra weld metal to the joint.

Reinforcing pieces are usually provided with a small hole to vent gases produced by welding; these gases would otherwise be trapped. A vent hole also serves to indicate any leakage from the joint.

STRAIGHT PIPE

If a butt weld joining two sections of straight pipe is subject to unusual external stress, it may be reinforced by the addition of a 'sleeve' (formed from two units, each resembling the lower member in figure 2.71 (b)).

The code applicable to the piping should be consulted for reinforcement requirements. Backing rings are not considered to be reinforcements-see the footnote to chart 2.1.

REINFORCING SADDLES

FIGURE 2.71

(a) REGULAR SADDLE

FIGURES 2.66-2.71

(b) WRAPAROUND SADDLE

PIPE SUPPORTS

FIGURE 2.72A

PIPE SUPPORTS

SUPPORTING PIPE CLOSE TO STRUCTURAL STEEL

(COURTESY STEEL CITY OIVISION, MIOLAND-ROSS CORP)

'KINDDRF SYSTEM'

(COURTESY UNISTRUT CORPORATION)

SPRING HANGERS

(COURTESY VOKES-BERGEN-GENSPRING LTD)

1. CONSTANT LOAD TYPE

2. VARIABLE LOAD TYPE

SPRING SUPPORT

(COURTESY VOKES-BERGEN-GENSPRING LTO)

SUPPORTS ALLOWING FREE MOVEMENT OF PIPE

FIGURE 2.72B

(COURTESY STEEL CITY DIVISION, MIOLANO-ROSS CORP)

(COURTESY UNION CARBIDE)

FIGURES 2.72A&B Symbols for drafting various types of support are shown in chart 5.7. For designing support systems, see 6.2.

PIPE SUPPORTS 2.12.1

Pipe supports should be as simple as conditions allow. Stock items are used where practicable, especially for piping held from above. To support piping from below, supports are usually made to suit from platestock, pipe, and pieces of structural steel.

A selection of available hardware for supporting is illustrated in figures 2.72A and B.

TERMS FOR SUPPORTS

2.12.2

SUPPORT The weight of piping is usually carried on supports made from structural steel, or steel and concrete. (The term 'support' is also used in reference to hangers.)

HANGER Device which suspends piping (usually a single line) from structural steel, concrete or wood. Hangers are usually adjustable for height.

ANCHOR A rigid support which prevents transmission of movement (thermal, vibratory, etc.) along piping. Construction may be from steel plate, brackets, flanges, rods, etc. Attachment of an anchor to pipe should preferably encircle the pipe and be welded all around as this gives a better distribution of stress in the pipe wall.

TIE An arrangement of one or more rods, bars, etc., to restrain movement of piping.

DUMMY LEG An extension piece (of pipe or rolled steel section) welded to an elbow in order to support the line—see figure 2.72A and table 6.3.

The following hardware is used where mechanical and/or thermal movement is a problem:

GUIDE A means of allowing a pipe to move along its length, but not sideways.

SHOE A metal piece attached to the underside of a pipe which rests on supporting steel. Primarily used to reduce wear from sliding for lines subject to movement. Permits insulation to be applied to pipe.

SADDLE A welded attachment for pipe requiring insulation, and subject to longitudinal or rolling movement (resulting from temperature changes other than climatic). Saddles may be used with guides as shown in 6.2.8.

SLIDE PLATE A slide plate support is illustrated in figure 2.72A. Figure 2.72B shows applications of 'Ucar' graphite slide plates which are offered by Union Carbide Inc. The two plates used in a support are made from or faced with a material of low friction able to withstand mechanical stress and temperature changes. Plates are often made from graphite blocks. Steel plates with a teflon facing are available and may be welded to steel.

Spring hangers or supports allow variations in the length of pipe due to changes in temperature, and are often used for vertical lines. Refer to 6.2.5 figure 6.16. There are two types of spring hanger or support:

'CONSTANT LOAD' HANGER This device consists of a coil spring and lever mechanism in a housing. Movement of the piping, within limits, will not change the spring force holding up the piping; thus, no additional forces will be introduced to the piping system.

VARIABLE SPRING' HANGER, and SUPPORT These devices consist of a coil spring in a housing. The weight of the piping rests on the spring in compression. The spring permits a limited amount of thermal movement. A variable spring hanger holding up a vertical line will reduce its lifting force as the line expands toward it. A variable spring support would increase its lifting force as the line expands toward it. Both place a load on the piping system. Where this is undesirable, a constant-load hanger can be used instead.

HYDRAULIC DAMPENER, SHOCK, SNUBBER, or SWAY SUPPRESSOR One end of the unit is attached to piping and the other to structural steel or concrete. The unit expands or contracts to absorb slow movement of piping, but is rigid to rapid movement.

SWAY BRACE, or SWAY ARRESTOR, is essentially a helical spring in a housing which is fitted between piping and a rigid structure. Its function is to buffer vibration and sway.

WELDING TO PIPE

2.12.3

If the applicable code permits, lugs may be welded to pipe. Figure 2.72A illustrates some common arrangements using welded lugs, rolled steel sections and pipe, for:—

- (1) Fixing hangers to structural steel, etc.
- (2) Attaching to pipe
- (3) Supporting pipe

Welding supports to prelined pipe will usually spoil the lining, and therefor lugs, etc., must be welded to pipe and fittings before the lining is applied. Welding of supports and lugs to pipes and vessels to be stress-relieved should be done before heat treatment.

3 .1 .1.2

VALVES, PUMPS, COMPRESSORS, and Types of Process Equipment

VALVES

3.1

FUNCTIONS OF VALVES

3.1.1

Table 3.1 gives a basis for classifying valves according to function:

USES OF VALVES

TABLE 3.1

VALVE ACTION	EXPLANATION	SEE SECTION:
ON/OFF	STOPPING OR STARTING FLOW	3.1.4 and 3.1.6
REGULATING	VARYING THE RATE OF FLOW	3.1.5, 3.1.6 and 3.1.10
CHECKING	PERMITTING FLOW IN ONE DIRECTION ONLY	3.1.7
SWITCHING	SWITCHING FLOW ALONG DIFFERENT ROUTES	3.1.8
DISCHARGING	DISCHARGING FLUID FROM A SYSTEM	3.1.9

Types of valve suitable for on/off and regulating functions are listed in chart 3.2. The suitability of a valve for a required purpose depends on its construction, discussed in 3.1.3.

PARTS OF VALVES

3.1.2

Valve manufacturers' catalogs offer a seemingly endless variety of constructions. Classification is possible, however, by considering the basic parts that make up a valve:

- (1) The 'disc' and 'seat' that directly affect the flow
- (2) The 'stem' that moves the disc in some valves, fluid under pressure does the work of a stem
- (3) The 'body' and 'bonnet' that house the stem
- (4) The 'operator' that moves the stem (or pressurizes fluid for squeeze valves, etc.)

Figures 3.1 thru 3.3 show three common types of valve with their parts labeled.

DISC, SEAT, & PORT

Chart 3.1 illustrates various types of disc and port arrangements, and mechanisms used for stopping or regulating flow. The moving part directly affecting the flow is termed the 'disc' regardless of its shape, and the non-moving part it bears on is termed the 'seat'. The 'port' is the maximum internal opening for flow (that is, when the valve is fully open). Discs may be actuated by the conveyed fluid or be moved by a stem having a linear, rotary or helical movement. The stem can be moved manually or be driven hydraulically, pneumatically or electrically, under remote or automatic control, or mechanically by weighted lever, spring, etc.

The size of a valve is determined by the size of its ends which connect to the pipe, etc. The port size may be smaller.

STEM

There are two categories of screwed stem: The rising stem shown in figures 3.1 and 3.2, and the non-rising stem shown in figure 3.3.

Rising stem (gate and globe) valves are made either with 'inside screw' (IS) or 'outside screw' (OS). The OS type has a yoke on the bonnet and the assembly is referred to as 'outside screw and yoke', abbreviated to 'OS&Y'. The handwheel can either rise with the stem, or the stem can rise thru the handwheel.

IN THESE SCHEMATIC DIAGRAMS, THE DISC IS SHOWN WHITE, THE SEAT IN SOLID COLOR, & THE CONVEYED FLUID SHADED.

OPERATED VALVES			SELF-OPERATED VALVES		
GATE	GLOBE	ROTARY	DIAPHRAGM	CHECK	REGULATING
SOLIO-WEDGE GATE	GLOBE	ROTARY-BALL	OIAPHRAGM (SAUNDERS TYPE)	SWING CHECK	PRESSURE REGULATOR
SPLIT-WEOGE GATE	ANGLE GLOBE	BUTTERFLY	PINCH	BALL CHECK	PISTON CHECK
SINGLE-DISC SINGLE-SEAT GATE	NEEOLE	PLUG or COCK	*Central seat is optional SQUEEZE	TILTING DISC CHECK	STOP CHECK

Non-rising stem valves are of the gate type. The handwheel and stem are in the same position whether the valve is open or closed. The screw is inside the bonnet and in contact with the conveyed fluid.

A 'floor stand' is a stem extension for use with both types of stem, where it is necessary to operate a valve thru a floor or platform. Alternately, rods fitted with universal joints may be used to bring a valve handwheel within an operator's reach.

Depending on the size of the required valve and availabilities, selection of stem type can be based on:

- Whether it is undesirable for the conveyed fluid to be in contact with the threaded bearing surfaces
- (2) Whether an exposed screw is liable to be damaged by abrasive atmospheric dust
- (3) Whether it is necessary to see if the valve is open or closed

In addition to the preceding types of stem used with gate and globe valves, most other valves have a simple rotary stem. Rotary-ball, plug and butterfly valves have a rotary stem which is moved by a permanent lever, or tool applied to a square boss at the end of the stem.

FIGURE 3.1

GATE VALVE (OS&Y, bolted bonnet, rising stem)

FIGURE 3.2

BONNET

There are three basic types of attachment for valve bonnets: screwed (including union), bolted, and breechlock.

A screwed bonnet may occasionally stick and turn when a valve is opened. Although sticking is less of a problem with the union type bonnet, valves with screwed bonnets are best reserved for services presenting no hazard to personnel. Union bonnets are more suitable for small valves requiring frequent dismantling than the simple screwed type.

The bolted bonnet has largely displaced screwed and union bonnet valves in hydrocarbon applications. A U-bolt or clamp-type bonnet is offered on some small gate valves for moderate pressures, to facilitate frequent cleaning and inspection.

The 'pressure seal' is a variation of the bolted bonnet used for high-pressure valves, usually combined with OS&Y construction. It makes use of line pressure to tighten and seal an internal metal ring or gasket against the body.

The breechlock is a heavier infrequently-used and more expensive construction, also for high-pressure use, and involves seal-welding of the bonnet with the body.

FIGURE 3.3

GATE VALVE (IS, bolted bonnet, non-rising stem)

CHART

FIGURES **3.1-3.3**

A critical factor for valves used for process chemicals is the lubrication of the stem. Care has to be taken in the selection of packing, gland design, and choice and application of lubricant. As an option the bonnet may include a 'lantern ring' which serves two purposes — either to act as a collection point to drain off any hazardous seepages, or as a point where lubricant can be injected.

LANTERN RING

BODY

Selection of material to fabricate the interior of the valve body is important with a valve used for process chemicals. There is often a choice with regard to the body and trim, and some valves may be obtained with the entire interior of the body lined with corrosion-resistant material.

Valves are connected to pipe, fittings or vessels by their body ends, which may be flanged, screwed, butt- or socket-welding, or finished for hose, Victaulic coupling, etc. Jacketed valves are also available—see 6.8.2.

SEAL

In most stem-operated valves, whether the stem has rotary or lineal movement, packing or seals are used between stem and bonnet (or body). If high vacuum or corrosive, flammable or toxic fluid is to be handled, the disc or stem may be sealed by a metal bellows, or by a flexible diaphragm (the latter is termed 'packless' construction). A gasket is used as a seal between a bolted bonnet and valve body.

BELLOWS-SEAL VALVE

'PACKLESS' VALVE

Flanged valves use gaskets to seal against the line flanges. Butterfly valves may extend the resilient seat to also serve as line gaskets. The pressure-seal bonnet joint utilizes the pressure of the conveyed fluids to tighten the seal — see 'Pressure seal' under 'Bonnet', this section.

MANUAL OPERATORS

HANDLEVER is used to actuate the stems of small butterfly and rotary-ball valves, and small cocks. Wrench operation is used for cocks and small plug valves.

HANDLEVERS ON SMALL VALVES

HANDWHEEL is the most common means for rotating the stem on the majority of popular smaller valves such as the gate, globe and diaphragm types. Additional operating torque for gate and globe valves is offered by 'hammerblow' or 'impact' handwheels which may be substituted for normal handwheels if easier operation is needed but where gearing is unnecessary.

HAMMER ACTION IS PROVIDED BY TWO LUGS CAST ON UNDER-SIDE OF HANDWHEEL, WHICH HIT ANVIL PROJECTING BETWEEN

CHAIN operator is used where a handwheel would be out of reach. The stem is fitted with a chainwheel or wrench (for lever-operated valves) and the loop of the chain is brought within 3 ft of working floor level. Universal-type chainwheels which attach to the regular handwheel have been blamed for accidents: in corrosive atmospheres where an infrequently-operated valve has stuck, the attaching bolts have been known to fail. This problem does not arise with the chainwheel that replaces the regular valve handwheel.

GEAR operator is used to reduce the operating torque. For manual operation, consists of a handwheel-operated gear train actuating the valve stem. As a guide, gear operators should be considered for valves of the following sizes and classes: 125, 150, and 300, 14-inch and larger; 400 and 600, 8-inch and larger; 900 and 1500, 6-inch and larger; 2500, 4-inch and larger.

POWERED OPERATORS

Electric, pneumatic or hydraulic operation is used: (1) Where a valve is remote from the main working area. (2) If the required frequency of operation would need unreasonable human effort. (3) If rapid opening and/or closing of a valve is required.

ELECTRIC MOTOR The valve stem is moved by the electric motor, thru reducing gears.

SOLENOID may be used with fast-acting check valves, and with on/off valves in light-duty instrumentation applications.

ELECTRIC MOTOR OPERATOR

PNEUMATIC OPERATOR

PNEUMATIC & HYDRAULIC OPERATORS may be used where flammable vapor is likely to be present. They take the following forms: (1) Cylinder with double-acting piston driven by air, water, oil, or other liquid which usually actuates the stem directly. (2) Air motor which actuates the stem thru

gearing—these motors are commonly piston-and-cylinder radial types. (3) A double-acting vane with limited rotary movement in a sector casing, actuating the stem directly. (4) Squeeze type (refer to 'Squeeze valve').

QUICK-ACTING OPERATORS FOR NON-ROTARY VALVES (Manually-operated valves)

Quick-acting operators are used with gate and globe valves. Two stem movements are employed:—

- (1) Rotating stem, rotated by a lever
- (2) Sliding stem, in which the stem is raised and lowered by lever

QUICK-ACTING LEVERS ON VALVES

(1) Rotating stem on globe valve

(2) Sliding stem on gate valve

Steam and air whistles are examples of the use of sliding-stem quick-acting operators with globe valves.

SELECTING ON/OFF & REGULATING VALVES

3.1.3

The suitability of a valve for a particular service is decided by its materials of construction in relation to the conveyed fluid as well as its mechanical design. Referring to the descriptions in 3.1.2, the steps in selection are to choose: (1) Material(s) of construction. (2) The disc type. (3) Stem type. (4) Means of operating the stem — the 'operator'. (5) Bonnet type. (6) Body ends — welding, flanged, etc. (7) Delivery time. (8) Price. (9) Warranty of performance for severe conditions.

Chart 3.2 is a guide to valve selection, and indicates valves which may be chosen for a given service. The chart should be read from left to right. First, ascertain whether a liquid, gas or powder is to be handled by the valve. Next, consider the nature of the fluid—whether it is foodstuffs or drugs to be handled hygienically, chemicals that are corrosive, or whether the fluid is substantially neutral or non-corrosive.

Next consider the function of the valve — simple open-or-closed operation ('on/off'), or regulating for control or for dosing. These factors decided, the chart will then indicate types of valves which should perform satisfactorily in the required service.

If the publication is available, reference should also be made to the Crane Company's 'Choosing the right valve'.

VALVE SELECTION GUIDE

CHART 3.2

CONVEYED FLUIO	NATURE OF FLUID See Note (2) in Key	VALVE FUNCTION	TYPE OF OISC	SPECIAL FEATURES [] denotes Limitation. () denotes Option.
	NEUTRAL	DN/OFF	GATE ROTARY BALL PLUG DIAPHRAGM BUTTERFLY PLUG GATE	NONE NDNE NDNE [For oil: No natural rubber] NDNE NDNE
	(WATER, DIL, Étc.)	REGULATING	GLDBE BUTTERFLY PLUG GATE DIAPHRAGM NEEDLE	NDNE NDNE NONE [For oil: No natural rubber] NONE, [Small flows only]
	CORROSIVE	ON/OFF	GATE PLUG GATE ROTARY BALL PLUG DIAPHRAGM BUTTERFLY	ANTI-CORROSIVE*,(OS&Y),(Bellows seal) ANTI-CORROSIVE*,(OS&Y),(ANTI-CORROSIVE*,(Lined) ANTI-CORROSIVE*,(Lined) ANTI-CORROSIVE*,(Lined) ANTI-CORROSIVE*,(Lined)
1.101110	(ALKALINE, ACID, Etc.)	REGULATING	GLOBE DIAPHRAGM BUTTERFLY PLUG GATE	ANTI-CORR.* (OS&Y), (Diaphragm or Bellows Seal) ANTI-CORROSIVE*,(Lined) ANTI-CORROSIVE*,(Lined) ANTI-CORROSIVE*,(OS&Y)
LIQUID	HYGIENIC	ON/OFF	BUTTERFLY DIAPHRAGM	SPECIAL DISC1, WHITE SEAT 1 SANITARY LINING, WHITE DIAPHRAGM 1
	(BEVERAGES, FOOD and DRUGS)	REGULATING	BUTTERFLY DIAPHRAGM SOUEEZE PINCH	SPECIAL DISCT, WHITE SEAT T SANITARY LINING, WHITE DIAPHRAGM T WHITE FLEXIBLE TUBE T WHITE FLEXIBLE TUBE T
	SLURRY	DN/DFF	RDTARY BALL BUTTERFLY DIAPHRAGM PLUG PINCH SDUEEZE	ABRASIDN-RESISTANT LINING ABRASION-RESIST. DISC, RESILIENT SEAT ABRASIDN-RESISTANT LINING LUBRICATED, (Lined) NDNE CENTRAL SEAT
		REGULATING	BUTTERFLY DIAPHRAGM SOUEEZE PINCH GATE	ABRASIDN-RESIST. DISC, RESILIENT SEAT LINED* NONE NONE SINGLE SEAT, NOTCHED DISC
	FIBROUS SUSPENSIONS	DN/DFF & REGULATING	GATE DIAPHRAGM SQUEEZE PINCH	SINGLE SEAT, KNIFE-EDGED DISC, NOTCHED NDNE DISC NDNE NONE
	NEUTRAL	DN/DFF	GATE GLOBE RDTARY BALL PLUG DIAPHRAGM	NDNE (Composition Disc),(Plug-Type Disc) NDNE NONE, (Unsuitable for steam service) NDNE, (Unsuitable for steam service)
	NEUTRAL (AIR, STEAM, Etc.)	REGULATING	GLDBE NEEDLE BUTTERFLY DIAPHRAGM GATE	NDNE NONE, [Small flows only] NDNE NONE, [Unsuitable for steam service] SINGLE SEAT
GAS	CORROSIVE	ON/DFF	BUTTERFLY ROTARY BALL DIAPHRAGM PLUG	ANTI-CDRROSIVE* ANTI-CORROSIVE* ANTI-CORROSIVE* ANTI-CORROSIVE*
	(ACID VAPORS, CHLORINE, Etc.)	REGULATING	BUTTERFLY GLOBE NEEDLE DIAPHRAGM	ANTI-CORROSIVE*, (OS&Y) ANTI-CORROSIVE*, (Small flows only) ANTI-CORROSIVE*, (Small flows only)
	VACUUM	ON/OFF	GATE GLOBE RDTARY BALL BUTTERFLY	BELLOWS SEAL DIAPHRAGM OF BELLOWS SEAL NONE RESILIENT SEAT
00115	ABRASIVE POWDER (SILICA, Etc.)	ON/DFF & REGULATING	PINCH SOUEEZE SPIRAL SOCK	NONE (CENTRAL SEAT) NONE
SOLID	LUBRICATING PDWDER (GRAPHITE, TALC, Etc.)	DN/DFF & REGULATING	PINCH GATE SOUEEZE SPIRAL SOCK	NONE SINGLE SEAT (CENTRAL SEAT) NDNE

^{*} Suitability of materials of construction with respect to the great variety of fluids encountered is a complex topic. A good general reference is the current edition of the Chemical Engineer's Handbook

KEY TO VALVE SELECTION GUIDE

CHART 3.2

- (1) Determine type of conveyed fluid-liquid, gas slurry, or powder
- (2) Determine nature of fluid:
 - Substantially neutral—not noticeably acid or alkaline, such as various oils, drinking water, nitrogen, gas, air,etc.
 - Corrosive—markedly acid, alkaline, or otherwise chemically reactive
 - 'Hygienic'—materials for the food, drug, cosmetic or other industries
 - Slurry—suspension of solid particles in a liquid can have an abrasive effect on valves, etc. Non-abrasive slurries such as wood-pulp slurries can choke valve mechanisms
- (3) Determine operation:
 - 'On/off'—fully open or fully closed
 - Regulating—including close regulation (throttling)
- (4) Look into other factors affecting choice:
 - Pressure and temperature of conveyed fluid
 - Method of operating stem—consider closing time
 - Cost
 - Availability
 - Special installation problems—such as welding valves into lines. Welding heat will sometimes distort the body and affect the sealing of small valves.

[†] The disc should be smooth, without bolts and recesses, in a sanitary material such as stainless steel, or fully coated with 'white' plastic or rubber material. White' means that the material does not contain a filler which is toxic or can discolor the product.

In industrial piping, on/off control of flow is most commonly effected with gate valves. Most types of gate valve are unsuitable for regulating: erosion of the seat and disc occurs in the throttling position due to vibration of the disc ("chattering"). With some fluids, it may be desirable to use globe valves for on/off service, as they offer tighter closure. However, as the principal function of globe valves is regulation, they are described in 3.1.5.

SOLID WEDGE GATE VALVE has either a solid or flexible wedge disc. In addition to on/off service, these valves can be used for regulating, usually in sizes 6-inch and larger, but will chatter unless disc is fully guided throughout travel. Suitable for most fluids including steam, water, oil, air and gas. The flexible wedge was developed to overcome sticking on cooling in high-temperature service, and to minimize operating torque. The flexible wedge is not illustrated—it can be likened to two wheels set on a very short axle.

SOLID WEDGE GATE VALVE

DOUBLE-DISC PARALLEL-SEATS GATE VALVE has two parallel discs which are forced, on closure, against parallel seats by a 'spreader'. Used for liquids and gases at normal temperatures. Unsuitable for regulation. To prevent jamming, installation is usually vertical with handwheel up.

DOUBLE-DISC (SPLIT-WEDGE)WEDGE GATE VALVE Discs wedge against inclined seats without use of a spreader. Remarks for double-disc parallel seats gate valve apply, but smaller valves are made for steam service. Often, construction allows the discs to rotate, distributing wear.

SINGLE-DISC SINGLE-SEAT GATE VALVE, or SLIDE VALVE, is used for handling paper pulp slurry and other fibrous suspensions, and for low-pressure gases. Will not function properly with inflow on the seat side. Suitable for regulating flow if tight closure is not required.

SINGLE-DISC PARALLEL-SEATS GATE VALVE Unlike the single-seat slide valve, this valve affords closure with flow in either direction. Stresses on stem and bonnet are lower than with wedge-gate valves. Primarily used for liquid hydrocarbons and gases.

SINGLE-DISC PARALLEL-SEATS GATE VALVE

PLUG GATE VALVE

PLUG GATE VALVE This valve has a round tapered disc which moves up and down. Suitable for throttling and full-flow use, but only available in the smaller sizes.

PLUG VALVE Mechanism is shown in chart 3.1, but the disc may be cylindric as well as tapered. Advantages are compactness, and rotary 90-degree stem movement. The tapered plug tends to jam and requires a high operating torque: this is overcome to some extent by the use of a low-friction (teflon, etc.) seat, or by lubrication (with the drawback that the conveyed fluid is contaminated). The friction problem is also met by mechanisms raising the disc from the seat before rotating it, or by using the 'eccentric' design (see rotary-ball valve). Principal uses are for water, oils, slurries, and gases.

LINE-BLIND VALVE This is a positive shutoff device which basically consists of a flanged assembly sandwiching a spectacle-plate or blind. This valve is described and compared with other closures in 2.7.1.

VALVES MAINLY FOR REGULATING SERVICE

3.1.5

GLOBE VALVE, STRAIGHT & ANGLE TYPE These are the valves most used for regulating. For line sizes over 6-inch, choice of a valve for flow control tends to go to suitable gate or butterfly valves. For more satisfactory service, the direction of flow thru valve recommended by manufacturers is from stem to seat, to assist closure and to prevent the disc chattering against the seat in the throttling position. Flow should be from seat to stemside (1) if there is a hazard presented by the disc detaching from the stem thus closing the valve, or (2) if a composition disc is used, as this direction of flow then gives less wear.

3.2

ANGLE VALVE This is a globe valve with body ends at right angles, saving the use of a 90-degree elbow. However, the angles of piping are often subject to higher stresses than straight runs, which must be considered with this type of valve.

GLOBE VALVES

REGULAR-DISC GLOBE VALVE Unsuitable for close regulation as disc and seat have narrow (almost line) contact.

PLUG-TYPE DISC GLOBE VALVE Used for severe regulating service with gritty liquids, such as boiler feedwater, and for blow-off service. Less subject to wear under close regulation than the regular-seated valve.

WYE-BODY GLOBE VALVE has in-line ports and stem emerging at about 45 degrees; hence the 'Y'. Preferred for erosive fluids due to smoother flow pattern.

WYE-BODY GLOBE VALVE (Incorporating composition disc)

COMPOSITION-DISC GLOBE VALVE Suitable for coarse regulation and tight shutoff. Replaceable composition-disc construction is similar to that of a faucet. Grit will imbed in the soft disc preventing seat damage and ensuring good closure. Close regulating will rapidly damage the seat.

DOUBLE-DISC GLOBE VALVE features two discs bearing on separate seats spaced apart on a single shaft, which frees the operator from stresses set up by the conveyed fluid pressing into the valve. Principle is used on control valves and pressure regulators for steam and other gases. Tight shutoff is not ensured.

NEEDLE VALVE is a small valve used for flow control and for dosing liquids and gases. Resistance to flow is precisely controlled by a relatively large seat area and the adjustment afforded by fine threading of the stem.

NEEDLE VALVE

SQUEEZE VALVE is well-suited to regulating the flow of difficult liquids, slurries and powders. Maximum closure is about 80%, which limits the range of regulation, unless the variation of this type of valve with a central core (seat) is used, offering full closure.

PINCH VALVE Also suited to regulating flow of difficult liquids, slurries and powders. Complete closure is possible but tends to rapidly wear the flexible tube, unless of special design.

3.1.6

VALVES FOR BOTH REGULATING & ON/OFF SERVICE

ROTARY-BALL VALVE Advantages are low operating torque, availability in large sizes, compactness, rotary 90-degree stem movement, and 'in-line' replaceability of all wearing parts in some designs. Possible disadvantages are that fluid is trapped within the body (and within the disc on closure), and that compensation for wear is effected only by resilient material behind the seats: the latter problem is avoided in the single-seat 'eccentric' version, which has the ball slightly offset so that it presses into the seat, on closure. Principal uses are for water, oils, slurries, gases and vacuum. Valve is available with a ball having a shaped port for regulation.

ROTARY-BALL VALVE

BUTTERFLY VALVE offers the advantages of rotary stem movement (90 degrees or less), compactness, and absence of pocketing. It is available in all sizes, and can be produced in chemical-resistant and hygienic forms. The valves are used for gases, liquids, slurries, powders and vacuum. The usual resilient plastic seat has a temperature limitation, but tight closure at high temperatures is available with a version having a metal ring seal around the disc. If the valve is flanged, it may be held between flanges of any type. Slip-on and screwed flanges do not form a proper seal with some wafer forms of the valve, in which the resilient seat is extended to serve also as line gaskets.

BUTTERFLY VALVE (Wafer type)

VALVES FOR CHECKING BACKFLOW

3.1.7

All valves in this category are designed to permit flow of liquid or gas in one direction and close if flow reverses.

SWING CHECK VALVE The regular swing check valve is not suitable if there is frequent flow reversal as pounding and wearing of disc occurs. For gritty liquids a composition disc is advisable to reduce damage to the seat. May be mounted vertically with flow upward, or horizontally. Vertically-mounted valve has a tendency to remain open if the stream velocity changes slowly. An optional lever and outside weight may be offered either to assist closing or to counterbalance the disc in part, and allow opening by low-pressure fluid.

SWING CHECK VALVES

Outside Lever & Weight for swing check valve

TILTING-DISC VALVE Suitable where frequent flow reversal occurs. Valve closes rapidly with better closure and less slamming than the swing check valve, which it somewhat resembles. It has higher pressure drop with large

flow velocities and lower-pressure drop with small velocities than a comparable swing-check valve. May be installed vertically with flow upward, or horizontally. Disc movement can be controlled by an integral dashpot or snubber.

LIFT-CHECK VALVE resembles the piston-check valve. The disc is guided, but the dashpot feature is absent. Spring-loaded types can operate at any orientation, but unsprung valves have to be arranged so that the disc will close by gravity. Composition-disc valves are available for gritty liquids.

PISTON-CHECK VALVE Suitable where frequent change of direction of flow occurs as these valves are much less subject to pounding with pulsating flow due to the integral dash-pot. Spring-loaded types can operate at any orientation. Unsprung valves have to be orientated for gravity closure. Not suitable for gritty liquids.

STOP CHECK VALVE

PISTON-CHECK VALVE

STOP-CHECK VALVE Principal example of use is in steam generation by multiple boilers, where a valve is inserted between each boiler and the main steam header. Basically, a check valve that optionally can be kept closed automatically or manually.

BALL-CHECK VALVE is suitable for most services. The valve can handle gases, vapors and liquids, including those forming gummy deposits. The ball seats by gravity and/or back pressure, and is free to rotate, which distributes wear and aids in keeping contacting surfaces clean.

WAFER CHECK VALVE effects closure by two semicircular 'doors', both hinged to a central post in a ring-shaped body which is installed between flanges. Frequently used for non-fouling liquids, as it is compact and of relatively low cost. A single disc type is also available.

FOOT VALVE Typical use is to maintain a head of water on the suction side of a sump pump. The valve is basically a lift-check valve with a strainer integrated.

3.1.8

MULTIPORT VALVE Used largely on hydraulic and pneumatic control circuits and sometimes used directly in process piping, these valves have rotary-ball or plug-type discs with one or more ports arranged to switch flow.

DIVERTING VALVE Two types of 'diverting' valve are made. Both switch flow from a line into one of two outlets. One type is of wye pattern with a hinged disc at the junction which closes one of the two outlets, and is used to handle powders and other solids. The second type handles liquid only, and has no moving parts—flow is switched by two pneumatic control lines. It is available in sizes to 6-inch.

VALVES FOR DISCHARGING

3.1.9

These valves allow removal of fluid from within a piping system either to atmosphere, to a drain, or to another piping system or vessel at a lower pressure. Operation is often automatic. Relief and safety valves, steam traps, and rupture discs are included in this section. Pressure-relieving valves are usually spring loaded, as those worked by lever and weight can be easily rendered inoperative by personnel. The first three valves are operated by system pressure, and are usually mounted directly onto the piping or vessel to be protected, in a vertical, upright position. Refer to the governing code for the application of these valves, including the need for an external lifting device (handlever, etc.).

SAFETY VALVE A rapid-opening (popping action) full-flow valve for air and other gases.

RELIEF VALVE Intended to relieve excess pressure in liquids, in situations where full-flow discharge is not required, when release of a small volume of liquid would rapidly lower pressure. Mounting is shown in figure 6.4.

SAFETY VALVE

RELIEF VALVE

SAFETY-RELIEF VALVE Relieves excess pressure of either gas or liquid which may suddenly develop a vapor phase due to rapid and uncontrolled heating from chemical reaction in liquid-laden vessels. Refer to figure 6.4.

BALL FLOAT VALVE These automatic valves are used: (1) As air traps to remove water from air systems. (2) To remove air from liquid systems and act as vacuum breakers or breather valves. (3) To control liquid level in tanks. They are not intended to remove condensate.

BALL FLOAT VALVE (For first use above)

BLOWOFF VALVE

BLOWOFF VALVE A variety of globe valve conforming with boiler code requirements and especially designed for boiler blowoff service. Sometimes suitable also for blowdown service. Wye-pattern and angle types often used. Used to remove air and other gases from boilers, etc. Manually-operated.

FLUSH-BOTTOM TANK VALVE Usually a globe type, designed to minimize pocketing, primarily for conveniently discharging liquid from the low point of a tank.

FLUSH-BOTTOM TANK VALVE (GLOBE TYPE)

RUPTURE DISC A safety device designed to burst at a certain excess pressure and rapidly discharge gas or liquid from a system. Usually made in the form of a replaceable metal disc held between flanges. Oisc may also be of graphite or, for lowest bursting pressures, plastic film.

SAMPLING VALVE A valve, usually of needle or globe pattern, placed in a branch line for the purpose of drawing off samples of process material thru the branch. Sampling from very high pressure lines is best done thru a double valved collecting vessel. A cooling arrangement may be needed for sampling from high-temperature lines.

INVERTED-BUCKET TRAP

CONTROL VALVES & PRESSURE REGULATORS

3.1.10

CONTROL VALVES

Control valves automatically regulate pressure and/or flow rate, and are available for any pressure. If different plant systems operate up to, and at pressure/ temperature combinations that require Class 300 valves, sometimes (where the design permits), all control valves chosen will be Class 300 for interchangeability. However, if none of the systems exceeds the ratings for Class 150 valves, this is not necessary. The control valve is usually chosen to be smaller than line size to avoid throttling and consequent rapid wear of the seat.

Globe-pattern valves are normally used for control, and their ends are usually flanged for ease of maintenance. The disc is moved by a hydraulic, pneumatic, electrical, or mechanical operator.

Figure 3.4 shows schematically how a control valve can be used to control rate of flow in a line. Flow rate is related to the pressure drop across the 'sensing element' (an orifice plate in this instance—see 6.7.5). The 'controller' receives the pressure signals, compares them with the pressure drop for the desired flow and, if the actual flow is different, adjusts the control valve to increase or decrease the flow.

Comparable arrangements to figure 3.4 can be devised to control any of numerous process variables—temperature, pressure, level and flow rate are the most common controlled variables.

Control valves may be self-operating, and not require the addition of a controller, sensing element, etc. Pressure regulators are a common example of this type of valve, and chart 3.1 shows the principles of operation of a pressure regulator.

PRESSURE REGULATOR Control valve of globe type which adjusts downstream pressure of liquid or gas (including steam or vapors) to a lower desired value ('set pressure').

BACK-PRESSURE REGULATOR Control valve used to maintain upstream pressure in a system.

UNCLASSIFIED VALVES & TERMS

3.1.11

With few exceptions, the following are not special valve types different from those previously discussed, but are terms used to describe valves by service or function.

BARSTOCK VALVE Any valve having a body machined from solid metal (barstock). Usually needle or globe type.

BIBB A small valve with turned-down end, like a faucet.

BLEED VALVE Small valve provided for drawing off fluid.

BLOCK VALVE An on/off valve, nearly always a gate valve, placed in lines at battery limits.

BLOWDOWN VALVE Usually refers to a plug-type disc globe valve used for removing sludge and sedimentary matter from, the bottom of boiler drums, vessels, driplegs, etc.

BREATHER VALVE A special self-acting valve installed on storage tanks, etc., to release vapor or gas on slight increase of internal pressure (in the region of ½ to 3 ounces per square inch).

BYPASS VALVE Any valve placed in a bypass arranged around another valve or equipment—see 6.1.3 under 'If there is no P&ID....' and figures 6.6 thru 6.11.

DIAPHRAGM VALVE Examples of true diaphragm valves, where the diaphragm closes off the flow, are shown in chart 3.1. These forms of diaphragm valve are popular for regulating the flow of slurries and corrosive fluids and for vacuum. The term 'diaphragm valve' is also applied to valves which have a diaphragm seal between stem and body, but these are better referred to as 'diaphragm seal' or 'packless' valves—see 3.1.2, under 'Seal'.

DRAIN VALVE A valve used for the purpose of draining liquids from a line or vessel. Selection of a drain valve, and the method of attachment, is influenced by the undesirability of pocketing the material being drained—this is important with slurries and liquids which are subject to: (1) Solidification on cooling or polymerization. (2) Decomposition.

DRIP VALVE A drain valve fitted to the bottom of a dripleg to permit blowdown.

FIGURE 3.4 **HEADER VALVE** An isolating valve installed in a branch where it joins a header.

HOSE VALVE A gate or globe valve having one of its ends externally threaded to one of the hose thread standards in use in the USA. These valves are used for vehicular and firewater connections.

ISOLATING VALVE An on/off valve isolating a piece of equipment or a process from piping.

KNIFE-EDGE VALVE A single-disc single-seat gate valve (slide gate) with a knife-edged disc.

MIXING VALVE regulates the proportions of two inflows to produce a controlled outflow.

NON-RETURN VALVE Any type of stop-check valve—see 3.1.7.

PAPER-STOCK VALVE A single-disc single-seat gate valve (slide gate) with knife-edged or notched disc used to regulate flow of paper slurry or other fibrous slurry.

PRIMARY VALVE See 'Root valve', this section.

REGULATING VALVE Any valve used to adjust flow.

ROOT VALVE (1) A valve used to isolate a pressure element or instrument from a line or vessel. (2) A valve placed at the beginning of a branch from a header.

SAMPLING VALVE Small valve provided for drawing off fluid. See 3.1.9.

SHUTOFF VALVE An on/off valve placed in lines to or from equipment, for the purpose of stopping and starting flow.

SLURRY VALVE A knife-edge valve used to control flow of non-abrasive clurries

SPIRAL-SOCK VALVE A valve used to control flow of powders by means of a twistable fabric tube or sock.

STOP VALVE An on/off valve, usually a globe valve.

THROTTLING VALVE Any valve used to closely regulate flow in the just-open position.

VACUUM BREAKER A special self-acting valve, or any valve suitable for vacuum service, operated manually or automatically, installed to admit gas (usually atmospheric air) into a vacuum or low-pressure space. Such valves are installed on high points of piping or vessels to permit draining, and sometimes to prevent siphoning.

UNLOADING VALVE See 3.2.2, under 'Unloading', and figure 6.23.

QUICK-ACTING VALVE Any on/off valve rapidly operable, either by manual lever, spring, or by piston, solenoid or lever with heat-fusible link releasing a weight which in falling operates the valve. Quick-acting valves are desirable in lines conveying flammable liquids. Unsuitable for water or for liquid service in general without a cushioning device (hydraulic accumulator, 'pulsation pot' or 'standpipe') to protect piping from shock. See 3.1.2, under 'Quick-acting operators for non-rotary valves'.

PUMPS & COMPRESSORS

3.2

PUMPS

3.2.1

DRIVERS

Electric motors are the most frequently used drivers. Larger pumps may be driven by steam-, gas-, or diesel-engines, or by turbines.

'HEADS' (PRESSURES) IN PUMP PIPING

FIGURE 3.5

NOTES

The total head, H, which must be provided by the pump in the arrangement shown, is:-

$$H = h_{d} - h_{s} = H_{st} + (h_{fd} + h_{fs}) + (P_{d} - P_{s})$$

Heads may be expressed either all in absolute units or all in gage units, but not in mixed units. The various head terms in this equation are, with reference to the illustration:—

h_d = total discharge head

h_s = total suction head

 H_{st} = static head (differential) = D - S

h_{id} = friction head loss in discharge piping, including exit loss (as liquid discharges into vessel, etc.) and loss at increaser located at pump outlet*

h_{fs} = friction head loss in suction piping, including entrance loss (as liquid enters line from header, etc.) and loss at reducer located at pump inlet*

Pd = pressure head above liquid level in discharge vessel or header

 $P_{\rm s}$ = pressure head above liquid level in suction header or vessel

NET POSITIVE SUCTION HEAD (NPSH)

'NPSH' is defined by:- $S - h_{fs} + P_s - P_{vp}$, where

P_{Vp} = vapor pressure of liquid at temperature of liquid at suction header, etc. Vapor pressures are given in absolute units

^{*}Table F-10 gives entrance loss, exit loss, flow resistance of reducers and swages, etc., expressed in equivalent lengths of pipe.

PUMP SELECTION GUIDE

CHART 3.3

BEHRENS SCREW TRIPLE SCREW	PISTON SWASH-PLATE, RADIAL, RAM	DIAPHRAGM	MOYNO 'SINGLE SCREW'	PERISTALTIC
	RADIAL,	A	'SINGLE SCREW'	
		T		
				T
ANT ORIVE SPEEO	PULSATING UNDER	R ALL CONDITIONS	UNIFORM	NEARLY UNIFORM
LOW TO HIGH MEO(UM	LOW TO HIGH	LOW TO HIGH	LOW TO MEDIUM	LOW
• •	•	•	•	•
• •	•	•	•	•
• •	•	•	•	•
× ×	×	•	•	•
• •	•	•	•	•
•	×	×	•	•
• ×	×	×	•	×
×	×	×	•	×
	LOW TO HIGH ME O/UMS	LOW TO HIGH ME OIUM LOW TO HIGH	LOW TO HIGH MEONUM LOW TO HIGH LOW TO HIGH X X X X X X X X X X	LOW TO HIGH LOW TO HIGH LOW TO HIGH LOW TO MEDIUM X X X X X X X X X X

TYPES OF PUMP

A pump is a device for moving a fluid from one place to another thru pipes or channels. Chart 3.3, a selection guide for pumps, puts various types of pump used industrially into five catagories, based on operating principle. In common reference, the terms centrifugal, rotary, screw, and reciprocating are used. Chart 3.3 is not comprehensive: pumps utilizing other principles are in use. About nine out of ten pumps used in industry are of the centrifugal type.

The following information is given to enable an estimate to be made of required total head, pump size, capacity, and horsepower for planning purposes. Data in the Guide permit estimating pump requirements for water systems.

PUMP 'TOTAL HEAD'

A pump imparts energy to the pumped liquid. This energy is able to raise the liquid to a height, or 'head'. The 'total head' of a pump (in ft) is the energy (in ft-lb) imparted by the pump to each pound of liquid. In piped systems, part of the total head is used to overcome friction in the piping, which results in a pressure drop (or 'headloss').

For a centrifugal pump, the same total head can be imparted to all liquids of comparable viscosity, and is independent of the liquid's density: the required driving power increases with density. Figure 3.3 relates the total head provided by the pump to the headlosses in the pumped system.

PRESSURE & 'HEAD'

In US customary units, pressure (ρ) in PSI is related to head (h) in ft: ρ [PSI] = (d)(h)/(144) = (S.G.)(h)/(2.31), where d is liquid density in lb/ft³, and S.G. is specific gravity. Atmospheric pressure at sea level is equal to 14.7 PSIA, the pressure generated by a 34-ft height of water.

VELOCITY HEAD

Usually the liquid being pumped is stationary before entering the suction piping, and some power is absorbed in accelerating it to the suction line velocity. This causes a small 'velocity head' loss (usually about 1 ft) and may be found from table 3.2, which is applicable to liquid of any density, if the velocity head is read as feet of the liquid concerned.

VELOCITY & VELOCITY HEAD

TABLE 3.2

VELOCITY (Ft/sec)	4	5	6	7	8	9	10	12	15
VELOCITY HEAD (Ft)	0.25	0.39	0.56	0.76	0.99	1.26	1.55	2.24	3.50

Flow rate, liquid velocity and cross-sectional area (at right angles to flow) are related by the formulas:

Flow rate in cubic feet per second = (v)(a)/(144)Flow rate in US gallons per minute = (3.1169)(v)(a)

where: ν = liquid velocity in feet per second

a = cross-sectional area in square inches (table P-1)

POWER CALCULATIONS

If S.G. = specific gravity of the pumped liquid, H = total head in feet of the pumped liquid, and ρ = pressure drop in PSI, then:

Hydraulic horsepower =
$$\frac{(GPM)(H)(S.G.)}{3960} = \frac{(GPM)(p)}{1714}$$

3.3

.1.11 .2.1

FIGURE 3.5

TABLE

The mechanical efficiency, *e*, of a pump is defined as the hydraulic horse-power (power transferred to the pumped liquid) divided by the brake horse-power (power applied to the driving shaft of the pump).

If the pump is driven by an electric motor which has a mechanical efficiency $e_{\rm m}$, the electricity demand is:

Kilowatt (KW) =
$$\frac{(GPM)(H)(S.G.)}{(5310)(e)(e_m)} = \frac{(GPM)(p)}{(2299)(e)(e_m)}$$

Often, estimates of brake horsepower, electricity demand, etc., must be made without proper knowledge of the efficiencies. To obtain estimates, the mechanical efficiency of a centrifugal pump may be assumed to be 60%, and that of an electric motor 80%.

COMPRESSORS, BLOWERS & FANS

3.2.2

REFERENCES

'Compressed air and gas data'. Editor Gibbs C.W. (Ingersoll-Rand)
'Air receivers'. Section 1910.169 of the Code of Federal Regulations; CFR
Occupational Safety and Health Administration (OSHA)

Compressors are used to supply high-pressure air for plant use, to pressurize refrigerant vapors for cooling systems, to liquefy gases, etc. They are rated by their maximum output pressure and the number of cubic feet per minute of a gas handled at a specified speed or power, stated at 'standard conditions', 60 F and 14.7 PSIA (not at compressed volume). 60 F is accepted as standard temperature by the gas industry.

The term 'compressor' is usually reserved for machines developing high pressures in closed systems, and the terms 'blower' and 'fan' for machines working at low pressures in open-ended systems.

COMPRESSOR PRESSURE RANGES

TABLE 3.3

MACHINE	DISCHARGE PRESSURE RANGE
COMPRESSOR	15 thru 20,000 PSIG, and higher
BLOWER	1 thru 15 PSIG
FAN	Up to 1 PSIG (about 30 in, water)

COMPRESSING IN STAGES

Gases (including air) can be compressed in one or more operations termed 'stages'. Each stage can handle a practicable increase in pressure—before temperature increase due to the compression necessitates cooling the gas. Cooling between stages is effected by passing the gas thru an intercooler. Staging permits high pressures, and lower discharge temperatures, with reduced stresses on the compressor.

TYPES OF COMPRESSOR

RECIPROCATING COMPRESSOR Air or other gas is pressurized in cylinders by reciprocating pistons. If the compressor is lubricated, the outflow may be contaminated by oil. If an oil-free outflow is required, the pistons may be fitted with graphite or teflon piston rings. Flow is pulsating.

ROTARY SCREW COMPRESSOR Air or other gas enters pockets formed between mating rotors and a casing wall. The pockets rotate away from the inlet, taking the gas toward the discharge end. The rotors do not touch each other or the casing wall. Outflow is uncontaminated in the 'dry type' of machine, in which power is applied to both rotors thru external timing gears. In the 'wet type', power is applied to one rotor, and both rotors are separated by an oil film, which contaminates the discharge. Flow is uniform.

ROTARY VANE COMPRESSOR resembles the rotary vane pump shown in chart 3.3. Variation in the volume enclosed by adjacent vanes as they rotate produces compression. Ample lubrication is required, which may introduce contamination. Flow is uniform.

ROTARY LOBE COMPRESSOR consists of two synchronized lobed rotors turning within a casing, in the same way as the pump shown in chart 3.3 (under 'spurgear' type). The rotors do not touch each other or the casing. No lubrication is used within the casing, and the outflow is not contaminated. Flow is uniform. This machine is often referred to as a 'blower'.

DYNAMIC COMPRESSORS resemble gas turbines acting in reverse. Both axial-flow machines and centrifugal machines (with radial flow) are available. Centrifugal compressors commonly have either one or two stages. Axial compressors have at least two stages, but seldom more than 16 stages. The outflow is not contaminated. Flow is uniform.

LIQUID RING COMPRESSOR This type of compressor consists of a single multi-bladed rotor which turns within a casing of approximately elliptic cross section. A controlled volume of liquid in the casing is thrown to the casing wall with rotation of the vanes. This liquid serves both to compress and to seal. Inlet and outlet ports located in the hub communicate with the pockets formed between the vanes and the liquid ring. These compressors have special advantages: wet gases and liquid carryover including hydrocarbons which are troublesome with other compressors are easily handled. Additional cooling is seldom required. Condensible vapor can be recovered by using liquid similar to that in the ring. Flow is uniform.

EQUIPMENT FOR COMPRESSORS

INTERCOOLER A heat exchanger used for cooling compressed gas between stages. Air must not be cooled below the dew point (at the higher pressure) as moisture will interfere with lubrication and cause wear in the next stage.

AFTERCOOLER A heat exchanger used for cooling gas after compression is completed. If air is being compressed, chilling permits removal of much of the moisture.

DAMPENER or SNUBBER; VOLUME BOTTLE or SURGE DRUM Reciprocating compressors create pulsations in the air or gas which may cause the

The location of the following four items of equipment is shown in figure 6.23:

SEPARATOR (normally used only with air compressors) A water separator is often provided following the aftercooler, and, sometimes, also at the intake to a compressor having a long suction line, if water is likely to collect in the line. Each separator is provided with a drain to allow continuous removal of water.

RECEIVER Refer to 'Discharge (supply) lines' and 'Storing compressed air', this section.

SILENCER is used to suppress objectionable sound which may radiate from an air intake.

FILTER is provided in the suction line to an air compressor to collect particulate matter.

The following information is given as a guide for engineering purposes

LINE SIZES FOR AIR SUCTION & DISTRIBUTION

SUCTION LINE Suction lines and manifolds should be large enough to prevent excessive noise and starvation of the air supply. If the first compression stage is reciprocating, the suction line should allow a 10 to 23 ft/sec flow: if a single-stage reciprocating compressor is used, the intake flow should not be faster than 20 ft/sec. Dynamic compressors can operate with faster intake velocities, but 40 ft/sec is suggested as a maximum. The inlet reducer for a dynamic compressor should be placed close to the inlet nozzle.

DISCHARGE (SUPPLY) LINES are sized for 150 to 175% of average flow, depending on the number of outlets in use at any time. The pressure loss in a branch should be limited to 3 PSI. The pressure drop in a hose should not exceed 5 PSI. The pressure drop in distribution piping, from the compressor to the most remote part of the system, should not be greater than 5 PSI (not including hoses).

These suggested pressure drops may be used to select line sizes with the aid of table 3.5. From the required SCFM flow in the line to be sized, find the next higher flow in the table. Multiply the allowed pressure drop (PSI) in the line by 100 and divide by the length of the line in feet to obtain the PSI drop per 100 ft—find the next lower figure to this in the table, and read required line size.

Equipment drawing air at a high rate for a short period is best served by a receiver close to the point of maximum use—lines can then be sized on average demand. A minimum receiver size of double the SCF used in intermittent demand should limit the pressure drop at the end of the period of use to about 20% in the worst instances and keep it under 10% in most others.

COMPRESSOR CHARACTERISTICS

TABLE 3.4

3 .2.1 .2.2

COMPRESSOR TYPE	MAXIMUM OUTPUT PRESSURE	CONTAM- INANT IN	INFLOW (CFM/HP)	ECONOMIC RANGE (Inflow CFM)		
	(PSIG)	OUTPUT	OATA FOR 100 PSIG OUTFLOW			
RECIPROCATING Lubicated Non-lubricated	35,000 700	OIL NONE	4 to 7	10,000		
DYNAMIC Centrifugal Axial	4,000 90	NONE NONE	4 4½	500 to 110,000 5,000 to 13,000,000		
ROTARY VANE	125	OIL	4	150 to 6,000		
ROTARY LOBE	30	NONE		50,000		
ROTARY SCREW	125	NONE/ OIL	4	30 to 150		
LIQUID RING	75*	WATER or other	1.6 to 2.2	20 to 5,000		

^{*}Figure applies to a two-stage machine

FLOW OF COMPRESSED AIR:
PRESSURE DROPS OVER 100 Ft PIPE,
WITH AIR ENTERING AT 100 PSIG*
(Adapted from data published by Ingersoll-Rand)

TABLE 3.5

FREE AIR INFLOW	NOMINAL PIPE SIZE (INCHES) — SCHEDULE 40 PIPE								
(SCFM)	3/4	1	1½	2	21/2	3	4	6	
40	1.24	0.37							
70	3.77	1.05	0.12		Pressure	drop sm	aller than	,	
90	6.00	1.69	0.19	19 than 0.1 PSI per 100 ft					
100	7.53	2.09	0.24						
400		32.2	3.59	0.98	0.41	0.13			
700	l		10.8	2.92	1.19	0.38	0.10		
900			17.9	4.78	1.97	0.62	0.15		
1,000			22.0	5.90	2.43	0.76	0.19		
4,000]					11.9	2.90	0.35	
7,000							8.77	1.06	
9,000	than 35 PSI per 100 ft					1.75			
10,000						2.13			
40,000								33.8	

^{*}Pressure drop varies inversely as absolute pressure of entering air.

POWER CONSUMPTION

The power consumption of the different compressor types is characteristic. Table 3.4 gives the horsepower needed at an output pressure of 100 PSIG. Power consumption per CFM rises with rising output pressure. Air cooling adds 3-5% to power consumption (including fan drive). 'FAD' power consumption figures for compressors of 'average' power consumption are given. 'FAD' denotes 'free air delivered corresponding to standard cubic ft per minute (SCFM) or liters per minute measured as set out in ASME PTC9, BS 1571 or DIN 1945.'

SPECIFIC POWER CONSUMPTION (FAD)

PSIG	50	75	100	125	
HP per 100 CFM INFLOW	SINGLE-STAGE	14	18	22	24
	TWO-STAGE	13	16	18	21

COOLING-WATER REQUIREMENTS

Cooling-water demand is normally shown on the vendor's P&ID or data sheet. Most of the water demand is for the aftercooler (and intercooler, with a two-stage compressor). Jackets and lube oil may also require cooling. As a guide, 8 US gallons per hour are needed for each horsepower supplied to the compressor. If the final compression is 100 PSIG, the water demand will usually be about 2 US GPH per each SCFM inflow. These approximate demands are based on an 40 F temperature increase of the cooling water. Demand for cooling water increases slightly with relative humidity of the incoming air.

QUANTITIES OF MOISTURE CONDENSED FROM COMPRESSED AIR

The following calculation (taken from the referenced Atlas Copco manual) is for a two-stage compressor, and is based on moisture content given in the table below:

OATA:

Capacity of the compressor = 2225 SCFM

Temperature of the incoming air = 86 F

Relative humidity of the incoming air = 75%

Outlet temperature = 86 F

Air pressure = 25.3 PSIG, or 40 PSIA

Water separation efficiency = 80%

Outlet air temperature = 86 F

Air pressure = 100 PSIG, or 115 PSIA

Water separation efficiency = 90%

CALCULATIONS:

- (1) From the table, weight of water vapor in 2225 SCFM air at 86 F and 75% RH = (0.00189)(2225)(0.75) = 3.15 lb/min.
- (2) Rate of removal of condensed water from intercooler, thru trap = (0.8) [3.15 (0.00189)(2225)(14.7)/(40)] = 1.28 lb/min., or (1.28)(60)/(8.33) = 9.2 US GPH
- (3) Rate of removal of condensed water from aftercooler, thru trap = (0.9)[3.15 1.28 (0.00189)(2225)(14.7)/(115)] = 1.20 lb/min., or (1.20)(60)/(8.33) = 8.6 US GPH
- (4) Total rate at which water is removed from both coolers = 9.2 + 8.6 = 17.8 US GPH

MOISTURE CONTENT OF AIR AT 100% RH

TEMPERATURE (Oegrees F)	14	32	50	68	86	104	122
MOISTURE (10 ⁻⁴ lb/ft ³)	1.35	3.02	5.87	10.9	18.9	31.6	51.3

UNLOADING (POSITIVE-DISPLACEMENT COMPRESSORS)

'Unloading' is the removal of the compression load from the running compressor. Compressors are unloaded at startup and for short periods when demand for gas falls off. Damage to the compressor's drive motor can result if full compression duties are applied suddenly.

If the vendor does not provide means of unloading the compressor, a manual or automatic bypass line should be provided between suction and discharge (on the compressor's side of any isolating valves)—see figure 6.23.

Provision should be made so that the discharge pressure cannot rise above a value which would damage the compressor or its driver. Automatic unloading will ensure this, and the control actions are listed in table 3.6.

AUTOMATIC UNLOADING ACTIONS FOR COMPRESSORS

TABLE 3.6

COMPRESSOR	OISCHARGE Pressure	AUTOMATIC CONTROL ACTION		
Not running	Low-reaches lower set value	Starts compressor unloaded, accelerates to normal speed, and brings on load		
Running High-reaches higher set value		Unloads compressor for a preset period		
	Low-reaches reload pressure before idling period is over	Reloads compressor		
Idling	Medium—idling period ends before reload pressure is reached	Switches off compressor		

STORING COMPRESSED AIR

A limited amount of compressed air or other gas can be stored in receivers. One or more receivers provided in the compressor's discharge piping also serve to suppress surges (which can be due to demand, as well as supply) to assist cooling, and to collect moisture. Receivers storing air or other gas are classed as pressure vessels—refer to 6.5.1.

RECEIVER CONSTRUCTION Usual construction is a long vertical cylinder with dished heads, supported on a pad. Water will collect in the base, and therefor a valved drain must be provided for manual blowdown. Collected water may freeze in cold climates. Feeding the warm air or gas at the base of the receiver may prevent freezing, but the inlet must be designed so that it cannot be closed by water if it does freeze.

capacity Needed A simple rule to decide the total receiver volume is to divide the compressor rating in SCFM by ten to get the volume in cubic feet for the receiver. For example, if the compressor is designed to take 5500 cubic feet per minute, a receiver volume of about 550 cubic feet is adequate. This rule is considered suitable for outflow pressures up to about 125 PSIG and where the continuously running compressor is unloaded by automatic valves—see 'Unloading' above. An extensive piping system for distributing compressed air or other gas may have a capacity sufficiently large in itself to serve as a receiver.

Process equipment is a term used to cover the many types of equipment used to perform one or more of these basic operations on the process material:

- 1) CHEMICAL REACTION
- (2) MIXING
- (3) SEPARATION
- (4) CHANGE OF PARTICLE SIZE
- (5) HEAT TRANSFER

Equipment manufacturers give all information necessary for installation and piping.

This section is a quick reference to the function of some items of equipment used in process work. In table 3.7, the function of the equipment is expressed in terms of the phase (solid, liquid or gas) of the process materials mixed. Examples: (1) A blender can mix two powders, and its function is tabulated as "S+S". (2) An agitator can be used to stir a liquid into another liquid—this function is tabulated "L+L". Another large and varied group of equipment achieves separations, and a similar method of tabulating function is used in table 3.8.

CHEMICAL REACTION

3.3.1

Chemical reactions are carried out in a wide variety of specialized equipment, termed reactors, autoclaves, furnaces, etc. Reactions involving liquids, suspensions, and sometimes gases, are often performed in 'reaction vessels'. The vessel and its contents frequently have to be heated or cooled, and piping to a jacket or internal system of coils has to be arranged. If reaction takes place under pressure, the vessel may need to comply with the ASME Boiler and Pressure Vessel Code. Refer also to 6.5.1, under 'Pressure vessels', and to the standards listed in table 7.10.

MIXING 3.3.2

A variety of equipment is made for mixing operations. The principal types of equipment are listed in table 3.7:

MIXING EQUIPMENT

TABLE 3.7

EOUIPMENT	PHASES MIXED			
AGITATOR	S + L, L + L			
BLENDER (TUMBLER TYPE)	S + S, S + L			
EDUCTOR	L+L,L+G,G+G			
MIXER (RIBBON, SCROLL, OR OTHER TYPE)	S + S, S + L			
PROPORTIONING PUMP	L+L			
PROPORTIONING VALVE	L+L			
(G = GAS, L = LIQUID, S = SOLID)				

Equipment for separation is even more varied. Equipment separating solids on the basis of particle size or specific gravity alone are in general termed classifiers. The broader range of separation equipment separates phases (solid, liquid, gas) and some of the types used are listed in the table below:

SEPARATION EQUIPMENT

TABLE 3.8

EQUIPMENT	FEED MATERIAL	RETAINED MATERIAL	OUTFLOW MATERIAL	
CENTRIFUGE	S+L	s	L	
CONTINUOUS CENTRIFUGE	L(1) + L(2)	None	L(1), L(2), †	
CYCLONE	S+G	None	G,St	
DEAERATOR	L+G	L	G	
DEFOAMER	L+G	L	G	
DISTILLATION COLUMN	L(1) + L(2)	L(1)	L(2) *	
DRYER	S+L	S	L*	
DRY SCREEN	S(1) + S(2)	S(1)	S(2)	
EVAPORATOR	L + S L(1) + L(2)	L + S L(1)	L * L(2) *	
FILTER PRESS	S+L	s	L	
FLOTATION TANK	S + L	s	L	
FRACTIONATION COLUMN	L(1) + L(2) + L(3) + etc.	None	L(1), L(2), L(3), etc.†	
SCRUBBER	S + G	s	G	
SETTLING TANK	S+L	S	L	
STRIPPER	L(1) + L(2)	L(1)	L(2)	
†Separate flows *Removed as vapor				
(G = GAS, L = LiQUIO, S = SOLIO, S(1), S(2), L(1), L(2), etc. = DIFFERENT SOLIDS OR LIQUIOS)				

CHANGE OF PARTICLE SIZE

3.3.4

Reduction of particle size is a common operation, and can be termed 'attrition'. Equipment used includes crushers, rod-, ball- and hammer-mills, and—to achieve the finest reductions—energy mills, which run on compressed air. Emulsions ('creams' or 'milks'), which are liquid-in-liquid dispersions, are stabilized by homogenizers, typically used on milk to reduce the size of the fat globules and thus prevent cream from separating.

Occasionally, particle or lump size of the product is increased. Equipment for agglomerating, pelletizing, etc., is used. Examples: tablets, sugar cubes, powdered beverage and food products.

PROCESS HEAT TRANSFER

3.3.5

Adding and removing heat is a significant part of chemical processing. Heating or cooling of process material is accomplished with heat exchangers, jacketed vessels, or other heat transfer equipment. The project and piping groups specify the duty and mechanical arrangement, but the detail design is normally left to the manufacturer.

The term 'heat exchanger' in chemical processing refers to an unfired vessel exchanging heat between two fluids which are kept separated. The commonest form of heat exchanger is the 'shell-and-tube' exchanger, consisting of a bundle of tubes held inside a 'shell' (the vessel part). One fluid passes inside the tubes, the other thru the space between the tubes and shell. Exchanged heat has to flow thru the tube walls. Refer to 6.8 ('Keeping process material at the right temperature') and to 6.6 for piping shell-and-tube heat exchangers.

Heat exchange with process material can take place in a variety of other equipment, such as condensers, evaporators, heaters, chillers, etc.

MULTIFUNCTION EQUIPMENT

3.3.6

Sometimes, items of equipment are designed to perform more than one of the functions listed at the beginning of 3.3.

Mixing and heating (or cooling) may be simultaneously carried out in mixers having blades provided with internal channels to carry hot (or cold) fluid.

Separation and attrition may be achieved in a single mill, designed to output particles of the required degree of fineness and recycle and regrind particles which are still too coarse.

ORGANIZATION OF WORK: Job Responsibilities, Drawing-Office Equipment and Procedures

THE PIPING GROUP

4.1

FLUNIOTIONIC

Plant design is divided into several areas, each the responsibility of a 'design group'. Chart 4.1(a) shows the main groups of people cooperating on the plant design, and the types of drawings for which they are responsible. Other groups, involved with instrumentation, stress analysis, pipesupport, etc., contribute to the design at appropriate stages.

The personnel responsible for the piping design may be part of an engineering department's mechanical design group, or they may function as a separate section or department. For simplicity, this design group is referred to as the 'piping group', and its relationship with the organization and basic activities are indicated in chart 4.1(a).

Chart 4.1(c) shows the structure of a design group.

RESPONSIBILITIES OF THE PIPING GROUP

4.1.1

The piping group produces designs in the form of drawings and model(s), showing equipment and piping.

The following are provided by the piping group as its contribution to the plant design:-

- (1) AN EQUIPMENT ARRANGEMENT DRAWING, USUALLY TERMED THE 'PLDT PLAN'
- PIPING DESIGN (DRAWINGS OR MODEL)
- PIPING DETAILS FOR FABRICATION AND CONSTRUCTION
- REQUISITIONS FOR PURCHASE OF PIPING MATERIEL

JOB FUNCTIONS

4.1.2

On joining a design office it is important that the new member should know what line of authority exists. This is especially important when information is required and it saves the wrong people from being interrupted. Chart 4.2 shows two typical lines of authority. (Different companies will have different set-ups and job titles.)

JOB		FUNCTIONS
DESIGN SUPERVISOR	(1)	RESPONSIBLE FOR ALL PERSONNEL IN GROUPS INCLUDING HIRING
oor en vioon	(2)	COORDINATING WITH OTHER GROUPS (AND THE CLIENT)
	(3)	OVERALL PLANNING AND SUPERVISING THE GROUP'S WORK
	(4)	LIAISON WITH PROJECT ENGINEER(S)
GROUP LEADER	(1)	SUPERVISING DESIGN & DRAFTING IN AREA(S) ALLOCATED BY DESIGN SUPERVISOR
NOTE: On small projects, may also assume Design Supervisor's duties	(2)	ASSIGNING WORK TO DESIGNERS & DRAFTERS
	(3)	RESPONSIBLE FOR PLOT PLANS, PLANT OESIGNS & PRESENTATION & COMPLETENESS OF FINISHEO DRAWINGS
	(4)	COORDINATES MECHANICAL, STRUCTURAL, ELECTRICAL, AND CIVIL DETAILS FROM OTHER GROUPS
	(5)	CHECKING & MARKING VENDORS' DRAWINGS
	(6)	OBTAINING INFORMATION FOR MEMBERS OF THE GROUP
	(7)	ESTABLISHING THE NUMBER OF DRAWINGS REQUIREO FOR EACH JOB (DRAWING CONTROL OR REGISTER)—SEE INOEX
	(8)	ASSIGNING TITLES FOR EACH DRAWING AND MAINTAINING UP-TO-OATE ORAWING CONTROL OR REGISTER OF DRAWINGS, CHARTS, GRAPHS, AND SKETCHES FOR EACH CURRENT PROJECT
	(9)	ESTABLISHING A DESIGN GROUP FILING SYSTEM FOR ALL INCOMING & OUTGOING PAPERWORK
	(10)	KEEPING A CURRENT SCHEDULE AND RECORD OF HOURS WORKED
	(11)	REQUISITIONING VIA PURCHASING DEPART- MENT ALL PIPING MATERIALS
CHECKER	(1)	CHECKING DESIGNERS' AND DRAFTERS' OESIGNS AND DETAILS FOR DIMENSIONAL ACCURACY AND CONFORMITY WITH SPECIFICATIONS, P&ID's, VENDORS' DRAWINGS, ETC.
	(2)	IF AGREED WITH THE DESIGNER &/OR GROUP LEADER, MAY MAKE IMPROVEMENTS AND ALTERATIONS TO THE DESIGN

DESIGNER

- PRODUCING STUDIES AND LAYOUTS OF EQUIP-MENT AND PIPING WHICH MUST BE ECONOMIC, SAFE, OPERABLE AND EASILY MAINTAINED
- MAKING ANY NECESSARY ADDITIONAL CALC-ULATIONS FOR THE DESIGN
- SUPERVISING DRAFTERS

DRAFTER

MINIMUM RESPONSIBILITIES ARE:-

- PRODUCING DETAILED DRAWINGS FROM DE-SIGNERS' OR GROUP LEADERS' STUDIES OR SKETCHES
- SECONDARY DESIGN WORK
- FAMILIARIZATION WITH THE RECORDS, FILES, INFORMATION SHEETS AND COMPANY PRAC-TICES RELATING TO THE PROJECT

FROM SUPPLIERS

The following information is required by the piping group:—

	(1)	'JOB SCOPE' DOCUMENT, WHICH DEFINES PROCEDURES TO BE USED IN PREPARING DESIGN SKETCHES AND DIAGRAMS
	(2)	PIPING & INSTRUMENTATION DIAGRAM (P&ID-SEE 5.2.4)
FROM THE	(3)	LIST OF MAJOR EQUIPMENT (EQUIPMENT INDEX), SPECIAL EQUIPMENT AND MATERIALS OF FABRICATION
PROJECT GROUP	(4)	LINE DESIGNATION SHEETS OR TABLES, INCLUDING ASSIGNATION OF LINE NUMBERS-SEE 4.2.3 AND 5.2.5
	(5)	SPECIFICATIONS FOR MATERIALS USED IN PIPING SYSTEMS-SEE 4.2.1
	(6)	SCHEDULE OF COMPLETION DATES (UP- DATED ON FED-BACK INFORMATION)
	(7)	CONTROLS (METHODS OF WORKING,ETC.) TO BE ADOPTED FOR EXPEDITING THE JOB
FROM OTHER GROUPS	(8)	DRAWINGS-SEE 5.2.7

SPECIFICATIONS 4.2.1

VENDORS' PRINTS-SEE 5.2.7

These consist of separate specifications for plant layout, piping materials, supporting, fabrication, insulation, welding, erection, painting and testing. The piping designer is mostly concerned with plant layout and material specifications, which detail the design requirements and materials for pipe, flanges, fittings, valves, etc., to be used for the particular project.

The piping materials specification usually has an index to the various services or processes. The part of the specification dealing with a particular service can be identified from the piping drawing line number or P&ID line number—see 5.2.4 under 'Flow lines'. All piping specifications must be strictly adhered to as they are compiled from information supplied by the project group. Although the fittings, etc., described in the Guide are those most frequently used, they will not necessarily be seen in every piping specification.

On some projects (such as 'revamp' work) where there is no specification, the designer may be responsible for selecting materials and hardware, and it is important to give sufficient information to specify the hardware in all essential details. Non-standard items are often listed by the item number and/or model specification for ordering taken from the catalog of the particular manufacturer.

LIST OF EQUIPMENT, or EQUIPMENT INDEX 4.2.2

This shows, for each item of equipment, the equipment number, equipment title, and status—that is whether the item has been approved, ordered, and whether certified vendor's prints have been received.

These sheets contain tabulated data showing nominal pipe size, material specification, design and operating conditions. Line numbers are assigned in sequence of flow, and a separate sheet is prepared for each conveyed fluid—see 5.2.5.

DRAWING CONTROL (REGISTER)

4.2.4

A drawing number relates the drawing to the project, and may be coded to show such information as project (or 'job') number, area of plant, and originating group (which may be indicated 'M' for mechanical, etc.). Figure 5.15 shows a number identifying part of a piping system.

The drawing control shows the drawing number, title, and progress toward completion. The status of revision and issues is shown—see 5.4.3. The drawing control is kept up-to-date by the group leader.

DESIGN GROUP-TWO TYPICAL LINES OF AUTHORITY

CHART 4,2

CHARTS 4.1 & 4.2 4.3

4.4

There are two types of drawings to file—those produced by the group and those received by the group. The former are filed in numerical order under plant or unit number in the drawing office on a 'stick file' or in a drawer—see 4.4.10. The filing of the latter, 'foreign', prints is often poorly done, causing time to be wasted and information to be lost. These prints are commonly filed by equipment index number, placing all information connected with that item of equipment in the one file.

A suggested method for filing these incoming prints is illustrated in chart 4.3, which cross-references process, function, or area with the group originating the drawing, and with associated vessels, equipment, etc. All correspondence between the project and design groups, client, vendors, and field would be filed under 'zero', as shown.

MATERIALS & TOOLS FOR THE DRAFTING ROOM

PAPER 4.4.1

Vellum paper and mylar film are used for drawings. Drawing sheets must be translucent to the light used in copying machines. Mylar with a coated drawing surface is more expensive than vellum, but is preferable where durability and dimensional stability are important. Sheets can be supplied printed with border and title block and with a 'fade-out' ruled grid on the reverse side. 'Isometric' sheets with fade-out 30-degree grid are available for drawing isos.

ANSI 14.1 defines the following flat drawing-sheet sizes (in inches): (A) 8%x11, (B) 11x17, (C) 17x22, (D) 22x34, (E) 34x44.

International drawing sheet sizes of approximately the same dimensions are defined (in inches) as: (A4) 8.27×11.69 , (A3) 11.69×16.54 , (A2) 16.54×23.39 , (A1) 23.39×33.11 , (A0) 33.11×46.81 .

PAPERS FOR COPYING MACHINES Photosensitive paper is used for making prints for checking, issuing and filing purposes. 'Sepia' photocopying paper (Ozalid Company, etc.) gives brown positive prints which may be amended with pencil or ink, and the revision used as an original for photocopying in a diazo machine. Sepias may also be used to give a faint background print for drawing other work over, such as ducting or pipe supports. The quality of sepia prints is not good. Positive photocopies of superior quality are made on clear plastic film, which may have either continuous emulsion to give heavy copies, or screened emulsion to yield faint background prints (emulsion should preferably be water-removable).

LEADS & PENCILS 4.4.2

Pencil leads used in the drawing office are available in the following grades, beginning with the softest: B (used for shading), HB (usually used for writing only), F (usually softest grade used for drafting), H (grade most often used for drafting), 2H (used for drawing thinner lines such as dimension lines), 3H and 4H (used for faint lines for layout or background). Softer penciling is prone

		\\ \display \\ \din \display \\ \display \\ \display \\ \display \\ \display \\ \display \\ \display \
0		.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .10 .11 .12 .13 .14 .15 .16
	1	COMPRESSEO AIR
	2	COOLING WATER
	3	FLARESTACK
	4	FUEL OIL
	5	SOLVENTS
	6	STEAM SYSTEM
	7	VENTILATION - OFFICES
	8	VENTILATION - PROCESS AREA
	9	
U	10	

Paperwork classified according to a system of this type may be located in a filing cabinet fitted with numbered dividers as shown:—

STANDARD DIVIDERS FOR FILING CABINET

to smearing on handling, Grades harder than 3H tend to cut paper making lines difficult to erase. Conventional leads are 2 mm in diameter and require frequent repointing. 0.5 mm and 0.3 mm leads speed work, as they need no repointing. Conventional leads are not suitable for use on plastic films as they smear and are difficult to erase. 'Film' leads and pencils are available in the same sizes as conventional leads, and in different grades of hardness.

Clutch pencils (lead holders) suitable for use with either type of the smaller diameter leads have a push-button advance.

SCALES 4.4.3

The architect's scale is used for piping drawings, and is divided into fractions of an inch to one foot—for example, 3/8 inch per foot. The engineer's scale is used to draw site plans, etc., and is divided into one inch per stated number of feet, such as 1 inch per 30 feet.

4.4.4

Several types of eraser and erasing methods are available—use of each is given in table 4.1: Rubber in various hardnesses from pure gum rubber (artgum) for soft pencilling and cleaning lead smears, to hard rubber for hard pencelling and ink; 'plastic' is cleaner to use, as it has less tendency to absorb graphite; 'magic rub' for erasing pencil from plastic films. Most types of eraser are available for use with electric erasing machines.

An erasing shield is a thin metal plate with holes of various shapes and sizes so that parts of the drawing not to be erased may be protected.

ERASING GUIDE TABLE 4.1

PLASTIC FILM	Wet PE	Wet PE	Wet PE, or Blade	Wet PE, or Bleach*
SEPIA (OZALID), or PHOTOCOPY PAPER (PHOTOSTAT)	SRE	HRE, or SRE	Blade, or IHRE	Bleach *
TRACING PAPER, or Linen	SRE, or artgum	HRE, or SRE	IHRE	
MEDIUM MATERIAL	SOFT PENCIL	HARD PENCIL	INDIAN	PHOTOGRAPHIC BACKGROUND

CLEANING POWDER 4.4.5

Chemical bleach for removing black photographic silver deposit

Fine rubber granules are supplied in 'salt-shaker' drums. Sprinkled on a drawing, these granules reduce smearing of pencil lines during working. The use of cleaning powder is especially helpful when using a teesquare. The powder is brushed off after use.

LETTERING AIDS 4.4.6

Title blocks, notes, and subtitles on drawings or sections should be in capitals. Capitals, either upright or sloped, are preferred. Pencilled lettering is normally used. Where ink work is required on drawings for photography, charts, reports, etc., ink stylus pens (Technos, Rapidograph, etc.) are available for stencil lettering (and for line drawing in place of ruling pens). The Leroy equipment is also used for inked lettering. Skeleton lettering templates are used for lettering section keys. The parallel line spacer is a small, inexpensive tool useful for ruling guide lines for lettering.

As alternatives to hand-inked lettering, machines such as Kroy which print onto adhesive-backed transparent film which is later positioned on the drawing. Adhesive or transferable letters and numbers are available in sheets, and special patterns and panels can be supplied to order for title blocks or detailing, symbolism, abbreviations, special notes, etc. Printed adhesive tapes

are limited in application, but are useful for making drawings for photographic reproduction, such as panel boards, charts, and special reports—see 4.4.13, under 'Photographic layouts'.

TEMPLATES 4.4.7

Templates having circular and rectangular openings are common. Orthogonal and isometric drafting templates are available for making process piping drawings and flow diagrams. These piping templates give the outlines for ANSI valves, flanges, fittings and pipe diameters to 3/8 inch per foot, or 1/4-inch per foot.

MACHINES 4.4.8

The first two machines are usually used in drawing offices in place of the slower teesquare:

DRAFTING MACHINE allows parallel movement of a pair of rules set at right angles. The rules are set on a protractor, and their angle on the board may be altered. The protractor usually has 15-degree clickstops and vernier scale.

PARALLEL RULE, or SLIDER, permits drawing of long horizontal lines only, and is used with a fixed or adjustable triangle.

PLANIMETER A portable machine for measuring areas. When set to the scale of the drawing, the planimeter will measure areas of any shape.

PANTOGRAPH System of articulated rods permitting reduction or enlargement of a drawing by hand. Application is limited.

LIGHT BOX 4.4.9

A light box has a translucent glass or plastic working surface fitted underneath with electric lights. The drawing to be traced is placed on the illuminated surface.

FILING METHODS 4.4.10

Original drawings are best filed flat in shallow drawers. Prints filed in the drawing office are usually retained on a 'stick', which is a clamp for holding several sheets. Sticks are housed in a special rack or cabinet.

Original drawings will eventually create a storage problem, as it is inadvisable to scrap them. If these drawings are not sent to an archive, after a period of about three years they are photographed to a reduced scale for filing, and only the film is retained. Equipment is available for reading such films, or large photographic prints can be made.

.3 .4.10

CHART 4.3

TABLE **4.1**

'Diazo' or 'dyeline' processes reproduce to the same scale as the original drawing as a positive copy or print. Bruning and Ozalid machines are often employed. The drawing that is to be copied must be on tracing paper, linen or film, and the copy is made on light-sensitive papers or films. The older reversed-tone 'blue-print' is no longer in use.

SCALED PLANT MODELS

4.4.12

Plant models are often used in designing large installations involving much piping. When design of the plant is completed, the model is sent to the site as the basis of construction in the place of orthographic drawings. Some engineering companies strongly advocate their use, which necessitates maintaining a model shop and retaining trained personnel. Scaled model piping components are available in a wide range of sizes. The following color coding may be used on models:—

PIPING					YE	LLC	w,	RE	D o	BLUE
EQUIPMENT .										GREY
INSTRUMENTS									OF	RANGE
ELECTRICAL .										GREEN

ADVANTAGES

- Available routes for piping are easily seen
- Interferences are easily avoided
- Piping plan and elevation drawings can be eliminated; only the model, plot plan, P&ID's, and piping fabrication drawings (isos) are required
- The model can be photographed see 4.4.13.
- Provides a superior visual aid for conferences, for construction crews and for training plant personnel

DISADVANTAGES

- Duplication of the model is expensive
- The model is not easily portable and is liable to damage during transportation
- Changes are not recorded in the model itself

PHOTOGRAPHIC AIDS

4.4.13

'DRAWINGS' FROM THE MODEL

The lack of portability of a scaled plant model can be partially overcome by photographing it. To do this it must be designed so that it can be taken apart easily. Photographs can be made to correspond closely to the regular plan, elevation and isometric projections by photographing the model from 40 ft or more away with long focal length lenses—'vanishing points' (converging lines) in the picture are effectively eliminated.

The negative is projected through a contact screen and a print made on 'reproducible' film. Dimensions, notes, etc., are added to the reproducible film which can be printed by a diazo process—see 4.4.11. These prints are used as working drawings, and distributed to those needing information.

REVAMP WORK FOR EXISTING PLANTS

A Polaroid (or video) camera can be used to supply views of the plant and unrecorded changes. Filed drawings of a plant do not always include alterations, or deviation from original design.

Photographs of sections of a plant can be combined with drawings to facilitate installation of new equipment, or to make further changes to the existing plant. To do this, photographs are taken of the required views, using a camera fitted with a wide-angle lens (to obtain a wider view).

The negatives obtained are printed onto screened positive films which are attached to the back of a clear plastic drawing sheet. Alterations to the piping system are then drawn on the front face of this sheet, linking the photographs as desired. Reproductions of the composite drawing are made in the usual way by diazo process.

Alternately, positives may be marked directly for minor changes or instructions to the field.

PHOTOGRAPHIC LAYOUTS

The following technique produces equipment layout 'drawings', and is especially useful for areas where method study or investigational reports are required.

First, equipment outlines are produced to scale on photographic film, either in the regular way or by xerography. Next, a drawing-sized sheet of clear film is laid on a white backing sheet having a correctly-scaled grid marked on it.

The building outline and other features can be put onto the film using the variety of printed transparent tapes and decals available. The pieces of film with equipment outlines may then be positioned with clear tape, and any other parts of the 'drawing' completed. Alterations to the layout may be rapidly made with this technique, which photographs well for reports, and allows prints to be made in the usual ways for marking and comment. The film layout should be covered with an acetate or other protective sheet before insertion in a copying machine.

REDUCTION BY PHOTOGRAPHY

It is frequently required to include reproductions of diagrams and drawings in reports, etc. Photographic reduction to less than half-size (on lengths) is not recommended because normal-sized printing and details may not be legible. A graphic scale should be included on drawings to be reduced—see chart 5.8.

5 .1 .1.1

DRAFTING: PROCESS AND PIPING DRAWINGS including Drawing Symbols, Showing Dimensions, Showing Instrumentation, and Bills of Materiel

PIPING SYMBOLS

5.1

SHOWING PIPE & JOINTS

5.1.1

Hand-drawn piping layouts depict pipe by single lines for clarity and economy. Pipe and flanges are sometimes drawn partially 'double line' to display clearances. Computer drawn layouts can show piping in plan, elevational and isometric views in single line, or (without additional effort or expense) in double line. Double line representation is best reserved for three-dimensional views, such as isos.

In double-line drawing, valves are shown by the symbols in chart 5.6 (refer to the panel 'Drafting valves'). Double-line representation is not used for entire piping arrangements, as it is very time-consuming, difficult to read, and not justified technically.

In presenting piping 'single line' on piping drawings, only the centerline of the pipe is drawn, using a solid line (see chart 5.1), and the line size is written. Flanges are shown as thick lines drawn to the scaled outside diameter of the flange. Valves are shown by special symbols drawn to scale. Pumps are shown by drawing the pads on which they rest, and their nozzles: figure 6.21 illustrates this simplified presentation. Equipment and vessels are shown by drawing their nozzles, outlines, and supporting pads.

If there is a piping specification, it is not necessary to indicate welded or screwed joints, except to remove ambiguities—for example, to differentiate between a tee and a stub-in. In most current practice, the symbols for screwed joints and socket welds are normally omitted, although butt welds are often shown.

The ways of showing joints set out in the standard ANSI Y32.2.3 are not typical of current industrial practice. The standard's symbol for a butt-weld as shown in table 5.1 is commonly used to indicate a butt-weld to be made 'in the field' (field weld).

SHOWING NON-FLANGED JOINTS AT ELROWS

TABLE 5.1

AI ELBUMS			
	BUTT WELD	SOCKET WELD	SCREWED JOINT
SIMPLIFIED PRACTICE *	-		
CONVENTIONAL PRACTICE		H-E-	+
ANSI Y32.2.3 (Not current practice)	*		+

[&]quot;The joint symbol may be omitted if the type of joint is determined by a piping specification. It is usually preferred to use the dot weld symbol to make the type of construction clear: for example, to distinguish between a tee and a stub-in.

TABLE 5.1 Chart 5.1 shows commonly accepted ways of drawing various lines. Many other line symbols have been devised but most of these are not readily recognized, and it is better to state in words the function of special lines, particularly on process flow diagrams and P&ID's. The designer or draftsman should use his current employer's symbols.

VALVE & EQUIPMENT SYMBOLS FOR P&ID's & PROCESS FLOW DIAGRAMS

5.1.3

Practice in showing equipment is not uniform. Chart 5.2 is based on ANSI Y32.11, and applies to P&ID's and process flow diagrams.

REPRESENTING PIPING ON PIPING DRAWINGS 5.1.4

Charts 5.3-6 show symbols used in butt-welded, screwed and socket-welded systems. The various aspects of the fitting, valve, etc., are given. These symbols are based on conventional practice rather than the ANSI standard Z32.2.3, titled 'Graphic symbols for pipe fittings, valves and piping'.

REPRESENTING VALVES ON PIPING DRAWINGS 5.1.5

Chart 5.6 shows ways of denoting valves, including stems, handwheels and other operators. The symbols are based on ANSI Z32.2.3, but more valve types are covered and the presentation is up-dated. Valve handwheels should to be drawn to scale with valve stem shown fully extended.

Symbols that are shown in a similar way in all systems are collected in chart

MISCELLANEOUS SYMBOLS FOR PIPING DRAWINGS

5.7.

GENERAL ENGINEERING SYMBOLS

5.1.7

Chart 5.8 gives some symbols, signs, etc., which are used generally and are likely to be found or needed on piping drawings.

CHARTS

5.1 & 5.2A

TURBINE COMPRESSOR

DRIVERS

3-PHASE ELECTRIC MOTOR

BLOWER or FAN

2-PHASE ELECTRIC MOTOR

STEAM OR AIR

STEAM- or AIR-PISTON ORIVER

Drive Coupling (TYP)

ROTARY PUMP

ENGINE DRIVER

STEAM OR AIR

TURBINE DRIVER

SYMBOLS FOR BUTT-WELDED SYSTEMS

CHART 5.3

NOTE

IN CHARTS 5.3 THRU 5.5, THE SYMBOL IS SHOWN IN HEAVY LINE, LIGHTER LINES SHOW CONNECTEO PIPE, AND ARE NOT A PART OF THE SYMBOL.

		24 * 4									
NAME OF ITEM	END VIEW	SIDE VIEW	END VIEW	NAME OF ITEM	END VIEW	SIDE VIEW	END VIEW	NAME OF ITEM	END VIEW	SIDE VIEW	END VIEW
BENO (State Radius)		7	7	LAP JOINT FLANGE & STUB	0		0	RETURN			0
BUTT WELO	-	•	y			1	0		Ø		(1)
BLIND FLANGE	0		(Ø)	LATERAL	Ø			SOCKOLET	SHOW AS	WELDOLET'-TH	IS CHART
CAR	0		•		1		1	SLIP-ON FLANGE			(2)
COUPLING, FULL- or HALF-	9		Φ	LATROLET				STUB-IN	Ø	SHOP	Ф
	+	+	•	MITER	SEE	END OF THIS CH	ART				
CROSS	9	•	0	NIPOLET				SWAGE, CONCENTRIC ECCENTRIC STATE WHETHER TOP OR BOTTOM IS 'FLAT'	TOP VIEW	1	Ø
ELBOW, 90°, LR			9	PIPE	0	\	0	SWEEPOLET		人	
Et DOW 999 RD	0	-	$\overline{\mathbb{Q}}$	REDUCER,	TOP VIEW	-D-		THREDOLET	SHOW VE	'WELDOLET'-TH	IS CHART
ELBOW, 90°, SR	SR	SR	SR					TIMEDULLI	SHOW AS	WELDOLE = IA	IS CHART
ELBOW, 45 ⁰	@	-	9	STATE WHETHER TOP OR BOTTOM IS 'FLAT'	RED FLG	RED FLG	RED FLG	TEE	0		ф
ELBOLET	R	4	TOP VIEW	REDUCING FLANGE	Ø		Ø	WELOING-NECK	(Ø)		(Ø)
LEBOLLI	Y	Y	<u>@</u> —			1		FLANGE	0	IF	
EXPANDER FLANGE	0	- p-	0	REDUCING ELBOW		ON ISO'S ONLY	P	WELDOLET			
FIELD WELD		- × -						2-PIECE MITER	Ø	•	9
FULL-COUPLING HALF-COUPLING	SEE 'C	OUPLING' THIS	CHART	REINFORCEMENTS SADDLE			_		М	М	M
HOSE		~~~		WRAPAROUND SADDLE			RCEMENT	3-PIECE MITER	M	M	M
HOSE COUPLING	0]—		SADDEL		FOR LAT	ERAL		Ŷ	T	4

CHARTS 5.28 & 5.3

CHART 5.4 SYMBOLS FOR SCREWED SYSTEMS NAME OF ITEM END VIEW SIDE VIEW END VIEW CAP SHOW FOR BRANCH CONNECTIONS ONLY—SEE 'COUPLING' IN CHART 5.3 COUPLING, FULL & HALF CROSS ELBOW, 90° ELBOW, 45° \bigcirc FLANGE $\sim \sim$ HOSE HOSE CONNECTION 0 0 0 PIPE PLUG REDUCER RETURN Only malleable-iron and cast-iron returns are available. For forged-steel systems, combine forged-steel elbows. SHOW BY NOTING 'SEAL WELD' SEAL WELO SWAGE, **TOP VIEW** 0 CONCENTRIC ECCENTRIC 0 STATE WHETHER TOP OR BOTTOM IS 'FLAT' STRAIGHT or REDUCING THREDOLET SHOW AS 'WELDOLET'-CHART 5.3 UNION

SYMBOLS FOR	D AVATEL		HART 5.5
SOCKET-WELDE	n Sazifu	18	
NAME OF ITEM	END VIEW	SIDE VIEW	END VIEW
САР	0	E—	
COUPLING, FULL-& HALF-	SHOW FOR B SEE 'COUPLIN	RANCH CONNECT (G' IN CHART 5.3	TIONS ONLY
CROSS	30£	 	∃®£
ELBOL E T	SEE	'ELBOLET'CHAR	Т 5.3
ELBOW, 90 ⁰	Ø		GE
ELBOW, 45 ⁰	P	₹	GE-
FLANGE	Ø	-	Ø
HOSE		~~	
PIPE	Ø	\	Ø
REDUCER,		一	0
RETURN	IS AVAILAB REQUIRED, WELDING RI	WELDING FORGEOS' LE. IF A 180-OEGRE IT MAY 8E MADE U ETURN, OR TWO SOC' H NIPPLE BETWEEN.	E RETURN IS SING A BUTT-
SOCKOLET	SHOW A	S 'WELDOLET'-CI	HART 5.3
SWAGE, CONCENTRIC	TOP VIEW	-	0
ECCENTRIC STATE WHETHER TOP OR BOTTOM IS 'FLAT'		1	0
TEE, STRAIGHT or REDUCING	30£	=#	10[
union		3 E	

DRAFTING VALVES

CHART 5.6 GIVES THE BASIC SYMBOLS FOR VALVES. THESE BASIC SYMBOLS ARE USED OR AOAPTEO AS FOLLOWS:

P&ID's

USE THE RELEVANT VALVE SYMBOL TO SHOW THE TYPE OF VALVE. DRAW MOST SYMBOLS 1/4-in. LONG. MANUAL OPERATORS ARE NOT SHOWN.

PIPING DRAWINGS

OPERATOR IS SHOWN IF IMPORTANT

(1) SCREWEO VALVES

USE THE BASIC VALVE SYMBOL. DRAW THE LENGTH OF THE VALVE TO SCALE.

(2) SOCKET-ENOED VALVES

IF THE PROJECT HAS A PIPING SPECIFICATION, USE THE BASIC VALVE SYMBOL. IF NOT, SHOW SOCKET ENDS TO THE VALVES:

VALVE WITH:	Sockets both ends	Socket one end, other end plain
SYMBOL EXAMPLE		

DRAW THE LENGTH OF THE BASIC VALVE SYMBOL TO SCALE OVER SOCKET ENOS.

(3) FLANGED VALVES

USE THE BASIC VALVE SYMBOL, WITH OPERATOR, AND SHOW MATING FLANGES AS DETAILED BELOW:

CHARTS-

5.4-5.6

SYMBOLS FOR VALVES AND VALVE OPERATORS CHART 5.6 TYPE OF VALVE SIDE VIEW **TOP VIEW** TYPE OF VALVE SIDE VIEW TOP YIEW TYPE OF VALVE SIDE VIEW TOP VIEW 8 VACUUM BREAKER (b) (a) (a) LINE-BLINO VALVE (or Breather) ANGLE GLOBE (b) LINE BLIND (Shown between flanges) WYE-PATTERN GLOBE BALL, ROTARY NEEOLE USE 'SOUEEZE VALVE' SYMBOL PINCH BUTTERFLY 3-WAY PLUG CHECK (SWINO) Position of dot here shows flow from left to right 4WAY COCK SEE 'PLUG VALVE' 'QUICK OPENING' END VIEW **TOP VIEW OPERATOR** SIDE VIEW CONTROL RELIEF SPUR GEAR DIAPHRAGM SAFETY FLUSH-BOTTOM SAFETY-RELIEF TANK VALVE BEVEL GEAR STOP CHECK GATE CHAIN WHEEL SOUEEZE GLOBE TRAP CHAIN WRENCH THIS CHART GIVES THE BASIC VALVE SYMBOL WHICH IS USED ON P&ID'S AND FLOW DIAGRAMS. ADAPTATION OF THE SYMBOLS TO PIPING DRAWINGS IS EXPLAINED ON THE FACING PAGE <

GENERAL SYMBOLS FOR ENGINEERING DRAWINGS

SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION
.(1) (2) N	NORTH ARROWS. (1) FOR PLANS AND ELEVATIONS (2) FOR ISOMETRIC DRAWINGS	ADJACENT TO AREA ON FRONT OF SHEET HOLD ENCIRCLE AREA IN QUESTION AND THE HOLO' MARKING ON REAR OF SHEET	'CONSTRUCTION HOLD' MARKING. IF SUF- FICIENT INFORMATION IS NOT AVAILABLE TO FINALIZE PART OF THE DESIGN, THE 'HOLD' MARKING IS USED TO INSTRUCT THE CONTRACTOR TO AWAIT A LATER REVISION OF THE DRAWING BEFORE STARTING THE WORK IN QUESTION
10 0 10 20 30	GRAPHIC SCALE REQUIREO ON DRAWINGS LIKELY TO BE CHANGED IN SIZE PHOTO- GRAPHICALLY FOR REPORTS, etc. SYMBOL LOCATING AXES OF REFERENCE:	PLACE TRIANGLE ADJACENT TO REVISED AREA ON FRONT OF SHEET ON REAR OF SHEET ON REAR OF SHEET	REVISION TRIANGLE.THE LATEST REVISION NUMBER OF THE DRAWING IS SHOWN WITH-IN THE TRIANGLE WHICH IS ENCIRCLED ON THE REAR OF THE SHEET, ALL REVISION TRIANGLES REMAIN ON THE DRAWING, BUT ENCIRCLING OF THE PREVIOUS TRIANGLE IS ERASED
	INTERSECTION OF ORDINATES (COORDINATE POINT)	(1) (2) or (OPENINGS. (1) OPENING WHICH MAY BE COVERED. (ARCH. AND H&V DRAWINGS) (2) HOLE. (ARCH.)
or A DWG NO	TYPICAL SECTION INDICATORS. LETTERS 'I' AND '0' SHOULD NOT BE USED TO AVOID CONFUSION WITH NUMERALS 'I' AND '0'. IF MORE THAN 24 SECTIONS ARE NEEDED, USE COMBINATIONS OF LETTERS AND NUM- ERALS, SHOW NUMBER OF THE DRAWING ON WHICH SECTION WILL APPEAR	(1) (2) (3) [STRUCTURAL STEEL SECTIONS: (1) ANGLE. (2) CHANNEL. (3) I-BEAM
	CENTERLINE SYMBOL		ELEVATION SYMBOLS FOR RAILING
Dimension	DIMENSION LINE SYMBOL USED TO SHOW A OIMENSION NOT TO SCALE	(1) (2) (3)	DISCONTINUED VIEWS: (1) PIPE, ROUNO SHAFT, etc. (2) SLAB, SOUARE BAR, etc. (3) VESSEL, EQUIPMENT, etc. (Also used to terminate drawing)
*	'FITTING MAKEUP' SYMBOL (NOT PREFERRED SEE 5.3.3, UNDER 'FITT- ING MAKEUP')	or	SCREWTHREAD SYMBOLS
PROCESS VARIABLE FG PUNCTIONAL IDENTIFICATION 'LOOP' NUMBER	INSTRUMENT BALLOON, USUALLY DRAWN 7/16-INCH DIAMETER ON P&ID's AND PIPING DRAWINGS (TO 3/B IN. PER FT SCALE)		CHAIN SYMBOL

SHADINGS		TIPSE SUMPLIS	S ARE TISEN FOR SHOWING	G MATERIALS AND SECTI	Q 15 OF SOLIDS		
GRADE or EARTH	SOLID MATERIAL (and pipe cross section)	STEEL	CONCRETE	BRICK & STONE MASONRY	WOOD	CHECKER PLATE (Use 30° lines)	GRATING

CHARTS 5.7 & 5.8

WELDING SYMBOLS (American Welding Society)

CHART 5.9

Reproduced from AWS A2.4-86: Symbols for Welding, Brazing and Nondestructive Examination, by permission of the American Welding Society. A complete copy of A2.4-86 may be obtained from the American Welding Society, 550 N.W. LeJeune Road, Miami Florida 33126. Telephone (305) 443-9353.

SYMBOLS FOR WELDING DETAILS

5.1.8

Standard welding symbols are published by the American Welding Society. These symbols should be used as necessary on details of attachments, vessels, piping supports, etc. The practice of writing on drawings instructions such as 'TO BE WELOED THROUGHOUT', or 'TO BE COMPLETELY WELOEO' transfers the design responsibility for all attachments and connections from the designer to the welder, which the Society considers to be a dangerous and uneconomic practice.

The 'welding symbol' devised by the American Welding Society has eight elements. Not all of these elements are necessarily needed by piping designers. The assembled welding symbol which gives the welder all the necessary instruction, and locations of its elements, is shown in chart 5.9. The elements are:

- REFERENCE LINE
- ARROW
- BASIC WELD SYMBOLS
- DIMENSIONS & OTHER DATA
- SUPPLEMENTARY SYMBOLS
- FINISH SYMBOLS
- TAIL
- SPECIFICATIONS, PROCESS or OTHER REFERENCE

The following is a quick guide to the scheme. Full details will be found in the current revision of 'Standard Welding Symbols' available from the American Welding Society.

ASSEMBLING THE WELDING SYMBOL

Reference line and arrow: The symbol begins with a reference line and arrow pointing to the joint where the weld is to be made. The reference line has two 'sides': 'other side' (above the line) and 'arrow side' (below the line)—refer to the following examples and to chart 5.9.

BASIC WELDING ARROW

FIGURE 5.1

BASIC WELDING SYMBOLS

(a) The weld symbol

FILLET	BACK, or BACKING	PLUG or SLOT	SPOT, or PROJECTION	SEAM	EOGE FLANGE	CORNER FLANGE
ARROW)		0	0	7	Tr

(b) The groove symbol

UARE	Ψ	BEVEL	·r	T	FLARE/V"	FLARE-BEVEL
ROW				Ъ-	$-\pi$	
				ROW—	ROW—	ROW—7

EXAMPLE USE OF THE FILLET WELD SYMBOL

If a continuous fillet weld is needed, like this:

the fillet weld symbol is placed on the 'arrow side' of the reference line, thus:

If the weld is required on the far side from the arrow, thus:

the weld symbol is shown on the 'other side' of the reference line:

If a continuous fillet weld is needed on both sides of the joint,

the fillet weld symbol is placed on both sides of the reference line:

EXAMPLE USE OF THE BEVEL GROOVE SYMBOL

If a bevel groove is required, like this:

The 'groove' symbol for a bevel is shown, with the fillet weld symbol, and a break is made in the arrow toward the member to be beveled, thus:

Only the bevel and 'J' groove symbols require a break in the arrow –see chart 5.9.

DIMENSIONING THE WELD CROSS SECTION

Suppose the weld is required to be 1/4 inch in size, and the bevel is to be 3/16 inch deep:

These dimensions are shown to the left of the weld symbol:

Alternatively, the bevel can be expressed in degrees of arc:

and be indicated thus on the symbol:

If a root gap is required, thus:

the symbol is:

.1.8

CHART 5.9

FIGURE 5.1

DIMENSIONING THE LENGTH OF THE WELD

Going back to the fillet weld joint without a bevel, if the weld needs to be 1/4-inch in size and 6 inches long, like this:

3 3

If a series of 6-inch long welds is required with 6-inch gaps between them (that is, the pitch of the welds is 12 inches), thus:

If these welds are required staggered on both sides—

SUPPLEMENTARY SYMBOLS

These symbols give instructions for making the weld and define the required countour:

Going back to the example of a simple fillet weld, if the weld is required all around a member,

like this:

or like this:

it is shown in this way:

If this same 'all around' weld has to be made in the field, it is shown thus:

The contour of the weld is shown by a contour symbol on the weld symbol:

FLUSH CONTOUR CONVEX CONTOUR CONCAVE CONTOUR

like this: or:

The method of finishing the weld contour is indicated by adding a finish notation letter, thus,

where M = machining, G = grinding, and C = chipping.

FULL WELDING SYMBOL

Occasionally it is necessary to give other instructions in the welding symbol. The symbol can be elaborated for this as shown in 'Location of elements of a welding symbol' in chart 5.9.

Chart 5.9, reproduced by permission of the American Welding Society, summarizes and amplifies the explanations of this section.

All information for constructing piping systems is contained in drawings. apart from the specifications, and the possible use of a model and photographs.

THE MAIN PURPOSE OF A DRAWING IS TO COMMUNICATE INFORMATION IN A SIMPLE AND EXPLICIT WAY.

PROCESS & PIPING DRAWINGS GROW FROM THE SCHEMATIC DIAGRAM

5.2.1

To design process piping, three types of drawing are developed in sequence from the schematic diagram (or 'schematic') prepared by the process engineer.

These three types of drawing are, in order of development:—

- (1) FLOW DIAGRAM (PROCESS, or SERVICE)
- PIPING AND INSTRUMENTATION DIAGRAM, or 'P&ID'
- PIPING DRAWING (3)

EXAMPLE DIAGRAMS

Figure 5.2 shows a simple example of a 'schematic'. A solvent recovery system is used as an example. Based on the schematic diagram of figure 5.2, a developed process flow diagram is shown in figure 5.3. From this flow diagram, the P&ID (figure 5.4) is evolved.

As far as practicable, the flow of material(s) should be from left to right. Incoming flows should be arrowed and described down the left-hand edge of the drawing, and exitting flows arrowed and described at the right of the drawing, without intruding into the space over the title block.

Information normally included on the process drawings is detailed in sections 5.2.2 thru 5.2.4. Flow diagrams and P&ID's each have their own functions and should show only that information relevant to their functions, as set out in 5.2.3 and 5.2.4. Extraneous information such as piping, structural and mechanical notes should not be included, unless essential to the process.

SECURITY

A real or supposed need for industrial or national security may restrict information appearing on drawings. Instead of naming chemicals, indeterminate or traditional terms such as 'sweet water', 'brine', 'leach acid', 'chemical B'. may be used. Data important to the reactions such as temperatures, pressures and flow rates may be withheld. Sometimes certain key drawings are locked away when not in use.

Commonly referred to as a 'schematic', this diagram shows paths of flow by single lines, and operations or process equipment are represented by simple figures such as rectangles and circles. Notes on the process will often be included.

The diagram is not to scale, but relationships between equipment and piping with regard to the process are shown. The desired spatial arrangement of equipment and piping may be broadly indicated. Usually, the schematic is not used after the initial planning stage, but serves to develop the process flow diagram which then becomes the primary reference.

FLOW DIAGRAM

5.2.3

This is an unscaled drawing describing the process. It is also referred to as a 'flow sheet'.

It should state the materials to be conveyed by the piping, conveyors, etc., and specify their rates of flow and other information such as temperature and pressure, where of interest. This information may be 'flagged' (on lines) within the diagram or be tabulated on a separate panel-such a panel is shown at the bottom left of figure 5.3.

LAYOUT OF THE FLOW DIAGRAM

Whether a flow diagram is to be in elevation or plan view should depend on how the P&ID is to be presented. To easily relate the two drawings, both should be presented in the same view. Elevations are suitable for simple systems arranged vertically. Installations covering large horizontal areas are best shown in plan view.

Normally, a separate flow diagram is prepared for each plant process. If a single sheet would be too crowded, two or more sheets may be used. For simple processes, more than one may be shown on a sheet. Process lines should have the rate and direction of flow, and other required data, noted. Main process flows should preferably be shown going from the left of the sheet to the right. Line sizes are normally not shown on a flow diagram. Critical internal parts of vessels and other items essential to the process should be indicated.

All factors considered, it is advisable to write equipment titles either near the top or near the bottom of the sheet, either directly above or below the equipment symbol. Sometimes it may be directed that all pumps be drawn at a common level near the bottom of the sheet, although this practice may lead to a complex-looking drawing. Particularly with flow diagrams, simplicity in presentation is of prime importance.

Directions of flow within the diagram are shown by solid arrowheads. The use of arrowheads at all junctions and corners aids the rapid reading of the diagram. The number of crossings can be minimized by good arrangement. Suitable line thicknesses are shown at full size in chart 5.1. For photographic reduction, lines should be spaced not closer than 3/8 inch.

Process and service streams entering or leaving the flow diagram are shown by large hollow arrowheads, with the conveyed fluid written over and the continuation sheet number within the arrowhead, as in figure 5.3.

ARROWS ON FLOW DIAGRAMS

SHOWING VALVES ON THE FLOW DIAGRAM

Instrument-controlled and manual valves which are necessary to the process are shown. The following valves are shown if required by a governing code or regulation, or if they are essential to the process: isolating, bypassing, venting, draining, sampling, and valves used for purging, steamout, etc., for relieving excess pressure of gases or liquids (including rupture discs), breather valves and vacuum breakers.

SHOW ONLY SPECIAL FITTINGS

Piping fittings, strainers, and flame arrestors should not be shown unless of special importance to the process.

ESSENTIAL INSTRUMENTATION

Only instrumentation essential to process control should be shown. Simplified representation is suitable. For example, only instruments such as controllers and indicators need be shown: items not essential to the drawing (transmitters, for example) may be omitted.

EQUIPMENT DATA

Capacities of equipment should be shown. Equipment should be drawn schematically, using equipment symbols, and where feasible should be drawn in proportion to the actual sizes of the items. Equipment symbols should neither dominate the drawing, nor be too small for clear understanding.

STANDBY & PARALLELED EQUIPMENT

Standby equipment is not normally drawn. If identical units of equipment are provided for paralleled operation (that is, all units on stream), only one unit need normally be drawn. Paralleled or standby units should be indicated by noting the equipment number and the service function ('STANDBY' or 'PARALLEL OP').

It is advisable to draw equipment that is operated cyclically. For example, with filter presses operated in parallel, one may be shown on-stream, and the second press for alternate operation.

PROCESS DATA FOR EQUIPMENT

The basic process information required for designing and operating major items of equipment should be shown. This information is best placed immediately below the title of the equipment.

IDENTIFYING EQUIPMENT

Different types of equipment may be referred to by a classification letter (or letters). There is no generally accepted coding — each company has its own scheme if any standardization is made at all. Equipment classed under a certain letter is numbered in sequence from '1' upward. If a new installation is made in an existing plant, the method of numbering may follow previous practice for the plant.

Also, it is useful to divide the plant and open part of the site as necessary into areas, giving each a code number. An area number can be made the first part of an equipment number. For example, if a heat exchanger is the 53rd item of equipment listed under the classification letter 'E', located in area '1', (see 'Key plan' in 5.2.7) the exchanger's equipment number can be 1-E-53.

Each item of equipment should bear the same number on all drawings, diagrams and listings. Standby or identical equipment, if in the same service, may be identified by adding the letters, A, B, C, and so on, to the same equipment identification letter and number. For example, a heat exchanger and its standby may be designated 1-E-53A, and 1-E-53B.

SERVICES ON PROCESS FLOW DIAGRAMS

Systems for providing services should not be shown. However, the type of service, flow rates, temperatures and pressures should be noted at consumption rates corresponding to the material balance—usually shown by a 'flag' to the line—see figure 5.3.

DISPOSAL OF WASTES

The routes of disposal for all waste streams should be indicated. For example, arrows or drain symbols may be labelled with destination, such as 'chemical sewer' or 'drips recovery system'. In some instances the disposal or waste-treatment system may be detailed on one or more separate sheets. See 6.13 where 'effluent' is discussed.

MATERIAL BALANCE

The process material balance can be tabulated on separate 8% x 11-inch sheets, or along the bottom of the process flow diagram.

.2.3

5.2.4

This drawing is commonly referred to as the 'P&ID'. Its object is to indicate all process and service lines, instruments and controls, equipment, and data necessary for the design groups. The process flow diagram is the primary source of information for developing the P&ID. Symbols suitable for P&ID's are given in charts 5.1 thru 5.7.

The P&ID should define piping, equipment and instrumentation well enough for cost estimation and for subsequent design, construction, operation and modification of the process. Material balance data, flow rates, temperatures, pressures, etc., and piping fitting details are not shown, and purely mechanical piping details such as elbows, joints and unions are inappropriate to P&ID's.

INTERCONNECTING P&ID

This drawing shows process and service lines between buildings and units, etc., and serves to link the P&ID's for the individual processes, units or buildings. Like any P&ID, the drawing is not to scale. It resembles the layout of the site plan, which enables line sizes and branching points from headers to be established, and assists in planning pipeways.

P&ID LAYOUT

The layout of the P&ID should resemble as far as practicable that of the process flow diagram. The process relationship of equipment should correspond exactly. Often it is useful to draw equipment in proportion vertically, but to reduce horizontal dimensions to save space and allow room for flow lines between equipment. Crowding information is a common drafting fault - it is desirable to space generously, as, more often than not, revisions add information. On an elevational P&ID, a base line indicating grade or first-floor level can be shown. Critical elevations are noted.

For revision purposes, a P&ID is best made on a drawing sheet having a grid system-this is a sheet having letters along one border and numbers along the adjacent border. Thus, references such as 'A6', 'B5', etc., can be given to an area where a change has been made. (A grid system is applicable to P&ID's more complicated than the simple example of figure 5.4.)

DRAFTING GUIDELINES FOR P&ID's

- Suitable line thicknesses are shown at full size in chart 5.1
- Crossing lines must not touch-break lines going in one direction only. Break instrument lines crossing process and service lines
- Keep parallel lines at least 3/8 inch apart
- Preferably draw all valves the same size—1/4-inch long is suitable—as this retains legibility for photographic reduction. Instrument isolating valves and drain valves can be drawn smaller, if desired
- Draw instrument identification balloons 7/16th-inch diameter—see 5.5
- Draw trap symbols 3/8th-inch square

FLOW LINES ON P&ID's

All flow lines and interconnections should be shown on P&ID's. Every line should show direction of flow, and be labeled to show the area of project, conveyed fluid, line size, piping material or specification code number (company code), and number of the line. This information is shown in the 'line number'.

EXAMPLE LINE NUMBER: (74 BZ 6 412 23) may denote the 23rd line in area 74, a 6-inch pipe to company specification 412. 'BZ' identifies the conveyed fluid.

This type of full designation for a flow line need not be used, provided identification is adequate.

Piping drawings use the line numbering of the P&ID, and the following points apply to piping drawings as well as P&ID's.

- For a system of lines conveying the same fluid, allocate sequential numbers to lines, beginning with '1' for each system
- For a continuous line, retain the same number of line (such as 23 in the example) as the line goes thru valves, strainers, small filters, traps, venturis, orifice flanges and small equipment generally -unless the line changes in size
- Terminate the number of a line at a major item of equipment such as a tank, pressure vessel, mixer, or any equipment carrying an individual equipment number
- Allocate new numbers to branches

As with the process flow diagram, directions of flow within the drawing are shown by solid arrows placed at every junction, and all corners except where changes of direction occur closely together. Corners should be square. The number of crossings should be kept minimal by good arrangement.

Process and service streams entering or leaving the process are noted by hollow arrows with the name of the conveyed fluid written over the arrowhead and the continuation sheet number within it. No process flow data will normally be shown on a P&ID.

FLOW LINES ON P&ID's

NOTES FOR LINES

Special points for design and operating procedures are noted-such as lines which need to be sloped for gravity flow, lines which need careful cleaning before startup, etc.

Standby and paralleled equipment is shown, including all connected lines. Equipment numbers and service functions ('STANDBY' or 'PARALLEL OP') are noted.

'Future' equipment, together with the equipment that will service it, is shown in broken outline, and labeled. Blind-flange terminations to accommodate future piping should be indicated on headers and branches. 'Future' additions are usually not anticipated beyond a 5-year period.

Pressure ratings for equipment are noted if the rating is different from the piping system. A 'typical' note may be used to describe multiple pieces of identical equipment in the same service, but all equipment numbers are written.

CLOSURES

Temporary closures for process operation or personnel protection are shown.

SEPARATORS, SCREENS & STRAINERS

These items should be shown upstream of equipment and processes needing protection, and are discussed in 2.10.

STEAM TRAPS ON THE P&ID

If the locations of traps are known they are indicated. For example, the trap required upstream of a pressure-reducing station feeding a steam turbine should be shown.

Steam traps on steam piping are not otherwise indicated, as these trap positions are determined when making the piping drawings. They can be added later to the P&ID if desired, after the piping drawings have been completed.

DRIPLEGS

Driplegs are not shown.

VENTS & DRAINS

Vents and drains on high and low points of lines respectively, to be used for hydrostatic testing, are not shown, as they are established on the piping arrangement drawings. Process vents and drains are shown.

FIGURE 5.4

- Show and tag process and service valves with size and identifying number if applicable. Give pressure rating if different from line specification
- Indicate any valves that have to be locked open or locked closed
- Indicate powered operators

SHOWING INSTRUMENTATION ON THE P&ID

Signal-lead drafting symbols shown in chart 5.1 may be used, and the ISA scheme for designating instrumentation is described in 5.5. Details of instrument piping and conduit are usually shown on separate instrument installation drawings.

- Show all instrumentation on the P&ID, for and including these items: element or sensor, signal lead, orifice flange assembly, transmitter, controller, vacuum breaker, flame arrestor, level gage, sight glass, flow indicator, relief valve, rupture disc, safety valve. The last three items may be tagged with set pressure(s) also
- Indicate local- or board-mounting of instruments by the symbol—refer to the labeling scheme in 5.5.4

INSULATION & TRACING

Insulation on piping and equipment is shown, together with the thickness required. Tracing requirements are indicated. Refer to 6.8.

CONTROL STATIONS

Control stations are discussed in 6.1.4. Control valves are indicated by pressure rating, instrument identifying number and size—see figure 5.15, for example.

P&ID SHOWS HOW WASTES ARE HANDLED

Drains, funnels, relief valves and other equipment handling wastes are shown on the P&ID. If an extensive system or waste-treatment facility is involved, it should be shown on a separate P&ID. Wastes and effluents are discussed in 6.13.

SERVICE SYSTEMS MAY HAVE THEIR OWN P&ID

Process equipment may be provided with various services, such as steam for heating, water or refrigerant for cooling, or air for oxidizing. Plant or equipment providing these services is usually described on separate 'service P&ID's'. A service line such as a steam line entering a process P&ID is given a 'hollow arrow' line designation taken from the service P&ID. Returning service lines are designated in the same way. Refer to figure 5.4.

UTILITY STATIONS

Stations providing steam, compressed air, and water, are shown. Refer to 6.1.5.

These sheets are tabulated lists of lines and information about them. The numbers of the lines are usually listed at the right of the sheet. Dther columns list line size, material of construction (using company's specification code, if there is one), conveyed fluid, pressure, temperature, flow rate, test pressure, insulation or jacketing (if required), and connected lines (which will usually be branches).

The sheets are compiled and kept up-to-date by the project group, taking all the information from the P&ID. Copies are supplied to the piping group for reference.

On small projects involving only a few lines line designation sheets may not be used. It is useful to add a note on the P&ID stating the numbers of the last line and last valve used.

