Kapitel 1

Funktionalanalysis

1.1 Grundlagen

Bekannt aus Analysis I-III

- Banachraum: vollständiger normierter Vektorraum (wir schreiben $(X,\|\cdot\|_X)$
- Hilbertraum: vollständiger Skalarproduktvektorraum mit $\|\cdot\| = \sqrt{(\cdot,\cdot)_X}$. Wobei (\cdot,\cdot) das Skalarprodukt bezeichnet.
- Cauchy-Folge: $(x_n), \forall \varepsilon > 0 \ \exists n \in \mathbb{N} : \forall m \geq n : ||x_m x_n|| < \varepsilon$
- vollständiger metrischer Raum, Topologie.

Definition 1.1 (Halbnorm, Seminorm). Sei X ein $\mathbb{K} - Vektorraum$, wobei $\mathbb{K} = \mathbb{R}$ oder $\mathbb{K} = \mathbb{C}$. Für $x, y \in X$, $\lambda \in \mathbb{K}$ ist eine Halbnorm oder Seminorm eine Abbildung $||| \cdot ||| : X \to \mathbb{R}$, die die folgenden Eigenschaften erfüllt:

- (i) $|||x||| \ge 0$
- (ii) $|||\lambda x||| = |\lambda| \cdot |||x|||$
- (iii) $|||x + y||| \le |||x||| + |||y|||$

Eine Norm efüllt zusätzlich noch die Bedingung, dass sie nur dann verschwindet, wenn das Argument verschwindet.

Bemerkung 1.2. (a) $N := \{x \in X : |||x||| = 0\}$ bildet einen Unterraum von X.

- (b) X/N ist ein normierter Raum über(?) ||x + N|| := |||x|||
- (c) X ist ein vollständiger seminormierter Raum $\Rightarrow X/N$ ist ein Banachraum

Beispiel 1.3 (wichtige Vektorräume). Sei $(\Omega, \mathfrak{A}, \mu)$ ein Maßraum

- (a) $p \in [1, \infty)$ $\mathcal{L}^p(\Omega, \mu) = \{f : \Omega \to \mathbb{C} \text{ messbar}, \int_{\Omega} |f|^p d\mu < \infty \}$ ist ein seminormierter Raum mit $|||f|||_p := (\int_{\Omega} |f|^p d\mu)^{\frac{1}{p}}$. $L^p(\Omega, \mu)$ ist ein vollständiger normierter Raum (\nearrow Ana III).
- (b) $\mathcal{L}^{\infty}(\Omega,\mu) := \{f : \Omega \to \mathbb{C} \text{ messbar und essentiell beschränkt} \}$ ist ebenfalls seminormiert mit $|||f|||_{\infty} := \underset{x \in \Omega}{\operatorname{ess \, sup}} |f(x)|.$ $L^{\infty}(\Omega,\mu)$ ist ein vollständiger normierter Raum.
- (c) $p \in [1, \infty], |\cdot|$ sei das Zählmaß auf $\mathbb N$ und der Maßraum sei gegeben durch $(\mathbb N, P(\mathbb N), |\cdot|)$. $\ell^p := \mathcal L^p(\mathbb N, |\cdot|)$ heißt Folgenraum und ist ein normierter unendlichdimensionaler Raum.

- (d) $\Omega \subseteq \mathbb{R}$ messbar, λ^n Lebesgue-Maß auf \mathbb{R}^n . $L^p(\Omega) := L^p(\Omega, \lambda^n)$ heißt Lebesgue-Raum.
- (e) Sei (Ω, \mathcal{T}) ein topologischer Raum. $BC(\Omega) := \{f : \Omega \to \mathbb{C} \mid f \text{ stetig und beschränkt} \}$ versehen mit der Suprenumsnorm ist ein Banachraum.

