Optimization Theory and Algorithms

Instructor: Prof. LIAO, Guocheng (廖国成)

Email: liaogch6@mail.sysu.edu.cn

School of Software Engineering Sun Yat-sen University

Outline

- Convex function
- Equivalent characterization
- Examples of convex function
- Properties of convex function
- Convexity-preserving operations

Convex function

A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if **dom** f is a convex set and for all x, y, and $0 \le \theta \le 1$:

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

Function lies below the line segment between (x, f(x)) and (y, f(y)).

Strict convex : for all $x \neq y$, and $0 < \theta < 1$:

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)$$

A function f is concave if -f is convex.

Examples

- Univariate function:
 - \triangleright Exponential function $f(x) = e^{ax}$, for any a
 - ightharpoonup Logarithmic function $f(x) = \log x$ over \mathbb{R}_{++}
 - ightharpoonup Quadratic function $f(x) = ax^2 + bx + c$, a > 0
 - Power function $f(x) = x^a$ is convex for $a \ge 1$ or $a \le 0$, and is concave for $0 \le a \le 1$.
- Affine function: f(x) = Ax + b
- Quadratic function $f(x) = x^T Q x + q^T x$, where $Q \ge 0$
- Squared loss $f(x) = ||Ax b||_2^2$ (A^TA is always positive semidefinite)
- Norm: $||x||_p \triangleq (\sum_{i=1}^n |x_i|^p)^{1/p}$, where $p \ge 1$

First-order characterization

Suppose f is differentiable. Then f is convex if and only if $\operatorname{dom} f$ is convex and $f(y) \ge f(x) + \nabla f(x)^T (y - x)$, for all $x, y \in \operatorname{dom} f$.

$$\nabla f(x) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix} \in \mathbb{R}^n$$

Second-order characterization

Suppose f is twice differentiable. Then f is convex if and only if dom f is convex and its Hessian matrix is positive semidefinite:

$$\nabla^2 f(x) \ge 0$$
, for all $x \in \operatorname{dom} f$.

$$\nabla^2 f(x) = \begin{bmatrix} \frac{\partial^2 f}{\partial^2 x_1} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \frac{\partial^2 f}{\partial x_n \partial x_2} \end{bmatrix} \in \mathbb{R}^{n \times n}$$

Quadratic function:
$$f(x) = \frac{1}{2}x^TQx + q^Tx$$

$$\nabla f(x) = Qx + q$$
 $\nabla^2 f(x) = Q$ $f(x)$ is convex $\iff Q \geqslant 0$

Squared loss:
$$f(x) = ||Ax - b||_2^2$$

$$\nabla f(x) = 2A^T(Ax - b)$$
 $\nabla^2 f(x) = 2A^TA$ $f(x)$ is convex

Examples

Univariate function:

- Exponential function $f(x) = e^{ax}$, for any a. $f''(x) = a^2 e^{ax} > 0$
- ➤ Logarithmic function $f(x) = \log x$ over \mathbb{R}_{++} . $f''(x) = -\frac{1}{x^2} < 0$
- ightharpoonup Quadratic function $f(x) = ax^2 + bx + c$, a > 0. f''(x) = a > 0
- Power function $f(x) = x^a$ is convex for $a \ge 1$ or $a \le 0$, and is concave for $0 \le a \le 1$. $f''(x) = a(a-1)x^{a-2}$
- Negative entropy $f(x) = x \log x$. $f'(x) = \log x + 1$ $f''(x) = \frac{1}{x} > 0$

Examples

• Quadratic-over-linear function: $f(x, y) = x^2/y$, where y > 0.

$$\nabla^{2} f(x) = \begin{bmatrix} \frac{2}{y} & -\frac{2x}{y^{2}} \\ -\frac{2x}{y^{2}} & \frac{2x^{2}}{y^{3}} \end{bmatrix} = \frac{2}{y^{3}} \begin{bmatrix} y^{2} & -xy \\ -xy & x^{2} \end{bmatrix} = \frac{2}{y^{3}} \begin{bmatrix} y \\ -x \end{bmatrix} \begin{bmatrix} y \\ -x \end{bmatrix}^{T} \ge 0$$

• Norm: $f(x) = ||x||_p \triangleq (\sum_{i=1}^n |x_i|^p)^{1/p}$, where $p \ge 1$

$$f(\theta x + (1 - \theta)y) \le f(\theta x) + f((1 - \theta)y) = \theta f(x) + (1 - \theta)f(y)$$

• Max: $f(x) = \max_{i} x_i$

$$f(\theta x + (1 - \theta)y) = \max_{i} (\theta x_i + (1 - \theta)y_i) \le \theta \max_{i} x_i + (1 - \theta) \max_{i} y_i$$
$$= \theta f(x) + (1 - \theta)f(x)$$

Restriction to a line

 $f\colon \mathbb{R}^n \to \mathbb{R}$ is convex if and only if the function $g\colon \mathbb{R} \to \mathbb{R}$ $g(t) = f(x+ty), \, \operatorname{dom} \, g = \{t | x+ty \in \operatorname{dom} f\}$ is convex in t for any $x \in \operatorname{dom} f$.

