DIGITALE SCHALTUNGEN

Robert Wille (robert.wille@jku.at)
Sebastian Pointner (sebastian.pointner@jku.at)

Institut für Integrierte Schaltungen Abteilung für Schaltkreis- und Systementwurf

INHALT DER VORLESUNG

■ Grundlagen

- Beschreibungen über "0" und "1" (Boolesche Algebra)
- Beschreibungen von Schaltungen

■ Speichern

- ☐ Sequentielle Schaltungen
- Speicherelemente

Steuern

- ☐ Endliche Automaten
- ☐ Synthese von Steuerwerken

■ Rechnen

- ☐ Darstellung von Zahlen
- Digitale Schaltungen für Addition, Subtraktion, Multiplikation

Entwerfen

- ☐ Synthese von allgemeinen Schaltungen
- Logikminimierung

INHALT DER VORLESUNG

- **■** Grundlagen
 - ☐ Beschreibungen über "0" und "1"(Boolesche Algebra)
 - ☐ Beschreibungen von Schaltungen
- **■** Speichern
 - ☐ Sequentielle Schaltungen
 - ☐ Speicherelemente

- **■** Steuern
 - ☐ Endliche Automaten
 - ☐ Synthese von Steuerwerken

- Rechnen
 - □ Darstellung von Zahlen
 - ☐ Digitale Schaltungen für Addition, Subtraktion, Multiplikation
 - **■** Entwerfen
 - ☐ Synthese von allgemeinen Schaltungen
 - □ Logikminimierung

ZAHLENDARSTELLUNG

Robert Wille Sebastian Pointner

robert.wille@jku.at sebastian.pointner@jku.at

DEZIMALSYSTEM

- Jede Stelle kann die Werte von 0 bis 9 annehmen
- Stellenwert hängt von der Position in der Zahl ab

■ 7689 =
$$7*10^3 + 6*10^2 + 8*10^1 + 9*10^0$$

= $7*1000 + 6*100 + 8*10 + 9*1$

Formel:
$$Z = \sum_{i} 10^{i} * a_{i}, \{a_{i} \in \mathbb{N} \land 0 \leq a_{i} \leq 9\}$$

ALLGEMEINE STELLENWERTSYSTEME

- Jede Zahl > 1 kann Basis sein! (Meistens jedoch nur ganze Zahlen)
- Häufig verwendete Basen:
 - □ 2: Binär- oder Dualsystem
 - □ 8: Oktalsystem
 - □ 16: Hexadezimal- (oder auch Sedezimal) -system

$$Z = \sum_{i} B^{i} * a_{i}, \{a_{i} \in \mathbb{N} \land 0 \leq a_{i} \leq B - 1\}$$

ALLGEMEINE STELLENWERTSYSTEME

■ Gebräuchliche Zahlensysteme

Name des Systems	Basis	Alphabet	
dual	2	{0,1}	
oktal	8	{0,1,,7}	
dezimal	10	{0,1,,9}	
hexadezimal	16	{0,1,,9, A, B, C, D, E, F}	

■ Darstellung

- ☐ Anhängen der tiefgestellten Basis an die Zahl
- □ Oktalsystem häufig durch O symbolisiert
- ☐ Hexadezimal häufig durch H symbolisiert
- \square Beispiele: 1001₂, 7345₁₀, 7345₀, CAFE_H

DUALSYSTEM

- Jede Stelle kann die Werte von 0 und 1 annehmen
- → Praktisch für digitale Systeme (Computer)
- Stellenwert hängt von der Position in der Zahl ab

■ 1101 =
$$1*2^3 + 1*2^2 + 0*2^1 + 1*2^0$$

= $1*8 + 1*4 + 0*2 + 1*1$

Formel:
$$Z = \sum_{i} 2^{i} * a_{i}, \{a_{i} \in B\}$$

BEISPIELE

■ CAFE_H =
$$12*16^3 + 10*16^2 + 15*16^1 + 14*16^0$$

= $12*4096 + 10*256 + 15*16 + 14$
= 51966_{10}

■
$$7345_0$$
 = $7*8^3 + 3*8^2 + 4*8^1 + 5*8^0$
= $7*512 + 3*64 + 4*8 + 5$
= 3813_{10}

