Electricity and Magnetism

- Physics 259 L02
 - •Lecture 13

Chapter 23

(please read chapter 22 of the textbook)

Last time

• Chapter 22 and 23.1

This time

• Chapter 23.1

23-1: The Electric Flux

Electric Flux; Gauss' Law

Gauss' Law is equivalent to Coulomb's law. It will provide us:

- (i) an easier way to calculate the electric field in specific circumstances (especially situations with a high degree of symmetry)
- (ii) a better understanding of the properties of conductors in electrostatic equilibrium (more on this as we go)
- (iii) It is valid for moving charges not limited to electrostatics.

A closed surface through which an electric field passes is called **Gaussian surface**

An imaginary mathematical surface

The Gaussian surface is most useful when it matches the shape of the field

Gauss's law relates the electric field at points on a closed Gaussian surface to the net charge enclosed by that surface

Electric Flux (Φ_e)

- Amount of electric field going through a surface
- The number of field lines coming through a surface

Wind going through a loop

The Electric Flux

Amount of electric field going through a surface

$$\Phi_e \alpha E$$

$$\Phi_e\,\alpha\,A$$

$$\Phi_e \alpha \theta$$

$$\Phi_{\rm e} = E_{\perp} A = E A \cos \theta$$

$$\rightarrow \Phi_e = E.A$$

QuickCheck 27.2

The electric flux through the shaded surface is

- A. 0.
- B. 200 N m/C.
- C. $400 \text{ N m}^2/\text{C}$.
- D. Some other value.

QuickCheck 27.1

The electric flux through the shaded surface is

- A. 0.
- B. 200 N m/C.
- C. $400 \text{ N m}^2/\text{C}$.
- D. Flux isn't defined for an open surface.

Electric flux: Flat surface, uniform field

$$\Delta A \rightarrow \Delta \Phi = E \cos(\theta) \Delta A \rightarrow \Delta \Phi = E \Delta A$$

$$\Phi_e = \int \vec{E}.d\vec{A} = \vec{E}.\vec{A}$$

Electric flux: Closed surface, uniform field

Total flux through a surface → Integrating the dot product over the full surface.

$$\Phi = \int \vec{E} \cdot d\vec{A} \quad \text{(total flux)}.$$

The **net flux** through a closed surface (which is used in Gauss' law) →

$$\Phi = \oint \vec{E} \cdot d\vec{A} \quad \text{(net flux)}.$$

Skim: zero flux

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

Tactics: Evaluating surface integrals

For uniform E:

$$\Phi_e = \oint \vec{E}.d\vec{A} =$$

Finding the flux through a closed surface

- 1. Divide the closed surface into pieces that are tangent to the electric field, perpendicular to the electric field, or with a specific angle
- 2. Evaluate the surface integral

The Electric Flux through a Closed Surface

$$\Phi_{\rm e} = \oint \vec{E} \cdot d\vec{A}$$

The area vector dA of a closed surface is always defined to point toward the outside

Electric Flux: Example

Figure 23-6 shows a Gaussian surface in the form of a closed cylinder (a Gaussian cylinder or G-cylinder) of radius R. It lies in a uniform electric field \vec{E} with the cylinder's central axis (along the length of the cylinder) parallel to the field. What is the net flux Φ of the electric field through the cylinder?

This section we talked about:

Chapter 23.1

See you on Wednesday

