Orthogonal Sets

If for set $\{ ec{u}_1, \ldots, ec{v}_n \}$ for j
eq k, $ec{u}_j \perp ec{u}_k$.

If Set S is orthogonal, the vectors of S are linearly independent.

Expansion in Orthogonal Basis

If we have an Orthogonal Basis $\{ec{u}_1,\ldots,ec{v}_n\}$ in \mathbb{R}^n then for any $ec{w}\in\mathbb{R}^n$,

$$ec{w} = c_1 ec{u}_1 + \dots + c_n ec{v}_n$$

 C_q can be found using $c_q = rac{ec{w} \cdot ec{u}_q}{ec{u}_q \cdot ec{u}_q}$