Definition: Convergence in Distribution

Let $\{X_n\}$ be a sequence of random variables and let X be a random variable. Let F_{X_n} and F_X be, respectively, the cdfs of X_n and X. Let $C(F_X)$ denote the set of all points where F_X is continuous. We say that X_n converges in distribution to X if

$$\lim_{n\to\infty} F_{X_n}(x) = F_X(x), \forall x \in C(F_X)$$

We denote this convergence by

$$X_n \stackrel{D}{\to} X$$
.

Definition: Convergence in Probability

Let $X_1, X_2, ...$ be an infinite sequence of random variables, and let X be another random variable. Then the sequence $\{X_n\}$ converges in probability to X, if for all $\varepsilon > 0$,

$$\lim_{n\to\infty} P(|X_n - X| \ge \varepsilon) = 0, \lim_{n\to\infty} P(|X_n - X| < \varepsilon) = 1$$

and write $X_n \stackrel{P}{\to} X$.

Theorem 1 $X_n \stackrel{P}{\rightarrow} X \Rightarrow X_n \stackrel{D}{\rightarrow} X$

Theorem 2 $X_n \stackrel{D}{\to} b, b - \text{constant} \Rightarrow X_n \stackrel{P}{\to} b$

Example 1 Consider a sequence of discrete random variables X_n where

$$P(X_n = 0) = \frac{1}{4}$$
 and $P(X_n = \frac{1}{n}) = \frac{3}{4}$, $n = 1,2,3,...$

For each n the cdf is $F_n(x) = \begin{cases} 0, & x < 0 \\ \frac{1}{4}, & 0 \le x < \frac{1}{n} \\ 1, & x \ge \frac{1}{n} \end{cases}$

STAT 410

Convergence and Large Sample Approximations – Part 1

Fall 2015 A. Stepanov D. Simpson S. Culpepper

We see that

$$x < 0$$
 implies $F_n(x) \to 0$ as $n \to \infty$
 $x > 0$ implies $F_n(x) \to 1$ as $n \to \infty$

Therefore $F_n(x) \to F(x) = \begin{cases} 0, & x < 0 \\ 1, & x \ge 0 \end{cases}$ for every $x \ne 0$, i.e. for every point of continuity for F. This is the cdf of the constant 0, i.e. P(X = 0) = 1. Thus $X_n \xrightarrow{D} 0$.

By Theorem 2 we would conclude that $X_n \stackrel{P}{\to} 0$ as well. For a direct proof note that for any fixed $\epsilon > 0$ we have

$$P(|X_n| \ge \epsilon) = \begin{cases} \frac{3}{4}, & \text{if } \frac{1}{n} \ge \epsilon \\ 0, & \text{if } \frac{1}{n} < \epsilon \end{cases}$$

So the probability = 0 eventually, for all $n > \frac{1}{\epsilon}$. Since $\epsilon > 0$ was arbitrary, we conclude by definition that $X_n \stackrel{P}{\to} 0$.

Fall 2015 A. Stepanov D. Simpson S. Culpepper

Example 2. Let $Z_n = Z + \frac{1}{n}Y$ where Y and Z are independent N(0,1) random variables. It follows that $Z_n \sim N(0, 1 + \frac{1}{n^2})$. To establish its limiting distribution consider the limiting moment generating function:

$$M_{Z_n}(t) = e^{\frac{1}{2}(1 + \frac{1}{n^2})t^2} \to e^{\frac{1}{2}t^2} = M_Z(t) \text{ as } n \to \infty$$

By a result stated below (Theorem 7) this implies that $Z_n \stackrel{D}{\to} Z$.

We could have also proven this directly via the cdf. Note that

$$F_{Z_n}(t) = \Phi\left(\frac{t}{\sqrt{1 + \frac{1}{n^2}}}\right) \to \Phi(t) = F_Z(t)$$

for all t. Hence, by definition $Z_n \xrightarrow{D} Z$.

