IP2369 supports multiple fast charging input and output protocols such as PD3.1, and supports 2 to 6 series connection

Battery integrated buck-boost power MOS power management chip with a maximum charge and discharge power of 45W

1 IP2369 Features

ÿCharge and discharge

specificationsÿBuilt-in BUCK-BOOST step-up and step-down power NMOSÿCharge and discharge power up to 45WÿAdaptive

charge current regulationÿExternal resistor

can set battery type, full voltage

3.65V/4.1V/4.2V/4.3V/4.35V/4.4V ÿ External resistor sets the number of battery cells in series: 2/3/4/5/6 ÿ External resistor can set the maximum charge and discharge power, supporting up to 45W charge and discharge

ÿ Supports 2 USB ports at

the same time

 $\ddot{y} \ 1 \ USB-A \ port \ output \ \ddot{y} \ 1 \ USB-C \ port \ input$ and output \ddot{y} Fast charging specifications \ddot{y} Integrated

FCP input and output

fast charging protocol ÿ Integrated AFC input and output fast charging protocol ÿ Integrated DRP Try.SRC protocol, PD3.1 input and output fast charging protocol ÿ Integrated QC2.0/QC3.0/QC3.0+ output fast charging protocol

Other features: 4/2/1

LED power indicator light, I2C support, 100ÿA standby power consumption , EN wake-up function , multiple protections and high reliability

ÿ Input overvoltage and undervoltage
protection ÿ Output overcurrent and short
circuit protection ÿ Battery overcharge, overdischarge, and
overcurrent protection ÿ IC
overtemperature protection ÿ Charge and discharge
battery temperature NTC protection ÿ ESD 4KV, input (including CC1/CC2 pins)
withstand

voltage 30V ÿ Package specifications: QFNWB-7*7-60L 0.4pitch

2 IP2369 Application Products

2~6 series lithium battery/lithium iron phosphate battery charging and discharging

3 Introduction to IP2369

The IP2369 is a lithium battery charge and discharge management chip that integrates input and output fast-charging protocols such as AFC/FCP/PD2.0/PD3.0/PD3.1 and a synchronous buck-boost converter, offering a charge and discharge power of up to 45W. The IP2369's

high integration and rich functionality include an internal buck-boost power NMOS module, enabling synchronous buck-boost functionality with only a single inductor. This minimizes the need for external components, effectively reducing the overall solution size and bill of materials (BOM) cost.

IP2369 supports 2/3/4/5/6 series cells, and the number of battery cells in series can be selected by external resistor setting; IP2369 supports external resistor to set battery type, full charge voltage is 3.65V/4.1V/4.2V/

IP2369 has built-in IC temperature, battery NTC temperature and input voltage.

The voltage control detection loop can intelligently adjust the charging current according to the identified charger power.

The standby power consumption of IP2369 can be as low as no more than 100uA.

The IP2369 has a built-in 14-bit ADC that can accurately measure input voltage and current, battery voltage and current, etc. Information such as the IP2369's charge and discharge voltage, and charge current can be obtained via I2C.

IP2369 supports 4 power indicator lights to display the power level and charging and discharging status.

Table of content

Features1 2 Applicati			
Products	1 3		
Introduction	1 4		
Modification History	3 5		
Simplified Application Schematic	4 6 Pin		
Definition	5 6.1 Pin		
Description	5 7 Chip Internal		
Block Diagram	8 8 Absolute Maximum		
Ratings	9 9 Recommended Operating		
Conditions	9 10 Electrical		
Characteristics	10 11 Functional		
Description	13 11.1 Charging		
Function	13 11.2 11.3 Discharge		
Function	14 11.3.1 Standby & Light Load		
Shutdown	15 11.3.2		
Discharge	15 11.3.3		
Charging	15 11.3.4 Charging		
and Discharging Simultaneously	15 11.4 Input and Output		
Maximum Power Setting	16 11.5 Setting the Number of		
Batteries in Series	16 11.6 Setting the Battery		
Туре	16 11.7 NTC		
Function	17 11.8 Light Display		
Function	19 11.9 12 Application Schemation		
Diagram	22 13 Bill of		
Materials	23		
14 Packaging Information	24 15 Silkscreen		
Description	25 16 Responsibility and Copyright		
0	00		

4 IP2369 modification records

Changed page numbers for versions V1.00 to V1.10 (March 2024)

Initial release V1.00 (February 2024)

