# Homeworks - Detection Theory - MVA 2021/2022

Moussa EL OUAFI moussa.el\_ouafi@ens-paris-saclay.fr

August 31, 2022

## 1 2.7.1 Birthdays in a Class

Consider a class of 30 students and assume that their birthdays are independent and uniformly distributed variables over the 365 days of the year. We call, for  $1 \le n \le 30$ ,  $C_n$  the number of n-tuples of students of the class having the same birthday. (This number is computed exhaustively by considering all possible n-tuples. If (for example) students 1, 2, and 3 have the same birthday, then we count three pairs, (1,2), (2,3), (3,1).) We also consider  $\mathbb{P}_n = \mathbb{P}(C_n \ge 1)$ , the probability that there is at least one n-tuple with the same birthday and  $p_n$ , the probability that there is at least one n-tuple and no (n+1)-tuple.

1) Prove that  $\mathbb{P}_n = 1 - \sum_{i=1}^{n-1} p_i$  and  $\mathbb{P}_n = \mathbb{P}_{n-1} - p_{n-1}$ .

*Proof.* Having  $\mathbb{P}_n = \mathbb{P}(C_n \ge 1)$ , we get:

 $1 - \mathbb{P}_n = \mathbb{P}(C_n = 0) = \sum_{i=1}^{n-1} p_i$ . Indeed, one must notice that the event  $\{C_n = 0\}$  (there is no n-tuples of students of the class having the same birthday) is equal to the disjoint-union of the events  $A_i$ ="Threre's at least one i-tuple and no (i+1) tuple", for i such that  $1 \le i \le n-1$ .

Therefore

$$\mathbb{P}_n = 1 - \mathbb{P}(C_n = 0) = 1 - \sum_{i=1}^{n-1} \mathbb{P}(A_i) = 1 - \sum_{i=1}^{n-1} p_i.$$

Let's prove that  $\mathbb{P}_n = \mathbb{P}_{n-1} - p_{n-1}$ :

$$\{C_{n-1} \ge 1\} = \{C_n \ge 1\} \cap \{\{C_n = 0\} \cap \{C_{n-1} \ge 1\}\}$$

Hence:

$$\mathbb{P}(\{C_{n-1} \ge 1\}) = \mathbb{P}(\{C_n \ge 1\}) + \mathbb{P}(\{C_n = 0\} \cap \{C_{n-1} \ge 1\}) \\
\iff \mathbb{P}_{n-1} = \mathbb{P}_n + p_{n-1} \\
\iff \mathbb{P}_n = \mathbb{P}_{n-1} - p_{n-1}$$

2) Prove that  $\mathbb{E}[C_n] = \frac{1}{365^{n-1}}C_n^{30}$ . Check that  $\mathbb{E}[C_2] \approx 1.192$ ,  $\mathbb{E}[C_3] \approx 0.03047$  and  $\mathbb{E}[C_3] \approx 5.6 \times 10^{-4}$ .

*Proof.* let's take  $1 \le n \le 30$  students, the probability that all these n students have the same birthday is the probability that n-1 of these students have the same birthday as 1 given arbitrary student amongst these n. therefore this probability is  $\frac{1}{365^{n-1}}$ .

The possible combinations of choosing these n students from 30 is  $C_{30}^n$ .

Therefore we get

$$\mathbb{E}[C_n] = \frac{1}{365^{n-1}} C_n^{30}$$

Using Python (See the python NOtebook) we get:

$$\mathbb{E}[C_2] \approx 1.192$$
,  $\mathbb{E}[C_3] \approx 0.03047$  and  $\mathbb{E}[C_3] \approx 5.6 \times 10^{-4}$ .

3) Prove that  $\mathbb{P}(C_2=0)=\frac{365\times364\times\cdots\times336}{365^{30}}\approx0.294$  and Deduce that  $\mathbb{P}_2=0.706$ .

*Proof.* Given any date among the 365 possible birthdays, the probability that any given student has this birthday is  $\frac{1}{365}$ . Hence the probability that another student has the same birthday as the previous student is the probability that the second student has a birthday on the same date, this probability is  $\frac{1}{365}$ .

