# Lecture 9: Optimization over a Convex Set

#### Shi Pu

School of Data Science (SDS)
The Chinese University of Hong Kong, Shenzhen



### Outline

- Stationarity
- The Orthogonal Projection Revisited
- 3 The Gradient Projection Method
- 4 Sparsity Constrained Problems

### Outline

- Stationarity
- The Orthogonal Projection Revisited
- 3 The Gradient Projection Method
- 4 Sparsity Constrained Problems

## Optimization over a Convex Set

Throughout this lecture we will consider the constrained optimization problem (P) given by

$$(P) \qquad \begin{array}{c} \min & f(\mathbf{x}) \\ \text{s.t.} & \mathbf{x} \in C \end{array}$$

- C closed convex subset of  $\mathbb{R}^n$ .
- f continuously differentiable over C. Not necessarily convex.

## Definition (Stationarity)

Let f be a continuously differentiable function over a closed and convex set C. Then  $\mathbf{x}^*$  is called a stationary point of (P) if

$$\nabla f(\mathbf{x}^*)^{\top}(\mathbf{x} - \mathbf{x}^*) \geq 0$$
 for all  $\mathbf{x} \in C$ 

 $<sup>^1</sup>$ We use the convention that a function is differentiable over a given set D if it is differentiable over an open set containing D

## Stationarity as a Necessary Optimality Condition

#### Theorem

Let f be a continuously differentiable function over a nonempty closed convex set C, and let  $\mathbf{x}^*$  be a local minimum of (P). Then  $\mathbf{x}^*$  is a stationary point of (P).

## Stationarity as a Necessary Optimality Condition

### Theorem

Let f be a continuously differentiable function over a nonempty closed convex set C, and let  $\mathbf{x}^*$  be a local minimum of (P). Then  $\mathbf{x}^*$  is a stationary point of (P).

### Proof.

- Let  $\mathbf{x}^*$  be a local minimum of (P), and assume in contradiction that  $\mathbf{x}^*$  is not a stationary point of (P)  $\Rightarrow$  there exists  $\mathbf{x} \in C$  such that  $\nabla f(\mathbf{x}^*)^{\top}(\mathbf{x} \mathbf{x}^*) < 0$
- Thus,  $f'(\mathbf{x}^*; \mathbf{d}) < 0$  where  $\mathbf{d} = \mathbf{x} \mathbf{x}^*$ .
- Therefore  $\exists \epsilon \in (0,1)$  s.t.  $f(\mathbf{x}^* + t\mathbf{d}) < f(\mathbf{x}^*)$ ,  $\forall t \in (0,\epsilon)$ .
- Since  $\mathbf{x}^* + t\mathbf{d} = (1 t)\mathbf{x}^* + t\mathbf{x} \in C, \forall t \in (0, \epsilon)$ , we conclude that  $\mathbf{x}^*$  is *not* a local optimum point of (P). Contradiction.



### Examples

$$C = \mathbb{R}^n$$

■ x\* is a stationary point of (P) iff

$$(\star) \quad \nabla f(\mathbf{x}^*)^{\top}(\mathbf{x} - \mathbf{x}^*) \ge 0 \quad \forall \mathbf{x} \in \mathbb{R}^n$$

- We will show that the above condition is equivalent to  $\nabla f(\mathbf{x}^*) = \mathbf{0}$ . Indeed, if  $\nabla f(\mathbf{x}^*) = \mathbf{0}$ . then obviously  $(\star)$  is satisfied.
- Suppose that (\*) holds.
- Plugging  $\mathbf{x} = \mathbf{x}^* \nabla f(\mathbf{x}^*)$  in the above implies  $-\|\nabla f(\mathbf{x}^*)\|^2 \ge 0$ .
- Thus,  $\nabla f(\mathbf{x}^*) = \mathbf{0}$