3/26

TEL: +86-0755-27595155 27595165 FAX: +86-0755-27594792

WEB:Http://www.ChipSourceTek.com

5 IP2369 simplified application schematic

Figure 1 IP2369 simplified application schematic

6 IP2369 Pin Definition

Figure 2 IP2369 pin diagram

6.1 Pin Description

Pin Num	Pin Name	PIN Definition
1	VIO_P	VIO power pin
2	VIO_P	VIO power pin
3	GND Power	ground
4	GND Power	ground
5	GND Power	ground
6	LX1	VIO terminal inductor connection pin
7	LX1	VIO terminal inductor connection pin

5 / 26

TEL: +86-0755-27595155 27595165 FAX: +86-0755-27594792

WEB:Http://www.ChipSourceTek.com

Machine Translated by Google

Shenzhen ChipSoure rek rechnology Co.,Ltd.

8	GND Power gro	bund		
9	GND Power gro	bund		
10	LX2	BAT terminal inductor connection pin		
11	LX2	BAT terminal inductor connection pin		
12	BST2	H-bridge power BAT end bootstrap voltage pin		
13	BAT_P	BAT power pin		
14	BAT_P	BAT power pin		
15	BAT_P	BAT power pin		
16	PCON BAT peal	current sensing pin		
17	CSN2	BAT terminal current sampling negative terminal		
18	CSP2	BAT terminal current sampling positive terminal		
19	BAT_P	BAT power pin		
20	LX2	BAT terminal inductor connection pin		
21	ONE	BAT power supply pin		
22	AGND analog gr	ound		
23	VCC5V system 5	V power supply, powering the analog circuit inside the IC		
24	VCCIO system 3	3V power supply, powering the IC internal digital circuit		
25	LED3 LED3 pin			
26	BAT_NUM BAT_NUN	I sets the number of batteries in series and connects the resistor to ground		
27	I2C_SCL I2C_SCI	- pin		
28	VSET VSET sets the	fully charged voltage of a single battery string, connected to the ground by a resistor		
29	I2C_SDA I2C_SDA	A pin		
30	I2C_INT	I2C_INT pin		
31	PSET	PSET sets the maximum charging and discharging power of the system, and connects the resistor to the ground		
32	NTC	NTC sets the protection temperature, connect NTC resistor		
33	IN	EN wake-up pin, connected to a button to wake up and shut down the device		
34	CC2	USB C port detection and fast charging communication pin CC2		
35	DPC	USB C port fast charging intelligent identification DP		
36	DMC	USB C port fast charging intelligent DM recognition		
37	CC1	USB C port detection and fast charging communication pin CC1		
38	DPA1	A port fast charge output identification DP		
39	DMA1 A port fas	st charge output identification DM		
40	VOUT1 A port ou	tput detection pin		
41	VOUT1G Port A or	utput path NMOS control pin		
42	TEST3 test point			
43	LED1 LED1 pin			
44	LED2 LED2 pin			

6 / 26

TEL: +86-0755-27595155 27595165 FAX: +86-0755-27594792

WEB:Http://www.ChipSourceTek.com Email: Sales@ChipSourceTek.com Tony.Wang@ChipSourceTek.com

45	TEST4 test p	oint		
46	TEST1 test point			
47	TEST2 test p	oint		
48	VBUS VBUS	input and output detection pin		
49	VBUSG C por	t input and output path NMOS control pin		
50	VBUS_I VIO ii	nput and output path current detection pin		
51	SAW	VIO power pin		
52	CSP1	VIO terminal current sampling positive terminal		
53	CSN1	VIO terminal current sampling negative terminal		
54	AGND analog ground			
55	PCIN	VIO peak current sensing pin		
56	LX1	VIO terminal inductor connection pin		
57	VIO_P	VIO power pin		
58	NC			
59	NC			
60	BST1	H-bridge power VIO bootstrap voltage pin		
61	VIO_P	VIO power pin		
62	LX1	VIO terminal inductor connection pin		
63	LX2	BAT terminal inductor connection pin		
64	BAT_P	BAT power pin		
65	GND System	ground and heat dissipation ground, need to maintain good contact with GND		