■
$$1001_2$$
 = $1*2^3 + 0*2^2 + 0*2^1 + 1*2^0$
= $1*8 + 0 + 0 + 1$
= 9_{10}

RECHNEN MIT ANDEREN BASEN

- Rechenoperationen lassen sich auf andere Basen übertragen
- Beispiel Addition:

Dezimalsystem:		Hexadezimalsystem:	
Summand1	1059	Summand1	7 3 A F
Summand2	3 4 6 2	Summand2	1 E B 8
Übertrag	0 1 1	Übertrag	1 1 1
Summe	4 5 2 1	Summe	9 2 6 7

RECHNEN MIT ANDEREN BASEN

■ Rechenoperationen lassen sich auf andere Basen übertragen

BASISUMWANDLUNG

- Umwandlung aus Darstellung mit Ausgangsbasis in Darstellung mit Zielbasis
- Zwei Varianten möglich

- 1. Jede Stelle der Zahl mit dem Stellenwert in Zieldarstellung multiplizieren
- 2. Teile aufsummieren
- → Besonders gut geeignet, wenn Zielbasis die "natürliche" Basis ist
- Beispiele:
 - □ Binär nach dezimal:

$$10011_2 = 1*2^4 + 1*2^1 + 1*2^0 = 16 + 2 + 1 = 19_{10}$$

□ Dezimal nach heximal:

$$327_{10} = 3*64_H + 2*A_H + 7 = 12C_H + 14_H + 7 = 147_H$$

□ Dezimal nach oktal:

$$327_{10} = 3*144_0 + 2*12_0 + 7 = 454_0 + 24_0 + 7 = 507_0$$

- 1. Zahl durch Zielbasis dividieren
- 2. Rest ist niederwertigste Stelle des Ergebnisses
- 3. Quotienten durch Zielbasis dividieren
- 4. Rest ist nächste Stelle des Ergebnisses
- 5. Solange bei 3. fortsetzen, bis Quotient 0
- → Besonders gut geeignet, wenn Ausgangsbasis die "natürliche" Basis ist
- Beispiele:
 - □ Von dezimal nach oktal:

$$327_{10} \rightarrow 507_{0}$$

$$327_{10}$$
 : 8 = 40 Rest 7
 40_{10} : 8 = 5 Rest 0
 5_{10} : 8 = 0 Rest 5

82 81 80

- 1. Zahl durch Zielbasis dividieren
- 2. Rest ist niederwertigste Stelle des Ergebnisses
- 3. Quotienten durch Zielbasis dividieren
- 4. Rest ist nächste Stelle des Ergebnisses
- 5. Solange bei 3. fortsetzen, bis Quotient 0
- → Besonders gut geeignet, wenn Ausgangsbasis die "natürliche" Basis ist
- Beispiele:
 - □ Von dezimal nach hexadezimal: $327_{10} \Rightarrow 147_{H}$

$$16^{2}$$
 16^{1} 16^{0} 327_{10} : $16 = 20$ Rest 7
 20_{10} : $16 = 1$ Rest 4
 1_{10} : $16 = 0$ Rest 1

- 1. Zahl durch Zielbasis dividieren
- 2. Rest ist niederwertigste Stelle des Ergebnisses
- 3. Quotienten durch Zielbasis dividieren
- 4. Rest ist nächste Stelle des Ergebnisses
- 5. Solange bei 3. fortsetzen, bis Quotient 0
- → Besonders gut geeignet, wenn Ausgangsbasis die "natürliche" Basis ist
- Beispiele:
 - □ Von binär nach dezimal: $10011_2 \Rightarrow 19_{10}$

FESTKOMMAZAHLEN

- Nachkommastellen lassen sich auch in beliebigen Basen realisieren
- 1. Stelle hinter dem Komma hat den Wert B⁻¹=1/B
- n. Stelle hinter dem Komma hat den Wert B⁻ⁿ=1/Bⁿ

■ Beispiele:

$$\Box 10011,101_{2} = 19 + 1*0,5 + 0*0,25 + 1*0,125
= 19,625_{10}
= 0,010011_{2}$$

コンロ

ZAHLENSYSTEME - DEFINITION

Ein Stellenwertsystem (Zahlensystem) ist ein Tripel

 $S = (b, Z, \delta)$ mit den folgenden Eigenschaften:

- $b \ge 2$ ist eine natürliche Zahl, die **Basis** des Stellenwertsystems.
- Z ist eine b-elementige Menge von Symbolen, den Ziffern.
- $\delta: Z \rightarrow \{0, 1, ..., b-1\}$ ist eine Abbildung, die jeder Ziffer umkehrbar eindeutig eine natürliche Zahl zwischen 0 und b-1 zuordnet.

