

# Lecture 12 Dimension Reduction

Mahdi Roozbahani Georgia Tech

#### Outline

- Overview
- Principle Component Analysis: Main Idea
- The PCA Algorithm
- PCA and SVD
- Summary

## Motivating Example: Data Visualization

Matrix format (65x53)

53 blood and urine samples (features) from 65 people

|           |  |    | H-WBC  | H-RBC  | H-Hgb   | H-Hct   | H-MCV    | H-MCH   | H-MCHC  |
|-----------|--|----|--------|--------|---------|---------|----------|---------|---------|
| Instances |  | A1 | 8.0000 | 4.8200 | 14.1000 | 41.0000 | 85.0000  | 29.0000 | 34.0000 |
|           |  | A2 | 7.3000 | 5.0200 | 14.7000 | 43.0000 | 86.0000  | 29.0000 | 34.0000 |
|           |  | A3 | 4.3000 | 4.4800 | 14.1000 | 41.0000 | 91.0000  | 32.0000 | 35.0000 |
|           |  | A4 | 7.5000 | 4.4700 | 14.9000 | 45.0000 | 101.0000 | 33.0000 | 33.0000 |
|           |  | A5 | 7.3000 | 5.5200 | 15.4000 | 46.0000 | 84.0000  | 28.0000 | 33.0000 |
|           |  | A6 | 6.9000 | 4.8600 | 16.0000 | 47.0000 | 97.0000  | 33.0000 | 34.0000 |
|           |  | A7 | 7.8000 | 4.6800 | 14.7000 | 43.0000 | 92.0000  | 31.0000 | 34.0000 |
|           |  | A8 | 8.6000 | 4.8200 | 15.8000 | 42.0000 | 88.0000  | 33.0000 | 37.0000 |
|           |  | A9 | 5.1000 | 4.7100 | 14.0000 | 43.0000 | 92.0000  | 30.0000 | 32.0000 |
|           |  |    | \      |        |         |         |          |         |         |

**Features** 

Difficult to see the correlations of different features

### Motivating Example: Data Visualization

Is there a representation better than the coordinate axes?

Is it really necessary to show all the 53 dimensions?

... what if there are strong correlations between the features?

How could we find the *smallest* subspace of the 53-D space that keeps the *most information* about the original data?

A Solution: **Dimension Reduction** 

## Another Example: Dimension Reduction for Text



What are the relations between data points?



## Bag-of-Words Representations

#### document 1 document 2 Each document is an Instance Representation of Machine learning data instances and concerns the functions evaluated construction and on these instances study of systems that are part of all can learn from data. machine learning systems -Each word is a feature learn represent system data instance functionvector in $\mathbb{R}^n$

#### Term-Document Data Matrix - Bag-of-words

|     | database | SQL | index | regression | likelihood | linear |
|-----|----------|-----|-------|------------|------------|--------|
| d1  | 24       | 21  | 9     | 0          | 0          | 3      |
| d2  | 32       | 10  | 5     | 0          | 3          | 0      |
| d3  | 12       | 16  | 5     | 0          | 0          | 0      |
| d4  | 6        | 7   | 2     | 0          | 0          | 0      |
| d5  | 43       | 31  | 20    | 0          | 3          | 0      |
| d6  | 2        | 0   | 0     | 18         | 7          | 16     |
| d7  | 0        | 0   | 1     | 32         | 12         | 0      |
| d8  | 3        | 0   | 0     | 22         | 4          | 2      |
| d9  | 1        | 0   | 0     | 34         | 27         | 25     |
| d10 | 6        | 0   | 0     | 17         | 4          | 23     |

Many more features

Solution: **Dimension Reduction** 

#### What is Dimension Reduction?

- The process of reducing the number of random variables under consideration
  - One can combine, transform or select variables
  - One can use linear or nonlinear operations



### Applications of Dimension Reduction

- The dimension-reduced data can be used for
  - Visualizing, exploring and understanding the data
  - Aggregating weak signals in the data
  - Cleaning the data
  - Speeding up subsequent learning task
  - Building simpler model later
- Key questions of a dimensionality reduction algorithm
  - What is the criterion for carrying out the reduction process?
  - What are the algorithm steps?

#### Outline

- Overview
- Principle Component Analysis: Main Idea
- The PCA Algorithm
- PCA and SVD
- Summary

#### Mahdi's example

Pixel in 2D



Voxel in 3D





Segmented Voids





#### PCA: Dimension Reduction by Capturing Variation

- There are many criteria (geometric based, information theory based, etc.)
- One criterion: want to capture variation in data
  - variations are "signals" or information in the data
  - need to normalize each variables first
- In the process, also discover variables or dimensions highly correlated
  - represent highly related phenomena
  - combine them to form a stronger signal
  - lead to simpler presentation

## Capturing Variation in Data



### Two Equivalent Perspectives of PCA



#### PCA:

Orthogonal projection of the data onto a lower-dimension linear space that...

