Appendix | D

Affiliated Random Variables

Suppose that the random variables $X_1, X_2, ..., X_n$ are distributed on some product of intervals $\mathcal{X} \subset \mathbb{R}^n$ according to the joint density function f. The variables $\mathbf{X} = (X_1, X_2, ..., X_n)$ are said to be *affiliated* if for all $\mathbf{x}', \mathbf{x}'' \in \mathcal{X}$,

$$f(\mathbf{x}' \vee \mathbf{x}'') f(\mathbf{x}' \wedge \mathbf{x}'') \ge f(\mathbf{x}') f(\mathbf{x}''), \tag{D.1}$$

where

$$\mathbf{x}' \vee \mathbf{x}'' = (\max(x_1', x_1''), \max(x_2', x_2''), \dots, \max(x_n', x_n''))$$

denotes the component-wise maximum of x and x', and

$$\mathbf{x}' \wedge \mathbf{x}'' = \left(\min\left(x_1', x_1''\right), \min\left(x_2', x_2''\right), \dots, \min\left(x_n', x_n''\right)\right)$$

denotes the component-wise minimum of \mathbf{x}' and \mathbf{x}'' . (See Figure D.1.) If (D.1) is satisfied, then we also say that f is affiliated.¹

Suppose that the density function $f: \mathcal{X} \to \mathbb{R}_+$ is strictly positive in the interior of \mathcal{X} and twice continuously differentiable. Using (D.1), it is easy to verify that f is affiliated if and only if, for all $i \neq j$,

$$\frac{\partial^2}{\partial x_i \partial x_j} \ln f \ge 0 \tag{D.2}$$

In other words, the off-diagonal elements of the Hessian of ln f are nonnegative.

¹A function g is said to be *supermodular* if $g(\mathbf{x}' \vee \mathbf{x}'') + g(\mathbf{x}' \wedge \mathbf{x}'') \ge g(\mathbf{x}') + g(\mathbf{x}'')$. Thus, f is affiliated if and only if $\ln f$ is supermodular; in other words, f is \log -supermodular.

FIGURE D.1 Component-wise maxima and minima.

Suppose that the random variables $X_1, X_2, ..., X_n$ are symmetrically distributed and, as in Appendix C, define $Y_1, Y_2, ..., Y_{n-1}$ to be the largest, second largest, ..., smallest from among $X_2, X_3, ..., X_n$. From (D.1) it follows that if g denotes the joint density of $X_1, Y_1, Y_2, ..., Y_{n-1}$, then

$$g(x_1,y_1,y_2,...,y_{n-1}) = (n-1)!f(x_1,y_1,...,y_{n-1})$$

if $y_1 \ge y_2 \ge \cdots \ge y_{n-1}$ and 0 otherwise. Now it immediately follows that

• If $X_1, X_2, ..., X_n$ are symmetrically distributed and affiliated, then $X_1, Y_1, Y_2, ..., Y_{n-1}$ are also affiliated.

TWO VARIABLES

We now present some special, but important, results concerning affiliation between two variables.

Suppose the random variables X and Y have a joint density $f:[0,\omega]^2 \to \mathbb{R}$. If X and Y are affiliated, then for all $x' \ge x$ and $y' \ge y$,

$$f(x',y)f(x,y') \le f(x,y)f(x',y')$$

or equivalently that

$$\frac{f(x,y')}{f(x,y)} \le \frac{f(x',y')}{f(x',y)}$$
 (D.3)

Let $F(\cdot | x) \equiv F_Y(\cdot | X = x)$ denote the conditional distribution of Y given X = x and, as usual, let $f(\cdot | x) \equiv f_Y(\cdot | X = x)$ denote the corresponding density function. Then (D.3) is equivalent to

$$\frac{f(y'|x)f(x)}{f(y|x)f(x)} \le \frac{f(y'|x')f(x')}{f(y|x')f(x')}$$

and so

$$\frac{f(y|x')}{f(y|x)} \le \frac{f(y'|x')}{f(y'|x)} \tag{D.4}$$

Thus, we determine that if X and Y are affiliated, then for all $x' \ge x$, the *likelihood ratio*

$$\frac{f\left(\cdot\,|\,x'\right)}{f\left(\cdot\,|\,x\right)}$$

is increasing and this is referred to as the monotone likelihood ratio property.