Bemerkung 1.4 (diverse Fakten). Seien $p, q, r \in [1, \infty)$

- (a) $L^p(\Omega,\mu)$ ist ein Banachraum, $L^2(\Omega,\mu)$ ist ein Hilbertraum mit $(f,g)_2 := \int_{\Omega} f\overline{g}d\mu$
- (b) Falls $\mu(\Omega) < \infty$, $p \ge r \Rightarrow L^p(\Omega, \mu) \subseteq L^r(\Omega, \mu)$
- (c) Wenn $p \geq r \Rightarrow L^r(\Omega, \mu) \cap L^{\infty}(\Omega, \mu) \subseteq L^p(\Omega, \mu)$
- (d) $\frac{1}{p} + \frac{1}{q} = 1$, $f \in L^p(\Omega, \mu)$, $g \in L^q(\Omega, \mu) \Rightarrow fg \in L^1(\Omega, \mu)$ mit $\|fg\|_1 \leq \|f\|_p \|g\|_q$ (Hölder-Ungleichung). Dies gilt auch für $p = 1, q = \infty$ wobei $\underline{\text{hier}} \frac{1}{\infty} := 0$.
- (e) Sei $\Omega \subseteq \mathbb{R}^n$ ein Gebiet. $C_0^k := \{f : \Omega \to \mathbb{C} \mid \text{supp} f \text{ kompakt und } f \in C^k(\Omega, \mathbb{C})\}$ ist dicht in $L^p(\Omega) \ \forall p \in [1, \infty)$. Dies gilt nicht für $p = \infty$, da f = const oder f = sign sich nicht durch Funktionen aus C_0^k approximieren lassen.
- (f) $BC(\Omega)$ ist abgeschlossen in $L^{\infty}(\Omega)$, aber nicht in $L^{p}(\Omega)$ für $p < \infty$, dennoch ist $BC(\Omega)$ in beiden Fällen ein Unterraum.

1.2 Lineare Operatoren

Definition 1.5 (linearer Operator). Seien X,Y \mathbb{K} -Vektorräume. Eine Abbildung $T:X\to Y$ heißt $linearer\ Operator\ wenn$

$$T(\lambda x + \mu y) = \lambda T(x) + \mu T(y) \ \forall \lambda, \mu \in \mathbb{K}, \ x, y \in X$$

wir schreiben Tx statt T(x).

Wenn $Y = \mathbb{K}$ dann heißt ein linearer Operator $T: X \to \mathbb{K}$ Funktional.

Wenn X, Y normierte \mathbb{K} -Vektorräume sind, heißt ein linearer Operator T beschränkt, wenn $T(U_1(0)) \subseteq Y$ beschränkt ist. $(\Leftrightarrow \exists M \in \mathbb{R}_{>0}, \text{ so dass } ||Tx||_Y \leq M \ \forall x \in X \text{ mit } ||x||_X < 1)$

Aus der Definition erkennt man, dass Bilder beschränkter Mengen M unter einem beschränkten linearen Operator T beschränkt sind. Denn $\exists R > 0 : M \subseteq U_R(0)$, sodass $T(M) \subseteq T(U_R(0)) = T(R \cdot U_1(0)) = R \cdot T(U_1(0))$, und dies ist beschränkt.

Beispiel 1.6. a) $X = \mathbb{K}^n$, $Y = \mathbb{K}^m$, $\{T : X \to Y : T \text{ linearer Operator}\} = \mathbb{K}^{m \times n}$. $T \in \mathbb{K}^{n \times m}$ ist beschränkt. Denn:

$$||T||_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{n} |t_{ij}| < \infty, \ t_{ij}$$
sind die Einträge der Matrix T .

