Chapter 18

Sequential Circuits: Flip-flops and Counters

1. Design a counter that has the following repeated binary sequence: 0, 1, 2, 3, 4, 5, 6, 7. Use RS flip-flops.

Fig. 1.1 State diagram of a 3-bit binary counter

Solution:

- **Step 1**: Since it is a 3-bit counter, the number of flip-flops required is 3.
- **Step 2**: Let the type of flip-flops be RS flip-flops.
- **Step 3**: Let the three flip-flops be A, B, C.
- **Step 4**: The state table is as shown in Table 1.1.

Table 1.1 State table

Present State	Next State
ABC	ABC
000	0 0 1
0 0 1	010
010	011
011	100
100	101
1 0 1	110
110	111
111	000

Step 5: The next step is to develop an excitation table from the state table, which is shown in Table 1.2.

Table 1.2 Excitation table

Output State Transitions		Flip-flop inp	uts	
Present State	Next State] ' ' '		
ABC	ABC	RA SA	RB SB	RC SC

000	0 0 1	X 0	X 0	0 1
0 0 1	0 1 0	X 0	0.1	10
010	0 1 1	X 0	0 X	0 1
0 1 1	100	0 1	10	10
100	1 0 1	0 X	X 0	0 1
1 0 1	110	0 X	0.1	10
1 1 0	111	0 X	0 X	0 1
111	000	10	10	10

Step 6: Now transfer the RS states of the flip-flop inputs from the excitation table to Karnaugh maps in Tables 1.3–1.8 to derive a simplified Boolean expression for each flip-flop input.

Table 1.3 K-map for RA

	B € 00	BC 01		В С 11		10 BC	
<u>A</u> 0	Х	х				Х	
	0		1		3		2
A 1	4		5	1	7		6

Table 1.4 K-map for SA

	В̄с 00	BC 01	B C 11	10 BC
Ā 0	0		1 3	,
	<u> </u>	1		
A 1	x	Х	7	X
A 1	X 4	X 5	7	

Table 1.5 K-map for RB

Table 1.6 K-map for SB

From the K-maps, the following expressions for the R and S inputs of each flip-flop are obtained:

$$RA = ABC$$

$$SA = \overline{A}BC$$

$$RB = AB + BC = B(A+C)$$

$$SB = \overline{B}C$$

$$RC = C$$

$$SC = \overline{C}$$

Step 7: The final step is to implement the combinational logic from the equations and connect the flip-flops to form the sequential circuit. The complete logic of a 3-bit binary counter is shown in Fig 1.2.

Fig. 1.2 Logic diagram of a 3-bit binary counter

2. Design a counter with the following binary sequence: 1, 2, 5, 7 and repeat. Use JK flip-flops.

Solution:

- **Step 1**: Since it is a 3-bit counter, the number of flip-flops required is three.
- **Step 2**: Let the type of flip-flops be RS flip-flops.
- **Step 3**: Let the three flip-flops be A,B,C.
- **Step 4**: The state table is as shown in Table 2.1.

Table 2.1: State table

Present State	Next State
ABC	ABC
0 0 1	010
010	101
1 0 1	111
111	0 0 1

Step 5: The next step is to develop an excitation table from the state table, which is shown in Table 2.2.

Table 2.2: Excitation table

Output State Tr	Output State Transitions			outs				
Present State	Next State							
ABC	ABC		JA KA	JB KB	JC KC			
0 0 1	010		0 X	1 X	X 1			
0 1 0	101		1 X	X 1	1 X			
101	111		X 0	1 X	X 0			
1 1 1	0 0 1		X 1	X 1	X 0			

Step 6: Now transfer the JK states of the flip-flop inputs from the excitation table to Karnaugh maps in Tables 2.3–2.8 to derive a simplified Boolean expression for each flip-flop input.

