- M Finish PC Bayesian
- Todas
- (a) G.P Bayesian
- (3) Time dependent covariate

* Revisit [Example: Male Laryngeal Cancer Patients (KM Ex 8.2)] We use the proportional hazards model using the main effects of age and stage for this data; for $t \in (s_{j-1}, s_j]$

$$h(t \mid \mathbf{X}_i) = h_0(t) \exp(\beta' \mathbf{X}_i) = \lambda_j \exp(\beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i3} + \beta_4 X_{i4})$$

where X_k , k = 1, 2, 3 are the indicators of stage II, III and IV disease, respectively, and X_4 is the age of the patient.

** Use a piecewise constant hazard model with the following priors;

** Let
$$\beta \sim N_4(\bar{\beta}, \Sigma)$$
.

** Let
$$\lambda_j \stackrel{iid}{\sim} \mathsf{Gamma}(\alpha_0, \lambda_0)$$
.

* Revisit [Example: Male Laryngeal Cancer Patients]

```
> ### set up hyperparameters
> hyper <- NULL
>
> ### Be \sim N_p(Beta_bar, Sig)
> ## fit the frequentist Cox to set hyperparamters
> coxph.fit <- coxph(Surv(time, delta) ~ as.factor(stage) + age,
method="breslow", data=larynx)
> hyper$Beta_bar <- as.matrix(coxph.fit$coefficient)
> hyper$Beta_bar[4] <- hyper$Beta_bar[4] **sd(larynx$age)
## since I will standardize age
> hyper$Sig <- diag(2.0, p)
> hyper$Sig <- solve(hyper$Sig)
>
> ## lambda_j \iid \Ga(a0, lam0)
> hyper$a0 <- 0.1
> hyper$lam0 <- 0.1</pre>
```

- * Revisit [Example: Male Laryngeal Cancer Patients] How did I set intervals, $(s_{j-1}, s_j]$?
- ** Used empirical quantiles.

Piecewise Constant Hazard Model

- Piecewise Constant Hazard Model
- \star For each cancer stage at age 60, the survival function is

- Models Using a Gamma Process (ICS Chapter 3.2)
- ullet Recall $Z\sim \mathsf{Gamma}(heta,\lambda)$ with the pdf

$$f(z \mid \theta, \lambda) = \frac{\lambda^{\theta}}{\Gamma(\theta)} z^{\theta-1} e^{-\lambda z}, \text{ for } z > 0.$$

Then, $E(Z) = \theta/\lambda$ and $Var(Z) = \theta/\lambda^2$.

- Use the **gamma process** prior for the baseline cumulative hazard function $H_0(t)$.
- The gamma process: the most commonly used nonparametric prior process for the Cox model.
- We will briefly cover the gamma process.
- Read the paper by Kalbflesch (1978) for more details

- ** Let $\alpha(t)$, $t \ge 0$ be an increasing left continuous function with $\alpha(0) = 0$.
- ** Let a stochastic process $\{Z(t), t > 0\}$ have the following properties.
 - $\circlearrowleft Z(0) = 0$
 - $\circlearrowleft Z(t)$ has independent increments in disjoint intervals, and
 - \circlearrowleft for t>s, $Z(t)-Z(s)\sim \mathsf{Gamma}(\underline{c}(\alpha(t)-\alpha(s)),c)$
 - \Rightarrow The process is called a gamma process, $Z(t) \sim \mathcal{GP}(c\alpha(t),c)$.

- What does this mean?
 - ** It is a stochastic process with independent increments and the increments have the gamma distribution.

 ** | t is a stochastic process with independent increments and the

$$E(Z(t) - Z(s)) = c(\alpha(t) - \alpha(s))/c = \alpha(t) - \alpha(s),$$

$$Var(Z(t) - Z(s)) = c(\alpha(t) - \alpha(s))/c^{2} = (\alpha(t) - \alpha(s))/c$$

- $\circlearrowleft \alpha(t)$ is the mean of the process.
- \circlearrowleft c is a weight or confidence parameter about the mean.

$$C \uparrow \Rightarrow Var(Z(t) - Z(S)) \downarrow \Rightarrow Z(t) & d(t)$$

$$C \downarrow \Rightarrow Var(Z(t) - Z(S)) \uparrow \Rightarrow Z(t)$$

• Facts! Ho(+)

- ** The sample path of the gamma process is almost surely strictly increasing purely discontinuous function of t (\Rightarrow can be used as a prior for $H_0(t)$)
- ** The probability that any preassigned value of t is a jump is zero.
- ** The above is great. Why? Observed survival times can occur with positive probability even though the survival times have a continuous distribution.
- ** (side note) Connection to the Dirichlet process! (alternative definition of the DP) read Ferguson (1973).