7 IP2369 chip internal block diagram

Figure 3 Chip internal block diagram

8 IP2369 limit parameters

parameter	symbol	value	unit
BAT voltage range	VBAT	-0.3 ~ 35	In
VBUS/VIN voltage range	VVBUS/VIN	-0.3 ~ 30	In
VIO voltage range	VVIO	-0.3 ~ 30	In
LX1/BST1/LX2/BST2 voltage range VLX1/BS	Γ1/LX2/BST2	ÿ-3V for 10nsÿ-0.3 ~ 50	In
CSP2/CSN2/PCIN voltage range	VCSP2/CSN2/PCIN	-0.3 ~ 35	In
CSP1/CSN1/PCON voltage range	VCSP1/CSN1/PCON	-0.3 ~ 30	In
CC1/CC2 voltage range	VCC1/CC2	-0.3 ~ 30	In
DMC/DPC voltage range	VDMC/DPC	-0.3 ~ 22	In
Other functions & configuration pin voltage range	VLED/EN/TEST/PSET	-0.3 ~ 8	In
I2C interface voltage range	VI2C_INT/SDA/SCL	-0.3~8	In
Junction temperature range	TJ	-40 ~ 125	ÿ
Storage temperature range	Test	-60 ~ 150	ÿ
Thermal resistance (junction to ambient)	ÿJA	45	ÿ/W
Human Body Model (HBM)	ESD	4	KV

^{*} Stresses exceeding those listed under the Absolute Maximum Ratings section may cause permanent damage to the device.

Exposure for too long may affect the reliability and service life of the device

9 IP2369 recommended operating conditions

parameter	symbol	Minimum	Typical values	Maximum	unit
Input and output voltage VBUS	VOUT1	4.5		25	In
Battery voltage	VBAT			32	In
Working environment temperature	FACING	-40		85	ÿ

9 / 26

TEL: +86-0755-27595155 27595165 FAX: +86-0755-27594792

WEB:Http://www.ChipSourceTek.com

^{*}Device operational characteristics are not guaranteed outside these operating conditions.

10 IP2369 electrical characteristics

Unless otherwise specified, TA = 25°C, L = 4.7ÿH

Parameter	symbol	Test co	nditions	Min. Typ. Ma	x. Unit		
charging system							
Input voltage	VBUS				5/9/12/15/ 20	25	In
Input overvoltage vol	age VBUS rising	voltage		28.5	29	30	In
Peak current	IL_PK indu	ctor peak current limit				12	Α
		VVBUS=5V, VBAT<2.5V		30	50	70 mA	
Trickle charge curren	TIIRKL	VVBUS=5V, 2.5V<=VBAT <v< td=""><td>TRKL Number</td><td>100</td><td>200</td><td>300 mA</td><td></td></v<>	TRKL Number	100	200	300 mA	
T-i-ld #	VTDKI	of cells is N, VTRGT is not 3	.65V Number of	N*2.9	N*3	N*3.1	In
Trickle cut-off voltage	VIRKL	cells is N, VTRGT=3.65V Nu	mber of cells	N*2.7	N*2.75	N*2.85 V	
		is N, RVSET = 27Kÿ Numbe	r of cells is N,	N*4.35	N*4.40	N*4.45 V	
		RVSET = 18Kÿ Number of co	ells is N,	N*4.20	N*4.35	N*4.40 V	
Ohi	h \/O\/	RVSET = 13Kÿ Number of co	ells is N,	N*4.25	N*4.30	N*4.35 V	
Charging constant vo	itage vCv	RVSET = 9.1Kÿ Number of o	ells is N,	N*4.15	N*4.20	N*4.25 V	
		RVSET = 6.2Kÿ Number of cells is N,		N*4.05	N*4.10	N*4.15 V	
		RVSET = 3.6Kÿ VBUS=5V, i	nput current	N*3.6	N*3.65	N*3.7	In
				2.70	3.00	3.30	Α
		VBUS=9V, PD fast	PMAX=20W	2.00	2.22	2.44	A
		charge,	PMAX>=27W	2.70	3.00	3.30	А
		VBUS=9Vÿ Non-PD fast charging, Input current	PMAX>=20W	1.80	2.00	2.20	А
		VBUS=12V , PD	PMAX=20W	1.50	1.67	1.84	Α
			PMAX=27W	2.03	2.25	2.47	Α
		Fast charging,	PMAX=30W	2.25	2.50	2.75	Α
Charging current	ICHRG	Input current	PMAX>=36W	2.70	3.00	3.30	А
		VBUS=12V , No PD fast charging, Input current	PMAX>=20W	1.35	1.50	1.65	А
			PMAX=20W	1.12	1.25	1.37	Α
		VBUS =15VÿPD	PMAX=27W	1.53	1.70	1.87	Α
		and non-PD, input power	PMAX=30W	1.71	1.90	2.09	Α
		flow	PMAX=36W	2.07	2.30	2.53	Α
			PMAX=45W	2.56	2.85	3.13	Α
		VBUS =20VÿPD	PMAX=20W	0.85	0.95	1.04	Α
		Fast charging and non-PD fast	PMAX=27W	1.15	1.28	1.40	Α

