Parallel Dense Matrix Algorithms

Chris Kauffman

Last Updated: Sun Oct 3 10:02:31 PM CDT 2021

Logistics

Assignments

- A1 grading in progress, look for results in the next day
- A2 will go up around Friday Thursday and feature MPI Coding

Today

- Overview of some Linear Algebra Libraries
- ▶ Mini-Exam 1

Recall Matrix Transpose

- Common operation on matrices is a transpose notated A^T
- ► Interchanges rows/columns of *A*: $a_{ij} \rightarrow a_{ji}$
- ▶ Diagonal elements stay the same
- ▶ Algorithms that perform operations on A can often be performed on A^T without re-arranging A how? Hint: consider summing rows of A vs summing rows of A^T

Original matrix A

0	5	10	15
20	25	30	35
40	45	50	55
60	65	70	75

transpose(A)

0	20	40	60
5	25	45	65
10	30	50	70
15	35	55	75

Exercise: Matrix Partitioning Across Processors

Ro	Row Partition			
00	01	02	03	
10	11	12	13	
20	21	22	23	
30	31	32	33	

Column Partition			
00	01	02	03
10	11	12	13
20	21	22	23
30	31	32	33

Block Partition			
01	02	03	
11	12	13	
21	22	23	
31	32	33	
	01 11 21	01 02 11 12 21 22	

Proc	Location
	P0 / P00
	P1 / P01
	P2 / P10
	P3 / P11

- Recall several ways to partition matrices across processors
- Diagram shows these
 - Entry ij may be an individual element OR...
 - ► Entry ij may be a **Block**: ex. Block (2,3) is the submatrix from rows 200-299 and cols 300-399
- ► Assume **square** matrices : #rows = #cols
- ▶ Common to multiply to compute product: $C = A \times B$
- ▶ Ideal partitioning for A and B?
- ▶ Ideal partitioning for $C = A^T \times B$
- ▶ Ideal partitioning for $C = A \times B^T$

4

Answers: Matrix Partitioning Across Processors

Row Partition			
00	01	02	03
10	11	12	13
20	21	22	23
30	31	32	33

Column Partition			
00	01	02	03
10	11	12	13
20	21	22	23
30	31	32	33

Blo	Block Partition			
00	01	02	03	
10	11	12	13	
20	21	22	23	
30	31	32	33	

Proc Location		
	P0 / P00	
	P1 / P01	
	P2 / P10	
	P3 / P11	

- $ightharpoonup C = A \times B$
 - Ideally A is row-partitioned, B is column partitioned
 - ► Then block-partitioned *C* could be computed w/o communication
- $ightharpoonup C = A^T \times B$
 - ▶ Ideally A and B column-partitioned
- $ightharpoonup C = A \times B^T$
 - ► Ideally A and B row-partitioned
- ▶ Block-partitioning often used: not ideal for any version but less communication required when both A and A^T will b used

Naive Parallel Dense Multiplication: Overview

- ▶ Most applications start with block-partitioned matrices
- ➤ To compute Matrix-Matrix multiply, procs must have (eventually) multiply full rows by full columns to compute an output block
- Naive method: each Proc stores full rows/columns needed for it to independently compute output block which it stores

Naive Parallel Dense Multiplication: Demo

1. Initial data layout: each Proc holds a block of A. B. and C respectively. Processors are arragned in a logical arid that reflects their initial data.

In subsequent steps, received / computed data is bolded.

3. Each proc participates in an All-to-All sharing of data for the Column it is

This leaves each row with complete columns as well.

2. Each proc participates in an All-to-All sharing of data for the Row it is in.

This leaves each proc with entire rows of A.

POO ! PO1 B10 P11

L-----

4. Each Proc now has a unique set of complete Rows and Columns and can independently compute a block of output matrix C through block multiplication.

Exercise: Analysis of Naive Dense Mult.

Assumptions

- ▶ Matrices A and B are size $N \times N$ so N^2 elements
- ▶ P processors with block partitioning: initially N^2/\sqrt{P} elements of A, B on each proc (assume P is a perfect square)
- Simplified communication cost for All-to-All on a Ring:

$$t_{comm} = (p-1)(t_s + t_w M)$$

with p #procs in ring, t_s comm startup time, t_w per word transfer rate, M message size.

