

COVID-19 EN REDES SOCIALES: ANÁLISIS DE SENTIMIENTO EN SUDAMÉRICA, 2020 *

Pilar Villena Guzmán pilarvillena@edu.uah.es

Jillie Chang Kcomt jillie.chang@edu.uah.es

Universidad Alcalá de Henares (UAH) Madrid Máster en Business Intelligence y Data Science

Asesor: Dr. Lino González García

Resumen

- 1. Introducción
- 2. Datos
- 3. Modelos
- 4. Resultados
- 5. Conclusiones

Contextualización

- La enfermedad por coronavirus (COVID-19) reportada en diciembre de 2019 ha generado no solo una crisis sanitaria y económica, sino también una crisis social de miedo masivo y fenómenos de pánico que han afectado a la población.
- Esto genera que sea importante medir el sentimiento de la población de modo que los Gobiernos puedan transmitir mensajes apropiados y oportunos a sus ciudadanos. Asimismo, es importante que el Gobierno escuche las opiniones sobre las políticas implementadas a modo de extraer retroalimentación que busque la mejora continua.

Villena, P. & Chang, J. (2020)

UAH, 14 de Diciembre de 2020

Definición de Análisis de sentimientos

 Una técnica utilizada para observar las sensaciones generadas en la población respecto al COVID-19 es el Análisis de sentimientos.

El Análisis de Sentimiento (minería de opinión): uso del Procesamiento de Lenguaje Natural (PLN) para determinar automáticamente el sentimiento que una persona está expresando en un extracto de texto. Este sentimiento puede ser clasificado de manera binaria, terciaria, o con múltiples categorías.

Zhang, M., Ng, J. (2020)

• Existen diferentes métodos para clasificar los sentimientos que pueden ser agrupados en aprendizaje supervisado y no supervisado

Villena, P. & Chang, J. (2020)

Revisión de literatura

Cuadro 1. Literatura revisada

Autor	Lugar	Principales resultados	Método	
Samuel, J. et ál. (2020)	Estados	Sentimientos negativos y miedo se incrementan a medida	A suporvisado	
Samuer, J. et al. (2020)	Unidos	que los contagio aumentaba	A. supervisado	
		Imprensión positiva sobre medidas tomadas por el gobierno		
Barkur, G. et ál. (2020)	India	(sentimientos de molestia y preocupación ante la demora		
		del establecimiento de cuarentena)		
Dubey, A. D. (2020)	12 países	Sentimientos positivos y esperanzadores, aunque con	A. no supervisado	
Dubey, A. D. (2020)	europeos	instantes de tristeza y preocupación	_	
Charma K at ál. (2020)	20 países	Impresión positiva sobre medidas de relacionadas con el		
Sharma K et ál. (2020)	(inglés)	teletrabajo y distanciamiento social		
		imprensión más positiva luego cuarentena. Los tweets que		
Zhang, M., Ng, J. (2020)	Reino Unido	contenían "gobierno" eran más negativos antes de la	A. supervisado y no	
		cuarentena. Hay una reacción más positiva a "quédate en	supervisado	
		casa" que a "cuarentena"		

Objetivos

- En ese contexto, este trabajo de investigación tiene los siguientes objetivos:
 - i. Medir y comparar el sentimiento de los ciudadanos en Sudamérica con respecto a la COVID-19 y a las medidas tomadas por sus gobiernos.
 - ii. Identificar cuáles han sido los temas de interés durante las medidas adoptadas ante la COVID-19.

Datos o o o o o Modelos o o o o Resultados o o o **Conclusiones o**

Extracción de información

• Fuente: Twitter (402 229 tweets)

- ✓ Periodo de descarga: 1 de enero hasta el 31 de agosto de 2020.
- ✓ Zona de descarga: capital de Perú, Uruguay, Ecuador, Argentina, Colombia y Chile
- ✓ Palabras claves: "covid", "pandemia", "coronavirus" y "cuarentena"
- ✓ Idioma: español

Introducción o o o o

Método: Librerías de Python

- ✓ GetOldTweets3
- ✓ Tweepy

Cuadro 2. Variables que conforman la base de datos del estudio

Librería Variable		Descripción			
	Tweet_Id	Identificador del Tweet			
	Tweet_User_Id	Identificador del Usuario			
GetOIdTweets3	Text	Texto			
	Datetime	Fecha del tweet			
	Hashtags	Etiquetas			
	Location	Capital del país identificado a			
		partir del "geocode" y "distances"			
Tweeny	Tweet_Source	Fuente de origen de tweet			
Tweepy	lang	Idioma			

