

SM16206

Overview

SM16206 is a constant-current LED driver chip with a built-in CMOS shift register and latch function to convert serial input data to a parallel output.

The working voltage of the SM16206 is 3.3V-5.0V. It includes 16 current sources, each of which can provide a constant current of 1 mA -32 mA at each output port, with current variation of less than $\pm 2.5\%$ within a single IC chip and less than $\pm 3.5\%$ between multiple ICs. Channel output current does not vary with output voltage (V_{DS}) changes and varies by less than 1% due to voltage and ambient temperature. The output current of each channel is determined by the external resistor adjustment.

The output port of the SM16206 can withstand voltages up to +15V, so it can be used to drive series strings of multiple LEDs. In addition the SM16206 supports clock frequencies up to 25 MHz to meet the system's need for high data volumes.

Features

- ◆ 16-channel constant current source output
- Constant Current:

1-32mA@VDD=5.0V

Intra-chip error < ±2.5%, inter-chip error < ±3.5%

1-22mA@VDD=3.3V

Intra-chip error < ±2.5%, inter-chip error < ±3.5%

- ◆ Output current adjustable with external Rext resistor
- ◆ Fast Output Current Response, OE (Min): 35ns
- ◆ Up to 25MHz clock frequency
- ♦ Working voltage: 3.3V~5.0V
- Package: SSOP24, QSOP24, QFN24(4*4)

Applications

- ◆ LED Display
- ◆ LED Lighting

Package Information

Product	Package	Body Size (mm)	Pitch (mm)
SM16206D	SSOP24	13.0*6.0*1.8	1.0
SM16206S	QSOP24	8.65*3.9*1.4	0.635
SM16206N-2	QFN24(4*4)	4*4*0.85	0.5

Pin Definition

(SSOP24/QSOP24)

Fax: 0755-26991336

Email: market@chinaasic.com

Website: www.chinaasic.com

Address: 深圳市南山区高新技术产业园南区高新南一道 015 号国微研发大楼三层 Note: please refer to the website for the latest version of this datasheet.

Internal Functional Block Diagram

Fig. SM16206 Internal Functional Block Diagram

Pin Description

Pin	Function Description
GND	Chip ground
SDI	Serial Data input
CLK	Serial Clock input; data is shifted in on the rising edge of the clock
LE	Data Latch Control input; when LE is high the shift register output is transferred to the latch; when LE is low the latch holds its value
OUT0~OUT15	Constant Current Driver outputs
ŌE	Output Enable control input; when \overline{OE} is low, the OUT0~OUT15 outputs are active; when \overline{OE} is high the OUT0~OUT15 outputs are disabled
SDO	Serial Data output; can be connected to the SDI port of the next chip
R-EXT	Input for external resistor; sets the output current of all output channels
VDD	Chip Power

Ordering Information

Model	Dackago	Packing		Reel size
Model	Model Package -		Tape	Reel Size
SM16206D	SSOP24	36000 Pieces / box	2000 Pieces / box	13 inch
SM16206S	QSOP24	100000 Pieces / box	4000 Pieces / box	13 inch
SM16206N-2	QFN24(4*4)	1	5000 Pieces / box	13 inch

Email: market@chinaasic.com Website: www.chinaasic.com Tel: 0755-26991392

Address: 深圳市南山区高新技术产业园南区高新南一道 015 号国微研发大楼三层 Note: please refer to the website for the latest version of this datasheet.

