白永乐

202011150087

202011150087@mail.bnu.edu.cn

2023年10月25日

 $f(v) \in f[x_{n+1}]$. Since f is injective, $f[x_0] \cap f[x_{n+1}] = \emptyset$. So $f(u) \neq f(v)$. Else, we know $g(v) = v \notin f[x_0] \ni f(u)$.

- $u \in f[x_m], v \in f[x_n]$: If m = n then $g(u) = f(m+1, u) \neq f(n+1, v) = g(v)$. Else $m \neq n$, then $g(u) \in f[x_{m+1}], g(v) \in f[x_{m+1}], f[x_{m+1}] \cap f[x_{m+1}] = \emptyset$. So $g(u) \neq g(v)$.
- $u \in x_n, v \notin x, \forall m, v \notin f[x_m]$: Easily $g(u) \in f[x_{n+1}]$ and $g(v) = v \notin f[x_{n+1}]$.
- $u \in x_n, v \notin x, \forall m, v \notin f[x_m]$: Easily $g(u) \in f[x_{n+1}]$ and $g(v) = v \notin f[x_{n+1}]$. • $u, v \notin x, \forall n, u, v \notin f[x_n]$: Easily $g(u) = u \neq v = g(v)$.
- Cocond we prove a is surjective in the Co. It continued to

Second we prove g is surjective. i.e., $\forall u \in y, \exists t \in x \cup y, g(t) = u$.

• $u \in f[x_n]$ for some n: If n = 0 then y = f(0,t) for some $t \in x$. Then g(t) = u. Else $n \ge 1$, write n = m + 1. Then y = f(m + 1, t) for some $t \in x$. So g(t) = u.

• $u \notin f[x_n], \forall n$: Easily we get g(u) = u.

So all in all g is bijective.

1. A subset of a finite set is finite.

BOBEM II

- 2. The union of a finite set of finite sets is finite.
- 3. The power set of a finite set is finite.
- 4. The image of a finite set (under a mapping) is finite.

 $\varphi(n)$, then we prove $\varphi(n+1)$. Assume $f: x \to n+1$ is bijective, let $y = f^{-1}[n] \subset x$. Then $y \approx n$, by induction we know $\bigcup y$ is finite. Since $x = y \cup \{f^{-1}(n)\}$ we get $\bigcup x = (\bigcup y) \cup f^{-1}(n)$. So $\bigcup x$ is finite, too.

- 3. Use MI of the card. For $x \approx 0$ we know $\mathscr{P}(x) = \{\varnothing\} \approx 1$. Assume for certain n we have $\forall x \approx n, isFinite(\mathscr{P}(x))$, then for $x \approx n+1$: Assume $f: x \to n+1$ is bijection. Let $y = f^{-1}[n]$ and $t = f^{-1}(n)$. Then $y \approx n$. Let $\theta: \mathscr{P}(x) \setminus \mathscr{P}(y) \to \mathscr{P}(y), \theta(a) := a \setminus \{t\}$. Easily θ is bijective, so $\mathscr{P}(x) \setminus \mathscr{P}(y) \approx \mathscr{P}(y)$ is finite. From II.2 we know $\mathscr{P}(x) = \mathscr{P}(y) \cup (\mathscr{P}(x) \setminus \mathscr{P}(y))$ is finite.
- 4. Use MI by card. For $A \approx 0$ it's obvious. Assume for $A \approx n$ it's right, now we prove for $A \approx n+1$ it's right, too. Let $f: A \to n+1$ is a bijection, and $g: A \to \mathbb{S}$ et is a map on A. Let $B:=f^{-1}[n]\subset A, t=f^{-1}(n)\in A$. Then $B\approx n$, so by induction we know g[B] is finite. Since $A=B\cup\{t\}$ we get $g[A]=g[B]\cup g[\{t\}]=g[B]\cup \{g(t)\}$. Noting $\{g(t)\}\approx 1$ is finite, from II.2 we get g[A] is finite, too.

ROBEM III

- 1. A subset of a countable set is at most countable.
- 2. The union of a finite set of countable sets is countable.
- 3. The image of a countable set (under a mapping) is at most countable.
- SOUTION. 1. Assume A is countable and $\theta: A \to \omega$ is bijection. For $B \subset A$, we have $B \approx \theta[B]$. So we only need to prove every subset of ω is at most countable. Let $x \subset \omega$. If x is finite,

contridiction! So h is surjective.

Now we assume for certain $n \geq 2$ we have union of n countable sets is countable, we need to prove so do n+1 sets. Assume $A \approx n+1$ and $\forall x \in A, x \approx \omega$. Assume $f: A \to n+1$ is bijection, and let $B:=f^{-1}[n], t=f^{-1}(n)$, then $\bigcup A=(\bigcup B)\cup t$. By induction we know $\bigcup B$ is countable. And we have proved union of two countable sets is countable. So finally we get $\bigcup A$ is countable.

3. Only need to prove image of ω is at most countable. For $f:\omega\to\mathbb{S}$ et is a map, we need to prove $\operatorname{ran}(f)$ is at most countable. Let $h:\operatorname{ran}(f)\to\omega, t\mapsto\min f^{-1}[\{t\}]$. Obviously h is a injective, so $\operatorname{ran}(f)$ is at most countable.

 \mathbb{R}^{OBEM} IV $\mathbb{N} \times \mathbb{N}$ is countable.

SOLITION. We will prove $f: \mathbb{N}^2 \to \mathbb{N}, (m,n) \mapsto 2^m(2n+1)-1$ is bijection. First we prove it's injection. Assume f(a,b)=f(c,d), then $2^a(2b+1)=2^c(2d+1)$. If $a\neq c$, assume a< c, then $2b+1=x^{c-a}(2d+1)$. But $2\mid x^{c-a}(2d+1), 2\nmid 2b+1$, contridiction! So a=c. Then we get 2b+1=2d+1, so b=d. So f is injective.

Second we prove f is surjective. For $t \in \mathbb{N}$, let $m := \sup\{k : 2^k \mid t+1\}$. Since $0 < t+1 < \omega$ and $2^k \mid t+1 \to 2^k \le t+1$ we get $m < \omega$. Assume $t+1 = 2^m \cdot l$, then easily $2 \nmid l$. So we can assume l = 2n+1. Then t = f(m,n). All in all, we get f is bijective.

ROBEM V Prove that $\kappa^{\kappa} \leq 2^{\kappa \times \kappa}$.

If $U \neq V$, assume $U \setminus V \neq \emptyset$ and $x \in U \setminus V$, then since f is surjective we get $\exists t \in A, f(t) = x$. So $t \in f^{-1}[U]$ but $t \notin f^{-1}[V]$, contridiction! So h is injective. Then $\mathscr{P}(A) \preceq \mathscr{P}(B)$.

ROBEM VIII Let X be a set. If there is an injective function $f: X \to X$ such that $\operatorname{ran}(f) \subsetneq X$, then X is infinite.

SOLTON. Use MI to prove $\forall n \in \omega, X \not\approx n$. For n = 0, if $X \approx n$ then X = 0. So $X \subset \operatorname{ran}(f)$, contridiction! Assume for certain $n \geq 1$ we get $\forall m < n, X \not\approx m$, then we need to prove $X \not\approx n$. If not, assume $h: X \to n$ is bijection. Consider $h[\operatorname{ran}(f)] \subsetneq n$, we get $\exists m < n, h[\operatorname{ran}(f)] \approx m$. Since f is injective, and h is bijection, we get $X \approx m$. Contridiction to the induction! So we finally proved $\forall n \in \omega, X \not\approx n$.