

Computing Infrastructures

System Dependability

Reliability Block Diagrams

The topics of the course: what are we going to see today?

HW Infrastructures:

System-level: Computing Infrastructures and Data Center Architectures, Rack/Structure;

Node-level: Server (computation, HW accelerators), Storage (Type, technology), Networking (architecture and technology);

Building-level: Cooling systems, power supply, failure recovery

SW Infrastructures:

Virtualization:

Process/System VM, Virtualization Mechanisms (Hypervisor, Para/Full virtualization)

Computing Architectures:

Cloud Computing (types, characteristics), Edge/Fog Computing, X-as-a service

Methods:

Reliability and availability of datacenters (definition, fundamental laws, RBDs)

Disk performance (Type, Performance, RAID)

Scalability and performance of datacenters (definitions, fundamental laws, queuing network theory)

An inductive model where a system is divided into blocks that represent distinct elements such as components or subsystems.

Every element in the RBD has its own reliability (previously calculated or modelled)

Blocks are then combined together to model all the possible *success paths*

Model Topology can be different from the actual system topology

RBDs are an approach to compute the reliability of a system starting from the reliability of its components

components in series

All components must be healthy for the system to work properly

components in parallel

If one component is healthy the system works properly

• Series: System failure is determined by the failure of the first component

Parallel: System fails when the last component fails

$$R_{S}(t)=1-\prod(1-R_{i}(t))$$

$$R_{S}(t) = 1 - [(1 - R_{C1}(t)) * (1 - R_{C2}(t))]$$

$$R_{S}(t) = R_{C1}(t) + R_{C2}(t) - R_{C1}(t) * R_{C2}(t)$$

In general, if system S is composed by components with a reliability having an exponential distribution (very common case)

$$R_s(t) = e^{-\lambda_s t}$$

where

Failure in time
$$\lambda_s = \sum_{i=1}^n \lambda_i$$

In general, if system S is composed by components with a reliability having an exponential distribution (very common case)

$$R_s(t) = e^{-\lambda_s t}$$

where

$$\lambda_s = \sum_{i=1}^n \lambda_i$$

$$MTTF_{S} = \frac{1}{\lambda_{S}} = \frac{1}{\sum_{i=1}^{n} \lambda_{i}} = \frac{1}{\sum_{i=1}^{n} \frac{1}{MTTF_{i}}}$$

A special case: when all components are identical

$$R_s(t) = e^{-\lambda_s t}$$

$$R_S(t) = e^{-n\lambda t} = e^{-\frac{nt}{MTTF_1}}$$

$$MTTF_S = \frac{MTTF_1}{n}$$

Availability:

$$A_S = \prod_{i=1}^{n} \frac{MTTF_i}{MTTF_i + MTTR_i}$$

When all components are the same:

$$A_{S}(t) = A_{1}(t)^{n} \qquad A = \left(\frac{MTTF_{1}}{MTTF_{1} + MTTR_{1}}\right)^{n}$$

System P composed by *n* components

$$R_P(t) = 1 - \prod_{i=1}^{n} (1 - R_i(t))$$

Availability

$$A_{P}(t) = 1 - \prod_{i=1}^{n} (1 - A_{i}(t))$$

$$A_{P} = 1 - \prod_{i=1}^{n} (1 - A_{i}) = 1 - \prod_{i=1}^{n} \frac{MTTR_{i}}{MTTF_{i} + MTTR_{i}}$$

Reliability Block Diagrams (recap)

	Туре	Block Diagram Representation	System Reliability (R _S)
$R_s = \prod_i^n R_i$	Series		$R_S = R_A R_B$ $R_A =$ reliability, component A $R_B =$ reliability, component B
$R_s = 1 - \prod_{i=1}^{n} ($	Parallel $1 - R_i$	A B	$R_S = 1-(1-R_A)(1-R_B)$
Component red	Series- Parallel dundancy	A C C B D C	$R_S = [1-(1-R_A)(1-R_B)]^*$ $[1-(1-R_C)(1-R_D)]$ $R_C = \text{reliability, component C}$ $R_D = \text{reliability, component D}$
System redund	Parallel- Series ancy	A C B D	$R_{S} = 1-(1-R_{A}R_{C})^{*}$ $(1-R_{B}R_{D})$

$$R_{A} = 0.95$$

$$R_B = 0.97$$

$$R_{\rm C} = 0.99$$

$$R_D = 0.99$$

$$R_{\rm F} = 0.92$$

$$R_F = 0.92$$

What is the Reliability of the entire system knowing the Reliability of each component?

 $R_G = 0.9215$

$$R_{A} = 0.95$$

$$R_B = 0.97$$

$$R_{\rm C} = 0.99$$

$$R_D = 0.99$$

$$R_{\rm F} = 0.92$$

$$R_F = 0.92$$

$$R_A = 0.95$$

$$R_B = 0.97$$

$$R_{\rm C} = 0.99$$

$$R_D = 0.99$$

$$R_{\rm F} = 0.92$$

$$R_F = 0.92$$

$$R_{H} = 0.9999$$

$$R_{A} = 0.95$$

$$R_{\rm B} = 0.97$$

$$R_{\rm C} = 0.99$$

$$R_D = 0.99$$

$$R_F = 0.92$$

$$R_F = 0.92$$

$$R_{A} = 0.95$$

$$R_{\rm R} = 0.97$$

$$R_{\rm C} = 0.99$$

$$R_D = 0.99$$

$$R_F = 0.92$$

$$R_F = 0.92$$

$$R_S = R_G^* R_H^* R_I = 0.9155$$

$$R_A = 0.95$$

$$R_{R} = 0.97$$

$$R_{\rm C} = 0.99$$

$$R_D = 0.99$$

$$R_F = 0.92$$

$$R_F = 0.92$$

$$R_S = R_G^* R_H^* R_I = 0.9155$$

$$R_s = R_A R_B [1-(1-R_C)(1-R_D)] [1-(1-R_E)(1-R_F)]$$

 $R_s = (0.95)(0.97)[1-(1-0.99)(1-0.99)] [1-(1-0.92)(1-0.92)]$

2 control blocks and 3 voice channels:

