ФГАОУ ВО «МОСКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Лабораторная работа №1

Линейные программы

Вариант № 28

По дисциплине:

Основы программирования

Москва, 2025

Постановка задачи

Написать программу для расчета по формулам. Предварительно подготовить тестовые кейсы в таблине Excel

$$z_1 = \frac{\sin^2 a - \tan^2 a}{\cos^2 a - \cot^2 a}$$
 $z_2 = \tan^6 a$

Теоретическая часть

Для решения данной задачи был импортирован модуль math (from math import *) при помощи которого можно получить доступ к основным математическим функциям и операторам. Так как функция котангенса не определена в данной библиотеке, то использовать его приходиться следующим образом: 1 / tan(a)).

Так же из-за ограничений области определения этих двух функций, пришлось воспользоваться условным оператором, который в языке Python имеет следующий вид:

Для получения данных из пользовательского ввода и их преобразования в вещественный тип используется оператор float(input()).

А также используется оператор цикла while со значением True, чтобы было возможно проходиться по программе неограниченное количество раз без ее перезапуска.

Описание программы

Программа написана на алгоритмическом языке Python 3.6, реализована в среде ОС Windows 10 и состоит из частей, отвечающих за ввод данных, вычисление и представление данных на экране монитора.

Описание алгоритма

- 1. Ввести значение аргумента в градусах и преобразовать его в float.
- 2. Преобразовать градусы в радианы.
- 3. Проверить условие при которых выражение имеет смысл.
- 4. Если условие корректно, то вычислить значения **z1** и **z2** при помощи соответствующих функций: calculate z1 и calculate z2 соответственно.
- 5. Вывести результаты вычислений на экран.
- 6. В противном случае, если условие некорректно, сообщить о некорректности пользователю и повторить ввод данных.

Описание входных и выходных данных

Входные данные поступают с клавиатуры, а выходные выводятся на монитор для просмотра. Входные и выходные данные имеют тип float.

Листинг программы

```
from math import *

def calculate_z1(a):
    return (sin(a) ** 2 - tan(a) ** 2) / (cos(a) ** 2 - (1 / tan(a)) ** 2)

def calculate_z2(a):
    return tan(a) ** 6

while True:
    angle = float(input("Enter the value of the angle in degrees: "))
    a = radians(angle)
    if angle % 90 != 0:
        z1 = calculate_z1(a)
        z2 = calculate_z2(a)
        print("Angle: {0:.2f}\u00b0 Z1: {1:.5f}".format(angle, z1))
        print("Angle: {0:.2f}\u00b0 Z2: {1:.5f}".format(angle, z2))
    else:
        print("Error: incorrect angle value")
```

Результаты и тестовые кейсы

```
Enter the value of the angle in degrees: 45

Angle: 45.00° Z1: 1.00000

Angle: 45.00° Z2: 1.00000

Enter the value of the angle in degrees: 60

Angle: 60.00° Z1: 27.00000

Angle: 60.00° Z2: 27.00000

Enter the value of the angle in degrees: 108

Angle: 108.00° Z1: 849.85292

Angle: 108.00° Z2: 849.85292
```

angle degree	a radians	z1 Excel	z2 Excel	z1 Python	z2 Python
30	0,523598776	0,037037037	0,037037037	0.03704	0.03704
45	0,785398163	1	1	1.00000	1.00000
60	1,047197551	27	27	27.00000	27.00000
108	1,884955592	849,8529157	849,8529157	849.85292	849.85292
129	2,251474735	3,54637571	3,54637571	3.54638	3.54638
150	2,617993878	0,037037037	0,037037037	0.03704	0.03704

Список используемой литературы

- 1. Н.А. Прохоренок, В.А. Дронов, Python 3 и PyQt 5. Разработка приложений: СПб.: БХВ-Петербург, 2017
- 2. В.П. Рядченко, Методическое пособие по выполнению лабораторных работ.