### Examples

$$C = \mathbb{R}^n_+$$

- $\mathbf{x}^* \in \mathbb{R}^n_+$  is a stationary point iff  $\nabla f(\mathbf{x}^*)^\top (\mathbf{x} \mathbf{x}^*) \geq 0$  for all  $\mathbf{x} \geq \mathbf{0}$ .
- $\Rightarrow \nabla f(\mathbf{x}^*)^{\top} \mathbf{x} \nabla f(\mathbf{x}^*)^{\top} \mathbf{x}^* \geq 0 \text{ for all } \mathbf{x} \geq \mathbf{0}.$
- $\blacksquare \Leftrightarrow \nabla f(\mathbf{x}^*) \geq \mathbf{0} \text{ and } \nabla f(\mathbf{x}^*)^{\top} \mathbf{x}^* \leq 0$
- $\blacksquare \Leftrightarrow \nabla f(\mathbf{x}^*) \geq \mathbf{0} \text{ and } x_i^* \frac{\partial f}{\partial x_i}(\mathbf{x}^*) = 0, \quad i = 1, 2, \dots, n.$

$$\frac{\partial f}{\partial x_i}(\mathbf{x}^*) \begin{cases} = 0 & x_i^* > 0 \\ \ge 0 & x_i^* = 0 \end{cases}$$

## **Explicit Stationarity Condition**

| feasible set                                                                                        | explicit stationarity condition                                                                                                         |
|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| $\mathbb{R}^n$                                                                                      | $ abla f(\mathbf{x}^*) = 0$                                                                                                             |
| $\mathbb{R}^n_+$                                                                                    | $rac{\partial f}{\partial x_i}(\mathbf{x}^*) \left\{ egin{array}{ll} = 0 & x_i^* > 0 \ \geq 0 & x_i^* = 0 \end{array}  ight.$          |
| $ \left  \; \left\{ \mathbf{x} \in \mathbb{R}^n : \mathbf{e}^\top \mathbf{x} = 1 \right\} \right  $ | $rac{\partial f}{\partial x_1}(\mathbf{x}^*) = \cdots = rac{\partial f}{\partial x_n}(\mathbf{x}^*)$                                  |
| B[ <b>0</b> , 1]                                                                                    | $ abla f(\mathbf{x}^*) = 0 	ext{ or } \ \mathbf{x}^*\  = 1$ and $\exists \lambda \leq 0 :  abla f(\mathbf{x}^*) = \lambda \mathbf{x}^*$ |

### Stationarity in Convex Optimization

For convex problems, stationarity is a necessary and sufficient condition

### Theorem

Let f be a continuously differentiable convex function over a nonempty closed and convex set  $C \subseteq \mathbb{R}^n$ . Then  $\mathbf{x}^*$  is a stationary point of

$$(P) \qquad \begin{array}{c} \min \quad f(\mathbf{x}) \\ s.t. \quad \mathbf{x} \in C \end{array}$$

iff  $\mathbf{x}^*$  is an optimal solution of (P).

### Stationarity in Convex Optimization

### Proof.

- If  $\mathbf{x}^*$  is an optimal solution of (P), then we already showed that it is a stationary point of (P).
- Assume that  $\mathbf{x}^*$  is a stationary point of (P).
- Let  $\mathbf{x} \in C$ . Then

$$f(\mathbf{x}) \geq f(\mathbf{x}^*) + \nabla f(\mathbf{x}^*)^{\top} (\mathbf{x} - \mathbf{x}^*) \geq f(\mathbf{x}^*).$$

Establishing the optimality of x\*.



### Outline

- 1 Stationarity
- The Orthogonal Projection Revisited
- 3 The Gradient Projection Method
- 4 Sparsity Constrained Problems

## The Orthogonal Projection Operator

### **Definition**

Given a nonempty closed convex set C, the orthogonal projection operator  $P_C: \mathbb{R}^n \to C$  is defined by

$$P_C(\mathbf{x}) = \operatorname{argmin}\{\|\mathbf{y} - \mathbf{x}\|^2 : \mathbf{y} \in C\}.$$

## The Second Projection Theorem

### Theorem

Let C be a nonempty closed convex set and let  $\mathbf{x} \in \mathbb{R}^n$ . Then  $\mathbf{z} = P_C(\mathbf{x})$  if and only if

$$(\mathbf{x} - \mathbf{z})^{\top} (\mathbf{y} - \mathbf{z}) \le 0 \text{ for any } \mathbf{y} \in C.$$
 (1)

