PROBABILITY

DISCRETE STRUCTURES II

DARRYL HILL

BASED ON THE TEXTBOOK:

DISCRETE STRUCTURES FOR COMPUTER SCIENCE: COUNTING, RECURSION, AND PROBABILITY

BY MICHIEL SMID

You may have seen some probability, but we are going to redefine everything from first principles.

We know if you flip a coin it comes up heads with probability 0.50 and it comes up tails with probability 0.50

If I flip a coin and don't show you, you cannot guess with > 0.50 probability whether it is heads or tails.

Group of people on a network.

We want anyone to be able to broadcast

- 1. One person broadcasts message
- 2. Everyone receives message
- 3. No one knows who sent the message

They talk in binary, so they transmit 1 bit at a time (a 0 or a 1).

Three people, P_1 , P_2 , P_3

One of them broadcasts bit b (0 or 1).

Three people, P_1 , P_2 , P_3 , on a network

- 1. One person broadcasts message
- 2. Everyone receives message
- 3. No one knows who sent the message

They transmit 1 bit at a time.

One of them broadcasts bit b (0 or 1), and we want to *hide* who sent it

Problem: P_1 , P_2 , P_3 on a network. One broadcasts bit b (0 or 1). We want to hide who did it.

- 1. Every person flips a coin Person P_i has a random bit b_i
- 2. Each P_i shows b_i to their clockwise neighbour
- 3. P_1 computes $s_1 = (b_1 + b_3) \mod 2$ P_2 computes $s_2 = (b_1 + b_2) \mod 2$ P_3 computes $s_3 = (b_2 + b_3) \mod 2$
- 4. If P_i is not the broadcaster, $t_i = s_i$ If P_i is the broadcaster, $t_i = (s_i + b) \mod 2$
- 5. Each P_i shows t_i to everyone
- 6. Each P_i computes $(t_1 + t_2 + t_3) \mod 2$

7.
$$= (s_1 + s_2 + s_3 + b) \mod 2 = (b_1 + b_1 + b_2 + b_2 + b_3 + b_3 + b) \mod 2 = b \mod 2 = b$$

Three people, P_1 , P_2 , P_3 .

 P_2 is the broadcaster and

wants to broadcast b = 1.

Each P_i flips a coin, stores result in b_i .

$$b_3 = 1$$
 $s_3 = b_3 + b_2 = 1$
 $t_3 = s_3 + (b = 1) = 0$

$$P_1$$
 computes $s_1 = (b_1 + b_3) \mod 2$
 P_2 computes $s_2 = (b_1 + b_2) \mod 2$
 P_3 computes $s_3 = (b_2 + b_3) \mod 2$

 P_1 is not the broadcaster, so $t_1 = s_1$ P_2 is not the broadcaster, so $t_2 = s_2$ P_3 is the broadcaster, so $t_3 = s_3 + b \mod 2$ Everyone broadcasts t_i , and everyone computes $t_1 + t_2 + t_3 \mod 2$ which reveals the bit b = 1

$$t_1 + t_2 + t_3$$

= 0 + 1 + 0
= 1
= b

$$b_2 = 0$$
 $s_2 = b_2 + b_1 = 1$
 $t_2 = s_2 = 1$

Each
$$P_i$$
 computes

$$(t_1 + t_2 + t_3) \mod 2$$

$$= (s_1 + s_2 + s_3 + b) \mod 2$$

$$= (b_1 + b_1 + b_2 + b_2 + b_3 + b_3 + b) \mod 2$$

$$0 \qquad 0 \qquad +b = b$$

$$= b \mod 2 = b$$

This works because for any bit
$$b_i$$
, $b_i + b_i \mod 2 = 0$
If $b_i = 0$, then $0 + 0 \mod 2 = 0 \mod 2 = 0$
If $b_i = 1$, then $1 + 1 \mod 2 = 2 \mod 2 = 0$

$$b_1$$
 b_1
 b_2
 b_3
 b_2
 b_3
 b_4
 b_2
 b_3
 b_4
 b_5
 b_7
 b_8
 b_9
 b_9

 $t_1 = s_1$

 $s_1 = b_1 + b_3$

Thus $b_1 + b_1$, $b_2 + b_2$, and $b_3 + b_3$ all cancel out, leaving b.

(Hopefully) we are convinced we can broadcast in this way and each person can extract b.

