שעור 8 העתקות נורמליות

8.1 ערכים עצמיים של העתקות במרחבי מכפלות פנימיות

משפט 8.1 ערכים עצמיים של העתקה צמודה לעצמה ממשיים

כל הערכים עצמיים של העתקה (מטריצה) צמודה לעצמה הם ממשיים.

מצד שני

$$\langle T(\mathbf{v}),\mathbf{v} \rangle = \langle \mathbf{v}, \bar{T}(\mathbf{v}) \rangle$$
 (הגדרה של העתקה צמודה)
$$= \langle \mathbf{v}, T(\mathbf{v}) \rangle$$
 צמודה לעצמה) T $= \langle \mathbf{v}, \lambda \mathbf{v} \rangle$ (T ווקטור עצמי של \mathbf{v}) $= \bar{\lambda} \langle \mathbf{v}, \mathbf{v} \rangle$ (לינאריות חלקית של מכפלה פנימית)

נשווה ביניהם:

$$\lambda \left< \mathbf{v}, \mathbf{v} \right> = \bar{\lambda} \left< \mathbf{v}, \mathbf{v} \right> \quad \Rightarrow \quad (\lambda - \bar{\lambda}) \left< \mathbf{v}, \mathbf{v} \right> = 0 \; .$$

$$.\lambda = \bar{\lambda} \Leftarrow (\lambda - \bar{\lambda}) = 0 \Leftarrow \left< \mathbf{v}, \mathbf{v} \right> \neq 0 \Leftarrow \mathbf{v} \neq 0 \Leftarrow \mathbf{v} \neq 0 \Leftrightarrow \mathbf$$

משפט 8.2 ערכים עצמיים של העתקה אנטי-הרמיטית מדומים

. אם T העתקה אנטי-הרמיטית אז כל הערכים העצמיים של הם מספרים מדומים.

הוכחה:

 $=\lambda \left\langle \mathbf{v},\mathbf{v}
ight
angle$ (לינאריות של מכפלה פנימית) (

מצד שני

$$\langle T(\mathbf{v}),\mathbf{v}
angle = \langle \mathbf{v}, \bar{T}(\mathbf{v})
angle$$
 (הגדרה של העתקה צמודה)
$$= \langle \mathbf{v}, -T(\mathbf{v})
angle$$
 (ד) אנטי-הרמיטית)
$$= - \langle \mathbf{v}, T(\mathbf{v})
angle$$

$$= - \langle \mathbf{v}, \lambda \mathbf{v}
angle$$
 (T ווקטור עצמי של \mathbf{v}) ווקטור עצמי של מכפלה פנימית) פוימית חלקית של מכפלה פנימית)

נשווה ביניהם:

$$\lambda \left< \mathbf{v}, \mathbf{v} \right> = -\bar{\lambda} \left< \mathbf{v}, \mathbf{v} \right> \quad \Rightarrow \quad (\lambda + \bar{\lambda}) \left< \mathbf{v}, \mathbf{v} \right> = 0 \; .$$

$$.\lambda = -\bar{\lambda} \Leftarrow (\lambda + \bar{\lambda}) = 0 \Leftarrow \left< \mathbf{v}, \mathbf{v} \right> \neq 0 \Leftarrow \mathbf{v} \neq 0 \Leftarrow \mathbf{v} \neq 0 \Leftrightarrow \mathbf{v} \neq 0 \Leftrightarrow$$

משפט 8.3 פולינום אופייני של העתקה צמודה לעצמה מתפרק לגורמים לינארים ממשיים

תהי T העתקה (מטריצה) צמודה לעצמה.

- .הפולינום האופייני של T מתפרק לגורמים לינאריים.
 - ממשיים. T ממשיים של הפולינום האופייני של

אם מקדמים מסדר אם מסדר מסדר פולינום האופייני של ו $[T]_B$ של האופייני אז הפולינום אז הפולינום או $\mathbb{F}=\mathbb{C}$

$$m_T(x) = a_0 + a_1 x + \dots x^n ,$$

 $.1 \leq i \leq n$, $a_i \in \mathbb{C}$ כאשר

לפי המשפט היסודי של האלגברה יש לפולינום הזה פירוק לגורמים לינאריים:

$$m_T(x) = a_0 + a_1 x + a_2 x^2 + \ldots + x^n = (x - \lambda_1) \ldots (x - \lambda_n)$$
,

 $.1 \leq i \leq n \ \lambda_i \in \mathbb{C}$

השורשים של הערכים הערכים העצמיים לT אם אם פון משפט 3.1, לפי הערכים הערכים הערכים הערכים ממשיים של הם מספרים ממשיים. T

 $1 \leq i \leq n$, $\lambda_i \in \mathbb{R}$ כלומר,

אם מקדמים מסדר עם מסדר פולינום ווא פולינום או הפולינום האופייני של $\mathbb{F}=\mathbb{R}$ אם

$$m_T(x) = a_0 + a_1 x + \dots x^n ,$$

 $\mathbb{F}=\mathbb{C}$ כאשר $a_i\in\mathbb{R}$ מכאן ההוכחה היא אותה דבר של מכאן. מכאן $1\leq i\leq n$

$\overline{1}$ משפט 8.4 ערך מוחלט של כל ערך עצמי של העתקה אוניטרית שווה

יהי V מרחב מכפלה פנימית מעל שדה $\mathbb C$, ויהי T העתקה V o V אוניטרית. אז הערך מוחלט של כל ערך עצמי של T שווה ל T.

הוכחה:

 $T({f v})=\lambda {f v}$ א"א ז"א השייך לוקטור עצמי אל ז"א אוניטרית, ונניח אוניטרית, ווניטרית, ווני

77

$$\langle T({
m v}), T({
m v})
angle = \langle \lambda {
m v}, \lambda {
m v}
angle \qquad (T$$
 ווקטור עצמי של יט (דינאריות של מכפלה פנימית) ווקטור של מכפלה פנימית) אלינאריות חלקית של מכפלה פנימית)

מצד שני

$$\langle T({
m v}), T({
m v})
angle = \langle {
m v}, ar T T({
m v})
angle$$
 (הגדרה של העתקה צמודה)
$$= \langle {
m v}, I({
m v})
angle$$
 אוניטרית)
$$= \langle {
m v}, {
m v}
angle$$

נשווה ביניהם:

$$\lambda \bar{\lambda} \langle \mathbf{v}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{v} \rangle \quad \Rightarrow \quad (\lambda \cdot \bar{\lambda} - 1) \langle \mathbf{v}, \mathbf{v} \rangle = 0 .$$

$$|\lambda|^2=1 \Leftarrow \lambda \bar{\lambda}=1 \Leftarrow (\lambda \cdot \bar{\lambda}-1)=0 \Leftarrow \langle \mathbf{v},\mathbf{v} \rangle \neq 0 \Leftarrow \mathbf{v} \neq 0 \Leftarrow \mathbf{v}$$
 ווקטור עצמי עצמי יוקטור ע

8.2 העתקות ומטריצות נורמליות

הגדרה 8.1 העתקה נורמלית

העתקה נורמלית מכפלה פנימית במרחב במרחב T:V o V העתקה נורמלית אם

$$T \cdot \bar{T} = \bar{T} \cdot T .$$

מטריצה נורמלית לקראת לקראת לורמלית אם (2

$$A \cdot \bar{A} = \bar{A} \cdot A$$
.

8.3 דוגמאות של העתקות נורמליות

דוגמה 8.1

הוכיחו: העתקה (מטריצה) צמודה לעצמה היא נורמלית.

פתרון:

אם
$$ar{T}=T$$
 צמודה לעצמה אז $ar{T}=T$, לכן

$$T \cdot \bar{T} = T^2 = \bar{T} \cdot T \ .$$

דוגמה 8.2

העתקה (מטריצה) אנטי-הרמיטית היא נורמלית.

פתרון:

אם
$$ar{T} = -T$$
 אנטי-הרמיטית, אז $ar{T} = -T$, לכן

$$T \cdot \bar{T} = T \cdot (-T) = (-T) \cdot T = \bar{T} \cdot T .$$

דוגמה 8.3

העתקה (מטריצה) אוניטרית היא נורמלית.

