Lecture 1: Introduction to Cryptography Background on functions

Nargiza Tazabekova

SDU University

Cryptography course – Fall 2025

Why Functions in Cryptography?

- Cryptography relies on mathematical functions.
- Functions map inputs (domain) to outputs (codomain).
- Special classes of functions provide:
 - Security (one-wayness, trapdoor)
 - Efficiency
 - Predictable structure

Definition of a Function

Definition

A function $f: X \to Y$ is defined by two sets X and Y and a rule f which assigns to each element in X exactly one element in Y.

3 / 23

Definition of a Function

Definition

A function $f: X \to Y$ is defined by two sets X and Y and a rule f which assigns to each element in X exactly one element in Y.

- X: domain, Y: codomain.
- y is the image of x if y = f(x).
- The set of all elements in Y which have at least one preimage is called the image of f and denoted Im(f).

Examples of Functions

Example

 $f: \{a, b, c\} \rightarrow \{1, 2, 3, 4\} \text{ with } f(a) = 2, f(b) = 4, f(c) = 1.$

Examples of Functions

Example

$$f: \{a, b, c\} \rightarrow \{1, 2, 3, 4\} \text{ with } f(a) = 2, f(b) = 4, f(c) = 1.$$

Example

 $f: \{1, 2, \dots, 10\} \to \{0, 1, \dots, 10\}$ defined by $f(x) = x^2 \mod 11$.

Examples of Functions

Example

$$f: \{a, b, c\} \rightarrow \{1, 2, 3, 4\} \text{ with } f(a) = 2, f(b) = 4, f(c) = 1.$$

Example

$$f: \{1, 2, \dots, 10\} \to \{0, 1, \dots, 10\}$$
 defined by $f(x) = x^2 \mod 11$.

Explicitly:

$$f(1) = 1$$
, $f(2) = 4$, $f(3) = 9$, $f(4) = 5$, $f(5) = 3$, $f(6) = 3$, $f(7) = 5$, $f(8) = 9$, $f(9) = 4$, $f(10) = 1$.

$$\operatorname{Im}(f) =$$

- 4 ロト 4 個 ト 4 恵 ト 4 恵 ト - 恵 - 夕 Q (C)

Special Types of Functions

• One-to-one (Injective): Each element in the codomain Y is the image of at most one $x \in X$.

Nargiza Tazabekova 5 / 1

Special Types of Functions

- One-to-one (Injective): Each element in the codomain Y is the image of at most one $x \in X$.
- Onto (Surjective): Every element of Y is the image of at least one $x \in X$. Equivalently, Im(f) = Y.

(ロト 4回 ト 4 重 ト 4 重 ト) 重) りへの

Special Types of Functions

- One-to-one (Injective): Each element in the codomain Y is the image of at most one $x \in X$.
- Onto (Surjective): Every element of Y is the image of at least one $x \in X$. Equivalently, Im(f) = Y.
- **Bijection:** A function that is both injective and surjective. Bijective functions are invertible.

Bijection from Injectivity

Fact: If $f: X \to Y$ is one-to-one (injective), then

$$f: X \to \operatorname{Im}(f)$$

is a bijection.

In particular: If X and Y are finite sets of the same size and f is one-to-one, then f is bijective.

Inverse Functions

Definition

If $f: X \to Y$ is a bijection, then it is possible to define a bijection $g: Y \to X$ as follows: for each $y \in Y$ define

$$g(y) = x$$
 where $x \in X$ and $f(x) = y$.

This function g obtained from f is called the **inverse function** of f and is denoted by

$$g=f^{-1}.$$

Nargiza Tazabekova 7 / .

Inverse Functions

Example

Let

- $X = \{abc, acb, bac, bca, cab, cba\}$
- $Y = \{123, 132, 213, 231, 312, 321\}$

Define $f: X \to Y$ by:

$$f(abc) = 123$$
, $f(acb) = 132$, $f(bac) = 213$, $f(bca) = 321$, $f(cab) = 231$, $f(cba) = 312$.