In the language of Appendix B, (D.4) implies that for all $x' \ge x$, $F(\cdot|x')$ dominates $F(\cdot|x)$ in terms of the likelihood ratio. Likelihood ratio dominance was the strongest stochastic order considered in Appendix B and the results derived there immediately imply that if X and Y are affiliated, then the following properties hold:

• For all $x' \ge x$, $F(\cdot | x')$ dominates $F(\cdot | x)$ in terms of the *hazard rate*; that is,

$$\lambda(y|x') \equiv \frac{f(y|x')}{1 - F(y|x')} \le \frac{f(y|x)}{1 - F(y|x)} \equiv \lambda(y|x)$$

or equivalently, for all y, $\lambda(y|\cdot)$ is nonincreasing.

• For all $x' \ge x$, $F(\cdot | x')$ dominates $F(\cdot | x)$ in terms of the *reverse hazard* rate; that is,

$$\sigma(y|x') \equiv \frac{f(y|x')}{F(y|x')} \ge \frac{f(y|x)}{F(y|x)} \equiv \sigma(y|x)$$

or equivalently, for all y, $\sigma(y|\cdot)$ is nondecreasing.

• For all $x' \ge x$, $F(\cdot | x')$ (first-order) stochastically dominates $F(\cdot | x)$; that is,

$$F(y|x') \leq F(y|x)$$

or equivalently, for all y, $F(y | \cdot)$ is nonincreasing.

All of these results extend in a straightforward manner to the case where the number of conditioning variables is more than one. Suppose $Y, X_1, X_2, ..., X_n$ are affiliated and let $F_Y(\cdot | \mathbf{x})$ denote the distribution of Y conditional on $\mathbf{X} = \mathbf{x}$. Then, using the same arguments as above, it can be deduced that for all $\mathbf{x}' \geq \mathbf{x}$, $F_Y(\cdot | \mathbf{x}')$ dominates $F_Y(\cdot | \mathbf{x})$ in terms of the likelihood ratio. The other dominance relationships then follow as usual.

CONDITIONAL EXPECTATIONS OF AFFILIATED VARIABLES

Suppose X and Y are affiliated. The fact that $F(y|\cdot)$ is nonincreasing implies in turn that the expectation of Y conditional on X = x, E[Y|X = x], is a nondecreasing function of x. In other words, the "regression line" of Y against X has a nonnegative slope. Thus, X and Y are nonnegatively correlated.

Also, the same fact implies that if γ is a nondecreasing function, then $E[\gamma(Y)|X=x]$ is a nondecreasing function of x. More generally,

• If $X_1, X_2, ..., X_n$ are affiliated and γ is a nondecreasing function, then for all i,

$$E\left[\gamma(\mathbf{X}) \mid x_1' \leq X_1 \leq x_1'', x_2' \leq X_2 \leq x_2'', \dots, x_n' \leq X_n \leq x_n''\right]$$

is a nondecreasing function of x'_i and x''_i .

NOTES ON APPENDIX D

The affiliation inequality in (D.1) is known as a version of *total positivity* in the statistics literature (Karlin and Rinott, 1980). More specifically, a vector random variable **X** that satisfies (D.1) is said to be "MTP₂" (*multivariate total positivity*) and the implications of this have been extensively studied. Closely related is the notion of *association* and the "FKG inequality" (see Shaked and Shanthikumar, 1994). The term affiliation appears to have been coined by Milgrom and Weber (1982) and the appendix to their paper is a convenient reference for results useful in auction theory.