VIEWS USED FOR PIPING DRAWINGS

5.2.6

Two types of view are used:

- (1) ORTHOGRAPHIC PLANS AND ELEVATIONS
- (2) PICTORIAL ISOMETRIC VIEW AND OBLIQUE PRESENTATION

Figure 5.5 shows how a building would appear in these different views.

PRESENTATIONS USED IN PIPING DRAWINGS

FIGURE 5.5

PLANS & ELEVATIONS

Plan views are more common than elevational views. Piping layout is developed in plan view, and elevational views and section details are added for clarity where necessary.

PICTORIAL VIEWS

In complex piping systems, where orthographic views may not easily illustrate the design, pictorial presentation can be used for clarity. In either isometric or oblique presentations, lines not horizontal or vertical on the drawing are usually drawn at 30 degrees to the horizontal.

Oblique presentation has the advantage that it can be distorted or expanded to show areas of a plant, etc. more clearly than an isometric view. It is not commonly used, but can be useful for diagramatic work.

Figure 5.6 illustrates how circular shapes viewed at different angles are approximated by means of a 35-degree ellipse template. Isometric templates for valves, etc., are available and neat drawings can be rapidly produced with them. Orthographic and isometric templates can be used to produce an oblique presentation.

SOMETRIC PRESENTATION OF CIRCULAR SECTIONS

FIGURE 5.6

30° 60°

60°

30°

PLAN, ELEVATION, ISOMETRIC & OBLIQUE PRESENTATIONS OF A PIPING SYSTEM

5 .2.4 .2.7

Figure 5.7 is used to show the presentations used in drafting. Isometric and oblique drawings both clearly show the piping arrangement, but the plan view fails to show the bypass loop and valve, and the supplementary elevation is needed.

PIPING DRAWINGS ARE BASED ON OTHER DRAWINGS

5.2.7

The purpose of piping drawings is to supply detailed information to enable a plant to be built. Prior to making piping drawings, the site plan and equipment arrangement drawings are prepared, and from these two drawings the plot plan is derived. These three drawings are used as the basis for developing the piping drawings.

SITE PLAN

The piping group produces a 'site plan' to a small scale (1 inch to 30 or 100 ft for example). It shows the whole site including the boundaries, roads, railroad spurs, pavement, buildings, process plant areas, large structures, storage areas, effluent ponds, waste disposal, shipping and loading areas. 'True' (geographic) and 'assumed' or 'plant' north are marked and their angular separation shown—see figure 5.11.

PIPING ARRANGEMENT IN DIFFERENT PRESENTATIONS

FIGURE 5.7

FIGURES **5.5–5.7**

KEY PLAN

A 'key plan' is produced by adapting the site plan, dividing the area of the site into smaller areas identified by key letters or numbers. A small simplified inset of the key plan is added to plot plans, and may be added to piping and other drawings for reference purposes. The subject area of the particular drawing is hatched or shaded, as shown in figure 5.8.

DRAWING SHEET SHOWING KEY PLAN & MATCHLINE

FIGURE 5.8

EQUIPMENT ARRANGEMENT DRAWING

Under project group supervision, the piping group usually makes several viable arrangements of equipment, seeking an optimal design that satisfies process requirements. Often, preliminary piping studies are necessary in order to establish equipment coordinates.

A design aid for positioning equipment is to cut out scaled outlines of equipment from stiff paper, which can be moved about on a plan view of the area involved. (If multiple units of the same type are to be used, xeroxing the equipment outlines is faster.) Another method which is useful for areas where method study or investigational reports are needed is described in 4.4.13 under 'Photographic layouts'.

PLOT PLAN

When the equipment arrangement drawings are approved, they are developed into 'plot plans' by the addition of dimensions and coordinates to locate all major items of equipment and structures.

North and east coordinates of the extremities of buildings, and centerlines of steelwork or other architectural constructions should be shown on the plot plan, preferably at the west and south ends of the installation. Both 'plant north' and true north should be shown—see figure 5.11.

Equipment coordinates are usually given to the centerlines. Coordinates for pumps are given to the centerline of the pump shaft and either to the face of the pump foundation, or to the centerline of the discharge port.

Up-dated copies of the above drawings are sent to the civil, structural and electrical or other groups involved in the design, to inform them of requirements as the design develops.

VESSEL DRAWINGS

When the equipment arrangement has been approved and the piping arrangement determined, small dimensioned drawings of process vessels are made (on sheets $8\frac{1}{2} \times 11$ or 11×17 inches) in order to fix nozzles and their orientations, manholes, ladders, etc. These drawings are then sent to the vendor who makes the shop detail drawings, which are examined by the project engineer and sent to the piping group for checking and approval. Vessel drawings need not be to scale. (Figure 5.14 is an example vessel drawing.)

DRAWINGS FROM OTHER SOURCES

Piping drawings should be correlated with the following drawings from other design groups and from vendors. Points to be checked are listed:

Architectural drawings:

- Outlines of walls or sidings, indicating thickness
- Floor penetrations for stairways, lifts, elevators, ducts, drains, etc.
- Positions of doors and windows

Civil engineering drawings:

Foundations, underground piping, drains, etc.

Structural-steel drawings:

- Positions of steel columns supporting next higher floor level
- Supporting structures such as overhead cranes, monorails, platforms or beams
- Wall bracing, where pipes may be taken thru walls

Heating, ventilating & air-conditioning (HVAC) drawings:

Paths of ducting and rising ducts, fan room, plenums, space heaters, etc.

Electrical drawings:

- Positions of motor control centers, switchgear, junction boxes and control panels
- Major conduit or wiring runs (including buried runs)
- Positions of lights

Instrumentation drawings:

Instrument panel and console locations

Vendors' drawings:

- Dimensions of equipment
- Positions of nozzles, flange type and pressure rating, instruments, etc.

Mechanical drawings:

- Positions and dimensions of mechanical equipment such as conveyors, chutes, etc.
- Piped services needed for mechanical equipment.

design.

Pertinent background details (drawn faintly) from these drawings help to avoid interferences. Omission of such detail from the piping drawing often leads to the subsequent discovery that pipe has been routed thru a brace, stairway, doorway, foundation, duct, mechanical equipment, motor control center, fire-fighting equipment, etc.

Completed piping drawings will also show spool numbers, if this part of the job is not subcontracted — see 5.2.9. Electrical and instrument cables are not shown on piping drawings, but trays to hold the cables are indicated—for example, see figure 6.3, point (8).

It is not always possible for the piping drawing to follow exactly the logical arrangement of the P&ID. Sometimes lines must be routed with different junction sequence, and line numbers may be changed. During the preliminary piping studies, economies and practicable improvements may be found, and the P&ID may be modified to take these into account. However, it is not the piping designer's job to seek ways to change the P&ID.

SCALE

Piping is arranged in plan view, usually to 3/8 in./ft scale.

ALLOCATING SPACE ON THE SHEET

 Obtain the drawing number and fill in the title block at the bottom right corner of the sheet

ALLOCATING SPACE ON A DRAWING SHEET

FIGURE 5.9

- On non-standard sheets, leave a 1½- to 2-inch margin at the left edge of the sheet, to allow filing on a 'stick'. Standard drawing sheets usually have this margin
- On drawings showing a plan view, place a north arrow at the top left corner of the sheet to indicate plant north—see figure 5.11
- Do not draw in the area above the title block, as this space is allocated to the bill of materiel, or to general notes, brief descriptions of changes, and the titles and numbers of reference drawings
- If plans and elevations are small enough to go on the same sheet, draw the plan at the upper left side of the sheet and elevations to the right and bottom of it, as shown in figure 5.9

BACKGROUND DETAIL

- Show background detail as discussed in 5.2.8 under 'Piping drawings'.
 It is sometimes convenient to draw outlines on the reverse side of the drawing sheet
- After background details have been determined, it is best to make a
 print on which nozzles on vessels, pumps, etc., to be piped can be
 marked in red pencil. Utility stations can also be established. This will
 indicate areas of major usage and the most convenient locations for the
 headers. Obviously, at times there will be a number of alternate routes
 offering comparable advantages

PROCESS & SERVICE LINES ON PIPING DRAWINGS

- Take line numbers from the P&ID. Refer to 5.2.4 under 'Flow lines on P&ID's' for information on numbering lines. Include line numbers on all views, and arrowheads showing direction of flow
- Draw all pipe 'single line' unless special instructions have been given for drawing 'double line'. Chart 5.1 gives line thicknesses (full size)
- Line numbers are shown against lines, thus:

- Take lines continued on another sheet to a matchline, and there code with line numbers only. Show the continuation sheet numbers on matchlines—see figure 5.8
- Show where changes in line material specification occur. The change is usually indicated immediately downstream of a flange of a valve or equipment

 Show a definite break in a line crossing behind another line—see 'Rolled ell', under 'Plan view piping drawings', this section .2.7 .2.8

FIGURES 5.8 & 5.9

- If pipe sleeves are required thru floors, indicate where they are needed and inform the group leader for transmitting this information to the group(s) concerned
- Indicate insulation, and show whether lines are electrically or steam traced—see chart 5.7

FITTINGS, FLANGES, VALVES & PUMPS ON PIPING DRAWINGS

- The following items should be labeled in one view only: tees and ells rolled at 45 degrees (see example, this page), short-radius ell, reducing ell, eccentric reducer and eccentric swage (note on plan views whether 'top flat' or 'bottom flat'), concentric reducer, concentric swage, non-standard or companion flange, reducing tee, special items of unusual material, of pressure rating different from that of the system, etc. Refer to charts 5.3, 5.4 and 5.5 for symbol usage
- Draw the outside diameters of flanges to scale
- Show valve identification number from P&IO
- Label control valves to show: size, pressure rating, dimension over flanges, and valve instrument number, from the P&ID—see figure 5.15
- Draw valve handwheels to scale with valve stem fully extended
- If a valve is chain-operated, note distance of chain from operating floor, which for safety should be approximately 3 ft
- For pumps, show outline of foundation and nozzles

DRIPLEGS & STEAM TRAPS

Driplegs are indicated on relevant piping drawing plan views. Unless identical, a separate detail is drawn for each dripleg. The trap is indicated on the dripleg piping by a symbol, and referred to a separate trap detail or data sheet. The trap detail drawing should show all necessary valves, strainers, unions, etc., required at the trap—see figures 6.43 and 6.44.

The piping shown on the dripleg details should indicate whether condensate is to be taken to a header for re-use, or run to waste. The design notes in 6.10.5 discuss dripleg details for steam lines in which condensate forms continuously. Refer to 6.10.9 also.

INSTRUMENTS & CONNECTIONS ON PIPING DRAWINGS

- Show location for each instrument connection with encircled instrument number taken from the P&ID. Refer to 5.5.3 and chart 6.2
- Show similar isolating valve arrangements on instrument connections as 'typical' detail, unless covered by standard company detail sheet

VENTS & DRAINS

Refer to 6.11 and figure 6.47.

PIPE SUPPORTS

Refer to 6.2.2, and chart 5.7. for symbols.

PLAN VIEW PIPING DRAWINGS

- Draw plan views for each floor of the plant. These views should show what the layout will look like between adjacent floors, viewed from above, or at the elevation thru which the plan view is cut
- If the plan view will not fit on one sheet, present it on two or more sheets, using matchlines to link the drawings. See figure 5.8
- Note the elevation below which a plan view is shown—for example, 'PLAN BELOW ELEVATION 15'-0" '. For clarity, both elevations can be stated: 'PLAN BETWEEN ELEVATIONS 30'-0" & 15'-0" '
- If a tee or elbow is 'rolled' at 45 degrees, note as shown in the view where the fitting is rolled out of the plane of the drawing sheet

- Figure 5.10 shows how lines can be broken to give sufficient information without drawing other views
- Indicate required field welds

ELEVATIONS (SECTIONS) & DETAILS

- Draw elevations and details to clarify complex piping or piping hidden in the plan view
- Oo not draw detail that can be described by a note
- Show only as many sections as necessary. A section does not have to be a complete cross section of the plan
- Draw to a large scale any part needing fuller detail. Enlarged details are preferably drawn in available space on elevational drawings, and should be cross-referenced by the applicable detail and drawing number(s)
- Identify sections indicated on plan views by letters (see chart 5.8) and details by numbers. Letters I and O are not used as this can lead to confusion with numerals. If more than twentyfour sections are needed the letter identification can be broken down thus: A1—A1, A2—A2, B4—B4,...... and so on
- Do not section plan views looking toward the bottom of the drawing sheet

 Figure 5.10 shows how to break lines to give sufficient information whilst avoiding drawing another view or section

SHOWING 'HIDDEN' LINES ON PIPING DRAWINGS FIGURE 5.10

Corresponding ELEVATION (or PLAN)

PIPING FABRICATION DRAWINGS-'ISOS' & 'SPOOLS'

5.2.9

The two most common methods for producing piping designs for a plant are by making either plan and elevation drawings, or by constructing a scaled model. For fabricating welded piping, plans and elevations are sent directly to a subcontractor, usually referred to as a 'shop fabricator'—if a model is used, isometric drawings (referred to as 'isos') are sent instead.

Isometric views are commonly used in prefabricating parts of butt-welded piping systems. Isos showing the piping to be prefabricated are sent to the shop fabricator. Figure 5.15 is an example of such an iso.

The prefabricated parts of the piping system are termed 'spools', described under 'Spools', this section. The piping group either produces isos showing the required spools, or marks the piping to be spooled on plans and elevations, depending on whether or not a model is used (as shown in chart 5.10). From these drawings, the subcontractor makes detail drawings termed 'spool sheets'. Figure 5.17 is an example spool sheet.

5 .2.8 .2.9

ISOMETRIC DRAWINGS, or 'ISOS'

An iso usually shows a complete line from one piece of equipment to another—see figure 5.15. It gives all information necessary for fabrication and erection of piping.

Isos are usually drawn freehand, but the various runs of pipe, fittings and valves should be roughly in proportion for easy understanding. Any one line (that is, all the piping with the same line number) should be drawn on the minimum number of iso sheets. If continuation sheets are needed, break the line at natural breakpoints such as flanges (except orifice flanges), welds at fittings, or field welds required for installation.

Items and information to be shown on an iso include:

- North arrow (plant north)
- Dimensions and angles
- Reference number of plan drawing from which iso is made (unless model is used), line number, direction of flow, insulation and tracing
- Equipment numbers and locations of equipment (by centerlines)
- Identify all items by use of an understood symbol, and amplify by a description, as necessary
- Give details of any flanged nozzles on equipment to which piping has to be connected, if the flange is different from the specification for the connected piping
- Size and type of every valve
- Size, pressure rating and instrument number of control valves
- Number, location and orientation for each instrument connection

CHART 5.10

FIGURE 5.10

- Shop and field welds. Indicate limits of shop and field fabrication
- Iso sheet continuation numbers
- Unions required for installation and maintenance purposes
- On screwed and socket-welded assemblies, valve handwheel positions need not be shown
- Materials of construction
- Locations of vents, drains, and traps
- Locations of supports, identified by pipesupport number

The following information may also be given:

 Requirements for stress relieving, seal welding, pickling, lining, coating, or other special treatment of the line

Drawing style to be followed is shown in the example iso, figure 5.15, which displays some of the above points, and gives others as shaded notes. An iso may show more than one spool.

SPOOLS

A spool is an assembly of fittings, flanges and pipe that may be prefabricated. It does not include bolts, gaskets, valves or instruments. Straight mill-run lengths of pipe over 20 ft are usually not included in a spool, as such lengths may be welded in the system on erection (on the iso, this is indicated by noting the length, and stating 'BY FIELD').

The size of a spool is limited by the fabricator's available means of transportation, and a spool is usually contained within a space of dimensions 40 ft \times 10 ft \times 8 ft. The maximum permissible dimensions may be obtained from the fabricator.

FIELD-FABRICATED SPOOLS

Some States in the USA have a trades agreement that 2-inch and smaller carbon-steel piping must be fabricated at the site. This rule is sometimes extended to piping larger than 2-inch.

SHOP-FABRICATED SPOOLS

All alloy spools, and spools with 3 or more welds made from 3-inch (occasionally 4-inch) and larger carbon-steel pipe are normally 'shop-fabricated'. This is, fabricated in the shop fabricator's workshop, either at his plant or at the site. Spools with fewer welds are usually made in the field.

Large-diameter piping, being more difficult to handle, often necessitates the use of jigs and templates, and is more economically produced in a workshop.

SPOOL SHEETS

A spool sheet is an orthographic drawing of a spool made by the piping contractor either from plans and elevations, or from an iso—see chart 5.10.

Each spool sheet shows only one type of spool, and:-

- (1) Instructs the welder for fabricating the spool
- (2) Lists the cut lengths of pipe, fittings and flanges, etc. needed to make the spool
- (3) Gives materials of construction, and any special treatment of the finished piping
- (4) Indicates how many spools of the same type are required

NUMBERING ISOS, SPOOL SHEETS, & SPOOLS

Spool numbers are allocated by the piping group, and appear on all piping drawings. Various methods of numbering can be used as long as identification is easily made: A suggested method follows:—

Iso sheets can be identified by the line number of the section of line that is shown, followed by a sequential number. For example, the fourth iso sheet showing a spool to be part of a line numbered 74/BZ/6/412/23 could be identified: 74/BZ/6/412/23-4.

Both the spool and the spool sheet can be identified by number or letter using the iso sheet number as a prefix. For example, the numbering of spool sheets relating to iso sheet 74/BZ/6/412/23—4 could be

74/BZ/6/412/23-4-1, 74/BZ/6/412/23-4-2, etc., or 74/BZ/6/412/23-4-A, 74/BZ/6/412/23-4-B, etc.

The full line number need not be used if a shorter form would suffice for identification.

Spool numbers are also referred to as 'mark numbers'. They are shown on isos and on the following:—

- (1) Spool sheets—as the sheet number
- (2) The fabricated spool—so it can be related to drawings or isos
- (3) Piping drawings—plans and elevations

DIMENSIONING

5.3

DIMENSIONING FROM REFERENCE POINTS

5.3.1

HORIZONTAL REFERENCE

When a proposed plant site is surveyed, a geographic reference point is utilized from which measurements to boundaries, roads, buildings, tanks, etc., can be made. The geographic reference point chosen is usually an officially-established one.

The lines of latitude and longitude which define the geographic reference point are not used, as a 'plant north' (see figure 5.11) is established, parallel to structural steelwork. The direction closest to true north is chosen for the 'plant north'.

The coordinates of the southwest corner of the plant in figure 5.11, as referred to 'plant north', are N 110.00 and E 200.00.

Sometimes coordinates such as those above may be written N 1+10 and E 2+00. The first coordinate is read as "one hundred plus 10 ft north" and the second as "two hundred plus zero ft east". This is a system used for traverse survey, and is more correctly applied to highways, railroads, etc.

Coordinates are used to locate tanks, vessels, major equipment and structural steel. In the open, these items are located directly with respect to a geographic reference point, but in buildings and structures, can be dimensioned from the building steel.

HORIZONTAL REFERENCE

FIGURE 5.11

The US Department of Commerce's Coast and Geodetic Survey has established a large number of references for latitude and longitude, and for elevations above sea level. These are termed 'geodetic control stations'.

Control stations for horizontal reference (latitude and longitude) are referred to as 'triangulation stations' or 'traverse stations', etc. Control stations for vertical reference are referred to as 'benchmarks'. Latitude and longitude have not been established for all benchmarks.

A geodetic control station is marked with a metal disc showing identity and date of establishment. To provide stable locations for the discs, they are set into tops of 'monuments', mounted in holes drilled in bedrock or large firmly-imbedded boulders, or affixed to a solid structure, such as a building, bridge, etc.

The geographic positions of these stations can be obtained from the Director, US Coast and Geodetic Survey, Rockville, Maryland 20852.

VERTICAL REFERENCE

Before any building or erecting begins, the site is leveled ('graded') with earth-moving equipment. The ground is made as flat as practicable, and after leveling is termed 'finished grade'.

The highest graded point is termed the 'high point of finished grade', (HPFG), and the horizontal plane passing thru it is made the vertical reference plane or 'datum' from which plant elevations are given. Figure 5.12 shows that this horizontal plane is given a 'false' or nominal elevation, usually 100 ft, and is not referred to mean sea level.

The 100 ft nominal elevation ensures that foundations, basements, buried pipes and tanks, etc., will have positive elevations. 'Minus' elevations, which would be a nuisance, are thus avoided.

Large plants may have several areas, each having its own high point of finished grade. Nominal grade elevation is measured from a benchmark, as illustrated in figure 5.12.

VERTICAL REFERENCE

FIGURE 5,12

DIMENSIONING PIPING DRAWINGS

5.3.2

DRAWING DIMENSIONS—& TOLERANCES MAINTAINED IN ERECTED PIPING

On plot: Dimensions on piping drawings are normally maintained within the limits of plus or minus 1/16th inch. How this tolerance is met does not concern the designer. Any necessary allowances to ensure that dimensions are maintained are made by the fabricator and erector (contractor).

Off plot: Dimensions are maintained as closely as practicable by the erector.

WHICH DIMENSIONS SHOULD BE SHOWN?

Sufficient dimensions should be given for positioning equipment, for fabricating spools and for erecting piping. Duplication of dimensions in different views should be avoided, as this may easily lead to error if alterations are made.

Basically the dimensions to show are:

	TYPE OF OIMENSION	EXAMPLES						
1	REFERENCE LINE* TO CENTERLINE	VESSELS PUMPS EQUIPMENT LINES						
2	CENTERLINE TO CENTERLINE	LINES STANDARD VALVES						
3	CENTERLINE TO FLANGE FACE †	NOZZLES ON VESSELS PUMPS EQUIPMENT						
4	FLANGE FACE TO FLANGE FACE†	NON-STANDARD (VALVES EQUIPMENT METERS INSTRUMENTS						
* REFERENCE LINE CAN BE EITHER AN ORDINATE (LINE OF LATITUDE OR LONGITUDE) OR A CENTERLINE OF BUILDING STEEL † IT IS NECESSARY TO SHOW THESE DIMENSIONS FOR ITEMS LACKING STANDARD DIMENSIONS (DEFINED BY ANY RECOGNIZED STANDARD)								

Figure 5.13 illustrates the use of these types of dimensions.

PLAN VIEW DIMENSIONS

Plan views convey most of the dimensional information, and may also show dimensions for elevations in the absence of an elevational view or section.

EXAMPLE DIMENSIONS FOR PLAN VIEW

FIGURE 5.13

VERTICAL VIEW ELEVATIONS & DIMENSIONS

On piping drawings, elevations may be given as in table 5.2.

Draw dimension lines unbroken with a fine line. Write the dimension just above a horizontal line. Write the dimension of a vertical line sideways, preferably at the left. It is usual to terminate the line with arrowheads, and these are preferable for isos. The oblique dashes shown are quicker and are suitable for plans and elevations, especially if the dimensions are cramped

 If a series of dimensions is to be shown, string them together as shown in the sketch. (Do not dimension from a common reference line as in machine drawing.) Show the overall dimension of the string of dimensions if this dimension will be of repeated interest

DIMENSIONS ON MACHINE DRAWINGS

 Do not omit a significant dimension other than 'fitting makeup', even though it may be easily calculated — see 'fitting makeup', this section

- Most piping under 2-inch is screwed or socket-welded and assembled at
 the site (field run). Therefore, give only those dimensions necessary to
 route such piping clear of equipment, other obstructions, and thru
 walls, and to locate only those items whose safe positioning or accessability is important to the process
- Most lengths will be stated to the nearest sixteenth of an inch. Dimensions which cannot or need not be stated to this precision are shown with a plus-or-minus sign: 8'-7"±, 15'-3"±, etc.
- Dimensions under two feet are usually marked in inches, and those over two feet in feet and inches. Some companies prefer to mark all dimensions over one foot in feet and inches
- Attempt to round off non-critical dimensions to whole feet and inches.
 Reserve fractions of inches for dimensions requiring this precision

PLANS & ELEVATIONS-GENERAL DIMENSIONING POINTS

- Reserve horizontal dimensions for the plan view
- Underline all out-of-scale dimensions, or show as in chart 5.8
- If a certain piping arrangement is repeated on the same drawing, it is sufficient to dimension the piping in one instance and note the other appearances as 'TYP' (typical). This situation occurs where similar pumps are connected to a common header. For another example, see the pump base in figure 6.17
- Do not duplicate dimensions. Do not repeat them in different views

DIMENSIONING TO JOINTS

- Do not terminate dimensions at a welded or screwed joint
- Unless necessary, do not dimension to unions, in-line couplings or any other items that are not critical to construction or operation of the piping
- Where flanges meet it is usual to show a small gap between dimension lines to indicate the gasket. Gaskets should be covered in the piping specification, with gasket type and thickness stated. Refer to the panel 'Drafting valves', preceding chart 5.6.

As nearly all flanged joints have gaskets, a time-saving procedure is to note flanged joints without gaskets (for example, see 3.1.6 under 'Butterfly valve'). The fabricator and erector can be alerted to the need for gaskets elsewhere by a general note on all piping drawings:

"GASKETS AS SPECIFICATION EXCEPT AS NOTED"

.3.2

FIGURE 5.13

TABLE **5.2**

If a number of items of standard dimensions are grouped together it is unnecessary to dimension each item, as the fabricator knows the sizes of standard fittings and equipment. It is necessary, however, to indicate that the overall dimension is 'fitting makeup' by the special cross symbol, or preferably by writing the overall dimension. Any non-standard item inserted between standard items should be dimensioned.

DIMENSIONING TO VALVES

- Locate flanged and welding-end valves with ANSI standard dimensions by dimensioning to their centers. Most gate and globe valves are standard—see table V-1
- Dimension non-standard flanged valves as shown in the panel opposite chart 5.6. Although a standard exists for control valves, face-to-face dimensions are usually given, as it is possible to obtain them in nonstandard sizes
- Standard flanged check valves need not be dimensioned, but if location is important, dimension to the flange face(s)
- Non-flanged valves are dimensioned to their centers or stems.

DIMENSIONING TO NOZZLES ON VESSELS & EQUIPMENT

- In plan view, a nozzle is dimensioned to its face from the centerline of the equipment it is on
- In elevation, a nozzle's centerline is either given its own elevation or is dimensioned from another reference. In the absence of an elevational view, nozzle elevations can be shown on the plan view

DIMENSIONING ISOS 5.3.4

In order to clearly show all dimensions, the best aspect of the piping must be determined. Freedom to extend lines and spread the piping without regard to scale is a great help in showing isometric dimensions. The basic dimensions set out in 5.3.2, 5.3.3, and the guidelines in 5.2.9 apply.

Figure 5.15 illustrates the main requirements of an isometric drawing, and inincludes a dimensioned offset. Figure 5.16 shows how other offsets are dimensioned.

- Dimension in the same way as plans and elevations.
- Give sufficient dimensions for the fabricator to make the spool drawings
 —see figure 5.17

FIGURES

5.14 & 5.15

M-1 gives a formula for

Allowance for weld spacing (root gap) is a shop set-up problem and should not be considered in making assembly drawings or detailed sketches. The Pipe Fabrication Institute recommends that an overall dimension is shown which is the sum of the nominal dimensions of the component parts.

A spool sheet deals with only one design of spool, and shows complete dimensional detail, lists material for making the spool, and specifies how many spools of that type are required. Figure 5.17 shows how a spool from figure 5.15 would be dimensioned.

EXAMPLE SPOOL SHEET

FIGURE 5.16

FIGURE 5.17

CHECKING & ISSUING DRAWINGS

5.4

CHECKING PIPING DRAWINGS (PLANS, ELEVATIONS, & ISOS)

5.4.4

RESPONSIBILITIES

5.4.1

P&IO's, process flow diagrams and line designation sheets are checked by engineers in the project group.

Except for spool drawings, all piping drawings are checked by the piping group.

Drthographic spool drawings produced by the piping fabricator are not usually checked by the piping group, except for 'critical' spools, such as spools for overseas shipment and intricate spools.

Usually an experienced designer within the piping group is given the task of checking. Some companies employ persons specifically as design checkers.

The checker's responsibilities are set out in 4.1.2.

CHECKING PIPING DRAWINGS

5.4.2

Prints of drawings are checked and corrected by marking with colored pencils. Areas to be corrected on the drawing are usually marked in red on the print. Correct areas and dimensions are usually marked in yellow.

Checked drawings to be changed should be returned to their originator whenever possible, for amendment, A new print is supplied to the checker with the original 'marked up' print for 'backchecking'.

ISSUING DRAWINGS

5.4.3

Areas of a drawing awaiting further information or decision are ringed clearly on the reverse side and labeled 'HOLD'-refer to chart 5.8. (A black, red, or vellow china marker is suitable for film with a slick finish on the reverse side.)

Changes or revisions are indicated on the fronts of the sheets by a small triangle in the area of the revision. The revision number is marked inside the triangle, noted above the title block (or in an allocated panel) with a description of the revision, required initials, and date. The revision number may be part of the drawing number, or it may follow the drawing number (preferred method—see figure 5.17). The drawing as first issued is numbered the 'zero' revision.

A drawing is issued in three stages. The first issue is 'FOR APPRDVAL', by management or client. The second issue is 'FOR CONSTRUCTION BID', when vendors are invited to bid for equipment and work contracts. The third issue is 'FDR CDNSTRUCTION' following awarding of all purchase orders and contracts. Drawings may be reissued at each stage if significant changes are made. Minor changes may be made after the third stage (by agreement on cost and extent of work) but major changes may involve all three stages of issue.

Points to be checked on all piping drawings include the following:

- Title of drawing
- Number of issue, and revision number
- Orientation: North arrow against plot plan
- Inclusion of graphic scale (if drawing is to be photographically reduced)
- Equipment numbers and their appearance on piping drawings
- That correct identification appears on all lines in all views
- Line material specification changes
- Agreement with specifications and agreement with other drawings
- That the drawing includes reference number(s) and title(s) to any other relevant drawings
- That all dimensions are correct
- Agreement with certified vendors' drawings for dimensions, nozzle orientation, manholes and ladders
- That face-to-face dimensions and pressure ratings are shown for all non-standard flanged items
- Location and identification of instrument connections
- Provision of line vents, drains, traps, and tracing. Check that vents are at all high points and drains at all low points of lines for hydrostatic test. Driplegs should be indicated and detailed. Traps should be identified, and piping detailed
- The following items should be labeled in one view only: tees and ells rolled at 45 degrees (see example in 5.2.8), short-radius ell, reducing ell, eccentric reducer and eccentric swage (note on plan views whether 'top flat' or 'bottom flat'), concentric reducer, concentric swage, non-standard or companion flange, reducing tee, special items of unusual material, of pressure rating different from that of the system, etc. Refer to charts 5.3, 5.4 and 5.5 for symbol usage
- That insulation has been shown as required by the P&ID
- . Pipe support locations with support numbers
- That all anchors, dummy legs and welded supports are shown
 - That the stress group's requirements have been met
- That all field welds are shown
- Correctness of scale
- Coordinates of equipment against plot plan
- Piping arrangement against P&IO requirements
- Possible interferences
- Adequacy of clearances of piping from steelwork, doors, windows and braces, ductwork, equipment and major electric apparatus, including control consoles, cables from motor control centers (MCC's), and firefighting equipment. Check accessibility for operation and maintenance

- That floor and wall penetrations are shown correctly
- Accessibility for operation and maintenance, and that adequate manholes, hatches, covers, dropout and handling areas, etc. have been provided
- Foundation drawings with vendors' equipment requirements
- List of materiel, if any. Listed items should be identified once, either on the plan or the elevation drawings
- That section letters agree with the section markings on the plan view
- That drawings include necessary matchline information
- Appearance of necessary continuation sheet number(s)
- That spool numbers appear correctly
- Presence of all required signatures

This further point should be checked on isos:

Agreement with model

These further points should be checked on spool sheets:

- That materiel is completely listed and described
- That the required number of spools of identical type is noted

INSTRUMENTATION (As shown on P&ID's)

5.5

This section briefly describes the purposes of instruments and explains how instrumentation may be read from P&ID's. Piping drawings will *also* show the connection (coupling, etc.) to line or vessel. However, piping drawings should show only instruments connected to (or located in) piping and vessels. The only purpose in adding instrumentation to a piping drawing is to identify the connection, orifice plate or equipment to be installed on or in the piping, and to correlate the piping drawing to the P&ID.

INSTRUMENT FUNCTION ONLY IS SHOWN

5.5.1

Instrumentation is shown on process diagrams and piping drawings by symbols. The functions of intruments are shown, not the instruments. Only the primary connection to a vessel or line, or devices installed in a line (such as orifice plates and control valves) are indicated.

There is some uniformity, among the larger companies at least, in the way in which instrumentation is shown. There is a willingness to adopt the recommendations of the Instrument Society of America, but adherence is not always complete. The ISA standard is S5.1, titled 'Instrumentation symbols and identification'.

Compliance with the ISA scheme is to some extent international. This is beneficial when drawings go from one country to another, as there is then no difficulty in understanding the instrumentation.

Although instruments are used for many purposes, their basic functions are few in number:

- (1) To sense a 'condition' of the process material, most commonly its pressure, temperature, flow rate or level. These 'conditions' are termed process variables. The piece of equipment that does the sensing is termed a 'primary element', 'sensor', or 'detector'.
- (2) To transmit a measure of the process variable from a primary element.
- (3) To indicate a measure of a process variable to the plant operator, by showing the measured value by a dial and pointer, pen and paper roll or digital display. Another form of indicator is an alarm which gives audible or visual warning when a process variable such as temperature approaches an unsafe or undesired value.
- (4) To record the measure of a process variable. Most recorders are electrically-operated pen-and-paper-roll types which record either the instantaneous value or the average over a time period.
- (5) To control the process variable. An instrument initiating this function is termed a 'controller'. A controller sustains or changes the value of the process variable by actuating a 'final control element' (this element is usually a valve, in process piping).

Many instruments combine two or more of these five functions, and may also have mechanical parts integrated — the commonest example of this is the self-contained control valve (see 3.1.10, under 'Pressure regulator', and chart 3.1).

HOW INSTRUMENTATION IS IDENTIFIED

5.5.3

The most-used instruments are pressure and temperature gages ('indicators') and are shown as in figure 5.18 (a) and (b). An example 'instrument identification number' (or 'tag number') is shown in figure 5.18 (c). The balloon around the number is usually drawn 7/16-inch diameter.

INSTRUMENT IDENTIFICATION NUMBERS

FIGURE 5.18

In figure 5.18, 'P', 'T', and 'F' denote process variables pressure, temperature, and flow respectively. 'I' and 'G' show the type of instrument; indicator and gage respectively. Table 5.3 gives other letters denoting process variable, type of instrument, etc. The number '8', labeled 'loop number', is an example sequential number (allocated by an instrumentation engineer).

A horizontal line in the ISA balloon shows that the instrument performing the function is to be 'board mounted' in a console, etc. Absence of this line shows 'local mounting', in or near the piping, vessel, etc.

BOARO MOUNTING

LOCAL MOUNTING

The ISA scheme shows instrument functions, not instruments. However, a multiple-function instrument can be indicated by drawing the balloons showing the separate functions so that the circles touch.

Sometimes, a multiple-function instrument will be indicated by a single balloon symbol, with a function identification, such as 'TRC' for a temperature recorder-controller. This practice is not preferred—it is better to draw (in this example) separate 'TR' and 'TC' balloons, touching.

INTERCONNECTED INSTRUMENTS ('LOOPS')

5.5.5

The ISA standard uses the term 'loop' to describe an interconnected group of instruments, which is not necessarily a closed-loop arrangement: that is, instrumentation used in a feedback (or feedforward) arrangement.

If several instruments are interconnected, they may be all allocated the same number for 'loop' identification. Figure 5.19 shows a process line served by one group of instruments (loop number 73) to sense, transmit and indicate temperature, and a second group (loop number 74) to sense, transmit, indicate, record and control flow rate.

EXAMPLE INSTRUMENT 'LOOPS'

FIGURE 5.19

Elements, transmitters, recorders, indicators and controllers communicate with each other by means of signal leads — which are represented by lines on the drawing. The signal can be a voltage, the pressure of a fluid, etc.—these are the most common signals.

Symbols for instrument signal leads are given in chart 5.1.

INSTRUMENTATION CODING : ISA CODING PROCESS VARIABLE

TABLE 5.3

TYPE OF INSTRUMENT

ANALYSIS. A BURNER (Flame) B COMBUSTION B USER'S CHOICE C USER'S CHOICE C USER'S CHOICE D VOLTAGE E FLOW RATE F USER'S CHOICE G CURRENT (Electric) I POWER J TIME (Time Control/Clock) K LEVEL L USER'S CHOICE M USER'S CHOICE	BCVVEEGG-KLNOPRSTUVWXYZ						
QUALIFYING LETTER AFTER THE 'PROCESS VARIABLE' LETTER							
THE QUALIFYING LETTER IS USED:— DIFFERENTIAL D When the difference between two values of the process variable is involved	f						
TOTAL Q When the process variable is to be summed over a period of time. For example, flow rate can be summed to give total volume	,						
RATIO F When the ratio of two values of the process variable is involved	3						
SAFETY ITEM S To denote an item such as a relief valve or rupture disc	•						
'HAND' H To denote a hand-operated or hand-started item	To denote a hand-operated or hand-started item						
QUALIFYING LETTER AFTER THE 'TYPE OF INSTRUMENT' LETTER							
HIGH H To denote instrument action on 'high' set value of the process variable	To denote instrument action on 'high' set value of the process variable						
INTERMEDIATE M To denote instrument action on 'intermediate' set value of the process variable	To denote instrument action on 'intermediate' set value of the process variable						
LOW L To denote instrument action on 'low' set value of the process variable	:						

FIGURES 5.18 & 5.19

TABLE 5.3

LISTING PIPING MATERIEL ON DRAWINGS

In the engineering construction industry, it is usual for piping components to be given a code number which appears in the piping specification. In companies not primarily engaged in plant construction, materiel is frequently listed on drawings.

DIFFERENT FORMS OF LIST

5.6.1

5.6

This list is usually titled 'list of material', or preferably, 'list of materiel', as items of hardware are referred to. 'Parts list' and 'Bill of materiel' are alternate headings.

Either a separate list can be made for materiel on several drawings, or each drawing sheet can include a list for items on the particular drawing. Lists on drawings are written in the space above the title block. Column headings normally used for the list are:

	LIST OF MATERIEL								
	ITEM NUMBER	QUANTITY	DESCRIPTION	REMARK, REQUISITION NUMBER. OR COMPANY CODE					
L									

SUGGESTED LISTING SCHEME

5.6.2

Vessels, pumps, machinery and instruments are normally listed separately from piping hardware. However, it is not uncommon, on small projects or revamp work, to list all materiel on a drawing.

CLASSIFICATION FOR PIPING COMPONENTS

CHART 5.11

CLASS	INTENDED DUTY OF WITH RESPECT	HARDWARE TO FLUID	EXAMPLE HARDWARE
1	CONVEYANCE: To provide a path for fluid flow		Pipe, fittings, ordinary flanges, bolt and gasket sets
Ш	FLOW CONTROL: To produce a large	(A) Non-powered	In-line valve, orifice plate, venturi
''	change in flow rate or pressure of fluid		Pump, ejector
111	SEPARATION: To rem by mechanical means fr		Steam trap, discharge valve, safety or relief valve, screen, strainer
IV	HEATING OR COOL change the temperature by adding or removing h	of the fluid	Jacketed pipe, tracer
٧	MEASUREMENT: To variable of the fluid, s rate, temperature, press viscosity, turbidity, co	uch as flow ure, density,	Gages (all types), thermometers (all types), flow meter, densitometer, sensor housing (such as a thermo- well) and other special fittings for instruments
VI	NONE: Ancillary h	ardware	Insulation, reinforcement, hanger, support

Haphazard listing of items makes reference troublesome. The scheme suggested in chart 5.11 is based on the duty of the hardware and can be extended to listing equipment if desired. Items of higher pressure rating and larger size can be listed first within each class.

LISTING SPECIFIC ITEMS

5.6.3

Under the heading DESCRIPTION, often on drawings the size of the item is stated first. A typical order is: SIZE (NPS), RATING (class, schedule number, etc.), NAME (of item), MATERIAL (ASTM or other material specification), and FEATURE (design feature).

Descriptions are best headed by the NAME of the item, followed by the SIZE, RATING, FEATURE(S), and MATERIAL. As material listings are commonly handled by data-processing equipment, beginning the description of an item by name is of assistance in handling the data. The description for 'pipe' is detailed.

EXAMPLE LISTING FOR PIPE

State 'PIPE' NAME:

SIZE: Specify nominal pipe size. See 2.1.3 and tables P-1

RATING: Specify wall thickness as either a schedule number, a

manufacturers' weight, etc. See tables P-1. SCH= schedule. STD= standard, XS= extra-strong, XXS= double-extra-

strong, API= American Petroleum Institute.

FEATURE: Specify design feature(s) unless covered by a pipe

specification for the project.

Pipe is available seamless or with a welded seamexamples of designations are: SMLS = seamless, FBW = furnace-butt-welded, ERW = electric-resistance-welded GALV = galvanized. Specify ends: T&C = threaded and

coupled, BE = beveled end, PE = plain end.

MATERIAL: Carbon-steel pipe is often ordered to ASTM A53 or

A106, Grade A or B. Other specifications are given in

tables 7.5 and 2.1.

POINTS TO CHECK WHEN MAKING THE LIST

5.6.4

- See that all items in the list have been given a sequential item number
- Label the items appearing on the piping drawings with the item number from the list. Write the item number in a circle with a fine line or arrow pointing to the item on the drawing. Each item in the list of materiel is indicated in this way once on the plan or elevational piping drawings
- Verify that all data on the list agree with:
 - (1) Requirements set out in piping drawings
 - (2) Available hardware in the manufacturers' catalogs

DESIGN OF PIPING SYSTEMS:

6 .1.1

Including Arrangement, Supporting, Insulation, Heating, Venting and Draining of Piping, Vessels and Equipment

ARRANGING PIPING

6.1

GUIDELINES & NOTES

6.1.1

Simple arrangements and short lines minimize pressure drops and lower pumping costs.

Designing piping so that the arrangement is 'flexible' reduces stresses due to mechanical or thermal movement—refer to figure 6.1 and 'Stresses on piping', this section.

Inside buildings, piping is usually arranged parallel to building steelwork to simplify supporting and improve appearance.

Outside buildings, piping can be arranged: (1) On piperacks. (2) Near grade on sleepers. (3) In trenches. (4) Vertically against steelwork or large items of equipment.

PIPING ARRANGEMENT

- Use standard available items wherever possible
- Do not use miters unless directed to do so
- Do not run piping under foundations. (Pipes may be run under grade beams)
- Piping may have to go thru concrete floors or walls. Establish these
 points of penetration as early as possible and inform the group concerned (architectural or civil) to avoid cutting existing reinforcing bars
- Preferably lay piping such as lines to outside storage, loading and receiving facilities, at grade on pipe sleepers (see figure 6.3) if there is no possibility of future roads or site development

- Avoid burying steam lines that pocket, due to the difficulty of collecting condensate. Steam lines may be run below grade in trenches provided with covers or (for short runs) in sleeves
- Lines that are usually buried include drains and lines bringing in water or gas. Where long cold winters freeze the soil, burying lines below the frost line may avoid the freezing of water and solutions, saving the expense of tracing long horizontal parts of the lines
- Include removable flanged spools to aid maintenance, especially at pumps, turbines, and other equipment that will have to be removed for overhaul
- Take gas and vapor branch lines from tops of headers where it is necessary to reduce the chance of drawing off condensate (if present) or sediment which may damage rotating equipment
- Avoid pocketing lines—arrange piping so that lines drain back into equipment or into lines that can be drained
- Vent all high points and drain all low points on lines see figure 6.47.
 Indicate vents and drains using symbols in chart 5.7. Carefully-placed drains and valved vents permit lines to be easily drained or purged during shutdown periods: this is especially important in freezing climates and can reduce winterizing costs

ARRANGE FOR SUPPORTING

- Group lines in pipeways, where practicable
- Support piping from overhead, in preference to underneath
- Run piping beneath platforms, rather than over them

REMOVING EQUIPMENT & CLEANING LINES

 Provide union- and flanged joints as necessary, and in addition use crosses instead of elbows, to permit removing material that may solidify CHART 5.11

CLEARANCES & ACCESS

- Route piping to obtain adequate clearance for maintaining and removing equipment
- Locate within reach, or make accessible, all equipment subject to periodic operation or inspection with special reference to check valves, pressure relief valves, traps, strainers and instruments
- Take care to not obstruct access ways doorways, escape panels, truckways, walkways, lifting wells, etc.
- Position equipment with adequate clearance for operation and maintenance. Clearances often adopted are given in table 6.1. In some circumstances, these clearances may be inadequate—for example, with shell-and-tube heat exchangers, space must be provided to permit withdrawal of the tubes from the shell

CLEARAN	CES & DIMENSIONS	TABL	E 6.1
MINIMUM CLE	ARANCES		
HORIZONTAL CLEARANCES;	Operating space around equipment † Centerline of railroad to nearest	2ft	6in.
	obstruction: (1) Straight track (2) Curved track	8ft 9ft	
	Manhole to railing or obstruction	3ft	Oin.
VERTICAL CLEARANCES:	Over walkway, platform, or operating area Over stairway	6ft 7ft	
	Over high point of plant roadway: (1) Minor roadway	17ft	Oin.
	(2) Major roadway Over railroad from top of rail	20ft 22ft	Oin. 6in.
MINIMUM HOR	ZONTAL DIMENSIONS		
Width of walkwa	y at floor level	3ft	Oin.
Width of elevated	walkway or stairway	2ft	6in.
	fixed ladder See chart P-2,		16in.
Width of way for	forklift truck	8ft	Oin.
VERTICAL DIM	ENSIONS		
Railing. Top of f	loor, platform, or stair, to: (1) Lower rail (2) Upper rail	1ft 3ft	9in. 6in.
Manhole centerli	3ft	Oin.	
Valves:	See table 6.2 and chart P-2.		

†Equipment such as heat exchangers, compressors and turbines will require additional clearance. Check manufacturers' drawings to determine particular space requirements. Refer to figure 6.33 and table 6.5 for spacing heat exchangers.

- Ensure very hot lines are not run adjacent to lines carrying temperature sensitive fluids, or elsewhere, where heat might be undesirable
- Establish sufficient headroom for ductwork, essential electrical runs, and at least two elevations for pipe run north—south and east—west (based on clearance of largest lines, steelwork, ductwork, etc.—see figure 6.49)
- Elevations of lines are usually changed when changing horizontal direction where lines are grouped together or are in a congested area, so as not to block space where future lines may have to be routed

- Stagger flanges, with 12-inch minimum clearance from supporting steel
- Keep field welds and other joints at least 3 inches from supporting steel, building siding or other obstruction. Allow room for the joint to be made
- Allow room for loops and other pipe arrangements to cope with expansion by early consultation with staff concerned with pipe stressing.
 Notify the structural group of any additional steel required to support such loops

THERMAL MOVEMENT

Maximum and minimum lengths of a pipe run will correspond to the temperature extremes to which it is subjected. The amount of expansion or shrinkage in steel per degree change in temperature ('coefficient of expansion') is approximately the same — that is, the expansion from 40F to 41F is about the same as from 132 F to 133 F, or from 179 F to 180 F, etc. Chart 6.1 gives changes in line length for changes in temperature.

EXPANSION OF CARBON-STEEL PIPE

CHART 6.1

FOR AN APPROXIMATE ANSWER, FIND TEMPERATURE DIFFERENCE AT LEFT AND READ INCHES EXPANSION PER 100 FT OF PIPE AT BOTTOM. FOR EXAMPLE, A 300 F RISE IN TEMPERATURE WOULD GIVE EXPANSION PER 100 FT AS 2.5 INCHES (AN ACCURATE READING FROM 70 F TO 370 F IS 3.15 — 0.65 * 2.40 INCHES.)

STRESSES ON PIPING

THERMAL STRESSES Changes in temperature of piping, due either to change in temperature of the environment or of the conveyed fluid, cause changes in length of the piping. This expansion or contraction in turn causes strains in piping, supports and attached equipment.

SETTLEMENT STRAINS Foundations of large tanks and heavy equipment may settle or tilt slightly in the course of time. Connected piping and equipment not on a common foundation will be stressed by the displacement unless the piping is arranged in a configuration flexible enough to accommodate multiple-plane movement. This problem should not arise in new construction but could occur in a modification to a plant unit or process.

FLEXIBILITY IN PIPING

To reduce strains in piping caused by substantial thermal movement, flexible and expansion joints may be used. However, the use of these joints may be minimized by arranging piping in a flexible manner, as illustrated in figure 6.1. Pipe can flex in a direction perpendicular to its length: thus, the longer an offset, or the deeper a loop, the more flexibility is gained.

COLD SPRING

Cold springing of lines should be avoided if an alternate method can be used. A line may be cold sprung to reduce the amplitude of movement from thermal expansion or contraction in order: (a) To reduce stress on connections. (b) To avoid an interference.

Figure 6.2 schematically illustrates the use of cold springing for both purposes. Cold springing in example (a) consists of making the branch in the indicated cold position, which divides thermal movement between the cold and hot positions. In example (b) the cold spring is made equal to the thermal movement.

COLD SPRINGING

FIGURE 6.2

(b) TO AVOID AN INTERFERENCE

6 .1.1

CHART 6.1.

FIGURES 6.1-6.2

TABLE 6.1 In the following example, cold springing is employed solely to reduce a stress:

A long pipe connected by a 90-degree elbow and flange to a nozzle may on heating expand so that it imposes a load on the nozzle in excess of that recommended. Assume that piping to the nozzle has been installed at ambient temperature, and that the pipe expands 0.75 inch when hot material flows thru it, putting a lateral (sideways) load of 600 lb on the nozzle.

If the pipe had 0.375 inch of its length removed before connection, the room-temperature lateral load on the nozzle would be about 300 lb (instead of zero), and the hot load would be reduced to about 300 lb.

The fraction of the expansion taken up can be varied. A cold spring of 50% of the expansion between the temperature extremes gives the most benefit in reducing stress. Cold springing is not recommended if an alternate solution can be used. Refer to the Code for Pressure Piping ANSI B31 and to table 7.2.

RESISTANCE OF PIPING TO FLOW

All piping has resistance to flow. The smaller the flow cross section and the more abrupt the change in direction of flow, the greater is the resistance and loss of pressure. For a particular line size the resistance is proportional to the length of pipe, and the resistance of fittings, valves, etc. may be expressed as a length of pipe having the same resistance to flow. Table F-10 gives such equivalent lengths of pipe for fittings, valves, etc.

Table F-11 gives pressure drops for water flowing thru SCH 40 pipe at various rates. Charts to determine the economic size (NPS) of piping are given in the Chemical Engineer's Handbook and other sources.

SLIDERULE FOR FLOW PROBLEMS

Problems of resistance to flow can be quickly solved with the aid of the slide-rule calculator obtainable from Tube Turns Division of Chemetron Corporation, PO Box 32160, Louisville, KY 40232.

PIPERACKS 6.1.2

A 'pipeway' is the space allocated for routing several parallel adjacent lines. A 'piperack' is a structure in the pipeway for carrying pipes and is usually fabricated from steel, or concrete and steel, consisting of connected \(\subseteq\)-shaped frames termed 'bents' on top of which the pipes rest. The vertical members of the bents are termed 'stanchions'. Figure 6.3 shows two piperacks using this form of construction, one of which is 'double-decked'. Piperacks for only two or three pipes are made from 'T'-shaped members, termed 'tee-head supports'.

Piperacks are expensive, but are necessary for arranging the main process and service lines around the plant site. They are made use of in secondary ways, principally to provide a protected location for ancillary equipment.

Pumps, utility stations, manifolds, fire-fighting and first-aid stations can be located under the piperack. Lighting and other fixtures can be fitted to stanchions. Air-cooled heat exchangers can be supported above the piperack.

The smallest size of pipe run on a piperack without additional support is usually 2 inch. It may be more economic to change proposed small lines to 2-inch pipe, or to suspend them from 4-inch or larger lines, instead of providing additional support.

Table S-1 and charts S-2 give stress and support data for spans of horizontal pipe.

KEY FOR FIGURE 6.3

- (1) WHEN USING A DOUBLE DECK, IT IS CONVENTIONAL TO PLACE UTILITY AND SERVICE PIPING ON THE UPPER LEVEL OF THE PIPERACK
- (2) DO NOT RUN PIPING OVER STANCHIONS AS THIS WILL PREVENT ADDING ANOTHER DECK
- (3) PLACE LARGE LIQUID-FILLED PIPES NEAR STANCHIONS TO REDUCE STRESS ON HORIZONTAL MEMBERS OF BENTS. HEAVY LIQUID-FILLED PIPES (12-in AND LARGER) ARE MORE ECONOMICALLY RUN AT GRADE—SEE NOTE (12)
- (4) PROVIDE DISTRIBUTED SPACE FOR FUTURE PIPES—APPROXIMATELY AN ADDITIONAL 25 PERCENT (THAT IS, 20 PERCENT OF FINAL WIDTH—SEE TABLES A-1)
- (5) HOT PIPES ARE USUALLY INSULATED AND MOUNTED ON SHOES
- (6) WARM PIPES MAY HAVE INSULATION LOCALLY REMOVED AT SUPPORTS
- (7) THE HEIGHT OF A RELIEF HEADER IS FIXED BY ITS POINT OF ORIGIN AND THE SLOPE REQUIRED TO DRAIN THE LINE TO A TANK, Etc.
- (B) ELECTRICAL AND INSTRUMENT TRAYS (FOR CONDUIT AND CABLES) ARE BEST PLACED ON OUTRIGGERS OR BRACKETS AS SHOWN, TO PRESENT THE LEAST PROBLEM WITH PIPES LEAVING THE PIPEWAY. ALTERNATELY, TRAYS MAY BE ATTACHED TO THE STANCHIONS
- (9) WHEN CHANGE IN DIRECTION OF A HORIZONTAL LINE IS MADE, IT IS BEST ALSO TO MAKE A CHANGE OF ELEVATION (EITHER UP OR DOWN). THIS AVOIDS BLOCKING SPACE FOR FUTURE LINES, 90-DEGREE CHANGES IN DIRECTION OF THE WHOLE PIPEWAY OFFER THE OPPORTUNITY TO CHANGE THE ORDER OF LINES. A SINGLE DECK IS SHOWN AT AN INTER-MEDIATE ELEVATION
- (10) SOMETIMES INTERFACES ARE ESTABLISHED TO DEFINE BREAKPOINTS FOR CONTRACTED WORK (WHERE ONE CONTRACTOR'S PIPING HAS TO JOIN WITH ANOTHERS). AN INTERFACE IS AN IMAGINARY PLANE WHICH MAY BE ESTABLISHED FAR ENOUGH FROM A WALL, SIDING, PROCESS UNIT, OR STORAGE UNIT TO ENABLE CONNECTIONS TO BE MADE
- (11) PIPES SHOULD BE RACKED ON A SINGLE DECK IF SPACE PERMITS
- (12) PIPING SHOULD BE SUPPORTED ON SLEEPERS AT GRADE IF ROADS, WALK-WAYS, Etc., WILL NOT BE REQUIRED OVER THE PIPEWAY AT A LATER DATE. PIPING "AT GRADE" SHOULD BE 12 INCHES OR MORE ABOVE GRADE
- (13) CURRENT PRACTICE IS TO SPACE BENTS 20–25 FEET APART. THIS SPACING IS A COMPROMISE BETWEEN THE ACCEPTABLE DEFLECTIONS OF THE SMALLER PIPES AND THE MOST ECONOMIC BEAM SECTION DESIRED FOR THE PIPERACK. PIPERACKS ARE USUALLY NOT OVER 25 FEET IN WIDTH. IF MORE ROOM IS NEEDED, THE PIPERACK IS DOUBLE. OR TRIPLE-DECKED
- (14) MINIMUM CLEARANCE UNDERNEATH THE PIPERACK IS DETERMINED BY AVAILABLE MOBILE LIFTING EQUIPMENT REQUIRING ACCESS UNDER THE PIPERACK. VERTICAL CLEARANCES SHOULD BE AS SET OUT IN TABLE 6.1. BUT CANNOT NECESSARILY BE ADHERED TO AS ELEVATIONS OF PIPES AT INTERFACES ARE SOMETIMES FIXED BY PLANT SUBCONTRACTORS. IF THIS SITUATION ARISES, THE PIPING GROUP SHOULD ESTABLISH MAXIMUM AND MINIMUM ELEVATIONS WHICH THE PIPING SUBCONTRACTORS MUST WORK TO—THIS HELPS TO AVOID PROBLEMS AT A LATER DATE. CHECK THE MINIMUM HEIGHT REQUIRED FOR ACCESS WHERE THE PIPERACK RUNS PAST A UNIT OR PLANT ENTRANCE
- (15) WHEN SETTING ELEVATIONS FOR THE PIPERACK, TRY TO AVOID POCKETS IN THE PIPING. LINES SHOULD BE ABLE TO DRAIN INTO EOUIPMENT OR LINES THAT CAN BE DRAINED
- (16) GROUP HOT LINES REQUIRING EXPANSION LOOPS AT ONE SIDE OF THE PIPERACK FOR EASE OF SUPPORT—SEE FIGURE 6.1
- (17) LOCATE UTILITY STATIONS, CONTROL (VALVE) STATIONS, AND FIREHOSE POINTS ADJACENT TO STANCHIONS FOR SUPPORTING
- (1B) LEAVE SPACE FOR DOWNCOMERS TO PUMPS, Etc., BETWEEN PIPERACK AND ADJACENT BUILDING OR STRUCTURE

FIGURE 6.3 Valves are used for these purposes:

- (1) Process control during operation
- (2) Controlling services and utilities—steam, water, air, gas and oil
- (3) Isolating equipment or instruments, for maintenance
- (4) Discharging gas, vapor or liquid
- (5) Draining piping and equipment on shutdown
- (6) Emergency shutdown in the event of plant mishap or fire

WHICH SIZE VALVE TO USE ?

Nearly all valves will be line size — one exception is control valves, which are usually one or two sizes smaller than line size; never larger.

At control stations and pumps it has been almost traditional to use line-size isolating valves. However, some companies are now using isolating valves at control stations the same size as the control valve, and at pumps are using 'pump size' isolating valves at suction and discharge. The choice is usually an economic one made by a project engineer.

The sizes of bypass valves for control stations are given in 6.1.4, under 'Control (valve) stations'.

WHERE TO PLACE VALVES

See 6.3.1 for valving pumps, under 'Pump emplacement & connections'.

- Preferably, place valves in lines from headers (on piperacks) in horizontal rather than vertical runs, so that lines can drain when the valves are closed. (In cold climates, water held in lines may freeze and rupture the piping: such lines should be traced see 6.8.2)
- To avoid spooling unnecessary lengths of pipe, mount valves directly onto flanged equipment, if the flange is correctly pressure-rated. See 6.5.1 under 'Nozzle loading'
- A relief valve that discharges into a header should be placed higher than the header in order to drain into it
- Locate heavy valves near suitable support points. Flanges should be not closer than 12 inches to the nearest support, so that installation is not hampered
- For appearance, if practicable, keep centerlines of valves at the same height above floor, and in-line on plan view

OPERATING ACCESS TO VALVES

- Consider frequency of operation when locating manually-operated valves
- Locate frequently-operated valves so they are accessible to an operator from grade or platform. Above this height and up to 20 ft, use chain operators or extension stem. Over 20 ft, consider a platform or remote operation

VALVE OPERATING HEIGHTS *

ORDER OF PREFERENCE FOR VALVE	STEM CENTERLINE ELEVATION FOR HORIZONTAL VALVES		HANDWHEEL ELEVATION FOR VERTICAL VALVES	MINIMUM ELEVATION OF HANOWHEEL RIM FOR TILTEO VALVES (handwheel overhead)				
LOCATION	OPERATING	MAINTENANCE	(upright, closed)	ANGLE OF STEM FROM VERTICAL	MINIMUM ELEVATION			
1st	3'6" to 4'6"	3'-6" to 4'-6"	3'-9" to 4'-3"					
2nd †	2'-0" to 3'-6"	1'-0" to 3'-6"	2'-0" to 3'-9"					
3rd †	4'-6" to 6'-6"+ ½ handwheel diameter		300	5'-0"				
(HEAD HAZARD)			450	5'~6"				
(HEAD HAZARD)				60°	6'-0"			
ACCEPTABLE FOR 1-INCH AND SMALLER VALVES	0'-6" to 2'-0" and 6'-9" to 7'-6"							
* REFER TO CHART P-2 IN PART II † TO MINIMIZE HAZARD TO PERSONNEL IF VALVES ARE TO BE LOCATED AT HEIGHTS WITHIN 2nd AND 3nd CHOICES, AVOID POINTING STEMS INTO WALKWAYS AND WORKING AREAS, TRY TO PLACE VALVES CLOSE TO WALLS OR LARGE ITEMS WHICH ARE CLEARLY SEEN.								

TABLE 6.2

- Infrequently-used valves can be reached by a ladder—but consider alternatives
- Do not locate valves on piperacks, unless unavoidable
- Group valves which would be out of reach so that all can be operated by providing a platform, if automatic operators are not used
- If a chain is used on a horizontally-mounted valve, take the bottom of the loop to within 3 ft of floor level for safety, and provide a hook nearby to hold the chain out of the way —see 3.1.2, under 'Chain'
- Do not use chain operators on screwed valves, or on any valve 1½-inches and smaller
- With lines handling dangerous materials it is better to place valves at a suitably low level above grade, floor, platform, etc., so that the operator does not have to reach above head height

ACCESS TO VALVES IN HAZARDOUS AREAS

- Locate main isolating valves where they can be reached in an emergency such as an outbreak of fire or a plant mishap. Make sure that personnel will be able to reach valves easily by walkway or automobile
- Locate manually-operated valves at the plant perimeter, or outside the hazardous area
- Ensure that automatic operators and their control lines will be protected from the effects of fire
- Make use of brick or concrete walls as possible fire shields for valve stations
- Inside a plant, place isolating valves in accessible positions to shut feed lines for equipment and processes having a fire risk
- Consider the use of automatic valves in fire-fighting systems to release
 water, foam and other fire-fighting agents, responding to heat-fusible
 links, smoke detectors, etc., triggered by fire or undue rise in temperature
 —advice may be obtained from the insurer and the local fire department

 If possible, arrange valves so that supports will not be on removable spools:

 A plug valve requiring lubrication must be easily accessible, even though it may not be frequently operated

MAKE MAINTENANCE SAFE

Use line-blind valves, spectacle plates or the 'double block and bleed' where positive shutoff is required either for maintenance or process needs — see 2.7

ORIENTATION OF VALVE STEMS

- Do not point valve stems into walkways, truckways, ladder space, etc.
- Unless necessary, do not arrange gate and globe valves with their stems pointing downward (at any angle below the horizontal), as:—
 - (1) Sediment may collect in the gland packing and score the stem.
 - (2) A projecting stem may be a hazard to personnel.
- o If an inverted position is necessary, consider employing a dripshield:

CLOSING DOWN LINES

Consider valve-closing time in shutting down or throttling large lines. Rapid closure of the valve requires rapid dissipation of the liquid's kinetic energy, with a risk of rupturing the line. Long-distance pipelines present an example of this problem.

A liquid line fitted with a fast-closing valve should be provided with a standpipe upstream and close to the valve to absorb the kinetic energy of the liquid. A standpipe is a closed vertical branch on a line: air or other gas is trapped in this branch to form a pneumatic cushion.

IF THERE IS NO P&ID

- Provide valves at headers, pumps, equipment, etc., to ensure that the system will be pressure-tight for hydrostatic testing, and to allow equipment to be removed for maintenance without shutting down the system
- Provide isolating valves in all small lines branching from headers—for example, see figure 6.12
- Provide isolating valves at all instrument pressure points for removal of instruments under operating conditions
- Provide valved drains on all tanks, vessels, etc., and other equipment which may contain or collect liquids
- Protect sensitive equipment by using a fast-closing check valve to stop backflow before it can gather momentum
- Consider butt-welding or ring-joint flanged valves for lines containing hazardous or 'searching' fluids. Hydrogen is especially liable to leak
- Consider seal welding screwed valves if used in hydrocarbon service —see chart 2.3 (inset sketch)
- Provide sufficient valves to control flows
- Consider providing a concrete pit (usually about 4 ft x 4 ft) for a valve which is to be located below grade
- Consider use of temporary closures for positive shutoff—see 2.7
- Provide a bypass if necessary for equipment which may be taken out of service
- Provide a bypass valve around control stations if continuous flow is required. See 6.1.4 and figure 6.6. The bypass should be at least as large as the control valve, and is usually globe type, unless 6-inch or larger, when a gate valve is normally used (see 3.1.4, under 'Gate valve')
- Provide an upstream isolating valve with a small valved bypass to equipment which may be subject to fracture if heat is too rapidly applied on opening the isolating valve. Typical use is in steam systems to lessen the risk of fracture of such things as castings, vitreous-lined vessels, etc.
- Consider providing large gate valves with a valved bypass to equalize pressure on either side of the disc to reduce effort needed to open the valve

.1.3

- Refer to 3.1.9 for valve orientation
- e Extend safety-valve discharge risers that discharge to atmosphere at least 10 ft above the roof line or platform for safety. Support the vent pipe so as not to strain the valve or the piping to the valve. Pointing the discharge line upward (see figure 6.4) imposes less stress when the valve discharges than does the horizontal arrangement
- The downstream side of a safety valve should be unobstructed and involve the minimum of piping. The downstream side of a relief or safety-relief valve is piped to a relief header or knockout drum—see 6.11.3, under 'Venting gases', and 6.12, under 'Relieving pressure—liquids'
- Pipe exhausting to atmosphere is cut square, not at a slant as formerly done, as no real advantage is gained for the cost involved
- Normally, do not instal a valve upstream of a pressure-relief valve protecting a vessel or system from excessive pressure. However, if an isolating valve is used to facilitate maintenance of a pressure-relief valve, the isolating valve is 'locked open'—sometimes termed 'car sealed open' (CSO)
- In critical applications, two pressure-relief valves provided with isolating valves can be used

The installation of pressure-relieving devices and the use of isolating valves in lines to and from such devices is governed by the Code for Pressure Piping, ANSI B31 and the ASME Boiler and Pressure Vessel Code.

INSTALLING BUTTERFLY VALVES

- Ensure that the disc has room to rotate when the valve is installed, as the disc enters the piping in the open position
- Place butterfly valves with integral gaskets between welding-neck or socket-welding flanges—see 3.1.6, under 'Butterfly valve'. The usual method of welding a slip-on flange (see figure 2.7) will not give an adequate seal, unless the pipe is finished smooth with the face of the flange

A BLEED VALVE TO RELIEVE PRESSURE BETWEEN THE ISOLATING VALVE AND

IF A SPOOL BETWEEN THE TWO VALVES IS NOT USED, THE BLEED VALVE MAY

THE PRESSURE RELIEF VALVE (FOR MAINTENANCE PURPOSES)

BE PLACED AS SHOWN IF THE VALVE'S BODY CAN BE TAPPED

6.1.5

A control station is an arrangement of piping in which a control valve is used to reduce and regulate the pressure or rate of flow of steam, gas, or liquid.

Control stations should be designed so that the control valve can be isolated and removed for servicing. To facilitate this, the piping of the stations should be as flexible as circumstances permit. Figure 6.5 shows ways of permitting control valve removal in welded or screwed systems. Figure 6.6 shows the basic arrangement for control station piping.

The two isolating valves permit servicing of the control valve. The emergency bypass valve is used for manual regulation if the control valve is out of action.

The bypass valve is usually a globe valve of the same size and pressure rating as the control valve. For manual regulation in lines 6-inch and larger, a gate valve is often the more economic choice for the bypass line—refer to 3.1.4, under 'Gate valve'.

Figures 6.7—11 show other ways of arranging control stations—many more designs than these are possible. These illustrations are all schematic and can be adapted to both welded and screwed systems.

DESIGN POINTS

- For best control, place the control station close to the equipment it serves, and locate it at grade or operating platform level
- Provide a pressure-gage connection downstream of the station's valves.
 Depending on the operation of the plant, this connection may either be fitted with a permanent pressure indicating gage, or be used to attach a gage temporarily (for checking purposes)
- Preferably, do not 'sandwich' valves. Place at least one of the isolating valves in a vertical line so that a spool can be taken out allowing the control valve to be removed
- If the equipment and piping downstream of the station is of lower pressure rating than piping upstream, it may be necessary to protect the downstream system with a pressure-relief valve
- Provide a valved drain near to and upstream of the control valve. To save space, the drain is placed on the reducer. The drain valve allows pressure between the isolating valve(s) and control valve to be released. One drain is used if the control valve fails open, and two drains (one each side of the control valve) if the control valve fails closed
- Locate stations in rack piping at grade, next to a bent or column for easy supporting

DRAFTING THE STATION

In plan view, instead of drawing the valves, etc., the station is shown as a rectangle labeled 'SEE DETAIL "X" ' or 'DWG "Y"-DETAIL "X" ', if the elevational detail appears on another sheet. See chart 5.7.

A utility station usually comprises three service lines carrying steam, compressed air and water. The steam line is normally ¾-inch minimum, and the other two services are usually carried in 1-inch lines. These services are for cleaning local equipment and hosing floors. (Firewater is taken from points fed from an independent water supply .)

The steam line is fitted with a globe valve and the air and water lines with gate valves. All are terminated with hose connections about 3½ ft above floor or grade. A utility station should be located at some convenient steel column for supporting, and all areas it is to serve should be reachable with a 50-ft hose.

Most companies have a standard design for a utility station. Figure 6.12 shows a design for a standard station which can be copied onto one of the design drawings for reference, or otherwise supplied with the drawings to the erecting contractor who usually runs the necessary lines. A notation used on plan views to indicate the station and services required is:

SERVICES:	STEAM, AIR, WATER	AIR, WATER AIR, WATER ST		STEAM, AIR		
STATION SYMBOL:	SAW	AW	sw	SA		

UTILITY STATION

FIGURE 6.12

FIGURES 6.4 & 6.12

If subject to freezing conditions, utility station steam lines are usually trapped (otherwise, the trap can be omitted). Water is sometimes run underground in cold climates using an additional underground cock or plug valve with an extended key for operating, and a self-draining valve at the base of the riser. Another method to prevent freezing, is to run the water and steam lines in a common insulation.

SCHEMATIC CONTROL STATION ARRANGEMENTS

FIGURES 6.5 - 6.11

PIPING FITTINGS ALLOWING CONTROL VALVE REMOVAL

FLANGED CONTROL VALVES

THREADED CONTROL VALVES

BASIC ARRANGEMENT

ARRANGEMENTS FOR ANGLE CV's

STEAM STATIONS OR TURBINE & OTHER STEAM USERS

STATIONS FOR LIQUIDS HARMFUL TO PERSONNEL

Pipe is held either from above by hangers or by supports of various types on which it rests. Hangers are also referred to as supports. Refer to 2.12 for typical hardware.

In the open, single pipes are usually routed so that they may be supported by fixtures to buildings or structures. A group of parallel pipes in the open is normally supported on a piperack—see 6.1.2.

Within a building, piping is routed primarily with regard to its process duty and secondarily with regard to existing structural steelwork, or to structural steel which may be conveniently added. Separate pipe-holding structures inside buildings are rare.

FUNCTIONS OF THE SYSTEM OF SUPPORT

6.2.1

The mechanical requirements of the piping support system are:

- (1) To carry the weight of the piping filled with water (or other liquid involved) and insulation if used, with an ample safety margin use a factor of 3 (= ratio of load just causing failure of support or hanger to actual load) or the safety factor specified for the project. External loading factors to be considered are the wind loads, the probable weight of ice buildup in cold climates, and seismic shock in some areas
- (2) To ensure that the material from which the pipe is made is not stressed beyond a safe limit. In continuous runs of pipe, maximum tensile stress occurs in the pipe cross sections at the supports. Table S-1 gives spans for water-filled steel and aluminum pipe at the respective stress limits 4000 and 2000 psi. Charts S-2 give the maximum overhangs if a 3-ft riser is included in the span. The system of supports should minimize the introduction of twisting forces in the piping due to offset loads on the supports; the method of cantilevered sections set out in 6.2.4 substantially eliminates torsional forces
- (3) To allow for draining. Holdup of liquid can occur due to pipes sagging between supports. Complete draining is ensured by making adjacent supports adequately tilt the pipe—see 6.2.6
- (4) To permit thermal expansion and contraction of the piping—see 6.1.1, under 'Stresses on piping'
- (5) To withstand and dampen vibrational forces applied to the piping by compressors, pumps, etc.

PIPING SUPPORT GROUP RESPONSIBILITIES 6.2.2

A large company will usually have a specialist piping support group responsible for designing and arranging supports. This group will note all required supports on the piping drawings (terminal job) and will add drawings of any special details.

The piping support group works in cooperation with a stress analysis group—or the two may be combined as one group—which investigates areas of stress due to thermal movement, vibration, etc., and makes recommendations to the piping group. The stress group should be supplied with preliminary layouts for this purpose by the piping group, as early as possible.

LOADS ON SUPPORTS

Refer to tables P-1, which list the weights per foot of pipe and contained water (see 6.11.2). Weights of fittings, flanges, valves, bolts and insulation are given in tables W-1, compiled from suppliers' data.

ARRANGING POINTS OF SUPPORT

6.2.3

Pipe supports should be arranged bearing in mind all five points in 6.2.1. Inside buildings, it is usually necessary to arrange supports relative to existing structural steelwork, and this restricts choice of support points.

The method of support set out in 6.2.4 is ideal: In practice, some compromize may be necessary. The use of dummy legs and the addition of pieces of structural steel may be needed to obtain optimal support arrangements.

CALCULATING PREFERRED POINTS OF SUPPORT

6.2.4

Ideally, each point of support would be at the center of gravity of an associated length of piping. Carrying this scheme thru the entire piping system would substantially relieve the system from twisting forces, and supports would be only stressed vertically. A method of balancing sections of pipe at single support points is illustrated for a straight run of pipe in figure 6.13.

BALANCING SECTIONS OF PIPE

FIGURE 6.13

Consider hanger B associated with a length of pipe b. This length of pipe is supported by B, located at its center of gravity, which is at the midway point for a straight length of uniform pipe. Hangers A, C, D and E are likewise placed at the respective centers of gravity of lengths of pipe a, c, d and e. If any length of pipe is removed, the balance of the rest of the line would be unaffected. Each of the hangers must be designed to adequately support the load of the associated piping—see 6.2.1, point (1).

The presence of heavy flanges, valves, etc., in the piping will set the center of gravity away from the midpoint of the associated length. Calculation of support points and loadings is more quickly done using simple algebra. Answers may be found by making trial-and-error calculations, but this is much more tedious.

FIGURES 6.5-6.11&6.13 Correct location of piping supports can be determined by the use of 'moments of force'. Multiplying a force by the distance of its line of action from a point gives the 'moment' of the force about that point. A moment of force can be expressed in lb-ft (pounds weight times feet distance). The forces involved in support calculations either are the reactions at supports and nozzles, or are the downward-acting forces due to the weight of pipe, fittings, valves, etc.

In figure 6.14(a), the moment about the support of the two flanges is (30 + 20)(16) = 800 lb-ft, counter-clockwise. The moment of the 100-lb valve about the support is (100)(8) = 800 lb-ft, clockwise. As the lengths of pipe each side of the support are about the same, they may be omitted from the moment equation. The problem is simplified to balancing the valve and flanges.

USE OF MOMENTS FIGURE 6.14

Suppose it was required to balance this length of piping with a 120 lb valve on the right—where should the 120 lb valve be placed?

Referring to figure 6.14(b), if x represents the unknown distance of the 120 lb valve from the support, the piping section would be in balance if:

(50)(16) = (120)(
$$x$$
).
That is, if $x = (50)(16)/(120) = (800)/(120) = 6$ ft 8 in.

A more involved example follows:-

Figure 6.15 shows a length of 4-inch piping held by the hangers **F**, **G**, and **H**, and support **J**. The lengths of associated piping are shown by dashed separation lines. The weights of pipe and fittings are shown on the drawing. The 4-inch pipe is assumed to weigh 15 lb per foot of length. Welded elbows and tees are assumed to weigh the same as line pipe.

First consider the section associated with hanger **F**. The weight of pipe to the left of **F** is (15)(20-x) lb, and as its center of gravity is at (20-x)/(2) ft, its moment on the hanger is $(15)(20-x)^2/(2)$ lb-ft. The heavy valve and flanges are assumed to have their mass center 5 ft from the end, and their moment is (x-5)(360) lb-ft. Ignoring the pipe 'replaced' by the valve, the weight of pipe to the right of **F** is (15)(x) lb and its moment about **F** is (15)(x)(x)/(2) lb-ft. As the associated length is in balance:

CALCULATING PIPE SUPPORTS

$$(15)(20 - x)^2/(2) = (360)(x - 5) + (15)(x^2)/(2)$$

 $x = (80)/(11)$, or about 7 ft 3 in.

The x^2 terms canceled—this must be so, as there can physically be only one value for x. The load on hanger **F** is (20)(15) + (360) or 660 lb.

The support $\bf J$ should be at the center of the associated length of pipe, as already shown in figure 6.15, and the load on the support is (30)(15), or 450 lb.

The hanger G is easily seen to be suitably placed, as there is 5 ft of 4-inch pipe overhanging each side. Only the load on the hanger need be calculated, which is (5+5+24+2)(15)+(10), or 550 lb.

The location of hanger **H** has to be found by a calculation like that for hanger **F**, except that the heavy terminal flange has also to be taken into account. The moment equation in lb-ft is:

$$(300)(y-0.5) + (15)(y^2)/(2) = (15)(10-y)^2/(2) + (40)(10-y)$$

which gives y as nearly 2 ft 8 in.

The load on hanger \mathbf{H} is about (220)+(3)(40)+(15)(10), or 490 lb.

The locations of fittings and support points will usually be already defined, and the problem is to calculate the reaction on the terminal support, and to see that the support is designed to withstand the load on it. In calculating the load on the terminal support, it should be made certain that the load *is* downward—with some arrangements, the piping would tend to raise itself off the terminal support (negative load) and if this type of arrangement is not changed, the terminal support will have to anchor the piping.

The sketch shows a horizontal end arrangement. Taking moments in lb-ft about the support A:

$$(15)(10)(\%)(10) = (15)(18 + 2)(\%)(18 + 2) + (100)(18) - (R)(18 + 2)$$

which gives $R = 202\%$ lb.

The reaction, F, on the support A can be calculated by taking moments about the support B or another axis, or more simply by equating vertical forces:

$$F + 202\frac{1}{2} = (15)(10+18+2) + 100 = 550$$
, which gives $F = 347\frac{1}{2}$ lb.

PROBLEM OF THE RISER

Supports for lines changing in direction can be calculated by the cantilever method. Sketch (a) below shows that the weight of the vertical part of the piping can be divided between two cantilevered sections in any proportion suited to the available support points. Sketches (b) and (c) show the vertical piping associated wholly with the left- or right-hand cantilevered sections. The piping may be supported by means of a dummy leg, if direct support is not practicable.

GRAPHIC METHOD FOR FINDING LOAOS ON SUPPORTS

The following graphical method permits quick calculation of bearing loads for 'corner' piping arrangements.

PROBLEM To find the load to be taken by a support to be placed at point 'E' in the piping arrangement shown:

SOLUTION

- [1] Draw the plan view to any convenient scale (as above)
- [2] Add the axis line AB (this must pass thru points of support)
- [3] Divide the run of piping into parts. Piping between the support points A and B is considered in three parts: (1) The valve. (2) The length of pipe BC. (3) The length of pipe AC—the short piece of line omitted for the valve is ignored, and the effect of the elbow neglected.
- [4] Drop perpendiculars from midpoints M₁ and M₂, the valve and support point E to the axis line.
- Take moments about the axis line, measuring the lengths of perpendiculars M₂P, ES, DQ and M₁R directly from the plan view (these lengths are noted on the sketch):

PIPE LENGTH AC PIPE LENGTH CB VALVE ASSY. LOAO ON SUPPORT

(20)(18)(6) + (15)(18)(6) + (200)(9) = (F)(9.6)

which gives the load on the support at E as:

F = 581 lb

EXTENSION OF THE METHOD

The same method can be used if the angle at the corner is different from 90 degrees, or if vertical lines are included in the piping.

NOTES

- [1] The axis line must pass thru points of support. If the axis line is not horizontal, the lengths of the perpendiculars are still measured directly from the plan view.
- [2] This method does not take into account additional moments due to bending and torsion of pipe. However, it is legitimate to calculate loads on supports as if the pipe is rigid.

This problem often occurs when running pipes from one piperack to another, with a change in elevation, as in figure 6.15. Too much overhang will stress the material of the pipe beyond a safe limit near one of the supports adjacent to the bend, and the designer needs to know the allowable overhang.

The stresses set up in the material of the pipe set practical limits on the overhangs allowed at corners. The problem is like that for spans of straight pipe allowable between supports. Overhangs permitted by stated limits for stress are given in charts S-2.

PIPE SUPPORTS ALLOWING THERMAL MOVEMENT 6.2.5

Piping subject to large temperature changes should be routed so as to flex under the changes in length—see figure 6.1. However, hangers and supports must permit these changes in length. Figures 2.72 A & B show a selection of hangers and supports able to accommodate movement. For single pipes hung from rod or bar hangers, the hanger should be sufficiently long to limit total movement to 10 degrees of arc.

SPRING SUPPORTS

There are two basic types of spring support: (1) Variable load. (2) Constant load—refer to 2.12.2. Apart from cost, the choice between the two types depends on how critical the circumstances are. For example, if a vertical line supported on a rigid support at floor level is subject to thermal movement, a variable-spring hanger or support at the top of the line is suitable—see figure 6.16 (a) and (b).

If a hot line comes down to a nozzle connected to a vessel or machine, and it is necessary to keep the nozzle substantially free from vertical loading, a constant-load hanger can be used—see figure 6.16(c). Cheaper alternate methods of supporting the load are by a cable-held weight working over a pulley, as illustrated in figure 6.16(d), or by a cantilevered weight.

VARIABLE- & CONSTANT-LOAD HANGERS & SUPPORTS

FIGURE 6.16

SLOPED LINES AVOID POCKETING AND AID DRAINING

6.2.6

As pipe is not completely rigid, sagging between points of support must occur. In many instances, sagging is acceptable, but in others it must be restricted.

The nature of the conveyed material, the process, and flow requirements determine how much sagging can be accepted. Sagging is reduced by bringing adjacent points of support closer. Pocketing of liquid due to sagging can be eliminated by sloping the line so that the difference in height between adjacent supports is at least equal to triple the deflection (sag) at the midpoint. Lines which require sloping include blowdown headers, pressure-relief lines, and some process, condensate and air lines. (Air lines are discussed in 6.3.2, and draining of compressed-air lines in 6.11.4.)

Complete draining may be required for lines used in batch processing to avoid contamination, or where a product held in a line may degenerate or polymerize, or where solids may settle and become a problem.

In freezing conditions, lines conveying condensate from traps to drains are sloped; condensate headers may be sloped (as an alternative to steam tracing), depending on the rate of flow.

In the past, steam lines were sloped to assist in clearing condensate, but the improved draining is now not considered to be worth the difficulty and expense involved.

SLOPED LINES ON PIPERACKS

Sloped lines can be carried on brackets attached to the piperack stanchions (see figure 6.3). To obtain the required change in elevation at each bent, the brackets may be attached at the required elevations; alternately, a series of brackets can be arranged at the same elevation and the slope obtained by using shoes of different sizes—this method leads to fewer construction problems.

Shoes of graded sizes are also the best method for sloping smaller lines on the piperack. It is not usual or desirable to hang lines from the piperack unless necessary vertical clearances can be maintained.

SLOPED LINES IN BUILDINGS

Inside a building, both large and small sloped lines can rest on steel brackets, or be held with hangers. Rods with turnbuckles are used for hangers on lines required to be sloped. Otherwise, drilled flat bar can be used. (Adjustable brackets are available from the Unistrut and Kindorf ranges of support hardware.)

SUPPORTING PIPE MADE FROM PLASTICS OR GLASS 6.2.7

Pipe made either from flexible or rigid plastics cannot sustain the same span loads as metal pipe, and requires a greater number of support points. One way of providing support is to lay the pipe upon lengths of steel channel sections or half sections of pipe, or by suspending it from other steel pipes. The choice of steel section would depend on the span loads and the size and type of plastic pipe.

For glass process and drain lines, hangers for steel pipe are used, provided that they hold the pipe without causing local strains and are padded so as not to crack the pipe. Rubber and asbestos paddings are suitable. Uninsulated horizontal lines from 1 to 6 inch in size containing gas or liquid of specific gravity less than 1.3 should be supported at 8 to 10 ft intervals. Couplings and fittings should be about 1 ft from a point of support.

6.2.8

Terms such as 'dummy leg', 'anchor', 'shoe', etc., used in detailing supporting hardware are explained in 2.12.2. Refer to chart 5.7 for symbols.

GENERAL

- Design hangers for 2½-inch and larger pipe to permit adjustment after installation
- If piping is to be connected to equipment, a valve, etc., or piping assembly that will require removal for maintenance, support the piping so that temporary supports are not needed
- Base load calculations for variable-spring and constant-load supports on the operating conditions of the piping (do not include the weight of hydrostatic test fluid)
- If necessary, suspend pipes smaller than 2-inch nominal size from 4-inch and larger pipes

DUMMY LEGS

Table 6.3 suggests sizes for dummy legs. The allowable stress on the wall of the elbow or line pipe to which the dummy leg is attached sets a maximum length for the leg. The advice of the stress group should be sought.

APPROXIMATE SIZES FOR DUMMY LEGS

TABLE 6.3

NPS of Piping (inches)	2	3	4	6	8	10	12	14
NPS of Pipe forming Leg (in.)	11/2	2	3	4	6	8	8	10
Size of W-Flange (in.)					5	8	8	10

ANCHORS

Anchors are required as stated in the following two points. However, advice from the stress and/or piping support groups should be obtained:

- Provide anchors as necessary to prevent thermal or mechanical movement overloading nozzles on vessels or machinery, branch connections, cast-iron valves, etc.
- Provide anchors to control direction of expansion; for example, at battery limits and on piping leaving units, so that movement is not transmitted to piping on a piperack

SHOES, GUIDES, & SADDLES

- Do not use shoes on uninsulated pipes, unless required for sloping purposes. For reduced friction where lines are long and subject to movement, slide plates are an alternative—see 2.12.2.
- Use of wye-type shoes enables pipes to be placed on the shoe before welding and makes construction easier — see figure 2.72A
- Welding the pipe directly to shoes is not always acceptable; for example with rubber-lined pipe. Bolted or strapped shoes are more suitable

- Check the code pertinent to the project, as it may prohibit 'partial' welds for supports—that is, welds that do not encircle the pipe
- Provide slots in shoes to accept the straps or wires used to hold insulation to pipe
- Provide guides for long straight pipes subject to thermal movement, either by guiding the shoe or by guiding pipe support saddles attached to the pipe, as shown:

 For better stress distribution in the pipe wall, pipe support saddles are usually used on large lines. They can also be used for lines that may twist over when moving

SUPPORTING VALVES

- Provide support as close as possible to heavy valves, or try to get valves moved close to a suitable point where support can be provided
- Large valves and equipment such as meters located at grade will usually require a concrete foundation for support

WELDING PIPE-SUPPORT & PLATFORM BRACKETS TO VESSELS, Etc.

- Instruct the vendor to add brackets required on pressure vessels prior to stress-relieving and testing—otherwise, retesting and recertification may be obligatory
- It is permissible to specify brackets to be welded to non-pressure vessels provided that the strength of the vessel is not degraded

SUPPORTING PIPE AT NOZZLES

Ensure that nozzles on machinery, compressors, pumps, turbines, etc., are substantially free from loads transmitted by the piping, which may be due to the weight of the piping, or to movement in the piping resulting from contraction, expansion, twisting, vibration or surging. Equipment suppliers will sometimes state maximum loadings permissible at nozzles. Excessive loads applied to nozzles on machinery can force it from alignment and may cause damage.

Piping to pumps, turbines, etc., should be supported adequately, but should allow the equipment to be removed. Supports for this piping are best made integral with the concrete foundations, especially if thermal movement occurs and should be on the same level as the base of the equipment, so that on heating or cooling, vertical differential expansion and contraction between supports and equipment will be minimized.

.2.4 .2.8

FIGURE 6.16

TABLE 6.3

6.3.1

6.3

TYPICAL PIPING FOR CENTRIFUGAL PUMPS

Most pumps used in industry are of the centrifugal type. Figures 6.17 and 6.18 show typical piping and fittings required at a centrifugal pump together with the valves necessary to isolate the pump from the system.

The check valve is required to prevent possible flow reversal in the discharge line. A permanent in-line strainer is normally used for screwed suction piping and a temporary strainer for butt-welded/flanged piping. The temporary strainer is installed between flanges—see figure 2.69. A spool is usually required to facilitate removal.

Although centrifugal pumps are provided with suction and discharge ports of cross-sectional area large enough to cope with the full rated capacity of the pump, it is often necessary with thick fluids or with long suction lines to use an inlet pipe of larger size than the inlet port, to avoid cavitation. Cavitation is the pulling by the pump of vapor spaces in the pumped liquid, causing reduction of pumping efficiency, noisy running, and possible impellor and bearing damage. Refer to 6.1.3, under 'Which size valve to use?'.

Most pumps have end suction and top discharge. Limitations on space may require another configuration, such as top suction with top discharge, side suction with side discharge, etc. Determination of nozzle orientation takes place when equipment layout and piping studies are made.

AUXILIARY, TRIM, or HARNESS PIPING

Pumps, compressors and turbines may require water for cooling bearings, for mechanical seals, or for quenching vapors to prevent their escape to atmosphere. Piping for cooling water or seal fluid is usually referred to as auxiliary, trim, or harness piping, and the requirement for this piping is normally shown on the P&ID. This piping is usually shown in isometric view on one of the piping drawings.

In order to cool the gland or seal of a centrifugal pump and ensure proper sealing, it is usually supplied with liquid from the discharge of the pump, by a built-in arrangement, or piped from a connection on the pump's casing. The gland may be provided with a cooling chamber, requiring piped water. If a pump handles hot or volatile liquid, seal liquid may be piped from an external source.

DRAINING

Each pump is usually provided with a drain hub 4 to 6 inches in diameter, positioned about 9 inches in front of the pump foundation on the centerline of the pump. The drain hub is piped to the correct sewer or effluent line—see 6.13. If two small pumps have a common foundation, they can share the same drain hub.

Most centrifugal pumps have baseplates that collect any leakage from the pump. The baseplate will have a threaded connection which is piped to the drain hub. Waste seal water is also piped to the drain hub—see figure 6.19.

- In outside installations in freezing climates, provide a valved drain from the pump's casing
- Provide a short spool for a 3/4-inch drain between the on/off valve and the check valve, to drain the discharge line. If the valve is large enough, the drain can be made by drilling and tapping a boss on the check valve, as shown in figure 6.17, note (3), in which instance no spool is required.

INSTALLATION

- Do not route piping over the pump, as this interferes with maintenance.
 It is better to bring the piping forward of the pump as shown in figure 6.17
- Leave vertical clearance over pumps to permit removal for servicing
 —sufficient headroom must be left for a mobile crane for all but the smaller pumps, unless other handling is planned
- If pumps positioned close to supply tanks are on separate foundations, avoid rigid piping arrangements, as the tanks will 'settle' in the course of time
- Locate the pump as closely as practicable to the source of liquid to be pumped from storage tanks, sumps, etc., with due consideration for flexibility of the piping
- Position valves for ease of operation placing them so they are unlikely to be damaged by traffic and will not be a hazard to personnel—see table 6.2 and chart P-2
- The foundation may be of any material that has rigidity sufficient to support the pump baseplate and withstand vibration. A concrete foundation built on solid ground or a concrete slab floor is usual. The pump is positioned, the height fixed (using packing), and the grout is then poured. Grout thickness is not usually less than one inch—see figure 6.17
- A pit in which a pump is installed should have a drain, or have a sump that can be drained or pumped out
- Make the concrete foundation at least as large as the baseplate, and ensure that concrete extends at least 3 inches from each bolt

VALVES

- Valves are 'line size' unless shown otherwise on the P&ID. See 6.1.3 under 'Which size valve to use?'
- Use tilting disc or swing check valves for preference
- Do not use globe valves for isolating pumps. Suction and discharge line isolating valves are usually gate valves, but may be other valves offering low resistance to flow

SUCTION LINE

To avoid cavitation, the pump must be at the correct elevation, related to the level or head of the liquid being pumped. If the location of the pump has not previously been established on an equipment arrangement drawing, refer to the engineer involved.

Concentric reducers are used in lines 2-inch and smaller. Eccentric reducers are used in lines 2½-inch and larger, and are arranged to avoid: (1) Creating a vapor space. (2) Creating a pocket which would need to be drained. These conditions set the configuration of the reducer—that is, whether it is to be installed 'top flat' or 'bottom flat'.

If a centrifugal pump has the suction nozzle at the end (in line with the drive shaft), an elbow may be connected directly to the nozzle at any orientation.

If a pump has the suction nozzle at the side with split flow to the impellor provide a straight run of pipe equal to 3 to 5 pipe diameters of the suction line to connect to the nozzle. Alternately, an elbow may be connected to the suction nozzle, but it must be arranged in a plane at 90 degrees to the driving shaft, to promote equal flow to both sides of the impellor. If an elbow must be in the same plane as the driving shaft of the pump, consider the use of turning (or splitter) vanes to induce more even flow. Uneven flow causes damage to the impellor and bearings.

- Route suction lines as directly as possible so as not to starve the pump and incur the risk of cavitation
- If the pump draws liquid from a sump at a lower elevation, provide a combined foot valve and strainer. A centrifugal pump working in this situation requires priming initially—provide for this by a valved branch near the inlet port, or by other means
- Provide a strainer in the suction line—see figures 6.17 thru 6.21. Do
 not place a temporary startup screen immediately downstream of a
 valve, as debris may back up and prevent the valve from being closed

DISCHARGE LINE

The outlet pipe for centrifugal and other non-positive displacement pumps is in most cases chosen to be of larger bore than the discharge port, in order to reduce velocity and consequent pressure drop in the line. A concentric reducer or reducing elbow is used in the discharge line to increase the diameter. There is no restriction on the placement of elbows in discharge lines as there is in suction lines.

- Provide a pressure connection in the discharge line, close to the pump outlet — see figures 6.17 thru 6.21. It may be necessary to provide a short spool for this purpose if there is no pressure point tapping on the pump discharge nozzle
- For locations of drain connections in the discharge line, see figures 6.17 thru 6.21

PUMPS WITH SCREWED CONNECTIONS

A pump with screwed connections requires unions in the suction and discharge lines to permit removal of the pump.

PIPING FOR POSITIVE-DISPLACEMENT PUMPS

Reciprocating and rotary pumps of this type must be protected against overloading due to restriction in the discharge line. If a positive-displacement pump is not equipped with a relief valve by the manufacturer, provide a relief valve between the pump discharge nozzle and the first valve in the discharge line. The discharge from the relief valve is usually connected to the suction line between the isolating valve and the pump.

As positive displacement pumping does not greatly change the flow velocity, reducers and increasers are not usually required in suction and discharge lines. See figures 6.20 and 6.21. A positive-displacement pump having a pulsating discharge may set the piping into vibration, and to reduce this an air chamber (pneumatic reservoir) such as a standpipe can be provided downstream of the discharge valve.

KEEPING MATERIAL FROM SOLIDIFYING IN THE PUMP

It may be necessary to trace a pump (see 6.8.2) in order to keep the conveyed material in a fluid state, especially after shutdown. This problem arises either with process material having a high melting point, or in freezing conditions. Alternately, jacketed pumps can be employed (such as Foster jacketed pumps available from Parks-Cramer).

FIGURES 6.17 THRU 6.21 ARE ON THE FOLLOWING THREE PAGES, & THE KEY FOR THESE FIGURES IS ON THE THIRD OF THESE PAGES

FIGURES 6.17-6.19

SCREWED PIPING FIGURE 6.21 (13) PSV (12 (12 PIPING AT NOZZLES IS SPREAD (AS NECESSARY) TO ACCOMMODATE VALVES -DRAIN (7B) DRAIN ALTERNATE DRAIN DRAINS -FOR SOCKET-WELDED PIPING, COMPARABLE FITTINGS ARE USED IN ARRANGEMENTS SIMILAR TO THOSE (\mathbf{n}) FOR SCREWED PIPING (DBLIDUE PRESENTATION) (DBLIQUE PRESENTATION)

KEY FOR FIGURES 6.17-6.21

- (1) ALTERNATE HDRIZDNTAL DISCHARGES, WITH LINE DFFSET AND WITH VALVES LAID DVER AND DFFSET AS NECESSARY—THIS MAY BE NECESSARY IF THE VERTICAL POSITION PLACES HANDWHEEL OUT OF REACH DR IF OISCHARGE NEEDS TO TURN DOWN
- (2) ALTERNATE POSITIONS FOR HANDWHEEL
- (3) PROVIDE 1/2 TD 3/4-INCH DRAIN DN CHECK VALVE ABOVE DISC (A DRAINPDINT DR BDSS IS USUALLY PROVIDED DN 2-INCH AND LARGER VALVES) AND RUN LINE TD DRAIN. DTHERWISE, PLACE DRAIN ON SPOOL BETWEEN CHECK AND ISOLATING VALVES. ON SCREWED AND SOCKET-WELDED PIPING, PROVIDE A TEE FOR THE DRAIN CONNECTION
- (4) SPODL FOR DRAIN POINT, IF DRAIN CANNOT GO ON CHECK VALVE
- (5) ALTERNATE PRESSURE GAGE PDINTS DN DISCHARGE PIPING IF PDINT IS NDT PROVIDED ON PUMP BY VENDDR
- (6) CASING VENT. CAN BE USED FOR SEAL LIDUID TAKEOFF
- (7 A) TEMPDRARY STARTUP STRAINER
- (7 B) PERMANENT LINE STRAINER FOR SCREWED OR SOCKET-WELDED PIPING
- (B) CDNNECTIONS FOR COOLING OR SEAL LIQUID. USUALLY WATER OR OIL

- (9 A) REDUCER
- (9B) SWAGE (SWAGED NIPPLE)
- CONCENTRIC TYPES MAY BE USED DN PUMPS
 WITH INLET PORTS 2 INCH AND SMALLER
- (10) CASING DRAIN PLUG. RUN VALVED LINE IF LIQUID IS LIKELY TO FREEZE
- (11) PIPE BASEPLATE DF PUMP TD DRAIN HUB. PROVIDE HUB AT EACH PUMP. PIPE HUB TD APPROPRIATE DRAIN DR SEWER. IF TWO PUMPS ARE DN A CDMMDN BASE, THEY CAN SHARE THE SAME HUB
- (12) BYPASS PROTECTS POSITIVE-DISPLACEMENT PUMP AND DRIVER IF AN ATTEMPT IS MADE TO DPERATE PUMP WITH A DISCHARGE VALVE CLOSED
- (13) BYPASSES FOR PUMPS DPERATING IN PARALLEL ALLDW FLDW IN SUCTION AND DISCHARGE LINES TO A HEADER IF A PUMP IS SHUT OOWN
- (14) SPOOL FOR TEMPORARY STRAINER
- (15) REDUCING ELBDW MAY REPLACE REGULAR ELBDW AND REDUCER
- (16) IF A PUMP HAS SIDE SUCTION WITH SPLIT FLOW TO IMPELLOR, PROVIDE 3 OR MORE DIAMETERS OF STRAIGHT PIPE AS SHOWN, OR CONNECT AN ELBOW IN A PLANE AT 90 DEGREES TO THE IMPELLOR SHAFT

Install the compressor on a concrete pad or elevated structure. Piling is often a necessary part of the foundation

 Large reciprocating compressors are often installed on an elevated structure to allow access to valves and provide space for piping. Provide a platform for operation and maintenance of such an installation

- Keep piping clear of cylinders of reciprocating compressors and provide withdrawal space at cylinder heads
- Use long-radius elbows or bends, not short-radius elbows or miters
- If the compressor and the pressurized gas are cooled with water, route cooling water first to the aftercooler, then to the intercooler (for a two-stage machine), and lastly to the cylinder jackets (or casing jacket, if present, in other types of compressor)
- Arrange an air compressor, associated equipment and piping so that water is able to drain continuously from the system
- Pipe a separate trapped drain for each pressure stage. Ensure that the
 pressure into which any trap discharges will be lower than that of the
 system being drained—less the pressure drop over the trap and its
 associated piping. Do not pipe different pressure stages thru separate
 check valves to a common trap
- If a toxic or otherwise hazardous gas is to be compressed, vent possible shaft seal leakage to the suction line to avoid a dangerous atmosphere forming around the compressor
- Do not overlook substantial space required for lube oil and seal oil control consoles for compressors
- Discuss piping arrangement with the stress group

FIGURE 6.22

Refer to 3.2.2 for a description of compressors and associated equipment. A compressor supplies compressed air or a gas to process or other equipment. A compressor is usually purchased as a 'package unit', which includes coolers, and the designer is left with the problem of installing it and piping auxiliaries to it. These various auxiliaries are shown in figure 6.23.

Compressors may be installed in the open, or within a plant or separate compressor house. An arrangement of compressor, ancillary equipment and distribution lines is shown in figure 6.22 (derived from an illustration by Atlas Copco).

COMPRESSOR HOUSE

- If the compressor is handling a gas heavier than air, eliminate pits or trenches in the compressor house to avoid a suffocation or explosion risk
- Provide air entry louvers if a compressor takes air from within a compressor house or other building
- Provide maintenance facilities, including a lifting rail or access for mobile lifting equipment. Allow adequate floor space for use during maintenance. Additional access may be required for installation
- Prevent transmission of vibration by providing a foundation for the compressor, separate from the compressor-house foundation
- Consider the use of noise-absorbing materials and construction for a compressor house

The vendor's drawings should be examined to determine what auxiliary piping, valves and equipment covered in the following design points are to be supplied with the compressor by the vendor:

AIR-COMPRESSOR PIPING

FIGURES 6.20–6.22

.3.1 .3.2

SCHEMATIC ARRANGEMENTS OF COMPRESSED-AIR EQUIPMENT

FIGURE 6.23

(a) SINGLE-STAGE COMPRESSOR

(b) TWO-STAGE COMPRESSOR

SUCTION PIPING FOR AIR COMPRESSORS

- To reduce damage to a compressor by abrasion or corrosion, the air supply needs to be free from solids and water (water in the air intake does not affect operation of liquid-ring air compressors). Air intakes are best located where the atmosphere is uncontaminated by exhaust gases, industrial operations, or by traffic
- For efficiency the air supply should be taken from the coolest source such as the shaded side of a building, keeping to building clearances shown in figure 6.24
- If the air supply is from outside the building, locate the suction point above the roofline, and away from walls to avoid excessive noise
- Keep suction piping as short as possible. If a line is unavoidably long and condensate likely to form, provide a separator at the compressor intake
- Provide a rain cover and screen as shown in figure 6.24
- Small (and sometimes medium-sized) air compressors usually take air from inside a building. Large air compressors take air from outside a compressor house (figure 6.24): this minimizes effects on the building of pulsations radiated from the air inlet. In both instances, a filter is needed to remove dust, which is always present to some extent
- Filters must have capacity to retain large quantities of impurities with low pressure drop, and must be rugged enough to withstand pulsations from reciprocating compressors

- Provide a pressure gage connection between filter and compressor to allow the pressure drop across the filter to be measured in order to check when cleaning or replacement is needed
- Use a temporary screen at the compressor inlet at startup—see 2.10.4
- Avoid low points in suction lines where moisture and dirt can collect.
 If low points cannot be avoided, provide a clean-out —see figure 6.24
- If the suction line is taken from a header, take it from the top of the header to reduce the chance of drawing off moisture or sediment
- A line-size isolating valve is required for the suction line if the suction line draws from a header shared with other compressors
- Consider pickling or painting the inside of the suction piping to inhibit rust formation and lessen the risk of drawing rust into the compressor

SUCTION LINES TO AIR COMPRESSORS

FIGURE 6.24

DISCHARGE PIPING (GENERAL)

Discharge piping should be arranged to allow for thermal movement and draining. Anchors and braces should be provided to suppress vibration. The outflow from the aftercooler will usually be wet (from the excess moisture in suction air) and this water must be continually removed.

- Provide an unloading valve and bypass circuit connected upstream of the discharge isolating valve, and downstream of the suction isolating valve, so as to ensure circulation thru the compressor during unloading, and to permit equalizing pressure in the compressor—see 3.2.2, under 'Unloading'
- Normally locate a receiver close to the compressor. (Auxiliary receivers may be located near points of heavy use.)
- For draining compressed-air discharge lines, refer to 6.11.4

LOADS & VIBRATION

The design of supports for piping to large compressors (especially for reciprocating machines) requires special knowledge. Usually, collaboration is necessary with the piping support group, the stress group, and the compressor manufacturer's representative. A major problem is that the compressor may be forced from alignment with its driver if the piping and supports are not properly arranged.

If a diesel or gasoline engine is used as driver, a flexible joint on the engine's exhaust pipe will reduce transmission of vibration, and protect the exhaust nozzle. Flexible connections are sometimes needed on discharge and suction piping. Pulsation in discharge and—to a lesser extent—suction lines, tends to vibrate piping. This effect is reduced by using bellows, large bends and laterals, instead of elbows and tees.

INSTRUMENTATION & INSTRUMENT CONNECTIONS

Figure 6.23 shows the more useful locations for pressure and temperature gages, but does not show instrumentation for starting, stopping and unloading the compressors. Simple compressor control arrangements using pressure switches have long been used, but result in frequent starting and stopping of the compressor, causing unnecessary wear to equipment.

Automatic control using an unloading valve is superior: table 3.6 gives the working principles—see 3.2.2, under 'Unloading'. Further information can be found in the 'Compressor installation manual' (Atlas-Copco). Unloading valves are allocated instrument numbers.

The air-pressure signals for unloading, starting, loading and stopping a compressor should be free from pulsations. It is best to take these signals from a connection on the receiver or a little downstream of it.

Details of construction of instrument connections are given in 6.7. Instrument branches should be braced to withstand transmission of line vibration.

ISOLATING VALVES FOR COMPRESSOR

Compressors operating in parallel should be provided with isolating valves arranged so that any compressor in the group may be shut down or removed. An isolating valve at the discharge should be placed downstream of the pressure-relief valve and any bypass valve connection. The isolating valve at the suction should be upstream of the bypass valve connection. Isolating valves are not required for a single compressor installation.

PRESSURE-RELIEF VALVES

Pressure-relief valves should be installed on interstage piping and on a discharge line from a compressor to the first downstream isolating valve. A pressure-relief valve may be vented to the suction line—see figure 6.23. Each pressure-relief valve should be able to discharge the full capacity of the compressor.

CHECK VALVE

Unless supplied with (or integral with) a compressor, a check valve must be provided to prevent backflow of stored compressed air or other gas.

DISTRIBUTION OF COMPRESSED AIR

Headers larger than 2-inch are often butt welded. Distribution lines are screwed and usually incorporate malleable-iron fittings, as explained in 2.5.1. Equipment used in distribution piping is described in 3.2.2.

A more efficient layout for compressed air lines is the ring main with auxiliary receivers placed as near as possible to points of heavy intermittent demand. The loop provides two-way air flow to any user.

COMPRESSED AIR USAGE

The compressed air provided for use in plants is designated 'instrument air', 'plant air' or 'process air'. Instrument air is cleaned and dried compressed air, used to prevent corrosion in some instruments. Plant air is compressed air but is usually neither cleaned nor dried, although most of the moisture and oil, etc., can be collected by a separator close to the compressor, especially if adequate cooling can take place. Plant air is used for cleaning, power tools, blowing out vessels, etc: if used for air-powered tools exclusively, some suspended oil is advantageous for lubrication, although filter/lube units are usually installed in the air line to the tool.

Process air is compressed air, cleaned and dried, which may be used in the process stream for oxidizing or agitation. The trend is to supply cleaned and dried air for both general process and instrument purposes. This avoids running separate lines for process and instrument air.

Process and instrument air for some applications requires to have an oil content less than 10 parts per million. As almost all oily contaminants are present as extremely small droplets (less than 1 micron in diameter) mechanical filtration may be ineffective; adsorption equipment can efficiently remove the oil.

FIGURES 6.23 & 6.24

TURBINE EXHAUST ARRANGEMENTS

FIGURE 6.25

A turbine is a machine for deriving mechanical power (rotating shaft) from the expansion of a gas or vapor (usually air or steam, in industrial plants).

Steam turbines are used where there is a readily-available source of steam, and are also used to drive standby process pumps in critical service in the event of an electrical power failure, and emergency standby equipment such as firewater pumps and electric generators.

Figure 6.9 shows a schematic arrangement of piping for automatic operation. There are similarities between steam-turbine and pump and compressor piping. Their common requirements are:—

- (1) To limit loads on nozzles from weight of piping or from thermal movement
- (2) To provide access and overhead clearance
- (3) To prevent harmful material trom entering the machine

INLET (STEAM FEED)

6.4.1

6.4

In order to guard against damage to a steam turbine, protective piping arrangements such as those mentioned in table 6.4 are needed in the steam feed.

PROTECTIVE PIPING FOR FEEDING STEAM TO TURBINE

TABLE 6.4

HAZARD TO TURBINE	PROTECTIVE PIPING
FOREIGN MATTER & WATER IN THE STEAM FEED	DRIPLEG & STRAINER, or SEPARATOR, IN THE FEED LINE (See figure 6.9)
EXCESSIVE PRESSURE IN STEAM FEED CAUSING OVER-FAST RUNNING OR CASING RUPTURE	PRESSURE RELIEF VALVE &/OR CONTROL VALVE IN THE FEED LINE
THERMAL SHOCK, DUE TO TOO RAPID HEATING ON STARTUP	ORIFICE BYPASS TO FEED SMALL AMOUNT OF STEAM TO TURBINE AT ALL TIMES

EXHAUST (STEAM DISCHARGE)

6.4.2

Figure 6.25 shows three methods for dealing with the turbine's exhaust. Steam from an intermittently operated turbine may be run to waste and all that is required is a simple run of pipe to the nearest outside wall or up thru the roof. Exhausts should be well clear of the building and arranged so as not to be hazardous to personnel. The turbine discharge will include drops of water and oil from the turbine, which are best collected and run to drain. A device suitable for this purpose is a Swartwout 'exhaust head' shown in figure 6.26. Alternately, steam discharged from a continuously running turbine may be utilized elsewhere, in a lower-pressure system.

KEY:

- Exhaust is discharged directly to atmosphere. Suitable for small turbine in intermittent use.
- (2) Exhaust is taken to a low-pressure header for use elsewhere. Suitable for continuously-operating turbine, to avoid wasting steam.
- (3) Exhaust is condensed to increase pressure drop across the turbine.

BYPASS STEAM & OTHER PIPING FOR TURBINES

6.4.3

An orifice plate is used as a 'bleed' bypass to ensure that steam constantly passes thru the turbine. An orifice plate is used rather than a straight pipe, as a changeable constriction is needed. Alternately, the small amount of steam needed to keep the turbine warm can be admitted by a cracked-open valve in a bypass—a wasteful and uncertain practice.

A trap is fitted to the casing of the turbine to remove condensate. Piping is provided to supply seal liquid to the turbine's bearings—refer to 6.3.1, under 'Auxiliary, trim, or harness piping'.

VESSEL CONNECTIONS

6.5.1

Vessel connections are often made with couplings (for smaller lines), flanged or welding nozzles, and pads fitted with studs, designed to mate with flanged piping. Nozzle outlets are also made by extrusion, to give a shape like that of the branch of a welding tee—this gives a good flow pattern, but is an expensive method usually reserved for such items as manifolds and dished heads. Weldolets, sockolets and thredolets are suitable for vessel connections and are available flat-based for dished heads, tanks, and large vessels.

Almost any type of connection may be made to open vessels or vessels vented to atmosphere, but for pressure vessels, the applicable design code will dictate requirements for connections (and possible reinforcement—see 2.11).

PRESSURE VESSELS

With exceptions and limitations stated in section 8 of the ASME Boiler and Pressure Vessel Code, vessels subject to internal or external operating pressures not exceeding 15 PSI need not be considered to be pressure vessels. A vessel operating under full or partial vacuum and not subject to an external pressure greater than 15 PSI would not require Code certification.

VESSEL DRAWING & REQUIRED NOZZLES

Preliminary piping layouts are made to determine a suitable nozzles arrangement. A sketch of the vessel showing all pertinent information is sent to the vessel fabricator, who then makes a detail drawing. The preliminary studies for pressure vessel piping layouts should indicate where pipe supports and platforms (if required) are to be located. In the event that the vessel has to be stress-relieved, the fabricator can provide clips or brackets—see 6.2.8, under 'Welding pipe-support and platform brackets to vessels, etc.'

Figure 5.14 shows the type of drawing or sketch sent to a vessel fabricator.

NOZZLES NEEDED ON VESSELS

- Nozzles needed on non-pressure vessels include: inlet, outlet, vent (gas or air), manhole, drain, overflow, agitator, temperature element, level instrument, and a 'steamout' connection, sometimes arranged tangentially, for cleaning the vessel
- Nozzles needed on pressure vessels include: inlet, outlet, manhole, drain, pressure relief, agitator, level gage, pressure gage, temperature element, vent, and for 'steamout', as above
- Check whether nozzles are required for an electric heater, coils for heating or cooling, or vessel jacket. A jacket requires a drain and vent
- Check special nozzle needs, such as for flush-bottom tank valves (see 3.1.9)

- Provide additional flexibility in lines to a vessel from pumps and other equipment mounted on a separate foundation (if liable to settle)
- Be cautious in making rigid straight connections between nozzles. Such
 connections may be acceptable if both items of equipment are on the
 same foundation, and are not subject to more than normal atmospheric
 temperature changes (see figure 6.1)

NOZZLE LOADING

- Ensure that a nozzle can take the load imposed on it by connected piping—see 6.2.8, under 'Supporting pipe at nozzles'. Manufacturers often can provide nozzle-loading data for their standard equipment
- Check all connections to ensure that stresses due to thermal movement, and shock pressures ('kicks') from opening pressure relief valves, etc., are safely handled

FRACTIONATION COLUMN PIPING (OR TOWER PIPING)

6.5.2

As columns and their associated equipment take different forms, according to process needs, the following text gives a simplified explanation of column operation, and outlines basic design considerations.

THE COLUMN'S JOB

A fractionation column is a type of still. A simple still starts with mixed liquids, such as alcohol and water produced by fermenting a grain, etc., and by boiling produces a distillate in which the concentration of alcohol is many times higher than in the feed. In the petroleum industry in particular, mixtures not of two but a great many components are dealt with. Crude oil is a typical feed for a fractionation column, and from it the column can form simultaneously several distillates such as wax distillate, gas oil, heating oil, naphtha and fuel gases. These fractions are termed 'cuts'.

COLUMN OPERATION

The feed is heated (in a 'furnace' or exchanger) before it enters the column. As the feed enters the column, quantities of vapor are given off by 'flashing', due to the release of pressure on the feed.

As the vapors rise up the column, they come into intimate contact with downflowing liquid—see figure 6.29. During this contact, some of the heavier components of the vapor are condensed, and some of the lighter components of the downflowing liquid are vaporized. This process is termed 'refluxing'.

If the composition of the feed remains the same and the column is kept in steady operation, a temperature distribution establishes in the column. The temperature at any tray is the boiling point of the liquid on the tray. 'Cuts' are not taken from every tray. The P&ID shows cuts that are to be made, including alternatives—nozzles on selected trays are piped, and nozzles for alternate operation are provided with line blinds or valves.

FIGURES 6.25 & 6.26

TABLE **6.4**

Trays are of various designs. Their purpose is to collect a certain amount of liquid but allow vapors to pass up thru them so that vapor and liquid come into contact. (Refer to figure 6.29, which shows simple bubblecap trays—many tray designs are available.)

TRAYS & BUBBLECAPS

FIGURE 6.29

To produce the required 'cuts', a column operates under steady temperature, feed, and product removal conditions. Starting from cold, products are collected after steady conditions are reached, and the column is then operated continuously.

All materials enter and leave the column thru pipes; therefor columns are located close to piperacks. Figures 6.27 and 6.28 show an arrangement. Products from the column are piped to collecting tanks (termed 'drums', 'accumulators', etc.) and held for further processing, or storage.

If the vapor from the top of the column is condensible, it is piped to a condenser to form a volatile liquid. The condenser may be mounted at grade, or sometimes on the side of the column.

Product from the top of the column may be gaseous at atmospheric pressure after cooling; if the product liquefies under moderate pressure, it may be stored pressurized in containers.

In addition to the condenser for the top product, a steam-heated heat exchanger, termed a 'reboiler', may be used to heat material drawn from a selected level in a column; the heated material is returned to the column. Reboilers are required for tall columns, and for columns operated at high temperatures, which are subject to appreciable loss of heat. Mounting the reboiler on the side of the column minimizes piping.

FIGURES 6.27 & 6.29

Material from the bottom of a column is termed 'bottoms', and must be pumped away (see figure 6.27)—this material consists of 'heavier' (higher molecular weight) liquids which either did not vaporize, or had condensed, plus any highly viscous material and solids in the feed.