## The Second Projection Theorem

#### Theorem

Let C be a nonempty closed convex set and let  $\mathbf{x} \in \mathbb{R}^n$ . Then  $\mathbf{z} = P_C(\mathbf{x})$  if and only if

$$(\mathbf{x} - \mathbf{z})^{\top} (\mathbf{y} - \mathbf{z}) \le 0 \text{ for any } \mathbf{y} \in C.$$
 (1)

### Proof.

 $\mathbf{z} = P_C(\mathbf{x})$  iff it is the optimal solution of the problem

min 
$$g(\mathbf{y}) \equiv \|\mathbf{y} - \mathbf{x}\|^2$$
  
s.t.  $\mathbf{y} \in C$ 

■ By the previous theorem,  $\mathbf{z} = P_{\mathcal{C}}(\mathbf{x})$  if and only if

$$\nabla g(\mathbf{z})^{\top}(\mathbf{y} - \mathbf{z}) \geq 0$$
 for any  $\mathbf{y} \in C$ 

which is the same as (1).



## Properties of the Orthogonal Projection: (Firm) Nonexpansivness

### Theorem

Let C be a nonempty closed and convex set.

1 For any  $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ :

$$(P_C(\mathbf{v}) - P_C(\mathbf{w}))^{\top}(\mathbf{v} - \mathbf{w}) \ge \|P_C(\mathbf{v}) - P_C(\mathbf{w})\|^2.$$
 (2)

**2** (non-expansiveness) For any  $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ :

$$||P_C(\mathbf{v}) - P_C(\mathbf{w})|| \le ||\mathbf{v} - \mathbf{w}||. \tag{3}$$

## Properties of the Orthogonal Projection: (Firm) Nonexpansivness

### Proof.

For any  $\mathbf{x} \in \mathbb{R}^n$  and  $\mathbf{y} \in C$ :  $(\mathbf{x} - P_C(\mathbf{x}))^{\top}(\mathbf{y} - P_C(\mathbf{x})) \leq 0$   $\forall \mathbf{x} \in \mathbb{R}^n, \mathbf{y} \in C$ . Substituting  $\mathbf{x} = \mathbf{v}, \mathbf{y} = P_C(\mathbf{w})$ , we have

$$(\mathbf{v} - P_C(\mathbf{v}))^{\top} (P_C(\mathbf{w}) - P_C(\mathbf{v})) \le 0.$$
 (4)

Now, by substituting  $\mathbf{x} = \mathbf{w}, \mathbf{y} = P_{\mathcal{C}}(\mathbf{v})$ , we obtain

$$(\mathbf{w} - P_C(\mathbf{w}))^{\top} (P_C(\mathbf{v}) - P_C(\mathbf{w})) \le 0.$$
 (5)

Adding the two inequalities (4) and (5),

$$(P_C(\mathbf{w}) - P_C(\mathbf{v}))^\top (\mathbf{v} - \mathbf{w} + P_C(\mathbf{w}) - P_C(\mathbf{v})) \le 0,$$

and hence,  $(P_C(\mathbf{v}) - P_C(\mathbf{w}))^{\top}(\mathbf{v} - \mathbf{w}) \geq ||P_C(\mathbf{v}) - P_C(\mathbf{w})||^2$ .

## Properties of the Orthogonal Projection: (Firm) Nonexpansivness

### Proof Contd.

■ To prove (3), note that if  $P_C(\mathbf{v}) = P_C(\mathbf{w})$ , the inequality is trivial. Assume then that  $P_C(\mathbf{v}) \neq P_C(\mathbf{w})$ . By the Cauchy-Schwarz inequality we have

$$(P_C(\mathbf{v}) - P_C(\mathbf{w}))^{\top}(\mathbf{v} - \mathbf{w}) \leq \|P_C(\mathbf{v}) - P_C(\mathbf{w})\| \cdot \|\mathbf{v} - \mathbf{w}\|,$$

which combined with (2) yields the inequality

$$||P_C(\mathbf{v}) - P_C(\mathbf{w})|| \cdot ||\mathbf{v} - \mathbf{w}|| \ge ||P_C(\mathbf{v}) - P_C(\mathbf{w})||^2$$

Dividing by  $||P_C(\mathbf{v}) - P_C(\mathbf{w})||$ , implies (3).