Therefore, the probability for 2 students to have different birthdays is:  $1 - \frac{1}{365} = \frac{364}{365}$ .

Hence the probability that a student j has a different birthday than k other students is:

$$\alpha_k = 1 - \sum_{i=1}^k \frac{1}{365} = \frac{365 - k}{365}$$

Finally,

$$\mathbb{P}(C_2=0)=\prod_{k=1}^{29}\alpha_k=\frac{364\times 363\times \cdots \times 336}{365^{29}}=\frac{365\times 364\times \cdots \times 336}{365^{30}}.$$

Since  $\mathbb{P}_2 = \mathbb{P}(C_2 \leq) = 1 - \mathbb{P}(C_2 = 0)$  we get:

$$\mathbb{P}_2 = 0.706$$

4) Prove that

$$p_2 = \frac{1}{365^{30}} \sum_{i=1}^{15} \frac{\prod_{j=1}^{i} C_{32-2j}^2}{i!} \prod_{k=0}^{29-i} (365 - k).$$

*Proof.* Recall that  $p_2$  is the probability that there is at least one 2-tuple and no 3-tuple. Which means we can't find 3 different students with the same birthday.

$$p_2 = \mathbb{P}(\{C_2 \ge 1\} \cap \{C_3 = 0\})$$

let *i* be a student and *j* be a different student with the same birthday as *i*.

the probability that i and j have the same birthday is  $\frac{1}{365}$ . The number of 2-tuples possible (students with same birthday) among 30 student is 15.

First let's calculate:  $\mathbb{P}(C_2 = i)$  for  $1 \le i \le 15$ .

if there is i 2-tuples of same birthdays, then there i different birthdays to choose and for each birthday, 2 students. Let's call j the j-th possible birthday, to choose 2 students for this birthday we have  $C_{32-2j}^2$  possibilities.

$$p_{2} = \mathbb{P}(\bigcup_{i=1}^{15} \left\{ \{C_{2} = i\} \cap \{C_{3} = 0\} \right\})$$

$$= \sum_{i=1}^{15} \mathbb{P}(\{C_{2} = i\} \cap \{C_{3} = 0\})$$

$$= \sum_{i=1}^{15} \mathbb{P}(\{C_{2} = i\}) \times \mathbb{P}(\{C_{3} = 0\} | \{C_{2} = i\})$$

$$= \sum_{i=1}^{15} \prod_{j=1}^{i} \frac{1}{365} \frac{C_{32-2j}^{2}}{j} \times \prod_{k=0}^{30-i-1} \frac{365-k}{365}$$

$$= \frac{1}{365^{30}} \sum_{i=1}^{15} \frac{\prod_{j=1}^{i} C_{32-2j}^{2}}{i!} \prod_{k=0}^{29-i} (365-k).$$

5) Compute by a small computer program (in Matlab for example): $p_2 \approx 0.678$ 

*Proof.* Using Matlab (see Figure 1 and the Matlab file) we get that indeed:  $p_2 \approx 0.678$ .

>> Detection\_Theory\_UPDATES
E(C2) = 1.191781
E(C3) = 0.030475
E(C4) = 0.000564
P(C2=0) = 0.293684
P2 = 0.706316
p2 = 0.677786
P3 = 0.028531
p3 = 0.024434
P4 = 0.004096

Figure 1: Numerical results

6) Deduce that  $\mathbb{P}_3 \approx 0.0285$ .

*Proof.* Having,  $\mathbb{P}_3 = \mathbb{P}_2 - p_2$ ,  $p_2 \approx 0.678$  and  $\mathbb{P}_2 \approx 0.706$ . We get:

$$\mathbb{P}_3 \approx 0.0285$$

7) We denote by [r] the integer part of a real number. Prove that

$$p_3 = \frac{1}{365^{30}} \sum_{i=1}^{10} \frac{\prod_{j=1}^{i} {33-3j \choose 3}}{i!} \left[ \prod_{k=0}^{29-2i} (365-k) + \sum_{l=1}^{\left[\frac{30-3i}{2}\right]} \frac{\prod_{m=1}^{l} {30-3i+2-2m \choose 2}}{l!} \prod_{n=0}^{29-2i-l} (365-n) \right].$$

Figure 2

Proof.

