Dimensionality Reduction

Linear Discriminant Analysis

Dimensionality reduction algorithms

Linear

- PCA
- MDS
- Factor analysis
- LDA (supervised)

Nonlinear

- t-SNE
- SNE
- QDA (supervised)
- Sammon mapping
- Isomap
- Local Linear Embedding (LLE)
- CCA
- MVU
- Laplacian Eigenmaps

Linear Discriminant Analysis

- Want to reduce dimensionality while preserving ability to discriminate
- Suppose that we have N p-dimensional data points x_i , for $i=1,\ldots,N$, which belong to C known classes ω_1,\ldots,ω_c .

How do we utilize the label information to find informative directions (i.e., projection vectors)?

One idea...

We could then choose the distance between the projected means as our objective function...

Fisher's solution

• Find projections maximizing between-class scatter while minimizing within-class scatter

We want a projections where examples from the same class are projected very close to each other and, at the same time, the projected means are as far apart as possible

Fisher's solution

• Scatter of class ω_i

$$S_i = \sum_{x \in \omega_i} (x - \mu_i)(x - \mu_i)^T$$

Within-class scatter

$$S_W = \sum_{i=1}^C S_i$$

• Between-class scatter

$$S_B = \sum_{i=1}^{C} N_i (\mu_i - \mu) (\mu_i - \mu)^T$$

Fisher's Linear Discriminant Analysis

- Linear discriminant analysis constructs one or more discriminant equations D_i (linear combinations of the p predictor variables x_k) such that the different groups differ as much as possible on D.
- Discriminant function:

$$D_{i} = b_{0} + \sum_{k=1}^{p} b_{k} X_{k}$$

• Examine the absolute value of the coefficients b_k to determine which predictors play an important role; the larger the value, the more important the predictor.

LDA in R

```
library(tidyverse)
library(caret)
library(MASS)
#use the trusty old "iris" data for an example
data(iris)
preproc.param <- iris %>% preProcess(method = c("center", "scale"))
# Transform the data using the estimated parameters
transformed <- preproc.param %>% predict(iris)
# Fit the model
lda.model <- Ida(Species~., data = transformed)</pre>
```

```
Call:
lda(Species \sim ., data = transformed)
Prior probabilities of groups:
   setosa versicolor virginica
0.3333333 0.3333333 0.3333333
Group means:
          Sepal.Length Sepal.Width Petal.Length Petal.Width
            -1.0111914 0.8504137 -1.3006301 -1.2507035
setosa
versicolor 0.1119073 -0.6592236 0.2843712 0.1661774
virginica 0.8992841 -0.1911901 1.0162589 1.0845261
Coefficients of linear discriminants:
                              1 D2
                   1 D1
Sepal.Length 0.6867795 0.01995817
Sepal.Width 0.6688251 0.94344183
Petal.Length -3.8857950 -1.64511887
Petal.Width -2.1422387 2.16413593
Proportion of trace:
  LD1
       1 D2
0.9912 0.0088
```

The first trace number indicates the percentage of between-group scatter that the first discriminant function is able to explain from the total amount of betweengroup scatter.

High trace number \rightarrow discriminant function plays an important role!

Make predictions predictions <- model %>% predict(transformed)

```
> tail(predictions$x)
          LD1
                     1 D2
145 -6.847359 2.4289507
146 -5.645003
              1.6777173
147 -5.179565 -0.3634750
148 -4.967741 0.8211405
                            > tail(predictions$posterior)
                                       setosa versicolor virginica
149 -5.886145 2.3450905
150 -4.683154 0.3320338
                            145 4.048249e-46 2.524984e-07 0.9999997
                            146 4.970070e-39 7.473361e-05 0.9999253
                             147 4.616611e-36 5.898784e-03 0.9941012
                             148 5.548962e-35 3.145874e-03 0.9968541
                             149 1.613687e-40 1.257468e-05 0.9999874
                             150 2.858012e-33 1.754229e-02 0.9824577
```

> tail(predictions\$class)
[1] virginica virginica virginica virginica virginica

Model accuracy

```
> mean(predictions$class==transformed$Species)
[1] 0.98
```

lda.data <- cbind(transformed, predict(lda.mdl)\$x)</pre>

ggplot(lda.data, aes(LD1, LD2)) + geom_point(aes(color = Species))

