XMC BLDC Scalar Control SW based on 3 Hall sensor **Getting Started**

XMC[™] Microcontrollers July 2016

Agenda

- 1 Overview of BLDC Scalar Control SW
- 2 Software Overview
- 3 Hardware Overview
- 4 Tools Overview
- 5 Getting Started
- 6 General Information

Overview - BLDC Scalar Control SW

- This document provides information about usage of BLDC scalar control example software on Infineon's XMC1300 series micro-controllers platform.
- BLDC scalar control example software is offered as "simple main project in DAVE™ IDE".
- BLDC scalar control example project consists of Hall based 3-Phase BLDC Motor control algorithm software, targeted end applications are fans, pumps, power tools and e-bike segment.
- This example project will provide high level of configurability and modularity to address different segments.
- This project can be easily configured as per requirements with the help of configuration files.

Software Overview - Software Blocks

Software Blocks	Supported Options
Control Scheme	Open loop voltage control, speed control, current control and speed inner current control
PWM Modulation (Modulator)	High side modulation, low side modulation, high side with synchronous rectification
Current/Voltage Measurement	Direct DC link and average current measurement, DC link Voltage & Potentiometer (Analog Input)

Software Overview – Key Features

Supported Features	Description
Seamless bi-directional control	Reverse the motor direction without stopping the motor
On fly start-up	Catch spinning motor at start-up without stop
Adaptive Hall pattern learning	Synchronise inverter commutation logic with Hall pattern
Accurate measurement of speed (across wide range)	Use floating pre-scalar
Demagnetization blanking	Remove spike in direct DC link current measurement
DC bus voltage clamping	Prevent over-voltage during fast braking
Protection	Stall Detection Over-current Short circuit Under/Over voltage C-trap with MCU hardware features

Software Overview - Files Structure

Folder/File Structure

Software Overview - XMC Peripheral usage

No	Resource	Resource usage	Purpose
1	CCU40 _CC40	Always	Phase delay and blanking for hall sampling
2	CCU40 _CC41	Fast Sync is enabled	Multi-channel Pattern synchronization
3	CCU40 _CC42	Always	Capture time interval between two hall
4	POSIF0	Always	Hall and MCM handling
5	CCU80_CC8x	Always	PWM Generation – Phase U
6	CCU80_CC8y	Always	PWM Generation – Phase V
7	CCU80_CC8z	Always	PWM Generation – Phase W
8	VADC Group A Queue A	Any ADC measurement is enabled	DC link direct/ Average current , DC link voltage, user defined and potentiometer measurement
9	NVIC	Always	Used for ISRs
10	SYSTICK	Always	Used for state machine
Note: x,y,z, A - Resource number based on configuration			

Software Overview - Peripheral Interconnection

Software Overview - Interrupt Service Routines

Folder: Interrupts

File name: bldc scalar state machine.c

Peripheral	Interrupt Subroutines	NVIC node	Interval	Priority
VADC	(ISR) Protection	19	Asynchronous	0
CCU8	CTRAP	26	Asynchronous	0
POSIF	HALL Event	27	Asynchronous (Hall edge event only for catch-free running)	1
POSIF	Pattern Update	28	Based upon speed: 1/(electrical speed in Hz * 6)	1
CCU8	Control Loop	25	1/ PWM frequency	2
SYSTIMER	Scheduler	-1	1 mSec (configurable)	3

Software Overview – Example Configuration

Example Name	BLDC_SCALAR_HALL_XMC13
Kit Description	Drive 3-phase Maxon's BLDC motor using XMC1000 motor control application kit
Part Number	KIT_XMC1X_AK_MOTOR_001
Schemes	Default Configuration in Example Software
Control Scheme	MOTORO_BLDC_SCALAR_SPEED_CTRL
PWM Modulation	MOTORO_BLDC_SCALAR_PWM_HIGHSIDE
PWM frequency (Hz)	20000
Speed (rpm)	2000
Ramp up/down rate	500
Protection	Over-current protection with direct DC link current measurement

Performance Matrix

Execution Time and O	ode Size	
	(us)	Code Size (bytes)
Control loop ISR	6.5	
Pattern update ISR	14.6	8296
Motor state machine - Normal state	5.92	