COLUMN ORIENTATION & REQUIREMENTS

Simultaneously with orientating nozzles and arranging piping to the column, the piping designer decides the positions of manholes, platforms, ladders, dayit, and instruments.

COLUMN ORIENTATION FIGURE 6.30

Manholes are necessary to allow installation and removal of tray parts.

Platforms and ladders are required for personnel access to valves on nozzles, to manholes, and to column instruments.

A davit is needed to raise and lower column parts, and a dropout area has to be reserved.

MANHOLES & NOZZLES

For a particular project or column, manholes are preferably of the same type. They should be located away from piping, and within range of the davit.

If required, manholes can be placed off the column centerlines (plan view).

The manhole serving the sparger unit (figure 6.31) should permit easy removal of the unit, which may be angled to place the feed connection in a desired position.

The portions of the column wall available for nozzles are determined by the orientation and type of tray—see figure 6.29. Elevations of nozzles are taken from the column data sheet (normally in the form of a vessel drawing).

SPARGER UNIT FIGURE 6.31

If the cuts are to be taken either from even-numbered trays, or from odd-numbered trays, all nozzles can be located on one side of the column, facing the piperack. If cuts are to come from both even- and odd-numbered trays, it will almost certainly be impossible to arrange all nozzles toward the piperack. (See 'Arranging column piping', this section.)

PLATFORMS & LADDERS

Platforms are required under manholes, valves at nozzles, level gages, controllers if any, and pressure relief valves. Columns may be grouped and sometimes interconnecting platforms between columns are used. Individual platforms for a column are usually shaped as circular segments, as shown in figure 6.30. A platform is required at the top of the column, for operating a davit, a vent on shutdown, and for access to the safety-relief valve. This top platform is often rectangular.

Usual practice is to provide a separate ladder to go from grade past the lowest platform. Ladders are arranged so that the operator steps sideways onto the platforms.

Ladder length is usually restricted to 30 ft between landings. Some States allow 40 ft (check local codes). If operating platforms are further apart than the maximum permissible ladder height, a small intermediate platform is provided.

Ladders and cages should conform to the company standard and satisfy the requirements of the US Department of Labor (OSHA), part 1910.(D).

ARRANGING COLUMN PIPING

To achieve simplicity and good arrangement, some trial-and-error working is necessary. Columns are major pieces of equipment, and their piping needs take precedence over other piping.

As lines from nozzles on the column are run down the length of the column, it is logical to start arranging downcomers from the top and proceed down the column. A lower nozzle may need priority, but usually piping can be arranged more efficiently if the space requirements of piping coming from above are already established.

Sometimes tray spacing is increased slightly to permit installation of manholes. It may be possible to rotate trays within limits, to overcome a difficulty in arranging column piping. Such changes in tray spacing and arrangement must be sanctioned by the process engineer and vessel designer.

- Allocate space for vertical lines from lower nozzles, avoiding running these lines thru platforms if possible
- Lines from the tops of columns tend to be larger than others. Allocate space for them first, keeping the lines about 12 inches from the platforms and the wall of the column—this makes supporting easier, and permits access to valves, instruments, etc.
- Allocate space for access (manholes, ladders) clear of piping—especially clear of vertical lines
- Provide a clear space for lowering equipment from the top of a column (for maintenance, etc.)
- Provide access for mobile lifting equipment to condenser and reboiler
- Provide clearance to grade (approximately 8ft) under the suction line, from the column to the bottoms pump
- Arrange vent(s) in the skirt of the column
- Ensure that no low point occurs in the line conveying 'bottoms' to the suction port of the bottoms pump, in order to avoid blocking of this line due to cooling, etc.

INFORMATION NEEDED TO ARRANGE THE COLUMN PIPING

- Plot plan showing space available for column location, and details of equipment which is to connect to the column
- P&ID for nozzle connections, NPSH of bottoms pump, instrumentation, line blinds, relief valves, etc.
- Column data sheets and sketch of column showing elevations of nozzles

- Line designation sheets, to obtain operating temperatures of lines for calculating thermal movement
- Details of trays and other internal parts of the column
- Restrictions on the heights of ladders
- Operational requirements for the plant

-

BOTTOMS PUMP & ELEVATION OF COLUMN

The elevation of a column is set primarily by the NPSH required by the bottoms pump, the access required under the suction line to the bottoms pump, and by requirements for a thermosyphon reboiler, if used.

VALVES

Valves and blinds which serve the tower should be positioned directly on nozzles, for economy. It is desirable to arrange other valves so that lines are self-draining.

Platforms should be located to give access to large valves. Small valves may be located at the ends of platforms. Control valves should be accessible from operating platforms or from grade.

The pressure-relief valve for the relief line should be placed at the highest point in the line, and should be accessible from the top platform.

Valves should not be located within the skirt of the column.

INSTRUMENTS & CONNECTIONS

Temperature connections should be located to communicate with liquids in the trays, and pressure connections with the vapor spaces below the trays. Access to isolated gages can be provided by ladder.

Gages, and gage and level glasses, must be visible when operating valves, and be accessible for maintenance.

Gages and other instruments should be located clear of manholes and accessways to ladders and platforms. If necessary, temperature and pressure gages may be located for reading from ladders. Locating instruments at one end of a circular platform may allow a narrower platform.

THERMAL INSULATION

Thermal insulation of the exterior of a column may be required in order to reduce heat loss to the atmosphere. Insulation may be inadequate to maintain the required temperature distribution; in these circumstances, a reboiler is used. Thermal insulation is discussed in 6.8.1.

FOUNDATION FOR COLUMN

The base ring of a column's skirt is attached to a reinforced-concrete construction. The lower part of this construction, termed the 'foundation', is below grade, and is square in plan view: the upper part, termed the 'base', to which the base ring is attached, is usually octagonal and projects above grade approximately 6 inches.

FIGURES S 6.30 & 6.31 33 Heat exchangers are discussed in 3.3.5.

DATA NEEDED TO PLAN EXCHANGER PIPING

6.6.1

6.6

Preliminary exchanger information should be given early to the piping group, so that piping studies can be made with special reference to orientation of nozzles. Before arranging heat-exchanger piping, the following information is needed:

PROCESS FLOW DIAGRAM This will show the fluids that are to be handled by the exchangers, and will state their flow rates, temperatures and pressures.

EXCHANGER DATA SHEETS One of these sheets is compiled for each exchanger design by the project group. The piping group provides nozzle orientation sketches (resulting from the piping studies). The data sheet informs the manufacturer or vendor of the exchanger concerning performance and code stamp requirements, materials, and possible dimensional limitations.

TEMA CODING FOR EXCHANGER TYPE

The Tubular Exchangers Manufacturers Association (TEMA) has devised a method for designating exchanger types, using a letter coding. The exchanger shown in figure 6.32 would have the basic designation AEW. See chart H-1.

Engineering Notes:

- Provide the shell with a pressure-relieving device to protect against excessive shell-side pressure in the event of internal failure
- Put fouling and/or corrosive fluids inside the tubes as these are (except U-type) easily cleaned, and cheaper to replace than the shell
- Put the hotter fluid in the tubes to reduce heat loss to the surroundings
- However, if steam is used to heat a fluid in an exchanger, passing the steam thru the shell has advantages: for example, condensate is far easier to handle shellside. Insulation of the shell is normally required to protect personnel, and to reduce the rates of condensate formation and heat loss
- Pass refrigerant or cooling liquid thru the tubes, if the exchanger is not insulated, for economic operation
- If heat transfer is between two liquids, a countercurrent flow pattern will usually give greater overall heat transfer than a paralleled flow pattern, other factors being the same
- Orientate single-tube spiral, helical and U-tube exchangers (with steam fed thru the tube) to permit outflow of condensate

SHELL-AND-TUBE HEAT EXCHANGER WITH REMOVABLE TUBE BUNDLE

FIGURE 6.32

- Arrange nozzles to suit the best piping and plant layout. Nozzles may
 be positioned tangentially or on elbows, as well as on vertical or
 horizontal centerlines (as usually offered at first by vendors). Although
 a tangential or elbowed nozzle is more expensive, it may permit economies in piping multiple heat exchangers
- Make condensing vapor the descending stream
- Make vaporizing fluid the ascending stream

Locating Exchangers:

- Position exchangers so that piping is as direct and simple as possible.
 To achieve this, consider alternatives, such as reversing flows, arranging exchangers side-by-side or stacking them, to minimize piping
- Elevate an exchanger to allow piping to the exchanger's nozzles to be arranged above grade or floor level, unless piping is to be brought up thru a floor or from a trench
- Exchangers are sometimes of necessity mounted on structures, process columns and other equipment. Special arrangements for maintenance and tube handling will be required

PIPING TO NOZZLES OF HEAT EXCHANGERS

FIGURE 6.33

MINIMUM SPACING & CLEARANCES FOR MULTIPLE HEAT EXCHANGERS

TABLE 6.5

6.2 6.2

(a) Exchangers arranged with 2 ft 6 in. operating space between piping

(b) Exchangers arranged with 2 ft 0 in. maintenance space between paired units and 2 ft 6 in, operating space between piping

NOTES

- Show outlines of exchanger supports or foundations before arranging piping
 Add to clearances shown, thicknesses of insulation for exchanger shells and connected piping
- (3) Provide additional clearance to the 2'-6" operating space if valve handwheels and valve stems, etc., protrude, depending on piping arrangement

Operating and Maintenance Requirements:

- Access to operating valves and instruments (on one side only suffices)
- Operating space for any davit, monorail or crane, etc., both for movement and to set loads down
- Access to exchanger space is needed for tube-bundle removal, for cleaning, and around the exchanger's bolted ends (channelcover and rear head) and the bolted channel-to-shell closure
- Access for tube bundle removal is often given on manufacturers'
 drawings, and is usually about 1½ times the bundle length. 15 to 20
 ft clearance should be allocated from the outer side of the last exchanger in a row for mobile lifting equipment access and tube handling

FIGURES 6.32 & 6.33

TABLE 6.5

PRIMARY CONNECTIONS TO LINES & EQUIPMENT

6.7.1

6.7

Connections will usually be specified by company standards or by the specifications for the project. If no specification exists, full- and half-couplings, swaged nipples, thredolets, nipolets and elbolets, etc., may be used. Chart 6.2 illustrates instrument connections used for lines of various sizes. The fittings shown in chart 6.2 are described in chapter 2. Orifice flange connections are discussed in 6.7.5.

CHOOSING THE CONNECTION

6.7.2

The choice of instrument connection will depend on the conveyed fluid and sometimes on the required penetration of the element into the vessel or pipe. Instrument connections should be designed so that servicing or replacement of instruments can be carried out without interrupting the process. Valves are needed to isolate gages for maintenance during plant operation and during hydrostatic testing of the piping system. These valves are shown in chart 6.2 and are referred to as 'root' or 'primary' valves.

TEMPERATURE & PRESSURE CONNECTIONS

6.7.3

Chart 6.2 illustrates various methods for making temperature and pressure connections. At the bottom of chart 6.2 a method of connecting a diaphragm flange assembly (diaphragm isolator) is shown. Corrosive, abrasive or viscous fluid in the process line presses on one side of the flexible diaphragm, and the neutral fluid (glycol, etc.) on the other side transmits the pressure.

If the conveyed fluid is hazardous or under high pressure a branch fitted with a bleed valve is inserted between the gage and its isolating valve, to relieve pressure and/or drain the liquid before servicing the gage. The bleed valve can also be used to sample, or for adding a comparison gage.

- Position connections for instruments so that the instruments can be seen when operating associated valves, etc.
- Pressure connections for vessels containing liquids are usually best located above liquid level
- A temperature-measuring element is inserted into a metal housing termed a 'thermowell'. Place thermowells so that they are in contact with the fluid-an elbow is a good location, due to the increased turbulence

THERMOWELL CONSTRUCTION (EXAMPLE)

- Locate a liquid level controller (float type, for example) clear of any turbulence from nozzles
- More than one level gage, level switch, etc., may be required on a vessel: consider installing a 'strongback' to a horizontal vessel on which instrument connections have to be made-see figure 6.34(c)

LEVEL-GAGE CONNECTIONS

FIGURE 6.34

(a) LEVEL GAGE (b) CONNECTIONS FOR A GAGE GLASS ASSEMBLY

(c) CONNECTIONS ON STRONGBACK

CHART 6.2

FIGURE 6.34

ROTAMETER CONNECTIONS

A rotameter consists of a transparent tube with tapered and calibrated bore, arranged vertically, wide end up, supported in a casing or framework with end connections. The instrument should be connected so that flow enters at the lower end and leaves at the top. A ball or spinner rides on the rising gas or liquid inside the tapered tube — the greater the flow rate, the higher the ball or spinner rides. Isolating valves and a bypass should be provided, as in figure 6.35

ROTAMETER FIGURE 6.35

(a) PIPING TO ROTAMETER

An 'orifice plate' is a flat disc with a precisely-made hole at its center. It offers a well-defined obstruction to flow when inserted in a line—see figure 6.36. The resistance of the orifice sets up a pressure difference in the fluid either side of the plate, which can be used to measure the rate of flow.

ORIFICE PLATE ASSEMBLY & GAGE (MANOMETER)

FIGURE 6.36

The orifice plate is held between special flanges having 'orifice taps'—these are tapped holes made in the flange rims, to which tubing and a pressure gage can be connected, as in figure 6.36. A pressure gage may be termed a 'manometer'.

Manometers for use with orifice plate assemblies are calibrated in terms of differential pressure by the manufacturer. The meter run (that is, the piping in which the orifice plate is to be installed) must correspond with the piping used to calibrate the orifice plate—the readings will be in error if there is very much variation in these two piping arrangements.

Sometimes the orifice assembly includes adjacent piping, ready for welding in place. Otherwise, lengths of straight pipe, free from welds, branches or obstruction, should be provided upstream and downstream of the orifice assembly.

Table 6.6 shows lengths of straight pipe required upstream and downstream of orifice flanges (for different piping arrangements) to sufficiently reduce turbulence in liquids for reliable measurement.

PIPING TO FLANGE TAPS

Figure 6.37 shows a suitable tapping and valving arrangement at orifice flange taps. In horizontal runs, the taps are located at the tops of the flanges in gas, steam and vapor lines. An approximately horizontal position avoids vapor locks in liquid lines. Taps should not be pointed downward, as sediment may collect in pipes and tubes.

The arrangement of orifice plate assemblies should be made in consulation with the instrument engineer. Usually, it is preferred to locate orifice plate assemblies in horizontal lines.

Flow conditions consistent with those used to calibrate the instrument are ensured by providing adequately long straight sections of pipe upstream and downstream of the orifice. Table 6.6 gives lengths that have been found satisfactory for liquids.

STRAIGHT PIPE UPSTREAM & DOWNSTREAM OF ORIFICE ASSEMBLY

TABLE 6.6

:B ENT	M SEAM	RATIO OF INTERNAL DIAMETERS OF ORIFICE PLATE AND PIPE									
KEY NUMBER OF PIPING ARRANGEMENT	U=UPSTREAM D=DOWNSTREAM	1:8	1:4	3:8	1:2	5:8	3:4*				
KEY I OF PI ARRA	บ=บคู						ED UPSTREAM METERS (NPS)				
1	υ	6	6	6	6%	10	17				
·	D	2½	3	3¼	3¾	4	4½				
2	U	13	13	13	15	20	31				
-	D	21/2	3	3¼	3¾	4	4½				
2	υ	6	6	6	7½	10¼	13½				
3	D	2½	3	3¼	3%	4	4½				
4	U	5	5	5½	6½	8¼	11				
4	D	21/2	3	3¼	3%	4	4½				
5	U	16½	18½	21½	25	32	44				
j j	ם	2½	3	3 3%		4	4½				
		<u> </u>	SE THIS COL								
	KEY: PIPI	NG ARRA	NGEMENT	S FOR A8	OVE RUN	LENGTHS					
1	Ell or Te	e		Flow —	→	-					
		-	Γ 1	U		D					
2	Two 90 ^c	PElls									
3	Reducer Increaser										
4	Gate Val	ve }	ve U D D								
5	Globe Va	alve }	×	υ		D-	-				

CLEARANCES

Clear space should be left around an orifice assembly. Figure 6.38 shows minimum clearances required for mounting instruments, seal pots, etc., and for maintenance.

CLEARANCES TO ORIFICE ASSEMBLIES

FIGURE 6.38

FIGURES 6.35-6.38

TABLE 6.6

For personnel protection insulation should be provided up to a height of about 8 ft above operating floor level. Alternately, wire mesh guards can be provided. The following more detailed table gives insulation thickness for heat conservation, based on 85% magnesia to 600 F, and calcium silicate

NOULATION REQUIRED FOR PIPE 8.8 SAUTARPHER ED TABLE 6.8

	S.S. Som Som	. Compression of the compression		N. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	20000000000000000000000000000000000000	222255 LLLLL	2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
Č.	1050-1200	8 Fahrenhe	10 Degree	220-699 Re Range	Temperatu 400-549	Delow 400	(.nf)
Ī	ATURE RANGE	NED TEMPER	ATS 907 N	OITAJUSNI	KNE22 OL	INCHES THIC	NOMINAL SIS 3919

JACKETING & TRACING 6.8.2

The common methods by which temperatures are maintained, other than by simple insulation, are jacketing and tracing (with insulation).

JACKETING

Usually, 'jacketing' refers to double-walled construction of pipe, valves, vessels, hose, etc., designed so that a hot or cold fluid can circulate in the cavity between the walls. Heating media include water, oils, steam, or proprietary high-boiling-point fluids which can be circulated at low pressure, such as Dowtherm or Therminol. Cooling media include water, water mixtures and various alcohols.

Jacketed pipe can be made by the piping fabricator, but an engineered system bought from a specialist manufacturer would be a more reliable choice. The jumpover lines connecting adjacent jackets, thru which the heating or cooling medium flows are factory-made by the specialist manufacturer with less joints than those made on-site, where as many as nine screwed joints may be necessary to make one jumpover. Details of the range of fittings, valves and equipment available and methods of construction for steel jacketed piping equipment available and methods of construction for steel jacketed piping systems can be found in Parks-Cramer's and other catalogs.

Another type of jacketing is 'Platecoil' (Tranter Manufacturing Inc.) which is a name given to heat transfer units fabricated from embossed metal sheets, joined together to form internal channeling thru which the heating (or cooling) fluid is passed. The term 'jacketing' is also applied to electric heating pads or mantles which are formed to fit equipment. It also sometimes refers to the spiral winding of electric tracing and fluid tracing lines around pipes,

KEEPING PROCESS MATERIAL AT THE RIGHT TEMPERATURE

To ensure continuity of plant operations it is necessary to maintain some process, service and utility lines within a desired temperature range in order to keep materials in a fluid state, to prevent degradation, and to prevent damage caused by liquids freezing in cold conditions. Piping can be kept warm by insulation, or by applying heat to the insulated piping—this is is discussed in 6.8.2 and 6.8.3.

1.8.9 NOITALINSULAMRAHT

NOITAJUSNI

'Insulation' is covering material having poor thermal conductivity applied externally to pipe and vessels, and is used: (1) To retain heat in a pipe or vessel so as to maintain process temperature or prevent freezing. (2) To minimize transfer of heat from the surroundings into the line or vessel. (3) To safeguard personnel from hot lines. The choice of insulation is normally included with the piping specification. The method of showing insulation on piping drawings is included in chart 5.7.

Installed insulation normally consists of three parts: (1) The thermal insulating material. (2) The protective covering for it. (3) The metal banding to fasten the covering. Most insulating materials are supplied in formed pieces to fit elbows, etc. Formed coverings are also available. Additionally, it is customary to paint the installed insulation, and to weatherproof it before painting, if for external use.

The principal thermal insulating materials and their accepted approximate maximum line temperatures, where temperature cycling (repetitive heating and cooling periods) occurs are: asbestos (1200 F), calcium silicate (1200 F), callular silica (1600 F), diatomaceous silica plus asbestos (1600 F), mineral fiber (250–1200 F, depending on type), mineral wool (1200 F), magnesia (600 F), and polyurethane foam (250 F). Certain foamed plastics have a very low conductivity, and are suitable for certain foamed plastics have a very low conductivity, and are suitable for insulating lines as cold as -400 F. Rock cork [bonded mineral fiber] is satisfactory down to -250 F, and mineral wool down to -250 F.

HOW THICK SHOULD INSULATION BE?

Most insulation in a plant will not exceed 2 inches in thickness. A rough guide to insulation thicknesses of the more common materials required on pipe to 8-inch size is:

GUIDE TO INSULATION THICKNESS TABLE 6.7

hani f	Asbestos, Silicate, Magnesia	Personnel Protection
sərləni E ot 1	looW IssaniM	Cold Lines (to -150 F)
3 to 2 inches	Asbestos, Silicate, Magnesia	Hot Lines (to 500 F)
USUAL THICKNESS OF INSULATION	TYPICAL INSULATING MATERIAL	MOITADIJ44A

1661

vessels, etc.

to connect adjacent traced sections of the lines.

Electric tracing allows close control of temperature, and can provide a wider range of temperatures than steam heating.

GETTING HEAT TO THE PROCESS LINE (USING STEAM)

If the process line temperature has to approach that of the available steam, jacketing gives the best results. Barton and Williams have stated [4] that the cheaper method of welding steam tracers directly to the process lines has proven adequate. In this unusual method, the welding is 'tack' or continuous depending on how much heat is required to be transferred thru the weld.

A greater rate of heat transfer may be achieved by using two (seldom more) parallel tracers. Sometimes a single tracer is spirally wound about the pipe, but spiral winding should be restricted to vertical lines where condensate can drain by gravity. If the temperature of the conveyed fluid has to be closely maintained, winding the tracer is too inaccurate—but it is a suitable method for getting increased heating in non-critical applications.

To improve heat transfer between the tracer and pipe, they may either be pressed into contact by banding or wiring them together at frequent (1 to 4 ft) intervals, or a heat-conducting cement such as 'Thermon' can be applied. Unless used to anchor the tracer, banding is normally applied sufficiently loosely to permit the tracer to expand.

Hot spots occur at the bands. If this is undesirable for a product line, a thin piece of asbestos may be inserted between tracer and line.

CHOOSING THE SYSTEM

There are advantages and disadvantages with the various systems. Piping which is to be externally traced can be planned with little concern for the tracing.

Fluid-jacketed systems are flanged, and last-minute changes could result in delays. Jacketing offers superior heat transfer and should be seriously considered for product lines, especially for those conveying viscous liquids and material which may solidify, whereas service lines usually just need to be kept from freezing and tracing is quite adequate for them. If process material has to be kept cold in the line, refrigerant-jacketed systems are the only practicable choice.

For process lines, all systems should be evaluated on the criteria of heat distribution, initial cost and long-term operating and maintenance costs before a decision can be made.

WHERE TRACING & JACKETING ARE SHOWN

Using the symbols given in chart 5.7, tracing is shown on the plan and elevation drawings of the plant piping and it will similarly be indicated on the isometric drawings. It will also be indicated on any model used. Tracing is one of the last aspects of plant design, and steam subheaders can either be shown directly on the piping drawings or on sepias or film prints.

8. 8.

> FIGURE 6.39

TABLES

6.7 & 6.8

ing is ner be

TRACING

External 'tracing' consists in running tubing filled with a hot fluid (usually steam), or electric heating cables, in contact with the outer surface of the pipe to be kept warm. The tubing or cables may be run parallel to the pipe or wound spirally around it. The pipe and tracer(s) are encased in thermal insulation.

An alternative, now little used due to sealing and cleaning problems, is internal tracing by means of tubing fitted inside the line to be heated. An internal tracer is termed a 'gutline'.

This is a widely-used way of keeping lines warm—surplus steam is usually available for this purpose. Figure 6.40 shows typical tracing arrangements. A steam-tracing system consists of tracer lines separately fed from a steam supply header (or subheader), each tracer terminating with a separate trap. Horizontal pipes are commonly traced along the bottom by a single tracer. Multiply-traced pipe, with more than two tracers, is unusual.

STEAM PRESSURE FOR TRACING

Steam pressures in the range 10 to 200 PSIG are used. Sometimes steam will be available at a suitable pressure for the tracing system, but if the available steam is at too high a pressure, it may be reduced by means of a control (valve) station—see 6.1.4. Low steam pressures may be adequate if tracers are fitted with traps discharging to atmospheric pressure. If a pressurized condensate system is used, steam at 100 to 125 PSIG is preferred.

SIZING HEADERS

The best way to size a steam subheader or condensate header serving several tracers is to calculate the total internal cross-sectional area of all the tracers, and to select the header size offering about the same flow area. Table 6.9 allows quick selection if the tracers are all of the same size:

NUMBER OF TRACERS PER HEADER

TABLE 6.9

	SIZE OF TRACER (IN.)									
HEADER SIZE(IN.)	1/4	3/8	3/4	1						
	NUMBER OF TRACERS									
3⁄4	9	4	2	1	_					
1	16	7	4	2	1					
1½	36	16	9	4	2					
2	64	28	16	7	4					
L		1.1.1								

MAXIMUM LENGTHS & RISES

The rate at which condensate forms and fills the line determines the length of the tracer in contact with the pipe. Too many variables are involved to give useful maximum tracer lengths. Most companies have their own design figure (or figures based on experience) for this: usually, length of tracer in contact with pipe does not exceed 250 ft.

1 PSI steam will lift condensate about 2.3 ft, and therefor vertical rises will present no problem unless low-pressure steam is being used. Companies prefer to limit the vertical rise in a tracer at any one place to 6 ft (for 25-49 PSIG steam) or 10 ft (for 50-100 PSIG steam). As a rough guide, the total height, in feet, of all the rises in one tracer may be limited to one quarter of the initial steam pressure, in PSIG. For example, if the initial steam pressure is 100 PSIG, the total height of all risers in the tracer should be limited to 25 ft. The rise for a sloped tracer is the difference in elevations between the ends of the sloping part of the tracer.

EXPANSION OF THE TRACER, & ANCHORING

Expansion can be accommodated by looping the tracer at elbows and/or providing horizontal expansion loops in the tracer. Vertical downward expansion loops obstruct draining and will cause trouble in freezing climates, unless the design includes a drain at the bottom of the loop, or a union to break the loop. It is necessary to anchor tracers to control the amount of expansion that can be tolerated in any one direction. Straight tracers 100 ft or longer are usually anchored at their midpoints.

Expansion at elbows must be limited where no loop is used and excessive movement of the tracer could lift the insulation. In such cases the tracer is anchored not more than 10 to 25 ft away from an elbow which limits start-up expansion to 1/2 to 3/4 inch in most cases. The distance of the anchor from the elbow is best calculated from the ambient and steam temperatures.

EXAMPLE: System traced with copper tubing: coefficient of linear expansion of copper = 0.000009 per deg F. Steam pressure to be used = 50 PSIG (equivalent steam temperature 298F). Lowest ambient temperature = 50 F. If the anchor is located 20 ft from the elbow, the maximum expansion in inches is (298–50)(0.000009)(20)(12) = 0.53 in. This expansion will usually be tolerable even for a small line with the tracer construction for elbows shown in figure 6.40.

PIPE, TUBE & FITTINGS FOR TRACING

SCH 80 carbon steel pipe, or copper or stainless steel tubing is used for tracers. Selection is based on steam pressure and required tracer size. In practice, tracers are either 1/2 or 3/8-inch size, as smaller sizes involve too much pressure drop, and larger material does not bend well enough for customary field installation.

1/2-inch OD copper tube is the most economic material for tracing straight piping. 3/8-inch OD copper tubing is more useful where small bends are required around valve bodies, etc. Copper tubing can be used for pressures up to 150 PSIG (or to 370 F). Table T-1 gives data for copper tube.

Supply lines from the header are usually socket welded or screwed and seal-welded depending on the pressures involved and the company's practice. A pipe-to-tube connector is used to make the connection between the steel pipe and tracer tube — see figure 2.41.

TRACING VALVES & EQUIPMENT

Different methods are used. Some companies require valves to be wrapped with tracer tubing. Others merely run the tubing in a vertical loop alongside and against the valve body. In either method, room should be left for removing flange bolts, and unions should be placed in the tracer so that the valve or equipment can be removed.

TABLE 6.9

FIGURE

6.40

DESIGN POINTS FOR STEAM TRACING & INSULATION

- Run tracers parallel to and against the underside of the pipe to be heated
- Ensure that the temperature limit for process material is not exceeded by the temperature of the steam supplying the tracer. Hot spots occur at bands—see 6.8.2, under 'Getting heat to the process line'
- Run a steam subheader from the most convenient source if there is no suitable existing steam supply that can be used either directly or by reducing the pressure of the available steam
- Take tracer lines separately from the top of the subheader, and provide an isolating valve in the horizontal run
- Feed steam first to the highest point of the system of lines to be traced, so that gravity will assist the flow of condensate to trap(s) and condensate header
- Do not split (branch) a tracer and then rejoin—the shorter limb would take most of the steam
- Preferably, absorb expansion of the tracer at elbows. If loops are used in the line, arrange them to drain on shutdown
- Keep loops around flanges horizontal or overhead, and provide unions so that tracers can be disconnected at flanges
- If possible, group supply points and traps, locating traps at grade or platform level
- Do not place a trap at every low point of a tracer (as is the practice with steam lines) but provide a trap at the end of the tracer
- Do not run more than one tracer to a trap
- Increased heating may be obtained:
 - (1) By using more than one tracer
 - (2) By winding the tracer in a spiral around the line
 - (3) By applying heat-transfer cement to the tracer and line
 - (4) By welding the tracer to the line—refer to 6.8.2, under 'Getting heat to the process line'
- Reserve spiral winding of tracers for vertical lines where condensate can drain by gravity flow
- In freezing conditions, provide drains at low points—and at other points where condensate could collect during shutdown
- Provide slots in insulation to accommodate expansion of the tracer where it joins and leaves the line to be traced
- Indicate thickness of insulation to envelop line and tracer, and show whether insulation is also required at flanges
- Indicate limits for insulation for personnel protection—see 6.8.1, under 'How thick should insulation be?', and chart 5.7
- Provide crosses instead of elbows and flanged joints at intervals in heated lines conveying materials which may solidify, to permit cleaning if the heating fails

HOW STEAM IS FORMED

Steam is a convenient and easily handled medium for heating, for driving machinery, for cleaning, and for creating vacuum.

After water has reached the boiling point, further addition of heat will convert water into the vapor state: that is, steam. During boiling there is no further rise in temperature of the water, but the vaporization of the water uses up heat. This added heat energy, which is not shown by a rise in temperature, is termed 'latent heat of vaporization', and varies with pressure.

In boiling one pound of water at atmospheric pressure (14.7 PSIA) 970.3 BTU is absorbed. If the steam condenses back into water (still at the boiling temperature and 14.7 PSIA) it will release exactly the amount of heat it absorbed on vaporizing.

The term 'saturated steam' refers to both *dry steam* and *wet steam*, described below. Steam tables give pressure and temperature data applicable to dry and to wet steam. Small amounts of air, carbon dioxide, etc., are present in steam from industrial boilers.

STEAM/WATER/ICE DIAGRAM

CHART 6.3

ORY STEAM

Dry steam is a gas, consisting of water vapor only. Placed in contact with water at the same temperature, dry steam will not condense, nor will more steam form—liquid and vapor are in equilibrium.

WET STEAM

Wet steam consists of water vapor and suspended water particles at the same temperature as the vapor. Heating ability ('quality') varies with the percentage of dry steam in the mixture (the water particles contain no latent heat of vaporization). Like dry steam, wet steam is in equilibrium with water at the same temperature.

SUPERHEATED STEAM

If heat is added to a quantity of dry steam, the temperature of the steam will rise, and the number of degrees rise in temperature is the 'degrees of superheat'. Thus, superheat is 'sensible' heat — that is, it can be measured by a thermometer.

EFFECT OF PRESSURE CHANGE

Under normal atmospheric pressure (14.7 PSIA) pure water boils at 212 F. Reduction of the pressure over the water will lower the boiling point. Increase in pressure raises the boiling point. Steam tables give boiling points corresponding to particular pressures.

FLASH STEAM

Suppose a quantity of water is being boiled at 300 PSIA (corresponding to 417 F). If the source of heat is removed, boiling ceases. If the pressure over the water is then reduced, say from 300 to 250 PSIA, the water starts boiling on its own, without any outside heat applied, until the temperature drops to 401 F (this temperature corresponds to 250 PSIA). Such spontaneous boiling due to reduction in pressure is termed 'flashing', and the steam produced, 'flash steam'.

The data provided in steam tables enable calculation of the quantity and temperature of steam produced in 'flashing'.

CONCENSATE - WHAT IT IS & HOW IT FORMS

Steam in a line will give up heat to the piping and surroundings, and will gradually become 'wetter', its temperature remaining the same. The change of state of part of the vapor to liquid gives heat to the piping without lowering the temperature in the line. The water that forms is termed 'condensate'. If the line initially contains superheated steam, heat lost to the piping and surroundings will first cause the steam to lose sensible heat until the steam temperature drops to that of dry steam at the line pressure.

AIR IN STEAM

With both dry and wet steam, a certain pressure will correspond to a certain temperature. The temperature of the steam at various pressures can be found in steam tables. If air is mixed with steam, this relationship between pressure and temperature no longer holds. The more air that is admixed, the more the temperature is reduced below that of steam at the same pressure. There is no practicable way to separate air from steam (without condensation) once it is mixed.

LOW-PRESSURE HEATING MEDIA

6.9.2

Special liquid media such as Dowtherms (Dow Chemical Co.) and Therminols (Monsanto Co.) can be boiled like water, but the same vapor temperatures as steam are obtained at lower pressures. Heating systems using these liquids are more complicated than steam systems, and experience with them is necessary in order to design an efficient installation. However, the basic principles of steam-heating systems apply.

.8.3 .9.2

CHART 6.3

REMOVING AIR FROM STEAM LINES

6.10.1

6.10

Air in steam lines lowers the temperature for a given pressure, and calculated rates of heating may not be met. See 6.9.1 under 'Air in steam'.

The most economic means for removing air from steam lines is automatically thru temperature-sensitive traps or traps fitted with temperature-sensitive airventing devices placed at points remote from the steam supply. When full line temperature is attained the vent valves will close completely. See 6.10.7 under 'Temperature-sensitive (or thermostatic) traps'.

WHY PLACE VENTS AT REMOTE POINTS?

On start-up, cold lines will be filled with air. Steam issuing from the source will mix with some of this air, but will also act as a piston pushing air to the remote end of each line.

WHY REMOVE CONDENSATE?

6.10.2

In heating systems using steam with little or no superheat, steam condenses to form water, termed 'condensate', which is essentially distilled water. Too valuable to waste, condensate is returned for use as boiler feedwater unless it is contaminated with oil (usually from a steam engine) or unless it is uneconomic to do so, when it can either be used locally as a source of hot water, or run to a drain. If condensate is not removed:—

- Steam with entrained water droplets will form a dense water film on heat transfer surfaces and interfere with heating
- Condensate can be swept along by the rapidly-moving steam (at 120 ft/sec or more) and the high-velocity impact of slugs of water with fittings, etc. (waterhammer) may cause erosion or damage

UTILIZING CONDENSATE FIGURE 6.41

In early steam systems, there was considerable waste of steam and condensate after passing thru heating coils, etc., as steam was merely vented to the open air. Later, the wastefulness of this resulted in closed steam lines from which only the condensed steam was removed and then re-fed to the boiler. The removal of condensate to atmospheric pressure was effected with traps—special automatic discharge valves—see 6.10.7.

This was a much more efficient system, but it still wasted flash steam. On passing thru the traps, the depressurized condensate boiled, generating lower-pressure steam. In modern systems, this flash steam is used and the residual condensate returned to the boiler.

STEAM SEPARATOR OR DRYER

6.10.3

This is an in-line device which provides better drying of steam being immediately fed to equipment. A separator is shown in figure 2.67. It separates droplets entrained in the steam which have been picked up from condensate in the pipe and from the pipe walls, by means of one or more baffles (which cause a large pressure drop). The collected liquid is piped to a trap.

SLOPING & DRAINING STEAM & CONDENSATE LINES 6.10.4

Sloping of steam and condensate lines is discussed in 6.2.6, under 'Sloped lines avoid pocketing and aid draining'.

Condensate is collected from a steam line either by a steam separator (sometimes termed a 'dryer')—see 6.10.3 above—or more cheaply by a dripleg (drip pocket or well — see below) from where it passes to a trap for periodic discharge to a condensate return line or header which will be at a lower pressure than the steam line. The header is either taken to a boiler feedwater tank feeding make-up water to the boiler or to a hotwell for pumping to the boiler feedwater tank.

DRIPLEGS COLLECT CONDENSATE

6.10.5

It is futile to provide a small dripleg or drain pocket on large lines, as the condensate will not be collected efficiently.

Driplegs are made from pipe and fittings. Figure 6.42 shows three methods of construction, and table 6.10 suggests dripleg and valve sizes.

DRIPLEG CONSTRUCTIONS

FIGURE 6.42

STEAM LINE PRESSURE FORCES CONDENSATE INTO RECOVERY SYSTEM

6.10.6

In almost every steam-heating system where condensate is recovered the trapped condensate has to be lifted to a condensate header and run to a boiler feedwater tank, either directly or via a receiver. Each PSI of steam pressure behind a trap can lift the condensate about two feet vertically. The pressure available for lifting the condensate is the pressure difference between the steam and condensate lines less any pressure drop over pipe, valves, fittings, trap, etc.

STEAM TRAPS 6.10.7

The purpose of fitting traps to steam lines is to obtain fast heating of systems and equipment by freeing the steam lines of condensate and air. A steam trap is a valve device able to discharge condensate from a steam line without also discharging steam. A secondary duty is to discharge air—at start-up, lines are full of air which has to be flushed out by the steam, and in continuous operation a small amount of air and non-condensible gases introduced in the boiler feedwater have also to be vented.

Some traps have built-in strainers to give protection from dirt and scale which may cause the trap to jam in an open position. Traps are also available with checking features to safeguard against backflow of condensate. Refer to the manufacturers' catalogs for details.

Choosing a trap from the many designs should be based on the trap's ability to operate with minimal maintenance, and on its cost. To reduce inventory and aid maintenance, the minimum number of types of trap should be used in a plant. The assistance of manufacturers' representatives should be sought before trap types and sizes are selected.

Steam traps are designed to react to changes in temperature, pressure or density:

TEMPERATURE-SENSITIVE (or 'THERMOSTATIC') TRAPS are of two types: The first type operates by the movement of a liquid-filled bellows, and the second uses a bimetal element. Both types are open when cold and readily discharge air and condensate at start-up. Steam is in direct contact with the closing valve and there is a time delay with both types in operating. A large dripleg allowing time for condensate to cool improves operation. As these traps are actuated by temperature differential, they are economic at steam pressures greater than 6 PSIG. The temperature rating of the bellows and the possibility of damage by waterhammer should be considered—refer to 6.10.8.

IMPULSE TRAPS are also referred to as 'thermodynamic' and 'controlled disc'. These traps are most suited to applications where the pressure downstream of the trap is less than about half the upstream pressure. Waterhammer does not affect operation. They are suitable for steam pressures over 8 PSIG.

DENSITY-SENSITIVE TRAPS are made in 'float' and 'bucket' designs. The **float** trap is able to discharge condensate continuously, but this trap will not discharge air unless fitted with a temperature-sensitive vent (the temperature limitation of the vent should be checked). Float traps sometimes may fail from severe waterhammer. The **inverted bucket** trap (see 3.1.9) is probably the most-used type. The trap is open when cold, but will not discharge large quantities of air at startup unless the bucket is fitted with a temperature-sensitive vent. The action in discharging condensate is rapid. Steam will be discharged if the trap loses its priming water due to an upstream valve being opened; refer to note (9) in the key to figure 6.43. Inverted bucket traps will operate at pressures down to 1/4 PSIG.

FLASHING 6.10.8

Refer to 6.9.1. When hot condensate under pressure is released to a lower pressure return line, the condensate immediately boils. This is referred to as 'flashing' and the steam produced as 'flash steam'.

The hotter the steam line and the colder the condensate discharge line, the more flashing will take place; it can be severe if the condensate comes from high pressure steam. Only part of the condensate forms steam. However, if the header is inadequately sized to cope with the quantity of flash steam produced and backpressure builds up, waterhammer can result.

Often, where a trap is run to a drain, a lot of steam seems to be passing thru the trap, but this is usually only from condensate flashing.

DRAINING SUPERHEATED STEAM LINES

6.10.9

Steam lines with more than a few degrees of superheat will not usually form condensate in operation. During the warming-up period after starting a cold circuit, the large bulk of metal in the piping will nearly always use up the degrees of superheat to produce a quantity of condensate.

.10 .10.9

FIGURES 6.41 & 6.42

> TABLE 6.10

STEAM-TRAP PIPING

FOR COLLECTED CONDENSATE FIGURE 6.43 STEAM | CONDENSATE PREFERRED POSITION FOR CHECK VALVE IN A FREEZING ENVIRONMENT (FDR TOP ENTRY FOR DRIPLEG DETAILS, REFER TO TABLE 6.10 ARRANGEMENTS ONLY) STEAM HEADER CONDENSATE HEADER IDENTIFY BY MAKER, MODEL NUMBER, TYPE, AND PRESSURE RATING OPTIONAL ENTRY-(2)(18) SUITABLE IF NO RISK OF FREEZING (6) (14) (13) (10) [12] 11 (10) (15) FOR DRAINED CONDENSATE SYMBOL FIGURE 6.44 DRIPLEG FROM STEAM LINE OR EQUIPMENT SLOPE LINE TO ASSIST DRAINING IN FREEZING CONDITIONS [10] Pipe, fittings and valves within shaded areas in figures 6.43 and 6.44 are shown on drawings PIPE TO DRAIN (IN BUILDINGS) by the above symbol

KEY

FIGURES 6.43 & 6.44 SHOW EQUIPMENT WHICH CAN BE USED IN TRAP PIPING ARRANGEMENTS. ONLY ITEMS OF EQUIPMENT NECESSARY FOR ECONOMIC & SAFE DESIGN NEED BE USED. THE FOLLOWING NOTES WILL AID SELECTION

- (1) DRIPLEG FROM STEAM HEADER, OR LINE TO EOUIPMENT, OR LINE FROM STEAM-FED EOUIPMENT
- (2) DRIPLEG VALVE FOR PERIODICALLY BLOWING DOWN SEDIMENT. FOR SAFETY, VALVE SHOULD BE PIPED TO A DRAIN OR TO GRADE
- (3) ISOLATING VALVE TO BE LOCATED CLOSE TO DRIPLEG
- (4) * INSULATION. NEEDED IN A COLD ENVIRONMENT IF THERE IS A RISK OF CONDENSATE FREEZING AS A RESULT OF SHUTDOWN OR INTERMITTENT OPERATION. IN EXTREME COLD, TRACING MAY ALSO BE REQUIRED—IF STEAM IS NOT CONSTANTLY AVAILABLE FOR THIS PURPOSE, ELECTRIC TRACING WOULD BE NECESSARY
- (5) * ISOLATING VALVE. REQUIRED ONLY IF VALVES (3) AND (17) ARE OUT OF REACH, OR IF A BYPASS IS USED—SEE NOTE (18)
- (6) STRAINER. NORMALLY FITTED IN LINES TO TRAPS OF LESS THAN 2-INCH SIZE. A STRAINER MAY BE AN INTEGRAL FEATURE OF THE TRAP
- (7) * VALVE FOR BLOWING STRAINER SEDIMENT TO ATMOSPHERE, PLUG FOR SAFETY
- (8) ★ MANUALLY-OPERATED DRAIN VALVE FOR USE IN FREEZING CONDITIONS WHEN THE TRAP IS POSITIONED HORIZONTALLY— SEE NOTE (16)
- (9) * CHECK VALIVE. PRIMARILY REQUIRED IN LINES USING BUCKET TRAPS TO PREVENT LOSS OF SEAL WATER IF DIFFERENTIAL PRESSURE ACROSS TRAP REVERSES DUE TO BLOWING DOWN THE LINE OR STRAINER UPSTREAM OF THE TRAP.
- (10) UNIONS FOR REMOVING TRAP, ETC
- (11) ★ SWAGES FOR ADAPTING TRAP TO SIZE OF LINE
- (12) * BLOWDOWN VALVE FOR A TRAP WITH A BUILT-IN STRAINER (ALTERNATIVE TO (6))
- (13) * TEST VALVE SHOWS IF A FAULTY TRAP IS PASSING STEAM. SOMETIMES, BODY OF TRAP HAS A TAPPED PORT FOR FITTING THIS VALVE
- (14)★ CHECK VALVE PREVENTS BACKFLOW THRU TRAP IF CONDENSATE IS BEING RETURNED TO A HEADER FROM MORE THAN ONE TRAP. IN THE LOWER POSITION, THE VALVE HAS THE ASSISTANCE OF A COLUMN OF WATER TO HELP IT CLOSE AND TO GIVE IT A WATER SEAL. REQUIRED IF SEVERAL TRAPS OISCHARGE INTO A SINGLE HEADER WHICH IS OR MAY BE UNDER PRESSURE
- (15) * SIGHT GLASS ALLOWS VISUAL CHECK THAT TRAP IS DISCHARGING CORRECTLY INTO A PRESSURIZED CONDENSATE RETURN LINE, BUT IS SELDOM USED BECAUSE THE GLASS MAY ERODE, PRESENTING A RISK OF EXPLOSION
- (16) ★ TEMPERATURE-SENSITIVE (AUTOMATIC) ORAIN ALLOWS LINE TO EMPTY, PREVENTING DAMAGE TD PIPING IN A COLD ENVIRONMENT (SEE NOTE (4)). IF VALVE (14) IS OVERHEAD, THE AUTOMATIC DRAIN MAY BE FITTED TO THE TRAP —SOME TRAP BOOIES PROVIDE FOR THIS
- (17) ISOLATING VALVE AT HEADER
- (18)★ BY-PASS, NOT RECOMMENDED AS IT CAN BE LEFT OPEN. IT IS BETTER TO PROVIDE A STANDBY TRAP

★ ASTERISK INDICATES THAT THE EQUIPMENT IS OPTIONAL AND IS NOT ESSENTIAL TO THE BASIC TRAP PIPING DESIGN

Start-ups are infrequent and with more than a few degrees of superheat it is unnecessary to trap a system which is continuously operated. These superheated steam lines can operate with driplegs only, and are usually fitted with a blowdown line having two valves so that condensate can be manually released from the dripleg after startup.

A superheated steam supply to an intermittently operated piece of equipment will require trapping directly before the controlling valve for the equipment, as the temperature will drop at times allowing condensate to form.

PREVENT TRAPS FROM FREEZING

6.10.10

Insulation and steam or electric tracing of the trap and its piping may also be required in freezing environments. Temperature-sensitive and impulse traps are not subject to freezing trouble if mounted correctly, so that the trap can drain. Bucket traps are always mounted with the bucket vertical and a type with top inlet and bottom outlet should be chosen, unless the trap can be drained by fitting an automatic drain.

GUIDELINES TO STEAM TRAP PIPING

6.10.11

- Figures 6.43 thru 6.45 are a guide to piping traps from driplegs, lines, vessels, etc.
- Try to group traps to achieve an orderly arrangement
- Unless instructed otherwise, pipe, valves and fittings will be the same size as the trap connections, but not smaller than 3/4 in.
- Traps are normally fitted at a level lower than the equipment or dripleg that they serve
- Trap each item of equipment using steam separately, even if the steam pressure is common
- Provide driplegs (and traps on all steam lines with little or no superheat)
 at low points before or at the bottom of risers, at pockets and other
 places where condensate collects on starting up a cold system. Table
 6.10 gives dripleg sizes
- Locate driplegs at the midpoints of exchanger shells, short headers, etc.
 If dual driplegs are provided it is better to locate them near each end
- For installations in freezing conditions, where condensate is wasted, preferably choose traps that will not pocket water and which can be installed vertically, to allow draining by gravity. Otherwise, select a trap that can be fitted with an automatic draining device by the manufacturer
- Avoid long horizontal discharge lines in freezing conditions, as ice can form in the line from the trap. Keep discharge lines short and pitch them downward, unless they are returning condensate to a header
- For efficient operation of equipment such as heat exchangers using large amounts of steam, consider installing a separator in the steam feed

'Syphon' removal of condensate: In certain instances it is not possible to provide a gravity drain path — for example, where condensate is formed inside a rotating drum. The pressure of the steam is used to force ('syphon') the condensate up a tube and into a trap. Figure 6.45 shows such an arrangement

6 .10.9 .10.11

TRAPPING ARRANGEMENT FOR ROTATING DRUM

FIGURE 6.45

If condensate is continuously discharging to an open drain in an inside installation a personnel hazard or objectionable atmosphere may be created. To correct this, discharge piping can be connected to an exhaust stack venting to atmosphere and a connection to the main drain provided, as in figure 6.46

CONDENSATE VENT STACK

FIGURE 6.46

WHY VENTS ARE NEEDED

6.11.1

6.11

Vents are needed to let gas (usually air) in and out of systems. When a line or vessel cools, the pressure drops and creates a partial vacuum which can cause syphoning or prevent draining. When pressure rises in storage tanks due to an increase in temperature, it is necessary to release excess pressure. Air must also be released from tanks to allow filling, and admitted to permit draining or pumping out liquids.

Unless air is removed from fuel lines to burners, flame fading can result. In steam lines, air reduces heating efficiency.

After piping has been erected, it is often necessary to subject the system to a hydrostatic test to see if there is any leakage. In compliance with the applicable code, this consists of filling the lines with water or other liquid, closing the line, applying test pressure, and observing how well pressure is maintained for a specified time, while searching for leaks.

As the test pressure is greater than the operating pressure of the system, it is necessary to protect equipment and instruments by closing all relevant valves. Vessels and equipment usually are supplied with a certificate of code compliance. After testing, the valved drains are opened and the vent plugs temporarily removed to allow air into the piping for complete draining.

VENTING GASES 6.11.3

Quick-opening vents of ample size are needed for gases. Safety and safety-relief valves are the usual venting means. See 3.1.9 for pressure-relieving devices, and 6.1.3, under 'Piping safety and relief valves'.

Gases which offer no serious hazard after some dilution with air may be vented to atmosphere by means ensuring that no direct inhalation can occur. If a (combustible) gas is toxic or has a bad odor, it may be piped to an incinerator or flarestack, and destroyed by burning.

DRAINING COMPRESSED-AIR LINES

6.11.4

Air has a moisture content which is partially carried thru the compressing and cooling stages. It is this moisture that tends to separate, together with any oil, which may have been picked up by the air in passing thru the compressor.

If air for distribution has not been dried, distribution lines should be sloped toward points of use and drains: lines carrying dried air need not be sloped. Sloping is discussed in 6.2.6.

If the compressed-air supply is not dried, provide:-

- (1) Traps at all drains from equipment forming or collecting liquid—such as intercooler, aftercooler, separator, receiver.
- (2) Driplegs with traps on distribution headers (at low points before rises) and traps or manual drains at the ends of distribution headers.

LIQUID REMOVAL FROM AIR LINES

FIGURE 6.48

RELIEVING PRESSURE-LIQUIDS

6.12

The buildup of pressure in a liquid is halted by discharging a small amount of liquid. Relieving devices having large ports are not required. Relief valves—see 3.1.9—are used, and need to be piped at the discharge side, but the piping should be kept short. See 6.1.3 under 'Piping safety & relief valves'.

Rarely will the relieved liquid be sufficiently non-hazardous to be piped directly to a sewer. Often the liquid is simply to be reclaimed. Relieved liquid is frequently piped to a 'knockout drum', or to a sump or other receiver for recovery. The P&ID should show what is to be done with the relieved liquid.

RELIEF HEADERS

6.12.1

Headers should be sized to handle adequately the large amounts of vapor and liquid that may be discharged during major mishap. Relief headers taken to knockout drums, receivers or incinerators, are normally sloped, Refer to 6.2.6 and figure 6.3, showing the preferred location of a relief header on a piperack.

WASTES & EFFLUENTS

6.13

Manufacturing processes may generate materials that cannot be recycled, and for which there is no commercial use. These materials are termed 'waste products', or 'wastes'. An 'effluent' is any material flowing from a plant site to the environment. Effluents need not be polluting: for example, properly-treated waste water may be discharged without harming the environment or sewage-treatment plants.

Restrictions on the quantities and nature of effluents discharged into rivers, sewers or the atmosphere, necessitate treatment of wastes prior to discharge. Waste treatment is increasingly a factor in plant design, whether wastes are processed at the plant, or are transported for treatment elsewhere. For inplant treatment, waste-treatment facilities are described on separate P&ID's (see 5.2.4) and should be designed in consultation with the responsible local authority.

Liquid wastes have to be collected within a plant, usually by a special drainage system. Corrosive and hazardous properties of liquid wastes will affect the choice and design of pipe, fittings, open channels, sumps, holding tanks, settling tanks, etc. Because many watery wastes are acidic and corrosive to carbon steel, collection and drainage piping is often lined or made of alloy or plastic. Sulfates frequently appear in wastes, and special concretes may be necessary for sewers, channels, sumps, etc., because sulfates deteriorate regular concretes.

Flammable wastes may be recovered and/or burned in smokeless incinerators or flarestacks. Vapors from flammable liquids present serious explosion hazards in collection and drainage systems, especially if the liquid is insoluble and floats.

Wastes may be held permanently at the manufacturing site. Solid wastes may be piled in dumps, or buried. Watery wastes containing solids may be pumped into artificial 'ponds' or 'lagoons', where the solids settle.

.11

FIGURES 6.48

REFERENCES

- 'Fire hazard properties of flammable liquids, gases, volatile solids'. 1984. NFPA 325M
- 'Flammable and combustible liquid code', 1987. NFPA 30
- 'Flammable and combustible liquid code handbook'. Third edition. 1987. NFPA
- 'Fire protection in refineries'. Sixth edition. 1984 American Petroleum Institute. API RP 2001
- 'Protection against ignitions arising out of static, lightning and stray currents'. Fourth edition, 1982, API RP 2003
- 'Inspection for fire protection'. First edition. 1984. API RP 2004
- 'Welding or hot-tapping on equipment containing flammables'. 1985. API RP 2201
- 'Guide for fighting fire in and around petroleum storage tanks'. 1980 API publication 2021

NFPA address: Batterymarch Park, Quincy MA 02269

TANK SPACINGS (NFPA)

TABLE 6.11

CONDITIONS	MINIMUM INTER-TANK CLEARANCE							
FLAMMABLE or COMBUSTIBLE LIQUID STORAGE TANKS (Not exceeding 150 ft. dia.)	Whichever is greater:— 3ft (Sum of diameters of adjacent tanks)/6							
CRUDE PETROLEUM 126,000 gal max tank size Non-congested locale	3 ft							
UNSTABLE FLAMMABLE and UNSTABLE COMBUSTIBLE LIQUID STORAGE TANKS	(Sum of diameters of adjacent tanks)/2							
LIQUEFIED PETROLEUM GAS CONTAINER from Flammable or Combustible Liquid Storage Tank	20 ft							
LIQUEFIED PETROLEUM GAS CONTAINER outside diked area containing Flammable or Combus- tible Liquid Storage Tank(s)	10 ft from centerline of dike wall NOTE: If LPG container is smaller than 125 gal (US) and each liquid storage tank is smaller than 660 gal, exemption applies							
TANKS surrounded by other Tanks	Authority Limit							
For minimum clearances from property lines, public ways and buildings,								

LPG tanks: Title 29 of the Code of Federal Regulations. 1989. Chapter XVII, part 1910-110, the US Department of Labor's 'Occupational Safety and Health Administration's' tables H-23, H-33, gives clearances. Part 1919-111 advises on the storage and handling of anhydrous ammonia.

consult the National Fire Code Vol 1, NFPA 30, 1987, Chap, 2

- Apply the recommendations relating to the project of the NFPA, API or other advisory body
- Check insurer's requirements
- Isolate flammable liquid facilities so that they do not endanger important buildings or equipment. In main buildings, isolate from other areas by firewalls or fire-resistive partitions, with fire doors or openings and with means of drainage
- Confine flammable liquid in closed containers, equipment, and piping systems. Safe design of these should have three primary objectives:
 (1) To prevent uncontrolled escape of vapor from the liquid.
 (2) To provide rapid shut-off if liquid accidentally escapes.
 (3) To confine the spread of escaping liquid to the smallest practicable area
- If tanks containing flammable material are sited in the open, it is good practice to space them according to the minimum separations set out in the NFPA Code (No. 395. 'Farm storage of flammable liquids') and to provide dikes (liquid-retaining walls) around groups of tanks. Additional methods for dealing with tank fires are: (1) To transfer the tank's contents to another tank. (2) To stir the contents to prevent a layer of heated fuel forming
- Locate valves for emergency use in plant mishap or fire—see 6.1.3
- Valves for emergency use should be of fast-acting type
- Provide pressure-relief valves to tanks containing flammable liquid (or liquefied gas) if exposed to strong sunlight and/or high ambient temperature, so that vapor under pressure can escape
- Consider providing water sprays for cooling tanks containing flammable liquid which are exposed to sunlight
- Provide ample ventilation in buildings for all processing operations so that vapor concentration is always below the lower flammability limit.
 Process ventilation should be interlocked so that the process cannot operate without it
- Install explosion panels in buildings to relieve explosion pressure and reduce structural damage
- Install crash panels for personnel in hazardous areas
- Ensure that the basic protection, automatic sprinklers, is to be installed
- Some hazards require special fixed extinguishing systems—foam, carbon dioxide, dry chemical or water spray—in addition to sprinklers. Seek advice from the fire department responsible for the area, and from the insurers

SPACE BETWEEN FLOORS

6.15.1

To avoid interferences and to simplify design, adequate height is necessary between floors in buildings and plants for piping, electrical trays, and air ducts if required. Figure 6.49 suggests vertical spacings:

VERTICAL SPACING BETWEEN FLOOR & CEILING FIGURE 6.49

INSTALLATION OF LARGE SPOOLS & EQUIPMENT

Large openings in walls, floors or the roof of a building may be needed for installing equipment. Wall and roof openings are covered when not in use, but sometimes floor openings are permanent and guarded with railings, etc.

BUILDING LAYOUT 6.15.3

RELATION TO PROCESS

Different processes require different types of buildings. Some processes are best housed in single-story buildings with the process beginning at one end and finishing at the other end. Other processes are better assisted by gravity, starting at the top of a building or structure and finishing at or near grade.

Provision of a services shaft or 'chase' in multi-storied buildings greatly simplifies arrangement of vertical piping, ducting and electric cables communicating between floors. Conceptual arrangements of services and elevator shafts, with fan room for air-conditioning and/or process needs, are shown in figure 6.50. Services shafts can be located in any position suitable to the process, and need not extend the whole height of the building.

SUGGESTED BUILDING LAYOUTS FIGURE 6.50

FIGURES 6.49 & 6.50

TABLE 6.11

6.15.2

STANDARDS AND CODES for Piping Systems, Pipe, Pipe Supports, Flanges, Gaskets, Fittings, Valves, Traps, Pumps, Vessels, Heat Exchangers, Symbols and Screwthreads

WHAT ARE STANDARDS & CODES?

7.1

Standards are documents which establish methods for manufacturing and testing. Codes are documents which establish good design practices, including the factors of safety and efficiency. The documents are prepared and periodically updated by committees whose members may include representatives from industry, government, universities, institutes, professional societies, trade associations, and labor unions.

Proven engineering practices form the basis of standards and codes, so that they embody minimum requirements for selection of material, dimensions, design, erection, testing, and inspection, to ensure the safety of piping systems. Periodic revisions are made to reflect developments in the industry.

The terms 'standard' and 'code' have become almost interchangeable, but documents are termed codes when they cover a broad area, have governmental acceptance, and can form a basis for legal obligations. 'Recommendations' document advisable practice. 'Shall' in the wording of standards and codes denotes a requirement or obligation, and 'should' implies recommendation.

FOUR REASONS FOR THEIR USE

7.2

- Items of hardware made according to a standard are interchangeable and of known dimensions and characteristics
- (2) Compliance with a relevant code or standard guarantees performance, reliability, quality, and provides a basis for contract negotiations, for obtaining insurance, etc.

- (3) A lawsuit which may follow a plant mishap, possibly due to failure of some part of a system, is less likely to lead to a punitive judgment if the system has been engineered and built to a code or standard
- (4) Codes often supply the substance for Federal, State, and Municipal safety regulations. However, the US Federal Government may, as needed, devise its own regulations, which are sometimes in the form of a code.

WHO ISSUES STANDARDS?

7.3

The American Standards Association was founded in 1918 to authorize national standards originating from five major engineering societies. Previously a chaotic situation had arisen as many societies and trade associations had been issuing individual standards which sometimes overlapped. In 1967, the name of the ASA was changed to the USA Standards Institute, and in 1969 a second change was made, to American National Standards Institute. Standards previously issued under the prefixes 'ASA' and 'USASI' are now prefixed 'ANSI'.

Not all USA standards and codes are issued directly by the Institute. The American Society of Mechanical Engineers, the Instrument Society of America, and several other organizations issue standards and codes that apply to piping. Table 7.1 lists the principal sources.

ANSI makes available many such standards from other standards-issuing organizations ("sponsors"). Each of these standards is identified by the sponsor's designation (where one exists) preceded by ANSI's and the sponsor's acronym —— for example, the ASME Code for chemical plant and

refinery piping is designated ANSI/ASME B31.3. If the sponsor does not provide a designation, ANSI assigns one. If an American Standards committee developed the standard, the committee designation is used.

The ANSI catalog is available from the American National Standards Institute, 1430 Broadway, New York, NY 10018

Other countries also issue standards. The British Standards Institution (BSI) in the UK, the Deutscher Normenausschuss (DIN) in Germany, and the Swedish national organization (SIS) issue many standards. Copies of foreign standards can be obtained directly, or from the American National Standards Institute.

IDENTIFYING THE SOURCES OF STANDARDS 7.4

The tables in 7.5.6 give the initial letters of the standards-issuing organizations preceding the number of the standard, thus: 'ASTM N28'. Table 7.1 includes the initials used in tables 7.3 thru 7.14, and gives the full titles of the organizations. (Table 7.1 is not a comprehensive listing.)

PRINCIPAL ORGANIZATIONS ISSUING STANDARDS

TABLE 7.1

INITIALS	FULL TITLE OF ORGANIZATION
AIA	American Insurance Association *
ANSI	American National Standards Institute †
API	American Petroleum Institute
ASME	American Society of Mechanical Engineers
ASTM	American Society for Testing and Materials
AWS	American Welding Society
AWWA	American Waterworks Association
FCI	Fluid Controls Institute
GSA	General Service Administration
ISA	Instrument Society of America
MSS	Manufacturers' Standardization Society of the
	Valve and Fittings Industry
NFPA	National Fire Protection Association
PFI	Pipe Fabrication Institute
USDC	United States Department of Commerce

*Standards formerly issued by Underwriters' Laboratories Inc. †Formerly, United States of America Standards Institute, and American Standards Association.

PRINCIPAL DESIGN-ORIENTATED CODES

7.5

ANSI CODE B31

7.5.1

The most important code for land-based pressure-piping systems is ANSI B31. Parts of this code which apply to various types of plant piping are listed in table 7.2.

ANSI CODE B31 FOR PRESSURE PIPING

TABLE 7.2	7	.1
		.5

TITLE	SECTION	APPLICATION
Corrosion Control	B31 Guide	Guidelines for protecting B31 piping systems from corrosion
Power Piping	B31.1-	Piping for industrial plants and marine applications
Chemical Plant and Petroleum Refinery Piping	B31.3-	Design of chemical and petrochemical plants and refineries processing chemicals and hydrocarbons, water and steam
Liquid Petroleum Transportation	B31.4-	Liquid transportation systems for hydrocar- bons, LPG, anhydrous ammonia and alcohols
Refrigeration piping	B31.5-	Principally describes the piping of packaged units
Gas Transmission and Distribution Piping Systems	B31.8-	Principally describes overland conveyance of fuel gases and feedstock gases
Building Services Piping Code	B31.9-	High-pressure commercial/sanitary piping
Slurry Transport- ation Piping	B31.11-	Design, construction, inspection, security requirements of slurry piping systems

AMERICAN PETROLEUM INSTITUTE'S STANDARD 2510

This Standard covers design and construction of liquefied petroleum gas installations at marine and pipeline terminals, natural gas processing plants, refineries, petroleum plants and tank farms

The two following codes are not directly related to piping, but frequently are involved in the piping designer's work:

API 510, PRESSURE VESSEL INSPECTION CODE

7.5.3

7.5.2

This code applies to repairs and alterations made to vessels in petro-chemical service constructed to the former API-ASME Code for Unfired Pressure Vessels for Petroleum Liquids and Gases, Section 8 of the ASME Boiler and Pressure Vessel Code, and to other vessels.

ASME BOILER & PRESSURE VESSEL CODE

7.5.4

The ASME Boiler and Pressure Vessel Code is mandatory in many states with regard to design, material specification, fabrication, erection, and testing procedures. Compliance is required in the USA and Canada to qualify for insurance. The Code consists of the following eleven sections:

ASME BOILER & PRESSURE VESSEL CODE

															sec	tic	m
Power boilers																	1
Material specifi	catio	ns															2
Nuclear power																	3
Heating boilers																	4
Nondestructive																	
Recommended																	6
Recommended	rules	for	· ca	re	of p	ow	er l	boile	rs	. `							7
Pressure vessels																	8
Welding qualific																	9
Fiberglass-reinf																	10
Rules for inserv																	11

Requirements for merchant and naval vessels are contained in the following standards:

- (1) American Bureau of Shipping: 'Rules for building and classing vessels'
- (2) Lloyds' Register of Shipping: 'Rules'
- US Coast Guard: 'Marine engineering regulations and material specifications'
- US Navy, Bureau of Ships: 'General specifications for building naval vessels', 'General machinery specifications'

SELECTED STANDARDS

7.5.6

The following tables are not comprehensive: a selection has been made from standards relating to piping design and technology. Sources of these standards may be found from table 7.1. Addresses of the issuing organizations may be found from the current edition of 'Encyclopedia of associations: Vol 1, National organizations of the United States' (Gale Research Company).

STANDARDS FOR SYMBOLS AND DRAFTING

TABLE 7.3

Piping	Graphic symbols for pipe fittings, valves and piping Graphic symbols for plumbing fixtures Graphic symbols for fluid power diagrams Fluid power diagrams	ANSI/ ASME Y32.2.3 ANSI Y32.4 ANSI Y32.10 ANSI Y14.7
Process Engineering	Graphic symbols for process flow diagrams in petroleum and chemical industries Letter symbols for chemical engineering Letter symbols for hydraulics	ANSI Y32.11 ANSI Y10.12 ANSI Y10.2
Instrumentation	Instrumentation symbols and identification	ISA S5.1
Welding	Symbols for welding and nondestructive testing	AWS A2.4-79
Heating and Ventilating	Graphic symbols for heating, ventilating and air conditioning	ANSI Y32.2.4
Electrical	Electrical and electronics diagrams Graphic symbols for electrical wiring and layout diagrams used for architecture and building construction	ANSI Y14.15 ANSI Y32.9
Drafting	Drawing sheet size and format Line conventions, sectioning and lettering Multi and sectional view drawings Pictorial drawing Dimensioning and tolerancing for engineering drawings Screw thread representation	ANSI Y14.1 ANSI Y14.2 ANSI Y14.3 ANSI Y14.4 ANSI Y14.5 ANSI Y14.6
Safety	Symbols for fire fighting operations	NFPA 178

STANDARDS FOR PIPING (DESIGN AND FABRICATION)

TABLE 7.4

Design	Power piping code (refer to Table 7.2)	ASME B31	
Drafting	PFI ES-2 PFI ES-7		
Fabrication	Buttwelding ends for pipe, valves, flanges and fittings Internal machining and solid machined backing rings for circumferential back-welds Fabricating tolerances	ASME B16.25 PFI ES-1 PFI ES-3	
Testing	Hydrostatic testing of fabricated piping	PFI ES-4	
Cleaning	Reaning Cleaning of fabricated piping		
Color Coding	Scheme for the identification of piping systems Recommended practice for color coding of piping materials	ANSI A13.1 PFI ES-22	

Steel or Iron	Specification for welded and seamless steel pipe Specification for seamless carbon-steel pipe	ASTM A53
	for high-temperature service Specification for electric-fusion(arc)-welded	ASTM A106
	steel pipe, NPS 16 and over Specification for electric-resistance-welded	ASTM A134
	steel pipe Specification for seamless and welded austenitic	ASTM A135
	stainless steel pipe Specification for seamless ferritic alloy-steel	ASTM A312
	pipe for high-temperature service Specification for seamless carbon-steel pipe for atmospheric and lower temperatures	ASTM A335
		ASTM A524 API 51.
	Welded and seamless wrought-steel pipe Stainless steel pipe	ASME B36.10M ANSI B36.19
	Ductile iron pipe, centrifugally cast, in metal molds or sand-lined molds for water and other liquids	ANSI/AWWA51 C151/A21.51
	Ductile iron pipe, centrifugally cast, in metal molds or sand-lined molds for gas	ANSI A21.52
Nonferrous Alloy	Specification for aluminum and aluminum-alloy seamless pipe and extruded seamless tube	ASTM B241
	Specification for seamless copper pipe, standard sizes	ASTM B42
	Specification for seamless red brass pipe, standard sizes	ASTM B43
	Specification for seamless copper alloy pipe and tube Specification for seamless nickel pipe and tube	ASTM B315 ASTM B161
Plastics	Specification for cellulose acetate butyrate (CAB) plastic pipe, SCH 40	ASTM D1503
	Specification for acrylonitrile-butadiene- styrene (ABS) plastic pipe, SCH 40 and 80	ASTM D1527
	Specification for polyvinyl chloride (PVC) plastic pipe, SCH 40, 80 and 120 Specification for polyethylene (PE) plastic	ASTM D1785
	pipe, SCH 40	ASTM D2104
	Specification for acrylonitrile-butadiene- styrene (ABS) plastic pipe (SDR-PR)	ASTM D2282
	Specification for polyvinyl chloride (PVC) plastic pipe (SDR series) Consideration for polyvinylogo (PE) plastic pipe	ASTM D2241
	Specification for polyethylene (PE) plastic pipe (SIDR-PR) based on controlled inside diameter	ASTM D2239
	Polyvinyl chloride (PVC) pressure pipe for water NPS 4 thru NPS 12 Polyethylene (PE) pressure pipe, tubing and	AWWA C900
	fittings for water NPS 1/2 thru NPS 3 Polybutylene (PB) pressure pipe, tubing and	AWWA C901
	fittings for water NPS 1/2 thru NPS 3 Glass fiber reinforced pipe	AWWA C902 AWWA C950

STANDARDS FOR HANGERS AND SUPPORTS

TABLE 7.6

Application	Pipe hangers and supports - selection and application	MSS SP-69
Production	Pipe hangers and supports - materials, design and manufacture	MSS SP-58

STANDARDS FOR GASKETS

TABLE 7.7

Metallic	Ring-joint gaskets and grooves for steel pipe flanges Metallic gaskets for raised-face pipe flanges and flanged connections (double-jacket corrugated and spiral-wound)	ASME B16.20 API 601
Nonmetallic	Nonmétallic flat gaskets for pipe flanges Rubber gasket joints for ductile-iron and gray- iron pressure pipe and fittings Gasketed joints for ductile iron and and gray iron pressure pipe and fittings for fire protection service Standard specification for dense elastomer silicone rubber gaskets and accessories	ASME B16.21 AWWA C111 UL 194 ASTM C1115

	,	
Steel Fittings	Factory-made wrought-steel buttwelding fittings Wrought-steel buttwelding short-radius elbows and returns forged-steel fittings, socketwelding and threaded Carbon steelpipe unions, socketwelding & threaded Factory-made buttwelding fittings for class 1 nuclear piping applications	ASME B16.28 ASME B16.28 ASME B16.11 MSS-SP-83 MSS SP-87
Stainless Steel	Wrought stainless steel puttwelding fittings including reference to other corrosion resistant materials	MSS SP-43
Malleable Iron	Malleable iron threaded fittings	ASME B16.3
Cast Iron	Cast-iron threaded fittings, class 125 and 250 Cast-iron threaded drainage fittings	ASME B16.4 ANSI B16.12
Ductile Iron	Ductile-iron fittings, NPS 3 thru NPS 24 for gas Ductile-iron pipe flanges and flanged fittings	ANSI A21.14 AŞME B16.42
Ferrous	Ferrous pipe plugs, bushings and locknuts with pipe threads	ANSI B16.14
Copper Alloy	Cast bronze threaded fittings, class 125 and 25D Cast copper alloy solder joint pressure fittings Bronze pipe flanges and flanged fittings, class 150 and 300 Cast copper alloy solder joint fittings for Sovent drainage systems Wrought copper and wrought copper alloy solder-joint drainage fittings for Sovent drainage fittings	ASME B16.15 ANSI B16.18 ANSI B16.24 ASME B16.32 ANSI B16.43
Plastics	Specification for socket type acrylonitrile- butadiene-styrene (ABS) plastic pipe fittings SCH 40 Specification for socket type polyvinyl chloride (PVC) plastic pipe fittings SCH 80	ASTM D2468 ASTM D2467

STANDARDS FOR VALVES

TABLE 7,9

General	Face-to-face and end-to-end dimensions of ferrous valves, Classes 125 thru 2500 (gate, globe, plug ball, and check valves) Manually operated metallic gas valves for use in gas piping systems up to 125 PSIG (sizes NPS 1/2 thru NPS 2) Valves, flanged and buttwelding end steel, nickel alloy, and other special alloys Specification for pipeline valves (steel gate, plug, ball and check valves) Earthquake activated automatic gas shutoff system	ANSI B16.1D ANSI B16.33 ASME B16.34 API 6D AGA Z21.70
Gate Valves	Steel venturi gate valves, flanged and butt- welding ends Steel gate valves, flanged and butt-welding ends Compact steel gate valves Class 150 cast, corrosion-resistant flanged end gate valves Ductile-tron gate valves, flanged ends Gate valves, NPS 3 thru NPS 48, for water and sewage systems Resilient seated gate valves, NPS 3 thru NPS 12, for water and Sewage systems	API 597 API 600 API 602 API 603 API 604 AWWA C500
Butterfly	Butterfly valves Rubber seated butterfly valves Butterfly valves, lug-type and wafer-type	MSS SP-67 AWWA C5D4 API 609
Check Valves	Swing check valves for waterworks service, NPS 2 thru NPS 24 Wafer check valves Cast-iron swing check valves, flanged and threaded ends	AWWA C508 API 594 MSS SP-71
Ball Valves	Ball valves-flanged and butt-welding ends Ball valves with flanged or buttwelding ends for general service Ball valves, NPS 6 thru NPS 48	API 608 MSS SP-72 AWWA C5D7
Relief	Safety and relief valves Flanged steel safety-relief valves	ASME PTC25.3 API 526
Control	Control valve manifold designs recommended practice Face-to-face dimensions for flanged globe-style control valve bodies (ANSI classes 125, 15D, 250, 300 and 600) Face-to-face dimensions for flangeless control valves (ANSI classes 150, 300 and 6DD) Face-to-face dimensions for butweld-end globe-style control valves (ANSI classes 45D0)	ISA RP75.06 ISA S75.D3 ISA S75.D4 ISA S75.14

Pressure Vessels	Boiler and Pressure Vessel Code, section VIII, "Pressure vessels"	ASME Code
Low Pressure Vessels	Requirements for tank containers for liquids and gases Specification for bolted tanks for storage of production liquids Specification for field-welded tanks for storage of production liquids Specification for field-welded tanks for storage of production liquids Specification for shop-welded tanks for storage of production liquids Recommended rules for design and construction of large welded low-pressure storage tanks Welded steel tanks for oil storage Specification for welded aluminum alloy storage tanks Steel aboveground tanks for flammable and combustible liquids Safety standard for steel inside tanks for oil-burner fuel Steel underground tanks for flammable and combustible liquids factory-coated bolted steel tanks for water storage Welded steel tanks for water storage	ASME MH5.1.3 API 12B API 12D API 12F API 620 API 650 ANSI B96.1 UL 142 UL 80 UL 58 AWWA D103-80 AWWA D100-79
Lined Vessels	Design, fabrication and surface finish of metal tanks and vessels to be lined for chemical service	NACE RP-01
Calibration	Method for liquid calibration of tanks Method for measurement and calibration of horizontal tanks Method for measurement and calibration of spheres and spheroids Method for measurement and calibration of upright cylindrical tanks	ASTM D1406 ASTM D1410 ASTM D1408 ASTM D1220
Venting and Flame Arresters	Venting atmospheric and low-pressure storage tanks (refrigerated and nonrefrigerated) Flame arresters for vents of tanks storing petroleum products Flame arresters for use on vents of storage tanks for petroleum oil and gasoline	API 2000 API 2210 UL 525

STANDARDS FOR FLANGES

TABLE 7.11

Steel Flanges	Pipe flanges and flanged fittings	ANSI B16.5
	Steel orifice flanges	ANSI B16.36
	Large diameter carbon-steel flanges (NPS 26-60, class 75, 150, 300, 400, 600 and 900 steel pipeline flanges High-pressure chemical industry flanges and threaded stubs for use with lens gaskets Steel flanges for waterworks service, NPS 4 thru NPS 144	API 605 MSS SP-44 MSS SP-65 AWWA C207-78
Cast-iron Flanges	Cast-iron pipe flanges and flanged fittings Class 150LW corrosion-resistant cast flanges and flanged fittings	ASME B16.1 MSS SP-51
Ductile Iron	Ductile iron flanges and flanged fittings, class 150 and 3D0	ASME B16.42
Finishing	Finishes for contact faces of pipe flanges and connecting-end flanges of valves and fittings	MSS SP-6

STANDARDS FOR SCREW THREADS FOR PIPING, NUTS AND BOLTS TABLE 7.12

Genera]	Unified inch screw threads (UN & UNR thread form) Pipe threads, general purpose (inch) Nomenclature, definitions and letter symbols for screw threads	ANSI B1.1 ANSI/ ASME B1.20.1 ASME B1.7M
Dryseal Pipe Threads	Dryseal pipe threads (inch) Dryseal pipe threads (metric translation of ANSI B1.20.3)	ANSI B1.20.3 ANSI B1.20.4
Hose Threads	Hose coupling screw threads for all connections having nominal hose (inside) diameters of 1/2, 5/8, 3/4, 1, 1 1/4, 1 1/2, 2, 2 1/2, 3, 3 1/2 and 4 inches (except fire hose) Screw threads and gaskets for fire hose connections	ASME B1.20.7 NFPA 1963-85

7.3-7.1 2

STANDARDS FOR HEAT EXCHANGERS AND HEATERS

TABLE 7.13

Shell-and-Tube Exchangers	Tubular heat exchangers in chemical process service Shell-and-tube exchangers for general refinery services Specification for seamless cold-drawn low-carbon steel heat exchanger and condenser tubes Specification for seamless cold-drawn intermed-late alloy steel heat exchanger and condenser tubes Specification for seamless ferritic and austentic alloy steel boiler, superheater and heat-exchanger tubes Specification for seamless nickel and nickel alloy condenser and heat exchanger tubes	ANSI B78.1 API 660 ASTM A179/M ASTM A199/M ASTM A213/M ASTM B163
Air Exchangers	Air cooled heat exchangers for general refinery service Winterizing of air-cooled heat exchangers	API 661 API 632
Heaters	Closed feedwater heaters Performance test code air heaters Desuperheater/water heaters	ASME PTC12.1 ASME PTC4.3 ARI 470-80

STANDARDS FOR PRIME MOVERS

TABLE 7.14

General	Specification for pumping units Positive displacement pumps reciprocating Positive displacement pumps controlled volume Pumps for oil burning appliances	API 11E API 674 API 675 UL 343
Centrifugal Pumps	Centrifugal pumps Specifications for horizontal end suction centrifugual pumps for chemical process Specifications for vertical in-line centrifugual pumps for chemical process Centrifugal pumps for general refinery service	ASME PTC8.2 ASME B73.1M ASME B73.2M API 610
Positive Displacement	Displacement pumps (performance test code) Reciprocating steam-driven displacement pumps Displacement compressors, vacuum pumps and blowers	ASME PTC7.1 ASME PTC7 ASME PTC9
Compressors, exhausters and ejectors	Safety standard for compressors for process industries Installation of blowers and exhaust systems Centrifugal compressors for general refinery services Compressors and exhausters - performance test code Ejectors - performance test code	ASME B19.3 NFPA 91 API 617 ASME PTC10 ASME PTC24

8

ABBREVIATIONS for Piping Drawings and Industrial Chemicals

ABBREVIATIONS USED ON PIPING DRAWINGS, DOCUMENTS, Etc.

8.1

Α		Ε			
А	(1) Air	E	East	ID	(1) Inside diameter
	(2) Absolute	ECN	Engineering change number	10	(2) Internal diameter
ABS	Absolute	EFW	Electric-fusion-welded	IMP	Imperial. [British unit]
AGA	American Gas Association	ELL	Elbow	IPS	Iron pipe size
AISI	American Iron and Steel Institute	ERW	Electric-resistance-welded	IS	Inside screw. [Of valve stem]
ANSI API	American National Standards Institute American Petroleum Institute	F		ISO	Isometric drawing
ASTM	American Society for Testing and Materials	F	Fahrenheit	IS&Y	Inside screw and yoke
AWS	American Welding Society	F&D	Faced and drilled	Κ	
AWWA	American Waterworks Association	FAHR		K	Kilo, times one thousand, x1000
В		FBW	Furnace-butt-welded	kg	Kilogram
BBL	Denvel	FCN	Field change number	_	· · · · · · · · · · · · · · · · · · ·
BC	Barrel Bolt circle	FD&SF	Faced, drilled and spot-faced	L	
BLE	Beveled large end	FE FF	Flanged end	L	Liquid
BLK	Black	FF	(1) Flat face(d) (2) Full face [of gasket]	LB,Lb	Pound weight
BLVD	Beveled		(3) Flange face [dimensioning]	LT LR	Light-wall [of Pipe] Long radius. [Of Elbow]
BOP	Bottom [of outside] of pipe. Used for	FLG	Flange		Long radius. [Of Elbow]
	pipe support location	FLGD	Flanged	M	
BS	British Standard	FOB	(1) Flat on bottom. [Indicates orient-	M	(1) Meter
BTU BW	British thermal unit (1) Butt weld		ation of eccentric reducer]		(2) Mega, times one million, 1 000 000.
644	(2) Butt welded		(2) Freight on board. (Indicates loca-	144.011	[On old drawings, x1000]
	(2) Sutt Wordsd		tion of supply of vendor's freight at the	MACH MATL	
С			stated price] (3) Free on board. [Indicates location	MAWP	
С	(1) Centigrade, or Celsius		of supply of vendor's freight	MAX	Maximum Maximum
0515	(2) Condensate	FOT	Flat on top. (Indicates orientation of	MCC	Motor control center
CENT CFM	Centigrade		eccentric reducer]	M/C	Machine
CHU	Cubic feet per minute Centigrade heat unit	FRP	[Glass-] fiber reinforced pipe	MFR	Manufacturer
CI	Cast iron	FS	Forged steel	MI	Malleable iron
CM	Centimeter	FW	Field weld	MIN	(1) Minimum (2) Minute. [Of time]
Cr	Chromium	G		mm	Millimeter
CS	(1) Carbon steel	G	(1) Gas	Mo	Molybdenum
000	(2) Cold spring		(2) Grade	MSS	Manufacturers' Standardization Society
CSC	Car-sealed closed. Denotes a valve to be		(3) Gram		of the Valve and Fittings Industry
	locked in the closed position under all circumstances other than repair to adjac-	GAL GALV	Gallon Galvanized	N	
	ent piping	GALV	Gallons per hour	N	North
CSO	Car-sealed open. See CSC	GPM	Gallon per minute	NC	Normally closed
CTR	Center		action per titiliate	NEMA	
CU	Cubic	Н		Ni	Nickel
D		Н	(1) Horizontal	NIC	Not in contract
DEG	Degree	LIEV	(2) Hour	NO	Normally open
DEG	Diameter	HEX Hg	Hexagon(al) Mercury	NPSC	2.5.5
DIN	Deutsche Industrie Norm [German stand-	HPT	Hose-pipe thread	NPSF NPSH	2.5.5 (1) Net positive suction head. [3.2.1]
	ard]	HR	Hour	INFOLL	(1) Net positive suction head. [3.2,1](2) 2.5.5
DO	Drawing office			NPSI	2.5.5
DRG	Drawing. [Not preferred]	I		NPSL	2.5.5
DWG	Drawing	ΙE	Invert elevation	NPSM	2.5.5
			[141]		

7.13-7.14

NPT NPTF NRS	National pipe thread 2.5.5 Non-rising stem. [Of valve]	SAE SCH SCRD SF	Society of Automotive Engineers Schedule. [Of pipe] Screwed Spot-faced	U UNC UNF UNS	2.6.3 2.6.3 2.6.3
O OD OS OS&Y	Oil Outside diameter Outside screw. [Valve stem] Outside screw and yoke. [Valve stem]	SKT SMLS Si SO SP	Socket Seamless Silicon Slip-on (1) Sample point	V	(1) Vertical (2) Vanadium
Р		SR	(2) Standard practice. [MSS term] Short radius. [Of elbow]	W	
P&ID PBE PE PFI POE PS PSI PSIA PSIG	Piping and instrumentation diagram Plain both ends. [Swage, etc.] Plain end. [Pipe, etc.] Pipe Fabrication Institute Plain one end. [Nipple, etc.] (1) Pipe support. [Anchor, guide or shoe, or items combined to form the support] (2) Pre-spring Pound [weight] per square inch. [Pressure] Pound per square inch absolute Pound per square inch gage	SST ST STM STD STR SW SWG SWG ! NIPP ! SWP	Stainless steel Steam trap Steam Standard Straight Socket welding Swage Swaged nipple Steam working pressure (1) Temperature (2) Trap	W WGT WLD WN WOG WP	 West Water Weight Weld (ed) Welding neck Water, oil and gas Workpoint or reference point Markings with this prefix designate certain steels and are used on pipe, fittings and plate. Example: 'WPB' marked on forged fittings denotes A181 grade 2. Refer to ASME SA234, tables 1 and 2. Weight
R RED RF RJ RPM RS S	Reducing Raised face Ring joint Revolutions per minute Rising stem. [Of valve] (1) South (2) Steam	T&C TEMA TGT TOE TOS TPI TSE TYP	Threaded and coupled. [Pipe] Threaded and coupled. [Pipe] Tubular Exchanger Manufacturers' Assn. Tangent Threaded one end. [Nipple or Swage] Top of support Threads per inch Threaded small end Typical. [Used to avoid redrawing similar arrangements]	X XH XS XXS OTHEF G O	Extra-heavy. [See Index] Extra-strong Double-extra-strong

ABBREVIATIONS FOR COMMERCIAL CHEMICALS

	Aminultur
Diammonium phosphate	Agriculture
Dehydrated castor oil	Paint
Dimethylammonium dimethyl carbamate	Refining
Dimethyl formamide	

ABBREVIATION	CHEMICAL NAME	AREA OF USE	D		
			DAP	Diammonium phosphate	Agriculture
Α			DCO	Dehydrated castor oil	Paint
ADA	Acetone dicarboxylic acid	Drugs	DMC	Dimethylammonium dimethyl carbamate	Refining
AEA	Air-entraining agent	Concrete	DMF	Dimethyl formamide	
ANW	83% ammonium nitrate in water		DMU	Dimethylurea	
			DNA	Dinonyladipate	Plastics
В			DNM	Dinonyl maleate	Plastics
BAP	Benzyl para-amino phenol	Fuel	DNP	Dinonyl phthalate	Plastics
BHA	Butylated hydroxyanisole	Food	DNT	Dinitrotoluene	Explosives
BHC	Benzene hexachloride	General	DOP	Dioctyl phthalate	Plastics
BHT	Butylated hydroxytoluene	Food	DOV	96% sulfuric acid	G e neral
BOV	77-78% sulfuric acid	General		('distilled oil of vitreol')	
50,	('blown oil of vitreol')		DSP	Disodium phosphate	General
BzH	Benzaldehyde	General	D T BP	Ditertiary-butyl peroxide	Plastics
BzOH	Benzoic acid	General	DVB	Divinyl benzene	Plastics
520			DPG	Diphenyl guanidine	Rubber
C			DOPA	3,4-dihydroxyphenylaniline	Rubber
CO	Carbon monoxide		_		
COV	95-96% sulfuric acid	General	E		
	('concentrated oil of vitreol')		EA	Ethylidene aniline	Rubber
CO2	Carbon dioxide	General	EDTA	Ethylene diamine tetra-acetic acid	Food
			[142]		

8.2

FA Furtury latchol	ABBREVIATION	MEANING	AREA OF USE	O OMPA ONB OPE O2 O3	Octamethyl pyrophosphoramide o-nitrobiphenyl Octylphenoxyethanol Oxygen Ozone	Agriculture Plastics Refining General
FGAN Ammonium nitrate Agriculture P FPA Fluorophosphoric side Pas Pas Pas Pas FPEON One of a large number of chloro- or fluoro- substituted hydrocarbons General FPEON One of a large number of chloro- or fluoro- substituted hydrocarbons General FPA Pas Pas Polybutene Pas Pas FPBNA Pende hear appthylyamine Pastics FPBNA Pende hear appthylyamine Explosives FPS Polyvinyl alcohol Pastics FPS Polyvinyl alcohol Pastics FPS Polyvinyl alcohol Pastics FPS Polyvinyl butyrol FPNA Polyvinyl methyl-ether FRNA Suffuria caid ('refined oil of vitreol') FPNA Polyvinyl methyl-ether FRNA Suffuria caid ('refined oil of vitreol') FPNA Polyvinyl methyl-ether FRNA Suffuria caid ('refined oil of vitreol') FPNA Polyvinyl methyl-ether FRNA Suffuria caid ('refined oil of vitreol') FPNA Suffuria caid ('refined oil of vitreol') FPNA Polyvinyl methyl-ether FRNA Suffuria caid ('refined oil of vitreol') FPNA Suffuria caid ('refined oil of vitreol') FPNA Suffuria caid ('refined oil of vitreol')	F					
H H H H H H H H H H H H H H H H H H H	FGAN FPA	Ammonium nitrate Fluorophosphoric acid One of a large number of chloro- or	Agriculture Refrigeration,	PAS		
HCN Hydrocyanic acid, hydrogen cyanide Plating Agriculture PETN Pentaertythritot letranitrate Explosives Plastics PHET Hexa-ethyl tetraphosphate Agriculture PYA or PVAL Polyvinyl alcohol Plastics PHET Hexa-ethyl tetraphosphate Explosives POWA or PVAL Polyvinyl acetate Polyter Phetaertyl acetate Phetaert	и	fluoro- substituted hydrocarbons	General	PDB	p-dichlorobenzene	
Figure F	HCN HET HMDT HMT HNM	Hexa-ethyl tetraphosphate Hexamethylene triperoxide Hexamethylene tetramine Mannitol hexanitrate 100% hydrogen peroxide ('high test peroxide'),	Agriculture Explosives Rocketry, General	PETN PTFE PVA or PVAL PVAc PVB PVC PVM	Penta-erythritol tetranitrate Polytetrafluorethylene Polyvinyl alcohol Polyvinyl acetate Polyvinyl butyrol Polyvinyl chloride	•
IMS Commercial ethyl alcohol (Brit.) General S IMS Isophthalic acid S Sulfur General IPC Isopropyl n-phemyl carbonate SAP Sodium acid pyrophosphate IPS Isopropyl n-phemyl carbonate SAP Sodium acid pyrophosphate IPS Isopropyl alcohol (Shell Oil Co.) General SDA Specially denatured alcohol General INS SAP Sodium acid pyrophosphate IPS Isopropyl alcohol (Shell Oil Co.) General SDA Specially denatured alcohol General INS SAP Sodium acid pyrophosphate IPS Isopropyl alcohol (Shell Oil Co.) General INS SAP Sodium acid pyrophosphate IPS Sod	H2O	-	•			0 .
Some	ı				Sulturic acid ("refined oil of vitreol")	General
IPS Isopropyl alcohol (Shell Oil Co.) General SDA Specially denatured alcohol General General L L L L L L L L L L L L L	IPA	Isophthalic acid	General	S		General
LOX Liquid oxygen Lauryl pyridinium chloride LUGY Liquid petroleum gases, mainly butane and propane Fuel TCA TCE 1,1,1-trichlorethane Dry cleaning TCP Tricresyl phosphate Fuel, Plastics M Methyl-ethyl-ketone Methyl pyridine MBK Methyl-isobutyl carbinol MIBK Methyl-isobutyl-ketone MIBK Methyl-isobutyl-ketone MNPT m-nitro p-toluidine MNPT m-nitro p-toluidine MNSG Monosodium glutamate Food MNSG NBS n-bromosuccinamide NBS n-bromosuccinamide NBS n-bromosuccinamide NBS n-chlorosuccinamide NBS n-chlorosuccinamide NBS n-chlorosuccinamide NBS n-chlorosuccinamide NBC Liquid pages and propane Name of the propagate of the			General		Specially denatured alcohol	
LPC Lauryl pyridinium chloride Soaps T LPG Liquefied petroleum gases, mainly butane and propane butane butan			Dealeatre			
MSMC Monotertiary butyl-methyl-cresol General TEG Triethylene glycol Refining MEK Methyl-ethyl-ketone General TEL Tetraethyl lead Fuel MEP 2-methyl, 5-ethyl pyridine TFA Tetrahydrofurfuryl alcohol Agriculture MIBC Methyl isobutyl carbinol TNA Trinitroaniline Explosives MIBK Methyl-isobutyl-ketone TNG Trinitrobenzene Explosives MIBK Methyl-nonyl acetaldehyde TNT Trinitrootluene Explosives MNPT m-nitro p-toluidine Explosives TOF Trioctyl phosphate Explosives MNT Monosodium glutamate Food TG Triphenyl guanidine Plastics MSG Monosodium glutamate Food TG Triphenyl guanidine Plastics NBA n-bromacetamide TSP Trisodium phosphate Rubber NBA n-bromosuccinamide VA Vinyl acetate NCS n-chlorosuccinamide VA Vinyl acetate NH powder Explosive powder Z	LPC	Lauryl pyridinium chloride Liquefied petroleum gases, mainly	Soaps	TCA TCE	1,1,1-trichlorethane	Dry cleaning Fuel,
MEP 2-methyl, 5-ethyl pyridine	МВМС		Paint,	TEL TEP TFA	Tetraethyl lead Tetraethyl pyrophosphate Tetrahydrofurfuryl alcohol	Refining Fuel
MNPT m-nitro p-toluidine MNT Mononitro toluene MSG Monosodium glutamate Food TPG Trioctyl phosphate Triphenyl guanidine Trisodium o-phosphate Trisodium o-phosphate Trisodium phosphate T	MIBC MIBK	Methyl isobutyl carbinol Methyl-isobutyl-ketone		TNB TNG TNM	Trinitrobenzene Trinitroglycerine Trinitromethane	Explosives
NBA n-bromacetamide V NBS n-bromosuccinamide VA NCA n-chloracetamide NCS n-chlorosuccinamide NH powder Explosive powder V Vinyl acetate Z	MNT	Mononitro toluene	•	TNX TOF TPG	Trinitroxylene Trioctyl phosphate Triphenyl guanidine Trisodium o-phosphate	Explosives Plastics
NBS n-bromosuccinamide NCA n-chloracetamide NCS n-chlorosuccinamide NH powder Explosive powder NBS n-bromosuccinamide VA Vinyl acetate Z	N					
NH powder Explosive powder 2	NBS NCA	n-bromosuccinamide n-chloracetamide			Vinyl acetate	
					Zinc methylarsenate	Timber

0 .1 .2

INDEX/GLOSSARY

ABBREVIATIONS. B ABSOLUTE TEMPERAT

ABSOLUTE TEMPERATURE. At absolute zero temperature all movement of matter ceases. This temperature is theoretically unattainable. Absolute zero: Celsius scale..... -273.1SC Fahrenheit scale... -459.67F ACCESS TO VALVE. 6.1.3 AFTERCOOLER, 3.2.2 AGITATOR, table 3.7 AIR IN STEAM. 6.9.1, 6.10.1 AIR LINE. Liquid removal 6.11.4 ALLOYS. For pipe. 2.1.4 AMBIENT. Pertaining to the surroundings. Usually refers to temperature AMERICAN STANDARDS ASSOCIATION, 7.3 ANCHOR. 2.12.2, 6.2.B. A pipe fixture used to hold piping rigidly at a chosen point. Position where piping is restrained is termed the 'anchor point' ANGLE VALVE. 3.1.5 ANST. 7.3

ARCHIVE. Place where drawings, specifications etc., may be permanently stored ASA. 7.3

ATTRITION. See 'Change of Particle Size', 3.3.4

AUYOCLAVE. Vessel in which material or reactants are held under controlled conditions (time, temperature, pressure, etc.) AUXILIARY PIPING. 6.3.1

B

BACK WELD. In piping, a continuous weld made at the back of a butt-weld. Possible only if there is access to the interior BACKCHECK. 5.4.2 BACKING RING = Chill ring. chart 2.1. figure 2.1 BALL FLOAT VALVE. 3.1.9 BALL VALVE. Check valve. 3.1.7 BALL VALVE. Rotary. 3.1.6 BAR. Traditional metric unit of pressure approximately equal to 1 atmosphere. See 'METRIC' - introduction, Part II. table M-7 BAROMETRIC LEG. If a process which takes place below atmospheric pressure requires water or other liquid to be continuously drained from it, this may be achieved by connecting the drain to a vertical pipe termed a 'barometric leg', the lower end of which is inserted in a seal pot. When the leg and seal are primed with liquid, draining from a low-pressure process can occur continuously. If the pressure of the process approaches zero (absolute), the leg must be at least 34 ft in height BARSTOCK PLUG. 2.5.4. figure 2.55

BARSTOCK VALVE. 3.1.11. Valve machined from BATTERY LIMIT. Arbitrary line shown on drawinos to define on-plot and off-plot areas. Also used to define limits of contractual responsibility within an on-plot area BENCHMARK. S.3.1. figure S.12 BENOS, BUTT-WELDING. 2.3.1 BENT. 8.1.2 BEVEL. The ends of pipe and butt-welding fittings are beveled (see chart 2.1) to aid making welded joints BIBB. 3.1.11 BILL OF MATERIAL. S.6.1 BLEED RING. 2.7.1. figure 2.6D. chart S.7 BLEED VALVE. 3.1.11. figure 2.60 BLENDER. 3.3.2. table 3.7 BLIND FLANGE. 2.7.1, 2.7.2. figure 2.61. Flange without central opening, used for closure of flanged terminations. Rated similarly to other types of flanges - see 'Flance Data', Part II BLOCK VALVE. 3.1.11 BLOWDOWN VALVE. 3.1.11 BLOWDOWN SYSTEM. A (discharge) piping arrangement for removing material from a process, vessel, boiler, etc. BLOWER. 3.2.2 BLOWOFF SYSTEM. Piping hookup used for blowing scale and foreign matter from tanks, boilers. etc. BLOWDFF VALVE. 3.1.9 BDILER FEEDWATER. 6.10.2 RDNNET. 3.1.2 BOTTOMS. See 'Column Operation', 6.5.2 BREECHLOCK. See 'Bonnet', 3.1.2 BREAKING LINES. figure 5.10 BREATHER VALVE. 3.1.11 BRITISH STANDARDS INSTITUTION. 7.3 BRUNING 4.4.11 BUILDING LAYOUT. 8.15.3 BUILDINGS. In relation to piping. 6.15. figures 6.49 & 6.50 BULLHEAD TEE. 2.3.2 BUND. See 'DIKE' BURIED PIPE. Oimensioning. table S.2 BURSTING DISC = Rupture disc. 3.1.9 BUSHING, HEXAGDN. Threaded. 2.5.1. figure 2.42 BUTT-WELDEO PIPE JDINTS. 2.3 BUTTERFLY VALVE. 3.1.6 BYPASS. Valved length of piping that allows full or partial flow, arranged around a valve, valve assembly, equipment, etc. See

figures 6.6 thru 6.11 for examples

BYPASS VALVE. 3.1.11

Butt-welding. 2.3.3. figure 2.20 Threaded. 2.S.4. figure 2.S4 Socket-welding. 2.4.4. figure 2.36 CARBON STEELS are iron-based alloys having properties chiefly determined by their carbon content CATCHBASIN. Receptacle designed to separate matter from a waste stream CATCHMENT. Reservoir or basin CATHODIC PROTECTION. Buried pipe can be protected from corresion by wiring buried sacrificial anodes (usually cylinders of zinc) to the pipe. Galvanic corrosion then tends to occur in the zinc instead of the steel. Protection may also be provided by means of electric voltages and ground currents CAVITATION, 8.3.1 CELSIUS = Centiorade. At atmospheric pressure (at sea level), on the Celsius scale, zero is the temperature at which ice forms; water hoils at 100, table M-6, table M-7 CENTRIFUGE. 3.3.3. table 3.8 CERTIFIED DRAWING/PRINT, Final vendor's print of equipment showing dimensions which will he maintained during manufacture CHATTERING, 3,1,4 CHECK VALVE, 3.1.7 CHECKER. 4.1.2. S.4.1 CHIEF DRAFTSMAN. 4.1.2 CHILL RING = Backing ring. chart 2.1. fig 2.1 CIVIL PIPING. 1.1 CLEANDUT. Arrangement for cleaning out a line or vessel CLEARANCE, 6.1.1, table 6.1, chart P-2 CLOSING DOWN LINES. 6.1.3 CLDSURES. Permanent. figure 2.2D Butt-welding, 2.3.3 Threaded, 2.5.4 Socket-welding, 2.4.4 CLDSURES. Temporary. 2.7. table 2.6 CDAST & GEODETIC SURVEY, S.3.1 CDATINGS. For pipe, 2.1.4 COCK. Simple plug valve in the smaller sizes CDDES. 7.S. ANSI 831. Code for pressure piping. 7.S.1 ASME Boiler and pressure vessel code. 7.S.4 CDLD SPRING. 6.1.1, figure 6.2 COLOR CODING Model. 4.4.12 Piping. ANSI A13.1 COLUMN, Fractionation/Oistillation. 6.S.2. COLUMN PIPING. 6.5.2 COMMERCIAL PIPING, 1.1 COMPANION FLANGE. A flange, or a flanging arrangement, custom-fabricated to mate with a non-standard flange on a item of equipment DAMPENER. COMPOSITION OISC. 3.1.5. Non-metallic disc CONTAINMENT. See DIKE

used in some globe valves COMPRESSOR, 3,2,2 Piping. 8.3.2 COMPRESSED AIR LINES. Oraining of. 6.11.4 CONDENSATE. 6.9.1, 6.10.2 CONNECTOR Pipe-to-tube. 2.S.1. figure 2.41 Quick connector. 2.8.1 CONSOLE. An arrangement of gages and controls mounted in a desk or cabinet, from which a process may be monitored and controlled CONSTANT LOAD HANGER. 2.12.2 CONTINUATION SHEET. See 'Process & Service Lines on Piping Drawings', S.2.B. Any sheet on which information is continued CONTROL STATION. 6.1.4. figures 6.6 thru 6.11 Symbol. chart 5.7 CONTROL VALVE. 3.1.10. figure 3.4 CONVEYED FLUID. This term is used in the Guide for liquid or gas carried by piping COOLER. Heat exchanger used to cool process COOLING WATER. Water used to cool process fluid or equipment COORDINATE, 5.3.1 COPYING PROCESSES. 4.4.11 CORROSION. Conveyed fluid may attack materials from which pipe and fittings are made. The degreee of corrosion will depend on the pipe material, the conveyed fluid, its temperature and concentration, time of exposure, possible presence of water or air, and whether galvanic action is also present CORROSION ALLOWANCE. Additional thickness of metal in excess of that calculated for strength COUPLING FULL-, 2.5.1, 2.5.3. Ibreaded. figures 2.37, 2.49 HALF-. 2.5.3. figure 2.49 Threaded. REDUCER-. 2.S.1. figure 2.38 Threaded. Socket-welding, FULL-, 2.4.1, figure 2.21 Socket-welding. HALF-. 2.4.3. figure 2.31 Socket-welding. REDUCER. 2.4.1. figure 2.22 CRASH PANEL. Breakable panel thru which personnel may escape from a hazard in a building Butt-welding. 2.3.2. figure 2.17 Threaded. 2.5.2. figure 2.48 Socket-welding. 2.4.2. figure 2.30 CRYOGENIC. Refers to very low temperatures and equipment used at these temperatures. Term usually applies to -200F and colder CYCLONE. 3.3.3. table 3.8

For compressor. 3.2.2

Hydraulic. 2.12.2

CAP

DASHPDT. Piston-type device used for damping pipe and fittings DDWNCDMER. A line which conveys fluid downmechanical movement DATUM. See 'Vertical Reference', S.3.1 DDWTHERM. 6.9.2. See 'Jacketing', 6.8.2 DAVIT. 6.5.2. figure 6.27 DAY TANK. Term used for storage tank, holding DRAFTING Control stations. 5.1.4. chart 5.7 limited supply of fuel, etc. DEAD WEIGHTING. Method of measuring pressure Materials. 4.4 of fluid in a line. Device having a platform Piping 5.2.B on which weights can be placed, temporarily Symbols. 5.1 DRAFTING MACHINES. 4.4.8 fitted to vertical valved branch: weights balance line pressure. Used for calibration DRAFTSMAN. 4.1.2 DRATM DEADMAN. Anchor permanently set into ground for erection purposes. Used for securing Location. 6.1.1. figure 6.47 Dn P&ID. 5.2.4 On pump. 6.3.1 DEAERATOR. 3.3.3. table 3.8 Symbol. chart 5.7. chart 5.28 DEFLECTION OF PIPE. 6.2.6. See 'SPANS. For DRAIN HUB. Funnel fitted in floor and con-Pipes', Part II DEFDAMER. 3.3.3. table 3.8 nected to a drain line DRAIN VALVE. 3.1.11 DEMINERALIZED WATER. Water with all forms of DRAINAGE. (1) System of drains. (2) Act or hardness (dissolved minerals) removed process of draining DESICCANT. A drying agent, such as concen-DRAINING trated sulfuric acid or silica gel DESICCATOR. Equipment for removing water or Air line. 6.11.4 Steam line. 6.10.4, 6.10.9 other liquid from a process material by applying vacuum, heat, or by chemical means DRAWING NUMBER. 4.2.4 DESUPERHEATER. Device for reducing superheat DRAWING PAPER. 4.4.1 Sizes. See 'Paper', 4.4.1. chart 5-6M in steam, usually by adding water to the ORAWING REGISTER. See 'Orawing Control', OETAIL. See 'Elevations (Sections) & 4.2.4 DRAWING SHEETS Oetails'. 5.2.B OEWPDINT. Temperature at which a vapor forms 5izes. 5ee 'Paper', 4.4.1. chart 5-6M liquid ('dew') on cooling DRAWINGS Breaking lines to show 'hidden piping' on DIAPHRAGM VALVE. 3.1.11 DIAZD. 4.4.11 drawings, figure 5.10 Elevation. 5.2.6, 5.2.8. figures 5.5 & 5.7 DIKE. Shaped wall or embankment surrounding Flow lines on flow diagram. 5.2.3 one or more storage tanks to form a basin able to hold the contents of tank(s), in the Flow lines on P&ID. 5.2.4 event of rupture. In the U5, usually 100% of Grid system. See 'P&ID Layout', 5.2.4 the largest tank or 10% of the total, which— Instrument connections on piping drawings. ever is greater Iso. 5.2.6. figures 5.6, 5.7 & 5.15 DIMENSIDNING. 5.3. figure 5.13. table 5.2 Buried pipe. table 5.2 Issuino, 5.4.3 Key plan. 5.2.7. figure 5.8 Elevations. See 'Plan View Piping Drawings', 5.2.8, 5.3.3. figure 5.12. table 5.2 Oblique. 5.2.6. figure 5.7 Orthographic. 5.2.6 Fitting makeup. 5.3.3 Pictorial. 5.2.8 Gasket. See 'Oimensioning to Joints', 5.3.3 Piping and instrumentation diagram. 5.2.4 Iso. 5.3.4. figure 5.15 Offsets for iso. figure 5.16 Plan. 5.2.6, 5.2.8 Plot plan. 5.2.7 Piping drawing. 5.3.2 Process flow diagram. 5.2.3 Reference line, figure 5.13 Matchline. See 'Process & Service Lines on Spool. 5.3.5. figure 5.17 Piping Drawings', 5.2.8. figure 5.8 To joint. 5.3.3 To nozzle. 5.3.3. table 5.2 Numbering. 4.2.4, 5.2.9 To pump. See 'Plot plan', 5.2.7. figure 6.17 Schematic diagram. 5.2.2 Site plan. 5.2.7 To valve. 5.3.3 Symbols. 5.1 Vessel, figure 5.14 Vessel. 5.2.7. figure 5.14 DIRECTION OF FLOW LINE. See 'Flow Lines', DRESSER COUPLING, 2.8.2 5.2.3 DRIP VALVE. 3.1.11. A drain valve used on DISCHARGE VALVES. 3.1.9 DISHED HEAD, 2.3.3. Sizes on driplegs. table 6.10 Volume, chart I-2 DISTILLATION COLUMN. 3.3.3. table 3.8 DRIPLEG. 2.10.5. figure 2.70 On P&TO. 5.2.4 Piping. 6.5.2 DIVERTING VALVE. 3.1.8 On piping drawings. 5.2.8 DDUBLE-BLDCK-AND-BLEED. 2.7.1. figure 2.60. Sizes. table 6.10 See 'Make Maintenance Safe', 6.1.3 DRIPSHIELD. 6.1.3 DRY STEAM. 6.9.1. chart 6.3 DOUBLE EXTRA STRONG. 2.1.3. Manufacturers' DRYER. 3.3.3, 6.10.3. table 3.8 weight designation for wall thickness of

ORYSEAL. 2.5.5 E

OUMMY LEG. 2.12.2. figure 2.72A. table 6.3 DYELINE. 4.4.11 EOUCTOR. 3.3.2. table 3.7 EFFLUENT. 6.13 ELBOLET Butt-welding. 2.3.2. figure 2.14 Threaded. 2.5.3. figure 2.51 Socket-welding. 2.4.3. figure 2.33 ELBOW = E11 Butt-welding. 2.3.1. figure 2.2 Mitered. 2.3.1. figure 2.5. table M-2 Threaded. 2.5.1. figure 2.44 Socket-welding. 2.4.1. figure 2.26 ELEVATIONS Oimensions. 5.3.2. table 5.2 Views. 5.2.6. See 'Elevations (Sections) & Oetails'. 5.2.8 ELL. See ELBOW EJECTOR. A type of pump in which a partial vacuum is created by passing steam or other fluid under pressure thru a neck or venturi with a branch at the narrowest part. Suction is created in the branch EQUIPMENT Identifying on flow diagram. 5.2.3 Identifying on P&IO. 5.2.4 List. 4.2.2 EQUIPMENT ARRANGEMENT DRAWING. 5.2.7 EQUIPMENT INDEX. 4.2.2 ERASTNG A.A.A EVAPORATOR, 3.3.3. table 3.8 EXPANDER FLANGE, 2.3.1. figure 2.9 EXPANSION. Thermal movement. 6.1.1 Of steel. chart 6.1 Loop, figure 6.1 EXPANSION JDINT. 2.9.1. figures 2.63 thru EXTRA HEAVY. Traditional term used for Class 250 cast-iron fittings EXTRA 5TRONG. Manufacturers' designation for wall thickness of pipe and fittings. 2.1.3 EXTRUDED NOZZLE. Hot-formed outlet made in pipe or vessel by pulling shaped dies thru a hold made in the wall

FAN. table 3.3 FAHRENHEIT. Scale of temperature formerly used in the English-speaking countries, now widely replaced by the international Celsius FLAT FACE. Flange. 2.6.1 (or Centigrade) scale. At atmospheric pressure (at sea level), on the Fahrenheit scale, FLEXIBLE PIPING. 2.9.2 32 is the temperature at which ice forms; water boils at 212. table M-6. table M-7 FIELD. (1) Construction site ('job site') where piping is erected. (2) Field engineer- FLDW DIAGRAM. 5.2.3 inc office FIELD WELD. Weld made at the time of erection of piping at the site Symbol for. chart 5.3. figure 5.15 FILING DRAWINGS. 4.3, 4.4.10 FILLET WELD. chart 5.9 FINISHED GRADE. 5.3.1

ETREETGHT ING. 5tation. 6.1.2 FIREWATER. Independent supply of water for firefighting FIRST-AID STATION. Location. 6.1.2 FITTING MAKEUP. 5.3.3 Dimensioning for. 5.3.5 FITTINGS. 2.2.4 Butt-welding, 2.3, chart 2.1 Ordering. 5.6.3 Threaded. 2.5. chart 2.3 Socket-welding. 2.4. chart 2.2 FLAG. To identify, or to draw attention to, an item on a drawing by means of a symbol, note, panel or other mark FLAME ARRESTOR. A device to prevent a flame front from moving upstream in a line or vessel. For small lines, may consist of a wire screen. For larger lines, arrangements of multiple parallel plates or tubes are used. Principally used on vent lines from tanks. Symbol. chart 5.7 FLAMMABLE LIQUID. Safety quidelines. 6.14 FLANGE. 2.2.3. 2.3.1. figures 2.6 thru 2.10. Bolt and studbolt for. 2.6.3. figure 2.57. tables E Bolt hole. 2.6.2. tables F Expander. 2.3.1. figure 2.9 Facing. 2.6.1. figure 2.56 Gasket. 2.6.4. figure 2.56. table 2.5 Lap joint. 2.3.1. figure 2.1D. tables F Pressure/Temperature ratings. table F-9 Reducing, 2.3.1. figure 2.8 Threaded. 2.5.1. figure 2.45. tables F 5lip-on. 2.3.1. figure 2.7. tables F Socket-welding. 2.4.1. figure 2.27. tables F Welding-neck. 2.3.1. figure 2.6. tables F FLAP VALVE. 3.1.11 FLARESTACK. A stack located away from the processing area, to which relief headers may be run for burning waste hydrocarbons or other flammable vapors. 6.11.3 FLASH STEAM, 6.9.1 FLASHING Steam, 6,10,8 Building construction. A piece of metal or other material used to cover or protect certain joints from the weather, such as where a chimney joins a roof FLASHPDINT of flammable liquid. Temperature at which the amount of vapor given off is sufficient to form an ignitable mixture with air. Highly flammable liquids have low flashpoints FLEXIBILITY. figure 6.1 Expansion joint. 2.9.1 FLOTATION TANK. table 3.8 FLDDR STAND. See 'Stem', 3.1.2 FLOW LINE On flow diagram. 5.2.3 Dn P&IO. 5.2.4 FLUID. Any material capable of flowing. In the Guide, term is used to denote either a liquid or a gas. Powders may also be

considered fluids

FILISH-BOTTOM TANK VALVE. 3.1.9 FOOT VALVE, 3.1.7 FOREIGN MATTER. Any unwanted material that enters a system from outside FOREIGN PRINT. Print of a drawing originating in another group, department or company FOREIGN STANDARDS. 7.3 FRACTIONATION COLUMN. 3.3.3. table 3.8 Piping. 6.5.2 FROST LINE. The lowest depth in the ground which chills to 32F (OC) FULL-COUPLING. See COUPLING

GAGE. A device for measuring or registering level. pressure, temperature, etc. GAGE GLASS. Glass used to show liquid level, usually in the form of a vertical glass tube with end connections GALVANIZING. The coating of metal with zinc by electroplating or hot-dipping GASKET. 2.6.4. table 2.5 Dimensioning. See 'Dimensioning to Joints', 5.3.3 GATE VALVE. 3.1.4 GIRT. A horizontal member of a building to which the panels forming the sides of the building are fitted GLAND. A sleeve within a stuffing box fitted over a shaft or valve stem and tightened against compressible packing so as to prevent leakage while allowing the shaft or stem to move GLASS PIPE. 2.1.4 Supporting, 6.2.7 GLOSE VALVE. 3.1.S GRADE. See 'Vertical Reference', S.3.1 GRADE BEAM. Beam which is used to support a floor at ground level GROUND JDINT. Fine finish on two metal surfaces forming face-to-face leak-tight joint

GROUT. A thin layer of concrete poured on a

ation and the baseplate of the equipment

which will rest on it. The baseplate is

the grout after it has hardened

GUTLINE. See 'Tracing', 6.8.2

GUIDE. 2.12.2, 6.2.8. figure 2.72A

firmly bolted down on the level surface of

set concrete foundation, between the found-

GROUP LEADER. 4.1.2

HALF-COUPLING Threaded, 2.5.3, figure 2.49 Socket-welding. 2.4.3. figure 2.31 HANDRAIL. See RAILING HANGER. 2.12.2 Constant-load hanger. 2.12.2 Spring hanger. 2.12.2 HARNESS PIPING. 6.3.1 HEAD. Pressure. 3.2.1 HEADER. A pipe serving as a principal supply or return line HEADER VALVE, 3.1.11 HEAT EXCHANGER. 3.3.5. figure 6.32. chart H-1 Mata sheet. 6.6.1

is held pending further processing or treat-HOMOGENIZER. 3.3.4 HOSE CONNECTOR, 2.8.1 HOSE VALVE. 3.1.11 HOT TAP. A technique for branching into a line under pressure without having to close the line down HOTWELL. A sump, tank, or other receptacle for holding discharges of hot liquids. HYDRAULIC ACCUMULATOR. Stores liquid under pressure. Typically a device consisting of a cylinder and piston which is actuated by a weight, spring, or compressed gas. On the opposite side of the piston, the driven fluid, such as water or oil, is stored HYORAULIC OAMPENER. 2.12.2 Symbol. chart S.28 HYDRAULIC RESISTANCE of pipe and fittings. 6.1.1. table F-10 HYOROSTATIC TESTING. 6.11.2 HYGIENIC CONSTRUCTION. Pipe, valves, pumps and other equipment used to handle foodstuffs and drugs should be hygienically constructed; which means that all surfaces contacting the material must be smooth, non-toxic and corresion proof. Plastics and rubbers should not incorporate (as fillers) substances that may contaminate. Materials free from such contaminants may be referred to as 'white' rubber. etc.

