SDM366 Optimal Control and Estimation

Lecture Note 2 State Space Model and Stability

Prof. Wei Zhang
Southern University of Science and Technology

zhangw3@sustech.edu.cn https://www.wzhanglab.site/

Outline

- State space model: definition and examples
- From continuous-time to discrete time model
- From nonlinear to linear model
- System solution and stability

State-space model based feedback control system:

Goal: determine control input to achieve desired output

- Controller design is based on plant model
 - Model is different from the actual plant
 - "all models are wrong, but some are useful"
- Modeling approach:
 - First principle
 - Data driven (System ID)

Static vs. Dynamic Systems

Static system

$$y = \phi(u)$$

- u(t) completely and immediately determines y(t)
- Desired output y_{ref} can be perfectly tracked (in absence of disturbance) by open-loop plant inversion

Static vs. Dynamic Systems

Dynamic system: differential or difference equation

- u(t) does not fully determines y(t)
- At time t_0 , the output $y(t_0)$ does not fully captures the system "behavior"

- "State": info needed for future evolution, it separates future from past
- State $x(t_0)$ at time t_0 and input u(t) over time $[t_o, t_f]$, completely determines the system behaviors

General continuous-time state space model

$$\dot{x} = f(x, u)$$
$$y = h(x, u)$$

- $x \in \mathbb{R}^n$ state vector, $u \in \mathbb{R}^m$ control input, $y \in \mathbb{R}^p$ output,
- $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$: called **vector field**
- $h: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^p$: output function
- Called autonomous system if there is no control f(x, u) = f(x)
- For autonomous sys, $\hat{x} \in \mathbb{R}^n$ is called **equilibrium** if $f(\hat{x}) = 0$

Vector field example of pendulum: $\ddot{y} + \sin(y) = 0$

6

General discrete-time state space model

$$x(k+1) = f(x(k), u(k))$$
$$y(k) = h(x(k), u(k))$$

- $x \in \mathbb{R}^n$ state vector, $u \in \mathbb{R}^m$ control input, $y \in \mathbb{R}^p$ output
- $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$: state update equation
- $h: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^p$: output function
- Called autonomous system if there is no control f(x, u) = f(x)
- For autonomous sys, $\hat{x} \in \mathbb{R}^n$ is called **equilibrium** if $\hat{x} = f(\hat{x})$

- Discrete-time system:
 - Some discrete-time system is obtained from continuous time model by sampling
 - Some systems naturally evolve in discrete time.

• Linear Systems: system is called linear if:

Continuous time
$$\dot{x} = f(x, u) = Ax + Bu$$
, $y = h(x, u) = Cx + Du$,

Discrete time
$$x(k+1) = f(x(k), u(k)) = Ax(k) + Bu(k),$$

$$y(k) = h(x(k), u(k)) = Cx(k) + Du(k),$$

for some matrices A, B, C, D

State-space modeling:

- Find the functions $f(\cdot,\cdot)$, $h(\cdot,\cdot)$
- Or find *A*, *B*, *C*, *D* matrices if the system is linear

Example 1: Consider spring-damper cart system with zero initial conditions (initially at y = 0 and not moving). No friction

Differential equation model

State space model of Example 1 (infinitely many)

Example 2: soft landing of a lunar module, $u = \frac{dm}{dt}$

- **Example 3**: Sensor Network
 - Each iteration, exchange measurements with neighbors
 - The updated value is the average of its own value with the neighbors

■ Example 4: PID for spring-damper system

Outline

- State space model: definition and examples
- From continuous-time to discrete time model
- From nonlinear to linear model
- System solution and stability

From continuous time to discrete time model

- Approximate differential equation with difference equation
 - Euler forward rule:

From continuous-time to discrete-time model

• General nonlinear case:

$$\dot{x} = f(x, u)$$
$$y = h(x, u)$$

From continuous-time to discrete-time model

• Linear case:

$$\dot{x} = A_c x + B_c u,$$

$$y = C_c x + D_c u,$$

Outline

- State space model: definition and examples
- From continuous-time to discrete time model
- From nonlinear to linear model
- System solution and stability

From nonlinear to linear

- Given model: $x(k+1) = f(x(k), u(k)), \ y(k) = h(x(k), u(k))$ and operating point: (\hat{x}, \hat{u})
- Goal: find a linearized model around (\hat{x}, \hat{u})

■ Jacobian matrix of multivariable function $f: \mathbb{R}^n \to \mathbb{R}^m$

• Example of Jacobian matrix: $f(z) = \begin{vmatrix} 2z_1 + e^{z_2} \\ \log(z_3) + \frac{1}{z_2} \end{vmatrix}$, $\hat{z} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$

