My First Document

Jakir Hasan

December 24, 2022

Contents

Practic	cal 1: Document Structure	1
1.1	Introduction	1
1.2	Methods	1
	1.2.1 Stage 1	1
	1.2.2 Stage 2	1
1.3	Results	1
Practic	cal 2: Typesetting Text	1
2.4	Font Effects	2
2.5	Coloured Text	2
2.6	Font Sizes	2
2.7	Lists	3
2.8	Comments & Spacing	3
2.9	Special Characters	3
2.10	Checkpoint 2	3
Practic	cal 3: Tables	3
3.11	Tables	4
3.12	Checkpoint 3	5
Practic	cal 4: Figures and Equations	5
	Figures	6
	Sub Figures	6
4.15	Equations	7
	Powers & Indices	7
4.17	Fractions	7
	Roots	7
4.19	Sums, Limits & Integrals	7
	4.19.1 Matrices	8
	4.19.2 Greek Letters	
	4.19.3 Checkpoint	

Practical 5: References

8

List of Tables

2 1	Fruits				1
.)	PHILLS				4

List of Figures

4.1	My test image.																												(
-----	----------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---

Practical 1: Document Structure

1.1 Introduction

This is the introduction.

1.2 Methods

1.2.1 Stage 1

The first part of the methods.

1.2.2 Stage 2

The second part of the methods.

1.3 Results

Here are my results. Referring to section 1.2.1 on page 1.

Practical 2: Typesetting Text

2.4 Font Effects

words in italic
words slanted
WORDS IN SMALLCAPS
words in bold
words in teletype
sans serif words
roman words
underlined words

2.5 Coloured Text

fire

Red, green, blue, magenta, yellow, and

2.6 Font Sizes

tiny words
scriptsize words
footnotesize words
small words
normalsize words
large words
Large words
LARGE words
huge words

2.7 Lists

- 1. First thing
- 2. Second thing
 - A sub-thing
 - Another sub-thing
- 3. Third thing
- First thing
- + Second thing

Fish A sub-thing

Plants Another sub-thing

Q Third thing

2.8 Comments & Spacing

Believe that life is worth living, and your belief will help create the fact.

2.9 Special Characters

2.10 Checkpoint 2

 $\#1\mathrm{A}\backslash642$ costs \$8 & is sold at a ~10% profit.

Practical 3: Tables

3.11 Tables

Table 3.1 shows fruits.

Apples	Green
Strawberries	Red
Oranges	Orange

8	here's
86	stuff
2008	now

Country List									
Country Name	ALPHA 2 Code	ALPHA 3 Code	Numeric Code						
Afghanistan	AF	AFG	004						
Albania	AL	ALB	008						
Algeria	DZ	DZA	012						
Angola	AO	AGO	024						

Apples	Green
Strawberries	Red
Oranges	Orange

Table 3.1: Fruits

3.12 Checkpoint 3

Item	Quantity	Price(\$)
Nails	500	0.34
Wooden boards	100	4.00
Bricks	240	11.50

		Year	
City	2006	2007	2008
London	45789	46551	51298
Berlin	34549	32543	29870
Paris	49835	51009	51970

Practical 4: Figures and Equations

4.13 Figures

Figure 4.1: My test image

4.14 Sub Figures

4.15 Equations

In line equation 1 + 2 = 3. Isn't it nice?

$$1+2=3$$

$$1+2=3$$

$$a = b+c$$

$$= y-z$$

$$(4.1)$$

4.16 Powers & Indices

$$n^2$$

$$2_a$$

$$b_{a-2}$$

4.17 Fractions

$$\frac{\frac{a}{3}}{\frac{y}{x} + b}$$

4.18 Roots

$$\sqrt{y^2}$$

$$\sqrt[x]{y^2}$$

4.19 Sums, Limits & Integrals

$$\sum_{x=1}^{5} y^{z}$$

$$\lim_{x \to \infty} f(x)$$

$$\int_{a}^{b} f(x)$$

$$7$$

4.19.1 Matrices

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

4.19.2 **Greek Letters**

 $\alpha \ \beta \ \delta, \Delta \ \theta, \Theta \ \mu \ \pi, \Pi \ \sigma, \Sigma \ \phi, \Phi \ \psi, \Psi \ \omega, \Omega$