8) Deduce by a computer program that  $p_3 \approx 0.027998$  and  $\mathbb{P}_4 \approx 5.410^{-4}$ .

*Proof.* Using Matlab (see Figure 3 and the Matlab file) we get that indeed:  $p_3 \approx 0.027998$  and  $\mathbb{P}_4 \approx 5.410^{-4}$ .

>> Detection\_Theory\_UPDATES
E(C2) = 1.191781
E(C3) = 0.030475
E(C4) = 0.000564
P(C2=0) = 0.293684
P2 = 0.706316
p2 = 0.677786
P3 = 0.028531
p3 = 0.024434
P4 = 0.004096

Figure 3: Numerical results

9) Be courageous and give a general formula for  $p_n$ .

Proof.  $\Box$ 

10) Prove that  $\mathbb{E}[C_{30}] = \mathbb{P}_{30} = \frac{1}{365^{29}}$ ,  $\mathbb{E}[C_{29}] = \frac{30}{365^{28}}$ ,  $\mathbb{P}_{29} = \frac{30 \times 364 + 1}{365^{29}}$ 

*Proof.* Having  $\mathbb{E}[C_n] = \frac{1}{365^{n-1}}C_n^{30}$ , we get :  $\mathbb{E}[C_{30}] = \frac{1}{365^{29}}$  and  $\mathbb{E}[C_{29}] = \frac{30}{365^{28}}$ .

Recall that  $\mathbb{P}_{30} = \mathbb{P}(C_{30} \ge 1) = \mathbb{E}[\mathbb{1}_{\{C_{30} \ge 1\}}] = \mathbb{E}[C_{30}] = \frac{1}{365^{29}}$ .

Since  $\mathbb{P}_n = \mathbb{P}_{n-1} - p_{n-1}$ , we get  $\mathbb{P}_{30} = \mathbb{P}_{29} - p_{29}$ 

 $p_{29}$  is the probability that there is at least one 29-tuple but no 30-tuple. we get that  $p_{29} = \frac{30 \times 364}{365^{29}}$  (because only one (any one of the 30) student should have a different birthday than the other 29. That's 30 possible students in a 364 possible birthday.)

Hence

$$\mathbb{P}_{29} = \frac{30 \times 364 + 1}{365^{29}}$$

11) The following table summarizes the comparative results for  $\mathbb{E}[C_n]$  and  $\mathbb{P}_n$  as well as the relative difference.

*Proof.* Using Matlab we get (almost the same values):

| n   E(C_n)         | P_n               | relative ratio percentage |
|--------------------|-------------------|---------------------------|
| 2   1.192          | 0.706             | 68.73                     |
| 3   0.030          | 0.029             | 6.81                      |
| 4   0.001          | 0.004             | 86.24                     |
|                    |                   |                           |
| 29   30*365/365^29 | (30x364+1)/365^29 | 0.003                     |
| 30   1/365^29      | 1/365^29          | 0                         |

Figure 4: Comparative results

12)Explain why  $\mathbb{P}_n$  and  $\mathbb{E}[C_n]$  are close for  $n \geq 3$ .

*Proof.* Notice that 
$$\mathbb{P}_n = \mathbb{E}[1_{\{C_n \geq 1\}}]$$
 and  $\mathbb{E}[C_n] = \sum_{k=1}^{30} \mathbb{P}(C_n \geq k)$ ,

# 2 3.3.2 Hoeffding's Inequality for a Sum of Random Variables

## **Question 1** Graph

To understand the meaning of the inequality, draw the graph of the function h(p).