FESTKOMMAZAHL - DEFINITION

- Eine Festkommazahl ist
 - □ eine endliche Folge von Ziffern aus einem Zahlensystem zur Basis b mit Ziffernmenge Z.
 - \square Sie besteht aus n+1 Vorkommastellen (n \ge 0) und k \ge 0 Nachkommastellen.
 - □ Der Wert <d> einer nicht-negativen Festkommazahl
 - $\Box \qquad d = d_n d_{n-1} \dots d_1 d_0 d_{-1} \dots d_{-k}$
 - \square mit $d_i \in Z$ ist gegeben durch

$$< d > = \sum_{i=-k}^{n} b^{i} \cdot \delta(d_{i})$$

BINÄRES ZAHLENSYSTEM

- Verwendung des binären Zahlensystems hat deutliche Vorteile
 - □ Die einzelnen Stellen können durch einfache physikalische Signale dargestellt werden (Strom oder kein Strom, Licht oder kein Licht)
 - Die Fehleranfälligkeit ist minimal (vgl. Dezimalsystem: Schon bei einem Fehler von 5% kann es zu einer Fehlinterpretation kommen)
 - □ Die Schaltungen zur Verarbeitung der einzelnen Stellenwerte sind extrem einfach (wird später erläutert)
 - ☐ Eine Stelle wird ein "Bit" genannt

NEGATIVE ZAHLEN

- Bisher: Nur positive Zahlen
- Drei gängige Verfahren zur Darstellung negativer Zahlen:
 - □ Vorzeichen und Betrag
 - □ Offset-Darstellung
 - □ Komplement-Darstellung
- Voraussetzung für alle Verfahren:
 - □ Festlegung der Anzahl der Binärstellen (Tetrade=4Bit, Byte=8Bit, Halbwort=16Bit, ...)
- Die Stellenzahl sei im Folgenden 8Bit

NEGATIVE FESTKOMMAZAHLEN

Bei der Darstellung negativer Zahlen gibt es folgende Alternativen:

□ Vorzeichen/Betrag-Darstellung

$$[d_n, d_{n-1}, ..., d_0, d_{-1}, ..., d_{-k}]_{BV} := (-1)^{d_n} \sum_{i=-k,...,n-1} d_i 2^i$$

□ Offset-Darstellung

$$[d_n, d_{n-1}, ..., d_0]_{Off} := \sum_{i=0,...,n} d_i 2^i - 128$$

□ Komplement-Darstellung

$$[d_n, d_{n-1}, ..., d_0, d_{-1}, ..., d_{-k}]_1 := \sum_{i=-k,...,n-1} d_i 2^i - d_n (2^n - 2^{-k})$$

□ 2er-Komplement-Darstellung

$$[d_n, d_{n-1}, ..., d_0, d_{-1}, ..., d_{-k}]_2 := \sum_{i=-k,...,n-1} d_i 2^i - d_n 2^n$$

VORZEICHEN/BETRAG-DARSTELLUNG

■ Höchstwertiges Bit wird als Vorzeichen interpretiert (0=positiv, 1=negativ)

■ Beispiele:

$$\Box 37_{10} = 0010 \ 0101_2
\Box -20_{10} = 1001 \ 0100_2$$

- Wertebereich: -127 ... 127
- Problem:
 - □ 0 kommt doppelt vor (positiv und negativ)

OFFSET-DARSTELLUNG

- Grundidee: Null-Punkt wird verschoben (Offset)
 - □ z.B.: Festlegung des Offset auf 128 (eine 0 wird durch 128 kodiert)
- Beispiele:

$$\Box$$
 37₁₀ = 37 + 128 = 165 = 1010 0101₂
 \Box -20₁₀ = -20 + 128 = 108 = 0110 1100₂