פתרון:

אם T אוניטרית, אז

$$T \cdot \bar{T} = I$$
 . (#1)

:T -מצד ימין ב-

$$T \cdot \bar{T} \cdot T = I \cdot T \qquad \Rightarrow \qquad T \cdot (\bar{T} \cdot T) = T \ . \tag{#2}$$

מכאן

$$\bar{T} \cdot T = I$$
 . (#3)

:(#3) -ו (#1) לכן מ-

$$T \cdot \bar{T} = I = \bar{T} \cdot T$$
.

דוגמה 8.4

$$A = egin{pmatrix} 3 & -1 & -\sqrt{2} \\ -1 & 3 & -\sqrt{2} \\ \sqrt{2} & \sqrt{2} & 2 \end{pmatrix}$$
 קבעו אם המטריצה

- א) אורתוגונלית,
 - ב) סימטרית,
- ,אנטי-סימטרית
 - נורמלית.

בתרון:

$$A = \begin{pmatrix} 3 & -1 & -\sqrt{2} \\ -1 & 3 & -\sqrt{2} \\ \sqrt{2} & \sqrt{2} & 2 \end{pmatrix}$$

- אינה אורתוגונלית. A
 - ב) אינה סימטרית.
- אינה אנטי-סימטרית. A

(1

$$A \cdot A^t = A^t \cdot A = \begin{pmatrix} 12 & -4 & 0 \\ -4 & 12 & 0 \\ 0 & 0 & 8 \end{pmatrix}$$

לכן A נורמלית.

דוגמה 8.5

מטריצה $A = \begin{pmatrix} 2 & 2i \\ 2 & 4+2i \end{pmatrix}$ אינה אוניטרית, אינה הרמיטית, ואינה אנטי-הרמיטית, אבל היא נורמלית כי

ולכן
$$ar{A}=egin{pmatrix}2&2\\-2i&4-2i\end{pmatrix}$$

$$A \cdot \bar{A} = \bar{A} \cdot A = \begin{pmatrix} 8 & 8 + 8i \\ 8 - 8i & 24 \end{pmatrix}$$

דוגמה 8.6

מטריצה
$$ar{A}=\begin{pmatrix}1&0\\-i&3\end{pmatrix}$$
 אינה נורמלית כי $A=\begin{pmatrix}1&i\\0&3\end{pmatrix}$ ולכן
$$A\cdot \bar{A}=\begin{pmatrix}1&i\\0&3\end{pmatrix}\cdot\begin{pmatrix}1&0\\-i&3\end{pmatrix}=\begin{pmatrix}2&3i\\-3i&9\end{pmatrix}$$

$$\bar{A}\cdot A=\begin{pmatrix}1&0\\-i&3\end{pmatrix}\cdot\begin{pmatrix}1&i\\0&3\end{pmatrix}=\begin{pmatrix}1&i\\-i&10\end{pmatrix}$$

ראינו קודם (במשפט 8.5) כי הנומרליות היא תנאי הכרחי ללכסינות אונטריות. האם זה תנאי מספיק?

.במקרה של $\mathbb{F}=\mathbb{R}$ זה לא נכון

דוגמה נגדית: A אבל A אינה לכסינה כי מטריצה מטריצה מטריצה אינה $A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$ אבל כי

$$p_A(\lambda) = \lambda^2 - 2\lambda + 2$$

. אינו מתפרק לגורמים לינאריים מעל $\mathbb R$. לכן A גם לא לכסינה אורתוגונלית.

אותה המטריצה מעל $Q=egin{pmatrix} rac{1}{\sqrt{2}} & rac{1}{\sqrt{2}} \\ rac{-i}{\sqrt{2}} & rac{i}{\sqrt{2}} \end{pmatrix}$ אנחנו נוכיח המטריצה מעל $Q=egin{pmatrix} rac{1}{\sqrt{2}} & rac{i}{\sqrt{2}} \\ rac{-i}{\sqrt{2}} & i \end{pmatrix}$ בהמשך שנומרליות היא תנאי הכרחי ומספיק ללכסון אוניטרי מעל $\mathbb C$.

דוגמה 8.7

הוכיחו או הפריחו: כל מטריצה סימטרית (לאו דווקא ממשית) היא נורמלית.

פתרון:

דוגמה נגדית:

$$A = \begin{pmatrix} 1 & i \\ i & 2 \end{pmatrix}$$

סימטרית (לא הרמיטית).

$$\bar{A} = \begin{pmatrix} 1 & -i \\ -i & 2 \end{pmatrix}$$

$$A \cdot \bar{A} = \begin{pmatrix} 1 & i \\ i & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & -i \\ -i & 2 \end{pmatrix} = \begin{pmatrix} 1 & i \\ -i & 5 \end{pmatrix}$$

$$\bar{A} \cdot A = \begin{pmatrix} 1 & -i \\ -i & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & i \\ i & 2 \end{pmatrix} = \begin{pmatrix} 2 & -i \\ i & 5 \end{pmatrix}$$

. הלית. לכן $A\cdot \bar{A} \neq \bar{A}\cdot A$ נורמלית.

דוגמה 8.8

. מטריצה וורמלית פי תיא מטריצה לי מטריצה אוניטרית. מטריצה מטריצה ער מטריצה מטריצה מטריצה מטריצה אוניטרית. מטריצה אוניטרית וורמלית פורמלית אוניטרית מטריצה מטריצה אוניטרית מטריצה אוניטרית מטריצה אוניטרית מטריצה אוניטרית. אוניטרית מטריצה אוניטרית מטריע מטריע

פתרון:

נסמן $B=ar{Q}AQ$ נסמן

$$B \cdot \bar{B} = (\bar{Q}AQ) \cdot \overline{(\bar{Q}AQ)}$$

$$= (\bar{Q}AQ) \cdot (\bar{Q}\bar{A}Q)$$

$$= \bar{Q}A \underbrace{Q\bar{Q}}_{=I} \bar{A}Q$$

$$= \bar{Q}A\bar{A}Q$$

$$= \bar{Q}\bar{A}AQ$$
(כי A נורמללית) (כי A נורמללית) .

$$\bar{B} \cdot B = \overline{(\bar{Q}AQ)} \cdot (\bar{Q}AQ)$$

$$= (\bar{Q}\bar{A}Q) \cdot (\bar{Q}AQ)$$

$$= \bar{Q}\bar{A}\underbrace{Q\bar{Q}}_{=I}AQ$$

$$= \bar{Q}\bar{A}AQ.$$

. ולכן $B \cdot ar{B} = ar{B} \cdot B$ ז"א

דוגמה 8.9

 $.\lambda$ סקלית לכל העתקה נורמלית היא $T-\lambda I$ אז אי סקלית לכל העתקה Tהעתקה גורמלית היא העתקה ער

פתרון:

$$\begin{split} (T-\lambda I)\cdot\overline{(T-\lambda I)} &= (T-\lambda I)\cdot\left(\bar{T}-\bar{\lambda}I\right) \\ &= T\bar{T}-\bar{\lambda}T-\lambda\bar{T}+(\lambda\bar{\lambda})I \\ \hline (T-\lambda I)\cdot(T-\lambda I) &= \left(\bar{T}-\bar{\lambda}I\right)\cdot(T-\lambda I) \\ &= \bar{T}T-\lambda\bar{T}-\bar{\lambda}T+(\lambda\bar{\lambda})I \end{split}$$

מכאן . $T\cdot ar{T}=ar{T}\cdot T$ מכאן נרומלית, לכן

$$(T - \lambda I) \cdot \overline{(T - \lambda I)} = \overline{(T - \lambda I)} \cdot (T - \lambda I)$$

לכן $T - \lambda I$ העתקה נורמלית.

ראינו קודם (במשפט 8.5) שנורמליות היא תנאי הכרחי ללכסינות אוניטריות. ז"א אם מטריצה לכסינה אוניטרית, אז היא נורמלית. נוכיח בהמשך שבמקרה של מרוכבים, שנורמליות היא גם תנאי מספיק ללכסינות אוניטריות. כלומר אם מטריצה נורמלית אז היא לכסינה אוניטרית מעל $\mathbb C$.