Output and Input Equivalent Circuits

♦ <u>OE</u> Input

LE Input

◆ CLK,SDI Input

SDO Output

Fax: 0755-26991336

♦ OUT0~OUT15 Output

Email: market@chinaasic.com

Website: www.chinaasic.com

Timing Diagram

Truth Table

CLK	LE	ŌĒ	SDI	OUT0 OUT7 OUT15	SDO
_	Н	L	Dn	DnDn-7Dn-15	Dn-15
_	L	L	Dn+1	No Change	Dn-14
_	Н	L	Dn+2	Dn+2Dn-5Dn-13	Dn-13
Y	X	L	Dn+3	Dn+2Dn-5Dn-13	Dn-13
Y _	X	Н	Dn+3	off	Dn-13

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Supply Voltage	VDD	0~7.0	V
Input Voltage	V _{SDA} ,V _{CLK} ,V _{LE} ,V _{OE}	-0.4~VDD+0.4	V
OUT port current	louт	45	mA
OUT port voltage	V_{DS}	-0.5~+16.0	V
Clock frequency	f _{CLK}	30	MHz
Operating ambient temperature	Topr	-40~+85	°C
Storage ambient temperature	T _{stg}	-55~+150	°C
HBM (Human Body Model)	V _{ESD}	>4	KV

Remarks: The peak reflow temperature for surface mount products must not exceed 260°C. Select a reflow temperature curve appropriate for your process according to the J-STD-020 standard and the recommendations of your solder paste manufacturer.

Tel: 0755-26991392

Email: market@chinaasic.com

Website: www.chinaasic.com

Address: 深圳市南山区高新技术产业园南区高新南一道 015 号国微研发大楼三层

DC Characteristics

(VDD= 5.0V, Ta = 25°C)

Parameter	Symbol	Measurement o	onditions	Min	Тур	Max	Unit
I _{DD} (off)1		Rext floating, OUT0~OUT15 = OFF		-	1.5	-	mA
Quiescent Current	I _{DD} (off)2	Rext = 1800 Ω, OUT	0~OUT15 = OFF	-	2.6	-	mA
	I _{DD} (off)3	Rext = 920 Ω, OUT0	~OUT15 = OFF	-	3.8	-	mA
	I _{OH}			-	-21	-	mA
SDO Drive Current	l _{oL}	- VDE) = 5.0V	-	21	-	mA
5000	V _{OL}	I _{OL} :	= +1mA	-	-	0.4	V
SDO Output Voltage	V _{OH}	Іон	= -1mA	4.6	-	-	V
T 17/16	VIH		D 5 01/	0.7*VDD	-	VDD	V
Input Voltage V _{IL}		VDD=5.0V		GND	-	0.3*VDD	V
OUT Leakage Current	ILEAK	V _{DS} =15V, OUT0~OUT15 = OFF		-	-	0.5	uA
OUT Output Current	Іоит	VDI) = 5.0V	1	-	32	mA
OUT Output Current 1	I _{OUT1}	V _{DS} =1.0V	rext = 1800Ω	-	9.2	-	mA
0 + +6 + +5	,	V _{DS} = 1.0V	Intra-chip	-	±2.5%	-	
Output Current Error	D _{IOUT}	rext = 1800Ω	Inter-chip	-	±3.5%	-	
OUT Output Current 2	I _{OUT2}	V _{DS} = 1.0V	rext = 920Ω	-	17.9	-	mA
0 5		VDS = 1.0V	Intra-chip	-	±2.5%	-	
Output Current Error	D _{IOUT}	rext = 920Ω	Inter-chip	-	±3.5%	-	
Output Current Error / V _{DS} Variation	%/∆V _{DS}	V _{DS} =1.0V∼3.0V, I _{OUT} =17.9mA		-	1	-	%/V
Output Current Error / V _{DD} Variation	%/∆V _{DD}	V _{DD} =4.5V∼5.5V, I _{OUT} =17.9mA		-	1	-	%/V
Pull-up Resistance	R _{OE} (up)	ŌĒ		-	250	-	ΚΩ
Pull-down Resistance	R _{LE} (down)		LE	-	250	-	ΚΩ

Email: market@chinaasic.com

Website: www.chinaasic.com

Address: 深圳市南山区高新技术产业园南区高新南一道 015 号国微研发大楼三层 Note: please refer to the website for the latest version of this datasheet.

