Chương 8 CẤU TRÚC DỮ LIỆU HÀNG ĐỢI-QUEUE

TS. Nguyễn Tấn Trần Minh Khang

1. NGUYÊN LÝ HOẠT ĐỘNG

Cấu trúc dữ liệu hàng đợi hoạt động theo nguyên lý vào trước, ra trước (FIFO - First In- First Out)

TS. Nguyễn Tấn Trần Minh Khang

ThS. Cáp Phạm đình Thăng

2. CẤU TRÚC DỮ LIỆU CỦA HÀNG ĐỢI

```
1. struct queue
2. {
3.    int n;
4.    KDL a[100];
5. };
6. typedef struct queue QUEUE;
```

 KDL là kiểu dữ liệu của đối tượng được lưu trong queue.

TS. Nguyễn Tấn Trần Minh Khang

3. KHỞI TẠO HÀNG ĐỢI

- Khái niệm: Khởi tạo hàng đợi là tạo ra hàng đợi rỗng không chứa đối tượng nào hết.
- Định nghĩa hàm

TS. Nguyễn Tấn Trần Minh Khang

4. KIỂM TRA HÀNG ĐỢI RỐNG

- Khái niệm: Kiểm tra hàng đợi rỗng là hàm trả về giá trị 1 khi hàng đợi rỗng. Trong tình huống hàng đợi chưa rỗng thì hàm sẽ trả về giá trị 0.
- Định nghĩa hàm

```
1. int IsEmpty(QUEUE que)
2. {
3.     if(que.n==0)
4.     return 1;
5.     return 0;
6. }
```

TS. Nguyễn Tấn Trần Minh Khang

5. KIỂM TRA HÀNG ĐỢI ĐẦY

- Khái niệm: Kiểm tra hàng đợi đầy là hàm trả về giá trị 1 khi hàng đợi đã đầy và trả về giá trị 0 khi hàng đợi chưa đầy.
- Định nghĩa hàm:

```
1. int IsFull (QUEUE que)
2. {
3.     if (que.n==100)
4.     return 1;
5.     return 0;
6. }
```

TS. Nguyễn Tấn Trần Minh Khang

6. THÊM MỘT ĐỐI TƯỢNG VÀO TRONG HÀNG ĐỢI

- Khái niệm: Thêm một đối tượng vào hàng đợi xét về mặt kỹ thuật với CTDL đã được khai báo bên trên là việc thêm đối tượng đó vào cuối mảng a đang có n phần tử của hàng đợi mà thôi.
- Định nghĩa hàm

```
    void EnQueue (QUEUE &que, KDL x)
    {
        que.a[que.n] = x;
        que.n++;
        }
```

TS. Nguyễn Tấn Trần Minh Khang

6. THÊM MỘT ĐỐI TƯỢNG VÀO TRONG HÀNG ĐỢI

```
    Định nghĩa hàm
```

Hình vẽ minh họa

QUEUE que

TS. Nguyễn Tấn Trần Minh Khang

Bài 5 - 8

ThS. Cáp Phạm đình Thăng

7. LẤY MỘT ĐỐI TƯỢNG RA KHỞI HÀNG ĐỢI

- Khái niệm: Lấy một đối tượng ra khỏi hàng đợi xét về mặt kỹ thuật với CTDL đã được khai báo bên trên là việc lấy đối tượng đầu mảng a của hàng đợi (queue) ra khỏi mảng mà thôi.
- Định nghĩa hàm

TS. Nguyễn Tấn Trần Minh Khang

```
Khoa CNTT
                                CTDL
   Định nghĩa hàm
   KDL DeQueue (QUEUE &que)
1.
2.
       KDL x = que.a[0];
3.
       for (int i=0; i \le que.n-2; i++)
4.
           que.a[i] = que.a[i+1];
5.
       que.n--;
6.
7.
       return x;
8.
                      QUEUE que
   Định nghĩa hàm
                      que.n
                           que.n-2 que.n-1
         que.a
                    que.n-2 que.n-1
  que.a
               que.n
         QUEUE que
 TS. Nguyễn Tấn Trần Minh Khang
                            Bài 5 - 10
```

ThS. Cáp Phạm đình Thăng

ỨNG DỤNG

- Bài toán: Định nghĩa hàm tính tổng các giá trị trong cây nhị phân các số thực bằng hai phương pháp
 - + Đệ quy.
 - + Khử đệ quy với kỹ thuật queue.