Representation of Stationarity via the Orthogonal Projection Operator

#### Theorem

Let f be a continuously differentiable function over the nonempty closed convex set C, and let s > 0. Then  $\mathbf{x}^*$  is a stationary point of

$$(P) \qquad \begin{array}{c} \min \quad f(\mathbf{x}) \\ s.t. \quad \mathbf{x} \in C \end{array}$$

if and only if

$$\mathbf{x}^* = P_C(\mathbf{x}^* - s\nabla f(\mathbf{x}^*)).$$

## Representation of Stationarity via the Orthogonal Projection Operator

### Proof.

■ By the second projection theorem,  $\mathbf{x}^* = P_C(\mathbf{x}^* - s \nabla f(\mathbf{x}^*))$  iff

$$(\mathbf{x}^* - s \nabla f(\mathbf{x}^*) - \mathbf{x}^*)^{\top} (\mathbf{x} - \mathbf{x}^*) \leq 0$$
 for any  $\mathbf{x} \in C$ .

Equivalent to

$$\nabla f(\mathbf{x}^*)^{\top}(\mathbf{x} - \mathbf{x}^*) \geq 0$$
 for any  $\mathbf{x} \in C$ ,

namely to stationarity.



### Outline

- 1 Stationarity
- The Orthogonal Projection Revisited
- 3 The Gradient Projection Method
- 4 Sparsity Constrained Problems

## The Gradient Mapping

It is convenient to define the gradient mapping as

$$G_L(\mathbf{x}) = L\left[\mathbf{x} - P_C(\mathbf{x} - \frac{1}{L}\nabla f(\mathbf{x}))\right]$$

where L > 0.

- In the unconstrained case  $G_L(\mathbf{x}) = \nabla f(\mathbf{x})$ .
- $G_L(\mathbf{x}) = \mathbf{0}$  if and only if  $\mathbf{x}$  is a stationary point of (P). This means that we can consider  $||G_L(\mathbf{x})||^2$  to be optimality measure.

## The Gradient Projection Method

### Algorithm 1 The Gradient Projection Method

- 1: **Input:**  $\epsilon > 0$  tolerance parameter.
- 2: **Initialization:** pick  $\mathbf{x}_0 \in C$  arbitrarily.
- 3: General step:
- 4: **for**  $k = 0, 1, 2, \cdots$  execute the following steps: **do**
- 5: pick a stepsize  $t_k$  by a line search procedure.
  - $\operatorname{set} \mathbf{x}_{k+1} = P_{C}(\mathbf{x}_{k} t_{k} \nabla f(\mathbf{x}_{k})).$
- 7: if  $\|\mathbf{x}_k \mathbf{x}_{k+1}\| \le \epsilon$ , then STOP and  $\mathbf{x}_{k+1}$  is the output.
- 8: end for
  - There are several strategies for choosing the stepsizes  $t_k$ .
  - When  $f \in C_L^{1,1}$ , we can choose  $t_k$  to be constant and equal to  $\frac{1}{L}$ .

## The Gradient Projection Method with Constant Stepsize

### Algorithm 2 The Gradient Projection Method with Constant Stepsize

- 1: **Input:**  $\epsilon > 0$  tolerance parameter. L > 0 an upper bound on the Lipschitz constant of  $\nabla f$ .
- 2: **Initialization:** pick  $\mathbf{x}_0 \in C$  arbitrarily.  $\overline{t} > 0$  constant stepsize.
- 3: General step:
- 4: **for**  $k = 0, 1, 2, \cdots$  execute the following steps: **do**
- 5: set  $\mathbf{x}_{k+1} = P_C(\mathbf{x}_k \bar{t}\nabla f(\mathbf{x}_k))$
- 6: if  $\|\mathbf{x}_k \mathbf{x}_{k+1}\| \le \epsilon$ , then STOP and  $\mathbf{x}_{k+1}$  is the output.
- 7: end for

## GPM with Backtracking

## Algorithm 3 Gradient Projection Method with Backtracking

- 1: Initialization: Take  $\mathbf{x}_0 \in C$  and s > 0,  $\alpha \in (0,1)$ ,  $\beta \in (0,1)$ .
- 2: General step:
- 3: **for**  $k \ge 1$  **do**
- 4: Pick  $t_k = s$ . Then, while

$$f(\mathbf{x}_k) - f(P_C(\mathbf{x}_k - t_k \nabla f(\mathbf{x}_k))) < \alpha t_k \|G_{\frac{1}{t_k}}(\mathbf{x}_k)\|^2$$

set 
$$t_k := \beta t_k$$
.

