Modellbildung: Was, Wie, Warum

Wiederholung

Welche Schritte gehören zur Bearbeitung einer Regelungsaufgabe?

Wiederholung

Lösungsweg für Regelungsaufgaben

- 1. Formulierung der Regelungsaufgabe
 - 1. Festwertregelung
 - 2. Folgeregelung
 - 3. Änderung der Streckendynamik
- 2. Auswahl der Regelgröße
- 3. Auswahl der Stellgröße
- 4. Modellierung der Regelstrecke
- 5. Regelerentwurf
- 6. Analyse des Verhaltens des geschlossenen Regelkreises
- 7. Realisierung des Reglers

(nach Lunze2016)

Modellbasierte Verfahren

Es gibt modellfreie Regler**einstell**verfahren z.B. Ziegler-Nichols-Verfahren. Dabei werden die Parameter eine standardisierten Reglerstruktur (z.B. PID-Regler) **LIVE** eingestellt.

→ Welche Vor- und Nachteile hat dieser Ansatz?

Modellbildung

- 1. Beschreibung des Modellierungsziels: Regelaufgabe definiert Anforderungen an Modell (Ein-/Ausgänge, Genauigkeit, linear od. nichtlinear, ...)
- 2. Auswahl der Modellannahmen: Was wird modelliert (Phänomene, Teilsysteme, Wechselwirkungen mit der Umgebung) und was nicht (Einfach starten! Mut zur Lücke!!!)
- 3. Verbale Beschreibung der Regelstrecke "Dieses "Wortmodell" kann von allen an der Modellbildung Beteiligten (und nicht nur von Regelungstechnikern) verstanden und überprüft werden"
- 4. Aufstellung des Blockschaltbildes
 - 1. Teilkomponenten und deren Verbindungen werden im verbale Modell gefunden
 - 2. Blockschaltbild ist die graphische Darstellung
- 5. Aufstellung der Modellgleichungen
 - 1. Jede Teilkomponente muss ihre Ausgänge aus ihrem Zustand und ihren Eingängen berechnen können.
- 6. Modellparametrierung
- 7. Modellvalidierung: Abgleich mit Erwartung oder Messung

(nach <u>Lunze2016</u> mit Ergänzungen/Kommentaren)

Modellbildung

Zitat aus Lunze:

"Als sehr wichtiges *Nebenergebnis* führt die Modellbildung aber auch zu einem tiefgründigen Verständnis der in dem zu steuernden Prozess ablaufenden physikalischen Vorgänge, denn:

Man muss die wichtigsten physikalischen Prozesse verstanden haben, um sie regeln zu können."

Blockschaltbild

Elemente eines Blockschaltbildes (BSB)

Beispiel 1: Fahrzeugmodell 1/

· Betrachtet wird das Fahrzeug

mit einer Masse von m=1000kg einem Reibbeiwert von $b=50\frac{N\cdot s}{m}$ und einer beschleunigenden Kraft von $F_u=500N$

- 1. Wie sieht das Übertragungsglied für das Blockschaltbild aus?
- 2. Wie lange dauert ein Beschleunigungsmanöver von $v_0=5\frac{m}{s}$ auf $v_0=10\frac{m}{s}$?

Beispiel 1: Fahrzeugmodell 2/

1. Übertragungsglied

Beispiel 1: Fahrzeugmodell 3/

2. Dauer der Beschleunigung

- In der Aufgabe ist der Reibbeiwert b angegeben o Der antreibenden Kraft F_u wirkt die Reibkraft $F_R = b \cdot \dot{x}(t)$ entgegen.
- Fahrzeugposition x(t) wird durch Differentialgleichung mit Kräftebilanz beschrieben:

$$egin{array}{c} rac{d^2}{d\,t^2}x(t)\cdot m = \Sigma F \ rac{d^2}{d\,t^2}x(t)\cdot m = F_u - F_R \ rac{d^2}{d\,t^2}x(t)\cdot m = F_u - b\cdot \dot{x}(t) \end{array}$$

- Uns interessiert die Fahrzeuggeschwindigkkeit: $v(t) = \frac{d}{d\,t}x(t)$
- Nach Umformung der folgt so:

$$rac{d}{d\,t}v(t) = -rac{b}{m}\cdot v(t) + rac{F_u}{m}$$

Beispiel 1: Fahrzeugmodell 4/

DGL	Lösung	eingesetzt

DGL	Lösung	eingesetzt
$oxed{rac{d}{dt}v(t) = -rac{b}{m}\cdot v(t) + rac{F_u}{m}}$	$v(t) = rac{F_u}{b} + \mathrm{e}^{-rac{b t}{m}}igg(v_0 - rac{F_u}{b}igg)$	$v(t) = 10 - 5\mathrm{e}^{-t/20}$

Eine Geschwindigkeit von $9.9\frac{m}{s}$ wird nach 78,24s erreicht, $10\frac{m}{s}$ werden **theoretisch** nie erreicht.

ightarrow Wie kann können $8\frac{m}{s}$ erreicht werden, (schnell)? \leftarrow

Beispiel 2: Reihenschwingkreis 1/

- Betrachtet wird ein Reihenschwingkreis ΣRSK
- Spannung $u_1(t)$ ist von außen beeinflussbare Größe
- Spannung $u_2(t)$ ist die Reaktion des Schwingkreises
- zur Zeit t = 0 fließt kein Strom durch die Induktivität
- die Kondensatorspannung einen bekannten Wert u_0
- der RSK ist unbelastet $i_3(t)=0$

Beispiel 2: Reihenschwingkreis 2/

Strom-Spannungsbeziehungen für R, L, C:

$$egin{aligned} u_R(t) &= R \, i_1(t) \ u_L(t) &= L \, rac{d \, i_1(t)}{d \, t} \ u_C(t) &= u_C(0) + rac{1}{C} \int_0^t i_1(au) d au \end{aligned}$$

Beispiel 2: Reihenschwingkreis 3/

Kirchhoff'sche Gesetze:

$$u_2(t) = u_R(t) + u_C(t) \ u_1(t) = u_L(t) + u_R(t) + u_C(t)$$

Ziel: Eine Differentialgleichung ableiten, in der nur noch die Eingangsgröße $u(t) = u_1(t)$ und die Ausgangsgröße $y(t) = u_2(t)$ sowie deren Ableitungen vorkommen.

Beispiel 2: Reihenschwingkreis 3/

Strom-Spannungsbeziehungen für R, L, C:

$$C\,Lrac{d^2}{dt^2}u_2(t) + C\,Rrac{d}{dt}u_2(t) + u_2(t) = C\,Rrac{d}{dt}u_1(t) + u_1(t)$$

Abschluss Modellbildung

• Bei der Modellierung sollte die Dynamik möglichst als Differentialgleichungssystem mit den Ausgängen als abhängige Variable dargestellt werden