Execution Time and Code Size For default configuration

Hardware Overview – Application Kit Package

Infineon's XMC1000 Motor Control Application Kit

Item	Description
XMC1300 CPU Card	MCU board with XMC1300 and detachable SEGGER J-Link debug interface
PMSM Low Voltage 15W Motor Card	12 – 24V Up to 3A On board 3-phase motor (24V, 15W) with hall sensors
Accessories	Power Supply Adaptor (24V, 1A) Micro USB connector (1x)

XMC1300 CPU Card

PMSM Low Voltage 15W Motor Card

Hardware Overview - XMC1300 CPU Card

XMC1300 CPU Card

Hardware Overview - Motor Card

> PMSM Low Voltage 15W Motor Card

Hardware Overview - Kit Order information

No.	Kit Name	Kit Description	Order Number
1	KIT_XMC1x_AK_Motor_001	XMC1000 Motor Control Application Kit	KIT_XMC1x_AK_Motor_001

Tools Overview

- DAVE™ (V4.2.6 onwards)
 - Download DAVE™ installer package from

http://www.infineon.com/dave

Download and unzip the installer package

Free Eclipse based integrated development environment (IDE) including GNU C-compiler, debugger, comprehensive code repository, hardware resource management, and code generation plug-in.

A complete download package is provided, including IDE, XMC™ Lib, DAVE™ APPs, EXAMPLES, and DAVE™ SDK.

DAVE™ Release Note

- μC/Probe™ XMC™ (v4.0.16.54 onwards) for Infineon industrial microcontrollers powered by Micrium®
 - > Download from μC/Probe™ XMC™ from DAVE home page

https://infineoncommunity.com/uC-Probe-XMC-software-download ID712

Getting Started – Connecting the Board

- Connect XMC1300 CPU Card to PMSM Low Voltage 15W Motor Card using SAMTEC connector interface
- Connect XMC1300 CPU Card to PC via Micro USB cable
- Connect power adaptor to PMSM Low Voltage 15W Motor Card

Getting Started – Setting up the Board

- **Note:** For this motor kit, one of the hall signal inputs are at P0.15. Therefore, to avoid conflict to the device, please ensure the following settings to the XMC1302 CPU Board.
 - 1. In DAVE, select "BMI Set Get" to update BMI to SPD0 mode

2. Set SWCLK on the dip switch to "OFF" position.

Getting Started – Download Project from DAVE [1/2]

- 1. Open DAVE™ 🚪
- 2. Install example project from DAVE:
 - Help → Install DAVE APP/Example/Device Library...

Getting Started – Download Project from DAVE [2/2]

- 3. In the opened dialog "Dave Site":
 - In Option "Work With:", select "DAVE Project Library Manager"
 - In "Libraries", select the project "BLDC_SCALAR_HALL_XMC13".

4. Select "Yes" to import the example project in workspace

Getting Started – Configure the Project [1/8]

Folder: Configuration

File name: bldc_scalar_user_config.h

1. Select the Motor Control Kit and BLDC motor

```
* Motor and power board selection
116 /* Board and motor selection */
117@ /**
     * Motor control kit
118
     * Options - KIT XMC1X AK MOTOR 001, KIT XMC750WATT MC AK V1, KIT CUSTOM
120
    #define
121
             MOTORØ BLDC SCALAR BOARD
                                                                (KIT XMC1X AK MOTOR 001)
123
     * BLDC motor
     * Options - MOTOR EC MAXON 267121, MOTOR CUSTOM
125
    #define
126
              MOTORØ BLDC SCALAR MOTOR
                                                                (MOTOR EC MAXON 267121)
127
128 /* Motor Parameters */
129 #if (MOTORO BLDC SCALAR MOTOR == MOTOR EC MAXON 267121)
             MOTORØ BLDC SCALAR MOTOR NO LOAD SPEED
                                                                            /*!< No load speed of the motor in RPM */
    #define
                                                                 (4530U)
              MOTORØ BLDC SCALAR MOTOR POLE PAIRS
                                                                            /*!< Pole pairs */
    #define
                                                                 (4U)
132
133 #elif (MOTOR0 BLDC SCALAR MOTOR == MOTOR CUSTOM)
              MOTORØ BLDC SCALAR MOTOR NO LOAD SPEED
                                                                            /*!< No load speed of the motor in RPM */
    #define
                                                               (6200U)
              MOTORØ BLDC SCALAR MOTOR POLE PAIRS
                                                                            /*!< Pole pairs */
135 #define
                                                               (4U)
136
    #endif
```

