Homework2

JiaRuoyu 2/7/2018

question1

(a)

$$L(\theta) = \prod_{i=1}^{n} p(x_i; \theta) = \prod_{i=1}^{n} \frac{1}{\pi[1 + (x_i - \theta)^2]} = \frac{1}{\pi^n} \prod_{i=1}^{n} \frac{1}{1 + (x_i - \theta)^2}$$

$$l(\theta) = \ln L(\theta) = \ln(\frac{1}{\pi^n} \prod_{i=1}^{n} \frac{1}{1 + (x_i - \theta)^2}) = -n \ln \pi - \sum_{i=1}^{n} \ln(1 + (\theta - x_i)^2)$$

$$l'(\theta) = (-\sum_{i=1}^{n} \ln(1 + (\theta - x_i)^2))' = -\sum_{i=1}^{n} \frac{2(\theta - x_i)}{1 + (\theta - x_i)^2} = -2\sum_{i=1}^{n} \frac{\theta - x_i}{1 + (\theta - x_i)^2}$$

$$l''(\theta) = -2\sum_{i=1}^{n} \frac{1 + (\theta - x_i)^2 - 2(\theta - x_i)^2}{[1 + (\theta - x_i)^2]^2} = -2\sum_{i=1}^{n} \frac{1 - (\theta - x_i)^2}{[1 + (\theta - x_i)^2]^2}$$

$$P(x) = \frac{1}{\pi(1 + x^2)}$$

$$P'(x) = -\frac{1}{\pi} \frac{2x}{(1 + x^2)^2}$$

$$P'(x)^2 = \frac{4}{\pi^2} \frac{x^2}{(1 + x^2)^4}$$

$$I(\theta) = n \int \frac{p'(x)^2}{p(x)} dx = \frac{4n}{\pi} \int_{-\infty}^{\infty} \frac{x^2 dx}{(1 + x^2)^3}$$

Let $x = \tan \beta$, then we have $1 + \tan^2 \beta = \arcsin^2 \beta = \frac{1}{\cos^2 \beta}$, s.t.

$$I(\theta) = \frac{4n}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\tan^2\beta}{(1 + \tan^2\beta)^3} \frac{1}{\cos^2\beta} d\beta = \frac{4n}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2\beta \cos^2\beta \ d\beta = \frac{4n}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2\beta (1 - \sin^2\beta) \ d\beta = \frac{4n}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2\beta - \sin^4\beta \ d\beta = \frac{4n}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2\beta (1 - \sin^2\beta) \ d\beta = \frac{4n}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2\beta (1 - \sin^2\beta) \ d\beta = \frac{4n}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2\beta (1 - \sin^2\beta) \ d\beta = \frac{4n}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2\beta (1 - \sin^2\beta) \ d\beta = \frac{4n}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2\beta (1 - \sin^2\beta) \ d\beta = \frac{4n}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2\beta (1 - \sin^2\beta) \ d\beta = \frac{4n}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2\beta (1 - \sin^2\beta) \ d\beta = \frac{4n}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2\beta (1 - \sin^2\beta) \ d\beta = \frac{4n}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2\beta (1 - \sin^2\beta) \ d\beta = \frac{4n}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2\beta (1 - \sin^2\beta) \ d\beta = \frac{4n}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2\beta (1 - \sin^2\beta) \ d\beta = \frac{4n}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2\beta (1 - \sin^2\beta) \ d\beta = \frac{4n}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2\beta (1 - \sin^2\beta) \ d\beta = \frac{4n}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2\beta (1 - \sin^2\beta) \ d\beta = \frac{4n}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2\beta (1 - \sin^2\beta) \ d\beta = \frac{4n}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2\beta (1 - \sin^2\beta) \ d\beta = \frac{4n}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2\beta (1 - \sin^2\beta) \ d\beta = \frac{4n}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2\beta (1 - \sin^2\beta) \ d\beta = \frac{4n}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2\beta (1 - \sin^2\beta) \ d\beta = \frac{4n}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2\beta (1 - \sin^2\beta) \ d\beta = \frac{4n}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2\beta (1 - \sin^2\beta) \ d\beta = \frac{4n}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2\beta (1 - \sin^2\beta) \ d\beta = \frac{4n}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2\beta (1 - \sin^2\beta) \ d\beta = \frac{4n}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2\beta (1 - \sin^2\beta) \ d\beta = \frac{4n}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2\beta (1 - \sin^2\beta) \ d\beta = \frac{4n}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2\beta (1 - \sin^2\beta) \ d\beta = \frac{4n}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2\beta (1 - \sin^2\beta) \ d\beta = \frac{4n}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2\beta (1 - \sin^2\beta) \ d\beta = \frac{4n}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2\beta (1 - \sin^2\beta) \ d\beta = \frac{4n}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2\beta (1 - \sin^2\beta) \ d\beta = \frac{4n}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2\beta (1 - \sin^2\beta) \ d\beta = \frac{4n}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2\beta (1 - \sin^2\beta) \ d\beta = \frac{4n}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2\beta (1 - \sin^2\beta) \ d\beta$$

