

FIG. 112A

394/498

395/498

1. 1.

. .

397/498

398/498

.

:

401/498

402/498

FIG. 115A

WO 2004/033651 PCT/US2003/031974

404/498

PCT/US2003/031974

. به می

- - - . .

ξ.

410/498

411/498

FIG. 117B

96 .

BEAE

28 17 14 0

FIG. 118B

FIG. 118A

414/498

FIG. 118D

FIG. 118C

WO 2004/033651 PCT/US2003/031974

416/498

Pre Post

FIG. 119

49.

A Williams

420/498

421/498

422/498

FIG. 12

426/498

FIG. 129

FIG. 130

429/498

430/498

432/498

434/498

.4 %

FIG. 137

FIG. 138

; } \$

FIG. 141

FIG. 143A

443/498

FIG. 143B

FIG. 144B

447/498

FIG. 146

AS-9MP dłiw

After ST3Gal3

Before ST3Gal3

Mol.Wt standards

Mol.Wt kDa

After ST3Gal3 with CMP-SA-PEG (1 kDa)

CMP-SA-PEG (10 kDa)

WO 2004/033651 PCT/US2003/031974

FIG. 154

FIG. 155

FIG. 156

FIG. 157

WO 2004/033651 PCT/US2003/031974

WO 2004/033651 PCT/US2003/031974

FIG. 161

WO 2004/033651 PCT/US2003/031974

FIG. 162

FIG. 163

WO 2004/033651 PCT/US2003/031974

FIG. 164

FIG. 165

PCT/US2003/031974

FIG. 166

And Anderson

FIG. 167

FIG. 168

PCT/US2003/031974

-16.171

474/498

FIG. 174

FIG. 176

•

481/498

482/498

FIG. 18

1

G. 182A

487/498

.. ξ

FIG. 187A

FIG. 187B

FIG. 189

FIG. 190

FIG. 191

PCT/US2003/031974

' /

WO 2004/033651 PCT/US2003/031974

SEQUENCE LISTING

<110>	DeFr Zopi Baye Hake Cher	se Technologrees, Shawn f, David er, Robert es, David n, Xi e, Caryne	gies, Inc.				
<120>		THROPOIETIN THROPOIETIN	: REMODELING	G AND GLYCO	CONJUGATION	OF	
<130>	0408	353-01-5083	NO O				
<150> <151>		/us02/32263 2-10-09					
<150> <151>		10/287,994 2-11-5					
		10/360,770	•				
<151>	2003	3-01-06					
		10/369,779 3-03-17					
<150>		0/410,945			,		
<151>	2003	3-04-09					
<160>	75						
<170>	Pate	entIn versio	on 3.2				
<210>	1						
	525			. 5			
<212> <213>	DNA Homo	sapiens					
<400>	1						
accccc	tgg	gccctgccag	ctccctgccc	cagagettee	tgctcaagtg	cttagagcaa	60
gtgagga	aga	tccagggcga	tggcgcagcg	ctccaggaga	agctgtgtgc	cacctacaag	120
ctgtgcc	acc	ccgaggagct	ggtgctgctc	ggacactctc	tgggcatccc	ctgggctccc	180
ctgagca	gct	gccccagcca	ggccctgcag	ctggcaggct	gcttgagcca	actccatagc	240
ggccttt	tcc	tctaccaggg	gctcctgcag	gccctggaag	ggatctcccc	cgagttgggt	300
cccacct	tgg	acacactgca	gctggacgtc	gccgactttg	ccaccaccat	ctggcagcag	360
atggaag	aac	tgggaatggc	ccctgccctg	cagcccaccc	agggtgccat	gccggccttc	420
gcctctg	rctt	tccagcgccg	ggcaggaggg	gtcctggttg	cctcccatct	gcagagcttc	480
ctggagg	tgt	cgtaccgcgt	tctacgccac	cttgcccagc	cctga		525
<210>	2						
<211>	174						
<212>	PRT						

<213> Homo sapiens

Cys Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln . 20 25 30

Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val

Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys 50 55 60

Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser 65 70 75 80

Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser 85 90 95

Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp 100 105 110

Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro 115 120 125

Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe 130 135 140

Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe 145 150 155 160

Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro 165 170

<210> 3

<211> 1733

<212> DNA

<213> Homo sapiens

<400> 3

gcgcctctta tgtacccaca aaaatctatt ttcaaaaaag ttgctctaag aatatagtta 60 120 tgcaataata aaacattaac tttatacttt ttaatttaat gtatagaata gagatataca 180 taggatatgt aaatagatac acagtgtata tgtgattaaa atataatggg agattcaatc 240 300 agaaaaaagt ttctaaaaag gctctggggt aaaagaggaa ggaaacaata atgaaaaaaa 360 tgtggtgaga aaaacagctg aaaacccatg taaagagtgt ataaagaaag caaaaagaga agtagaaagt aacacagggg catttggaaa atgtaaacga gtatgttccc tatttaaggc 420 taggcacaaa gcaaggtett cagagaacet ggagcetaag gtttaggete acceatttea 480 540 accartctag carcatctgc aacatctaca atggccttga cctttgcttt actggtggcc ctcctggtgc tcagctgcaa gtcaagctgc tctgtgggct gtgatctgcc tcaaacccac 600

660 agcctgggta gcaggaggac cttgatgctc ctggcacaga tgaggagaat ctctcttttc 720 tcctgcttga aggacagaca tgactttgga tttccccagg aggagtttgg caaccagttc 780 caaaaggetg aaaccatece tgteeteeat gagatgatee ageagatett caatetette agcacaaagg actcatctgc tgcttgggat gagaccctcc tagacaaatt ctacactgaa 840 ctctaccagc agctgaatga cctggaagcc tgtgtgatac agggggtggg ggtgacagag 900 actoccotga tgaaggagga otocattotg gotgtgagga aatacttoca aagaatcact 960 1020 ctctatctga aagagaagaa atacagccct tgtgcctggg aggttgtcag agcagaaatc 1080 atgagatett tttetttgte aacaaacttg caagaaagtt taagaagtaa ggaatgaaaa 1140 ctggttcaac atggaaatga ttttcattga ttcgtatgcc agctcacctt tttatgatct 1200 gccatttcaa agactcatgt ttctgctatg accatgacac gatttaaatc ttttcaaatg tttttaggag tattaatcaa cattgtattc agctcttaag gcactagtcc cttacagagg 1260 accatgotga otgatocatt atotatttaa atattttaa aatattattt atttaactat 1320 ttataaaaca acttattttt gttcatatta tgtcatgtgc acctttgcac agtggttaat 1380 gtaataaaat gtgttctttg tatttggtaa atttattttg tgttgttcat tgaacttttg 1440 ctatggaact tttgtacttg tttattcttt aaaatgaaat tccaagccta attgtgcaac 1500 ctgattacag aataactggt acacttcatt tgtccatcaa tattatattc aagatataag 1560 1620 taaaaataaa ctttctgtaa accaagttgt atgttgtact caagataaca gggtgaacct 1680 aacaaataca attctgctct cttgtgtatt tgatttttgt atgaaaaaaa ctaaaaatgg taatcatact taattatcag ttatggtaaa tggtatgaag agaagaagga acg 1733

<210> 4 <211> 188

<212> PRT

<213> Homo sapiens

<400> 4

Met Ala Leu Thr Phe Ala Leu Leu Val Ala Leu Leu Val Leu Ser Cys
1 5 10 15

Lys Ser Ser Cys Ser Val Gly Cys Asp Leu Pro Gln Thr His Ser Leu 20 25 30

Gly Ser Arg Arg Thr Leu Met Leu Leu Ala Gln Met Arg Arg Ile Ser 35 40 45

Leu Phe Ser Cys Leu Lys Asp Arg His Asp Phe Gly Phe Pro Gln Glu 50 55 60

Glu Phe Gly Asn Gln Phe Gln Lys Ala Glu Thr Ile Pro Val Leu His 70 75 80

Glu Met Ile Gln Gln Ile Phe Asn Leu Phe Ser Thr Lys Asp Ser Ser

		85					90				•	95		
Ala Ala		sp Glu 00	Thr	Leu	Leu	Asp 105	Lys	Phe	Tyr	Thr	Glu 110	Leu	Tyr	
Gln Gln	Leu A: 115	sn Asp	Leu	Glu	Ala 120	Суз	Val	Ile	Gln	Gly 125	Val	Gly	Val	
Thr Glu 130	Thr P	ro Leu	Met	Lys 135	Glu	Asp	Ser	Ile	Leu 140	Ala	Val	Arg	Lys	
Tyr Phe 145	Gln A	rg Ile	Thr 150	Leu	Tyr	Leu	Lys	Glu 155	Lys	Lys	Tyr	Ser	Pro 160	
Cys Ala	Trp G	lu Val 165	Val	Arg	Ala	Glu	Ile 170	Met	Arg	Ser	Phe	Ser 175	Leu	
Ser Thr		eu Gln 80	Glu	Ser	Leu	Arg 185	Ser	Lys	Glu					
<212> D	57 NA	apiens												1
<400> 5 atgaccaa		tgtctc	ct c	caaat	ttgc	t ct	cctg	ttgt	gct	tctc	cac	taca	gctctt	60
tccatgag	ct ac	aacttg	ct t	ggati	tcct	a ca	aagaa	agca	gca	attt	tca	gtgt	cagaag	120
ctcctgtg	gc aa	ttgaat	gg g	aggc	ttga	a ta	ttgc	ctca	agg	acag	gat	gaac	tttgac	180
atccctga	ıgg ag	attaag	ca g	ctgc	agca	g tt	ccag	aagg	agg	acgc	cgc	attg	accatc	240
tatgagat	gc tc	cagaac	at c	tttg	ctat	t tt	caga	caag	att	catc	tag	cact	ggctgg	300
aatgagac	ta tt	gttgag	aa c	ctcc	tggc	t aa	tgtc	tatc	atc	agat	aaa	ccat	ctgaag	360
acagtcct	gg aa	gaaaaa	ct g	gaga	aaga	a ga	tttt	acca	ggg	gaaa	act	catg	agcagt	420
ctgcacct	ga aa	agatat	ta t	ggga	ggat	t ct	gcat	tacc	tga	aggc	caa	ggag	tacagt	480
cactgtgc	ct gg	accata	gt c	agag	tgga	a at	ccta	agga	act	ttta	ctt	catt	aacaga	540
cttacago	gtt ac	ctccga	aa c	tgaa	gatc	t cc	tagc	ctgt	ccc	tctg	gga	ctgg	acaatt	600
gcttcaag	gca tt	cttcaa	cc a	gcag	atgc	t gt	ttaa	gtga	ctg	atgg	cta	atgt	actgca	660
aatgaaag	gga ca	ctagaa	ıga t	tttg	aaat	t tt	tatt	aaat	tat	gagt	tat	tttt	atttat	720
ttaaattt	ta tt	ttggaa	aa t	aaat	tatt	t tt	ggtg	C						757
<211> 1 <212> E	5 187 PRT Homo s	apiens	3											
<400> 6 Met Thr	6 Asn I	ya Cys 5	. Leu	Leu	Gln	Ile	Ala	Leu	Leu	Lev	Cys	Phe	Ser	

Thr Thr Ala Leu Ser Met Ser Tyr Asn Leu Leu Gly Phe Leu Gln Arg Ser Ser Asn Phe Gln Cys Gln Lys Leu Leu Trp Gln Leu Asn Gly Arg Leu Glu Tyr Cys Leu Lys Asp Arg Met Asn Phe Asp Ile Pro Glu Glu Ile Lys Gln Leu Gln Gln Phe Gln Lys Glu Asp Ala Ala Leu Thr Ile Tyr Glu Met Leu Gln Asn Ile Phe Ala Ile Phe Arg Gln Asp Ser Ser Ser Thr Gly Trp Asn Glu Thr Ile Val Glu Asn Leu Leu Ala Asn Val Tyr His Gln Ile Asn His Leu Lys Thr Val Leu Glu Glu Lys Leu Glu 120 Lys Glu Asp Phe Thr Arg Gly Lys Leu Met Ser Ser Leu His Leu Lys 135 Arg Tyr Tyr Gly Arg Ile Leu His Tyr Leu Lys Ala Lys Glu Tyr Ser 155 His Cys Ala Trp Thr Ile Val Arg Val Glu Ile Leu Arg Asn Phe Tyr 165 170 Phe Ile Asn Arg Leu Thr Gly Tyr Leu Arg Asn 180 <210> <211> 1332 <212> DNA <213> Homo sapiens <400> 7 atggtetece aggeeeteag geteetetge ettetgettg ggetteaggg etgeetgget 60 geagtetteg taacceagga ggaageecae ggegteetge aceggegeeg gegegeeaae gcgttcctgg aggagctgcg gccgggctcc ctggagaggg agtgcaagga ggagcagtgc

120 180 240 tecttegagg aggeceggga gatetteaag gaegeggaga ggaegaaget gttetggatt tottacagtg atggggacca gtgtgcctca agtccatgcc agaatggggg ctcctgcaag 300 gaccagetee agtectatat etgettetge etecetgeet tegagggeeg gaactgtgag 360 acgcacaagg atgaccaget gatetgtgtg aacgagaacg geggetgtga geagtaetge 420 agtgaccaca cgggcaccaa gcgctcctgt cggtgccacg aggggtactc tctgctggca 480 gacggggtgt cctgcacacc cacagttgaa tatccatgtg gaaaaatacc tattctagaa 540 aaaagaaatg ccagcaaacc ccaaggccga attgtggggg gcaaggtgtg ccccaaaggg 600 gagtgtccat ggcaggtcct gttgttggtg aatggagctc agttgtgtgg ggggaccctg 660

5

atcaacacca	tctgggtggt	ctccgcggcc	cactgtttcg	acaaaatcaa	gaactggagg	720
aacctgatcg	cggtgctggg	cgagcacgac	ctcagcgagc	acgacgggga	tgagcagagc	780
cggcgggtgg	cgcaggtcat	catccccagc	acgtacgtcc	cgggcaccac	caaccacgac	840
ategegetge	teegeetgea	ccagcccgtg	gtcctcactg	accatgtggt	gcccctctgc	900
ctgcccgaac	ggacgttctc	tgagaggacg	ctggccttcg	tgcgcttctc	attggtcagc	960
ggctggggcc	agctgctgga	ccgtggcgcc	acggccctgg	agctcatggt	gctcaacgtg	1020
ccccggctga	tgacccagga	ctgcctgcag	cagtcacgga	aggtgggaga	ctccccaaat	1080
atcacggagt	acatgttctg	tgccggctac	tcggatggca	gcaaggactc	ctgcaagggg	1140
gacagtggag	gcccacatgc	cacccactac	cggggcacgt	ggtacctgac	gggcatcgtc	1200
agctggggcc	agggctgcgc	aaccgtgggc	cactttgggg	tgtacaccag	ggtctcccag	1260
tacatcgagt	ggctgcaaaa	gctcatgcgc	tcagagccac	gcccaggagt	cctcctgcga	1320
gccccatttc	cc	•				1332

<210> 8

<211> 444

<212> PRT

<213> Homo sapiens

-<400> -8

 Met Val Ser Gln Ala Leu Arg Leu Leu Cys Leu Leu Leu Gly Leu Gln

 1
 5
 10,
 15

 Gly Cys Leu Ala Ala Val Phe Val Thr Gln Glu Glu Ala His Gly Val
 20
 25
 30

Leu His Arg Arg Arg Arg Ala Asn Ala Phe Leu Glu Glu Leu Arg Pro 35 40 45

Gly Ser Leu Glu Arg Glu Cys Lys Glu Glu Glu Cys Ser Phe Glu Glu 50 60

Ala Arg Glu Ile Phe Lys Asp Ala Glu Arg Thr Lys Leu Phe Trp Ile 65 70 75 80

Ser Tyr Ser Asp Gly Asp Gln Cys Ala Ser Ser Pro Cys Gln Asn Gly 85 90 95

Gly Ser Cys Lys Asp Gln Leu Gln Ser Tyr Ile Cys Phe Cys Leu Pro 100 105 110

Ala Phe Glu Gly Arg Asn Cys Glu Thr His Lys Asp Asp Gln Leu Ile 115 120 125

Cys Val Asn Glu Asn Gly Gly Cys Glu Gln Tyr Cys Ser Asp His Thr 130 135 140

Gly Thr Lys Arg Ser Cys Arg Cys His Glu Gly Tyr Ser Leu Leu Ala 145 150 155 160

Asp Gly Val Ser Cys Thr Pro Thr Val Glu Tyr Pro Cys Gly Lys Ile 165 170 175

110	Trie	neu	180	гур	ALG	ASII	Ala	185	цуз	PLO	GIII	GIÀ	190	116	vaı	
Gly	Gly	Lys 195	Val	Суз	Pro	Lys	Gly 200	Glu	Суз	Pro	Trp	Gln 205	Val	Leu	Leu	
Leu	Val 210	Asn	Gly	Ala	Gln	Leu 215	Cys	Gly	Gly	Thr	Leu 220	Ile	Asn	Thr	Ile	
Trp 225	Val	Val	Ser	Ala	Ala 230	His	Суѕ	Phe	Asp	Lys 235	Ile	Lys	Asn	Trp	Arg 240	
Asn	Leu	Ile	Ala	Val 245	Leu	Gly	Glu	His	Asp 250	Leu	Ser	Glu	His	Asp 255	Gly	
Asp	Glu	Gln	Ser 260	Arg	Arg	Val	Ala	Gln 265	Val	Ile	Ile	Pro	Ser 270	Thr	Tyr	
Val	Pro	Gly 275	Thr	Thr	Asn	His	Asp 280	Ile	Ala	Leu	Leu	Arg 285	Leu	His	Gln	
Pro	Val 290	Val	Leu	Thr	Asp	His 295	Val	Val	Pro	Leu	Cys 300	Leu	Pro	Glu	Arg	
Thr 305	Phe	Ser	Glu	Arg	Thr 310	Leu	Ala	Phe	Val	Arg 315	Phe	Ser	Leu	Val	Ser 320	
Gly	Trp	Gly	Gln	Leu 325	Leu	Asp	Arg	Gly	Ala 330	Thr	Ala	Leu	Glu	Leu 335	Met	
Val	Leu	Asn	Val 340	Pro	Arg	Leu	Met	Thr 345	Gln	Asp	Cys	Leu	Gln 350	Gln	Ser	
Arg	Lys	Val 355	Gly	Asp	Ser	Pro	Asn 360	Ile	Thr	Glu	Tyr	Met 365	Phe	Сла	Ala	
Gly	Tyr 370	Ser	Asp	Gly	Ser	Lys 375	Asp	Ser	Cys	Lys	Gly 380	Asp	Ser	Gly	Gly	
Pro 385	His	Ala	Thr	His	Tyr 390	Arg	Gly	Thr	Trp	Tyr 395	Leu	Thr	Gly	Ile	Val 400	
Ser	Trp	Gly	Gln	Gly 405		Ala	Thr		Gly 410	His	Phe	Gly	Val	Tyr 415	Thr	
Arg	Val	Ser	Gln 420	Tyr	Ile	Glu	Trp	Leu 425	Gln	Lys	Leu	Met	Arg 430	Ser	Glu	
Pro	Arg	Pro 435	Gly	Val	Leu	Leu	Arg 440	Ala	Pro	Phe	Pro					
<210 <211 <212 <213	.> 1 !> E !> F	L437 DNA	sapi	.ens												
<400 atgc			gaac	atga	ıt ca	tggc	agaa	tca	ccaa	gcc	tcat	caco	at c	tgcc	tttta	ı 60
ggat	atct	ac t	cagt	gctg	ra at	gtac	agtt	; ttt	cttg	atc	atga	aaac	gc c	aaca	aaatt	: 120
											-					

```
180
ctgaatcggc caaagaggta taattcaggt aaattggaag agtttgttca agggaacctt
                                                                     240
gagagagaat gtatggaaga aaagtgtagt tttgaagaac cacgagaagt ttttgaaaac
actgaaaaga caactgaatt ttggaagcag tatgttgatg gagatcagtg tgagtccaat
                                                                     300
ccatgtttaa atggcggcag ttgcaaggat gacattaatt cctatgaatg ttggtgtccc
                                                                     360
tttggatttg aaggaaagaa ctgtgaatta gatgtaacat gtaacattaa gaatggcaga
                                                                     420
tgcgagcagt tttgtaaaaa tagtgctgat aacaaggtgg tttgctcctg tactgaggga
                                                                     480
tatcgacttg cagaaaacca gaagtcctgt gaaccagcag tgccatttcc atgtggaaga
                                                                     540
gtttctgttt cacaaacttc taagctcacc cgtgctgagg ctgtttttcc tgatgtggac
                                                                     600
                                                                     660
tatgtaaatc ctactgaagc tgaaaccatt ttggataaca tcactcaagg cacccaatca
tttaatgact tcactcgggt tgttggtgga gaagatgcca aaccaggtca attcccttgg
                                                                     720
caggttgttt tgaatggtaa agttgatgca ttctgtggag gctctatcgt taatgaaaaa
                                                                    780
tggattgtaa ctgctgccca ctgtgttgaa actggtgtta aaattacagt tgtcgcaggt
                                                                     840
                                                                     900
gaacataata ttgaggagac agaacataca gagcaaaagc gaaatgtgat tcgagcaatt
attecteace acaactacaa tgeagetatt aataagtaca accatgacat tgecettetg
                                                                     960
gaactggacg aaccettagt getaaacage tacgttacae etatttgcat tgetgacaag
                                                                    1020
gaatacacga acatcttcct caaatttgga tctggctatg taagtggctg ggcaagagtc
                                                                    1080
ttccacaaag ggagatcagc tttagttctt cagtacctta gagttccact tgttgaccga
                                                                    1140
gccacatgtc ttcgatctac aaagttcacc atctataaca acatgttctg tgctggcttc
                                                                    1200
catgaaggag gtagagattc atgtcaagga gatagtgggg gaccccatgt tactgaagtg
                                                                    1260
gaagggacca gtttcttaac tggaattatt agctggggtg aagagtgtgc aatgaaaggc
                                                                   1320
aaatatggaa tatataccaa ggtatcccgg tatgtcaact ggattaagga aaaaacaaag
                                                                    1380
ctcacttaat gaaagatgga tttccaaggt taattcattg gaattgaaaa ttaacag
                                                                    1437
       10
<210>
       462
       PRT
<212>
```

<213> Homo sapiens

<400> 10

Met Gln Arg Val Asn Met Ile Met Ala Glu Ser Pro Ser Leu Ile Thr

Ile Cys Leu Leu Gly Tyr Leu Leu Ser Ala Glu Cys Thr Val Phe Leu 20 25 4 7 30

Asp His Glu Asn Ala Asn Lys Ile Leu Asn Arg Pro Lys Arg Tyr Asn 35 40 45

Ser Gly Lys Leu Glu Glu Phe Val Gln Gly Asn Leu Glu Arg Glu Cys

60

55 50

Met Glu Glu Lys Cys Ser Phe Glu Glu Pro Arg Glu Val Phe Glu Asn

Thr Glu Lys Thr Thr Glu Phe Trp Lys Gln Tyr Val Asp Gly Asp Gln

Cys Glu Ser Asn Pro Cys Leu Asn Gly Gly Ser Cys Lys Asp Asp Ile

Asn Ser Tyr Glu Cys Trp Cys Pro Phe Gly Phe Glu Gly Lys Asn Cys 120

Glu Leu Asp Val Thr Cys Asn Ile Lys Asn Gly Arg Cys Glu Gln Phe 135

Cys Lys Asn Ser Ala Asp Asn Lys Val Val Cys Ser Cys Thr Glu Gly 150

Tyr Arg Leu Ala Glu Asn Gln Lys Ser Cys Glu Pro Ala Val Pro Phe

Pro Cys Gly Arg Val Ser Val Ser Gln Thr Ser Lys Leu Thr Arg Ala

Glu Ala Val Phe Pro Asp Val Asp Tyr Val Asn Pro Thr Glu Ala Glu

Thr Ile Leu Asp Asn Ile Thr Gln Gly Thr Gln Ser Phe Asn Asp-Phe

Thr Arg Val Val Gly Gly Glu Asp Ala Lys Pro Gly Gln Phe Pro Trp

Gln Val Val Leu Asn Gly Lys Val Asp Ala Phe Cys Gly Gly Ser Ile

Val Asn Glu Lys Trp Ile Val Thr Ala Ala His Cys Val Glu Thr Gly 265

Val Lys Ile Thr Val Val Ala Gly Glu His Asn Ile Glu Glu Thr Glu 280

His Thr Glu Gln Lys Arg Asn Val Ile Arg Ala Ile Ile Pro His His 295

Asn Tyr Asn Ala Ala Ile Asn Lys Tyr Asn His Asp Ile Ala Leu Leu 310

Glu Leu Asp Glu Pro Leu Val Leu Asn Ser Tyr Val Thr Pro Ile Cys 330

Ile Ala Asp Lys Glu Tyr Thr Asn Ile Phe Leu Lys Phe Gly Ser Gly 340

Tyr Val Ser Gly Trp Ala Arg Val Phe His Lys Gly Arg Ser Ala Leu

Val Leu Gln Tyr Leu Arg Val Pro Leu Val Asp Arg Ala Thr Cys Leu 375

Arg Ser Thr Lys Phe Thr Ile Tyr Asn Asn Met Phe Cys Ala Gly Phe His Glu Gly Gly Arg Asp Ser Cys Gln Gly Asp Ser Gly Gly Pro His Val Thr Glu Val Glu Gly Thr Ser Phe Leu Thr Gly Ile Ile Ser Trp Gly Glu Glu Cys Ala Met Lys Gly Lys Tyr Gly Ile Tyr Thr Lys Val Ser Arg Tyr Val Asn Trp Ile Lys Glu Lys Thr Lys Leu Thr <210> 11 <211> 603 <212> DNA Homo sapiens <213> <400> 11 atggattact acagaaaata tgcagctatc tttctggtca cattgtcggt gtttctgcat 60 qttctccatt ccqctcctqa tqtqcaqqat tqcccaqaat gcacqctaca qgaaaaccca 120 ttcttctccc agecgggtgc cccaatactt cagtgcatgg getgctgctt ctctagagca 180 tatcccactc cactaaggtc caagaagacg atgttggtcc aaaagaacgt cacctcagag 240 300 tccacttgct gtgtagctaa atcatataac agggtcacag taatgggggg tttcaaagtg 360 qaqaaccaca cggcgtgcca ctgcagtact tgttattatc acaaatctta aatgttttac 420 480 atggetttgt gagataaaac teteetttte ettaceatac caetttgaca egetteaagg 540 atactgca gctttactgc cttcctcctt atcctacagt acaatcagca gtctagttct 600 tttcatttgg aatgaataca gcattaagct tgttccactg caaataaagc cttttaaatc 603 atc <210> 12 <211> 116 <212> PRT <213> Homo sapiens <400> 12 Met Asp Tyr Tyr Arg Lys Tyr Ala Ala Ile Phe Leu Val Thr Leu Ser Val Phe Leu His Val Leu His Ser Ala Pro Asp Val Gln Asp Cys Pro Glu Cys Thr Leu Gln Glu Asn Pro Phe Phe Ser Gln Pro Gly Ala Pro Ile Leu Gln Cys Met Gly Cys Cys Phe Ser Arg Ala Tyr Pro Thr Pro