#### **Answer 1**



Figure 5: The graph of the function h(p)

## **Question 2** Inequality

Let *X* be a random variable such that  $a \le X \le b$ . Let  $\alpha$  be a positive real number. Prove that

$$\mathbb{E}[\exp(\lambda X)] \le \frac{b - \mathbb{E}[X]}{b - a} \exp(\lambda a) + \frac{\mathbb{E}[X] - a}{b - a} \exp(\lambda b)$$

#### **Answer 2**

The function  $x \to \exp(x)$  is convex (it's second order derivative is positive). Therefore for x such that  $a \le x \le b$  we can write:

$$\lambda x = \frac{b-x}{b-a}\lambda a + \frac{x-a}{b-a}\lambda b$$
, with  $0 \le \frac{b-x}{b-a}$ ,  $\frac{x-a}{b-a} \le 1$ .

Using the convexity of the exponential function we get:

$$\exp(\lambda x) \le \frac{b-x}{b-a} \exp(\lambda a) + \frac{x-a}{b-a} \exp(\lambda b).$$

Since the expected value of a positive random variable is a positive value we get:

$$\mathbb{E}[\exp(\lambda X)] \le \frac{b - \mathbb{E}[X]}{b - a} \exp(\lambda a) + \frac{\mathbb{E}[X] - a}{b - a} \exp(\lambda b).$$

## **Question 3**

The main trick of large deviation estimates is to use the very simple inequality  $\mathbb{1}_{\{x \geq 0\}} \leq \exp(\lambda x)$ , true for  $\lambda > 0$ . Prove this inequality. Then apply it to  $\mathbb{1}_{\{S_l - \mathbb{E}[S_l] - lt \geq 0\}}$  to deduce that

$$\mathbb{P}(S_l \ge (p+t)l) \le \exp(-\lambda(p+t)l) \prod_{i=1}^{l} \mathbb{E}[\exp(\lambda X_i)]$$

.

#### **Answer 3**

For any  $\lambda > 0$ :

if x < 0, we get:

$$\mathbb{1}_{\{x>0\}} = 0 \le \exp(\lambda x)$$

else:

$$\mathbb{1}_{\{x \ge 0\}} = 1 \le \exp(\lambda x)$$

Therefore:

$$\mathbb{1}_{\{x \ge 0\}} \le \exp(\lambda x).$$

- Take  $X=S_l-\mathbb{E}[S_l]-lt=S_l-(p+t)l$ , (recall that  $p=\frac{\mathbb{E}[S_l]}{l}$ ). We get:

$$\begin{split} \mathbb{P}(S_l \geq (p+t)l) &= \mathbb{E}[\mathbb{1}_{\{S_l - \mathbb{E}[S_l] - lt \geq 0\}}] \\ &= \mathbb{E}[\mathbb{1}_{\{X \geq 0\}}] \\ &\leq \mathbb{E}[\exp(\lambda X)] \\ &= \mathbb{E}[\exp(-\lambda(p+t)l + \lambda(\sum_{i=1}^l X_i)] \\ &= \exp(-\lambda(p+t)l) \prod_{i=1}^l \mathbb{E}[\exp(\lambda X_i)]. \text{ Since } X_1, \cdot, X_l \text{ are independent.} \end{split}$$

Therefore:  $\mathbb{P}(S_l \ge (p+t)l) \le \exp(-\lambda(p+t)l) \prod_{i=1}^l \mathbb{E}[\exp(\lambda X_i)].$ 

#### **Question 4**

Set  $p_i = \mathbb{E}[X_i]$ . Applying question 2 with a = 0 and b = 1, deduce that

$$\prod_{i=1}^{l} \mathbb{E}[e^{\lambda X_i}] \leq \prod_{i=1}^{l} (1 - p_i + p_i e^{\lambda}).$$

Be sure to check that this inequality becomes an identity when the  $X_i$ 's are Bernoulli random variables.