במקרה של $\mathbb R$, התנאי הזה לא מספיק. ראינו קודם דוגמה (דוגמה 8.7) נגדית. דרוש תנאי נוסף.

8.4 העתקה לכסינה אוניטרית ומטריצה לכסינה אוניטרית

הגדרה 8.2 העתקה לכסינה אוניטרית

-ט כך Q נקראת אוניטרית אם קיימת אוניטרית לכסינה אוניטרית לכסינה A . $A \in \mathbb{F}^{n \times n}$

$$D = Q^{-1}AQ$$

כאשר D מטריצה אלכסונית.

נקראת T . $\mathbb F$ ממדי מעל שדה n ממדי מכפלה פנימית מרחב לאפר $T:V\to V$ נקראת תהי העתקה לכסינה אוניטרית אם קיים בסיס אורתונורמלי $B=\{u_1,\dots,u_n\}$ של U, שבו U מיוצגת אלכסונית.

. במקרה של $\mathbb{F}=\mathbb{R}$ למטריצה (העתקה) לכסינה אוניטרית קוראים $\mathbb{F}=\mathbb{R}$

משפט 8.5 העתקה לכסינה אוניטרית היא נורמלית

תהי T:V o V העתקה נורמלית, כלומר לכסינה אוניטרית. אז T העתקה נורמלית, כלומר

$$T \cdot \bar{T} = \bar{T} \cdot T$$
.

הוכחה: נניח כי $V \to V$ היא העתקה לכסינה אוניטרית. לכן (משפט 7.8) היא העתקה לרונורמלי $T:V \to V$ קיים בסיס אורתונורמלי $T:V \to V$ כך ש- $T|_B$ אלכסונית. נרשום

$$[T]_B = \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix} .$$

אזי

$$[\bar{T}]_B = \overline{[T]_B} = \begin{pmatrix} \bar{\lambda}_1 & & & \\ & \bar{\lambda}_2 & & \\ & & \ddots & \\ & & & \bar{\lambda}_n \end{pmatrix}$$

, לכן הערט היצות אלכסונית. מטריצות אלכסוניות מתחלפות, (ראו דוגמה 10.5), לכן אלכסונית. מטריצות אלכסוניות מתחלפות, אלכסוניות מתחלפות, לא

$$[T \cdot \bar{T}]_{\scriptscriptstyle R} = [\bar{T} \cdot T]_{\scriptscriptstyle R} \quad \Rightarrow \quad T \cdot \bar{T} = \bar{T} \cdot T \ .$$

יאה מעבילה עבור מטריצות: תוצאה אוניטרית. לכך ש- T לכסינה לכך הכרחי לכך אוניטרית. תוצאה אוניטרית.

אם מטריצה ריבועית A לכסינה אוניטרית. אז

$$A \cdot \bar{A} = \bar{A} \cdot A$$

משפט 8.6 העתקה לכסינה אורתוגונלית היא נורמלית וסימטרית

 \mathbb{R} יהי V מרחב וקטורי מעל \mathbb{R} ותהי ותהי T:V o V ותהי

- העתקה נורמלית. T (1
- . העתקה סימטרית T (2

 \mathbb{R} מטריצה לכסינה אורתוגונלית מעל שדה $A \in \mathbb{R}^{n imes n}$

- .העתקה נורמלית A
- .העתקה סימטרית A (4

הוכחה:

כבר הוכחנו זאת למעלה במשפט 8.5. T לכסין אורתוגונלי אז קיים בסיס אורתוגונלי U של V כך שהמטריצה (בר הוכחנו זאת למעלה במשפט 8.5. אלכסונית:

$$[T]_B = \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix} .$$

מכאן

$$[\bar{T}]_B = \overline{[T]_B} = \begin{pmatrix} \bar{\lambda}_1 & & & \\ & \bar{\lambda}_2 & & \\ & & \ddots & \\ & & & \bar{\lambda}_n \end{pmatrix}$$

אלכסונית. מטריצות אלכסוניות מתחלפות לכן

$$[\bar{T}]_B \cdot [T]_B = [T]_B \cdot [\bar{T}]_B$$

ולכן T נורמלי.

B לפי בסיס אורתוגונלי המייצגת על כך על Bשל אורתוגונלי בסיס אורתוגונלי אז קיים בסיס אורתוגונלי לכסין אורתוגונלי אל אורתוגונלי אורתוגונלי אלכסונית:

$$[T]_B = \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix} .$$

אופרטור ממרחב וקטורי מעל $\mathbb R$ למרחב וקטורי מעל $\mathbb R$ לכן $\mathbb R^{n imes n}$, כלומר האיברים של המטריצה T אופרטור ממרחב וקטורי מעל $\mathbb R$ למרחב וקטורי מעל $\mathbb R$ אופרטור ממשיים, כלומר $[T]_B = \overline{[T]_B} = \overline{[T]_B} = \overline{[T]_B}$ לכן $[T]_B = \overline{[T]_B}$

-ט אלכסונית פך אורתוגונלית ו- D אלכסונית כך אז קיימת אורתוגונלית ו- $A \in \mathbb{R}^{n \times n}$ נניח ש-

$$A = Q \cdot D \cdot Q^t .$$

לכן $ar{A} = A^t$ לכן $A \in \mathbb{R}^{n \times n}$

$$A\cdot ar{A}=A\cdot A^t=\left(QDQ^t
ight)\left(QDQ^t
ight)^t$$

$$=QD\underbrace{Q^tQ}_{=I}D^tQ^t \qquad (q^tQ=I)^t \qquad (Q^tQ=I)$$

מצד שני

$$ar{A}\cdot A=A^t\cdot A=\left(QDQ^t
ight)^t\cdot \left(QDQ^t
ight)$$
 $=QD^t\underbrace{Q^tQ}_{=I}DQ^t$ (הגדרה של השיחלוף) $=QD^tIDQ^t$ $=QD^tDQ^t$ $=QD^tDQ^t$ $=QDDQ^t$ $=D^tDQ^t$ $=D^tDQ^t$ $=D^tDQ^t$ $=D^tDQ^t$ $=D^tDQ^t$ $=D^tDQ^t$ $=D^tDQ^t$ $=D^tDQ^t$

-ט אלכסונית פך אורתוגונלית ו- D אלכסונית כך שלכסונית אז קיימת אורתוגונלית אלכסונית כך שלכסונית פריש נניח שלכסונית אורתוגונלית.

$$A = Q \cdot D \cdot Q^t .$$

לכן
$$ar{A} = A^t$$
 לכן $A \in \mathbb{R}^{n imes n}$

$$ar{A}=A^t=ig(QDQ^tig)^t$$
 $=QD^tQ^t$ (הגדרה של השיחלוף) $=QDQ^t$ ($D^t=D$ אלכסונית אז D) $=A$.

דוגמה 8.10

. תהי \bar{T} לכסינה אוניטרית. הוכיחו כי לכסינה אוניטרית תהי T

פתרון:

-כך שר כסינה אוניטרית לכן לפי משפט 7.8, קיים בסיס אורתונורמלי לכסינה לכסינה לכסינה לפי משפט T

$$[T]_B = \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix} .$$

מכאן

$$[\bar{T}]_B = \overline{[T]_B} = \begin{pmatrix} \bar{\lambda}_1 & & & \\ & \bar{\lambda}_2 & & \\ & & \ddots & \\ & & & \bar{\lambda}_n \end{pmatrix} .$$

קיבלנו כי בבסיס אורתונורמלי B, המטריצה המייצגת של $ar{T}$ אלכסונית. ז"א קיים בסיס אורתונורמלי שבו המטריצה המייצגת של $ar{T}$ אלכסונית, לכן $ar{T}$ לכסינה אוניטרית (לפי הגדרה 8.2).