Leu Arg Ser Lys Lys Thr Met Leu Val Gln Lys Asn Val Thr Ser Glu 70 Ser Thr Cys Cys Val Ala Lys Ser Tyr Asn Arg Val Thr Val Met Gly Gly Phe Lys Val Glu Asn His Thr Ala Cys His Cys Ser Thr Cys Tyr 105 £ 1 Tyr His Lys Ser 115 <210> 13 <211> 390 <212> DNA <213> Homo sapiens <400> 13 atgaagacac tccagttttt cttccttttc tgttgctgga aagcaatctg ctgcaatagc 60 tgtgagctga ccaacatcac cattgcaata gagaaagaag aatgtcgttt ctgcataagc 120 atcaacacca cttggtgtgc tggctactgc tacaccaggg atctggtgta taaggaccca 180 gccaggccca aaatccagaa aacatgtacc ttcaaggaac tggtatatga aacagtgaga 240 300 qtqcccqqct qtqctcacca tgcagattcc ttgtatacat acccagtggc cacccagtgt cactgtggca agtgtgacag cgacagcact gattgtactg tgcgaggcct ggggcccagc - 360--390 tactgctcct ttggtgaaat gaaagaataa <210> 14 129 <211> <212> PRT ₽ : <213> Homo sapiens Met Lys Thr Leu Gln Phe Phe Phe Leu Phe Cys Cys Trp Lys Ala Ile Cys Cys Asn Ser Cys Glu Leu Thr Asn Ile Thr Ile Ala Ile Glu Lys Glu Glu Cys Arg Phe Cys Ile Ser Ile Asn Thr Thr Trp Cys Ala Gly Tyr Cys Tyr Thr Arg Asp Leu Val Tyr Lys Asp Pro Ala Arg Pro Lys Ile Gln Lys Thr Cys Thr Phe Lys Glu Leu Val Tyr Glu Thr Val Arg Val Pro Gly Cys Ala His His Ala Asp Ser Leu Tyr Thr Tyr Pro Val Ala Thr Gln Cys His Cys Gly Lys Cys Asp Ser Asp Ser Thr Asp Cys Thr Val Arg Gly Leu Gly Pro Ser Tyr Cys Ser Phe Gly Glu Met Lys

12

115 120 125

Glu

<210> 15 <211> 1342 <212> DNA <213> Homo sapiens

<400> 15 cccggagccg gaccggggcc accgcgcccg ctctgctccg acaccgcgcc ccctggacag 60 120 ccgccctctc ctccaggccc gtggggctgg ccctgcaccg ccgagcttcc cgggatgagg geceeggtg tggteaceeg gegegeecea ggtegetgag ggaceeegge caggegegga 180 240 gatgggggtg cacgaatgtc ctgcctggct gtggcttctc.ctgtccctgc tgtcgctccc tetgggeete ceagteetgg gegeeceace aegeeteate tgtgacagee gagteetgga 300 360 gaggtacctc ttggaggcca aggaggccga gaatatcacg acgggctgtg ctgaacactg cagettgaat gagaatatea etgteecaga caccaaagtt aatttetatg eetggaagag 420 gatggaggtc gggcagcagg ccgtagaagt ctggcagggc ctggccctgc tgtcggaagc 480 tgtcctgcgg ggccaggccc tgttggtcaa ctcttcccag ccgtgggagc ccctgcagct 540 gcatgtggat aaagccgtca gtggccttcg cagcctcacc actctgcttc gggctctgcg 600 ageceagaag gaagecatet eccetecaga tgeggeetea getgetecae teegaacaat 660 cactgetgae acttteegea aactetteeg agtetactee aattteetee ggggaaaget 720 780 gaagetgtac acaggggagg cetgcaggac aggggacaga tgaccaggtg tgtccacetg ggcatateca ccacctecet caccaacatt gettgtgeca caccetecee egecacteet 840 900 gaaccccgtc gaggggctct cagctcagcg ccagcctgtc ccatggacac tccagtgcca gcaatgacat ctcaggggcc agaggaactg tccagagagc aactctgaga tctaaggatg 960 tcacagggcc aacttgaggg cccagagcag gaagcattca gagagcagct ttaaactcag 1020 ggacagagcc atgctgggaa gacgcctgag ctcactcggc accctgcaaa atttgatgcc 1080 aggacacget ttggaggega tttacetgtt ttegeaccta ccatcaggga caggatgace 1140 1200 tggagaactt aggtggcaag ctgtgacttc tccaggtctc acgggcatgg gcactccctt qqtggcaaga gccccttga caccggggtg gtgggaacca tgaagacagg atgggggctg 1260 gcctctggct ctcatggggt ccaagttttg tgtattcttc aacctcattg acaagaactg 1320 1342 aaaccaccaa aaaaaaaaaa aa

<210> 16 <211> 193

<212> PRT

<213> Homo sapiens

<400		.6									_	_	_	_	.	
Met 1	Gly	Val	His	Glu 5	Суѕ	Pro	Ala	Trp	10		Leu	Leu	Leu	Ser 15	Leu	
									₹ €ر							
Leu	Ser	Leu	Pro 20	Leu	Gly	Ļeu	Pro	Val 25	Leu	Gly	Ala	Pro	Pro 30	Arg	Leu	
Ile	Cys	Asp 35	Ser	Arg	Val	Leu	Glu 40	Arg	Tyr	Leu	Leu	Glu 45	Ala	Lys	Glu	
Ala	Glu 50	Asn	Ile	Thr	Thr	Gly 55	Cys	Ala	Glu	His	Cys 60	Ser	Leu	Asn	Glu	
Asn 65	Ile	Thr	Val	Pro	Asp 70	Thr	Lys	Val	Asn	Phe 75	Tyr	Ala	Trp	Lys	Arg 80	
Met	Glu	Val	Gly	Gln 85	Gln	Ala	Val	Glu	Val 90	Trp	Gln	Gly	Leu	Ala 95	Leu	
Leu	Ser	Glu	Ala 100	Val	Leu	Arg	Gly	Gln 105	Ala	Leu	Leu	Val	Asn 110	Ser	Ser	
Gln	Pro	Trp 115	Glu	Pro	Leu	Gln	Leu 120	His	Val	Asp	Lys	Ala 125	Val	Ser	Gly	
Leu	Arg 130	Ser	Leu	Thr	Thr	Leu 135	Leu	Arg	Ala	Leu	Arg 140	Ala	Gln	Lys	Glu	
Ala 145	Ile	Ser	Pro	Pro	Asp 150	Ala	Ala	Ser	Aļą	Ala 155	Pro	Leu	Arg	Thr	Ile 160	
Thr	Ala	Asp	Thr	Phe 165	Arg	Lys	Leu	Phe	Arg 170	Val	Tyr	Ser	Asn	Phe 175	Leu	
Arg	Gly	Lys	Leu 180	Lys	Leu	Tyr	Thr	Gly 185	Glu	Ala	Cys	Arg	Thr 190	Gly	Asp	
Arg																
<21 <21 <21 <21	1> 2>	17 435 DNA Homo	sap	iens												
<40 atg		17 tgc	agag	cctg	ct g	ctct	tggg	c ac	tgtg	gcct	gca	gcat	ctc	tgca	cccgcc	60
cgc	tcgc	cca	gccc	cagc	ac g	cagc	cctg	g ga	gcat	gtga	atg	ccat	cca	ggag	gcccgg	120
cgt	ctcc	tga	acct	gagt	ag a	gaca	ctgc	t gc	tgag	atga	atg	aaac	agt	agaa	gtcatc	180
tca	gaaa	tgt	ttga	cctc	ca g	gagc	cgac	c tg	ccta	caga	ccc	gcct	gga	gctg	tacaag	240
cag	ggcc	tgc	aaaa	cago	ct c	acca	agct	c aa	dád¢	ccct	tga	ccat	gat	ggcc	agccac	300
tac	aagc	agc	actg	ccct	cc a	acco	cgga	a ac	ttcc	tgtg	caa	ссса	gat	tatc	accttt	360
~22	agtt	tca	aaga	gaac	ct a	aagg	actt	t ct	actt	atca	t.cc	cctt	taa	ctac	taggag	420

435 ccagtccagg agtga

<2	21	0>	1	8.	
- 0					

<211> 144

<212> PRT

<213> Homo sapiens

<400> 18

Met Trp Leu Gln Ser Leu Leu Leu Gly Thr Val Ala Cys Ser Ile

Ser Ala Pro Ala Arg Ser Pro Ser Pro Ser Thr Gln Pro Trp Glu His

Val Asn Ala Ile Gln Glu Ala Arg Arg Leu Leu Asn Leu Ser Arg Asp

Thr Ala Ala Glu Met Asn Glu Thr Val Glu Val Ile Ser Glu Met Phe 50 55 60

Asp Leu Gln Glu Pro Thr Cys Leu Gln Thr Arg Leu Glu Leu Tyr Lys

Gln Gly Leu Arg Gly Ser Leu Thr Lys Leu Lys Gly Pro Leu Thr Met 85

Met Ala Ser His Tyr Lys Gln His Cys Pro Pro Thr Pro Glu Thr Ser

Cys Ala Thr Gln Ile Ile Thr Phe Glu Ser Phe Lys Glu Asn Leu Lys 120

Asp Phe Leu Leu Val Ile Pro Phe Asp Cys Trp Glu Pro Val Gln Glu 140 135

<210> 19 <211> 501

<212> DNA

<213> Homo sapiens

<400> 19

atgaaatata caagttatat cttggctttt cagctctgca tcgttttggg ttctcttggc 60 tgttactgcc aggacccata tgtaaaagaa gcagaaaacc ttaagaaata ttttaatgca 120 180 ggtcattcag atgtagcgga taatggaact cttttcttag gcattttgaa gaattggaaa gaggagagtg acagaaaaat aatgcagagc caaattgtct ccttttactt caaacttttt 240 aaaaacttta aagatgacca gagcatccaa aagagtgtgg agaccatcaa ggaagacatg 300 aatgtcaagt ttttcaatag caacaaaaag aaacgagatg acttcgaaaa gctgactaat 360 tattoggtaa otgaottgaa tgtocaacgo aaagcaatao atgaactoat ocaagtgatg 420 gctgaactgt cgccagcagc taaaacaggg aagcgaaaaa ggagtcagat gctgtttcga 480 501 ggtcgaagag catcccagta a

<210> 20

<211> 166

<212 <213		PRT Homo	sapi	iens					,-1 ¹							
<400 Met 1		20 Tyr	Thr	Ser 5	Tyr	Ile	Leu	Ala	Phe 10	Gln	Leu	Суз	Ile	Val 15	Leu	
Gly	Ser	Leu	Gly 20	Cys	Tyr	Cys	Gln	Asp 25	Pro	Tyr	Val	Lys	Glu 30	Ala	Glu	
Asn	Lev	ъуз 35	Lys	Tyr	Phe	Asn	Ala 40	Gly	His	Ser	Asp	Val 45	Ala	Asp	Asn	
Gly	Thr 50	Leu	Phe	Leu	Gly	Ile 55	Leu	Lys	Asn	Trp	Lys	Glu	Glu	Ser	Asp	
Arg 65	Lys	Ile	Met	Gln	Ser 70	Gln	Ile	Val	Ser	Phe 75	Tyr	Phe	ГÀЗ	Leu	Phe 80	
Lys	Asn	Phe		Asp 85	Asp	Gln	Ser	Ile	Gln 90	Lys	Ser	Val	Glu	Thr 95	Ile	
Lys	Glu	ı Asp	Met 100	Asn	Val	Lys	Phe	Phe 105	Asn	Ser	Asn	Lys	Lys 110	Гуз	Arg	
Asp	Asp	Phe 115	Glu	Lys	Leu	Thr	Asn 120	Tyr	Ser	Val	Thr	Asp 125	Leu	Asn	Val	
Gln	Arç	l Fàs	Ala	Ile	His	Glu 135	Leu	Ile	•	Val	Met 140	Ala	Glu	Leu	Ser	
Pro 145	Ala	a Ala	Lys	Thr	Gly 150	Lys	Arg	Lys	Arg	Ser 155	Gln	Met	Leu	Phe	Arg 160	
Gly	Arç	Arg	Ala	Ser 165	Gln											
<210 <210 <210 <210	1> 2>	21 1352 DNA Homo	sap:	iens									٠			
<40		21 cagt	gaat	cgac	aa t	gccgi	tctt	c tg	toto	gtgg	ggc	atcc	tcc	tgct	ggcagg	60
cct	gtgo	etge	ctgg	tccc	tg t	ctcc	ctgg	c tga	agga	tece	cag	ggag	atg	ctgc	ccagaa	120
gac	agat	aca	tccc	acca	tg a	tcag	gate	a cc	caac	cttc	aac	aaga	tca	cccc	caacct	180
ggc	tgaç	gttc	gcct [.]	tcag	cc t	atac	cgcc	a gc	tggc	acac	cag	tcca	aca	gcac	caatat	240
ctt	ctto	ctcc	ccag	tgag	ca t	cgct	acag	c ct	ttgc	aatg	ctc	tccc	tgg	ggac	caaggc	300
tga	cact	cac	gatg	aaat	cc t	ggag	ggcc	t ga	attt	caac	ctc	acgg	aga	ttcc	ggaggc	360
tca	gato	ccat	gaag	gctt	cc a	ggaa	ctcc	t cc	gtac	cctc	aac	cagc	cag	acag	ccagct	420
cca	gct	gacc	accg	gcaa	tg g	cctg	ttcc	t ca	gcga	gggc	ctg	aagc	tag	tgga	taagtt	480

 A_{ij}^{\pm}

tttggaggat gttaaaaagt tgtaccactc agaagcettc actgtcaact tcggggacac 540

cgaagaggcc aagaaacag	a tcaacgatta	cgtggagaag	ggtactcaag	ggaaaattgt	600	
ggatttggtc aaggagctt	g acagagacac	agtttttgct	ctggtgaatt	acatcttctt	660	
taaaggcaaa tgggagaga	c cctttgaagt	caaggacacc	gaggaagagg	acttccacgt	720	
ggaccaggtg accaccgtg	a aggtgcctat	gatgaagcgt	ttaggcatgt	ttaacatcca	780	
gcactgtaag aagctgtcc	a gctgggtgct	gctgatgaaa	tacctgggca	atgccaccgc	840	
catcttcttc ctgcctgat	g aggggaaact	acagcacctg	gaaaatgaac	tcacccacga	900	
tatcatcacc aagttcctg	g aaaatgaaga	cagaaggtct	gccagcttac	atttacccaa	960	
actgtccatt actggaacc	t atgatctgaa	gagcgtcctg	ggtcaactgg	gcatcactaa	1020	
ggtcttcagc aatggggct	g acctctccgg	ggtcacagag	gaggcacccc	tgaagctctc	1080	
caaggccgtg cataaggct	g tgctgaccat	cgacgagaaa	gggactgaag	ctgctggggc	1140	
catgttttta gaggccata	c ccatgtctat	ccccccgag	gtcaagttca	acaaaccctt	1200	
tgtcttctta atgattgaa	c aaaataccaa	gtctcccctc	ttcatgggaa	aagtggtgaa	1260	
tcccacccaa aaataactg	c ctctcgctcc	tcaacccctc	ccctccatcc	ctggccccct	1320	
ccctggatga cattaaaga	a gggttgagct	gg			1352	

<210> 22

<211> 418

<212> PRT

<213> Homo sapiens

<400> 22

Met Pro Ser Ser Val Ser Trp Gly Ile Leu Leu Leu Ala Gly Leu Cys
1 10 15

Cys Leu Val Pro Val Ser Leu Ala Glu Asp Pro Gln Gly Asp Ala Ala 20 25 30 30

Gln Lys Thr Asp Thr Ser His His Asp Gln Asp His Pro Thr Phe Asn 35 40 45

Lys Ile Thr Pro Asn Leu Ala Glu Phe Ala Phe Ser Leu Tyr Arg Gln 50 55 60

Leu Ala His Gln Ser Asn Ser Thr Asn Ile Phe Phe Ser Pro Val Ser 65 70 75 80

Ile Ala Thr Ala Phe Ala Met Leu Ser Leu Gly Thr Lys Ala Asp Thr 85 90 95

His Asp Glu Ile Leu Glu Gly Leu Asn Phe Asn Leu Thr Glu Ile Pro 100 105 110

Glu Ala Gln Ile His Glu Gly Phe Gln Glu Leu Leu Arg Thr Leu Asn 115 120 125

Gln Pro Asp Ser Gln Leu Gln Leu Thr Thr Gly Asn Gly Leu Phe Leu 130 135 140

PCT/US2003/031974 WO 2004/033651

Ser 145	Glu	Gly	Leu	Lys	Leu 150	Val	Asp	Lys	Phe	Leu 155	Glu	Asp	Val	Lys	Lys 160		
Leu	Tyr	His	Ser	Glu 165	Ala	Phe	Thr	Val	Asn 170	Phe	Gly	Asp	Thr	Glu 175	Glu		
Ala	Lys	Lys	Gln 180	Ile	Asn	Asp	Tyr	Val 185	Glu	Lys	Gly	Thr	Gln 190	Gly	Lys		
Ile	Val	Asp 195	Leu	Val	Lys	Glu	Leu 200	Asp	Arg	Asp	Thr	Val 205	Phe	Ala	Leu		
Val	Asn 210	Tyr	Ile	Phe	Phe	Lуs 215	Gly	Lys	Trp	Glu	Arg 220	Pro	Phe	Glu	Val		
Lys 225	Asp	Thr	Glu	Glu	Glu 230	Asp	Phe	His	Val	Asp 235	Gln	Val	Thr	Thr	Val 240		
Lys	Val	Pro	Met	Met 245	Lys	Arg	Leu	Gly	Met 250	Phe	Asn	Ile	Gln	His 255	Cys		
Lys	ГÀЗ	Leu	Ser 260	Ser	Trp	Val	Leu	Leu 265	Met	Lys	Tyr	Leu	Gly 270	Asn	Ala		
Thr	Ala	Ile 275	Phe	Phe	Leu	Pro	Asp 280	Glu	GĨy	Lys	Leu	Gln 285	His	Leu	Glu		
Asn	Glu 290	Leu	Thr	His	Asp	Ile 295	Ile	Thr	Lys	Phe	Leu 300	Glu	Asn	Glu	Asp		
Arg 305	Arg	Ser	Ala	Ser	Leu 310	His	Leu	Pro	Lys	Leu 315	Ser	Ile	Thr	Gly	Thr 320		
Tyr	Asp	Leu	Lys	Ser 325	Val	Leu	Gly	Gln	Leu 330	Gly	Ile	Thr	Lys	Val 335	Phe		
Ser	Asn	Gly	Ala 340	Asp	Leu	Ser	Gly	Val 345		Glu	Glu	Ala	Pro 350		Lys		
		355					360					365			Gly		
	370					375					380				Ile		
385					'390		•			395					Glu 400		
Gln	Asn	Thr	Lys	Ser 405		Leu	Phe	Met	Gly 410		Val	. Val	Asn	415	Thr		
Gln	Lys																
<21 <21 <21 <21	1> 2>	23 2004 DNA Homo		oiens													
<40	0>	23	tacc	tata	iac t	aado	reage	rt ac	ctac	atco	: ttc	ıtttt	tat	ttac	ıtggato	2	60
CCC	adCC	. Lau			,			, _ ~ _				,	- 5 -		,		-

gctaacctag tgcctatagc taaggcaggt acctgcatcc ttgtttttgt ttagtggatc

ctctatcctt	cagagactct	ggaacccctg	tggtcttctc	ttcätctaat	gaccctgagg	120
ggatggagtt	ttcaagtcct	tccagagagg	aatgtcccaa	gcctttgagt	agggtaagca	180
tcatggctgg	cagcctcaca	ggtttgcttc	tacttcaggc	agtgtcgtgg	gcatcaggtg	240
cccgcccctg	catccctaaa	agcttcggct	acagctcggt	ggtgtgtgtc	tgcaatgcca	300
catactgtga	ctcctttgac	cccccgacct	ttcctgccct	tggtaccttc	agccgctatg	360
agagtacacg	cagtgggcga	cggatggagc	tgagtatggg	gcccatccag	gctaatcaca	420
cgggcacagg	cctgctactg	accctgcagc	cagaacagaa	gttccagaaa	gtgaagggat	480
ttggaggggc	catgacagat	gctgctgctc	tcaacatcct	tgccctgtca	cccctgccc	540
aaaatttgct	acttaaatcg	tacttctctg	aagaaggaat	cggatataac	atcatccggg	600
tacccatggc	cagctgtgac	ttctccatcc	gcacctacac	ctatgcagac	acccctgatg	660
atttccagtt	gcacaacttc	agcctcccag	aggaagatac	caagctcaag	atacccctga	720
ttcaccgagc	cctgcagttg	gcccagcgtc	ccgtttcact	ccttgccagc	ccctggacat	780
cacccacttg	gctcaagacc	aatggagcgg	tgaatgggaa	ggggtcactc	aagggacagc	840
ccggagacat	ctaccaccag	acctgggcca	gatactttgt	gaagttcctg	gatgcctatg	900
ctgagcacaa	gttacagttc	tgggcagtga	cagctgaaaa	tgagccttct	gctgggctgt	960
tgagtggata	ccccttccag	tgcctgggct	tcacccctga	acatcagcga	gacttcattg	1020
cccgtgacct	aggtcctacc	ctcgccaaca	gtactcacca	caatgtccgc	ctactcatgc	1080
tggatgacca	acgcttgctg	ctgccccact	gggcaaaggt	ggtactgaca	gacccagaag	1140
cagctaaata	tgttcatggc	attgctgtac	attggtacct	ggactttctg	gctccagcca	1200
aagccaccct	aggggagaca	caccgcctgt	tccccaacac	catgctcttt	gcctcagagg	1260
cctgtgtggg	ctccaagttc	tgggagcaga	gtgtgcggct	aggctcctgg	gatcgaggga	1320
tgcagtacag	ccacagcatc	atcacgaacc	tcctgtacca	tgtggtcggc	tggaccgact	1380
ggaaccttgc	cctgaacccc	gaaggaggac	ccaattgggt	gcgtaacttt	gtcgacagtc	1440
ccatcattgt	agacatcacc	aaggacacgt	tttacaaaca	gcccatgttc	taccaccttg	,1500
gccacttcag	caagttcatt	cctgagggct	cccagagagt	ggggctggtt	gccagtcaga	1560
agaacgacct	ggacgcagtg	gcactgatgc	atcccgatgg	ctctgctgtt	gtggtcgtgc	1620
taaaccgctc	ctctaaggat	gtgcctctta	ccatcaagga	tcctgctgtg	ggcttcctgg	1680
agacaatctc	acctggctac	tccattcaca	cctacctgtg	gcatcgccag	tgatggagca	1740
gatactcaag	gaggcactgg	gctcagcctg	ggcattaaag	ggacagagtc	agctcacacg	1800
ctgtctgtga	ctaaagaggg	cacagcaggg	ccagtgtgag	cttacagcga	cgtaagccca	1860
ggggcaatgg	tttgggtgac	tcactttccc	ctctaggtgg	tgcccagggc	tggaggcccc	1920

2004

tagaaaaaga tcagtaagcc ccagtgtccc cccagccccc atgcttatgt gaacatgcgc 1980

<210> 24

<211> 536

<212> PRT

<213> Homo sapiens

tgtgtgctgc ttgctttgga aact

<400> 24

Met Glu Phe Ser Ser Pro Ser Arg Glu Glu Cys Pro Lys Pro Leu Ser 1 5 10 15

Arg Val Ser Ile Met Ala Gly Ser Leu Thr Gly Leu Leu Leu Gln 20 25 30

Ala Val Ser Trp Ala Ser Gly Ala Arg Pro Cys Ile Pro Lys Ser Phe 35 40 45

Gly Tyr Ser Ser Val Val Cys Val Cys Asn Ala Thr Tyr Cys Asp Ser 50 55 60

Phe Asp Pro Pro Thr Phe Pro Ala Leu Gly Thr Phe Ser Arg Tyr Glu 65 70 75 80

Ser Thr Arg Ser Gly Arg Arg Met Glu Leu Ser Met Gly Pro Ile Gln 85 90 95

Ala Asn His Thr Gly Thr Gly Leu Leu Thr Leu Gln Pro Glu Gln
100 105 110

Lys Phe Gln Lys Val Lys Gly Phe Gly Gly Ala Met Thr Asp Ala Ala 115 120 125

Ala Leu Asn Ile Leu Ala Leu Ser Pro Pro Ala Gln Asn Leu Leu 130 135 140

Lys Ser Tyr Phe Ser Glu Glu Gly Ile Gly Tyr Asn Ile Ile Arg Val 145 150 . 155 160