#### **Answer 4**

Using the inequality seen in question 2 with a = 0 and b = 1 we get for i such that,  $1 \le i \le l$ :

$$\mathbb{E}[\exp(\lambda X_i)] \le \frac{b - \mathbb{E}[X_i]}{b - a} \exp(\lambda a) + \frac{\mathbb{E}[X_i] - a}{b - a} \exp(\lambda b)$$
$$= \frac{1 - p_i}{1 - 0} \exp(\lambda \times 0) + \frac{p_i - 0}{1 - 0} \exp(\lambda \times 1)$$
$$= (1 - p_i + p_i e^{\lambda}).$$

Therefore,  $0 \le \mathbb{E}[e^{\lambda X_i}] \le (1 - p_i + p_i e^{\lambda})$ . Which gives us :

$$\prod_{i=1}^{l} \mathbb{E}[e^{\lambda X_i}] \leq \prod_{i=1}^{l} (1 - p_i + p_i e^{\lambda}).$$

Assume that the  $X_i \sim \mathcal{B}(p_i)$ 's are Bernoulli random variables, we get for any i such that  $1 \le i \le l$ :

$$\mathbb{E}[e^{\lambda X_i}] = \mathbb{P}(X_i = 0)e^{\lambda \times 0} + \mathbb{P}(X_i = 1)e^{\lambda \times 1} = 1 - p_i + p_i e^{\lambda}.$$

which leads to:

$$\prod_{i=1}^{l} \mathbb{E}[e^{\lambda X_i}] = \prod_{i=1}^{l} (1 - p_i + p_i e^{\lambda}).$$

## **Question 5**

Prove the geometric-arithmetic mean inequality: if  $a_1$ ,  $\cdot$ ,  $a_l$  are positive real numbers, then

$$\left(\prod_{i=1}^{l} a_i\right)^{1/l} \le \frac{1}{l} \sum_{i=1}^{l} a_i.$$

## **Answer 5**

When the  $a_1, \dots, a_l$  are positive real numbers, using the identity,  $a_i = e^{\ln(a_i)}$  we get:

$$\left(\prod_{i=1}^{l} a_i\right)^{1/l} = e^{\left(\sum_{i=1}^{l} \frac{\ln(a_i)}{l}\right)}$$

$$\leq \sum_{i=1}^{l} \frac{e^{\ln(a_i)}}{l} \text{ , (by Jensen Inequality applied to the convex function } x \to e^x.\text{)}$$

$$= \frac{1}{l} \sum_{i=1}^{l} a_i.$$

Therefore:

$$\left(\prod_{i=1}^{l} a_i\right)^{1/l} \le \frac{1}{l} \sum_{i=1}^{l} a_i.$$

## **Question 6**

Deduce that

$$\prod_{i=1}^{l} \mathbb{E}[e^{\lambda X_i}] \le (1 - p + pe)^l.$$

## **Answer 6**

Recall that we proved  $\prod_{i=1}^{l} \mathbb{E}[e^{\lambda X_i}] \leq \prod_{i=1}^{l} (1 - p_i + p_i e^{\lambda}).$ 

Take  $a_i = 1 - p_i + p_i e^{\lambda}$ , positive real numbers, using the geometric-arithmetic mean inequality, we get:

$$\begin{split} \prod_{i=1}^{l} \mathbb{E}[e^{\lambda X_{i}}] &\leq \prod_{i=1}^{l} (1 - p_{i} + p_{i}e^{\lambda}) \\ &= \left(\prod_{i=1}^{l} a_{i}\right) \\ &\leq \left(\frac{1}{l} \sum_{i=1}^{l} a_{i}\right)^{l} \\ &= \left(\frac{1}{l} \sum_{i=1}^{l} 1 - p_{i} + p_{i}e^{\lambda}\right)^{l} \\ &= \left(1 - p + pe^{\lambda}\right)^{l}. \quad (\text{since } \frac{1}{l} \sum_{i=1}^{l} p_{i} = \mathbb{E}\left[\frac{S_{l}}{l}\right] = p) \end{split}$$

Hence

$$\prod_{i=1}^{l} \mathbb{E}[e^{\lambda X_i}] \le (1 - p + pe^{\lambda})^l.$$

#### Question 7

Combine questions 3 and 6 and get an inequality. Prove that the right-hand side of this inequality is minimal for  $\lambda = \log(\frac{(1-p)(p+t)}{(1-p-t)p})$ . Check that this number is positive when 0 < t < 1-p and obtain the first Hoeffding inequality.