Villena, P. & Chang, J. (2020)

Contraste de información extraída con hechos reales

Gráfico 1. Evolución de la cantidad de tweets por país, 01-01-2020 al 31-08-2020

Contraste de información extraída con hechos reales

Gráfico 1. Evolución de la cantidad de tweets por país, 01-01-2020 al 31-08-2020

Contraste de información extraída con hechos reales

Gráfico 1. Evolución de la cantidad de tweets por país, 01-01-2020 al 31-08-2020

Contraste de información extraída con hechos reales

Gráfico 1. Evolución de la cantidad de tweets por país, 01-01-2020 al 31-08-2020

Análisis descriptivo de los datos

Gráfico 2. Distribución de cantidad de tweets por país

Cuadro 3. Principales hashtags por país

País	Principales Hashtags				
Argentina	coronavirus, cuarentena, quedateencasa, yomequedoencasa, covid19,				
Argentina	argentina, pandemia, coronavirus argentina, buenos aires				
Chile	coronavirus, covid_19, cuarentena, quedateencasa, chile,pandemia,				
Cilie	cuarentenatotal, covid19Chile, coronavirusenchile				
Colombia	coronavirus, covid_19, cuarentena, colombia, quedateencasa,				
Colonibia	yomequedoencasa, bogota, pandemia, coronavirusencolombia				
Perú	cuarentena, coronavirus, yomequedoencasa, covid_19,				
Peru	quedateencasa, peru, lima, pandemia, coronavirusperu				
Lieuguay	coronavirus, covid_19, cuarentena, quedateencasa, uruguay,				
Uruguay	coronavirus enuruguay, yomequedo encasa, montevideo				
	covid_19, coronavirus, ecuador, cuarentena, quedateencasa, quito,				
Ecuador	covid_19ec, urgente, yomequedoencasa				

Análisis descriptivo de los datos

Gráfico 2. Distribución de cantidad de tweets por país

Cuadro 3. Distribución de principales hashtags por país

País	Principales Hashtags				
Argentina	coronavirus, cuarentena, quedateencasa , yomequedoencasa , covid19, argentina, pandemia, coronavirus argentina, buenos aires				
Chile	coronavirus, covid_19, cuarentena, quedateencasa, chile,pandemia, cuarentenatotal, covid19Chile, coronavirus enchile				
Colombia	coronavirus, covid_19, cuarentena, colombia, quedateencasa, yomequedoencasa, bogota, pandemia, coronavirusencolombia				
Perú	cuarentena, coronavirus, yomequedoencasa , covid_19, quedateencasa , peru, lima, pandemia, coronavirus peru				
Uruguay	coronavirus, covid_19, cuarentena, quedateencasa, uruguay, coronavirus enuruguay, yomequedoencasa, montevideo				
Ecuador	covid_19, coronavirus, ecuador, cuarentena, quedateencasa , quito, covid_19ec, urgente, yomequedoencasa				

Análisis de textos

Análisis de textos

Villena, P. & Chang, J. (2020)

UAH, 14 de Diciembre de 2020

Análisis de textos

Modelos de Análisis de Sentimiento

Gráfico 5. Modelos de Análisis de Sentimiento

Etiquetado mediante emojis

Se etiquetaron automáticamente como "positivos" aquellos tweets que contenían emojis como 😊 🖨 😮 y "negativos" aquellos que contenían 😟 , 😥 .

- Base de entrenamiento de 22274 tweets, con igual cantidad de tweets positivos y negativos
- Base test de 9546 tweets

Evaluación del rendimiento del modelo

- AUC: Muestra la capacidad del modelo para distinguir clases de sentimientos positivos y negativos. Valores a partir de 0.7 se consideran aceptables
- F1W: valor que combina las medidas de precisión y exhaustividad en un solo valor.