The purpose of this exercise is to broadcast anonymously. How can we prove that?

Lacking any elegant method, we turn to *brute force*, i.e., case analysis.

Assume b=1 and that P_2 is NOT the broadcaster. We will take on the role of P_2 . Either P_1 or P_3 is the broadcaster, but we don't know which.

We will see if we can use what we know to determine if P_1 or P_3 is the broadcaster.

We know b_2 and b_1 but do not know b_3 . We also know s_1, s_2, s_3 and we know b.

$$s_2 = b_1 + b_2$$

 $s_1 = b_1 + b_3 + (\text{perhaps } b)$
 $s_3 = b_2 + b_3 + (\text{perhaps } b)$

unknown

Assume b=1 and that P_2 is NOT the broadcaster

Case 1: if $b_1 = b_2$:

Case 1.1: if
$$b1 = b_2 = b_3$$

Case 1.1.1: if P_1 broadcasts, then $t_1 = b_1 + b_3 + b = 1$ $t_3 = b_2 + b_3 = 0$

Case 1.1.2: if
$$P_3$$
 broadcasts, then $t_1 = b_1 + b_3 = 0$ $t_3 = b_2 + b_3 + b = 1$

 P_2 knows if they are in Case 1, but does not know if they are in Case 1.1 or Case 1.2 unless they know b_3

Case 1.2: if
$$b1 = b_2 \neq b_3$$

Case 1.2.1: if
$$P_1$$
 broadcasts, then $t_1 = b_1 + b_3 + b = 0$ $t_3 = b_2 + b_3 = 1$

Case 1.2.2: if
$$P_3$$
 broadcasts, then
$$t_1 = b_1 + b_3 = 1$$

$$t_3 = b_2 + b_3 + b = 0$$

Assume b=1 and that P_2 is NOT the broadcaster

Case 1: if $b_1 = b_2$:

Case 1.1: if
$$b1 = b_2 = b_3$$

Case 1.1.1: if P_1 broadcasts, then $t_1 = b_1 + b_3 + b = 1$ $t_3 = b_2 + b_3 = 0$

Case 1.1.2: if P_3 broadcasts, then $t_1 = b_1 + b_3 = 0$ $t_3 = b_2 + b_3 + b = 1$

For example, we know $t_1=0$ and $t_3=1$. We are in Case 1.2.1 or 1.1.2. But we don't know which without b_3

Case 1.2: if
$$b1 = b_2 \neq b_3$$

Case 1.2.1: if P_1 broadcasts, then $t_1 = b_1 + b_3 + b = 0$ $t_3 = b_2 + b_3 = 1$

Case 1.2.2: if
$$P_3$$
 broadcasts, then $t_1 = b_1 + b_3 = 1$ $t_3 = b_2 + b_3 + b = 0$

Assume b=1 and that P_2 is NOT the broadcaster

Case 1: if $b_1 = b_2$:

Case 1.1: if
$$b1 = b_2 = b_3$$

Case 1.1.1: if P_1 broadcasts, then $t_1 = b_1 + b_3 + b = 1$ $t_3 = b_2 + b_3 = 0$

Case 1.1.2: if P_3 broadcasts, then $t_1 = b_1 + b_3 = 0$ $t_3 = b_2 + b_3 + b = 1$

Or we know

 $t_1 = 1$ and $t_3 = 0$. We are in Case 1.1.1 or 1.2.2. But we don't know which without b_3

Case 1.2: if
$$b1 = b_2 \neq b_3$$

Case 1.2.1: if
$$P_1$$
 broadcasts, then $t_1 = b_1 + b_3 + b = 0$ $t_3 = b_2 + b_3 = 1$

Case 1.2.2: if
$$P_3$$
 broadcasts, then $t_1 = b_1 + b_3 = 1$ $t_3 = b_2 + b_3 + b = 0$

Assume b=1 and that P_2 is NOT the broadcaster

Case 2: if $b_1 \neq b_2$:

Case 2.1: if
$$b1 \neq b_2 = b_3$$

Case 2.1.1: if P_1 broadcasts, then $t_1 = b_1 + b_3 + b = 0$ $t_3 = b_2 + b_3 = 0$

Case 2.1.2: if
$$P_3$$
 broadcasts, then $t_1 = b_1 + b_3 = 1$ $t_3 = b_2 + b_3 + b = 1$

 P_2 knows if they are in Case 2, but $s_1 = s_3$ regardless of who the broadcaster is.