4.19.3Checkpoint

$$e = mc^2 (4.2)$$

$$\pi = \frac{c}{d} \tag{4.3}$$

$$\frac{d}{dx}e^x = e^x \tag{4.4}$$

$$e = mc^{2}$$

$$\pi = \frac{c}{d}$$

$$\frac{d}{dx}e^{x} = e^{x}$$

$$\frac{d}{dx}\int_{0}^{\infty} f(s)ds = f(x)$$

$$(4.2)$$

$$(4.3)$$

$$(4.4)$$

$$f(x) = \sum_{i}^{\infty} f^{(i)}(0) \frac{1!}{i!} x^{i}$$
(4.6)

$$x = \sqrt{\frac{x_i}{z}y} \tag{4.7}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 6 & 7 & 8 & 9 & 10 \\ 11 & 12 & 13 & 14 & 15 \\ 16 & 17 & 18 & 19 & 20 \\ 21 & 22 & 23 & 24 & 25 \end{bmatrix}$$

$$(4.8)$$

(a) Caption1

(b) Caption2

Practical 5: References

```
I'm citing second paper [10]

I'm citing third paper [7]

I'm citing fourth paper [9]

I'm citing fifth paper [3]

I'm citing sixth paper [2]

I'm citing seventh paper [8]

I'm citing nineth paper [6]

I'm citing tenth paper [11, p. 215]

[4, 11, 8]

I'm cititng chicken [1]
```

Bibliography

- [1] Chicken on wikipedia. Available: https://en.wikipedia.org/wiki/Chicken.
- [2] Rajaram Anantharaman, Matthew Velazquez, and Yugyung Lee. Utilizing mask r-cnn for detection and segmentation of oral diseases. In 2018 IEEE international conference on bioinformatics and biomedicine (BIBM), pages 2197–2204. IEEE, 2018.
- [3] Dhanya Bibin, Madhu S Nair, and P Punitha. Malaria parasite detection from peripheral blood smear images using deep belief networks. *IEEE Access*, 5:9099–9108, 2017.
- [4] R. B. Bird, E. A. Smith, and D. W. Bird. The Hunting Handicap: Costly Signaling in Human Horaging Strategies. *Behavioral Ecology* and Sociobiology, 50:9–19, 2001.
- [5] Jongwon Chang, Jisang Yu, Taehwa Han, Hyuk-jae Chang, and Eunjeong Park. A method for classifying medical images using transfer learning: A pilot study on histopathology of breast cancer. In 2017 IEEE 19th international conference on e-health networking, applications and services (Healthcom), pages 1–4. IEEE, 2017.
- [6] Lina Chato and Shahram Latifi. Machine learning and deep learning techniques to predict overall survival of brain tumor patients using mri images. In 2017 IEEE 17th international conference on bioinformatics and bioengineering (BIBE), pages 9–14. IEEE, 2017.
- [7] Yuhang Dong, Zhuocheng Jiang, Hongda Shen, W David Pan, Lance A Williams, Vishnu VB Reddy, William H Benjamin, and Allen W Bryan. Evaluations of deep convolutional neural networks for automatic identification of malaria infected cells. In 2017 IEEE EMBS international conference on biomedical & health informatics (BHI), pages 101–104. IEEE, 2017.

- [8] KM Fuhad, Jannat Ferdousey Tuba, Md Sarker, Rabiul Ali, Sifat Momen, Nabeel Mohammed, and Tanzilur Rahman. Deep learning based automatic malaria parasite detection from blood smear and its smartphone based application. *Diagnostics*, 10(5):329, 2020.
- [9] Jane Hung and Anne Carpenter. Applying faster r-cnn for object detection on malaria images. In *Proceedings of the IEEE conference on computer vision and pattern recognition workshops*, pages 56–61, 2017.
- [10] Zhaohui Liang, Andrew Powell, Ilker Ersoy, Mahdieh Poostchi, Kamolrat Silamut, Kannappan Palaniappan, Peng Guo, Md Amir Hossain, Antani Sameer, Richard James Maude, et al. Cnn-based image analysis for malaria diagnosis. In 2016 IEEE international conference on bioinformatics and biomedicine (BIBM), pages 493–496. IEEE, 2016.
- [11] Znaonui Liang, Gang Zhang, Jimmy Xiangji Huang, and Qmming Vivian Hu. Deep learning for healthcare decision making with emrs. In 2014 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pages 556–559. IEEE, 2014.