Modelos de clasificación

Cuadro 4a. Resultados de modelos

Normalización	Normalización Stemming Elimina Stopwords		Extracción de caracteríticas	Regresión Logística		Lineal SVC		Multinomial Nbayes		Kneighbors Classifier		Árboles de decisión	
Nori	Ster	Elimina Stopwo		AUC	F1W	AUC	F1W	AUC	F1W	AUC	F1W	AUC	F1W
Sí	No	Sí	BOW	0.76	0.70	0.72	0.67	0.78	0.71	0.65	0.57	0.64	0.63
Sí	No	No	BOW	0.77	0.70	0.73	0.67	0.78	0.71	0.66	0.50	0.63	0.63
Sí	Sí	Sí	BOW	0.77	0.70	0.73	0.67	0.78	0.71	0.66	0.56	0.63	0.63
Sí	Sí	No	BOW	0.77	0.70	0.73	0.68	0.78	0.71	0.67	0.51	0.62	0.62
Sí	No	Sí	IT -FD	0.78	0.71	0.76	0.69	0.78	0.71	0.72	0.67	0.62	0.62
Sí	No	No	IT -FD	0.78	0.71	0.76	0.69	0.79	0.71	0.73	0.68	0.61	0.61
Sí	Sí	Sí	IT -FD	0.78	0.71	0.76	0.69	0.78	0.71	0.73	0.68	0.62	0.62
Sí	Sí	No	IT -FD	0.79	0.72	0.77	0.70	0.79	0.71	0.73	0.68	0.61	0.61

Cuadro 4b. Resultados de modelos

Normalización	Stemming	mina opwords	Sentiment Spanish		Bert		
Norn	Stem	Elimi	AUC	F1W	AUC	F1W	
Sí	No	No	0.61	0.46	0.69	0.67	
Sí	Sí	No	0.58	0.19	0.67	0.65	

Capacidad predictiva de modelo seleccionado

Cuadro 5. Matriz de confusión

Matriz de confusión		Polaridad estimada				
		Tweets postivos	Tweets negativos	Total		
Polaridad observada	Tweets postivos	3260	1531	4791		
	Tweets negativos	1144	3611	4755		
	Total	4404	5142	9546		

Cuadro 6. Indicadores de capacidad predictiva

Indicador	Porcentaje
Sensibilidad/Recall (tasa positiva real)	68.0%
Especificidad (tasa negativa real)	75.9%
Precisión	74.0%
Exactitud (Accuracy)	72.0%
F1-ponderado (F1W)	70.9%

- A partir del modelo seleccionado, se predijo el sentimiento con relación a la COVID-19 derivado de cada tweet (se asignó un puntaje de o-1 a cada texto).
- Se determinó que un tweet es positivo si el puntaje es mayor o igual a o.6 y negativo en caso contrario.

Negativo

puntaje de 0.02 según el modelo

"Ningún país se librará del virus. Así que dejen de andar diciendo que es histeria colectiva o que es una estrategia por ser potencia mundial #coronavirus"

Tweet del 26 febrero, Colombia

Positivo

puntaje de 0.773 según el modelo

"¡Se apareció un arco iris al comenzar el toque de queda! Ojalá ese arco iris sea un signo que las cosas mejorarán..." #quedateencasa #cuarentena en San Juan de Miraflores

Tweet del 31 de marzo, Perú

Villena, P. & Chang, J. (2020)

Perú

Gráfico 7. Evolución de ratio de positividad en Perú, febrero-agosto de 2020

Argentina

Gráfico 8. Evolución de ratio de positividad en Argentina, febrero-agosto de 2020

Nota: se utilizó la media móvil de los últimos 7 días

Colombia

Gráfico 9. Evolución de ratio de positividad en Colombia, febrero-agosto de 2020

Nota: se utilizó la media móvil de los últimos 7 días

Introducción o o o o Resultados o o o Datos o o o o o Modelos o o o o o Conclusiones o

Chile

Gráfico 11. Evolución de ratio de positividad en Chile, febrero-agosto de 2020

Nota: se utilizó la media móvil de los últimos 7 días

Uruguay

Gráfico 12. Evolución de ratio de positividad en Uruguay, febrero-agosto de 2020

Ecuador

Gráfico 10. Evolución de ratio de positividad en Ecuador, febrero-agosto de 2020

Nota: se utilizó la media móvil de los últimos 7 días

Temas de interés

- Se analizan los siguientes temas: "Quédateencasa", "Gobierno", "Salud" y "Cuarentena"
- "Quédateencasa" tiene un porcentaje de positividad mucho mayor que "Cuarentena"
- "Gobierno" presentan ratios de positividad muy bajos (menor a 10%)
- Salud tiene una positividad similar al indicador de psotividad promedio relacionado con términos de la COVID-19 (pandemia, coronvirus, entre otros)