8.5 משפט לכסון אוניטרי

משפט 8.7 משפט לכסון אוניטרי

- תהי לינארית אוניטרי נוצר פנימית היי העתקה לינארית במרחב העתקה לינארית העתקה לינארית אוניטרי נוצר חופית. לכסינה אוניטרית אם"ם היא נורמלית. T
- תהי $T:V \to V$ העתקה לינארית במרחב מכפלה פנימית אוקלידי נוצר סופית. $T:V \to V$ לכסינה אורתונורמלית מעל $\mathbb R$ אם"ם היא סימטרית.
 - מטריצה ריבועית (ממשית או מרוכבת). $A \in \mathbb{F}^{n \times n}$ (3 תהי A לכסינה אוניטרית אם"ם היא נורמלית.
- . מטריצה ריבועית ממשית. A לכסינה אורתוגונלית אם"ם היא סימטרית $A \in \mathbb{R}^{n \times n}$ תהי

למה 8.1 ווקטור עצמי וערך עצמי של העתקה וצמודתה

אם v וקטור עצמי של העתקה נורמלית T, השייך לערך עצמי ל. $\bar{\lambda}$ - אז ערך עצמי של \bar{T} הוא גם וקטור עצמי של $\bar{\lambda}$ השייך ל

 $\|T(\mathbf{v})\| = \|ar{T}(\mathbf{v})\|$ מתקיים עלכל $\mathbf{v} \in V$ מוכיח קודם שלכל

$$\begin{split} \|T(\mathbf{v})\| &= \langle T(\mathbf{v}), T(\mathbf{v}) \rangle \\ &= \langle \mathbf{v}, \bar{T}T(\mathbf{v}) \rangle \\ &= \langle \mathbf{v}, T\bar{T}(\mathbf{v}) \rangle \\ &= \langle \bar{T}(\mathbf{v}), \bar{T}(\mathbf{v}) \rangle \\ &= \|\bar{T}(\mathbf{v})\|^2 \; . \end{split}$$

נניח כעת ש- v וקטור עצמי:

$$T(\mathbf{v}) = \lambda \mathbf{v}$$
.

XI

$$(T - \lambda I)(\mathbf{v}) = 0.$$

לכן

$$||(T - \lambda I)(\mathbf{v})|| = 0.$$

הוכחנו קודם כי $T-\lambda I$ העתקה נורמלית (ראו דוגמה 8.9). לכן

$$||(T - \lambda I)(\mathbf{v})|| = ||\overline{(T - \lambda I)}(\mathbf{v})||,$$

ז"א

$$\|\overline{(T-\lambda I)}(\mathbf{v})\| = \|\overline{T}(\mathbf{v}) - \overline{\lambda}I\mathbf{v}\| = 0$$
.

לכן

$$\bar{T}(\mathbf{v}) - \bar{\lambda}\mathbf{v} = 0 \qquad \Rightarrow \qquad \bar{T}(\mathbf{v}) = \bar{\lambda}\mathbf{v} \ .$$

 $.ar{\lambda}$ אייך לערך עצמי השייך לערך עצמי ז"א י

משפט 8.8 וקטורים עצמיים של העתקה נורמלית של ערכים עצמיים שונים אורתוגונליים

תהי T העתקה נורמלית במרחב מכפלה פנימית V מעל $\mathbb F$. וקטורים עצמיים של T השייכים לערכים עצמיים שונים, אורתוגונליים זה מזה.

 $\lambda_1
eq \lambda_2$, λ_1, λ_2 וקטורים עצמיים של T השייכים עצמיים עצמיים $\mathbf{v}_1, \mathbf{v}_2$ וקטורים עצמיים של

$$T(\mathbf{v}_1) = \lambda_1 \mathbf{v}_1 , \qquad T(\mathbf{v}_2) = \lambda_2 \mathbf{v}_2 .$$

XI

$$\langle T(\mathbf{v}_1), \mathbf{v}_2 \rangle = \langle \lambda_1 \mathbf{v}_1, \mathbf{v}_2 \rangle = \lambda_1 \langle \mathbf{v}_1, \mathbf{v}_2 \rangle$$

וגם

$$\langle T(\mathbf{v}_1), \mathbf{v}_2 \rangle = \langle \mathbf{v}_1, \bar{T}(\mathbf{v}_2) \rangle = \langle \mathbf{v}_1, \bar{\lambda}_2 \mathbf{v}_2 \rangle = \lambda_2 \langle \mathbf{v}_1, \mathbf{v}_2 \rangle$$

א"ז

$$\lambda_1 \langle \mathbf{v}_1, \mathbf{v}_2 \rangle = \lambda_2 \langle \mathbf{v}_1, \mathbf{v}_2 \rangle \qquad \Rightarrow \qquad (\lambda_1 - \lambda_2) \langle \mathbf{v}_1, \mathbf{v}_2 \rangle = 0 .$$

$$\langle \mathbf{v}_1, \mathbf{v}_2 \rangle = 0$$
 לכך $\lambda_1
eq \lambda_2$

8.6 שיטה המעשית ללכסון אוניטרי

תהי $A\in\mathbb{F}^{n\times n}$ מטריצה נורמלית. במקרה ש $\mathbb{F}=\mathbb{R}$ נניח גם ש- A סימטרית. אז $A\in\mathbb{F}^{n\times n}$ היא לכסינה אוניטרית, במקרה שווה לריבוי אלגברי של כל ערך עצמי שווה לריבוי היא לכסינה. לכן הפולינום האופייני מתפרק לגורמים לינאריים וריבוי אלגברי של כל ערך עצמי שווה לריבוי הגאומטרי. כלומר אם

$$|A - \lambda I| = (\lambda - \lambda_1)^{n_1} \cdots (\lambda - \lambda_k)^{n_k}$$

נא, האופייני, אז הפולינום האופייני, אז השורשים האופייני, אז $\lambda_1, \cdots \lambda_k$

$$\dim(V_{\lambda_i}) = n_i$$

$$V_i = \{ \mathbf{v} \in \mathbb{F}^n | A \cdot \mathbf{v} = \lambda_i \mathbf{v} \}$$
 כאשר

בעזרת תהליך גרם-שמידט, נבנה ב- V_{λ_i} בסיס אורתונורמליים B_i בסיס אורתונורמליים אורתונורמליים אורתונורמליים לזה

נתבונן בקבוצת וקטורין

$$B = B_1 \cup B_2 \cup \cdots \cup B_k$$
.

. האיברים של B הם וקטורים עצמיים. \mathbb{F}^n האיברים אורתונורמלי אורתונורמלי

דוגמה 8.11

$$A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$

פתרון:

נבדוק אם A מטריצה נורמלית:

$$A \cdot A^t = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$

$$A^t \cdot A = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$

 $AA^t = A^t A \kappa^{"}$

$$|A - \lambda I| = \begin{vmatrix} 1 - \lambda & -1 \\ 1 & 1 - \lambda \end{vmatrix} = (1 - \lambda)^2 + 1 = \lambda^2 - 2\lambda + 2 = 0$$

 V_{λ_1} נמצא את המרחב עצמיים: . $\lambda_1=1+i, \lambda_2=1-i$ נמצא את

$$A\mathbf{v} - \lambda_1 \mathbf{v} = 0 \quad \Rightarrow \quad (A - (1+i))\mathbf{v} = 0 \quad \Rightarrow \quad \begin{pmatrix} -i & 1 \\ -1 & -i \end{pmatrix} \mathbf{v} = 0$$

$$\left(\begin{array}{cc|c} -i & -1 & 0 \\ 1 & -i & 0 \end{array}\right) \xrightarrow{iR_2 + R_1} \left(\begin{array}{cc|c} -i & -1 & 0 \\ 0 & 0 & 0 \end{array}\right)$$

x=iy לכן -ix=y פתרון:

$$V_{\lambda_1} = \operatorname{span}\left\{ egin{pmatrix} i \\ 1 \end{pmatrix} \right\}$$

 $:V_{\lambda_1}$ בסיס אורתונורמלי

$$B_{\lambda_1} = \operatorname{span}\left\{ \begin{pmatrix} \frac{i}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} \right\}$$