Piping to. 6.6

erence'. S.3.1

HEXAGON BUSHING, 2.5.1. figure 2.42

HIGH POINT FINISHED GRADE. See 'Vertical Ref-

HOLDING TANK. Tank in which liquid (or gas)

INCONEL. A high-nickel alloy containing chromium and iron. Resistant to oxidation and

INCREASER = Swage or reducer INSTRUMENT AIR. See 'Compressed Air Usage',

INSTRUMENT CONNECTION, 6.7. chart 6.2

INSTRUMENT LOOP. S.S.3

INSTRUMENT SOCIETY OF AMERICA. S.S.1.

table 7.3

INSTRUMENTATION. S.S

Coding. table S.3

Function. S.S.2

Mounting, S.S.4

On flow diagram, 5.2.3

On P&IO. S.2.4

Signal lead. S.S.6. chart S.1

INSULATION. Thermal

On P&IO. 5.2.4

Personnel protection. 6.8.1 Thickness. 6.B.1. tables 6.7 & 6.B

INTERCOOLER, 3.2.2

INTERCONNECTING P&IO. S.2.4

INTERFACE. Boundary common to two systems. See figure 6.3 points (10) & (14)

INVERT ELEVATION ('IE') is the elevation of the bottom of the internal surface of a

buried pipe. table S.2

INVENTORY. A listing of pipe and other items LEVEL GAGE. 6.7.4 of hardware maintained in stock IRON PIPE. 2.1.4 IRON PIPE SIZE. 2.1.3. ISO. International Standards Organization. See 'METRIC' - introduction, Part II

ISO = Isometric. S.2.6, S.2.9. figures S.15 & S.16.

Checking. S.4.4 Numbering. S.2.9 ISOLATING VALVE. 3.1.11 ISSUING ORAWINGS. 5.4.3

JACK SCREW. Screw provided in orifice flanges and sometimes flanges for line blinds for the ourpose of temporarily holding flanges apart in order to insert/remove orifice plate or line blind. Two screws are provided (one per flange) placed 180 degrees apart. figure 2.59 JACKETING. 6.8.2

JOB FUNCTIONS. 4.1.2

JOB NUMBER. Company account number to which work is charged. Appears on all paperwork for a project

JOULE. The work done when the point of application of a force of 1 newton is displaced through a distance of 1 meter in the direction of the force JUMPOVER, table A-2

kelvin. SI unit of temperature. Oefined as "the fraction 1/273.16 of the thermodynamic temperature of the triple point of water." [The triple point of water is the solid, liguid, vapor phase, as ice begins to form on cooling.] Zero on the thermodynamic scale 6.7.5 is 273.15 kelvins below zero on the Celsius scale. A kelvin is a temperature 'interval', or difference, kelvin is not expressed in degrees. One kelvin is equal to one 'degree' Celsius. Thus twenty degrees on the Celsius scale is 293.15K. table M-7 KNIFE-EOGE VALVE. 3.1.11

KNOCK-OUT ORUM/POT. A stream of gas containing drops of liquid is passed thru a knockout drum in order to slow down the flow and allow the liquid to separate and collect

LAND on beveled end. chart 2.1 LANTERN RING. See 'Bonnet', 3.1.2 LAP-JOINT FLANGE. 2.3.1. figure 2.10

Butt-welding. 2.3.2. figure 2.18 Threaded 2.5.2. figure 2.47 Socket-welding. 2.4.2. figure 2.29

Butt-welding. 2.3.2. figure 2.15 Threaded 2.5.3. figure 2.52

Socket-welding. 2.4.3. figure 2.34 LEROY. 4.4.6

LETTERING. 4.4.6

LATROLET

LINE BLIND. 2.7.1 figure 2.59 Symbol. chart S.6 LINE BLIND VALVE. 2.7.1, 3.1.4 LINE DESIGNATION SHEET. 4.2.3, S.2.S LINE NUMBER P&ID. 5.2.4 Piping drawings. See 'Process & Service Lines on Piping Orawings', S.2.8 Iso. S.2.9 Spool . S.2.9 LININGS for pipe. 2.1.4 LIST OF EQUIPMENT. 4.2.2 LIST OF MATERIEL. S.6.1 LOAO CELL. Weighing mechanism installed in the supports of tanks, etc. LOW-PRESSURE HEATING MEDIA. 6.9.2 LUG. Projecting piece on a vessel, frame,

MAIN. A principal section of pipe supplying service or process fluid. In a RING MAIN the fluid is continuously circulated around a closed loop of piping and may be drawn off at any point. Useful for hot/cold lines, or for slurries and other fluids with suspended solids that may separate

etc.. by which it may be held or lifted or

used for an attachment

MAKEUP WATER. Water is lost in many processes and operations. Water inventory is restored by adding makeup water

MALLEABLE-IRON. A ductile cast iron produced by controlled annealing of white cast iron MANHOLE. table 6.1

In column. 6.5.2

MANIFOLD. A chamber or pipe (header) having several branches

MANOMETER. See 'Drifice Plate Assembly',

MANUFACTURERS' WEIGHT. 2.1.3

MATCHLINE. See 'Process & Service Lines on Piping Grawings', S.2.B. figure S.B MATERIAL BALANCE. A detailed tabulation of

process material flowing into, thru and out of the process, showing the di-tribution of all significant components, including impurities

MATERIAL TAKEOFF. Estimated quantities for materials, taken from drawings

MILL. Symbol chart S.2A

MITER. 2.3.1. figure 2.5 MIXER. 3.3.2. table 3.7

MTY1NG. 3.3.2

MIXING VALVE. 3.1.11

MDDEL of plant. 4.4.12

MONEL. Alloys consisting mainly of nickel and copper, which have good resistance to corrosion, abrasion and heat

MONUMENT. S.3.1. figure S.12 MULTIPORT VALVE. 3.1.8 MYLAR FILM. 4.4.1

NEEDLE VALVE. 3.1.S NEWTON. Metric unit. The force to accelerate

a mass of 1 kilogram at the rate of 1 meter per second, per second. SI unit (derived). NIPOLET. Integral nipple/weldolet Plain. 2.4.3. figure 2.35 Threaded. 2.5.3. figure 2.53 Threaded 2.S.1. figure 2.39 Shaped. 2.3.2. figure 2.19 NON-RETURN VALVE. 3.1.7, 3.1.11 NON-RISING STEM. See 'Stem', 3.1.2. Type of valve stem which rotates but does not rise when valve is operated NDRTH. 'Plant north' & 'true north'. See 'Horizontal Reference', 5.3.1 and 'Allocating Space on the Sheet', S.2.8. figure 5.11 NOZZLE. A protruding port of a vessel, tank, pump, etc. to which piping is connected. Column. 6.5.2 Heat exchanger. 6.6.2 Pump. See 'Typical Piping for Centrifugal Pumps', 6.3.1 Supporting pipe at. 6.2.8 Vessel. 6.S.1 NU8. Spacer (protrusion) on a backing ring or NUMBER OF LINE. See 'Flow Lines on P&IO's', 5.2.4

OBLIQUE ORAWING. S.2.6 OFF-PLOT. Refers to area outside the on-plot area, or to area between on-plot areas. See BATTERY LIMIT ON-PLOT. Refers to the area of a particular plant unit or complex. There can be more than one on-plot area in the same manufacturing site. See SATTERY LIMIT ON-SITE = In the field. Operations carried out at the construction site are termed on-site operations OPERATOR for valve. 3.1.2 OPERATING HEIGHTS FOR VALVES, 6.1.3. table 6.2. chart P-2 ORIFICE PLATE ASSEMBLY. 6.7.5. figure 6.36 Clearance around. figure 6.38 ORIFICE PIPE RUN. table 6.6 ORIFICE TAP. See 'Piping to Flange Taps', 6.7.5 DRTHOGRAPHIC DRAWING. 5.2.6 DUTSIOE SCREW. See 'Stem', 3.1.2 DUTSIDE SCREW & YDKE (OS&Y). See 'Stem', 3.1.2

P&ID = Piping and instrumentation diagram. PACKING. Compressible material held in the stuffing box of a seal PACKLESS VALVE. See 'Seals', 3.1.2 PANTOGRAPH. 4.4.8 PAPER. Used in drafting. 4.4.1. chart S-6M PAPER STOCK VALVE. 3.1.11 PARTS LIST. 5.6.1 PASCAL. Metric (SI) unit of pressure. The pascal is the pressure produced by a force

of 1 newton over an area of 1 square meter PENCIL. For drafting. 4.4.2 PENSTOCK. A channel leading water to a turbine or waterwheel pH. A measure of the acid or alkaline strength of aqueous solutions. Neutral solutions have a pH of 7. Acids have a pH below 7. Alkaline/caustic liquids have a pH above 7. PHOTOGRAPHIC AIDS. 4.4.13 PICTORIAL VIEWS. 5.2.6 PIECEMARK = mark number. See 'Numbering Isos. Spool Sheets, & Spools', S.2.9 PINCH VALVE. 3.1.S Areas. tables P-1 8ursting pressures. tables P-1 Oata. tables P-1 Oefinition. 2.1.1 Oeflection. tables P-1 Oiameters. 2.1.3. tables P-1 Fittings. 2.2.4. tables D Hanger. 2.12 How to specify. 5.6.3 Joints, 2,2 Lengths, 2.1.2. Linings. 2.1.4 Lugs welded onto. 2.12.3 Materials. 2.1.4. Steels: table 2.1 Maximum service pressure. tables P-1 Moment of inertia. tables P-1 Ordering, S.6.3 Piperack. 6.1.2. figure 6.3 Pressure limits. 2.1.S. tables P-1 Radius of gyration. tables P-1 Sag. tables P-1 Schedule number, 2.1.3 Section modulus. tables P-1 Sizes. 2.1.2. tables P-1 Sleeve, S.2.8 Spacing, tables A Spans. tables P-1. table S-1. charts S-2 Steels. table 2.1 Stock lengths. 2.1.2 Support. 2.12, 6.2 Temperature limits. 2.1.5 Threads, 2.S.S Wall thickness. 2.1.3. tables P-1 Weights. tables P-1 Welding to. 2.12.3 PIPE OOPE. Sealing compound used for making screwed connections. Teflon-based compounds are now usually specified unless teflon tape is used on the threads PIPE SUPPORT, 2.12, 6.2 Calculations. 6.2.4 Oesign functions. 6.2.1 Expansion, 6.2.5 Loading, 6.2.2 Spring hanger and support. 6.2.5 PIPE-TO-TUBE CONNECTOR. figure 2.41 PIPERACK. 6.1.2. figure 6.3 PIPEWAY, 6.1.2. tables A-1 Butt-welded. 2.3. chart 2.1 Screwed. 2.5. chart 2.3

Socket-welded. 2.4. chart 2.2

PIPING & INSTRUMENTATION DIAGRAM. S.2.4

PIPING ORAWINGS. S.2.7, 5.2.8 8ackgound. S.2.8 Centerline. S.3.2. chart S.1 Checking. 5.4.2 Dimensioning. 5.3 Identifying sections. See 'Elevations (5ections) & Oetails', S.2.8. chart 5.8 Instrument connections. S.2.8. chart 6.2 Issuing. S.4.3 Line number. See 'Flow Lines on P&IO'. 5.2.4, 5.2.8 Points to check. \$.4.4 Presentation. figure S.S Title block. S.2.8. figure S.9 PIPING FABRICATION DRAWING. S.2.9 PIPING GROUP. 4.1 PIPING LAYOUT. Design notes. 6.1 PIPING SPECIFICATION. 4.2.1 PIPING USES. 1.1 PLAN. View for drawing. S.2.6, S.2.8 PLANIMETER. 4.4.8 PLANT. Building of. 1.2. chart 1.1 PLANT AIR. See 'Compressed Air Usage', 6.3.2 PLANT CONSTRUCTION. chart 1.1 PLANT NDRTH. See 'Horizontal Reference'. 5.3.1. figure S.11 PLASTIC PIPE. 2.1.4 Supporting. 6.2.7 PLENUM. Distribution component of a mechanic- RANDOM LENGTH (of pipe). 2.1.2 al system of ventilation. Fresh air is forced into a box or chamber ('plenum') for distribution in a building PLOT PLAN. S.2.7 PLUG. 8arstock. figure 2.SS PLUG GATE VALVE, 3.1.4 PLUG VALVE. 3.1.4 PLUMBING. 1.1 PDCKETING In lines. 6.2.6 PDLYMERIZATION. Generally, chemical reaction in which molecules combine to form larger molecules. Term mostly applied to reactions forming giant chain-like molecules, as in the production of plastics 'PDP' SAFETY VALVE, 3.1.9 POTABLE WATER = Drinking water PORT of valve. Refers to the seat aperture of REOUCING FLANGE. 2.3.1. figure 2.8 a valve, but sometimes to the valve's ends PRESSURE. ASSOLUTE and GAGE. Pressure per square inch absolute, abbreviated PSIA or psiA, is the unit normally used in the USA. Pressure above atmospheric is termed gage pressure, usually expressed as PSIG or psig. Normal atmospheric pressure is 14.7 PSIA. Adding 14.7 to the gage pressure gives the absolute pressure PRESSURE REGULATOR. 3.1.10 PRE55URE SEAL. Valve. See '8onnet'. 3.1.2 PRESSURE VESSEL, 6.S.1 PRIMARY VALVE. 3.1.11 PRIME = Priming water. etc. PROCESS EQUIPMENT. Equipment by which (or in which) is effected a physical or chemical change in process material. 3.3 PROCESS PIPING. 1.1 PROCESS WATER. Water that is added to the process stream

PROJECT GROUP. chart 4.1

PROPERTY LINE. Boundary of the site PROPORTIONING PUMP. 3.3.2. table 3.7 PROPORTIONING VALVE. 3.3.2. table 3.7 PUMP. 3.2.1 Piping 6.3.1 Selection. chart 3.3 PUMP PIPING. 6.3.1 PURGING. The flushing out of unwanted material from a system. Example: flooding piping with nitrogen to remove atmospheric oxygen PURLIN. A longitudinal member fixed externally to the roof frame of a building to which the roofing panels are fitted PYROMETER. A device used for measuring higher temperatures QUICK-ACTING OPERATORS. For valves. 3.1.2 QUICK CONNECTOR, 2.8.1 QUICK COUPLING. 2.8.2 R RAILING Dimensioning. table 6.1. chart P-2 Symbol, chart S.8 RAISEO FACE (of flange). 2.6.1 RANKINE. The Rankine scale measures temperature from absolute zero. One degree Rankine (R) = one degree Fahrenheit. table M-7 RAPIOOGRAPH. Pen. 4.4.6 RATINGS OF FITTINGS, table 2.2 REACTION VESSEL. 3.3.1 REACTOR. Unit in which a controlled chemical reaction or process occurs REBOILER. See 'Column Operation', 6.S.2 RECEIVER. 3.2.2 REQUCER 8utt-welding. 2.3.1. figure 2.3 Threaded. 2.S.1. figure 2.38 Socket-welding. 2.4.1. figure 2.22 REOUCER INSERT. 2.4.1. figure 2.23 REDUCING ELBOW. 2.3.1. figure 2.2 REDUCING TEE. How to order. 2.3.2. table 0-6 REGULATING VALVE. 3.1.11 expressed relative to absolute vacuum: pound REFERENCE ORAWING. Any drawing made by the design groups to which reference is made. The complete list of reference drawing numbers is best written on the main arrangement drawing REFERENCE POINT. 5.3.1. figure 5.11 REFLUXING. See 'Column Operation', 6.5.2 REINFORCEMENT. 2.11 Symbols, chart S.3 REINFORSING RING. Shaped metal ring for reinforcing stub-ins, vessel nozzles, etc. Added metal compensates for metal removed from pipe or vessel wall RELIEF HEADER. 6.12.1. figure 6.3 point (7) RELIEF VALVE. 3.1.9, 6.1.3 RELIEVING PRESSURE. Of liquids. 6.12 REMOVABLE SPOOL. 2.7.1. figure 2.61 RESISTANCE TO FLOW. In piping. 6.1.1 RETURN. 2.3.1. figure 2.2

REVAMP. To re-work or modify an existing

installation. 4.4.13 REVISION. Of drawings. See 'Issuing Drawings', 5.4.3 RING-JOINT. 2.6.1. figure 2.56 Flange & gasket data. table M-7 RING MAIN. figure 6.22 & 6.50. See MAIN RISER. A line which conveys fluid upward ROLLEO ELL/ROLLED TEE. See 'Plan View Piping Drawings', S.2.8 ROOT GAP. S.3.S. chart 2.1 ROOT PENETRATION. Depth to which a groove (butt) weld extends into the 'root joint' (either side of root gap) ROOT VALVE. 3.1.11 ROTAMETER. 6.7.S. figure 6.3S ROTARY BALL VALVE. 3.1.6 ROUNDHEAO PLUG. figure 2.SS RUNUNCER. table A-3 RUPTURE DISC. 3.1.9

SADDLE. (1) Shaped metal piece used for reinforcement. 2.11. figure 2.71. chart S.3. SITE PLAN. S.2.7 pipe as a bearing surface for supporting. 2.12.2, 6.2.B. figures 2.72A & 2.72B Guidelines for flammable liquids. 6.14 Valve placement. 6.1.3. table S.2. chart P-2 SAFETY-RELIEF VALVE. 3.1.9, 6.1.3 SAFETY VALVE. 3.1.9. 6.1.3 SAGGING OF PIPE. 6.2.6. tables P-1 SAMPLE POINT. It is often necessary to take a sample of material from a product line. Usually a small branch line with sampling high-pressure line has to be sampled it is best to run the sample line to a small vessel (see SAMPLE POT) SAMPLE POT. To sample a high-pressure line, it is necessary to provide a sample put (a small drum or vessel) with a valved or unvalved vent to atmosphere. If a hot line is being sampled, it may be necessary to provide the pot with a water-cooled coil SAMPLING VALVE, 3,1,0, 3,1,11 SANITARY CONSTRUCTION. See HYGIENIC CONSTRUC-SATURATED STEAM. 6.9.1 SCHEDULE NUMBER. 2.1.3 SCHEMATIC DIAGRAM. 5.2.2 SCREEN. 2.10.4 SCREWEO PIPING. Describes an assembly of threaded components and pipe. 2.5 SCRUBBER. 3.3.3. table 3.8 SEAL WATER. Water used for pressurizing seals of a pump or other rotating equipment SEAL WELO. Term used for circumferential fillet weld. chart 2.3 SEAMLESS. Pipe formed by rolling and piercing a solid billet is termed 'seamless'. Oescribes pipe or fitting made without longitudinal weld SEARCHING. Term usually refers to penetrating STAIRWAY. charts S-3 & P-2 ability of a 'thin' (low viscosity) liquid SECTION. See 'Elevations (Sections) &

Details', 5.2.8. chart 5.8

SECTION LEADER. chart 4.2 SECURITY. 5.2.1 SEDTA. A.A.1 SEPARATOR. 2.10.2, 6.10.3 SEPARATION. 3.3.3 SERVICE PIPING. 1.1 On P&IO. 5.2.4 SET PRESSURE. Pressure at which a pressure controller or valve is set to operate SETTLEMENT STRAIN. 6.1.1. figure 6.1 SETTLING TANK. Tank in which process stream or effluent can be held to allow solids to separate. 3.3.3. table 3.8 SEWAGE. Wastes from plant operations. buildings, etc. Sometimes includes ground or surface water SEWERAGE. The collection and/or disposal of sewage SHOE. For pipe. 2.12.2, 6.2.8. figure 2.72A SHUTOFF VALVE, 3.1.11 SI. See 'METRIC'- introduction, Part II SIGHT GLASS. Window in a line or vessel SITE. Area of plant construction (2) Shaped metal piece attached to insulated SKELP. Metal in strip form that is fed into rolls to form pipe SLIP-ON FLANGE, 2.3.1. figure 2.7 SLEEVE. For pipe. Short length of pipe. or proprietary fitting installed in wall or floor penetration thru which piping is run SLOPING LINES, 6.2.6, 6.10.4 SLURRY VALVE, 3.1.11 SNU88ER. 2.12.2 SOCKET-WELDED PIPING. 2.4 SOCKET-WELDING FLANGE. 2.4.1. figure 2.27 SOCKOLET. 2.4.3. figure 2.32 valve is all that is required. However, if a SOUR WATER. Water that has an acid content. Term may refer to an acidic effluent SPARGER. A steam pipe with holes in it to disperse steam in water. figure 6.45 SPATTER. The metal particles thrown off during arc or gas welding SPECIFICATION. Change of. See 'Process & Service Lines on Piping Orawings', S.2.B. figure S.15 Piping. 4.2.1 SPECTACLE PLATE. 2.7.1. figure 2.59. chart 5.6 SPIRAL SDCK VALVE. 3.1.11 SPOOL Dimensioning, 5.3.5 Drawing, 5.2.9, figure S.17 Number. S.2.9 Shipping size. S.2.9 Spool sheet. figure 5.17 SPRING HANGER. 2.12.2. figures 2.728 & 6.16 SPRING SUPPORT. 2.12.2. figures 2.728 & 6.16 SQUEEZE VALVE. 3.1.5 STAINLESS STEEL. 2.1.3. Comparable European steels. table 2.1. Stainless steels are iron-based alloys incorporating 11.5 to 24% chromium, 6 to 15% nickel, up to 0.2% carbon, and small amounts (in certain alloys) of other elements STANCHION, 6.1.2 STANOAROS. 7 Fabricated piping, table 7.4

Gaskets. table 7.7 Hangers and supports, table 7.6 Heat exchangers. table 7.13 Instrumentation. table 7.3 Pipe production and testing. table 7.5 Pumping machinery. table 7.14 Screwthreads, table 7.12 Symbols and drafting, table 7.3 Unfired vessels and tanks, table 7.1D Valves, table 7.9 STANDBY EQUIPMENT. On flow diagram. S.2.3 STANDPIPE. See 'Closing Down Lines', 6.1.3 STEAM. 6.9. chart 6.3 Air in steam. 6.9.1, 6.10.1 Draining & trapping lines. 6.10 Ory. 6.9.1 How formed. 6.9.1 Flash. 6.9.1 Saturated, 6.9.1 Separator. 6.10.3. figure 2.67 Superheated. 6.9.1 Trap. 3.1.9, 6.10.7. figures 6.43 & 6.44 Trap on P&ID. S.2.4 Trap on piping drawing. 5.2.8 Venting air from steam lines. 6.10.1 Wet. 6.9.1 STEAM PIPING. 6.10 STEAM TRACING. 6.8.3. figure 6.40. chart 5.7 STEAM TRAP PIPING. figures 6.43 & 6.44 STEEL EQUIVALENTS, table 2.1 STEELS FOR PIPE. 2.1.4 STICK FILE. 4.3. 4.4.10 STOP VALVE, 3.1.11 STOP-CHECK VALVE. 3.1.7 STRAIN. Reaction, such as elongation or compression, to stress. See STRESS STRAINER. 2.10.3. figure 2.68 STREET ELL. table U-11 STRESS. Force applied to material. Common stresses on pipe are due to pressure of contained fluid, and loading (self or applied) causing bending of pipe STRESS RELIEVE. Removal of internal strain in metal items by heating and controlled cooling STRESSES DN PIPING. 6.1.1 STRIPPER. 3.3.3. table 3.8 STRONGBACK. Pipe spool connected externally to vessel, on which instruments are mounted. figure 6.34(c) STRUT. Any of various structural-steel members (such as used in trusses), primarily intended to resist longitudinal compression STUB. Short length of pipe sometimes with shaped end STUB-IN. 2.3.2. figure 2.11. chart 5.3 STUDBOLT. 2.6.3. tables F STUFFING BOX. Recess in body or casing of a valve, pump, expansion joint, etc. containing packing material under pressure so as to form a seal about a sliding or rotating part SUBHEADER. A header which is a branch from a larger header SUPPORTING PIPING. 6.2. Spring support. 2.12.2. figures 2.728 & 6.16 SUPERHEATED STEAM. 6.9.1. chart 6.3

Fittings, table 7.8

Flanges. table 7.11

SWAGE = Swaged nipple SWAGEO NIPPLE Butt-welding. 2.3.1. figure 2.4 Threaded. 2.5.1. figure 2.43. table 2.4 Socket-welding. 2.4.1. figure 2.25. table 2.3 SWAY BRACE, 2.12.1 SWEEPOLET 2.3.2. figure 2.16 SYMBOL, S.1 Butt-welded piping, chart S.3 Control station, chart 5.7 General, for drawings. chart 5.8 Joints for pipe. 5.1.1 Line, chart 5.1 Miscellaneous. chart 5.7 P&ID charts. S.1, S.2 & S.7 Pipe support. chart 5.7 Process. chart 5.2 Threaded piping. chart 5.4 Socket-welded piping. chart S.S Utility station. 6.1.S Valve. chart S.6 Valve operator. chart 5.6 Welding 5.1.8. chart 5.9 position parts before welding fully an item

TACK WELD. Small, separated welds made to TAG. An identifying number or code applied to TANK NIPPLE. 2.5.1. figure 2.39(d) TANK CAR. Railroad car for transporting liquids or pases TANKER. Road vehicle for transporting liquids or pases TECHNOS PEN. 4.4.6 Butt-welding. 2.3.2. figure 2.12 Dimensions. tables 0 Reducing. table 0-6 Threaded. 2.S.2. figure 2.46 Socket-welding. 2.4.2. figure 2.2B TEMPLATES FOR ORAFTING. 4.4.7 TEMPORARY STRAINER. See 'Screen', 2.10.4 THERMAL MOVEMENT. Changes in length (expansion or contraction) occuring in piping with variation of temperature THERMAL STRESS. 6.1.1 THERMINOL. 6.9.2. See 'Jacketing', 6.8.2 THERMON. See 'Getting Heat to the Process Line'. 6.8.2 THERMOWELL. A pocket, either screwed into a line fitting (such as a coupling or thredolet) or welded into a pipe, to accommodate a thermocouple or thermometer bulb. 6.7.3 THREAD. For pipe and fittings, 2.S.S THREOOLET. 2.S.3. figure 2.SO THROAT TAP. A tapped pressure connection made in the neck of a welding-neck flange as an alternative to using an orifice flange THROTTLING. Close regulation of flow thru a valve in the just-open position THROTTLING VALVE. 3.1.11 TIE. 2.12.2 TILTING-DISC VALVE. 3.1.7 TITLE BLOCK. 4.4.6. See 'Allocating Space on the Sheet', 5.2.8

FOLERANCES ON PIPING DRAWINGS, 5.3.2 TOWER PIPING. 6.5.2 FRACING (thermal). 5.8.2. figure 5.40. chart 5.7 On P&IU. 5.2.4 TRANSPORTATION PIPING. 1.1 TRAP. 3.1.9, 6.10.7 On P&ID. 5.2.4 Piping to. 6.10.11. figures 6.43 & 6.44 TRAPPING STEAM LINES. 6.10.11 TRIM. Critical internal surfaces of a valve body are sometimes made of special material such as stainless steel. These parts may include the disc and seat, stem, or other internal surfaces TRIM PIPING. 6.3.1 TRUSS. Structural frame based on the geometric rigidity of the triangle, composed of compression and tension members termed struts and ties TURE: 2.1.1 TURBINE PIPING. 6.4 THRNKEY PLANT. A plant constructed and made ready for client's immediate operation Threaded. 2.S.1. figure 2.40 Socket-welding, 2.4.1. figure 2.24 and bonnet

UNIFIED SCREW THREAD, 2.6.3 UNITRACE. See 'Tracing', 6.8.2 UNION UNION BONNET. Valve construction allowing quick coupling and uncoupling of valve body UNION FITTING. A fitting with a union at one or more ends UNLOADING. 3.2.2 US DEPARTMENT OF COMMERCE. Coast and Geodetic Survey. S.3.1 USASI, 7.3 UTILITY PIPING. 1.1 UTILITY STATION, 6.1.S. figure 6.12 Symbol. 6.1.S

VACUUM. The degree of vacuum can be quoted in WELOOLET. 2.3.2. figure 2.13 PSIA. but more often either the pressure or the removed pressure is quoted as a 'head', usually the height of a column of mercury (Hg) in millimeters of mercury (mm Hg). Normal atmospheric pressure is 760 mm Hg VACUUM BREAKER. 3.1.11 VALVE. 3.1 Arranging. 6.1.3, 6.1.4 Access. 5.1.3 Below grade. See 'If there is no P&IO', 6.1.3 Body. 3.1.2 Roppet, 3,1,2 Chain operator. 3.1.2. charts S.6 & P-2 Disc. 3.1.2. chart 3.1 Gear. 3.1.2 Handwheel. 3.1.2 On flow diagram. S.2.3 On P&IO. S.2.4

Operators. 3.1.2

Parts. 3.1.2 Placement. 6.1.3 Port. 3.1.2 Seal. 3.1.2 Seat. 3.1.2 Selection. 3.1.3. chart 3.2 Size. 5.1.3 VALVE STEM. 3.1.2 Arranging. See 'Orientation of Valve Stems', 6.1.3 Non-rising. 3.1.2. figure 3.3 Operating height. 6.1.3. table 6.2. chart P-2 Piping safety & relief valves. 6.1.3 Rising. Outside screw & yoke. figure 3.1 and figure 3.2 VAN STONE FLANGE. 2.3.1. figure 2.10 VARIABLE SPRING HANGER or SUPPORT. 2.12.2. figures 2.728 & 6.16 Location. See 'Piping Arrangement', 6.1.1. figure 6.47 On lines and vessels. 6.11 On piping. 6.11. figure 6.47 On P&ID. S.2.4 On tank. Symbol. chart S.7 VESSEL CONNECTION, 6.S.1 VESSEL DRAWING. S.2.7. figure S.14 VESSEL PIPING. 6.S.1 VICTAULIC COUPLING. A 'quick-connect' method of joining pipe, fittings, valves, and equipment; manufactured by the Victaulic Company of America. 2.8.2. figure 2.62

meeting with obstructions. A valve closing too rapidly will create a pressure wave (2) Condensate hurled against obstructions by high-velocity steam. See 6.10.2, 6.10.8 WELD GAP. S.3.S charts 2.1 & 2.2 WELDING-NECK FLANGE. See 'Flanges', 2.3.1. figure 2.6. tables F WELDING SYMBOL. S.1.8. chart 5.9 WELOING to pipe. 2.12.3 WET STEAM. 6.9.1. chart 6.3 WINTERIZING. The provision of insulation, tracing, jacketing, or other means to prevent freezing of equipment and process or other fluids exposed to low temperatures. Insulation, 6.8.1, tables 6.7 & 6.8 Jacketing. 6.8.2. figure 6.39. chart S.7 Tracing. 6.8.2. figure 6.40. chart S.7 WIRE DRAWING. Term describing the erosion of valve seats, usually due to the cutting action of foreign particles in high-velocity fluids occuring when flow is throttled WORK POINT. An arbitrary reference from which dimensions are taken

WATERHAMMER. A concussion due to:

(1) Pressure waves traveling in piping and

YARD PIPING. Piping within the site and external to buildings YOKE. See 'Stem', 3.1.2

ACKNOWLEDGMENTS

Photographs and illustrations reproduced courtesy of the following companies.
[Page numbers are bracketed]:

- [6] BACKING RING Tube Turns (Div of Chemtron Inc)
- [7] ELBOWS & RETURNS Taylor Forge Inc REDUCERS - Tube Turns (Div of Chemtron Inc)
- [8] FLANGES: WELDING NECK, SLIP-DN, REDUCING SLIP-DN - Taylor Forge Inc EXPANDER FLANGE - Tube Turns (Oiv of Chemtron Inc)
- [9] LAP-JOINT FLANGE Ladish Company TEES - Tube Turns (Oiv of Chemtron Inc) WELDOLET - Bonney Forge
- [1D] SWEEPDLET Bonney Forge
 BUTT-WELDING CROSS, LATERAL, NIPPLE Inde Turns (Div of Chemtron Inc.)
- Tube Turns (Div of Chemtron Inc)
 [11] BUTT-WELDING CAP Crane Company
- [12] FULL-CDUPLING, REDUCER Crane Company SDCKET-WELOING REDUCER INSERTS - Ladish Company
- [13] SOCKET-WELDING FLANGE Taylor Forge Inc SOCKET WELDING: ELBDWS, TEE, LATERAL and CROSS - Crane Company
- [14] SOCKET-WELDING HALF-CDUPLING Crane Company SOCKDLET - Bonney Forge SDCKET-WELDING CAP - Henry Vogt Machine Co
- [15] FULL-CDUPLING Crane Company
- [16] REDUCING CDUPLING Crane Company UNIDN - Stanley G. Flagg & Co Inc HEXAGON BUSHING - Crane Company
- [17] THREADED ELBDWS, 4S and 9D DEGREE -Crane Company THREADED FLANGE - Taylor Forge Inc
- [18] THREADED LATERAL, THREADED CRDSS Crane Company
 THREODLET, THREADED ELBOLET, THREADED
 LATROLET Bonney Forge
- [19] THREADEO CAP Henry Vogt Machine Co THREADED BARSTDCK PLUG - Ladish Company
- [21] MACHINE BOLT & NUT, and STUDBOLT & NUTS Crane Company
- [23] VICTAULIC COMPRESSION SLEEVE COUPLING -Victaulic Company
- [25] REINFORCING SADDLES Crane Company
- [31] GATE VALVE (OS&Y, bolted bonnet, rising

- stem), GLDBE VALVE (DS&Y, bolted bonnet, rising stem), GATE VALVE (IS, bolted bonnet, non-rising stem) -Jenkins Bros. Valve Manufacturers
- [32] LANTERN RING Wm. Powell Co PACKLESS VALVE - Crane Co BELLOWS-SEAL VALVE - Henry Vogt Machine Co COCKS - Wm. Powell Co HAMMER-BLOW HANDWHEEL - Wm. Powell Co
- [33] SPUR-GEAR OPERATOR and BEVEL-GEAR
 DPERATOR Crane Company
- [33] ELECTRIC MOTOR OPERATOR, PNEUMATIC
 OPERATOR Wm. PoweII Co
 QUICK-ACTING VALVES:
 ROTATING STEM ON GLOBE VALVE Jenkins
 Bros. Valve Manufacturers
 SLIOING STEM ON GATE VALVE Lunkenheimer Company
- [35] SDLID WEDGE GATE VALVE Wm. Powell Co SINGLE-DISC PARALLEL-SEATS GATE VALVE -Henry Vogt Machine Co PLUG GATE VALVE - Crane Company
- [36] GLOBE VALVES Henry Vogt Machine Co, WYE-BODY GLOBE VALVE (incorporating composition disc) - Jenkins Bros. Valve Manufacturers NEEOLE VALVE, ROTARY-BALL VALVES -Lunkenheimer Company
- [37] BUTTERFLY VALVE (WAFER TYPE) -Lunkenheimer Company SWING CHECK VALVES - Jenkins Bros. Valve Manufacturers, Walworth Co, PISTDN-CHECK VALVE & STOP CHECK VALVE -Rockwell Mrg Co
- [38] SAFETY VALVE, RELIEF VALVE, BALL FLDAT VALVE, BLDWOFF VALVE Crane Co FLUSH-BDITOM TANK VALVE (GLOBE TYPE) Wm. Powell Co
- [39] INVERTED-BUCKET TRAP Armstrong Machine Works
- [93] DRIPSHIELD Wm. Powell Co
- [110] SWARTWOUT HEAD Crane Co
- [116] SHELL-AND-TUBE HEAT EXCHANGER WITH
 REMOVABLE TUBE BUNDLE Bell & Gosset
 and California Hydronics Corporations
- [119] LEVEL GAGE ASSEMBLY Wm. Powell Co
- [12D] ROTAMÈTER Instruments Division of Schutte & Koerting Company
- [123] JACKETED PIPE & HOSE Parkes-Cramer Company

Ī	/AL	VE DA	TA -	RUN	LEN	IGTH	s	DI	MENSIONS	IN MILLIM	ETERS		TABL	E V-	1M			
F	LA	NGE			N	0 M I	N A L	DIAM	ETE	R [DN]	0 F	PIPE						
	LA		50	65	80	100	150	200	250	300	350	400	450	500	600			
		FLANGED 150	178	190	203	229	267	292	330	356	381	406	432	457	508			
	WEDGE)	BEVELED 150	216	241	283	305	403	419	457	502	572	610	660	711	813			
VAIVES	SOLID WEDGE & DOUBLE-DISC (SPLIT-WEDGE)	300	216	241	283	305	403	419	457	502	762	838	914	991	1143			
RATE 1	UNIL DUBLE-DIS	600	292	330	356	432	559	660	787	838	889	991	1092	1194	1397			
STEEL	DGE & DC	900	368	419	381	457	610	737	838	965	1029	1130	1219	1321	1549			
0.	SOLID WE	1500	368	419	470	546	705	832	991	1130	1257	1384	1537	1664	1943			
		2500	451	508	578	673	914	1022	1270	1422		N	0 T E	S				
		150	203	216	241	292	406	495	622	698	FORM	DIMENSIONS IN THIS TABLE CON- FORM TO ANSI B16.10 AND APPLY TO FLANGED VALVES AND VALVES						
VES	/ES	300	267	292	318	356	444	559	622	711	WITH	WITH ENDS BEVELLED FOR WELDING AS SHOWN:						
GLOBE VALVES	K VALVES	600	292	330	356	432	559	660	787	838								
1. GLO	r CHECK	900	368	419	381	457	610	737	838	965		<u> </u>						
STEEL	UFT	1500	368	419	470	546	705	832	991	1130	FOR	FLANGI	led Dimen	ES THE 1				
		2500	451	508	578	673	914	1022	1270	1422	FOR VAL		CLASSES	FACES (S 150 AM	ND 300			
	VALVES	T-D 150	203 203	216 216	241 241	292 292	356 356	495 495	622 622	698 698	ED FOR	FOR EA	6mm HAS ACH RAI S OF (ISED FAC CLASS 60	CE AND OO AND			
LVES	CK VAI	T-D 300	267 267	292 292	318 318	356 356	444 444	533 533	622 622	711 711			nm HAS I AISED F/		CLUDED			
ECK VA	DISC CHECK	T-D 600	292 292	330 330	356 356	432 432	559 559	660 660	787 787	838 838	7							
SWING CHECK VALVES	TILTING DI	T-D 900	- 368	- 419	381 381	457 457	61 0 610	737 737	838 838	965 965	1							
S		T-D 1500	368 368	419 419	470 470	546 546	705 705	832 832	991 991	- 1130			Tabled D					
		2500	451	508	578	673	914	1022	1270	1422	CHE	CK VALVI	GLOBE & ES, HALY TO OBTA: SIONS.	VE THE T	TABLED			

SIZES OF METRIC PAPERS

THE MOST COMMON SIZES OF PAPERS FOR GENERAL USE ARE THE ISO "A" SERIES DESIGNATED: AO, A1, A2, A3, ETC., WITH LENGTH TO WIDTH RATIO OF: LENGTH = WIDTH x SQUARE ROOT 2 (1.414). THE AREA OF THE LARGEST SHEET, AO, IS EQUAL TO ONE SQUARE METER

[REPRESENTATIVE] SHEET SIZE AO: 841 x 1189 mm 👛

Α1 594 x 841 mm A2 420 x 594 mm NOTE: EACH SMALLER SHEET IS HALF THE LENGTH AND HALF THE WIDTH OF THE PRECEDING SHEET ISO "A" SERIES 841 x 1189 A1 594 x 841 A2 420 x 594 297 x 420 АЗ 210 x 297 mm A4 210 x 297 148 x 210 Α5 105 x 148 Α6 74 x 105 Α7 297 x 420 mm 52 x 74 Α8 Α6 Α9 37 x 52 A10 26 x 37 A5 Α8 Α7 Α9

COMPARISON	COMPARISON OF ISO SHEET SIZES WITH USA SHEET SIZES, FOR DRAWINGS											
100	WII	ЭТН	LEN	IGTH	us s	SIZES						
ISO DESIGNATION	mm	inches	mm	inches	LETTER	inches						
A0 A1 A2 A3 A4	841 594 420 297 210	33.11 23.39 16.54 11.69 8.27	1189 841 594 420 297	46.81 33.11 23.39 16.54 11.69	F E D C B A	28.0 x 40.0 34.0 x 44.0 22.0 x 34.0 17.0 x 22.0 11.0 x 17.0 8.5 x 11.0						

CHANNEL DATA AMERICAN STANDARD

ANGLE DATA WEIGHTS IN KILOGRAMS PER LINEAR METER

TABLES S-5M

OESIGNATION	DIMENS	IONS	IN mm
Oepth (ins) x wgt lb/ft	DEPTH:	WIOTH	:Av Th
C 15×50	381	94	16.5
×40	381	89	16.5
×33.9	381	86	16.5
C 12x30	305	81	12.7
x25	305	77	12.7
x20.7	305	75	12.7
C 10x30 x25 x20 x15.3	254 254 254 254 254	77 73 70 66	11.1 11.1 11.1 11.1
C 9X20	229	67	10.5
×15	229	63	10.5
×13.4	229	62	10.5
C 8×18.75	203	64	9.9
×13.75	203	60	9.9
×11.5	203	57	9.9
C 7×14.75	178	58	9.3
×12.25	178	56	9.3
× 9.8	178	53	9.3
C 6x13	152	55	8.7
x10.5	152	52	8.7
x 8.2	152	49	8.7
C 5x 9	127	48	8.1
x 6.7	127	48	8.1
C 4x 7.25	120	44	7.5
x 5.4	120	40	7.5
C 3x 6	76	41	6.9
x 5	76	38	6.9
x 4.1	76	36	6.9

AMERICAN STANDARD CHA	INNELS
	AVERAGE FHICKNESS

r													
		UNE	QUA	A L	L E (i 5							
SIZES & T	HICKNESSESS	1	7/8	3/4	5/8	9/16	1/2	7/16	3/8	5/16	1/4	3/16	1/8
INCHES	MILLIMETERS	25.4	22.2	19	15.9	14.3	12.7	11.1	9.5	7.5	6.4	4.8	3.2
9 x 4 x	229 x 102 x				39.1	35.4	31.7						
8 x 6 x	203 x 152 x	65.8	58.2	50. 3	42.4	38.2	34.2	30.1					
8 x 4 x	203 x 102 x	55.6		42.7		32.6	29.2						
7 x 4 x	178 x 102 x			39	32.9		26.6		20.2				
6 x 4	152 x 102 x		40.5	35.1	29.8	26.9	24.1	21.3	18.3	15.3			
6 x 3 1/2 x	152 x 89 x						22.8		17.4	14.6			
5 x 3 1/2 x	127 x 89 x			29.5	25		20.2	17.9	15.5	12.9	10.4		
5 x 3 x	127 x 76 x				23.4		19	16.8	14.6	12.2	9.8		
4 x 3 1/2 x	102 x 89 x				21.9		17.7	15.8	13.5	11.5	9.2		
4 x 3 x	102 x 76 x				20.2		16.5	14.6	12.6	10.7	8.6		
3 1/2 x 3 x	89 x 76 x						15.2	13.5	11.8	9.8	8		
3 1/2 x 2 1/2 x	89 x 64 x						14	12.4	10.7	9.1	7.3		
3 x 2 1/2 x	76 x 64 x						12.6	11.3	9.8	8.3	6.7	5	
3 x 2 x	76 x 51 x						11.5	10.1	8.8	7.4	6.1	4.6	
2 1/2 x 2 x	64 × 51 ×								7.9	6.7	5.4	4.1	
*2 1/2 x 1 1/2 x	64 x 38 x									5.8	4.7	3.6	
*2 x 1 1/2 x	51 x 38 x										4.1	3.2	2.1
*2 x 1 1/4 x	51 × 32 ×										3.8	2.9	
*1 3/4 x 1 1/4 x	44 x 32 x										3.5	2.7	1.8

			Qυ	A L	LE	G S								
SIZES & THI	CKNESSES	1 1/8	1	7/8	3/4	5/8	9/16	1/2	7/16	3/8	5/16	1/4	3/16	1/8
INCHES	MILLIMETERS	28.6	25.4	22.2	19	15.9	14.3	12.7	11.1	9.5	7.9	6.4	4.8	3.2
8 x 8 x	203 x 203 x	84.7	75.9	67	57.9	48.7	44	3 9. 3						
6 x 6 x	152 x 152 x		55.7	49.3	42.7	36	32.6	29.2	25.6	22.2	18.5			
5 x 5 x	127 x 127 x			40.5	35.1	29.8		24.1	21.3	18.3	15.3			
4 x 4 x	102 x 102 x				27.5	23.4		19	16.8	14.6	12.2	9.8		
3 1/2 x 3 1/2 x	89 x 89 x							16.5	14.6	12.6	10.7	8.6		
3 x 3 x	76 x 76 x							14	12.4	10.7	9.1	7.3	5.5	
2 1/2 x 2 1/2 x	64 x 64 x							11.5		8.8	7.4	6.1	4.6	
2 x 2 x	51 x 51 x									7	5.8	4.7	3.6	2.5
*1 3/4 x 1 3/4 x	44 x 44 x											4.1	3.2	2.1
*1 1/2 x 1 1/2 x	38 x 38 x									5		3.5	2.7	1.8
*1 1/4 x 1 1/4 x	32 x 32 x											2.9	2.2	1.5
*1 x 1 x	25 x 25 x											2.2	1.7	1.2

W SHAPES TABLE S-4M STRUCTURAL STEEL THICKNESS DEPTH DESIGNATION NOM. SIZE x lb/ft DEPTH WIDTH THICK DESIGNATION NOM. SIZE x lb/ft WIOTH THICK DESIGNATION NOM. SIZE x lb/ft **OEPTH** DESIGNATION NOM. SIZE x lb/ft DEPTH WIDTH THICK OEPTH WIDTH THICK DIMENSIONS: mm OIMENSIONS: mm OIMENSIONS: mm DIMENSIONS: mm W 14 W 12 W 21 W 36 13.7* 13.8* 11.2* 10.2* 10.8 6.8* 6.7 437 435 427 36 35 31 30 27 26 22 19 167 167 166 165 165 102 102 101 101 29.2 27.8 26.3 24.4 22.2 23.7 23.6 220.2 18.8 17.4 16.5 13.6 13.6 11.4 423 422 420 419 42.7 39.9 36.6 34.3 32.0 34.5 32.0 27.9 25.9 20.1 W 21 147 142 318 334 316 332 315 330 313 312 220 214 212 228 211 210 209 166 209 314 311 287 283 264 257 246 237 228 219 202 193 X X X X X X X X X W 36 X X X X 300 280 260 245 230 210 194 182 170 150 135 317 307 313 304 310 313 309 305 921 916 912 932 927 923 915 911 418 309 308 307 306 305 304 16.5 16 14 X 305 303 903 304 W 10 W 33 31.7 31.3 31.1 W 10 10098877286604459330965522197 176 167 159 W 33 x 403 403 401 402 400 400 294 293 292 292 241 240 221 220 201 200 152 141 130 35.6 35.6 32.4 32.4 29.2 29.2 26.8 21.7 18.8 862 845 855 838 166 165 150 145 142 W 18 851 846 840 482 469 476 26.9 25.2* 23.9* 22.1* 19.6 23.1* 21.1* 17.3 20.6 17.4* 17.7 W 18 119 1106 109 988 77 77 666 655 440 35 286 301 284 300 283 298 2298 222 223 194 221 191 190 154 153 153 118 835 ****** 120 119 W 30 46521 46721 4674651 4639 464463 4674654 4674650 4674650 111 211 210 191 W 30 384 384 382 382 381 268 267 266 265 33.4* 33.1* 30.1* 27.1* 27.4* 223.6 21.6 786 772 779 765 773 759 766 762 758 753 X X X X X X 103 995 995 884 788 748 661 538 438 330 222 190 173 172 132 124 116 108 99 XXXXX 8.4 6.9 5.3 5.2 15 17.4* 17.7 16.0 14.5 15.4 12.7* 11.5 W 8 W 27 8 229 2216 210 2203 201 207 207 203 203 203 203 203 203 203 203 210 2005 2005 165 134 133 102 100 23.7 20.6 17.4 12.6 11.8 10.2 10.6 8.7 8.6 5.2 67 58 48 40 35 31 22 21 21 17 15 10 13.3 W 27 178 177 358 358 356 356 355 256 254 254 253 30.2 30.2 27.4 27.3 24.8 24.8 23.6 21.1 18.9 16.3 694 701 688 695 683 684 678 161 160 146 145 114 102 94 84 W 16 W 100 96 89 88 77 71 67 64 55 57 50 40 31 26 16 Х 265 293 263 261 216 216 216 216 1179 178 177 140 431 415 410 415 420 415 403 417 413 410 407 ***** W 12 W 12 336 305 279 252 230 210 190 170 427 415 403 391 387 455 356 356 348 340 332 321 321 318 340 336 334 330 328 325 322 319 318 317 315 310 309 309 307 307 307 W 24 162 160 146 145 131 130 120 635 628 628 622 622 616 617 329 358 328 327 357 367 325 322 228 178 31.0 28.8 27.7 25.9 24.4 22.9 23.6 21.7 19.7 22.6 19.3 W 6 1611 1522 1366 1333 1200 1066 99 96 92 877 72 655 530 45 25 20 16 15.5 15 12 6 162 157 160 152 153 150 148 154 153 102 152 152 102 100 100 11.6 9.3 10.3 6.8 6.6 7.1 5.5 4.9 X X X X X X 403 403 399 616 614 611 110

Rolling Program for American Wide Flange Structural Shapes - Arbed S.A., Luxembourg Rolling Schedule for Wide Flange Shapes - Nippon Steel Corporation, Japan American Institute of Steel Construction References:

124.7 114.8 105.7 97.0 88.9 81.5 77.1 72.3 67.6 62.7

62 53

The The

730 665

XXXXXXXXXX

W 14

14.9 15.0 15.0 12.8

178

* INDICATES A DIMENSIONAL CHANGE OR SHAPE WAS DISCONTINUED (1978)

W 14

454

448 442

437 432 428

8.5

18.5 16

5 X X X

4 x 13

15.4 16.3

16.3 14.6 16.3 14.6 13.1

W 5

130 127

W 4

106

10.9 10.7* 9.1

8.8

128 128 127

103

PIP	E DATA													I	ABLE	S P-1	M
DN (mm) (NPS)	PIPING CDDES and MANUFACTURERS WEIGHTS	D.D. (mm)	(ME NSID NS 1.D. (mm)	S Wall (mm)	WEIG Empty (kg/m)	HTS Waterfilled (kg/m)		ARE Internal (mm²/mm)	Flow	Metal (mm²)	Moment of Inertia (10 ⁴ mm)	Modulus	Radius of Gyration (mm)	Continuou Span (m)	s Spans Sag (mm)	Code Pre Design (MPa)	
	API API	711.2 711.2	690.6 688.9	10.31 11.13	177.8 191.6	552.3 564.4	2234 2234	2170 2164	3.7E5 3.7E5	22707 24468	1.4E6 1.5E6	3922 4216	247.8 247.5	15.5 15.9	.935 1.04	1.23 1.38	4.11 4.59
	API SCH 20 XS API SCH 30 API	711.2 711.2 711.2	687.4 685.8 679.5	11.91 12.70 15.88	204.9 218.2 271.5	576.0 587.6 634.1	2234 2234 2234	2159 2155 2135	3.7E5 3.7E5 3.6E5	26171 27869 34678	1.6E6 1.7E6 2.1E6	4500 4781 5897	247.3 247.0 245.9	16.2 16.6 17.7	1.14 1.24 1.63	1.52 1.66 2.23	5.06 5.52 7.42
	API	711.2	673.1	19.05	324.3	680.2	2234	2115	3.6E5	41423	2.5E6	6981	244.8	18.6	2.00 .490	2.80 .627	9.33
30	API SCH 10 API API	762.0 762.0 762.0	747.7 746.2 744.5	7.137 7.925 8.738	132.5 147.0 161.9	571.6 584.3 597.3	2394 2394 2394	2349 2344 2339	4.4E5 4.4E5 4.4E5	16926 18774 20677	1.2E6 1.3E6 1.5E6	3165 3503 3850	266.9 266.6 266.3	14.2	.576 .667	.757 .890	2.52 2.97
	SID API API	762.0 762.0	743.0 741.4	9.525 10.31	176.3 190.7	609.8 622.4	2394 2394	2334 2329	4.3E5 4.3E5	22517 24353	1.6E6 1.7E6	4184 4515	266.1 265.8	15.2 15.6	.757 .849 .944	1.02 1.15 1.28	3.40 3.83 4.28
	API API SCH 20 XS API	762.0 762.0 762.0	739.7 738.2 736.6	11.13 11.91 12.70	205.5 219.8 234.1	635.3 647.8 660.2	2394 2394 2394	2324 2319 2314	4.3E5 4.3E5 4.3E5	26244 28072 29896	1.8E6 2.0E6 2.1E6	4856 5183 5508	265.5 265.2 265.0	16.1 16.4 16.8	1.04	1.42	4.72 5.15
	SCH 30 API API	762.0 762.0	730.3 723.9	15.88 19.05	291.4 348.1	710.2 759.7	2394 2394	2294 2274	4.2E5 4.1E5	37211 44464	2.6E6 3.1E6	6800 8057	263.9 262.8	18.0 18.9	1.50 1.86	2.08 2.61	6.92 8.69
00 32	API API	812.8 812.8	800.1 798.5	6.350 7.137	126.0 141.5	628.7 642.3	2553 2553	2514 2509	5.0E5 5.0E5	16088 18065	1.3E6 1.5E6	3218 3607	285.1 284.9	13.1	.367 .443	.467 .588	1.96
	SCH 10 API API SID API	812.8 812.8 812.8	797.0 795.3 793.8	7.925 8.738 9.525	156.9 172.8 188.2	655.7 669.6 683.0	2553 2553 2553	2504 2499 2494	5.0E5 5.0E5 4.9E5	20039 22072 24037	1.6E6 1.8E6 1.9E6	3993 4390 4771	284.6 284.3 284.0	14.3 14.9 15.4	.522 .606 .689	.709 .834 .956	2.78
	API API	812.8 812.8	792.2 790.5	10.31 11.13	203.6	696.4 710.2	2553 2553	2489 2484	4.9E5 4.9E5	25999 28019	2.1E6 2.3E6	5151 5540	283.7 283.5	15.8 16.2	.774 .862	1.08	4.0
	API SCH 20 XS API SCH 30 API	812.8 812.8 812.8	789.0 787.4 781.1	11.91 12.70 15.88	234.7 250.0 311.2	723.6 736.9 790.3	2553 2553 2553	2479 2474 2454	4.9E5 4.9E5 4.8E5	29973 31923 39745	2.4E6 2.6E6 3.2E6	5915 6287 7767	283.2 282.9 281.8	16.6 17.0 18.2	.949 1.04 1.39	1.33 1.45 1.94	4.8
	SCH 40 API API	812.8 812.8	777.8 774.7	17.48 19.05	341.9 372.0	817.1	2553 2553	2444 2434	4.8E5 4.7E5	43663 47504	3.5E6 3.7E6	8499 9211	281.3 280.7	18.7 19.2	1.56 1.72	2.19 2.44	_
50 34	API API	863.6 863.6	850.9 849.3	6.350 7.137	133.9 150.4	702.6 716.9	2713 2713	2673 2668	5.7E5 5.7E5	17101 19204	1.6E6 1.8E6	3638 4078	303.1 302.8	13.2 13.9	.333 .402	.439	1.8
	SCH 10 API API	863.6 863.6	847.8 846.1 844.6	7.925 8.738	166.8 183.7 200.1	731.3 746.0 760.3	2713 2713 2713	2663 2658 2653	5.6E5 5.6E5 5.6E5	21303 23466 25557	1.9E6 2.1E6 2.3E6	4516 4965 5397	302.5 302.3 302.0	14.4 15.0 15.5	.475 .552 .629	.667 .785	2.6
	SID API API API	863.6 863.6 863.6	843.0 841.3	9.525 10.31 11.13	216.5 233.3	774.6 789.3	2713 2713	2648 2643	5.6E5 5.6E5	27644 29795	2.5E6 2.7E6	5828 6269	301.7 301.4	15.9 16.4	.708 .791	1.01	3.3 3.7
	API SCH 20 XS API	863.6		11.91 12.70	249.6 265.8		2713 2713 2713	2638 2633 2613	5.5E5 5.5E5 5.4E5	31874 33950 42278	2.9E6 3.1E6 3.8E6	6694 7117 8798	301.1 300.9 299.8	16.8 17.1 18.4	.872 .953 1.28	1.25 1.36 1.83	4.5
	SCH 30 API SCH 40 API API	863.6	831.9 828.6 825.5	17.48		874.5 903.0 931.0	2713 2713 2713	2603		46452	4.2E6	9631	299.2 298.7	19.0	1.45 1.61	2.06	6.8
000	API API	914.4		6.350	141.8	780.4 795.6	2873 2873		6.4E5 6.4E5	18115 20343	2.1E6	4578	321.1 320.8	13.9	.303 .367	.522	5 1.3 2 1.7
	SCH 10 API API	914.4 914.4	898.6 896.9	7.925 8.738	176.7 194.7	810.8 826.5	2873 2873	2818	6.3E5 6.3E5	24861	2.5E6	5576	320.5 320.2 319.9	15.1	.506	.741	2.1 1 2.4 9 2.8
	STD API API API	914.4	895.4 893.8 892.1	10.31	229.3	841.6 856.7 872.3	2873 2873 2873	2808	6.3E5 6.3E5 6.3E5		3.0E6	6546	319.7 319.4	16.1	.651	.957	7 3.1 7 3.5
	API SCH 20 XS API	914.4 914.4	890.6 889.0	11.91 12.70	264.5 281.7	887.4 902.4	2873 2873	2798 2793	6.2E5 6.2E5	33775 35976	3.4E6 3.7E6	7522 7999	319.1 318.8	16.9 17.3	.880	1.18	3 3.9 9 4.3
	SCH 30 API SCH 40 API	914.4	885.9 882.6			932.4 962.8 1023	2873 2873 2873	2773	6.1E5	40367 44812 53584	4.5E6	9895	318.3 317.7 316.6	18.6	1.03 1.19 1.50	1.73	5.0 3 5.7 7 7.2

PIP	E DATA														TABL	ES P.	1M
ON	PIPING CODES and	D	MENSIONS	S	WEIG	SHTS			EAS		Moment	Section	Radius of	Continua	us Spans	Code Pr	essures
(mm) [NPS]	MANUFACTURERS' WEIGHTS	0.D. (mm)	1.D. (mm)	Wall (mm)	Empty (kg/m)	Waterfilled (kg/m)		Internal (mm²/mm		Metal (mm ²)	of Inertia	Modulus (10 ³ mm)	Gyration (mm)	Span (m)	Sag (mm)	Design (MPa)	Bursting (MPa)
(141.0)	WEIGHTO	(1010)	(11111)	(1841)	(Kg/311)	(10)	[(1010 /1810)	(1000 7000	1) (133111)	(11111)	(10 11111)	(10 11111)	(111116)	(111)	(111117)	(1911 4)	(IFIT a)
550	SCH 10 API	558.8	546.1	6.350	86.29	320.5	1756	1716	2.3E5	11021	4.2E5	1505	195.3	12.6	.658	.680	2.27
22	API	558.8	544.5	7.137	96.86	329.7	1756	1711	2.3E5	12370	4.7E5	1684	195.1	13.1	.781	.857	2.86
	API	558.8	543.0	7.925	107.4	338.9	1756	1706	2.3E5	13715	5.2E5	1862	194.8	13.6	.906	1.03	3.45
	API	558.8	541.3		118.2	348.4	1756	1701	2.3E5	15099	5.7E5	2044	194.5	14.1	1.04	1.22	4.06
	SCH 20 STD API	558.8	539.8	9.525	128.7	357.5	1756	1696	2.3E5	16436	6.2E5	2219	194.2	14.5	1.16	1.39	4.65
	API	558.8	538.2		139.1	366.6	1756	1691	2.3E5	17770	6.7E5	2392	194.0	14.8	1.29	1.57	5.24
	API	558.8	536.5	11.13	149.9	376.0	1756	1686	2.3E5	19142	7.2E5	2570	193.7	15.2	1.42	1.76	5.86
	API SCH 30 XS API	558.8 558.8	535.0 533.4	11.91	160.3 170.6	385.0 394.1	1756 1756	1681 1676	2.2E5 2.2E5	20467 21788	7.7E5 8.1E5	2740 2909	193.4 193.1	15.5 15.8	1.54 1.66	1.94 2.12	6.45 7.05
	API	558.8	520.7	19.05	252.9	465.9	1756	1636	2.1E5	32303	1.2E6	4215	190.9	17.5	2.56	3.58	11.9
	SCH 60 API	558.8	514.3	22.23	293.3	501.1	1756	1616	2.1E5	37465	1.4E6	4834	189.9	18.0	2.94	4.32	14.4
	SCH 80 API	558.8	501.7	28.58	372.7	570.3	1756	1576	2.0E5	47599	1.7E6	6004	187.7	18.8	3.58	5.82	19.4
	SCH 100 API	558.8	489.0	34.93	450.1	637.8	1756	1536	1.9E5	57480	2.0E6	7089	185.6	19.4	4.08	7.36	24.5
	SCH 120	558.8	476.3	41.27	525.4	703.6	1756	1496	1.8E5	67107	2.3E6	8092	183.6	19.7	4.47	8.92	29.7
	SCH 140	558.8	463.6	47.63	598.8	767.6	1756	1456	1.7E5	76481	2.5E6	9018	181.5	19.9	4.77	10.5	35.0
	SCH 160	558.8	450.9	53.98	670.3	829.9	1756	1416	1.6E5	85602	2.8E6	9872	179.5	20.0	5.00	12.1	40.4
600	SCH 10 API	609.6	596.9	6.350	94.23	374.1	1915	1875	2.8E5	12034	5.5E5	1796	213.3	12.7	•577	.623	2.08
24	API	609.6	595.3	7.137	105.8	384.1	1915	1870	2.8E5	13509	6.1E5	2011	213.0	13.3	.688	.785	2.62
	API	609.6	593.8	7.925	117.3	394.2	1915	1865	2.8E5	14980	6.8E5	2224	212.7	13.8	.801	.947	3.16
1	API	609.6	592.1	8.738	129.1	404.5	1915	1860	2.8E5	16494	7.4E5	2443	212.5	14.3	.920	1.11	3.72
1	SCH 20 STD API	609.6	590.6	9.525	140.6	414.5	1915	1855	2.7E5	17956	8.1E5	2652	212.2	14.7	1.04	1.28	4.26
- 1	API	609.6	589.0	10.31	152.0	424.5	1915	1850	2.7E5	19415	8.7E5	2860	211.9	15.1	1.15	1.44	4.80
1	API	609.6	587.3	11.13	163.8	434.7	1915	1845	2.7E5	20917	9.4E5	3074	211.6	15.4	1.27	1.61	5.36
	API	609.6	585.8	11.91	175.1	444.6	1915	1840	2.7E5	22368	9.9E5	3278	211.4	15.8	1.39	1.77	5.91
ļ	XS API SCH 30 API	609.6 609.6	584.2 581.1	12.70 14.27	186.5 209.0	454.5 474.2	1915 1915	1835 1825	2.7E5 2.7E5	23815 26698	1.1E6 1.2E6	3481 3883	211.1 210.5	16.1 16.6	1.50 1.72	1.94	6.46
	API	609.6	577.9	15.88	231.9	494.1	1915	1815	2.6E5	29611	1.3E6	4284	210.0	17.1	1.94	2.60	7 .5 6 8 . 68
	SCH 40 API	609.6	574.6	17.48	254.5	513.9	1915	1805	2.6E5	32508	1.4E6	4678	209.4	17.5	2.15	2.94	9.80
	API	609.6	571.5	19.05	276.7	533.3	1915	1795	2.6E5	35343	1.5E6	5060	208.9	17.9	2.35	3.27	10.9
	SCH 60	609.6	560.4	24.61	354.2	600.8	1915	1760	2.5E5	45233	1.9E6	6359	207.0	18.9	2.98	4.46	14.9
	SCH 80	609.6	547.7	30.96	440.7	676.3	1915	1721	2.4E5	56285	2.4E6	7751	204.9	19.7	3.56	5.84	19.5
	SCH 100	609.6	531.8	38.89	545.9	768.1	1915	1671	2.2E5	69723	2.9E6	9357	202.2	20.3	4.13	7.60	25.3
	SCH 120	609.6	517.6	46.02	638.1	848.4	1915	1626	2.1E5	81488	3.3E6	10685	199.9	20.6	4.52	9.21	30.7
	SCH 140	609.6	504.9	52.37	717.9	918.1	1915	1586	2.0E5	91686	3.6E6	11778	197.9	20.8	4.79	10.7	35.6
	SCH 160	609.6	490.5	59.54	805.6	994.6	1915	1541	1.9E5	1.0E5	3.9E6	12916	195.6	20.9	5.02	12.4	41.2
650	API	660.4	647.7	6.350	102.2	431.7	2075	2035	3.3E5	13048	7.0E5	2113	231.3	12.9	.510	.575	1.92
26	API	660.4		7.137	114.7	442.6	2075	2030	3.3E5	14648	7.8E5	2367	231.0	13.4	.610	.724	2.41
	SCH 10 API			7.925	127.2	453.5	2075	2025	3.3E5	16244	8.6E5	2618	230.7	14.0	.713		2.91
	API	660.4	642.9	8.738	140.1	464.7	2075	2020	3.2E5	17888	9.5E5	2876	230.4	14.5	.822	1.03	3.43
	STD API		641.4			475.6	2075		3.2E5	19477	1.0E6		230.1	14.9			3.93
	API		639.8		164.9		2075		3.2E5	21061	1.1E6		229.9		1.03		4.43
	API		638.1			497.5	2075		3.2E5	22693	1.2E6		229.6		1.15		4.95
	API		636.6		190.0		2075		3.2E5	24269	1.3E6	3865		16.0			5.45
	SCH 20 XS API		635.0			519.0	2075		3.2E5	25842	1.4E6		229.0 228.5		1.36		5.95
]	API		631.9 628.6			540.4 562.1	2075 2075		3.1E5 3.1E5	28976 32144	1.5E6 1.7E6		227.9	16.9	1.78	2.09	6.97 8.00
	API		622.3			604.7	2075		3.0E5	38383	2.0E6		226.9		2.17	1	10.1
											1			1		1	
700	API		698.5			493.3	2234		3.8E5	14061	8.7E5		249.2	13.0			1.78
28	API		696.9		123.6		2234		3.8E5	15787	9.8E5		248.9	13.6			2.24
	SCH 10 API		695.4			516.8	2234		3.8E5	17509	1.1E6		248.7		.639		2.70
	API CTD ADI		693.7			529.0 540.7	2234	2179	3.8E5	19283	1.2E6		248.4	l .	.738		3.18
	STD API	/11.2	692.2	2.325	104.4	J4U•/	2234	41/4	3.8E5	2077/	1.3E6	ردور	248.1	10.1	.836	1.09	3.65

nın	r nata													TARI	ro n	4.14
Irir	E DATA													IARL	ES P.	M
DN	PIPING CODES and	DIMENSIO		WEIG				EAS		Moment	Section	Radius of	Continue	us Spans	Code Pr	essures
(mm) [NPS]	MANUFACTURERS' WEIGHTS	D.D. 1.D. (mm) (mm)	Wall (mm)	Empty (kg/m)	Waterfilled (kg/m)	External (mm²/mm)	Internal (mm ² /mn		Metal (mm ²)	of Inertia (10 ⁴ mm)	Modulus	Gyratien (mm)	Span (m)	Sag (mm)	Design (MPa)	Bursting (MPa)
				1			(11111)	-, (,	(11.11.7	1 (10)	(10 11111)	(3113117)	(111/	(IIIII)	(INIE d.)	(IVIFA)
400	API	406.4 395.	5.563	54.85	177.6	1277	1242	1.2E5	7005	1.4E5	692.5	141.7	11.5	.862	•693	2.31
16	SCH 10 API	406.4 393.	6.350	62,49	184.2	1277	1237	1.2E5	7981	1.6E5	785.9	141.5	12.0	1.04	.936	3.12
	API	406.4 392.		70.10	190.9	1277	1232	1.2E5	8953	1.8E5	878.2	141.2	12.5	1.21	1.18	3.93
	SCH 20 API	406.4 390.6		77.68	197.5	1277	1227	1.2E5	9921	2.0E5	969.4	140.9	12.9	1.38	1.42	4.75
	API API	406.4 388.9		85.47	204.3	1277	1222	1.2E5	10916	2.2E5	1062	140.6	13.2	1.56	1.68	5.59
	SCH 30 STD API	406.4 387.4		92.99	210.8	1277	1217	1.2E5	11876	2.3E5	1151	140.4	13.6	1.72	1.92	6.41
	API	406.4 384.5 406.4 382.6		108.2 115.6	224.1 230.6	1277	1207 1202	1.2E5	13815 14764	2.7E5	1329	139.8	14.1	2.05	2.43	8.09
1	SCH 40 XS API	406.4 381.0		123.0	237.0	1277 1277	1197	1.1E5 1.1E5	15708	2.9E5 3.0E5	1415 1499	139.5	14.4	2.20	2.67	8.92
	API	406.4 374.7		152.5	262.7	1277	1177	1.1E5	19477	3.7E5	1830	139.3 138.2	14.6 15.3	2.35 2.89	2.92 3.94	9.75 13.1
	SCH 60	406.4 373.1		159.7	269.1	1277	1172	1.1E5	20401	3.9E5	1910	137.9	15.5	3.02	4.19	14.0
	API	406.4 368.3		181.5	288.0	1277	1157	1.1E5	23182	4.4E5	2145	137.1	15.9	3.36	4.96	16.5
	SCH 80	406.4 363.5		203.0	306.8	1277	1142	1.0E5	25927	4.8E5	2371	136.3	16.1	3.66	5.74	19.1
	SCH 100	406.4 354.0	26.19	244.9	343.4	1277	1112	98437	31280	5.7E5	2795	134.7	16.6	4.16	7.32	24.4
	SCH 120	406.4 344.5	30.96	285.9	379.1	1277	1082	93198	36520	6.5E5	3188	133.2	16.8	4.54	8.93	29.8
	SCH 140	406.4 333.3	36.53	332.3	419.6	1277	1047	87275	42442	7.3E5	3607	131.4	17.0	4.87	10.9	36.2
	SCH 160	406.4 325.4	40.49	364.4	447.6	1277	1022	83175	46542	7.9E5	3880	130.2	17.1	5.05	12.3	40.8
450	SCH 10 API	457.2 444.5	6.350	70.42	225.6	1436	1396	1.6E5	8994	2.3E5	999.9	159.4	12.2	.880	.832	2.77
18	API	457.2 442.9		79.02	233.1	1436	1391	1.5E5	10092	2.6E5	1118	159.1	12.7	1.03	1.05	3.49
	SCH 20 API	457.2 441.4	7.925	87.58	240.6	1436	1387	1.5E5	11185	2.8E5	1235	158.9	13.2	1,19	1.27	4.22
	API	457.2 439.7	8.738	96.39	248.3	1436	1381	1.5E5	12310	3.1E5	1354	158.6	13.6	1.35	1.49	4.97
1	STD API	457.2 438.2	9.525	104.9	255.7	1436	1376	1.5E5	13396	3.4E5	1469	158.3	13.9	1,50	1.71	5.69
	API	457.2 436.6		113.4	263.1	1436	1372	1.5E5	14478	3.6E5	1582	158.0	14.2	1.65	1.93	6.42
	SCH 30 API	457.2 434.9		122.1	270.7	1436	1366	1.5E5	15591	3.9E5	1697	157.8	14.5	1.80	2.15	7.18
i i	API	457.2 433.4		130.5	278.0	1436	1361	1.5E5	16665	4.1E5	1808	157.5	14.8	1.94	2.37	7.91
1 1	XS API SCH 40 API	457.2 431.8		138.9	285.3	1436	1357	1.5E5	17735	4.4E5	1918	157.2	15.1	2.08	2.59	8.65
	SCH 40 API API	457.2 428.7		155.5	299.8	1436	1347	1.4E5	19863	4.9E5	2133	156.7	15.5	2.35	3.04	10.1
	SCH 60 API	457.2 425.5 457.2 419.1		172.3 205.3	314.5	1436	1337	1.4E5	22010	5.4E5	2347	156.1	15.9	2.60	3.49	11.6
	SCH 80 API	457.2 409.5		254.0	343.3 385.7	1436 1436	1317 1287	1.4E5 1.3E5	26222 32438	6.3E5 7.6E5	2758 3341	155.1 153.5	16.5	3.06	4.40	14.7
	SCH 100	457.2 398.5		309.0	433.7	1436	1252	1.2E5	39466	9.1E5	3969	151.6	17.1 17.6	3.63 4.15	5.78 7.41	19.3
	SCH 120	457.2 387.3		362.8	480.6	1436	1217	1.2E5	46332	1.0E6	4548	149.8	17.9	4.55	9.09	24.7 30.3
	SCH 140	457.2 377.9		407.5	519.6	1436	1187	1.1E5	52041	1.1E6	5006	148.3	18.0	4.81	10.5	35.1
	SCH 160	457.2 366.7	45.24	458.4	564.0	1436	1152	1.1E5	58547	1.3E6	5499	146.5	18.1	5.04	12.3	40.9
500	SCH 10 API	508.0 495.3	6.350	78.36	271.0	15%	1556	1.9E5	10007	3,1E5	1240	177.4	12.4	.757	.748	2.49
20	API	508.0 493.7		87.94	279.4	1596	1551	1.9E5	11231	3.5E5	1387	177.1	12.9	.895	.943	3.14
1	API		7.925	97.48	287.7	1596	1546	1.9E5	12450	3.9E5	1533	176.8	13.4	1.03	1.14	3.79
- 1	API	508.0 490.5		107.3	296.3	1596	1541	1.9E5	13705	4.3E5	1682	176.5	13.8	1.18	1.34	4.46
	SCH 20 STD API	508.0 489.0	9.525	116.8	304.6	1596	1536	1.9E5	14916	4.6E5		176.3		1.32		5.12
1	API	508.0 487.4	10.31	126.2		1596		1.9E5	16124	5.0E5	1966	176.0		1.45		5.77
	API	508.0 485.7	11.13	136.0	321.3	1596		1.9E5	17366	5.4E5	2111			1.59		6.45
1	API		11.91	145.4		1596	1521	1.8E5	18566	5.7E5	2250	175.4		1.73	2.13	7.11
	SCH 30 XS API		12.70	154.7		1596	1516	1.8E5	19762	6.1E5	2387	175.2		1.86		7.77
	SCH 40	508.0 477.8		182.9		1596		1.8E5	23364	7.1E5		174.4		2.23	2.93	9.78
	API		15.88	192.2		1596		1.8E5	24544	7.4E5		174.1		2.35	3.13	10.4
	SCH 60 API	508.0 466.8	20,62	247.3		1596		1.7E5	31579	9.4E5		172.5		2.99		14.5
	SCH 80	508.0 455.6		310.4		1596		1.6E5	39639	1.2E6	4542	170.6	18.0	3.60	5.80	
	SCH 100		32.54	380.5		1596		1.5E5	48601	1.4E6		168.5		4.14	7.49	
	SCH 120	508.0 431.8		440.4		1596		1.5E5	56245	1.6E6		166.7		4.51	8.99	30.0
	SCH 140 SCH 160	508.0 419.1 508.0 408.0	44.45 50.01	506.9		1596		1.4E5	64732	1.8E6	6908	164.6		4.82		35.8
	241 100	JUD-U 400-U	70.0T	563.4	054.2	1596	1797	1.3E5	71959	1.9E6	/316	162.9	19.1	5.03	12.3	41.1

P	E DATA													1	ABLI	ES P	1 N
N	PIPING CODES and	Di	MENSIONS		WEIGH	ITS		ARE	AS		Moment	Section	Radius of	Continuo	us Spans	Code Pri	essure
nm)	MANUFACTURERS	D.D.	I.D.	Wall		Vaterfilled	External		Flow	Metal	of Inertia	Modulus	Gyration	Span	Sag	Design	
PS]	WEIGHTS	(mm)	(mm)	(mm)	(kg/m)	(kg/m)	(mm ⁻ /mm)	(mm/mm)	(mm ⁻)	(mm ²)	(18"mm)	(10 mm)	(mm)	(m)	(mm)	(MPa)	(MF
50	API	273.1	263.5	4.775	31.51	86.04	857.8	827.8	54532	4025	36218	265.3	94.86	10.2	1.20	.672	2.
10	API	273.1	262.7	5.156	33.98	88.20	857.8	825.4	54217	4340	38944	285.3	94.73	10.4	1.33	.847	2
	API	273.1	261.9	5.563	36.60	90.48	857.8	822.9	53882	4674	41825	306.4	94.59	10.7	1.46	1.03	3
	SCH 20 API	273.1	260.3	6.350	41.66	94.89	857.8	817.9	53236	5320	47331	346.7	94.32	11.1	1.71	1.40	4
	API	273.1	258.9	7.087	46.36	99.00	857.8	813.3	52635	5921	52393	383.8	94.07	11.4	1.93	1.74	
	SCH 30 API	273.1	257.5	7.798	50.88	102.9	857.8	808.8	52058	6498	57198	419.0	93.82	11.7	2.14	2.07	' (
-	API	273.1	255.6	8.738	56.81	108.1	857.8	802.9	51301	7255	63428	464.6	93.50	12.0	2.41	2.51	. 8
	SCH 40 STD API	273.1	254.5	9.271	60.16	111.0	857.8	799.6	50874	7683	66903	490.0	93.32	12.2	2.55	2.76	, ,
	API	273.1	250.8	11.13	71.68	121.1	857.8	787.9	49402	9154	78647	576.1	92.69	12.7	3.00	3.64	. 1
	SCH 60 XS API	273.1	247.7	12.70	81.33	129.5	857.8	778.0	48169	10388	88220	646.2	92.16	13.0	3.34	4.39) 1
	SCH 80	273.1	242.9	15.09	95.74	142.1	857.8	763.0	46329	12227	1.0E5	747.5	91.36	13.3	3.78	5.55	1
	SCH 100 API	273.1	236.5	18.26	114.5	158.4	857.8	743.1	43938	14618	1.2E5	873.3	90.31	13.6	4.24	7.11	. 2
	SCH 120	273.1	230.2	21.44	132.7	174.3	857.8	723.1	41611	16946	1.4E5	989.4	89.28	13.8	4.60	8.71	. :
	SCH 140 XXS API	273.1	222.2	25.40	154.7	193.5	857.8	698.2	38795	19762	1.5E5	1121	88.02	14.0	4.94	10.7	' :
	SCH 160	273.1	215.9	28.58	171.8	208.5	857.8	678.3	36610	21947	1.7E5	1217	87.02	14.0	5.13	12.4	. 4
0		323.9	313.5	5.156	40.42	117.6	1017	985.0	77209	5162	65558	404.9	112.7	10.8	1.06	.714	. :
2	API	323.9	312.7	5.563	43.55	120.4	1017	982.5	7680 9	5562	70458	435.1		11.0	1.18	.871	L :
	SCH 20 API	323.9	311.2	6.350	49.59	125.6	1017	977.5	76038	6334	79843	493.1	112.3	11.5	1.39	1.18	3 :
	API	323.9	309.6	7.137	55.61	130.9	1017	972.6	75270	7102	89088	550.2	112.0	11.9	1.60	1.48	} ,
	API	323.9	308.0	7.925	61.59	136.1	1017	967.6	74506	7865	98192	606.4	111.7	12.3	1.81	1.79)
	SCH 30 API	323.9	307.1	8.382	65.05	139.1	1017	964.7	74064	8307	1.0E5	638.7	111.6	12.4	1.93	1.97	7
Ì	API	323.9	306.4	8.738	67.73	141.4	1017	962.5	73722	8650	1.1E5	663.5	111.5	12.6	2.02	2.11	. :
	STD API	323.9	304.8	9.525	73.65	146.6	1017	957.6	72966	9406	1.2E5	718.0	111.2	12.9	2.21	2.42	2 :
	SCH 40 API	323.9	303.2	10.31	79.54	151.7	1017	952.6	72214	10158	1.2E5	771.7	110.9	13.1	2.39	2.73	3
	API	323.9	301.6	11.13	85.58	157.0	1017	947.5	71442	10930	1.3E5	826.2	110.6	13.3	2.58	3.06	5
	XS API	323.9	298.5	12.70	97.20	167.2	1017	937.6	69957	12414	1.5E5	929.4	110.1	13.7	2.90	3.69)
1	SCH 60 API	323.9	295.3	14.27	108.7	177.2	1017	927.7	68489	13883	1.7E5	1029	109.6	14.0	3.20	4.32	2
	API	323.9	292.1	15.88	120.3	187.3	1017	917.7	67012	15360	1.8E5	1128	109.0	14.3	3.47	4.97	7
	SCH 80 API	323.9	288.9	17.48	131.7	197.3	1017	907.6	65552	16820	2.0E5	1223	108.5	14.5	3.72	5.63	3
ļ	API	323.9	285.8	19.05	142.8	207.0	1017	897.7	64130	18241	2.1E5	1313	108.0	14.6	3.93	6.28	3
	SCH 100	323.9	281.0	21.44	159.5	221.5	1017	882.7	62005	20367	2.3E5	1445	107.2	14.8	4.22	7.28	3
	SCH 120 XXS API	323.9	273.1	25.40	186.5	245.0	1017	857.8	58556	23815	2.7E5	1649	105.9	15.1	4.60	8.96	5
	SCH 140 API	323.9	266.7	28.58	207.6	263.4	1017	837.9	55865	26507	2.9E5	1801	104.9	15.2	4.84	10.3	3
	SCH 160 API	323.9	257.2	33.32	238.2	290.1	1017	808.0	51956	30416	3.3E5	2008	103.4	15.3	5.10	12.4	• 4
0	API	355.6	344.9	5.334	45.96	139.4	1117	1084	93445	5870	90034	506.4		11.1		.712	
4	API	355.6	344.5	5.563	47.90	141.1	1117	1082	93198	6117	93711	527.1		11.2		.793	
	SCH 10 API	355.6	342.9	6.350	54.55	146.9	1117	1077	92347	6967	1.1E5	597.7		11.7	1.24	1.07	
	API	355.6	341.3	7.137	1	152.7	1117	1072	91501	7814	1.2E5	667.3		12.1		1.35	
	SCH 20 API			7.925		158.4	1117		90659	8656			123.0		1.63	1.63	
	API		338.1		l .	164.3	1117	1062		9521	1.4E5		122.7		1.82		
	SCH 30 STD API		336.6			170.0	1117	1057	88959	10356	1.6E5		122.4		2.00		
	SCH 40 API		333.3			181.5	1117	1047	87275		1.8E5		121.9		2.35		
	API		331.8			187.2	1117		86452		1.9E5		121.6		2.52	3.06	
	XS API		330.2		l .	192.8	1117	1037			2.0E5		121.3		2.67	3.35	
	SCH 60		325.4		126.4		1117	1022			2.3E5		120.5		3.10		
	API		323.9		132.7		1117	1017			2.4E5		120.2		3.23		
	SCH 80 API		317.5			236.9	1117		79173	20142	2.9E5		119.2		3.70	1	
	SCH 100 API		307.9		194.4		1	967.5			3.4E5		117.6		4.25	1	
	SCH 120		300.0		224.1		1117		70698		3.9E5		116.3	ı	4.59		
Į	SCH 140 API		292.1		252.9		1117		67012		4.3E5		115.0	1	4.86	j.	
	SCH 160	255 4	284.2	25 71	1 791 A	344.4	1 7117	א ניטא	63425	378880	4.6E5	.1617	113.8	1 16 0	5.07	12.2	

Thru DN 2SO, wall thicknesses for SCH 40S and SCH 80S stainless steel pipes are the same as for SCH 40 and SCH 80 carbon steel pipes

PIP	E DATA														ABLE	S P.	M
DN	PIPING CODES and	10	MENSIONS		WEIG			ARE			Møment		Radius of	Continuos		Code Pre	1
(mm) (NPS]	MANUFACTURERS' WEIGHTS	0.D. (mm)	1.D. (mm)	Wall (mm)	Empty \ (kg/m)	Vaterfilled (kg/m)		(mm²/mm)	Flow (mm ²)	Metal (mm²)	of Inertia (10 ⁴ mm) (Gyration (mm)	Span (m)	Sag (mm)	Design (MPa)	Bursting (MPa)
L																	
65	SCH 40 STD API	73.03	62.71	5.156	8.608	11.70	229.4	197.0	3089	1099	636.6	17.44	24.06	7.09	4.37	5.96	19.9
2.50	SCH 80 XS API	73.03	59.00	7.010	11.38	14.12	229.4	185.4	2734	1454	800.9	21.94	23.47	7.24	4.99	9.43	31.4
	SOH 160	73.03	53.98	9.525	14.88	17.17	229.4	169.6	2288	1900	979.3	26.82	22.70	7.26	5.39	14.4	48.0
	XXS API	73.03	44.98	14.02	20.35	21.94	229.4	141.3	1589	2599	1195	32.73	21.44	7.10	5.51	24.0	80.1
80	API	88.90	82.55	3.175	6.695	12.05	279.3	259.3	5352	855.1	786.5	17.69	30.33	7.04	2.67	1.98	6.58
3.00	API	88.90	80.98	3.962	8.279	13.43	279.3	254.4	5150	1057 1262	955.6 1120	21.50 25.20	30.06 29.79	7.35 7.57	3.23 3.71	3.11 4.30	10.4
	API SCH 40 STD API	88.90 88.90	79.35 77.93	4.775 5.486	9.882 11.26	14.83 16.03	279.3	249.3 244.8	4945 4769	1438	1256	28.25	29.55	7.71	4.05	5.36	17.9
	API	88.90	76.20	6.350	12.89	17.45	279.3	239.4	4560	1647	1411	31.75	29.27	7.83	4.40	6.66	22.2
	API	88.90	74.63	7.137	14.36	18.73	279.3	234.4	4374	1833	1544	34.73	29.02	7.91	4.65	7.86	26.2
	SCH 80 XS API	88.90	73.66	7.620	15.24	19.50	279.3	231.4	4261	1946	1621	36.47	28.86	7.94	4.78	8.61	28.7
	SCH 160	88.90	66.65	11.13	21.28	24.77	279.3	209.4	3489	2718	2097	47.19	27.78	8.02	5.36	14.2	47.5
	XXS API	88.90	58.42	15.24	27.61	30.29	279.3	183.5	2680	3527	2494	56.11	26.59	7.91	5.53	21.4	71.3
100	API	114.3	108.0	3.175	8.679	17.83	359.1	339.1	9152	1108	1712	29.96	39.30	7.53	2.08	.971	3.24
4	API	114.3	106.4	3.962	10.75	19.64	359.1	334.2	8887	1374	2093	36.62	39.04	7.93	2.60	1.84	6.14
	API	114.3	104.7	4.775	12.87	21.48	359.1	329.1	8618	1643	2468	43.19	38.76	8.24	3.06	2.75	9.17
	API	114.3	103.2	5.563	14.88	23.24	359.1	324.1	8361	1900	2816	49.27	38.49	8.46	3.45	3.64	12.1
İ	SCH 40 STD API	114.3 114.3	102.3 101.6	6.020	16.03 16.86	24.25 24.97	359.1 359.1	321.3 319.2	8213 8107	2048 2154	3010 3148	52.68 55.08	38.34 38.23	8.56	3.66 3.79	4.16	13.9 15.1
	API API	114.3	100.0	7.137	18.81	26.67	359.1	314.2	7858	2403	3465	60.62	37.97	8.76	4.08	5.45	18.2
.	API	114.3	98.45	7.925	20.74	28.35	359.1	309.3	7612	2648	3767	65.91	37.71	8.86	4.33	6.37	21.2
	SCH 80 XS API	114.3	97.18	8.560	22.26	29.68	359.1	305.3	7417	2844	4000	69.99	37.51	8.92	4.50	7.12	23.7
	SCH 160 API	114.3	87.33	13.49	33.45	39.44	359.1	274.3	5989	4272	5524	96.65	35.96	9.09	5.29	13.2	44.0
	XXS API	114.3	80.06	17.12	40.92	45.96	359.1	251.5	5034	5227	6362	111.3	34.89	9.04	5.49	18.0	59.9
150	API	168.3	158.7	4.775	19.21	38.99	528.7	498.6	19787	2453	8203	97.50	57.83	9.19	2.13	1.48	4.92
6	API	168.3	157.1	5.563	22.26	41.66	528.7	493.7	19396	2843	9421	112.0	57.56	9.52	2.48	2.07	6.90
	API		155.6	6.350	25.29	44.30	528.7	488.8	19009	3230	10603	126.0	57.29	9.80	2.81	2.67	8.89
	SCH 40 STD API	168.3	154.1	7.112	28.19	46.83	528.7	484.0	18639	3601	11714	139.2	57.04	10.0	3.09	3.25	10.8
	API API	168.3 168.3	152.4 150.8	7.925 8.738	31.26 34.29	49.51 52.15	528.7 528.7	478.9 473.8	18248 17860	3992 4379	12862 13975	152.9 166.1	56.76 56.49	10.2	3.37 3.62	4.51	12.9 15.0
	SCH 80 XS API	168.3	146.3	10.97	42.46	59.28	528.7	459.7	16817	5423	16853	200.3	55.75	10.7	4.18	6.28	20.9
	SCH 120 API	168.3	139.7	14.27	54.08	69.41	528.7	439.0	15333	6906	20649	245.4	54.68	10.9	4.76	8.96	29.9
	SCH 160 API	168.3	131.7	18.26	67.39	81.02	528.7	413.9	13633	8607	24569	292.0	53.43	11.0	5.18	12.3	41.0
	XXS	168.3	124.4	21.95	78 .99	91.14	528.7	390.8	12151	10089	27610	328.2	52.31	11.0	5.39	15.5	51.8
200	API	219.1	209.5	4.775	25.17	59.65	688.2	658.2	34479	3215	18464	168.6	75.79	9.77	1.58	.985	3.28
8	API	219.1	208.8	5 .15 6	27.13	61.36	688.2	655.8	34229	3465	19833	181.1	75.65	9.98	1.73	1.20	4.01
	API	219.1	207.9	5.563	29.22	63.18	688.2	653.3	3 3 963	3731	21277		75.51	10.2	1.89	1.44	
	SCH 20 API		206.4			66.68	1	648.3		4244	l .		75.24	i	2.18	1	6.31
	SCH 30 API		205.0			69.71	}	644.0		4687	ł	240.7		į.	2.41		7.64
	API		203.2			73.60		638.5		5257		267.8	74.62	1	2.70		9.38
	SCH 40 STD API		202.7		ŀ	74.71 77.13		636.9 633.3		5419 5774		292.0			2.78 2.95		9.87 11.0
	API API		201.6			80.52	1	628.4		6271	1	314.9			3.17		12.5
	SCH 60		198.5			83.89	1	623.4		6763	i	337.2		1	3.37		14.1
	API		196.8			87.33		618.3		7268	1	359.7		1	3.56		15.7
	SCH 80 XS API		193.7			93.93	688.2	608.4	2946 0	8234		401.7		1	3.90	3	18.9
	SCH 100	219.1	188.9	15.09	75.71	103.7	1	593.4		9669	1	461.6			4.31		23.8
	SCH 120 API		182.5			116.4	688.2		26173			534.6			4.73		30.4
	SCH 140 API		177.8			125.5		558.7		12859		584.1		l .	4.96		35.5
and the same of th	XXS API SCH 160		174.6 173.1			131.6 134.5		548.6 543.7					70.04 69.79		5.08 5.14		38.9 40.7
	341 100						000.2				<u> </u>						

Thru DN 2SO, wall thicknesses for SCH 40S and SCH 80S stainless steel pipes are the same as for SCH 40 and SCH 80 carbon steel pipes

Tables P-1M present calculated data as a guide only. Spans are for pipe arranged in pipeways with the following assumptions: Bare pipe - continuous straight run with welded joints and two or more straight spans at each end.

SPANS - calculated with lines full of water and a maximum bending stress of 4 000 PSI

SAG - (deflection) calculated with lines empty (drained condition)

The following factors were not considered in calculating spans for these tables: Concentrated mechanical loads from flanges, valves, strainers, filters, and other inline equipment - weights of connecting branch lines - torsional loading from thermal movement - sudden reaction from lines(s) discharging contents - vibration - flattening effect of weight of contents in larger liquid filled lines - weight of insulation and pipe covering - weight of ice and snow - wind loads - seismic shock - reduction in wall thickness of pipe from threading or grooving.

DESIGN PRESSURE - calculated per ANSI B31.1 using allowable stress value of 9 000 PSI for seamless carbon steel pipe

BURSTING PRESSURE is approximate, calculated on yield strength of 30 000 PSI

[E in these tables is for 'Exponent', the power of 10 to which the number must be raised. Example: 1.0ES = 100 000]

API = American Petroleum Institute's standard 5L, for 'Line pipe'. API pipe sizes; manufacturers' weights: Oouble-extra-strong (XXS), Extra-strong (XS), and Standard (STD), are included with schedule numbers in standard ANSI B36.10M. Also refer to 2.1.3

PIP	E DATA: DIMI	ENSIONS & STRES	S PARAMET	ERS			TABLE	S P-1 M
DN (mm) [NPS]	PIPING CODES and MANUFACTURERS' WEIGHTS	DIMENSIONS D.D. I.D. Wall (mm) (mm) (mm)	WEIGHTS Empty Waterfilled (kg/m) (kg/m)	AREAS External Internal Flow (mm²/mm) (mm²/mm) (mm²)	Moment Sect of Inertia Mode (mm ²) (10 ⁴ mm) (10 ³ n	lus Gyration S	ontinuous Spans Span Sag (m) (mm)	Code Pressures Design Bursting (MPa) (MPa)
10 •375	SCH 40 STD API SCH 80 XS API	17.15 12.52 2.311 17.15 10.74 3.200	.8434 .9666 1.098 1.188	53.86 39.34 123.2 53.86 33.75 90.66	107.7 3.035 .35 140.2 3.587 .41		3.52 5.42 3.45 5.52	12.1 40.3 19.9 66.4
.500	SCH 40 STD API SCH 80 XS API SCH 160 XXS API	21.34 15.80 2.769 21.34 13.87 3.734 21.34 11.79 4.775 21.34 6.401 7.468	1.265 1.461 1.617 1.768 1.945 2.054 2.548 2.580	67.03 49.63 196.0 67.03 43.57 151.1 67.03 37.03 109.1 67.03 20.11 32.18	161.5 7.114 .66 206.5 8.357 .78 248.4 9.225 .86 325.4 10.09 .94	33 6.362 3 48 6.094 3	3.93 5.39 3.87 5.53 3.77 5.43 3.52 4.94	12.6 42.1 19.5 64.8 27.5 91.6 52.1 174
20 .750	SCH 40 STD API SCH 80 XS API SCH 160 XXS API	26.67 20.93 2.870 26.67 18.85 3.912 26.67 15.54 5.563 26.67 11.02 7.823	1.680 2.024 2.190 2.469 2.888 3.078 3.627 3.722	83.79 65.75 344.0 83.79 59.21 279.0 83.79 48.84 189.8 83.79 34.63 95.44	214.6 15.42 1.1 279.7 18.64 1.3 368.9 21.97 1.6 463.2 24.11 1.8	98 8 .164 4 47 7 . 717 4	4.39 5.17 4.37 5.48 4.25 5.48 4.05 5.16	9.14 30.5 14.8 49.2 24.5 81.7 39.8 133
25 1.00	SCH 40 STD API SCH 80 XS API SCH 160 XXS API	33.40 26.64 3.378 33.40 24.31 4.547 33.40 20.70 6.350 33.40 15.21 9.093	2.495 3.052 3.227 3.691 4.225 4.562 5.437 5.619	104.9 83.71 557.6 104.9 76.37 464.1 104.9 65.03 336.6 104.9 47.80 181.8	318.6 36.35 2.1 412.1 43.96 2.6 539.6 52.08 3.1 694.4 58.46 3.5	32 10.33 4 19 9.824 4	4.91 5.08 4.91 5.43 4.80 5.51 4.59 5.25	8.77 29.2 13.8 45.9 22.1 73.7 36.5 122
32 1.25	SCH 40 STD API SCH 80 XS API SCH 160 XXS API	42.16 35.05 3.556 42.16 32.46 4.851 42.16 29.46 6.350 42.16 22.76 9.703	3.377 4.342 4.453 5.280 5.594 6.276 7.748 8.155	132.5 110.1 965.0 132.5 102.0 827.6 132.5 92.56 681.8 132.5 71.50 406.8	431.3 81.04 3.8 568.7 100.6 4.7 714.5 118.2 5.6 989.5 142.0 6.7	74 13.30 5 04 12.86 5	5.47 4.75 5.52 5.26 5.49 5.49 5.28 5.41	7.03 23.4 11.3 37.7 16.5 55.2 29.5 98.5
40 1.50	SCH 40 STD API SCH 80 XS API SCH 160 XXS API	48.26 40.89 3.683 48.26 38.10 5.080 48.26 33.99 7.137 48.26 27.94 10.16	4.039 5.352 5.396 6.536 7.220 8.127 9.522 10.14	151.6 128.5 1313 151.6 119.7 1140 151.6 106.8 907.1 151.6 87.78 613.1	515.8 129.0 5.3 689.1 162.8 6.7 922.1 200.8 8.3 1216 236.4 9.7	48 15. 37 5 21 14.76 5	5.81 4.54 5.90 5.14 5.88 5.48 5.71 5.47	6.46 21.5 10.5 34.9 16.7 55.7 26.8 89.4
50 2.00	SCH 40 STD API SCH 80 XS API API SCH 160 XXS	60.32 52.50 3.912 60.32 49.25 5.537 60.32 47.62 6.350 60.32 42.85 8.738 60.32 38.18 11.07	5.428 7.593 7.463 9.368 8.431 10.21 11.09 12.53 13.42 14.56	189.5 164.9 2165 189.5 154.7 1905 189.5 149.6 1781 189.5 134.6 1442 189.5 119.9 1145	693.2 277.1 9.1 953.1 361.3 11. 1077 397.5 13. 1416 484.6 16. 1713 545.8 18.	98 19.47 6 18 19.21 6 07 18.50 6	6.39 4.17 6.57 4.91 6.60 5.14 6.58 5.47 6.48 5.52	5.07 16.9 8.72 29.1 10.6 35.4 16.4 54.7 22.5 75.0

Thru DN 250, wall thicknesses for SCH 40S and SCH 80S stainless steel pipes are the same as for SCH 40 and SCH 80 carbon steel pipes

PRESSURE / TEMPERATURE RATINGS FOR CARBON STEEL FLANGES

TABLE F-9M

Maximum ratings for flanges con	informing to ISO Standard 2229 o	dimensions and material specification ASTM A-185
---------------------------------	----------------------------------	--

TEMPERATURE		GAGE PRESSUR	E IN kilopasc	als (kPa) FOR	FLANGE CLASS	ES 150 - 2500	
CELSIUS	W		FLAN	GE CLA	SSES		
OLLG100	150	300	400	600	900	1500	2500
-29 to 38	1 900	4 960	6 610	9 920	14 900	24 830	41 380
50	1 830	4 940	6 560	9 850	14 840	24 670	41 130
100	1 630	4 800	6 400	9 600	14 450	24 020	40 060
150	1 450	4 680	6 260	9 400	14 130	23 500	39 200
200	1 260	4 600	6 150	9 190	13 850	23 060	38 380
250	1 070	4 370	5 85 0	8 780	13 170	21 920	36 600
300	940	3 960	5 300	7 900	11 900	19 810	33 060
350	810	3 480	4 670	6 930	10 490	17 440	29 000
375	750	3 210	4 340	6 380	9 660	15 800	26 770
400	690	2 910	3 940	5 820	8 780	14 580	24 360
425	640	2 550	3 440	5 100	7 730	12 820	21 250
450	580	2 140	2 880	4 270	6 460	10 760	17 820
475	510	1 680	2 240	3 340	5 070	8 420	14 030
500	400	1 240	1 620	2 460	3 720	6 170	10 330
525	340	810	1 0 80	1 600	2 410	4 030	6 720
538	260	550	760	1 100	1 650	2 820	4 590

ISO 2229 flange dimensions are similar to those of standard ANSI 816.5. 80th standards limit the prolonged use of flanges manufactured from carbon steels made to material specification ASTM A-105 at elevated temperatures. ANSI 816.5 also makes recommendations regarding the use of threaded and socket-welding flanges. Refer to footnote: Table F-9.

Ratings are for non-shock conditions. Values in this table do not prevail over limitations imposed by codes, standards, regulations or other obligations which may pertain to projects.

SLIP-ON FLANGES ON BUTT-WELDING ELBOWS

TABLE F-8M

FOR USE ON BUTT-WELDING ELBOWS AS PERMITTED BY THE PIPING SPECIFICATION FOR THE PROJECT

DN		(CI	LASS 150 F	LANG	ES	
DIN	90 LR	*		90 SR	*	45 LR	*
50	89	1		68	1	48	1
80	130	2		97	1	67	1
100	168	2		124	1	79	1
150	243	2		175	1	110	2
200	319	2		227	2	141	2
250	397	2		276	2	175	2
300	473	2		332	2	206	2
350	549	2		376	2	238	2
400	625	2		432	2	270	2
450	702	2		484	2	302	2
500	778	2		533	2	333	2
600	930	2		645	2	395	2

	(CLASS 300 F	LANGE	S	
90 LR	*	90 SR	*	45 LR	*
97	1	76	1	56	1
143	1	110	1	79	1
183	2	138	1	94	1
256	2	187	1	122	2
337	2	244	2	159	2
408	2	294	2	186	2
487	2	349	2	221	2
559	2	395	2	248	2
632	2	451	2	276	2
711	2	505	2	311	2
794	2	556	2	349	2
951	2	668	2	418	2

DIMENSIONS IN MILLIMETERS

RING-JOINT GASKET DATA

TABLE F-7M

DIMENSIONS IN MILLIMETERS

DATA FOR WELDING-NECK FLANGES

- L = LENGTH THRU HUB OF WELDING-NECK FLANGE WITH RING JOINT
- G = GAP BETWEEN FLANGE FACES UNDER NORMAL COMPRESSION
- FOR OUTSIDE DIAMETERS OF FLANGES AND BOLTING REFER TO TABLES F-1M THRU F-6M

FLANGE CLASSES

		150			300			600			900			1500			2500	
DN	L	G	RING No	L	G	RING No	L	G	RING No									
15	~	-	-	58	3.2	R 11	58	3.2	R 11	66	4	R 12	66	4	R 12	79	4	R 13
20	-	-	-	63	4	R 13	63	4	R 13	76	4	R 14	76	4	R 14	85	4	R 16
25	62	4	R 15	68	4	R 16	68	4	R 16	79	4	R 16	79	4	R 16	95	4	R 18
40	68	4	R 19	74	4	R 20	76	4	R 20	89	4	R 20	89	4	R 20	119	3.2	R 23
50	70	4	R 22	78	5.6	R 23	81	4.8	R 23	110	3.2	R 24	110	3.2	R 24	135	3.2	R 26
80	76	4	R 29	87	5.6	R 31	91	4.8	R 31	110	4	R 31	125	3.2	R 35	178	3.2	R 32
100	82	4	R 36	94	5.6	R 37	110	4.8	R 37	122	4	R 37	132	3.2	R 39	201	4	R 38
150	95	4	R 43	106	5.6	R 45	125	4.8	R 45	148	4	R 45	181	3,2	R 46	286	4	R 47
200	108	4	R 48	119	5.6	R 49	141	4.8	R 49	170	4	R 49	224	4	R 50	332	4.8	R 51
250	108	4	R 52	125	5.6	R 53	160	4.8	R 53	192	4	R 53	265	4	R 54	437	6.3	R 55
300	120	4	R 56	138	5.6	R 57	164	4.8	R 57	208	4	R 57	297	4	R 58	482	7.9	R 60
350	133	3	R 59	151	5.6	R 61	173	4.8	R 61	224	4	R 62	314	5.6	R 63			
400	133	3	R 64	154	5.6	R 65	186	4.8	R 65	227	4	R 66	329	7.9	R 67			
450	146	3	R 68	167	5.6	R 69	192	4.B	R 69	242	4.8	R 70	345	7.9	R 71			
500	150	3	R 72	172	5.6	R 73	200	4.8	R 73	261	4.8	R 74	374	9.5	R 75			
600	158	3	R 76	179	6.3	R 77	214	5.6	R 77	308	5.6	Ŕ 78	427	11.1	R 79			

C	LASS 150	O FLAN	GE D	ATA	PN250		TENSIONS TENSIONS									joint)	T	ABLE	F-5M
	NOMINAL DIA	AMETER:	DN	15	20	25	40	50	80	100	150	200	250	300	350	400	450	500	600
	OUTSIDE (DIAMETER		121	130	149	178	216	267	311	394	4B3	584	673	749	826	914	9B 4	1168
F	•	WELD-N	ECK	66	76	79	89	108	123	130	177	219	260	289	304	317	333	362	412
A	END OF	SLIP-0	N						Wa	all thi	ckness	of pi	pe + 2 r	nm					
N G	PIPE TO FACE OF	SOCKET	••	31	32	37	36	48											
E	FLANGE or LAP	THREAD	ED	8	8	8	11	16	13	15	22	24	25	26					
Y	JOINT STUB	L-J	ANS	I 76	76	102	102	152	152	152	203	203	254	254	305	305	305	305	305
P E	END •	STUB END	MSS	51	51	51	51	64	64	76	89	102	127	152	152	152	152	152	152
BOF	RE: WELD-NE	ECK & SO	CKET					0	rder to	match	Inter	nal Dia	ameter (of Pipe					
	BOLTS PER	R FLANGE		4	4	4	4	8	8	8	12	12	12	16	16	16	16	16	16
В 0	BOLT CIRC	CLE DIAM	ETER	82.	6 88.9	101.6	123.8	165.1	203.2	241.3	317.5	393.7	482.6	571.5	635	704.8	774.7	831.8	990.6
L T	DIAMETER	OF BOLT	(IN) 3/4	3/4	7/8	1	7/8	1 1/8	1 1/4	1 3/8	1 5/8	1 7/8	2	2 1/4	2 1/2	2 3/4	3	3 1/2
N	STUOBOLT		R	F 102	108	121	133	140	171	190	254	286	337	375	406	444	489	533	610
G	length - lap-joint		5 R	J 102	108	121	133	146	178	197	260	298	343	387	425	470	514	565	648

PN references are discussed under 'FLANGE CLASSES and PRESSURE NUMBERS'- page 75 (Part II)

C	LASS 250	O FLAN	GE DA	TA P	N420	• DII	MENSION:	S INCL	JDE 6.4	mm RAI	SED FA	CE ON F	FLANGES	(except	TABLE F-6M
١	IOMINAL DIA	METER:	DN	15	20	25	40	50	80	100	150	200	250	300	
	OUTSIDE	DIAMETE	:R	133	140	159	203	235	305	356	483	552	673	762	
F	•	WELO-N	IECK	79	85	95	117	133	174	196	279	324	425	470	ISO STANDARD 2229 IDENTIFIES FLANGES IN
A	END OF	SLIP-0	N				Wall	thick	ness of	pipe +	2 mm	·		4	CLASSES 150 THRU 2500.
N G	PIPE TO FACE OF	SOCKET	·				Not	avail	able in	this c	lass				DIMENSIONAL DATA ARE SIMILAR TO FLANGES
E	FLANGE or LAP JOINT	THREAD	ED	9	12	8	17	23	13	15	22	24	27	26	SPECIFIED BY ANSI STANDARD B16.5 EXCEPT
Y	STUB	L-J	ANSI	76	76	102	102	152	152	152	203	203	254	254	FOR BOLT LENGTHS.
P E	END •	STUB END	MSS	51	51	51	51	64	64	76	89	102	127	152	ANSI B16.5 SPECIFIES LONGER BOLTS. SHORTER
	BORE: WEL	.D-NECK				Ord	der to r	natch	Interna	l Diame	ter of	Pipe			BOLTS ARE ACCEPTABLE PROVIDING FULL THREAO
	BOLTS PER	R FLANGE		4	4	4	4	8	8	8	8	12	12	12	ENGAGEMENT IS OBTAINED WHEN FLANGES ARE ASSEMBLED.
B 0	BOLT CIRC	CLE DIAM	IETER	88.9	95.2	107.9	146	171.4	228.6	273	368.3	438.1	539.7	619.1	ISO 2229 SPECIFIES BOLT
L T	DIAMETER	OF BOLT	(IN)	3/4	3/4	7/8	1 1/8	1	1 1/4	1 1/2	2	2	2 1/2	2 3/4	OIAMETERS IN INCHES.
N	STUDBOLT		RF	121	121	133	165	171	216	248	343	381	483	533	
G	length - lap-joint		5 RJ	121	121	133	171	178	222	260	356	394	508	559	

C	LASS 600) FLANC	E DA	TA	PN100	• OIM	ENSIONS ENSIONS	S INCLU	UDE 6.4 UOE 2 mm	mm RAI n GAP F	SED FAC OR WELD	CE ON F DING -	LANGES REFER 1	(excep TO CHAR	t lap-j Г 2.2	joint)	T	ABLE F	-3M
1	NOMINAL OI	AMETER:	ON	15	20	25	40	50	80	100	150	200	250	300	350	400	450	500	600
	OUTSIOE (DIAMETER		95	117	124	156	165	210	273	356	419	508	559	603	686	743	813	940
F	•	WELO-N	ECK	58	63	6 8	76	79	89	108	123	139	158	162	171	184	190	196	209
A N	ENO OF PIPE TO	SLIP-0	N						Wa	ll thi	ckness	of pip	e + 2 m	nm					
G E	FACE OF	SOCKET	••	21	22	23	24	28	34										
	FLANGE or LAP	THREAC	E0	9	8	7	11	18	12	15	22	24	25	26					
Y	JOINT STU8	L-J	ANSI	76	76	102	102	152	152	152	203	203	254	254	305	305	305	305	305
P E	ENO •	STU8 ENO	MSS	51	51	51	51	64	64	76	89	102	127	152	152	152	152	152	152
801	RE: WELO-N	ECK & SO	CKET					(Order to	match	Interr	nal Dia	neter o	of Pipe					
	80LTS PER	R FLANGE		4	4	4	4	8	8	8	12	12	16	20	20	20	20	24	24
8	80LT CIRC	CLE OIAM	ETER	66.7	82.6	88.9	114.3	127	1 6 8.3	215.9	292.1	349.2	431.8	489	527	603.2	654	723.9	838.
L T	OIAMETER	OF 80LT	(IN)	1/2	5/8	5/8	3/4	5/8	3/4	7/8	1	1 1/8	1 1/4	1 1/4	1 3/8	1 1/2	1 5/8	1 5/8	1 7/
I N	STU080LT		RF	76	83	89	102	102	121	140	165	190	210	216	229	248	267	286	324
G	length - lap-joint		5 RJ	76	83	89	102	108	127	146	171	197	216	222	235	254	273	292	337

PN references are discussed under	*FLANGE CLASSES and PRESSURE I	NUMBERS' - page 75 (Part II)

C	LASS 900	FLANGE	DAT/	N F	PN150	• 010	ENSIONS	S INCLU	DE 6.4	mm RA	ISED FA	CE ON F	LANGES	(excep	ot lap-;	joint)	T	ABLE I	F-4M
	NOMINAL OIA	AMETER:	ON	15	20	25	40	50	80	100	150	200	250	300	350	400	450	500	600
	OUTSIOE (DIAMETER	₹	121	130	149	178	216	241	292	381	470	546	610	641	705	787	857	1041
F	•	WELO-N	IECK	66	76	79	89	108	108	120	146	168	190	206	219	222	235	254	298
A	ENO OF PIPE TO	SLIP-C)N			•			Wa	all th	ickness	of pip	e + 2 r	nm				ł	
N G E	FACE OF FLANGE	SOCKET							ł	lot ava	ailable	in thi	s clas	5					
т.	or LAP JOINT	THREAC	E0	15	17	19	21	27	12	16	22	24	24	26					***************************************
Ϋ́P	STU8 ENO •	L-J STUB	ANSI	76	76	102	102	152	152	152	203	203	254	254	305	305	305	305	305
E	CNU -	ENO	MSS	51	51	51	51	64	64	76	89	102	127	152	152	152	152	152	152
	80RE: WEL	_O-NECK						0	rder to	match	n Interi	nal Dia	umeter (of Pipe					
_	80LTS PER	R FLANGE		4	4	4	4	8	8	8	12	12	16	20	20	20	20	20	20
8	80LT CIRC	CLE OIAM	IETER	82.6	88.9	101.6	123.8	165.1	190.5	235	317.5	393.7	469.9	533.4	558.8	616	6 85.8	749.3	901.7
T	OIAMETER	OF BOLT	(IN)	3/4	3/4	7/8	1	7/8	7/8	1 1/8	3 1 1/8	1 3/8	1 3/8	1 3/8	1 1/2	1 5/8	1 7/8	2	2 1/2
N G	STU080LT		RF	102	108	121	133	140	140	165	190	216	229	248	267	279	324	343	432
G	length - lap-joint		5 RJ	102	108	121	133	146	146	171	190	222	235	254	279	292	337	356	457

CI	LASS 150	FLANG	E DAT	Α .	PN20	•• DIW	ENSIONS ENSIONS	S INCLU	DE 1.6 DE 2 mm	mm RAI n GAP F	SED FAC	CE ON F	LANGES REFER T	(excep TO CHAR	t lap-j T 2.2	joint)	T	ABLE F	-1 M
N	OMINAL OIA	AMETER:	ON	15	20	25	40	50	80	100	150	200	250	300	350	400	450	500	600
	OUTSIOE D			89	98	108	127	152	190	229	279	343	406	483	533 127	597 127	635 140	698 144	813 152
F L A	ENO OF	WELD-I		48	52	56	62	64	70 Wa	76 all thi	89 ckness	of pip	102 e + 2 m	114 nm	127	127	140	144	152
N G F	PIPE TO S FACE OF FLANGE	SOCKE	٠••	9	7	7	8	10	12										
T	or LAP JOINT	THREA)EO	2	2	0	5	7	4	5	9	11	12	15					
Y	STUB END •	L-J STUB	ANSI	76	76	102	102	152	152	152	203	203	254	254	305	305	305	305	305
E	END	END	MSS	51	51	51	51	64	64	76	89	102	127	152	152	152	152	152	152
BOF	RE: WELD-NE	ECK & S	CKET	15.8	21	26.2	40.9	52.5	77.9	102.3	154.1	202.7	254.5	304.9	[0rc	der to	match p	oipe IO]
	BOLTS PER	R FLANG		4	4	4	4	4	4	8	8	8	12	12	12	16	16	20	20
B 0	BOLT CIRC	CLE DIA	METER	60.3	69.8	79.4	98.4	120.6	152.4	190.5	241.3	298.4	362	431.8	476.2	539.8	577.8	635	749.3
Ţ	DIAMETER	OF BOL	T (IN)	1/2	1/2	1/2	1/2	5/8	5/8	5/8	3/4	3/4	7/8	7/8	1	1	1 1/8	1 1/8	1 1/4
I N G	STUDBOLT length -		RF		57	64	70	76	89	89	95	102	114	114	127	133	146	152	171
	lap-joint		5 RJ	-	-	76	83	89	102	102	108	114	127	127	140	146	159	165	184

DN reference are discussed under 'FLANGE CLASSES and PRESSURE NUMBERS'- page 75 (Part II)

CI	LASS 300	FLANG	E DA	TA	PN50	• DIME	ENSIONS ENSIONS	INCLUE	DE 1.6 DE 2 mm	mm RAIS GAP FO	SED FAC OR WELD	CE ON FL DING - F	ANGES REFER T	(excep O CHAR	t lap-j [2.2	joint)	T	ABLE F	-2M
N	OMINAL DIA	METER:	ON	15	20	25	40	50	80	100	150	200	250	300	350	400	450	500	600
	OUTSIDE D	DIAMETER	₹	95	117	124	156	165	210	254	318	381	444	521	584	648	711	775	914
F	•	WELD-	NECK	52	57	62	68	70	79	86	98	111	117	130	143	146	159	162	168
A	END OF	SLIP-0	ON			.l			Wa	ll thi	ckness	of pipe	e + 2 n	nm					
N G	PIPE TO FACE OF	SOCKET	••	15	16	17	16	18	25										
E	FLANGE or LAP	THREAD	DED	2	2	0	5	11	6	9	15	18	19	19					
Y	JOINT STUB	L-J	ANS	76	76	102	102	152	152	152	203	203	254	254	305	305	305	305	305
P E	ENO •	STUB END	MSS	51	51	51	51	64	64	76	89	102	127	152	152	152	152	152	152
BOF	RE: WELD-NE	ECK & SC	CKET	15	.8 21	26.2	40.9	52.5	77.9	102.3	154.1	202.7	254.5	304.9	[0rc	der to	match p	oipe IO]
	BOLTS PER	R FLANGE	<u> </u>	, 4	4	4	4	8	8	8	12	12	16	16	20	20	24	24	24
B 0	BOLT CIRC	CLE DIA	METER	66	.7 82.6	88.9	114.3	127	168.3	200	269.9	330.2	387.4	450.8	514.4	571.5	628.6	685.8	812.8
L	DIAMETER	OF BOL	T (IN	1/	2 5/8	5/8	3/4	5/8	3/4	3/4	3/4	7/8	1	1 1/8	1 1/8	1 1/4	1 1/4	1 1/4	1 1/4
N	STUDBOLT		R	64	70	76	89	83	102	108	121	133	152	165	171	184	190	203	229
G	length - lap-joint		5 R	J 76	83	89	102	102	121	127	140	152	171	184	190	203	210	222	254

FORGED-STEEL FLANGES & LAP-JOINT STUB-ENDS

FLANGE CLASSES 150-2500 (PN20-PN420)

TABLES FM

DIMENSIONS IN MILLIMETERS

NOTES

[1] FLANGE DIMENSIONS: INTERNATIONAL STANDARD ISO 2229, ANSI STANDARD B16.5

AND MANUFACTURERS' DATA

[2] BLIND FLANGES: DATA FOR FLANGE DIAMETERS AND BOLTING IN THESE TABLES

ALSO APPLIES TO BLIND FLANGES

[3] REDUCING FLANGES: AVAILABLE IN SLIP-ON, THREADED AND WELDING-NECK TYPES

[4] LAP-JOINT STUB-ENDS: ANSI B16.9 (Long Pattern) & MSS SP-43 (Short Pattern)

[5] STUDBOLT THREAD LENGTHS FOR LAP-JOINTS

FLANGE COMBINATION	FLANGE CLASS	INCREASE IN STUDBOLT LENGTH OVER LENGTHS IN TABLES F-1M thru F-6M
Lapped to non-lapped	150 or 300	Thickness of lap
Lapped to non rapped	Over 300	Thickness of lap minus 6.4 mm
Lapped to lapped	150 - 2500	Thickness of two laps
Thickness of lap	= Thickness of	nine wall + 0 mm + 1 6 mm

THREADED FITTINGS - MALLEABLE-IRON

OIMENSIONS ROUNDEO TO 1.00 mm

TABLE D-11M

PRESSURE CL	ASS				1	50					3	00		
NOMINAL DIAM	ETER	[DN]	15	20	25	40	50	80	15	20	25	40	50	80
45° ELL	χ±.		22	25	29	37	43	56	25	29	33	43	51	64
90° ELL		74	29	33	38	49	57	78	32	37	41	54	64	86
90° STREET ELL		A	29	33	38	49	57	78	32	37	41	54	64	86
OF OTHER PER	В	В	41	48	54	68	83	114	51	56	65	79	94	130
05711011 00110]	CLOSE	25	32	38	56	67							
RETURN BEND		MEDIUM	32	38	48	64	76							
		OPEN	38	51	64	89	102							
STRAIGHT TEE (These data at apply to the apply to the center-to-end dimension for straight cross.	A A						57	78	32	37	41	54	64	86
LATERAL ASS	TERAL A SIX						132	184						
LATERAL A	EKAL A C						100	141						
UNION FIRST A	S GRINNELL: COPPER E ALLOY-TO-IRON						75	95	52	57	65	76	86	108
OCTAGONAL BI	FOCKHAM: RASS-TO-IRO RALL-IRON		46	51	56	67	78	98	49	57	62	76	86	125
COUPLING] 9	33	38	43	54	64	81	48	54	60	73	92	105
NIPPI F	CLOSE	NIPPLE	30	35	40	45	50	65	30	35	40	45	50	65
CARBON-STEEL (TANK NIPPLES ARE 150mm LONG)	AVAILAB OF SHO LONG N	RT AND			150,	180, 2	200.23	0. 255	90, 10 , 280 8 also a	305 m	m I FMC	2HT:	g)	
SWAGE MILLS IRON WORKS CARBON-STEEL	on III		70	76	89	114	165	203	70	76	89	114	165	203
REDUCER D	n (13	32	37	43	59	71	94	43	44	51	68	81	103
THREAD ENGAGEMENT TAPI	R Eng	agement	13	14	17	17	19	25	13	14	17	17	19	25

DIMENSIONS IN THIS TABLE ARE FOR BANDED FITTINGS AND CONFORM TO ANSI STANDARD 816.3, AND FEDERAL SPECIFICATION WW-P-521. UNIONS CONFORM TO ANSI B16.39. DATA FROM ITT GRINNELL CORPORATION AND STOCKHAM VALVES AND FITTINGS

CLASS 800 VALVES

API CLASS 800 FORGED-STEEL GATE, GLOBE & CHECK VALVES

TABLE D - 10M

DATA: SMITH VALVE CORPORATION
GATE VALVES: FULL PORT
GLOBE VALVES: CONVENTIONAL PORT

'R' is the 'REMOVEO RUN' of pipe occupied by the valve

		VALVI	s with	THREADED	ENDS	
D	N	15	20	25	40	50
	D	102	102	140	168	168
G	н	162	184	217	279	317
A T E	L	89	98	108	140	144
E.	R	64	70	73	105	106
G	D	102	102	102	117	168
L	н	162	167	173	206	257
O B E	L*	83	89	114	159	184
Ľ	R*	57	60	79	124	146

'R' dimensions are based on normal thread engagement for tight joints

^{*} These dimensions also apply to horizontal lift-check valves

		VAL	ES WITH	SOCKET I	ENDS	
D	N	15	20	25	40	50
	D	102	102	140	168	168
G A	н	162	184	217	279	317
TE	L	89	98	108	140	144
Ľ	R	52	58	71	80	96
G	D	102	102	102	117	168
L G	H	162	167	173	206	257
B E	L*	83	89	114	159	184
	R*	61	64	87	125	144

'R' dimensions include 2 mm expansion gaps for welding. Refer to text: Chart 2.2

		·			7							, 		,		_	
HALF-COUPLING		R						11	11	13	22	24	11	11	13	22	24
		L						24	25	30	40	43	24	25	30	40	43
	15								24	30	49	54		24	30	49	54
REDUCER	20	R	-							29	48	52			29	48	52
REDUCER	25	\ \									44	49				44	49
	40											49					49
		L							51	60	79	86		51	60	79	86
		R1	53	63	72	105	129	67	78	90	132	191	81	97	105	194	194
		R2	42	51	59	84	103	53	63	73	105	156	64	76	84	157	159
LATERAL		R3	10	12	12	21	25	13	15	17	27	35	17	21	21	37	35
11		L1	78	92	106	140	167	92	106	125	167	229	106	125	140	229	232
[Bonney Forge & Ladi	sh]	L2	55	66	77	102	122	66	77	90	122	175	77	90	102	175	178
DIAMETER		D	33	40	47	66	78	40	47	57	78	92	47	57	64	92	110
	8	15							26	29	37	43		32	36	43	49
THREDOLET	R	20								29	37	43			39	46	52
(REDUCING)	N C	2 5									40	46				46	52
[Bonney Forge]	H	40										48					56
		R						25	30	27	42	50	32	33	38	52	66
UNION		L						51	59	62	76	88	58	62	73	87	104
[Bonney Forge]		A						49	61	71	94	112	61	70	85	112	133
HEX BUSH			24	25	27	33	37	24	25	27	33	37	24	25	27	33	37
SWAGE			70	76	89	114	165	70	76	89	114	165	70	76	89	114	165
THREAD ENGAGEM	ENT		13	14	17	17	19	13	14	17	17	19	13	14	17	17	19

^{(1) &#}x27;R' OIMENSIONS ('REMOVED RUN' OF PIPE) ARE BASED ON NORMAL THREAD ENGAGEMENT BETWEEN MALE AND FEMALE THREADS TO MAKE TIGHT JOINTS - ROUNDED TO 1.00 mm

⁽²⁾ OIMENSIONS FOR FITTINGS ARE FROM THE FOLLOWING SUPPLIERS' DATA: BONNEY FORGE, ITT GRINNEL, LADISH AND VOGT

⁽³⁾ UNLESS THE SUPPLIER IS STATED, 'L' & 'D' DIMENSIONS ARE THE LARGEST QUOTED BY BONNEY FORGE, ITT GRINNELL, LADISH AND VOGT

⁽⁴⁾ FITTINGS CONFORM TO ANSI B16.11, EXCEPT LATERALS, WHICH ARE MADE TO MANUFACTURERS' STANDARDS. UNIONS CONFORM TO MSS-SP-B3

⁽S) FOR SIZES AND AVAILABILITIES OF PIPE NIPPLES, REFER TO 'MALLEABLE-IRON PIPE FITTINGS' - TABLE D-11M

⁽⁶⁾ DIMENSIONS FOR INSTALLED THREDDLETS EXCLUDE THE 'RDOT GAP' - REFER TO 'DIMENSIONING SPOOLS (WELDED ASSEMBLIES)' - 5.3.5

			,		·												
FULL-COUPLING		R	14	14	17	17	23	14	14	17	17	23	14	14	17	17	23
TOLL COOLLY			35	38	44	51	64	35	38	44	51	64	35	38	44	51	64
UALE COUDITI		R	24	26	31	34	43	24	26	31	34	43	24	26	31	34	45
HALF-COUPLING		L	35	38	44	51	64	35	38	44	51	64	35	38	44	51	64
	15			24	18	23	27		29	31	29	31		32	31	27	31
REDUCER	20				26	21	26			31	27	29			34	27	29
INSERT	25	R				19	24				32	27				37	27
[Bonney Forge]	40						34					50					54
[earmon organ		R1	55	66	77	102	123	66	77	91	123	188	80	94	106	128	
		R2	43	53	62	83	1 0 0	53	62	73	100	154	64	75	85	107	
LATERAL		R3	12	13	15	19	23	13	15	18	23	34	16	19	21	21	
		L1	76	90	105	137	164	90	105	122	164	229	105	122	137	168	
[Bonney Forge & La	Bonney Forge & Ladish]		54	65	76	100	121	65	76	89	121	175	76	89	100	127	
DIAMETER			33	40	48	64	78	40	47	57	78	92	47	56	64	86	102
	T	15	***************************************	30	33	40	46		38	41	48	54		37	40	48	54
SOCKOLET	BR	20			33	40	46			41	48	54			43	50	56
(REDUCING)	A N	25				46	52				50	56				52	58
[Bonney Forge]	СН	40					51					54					62
UNION		R	32	33	39	52	56	33	39	47	56	64					
		L	51	59	62	76	89	59	62	73	89	105					
[Bonney Forge]		Α	49	60	71	94	112	60	71	85	112	133	- 1				
SWAGE			70	76	89	114	165	70	76	89	114	165	70	76	89	114	165

^{(1) &#}x27;R' OIMENSIONS ('REMOVEO RUN' OF PIPE) HAVE BEEN ROUNDED TO 1.0 mm AND INCLUDE 2 mm EXPANSION GAP(S) FOR WELDING. REFER TO 'SOCKET-WELDING PIPING' — CHART 2.2

⁽²⁾ OIMENSIONS ARE FROM THE FOLLOWING SUPPLIERS' DATA: BONNEY FORGE, ITT GRINNEL, LADISH AND VOGT

⁽³⁾ UNLESS THE SUPPLIER IS STATEO, 'L' & 'O' DIMENSIONS ARE THE LARGEST QUOTED BY BONNEY FORGE, ITT GRINNELL, LADISH AND VOGT

⁽⁴⁾ FITTINGS CONFORM TO ANSI 816.11, EXCEPT LATERALS AND REDUCER INSERTS, WHICH ARE MADE TO MANUFACTURERS' STANDARDS

⁽⁵⁾ FOR INFORMATION ON THE BORE STAMBLES AND WALTER OF FITTINGS, REFER TO 'SOCKET-WELDED STATURE' - CHART 2.2

⁽⁶⁾ UNIONS CONFORM TO MSS-SP-83

⁽⁷⁾ DIMENSIONS FOR INSTALLED SOCKOLETS EXCLUDE THE 'ROOT GAP' - REFER TO 'DIMENSIONING SPOOLS (WELDED ASSEMBLIES)' - 5.3.5

CHECK VALVES - WAFER-TYPE

TABLE D-7M

FACE-TO-FACE DIMENSIONS BY CLASS FOR VALVES CONFORMING TO API 594

		F	LANGE	CLASSE	S	
DN	150	300	600	900	1500	2500
			1			
50	60	60	60	70	70	70
80	73	73	73	83	83	86
100	73	73	79	102	102	105
150	98	98	136	159	159	159
200	127	127	165	206	206	206
250	146	146	213	241	248	254
			<u>T </u>			
300	181	181	229	292	305	305
350	184	222	273	356	356	
400	190	232	305	384	384	
			T	<u> </u>		SINGLE AND
450	203	264	362	451	468	DUAL PLATES
500	219	292	368	451	533	• 7
600	222	318	438	495	559	

SWAGES

TABLE D-4M

DN (mm)

LARGE END	SMALL END
50	8-40
LENGT	√S: 1 6 5
65	8-50
LENGT	⊦S: 178
80	15-65
LENGT	√S: 203

90	50-80
LENGT	is: 203
100	25-90
LENGTH	is: 229
125	50-100
LENGTH	S: 279

150	40-125
LENGT	IS: 305
200	50-150
LENGT	√S: 330
250	100-200
LENGTH	IS: 381

LARGE	SMALL
END	END
table are Iron Work available plain, bevelled, grooved, combine	for Mills so for Mills so swages, with ends threaded, Victaulic and in any ation of

ELBO	LETS:	THRE	ADED/SO	CKET 8	BUTT-	WELDIN	6	DIMENSIONS IN MILLIMETERS				TABLE D-5M		
			NOMI	NAL	DIAM	ETER	0 F M	AIN R	UN [D	N]				
DN OF BRANCH	50	80	100	150	200	250	300	350	400	450	500	600		
DIVANCE	CLASS 3DOD THREADED & SOCKET-WELDING* - STD AND XS BUTT-WELDING													
15	90	151	184	254	321	391	458	511	578	645	713	847		
20	122	158	191	261	329	398	465	518	5 85	652	720	854		
25	130	166	199	269	337	406	473	526	593	660	728	862		
40	141	177	210	280	348	417	484	537	604	672	739	873		
50	156	191	225	294	362	431	498	552	618	686	761	887		
80		207	241	310	378	447	514	568	634	702	769	903		
100			258	328	395	464	532	58 5	652	719	787	921		
150				371	438	507	575	628	695	762	829	964		
200	1	U		- 3	464	533	6 0 0	653	720	787	855	989		
250			LR ELL			579	646	699	766	833	901	1035		
300	<u> </u>	_\-					672	725	791	859	938	1060		

Dimensions converted from BDNNEY FORCE data. Dimensions for Elbolets are nominal. Size ON 50 Elbolets are designed to fit the different sizes of run pipe; in sizes larger than DN 50, each size of Elbolet is designed to fit a range of run pipe sizes. * Threaded and socket-welding Elbolets are not available in sizes ON 150 and larger.