- Taylor expansion of multivariate function
 - General expression: $f(z) = f(\hat{z}) + \left(\frac{\partial f}{\partial z}(z)\Big|_{z=\hat{z}}\right) \Delta z + \text{H.O.T}$

1

• Linearization around (\hat{x}, \hat{u}) using Taylor expansion:

$$f(x,u) \approx f(\hat{x},\hat{u}) + \left(\frac{\partial f(x,u)}{\partial x}\Big|_{x=\hat{x},u=\hat{u}}\right) \cdot (x-\hat{x}) + \left(\frac{\partial f(x,u)}{\partial u}\Big|_{x=\hat{x},u=\hat{u}}\right) \cdot (u-\hat{u})$$

$$= \hat{A} \cdot \Delta x + \hat{B} \cdot \Delta u + f(\hat{x},\hat{u})$$

$$h(x,u) \approx h(\hat{x},\hat{u}) + \left(\frac{\partial h(x,u)}{\partial x}\Big|_{x=\hat{x},u=\hat{u}}\right) \cdot (x-\hat{x}) + \left(\frac{\partial h(x,u)}{\partial u}\Big|_{x=\hat{x},u=\hat{u}}\right) \cdot (u-\hat{u})$$

$$\hat{C}$$

$$\Delta y := y - h(\hat{x}, \hat{u}) \approx \hat{C} \cdot \Delta x + \hat{D} \cdot \Delta u$$

$$y(k) = \cos(x_2(k)) + 2x_1(k) \qquad \hat{x} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \, \hat{u} = \begin{bmatrix} 0 \\ \frac{\pi}{2} \end{bmatrix}$$

Outline

- State space model: definition and examples
- From continuous-time to discrete time model
- From nonlinear to linear model
- System solution and stability

General linear state space model:

$$x(k+1) = A(k)x(k) + B(k)u(k),$$

$$y(k) = C(k)x(k) + D(k)u(k)$$

- If system matrices (A(k), B(k), C(k), D(k)) change over time k, then system is called **Linear Time Varying (LTV)** system
- If system matrices are constant w.r.t. to time, then the system is called a **Linear Time Invariant (LTI)** System

$$x(k+1) = Ax(k) + Bu(k),$$

$$y(k) = Cx(k) + Du(k)$$

Derivation of Solution to LTI state space system:

$$x(k+1) = Ax(k) + Bu(k),$$

$$y(k) = Cx(k) + Du(k)$$

• given initial state $x(0) = \hat{x}$, and control sequence $u(0), ..., u(k), k \ge 0$, we have $x(k) = A^k \hat{x} + \sum_{j=0}^{k-1} A^{k-j-1} Bu(j)$

- A large portion of control applications can be transformed into a regulation problem
 - Regulation problem: keep certain function of the state x(k) or output y(k) close to a known constant reference value under disturbances and model uncertainties

- Keep inverted pendulum at upright position ($\theta = 0$)
- Maintain a desired attitude of spacecraft or aircraft

For example:

- Air conditioner regulate temperate close to setpoint (e.g. 75F)
- Cruise control maintain a constant speed despite uncertain road conditions
- Converter maintains a desired voltage level for different loads
- If reference $y_{ref}(t)$ is changing, this is no longer a regulation problem (becomes a **tracking problem**)

■ Internal Stability (with $u(k) \equiv 0$, i.e. concerned with zero-input state response)

$$x(k+1) = Ax(k) + Bu(k),$$

$$y(k) = Cx(k) + Du(k)$$

- Asymptotic stable: $||x(k)|| \to 0$, as $k \to \infty$, for all initial state \hat{x}
- Marginal stable: $||x(k)|| \le M$, for all k = 1, 2, ...
- Recall state space solution for linear systems:

$$x(k) = A^{k}\widehat{x} + \sum_{j=0}^{k-1} A^{k-j-1}Bu(j)$$

■ Therefore, or linear system, the key for stability analysis is to understand how A^k behave as $k \to \infty$

■ Case 1: diagonal matrix: e.g. $A = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix}$

■ Case 2: diagonalizable matrix, i.e. $\exists T$ such that $A = TDT^{-1}$

- Case 3: Unfortunately, not all square matrices are diagonalizable
 - e.g.: $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ is **not diagonalizable**

■ Theorem (Internal stability): LTI (A, B) is asymptotically stable if all eigs of A satisfies $|\lambda_i| < 1$

More discussions