Pro Met Ala Ser Cys Asp Phe Ser Ile Arg Thr Tyr Thr Tyr Ala Asp 165 170 175

Thr Pro Asp Asp Phe Gln Leu His Asn Phe Ser Leu Pro Glu Glu Asp 180 185 . 190

Thr Lys Leu Lys Ile Pro Leu Ile His Arg Ala Leu Gln Leu Ala Gln 195 200 205

Arg Pro Val Ser Leu Leu Ala Ser Pro Trp Thr Ser Pro Thr Trp Leu 210 215 220

Lys Thr Asn Gly Ala Val Asn Gly Lys Gly Ser Leu Lys Gly Gln Pro 225 230 235 240

Gly Asp Ile Tyr His Gln Thr Trp Ala Arg Tyr Phe Val Lys Phe Leu 245 250 255

Asp Ala Tyr Ala Glu His Lys Leu Gln Phe Trp Ala Val Thr Ala Glu 260 265 270

Asn	Glu	Pro 275	Ser	Ala	Gly	Leu	Leu 280	Ser	Gly	Tyr	Pro	Phe 285	Gln	Cys	Leu
Gly	Phe 290	Thr	Pro	Glu	His	Gln 295	Arg	Asp	Phe	Ile	Ala 300	Arg	Asp	Leu	Gly
Pro 305	Thr	Leu	Ala	Asn	Ser 310	Thr	His	His	Asn	Val 315	Arg	Leu	Leu	Met	Leu 320
Asp	Asp	Gln	Arg	Leu 325	Leu	Leu	Pro	His	Trp 330	Ala	Lys	Val	Val	Leu 335	Thr
Asp	Pro	Glu	Ala 340	Ala	Lys	Tyr	Val	His 345	Gly	Ile	Ala	Val	His 350	Trp	Tyr
Leu	Asp	Phe 355	Leu	Ala	Pro	Ala	Lys 360	Ala	Thr	Leu	Gly	Glu 365	Thr	His	Arg
Leu	Phe 370	Pro	Asn	Thr	Met	Leu 375	Phe	Ala	Ser	Glu	Ala 380	Cys	Val	Gly	Ser
Lys 385	Phe ·	Trp	Glu	Gln	Ser 390	Val	Arg	Leu	Gly	Ser 395	Trp	Asp	Arg		Met 400
Gln	Tyr	Ser	His	Ser 405	Ile	Ile	Thr	Asn	Leu 410	Leu	Tyr	His	Val	Val 415	Gly
Trp	Thr	Asp	Trp 420	Asn	Leu	Ala	Leu	Asn 425	Pro	Glu	Gly	Gly	Pro 430	Asn	Trp
Val	Arg	Asn 435	Phe	Val	Asp	Ser	Pro 440	Ile	Ile	Val	Asp	Ile 445	Thr	Lys	Asp
Thr	Phe 450	Tyr	Lys	Gln	Pro	Met 455	Phe	Tyr	His	Leu	Gly 460	His	Phe	Ser	Lys
Phe 465	Ile	Pro	Glu	Gly	Ser 470	Gln	Arg	Val	Gly	Leu 475	Val	Ala	Ser	Gln	Lys 480
Asn	Asp	Leu	Asp	Ala 485	Val	Ala	Leu	Met	His 490	Pro	Asp	Gly	Ser	Ala 495	Val
Val	Val	Val	Leu 500	Asn	Arg	Ser	Ser	Ьуs 505	Asp	Val	Pro	Leu	Thr 510	Ile	Lys
Asp	Pro	Ala 515	Val	Gly	Phe	Leu	Glu 520	Thr	.Ile	Ser	Pro	Gly 525	Tyr	Ser	Ile
His	Thr 530	Tyr	Leu	Trp	His	Arg 535	Gln								
<210 <210 <210 <210	1> 2>	25 1726 DNA Homo	sap:	iens					[‡] t						
<400 atgg		25 caa 1	tgaaq	gagaq	gg go	ctct	gctg	t gt	gctg	ctgc	tgt	gtgg	agc a	agtc	ttcgtt

togcccagoc aggaaatcca tgcccgattc agaagaggag ccagatctta ccaagtgatc 120

60

PCT/US2003/031974 WO 2004/033651

ŧ

			į.			
tgcagagatg	aaaaaacgca	gatgatatac	cagcaacatc	agtcatggct	gcgccctgtg	180
ctcagaagca	accgggtgga	atattgctgg	tgcaacagtg	gcagggcaca	gtgccactca	240
gtgcctgtca	aaagttgcag	cgagccaagg	tgtttcaacg	ggggcacctg	ccagcaggcc	300
ctgtacttct	cagatttcgt	gtgccagtgc	cccgaaggat	ttgctgggaa	gtgctgtgaa	360
atagatacca	gggccacgtg	ctacgaggac	cagggcatca	gctacagggg	cacgtggagc	420
acagcggaga	gtggcgccga	gtgcaccaac	tggaacagca	gcgcgttggc	ccagaagccc	480
tacagcgggc	ggaggccaga	cgccatcagg	ctgggcctgg	ggaaccacaa	ctactgcaga	540
aacccagatc	gagactcaaa	gccctggtgc	tacgtcttta	aggcggggaa	gtacagetea	600
gagttctgca	gcacccctgc	ctgctctgag	ggaaacagtg	actgctactt	tgggaatggg	660
tcagcctacc	gtggcacgca	cagcctcacc	gagtcgggtg	cctcctgcct	cccgtggaat	720
tccatgatcc	tgataggcaa	ggtttacaca	gcacagaacc	ccagtgccca	ggcactgggc	780
ctgggcaaac	ataattactg	ccggaatcct	gatggggatg	ccaagccctg	gtgccacgtg	840
ctgaagaacc	gcaggctgac	gtgggagtac	tgtgatgtgc	cctcctgctc	cacctgcggc	900
ctgagacagt	acagccagcc	tcagtttcgc	atcaaaggag	ggctcttcgc	cgacatcgcc	960
teccaeceet	ggcaggctgc	catctttgcc	aagcacagga	ggtcgccggg	agagcggttc	-1020
ctgtgcgggg	gcatactcat	cagctcctgc	tggattctct	ctgccgccca	ctgcttccag	1080
gagaggtttc	cgccccacca	cctgacggtg	atcttgggca	gaacataccg	ggtggtccct	1140
ggcgaggagg	agcagaaatt	tgaagtcgaa	aaatacattg	tccataagga	attcgatgat	1200
gacacttacg	acaatgacat	tgcgctgctg	cagctgaaat	cggattcgtc	ccgctgtgcc	1260
caggagagca	gcgtggtccg	cactgtgtgc	cttcccccgg	cggacctgca	gctgccggac	1320
tggacggagt	gtgagctctc	cggctacggc	aagcatgagg	ccttgtctcc	tttctattcg	1380
gagcggctga	aggaggctca	tgtcagactg	tacccatcca	gccgctgcac	atcacaacat	1440
ttacttaaca	gaacagtcac	cgacaacatg	ctgtgtgctg	gagacactcg	gagcggcggg	1500
ccccaggcaa	acttgcacga	cgcctgccag	ggcgattcgg	gaggccccct	ggtgtgtctg	1560
aacgatggcc	gcatgacttt	ggtgggcatc	atcagctggg	gcctgggctg	tggacagaag	1620
gatgtcccgg	gtgtgtacac	caaggttacc	aactacctag	actggattcg	tgacaacatg	1680
cgaccgtgac	caggaacacc	cgactcctca	aaaģcaaatg	agatcc		1726

<210> 26

<211> 562 <212> PRT <213> Homo sapiens

<400> 26

Met Asp Ala Met Lys Arg Gly Leu Cys Cys Val Leu Leu Cys Gly Ala Val Phe Val Ser Pro Ser Gln Glu Ile His Ala Arg Phe Arg Arg Gly Ala Arg Ser Tyr Gln Val Ile Cys Arg Asp Glu Lys Thr Gln Met Ile Tyr Gln Gln His Gln Ser Trp Leu Arg Pro Val Leu Arg Ser Asn Arg Val Glu Tyr Cys Trp Cys Asn Ser Gly Arg Ala Gln Cys His Ser Val Pro Val Lys Ser Cys Ser Glu Pro Arg Cys Phe Asn Gly Gly Thr 85 Cys Gln Gln Ala Leu Tyr Phe Ser Asp Phe Val Cys Gln Cys Pro Glu 105 Gly Phe Ala Gly Lys Cys Cys Glu Ile Asp Thr Arg Ala Thr Cys Tyr 120 Glu Asp Gln Gly Ile Ser Tyr Arg Gly Thr Trp Ser Thr Ala Glu Ser Gly Ala Glu Cys Thr Asn Trp Asn Ser Ser Ala Leu Ala Gln Lys Pro Tyr Ser Gly Arg Arg Pro Asp Ala Ile Arg Leu Gly Leu Gly Asn His 170 Asn Tyr Cys Arg Asn Pro Asp Arg Asp Ser Lys Pro Trp Cys Tyr Val Phe Lys Ala Gly Lys Tyr Ser Ser Glu Phe Cys Ser Thr Pro Ala Cys Ser Glu Gly Asn Ser Asp Cys Tyr Phe Gly Asn Gly Ser Ala Tyr Arg Gly Thr His Ser Leu Thr Glu Ser Gly Ala Ser Cys Leu Pro Trp Asn Ser Met Ile Leu Ile Gly Lys Val Tyr Thr Ala Gln Asn Pro Ser Ala 250 Gln Ala Leu Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp Gly 265 Asp Ala Lys Pro Trp Cys His Val Leu Lys Asn Arg Arg Leu Thr Trp Glu Tyr Cys Asp Val Pro Ser Cys Ser Thr Cys Gly Leu Arg Gln Tyr Ser Gln Pro Gln Phe Arg Ile Lys Gly Gly Leu Phe Ala Asp Ile Ala **\cdot 315** Ser His Pro Trp Gln Ala Ala Ile Phe Ala Lys His Arg Arg Ser Pro

•	WO 2	004/03	3651					•						P	CT/US	2003/	0319
				325					330					335			
Gly	Glu	Arg	Phe 340	Leu	Cys	Gly	Gly	Ile 345	Leu	Ile	Ser	Ser	Cys 350	Trp	Ile		
Leu	Ser	Ala 355	Ala	His	Cys	Phe	Gln 360	Glu	Arg	Phe	Pro	Pro 365	His	His	Leu		
Thr	Val 370	Ile	Leu	Gly	Arg	Thr 375	Tyr	Arg	Val	Val	Pro 380	Gly	Glu	Glu	Glu		
Gln 385	Lys	Phe	Glu	Val	Glu 390	Ьуs	Tyr	Ile	Val	His 395	Lуs	Glu	Phe	Asp	Asp 400		
Asp	Thr	Tyr	Asp	Asn 405	Asp	Ile	Ala	Leu	Leu 410	Gln	Leu	Lys	Ser	Asp 415	Ser		
Ser	Arg	Cys	Ala 420	Gln	Glu	Ser	Ser	Val 425	Vàl	Arg	Thr	Val	Cys 430	Leu	Pro		
Pro	Ala	Asp 435	Leu	Gln	Leu	Pro	Asp 440	Trp	Thr	Glu	Cys	Glu 445	Leu	Ser	Gly		
Tyr	Gly 450	Lys	His	Glu	Ala	Leu 455	Ser	Pro	Phe	Tyr	Ser 460	Glu	Arg	Leu	ГЛЗ		
Glu 465	Ala	His	Val	Arg	Leu 470	Tyr	Pro	Ser	Ser	Arg 475	Суз	Thr	Ser	Gln	His 480		
'Leu	Leu	Asn	Arg	Thr 485	Val	Thr	Asp	-Asn	Met 490	-Leu-	-Cys	-Ala	Gly	-Asp 495	-Thr-		•
Arg	Ser	Gly	Gly 500	Pro	Gln	Ala	Asn	Leu 505	His	Asp	Ala	Суѕ	Gln 510	Gly	Asp		
Ser	Gly	Gly 515		Leu	Val	Cys	Leu 520	Asn	Asp	Gly	Arg	Met 525	Thr	Leu	Val		
Gly	Ile 530	Ile	Ser	Trp	Gly	Leu 535	Gly	Суз	Gly	Gln	Lys 540	Asp	Val	Pro	Gly		
Val 545		Thr	Lys	Val	Thr 550	Asn	Tyr	Leu	Asp	Trp 555	Ile	Arg	Asp	Asn	Met 560		
Arg	Pro	•															
<21 <21 <21 <21	1> 2>	27 825 DNA Homo	sap	iens													
<40	0>	27															

atcactctt ttaatcacta ctcacattaa cctcaactcc tgccacaatg tacaggatgc 60 aactcctgtc ttgcattgca ctaattcttg cacttgtcac aaacagtgca cctacttcaa 120 gttcgacaaa gaaaacaaag aaaacacagc tacaactgga gcatttactg ctggatttac 180 agatgatttt gaatggaatt aataattaca agaatcccaa actcaccagg atgctcacat 240 300 ttaagtttta catgcccaag aaggccacag aactgaaaca gcttcagtgt ctagaagaag

360 aactcaaacc tctggaggaa gtgctgaatt tagctcaaag caaaaacttt cacttaagac ccagggactt aatcagcaat atcaacgtaa tagttctgga actaaaggga tctgaaacaa 420 480 cattcatgtg tgaatatgca gatgagacag caaccattgt agaatttctg aacagatgga 540 ttaccttttg tcaaagcatc atctcaacac taacttgata attaagtgct tcccacttaa 600 aacatatcag gccttctatt tatttattta aatatttaaa ttttatattt attgttgaat 660 gtatggttgc tacctattgt aactattatt cttaatctta aaactataaa tatggatctt 720 ttatgattct ttttgtaagc cctaggggct ctaaaatggt ttaccttatt tatcccaaaa 780 atatttatta ttatgttgaa tgttaaatat agtatctatg tagattggtt agtaaaacta 825 tttaataaat ttgataaata taaaaaaaaa aaacaaaaaa aaaaa <210> 28 <211> 156 <212> PRT <213> Homo sapiens <400> 28 Met Tyr Arg Met Gln Leu Leu Ser Cys Ile Ala Leu Ile Leu Ala Leu Val Thr Asn Ser Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Lys Lys --- - · 20-- · · · · · · · · · · · · · · · · 30--Thr Gln Leu Gln Leu Glu His Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys Lys Ala Thr Glu Leu Lys Gln Leu Gln Cys Leu Glu Glu Glu Leu Lys Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Cys Gln Ser Ile Ile Ser Thr Leu Thr 4 1. 7 <210> · 29 7931 <211> <212> DNA <213> Homo sapiens <400> 29

atgcaaatag agctctccac	ctgcttcttt	ctgtgccttt	tgcgättctg	čtttagtgcc	6Ö ·
accagaagat actacctggg	tgcagtggaa	ctgtcatggg	actatatgca	aagtgatctc	120
ggtgagctgc ctgtggacgc	aagatttcct	cctagagtgc	caaaatcttt	tccattcaac	180
acctcagtcg tgtacaaaaa	gactctgttt	gtagaattca	cggatcacct	tttcaacatc	240
gctaagccaa ggccaccctg	gatgggtctg	ctaggtccta	ccatccaggc	tgaggtttat	300
gatacagtgg tcattacact	taagaacatg	gcttcccatc	ctgtcagtct	tcatgctgtt	360
ggtgtatcct actggaaagc	ttctgaggga	gctgaatatg	atgatcagac	cagtcaaagg	420
gagaaagaag atgataaagt	cttccctggt	ggaagccata	catatgtctg	gcaggtcctg	480
aaagagaatg gtccaatggc	ctctgaccca	ctgtgcctta	cctactcata	tctttctcat	540
gtggacctgg taaaagactt	gaattcaggc	ctcattggag	ccctactagt	atgtagagaa	600
gggagtctgg ccaaggaaaa	gacacagacc	ttgcacaaat	ttatactact	ttttgctgta	660
tttgatgaag ggaaaagttg	gcactcagaa	acaaagaact	ccttgatgca	ggatagggat	720
gctgcatctg ctcgggcctg	gcctaaaatg	cacacagtca	atggttatgt	aaacaggtct	780
ctgccaggtc tgattggatg	ccacaggaaa	tcagtctatt	ggcatgtgat	tggaatgggc	840
accactcctg aagtgcactc	aatattcctc	gaaggtcaca	catttcttgt	gaggaaccat	900
cgccaggcgt ccttggaaat	ctcgccaata	actttcctta	ctgctcaaac	actcttgatg	960
gaccttggac agtttctact	gttttgtcat	atctcttccc	accaacatga	tggcatggaa	1020
gcttatgtca aagtagacag	ctgtccagag	gaaccccaac	tacgaatgaa	aaataatgaa	1080
gaagcggaag actatgatga	tgatcttact	gattctgaaa	tggatgtggt	caggtttgat	1140
gatgacaact ctccttcctt	tatccaaatt	cgctéàgttg	ccaagaagca	tcctaaaact	1200
tgggtacatt acattgctgc	tgaagaggag	gactgggact	atgctccctt	agtcctcgcc	1260
cccgatgaca gaagttataa	aagtcaatat	ttgaacaatg	gccctcagcg	gattggtagg	1320
aagtacaaaa aagtccgatt	tatggcatac	acagatgaaa	cctttaagac	tcgtgaagct	1380
attcagcatg aatcaggaat	cttgggacct	ttactttatg	gggaagttgg	agacacactg	1440
ttgattatat ttaagaatca	agcaagcaga	ccatataaca	tctaccctca	cggaatcact	1500
gatgtccgtc ctttgtattc	aaggagatta	ccaaaaggtg	taaaacattt	gaaggatttt	1560
ccaattctgc caggagaaat	attcaaatat	aaatggacag	tgactgtaga	agatgggcca	1620
actaaatcag atcctcggtg	cctgacccgc	tattactcta	gtttcgttaa	tatggagaga	1680
gatctagctt caggactcat	tggccctctc	ctcatctgct	acaaagaatc	tgtagatcaa	1740
agaggaaacc agataatgtc	agacaagagg	aatgtcatcc	tgttttctgt	atttgatgag	1800
aaccgaagct ggtacctcac	agagaatata	caacgctttc	tccccaatcc	agctggagtg	1860

cagcttgagg a	tccagagtt	ccaagcctcc	aacatcatgc	acagcatcaa	tggctatgtt	1920
tttgatagtt t	gcagttgtc	agtttgtttg	catgaggtgg	catactggta	cattctaagc	1980
attggagcac a	gactgactt	cctttctgtc	ttettetetg	gatatacctt	caaacacaaa	2040
atggtctatg a	agacacact	caccctattc	ccattctcag	gagaaactgt	cttcatgtcg	2100
atggaaaacc c	aggtctatg	gattctgggg	tgccacaact	cagactttcg	gaacagaggc	2160
atgaccgcct t	actgaaggt	ttctagttgt	gacaagaaca	ctggtgatta	ttacgaggac	2220
agttatgaag a	tatttcagc	atacttgctg	agtaaaaaca	atgccattga	accaagaagc	2280
ttctcccaga a	ittcaagaca	ccgtagcact	aggcaaaagc	aatttaatgc	caccacaatt	2340
ccagaaaatg a	catagagaa	gactgaccct	tggtttgcac	acagaacacc	tatgcctaaa	2400
atacaaaatg t	ctcctctag	tgatttgttg	atgctcttgc	gacagagtcc	tactccacat	2460
gggctatcct t	atctgatct	ccaagaagcc	aaatatgaga	ctttttctga	tgatccatca	2520
cctggagcaa t	agacagtaa	taacagcctg		cacacttcag	gccacagete	2580
catcacagtg g	ggacatggt	atttacccct	gagtcaggcc	tccaattaag	attaaatgag	2640
aaactgggga c	caactgcagc	aacagagttg	aagaaacttg	atttcaaagt	ttctagtaca	2700
tcaaataatc t	gatttcaac	aattccatca	gacaatttgg	cagcaggtac	tgataataca	2760
agttccttag g	jacccccaag	tatgccagtt	cattatgata	gtcaattaga	taccactcta	2820
tttggcaaaa a	gtcatctcc	ccttactgag	tctggtggac	ctctgagctt	gagtgaagaa	2880
aataatgatt c	caaagttgtt	agaatcaggt	ttaatgaata	gccaagaaag	ttcatgggga	2940
aaaaatgtat c	gtcaacaga	gagtggtagg	ttatttaaag	ggaaaagagc	tcatggacct	3000
gctttgttga c	taaagataa	tgccttattc	aaagttagca	tctctttgtt	aaagacaaac	3060
aaaacttcca a	ataattcagc	aactaataga	aagactcaca	ttgatggccc	atcattatta	3120
attgagaata g	gtccatcagt	ctggcaaaat	atattagaaa	gtgacactga	gtttaaaaaa	3180
gtgacacctt t	gattcatga	cagaatgctt	atggacaaaa	atgctacagc	tttgaggcta	3240
aatcatatgt o	caaataaaac	tacttcatca	aaaaacatgg	aaatggtcca	acagaaaaaa	3300
gagggcccca t	tccaccaga	tgcacaaaat	ccagatatgt	cgttctttaa	gatgctattc	3360
ttgccagaat c	cagcaaggtg	gatacaaagg	actcatggaa	agaactctct	gaactctggg	3420
caaggcccca q	gtccaaagca	attagtatcc	ttaggaccag	aaaaatctgt	ggaaggtcag	3480
aatttcttgt o	ctgagaaaaa	caaagtggta	gtaggaaagg	gtgaatttac	aaaggacgta	3540
ggactcaaag a	agatggtttt	tccaagcagc	agaaacctat	ttcttactaa	cttggataat	3600
ttacatgaaa a	ataatacaca	caatcaagaa	aaaaaaattc	aggaagaaat	agaaaagaag	3660

3720 gaaacattaa tocaagagaa tgtagttttg cotcagatac atacagtgac tggcactaag aatttcatga agaacctttt cttactgagc actaggcaaa atgtagaagg ttcatatgac 3780 ggggcatatg ctccagtact tcaagatttt aggtcattaa atgattcaac aaatagaaca 3840 3900 aaqaaacaca caqctcattt ctcaaaaaaa qqqqaqqaag aaaacttqga aggcttggga aatcaaacca agcaaattqt agagaaatat gcatgcacca caaggatatc tcctaataca 3960 4020 agccagcaga attttgtcac gcaacgtagt aagagagctt tgaaacaatt cagactccca 4080 ctagaagaaa cagaacttga aaaaaggata attgtggatg acacctcaac ccagtggtcc aaaaacatga aacatttgac cccgagcacc ctcacacaga tagactacaa tgagaaggag 4140 4200 aaaggggcca ttactcagtc tecettatea gattgeetta egaggagtea tageateeet caagcaaata gatctccatt acccattgca aaggtatcat catttccatc tattagacct 4260 4320 atatatctga ccagggtcct attccaagac aactcttctc atcttccagc agcatcttat agaaagaaag attctggggt ccaagaaagc agtcatttct tacaaggagc caaaaaaaat 4380 aacctttctt tagccattct aaccttggag atgactggtg atcaaagaga ggttggctcc 4440 4500 ctqqqqacaa qtqccacaaa ttcaqtcaca tacaagaaag ttgagaacac tgttctcccg 4560 aaaccagact tgcccaaaac atctggcaaa gttgaattgc ttccaaaagt tcacatttat 4620 cagaaggacc tattccctac ggaaactagc aatgggtctc ctggccatct ggatctcgtg 4680 gaagggagcc ttcttcaggg aacagaggga gcgattaagt ggaatgaagc aaacagacct 4740 ggaaaagttc cctttctgag agtagcaaca gaaagctctg caaagactcc ctccaagcta 4800 ttqqatcctc ttqcttqqqa taaccactat qqtaetcaqa taccaaaaqa aqaqtqqaaa 4860 tcccaagaga agtcaccaga aaaaacaget tttaagaaaa aggataccat tttgtccctg aacgcttgtg aaagcaatca tgcaatagca gcaataaatg agggacaaaa taagcccgaa 4920 4980 ataqaaqtca cctgggcaaa gcaaggtagg actgaaaggc tgtgctctca aaacccacca 5040 qtcttgaaac gccatcaacg ggaaataact cgtactactc ttcagtcaga tcaagaggaa 5100 attgactatg atgataccat atcagttgaa atgaagaagg aagattttga catttatgat 5160 qaggatgaaa atcagagccc ccgcagcttt caaaagaaaa cacgacacta ttttattgct gcagtggaga ggctctggga ttatgggatg agtagctccc cacatgttct aagaaacagg 5220 gctcagagtg gcagtgtccc tcagttcaag aaagttgttt tccaggaatt tactgatggc 5280 tcctttactc agcccttata ccgtggagaa ctaaatgaac atttgggact cctggggcca 5340 tatataaqag cagaagttga agataatatc atggtaactt tcagaaatca ggcctctcgt 5400 ccctattcct tctattctag ccttatttct tatgaggaag atcagaggca aggagcagaa 5460 cctaqaaaaa actttgtcaa gcctaatgaa accaaaactt acttttggaa agtgcaacat

catatggcac	ccactaaaga	tgagtttgac	tgcaaagcct	gggcttattt	ctctgatgtt	5580
gacctggaaa	aagatgtgca	ctcaggcctg	attggacccc	ttctggtctg	ccacactaac	5640
acactgaacc	ctgctcatgg	gagacaagtg	acagtacagg	aatttgctct	gtttttcacc	5700
atctttgatg	agaccaaaag	ctggtacttc	actgaaaata	tggaaagaaa	ctgcagggct	5760
ccctgcaata	tccagatgga	agatcccact	tttaaagaga	attatcgctt	ccatgcaatc	5820
aatggctaca	taatggatac	actacctggc	ttagtaatgg	ctcaggatca	aaggattcga	5880
tggtatctgc	tcagcatggg	cagcaatgaa	aacatccatt	ctattcattt	cagtggacat	5940
gtgttcactg	tacgaaaaaa	agaggagtat	aaaatggcac	tgtacaatct	ctatccaggt	6000
gtttttgaga	cagtggaaat	gttaccatcc	aaagctggaa	tttggcgggt	ggaatgcctt	6060
attggcgagc	atctacatgc	tgggatgagc	acactttttc	tggtgtacag	caataagtgt	6120
cagactecce	tgggaatggc	ttctggacac	attagagatt	ttcagattac	agcttcagga	6180
caatatggac	agtgggcccc	aaagctggcc	agacttcatt	attccggatc	aatcaatgcc	6240
tggagcacca	aggagccctt	ttcttggatc	aaggtggatc	tgttggcacc	aatgattatt	6300
cacggcatca	agacccaggg	tgcccgtcag	aagttctcca	gcctctacat	ctctcagttt	6360
atcatcatgt	atagtcttga	tgggaagaag	tggcagactt	atcgaggaaa	ttccactgga	6420
accttaatgg	tcttctttgg	caatgtggat	tcatctggga	taaaacacaa	tatttttaac	6480
cctccaatta	ttgctcgata	catccgtttg	cacccaactc	attatagcat	tcgcagcact	6540
cttcgcatgg	agttgatggg	ctgtgattta	aatagttgca	gcatgccatt	gggaatggag	6600
agtaaagcaa	tatcagatgc	acagattact	gcttcatcct	actttaccaa	tatgtttgcc	6660
acctggtctc	cttcaaaagc	tcgacttcac	ctccaaggga	ggagtaatgc	ctggagacct	6720
caggtgaata	atccaaaaga	gtggctgcaa	gtggacttcc	agaagacaat	gaaagtcaca	6780
ggagtaacta	ctcagggagt	aaaatctctg		tgtatgtgaa	ggagttcctc	6840
atctccagca	gtcaagatgg	ccatcagtgg	actetettt	ttcagaatgg	caaagtaaag	6900
gtttttcagg	gaaatcaaga	ctccttcaca	cctgtggtga	actctctaga	cccaccgtta	6960
ctgactcgct	accttcgaat	tcacccccag	agttgggtgc	accagattgc	cctgaggatg	7020
gaggttctgg	gctgcgaggc	acaggacete	tactgagggt	ggccactgca	gcacctgcca	7080
ctgccgtcac	ctctccctcc	tcagctccag	ggcagtgtcc	ctccctggct	tgccttctac	7140
ctttgtgcta	aatcctagca	gacactgcct	tgaagcctcc	tgaattaact	atcatcagtc	7200
ctgcatttct	ttggtggggg	gccaggaggg	tgcatccaat	ttaacttaac	tcttacctat	7260
tttctgcagc	tgctcccaga	ttactccttc	cttccaatat	aactaggcaa	aaagaagtga	7320

ggagaaacct gcatgaaagc attcttccct gaaaagttag gcctctcaga gtcaccactt cctctgttgt agaaaaacta tgtgatgaaa ctttgaaaaa gatatttatg atgttaacat ttcaggttaa gcctcatacg tttaaaataa aactctcagt tgtttattat cctgatcaag catggaacaa agcatgtttc aggatcagat caatacaatc ttggagtcaa aaggcaaatc 7560 atttggacaa tctgcaaaat ggagagaata caataactac tacagtaaag tctgtttctg 7620 7680 cttccttaca catagatata attatgttat ttagtcatta tgaggggcac attcttatct 7740 ' ccaaaactag cattettaaa etgagaatta tagatggggt teaagaatee etaagteece tgaaattata taaggcattc tgtataaatg caaatgtgca tttttctgac gagtgtccat 7800 7860 agatataaag ccatttggtc ttaattctga ccaataaaaa aataagtcag gaggatgcaa 7920 ttgttgaaag ctttgaaata aaataacaat gtcttcttga aatttgtgat ggccaagaaa 7931 gaaaatgatg a

