

Can Rural Counties Benefit from High-Speed Rail Investments: A Case Study of the Dallas—Houston Bullet Train Line

Ziqi Liu, Ph.D. candidate, Community and Regional Planning, the University of Texas at Austin Ming Zhang, Ph.D., professor, Community and Regional Planning, the University of Texas at Austin

Content

- Introduction
 - Significance of HSR Economic Impacts on Rural Counties
 - DAL-HOU HSR Proposal in Texas Triangle
- Measuring Economic Impacts of HSR
 - Input-Output (IO) Model
 - Multi-Regional Input-Output (MRIO) Model
- Modeling Results
 - Input Scenarios for DAL-HOU HSR in Texas Triangle
 - Results of the three scenarios
- Conclusions and Limitations

Introduction

- The construction of the HSR in the US is often objected to by rural landowners foreseeing little benefit from traversing traffic.
- This study contributes to the knowledge of the broad impacts of Dallas/Fort Worth – Houston (DAL-HOU) HSR with a focus on the rural counties in the Texas Triangle with a multi-regional input-output (MRIO) model based on the software IMPLAN.

Introduction

- The result will show the direct, indirect and induced effects of the input by county along the HSR line and map out the incidence of value added by sectors in each county.
- With a focus on the rural counties, the study draws implications for both TCR and public agencies to develop strategies aiming at equitable distribution of HSR investments.

Introduction

 The failure of public investment in HSR results in alternative investment with private money. Texas Central Partners (TC), LLC, a private firm in Texas working on the (DAL-HOU) HSR provides a ray of hope for the feasibility of HSR in the US.

Source: FRA 2017

Measuring Economic Impacts for HSR

- Cost Benefit Analysis (CBA)
 - Compares the ratio of total cost and expected benefits of a project
 - Advantage: take time value into consideration
 - Disadvantage: lack of regional macroscopic economic impact
- Input-Output (IO) Model
 - Calculates output and value added by intermediate transactions from produce sectors to purchase sectors
 - Advantage: evaluate the regional economic impact
 - Disadvantage: cannot map the regional transaction within the study area
- Multi-Regional Input-Output (MRIO) Model
 - Calculates inter-regional transactions by sectors
 - Advantage: map out regional transactions by sectors

Input-Output Model

- Direct effect: those occurring to the firm that exports additional goods or services.
- Indirect effect: those occurring to the backward linked industries that supply the exporting firm.
- Induced effects or consumption effects: households spending some of the additional income in the local area

Multi-Regional Input-Output Model

- Improve the regional specificity and limit aggregation bias
- Examine the interconnectedness of multiple regions
- Track leakages from a study region and determining the impacts created in other regions

Input-Output Model Software Comparison

	Developed and Maintained Organizations	Indicators to regionalize national technical coefficients	Additional Packages
IMPLAN (IMpact analysis for PLANing)	Forest Service of the U.S. Department of Agriculture/ Minnesota IMPLAN Group (MIG, Inc)	Regional Purchase Coefficient (RPC) techniques	MRIO (Multi-Regional Input Output) analysis
REMI (Regional Economic Model Inc.)	Regional Economic Model Inc. Amherst, Massachusetts	Regional Purchase Coefficient (RPC) techniques	
RIMS II (Regional Input-output Model Simulation)	Bureau of Economic Analysis (BEA), US Department of Commerce	Location Quotient (LQ)	

Research design

Scenario #1 objective

Estimate the general value and employment added in Texas state with a longitudinal input

Scenario #2 objective

Measure the sectoral and spatial differences between metropolitan and rural areas

Scenario #3 objective

Evaluate the corridor spillover effect with county-level input

Longitudinal input estimation by sectors

						expenditure by fiscal year (\$million)			illion)
						2016-	2018-		,
		Industry		Expenditu		2017	2019	2020-2021	2021-2035
		Code in	NAICS	re	Percenta	(spent per	(spent per	(spent per	(spent per
			code	(\$million)	ge	year)	year)	year)	year)
	Environmental impact								
Pre-construction	analysis	455	541620	330	2.20%	165	-	-	-
period (consulting and	Management								
management)	consulting services	454	541611	600	4%	300			
	Right-of-way								
	acquisition	440	531190	3,270	21.80%	-	1,635	-	
	Manufacture of rolling								
	stock	362	336510	675	4.50%	-	169	169	-i
	Construction of								
	stations	58		1,710	11.40%	-	428	428	-1
Construction	Construction of railway	54	336510	6,659	44.40%	-	-	3,330	
	Railway, terminals								
	operation	409	488210	75	0.50%	-	-	-	5
	Maintenance of								
Operations	facilities	62/64	488210	1,680	11.20%	-	-	-	112
Total				15,000	100%	930	4,463	7,852	1,755