 $:V_{\lambda_2}$ נמצא את המרחב עצמי

$$A\mathbf{v} - \lambda_2 \mathbf{v} = 0 \quad \Rightarrow \quad (A - (1 - i))\mathbf{v} = 0 \quad \Rightarrow \quad \begin{pmatrix} i & 1 \\ -1 & i \end{pmatrix} \mathbf{v} = 0$$

$$\left(\begin{array}{cc|c} i & -1 & 0 \\ 1 & i & 0 \end{array}\right) \xrightarrow{iR_2 - R_1} \left(\begin{array}{cc|c} i & -1 & 0 \\ 0 & 0 & 0 \end{array}\right)$$

x=-iy לכן ix=y פתרון:

$$V_{\lambda_2} = \operatorname{span}\left\{ egin{pmatrix} -i \\ 1 \end{pmatrix}
ight\}$$

 $:V_{\lambda_2}$ בסיס אורתונורמלי של

$$B_{\lambda_2} = \operatorname{span} \left\{ \begin{pmatrix} \frac{-i}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} \right\}$$

לכן

$$B = \operatorname{span} \left\{ \begin{pmatrix} \frac{i}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}, \begin{pmatrix} \frac{-i}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} \right\}$$

בסיס אורתונורמלי של \mathbb{C}^2 . לכן

$$Q = \begin{pmatrix} \frac{i}{\sqrt{2}} & \frac{-i}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$
$$D = \begin{pmatrix} 1+i & 0 \\ 0 & 1-i \end{pmatrix}$$
$$D = \bar{Q} \cdot A \cdot Q$$

דוגמה 8.12

$$A = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

פתרון:

נבדוק אם A מטריצה נורמלית:

$$A \cdot \bar{A} = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\bar{A} \cdot A = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

. לכן A נורמלית. א"ז א"א $A\bar{A}=\bar{A}A$

$$|A - \lambda I| = \begin{vmatrix} 1 - \lambda & 1 & 0 \\ -1 & 1 - \lambda & 0 \\ 0 & 0 & 1 - \lambda \end{vmatrix} = (1 - \lambda) \left((1 - \lambda)^2 + 1 \right) = (\lambda - 1) \left(\lambda^2 - 2\lambda + 2 \right) = (1 - \lambda)(\lambda - 1 - i)(\lambda - 1 + i)$$

 $\lambda=1$ ערכים עצמיים: $\lambda_1=1, \lambda_2=1+i, \lambda_3=1-i$ נמצא את המרחב עצמיי

$$A\mathbf{v} - \lambda_1 \mathbf{v} = 0 \quad \Rightarrow \quad (A - 1)\mathbf{v} = 0 \quad \Rightarrow \quad \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \mathbf{v} = 0$$

$$\left(\begin{array}{ccc|c} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right) \xrightarrow{R_2 \leftrightarrow R_1} \left(\begin{array}{ccc|c} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

לכן $x=0,y=0,z\in\mathbb{C}$ לכן

$$V_1 = \operatorname{span}\left\{ \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\}$$

 $\lambda = 1 + i$ נמצא את המרחב עצמי

$$A\mathbf{v} - \lambda_2 \mathbf{v} = 0 \quad \Rightarrow \quad (A - (1+i)) \mathbf{v} = 0 \quad \Rightarrow \quad \begin{pmatrix} -i & 1 & 0 \\ -1 & -i & 0 \\ 0 & 0 & -i \end{pmatrix} \mathbf{v} \mathbf{v} = 0$$

$$\begin{pmatrix} -i & 1 & 0 & 0 \\ -1 & -i & 0 & 0 \\ 0 & 0 & -i & 0 \end{pmatrix} \xrightarrow{R_2 \to iR_2 - R_1} \begin{pmatrix} -i & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -i & 0 \end{pmatrix} \xrightarrow{R_1 \to iR_1, R_2 \leftrightarrow R_3} \begin{pmatrix} 1 & i & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 בתרון:
$$x = -iy, z = 0 :$$

$$V_{1+i} = \operatorname{span}\left\{ \begin{pmatrix} -i\\1\\0 \end{pmatrix} \right\}$$

 $\lambda = 1 - i$ נמצא את המרחב עצמי

$$A\mathbf{v} - \lambda_3 \mathbf{v} = 0 \quad \Rightarrow \quad (A - (1 - i)) \mathbf{v} = 0 \quad \Rightarrow \quad \begin{pmatrix} i & 1 & 0 \\ -1 & i & 0 \\ 0 & 0 & i \end{pmatrix} \mathbf{v} \mathbf{v} = 0$$

$$\begin{pmatrix} i & 1 & 0 & 0 \\ -1 & i & 0 & 0 \\ 0 & 0 & i & 0 \end{pmatrix} \xrightarrow{R_2 \to iR_2 + R_1} \begin{pmatrix} i & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & i & 0 \end{pmatrix} \xrightarrow{R_1 \to -iR_1, R_2 \leftrightarrow R_3} \begin{pmatrix} 1 & -i & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

x = iy, z = 0 :פתרון

$$V_{1-i} = \operatorname{span}\left\{ \begin{pmatrix} i \\ 1 \\ 0 \end{pmatrix} \right\}$$

הבסיס אורתונורמלי:

$$B = \operatorname{span} \left\{ \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} \frac{-i}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{pmatrix}, \begin{pmatrix} \frac{i}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{pmatrix} \right\}$$

בסיס אורתונורמלי של \mathbb{C}^2 . לכן

$$Q = \begin{pmatrix} 0 & \frac{-i}{\sqrt{2}} & \frac{i}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 & 0 & 0 \end{pmatrix}$$
$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1+i & 0 \\ 0 & 0 & 1-i \end{pmatrix}$$
$$D = \bar{Q} \cdot A \cdot Q$$

דוגמה 8.13

$$A = \begin{pmatrix} 5 & -1 & -1 \\ -1 & 5 & -1 \\ -1 & -1 & 5 \end{pmatrix}$$

פתרון:

. מטריצה אורתוגונלית, לכן מטריצה אורתוגונלית
$$A = \begin{pmatrix} 5 & -1 & -1 \\ -1 & 5 & -1 \\ -1 & -1 & 5 \end{pmatrix}$$

$$|A - \lambda I| = \begin{vmatrix} 5 - \lambda & -1 & -1 \\ -1 & 5 - \lambda & -1 \\ -1 & -1 & 5 - \lambda \end{vmatrix}$$
$$= -(\lambda - 6)^{2}(\lambda - 3) = 0$$

:ערכים עצמיים

 $\lambda=6$ מריבוי אלגברי

 $\lambda = 3$ מריבוי אלגברי

 $:\lambda=6$ נמצא את המרחב עצמי

$$\left(\begin{array}{ccc|c}
-1 & -1 & -1 & 0 \\
-1 & -1 & -1 & 0 \\
-1 & -1 & -1 & 0
\end{array}\right) \rightarrow \left(\begin{array}{ccc|c}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)$$

לכן $y,z\in\mathbb{R}$,x=-y-z לכן

$$\begin{pmatrix} -y - z \\ y \\ z \end{pmatrix} = y \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + z \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} .$$

$$V_6 = \operatorname{span} \left\{ \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \right\} \ .$$

 $:\lambda=3$ נמצא את המרחב עצמי

$$A\mathbf{v} - 3\mathbf{v} = 0 \quad \Rightarrow \quad (A - 3I)\mathbf{v} = 0 \quad \Rightarrow \quad \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix} \mathbf{v} = 0$$

$$\left(\begin{array}{ccc|c} 2 & -1 & -1 & 0 \\ -1 & 2 & -1 & 0 \\ -1 & -1 & 2 & 0 \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

 $x=z,y=z,z\in\mathbb{R}$:פתרון

$$\begin{pmatrix} z \\ z \\ z \end{pmatrix} = z \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$V_3 = \operatorname{span}\left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix} \right\}$$

בסיס של וקטורים עצמיים:

$$\mathbf{v}_1 = \begin{pmatrix} -1\\1\\0 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} -1\\0\\1 \end{pmatrix}, \mathbf{v}_3 = \begin{pmatrix} 1\\1\\1 \end{pmatrix}$$

 $:V_6$ נבנה בסיס אורתוגונלי של

 $w_1 = v_1$.

$$w_2 = \mathbf{v}_2 - \frac{\langle \mathbf{v}_2, w_1 \rangle}{\|w_1\|^2} w_1 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{-1}{2} \\ \frac{-1}{2} \\ 1 \end{pmatrix}.$$