- Offset praktisch immer 2er-Potenz (meist Mitte des Intervalls)
- Wertebereich -128 ... 127 (bei gegebenem Offset)

KOMPLEMENT-DARSTELLUNG

- Bei negativen Zahlen werden alle Stellen negiert (Negation: Umwandlung ins Gegenteil)
- Beispiele:

```
\Box 37<sub>10</sub> = 0010 0101<sub>2</sub>
\Box -20<sub>10</sub> = NEG(0001 0100<sub>2</sub>) = 1110 1011<sub>2</sub>
```

- Wertebereich: -127 ... 127
- Problem:
 - □ 0 kommt doppelt vor

2ER-KOMPLEMENT-DARSTELLUNG

- Negative Zahlen werden folgendermaßen gebildet:
 - 1. Stellenweise negieren
 - 2. 1 aufaddieren

■ Beispiele:

```
\square 37<sub>10</sub> = 0010 0101<sub>2</sub>

\square -20<sub>10</sub> = NEG(0001 0100<sub>2</sub>) +1

= 1110 1011<sub>2</sub> +1 = 1110 1100<sub>2</sub>
```

■ Wertebereich: -128 ... 127

B-KOMPLEMENT-DARSTELLUNG

- 2er-Komplement kann auch auf andere Basen übertragen werden
 - ☐ Für jede Stelle die Differenz zu B-1 bilden
 - □ 1 aufaddieren

■ Beispiele:

$$\Box$$
 -3140₀ = 4637₀ + 1 = 4640₀ \Box -2781₁₀ = 7218₁₀ + 1 = 7219₁₀

■ Analog auch auf einfaches Komplement übertragbar

NEGATIVE FESTKOMMAZAHLEN

Bei der Darstellung negativer Zahlen gibt es folgende Alternativen:

□ Vorzeichen/Betrag-Darstellung

 $[d_n,$

☐ Offse

Welche Darstellung ist am besten?

□ Komplement-Darstellung

$$[d_n, d_{n-1}, ..., d_0, d_{-1}, ..., d_{-k}]_1 := \sum_{i=-k,...,n-1} d_i 2^i - d_n (2^n - 2^{-k})$$

□ 2er-Komplement-Darstellung

$$[d_n, d_{n-1}, ..., d_0, d_{-1}, ..., d_{-k}]_2 := \sum_{i=-k,...,n-1} d_i 2^i - d_n 2^n$$

VORZEICHEN/BETRAG-DARSTELLUNG

- Addition (Fallunterscheidung erforderlich):
 - ☐ Beide Vorzeichen gleich
 - → Addition der Beträge, Vorzeichen bleibt
 - □ Vorzeichen unterschiedlich
 - → Subtraktion des kleineren Betrags vom größeren Betrag
 - → Vorzeichen entspricht dem Vorzeichen des größeren Betrags
- Beispiel:
 - \Box -10 + -31= -(10+31) = -41
 - \Box -20 + 15 = *SIGN*(-20) (20-15) = -5

VORZEICHEN/BETRAG-DARSTELLUNG

- Subtraktion
 - ☐ Rückführung auf Addition
 - Invertieren des Vorzeichen vom Subtrahenden
- Beispiel:
 - \square 20-30 = 20+(-30) = SIGN(-30)(30-20)=-10
- Multiplikation/Division
 - ☐ Getrennte Betrachtung von Vorzeichen und Betrag
- Nachteile:
 - ☐ Viele Fallunterscheidungen (schon bei der Addition)
 - □ Addition und Subtraktion müssen vorhanden sein
- Vorteil:
 - ☐ Einfache Erzeugung negativer Zahlen

