❤ 图像分割

∅ 分割任务就是在原始图像中逐像素的找到你需要的家伙!

(检测任务)

(分割任务)

❤ 图像分割

∅ 语义分割就是把每个像素都打上标签(这个像素点是人,树,背景等) (语义分割只区分类别,不区分类别中具体单位)

❤ 实例分割

∅ 实例分割不光要区别类别,还要区分类别中每一个个体

❤ 损失函数:

❷ 逐像素的交叉熵:

❷ 交叉熵损失函数公式如下:

Prediction for a selected pixel

Target for the corresponding pixel

$$pos_weight = \frac{num_neg}{num_pos}$$

$$ext{loss} = - ext{pos_weight} imes y_{true}log(y_{pred}) - (1-y_{true})log(1-y_{pred})$$

✓ Focal loss

❷ 样本也由难易之分,就跟玩游戏一样,难度越高的BOSS奖励越高

$$-(1-y_{pred})^{\gamma} imes y_{true}log(y_{pred})-y_{pred}^{\gamma} imes (1-y_{true})log(1-y_{pred})$$

❷ Gamma通常设置为2,例如预测正样本概率0.95, $(1-0.95)^2=0.0025$ 如果预测正样本概率0.4, $(1-0.5)^2=0.25$ (相当于样本的难易权值)

$$-\alpha(1-y_{pred})^{\gamma} \times y_{true}log(y_{pred}) - (1-\alpha)y_{pred}^{\gamma} \times (1-y_{true})log(1-y_{pred})$$

(再结合样本数量的权值就是Focal Loss)

✓ IOU计算

	airplane	923	4	21	8	4	1	5	5	23	6
aut	tomobile	5	972	2					1	5	15
	bird	26	2	892	30	13	8	17	5	4	3
10	cat	12	4	32	826	24	48	30	12	5	7
True Class	deer	5	1	28	24	898	13	14	14	2	1
rue	dog	7	2	28	111	18	801	13	17		3
A .	frog	5		16	27	3	4	943	1	1	
	horse	9	1	14	13	22	17	3	915	2	4
	ship	37	10	4	4		1	2	1	931	10
	truck	20 Jilane autom	39	3	3			2	1	9	923

£	airplane	923	4	21	8	4	1	5	5	23	6
automobile		5	972	2					1	5	15
	bird	26	2	892	30	13	8	17	5	4	3
	cat	12	4	32	826	24	48	30	12	5	7
	deer	5	1	28	24	898	13	14	14	2	1
Line Class	dog	7	2	28	111	18	801	13	17		3
	frog	5		16	27	3	4	943	1	1	
	horse	9	1	14	13	22	17	3	915	2	4
	ship	37	10	4	4		1	2	1	931	10
	truck	20 Jane autom	39	3	3			2	1	9	923

Predicted Class

Predicted Class

✓ MIOU指标:

❷ IoU(Intersection over Union,交并比)

✓ MIOU指标:

✓ U-net

❷ 整体结构:

Ø 概述就是编码解码过程

∅ 简单但是很实用,应用广

❷ 起初是做医学方向,现在也是

✓ U-net

♂ 主要网络结构:

❷ 还引入了特征拼接操作

❷ 以前我们都是加法,现在全都要

② 这么简单的结构就能把分割任务做好

❷ 整体网络结构:

∅ 特征融合, 拼接更全面

把能拼能凑的特征全用上就是升级版了

Deep Supervision :

❷ 也是很常见的事,多输出

现在来看,很多视觉任务都可以套用这招

❷ 可以更容易剪枝:

∅ 因为前面也单独有监督训练

∅ 可以根据速度要求来快速完成剪枝

♂ 训练的时候同样会用到L4,效果还不错

✓ U-net+++ (了解下就行)

✓ 上采样整合高阶特征 (感受野大的,全局的)

❷ 各层统一用卷积得到64个特征图

♂ 5*64=320,最终组合得到全部特征