Table 2.3 K-map for JA

	B C 00	BC 01		В С 11		10 BC	
A 0						1	
	0		1		3		2
A 1		х		Х			
	4		5		7		6

Table 2.4 K-map for KA

\	B	BC 01		В С 11		B € 10	
<u> </u>		Х				Х	
	0		1		3		2
A 1				1			
	4		5		7		6

Table 2.5 K-map for JB

Table 2.6 K-map for KB

	B C 00	BC 01		В С 11		8 C 10	
<u> </u>		Х				1	
	0		1		3		2
A 1		х		1			
	4		5		7		6

Table 2.7 K-map for JC

	B C 00	BC 01		B C 11		B € 10	
Ā 0		х				1	
	0		1		3		2
A 1		х		Х			
	4		- 5		7		6

Table 2.8 K-map for KC

	В с 00	BC 01	E	3 C 11	10 10	
Ā 0		1			х	
	0		1	. 3		2
A 1						
	4		5	7		6

From the K-maps, the following expressions for the J and K inputs of each flip-flop are obtained:

$$JA = JC = \overline{A}B\overline{C}$$

$$KA = ABC$$

$$JB = \overline{B}C + AC$$

$$KB = AC$$

$$KC = \overline{ABC}$$

Step 7: The final step is to implement the combinational logic from the equations and connect the flip-flops to form the sequential circuit. The complete logic of a counter is shown in Fig. 2.1.

Fig. 2.1 Logic diagram of a counter

3. Design a counter with the following repeated binary sequence: 0, 4, 2, 1, 6. Use T flipflops.

Solution:

- **Step 1**: Since it is a 3-bit counter, the number of flip-flops required is three.
- Step 2: Let the type of flip-flops be RS flip-flops.
- **Step 3**: Let the three flip-flops be *A*, *B* and *C*.
- **Step 4**: The state table is as shown in Table 3.1.

Table 3.1 State table

Present State	Next State				
ABC	ABC				
0 0 0	1 0 0				
1 0 0	0 1 0				
010	0 0 1				
0 0 1	110				
110	0 0 0				

Step 5: The next step is to develop an excitation table from the state table, which is shown in Table 3.2.

Table 3.2 Excitation table

Output State Tra	ansitions	Flip-flop Inputs					
Present State	Next State	1					
ABC	ABC	TA	TB	TC			
0 0 0	1 0 0	1	0	0			
1 0 0	0 1 0	1	1	0			
0 1 0	0 0 1	0	1	1			
0 0 1	1 1 0	1	1	1			
110	000	1	1	0			

Step 6: Now transfer the T states of the flip-flop inputs from the excitation table to Karnaugh maps in Tables 3.3–3.5 to derive a simplified Boolean expression for each flip-flop input.

Table 3.3 K-map for TA

Table 3.4 K-map for TB

	B C 00	BC 01		В С 11		10 10	
Ā 0		1	1		'n	1	١
A 1	1		1		3	1	
	4		5		7		D

Table 3.5 K-map for TC

	В с 00	B C 01		В С 11		10 BC	
<u> </u>		1				1	
	0		1		3		2
A 1							
	4		5		7		6

From the K-maps, the following expressions for the T input of each flip-flop are obtained:

$$TA = \overline{AB} + \overline{BC} + \overline{AC}$$

$$TB = \overline{ABC} + A\overline{C} + B\overline{C}$$

$$TC = \overline{ABC} + \overline{ABC}$$

Step 7: The final step is to implement the combinational logic from the equations and connect the flip-flops to form the sequential circuit. The complete logic of a counter is shown in Fig 3.1.

Fig. 3.1 Logic diagram of a counter

4. Design a sequential circuit whose state tables are specified in Table 18p.36, using D flip-flops.

Solution:

First, we make the stable state and the next step is to derive the excitation table for the design circuit, which is shown in Table 4.1. The output of the circuit is labelled Z.

Flip-flop Present State Next State Input Output Inputs ABABZ \boldsymbol{x} DA DB 0 0.0000 0 0 00 0.1 1 0 1 0 0.1 0.0 0 0 0 0 0 1 10 1 1 0 0 10 1 1 0 1 0 1 10 1 0 10 1 0 00 1 1 0 0 0 0 11 0.1 1 0 1 1

Table 4.1 Excitation table

Table 4.2 K-maps for DA, DB and Z

×	AB 00	01	11	10	. ×	AB 00	01	11	10	, x	AB 00	01	11	10
0	0	0	0	1	0	0	0	0	1	0	0	0	0	0
1	0	1	0	1	1	1	0	1	0	1	0	0	1	0

The simplified Boolean expressions are:

$$DA = A\overline{B} + \overline{A}Bx$$

$$DB = \overline{A}\overline{B}x + ABx + A\overline{B}\overline{x}$$

$$Z = ABx$$

Finally, the logic diagram is as shown in Fig.4.1.

Fig. 4.1 Logic diagram