 $:V_3$ נבנה בסיס אורתוגונלי של

 $:\mathbb{R}^3$ לכן בסיס אורתונורמלי של

$$u_{1} = \frac{1}{\sqrt{2}} \begin{pmatrix} -1\\1\\0 \end{pmatrix} , \quad u_{2} = \sqrt{\frac{2}{3}} \begin{pmatrix} \frac{-1}{2}\\\frac{-1}{2}\\1 \end{pmatrix} , \quad u_{3} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$$

$$D = \begin{pmatrix} 6 & 0 & 0\\0 & 6 & 0\\0 & 0 & 3 \end{pmatrix}$$

$$Q = \begin{pmatrix} \frac{-1}{\sqrt{2}} & \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{3}}\\\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{3}}\\0 & \frac{1}{2\sqrt{6}} & \frac{1}{\sqrt{3}} \end{pmatrix}$$

$$D = \bar{Q} \cdot A \cdot Q$$

8.7 שימושים של משפט הלכסון האוניטרי

הוכחנו כי אם T העתקה צמודה לעצמה, אז כל השורשים של הפולינום האופייני הם ממשיים (משפט 8.1), וגם אם הוכחנו כי אם T אוניטרית אז הערך המוחלט של כל ערך עצמי שווה ל- 1 (משפט 8.4).

ניתן גם להוכיח את המשפט ההפוך.

משפט 8.9 אם שורשי פוליניום אופייני ממשיים אז ההעתרה צמודה לעצמה

תהי T העתקה נורמלית במרחב מכפלה פנימית V נוצר סופית.

אם כל שורשי הפולינום האופייני של T ממשיים, אז T העתקה צמודה לעצמה.

Q המייצגת לפי כל בסיס B, קיימת T וורמלית לפי כל בסיס אוניטרית. ז"א אם אם ווניטרית לפי כל בסיס T אוניטרית ו- D אלכסונית כך ש-

$$[T]_B = QDQ^{-1} \quad \Rightarrow \quad [T]_BQ = QD$$
.

$$[T]_B$$
 באשר עצמיים עצמיים עצמיים של $D=egin{pmatrix} \lambda_1 & & & & & \\ & \ddots & & & & \\ & & \lambda_n \end{pmatrix}$ -ו $Q=egin{pmatrix} |& & & & & \\ u_1 & \cdots & u_n & & \\ & & & & | & \\ & & & & | & \end{pmatrix}$ באשר ברים של D הם הערכים עצמיים.

$$[\bar{T}]_B = \overline{[T]_B} = \overline{QD\bar{Q}} = Q\bar{D}\bar{Q}$$
.

אם הערכים עצמיים של $ar{D}=D$ ממשיים אז T ונקבל

$$[\bar{T}]_B = QD\bar{Q} = [T]_B ,$$

. כלומר $ar{T}=T$ ולכן לעצמה לעצמה

משפט 1 אם ערך מוחלט של שורשי פולינום אופייני שווה אם ערך מוחלט של משפט 8.10

תהי V העתקה נורמלית במרחב מכפלה פנימית V נוצר סופית.

.אם כל שורשי הפולינום האופייני של T שווים בערכם ל- 1, אז T העתקה אוניטרית

המטריצה $[T]_B$ המלכסונית. היא אלכסונית ו- D אוניטרית לכן היא לכסינה אוניטרית לכן אוניטרית ו- D אוניטרית לכן B אוניטרית לפי כל בסיס אוניטרית לפי בסיס B אוניטרית לכן שלכסונית לפי כל בסיס אוניטרית ו- D

$$[T]_B = QD\bar{Q}$$
.

$$[T]_B$$
 באשר Q הם הווקטורים העצמיים של $D=\begin{pmatrix}\lambda_1&&&\\&\ddots&&\\&&\lambda_n\end{pmatrix}$ -ו $Q=\begin{pmatrix}|&&|\\u_1&\cdots&u_n\\&&|\end{pmatrix}$ כאשר הם הערכים עצמיים. נניח ש

$$D \cdot \bar{D} = \begin{pmatrix} |\lambda_1|^2 & & \\ & \ddots & \\ & & |\lambda_n|^2 \end{pmatrix} = I .$$

לכן

$$[T]_B[\bar{T}]_B = (QD\bar{Q}) \cdot (\overline{QD\bar{Q}}) = QD\underbrace{\bar{Q}Q}_{-I} \bar{D}\bar{Q} = Q\underbrace{D\bar{D}}_{=I} \bar{Q} = Q\bar{Q} = I.$$

. לכן T אוניטרית

דוגמה 8.14

תהי U ו- ו- ו- והכיחו כי אם U ו- העתקה הרמיטית מכפלה במרחב מכפלה אוניטרית וו- U העתקה הרמיטית הוכיחו הרמיטית וו- U העתקה אוניטרית וו- אז $T=H\cdot U$ אז

הוכחה: נתון:

.
$$ar{H}=H$$
 הרמיטית לכן H .
 $ar{U}\cdot U=U\cdot ar{U}=I$ אוניטרית, לכן U

צריך להוכיח:

. נורמלית
$$T = H \cdot U = U \cdot H$$

הוכחה:

$$T\cdot ar{T}=(H\cdot U)\cdot (ar{U}\cdot ar{H})$$
 (הגדרה של הצמודה)
$$=H\cdot U\cdot ar{U}\cdot ar{H}$$
 (ת ו H מתחלפות)
$$=H\cdot ar{H}$$
 (ת אוניטרית)
$$=H^2$$
 אוניטרית H) .

$$ar{T}\cdot T=\overline{(H\cdot U)}\cdot (U\cdot H)$$
 $=ar{U}\cdot ar{H}\cdot U\cdot H$ (הגדרה של הצמודה) $=ar{U}\cdot ar{H}\cdot H\cdot U$ (מו במודה לעצמה H) $=ar{U}\cdot H\cdot H\cdot U$ (מו במודה לעצמה H) $=ar{U}\cdot U\cdot H\cdot H$ (מתחלפות) H (מו ב $H\cdot H$ (מו אוניטרית) H

לכן $T\cdot ar{T}=ar{T}\cdot T$ נורמלית.

8.8 *הוכחת המשפט:

לכסינה אוניטרית אם"ם קבוצת ו"ע שלה בסיס א"נ A

משפט A 8.11 לכסינה אוניטרית אם"ם קבוצת ווקטורים עצמיים שלה בסיס אורתונורמלי

מטריצה $A\in\mathbb{F}^{n imes n}$ לכסינה אוניטרית אם"ם קיים בסיס אורתונורמלי של $A\in\mathbb{F}^{n imes n}$ (ביחס למכפלה הפנימית הסטנדרטית של \mathbb{F}^n), שכל איבריו הם ווקטורים עצמיים של A.

A אוניטרית את הבסיס הזה, הרשומים כעמודות, יוצרים מטריצה המלכסנת אוניטרית את

-הוכחה: נניח ש- A לכסינה אוניטרית. אז קיימת Q אוניטרית וA אלכסונית כך ש

$$A=QDQ^{-1}$$
 \Leftrightarrow $AQ=QD$
$$.D=\begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$
 -ו $Q=\begin{pmatrix} \mid & & \mid \\ u_1 & \cdots & u_n \\ \mid & & \mid \end{pmatrix}$ נרשום

מכאו

$$(A \cdot u_1 \quad \cdots \quad A \cdot u_n) = (\lambda_1 u_1 \quad \lambda_2 u_2 \quad \cdots \quad \lambda_n u_n)$$

לכן נקבל כי

$$A \cdot u_1 = \lambda_1 u_1, \quad \cdots, A \cdot u_n = \lambda_n u_n.$$

A בנוסף אוניטירת לכן הקבוצה של העמודות של $\{u_1,\cdots,u_n\}$ היא בסיס אורתונורמלי של עוניסף $\{u_1,\cdots,u_n\}$ שמורכב מווקטורים עצמיים של אורתונורמלי לכן מצאנו בסיס אורתונורמלי

A של עצמיים עצמיים מווקטורים של על $U=\{u_1,\cdots,u_n\}$ נניח שקיים בסיס אורתונורמלי

$$A \cdot u_1 = \lambda_1 u_1, \qquad \cdots \qquad , A \cdot u_n = \lambda_n u_n .$$

 $\dim U = \dim V$ בסיס של U

לכן A לכסינה.