 $As 1 - \cos 2\beta = 2\sin^2 \beta$, then we have

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2 \beta \ d\beta = \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (1 - \cos 2\beta) d\beta = \frac{1}{2} (\beta - \frac{1}{2} \sin 2\beta) \Big|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = \frac{1}{2}$$

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^4 \beta \ d\beta = \frac{1}{4} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (1 - \cos 2\beta)^2 d\beta = \frac{1}{4} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^2 2\beta - 2 \cos 2\beta + 1 \ d\beta$$

$$= \frac{1}{4} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos 4\beta}{2} - 2 \cos 2\beta + \frac{3}{2} \ d\beta = \frac{1}{4} (\frac{1}{8} \sin 4\beta - \sin 2\beta + \frac{3}{2}\beta) \Big|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = \frac{3\pi}{8}$$

Finally we have:

$$I(\theta) = \frac{4n}{\pi} (\frac{\pi}{2} - \frac{3\pi}{8}) = \frac{n}{2}$$

(b)

- ## [1] 3.021345
- ## [1] -0.5914735
- ## [1] -0.5914735
- ## [1] 3.021345
- ## [1] 3.021345
- ## [1] 3.021345
- ## [1] 3.021345
- ## [1] 3.021345
- ## [1] 3.021345

(c)

For each vector, vector[1] is the estimation when $\alpha=1$, vector[2] is the estimation when $\alpha=0.64$, vector[3] is the estimation when $\alpha=0.25$

- ## [1] -0.5914827 3.0213332 -0.5915249
- ## [1] -0.5914791 -0.5914824 -0.5915051
- ## [1] -0.5914717 -0.5914659 -0.5914218
- ## [1] 3.021345 3.021345 3.021344

- ## [1] 3.021345 3.021338 3.021345
- ## [1] 3.021345 3.021328 3.021344
- ## [1] 3.021335 3.021345 3.021343
- ## [1] -0.5914408 -0.5914885 3.0213434
- ## [1] -0.5914796 3.0213451 3.0213435

(d)

- ## [1] -0.5915031
- ## [1] -0.5915022
- ## [1] -0.5914394
- ## [1] 3.021336
- ## [1] 3.021354
- ## [1] 3.021359
- ## [1] 3.021358
- ## [1] 3.021356
- ## [1] 3.021357

(e)

speed: The speed of convergence of Newton method is the fastest. And the speed of Fisher method and Fixed-Point method is normal.

stability: The stability of the Newton method is the worst. The stability of fisher method is good. And the stability of Fixed-Point method depends on α , the smaller the α is, the better stability will be.

question 2

(a)