Da auf einem endlichdimensionalen Vektorraum alle Normen äquivalent sind, ist T beschränkt.

b) $T: L^1(\Omega, \mu) \to \mathbb{K}$, $Tf:=\int_{\Omega} f d\mu$. Es gilt $|Tf|=|\int_{\Omega} f d\mu| \leq \int_{\Omega} |f| d\mu = \|f\|_1$. Also $|Tf|<1 \ \forall f \in L^1(\Omega, \mu): \|f\|_1 < 1 \Rightarrow T$ beschränkt

Satz 1.7. Seien X, Y normierte Räume, $T: X \to Y$ ein linearer Operator. Dann sind äquivalent:

- (i) T beschränkt,
- (ii) T ist lipschitz stetiq,
- (iii) T ist gleichmäßig stetig,
- (iv) T ist stetig,

- (v) T stetig in 0,
- (vi) $\exists x \in X : T \text{ stetig in } x.$

Beweis: "(i) \Rightarrow (ii)": Sei M > 0, so dass $||Tx||_Y \leq M \ \forall x \in U_1(0)$. Es gilt T0 = 0. Weiterhin gilt für $x \in X \setminus \{0\}$:

$$||Tx||_Y = ||2||x||_X T\left(\frac{x}{2||x||_X}\right)|| = 2||x||_X ||T\underbrace{\left(\frac{x}{2||x||_X}\right)}_{\in U_1(0)} ||_Y \le 2M||x||_X.$$

Also gilt $\|Tx\|_Y \leq 2M\|x\|_X \ \forall x \in \|x\|_X$ und daraus folgt die Lipschitz Stetigkeit wegen

$$||Tx_1 - Tx_2|| = ||T(x_1 - x_2)|| \le 2M||x_1 - x_2||_X \ \forall x_1, x_2 \in X$$

" $(ii) \Rightarrow (iii) \Rightarrow (iv) \Rightarrow (v) \Rightarrow (vi)$ " : Der Beweis dieser Implikationskette ist Gegenstand der Grundvorlesungen ¹.

" $(vi) \Rightarrow (v)$ ": Sei $x \in X$, so dass T stetig in x ist. Sei (x_n) Nullfolge in X

$$\Rightarrow \lim_{n \to \infty} (x + x_n) = x \Rightarrow \lim_{n \to \infty} T(x + x_n) = Tx \xrightarrow{\text{stetig in } 0} \lim_{n \to \infty} Tx_n = 0 = T$$

" $(v) \Rightarrow (i)$ ": Beweis durch Widerspruch: Angenommen T ist unbeschränkt $\Rightarrow \forall n \in \mathbb{N} \ \exists x_n \in U_1(0)$, so dass $||Tx_n||_Y \geq n \ (\Rightarrow x_n \neq 0 \ \forall n \in \mathbb{N})$. Dann gilt $\frac{x_n}{n} \stackrel{n \to \infty}{\longrightarrow} 0$, aber $||T\frac{x_n}{n}||_Y = \frac{1}{n} ||Tx_n||_Y \geq \frac{1}{n} \cdot n = 1$ Das hieße aber T ist unstetig in 0.

Bemerkung 1.8. a) $\mathcal{B}(X,Y) := \{T : X \to Y : T \text{ beschränkt}\}\$

- b) $\mathcal{B}(X) := \mathcal{B}(X, X)$ beides sind $\mathbb{K} VR$.
- c) $X' := \mathcal{B}(X, \mathbb{K})$ topologischer Dualraum von X.

Bemerkung 1.9. c) Ker T, Im T sind UVR.

- d) (i) (vi) äquivalent zu (vii): Jede beschränkte Menge wird auf eine beschränkte Menge abgebildet.
- e) Es gibt beschränkte lineare Operatoren, so dass Im T nicht abgeschlossen \(\sigma \) Übung
- f) $Ker\ T$ abgeschlossen $\forall\ T\in\mathcal{B}(X,Y)$, da T stetig und $Ker\ T=T^{-1}(\{0\})$, wobei $\{0\}$ abgeschlossen in Y.

Satz 1.10 (Operatornormen). X, Y normierte Räume. $\mathcal{B}(X, Y)$ normierter Raum mit folgendener Norm $||T|| := \sup_{x \in U_1(0)} ||Tx||_Y$.