10 / 26

		Charaina insut	DMA V - 20141	1.28	1.43	1.57	Α
		Charging, input current	PMAX=36W	1.53	1.70	1.87	A
			PMAX=45W	1.92	2.14		
			PIVIAX=45VV	1.92	2.14	2.35	A
Charging and stopping of	urrent ISTOP				100		m.a.
The recharge thresho	old VRCH battery	number is N			VTRGT – N*0.1		ln
Charging deadline TI	≣ND				48		Hour
Discharge system							
Battery operating vo	tage VBAT batte	ry number is N		N*2.70		N*4.45 V	
Switch working battery Input current	DIFFERENT	VBAT=6*3.7V, VOUT=5.0V, fs=250kHz, lout=0mA			12		m.a.
		VOUT=5V@1A		4.75	5.00	5.25	In
	QC2.0	VOUT=9V@1A		8.70	9	9.30	ln
	VOUT	VOUT=12V@1A		11.60	12	12.40 V	
DC output voltage	QC3.0/ QC3+ VOUT	@1A		3.6		12	In
	QC3.0 Step	In.S	SOLL	rc	200		mV
	QC3+ Step				20		mV
		VBAT=4*3.7V, fs=250KHz, lout=1A	VOUT=5.0V,		85		mV
		VBAT=4*3.7V, VOUT=9.0V	/ fs=250KHz,		100		mV
Output voltage ripple	ÿVOUT	VBAT=4*3.7Vÿ VOUT=12Vÿfs=250KHz, loi	ut=1A		100		mV
		VBAT=4*3.7Vÿ VOUT=15Vÿfs=250KHz, lo	ut=1A		120		mV
		VBAT=4*3.7Vÿ VOUT=20Vÿfs=250KHz, lo	ut=1A		200		mV
Discharge system maximum Output power	Pmax PD pr					45 W	
		VBAT=2*3.0V, VOUT=20V,			92.0		%
Discharge system effi	ciency ÿout	VBAT=4*3.0V, VOUT=20V, IOUT=2.25A	,		95.0		%

TEL: +86-0755-27595155 27595165 FAX: +86-0755-27594792

WEB:Http://www.ChipSourceTek.com

		VBAT=6*3.0V, VOUT=20V, IOUT=2.25A		96.0		%
		VBAT=N*3.7V, output 5V	3.0	3.3	3.6	A
Discharge system overcurrent		VBAT=N*3.7V, output 9V, non-PD state 2.4 VBAT=N*3.7V, output	ut 12V, non-	2.7	3.0	А
Shutdown current	Ishut	PD state 1.8 VBAT=N*3.7V, output PD state		2.0	2.2	А
				PDO * 1.1		Α
Load overcurrent detection time	TUVD output	voltage is continuously lower than 2.4V		30		ms
Load short-circuit detection time	TOCD output	voltage is continuously lower than 2.2V		40		ÿs
control system						
	fo	Discharge switching frequency		250		kHz
Switching frequency	fs	Charging switching frequency		250		kHz
VCC5V output Voltage	VCC5V		4.75	5	5.25	In
VCC5V output					30	m.a.
VCCIO output Voltage	VCCIO	inCall	3.15	3.3	3.45	In
VCCIO output Current	ICCIO	IPOUU			30	m.a.
Battery standby power flow	ISTB VBAT:	=22V, average current after shutdown for 1 minute		80	100	ÿA
LED display driver	IL1 IL2	Voltage drops by 10%	5	7	10	m.a.
Thermal shutdown temperat	ure TOTP rising temp	erature Thermal	110	125	140	ÿ
shutdown temperature delay	, ÿТОТР			40		ÿ
Built-in H-bridge power MOS on-resistance	RDSÿONÿ VGS	=4.5VÿID=5A		7	10 mÿ	

TEL: +86-0755-27595155 27595165 FAX: +86-0755-27594792

WEB:Http://www.ChipSourceTek.com

11 IP2369 Function Description

11.1 Charging Function

IP2369 is charged via Type-C input. The IP2369 has

a constant current and constant voltage lithium battery charging management system that supports a synchronous buck-boost switch structure.

IP2369 adopts switching charging technology with a switching frequency of 250kHz.