Case 2.2: if
$$b_1 = b_3 \neq b_2$$

Case 2.2.1: if
$$P_1$$
 broadcasts, then $t_1 = b_1 + b_3 + b = 1$ $t_3 = b_2 + b_3 = 1$

Case 2.2.2: if
$$P_3$$
 broadcasts, then $t_1 = b_1 + b_3 = 0$ $t_3 = b_2 + b_3 + b = 0$

Assume b=1 and that P_2 is NOT the broadcaster

Case 2: if $b_1 \neq b_2$:

Case 2.1: if
$$b1 \neq b_2 = b_3$$

Case 2.1.1: if P_1 broadcasts, then $t_1 = b_1 + b_3 + b = 0$ $t_3 = b_2 + b_3 = 0$

Case 2.1.2: if P_3 broadcasts, then $t_1 = b_1 + b_3 = 1$ $t_3 = b_2 + b_3 + b = 1$

We know

 $t_1=0$ and $t_3=0$. We are in Case 2.1.1 or 2.2.2. But we don't know which without b_3

Case 2.2: if
$$b_1 = b_3 \neq b_2$$

Case 2.2.1: if
$$P_1$$
 broadcasts, then $t_1 = b_1 + b_3 + b = 1$ $t_3 = b_2 + b_3 = 1$

Case 2.2.2: if P_3 broadcasts, then $t_1 = b_1 + b_3 = 0$ $t_3 = b_2 + b_3 + b = 0$

Assume b=1 and that P_2 is NOT the broadcaster

Case 2: if $b_1 \neq b_2$:

Case 2.1: if
$$b1 \neq b_2 = b_3$$

Case 2.1.1: if
$$P_1$$
 broadcasts, then $t_1 = b_1 + b_3 + b = 0$ $t_3 = b_2 + b_3 = 0$

Case 2.1.2: if P_3 broadcasts, then $t_1 = b_1 + b_3 = 1$ $t_3 = b_2 + b_3 + b = 1$

We know

 $t_1 = 1$ and $t_3 = 1$. We are in Case 2.1.2 or 2.2.1. But we don't know which without b_3

Case 2.2: if
$$b_1 = b_3 \neq b_2$$

Case 2.2.1: if
$$P_1$$
 broadcasts, then $t_1 = b_1 + b_3 + b = 1$ $t_3 = b_2 + b_3 = 1$

Case 2.2.2: if
$$P_3$$
 broadcasts, then $t_1 = b_1 + b_3 = 0$ $t_3 = b_2 + b_3 + b = 0$

Assume b=0 and that P_2 is NOT the broadcaster

Case 1: if $b_1 = b_2$:

Case 1.1: if
$$b1 = b_2 = b_3$$

Case 1.1.1: if P_1 broadcasts, then $t_1 = b_1 + b_3 = 0$ $t_3 = b_2 + b_3 = 0$

Case 1.1.2: if P_3 broadcasts, then $t_1 = b_1 + b_3 = 0$ $t_3 = b_2 + b_3 = 0$

If we are in Case 1.1 or Case 2.2 then we can determine b_3 but we cannot determine who broadcasted.

Case 1.2: if
$$b1 = b_2 \neq b_3$$

Case 1.2.1: if P_1 broadcasts, then $t_1 = b_1 + b_3 = 1$ $t_3 = b_2 + b_3 = 1$

Case 1.2.2: if P_3 broadcasts, then $t_1=b_1+b_3=1$ $t_3=b_2+b_3=1$

Assume b=0 and that P_2 is NOT the broadcaster

Case 1: if $b_1 = b_2$:

Case 1.1: if
$$b1 = b_2 = b_3$$

Case 1.1.1: if P_1 broadcasts, then $t_1 = b_1 + b_3 = 0$ $t_3 = b_2 + b_3 = 0$

Case 1.1.2: if P_3 broadcasts, then $t_1 = b_1 + b_3 = 0$ $t_3 = b_2 + b_3 = 0$

If t_1 and t_3 are 0, then $b1 = b_2 = b_3$, but since b = 0 we don't know if we are in Case 1.1.1 or 1.1.2

Case 1.2: if
$$b1 = b_2 \neq b_3$$

Case 1.2.1: if
$$P_1$$
 broadcasts, then $t_1 = b_1 + b_3 = 1$ $t_3 = b_2 + b_3 = 1$

