Eliptičke krivulje u kriptografiji

završni ispit - grupa A

8.6.2015.

- 1. Eliptička krivulja E nad poljem \mathbb{F}_{17} zadana je jednadžbom $y^2 = x^3 + 7x + 4$. Dokažite da je $\alpha = (0, 2)$ generator grupe $E(\mathbb{F}_{17})$.
- 2. Pomoću Menezes-Vanstoneovog kriptosustava u kojem su javni ključ eliptička krivulja E i generator α iz 1. zadatka, te $\beta = (16, 8)$, šifrirajte otvoreni tekst $(x_1, x_2) = (5, 11)$, uz pretpostavku da je jednokratni ključ k = 6.
- 3. Eliptička krivulja E nad poljem \mathbb{F}_{13} zadana je jednažbom $y^2 = x^3 + 10x + 9$. Za točke P = (0,3) i Q = (3,12) na E riješite problem eliptičkog diskretnog logaritma Q = [m]P Pohlig-Hellmanovim algoritmom ako je poznato da je točka P reda 15.
- 4. Faktoriz
irajte broj n=391 pomoću ECM faktorizacije s parametrima

$$E: \quad y^2 = x^3 + 8x + 1,$$

P = (0,1) i B = 3.

Dozvoljeno je korištenje džepnog kalkulatora, te dva papira s formulama. Kalkulatori se mogu koristiti za standardne operacije, ali nije dozvoljeno korištenje gotovih funkcija za algoritme iz eliptičkih krivulja i teorije brojeva.

Rezultati: utorak, 16.6.2015. u 14 sati.

Andrej Dujella