Since f is a bijection, we can define the inverse:

Inverse Functions

Example

Let

- $X = \{abc, acb, bac, bca, cab, cba\}$
- $Y = \{123, 132, 213, 231, 312, 321\}$

Define $f: X \to Y$ by:

$$f(abc) = 123$$
, $f(acb) = 132$, $f(bac) = 213$, $f(bca) = 321$, $f(cab) = 231$, $f(cba) = 312$.

Since f is a bijection, we can define the inverse:

$$f^{-1}(123) = abc, \quad f^{-1}(132) = acb, \quad f^{-1}(213) = bac, \dots$$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Involution

Definition

Let S be a finite set and let f be a bijection from S to S (i.e., $f:S\to S$). The function f is called an **involution** if $f=f^{-1}$.

An equivalent way of stating this is

$$f(f(x)) = x$$
 for all $x \in S$.

Example

Let
$$S = \{1, 2, 3, 4\}$$
 and define f as the permutation $f = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$.

Here, f(1) = 2, f(2) = 1, f(3) = 4, f(4) = 3. Applying f twice gives back the original element:

Involution

Definition

Let S be a finite set and let f be a bijection from S to S (i.e., $f: S \to S$). The function f is called an **involution** if $f = f^{-1}$.

An equivalent way of stating this is

$$f(f(x)) = x$$
 for all $x \in S$.

Example

Let
$$S = \{1, 2, 3, 4\}$$
 and define f as the permutation $f = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$.

Here, f(1) = 2, f(2) = 1, f(3) = 4, f(4) = 3. Applying f twice gives back the original element:

$$f(f(1)) = 1$$
, $f(f(2)) = 2$, $f(f(3)) = 3$, $f(f(4)) = 4$.

Thus f is an involution.

Bijections in Cryptography

In cryptography bijections are used as the tool for encrypting messages and the inverse transformations are used to decrypt.

Cryptographic Interpretation

- f = encryption function
- f^{-1} = decryption function

Every message has exactly one ciphertext, and every ciphertext maps back to a unique message.

Nargiza Tazabekova 10 / 23

Bijections in Cryptography

In cryptography bijections are used as the tool for encrypting messages and the inverse transformations are used to decrypt.

Cryptographic Interpretation

- f = encryption function
- $f^{-1} = \text{decryption function}$

Every message has exactly one ciphertext, and every ciphertext maps back to a unique message.

Example: Let $X = \{A, B, C\}$ (messages) and $Y = \{1, 2, 3\}$ (ciphertexts). Define f:

$$A \mapsto 2$$
, $B \mapsto 3$, $C \mapsto 1$

Then the inverse f^{-1} is:

$$2 \mapsto A$$
, $3 \mapsto B$, $1 \mapsto C$

Encryption: $B \to 3$ **Decryption:** $3 \to B$

Nargiza Tazabekova 10 / 23

Definition

A function $f: X \to Y$ is called a **one-way function** if

- f(x) is "easy" to compute for all $x \in X$, but
- for "essentially all" elements $y \in \text{Im}(f)$ it is "computationally infeasible" to find any $x \in X$ such that f(x) = y.

Nargiza Tazabekova 11 / 23

Definition

A function $f: X \to Y$ is called a **one-way function** if

- f(x) is "easy" to compute for all $x \in X$, but
- for "essentially all" elements $y \in \text{Im}(f)$ it is "computationally infeasible" to find any $x \in X$ such that f(x) = y.

For a random $y \in \text{Im}(f)$ it is computationally infeasible to find $x \in X$ such that f(x) = y means:

- Some outputs y might be easy to invert (special cases).
- ullet But for almost all outputs, finding the preimage x is extremely hard.
- "Hard" means no efficient algorithm is known that works in reasonable time.

Example

Take $X = \{1, 2, 3, ..., 16\}$ and define

 $f(x) = r_x$, where r_x is the remainder of 3^x divided by 17.

Example

Take
$$X = \{1, 2, 3, ..., 16\}$$
 and define

 $f(x) = r_x$, where r_x is the remainder of 3^x divided by 17.

X																
f(x)	3	9	10	13	5	15	11	16	14	8	7	4	12	2	6	1

- Easy to compute f(x) for a given x.
- Harder to invert: given y = 7, find x such that f(x) = 7. Only with the table we see f(11) = 7.

