

G. Hénaff

FATIGUE OF NOTCHED COMPONENTS

Notch effect

⇒ The local stress at the notch root is higher than the gross stress

3

G. Hénaff – 2016

Stress concentration factor

Definition: ratio "local stress/ gross stress on the net section"

$$K_t = \frac{\sigma_{local}}{\sigma_{net}}$$

K_t:

- is defined within the framework of elasticity;
- Only depends on geometry, in particular the notch tip radius! (typically not on the constitutive law of the considered material)

G. Hénaff – 2016

Relation between K_t , K_σ and K_ϵ

G. Hénaff – 2016

Reduction in fatigue life

Notch effect on fatigue limit quantified by the K_f coefficient :

$$K_f = \frac{\sigma_D(\text{smooth})}{\sigma_D(\text{notched})}$$

Sensitivity to notch effect:

$$q = \frac{K_f - 1}{K_t - 1}$$

- q=0: insensitive to notch effect;
- q=1: no adaptation (K_f=K_t)

G. Hénaff – 2016

Determination of the q coefficient

Peterson: m=1 Neuber: m=1/2

G. Hénaff – 2016

Application to Wöhler curves

$$K_f \sqrt{(\Delta S \times \Delta e)} = \sqrt{(\Delta \sigma \times \Delta \epsilon)}$$

The determination of K_f permits the prediction of the fatigue life of notched components on the basis of the Wöhler curve established on smooth samples.

G. Hénaff – 2016

Application to Wöhler curves

Neuber's Rule

Problem: determine the local stress/strain amplitude at the notch root from the far field loading

$$\rightarrow$$
 simple solution in the framework of elasticity:
$$K_t^2 = K_\sigma \times K_\epsilon$$

→ Idea: extrapolate the previous relation to the elasto-plastic domain

$$K_t^2 = K_\sigma imes K_\epsilon$$
 Still valid in the easto-plastic domain

G. Hénaff – 2016

Neuber's Rule

G. Hénaff – 2016

Extension to cyclic loading

G. Hénaff – 2016

13

Equivalent Deformation Energy (EDE) criterion

Strain energy density in elasticity: $\frac{W_{local} = K_t^2 \times W_{global} }{}$

Hyp.: relation always satisfied in elasticity

G. Hénaff – 2016

Comparison Neuber/EDE using Ramberg-Osgood constitutive law

EDE:
$$W_{locale} = \int_{0}^{\varepsilon} \sigma(\varepsilon) d\varepsilon = \left[\sigma \times \varepsilon\right]_{0}^{\varepsilon} - \int_{0}^{\varepsilon} \varepsilon d\sigma \longrightarrow W_{locale} = \frac{\sigma^{2}}{2E} + \frac{1}{1+n} \left(\frac{\sigma}{K}\right)^{1/n}$$

$$\frac{\sigma^2}{2E} + \frac{\sigma}{1+n} \left(\frac{\sigma}{K}\right)^{1/n} = \frac{(K_t \times S)^2}{2E}$$

Neuber

$$\frac{\sigma^2}{2E} + \frac{\sigma}{2} \left[\frac{\sigma}{K} \right]^{1/n} = \frac{(K_t \times S)^2}{2E}$$

G. Hénaff – 2016

Application of Neuber's rule: prediction of crack initiation in a suspension triangle