- 5: Set  $\mathbf{x}_{k+1} = P_C(\mathbf{x}_k t_k \nabla f(\mathbf{x}_k))$
- 6: end for
- 7: Stopping Criteria:  $\|\mathbf{x}_k \mathbf{x}_{k+1}\| \le \epsilon$

### Sufficient Decrease

## Lemma (sufficient decrease lemma for constrained problems)

Suppose that  $f \in C_L^{1,1}(C)$  for some L > 0, where C is a closed convex set. Then for any  $\mathbf{x} \in C$  and  $t \in (0, \frac{2}{L})$  the following inequality holds:

$$f(\mathbf{x}) - f(P_C(\mathbf{x} - t\nabla f(\mathbf{x}))) \ge t\left(1 - \frac{Lt}{2}\right) \left\|\frac{1}{t}(\mathbf{x} - P_C(\mathbf{x} - t\nabla f(\mathbf{x})))\right\|^2.$$

Proof. In class

## Convergence of the Gradient Projection Method

### Theorem

Let  $\{\mathbf{x}_k\}$  be the sequence generated by the gradient projection method for solving problem (P) with either a constant stepsize  $\bar{t} \in (0, \frac{2}{L})$ , where L is a Lipschitz constant of  $\nabla f$  or a backtracking stepsize strategy. Assume that f is bounded below. Then

- **1** The sequence  $\{f(\mathbf{x}_k)\}$  is nonincreasing.
- 2  $G_d(\mathbf{x}_k) \to 0$  as  $k \to \infty$ , where

$$d = egin{cases} 1/ar{t} & \textit{constant stepsize}, \ 1/s & \textit{backtracking}. \end{cases}$$

See the proof of Theorem 9.14 in the textbook.

- It is easy to see that this result implies that any limit point of the sequence is a stationary point of the problem.
- Rate of convergence of gradient mapping norms can be derived (similar to GD for unconstrained problem).

## Theorem (rate of convergence of the sequence of function values)

Consider the problem

$$(P) \qquad \begin{array}{c} \min \quad f(\mathbf{x}) \\ s.t. \quad \mathbf{x} \in C, \end{array}$$

where C is a nonempty closed and convex set, and  $f \in C_L^{1,1}(C)$  is convex over C. Let  $\{\mathbf{x}_k\}_{k\geq 0}$  be generated by GPM for solving (P) with a constant stepsize  $t_k = \bar{t} \in (0, \frac{1}{L}]$ . Assume the set of optimal solutions  $X^*$  is nonempty, and let  $f^*$  be the optimal value of (P). Then,

1 for any  $k \ge 0$  and  $\mathbf{x}^* \in X^*$ ,

$$2\bar{t}(f(\mathbf{x}_{k+1}) - f(\mathbf{x}^*)) \le \|\mathbf{x}_k - \mathbf{x}^*\|^2 - \|\mathbf{x}_{k+1} - \mathbf{x}^*\|^2,$$

2 for any  $n \ge 1$ :

$$f(\mathbf{x}_n) - f^* \leq \frac{\|\mathbf{x}_0 - \mathbf{x}^*\|^2}{2\overline{t}n}.$$

Proof. In class

### The Convex Case

Theorem (convergence of the sequence generated by the gradient projection method)

Under the same setting of the previous theorem, the sequence  $\{\mathbf{x}_k\}_{k\geq 0}$  generated by the gradient projection method with a constant stepsize  $t_k = \overline{t} \in (0, \frac{1}{L}]$  converges to an optimal solution.

Proof. In class

### Outline

- 1 Stationarity
- The Orthogonal Projection Revisited
- 3 The Gradient Projection Method
- 4 Sparsity Constrained Problems

## Sparsity Constrained Problems

The sparsity constrained problem is given by

(S) 
$$\min_{\mathbf{s.t.}} f(\mathbf{x})$$
s.t.  $\|\mathbf{x}\|_0 \le s$ ,

- $f: \mathbb{R}^n \to \mathbb{R}$  is a lower-bounded continuously differentiable function.
- $\bullet$  s > 0 is an integer smaller than n
- $\|\mathbf{x}\|_0$  is the  $l_0$  norm of  $\mathbf{x}$ , which counts the number of nonzero components in  $\mathbf{x}$ .
- $\blacksquare$  We do not assume that f is a convex function. The constraint set is of course not convex.

