1. Solution

Let x represent a datum of interest. Let i represent that datum's index. Let ℓ represent that datum's percentile. Let n represent the sample size (number of measurements). In general,

$$\ell = \frac{i}{n}$$

(a) We are given x = 86.061. This means i = 2. We know n = 7. Determine the percentile ℓ .

$$\ell = \frac{2}{7}$$

$$\ell = 0.286$$

So, the percentile rank is 0.286, or 28.6th percentile.

(b) We are given $\ell = 1$. We can use algebra to solve for i.

$$\ell = \frac{i}{n}$$

Multiply both sides by n.

$$n \cdot (\ell) = n \cdot \left(\frac{i}{n}\right)$$

Simplify both sides.

$$n\ell = i$$

To make me happy, switch the sides.

$$i = n\ell$$

Now, we can evaluate i.

$$i = (7)(1)$$

$$i = 7$$

Determine the x associated with i = 7.

$$x = 89.741$$

- (c) The mean: $\bar{x} = \frac{610.495}{7} = 87.214$
- (d) If n is odd, then median is $x_{i=\frac{n+1}{2}}$, the value of x when $i=\frac{n+1}{2}$. Otherwise, if n is even, the median is mean of $x_{i=\frac{n}{2}}$ and $x_{i=\frac{n}{2}+1}$. In this case, n=7 and so n is odd.

median =
$$x_{(7+1)/2}$$
, = x_4

So, median = 86.982

2. Solution

Let x represent a datum of interest. Let i represent that datum's index. Let ℓ represent that datum's percentile. Let n represent the sample size (number of measurements). In general,

$$\ell = \frac{i}{n}$$

(a) We are given x = 92.35. This means i = 25. We know n = 30. Determine the percentile ℓ .

$$\ell = \frac{25}{30}$$

$$\ell = 0.833$$

So, the percentile rank is 0.833, or 83.3th percentile.

(b) We are given $\ell = 0.7$. We can use algebra to solve for *i*.

$$\ell = \frac{i}{n}$$

Multiply both sides by n.

$$n\cdot(\ell)=n\cdot\left(\frac{i}{n}\right)$$

Simplify both sides.

$$n\ell = i$$

To make me happy, switch the sides.

$$i = n\ell$$

Now, we can evaluate i.

$$i = (30)(0.7)$$

$$i = 21$$

Determine the x associated with i = 21.

- (c) The mean: $\bar{x} = \frac{2440.263}{30} = 81.342$
- (d) If n is odd, then median is $x_{i=\frac{n+1}{2}}$, the value of x when $i=\frac{n+1}{2}$. Otherwise, if n is even, the median is mean of $x_{i=\frac{n}{2}}$ and $x_{i=\frac{n}{2}+1}$. In this case, n=30 and so n is even.

median =
$$\frac{x_{15} + x_{16}}{2} = \frac{75.745 + 80.63}{2}$$

So, median = 78.1875