<210> 30

<211> 2351

<212> PRT

<213> Homo sapiens

<400> 30

Met Gln Ile Glu Leu Ser Thr Cys Phe Phe Leu Cys Leu Leu Arg Phe 1 5 10 15

Cys Phe Ser Ala Thr Arg Arg Tyr Tyr Leu Gly Ala Val Glu Leu Ser 20 25 \$\xi\$

Trp Asp Tyr Met Gln Ser Asp Leu Gly Glu Leu Pro Val Asp Ala Arg
35 40 45

Phe Pro Pro Arg Val Pro Lys Ser Phe Pro Phe Asn Thr Ser Val Val 50 55 60

Tyr Lys Lys Thr Leu Phe Val Glu Phe Thr Asp His Leu Phe Asn Ile 65 70 75 80

Ala Lys Pro Arg Pro Pro Trp Met Gly Leu Leu Gly Pro Thr Ile Gln 85 90 95

Ala Glu Val Tyr Asp Thr Val Val Ile Thr Leu Lys Asn Met Ala Ser 100 105 110

His Pro Val Ser Leu His Ala Val Gly Val Ser Tyr Trp Lys Ala Ser 115 120 125

Glu Gly Ala Glu Tyr Asp Asp Gln Thr Ser Gln Arg Glu Lys Glu Asp 130 135 140

Asp Lys Val Phe Pro Gly Gly Ser His Thr Tyr Val Trp Gln Val Leu 145 150 155 160

Lys Glu Asn Gly Pro Met Ala Ser Asp Pro Leu Cys Leu Thr Tyr Ser 165 170 175 Tyr Leu Ser His Val Asp Leu Val Lys Asp Leu Asn Ser Gly Leu Ile 180 185 190

- Gly Ala Leu Leu Val Cys Arg Glu Gly Ser Leu Ala Lys Glu Lys Thr 195 200 205
- Gln Thr Leu His Lys Phe Ile Leu Leu Phe Ala Val Phe Asp Glu Gly 210 215 220
- Lys Ser Trp His Ser Glu Thr Lys Asn Ser Leu Met Gln Asp Arg Asp 225 230 235 240
- Ala Ala Ser Ala Arg Ala Trp Pro Lys Met His Thr Val Asn Gly Tyr 245 250 255
- Val Asn Arg Ser Leu Pro Gly Leu Ile Gly Cys His Arg Lys Ser Val 260 265 270
- Tyr Trp His Val Ile Gly Met Gly Thr Thr Pro Glu Val His Ser Ile 275 280 285
- Phe Leu Glu Gly His Thr Phe Leu Val Arg Asn His Arg Gln Ala Ser 290 295 300
- Leu Glu Ile Ser Pro Ile Thr Phe Leu Thr Ala Gln Thr Leu Leu Met 305 310 315 320
- Asp Leu Gly Gln Phe Leu Leu Phe Cys His Ile Ser Ser His Gln His 325 330 335
- Asp Gly Met Glu Ala Tyr Val Lys Val Asp Ser Cys Pro Glu Glu Pro 340 345 350
- Gln Leu Arg Met Lys Asn Asn Glu Glu Ala Glu Asp Tyr Asp Asp 355 360 365
- Leu Thr Asp Ser Glu Met Asp Val Val Arg Phe Asp Asp Asp Asn Ser 370 380
- Pro Ser Phe Ile Gln Ile Arg Ser Val Ala Lys Lys His Pro Lys Thr 385 390 395 400
- Trp Val His Tyr Ile Ala Ala Glu Glu Glu Asp Trp Asp Tyr Ala Pro 405 410 415
- Leu Val Leu Ala Pro Asp Asp Arg Ser Tyr Lys Ser Gln Tyr Leu Asn 420 425 430
- Asn Gly Pro Gln Arg Ile Gly Arg Lys Tyr Lys Lys Val Arg Phe Met 435 440 445
- Ala Tyr Thr Asp Glu Thr Phe Lys Thr Arg Glu Ala Ile Gln His Glu 450 455 460
- Ser Gly Ile Leu Gly Pro Leu Leu Tyr Gly Glu Val Gly Asp Thr Leu 465 470 475 480
- Leu Ile Ile Phe Lys Asn Gln Ala Ser Arg Pro Tyr Asn Ile Tyr Pro 485 490 495
- His Gly Ile Thr Asp Val Arg Pro Leu Tyr Ser Arg Arg Leu Pro Lys

ġ.

500 505 510

Gly Val Lys His Leu Lys Asp Phe Pro Ile Leu Pro Gly Glu Ile Phe 515 520 525

Lys Tyr Lys Trp Thr Val Thr Val Glu Asp Gly Pro Thr Lys Ser Asp 530 540

Pro Arg Cys Leu Thr Arg Tyr Tyr Ser Ser Phe Val Asn Met Glu Arg 545 550 555 560

Asp Leu Ala Ser Gly Leu Ile Gly Pro Leu Leu Ile Cys Tyr Lys Glu 565 570 575

Ser Val Asp Gln Arg Gly Asn Gln Ile Met Ser Asp Lys Arg Asn Val 580 585 590

Ile Leu Phe Ser Val Phe Asp Glu Asn Arg Ser Trp Tyr Leu Thr Glu 595 600 605

Asn Ile Gln Arg Phe Leu Pro Asn Pro Ala Gly Val Gln Leu Glu Asp 610 615 620

Pro Glu Phe Gln Ala Ser Asn Ile Met His Ser Ile Asn Gly Tyr Val 625 630 635 640

Phe Asp Ser Leu Gln Leu Ser Val Cys Leu His Glu Val Ala Tyr Trp 645 650 655

Tyr Ile Leu Ser Ile Gly Ala Gln Thr Asp Phe Leu Ser Val Phe Phe 660 665 670

Ser Gly Tyr Thr Phe Lys His Lys Met Val Tyr Glu Asp Thr Leu Thr 675 680 685

Leu Phe Pro Phe Ser Gly Glu Thr Val Phe Met Ser Met Glu Asn Pro

Gly Leu Trp Ile Leu Gly Cys His Asn Ser Asp Phe Arg Asn Arg Gly 705 710 715 720

Met Thr Ala Leu Leu Lys Val Ser Ser Cys Asp Lys Asn Thr Gly Asp 725 730 735

Tyr Tyr Glu Asp Ser Tyr Glu Asp Ile Ser Ala Tyr Leu Leu Ser Lys
740 745 750

Asn Asn Ala Ile Glu Pro Arg Ser Phe Ser Gln Asn Ser Arg His Arg
755 760 765

Ser Thr Arg Gln Lys Gln Phe Asn Ala Thr Thr Ile Pro Glu Asn Asp 770 775 780

Ile Glu Lys Thr Asp Pro Trp Phe Ala His Arg Thr Pro Met Pro Lys
785 790 795 800

Ile Gln Asn Val Ser Ser Ser Asp Leu Leu Met Leu Leu Arg Gln Ser 805 810 815

Pro Thr Pro His Gly Leu Ser Leu Ser Asp Leu Gln Glu Ala Lys Tyr 820 825 830

Glu Thr Phe Ser Asp Asp Pro Ser Pro Gly Ala Ile Asp Ser Asn Asn 835 840 845

- Ser Leu Ser Glu Met Thr His Phe Arg Pro Gln Leu His His Ser Gly 850 855 860
- Asp Met Val Phe Thr Pro Glu Ser Gly Leu Gln Leu Arg Leu Asn Glu 865 870 875 880
- Lys Leu Gly Thr Thr Ala Ala Thr Glu Leu Lys Lys Leu Asp Phe Lys 885 890 895
- Val Ser Ser Thr Ser Asn Asn Leu Ile Ser Thr Ile Pro Ser Asp Asn 900 905 910
- Leu Ala Ala Gly Thr Asp Asn Thr Ser Ser Leu Gly Pro Pro Ser Met 915 920 925
- Pro Val His Tyr Asp Ser Gln Leu Asp Thr Thr Leu Phe Gly Lys Lys 930 935 940
- Ser Ser Pro Leu Thr Glu Ser Gly Gly Pro Leu Ser Leu Ser Glu Glu 945 955 960
- Asn Asn Asp Ser Lys Leu Leu Glu Ser Gly Leu Met Asn Ser Gln Glu 965 970 975
- Ser Ser Trp Gly Lys Asn Val Ser Ser Thr Glu Ser Gly Arg Leu Phe 980 985 990
- Lys Gly Lys Arg Ala His Gly Pro Ala Leu Leu Thr Lys Asp Asn Ala 995 1000 1005
- Leu Phe Lys Val Ser Ile Ser Leu Leu Lys Thr Asn Lys Thr Ser 1010 1015 1020
- Asn Asn Ser Ala Thr Asn Arg Lys Thr His Ile Asp Gly Pro Ser 1025 1030 1035
- Leu Leu Ile Glu Asn Ser Pro Ser Val Trp Gln Asn Ile Leu Glu 1040 1045 1050
- Ser Asp Thr Glu Phe Lys Lys Val Thr Pro Leu Ile His Asp Arg 1055 1060 " 1065
- Met Leu Met Asp Lys Asn Ala Thr Ala Leu Arg Leu Asn His Met 1070 1080
- Ser Asn Lys Thr Thr Ser Ser Lys Asn Met Glu Met Val Gln Gln 1085 1090 1095
- Lys Lys Glu Gly Pro Ile Pro Pro Asp Ala Gln Asn Pro Asp Met 1100 1105 1110
- Ser Phe Phe Lys Met Leu Phe Leu Pro Glu Ser Ala Arg Trp Ile 1115 1120 1125
- Gln Arg Thr His Gly Lys Asn Ser Leu Asn Ser Gly Gln Gly Pro 1130 1135 1140

Ser	Pro 1145	Lys	Gln	Leu	Val	Ser 1150	Leu	Gly	Pro	Glu	Lys 1155	Ser	Val	Glu
Gly	Gln 1160	Asn	Phe	Leu	Ser	Glu 1165	Lys	Asn	Lys	Val	Val 1170	Val	Gly	Lys
Gly	Glu 1175		Thr	Lуs	Asp	Val 1180	Gly	Leu	Lys	Glu	Met 1185	Val	Phe	Pro
Ser	Ser 1190	Arg	Asn	Leu	Phe	Leu 1195		Asn	Leu	Asp	Asn 1200	Leu	His	Glu
Asn	Asn 1205	Thr	His	Asn	Gln	Glu 1210	Lys	Lys	Ile	Gln	Glu 1215	Glu	Ile	Glu
Lys	Lys 1220		Thr	Leu	Ile	Gln 1225		Asn	Val	Val	Leu 1230	Pro	Gln	Ile
His	Thr 1235		Thr	Gly	Thr	Lys 1240		Phe	Met	Lys	Asn 1245	Leu	Phe	Leu
Leu	Ser 1250		Arg	Gln	Asn	Val 1255		Gly	Ser	Tyr	Asp 1260	Gly	Ala	Tyŗ
Ala	Pro 1265		Leu	Gln	Asp	Phe 1270		Ser	Leu	Asn	Asp 1275		Thr	Asn
Arg	Thr 1280		Lys	His	Thr	Ala 1285		Phe	Ser		Lys 1290	Gly	Glu	Glu
Glu	Asn 1295		Glu	Gly	Leu	Gly 1300			Thr	Lys	Gln 1305	Ile	Val	Glu
Lys	Tyr 1310		Cys	Thr	Thr	Arg 1315				Asn	Thr 1320	Ser	Gln	Gln
Asn	Phe 1325		Thr	Gln		Ser 1330		Arg	Ala	Leu	Lys 1335	Gln	Phe	Arg
Leu	Pro 1340		Glu	Glu	Thr	Glu 1345		Glu	Lys	Arg	Ile 1350	Ile	Val	Asp
Asp	Thr 1355		Thr	Gln	Trp	Ser 1360		Asn	Met	Lys	His 1365	Leu	Thr	Pro
Ser	Thr 1370		Thr	Gln	Ile	Asp 1375		Asn	Glu	Lys	Glu 1380		Gly	Ala
Ile	Thr 1385		Ser	Pro	Leu	Ser 1390		Cys	Leu	Thr	Arg 1395		His	Ser
Ile	Pro 1400		Ala	Asn	Arg	Ser 1405		Leu	Pro	Ile	Ala 1410		Val	Ser
Ser	Phe 1415		Ser	Ile	Arg	Pro 1420		Tyr	Leu	Thr	Arg 1425	Val	Leu	Phe
Gln	Asp 1430		Ser	Ser	His	Leu 1435		Ala	Ala	Ser	Tyr 1440		Lys	ГÀЗ
Asp	Ser	Gly	Val	Gln	Glu	Ser	Ser	His	Phe	Leu	Gln	Gly	Ala	Lys

1455 1450 1445 Lys Asn Asn Leu Ser Leu Ala Ile Leu Thr Leu Glu Met Thr Gly 1465 Asp Gln Arg Glu Val Gly Ser Leu Gly Thr Ser Ala Thr Asn Ser 1480 Val Thr Tyr Lys Lys Val Glu Asn Thr Val Leu Pro Lys Pro Asp 1495 Leu Pro Lys Thr Ser Gly Lys Val Glu Leu Leu Pro Lys Val His 1510 Ile Tyr Gln Lys Asp Leu Phe Pro Thr Glu Thr Ser Asn Gly Ser 1525 Pro Gly His Leu Asp Leu Val Glu Gly Ser Leu Leu Gln Gly Thr 1540 1535 Glu Gly Ala Ile Lys Trp Asn Glu Ala Asn Arg Pro Gly Lys Val 1555 1550 Pro Phe Leu Arg Val Ala Thr Glu Ser Ser Ala Lys Thr Pro Ser 1565 Lys Leu Leu Asp Pro Leu Ala Trp Asp Asn His Tyr Gly Thr Gln 1585 Ile Pro Lys Glu Glu Trp Lys Ser Gln Glu Lys Ser Pro Glu Lys 1600 1595 Thr Ala Phe Lys Lys Lys Asp Thr Ile Leu Ser Leu Asn Ala Cys 1615 Glu Ser Asn His Ala Ile Ala Ala Ile Asn Glu Gly Gln Asn Lys Pro Glu Ile Glu Val Thr Trp Ala Lys Gln Gly Arg Thr Glu Arg 1645 Leu Cys Ser Gln Asn Pro Pro Val Leu Lys Arg His Gln Arg Glu 1660 1655 Ile Thr Arg Thr Thr Leu Gln Ser Asp Gln Glu Glu Ile Asp Tyr 1675 Asp Asp Thr Ile Ser Val Glu Met Lys Lys Glu Asp Phe Asp Ile 1690 Tyr Asp Glu Asp Glu Asn Gln Ser Pro Arg Ser Phe Gln Lys Lys 1705 Thr Arg His Tyr Phe Ile Ala Ala Val Glu Arg Leu Trp Asp Tyr 1720 1725 1715 Gly Met Ser Ser Pro His Val Leu Arg Asn Arg Ala Gln Ser

Gly Ser Val Pro Gln Phe Lys Lys Val Val Phe Gln Glu Phe Thr

1750

1745

Asp	Gly 1760	Ser	Phe	Thr	Gln	Pro 1765	Leu	Tyr	Arg	Gly	Glu 1770	Leu	Asn	Glu
His	Leu 1775	Gly	Leu	Leu	Gly	Pro 1780	Tyr	Ile	Arg	Ala	Glu 1785	Val	Glu	Asp
Asn	Ile 1790	Met	Val	Thr	Phe	Arg 1795	Asn	Gln	Ala	Ser	Arg 1800	Pro	Tyr	Ser
Phe	Tyr 1805		Ser	Leu	Ile	Ser 1810	Tyr	Glu	Glu	Asp	Gln 1815	Arg	Gln	Gly
Ala	Glu 1820	Pro	Arg	ГÀЗ	Asn	Phe 1825	Val	Lys	Pro	Asn	Glu 1830	Thr	Lys	Thr
Tyr	Phe 1835	Trp	Lys	Val	Gln	His 1840		Met	Ala	Pro	Thr 1845	Lys	Asp	Glu
Phe	Asp 1850	Cys	Lys	Ala	Trp	Ala 1855		Phe	Ser	Asp	Val 1860	Asp	Leu	Glu
Lys	Asp 1865		His	Ser	Gly	Leu 1870		Gly	Pro	Leu	Leu 1875	Val	Cys	His
Thr	Asn 1880		Leu	Asn	Pro	Ala 1885			Arg	Gln	Val 1890	Thr	Val	Gln
	Phe 1895		Leu	Phe		Thr 1900		Phe	Asp	Glu	Thr 1905	Lys	Ser	Trp
Tyr	Phe 1910		Glu	Asn		Glu 1915		Asn	Суз	Arg	Ala 1920	Pro	Cys	Asn
Ile	Gln 1925		Glu	Asp	Pro	Thr 1930		Lys	Glu	Asn	Tyr 1935		Phe	His
Ala	Ile 1940		Gly	Tyr	Ile	Met 1945		Thr	Leu	Pro	Gly 1950	Leu	Val	Met
Ala	Gln 1955		Gln	Arg	Ile	Arg .1960	Trp	Tyr	Leu	Leu	Ser 1965	Met	Gly	Ser
Asn	Glu 1970		Ile	His	Ser	Ile 1975		Phe	rSer	Gly	His 1980	Val	Phe	Thr
Val	Arg 1985		Lys	Glu	Glu	Туr 1990		Met	Ala	Leu	Tyr 1995		Leu	Tyr
Pro	Gly 2000		Phe	Glu	Thr	Val 2005		Met	Leu	Pro	Ser 2010	Lуs	Ala	Gly
Ile	Trp 2015		Val	Glu	Cys	Leu 2020	Ile	Gly	Glu	His	Leu 2025	His	Ala	Gly
Met	Ser 2030		Leu	Phe	Leu	Val 2035		Ser	: Asn	Lys	Cys 2040		Thr	Pro
Leu	Gly 2045		Ala	Ser	Gly	His 2050		Arg	Asp	Phe	Gln 2055	Ile	Thr	Ala

Ser	Gly 2060	Gln	Tyr	Gly	Gln	Trp 2065	Ala	Pro	Lys	Leu	Ala 2070	Arg	Leu	His
Tyr	Ser 2075	Gly	Ser	Ile	Asn	Ala 2080	Trp	Ser	Thr	Lys	Glu 2085	Pro	Phe	Ser
Trp	Ile 2090	ГЛЗ	Val	Asp	Leu	Leu 2095	Ala	Pro	Met	Ile	Ile 2100	His	Gly	Ile
Lys	Thr 2105	Gln	Gly	Ala	Arg	Gln 2110		Phe	Ser	Ser	Leu 2115	Tyr	Ile	Ser
Gln	Phe 2120	Ile	Ile	Met	Tyr	Ser 2125	Leu	Asp	Gly	Lys	Lys 2130	Trp	Gln	Thr
Tyr	Arg 2135	Gly	Asn	Ser	Thr	Gly 2140	Thr	Leu	Met	Val	Phe 2145	Phe	Gly	Asn
Val	Asp 2150	Ser	Ser	Gly	Ile	Lys 2155	His	Asn	Ile	Phe	Asn 2160	Pro	Pro	Ile
Ile	Ala 2165	Arg	Tyr	Ile	Arg	Leu 2170		Pro	Thr	His	Ту <u>г</u> 2175	Ser	Ile	Arg
	2180					2185					Leu 2190			
	2195					2200					Ser 2205			
	2210					2215					Ala 2220			
	2225					2230					Ser 2235	•		
	2240					2245					Gln 2250			
	2255					2260					Gln 2265			
	2270					2275					Leu 2280			
	2285					2290					Gln 2295			
	2300					2305					Thr 2310			
	2315					2320					Leu 2325			
Pro	Gln 2330		Trp	Val	His	Gln 2335		Ala	Leu	Arg	Met 2340		Val	Leu
Gly				_		_	_							

<210> 31

<211> 1471 <212> DNA <213> Homo sapiens

<400> 31 60 atggcgcccg tcgccgtctg ggccgcgctg gccgtcggac tggagctctg ggctgcggcg 120 cacgccttgc ccgcccaggt ggcatttaca ccctacgccc cggagcccgg gagcacatgc 180 cqqctcaqaq aatactatqa ccagacagct cagatgtgct gcagcaaatg ctcgccgggc 240 caacatgcaa aagtettetg taccaagace teggacaceg tgtgtgacte etgtgaggae agcacataca cccagctctg gaactgggtt cccgagtgct tgagctgtgg ctcccgctgt 300 360 agetetgace aggtggaaac teaageetge actegggaac agaacegeat etgeacetge 420 aggcccgct ggtactgcgc gctgagcaag caggaggggt gccggctgtg cgcgccgctg cgcaagtgcc gcccgggctt cggcgtggcc agaccaggaa ctgaaacatc agacgtggtg 480 540 tgcaagccct gtgccccggg gacgttctcc aacacgactt catccacgga tatttgcagg ccccaccaga totgtaacgt ggtggccatc cctgggaatg caagcatgga tgcagtctgc 600 acgtccacgt ccccacccg gagtatggcc ccaggggcag tacacttacc ccagccagtg 660 tecacaegat eccaacaea geageeaact ecagaaeeca geaetgetee aageaeetee 720 tteetgetee caatgggeee cageeeeca getgaaggga geactggega ettegetett 780 840 ccagttggac tgattgtggg tgtgacagcc ttgggtctac taataatagg agtggtgaac 900 tgtgtcatca tgacccaggt gaaaaagaag cccttgtgcc tgcagagaga agccaaggtg 960 cctcacttgc ctgccgataa ggcccggggt acacagggcc ccgagcagca gcacctgctg atcacagege egagetecag cageagetec etggagaget eggeeagtge gttggacaga 1020 agggcgccca ctcggaacca gccacaggca ccaggcgtgg aggccagtgg ggccggggag 1080 1140 gcccgggcca gcaccgggag ctcagattct tcccctggtg gccatgggac ccaggtcaat gtcacctgca tcgtgaacgt ctgtagcagc tctgaccaca gctcacagtg ctcctcccaa 1200 gccagctcca caatgggaga cacagattcc agcccctcgg agtccccgaa ggacgagcag 1260 gtccccttct ccaaggagga atgtgccttt cggtcacagc tggagacgcc agagaccctg 1320 1380 ctggggagca ccgaagagaa gcccctgccc cttggagtgc ctgatgctgg gatgaagccc agttaaccag gccggtgtgg gctgtgtcgt agccaaggtg ggctgagccc tggcaggatg 1440 1471 accetgegaa ggggeeetgg teetteeagg e

<210> 32

<211> 461

<212> PRT

<213> Homo sapiens

<400> 32

Met Ala Pro Val Ala Val Trp Ala Ala Leu Ala Val Gly Leu Glu Leu Trp Ala Ala Ala His Ala Leu Pro Ala Gln Val Ala Phe Thr Pro Tyr Ala Pro Glu Pro Gly Ser Thr Cys Arg Leu Arg Glu Tyr Tyr Asp Gln Thr Ala Gln Met Cys Cys Ser Lys Cys Ser Pro Gly Gln His Ala Lys Val Phe Cys Thr Lys Thr Ser Asp Thr Val Cys Asp Ser Cys Glu Asp Ser Thr Tyr Thr Gln Leu Trp Asn Trp Val Pro Glu Cys Leu Ser Cys Gly Ser Arg Cys Ser Ser Asp Gln Val Glu Thr Gln Ala Cys Thr Arg Glu Gln Asn Arg Ile Cys Thr Cys Arg Pro Gly Trp Tyr Cys Ala Leu Ser Lys Gln Glu Gly Cys Arg Leu Cys Ala Pro Leu Arg Lys Cys Arg Pro Gly Phe Gly Val Ala Arg Pro Gly Thr Glu Thr Ser Asp Val Val Cys Lys Pro Cys Ala Pro Gly Thr Phe Ser Asn Thr Thr Ser Ser Thr 170 Asp Ile Cys Arg Pro His Gln Ile Cys Asn Val Val Ala Ile Pro Gly Asn Ala Ser Met Asp Ala Val Cys Thr Ser Thr Ser Pro Thr Arg Ser 200 Met Ala Pro Gly Ala Val His Leu Pro Gln Pro Val Ser Thr Arg Ser Gln His Thr Gln Pro Thr Pro Glu Pro Ser Thr Ala Pro Ser Thr Ser 235 Phe Leu Leu Pro Met Gly Pro Ser Pro Pro Ala Glu Gly Ser Thr Gly Asp Phe Ala Leu Pro Val Gly Leu Ile Val Gly Val Thr Ala Leu Gly 265 Leu Leu Ile Ile Gly Val Val Asn Cys Val Ile Met Thr Gln Val Lys