R	REDUCING BUTT-WELDING TEES						WEIGHTS: STD and XS. SCH 160 thru ON 300. XXS thru ON 200						
	N. 2			NOMI	NAL	DIAM	ETER	0 F M	AIN R	UN [D	N]		
	DN	•	80	100	150	200	250	300	350	400	450	500	600
DI	MENSION	'A'	86	105	143	178	216	254	279	305	343	381	432
	50		76	89									
	80			98	124								
	100				130	156	184						
D N	150	I				168	194	219	238	264			
0 F	200	M E					203	229	248	273	298	324	
	250	N S			·			241	257	283	308	333	384
B R	300	0 0	TI I		Z_{λ}				270	295	321	346	397
A N C	350	N 'B'	-		-					305	330	356	406
Н	400		VIZ	a @	В						330	356	40€
	450			A	_							368	419
	500												432

CLASS 150 BUTT-WELDED PIPING DIMENSIONS TABLE D-3M

DIMENSIONS IN THIS TABLE INCLUDE 1.6 mm RAISED FACE ON FLANGES

	NOMINAL DIAMETER (DN)	50	80	100	150	200	250	300	350	400	450	500	600
	STRAIGHT TEE TABLE D-6M FOR TEES	64	86	105	143	178	216	254	279	305	343	381	432
	WELDOLET E 50	68	83	95	122	148	175	200	216	241	267	292	343
DATA	STANDARO AND	-	89	102	129	154	181	206	222	248	273	298	349
MANUFACTURERS	EXTRA-STRONG WWW 100	-	-	108	135	160	187	213	229	254	279	305	356
ANUFAC	REDUCERS CONCENTRIC ON ON	Swage- Table D-4M	89	102	140	152	178	203	330	356	381	508	508
1. 8	90° LR ELLS REGULAR & O T DN T	76	114	152	229	305	381	457	533	610	686	762	914
INGS 9. B16.28 AND	90° SR ELL	51	76	102	152	203	254	305	356	406	457	508	610
TIN	45° ELL (LR)	35	51	64	95	127	159	190	222	254	286	318	381
5.	OFFSET A	49	72	90	135	180	225	269	314	359	404	449	539
FI ANSI 816.	(TWO 45° ELLS) B B	119	173	217	325	434	542	650	759	867	976	1084	1301
FROM A	ROLLED-ELL C C	79	117	153	229	305	382	458	534	611	687	763	916
DIMENSIONS FROM	(45° ELL + 90° LR ELL)	114	168	216	324	432	540	648	757	865	973	1081	1297
DIMEN	90° LR ELL	140	184	229	318	406	483	572	660	737	826	906	1067
	+ WELDING-NECK G F	152	190	229	279	343	406	483	533	597	635	698	813
	RAISED-FACE FLANGE G	64	70	76	89	102	102	114	127	127	140	144	152
DATA	PLUG SHORT PATTERN: ON 50-300 SO-600 PLUG REGULAR PATTERN: ON 350-600	s 178 v	s ₂₀₃ v	s ₂₂₉ v	267	292	3 ^{\$} 0	356	^R 686 ^V	^R 762 ^V	864 ^V	8914 ^V	1067 V
S MANUFACTURERS	GATE (OPEN)	203	254	305	356	406	457	508	610	660	762	762	914
ANUFAC	REFER TO TABLE V-1M FOR END-TO-END DIMENSIONS OF GATE	483	584	711	940	1194	1346	1549	1803	2032	2261	2489	2870
/ES	VALVES WITH BUTT- WELDING ENDS	178	203	229	267	292	330	356	381	406	432	457	508
316.10	BALL LONG PATTERN: DN 50-600 SHORT PATTERN: DN 50-600, USE 'J' ABOVE FOR CATE VA	178	203	229	394	457	533	610	686	762	864	914	1067
VALV FROM ANSI 816.1D	GLOBE COPEN K	203	254	305	406	457	610	914	914				
	DIMENSIONS ALSO K MAPPLY TO GLOBE	381	483	533	660	838	813	1067	1245				
DIMENSIONS	VALVES WITH BUTT- WELDING ENDS	203	241	292	406	495	622	698	787	914			
DIME	CHECK SWING: DN 50-600 TILLING 0ISC: DN 50-350 LIFT: CN 50-100, 200-350 LIFT: CN 50-100, 200-350	203 ^T	241 T	292 ^T	- S T	495 T	622 ^T	698 ^T	L S T	864	9 ^S 8	9 ^{\$} 78	1295

[•] DIMENSIONS FOR COMBINATIONS OF FITTINGS AND INSTALLED WELDOLETS DO NOT INCLUDE THE 'WELD GAP' - REFER TO TEXT: SECTION 5.3.S
• DIMENSIONS IN THIS TABLE ARE NOMINAL AND FOR COMBINATIONS OF FITTINGS ARE ROUNDED TO 1 mm
• 'H','I',' AND 'L' ARE THE LARGEST DIMENSIONS FOR MANUALLY-OPERATED CAST-STEEL VALVES FROM A SELECTION OF MANUFACTURERS
• GUIDELINES FOR THE USE OF GEAR AND POWERED OPERATORS WITH VALVES ARE GIVEN IN SECTION 3.1.2. OF THE TEXT

300 BUTT-WELDED PIPING

TABLE D-2M

DIMENSIONS IN THIS TABLE INCLUDE 1.6 mm RAISED FACE DN FLANGES

	NOMINAL DIAMETER (DN)	50	80	100	150	200	250	300	350	400	450	500	600
	STRAIGHT TEE TABLE D-6M FOR TITE	64	86	105	143	178	216	254	279	305	343	381	432
	WELDOLET BY 50	68	83	95	122	148	175	200	216	241	267	292	343
DATA	STANDARD AND	-	89	102	129	154	181	206	222	248	273	298	349
MANUFACTURERS	EXTRA-STRONG BY 100	-	-	108	135	160	187	213	229	254	279	305	356
ANUFAC	REDUCERS & ECCENTRIC ON ON	Swage- Table 0-4M	89	102	140	152	178	203	330	356	381	508	508
S AND M	90° LR ELLS REGULAR & ON T	76	114	152	229	305	381	457	533	610	686	762	914
(D 82.	90° SR ELL	51	76	102	152	203	254	305	3 5 6	406	457	508	610
TIN B16.9, B1	45° ELL (LR)	35	51	64	95	127	159	190	222	254	286	318	381
2.	OFFSET A	49	72	90	135	180	225	269	314	359	404	449	539
FI ANSI B16.	(TWO 45° ELLS)	119	173	217	325	434	542	650	759	867	976	1084	1301
FROM A	ROLLED-ELL C	79	117	15 3	229	305	382	458	5 34	611	687	763	916
DIMENSIONS	(45° ELL + 90° LR ELL)	114	168	216	324	432	540	648	757	865	973	1081	1297
DIMEN	90° LR ELL	146	194	238	327	416	498	587	676	756	845	924	1083
	+ WELDING-NECK G F	165	210	254	318	381	444	521	584	648	711	775	914
	RAISED-FACE FLANGE F G	70	79	86	98	111	117	130	143	146	159	162	168
DATA	PLUG VENTURI PATTERN: ON 50-800 SHORT PATTERN: ON 50-300 SEGULAR PATTERN: ON 350-900	s ₂₁₆ v	s 283 v	s ₃₀₅ v	s 403 v	s 419	8 457 V	s ₅₀₂ v	^R 762 ^V	^R 838	^R 914 ^V	^R 991	1143 v
S MANUFACTURERS	GATE (OPEN)	203	254	305	406	508	610	610	711	711	813	914	914
NUFACT	DIMENSIONS ALSO H	533	635	737	991	1245	1499	1702	1930	2057	2337	2591	3124
ШŞ	VALVES WITH BUTT- WELDING ENDS	216	283	305	403	419	457	502	762	838	914	991	1143
LLV B16.10 /	BALL LONG PATTERN: ON 50-800 SHORT PATTERN: ON 50-150	^L 216 ^S	L 283 S	305 ^S	403 ^S	502	568	648	762	8 <u>3</u> 8	914	991	1143
V ANSI	GLOBE L COPEN	254	305	356	559	610	660	914					
FROM	DIMENSIONS ALSD APPLY TO GLOBE	508	610	686	813	1041	1245	1321					
DIMENSIONS	VALVES WITH BUTT- WELDING ENDS	267	318	356	444	559	622	711					
DIME	CHECK 5WING: ON 50-600 TILTING DISC: ON 50-300 & BUTT- WELDING	S T L 267	318 ^L	356 L	S T L 444	S T -	8 T L 622	S ₇ 11 ^L	838	864	978	10 ^{\$} 6	13 ⁸ 46

[•] DIMENSIONS FOR COMBINATIONS OF FITTINGS AND INSTALLED WELDOLETS DO NOT INCLUDE THE 'WELD GAP' - REFER TO TEXT: SECTION 5.3.5
• DIMENSIONS IN THIS TABLE ARE NOMINAL AND FOR COMBINATIONS OF FITTINGS ARE ROUNDED TO 1 mmm
• 'H','I',' AND 'L' ARE THE LARGEST DIMENSIONS FOR MANUALLY-OPERATED CAST-STEEL VALVES FROM A SELECTION DF MANUFACTURERS
• GUIDELINES FOR THE USE OF GEAR AND POWERED DPERATORS WITH VALVES ARE GIVEN IN SECTION 3.1.2. OF THE TEXT

BUTT-WELDED PIPING DIMENSIONS

TABLE D-1M

DIMENSIONS IN THIS TABLE INCLUDE 6.4 mm RAISED FACE ON FLANGES

	NOMINAL DIAMETER (DN)	50	80	100	150	200	250	300	350	400	450	500	600
	STRAIGHT TEE TABLE D-6M FOR REDUCING TEES	64	86	105	143	178	216	254	279	305	343	381	432
	WELDOLET # 50	68	83	95	122	148	175	200	216	241	267	292	343
DATA	WELDOLET STANDARD AND EXTRA-STRONG STANDARD AND EXTRA-STRONG STANDARD AND EXTRA-STRONG 100	-	89	102	129	154	181	206	222	248	273	298	349
MANUFACTURERS DATA	EXTRA-STRONG ME 100	-	-	108	135	160	187	213	229	254	279	305	356
AANUFAG	REDUCERS & ECCENTRIC ON ON	Swage- Table D-4M	89	102	140	152	178	203	330	356	381	508	508
NA ON	90° LR ELLS REDUCING OT DN	76	114	152	229	305	381	457	533	610	686	762	914
NG.	90° SR ELL	51	76	102	152	203	254	305	356	406	457	508	610
B16.9.	45° ELL (LR)	35	51	64	95	127	159	190	222	254	286	318	381
FI7	OFFSET A	49	72	90	135	180	225	269	314	359	404	449	539
ANSI B1	(TWO 45° ELLS) B B	119	173	217	325	434	542	650	759	867	976	1084	1301
	ROLLED-ELL C	79	117	153	229	305	382	458	534	6 1 1	687	763	916
DIMENSIONS FROM	(45° ELL + 90° LR ELL)	114	168	216	324	432	540	648	757	865	973	1081	1297
DIME	90° LR ELL	156	203	260	352	444	540	619	705	794	876	959	1124
	+ WELDING-NECK G F	165	210	273	356	419	508	559	603	686	743	813	940
	RAISED-FACE FLANGE F G	79	89	108	124	140	159	162	171	184	191	197	210
DATA	PLUG REGULAR PATTERN: DN 50-500	R292 ^V	R356 V	R ₄₃₂ V	^R 559 ^V	^R 660 ^V	^R 787 ^V	^R 838 ^V	^R 889 ^V	R991	1092	1194	1397
S MANUFACTURERS	GATE GOPEN H	229	305	406	559	610	711	762	914	965	965	1067	1067
ANUFAC	DIMENSIONS ALSO APPLY TO GATE	5 3 3	660	838	1194	1346	1676	1854	2057	2362	25 15	2718	3200
∭ §	VALVES WITH BUTT- WELDING ENDS	2 92	356	432	559	660	787	838	889	991	1092	1194	1397
-	BALL LONG PATTERN:	2 92	356	432	559	660	787	838	889	991	1092	1194	1397
VAL	GLOBE L K	305	356	457	610	914							
S FROM	OIMENSIONS ALSO K M L	533	686	838	1118	1194							
DIMENSIONS	VALVES WITH BUTT- WELDING ENDS	292	356	432	559	660	787	838					
DIM	CHECK SWING: ON 50-600 TILIING DISC: ON 50-600 LIFT: DN 50-300 FLANCED & BUTT- WELDING	L S T 292	356 T	^L 432 ^T	559 T	660 T	787 T	838 T	S889 ^T	991 T	S 1092 ^T	S T 1194	S T 1397

[•] DIMENSIDNS FOR COMBINATIONS OF FITTINGS AND INSTALLED WELDDLETS DD NDT INCLUDE THE 'WELD GAP' - REFER TO TEXT: SECTION 5.3.S
• DIMENSIDNS IN THIS TABLE ARE NOMINAL AND FOR COMBINATIONS OF FITTINGS ARE ROUNDED TO 1 mm
• 'H','I',' AND 'L' ARE THE LARGEST DIMENSIONS FOR MANUALLY-DPERATED CAST-STEEL VALVES FROM A SELECTION OF MANUFACTURERS
• GUIDELINES FOR THE USE OF GEAR AND POWERED DPERATORS WITH VALVES ARE GIVEN IN SECTION 3.1.2. DF THE TEXT

NOTES FOR TABLES A-2M & A-3M

- (1) SPACING SHOWN IN THE DIAGRAMS ALLOWS A MINIMUM CLEARANCE OF 50mm. COMPARE 8ASIC SPACING 'J' or 'R' WITH APPROPRIATE 'C' or 'CF' SPACING IN TABLE A-1M AND USE THE LARGER DIMENSION
- (2) 'H' IS THE EFFECTIVE SHOE HEIGHT AND 'T' IS THE THICKNESS OF INSULATION (WITH COVERING)
- (3) FOR SIMPLICITY, THE VALUE 1.5 HAS 8EEN SUBSTITUTED FOR THE COEFFICIENT 1/sin 45 (1.414....)

			CLAS	S 15	0 &	CLAS	SS 30)0 FI	LANGI	ES							CLAS	SS 30	00 &	CLAS	SS 80	00 FI	LANGI	ES	_		
П	300		NOM	INAL	DI/	AMETI	ER (C	ON) ()F FI	ANG	ED P	[PE			600		NON	IINAI	L DI	METI	ER (I	ON) (OF FI	_ANGI	ED PI	IPE	
15	0	50	80	100	15 0	2 0 0	250	3 00	3 50	400	450	5 00	600	300	0	50	80	100	150	200	250	300	350	4 0 0	450	5 0 0	600
DN O	50 80						280 295							DN O	50 80						310 325						
F	1 0 0 15 0						305 335							F	100 150						340 365						
L A	200 250						360 385							L A N	200 250						390 420						
N G E	300 3 50						410 430							G E	300 350						445 460						
D	400 450						465 480	-						D	400 450						490 520						
I P E	500 600						515 570							I P E	500 600						550 620						
	-		CLAS	S 15	50 &	CLAS	SS 6 0	00 FI	LANGI	ES							CLAS	SS 60	00 &	CLA	SS 60	00 FI	LANGI	ES	_		
	600						SS 60 ER (0				ED P	IPE			600						SS 60 ER (1				ED PI	IPE	
15	_		NOM	INAL	. DI	AMETE		ON) (OF FI	_ANGI			600	600	_	50	NON	MINA	L DI	MET		ON)	OF FI	LANGI			600
DN	0	5 0	80	100 195	. DI / 150 235	200 270	ER (I	300 340	350 360	400 400	450	500	530	DN	0	140	NON 80 165	100 195	150 235	200 270	ER (I	300 340	350	4 00	450	500	530
DN 0 F	50	50 140 155	NOM 80 165 175	100 195 210	. DI/ 150 235 250 265	200 270 280 295	ER (0 250 310	300 340 350 365	350 360 375 385	400 400 415 430	450 430 445	500 465 480 490	530 540 555	DN O F	50	140 165 195	NON 80 165 175 210	100 195 210	150 235 250 265	200 270 280 295	25 0	300 340 350 365	350 360 375 385	400 400 415 430	450 430 445 455	500 465 480 490	530 540 555
DN O	50 80 100	50 140 155 170 200 230	NOM 80 165 175 190 215	100 195 210 220 250	. DIA 150 235 250 265 290 315	270 270 280 295 320	250 310 325 340	300 340 350 365 390 415	350 360 375 385 415	400 400 415 430 455 480	450 430 445 455 485 510	500 465 480 490 520 545	530 540 555 580 605	DN O F L A	50 80 100	140 165 195 235	NON 80 165 175 210 250 280	195 210 220 265 295	235 250 265 290 320	200 270 280 295 320 345	250 310 325 340	300 340 350 365 390 415	350 360 375 385 415	400 400 415 430 455 480	450 430 445 455 485 510	500 465 480 490 520 545	530 540 555 580 605
DN O F F L A N G	50 80 100 150 200	50 140 155 170 200 230 260 300	NOM 80 165 175 190 215 245 275	195 210 220 250 275 300 325	235 250 265 290 315 340	270 280 295 320 345 375	250 310 325 340 365 390	300 340 350 365 390 415 445	350 360 375 385 415 440 465	400 400 415 430 455 480 505	450 430 445 455 485 510 535 560	500 465 480 490 520 545 570 595	530 540 555 580 605 635 660	DN O F L A N G E	50 80 100 150	140 165 195 235 270 310	NON 80 165 175 210 250 280 325 350	195 210 220 265 295 340 365	235 250 265 290 320 365 390	270 280 295 320 345 390	250 310 325 340 365 390	300 340 350 365 390 415 445	350 360 375 385 415 440 465	400 400 415 430 455 480 505	450 430 445 455 485 510 535 560	465 480 490 520 545 570	530 540 555 580 605 635
DN O F F L A N G	50 80 100 150 200 250 300	50 140 155 170 200 230 260 300 325 355	NOM 80 165 175 190 215 245 275 315 340	195 210 220 250 275 300 325 350	. DI/ 150 235 250 265 290 315 340 370 385 410	200 270 280 295 320 345 375 400 415	250 310 325 340 365 390 420	300 340 350 365 390 415 445 470 485	350 360 375 385 415 440 465 490 505	400 400 415 430 455 480 505 535 550	450 430 445 455 485 510 535 560 575 605	500 465 480 490 520 545 570 595 610	530 540 555 580 605 635 660 675 700	DN O F L A N G	50 80 100 150 200 250 300	140 165 195 235 270 310 340 360	NON 80 165 175 210 250 280 325 350 375 415	100 195 210 220 265 295 340 365 385 430	235 250 265 290 320 365 390 415	200 270 280 295 320 345 390 415 440 480	310 325 340 365 390 420	300 340 350 365 390 415 445 470 490	350 360 375 385 415 440 465 490 505	400 400 415 430 455 480 505 535 550	450 430 445 455 485 510 535 560 575	500 465 480 490 520 545 570 595 610	530 540 555 580 605 635 660 675 700

- PIPEWAY WIDTH -

When the order of lines, line sizes, flange classes (for lines with flanges), and insulation thicknesses for insulated lines have been decided, determine pipeway width from Tables A-IM, A-2M and A-3M, adding 25% so that the final design includes 20% (distributed) space for future piping. Additional space will usually be required for electrical and instrument trays/raceways.

For a tentative estimate of the pipeway width required for a selection of lines without flanges, of nominal sizes in the range ON 50 thru ON 200, either of the following factors may be used - the first is preferable:

- (1) If all pipe sizes are known, add their nominal sizes in millimeters together and multiply by 4.1 to estimate the width in millimeters
- (2) If only the number of lines is known, multiply number of lines by 436 to estimate the width in millimeters

Either factor gives a pipeway width which includes insulation for 25% of lines, allows 20% of the width for the addition and re-sizing of lines, and allocates a further 20% of the width for future piping.

ARRANGING LINES / SPACING IN PIPEWAYS

OIMENSIONS IN MILLIMETERS

TABLES A-1M

LINES WITH FLANGES - OIMENSION 'CF'

		CLASS 150 & CLASS	150 FLANGES	CLASS 300 & CLASS 300 FLANGES
	150	NOMINAL DIAMETER	(ON) OF FLANGEO PIPE	300 NOMINAL OIAMETER (DN) OF FLANGEO PIPE
15	0	50 80 100 150 200 25	0 300 350 400 450 500 600	300 50 80 100 150 200 250 300 350 400 450 500 600
ON	50 80		60 300 325 355 375 405 465 75 315 340 370 390 420 480	ON 50 140 165 185 215 250 280 320 350 380 415 445 515 80 165 175 200 230 265 295 335 365 395 430 460 530
F	100 150		00 325 350 385 405 435 490 .5 355 380 410 430 4 6 0 520	F 100 185 200 210 245 275 305 345 375 410 440 470 540 150 215 230 245 270 305 335 370 405 435 470 500 570
L A	200 250		0 380 405 435 455 485 545 0 405 430 465 480 515 570	L 200 250 265 275 305 330 360 400 430 460 495 525 595 A 250 280 295 305 335 360 385 425 455 490 520 550 620
GE	300 350		95 430 455 490 505 540 595 90 455 470 505 525 555 610	G 300 320 335 345 370 400 425 450 480 515 545 575 645 E 350 365 375 405 430 455 480 500 530 560 595 665
p	400 450		55 490 505 530 555 580 640 80 505 525 555 5 75 605 6 65	400 380 395 410 435 460 490 515 530 555 585 620 690 P 450 415 430 440 470 495 520 545 560 585 610 645 715
p E	500 600		5 540 555 580 605 63 0 690 0 595 610 640 665 690 7 40	P 500

INSULATION

OIMENSIONS IN THESE TABLES ARE SPACINGS FOR BARE PIPE. FOR INSULATED LINES, AOO THE THICKNESS OF INSULATION AND COVERING TO THESE FIGURES

NOMINAL LINES SIZES

Sizes of pipe, fittings, flanges, and valves are given in nominal diameters - in inch units as NPS (Nominal Pipe Size) and in metric units as DN (Diametre Nominale [Nominal Diameter]). The following table gives equivalent diameters in nominal inch units and nominal millimeter units:

CUSTOMARY	METRIC DN (mm)	CUSTOMARY	METRIC	CUSTOMARY	METRIC
NPS (inch)		NPS (inch)	DN (mm)	NPS (inch)	DN (mm)
1/8 1/4 3/8 1/2 3/4 1 1 1/4* 1 1/2 2 2 1/2* 3	6 8 10 15 20 25 32 40 50 65 80 100	6 8 10 12 14 16 18 20 22 24 26 28	150 200 250 300 350 400 450 500 550 600 650 700	30 32 36 40 42 48 54 60 64 72 80 88	750 800 900 1000 1100 1200 1400 1500 1600 1800 2000

These sizes may be used in special applications; they are not normally used in new industrial construction.

FLANGE CLASSES and PRESSURE NUMBERS

Earlier classifications of flanges for steel pipe (and flanged fittings): 150-lb, 300-lb, 400-lb, 600-lb, etc., referred to 'Primary Service Pressure Ratings in pounds (pounds-force) per square-inch'. (Flanges, however, are suitable for service over a range of pressure, with actual pressures depending on operating temperatures, and materials of construction.) These classifications have been supplanted by pressure rating class designations: Class 150, Class 300, etc., in which each class identifies a group of flanges conforming to established dimensions, for a range of pipe sizes.

Standards publish 'Pressure-Temperature Ratings' for each class of flange. These ratings are maximum allowable non-shock (gage), working (or service) pressures over a range of temperature for different materials of construction, including bolts and gaskets.

In addition to class designations, flange tables in this section of the 'PIPING GUIDE' also show 'PN' designations according to ANSI B16.5-1981 (until re-issued 1988), and MSS-SP-86-1981 (re-issued 1987), which states "....the recommendation for metric pressure designations is the use of the prefix PN, which may be thought of as 'Pressure Number'."

Pressure Numbers (PN), similar to class designations, identify groups of flanges conforming to established dimensions, and for each class of flange express the pressure rating within the temperature range -20 to +100F (refer to Table F-9), as a nominal bar* value.

Class and corresponding PN designations are shown in the following table:

CLASS	150	300	400	600	900	1500	2500
PN	20	50	68	100	150	250	420

[* Bar is not an SI unit; pascal (Pa) is the SI unit for pressure (and stress). The pascal is a small unit. For stating process or service pressure it is used with a prefix such as kPa for kilopascal (1000 pascals), or MPa for megapascal (1000 pascals), although megapascal is more suitable for the greater values of stress. Bar, equal to 100 000 pascals, is a traditional metric unit in widespread use internationally in industry and technology. Until it is displaced, bar is in temporary use with SI units. (Temporary units are specific, widely used, traditional metric units whose use in future work is discouraged.)]

Contemporary references and suppliers' literature refer to bar values and PN designations. Flange tables in this section of the 'PIPING GUIDE' include PN references for information only.

In the following pages, selected data from PT II of the 'PIPING GUIDE' are presented in SI units. For identification, these tables and charts are given the suffix 'M'.

METRIC

The USA uses two systems of weight and measures: the United States system of English origin, and the metric system of French origin.

The English or Imperial system was a customary system with origins in Babylonian, Egyptian, Greek, Roman, Anglo-Saxon, French (Norman) and other civilizations and cultures. The English system evolved over centuries from simple measures and practices, eventually attaining precision through legislation and standardization. Although some standardization resulted from reform (sometimes a royal decree), the overwhelming pressure came from expansion in industry and commerce.

Imperial Rome established a system of weights and measures used from England to Asia. But, with the decline of the Roman Empire, what was once an almost universal system degenerated into local customary systems in continental Europe and England.

By the 17th and 18th centuries, through colonization and dominance in commerce, the English system had developed to a point where it was in use in many parts of the world, including the American colonies. The French, however, decided to abandon the confusion of European customary units (which varied not only from country to country, but from province to province and sometimes, from city to city), and to create an entirely new system to rationalize weights and measures - the Metric System.

The metric system was the result of years of scientific investigation and recommendations for reform. It was adopted in the late 18th century by the post-revolutionary government of France and, subsequently, by other nations. The standardized units and decimal base were particularly well suited for science and engineering.

By the middle of the 20th century, principal manufacturing countries not using the metric system were Britain, the British Commonwealth countries and the United States. Although in 1866 the U.S. Congress legalized the metric system for use throughout the United States and, in 1975 passed the Metric Conversion Act, the United States is the only major industrial nation today, neither to have adopted nor mandated use of the metric system as its primary system of measurement.

In 1960, at the General Conference of Weights and Measures (Conference Generale des Poids et Mesures [CGPM]), the modern version of the metric system was designated the International System of Units (Le Systeme International d'Unites), and endorsed by the International Organization for Standardization (ISO) - a federation of national standardization bodies representing most countries of the world. The international symbol for this system is SI.

SI, now the primary world system of units of measurement, is a rationalized selection of units from the metric system with which ISO seeks to establish international standards, especially those for universal interchangeability of components. SI simplifies measurement by logically coordinating unique units for length, mass, temperature, time, etc., in a decimal system in which the magnitude of a unit is changed by moving the decimal point (or, for example, by using a prefix such as 'milli' with meter for the factor 0.001).

The customary system is more complicated as it uses three types of subdivision: duodecimal (twelfths), decimal (tenths), and binary (halves), and requires conversion, for example, between different units of length (such as inches, feet and yards), or of mass (such as ounces, pounds and tons).

Changing from customary units to SI units is straightforward, but changing from traditional metric units to SI units is more difficult in countries already using the metric system. Because of this difficulty, although not in keeping with the goals of ISO, a limited number of traditional metric units are temporarily being used with SI; one such unit is bar, the unit for pressure, referred to below under 'Flange Classes and Pressure Numbers'.

Without a legislative mandate, full implementation of SI in the United States is unlikely; however, technical and economic requirements of American companies operating internationally are encouraging voluntary transition; for example, manufacturers of equipment and components are now presenting dimensional and other data in SI units (and temporary metric units in use with SI) in addition to U.S. customary units.

WEIGHTS O	F MATERIALS					TA	BLE V	N-2
	MATERIAL	specific gravity	lb in ³	lb ft ³	lb ft ² -in	Kg m ³	lb US gal	lb Imp gal
METALS & ALLOYS	Aluminum (2S) Aluminum bronze Brasses: %Cu %Zn Red brass 85 15 Low brass 80 20 Cartridge brass 70 30 Muntz metal 60 40 Bronze, %Cu=80-95, %Sn=20-5 Copper Iron, gray-cast	2.71 7.70 8.75 8.67 8.52 8.39 8.84 8.91 7.34 7.69 11.37 8.83 8.87 7.85 7.93	0.0978 0.278 0.379 0.376 0.369 0.364 0.319 0.322 0.260 0.267 0.411 0.319 0.321 0.284	169 481 546 541 532 524 552 556 450 461 480 710 551 554 490 495	14.1 40.1 45.5 45.1 44.3 43.7 46.0 46.3 37.5 38.4 40.0 59.2 45.9 46.2 40.8 41.3	2710 7700 8750 8670 8520 8390 8840 8900 7210 7380 7690 11370 8830 8870 7850 7930		
LIQUIDS	Fuel oil Gasoline Lube oil Jet fuel Water, fresh salt (seawater)	0.95 0.67 thru 0.75 0.90 0.82 1.00 1.03	0.034 0.024 thru 0.027 0.032 0.030 0.036 0.037	59 42 thru 47 56 51 62.3	, see		7.9 5.6 thru 6.3 7.5 6.8 8.33 8.6	9.5 6.7 thru 7.5 9.0 8.2 10.0
INSULATING MATERIALS	Abestos Cork Fiberglas (Owens/Corning "Kaylo") Magnesia (85%) Plastic foam	2.45 0.24 0.176 0.18 0.08 thru 0.10	0.0885 0.0087 0.0064 0.0064 0.0029 thru 0.0038	153 15.0 11.0 11.0 5.0 thru 6.5	12.8 1.25 0.92 0.92 0.42 thru 0.54	2450 240 176 176 80 thru 104		
MATERIALS OF CONSTRUCTION	Brick, common Concrete, plain reinforced Earth, dry, loose dry, packed moist, loose moist, packed Glass Gravel, dry wet Sand, dry wet Snow, loose	1.92 2.31 2.40 1.22 1.52 1.54 2.50 1.60 1.92 1.60 1.92 0.13	0.069 0.083 0.088 0.044 0.055 0.045 0.056 0.090 0.058 0.069 0.058 0.069 0.069	120 144 150 76 95 78 96 156 100 120 100 120 8	10.0 12.0 12.5 6.3 7.9 6.5 8.0 13.0 8.3 10.0 8.3	1920 2310 2400 1220 1520 1550 1540 2500 1600 1920 1600 1920 130		

FRACTIONAL	0.06	0.12	0.19	0.25	0.31	0.38	0.44	0.50	0.56	0.62	0.69	0.75	0.81	0.88	0.94
EQUIVALENTS	1/16	1/8	3/16	1/4	5/16	3/8	7/16	1/2	9/16	5/8	11/16	3/4	13/16	7/8	15/16

TABLES W-	1							WE	IGH	ITS	0	FF	PIP	ING							
	3		NOM	IINAI	, PIF	E SI	ZE:	20"						NOMI	NAL	PIPE	SIZ	E: 2	4"		
BUTT-WELDING FI	TTIN	IGS																			
SCHEDULE No.: MFR'S WEIGHT:			20 S1				30 XS							20 S1		***************************************			S		***************************************
LR 90 ELBOW SR 90 ELBOW LR 45 ELBOW TEE REDUCER *** WELDOLET **			32 21 16 34 12	0 0 12 25	***************************************		27 20 48 17	20 75 06 30 70						46 29 23 52 15 22	8 8 8 8 8 8 8			9	500 192 500 510 200		
FLANGES											•										
FORGED STEEL		15	50	300		ASS 60	00		1500				150		300		ASS 60	00	1	1500	
WELDING NECK SLIP-ON THREADED LAP JOINT		19 14 15	18 55	369 307 329 379	7 5	69 61 61	12 12	•	refer to Mfr)	c			268 204 210 195		579 490 490 530))	97 87 87	76 76	i	to ffr)	
VALVES	<u> </u>	J			·····	· /					٠										
CAST STEEL	15	50	30	0		ASS 00	150	00	250	00		15	0	30	00	CL.	ASS 00	150	00	250	0
GATE-FLGD GLOBE-FLGD	21	25	38	390	70)15						31	20	59	955	93	360				
CHECK-FLGD GATE-BW GLOBE-BW	18	355	33	370	57	755						25	00	46	575	80	20				
CHECK-BW GATE PSB-FLGD GATE PSB-BW GLOBE PSB-BW					52	200										68	300				
INSULATION																					
TEMPERATURE RANGE deg F	100 199	200 299	300 399	400 499	500 599	600 699	700 799	800 899	900 999	1000 1199	1	00	200 299	300 399	400 499	500 599	600 699	700 799	800 899	900 999	1000
Cal Sil. in. Weight lb/ft		1.5		2.5 15		3 18	3.5	4 25	4 25	5 34			1.5 10	2 13	2.5 17	3 21	3 21	3.5 25	4 29	4 29	5 39
H. T. C. in. 85% Mag in. Weight lb/ft		1.5 8.5		2.5 15	3 18	3 25	3.5 31	4 37	37	5 50			1.5 10	2 13	2.5 17	3 21	3 29	3.5 36	4 4 3	4 43	5 58
BOLTS*		52			10)5			242				71	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		17	74			360	

^{*}Weights for bolts are for one complete flange set. **Weights are for reducing Weldolets. ***Weights for reducers are for one pipe size reduction. PSB indicates valves having pressure seal bonnets. All other weights for valves are for valves having flanged bonnets.

TABLES W	-1							WE	IGI	HTS	OF	PIP	INC	G						
			NOI	MINA	L PII	PE S	ZE:	16"					NOM	INAL	PIP	E SI	ZE:	18"		
BUTT-WELDING F	ITTI	NGS																		
SCHEDULE No.: MFR'S WEIGHT:			3 (S'	O PD				0 S				· · · · · · · · · · · · · · · · · · ·	- S'	TD			- x			
LR 90 ELBOW SR 90 ELBOW LR 45 ELBOW TEE REDUCER *** WELDOLET **			1: 10				1 1 2 9	76 74 35 80 1					1:				2 1 3 1	40 19 67 32 15		
FLANGES								· · · · · · ·			l L									·····
FORGED STEEL		1	50	30		ASS 60	00	• • • • • • • • • • • • • • • • • • • •	1500			150		30		ASS 6	00	 	1500	
WELDING NECK SLIP-ON THREADED LAP JOINT		1 9	42 06 3 04	24 21 22 23	0	3 (3 (31 56 56	`	refe: to Mfr)	r		165 109 120 146		30 25 28 30	3 0	4	55 76 76 69	•	refe to Mfr)	ſ
VALVES			******								·				***************************************					
CAST STEEL	1	50	3(00		ASS 00	15	00	250	00	1	.50	3(00		ASS 00	15	00	250	
GATE-FLGD GLOBE-FLGD	1:	120	19	960	43	375					1	.400	2.	450	6	020	**********			
CHECK-FLGD GATE-BW GLOBE-BW		450 60		550 520	36	575					1	.250	20	000	4	460				
CHECK-BW GATE PSB-FLGD GATE PSB-BW GLOBE PSB	1:	250	13	220	25	575									3	400				
INSULATION											1			***************************************	***************************************	***************************************			* * * * * * * * * * * * * * * * * * * *	
TEMPERATURE RANGE deg F	100 199	200 299	300 399	400 499	500 599	600 699	700 799	800 899	900 999	1000 1199	100	200 299	300 399	400 499	500 599	600 699	700 799	800 899	900 999	1000 1199
Cal Sil. in. Weight lb/ft	1.5 6.9	1.5 6.9	2 9.3	2.5 12	3 15	3 15	3.5 18	4 21	4 21	5 28		1.5		2.5 13	3 16	3 16	3.5 19	4 23	4 23	5 31
H. T. C. in. 85% Mag in. Weight 1b/ft		1.5 6.9	2 9.3	2.5 12	3 15	3 20	3.5 25	4 31	4 31	5 42	1.5	1.5 7.7	2 10	2.5 13	3 16	3 23	3.5 28	4 34	4 34	5 46
BOLTS*		31			{	33	T		152			41			10	01			193	

*Weights for bolts are for one complete flange set. **Weights are for reducing Weldolets.
***Weights for reducers are for one pipe size reduction. PSB indicates valves having
pressure seal bonnets. All other weights for valves are for valves having flanged bonnets.

TABLES W-	1							WE	IGH	ITS	OF	PIP	INC	à						
			NOM	INAL	PIF	E SI	ZE:	12"					NOMI	NAL	PIPE	SIZ	E: 1	4"		
BUTT-WELDING FI	ITTIN	īGS																		
SCHEDULE No.: MFR'S WEIGHT:		- STD		- XS		1	60	Х	- xxs			30 STD		- xs	5	1	.60 -	Х	xs	
LR 90 ELBOW SR 90 ELBOW LR 45 ELBOW TEE REDUCER *** WELDOLET **		125 80 62 120 34 59		16 10 84 16 43 61	4 0 •5	2 4 9	50 25 80 6 efer	to:	Mfr)			160 105 80 165 60		20 14 10 24 80 70	10 00 10	2	72 86 efer	to	Mfr)	
FLANGES																				
FORGED STEEL	15	50	30	00	CL.	ASS 00	150	0	250	00		150		300	CL	ASS 600)	15	00	
WELDING NECK SLIP-ON THREADED LAP JOINT	88 61 65	L 5	14 11 11	.3 .0	22 21 21 24	.5 .5	690 667 749	- 7	160 130 120	00		114 83 85 77		206 159 164 184		347 259 259 290))	t	fer o r)	
VALVES	1		<u> </u>		···		· · · · ·				<u></u>									
CAST STEEL	15	50	30	00	CL.	ASS 00	150	00	250	00	1	50	30	00	CL 60	ASS 00	150	00	250)0
GATE-FLGD GLOBE-FLGD CHECK-FLGD GATE-BW GLOBE-BW CHECK-BW	14 63 58 13	50 131 35 30 310	16 95 89	0 155	18 21	370 330 .60	71: 46:				1 1 7 1	60 525 200 30 360 010	13 12	380 340 220		155 960	858 642			
GATE PSB-FLGD GATE PSB-BW GLOBE PSB-BW					17	750 105 250	240 278		385 506							900 510	273	10	441	.0
INSULATION																				
TEMPERATURE RANGE deg F	100 199	200 299	300 399	400 499	500 599	600 699	700 799	800 899	900 999	1000 1199	100 199	200 299	300 399	400 499	500 599	600 699	700 799	800 899	900 999	1000 1199
Cal Sil. in. Weight 1b/ft	1.5	1.5 6	2 8	2.5 11	3 13	3 13	3.5 15	4 18	4 18	5 24		1.5 6.2	2 8.4	2.5 11		3 13	3.5 16	4 19	4 19	5 26
H. T. C. in. 85% Mag in. Weight 1b/ft	1.5	1.5 6	2 8.1	2.5 11	3 13	3 18	3.5 22	4 27	4 27	5 35	1.5	1.5	2 8.4	2.5 11	3 13	3 18	3.5 23	4 28	4 28	5 38
BOLTS*	1	5	49	9	9:	l	3 (06	6	22		22		$\overline{}$		62			118	***************************************

*Weights for bolts are for one complete flange set. **Weights are for reducing Weldolets.
***Weights for reducers are for one pipe size reduction. PSB indicates valves having
pressure seal bonnets. All other weights for valves are for valves having flanged bonnets.

TABLES W-	1							WE	IGH	ITS (OF	PIP	ING							
			NOM	IINAL	PIP	E SI	ZE:	811					NOMI	NAL	PIPE	SIZ	E: 1	0"		
BUTT-WELDING F	TTIN	īGS																		
SCHEDULE No.: MFR'S WEIGHT:		40 STD		80 XS		1	60	Х	- XS			40 STD		60 XS		1	.60 -	х	xs	
LR 90 ELBOW SR 90 ELBOW LR 45 ELBOW TEE REDUCER *** WELDOLET **		50 34 23 55 13.3	3	3 5 7 5	.5	6 1 3	20 - 2 10 1 efer	6	.18 - .0 .20 .6 Mfr)			88 58 43 85 22 36		10 70 53 10 29 46) 	1 2 5	.30 260 57.5 efer	to	Mfr)	
FLANGES																				
FORGED STEEL	15	50	30	00	CL 60	ASS 0	150	00	250	00	1	50	30	0	CL:	ASS 0	150	0	250	0
WELDING NECK SLIP-ON THREADED LAP JOINT	42 28 30 28	3	69 56 56	5	11 97 97 11		273 - 258 286	3	576 - 485 471	,	5 4 4 3	0 1	10 77 80 88	7	18 17 17	77 77	454 436 485)	106 925 897	5
VALVES			.,																	
CAST STEEL	15	50	3(00	CL 60	ASS 0	150	00	250	00	1	50	3(00		ASS 00	150	00	250	0
GATE-FLGD GLOBE-FLGD CHECK-FLGD GATE-BW GLOBE-BW	42 39 20	10 20 90 60	62 41 64	40 20 10	80 90 94 67	0 10 70	260 210 190	00			5 4 4 4	55 70 70 10 80	10 64 62 85	50 010 40 25	12 15	790 250 580	491 369			
CHECK-BW GATE PSB-FLGD GATE PSB-BW GLOBE PSB-BW	35	50	51	10	7 4 8 5 6 1 8 0	55 L5	900 150	0	144 170		3	70	59	90	13 91	030 300 15 520	154 250		249 350	
INSULATION																				
TEMPERATURE RANGE deg F	100 199	200 299	300 399	400 499	500 599	600 699	700 799	800 899	900 999	1000 1199	100 199	200 299	300 399	400 499	500 599	600 699	700 799	800 899	900 999	1000 1199
Cal Sil. in. Weight 1b/ft	1.5	1.5	2 5.6	2 5.6	2.5 7.9	3 9.5	3.5 12	4 14	4 14	4 14		1.5 5.2			2.5 8.9		3.5 13	4 16	4 16	4 16
H. T. C. in. 85% Mag in. Weight 1b/ft	1.5	1.5 4.1	2 5.6	2 5.6	2.5 8	3 13	3.5 16	4 20	4 20	4 20	1.5	1.5	2 7.1	2.5 8.9	2.5 8.9	3 15	3.5 19	4 23	4 23	4 23
BOLTS*	6	.5	1	8		40	1	21	2	32	1	.5	3	8	5:	2	18	4	4	45

*Weights for bolts are for one complete flange set. **Weights are for reducing Weldolets.
***Weights for reducers are for one pipe size reduction. PSB indicates valves having
pressure seal bonnets. All other weights for valves are for valves having flanged bonnets.

TABLES W-	1							WE	IGH	TS (OF	PIP	ING							
			NOM	INAL	PIP	E SI	ZE:	4"					NOMI	NAL	PIPE	SIZ	E: 6	11		
BUTT-WELDING FI	TTIN	GS																		
SCHEDULE No.: MFR'S WEIGHT:		40 STD		80 XS		1	60 -	Σ	- KXs			40 STD		80 XS		1	60 -	Х	- XS	
LR 90 ELBOW SR 90 ELBOW LR 45 ELBOW TEE REDUCER *** WELDOLET **		9.00 6.25 4.50 12.0 3.38 6.30	; ; ;	8. 6. 15	.5 50 10 .8 50 40	8 2 6	8.0 - .75 5.0 .40 0.5	:	20.0 - 10.8 25.0 9.00 10.5			24.5 18.0 12.0 34.0 8.25 12.0))) ;	23 17 40 11	3.0 7.5 0.0 3.0	3 6 1	7.0 - 0.0 2.0 6.5 8.0	3	5.0 - 2.0 88.0 22.0	
FLANGES																				
FORGED STEEL	15	50	30	0	CL.	ASS 0	150	00	250	00	1	50	30	00	CL 60	ASS 00	150	0	250	0
WELDING NECK SLIP-ON THREADED LAP JOINT	16 13 13	}			37 33 33 31	} }	69 - 73 75		146 127 122	,	2 1 1 1	7 9.5	45 36 36 38	5	73 80 80 78))	164 164 170		378 323 314	3
VALVES	L.,																			
CAST STEEL	15	50	30	00	CL 60	ASS 00	150	00	250	00	1	50	3(00		ASS 00	150	00	250	0
GATE-FLGD GLOBE-FLGD CHECK-FLGD GATE-BW GLOBE-BW CHECK BW GATE PSB-FLGD GATE PSB-BW GLOBE PSB-BW	14	L5 5 22	16 22 18 12 18	0 35 20 30	30 32 25 27 23 17 19	20 55 70 80 70 90 LO	610 630 520 390 190 530)))	335 750		2 2 1 2	75 50 00 65 30 65	39 30 24 39	20 90 30 45 50	52 52 54 42 28	10 10 30 20 50 20 25 35	141 136 125 790 490 880	50 50)	84(
INSULATION	<u> </u>										L					**************************************				
TEMPERATURE RANGE deg F	100 199	200 299	300 399	400 499	500 599	600 699	700 799	800 899	900 999	1000 1199	100 199	200 299	300 399	400 499	500 599	600 699	700 799	800 899	900 999	100 119
Cal Sil. in. Weight lb/ft	1	1 1.6	1.5 2.6	2 3.6	2.5 4.7	2.5 4.7	3 6.1	3.5 7.5	3.5 7.5	3.5 7.5	1 2.1	1.5	2 4.6	2 4.6	2.5 6.1	3 7.6	3 7.6	3.5 9.8	3.5 9.8	4 12
H. T. C. in. 85% Mag in. Weight 1b/ft	1	1	1.5	2 3.6	2.5 4.7	2.5	l	i	3.5 11	3.5 11	1 2.1	1.5	2 4.6	2 4.6	2.5 6.1	3 10	3 10	3.5 13	3.5 13	4 17
BOLTS*		4	7	. 5	12	2.5	3	4	T	61		6	1	1.5	3	0	71	6	1.	45

*Weights for bolts are for one complete flange set. ** Weights are for reducing Weldolets. ***Weights for reducers are for one pipe size reduction. PSB indicates valves having pressure seal bonnets. All other weights for valves are for valves having flanged bonnets.

TAE	BLES W-1				WE	IGHTS	C	F PIPI	NG				
	TANDET LIEU D'ENG.		NOMINAI	L PIPE S	IZE: 2"		Ī	1	LANIMON	PIPE SI	ZE: 3"		
	BUTT WELDING: SCHEDULE NO. MFR'S WEIGHT	40 STD	80 XS		60 -	- xxs		40 STD	80 XS		160	XX	
	LR 90 ELBOW SR 90 ELBOW LR 45 ELBOW TEE REDUCER *** WELDOLET **	1.60 1.00 0.81 3.50 0.90 1.75	2.20 1.50 1.19 4.00 1.20 1.79) 9 1 0 5	.25 .56 .00 .60	3.50 2.00 6.25 2.38 2.13		5.00 3.00 2.63 7.00 1.80 4.00	6.5 4.2 3.5 8.5 2.6 4.1	5 0 0	8.50 4.38 10.0 3.40 6.32	5. 13	.0 -75 .5 00 32
F I T	FORGED STEEL SOCKET WELD: 90 ELBOW 45 ELBOW TEE COUP/RED *** SOCKOLET **	3000 3.13 2.71 4.07 2.00 1.60	PRE	6000 6.66 4.81 8.24 3.88 5.13	90 6. 9. 8.	000 69 62 75 66			PRE 3000 10.9 10.5 12.5 3.88 3.80	SSURE C	19.3 14.3 23.5 6.63	3 5	
H N G S	FORGED STEEL THREADED: 90 ELBOW 45 ELBOW TEE COUP/RED *** THREDOLET **	2000 3.14 2.88 4.46	PRE	3000 5.92 4.93 7.55 3.13 1.75	60 13 9. 18 7.	000 3.4 50 3.5 .75		200 10. 11. 12.	0 9 3	3000 14.4 13.6 23.1 6.75 4.35	LASS	6000 39.1 30.6 47.5 13.5	
1	MALL. IRON THREADED: 90 ELBOW 45 ELBOW TEE COUPLING REDUCER ***		PRE 150 2.16 1.82 2.81 1.48 1.47	SSURE CI	ASS 300 4.00 3.70 5.35 3.60 2.88				PRE 150 5.37 4.75 7.77 3.72 3.87	essure c	300 9.46 8.56 13.3 8.06	6 4 2 0	
F L A N G E S	FORGED STEEL: WELDING NECK SLIP-ON THREADED LAP JOINT SOCKET	150 6 5 5 5	300 8 7 7 7 7	CLASS 600 10 8 8 8	1500 24 22 22 21 24	2500 42 38 37		150 11.5 9 10 9	300 18 13 14 14.5	CLASS 600 18 15 15 14 16	1500 48 48 38 	25 94 83 80	00
V A L V E S	CAST STEEL: GATE-FLGD GLOBE-FLGD CHECK-FLGD GATE-BW GLOBE-BW CHECK-BW GATE PSB- GATE PSB-BW GLOBE PSB-	150 46 47 35 45 34 25	300 74 83 60 49 72 47	CLASS 600 84 90 70 72 78 55	1500 180 160 155 130 53 SW 47 55 SW	2500		150 76 91 70 62 75 50	300 108 135 115 85 105 87	CLASS 600 160 160 135 140 130 100 105 FI 70 155 BW	150 370 280 300 210 .GD		0
I N	TEMPERATURE RANGE deg F	100 200 30 199 299 39	00 400 99 499	50 0 600 599 699	7 00 8 0 0 799 899	900 1000 999 1199	22	100 200 199 299	300 400 399 499	500 600 599 699	700	800 90 899 99	0 1000 9 1199
S U L	Cal Sil. in. Weight lb/ft	1 1 1 1 1 1 1 1	5 2 7 2.5	2 2.5 2.5 3.5	2.5 3 3. 5 4.2	3 4.2 4.2		1 1 1.3 1.3	$\begin{bmatrix} 1.5 & 2 \\ 2.1 & 3.0 \end{bmatrix}$	2 2.5 3.0 4.1	3.0	3 3 5.2 5.	3.5 2 6.7
A T I	H. T. C. in. 85% Mag in. Weight lb/ft	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.5 2 .7 2.5	2	2.5 3 4.3 5.9	3 3 5.9 5.9		1 1 1.3 1.3	1.5 2 2.1 3.0	2	3.0	3 3 6.9 6.	1
N	BOLTS*	1.5	4	4.5	12.5	21		1.5	7.5	8	2	5	37

*Weights for bolts are for one complete flange set. **Weights are for reducing Sockolets, Weldolets and Thredolets. ***Weights for reducers are for one pipe size reduction. PBS indicates valves valves having pressure seal bonnets. Other weights for valves are for valves having flanged bonnets.

TAE	BLES W-1				WE	IGHTS	OF PIP	ING			
			NOMIN	AL PIPE	SIZE: 1"		NC	MINAL PI	PE SIZE:	1 1/2"	
	FORGED STEEL SOCKET WELD: 90 ELBOW 45 ELBOW TEE COUP/RED *** SOCKOLET **	300 1.0 0.9 1.3 0.5	0 0 4 1 6	SSURE CI 6000 2.35 1.91 3.31 1.00 1.30	90 3. 2. 3.	000 19 50 75 69 30	300 2.1 1.6 2.6 1.0	0 3 3 4 0	5.25 4.31 7.48 2.00 2.00	90 6. 4. 7. 2.	000 69 81 88 19
# H H H H Z G S	FORGED STEEL THREADED: 90 ELBOW 45 ELBOW TEE COUP/RED *** THREDOLET **	200 1.1 1.0 1.3	0 3 6 6	3000 2.27 1.99 3.03 0.63 0.62	60 3. 2. 4. 2.	000 .50 .79 .63 .13	200 2.1 1.7 2.8	00 .8 74 30	3000 3.50 3.00 7.04 2.19 1.00	60 7. 5. 9.	000 50 75 63 38 96
	MALL. IRON THREADED: 90 ELBOW 45 ELBOW TEE COUPLING REDUCER ***		PRE 150 0.67 0.59 0.93 0.46 0.44	SSURE CI	ASS 300 1.15 1.07 1.62 1.03 0.82			PRE 150 1.36 1.17 1.85 0.93 0.85	essure ci	ASS 300 2.57 2.30 3.46 2.10 1.69	
F L A N G E S	FORGED STEEL: WELDING NECK SLIP-ON THREADED LAP JOINT SOCKET	150 2.5 2 2 2 2	300 4 3 3 3 3	CLASS 600 4 3.5 3.5 3.5 4	1500 8.5 7.5 7.5 7.5 8	2500 13 12 12	150 4 3 3 3 3	300 7 6.5 6.5 6.5	CLASS 600 8 6.5 6.5 7	1500 14 14 14 14 14 15	2500 28 25 24
V A L V E S	FORGED & CAST STEEL: GATE-FLGD GLOBE-FLGD CHECK-FLGD GATE-THRD/SW GLOBE-THRD/SW CHECK-THRD/SW GATE PSB-SW GATE PSB-SW GLOBE PSB-SW		300 15.4 15.6 13.7 VALVES	CLASS 600 17.2 17 16.3	1500 41.3 43.6 30 24.7 26.9 15 22 21	2500		300 29.2 29.9 27.9 VALVES E VALVES	CLASS 600 30.0 33.5 33	1500 80 80 57 58.4 59 49.1 39 37	2500
I N S U L A	TEMPERATURE RANGE deg F Cal Sil. in. Weight lb/ft H. T. C. in.	199 299 1 1 0.7	399 499 1.5 2 1.2 1.9	599 699 2 2.5 1.9 2.8 2.5	799 899	900 1000 999 1199 3 3.7 3.7 3 3.7	199 299 1 1 0.8 0.8	399 499 1.5 2	599 699 2 2.5 2.5 3.5	700 800 700 899 2.5 3 3.5 4.5 2.5 3	900 1000 999 1199 3 3 4.5 4.5
N N	85% Mag in. Weight lb/ft		1.5 2 1.9	2 3.3	3.3 4.7	4.7 4.7		3.5		4.2 5.6 9	5.6 5.6

*Weights for bolts are for one complete flange set. **Weights are for reducing Sockolets and Thredolets. ***Weights for reducers are for one pipe size reduction. PSB indicates valves having pressure seal bonnets. Other weights for valves are for valves having flanged bonnets.

WEIGHTS OF PIPING

TABLES W-1

NOTES

A factor in the design of piping supports is the weight of the piping to be supported. Calculation of the loadings involve the weights of pipe, fittings, flanges, valves, insulation, the conveyed fluid, and other related items that are also to be supported as part of the piping system.

Tables show weights of piping components. Data are subject to variation from manufacturing tolerances.

PIPE

For Schedule numbers, Manufacturers' weights (traditional designations: STD, XS, etc.), weight per unit length, weight filled with water, thickness of wall - refer to Tables P-1.

VALVES

Weights for valves do not include weights of powered operators or other devices specified for particular valves. Weights shown for valves in these tables are from data available as indicated from the Henry Vogt Machine Co. and from the Crane Company. Information herein is not intended to indicate the complete range of valves available from either manufacturer. Weights shown are for valves having conventional ports.

As valve features vary between manufacturers, actual weights of valves should be obtained from the specified manufacturer or supplier.

INSULATION

Weights of insulation are shown for both calcium silicate and for conventional 85% magnesia (alone or in combination with diatomaceous silica). The assumed densities are 11 pounds per cubic foot for calcium silicate and 85% magnesia, and 21 pounds per cubic foot for diatomaceous silica.

Insulation weights assumed include estimated weights of canvas, cement, paint, wire and bands, but not weatherproofing or other special protection. Pipe coverings of other compositions will have different densities. Data for insulation are based on conventional thickness recommendations and may not correspond with insulation specifications for a particular project.

UNITS OF WEIGHT

Weights in the following tables are in pounds - avoirdupois

V	ΔΙ	VE DA	ΤΔ -	RIIN	LEN	GTH	S		P				ТА	BLE	V 1	
				HON			3		DIMENS	SIONS IN I	NCHES		IA	DLE	A-1	
	L A L A	N G E S S				N (MIN	A L P	IPE	SIZE	[NF	s]				
		51 17050	2	2 1/2	3	4	6	8	10	12	14	16	18	20	24	
		FLANGED 150	7	7.5	8	9	10.50	11.50	13	14	15	16	17	18	20	
ح ا	r-wedge)	8EVELE0 150	8.5	9.5	11.12	12	15.88	16.50	18	19.75	22.50	24	26	28	32	
VAIVES	SOLID WEDGE & DOUBLE-DISC (SPLIT-WEDGE)	300	8.5	9.5	11.12	12	15.88	16.50	18	19.75	30	33	36	39	45	
GATE	OOUBLE-D	600	11.50	13	14	17	22	26	31	33	35	39	43	47	55	
STEFF	FDGE & [900	14.50 16.50 15 18 24 29 33 38 40.50 44.										48	52	61	
	SOLID W	1500	14.50 16.50 18.50 21.50 27.75 32.75 39 44.50 49.50 54.50											65.50	76.50	
		2500	17.75 20 22.75 26.50 36 40.25 50 56											OTES IN THIS TABLE CON-		
		150	8	8.5	9.5	11.50	16	19.50	24.50	27.50	FORM	NSIONS TO AN FLANGED	SI B16.	S TABLE 10 AND S AND V	APPLY	
VES	Æ	300	10.50	11.50	12.50	14	17.50	22	24.50	28	WITH	ENDS B		FOR WE	LDING	
GLOBE VALVES	K VALVES	600	1 1.50	13	14	17	22	26	31	33		\int_{0}^{∞}				
EL 610	T CHECK	900	14.50	16.50	15	18	24	29	33	38						
STEEL	LIFT	1500	14.50	16.50	18.50	21.50	27.75	32.75	39	44.50	FOR	FLANGE		S THE T	ABLED	
		2500	17.75	20	22.75	26.50	36	40.25	50	56	FOR VALV	BOTH E. FOR	CLASSES	FACES 0 150 AN	D 300	
	VALVES	T-D 150	8 8	8.5 8.5	9.5 9.5	11.50 11.50	14 14	19.50 19.5 0	24.50 24.50	27.50 27.50	CLUD AND	FOR V	EACH ALVES	RAISED OF CLAS	FACE S 600	
VES	CHECK VA	T-0 300	10.50 10.50	11.50 11.50	12.50 12.50	14 14	17.50 17.50	21 21	24.50 24.50	28 28	AND INCL	A80VE, UDED FO	O.25-i R EACH	nch HAS RAISED	BEEN FACE.	
CK VAI	DISC CHE	T-D 600	11.50 11.50	13 13	14 14	17 17	22 22	26 26	31 31	33 33	7					
SWING CHECK VALVES	TILTING DI	T-D 900	- 14.50	- 16.50	15 15	18 18	24 24	29 29	33 33	38 38	Ī		⅓ [
SWI	1	T-D 1500	14.50 14.50	16.50 16.50	18.50 18.50	21.50 21.50	27.75 27.75	32.75 32.75	39 39	- 44.50			abled Di			
		2500	17.75	20	22.75	26.50	36	40.25	50	56	CHEC! DIME!	ANGLE (VALVES VSION TO DIMENS	S, HALVI O OSTAII	E THE TA	A8LED	

REPRODUCED BY COURTESY OF STOCKHAM VALVES AND FITTINGS

The following dimensional data for copper tube conform to ASTM B-88, which specifies general requirements for Wrought Seamless Copper Alloy Pipe and Tube.

TYPE K TUBE

Heavy wall thickness, hard or soft, is furnished for interior plumbing and underground service; steam and hot water heating systems; fuel oil lines; industrial process applications carrying liquids, air and gases; air conditioning, refrigeration, and low pressure hydraulic lines. Hard copper tube is used for gas service lines because its rigidity eliminates traps caused by sagging lines.

	NO	MINAL DIMENSI	ONS	THEOR ON N		Theoretical	
Nominal Size	Outside Diameter (Inches)	Inside Diameter (Inches)	Wall Thickness (Inches)	Cross Sectional Area of Bore (Sq. Inches)	External Surface (Sq. Ft. Per Lin. Ft.)	Internal Surface (Sq. Ft. Per Lin. Ft.)	Weight (Pounds Per Foot)
1/4	.375	.305	.035	.073	.098	.080	0.145
3/8	.500	.402	.049	.127	.131	.105	0.269
1/2	.625	.527	.049	.218	.164	.138	0.344
3/4	.875	.745	.065	.436	.229	.195	0.641
1	1.125	.995	.065	.778	.294	,261	0.839
1 ¹ / ₄	1.375	1.245	.065	1.22	.360	.326	1.04
1 ¹ / ₂	1.625	1.481	.072	1.72	.425	.388	1.36
2	2.125	1.959	.083	3.01	.556	.513	2.06
2 ¹ / ₂	2.625	2.435	.095	4.66	.687	.638	2.93
3	3.125	2.907	.109	6.64	.818	.761	4.00

TYPE L TUBE

Medium wall thickness, hard or soft, is used for medium pressure interior plumbing and for steam and hot water house-heating systems, panel heating, plumbing vent systems, industrial and process applications.

	NOI	MINAL DIMENSI	ons		BASED SIONS	Theoretical	
Nominal Size	Outside Diameter (Inches)	Inside Diameter (Inches)	Wall Thickness (Inches)	Cross Sectional Area of Bore (Sq. Inches)	External Surface (Sq. Ft. Per Lin. Ft.)	Internal Surface (Sq. Ft. Per Lin. Ft.)	Weight (Pounds Per Foot)
1/4 3/8 1/2 3/4	.375 .500 .625 .875 1.125	.315 .430 .545 .785 1.025	.030 .035 .040 .045 .050	.078 .145 .233 .484 .825	.098 .131 .164 .229 .294	.082 .113 .143 .206 .268	0.126 0.198 0.285 0.455 0.655
1½ 1½ 2 2½ 3	1.375 1.625 2.125 2.625 3.125	1.265 1.505 1.985 2.465 2.945	.055 .060 .070 .080 .090	1.26 1.78 3.09 4.77 6.81	.360 .425 .556 .687 .818	.331 .394 .520 .645 .771	0.884 1.14 1.75 2.48 3.33

TYPE M TUBE

Light wall thickness, hard only, furnished for applications requiring little or no pressure or tensions on the lines.

	NON	MINAL DIMENSI	ONS		RETICAL AREAS Ominal dimen:		Theoretical
Nominal Size	Outside Diameter (Inches)	Inside Diameter (Inches)	Wall Thickness (Inches)	Cross Sectional Area of Bore (Sq. Inches)	External Surface (Sq. Ft. Per Lin. Ft.)	Internal Surface (Sq. Ft. Per Lin. Ft.)	Weight (Pounds Per Foot)
1½ 1½ 2 2½ 3	1.375 1.625 2.125 2.625 3.125	1.291 1.527 2.009 2.495 2.981	.042 .049 .058 .065 .072	1.31 1.83 3.17 4.89 6.98	.360 .425 .556 .687 .818	.338 .400 .526 .653 .780	0.682 0.940 1.460 2.030 2.680

CHANNEL DATA AMERICAN STANDARD

DESIGNATION	DIMENS	IONS IN	INCHES
Depth (nom) x wgt 1b/ft	DEPTH	HTOIW	THICK
C 15x50	15.00	3.75	0.62
x40	15.00	3.50	0.62
x33.9	15.00	3.38	0.62
C 12×30	12.00	3.12	0.50
×25	12.00	3.00	0.50
×20.7	12.00	3.00	0.50
C 10×30	10.00	3.00	0.44
×25	10.00	2.88	0.44
×20	10.00	2.75	0.44
×15.3	10.00	2.62	0.44
C 9x20	9.00	2.62	0.44
x15	9.00	2.50	0.44
x13.4	9.00	2.38	0.44
C 8x18.75	8.00	2.50	0.38
x13.75	8.00	2.38	0.38
x11.5	8.00	2.25	0.38
C 7×14.75	7.00	2.25	0.38
×12.25	7.00	2.25	0.38
× 9.8	7.00	2.12	0.38
C 6x13	6.00	2.12	0.31
x10.5	6.00	2.00	0.31
x 8.2	6.00	1.88	0.31
C 5x 9	5.00	1.88	0.31
x 6.7	5.00	1.75	0.31
C 4x 7.25	4.00	1.75	0.31
x 5.4	4.00	1.62	0.31
C 3x 6	3.00	1.62	0.25
x 5	3.00	1.50	0.25
x 4.1	3.00	1.38	0.25

ANGLE DATA
WEIGHTS IN POUNDS PER LINEAR FOOT

TABLES S-5

		U	NE	QUA	L I	_ E G	S					
6.1.7.5					тн	I C	KNE	s s				
SIZE	1	7/8	3/4	5/8	9/16	1/2	7/16	3/8	5/16	1/4	3/16	1/8
9 x 4 x				26.3	23.8	21.3						
8 x 6 x	44.2	39.1	33.8	28.5	25.7	23.0	20.2					
8 x 4 x	37.4		28.7		21.9	19.6						
7 x 4 x			26.2	22.1		17.9		13.6				
6 x 4 x		27.2	23.6	20.0	18.1	16.2	14.3	12.3	10.3			
6 x 3 1/2 x						15.3		11.7	9.8			
5 x 3 1/2 x			19.8	16.8		13.6	12.0	10.4	8.7	7.0		
5 x 3 x				15.7		12.8	11.3	9.8	8.2	6.6		
4 x 3 1/2 x				14.7		11.9	10.6	9.1	7.7	6.2		
4 x 3 x				13.6		11.1	9.8	8.5	7.2	5.8		
3 1/2 x 3 x						10.2	9.1	7.9	6.6	5.4		
3 1/2 x 2 1/2 x						9.4	8.3	7.2	6.1	4.9		
3 x 2 1/2 x						8.5	7.6	6.6	5.6	4.5	3.39	
3 x 2 x						7.7	6.8	5.9	5.0	4.1	3.07	
2 1/2 x 2 x								5.3	4.5	3.62	2.75	
2 1/2 x 1 1/2 x									3.92	3.19	2.44	
2 x 1 1/2 x	Ε	XAMPLE	DESIG	NATION	: L 2 :	x 1 1/	2 x 1/4	1		2.77	2.12	1.44
2 x 1 1/4 x										2.55	1.96	
1 3/4 x 1 1/4 x										2.34	1.8	1.23

EQUAL LEGS													
6.1.7.5					7	HI	СКИ	E S	S				
SIZE	1 1/8	1	7/8	3/4	5/8	9/16	1/2	7/16	3/8	5/16	1/4	3/16	1/8
8 x 8 x	56.9	51.0	45.0	38.9	32.7	29.6	26.4						
6 x 6 x		37.4	33.1	28.7	24.2	21.9	19.6	17.2	14.9	12.4			
5 x 5 x			27.2	23.6	20.0		16.2	14.3	12.3	10.3			
4 x 4 x				18.5	15.7		12.8	11.3	9.8	8.2	6.6		
3 1/2 x 3 1/2 x							11.1	9.8	8.5	7.2	5.8		
3 x 3 x							9.4	8.3	7.2	6.1	4.9	3.71	
2 1/2 x 2 1/2 x							7.7		5.9	5.0	4.1	3.07	
2 x 2 x									4.7	3.92	3.19	2.44	1.65
1 3/4 x 1 3/4 x											2.77	2.12	1.44
1 1/2 x 1 1/2		E	XAMPLE	DESIG	NOITAN	: L 3 ;	(3 x :	3/8	3.35		2.34	1.80	1.23
1 1/4 x 1 1/4 x											1.92	1.48	1.01
1 x 1 x							:				1.49	1.16	0.80

W SHAPES **TABLE** STRUCTURAL STEEL DECIMAL DIMENSIONS THICKNESS ARE NOMINAL - IN MULTIPLES OF 1/16 DEPTH THICK DESIGNATION NOM. SIZE DEPTH WIDTH THICK DESIGNATION NOM. SIZE x lb/ft DESIGNATION NOM. SIZE x lb/ft OESIGNATION NOM. SIZE DEPTH WIDTH DEPTH WIDTH THICK DEPTH WIDTH THICK NOM. SIZ x lb/ft DIMENSIONS: inches x lb/ft DIMENSIONS: inches DIMENSIONS: inches DIMENSIONS: inches W 21 W 14 W 12 W 36 0.62 0.56 0.50 0.56* 0.50* 342 342 320 314 311 287 2.50 2.44* 2.06* 2.31* 2.25* 2.06* 1.94* 1.75* 1.75* 1.69* 8.12 8.00 8.00 16.38 16.75 16.25 16.12 16.12 16.00 16.00 15.88 15.88 12.25 12.00 12.00 12.25 12.50 12.12 12.38 12.00 12.25 12.12 22.00 21.50 21.85 21.62 21.62 21.62 21.38 21.12 21.00 20.75 20.88 20.88 20.62 12.50 13.50 12.38 13.30 12.38 13.38 12.25 9.00 8.38 8.90 8.25 8.50 8.50 6.50 6.50 1.12 1.00* 0.94 0.88* 0.88 0.94* 0.94* 0.75 0.62 0.56* 0.56* 0.56* 17.50 16.75 17.25 17.12 16.75 16.75 16.50 16.38 16.25 16.12 W 36 300 280 260 245 245 230 210 194 36.75 36.50 36.25 36.12 36.00 35.88 36.75 36.50 36.38 36.12 36.00 35.88 35.88 W 21 X X 147 50 45 40 36 35 30 27 22 19 Х 16.62 16.50 16.50 16.50 12.12 12.12 12.00 12.00 12.00 1.69 1.56 1.44 1.38 1.25 1.38 1.25 1.19 1.10 0.94 0.81 142 132 127 122 112 111 6.62 6.50 6.50 6.50 4.00 4.00 XXXXXXX 0.44 0.44 0.38 0.38 0.44 0.38 X X 283 264 257 246 237 233 228 219 202 193 184 101 96 93 82 73 68 57 55 49 44 182 170 160 150 135 X X X 16.5 16 14 16.00 16.00 4.00 0.25 X X 1.62* 1.56 1.50* 1.44 15. 87.52 87.52 15. 650 15. 650 15. 650 15. 650 16. 650 16. 650 17. 11.88 W 33 W 10 34.12 33.50 33.88 33.25 33.62 33.50 33.50 33.25 33.12 32.88 15.88 15.75 15.75 15.75 15.75 11.62 11.50 11.50 1.38 1.38 W 33 x 241 240 221 220 201 200 152 X X X 10.38 10.25 10.25 10.25 10.12 10.12 10.12 10.12 1.38* 1.31 1.25* 1.19* 1.12* 1.06* 1.06* 1.06* ₩ 10 x 112 1.25 1.10* 1.00* 1 1.38* 1.25* 1.12* 1.12* 1.06 0.94 0.88 0.75 176 167 10.88 10.62 10.50 10.38 10.25 10.12 10.00 10.12 9.80 9.75 10.50 89 88 77 72 68 159 158 150 145 142 136 132 127 120 119 W 18 141 130 118 11.25 11.85 11.275 11.72 11.72 11.72 11.72 8.875 7.750 8.755 7.550 6.00 1.06 1.00* 0.94* 0.88* 0.81* 0.69* 0.81* 0.69* W 18 119 114 19.00 18.75 18.75 18.38 18.62 18.38 18.32 18.32 18.38 18.25 18.38 17.88 xxxxxxxxxxxxxxxxxxxxxxxxxx 6604953333222219752 1112 10.00 8.00 8.00 8.00 8.00 5.75 5.75 5.75 5.75 4.00 4.00 W 30 Х W 30 211 210 191 190 173 172 132 116 108 99 31.00 30.38 30.62 30.50 29.88 30.12 30.98 30.12 30.88 29.62 15.12 15.00 15.00 15.00 10.50 10.50 10.50 10.50 1.31 X 1110939507 88284 774888 6681 3340 3340 33622 X 1.19* 1.06* 1.06* 1.06* X X X 10.25 10.38 10.12 10.12 9.88 10.25 10.12 10.00 9.88 9.88 0.50* 0.44* 0.38 0.31* 0.38 0.31 0.25 0.19* X X X X 0.69 0.62 0.56 0.62 0.50* 0.50 0.88 0.75 0.69 X X X W 27 11.5 17.88 17.75 4.00 W 27 178 177 27.75 27.25 27.62 27.12 27.38 26.88 27.25 27.12 26.88 26.75 14.12 14.12 14.00 14.00 14.00 10.12 10.00 10.00 1.19 1.06 1.06* 1.00* 0.94 0.81 0.75 0.62 X W 8 W 16 161 160 67 58 48 W 8 x 9.00 8.75 8.50 8.25 8.00 7.88 8.25 8.25 8.12 8.00 8.00 6.50 6.50 0.94 0.81 0.69 0.56 0.50 0.44 0.38 0.38 0.31 0.31 0.25 0.19 1.00 0.88* 0.88* 0.81* 0.75 0.69* 0.69* 146 145 114 102 94 84 17.00 16.38 16.75 16.12 16.38 16.50 16.12 16.38 16.00 15.88 16.25 16.12 16.00 10.38 11.50 10.38 11.50 10.25 8.50 10.25 8.50 7.12 7.00 7.00 7.00 5.50 5.50 W 16 1000 968 888 787 771 677 644 558 577 500 361 266 26 X X XXXXXX 40 35 31 22 24 20 18 17 15 10 7.88 8.25 8.12 8.00 8.12 8.00 7.88 5.25 5.25 5.25 5.25 4.00 W 24 1.25 1.12* 1.06 1.00* 0.94 0.88* 0.94* 0.88 W 12 25.00 24.75 24.75 24.50 24.25 24.25 24.25 24.25 24.25 24.25 W 24 162 160 146 13.00 14.12 12.88 14.00 12.88 14.00 12.75 12.00 12.75 12.00 9.00 9.00 Ŏ. Х 69 62 0 336 305 279 252 230 210 16.88 16.38 15.38 15.38 15.47 14.30 13.38 13.38 13.38 13.38 13.38 12.75 12.50 12.50 12.21 13.38 13.12 13.00 12.88 12.75 12.62 12.50 12.38 12.38 12.38 12.25 12.12 12.12 12.12 222221 .94 .69 .50 .25 145 131 0.56 X X 4.00 4.00 0.44 W 6 15.88 15.75 120 117 0.44 25 20 16 15.5 15 6.12 6.00 4.00 6.00 6.00 4.00 0.44 0.38 0.38 0.25 0.25 0.25 0.19 6 x 110 0.88* 0.75* 0.88* 0.75* 0.69 0.56 0.56* 0.50* 15.62 0.38 190 170 6.25 6.25 6.00 6.00 6.00 5.88 5.88 W 14 100 24.00 24.25 24.25 24.12 23.88 23.75 23.75 23.75 23.50 X X 14 x x x 136 133 120 730 730 665 605 5500 455 426 398 370 22.38 22.50 21.62 20.88 21.00 20.25 19.62 19.00 18.62 18.75 18.25 17.88 17.88 17.62 17.38 17.62 17.38 17.25 17.00 16.88 16.75 16.62 16.62 4.94* 4.50 4.19* 3.81 3.50 3.06* 2.88* 2.69 X X X 84 76 106 99 96 92 87 68 9.00 Х 8.5 4.00 62 61 55 55 W 5 7.00 7.00 5.00 5.00 5.00 0.44 0.44* 0.38 W 5 19 5.12 Χ 18.5 16 5.12 85 79 72 65 58 X INDICATES A DIMENSIONAL CHANGE W 4 OR SHAPE WAS DISCONTINUED (1978) .00

12.00

10.00

370

18.00

16.50

W 4 x 13 4.12

4.00

0.38

SPANS OF HORIZONTAL PIPE WITH 3-FT. RISE OR FALL

CHARTS S-2

HESE CHARTS GIVE THE MAXIMUM LENGTI ERMISSIBLE FOR EITHER HORIZONTAL LIM N THE PIPING ARRANGEMENT SHOWN, AN IPPLY WHEN THE SPAN INCLUDING THE RIS DR FALL IS CONTINUOUS WITH TWO OR MORI TRAIGHT SPANS AT EACH END

SCH 20, STEEL

Data for water-filled steel pipe are based on a maximum bending stress of 4000 PSI, occurring at supports and due to bending by the weight of pipe plus water: applied stresses may increase the resultant tensile stress. These data apply to carbon-steel and stainless-steel pipe having a tensile modulus of elasticity of 29,000,000 PSI. For water-filled aluminum pipe, spans are similarly based on a stress of 2000 PSI and a modulus of 10,000,000 PSI.

UPPER CHART: SCH 10, STEEL

SPANS OF HORIZONTAL PIPE WITH 3-FT. RISE OR FALL

CHARTS S-2

PERMISSIBLE FOR EITHER MAXIMUM LENGTI
PERMISSIBLE FOR EITHER HORIZONTAL LIMI
IN THE PIPING ARRANGEMENT SHOWN, AN
APPLY WHEN THE SPAN INCLUDING THE RIS
OR FAILL IS CONTINUOUS WITH TWO OR MOR
STRAIGHT SHAME

SCH 40, STEEL

Data for water-filled steel pipe are based on a maximum bending stress of 4000 PSI, occurring at supports and due to bending by the weight of pipe plus water: applied stresses may increase the resultant tensile stress. These data apply to carbon-steel and stainless-steel pipe having a tensile modulus of elasticity of 29,000,000 PSI. For water-filled aluminum pipe, spans are similarly based on a stress of 2000 PSI and a modulus of 10,000,000 PSI.

SCH 160, STEEL

SPANS OF HORIZONTAL PIPE WITH 3-FT. RISE OR FALL

CHARTS S-2

PERMISSIBLE FOR EITHER MAXIMUM LENGI-PERMISSIBLE FOR EITHER HORIZONTAL LIM N THE PIPING ARRANGEMENT SHOWN, AN APPLY WHEN THE SPAN INCLUDING THE RIS DR FALL IS CONTINUOUS WITH TWO OR MOR STRAIGHT SPANS AT EACH END.

LOWER CHART: SCH 40, ALUMINUM Data for water-filled steel pipe are based on a maximum bending stress of 4000 PSI, occurring at supports and due to bending by the weight of pipe plus water: applied stresses may increase the resultant tensile stress. These data apply to carbon-steel and stainless-steel pipe having a tensile modulus of elasticity of 29,000,000 PSI. For water-filled aluminum pipe, spans are similarly based on a stress of 2000 PSI and a modulus of 10,000,000 PSI.

UPPER CHART: SCH 80, ALUMINUM

SPANS OF HORIZONTAL PIPE

THESE TABLES GIVE SPANS SUITABLE FOR PIPE ARRANGEO IN PIPEWAYS, AND APPLY WHEN THE SPAN IS PART OF A STRAIGHT PIPE, WITH TWO OR MORE SPANS AT EACH ENO.

TABLE S-1

FOR VALUES OF BENDING STRESS & MODULUS, REFER TO CHARTS S-2

STEEL PIPE, SCHEOULE 160

NOMINAL PIPE SIZE	PI	PE SPAN *	WEIGHT DF WATER-FILLED PIPE SPAN	MAXIMUM DEFLECTION†
	Ft.	In.	(Lb)	(in.)
1.0-INCH	15	8.77	48	0.234
1.5-INCH	19	3.28	105	0.243
2.0-INCH	21	6.79	182	0.243
2.5-INCH	23	9.87	275	0.245
3.0-INCH	26	3.66	438	0.245
4.0-INCH	29	9.30	793	0.245
6.0-INCH	36	2.01	1,970	0.245
8.0-INCH	41	2.89	3,732	0.245
10.0-INCH	45	11.7 5	6,465	0.244
12.0-INCH	50	0.40	9,801	0.244
14.0-INCH	52	4.67	12,186	0.243
16.0-INCH	56	0.99	16,875	0.244
18.0-INCH	59	5.13	22,582	0.244
20.0-INCH	62	8.17	29,266	0.244
24.0-1NCH	68	7.74	45,923	0.244

STEEL PIPE, SCHEOULE 80

NOMINAL PIPE SIZE	PI	PE SPAN+	WEIGHT DF WATER-FILLED PIPE SPAN	MAXIMUM DEFLECTION+
	Ft.	in.	(Lb)	(In.)
1.0-INCH	16	1.05	40	0.244
1.5-INCH	19	4.29	85	0.245
2.0-INCH	21	6.49	136	0.243
2.5-INCH	23	9.02	225	0.244
3.0-INCH	26	0.66	342	0.241
4.0-INCH	29	3.07	584	0.236
6.0-INCH	35	0.22	1,396	0.230
8.0-INCH	39	4.67	2,489	0.223
10.0-INCH	43	8.21	4,172	0.220
12.0-INCH	47	5.26	6,290	0.219
14.0-INCH	49	9.95	7,883	0.220
16.0-INCH	52	10.78	10,934	0.217
18.0-INCH	56	0.58	14,545	0.217
20.0-INCH	59	0.02	18,786	0.216
24.0-INCH	64	5.48	29,341	0.215

STEEL PIPE, SCHEDULE 40

NOMINAL PIPE SIZE	PI	PE SPAN+	WEIGHT OF WATER-FILLED PIPE SPAN	MAXIMUM Deflection+
	Ft.	In.	(Lb)	(In.)
1.0-INCH	16	1.07	33	0.244
1.5-INCH	19	0.49	69	0.237
2.0-1NCH	20	11.53	107	0.230
2.5-INCH	23	3.20	183	0.234
3.0-INCH	25	3.65	273	0.227
4.0-INCH	28	1.01	458	0.218
6.0-INCH	32	10.37	1,035	0.202
8.0-1NCH	36	7.40	1,836	0.193
10.0-INCH	40	0.55	2,987	0.185
12.0-INCH	42	11.48	4,386	0.180
14.0-INCH	44	11.52	5,463	0.179
16.0-INCH	47	10.83	7,640	0.178
18.0-INCH	50	10.65	10,289	0.179
20.0-INCH	52	11.02	12,880	0.174
24.0-INCH	57	5.84	19,844	0.171

STEEL PIPE, SCHEDULE 20

NOMINAL PIPE SIZE	PI	PE SPAN*	WEIGHT OF WATER-FILLED PIPE SPAN	MAXIMUM Deflection+
	Ft.	In.	(Lb)	(In.)
8.0-INCH	34	6.46	1,551	0.172
10.0-INCH	36	4.22	2,324	0.152
12.0-INCH	37	9.18	3,199	0.139
14.0-INCH	41	0.64	4,385	0.149
16.0-INCH	42	4.07	5,593	0.139
18.0-INCH	43	2.92	6,984	0.129
20.0-INCH	46	7.22	9,553	0.135
24.0-INCH	48	2.35	13,437	0.120
30.0-INCH	54	11.58	24,415	0.125

STEEL PIPE, SCHEOULE 10

NOMINAL PIPE SIZE	PI	PE SPAN*	WEIGHT OF WATER-FILLED PIPE SPAN	MAXIMUM DEFLECTION*
	Ft.	In.	(Lb)	(In.)
1.0-INCH	15	11.14	29	0.240
1.5-INCH	18	5.62	· 56	0.223
2.0-INCH	19	11.77	84	0.209
2.5-INCH	21	7.24	127	0.202
3.0-INCH	22	10.63	182	0.186
4.0-INCH	24	5.31	288	0.164
6.0-INCH	27	5.75	632	0.141
8.0-INCH	29	9.72	1,103	0.128
10.0-INCH	32	0.93	1,782	0.119
12.0-INCH	33	11.37	2,592	0.112
14.0-INCH	38	5.23	3,809	0.131
16.0-INCH	39	4.50	4,886	0.120
18.0-INCH	40	1.82	6,087	0.111
20.0-INCH	40	8.77	7,454	0.103
24.0-INCH	41	9.43	10,530	0.090

ALUMINUM PIPE, SCHEDULE 80

NOMINAL PIPE SIZE	PI Ft.	PE SPAN*	WEIGHT OF WATER-FILLED PIPE SPAN (Lb)	MAXIMUM OEFLECTION+ (In.)
1.0-INCH 1.5-INCH 2.0-INCH 2.5-INCH 3.0-INCH 4.0-INCH 6.0-INCH 8.0-INCH 10.0-INCH	17 20 22 24 26 28 33 37 39	4.67 2.26 0.19 5.26 4.25 11.94 11.69 6.31 8.42	18 41 66 110 169 295 719 1,306	0.414 0.386 0.367 0.374 0.357 0.336 0.314 0.294 0.264

ALUMINUM PIPE. SCHEOULE 40

NOMINAL PIPE SIZE	PI	PE SPAN *	WEIGHT OF WATER-FILLED PIPE SPAN	MAXIMUM DEFLECTION+
	Ft.	ln.	(Lb)	(In.)
1.0-1 NCH	16	8.12	16	0.381
1.5-INCH	18	11.07	34	0.339
2.0-INCH	20	3.81	55	0.313
2.5-INCH	22	10.19	93	0.327
3.0-INCH	24	4.06	142	0.305
4.0-INCH	26	4.46	244	0.278
6.0-INCH	29	10.16	569	0.242
8.0-INCH	32	8.17	1,029	0.223
10.0-INCH	35	3.12	1,696	0.208
	ŧ		i	l .

