Gov 51: Conditional Probability and Independence

Matthew Blackwell

Harvard University

Conditional probability

- If we know that B has occurred, what is the probability of A?
 - Conditioning our analysis on B having occurred.
- · Examples:
 - Probability of two states going to war if they are both democracies?
 - Probability of a judge issuing a pro-choice ruling if they have daughters?
 - Probability of a coup in a country if it has a presidential system?
- Conditional probability extremely useful for data analysis.

Conditional Probability definition

- Definition: If $\mathbb{P}(B)>0$ then the **conditional probability** of A given B is

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \text{ and } B)}{\mathbb{P}(B)}.$$

- How often A and B occur divided by how often B occurs.
- WARNING! $\mathbb{P}(A \mid B)$ does **not**, in general, equal $\mathbb{P}(B \mid A)$.
 - $\mathbb{P}(\text{smart} \mid \text{in gov 51})$ is high
 - $\mathbb{P}(\text{in gov 51} \mid \text{smart})$ is low.
 - There are many many smart people who are not in this class!
- · If all outcomes equally likely:

$$\mathbb{P}(A \mid B) = \frac{\text{number of outcomes in both } A \text{ and } B}{\text{number of outcomes in just } B}$$

Conditional probability

Conditional probability

US Senate example

	Democrats	Republicans	Independents	Total
Men	28	44	2	74
Women	17	9	0	26
Total	45	53	2	100

- Choose one senator at random from this population
- · What is the probability of choosing a woman?

•
$$\mathbb{P}(\text{Woman}) = \frac{26}{100} = 0.26$$

- What is the probability of choosing a Republican who is a woman?
 - $\mathbb{P}(\text{Woman and Republican}) = \frac{9}{100} = 0.09$
- What is the probability that a randomly selected Republican is a woman:

•
$$\mathbb{P}(\text{Woman }|\text{ Rep.}) = \frac{\mathbb{P}(\text{Woman and Rep.})}{\mathbb{P}(\text{Rep.})} = \frac{9/100}{53/100} = \frac{9}{53} \approx 0.17$$

Conditional probability rules

· Multiplication rule:

$$\mathbb{P}(A \text{ and } B) = \mathbb{P}(A \mid B)\mathbb{P}(B) = \mathbb{P}(B \mid A)\mathbb{P}(A)$$

Multiplication rule, example

	Democrats	Republicans	Independents	Total
Men	28	44	2	74
Women	17	9	0	26
Total	45	53	2	100

- · Draw the names of two senators from a hat.
- · What's the probability that we draw two women?
 - Let W_1 and W_2 be the events that 1st and 2nd draws are women.
 - · We could make a list of all possible pairs to draw and count them...
 - Or we could just use the multiplication rule:

$$\mathbb{P}(\mathit{W}_1 \text{ and } \mathit{W}_2) = \mathbb{P}(\mathit{W}_1) \mathbb{P}(\mathit{W}_2 \mid \mathit{W}_1)$$

Law of Total Probability

- Conditional probability lets us restate the law of total probability.
- Law of total probability:

$$\begin{split} \mathbb{P}(A) &= \mathbb{P}(A \text{ and } B) + \mathbb{P}(A \text{ and not } B) \\ &= \mathbb{P}(A \mid B) \mathbb{P}(B) + \mathbb{P}(A \mid \text{not } B) \mathbb{P}(\text{not } B) \end{split}$$

Independence

- Two events are **independent** if one occurring has no bearing on the probability of the other occurring.
 - Formally, $\mathbb{P}(A \text{ and } B) = \mathbb{P}(A)\mathbb{P}(B)$.
- If A and B independent, then $\mathbb{P}(A \mid B) = \mathbb{P}(A)$
 - Knowing B occurred doesn't change the probability of A

Sampling and independence

- $oldsymbol{\cdot}$ Sampling > 1 with replacement: **independent draws**
 - Randomly draw 1 senator, note the name, then put it back in hat.
 - Shuffle, randomly draw 2nd senator, note the senator.
 - First draw doesn't affect second → independence
- Sampling > 1 without replacement: **dependent draws**
 - · Randomly pick 1st senator, note name, leave it out.
 - Randomly pick 2nd senator from remaining 99 senators.
 - First draw affects the probabilities of the second.