:כרשום Q אוניטרית. Q אוניטרית. ברפט: . $Q=\begin{pmatrix} |&&&|\\u_1&\cdots&u_n\\|&&&|\end{pmatrix}$ נרשום נרשום ערשום אוניטרית. ברפט:

$$AQ = \begin{pmatrix} | & & | \\ Au_1 & \cdots & Au_n \\ | & & | \end{pmatrix} = \begin{pmatrix} | & & | \\ \lambda_1 u_1 & \cdots & \lambda_n u_n \\ | & & | \end{pmatrix} = \begin{pmatrix} | & & | \\ u_1 & \cdots & u_n \\ | & & | \end{pmatrix} \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}.$$

נגדיר
$$D=egin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$
 קיבלנו כי

$$AQ = QD \quad \Rightarrow \quad A = QDQ^{-1}$$
.

לכן A לכסינה אוניטרית.

משפט 8.12 לכסין אוניטרי אם"ם קבוצת ווקטורים עצמיים שלו בסיס אורתונורמלי T

תהי העתקה לינארית $T:V \to V$, כאשר V מרחב מכפלה פנימית n ממדי מעל $T:V \to V$ לכסינה אוניטרית אם"ם קיים בסיס אורתונורמלי של \mathbb{F}^n (ביחס למכפלה הפנימית הסטנדרטית של \mathbb{F}^n), שכל איבריו הם ווקטורים עצמיים של T.

.זהו בסיס שבו T מיוצגת ע"י מטריצה אלכסונית

המטריצה המייצגת ש- $B=\{u_1,\cdots,u_n\}$ כך אורתונורמלי קיימת המייצגת אוניטרית. אז היימת אוניטרית. אז קיימת בסיס אורתונורמלי לפי בסיס לכסונית. נסמן לפי בסיס $[T]_B$ אלכסונית. נסמן

$$[T]_B = D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix} .$$

 \mathbb{F}^n של E לפי הבסיס הסטנדרטי של $[T]_E$,T של המייצגת המייצגת נרשום

$$[T]_E = Q[T]_B Q^{-1}$$
,

$$[T]_{E}Q = Q[T]_{B} \Rightarrow \begin{pmatrix} | & | & | \\ [T]_{E}[u_{1}]_{E} & \cdots & [T]_{E}[u_{n}]_{E} \end{pmatrix} = \begin{pmatrix} | & | & | \\ \lambda_{1}[u_{1}]_{E} & \cdots & \lambda_{n}[u_{n}]_{E} \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} | & | & | \\ [T(u_{1})]_{E} & \cdots & [T(u_{n})]_{E} \end{pmatrix} = \begin{pmatrix} | & | & | \\ \lambda_{1}[u_{1}]_{E} & \cdots & \lambda_{n}[u_{n}]_{E} \end{pmatrix}.$$

מצאנו כי

$$T(u_1) = \lambda_1 u_1$$
, \cdots $T(u_n) = \lambda_n u_n$.

A כן הבסיס האורתונורמלי $B=\{u_1,\cdots,u_n\}$ מורכב מווקטורים עצמיים של

T של עצמיים עצמיים של אורתונורמלי וניח שקיים של אורתונורמלי ווקטורים של ווקטורים של אורתונורמלי וויח שקיים של אורתונורמלי

$$T(u_1) = \lambda_1 u_1, \quad \cdots, T(u_n) = \lambda_n u_n,$$

לכן

$$[T]_E \cdot [u_1]_E = \lambda_1 [u_1]_E, \qquad \cdots \qquad , [T]_E \cdot [u_n]_E = \lambda_1 [u_n]_E.$$

 $\dim U = \dim V$ בסיס של B

נרשום $Q = \begin{pmatrix} 1 & 1 & 1 \\ u_1 & \cdots & u_n \end{pmatrix}$ נרשום $Q = \begin{pmatrix} 1 & 1 & 1 \\ u_1 & \cdots & u_n \\ 1 & 1 \end{pmatrix}$ נרשום נרשום ערשום ווער הקבוצה של העמודות של

$$[T]_E Q = \begin{pmatrix} | & & | \\ [T]_E [u_1]_E & \cdots & [T]_E [u_n]_E \end{pmatrix} = \begin{pmatrix} | & & | \\ \lambda_1 u_1 & \cdots & \lambda_n u_n \\ | & & | \end{pmatrix} = \begin{pmatrix} | & & | \\ u_1 & \cdots & u_n \\ | & & | \end{pmatrix} \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}.$$

נגדיר
$$D=egin{pmatrix} \lambda_1&0&\cdots&0\\0&\lambda_2&\cdots&0\\ dots&dots&\ddots&dots\\0&0&\cdots&\lambda_n \end{pmatrix}$$
 מצאנו כי

$$[T]_E Q = QD \quad \Rightarrow \quad [T]_E = QDQ^{-1} \ .$$

המטריצה המעבר מבסיס B לבסיס הסנדרטי E. לכן מהטריצה D היא המטריצה של B לבסיס הסנדרטי Qלכסינה T מצאני כי קיים בסיס B כך ש $[T]_B$ אלכסונית. B בסיס אורתונורמלי לכן T לכסינה Bאוניטרית.

הוכחת משפט שור

משפט 8.13 תזכורת: מטריצה ניתנת לשילוש

תהי A אם"ם האופייני של A מתפרק לגורמים מעל $\mathbb F$ אם"ם הפולינום האופייני של A מתפרק לגורמים \mathbb{F} לינאריים בשדה

הוכחה: ההוכחה נתונה במשפט 10.10.

משפט 8.14 משפט שור

. (לא בהכרח שונים המה) א ערכים עצמיים אל ערכים ויהיו ויהיו $A\in\mathbb{F}^{n\times n}$ תהי

-ש מטריצה Q אוניטרית כך ש

$$A = QB\bar{Q}$$

כאשר

$$B = \begin{pmatrix} \lambda_1 & b_{12} & \cdots & b_{1n} \\ 0 & \lambda_2 & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

ובפרט B משולשית עליונה.

במילים פשוטות, כל מטריצה ריבועית A דומה אוניטרית למטריצה משולשית עליונה שבו איברי האלכסון הראשי הם הערכים עצמיים של A.

 $A=QBar{Q}\Leftrightarrow B=ar{Q}AQ$. נשים לב כי

A אשר הערכים עצמיים של $\lambda_2,\dots,\lambda_n$ ויהיו ווקטור ששייך לערל ששייך לערל ששייך איז אוקטור עצמי של ווקטור עצמי של

נגדיר q_1 כל ווקטורים אורתונורמליים אשר אורתונורים ל- q_2,\ldots,q_n יהיו

$$Q_1 = \begin{pmatrix} | & & | \\ q_1 & \cdots & q_n \\ | & & | \end{pmatrix} .$$

. מכאו Q_1 א"ג $ar{Q}_1Q_1=I$ מכאו

$$AQ_{1} = \begin{pmatrix} | & | & | \\ Aq_{1} & Aq_{2} & \cdots & Aq_{n} \\ | & | & | \end{pmatrix} = \begin{pmatrix} | & | & | \\ \lambda_{1}q_{1} & Aq_{2} & \cdots & Aq_{n} \\ | & | & | & | \end{pmatrix} = Q_{1} \begin{pmatrix} \lambda_{1} & * \\ 0 & A_{2} \end{pmatrix}$$

לכן

$$\bar{Q}_1 A Q_1 = \begin{pmatrix} \lambda_1 & * \\ 0 & A_2 \end{pmatrix} \tag{*}$$

 $\lambda_2,\dots,\lambda_n$ הם A_2 של עצמיים עצמיים כי הערכים נוכיח כי

$$|\lambda I - A| = |\bar{Q}_1(\lambda I - A)Q_1| = |\lambda \bar{Q}_1 Q_1 - \bar{Q}_1 A Q_1| = \begin{vmatrix} \lambda - \lambda_1 & * \\ 0 & \lambda I - A_2 \end{vmatrix}$$

 $\lambda_2,\dots,\lambda_n$ הם A_2 של עצמיים עצמיים ומכאן ומכאן

שאר ההוכחה היא באינדוקציה.