Beweis: (Positivität:) ||0|| = 0. Sei $||T|| = 0 \Rightarrow Tx = 0 \forall x \in U_1(0)$. Sei $x \in X$ beliebig. $\Rightarrow Tx = 2||x||_X T\left(\frac{x}{2||x||_X}\right) = 0 \Rightarrow T = 0$.

(Homogenität:) Sei $\lambda \in \mathbb{K}$, $T \in \mathcal{B}(X,Y)$. Dann $\|\lambda T\| = \sup_{x \in U_1(0)} \|(\lambda T)x\|_Y = |\lambda| \sup_{x \in U_1(0)} \|Tx\| = |\lambda| \|T\|$.

 $(Dreieck sungleichug:) \ Seien \ T_1, T_2 \in \mathcal{B}(X,Y). \ Dann \ \|T_1 + T_2\| = \sup_{x \in U_1(0)} (\|T_1x + T_2x\|_Y) \leq \sup_{x \in U_1(0)} (\|T_1x\|_Y + \|T_2x\|_Y) \leq \sup_{x \in U_1(0)} \|T_1x\|_Y + \sup_{x_2 \in U_1(0)} \|T_1x\|_Y + \sup_{x_2 \in U_1(0)} \|T_1x\|_Y = \|T_1\| + \|T_2\|$

$$Bemerkung \ 1.11. \ \text{Es gilt} \ \|T\| = \sup_{x \in \overline{U_1(0)}} \|Tx\|_Y = \sup_{x \in \partial U_1(0)} \|Tx\|_Y = \sup_{\substack{x \in X \\ x \neq 0}} \frac{\|Tx\|_Y}{\|x\|_X} \ (\nearrow \ \text{Übung}).$$

Satz 1.12. X normierter Raum, Y Banachraum. Dann ist $\mathcal{B}(X,Y)$ Banachraum.

¹Damit meinen wir stets Sätze, die in Analysis/LA I,II oder Höhere Analysis bewiesen wurden.

Beweis: Sei (T_n) CF in $\mathcal{B}(X,Y)$, d.h. $\forall \varepsilon > 0 \exists N \in \mathbb{N} \ \forall n,m > N : \|T_n - T_m\| < \varepsilon$. Also $\|T_n x - T_m x\|_Y \le \|T_n - T_m\| \cdot \|x\| < \varepsilon \cdot \|x\| \ \forall x \in X$. Daraus folgt wegen der Vollständigkeit von Y, dass $(T_n x)$ in Y für alle $x \in X$ konvergiert. Wir setzen den Grenzwert auf $T : X \to Y$, $Tx := \lim_{n \to \infty} T_n x$. Die so definierte Abbildung, also dieser Grenzwert, erfüllt folgende Eigenschaften:

- a) T ist ein linearer Operator.
- b) T ist beschränkt.
- c) $\lim_{n\to\infty} \|T-T_n\|=0$ (also Normkonvergenz bzw. gleichmäßige Konvergenz)

$$\underline{\text{Zu a):}} \ T(\lambda x_1 + \mu x_2) = \lim_{n \to \infty} T_n(\lambda x_1 + \mu x_2) = \lim_{n \to \infty} (\lambda T_n x_1 + \mu T_n x_2) = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n$$

 $\underline{\text{zu b}}$: Wegen $||T_n - T_m|| \ge (||T_n|| - ||T_m||)$ gilt $||T_n||$ ist CF in \mathbb{R} , also beschränkt: $M := \sup_{n \in \mathbb{N}} ||T_n|| < \infty$.