Gráfico 13. Ratio de positividad de Tweets de términos seleccionados, febrero-

Nota: se utilizó la media móvil de los últimos 7 días

Conclusiones

- Se encontró que todos los países mostraron valores menores a 40% en el periodo analizado; es decir los tweets relativos al coronavirus se asociaron a sentimientos negativos
- En promedio, Ecuador y Argentina son los países analizados que presentan mayores niveles de positividad a lo largo de los meses. Por otro lado, Perú y Uruguay mostraron los niveles de positividad más bajos.
- La población no está muy conforme con la actuación del Gobierno
- Los tweets con el hashtag Quédateencasa presentan un sentimiento de positividad mucho mayor que el de aquellos con la palabra "Cuarentena" lo que podría significar una oportunidad para que los gobiernos enfoquen mejor la manera de comunicación de las medidas ante posibles nuevos rebrotes que vuelvan a obligar a la población a permanecer en sus casas.

Villena, P. & Chang, J. (2020)

Conclusiones

- Se encontraron las siguientes limitaciones para la elaboración del presente trabajo:
 - ✓ El etiquetado automático con emojis puede llevar a contradicciones
 - ✓ No se consideraron las opinions neutrales ni sentimientos más complejos.
 - ✓ La geolocalización no es exacta
 - ✓ Los países de Sudamérica no cuentan con una penetración alta en el uso de Twitter (inferencia limitada)

Bibliografía

<u>Barkur, G., Vibha</u>, y Kamath<u>, G. (2020)</u>. Sentiment analysis of nationwide lockdown due to COVID 19 outbreak: Evidence from India. *Asian Journal of Psychiatry. (51)*.

https://doi.org/10.1016/j.ajp.2020.102089

Dubey, A. D. (2020). Twitter Sentiment Analysis during COVID-19 Outbreak. http://dx.doi.org/10.2139/ssrn.3572023

Köksal A. (2020). *BERT Sentiment Analysis Turkish*https://github.com/akoksal/BERT-Sentiment-Analysis-Turkish

Korkut, U., Foley, J. y Ozduzen, O. (2020). The Digital Publics of #Schengen and #Eurozone During the Coronavirus Crisis. *Respond.* (3).

https://drive.google.com/file/d/1f8uokB9rptS9GwNpQe-beyDSoJpQ1wRg/view

Bibliografía

Liu, B., (2012). Sentiment Analysis and Opinion Mining, Morgan & Claypool Publishers https://www.cs.uic.edu/~liub/FBS/SentimentAnalysis-and-OpinionMining.pdf

Samuel, J., Nawaz, G., Rahman, M., Esawi y E., Samuel, Y. (2020). *COVID-19 Public Sentiment Insights and Machine Learning for Tweets Classification.*

https://doi.org/10.3390/inf011060314

Sharma, K., Seo, S., Meng, C., Rambhatla, S. y Liu, Y. (2020). COVID-19 on Social Media: Analyzing Misinformation in Twitter Conversations.

https://arxiv.org/abs/2003.12309

Sobrino, J.C. (2018). *Análisis de Sentimientos en Twitter* [Tesis de maestría, Universidad Oberta de Catalunya]. http://openaccess.uoc.edu/webapps/02/bitstream/10609/81435/6/jsobrinosTFM0618memoria.pdf

Bibliografía

Storjohann, P. (2005), *Corpus-driven vs. corpus-based approach to the study of relational patterns* https://ids-pub.bsz-

<u>bw.de/frontdoor/deliver/index/docId/5006/file/Storjohann_Corpus_driven_vs_corpus_based_approach_to_th_e_study_of_relational_patterns_2005.pdf</u>

Zhang, M., Ng, J., (2020), Twitter Sentiment Analysis: What does Social Media tell us about coronavirus concerns in the UK?

https://www.actuaries.org.uk/system/files/field/document/Twitter%2oSentiment%2oAnalysis.pdf

COVID-19 EN REDES SOCIALES: ANÁLISIS DE SENTIMIENTO EN SUDAMÉRICA, 2020 *

Pilar Villena Guzmán pilarvillena@edu.uah.es

Jillie Chang Kcomt jillie.chang@edu.uah.es

Universidad Alcalá de Henares (UAH) Madrid Máster en Business Intelligence y Data Science

Asesor: Dr. Lino González García

^{*} Código y base disponibles en https://github.com/TFMChangVillena/AnalysisSentimentCovidSudamerica

Anexo

Evolución de ratio de positividad en Colombia, febrero-agosto de 2020