Ala Asp Lys Ala Arg Gly Thr Gln Gly Pro Glu Gln Gln His Leu Leu 305 310 315 320

Lys Lys Pro Leu Cys Leu Gln Arg Glu Ala Lys Val Pro His Leu Pro

280

Ile Thr Ala Pro Ser Ser Ser Ser Ser Leu Glu Ser Ser Ala Ser

38

325 330 333

Ala Leu Asp Arg Arg Ala Pro Thr Arg Asn Gln Pro Gln Ala Pro Gly 340 345 350

Val Glu Ala Ser Gly Ala Gly Glu Ala Arg Ala Ser Thr Gly Ser Ser 355 360 365

Asp Ser Ser Pro Gly Gly His Gly Thr Gln Val Asn Val Thr Cys Ile 370 380

Val Asn Val Cys Ser Ser Ser Asp His Ser Ser Gln Cys Ser Ser Gln 385 390 395

Ala Ser Ser Thr Met Gly Asp Thr Asp Ser Ser Pro Ser Glu Ser Pro . 405 410 415

Lys Asp Glu Gln Val Pro Phe Ser Lys Glu Glu Cys Ala Phe Arg Ser 420 425 430

Gln Leu Glu Thr Pro Glu Thr Leu Leu Gly Ser Thr Glu Glu Lys Pro 435 440 445

Leu Pro Leu Gly Val Pro Asp Ala Gly Met Lys Pro Ser 450 455 460

<210> 33

<211> 1475

<212> DNA

<213> Homo-sapiens

<400> 33

tecacetgte eccgeagege eggetegege ecteetgeeg eagecacega geegeegtet 60 agegeeeega eetegeeace atgagageee tgetggegeg eetgettete tgegteetgg 120 tegtgagega etecaaagge ageaatgaae tteateaagt teeategaae tgtgaetgte 180 240 taaatggagg aacatgtgtg tccaacaagt acttctccaa cattcactgg tgcaactgcc caaagaaatt cggagggcag cactgtgaaa tagataagtc aaaaacctgc tatgagggga 300 atggtcactt ttaccgagga aaggccagca ctgacaccat gggccggccc tgcctgccct 360 ggaactctgc cactgtcctt cagcaaacgt accatgccca cagatctgat gctcttcagc 420 tgggcctggg gaaacataat tactgcagga acccagacaa ccggaggcga ccctggtgct 480 atgtgcaggt gggcctaaag ccgcttgtcc aagagtgcat ggtgcatgac tgcgcagatg 540 qaaaaaaagcc ctcctctcct ccagaagaat taaaatttca gtgtggccaa aagactctga 600 ggcccgctt taagattatt gggggagaat tcaccaccat cgagaaccag ccctggtttg 660 cggccatcta caggaggcac cgggggggct ctgtcaccta cgtgtgtgga ggcagcctca 720 780 tcagcccttg ctgggtgatc agcgccacac actgcttcat tgattaccca aagaaggagg actacatcgt ctacctgggt cgctcaaggc ttaactccaa cacgcaaggg gagatgaagt 840 ttgaggtgga aaacctcatc ctacacaagg actacagcgc tgacacgctt gctcaccaca 900

PCT/US2003/031974 WO 2004/033651

960

acgacattgc cttgctgaag atccgttcca aggagggcag gtgtgcgcag ccatcccgga 1020 ctatacagac catctgcctg ccctcgatgt ataacgatcc ccagtttggc acaagctgtg 1080 agatcactgg ctttggaaaa gagaattcta ccgactatct ctatccggag cagctgaaga 1140 tgactgttgt gaagctgatt tcccaccggg agtgtcagca gccccactac tacggctctg 1200 aagtcaccac caaaatgctg tgtgctgctg acccacagtg gaaaacagat tcctgccagg gagacteagg gggaccete gtetgtteee tecaaggeeg catgactttg actggaattg 1260 1320 tgagctgggg ccgtggatgt gccctgaagg acaagccagg cgtctacacg agagtctcac 1380 acttettace etggateege agteacacea aggaagagaa tggcetggee etetgagggt 1440 ccccagggag gaaacgggca ccacccgctt tcttgctggt tgtcattttt gcagtagagt 1475 catctccatc agctgtaaga agagactggg aagat <210> 34 <211> 431 <212> PRT <213> Homo sapiens <400> 34 Met Arg Ala Leu Leu Ala Arg Leu Leu Cys Val Leu Val Val Ser Asp Ser Lys Gly Ser Asn Glu Leu His Gln Val Pro Ser Asn Cys Asp Cys Leu Asn Gly Gly Thr Cys Val Ser Asn Lys Tyr Phe Ser Asn Ile His Trp Cys Asn Cys Pro Lys Lys Phe Gly Gly Gln His Cys Glu Ile Asp Lys Ser Lys Thr Cys Tyr Glu Gly Asn Gly His Phe Tyr Arg Gly Lys Ala Ser Thr Asp Thr Met Gly Arg Pro Cys Leu Pro Trp Asn Ser Ala Thr Val Leu Gln Gln Thr Tyr His Ala His Arg Ser Asp Ala Leu Gln Leu Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp Asn Arg 120 Arg Arg Pro Trp Cys Tyr Val Gln Val Gly Leu Lys Pro Leu Val Gln 130 Glu Cys Met Val His Asp Cys Ala Asp Gly Lys Lys Pro Ser Ser Pro 155 150 Pro Glu Glu Leu Lys Phe Gln Cys Gly Gln Lys Thr Leu Arg Pro Arg 165 Phe Lys Ile Ile Gly Gly Glu Phe Thr Thr Ile Glu Asn Gln Pro Trp

180 185 190

Phe Ala Ala Ile Tyr Arg Arg His Arg Gly Gly Ser Val Thr Tyr Val 195 200 205

Cys Gly Gly Ser Leu Ile Ser Pro Cys Trp Val Ile Ser Ala Thr His 210 215 220

Cys Phe Ile Asp Tyr Pro Lys Lys Glu Asp Tyr Ile Val Tyr Leu Gly 225 230 235 240

Arg Ser Arg Leu Asn Ser Asn Thr Gln Gly Glu Met Lys Phe Glu Val . 245 250 255

Glu Asn Leu Ile Leu His Lys Asp Tyr Ser Ala Asp Thr Leu Ala His 260 265 270

His Asn Asp Ile Ala Leu Leu Lys Ile Arg Ser Lys Glu Gly Arg Cys 275 280 285

Ala Gln Pro Ser Arg Thr Ile Gln Thr Ile Cys Leu Pro Ser Met Tyr 290 · 295 300

Asn Asp Pro Gln Phe Gly Thr Ser Cys Glu Ile Thr Gly Phe Gly Lys 305 310 315

Glu Asn Ser Thr Asp Tyr Leu Tyr Pro Glu Gln Leu Lys Met Thr Val 325 330 335

Val Lys Leu Ile Ser His Arg Glu Cys Gln Gln Pro His Tyr Tyr Gly 340 345 350

Ser Glu Val Thr Thr Lys Met Leu Cys Ala Ala Asp Pro Gln Trp Lys 355 360 365

Thr Asp Ser Cys Gln Gly Asp Ser Gly Gly Pro Leu Val Cys Ser Leu 370 375 380

Gln Gly Arg Met Thr Leu Thr Gly Ile Val Ser Trp Gly Arg Gly Cys 385 390 395 400

Ala Leu Lys Asp Lys Pro Gly Val Tyr Thr Arg Val Ser His Phe Leu 405 410 415

Pro Trp Ile Arg Ser His Thr Lys Glu Glu Asn Gly Leu Ala Leu 420 425. 430

<210> 35

<211> 107

<212> PRT

<213> Mus musculus

<400> 35

Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
1 5 10 15

Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Asp Val Asn Thr Ala
20 25 30

Val Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45

2:

Tyr Ser Ala Ser Phe Leu Tyr Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60

Ser Arg Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 75 80

Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln His Tyr Thr Thr Pro Pro 85 90 95

Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys 100 105

<210> 36

<211> 120

<212> PRT

<213> Mus musculus

<400> 36

Glu Val Gln Leu Val Glu Ser Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Asn Ile Lys Asp Thr 20 25 30

Tyr Ile His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

Ala Arg Ile Tyr Pro Thr Asn Gly Tyr Thr Arg Tyr Ala Asp Ser Val 50 55 60

Lys Gly Arg Phe Thr Ile Ser Ala Asp Thr Ser Lys Asn Thr Ala Tyr 65 70 75 80

Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95

Ser Arg Trp Gly Gly Asp Gly Phe Tyr Ala Met Asp Tyr Trp Gly Gln 100 105 110

Gly Thr Leu Val Thr Val Ser Ser 115 120

<210> 37

<211> 120

<212> PRT

<213> Mus musculus

<400> 37

Gln Val Thr Leu Arg Glu Ser Gly Pro Ala Leu Val Lys Pro Thr Gln
1 5 10 15

Thr Leu Thr Leu Thr Cys Thr Phe Ser Gly Phe Ser Leu Ser Thr Ser 20 25 30

Gly Met Ser Val Gly Trp Ile Arg Gln Pro Ser Gly Lys Ala Leu Glu 35 40 45

Trp Leu Ala Asp Ile Trp Trp Asp Asp Lys Lys Asp Tyr Asn Pro Ser 50 55 60

Leu Lys Ser Arg Leu Thr Ile Ser Lys Asp Thr Ser Lys Asn Gln Val Val Leu Lys Val Thr Asn Met Asp Pro Ala Asp Thr Ala Thr Tyr Tyr Cys Ala Arg Ser Met Ile Thr Asn Trp Tyr Phe Asp Val Trp Gly Ala Gly Thr Thr Val Thr Val Ser Ser 115 <210> 38 ' <211> 106 <212> PRT <213> Mus musculus <400> 38 Asp Ile Gln Met Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Lys Cys Gln Leu Ser Val Gly Tyr Met His Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Trp Ile Tyr Asp Thr Ser Lys Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Asp Asp Phe Ala Thr Tyr Tyr Cys Phe Gln Gly Ser Gly Tyr Pro Phe Thr 90 / Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys <210> 39 <211> 1039 <212> DNA <213> Homo sapiens <400> 39 tcctgcacag gcagtgcctt gaagtgcttc ttcagagacc tttcttcata gactactttt 60 120 ttttctttaa gcagcaaaag gagaaaattg tcatcaaagg atattccaga ttcttgacag 180 cattetegte atetetgagg acateaceat cateteagga tgaggggeat gaagetgetg ggggcgctgc tggcactggc ggccctactg cagggggccg tgtccctgaa gatcgcagcc 240 ttcaacatcc agacatttgg ggagaccaag atgtccaatg ccaccctcgt cagctacatt 300 gtgcagatcc tgagccgcta tgacatcgcc ctggtccagg aggtcagaga cagccacctg 360 420 actgccgtgg ggaagctgct ggacaacctc aatcaggatg caccagacac ctatcactac

480

qtggtcagtg agccactggg acggaacagc tataaggagc gctacctgtt cgtgtacagg

cetgaccagg tgtetgcggt ggacagetac tactacgatg atggctgcga gecetgeggg 540 aacgacacct tcaaccgaga gccagccatt gtcaggttct tctcccggtt cacagaggtc, 600 agggagtttg ccattgttcc cctgcatgcg gccccggggg acgcagtagc cgagatcgac 660 gctctctatg acgtctacct ggatgtccaa gagaaatggg gcttggagga cgtcatgttg 720 atgggcgact tcaatgcggg ctgcagctat gtgagaccct cccagtggtc atccatccgc 780 840 ctgtggacaa gccccacctt ccagtggctg atccccgaca gcgctgacac cacagctaca cccacgcact gtgcctatga caggatcgtg gttgcaggga tgctgctccg aggcgccgtt 900 gttcccgact cggctcttcc ctttaacttc caggctgcct atggcctgag tgaccaactg geceaageca teagtgacea etatecagtg gaggtgatge tgaagtgage ageceeteee 1039 cacaccagtt gaactgcag

<210> 40

<211> 282

<212> PRT

<213> Homo sapiens

<400> 40

Met Arg Gly Met Lys Leu Leu Gly Ala Leu Leu Ala Leu Ala Ala Leu 1 5 10 15

Leu Gln Gly Ala Val Ser Leu Lys Ile Ala Ala Phe Asn Ile Gln Thr 20 25 30

Phe Gly Glu Thr Lys Met Ser Asn Ala Thr Leu Val Ser Tyr Ile Val

Gln Ile Leu Ser Arg Tyr Asp Ile Ala Leu Val Gln Glu Val Arg Asp
50 60

Ser His Leu Thr Ala Val Gly Lys Leu Leu Asp Asn Leu Asn Gln Asp 65 70 75 80

Ala Pro Asp Thr Tyr His Tyr Val Val Ser Glu Pro Leu Gly Arg Asn 85 90 95

Ser Tyr Lys Glu Arg Tyr Leu Phe Val Tyr Arg Pro Asp Gln Val Ser 100 105 110

Ala Val Asp Ser Tyr Tyr Tyr Asp Asp Gly Cys Glu Pro Cys Gly Asn 115 120 125

Asp Thr Phe Asn Arg Glu Pro Ala Ile Val Arg Phe Phe Ser Arg Phe 130 135 140

Thr Glu Val Arg Glu Phe Ala Ile Val Pro Leu His Ala Ala Pro Gly 145 150 155 160

Asp Ala Val Ala Glu Ile Asp Ala Leu Tyr Asp Val Tyr Leu Asp Val 165 170 175

Gln Glu Lys Trp Gly Leu Glu Asp Val Met Leu Met Gly Asp Phe Asn 180 185 190

Ala Gly Cys Ser Tyr Val Arg Pro Ser Gln Trp Ser Ser Ile Arg Leu 200 195 Trp Thr Ser Pro Thr Phe Gln Trp Leu Ile Pro Asp Ser Ala Asp Thr Thr Ala Thr Pro Thr His Cys Ala Tyr Asp Arg Ile Val Val Ala Gly 230 235 Met Leu Leu Arg Gly Ala Val Val Pro Asp Ser Ala Leu Pro Phe Asn Phe Gln Ala Ala Tyr Gly Leu Ser Asp Gln Leu Ala Gln Ala Ile Ser 265 Asp His Tyr Pro Val Glu Val Met Leu Lys <210> 41 <211> 678 <212> DNA <213> Mus musculus <400> 41 60 gacatettge tgacteagte tecagecate etgtetgtga gtecaggaga aagagteagt ttctcctgca gggccagtca gttcgttggc tcaagcatcc actggtatca gcaaagaaca 120 aatggttctc caaggcttct cataaagtat gcttctgagt ctatgtctgg gatcccttcc 180 aggtttagtg gcagtggatc agggacagat tttactctta gcatcaacac tgtggagtct 240 gaagatattg cagattatta ctgtcaacaa agtcatagct ggccattcac gttcggctcg 300 gggacaaatt tggaagtaaa agaagtgaag cttgaggagt ctggaggagg cttggtgcaa 360 420 cctggaggat ccatgaaact ctcctgtgtt gcctctggat tcattttcag taaccactgg atgaactggg teegeeagte teeagagaag gggettgagt gggttgetga aattagatea 480 540 aaatctatta attotgoaac acattatgog gagtotgtga aagggaggtt caccatotca 600 agagatgatt ccaaaagtgc tgtctacctg caaatgaccg acttaagaac tgaagacact ggcgtttatt actgttccag gaattactac ggtagtacct acgactactg gggccaaggc 660 678 accactetea cagtetee <210> 42 <211> 226 <212> PRT <213> Mus musculus <400> 42 Asp Ile Leu Leu Thr Gln Ser Pro Ala Ile Leu Ser Val Ser Pro Gly 10: ٠ē Glu Arg Val Ser Phe Ser Cys Arg Ala Ser Gln Phe Val Gly Ser Ser

Ile	His	Trp 35	Tyr	Gln	Gln	Arg	Thr 40	Asn	Gly	Ser	Pro	Arg 45	Leu	Leu	Ile		
Lys	Tyr 50	Ala	Ser	Glu	Ser	Met 55	Ser	Gly	Ile	Pro	Ser 60	Arg	Phe	Ser	Gly		
Ser 65	Gly	Ser	Gly	Thr	Asp 70	Phe	Thr	Leu	Ser	Ile 75	Asn ·	Thr	Val	Glu	Ser 80		
Glu	Asp	Ile	Ala	Asp 85	Tyr	Tyr	Суз	Gln	Gln 90	Ser	His	Ser	Trp	Pro 95	Phe		
Thr	Phe	Gly	Ser 100	Gly	Thr	Asn	Leu	Glu 105	Val	Lys	Glu	Val	Lys 110	Leu	Glu		
Glu	Ser	Gly 115	Gly	Gly	Leu	Val	Gln 120	Pro	Gly	Gly	Ser	Met 125	Lys	Leu	Ser		
Cys	Val 130	Ala	Ser	Gly	Phe	Ile 135	Phe	Ser	Asn	His	Trp 140	Met	Asn	Trp	Val		
Arg 145	Gln	Ser	Pro	Glu	Lys 150	Gly	Leu	Glu	Trp	Val 155	Ala	Glu	Ile	Arg	Ser 160		
Lys	Ser	Ile	Asn	Ser 165	Ala	Thr	His	Tyr	Ala 170	Glu	Ser	Val	Lys	Gly 175	Arg		
Phe	Thr	Ile	Ser 180	Arg	Asp	Asp	Ser	Lys 185	Ser	Ala	Val	Tyr	Leu 190	Gln	Met		
Thr	Asp	Leu 195	Arg	Thr	Glu	Asp	Thr 200		Val	Tyr	Tyr	Cys 205	Ser	Arg	Asn		
Tyr	Tyr 210	Gly	Ser	Thr	Tyr	Asp 215	Tyr	Trp	Gly	Gln	Gly 220	Thr	Thr	Leu	Thr		
Val 225	Ser										•						
<21 <21 <21 <21	1> 2>	43 450 DNA Homo	sap	, iens					į								
<40		43							- ť ``								
gct	gcat	cag	aaga	ggcc	at c	aagc	acat	c ac	tgtc	cttc	tgc	catg	gcc	ctgt	ggatgo	6	0
gcc	tcct	gcc	cctg	ctgg	cg c	tgct	ggcc	c tc	tggg	gacc	tga	ccca	gcc	gcag	ccttt	g 12	0
tga	acca	aca	cctg	tgcg	gc t	caca	cctg	g tg	gaag	ctct	cta	ccta	gtg	tgcg	gggaad	18	0
gag	gctt	ctt	ctac	acac	cc a	agac	ccgc	c gg	gagg	caga	gga	cctg	cag	gtgg	ggcag	g 24	0
tgg	agct	ggg	cggg	ggcc	ct g	gtgc	aggo	a go	ctgc	agcc	ctt	ggcc	ctg	gagg	ggtcc	30	0
tgc	agaa	gcg	tggc	attg	tg g	aaca	atgo	t gt	acca	gcat	ctg	ctcc	ctc	tacc	agctg	36	0
aga	acta	ctg	caac	taga	.cg c	agco	cgca	ıg go	agco	cccc	acc	cgcc	gcc	tcct	gcacc	g 42	C
aga	gaga	.tgg	aata	aagc	cc t	tgaa	ccag	ıc								45	C

<210> 44 <211> 110 <212> PRT

<213> Homo sapiens

<400> 44

Met Ala Leu Trp Met Arg Leu Leu Pro Leu Leu Ala Leu Leu Ala Leu 1 5 10 15

Trp Gly Pro Asp Pro Ala Ala Ala Phe Val Asn Gln His Leu Cys Gly
20 25 30

Ser His Leu Val Glu Ala Leu Tyr Leu Val Cys Gly Glu Arg Gly Phe $35 \hspace{1cm} 40 \hspace{1cm} 45$

Phe Tyr Thr Pro Lys Thr Arg Arg Glu Ala Glu Asp Leu Gln Val Gly 50 55 60

Gln Val Glu Leu Gly Gly Gly Pro Gly Ala Gly Ser Leu Gln Pro Leu 65 70 75 80

Ala Leu Glu Gly Ser Leu Gln Lys Arg Gly Ile Val Glu Gln Cys Cys 85 90 95

Thr Ser Ile Cys Ser Leu Tyr Gln Leu Glu Asn Tyr Cys Asn 100 105 110

<210> 45

<211> 1203

<212> DNA

<213> Hepatitis B virus

<400> atgggaggtt ggtcttccaa acctcgacaa ggcatgggga cgaatctttc tgttcccaat 60 cctctgggat tctttcccga tcaccagttg gaccctgcgt tcggagccaa ctcaaacaat 120 ccagattggg acttcaaccc caacaaggat cactggccag aggcaatcaa ggtaggagcg 180 240 ggagacttcg ggccagggtt caccccacca cacggcggtc ttttggggtg gagccctcag geteagggea tattgacaac agtgecagea gegeeteete etgttteeac caateggeag 300 tcaggaagac agcctactcc catctctcca cctctaagag acagtcatcc tcaggccatg 360 420 cagtggaact ccacaacatt ccaccaagct ctgctagatc ccagagtgag gggcctatat 480 tttcctqctq gtggctccag ttccggaaca gtaaaccetg ttccgactac tgtctcacce 540 atatoqtoaa tottotogag gactggggac cotgcacoga acatggagag cacaacatca ggatteetag gacccetget egtgttacag geggggtttt tettgttgac aagaateete 600 acaataccac agagtetaga etegtggtgg acttetetea attttetagg gggageacce 660 acgtgtcctg gccaaaattc gcagtcccca acctccaatc actcaccaac ctcttgtcct 720 ccaatttgtc ctggttatcg ctggatgtgt ctgcggcgtt ttatcatatt cctcttcatc 780 840 ctgctgctat gcctcatctt cttgttggtt cttctggact accaaggtat gttgcccgtt

900 tgtcctctac ttccaggaac atcaactacc agcacgggac catgcaagac ctgcacgatt cctgctcaag gaacctctat gtttccctct tgttgctgta caaaaccttc ggacggaaac 960 tgcacttgta ttcccatccc atcatcctgg gctttcgcaa gattcctatg ggagtgggcc tcaqtccqtt tctcctqgct cagtttacta gtgccatttg ttcagtggtt cgcagggctt toccccactg tttggctttc agttatatgg atgatgtggt attgggggcc aagtctgtac aacatcttga gtcccttttt acctctatta ccaattttct tttgtctttg ggtatacatt 1200 1203 tga λĺ

<210> 46

<211> 400

<212> PRT

<213> Hepatitis B virus

<400> 46

Met Gly Gly Trp Ser Ser Lys Pro Arg Gln Gly Met Gly Thr Asn Leu

Ser Val Pro Asn Pro Leu Gly Phe Phe Pro Asp His Gln Leu Asp Pro

Ala Phe Gly Ala Asn Ser Asn Asn Pro Asp Trp Asp Phe Asn Pro Asn

Lys Asp His Trp Pro Glu Ala Ile-Lys Val Gly Ala Gly Asp Phe Gly

Pro Gly Phe Thr Pro Pro His Gly Gly Leu Leu Gly Trp Ser Pro Gln

Ala Gln Gly Ile Leu Thr Thr Val Pro Ala Ala Pro Pro Pro Val Ser

Thr Asn Arg Gln Ser Gly Arg Gln Pro Thr Pro Ile Ser Pro Pro Leu 105

Arg Asp Ser His Pro Gln Ala Met Gln Trp Asn Ser Thr Thr Phe His 120

Gln Ala Leu Leu Asp Pro Arg Val Arg Gly Leu Tyr Phe Pro Ala Gly

Gly Ser Ser Ser Gly Thr Val Asn Pro Val Pro Thr Thr Val Ser Pro 145

Ile Ser Ser Ile Phe Ser Arg Thr Gly Asp Pro Ala Pro Asn Met Glu

Ser Thr Thr Ser Gly Phe Leu Gly Pro Leu Leu Val Leu Gln Ala Gly

Phe Phe Leu Leu Thr Arg Ile Leu Thr Ile Pro Gln Ser Leu Asp Ser 200

Trp Trp Thr Ser Leu Asn Phe Leu Gly Gly Ala Pro Thr Cys Pro Gly 210 215

Gln 225	Asn	Ser	Gln	Ser	Pro 230	Thr	Ser	Asn	His	Ser 235	Pro	Thr	Ser	Cys	Pro 240		
Pro	Ile	Суз	Pro	Gly 245	Tyr	Arg	Trp	Met	Cys 250	Leu	Arg	Arg	Phe	11e 255	Ile		
Phe	Leu	Phe	Ile 260	Leu	Leu	Leu	Суз	Leu 265	Ile	Phe	Leu	Leu	Val 270	Leu	Leu		
Asp	Tyr	Gln 275	Gly	Met	Leu	Pro	Val 280	Cys	Pro	Leu	Leu	Pro 285	Gly	Thr	Ser		
Thr	Thr 290	Ser	Thr	Gly	Pro	Суз 295	Lys	Thr	Суз	Thr	Ile 300	Pro	Ala	Gln	Gly		
Thr 305	Ser	Met	Phe	Pro	Ser 310	Суs	Cys	Cys	Thr	Lys 315	Pro	Ser	Asp	Gly	Asn 320		
Cys	Thr	Cys	Ile	Pro 325	Ile	Pro	Ser	Ser	Trp 330	Ala	Phe	Ala	Arg	Phe 335	Leu		
Trp	Glu	Trp	Ala 340	Ser	Val	Arg	Phe	Ser 345	Trp	Leu	Ser	Leu	Leu 350	Val	Pro		
Phe	Val	Gln 355	Trp	Phe	Ala	Gly	Leu 360	Ser	Pro	Thr	Val	Trp 365	Leu	Ser	Val		
Ile	Trp 370	Met	Met	Trp	Tyr	Trp 375	Gly	Pro	Ser	Leu	Tyr 380	Asn	Ile	Leu	Ser		
Pro 385	Phe	Leu	Pro	Leu	Leu 390	Pro	Ile	Phe	Phe	Cys 395	Leu	Trp	Val	Tyr	11e 400		
<210 <211 <212 <213	L> ' 2> 1	47 799 DNA Homo	sapi	iens													
<400 cgaa		47 ctc a	agggt	tcctq	gt gg	gacaç	gctca	a cci	tagci	tgca	atg	gcta	cag	gctc	ccggac	6	C
gtc	cctg	ctc (ctggd	ctttt	g go	cctgo	etet	g cc	tgcc	ctgg	ctto	caaga	agg	gcagt	tgcctt	12	C
ccca	aacc	att (cccti	tatco	ca go	geett	ttga	a ca	acgci	tatg	ctc	egeg	ccc	atcgi	tctgca	18	C
ccaç	gctg	gcc 1	tttga	acaco	ct ac	ccag	gagti	t tg	aagaa	agcc	tata	atcc	caa	agga	acagaa	24	C
gtat	tca	ttc (ctgca	agaad	cc c	ccaga	acct	c cc	tctg	tttc	tca	gagt	cta	ttcc	gacacc	30	C
ctc	caac	agg (gagga	aaaca	ac aa	acaga	aaat	c ca	acct	agag	ctg	ctcc	gca	tctc	cctgct	36	C
gcto	catc	cag	tcgt	ggct	gg ag	gece	gtgc	a gt	tcct	cagg	agt	gtct	tċg	ccaa	cagcct	42	C
ggt	gtac	ggc (gccto	ctgad	ca go	caac	gtcta	a tg	acct	ccta	aag	gacc	tag	agga	aggcat	48	C
ccaa	aacg	ctg a	atgg	ggag	gc to	ggaag	gatg	g ca	gccc	ccgg	act	gggc	aga	tctt	caagca	54	C
gac	ctac	agc a	aagti	tcga	ca ca	aaact	tcac	a ca	acga	tgac	gca	ctac	tca	agaa	ctacgg	60	C
gct	gctc	tac	tgcti	tcag	ga aq	ggac	atgga	a ca	aggt	cgag	aca	ttcc	tgc	gcat	cgtgca	66	(