Für $x \in U_1(0)$ gilt $||Tx||_Y = \lim_{n \to \infty} ||T_n x||_Y \le \lim_{n \to \infty} ||T_n|| \cdot ||x||_X \le M \cdot ||x||_X \le M$. (vgl. Def 1.5, " \Leftrightarrow ")

zu c): Sei $\varepsilon>0 \Rightarrow \exists N\in\mathbb{N} \ \forall m,n>N: \|T_n-T_m\|<\frac{\varepsilon}{2}.$ Für $x\in U_1(0)$ gilt somit

$$\|(T - T_n)x\| = \lim_{m \to \infty} \|(T_m - T_n)x\| \le \frac{\varepsilon}{2} \Rightarrow \|T - T_n\| = \sup_{x \in U_1(0)} \|(T - T_n)x\| \le \frac{\varepsilon}{2} < \varepsilon \ \forall n \ge N$$

Also ist $T \in \mathcal{B}(X,Y)$ und aufgrund der Beliebigkeit der CF, folgt die Vollständigkeit.

Korollar 1.13. X normierter Raum $\Rightarrow X'$ Banachraum.

Bemerkung 1.14. a) $T \in \mathcal{B}(X,Y)$, $S \in \mathcal{B}(Y,Z) \Rightarrow ST \in \mathcal{B}(X,Z)$ und $||ST|| \leq ||S|| \cdot ||T||$ (gilt wegen $||S(Tx)||_Z \leq ||S|| \cdot ||Tx||_Y \leq ||S|| \cdot ||T|| \cdot ||x||_X \leq M||x||_X \ \forall x \in X$ und der Linearität von ST.)

- b) $id \in \mathcal{B}(X, X), ||id|| = 1.$
- c) Aus punktweise Konvergenz $T_n x \to T x$ folgt i.A. $\underline{\text{nicht}} \lim_{n \to \infty} T_n = T \text{ (d.h. } \lim_{n \to \infty} ||T_n T|| = 0).$

Bsp:
$$X = \ell^p, p \in [1, \infty), T_n : \ell^p \to \ell^p, T_n(x_k) = (x_1, \dots, x_n, 0, 0, \dots)$$
 wobei $(x_k) = (x_1, \dots, x_n, \dots)$. Man kann zeigen, dass $T_n \in \mathcal{B}(x) \ \forall n \in \mathbb{N} \ (\nearrow \ \text{Übung})$. Sei $(x_k) \in \ell^p, \forall \epsilon > 0 \ \exists N \in \mathbb{N} : (\sum_{k=N+1}^{\infty} |x_k|^p)^{1 \setminus p} < \epsilon. \ \|T_n(x_k) - x_n\|_X = (\sum_{k=N+1}^{\infty} |x_k|^p)^{1 \setminus p} \ \forall n \geq N$. Also $\forall x \in X \ \|T_n - x\|_X \to 0 \ (n \to \infty)$. Frage: $\|T_n - T\|_X \to 0$? Nein! Sei $(x_k^n) = (0, \dots, 0, 1, 0, \dots), \|T_n(x_k^n) - x\|_X = \|(0, \dots, 0, -1, 0, \dots)\|_Y = 1 \ \|T_n - T\| \stackrel{Def}{=} \sup_{x \in U_1(0)} \|(T_n - T)x\|_X \geq \|(T_n - T)(\frac{1}{2}(x_k^n)\| = \frac{1}{2} \cdot 1 \ (T = idx) \ \forall n \in \mathbb{N} \Rightarrow \|T_n - T\| \not\to 0 \ (n \to \infty)$

d) $T \in \mathcal{B}(X,Y)$ und T bijektiv. Dann ist T^{-1} i.A. nicht beschränkt.

$$\mathbf{Bsp.} \ \ X \in C[0,1], Y = \{ f \in C^1([0,1]) : f(0) = 0 \} \ \mathrm{mit} \ \|x\|_X = \sup_{t \in [0,1]} |x(t)| \ \mathrm{und} \ \| \cdot \|_X = \| \cdot \|_Y$$

und $T: X \to Y$, $(Tx)(t) = \int_0^t x(s)ds$.