בסיס: עבור n=1 הטענה מתקיימת.

.k+1 מעבר: נניח כי הטענה מתקיים עבור .k נוכיח אותה עבור

תהי $A\in\mathbb{F}^{k imes k}$ לפי (*),

$$\bar{Q}_1 A Q_1 = \begin{pmatrix} \lambda_1 & * \\ 0 & A_2 \end{pmatrix}$$

כאשר $B_2=egin{pmatrix} \lambda_2&*&\cdots&*\\0&\lambda_2&\cdots&*\\ \vdots&&&\\0&0&\cdots&\lambda_n \end{pmatrix}$ -אוניטרית ו- Q_2 אוניטרית האינדוקציה Q_2 אוניטרית ליונה - $A_2\in\mathbb{F}^{k imes k}$ כך ש-

$$A_2 = Q_2 B_2 \bar{Q}_2 .$$

נגדיר

$$Q = Q_1 \begin{pmatrix} 1 & 0 \\ 0 & Q_2 \end{pmatrix} .$$

$$AQ = AQ_1 \begin{pmatrix} 1 & 0 \\ 0 & Q_2 \end{pmatrix} = Q_1 \begin{pmatrix} \lambda_1 & * \\ 0 & A_2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & Q_2 \end{pmatrix} = Q_1 \begin{pmatrix} \lambda_1 & * \\ 0 & A_2 Q_2 \end{pmatrix} = Q_1 \begin{pmatrix} \lambda_1 & * \\ 0 & Q_2 B_2 \end{pmatrix}$$

$$= Q_1 \begin{pmatrix} 1 & 0 \\ 0 & Q_2 \end{pmatrix} \begin{pmatrix} \lambda_1 & * \\ 0 & B_2 \end{pmatrix} = QB$$

 $A=QBar{Q}$ לפיכך

8.10 הוכחת המשפט: נורמליות נשמרת תחת דמיון אוניטרי

למה 8.2 נורמליות נשמרת תחת דמיון אוניטרי

 ${\mathbb F}$ מעל שדה V העתקה נוצר-סופית מכפלה במרחב מעל שדה $T:V\to V$ העתקה אוניטרית. תהי Q העתקה אוניטרית. עורמלית אם"ם $QT\bar Q$ נורמלית.

 $T=ar{Q}SQ$ אוניטרית אז Q $.S=QTar{Q}$ הוכחה:

$$T\bar{T} = \bar{T}T$$

$$\Rightarrow \ (\bar{Q}SQ)\cdot \overline{(\bar{Q}SQ)} = \overline{(\bar{Q}SQ)}\cdot (\bar{Q}SQ)$$

$$\Rightarrow \qquad \bar{Q}S \underbrace{Q\bar{Q}}_{=I} \bar{S}Q = \bar{Q}\bar{S} \underbrace{Q\bar{Q}}_{=I} SQ$$

$$\Rightarrow \qquad \bar{Q}S\bar{S}Q = \bar{Q}\bar{S}SQ$$

$$\Rightarrow$$
 $S\bar{S} = \bar{S}S$.

8.11 הוכחת המשפט: מטריצה נורמלית ומשולשית היא אלכסונית

למה 8.3 מטריצה נורמלית ומשולשית היא אלכסונית

תהי $A \in \mathbb{F}^{n imes n}$ מטריצה ריבועית.

אלכסונית. אם A מטריצה משולשית וגם נורמלית אז A

הוכחה: נוכיח ע"י אינדוקציה.

בסיס: עבור n=1 הטענה נכונה באופן טריוויאלי.

הנחת האינדוקציה:

נניח שהטענה נכונה עבור n>2 ,n=1 נוכיח אותה עבור אז $A\in\mathbb{F}^{n\times n}$ נוכיח אותה עבור גוכיח אותה עבור אז

$$A = \begin{pmatrix} a_{11} & \bar{\mathbf{x}} \\ 0 & A' \end{pmatrix} , \qquad \bar{A} = \begin{pmatrix} a_{11} & 0 \\ \bar{\mathbf{x}} & \bar{A}' \end{pmatrix}$$

.כאשר $A' \in \mathbb{F}^{n-1 \times n-1}$ משולשית עליונה

$$A \cdot \bar{A} = \begin{pmatrix} |a_{11}|^2 + ||\mathbf{x}||^2 & \mathbf{y} \\ & \mathbf{y} & A' \cdot \bar{A}' \end{pmatrix} , \qquad \bar{A} \cdot A = \begin{pmatrix} |a_{11}|^2 & \mathbf{y} \\ & \mathbf{y} & \mathbf{x}\bar{\mathbf{x}} + \bar{A}' \cdot A' \end{pmatrix}$$

אם A' גם, A' גם כלומר A' גלונה, לכן לפי . $A'\cdot A=A'\cdot A'$ אז X=0 אז אז X=0 אז X=0 אז אלכסונית. לכן לפי ההנחת האינדוקציה X' אלכסונית. לכן X אלכסונית.

8.12 הוכחת משפט לכסון אוניטרי

משפט 8.15 משפט לכסון אוניטרי

- תהי $T:V \to V$ העתקה לינארית במרחב מכפלה פנימית אוניטרי נוצר סופית. $T:V \to V$ לכסינה אוניטרית אם"ם היא נורמלית.
- . מטריצה אם"ם אם לכסינה אוניטרית ממשית או מרוכבת). או מטריצה ריבועית מטריצה אוניטרית או מרוכבת) תהי $A \in \mathbb{F}^{n \times n}$
 - . מטריצה ריבועית ממשית. A לכסינה אורתוגונלית אם"ם היא סימטרית. $A \in \mathbb{R}^{n \times n}$

הוכחה:

רק אם:

. לכל הטענות 4-1, את הכיוון "רק אם" הוכחנו כבר לעיל. נשאר להוכיח את הכיוון השני "אם".

רק אם:

:כעת נוכיח כי אם T נורמלית אז היא לכסינה אוניטרית:

למה
$$S$$
: כל מטריצה דומה אוניטרית למטריצה משולשית אוניטרית למטריצה משולשית אוניטרית למטריצה משולשית נשמרת אוויון אוניטרית למה S : נורמלית נשמרת אוויון אוניטרי אוויון אוניטרי אוויון אוניטרי אווים אווין אוניטרי אווים אויין אוניטרי אווים אוניטרי אוניטרי למטריצה אלכסונית S : מטריצה אלכסונית אוניטרי למטריצה אלכסונית. T

נניח ש $V \to V$ כאשר T מרחב ווקטורי מעל $\mathbb R$. נניח כי T נורמלית, כלומר $T:V \to V$ בסעיף רבסעיף $T:V \to V$ מעיף הקודם) הוכחנו שאם T נורמלית אז היא לכסינה אוניטרית. ז"א $Q \in \mathbb R$ אוניטרית ו- $Q \in \mathbb R$ ש- $Q \in \mathbb R$ ו- $Q \in \mathbb R$ במקרה פרטי ש $Q \in \mathbb R$ אופרטור במרחב אוקלידי, אז $Q \in \mathbb R$ ו- $Q \in \mathbb R$ כך ש- $Q \in \mathbb R$ בפרט, $Q \in \mathbb R$ תהיה לכסינה אורתוגונלית:

$$[T]=QDar{Q}=QDQ^t$$
 ,
$$QQ^t=I\ .$$
 כאשר $QQ^t=I$.
$$[T]^t=\left(QDQ^t\right)^t=QD^tQ^t=QDQ^t=[T]\ .$$
 לכן T סימטרית.

. נורמלית. $A\in\mathbb{C}^{n\times n}$, $T(u)=A\cdot u$ כאשר (1) מקרה פרטי של

. סימטרית אל פרטי של (2) איז א $A \in \mathbb{R}^{n imes n}$, $T(u) = A \cdot u$ כאשר (2) מקרה פרטי של