Getting Started – Configure the Project [2/8]

Folder: Configuration

File name: bldc_scalar_user_config.h

2. Select the Control Scheme and PWM Modulation Scheme

High side PWM modulation

Getting Started – Configure the Project [3/8]

Configure the Power Board

314

Folder: Configuration

File name: bldc scalar user config.h

```
    Power board configurations

293
294
     /***** Power board parameters
295
    #if (MOTOR0 BLDC SCALAR BOARD == KIT XMC1X AK MOTOR 001)
    /* Power Inverter parameters */
    #define
              MOTORØ BLDC SCALAR NOMINAL DC LINK VOLT
                                                                             /*!< DC link voltage */</pre>
                                                                 (24.0F)
                                                                             /*!< Dead time for rising edge in uSec*/
    #define
               MOTORØ BLDC SCALAR RISING DEAD TIME
                                                                 (0.75F)
                                                                             /*!< Dead time for falling edge in uSec*/
    #define
               MOTORØ BLDC SCALAR FALLING DEAD TIME
                                                                 (0.75F)
    #define
               MOTORØ BLDC SCALAR SWITCH DELAY
                                                                 (0.75F)
                                                                             /*!< Switch delay in uSec*/</pre>
302
    #define
                                                                                                  /*!< Active level of the high side swit</pre>
               MOTORØ BLDC SCALAR HS SWITCH ACTIVE LEVEL
                                                                  (BLDC SCALAR ACTIVE HIGH)
304
    #define
               MOTORØ BLDC SCALAR LS SWITCH ACTIVE LEVEL
                                                                  (BLDC SCALAR ACTIVE HIGH)
                                                                                                  /*!< Active level of the low side swit</pre>
305
    #define
               MOTORØ BLDC SCALAR INVERTER ENABLE CONF
                                                                  (BLDC SCALAR INV ACTIVE HIGH)
                                                                                                  /*!< Active level of inverter enable. (</pre>
306
    /* ADC Measurement parameters */
                                                                                /*!< Reference voltage of VADC conversion */
    #define
               MOTORØ BLDC SCALAR VADC REF VOLTAGE
                                                                 (5.0F)
309 #define
                                                                               /*!< Amplifier offset voltage */
               MOTORØ BLDC SCALAR CURRENT AMPLIFIER OFFSET
                                                                  (2.5F)
310 #define
              MOTORO_BLDC_SCALAR_CURRENT_RSHUNT
                                                                               /*!< Current amplifier shunt resistor value in mOhms */
                                                                  (50.0F)
                                                                                /*!< Current amplifier gain */
311 #define
               MOTORØ BLDC SCALAR CURRENT AMPLIFIER GAIN
                                                                  (16.4F)
               MOTORØ BLDC SCALAR VOLTAGE DIVIDER RATIO
                                                                               /*!< Voltage divider ratio in % for DC link voltage measur</pre>
                                                                 (9.79F)
313 /* end of #if (MOTOR0 BLDC SCALAR BOARD == KIT XMC1X AK MOTOR 001) */
```


Getting Started – Configure the Project [4/8]