The IP2369 can be configured with external resistors for different battery types, full charge voltages, and charging power. It supports 2/3/4/5/6 battery strings and supports full charge voltages of 3.65V/4.1V/4.2V/4.3V/4.35V/4.4V. The maximum input charging power can reach 20V/2.25A (45W), with a charging efficiency of up to 96%.

The IP2369 supports trickle-constant current-constant voltage charging:

When the battery voltage VBAT ÿ 2.5V, it uses a low-current trickle charge with a battery charging current of approximately 50mA. When the battery voltage is 2.5V < VBAT ÿ VTRKL, it uses a trickle charge with a battery charging current of approximately 200mA. When the battery voltage VTRKL < VBAT < VCV, it uses constant current charging and charges the battery at the set constant current. When the battery voltage

VBAT = VCV, as the battery voltage rises to near the full charge voltage, the charging current slowly decreases and constant voltage charging begins. After entering constant voltage charging, when the battery charging current is less than ISTOP and the battery voltage approaches the constant voltage, charging stops and enters the full charge state. After entering the full charge state, the battery voltage will continue to be detected. When the battery voltage falls below VBAT < VRCH, charging will resume.

Figure 4 Schematic diagram of battery charging process

IP2369 integrates AFC/FCP/PD2.0/PD3.0/PD3.1 input fast charging protocols, which can be connected via the Type-C port.

DPC/DMC/CC1/CC2 to apply for fast charging voltage from the fast charging charger, which will automatically adjust the charging current to adapt to chargers with different load capacities.

When charging with a charger without fast charging or a DC power supply, IP2369 will set the charging current according to the input voltage:

Input voltage	Maximum input current during constant current charging
4.5 <vbusÿ6.5v< td=""><td>3A</td></vbusÿ6.5v<>	3A
6.5 <vbusÿ9.5v< td=""><td>2A</td></vbusÿ9.5v<>	2A
9.5 <vbusÿ13.5v< td=""><td>1.5A</td></vbusÿ13.5v<>	1.5A
13.5 <vbusÿ16.5v< td=""><td>3A</td></vbusÿ16.5v<>	3A
16.5 <vbusÿ24v< td=""><td>2.25A</td></vbusÿ24v<>	2.25A

Note: When the actual charging power is greater than the set maximum input power limit, the charging current will also be reduced;

IP2369 supports Huawei FCP and Samsung AFC fast charging input protocols. When using a charger that supports Huawei FCP and Samsung AFC, it can be charged.

When the input voltage is set to the highest, IP2369 will apply for the highest input voltage, and the constant current charging current will be set according to the input voltage level above.

IP2369 supports PD2.0/PD3.0/PD3.1 input protocols. When charging with a PD fast charging adapter, IP2369 will read the

Then it applies for charging voltage and sets charging current according to the received PD information packet; when the power of the received PD packet is less than the set When the charging power required by the adapter is reached, the charging current will be reduced to make the maximum power at the input end less than or equal to the PD broadcast power given by the adapter.

11.2 Discharge Function

IP2369 integrates USB Type-C input and output identification interface, automatically switches built-in pull-up and pull-down resistors, and automatically identifies the charging and discharging status of the in

With the Try.SRC function, when connected to a DRP device, it can give priority to external discharge and charging the other party.

IP2369 supports multiple fast charging formats: PD2.0/PD3.0/PD3.1, QC2.0/QC3.0/QC3+, FCP, AFC, and Apple.

IP2369 supports PD2.0/PD3.0/PD3.1 output protocols and supports a maximum power output of 45W;

Set the maximum output power	Output voltage and current
45W	5V/3A,9V/3A,12V/3A,15V/3A,20V/2.25A
36W	5V/3A,9V/3A,12V/3A,15V/2.4A,20V/1.8A
30W	5V/3A,9V/3A,12V/2.5A,15V/2A,20V/1.5A
27W	5V/3A,9V/3A,12V/2.25A,15V/1.8A
20W	5V/3A,9V/2.22A,12V/1.67A

IP2369's USB-A1 and USB-C can support QC2.0/QC3.0/QC3+, FCP, AFC, and Apple

Mobile phone 2.4A mode, BC1.2 ordinary Android phone 1A mode.

