MAT4006: Introduction to Coding Theory

Lecture 05: Rings of Polynomials and Construction of Fields

Instructor: Zitan Chen Scribe: Siqi Yao

Spring 2025

1 The Ring of Polynomials

Definition 1.1 (Ring of Polynomials)

Let F be a field. The set

$$F[x] := \left\{ \sum_{i=0}^{n} a_i x^i \mid a_i \in F, n \ge 0 \right\}$$
 (1)

is called the ring of polynomials. An element $f(x) = \sum_{i=0}^{n} a_i x^i$ in F[x] is called a polynomial over F.

Remarks

1. If $a_n \neq 0$, the integer n is called the degree of f, denoted by $\deg(f)$. More precisely,

$$\deg(f) = \max\{i \mid 0 \le i \le n, a_i \ne 0\}$$
(2)

For convenience, define

$$\deg(0) = -\infty. \tag{3}$$

2. A nonzero polynomial f(x) of degree n is said to be monic if $a_n = 1$.

Definition 1.2 (Reducibility)

A polynomial $f \in F[x]$ with $\deg(f) > 0$ is said to be reducible (similar to composite number) over F if there exist two polynomials $g, h \in F[x]$ such that:

$$\deg(g) < \deg(f), \quad \deg(h) < \deg(f), \quad \text{and} \quad f = gh.$$
 (4)

Otherwise, f is said to be irreducible over F.

Example

- 1. Let $f(x) = x^4 + 2x^6 \in \mathbb{Z}_3[x]$. deg(f) = 6. f is not monic. $f(x) = x^4(1 + 2x^2)$
- 2. Let $g(x) = 1 + x + x^2 \in \mathbb{Z}_2[x]$. deg(g) = 2. g is monic. Since $\mathbb{Z}_2 = \{0, 1\}$, if g is reducible, it can only be reduced into product of 1+x and x. However, g(1) = 1, g(0) = 1, meaning that g has no linear factors over \mathbb{Z}_2 , so g is irreducible. Recall the Factor theorem: Exists root $\alpha \Leftrightarrow$ has factor $x \alpha$.

2 Roots of Polynomials

Definition 2.1 (Subfields)

Let E, F be two fields and $F \subseteq E$. The field F is called a subfield of E if the addition and multiplication of E, when restricted to F, are the same as in F. E is also called an extension field of F.

Example

- 1. \mathbb{Q} is a subfield of \mathbb{R} .
- 2. \mathbb{C} is a extension field of \mathbb{R} .
- 3. \mathbb{Z}_p can be viewed as a subfield of any finite field with characteristic p. Important note: Same multiplication and addition rule.

Definition 2.2 (Roots)

Let F be a field and E be an extension field of F. An element $\beta \in E$ is a root of $f(x) \in F[x]$ if the equality $f(\beta) = 0$ holds in E.

Example

Consider $f(x) = 1 + x^2 \in \mathbb{R}[x]$. f is irreducible over \mathbb{R} . Let β be the imaginary unit in \mathbb{C} . $f(\beta) = 1 + \beta^2 = 0$. So β is a root of f(x) in \mathbb{C} .

3 Construction of Fields

The ring F[x] is a "generalization" of \mathbb{Z} . We can define congruence in F[x] similarly as in \mathbb{Z} . Let $f(x) \in F[x]$, $\deg(f) = n \ge 1$. Then for any $g(x) \in F[x]$, there exist a unique pair of polynomials (s(x), r(x)) with $\deg(r) < \deg(f)$ such that:

$$g(x) = s(x)f(x) + r(x).$$
(5)

s(x) corresponds to q and r(x) corresponds to b in a = qm + b, respectively. The polynomial r(x) is called the remainder of g(x) divided by f(x), denoted by g(x) (mod f(x)).

Example

Let $f(x) = 1 + x^2 \in \mathbb{Z}_3[x], g(x) = x + 2x^4 \in \mathbb{Z}_3[x]$. Use long division to find that $g(x) \mod f(x) = x + 2$.

Analogies between \mathbb{Z} and F[x]

\mathbb{Z}	F[x]
integer m	polynomials $f(x)$
prime	irreducible

Recall the ring \mathbb{Z}_m of integers modulo m. We can construct a set F[x]/(f(x)) for a given polynomial f(x) of degree $n \geq 1$:

\mathbb{Z}_m	F[x]/(f(x))
$[0,1,\ldots,m-1]$	$\left\{\sum_{i=0}^{n-1} a_i x^i \mid a_i \in F\right\}$
$a+b=(a+b \mod m)$	$g(x) + h(x) = (g(x) + h(x) \mod f(x))$
$a \cdot b = (a \cdot b \mod m)$	$g(x) \cdot h(x) = (g(x) \cdot h(x) \mod f(x))$
\mathbb{Z}_m is a ring	?
\mathbb{Z}_m is a field iff m is prime	?

Theorem 3.1

The set F[x]/(f(x)) together with the addition + and multiplication · defined above forms a ring. F[x]/(f(x)) is a field iff f(x) is irreducible.

Size of Field

If $F = \mathbb{Z}_p$, p is prime (this guarantees that F is a field), and f is irreducible over \mathbb{Z}_p (this guarantees that $\mathbb{F}[x]/(f(x))$) is a field) with $\deg(f) = n \geq 1$, then there are p^n elements in the field $\mathbb{F}[x]/(f(x))$, since there are n coefficients and p choices for each coefficient. This implies that $\operatorname{char}(\mathbb{F}[x]/(f(x))) = p$. Also, the elements in a field can be viewed as polynomials.

Example

1. Is $\mathbb{Z}_2[x]/(1+x^2)$ a field? No.

Need to check whether $1 + x^2$ is irreducible over \mathbb{Z}_2 . $f(x) = 1 + x^2$. f(1) = 0 so 1 is a root of $1 + x^2 : (1 + x) \mid f(x)$. Actually $f(x) = (1 + x)^2 = 1 + 2x + x^2 = 1 + x^2$.

2. What about $\mathbb{Z}_2[x]/(1+x+x^2)$?

Let $f(x) = 1 + x + x^2 \cdot f(0) = 1$, f(1) = 1, so f(x) has no linear factors, f(x) is irreducible over \mathbb{Z}_2 . $\mathbb{Z}_2[x]/(1+x+x^2) = \{0,1,x,1+x\}$.

Note: these 2 sets actually contain the same elements.