(*): Assigned to weekly problem set.

Conditional Variance

1. (*) Let X_1, X_2 , and Y be random variables (not necessarily independent), such that Y has finite variance. Define

$$A = \mathbb{E}[Y|X_1]$$
 and $B = \mathbb{E}[Y|X_1, X_2]$

- (a) Show that $Var(A) \leq Var(B)$. Hint: start by using Eve's law on B.
- (b) Check that the result in (a) makes sense in the extreme case where Y is independent of X_1 .
- (c) Check that the result in (a) makes sense in the extreme case where $Y = h(X_2)$ for some function h.
- 2. Suppose you see a total of $N \sim \text{Geom}(s)$ movies in your lifetime. Suppose that in each movie, you have a probability p of liking the movie, independently of other movies and of N. Let T be the number of movies you like in your lifetime.
 - (a) Find the mean of T.
 - (b) Find the variance of T.
- 3. Emails arrive one at a time in an inbox. Let T_j be the time at which the j-th email arrives. Suppose the waiting times between emails are iid $\text{Exp}(\lambda)$ random variables (i.e. $T_1, T_2 T_1, T_3 T_2, \ldots$ are are iid $\text{Exp}(\lambda)$.

Each email is non-spam with probability p and spam with probability 1-p, independently of other emails and of the waiting times. Let X be the time at which the first non-spam email arrives (so X is a continuous random variable). For example, $X = T_1$ is the first email is non-spam, $X = T_2$ if the first email is spam and the second email is non-spam, etc.

Hint for both parts: Let N be the number of emails until the first non-spam (including that one), and given N, write X as a sum of N terms.

- (a) Find the mean of X.
- (b) Find the variance of X.