Example: Log-determinant. $f: \mathbf{S}_{++}^n \to \mathbb{R}$, $f(X) = \log \det X$ is concave

$$\begin{split} g(t) &= f(X+tV) = \log \det(X+tV) \\ &= \log \det(X^{1/2}IX^{1/2} + tX^{1/2}X^{-1/2}VX^{-1/2}X^{1/2}) \\ &= \log \det(X^{1/2}(I+tX^{-1/2}VX^{-1/2})X^{1/2}) \\ &= 2\log \det(X^{1/2}) + \log \det(I+tX^{-1/2}VX^{-1/2}) \\ &= \log \prod_{i=1}^n (1+t\lambda_i) + 2\log \det(X^{1/2}) \\ &= \sum_{i=1}^n \log(1+t\lambda_i) + 2\log \det(X^{1/2}) \\ &= \operatorname{Eigenvalue} \text{ of } X^{-1/2}VX^{-1/2} \end{split}$$

$$g'(t) = \sum_{i=1}^{n} \frac{\lambda_i}{1 + t\lambda_i} \qquad g''(t) = -\sum_{i=1}^{n} \frac{\lambda_i^2}{(1 + t\lambda_i)^2} < 0$$

Jensen's inequality

Basic: if f is convex, then for any $0 \le \theta \le 1$:

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

Extension to more than two points: if f is convex, then for any $\theta_1,...,\theta_k \in [0,1]$ such that $\sum_{i=1}^k \theta_i = 1$

$$f\left(\sum_{i=1}^k \theta_i x_i\right) \le \sum_{i=1}^k \theta_i f(x_i)$$

Expression with expectation: if f is convex, then:

$$f(E[x]) \le E[f(x)]$$

Example:
$$\frac{a+b}{2} \ge \sqrt{ab}$$
 $f(x) = -\log x$ is convex $\implies -\log \frac{a+b}{2} \le -\frac{1}{2}(\log a + \log b)$ i.e., $-\frac{a+b}{2} \ge -\sqrt{ab}$

Sublevel set and epigraph:

t – sublevel set of a function $f: \mathbb{R}^n \to \mathbb{R}$:

$$C_t = \{x \in \operatorname{dom} f | f(x) \le t\}$$

Sublevel sets of a convex function are convex sets (inverse is false).

A function is quasi-convex if all its sublevel sets are convex.

Epigraph of a function $f: \mathbb{R}^n \to \mathbb{R}$:

$$epi f = \{(x, t) \in \mathbb{R}^{n+1} | x \in dom f, f(x) \le t\}$$

f is convex if and only if **epi** f is a convex set

• Non-negative weighted sum: let $f_1,...,f_m$ be convex functions and $\alpha_1,...,\alpha_m \in \mathbb{R}$ be non-negative values. Then the following function is convex:

$$f(x) = \sum_{i=1}^{m} \alpha_i f_i(x)$$

• Affine composition: let f be a convex function. Then $g(x) \triangleq f(Ax + b)$ is convex

E.g.,
$$f(x) = ||Ax + b||_2^2$$
 is convex

Composition: let f be the composition of $g\colon \mathbb{R}^n \to \mathbb{R}$ and $h\colon \mathbb{R} \to \mathbb{R}$, f(x) = h(g(x))

- g is convex and h is non-decreasing: then f is convex.
- g is concave and h is non-increasing: then f is convex.

Examples:

- $\exp g(x)$ is convex if g is convex.
- 1/g(x) is convex if g is concave and positive.

Pointwise maximum: if $f_1,...,f_m$ are convex function, then

$$f(x) = \max\{f_1(x),...,f_m(x)\}$$

is convex

Examples:

- Piecewise-linear function: $f(x) = \max_{i} (a_i^T x + b_i)$ is convex.
- Sum of r largest components of $x \in \mathbb{R}^n$: $let x_{[1]} \le x_{[2]} \le \cdots \le x_{[n]}$. Then

$$f(x) = \sum_{i=1}^{r} x_{[i]}$$

is convex.

$$\max\{x_{i_1} + x_{i_2} + \dots + x_{i_r} | 1 \le i_1 \le i_2 \le \dots \le i_r\}$$

Sum of any r different components of x is convex function \Rightarrow pointwise maximum of them is convex

If f(x, y) is convex in x for each $y \in C$, then

$$g(x) = \sup_{y \in C} f(x, y)$$

is convex

Examples:

- Distance to the farthest point of a set: $f(x) = \sup_{y \in S} ||x y||$
- Support function of a set: $S_c(x) = \sup_{y \in C} y^T x$

How to verify convexity of a function

- By definition
- Hessian matrix is positive semidefinite
- By convexity-preserving operations

Conjugate function

The conjugate function of a function f is

$$f^*(y) = \sup_{x \in \mathbf{dom}\, f} y^T x - f(x)$$

The domain of conjugate function is where the supremum is finite.

In one-dimensional space, the conjugate function is the maximum gap between the linear function xy and f(x).

The conjugate function is always convex (pointwise supremum of a family of affine functions)

Conjugate function: examples

• Affine function
$$f(x) = ax + b$$

$$f^*(y) = \sup_{x \in \mathbb{R}} xy - ax - b = b, y = a$$

If
$$y \neq a$$
, then $xy - ax - b$ is unbounded for $x \in \mathbb{R}$

• Negative logarithmic $f(x) = -\log x$

$$f^*(y) = \sup_{x>0} xy + \log x = -1 - \log(-y), y < 0$$

If y > 0, then $xy + \log x$ is unbounded as $x \to +\infty$

• Exponential function $f(x) = e^x$

$$f^*(y) = \sup_x xy - e^x = y \log(y) - y, y \ge 0$$

If y < 0, then $xy - e^x$ is unbounded for $x \to -\infty$

• Strictly convex quadratic $f(x) = \frac{1}{2}x^TQx$ with Q > 0

$$f^*(y) = \sup_{x} y^T x - \frac{1}{2} x^T Q x = \frac{1}{2} y^T Q^{-1} y$$
, for all y