Configure the Power Board

Folder: Configuration

File name: bldc scalar user config.h

```
293
       Power board configurations
294
295
                  ****** Power board parameters
    #if (MOTOR0 BLDC SCALAR BOARD == KIT XMC1X AK MOTOR 001)
     /* Power Inverter parameters */
    #define
               MOTORØ BLDC_SCALAR_NOMINAL_DC_LINK_VOLT
                                                                              /*!< DC link voltage */
                                                                  (24.0F)
                                                                              /*!< Dead time for rising edge in uSec*/
               MOTORØ BLDC SCALAR RISING DEAD TIME
    #define
                                                                  (0.75F)
               MOTORØ BLDC SCALAR FALLING DEAD TIME
                                                                              /*!< Dead time for falling edge in uSec*/
    #define
                                                                  (0.75F)
                                                                              /*!< Switch delay in uSec*/
    #define
               MOTORØ BLDC SCALAR SWITCH DELAY
                                                                  (0.75F)
302
    #define
               MOTORØ BLDC SCALAR HS SWITCH ACTIVE LEVEL
                                                                   (BLDC SCALAR ACTIVE HIGH)
                                                                                                    /*!< Active level of the high side swit
    #define
               MOTORØ BLDC SCALAR LS SWITCH ACTIVE LEVEL
                                                                   (BLDC SCALAR ACTIVE HIGH)
                                                                                                    /*!< Active level of the low side switch
    #define
               MOTORØ BLDC SCALAR INVERTER ENABLE CONF
                                                                   (BLDC SCALAR INV ACTIVE HIGH)
                                                                                                    /*!< Active level of inverter enable. (</pre>
306
307 /* ADC Measurement parameters */
   #define
                                                                                  /*!< Reference voltage of VADC conversion */</pre>
               MOTORO_BLDC_SCALAR_VADC_REF_VOLTAGE
                                                                   (5.0F)
309 #define
                                                                                 /*!< Amplifier offset voltage */
               MOTORØ BLDC SCALAR CURRENT AMPLIFIER OFFSET
                                                                   (2.5F)
                                                                                 /*!< Current amplifier shunt resistor value in mOhms */
310 #define
               MOTORO_BLDC_SCALAR_CURRENT_RSHUNT
                                                                   (50.0F)
                                                                                  /*!< Current amplifier gain */
311 #define
               MOTORØ BLDC SCALAR CURRENT AMPLIFIER GAIN
                                                                   (16.4F)
                                                                                /*!< Voltage divider ratio in % for DC link voltage measur
               MOTORØ BLDC SCALAR VOLTAGE DIVIDER RATIO
                                                                   (9.79F)
313 /* end of #if (MOTOR0 BLDC SCALAR BOARD == KIT XMC1X AK MOTOR 001) */
     POWER STAGE AND SHUNTS
                                                                                                        DC Link Voltage [Vdc]
                                                           Amplifier Bias
                                                             Voltage
                                                   鱼
                                                                       Input to ADC
                                                                        [Idc(Direct)]
                                                                                                               Input to ADC [Vo]
                                                                                      Input to ADC
                                                                                        [Idc(avg)]
                                                                                                                       R2
                                                                                                  Voltage Divider Ratio
                                                                                                                      R1+R2
```

Getting Started – Configure the Project [5/8]