- maximizes variance of projected data (purple line)
- ☐ minimizes mean squared distance between
  - data point and
  - projections (sum of blue lines)



#### Outline

- Overview
- Principle Component Analysis: Main Idea
- The PCA Algorithm



- PCA and SVD
- Summary

What is variance equation?

$$Var(x) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2$$

## Formulating the Problem

- Given n data points,  $\{x_1, x_2, ..., x_n\} \in \mathbb{R}^d$  with their mean  $\mu = \frac{1}{n} \sum_{i=1}^n x_i$
- Find a direction  $w \in \mathbb{R}^d$  where

$$||w|| = \sqrt{\sum_{j \in d} \omega_j^2} = 1$$

We constrain the norm of w to be equal to one to avoid having very large variance in each new dimension.

• Given n data points,  $\{x_1, x_2, ..., x_n\} \in \mathbb{R}^d$  with their mean  $\mu$ 

$$\|w\| = \sqrt{\sum_{j \in d} \omega_j^2} = 1$$
  $\mu = \frac{1}{n} \sum_{i=1}^n x_i$ 

Such that the variance (or variation) of the data along direction
 w is maximized

$$\max_{||w||=1} \frac{1}{n} \sum_{i=1}^{n} (x_i w - \mu w)^2$$

variance in new feature space

## An Optimization Problem

Manipulate the objective with linear algebra

$$\frac{1}{n}\sum_{i=1}^{n}(x_{i}w-\mu w)^{2} = \frac{1}{n}\sum_{i=1}^{n}((x_{i}-\mu)w)^{2} =$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left( (x_i - \mu) w \right)^T ((x_i - \mu) w) = \frac{1}{n} \sum_{i=1}^{n} w^T (x_i - \mu)^T (x_i - \mu) w$$

$$(AB)^T = B^T A^T$$

$$w^{T} \left( \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \mu)^{T} (x_{i} - \mu) \right) w = w^{T} C w$$

Covariance matrix

# Equivalence to The Eigenvalue Problem

Claim:

$$\max_{||w||=1} w^T C w$$

Form lagrangian function of the optimization problem

$$L(w,\lambda) = w^{\mathsf{T}} C w + \lambda (1 - w^t w)$$

Necessary condition

- If w is a maximum of the original optimization problem, then there exists a  $\lambda$ , where  $(w, \lambda)$  is a stationary point of  $L(w, \lambda)$
- This implies that

$$\frac{\partial L}{\partial w} = 0 = 2Cw - 2\lambda w \quad \Rightarrow Cw = \lambda w$$

# Eigen-Value Problem

Eigen-value problem

d: dimension

• Given a symmetric matrix  $C \in \mathbb{R}^{d \times d}$ 

C is also a positive semidefinite matrix

- Find a vector  $w \in \mathbb{R}^d$  and ||w|| = 1
- Such that

$$Cw = \lambda w$$

- There will be multiple solution of  $w_1, w_2, ..., w_d$  for its corresponding  $\lambda_1, \lambda_2, ..., \lambda_d$ 
  - They are ortho-normal:  $w_i^T w_i = 1$   $w_i^T w_j = 0$

# Principal Direction of the Data



## Variance in the Principal Direction

Principal direction w satisfies

$$Cw = \lambda w$$

Variance in principal direction is

$$w^{\mathsf{T}}Cw$$

$$= \lambda w^{\mathsf{T}}w$$

$$= \lambda$$
eigen-value

## Multiple Principal Directions

- Directions  $w_1, w_2, ...$  which has
  - the largest variances
  - but are orthogonal to each other
- Take the eigenvectors  $w_1, w_2, ...$  of C corresponding to
  - the largest eigenvalue  $\lambda_1$ ,
  - the second largest eigenvalue  $\lambda_2$

...

# Extra Principal Directions



## Relations Between Principal Components

Principal component #1: points in the direction of the **largest variance**.

