Devesh Kumar, 16d070044February 19, 2018

${\bf 1} \quad {\bf part}_1 without miller$

For CS gain I. Cb = 100 pF and Cd=infinity

II. Cb = infinity and Cd=100pf

- - (57.3248)*(phase(v(a))-phase(v(1)))

III Cb = 100pf Cd=100pf

An additional capacitor $CS=1~\mathrm{nF}$ is connected in parallel with Rs along with III.

 $\begin{array}{c} \textbf{For CD gain} \\ \textbf{I. Cb} = 100 \ \textbf{pF} \ \textbf{and Cd=} \textbf{infinity} \end{array}$

- - (57.3248)*(phase(v(4))-phase(v(1)))

--20*(log(v(4))·log(v(1)))

II. Cb = infinity and Cd=100pf

Units $- - 20*(\log(v(4))-\log(v(1)))$

An additional capacitor $CS=1~\mathrm{nF}$ is connected in parallel with Rs along with III.

10^7

5.0

10^5

10^6

$\mathbf{2}$ $\mathbf{part}_2 with miller$

For CS gain Cb = 100 pF and Cd=infinity

II. Cb = infinity and Cd=100pf

III Cb = 100pf Cd=100pf

An additional capacitor $CS=1~\mathrm{nF}$ is connected in parallel with Rs along with III.

For Cd gain Cb = 100 pF and Cd=infinity

II. Cb = infinity and Cd=100pf

III Cb = 100pf Cd=100pf

An additional capacitor $\mathrm{CS}=1~\mathrm{nF}$ is connected in parallel with Rs along with III.

