Y.T.Ü. Bilgisayar Mühendisliği Bölümü 0113611 Bilgisayar Donanımı, Vize Sınavı 2, 27 Aralık 2012

Adi Soyadı: Öğrenci No:

Not: Sınav Süresi 60 dakikadır. Başarılar...

	Soru 1	Soru 2	Soru 3	Soru 4	Toplam
	(40 p)	(15 p)	(30 p)	(15 p)	(100 p)
ĺ					
١					

SORU 1: Seçme girişleri (S_1 ve S_0) ve n-bitlik A ve B girişleri olan bir aritmetik devre tasarlanacaktır. Elde biti kullanılarak (C_{in}) aşağıda verilen sekiz farklı aritmetik işlemi gerçekleştirmesi istenmektedir. Bu aritmetik devrenin en düşük değerli bitleri (A_0 , B_0) için detaylı lojik diyagramını çiziniz?

S1	S0	Cin =0	Cin =1
0	0	F = A + B	F = A + B + 1
0	1	F = A	F = A + 1
1	0	$F = \overline{B}$	$F = \overline{B} + 1$
1	1	$F = A + \overline{B}$	$F = A + \overline{B} + 1$

CEVAP 1:

S_1	S_0	Ai	X _i
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

S ₁	S ₀ 0	Bi	Y
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

$S_1 \setminus S_0 A_i$	00	01	11	10		
0	0	A	1	0		
1	0	0	1 /	0		
$X_i = A_i (S_1' + S_0)$						

$S_1 \setminus S_0 B_i$	00	01	11	10				
0	0	1	0	0				
1	Θ	0	0	(H)				
V S.'S.'B.+S.B.'								

Karnaugh haritası yardımıyla indirgenerek elde edilen fonksiyonlar lojik kapılar kullanıralarak tam toplayıcının girişine uygulanabilir. Bununla birlikte her iki giriş için multiplexer kullanılarak da yapılabilir. X_i girişi için elde edilen lojik devre, Y_i girişi için multiplexer kullanılarak gerçekleştirilen devre aşağıda verilmiştir.

SORU 2: 10 adet komuttan oluşan bir program, 8 aşamalı bir pipeline yapısına sahip ve bir saat periyodu 0.5 ns olan bir bilgisayar da çalıştırılacaktır.

- a) Pipeline için gecikme zamanı (latency time) kaçtır?

 Bir komutun yürütülmesi için gerekli toplam süre olan Gecikme zamanı = 0.5 ns x 8 = 4.0 ns.
- b) Programın yürütülmesi için gerekli süreyi hesaplayınız? 10 komut + 8 pipeline aşaması - 1 = 17 cycles * 0.5ns = 8.5ns

SORU 2: Aşağıda verilen mikro işlemleri gerçeklemek için kullanılan basit bilgisayarın veriyolu (datapath) yapısına uygulanması için gerekli 16-bitlik kontrol kelimesini verilen tabloyu kullanarak belirtiniz?

	DA	AA	BA	MB	FS	MD	RW
R7← 0	111	000	000	0	1010	0	1
R5← sl R7	101		111	0	1110	0	1
R5← Data in	101			-		1	1
R4← sr R4	100		100	0	1101	0	1
R3← R1 - Constant in	011	001		1	0101	0	1
R2← R2 + 1	010	010		-	0001	0	1
R1← R2 ⊕ R3	001	010	011	0	1010	0	1
R3← R4 + R5	011	100	101	0	0010	0	1

Encoding of Control Word for the Datapath

DA, AA	, BA	MB		FS		MD		RW	
Function	Code	Function	Code	Function	Code	Function	Code	Function	Code
R0	000	Register	0	F = A	0000	Function	0	No Write	0
R1	001	Constant	1	F = A + 1	0001	Data in	1	Write	1
R2	010			F = A + B	0010				
R3	011			F = A + B + 1	0011				
R4	100			$F = A + \overline{B}$	0100				
R5	101			$F = A + \overline{B} + 1$	0101				
R6	110			F = A - 1	0110				
<i>R</i> 7	111			F = A	0111				
				$F = A \wedge B$	1000				
				$F = A \vee B$	1001				
				$F = A \oplus B$	1010				
				$F = \overline{A}$	1011				
				F = B	1100				
				$F = \operatorname{sr} B$	1101				
				$F = \operatorname{sl} B$	1110				

Soru 4: Bir sayısal bilgisayar 256K x 32 kapasiteli bir bellek birimine sahiptir. 32 bitlik komutların formatının aşağıda verildiği gibi üç bölümden oluştuğunu ve saklayıcı kısmının 64 adet saklayıcıyı adreslediğini varsayalım.

> Register Opcode Address

Belleğin veri ve adres girişleri için kaç bitliktir?

Veri girisi: 32 bit

Adress girişi: 18 bit (256K= 2^8x2^{10} = 2^{18})

b) İşlem kodu (Opcode), saklayıcı (Register) ve adres bölümü için kaç bit gereklidir?

Adres: 18 bit

Saklayıcı: 6 (64 adet saklayıcı olduğundan dolayı $64=2^6$)

Opcode = 32-18-6 = 8 bit

c) En fazla kaç farklı işlem tanımlanabilir? *Opcode 8 bit olduğundan dolayı* $2^8 = 256$ adet farkli işlem tanımlanabilir.

d) İşaretli ve işaretsiz sayı kullanımında ivedi (immediate) operandın alabileceği değer aralıklarını ayrı ayrı bulunuz? Adres bölümünün ivedi operand olarak kullanıldığını varsayalım.

İşaretsiz sayılar için aralık: $0:2^{18}$

En yüksek değerlikli bit işareti göstermek için kullanılacağından dolayı İşaretli sayılar için aralık: -2^{17} : 2^{17} -1