

FIG. 1

FIG. 2

FIG. 3

FIG. 4

FIG. 5

FIG. 6

EFFECT OF ALKALI ADDITION ON pH OF SWINE WASTEWATER THAT RECEIVED NITRIFICATION PRETREATMENT VS. CONTROL

Nitrogen losses in swine wastewater
by ammonia volatilization

FIG. 7

Phosphorus removal from swine wastewater
using Calcium Hydroxide

FIG. 8

Initial conditions:

$\text{PO}_4\text{-P} = 63 \text{ mg/L}$, $\text{pH} = 8.05$, alkalinity = 1890 mg/L , $\text{NH}_4\text{-N} = 300 \text{ mg/L}$

After nitrification:

$\text{PO}_4\text{-P} = 63 \text{ mg/L}$, $\text{pH} = 6.06$, alkalinity = 63 mg/L , $\text{NH}_4\text{-N} = 61 \text{ mg/L}$

Phosphorus removal from swine wastewater
using Calcium Hydroxide: effect on pH

FIG. 9

Initial conditions:
 $\text{PO}_4\text{-P} = 63 \text{ mg/L}$, $\text{pH} = 8.05$, alkalinity = 1890 mg/L , $\text{NH}_4\text{-N} = 300 \text{ mg/L}$

After nitrification:
 $\text{PO}_4\text{-P} = 63 \text{ mg/L}$, $\text{pH} = 6.06$, alkalinity = 63 mg/L , $\text{NH}_4\text{-N} = 61 \text{ mg/L}$

Use of Calcium Carbonate Lime was not effective
for removal of phosphorus from swine wastewater

FIG. 10

Initial conditions:

$\text{PO}_4\text{-P} = 63 \text{ mg/L}$, $\text{pH} = 8.05$, alkalinity = 1890 mg/L, $\text{NH}_4\text{-N} = 300 \text{ mg/L}$

After nitrification:

$\text{PO}_4\text{-P} = 63 \text{ mg/L}$, $\text{pH} = 6.06$, alkalinity = 63 mg/L, $\text{NH}_4\text{-N} = 61 \text{ mg/L}$

Application of Carbonate lime to swine wastewater
did not affect pH or phosphorus removal.

FIG. 11

Initial conditions:

$\text{PO}_4\text{-P} = 63 \text{ mg/L}$, $\text{pH} = 8.05$, alkalinity = 1890 mg/L, $\text{NH}_4\text{-N} = 300 \text{ mg/L}$

After nitrification:

$\text{PO}_4\text{-P} = 63 \text{ mg/L}$, $\text{pH} = 6.06$, alkalinity = 63 mg/L, $\text{NH}_4\text{-N} = 61 \text{ mg/L}$