→ロト→部ト→重ト→重 り<0</p>

Nargiza Tazabekova 12 / 23

Example

Let p = 48611, q = 53993, and n = pq = 2624653723. Define a function on $X = \{1, 2, \dots, n-1\}$ by

$$f(x) = r_x, \quad r_x \equiv x^3 \pmod{n}.$$

- Computing f(x) is straightforward: Example: f(2489991) = 1981394214.
- Reversing the process (given y, find x such that $x^3 \equiv y \pmod{n}$) is much harder.
- This is known as the modular cube root problem.

If the factors p and q are unknown, inversion is computationally infeasible. If p and q are known, the function can be inverted efficiently.

One-Way Functions Summary

- Easy to compute y = f(x).
- Hard to find x given y.
- Example: $f(x) = 3^x \mod 17$.
- Foundation for modern cryptography.

Trapdoor One-Way Functions

Definition

A trapdoor one-way function is a one-way function $f: X \to Y$ with the additional property that given some extra information (called the *trapdoor information*) it becomes feasible to find for any given $y \in \text{Im}(f)$, an $x \in X$ such that f(x) = y.

Nargiza Tazabekova 15 / 23

Generators of Multiplicative Groups

Definition:

Let

р

be a prime. The set

$$\mathbb{Z}_p^* = \{1, 2, \dots, p-1\}$$

forms a multiplicative group modulo p. An element $g \in \mathbb{Z}_p^*$ is called a generator if its powers produce all elements of the group:

$$\{g^1 \bmod p, g^2 \bmod p, \ldots, g^{p-1} \bmod p\} = \mathbb{Z}_p^*.$$

Generators of Multiplicative Groups

Definition:

Let

р

be a prime. The set

$$\mathbb{Z}_p^* = \{1, 2, \dots, p-1\}$$

forms a multiplicative group modulo p. An element $g \in \mathbb{Z}_p^*$ is called a *generator* if its powers produce all elements of the group:

$$\{g^1 \bmod p, g^2 \bmod p, \ldots, g^{p-1} \bmod p\} = \mathbb{Z}_p^*.$$

Example:

For

$$p = 7$$

, the group is $\mathbb{Z}_{7}^{*} = \{1, 2, 3, 4, 5, 6\}$. Take g = 3. Its powers are:

Groups

Definition:

A group is a set

G

together with a binary operation

0

such that:

Closure: For all

 $a, b \in G$

 $a \circ b \in G$

Associativity: For all

Trapdoor One-Way Function

Function:

$$f(x) = g^x \mod p$$

where

g

is a generator of a multiplicative group modulo a large prime

р

• Easy direction: Given

Χ

, compute

f(x)

quickly.

• Hard direction: Given

y

Trapdoor One-Way Functions

Function:

$$f(x) = x^e \mod n$$

where

$$n = p \cdot q$$

is the product of two large primes.

• Easy direction: Given

X

, compute

f(x)

quickly.

Hard direction: Given

$$y = f(x)$$

, finding

X

Trapdoor One-Way Functions

- One-way function with special **secret information** (trapdoor).
- With trapdoor: inversion becomes feasible.
- Example: RSA function $f(x) = x^e \mod n$.
- Security relies on hardness of factoring n = pq.

20 / 23

Permutations

Definition

Let S be a finite set of elements. A **permutation** p on S is a bijection

$$p: S \longrightarrow S$$
.

Example

Let $S = \{1, 2, 3, 4, 5\}$. A permutation $p : S \rightarrow S$ is defined as:

$$p(1) = 3$$
, $p(2) = 5$, $p(3) = 4$, $p(4) = 2$, $p(5) = 1$.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Permutations as Arrays

A permutation can be written in array form:

$$p = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 4 & 2 & 1 \end{pmatrix}.$$

Since permutations are bijections, they always have inverses. The inverse of p is:

Permutations as Arrays

A permutation can be written in array form:

$$p = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 4 & 2 & 1 \end{pmatrix}.$$

Since permutations are bijections, they always have inverses. The inverse of p is:

$$p^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 1 & 3 & 2 \end{pmatrix}.$$

Any questions?