Progress Update

Hurricane Wind Speed Prediction Using Deep Learning and Machine Learning

Milestones

- October 19: Completing of preparation of images for baseline model and implementation and initial results of baseline model.
- November 2: Hyperparameter Tuning results for baseline model. Completion of preparation of images for pre-trained models (converting single-band images to RGB images based on timestep).
- November 16: Completion of pre-trained model training, hyperparameter tuning.
- November 30: Training classifier and constructing a pipeline for the proposed architecture.
- **December 14:** Model evaluation and Performance Comparison. Completion of Final Report.

Train v/s Validation data distribution

Data Distribution

Sample Training Data

Model Performance Comparison

		Learning		Loss	Batch	Number	Image			Train	Validation	Validation		Test
Model Name	Optimizer	Rate	Scheduler	Function	Size	of Epochs	Size	Data Augmentation	Train MSE	RMSE	MSE	RMSE	Test MSE	RMSE
Best Baseline CNN	Adam	0.001	No	MSELoss	256	50	224×224	No	29.62	5.43	29.2	5.39	128.64	11.32
Densenet 6	Adam	0.001	No	MSELoss	128	34	366×366	No	92.57	9.58	104.607	10.188	112.063	10.53
Densenet 161	Adam	0.001	Yes	MSELoss	128	34	366×366	Vertical Flip, Horizontal Flip, Rotations	119.93	10.91	120.69	10.948	117.62	10.8
								Vertical Flip, Horizontal						
Densenet 6	Adam	0.001	Yes	MSELoss	128	35	366x366	Flip	107.267	10.319	111.725	10.52	112.87	10.57
EfficientNet B4	Adam	0.001	No	MSELoss	128	35	366×366	No	431016215.4	5731.29	123446924.5	3457.81	364110087.6	5976.97
EfficientNet B6	Adam	0.001	Yes	MSELoss	128	35	366×366	Vertical Flip, Horizontal Flip, Rotations	120.36	10.92	127.43	11.24	137.76	11.69
								Vertical Flip, Horizontal						
EfficientNet B7	Adam	0.001	Yes	MSELoss	128	35	366×366	Flip	82.69	9.06	102.85	10.1	131.545	11.42

Train loss and Validation loss all models

Train loss and Validation loss without efficient net b4

Next Steps

Next Steps

- Test out best models for classification, hyperparameter tuning to achieve better performance.
- Hyperparameter tuning (for Densenet161 and EfficientNet B7) to get the best model for regression, retrain this model on individual bins, use this for prediction.
- Generate a pipeline, evaluate performance.

Thank You