COEFF	ICIENTS OF EXPA	NSION OF DIFFERE	NT PIPING MATERIALS (in inches/degree/inch	or rength)	
MATERIALS	FAHRENHE I T	CELSIUS	MATERIALS	FAHRENHEIT	CELSIUS
Aluminum	0.000 012 8	0.000 023 1	ABS: Acrylonitrile-butadiene-styrene	0.000 035	0.000 063
Carbon steel	0.000 006 5	0.000 011 7	HDPE: High-density polyethylene	0.000 067	0.000 12
Cast iron	0.000 005 9	0.000 010 62	PE: Polyethylene	0.000 083	0.000 15
Copper	0.000 009 3	0.000 016 8	CPVC: Chorinated polyvinyl chloride	0.000 044	0.000 079
Stainless steel	0.000 009 9	0.000 017 82	PVC: Polyvinyl chloride	0.000 028	0.000 050

PIP	E DATA													TA	BLES	P-1
NPS (inch)	PIPING CODES and MANUFACTURERS WEIGHTS	0.D. (in.)	MENSIONS I.D. Wall (in.) (in.)		HTS Waterfilled (lb/ft)	External (in ² /ft)	AF Internal (in ² /ft)	EAS Flow (in ²)	Metal (in ²)	Moment of Inertia (in ⁴)	Section Modulus (in)	Radius of Gyration (in.)	Continuo Span (ft)	Sag (in.)	Code P Design (kPSI)	ressures Bursting (kPSI)
	API API		27.19 .4060 27.12 .4380	119.9 129.3	371.3 379.5	1056 1056	1025 1023	580.6 577.8	35.20 37.93	3351 3602	239.3 257.3	9.757 9.746	50.8 52.1	.037 .041	.179 .200	.596 .666
	API SCH 20 XS API SCH 30 API	28.00	27.06 .4690 27.00 .5000 26.75 .6250	138.2 147.2 183.2	387.3 395.1 426.5	1056 1056 1056	1020 1018 1008	575.2 572.6 562.0	40.56 43.20 53.75	3844 4085 5038	274.6 291.8 359.8	9.735 9.724 9.681	53.3 54.3 58.1	.045 .049 .064	.220 .240 .323	.734 .801 1.08
30	API API		26.50 .7500 29.44 .2810	218.8 89.41	457.6 384.1	1056 1131	999.0 1110	551.5 680.6	26.24	5964 2897	426.0 193.1	9.638	61.0 44.8	.079	.406	.303
30	SCH 10 API API STD API	30.00 30.00	29.38 .3120 29.31 .3440 29.25 .3750	99.17 109.2 118.9	392.7 401.4 409.9	1131 1131 1131 1131	1107 1105 1103	677.8 674.8 672.0	29.10 32.05 34.90	3206 3524 3829	213.8 234.9 255.3	10.50 10.49 10.47	46.7 48.4 49.9	.023 .026 .030	.110 .129	.366 .430
	API API API	30.00	29.19 .4060 29.12 .4380 29.06 .4690	128.6 138.6 148.3	418.4 427.1 435.5	1131 1131 1131	1100 1098 1096	669.1 666.2 663.3	37.75 40.68 43.51	4133 4445 4744	275.5 296.3 316.3	10.46 10.45 10.44	51.3 52.7 53.9	.034 .037 .041	.167 .186 .205	.556 .621 .684
	SCH 20 XS API SCH 30 API API	30.00	29.00 .5000 28.75 .6250 28.50 .7500	157.9 196.6 234.9	443.9 477.7 511.1	1131 1131 1131	1093 1084 1074	660.5 649.2 637.9	46.34 57.68 68.92	5042 6224 7375	336.1 414.9 491.7	10.43 10.39 10.34	55.0 58.9 62.0	.045 .059 .073	.224 .301 .378	.747 1.00 1.26
32	API API SCH 10 API API	32.00 32.00	31.50 .2500 31.44 .2810 31.38 .3120 31.31 .3440	84.98 95.43 105.9 116.6	422.4 431.6 440.7 450.0	1206 1206 1206 1206	1188 1185 1183 1180	779.3 776.2 773.2 770.0	24.94 28.00 31.06 34.21	3142 3522 3899 4286	196.4 220.1 243.7 267.9	11.23 11.21 11.20 11.19	43.1 45.2 47.0 48.8	.015 .018 .021	.068 .085 .103	.226 .284 .343 .403
	STD API API API	32.00 32.00	31.25 .3750 31.19 .4060 31.12 .4380	127.0 137.3 148.0	459.1 468.1 477.5	1206 1206 1206	1178 1176 1173	767.0 764.0 760.8	37.26 40.30 43.43	4658 5029 5409	291.2 314.3 338.1	11.18 11.17 11.16	50.4 51.8 53.2	.027 .031 .034	.139 .156 .175	.462 .521 .582
	API SCH 20 XS API SCH 30 API SCH 40 API	32.00 32.00	31.06 .4690 31.00 .5000 30.75 .6250 30.62 .6880	158.3 168.6 209.9 230.6	486.5 495.5 531.5 549.6	1206 1206 1206 1206	1171 1169 1159 1154	757.8 754.8 742.6 736.6	46.46 49.48 61.60 67.68	5775 6139 7583 8298	360.9 383.7 474.0 518.6	11.15 11.14 11.09 11.07	54.5 55.7 59.7 61.4	.037 .041 .055	.192 .210 .282 .318	.641 .700 .940
	API	32.00	30.50 .7500	250.9	567.3	1206	1150	730.6	73.63	8993	562.1	11.05	63.0	.068	.354	1.18
34	API API SCH 10 API API STD API	34.00 34.00 34.00	33.50 .2500 33.44 .2810 33.38 .3120 33.31 .3440 33.25 .3750	90.34 101.4 112.5 124.0 135.0	472.0 481.7 491.4 501.4 511.0	1282 1282 1282 1282 1282	1263 1261 1258 1256 1253	881.4 878.2 874.9 871.5 868.3	26.51 29.77 33.02 36.37 39.61	3774 4231 4685 5151 5599	222.0 248.9 275.6 303.0 329.4	11.93 11.92 11.91 11.90 11.89	43.4 45.5 47.4 49.2 50.8	.013 .016 .019 .022 .025	.064 .080 .097 .114	.212 .267 .323 .380 .435
	API API API	34.00 34.00 34.00	33.19 .4060 33.12 .4380 33.06 .4690	146.0 157.4 168.4	520.6 530.5 540.1	1282 1282 1282	1251 1249 1246	865.1 861.7 858.5 855.3	42.85 46.18 49.40	6046 6504 6945	355.6 382.6 408.5	11.88 11.87 11.86	52.3 53.7 55.0	.028 .031 .034	.147 .164 .181	.490 .547 .603
	SCH 20 XS API SCH 30 API SCH 40 API API	1			549.7 588.1 607.4 626.2	1282 1282 1282 1282	1244 1235 1230 1225	842.4 835.9 829.6	52.62 65.53 72.00 78.34	7383 9128 9992 10832	434.3 536.9 587.7 637.2		56.2 60.4 62.2 63.8	.038 .051 .057 .063	.198 .265 .299 .333	.659 .884 .998 1.11
36	API API SCH 10 API API	36.00 36.00 36.00 36.00	35.44 .2810 35.38 .3120 35.31 .3440	119.2 131.3	534.6 544.8 555.4	1357 1357 1357 1357	1334 1331		38.53	4486 5029 5569 6124	279.4 309.4 340.2	12.62 12.61	43.6 45.7 47.7 49.5	.012 .014 .017 .020	.060 .076 .091 .108	.201 .253 .305 .358
	STD API API API API	36.00 36.00 36.00	35.19 .4060 35.12 .4380 35.06 .4690	178.4	575.8 586.3 596.5	1357 1357 1357 1357	1327 1324 1322	975.9 972.5 968.9 965.5	45.40 48.93 52.35	6659 7191 7737 8263	399.5 429.8 459.0	12.57 12.56	52.7 54.1 55.5	.023 .026 .029 .032	.123 .139 .155 .171	.411 .463 .517
	SCH 20 XS API API SCH 30 API SCH 40 API	36.00 36.00 36.00 36.00	34.88 .5620	213.2 236.7	606.7 626.9 647.4 687.9	1357 1357 1357 1357			62 . 57 69 . 46	9825 10868 12906			56.7 59.0 61.1 64.6	.041	.187 .218 .250 .314	.622 .727 .834 1.05

PI	PE DATA													TAI	BLES	P-1
NPS (inch)	PIPING CDDES and MANUFACTURERS' WEIGHTS	0.D. (in.)	MENSIONS I.D. Wall (in.) (in.)		HTS Waterfilled (lb/ft)	External (in ² /ft)		IEAS Flow (in ²)	Metal (in ²)	Moment of Inertia (in ⁴)	Section Modulus (in ³)	Radius of Gyration (in.)	Continuo Span (ft)	ous Spans Sag (in.)	Code P Design (kPSI)	ressures Bursting (kPSI)
22	SCH 10 API API	22.00	21.50 .2500 21.44 .2810	58.22 65.34	215.4 221.6	829.4 829.4	810.5 808.2	363.1 361.0	17.08 19.17	1010 1131	91.84 102.8	7.690 7.679	41.3 43.1	.026 .031	.099	.329
	API API	22.00	21.38 .3120 21.31 .3440	72.45	227.8	829.4	805.9 803.4	358.9 356.7	21.26	1250	113.7 124.8	7.669 7.658	44.7 46.2	.036	.150 .176	.500 .588
	SCH 20 STD API API API	22.00	21.25 .3750 21.19 .4060 21.12 .4380	86.82 93.87 101.1	240.4 246.5 252.9	829.4 829.4 829.4	801.1 798.8 796.4	354.7 352.6 350.5	25.48 27.54 29.67	1490 1606 1725	135.4 146.0 156.8	7.647 7.636 7.625	47.5 48.7 49.8	.046 .051 .056	.202 .228 .255	.674 .760 .850
	API SCH 30 XS API API	22.00	21.06 .4690 21.00 .5000 20.50 .7500	108.1	259.0 265.1	829.4 829.4	794.0 791.7	348.4 346.4	31.72 33.77	1839 1952 2830	167.2 177.5	7.614 7.603	50.8 51.8	.061	.307	.936 1.02
	SCH 60 API SCH 80 API	22.00	20.25 .8750 19.75 1.125	170.6 197.9 251.4	313.6 337.4 384.1	829.4 829.4 829.4	772.8 763.4 744.6	330.1 322.1 306.4	50.07 58.07 73.78	3245 4030	257.2 295.0 366.4	7.518 7.475 7.391	57.3 59.1 61.8	.101 .116 .141	.519 .627 .845	1.73 2.09 2.82
	SCH 100 API SCH 120 SCH 140	22.00 1	19.25 1.375 18.75 1.625 18.25 1.875	303.6 354.5	429.7 474.1	829.4 829.4 829.4	725.7 706.9 688.0	291.0 276.1	89.09 104.0	4759 5432 6054	432.6 493.8 550.3	7.308 7.227	63.5 64.6	.161 .176	1.07 1.29	3.56 4.31
24	SCH 160 SCH 10 API	22.00 1	17.75 2.125 23.50 .2500	404.0 452.2 63.57	517.3 559.3 251.4	829.4 904.8	669.2 885.9	261.6 247.4 433.7	118.5 132.7 18.65	6626	109.6	7.146 7.067 8.397	65.2 65.6 41.8	.188 .197	1.52 1.76	5.08 5.87
24	API API	24.00 2 24.00 2	23.44 .2810 23.38 .3120	71.36 79.13	258.2 265.0	904.8 904.8	883.6 881.3	431.5 429.2	20.94	1473 1629	122.7 135.7	8.387 8.376	43.6 45.3	.023	.114	.379 .458
	API SCH 20 STD API API	24.00 2	23.31 .3440 23.25 .3750 23.19 .4060	87.13 94.85 102.6	272.0 278.7 285.4	904.8 904.8 904.8	878.8 876.5 874.2	426.8 424.6 422.3	25.57 27.83 30.09	1789 1942 2095	149.1 161.9 174.6	8.365 8.354 8.343	46.8 48.2 49.5	.036 .041 .045	.162 .185 .209	.539 .618 .696
	API API	24.00 2	23.12 .4380 23.06 .4690	110.5	292.3 299.0	904.8	871.8 869.4	420.0 417.7	32.42 34.67	2251 2401	187.6 200.1	8.332 8.321	50.7 51.7	.050 .055	.233	.778 .857
	XS API SCH 30 API API	24.00 2	23.00 .5000 22.88 .5620 22.75 .6250	125.8 141.0 156.4	305.7 319.0 332.4	904.8 904.8 904.8	867.1 862.4 857.7	415.5 411.0 406.5	36.91 41.38 45.90	2549 2843 3137	212.4 236.9 261.4	8.310 8.289 8.267	52.7 54.5 56.1	.059 .068 .077	.281 .329 .377	.937 1.10 1.26
	SCH 40 API API SCH 60	24.00 2	22.62 .6880 22.50 .7500 22.06 .9690	171.7 186.7 238.9	345.8 358.9 404.5	904.8 904.8 904.8	852.9 848.2 831.7	402.0 397.6 382.3	50.39 54.78 70.11	3426 3705 4657	285.5 308.8 388.1	8.246 8.224 8.150	57.5 58.7 61.9	.085 .093 .117	.426 .475 .647	1.42 1.58 2.16
	SCH 80 SCH 100	24.00 2 24.00 2	21.56 1.219 20.94 1.531	297.3 368.3	455.4 517.4	904.8 904.8	812.9 789.3	365.1 344.3	87.24 108.1	5676 6852	473.0 571.0	8.066 7.962	64.5 66.4	.140 .163	.848 1.10	2.83 3.67
	SCH 120 SCH 140 SCH 160	24.00 1	20.38 1.812 19.88 2.062 19.31 2.344	430.5 484.3 543.5	571.7 618.7 670.3	904.8 904.8 904.8	768.2 749.3 728.0	326.1 310.3 292.9	126.3 142.1 159.5	7825 8625 9458	652.0 718.8 788.2	7.871 7.790 7.701	67.5 68.2 68.6	.178 .188 .197	1.34 1.55 1.79	4.45 5.16 5.98
26	API API	26.00 2	25.50 .2500 25.44 .2810	68.92 77.38	290.1 297.5	980.2 980.2	961.3 959.0	510.7 508.2	20.22	1676 1878	129.0 144.4	9.104 9.094	42.2 44.1	.020	.083	.278 .350
	SCH 10 API API	26.00 2	25.38 .3120 25.31 .3440	85.81 94.49			956.7 954.2			1	175.5		45.8 47.4	.028 .032	.127 .149	.422 .497
	SID API API API		25.25 .3750 25.19 .4060 25.12 .4380	102.9 111.3 119.9	327.0	980.2	951.9 949.6 947.2	498.3	30.19 32.64 35.17	2478 2674 2874	190.6 205.7 221.1	9.050	48.8 50.2 51.4	.037 .041 .045	.171 .193 .215	.570 .642 .718
	API SCH 20 XS API API	26.00 2 26.00 2		128.2 136.5 153.1	349.1	980.2	942.5	493.3 490.9 486.0	40.06	3066 3257 3635	235.9 250.5 279.6	9.017	52.5 53.6 55.5	.049 .054 .062	.237 .259 .303	.791 .864 1.01
	API API	26.00 2	24.75 .6250 24.50 .7500	169.8 202.8	378.1	980.2	933.1	481.1 471.4	49.82	4013 4746	308.7 365.0	8.974	57.1 59.9	.002 .070 .085	.348 .438	1.16 1.46
28	API API	28.00 2	27.50 .2500 27.44 .2810	74.28 83.39	339.4	1056 1056		591.3	24.47		149.9 167.9	9.801	42.5 44.5		.077 .097	.258 .325
	SCH 10 API API API STD API	28.00 2	27.38 .3120 27.31 .3440 27.25 .3750	92.49 101.9 110.9	355.6	1056 1056 1056	1030	588.6 585.9 583.2	29.89	2858	185.8 204.1 221.8	9.779	46.3 47.9 49.4	.025 .029 .033	.118 .138 .159	.392 .461 .529

PIP	E DATA														TA	BLES	P-1
NPS (inch)	PIPING CODES and MANUFACTURERS WEIGHTS	0 0. (in.)	DIMENSION 1.0 (in.)	IS Wall (in.)		HTS Waterfilled (lb/ft)	External (in ² /ft)		EAS Flow (in ²)	Metal (in²)	Moment of Inertia (in ⁴)	Section Modulus (in 1)	Radius of Gyration (in.)	Continuo Span (ft)	Sag (in.)	Code P Oesign (kPSI)	ressures Bursting (kPSI)
16	API	16.00	15.56	.2190	37.00	119.4	603.2	586.7	190.2	10.86	338.1	42.26	5.580	37.6	•034	.101	.335
	SCH 10 API API	16.00	15.50 15.44	.2500 .2810	42.16 47.29	123.9 128.3	603.2	584.3 582.0	188.7 187.2	12.37 13.88	383.7 428.7	47.96 53.59	5.569 5.558	39.4 40.9	.041 .048	.136	.453 .571
	SCH 20 API	16.00 16.00	15.38	.3120	52.40	132.8	603.2	579.7	185.7	15.38	473.2	59.16	5.548	42.2	.055	.207	.689
	API	16,00	15.31	.3440	57.66	137.4	603.2	577.2	184.1	16.92	518.6	64.83	5.537	43.4	.061	.243	.811
	SCH 30 STD API	16.00	15.25	.3750	62.73	141.8	603.2	574.9	182.7	18,41	562.1	70.26	5.526	44.5	.068	.279	.930
	API	16.00	15,12	•4380	72.98	150.8	603.2	570.2	179.6	21.41	648.7	81.09	5.504	46.4	.081	.352	1.17
	API	16.00		.4690	77.99	155.1	603.2	567.8 565.5	178.2 176.7	22.88 24.35	690.6 731.9	86.33 91.49	5.494 5.483	47.2 47.9	.087	.388	1.29 1.41
	SCH 40 XS API API	16.00	15.00 14.75	.5000 .6250	82.98 102.9	159.5 176.9	603.2	556.1	170.9	30.19	893.5	111.7	5.440	50.3	.114	.571	1.90
	SCH 60	16.00	14.69	.6560	107.8	181.1	603.2	553.7	169.4	31.62	932.3	116.5	5.430	50.7	.119	.608	2.03
	API	16.00	14.50	.7500	122.5	194.0	603.2	546.6	165.1	35.93	1047	130.9	5.398	52.0	.132	.720	2.40
	SCH 80	16.00	14.31	.8440	137.0	206.6	603.2	539.5	160.9	40.19	1157	144.7	5.367	52.9	.144	.833	2.78
	SCH 100	16.00	13.94	1.031	165.2	231.3	603.2	525.5	152.6	48.48	1364	170.6	5.305	54.3	.163	1.06	3.54 4.32
	SCH 120	16.00	13.56	1.219	192.9	255.5	603.2	511.3 494.8	144.5 135.3	56.61 65.79	1556 1761	194.5 220.1	5.244 5.173	55.2	.178 .192	1.57	5.25
	SCH 140 SCH 160	16.00	13.12 12.81	1.438	224.2	282.8 301.7	603.2	483.0	128.9	72.14	1894	236.8	5.124	56.0	.199	1.78	5.92
					 									60.1	.035	.121	.402
18	SCH 10 API	18.00		.2500 .2810	47.51 53.31	151.7 156.7	678.6	659.7 657.4	240.5 238.8	13.94 15.64	549.1	61.02 68.23	6.276 6.265	40.1	.033	.152	.507
	API SCH 20 API	18.00		.3120	59.09	161.8	678.6	655.1	237.1	17.34	678.2	75.36	6.255	43.2	.047	.183	.612
ļ	API	18.00		.3440	65.03	167.0	678.6	652.6	235.4	19.08	743.8	82.65	6.244	44.5	.053	.216	.720
	SID API	18.00		.3750	70.76	172.0	678.6	650.3	233.7	20.76	806.6	89.63	6.233	45.7	.059	.248	.826
1	API	18.00	17.19	•4060	76.48	177.0	678.6	648.0	232.0	22.44	868.8	96.53	6.222	46.7	.065	.279	.931
	SCH 30 API	18.00		.4380	82.36	182.1	678.6	645.6	230.3	24.17	932.2	103.6	6.211 6.200	47.7	.071 .077	.312	1.04
	API	18.00		.4690 .5000	93.68	187.0 192.0	678.6 678.6	643.2 640.9	228.6 227.0	25.83 27.49	993.0	110.3 117.0	6.190	49.4	.082	.376	1.25
	XS API SCH 40 API	18.00	16.88	.5620	104.9	201.8	678.6	636.2	223.7	30.79	1171	130.2	6.168	50.8	.093	.440	1.47
	API	18.00		.6250	116.3	211.7	678.6	631.5	220.4	34.12	1289	143.2	6.147	52.0	.103	.506	1.69
	SCH 60 API	18.00		.7500	138.5	231.1	678.6	622.0	213.8	40.64	1515	168.3	6.105	54.0	.120	.638	2.13
	SCH 80 API	18.00		.9380	171.3	259.8	678.6	607.9	204.2	50.28	1835	203.9	6.041	56.0	.143	.838	2.79
	SCH 100	18.00		1.156	208.5	292.2	678.6	591.4	193.3	61.17	2180 2498	242.2 277.6	5.969 5.898	57.6	.163	1.08	3.58 4.39
	SCH 120 SCH 140	18.00		1.375 1.562	244.7	323.8 350.2	678.6 678.6	574.9 560.8	182.7 173.8	71.81 80.66	2749	305.5	5.838	59.1	.189	1.53	5.10
İ	SCH 160	18.00		1.781	309.3	380.2	678.6	544.3	163.7	90.75	3020	335.6	5.769	59.4	.198	1.78	5.94
		 				182.2	754.0	735.1	298.6	15.51	756.4	75.64	6.983	40.8	.030	.109	.362
20	SCH 10 API API	20.00	19.50 19.44	.2500 .2810	52.86 59.33	187.8	754.0	732.8	296.8	17.41	846.3	84.63	6.972	42.5	.035	.137	.456
	API	20.00		.3120	65.77	193.4	754.0	730.5	294.9	19.30	935.3	93.53	6.962	44.0	.041	.165	.550
	API		19.31	.3440	72.39	199.2	754.0	728.0	292.9	21,24	1026	102.6	6.951	45.4	.046	.194	.648
	SCH 20 STD API		19.25			204.8		725.7		23.12	1113		6.940	46.6	.052	.223	.742
	API		19.19			210.4			289.2			120.0		47.8			•837
	API		19.12			216.1			287.2 285.4			128.8 137.3		48.8 49.8			.936 1.03
	SCH 30 XS API		19.06 19.00			221.6 227.2			283.5			145.7		50.6			1.13
	SCH 40		18.81			243.8	754.0	709.2	277.9	36.21		170.6		52.9		.425	1.42
	API		18.75		129.6	249.2	754.0	706.9	276.1	38.04	1787	178.7	6.854	53.6			1.51
	SCH 60 API	20.00	18.38	.8120	166.8	281.7	754.0	692.8	265.2	48.95		225.7		56.6		1	2.10
1	SCH 80		17.94			318.8			252.7		2772		6.716	59.0			2.80
	SCH 100		17.44			360.2			238.8 227.0			331.5 375.4		60.7		1	3.62 4.35
	SCH 120 SCH 140		17.00 16.50			395.4 434.5			213.8			421.6		62.3			5.20
	SCH 160		16.06			467.9	754.0	605.5	202.6	111.5		458.7		62.6			5.96
	-a. 100	20.00	70.00	1,707	200.1		1.5										

PIP	E DATA														TA	BLES	P-1
NPS	PIPING CODES and	C	IMENSION	S	WEIG				EAS		Moment	Section	Radius of	Continuo		Code P	
(inch)	MANUFACTURERS' WEIGHTS	0.D. (m.)	1.D. (in.)	Wall (in.)	Empty \	Naterfilled (lb/ft)	External (in ² /ft)	Internal (in ² /ft)	Flow (in ²)	Metal (in ²)	of Inertia (in ⁴)	Modulus (in 3)	Gyration (in.)	Span (ft)	Sag (in.)	Design (kPSI)	Bursting (kPS1)
											l					,	
10	API	10.75	10.37	.1880	21.26	57.86	405.3	391.1	84.52	6.238	87.02	16.19	3.735	33.5	.047	.098	.325
	API	10.75	10.34	.2030	22.92	59.31	405.3	390.0	84.04	6.726	93.56	17.41	3.730	34.3	•052	.123	.410
	API	10.75	10.31	.2190	24.69	60.86	405.3	388.8	83.52	7.245	100.5	18,69	3.724	35.1	.058	.150	.500
	SCH 20 API	10.75	10.25	.2500	28.10	63.84	405.3	386.4	82.52 81.58	8.247	113.7 125.9	21.16 23.42	3.713 3.703	36.4 37.5	.067 .076	.203	.676 .841
	API API	10.75	10.19	.2790 .3070	31.28 34.33	66.61 69.27	405.3	384.2 382.1	80.69	9.178 10.07	137.4	25.57	3.694	38.4	.084	.300	1.00
	SCH 30 API API	10.75 10.75	10.14 10.06	.3440	38.33	72.76	405.3	379.3	79.52	11.25	152.4	28.35	3.681	39.5	.095	.364	1,21
	SCH 40 STD API	10.75	10.00	.3650	40.58	74.73	405.3	377.7	78.85	11.91	160.7	29.90	3.674	40.0	.100	.400	1.33
	API	10.75	9.874	.4380	48.36	81.52	405.3	372.2	76.57	14.19	188.9	35.15	3.649	41.5	.118	.528	1.76
	SCH 60 XS API	10.75	9.750	.5000	54.87	87.20	405.3	367.6	74.66	16.10	212.0	39.43	3.628	42.5	.131	.637	2.12
	SCH 80	10.75	9.562	.5940	64.59	95.68	405.3	360.5	71.81	18.95	245.2	45.62	3.597	43.7	.149	.805	2.68
	SCH 100 API	10.75	9.312	.7190	77.22	106.7	405.3	351.1	68.10	22.66	286.4	53.29	3.556	44.7	.167	1.03	3.44
	SCH 120	10.75	9.062	.8440	89.51	117.4	405.3	341.6	64.50	26.27	324.5	60.38	3.515	45.3	.181	1.26	4.21
	SCH 140 XXS API	10.75	8.750	1.000	104.4	130.4	405.3	329.9	60.13 56.75	30.63 34.02	367.8 399.3	68.43 74.29	3.465 3.426	45.8 46.0	.194	1.56	5.19 6.00
	SCH 160	10.75	8.500	1.125	115.9	140.5	405.3	320.4								 	
12		12.75	12.34	.2030	27.27	79.09	480.7	465.4	119.7	8.002	157.5	24.71	4.437	35.3	.042	.104	•345
	API	12.75	12.31	•2190	29.38	80.94	480.7	464.2	119.1	8.621	169.3	26.55	4.431	36.2	.046	.126	.421
ŀ	SCH 20 API	12.75	12.25	.2500	33.46	84.49	480.7	461.8 459.5	117.9 116.7	9.817 11.01	191.8 214.0	30.09 33.57	4.420 4.410	37.7	.055	.171	.569
	API API	12.75 12.75	12.19 12.13	.2810 .3120	37.51 41.55	88.03 91.56	480.7 480.7	457.1	115.5	12.19	235.9	37.00	4.399	40.2	.071	.260	.866
	SCH 30 API	12.75	12.13	.3300	43.88	93.59	480.7	455.8	114.8	12.88	248.5	38.97	4.393	40.8	.076	.286	.953
	API	12.75	12.06	.3440	45.69	95.17	480.7	454.7	114.3	13.41	258.1	40.49	4.388	41.3	.080	.306	1.02
	STD API	12.75	12.00	.3750	49.69	98.66	480.7	452.4	113.1	14.58	279.3	43.82	4.377	42.1	.087	.351	1.17
	SCH 40 API	12.75	11.94	.4060	53.66	102.1	480.7	450.1	111.9	15.74	300.2	47.09	4.367	42.9	-094	.397	1.32
l	API	12.75	11.87	.4380	57.74	105.7	480.7	447.6	110.7	16.94	321.4	50.42	4.356	43.7	.101	.443	1.48
	XS API	12.75	11.75	.5000	65.58	112.5	480.7	443.0	108.4	19.24	361.5	56.71	4.335	44.9	.114	•535	1.78
	ȘCH 60 API	12.75	11.63	.5620	73.34	119.3	480.7	438.3	106.2	21.52	400.4	62.81	4.314	45.9	.126	.627	2.09
	API	12.75	11.50	.6250	81.14	126.1	480.7	433.5	103.9	23.81	438.7	68.81	4.293 4.271	46.7	.137	.721	2.40 2.72
	SCH 80 API	12.75	11.37	•6880 7500	88.85 96.36	132.8 139.4	480.7	428.8 424.1	101.6 99.40	26.07 28.27	475.7 510.9	74.62 80.15	4.251	47.4	.146	.911	
	API SCH 100	12.75 12.75	11.25 11.06	.7500 .8440	107.6	149.2	480.7	417.0	96.11	31.57	562.2	88.19	4.220	48.6	.166	1.06	
	SCH 120 XXS API	12.75	10.75	1.000	125.8	165.1	480.7	405.3	90.76	36.91	641.7	100.7	4.169	49.4	.181	1.30	4.33
	SCH 140 API	12.75	10.50	1.125	140.0	177.5	480.7	395.8	86.59	41.09	700.6	109.9	4.129	49.8	.190	1.50	
ł	SCH 160 API	12.75	10.13	1.312	160.7	195.5	480.7	381.7	80.53	47.14	781.1	122.5	4.070	50.1	.201	1.80	6.01
14	API	14,00	13.58	.2100	31.01	93.72	527.8	512.0	144.8	9.098	216.3	30.90	4.876	36.3	.039	.103	.344
-7	API	14.00	13.56	.2190	32.31	94.87	527.8	511.3	144.5	9.481	225.1	32.16	4.873	36.8	.041	.115	
	SCH 10 API	14.00	13.50	.2500	36.80	98.79	527.8	508.9	143.1	10.80	255.3	36.47	4.862	38.4	.049	.155	
1	API	14.00	13.44	.2810	41.27	102.7	527.8	506.6	141.8	12.11	285.0	40.72	4.851	39.8	.057	.196	•653
1	SCH 20 API		13.38			106.6	527.8			13,42	314.4		4.841	41.1	.064	.236	.788
	API		13.31		1	110.6			139.2			49.18			.072		.928
	SCH 30 STD API		13.25		1	114.4			137.9			53.25		1	.079		1.06
-	SCH 40 API		13.12		}	122.2			135.3			61.36 65.26		1	.093	1	1.34
	API		13.06			126.0			134.0			69.11		1	.099		1.48 1.62
	XS API SCH 60		13.00 12.81			129.7 141.1			132.7 128.9				4.744		.103		2.04
	API		12.75			144.8			127.7			84.08			.127		2.18
	SCH 80 API		12.50			159.5			122.7				4.692	1	.146		2.75
	SCH 100 API		12.12			181.2			115.4			117.9			.167		3.63
	SCH 120		11.81			198.6			109.6			132.9		1	.181		4.37
	SCH 140 API	E .	11.50		1	215.6			103.9				4,529	52.2	.191		5.13
1	SCH 160		11.19		189.6	232.2	527.8	421.8	98.31	55.63	1117	159.5	4.480	52.4	.199	1,77	5.90

Thru NPS 10, wall thicknesses for SCH 40S and SCH 80S stainless steel pipes are the same as for SCH 40 and SCH 80 carbon steel pipes

PIP	E DATA														TA	BLES	P-1
	PIPING CODES and	D	IMENSIONS		WEIG	HTS	-	ARI	AS		Moment	Section	Radius of	Continuo	us Spans	Code Pi	ressures
NPS inch)	MANUFACTURERS' WEIGHTS	0.0. (in,)	I.D. (in.)	Wall (in.)	Empty V (lb/ft)	Vaterfilled (lb/ft)	External (in ² /ft)	Internal (in ² /ft)	Flow (in ²)	Metal (in ²)	of Inertia (in ⁴)	Modulus (in 3)	Gyration (in.)	Span (ft)	Sag (in.)	Design (kPS1)	Burstin (kPSI
	Treatment of the control of the cont	(16,)	(Ma	(1112)	(10) 14	(,,,,,,	(/)	(1)			0.0		(111.)				
.50	SCH 40 STD API	2.875	2.469	.2030	5.807	7.881	108.4	93.08	4,788	1.704	1.530	1.064	.9474	23.2	.172	.865	2.8
	SCH 80 XS API	2.875	2.323	.2760	7.680	9.515	108.4	87.58	4.238	2.254	1.924	1.339	.9241	23.7	.196	1.37	4.5
	SCH 160	2.875	2.125	.3750	10.04	11.57	108.4	80.11	3.547	2.945	2.353	1.637	.8938	23.8	.212	2.09	6.9
	XXS API	2.875	1.771	.5520	13.73	14.80	108.4	66.77	2.463	4.028	2.871	1.997	.8442	23.2	.216	3.49	11.
.00	API	3.500	3.250	.1250	4.517	8.109	131.9	122.5	8.296	1.325	1.890	1.080	1.194	23.1	.105	.286	.95
	API	3.500	3.188	.1560	5.585	9.042	131.9	120.2	7.982	1.639	2.296	1.312	1.184	24.1	.127	.451	1.
ĺ	API	3.500	3.124	.1880	6.666	9.986	131.9		7.665	1.956	2.691	1.538	1.173	24.8	.146	.624	
	SCH 40 STD API	3.500	3.068	.2160	7.595	10.80	131.9		7.393	2.228	3.017	1.724	1.164	25.3	.159	.777	2.
	API	3.500	3.000	.2500	8.699	11.76	131.9	113.1	7.069	2.553	3.390	1.937	1.152	25.7	.173	.965	3.
į	API API	3.500	2.938	.2810	9.684	12.62	131.9	110.8	6.779	2.842	3.709 3.894	2.119 2.225	1.142 1.136	25.9 26.0	.183 .188	1.14	3.8 4.3
ĺ	SCH 80 XS API SCH 160	3.500 3.500	2.900 2.624	.3000 .4380	10.28 14.36	13.14 16.70	131.9	109.3 98.92	6.605 5.408	3.016 4.213	5.039	2.879	1.094	26.3	.210	2.07	6.8
İ	XXS API	3.500	2.300	.6000	18.63	20.43	131.9	86.71	4.155	5.466	5.993	3.424	1.047	25.9	.217	3.10	
							 										
4	API	4.500	4.250	.1250	5.855	12.00	169.6	160.2	14.19	1.718	4.114	1.828 2.235	1.547 1.537	24.7 26.0	.082	.141	.8
Ì	API	4.500	4.188	.1560	7.255	13.22	169.6	157.9 155.5	13.78 13.36	2.129 2.547	5.028	2.636	1.526	27.0	.102	.399	1.
	API API	4.500 4.500	4.124 4.062	.1880	8.679 10.04	14.46 15.65	169.6	153.1	12.96	2.945	6.765	3.007	1.516	27.7	.136	.528	
ļ	SCH 40 STD API	4.500	4.026	.2370	10.82	16.33	169.6		12.73	3.174	7.233	3.214	1.510	28.1	.144	.604	
	API	4.500	4.000	.2500	11.38	16.82	169.6	150.8	12.57	3.338	7.563	3.361	1.505	28.3	.149	.659	
	API	4.500	3.938	.2810	12.69	17.97	169.6	148.5	12.18	3.724	8.324	3.699	1.495	28.7	.161	.791	2.
	API	4.500	3.876	.3120	13.99	19.10	169.6	146.1	11.80	4.105	9.050	4.022	1.485	29.0	.170	.924	3.
	SCH 80 XS API	4.500	3.826	.3370	15.02	20.00	169.6	144.2	11.50	4.407	9.610	4.271	1.477	29.2	.177	1.03	
1	SCH 160 API	4.500	3.438	.5310	22.56	26.58	169.6	129.6	9.283	6.621	13.27	5.898	1.416	29.8	•208	1.91	
	XXS API	4.500	3.152	.6740	27.61	30.99	169.6	118.8	7.803	8.101	15.28	6.793	1.374	29.6	.216	2.61	8.
6	API	6.625	6.249	.1880	12.96	26.24	249.8	235.6	30.67	3.802	19.71	5.950	2.277	30.1	•084	•214	
	API	6.625	6.187	.2190	15.02	28.04	249.8	233.2	30.06	4.407	22.63	6.833	2.266	31.2	.098	.300	
	API	6.625	6.125	.2500	17.06	29.82	249.8	230.9	29.46	5.007	25.47	7.690	2.256	32.1	.111	.387	
	SCH 40 STD API	6.625	6.065	.2800	19.02	31.53	249.8	228.6	28.89	5.581	28.14	8,496	2.245	32.8	.122	.472	
	API	6.625	6.001	.3120	21.09	33.34	249.8	226.2	28.28	6.188	30.90	9.329 10.14	2.235 2.224	33.5 34.0	.133	.563	
	API	6.625 6.625	5.937	.3440	23.13		249.8	223.8 217.2	27.68 26.07	6.788 8.405	40.49	12.22	2.195	35.0	.165	.910	
	SCH 80 XS API SCH 120 API	6.625	5.761 5.501	.4320 .5620	28.64 36.48	46.77	249.8	207.4	23.77	10.70	49.61		2.153	35.8	.187	1.30	
	SCH 160 API	6.625	5.187	.7190	45.46	54.61	249.8	195.5	21.13	13.34	59.03	17.82		36.1	.204	1.79	
	XXS	6.625	4.897	.8640	53.29	61.45	249.8	184.6	18.83	15.64	66.33	20.02		36.1	.212	2.25	7.
						۸0 12	225.2	311.0	53.44	4,983	44.36	10.29	2.984	32.0	.062	.143	.4
8	API API	8.625 8.625	8.249 8.219	.1880	16.98 18.30	40.12 41.28	325.2	309.8	53.06	5.371	47.65			32.7	.068	.175	
	API	8.625	8.187	.2190	19.71		325.2			5.783	51.12			33.4	.074	.209	
	SCH 20 API		8.125	.2500	22.42		325.2		51.85		1	13.38		34.5	.086	.275	.9
	SCH 30 API		8.071			46.91	325.2	304.3	51.16		63.35	14.69	2.953	35.4	.09 5	•332	1.
	API		8.001	.3120	1	49.54	325.2	301.6	50.28	8.148			2.941	36.3	.106	.408	
	SCH 40 STD API		7.981	.3220		50.29		300.9		8.399			2.938	36.6		.430	
	API		7.937	.3440	1	51.92	325.2		49.48		i		2.930		.116	.477	
	API		7.875	.3750	ŧ	54.21	4		48.71		,		2.920 2.909	37.7	.125	.545	
	SCH 60		7.813	.4060		56.49 58.81	1		47.94 47.16				2.899	1	.140	.684	
	API		7.749 7.625	•4380 5000		63.27			45.66				2.878	1	.153	.822	
	SCH 80 XS API SCH 100		7.437	.5940		69.89			43.44				2.847		.170	1.03	
	SCH 120 API		7.187		ŀ	78.43			40.57				2.807		.186	1.32	
	SCH 140 API		7.001		ŧ	84.59			38.50		153.7	35.65	2.777		.195	1.54	
	XXS API		6.875			88.68	325.2	259.2	37.12	21.30	162.0	37.56	2.757	41.2	.200	1.69	
	SCH 160		6.813			90.66			36.46			38.47	2.748	41.2	.202	1.77	5.

Thru NPS 10, wall thicknesses for SCH 40S and SCH 80S stainless steel pipes are the same as for SCH 40 and SCH 80 carbon steel pipes

Tables P-1 present calculated data as a guide only. Spans are for pipe arranged in pipeways with the following assumptions: Bare pipe - continuous straight run with welded joints and two or more straight spans at each end.

SPANS - calculated with lines full of water and a maximum bending stress of 4 000 PSI

SAG - (deflection) calculated with lines empty (drained condition)

The following factors were not considered in calculating spans for these tables:

Concentrated mechanical loads from flanges, valves, strainers, filters, and other inline equipment - weights of connecting branch lines - torsional loading from thermal movement - sudden reaction from lines(s) discharging contents - vibration - flattening effect of weight of contents in larger liquid filled lines - weight of insulation and pipe covering - weight of ice and snow - wind loads - seismic shock - reduction in wall thickness of pipe from threading or grooving.

DESIGN PRESSURE - calculated per ANSI B31.1 using allowable stress value of 9 000 PSI for seamless carbon steel pipe

BURSTING PRESSURE is approximate, calculated on yield strength of 30 000 PSI

API = American Petroleum Institute's standard SL, for 'Line pipe'. API pipe sizes; manufacturers' weights: Double-extra-strong (XXS), Extra-strong (XS), and Standard (STD), are included with schedule numbers in standard ANSI 836.10M. Also refer to 2.1.3

PIP	E DATA: DIME	NSION	S&S	TRES	S PAR	AMETE	RS								TAI	BLES	P-1
NPS (inch)	PIPING CODES and MANUFACTURERS' WEIGHTS		MENSIONS 1.0. (in.)		WEIG		External (in ² /ft)	ARE Internal (in ² /ft)	AS Flow (in ²)	Metal (in ²)	Moment of Inertia (in ⁴)	Section Modulus (in ³)	Radius of Gyration (in.)	Continuou Span (ft)	s Spans Sag (in.)	Code Pr Design (kPSI)	ressures Bursting (kPSI)
.375	SCH 40 STD API SCH 80 XS API	.6750 .6750	.4930 .4230	.0910 .1260	.5690 .7406	.6516 .8015	25.45 25.45	18.59 15.95	.1909 .1405	.1670 .2173	.0073 .0086	.0216 .0255	.2090 .1991	11.5 11.3	.213 .217	1.75 2.89	5.84 9.63
.500	SCH 40 STD API SCH 80 XS API SCH 160 XXS API	.8400 .8400 .8400	.6220 .5460 .4640 .2520	.1090 .1470 .1880 .2940	.8531 1.091 1.312 1.719	.9847 1.192 1.386 1.740	31.67 31.67 31.67 31.67	23.45 20.58 17.49 9.500	.3039 .2341 .1691 .0499	.2503 .3200 .3851 .5043	.0171 .0201 .0222 .0242	.0407 .0478 .0528 .0577	.2613 .2505 .2399 .2192	12.9 12.7 12.3 11.5	.212 .217 .213 .194	1.83 2.82 3.99 7.56	6.10 9.41 13.3 25.2
.750	SCH 40 STD API SCH 80 XS API SCH 160 XXS API	1.050 1.050 1.050 1.050	.8240 .7420 .6120 .4340	.1130 .1540 .2190 .3080	1.134 1.477 1.948 2.447	1.365 1.665 2.076 2.511	39.58 39.58 39.58 39.58	31.06 27.97 23.07 16.36	.5333 .4324 .2942 .1479	.3326 .4335 .5717 .7180	.0370 .0448 .0528 .0579	.0705 .0853 .1005 .1103	.3337 .3214 .3038 .2840	14.4 14.3 13.9 13.3	.203 .215 .215 .203	1.33 2.14 3.55 5.77	7.13
1.00	SCH 40 STD API SCH 80 XS API SCH 160 XXS API	1.315 1.315 1.315 1.315	1.049 .9570 .8150 .5990	.1330 .1790 .2500 .3580	1.683 2.177 2.851 3.668	2.057 2.489 3.077 3.790	49.57 49.57 49.57 49.57	39.55 36.08 30.72 22.58	.8643 .7193 .5217 .2818	.4939 .6388 .8364 1.076	.0873 .1056 .1251 .1405	.1328 .1606 .1903 .2136	.4205 .4066 .3868 .3613	16.1 16.1 15.7 15.0	.199 .213 .216 .206	1.27 2.00 3.21 5.29	6.66 10.7
1.25	SCH 40 STD API SCH 80 XS API SCH 160 XXS API	1.660 1.660 1.660	1.380 1.278 1.160 .8960	.1400 .1910 .2500 .3820	2.278 3.004 3.774 5.227	2.926 3.560 4.232 5.500	62.58 62.58 62.58 62.58	52.02 48.18 43.73 33.78	1.496 1.283 1.057 .6305	.6685 .8815 1.107 1.534	.1947 .2418 .2839 .3411	.2346 .2913 .3420 .4110	.5397 .5237 .5063 .4716	17.9 18.1 18.0 17.3	.187 .207 .216 .212	1.02 1.64 2.40 4.29	5.47 8.00
1.50	SCH 40 STD API SCH 80 XS API SCH 160 XXS API	1.900 1.900 1.900 1.900	1.610 1.500 1.338 1.100	.1450 .2000 .2810 .4000	2.725 3.640 4.871 6.424	5.480	71.63 71.63 71.63 71.63	60.70 56.55 50.44 41.47	2.036 1.767 1.406 .9503	.7995 1.068 1.429 1.885	.3099 .3912 .4824 .5678		.6226 .6052 .5810 .5489	19.0 19.3 19.3 18.7	.179 .202 .215 .215	.938 1.52 2.42 3.89	5.06 8.08
2.00	SCH 40 STD API SCH 80 XS API API SCH 160 XXS	2.375 2.375 2.375 2.375 2.375	2.067 1.939 1.875 1.687 1.503	.1540 .2180 .2500 .3440 .4360	3.662 5.034 5.688 7.480 9.051	6.313 6.884 8.448	89.54 89.54 89.54 89.54 89.54		3.356 2.953 2.761 2.235 1.774	1.075 1.477 1.669 2.195 2.656	.6657 .8679 .9551 1.164 1.311	.8043 .9804	.7665 .7565 .7283	20.9 21.5 21.6 21.5 21.2	.164 .193 .202 .215	.736 1.26 1.54 2.38 3.26	5.13 5.13 7.93

Thru NPS 10, wall thicknesses for SCH 40S and SCH 80S stainless steel pipes are the same as for SCH 40 and SCH 80 carbon steel pipes

TABLE M-8

SPECIFIC HEATS - AVERAGE VALUES

Units:	8tu	/1b/°F	= 4	186	.BJ/kg	/K
--------	-----	--------	-----	-----	--------	----

Aluminum	0.214	Glass, wool			rtz 0.17	- 0.21
Asbestos	0.20	Granite		. 19		
Asphalt	0.40	Graphite	0.		ksalt	0.22
				Rub	ber 0.27	- 0.48
Carbon	0.165	Ice:				
Carborundum	0.16	@ -112F			t, granulated	0.21
Cast iron	0.12 - 0.13	@ -40F		.43 San		0.195
Cellulose	0.37	@ -4F			dstone	0.22
Cement, dry	0.37	@ +32F	0.49 - 0.		water, sp gr 1.023	
Cement, powder	0.20			1	ica	0.191
Chalk	0.215	Kerosene	0.48 - 0.		icon	0.123
Charcoal	0.20 - 0.24			Sod	a	0.231
Chromium	0.12	Lead			ium	0.295
Coal.	0.24 - 0.37	Limestone	0.	.217 Ste	el	0.117
Coke	0.203	Lucite	0.	.35 Suc	rose	0.30
Concrete	0.19			Sug	ar, bulk	0.28
Copper	0.092	Magnesia	0.20 - 0.	.22 Sto	ne	0.20
Cork	0.48	Malleable iron			fur	0.178
	•	Masonry, brick	0.20 - 0.			
Dowtherm A	0.50	Mineral wool	0.	.20 Tar	, bituminous	0.35
Duralumin	0.23	Mercury	0.	.033 Tef	lon	0.25
		Molybdenum	0.	.06 Til		0.15
Earth, dry	0.30	1		Tin		0.056
		Nickel		1	gsten	0.04
Fuel oil:		Nylon	0.	. 5 5		
sp gr				Wat		1.00
sp gr		Olive oil	0.35 - 0.	.47 Woo	d, fir	0.65
sp gr					oak	0.57
sp gr	81 0.51	Paper		.33	pine	0.467
		Plaster of Pari			d shavings	0.52
Glass, plate	0.12	Platinum	0.03 - 0.			
Glass, pyrex	0.20	Polythene	0.	.53 Zin	C	0.095
		1		Ī		

GASES	At Constant Pressure	At Constant Volume	GASES	At Constant Pressure	At Constant Volume
Air	0.24	0.172	Iso-butane	0.39	0.355
Ammonia	0.54	0.172	150-bu carre	0.39	0.555
Argon	0.12	0.720	Methane	0.59	0.446
Carbon dioxide	0.20	0.150	Nitrogen	0.24	0.170
Carbon monoxide	0.24	0.172	Nitrous oxide	0.21	0.166
Carbon disulfide	0.16	0.132			
Chlorine	0.11	0.082	0xygen	0.22	0.157
Ethylene	0.40	0.332	Steam:		
•			@ 1.0 psia	0.46	0.349
Helium	1.25	0.75	@ 14.7 psia	0.47	0.359
Hydrogen	3.21	2.410	@ 150.0 psia	0.54	0.421
Hydrogen sulfide	0.25	0.189	Sulfur dioxide	0.15	0.119

MULTIPLY	ВҮ	TO OBTAIN	MULTIPLY	ВҮ	TO OBTAIN	
- CONTINUEO FROM PREVIOUS	CONTINUEO FROM PREVIOUS PAGE ~		ton (metric)	1 000	kilograms	
rod (survey)	16.5* 5.029 2*	feet meters	or tonne	2 204.623 0.984 206 5 1.102 311	pounds long ton (UK) short tons (US)	
square cm	0.155	square inch	ton of refrig-	12_000	Btu/hour	
square meter	0.000 247 1 1.195 99	acre square yards square feet	eration	200 3 517	Btu/minute watts	
	10.763 9 10 000	square centimeters	watt [W]	3.412 141 3 0.737 562 2	Btu/hour foot-pound/sec	
sq kilometer	0.386 102 2 247.105 383	square mile acres	tt boun	2 412 141 2	joule/second Btu	
square inch	645.16*	square millimeters	watt-hour	3.412 141 3 0.914 4*	meter	
square foot	0.092 903 04* 144	square meter square inches	yard [yd]	0.514 4	and but	
square yard	0.836 127 36*	square meter	TEMPERATURE CON	VFRSION:		
square mile	640 2.589 988 258.998 8	acres sq kilometers Fahrenheit hectares Celsius to		Celsius C = (I	F - 32) / 1.8 C x 1.8) + 32 F + 459 67) / 1.8	
therm: Europe (EEC) United States	100 000 105 506 000 105 480 400	Btu joules joules	Fahrenheit to kelvin $K = (F + 459.67)$ Celsius to kelvin $K = C + 273.15$ kelvin to Celsius $C = K - 273.15$ Rankine to kelvin $K = R / 1.8$		F + 459.67) 7 1.8 C + 273.15 C - 273.15 R / 1.8	
ton (short-US, also net ton)	ton (short-US, 907.184 74* kilograms		VISCOSITY:	0.004	cocond (Pa C)	
ton (long-UĶ,	1 016.046 91	kilograms	centipoise (dynamic)	0.001	pascal second (Pa s)	
also gross ton)) 2 240 1.016 046 91 1.12*	pounds metric tons short tons (US)	centistokes (kinematic)	0.000 001	sq meter per second	
<u> </u>						

Non-SI units: This table contains units combining kilogram in units of force and pressure. In SI, kilogram is the unit of mass, 'newton' is the unit of force, and 'pascal' is the unit of pressure

FROM 1866 TO 1959, THE METER WAS DEFINED AS 39.37-inches. IN 1959, THE U.S. YARD WAS REDEFINED, FROM 360D/3937m (0.914 401 828 037m), TO 0.9144m EXACTLY. HOWEVER, DATA FROM GEODETIC SURVEYS WITHIN THE U.S. CONTINUED TO USE THE FOOT DERIVED FROM THE PRE-1959 STAND-ARD: THE U.S. SURVEY FOOT. THE FOOT DEFINED IN 1959, IS THE INTERNATIONAL FOOT, USED IN THIS TABLE, EXCEPT AS NOTED.

RULES FOR ROUNI	DING VALUES				
Reference: ASTI	4 E 380				
FIRST DISCARDED DIGIT	LAST RETAINED DIGIT				
If less than 5	NO CHANGE				
Equal to 5 and followed by at least one digit OTHER than O	INCREASE BY ONE UNIT				
If greater than 5					
5 July 5 and 6-13 and ONLY by person	IF ODD: INCREASE BY ONE UNIT				
Equal to 5 and followed ONLY by zeros	IF EVEN: NO CHANGE				

REFERENCES: US Department of Commerce/National Institute of Standards & Technology; National Aeronautics & Space Administration; American Society for Testing Materials; The American Society of Mechanical Engineers; National Physical Laboratory-UK

MULTIPLY	ВҮ	TO OBTAIN	MULTIPLY	BY	TO OBTAIN
gallon (UK) -liquid	231 8 4 0.832 674 18 8.336 7 1.200 949 9 4.546 09*	cubic inches pints quarts gallon (UK) pounds of water @ 15.6C [60F] gallons (US) liters	kilometer [km] kilowatt-hour liter [L]	3 412.141 3 1 000 1 0.001* 61.023 744 1 0.035 314 67	mile Btu cubic centimeters cubic decimeter cubic meter cubic inches cubic foot
	4.546 09* 277.419 43 8 4 10.012	cubic decimeters cubic inches pints quarts pounds of water @ 15.6C [60F] kilogram	meter [m]	0.264 172 1 2.113 376 42 33.814 022 7 39.370 079 3.280 839 9 1.093 613 3 0.000 621 4	gallon (liq. US) pints (liq. US) fluid ounces (US) inches feet yards mile
gram	0.035 273 96 15.432 36	ounce grains		1 000 100 0.001*	millimeters centimeters kilometer
gravity: std fr e e fall	32.174 9.806 65*	feet/second/second m/second/second	micrometer (micron)	0.001* 0.000 039 37	millimeter inch
grain	0.064 798 91 1/700 0	gram pound	mil	0.001* 0.025 4*	inch millimeter
hectare [ha]	2.471 053 8 10 000 107 639.1 0.003 861	acres square meters square feet square mile	mile	0.000 025 4* 1.609 344* 1 609.344* 5 280	meter kilometers meters feet
horsepower	42.407 219 2 544.433 1 33 000 550 745.699 87	Btu/minute Btu/hour foot-pounds/minute foot-pounds/second watts	millimeter [mm]	1 760 8 0.1* 0.001*	yards furlongs centimeter meter
horsepower (boiler)	33 471.439 8 9 809.5	Btu/hour watts	newton (N)	0.039 370 79 0.101 971 62 0.224 808 93	inch kilogram-force pound-force
horsepower (metric)	735.499	watts	newton/sq meter		pascal
horsepower (electric)	746	watts	ounce	28.349 523 12 0.028 349 5 0.278 013 85	grams kilogram newton
inch	25.4* 2.54* 0.025 4*	millimeters centimeters meter	pascal [Pa]	1 0.000 145 04	newton/sq meter pound/sq inch
inch (head) of mercury @ 60F	1.130 863 9 3 376.85	feet of water pascals	pint	16 20	fluid ounces (US) fluid ounces (UK)
inch (head) of water @ 60F	248.84	pascals	pound	16 453.592 37* 0.453 592 37*	ounces grams kilogram
joule[J]	0.000 947 8 0.737 562 18 1	Btu foot-pound watt-second		4.448 221 615 7 000	newtons grains
kilogram [kg]	2.204 623 1 000	pounds grams	pound/sq in (psi)	6 894.757 2 2.308 966 2.041 772	pascals ft of water @ 60F inches of Hg @ 60F
kgf/sq cm	98 066.5* 14.223 344	pascals lbf/sq in	pound/sq ft	47.880 258 4.882 428	pascals kg/sq meter
kip	1 000 4 448,221 615	lbf newtons	pounds/cu in	27 679.905	kg/cu meter
ksi (kip per sq in)	6 894 757 6.894 757	pascals megapascals [MPa]	pounds/cu ft radian [rad]	16.018 463 57.295 779	kg/cubic meter degrees

TABLE M-7

* indicates value is exact. Units in pounds are avoirupois. Abbreviations include: Btu = British thermal unit; C = Centigrade &/or Celsius; Chu = Centigrade heat unit; cu = cubic; EEC = European Economic Community; F = Fahrenheit; ft = feet or foot; Hg = Mercury; in = inch(es); k = kelvin; kgf = kilogram-force; kgf = kilogram-force; kgf = kilogram-force; kgf = kilogram-force; kgf = kilogram-force; kgf = kilogram-force; kgf = kilogram-force; kgf = kilogram-force; kgf = kilogram-force; kgf = kilogram-force; kgf = kilogram-force; kgf = kilogram-force; kgf = kilogram-force; kgf = kilogram-force; kgf = kgf;

MULTIPLY	ВУ	TO OBTAIN	MULTIPLY	ВҮ	TO OBTAIN
acre	43 560 4 840 4 046.856 4 0.404 685 6 0.001 562 5*	square feet square yards square meters hectare square mile	cubic decimeter	1 000 16.387 064* 0.016 387 064	liter cubic cm cubic cm liter
acre foot are [a]	43 560 1 233.481 8 325 851.43 100 119.599 01 0.024 710 54	cubic feet cubic meters gallons (US) square meters square yards acre	cubic foot	28 316.846 6 0.028 316 85 1 728 0.037 037 04 28.316 846 6 7.480 519 5 6.228 835 6	cubic cm cubic meter cubic inches cubic yard liters gallons (US) gallons (UK)
atmosphere	1.013 25* 101 325* 759.999 81 29.921 252 33.932 447 14.695 949	bar pascals mm of Hg @ 32F inches of Hg @ 32F ft of water @ 60F pounds/square inch	cubic ft/acre cubic foot of water cubic meter	0.069 972 3 62.365 578 35.314 667	cu m/hectare pounds @ 15.6C [60F] cubic feet
bar	100 000 100 000 0.1* 14.503 774 1	pascals newtons/sq meter newton/sq mm pounds/sq inch		1.307 950 6 264.172 052 1 000 2 113.376 42	cubic yards gallons (US) liters pints (US)
barrel [bbl] (petroleum)	42 5.614 583 3 0.158 987 3	gallons (US) cubic feet cubic meter	cubic yard	0.764 554 9 764.554 86 201.974 03	cubic meter liters gallons(US)
Btu (International Table): (thermochemical U.S.):	778.169 4 107.585 76 0.000 293 07 1 055.056 1 054.350	foot-pounds kilogram-meters killowatt-hour joules joules	decimeter [dm] degree (angle)	3.937 007 9 100 10 0.017 453 29	inches millimeters centimeters radian
Btu/hour	0.216 158 2 0.293 071 1	foot-pound/second watt	dekameter [dam] fathom	10 6 1.828 8*	meters feet meters
bushel [bu] (US)	1.244 456 0.035 239 07	cubic feet cubic meter	feet/minute	0.005 08* 0.304 8*	meter/second meter/minute
bushel [bu] (UK) cable (US)	1.032 06 120 720	fathoms feet	foot	0.304 8* 304.8* 12	meter millimeters inches
Celsius	219.456*	meters Centigrade	foot-pound/sec foot (head) of		joules
Centigrade	1	Celsius	Water @ 15.6C [60F]	0.433 094 62.365 578	pascals pound/sq inch pounds/sq foot
centimeter [cm]	0.393 700 8 10	inch millimeters feet	furlong	660 201.168* 220 0.125*	feet meters yards mile
or surveyors) Chu (obsolete unit)	22 20.116 8* 1.8	yards meters Btu	gallon (US) -liquid	3.785 411 78 3 785.411 78 0.003 785 4 0.133 680 56	liters cubic cms cubic meter cubic foot

°F/°C TEMPERATURE CONVERSION TABLE M-6 -459.4 TO 0 0 TO 100 110 TO 1110 1120 TO 3000 Given Given Given Given Given Given Given °C. °C. Temp. °C. °C. Temp. °F. °F. °F. Temp. °F. °C. Temp. °F. °C. Temp. °F. °C. Temp. °F. Temp. -273 -459.4 -17.832 10.0 50 122.0 43 110 230 321 610 1130 604 1120 2048 888 2966 1630 248 49 120 -268 -450-17.21 33.8 10.6 51 123.8 327 620 1148 610 1130 2066 893 1640 2984 -262 -440 35.6 52 125.6 54 130 266 332 630 1166 2 11.1 616 1140 2084 899 1650 3002 __ -16.760 140 -257-430-16.13 37.4 11.7 53 127.4 284 338 640 1184 621 1150 2102 904 1660 3020 -251 -420 -15.6 4 39.2 12.2 54 129.2 66 150 302 343 650 1202 627 1160 2120 910 1670 3038 -410 5 41.0 12.8 55 131.0 71 320 349 1220 632 1170 -246 -15.0160 660 2138 916 1680 3056 170 -240 -400-14.46 42.8 13.3 56 132.8 77 338 354 670 1238 638 1180 2156 921 1690 3074 -234 -390 -13.97 44.6 13.9 57 134.6 82 180 356 360 680 1256 643 1190 2174 927 1700 3092 ጸጸ 190 374 -22914.4 58 136.4 366 690 1274 -380-13.38 46.4 649 1200 2192 932 1710 3110 --223 -370 9 48.2 15.0 59 138.2 93 200 392 371 700 1292 654 1210 2210 938 1720 -12.83128 60 140.0 210 410 -218-360-12.210 50.0 15.6 99 377 710 1310 660 1220 2228 943 1730 3146 212 413.6 141.8 100 -212-350-11.711 51.8 16.1 61 382 720 1328 666 1230 2246 949 1740 3164 -207 -340 16.7 62 143.6 104 220 428 388 730 1346 671 1240 2264 954 1750 3182 -11.1 12 53.6 -201 -330-10.613 55.4 17.2 63 145.4 110 230 446 393 740 1364 677 1250 2282 960 1760 3200 64 240 464 682 1260 -196-320 -10.014 57.2 17.8 147.2 116 399 750 1382 2300 966 1770 3218 -9.415 18.3 65 149.0 250 760 1270 971 1780 -190-31059.0 121 482 1400 688 2318 3236 -184-300 - 8.9 16 60.8 18.9 66 150.8 127 260 500 410 770 1418 693 1280 2336 977 1790 3254 132 270 67 518 699 1290 -179-290-8.317 62.6 19.4 152.6 416 780 1436 2354 982 1800 3272 -173-280 18 20.0 68 154.4 138 280 536 421 790 1454 704 1300 2372 988 1810 -7.864.4 3290 -169-273 -459.4 — 7.2 19 66.2 20.6 69 156.2 143 290 554 427 800 1472 710 1310 2390 993 1820 3308 -270 -454 -168 - 6.7 20 68.0 21.1 70 158.0 149 300 572 432 810 1490 716 1320 2408 999 1830 3326 154 310 -162-260-436-6.121 69.8 21.7 71 159.8 590 438 820 1508 721 1330 2426 1004 1840 3344 -157-250-418- 5.6 22 71.6 22.2 72 161.6 160 320 608 443 830 1526 727 1340 2444 1010 1850 3362 -400 73 163.4 166 330 626 449 -151-240-5.023 73.4 22.8 840 1544 732 1350 2462 1016 1860 3380 -146-230-382 75.2 23.3 74 165.2 171 340 644 454 850 1562 738 1360 2480 1021 1870 3398 -4.424 77.0 75 860 -140--220 -364-3.925 167.0 177 350 662 1580 743 1370 2498 1880 23.9 460 1027 3416 -210-34678.8 24.4 76 168.8 182 360 680 466 870 1598 749 1380 2516 1032 1890 3434 -134-3.326 170.6 -32877 188 370 698 754 1390 2534 -129-200-2.827 80.6 25.0 471 880 1616 1038 1900 3452 193 380 716 -123-190-310- 2.2 28 82.4 25.6 78 172.4 477 890 1634 760 1400 2552 1043 1910 3470 79 174.2 199 390 734 482 2570 1049 1920 - 1.7 29 26.1 900 1652 766 1410 -118--180 -29284.2 3488 -112-170-274-1.130 86.0 26.7 80 176.0 204 400 752 488 910 1670 771 1420 2588 1054 1930 3506 81 210 410 177.8 770 493 -107-160-256-0.631 87.8 27.2 920 1688 777 1430 2606 1060 1940 3524 -101-150-2380.0 32 89.6 27.8 82 179.6 216 420 788 499 930 1706 782 1440 2624 1066 1950 3542 33 83 181.4 221 430 806 504 - 96 -140-2200.6 91.4 28.3 940 1724 788 1450 2642 1071 1960 3560 227 440 — 90 -130-20234 93.2 28.9 84 183.2 824 510 950 1742 793 1460 2660 1077 1970 3578 1.1 - 84 -120-1841.7 35 95.0 29.4 85 185.0 232 450 842 516 960 1760 799 1470 2678 1082 1980 3596 -79-110-1662.2 36 96.8 30.0 86 186.8 238 460 860 521 970 1778 804 1480 2696 1088 1990 3614 470 37 87 188.6 243 878 -- 73 -100· —148 2.8 98.6 30.6 527 980 1796 810 1490 2714 1093 2000 3632 -68-90-1303.3 38 100.4 31.1 88 190.4 249 480 896 532 990 1814 816 1500 2732 1121 2050 3722 89 192.2 490 - 62 -80-1123.9 39 102.2 31.7 254 914 538 1000 1832 821 1510 2750 1149 2100 3812 194.0 - 57 -70- 94 4.4 40 104.0 32.2 90 260 500 932 543 1010 1850 827 1520 2768 1204 2200 3922 - 51 -60-765.0 41 105.8 32.8 91 195.8 266 510 950 549 1020 1868 832 1530 2786 1232 2250 4082 - 46 -50-- 58 42 107.6 33.3 92 197.6 271 520 968 554 1030 1886 838 1540 2804 1260 2300 4172 _ 40 93 986 - 40 -40199.4 530 1040 1904 843 1550 2822 1316 2400 43 109.4 33.9 277 560 6.1 4352 34 -30- 22 6.7 44 111.2 34.4 94 201.2 282 540 1004 566 1050 1922 849 1560 2840 1371 2500 4532 - 20 203.0 _ 29 _ 4 72 45 113.0 35.0 95 288 550 1022 571 1060 1940 854 1570 2858 1427 2600 4712 -23-10+ 1446 114.8 96 204.8 293 560 1040 577 1070 1958 860 1580 2876 1482 2700 4892 7.8 35.6 -17.8+ 32 47 97 206.6 299 570 1058 1080 1976 866 1590 2894 0 8.3 116.6 36.1 582 1510 2750 4982 1076 208.4 304 580 1090 1994 8.9 48 118.4 36.7 98 588 871 1600 2912 1538 2800 5072 99 210.2 310 590 1094 593 1100 2012 2930 49 37.2 877 1610 1593 2900 9.4 120.2 5252 212.0 316 600 1112 599 1110 2030 37.8 100 882 1620 2948 1649 3000 5432

Reproduced by courtesy of Jenkins Bros., valve manufacturers. Find the temperature it is required to convert in the center column. If this temperature is in degrees F, the centigrade equivalent is in the left column; if this temperature is in degrees C, the fahrenheit equivalent is in the right column.

DE	CIMAL	S O	FAN	INCH	& ()F A	FOOT		TA	BLE N	1-5
FRAC- TIONS OF AN INCH	DECIMAL EQUIVALENTS	FRAC- TIONS OF A FOOT	FRAC- TIONS OF AN INCH	DECIMAL EQUIVALENTS	FRAC- TIONS OF A FOOT	FRAC- TIONS OF AN INCH	DECIMAL EQUIVALENTS	FRAC- TIONS OF A FOOT	FRAC- TIONS OF AN INCH	DECIMAL EQUIVALENTS	FRAC- TIONS OF A FOOT
	.0052 .0104	½16′′ 1/8		.2552 .2604	3½6″ 3½8		.5052 .5104	6½6" 6½		.7552 .7604	9½6" 9½
1/64	.015625 .0208 .0260	3/16 1/4 5/16	17/64	.265625 .2708 .2760	3¾ 3¼ 3¼ 3%	33/64	.515625 .5208 .5260	63/16 61/4 65/16	49/64	.765625 .7708 .7760	93/16 91/4 95/16
⅓ 32	.03125 .0365 .0417	3/8 7/16 1/2	9/32	.28125 .2865 .2917	3 3/8 3 1/6 3 1/2	17/32	.53125 .5365 .5417	63/8 63/16 61/2	²⁵ / ₃₂	.78125 .7865 .7917	93/8 97/16 91/2
3/64	.046875 .0521 .0573	%16 5/8 11/16	1%4	.296875 .3021 .3073	3%6 35/8 311/16	35%4	.546875 .5521 .5573	6% 65/8 611/16	51/64	.796875 .8021 .8073	9%16 95%8 911/16
V16	.0625 .0677 .0729	3/4 13/ ₁₆ 7/8	5∕16	.3125 .3177 .3229	3 ³ / ₄ 3 ¹³ / ₁₆ 3 ⁷ / ₈	9/16	.5625 .5677 .5729	63/4 613/16 67/8	13/16	.8125 .8177 .8229	93/4 913/16 97/8
5/64	.078125 .0833 .0885	15/16 1 1 1/16	21/64	.328125 .3333 .3385	315/16 4 41/16	37/64	.578125 .5833 .5885	6 ¹⁵ /16 7 7/ ₁₆	53/64	.828125 .8333 .8385	9 ¹⁵ /16 10 10 ¹ /16
3/32	.09375 .0990 .1042	1 1/8 13/16 1 1/4	11/32	.34375 .3490 .3542	4 1/8 43/16 4 1/4	19/32	.59375 .5990 .6042	7½ 7¾6 7¼	27/32	.84375 .8490 .8542	101/8 103/16 101/4
764	.109375 .1146 .1198	1 ⁵ /16 1 ³ /8 1 ⁷ /16	23/64	.359375 .3646 .3698	4 ⁵ /16 4 ³ /8 4 ⁷ /16	3%4	.609375 .6146 .6198	75/16 73/8 73/16	55%4	.859375 .8646 .8698	10% 10% 10%
1/8	.1250 .1302 .1354	1 ½ 1%6 1 5/8	3∕8	.3750 .3802 .3854	4½ 4%6 45/8	5/8	.6250 .6302 .6354	7½ 7%6 7%	7∕8	.8750 .8802 .8854	10½ 10% 10%
%4	.140625 .1458 .1510	1 1 1/16 1 3/4 1 13/16	25/64	.390625 .3958 .4010	4 ¹ / ₁₆ 4 ³ / ₄ 4 ¹³ / ₁₆	41/64	.640625 .6458 .6510	711/16 73/4 713/16	⁵⁷ ⁄64	.890625 .8958 .9010	1011/16 103/4 1013/16
5∕32	.15625 .1615 .1667	1 3/8 1 15/16 2	13/32	.40625 .4115 .4167	4 7/8 4 15/16 5	21/32	.65625 .6615 .6667	7 1/8 7 15/16 8	2%32	.90625 .9115 .9167	10
11/64	.171875 .1771 .1823	2½6 2½8 2¾6	27/64	.421875 .4271 .4328	5½6 5½8 5¾6	43/64	.671875 .6771 .6823	8½ 8½ 8¾ 8¾	59/64	.921875 .9271 .9323	111/16 111/8 113/16
3/16	.1875 .1927 .1979	2 1/4 25/16 2 3/8	% 16	.4375 .4427 .4479	5 1/4 55/16 5 3/8	11/16	.6875 .6927 .6979	81/4 85/16 83/8	^{1.5} ⁄16	.9375 .9427 .9479	111/4 115/16 113/8
13/64	.203125 .2083 .2135	2 1/2 2 1/2 2 1/6	²⁹ ⁄64	.453125 .4583 .4635	5%6 5½ 5%6	45%4	.703125 .7083 .7135	87/16 81/2 89/16	61/64	.953125 .9583 .9635	117/16 111/2 119/16
7/32	.21875 .2240 .2292	25/8 211/16 23/4	15/32	.46875 .4740 .4792	5 5/8 5 11/16 5 3/4	23/32	.71875 .7240 .7292	85/8 811/16 83/4	31/32	.96875 .9740 .9792	115/8 1111/16 113/4
15%4	.234375 .2396 .2448	2 ¹³ / ₁₆ 2 ⁷ / ₈ 2 ¹⁵ / ₁₆	31/64	.484375 .4896 .4948	513/16 57/8 515/16	47/64	.734375 .7396 .7448	8 ¹³ / ₁₆ 8 ⁷ / ₈ 8 ¹⁵ / ₁₆	63/64	.984375 .9896 .9948	1 1 13/16 1 1 7/8 1 1 15/16
1/4	.2500	3	1/2	.5000	6	3/4	.7500	9	1	1.000	12

Reproduced by courtesy of the Hydrodynamic Division, Chicago Pump (FMC Corporation).

CIR	CLES:	DIAM	ETER	, CIRO	UMFE	REN	CE & /	AREA				J	ABLE	M-4
DIAM. IN.	CIRCUM. IN.	AREA SQ. IN.	DIAM. IN.	CIRCUM. In.	AREA SQ. IN.	DIAM. IN.	CIRCUM. In.	AREA SQ. IN.	DIAM, IN.	CIRCUM. IN.	AREA SQ. IN.	DIAM. 1N.	CIRCUM. IN.	AREA SQ. IN.
V64	.04909	.00019	27/8	9.0321	6.4918	75%	23.955	45.664	21	65.973	346.36	37	116.239	1075.2
1/32 3/64	.09818 .14726	.00077 .00173	215/6 3	9.2284 9.4248	6.7771 7.0686	7¾ 7½	24.347 24.740	47.173 48.707	21½ 21½	66.759 67.544	354.66 363.05	371/4 371/2	117.024 117.810	1089.8 1104.5
764 1/16	.19635	.00307	31/4	9.6211	7.3662	8	25.133	50.265	213/4	68.330	371.54	373/4	118.596	1119.2
3/32	,29452	.00690	3½ 3¾	9.8175 10.014	7.6699 7.9 7 98	81/8 81/4	25.525 25.918	51.849 53.456	22 22½	69.115 69.900	380.13 388.82	38 381/4	119. 3 81 120.166	1134.1 1149.1
1∕8 1∕32	.39270 .49087	.01227 .01917	31/4	10.210	8.2958	83/8	26.311	55.088	221/2	70.686	397.61	381/2	120.951	1164.2
3/16	.58905	.02761	3%	10.407	8.6179	81/2	26.704 27.096	56.745 58.426	22¾ 23	71.471	406.49 415.48	383/4	121.737 122.522	1179.3 1194.6
1/32 1/4	.687 2 2 .78540	.03758	3¾ 3¼	10.603 10.799	8,9462 9.2806	85/8 83/4	27.489	60.132	231/4	73.042	424.56	391/4	123.308	1210.0
% ₂	.88 3 57	.06213	31/2	10.996	9.6211	8%	27.882	61.862	23½ 23¾	73.827 74.613	433.74 443.01	39½ 39¾	124.093 124.878	1225.4 1241.0
∜6 11⁄32	.98175 1.0799	.07670 .09281	3%	11.192 11.388	9.9678 10.321	9 9½	28.274 28.667	63,617 65,397	24	75.398	452.39	40	125.664	1256.6
3/8	1.1781	.11045	35/4 31/4	11.585	10.680	91/4	29.060	67.201	241/4	76.184	461.86 471.44	401/4	126.449	1272.4
13/32	1.2763	.12962	33/4	11.781	11.045	93%	29.452 29.845	69.029 70.882	24½ 24¾	76.969 77.754	481.11	40½ 40¾	127,235 128.020	1288.2 1304.2
15∕32	1.3744 1.4726	.15033 .17257	31¾6 31⁄8	11.977 12.174	11.416 11.793	9½ 95%	30.238	72.760	25	78.540	490.87	41	128.805	1320.3
1/2	1.5708	.19635	315/6	12.370	12.177	93/4	30.631	74.662	25¼ 25½	79.325 80.111	500.74 510.71	411/4	129.591	1336.4
17/32	1.6690 1.7671	.22166 .24850	4	12.566 12.763	12.566 12.962	9½ 10	31,023 31,416	76.589 78.540	253/4	80.896	520.77	411/2	130.376 131.161	1352.7 1369.0
% 1%₂	1.8653	.27688	4% 4%	12.763	13.364	101/4	32.201	82.516	26 26¼	81.681 82.467	530.93 541.19	42	131.947	1385.4
5/8	1.9635	.30680	43/16	13.155	13.772	10½ 10¾	32.987 33.772	86.590 90.763	261/2	83.252	551.55	42½ 42½	132.732 133.518	1402.0 1418.6
21/ ₃₂ 11/ ₁₅	2.0617 2.1598	.33824 .37122	4½ 4%	13.352 13.548	14.186 14.607	11	34.558	95.033	26 ³ / ₄	84.038	562.00 572.56	423/4	134.303	1435.4
23/32	2.2580	.40574	43/6	13.744	15.033	111/4	35.343	99.402	271/4	84.823 85.608	583.21	43	135.088	1452.2
3/4	2.3562 2.4544	.44179 .47937	41/2	13.941 14.137	15.466 15.904	11½ 11¾	36.128 36.914	103.87 108.43	271/2	86.394	593.96	431/4	135.874 136.659	1469.1 1 4 8 6 .2
25/ ₃₂ 13/ ₆	2.5525	.51849	4%	14.137	16.349	12	37.699	113.10	27¾ 28	87.179 87.965	604.81 615.75	433/4	137.445	1503.3
27/32	2.6507	.55914	45%	14.530	16.800	121/4	38.485	117.86 122.72	281/4	88.750	626.80	44 441/4	138.230 139.015	1520.5 1537.9
⅓ 29∕32	2.7489 2.8471	.60132 .64504	41/6	14.726 14.923	17.257 17.721	12½ 12¾	39.270 40.055	127.68	28½ 28¾	89.535 90.321	637.94 649.18	441/2	139.801	1555.3
15/16	2.9452	.69029	413/6	15.119	18.190	13	40.841	132.73	29	91.106	660.52	443/4	140.586	1572.8
³¹ / ₃₂	3.0434	.73708	41/8 415/6	15.315 15.512	18.665 19.147	13¼ 13½	41.626 42.412	137.89 143.14	291/4	91.892	671.96	451/4	141.372 142.157	1590.4 1608.2
11/6	3.1416 3.3379	.7854 .8866	5	15.708	19.635	133/4	43.197	148.49	29½ 29¾	92.677 93.462	683.49 695.13	451/2	142.942	1626.0
11/6	3.5343	.9940	51/16	15.904	20.129	14	43.982	153.94 159.48	30	94.248	706.86	453/4	143.728 144.513	1643.9 1661.9
11/4	3.7306 3.9270	1.1075	51/8 53/6	16.101 16.297	20.629 21.135	14½ 14½	44,768 45.553	165.13	30½ 30½	95.033 95.819	718. 6 9 73 0. 62	461/4	145.299	1680.0
1%	4.1233	1.3530	51/4	16.493	21.648	143/4	46.338	170.87	303/4	96.604	742.64	461/2	146.084	1698.2
1% 1%	4.3197 4.5160	1.4849 1.6230	5% 5%	16.690 16.886	22.166 22.691	15 15¼	47.124 47.909	176.71 182.65	31	97. 3 89 98. 175	754.77 766.99	463/4	146.869 147.655	1716.5 1734.9
11/2	4.7124	1.7671	51/16	17.082	23.221	151/2	48.695	188.69	311/4	98.960	779.31	471/4	148.440	1753.5
1%	4.9087	1.9175	51/2	17.279	23.758 24.301	15¾ 16	49.480 50.265	194.83 201.06	313/4	99.746	791.73	471/2	149.226 150.011	1772.1 1790.8
15% 11%	5.1051 5.3014	2.0739 2.2365	5% 5%	17.475 17.671	24.850	161/4	51.051	207.39	32 32½	100.531 101.316	804.25 816.86	48	150.796	1809.6
13/4	5.4978	2.4053	511/6	17.868	25.406	161/2	51.836	213.82	331/2	102.102	829.58	481/4	151.582	1828.5
11¾ 1½	5.6941 5.8905	2.5802 2.7612	53/4 513/6	18.064 18.261	25.967 26.535	$\frac{16\frac{3}{4}}{17}$	52.622 53.407	220.35 226.98	32 ³ ⁄ ₄ 33	102.887 103.673	842.39 855.30	48½ 48¾	152.367 153.153	1847.5 1866.5
115/16	6.0868	2.9483	57/8	18.457	27.109	171/4	54.192	233.71	331/4	104.458	868.31	49	153.938	1885.7
2	6.2832	3.1416	511/6	18.653	27.688	171/2	54.978	24 0.53 24 7.45	331/2	105.243	881.41	491/4	154.723 155.509	1905.0 1924.4
21/6 21/8	6.4795 6.6759	3.3410 3.5466	6 61/8	18.850 19.242	28.274 29.465	$\frac{17\frac{3}{4}}{18}$	55.763 56.549	254.47	333/4	106.029 106.814	894.62 907.92	493/4	156.294	1943.9
23/16	6.8722	3.7583	61/4	19.635	30.680	181/4	57.334	261.59	341/4	107.600	921.32	50 50¼	157.080 157.865	1963.5
21/4	7.0686 7.2649	3.9761 4.2000	6 ³ / ₈	20.028	31.919 33.183	18½ 18¾	58.119 58.905	268.80 276.12	34½ 34¾	108.385 109.170	934.82 948.42	501/2	157.865 158.650	1983.2 2003.0
2¾ 2¾	7.2649	4.4301	65/8	20.420	34.472	19	59.690	283.53	35	109.956	962.11	503/4	159.436	2022.8
21/16	7.6576	4.6664	63/4	21.206	35.785	191/4	60.476	291.04	351/4	110.741 111.527	975.91	51 51¼	160.221 161.007	2042.8 2062.9
2½ 2%	7.8540 8.0503	4.9087 5.1 5 72	7	21.598	37.122 38.485	19½ 19¾	61.261 62.046	298.65 306.35	35½ 35¾	111.52/	989.80 1003.80	511/2	161.792	2082.9
25/8	8.2467	5.4119	71/8	22.384	39.871	20	62.832	314.16	36	113.097	1017.90	513/4	162.577	2103.3
21/6	8.4430	5.6727	71/4	22.776	41.282 42.718	201/4	63.617 64.403	322.06 330.06	36¼ 36½	113.883 114.668	1032.10 1046.30	52 521/4	163.363 164.148	212 3 .7 2144.2
2¾ 21¾	8.6394 8.83 5 7	5.9396 6.2126	71/2	23.169 23.562	44.179	20½ 20¾	65.188	338.16	3634	115.454	1060.70	521/2	164.934	2164.8

Reproduced by courtesy of Jenkins Bros., valve manufacturers.

MILLIMETER	S CONVERTED	TO FEET AND	INCHES			TABLES M-3
mm ft-in.(fraction)	mm ft-in.(fraction)	mm ft-in.(fraction)	mm ft-in.(fraction)	mm ft-in.(fraction)	mm ft-in.(fraction)	mm ft-in.(fraction)
4481 14- 8,42 [27/64] 4482 14- 8,46 [29/64] 4483 14- 8,50 [1/2] 4464 14- 8,54 [17/32] 4485 14- 8,57 [37/64] 4486 14- 8,61 [39/64] 4487 14- 8,65 [21/32] 4488 14- 8,69 [11/16] 4489 14- 8,73 [47/64] 4490 14- 8,77 [49/64]	4561 14-11.57 [9/16] 4562 14-11.61 [39/64] 4563 14-11.65 [41/64] 4564 14-11.69 [11/16] 4565 14-11.72 [23/32] 4566 14-11.76 [49/64] 4567 14-11.80 [51/54] 4568 14-11.84 [27/32] 4569 14-11.88 [7/8] 4570 14-11.92 [59/64]	4641 15- 2.72 [23/32] 4642 15- 2.76 [3/4] 4643 15- 2.80 [51/64] 4644 15- 2.83 [53/64] 4645 15- 2.87 [7/8] 4646 15- 2.91 [29/32] 4647 15- 2.95 [63/64] 4648 15- 2.99 [63/64] 4649 15- 3.03 [1/32] 4650 15- 3.07 [5/64]	4721 15- 5.87 [55/64] 4722 15- 5.91 [29/32] 4723 15- 5.98 [15/16] 4724 15- 5.98 [63/64] 4725 15- 6.02 [1/32] 4726 15- 6.06 [1/16] 4727 15- 6.14 [9/64] 4728 15- 6.14 [9/64] 4729 15- 6.18 [3/16] 4730 15- 6.22 [7/32]	4801 15- 9.02 [1/64] 4802 15- 9.06 [1/16] 4803 15- 9.09 [3/32] 4804 15- 9.13 [9/64] 4805 15- 9.17 [11/64] 4806 15- 9.22 [7/32] 4807 15- 9.25 [1/4] 4808 15- 9.29 [19/64] 4809 15- 9.33 [21/64] 4810 15- 9.37 [3/8]	4881 16- 0.17 (11/64) 4882 16- 0.20 [13/64) 4883 16- 0.24 [1/4] 4884 16- 0.32 [9/32] 4885 16- 0.32 [21/64] 4886 16- 0.36 [23/64] 4887 16- 0.40 [13/32] 4888 16- 0.44 [7/16] 4889 16- 0.48 [31/64] 4890 16- 0.52 [33/64]	4961 16- 3.31 [5/16] 4962 16- 3.35 [23/64] 4963 16- 3.39 [25/64] 4964 16- 3.43 [7/16] 4965 16- 3.47 [15/32] 4966 16- 3.51 [33/64] 4967 16- 3.55 [35/64] 4968 16- 3.69 [19/32] 4969 16- 3.63 [5/8] 4970 16- 3.67 [43/64]
4491 14- 8.81 [13/16] 4492 14- 8.85 [27/32] 4493 14- 8.89 [57/64] 4494 14- 8.93 [59/64] 4495 14- 8.97 [31/32] 4496 14- 9.01 [1/64] 4497 14- 9.05 [3/64] 4498 14- 9.09 [3/32] 4499 14- 9.13 [1/8] 4500 14- 9.17 [11/64]	4571 14-11.96 [61/64] 4572 15- 0.00 4573 15- 0.04 [3/64] 4574 15- 0.08 [5/64] 4575 15- 0.12 [1/8] 4576 15- 0.16 [5/32] 4577 15- 0.20 [13/64] 4578 15- 0.24 [15/64] 4579 15- 0.28 [9/32] 4580 15- 0.31 [5/16]	4651 15- 3.11 [7/64] 4652 15- 3.15 [5/32] 4653 15- 3.19 [3/16] 4654 15- 3.23 [15/64] 4655 15- 3.27 [17/64] 4656 15- 3.31 [5/16] 4657 15- 3.35 [11/32] 4658 15- 3.39 [25/64] 4659 15- 3.43 [27/64] 4660 15- 3.46 [15/32]	4731 15- 6.26 [17/64] 4732 15- 6.30 [19/64] 4733 15- 6.34 [11/32] 4734 15- 6.38 [3/8] 4735 15- 6.42 [27/64] 4736 15- 6.46 [29/64] 4737 15- 6.50 [1/2] 4738 15- 6.54 [17/32] 4739 15- 6.57 [37/64] 4740 15- 6.61 [39/64]	4811 15- 9.41 [13/32] 4812 15- 9.45 [29/64] 4813 15- 9.49 [31/64] 4814 15- 9.53 [17/32] 4815 15- 9.57 [9/16] 4816 15- 9.65 [41/64] 4817 15- 9.65 [41/64] 4818 15- 9.69 [11/16] 4819 15- 9.72 [23/32] 4820 15- 9.76 [49/64]	4891 16- 0.56 [9/16] 4892 16- 0.60 [19/32] 4893 16- 0.64 [41/64] 4894 16- 0.68 [43/64] 4895 16- 0.72 [23/32] 4896 16- 0.76 [3/4] 4897 16- 0.80 [51/64] 4898 16- 0.83 [53/64] 4899 16- 0.87 [7/8] 4900 16- 0.91 [29/32]	4971 16- 3.71 [45/64] 4972 16- 3.75 [3/4] 4973 16- 3.79 [25/32] 4974 16- 3.83 [53/64] 4975 16- 3.87 [55/64] 4976 16- 3.91 [29/32] 4977 16- 3.94 [15/16] 4978 16- 3.98 [63/64] 4979 16- 4.02 [1/32] 4980 16- 4.06 [1/16]
4501 14- 9.20 [13/64] 4502 14- 9.24 [1/4] 4503 14- 9.28 [9/32] 4504 14- 9.32 [21/64] 4505 14- 9.36 [23/64] 4506 14- 9.40 [13/32] 4507 14- 9.44 [7/16] 4508 14- 9.48 [31/64] 4509 14- 9.52 [33/64] 4510 14- 9.56 [9/16]	4581 15- 0.35 [23/64] 4582 15- 0.39 [25/64] 4583 15- 0.43 [7/16] 4584 15- 0.47 [15/32] 4585 15- 0.51 [33/64] 4586 15- 0.55 [35/64] 4587 15- 0.59 [19/32] 4588 15- 0.63 [5/8] 4589 15- 0.67 [43/64] 4590 15- 0.71 [45/64]	4661 15- 3.50 [1/2] 4662 15- 3.54 [35/64] 4663 15- 3.58 [37/64] 4664 15- 3.62 [5/8] 4665 15- 3.66 [21/32] 4666 15- 3.70 [45/64] 4667 15- 3.78 [25/32] 4669 15- 3.78 [25/32] 4669 15- 3.82 [13/16] 4670 15- 3.86 [55/64]	4741 15- 6.65 [21/32] 4742 15- 6.69 [11/16] 4743 15- 6.73 [47/64] 4744 15- 6.77 [49/64] 4745 15- 6.81 [3/16] 4746 15- 6.85 [27/32] 4747 15- 6.89 [57/64] 4748 15- 6.93 [59/64] 4749 15- 6.97 [31/32] 4750 15- 7.01 [1/64]	4821 15 9.80 [51/64] 4822 15 9.84 [27/32] 4823 15 9.88 [7/8] 4824 15 9.92 [59/64] 4825 15 9.96 [61/64] 4826 15-10.00 4827 15-10.04 [3/64] 4828 15-10.08 [5/64] 4829 15-10.12 [1/8] 4830 15-10.16 [5/32]	4901 16- 0.95 [61/64] 4902 16- 0.99 [63/64] 4903 16- 1.03 [1/32] 4904 16- 1.07 [5/64] 4905 16- 1.11 [7/64] 4906 16- 1.15 [5/32] 4907 16- 1.19 [3/16] 4908 16- 1.23 [15/64] 4909 16- 1.27 [17/64] 4910 16- 1.31 [5/16]	4990 16- 4.46 [29/64]
4511 14- 9.60 [19/32] 4512 14- 9.64 [41/64] 4513 14- 9.68 [43/64] 4514 14- 9.72 [23/32] 4515 14- 9.76 [3/4] 4516 14- 9.80 [51/64] 4517 14- 9.83 [53/64] 4518 14- 9.87 [7/8] 4519 14- 9.91 [29/32] 4520 14- 9.95 [61/64]	4591 15- 0.75 [3/4] 4592 15- 0.79 [25/32] 4593 15- 0.83 [53/64] 4594 15- 0.87 [55/64] 4595 15- 0.91 [15/16] 4596 15- 0.98 [63/64] 4597 15- 0.98 [63/64] 4598 15- 1.02 [1/32] 4599 15- 1.06 [1/16] 4600 15- 1.10 [7/64]	4671 15- 3.90 [57/64] 4672 15- 3.94 [15/16] 4673 15- 3.98 [31/32] 4674 15- 4.02 [1/64] 4675 15- 4.06 [1/16] 4676 15- 4.09 [3/32] 4677 15- 4.13 [9/64] 4678 15- 4.17 [11/64] 4679 15- 4.21 [7/32] 4680 15- 4.25 [1/4]	4751 15- 7.05 [3/64] 4752 15- 7.09 [3/32] 4753 15- 7.13 [1/8] 4754 15- 7.17 [11/64] 4755 15- 7.20 [13/64] 4756 15- 7.24 [1/4] 4757 15- 7.28 [9/32] 4758 15- 7.32 [21/64] 4759 15- 7.36 [23/64] 4760 15- 7.40 [13/32]	4831 15-10.20 [13/64] 4832 15-10.24 [15/64] 4833 15-10.28 [9/32] 4834 15-10.31 [5/16] 4835 15-10.39 [25/64] 4837 15-10.49 [7/16] 4838 15-10.47 [15/32] 4839 15-10.51 [33/64] 4840 15-10.55 [35/64]	4911 16- 1.35 [11/32] 4912 16- 1.39 [25/64] 4913 16- 1.43 [27/64] 4914 16- 1.46 [15/32] 4915 16- 1.50 [1/2] 4916 16- 1.54 [35/64] 4917 16- 1.58 [37/64] 4918 16- 1.62 [5/8] 4919 16- 1.66 [21/32] 4920 16- 1.70 [45/64]	4992 16- 4.54 [17/32] 4993 16- 4.57 [37/64] 4994 16- 4.61 [39/64] 4995 16- 4.65 [21/32] 4996 16- 4.69 [11/16] 4997 16- 4.73 [47/64] 4998 16- 4.77 [49/64] 4999 16- 4.81 [13/16] 5000 16- 4.85 [27/32]
4521 14- 9.99 [63/64] 4522 14-10.03 [1/32] 4523 14-10.07 [5/64] 4524 14-10.11 [7/64] 4525 14-10.15 [5/32] 4526 14-10.19 [3/16] 4527 14-10.23 [15/64] 4528 14-10.27 [17/64] 4529 14-10.31 [5/16] 4530 14-10.35 [11/32]	4601 15- 1.14 [9/64] 4602 15- 1.18 [3/16] 4603 15- 1.22 [7/32] 4604 15- 1.26 [17/64] 4605 15- 1.30 [19/64] 4606 15- 1.34 [11/32] 4607 15- 1.38 [3/8] 4608 15- 1.42 [27/64] 4609 15- 1.46 [29/64] 4610 15- 1.50 [1/2]	4681 15- 4.29 [19/64] 4682 15- 4.33 [21/64] 4683 15- 4.47 [3/8] 4684 15- 4.41 [13/32] 4685 15- 4.45 [29/64] 4686 15- 4.49 [31/64] 4687 15- 4.53 [17/32] 4688 15- 4.51 [19/64] 4689 15- 4.61 [39/64] 4690 15- 4.65 [41/64]	4761 15- 7.48 [7/16] 4762 15- 7.48 [31/64] 4763 15- 7.52 [33/64] 4764 15- 7.56 [9/16] 4765 15- 7.60 [19/32] 4766 15- 7.68 [43/64] 4767 15- 7.68 [43/64] 4768 15- 7.72 [23/32] 4769 15- 7.76 [3/4] 4770 15- 7.80 [51/64]	4841 15-10.59 [19/32] 4842 15-10.63 [5/8] 4843 15-10.67 [43/64] 4844 15-10.71 [45/64] 4845 15-10.75 [3/4] 4846 15-10.79 [25/32] 4847 15-10.83 [53/64] 4848 15-10.87 [55/64] 4849 15-10.91 [29/32] 4850 15-10.94 [15/16]	4921 16- 1.74 [47/64] 4922 16- 1.78 [25/32] 4923 16- 1.82 [13/16] 4924 16- 1.86 [55/64] 4925 16- 1.90 [57/64] 4926 16- 1.94 [15/16] 4927 16- 1.98 [31/32] 4928 16- 2.02 [1/64] 4929 16- 2.06 [1/16] 4930 16- 2.09 [3/32]	5002 16- 4.93 [59/64] 5003 16- 4.97 [31/32] 5004 16- 5.01 [1/64] 5005 16- 5.05 [3/64] 5006 16- 5.09 [3/32]
4531 14-10.39 [25/64] 4532 14-10.43 [27/64] 4533 14-10.46 [15/32] 4534 14-10.50 [1/2] 4535 14-10.54 [35/64] 4536 14-10.58 [37/64] 4537 14-10.62 [5/8] 4538 14-10.66 [21/32] 4539 14-10.70 [45/64] 4540 14-10.74 [47/64]	4611 15- 1.54 [17/32] 4612 15- 1.57 [37/64] 4613 15- 1.61 [39/64] 4614 15- 1.65 [21/32] 4615 15- 1.69 [11/16] 4616 15- 1.73 [47/64] 4617 15- 1.77 [49/64] 4618 15- 1.81 [13/16] 4619 15- 1.85 [27/32] 4620 15- 1.89 [57/64]	4691 15- 4.69 [11/16] 4692 15- 4.72 [23/32] 4693 15- 4.76 [49/64] 4694 15- 4.80 [51/64] 4695 15- 4.84 [27/32] 4696 15- 4.88 [7/8] 4697 15- 4.92 [59/64] 4698 15- 4.96 [61/64] 4699 15- 5.00 4700 15- 5.04 [3/64]	4771 15- 7.83 [53/64] 4772 15- 7.87 [7/8] 4773 15- 7.91 [29/32] 4774 15- 7.95 [61/64] 4775 15- 7.99 [63/64] 4776 15- 8.03 [1/32] 4777 15- 8.07 [5/64] 4778 15- 8.11 [7/64] 4779 15- 8.15 [5/32] 4780 15- 8.19 [3/16]	4851 15-10.98 [63/64] 4852 15-11.02 [1/32] 4853 15-11.06 [1/16] 4854 15-11.10 [7/64] 4855 15-11.14 [9/64] 4856 15-11.18 [3/16] 4857 15-11.22 [7/32] 4858 15-11.26 [17/64] 4859 15-11.30 [19/64] 4860 15-11.34 [11/32]	4931 16- 2.13 [9/64] 4932 16- 2.17 [11/64] 4933 16- 2.21 [7/32] 4934 16- 2.25 [1/4] 4935 16- 2.29 [19/64] 4936 16- 2.33 [21/64] 4937 16- 2.37 [3/8] 4938 16- 2.41 [13/32] 4939 16- 2.45 [29/64] 4940 16- 2.49 [31/64]	5012 16- 5.32 [21/64] 5013 16- 5.36 [23/64] 5014 16- 5.40 [13/32] 5015 16- 5.44 [7/16] 5016 16- 5.48 [31/64] 5017 16- 5.52 [33/64] 5018 16- 5.56 [9/16] 5019 16- 5.60 [19/32]
4541 44-10.78 [25/32] 4542 14-10.82 [13/16] 4543 14-10.86 [55/64] 4544 14-10.90 [57/64] 4545 14-10.94 [15/16] 4546 14-10.98 [31/32] 4547 14-11.02 [1/64] 4548 14-11.06 [1/16] 4549 14-11.09 [3/32] 4550 14-11.13 [9/64]	4621 15- 1.93 [59/64] 4622 15- 1.97 [31/32] 4623 15- 2.01 [1/64] 4624 15- 2.05 [3/64] 4625 15- 2.09 [3/32] 4626 15- 2.17 [11/64] 4627 15- 2.17 [11/64] 4628 15- 2.20 [13/64] 4629 15- 2.24 [1/4] 4630 15- 2.28 [9/32]	4701 15- 5.08 [5/64] 4702 15- 5.12 [1/8] 4703 15- 5.16 [5/32] 4704 15- 5.20 [13/64] 4705 15- 5.24 [15/64] 4706 15- 5.28 [9/32] 4707 15- 5.31 [5/16] 4708 15- 5.35 [23/64] 4709 15- 5.39 [25/64] 4710 15- 5.43 [7/16]	4781 15- 8.23 [15/64] 4782 15- 8.27 [17/64] 4783 15- 8.31 [5/16] 4784 15- 8.35 [11/32] 4785 15- 8.39 [25/64] 4786 15- 8.43 [27/64] 4787 15- 8.46 [15/32] 4788 15- 8.50 [1/2] 4789 15- 8.54 [35/64] 4790 15- 8.58 [37/64]	4861 15-11.38 [3/8] 4862 15-11.42 [27/64] 4863 15-11.46 [29/64] 4864 15-11.50 [1/2] 4865 15-11.57 [37/64] 4867 15-11.61 [39/64] 4868 15-11.65 [21/32] 4869 15-11.69 [11/16] 4870 15-11.73 [47/64]	4941 16- 2.53 [17/32] 4942 16- 2.57 [9/16] 4943 16- 2.61 [39/64] 4944 16- 2.65 [41/64] 4945 16- 2.69 [11/16] 4946 16- 2.72 [23/32] 4947 16- 2.76 [49/64] 4948 16- 2.80 [51/64] 4949 16- 2.84 [27/32] 4950 16- 2.88 [7/8]	5022 16- 5.72 [23/32] 5023 16- 5.76 [3/4] 5024 16- 5.80 [51/64] 5025 16- 5.83 [53/64] 5026 16- 5.87 [7/8] 5027 16- 5.91 [29/32] 5028 16- 5.95 [61/64]
4551 14-11.17 [11/64] 4552 14-11.21 [7/32] 4553 14-11.25 [1/4] 4554 14-11.29 [19/64] 4555 14-11.33 [21/64] 4556 14-11.37 [3/8] 4557 14-11.41 [13/32] 4558 14-11.45 [29/64] 4559 14-11.49 [31/64] 4560 14-11.53 [17/32]	4631 15- 2.32 [21/64] 4632 15- 2.36 [23/64] 4633 15- 2.40 [13/32] 4634 15- 2.44 [7/16] 4635 15- 2.48 [31/64] 4636 15- 2.52 [33/64] 4637 15- 2.56 [9/16] 4638 15- 2.60 [19/32] 4639 15- 2.64 [41/64] 4640 15- 2.68 [43/64]	4711 15- 5.47 [15/32] 4712 15- 5.51 [33/64] 4713 15- 5.55 [35/64] 4714 15- 5.59 [19/32] 4715 15- 5.63 [5/8] 4716 15- 5.67 [43/64] 4717 15- 5.71 [45/64] 4718 15- 5.75 [3/4] 4719 15- 5.79 [25/32] 4720 15- 5.83 [53/64]	4791 15- 8.62 [5/8] 4792 15- 8.66 [21/32] 4793 15- 8.70 [45/64] 4794 15- 8.78 [25/32] 4796 15- 8.78 [25/32] 4796 15- 8.86 [55/64] 4797 15- 8.90 [57/64] 4799 15- 8.94 [15/16] 4800 15- 8.98 [31/32]	4871 15-11.77 [49/64] 4872 15-11.81 [13/16] 4873 15-11.85 [27/32] 4874 15-11.89 [57/64] 4875 15-11.93 [59/64] 4876 15-11.97 [31/32] 4877 16- 0.01 [1/64] 4878 16- 0.05 [3/64] 4879 16- 0.09 [3/32] 4880 16- 0.13 [1/8]	4951 16- 2.92 [59/64] 4952 16- 2.96 [61/64] 4953 16- 3.00 4954 16- 3.04 [3/64] 4955 16- 3.08 [5/64] 4956 16- 3.12 [1/8] 4957 16- 3.16 [5/32] 4958 16- 3.20 [13/64] 4959 16- 3.24 [15/64] 4960 16- 3.28 [9/32]	5032 16- 6.11 [7/64] 5033 16- 6.15 [5/32] 5034 16- 6.19 [3/16] 5035 16- 6.23 [15/64] 5036 16- 6.27 [17/64] 5037 16- 6.31 [5/16]

MILLIMETER	S CONVERTED	TO FEET AND	INCHES			ABLES M-3
mm ft-in.(fraction)	mm ft-in.(fraction)	mm ft-in.(fraction)	mm ft-in.(fraction)	mm ft-in.(fraction)	mm ft-in.(fraction)	mm ft-in.(fraction)
3921 12-10.37 3/8 3922 12-10.41 13/32 3923 12-10.45 29/64 3924 12-10.49 31/64 3925 12-10.57 9/16 3927 12-10.61 39/64 3928 12-10.65 41/64 3929 12-10.69 11/16 3930 12-10.72 (23/32)	4001 13- 1.52 [33/64] 4002 13- 1.56 [9/16] 4003 13- 1.60 [19/32] 4004 13- 1.64 [41/64] 4005 13- 1.68 [43/64] 4006 13- 1.72 [23/32] 4007 13- 1.76 [3/4] 4008 13- 1.80 [51/64] 4009 13- 1.83 [53/64] 4010 13- 1.87 [7/8]	4081 13- 4.67 [43/64] 4082 13- 4.71 [45/64] 4083 13- 4.75 [3/4] 4084 13- 4.79 [25/32] 4085 13- 4.83 [53/64] 4086 13- 4.87 [55/64] 4087 13- 4.91 [29/32] 4088 13- 4.94 [15/16] 4089 13- 4.98 [63/64] 4090 13- 5.02 [1/32]	4161 13- 7.82 [13/16] 4162 13- 7.86 [55/64] 4163 13- 7.90 [57/64] 4164 13- 7.94 [15/16] 4165 13- 7.98 [31/32] 4166 13- 8.02 [1/64] 4167 13- 8.06 [1/16] 4168 13- 8.09 [3/32] 4169 13- 8.13 [9/64] 4170 13- 8.17 [11/64]	4241 13-10.97 [31/32] 4242 13-11.01 [1/64] 4243 13-11.05 [3/64] 4244 13-11.09 [3/32] 4245 13-11.13 [1/8] 4246 13-11.17 [11/64] 4247 13-11.20 [13/64] 4248 13-11.24 [1/4] 4249 13-11.28 [9/32] 4250 13-11.32 [21/64]	4321 14- 2.12 [1/8] 4322 14- 2.16 [5/32] 4323 14- 2.20 [13/64] 4324 14- 2.24 [15/64] 4325 14- 2.28 [9/32] 4326 14- 2.31 [5/16] 4327 14- 2.35 [23/64] 4328 14- 2.39 [25/64] 4329 14- 2.43 [7/16] 4330 14- 2.47 [15/32]	4401 14- 5.27 [17/64] 4402 14- 5.31 [5/16] 4403 14- 5.35 [11/32] 4404 14- 5.39 [25/64] 4405 14- 5.43 [27/64] 4406 14- 5.46 [15/32] 4407 14- 5.50 [1/2] 4408 14- 5.54 [35/64] 4409 14- 5.58 [37/64] 4410 14- 5.62 [5/8]
3931 12-10.76 [49/64] 3932 12-10.80 [51/64] 3933 12-10.84 [27/32] 3934 12-10.88 [7/8] 3935 12-10.92 [59/64] 3936 12-10.96 [61/64] 3937 12-11.00 3938 12-11.04 [3/64] 3939 12-11.08 [5/64] 3940 12-11.12 [1/8]	4011 13- 1.91 [29/32] 4012 13- 1.95 [61/64] 4013 13- 1.99 [63/64] 4014 13- 2.03 [1/32] 4015 13- 2.07 [5/64] 4016 13- 2.11 [7/64] 4017 13- 2.15 [5/32] 4018 13- 2.19 [3/16] 4019 13- 2.23 [15/64] 4020 13- 2.27 [17/64]	4091 13- 5.06 [1/16] 4092 13- 5.10 [7/64] 4093 13- 5.14 [9/64] 4094 13- 5.18 [3/16] 4095 13- 5.22 [7/32] 4096 13- 5.26 [17/64] 4097 13- 5.30 [19/64] 4098 13- 5.34 [11/32] 4099 13- 5.38 [3/8] 4100 13- 5.42 [27/64]	4171 13- 8.21 [7/32] 4172 13- 8.25 [1/4] 4173 13- 8.29 [19/64] 4174 13- 8.33 [21/64] 4175 13- 8.37 [3/8] 4176 13- 8.41 [13/32] 4177 13- 8.45 [29/64] 4178 13- 8.49 [31/64] 4179 13- 8.53 [17/32] 4180 13- 8.57 [9/16]	4251 13-11.36 [23/64] 4252 13-11.40 [13/32] 4253 13-11.44 [7/16] 4254 13-11.48 [31/64] 4255 13-11.52 [33/64] 4256 13-11.50 [19/32] 4258 13-11.60 [19/32] 4258 13-11.64 [44/64] 4259 13-11.68 [43/64] 4260 13-11.72 [23/32]	4331 14- 2.51 [33/64] 4332 14- 2.55 [35/64] 4333 14- 2.55 [19/32] 4334 14- 2.63 [5/8] 4335 14- 2.67 [43/64] 4336 14- 2.71 [45/64] 4337 14- 2.75 [3/4] 4338 14- 2.79 [25/32] 4339 14- 2.83 [53/64] 4340 14- 2.87 [55/64]	4411 14- 5.66 [21/32] 4412 14- 5.70 [45/64] 4413 14- 5.78 [25/32] 4414 14- 5.82 [13/16] 4416 14- 5.82 [13/16] 4417 14- 5.90 [57/64] 4418 14- 5.94 [15/16] 4419 14- 5.98 [31/32] 4420 14- 6.02 [1/64]
3941 12-11.16 [5/32] 3942 12-11.20 [13/64] 3943 12-11.24 [15/64] 3944 12-11.28 [9/32] 3945 12-11.31 [5/16] 3946 12-11.35 [23/64] 3947 12-11.39 [25/64] 3948 12-11.43 [7/16] 3949 12-11.47 [15/32] 3950 12-11.51 [33/64]	4021 13- 2.31 [5/16] 4022 13- 2.35 [11/32] 4023 13- 2.39 [25/64] 4024 13- 2.43 [27/64] 4025 13- 2.46 [15/32] 4026 13- 2.50 [1/2] 4027 13- 2.54 [35/64] 4028 13- 2.58 [37/64] 4029 13- 2.62 [5/8] 4030 13- 2.66 [21/32]	4101 13- 5.46 [29/64] 4102 13- 5.50 [1/2] 4103 13- 5.50 [17/32] 4104 13- 5.57 [37/64] 4105 13- 5.61 [39/64] 4106 13- 5.65 [21/32] 4107 13- 5.69 [11/16] 4108 13- 5.73 [47/64] 4109 13- 5.77 [49/64] 4110 13- 5.81 [13/16]	4181 13- 8.61 [39/64] 4182 13- 8.65 [41/64] 4183 13- 8.69 [11/16] 4184 13- 8.72 [23/32] 4185 13- 8.76 [49/64] 4186 13- 8.80 [51/64] 4187 13- 8.84 [27/32] 4188 13- 8.85 [7/8] 4189 13- 8.92 [59/64] 4190 13- 8.96 [61/64]	4261 13-11.76 [3/4] 4262 13-11.80 [51/64] 4263 13-11.83 [53/64] 4264 13-11.87 [7/8] 4265 13-11.91 [29/32] 4266 13-11.95 [61/64] 4267 13-11.99 [63/64] 4268 14- 0.03 [1/32] 4269 14- 0.07 [5/64] 4270 14- 0.11 [7/64]	4341 14- 2.91 [29/32] 4342 14- 2.94 [15/16] 4343 14- 2.98 [63/64] 4344 14- 3.02 [1/32] 4345 14- 3.06 [1/16] 4346 14- 3.10 [7/64] 4347 14- 3.18 [3/16] 4349 14- 3.22 [7/32] 4350 14- 3.26 [17/64]	4421 14- 6.06 [1/16] 4422 14- 6.09 [3/32] 4423 14- 6.13 [9/64] 4424 14- 6.17 [11/64] 4425 14- 6.21 [7/32] 4426 14- 6.25 [1/4] 4427 14- 6.29 [19/64] 4428 14- 6.33 [21/64] 4429 14- 6.37 [3/8] 4430 14- 6.41 [13/32]
3951 12-11.55 [35/64] 3952 12-11.59 [19/32] 3953 12-11.63 [5/8] 3954 12-11.67 [43/64] 3955 12-11.71 [45/64] 3956 12-11.75 [3/4] 3957 12-11.79 [25/32] 3958 12-11.83 [53/64] 3959 12-11.87 [55/64] 3960 12-11.91 [29/32]	4031 13- 2.70 [45/64] 4032 13- 2.74 [47/64] 4033 13- 2.78 [25/32] 4034 13- 2.82 [13/16] 4035 13- 2.86 [55/64] 4036 13- 2.90 [57/64] 4037 13- 2.94 [15/16] 4038 13- 2.98 [31/32] 4039 13- 3.02 [1/64] 4040 13- 3.06 [1/16]	4111 13- 5.85 [27/32] 4112 13- 5.89 [57/64] 4113 13- 5.93 [59/64] 4114 13- 5.97 [31/32] 4115 13- 6.01 [1/64] 4116 13- 6.09 [3/32] 4117 13- 6.09 [3/32] 4118 13- 6.13 [1/8] 4119 13- 6.17 [11/64] 4120 13- 6.20 [13/64]	4191 13- 9.00 4192 13- 9.08 [5/64] 4193 13- 9.08 [5/64] 4194 13- 9.12 [1/8] 4195 13- 9.16 [5/32] 4196 13- 9.20 [15/64] 4197 13- 9.24 [15/64] 4198 13- 9.28 [9/32] 4199 13- 9.31 [5/16] 4200 13- 9.35 [23/64]	4271 14- 0.15 [5/32] 4272 14- 0.19 [3/16] 4273 14- 0.23 [15/64] 4274 14- 0.27 [17/64] 4275 14- 0.31 [5/16] 4276 14- 0.35 [11/32] 4277 14- 0.39 [25/64] 4278 14- 0.45 [27/64] 4279 14- 0.46 [15/32] 4280 14- 0.50 [1/2]	4351 14- 3.30 [19/64] 4352 14- 3.34 [11/32] 4353 14- 3.38 [3/8] 4354 14- 3.42 [27/64] 4355 14- 3.46 [29/64] 4356 14- 3.50 [1/2] 4357 14- 3.57 [37/64] 4359 14- 3.61 [39/64] 4360 14- 3.65 [21/32]	4431 14- 6.45 [29/64] 4432 14- 6.49 [31/64] 4433 14- 6.53 [17/32] 4434 14- 6.57 [9/16] 4435 14- 6.61 [39/64] 4436 14- 6.65 [41/64] 4437 14- 6.69 [11/16] 4438 14- 6.72 [23/32] 4439 14- 6.76 [49/64] 4440 14- 6.80 [51/64]
3961 12-11.94 [15/16] 3962 12-11.98 [63/64] 3963 13- 0.02 [1/32] 3964 13- 0.06 [1/16] 3965 13- 0.10 [7/64] 3966 13- 0.14 [9/64] 3967 13- 0.18 [3/16] 3968 13- 0.22 [7/32] 3969 13- 0.26 [17/64] 3970 13- 0.30 [19/64]	4041 13- 3.09 [3/32] 4042 13- 3.13 [9/64] 4043 13- 3.17 [11/64] 4044 13- 3.21 [7/32] 4045 13- 3.25 [1/4] 4046 13- 3.29 [19/64] 4047 13- 3.33 [21/64] 4048 13- 3.41 [13/32] 4050 13- 3.45 [29/64]	4121 13- 6.24 [1/4] 4122 13- 6.28 [9/32] 4123 13- 6.32 [21/64] 4124 13- 6.36 [23/64] 4125 13- 6.40 [13/32] 4126 13- 6.48 [31/64] 4127 13- 6.48 [31/64] 4128 13- 6.52 [33/64] 4129 13- 6.56 [9/16] 4130 13- 6.60 [19/32]	4201 13- 9.39 [25/64] 4202 13- 9.43 [7/16] 4203 13- 9.47 [15/32] 4204 13- 9.51 [33/64] 4205 13- 9.55 [35/64] 4206 13- 9.59 [19/32] 4207 13- 9.63 [5/8] 4208 13- 9.67 [43/64] 4209 13- 9.71 [45/64] 4210 13- 9.75 [3/4]	4281 14- 0.54 [35/64] 4282 14- 0.58 [37/64] 4283 14- 0.62 [5/8] 4284 14- 0.66 [21/32] 4285 14- 0.70 [45/64] 4286 14- 0.78 [25/32] 4287 14- 0.82 [13/16] 4289 14- 0.86 [55/64] 4290 14- 0.90 [57/64]	4361 14- 3.69 [11/16] 4362 14- 3.73 [47/64] 4363 14- 3.77 [49/64] 4364 14- 3.81 [13/16] 4365 14- 3.85 [27/32] 4366 14- 3.89 [57/64] 4367 14- 3.93 [59/64] 4368 14- 3.97 [31/32] 4369 14- 4.01 [1/64] 4370 14- 4.05 [3/64]	4441 14- 6,84 [27/32] 4442 14- 6,88 [7/8] 4443 14- 6,92 [59/64] 4444 14- 6,96 [61/64] 4445 14- 7,00 4446 14- 7,04 [3/64] 4447 14- 7,08 [5/64] 4448 14- 7,12 [1/8] 4449 14- 7,16 [5/32] 4450 14- 7,20 [13/64]
3971 13- 0.34 [11/32] 3972 13- 0.38 [3/8] 3973 13- 0.42 [27/64] 3974 13- 0.46 [29/64] 3975 13- 0.50 [1/2] 3976 13- 0.54 [17/32] 3977 13- 0.57 [37/64] 3978 13- 0.61 [39/64] 3979 13- 0.65 [21/32] 3980 13- 0.69 [11/16]	4051 13- 3.49 [31/64] 4052 13- 3.53 [17/32] 4053 13- 3.57 [9/16] 4054 13- 3.61 [39/64] 4055 13- 3.65 [41/64] 4056 13- 3.69 [11/16] 4057 13- 3.70 [23/32] 4058 13- 3.70 [49/64] 4059 13- 3.80 [51/64] 4060 13- 3.84 [27/32]	4131 13- 6.64 [41/64] 4132 13- 6.68 [43/64] 4133 13- 6.76 [23/32] 4134 13- 6.76 [3/4] 4135 13- 6.80 [51/64] 4136 13- 6.87 [7/8] 4137 13- 6.87 [7/8] 4138 13- 6.91 [29/32] 4139 13- 6.95 [61/64] 4140 13- 6.99 [63/64]	4211 13- 9.79 [25/32] 4212 13- 9.83 [53/64] 4213 13- 9.87 [55/64] 4214 13- 9.91 [29/32] 4215 13- 9.94 [15/16] 4216 13- 9.98 [63/64] 4217 13-10.02 [1/32] 4218 13-10.06 [1/16] 4219 13-10.10 [7/64] 4220 13-10.14 [9/64]	4291 14- 0.94 [15/16] 4292 14- 0.98 [31/32] 4293 14- 1.02 [1/64] 4294 14- 1.06 [1/16] 4295 14- 1.09 [3/32] 4296 14- 1.13 [9/64] 4297 14- 1.17 [11/64] 4298 14- 1.21 [7/32] 4299 14- 1.25 [1/4] 4300 14- 1.29 [19/64]	4371 14- 4.09 [3/32] 4372 14- 4.13 [1/8] 4373 14- 4.17 [11/64] 4374 14- 4.20 [13/64] 4375 14- 4.24 [1/4] 4376 14- 4.28 [9/32] 4377 14- 4.32 [21/64] 4378 14- 4.36 [23/64] 4379 14- 4.40 [13/32] 4380 14- 4.44 [7/16]	4451 14- 7.24 [15/64] 4452 14- 7.28 [9/32] 4453 14- 7.31 [5/16] 4454 14- 7.35 [23/64] 4455 14- 7.39 [25/64] 4456 14- 7.47 [7/16] 4457 14- 7.47 [15/32] 4458 14- 7.51 [33/64] 4459 14- 7.55 [35/64] 4460 14- 7.59 [19/32]
3981 13- 0.73 [47/64] 3982 13- 0.77 [49/64] 3983 13- 0.81 [13/16] 3984 13- 0.85 [27/32] 3985 13- 0.89 [57/64] 3986 13- 0.93 [59/64] 3987 13- 0.97 [31/32] 3988 13- 1.01 [1/64] 3989 13- 1.05 [3/64] 3990 13- 1.09 [3/32]	4061 13- 3.88 [7/8] 4062 13- 3.92 [59/64] 4063 13- 3.96 [61/64] 4064 13- 4.00 4065 13- 4.04 [3/64] 4066 13- 4.08 [5/64] 4067 13- 4.12 [1/8] 4068 13- 4.16 [5/32] 4069 13- 4.20 [13/64] 4070 13- 4.24 [15/64]	4141 13- 7.03 [1/32] 4142 13- 7.07 [5/64] 4143 13- 7.11 [7/64] 4144 13- 7.15 [5/32] 4145 13- 7.19 [3/16] 4146 13- 7.23 [15/64] 4147 13- 7.27 [17/64] 4148 13- 7.31 [5/16] 4149 13- 7.35 [11/32] 4150 13- 7.39 [25/64]	4230 13-10.54 [17/32]	4301 14- 1.33 [21/64] 4302 14- 1.37 [3/8] 4303 14- 1.41 [13/32] 4304 14- 1.45 [29/64] 4305 14- 1.49 [31/64] 4306 14- 1.53 [17/32] 4307 14- 1.57 [9/16] 4308 14- 1.61 [39/64] 4309 14- 1.65 [41/64] 4310 14- 1.69 [11/16]	4381 14- 4,48 [31,64] 4382 14- 4,52 [33,64] 4383 14- 4,56 [9,16] 4384 14- 4,60 [19,32] 4385 14- 4,64 [41,64] 4386 14- 4,68 [43,64] 4387 14- 4,72 [23,32] 4388 14- 4,76 [3,4] 4389 14- 4,80 [51,64] 4390 14- 4,83 [53,64]	4461 14- 7.63 [5/8] 4462 14- 7.67 [43/64] 4463 14- 7.71 [45/64] 4465 14- 7.79 [25/32] 4466 14- 7.87 [55/64] 4467 14- 7.87 [55/64] 4468 14- 7.91 [29/32] 4469 14- 7.94 [15/16] 4470 14- 7.98 [63/64]
3991 13- 1.13 [1/8] 3992 13- 1.17 [11/64] 3993 13- 1.20 [13/64] 3994 13- 1.24 [1/4] 3995 13- 1.28 [9/32] 3996 13- 1.36 [23/64] 3997 13- 1.40 [13/32] 3999 13- 1.44 [7/16] 4000 13- 1.48 [31/64]	4071 13- 4.28 [9/32] 4072 13- 4.31 [5/16] 4073 13- 4.35 [23/64] 4074 13- 4.39 [25/64] 4075 13- 4.43 [7/16] 4076 13- 4.47 [15/32] 4077 13- 4.51 [33/64] 4078 13- 4.55 [35/64] 4079 13- 4.59 [19/32] 4080 13- 4.63 [5/8]	4151 13- 7.43 [27/64] 4152 13- 7.46 [15/32] 4153 13- 7.50 [1/2] 4154 13- 7.50 [37/64] 4155 13- 7.58 [37/64] 4156 13- 7.66 [21/32] 4157 13- 7.66 [21/32] 4159 13- 7.70 [45/64] 4160 13- 7.78 [25/32]	4233 13-10.65 [21/32] 4234 13-10.69 [11/16] 4235 13-10.73 [47/64] 4236 13-10.77 [49/64] 4237 13-10.81 [13/16] 4238 13-10.85 [27/32] 4239 13-10.89 [57/64]	4311 14- 1.72 [23/32] 4312 14- 1.76 [49/64] 4313 14- 1.80 [51/64] 4314 14- 1.84 [27/32] 4315 14- 1.88 [7/8] 4316 14- 1.92 [59/64] 4317 14- 1.96 [61/64] 4318 14- 2.00 4319 14- 2.04 [3/64] 4320 14- 2.08 [5/64]	4391 14- 4.87 [7/8] 4392 14- 4.91 [29/32] 4393 14- 4.95 [61/64] 4394 14- 4.99 [63/64] 4395 14- 5.03 [1/32] 4396 14- 5.07 [5/64] 4397 14- 5.15 [5/32] 4399 14- 5.19 [3/16] 4400 14- 5.23 [15/64]	4471 14- 8.02 [1/32] 4472 14- 8.06 [1/16] 4473 14- 8.10 [7/64] 4474 14- 8.14 [9/64] 4475 14- 8.12 [7/32] 4477 14- 8.22 [7/32] 4477 14- 8.26 [17/64] 4478 14- 8.30 [19/64] 4479 14- 8.34 [11/32] 4480 14- 8.38 [3/8]

MILLIMETERS CO	INVERTED TO	FEET AND I	INCHES			ABLES M-3
mm ft-in.(fraction) mm	ft-in.(fraction) m	m ft-in.(fraction)	mm ft-in.(fraction)	mm ft-in.(fraction) m	m ft-in.(fraction)	mm ft-in.(fraction)
3362 11- 0.36 23/64 3442 3363 11- 0.40 13/32 3443 3364 11- 0.44 7/16 3445 11- 0.48 31/64 3445 3365 11- 0.48 31/64 3445 3366 11- 0.56 9/16 3447 3368 11- 0.60 19/32 3448 3369 11- 0.64 41/64 3449 3370 11- 0.68 43/64 3450 1	11- 3.51 [33/64] 35 11- 3.55 [35/64] 35 11- 3.55 [19/32] 35 11- 3.67 [43/64] 35 11- 3.67 [43/64] 35 11- 3.75 [3/4] 35 11- 3.79 [25/32] 35 11- 3.83 [53/64] 35	29 11- 6.94 [15/16] 30 11- 6.98 [31/32]	3601 11- 9.77 [49/64] 3602 11- 9.81 [13/16] 3603 11- 9.85 [27/32] 3604 11- 9.89 [57/64] 3605 11- 9.93 [59/64] 3605 11- 9.97 [31/32] 3607 11-10.01 [1/64] 3608 11-10.05 [3/64] 3609 11-10.09 [3/32] 3610 11-10.13 [1/8]	3682 12- 0.96 [61/64] 37 3683 12- 1.00 37 3684 12- 1.04 [3/64] 37 3685 12- 1.08 [5/64] 37 3686 12- 1.16 [5/32] 37 3687 12- 1.16 [5/32] 37 3688 12- 1.20 [13/64] 37 3689 12- 1.24 [15/64] 37 3690 12- 1.28 [9/32] 37	761 12- 4.07 [5/64] 762 12- 4.11 [7/64] 763 12- 4.15 [5/32] 764 12- 4.19 [3/16] 765 12- 4.23 [15/64] 766 12- 4.27 [17/64] 767 12- 4.31 [5/16] 768 12- 4.35 [11/32] 769 12- 4.39 [25/64] 770 12- 4.43 [27/64]	3841 12- 7.22 [7/32] 3842 12- 7.26 [17/64] 3843 12- 7.30 [19/64] 3844 12- 7.34 [11/32] 3845 12- 7.38 [3/8] 3846 12- 7.42 [27/64] 3847 12- 7.46 [29/64] 3848 12- 7.50 [1/2] 3849 12- 7.54 [17/32] 3850 12- 7.57 [37/64]
3372 11- 0.76 3/4 3452 1 3373 11- 0.80 51/64 3453 1 3374 11- 0.83 53/64 3454 1 3375 11- 0.87 7/8 3455 1 3376 11- 0.91 29/32 3456 1 3377 11- 0.95 61/64 3457 3 3378 11- 0.99 63/64 3458 1 3379 11- 1.03 1/32 3459 1 3380 11- 1.07 5/64 3460 1	11- 3.91 [29/32] 35. 11- 3.94 [15/16] 35. 11- 3.98 [63/64] 35. 11- 4.02 [1/32] 35. 11- 4.06 [1/16] 35. 11- 4.10 [7/64] 35. 11- 4.18 [3/16] 35. 11- 4.18 [3/16] 35. 11- 4.22 [7/32] 35.	39 11- 7.33 [21/64] 40 11- 7.37 [3/8]	3611 11-10.17 [11/64] 3612 11-10.20 [13/64] 3613 11-10.24 [1/4] 3614 11-10.28 [9/32] 3615 11-10.32 [21/64] 3616 11-10.36 [23/64] 3617 11-10.40 [13/32] 3618 11-10.44 [7/16] 3619 11-10.48 [31/64] 3620 11-10.52 [33/64]	3692 12- 1.35 [23/64] 37 3693 12- 1.39 [25/64] 37 3694 12- 1.43 [7/16] 37 3695 12- 1.47 [15/32] 37 3696 12- 1.51 [33/64] 37 3697 12- 1.55 [35/64] 37 3698 12- 1.59 [19/32] 37 3699 12- 1.63 [5/8] 37 3700 12- 1.67 [43/64] 37	771 12- 4.46 [15/32] 772 12- 4.50 [1/2] 773 12- 4.54 [35/64] 774 12- 4.58 [37/64] 775 12- 4.62 [5/8] 777 12- 4.60 [21/32] 777 12- 4.70 [45/64] 778 12- 4.74 [47/64] 779 12- 4.78 [25/32] 780 12- 4.82 [13/16]	3851 12- 7.61 [39/64] 3852 12- 7.65 [21/32] 3853 12- 7.69 [11/16] 3854 12- 7.73 [47/64] 3855 12- 7.77 [49/64] 3856 12- 7.81 [13/16] 3857 12- 7.85 [27/32] 3858 12- 7.89 [57/64] 3859 12- 7.93 [59/64] 3860 12- 7.97 [31/32]
3382 11- 1.15 [5/32] 3462 1 3383 11- 1.19 [3/16] 3463 1 3384 11- 1.23 [15/64] 3465 1 3385 11- 1.27 [17/64] 3465 1 3386 11- 1.31 [5/16] 3466 1 3387 11- 1.35 [11/32] 3467 1 3383 11- 1.39 [25/64] 3468 1 3389 11- 1.43 [27/64] 3469 1 3390 11- 1.46 [15/32] 3470 1	1.1 - 4.30 [19/64] 35/ 1.1 - 4.34 [11/32] 35/ 1.1 - 4.38 [3/8] 35/ 1.1 - 4.42 [27/64] 35/ 1.1 - 4.46 [29/64] 35/ 1.1 - 4.50 [1/2] 35/ 1.1 - 4.57 [37/64] 35/ 1.1 - 4.61 [39/64] 35/ 1.1 - 4.61 [39/64] 35/	44 11- 7.41 [13/32] 42 11- 7.45 [29/64] 43 11- 7.49 [31/64] 44 11- 7.53 [17/32] 45 11- 7.57 [9/16] 46 11- 7.61 [39/64] 47 11- 7.65 [41/64] 48 11- 7.69 [11/16] 49 11- 7.72 [23/32] 50 11- 7.76 [49/64]	3621 11-10.56 [9/16] 3622 11-10.60 [19/32] 3623 11-10.64 [41/64] 3624 11-10.68 [43/64] 3625 11-10.76 [3/4] 3627 11-10.80 [51/64] 3628 11-10.83 [53/64] 3629 11-10.87 [7/8] 3630 11-10.91 [29/32]	3702 12- 1.75 [3/4] 37 3703 12- 1.79 [25/32] 37 3704 12- 1.83 [53/64] 37 3705 12- 1.87 [55/64] 37 3705 12- 1.91 [29/32] 37 3707 12- 1.94 [15/16] 37 3708 12- 1.98 [63/64] 37 3709 12- 2.02 [1/32] 37 3710 12- 2.06 [1/26] 37	81 12- 4.86 [55/64] 82 12- 4.90 [57/64] 83 12- 4.94 [15/16] 84 12- 4.98 [31/32] 85 12- 5.02 [1/64] 87 12- 5.09 [3/32] 88 12- 5.13 [9/64] 89 12- 5.17 [11/64] 90 12- 5.21 [7/32]	3861 12- 8.01 [1/64] 3862 12- 8.05 [3/64] 3863 12- 8.09 [3/32] 3864 12- 8.13 [1/8] 3865 12- 8.17 [11/64] 3866 12- 8.20 [13/64] 3867 12- 8.24 [1/4] 3868 12- 8.28 [9/32] 3869 12- 8.32 [21/64] 3870 12- 8.36 [23/64]
3392 11- 1.54 [35/64] 3472 1 3393 11- 1.58 [37/64] 3473 1 3394 11- 1.62 [5/8] 3474 1 3395 11- 1.66 [21/32] 3475 1 3396 11- 1.70 [45/64] 3476 1 3397 11- 1.74 [47/64] 3477 1 3398 11- 1.78 [25/32] 3478 1 3490 11- 1.82 [13/16] 3479 1 3400 11- 1.86 [55/64] 3480 1	1- 4.69 [11/16] 355 1- 4.73 [47/64] 355 1- 4.77 [49/64] 355 1- 4.81 [13/16] 355 1- 4.85 [27/32] 355 1- 4.99 [57/64] 355 1- 4.97 [31/32] 355 1- 4.97 [31/32] 355 1- 5.01 [1/64] 356	51 11- 7.80 [51/64] 51 11- 7.84 [27/32] 53 11- 7.88 [7/8] 54 11- 7.92 [59/64] 55 11- 7.96 [61/64] 56 11- 8.00 57 11- 8.04 [3/64] 58 11- 8.08 [5/64] 59 11- 8.16 [5/32]	3631 11-10.95 [61/64] 3632 11-10.99 [63/64] 3633 11-11.07 [5/64] 3635 11-11.10 [7/64] 3635 11-11.11 [7/64] 3636 11-11.15 [5/32] 3637 11-11.19 [3/16] 3638 11-11.23 [15/64] 3639 11-11.27 [17/64] 3640 11-11.31 [5/16]	3712 12- 2.14 [9/64] 37 3713 12- 2.18 [3/16] 37 3714 12- 2.22 [7/32] 37 3715 12- 2.26 [17/64] 37 3716 12- 2.30 [19/64] 37 3717 12- 2.34 [11/32] 37 3718 12- 2.38 [3/8] 37 3719 12- 2.42 [27/64] 37 3720 12- 2.46 [29/64] 38	91 12- 5.25 [1/4] 92 12- 5.29 [19/64] 93 12- 5.33 [21/64] 94 12- 5.37 [3/8] 95 12- 5.41 [13/32] 96 12- 5.49 [31/64] 98 12- 5.33 [17/32] 99 12- 5.57 [9/16] 00 12- 5.61 [39/64]	3871 12- 8.40 [13/32] 3872 12- 8.44 [7/16] 3873 12- 8.48 [31/64] 3874 12- 8.52 [33/64] 3875 12- 8.56 [9/16] 3876 12- 8.60 [19/32] 3877 12- 8.64 [41/64] 3878 12- 8.68 [43/64] 3879 12- 8.72 [23/32] 3880 12- 8.76 [3/4]
3402 11 - 1.94 15/16 3482 1 3403 11 - 1.98 [31/32] 3483 1 3404 11 - 2.02 1/64 3485 1 3405 11 - 2.06 1/16 3485 1 3405 11 - 2.06 3/32 3486 1 3407 11 - 2.13 3/64 3487 1 3408 11 - 2.17 11/64 3488 1 3409 11 - 2.21 [7/32 3489 1	1- 5.09 [3/32] 356 1- 5.13 [1/8] 356 1- 5.17 [11/64] 356 1- 5.20 [13/64] 356 1- 5.28 [9/32] 356 1- 5.32 [21/64] 356 1- 5.36 [23/64] 356	11 - 8.20 [13/64] 11 - 8.24 [15/64] 13 11 - 8.28 [9/32] 14 11 - 8.31 [5/16] 15 11 - 8.35 [23/64] 16 11 - 8.39 [25/64] 17 11 - 8.43 [7/16] 18 11 - 8.47 [7/16] 19 11 - 8.51 [33/64] 10 11 - 8.55 [35/64]	3641 11-11.35 [11/32] 3642 11-11.39 [25/64] 3643 11-11.43 [27/64] 3644 11-11.50 [1/2] 3645 11-11.50 [1/2] 3646 11-11.54 [35/64] 3647 11-11.58 [37/64] 3648 11-11.62 [5/8] 3649 11-11.66 [21/32] 3650 11-11.70 [45/64]	3722 12- 2.54 [17/32] 38 3723 12- 2.57 [37/64] 3 3724 12- 2.61 [39/64] 38 3725 12- 2.65 [21/32] 38 3726 12- 2.69 [11/16] 38 3727 12- 2.73 [47/64] 38 3728 12- 2.77 [49/6] 3 3729 12- 2.81 [13/16] 38	01 12- 5.65 [41/64] 02 12- 5.69 [11/16] 03 12- 5.72 [23/32] 04 12- 5.76 [49/64] 05 12- 5.80 [51/64] 06 12- 5.84 [27/32] 07 12- 5.88 [7/8] 08 12- 5.92 [59/64] 09 12- 5.96 [61/64] 10 12- 6.00	3881 12- 8.80 [51/64] 3882 12- 8.83 [53/64] 3883 12- 8.87 [7/8] 3884 12- 8.91 [29/32] 3885 12- 8.95 [61/64] 3886 12- 8.95 [63/64] 3887 12- 9.03 [1/32] 3888 12- 9.07 [5/64] 3890 12- 9.15 [5/32]
3412 11- 2.33 [21/64] 3492 1 3413 11- 2.37 [3/8] 3493 13 3414 11- 2.41 [13/32] 3495 1 3415 11- 2.45 [29/64] 3495 1 3416 11- 2.49 [31/64] 3496 1 3417 11- 2.53 [17/32] 3497 1 3418 11- 2.57 [9/16] 3498 1 3419 11- 2.61 [39/64] 3499 1 3420 11- 2.65 [41/64] 3500 1	1- 5.48 [31/64] 357 1- 5.52 [33/64] 357 1- 5.56 [9/16] 357 1- 5.66 [19/32] 357 1- 5.68 [43/64] 357 1- 5.72 [23/32] 357 1- 5.76 [3/4] 357 1- 5.80 [51/64] 358	11 11- 8.59 [19/32] 12 11- 8.63 [5/8] 13 11- 8.67 [43/64] 14 11- 8.71 [45/64] 15 11- 8.75 [3/4] 16 11- 8.79 [25/32] 17 11- 8.83 [53/64] 18 11- 8.87 [55/64] 19 11- 8.91 [29/32] 10 11- 8.94 [15/16]	3651 11-11.74 [47/64] 3652 11-11.78 [25/32] 3653 11-11.82 [13/16] 3654 11-11.86 [55/64] 3655 11-11.90 [57/64] 3656 11-11.94 [15/16] 3657 11-11.98 [31/32] 3658 12- 0.02 [1/64] 3659 12- 0.06 [1/16] 3660 12- 0.09 [3/32]	3732 12- 2.93 [59/64] 38: 3733 12- 2.97 [31/32] 38: 3734 12- 3.01 [1/64] 38: 3735 12- 3.05 [3/64] 38: 3736 12- 3.09 [3/22] 38: 3737 12- 3.13 [1/8] 38: 3738 12- 3.17 [11/64] 38:	11 12- 6.04 [3/64] 12 12- 6.08 [5/64] 13 12- 6.12 [1/8] 14 12- 6.16 [5/32] 15 12- 6.20 [13/64] 16 12- 6.24 [15/64] 17 12- 6.28 [9/32] 18 12- 6.31 [5/16] 19 12- 6.35 [23/64] 20 12- 6.39 [25/64]	3891 12- 9.19 [3/16] 3892 12- 9.23 [15/64] 3893 12- 9.27 [17/64] 3894 12- 9.31 [5/16] 3895 12- 9.35 [11/32] 3896 12- 9.39 [25/64] 3897 12- 9.43 [27/64] 3898 12- 9.46 [15/32] 3899 12- 9.50 [1/2] 3900 12- 9.54 [35/64]
3422 11- 2.72 [23/32] 3502 1: 3423 11- 2.76 [49/64] 3503 1: 3424 11- 2.80 [51/64] 3504 1: 3425 11- 2.84 [27/32] 3505 1: 3426 11- 2.98 [7/8] 3506 1: 3427 11- 2.92 [59/64] 3507 1: 3428 11- 2.96 [61/64] 3508 1: 3429 11- 3.00 3509 1: 3430 11- 3.04 [3/64] 3510 1:	1- 5.91 [29/32] 358 1- 5.95 [61/64] 358 1- 5.99 [63/64] 358 1- 6.03 [1/32] 358 1- 6.07 [5/64] 358 1- 6.11 [7/64] 358 1- 6.15 [5/32] 358 1- 6.19 [3/16] 359	22 11- 9.02 [1/32] 3 11- 9.06 [1/16] 4 11- 9.10 [7/64] 5 11- 9.14 [9/64] 6 11- 9.18 [3/16] 7 11- 9.22 [7/32] 8 11- 9.26 [17/64] 9 11- 9.30 [19/64] 0 11- 9.34 [11/32]	3661 12- 0.13 [9/64] 3662 12- 0.17 [11/64] 3663 12- 0.21 [7/32] 3664 12- 0.25 [1/4] 3665 12- 0.29 [19/64] 3666 12- 0.33 [21/64] 3667 12- 0.37 [3/8] 3668 12- 0.41 [13/32] 3669 12- 0.45 [29/64] 3670 12- 0.49 [31/64]	3742 12- 3.32 [21/64] 38: 3743 12- 3.36 [23/64] 38: 3744 12- 3.40 [13/32] 38: 3745 12- 3.44 [7/16] 38: 3745 12- 3.48 [31/64] 38: 3747 12- 3.52 [33/64] 38: 3748 12- 3.56 [9/16] 38: 3759 12- 3.66 [19/32] 38: 3750 12- 3.64 [41/64] 38: 3750 12- 3.64 [41/64] 38: 3750 12- 3.64 [41/64] 38: 38: 38: 38: 38: 38: 38: 38: 38: 38:	23 12- 6.51 [33/64] 24 12- 6.55 [35/64] 25 12- 6.59 [19/32] 26 12- 6.63 [5/8] 27 12- 6.67 [43/64] 28 12- 6.71 [45/64] 29 12- 6.75 [3/4] 30 12- 6.79 [25/32]	3901 12- 9.58 [37/64] 3902 12- 9.62 [5/8] 3903 12- 9.66 [21/32] 3904 12- 9.70 [45/64] 3905 12- 9.74 [47/64] 3906 12- 9.78 [25/32] 3907 12- 9.82 [13/16] 3908 12- 9.86 [55/64] 3909 12- 9.90 [57/64] 3910 12- 9.94 [15/16]
3-432 11- 3.12 [1/8] 3512 12 3-433 11- 3.16 [5/32] 3513 11 34-34 11- 3.20 [13/64] 3514 11 34-35 11- 3.24 [15/64] 3515 11 34-36 11- 3.28 [9/32] 3516 11 34-37 11- 3.31 [5/16] 3517 11 34-38 11- 3.35 [23/64] 3518 11 34-39 11- 3.39 [25/64] 3519 11	1- 6.27 [17/64] 359, 1- 6.31 [5/16] 359, 1- 6.35 [11/32] 359, 1- 6.39 [25/64] 359, 1- 6.43 [27/64] 359, 1- 6.46 [15/32] 359, 1- 6.50 [1/2] 359, 1- 6.50 [35/64] 359,	1 11- 9.38 [3/8] 2 11- 9.42 [27/64] 3 11- 9.46 [29/64] 4 11- 9.50 [1/2] 5 11- 9.54 [17/32] 6 11- 9.61 [39/64] 7 11- 9.61 [39/64] 8 11- 9.65 [21/32] 9 11- 9.69 [11/16] 0 11- 9.73 [47/64]	3671 12- 0.53 [17/32] 3672 12- 0.57 [9/16] 3673 12- 0.61 [39/64] 3674 12- 0.65 [41/64] 3675 12- 0.69 [11/16] 3676 12- 0.72 [23/32] 3677 12- 0.76 [49/64] 3678 12- 0.80 [51/64] 3679 12- 0.84 [27/32] 3680 12- 0.88 [7/8]	3751 12- 3.68 [43/64] 383 3752 12- 3.72 [23/32] 383 3753 12- 3.76 [3/4] 383 3754 12- 3.80 [51/64] 383 3756 12- 3.83 [53/64] 383 3756 12- 3.87 [7/8] 383 3757 12- 3.91 [29/32] 383 3758 12- 3.95 [61/64] 383 3759 12- 3.99 [63/64] 383 3760 12- 4.03 [1/32] 384	32 12- 6.87 [55/64] 33 12- 6.91 [29/32] 34 12- 6.94 [15/16] 35 12- 7.02 [1/32] 36 12- 7.02 [1/32] 37 12- 7.06 [1/16] 38 12- 7.10 [7/64]	3911 12- 9.98 [31/32] 3912 12-10.02 [1/64] 3913 12-10.06 [1/16] 3914 12-10.09 [3/32] 3915 12-10.13 [9/64] 3916 12-10.17 [11/64] 3917 12-10.21 [7/32] 3918 12-10.25 [1/4] 3919 12-10.29 [19/64] 3920 12-10.33 [21/64]