Fax: 0755-26991336

(VDD=3.3V, Ta = 25°C)

Parameter	Symbol	Measurement conditions		Min	Тур	Max	Unit
	I _{DD} (off)1	Rext floating, OUT0~OUT15 = OFF		-	1.2	-	mA
Quiescent Current	I _{DD} (off)2	Rext = 1800 Ω, OUT	0~OUT15 = OFF	-	3.6	-	mA
	I _{DD} (off)3	Rext = 920 Ω, OUT0	~OUT15 = OFF	-	2.5	-	mA
	V _{OL}	l _{OL} :	= +1mA	-	-	0.3	V
SDO Drive Current	V _{OH}	I _{OH}	= -1mA	3.0	-	-	V
	Іон			-	-10.5	-	mA
SDO Output Voltage	I _{OL}	YDL) = 3.3V	-	13.3	-	mA
	V _{IH}			0.7*VDD	-	VDD	V
Input Voltage	VIL	VDD=3.3V		GND	-	0.3*VDD	V
OUT Leakage Current	I _{LEAK}	V _{DS} =15V, OUT0~OUT15 = OFF		-	-	0.5	uA
OUT Output Current	Іоит	VDI) =3.3V	1	-	22	mA
OUT Output Current 1	l _{OUT1}	V _{DS} =1.0V	rext = 1800Ω	-	9.2	-	mA
		V _{DS} = 1.0V	Intra-chip	-	±2.5%	-	
Output Current Error	D _{IOUT}	rext = 1800Ω	Inter-chip	-	±3.5%	-	
OUT Output Current 2	lout2	V _{DS} = 1.0V	rext = 920Ω	-	17.9	-	mA
		V _{DS} = 1.0V	Intra-chip	-	±2.5%	-	
Output Current Error	D _{IOUT}	rext = 920Ω	Inter-chip	-	±3.5%	-	
Output Current Error / V _{DS} Variation	%/∆V _{DS}	V _{DS} =1.0V~3.0V, I _{OUT} = 17.9mA		-	1	-	%/V
Output Current Error / V _{DD} Variation	%/∆V _{DD}	V _{DD} =3.3V∼3.8V, I _{OUT} = 17.9mA		-	1	-	%/V
Pull-up Resistance	R _{OE} (up)	——————————————————————————————————————		-	250	-	ΚΩ
Pull-down Resistance	R _{LE} (down)		LE	-	250	-	ΚΩ

Email: market@chinaasic.com

Website: www.chinaasic.com Address: 深圳市南山区高新技术产业园南区高新南一道 015 号国微研发大楼三层 Note: please refer to the website for the latest version of this datasheet.

Fax: 0755-26991336

DC Characteristics Test Circuit

Fax: 0755-26991336

AC Characteristics

(VDD= 5.0V, $Ta = 25^{\circ}C$)

Parar	neter	Symbol	Measurement Conditions	Min	Тур	Max	Unit
	CLK——OUT	t _{pLH1}			30		ns
Propagation Time	LEOUT	t _{pLH2}		-	26	-	ns
(low to high)	OEOUT	t _{pLH3}	V _{IH} =VDD	-	30	-	ns
	CLK-SDO	t _{pLH}	V _{IL} =GND		28		ns
	CLK——OUT	t _{pHL1}	Rext=1800Ω		35		ns
Propagation Time	LEOUT	t _{pHL2}	VDD=5.0V	ı	33	ı	ns
(high to low)	OEOUT	t _{рНL3}	R _L =400Ω	ı	35	ı	ns
	CLK—SDO	t _{pHL}	C _L =10pF	1	27	1	ns
Current outp	ut rise time	tout-rise		1	30	1	ns
Current outpo	ut fall time	tout-fall			35		ns

(VDD= 3.3V, Ta = $25^{\circ}C$)