Configure the Hall Pattern

Folder: Configuration

File name: bldc scalar user config.h

```
358
     * Hall pattern and phase excitation pattern
359
    #if (MOTOR0_BLDC_SCALAR_FEEDBACK == BLDC_SCALAR_3HALL)
360
361
                                                          (BLDC SCALAR HALL SEQ 1) /*!< Select hall sequence for positive direction. (
362
    #define MOTOR0 BLDC SCALAR HALL POSITIVE DIR SEQ
364 #if (MOTORO BLDC SCALAR HALL POSITIVE DIR SEQ == BLDC SCALAR HALL SEQ 1)
366
    * Standard hall pattern for positive direction. Do NOT change this hall pattern values.
    * Update the phase excitation pattern corresponding to the hall pattern
368
369 #define
             MOTORØ BLDC SCALAR HALL PAT A
                                                               /*!< (MSB)H3 H2 H1 (LSB)*/
370 #define MOTOR0 BLDC SCALAR HALL PAT B
                                                     (3U)
                                                               /*!< (MSB)H3 H2 H1 (LSB)*/
371 #define MOTORØ BLDC SCALAR HALL PAT C
                                                     (2U)
                                                               /*!< (MSB)H3 H2 H1 (LSB)*/
                                                               /*!< (MSB)H3 H2 H1 (LSB)*/
372 #define MOTORØ BLDC SCALAR HALL PAT D
                                                    (6U)
373 #define
             MOTORØ BLDC SCALAR HALL PAT E
                                                     (4U)
                                                               /*!< (MSB)H3 H2 H1 (LSB)*/
374 #define MOTORØ BLDC SCALAR HALL PAT F
                                                               /*!< (MSB)H3 H2 H1 (LSB)*/
375
376
       Standard hall pattern for positive direction. Do NOT change this hall pattern values. ...
389
390- /**********************
391 /* Phase W, V, U excitation pattern */
392 #if (MOTORØ BLDC SCALAR MOTOR == MOTOR EC MAXON 267121)
393 #define MOTORO_BLDC_SCALAR_MC_PAT_A
                                                     (WH_VL_UOFF) /*!< Phase pattern corresponding to MOTORO_BLDC_SCALAR_HALL_PAT_A */
394 #define MOTOR0 BLDC SCALAR MC PAT B
                                                     (WOFF VL UH) /*!< Phase pattern corresponding to MOTORO BLDC SCALAR HALL PAT B */
395 #define MOTOR0 BLDC SCALAR MC PAT C
                                                     (WL VOFF UH) /*!< Phase pattern corresponding to MOTOR0 BLDC SCALAR HALL PAT C */
                                                     (WL VH UOFF) /*!< Phase pattern corresponding to MOTORO BLDC SCALAR HALL PAT D */
396 #define MOTORØ BLDC SCALAR MC PAT D
397 #define MOTORO BLDC SCALAR MC PAT E
                                                     (WOFF VH UL) /*!< Phase pattern corresponding to MOTORO BLDC SCALAR HALL PAT E */
    #define MOTORØ BLDC SCALAR MC PAT F
                                                     (WH VOFF UL) /*!< Phase pattern corresponding to MOTORO BLDC SCALAR HALL PAT F */
```

Configure the ADC Trigger

ADC Trigger for current measurement

Getting Started – Configure the Project [6/8]

7. Configure the Hall sensor feedback

Folder: Configuration
File name: bldc scalar user config.h

CCU4 timer for hall edge detection

Getting Started – Configure the Project [7/8]

8. Configure the MCM Transfer

```
Folder: Configuration
File name: bldc scalar user config.h
```

```
#define MOTORO_BLDC_SCALAR_ENABLE_FAST_SYNCH_CCU4 (1U) /*!< Enable (1)/disable (0)
#if (MOTORO_BLDC_SCALAR_ENABLE_FAST_SYNCH_CCU4 == 1U)
#define MOTORO_BLDC_SCALAR_MCM_SYNCTRANSFER_TIME (2.0F) /*!< Multi-channel pattern
#endif /* end of #if (MOTORO_BLDC_SCALAR_ENABLE_FAST_SYNCH_CCU4 == 1U) */
```


MCM Pattern update with fast sync and without fast sync

Getting Started – Configure the Project [8/8]

9. Enable the Hall pattern learning

Folder: Configuration

File name: bldc_scalar_user_config.h

```
#define MOTORO_BLDC_SCALAR_ENABLE_HALL_LEARNING (1U) /*!< Enable/disable hall pattern learning */
495 #if (MOTORO_BLDC_SCALAR_ENABLE_HALL_LEARNING == 1U)
496 #define MOTORO_BLDC_SCALAR_OPEN_LOOP_VOLTAGE (5.0F) /*!< Open loop voltage to be applied in % v
497 #define MOTORO_BLDC_SCALAR_OPEN_LOOP_SPEED (2.0F) /*!< Speed to be applied in % with respect
498 #endif /* if(MOTORO BLDC_SCALAR_ENABLE HALL LEARNING == 1U) */
```

	uint16_t [7]	0x200007ca < BLDC_SCALAR_HallLearni
(x)= closedloop_mc_pattern[0]	uint16_t	1 Sequence 1 or 2
(x)= closedloop_mc_pattern[1]	uint16_t	0x201 (Hex) WL_VOFF_UH
(x)= closedloop_mc_pattern[2]	uint16_t	0x210 (Hex) WL_VH_UOFF
(x)= closedloop_mc_pattern[3]	uint16_t	0x12 (Hex) WOFF_VH_UL
(x)= closedloop_mc_pattern[4]	uint16_t	0x102 (Hex) WH_VOFF_UL
(x)= closedloop_mc_pattern[5]	uint16_t	0x120 (Hex) WH_VL_UOFF
(x)= closedloop_mc_pattern[6]	uint16_t	0x21 (Hex) WOFF_VL_UH