780

799

gtgccgctct gtggagggca gctgtggctt ctagctgccc gggtggcatc cctgtgaccc ctccccagtg cctctcctgg ccctggaagt tgccactcca gtgcccacca gccttgtcct aataaaatta agttgcatc <210> 48 <211> 217 <212> PRT <213> Homo sapiens <400> 48 Met Ala Thr Gly Ser Arg Thr Ser Leu Leu Leu Ala Phe Gly Leu Leu Cys Leu Pro Trp Leu Gln Glu Gly Ser Ala Phe Pro Thr Ile Pro Leu Ser Arg Pro Phe Asp Asn Ala Met Leu Arg Ala His Arg Leu His Gln Leu Ala Phe Asp Thr Tyr Gln Glu Phe Glu Glu Ala Tyr Ile Pro Lys Glu Gln Lys Tyr Ser Phe Leu Gln Asn Pro Gln Thr Ser Leu Cys Phe Ser Glu Ser Ile Pro Thr Pro Ser Asn Arg Glu Glu Thr Gln Gln Lys 90 Ser Asn Leu Glu Leu Leu Arg Ile Ser Leu Leu Leu Ile Gln Ser Trp Leu Glu Pro Val Gln Phe Leu Arg Ser Val Phe Ala Asn Ser Leu Val 120 Tyr Gly Ala Ser Asp Ser Asn Val Tyr Asp Leu Leu Lys Asp Leu Glu Glu Gly Ile Gln Thr Leu Met Gly Arg Leu Glu Asp Gly Ser Pro Arg 155 Thr Gly Gln Ile Phe Lys Gln Thr Tyr Ser Lys Phe Asp Thr Asn Ser 165 His Asn Asp Asp Ala Leu Leu Lys Asn Tyr Gly Leu Leu Tyr Cys Phe 185 Arg Lys Asp Met Asp Lys Val Glu Thr Phe Leu Arg Ile Val Gln Cys 200 Arg Ser Val Glu Gly Ser Cys Gly Phe <210> 49 <211> 963 <212> DNA <213> Homo sapiens 1 <400> 49

atggagacag	acacactcct	gttatgggtg	ctgctgctct	gggttccagg	ttccactggt "	··· 60
gacgtcaggc	gagggccccg	gagcctgcgg	ggcagggacg	cgccagcccc	cacgccctgc	120
gtcccggccg	agtgcttcga	cctgctggtc	cgccactgcg	tggcctgcgg	gctcctgcgc	180
acgccgcggc	cgaaaccggc	cggggccagc	agccctgcgc	ccaggacggc	gctgcagccg	240
caggagtcgg	tgggcgcggg	ggccggcgag	gcggcggtcg	acaaaactca	cacatgeeca	300
ccgtgcccag	cacctgaact	cctgggggga	ccgtcagtct	tectettece	cccaaaaccc	360
aaggacaccc	tcatgatctc	ccggacccct	gaggtcacat	gcgtggtggt	ggacgţgagc	420
cacgaagacc	ctgaggtcaa	gttcaactgg	tacgtggacg	gcgtggaggt	gcataatgcc	480
aagacaaagc	cgcgggagga	gcagtacaac	agcacgtacc	gtgtggtcag	cgtcctcacc	540
gtcctgcacc	aggactggct	gaatggcaag	gagtacaagt	gcaaggtctc	caacaaagcc	600
ctcccagccc	ccatcgagaa	aaccatctcc	aaagceaaag	ggcagccccg	agaaccacag	660
gtgtacaccc	tgcccccatc	ccgggatgag	ctgaccaaga	accaggtcag	cctgacctgc	720
ctggtcaaag	gcttctatcc	cagcgacatc	gccgtggagt	gggagagcaa	tgggcagccg	780
gagaacaact	acaagaccac	gcctcccgtg	ttggactccg	acggeteett	cttcctctac	840
agcaagctca	ccgtggacaa	gagcaggtgg	cagcagggga	acgtcttctc	atgctccgtg	900
atgcatgagg	ctctgcacaa	ccactacacg	cagaagagcc	tctccctgtc	tcccgggaaa	960
tga						963
40105 E0						

<210> 50 <211> 320 <212> PRT

<213> Homo sapiens

<400> 50

Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro 1 5 10 15

Gly Ser Thr Gly Asp Val Arg Arg Gly Pro Arg Ser Leu Arg Gly Arg

Asp Ala Pro Ala Pro Thr Pro Cys Val Pro Ala Glu Cys Phe Asp Leu

Leu Val Arg His Cys Val Ala Cys Gly Leu Leu Arg Thr Pro Arg Pro

Lys Pro Ala Gly Ala Ser Ser Pro Ala Pro Arg Thr Ala Leu Gln Pro

Gln Glu Ser Val Gly Ala Gly Ala Gly Glu Ala Ala Val Asp Lys Thr

His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser 105

Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg 120 Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala 155 Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr 200 Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser 250 Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp 260 265 270

Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser 280 Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala 295 . Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys <210> 51 <211> 107 <212> PRT <213> Homo sapiens <400> 51 Asp Ile Gln Met Thr Gln Thr Pro Ser Thr Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln Asp Ile Asn Asn Tyr 25 Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr Tyr Thr Ser Thr Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Tyr Thr Leu Thr Ile Ser Ser Leu Gln Pro

Asp Asp Phe Ala Thr Tyr Phe Cys Gln Gln Gly Asn Thr Leu Pro Trp

85 90 9

Thr Phe Gly Gln Gly Thr Lys Val Glu Val Lys
100 105

<210> 52

<211> 107

<212> PRT

<213> Mus musculus

<400> 52

Asp Ile Gln Met Thr Gln Thr Thr Ser Ser Leu Ser Ala Ser Leu Gly
1 5 10 15

Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln Asp Ile Asn Asn Tyr 20 2530

Leu Asn Trp Tyr Gln Gln Lys Pro Asp Gly Ile Val Lys Leu Leu Ile 35 40 45

Tyr Tyr Thr Ser Thr Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60

Ser Gly Ser Gly Thr Asp Tyr Ser Leu Thr Ile Ser Asn Leu Glu Gln 65 70 75 80

Glu Asp Ile Ala Thr Tyr Phe Cys Gln Gln Gly Asn Thr Leu Pro Trp 85 90 95

Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys 100 105

<210> 53

<211> 119

<212> PRT

<213> Homo sapiens

<400> 53

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser 1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser $G_{\underline{y}}^{\underline{y}}$ Tyr Ala Phe Thr Asn Tyr 20 25 30

Leu Ile Glu Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile 35 40 45

Gly Val Ile Tyr Pro Gly Ser Gly Gly Thr Asn Tyr Asn Glu Lys Phe 50 55 60

Lys Gly Arg Val Thr Leu Thr Val Asp Glu Ser Thr Asn Thr Ala Tyr 65 70 75 80

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Phe Cys 85 90 95

Ala Arg Arg Asp Gly Asn Tyr Gly Trp Phe Ala Tyr Trp Gly Gln Gly 100 105 110

Thr Leu Val Thr Val Ser Ser 115

<210> 54

<211> 119

<212> PRT

<213> Mus musculus

<400> 54

Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Gly Pro Gly Thr 1 5 10 15

Ser Val Arg Val Ser Cys Lys Ala Ser Gly Tyr Ala Phe Thr Asn Tyr 20 25 30

Leu Ile Glu Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile 35 40 45

Gly Val Ile Tyr Pro Gly Ser Gly Gly Thr Asn Tyr Asn Glu Lys Phe 50 55 60

Lys Gly Lys Ala Thr Leu Thr Val Asp Lys Ser Ser Thr Thr Ala Tyr 65. 70 75 80

Met Gln Leu Ser Ser Leu Thr Ser Asp Asp Ser Ala Val Tyr Phe Cys 85. 90 95

Ala Arg Arg Asp Gly Asn Tyr Gly Trp Phe Ala Tyr Trp Gly Arg Gly
100 105 110

Thr Leu Val Thr Val Ser Ala

<210> 55

<211> 214

<212> PRT

<213> Homo sapiens

<400> 55

Asp Ile Gln Met Thr Gln Thr Pro Ser Thr Leu Ser Ala Ser Val Gly
1 5 10 15

Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln Asp Ile Asn Asn Tyr 20 25 30

Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45

Tyr Tyr Thr Ser Thr Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60

Ser Gly Ser Gly Thr Asp Tyr Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 75 80

Asp Asp Phe Ala Thr Tyr Phe Cys Gln Gln Gly Asn Thr Leu Pro Trp 85 90 90 95

Thr Phe Gly Gln Gly Thr Lys Val Glu Val Lys Arg Thr Val Ala Ala 100 105 . 110

Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly 115 120 125

Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg GIu Ala 130 135 140

Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln 145 150 155

Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser 165 170 175

Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr 180 185 190

Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser 195 200 205

Phe Asn Arg Gly Glu Cys 210

<210> 56

<211> 448

<212> PRT

<213> Homo sapiens

<400> 56

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser 1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Ala Phe Thr Asn Tyr 20 25 30

Leu Ile Glu Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile 35 40 45

Gly Val Ile Tyr Pro Gly Ser Gly Gly Thr Asn Tyr Asn Glu Lys Phe 50 60

Lys Gly Arg Val Thr Leu Thr Val Asp Glu Ser Thr Asn Thr Ala Tyr 65 70 75 80

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Phe Cys 85 90 95

Ala Arg Arg Asp Gly Asn Tyr Gly Trp Phe Ala Tyr Trp Gly Gln Gly
100 105 110

Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe 115 120 125

Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu 130 135 140

Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp 145 150 155 160

Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu 165 170 175

Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser 180 185 190

Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro

200 205 195 Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp Lys 215 Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro 230 235 Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp 260 Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val 290 Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu 315 Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr 345 Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys 410 Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu

Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly 440

<210> 57 <211> 8540 DNA <212> <213> Homo sapiens

<400> gacgtcgcgg ccgctctagg cctccaaaaa agcctcctca ctacttctgg aatagctcag 60 aggecgagge ggeeteggee tetgeataaa taaaaaaaat tagteageea tgeatgggge 120 180 ggagaatggg cggaactggg cggagttagg ggcgggatgg gcggagttag gggcgggact atggttgctg actaattgag atgcatgctt tgcatacttc tgcctgctgg ggagcctggg 240

gactttccac acctggttgc	tgactaattg	agatgcatgc	tttgcatact	tctgcctgct	300
ggggagcctg gggactttcc	acaccetaac	tgacacacat	tccacagaat	taattcccct	360
agttattaat agtaatcaat	tacggggtca	ttagttcata	gcccatatat	ggagttccgc	420
gttacataac ttacggtaaa	tggcccgcct	ggctgaccgc	ccaacgaccc	ccgcccattg	480
acgtcaataa tgacgtatgt	tcccatagta	acgccaatag	ggactttcca	ttgacgtcaa	540
tgggtggact atttacggta	aactgcccac	ttggcagtac	atcaagtgta	tcatatgcca	600
agtacgcccc ctattgacgt	caatgacggt	aaatggcccg	cctggcatta	tgcccagtac	660
atgaccttat gggactttco	tacttggcag	tacatctacg	tattagtcat	cgctattacc	720
atggtgatgc ggttttggca	gtacatcaat	gggcgtggat	agcggtttga	ctcacgggga	780
tttccaagtc tccaccccat	tgacgtcaat	gggagtttgt	tttggcacca	aaatcaacgg	840
gactttccaa aatgtcgtaa	caactccgcc	ccattgacgc	aaatgggcgg	taggcgtgta	900
cggtgggagg tctatataag	cagagctggg	tacgtgaacc	gtcagatcgc	ctggagacgc	960
catcacagat ctctcaccat	gagggtcccc	gctcagctcc	tggggctcct	gctgctctgg	1020
ctcccaggtg cacgatgtga	tggtaccaag	gtggaaatca	aacgtacggt	ggctgcacca	1080
tetgtettea tetteeegee	atctgatgag	cagttgaaat	ctggaactgc	ctctgttgtg	1140
tgcctgctga ataacttcta	tcccagagag	gccaaagtac	agtggaaggt	ggataacgcc	1200
ctccaatcgg gtaactccca	ggagagtgtc	acagagcagg	acagcaagga	cagcacctac	1260
agceteagea geaccetgae	gctgagcaaa	gcagaētacg	agaaacacaa	agtctacgcc	1320
tgcgaagtca cccatcaggg	cctgagctcg	cccgtcacaa	agagcttcaa	caggggagag	1380
tgttgaattc agatccgtta	acggttacca	actacctaga	ctggattcgt	gacaacatgc	1440
ggccgtgata tctacgtatg	atcagcctcg	actgtgcctt	ctagttgcca	gccatctgtt	1500
gtttgcccct ccccgtgcc	ttccttgacc	ctggaaggtg	ccactcccac	tgtcctttcc	1560
taataaaatg aggaaattgo	atcgcattgt	ctgagtaggt	gtcattctat	tctggggggt	1620
ggggtggggc aggacagcaa	gggggaggat	tgggaagaca	atagcaggca	tgctggggat	1680
gcggtgggct ctatggaacc	agctggggct	cgacagctat	gccaagtacg	cccctattg	1740
acgtcaatga cggtaaatgg	cccgcctggc	attatgccca	gtacatgacc	ttatgggact	1800
ftcctacttg gcagtacato	tacgtattag	tcatcgctat	taccatggtg	atgcggtttt	1860
ggcagtacat caatgggcgt	ggatagcggt	ttgactcacg	gggatttcca	agtctccacc	1920
ccattgacgt caatgggagt	ttgttttggc	accaaaatca	acgggacttt	ccaaaatgtc	1980
gtaacaactc cgccccattg	acgcaaatgg	gcggtaggcg	tgtacggtgg	gaggtctata	2040
taagcagagc tgggtacgtc	ctcacattca	gtgatðagca	ctgaacacag	acccgtcgac	2100

57

atgggttgga	gcctcatctt	gctcttcctt	gtcgctgttg	ctacgcgtgt	cgctagcacc	2160
aagggcccat	cggtcttccc	cctggcaccc	tcctccaaga	gcacctctgg	gggcacagcg	2220
gccctgggct	gcctggtcaa	ggactacttc	cccgaaccgg	tgacggtgtc	gtggaactca	2280
ggcgccctga	ccagcggcgt	gcacaccttc	ccggctgtcc	tacagtcctc	aggactctac	2340
tccctcagca	gcgtggtgac	cgtgccctcc	agcagcttgg	gcacccagac	ctacatctgc	2400
aacgtgaatc	acaagcccag	caacaccaag	gtggacaaga	aagcagagcc	caaatcttgt	2460
gacaaaactc	acacatgccc	accgtgccca	gcacctgaac	tcctgggggg	accgtcagtc	2520
ttcctcttcc	ccccaaaacc	caaggacacc	ctcatgatct	cccggacccc	tgaggtcaca	2580
tgcgtggtgg	tggacgtgag	ccacgaagac	cctgaggtca	agttcaactg	gtacgtggac	2640
		caagacaaag				2700
cgtgtggtca	gcgtcctcac	cgtcctgcac	caggactggc	tgaatggcaa	ggactacaag	2760
tgcaaggtct	ccaacaaagc	cctcccagcc	cccatcgaga	aaaccatctc	caaagccaaa	2820
gggcagcccc	gagaaccaca	ggtgtacacc	ctgcccccat	cccgggatga	gctgaccagg	2880
aaccaggtca	gcctgacctg	cctggtcaaa	ggcttctatc	ccagcgacat	cgccgtggag	2940
tgggagagca	atgggcagcc	ggagaacaac	tacaagacca	-cgcctcccgt	gctggactcc	3000
gacggctcct	tcttcctcta	cagcaagctc	accgtggaca	agagcaggtg	gcagcagggg	3060
aacgtcttct	catgctccgt	gatgcatgag	gctctgcaca	accactacac	gcagaagagc	3120
ctctccctgt	ctccgggtaa	atgaggatcc	gttaacggtt	accaactacc	tagactggat	3180
tcgtgacaac	atgcggccgt	gatatctacg	tatgatcagc	ctcgactgtg	ccttctagtt	3240
gccagccatc	tgttgtttgc	ccctcccccg	tgccttcctt	gaccctggaa	ggtgccactc	3300
ccactgtcct	ttcctaataa	aatgaggaaa	ttgcatcgca	ttgtctgagt	aggtgtcatt	3360
ctattctggg	gggtggggtg	gggcaggaca	gcaaggggga	ggattgggaa	gacaatagca	3420
ggcatgctgg	ggatgcggtg	ggctctatgg	aaccagctgg	ggctcgacag	cgctggatct	3480
cccgatcccc	agctttgctt	ctcaatttct	tatttgcata	atgagaaaaa	aaggaaaatt	3540
aattttaaca	ccaattcagt	agttgattga	gcaaatgcgt	tgccaaaaag	gatgctttag	3600
agacagtgtt	ctctgcacag	ataaggacaa	acattattca	. gagggagtac	ccagagetga	3660
gactcctaag	ccagtgagtg	gcacagcatt	ctagggagaa	atatgcttgt	catcaccgaa	3720
gcctgattcc	gtagagccac	accttggtaa	gggccaatct	gctcacacag	gatagagagg	3780
gcaggagcca	gggcagagca	ı tataaggtga	ggtaggatca	gttgctcctc	acatttgctt	3840
ctgacatagt	tgtgttggga	gcttggatag	cttggacago	tcagggctgc	gatttcgcgc	3900

caaacttgac	ggcaatccta	gcgtgaaggc	tggtaggatt	ttatccccgc	tgccatcatg	3960
gttcgaccat	tgaactgcat	cgtcgccgtg	tcccaaaata	tggggattgg	caagaacgga	4020
gacctaccct	ggcctccgct	caggaacgag	ttcaagtact	tccaaagaat	gaccacaacc	4080
tcttcagtgg	aaggtaaaca	gaatctggtg	attatgggta	ggaaaacctg	gttctccatt	4140
cctgagaaca	atcgaccttt	aaaggacaga	attaatatag	ttctcagtag	agaactcaaa	4200
gaaccaccac	gaggagctca	ttttcttgcc	aaaagtttgg	atgatgcctt	aagacttatt	4260
gaacaaccgg	aattggcaag	taaagtagac	atggtttgga	tagtcggagg	cagttctgtt	4320
taccaggaag	ccatgaatca	accaggccac	cttagactct	ttgtgacaag	gatcatgcag	4380
gaatttgaaa	gtgacacgtt	tttcccagaa	attgatttgg	ggaaatataa	acttctccca	4440
gaatacccag	gcgtcctctc	tgaggtccag	gaggaaaaag	gcatcaagta	taagtttgaa	4500
gtctacgaga	agaaagacta	acaggaagat	gctttcaagt	tctctgctcc	cctcctaaag	4560
tcatgcattt	ttataagacc	atgggacttt	tgctggcttt	agatcagcct	cgactgtgcc	4620
ttctagttgc	cagccatctg	ttgtttgccc	ctcccccgtg	ccttccttga	ccctggaagg	4680
tgccactccc	actgtccttt	cctaataaaa	tgaggaaatt	gcatcgcatt	gtctgagtag	4740
gtgtcattct	attctggggg	gtggggtggg	gcaggacagc	aagggggagg	attgggaaga 	4800
caatagcagg	catgctgggg	atgcggtggg	ctctatggaa	ccagctgggg	ctcgagctac	4860
tagctttgct	tctcaatttc	ttatttgcat	aatgagaaaa	aaaggaaaat	taaťtttaac	4920
accaattcag	tagttgattg	agcaaatgcg	ttgccaaaaa	ggatgcttta	gagacagtgt	4980
tctctgcaca	gataaggaca	aacattattc	agagggagta	cccagagctg	agactcctaa	5040
gccagtgagt	ggcacagcat	tctagggaga	aatatgcttg	tcatcaccga	agcctgattc	5100
cgtagagcca	caccttggta	agggccaatc	tgctcacaca	ggatagagag	ggcaggagcc	5160
agggcagagc	atataaggtg	aggtaggatc	agttgctcct	cacatttgct	tctgacatag	5220
ttgtgttggg	agcttggatc	gatcctctat	ggttgaacaa	gatggattgc	acgcaggttc	5280
tccggccgct	tgggtggaga	ggctattcgg	ctatgactgg	gcacaacaga	caatcggctg	5340
ctctgatgcc	gccgtgttcc	ggctgtcagc	gcaggggcgc	ccggttcttt	ttgtcaagac	5400
cgacctgtcc	ggtgccctga	atgaactgca	ggacgaggca	gcgcggctat	cgtggctggc	5460
cacgacgggc	gttccttgcg	cagctgtgct	cgacgttgtc	actgaagcgg	gaagggactg	5520
gctgctattg	ggcgaagtgc	cggggcagga	tctcctgtca	tctcaccttg	ctcctgccga	5580
gaaagtatcc	atcatggctg	atgcaatgcg	gcggctgcat	acgcttgatc	cggctacctg	5640
cccattcgac	caccaagcga	aacatcgcat	cgagcgagca	cgtactcgga	tggaagccgg	5700
tcttgtcgat	caggatgatc	tggacgaaga	gcatcagggg	ctcgcgccag	ccgaactgtt	5760

cgccaggctc	aaggcgcgca	tgcccgacgg	cgaggatete	gtcgtgaccc	atggcgatgc	5820
ctgcttgccg	aatatcatgg	tggaaaatgg	ccgcttttct	ggattcatcg	actgtggccg	5880
gctgggtgtg	gcggaccgct	atcaggacat	agcgttggct	acccgtgata	ttgctgaaga	5940
gcttggcggc	gaatgggctg	accgcttcct	cgtgctttac	ggtatcgccg	cttcccgatt	6000
cgcagcgcat	cgccttctat	cgccttcttg	acgagttctt	ctgagcggga	ctctggggtt	6060
cgaaatgacc	gaccaagcga	cgcccaacct	gccatcacga	gatttcgatt	ccaccgccgc	6120
cttctatgaa	aggttgggct	tcggaatcgt	tttccgggac	gccggctgga	tgatcctcca	6180
gcgcggggat	ctcatgctgg	agttcttcgc	ccaccccaac	ttgtttattg	cagcttataa	6240
tggttacaaa	taaagcaata	gcatcacaaa	tttcacaaat	aaagcatttt	tttcactgca	6300
ttctagttgt	ggtttgtcca	aactcatcaa	tctatcttat	catgtctgga	tcgcggccgc	6360
gatcccgtcg	agagettgge	gtaatcatgg	tcatagctgt	ttcctgtgtg	aaattgttat	6420
ccgctcacaa	ttccacacaa	catacgagcc	ggagcataaa	gtgtaaagcc	tggggtgcct	6480
aatgagtgag	ctaactcaca	ttaattgcgt	tgcgctcact	gcccgctttc	cagtcgggaa	6540
acctgtcgtg	ccagctgcat	taatgaatcg	gccaacgcgc	ggggagaggc	ggtttgcgta	6600
ttgggcgctc	ttccgcttcc	tegeteactg	actcgctgcg	ctcggtcgtt	cggctgcggc	6660
gagcggtatc	agctcactca	aaggcggtaa	tacggttatc	cacagaatca	ggggataacg	6720
caggaaagaa	catgtgagca	aaaggccagc	aaaaggccag	gaaccgtaaa	aaggccgcgt	6780
tgctggcgtt	tttccatagg	ctccgccccc	ctgacgagca	tcacaaaaat	cgacgctcaa	6840
gtcagaggtg	gcgaaacccg	acaggactat	aaagatacca	ggcgtttccc	cctggaagct	6900
ccctcgtgcg	ctctcctgtt	ccgaccctgc	cgcttaccgg	atacctgtcc	gcctttctcc	6960
cttcgggaag	cgtggcgctt	tctcaatgct	cacgctgtag	gtatctcagt	tcggtgtagg	7020
tcgttcgctc	caagctgggc	tgtgtgcacg	aaccccccgt	tcagcccgac	cgctgcgcct	7080
tatccggtaa	ctatcgtctt	gagtccaacc	cggtaagaca	cgacttatcg	ccactggcag	7140
cagccactgg	taacaggatt	agcagagcga	ggtatgtagg	cggtgctaca	gagttcttga	7200
agtggtggcc	taactacggc	tacactagaa	ggacagtatt	tggtatctgc	gctctgctga	7260
agccagttac	cttcggaaaa	agagttggta	gctcttgatc	cggcaaacaa	accaccgctg	7320
gtagcggtgg	tttttttgtt	tgcaagcagc	agattacgcg	cagaaaaaaa	ggatctcaag	7380
aagatccttt	gatcttttct	acggggtctg	acgctcagtg	gaacgaaaac	tcacgttaag	7440
ggattttggt	catgagatta	tcaaaaagga	tcttcaccta	gatcctttta	aattaaaaat	7500
gaagttttaa	atcaatctaa	agtatatatg	agtaaacttg	gtctgacagt	taccaatgct	7560