County-level construction input estimation by sectors

	Length (mile)	Percent	ROW acquisition	Track construction	Station construction	Total
Dallas county	27549	7.0%	230,441	469,339	570,000	1,604,280
Ellis County	53123	13.6%	444,362	905,031	-	1,349,393
Navarro County	45462	11.6%	380,279	774,514	-	1,154,794
Limestone County	7253	1.9%	60,670	123,566	-	184,236
Freestone County	43798	11.2%	366,360	746,165	-	1,112,526
Leon County	43745	11.2%	365,917	745,262	-	1,111,180
Madison County	23936	6.1%	200,219	407,786	-	608,005
Grimes County	67843	17.4%	567,491	1155,808	570,000	2,293,300
Brazos County		0%	0,000	0,000	_	0,000
Waller County	15620	3.996%	130,658	266,110	-	396,768
Harris County	62596	16.012%	523,602	1,066,418	570,000	2,494,519
Total	390925	100%	3,270,000	6,660,000	1,710,000	12,309,000

Result - Scenario #1

(Unit: million\$)

Total Impact Summary				
Effect Type	Employment	Labor Income (\$)	Total Value Added (\$)	Output (\$)
Direct Effect	82,480	5,369.92	8,007.68	16,339.67
Indirect Effect	41,760	2,940.46	4,756.96	8,839.79
Induced Effect	51,078	2,565.17	4,498.69	7,765.87
Total Effect	175,318	10,875.55	17,263.35	32,945.33

Top-ten Industries affected	
Description	Total Value Added (\$)
Construction of new highways and streets	2,937.60
Real estate	2,809.04
Construction of other new non-residential structures	917.95
Maintenance, repair, and construction of highways, streets, bridges, and tunnels	751.30
Management consulting services	501.54
Railroad rolling stock manufacture	487.30
Wholesale trade	852.57
Full-service restaurants	105.26
Employment services	255.84
Environmental and other technical consulting services	257.85

Result - Scenario #2

In this scenario, the major input are expected to be proportionally distributed in Dallas/Fort Worth metropolitan (NCTCOG) and Houston metropolitan (HGAC) as two terminal stations and the output was measured within 66 counties in Texas Triangle.

Result table for Scenario #2

loout		NCTCOG	HGAC	Top five in	Top five indirectly and inductively affected industries (rank by output)					
	Input	7,371.09	6,789.59	Top live in	Top five indirectly and inductively affected industries (rank by output)					
CAMI Output AAMI	NCTCOG	14,101.07	6,391.54	Wholesale trade	Owner- occupied dwellings	Monetary authorities and depository credit intermediation	Employment services	Services to buildings		
	HGAC	340.02	15,062.75	Wholesale trade	Owner- occupied dwellings	Petroleum refineries	Extraction of natural gas and crude petroleum	Employment services		
	САМРО	37.36	136.44	Semiconductor and related device manufacturing	Wholesale trade	Lighting fixture manufacturing	Other communications equipment manufacturing	Stone mining and quarrying		
	AAMPO	20.48	113.36	Iron and steel mills and ferroalloy manufacturing	Fabricated structural metal manufacturing	Wholesale trade	Plate work manufacturing	Insurance carriers		
	Brazos	3.92	14.90	Support activities for oil and gas operations	Iron, steel pipe and tube manufacturing from purchased steel	Commercial and industrial machinery and equipment rental and leasing	Other plastics product manufacturing	Extraction of natural gas and crude petroleum		
	Other	76.80	112.61	Petroleum refineries	Fabricated structural metal manufacturing	Railroad rolling stock manufacturing	Stone mining and quarrying	Electric power generation - Fossil fuel		
	Total	14,579.66	21,831.59							

Result - Scenario #3

 In this scenario, the total investment on right-of-way acquisition and railroad construction are proportionally distributed in ten counties along the way, while the consultant and operation investment are evenly distributed in three anchor counties with stations.