• Gamma Process as a Prior for Cumulative Hazard $\star\star$ Consider the gamma process as a prior for $H_0(t)$.

$$H_0 \sim \mathcal{GP}(c_0 H^*, c_0),$$

where $H^*(t)$ is an increasing function and $\underline{c_0} > 0$.

** Need to specify H^* and c_0 .

$$h(t) = \lambda$$
 $H(t) = \lambda t$

• Examples of $H^*(t)$

** Example 1: $H^*(t) = \gamma_0 t$ where γ_0 is a specified hyperparameter. E(H(H)

Observe $\mathbb{E}(\mathbb{E}(t)) = \gamma_0 t$

- ⇒ noisy exponential baseline hazard function.
- ** Example 2: $H^*(t) = \eta_0 t^{\kappa_0}$ where η_0 and κ_0 are specified hyperparameters. E(Ho(t))

Observe $\mathbb{E}(Z(t)) = \eta_0 t^{\kappa_0}$

h(t) = nokotko-s H(t) = notko

⇒ noisy Weibull baseline hazard function.

- Gamma Process with Grouped-Data Likelihood
 - ** Construct a finite partition of the time axis, $0 < s_1 < s_2 <$ $\ldots < s_J$ with $s_J > \max(y_i)$.
 - \Rightarrow we have the J intervals, $(0, s_1]$, $(s_1, s_2]$,..., $(s_{J-1}, s_J]$.
 - ** One choice: use the distinct survival times as our s_1, \ldots, s_{J-1} after ordering.
 - ** Let h_i denote the increment in H_0 in interval j, that is,

$$h_j = H_0(s_j) - H_0(s_{j-1}), \quad j = 1, \ldots, J.$$

Assuming $H_0 \sim \mathcal{GP}(c_0H^*, c_0)$, we know h_j are **independent** and Hols3) 1

$$h_j \stackrel{indep}{\sim} \mathsf{Gamma}(\alpha_{0,j} - \alpha_{0,j-1}, c_0),$$

where $\alpha_{0,j} = c_0 H^*(s_j)$, j = 1, ..., J.

$$hoj - \alpha_{0,j-1} = \alpha_0 H^*(s_j) - \alpha_0 H^*(s_{j+1})$$

$$= \alpha_0 (H^*(s_j) - H^*(s_{j+1}))$$

• Consider one subject and find $P(y_i \in I_j \mid \mathbf{X}_i, \mathbf{h}, \boldsymbol{\beta})$;

$$P(y_i \in I_j \mid \mathbf{X}_i, \mathbf{h}, \boldsymbol{\beta}) = P(s_{j-1} < y_i \le s_j \mid \mathbf{X}_i, \mathbf{h}, \boldsymbol{\beta})$$

$$= P(y_i) > S_{j-1} | x_i, h, \beta) - P(y_i) > S_j | x_i, h, \beta)$$

$$= e^{-\frac{H_0(S_{j-1})}{2}} e^{x_i\beta} - e^{-\frac{H_0(S_{j-1})}{2}} e^{x_i\beta}$$

$$2(t \mid x) = e^{-\frac{H_0(t)}{e^{x\beta}}},$$

$$= e^{-\left(\frac{j}{g_{1}}h_{g}\right)} e^{x_{1}\beta} = e^{-\left(\frac{j}{g_{1}}h_{g}\right)} e^{x_{1}\beta}$$

$$= e^{-\left(\frac{j}{g_{1}}h_{g}\right)} e^{x_{1}\beta} \left(1 - e^{-h_{g}}e^{x_{1}\beta}\right)$$

• How about $P(y_i \in I_j \mid y_i > s_{j-1}, \mathbf{X}_i, \mathbf{h}, \boldsymbol{\beta})$?

$$P(y_i \in I_j \mid x_i, h, \beta)$$

$$P(y_i > S_{j-1} \mid x_i, h, \beta)$$

$$e^{-exip \frac{y_i}{y_j} h_j} (1 - e^{-exip h_j})$$

$$e^{-exip \frac{y_i}{y_j} h_j}$$

$$e^{-exip \frac{y_i}{y_j} h_j}$$

$$= 1 - e^{-exip h_j}$$

• How about $P(y_i > s_j \mid y_i > s_{j-1}^2, \mathbf{X}_i, \mathbf{h}, \boldsymbol{\beta})$?

$$\Rightarrow P(y_i \in \mathcal{I}_j \mid x_i, h, \beta) = \prod_{g=1}^{g-1} P(y_i > s_g \mid y_i > s_{g-1}, x_{i,j} h, \beta)$$

- Gamma Process with Grouped-Data Likelihood (contd)
 - ** We express the observed data $D = (\mathbf{X}, \mathcal{R}_j, \mathcal{D}_j, j = 1, \dots, J)$ where
 - $\circlearrowleft \mathcal{R}_j$: the risk set of interval j

- $\circlearrowleft \mathcal{D}_j$: the failure set of interval j
- ** We will write down the likelihood using \mathcal{R}_j and \mathcal{D}_j .