OFFSET-DARSTELLUNG

- Addition:
 - ☐ Zahlenwerte werden aufsummiert
 - ☐ Aber: Offset jetzt zweimal enthalten
 - → Offset muss einmal abgezogen werden
- Beispiel:
 - \Box 20₁₀ + 30₁₀ = (20 + 128)_{Offset} + (30 + 128)_{Offset} = 148_{Offset} + 158_{Offset} = (306 - 128)_{Offset} = 178_{Offset}
- Addition, negative Zahlen:
 - ☐ Keine Sonderbehandlung für negative Zahlen
 - □ Addition genau wie bisher (Summieren, dann Offset abziehen)
- Beispiel:

$$\Box 20_{10} + -30_{10} = 148_{Offset} + 98_{Offset} = 118_{Offset}$$

OFFSET-DARSTELLUNG

- Subtraktion:
 - ☐ Subtrahend wird abgezogen
 - ☐ Aber: Offset jetzt keinmal enthalten
 - → Offset muss einmal aufaddiert werden
- Beispiel:
 - \square 20₁₀ 30₁₀ = 148_{Offset} 158_{Offset} = -10+128 = 118_{Offset} = -10
- Vorteil:
 - ☐ Keine Fallunterscheidungen
- Nachteil:
 - ☐ Komplizierte Bildung negativer Zahlen
 - □ Subtraktion und Addition müssen vorhanden sein

2ER-KOMPLEMENT-DARSTELLUNG

■ Addition:

- ☐ Keine Fallunterscheidung bei negativen Zahlen
- □ Keine Korrektur des Ergebnisses

■ Beispiele:

$$\Box$$
 10 + 20 = 30

$$\Box$$
 -17 + 11 = -6

2ER-KOMPLEMENT-DARSTELLUNG

- Subtraktion:
 - ☐ Rückführung auf Addition
 - \Box a-b = a+NEG(b)+1

■ Beispiel:

$$\Box 10_{10} - 20_{10} = -10_{10}$$

BEREICHSÜBERSCHREITUNGEN

- Addition bei Vorzeichen/Betrag:
 - ☐ Gleiche Vorzeichen: Überschreitung, wenn Übertrag in der letzten Stelle
 - □ Verschiedene Vorzeichen: Keine Überschreitung möglich
- Addition bei Offset:
 - □ Wenn durch Korrektur Unterlauf entsteht
 - □ Wenn nach Korrektur Wertebereich immer noch überschritten ist

BEREICHSÜBERSCHREITUNGEN

- Addition bei Zweierkomplement:
 - ☐ Gleiche Vorzeichen: Überschreitung, wenn Übertrag in der letzten Stelle
 - □ Verschiedene Vorzeichen: Keine Überschreitung möglich

$$\Box 64_{10} + 64_{10} = 128_{10}$$

$$\Box -10_{10} + 14_{10} = 4_{10}$$

BEREICHSÜBERSCHREITUNGEN

- Addition bei Zweierkomplement:
 - ☐ Gleiche Vorzeichen: Überschreitung, wenn Übertrag in der letzten Stelle
 - □ Verschiedene Vorzeichen: Keine Überschreitung möglich
 - ☐ Gleiche Vorzeichen: Überschreitung, wenn Vorzeichenbit des Ergebnis anders

MULTIPLIKATION

- Multiplikation im Binärsystem trivial
 - ☐ Wie schriftliche Multiplikation
 - ☐ Multiplikand wird stellengerecht aufsummiert, wenn Multiplikator an der entsprechenden Stelle eine 1 hat

DIVISION

- Binärdivision wie schriftliche Division
- Beispiel

$$\Box$$
 5/3 = 1,6₁₀
= 1+0.5+0,125+...
= 1,101₂

Gleicher Rest – Binärsequenz wiederholt sich

PROBLEME BEI FESTKOMMAZAHLEN

- Darstellung mit *n* Vorkommastellen und *k*
 - □ keine ganz großen bzw. kleinen Zahlen darstellbar!
 - □ Zahlen mit größtem Absolutbetrag: -2ⁿ und 2ⁿ-2^{-k}
 - □ Zahlen mit kleinstem Absolutbetrag: -2-k und 2-k
 - \square Operationen sind nicht abgeschlossen $2^{n-1}+2^{n-1}$ ist nicht darstellbar, obwohl die Operanden darstellbar sind
 - □ Assoziativgesetz und Distributivgesetz gelten nicht, da bei Anwendung der Gesetze evtl. der darstellbare Zahlenbereich verlassen wird!

 Bsp.:
 (2ⁿ⁻

$$^{1}+2^{n-1})-2^{n-1} \rightarrow \leftarrow 2^{n-1}+(2^{n-1}-2^{n-1})$$

