

# GEOMETRÍA Capítulo 17

3th SECONDARY

Relaciones métricas en el triángulo rectángulo.





#### **MOTIVATING | STRATEGY**



En la actualidad, existen más de 300 demostraciones del teorema de Pitágoras, lo que confirma que es uno de los teoremas que más interés a generado en la comunidad matemática.









# PROYECCIÓN ORTOGONAL

I. De un punto sobre una recta



II. De un segmento sobre una recta



 $\overline{\mathbf{A_1B_1}}$ : Proyección de  $\overline{\mathbf{AB}}$  sobre  $\mathcal{L}_2$ 

 $\overline{\mathbf{C_1D_1}}$ : Proyección de  $\overline{\mathbf{CD}}$  sobre  $\mathcal{C_2}$ 

**EF**<sub>1</sub>: Proyección de **EF** sobre  $\mathcal{C}_2$ 

# RELACIONES MÉTRICAS EN EL TRIÁNGULO RECTÁNGULO



# RELACIONES MÉTRICAS EN EL TRIÁNGULO RECTÁNGULO

#### **Teorema del cateto**

#### Teorema de los catetos





#### Teorema de la altura

Teorema de pitágoras







1. Si la escalera tiene una longitud de 17 m y la distancia del pie de la escalera al parante es de 8 m, determine la altura del parante.



#### **RESOLUCIÓN**

- Piden: x
- Aplicando el teorema de Pitágoras.

$$17^2 = x^2 + 8^2$$

$$289 = x^2 + 64$$

$$225 = x^2$$

$$x = 15 \text{ m}$$

#### **HELICO | PRACTICE**

2. En un campo de juego, el profesor de Educación Física coloca los banderines de la siguiente manera



Luego pide a sus alumnos que recorran en línea recta del banderín A al C. ¿Cuánto recorrió de A a C?

# **RESOLUCIÓN**

- Piden: x
- Aplicando el teorema de
- La altura:



$$h^2 = mn$$

$$12^2 = (x + 5)(x - 5)$$

$$144 = x^2 - 5^2$$

$$169 = x^2$$

$$13 = x$$

$$AC = (13 + 5) + (13 - 5)$$

$$AC = 26 \text{ m}$$



# 3. En la figura, halle el valor de x.



# **RESOLUCIÓN**

- Piden: x
- Se traza la altura BH
- ABP: Triángulo isósceles



$$x^2 = (1)(9)$$

$$x = 3 u$$



# 4. En la figura, halle el valor de x.



# **RESOLUCIÓN**

• En ⊿ABC: Teorema de Pitágoras.

$$AC^2 = 8^2 + 15^2$$
  
 $AC = 17$ 

Aplicando el teorema de los catetos



$$(8)(15) = (17)(x)$$

$$x = \frac{120}{17}$$

#### **HELICO | PRACTICE**



5. En la semicircunferencia,  $\overline{AB}$  y  $\overline{AC}$  • Piden:  $\frac{AP}{AQ}$ son diámetros, calcule  $\frac{AP}{AQ}$ .



- Se traza  $\overline{QB}$  y  $\overline{PC}$
- Aplicando teorema:



En 
$$\triangle APC$$
:  $(AP)^2 = (m)(32) ... (1)$ 

En 
$$\triangle AQB$$
:  $(AQ)^2 = (m)(18)$  ... (2)

Dividiendo (1) con (2)

$$\frac{(AP)^2}{(AQ)^2} = \frac{m.32}{m.18}_9$$
$$\frac{(AP)^2}{(AQ)^2} = \frac{16}{9}$$

$$\frac{AP}{AQ} = \frac{4}{3}$$

#### **HELICO | PRACTICE**

# 6. En la figura, BM = MH y HN = 5. Calcule CN.



#### **RESOLUCIÓN**

- Piden: x
- Aplicando el teorema de la altura:



$$h^2 = mn$$

En 
$$\triangle ABC$$
:  $(2a)^2 = (m)(5+x)...(1)$ 

En 
$$\triangle AMN$$
:  $a^2 = (m)(5)$  ... (2)

Dividiendo (1) con (2)

$$\frac{4a^2}{a^2} = \frac{(m)(5+x)}{(m)(5)}$$

$$4 = \frac{5+x}{5}$$

$$20 = 5 + x$$

$$15 = x$$

$$CN = 15 u$$



# 7. En la figura, AM = MC. Halle el valor de x.



- Piden: x
- Construimos △AHC
- BM Base media de △AHC
- En ⊿BHC: T. Pitágoras.

$$x^2 = 21^2 + 20^2$$

$$x^2 = 441 + 400$$

$$x^2 = 841$$

$$x = 29$$