We will express the likelihood

$$\mathcal{L}(oldsymbol{eta},\mathbf{h}\mid D) \propto \prod_{j=1}^{J} G_{j},$$

where

$$G_j = \exp\{-h_j \sum_{k \in \mathcal{R}_j - \mathcal{D}_j} \exp(\mathbf{X}_k' \boldsymbol{\beta})\} \prod_{\ell \in \mathcal{D}_j} [1 - \exp\{-h_j \exp(\mathbf{X}_\ell' \boldsymbol{\beta})\}].$$
Ret nisk and not fluit at nisk and fluit

- Returning to the prior,
 - ** Observe that H_0 enters the likelihood only through the h_j 's.
 - ** We need to specify priors for h_j and β .
 - ** Recall that h_i are **independent** and

$$(h_j)^{indep} \sim \mathsf{Gamma}(\alpha_{0,j} - \alpha_{0,j-1}, c_0),$$

where $\alpha_{0,j} = c_0 \mathcal{H}^*(s_j)$.

- \Rightarrow We need to specify $H^*(t)$ and c_0 (or we can consider $c_0 \sim \pi$).
- ** We may use $\beta \sim N_{\rho}(\bar{\beta}, \Sigma)$ or other priors including $\pi(\beta) \propto 1$.

• hj
$$\stackrel{\text{indep}}{\sim}$$
 Gamma ($\alpha_{0j} - \alpha_{0j+1}$, c_{0}) $\stackrel{\text{H}^{*}(\pm)}{=} \eta_{0} \pm^{kc}$

• $\beta \sim N_{p}(\overline{\beta}, \overline{\Sigma})$

• $\pi(h_{j})$

• $\exp(-\frac{1}{2}(\beta - \overline{\beta})' \Sigma^{+}(\beta - \overline{\beta}))$

• $\exp(-\frac{1}{2}(\beta - \overline{\beta})' \Sigma^{+}(\beta - \overline{\beta}))$

• $\exp(-h_{j} \exp(-h_{j} + h_{j}))$

3) Update hg, j=1,...,
$$J$$

This is a parallel and J

The importance of J

The importa

Joint posterior.

• Full conditionals.

* Revisit [Example: Male Laryngeal Cancer Patients] Hyperparameters

```
> ### set up hyperparameters
> hyper <- NULL
> ### Be \sim N_p(Beta_bar, Sig)
> ## fit the frequentist Cox to set hyperparamters
> coxph.fit <- coxph(Surv(time, delta) ~ as.factor(stage) + age,
method="breslow", data=larynx)
> hyper$Beta_bar <- as.matrix(coxph.fit$coefficient)</pre>
> hyper$Beta_bar[4] <- hyper$Beta_bar[4]*sd(larynx$age)</pre>
## since I will standardize age
> hyper$Sig <- diag(2, p)</pre>
> hyper$Inv_Sig <- solve(hyper$Sig)</pre>
> ## h_j \in GP(c0 H*, c0)
                                                nother = Hx(+)
> hyper$eta0 <- 0.1
> hyper$k0 <- 1.5 ## shape for weibull
> hyper$c0 <- 1 ## prior belief
> hyper$a_diff <- hyper$c0*hyper$eta0
*(Int_dat$end^hyper$k0 -Int_dat$start^hyper$k0)
```

- * Revisit [Example: Male Laryngeal Cancer Patients] How did I set intervals, $(s_{j-1}, s_j]$?
- ** Used distinct times.

Gamma Process Model

$$\beta_2(\hat{\beta}_2=0.153)$$

Piecewise Constant Hazard Model

$$\beta_3(\hat{\beta}_3 = 1.535)$$

$$\beta_4(\hat{\beta}_4=0.191)$$

- Piecewise Constant Hazard Model
- \star Posterior mean of λ_j with their 95% credible intervals

Gamma Process Model

$$\beta_3(\hat{\beta}_3=2.219)$$

$$\beta_4(\hat{\beta}_4 = 0.307)$$

- Gamma Process Model
- \star Posterior mean of H_0 with their 95% credible intervals

- Gamma Process Model
- \star For each cancer stage at age 60, the survival function is

Gamma Process Model (check with Kaplan-Meier estimates)

1.1