#### **Answer 7**

Recall that we proved in question 3 and 6 that:

$$\mathbb{P}(S_l \ge (p+t)l) \le e^{(-\lambda(p+t)l)} \prod_{i=1}^l \mathbb{E}[e^{\lambda X_i}]$$
, and  $\prod_{i=1}^l \mathbb{E}[e^{\lambda X_i}] \le (1-p+pe^{\lambda})^l$ .

Combining the two inequalities above we get:

$$\mathbb{P}\Big(S_l \ge (p+t)l\Big) \le \Big((1-p+pe^{\lambda})e^{-\lambda(p+t)}\Big)^l.$$

The right-hand side of the inequality above is minimal when  $\lambda \to (1-p+pe^{\lambda})e^{-\lambda(p+t)}$  reaches its minima.

Consider  $f: \lambda \to \lambda \to (1-p+pe^{\lambda})e^{-\lambda(p+t)}$ . we get :

$$\begin{array}{l} f^{'}(\lambda) \, = \, [pe^{\lambda}(1-p-t)-(1-p)(p+t)]e^{-\lambda(p+t)}, \, f^{'}(\lambda) \, = \, 0 \text{ iff } \lambda \, = \, \log(\frac{(1-p)(p+t)}{(1-p-t)p}). \text{ and since } \\ f^{'}(\lambda) \, \leq \, 0 \text{ for } \lambda \leq \log(\frac{(1-p)(p+t)}{(1-p-t)p}), \text{ and } f^{'}(\lambda) \geq 0 \text{ for } \lambda \geq \log(\frac{(1-p)(p+t)}{(1-p-t)p}). \end{array}$$

the function f, and therefore the right-hand side of this inequality is minimal for

$$\lambda = \log(\frac{(1-p)(p+t)}{(1-p-t)p}).$$

For t such that 0 < t < 1 - p, consider  $g : t \to (1 - p)(p + t) - (1 - p - t)p$ . we get:

$$g^{'}(t)=(1-p)+p=1>0$$
 then the function  $g$  is strictly non-decreasing, Hence  $g(t)=(1-p)(p+t)-(1-p-t)p>g(0)=0$ . Therefore  $\frac{(1-p)(p+t)}{(1-p-t)p}>1$ .

Which proves that  $\lambda = \log(\frac{(1-p)(p+t)}{(1-p-t)p})$  is positive when 0 < t < 1-p.

- The first Hoeffding inequality:

By taking  $\lambda = \log(\frac{(1-p)(p+t)}{(1-p-t)p})$ . we get that:

$$\mathbb{P}\left(S_l \ge (p+t)l\right) \le \left(\frac{p}{p+t}\right)^{l(p+t)} \left(\frac{1-p}{1-p-t}\right)^{l(1-p-t)}.$$

## **Question 8**

To prove the second inequality, one can remark that the first proved upper bound has a form  $e^{-lt^2G(t,p)}$  where G(t,p) is defined by

$$G(t,p) = \frac{p+t}{t^2} \log(\frac{p+t}{p}) + \frac{1-p-t}{t^2} \log(\frac{1-p-t}{1-p}).$$

#### **Answer 8**

$$\begin{split} \frac{\partial G}{\partial t}(t,p) &= \Big(\frac{1 - \frac{2(p+t)t}{t^2}}{t^2}\Big) \log(\frac{p+t}{p}) + \frac{p+t}{t^2} \times \frac{1}{p+t} \\ &+ \Big(\frac{-1 - \frac{2(1-p-t)t}{t^2}}{t^2}\Big) \log(\frac{1-p-t}{1-p}) + \frac{1-p-t}{t^2} \times \frac{-1}{1-p-t} \\ &= \frac{1}{t^2} \Big[ \Big(1 - 2\frac{1-p}{t}\Big) \log(1 - \frac{t}{1-p}) - \Big(1 - 2\frac{p+t}{t}\Big) \log(1 - \frac{t}{t+p}) \Big] \end{split}$$

Which leads us to the equality:

$$\begin{split} t^2 \frac{\partial G}{\partial t}(t,p) &= \left(1 - 2\frac{1-p}{t}\right) \log(1 - \frac{t}{1-p}) - \left(1 - 2\frac{p+t}{t}\right) \log(1 - \frac{t}{t+p}) \\ &= H(\frac{t}{1-p}) - H(\frac{t}{t+p}) \end{split}$$

Where  $H(x) = (1 - \frac{2}{x}) \log(1 - x)$ , for 0 < x < 1.