Case 1.2.2: if
$$P_3$$
 broadcasts, then $t_1=b_1+b_3=1$ $t_3=b_2+b_3=1$

Assume b=0 and that P_2 is NOT the broadcaster

Case 1: if $b_1 = b_2$:

Case 1.1: if
$$b1 = b_2 = b_3$$

Case 1.1.1: if P_1 broadcasts, then $t_1 = b_1 + b_3 = 0$ $t_3 = b_2 + b_3 = 0$

Case 1.1.2: if P_3 broadcasts, then $t_1 = b_1 + b_3 = 0$ $t_3 = b_2 + b_3 = 0$

If t_1 and t_3 are 1, then $b1 = b_2 \neq b_3$, but since b = 0 we don't know if we are in Case 1.2.1 or 1.2.2

Case 1.2: if
$$b1 = b_2 \neq b_3$$

Case 1.2.1: if P_1 broadcasts, then $t_1=b_1+b_3=1$ $t_3=b_2+b_3=1$

Case 1.2.2: if P_3 broadcasts, then $t_1=b_1+b_3=1$ $t_3=b_2+b_3=1$

This process must be repeated for every bit in order to transmit a longer string.

$$t_1 + t_2 + t_3$$

= 1 + 0 + 0
= 1

Sample space *S* is a non-empty set.

Outcome: an element of *S*.

Ex. Flip a coin, $S = \{H, T\}$ is the **Sample space**.

H and T are Outcomes.

A Probability function $Pr: S \rightarrow \mathbb{R}$

- 1. $\forall w \in S: 0 \leq \Pr(w) \leq 1$
- $2. \quad \sum_{w \in S} \Pr(w) = 1$

probability that outcome is w

The **Probability Function** assigns a real number to each element of S. All of these numbers summed must equal 1.

If we select an element (outcome) "at random", we do so with the probability defined by Pr

Sample space *S* is a non-empty set.

Outcome: an element of *S*.

Ex. Flip a coin, $S = \{H, T\}$ is the **Sample space.**

H and T are Outcomes.

A Probability function $Pr: S \rightarrow \mathbb{R}$

- 1. $\forall w \in S: 0 \leq \Pr(w) \leq 1$
- $2. \quad \sum_{w \in S} \Pr(w) = 1$

probability that outcome is w

The **Probability Function** assigns a real number to each element of S. All of these numbers summed must equal 1.

If we select an element (outcome) "at random", we do so with the probability defined by $\ensuremath{\mathit{Pr}}$

Flip a coin, $S = \{H, T\}$.

If the coin is fair:

$$Pr(H) = \frac{1}{2}$$

$$Pr(T) = \frac{1}{2}$$

$$Pr(H) + Pr(T) = 1$$

Flip a fair coin twice:

$$S = \{HH, HT, TH, TT\}$$

Each outcome may happen with equal probability

$$Pr(HH) = Pr(HT) = Pr(TH) = Pr(TT) = 1/4$$

Events

An Event $A, A \subseteq S$

An **Event** is a **subset** of the **sample space**.

The probability of an **Event** is the sum of the probabilities of each of the **outcomes** in the **Event**.

$$Pr(A) = \sum_{w \in A} Pr(w)$$

Events

An Event $A, A \subseteq S$

$$Pr(A) = \sum_{w \in A} Pr(w)$$

Flip a fair coin twice

$$A =$$
 "One head, one tail"

$$S = \{HH, HT, TH, TT\}$$
$$A = \{HT, TH\}$$

$$Pr(A) = Pr(HT) + Pr(TH) = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$

Roll a fair die:

$$S = \{1, 2, 3, 4, 5, 6\}$$

$$Pr(1) = Pr(2) = \dots = Pr(6) = \frac{1}{6}$$

$$\frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = 1$$

 $\Pr(i) = 1$

Roll a fair die

$$S = \{1, 2, 3, 4, 5, 6\}$$

 $Pr(1) = Pr(2) = \dots = Pr(6) = \frac{1}{6}$

Define an Event A = "We rolled an odd number"

Event $A = "Odd number" = \{1, 3, 5\}$

The probability of an **Event** A is the sum of the probabilities of the individual **Outcomes** in A

