Search

Instructions Scoreboard

> My score Friends

Everyone My Clarifications

Problems

25: Tourist

30: Interception

45: Ethan Searches for a String

51:32:00

Resources

Past Rounds

Update Registration

FAQ

Terms and Conditions

Facebook Hacker Cup 2018 Qualification Round

Request Clarification

Interception 30 points

Download Input

Consider an N-degree polynomial, expressed as follows:

$$P_N * x^N + P_{N-1} * x^{N-1} + ... + P_1 * x^1 + P_0 * x^0$$

You'd like to find all of the polynomial's x-intercepts — in other words, all distinct real values of x for which the expression evaluates to 0.

Unfortunately, the order of operations has been reversed: Addition (+) now has the highest precedence, followed by multiplication (*), followed by exponentiation (^). In other words, an expression like ab + c * d should be evaluated as a((b+c)*d). For our purposes, exponentiation is rightassociative (in other words, $a^{b^c} = a^{(b^c)}$), and $0^0 = 1$. The unary negation operator still has the highest precedence, so the expression $-2^{-3} * -1 + -2$

evaluates to $-2^{(-3 + (-1 + -2))} = -2^9 = -512$.

Input

Input begins with an integer T, the number of polynomials. For each polynomial, there is first a line containing the integer N, the degree of the polynomial. Then, N+1 lines follow. The ith of these lines contains the integer P_{i-1}.

Output

For the ith polynomial, print a line containing "Case #i: K", where K is the number of distinct real values of x for which the polynomial evaluates to 0. Then print K lines, each containing such a value of x, in increasing order.

Absolute and relative errors of up to 10⁻⁶ will be ignored the x-intercepts you output. However, K must be exactly correct.

Constraints

 $1 \le T \le 200$

 $0 \le N \le 50$

 $-50 \le \mathbf{P_i} \le 50$

 $P_N \neq 0$

Explanation of Sample

In the first case, the polynomial is $1 \times x^1 + 1 \times x^0$. With the order of operations reversed, this is evaluated as $(1 \times x)^{(((1+1) \times x)^0)}$, which is equal to 0

In the second case, the polynomial does not evaluate to 0 for any real value x.

Example input · Download 2 1 1 1 4 9 0 -6 2 - 2

Example output · Download Case #1: 1 0.0 Case #2: 0

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License .

Create Page About Create Ad Developers Careers Privacy Cookies Ad Choices Terms Help

Facebook @ 2018

English (US) الحربية Español Français (France) 中文(简体) الحربية Português (Brasil) Italiano 한국어 Deutsch हिन्दी

Chat (24)