Studienarbeit

»Untersuchung verschiedener Strategien zur Behandlung unbekannter Attributwerte im SeCo-Regellerner«

Übersicht

- Einleitung
- Behandlungsstrategien
- Evaluation
- Schlussfolgerungen

Motivation

- Unbekannte Attributwerte
 - relevant für die meisten ML-Szenarien aus der Praxis
 - Heterogene Natur verschiedene Ursachen und Semantiken
 - Unbekannter Wert ≠ Informationsverlust
- Tatsächliche Semantik oft unbekannt
 - Lerner kennen meist nur 1 Art von unbekannten Werten

Ansätze

- Mögliche Herangehensweisen:
 - Keine Beispiele mit unbekannten Werten
 - Keine Tests auf Attribute mit unbekannten Werten zulassen
 - Ersetzung von unbekannten Attributwerten durch "reguläre"
 - Einführung einer speziellen Semantik für unbekannte Werte

Zielsetzung

- Implementierung
 - Verschiedener Strategien zur Behandlung von unbekannten Attributwerten
 - Integriert: Ansatz zur Berücksichtigung von numerischer Unschärfe
- Evaluierung
- Basierend auf dem SeCo-Regellerner

Übersicht

- Einleitung
- Behandlungsstrategien
- Evaluation
- Schlussfolgerungen

4-Phasen-Modell

- An welchen Stellen muss man den Lerner erweitern?
- Umgang mit unbekannten Werten in drei Phasen:
 - Bewertung von Kandidatenregeln
 - Abtrennung der abgedeckten Trainingsbeispiele
 - Klassifikation neuer Beispiele
- ...und für integrierte Umsetzung:
 - Vorverarbeitungsphase

Strategien I

Delete

- · Entfernung aller Beispiele mit unbekannten Werten
- Kann praktisch nur als Maßstab für minimal erreichbare Genauigkeit dienen
- Problem: Verschwendung von Trainingsinformation

Ignore

- Unbekannte Werte werden nie abgedeckt
- Keine Verschwendung von Information
- Lernen und Klassifizieren nur auf Grundlage bekannter Angaben

Strategien II

AnyValue

- Unbekannte Werte werden von jeder Bedingung abgedeckt – optimistisches Gegenstück zu Ignore
- Führt zu geringerer "Selektivität" von Bedingungen
 - Schlechteres Lernen aus unvollständigen Attributen
 - Größere Modelle

SpecialValue

- "unbekannt" wird als eigenständiger Attributwert behandelt
- Ignore + Option, aus dem Fehlen von Werten zu lernen

Strategien III

Common

- Ersetzung unbekannter Werte durch häufigsten Wert/Mittelwert
- Minimiert den Ersetzungsfehler

NN

- Verbesserung der Qualität der eingesetzten Schätzer
- Durch "Lokalisierung" der Schätzungen
- DBI verteilungsbasierte Ersetzung
 - Berücksichtigung der Verteilung des Attributs
 - Einsetzung aller möglichen Werte, gewichtet mit Wkt.
 - Begrenzung der Aufspaltung durch Mindestgewicht
 - Partielle Abdeckung von Beispielen möglich
 - Wann ersetzt man?

Strategien IV

HP – Heuristic Penalty

- "Bestrafung" der Bewertungsheuristik für Tests auf unbekannte Werte
 - Von Entscheidungsbäumen bekannt als Prinzip des "reduced information gain"
- Tests auf unbekannte Werte werden immer als Fehler gezählt
- Integriert: Umgang mit numerischer Unschärfe
 - Parametrisiert mit Unschärferadius
 - Beispiel kann nicht abgedeckt werden von Test auf Wert im Unschärfebereich

Übersicht

- Einleitung
- Behandlungsstrategien
- Evaluation
- Schlussfolgerungen

Datensätze

- ...mit unbekannten Werten
 - · Reale Daten mit "Lücken"
 - Manuelles "Ausdünnen" präparierte Daten

Pro:

- Vergleich mit dem Ergebnis ohne unbekannte Werte möglich
- Kontrolle über betroffene Attribute und Ausfallraten

Contra:

Systematischer Einfluss des Erzeugungsverfahrens

Präparierte Daten

- Erzeugungsalgorithmus
 - Auswahl der 3 wertvollsten Attribute
 - Entfernung von zufälligen Werten unabhängig voneinander in 15%-Schritten bis max. 90%

 Mit den 3 umfangreichsten Datensätzen ohne unbekannte Werte

Präparierte Daten

Einfluss auf gelernte Modelle - Erwartung

Präparierte Daten

Einfluss auf gelernte Modelle

Präparierte Daten

Erzielte Genauigkeiten – präparierte Daten

Reale Daten

Mittlere Genauigkeiten – reale Daten

Reale Daten

Mittlere Genauigkeiten – reale Daten

Reale Daten

- Signifikanzaussagen
 - paarweise t-Tests
 - (fast) alle Strategien sind signifikant besser als Delete
 - Alle anderen Unterschiede sind zu gering
 - Rank-Test (Friedman/Nemenyi)
 - Nur HP sicher besser als Delete

	Delete	DBI	NN	Ignore	Common	Special	Any	НР
# winner	2	4	3	4	3	6	4	7
Ø rank	5,9	5,0	4,6	4,5	4,3	4,2	3,9	3,5

Reale Daten

Signifikanz

paarweise

• (fast) alle Delete

■ Alle and DBI

Rank-Test

	Delete	DBI	NN	Ignore	Common	Special	Any	НР
# winner	2	4	3	4	3	6	4	7
Ø rank	5,9	5,0	4,6	4,5	4,3	4,2	3,9	3,5

Reale Daten

- HP mit Numerischer Unschärfe (NUS)
 - Nur rudimentäre Untersuchung
 - ohne Domänenwissen, ohne Rücksicht auf Wertebereiche
 - gleiche Unschärfe-Intervalle für alle Attribute
 - 6 feste Werte zwischen 0,01 und 0,5

Reale Daten

- im Mittel fast immer besser als die Basisvariante ohne NUS
 - Basisvariante auf keinem Datensatz optimal
 - Beste NUS-Schranke im Mittel 2%, maximal 8% besser als HP ohne NUS

Übersicht

- Einleitung
- Behandlungsstrategien
- Evaluation
- Schlussfolgerungen

Schlussfolgerungen I

- Relativ starker Einfluss der Datensätze
 - Keine der Strategien gleichermaßen für alle Datensätze geeignet
 - Auch im Mittel schwächere Strategien auf einzelnen Datensätzen deutlich überlegen
 - Nur Delete eindeutig suboptimal
- →flexible Wahl der anzuwendenden Strategie ist für einen Lerner von Vorteil

Schlussfolgerungen II

- HP-Strategie hinterlässt zwiespältigem Eindruck
 - Explizite Bestrafung der Bewertungsheuristik offenbar nicht qualitätssensitiv
 - Sehr gute Resultate auf realen Daten
 - integrierte NUS-Unterstützung durchaus vielversprechend
 - attributspezifische Unschärfeschranken
 - auch unabhängig vom HP-Ansatz

Vielen Dank