Parar	neter	Symbol	Measurement Conditions	Min	Тур	Max	Unit
	CLK——OUT	t _{pLH1}		-	42	-	ns
Propagation Time	LEOUT	t _{pLH2}		-	36	-	ns
(low to high)	OEOUT	t _{pLH3}	V _{IH} =VDD	ı	45	1	ns
	CLK-SDO	t _{pLH}	V _{IL} =GND		30		ns
	CLK—OUT	t _{pHL1}	Rext=1800Ω	1	38	1	ns
Propagation Time	LEOUT	t _{pHL2}	VDD=3.3V	ı	33	ı	ns
(high to low)	OEOUT	t _{pHL3}	R _L =200Ω	ı	40	1	ns
	CLK—SDO	t _{pHL}	C _L =10pF	ı	29	1	ns
Current outpu	ut rise time	tout-rise		1	26	1	ns
Current outpu	ut fall time	tout-fall		-	18	-	ns

Email: market@chinaasic.com

Tel: 0755-26991392

Fax: 0755-26991336

Website: www.chinaasic.com

AC Characteristics Test Circuit

Timing Diagram

Email: market@chinaasic.com

Website: www.chinaasic.com

Address: 深圳市南山区高新技术产业园南区高新南一道 015 号国微研发大楼三层 Note: please refer to the website for the latest version of this datasheet.

Fax: 0755-26991336

Applications

The output current variation between channels and chips is very small due to the excellent constant current output characteristics of the SM16206:

- ◆ The maximum current error between channels on one chip is less than ± 2.5%, and the maximum current error between chips is less than ± 3.5%.
- ♦ When the load terminal voltage (V_{DS}) changes, the stability of the output current is not affected, as shown in the figure below.

Fig. SM16206 lout Constant Current Characteristic Curve

Fax: 0755-26991336

Note: please refer to the website for the latest version of this datasheet.

Output Current Adjustment

As shown in the figure below, the output current I_{OUT} is adjusted by an external resistor R_{EXT} , and the output current value can be calculated by applying the following formula:

Iout=16500/R_{EXT} mA

The R_{EXT} in the formula refers to the resistance from the R-EXT pin to ground and the current is in mA. For example, when R_{EXT} = 750 Ω the output current is 22 mA, and when R_{EXT} = 6000 Ω , the output current is 2.8 mA.

Fig. SM16206 I_{OUT} vs R_{EXT} Resistance Curve

Package Power Dissipation (PD)

The maximum power dissipation of the package is given by the formula:

$$P_{D \text{ (max)}} = \frac{(T_j - T_a)}{R_{\text{th (j-a)}}}$$

When 16 channels are fully turned on, the actual power dissipation is:

The actual power dissipation must be less than the maximum power dissipation, that is, $P_{D(act)} < P_{D(max)}$. The relationship between the maximum output current and the duty cycle is:

$$I_{out} = \frac{\frac{T_j - T_a}{R_{th(j-a)}} - IDD * VDD}{V_{DS} * Duty *16}$$

Where T_j is the operating (junction) temperature of the IC, T_a is the ambient temperature, V_{DS} is the average output port voltage, Duty is the duty cycle, and $R_{th(j-a)}$ is the thermal resistance of the package. The figures below shoud the relationship between the maximum output current and the duty cycle.

If you need a larger I_{OUT}, you can add a heatsink with thermal resistance R_{fc} given by the formula:

Given
$$\frac{1}{R_{th (j-a)}} + \frac{1}{R_{fc}} = \frac{P_{D (act)}}{T_j - T_a}$$
 then:

$$R_{fc} = \frac{R_{\text{th (j-a)}} * T_{j} - T_{a}}{P_{D (act)} * R_{\text{th (j-a)}} - T_{j} + T_{a}}$$

Where P_{D(act)}=IDD*VDD+I_{OUT}*Duty*V_{DS}*16

Load Terminal Voltage (VLED)

In order to minimize the power dissipated in the package, it is recommended to keep the output terminal voltage V_{DS} at about 1.0V (based on I_{OUT} = 1mA ~ 32mA). If V_{DS} = V_{LED} – V_F and V_{LED} = 5.0V, the high output voltage V_{DS} may cause $P_{D (act)} > P_{D (max)}$. In this situation, it is recommended to use a lower V_{LED} supply voltage where possible. You can also use an external resistor or Zener diode with a voltage drop V DROP to reduce V_{DS} according to $V_{DS} = (V_{LED} - V_F) - V_{DROP}$.