Roll a fair die

$$S = \{1, 2, 3, 4, 5, 6\}$$

 $Pr(1) = Pr(2) = \dots = Pr(6) = \frac{1}{6}$

Define an Event A = "We rolled an odd number"

Event $A = "Odd number" = \{1, 3, 5\}$

$$Pr(A) = Pr(1) + Pr(3) + Pr(5)$$

$$= \frac{1}{6} + \frac{1}{6} + \frac{1}{6}$$

$$= \frac{1}{2}$$

Roll a red die and a blue die.

$$S = \{ (i,j) \mid 1 \le i \le 6, 1 \le j \le 6 \}$$

$$i = \text{red die}$$
, $j = \text{blue die}$

What is the size of the sample space? (Hint: Product rule)

6 choices for $6 \cdot 6 = 36$ numbers. What is the Pr of each outcome?

$$\Pr(i,j) = \frac{1}{36}$$

	1	2	3	4	5	6
1						
2						
3						
4						
5						
6						

Roll a red die and a blue die.

$$S = \{ (i,j) \mid 1 \le i \le 6, 1 \le j \le 6 \}$$

$$i = \text{red die}$$
, $j = \text{blue die}$

What is the size of the sample space? (Hint: Product rule)

6 choices for $6 \cdot 6 = 36$ numbers. What is the Pr of each outcome?

$$\Pr(i,j) = \frac{1}{36}$$

	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

Event A = "sum of a red and blue is 4"

= { (1,3), (2,2), (3,1) }
Pr(A) = Pr(1,3) + Pr(2,2) = Pr(3,1)
=
$$\frac{3}{36} = \frac{1}{12}$$

	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

Event A = "sum of a red and blue is 4"

= { (1,3), (2,2), (3,1) }
Pr(A) = Pr(1,3) + Pr(2,2) = Pr(3,1)
=
$$\frac{3}{36} = \frac{1}{12}$$

Event
$$B = \text{"sum is 5"}$$

= $\{(1,4), (2,3), (3,2), (4,1)\}$

$$Pr(B)$$

= $Pr(1,4) + Pr(2,3) + Pr(3,2) + Pr(4,1)$
= $\frac{4}{36} = \frac{1}{9}$

	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

Event $A, A \subseteq S$

$$\Pr(A) = \sum_{w \in A} \Pr(w)$$

We know that $S \subseteq S$, Thus S is an event and

$$Pr(S) = \sum_{w \in S} Pr(w) = 1$$

"What is the probability that something happens?"

Event $A, A \subseteq S$

$$\Pr(A) = \sum_{w \in A} \Pr(w)$$

Also Ø is an event

And
$$Pr(\emptyset) = 0$$

"What is the probability of an impossible outcome?"

We have to select something because of how we defined "outcome".

Event $A, A \subseteq S$

$$\Pr(A) = \sum_{w \in A} \Pr(w)$$

What is $Pr(\bar{A})$?

 $\overline{A} \subseteq S$ is a subset of S and thus an event.

We can use what we know of *A* to determine it.

Since
$$A \cup \overline{A} = S$$
,

$$Pr(A) + Pr(\bar{A}) = Pr(S) = 1$$

Thus $Pr(\bar{A}) = 1 - Pr(A)$

Complement Rule: $Pr(A) = 1 - Pr(\bar{A})$

As with counting, sometimes it is easier to compute the Pr of the complement

Event A, B disjoint sets.

$$Pr(A) = \sum_{w \in A} Pr(w)$$

$$Pr(B) = \sum_{w \in B} Pr(w)$$

We can define an event $A \cup B$, and thus:

$$Pr(A \cup B) = Pr(A) + Pr(B)$$

Equivalent of sum rule of counting, but now each element has a value (Pr) associated with it.

Events A, B **NOT disjoint** sets.

To count the elements:

$$|A \cup B| = |A| + |B| - |A \cup B|$$

Instead of counting elements, we are counting the probabilities, and thus:

$$Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$$

Similar to inclusion / exclusion

Choose a random element x in S.

What is Pr(x is divisible by 2 or 3)?

$$A = \text{"div by 2"}, B = \text{"div by 3"}$$

$$Pr(A) + Pr(B) - Pr(A \cap B)$$

$$= \frac{500}{1000} + \frac{333}{1000} - \Pr(div\ by\ 6)$$
$$= \frac{500}{1000} + \frac{333}{1000} - \frac{166}{1000} = \frac{667}{1000}$$

S