In fact we can show a stronger convergence. For any $\epsilon > 0$ we have

$$P(|Z_n - Z| \ge \epsilon) = P\left(\left|\frac{Y}{n}\right| \ge \epsilon\right) = P(|Y| \ge n\epsilon)$$
$$= 2(1 - \Phi(n\epsilon)) \to 0 \text{ as } n \to \infty$$

Therefore by definition we have that $Z_n \stackrel{P}{\to} Z$, which also implies $Z_n \stackrel{D}{\to} Z$.

Convergence and Large Sample Approximations – Part 1

Fall 2015 A. Stepanov D. Simpson S. Culpepper

Example 3. Here's an example where convergence in distribution holds, but not convergence in probability: Let $Z_n = -Z$ for all n where $Z \sim N(0,1)$. Then $Z_n \overset{D}{\to} Z$ but $P(|Z_n - Z| \ge \epsilon) = P(|Z| \ge \epsilon) = P\left(|Z| \ge \frac{\epsilon}{2}\right) = 2\left(1 - \Phi\left(\frac{\epsilon}{2}\right)\right) > 0$ for all n. It follows that Z_n does *not* converge in *probability* to Z.

Example 4.

Let X_1, X_2, \dots be i.i.d. Uniform $(0, \theta)$. Let $Y_n = \max(X_1, X_2, \dots, X_n)$.

First show that $Y_n \stackrel{P}{\to} \theta$. This follows because, given any $\epsilon > 0$ and less than θ ,

$$P(|Y_n - \theta| \ge \epsilon) = P(Y_n \le \theta - \epsilon) = \left(\frac{\theta - \epsilon}{\theta}\right)^n$$

which converges to 0 as *n* increases, because $|(\theta - \epsilon)/\theta| < 1$.

Next find the limiting distribution of $Z_n = n(\theta - Y_n)$.

$$F_{Y_n}(x) = F_{\max X_i}(x) = \left(\frac{x}{\theta}\right)^n, 0 < x < \theta.$$

$$F_{Z_n}(z) = P[n(\theta - Y_n) \le z] = P\left(Y_n > \theta - \frac{z}{n}\right) = 1 - \left(1 - \frac{z}{n\theta}\right)^n, 0 < z < n\theta.$$

$$\Rightarrow F_{Z_n}(z) \to 1 - e^{-\frac{z}{\theta}}, z > 0, as \ n \to \infty.$$

 $Z_n \stackrel{D}{\rightarrow} X$, where $X \sim Exponential(\theta)$.

Convergence and Large Sample Approximations – Part 1

Fall 2015 A. Stepanov D. Simpson S. Culpepper

Example 5. Let $X_1, ..., X_n$ be a random sample from the distribution with probability density function

$$f_X(x;\theta) = \frac{1}{\theta} x^{\frac{1-\theta}{\theta}}, 0 < x < 1, 0 < \theta < \infty$$

Let $Y_1 < Y_2 < \cdots Y_n$ denote the corresponding order statistics.

a) For which values of β does $W_n = n^{\beta}(1 - Y_n)$ converge in distribution? Find the limiting distribution of W_n .

$$\begin{split} F_{Y_n}(y) &= P(Y_n \le y) = y^{\frac{n}{\theta}}, 0 < y < 1 \\ F_{W_n}(w) &= P\left[n^{\beta}(1 - Y_n) \le w\right] = P\left(Y_n \ge 1 - \frac{w}{n^{\beta}}\right) \\ &= 1 - \left(1 - \frac{w}{n^{\beta}}\right)^{n/\theta}, 0 < w < n^{\beta}. \end{split}$$

If $\beta = 1$, $\lim_{n \to \infty} F_{W_n}(w) = 1 - e^{-\frac{w}{\theta}}$, $0 < w < \infty$, Then $W_n \stackrel{D}{\to} X \sim Exponential(\theta)$.

If
$$\beta < 1$$
, $\lim_{n \to \infty} F_{W_n}(w) = 1$, $0 < w < \infty$, Then $W_n \stackrel{D}{\to} 0$ and thus $W_n \stackrel{P}{\to} 0$.