Fax: 0755-26991336

Website: www.chinaasic.com

Package Soldering Process

These semiconductors comply with the European RoHS standard, and the reflow temperature in the packaging and soldering process must comply with the J-STD-020 standard.

Temperature (°C)

Package Thickness	Volume mm³ < 350	Volume mm³: 350~2000	Volume mm³≥ 2000
<1.6mm	260+0°C	260+0°C	260+0°C
1.6mm~2.5mm	260+0°C	250+0°C	245+0°C
≥2.5mm	250+0°C	245+0°C	245+0°C

Website: www.chinaasic.com

Address: 深圳市南山区高新技术产业园南区高新南一道 015 号国微研发大楼三层 Note: please refer to the website for the latest version of this datasheet.

Packages

SSOP24

Symbol	Min(mm)	Max(mm)	
А	-	2.15	
A1	0.05	0.35	
A2	1.2	1.9	
b	0.15	0.75	
С	0.05	0.45	
D	12.6	13.5	
E	7.6	8.5	
E1	5.6	6.5	
е	1.0TYP		
L	0.2	1.0	
θ	0°	10°	

Email: market@chinaasic.com

Website: www.chinaasic.com Address: 深圳市南山区高新技术产业园南区高新南一道 015 号国微研发大楼三层 Note: please refer to the website for the latest version of this datasheet.

Fax: 0755-26991336

QSOP24

Symbol	Min(mm)	Max(mm)	
А	-	1.95	
A1	0.05	0.35	
A2	1.05	-	
b	0.1	0.4	
С	0.05	0.254	
D	8.2	9.2	
E1	3.6	4.2	
E	5.6	6.5	
е	0.635TYP		
L	0.3	1.5	
θ	0°	10°	

Email: market@chinaasic.com

Website: www.chinaasic.com Address: 深圳市南山区高新技术产业园南区高新南一道 015 号国微研发大楼三层

Tel: 0755-26991392

Note: please refer to the website for the latest version of this datasheet.

QFN24(4*4)

Top Vlew

Bottom Vew

Fax: 0755-26991336

Side View

Symbol	Min(mm)	Max(mm)
А	0.6	1.0
A1	-	0.1
A3	0.203REF	
D	3.8	4.3
Е	3.8	4.3
D1	2.4	3.0
E1	2.4	3.0
К	0.2min	
е	0.5TYP	
b	0.1	0.4
L	0.2	0.7

Email: market@chinaasic.com

Website: www.chinaasic.com Address: 深圳市南山区高新技术产业园南区高新南一道 015 号国微研发大楼三层 Note: please refer to the website for the latest version of this datasheet.

License Statement

Shenzen SunMoon Electronics reserves the right to change, modify, improve, and terminate products, documents, and services. Customers are advised to contact a sales representative to obtain the latest product information before purchasing products.

The products of Shenzen SunMoon Electronics, unless authorized by Shenzen SunMoon Electronics, must not be used for medical or military purposes. Shenzen SunMoon Electronics will not be liable for any damages If the user causes bodily injury or death.

All text, images, and trademarks in this document are the intellectual property of Shenzen SunMoon Electronics. Unless authorized by Shenzen SunMoon Electronics, no individual or organization shall use, modify, reproduce, disclose, disseminate, distribute, or publish these protected works in a manner that infringes the legitimate rights and interests of the company. In the event of such infringement the company will immediately initiate legal proceedings and pursue its legal responsibilities.

Email: market@chinaasic.com

Website: www.chinaasic.com

Address: 深圳市南山区高新技术产业园南区高新南一道 015 号国微研发大楼三层 Note: please refer to the website for the latest version of this datasheet.

Fax: 0755-26991336