TEL: +86-0755-27595155 27595165

WEB:Http://www.ChipSourceTek.com

11.3 Charge and Discharge Path Management

11.3.1 Standby & Light Load Shutdown

If the USB-C port is plugged into a charging power source, charging can be started directly. If a

USB-C UFP device is plugged into the USB-C or a power-consuming device is plugged into the USB-A1, the discharge function can be automatically turned on. If there is a key

action, it will only be turned on when a load is connected to the USB-A1 or USB-C, otherwise it will remain off. When in multi-port output mode, if the output current of any

output port is less than about 80mA (MOS Rds_ON@15mohm), the port will be automatically closed after 16 seconds. When the number of power-consuming devices is reduced to only one power-consuming device, all output ports will be closed

first after about 16 seconds, and the high-voltage fast charging function will be turned on.

Then open the output port of the last power-consuming device to reactivate the device and request fast charging.

When only one output port is turned on and the total output power is less than 350mW for about 32 seconds, the output port and discharge function will be turned off and the device will enter standby mode.

Under the PD protocol, the

light load shutdown time is 16 minutes.

11.3.2 Discharge

When no key is pressed on the IP2369, only the output ports connected to the power-consuming devices will be turned on; the output ports that are not connected to the devices will remain closed.

USB-A1 and USB-C both support the output fast charging protocol. However, since this solution is a single inductor solution, it can only support one voltage output.

Fast charging is only supported when one of the output ports is enabled. When both output ports are used at the same time, the fast charging function will be automatically disabled.

Connect as shown in the "Typical Application Schematic Diagram". When any output port has entered the fast charge output mode, when other output ports are connected to power-consuming devices, all output ports will be closed first, the high-voltage fast charge function will be turned off, and then the output port with the device will be opened. At this time, all output ports only support

Apple BC1.2 mode charging.

11.3.3 Charging

The USB-C can be charged by plugging it into a power source. It supports fast charging mode that automatically identifies the power source and matches the appropriate charging voltage and current.

11.3.4 Charging and Discharging

When both a charging power source and a powered device are connected simultaneously, the device automatically enters simultaneous charge-discharge mode. In this mode, the chip automatically disables internal fast-charge input requests. To ensure proper charging of the powered device, the IP2369 raises the charging undervoltage loop to above 4.9V, prioritizing power to the powered device. If the VIO voltage is only 5V, the discharge path is enabled to power the powered device. For safety reasons, the discharge path is disabled if the VIO voltage is greater than 5.6V.

If the power source is unplugged during the simultaneous charging and discharging process, the IP2369 will disable the charging function and restart the discharging function to power the device. For safety reasons and to enable the device to reactivate the fast charging request, the output voltage will drop to 0V for a period of time during the transition.

During simultaneous charging and discharging, if the device is unplugged, fully charged, or stops drawing power for approximately 16 seconds, the IP2369 automatically shuts down the corresponding discharge path. When both discharge paths are shut down and the device returns to single-charge mode, the undervoltage loop is lowered and fast charging is automatically reactivated, accelerating the charging process.

11.4 Input and output maximum power setting

IP2369 sets the maximum input and output power of the system by judging the resistance value connected to the PSET pin.

RPSET	Corresponding to the set maximum power PMAX			
18k	45W			
13k	36W			
9.1k	30W			
6.2k	27W			
3.6k	20W			

11.5 Setting the number of batteries in series

IP2369 sets the number of batteries in series by judging the resistance value connected to the BAT_NUM pin.

RBAT_NUM	Corresponding to the set number of batteries connected in series			
18k	6 skewers			
13k	5 skewers			
9.1k	4 skewers			
6.2k	3 skewers			
3.6k	2 skewers			
11.6 Battery Type Setting	ipSourceTek			

IP2369 sets the battery type by judging the resistance value connected to the VSET pin.

RVSET	Corresponding battery type (single battery full voltage)			
27k	4.4V			
18k	4.35V			
13k	4.3V			
9.1k	4.2V			
6.2k	4.1V			
3.6k	3.65V			

16/26

TEL: +86-0755-27595155 27595165 FAX: +86-0755-27594792

WEB:Http://www.ChipSourceTek.com

11.7 NTC Function

IP2369 integrates NTC function to detect battery temperature. When IP2369 is working, it generates a constant current source on the NTC pin, which is connected to the external

The NTC thermistor generates a voltage, and the chip determines the current battery temperature by internally detecting the voltage at the NTC pin. * A 100nF capacitor is connected

in parallel between the NTC pin and GND. The capacitor must be placed close to the chip pin.