If $\beta > 1$, $\lim_{n \to \infty} F_{W_n}(w) = 0$, $0 < w < \infty$, Then W_n does not have a limiting distribution.

b) For which values of γ does $V_n = n^{\gamma} Y_1$ converge in distribution? Find the limiting distribution of V_n .

$$F_{Y_1}(y) = P(Y_1 \le y) = 1 - \left(1 - y^{\frac{1}{\theta}}\right)^n, 0 < y < 1$$

$$F_{V_n}(v) = P\left(Y_1 \le \frac{v}{n^{\gamma}}\right) = 1 - \left(1 - \frac{v^{\frac{1}{\theta}}}{n^{\frac{\gamma}{\theta}}}\right)^n, 0 < v < n^{\gamma}.$$

If
$$\gamma = \theta$$
, $\lim_{n \to \infty} F_{V_n}(v) = 1 - e^{-v^{1/\theta}}$, Then $V_n \xrightarrow{D} X \sim Weibull(\theta)$.
 $0 < v < \infty$.

If
$$\gamma < \theta$$
, $\lim_{n \to \infty} F_{V_n}(v) = 1$, $0 < v < \infty$, Then $V_n \stackrel{D}{\to} 0$, and thus $V_n \stackrel{P}{\to} 0$.

If
$$\gamma > \theta$$
, $\lim_{n \to \infty} F_{V_n}(v) = 0$, $0 < v < \infty$, Then V_n does not have a limiting distribution.

Theorem 3
$$X_n \stackrel{D}{\to} X$$
, g is continuous on the support of X $\Rightarrow g(X_n) \stackrel{D}{\to} g(X)$

Theorem 4
$$X_n \stackrel{D}{\rightarrow} X, Y_n \stackrel{P}{\rightarrow} 0 \Rightarrow X_n + Y_n \stackrel{D}{\rightarrow} X$$

Theorem 5 Slutsky's Theorem

$$X_n \stackrel{D}{\to} X$$
, $A_n \stackrel{P}{\to} a$, $B_n \stackrel{P}{\to} b$
 $\Rightarrow A_n + B_n X_n \stackrel{D}{\to} a + b X$

Theorem 6
$$M_{X_n}(t) \to M_X(t) \text{ for } |t| < h \Rightarrow X_n \stackrel{D}{\to} X.$$

Example 6. Let $X_n \sim Binomial\left(n, p = \frac{\lambda}{n}\right)$. Find the limiting distribution of X_n .

Let
$$X_n \sim Binomial\left(n, p = \frac{\lambda}{n}\right)$$
. Then
$$M_{X_n}(t) = \left(1 - \frac{\lambda}{n} + \frac{\lambda}{n}e^t\right)^n \to e^{\lambda(e^t - 1)} \text{ as } n \to \infty.$$

 $M_X(t) = e^{\lambda(e^t - 1)}$, where $X \sim Poisson(\lambda) \Rightarrow X_n \stackrel{D}{\to} X$ (Poisson approximation to Binomial distribution).

Example 7. Let $X_n \sim \chi^2(n)$. Recall $E(X_n) = n$ and $Var(X_n) = 2n$.

a) Let $Y_n = X_n/n$. Find the limiting distribution of Y_n .

Let $X_n \sim \chi^2(n)$ and $Y_n = X_n/n$. Then,

$$M_{Y_n}(t) = E\left[e^{\frac{X_n}{n}t}\right] = M_{X_n}\left(\frac{t}{n}\right) = \left(1 - 2\frac{t}{n}\right)^{-\frac{n}{2}} \to e^t \text{ as } n \to \infty.$$

Note $M_X(t) = e^t$, where $P(X = 1) = 1 \Rightarrow Y_n \xrightarrow{D} 1 \Rightarrow Y_n \xrightarrow{P} 1$.

b) Let $Z_n = (X_n - n)/\sqrt{2n}$. Find the limiting distribution of Z_n .

$$M_{Z_n}(t) = e^{-t\sqrt{\frac{n}{2}}} M_{X_n} \left(\frac{t}{\sqrt{2n}}\right) = e^{-t\sqrt{\frac{n}{2}}} \left(1 - 2\frac{t}{\sqrt{2n}}\right)^{-\frac{n}{2}}$$
$$= \left(e^{t\sqrt{\frac{2}{n}}} - t\sqrt{\frac{2}{n}}e^{t\sqrt{\frac{2}{n}}}\right)^{-\frac{n}{2}}, t < \sqrt{\frac{n}{2}}.$$