As
$$p(x;\theta) = \frac{1-\cos(x-\theta)}{2\pi}$$
, $0 \leqslant x \leqslant 2\pi$, $\theta \in (-\pi,\pi)$, then we have

$$L(\theta) = \prod_{i=1}^{n} \frac{1 - \cos(x_i - \theta)}{2\pi} = \frac{1}{(2\pi)^n} \prod_{i=1}^{n} [1 - \cos(x_i - \theta)]$$

$$l(\theta) = -n \log(2\pi) + \sum_{i=1}^{n} \log[1 - \cos(x_i - \theta)]$$

(b)

$$E(x|\theta) = \int_0^{2\pi} x P(x|\theta) \, dx = \int_0^{2\pi} x \, \frac{1 - \cos(x - \theta)}{2\pi} \, dx = \frac{1}{2\pi} \int_0^{2\pi} x - x \cos(x - \theta) \, dx = \pi - \frac{1}{2\pi} \int_0^{2\pi} x \cos(x - \theta) \, dx$$

$$\int_0^{2\pi} x \cos(x - \theta) \, dx = x \sin(x - \theta)|_0^{2\pi} - \int_0^{2\pi} \sin(x - \theta) \, dx = -2\pi \sin \theta + \cos(x - \theta)|_0^{2\pi} = -2\pi \sin \theta$$

$$E(x|\theta) = \pi + \sin \theta = \bar{x}$$

$$\hat{\theta}_{moment} = \arcsin(\bar{x} - \pi)$$

[1] 0.09539407

(c)

[1] 0.003118157

(d)

[1] -2.668857

[1] 2.848415

(e)

1	2	3	4	5	6	7	8	9	10	11	12

-2.38382

-2.22595

1	2	3	4	5	6	7	8	9	10	11	12
2.47854											
2.51012											
2.22595											
2.25753											
-2.79428											
-2.76271											
2.32067											
2.44697											
2.2891	2.35225	2.38382	2.4154								
-2.35225	-2.2891	-2.25753									
-2.32067											
-2.57326	-2.54169	-2.47854	-2.4154								
-2.51012	-2.44697										
-2.73113	-2.69956	-2.66799									
-2.63641	-2.60484										
2.54169	2.57326	2.63641	2.66799	2.73113	2.76271	2.85743	2.889	2.92058	2.98372		
2.60484	2.69956	2.79428	2.82585	2.95215							
-3.14159	-3.11002	-3.07845	-3.04687	-3.0153	-2.95215	-2.92058	-2.889	-2.85743	-2.82585		
-2.98372	0.0400=	0.05045	0.11000	0.1.1150							
3.0153	3.04687	3.07845	3.11002	3.14159							
2.1628	0.10100										
1.97336	2.13123	0.10420									
2.00494	2.06808	2.19438									
2.09966 2.03651											
-1.43661											
-2.1628	-2.13123	-2.09966	-1.91021	-1.87864	-1.84707	-1.81549	-1.72077	-1.5629	-1.49976		
-2.1028	-2.13123	-2.03651	-1.91021 -2.00494	-1.97336	-1.94179	-1.78392	-1.75235	-1.6892	-1.49970 -1.65762	-1.62605	-1.
-2.19438	-2.00000	-2.03031	-2.00494	-1.91000	-1.94119	-1.10092	-1.70200	-1.0092	-1.00702	-1.02000	-1.
-1.16402	-1.37346	-1.34189	-1.31031	-1.27874	-1.24716	-1.21559	-1.15244	-1.12087	-1.0893	-1.05772	-1.
0.52097	0.55254	0.58412	0.61569	0.64726	0.67884	0.71041	0.74198	0.77356	0.80513	0.83671	0.8
-0.80513	-0.77356	-0.74198	-0.71041	-0.67884	-0.64726	-0.61569	-0.58412	-0.55254	-0.52097	-0.48939	-0.

question3

(a)

The start point is (1200,0.2), and we get $K=1049.4038970,\ r=0.1182693$

```
## [,1]
## [1,] 1049.4038970
## [2,] 0.1182693
```


(c)

```
## [,1]
## [1,] 820.5349872
## [2,] 0.1926176
## [3,] 0.6441323
## [1,] [,2] [,3]
## [1,] 6.248530e+04 -9.054089e+00 1.051866e-07
## [2,] -9.054089e+00 3.974068e-03 -5.353628e-11
## [3,] 1.051866e-07 -5.353628e-11 2.074532e-02
```

The start point is (1200,0.2,0.5), and we get $K=820.5349872,\ r=0.1926176,\ \sigma=0.6441323.$ The variance of $K,\ r,\ \sigma$ are $6.248530\cdot 10^4,\ 3.974068\cdot 10^{-3},\ 2.074532\cdot 10^{-2}$