· taatcagtga ggcacctatc tcagcgatct gtctatttcg ttcatcc	ata gtrgcctgac 7620
teccegtegt gtagataact aegataeggg agggettaee atetgge	ecc agtgctgcaa 7680
tgataccgcg agacccacgc tcaccggctc cagatttatc agcaata	aac cagccagccg 7740
gaagggeega gegeagaagt ggteetgeaa etttateege etceate	cag tctattaatt 7800
gttgccggga agctagagta agtagttcgc cagttaatag tttgcgc	aac gttgttgcca 7860
ttgctacagg catcgtggtg tcacgctcgt cgtttggtat ggcttca	attc agctccggtt 7920
cccaacgatc aaggcgagtt acatgatccc ccatgttgtg caaaaaa	ageg gttageteet 7980
tcggtcctcc gatcgttgtc agaagtaagt tggccgcagt gttatca	actc atggttatgg 8040
cagcactgca taattotott actgtcatgc catccgtaag atgottt	tct gtgactggtg 8100
agtactcaac caagtcattc tgagaatagt gtatgcggcg accgagt	tgc tcttgcccgg 8160
cgtcaatacg ggataatacc gcgccacata gcagaacttt aaaagtg	gete atcattggaa 8220
aacgttette ggggegaaaa eteteaagga tettaceget gttgaga	atcc agttcgatgt 8280
aacccacteg tgcacccaac tgatettcag catetttac tttcacc	cage gtttetgggt 8340
gagcaaaaac aggaaggcaa aatgccgcaa aaaagggaat aagggc	gaca cggaaatgtt 8400
gaatactcat actcttcctt tttcaatatt attgaagcat ttatcag	gggt tattgtctca 8460
tgagcggata catatttgaa tgtatttaga aaaataaaca aataggg	ggtt ccgcgcacat 8520
ttccccgaaa agtgccacct	8540
<210> 58 <211> 9209	
<211> 9209 <212> DNA	
<213> Mus musculus	
<400> 58 gacgtcgcgg ccgctctagg cctccaaaaa agcctcctca ctactto	ctgg aatagctcag 60
aggccgaggc ggcctcggcc tctgcataaa taaaaaaaat tagtca	
ggagaatggg cggaactggg cggagttagg ggcgggatgg gcggag	
atggttgctg actaattgag atgcatgctt tgcatacttc tgcctg	
gactttccac acctggttgc tgactaattg agatgcatgc tttgca	
ggggagcctg gggactttcc acaccctaac tgacacat tccaca	
agttattaat agtaatcaat tacggggtca ttagttcata gcccat	
gttacataac ttacggtaaa tggcccgcct ggctgaccgc ccaacg	
acgtcaataa tgacgtatgt tcccatagta acgccaatag ggactt	
tgggtggact atttacggta aactgcccac ttggcagtac atcaag	
agtacgccc ctattgacgt caatgacggt aaatggcccg cctggc	
	· -

720 atgacettat gggactttcc tacttggcag tacatetacg tattagtcat cgctattacc 780 atggtgatgc ggttttggca gtacatcaat gggcgtggat accggtttga ctcacgcgga tttccaagtc tccaccccat tgacgtcaat gggagtttgt tttggcacca aaatcaacgg 840 900 gactttccaa aatgtcgtaa caactccgcc ccattgacgc aaatgggcgg taggcgtgta 960 cggtgggagg tctatataag cagagctggg tacgtgaacc gtcagatcgc ctggagacgc 1020 catcacagat ctctcactat ggattttcag gtgcagatta tcagcttcct gctaatcagt 1080 qcttcaqtca taatqtccag aggacaaatt gttctctccc agtctccagc aatcctgtct gcatctccag gggagaaggt cacaatgact tgcagggcca gctcaagtgt aagttacatc 1140 cactggttcc agcagaagcc aggatcctcc cccaaaccct ggatttatgc cacatccaac 1200 ctggcttctg gagtccctgt tcgcttcagt ggcagtgggt ctgggacttc ttactctctc 1260 acaatcagca gagtggaggc tgaagatgct gccacttatt actgccagca gtggactagt 1320 1380 aacccacca cgttcggagg ggggaccaag ctggaaatca aacgtacggt ggctgcacca 1440 tctgtcttca tcttcccgcc atctgatgag cagttgaaat ctggaactgc ctctgttgtg 1500 tgcctgctga ataacttcta tcccagagag gccaaagtac agtggaaggt ggataacgcc 1560 ctccaatcgg gtaactccca ggagagtgtc acagagcagg acagcaagga cagcacctac agceteagea geaccetgae getgageaaa geagaetaeg agaaacaeaa agtetaegee 1620 1680 tgcgaagtca cccatcaggg cctgagctcg cccgtcacaa agagcttcaa caggggagag tgttgaattc agatccgtta acggttacca actacctaga ctggattcgt gacaacatgc 1740 ggccgtgata tctacgtatg atcagcctcg actgtgcctt ctagttgcca gccatctgtt 1800 1860 gtttgcccct cccccgtgcc ttccttgacc ctggaaggtg ccactcccac tgtcctttcc taataaaatg aggaaattgc atcgcattgt ctgagtaggt gtcattctat tctggggggt 1920 1980 ggggtggggc aggacagcaa gggggaggat tgggaagaca atagcaggca tgctggggat 2040 gcggtgggct ctatggaacc agctggggct cgacagctat gccaagtacg ccccctattg acgtcaatga cggtaaatgg cccgcctggc attatgccca gtacatgacc ttatgggact 2100 ttcctacttg gcagtacatc tacgtattag tcatcgctat taccatggtg atgcggtttt 2160 2220 ggcagtacat caatgggcgt ggatagcggt ttgactcacg gggatttcca agtctccacc 2280 ccattgacgt caatgggagt ttgttttggc accaaaatca acgggacttt ccaaaatgtc gtaacaactc cgccccattg acgcaaatgg gcggtaggcg tgtacggtgg gaggtctata 2340 2400 taagcagagc tgggtacgtc ctcacattca gtgatcagca ctgaacacag acccgtcgac atgggttgga gcctcatctt gctcttcctt gtcgctgttg ctacgcgtgt cctgtcccag 2460

gtacaactgc	agcagcctgg	ggctgagctg	gtgaagcctg	gggcctcagt	gaagatgtcc	2520°
tgcaaggctt	ctggctacac	atttaccagt	tacaatatgc	actgggtaaa	acagacacct	2580
ggtcggggcc	tggaatggat	tggagctatt	tatcccggaa	atggtgatac	ttcctacaat	2640
cagaagttca	aaggcaaggc	cacattgact	gcagacaaat	cctccagcac	agcctacatg	2700
cagctcagca	gcctgacatc	tgaggactct	gcggtctatt	actgtgcaag	atcgacttac	2760
tacggcggtg	actggtactt	caatgtctgg	ggcgcaggga	ccacggtcac	cgtctctgca	2820
gctagcacca	agggcccatc	ggtcttcccc	ctggcaccct	cctccaagag	cacctctggg	2880
ggcacagcgg	ccctgggctg	cctggtcaag	gactacttcc	ccgaaccggt	gacggtgtcg	2940
tggaactcag	gcgccctgac	cagcggcgtg	cacacettee	cggctgtcct	acagtcctca	3000
ggactctact	ccctcagcag	cgtggtgacc	gtgccctcca	gcagcttggg	cacccagacc	3060
tacatctgca	acgtgaatca	caagcccagc	aacaccaagg	tggacaagaa	agcagagccc	3120
aaatcttgtg	acaaaactca	cacatgccca	ccgtgcccag	cacctgaact	cctgggggga	3180
ccgtcagtct	tcctcttccc	cccaaaaccc	aaggacaccc	tcatgatctc	ccggacccct	3240
gaggtcacat	gcgtggtggt	ggacgtgagc	cacgaagacc	ctgaggtcaa	gttcaactgg	3300
tacgtggacg	gcgtggaggt	gcataatgcc	aagacaaagc	cgcgggagga	gcagtacaac	3360
agcacgtacc	gtgtggtcag	cgtcctcacc	gtcctgcacc	aggactggct	gaatggcaag	3420
gagtacaagt	gcaaggtctc	caacaaagcc	ctcccagccc	ccatcgagaa	aaccatctcc	3480
aaagccaaag	ggcagccccg	agaaccacag	gtgtacaccc	tgcccccatc	ccgggatgag	3540
ctgaccaaga	accaggtcag	cctgacctgc	ctggtcaaag	gcttctatcc	cagcgacatc	3600
gccgtggagt	gggagagcaa	tgggcagccg	gagaacaact	acaagaccac	gcctcccgtg	3660
ctggactccg	acggctcctt	cttcctctac	agcaagctca	ccgtggacaa	gagcaggtgg	3720
cagcagggga	acgtcttctc	atgctccgtg	atgcatgagg	ctctgcacaa	ccactacacg	3780
cagaagagcc	tctccctgtc	tccgggtaaa	tgaggatccg	ttaacggtta	ccaactacct	3840
agactggatt	cgtgacaaca	tgcggccgtg	atatctacgt	atgatcagco	tcgactgtgc	3900
cttctagttg	ccagccatct	gttgtttgcc	cetececegt	geetteettg	accctggaag	3960
gtgccactcc	cactgtcctt	tcctaataaa	. atgaggaaat	. tgcatcgcat	tgtctgagta	4020
ggtgtcattc	tattctgggg	ggtggggtgg	ggcaggacag	r caagggggag	gattgggaag	4080
acaatagcag	gcatgctggg	gatgcggtgg	gctctatgga	accagetggg	gctcgacagc	4140
gctggatctc	ccgatcccca	getttgette	tcaatttctt	: atttgcataa	tgagaaaaaa	4200
aggaaaatta	attttaacac	: caattcagta	gttgattgag	, caaatgcgtt	: gccaaaaagg	4260
atgctttaga	gacagtgttc	: tctgcacaga	taaggacaaa	a cattattcaç	g agggagtacc	4320

cagagctgag	actcctaagc	cagtgagtgg	cacagcattc	tagggagaaa	tatgcttgtc	4380
atcaccgaag	cctgattccg	tagagccaca	ccttggtaag	ggccaatctg	ctcacacagg	4440
atagagaggg	caggagccag	ggcagagcat	ataaggtgag	gtaggatcag	ttgctcctca	4500
catttgcttc	tgacatagtt	gtgttgggag	cttggatagc	ttggacagct	cagggctgcg	4560
atttcgcgcc	aaacttgacg	gcaatcctag	cgtgaaggct	ggtaggattt	tateceeget	4620
gccatcatgg	ttcgaccatt	gaactgcatc	gtcgccgtgt	cccaaaatat	ggggattggc	4680
aagaacggag	acctaccctg	gcctccgctc	aggaacgagt	tcaagtactt	ccaaagaatg	4740
accacaacct	cttcagtgga	aggtaaacag	aatctggtga	ttatgggtag	gaaaacctgg	4800
ttctccattc	ctgagaagaa	tcgaccttta	aaggacagaa	ttaatatagt	tctcagtaga	4860
gaactcaaag	aaccaccacg	aggagctcat	tttcttgcca	aaagtttgga	tgatgcctta	4920
agacttattg	aacaaccgga	attggcaagt	aaagtagaca	tggtttggat	.agtcggaggc	4980
agttctgttt	accaggaagc	catgaatcaa	ccaggccacc	ttagactctt	tgtgacaagg	5040
atcatgcagg	aatttgaaag	tgacacgttt	ttcccagaaa	ttgatttggg	gaaatataaa	5100
cttctcccag	aatacccagg	cgtcctctct	gaggtccagg	aggaaaaagg	catcaagtat	5160
aagtttgaag	tctacgagaa	gaaagactaa	caggaagatg	ctttcaagtt	ctctgctccc	5220
ctcctaaagc	tatgcatttt	tataagacca	tgggactttt	gctggcttta	gatcagcctc	5280
gactgtgcct	tctagttgcc	agccatctgt	tgtttgcccc	tececegtge	cttccttgac	5340
cctggaaggt	gccactccca	ctgtcctttc	ctaataaaat	gaggaaattg	catcgcattg	5400
tctgagtagg	tgtcattcta	ttctgggggg	tggggtgggg	caggacagca	agggggagga	5460
ttgggaagac	aatagcaggc	atgctgggga	tgcggtgggc	tctatggaac	cagctggggc	5520
tcgagctact	agctttgctt	ctcaatttct	tatttgcata	atgagaaaaa	aaggaaaatt	5580
aattttaaca	ccaattcagt	agttgattga	gcaaatgcgt	tgccaaaaag	gatgctttag	5640
agacagtgtt	ctctgcacag	ataaggacaa	acattattca	gagggagtac	ccagagctga	5700
gactcctaag	ccagtgagtg	gcacagcatt	ctagggagaa	atatgcttgt	catcaccgaa	5760
gcctgattcc	gtagagccac	accttggtaa	gggccaatct	gctcacaçag	gatagagagg	5820
gcaggagcca	gggcagagca	tataaggtga	ggtaggatca	gttgctcctc	acatttgctt	5880
ctgacatagt	tgtgttggga	gcttggatcg	atcctctatg	gttgaacaag	atggattgca	5940
cgcaggttct	ccggccgctt	gggtggagag	gctattcggc	tatgactggg	cacaacagac	6000
aatcggctgc	tctgatgccg	ccgtgttccg	gctgtcagcg	caggggcgcc	cggttctttt	6060
tgtcaagacc	gacctgtccg	gtgccctgaa	tgaactgcag	gacgaggcag	cgcggctatc	6120

WO 2004/0	033651				PCT/US20	03/03197
gtggctggcc	acgacgggcg	ttccttgcgc	agctgtgctc	gacgitgtca	ctgaagcggg	9180
aagggactgg	ctgctattgg	gcgaagtgcc	ggggcaggat	ctcctgtcat	ctcaccttgc	6240
tcctgccgag	aaagtatcca	tcatggctga	tgcaatgcgg	cggctgcata	cgcttgatcc	6300
ggctacctgc	ccattcgacc	accaagcgaa	acatcgcatc	gagcgagcac	gtactcggat	6360
ggaagccggt	cttgtcgatc	aggatgatct	ggacgaagag	catcaggggc	tegegeeage	6420
cgaactgttc	gccaggctca	aggcgcgcat	gcccgacggc	gaggatctcg	tcgtgaccca	6480
tggcgatgcc	tgcttgccga	atatcatggt	ggaaaatggc	cgcttttctg	gattcatcga	6540
ctgtggccgg	ctgggtgtgg	cggaccgcta	tcaggacata	gcgttggcta	cccgtgatat	6600
tgctgaagag	cttggcggcg	aatgggctga	ccgcţţcctc	gtgctttacg	gtatcgccgc	6660
tcccgattcg	cagcgcatcg	ccttctatcg	ccttcttgac	gagttcttct	gagcgggact	6720
ctggggttcg	aaatgaccga	ccaagcgacg	cccaacctgc	catcacgaga	tttcgattcc	6780
accgccgcct	tctatgaaag	gttgggcttc	ggaatcgttt	tccgggacgc	cggctggatg	6840
atcctccagc	gcggggatct	catgctggag	ttcttcgccc	accccaactt	gtttattgca	6900
gcttataatg	gttacaaata	aagcaatagc	atcacaaatt	tcacaaataa	agcattttt	6960
tcactgcatt	ctagttgtgg	tttgtccaaa	ctcatcaatc	tatcttatca	tgtctggatc	7020
gcggccgcga	tcccgtcgag	agcttggcgt	aatcatggtc	atagctgttt	cctgtgtgaa	7080
attgttatcc	gctcacaatt	ccacacaaca	tacgagccgg	aagcataaag	tgtaaagcct	7140
ggggtgccta	atgagtgagc	taactcacat	taattgcgtt	gegeteactg	cccgctttcc	7200
agtcgggaaa	cctgtcgtgc	cagctgcatt	aatgaatcgg	ccaacgcgcg	gggagaggcg	7260
gtttgcgtat	tgggcgctct	teegetteet	cgctcactga	ctcgctgcgc	tcggtcgttc	7320
ggctgcggcg	agcggtatca	gctcactcaa	aggcggtaat	acggttatcc	acagaatcag	7380
gggataacgc	aggaaagaac	atgtgagcaa	aaggçēagca	aaaggccagg	aaccgtaaaa	7440
aggccgcgtt	gctggcgttt	ttccataggc	teegeeeeee	tgacgagcat	cacaaaaatc	7500
gacgctcaag	tcagaggtgg	cgaaacccga	caggactata	aagataccag	gcgtttcccc	7560
ctggaagctc	cctcgtgcgc	tctcctgttc	cgaccctgcc	gcttaccgga	tacctgtccg	7620
cctttctccc	ttcgggaagc	gtggcgcttt	ctcaatgctc	acgctgtagg	tatctcagtt	7680
cggtgtaggt	cgttcgctcc	aagctgggct	gtgtgcacga	acccccgtt	cagcccgacc	7740
gctgcgcctt	atccggtaac	tatcgtcttg	agtccaaccc	ggtaagacac	gacttatcgc	7800
cactggcagc	agccactggt	aacaggatta	gcagagcgag	gtatgtaggc	ggtgctacag	7860
agttcttgaa	gtggtggcct	aactacggct	acactagaag	gacagtattt	ggtatctgcg	7920
ctctgctgaa	gccagttacc	ttcggaaaaa	gagttggtag	ctcttgatcc	ggcaaacaaa	7980

ccaccgctgg						8040
gatctcaaga	agatcctttg	atcttttcta	cggggtctga	cgctcagtgg	aacgaaaact	8100
cacgttaagg	gattttggtc	atgagattat	caaaaaggat	cttcacctag	atccttttaa	8160
attaaaaatg	aagttttaaa	tcaatctaaa	gtatatatga	gtaaacttgg	tctgacagtt	8220
accaatgctt	aatcagtgag	gcacctatct	cagcgatctg	tctatttcgt	tcatccatag	8280
ttgcctgact	ccccgtcgtg	tagataacta	cgatacggga	gggcttacca	tctggcccca	8340
gtgctgcaat	gataccgcga	gacccacgct	caccggctcc	agatttatca	gcaataaacc	8400
agccagccgg	aagggccgag	cgcagaagtg	gtcctgcaac	tttatccgcc	tccatccagt	8460
ctattaattg	ttgccgggaa	gctagagtaa	gtagttcgcc	agttaatagt	ttgcgcaacg	8520
ttgttgccat	tgctacaggc	atcgtggtgt	cacgctcgtc	gtttggtatg	gcttcattca	8580
gctccggttc	ccaacgatca	aggcgagtta	catgatcccc	catgttgtgc	aaaaaagcgg	8640
ttagctcctt	cggtcctccg	atcgttgtca	gaagtaagtt	ggccgcagtg	ttatcactca	8700
tggttatggc	agcactgcat	aattctctta	ctgtcatgcc	atccgtaaga	tgcttttctg	8760
tgactggtga	gtactcaacc	aagtcattct	gagaatagtg	tatgcggcga	ccgagttgct	8820
cttgcccggc	gtcaatacgg	gataataccg	cgccacatag	cagaacttta	aaagtgctca	8880
tcattggaaa	acgttcttcg	gggcgaaaac	tctcaaggat	cttaccgctg	ttgagatcca	8940
gttcgatgta	acccactcgt	gcacccaact	gatcttcagc	atcttttact	ttcaccagcg	9000
tttctgggtg	agcaaaaaca	ggaaggcaaa	atgccgcaaa	aaagggaata	agggcgacac	9060
ggaaatgttg	aatactcata	ctcttccttt	ttcaatatta	ttgaagcatt	tatcagggtt	9120
attgtctcat	gagcggatac	atatttgaat	gtatttagaa	aaataaacaa	ataggggttc	9180
cgcgcacatt	tccccgaaaa	gtgccacct				9209
<210> 59 <211> 384						
<211> 384 <212> DNA						
<213> Mus	musculus					
<400> 59	200100000	tataaaatta	ctgctaatca	atacttcaat	cataatotco	60
agagggcaaa	ttgttctctc	ccagtctcca	gcaatcctgt	ctgcatctcc	aggggagaag	120
gtcacaatga	cttgcagggc	cagctcaagt	gtaagttaca	tccactggtt	ccagcagaag	180
ccaggatect	ccccaaacc	ctggatttat	gccacatcca	acctggcttc	tggagtccct	240
gttcgcttca	gtggcagtgg	gtctgggact	tcttactctc	tcacaatcag	cagagtggag	300
gctgaagatg	ctgccactta	ttactgccag	cagtggacta	gtaacccacc	cacgttcgga	360

WO 2004/033651

<210> 60 <211> 12 <212> PR <213> Mu	8	ulus											
<400> 60 Met Asp P 1	he Gln	Val Glr 5	ılle	Ile	Ser	Phe	Leu	Leu	Ile	Ser	Ala 15	Ser	
Val Ile M	et Ser 20	Arg Gly	/ Gln	Ile	Val 25	Ľeu	Ser	Gln	Ser	Pro 30	Ala	Ile	
Leu Ser A	la Ser 5	Pro Gly	/ Glu	Lys 40	Val	Thr	Met	Thr	Cys 45	Arg	Ala	Ser	
Ser Ser V	al Ser	Tyr Ile	His 55	Trp	Phe	Gln	Gln	Lys 60	Pro	Gly	Ser	Ser	
Pro Lys P 65	ro Trp	Ile Ty: 70	Ala	Thr	Ser	Asn	Leu 75	Ala	Ser	Gly	Val	Pro 80	
Val Arg P	he Ser	Gly Ser 85	Gly	Ser	Gly	Thr 90	Ser	Tyr	Ser	Leu	Thr 95	Ile	
Ser Arg V	al Glu 100		ı Asp	Ala	Ala 105	Thr	Tyr	Tyr	Суз	Gln 110	Gln	Trp	
Thr Ser A	sn Pro 15	Pro Th	. Phe	Gly 120	Gly	Gly	Thr	Lys	Leu 125	Glu	Ile	ГÀЗ	
<210> 61 <211> 42 <212> DN <213> Mu	0	ulus				,							
<400> 61						;							
atgggttgg	a gcct	catctt o	getet	tcct	t gt	cgct	gttg	cta	cgcg	tgt	cctg	tcccag	60
gtacaactg	c agca	gcctgg (ggctg	agct	g gt	gaag	cctg	ggg	cctc	agt	gaaga	atgtcc	120
tgcaaggct	t ctgg	ctacac a	attta	ccag	t ta	caat	atgc	act	gggt	aaa	acaga	acacct	180
ggtcgggg	c tgga	atggat '	ggag	ctat	t ta	tccc	ggaa	atg	gtga	tac	ttcc	tacaat	240
cagaagtto	a aagg	caaggc	cacat	tgac	t gc	agac	aaat	cct	ccag	cac	agcc	tacatg	300
cageteage	a gcct	gacatc '	tgagg	actc	t gc	ggtc	tatt	act	gtgc	aag	atcg	acttac	360
tacggcggt	g actg	gtactt	caatg	tctg	g gg	cgca	ggga	cca	cggt	cac	cgtc	tctgca	420
<210> 62 <211> 14 <212> PF	0												
<400> 62 Met Gly T		Leu Il	e Leu	Leu	Phe	Leu 10	Val	Ala	Val	Ala	Thr 15	Arg	

Val Leu Ser Gln Val Gln Leu Gln Gln Pro Gly Ala Glu Leu Val Lys Pro Gly Ala Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr Asn Met His Trp Val Lys Gln Thr Pro Gly Arg Gly Leu Glu Trp Ile Gly Ala Ile Tyr Pro Gly Asn Gly Asp Thr Ser Tyr Asn Gln Lys Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val 105 Tyr Tyr Cys Ala Arg Ser Thr Tyr Tyr Gly Gly Asp Trp Tyr Phe Asn Val Trp Gly Ala Gly Thr Thr Val Thr Val Ser Ala 130 <210> 63 <211> 1395 <212> DNA <213> Homo sapiens <400> 63 atgtattcca atgtgatagg aactgtaacc tctggaaaaa ggaaggttta tcttttgtcc ttgctgctca ttggcttctg ggactgcgtg acctgtcacg ggagccctgt ggacatctgc acagecaage egegggacat teccatgaat eccatgtgea tttacegete eeeggagaag aaggcaactg aggatgaggg ctcagaacag aagatcccgg aggccaccaa ccggcgtgtc tgggaactgt ccaaggccaa ttcccgcttt gctaccactt tctatcagca cctggcagat tocaagaatg acaatgataa cattttootg toaccootga gtatotocao ggottttgot atgaccaage tgggtgeetg taatgacace etecageaac tgatggaggt atttaagttt gacaccatat ctgagaaaac atctgatcag atccacttct tctttgccaa actgaactgc

60

120

180

240

300

360

420

480

540

gacaaatccc ttaccttcaa tgagacctac caggacatca gtgagttggt atatggagcc 600
aagctccagc ccctggactt caaggaaaat gcagagcaat ccagagcggc catcaacaaa 660
tgggtgtcca ataagaccga aggccgaatc accgatgtca ttccctcgga agccatcaat 720
gagctcactg ttctggtgct ggttaacacc atttacttca agggcctgtg gaagtcaaag 780
ttcagccctg agaacacaag gaaggaactg ttctacaagg ctgatggaga gtcgtgttca 840

cqactctatc qaaaaqccaa caaatcctcc aagttagtat cagccaatcg cctttttgga

qcatctatqa tqtaccaqqa aggcaaqttc cqttatcqqc qcqtqqctqa aggcacccaq 900

68

gagaagagcc tggccaaggt ggagaaggaa ctcacccag aggtgctgca ggagtggctg 1020
gatgaattgg aggagatgat gctggtggtc cacatgcccc gcttccgcat tgaggacggc 1080
ttcagtttga aggagcagct gcaagacatg ggccttgtcg atctgtcag ccctgaaaag 1140
tccaaactcc caggtattgt tgcagaaggc cgagatgacc tctatgtctc agatgcattc 1200
cataaggcat ttcttgaggt aaatgaagaa ggcagtgaag cagctgcaag taccgctgtt 1260
gtgattgctg gccgttcgct aaaccccaac agggtgactt tcaaggccaa caggcctttc 1320
ctggtttta taagagaagt tcctctgaac actattatct tcatgggcag agtagccaac 1380
ccttgtgtta agtaa 1395
<210> 64
<211> 464

<212> PRT

<213> Homo sapiens

<400> 64

Met Tyr Ser Asn Val Ile Gly Thr Val Thr Ser Gly Lys Arg Lys Val 1 5 10 15

Tyr Leu Leu Ser Leu Leu Ile Gly Phe Trp Asp Cys Val Thr Cys
20 25 30

His Gly Ser Pro Val Asp Ile Cys Thr Ala Lys Pro Arg Asp Ile Pro 35 40 45

Met Asn Pro Met Cys Ile Tyr Arg Ser Pro Glu Lys Lys Ala Thr Glu 50 55 60

Asp Glu Gly Ser Glu Gln Lys Ile Pro Glu Ala Thr Asn Arg Arg Val 65 70 75 80

Trp Glu Leu Ser Lys Ala Asn Ser Arg Phe Ala Thr Thr Phe Tyr Gln 85 $90^{t_{1}}$ 95

His Leu Ala Asp Ser Lys Asn Asp Asn Asp Asn Ile Phe Leu Ser Pro 100 105 110

Leu Ser Ile Ser Thr Ala Phe Ala Met Thr Lys Leu Gly Ala Cys Asn 115 120 125

Asp Thr Leu Gln Gln Leu Met Glu Val Phe Lys Phe Asp Thr Ile Ser 130 135 140

Glu Lys Thr Ser Asp Gln Ile His Phe Phe Ala Lys Leu Asn Cys 145 150 155 160

Arg Leu Tyr Arg Lys Ala Asn Lys Ser Ser Lys Leu Val Ser Ala Asn 165 170 175

Arg Leu Phe Gly Asp Lys Ser Leu Thr Phe Asn Glu Thr Tyr Gln Asp 180 185 190

Ile Ser Glu Leu Val Tyr Gly Ala Lys Leu Gln Pro Leu Asp Phe Lys

, š.