#### Notation.

- $\mathbf{I}_1(\mathbf{x}) \equiv \{i : x_i \neq 0\}$  the support set.
- $\mathbf{I}_0(\mathbf{x}) \equiv \{i : x_i = 0\}$  the off-support set.
- $C_s = \{\mathbf{x} : \|\mathbf{x}\|_0 \leq s\}.$
- For a vector  $\mathbf{x} \in \mathbb{R}^n$  and  $i \in \{1, 2, \dots, n\}$ , the *i*-th largest absolute value component in  $\mathbf{x}$  is denoted by  $M_i(\mathbf{x})$ .

## A Fundamental Necessary Optimality Condition - Basic Feasibility

### Definition

A vector  $\mathbf{x}^* \in C_s$  is called a basic feasible (BF) vector of (P) if:

- **1** when  $\|\mathbf{x}^*\|_0 < s$ ,  $\nabla f(\mathbf{x}^*) = 0$ ;
- when  $\|\mathbf{x}^*\|_0 = s$ ,  $\frac{\partial f}{\partial x_i}(\mathbf{x}^*) = 0$  for all  $i \in \mathbf{I}_1(\mathbf{x}^*)$

## A Fundamental Necessary Optimality Condition - Basic Feasibility

## Theorem (BF is a necessary optimality condition)

Let  $\mathbf{x}^*$  be an optimal solution of (P). Then  $\mathbf{x}^*$  is a BF vector.

### Proof.

■ If  $\|\mathbf{x}^*\|_0 < s$ , then for any  $i \in \{1, 2, \dots, n\}$ 

$$0 \in \operatorname{argmin}\{g(t) \equiv f(\mathbf{x}^* + t\mathbf{e}_i)\}\$$

Otherwise there would exist a  $t_0$  for which  $f(\mathbf{x}^* + t\mathbf{e}_i) < f(\mathbf{x}^*)$ , which is a contradiction to the optimality of  $\mathbf{x}^*$ .

- Therefore, we have  $\frac{\partial f}{\partial x_i}(\mathbf{x}^*) = g'(0) = 0$
- lacksquare If  $\|\mathbf{x}^*\|_0 = s$  then the same argument holds for any  $i \in \mathbf{I}_1(\mathbf{x}^*)$

### *L*-stationarity

### Definition

A vector  $\mathbf{x}^* \in C_s$  is called an L-stationary point of (S) if it satisfies the relation

$$[NC_L] \qquad \mathbf{x}^* \in P_{C_s}(\mathbf{x}^* - \frac{1}{L}\nabla f(\mathbf{x}^*))$$

- Note that since  $C_s$  is not a convex set, the orthogonal projection operator  $P_{C_s}(\cdot)$  is not single-valued.
- Specifically, the members of  $P_{C_s}(\mathbf{x})$  are vector consisting of the s components of  $\mathbf{x}$  with the largest absolute value and zeros elsewhere.
- In general, there could be more than one choice to the s largest components. For example:

$$P_{C_2}((2,1,1)^\top) = \{(2,1,0)^\top, (2,0,1)^\top\}$$



## Explicit Reformulation of *L*-stationarity

### Lemma

For any L>0,  $\mathbf{x}^*$  satisfies [NC<sub>L</sub>] if and only if  $\|\mathbf{x}^*\|_0 \leq s$  and

$$\left| \frac{\partial f}{\partial x_i}(\mathbf{x}^*) \right| \begin{cases} \leq LM_s(\mathbf{x}^*) & \text{if } i \in \mathbf{I}_0(\mathbf{x}^*) \\ = 0 & \text{if } i \in \mathbf{I}_1(\mathbf{x}^*) \end{cases}$$
 (6)