Each subsequent principal component

- is orthogonal to the previous ones, and
- points in the directions of the largest variance of the residual subspace

# The PCA Algorithm

- Given m data points,  $\{x_1, x_2, ..., x_n\} \in \mathbb{R}^d$  with mean
- Step 1: Estimate the mean and covariance matrix from data

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 and  $C = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^T (x_i - \mu)$ 

**Principal directions** 

- Step 2: Take the eigenvectors  $w_1, w_2, \dots$  of C corresponding to the largest eigenvalue  $\lambda_1$ , the second largest eigenvalue  $\lambda_2$  ...
- Step 3: Compute reduced representation

$$z_{i} = \left(\frac{(x_{i} - \mu)}{\sigma_{1}} w_{1} \quad \frac{(x_{i} - \mu)}{\sigma_{2}} w_{2} \quad \dots\right) \qquad z \Rightarrow n \times k$$

$$k \ll d$$

#### Outline

- Overview
- Principle Component Analysis: Main Idea
- The PCA Algorithm
- PCA and SVD
- Summary

## Singular Value Decomposition

n: instances

 $X_{n \times d}$  d: dimensions

X is a centered matrix

$$U_{n\times n} \rightarrow unitary\ matrix \rightarrow U \times U^T = I$$

$$X = U\Sigma V^T$$
  $\Sigma_{n\times d} \to diagonal\ matrix$ 

$$V_{d \times d} \rightarrow unitary\ matrix \rightarrow V \times V^T = I$$

$$X = \begin{bmatrix} u_{1\times 1} & \dots & \dots & u_{1\times n} \\ \vdots & \vdots & \ddots & \dots & \vdots \\ \vdots & \vdots & \ddots & \dots & \vdots \\ u_{1\times 1} & \dots & \dots & u_{n\times n} \end{bmatrix} \times \begin{bmatrix} \sum_{1\times 1} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \sum_{d\times d} \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} v_{1\times 1} & \dots & \dots & v_{1\times d} \\ \vdots & \vdots & \ddots & \dots & \vdots \\ \vdots & \vdots & \ddots & \dots & \vdots \\ \vdots & \vdots & \ddots & \dots & \vdots \\ v_{d\times 1} & \dots & \dots & v_{d\times d} \end{bmatrix}$$

$$U$$

$$\sum_{d< n} V^T$$

According to PCA  $\rightarrow Cw = \lambda w$ 

Covariance 
$$C_{d\times d} = \frac{1}{n} \sum_{i=1}^{n} (x^i - \mu)^T (x^i - \mu) = \frac{X^T X}{n}$$

**Centering X** 

C is symmetric so we can diagonalize it like:  $C = VLV^T$ 

V: matrix of eigenvectors (each column is an eigenvector)

 $m{L}$ : diagonal matrix with eigenvalues  $\lambda_i$  in the **decreasing** order on the diagonal

$$X = U\Sigma V^{T}$$

$$C = \frac{X^{T}X}{n}$$

$$C = \frac{V\Sigma^{T}U^{T}U\Sigma V^{T}}{n} = \frac{V\Sigma^{2}V^{T}}{n}$$

$$C = \frac{V\Sigma^2 V^T}{n} = V \frac{\Sigma^2}{n} V^T$$
 Columns of **V** are principal directions/axes

V is the right singular vectors (Principal directions)

$$\lambda_i = \frac{\sigma_i^2}{n}$$
 The eigenvalues of covariance matrix

Let's project the data (X) on principal directions:

$$XV = U\Sigma V^T V = U\Sigma$$

#### XV is independent linear combinations of the original data

Projection of one instance (x) on the first principal direction using k dimensions

$$\begin{aligned} \mathbf{p}_1 &= u_{1\times 1} \Sigma_{1\times 1} + u_{1\times 2} \Sigma_{2\times 2} + \ldots + u_{1\times k} \Sigma_{k\times k} \\ \mathbf{p}_2 &= u_{2\times 1} \Sigma_{1\times 1} + u_{2\times 2} \Sigma_{2\times 2} + \ldots + u_{2\times k} \Sigma_{k\times k} \end{aligned} \qquad \begin{aligned} U &\Rightarrow n \times k \\ \Sigma &\Rightarrow k \times k \end{aligned}$$
 Upper left corner



Principal components (Scores) or projections on principal directions

In fact, using the SVD to perform PCA makes much better sense numerically than forming the covariance matrix to begin with, since the formation of  $X^TX$  can cause loss of precision.

#### Are Principal Components Good for Classification?



#### Why PCA potentially works in classification?

the dimension with the largest variance corresponds to the dimension with the largest entropy and thus encodes the most information (Information Theory). The smallest eigenvectors will often simply represent noise components, whereas the largest eigenvectors often correspond to the principal components that define the data.

#### Outline

- Overview
- Principle Component Analysis: Main Idea
- The PCA Algorithm
- PCA and SVD
- Summary

## Summary

#### PCA

- Finds orthonormal basis for data
- Sorts dimensions in order of "importance"
- Discard low significance dimensions

#### Uses

- Get concise low-dimensional representations
- Remove noise

#### Not magic

- Doesn't know class labels
- Can only capture linear variations

#### Image compression using PCA