WO 2004/033651 200 205 195 Glu Asn Ala Glu Gln Ser Arg Ala Ala Ile Asn Lys Trp Val Ser Asn 215 Lys Thr Glu Gly Arg Ile Thr Asp Val Ile Pro Ser Glu Ala Ile Asn Glu Leu Thr Val Leu Val Leu Val Asn Thr Ile Tyr Phe Lys Gly Leu Trp Lys Ser Lys Phe Ser Pro Glu Asn Thr Arg Lys Glu Leu Phe Tyr Lys Ala Asp Gly Glu Ser Cys Ser Ala Ser Met Met Tyr Gln Glu Gly 280 Lys Phe Arg Tyr Arg Arg Val Ala Glu Gly Thr Gln Val Leu Glu Leu Pro Phe Lys Gly Asp Asp Ile Thr Met Val Leu Ile Leu Pro Lys Pro 310 Glu Lys Ser Leu Ala Lys Val Glu Lys Glu Leu Thr Pro Glu Val Leu 325 330 Gln Glu Trp Leu Asp Glu Leu Glu Glu Met Met Leu Val Val His Met 345 Pro Arg Phe Arg Ile Glu Asp Gly Phe Ser Leu Lys Glu Gln Leu Gln 360 355 Asp Met Gly Leu Val Asp Leu Phe Ser Pro Glu Lys Ser Lys Leu Pro Gly Ile Val Ala Glu Gly Arg Asp Asp Leu Tyr Val Ser Asp Ala Phe 385 His Lys Ala Phe Leu Glu Val Asn Glu Glu Gly Ser Glu Ala Ala Ala 410 Ser Thr Ala Val Val Ile Ala Gly Arg Ser Leu Asn Pro Asn Arg Val Thr Phe Lys Ala Asn Arg Pro Phe Leu Val Phe Ile Arg Glu Val Pro 440 Leu Asn Thr Ile Ile Phe Met Gly Arg Val Ala Asn Pro Cys Val Lys 455 450 <210> 65 <211> 1962 <212> DNA <213> Homo sapiens

<400> 65 atgcgtcccc tgcgcccccg cgccgcgctg ctggcgctcc tggcctcgct cctggccgcg 6 ccccqqtqq ccccqgccga ggccccqcac ctggtqcagg tggacqcggc ccqcqctq 12 tggccctgc ggcgcttctg gaggagcaca ggcttctgcc ccccgctgcc acacagccag

gctgaccagt	acgtcctcag	ctgggaccag	cageteaace	tegectatgt	gggcgccgtc	240
cctcaccgcg	gcatcaagca	ggtccggacc	cactggctgc	tggagcttgt	caccaccagg	300
gggtccactg	gacggggcct	gagctacaac	ttcacccacc	tggacgggta	cttggacctt	360
ctcagggaga	accagctcct	cccagggttt	gagctgatgg	gcagcgcctc	gggccacttc	420
actgactttg	aggacaagca	gcaggtgttt	gagtggaagg	acttggtctc	cagectggee	480
aggagataca	tcggtaggta	cggactggcg	catgtttcca	agtggaactt	cgagacgtgg	540
aatgagccag	accaccacga	ctttgacaac	gtctccatga	ccatgcaagg	cttcctgaac	600
tactacgatg	cctgctcgga	gggtctgcgc	gccgccagcc	ccgccctgcg	gctgggaggc	660
cccggcgact	ccttccacac	cccaccgcga	teceegetga	gctggggcct	cctgcgccac	720
tgccacgacg	gtaccaactt	cttcactggg	gaggcgggcg	tgcggctgga	ctacatctcc	780
ctccacagga	agggtgcgcg	cagetecate	tccatcctgg	agcaggagaa	ggtcgtcgcg	840
cagcagatcc	ggcagctctt	ccccaagttc	gcggacaccc	ccatttacaa	cgacgaggcg	900
gacccgctgg	tgggctggtc	cctgccacag	ccgtggaggg	cggacgtgac	ctacgcggcc	960
atggtggtga	aggtcatcgc	gcagcatcag	aacctgctac	tggccaacac	cacctccgcc	1020
ttcccctacg	cgctcctgag	caacgacäat	gccttcctga	getaccaccc	gcaccccttc	1080
gcgcagcgca	cgctcaccgc	gcgcttccag	gtcaacaaca	cccgcccgcc	gcacgtgcag	1140
ctgttgcgca	agccggtgct	cacggccatg	gggctgctgg	cgctgctgga	tgaggagcag	1200
ctctgggccg	aagtgtcgca	ggccgggacc	gtcctggaca	gcaaccacac	ggtgggcgtc	1260
ctggccagcg	cccaccgccc	ccagggcccg	gccgacgcct	ggcgcgccgc	ggtgctgatc	1320
tacgcgagcg	acgacacccg	cgcccacccc	aaccgcagcg	tcgcggtgac	cctgcggctg	1380
cgcggggtgc	ccccggccc	gggcctggtc	tacgtcacgc	gctacctgga	caacgggctc	1440
tgcagccccg	acggcgagtg	gcggcgcctg	ggccggcccg	tcttccccac	ggcagagcag	1500
ttccggcgca	tgcgcgcggc	tgaggacccg	gtggccgcgg	cgcccgccc	cttacccgcc	1560
ggeggeegee	tgaccctgcg	ccccgcgctg	cggctgccgt	cgcttttgct	ggtgcacgtg	1620
tgtgcgcgcc	ccgagaagcc	gcccgggcag	gtcacgcggc	teegegeeet	gcccctgacc	1680
caagggcagc	tggttctggt	ctggtcggat	gaacacgtgg	gctccaagtg	cctgtggaca	1740
tacgagatcc	agttctctca	ggacggtaag	gcgtacaccc	cggtcagcag	gaagccatcg	1800
accttcaacc	tctttgtgtt	cagcccagac	acaggtgctg	tctctggctc	ctaccgagtt	1860
cgagccctgg	actactgggc	ccgaccaggo	cccttctcgg	accetgtgee	gtacctggag	1920
gtccctgtgc	caagagggcc	cccatccccg	ggcaatccat	ga .		1962

<210> 66

<211> 653

<212> PRT

<213> Homo sapiens

<400> 66

Met Arg Pro Leu Arg Pro Arg Ala Ala Leu Leu Ala Leu Leu Ala Ser 1 5 10 15

Leu Leu Ala Ala Pro Pro Val Ala Pro Ala Glu Ala Pro His Leu Val 20 25 30

Gln Val Asp Ala Ala Arg Ala Leu Trp Pro Leu Arg Arg Phe Trp Arg
35 40 45

Ser Thr Gly Phe Cys Pro Pro Leu Pro His Ser Gln Ala Asp Gln Tyr 50 60

Val Leu Ser Trp Asp Gln Gln Leu Asn Leu Ala Tyr Val Gly Ala Val 65 70 75 80

Pro His Arg Gly Ile Lys Gln Val Arg Thr His Trp Leu Leu Glu Leu 85 90; 95

Val Thr Thr Arg Gly Ser Thr Gly Arg Gly Leu Ser Tyr Asn Phe Thr 100 105 110

His Leu Asp Gly Tyr Leu Asp Leu Leu Arg Glu Asn Gln Leu Leu Pro 115 120 125

Gly Phe Glu Leu Met Gly Ser Ala Ser Gly His Phe Thr Asp Phe Glu 130 135 140

Asp Lys Gln Gln Val Phe Glu Trp Lys Asp Leu Val Ser Ser Leu Ala 145 150 155 160

Arg Arg Tyr Ile Gly Arg Tyr Gly Leu Ala His Val Ser Lys Trp Asn 165 170 175

Phe Glu Thr Trp Asn Glu Pro Asp His His Asp Phe Asp Asn Val Ser 180 185 190

Met Thr Met Gln Gly Phe Leu Asn Tyr Tyr Asp Ala Cys Ser Glu Gly 195 200 205

Leu Arg Ala Ala Ser Pro Ala Leu Arg Leu Gly Gly Pro Gly Asp Ser 210 215 220

Phe His Thr Pro Pro Arg Ser Pro Leu Ser Trp Gly Leu Leu Arg His 225 230 235 240

Cys His Asp Gly Thr Asn Phe Phe Thr Gly Glu Ala Gly Val Arg Leu
245 250 255

Asp Tyr Ile Ser Leu His Arg Lys Gly Ala Arg Ser Ser Ile Ser Ile 260 265 270

Leu Glu Gln Glu Lys Val Val Ala Gln Gln Ile Arg Gln Leu Phe Pro 275 280 285

Lys Phe Ala Asp Thr Pro Ile Tyr Asn Asp Glu Ala Asp Pro Leu Val

290 295 300

Gly Trp Ser Leu Pro Gln Pro Trp Arg Ala Asp Val Thr Tyr Ala Ala Met Val Val Lys Val Ile Ala Gln His Gln Asn Leu Leu Leu Ala Asn 330 Thr Thr Ser Ala Phe Pro Tyr Ala Leu Leu Ser Asn Asp Asn Ala Phe Leu Ser Tyr His Pro His Pro Phe Ala Gln Arg Thr Leu Thr Ala Arg 355 360 Phe Gln Val Asn Asn Thr Arg Pro Pro His Val Gln Leu Leu Arg Lys Pro Val Leu Thr Ala Met Gly Leu Leu Ala Leu Leu Asp Glu Glu Gln 390 395 Leu Trp Ala Glu Val Ser Gln Ala Gly Thr Val Leu Asp Ser Asn His Thr Val Gly Val Leu Ala Ser Ala His Arg Pro Gln Gly Pro Ala Asp Ala Trp Arg Ala Ala Val Leu Ile Tyr Ala Ser Asp Asp Thr Arg Ala 440 His Pro Asn Arg Ser Val Ala Val Thr Leu Arg Leu Arg Gly Val Pro Pro Gly Pro Gly Leu Val Tyr Val Thr Arg Tyr Leu Asp Asn Gly Leu Cys Ser Pro Asp Gly Glu Trp Arg Arg Leu Gly Arg Pro Val Phe Pro Thr Ala Glu Gln Phe Arg Arg Met Arg Ala Ala Glu Asp Pro Val Ala 505 Ala Ala Pro Arg Pro Leu Pro Ala Gly Gly Arg Leu Thr Leu Arg Pro Ala Leu Arg Leu Pro Ser Leu Leu Leu Val His Val Cys Ala Arg Pro 535 Glu Lys Pro Pro Gly Gln Val Thr Arg Leu Arg Ala Leu Pro Leu Thr 545 Gln Gly Gln Leu Val Leu Val Trp Ser Asp Glu His Val Gly Ser Lys 570 Cys Leu Trp Thr Tyr Glu Ile Gln Phe Ser Gln Asp Gly Lys Ala Tyr 580 585 Thr Pro Val Ser Arg Lys Pro Ser Thr Phe Asn Leu Phe Val Phe Ser 600 pro Asp Thr Gly Ala Val Ser Gly Ser Tyr Arg Val Arg Ala Leu Asp

620

615

610

Tyr Trp Ala Arg Pro Gly Pro Phe Ser Asp Pro Val Pro Tyr Leu Glu 625 630 635 640

Val Pro Val Pro Arg Gly Pro Pro Ser Pro Gly Asn Pro 645 650

<210> 67

<211> 1290

<212> DNA <213> Homo sapiens

<400> 67

60 atgcagetga ggaacccaga actacatetg ggetgegege ttgegetteg etteetggee 120 ctcgtttcct gggacatccc tggggctaga gcactggaca atggattggc aaggacgcct accatgggct ggctgcactg ggagcgcttc atgtgcaacc ttgactgcca ggaagagcca 180 240 gatteetgea teagtgagaa getetteatg gagatggeag ageteatggt eteagaagge tggaaggatg caggttatga gtacctctgc attgatgact gttggatggc tccccaaaga 300 360 gattcaqaag qcagacttca ggcagaccct cagcgctttc ctcatgggat tcgccagcta gctaattatg ttcacagcaa aggactgaag ctagggattt atgcagatgt tggaaataaa 420 acctgcgcag gcttccctgg gagttttgga tactacgaca ttgatgccca gacctttgct 480 540 gactggggag tagatctgct aaaatttgat ggttgttact gtgacagttt ggaaaatttg 600 qcaqatqqtt ataaqcacat qtccttqgcc ctgaatagga ctggcagaag cattgtgtac 660 tcctgtgagt ggcctcttta tatgtggccc tttcaaaagc ccaattatac agaaatccga 720 cagtactgca atcactggcg aaattttgct gacattgatg attcctggaa aagtataaag aqtatcttgg actggacatc ttttaaccag gagagaattg ttgatgttgc tggaccaggg 780 qqttqqaatq acccagatat gttagtgatt ggcaactttg gcctcagctg gaatcagcaa 840 900 gtaactcaga tggccctctg ggctatcatg gctgctcctt tattcatgtc taatgacctc cqacacatca gccctcaagc caaagctctc cttcaggata aggacgtaat tgccatcaat 960 caggacccct tgggcaagca agggtaccag cttagacagg gagacaactt tgaagtgtgg 1020 qaacgacetc teteaggett ageetggget gtagetatga taaaceggea ggagattggt 1080 ggacctcgct cttataccat cgcagttgct tccctgggta aaggagtggc ctgtaatcct 1140 gcctgcttca tcacacaget cctccctgtg aaaaggaagc tagggttcta tgaatggact 1200 tcaaggttaa gaagtcacat aaatcccaca ggcactgttt tgcttcagct agaaaataca 1260 atgcagatgt cattaaaaga cttactttaa 1290

<210> 68

<211> 429

<212> PRT

<213> Homo sapiens

ú

<400> 68 Met Gln Leu Arg Asn Pro Glu Leu His Leu Gly Cys Ala Leu Ala Leu 10 Arg Phe Leu Ala Leu Val Ser Trp Asp Ile Pro Gly Ala Arg Ala Leu Asp Asn Gly Leu Ala Arg Thr Pro Thr Met Gly Trp Leu His Trp Glu Arg Phe Met Cys Asn Leu Asp Cys Gln Glu Glu Pro Asp Ser Cys Ile Ser Glu Lys Leu Phe Met Glu Met Ala Glu Leu Met Val Ser Glu Gly Trp Lys Asp Ala Gly Tyr Glu Tyr Leu Cys Ile Asp Asp Cys Trp Met Ala Pro Gln Arg Asp Ser Glu Gly Arg Leu Gln Ala Asp Pro Gln Arg 105 Phe Pro His Gly Ile Arg Gln Leu Ala Asn Tyr Val His Ser Lys Gly Leu Lys Leu Gly Ile Tyr Ala Asp Val Gly Asn Lys Thr Cys Ala Gly Phe Pro Gly Ser Phe Gly Tyr Tyr Asp Ile Asp Ala Gln Thr Phe Ala 150 155 Asp Trp Gly Val Asp Leu Leu Lys Phe Asp Gly Cys Tyr Cys Asp Ser Leu Glu Asn Leu Ala Asp Gly Tyr Lys His Met Ser Leu Ala Leu Asn Arg Thr Gly Arg Ser Ile Val Tyr Ser Cys Glu Trp Pro Leu Tyr Met Trp Pro Phe Gln Lys Pro Asn Tyr Thr Glu Ile Arg Gln Tyr Cys Asn His Trp Arg Asn Phe Ala Asp Ile Asp Asp Ser Trp Lys Ser Ile Lys 230 Ser Ile Leu Asp Trp Thr Ser Phe Asn Gln Glu Arg Ile Val Asp Val Ala Gly Pro Gly Gly Trp Asn Asp Pro Asp Met Leu Val Ile Gly Asn 265 Phe Gly Leu Ser Trp Asn Gln Gln Val Thr Gln Met Ala Leu Trp Ala Ile Met Ala Ala Pro Leu Phe Met Ser Asn Asp Leu Arg His Ile Ser pro Gln Ala Lys Ala Leu Leu Gln Asp Lys Asp Val Ile Ala Ile Asn 310

Gln	Asp	Pro	Leu	Gly 325	Lys	Gln	Gly	Tyr	Gln 330	Leu	Arg	Gln	Gly	Asp 335	Asn	
Phe	Glu	Val	Trp 340	Glu	Arg	Pro	Leu	Ser 345	Gly	Leu	Ala	Trp	Ala 350	Val	Ala	
Met	Ile	Asn 355	Arg	Gln	Glu	Ile	Gly 360	Gly	Pro	Arg	Ser	Tyr 365	Thr	Ile	Ala	
Val	Ala 370	Ser	Leu	Gly	Lys	Gly 375	Val	Ala	Cys	Asn	Pro 380	Ala	Cys	Phe	Ile	
Thr 385	Gln	Leu	Leu	Pro	Val 390	Lys	Arg	Lys	Leų	Gly 395	Phe	Tyr	Glu	Trp	Thr 400	
Ser	Arg	Leu	Arg	Ser 405	His	Ile	Asn	Pro	Thr 410	Gly	Thr	Val	Leu	Leu 415	Gln	
Leu	Glu	Asn	Thr 420	Met	Gln	Met	Ser	Leu 425	Lys	Asp	Leu	Leu				
<210 <211 <212 <213	.> 3 !> I	59 351 DNA Homo	sapi	Lens												
<400		59			-	70200		· +++	ctaa	rt.c=	cati	-at-co	rat (~+++ <i>c</i>	ctgcat	60
		-			•		-		•				-			
_		•						_			_	_			aaccca	120
ttct	tcto	cc a	gcc	gggt	ge ed	ccaat	actt	: caq	gtgca	atgg	gct	gctgo	ett (ctcta	agagca	180
tato	ccad	ctc c	acta	aggt	c ca	aagaa	agaco	g ato	gttg	gtcc	aaaa	agaad	egt (cacct	cagag	240
tcca	ctt	get g	gtgta	agcta	aa at	cata	ataad	agg	ggtca	acag	taai	tggg	ggg 1	tttca	aaagtg	300
gaga	acca	aca c	ggcg	gtgco	ca ct	gcaç	gtact	tgt		tatc	acaa	aatci	tta a	a		351
<210 <211 <212	.> I !> I	70 116 PRT							ξ V							
<213	i> I	lomo	sapi	Lens												
<400 Met 1		70 Tyr	Tyr	Arg 5	Lys	Tyr	Ala	Ala	Ile 10	Phe	Leu	Val	Thr	Leu 15	Ser	
Val	Phe	Leu	His 20	Val	Leu	His	Ser	Ala 25	Pro	Asp	Val	Gln	Asp 30	Cys	Pro	
Glu	Cys	Thr 35	Leu	Gln	Glu	Asn	Pro 40	Phe	Phe	Ser	Gln	Pro 45	Gly	Ala	Pro	
Ile	Leu 50	Gln	Cys	Met	Gly	Cys 55	Суз	Phe	Ser	Arg	Ala 60	Tyr	Pro	Thr	Pro	
Leu 65	Arg	Ser	Lys	Lys	Thr 70	Met	Leu	Val	Gln	Lys 75	Asn	Val	Thr	Ser	Glu 80	

Ser Thr Cys Cys Val Ala Lys Ser Tyr Asn Arg Val Thr Val Met Gly Gly Phe Lys Val Glu Asn His Thr Ala Cys His Cys Ser Thr Cys Tyr Tyr His Lys Ser 115 <210> 71 <211> 498 <212> DNA <213> Homo sapiens <400> 71 60 atggagatgt tccaggggct gctgctgttg ctgctgctga gcatgggcgg gacatgggca tccaaggagc cgcttcggcc acggtgccgc cccatcaatg ccaccctggc tgtggagaag 120 gagggetgee cegtgtgeat caeegteaac accaeeatet gtgeeggeta etgeeceaee 180 atgaccegeg tgetgeaggg ggteetgeeg geeetgeete aggtggtgtg caactacege gatgtgcgct tcgagtccat ccggctccct ggctgcccgc gcggcgtgaa ccccgtggtc 300 tectaegeeg tggeteteag etgteaatgt geactetgee geegeageac caetgaetge 360 gggggtecca aggaccaccc cttgacctgt gatgaccccc gcttccagga ctcctcttcc 420 tcaaaggccc ctcccccag ccttccaagc ccatcccgac tcccggggcc ctcggacacc 480 498 ccgatcctcc cacaataa <210> 72 <211> 165 <212> PRT <213> Homo sapiens <400> 72 Met Glu Met Phe Gln Gly Leu Leu Leu Leu Leu Leu Ser Met Gly Gly Thr Trp Ala Ser Lys Glu Pro Leu Arg Pro Arg Cys Arg Pro Ile Asn Ala Thr Leu Ala Val Glu Lys Glu Gly Cys Pro Val Cys Ile Thr Val Asn Thr Thr Ile Cys Ala Gly Tyr Cys Pro Thr Met Thr Arg Val Leu Gln Gly Val Leu Pro Ala Leu Pro Gln Val Val Cys Asn Tyr Arg 7 75 70 Asp Val Arg Phe Glu Ser Ile Arg Leu Pro Gly Cys Pro Arg Gly Val Asn Pro Val Val Ser Tyr Ala Val Ala Leu Ser Cys Gln Cys Ala Leu

Cys Arg Arg Ser Thr Thr Asp Cys Gly Gly Pro Lys Asp His Pro Leu

115 120 125

Thr Cys Asp Asp Pro Arg Phe Gln Asp Ser Ser Ser Ser Lys Ala Pro
130 135 140

Pro Pro Ser Leu Pro Ser Pro Ser Arg Leu Pro Gly Pro Ser Asp Thr 145 150 155 160

Pro Ile Leu Pro Gln 165

<210> 73 <211> 165 <212> PRT

<213> Homo sapiens

<400> 73
Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu
1 5 10 15

Leu Glu Ala Lys Glu Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu His 20 25 30

Cys Ser Leu Asn Glu Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe 35 40 45

Tyr Ala Trp Lys Arg Met Glu Val Gly Gln Gln Ala Val Glu Val Trp 50 55 60

Gln Gly Leu Ala Leu Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu 65 70 75 80

Leu Val Asn Ser Ser Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp 85 90 95

Lys Ala Val Ser Gly Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu 100 105 110

Gly Ala Gln Lys Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala 115 120 125

Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val 130 135 140

Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala 145 150 155 160

Cys Arg Thr Gly Asp 165

<210> 74 <211> 588 <212> DNA <213> Homo sapiens

<400> 74
atggccctcc tgttccctct actggcagcc ctagtgatga ccagctatag ccctgttgga 60
tctctgggct gtgatctgcc tcagaaccat ggcctactta gcaggaacac cttggtgctt 120
ctgcaccaaa tgaggagaat ctcccctttc ttgtgtctca aggacagaag agacttcagg 180

ı t

				240
			cccatgtcat gtctgtcctc	
catgagatgc tgcagcag	at cttcagccto	c ttccacacag	agegeteete tgetgeetgg	300
aacatgaccc tcctagac	ca actccacact	t ggacttcatc	agcaactgca acacctggag	360
acctgcttgc tgcaggta	gt gggagaagga	a gaatctgctg	gggcaattag cagccctgca	420
ctgaccttga ggaggtac	tt ccagggaato	c cgtgtctacc	tgaaagagaa gaaatacagc	480
gactgtgcct gggaagtt	gt cagaatggaa	a atcatgaaat	ccttgttctt atcaacaaac	540
atgcaagaaa gactgaga	ag taaagataga	a gacctgggct	catcttga	588
<210> 75 <211> 195 <212> PRT <213> Homo sapiens				
<400> 75		; <u>u</u>		
Met Ala Leu Leu Phe 1 5	Pro Leu Leu	Ala Ala Leu 10	Val Met Thr Ser Tyr 15	
Ser Pro Val Glv Ser	Leu Glv Cvs	Asp Leu Pro	Gln Asn His Gly Leu	
20		25	30	
Leu Ser Arg Asn Thr 35	Leu Val Leu 40	Leu His Gln	Met Arg Arg Ile Ser 45	
Pro Phe Leu Cys Leu 50	Lys Asp Arg 55	Arg Asp Phe	Arg Phe Pro Gln Glu 60	
Met Val Lys Gly Ser 65	Gln Leu Gln 70	Lys Ala His 75	Val Met Ser Val Leu 80	
His Glu Met Leu Glr 85	Gln Ile Phe	Ser Leu Phe 90	His Thr Glu Arg Ser 95	
Ser Ala Ala Trp Asr 100	Met Thr Leu	Leu Asp Gln 105	Leu His Thr Gly Leu 110	
His Gln Gln Leu Glr 115	His Leu Glu 120	Thr Cys Leu	Leu Gln Val Val Gly 125	
Glu Gly Glu Ser Ala 130	Gly Ala Ile 135	Ser Ser Pro	Ala Leu Thr Leu Arg 140	
Arg Tyr Phe Gln Gly	lle Arg Val	Tyr Leu Lys 155	Glu Lys Lys Tyr Ser 160	
Asp Cys Ala Trp Glu		Met Glu Ile 170	Met Lys Ser Leu Phe 175	
Leu Ser Thr Asn Met	: Gln Glu Arg	J Leu Arg Ser 185	Lys Asp Arg Asp Leu 190	
Gly Ser Ser 195				