TS. Nguyễn Tấn Trần Minh Khang

ỨNG DỤNG (tiếp)

```
Cách 1: Đệ quy
11. struct node
12.
13.
     float info;
14. struct node *pLeft;
15. struct node *pRight;
16. };
17.typedef struct node NODE;
18.typedef NODE*TREE;
19.float Tong (TREE t)
20.
      if (!t)
21.
22.
          return 0;
float a = Tong(t->pLeft);
     float b = Tong(t->pRight);
24.
      return a+b+t->info;
25.
26.}
```

TS. Nguyễn Tấn Trần Minh Khang

ỨNG DỤNG (tiếp)

```
    Cách 2: Khử đệ quy

   + Cấu trúc dữ liệu:
11. struct node
12. {
float info;
struct node *pLeft;
struct node *pRight;
16. };
17. typedef struct node NODE;
18. typedef NODE*TREE;
9. struct queue
10. {
11. int n;
12. NODE*
       NODE* a[100];
13. };
14. typedef struct queue QUEUE;
```

15. Nguyen 1an 1ran Minn Knang

ỨNG DỤNG (tiếp)

Định nghĩa hàm

```
11. void Init (QUEUE &que)
12. {
13.
    que.n=0;
14. }
15. int IsEmpty (QUEUE que)
16. {
17.
       if (que.n==0)
      return 1;
18.
      return 0;
20.}
```

TS. Nguyễn Tấn Trần Minh Khang

ỨNG DỤNG (tiếp)

```
11. int IsFulll(QUEUE que)
12. {
      if (que.n==100)
13.
14.
15.
            return 1;
      return 0;
16.}
17. void EnQueue (QUEUE&que, NODE*
18. {
19.
      que.a[que.n]=x;
      que.n++;
20.
21.}
22. NODE* DeQueue (QUEUE &que)
23. {
24.
      NODE* x = que.a[0];
      for (int i=0; i \le que.n-2; i++)
25.
26.
27.
           que.a[i]=que.a[i+1];
      que.n--;
28.
      return x;
29.}
```

TS. Nguyễn Tấn Trần Minh Khang

ỨNG DỤNG (tiếp)

```
11. float Tong (TREE t)
12. {
       float s=0;
13.
       QUEUE q;
14.
       Init(q);
15.
       if (t!=NULL)
16.
            EnQueue (q,t);
17.
       while (IsEmty (q) == 0)
18.
19.
           NODE*p = DeQueue(q);
20.
           s=s+p->info;
21.
           if (p->pLeft)
22.
              EnQueue(q,p->pLeft);
23.
           if (p->pRight)
24.
              EnQueue(q,p->pRight);
25.
26.
       return s;
27.
28.
```

15. Nguyen 1an 1ran Minn Knang

BÀI TẬP

 Làm tất cả các bài tập trong chương cây nhị phân bằng phương pháp khử đệ quy với kỹ thuật hàng đợi.

TS. Nguyễn Tấn Trần Minh Khang

BÀI TẬP

 Cho một hàng đợi q và một đoạn chương trình như sau:

```
struct QUEUE q;
1.
  int x=5, y=3;
2.
3. Enqueue (q, 8);
  Enqueue (q, 9);
4.
  Enqueue (q, y);
5.
6. Dequeue (q, x);
7. Enqueue (q, 18);
8. Dequeue (q, x);

    Enqueue (q, 22);

10. while (IsEmpty (q) == 0)
11. {
    Dequeue(q,y);
12.
     printf("%d",y);
13.
14.}
```

 Hãy cho biết kết quả in ra màn hình của đoạn chương trình trên.

TS. Nguyễn Tấn Trần Minh Khang

BÀI TẬP

 Cho một hàng đợi q và một đoạn chương trình như sau:

```
1. struct QUEUE q;

    Hàng đợi rồng

2. int x=5, y=3;
- x=5, y=3
3. Enqueue (q,8);
  Hàng đợi chứa (8)
4. Enqueue (q, 9);
  Hàng đợi chứa (9, 8)
5. Enqueue (q,y);
   Hàng đợi chứa (3, 9, 8)
6. Dequeue (q,x);
   Hàng đợi chứa (3, 9) x=8, y=3
7. Enqueue (q, 18);
   Hàng đợi chứa (18, 3, 9) x=8, y=3
8. Dequeue (q,x);
   Hàng đợi chứa (18, 3) x=9, y=3
9. Enqueue (q, 22);
   Hàng đợi chứa (22, 18, 3) x=9, y=3
```

TS. Nguyễn Tấn Trần Minh Khang

BÀI TẬP

```
Hàng đợi chứa (22, 18, 3) x=9, y=3
10. while (IsEmpty(q) == 0)
11. {
12. Dequeue (q, y);
13. printf("%d", y);
14. }
   Lần lặp 1
       Dequeue (q,y);
   2. Hàng đợi chứa (22, 18) x=9, y=3
   3. Xuất 3
   Lần lặp 2
   1. Dequeue (q,y);
   2. Hàng đợi chứa (22) x=9, y=18
    3. Xuất 18
   Lần lặp 3
       Dequeue (q,y);
   2. Hàng đợi chứa () x=9, y=22
    3. Xuất 22
    Kết luận: Đoạn chương trên xuất 3 18 22.
```

TS. Nguyễn Tấn Trần Minh Khang

ThS. Cáp Phạm đình Thăng