Figure 5 Battery NTC comparison

Figure 6 Relationship between NTC voltage and discharge current

To accurately distinguish the battery's NTC temperature, the IP2369 uses a current-switching NTC detection module. The chip internally detects the current output by the NTC pin and the voltage generated by an external pull-down NTC thermistor to determine the current battery temperature. When the NTC pin's output current is 80ÿA and the voltage

detected on the NTC pin is above 1.5V, the NTC pin's output current is adjusted to 20ÿA. When the NTC pin's output current is 20ÿA and the voltage detected on the NTC pin is below 0.25V, the NTC pin's output current is adjusted to 80ÿA.

During charging, charging stops if the NTC temperature drops below 0°C (0.55V), charging continues normally between 0°C and 45°C, and stops if the temperature exceeds 45°C (0.39V). In the discharge state: when the temperature is lower than

-20 degrees (1.39V), the discharge stops; between -20 degrees and 60 degrees, the discharge is normal; above 60 degrees (0.24V), the discharge stops;

Figure 7 Relationship between NTC voltage and NTC resistance

If the solution does not require the NTC function, a 10kÿ resistor must be connected to the ground from the NTC pin. The NTC pin cannot be left floating or connected directly to ground.

ChipSourceTek

Machine Translated by G®ogle 深圳市矽源特科技有限公司

ShenZhen ChipSoureTek Technology Co.,Ltd.

11.8 Light Display Function

IP2369 supports 4, 2, and 1 power indicator solutions. The connection method is as follows.

Figure 8 4, 2, 1 LED connection method

4 The display mode of the light is:

During normal charging

Battery capacity C (%)	D1	D2	D3	D4
full	Bright	Bright Bright		Bright
75%ÿC	Bright	Bright	Bright 0.5Hz	lashing
50%ÿCÿ75%	Bright	On 0.5Hz Flashing Off		
25%ÿCÿ50%	On 0.5Hz Fl	ashing Off		Destruction
Сў25%	0.5Hz flashing off		Destruction	Destruction

During normal discharge

Battery capacity C (%)	D1	D2	D3	D4
75%ÿC	Bright	Bright	Bright	Bright
50%ÿCÿ75%	Bright	Bright	Bright	Destruction
25%ÿCÿ50%	Bright	Bright	Destruction	Destruction

19 / 26

TEL: +86-0755-27595155 27595165 FAX: +86-0755-27594792

WEB:Http://www.ChipSourceTek.com

Cÿ25%	Bright	Destruction	Destruction	Destruction
C=0	Flashes 4 times and	d turns off	Destruction	Destruction

The discharge stops after flashing 4 times (250ms on and 250ms off).

2. The display mode of light mode 1 is dual-color light:

During normal charging

Battery capacity C (%)	D1	D2
full	Destruction	Bright
66%ÿCÿ100%	Off 0.5Hz fla	shing
33%ÿCÿ66%	0.5Hz flashin	0.5Hz flashing
Сÿ33%	0.5Hz flashing off	

During normal discharge

Battery capacity C (%)	D1	D2	
66%ÿCÿ100%	Destruction	Bright	
33%ÿCÿ66%	Bright	Bright	
Сÿ33%	Bright	Destruction	
C=0	Flashes 4 times	and turns off	

The discharge stops after flashing 4 times (250ms on and 250ms off).

2 The display mode of light mode 2 is:

During charging, D1 is on and D2 is off. After full charge, D1 is off and D2 is on. If charging is abnormal, D1 and D2 flash at the same time (250ms on and 250ms off),

20 / 26

During discharge, D1 is always on. When C=0, D1 flashes 4 times (250ms on, 250ms off) and then stops discharging.

1. The display mode of light is:

During charging, D1 flashes (1s on, 1s off). After full charge, D1 is always on. If charging is abnormal, D1 flashes quickly (250ms on, 250ms off).

During discharge, D1 is always on. When C=0, D1 flashes 4 times (250ms on, 250ms off) and then stops discharging.

TEL: +86-0755-27595155 27595165 FAX: +86-0755-27594792

WEB:Http://www.ChipSourceTek.com

11.9 Button Functions

IP2369 supports key functions. The key connection method is shown in Figure 9.

Figure 9 EN button connection method

1.2VÿVENÿ3.3V is a high level, 0ÿVENÿ1.2V is a low level, and the EN voltage should not exceed 5V.

A short press is considered a high-level state of greater than 100ms and less than 2s. After entering low-power mode, a short press turns on the battery indicator and the device enters the no-load state. If a charging or discharging device is detected, the device enters the corresponding charging or discharging state. In the no-load state, if no charging or discharging device is detected at port C for 10 seconds, the device enters low-power mode. In the no-load state, two short presses within 1s will shut down the device and enter low-power mode, turning off the battery indicator

21 / 26

and discharge output. If the EN pin remains high for more than 10s, the system will reset.