system is up if at least 1 control channel and at least 1 voice channel are up

Example 2 - cont'd

- Each control channel has reliability R_c
- Each voice channel has reliability R_v
- Reliability:

$$R = [1 - (1 - R_c)^2][1 - (1 - R_v)^3]$$

$$R_{U1} = (R_A + R_B - R_A R_B) R_C + R_D R_E - (R_A + R_B - R_A R_B) R_C R_D R_E$$

RBD: used to model a system and calculate its reliability

We have a RAID-0 storage system composed of 8 parallel disks; each disk of the system may fail independently of the others;

If the reliability of each disk is $R_d(t)$, what is the overall reliability of the storage system?

How would you model the entire storage system using an RBD?

RBD: used to compare different alternatives

Cable Bundle
Each block has R = 0.9
Each block costs 1

Alternative 1

Alternative 2

r out of n redundancy (RooN)

A system composed of *n* identical replicas where at least *r* replicas have to work fine for the entire system to work fine

r out of n redundancy (RooN)

 R_s = System reliability

 R_c = Component reliability

R_V= Voter Reliability

n = Number of components

r = Minimum number of components which must survive

$$R_S(t) = RV \sum_{i=r}^{n} R_c^i (1 - R_C)^{n-i} \frac{n!}{i! (n-i)!}$$

Binomial coefficient $\binom{n}{i}$

Triple Modular Redundancy - TMR

System works properly if

 2 out of 3 components work properly AND the voter works properly

$$R_{TMR} = R_v \left[\sum_{i=2}^{3} {3 \choose i} R_m^i (1 - R_m)^{3-i} \right] = R_v \left[R_m^3 + 3R_m^2 (1 - R_m) \right] = R_v (3R_m^2 - 2R_m^3)$$

$$MTTF_{TMR} = \int_{0}^{\infty} R_{TMR} dt = \int_{0}^{\infty} R_{v} (3R_{m}^{2} - 2R_{m}^{3}) dt = \int_{0}^{\infty} e^{-\lambda_{v}t} (3e^{-2\lambda_{m}t} - 2e^{-3\lambda_{m}t}) dt$$

$$= \frac{3}{2\lambda_{m} + \lambda_{v}} - \frac{2}{3\lambda_{m} + \lambda_{v}} \cong \frac{3}{2\lambda_{m}} - \frac{2}{3\lambda_{m}} = \left(\frac{5}{6}\right) \left(\frac{1}{\lambda_{m}}\right) = \frac{5}{6}MTTF_{simplex}$$

Triple Modular Redundancy - TMR - GOOD or BAD?

- MTTF_{TMR} is shorter than MTTF_{symplex}
- Can tolerate transient faults and permanent faults
- Higher reliability (for shorter missions)

When do we have the same reliability?

• $R_{TMR}(t) = R_C(t)$

$$3e^{-2\lambda_m t} - 2e^{-3\lambda_m t} = e^{-\lambda_m t}$$

$$t = \frac{\ln 2}{\lambda_m} \cong 0.7 \, \text{MTTF}_{\text{C}}$$

 $R_{TMR}(t) > R_{C}(t)$ when the mission time is shorter than 70% of MTTF_C

TMR: 2 out of 3 components (voter is a 'perfect' element)

Standby redundancy

A system may be composed of two parallel replicas:

- The primary replica working all time, and
- The redundant replica (generally disable) that is activated when the primary replica fails

Standby redundancy

A system may be composed of two parallel replicas:

- The primary replica working all time, and
- The redundant replica (generally disable) that is activated when the primary replica fails
- What do we need for such a redundancy to be operational?

Obviously, we need:

- A mechanism to determine whether the primary replica is working properly or not (on-line self check)
- A dynamic switching mechanism to disable the primary replica and activate the redundant one

Standby redundancy – Quick Formulas

Standby Parallel Model	System Reliability	
Equal failure rates, perfect switching	$R_s = e^{-\lambda t} (1 + \lambda t)$	
Unequal failure rates, perfect switching	$R_s = e^{-\lambda_1 t} + \lambda_1 (e^{-\lambda_1 t} - e^{-\lambda_2 t}) / (\lambda_2 - \lambda_1)$	
Equal failure rates, imperfect switching	$R_{s} = e^{-\lambda t} (1 + R_{\text{switch}} \lambda t)$	
Unequal failure rates, imperfect switching	$R_s = e^{-\lambda_1 t} + R_{\text{switch}} \lambda_1 (e^{-\lambda_1 t} - e^{-\lambda_2 t}) / (\lambda_2 - \lambda_1)$	

where

 R_s = System reliability

 λ = Failure rate

t = Operating time

 $R_{switch} = Switching reliability$

Standby redundancy – Quick Formulas

More in general, a system having one primary replica and *n* redundant replicas (with identical replicas and perfect switching)