Capture close loop multi-channel pattern sequence

	Hall		
Hall MACRO	Pattern	MC MACRO	Configurable MC Pattern
BLDC_SCALAR_HALL_PAT_A	1	BLDC_SCALAR_MC_PAT_A	WL_VOFF_UH
BLDC_SCALAR_HALL_PAT_B	5	BLDC_SCALAR_MC_PAT_B	WL_VH_UOFF
BLDC_SCALAR_HALL_PAT_C	4	BLDC_SCALAR_MC_PAT_C	WOFF_VH_UL
BLDC_SCALAR_HALL_PAT_D	6	BLDC_SCALAR_MC_PAT_D	WH_VOFF_UL
BLDC_SCALAR_HALL_PAT_E	2	BLDC_SCALAR_MC_PAT_E	WH_VL_UOFF
BLDC_SCALAR_HALL_PAT_F	3	BLDC_SCALAR_MC_PAT_F	WOFF_VL_UH

hall_pattern_update

Note: For a new motor where the hall pattern is not known, this configuration can be enabled for hall pattern learning.

Getting Started – Add code support for uCProbe [1/3]

Initialize the uCProbe before starting motor

Folder: File name: main.c

```
900 int main(void)
 91 {
 92
       /* Initialization */
      Motor@ BLDC SCALAR Init();
 94
      Motor@ BLDC SCALAR Flash Var Init();
 97@ #if (MOTORO_BLDC_SCALAR_CTRL_UCPROBE_ENABLE == 1)
      Motor@ BLDC SCALAR uCProbe Init();
 99 #endif
101
     // /* Start the motor */
     Motor0_BLDC_SCALAR_MotorStart();
103
104
105
      /* Placeholder for user application code. The while loop below can be re
106
107
      while (1U)
108
109
110
111 }
112
```

Getting Started – Add code support for uCProbe [2/3]

2. Add uCProbe scheduler in motor state machine

```
Folder: Interrupts
File name:
bldc scalar state machine.c
```

- 137@ void SysTick Handler(void) /* Call motor control state machine */ Motor@ BLDC SCALAR MSM(); 1439 /** 145 */ 1469 /** 150@ RAM ATTRIBUTE void Motor@ BLDC SCALAR MSM(void) 152 switch (Motor0_BLDC_SCALAR.msm_state) 153 { 154 case BLDC SCALAR MSM NORMAL OPERATION: Motor@ BLDC SCALAR MSM NORMAL OPERATION Func(); 156 158⊕ #if (MOTOR0_BLDC_SCALAR_ENABLE_BIDIRECTIONAL_CTRL == 0U)... 164⊕ #if (MOTOR0_BLDC_SCALAR_ENABLE_CATCH_FREE == 1U). 170⊕ #if (MOTOR0 BLDC SCALAR ENABLE BOOTSTRAP == 1U) 175 176 case BLDC SCALAR MSM ERROR: 177 Motor@ BLDC SCALAR MSM ERROR Func(); 178 break; 179 case BLDC SCALAR MSM START: 181 Motor@ BLDC SCALAR MSM START Func(); 182
- Motor control state machine is called on each Systick Interrupt
- uCProbe Scheduler is called on each scheduler tick

```
1849 #if (MOTORØ BLDC SCALAR HALL LEARNING == 1U)
         case BLDC SCALAR MSM HALL LEARNING:
           Motor@ BLDC SCALAR MSM HALL LEARNING Func();
187
188
    #endif
189
190
         case BLDC SCALAR MSM STOP:
           Motor@_BLDC_SCALAR_MotorStop();
191
192
           break;
193
194
        default:
195
           break;
196
197
198
      if (Motor0_BLDC_SCALAR.error_status != 0U)
200
201
        Motor@ BLDC SCALAR.msm state = BLDC SCALAR MSM ERROR;
202
       #if (MOTOR0 BLDC SCALAR CTRL UCPROBE ENABLE == 1)
205
       Motor@ BLDC SCALAR uCProbe Scheduler();
       #endif
206
208
```