- $T^{-1} = S: Y \to X, Sy = y'$. (Zeige $ST = id_x$ und $TS = id_Y$)
- $T^{-1} \notin \mathcal{B}(Y,X)$ (Sei $y_n(t) = t^n \in Y$, $(T^{-1}y_n)(t) = n \cdot t^{n-1} \Rightarrow \|y_n\|_Y = 1 \ \forall n \in \mathbb{N}$, $\|T^{-1}y\|_X = n \ \forall n \in \mathbb{N} \Rightarrow T^{-1}$ kann nicht beschränkt sein. $(\|T^{-1}\frac{1}{2}y_n\|_X = \frac{1}{2} \cdot n \text{ mit } \|\frac{1}{2}y_n\| = \frac{1}{2})$

Bem: Y ist nicht vollständig.

Satz 1.15. Sei X, Y normierte $\mathbb{K} - VR$, $T \in \mathcal{B}(X, Y)$. Dann sind äquivalent:

- (i) T ist injektiv und $T^{-1} \in \mathcal{B}(im(T), X)$ normierter UVR von Y.
- (ii) $\exists m > 0 : ||Tx||_Y \ge m||x||_X \ \forall x \in X.$

Beweis: "(i) \Rightarrow (ii)": $\exists M > 0, \|T^{-1}y\| \le M\|y\| \ \forall y \in imT$. Sei $x \in X \ \exists y \in imT : x = T^{-1}y \Rightarrow \|x\|_Y \le M\|Tx\|_Y \Rightarrow \|Tx\|_Y \ge \frac{1}{M}\|x\|_X = m\|x\|_X$

"(ii) \Rightarrow (i)": Sei $x \in X$: Tx = 0. Aus $||Tx|| \ge m||x||$ folgt x = 0 und damit ist Tinjektiv. Sei $y \in imT \ \exists x \in X : Tx = y \ \text{und} \ T^{-1}y = x \stackrel{(ii)}{\Rightarrow} ||T^{-1}y|| = ||x|| \le \frac{1}{m}||Tx||_Y = \frac{1}{m}||y||_Y$, also $\exists M = \frac{1}{m}$, $||T^{-1}y||_X \le M||y||_Y \ \forall v \in imT \ \Rightarrow T^{-1} \in \mathcal{B}(imT, X)$

Die Negation dieser Aussage halten wir explizit fest mit folgendem

Korollar 1.16. $T \in \mathcal{B}(X,Y)$ (X,Y) normierte $\mathbb{K} - VR$. Dann sind äquivalent:

- (i) T besitzt <u>keine</u> stetige Inverser $T^{-1}: imT \to X$.
- (ii) $\exists Folge(x_n) in X$, so dass $||x_n|| = 1 \forall n \in \mathbb{N} und \lim_{n \to \infty} ||Tx_n|| = 0$

Definition 1.17. $X - \mathbb{K} - VR$ mit Norm $\|\cdot\|_1, \|\cdot\|_2$. Dann heißt $\|\cdot\|_1$

- (a) "stärker" als $\|\cdot\|_2$, falls gilt $\lim_{n\to\infty} \|x_n x\|_1 = 0 \Rightarrow \lim_{n\to\infty} \|x_n x\|_2$
- (b) "schwächer" als $\|\cdot\|_2$, falls $\|\cdot\|_2$ stärker ist als $\|\cdot\|_1$.
- (c) "äquivalent" falls $\|\cdot\|_1$ stärker und schwächer ist als $\|\cdot\|_2$