The EN pin cannot be left floating and must be pulled down to ground via a 10K resistor.

ChipSourceTek

12 IP2369 Application Schematic Diagram

Figure 10 Application Schematic

13 IP2369 GOOD

Component	Name 1 Chip IC 2 Chip	Models & Specifications	Location	Dosage	Remark
capacito	or 0603 100nF 10%	QFN60 IP2369	U1	1	
50V C3,	C16,C17,C22 3 Chip capacitor 0	603 470nF 10% 50V C1 4 Chip capacitor 0603	1ÿF 10% 35V C2 5 Chip capacitor	4	
0603 2.2	2ÿF 10% 35V C12,C13,C25,C26	6 Chip capacitor 0805 10ÿF 10% 35V C18 7 Ch	lip	1	
capacito	r 1210 22ÿF 10% 35V C4,C5,C1	0,C20 8 Solid capacitor 100ÿF 35V 10% C7,C8		1	
				4	
				1	
				4	
				2	
9 Chip r	esistor 1206 0.005R 1%		R2,R4	2	Sampling resistor, high precision is required Low temperature drift metal film resistor
10 06	03 SMD Resistor 100	R 5% 11 0603 SMD	R11,R12,R13	3	
Resis	tor 9.1K 12 0603 SMI	Resistor 18K	RBAT_NUM	1	
13 06	03 SMD Resistor 9.1	(14 0603	RPSET	1	
SMD	Resistor 10R 1% 15 (603 SMD	RVSET	1	
Resis	tor 43K 16 0603 SMD	Resistor 10K 17	R3	1	
0603	SMD Resistor 51R 18	0603 SMD	R34	1	
LED	01, D2, D3, D4 19 IP1	5N03M SMD	R35,R10,RNTC	3	
MOS	Tube Q1, Q2 20 4.7ÿ	H 9A	R1	1	
RDC<	10mR Buck-Boost In	ductor L1 21 TYPE-C Socket T	YPE-C Socket	4	
TYPE	-C Socket 22 USB-A	Socket USB-A Socket 23 Tactil	e switch	2	
24 060	03 chip resistor 510K	25 0603 chip capacitor 3.3nF 1	0%	1	
35V C	14, C15 26 0603 chip	resistor 2R R21, R22		1	
			USB-A	1	
			SW1	1	
			R6	1	
				2 NC, for	certification
				2 NC, for	certification

23 / 26

14 IP2369 packaging information

Figure 11 Package diagram

15 IP2369 silk screen instructions

Figure 12 Silkscreen

16 IP2369 Liability and Copyright Statement

Silicon Source Technology Co., Ltd. reserves the right to make corrections, modifications, enhancements, improvements or other changes to the products and services provided.

Before placing an order, you should obtain the latest relevant information and verify that the information is complete and up to date. All product sales are subject to the order confirmation.

Terms and conditions of sale provided

Silicon Source Technology Co., Ltd. assumes no obligation for application assistance or customer product design. Customers should be responsible for their use of Silicon Source products and applications

To minimize the risks associated with customer products and applications, customers should provide sufficient design and operational safety verification.

Customers acknowledge and agree that while any application-related information or support may be provided by Silicon Source, they are solely responsible for satisfying their product requirements

Customer declares and agrees that they have the ability to formulate

All the professional skills and knowledge required to implement safety measures can foresee the dangerous consequences of failures, monitor failures and their consequences, reduce the risk of

The customer will fully indemnify the customer for any losses incurred by the use of any silicon source in such critical applications.

any losses caused to Siyuante and its agents due to the use of Siyuante products

For Siyuante product manuals or data sheets, only if the contents are not tampered with and the relevant authorizations, conditions, restrictions and statements are included.

Copying is permitted only if the information is tampered with. Silicon Source assumes no responsibility or liability for such tampered documents. Copying third-party information may require

Additional restrictions apply.

Silicon Source will update the contents of this document from time to time. The actual parameters of the product may vary due to different models or other factors. This document does not make any

for any express or implied warranties or warranties.

When reselling Siyuante products, if the description of the product parameters is different from the parameters marked by Siyuante or there are false ingredients.

You will lose all express or implied warranties for the relevant Silicon Source products and this is an unfair and fraudulent business practice. Silicon Source is not responsible for any such false

No responsibility or liability is assumed for any statement.