Getting Started – Add code support for uCProbe [3/3]

Folder: uCProbe

3. Add uCProbe scheduler in motor state File name: ucProbe.c

```
77@ #if ((MOTORO_BLDC_SCALAR_CTRL_UCPROBE_ENABLE==1))
 78 /*UCproBE scheduler function to handle ucprobe comments from UI */
79⊖ void Motor0 BLDC SCALAR uCProbe Scheduler(void)
81
      switch(Motor0 BLDC SCALAR ucprobe.control word)
82
83
        case 1: /* Start the motor */
          Motor@ BLDC_SCALAR_ucprobe.control_word=0;
 84
85
          Motor@ BLDC SCALAR MotorStart();
86
          break:
87
88
        case 2: /*Stop the motor*/
 89
          Motor@ BLDC SCALAR ucprobe.control word=0;
90
          Motor@ BLDC SCALAR MotorStop();
91
          break:
92
93
        case 3: /*Clear Error state*/
          Motor@ BLDC SCALAR ucprobe.control word=0;
94
          Motor@ BLDC SCALAR ClearErrorState();
95
96
          break:
97
98
         case 4: /*Clear flash and load defualt value into flash*/
99
          Motor@ BLDC SCALAR ucprobe.control word=0;
100
          Motor@ BLDC SCALAR ucprobe.user config[@] =0;
101
          Motor@ BLDC SCALAR Write Default value();
102
          Motor@ BLDC SCALAR uCProbe Write Flash();
103
          break:
```

machine

uCProbe scheduler routine support control code to control the motor

Getting Started – Compile and Verify the project

- Click "Build Active Project"
- >
- 2. Click "Debug Configuration" to download the code

Click "Resume" to start the application

Observation:

Motor should ramp to 2000RPM with ramp rate of 500RPM/s.

Getting Started – Interface with µC/Probe [1/6]

- Update of the motor and monitoring motor parameters can be executed using µC/Probe™ XMC™
- 1. In "BLDC_SCALAR_HALL_XMC13" example project , open μC/Probe™ XMC™ project file.

Note: As the BMI mode is set to SPD0 mode, the program needs to be started in Debug mode before connecting to the uCProbe project.

Getting Started Interface with µC/Probe [2/6]

Getting Started – Interface with µC/Probe [3/6]

2. Click the 'Run' button

Getting Started – Interface with µC/Probe [4/6]

- Go to Tab: HALL Pattern Learning. This is used to find the relation between HALL and commutation pattern
- 4. Set the Open Loop Voltage to 10%
- Select button "Learn Hall Pattern" to start the Hall Learning
- 6. Once the Hall learning is completed, the pattern is displayed.
- If required, select "Save to Flash" to save the commutation table into the Flash.

Getting Started – Interface with µC/Probe [5/6]

- In the tab "BLDC: Speed Control", select the various widgets to control the motor.
 - Start/ Stop control
 - PI tuning and monitoring

Possible to save PI values, commutation table into Flash

Getting Started – Interface with µC/Probe [6/6]

Click on the "Oscilloscope" tab for monitoring motor control parameters

General Information (1/2)

Where to buy kits:

Development Boards	S	Order Number
XMC1300 Boot Kit	200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	KIT XMC13 BOOT 001
PMSM Low Voltage 15W Card		KIT XMC1x AK Motor 001

General Information (2/2)

For latest updates, please refer to:

http://www.infineon.com/xmc1000

DAVE[™] development platform:

http://www.infineon.com/DAVE

For support:

http://www.infineonforums.com/forums/8-XMC-Forum

References: Help Content

Example SW user guide as chm format is part of this example SW

Glossary Abbreviations

ADC Analog Digital Converter

DAVE™ Digital Application Virtual Engineer (Free development IDE for XMC™)

PWM Pulse Width Modulation

> SW Software

Disclaimer

The information given in this training materials is given as a hint for the implementation of the Infineon Technologies component only and shall not be regarded as any description or warranty of a certain functionality, condition or quality of the Infineon Technologies component.

Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of non-infringement of intellectual property rights of any third party) with respect to any and all information given in this training material.

Part of your life. Part of tomorrow.