MILLIMETER	S CONVERTED	TO FEET AND	INCHES			TABLES M-3
mm ft-in.(fraction)	mm ft-in.(fraction)	mm ft-in.(fraction)	mm ft-in.(fraction)	mm ft-in.(fraction)	mm ft-in.(fraction)	mm ft-in.(fraction)
2801 9- 2.28 [9/32] 2802 9- 2.31 [5/16] 2803 9- 2.35 [23/64] 2804 9- 2.39 [25/64] 2805 9- 2.43 [7/16] 2806 9- 2.47 [15/32] 2807 9- 2.51 [33/64] 2808 9- 2.55 [35/64] 2809 9- 2.59 [19/32] 2810 9- 2.63 [5/8]	2881 9- 5.43 [27/64] 2882 9- 5.46 [15/32] 2883 9- 5.50 [1/2] 2884 9- 5.58 [37/64] 2885 9- 5.58 [37/64] 2886 9- 5.62 [5/8] 2887 9- 5.66 [21/32] 2888 9- 5.70 [45/64] 2889 9- 5.74 [47/64] 2889 9- 5.78 [25/32]	2961 9- 8.57 [37/64] 2962 9- 8.61 [39/64] 2963 9- 8.65 [21/32] 2964 9- 8.69 [11/16] 2965 9- 8.73 [47/64] 2966 9- 8.77 [49/64] 2967 9- 8.81 [13/16] 2968 9- 8.85 [27/32] 2969 9- 8.89 [57/64] 2970 9- 8.93 [59/64]	3041 9-11.72 [23/32] 3042 9-11.76 [49/64] 3043 9-11.80 [51/64] 3044 9-11.84 [27/32] 3045 9-11.88 [7/8] 3046 9-11.92 [59/64] 3047 9-11.96 [61/64] 3048 10- 0.00 3049 10- 0.04 [3/64] 3050 10- 0.08 [5/64]	3121 10- 2.87 [7/8] 3122 10- 2.91 [29/32] 3123 10- 2.95 [61/64] 3124 10- 2.95 [63/64] 3125 10- 3.03 [1/32] 3126 10- 3.07 [5/64] 3127 10- 3.11 [7/64] 3128 10- 3.15 [5/32] 3129 10- 3.19 [3/16] 3130 10- 3.23 [15/64]	3201 10- 6.02 [1/32] 3202 10- 6.06 [1/16] 3203 10- 6.10 [7/64] 3204 10- 6.14 [9/64] 3205 10- 6.18 [3/16] 3206 10- 6.22 [7/32] 3207 10- 6.26 [17/64] 3208 10- 6.30 [19/64] 3209 10- 6.34 [11/32] 3210 10- 6.38 [3/8]	3281 10- 9.17 [11/64] 3282 10- 9.21 [7/32] 3283 10- 9.25 [1/4] 3284 10- 9.29 [19/64] 3285 10- 9.33 [21/64] 3286 10- 9.37 [3/8] 3287 10- 9.41 [13/32] 3288 10- 9.45 [29/64] 3289 10- 9.49 [31/64] 3290 10- 9.53 [17/32]
2811 9- 2.67 [43/64] 2812 9- 2.71 [45/64] 2813 9- 2.75 [3/4] 2814 9- 2.79 [25/32] 2815 9- 2.83 [53/64] 2816 9- 2.87 [55/64] 2817 9- 2.91 [29/32] 2818 9- 2.94 [15/16] 2819 9- 2.98 [63/64] 2820 9- 3.02 [1/32]	2891 9- 5.82 [13/16] 2892 9- 5.86 [55/64] 2893 9- 5.90 [57/64] 2894 9- 5.94 [15/16] 2895 9- 5.98 [31/32] 2896 9- 6.02 [1/64] 2897 9- 6.06 [1/16] 2898 9- 6.09 [3/32] 2899 9- 6.13 [9/64] 2900 9- 6.17 [11/64]	2971 9- 8.97 [31/32] 2972 9- 9.01 [1/64] 2973 9- 9.05 [3/64] 2974 9- 9.09 [3/32] 2975 9- 9.13 [1/8] 2976 9- 9.17 [11/64] 2977 9- 9.20 [13/64] 2978 9- 9.24 [1/4] 2979 9- 9.28 [9/32] 2980 9- 9.32 [21/64]	3051 10- 0.12 [1/8] 3052 10- 0.16 [5/32] 3053 10- 0.20 [13/64] 3054 10- 0.24 [15/64] 3055 10- 0.28 [9/32] 3056 10- 0.31 [5/16] 3057 10- 0.35 [23/64] 3058 10- 0.39 [25/64] 3059 10- 0.43 [7/16] 3060 10- 0.47 [15/32]	3131 10- 3.27 [17/64] 3132 10- 3.31 [5/16] 3133 10- 3.35 [11/32] 3134 10- 3.39 [25/64] 3135 10- 3.43 [27/64] 3136 10- 3.46 [15/32] 3137 10- 3.50 [1/2] 3138 10- 3.54 [35/64] 3139 10- 3.58 [37/64] 3140 10- 3.62 [5/8]	3211 10- 6.42 [27/64] 3212 10- 6.46 [29/64] 3213 10- 6.50 [1/2] 3214 10- 6.54 [17/32] 3215 10- 6.57 [37/64] 3216 10- 6.61 [39/64] 3217 10- 6.65 [21/32] 3218 10- 6.69 [11/16] 3219 10- 6.73 [47/64] 3220 10- 6.77 [49/64]	3291 10- 9.57 [9/16] 3292 10- 9.61 [39/64] 3293 10- 9.65 [41/64] 3294 10- 9.69 [11/16] 3295 10- 9.72 [23/32] 3296 10- 9.76 [49/64] 3297 10- 9.80 [51/64] 3298 10- 9.84 [27/32] 3299 10- 9.88 [7/8] 3300 10- 9.92 [59/64]
2821 9- 3.06 [1/16] 2822 9- 3.10 [7/64] 2823 9- 3.14 [9/64] 2824 9- 3.18 [3/16] 2825 9- 3.22 [7/32] 2826 9- 3.26 [17/64] 2827 9- 3.30 [19/64] 2828 9- 3.34 [11/32] 2829 9- 3.38 [3/8] 2830 9- 3.42 [27/64]	2901 9- 6.21 [7/32] 2902 9- 6.25 [1/4] 2903 9- 6.29 [19/64] 2904 9- 6.33 [21/64] 2905 9- 6.37 [3/8] 2906 9- 6.41 [13/32] 2907 9- 6.45 [29/64] 2908 9- 6.49 [31/64] 2909 9- 6.53 [17/32] 2910 9- 6.57 [9/16]	2981 9- 9.36 [23/64] 2982 9- 9.40 [13/32] 2983 9- 9.44 [7/16] 2984 9- 9.48 [31/64] 2985 9- 9.52 [33/64] 2986 9- 9.56 [9/16] 2987 9- 9.60 [19/32] 2988 9- 9.64 [41/64] 2989 9- 9.68 [43/64] 2990 9- 9.72 [23/32]	3061 10- 0.51 [33/64] 3062 10- 0.55 [35/64] 3063 10- 0.59 [19/32] 3064 10- 0.63 [5/8] 3065 10- 0.67 [43/64] 3066 10- 0.71 [45/64] 3067 10- 0.75 [3/4] 3068 10- 0.79 [25/32] 3069 10- 0.83 [53/64] 3070 10- 0.87 [55/64]	3141 10- 3.66 [21/32] 3142 10- 3.70 [45/64] 3143 10- 3.74 [47/64] 3144 10- 3.78 [25/32] 3145 10- 3.82 [13/16] 3146 10- 3.86 [55/64] 3147 10- 3.90 [57/64] 3148 10- 3.94 [15/16] 3149 10- 3.98 [31/32] 3150 10- 4.02 [1/64]	3221 10- 6.81 [13/16] 3222 10- 6.85 [27/32] 3223 10- 6.89 [57/64] 3224 10- 6.93 [59/64] 3225 10- 6.97 [31/32] 3226 10- 7.01 [1/64] 3227 10- 7.05 [3/64] 3228 10- 7.09 [3/32] 3229 10- 7.13 [1/8] 3230 10- 7.17 [11/64]	3301 10- 9.96 [61/64] 3302 10-10.00 3303 10-10.04 [3/64] 3304 10-10.08 [5/64] 3305 10-10.12 [1/8] 3306 10-10.16 [5/32] 3307 10-10.20 [13/64] 3308 10-10.24 [15/64] 3309 10-10.28 [9/32] 3310 10-10.31 [5/16]
2831 9- 3,46 [29/64] 2832 9- 3.50 [1/2] 2833 9- 3,57 [37/64] 2835 9- 3,61 [39/64] 2836 9- 3,65 [21/32] 2837 9- 3,69 [11/16] 2838 9- 3,73 [47/64] 2849 9- 3,77 [49/64] 2840 9- 3,81 [13/16]	2911 9- 6.61 [39/64] 2912 9- 6.65 [41/64] 2913 9- 6.69 [11/16] 2914 9- 6.72 [23/32] 2915 9- 6.76 [49/64] 2916 9- 6.80 [51/64] 2917 9- 6.84 [7/8] 2918 9- 6.88 [7/8] 2919 9- 6.92 [59/64] 2920 9- 6.96 [61/64]	2991 9- 9.76 [3/4] 2992 9- 9.80 [51/64] 2993 9- 9.83 [53/64] 2994 9- 9.87 [7/8] 2995 9- 9.91 [29/32] 2996 9- 9.95 [61/64] 2997 9- 9.99 [63/64] 2998 9-10.03 [1/32] 2999 9-10.07 [5/64] 3000 9-10.11 [7/64]	3071 10- 0.91 [29/32] 3072 10- 0.94 [15/16] 3073 10- 0.98 [63/64] 3074 10- 1.02 [1/32] 3075 10- 1.06 [1/16] 3076 10- 1.10 [7/64] 3077 10- 1.14 [9/64] 3078 10- 1.18 [3/16] 3079 10- 1.22 [7/32] 3080 10- 1.26 [17/64]	3151 10- 4.06 [1/16] 3152 10- 4.09 [3/32] 3153 10- 4.13 [9/64] 3154 10- 4.17 [11/64] 3155 10- 4.21 [7/32] 3156 10- 4.25 [1/4] 3157 10- 4.29 [19/64] 3158 10- 4.33 [21/64] 3159 10- 4.37 [3/8] 3160 10- 4.41 [13/32]	3231 10- 7.20 [13/64] 3232 10- 7.24 [1/4] 3233 10- 7.28 [9/32] 3234 10- 7.32 [21/64] 3235 10- 7.36 [23/64] 3236 10- 7.40 [13/32] 3237 10- 7.44 [7/16] 3238 10- 7.52 [33/64] 3239 10- 7.52 [33/64] 3240 10- 7.56 [9/16]	3311 10-10.35 [23/64] 3312 10-10.39 [25/64] 3313 10-10.43 [7/16] 3314 10-10.47 [15/32] 3315 10-10.51 [33/64] 3316 10-10.55 [35/64] 3317 10-10.63 [5/8] 3318 10-10.67 [43/64] 3320 10-10.71 [45/64]
2841 9- 3.85 [27/32] 2842 9- 3.89 [57/64] 2843 9- 3.93 [59/64] 2844 9- 3.97 [31/32] 2845 9- 4.01 [1/64] 2846 9- 4.05 [3/64] 2847 9- 4.09 [3/32] 2848 9- 4.13 [1/8] 2849 9- 4.17 [11/64] 2850 9- 4.20 [13/64]	2921	3001 9-10.15 [5/32] 3002 9-10.19 [3/16] 3003 9-10.23 [15/64] 3004 9-10.27 [17/64] 3005 9-10.31 [5/16] 3006 9-10.35 [11/32] 3007 9-10.39 [25/64] 3008 9-10.43 [27/64] 3009 9-10.46 [15/32] 3010 9-10.50 [1/2]	3081 10- 1.30 [19/64] 3082 10- 1.34 [11/32] 3083 10- 1.38 [3/8] 3084 10- 1.42 [27/64] 3085 10- 1.46 [29/64] 3086 10- 1.50 [1/2] 3087 10- 1.54 [17/32] 3088 10- 1.57 [37/64] 3089 10- 1.61 [39/64] 3090 10- 1.65 [21/32]	3161 10- 4.45 [29/64] 3162 10- 4.49 [31/64] 3163 10- 4.53 [17/32] 3164 10- 4.57 [9/16] 3165 10- 4.61 [39/64] 3166 10- 4.65 [41/64] 3167 10- 4.69 [11/16] 3168 10- 4.72 [23/32] 3169 10- 4.76 [49/64] 3170 10- 4.80 [51/64]	3241 10- 7.60 [19/32] 3242 10- 7.64 [41/64] 3243 10- 7.68 [43/64] 3244 10- 7.72 [23/32] 3245 10- 7.76 [51/64] 3246 10- 7.80 [51/64] 3247 10- 7.83 [53/64] 3248 10- 7.87 [7/8] 3249 10- 7.91 [29/32] 3250 10- 7.95 [61/64]	3321 10-10.75 [3/4] 3322 10-10.79 [25/32 3323 10-10.83 [53/64 3324 10-10.81 [55/64 3325 10-10.91 [29/32 3326 10-10.94 [15/16 3327 10-10.98 [63/64 3328 10-11.02 [1/32] 3329 10-11.06 [1/16] 3330 10-11.10 [7/64]
2851 9- 4.24 [1/4] 2852 9- 4.28 [9/32] 2853 9- 4.36 [23/64] 2855 9- 4.40 [13/32] 2856 9- 4.44 [7/16] 2857 9- 4.48 [31/64] 2858 9- 4.52 [33/64] 2859 9- 4.60 [19/32]	2931 9- 7.39 [25/64] 2932 9- 7.43 [7/16] 2933 9- 7.47 [15/32] 2934 9- 7.51 [33/64] 2935 9- 7.55 [35/64] 2936 9- 7.59 [19/32] 2937 9- 7.67 [43/64] 2939 9- 7.71 [45/64] 2940 9- 7.75 [3/4]	3011 9-10.54 [35/64] 3012 9-10.58 [37/64] 3013 9-10.66 [21/32] 3014 9-10.66 [21/32] 3015 9-10.70 [45/64] 3016 9-10.74 [47/64] 3017 9-10.78 [25/32] 3018 9-10.82 [13/16] 3019 9-10.86 [55/64] 3020 9-10.90 [57/64]	3091 10- 1.69 [11/16] 3092 10- 1.73 [47/64] 3093 10- 1.77 [49/64] 3094 10- 1.81 [13/16] 3095 10- 1.85 [27/32] 3096 10- 1.89 [57/64] 3097 10- 1.93 [59/64] 3098 10- 1.97 [31/32] 3099 10- 2.01 [1/64] 3100 10- 2.05 [3/64]	3171 10- 4,84 [27/32] 3172 10- 4,88 [7/8] 3173 10- 4,92 [59/64] 3174 10- 4,96 [61/64] 3175 10- 5.00 3176 10- 5.04 [3/64] 3177 10- 5.08 [5/64] 3178 10- 5.12 [1/8] 3179 10- 5.16 [5/32] 3180 10- 5.20 [13/64]	3251 10- 7.99 [63/64] 3252 10- 8.03 [1/32] 3253 10- 8.07 [5/64] 3254 10- 8.11 [7/64] 3255 10- 8.15 [5/32] 3256 10- 8.19 [3/16] 3257 10- 8.23 [15/64] 3258 10- 8.27 [17/64] 3259 10- 8.31 [5/16] 3260 10- 8.35 [11/32]	3331 10-11.14 [9/64] 3332 10-11.18 [3/16] 3333 10-11.22 [7/32] 3334 10-11.26 [17/64] 3335 10-11.30 [19/64] 3336 10-11.38 [3/8] 3337 10-11.42 [27/64] 3339 10-11.46 [29/64] 3340 10-11.50 [1/2]
2861 9- 4.64 [41/64] 2862 9- 4.68 [43/64] 2863 9- 4.72 [23/32] 2864 9- 4.76 [3/4] 2865 9- 4.80 [51/64] 2866 9- 4.83 [53/64] 2867 9- 4.87 [7/8] 2868 9- 4.91 [29/32] 2869 9- 4.95 [61/64] 2870 9- 4.99 [63/64]	2941 9- 7.79 [25/32] 2942 9- 7.83 [53/64] 2943 9- 7.87 [55/64] 2944 9- 7.91 [29/32] 2945 9- 7.94 [15/16] 2946 9- 7.98 [63/64] 2947 9- 8.06 [1/16] 2949 9- 8.10 [7/64] 2949 9- 8.14 [9/64]	3021 9-10.94 [15/16] 3022 9-10.98 [31/32] 3023 9-11.02 [1/64] 3024 9-11.06 [1/16] 3025 9-11.09 [3/32] 3026 9-11.13 [9/64] 3027 9-11.17 [11/64] 3028 9-11.21 [7/32] 3029 9-11.25 [1/4] 3030 9-11.29 [19/64]	3101 10- 2.09 [3/32] 3102 10- 2.13 [1/8] 3103 10- 2.17 [11/64] 3104 10- 2.20 [13/64] 3105 10- 2.24 [1/4] 3106 10- 2.28 [9/32] 3107 10- 2.32 [21/64] 3108 10- 2.35 [23/64] 3109 10- 2.40 [13/32] 3110 10- 2.44 [7/16]	3181 10- 5.24 [15/64] 3182 10- 5.28 [9/32] 3183 10- 5.31 [5/16] 3184 10- 5.35 [23/64] 3185 10- 5.39 [25/64] 3186 10- 5.43 [7/16] 3187 10- 5.47 [15/32] 3188 10- 5.51 [33/64] 3189 10- 5.55 [35/64] 3190 10- 5.59 [19/32]	3261 10- 8.39 [25/64] 3262 10- 8.43 [27/64] 3263 10- 8.46 [15/32] 3264 10- 8.50 [1/2] 3265 10- 8.54 [35/64] 3266 10- 8.58 [37/64] 3267 10- 8.62 [5/8] 3268 10- 8.62 [5/8] 3269 10- 8.70 [45/64] 3270 10- 8.74 [47/64]	3341 10-11.54 [17/32 3342 10-11.57 [37/64 3343 10-11.61 [39/64 3344 10-11.65 [21/32 3345 10-11.69 [11/16 3346 10-11.73 [47/64 3347 10-11.81 [13/16 3349 10-11.85 [27/32 3350 10-11.89 [57/64
2871 9- 5.03 [1/32] 2872 9- 5.07 [5/64] 2873 9- 5.11 [7/64] 2874 9- 5.15 [5/32] 2875 9- 5.19 [3/16] 2876 9- 5.23 [15/64] 2877 9- 5.27 [17/64] 2878 9- 5.31 [5/16] 2879 9- 5.35 [11/32] 2880 9- 5.39 [25/64]	2951 9- 8.18 [3/16] 2952 9- 8.22 [7/32] 2953 9- 8.26 [17/64] 2954 9- 8.30 [19/64] 2955 9- 8.34 [11/32] 2956 9- 8.38 [3/8] 2957 9- 8.42 [27/64] 2958 9- 8.46 [29/64] 2959 9- 8.50 [1/2] 2960 9- 8.54 [17/32]	3031 9-11.33 [21/64] 3032 9-11.37 [3/8] 3033 9-11.41 [13/32] 3034 9-11.45 [29/64] 3035 9-11.49 [31/64] 3036 9-11.53 [17/32] 3037 9-11.57 [9/16] 3038 9-11.61 [39/64] 3039 9-11.65 [41/64] 3039 9-11.65 [11/16]	3111 10- 2.48 [31/64] 3112 10- 2.52 [33/64] 3113 10- 2.56 [9/16] 3114 10- 2.60 [19/32] 3115 10- 2.64 [41/64] 3116 10- 2.68 [43/64] 3117 10- 2.72 [23/32] 3118 10- 2.76 [3/4] 319 10- 2.80 [51/64] 3120 10- 2.83 [53/64]	3191 10- 5.63 [5/8] 3192 10- 5.67 [43/64] 3193 10- 5.71 [45/64] 3194 10- 5.79 [25/32] 3196 10- 5.83 [53/64] 3197 10- 5.87 [55/64] 3198 10- 5.91 [29/32] 3199 10- 5.94 [15/16] 3200 10- 5.98 [63/64]	3271 10- 8.78 [25/32] 3272 10- 8.82 [13/16] 3273 10- 8.86 [55/64] 3274 10- 8.90 [57/64] 3275 10- 8.94 [15/16] 3276 10- 8.98 [31/32] 3277 10- 9.02 [1/64] 3278 10- 9.06 [1/16] 3279 10- 9.09 [3/32] 3280 10- 9.13 [9/64]	3351 10-11.93 [59/64 3352 10-11.97 [31/32 3353 11- 0.01 [1/64] 3354 11- 0.05 [3/64] 3355 11- 0.09 [3/32] 3356 11- 0.13 [1/8] 3357 11- 0.17 [11/64 3358 11- 0.20 [13/64 3359 11- 0.24 [1/4] 3360 11- 0.28 [9/32]

MILLIMETERS CONVERTED TO FEET AND INCHES TABLES M-3 mm ft-in.(fraction) mm ft-in.(fraction) ft-in.(fraction) mm ft-in.(fraction) mm ft-in.(fraction) mm | ft-in.(fraction) mm ft-in.(fraction) 2241 7- 4.23 [15/64] 2321 7- 7.38 [3/8] 7-10.53 [17/32] 8- 1.68 [43/64] 2401 2481 8- 4.83 [53/64] 8- 7.98 [31/32] 2721 8-11.13 [1/8] 2242 7- 4.27 [17/64] 2322 7- 7.42 [27/64] 2402 7-10.57 [9/16] 2482 8- 1.72 [23/32] 2562 8- 4.87 [55/64] 8-8.02 [1/64] 2722 8-11.17 [11/64 2243 7- 4.31 [5/16] 7- 7.46 [29/64] 2323 2403 7-10.61 [39/64] 2483 8- 1.76 [3/4] 2563 8- 4-91 [29/32] 2643 8- 8.06 [1/16] 2723 8-11.20 [13/64] 2244 7- 4.35 [11/32] 7- 7.50 [1/2] 7-10.65 [41/64] 2324 2404 2484 8- 1.80 [51/64] 8- 4.94 [15/16] 2564 2644 8-8.09 [3/32] 2724 8-11.24 [1/4] 2245 7-4.39 [25/64] 2325 7- 7.54 [17/32] 7-10.69 [11/16] 8- 4.98 [63/64] 2485 8- 1.83 [53/64] 2565 2645 8-8-13 [9/64] 2725 8-11.28 [9/32] 2246 7- 4.43 [27/64] 2326 7- 7.57 [37/64] 7-10.72 [23/32] 2406 2486 8-1.87 [7/8] 2566 8- 5.02 [1/32] 2646 8-8.17 [11/64 2726 8-11.32 [21/64] 2247 7- 4.46 [15/32] 2327 7- 7.61 [39/64] 2407 7-10.76 [49/64] 2487 8- 1.91 [29/32] 2567 8- 5.06 [1/16] 8- 8.21 [7/32] 2727 8-11.36 [23/64] 7- 7.65 [21/32] 2248 7- 4.50 [1/2] 2328 2408 7-10.80 [51/64] 2488 8- 1.95 [61/64] 2568 8- 5.10 [7/64] 2648 8-8.25 [1/4] 2728 8-11.40 [13/32] 2249 7- 4.54 [35/64] 2329 7- 7.69 [11/16] 2409 7-10.84 [27/32] 2489 8- 1.99 [63/64] 2569 8- 5.14 [9/64] 2649 8- 8.29 [19/64 2729 8-11.44 [7/16] 2250 7- 4.58 [37/64] 7- 7.73 [47/64] 2410 7-10.88 [7/8] 8- 2.03 [1/32] 2490 2570 8- 5.18 [3/16] 2650 8- 8.33 [21/64] 8~11.48 [31/64] 2730 2251 7- 4.62 [5/8] 2331 7- 7.77 [49/64] 2411 7-10.92 [59/64] 8- 2.07 [5/64] 2491 2571 8- 5.22 [7/32] 2651 8-8.37 [3/8] 2731 8-11.52 [33/64] 2252 7- 4.66 [21/32] 2332 7- 7.81 [13/16] 7-10.96 [61/64] 2412 2492 8- 2.11 [7/64] 2572 8- 5.26 [17/64] 2652 8- 8.41 [13/32] 2732 8-11.56 [9/16] 2253 7- 4.70 [45/64] 7- 7.85 [27/32] 2413 7-11.00 8- 2.15 [5/32] 2493 2573 8- 5.30 [19/64] 2653 8- 8-45 [29/64] 2733 8-11.60 [19/32] 2254 7- 4.74 [47/64] 2334 7- 7.89 [57/64] 2414 7-11.04 [3/64] 2494 8- 2.19 [3/16] 8- 5.34 [11/32] 2574 2654 8-8.49 [31/64] 2734 8-11.64 [41/64] 2255 7- 4.78 [25/32] 2335 7- 7.93 [59/64] 7-11.08 [5/64] 2495 8- 2.23 [15/64] 2575 8-5.38 [3/8] 2655 8- 8.53 [17/32] 2735 8-11.68 [43/64] 2256 7- 4-82 [13/16] 7-11.12 [1/8] 2336 7- 7.97 [31/32] 2416 2496 8- 2.27 [17/64] 2576 8- 5.42 [27/64] 26.56 8- 8.57 [9/16] 2736 8-11.72 [23/32] 2257 7- 4.86 [55/64] 2337 7- 8.01 [1/64] 2417 7-11.16 [5/32] 2497 8- 2.31 [5/16] 8- 5.46 [29/64] 2577 8- 8-61 [39/64] 2737 8-11.76 [3/4] 2258 7- 4.90 [57/64] 2338 7- 8.05 [3/64] 2418 7-11.20 [13/64] 2498 8~ 2.35 [11/32] 2578 8- 5.50 [1/2] 8- 8.65 [41/64] 2658 2738 8-11.80 [51/64] 2259 7- 4.94 [15/16] 7- 8.09 [3/32] 2339 7-11.24 [15/64] 26.59 2419 2499 8- 2.39 [25/64] 2579 8~ 5.54 [17/32] 8- 8.69 [11/16] 2739 8-11.83 [53/64] 2260 7- 4.98 [31/32] 7- 8.13 [1/8] 7-11.28 [9/32] 2420 2500 8- 2.43 [27/64] 2580 8- 5.57 [37/64] 2660 8- 8.72 [23/32] 2740 8-11.87 [7/8] 7- 5.02 [1/64] 2341 7- 8.17 [11/64] 7-11.31 [5/16] 2421 2501 8- 2.46 [15/32] 2581 8- 5.61 [39/64] 8- 8.76 [49/64] 2661 2741 8-11.91 [29/32] 7- 5.06 [1/16] 2262 2342 7- 8.20 [13/64] 2422 7-11.35 [23/64] 2502 8- 2.50 [1/2] 2582 8- 5.65 [21/32] 8- 8.80 [51/64] 2662 2742 8-11.95 [61/64 2263 7- 5.09 [3/32] 7-11.39 [25/64] 7- 8-24 [1/4] 2423 2503 8- 2.54 [35/64] 8- 8.84 [27/32] 2583 8- 5.69 [11/16] 2663 2743 8-11.99 [63/64] 2264 7- 5.13 [9/64] 2344 7-8.28 [9/32] 7-11.43 [7/16] 2504 8- 2.58 [37/64] 2584 8- 5.73 [47/64] 8- 8.88 [7/8] 2664 2744 9- 0.03 [1/32] 2265 7- 5-17 [11/64] 2345 7- 8.32 [21/64] 7-11.47 [15/32] 8- 2.62 [5/8] 24.25 2505 8- 5.77 [49/64] 2665 8- 8-92 [59/64] 9- 0.07 [5/64] 2745 2266 7- 5.21 [7/32] 2346 7-8.36 [23/64] 2426 7-11.51 [33/64] 2506 8- 2.66 [21/32] 2586 8- 5.81 [13/16] 2666 8- 8.% [61/64] 2746 9- 0.11 [7/64] 7- 5.25 [1/4] 2347 7- 8.40 [13/32] 2427 7-11.55 [35/64] 2507 8- 2.70 [45/64] 2587 8- 5.85 [27/32] 2667 8- 9.00 2747 9-0.15 [5/32] 7- 5.29 [19/64] 7- 8.44 [7/16] 7-11.59 [19/32] 2268 2348 8- 2.74 [47/64] 2428 2508 2588 8- 5.89 [57/64] 2668 8- 9.04 [3/64] 2748 9-0.19 [3/16] 2269 7- 5.33 [21/64] 2349 7- 8.48 [31/64] 2429 7-11.63 [5/8] 2509 8- 2.78 [25/32] 2589 8- 5.93 [59/64] 2669 8- 9.08 [5/64] 2749. 9- 0.23 [15/64 7-11.67 [43/64] 2270 7- 5.37 [3/8] 7- 8.52 [33/64] 2350 2510 8- 2.82 [13/16] 2590 8- 5.97 [31/32] 2670 8-9.12 [1/8] 2750 9- 0.27 [17/64 2271 7- 5.41 [13/32] 7- 8.56 [9/16] 2431 7-11.71 [45/64] 2511 8- 2.86 [55/64] 2591 8- 6-01 [1/64] 2671 8- 9.16 [5/32] 2751 9-0.31 [5/16] 2272 7- 5.45 [29/64] 8- 6.05 [3/64] 2352 7- 8.60 [19/32] 7-11.75 [3/4] 8- 2.90 [57/64] 2512 2592 2672 8- 9.20 [13/64] 2752 9-0.35 [11/32] 2273 7- 5.49 [31/64] 2353 7- 8.64 [41/64] 7-11.79 [25/32] 2513 8- 2.94 [15/16] 8- 6.09 [3/32] 8- 9.24 [15/64] 2593 2673 2753 9- 0.39 [25/64] 2274 7- 5.53 [17/32] 2354 7- 8.68 [43/64] 7-11.83 [53/64] 2434 2514 8- 2.98 [31/32] 2594 8- 6.13 [1/8] 2674 8- 9.28 [9/32] 2754 9- 0.43 [27/64] 2275 7- 8.72 [23/32] 7- 5.57 [9/16] 2355 2435 7-11.87 [55/64] 2515 8- 3.02 [1/64] 8- 6.17 [11/64] 2595 8- 9.31 [5/16] 2755 9- 0.46 [15/32] 7-5.61 [39/64] 2356 7- 8.76 [3/4] 2436 7-11.91 [29/32] 2516 8-3.06 [1/16] 2596 8- 6.20 [13/64] 2676 8- 9.35 [23/64] 2756 9-0.50 [1/2] 2277 7- 5.65 [41/64] 2357 7- 8.80 [51/64] 2437 8- 3.09 [3/32] 7-11.94 [15/16] 2517 2597 8- 6.24 [1/4] 2677 8- 9.39 [25/64] 2757 9- 0.54 [35/64] 7- 5.69 [11/16] 22.78 7- 8.83 [53/64] 7-11.98 [63/64] 2438 2518 8- 3.13 [9/64] 2598 8-6.28 [9/32] 2678 8- 9.43 [7/16] 2758 9-0.58 [37/64] 2279 7- 5.72 [23/32] 2359 7- 8.87 [7/8] 8- 9.47 [15/32] 2439 8- 0.02 [1/32] 2519 8- 3.17 [11/64] 2599 8- 6.32 [21/64] 2679 2759 9- 0.62 [5/8] 7- 5.76 [49/64] 2280 7- 8.91 [29/32] 2360 2440 8- 0.06 [1/16] 8- 3.21 [7/32] 8- 6.36 [23/64] 2600 8- 9.51 [33/64] 2680 2760 9- 0.66 [21/32] 2281 7- 5.80 [51/64] 2361 7- 8.95 [61/64] 8-0.10 [7/64] 2521 8- 3.25 [1/4] 8- 6.40 [13/32] 2601 8- 9.55 [35/64] 2681 2761 9-0.70 [45/64] 2282 7- 5.84 [27/32] 2362 7- 8.99 [63/64] 2442 8-0.14 [9/64] 2522 8- 3.29 [19/64] 8- 6.44 [7/16] 2602 2682 8- 9.59 [19/32] 2762 9- 0.74 [47/64] 2283 7- 5.88 [7/8] 7- 9.03 [1/32] 8- 0.18 [3/16] 8- 3.33 [21/64] 8- 9.63 [5/8] 2363 2443 2603 8- 6.48 [31/64] 2683 9- 0.78 [25/32] 2763 7- 5-92 [59/64] 8- 0.22 [7/32] 2284 2364 7- 9.07 [5/64] 2444 2524 8-3.37 [3/8] 2604 8- 6.52 [33/64] 2684 8- 9.67 [43/64] 2764 9- 0.82 [13/16] 2285 7- 5.96 [61/64] 8- 9.71 [45/64] 2365 7- 9.11 [7/64] 2445 8-0.26 [17/64] 8-3.41 [13/32] 8- 6.56 [9/16] 2525 2605 2685 2765 9- 0.86 [55/64] 7-6.00 7- 9.15 [5/32] 2366 2446 8-0.30 [19/64] 2526 8- 3.45 [29/64] 2606 8- 6.60 [19/32] 8- 9.75 [3/4] 2686 2766 9-0.90 [57/64] 2287 7- 6.04 [3/64] 2367 7- 9.19 [3/16] 2447 8- 0.34 [11/32] 8- 3.49 [31/64] 2527 2607 8- 6.64 [41/64] 2687 8- 9.79 [25/32] 2767 9- 0.94 [15/16] 2288 7- 6.08 [5/64] 2368 7- 9.23 [15/64] 8-0.38 [3/8] 8- 3.53 [17/32] 2528 8- 6.68 [43/64] 8- 9.83 [53/64] 2608 2688 2768 9-0.98 [31/32] 2289 7- 6.12 [1/8] 7- 9.27 [17/64] 2369 2449 8-0.42 [27/64] 2529 8- 3.57 [9/16] 2609 8- 6.72 [23/32] 8- 9.87 [55/64] 2689 2769 9- 1.02 [1/64] 2290 7-6.16 [5/32] 7- 9.31 [5/16] 2450 2370 8- 0.46 [29/64] 2530 8- 3.61 [39/64] 8- 6.76 [3/4] 2610 8- 9.91 [29/32] 2690 9- 1.06 [1/16] 2770 2291 7- 6.20 [13/64] 2371 7- 9.35 [11/32] 8- 0.50 [1/2] 2451 2531 8- 3.65 [41/64] 2611 8- 6.80 [51/64] 2691 8- 9.94 [15/16] 2771 9- 1.09 [3/32] 22.92 7- 6.24 [15/64] 7- 9.39 [25/64] 2372 8- 0.54 [17/32] 2532 8- 3.69 [11/16] 8- 6.83 [53/64] 8- 9.98 [63/64] 2612 2692 2772 9- 1.13 [9/64] 2293 7-6.28 [9/32] 7- 9.43 [27/64] 8- 0.57 [37/64] 8- 3.72 [23/32] 2373 2453 2613 8- 6.87 [7/8] 8-10.02 [1/32] 2693 9- 1.17 [11/64] 2773 7- 6.31 [5/16] 7- 9.46 [15/32] 2294 2374 2454 8-0.61 [39/64] 2534 8- 3.76 [49/64] 2614 8- 6.91 [29/32] 2694 8-10.06 [1/16] 2774 9- 1.21 [7/32] 2295 7- 6.35 [23/64] 2375 7- 9.50 [1/2] 2455 8-0.65 [21/32] 2535 8- 3.80 [51/64] 8- 6.95 [61/64] 8-10.10 [7/64] 9- 1.25 [1/4] 2615 2695 2775 7-6.39 [25/64] 7- 9.54 [35/64] 8- 3.84 [27/32] 2376 2456 8- 0.69 [11/16] 2536 2616 8- 6.99 [63/64] 2696 8-10.14 [9/64] 2776 9- 1.29 [19/64] 2297 7- 6.43 [7/16] 2377 7- 9.58 [37/64] 2457 8- 0.73 [47/64] 2537 8- 3.88 [7/8] 2617 8- 7.03 [1/32] 2697 8-10.18 [3/16] 2777 9- 1.33 [21/64] 7- 9.62 [5/8] 2298 7- 6.47 [15/32] 2378 2458 8- 0.77 [49/64] 8- 3.92 [59/64] 8- 7.07 [5/64] 2538 2698 2618 8-10.22 [7/32] 27.78 9-1.37 [3/8] 2299 7- 6.51 [33/64] 2379 7- 9.66 [21/32] 2459 8- 0.81 [13/16] 2539 8- 3.96 [61/64] 8- 7.11 [7/64] 2619 2699 8-10.26 [17/64] 2779 9- 1.41 [13/32] 2300 7- 6.55 [35/64] 2380 7- 9.70 [45/64] 8-0.85 [27/32] 8- 7.15 [5/32] 9- 1.45 [29/64] 2460 2540 2620 8-10.30 [19/64] 2780 7-6.59 [19/32] 2301 2381 7- 9.74 [47/64] 2461 8- 0.89 [57/64] 2541 8- 4.04 [3/64] 8-7.19 [3/16] 2621 2701 8-10.34 [11/32] 2781 9- 1.49 [31/64] 2302 7- 6.63 [5/8] 2382 7- 9.78 [25/32] 2462 8-0.93 [59/64] 2542 8- 4.08 [5/64] 8- 7.23 [15/64] 2622 2702 8-10.38 [3/8] 2782 9- 1.53 [17/32] 2303 7- 6.67 [43/64] 2383 7- 9.82 [13/16] 2463 8- 0.97 [31/32] 2543 8- 4.12 [1/8] 8- 7.27 [17/64] 8-10.42 [27/64] 2623 2703 9- 1.57 [9/16] 2783 2304 7-6.71 [45/64] 2384 7- 9.86 [55/64] 2464 8- 1.01 [1/64] 2544 8- 4.16 [5/32] 8-10.46 [29/64] 9- 1.61 [39/64] 2624 8- 7.31 [5/16] 2784 2305 7- 6.75 [3/4] 2385 7- 9.90 [57/64] 2465 8- 1.05 [3/64] 25/45 8- 4.20 [13/64] 2625 8- 7.35 [11/32] 8-10.50 [1/2] 9- 1.65 [41/64] 2705 7-6.79 [25/32] 7- 9.94 [15/16] 8- 1.09 [3/32] 2386 2466 2546 8- 4.24 [15/64] 2626 8- 7.39 [25/64] 2706 8-10.54 [17/32] 2786 9- 1.69 [11/16] 7- 6.83 [53/64] 2307 2387 7- 9.98 [31/32] 2467 8- 1.13 [1/8] 2547 8- 4.28 [9/32] 8- 7.43 [27/64] 2627 2707 8-10.57 [37/64] 2787 9- 1.72 [23/32] 2308 7- 6.87 [55/64] 7-10.02 [1/64] 2468 8- 1.17 [11/64] 2548 8- 4.31 [5/16] 8- 7.46 [15/32] 2628 2708 8-10.61 [39/64] 2788 9- 1.76 [49/64] 2309 7- 6.91 [29/32] 2389 7-10.06 [1/16] 2469 8- 1.20 [13/64] 2549 8- 4.35 [23/64] 2629 8- 7.50 [1/2] 2709 8-10.65 [21/32] 9- 1.80 [51/64] 2789 2310 7- 6.94 [15/16] 2390 7-10.09 [3/32] 2470 8- 1.24 [1/4] 8- 4.39 [25/64] 2630 8- 7.54 [35/64] 8-10.69 [11/16] 2790 2710 9- 1.84 [27/32] 2311 7- 6.98 [63/64] 2391 7-10.13 [9/64] 2471 8- 1.28 [9/32] 2551 8- 4.43 [7/16] 8- 7.58 [37/64] 2631 2711 8-10.73 [47/64] 2791 9-1.88 [7/8] 2312 7- 7.02 [1/32] 2392 7-10.17 [11/64] 2472 8- 1.32 [21/64] 2552 8- 4.47 [15/32] 8- 7.62 [5/8] 8-10.77 [49/64] 2632 2712 9- 1.92 [59/64] 2792 2313 7-7.06 [1/16] 2393 7-10.21 [7/32] 2473 8- 1.36 [23/64] 2553 8- 4.51 [33/64] 8- 7.66 [21/32] 8-10.81 [13/16] 9- 1.96 [61/64] 2633 2713 2793 7- 7-10 [7/64] 7-10.25 [1/4] 2314 2394 2474 8- 1.40 [13/32] 2554 8- 4.55 [35/64] 2634 8- 7.70 [45/64] 8-10.85 [27/32] 2794 9- 2.00 2315 7- 7.14 [9/64] 2395 7-10.29 [19/64] 2475 8- 1.44 [7/16] 2555 8- 4.59 [19/32] 8- 7.74 [47/64] 8-10.89 [57/64] 9- 2.04 [3/64] 2635 2715 2795 7- 7.18 [3/16] 2316 2396 7-10.33 [21/64] 2476 8- 1.48 [31/64] 2556 8-4.63 [5/8] 2636 8- 7.78 [25/32] 2716 8-10.93 [59/64] 2796 9- 2.08 [5/64] 2317 7- 7.22 [7/32] 2397 7-10.37 [3/8] 2477 8- 1.52 [33/64] 2557 8- 4.67 [43/64] 2637 8- 7.82 [13/16] 2717 8-10.97 [31/32] 2797 9- 2.12 [1/8] 7- 7.26 [17/64] 2318 2398 7-10.41 [13/32] 2478 8~ 1.56 [9/16] 2558 8- 4.71 [45/64] 8- 7.86 [55/64] 26.38 2718 8-11.01 [1/64] 2798 9- 2.16 [5/32] 2319 7- 7.30 [19/64] 2399 7-10.45 [29/64] 2479 8- 1.60 [19/32] 2559 8- 4.75 [3/4] 2639 8- 7.90 [57/64] 2719 2799 9- 2-20 [13/64] 8-11.05 [3/64] 2320 7- 7.34 [11/32] 2400 7-10.49 [31/64] 8- 1.64 [41/64] 8- 4.79 [25/32] 8- 7.94 [15/16] 8-11.09 [3/32] 9- 2.24 [15/64] 2800

MILLIMETER	S CONVERTED	TO FEET AND	INCHES			TABLES M-3
mm ft-in.(fraction)	mm ft-in.(fraction)	mm ft-in.(fraction)	mm ft-in.(fraction)	mm ft-in.(fraction)	mm ft-in.(fraction)	mm ft-in.(fraction)
1681 5- 6.18 [3/16] 1682 5- 6.22 [7/32] 1683 5- 6.26 [17/64] 1684 5- 6.30 [19/64] 1685 5- 6.34 [11/32] 1686 5- 6.38 [3/8] 1687 5- 6.42 [27/64] 1688 5- 6.46 [29/64] 1689 5- 6.50 [1/2] 1690 5- 6.54 [17/32]	1761 5- 9.33 [21/64] 1762 5- 9.37 [3/8] 1763 5- 9.41 [13/32] 1764 5- 9.45 [29/64] 1765 5- 9.49 [31/64] 1766 5- 9.53 [17/32] 1767 5- 9.57 [9/16] 1768 5- 9.61 [39/64] 1769 5- 9.65 [41/64] 1770 5- 9.69 [11/16]	1841 6- 0.48 [31/64] 1842 6- 0.52 [33/64] 1843 6- 0.56 [9/16] 1844 6- 0.60 [19/32] 1845 6- 0.64 [41/64] 1846 6- 0.68 [43/64] 1847 6- 0.72 [23/32] 1848 6- 0.76 [3/4] 1849 6- 0.80 [51/64] 1850 6- 0.83 [53/64]	1921 6- 3.63 [5/8] 1922 6- 3.67 [43/64] 1923 6- 3.71 [45/64] 1924 6- 3.75 [3/4] 1925 6- 3.79 [25/32] 1926 6- 3.83 [53/64] 1927 6- 3.87 [55/64] 1928 6- 3.91 [29/32] 1929 6- 3.94 [15/16] 1930 6- 3.98 [63/64]	2001 6- 6.78 [25/32] 2002 6- 6.82 [13/16] 2003 6- 6.86 [55/64] 2004 6- 6.90 [57/64] 2005 6- 6.94 [15/16] 2006 6- 6.98 [31/32] 2007 6- 7.02 [1/64] 2008 6- 7.06 [1/16] 2009 6- 7.09 [3/32] 2010 6- 7.13 [9/64]	2081 6- 9.93 [59/64] 2082 6- 9.97 [31/32] 2083 6-10.01 [1/64] 2084 6-10.05 [3/64] 2085 6-10.09 [3/32] 2086 6-10.13 [1/8] 2087 6-10.17 [11/64] 2088 6-10.20 [13/64] 2089 6-10.24 [1/4] 2090 6-10.28 [9/32]	2161 7- 1.08 [5/64] 2162 7- 1.12 [1/8] 2163 7- 1.16 [5/32] 2164 7- 1.20 [13/64] 2165 7- 1.24 [15/64] 2166 7- 1.28 [9/32] 2167 7- 1.31 [5/16] 2168 7- 1.35 [23/64] 2169 7- 1.39 [25/64] 2170 7- 1.43 [7/16]
1691 5- 6.57 [37/64] 1692 5- 6.61 [39/64] 1693 5- 6.65 [21/32] 1694 5- 6.69 [11/16] 1695 5- 6.73 [47/64] 1696 5- 6.81 [13/16] 1698 5- 6.85 [27/32] 1699 5- 6.89 [57/64] 1700 5- 6.93 [59/64]	1771 5- 9.72 [23/32] 1772 5- 9.76 [49/64] 1773 5- 9.80 [51/64] 1774 5- 9.84 [27/32] 1775 5- 9.88 [7/8] 1776 5- 9.92 [59/64] 1777 5- 9.96 [61/64] 1778 5-10.00 1779 5-10.04 [3/64] 1780 5-10.08 [5/64]	1851 6- 0.87 [7/8] 1852 6- 0.91 [29/32] 1853 6- 0.95 [61/64] 1854 6- 0.99 [63/64] 1855 6- 1.03 [1/32] 1856 6- 1.07 [5/64] 1857 6- 1.11 [7/64] 1858 6- 1.15 [5/32] 1859 6- 1.19 [3/16] 1860 6- 1.23 [15/64]	1931 6- 4.02 [1/32] 1932 6- 4.06 [1/16] 1933 6- 4.10 [7/64] 1934 6- 4.14 [9/64] 1935 6- 4.18 [3/16] 1936 6- 4.22 [7/32] 1937 6- 4.26 [17/64] 1938 6- 4.30 [19/64] 1939 6- 4.34 [11/32] 1940 6- 4.38 [3/8]	2011 6- 7.17 [11/64] 2012 6- 7.21 [7/32] 2013 6- 7.25 [1/4] 2014 6- 7.29 [19/64] 2015 6- 7.33 [21/64] 2016 6- 7.37 [3/8] 2017 6- 7.45 [13/32] 2018 6- 7.49 [31/64] 2019 6- 7.49 [31/64] 2020 6- 7.53 [17/32]	2091 6-10.32 [21/64] 2092 6-10.36 [23/64] 2093 6-10.40 [13/32] 2094 6-10.44 [7/16] 2095 6-10.48 [31/64] 2096 6-10.52 [33/64] 2097 6-10.56 [9/16] 2098 6-10.60 [19/32] 2099 6-10.64 [41/64] 2100 6-10.68 [43/64]	2171 7- 1.47 [15/32] 2172 7- 1.51 [33/64] 2173 7- 1.55 [35/64] 2174 7- 1.59 [19/32] 2175 7- 1.63 [5/8] 2176 7- 1.67 [43/64] 2177 7- 1.71 [45/64] 2178 7- 1.75 [3/4] 2179 7- 1.83 [53/64]
1701 5- 6.97 [31/32] 1702 5- 7.01 [1/64] 1703 5- 7.05 [3/64] 1704 5- 7.09 [3/32] 1705 5- 7.13 [1/8] 1706 5- 7.17 [11/64] 1707 5- 7.26 [13/64] 1708 5- 7.24 [1/4] 1709 5- 7.28 [9/32] 1710 5- 7.32 [21/64]	1781 5-10.12 [1/8] 1782 5-10.16 [5/32] 1783 5-10.20 [13/64] 1784 5-10.24 [15/64] 1785 5-10.28 [9/32] 1786 5-10.31 [5/16] 1787 5-10.35 [23/64] 1788 5-10.39 [25/64] 1789 5-10.43 [7/16] 1790 5-10.47 [15/32]	1861 6- 1.27 [17/64] 1862 6- 1.31 [5/16] 1863 6- 1.35 [11/32] 1864 6- 1.39 [25/64] 1865 6- 1.43 [27/64] 1866 6- 1.46 [15/32] 1867 6- 1.50 [1/2] 1868 6- 1.54 [35/64] 1869 6- 1.58 [37/64] 1870 6- 1.62 [5/8]	1941 6- 4.42 [27/64] 1942 6- 4.46 [29/64] 1943 6- 4.50 [1/2] 1944 6- 4.54 [17/32] 1945 6- 4.57 [37/64] 1946 6- 4.61 [39/64] 1947 6- 4.65 [21/32] 1948 6- 4.69 [11/16] 1949 6- 4.73 [47/64] 1950 6- 4.77 [49/64]	2021 6- 7.57 [9/16] 2022 6- 7.61 [39/64] 2023 6- 7.65 [41/64] 2024 6- 7.69 [11/16] 2025 6- 7.72 [23/32] 2026 6- 7.76 [49/64] 2027 6- 7.80 [51/64] 2028 6- 7.84 [27/32] 2029 6- 7.88 [7/8] 2030 6- 7.92 [59/64]	2101 6-10.72 [23/32] 2102 6-10.76 [3/4] 2103 6-10.80 [51/64] 2104 6-10.83 [53/64] 2105 6-10.87 [7/8] 2107 6-10.95 [61/64] 2108 6-10.95 [61/64] 2108 6-10.95 [63/64] 2109 6-11.03 [1/32] 2110 6-11.07 [5/64]	2181 7- 1.87 [55/64] 2182 7- 1.91 [29/32] 2183 7- 1.94 [15/16] 2184 7- 1.98 [63/64] 2185 7- 2.02 [1/32] 2186 7- 2.06 [1/16] 2187 7- 2.10 [7/64] 2189 7- 2.18 [3/16] 2190 7- 2.22 [7/32]
1711 5- 7.36 [23/64] 1712 5- 7.40 [13/32] 1713 5- 7.44 [7/16] 1714 5- 7.48 [31/64] 1715 5- 7.52 [33/64] 1716 5- 7.50 [9/16] 1717 5- 7.60 [19/32] 1718 5- 7.64 [41/64] 1719 5- 7.68 [43/64] 1720 5- 7.72 [23/32]	1791 5-10.51 [33/64] 1792 5-10.55 [35/64] 1793 5-10.59 [19/32] 1794 5-10.63 [5/8] 1795 5-10.67 [43/64] 1796 5-10.71 [45/64] 1797 5-10.75 [3/4] 1798 5-10.79 [25/32] 1799 5-10.83 [53/64] 1800 5-10.87 [55/64]	1871 6- 1.66 [21/32] 1872 6- 1.70 [45/64] 1873 6- 1.74 [47/64] 1874 6- 1.78 [25/32] 1875 6- 1.82 [13/16] 1876 6- 1.86 [55/64] 1877 6- 1.90 [57/64] 1878 6- 1.94 [15/16] 1879 6- 1.98 [31/32] 1880 6- 2.02 [1/64]	1951 6- 4.81 [13/16] 1952 6- 4.85 [27/32] 1953 6- 4.89 [57/64] 1954 6- 4.93 [59/64] 1955 6- 4.97 [31/32] 1956 6- 5.05 [3/64] 1957 6- 5.05 [3/64] 1958 6- 5.09 [3/32] 1959 6- 5.13 [1/8] 1960 6- 5.17 [11/64]	2031 6- 7.96 (61/64) 2032 6- 8.00 2033 6- 8.04 (3/64) 2034 6- 8.08 [5/64] 2035 6- 8.12 [1/8] 2036 6- 8.16 [5/32] 2037 6- 8.20 [13/64] 2038 6- 8.24 [15/64] 2039 6- 8.28 [9/32] 2040 6- 8.31 [5/16]	2111 6-11.11 [7/64] 2112 6-11.15 [5/32] 2113 6-11.19 [3/16] 2114 6-11.23 [15/64] 2115 6-11.27 [17/64] 2116 6-11.31 [5/16] 2117 6-11.35 [11/32] 2118 6-11.39 [25/64] 2119 6-11.43 [27/64] 2120 6-11.46 [15/32]	2191 7- 2.26 [17/64] 2192 7- 2.30 [19/64] 2193 7- 2.34 [11/32] 2194 7- 2.38 [3/8] 2195 7- 2.46 [29/64] 2196 7- 2.46 [29/64] 2197 7- 2.50 [1/2] 2198 7- 2.57 [37/64] 2200 7- 2.61 [39/64]
1721 5- 7.76 [3/4] 1722 5- 7.80 [51/64] 1723 5- 7.83 [53/64] 1724 5- 7.87 [7/8] 1725 5- 7.91 [29/32] 1726 5- 7.95 [61/64] 1727 5- 7.99 [63/64] 1728 5- 8.03 [1/32] 1729 5- 8.07 [5/64] 1730 5- 8.11 [7/64]	1801 5-10.91 [29/32] 1802 5-10.94 [15/16] 1803 5-10.98 [63/64] 1804 5-11.02 [1/32] 1805 5-11.106 [1/16] 1806 5-11.10 [7/64] 1807 5-11.14 [9/64] 1808 5-11.18 [3/16] 1809 5-11.22 [7/32] 1810 5-11.26 [17/64]	1881 6- 2.06 [1/16] 1882 6- 2.09 [3/32] 1883 6- 2.13 [9/64] 1884 6- 2.17 [11/64] 1885 6- 2.21 [7/32] 1886 6- 2.25 [1/4] 1887 6- 2.29 [19/64] 1888 6- 2.33 [21/64] 1889 6- 2.37 [3/8] 1890 6- 2.41 [13/32]	1961 6- 5.20 [13/64] 1962 6- 5.24 [1/4] 1963 6- 5.28 [9/32] 1964 6- 5.36 [23/64] 1965 6- 5.36 [23/64] 1966 6- 5.40 [13/32] 1967 6- 5.48 [31/64] 1969 6- 5.52 [33/64] 1970 6- 5.56 [9/16]	2041 6- 8.35 [23/64] 2042 6- 8.39 [25/64] 2043 6- 8.43 [7/16] 2044 6- 8.47 [15/32] 2045 6- 8.51 [33/64] 2046 6- 8.55 [35/64] 2047 6- 8.59 [19/32] 2048 6- 8.63 [5/8] 2049 6- 8.67 [43/64] 2050 6- 8.71 [45/64]	2121 6-11.50 [1/2] 2122 6-11.54 [35/64] 2123 6-11.58 [37/64] 2124 6-11.62 [5/8] 2125 6-11.66 [21/32] 2126 6-11.70 [45/64] 2127 6-11.74 [47/64] 2128 6-11.78 [25/32] 2129 6-11.82 [13/16] 2130 6-11.86 [55/64]	2201 7- 2.65 [21/32] 2202 7- 2.69 [11/16] 2203 7- 2.73 [47/64] 2204 7- 2.77 [49/64] 2205 7- 2.81 [13/16] 2206 7- 2.85 [27/32] 2207 7- 2.89 [57/64] 2208 7- 2.93 [59/64] 2209 7- 2.97 [31/32] 2210 7- 3.01 [1/64]
1731 5- 8.15 [5/32] 1732 5- 8.19 [3/16] 1733 5- 8.23 [15/64] 1734 5- 8.27 [17/64] 1735 5- 8.31 [5/16] 1736 5- 8.35 [11/32] 1737 5- 8.39 [25/64] 1738 5- 8.43 [27/64] 1739 5- 8.46 [15/32] 1740 5- 8.50 [1/2]	1811 5-11.30 [19/64] 1812 5-11.34 [11/32] 1813 5-11.38 [3/8] 1814 5-11.42 [27/64] 1815 5-11.46 [29/64] 1816 5-11.50 [1/2] 1817 5-11.54 [17/32] 1818 5-11.57 [37/64] 1819 5-11.61 [39/64] 1820 5-11.65 [21/32]	1891 6- 2.45 (29/64) 1892 6- 2.49 (31/64) 1893 6- 2.53 (17/32) 1894 6- 2.57 (9/16) 1895 6- 2.61 (39/64) 1896 6- 2.65 (41/64) 1897 6- 2.69 (11/16) 1898 6- 2.72 (23/32) 1899 6- 2.76 (49/64) 1900 6- 2.80 (51/64)	1971 6- 5.60 [19/32] 1972 6- 5.64 [41/64] 1973 6- 5.68 [43/64] 1974 6- 5.72 [23/32] 1975 6- 5.76 [3/4] 1976 6- 5.80 [51/64] 1977 6- 5.83 [53/64] 1978 6- 5.87 [7/8] 1979 6- 5.91 [29/32] 1980 6- 5.95 [61/64]	2051 6- 8.75 [3/4] 2052 6- 8.79 [25/32] 2053 6- 8.83 [53/64] 2054 6- 8.87 [55/64] 2055 6- 8.91 [29/32] 2056 6- 8.94 [15/16] 2057 6- 8.98 [63/64] 2058 6- 9.02 [1/32] 2059 6- 9.06 [1/16] 2060 6- 9.10 [7/64]	2131 6-11.90 [57/64] 2132 6-11.94 [15/16] 2133 6-11.98 [31/32] 2134 7- 0.02 [1/64] 2135 7- 0.06 [1/16] 2136 7- 0.09 [3/32] 2137 7- 0.13 [9/64] 2138 7- 0.17 [11/64] 2139 7- 0.21 [7/32] 2140 7- 0.25 [1/4]	2212 7- 3.09 [3/32] 2213 7- 3.13 [1/8] 2214 7- 3.17 [11/64] 2215 7- 3.20 [13/64] 2216 7- 3.24 [1/4] 2217 7- 3.28 [9/32] 2218 7- 3.36 [23/64] 2219 7- 3.40 [13/32]
1741 5- 8.54 [35/64] 1742 5- 8.58 [37/64] 1743 5- 8.62 [5/8] 1744 5- 8.66 [21/32] 1745 5- 8.70 [45/64] 1746 5- 8.78 [25/32] 1747 5- 8.78 [25/32] 1748 5- 8.82 [13/16] 1749 5- 8.86 [55/64] 1750 5- 8.90 [57/64]	1821 5-11.69 [11/16] 1822 5-11.73 [47/64] 1823 5-11.77 [49/64] 1824 5-11.81 [13/16] 1825 5-11.85 [27/32] 1826 5-11.89 [57/64] 1827 5-11.93 [59/64] 1828 5-11.97 [31/32] 1829 6- 0.01 [1/64] 1830 6- 0.05 [3/64]	1901 6- 2.84 [27/32] 1902 6- 2.88 [7/8] 1903 6- 2.92 [59/64] 1904 6- 2.96 [61/64] 1905 6- 3.00 1906 6- 3.04 [3/64] 1907 6- 3.08 [5/64] 1908 6- 3.12 [1/8] 1909 6- 3.16 [5/32] 1910 6- 3.20 [13/64]	1981 6- 5.99 [63/64] 1982 6- 6.03 [1/32] 1983 6- 6.07 [5/64] 1984 6- 6.11 [7/64] 1985 6- 6.15 [5/32] 1986 6- 6.19 [3/16] 1987 6- 6.23 [15/64] 1988 6- 6.27 [17/64] 1989 6- 6.31 [5/16] 1990 6- 6.35 [11/32]	2061 6- 9.14 [9/64] 2062 6- 9.18 [3/16] 2063 6- 9.22 [7/32] 2064 6- 9.26 [17/64] 2065 6- 9.30 [19/64] 2066 6- 9.34 [11/32] 2067 6- 9.38 [3/8] 2068 6- 9.42 [27/64] 2069 6- 9.46 [29/64] 2070 6- 9.50 [1/2]	2141 7- 0.29 [19/64] 2142 7- 0.33 [21/64] 2143 7- 0.37 [3/8] 2144 7- 0.41 [13/32] 2145 7- 0.45 [29/64] 2146 7- 0.49 [31/64] 2147 7- 0.53 [17/32] 2148 7- 0.57 [9/16] 2149 7- 0.61 [39/64] 2150 7- 0.65 [41/64]	2225 7- 3.60 [19/32] 2226 7- 3.64 [41/64] 2227 7- 3.68 [43/64] 2228 7- 3.72 [23/32] 2229 7- 3.76 [3/4] 2230 7- 3.80 [51/64]
1751 5- 8.94 [15/16] 1752 5- 8.98 [31/32] 1753 5- 9.02 [1/64] 1754 5- 9.06 [1/16] 1755 5- 9.09 [3/32] 1756 5- 9.17 [11/64] 1757 5- 9.17 [11/64] 1758 5- 9.21 [7/32] 1759 5- 9.25 [1/4] 1760 5- 9.29 [19/64]	1831 6- 0.09 [3/32] 1832 6- 0.13 [1/8] 1833 6- 0.17 [11/64] 1834 6- 0.20 [13/64] 1835 6- 0.24 [1/4] 1836 6- 0.28 [9/32] 1837 6- 0.32 [21/64] 1838 6- 0.36 [23/64] 1839 6- 0.40 [13/32] 1840 6- 0.44 [7/16]	1911 6- 3.24 [15/64] 1912 6- 3.28 [9/32] 1913 6- 3.31 [5/16] 1914 6- 3.35 [23/64] 1915 6- 3.39 [25/64] 1916 6- 3.43 [7/16] 1917 6- 3.47 [15/32] 1918 6- 3.51 [33/64] 1919 6- 3.55 [35/64] 1920 6- 3.59 [19/32]	1991 6- 6.39 [25/64] 1992 6- 6.43 [27/64] 1993 6- 6.46 [15/32] 1994 6- 6.50 [1/2] 1995 6- 6.54 [35/64] 1996 6- 6.62 [5/8] 1997 6- 6.62 [5/8] 1998 6- 6.70 [45/64] 2000 6- 6.74 [47/64]	2071 6- 9.54 [17/32] 2072 6- 9.57 [37/64] 2073 6- 9.61 [39/64] 2074 6- 9.65 [21/32] 2075 6- 9.69 [11/16] 2076 6- 9.73 [47/64] 2077 6- 9.77 [49/64] 2078 6- 9.81 [13/16] 2079 6- 9.85 [27/32] 2080 6- 9.89 [57/64]	2151 7- 0.69 [11/16] 2152 7- 0.72 [23/32] 2153 7- 0.76 [49/64] 2154 7- 0.80 [51/64] 2155 7- 0.84 [27/32] 2156 7- 0.88 [7/8] 2157 7- 0.92 [59/64] 2159 7- 0.96 [61/64] 2159 7- 1.00 2160 7- 1.04 [3/64]	2231 7- 3.83 [53/64] 2232 7- 3.87 [7/8] 2233 7- 3.91 [29/32] 2234 7- 3.95 [61/64] 2235 7- 3.99 [63/64] 2236 7- 4.03 [1/32] 2237 7- 4.07 [5/64] 2238 7- 4.11 [7/64] 2239 7- 4.15 [5/32] 2240 7- 4.19 [3/16]

N	ILLIMETER	S C	ONVERTED	TO	FEET AND	INCI	IES					TABL	ES M-3
mm	ft-in.(fraction)	mm	ft-in.(fraction)	mm	ft-in.(fraction)	mm	ft-in.(fraction)	mm	ft-in.(fraction)	mm	ft-in.(fraction)	mm	ft-in.(fraction)
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130	3- 8.13 [9/64] 3- 8.17 [11/64] 3- 8.21 [7/32] 3- 8.25 [1/4] 3- 8.29 [19/64] 3- 8.33 [21/64] 3- 8.41 [13/32] 3- 8.45 [29/64] 3- 8.49 [31/64]	1201 1202 1203 1204 1205 1206 1207 1208 1209 1210	3-11.28 [9/32] 3-11.32 [21/64] 3-11.36 [23/64] 3-11.40 [13/32] 3-11.44 [7/16] 3-11.52 [33/64] 3-11.55 [9/16] 3-11.60 [19/32] 3-11.64 [41/64]	1281 1282 1283 1284 1285 1286 1287 1288 1289 1290	4- 2.43 [7/16] 4- 2.47 [15/32] 4- 2.51 [33/64] 4- 2.55 [35/64] 4- 2.59 [19/32] 4- 2.63 [5/8] 4- 2.67 [43/64] 4- 2.71 [45/64] 4- 2.75 [3/4] 4- 2.79 [25/32]	1361 1362 1363 1364 1365 1366 1367 1368 1369 1370	4- 5.58 [37/64] 4- 5.62 [5/8] 4- 5.66 [21/32] 4- 5.70 [45/64] 4- 5.78 [25/32] 4- 5.82 [13/16] 4- 5.86 [55/64] 4- 5.90 [57/64] 4- 5.94 [15/16]	1441 1442 1443 1444 1445 1446 1447 1448 1449 1450	4- 8.73 [47/64] 4- 8.77 [49/64] 4- 8.81 [13/16] 4- 8.85 [27/32] 4- 8.89 [57/64] 4- 8.93 [59/64] 4- 8.97 [31/32] 4- 9.01 [1/64] 4- 9.09 [3/32]	1521 1522 1523 1524 1525 1526 1527 1528 1529 1530	4-11.88 [7/8] 4-11.92 [59/64] 4-11.96 [61/64] 5- 0.00 5- 0.04 [3/64] 5- 0.12 [1/8] 5- 0.16 [5/32] 5- 0.20 [13/64] 5- 0.24 [15/64]	1601 1602 1603 1604 1605 1606 1607 1608 1609 1610	5- 3.03 [1/32] 5- 3.07 [5/64] 5- 3.11 [7/64] 5- 3.15 [5/32] 5- 3.19 [3/16] 5- 3.27 [17/64] 5- 3.27 [17/64] 5- 3.35 [11/32] 5- 3.39 [25/64]
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140	3- 8.53 [17/32] 3- 8.57 [9/16] 3- 8.61 [39/64] 3- 8.65 [41/64] 3- 8.72 [23/32] 3- 8.76 [49/64] 3- 8.80 [51/64] 3- 8.84 [27/32] 3- 8.84 [7/8]	1211 1212 1213 1214 1215 1216 1217 1218 1219 1220	3-11.68 [43/64] 3-11.72 [23/32] 3-11.76 [3/4] 3-11.80 [51/64] 3-11.83 [53/64] 3-11.91 [29/32] 3-11.95 [61/64] 3-11.95 [63/64] 4-0.03 [1/32]	1291 1292 1293 1294 1295 1296 1297 1298 1299 1300	4- 2.83 [53/64] 4- 2.87 [55/64] 4- 2.91 [29/32] 4- 2.98 [63/64] 4- 3.02 [1/32] 4- 3.06 [1/16] 4- 3.10 [7/64] 4- 3.18 [3/16]	1371 1372 1373 1374 1375 1376 1377 1378 1379 1380	4- 5.98 [31/32] 4- 6.02 [1/64] 4- 6.06 [1/16] 4- 6.09 [3/32] 4- 6.13 [9/64] 4- 6.21 [7/32] 4- 6.25 [1/4] 4- 6.29 [19/64] 4- 6.33 [21/64]	1451 1452 1453 1454 1455 1456 1457 1458 1459 1460	4- 9.13 [1/8] 4- 9.17 [11/64] 4- 9.20 [13/64] 4- 9.28 [9/32] 4- 9.32 [21/64] 4- 9.36 [23/64] 4- 9.40 [13/32] 4- 9.44 [7/16] 4- 9.48 [31/64]	1531 1532 1533 1534 1535 1536 1537 1538 1539 1540	5- 0.28 [9/32] 5- 0.31 [5/16] 5- 0.35 [23/64] 5- 0.39 [25/64] 5- 0.47 [15/32] 5- 0.51 [33/64] 5- 0.55 [35/64] 5- 0.59 [19/32] 5- 0.63 [5/8]	1611 1612 1613 1614 1615 1616 1617 1618 1619 1620	5- 3.43 [27/64] 5- 3.46 [15/32] 5- 3.50 [1/2] 5- 3.58 [37/64] 5- 3.62 [5/8] 5- 3.66 [21/32] 5- 3.70 [45/64] 5- 3.74 [47/64] 5- 3.78 [25/32]
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150	3- 8.92 [59/64] 3- 8.96 [61/64] 3- 9.00 3- 9.08 [5/64] 3- 9.12 [1/8] 3- 9.16 [5/32] 3- 9.20 [13/64] 3- 9.24 [15/64] 3- 9.28 [9/32]	1221 1222 1223 1224 1225 1226 1227 1228 1229 1230	4- 0.07 [5/64] 4- 0.11 [7/64] 4- 0.15 [5/32] 4- 0.19 [3/16] 4- 0.23 [15/64] 4- 0.27 [17/64] 4- 0.31 [5/16] 4- 0.35 [11/32] 4- 0.39 [25/64] 4- 0.43 [27/64]	1301 1302 1303 1304 1305 1306 1307 1308 1309 1310	4- 3.22 [7/32] 4- 3.26 [17/64] 4- 3.30 [19/64] 4- 3.34 [11/32] 4- 3.42 [27/64] 4- 3.46 [29/64] 4- 3.50 [1/2] 4- 3.54 [17/32] 4- 3.57 [37/64]	1381 1382 1383 1384 1385 1386 1387 1388 1389 1390	4- 6.37 [3/8] 4- 6.41 [13/32] 4- 6.45 [29/64] 4- 6.49 [31/64] 4- 6.53 [17/32] 4- 6.57 [9/16] 4- 6.65 [41/64] 4- 6.65 [11/16] 4- 6.69 [11/16] 4- 6.72 [23/32]	1461 1462 1463 1464 1465 1466 1467 1468 1469 1470	4- 9.52 [33/64] 4- 9.56 [9/16] 4- 9.60 [19/32] 4- 9.64 [41/64] 4- 9.72 [23/32] 4- 9.76 [3/4] 4- 9.80 [51/64] 4- 9.83 [53/64] 4- 9.87 [7/8]	1541 1542 1543 1544 1545 1546 1547 1548 1549 1550	5- 0.67 [43/64] 5- 0.71 [45/64] 5- 0.75 [3/4] 5- 0.79 [25/32] 5- 0.83 [53/64] 5- 0.87 [55/64] 5- 0.91 [29/32] 5- 0.94 [15/16] 5- 0.98 [63/64] 5- 1.02 [1/32]	1621 1622 1623 1624 1625 1626 1627 1628 1629 1630	5- 3.82 [13/16] 5- 3.86 [55/64] 5- 3.90 [57/64] 5- 3.98 [31/32] 5- 4.02 [1/64] 5- 4.06 [1/16] 5- 4.09 [3/32] 5- 4.13 [9/64] 5- 4.17 [11/64]
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160	3- 9.31 [5/16] 3- 9.35 [23/64] 3- 9.39 [25/64] 3- 9.43 [7/16] 3- 9.47 [15/32] 3- 9.55 [35/64] 3- 9.55 [35/64] 3- 9.59 [19/32] 3- 9.63 [5/8] 3- 9.67 [43/64]	1231 1232 1233 1234 1235 1236 1237 1238 1239 1240	4- 0.46 [15/32] 4- 0.50 [1/2] 4- 0.54 [35/64] 4- 0.58 [37/64] 4- 0.62 [5/8] 4- 0.66 [21/32] 4- 0.70 [45/64] 4- 0.74 [47/64] 4- 0.78 [25/32] 4- 0.82 [13/16]	1311 1312 1313 1314 1315 1316 1317 1318 1319 1320	4- 3.61 [39/64] 4- 3.65 [21/32] 4- 3.69 [11/16] 4- 3.73 [47/64] 4- 3.81 [13/16] 4- 3.85 [27/32] 4- 3.89 [57/64] 4- 3.93 [59/64] 4- 3.97 [31/32]	1391 1392 1393 1394 1395 1396 1397 1398 1399 1400	4- 6.76 [49/64] 4- 6.80 [51/64] 4- 6.84 [27/32] 4- 6.88 [7/8] 4- 6.96 [61/64] 4- 7.00 4- 7.00 [3/64] 4- 7.08 [5/64] 4- 7.12 [1/8]	1471 1472 1473 1474 1475 1476 1477 1478 1479 1480	4- 9.91 [29/32] 4- 9.95 [61/64] 4- 9.99 [63/64] 4-10.03 [1/32] 4-10.11 [7/64] 4-10.15 [5/64] 4-10.19 [3/16] 4-10.23 [15/64] 4-10.27 [17/64]	1551 1552 1553 1554 1555 1556 1557 1558 1559 1560	5- 1.06 [1/16] 5- 1.10 [7/64] 5- 1.14 [9/64] 5- 1.18 [3/16] 5- 1.22 [7/32] 5- 1.26 [17/64] 5- 1.30 [19/64] 5- 1.34 [11/32] 5- 1.38 [3/8] 5- 1.42 [27/64]	1631 1632 1633 1634 1635 1636 1637 1638 1639 1640	5- 4.21 [7/32] 5- 4.25 [1/4] 5- 4.29 [19/64] 5- 4.37 [3/8] 5- 4.41 [13/32] 5- 4.45 [29/64] 5- 4.49 [31/64] 5- 4.53 [17/32] 5- 4.57 [9/16]
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170	3- 9.71 [45/64] 3- 9.75 [3/4] 3- 9.79 [25/32] 3- 9.83 [53/64] 3- 9.87 [55/64] 3- 9.94 [15/16] 3- 9.98 [63/64] 3-10.02 [1/32] 3-10.06 [1/16]	1241 1242 1243 1244 1245 1246 1247 1248 1249 1250	4- 0.86 [55/64] 4- 0.90 [57/64] 4- 0.94 [15/16] 4- 0.98 [31/32] 4- 1.02 [1/64] 4- 1.06 [1/16] 4- 1.09 [3/32] 4- 1.13 [9/64] 4- 1.17 [11/64] 4- 1.21 [7/32]	1321 1322 1323 1324 1325 1326 1327 1328 1329 1330	4- 4.01 [1/64] 4- 4.05 [3/64] 4- 4.09 [3/2] 4- 4.13 [1/8] 4- 4.17 [11/64] 4- 4.20 [13/64] 4- 4.24 [1/4] 4- 4.28 [21/64] 4- 4.32 [21/64] 4- 4.36 [23/64]	1401 1402 1403 1404 1405 1406 1407 1408 1409 1410	4- 7.16 [5/32] 4- 7.20 [13/64] 4- 7.24 [15/64] 4- 7.28 [9/32] 4- 7.31 [5/16] 4- 7.35 [23/64] 4- 7.39 [25/64] 4- 7.47 [15/32] 4- 7.47 [15/32]	1481 1482 1483 1484 1485 1486 1487 1488 1489 1490	4-10.31 [5/16] 4-10.35 [11/32] 4-10.39 [25/64] 4-10.46 [15/32] 4-10.50 [1/2] 4-10.54 [35/64] 4-10.58 [37/64] 4-10.62 [5/8] 4-10.66 [21/32]	1561 1562 1563 1564 1565 1566 1567 1568 1569 1570	5- 1.46 [29/64] 5- 1.50 [1/2] 5- 1.54 [17/32] 5- 1.57 [37/64] 5- 1.61 [39/64] 5- 1.69 [11/16] 5- 1.73 [47/64] 5- 1.77 [49/64] 5- 1.81 [13/16]	1641 1642 1643 1644 1645 1646 1647 1648 1649 1650	5- 4.61 [39/64] 5- 4.65 [41/64] 5- 4.69 [11/16] 5- 4.72 [23/32] 5- 4.76 [49/64] 5- 4.84 [27/32] 5- 4.88 [7/8] 5- 4.92 [59/64] 5- 4.96 [61/64]
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180	3-10.10 [7/64] 3-10.14 [9/64] 3-10.18 [3/16] 3-10.22 [7/32] 3-10.26 [17/64] 3-10.30 [19/64] 3-10.34 [11/32] 3-10.38 [3/8] 3-10.42 [27/64] 3-10.46 [29/64]	1251 1252 1253 1254 1255 1256 1257 1258 1259 1260	4- 1.25 [1/4] 4- 1.29 [19/64] 4- 1.33 [21/64] 4- 1.37 [3/8] 4- 1.41 [13/32] 4- 1.45 [29/64] 4- 1.53 [17/32] 4- 1.57 [9/16] 4- 1.61 [39/64]	1331 1332 1333 1334 1335 1336 1337 1338 1339 1340	4- 4.40 [13/32] 4- 4.44 [7/16] 4- 4.45 [31/64] 4- 4.55 [9/16] 4- 4.60 [19/32] 4- 4.64 [41/64] 4- 4.68 [43/64] 4- 4.72 [23/32] 4- 4.76 [3/4]	1411 1412 1413 1414 1415 1416 1417 1418 1419 1420	4- 7.55 [35/64] 4- 7.59 [19/32] 4- 7.63 [5/8] 4- 7.67 [43/64] 4- 7.71 [45/64] 4- 7.75 [3/4] 4- 7.79 [25/32] 4- 7.83 [33/64] 4- 7.87 [55/64] 4- 7.91 [29/32]	1491 1492 1493 1494 1495 1496 1497 1498 1499 1500	4-10.70 [45/64] 4-10.74 [47/64] 4-10.78 [25/32] 4-10.82 [13/16] 4-10.86 [55/64] 4-10.94 [15/16] 4-10.94 [15/16] 4-10.98 [31/32] 4-11.02 [1/64]	1571 1572 1573 1574 1575 1576 1577 1578 1579 1580	5- 1.85 [27/32] 5- 1.89 [57/64] 5- 1.93 [59/64] 5- 1.97 [31/32] 5- 2.01 [1/64] 5- 2.05 [3/64] 5- 2.03 [3/64] 5- 2.13 [1/8] 5- 2.17 [11/64] 5- 2.20 [13/64]	1651 1652 1653 1654 1655 1656 1657 1658 1659 1660	5- 5.00 5- 5.04 [3/64] 5- 5.08 [5/64] 5- 5.12 [1/8] 5- 5.16 [5/32] 5- 5.24 [15/64] 5- 5.28 [9/32] 5- 5.31 [5/16] 5- 5.35 [23/64]
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190	3-10.50 [1/2] 3-10.54 [17/32] 3-10.57 [37/64] 3-10.61 [39/64] 3-10.65 [21/32] 3-10.69 [11/16] 3-10.73 [47/64] 3-10.77 [49/64] 3-10.81 [13/16] 3-10.85 [27/32]	1261 1262 1263 1264 1265 1266 1267 1268 1269 1270	4- 1.65 [41/64] 4- 1.69 [11/16] 4- 1.72 [23/32] 4- 1.76 [49/64] 4- 1.80 [51/64] 4- 1.88 [7/8] 4- 1.92 [59/64] 4- 1.96 [61/64] 4- 2.00	1341 1342 1343 1344 1345 1346 1347 1348 1349 1350	4- 4.80 [51/64] 4- 4.83 [53/64] 4- 4.87 [7/8] 4- 4.91 [29/32] 4- 4.95 [61/64] 4- 4.99 [63/64] 4- 5.03 [1/32] 4- 5.07 [5/64] 4- 5.11 [7/64] 4- 5.15 [5/32]	1421 1422 1423 1424 1425 1426 1427 1428 1429 1430	4- 7.94 [15/16] 4- 7.98 [63/64] 4- 8.02 [1/32] 4- 8.06 [1/16] 4- 8.10 [7/64] 4- 8.18 [3/16] 4- 8.22 [7/32] 4- 8.26 [17/64] 4- 8.30 [19/64]	1501 1502 1503 1504 1505 1506 1507 1508 1509 1510	4-11.09 [3/32] 4-11.13 [9/64] 4-11.17 [11/64] 4-11.25 [1/4] 4-11.29 [19/64] 4-11.33 [21/64] 4-11.37 [3/8] 4-11.41 [13/32] 4-11.45 [29/64]	1581 1582 1583 1584 1585 1586 1587 1588 1589 1590	5- 2.24 [1/4] 5- 2.28 [9/32] 5- 2.32 [21/64] 5- 2.36 [33/64] 5- 2.46 [7/16] 5- 2.48 [31/64] 5- 2.52 [33/64] 5- 2.56 [9/16] 5- 2.60 [19/32]	1661 1662 1663 1664 1665 1666 1667 1668 1669 1670	5- 5.39 [25/64] 5- 5.43 [7/16] 5- 5.47 [15/32] 5- 5.51 [33/64] 5- 5.59 [19/32] 5- 5.63 [5/8] 5- 5.67 [43/64] 5- 5.71 [45/64] 5- 5.75 [3/4]
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200	3-10.89 [57/64] 3-10.93 [59/64] 3-10.97 [31/32] 3-11.01 [1/64] 3-11.05 [3/64] 3-11.13 [1/8] 3-11.17 [11/64] 3-11.20 [13/64] 3-11.24 [1/4]	1271 1272 1273 1274 1275 1276 1277 1278 1279 1280	4- 2.04 [3/64] 4- 2.08 [5/64] 4- 2.12 [1/8] 4- 2.16 [5/32] 4- 2.20 [13/64] 4- 2.24 [15/64] 4- 2.28 [9/32] 4- 2.31 [5/16] 4- 2.35 [23/64] 4- 2.39 [25/64]	1351 1352 1353 1354 1355 1356 1357 1358 1359 1360	4- 5.19 [3/16] 4- 5.23 [15/64] 4- 5.27 [17/64] 4- 5.31 [5/16] 4- 5.35 [11/32] 4- 5.43 [27/64] 4- 5.46 [15/32] 4- 5.50 [1/2] 4- 5.54 [35/64]	1431 1432 1433 1434 1435 1436 1437 1438 1439 1440	4- 8.34 [11/32] 4- 8.38 [3/8] 4- 8.42 [27/64] 4- 8.46 [29/64] 4- 8.50 [1/2] 4- 8.57 [37/64] 4- 8.61 [39/64] 4- 8.65 [21/32] 4- 8.69 [11/16]	1511 1512 1513 1514 1515 1516 1517 1518 1519 1520	4-11.49 [31/64] 4-11.53 [17/32] 4-11.57 [9/16] 4-11.61 [39/64] 4-11.65 [41/64] 4-11.72 [23/32] 4-11.76 [49/64] 4-11.80 [51/64] 4-11.84 [27/32]	1591 1592 1593 1594 1595 1596 1597 1598 1599 1600	5- 2.64 [41/64] 5- 2.68 [43/64] 5- 2.72 [23/32] 5- 2.76 [3/4] 5- 2.80 [51/64] 5- 2.83 [53/64] 5- 2.87 [7/8] 5- 2.91 [29/32] 5- 2.95 [61/64] 5- 2.99 [63/64]	1671 1672 1673 1674 1675 1676 1677 1678 1679 1680	5- 5.79 [25/32] 5- 5.83 [53/64] 5- 5.87 [55/64] 5- 5.91 [29/32] 5- 5.98 [63/64] 5- 6.02 [1/32] 5- 6.06 [1/16] 5- 6.10 [7/64] 5- 6.14 [9/64]

M	ILLIMETER	S CONVE	RTED T	O FEET	AND I	NCH	ES					TABL	ES M-3
mm	ft-in.(fraction)	mm ft-in.(f	raction) r	nm ft-in.(raction)	mm	ft-in.(fraction)	mm	ft-in.(fraction)	mm	ft-in.(fraction)	mm	ft-in.(fraction)
561 562 563 564 565 566 567 568 569 570	1-10.09 [3/32] 1-10.13 [1/8] 1-10.17 [11/64] 1-10.20 [13/64] 1-10.24 [1/4] 1-10.28 [9/32] 1-10.32 [21/64] 1-10.36 [23/64] 1-10.40 [13/32] 1-10.44 [7/16]	642 2- 1.28 643 2- 1.31 644 2- 1.35 645 2- 1.39 646 2- 1.43 647 2- 1.47 648 2- 1.51 649 2- 1.55	[9/32] [5/16] [23/64] [25/64] [7/16] [15/32] [33/64] [35/64]	722 2- 4.46 723 2- 4.46 724 2- 4.50 725 2- 4.56 726 2- 4.58 727 2- 4.66 729 2- 4.70	[35/64] [37/64]	801 802 803 804 805 806 807 808 809 810	2- 7.54 [17/32] 2- 7.57 [37/64] 2- 7.65 [39/64] 2- 7.65 [21/32] 2- 7.69 [11/16] 2- 7.73 [47/64] 2- 7.81 [13/16] 2- 7.85 [27/32] 2- 7.89 [57/64]	881 882 883 884 885 886 887 888 889	2-10.69 [11/16] 2-10.72 [23/32] 2-10.76 [49/64] 2-10.80 [51/64] 2-10.88 [7/8] 2-10.92 [59/64] 2-10.96 [61/64] 2-11.00 2-11.04 [3/64]	961 962 963 964 965 966 967 968 969 970	3- 1.83 [53/64] 3- 1.87 [7/8] 3- 1.91 [29/32] 3- 1.95 [61/64] 3- 1.99 [63/64] 3- 2.03 [1/32] 3- 2.07 [5/64] 3- 2.11 [7/64] 3- 2.15 [5/32] 3- 2.19 [3/16]	1041 1042 1043 1044 1045 1046 1047 1048 1049	3- 4.98 [63/64] 3- 5.02 [1/32] 3- 5.06 [1/16] 3- 5.10 [7/64] 3- 5.14 [9/64] 3- 5.18 [3/16] 3- 5.22 [7/32] 3- 5.26 [17/64] 3- 5.30 [19/64] 3- 5.34 [11/32]
571 572 573 574 575 576 577 578 579 580	1-10.48 [31/64] 1-10.52 [33/64] 1-10.56 [9/16] 1-10.60 [19/32] 1-10.64 [41/64] 1-10.68 [43/64] 1-10.72 [23/32] 1-10.76 [3/4] 1-10.80 [51/64] 1-10.83 [53/64]	653 2- 1.71 654 2- 1.75 655 2- 1.79 656 2- 1.83 657 2- 1.87 658 2- 1.91 659 2- 1.94 660 2- 1.98	[43/64] [45/64] [5[3/4] [5[3/4] [5[53/64] [5[55/64] [29/32] [15/16] [6[3/64]	732	[25/32] [13/16] [55/64] [57/64] [15/16] [31/32] [1/64] [1/16] [3/32] [9/64]	811 812 813 814 815 816 817 818 819 820	2- 7.93 [59/64] 2- 7.97 [31/32] 2- 8.01 [1/64] 2- 8.05 [3/64] 2- 8.09 [3/32] 2- 8.13 [1/6] 2- 8.17 [11/64] 2- 8.20 [13/64] 2- 8.24 [1/4] 2- 8.28 [9/32]	891 892 893 894 895 896 897 898 899	2-11.08 [5/64] 2-11.12 [1/8] 2-11.16 [5/32] 2-11.20 [13/64] 2-11.24 [15/64] 2-11.31 [5/16] 2-11.31 [5/16] 2-11.39 [25/64] 2-11.43 [7/16]	971 972 973 974 975 976 977 978 979 980	3- 2.23 [15/64] 3- 2.27 [17/64] 3- 2.31 [5/16] 3- 2.35 [11/32] 3- 2.39 [25/64] 3- 2.46 [15/32] 3- 2.46 [15/32] 3- 2.50 [1/2] 3- 2.58 [37/64]	1051 1052 1053 1054 1055 1056 1057 1058 1059 1060	3- 5.38 [3/8] 3- 5.42 [27/64] 3- 5.46 [29/64] 3- 5.50 [1/2] 3- 5.57 [37/64] 3- 5.61 [39/64] 3- 5.65 [21/32] 3- 5.69 [11/16] 3- 5.73 [47/64]
581 582 583 584 585 586 587 588 589 590	1-10.87 [7/8] 1-10.91 [29/32] 1-10.95 [61/64] 1-10.99 [63/64] 1-11.03 [1/32] 1-11.11 [7/64] 1-11.11 [5/52] 1-11.19 [3/16] 1-11.23 [15/64]	668 2- 2.30 669 2- 2.34 670 2- 2.38	[1/16] [7/64] [9/64] [3/16] [5/7/32] [5/17/64] [11/64] [11/32] [3/8]	742 2- 5.2: 743 2- 5.2: 744 2- 5.2: 745 2- 5.3: 746 2- 5.3: 747 2- 5.4: 748 2- 5.4: 750 2- 5.5:	9 [19/64] 8 [21/64] 7 [3/8] 1 [13/32] 5 [29/64] 9 [31/64] 8 [17/32]	821 822 823 824 825 826 827 828 829 830	2- 8.32 [21/64] 2- 8.36 [23/64] 2- 8.40 [13/32] 2- 8.44 [7/16] 2- 8.52 [33/64] 2- 8.55 [9/16] 2- 8.60 [19/32] 2- 8.68 [43/64] 2- 8.68 [43/64]	901 902 903 904 905 906 907 908 909 910	2-11.47 [15/32] 2-11.51 [33/64] 2-11.55 [35/64] 2-11.59 [19/32] 2-11.63 [5/8] 2-11.67 [43/64] 2-11.71 [45/64] 2-11.75 [3/4] 2-11.78 [5/32] 2-11.83 [53/64]	981 982 983 984 985 986 987 988 989 990	3- 2.62 [5/8] 3- 2.66 [21/32] 3- 2.76 [45/64] 3- 2.74 [47/64] 3- 2.78 [25/32] 3- 2.82 [13/16] 3- 2.86 [55/64] 3- 2.90 [57/64] 3- 2.98 [31/32]	1061 1062 1063 1064 1065 1066 1067 1068 1069 1070	3- 5.77 [49/64] 3- 5.85 [27/32] 3- 5.85 [27/32] 3- 5.89 [57/64] 3- 5.97 [31/32] 3- 6.01 [1/64] 3- 6.05 [3/64] 3- 6.09 [3/32] 3- 6.13 [1/8]
591 592 593 594 595 596 597 598 599 600	1-11.27 [17/64] 1-11.31 [5/16] 1-11.35 [11/32] 1-11.39 [25/64] 1-11.43 [27/64] 1-11.46 [15/32] 1-11.50 [1/2] 1-11.58 [37/64] 1-11.58 [37/64] 1-11.62 [5/8]	672 2- 2.46 673 2- 2.50 674 2- 2.54 675 2- 2.57 676 2- 2.61 677 2- 2.65 678 2- 2.69 679 2- 2.73	5 [29/64] 0 [1/2] 4 [17/32] 7 [37/64] L [39/64] 5 [21/32] 9 [11/16] 8 [47/64]	752	2 [59/64]	831 832 833 834 835 836 837 838 839 840	2- 8.72 [23/32] 2- 8.76 [3/4] 2- 8.80 [51/64] 2- 8.83 [53/64] 2- 8.91 [29/32] 2- 8.95 [61/64] 2- 9.03 [1/32] 2- 9.07 [5/64]	911 912 913 914 915 916 917 918 919 920	2-11.87 [55/64] 2-11.91 [29/32] 2-11.94 [15/16] 2-11.98 [63/64] 3- 0.02 [1/32] 3- 0.06 [1/16] 3- 0.10 [7/64] 3- 0.14 [9/64] 3- 0.18 [3/16] 3- 0.22 [7/32]	991 992 993 994 995 996 997 998 999 1000	3- 3.02 [1/64] 3- 3.06 [1/16] 3- 3.09 [3/32] 3- 3.13 [9/64] 3- 3.21 [7/32] 3- 3.25 [1/4] 3- 3.29 [19/64] 3- 3.37 [3/8]	1071 1072 1073 1074 1075 1076 1077 1078 1079 1080	3- 6.17 [11/64] 3- 6.20 [13/64] 3- 6.24 [1/4] 3- 6.28 [9/32] 3- 6.32 [21/64] 3- 6.36 [23/64] 3- 6.40 [13/32] 3- 6.44 [7/16] 3- 6.48 [31/64] 3- 6.52 [33/64]
601 602 603 604 605 606 607 608 609 610	1-11.66 [21/32] 1-11.70 [45/64] 1-11.74 [47/64] 1-11.78 [25/32] 1-11.82 [13/16] 1-11.86 [55/64] 1-11.90 [57/64] 1-11.98 [31/32] 2- 0.02 [1/64]	682 2- 2.85 683 2- 2.85 684 2- 2.93 685 2- 2.97 686 2- 3.01 687 2- 3.05 688 2- 3.05 689 2- 3.13 690 2- 3.17	5 [27/32] 9 [57/64] 8 [59/64] 7 [31/32] 1 [1/64] 5 [3/64] 9 [3/32] 8 [1/8] 7 [11/64]	762	4 [3/64] 3 [5/64] 2 [1/8] 6 [5/32] 0 [13/64] 4 [15/64] 3 [9/32] 1 [5/16]	841 842 843 844 845 846 847 848 849 850	2- 9.11 [7/64] 2- 9.15 [5/32] 2- 9.19 [3/16] 2- 9.23 [15/64] 2- 9.31 [5/16] 2- 9.35 [11/32] 2- 9.39 [25/64] 2- 9.43 [27/64] 2- 9.46 [15/32]	921 922 923 924 925 926 927 928 929 930	3- 0.26 [17/64] 3- 0.30 [19/64] 3- 0.34 [11/32] 3- 0.38 [3/8] 3- 0.42 [27/64] 3- 0.46 [29/64] 3- 0.50 [1/2] 3- 0.54 [17/32] 3- 0.57 [37/64] 3- 0.61 [39/64]	1001 1002 1003 1004 1005 1006 1007 1008 1009 1010	3- 3.41 [13/32] 3- 3.45 [29/64] 3- 3.49 [31/64) 3- 3.53 [17/32] 3- 3.61 [39/64] 3- 3.65 [41/64] 3- 3.69 [11/16] 3- 3.72 [23/32] 3- 3.76 [49/64]	1081 1082 1083 1084 1085 1086 1087 1088 1089 1090	3- 6.56 [9/16] 3- 6.60 [19/32] 3- 6.64 [41/64] 3- 6.68 [43/64] 3- 6.72 [23/32] 3- 6.76 [3/4] 3- 6.80 [51/64] 3- 6.83 [53/64] 3- 6.87 [7/8] 3- 6.91 [29/32]
611 612 613 614 615 616 617 618 619 620	2- 0.06 [1/16] 2- 0.09 [3/32] 2- 0.13 [9/64] 2- 0.17 [11/64] 2- 0.21 [7/32] 2- 0.25 [1/4] 2- 0.29 [19/64] 2- 0.33 [3/8] 2- 0.41 [13/32]	694 2- 3.32 695 2- 3.36 696 2- 3.46 697 2- 3.44 698 2- 3.48 699 2- 3.52	4 [1/4] 3 [9/32] 2 [21/64] 5 [23/64] 0 [13/32] 4 [7/16] 8 [31/64] 2 [33/64]	773	9 [25/64] 3 [7/16] 7 [15/32] 1 [33/64] 5 [35/64] 9 [19/32] 3 [5/8] 7 [43/64] 1 [45/64]	852 853 854 855 856 857 858 859 860	2- 9.50 [1/2] 2- 9.54 [35/64] 2- 9.58 [37/64] 2- 9.62 [5/8] 2- 9.66 [21/32] 2- 9.70 [45/64] 2- 9.78 [25/32] 2- 9.82 [13/16] 2- 9.86 [55/64]	931 932 933 934 935 936 937 938 939 940	3- 0.65 [21/32] 3- 0.69 [11/16] 3- 0.73 [47/64] 3- 0.77 [49/64] 3- 0.81 [13/16] 3- 0.85 [27/32] 3- 0.89 [57/64] 3- 0.93 [59/64] 3- 0.97 [31/32] 3- 1.01 [1/64]	1011 1012 1013 1014 1015 1016 1017 1018 1019 1020	3- 3.84 [27/32] 3- 3.88 [7/8] 3- 3.92 [59/64] 3- 3.96 [61/64] 3- 4.00 3- 4.04 [3/64] 3- 4.08 [5/64] 3- 4.12 [1/8] 3- 4.16 [5/32]	1091 1092 1093 1094 1095 1096 1097 1098 1099 1100	3- 6.95 [61/64] 3- 6.99 [63/64] 3- 7.03 [1/32] 3- 7.07 [5/64] 3- 7.11 [7/64] 3- 7.15 [5/32] 3- 7.19 [3/16] 3- 7.23 [15/64] 3- 7.27 [17/64] 3- 7.31 [5/16]
621 622 623 624 625 626 627 628 629 630	2- 0.45 [29/64] 2- 0.49 [31/64] 2- 0.53 [17/32] 2- 0.57 [9/16] 2- 0.61 [39/64] 2- 0.65 [41/64] 2- 0.69 [11/16] 2- 0.72 [23/32] 2- 0.76 [49/64] 2- 0.80 [51/64]	702 2- 3.64 703 2- 3.68 704 2- 3.77 705 2- 3.76 706 2- 3.80 707 2- 3.81 708 2- 3.81 709 2- 3.91	0 [51/64] 3 [53/64]	782	5 [3/4] 9 [25/32] 3 [53/64] 7 [55/64] 1 [29/32] 4 [15/16] 8 [63/64] 2 [1/32] 6 [1/16] 0 [7/64]	861 862 863 864 865 866 867 868 869 870	2- 9.90 [57/64] 2- 9.94 [15/16] 2- 9.98 [31/32] 2-10.02 [1/64] 2-10.06 [3/32] 2-10.13 [9/64] 2-10.17 [11/64] 2-10.21 [7/32] 2-10.25 [1/4]	943 944 945 946 947 948 949 950	3- 1.05 [3/64] 3- 1.09 [3/32] 3- 1.13 [1/8] 3- 1.17 [11/64] 3- 1.20 [13/64] 3- 1.28 [9/32] 3- 1.32 [21/64] 3- 1.36 [23/64] 3- 1.40 [13/32]	1021 1022 1023 1024 1025 1026 1027 1028 1029 1030	3- 4, 20 [13/64] 3- 4,24 [15/64] 3- 4,28 [9/32] 3- 4,31 [5/16] 3- 4,35 [23/64] 3- 4,43 [7/16] 3- 4,47 [15/32] 3- 4,51 [33/64] 3- 4,55 [35/64]	1101 1102 1103 1104 1105 1106 1107 1108 1109 1110	3- 7.35 [11/32] 3- 7.39 [25/64] 3- 7.43 [27/64] 3- 7.46 [15/32] 3- 7.50 [1/2] 3- 7.54 [35/64] 3- 7.58 [37/64] 3- 7.62 [5/8] 3- 7.66 [21/32] 3- 7.70 [45/64]
631 632 633 634 635 636 637 638 639 640	2- 0.84 [27/32] 2- 0.88 [7/8] 2- 0.92 [59/64] 2- 0.96 [61/64] 2- 1.00 2- 1.04 [3/64] 2- 1.08 [5/64] 2- 1.12 [1/8] 2- 1.16 [5/32] 2- 1.20 [13/64]	712 2- 4.00 713 2- 4.07 714 2- 4.11 715 2- 4.11 716 2- 4.11 717 2- 4.21 718 2- 4.21 719 2- 4.31	9 [63/64] 3 [1/32] 7 [5/64] 1 [7/64] 5 [5/32] 9 [3/16] 3 [15/64] 7 [17/64] 1 [5/16] 5 [11/32]	792 2- 7.1 793 2- 7.2 794 2- 7.2 795 2- 7.3 796 2- 7.3 797 2- 7.3 798 2- 7.4 799 2- 7.4	4 [9/64] 8 [3/16] 2 [7/32] 6 [17/64] 0 [19/64] 4 [11/32] 8 [3/8] 2 [27/64] 6 [29/64] 0 [1/2]	871 872 873 874 875 876 877 878 879 880	2-10.29 [19/64] 2-10.33 [21/64] 2-10.37 [3/8] 2-10.41 [13/32] 2-10.45 [29/64] 2-10.49 [31/64] 2-10.57 [9/16] 2-10.57 [9/16] 2-10.61 [39/64] 2-10.65 [41/64]	952 953 954 955 956 957 958 959	3- 1.44 [7/16] 3- 1.48 [31/64] 3- 1.52 [33/64] 3- 1.56 [9/16] 3- 1.60 [19/32] 3- 1.64 [41/64] 3- 1.68 [43/64] 3- 1.72 [23/32] 3- 1.76 [3/4] 3- 1.80 [51/64]	1031 1032 1033 1034 1035 1036 1037 1038 1039 1040	3- 4.59 [19/32] 3- 4.63 [5/8] 3- 4.67 [43/64] 3- 4.71 [45/64] 3- 4.75 [3/4] 3- 4.87 [55/64] 3- 4.87 [55/64] 3- 4.91 [29/32] 3- 4.94 [15/16]	1111 1112 1113 1114 1115 1116 1117 1118 1119 1120	3- 7.74 [47/64] 3- 7.78 [25/32] 3- 7.82 [13/16] 3- 7.86 [55/64] 3- 7.96 [57/64] 3- 7.94 [15/16] 3- 7.98 [31/32] 3- 8.02 [1/64] 3- 8.06 [1/16] 3- 8.09 [3/32]