HSR Investment Input by Counties, Scenario 2

Dallas

Freestone

Limestone

Madison

Grimes

Waller

Navarro

Harris

Brazos

Total

Ellis

Leon

Result table for Scenario #3

Dallas

\$4294.56

\$28.49

\$0.97

\$1.09

\$1.51

\$0.07

\$0.91

\$1.07

\$2.8

\$66.05

\$1.04

\$4398.56

Ellis

\$178.06

\$635.90

\$2.20

\$0.18

\$0.14

\$0.14

\$18.00

\$0.03

\$2.04

\$7.03

\$0.08

\$843.80

High	inter-connectivity	

\$117.46

\$480.09

\$19.09

\$12.31

\$0.78

\$0.16

\$0.08

\$56.96

\$28.97

\$0.09

\$720.55

\$4.56

Leon

\$138.87

\$3.53

\$10.21

\$25.31

\$3.16

\$16.28

\$0.27

\$6.35

\$1.43

\$161.65

\$1395.52

\$1028.46

Madison

\$48.93

\$3.60

\$0.85

\$0.83

\$2.30

\$783.11

\$16.39

\$0.74

\$1.13

\$6.74

\$118.45

\$983.07

Grimes

\$57.90

\$8.23

\$1.06

\$0.78

\$2.44

\$3.95

\$2231.48

\$16.49

\$3.16

\$310.65

\$58.20

\$2694.34

Freestone

Low inter-connectivity

\$1.90

\$0.13

\$0.02

\$0.01

\$0.05

\$0.03

\$0.55

\$0.03

\$36.48

\$0.47

\$211.90

\$172.23

Navarro

\$123.88

\$13.51

\$21.34

\$2.36

\$0.43

\$0.05

\$0.03

\$0.05

\$574.15

\$18.24

\$0.13

\$754.17

TOTAL

\$4982.47

\$700.71

\$516.88

\$50.08

\$1048.42

\$791.36

\$2284.82

\$196.71

\$647.25

\$4730.93

\$16020.12

\$70.49

Harris

\$20.91

\$2.76

\$0.14

\$0.43

\$0.78

\$0.07

\$1.02

\$5.75

\$0.63

\$2.31

\$3983.41

\$4018.21

Waller

Conclusion – general output

- Investment in the DAL-HOU HSR will generate around \$32.27 billion and 175,000 jobs in the state of Texas. With the majority of investment distributed to two metropolitan areas, the same input will generate \$36.43 billion in the Texas Triangle megaregion.
- More specifically, \$24.29 billion in the HSR corridor with input proportionally distributed to counties along the line based on the MRIO model with three scenarios. An anomalous finding that output in the Texas Triangle is greater than in the state of Texas could be caused by the duplicated overturn of input generated in multiple regions within the Texas Triangle.

Conclusion – sectoral spillover

- Intermediate demand is significant in parts of Texas where there is no direct input.
 First, for example, Ellis and Navarro counties, the suburbs and outskirts of the Dallas metropolitan area, share a large output spillover with the industrial linkages with manufacturing as the most affected sector followed by farming and mining.
- Second, consumption demands, such as wholesale trade, retail, and full-services
 restaurants in IMPLAN sectors, are also significantly affected as an induced effect of
 HSR investment. For example, in scenario 2, with significant input in the Dallas and
 Houston metropolitan areas, retail, full-service restaurants, and employment services
 all appear in top-ten affected sectors in Austin and San Antonio metropolitan areas.

Conclusion – policy implication

Cultivate the HSR-related industries in the rural areas along DAL-HOU corridor

For the current circumstances, only Fort Worth, Houston and Austin have locomotive and railcar manufacturing services, for example, Sterling Rail Inc, GE Manufacturing Solutions, and Houston Rail Locomotive. If those companies were able to provide HSR related rolling stock, large proportion of manufacturing revenue would remain in those cities and generate little indirect effects to rural counties who provide upstream materials such as steel and cement. If not, TCRR had to purchases those products overseas, leaving not indirect and induced effect in Texas.

Conclusion – policy implication

2. Provide incentives for local purchases through supply chain and household consumption

For intermediate purchases, entreprenuers always choose the minimum cost. What government can do is to offer financial incentives such as tax breaks, grants or subsidies to reduce the cost. Such policies can build a benign local supply chain for the enormous need of materials for the HSR construction. For the household consumption, currently little induced effect will be generated in rural areas in Texas. Economic census and the trade flow survey indicate that salaries received in rural counties along HSR corridor are largely spent in the metropolitan areas. Thus, the local government can provide platforms for local businesses such as the farmer's market and the craft fair.

Limitations

- The Regional Purchase Coefficient (RPC) are based on the existing active sectors in a county, while HSR may generate new activities for non-existing sectors. Thus, no indirect and induced impacts are generated in these counties. E.g., rural counties along D/H HSR lines does not have railway and rolling stock manufacturing for there is no railroad through these counties.
- In terms of private investment, there are some nuances not captured in the model but still worth discussing. The assumption in the model is that all purchases are within the state of Texas as long as the industry exists in the county. However, the reality might be different after price biding. As a private company, TC may purchase major products like locomotives and maglevs overseas, not locally, to minimize the cost for investors. If the HSR line is being built by public agencies, they would be legally obliged to purchase from local, or at least from US suppliers.

Thanks for your attention