Math 115 - Final Review

Albert Ye

December 9, 2023

All of the material between the second midterm and the final.

1 Unit Groups

2 Gauss Sums

3 Jacobi Sums

Some initial definitions would help provide some context:

Definition 1 (Multiplicative Character)

We call χ a multiplicative character if $\chi(ab) = \chi(a)\chi(b)$, over all $a, b \in F_p$.

We have a couple other rules for this function:

- 1. $\chi(1) = 1$
- 2. $\chi(a)$, over any a, is a p-1th root of unity
- 3. $\chi(a^{-1}) = \chi(a)^{-1} = \overline{\chi(a)}$.

We also have the identity character ε , where $\varepsilon(a) = 1$ over all $a \in F_p$.

Definition 2 (Jacobi Sum)

The **Jacobi sum** of two multiplicative characters χ, λ , given $a, b \in F_p$ for some prime p, is $J(\chi, \lambda) = \sum_{a+b=1} \chi(a)\lambda(b)$.

There are also a couple theorems you should know, and one you should know the proof of:

Theorem 3

- 1. $J(\epsilon, \epsilon) = p$.
- 2. $J(\epsilon, \chi) = 0$.
- 3. $J(\chi, \chi^{-1}) = -\chi(-1)$.
- 4. If $\chi \lambda \neq \epsilon$, then

$$J(\chi, \lambda) = \frac{g(\chi)g(\lambda)}{g(\chi)(\lambda)}.$$

Math 115 - Final Review

Albert Ye

This one we need to prove: The first two statements can be done just by checking the sum over all $a, b \in F_p$ such that a + b = 1.

The third statement is true because $\chi(a)\chi^{-1}(b) = \chi(a)\chi(b^{-1}) = \chi\left(\frac{a}{b}\right)$, so we're summing over $\chi(a(1-a)^{-1})$. We see that this maps to every value but -1, so we have that our sum includes everything but $\chi(-1)$. But as the sum of everything is 0, we have $J(\chi,\chi^{-1}) = -\chi(-1)$.

The last statement is true because