

Junhui DENG

deng@tsinghua.edu.cn

Thinking Approximation

- ❖ Why approximation?
 - 1) Exact CH algorithms usually take much more time
 - 2) In many applications, approximate convex hulls are good enough
- ❖ Not like the exact algorithms,

approximate algorithms are not guaranteed

to compute the precise hull

❖ How better is the approximation? And

how to estimate and bound the error?

Approximate Convex Hull

- ❖ Divide the plane into k vertical strips with a uniform width $(x_{max} x_{min}) / k$
- ❖ Find the highest/lowest point inside each strip
 (what if an empty strip?)
- ❖ Connect all highest / lowest points in turn
 - into a chain monotone w.r.t. $(0, -\infty) / (0, +\infty)$
- Apply Graham scan
 to compute the upper/lower hull
- ❖ Concatenate upper & lower hulls

Complexity

- lacktriangle Finding the leftmost and rightmost points costs $\Theta(n)$ time
- Prinding the highest & lowest points in each strip
 costs Θ(n) time all together
- $oldsymbol{\Theta}$ Graham scan costs $oldsymbol{\Theta}(k)$ time, where k is the number of strips
- ❖ An approximate convex hull
 of n points in the plane
 can be computed in Θ(n+k) time

Accuracy

- ❖It is possible for some points to escape from the constructed hull
- ❖Luckily they won't escape too far away
- ❖Any point of P that lies outside the approximate hull is within a distance

$$(x_{max} - x_{min}) / k$$
 of the hull

*That means,
the error of approximate hull
is no more than the strip width