Using Taylor's formula we get:

$$\log(1-x) = -\sum_{n\geq 0} \frac{(x)^{n+1}}{n+1}$$

Hence,

$$H(x) = -\left(1 - \frac{2}{x}\right) \sum_{n \ge 0} \frac{(x)^{n+1}}{n+1}$$

$$= -\sum_{n \ge 0} \frac{(x)^{n+1}}{n+1} + 2\sum_{n \ge 0} \frac{(x)^n}{n+1}$$

$$= -\sum_{n \ge 0} \frac{(x)^{n+1}}{n+1} + 2 + 2\sum_{n \ge 1} \frac{(x)^n}{n+1}$$

$$= -\sum_{n \ge 0} \frac{(x)^{n+1}}{n+1} + 2 + 2\sum_{n \ge 0} \frac{(x)^{n+1}}{n+2}$$

$$= 2 + \sum_{n \ge 0} \left(\frac{2}{n+2} - \frac{1}{n+1}\right) x^{n+1}$$

$$= 2 + \left(\frac{2}{3} - \frac{1}{2}\right) x^2 + \left(\frac{2}{4} - \frac{1}{3}\right) x^3 + \left(\frac{2}{5} - \frac{1}{4}\right) x^4 + \cdots$$

H is  $C^{\infty}$  on ]0,1[, therefore using  $H(x)=2+\sum_{n\geq 0}(\frac{2}{n+2}-\frac{1}{n+1})x^{n+1}$  seen above, we get:

$$H'(x) = 0 + \sum_{n \ge 0} \left(\frac{2}{n+2} - \frac{1}{n+1}\right) x^n$$
$$= \sum_{n \ge 0} \frac{n}{(n+2)(n+1)} x^n$$
$$> 0.$$

Hence H(x) is strictly increasing for 0 < x < 1.

For  $\frac{t}{1-p} > \frac{t}{p+t}$  i.e t > 1 - 2p, we get:

$$\frac{\partial G}{\partial t}(t,p) = \frac{1}{t^2} \left[ H(\frac{t}{1-p}) - H(\frac{t}{t+p}) \right]$$
> 0.

Therefore  $t \to \frac{\partial G}{\partial t}(t, p) > 0$  iff  $\frac{t}{1-p} > \frac{t}{p+t}$  i.e t > 1 - 2p.

When 1 - 2p > 0, G(., p) is defined and continuous in 1 - 2p and since for t > 1 - 2p,  $t \to G(t, p)$  is increasing, therefore  $G(t, p) \ge G(1 - 2p, p)$ .

*G*, therefore attains its minimum for t = 1 - 2p. and

$$G(1-2p,p) = \frac{p+(1-2p)}{(1-2p)^2} \log(\frac{p+(1-2p)}{p}) + \frac{1-p-(1-2p)}{(1-2p)^2} \log(\frac{1-p-(1-2p)}{1-p}).$$

$$= \frac{1-p}{(1-2p)^2} \log(\frac{1-p}{p}) + \frac{p}{(1-2p)^2} \log(\frac{p}{1-p})$$

$$= \frac{1-2p}{(1-2p)^2} \log(\frac{1-p}{p})$$

$$= \frac{1}{1-2p} \log(\frac{1-p}{p})$$

$$= h(p). \ (0 < 1-2p \text{ and } p > 0, \text{ implies } 0$$

## **Question 9**

To prove the second inequality, one can remark that the first proved upper bound has a form  $e^{-lt^2G(t,p)}$  where G(t,p) is defined by

$$G(t,p) = \frac{p+t}{t^2} \log(\frac{p+t}{p}) + \frac{1-p-t}{t^2} \log(\frac{1-p-t}{1-p}).$$