Satz 1.18. $X \mathbb{K} - VR$ mit Norm $\|\cdot\|_1, \|\cdot\|_2$. Dann gilt

- (a) $\|\cdot\|_1$ ist stärker als $\|\cdot\|_2 \Leftrightarrow \exists M > 0: \|x\|_2 \leq M\|x\|_1 \ \forall x \in X$
- (b) $\|\cdot\|_1$ ist schwächer als $\|\cdot\|_2 \Leftrightarrow \exists M > 0 : \|x\|_1 \leq M\|x\|_2 \ \forall x \in X$
- (c) $\|\cdot\|_1$ ist äquivalent $zu \|\cdot\|_2 \Leftrightarrow \exists m, M > 0 : m\|x\|_1 \leq \|x\|_2 \leq M\|x\|_1 \ \forall x \in X$

Beweis: zu (a): " \Rightarrow " $id: (X, \|\cdot\|_1) \to (X, \|\cdot\|_2)$ ist stetig wegen Vor. $\stackrel{S.1,15}{\Rightarrow}$ und weil id linear, id beschränkt, $id \in \mathcal{B}((X, \|\cdot\|_1), (X, \|\cdot\|_2)$ d.h. $\exists M>0: \|id(X)\|_2 \leq M\|x\|_1 \ \forall x \in X.$ " \Leftarrow " Wissen $\exists M>0: \|x\|_2 \leq M\|x\|_1 \ \forall x \in X.$ Sei $\|x_n-x\|_1 \to 0 \Rightarrow \|x_n-x\|_2 \leq M\|x_n-x\|_1 \to 0$ $(n\to\infty) \Rightarrow \|\cdot\|_1$ stärker als $\|\cdot\|_2$.

Definition 1.19. . Zwei normierte $\mathbb{K} - VR X, Y$ heißen "topologisch isomorph", falls es ein Isomorphismus $T: X \to Y$ mit $T \in \mathcal{B}(X,Y)$ und $T^{-1} \in \mathcal{B}(Y,X)$. Dann heißt T topologischer Isomorphismus,

(sonst auch Homöomorphismus)?

Satz 1.20. X,Y topologisch isomorph $\Leftrightarrow \exists m,M>0: T\in \mathcal{B}(X,Y)$ und injektiv: $m\|x\|_X\leq \|Tx\|_Y\leq M\|x\|_X\ \forall x\in X$

Beweis: Klar wegen Satz 1.17 und Satz 1.15.

Bemerkung 1.21. 1. Falls, m = M = 1, dann nenn wir T "Isometrie".

- 2. Falls $\dim X = \dim Y = n \in \mathbb{N}$: X, Y topologisch isomorph und topologischer Isomorphismus = lineare Bijektion.
- **Satz 1.22** (Fortsetzung von stetigen Operatoren). X,Y normierte $\mathbb{K} VR$, Y ein Banachraum, $Z \subset X$, Z dichter UVR. $T \in \mathcal{B}(Z,Y)$. Dann existiert ein eindeutiger Operator $\tilde{T} \in \mathcal{B}(X,Y)$, so dass $T|_{Z} = T$.

Beweis:

Satz 1.23. Ist T normerhaltend (in \mathbb{R}^n die unitären Matrizen). Ist \tilde{T} ebenfalls normerhaltend. Beweis:

Beispiel 1.24 (Konstruktion eines unbeschränkten Funktionals).

Satz 1.25 (Neumanansche Reihe). X Banachraum. Sei $T \in \mathcal{B}(X)$. Dann sind äquivalent:

i) Die Reihe
$$\sum_{i=0}^{\infty} T^k = I_X + T^1 + T^2 + \dots$$
 ist konvergent bzgl. der Operatornorm.

- $ii) \lim_{n \to \infty} \|T^n\| = 0$
- $iii) \ \exists N \in \mathbb{N} : ||T^N|| < 1$
- $|iv| \lim_{n\to\infty} \sup \sqrt[n]{\|T^n\|} < 1$

In diesem Fall besitzt (I-T) eine beschränkte ??. Dies erfüllt $(I-T)^{-1} = \sum_{k=0}^{\infty} T^k$.

