



Universidade Federal de Roraima Departamento de Ciência da Computação Arquitetura e Organização de Computadores

Processador Uniciclo 8 Bits (BORI)

Rosialdo Queivison Vidinho de Queiroz Vicente Venícius Jacob Pereira de Oliveira

### Características

Processador Uniciclo de 8 bits baseado na arquitetura MIPS;

# Formato das Instruções

| Instrução do tipo R |        |        |  |  |  |
|---------------------|--------|--------|--|--|--|
| 4 bits              | 2 bits | 2 bits |  |  |  |
| 7-4                 | 3-2    | 1-0    |  |  |  |
| Opcode              | Reg2   | Reg1   |  |  |  |

| Instrução do tipo I |        |          |  |  |  |  |
|---------------------|--------|----------|--|--|--|--|
| 4 bits              | 2 bits | 2 bits   |  |  |  |  |
| 7-4                 | 3-2    | 1-0      |  |  |  |  |
| Opcode              | Reg2   | Imediato |  |  |  |  |

| Instrução do tipo J |          |  |  |  |
|---------------------|----------|--|--|--|
| 4 bits              | 4 bits   |  |  |  |
| 7-4                 | 3-0      |  |  |  |
| Opcode              | Endereço |  |  |  |

# Conjunto de Instruções

| Opcode | Nome | Formato | Nome                | Exemplo                |  |
|--------|------|---------|---------------------|------------------------|--|
| 0000   | LW   | R       | Load                | lw S0, memória<br>(00) |  |
| 0001   | SW   | R       | Store               | sw S0, memória<br>(00) |  |
| 0010   | ADD  | R       | Soma                | add S0, S1             |  |
| 0011   | SUB  | R       | Subtração           | sub S0, S1             |  |
| 0100   | ADDI | 1       | Soma imediata       | addi S0, 11            |  |
| 0101   | SUBI | 1       | Subtração imediata  | subi S0, 11            |  |
| 0110   | MOVE | R       | Move                | move S0, S1            |  |
| 0111   | Ц    | 1       | Load Imediato       | li S0, 11              |  |
| 1000   | BEQ  | J       | Branch if equal     | Beq 0000               |  |
| 1001   | BNE  | J       | Branch if not equal | Bne 0000               |  |
| 1010   | СМР  | R       | Comparação          | Cmp S0, S1             |  |
| 1011   | JUMP | J       | Salto incondicional | Jump 0000              |  |

### **RTL Viwer**



### **Datapath**



#### **Wave Fibonacci**



## **Overflow**

| Pointer: 709.46 ns    |                       |                       | Interval: 70          | Interval: 709.46 ns Start: |                       |                       | End:                  |                       |                       |                       |                    |
|-----------------------|-----------------------|-----------------------|-----------------------|----------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|--------------------|
| 620 <sub>1</sub> 0 ns | 630 <sub>i</sub> 0 ns | 640 <sub>i</sub> 0 ns | 650 <sub>,</sub> 0 ns | 660,0 ns                   | 670 <sub>i</sub> 0 ns | 680 <sub>i</sub> 0 ns | 690 <sub>1</sub> 0 ns | 700 <sub>i</sub> 0 ns | 710 <sub>;</sub> 0 ns | 720 <sub>i</sub> 0 ns | 730 <sub>1</sub> 0 |
|                       |                       |                       |                       |                            |                       |                       |                       |                       |                       |                       |                    |
| 89 X                  | 0                     | 89                    | 144                   | 233                        | 89                    | 144                   | X 0                   | 144                   | 233                   | 121                   | 144                |
|                       |                       |                       |                       |                            |                       |                       |                       |                       |                       |                       |                    |
| 0011                  | 0100                  | 1100                  | 1101                  | 0100                       | 0000                  | 0011                  | 0100                  | 1100                  | 1101                  | 0100                  | 0000               |
| 0010 X                | 1011                  | 0000                  | 00                    | 010                        | 0000                  | 0010                  | 1011                  | 0000                  | 00                    | 10                    | 0000               |
| 00000000              | 10010000              | 01011001              | 00000000              | 10010000                   | 01011001              | 00000000              | 11101001              | 10010000              | 00000000              | 11101001              | 100100             |
|                       | 01011001              |                       | 10010000              | 0101                       | 11001                 | X                     | 10010000              |                       | 11101001              | 100                   | 0000               |
|                       |                       |                       |                       | - 1                        |                       |                       |                       |                       |                       |                       |                    |
| 01011001              | 0000                  | 0000                  | 10010000              | 11101001                   | 00000000              | 10010000              | 0000                  | 00000                 | 11101001              | 01111001              | 000000             |
| 00001000              | 00001001              | 00000100              | 00000101              | 00000110                   | 00000111              | 00001000              | 00001001              | 00000100              | 00000101              | 00000110              | 000001             |
| 00100011              | 10110100              | 00001100              | 00101101              | 00100100                   | 00000000              | 00100011              | 10110100              | 00001100              | 00101101              | 00100100              | 000000             |
| X                     | 01                    | 1                     | 1                     | V 01                       | X                     | 00                    | 01                    | X /                   | 11                    | 01                    | X                  |
| 11 X                  | 0                     | 0                     | 01                    | X                          | 00                    | X 11                  | X                     | 00/                   | X 01                  |                       | 00                 |

Antes de passar a capacidade máxima do preocessador, ele retorna um overflow para indicar que atingiu o mázimo de dados possívies

### **Considerações finais**

- Em decorrência do processador ter apenas 8 bits não é possível fazer operações muito grandes como foi demonstrado no teste de Fibonacci;
- É possível executar os testes se dentro dos limites operacionais do processador.