By Taylor approximation,

$$e^{t\sqrt{\frac{2}{n}}} = 1 + t\sqrt{\frac{2}{n}} + t^2\frac{1}{n} + o(\frac{1}{n}).$$

So for
$$t < \sqrt{\frac{n}{2}}$$
,
$$M_{Z_n}(t) = \left(\left(1 + t \sqrt{\frac{2}{n}} + t^2 \frac{1}{n} + o\left(\frac{1}{n}\right) \right) \left(1 - t \sqrt{\frac{2}{n}} \right) \right)^{-\frac{n}{2}}$$

$$= \left(1 - \frac{t^2}{n} + o\left(\frac{1}{n}\right) \right)^{-\frac{n}{2}}$$

$$= \frac{1}{\left(\left(1 - \frac{t^2}{n} + o\left(\frac{1}{n}\right) \right)^n \right)^{\frac{1}{2}}}$$

$$\to \frac{1}{e^{-\frac{1}{2}t^2}} = e^{\frac{1}{2}t^2} \text{ as } n \to \infty$$

As
$$n \to \infty$$
, $M_{Z_n}(t) \to e^{\frac{1}{2}t^2} = M_Z(t)$, where $Z \sim N(0,1) \Rightarrow Z_n \stackrel{D}{\to} Z$.

Distribution-free convergence of sample averages

Weak Law of Large Numbers

 X_1, X_2, \dots, X_n are i.i.d. with mean μ and variance σ^2 . Then

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \stackrel{P}{\to} \mu$$

Proof: For every fixed $\epsilon > 0$ we have, using Markov's inequality,

$$P(|\bar{X}_n - \mu| > \epsilon) = P((\bar{X}_n - \mu)^2 > \epsilon^2)$$

$$\leq \frac{E(\bar{X}_n - \mu)^2}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2} \to 0$$

as $n \to \infty$. Therefore $\bar{X}_n \stackrel{P}{\to} \mu$ by definition of convergence of probability.

Example 8. Let $X_1, X_2, ..., X_n$ are i.i.d. with mean μ and variance σ^2 and finite fourth moment $\mu_4 = E(X^4)$. Then, by the weak law of large numbers,

$$\frac{1}{n} \sum_{i=1}^{n} X_i^2 \stackrel{P}{\to} E(X_1^2) = \sigma^2 + \mu^2$$

Furthermore, using our previous results we can show convergence of the sample variance:

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$
$$= \left(\frac{n}{n-1}\right) \left\{ \left(\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}\right) - \bar{X}^{2} \right\} \xrightarrow{P} (1) \left\{ (\sigma^{2} + \mu^{2}) - \mu^{2} \right\} = \sigma^{2}$$

Fall 2015 A. Stepanov D. Simpson S. Culpepper

Example 9. Let $X_1, ..., X_n$ be iid U(0,1). Show the following:

a.
$$\bar{X}_n \stackrel{P}{\to} \frac{1}{2}$$

b.
$$\frac{1}{n}\sum_{i=1}^{n} \left(X_i - \frac{1}{2}\right)^2 \xrightarrow{P} \frac{1}{12}$$

c.
$$\frac{1}{n}\sum_{i=1}^{n} \sqrt{X_i} \xrightarrow{P} \frac{2}{3}$$

d.
$$\frac{1}{n}\sum_{i=1}^{n}\ln(X_i) \stackrel{P}{\rightarrow} -1$$

e.
$$\frac{1}{n}\sum_{i=1}^{n}X_{i}^{k} \xrightarrow{P} \frac{1}{k+1}$$

f.
$$\frac{1}{n}\sum_{i=1}^{n} \mathbf{1}\left(X_i > \frac{1}{2}\right) \stackrel{P}{\rightarrow} \frac{1}{2}$$

Central Limit Theorem

 X_1, X_2, \dots, X_n are i.i.d. with mean μ and variance σ^2 .

$$\frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma} = \frac{(\sum_{i=1}^n X_i - n\mu)}{\sqrt{n}\sigma} \stackrel{D}{\to} Z \sim N(0,1).$$