Beweis: \ddot{i}) $\Rightarrow ii$) $\Rightarrow iii$)": "klar"

$$(iii) \Rightarrow iv)$$
": Sei $n \in \mathbb{N} \Rightarrow \exists \ell \in \mathbb{N}, k \in \{q_0, \dots, N-1\}, \text{ s.d. } n = \ell \cdot N + k \Rightarrow \ell \leq \frac{n}{N} \Rightarrow ||T^n|| = ||(T^n)^{\ell} T^k|| \leq ||T^N||^{\ell} \cdot ||T^k||$

 $\Rightarrow \lim_{n \to \infty} \sup \sqrt[n]{\|T^n\|} < 1 \ (\nearrow \text{Wurzelkriterium})$

 $\begin{array}{cc} \text{wenn} & \|T\| \\ \text{haben} & \text{wir} \end{array}$

Nummerierung noch entfernen

Bemerkung 1.26. 1. Wenn ||T|| < 1, dann konv. die Neumannsche Reihe.

2. $\limsup_{n\to\infty} \sqrt[n]{\|T^n\|} < 1$ ist nur hinreiechend für Invertierbarkeit von I-T, nehme sonst beispielsweise T=2I.

Etwaige Begriffe

- 1. **Hausdorffsch, Hausdorffeigenschaft** Eine Menge heißt *hausdorffsch*, wenn je zwei versch. Punkte stets disjunkte Umgebungen haben. Metrische Räume sind zum Beispiel hausdorffsch, da zwei versch. Punkte stets einen Abstand > 0 haben.
- 2. **essentiell beschränkt** $(\Omega, \mathfrak{A}, \mu)$ sei ein Maßraum. Eine Funktion $f : \Omega \to \mathbb{R}$ heißt essentiell beschränkt, falls

$$\operatorname*{ess\,sup}_{x\in\Omega}|f(x)|:=\inf_{\substack{N\in\mathfrak{A}\\\mu(N)=0}}\sup_{x\in\Omega\backslash N}|f(x)|<\infty$$

oder auch: f ist fast überall beschränkt. Ein Beispiel ist $f(x) := x \cdot \chi_{\mathbb{Q}}(x)$ und $\mu = \lambda$, da f nur auf \mathbb{Q} nicht null ist, und \mathbb{Q} ist Lesbesgue-Nullmenge.

- 3. topologischer Raum (X, \mathcal{T}) Sei X eine Menge und $\mathcal{T} \subseteq P(X)$. Die Elemente von \mathcal{T} sind die offenen Mengen. \mathcal{T} definiert eine Topologie, wenn folgende Eigenschaften erfüllt sind:
 - (i) \emptyset , $X \in \mathcal{T}$
 - (ii) $A_i \in \mathcal{T}$ für $i \in I$, $\mathbb{N} \supset I$ endlich $\Rightarrow \cap_{i \in I} A_i \in \mathcal{T}$
 - (iii) $A_i \in \mathcal{T}$ für $i \in I$, I bel. Indexmenge $\Rightarrow \bigcup_{i \in I} A_i \in \mathcal{T}$

 (X, \mathcal{T}) ist der topologische Raum.

Ein Beispiel, für einen topologischen Raum sind die metrischen Räume (X, d): d induziert dann eine Topologie auf X, die offenen Mengen sind nämlich durch d eindeutig bestimmt.

Sei
$$M := \{1, 2\}, \dots$$

 $\mathcal{T}:=\{\emptyset,M\}.$ Die triviale Topologie, nur \emptyset und M sind offen.

 $\mathcal{T}:=P(M).$ Die diskrete Topologie, alle Mengen sind offen. Die diskrete Metrik induziert genau diese Topologie.

 $\mathcal{T} := \{\emptyset, \{1\}, \{1,2\}\}$. M ist hier nicht hausdorffsch, denn egal welche Umgebung man um 2 betrachtet, man kann nicht erreichen, dass 1 nicht in der gleichen ist.