MILLIMETER	S CONVERTED	TO FEET AND	NCHES			TABLES M-3
mm ft-in.(fraction)	mm ft-in.(fraction)	mm ft-in.(fraction)	mm ft-in.(fraction)	mm ft-in.(fraction)	mm ft-in.(fraction)	mm ft-in.(fraction)
1 0-0.04 [3/64] 2 0-0.08 [5/64] 3 0-0.12 [1/8] 4 0-0.16 [5/32] 5 0-0.20 [13/64] 6 0-0.24 [15/64] 7 0-0.28 [9/32] 8 0-0.31 [5/16] 9 0-0.35 [23/64] 10 0-0.39 [25/64]	81 0- 3.19 [3/16] 82 0- 3.23 [15/64] 83 0- 3.27 [17/64] 84 0- 3.31 [5/16] 85 0- 3.35 [11/32] 86 0- 3.39 [25/64] 87 0- 3.43 [27/64] 88 0- 3.46 [15/32] 89 0- 3.50 [1/2] 90 0- 3.54 [35/64]	161 0- 6.34 [11/32] 162 0- 6.38 [3/8] 163 0- 6.42 [27/64] 164 0- 6.46 [29/64] 165 0- 6.50 [1/2] 166 0- 6.54 [17/32] 167 0- 6.57 [37/64] 168 0- 6.61 [39/64] 169 0- 6.65 [21/32] 170 0- 6.69 [11/16]	241 0- 9.49 [31/64] 242 0- 9.53 [17/32] 243 0- 9.57 [9/16] 244 0- 9.61 [39/64] 245 0- 9.65 [41/64] 246 0- 9.69 [11/16] 247 0- 9.72 [23/32] 248 0- 9.76 [49/64] 249 0- 9.80 [51/64] 250 0- 9.84 [27/32]	321 1- 0.64 [41/64] 322 1- 0.68 [43/64] 323 1- 0.72 [23/32] 324 1- 0.76 [3/4] 325 1- 0.80 [51/64] 326 1- 0.83 [53/64] 327 1- 0.87 [7/8] 328 1- 0.91 [29/32] 329 1- 0.95 [61/64] 330 1- 0.99 [63/64]	401 1- 3.79 [25/32] 402 1- 3.83 [53/64] 403 1- 3.87 [55/64] 404 1- 3.91 [29/32] 405 1- 3.94 [15/16] 406 1- 3.98 [63/64] 407 1- 4.02 [1/32] 408 1- 4.06 [1/16] 409 1- 4.10 [7/64] 410 1- 4.14 [9/64]	481 1- 6.94 [15/16] 482 1- 6.98 [31/32] 483 1- 7.02 [1/64] 484 1- 7.06 [1/16] 485 1- 7.09 [3/32] 486 1- 7.13 [9/64] 487 1- 7.17 [11/64] 488 1- 7.21 [7/32] 489 1- 7.25 [1/4] 490 1- 7.29 [19/64]
11 0- 0.43 [7/16] 12 0- 0.47 [15/32] 13 0- 0.51 [33/64] 14 0- 0.55 [35/64] 15 0- 0.63 [5/8] 17 0- 0.67 [43/64] 18 0- 0.71 [45/64] 19 0- 0.75 [3/4] 20 0- 0.79 [25/32]	91 0- 3.58 [37/64] 92 0- 3.62 [5/8] 93 0- 3.66 [21/32] 94 0- 3.76 [45/64] 95 0- 3.74 [47/64] 96 0- 3.78 [25/32] 97 0- 3.82 [13/16] 98 0- 3.80 [55/64] 100 0- 3.94 [15/16]	171 0- 6.73 [47/64] 172 0- 6.77 [49/64] 173 0- 6.81 [13/16] 174 0- 6.85 [27/32] 175 0- 6.89 [57/64] 176 0- 6.93 [59/64] 177 0- 6.97 [31/32] 178 0- 7.01 [1/64] 179 0- 7.05 [3/64] 180 0- 7.09 [3/32]	251 0- 9.88 [7/8] 252 0- 9.92 [59/64] 253 0- 9.96 [61/64] 254 0-10.00 255 0-10.04 [3/64] 256 0-10.03 [5/64] 257 0-10.12 [1/8] 258 0-10.16 [5/32] 259 0-10.20 [13/64] 260 0-10.24 [15/64]	331 1- 1.03 [1/32] 332 1- 1.07 [5/64] 333 1- 1.11 [7/64] 334 1- 1.15 [5/32] 335 1- 1.19 [3/16] 336 1- 1.23 [15/64] 337 1- 1.27 [17/64] 338 1- 1.31 [5/16] 339 1- 1.35 [11/32] 340 1- 1.39 [25/64]	411 1- 4.18 [3/16] 412 1- 4.22 [7/32] 413 1- 4.26 [17/64] 414 1- 4.30 [19/64] 415 1- 4.34 [11/32] 416 1- 4.38 [3/8] 417 1- 4.42 [27/64] 418 1- 4.46 [29/64] 419 1- 4.50 [1/2] 420 1- 4.54 [17/32]	491 1- 7.33 [21/64] 492 1- 7.37 [3/8] 493 1- 7.41 [13/32] 494 1- 7.45 [29/64] 495 1- 7.49 [31/64] 496 1- 7.53 [17/32] 497 1- 7.57 [9/16] 498 1- 7.61 [39/64] 499 1- 7.65 [41/64] 500 1- 7.69 [11/16]
21 0- 0.83 [53/64] 22 0- 0.87 [55/64] 23 0- 0.91 [29/32] 24 0- 0.94 [15/16] 25 0- 0.98 [63/64] 26 0- 1.02 [1/32] 27 0- 1.06 [1/16] 28 0- 1.10 [7/64] 29 0- 1.14 [9/64] 30 0- 1.18 [3/16]	101 0- 3.98 [31/32] 102 0- 4.02 [1/64] 103 0- 4.06 [1/16] 104 0- 4.09 [3/32] 105 0- 4.13 [9/64] 106 0- 4.17 [11/64] 107 0- 4.21 [7/32] 108 0- 4.25 [1/4] 109 0- 4.29 [19/64] 110 0- 4.33 [21/64]	181 0- 7.13 [1/8] 182 0- 7.17 [11/64] 183 0- 7.20 [13/64] 184 0- 7.24 [1/4] 185 0- 7.28 [9/32] 186 0- 7.32 [21/64] 187 0- 7.36 [23/64] 188 0- 7.40 [13/32] 189 0- 7.44 [7/16] 190 0- 7.48 [31/64]	261 0-10.28 [9/32] 262 0-10.31 [5/16] 263 0-10.35 [23/64] 264 0-10.39 [25/64] 265 0-10.43 [7/16] 266 0-10.47 [15/32] 267 0-10.51 [33/64] 268 0-10.55 [35/64] 269 0-10.59 [19/32] 270 0-10.63 [5/8]	341 1- 1.43 [27/64] 342 1- 1.46 [15/32] 343 1- 1.50 [1/2] 344 1- 1.54 [35/64] 345 1- 1.58 [37/64] 346 1- 1.66 [21/32] 348 1- 1.70 [45/64] 349 1- 1.74 [47/64] 350 1- 1.78 [25/32]	421 1- 4.57 [37/64] 422 1- 4.61 [39/64] 423 1- 4.65 [21/32] 424 1- 4.69 [11/16] 425 1- 4.73 [47/64] 426 1- 4.77 [49/64] 427 1- 4.81 [13/16] 428 1- 4.85 [27/32] 429 1- 4.89 [57/64] 430 1- 4.93 [59/64]	501 1-7.72 [23/32] 502 1-7.76 [49/64] 503 1-7.80 [51/64] 504 1-7.84 [27/32] 505 1-7.88 [7/8] 506 1-7.92 [59/64] 507 1-7.96 [61/64] 508 1-8.00 509 1-8.04 [3/64] 510 1-8.08 [5/64]
31 0- 1.22 [7/32] 32 0- 1.26 [17/64] 33 0- 1.30 [19/64] 34 0- 1.34 [11/32] 35 0- 1.38 [3/8] 36 0- 1.42 [27/64] 37 0- 1.46 [29/64] 38 0- 1.50 [1/2] 39 0- 1.54 [17/32] 40 0- 1.57 [37/64]	111 0- 4.37 [3/8] 112 0- 4.41 [13/32] 113 0- 4.45 [29/64] 114 0- 4.49 [31/64] 115 0- 4.53 [17/32] 116 0- 4.57 [9/16] 117 0- 4.61 [39/64] 118 0- 4.65 [41/64] 119 0- 4.69 [11/16] 120 0- 4.72 [23/32]	191 0- 7.52 [33/64] 192 0- 7.56 [9/16] 193 0- 7.60 [19/32] 194 0- 7.64 [41/64] 195 0- 7.68 [43/64] 196 0- 7.72 [23/32] 197 0- 7.76 [3/4] 198 0- 7.80 [51/64] 199 0- 7.83 [53/64] 200 0- 7.87 [7/8]	271 0-10.67 [43/64] 272 0-10.71 [45/64] 273 0-10.75 [3/4] 274 0-10.79 [25/32] 275 0-10.83 [53/64] 276 0-10.87 [55/64] 277 0-10.91 [29/32] 278 0-10.94 [15/16] 279 0-10.98 [63/64] 280 0-11.02 [1/32]	351 1- 1.82 [13/16] 352 1- 1.86 [55/64] 353 1- 1.90 [57/64] 354 1- 1.94 [15/16] 355 1- 1.98 [31/32] 356 1- 2.02 [1/64] 357 1- 2.06 [1/16] 358 1- 2.09 [3/32] 359 1- 2.13 [9/64] 360 1- 2.17 [11/64]	431 1- 4.97 [31/32] 432 1- 5.01 [1/64] 433 1- 5.05 [3/64] 434 1- 5.09 [3/32] 435 1- 5.13 [1/8] 436 1- 5.17 [11/64] 437 1- 5.20 [13/64] 438 1- 5.24 [1/4] 439 1- 5.28 [9/32] 440 1- 5.32 [21/64]	i
41 0- 1.61 [39/64] 42 0- 1.65 [21/32] 43 0- 1.69 [11/16] 44 0- 1.73 [47/64] 45 0- 1.77 [49/64] 46 0- 1.81 [13/16] 47 0- 1.85 [27/32] 48 0- 1.89 [57/64] 49 0- 1.93 [59/64] 50 0- 1.97 [31/32]	121 0- 4.76 [49/64] 122 0- 4.80 [51/64] 123 0- 4.84 [27/32] 124 0- 4.88 [7/8] 125 0- 4.92 [59/64] 126 0- 4.96 [61/64] 127 0- 5.00 128 0- 5.04 [3/64] 129 0- 5.03 [5/64] 130 0- 5.12 [1/8]	201 0- 7.91 [29/32] 202 0- 7.95 [61/64] 203 0- 7.99 [63/64] 204 0- 8.03 [1/32] 205 0- 8.07 [5/64] 206 0- 8.11 [7/64] 207 0- 8.15 [5/32] 208 0- 8.19 [3/16] 209 0- 8.23 [15/64] 210 0- 8.27 [17/64]	281 0-11.06 [1/16] 282 0-11.10 [7/64] 283 0-11.14 [9/64] 284 0-11.18 [3/16] 285 0-11.22 [7/32] 286 0-11.26 [17/64] 287 0-11.30 [19/64] 288 0-11.34 [11/32] 289 0-11.38 [3/8] 290 0-11.42 [27/64]	361 1- 2.21 [7/32] 362 1- 2.25 [1/4] 363 1- 2.29 [19/64] 364 1- 2.33 [21/64] 365 1- 2.37 [3/8] 366 1- 2.41 [13/32] 367 1- 2.45 [29/64] 368 1- 2.49 [31/64] 369 1- 2.53 [17/32] 370 1- 2.57 [9/16]	441 1- 5.36 [23/64] 442 1- 5.40 [13/32] 443 1- 5.44 [7/16] 444 1- 5.48 [31/64] 445 1- 5.56 [9/16] 447 1- 5.60 [19/32] 448 1- 5.64 [41/64] 449 1- 5.68 [43/64] 450 1- 5.72 [23/32]	522 1- 8.55 [35/64] 523 1- 8.59 [19/32] 524 1- 8.63 [5/8] 525 1- 8.67 [43/64] 526 1- 8.71 [45/64] 527 1- 8.75 [3/4] 528 1- 8.79 [25/32] 529 1- 8.83 [53/64] 530 1- 8.87 [55/64]
51 0- 2.01 [1/64] 52 0- 2.05 [3/64] 53 0- 2.09 [3/32] 54 0- 2.13 [1/8] 55 0- 2.17 [11/64] 56 0- 2.20 [13/64] 57 0- 2.24 [1/4] 58 0- 2.28 [9/32] 59 0- 2.32 [21/64] 60 0- 2.36 [23/64]	131 0- 5.16 [5/32] 132 0- 5.20 [13/64] 133 0- 5.24 [15/64] 134 0- 5.28 [9/32] 135 0- 5.31 [5/16] 136 0- 5.35 [23/64] 137 0- 5.39 [25/64] 138 0- 5.43 [7/16] 139 0- 5.47 [15/32] 140 0- 5.51 [33/64]	211 0- 8.31 [5/16] 212 0- 8.35 [11/32] 213 0- 8.39 [25/64] 214 0- 8.43 [27/64] 215 0- 8.46 [15/32] 216 0- 8.50 [1/2] 217 0- 8.54 [35/64] 218 0- 8.58 [37/64] 219 0- 8.62 [5/8] 220 0- 8.66 [21/32]	291 0-11.46 [29/64] 292 0-11.50 [1/2] 293 0-11.57 [17/32] 294 0-11.57 [37/64] 295 0-11.61 [39/64] 296 0-11.65 [21/32] 297 0-11.69 [11/16] 298 0-11.73 [47/64] 299 0-11.71 [49/64] 300 0-11.81 [13/16]	372 1- 2.65 [41/64] 373 1- 2.69 [11/16] 374 1- 2.72 [23/32] 375 1- 2.76 [49/64] 376 1- 2.80 [27/32] 378 1- 2.84 [27/32]	451 1- 5.76 [3/4] 452 1- 5.80 [51/64] 453 1- 5.83 [53/64] 454 1- 5.87 [7/8] 455 1- 5.91 [29/32] 456 1- 5.95 [61/64] 457 1- 5.99 [63/64] 458 1- 6.03 [1/32] 459 1- 6.07 [5/64] 460 1- 6.11 [7/64]	533 1- 8.98 [63/64] 534 1- 9.02 [1/32] 535 1- 9.06 [1/16] 536 1- 9.10 [7/64] 537 1- 9.14 [9/64] 538 1- 9.18 [3/16] 539 1- 9.22 [7/32] 540 1- 9.26 [17/64]
61 0- 2.40 [13/32] 62 0- 2.44 [7/16] 63 0- 2.48 [31/64] 64 0- 2.52 [33/64] 65 0- 2.56 [9/16] 66 0- 2.60 [19/32] 67 0- 2.64 [41/64] 68 0- 2.68 [43/64] 69 0- 2.72 [23/32] 70 0- 2.76 [3/4]	141 0- 5.55 [35/64] 142 0- 5.59 [19/32] 143 0- 5.63 [5/8] 144 0- 5.67 [43/64] 145 0- 5.75 [3/4] 146 0- 5.75 [3/4] 147 0- 5.79 [25/32] 148 0- 5.83 [53/64] 149 0- 5.87 [55/64] 150 0- 5.91 [29/32]	221 0- 8.70 [45/64] 222 0- 8.74 [47/64] 223 0- 8.78 [25/32] 224 0- 8.82 [13/16] 225 0- 8.86 [55/64] 226 0- 8.90 [57/64] 227 0- 8.98 [15/16] 228 0- 8.98 [31/32] 229 0- 9.02 [1/64] 230 0- 9.06 [1/16]	301 0-11.85 [27/32] 302 0-11.89 [57/64] 303 0-11.93 [59/64] 304 0-11.97 [31/32] 305 1- 0.01 [1/64] 306 1- 0.05 [3/64] 307 1- 0.09 [3/32] 308 1- 0.13 [1/8] 309 1- 0.17 [11/64] 310 1- 0.20 [13/64]	382 1- 3.04 [3/64] 383 1- 3.08 [5/64] 384 1- 3.12 [1/8] 385 1- 3.16 [5/32] 386 1- 3.20 [13/64] 387 1- 3.24 [15/64] 388 1- 3.28 [9/32] 389 1- 3.31 [5/16] 390 1- 3.35 [23/64]	461 1- 6.15 [5/32] 462 1- 6.19 [3/16] 463 1- 6.23 [15/64 464 1- 6.27 [17/64 465 1- 6.31 [5/16] 466 1- 6.35 [11/32 467 1- 6.39 [25/64 468 1- 6.43 [27/64 469 1- 6.46 [15/32 470 1- 6.50 [1/2]] 544 1- 9.42 [27/64] 545 1- 9.46 [29/64]] 546 1- 9.50 [1/2]] 547 1- 9.54 [17/32]] 548 1- 9.57 [37/64]] 549 1- 9.61 [39/64] 550 1- 9.65 [21/32]
71 0- 2.80 [51/64] 72 0- 2.83 [53/64] 73 0- 2.87 [7/8] 74 0- 2.91 [29/32] 75 0- 2.95 [61/64] 76 0- 2.99 [63/64] 77 0- 3.03 [1/32] 78 0- 3.07 [5/64] 79 0- 3.11 [7/64] 80 0- 3.15 [5/32]	151 0- 5.94 [15/16] 152 0- 5.98 [63/64] 153 0- 6.02 [1/32] 154 0- 6.06 [1/16] 155 0- 6.10 [7/64] 156 0- 6.14 [9/64] 157 0- 6.18 [3/16] 158 0- 6.22 [7/32] 159 0- 6.26 [17/64] 160 0- 6.30 [19/64]		317 1- 0.48 [31/64] 318 1- 0.52 [33/64]	394 1- 3.51 [33/64] 395 1- 3.55 [35/64] 396 1- 3.59 [19/32] 397 1- 3.63 [5/8] 398 1- 3.67 [43/64] 399 1- 3.71 [45/64]	471 1- 6.54 [35/64 472 1- 6.58 [37/64 473 1- 6.62 [5/8] 474 1- 6.66 [21/32 475 1- 6.70 [45/64 476 1- 6.74 [47/64 477 1- 6.78 [25/32 478 1- 6.82 [13/16 479 1- 6.86 [55/64 480 1- 6.90 [57/64	552 1- 9.73 [47/64] 553 1- 9.77 [49/64] 554 1- 9.81 [13/16] 555 1- 9.85 [27/32] 556 1- 9.89 [57/64] 558 1- 9.93 [59/64] 558 1- 9.97 [31/32]

MEASUREMENTS

TABLES M-2

		HYPO	TENUSE FO	r 45° triai	IGLES				OMPUTED TO 1/16-th INCH
	HYPOTENUSE	SIDE	HYPOTENUSE	SIDE	HYPOTENUSE	SIDE	HYPOTENUSE		
0 0-3/16 0 0-1/4 0 0-5/16 0 0-3/8 0 0-7/16 0 0-1/2 0 0-9/16 0 0-5/8 0 0-11/16 0 0-3/4 0 0-13/16 0 0-7/8 0 0-7/8 0 0-13/16 0 0-7/8 0 0-15/16	0 0-3/16 0 0-1/4 0 0-3/8 0 0-7/16 0 0-7/16 0 0-1/2 0 0-5/8 0 0-11/16 0 0-7/8 0 1-1/16 0 1-1/18 0 1-1/4 0 1-5/16 0 1-7/16	0 3-3/16 0 3-1/4 0 3-5/16 0 3-3/8 0 3-7/16 0 3-1/2 0 3-9/16 0 3-5/8 0 3-11/16 0 3-3/4 0 3-13/16 0 3-7/8 0 4-1/16 0 4-1/16	0 4-1/2 0 4-5/8 0 4-11/16 0 4-3/4 0 4-7/8 0 5-1/16 0 5-1/16 0 5-5/16 0 5-5/16 0 5-5/16 0 5-1/2 0 5-9/16 0 5-11/16 0 5-11/16	0 6-5/16 0 6-3/8 0 6-7/16 0 6-1/2 0 6-9/16 0 6-11/16 0 6-3/4 0 6-13/16 0 6-7/8 0 6-15/16 0 7-1/16 0 7-1/18 0 7-3/16 0 7-1/4	0 8-15/16 0 9 9 1/8 0 9-3/16 0 9-3/16 0 9-3/8 0 9-7/16 0 9-5/8 0 9-5/8 0 9-3/4 0 9-13/16 0 9-7/8 0 10-1/16 0 10-3/16 0 10-1/4	0 9-7/16 0 9-1/2 0 9-9/16 0 9-5/8 0 9-11/16 0 9-3/4 0 9-13/16 0 9-7/8 0 9-15/16 0 10-1/16 0 10-1/16 0 10-3/16 0 10-3/16 0 10-5/16 0 10-3/8	0 13-3/8 0 13-7/16 0 13-1/2 0 13-5/8 0 13-11/16 0 13-7/8 0 13-15/16 0 14-1/16 0 14-1/8 0 14-1/4 0 14-5/16 0 14-7/16 0 14-1/2 0 14-1/2 0 14-1/16	side (=0.7071 x HYI	(=.0.7071
0 1-1/8	0 1-1/2 0 1-9/16 0 1-11/16	0 4-3/16 0 4-1/4 0 4-5/16	0 5-15/16 0 6 0 6-1/8	0 7-5/16 0 7-3/8 0 7-7/16	0 10-5/16 0 10-7/16	0 10-7/16 0 10-1/2 0 10-9/16	0 14-3/4 0 14-7/8	SIDE	HYPOTENUSE
0 1-1/4 0 1-5/16 0 1-3/8 0 1-7/16 0 1-1/2 0 1-5/8 0 1-11/16 0 1-3/4 0 1-13/16 0 1-7/8 0 1-15/16 0 2-1/	1-3/4 1-7/8 0 1-15/16 0 2-1/16 2-1/16 0 2-3/16 0 2-5/16 0 2-5/16 0 2-5/16 0 2-5/16 0 2-1/2 0 2-5/8 0 2-1/2 0 2-1/8 0 2-3/4 0 2-13/16 0 3	0 4-3/8 0 4-7/16 0 4-1/2 0 4-9/16 0 4-5/8 0 4-11/16 0 4-3/4 0 4-13/16 0 4-7/8 0 4-15/16 0 5-1/16 0 5-1/18 0 5-3/16 0 5-1/4 0 5-5/16	0 6-3/16 0 6-1/4 0 6-3/8 0 6-7/16 0 6-5/8 0 6-11/16 0 6-13/16 0 6-7/8 0 7 0 7-1/16 0 7-3/16 0 7-1/4 0 7-5/16 0 7-7/16	0 7-7/7 0 7-9/16 0 7-5/8 0 7-11/16 0 7-3/4 0 7-13/16 0 7-7/8 0 7-15/16 0 8-1/8 0 8-1/8 0 8-1/8 0 8-1/4 0 8-5/16 0 8-3/8 0 8-7/16	0 10-1/2 0 10-5/8 0 10-11/16 0 10-13/16 0 10-7/8 0 10-15/16 0 11-1/16 0 11-1/4 0 11-5/16 0 11-3/8 0 11-1/2 0 11-9/16 0 11-3/4 0 11-3/4	0 10-5/8 0 10-11/16 0 10-3/4 0 10-13/16 0 10-7/8 0 10-15/16 0 11-1/16 0 11-1/8 0 11-3/16 0 11-5/16 0 11-3/8 0 11-3/8 0 11-5/16 0 11-1/2	0 14-15/16 0 15-1/8 0 15-3/16 0 15-3/16 0 15-3/8 0 15-7/16 0 15-9/16 0 15-9/16 0 15-3/4 0 15-13/16 0 15-15/16 0 16-1/16 0 16-1/16 0 16-1/4 0 16-3/18	1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10 0 11 0 12 0 13 0 14 0	1 4-31/32 2 9-15/16 4 2-29/32 5 7-7/8 7 0-27/32 8 5-13/16 9 10-25/32 11 3-3/4 12 8-3/4 14 1-23/32 15 6-11/16 16 11-21/32 18 4-5/8 19 9-19/32 21 2-9/16
0 2-1/4 0 2-5/16 0 2-3/8 0 2-7/16 0 2-1/2 0 2-9/16 0 2-1/2 0 2-9/16 0 2-13/16 0 2-13/16 0 2-13/16 0 2-15/16 0 3-1/16 0 3-1/16 0 3-1/18	3-3/16 3-1/4 3-3/8 0 3-7/16 0 3-9/16 0 3-5/18 0 3-11/16 0 3-13/16 0 3-13/16 0 4-1/16 0 4-1/16 0 4-1/16	0 5-3/8 0 5-7/16 0 5-1/2 0 5-9/16 0 5-5/8 0 5-11/16 0 5-3/4 0 5-13/16 0 5-7/8 0 5-15/16 0 6-1/16 0 6-1/18 0 6-3/16 0 6-1/4	0 7-1/2 0 7-5/8 0 7-11/16 0 7-3/4 0 7-7/8 0 7-15/16 0 8-1/16 0 8-1/8 0 8-1/8 0 8-5/16 0 8-3/8 0 8-1/2 0 8-9/16 0 8-11/16 0 8-3/4 0 8-3/4	0 8-1/2 0 8-9/16 0 8-5/8 0 8-11/16 0 8-3/4 0 8-13/16 0 8-7/8 0 8 15/16 0 9-1/16 0 9-1/8 0 9-3/16 0 9-5/16 0 9-5/16 0 9-3/8	0 11-15/16 0 12 0 12-1/8 0 12-3/16 0 12-5/16 0 12-3/8 0 12-7/16 0 12-9/16 0 12-5/8 0 12-3/4 0 12-13/16 0 12-7/8 0 13 0 13-1/16 0 13-1/16	0 11-9/16 0 11-5/8 0 11-11/16 0 11-3/4 0 11-13/16 0 11-7/8 0 11-15/16 0 12-1/16 0 12-1/16 0 12-1/4 0 12-5/16 0 12-1/4 0 12-3/16 0 12-1/4 0 12-3/8 0 12-7/16 0 12-7/16	0 16-3/8 0 16-7/16 0 16-1/2 0 16-5/8 0 16-11/16 0 16-13/16 0 16-7/8 0 17-5/16 0 17-1/4 0 17-5/16 0 17-7/16 0 17-1/2 0 17-1/2 0 17-1/2 0 17-1/16	0 8-1/2 1 4-31/32 2 1-15/32 2 9-15/16 3 6-7/16 4 2-29/32 4 11-13/32 5 7-7/8 6 4-3/8 7 0-27/32 7 9-11/32 8 5-13/16 9 2-5/16 9 10-25/32 10 7-9/32	1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10 0 11 0 12 0 13 0 14 0 15 0

CONSTRUCTION OF MITERS

TANGENT LENGTHS FOR BENDS

A = Angle of bend

GENERAL FORMULA t = r. tan(A/2)

(Valid for 'A' less than 180°)

MEASUREMENTS

ALL ANGLES IN THESE FORMULAS ARE EXPRESSED IN DEGREES OF ARC CHART M-1

COMPOUND ANGLES

AREAS & VOLUMES

Compound angle, C_i is given by:

 $(\tan C)^2 = (\tan P)^2 + (\tan Q)^2$

TRAPEZOID

ISOMETRIC VIEW

TRIANGLE

Trapezoid: A four-sided figure with two parallel sides, and the other two sides at any angle. Termed 'trapezium' in UK.

steel, etc.

AREA = c(a + b)/2

If a = b, this formula applies to any parallelogram or rectangle.

CIRCLE

Refer to table M-4 for numerical values of circumferences and areas of full circles

FULL CIRCLE

CIRCUMFERENCE = $2\pi r$ = 6.2831853 rAREA = πr^2 = 3.1415927 r^2

SECTOR (as shown)

LENGTH OF ARC = $1 = \pi r Q/180$ = 0.0174533rQAREA = $\pi r^2 Q/360$ = 0.00872664 $r^2 Q$

SEGMENT OF CIRCLE

OIAMETER = $a + (b^2/4 a)$ RADIUS = $r = (a/2) + (b^2/8a)$ LENGTH OF ARC *= l= $(\pi r/90).arccos[1 - (a/r)]$ = $(\pi r/90).arccos[1 - (a/r)]$ where $\pi/90 = 0.03490659$

AREA * = (rl - rb + ab)/2NOTE: arccos[Q] = "angle in degrees whose cosine is Q", and arcsin[Q] = "angle in degrees whose sine is Q".

*Valid for **a** positive and less than 2*r*.

ELLIPSE

AREA = $(\pi/4)(ab)$ = 0.7853982(ab)CIRCUMFERENCE = $\pi[(a^2 + b^2)/2]^{1/2}$ approximately

PRISM

BASE OF ANY SHAPE; UPRIGHT OR SLOPING

AREA OF SECTION = A
DISTANCE BETWEEN PARALLEL
SECTIONS 'A' AND 'A' = h
VOLUME = hA

NOTE: THIS FORMULA MAY BE APPLIED TO CYLINDRIC AND RECTANGULAR TANKS.

CONE

BASE OF ANY SHAPE; UPRIGHT OR SLOPING

AREA OF BASE = AHEIGHT (measured at right angles to base) = hVOLUME = hA/3

FRUSTUM OF CONE

SECTION OF ANY SHAPE; UPRIGHT OR SLOPING

AREAS OF PARALLEL FLAT SURFACES 'A' ANO 'B' = A and B, respectively OISTANCE BETWEEN SURFACES 'A' ANO 'B' = hVOLUME = (h/3).[A + B + (AB)]^½]

TRIANGLES

AREA = ac/2

THESE FORMULAS MAY BE USED FOR ALL (FLAT) TRIANGLES

If Θ is between 90° and 180° , $\sin \Theta = \sin(180^{\circ} - \Theta)$, $\cos \Theta = -\cos(180^{\circ} - \Theta)$ (Thus values may be found in tables.)

KNOWN	REQUIRED	SOLUTION
Two angles	Third angle	$A = 180^{\circ} - (B + C)$
	Any angle	$\cos A = (b^2 + c^2 - a^2)/2bc$
Three sides	Area	Area = $[s(s-a)(s-b)(s-c)]^{1/2}$ $s = (a+b+c)/2$
Two sides	Third side	$c = (a^2 + b^2 - 2ab \cos C)^{1/2}$
and included	Third angle	tan A = (a sin C)/(b - a cos C)
angle	Area	(ab sin C)/2
Two sides and	Third side	$c = b \cos A \pm (a^2 - b^2 \sin^2 A)^{1/2}$
excluded angle (ambiguous)	Area	$(b/2) \sin A [b \cos A \pm (a^2 - b^2 \sin^2 A)^{\frac{1}{2}}]$
One side and	Adjacent side	$c = a \sin C / \sin (B + C)$
adjacent angles	Area	a ² .sin B.sin C / [2sin (B + C)]

SPHERE

RADIUS = rDIAMETER = d = 2rSURFACE AREA = πd^2 = 3.14159265 d^2 VOLUME = $\pi d^3/6$ = = 0.5235988 d^3

VOLUME OF SEGMENT OF OEPTH $h = (\pi h^2/3)(3r - h)$ = $(1.0471976 h^2)(3r - h)$, where h is positive and less than 2r.

AREA OF SPHERICAL CAP OR SLICE

The area of the curved surface of the cap or the slice equals the area of the cylindric band of the same depth, h; that is, π hd, no matter where the slice is taken, or how thick the slice or cap is.

HEAT EXCHANGER NOMENCLATURE

CHART H-1

REPRODUCED BY PERMISSION OF THE TUBULAR EXCHANGER MANUFACTURERS ASSOCIATION

THREE LETTERS, SUCH AS AEW, BGP, etc. DESIGNATE THE BASIC CONSTRUCTION OF THE EXCHANGER. REFER TO 6.6.1, 'DATA NEEDED TO DESIGN EXCHANGER PIPING'

FLOV		WA	TE	RT					PIP		H 40 Pu		ABL	E F	-11
	/ RATE	₩	р	V	p	_330 K	p	V	p	V	р	V	p	v	р
GPM	Cu.ft/sec	Ft/Sec		Ft/Sec	psi	Ft/Sec	psi	Ft/Sec	psi	Ft/Sec	psi	Ft/Sec	psi	Ft/Sec	psi
.1	.00022	.56	/8'' .677		4''	3,	8"								
.2	.00045	1.14	2.48 5.26	.62	1.16	.50	.255	1,	2"	3	/4"				
.4	.0089	2.26	9.00 13.58	1.24	1.98	.67	.436 .656	.42 .53	.136 .205	.30	.050		1"		
.5 .6	.00134	3.38	19.12	1.85	4.22	1.01	.925	.63	.290	.36	.071			11	/4"
.8 1	.00178	4.52	32.62	3.09	7.17	1.34	2.39	1.06	.494	.60	.121	.30	.036	.21	.014
2 3	.00446			6.18	39.60	3.36 5.04	8.68 18.46	2.11 3.17	2.72 5.77	1.20	.665 1.41	1.11	.199 .424	.43 .64	.051 .107
4 5	.00891	.,	1/2"			6.72	31.55	4.22 5.28	9.86 14.92	2.40 3.01	2.42 3.64	1.49	.724 1.09	.86 1.07	.183
6	.01337						~	6.33	20.95	3.61	5.13	2.23	1.54	1.29	.390
8 10	.01782	1.26	.308 .466	2						4.81 6.01	8.76 13.28	2.97 3.713	2.62 3.97	1.71 2.142	.66 7 1.01
15 20	.03342	2.36 3.15	.992 1.69	1.43	.285 .486	21	/2"					5.57 7.43	8.46 14.42	3.21 4.28	2.1 <i>4</i> 3.66
25	.05570	3.94	2.54	2.39	.736							7.43		5.36	5.54
30 35	.06684 .07798	4.73 5.51	3.60 4.79	2.37 3.35	1.03 1.37	2.01 2.35	.424 .566	;	3"					6.43 7.50	7.79 10.38
40 50	.08912	6.30 7.88	6.14 9.31	3.82 4.78	1.76 2.67	2.68 3.35	.724 1.10	2.17	.371	:	31/2"			8.57	13.28
60 70	.1337 .1560	9.45	13.08	5.74 6.70	3.75 4.99	4,02 4,70	1.54 2.05	2.61 3.04	.520 .693	2.27	.335				
80	.1782			7.65	6.40	5.37	2.63	3.47	.890	2.59	.430		4′′		
90 100	.2005 .2228			8.60 9.56	7.96 9.69	6.04 6.71	3.28 3.98	3.91 4.34	1.10 1.34	2.92 3.24	.535 .650	2.52	.346		
125 150	.2785 .3342					8.38 10.1	6.03 8.46	5.43 6.52	2.01 2.86	4.05 4.87	.984 1.38	3.15 3.78	.523 .734	5	<i>''</i>
175 200	.3899 .4456		ş,,			11.7	11.3	7.60 8.69	3.81 4.89	5.68	1.84	4.41 5.04	.978 1,25	2.81	.316
225	.5013					13,4	14.4	9.77	6.09	7.30	2.94	5.67	1.56	3.21 3.61	.405 .505
250 275	.5570 .6127	2.78 3.06	.245 .292					10.9 11.9	7.41 8.84	8.11	3.58 4.27	6.30	1.90 2.27	4.01 4.41	.616 . 73 4
300 350	.6684 .7798	3.33 3.89	.344 .457	8	"			13.0 15.2	10.4 13.8	9.73	5.02 6.87	7.56 8.82	2.67 3.55	4.81 5.62	.863 1.15
400	.8912	4.44	.587	2.57	.149					13.0	8.58	10.1	4.56	6.41	1.47
450 500	1.003 1.114	5.00 5.55	.731 .887	2.89 3.21	.185 .225					14.6 16.2	10.7 13.0	11.3 12.6	5.66 6.89	7.22 8.02	1.83 2.23
550 600	1.225 1.337	6.11 6.66	1.07 1.25	3.53 3.85	.270 .316	1	0"			17.8	15.5 18.2	13.9 15.1	8.25 9.68	8.82 9.62	2.67 3.13
650 700	1.449	7.22 7.78	1.45	4.17	.367	2.65 2.85	.118					16.4 17.6	11.2	10.4	3.62 4.16
750	1.671	8.33	1.89	4.81	.480	3.05	.154					18.9	14.7	12.0	4.75
800 850	1.782 1.894	8.89 9.44	2.13 2.38	5.13 5.45	.540 .605	3.26 3.46	.173 .194		2"			20.2 21.4	16.5 18.5	12.8 13.6	5.35 5.98
900 950	2.005 2.117	10.6	2.66	5.77 6.09	.627	3.66	.216	2.58	.090		······	22.7	20.6	14.4	6.65 7.36
1000 1100	2.228 2.451	11.1	3.23 3.85	6.41 7.06	.817 .975	4.07 4.48	.262	2.87 3.15	.109	1	4"		•	16.0 17.6	8.10 9.66
1200	2.674	13.3	4.53	7.70	1.15	4.88	.3 68	3.44	.153	2.85	.096			19.2	11.4
1300	2.896 3.119	14.4	5.26 6.01	8.34 8.98	1.33	5.29 5.70	.427	3.73 4.01	.178	3.08	.111	1	6"	20.8	13.2
15 00 1600	3.342 3.565	16. 7 1 7 .8	6.84 7.73	9.62 10.3	1.74 1.96	6.10 6.51	.556 .628	4.30 4.59	.232 .262	3.56 3.79	.145 .163	2.91	.084	24.1	17.2
1800 20 0 0	4.010 4.456	20.0 22.2	9.64 11.6	11.5	2.46 2.97	7.32 8.14	.782 .953	5.16 5.73	.329 .396	4.27 4.74	.203	3.27 3.63	.104	1	8"
2500	5.570	27.8	17.6	16.0	4.49	10.2	1.44	7.17	.601	5.93	.374	4.54	.192		
300 0 3500	6.684 7.798			19.2 22.4	6.30 8.41	12.2 14.2	2.02 2.70	8.60 10.0	.842 1.12	7.11 8.30	.525 .700	5.45 6.36	.270 .358	4.30 5.02	.149 .199
4000 4500	8,912 10,03			25.7 28.9	10.8 13.4	16.3 18.3	3.46 4.31	11.5 12.9	1.44 1.76	9.48 10.7	.896 1.12	7.26 8.17	.459 .671	5.74 6.45	.255 .317
500 0 6 0 00	11.14 13.37					20.4	5.23	14.3 17.2	2.18 3.06	11.9 14.2	1.36	9.08 10.9	.695 .977	7.17 8.60	.386 .542
7000	15.60					24.4 28.5	7.35 9.80	20.1	4.08	16.6	2.54	12.7	1.30	10.0	.723
8000 9000	1 7. 82 20.05							22. 9 25.8	5.22 6.51	19.0 21.3	3.25 4.06	14.5 16.3	1.67 2.08	11.5 12.9	.926 1.15
10000 12000	22.28 26.74							28.7	7.91	23.7 28.5	4.92 6.92	18.2 21.8	2.53 3.55	14.3 17.2	1.40 1.97
14000	31.19									10.5	0.72	25.4	4.72	20.1	2.62
16000 18 0 00	35.65 40.10											29.1 32.7	6.06 7.55	22.9 25.8	3.36 4.18
20000	44.56													28.7	5.08

Reproduced by courtesy of the Lunkenheimer Company. Data are based on the Saph and Schoder formula: $p = LQ^{1.86}/1435D^5$

FLOW RESISTANCE OF FITTINGS & VALVES

TABLE F-10

N	ΟN	IINAL F	PIPE	SIZE (IN.	1/2	3/4	1	1 ¹ / ₂	2	3	4	6	8	10	12	14	16	18	20	24
П		900 LDNG-RADIU	SELBOW					1.0	2.3	3.5	4.5	6.8	9.0	11	13	15	17	19	21	25
		90° SHORT RADII	US EL BOY	V	2.3	2.8	3.2	4.9	6.7	9.8	13	19	25	21	37	38	44	49	55	66
	က	45° ELBDW (LON	C RACIU	S)	0.4	0.6	0.8	1.3	1.1	1.8	2.5	4.0	5.5	7.4	9.5	10	12	14	16	20
	Ž	RETURN, LONG R	ADIUS		2.3	2.8	3.5	4.9	5.1	7.5	9.8	15	19	24	29	32	36	41	45	55
(2)	0	RETURN, SHORT	RADIUS		2.0	2.0	0.0	1.0	13	20	25	39	50	63	7 5	78	89	100	110	130
∞	F			2 PIECE							21	34	47	63	80	88	110	120	140	170
LES (ပ	90°		3.PIECE							9.3	14	18	23	27	30	34	38	43	5}
ON C	빌	MITERS (90° Change in		4-PIECE							8.5	13	17	21	25	27	31	35	39	47
R TC	2	direction)		5 PIECE							6.3	9.5	13	16	19	20	23	26	29	35
3EFE	0	RECUCER and SW	VCE	One listed NPS reduction		1.1	3.1	2.8	11	9.0	22	21	48	79	130	270	240	330	390	270
ET (!	ပ		te (3)	One listed NPS increase	1.1	2.2	2.9	3.3	9.4	14	23	33	45	54	28	46	47	43	100	
EQUIVALENT LENGTH OF PIPE IN FEET (REFER TO NOTES (1)	Ø	VENTURI SWAGE	Dne list	red NPS increase Note (3					2.7	3.0	4.7	6.2	8.3	12	21	17	21	25	49	
PE :	S	STRAIGHT TEE		Thru run	1.0	1.5	2.1	3.7	1.6	2.2	2.6	3.6	4.2	5.0	5.9	6.3	6.9	7.8	8.4	9.1
OF P	U	Olimiuli IEE	Thru branch and run PLING (Screwed, pipe-to-pipe)		2.7	3.3	4.1	6.1	6.6	9.7	13	18	23	29	35	36	41	45	49	59
ΕĦ	\mathbf{Z}	UNION and COUPL	ANGE One listed NPS reduction		0.2	0.2	0.2	0.3												4
LEN	F	REDUCING FLA	NGF	GE One listed NPS reduction		0.1	0.2	0.2	0.6	0.7	1.4	1.6	3.1	4.4	5.8	6.2	7.1	8.4	9.4	12
EN			ote (3)	One fisted NPS increase	0.2	0.2	0.8	0.6	2.4	2.4	5.8	5.3	5.6	4.9	2.1	4.3		4.1	11	
۱۸	Щ	BELLMOUTH OUT	LET (Ves	sel-to-line)	0.1	0.1	0.1	0.2	0.4	0.7	0.9	1.4	2.1	2.8	3.6	3.9	 	5.4	6.0	7.5
EGU		INLET, Flush with			1.1	1.8	2.3	4.1	8.2	14	19	30	42	56	71	78	93	108	120	150
Ş		OUTLET, Flush wi	th Wall (V	essel-to-line)	0.6	0.8	1.2	2.0	4.1	6.8	9.3	15	21	28	36	39	46	54	60	75
STATED		GATE VALVE			0.4	0.4	0.5	0.8	2.2	2.8	3.0	3.3	3.1	3.3	3.1	3.1	3.1	3.3	3.0	2.7
S ST,	S			Regular Oisc		1000			71	97	120	180	240	310	390			<u> </u>		
FLOW RESISTANCE IS	ш	GLOBE VALVE		Composition Oisc	15	18	20	29	70	94	120	170	230	300	380				-	
STA	>			Plug-type Oisc	lav (S.)				100	140	170	250	330	440	560					
RESI	d			Swing	5.2	5.7	6.7	10	16	27	37	59	83	110	140	160	190	7000	7000	2000
MO.	>	CHECK VALVE		Ball	170	190	220	320	530	880	1200	1900	2700	3600	4600	5100	6000	7000	7800	9800
Ĭ.	Z	1		Tilting-disc					82	140	190	300	420	560	710	780	930	1100	1200	1500
	PE	BALL VALVE		Pettern, (Welworth Aloyco		3.9	1.2	3.3	5.6	4.0	15	10	35	56	48	20	45	40	43	
	OF		Eccentric			1.7	2.2	3.9	3.7	5.7	8.0	15	21	28	40	38	45	49	47	57
		BUTTERFLY VAL		(Walworth 'Pinnacle' Valve	20000000				8.8	6,1	5.5	8.3	8.4	11	16	00	120	120	160	170
Ш		PLUC VALVE	–24": Ve	ular pattern nturi pattern (W-K-M 'ACF'			1.7	4.1	5.5	8.2	14	56	96	100	140	88	130	120	160	170

NOTES

- [1] Hydraulic resistances are for turbulent flow and are given as lengths of SCH 40 pipe having the same resistance. For pipe with a thicker wall use the resistance value for SCH 40 pipe having the closest internal diameter.
- [2] Numbers in Italics are resistances for threaded valves and fittings. Upright numbers relate to flanged valves and butt-welding fittings.
- [3] For reducing and increasing fittings, flow resistance is based on the nominal pipe size at the inflow end.
- [4] Tabulated flow resistances are approximate and selected from several sources not all giving comparable values.

 These sources include the Hydraulic Institute's "Pipe Friction Manual", the Crane Company's Technical Paper 410", the "Reactor Handbook" (Interscience), the "Chemical Engineer's Handbook". (McGraw-Hill), "Cameron Hydraulic Data" (Ingersoll-Rand), and manufacturers' catalogs.

FRACTIONAL	0.06	0.12	0.19	0.25	0.31	0.38	0.44	0.50	0.56	0.62	0.69	0.75	0.81	0.88	0.94
EOUIVALENTS	1/16	1/8	3/16	1/4	5/16	3/8	7/16	1/2	9/16	5/8	11/16	3/4	13/16	7/8	15/16

PRESSURE / TEMPERATURE RATINGS FOR CARBON STEEL FLANGES

TABLE F-9

Maximum Ratings for flanges conforming to ANSI Standard B16.5 dimensions and material specification ASTM A-105

		GAGE WORKING	PRESSURE IN	l psi FOR FL/	ANGE CLASSES	150 - 2500	
TEMPERATURE			FLAN	GE CLA	SSES		
FAHRENHEIT	150	300	400	600	900	1500	2500
-20 to 100	285	740	990	1480	2220	3705	6170
200	260	675	900	1350	2025	3375	5625
300	230	655	875	1315	1970	3280	5470
400	200			1270	1900	3170	5280
500	170	170 600		1200	1795	2995	4990
600	140			1095	1640	2735	4560
650	125	535	715	1075	1610	2685	4475
700	110	535	710	1065	1600	2665	4440
750	95	505	670	1010	1510	2520	4200
800	80	410	550	825	1235	2060	3430
850	65	270	355	535	805	1340	2230
900	50	170	230	345	515	860	1430
950	35	105	140	205	310	515	860
1000	20	50	70	105	155	260	430

Standard ANSI B16.5 does not recommend using flanges manufactured from carbon steels made to ASTM specification A-105 at temperatures in excess of 1000F (538C) at any time, or their prolonged usage at temperatures over 800F (427C). [ASTM A-105 carbon steel is included in material group 1.1. of ANSI B16.5.]

THERMAL GRADIENTS, THERMAL CYCLING and EXTERNAL LOADS

The suitability of slip-on, socket-welding and threaded flange attachments at 540F (282C) and -50F (-46C) is discussed in ANSI B16.5, which also makes recommendations to prevent leakage from Class 150 flanged joints at 400F (204C), and other classes at higher tempatures, if the above operating conditions are anticipated, and expected to be severe.

Ratings are for non-shock conditions. Values in this table do not prevail over limitations imposed by codes, standards, regulations or other obligations which may pertain to projects.

TABLE F-8

SLIP-ON FLANGES ON BUTT-WELDING ELBOWS

FOR USE ON BUTT-WELDING ELBOWS AS PERMITTED BY THE PIPING SPECIFICATION FOR THE PROJECT

NPS		C	CLASS 150 F	LANGE	S		
INPS	90 LR	*	90 SR	*	45 LR	*	
2	3.50	1	2.69	1	1.88	1	
3	5.12	2	3.81	1	2.62	1	
4	6.62	2	4.88	1	3.12	1	
6	9.56	2	6.88	1	4.31	2	
8	12.56	2	8.94	2	5.56	2	
10	15.62	2	10.88	2	6.88	2	
12	18.62	2	13.06	2	8.12	2	
14	21.62	2	14.81	2	9.38	2	
16	24.62	2	17.00	2	10.62	2	
18	27.62	2	19.06	2	11.88	2	
20	30.62	2	21.00	2	13.12	2	
24	36.62	2	25.38	2	15.62	2	

	C	CLASS 300 F	LANGE	S	
90 LR	*	90 SR	*	45 LR	*
3.81	1	3.00	1	2.19	1
5.62	1	4.31	1	3.12	1
7.19	2	5.44	1	3.69	1
10.06	2	7.38	1	4.81	2
13.25	2	9.62	2	6.25	2
16.06	2	11.56	2	7.31	2
19.19	2	13.75	2	8.69	2
22.00	2	15.56	2	9.75	2
24.88	2	17.75	2	10.88	2
28.00	2	19.88	2	12.25	2
31.25	2	21.88	2	13.75	2
37.44	2	26.31	2	16.44	2

DIMENSIONS IN INCHES

DATA FOR WELDING-NECK FLANGES L = LENGTH THRU HUB OF WELDING-NECK FLANGE WITH RING JOINT G = GAP BETWEEN FLANGE FACES WITH RING IN COMPRESSION FOR OUTSIDE DIAMETERS OF FLANGES AND BOLTING REFER TO TABLES F-1 THRU F-6

	ļ				···	F	LAN	GE	C L	. A S	SES							
		150	· · · · · · · · · · · · · · · · · · ·		300			600			900			150 0			2500	
NPS	L	G	RING No	L	G	RING No	L	G	RING No	L	G	RING No	L	G	RING No	L	G	RING No
1/2	-	-	_	2.31	0.12	R 11	2.31	0.12	R 11	2.62	0.16	R 12	2.62	0.16	R 12	3.12	0.16	R 13
3/4	-	-	-	2.50	0.16	R 13	2.50	0.16	R 13	3	0.16	R 14	3	0.16	R 14	3.38	0.16	R 16
1	2.44	0.16	R 15	2.69	0.16	R 16	2.69	0.16	R 16	3.12	0.16	R 16	3.12	0.16	R 16	3.75	0.16	R 18
1 1/2	2.69	0.16	R 19	2.94	0.16	R 20	3	0.16	R 20	3.50	0.16	R 20	3.50	0.16	R 20	4.69	0.12	R 23
2	2.75	0.16	R 22	3.06	0.22	R 23	3.19	0.19	R 23	4.31	0.12	R 24	4.31	0.12	R 24	5.31	0.12	R 26
3	3	0.16	R 29	3.44	0.22	R 31	3.56	0.19	R 31	4.13	0.16	R 31	4.94	0.12	R 35	7	0.12	R 32
4	3.25	0.16	R 36	3.69	0.22	R 37	4.31	0.19	R 37	4.81	0.16	R 37	5.19	0.12	R 39	7.94	0.16	R 38
6	3.75	0.16	R 43	4.19	0.22	R 45	4.94	0.19	R 45	5.81	0.16	R 45	7.12	0.12	R 46	11.25	0.16	R 47
8	4.25	0.16	R 48	4.69	0.22	R 49	5.56	0.19	R 49	6.69	0.16	R 49	8.81	0.16	R 50	13.06	0.19	R 51
10	4.25	0.16	R 52	4.94	0.22	R 53	6.31	0.19	R 53	7.56	0.16	R 53	10.44	0.16	R 54	17.19	0.25	R 55
12	4.75	0.16	R 56	5.44	0.22	R 57	6.44	0.19	R 57	8.19	0.16	R 57	11.69	0.19	R 58	18.94	0.31	R 60
14	5.25	0.12	R 59	5.94	0.22	R 61	6.81	0.19	R 61	8.81	0.16	R 62	12.38	0.22	R 63			
16	5.25	0.12	R 64	6.06	0.22	R 65	7.31	0.19	R 65	8.94	0.16	R 66	12.94	0.31	R 67			
18	5.75	0.12	R 68	6.56	0.22	R 69	7.56	0.19	R 69	9.50	0.19	R 70	13.56	0.31	R 71			
20	5.94	0.12	R 72	6.75	0.22	R 73	7.88	0.19	R 73	10.25	0.19	R 74	14.69	0.38	R 75			
24	6.25	0.12	R 76	7.06	0.25	R 77	8.44	0.22	R 77	12.12	0.22	R 78	16.81	0.44	R 79			

CLASS 1500 FLANGE DATA

• DIMENSIONS INCLUDE 0.25" RAISED FACE ON FLANGES (except lap-joint)
• DIMENSIONS INCLUDE 0.06" GAP FOR WELDING - REFER TO CHART 2.2

TABLE F-5

NC	MINAL PIP	E SIZE:	NPS	1/2	3/4	1	1 1/2	2	3	4	6	8	10	12	14	16	18	20	24
	OUTSIOE (OIAMETER		4.75	5.12	5.88	7	8.5	10.5	12.25	15.5	19	2 3	26.5	29.5	32.5	36	38.75	46
F	•	WELO-N	ECK	2.62	3	3.12	3.5	4.25	4.88	5.12	7	8.62	10.25	11.38	12	12.5	13.12	14.25	16.25
A	ENO OF	SLIP-0	N			<u> </u>			Wall t	hickne	ess of p	pipe +	0.06-i	nch					
G	PIPE TO FACE OF	SOCKET	••	1.19	1.25	1.44	1.44	1.88											
E	FLANGE or LAP	THREAD	ED	0.38	0.31	0.31	0.38	0.62	0.50	0.62	0.88	0.94	0.94	1					
Y	JOINT STUB	L-J	ANSI	3	3	4	4	6	6	6	8	8	10	10	12	12	12	12	12
P E	ENO •	STUB ENO	MSS	2	2	2	2	2.5	2.5	3	3.5	4	5	6	6	6	6	6	6
BOF	RE: WELO-N	ECK & SC	CKET					C	order to	match	ıInter	nal Dia	meter (of pipe					
	80LTS PE	R FLANGE		4	4	4	4	8	8	8	12	12	12	16	16	16	16	16	16
B 0	80LT CIR	CLE DIAM	IETER	3.25	3.5	4	4.88	6.5	8	9.5	12.5	15.5	19	22.5	25	27.75	30.5	32.75	39
L	DIAMETER	OF BOLT		3/4	3/4	7/8	1	7/8	1 1/8	1 1/4	1 3/8	1 5/8	1 7/8	2	2 1/4	2 1/2	2 3/4	3	3 1,
I N			RF	4.25	4.5	5	5.5	5.75	7	7.75	10.25	11.5	13.25	14.75	16	17.5	19.5	21.25	24.2
G	length - except		5 RJ	4.25	4.5	5	5.5	5.75	7	7.75	10.5	12.75	13.5	15.25	16.75	18.5	20.75	22.25	25.5

C	LASS 250	O FLAN	GE DA	ATA		DIMENS	IONS IN	ICLUDE	0.25" F	RAISED	FACE 0	N FLANG	ES (exc	cept 1	ap-joir	nt)		TABL	E F-6
NO	OMINAL PIPE	SIZE:	NPS	1/2	3/4	1	1 1/2	2	3	4	6	8	10	12	14	16	18	20	24
	OUTSIDE [IAMETE	₹	5.25	5.5	6.25	8	9.25	12	14	19	21.75	26.5	30					
F	•	WELD-1	VECK	3.12	3.38	3.75	4.62	5.25	6.88	7.75	11	12.75	16.75	18.5					
L A	END OF	SLIP-	ON			<u> </u>			Wall 1	thickne	ss of	pipe +	0.06-ii	nch					
N G	PIPE TO FACE OF	SOCKE	Γ					·	No	ot avai	ilable	in this	class						
E	FACE OF SOCKE FLANGE OR LAP THREA JOINT		DED	0.31	0.44	0.31	0.69	0.88	0.5	0.62	0.88	0.94	1.06	1					
Y	STU8 ENO •	L-J STUB	ANSI	3	3	4	4	6	6	6	8	8	10	10					
P E	ENO -	ENO 210B	MSS	2	2	2	2	2.5	2.5	3	3.5	4	5	6					
	BORE: WEL	.D-NECK						0	rder to	o match	Inter	nal Dia	meter (of pip	е				
	80LTS PER	R FLANG		4	4	4	4	8	8	8	8	12	12	12					
B 0	BOLT CIRC	LE DIA	METER	3.5	3.75	4.25	5.75	6.75	9	10.75	14.5	17.25	21.25	24.38			, , , , , , , , , , , .		
L T	DIAMETER	OF BOL	Г	3/4	3/4	7/8	1 1/8	1	1 1/4	1 1/2	2	2	2 1/2	2 3/4					
I N	STUOBOLT		RF	4.75	5	5.5	6.75	7	8.75	10	13.5	15	19.25	21.25					***************************************
G	length - lap-joint		5 RJ	4.75	5	5.5	6.75	7	9	10.25	14	15.5	20	22		T			

C	LASS 600	FLANG	E DAT	A	.:	DIMENS DIMENS	IONS IN	ICLUDE	0.25" 0. 06"	RAISED GAP FOR	FACE OF	N FLANG NG - RE	ES (exc FER TO	ept la CHART	p-joint 2.2	:)		TABLE	F-3
NC	MINAL PIPE	SIZE:	NPS	1/2	3/4	1	1 1/2	2	3	4	6	8	10	12	14	16	18	20	24
	OUTSIDE (IAMETER		3.75	4.62	4.88	6.12	6.5	8.25	10.75	14	16.5	20	22	23.75	27	29.25	32	37
F	•	WELD-N	IECK	2.31	2.5	2.69	3	3.12	3.5	4.25	4.88	5.5	6.25	6.38	6.75	7.25	7.5	7.75	8.25
A	END OF	SLIP-0	N						Wall	thickne	ss of	oipe +	0.06-11	nch					
N G	PIPE TO FACE OF	SOCKET	••	0.81	0.88	0.88	0.94	1.06	1.31										
E	FLANGE or LAP	THREAD	ED	0.38	0.31	0.31	0.44	0.69	0.50	0.62	0.88	0.94	0.94	1					
Y	JOINT STUB	L-J	ANSI	3	3	4	4	6	6	6	8	8	10	10	12	12	12	12	12
P E	END •	STUB ENO	MSS	2	2	2	2	2.5	2.5	3	3.5	4	5	6	6	6	6	6	6
BOI	RE: WELO-NE	ECK & SO	CKET					C	rder t	o match	Inter	nal Dia	meter	of pip	9				
	80LTS PER	R FLANGE	:	4	4	4	4	8	8	8	12	12	16	20	20	20	20	24	24
B 0	BOLT CIRC	CLE DIAM	1ETER	2.62	3.25	3.5	4.5	5	6.62	8.5	11.5	13.75	17	19.25	20.75	23.75	25.75	2B.5	33
L	OIAMETER	0F 80L	Г	1/2	5/8	5/8	3/4	5/8	3/4	7/8	1	1 1/8	1 1/4	1 1/4	1 3/B	1 1/2	1 5/8	1 5/8	1 7/8
I N	STUD80LT		RF	3	3.5	3.5	4.25	4.25	5	5.75	6.75	7.5	8.5	8.75	9.25	10	10.75	11.25	13
G	length - lap-joint		5 RJ	3	3.5	3.5	4.25	4.25	5	5.75	6.75	7.75	B.5	8.75	9.25	10	10.75	11.5	13.25

C	LASS 900	FLANGE	DAT	A		DIMENS	SIONS IN	NCLUDE	0.25"	RAIS ED	FACE ON	I FLANG	ES (exc	ept 1	ap-joint	t)		TABLE	F-4
NC	MINAL PIPE	SIZE:	NPS	1/2	3/4	1	1 1/2	2	3	4	6	8	10	12	14	16	18	20	24
	OUTSIOE C	IAMETER		4.75	5.12	5.88	7	8.5	9.5	11.5	15	18.5	21.5	24	25.25	27.75	31	33.75	41
F	•	WELO-N	ECK	2.62	3	3.12	3.5	4.25	4.25	4.75	5.75	6.62	7.5	8.12	8.62	8.75	9.25	10	11.75
A	END OF	SLIP-0	N			<u> </u>		<u> </u>	Wall	thickne	ss of p	oipe +	0.06-i	nch					
N G	PIPE TO FACE OF	SOCKET							N	ot avai	lable '	in this	class						
E	FLANGE or LAP	THREAD	ED	0.62	0.69	0.69	0.81	1.06	0.50	0.62	0.88	0.94	1	1					
T Y	JOINT STU8	L-J	ANSI	3	3	4	4	6	6	6	8	8	10	10	12	12	12	12	12
P E	END •	STU8 ENO	MSS	2	2	2	2	2.5	2.5	3	3.5	4	5	6	6	6	6	6	6
	BORE: WEL	_O-NECK						0	rder t	o match	Inter	nal Dia	ameter o	of pip	е				
	80LTS PER	R FLANGE		4	4	4	4	8	8	8	12	12	16	20	20	20	20	20	20
В 0	BOLT CIRC	CLE DIAM	IETER	3.25	3.5	4	4.B8	6.5	7.5	9.25	12.5	15.5	18.5	21	22	24.25	27	29.5	35.5
L T	DIAMETER	OF 80LT		3/4	3/4	7/8	1	7/8	7/8	1 1/8	1 1/8	1 3/8	3 1 3/8	1 3/	8 1 1/2	1 5/8	3 1 7/8	2	2 1/2
I N	STUDBOLT		RF	4.25	4.5	5	5.5	5.75	5.75	6.75	7.5	8.75	9.25	10	10.75	11.25	12.75	13.75	17.25
G	length - lap-joint		5 RJ	4.25	4.5	5	5.5	5.75	5.75	6.75	7.75	8.75	9.25	10	11	11.5	13.25	14.25	18

CLASS 150 FLANGE DATA

• OIMENSIONS INCLUOE 0.06" RAISED FACE ON FLANGES (except lap-joint)
•• DIMENSIONS INCLUDE 0.06" GAP FOR WELDING - REFER TO CHART 2.2

TABLE F-1

NO	MINAL PIPE	SIZE:	NPS	1/2	3/4	1	1 1/2	2	3	4	6	8	10	12	14	16	18	20	24
	OUTSIOE (IAMETE	₹ ,	3.5	3.88	4.25	5	6	7.5	9	11	13.5	16	19	21	23.5	25	27.5	32
F	•	WELD-I	NECK	1.88	2.D6	2.19	2.44	2.5	2.75	3	3.5	4	4	4.5	5	5	5.5	5.69	6
A	END OF	SLIP-	ON			l	***************************************		Wall '	thickne	ss of	pipe +	0.06-i	nch					
·N G	PIPE TO FACE OF	SOCKE	r ••	D.31	0.25	0.25	0.31	0.38	0.44										
E	FLANGE or LAP	THREA	DED	D.06	0.06	0	0.25	0.31	0.19	0.25	0.38	0.44	0.50	0.56					
Y	JOINT STUB	L-J	ANSI	3	3	4	4	6	6	6	8	8	10	10	12	12	12	12	12
P E	END •	STUB END	MSS	2	2	2	2	2.5	2.5	3	3.5	4	5	6	6	6	6	6	6
BOF	E: WELO-N	CK & S	OCKET	D.62	0.82	1.05	1.61	2.07	3.07	4.03	6.07	7.98	10.02	12	[Drde	r to ma	atch pi	pe ID]	
	BOLTS PE	R FLANG	 E	4	4	4	4	4	4	8	8	8	12	12	12	16	16	20	20
8 0	BOLT CIR	CLE OIA	METER	2.38	2.75	3.12	3.BB	4.75	6	7.5	9.5	11.75	14.25	17	18.75	21.25	2 2. 75	25	29.5
L	DIAMETER	OF BOL	T	1/2	1/2	1/2	1/2	5/8	5/8	5/8	3/4	3/4	7/8	7/8	1	1	1 1/B	1 1/B	1 1/4
I N	STUDBOLT			2.25	2.5	2.5	2.75	3.25	3.5	3.5	4	4.25	4.5	4.75	5.25	5.25	5.75	6.25	6.75
G	length -			-	•	3	3.25	3.75	4	4	4.5	4.75	5	5.25	5.75	5.75	6.25	6.75	7.25

CLASS 300 FLANGE DATA	CI	.ASS	300	FLANG	E DATA
-----------------------	----	------	-----	-------	--------

• OIMENSIONS INCLUOE 0.06" RAISEO FACE ON FLANGES (except lap-joint)
•• DIMENSIONS INCLUOE 0.06" GAP FOR WELDING - REFER TO CHART 2.2

TABLE F-2

NO	MINAL PIPE	SIZE:	NPS	1/2	3/4	1	1 1/2	2	3	4	6	8	10	12	14	16	18	20	24
	OUTSIDE (OI AMETER	1	3.75	4.62	4.88	6.12	6.5	8.25	10	12.5	15	17.5	2D.5	23	25.5	28	30.5	36
F	•	WELD-N	IECK	2.06	2.25	2.44	2.69	2.75	3.12	3.38	3.88	4.38	4.62	5.12	5.62	5.75	6.25	6.38	6.62
L A	END OF	SLIP-0	N			L			Wall 1	thickne	ss of p	pipe +	0.06-i	nch					
N G	PIPE TO FACE OF	SOCKET	••	D.56	D.62	0.62	0.62	0.69	0.94										
E	FLANGE or LAP	THREAD	ED	D.06	0.06	0	0.25	0.44	0.25	0.38	0.62	0.69	0.75	0.75					
T Y	JOINT STUB	L-J	ANSI	3	3	4	4	6	6	6	8	8	10	10	12	12	12	12	12
P E	END •	STUB END	MSS	2	2	2	2	2.5	2.5	3	3.5	4	5	6	6	6	6	6	6
BOF	RE: WELO-N	ECK & SC	CKET	D.62	0.82	1.05	1.61	2.07	3.07	4.03	6.07	7.98	10.02	12	[Drde	r to ma	tch pi	pe ID]	
	BOLTS PE	R FLANG	-	4	4	4	4	8	В	8	12	12	16	16	20	20	24	24	24
B 0	BOLT CIR	CLE OIAM	1ETER	2.62	3.25	3.5	4.5	5	6.62	7.8B	10.62	13	15.25	17.75	2D. 2 5	2 2.5	24.75	27	32
L T	DIAMETER	OF BOL	Γ	1/2	5/8	5/8	3/4	5/8	3/4	3/4	3/4	7/8	1	1 1/8	1 1/8	1 1/4	1 1/4	1 1/4	1 1
I N	STUDBOLT		RF	2.5	3	3	3.5	3.5	4.25	4.5	4.75	5.5	6.25	6.75	7	7.5	7.75	8	9
G	length - lap-join		5 RJ	3	3.5	3.5	4	4	4.75	5	5.5	6	6.75	7.25	7.5	8	8.25	8.75	10

FORGED-STEEL FLANGES & LAP-JOINT STUB-ENDS

FLANGE CLASSES 150-2500 TABLES F

NOTES

[1] FLANGE DIMENSIONS: ANSI STANDARD B16.5 AND MANUFACTURERS' DATA

[2] BLIND FLANGES: DATA FOR FLANGE DIAMETERS AND BOLTING IN THESE TABLES

ALSO APPLIES TO BLIND FLANGES

[3] REDUCING FLANGES: AVAILABLE IN SLIP-ON, THREADED AND WELDING-NECK TYPES

[4] LAP-JOINT STUB-ENDS: ANSI B16.9 (Long Pattern) & MSS SP-43 (Short Pattern)

[5] STUDBOLT THREAD LENGTHS FOR LAP-JOINTS

FLANGE COMBINATION	FLANGE CLASS	INCREASE IN STUDBOLT LENGTH OVER LENGTHS IN TABLES F-1 thru F-6
lanned to non-lanned	150 or 300	Thickness of lap
Lapped to non-lapped	0ver 300	Thickness of lap minus 1/4"
Lapped to lapped	150 - 2500	Thickness of two laps
Thickness of la	n = Thickness o	of pipe wall + 0" + 0.06"

THREADED FITTINGS - MALLEABLE-IRON

OIMENSIONS ROUNDED TO 1/100-inch

TABLE D-11

PRESSURE C	CLASS				15	50					3(00		
NOMINAL PIP	ESIZE	[IN]	1/2	3/4	1	1 1/2	2	3	1/2	3/4	1	1 1/2	2	3
45° ELL	Ž< 1		0.88	1.0	1.12	1.44	1.69	2.19	1.0	1.12	1.31	1.69	2.0	2.5
90° ELL	i I		1.12	1.31	1.5	1.94	2.25	3.06	1.25	1.44	1.62	2,12	2.5	3.38
90° STREET ELL		A	1.12	1.31	1.5	1.94	2.25	3.06	1.25	1.44	1.62	2.12	2.5	3.38
OU OTHELT LEE	В	B	1.62	1.88	2.12	2.69	3.25	4.5	2.0	2.19	2.56	3.12	3.69	5.12
		CLOSE	1.0	1.25	1.5	2.19	2.62							
RETURN BEND (MEOIUM	1.25	1.5	1.88	2.5	3.0							
		OPEN	1.5	2.0	2.5	3.5	4.0							
STRAIGHT TEE (These dapply to apply to apply to dimension straight of	lata also ————————————————————————————————————		1.12	1.31	1.5	1.94	2.25	3.06	1.25	1.44	1.62	2.12	2.5	3.38
LATERAL A	rix	A	2.31	2.81	3.31	4.38	5.19	7.25						
LATERAL A	₩.c	C	1.69	2.06	2.44	3.25	3.94	5.56						
UNION 6- A-3	S GRINNELL: CO E ALLOY-TO-IRO A		1.94	2.06	2.44	2.75	2.94	3.75	2.06	2.25	2.56	3.00	3.38	4.25
OCTAGONAL	T STOCKHAM: BRASS-TO-IRO or ALL-IRON	1 1	1.81	2.0	2.19	2.62	3.06	3.88	1.94	2.25	2.44	3.00	3.88	4.94
COUPLING			1.31	1.5	1.69	2.12	2.5	3.19	1.88	2.12	2.38	2.88	3.62	4.12
NIPPLE -	CLOSE	NIPPLE	1.12	1.38	1.5	1.75	2.0	2.62	1.12	1.38	1.5	1.75	2.0	2.62
CARBON-STEEL (TANK NIPPLES ARE 6-IN. LONG)	OF SHO	BILITIES ORT AND HIPPLES		(1/2	5	1/2, 6	, 7, 8	, 9, 10	2, 3, 3), 11 & also ava	12 I	NCH LE	NGTHS	es lon	g)
SWAGE WILLS WORKS CARBON-STEEL	NPS		2.75	3.0	3.5	4.5	6.5	8.0	2.75	3.0	3.5	4.5	6.5	8.0
REDUCER	NPS	13	1.25	1.44	1.69	2.31	2.81	3.69	1.69	1.75	2.0	2.69	3.19	4.06
THREAD ENGAGEMENT	TAPER En	gagement	0.5	0.56	0.69	0.69	0.75	1.0	0.5	0.56	0.69	0.69	0.75	1.0

OIMENSIONS IN THIS TABLE ARE FOR BANDED FITTINGS AND CONFORM TO ANSI STANDARD B16.3, AND FEDERAL SPECIFICATION WW-P-521. UNIONS CONFORM TO ANSI B16.39. DATA FROM ITT GRINNELL CORPORATION AND STOCKHAM VALVES AND FITTINGS

CLASS 800 VALVES

API CLASS 800 FORGED-STEEL GATE, GLOBE & CHECK VALVES

TABLE D - 10

DATA: SMITH VALVE CORPORATION
GATE VALVES: FULL PORT
GLOBE VALVES: CONVENTIONAL PORT

'R' is the 'REMOVED RUN' of pipe occupied by the valve

		VALVI	S WITH	THREADED	ENDS	
N	PS	1/2	3/4	1	1 1/2	2
	D	4.00	4.00	5.50	6.62	6.62
G A	H	6.38	7.25	8.56	11.00	12.50
T E	L	3.50	3.88	4.25	5.50	5.69
	R	2.50	2.75	2.88	4.12	4.19
G	D	4.00	4.00	4.00	4.62	6.62
L O	H	6.38	6.56	6.81	8.12	10.12
B	L*	3.25	3.50	4.50	6.25	7.25
Ľ	R*	2.25	2.38	3.12	4.88	5.75

'R' dimensions are based on normal thread engagement for tight joints

* These dimensions also apply to horizontal lift-check valves

		VALV	ES WITH	SOCKET 1	ends	
N	PS	1/2	3/4	1	1 1/2	2
	D	4.00	4.00	5.50	6.62	6.62
G A	H	6.38	7.25	8.56	11.00	12.50
TE	L	3.50	3.88	4.25	5.50	5.69
	R	2.00	2.25	2.75	3.12	3.75
G	D	4.00	4.00	4.00	4.62	6.62
L O	Н	6.38	6.56	6.81	8.12	10.12
B	L*	3.25	3.50	4.50	6.25	7.25
	R*	2.38	2.50	3.38	4.88	5.62

'R' dimensions include 0.06-inch expansion gaps for welding. Refer to text: Chart 2.2

		R						0.44	0.44	0.50	0.88	0.94	0.44	0.44	0.50	0.88	0.94
HALF-COUPLIN	G	L						0.94	1.00	1.19	1.56	1.69	0.94	1.00	1.19	1.56	1.69
	1/2								0.94	1.19	1.94	2.12		0.94	1.19	1.94	2.12
	3/4									1.12	1.88	2.06			1.12	1.88	2.06
REDUCER	1	R									1.75	1.94				1.75	1.94
	11/2											1.94					1.94
	Ł.,	L							2.00	2.38	3.12	3.38		2.00	2.38	3.12	3.38
		R1	2.07	2.49	2.82	4.12	5.06	2.62	3.07	3.56	5.19	7.50	3.19	3.81	4.12	7.62	7.62
		R2	1.66	2.03	2.34	3.31	4.06	2.09	2.47	2.87	4.12	6.12	2.53	3.00	3.31	6.19	6.25
LATERAL		R3	0.41	0.47	0.47	0.81	1.00	0.53	0.60	0.69	1.06	1.38	0.66	0.81	0.81	1.44	1.38
		L1	3.07	3.62	4.19	5.50	6.56	3.62	4.19	4.94	6.56	9.00	4.19	4.94	5.50	9.00	9.12
[Bonney Forge & Lad:	ish]	L2	2.16	2. 59	3.03	4.00	4.81	2.59	3.03	3.56	4.81	6.88	3.03	3.56	4.00	6.88	7.00
DIAMETER		D	1.31	1.56	1.84	2.59	3.06	1.56	1.84	2.25	3.06	3.62	1.84	2.25	2.50	3.62	4.31
	В	1/2							1.03	1.16	1.45	1.69		1.28	1.41	1.70	1.94
TUREROI ET	R A	3/4								1.16	1.45	1.69			1.53	1.83	2.06
THREDOLET (REDUCING)	N C	1									1.58	1.81				1.83	2.06
[Bonney Forge]	Н	11/2										1.88					2.19
		R						1.00	1.19	1.06	1.64	1.95	1.27	1.31	1.50	2.06	2.58
UNION		L						2.00	2.31	2.44	3.01	3.45	2.27	2.44	2.88	3.44	4.08
[Bonney Forge]		Α						1.94	2.41	2.78	3.72	4.42	2.41	2.75	3.36	4.42	5.23
HEX BUSH			0.94	1.00	1.06	1.31	1.44	0.94	1.00	1.06	1.31	1.44	0.94	1.00	1.06	1.31	1.44
SWAGE			2.75	3.00	3.50	4.50	6.50	2.75	3.00	3.50	4.50	6.50	2.75	3.00	3.50	4.50	6.50
THREAD ENGAG	EMENT		0.50	0.56	0.69	0.69	0.75	0.50	0.56	0.69	0.69	0.75	0.50	0.56	0.69	0.69	0.75

^{(1) &#}x27;R' OIMENSIONS ('REMOVED RUN' OF PIPE) ARE 8ASED ON NORMAL THREAD ENGAGEMENT 8ETWEEN MALE AND FEMALE THREADS TO MAKE TIGHT JOINTS - ROUNDED TO 1/100-inch

⁽⁶⁾ DIMENSIONS FOR INSTALLED THREODLETS EXCLUDE THE 'ROOT GAP' - REFER TO 'OIMENSIONING SPOOLS (WELDED ASSEMBLIES)' - 9.3.5

FRACTIONAL	0.06	0.12	0.19	0.25	0.31	0.38	0.44	0.50	0.56	0.62	0.69	0.75	0.81	0.88	0.94
EQUIVALENT	1/16	1/8	3/16	1/4	S/16	3/8	7/16	1/2	9/16	5/8	11/16	3/4	13/16	7/8	15/16

⁽²⁾ DIMENSIONS FOR FITTINGS ARE FROM THE FOLLOWING SUPPLIERS' DATA: 80NNEY FORGE, ITT GRINNEL, LADISH AND VOGT

⁽³⁾ UNLESS THE SUPPLIER IS STATED, 'L' & 'D' DIMENSIONS ARE THE LARGEST QUOTED BY BONNEY FORGE, ITT GRINNELL, LADISH AND VOGT

⁽⁴⁾ FITTINGS CONFORM TO ANSI B16.11, EXCEPT LATERALS, WHICH ARE MADE TO MANUFACTURERS' STANDARDS. UNIONS CONFORM TO MSS-SP-83

⁽S) FOR SIZES AND AVAILABILITIES OF PIPE NIPPLES, REFER TO 'MALLEABLE-IRON PIPE FITTINGS' - TABLE 0-11

PRESSURE CLAS	s		2	2000)	·			3000)			(6000)	
NOMINAL PIPE SI (NPS)	ZE	1/2	3/4	1	1 ¹ /2	2	1/2	3/4	1	1 ¹ /2	2	1/2	3/4	1	1 ¹ /2	2
45 ELL	R	0.44	0.50	0.50	0.69	1.00	0.56	0.62	0.62	1.00	1.00	0.69	0.75	0.69	1.06	1.31
45 ELL	L	0.94	1.06	1.19	1.38	1.75	1.06	1.19	1.31	1.69	1.75	1.19	1.31	1.38	1.75	2.06
90 ELL, CROSS	R	0.62	0.75	0.81	1.31	1.62	0.81	0.94	1.06	1.69	1.75	1.00	1.19	1.31	1.81	2.50
& STRAIGHT TEE	L	1.12	1.31	1.50	2.00	2.38	1.31	1.50	1.75	2.38	2.50	1.50	1.75	2.00	2.50	3.25
FULL-COUPLING	R						0.88	0.88	1.00	1.75	1.88	0.88	0.88	1.00	1.75	1.88
FULL-COUPLING	· L	•					1.88	2.00	2.38	3.12	3.38	1.88	2.00	2.38	3.12	3.38

						·											
FULL-COUPLI	NG	R	0.50	0.50	0.62	0.62	0.88	0.50	0.50	0.62	0.62	0.88	0.50	0.50	0.62	0.62	0.88
TOLE COOPER	14	L	1.38	1.50	1.75	2.00	2.50	1.38	1.50	1.75	2.00	2.50	1.38	1.50	1.75	2.00	2.50
HALF-COUPLI	NC	R	0.94	1.00	1.19	1.31	1.69	0.94	1.00	1.19	1.31	1.69	0.94	1.00	1.19	1.31	1.75
HALF-COUPLIF	16	L	1.38	1.50	1.75	2.00	2.50	1.38	1.50	1.75	2.00	2.50	1.38	1.50	1.75	2.00	2.50
	1/2			0.94	0.69	0.88	1.06		1.12	1.19	1.12	1.19		1.25	1.19	1.06	1.19
REDUCER	3/4				1.00	0.81	1.00	•		1.19	1.06	1.12			1.31	1.06	1.12
INSERT	1	R				0.75	0.94				1.25	1.06				1.44	1.06
[Bonney Forge]	11/2						1.31					1.94					2.12
[-3,110] (0190]		R1	2.12	2.56	3.00	4.00	4.81	2.56	3.00	3.56	4.81	7.38	3.12	3.69	4.12	5.00	
		R2	1.69	2.06	2.44	3.25	3.94	2.06	2.44	2.88	3.94	6.06	2.50	2.94	3.31	4.19	
LATERAL		R3	0.44	0.50	0.56	0.75	0.88	0.50	0.56	0.69	0.88	1.31	0.62	0.75	0.81	0.81	
	L1	3.00	3.56	4.12	5.38	6.44	3.56		 			4.12					
[Panery Canas & La	L2					4.75	2.56					3.00					
[boilley Forge α La	ICISIT																
DIAMETER	[Bonney Forge & Ladish] DIAMETER		1.31	1.56	1.88	2.50	3.06	1.56	1.84	2.25	3.06	3.62	1.84	2.22	2.50	3.38	4.00
	T	1/2		1 15	1 28	1.58	1 81		1 46	1 60	1.89	2 12		1 43	1.57	1 96	2 10
	B R	3/4		1.15		1.58			1.40		1.89			1.45		1.95	
SOCKOLET (REDUCING)	A	1			1.20		2.03			1.00		2.19			1.00		2.28
, in the second	СН	11/-				1.79	2.00				1.93	2.12				2.04	2.41
[Bonney Forge]	1 ''	1 ¹ / ₂	1 22	1.28	1 50	2 00		1.28	1 50	1 02	2 10						2.41
UNION																	
		L					3.50	2.31									
[Bonney Forge]		Α	1.94	2.38	2.78	3.72	4.42	2.38	2.78	3.36	4.42	5.23	-				
SWAGE			2.75	3.00	3.50	4.50	6.50	2.75	3.00	3.50	4.50	6.50	2.75	3.00	3.50	4.50	6.50

^{(1) &#}x27;R' DIMENSIONS ('REMOVED RUN' OF PIPE) HAVE BEEN ROUNDEO TO 1/100-inch AND INCLUDE 0.06-inch EXPANSION GAP(S) FOR WELD-ING. REFER TO 'SOCKET-WELDED PIPING' - CHART 2.2

⁽⁷⁾ OIMENSIONS FDR INSTALLED SOCKOLETS EXCLUDE THE 'ROOT GAP' - REFER TO 'DIMENSIONING SPOOLS (WELDED ASSEMBLIES)' - 5.3.5

FRACTIDNAL	0.D6	0.12	0.19	0.25	0.31	0.3B	0.44	0.50	0.56	0.62	0.69	0.75	0.B1	0.88	0.94
EQUIVALENT	1/16	1/B	3/16	1/4	5/16	3/B	7/16	1/2	9/16	5/B	11/16	3/4	13/16	7/B	15/16

⁽²⁾ DIMENSIONS ARE FROM THE FOLLOWING SUPPLIERS' DATA: BONNEY FORGE, ITT GRINNEL, LADISH AND VOGT

⁽³⁾ UNLESS THE SUPPLIER IS STATED, 'L' & 'D' DIMENSIONS ARE THE LARGEST QUOTED BY BONNEY FORGE, ITT GRINNEL, LADISH AND VOGT

⁽⁴⁾ FITTINGS CONFORM TO ANSI B16.11, EXCEPT LATERALS AND REDUCER INSERTS, WHICH ARE MADE TO MANUFACTURERS' STANDARDS

⁽⁵⁾ FOR INFORMATION DN THE BORE DIAMETER AND RATING OF FITTINGS, REFER TO 'SOCKET-WELDED PIPING' - CHART 2.2

⁽⁶⁾ UNIONS CONFORM TO MSS-SP-B3

PRESSURE CLA	ss			3000)				6000)		9000 [Bonney Forge]					
NOMINAL PIPE SIZE (NPS)		1/2	3/4	1	11/2	2	1/2	3/4	1	11/2	2	1/2	3/4	1	11/2	2	
45 ELL	R	0.50	0.56	0.62	0.88	1.06	0.56	0.62	0.75	1.06	1.19	0.69	0.81	0.88	1.06	1.19	
	L	1.00	1.12	1.25	1.38	1.69	1.12	1.25	1.31	1.69	1.75	1.25	1.31	1.38	1.75	2.06	
90 ELL, CROSS	R	0.69	0.81	0.94	1.31	1.56	0.81	0.94	1.12	1.56	1.69	1.06	1.19	1.31	1.56	2.19	
& STRAIGHT TEE	L	1.12	1.31	1.50	2.00	2.38	1.31	1.50	1.75	2.38	2.50	1.50	1.75	2.00	2.50	3.25	

CHECK VALVES - WAFER-TYPE

TABLE D-7

FACE-TO-FACE DIMENSIONS BY CLASS FOR VALVES CONFORMING TO API 594

		F	LANGE	CLASSE	S	
NPS	150	300	600	900	1500	2500
2	2.38	2.38	2.38	2.75	2.75	2.75
3	2.88	2.88	2.88	3.25	3.25	3.38
4	2.88	2.88	3.12	4.00	4.00	4.12
				<u> </u>	<u> </u>	
6	3.88	3.88	5.38	6.25	6.25	6.25
8	5.00	5.00	6.50	8.12	8.12	8.12
10	5.75	5.75	8.38	9.50	9.75	10.00
			<u> </u>	1		
12	7.12	7.12	9.00	11.50	12.00	12.00
14	7.25	8.75	10.75	14.00	14.00	
16	7.50	9.12	12.00	15.12	15.12	
			_			
18	8.00	10.38	14.25	17.75	18.44	SINGLE AND DUAL PLATES
20	8.62	11.50	14.50	17.75	21.00	• /
24	8.75	12.50	17.25	19.50	22.00	

SWAGES TABLE D-4

NPS (INCHES)

LARGE END	SMALL END
2	½-1½
LENGTI	is: 6.5
2½	1 -2
LENGT	HS: 7.0
3	½-2½
LENGT	HS: 8.0
LENGT	HS: 8.0

3½	2-3
LENGTH	is: 8.0
4	1-3½
LENGTH	is: 9.0
5	2-4

LENGTHS: 11

6	1½-5
LENGTH	√S: 12
8	2-6
LENGTI	is: 13
10	4-8
LENGT	HS: 15

END	END
table are Iron Work	ns in this for Mills ks swages,
	with ends!
plain,	threaded,
bevelled,	Victaulic
combin	and in any ation of rminations

LARGE SMALL

ELBO	ETS: 1	THREA	DED/SO	CKET &	BUTT-V	VELDINE		DI	MENSIONS INCHES		TABL	E 0-5
-		N	OMIN	IAL P	IPE S	IZE	0 F M /	AIN R	UN [NF	es]		
NPS OF	2	3	4	6	8	10	12	14	16	18	20	24
BRANCH			CLASS 30	000 THREA	ADED & SC	CKET-WEI	DING* -	STD AND	XS BUTT-	-WELDING		
1/2	3.53	5.94	7.25	10	12.66	15.38	18.03	20.12	22.75	25.41	28.06	33.34
3/4	4.81	6.22	7.53	10.28	12.94	15.66	18.31	20.41	23.03	25.69	28.34	33.6
1	5.12	6.53	7.84	10.59	13.25	15.97	18.62	20.72	23.34	26	28.66	33.9
1 1/2	5.56	6.97	8.28	11.03	13.69	16.41	19.06	21.16	23.78	26.44	29.09	34.3
2	6.12	7.53	8.84	11.59	14.25	16.97	19.62	21.72	24.34	27	29.97	34.9
3		8.16	9.47	12.22	14.88	17.59	20.25	22.34	24.97	27.62	30.28	35.5
4			10.16	12.91	15.56	18.28	20.94	23.03	25.66	28.31	30.97	36.2
6		l		14.59	17.25	19.97	22.62	24.72	27.34	30	32.66	37.9
8	1				18.25	20.97	23.62	25.72	28.34	31	33.66	38.9
10						22.78	25.44	27.53	30.16	32.81	35.47	40.7
12	<u> </u>		LR ELL				26.44	28.53	31.16	33.81	36.94	41.7

Oata provided by BONNEY FORCE. Dimensions for Elbolets are nominal. Size 2-inch Elbolets are designed to fit the different sizes of run pipe; in sizes larger than 2-inches, each size of Elbolet is designed to fit a range of run pipe sizes.

* Threaded and socket-welding Elbolets are not available in sizes 6-inch and larger.

R	EDUCIN	G BL	ITT-WE	LDING	TEES		TABLE D-6						
	NOMINAL PIPE SIZE OF MAIN RUN [NPS]												
	NPS	*	3	4	6	8	10	12	14	16	18	20	24
DIM	ENSION	'A'	3.38	4.12	5.62	7.00	8.50	10.00	11.00	12.00	13.50	15.00	17.00
7	2		3.00	3.50									
	3			3.88	4.88								
N	4				5.12	6.12	7.25						
P S	6	D				6.62	7.62	8.62	9.38	10.38			
0	8	M E					8.00	9.00	9.75	10.75	11.75	12.75	
F	10	N S		l.,	L			9.50	10.12	11.12	12.12	13.12	15.1
B R	12	I 0	ŒŪ		ZZ _i				10.62	11.62	12.62	13.62	15.6
A N	14	N	 	_	+					12.00	13.00	14.00	16.0
H	16	'B'	VZ	3 8	В						13.00	14.00	16.0
	18			A								14.50	16.5
	20												17.0

CLASS 150 BUTT-WELDED PIPING DIMENSIONS

TABLE D-3

DIMENSIONS IN THIS TABLE INCLUDE 0.06-inch RAISED FACE ON FLANGES

	NOMINAL PIPE SIZE (NPS)	2	3	4	6	8	10	12	14	16	18	20	24
	STRAIGHT TEE TABLE D-6 FOR TITE	2.5	3.38	4.12	5.62	7	8.5	10	11	12	13.5	15	17
	WELDOLET 2	2.69	3.25	3.75	4.81	5.81	6.88	7.88	8.5	9.5	10.5	11.5	13.5
DATA	STANDARD AND	-	3.5	4	5.06	6.06	7.12	8.12	8.75	9.75	10.75	11.75	13.75
MANUFACTURERS DATA	EXTRA-STRONG BRONTS-ARTX3	-	-	4.25	5.31	6.31	7.38	8.38	9	10	11	12	14
ANUFAC	REDUCERS CONCENTRIC NPS NPS	Swage- Table D-4	3.5	4	5.5	6	7	8	13	14	15	20	20
2	90° LR ELLS REGULAR & PPST REDUCING	3	4.5	6	9	12	15	18	21	24	27	30	36
INGS 9. 816.28 A	90° SR ELL	2	3	4	6	8	10	12	14	16	18	20	24
FIN	45° ELL (LR)	1.38	2	2.5	3.75	5	6.25	7.5	8.75	10	11.25	12.5	15
2.	OFFSET A	1.94	2.81	3.56	5.31	7.06	8.81	10.62	12.38	14.12	15.94	17.69	21.19
F I	(TWO 45° ELLS)	4.69	6.81	8.56	12.81	17.06	21.31	25.62	29.88	34.12	38.44	42.69	51.19
	ROLLED- ELL C	3.12	4.62	6	9	12	15	18	21.06	24.06	27.06	30.06	36.06
OIMENSIONS FROM	(45° ELL + 90° LR ELL)	4.50	6.62	8.5	12.75	17	21.25	25.5	29.81	34.06	38.31	42.56	51.06
OIMEN	90° LR ELL	5.5	7.25	9	12.5	16	19	22.5	26	29	32.5	35.69	42
	+ WELDING-NECK G F	6	7.5	9	11	13.5	16	19	21	23.5	25	27.5	32
	RAISED-FACE FLANGE F G	2.5	2.75	3	3.5	4	4	4.5	5	5	5.5	5.69	6
DATA	PLUG SHORT PATTERN: NPS 2-12 VENTURI PATTERN: NPS 2-4 & 14-24 REGULAR PATTERN: NPS 14-24	s v	s v	s v	10.5	11.5	13 	14	R V	R 30 V	8 V	8 V	42 V
S MANUFACTURERS	GATE (OPEN)	8	10	12	14	16	18	20	24	26	30	30	36
NUFACT	REFER TO TABLE V-1 FOR END-TO-END H	19	23	28	37	47	53	61	71	80	89	98	113
Ш §	DIMENSIONS OF GATE VALVES WITH BUTT-WELDING ENDS	7	8	9	10.5	11.5	13	14	15	16	17	18	20
ALV 816.10 A	BALL SHORT PATTERN: NPS 2-24 SHORT PATTERN: NPS 2-16, USE 'J' ABOVE FOR GATE VA	7	8	9	15.5	18	21	24	27	30	34	36	42
ANSI	GLOBE L (OPEN)	8	10	12	16	18	24	36	36				
FROM	DIMENSIONS ALSO APPLY TO GLOBE K	15	19	21	26	33	32	42	49				
DIMENSIONS	VALVES WITH BUTT- WELDING ENDS	8	9.5	11.5	16	19.5	24.5	27.5	31	36			
DIME	CHECK SWING: NPS 2-24 TILTING DISC: NPS 2-14 LIFT: NPS 2-4 & 8-14 TELDING	L S T	L S Т 9.5	11.5	- s t 14	L S T 19.5	24.5 T	27.5	1 S T	3 ^Ş	38.5	38.5	51 51

- DIMENSIONS FOR COMBINATIONS OF FITTINGS AND INSTALLED WELDOLETS DO NOT INCLUDE THE 'WELD GAP' REFER TO TEXT: SECTION 5.3.5
 DIMENSIONS IN THIS TABLE ARE NOMINAL AND FOR COMBINATIONS OF FITTINGS ARE ROUNDED TO 1/100-inch
 'H','I','K' AND 'L' ARE THE LARGEST DIMENSIONS FOR MANUALLY-OPERATED CAST-STEEL VALVES FROM A SELECTION OF MANUFACTURERS
 GUIDELINES FOR THE USE OF GEAR AND POWERED OPERATORS WITH VALVES ARE GIVEN IN SECTION 3.1.2 OF THE TEXT

FRACTIONAL	0.06	0.12	0.19	0.25	0.31	0.38	0.44	0.50	0.56	0.62	0.69	0.75	0.81	0.88	0.94
EQUIVALENT	1/16	1/8	3/16	1/4	5/16	3/8	7/16	1/2	9/16	5/8	11/16	3/4	13/16	7/8	15/16

CLASS 300 BUTT-WELDED PIPING DIMENSIONS

TABLE D-2

DIMENSIONS IN THIS TABLE INCLUDE 0.06-inch RAISED FACE ON FLANGES

	NOMINAL PIPE SIZE (NPS)	2	3	4	6	8	10	12	14	16	18	20	24
	STRAIGHT TEE TABLE D-6 FDR REDUCING TEES	2.5	3.38	4.12	5.62	7	8.5	10	11	12	13.5	15	17
	WELDOLET BIGGER 3	2.69	3.25	3.75	4.81	5.81	6.88	7.88	8.5	9.5	10.5	11.5	13.5
DATA		-	3.5	4	5.06	6.06	7.12	8.12	8.75	9.75	10.75	11.75	13.75
MANUFACTURERS DATA	STANDARD AND EXTRA-STRONG 4	-	-	4.25	5.31	6.31	7.38	8.38	9	10	11	12	14
MUFAC	REDUCERS & ECCENTRIC NPS NPS	Swage- Table D-4	3.5	4	5.5	6	7	8	13	14	15	20	20
Q.	90° LR ELLS REDUCING PPST	3	4.5	6	9	12	15	18	21	24	27	30	36
INGS 9, 816.28 A	90° SR ELL	2	3	4	6	8	10	12	14	16	18	20	24
F1 816.9,	45° ELL (LR)	1.38	2	2.5	3.75	5	6.25	7.5	8.75	10	11.25	12.5	15
F17 816.5, 8	OFFSET A	1.94	2.81	3.56	5.31	7.06	8.81	10.62	12.38	14.12	15.94	17.69	21.19
ANSI B1	(TWO 45° ELLS) B B	4.69	6.81	8.56	12.81	17.06	21.31	25.62	29.88	34.12	38.44	42.69	51.19
	ROLLED-ELL C C	3.12	4.62	6	9	12	15	18	21.06	24.06	27.06	30.06	36.06
DIMENSIONS FROM	(45° ELL + 90° LR ELL)	4.50	6.62	8.5	12.75	17	21.25	25.5	29.81	34.06	38.31	42.56	51.06
DIMEN	90° LR ELL	5.75	7.62	9.38	12.88	16.38	19.62	23.12	26.62	29.75	33.25	36.38	42.62
	+ WELDING-NECK G F	6.5	8.25	10	12.5	15	17.5	20.5	23	25.5	28	30.5	36
	RAISED-FACE FLANGE _ F G	2.75	3.12	3.38	3.88	4.38	4.62	5.12	5.62	5.75	6.25	6.38	6.62
DATA	PLUG VENTURI PATTERN: NPS 2-24 SHORT PATTERN: NPS 2-12 REGULAR PATTERN: NPS 14-24	8.5 ^V	11.12	12 v	\$ 15.88	5 16.5	^S 18 ^V	\$19.75	^R 30 ^V	^R 33 ^V	R 7	R ₃₉ V	^R 45
S MANUFACTURERS	GATE (OPEN)	8	10	12	16	20	24	24	28	28	32	36	36
S MANUFAC	DIMENSIONS ALSD APPLY TO GATE NOTE: NEW YORK WITH BUTT	21	25	29	39	49	59	67	76	81	92	102	123
₩ §	VALVES WITH BUTT- WELDING ENDS	8.5	11.12	12	15.88		18	19.75	30	33	36	39	45
16.10	BALL LONG PATTERN: NPS 2-24 SHORT PATTERN: NPS 2-6	^L 8.5 ^S	11.12	12 S	15.88	19.75	22.38	25.5	30 L	3 3	36	39	45
V	GLOBE L K	10	12	14	22	24	26	36					
DIMENSIONS FROM	DIMENSIONS ALSO APPLY TO GLOBE	20	24	27	32	41	49	52					
ENSION	VALVES WITH BUTT- WELDING ENDS	10.5	12.5		17.5		24.5	28					
DIM	CHECK SWING: NPS 2-24 TILIING DISC: NPS 2-12 LIFT: NPS 2-6, 10-12 FLAMSED & BUIT- WELDING	S T L 10.5	5 T L 12.5	5 T L	5 T L 17.5	s ₂₁ -	S T L 24.5	S T L 28	33 33	34 34	38.5	\$ 40	53 53

- DIMENSIONS FOR COMBINATIONS OF FITTINGS AND INSTALLED WELDDLETS DO NDT INCLUDE THE 'WELD GAP' REFER TO TEXT: SECTION 5.3.5
 DIMENSIONS IN THIS TABLE ARE NOMINAL AND FOR COMBINATIONS DF FITTINGS ARE RDUNDED TO 1/100-inch
 'H','I','K' ANO 'L' ARE THE LARGEST DIMENSIONS FOR MANUALLY-OPERATED CAST-STEEL VALVES FROM A SELECTION OF MANUFACTURERS
 GUIOELINES FOR THE USE OF GEAR AND POWERED DPERATDRS WITH VALVES ARE GIVEN IN SECTION 3.1.2 DF THE TEXT

FRACTIONAL	0.06	0.12	0.19	0.25	0.31	D.38	D.44	D.50	D.56	D.62	0.69	0.75	0.81	0.88	0.94
EQUIVALENT	1/16	1/8	3/16	1/4	5/16	3/8	7/16	1/2	9/16	5/8	11/16	3/4	13/16	7/8	15/16

CLASS 600 BUTT-WELDED PIPING DIMENSIONS

TABLE D-1

DIMENSIONS IN THIS TABLE INCLUDE 0.25-inch RAISED FACE ON FLANGES

	NOMINAL PIPE SIZE (NPS)	2	3	4	6	8	10	12	14	16	18	20	24
	STRAIGHT TEE TABLE D-6 FOR TELES	2.5	3.38	4.12	5.62	7	8.5	10	11	12	13.5	15	17
	WELDOLET BY 2	2.69	3.25	3.75	4.81	5.81	6.88	7.88	8.5	9.5	10.5	11.5	13.5
DATA	STANDARD AND	-	3.5	4	5.06	6.06	7.12	8.12	8.75	9.75	10.75	11.75	13.75
MANUFACTURERS	EXTRA-STRONG & A	-	_	4.25	5.31	6.31	7.38	8.38	9	10	11	12	14
INUFACT	REDUCERS CONCENTRIC NPS NPS	Swage- Table D-4	3.5	4	5.5	6	7	8	13	14	15	20	20
S AND MA	90° LR ELLS REGULAR & MPST	3	4.5	6	9	12	15	18	21	24	27	30	36
	90° SR ELL	2	3	4	6	8	10	12	14	16	18	20	24
TING 816.9, 816.2	45° ELL (LR)	1.38	2	2.5	3.75	5	6.25	7.5	8.75	10	11.25	12.5	15
5, B	OFFSET A	1.94	2.81	3.56	5.31	7.06	8.81	10.62	12.38	14.12	15.94	17.69	21.19
ANSI B16.	(TWO 45° ELLS) B B	4.69	6.81	8.56	12.81	17.06	21.31	25.62	29.88	34.12	38.44	42.69	51.19
FROM AU	ROLLED-ELL C	3.12	4.62	6	9	12	15	18	21.06	24.06	27.06	30.06	36.06
DIMENSIONS FROM	(45° ELL + 90° LR ELL)	4.50	6.62	8.5	12.75	17	21.25	25.5	29.81	34.06	38.31	42.56	51.06
DIMEN	90° LR ELL	6.12	8	10.25	13.88	17.5	21.25	24.38	27.75	31.25	34.5	37.75	44.25
	+ WELDING-NECK G F	6.5	8.25	10.75	14	16.5	20	22	23.75	27	29.25	32	37
	RAISED-FACE FLANGE F G	3.12	3.5	4.25	4.88	5.5	6.25	6.38			7.5	7.75	8.25
DATA	PLUG VENTURI PATTERN: NPS 2-24 REGULAR PATTERN: NPS 2-16	R 11.5	14 V	R 17 V	R 22 V	R ₂₆ V	^R 31 ^V	R ₃₃ v	R ₃₅ V	R ₃₉ V	43 43	4 ⁷	55 55
SMANUFACTURERS	GATE (OPEN)	9	12	16	22	24	28	30	36	38	38	42	42
ANUFAC	DIMENSIONS ALSO H	21	26	33	47	53	66	73	81	93	99	107	126
∭ §	VALVES WITH BUTT- WELDING ENDS	11.5	14	17	22	26	31	33	35	39	43	47	55
ALV 816.10	BALL LONG PATTERN:	11.5	14	17	22	26	31	33	35	39	43	47	55
NA I	GLOBE (OPEN)	12	14	18	24	36							
S FROM	DIMENSIONS ALSO K	21	27	33	44	47							
DIMENSIONS	VALVES WITH BUTT- WELDING ENDS	11.5	14	17	22	26	31	33	C T	e	-		
DIME	CHECK SWING CHECK: NPS 2-24 TILTING DISC: NPS 2-24 LIFT; NPS 2-12 FLANGED & BUTT- WELDING	11.5	14 14	17 T	L S T 22	26 T	31 T	33 T	35 T	39 T	S 43 T	8 T	S 55

- DIMENSIONS FOR COMBINATIONS OF FITTINGS AND INSTALLED WELDOLETS DO NOT INCLUDE THE 'WELD GAP' REFER TO TEXT: SECTION 5.3.5
 OIMENSIONS IN THIS TABLE ARE NOMINAL AND FOR COMBINATIONS OF FITTINGS ARE ROUNDED TO 1/100-inch
 'H','I','K' AND 'L' ARE THE LARGEST DIMENSIONS FOR MANUALLY-OPERATED CAST-STEEL VALVES FROM A SELECTION OF MANUFACTURERS
 GUIDELINES FOR THE USE OF GEAR AND POWERED OPERATORS WITH VALVES ARE GIVEN IN SECTION 3.1.2 OF THE TEXT

FRACTIONAL	0.06	0.12	0.19	0.25	0,31	0.38	0.44	0.50	0.56	0.62	0.69	0.75	0.81	0.88	0.94
EQUIVALENT	1/16	1/8	3/16	1/4	5/16	3/8	7/16	1/2	9/16	5/8	11/16	3/4	13/16	7/8	15/16

45° JUMPOVERS											T	ΆΕ	BLE	Α	-2
45º JUMPOVER	\wedge				ВА	S I	С	S P	A C	IN	G	'ئ'			
	↓ τ	N	IPS .				JU	MPOV	ER L	INE					
		,	15	2	3	4	6	8	10	12	14	16	18	20	24
	H T	٠	2 3	7 8	7 8	7 8	8 9	8 9	8 10	9 10	9 10	10 11	10 11	10 12	11 13
J	J+H+1.5T	A D J	4 6	9 12	9 12	10 12	10 13	11 13	11 14	11 14	12 14	12 15	12 15	13 15	14 16
T+		C E N	8 10	14 17	14 17	15 17	15 18	16 18	16 19	16 19	17 19	17 20	17 20	18 20	19 21
	$\frac{1}{1}$	Ť	12 14	19 21	19 21	20 21	20 22	21 22	21 22	21 23	22 23	22 24	22 24	23 24	24 25
T H	'(<u>((()</u>) (())	I N F	16 18	23 26	23 26	24 26	24 26	24 27	25 27	25 28	26 28	26 28	26 29	27 29	28 30
J-H+1.5T	J+1.5(T ₁ +T ₂)		20 24	28 33	28 33	28 33	29 34	29 34	30 35	30 35	30 35	31 36	31 36	32 36	32 37

NOTES FOR TABLES A-2 & A-3

- (1) SPACING SHOWN IN THE DIAGRAMS ALLOWS A MINIMUM CLEARANCE OF 2-inches. COMPARE BASIC SPACING 'J' or 'R' WITH APPROPRIATE 'C' or 'CF' SPACING IN TABLE A-1 AND USE THE LARGER DIMENSION
- (2) 'H' IS THE EFFECTIVE SHOE HEIGHT AND 'T' IS THE THICKNESS OF INSULATION (WITH COVERING)
- (3) FOR SIMPLICITY, THE VALUE 1.5 HAS BEEN SUBSTITUTED FOR THE COEFFICIENT 1/sin 45 (1.414....)

			CLAS	SS 15	50 &	CLAS	SS 30	00 FL	ANGE	S							CLAS	S 30	00 &	CLAS	S 6 0	0 FL	.ANGE	S			
П	300		NOM	NAL	pIpE	SIZ	'E (N	IPS)	OF F	LANG	ED F	IPE	ī		600		NOMI	NAL	pIpE	SIZ	E (N	PS)	OF F	LANG	ED P	IPE	
150		2	3	4	6	8	10	12	14	16	1 8	20	24	300	L	2	3	4	6	8	10	12	14	16	18	20	24
NPS O	2	6 7	7 8	8 9	9 10	11 11	12 12	13 14	15 15	16 16	17 18	18 19	21 22	NPS O	2	6 7	7 8	9 9	10 11	11 12	13 14	14 15	15 16	17 17	18 18	19 20	22 22
F	4 6	8 9	8 9	9 10	10 12	12 13	13 14	14 16	16 17	17 18	18 19	19 21	22 23	F	4 6	8	9 10	10 11	11 12	12 14	14 15	15 16	16 17	18 19	19 20	20 21	23 24
L A N	8 10	10 11	10 12	11 12	13 14	14 15	15 16	17 18	18 19	19 20	20 21	22 23	2 4 25	L A N	8 10	11 12	11 12	12 13	13 14	15 16	16 17	17 18	18 19	20 21	21 22	22 23	25 26
G E D	12 14	13 14	13 14	14 15	15 16	16 17	17 18	19 19	20 20	21 22	22 23	24 24	26 27	G E D	12 14	13 15	14 15	14 16	16 17	17 18	18 19	19 20	20 21	22 22	23 24	24 25	27 27
P I	16 18	15 16	15 16	16 17	17 18	18 19	19 20	20 21	21 22	23 24	24 25	25 26	28 29	p	16 18	16 17	16 18	17 18	18 19	19 20	20 21	21 22	22 23	23 24	25 26	26 27	28 29
p E	20 24	17 19	17 20	18 20	19 21	20 22	21 23	22 24	23 25	25 27	26 28	27 29	30 32	P	20 24	18 21	19 22	19 22	21 23	22 24	23 25	24 26	24 27	25 28	27 29	2 8 30	30 32
						_									- 1					2-7		20					
			CLAS	S 15	0 &	CLAS	S 60	0 FL	ANGE	S					-		CLAS		0 &								
	600				0 & PIPE										600			S 6 0		CLAS	S 6 0	0 FL	ANGE	S		IPE	7
150	600	2					E (N		OF F	LANG			24	600	600			S 6 0	0 &	CLAS SIZ	S 60 E (N	0 FL	ANGE OF F	S LANG		1PE 20	24
150 NPS	600 2 3	L	NOMI	NAL	PIPE	SIZ	E (N	PS)	OF F	LANG	ED P	IPE		600 NPS	600		NOMI	S 60 NAL	0 & PIPE	CLAS SIZ	S 60 E (N	O FL PS)	ANGE OF F	S LANG	ED P		24 22 22
150 NPS 0 F	2	2	NOMI 3	NAL 4 9	PIPE 6 10	8 11	E (N	PS) 12 14	0F F	LANG 16 17	ED P	IPE 20 19	24	600	600	2	NOMI 3 7	S 60 NAL 4 9 9	0 & PIPE 6	SIZ 8	S 60 E (N 10	0 FL PS) 12	ANGE 0F F 14	S LANG 16	ED P	20	22
150 NPS O F	2 3	2 6 7 8	3 7 8	9 9	PIPE 6 10 11	8 11 12	10 13 14	12 14 15	0F F 14 15 16	16 17 17 18	ED P 18 18 18	19 20 20 20	24 22 22 23	600 NPS O F	600 2 3	2 6 7	NOMI 3 7 8	S 60 NAL 4 9 9	0 & PIPE 6 10 11 11	SIZ 8 11 12	S 60 E (N 10 13 14	0 FL PS) 12 14 15	ANGE OF F 14 15 16	S LANG 16 17 17	ED P 18 18 18	20 19 20 20 21 22	22 22 23
150 NPS O F F L A N G E	2 3 4 6	2 6 7 8 9	7 8 8 9	9 9 10 11	PIPE 6 10 11 11 12 13	8 11 12 12 14	10 13 14 14 15	12 14 15 15 16	0F F 14 15 16 16 17	16 17 17 18 19 20	ED P 18 18 18 19 20 21	20 19 20 20 21 22	24 22 22 23 24 25	600 NPS O F L A N G	600 2 3 4 6	2 6 7 9 10	NOMI 3 7 8 9 11 12	S 60 NAL 4 9 10 11 12 14 15	0 & PIPE 6 10 11 11 12 14	SIZ 8 11 12 12 14 15 16	S 60 E (N 10 13 14 14 15	0 FL PS) 12 14 15 15 16	ANGE OF F 14 15 16 16 17 18	S LANG 16 17 17 18 19 20	ED P 18 18 18 19 20 21	20 19 20 20 21 22	22 22 23 24 25
150 NPS O F F L A N G	2 3 4 6 8 10	2 6 7 8 9 10 11	NOMI 3 7 8 8 9 10 12	9 9 10 11 12 13	PIPE 6 10 11 11 12 13 14	8 11 12 12 14 15 16	10 13 14 14 15 16 17	12 14 15 15 16 17 18	0F F 14 15 16 16 17 18 19	16 17 17 18 19 20 21	ED P 18 18 18 19 20 21 22 23	20 19 20 20 21 22 23 24	24 22 22 23 24 25 26	600 NPS O F F L A N G	6000 2 3 4 6 8 10	2 6 7 9 10 11 13	NOMI 3 7 8 9 11 12 14 15	S 60 NAL 4 9 10 11 12 14 15	0 & PIPE 6 10 11 12 14 15 16	SIZ 8 11 12 12 14 15 16	S 600 E (N 10 13 14 14 15 16 17	0 FL PS) 12 14 15 15 16 17 18	ANGE OF F 14 15 16 17 18 19 20	S LANG 16 17 17 18 19 20 21 22	ED P 18 18 19 20 21 22 23	20 19 20 20 21 22 23	22 22 23 24 25 26

PIPEWAY WIDTH —

When the order of lines, line sizes, flange classes (for lines with flanges), and insulation thicknesses for insulated lines have been decided, determine pipeway width from Tables A-1, A-2 and A-3, adding 25% so that the final design includes 20% (distributed) space for future piping. Additional space will usually be required for electrical and instrument trays/raceways.

For a **tentative** estimate of the pipeway width required for a selection of lines without flanges, of nominal sizes in the range NPS 2 thru NPS 8, either of the following factors may be used - the first is preferable:

- (1) If all pipe sizes are known, add their nominal sizes in inches together and multiply by 0.34 to estimate the width in feet
- (2) If only the number of lines is known, multiply number of lines by 1.43 to estimate the width in feet Either factor gives a pipeway width which includes insulation for 25% of lines, allows 20% of the width for the addition and re-sizing of lines, and allocates a further 20% of the width for future piping.

ARRANGING LINES / SPACING IN PIPEWAYS

OIMENSIONS IN INCHES

TABLES A-1

TABLES GIVE THE MINIMUM SPACING. INCREASE DIMENSIONS:

- 1) FOR INSULATION
 2) IF THERMAL MOVEMENT WOULD REOUCE CLEARANCE

SURFAC	E-TO-	CENTER
OF PIP	E DIM	ENSION

'SF'

FLANGE

CLASS:

6

8

9 10

10 11

14

13

15

11 12 13 12

12

14 15 16

10 13

14 17 19 20

	WALL, VESSEL, STEEL, Etc.	2"-3"		2"-3")
00	ļ.	s	c-		

PIPE WITHOUT FLANGES

6	8	10	12	14	16	18	20	24	-	150	300	600	-S → C	
									 _	Π.	_			

151

WITHOUT

FLANGES

М 6

Α

8 10

I 12

P 14

16

18 11

20 12 15 17 17

E 24

CF 1"-2"		ļ
WALL, VESSEL, STEEL,	1"-2"	
Etc.		

SF-CF-

PIPE WITH FLANGES

			D	I M	E N	S I	O N	-	'C'				
	NES HOUT			N	OMIN	AL P	IPE	SIZE	(NP	S)			
	NGES	2	3	4	6	8	10	12	14	16	18	20	24
	2 3	5 6	6 6	6 7	7 8	8	10 10	11 11	11 12	12 13	13 14	14 15	16 17
N P S	4 6	6 7	7 8	7 9	9 10	10 11	11 12	12 13	12 13	13 14	14 15	15 16	17 18
0 F	8 10	8 10	9 10	10 11	11 12	12 13	13 14	14 15	14 15	15 16	16 17	17 18	19 20
P I	12 14	11 11	11 12	12 12	13 13	14 14	15 15	16 16	16 17	17 18	18 19	19 20	21 22
P E	16 18	12 13	13 14	13 14	14 15	15 16	16 17	17 18	18 19	19 20	20 21	21 22	23 24
	20 24	14 16	15 17	15 17	16 18	17 19	18 20	19 21	20 22	21 23	22 24	23 25	25 27

'CF' LINES WITH FLANGES - DIMENSION

			CLAS	S 15	0 &	CLAS	S 15	0 FL	ANGE	S							CLAS	S 30	0 &	CLAS	\$ 30	0 FL	ANGE	S			
	150		Nomi	NAL	PIPE	SIZ	E (N	PS)	OF F	LANG	ED P	IPE		3	00		NOMI	NAL	PIPE	SIZ	E (N	PS)	OF F	LANG	ED P	IPE	
15	0	2	3	4	6	8	10	12	14	16	18	20	24	300		2	3	4	6	8	10	12	14	16	18	2 0	24
NPS	2	6 7	7	8 8	9 9	10 10	11 12	13 13	14 14	15 15	16 16	17 17	19 20	NPS O	2	6 7	7 8	8 9	9 10	11 11	12 12	13 14	15 15	16 16	17 18	18 19	21 22
O F	4 6	8 9	8 9	9 10	10 11	11 12	12 13	14 15	15 16	16 17	17 18	18 19	20 21	F	4 6	8 9	9 10	9 10	10 12	12 13	13 14	14 16	16 17	17 18	18 19	19 21	22 23
L	8 10	10 11	10 12	11 12	12 13	13 14	14 15	16 17	17 18	18 19	19 2 0	2 0 21	22 23	L A N	8 10	11 12	11 12	12 13	13 14	14 15	15 16	17 18	18 19	19 20	20 21	22 23	24 25
N G E	12 14	13 14	13 14	14 15	15 16	16 17	17 18	18 19	19 19	20 21	21 21	22 23	2 4 25	G	12 14	13 15	14 15	14 16	16 17	17 18	18 19	19 20	20 20	21 22	22 23	2 4 24	26 27
D P	16 18	15 16	15 16	16 17	17 18	18 19	19 20	20 21	21 21	22 23	23 23	2 4 25	26 27		16 18	16 17	16 18	17 18	18 19	19 20	20 21	21 22	22 23	23 24	24 25	25 26	28 29
P E	20 2 4	17 19	17 20	18 20	19 21	20 22	21 23	22 24	23 25	24 26	25 27	26 28	28 30		20 24	18 2 1	19 22	19 22	21 23	22 24	23 25	24 26	24 27	25 28	26 29	27 30	30 3 2

INSULATION

DIMENSIONS IN THESE TABLES ARE SPACINGS FOR BARE PIPE. FOR INSULATEO LINES, AOO THE THICKNESS OF INSULATION AND COVERING TO THESE FIGURES

PIPE FITTINGS - Butt-Welding Class 600 Class 300 Class 150 - Elbolets - Malleable-Iron Classes 150 & 300 - Nipples: Pipe and Tank nipples - Socket-Welding. Forged Steel Classes 3000, 6000 & 9000 - Sockolets. Reducing - Swages - Threaded. Forged Steel	Table Table Table Table Table Table Table Table Table	D-2 D-3 D-5 D-11 D-11 D-8 D-8 D-4	9 10 11 12 19 19 15 15	Table Table Table Table Table Table Table Table Table	D-2M D-3M D-5M D-11M D-11M D-8M D-8M D-4M	79 80 81 82 89 89 85 85 82
Classes 2000, 3000 & 6000 - Thredolets. Reducing - Weldolets. Reducing - refer to: PIPEWAY	Table Table 'PIPE F	D-9	17 17 - Bu	Table Table tt-Weld	D-9M	87 87
- Spacing in pipeways Jumpovers at 45-degrees Rununders at 45-degrees - Width. Formula for planning	Table Table Table Table	A-3	7 8 8 7	Table Table Table Table	A-2M	77 78 78 77
RING-JOINT GASKET DATA ROUNDING VALUES. Rules for	Table Table	F-7 M-7	24 46	Table	F-7M	94
SPANS. Of horizonal pipe - with 3ft rise or fall SPECIFIC HEAT. Various substances & gases STAIRWAYS STRUCTURAL STEEL	Table Charts Table Chart	S-2 M-8	55 56 47 59			
- Angle data - Channel data - W Shapes SWAGES	Tables Tables Table Table	S-5 S-4	61 61 60 12	Tables Tables Tables Table	S-5M S-4M	104 104 103 82
TANK & VESSEL VOLUMES TEES - REDUCING. Butt-Welding THREAD ENGAGEMENT. For fittings TUBE DATA (Copper: Types K, L & M)	Chart Table Table Table	D-6 D-9	63 12 17 62	Table Table		82 87
VALVE DATA: ANSI Classes 150 - 2500 - Check: Lift, Swing & Tilting-disc - Gate - Globe - API Class 800 Gate, Globe & Lift-check - Operating heights for valves	Table Table Table Table Table Chart	V-1 V-1 V-1 V-1 D-10 P-2	64 64 64 18 54	Table Table Table Table Table	V-1M V-1M	106 106 106 106 88
W SHAPES. Structural shapes WEIGHTS OF MATERIALS WEIGHTS OF PIPING	Table Table Tables		60 73 65	Table	S-4M	103

CONTENTS OF PART II	US units	Page	METRIC units	Page
ANGLES. Structural shapes	Tables S-	5 61	Tables S-5M	104
ARRANGING LINES IN PIPEWAYS	Tables A-		Tables A-1M	77
BENDS. Tangent length formula	Tables M-2	2 31		
CHANNELS. Structural shapes CHECK VALVES	Tables S-	61	Tables S-5M	104
- Lift, Swing & Tilting-disc	Table V-1	64	Table V-1M	106
- Wafer-type	Table D-		Table D-7M	83
CIRCLES. Diameter, Circumference & Area CONVERSIONS	Table M-4	41		
- Customary & Metric units	Table M-1	44		
- Decimals of an inch & of a foot	Table M-			
- Millimeters/inches	Table M-3			
- Temperature: Fahrenheit/Celsius	Table M-6			
Formula: Fahrenheit, Celsuis, kelvin	Table M-7	46		
DECIMALS OF AN INCH & OF A FOOT DISHED HEADS. Volumes	Table M-5 Chart T-2			
EXPANSION. Linear, of piping materials		54		
FLANGE DATA: Flange Classes 150 - 2500 - Dimensions - Pressure/Temperature Ratings - Ring-joint data, Welding-neck - Slip-on flanges on B/W elbows FLOW OF WATER THROUGH SCHEDULE 40 PIPE FLOW RESISTANCE OF FITTINGS	Tables F Table F-9 Table F-8 Table F-1 Table F-1	24 25 1 28	Tables FM Table F-9M Table F-7M Tables F-8M	90 96 94 95
HEAT-EXCHANGER NOMENCLATURE	Chart H-1	29		
AP-JOINT STUB-END: ANSI & MSS	Tables F	20	Tables FM	90
MEASUREMENTS - Areas & Volumes - Compound angles - Hypotenuse for 45-degree Triangles - Triangles. Formulas for METRIC. Introduction MILLIMETERS TO FEET & INCHES	Chart M-1 Chart M-1 Tables M-2 Chart M-1	30 31 30 74		
- Tables in fractions and decimals HTERS. Angles for	Tables M-3 Tables M-2			
APER SIZES. Metric & American ERSONNEL CLEARANCES	Chart P-2	54	Chart S-6M	105
IPE DATA	Tables P-1		Tables P-1M	97

			í
PART	II CHARTS & TAI	BLES BY PAGE NUMBERS	
Tables A-1 Table A-2 Table A-3	7 8 8	Tables A-1M Tables A-2M Tables A-3M	77 78 78
Table D-1 Table D-2 Table D-3 Table D-4 Table D-5 Table D-6 Table D-7 Table D-8 Table D-9 Table D-10 Table D-11	9 10 11 12 12 12 13 15 17 18	Table D-1M Table D-2M Table D-3M Table D-4M Table D-5M Table D-6M Table D-7M Table D-8M Table D-9M Table D-10M Table D-11M	79 80 81 82 82 83 85 87 88
Table F-1 Table F-2 Table F-3 Table F-4 Table F-5 Table F-6 Table F-7 Table F-8 Table F-9 Table F-10 Table F-11	21 21 22 22 23 23 24 25 26 27 28	Table F-1M Table F-2M Table F-3M Table F-4M Table F-5M Table F-6M Table F-7M Table F-8M Table F-9M	91 92 92 93 93 94 95 96
Chart H-1	29		
Chart M-1 Tables M-2 Tables M-3 Table M-4 Table M-5 Table M-6 Table M-7 Table M-8	30 31 32-40 41 42 43 44-46 47		
Tables P-1 Chart P-2	48-53 54	Tables P-1M	97 - 102
Table S-1 Charts S-2 Chart S-3 Table S-4 Tables S-5	55 56-58 59 60 61	Table S-4M Tables S-5M Chart S-6M	103 104 105
Table T-1 Chart T-2	62 63		
Table V-1	64	Table V-1M	106
Tables W-1 Table W-2	65 - 72 73		

Published by: Syentek Inc. PO Box 26588, San Francisco, CA 94126 USA Copyrighted material. All rights reserved Part II tables produced by Carmelita E. Bautista