## Explicit Reformulation of L-stationarity

## $[NC_L] \Rightarrow (6).$

- Suppose that  $\mathbf{x}^*$  satisfies  $[NC_L]$ . Note that for any index  $j \in \{1, 2, \dots, n\}$ , the j-th component of  $P_{C_s}(\mathbf{x}^* \frac{1}{L}\nabla f(\mathbf{x}^*))$  is either zero or equal to  $\mathbf{x}_i^* \frac{1}{L}\nabla_j f(\mathbf{x}^*)$ .
- Since  $\mathbf{x}^* \in P_{C_s}(\mathbf{x}^* \frac{1}{L}\nabla f(\mathbf{x}^*))$ , it follows that if  $i \in \mathbf{I}_1(\mathbf{x}^*)$ , then  $x_i^* = x_i^* \frac{1}{L}\frac{\partial f}{\partial x_i}(\mathbf{x}^*)$ , so that  $\frac{\partial f}{\partial x_i}(\mathbf{x}^*) = 0$ .
- If  $i \in I_0(\mathbf{x}^*)$ , then  $\left| x_i^* \frac{1}{L} \frac{\partial f}{\partial x_i}(\mathbf{x}^*) \right| \leq M_s(\mathbf{x}^*)$ , which combined with the fact that  $x_i^* = 0$  implies that  $\left| \frac{\partial f}{\partial x_i}(\mathbf{x}^*) \right| \leq L M_s(\mathbf{x}^*)$ , and consequently (6) holds true.

## Explicit Reformulation of *L*-stationarity

# $(6) \Rightarrow [NC_L].$

- Suppose that  $\mathbf{x}^*$  satisfies (6). If  $\|\mathbf{x}^*\|_0 < s$ , then  $M_s(\mathbf{x}^*) = 0$  and by (6) it follows that  $\nabla f(\mathbf{x}^*) = 0$ . Therefore,  $P_{C_s}(\mathbf{x}^* \frac{1}{L}\nabla f(\mathbf{x}^*)) = P_{C_s}(\mathbf{x}^*) = \{\mathbf{x}^*\}$
- lacksquare If  $\|\mathbf{x}^*\|_0 = s$ , then  $M_s(\mathbf{x}^*) 
  eq 0$  and  $|\mathbf{I}_1(\mathbf{x}^*)| = s$ . By (6),

$$\left| x_i^* - \frac{1}{L} \frac{\partial f}{\partial x_i}(\mathbf{x}^*) \right| \begin{cases} = |x_i^*| & \text{if } i \in \mathbf{I}_1(\mathbf{x}^*) \\ \leq M_s(\mathbf{x}^*) & \text{if } i \in \mathbf{I}_0(\mathbf{x}^*) \end{cases}$$

■ Therefore, the vector  $\mathbf{x}^* - \frac{1}{L}\nabla f(\mathbf{x}^*)$  contains the s components of  $\mathbf{x}^*$  with the largest absolute value and all other components are smaller or equal to them, so that  $[NC_L]$  holds.

Remark: Note that the condition  $[NC_L]$  depends on L in contrast to the stationarity condition over convex sets.

## L-Stationarity as a Necessary Optimality Condition

When  $f \in C^{1,1}_{L_f}$ , it is possible to show that an optimal solution of (S) is an L-stationary point for any L > L(f).

### Theorem

Suppose that  $f \in C_{L_f}^{1,1} \in \mathbb{R}^n$ , and that  $L > L_f$ . Let  $\mathbf{x}^*$  be an optimal solution of (S). Then  $\mathbf{x}^*$  is an L-stationary point.

See the proof of Theorem 9.22 in the textbook.

## The Iterative Hard-Thresholding (IHT) Method

### Algorithm 4 The IHT method

- 1: **Input:** a constant  $L \ge L_f$ .
- 2: Initialization: Choose  $\mathbf{x}_0 \in C_s$
- 3: **General step:**  $\mathbf{x}^{k+1} \in P_{C_s}(\mathbf{x}^k \frac{1}{I}\nabla f(\mathbf{x}^k)), \quad (k = 0, 1, 2, \dots)$

## Theorem (convergence of IHT)

Suppose that  $f \in C_{L_f}^{1,1}$  and let  $\{\mathbf{x}^k\}_{k\geq 0}$  be the sequence generated by the IHT method with stepsize  $\frac{1}{L}$  where  $L > L_f$ . Then any accumulation point of  $\{\mathbf{x}^k\}_{k\geq 0}$  is an L-stationary point.

See the proof of Theorem 9.24 in the textbook.