Questions

- 1. What is communication cost of this algorithm?
- 2. How much time does the final block matrix multiply take?
- 3. What is the memory requirement for each proc?
- 4. What do you see as the biggest disadvantage for this algorithm?

Answers: Analysis of Naive Dense Mult.

- 1. What is communication cost of this algorithm?
 - ▶ #Procs in rows/cols is \sqrt{P} ~ ring size
 - $M = N^2/\sqrt{P}$: message size is num elements on each proc
 - ▶ 2 All-to-All shares : 1 for rows, 1 for cols

$$t_{comm} = 2(\sqrt{P} - 1) \times (t_s + t_w(N^2/\sqrt{P}))$$

- 2. What is the memory requirement for each proc? E.g. how many submatrices of A,B are on each proc?
 - ► Full rows/cols on each proc
 - Requires \sqrt{P} submatrices for each Proc
- 3. How much time does the final block matrix multiply take?
 - Each proc has \sqrt{P} submats of A,B to multiply
 - Each submat is size N/\sqrt{O} with size s requiring $O(s^3)$ opts

$$t_{mult} = O((\sqrt{P}) \times ((N/\sqrt{P})^3)) = O(N^3/P)$$

- 4. What do you see as the biggest disadvantage for this algorithm?
 - Major: The need to store \sqrt{P} sub matrices on all procs may be prohibitive
 - Minor: Not much chance to overlap communication / computation in the algorithm

Cannon's Algorithm

- Proposed in Lynn Elliot Carter's 1969 thesis
- Target was very small parallel machines implementing a Kalman Filter algorithm in hardware
- "Communication" happening between small Procs with data in registers
- Scales nicely to large machines and overcomes the large memory requirement of the Naive Mat-Mult Algorithm

A CELLULAR COMPUTER TO IMPLEMENT THE KALMAN FILTER ALCORITHM

by

LYNN ELLIOT CANNON

By the conventional definition of matrix product, if A is multiplied by B, the result, call it C, is given by

$$\begin{array}{c} a_1b_1+a_1b_2+a_3b_3 & a_1b_4+a_2b_5+a_3b_6 & a_1b_7+a_2b_8+a_3b_9 \\ a_4b_1+a_4b_2+a_6b_3 & a_4b_4+a_3b_5+a_6b_6 & a_4b_7+a_5b_8+a_6b_9 \\ a_7b_1+a_8b_2+a_9b_3 & a_7b_4+a_8b_5+a_9b_6 & a_7b_7+a_8b_8+a_9b_9 \\ \end{array}$$

The symmetry of this product can be seen by comparing the ijth element with the jith element and noticing that one is obtained from

-24-

- A. 1. The first row of A is left alone.
 - 2. The second row of A is shifted left one column.
 - The third row of A is shifted left two columns.
 (Note, in general the ith row of A is shifted left i-l columns for i = 1, ..., n).
- B. 1. The first column of B is left alone.
 - 2. The second column of B is shifted up one row
 - The third column of B is shifted up two rows.
 (Note, in general the jth column of B is shifted up j-1 rows for j = 1, ..., n)

Once the registers have been shifted the multiplication pr

Demo

Cannon's Algorithm Pseudocode

```
procedure Cannon(i , j, N){
PE(i,j) has blocks A1=A(i,j) and B1=B(i,j)
Allocate space A2, B2, Cij sized as A1
rsend_col = (j-i+N % N)
rrecv_col = (j+i+N % N)
doboth send A1 to PE(i,rsend_col)
       recv A2 from PE(i.rsend col)
csend_row = (i-j+N % N)
crecv row = (i+i+N % N)
doboth send B1 to PE(csend_row, j)
       recv B2 from PE(csend_row,j)
for(i=1 to N){
  swap A1,A2 and B1,B2
  Cij += A1 * B1
  doboth send A1 to PE(i, j-1+N % N)
         recv A2 from PE(i, j+1+N % N)
  doboth send B1 to PE(i-1+N % N, j)
         recv B2 from PE(i+1+N % N, j)
```

$A_{0,0}$	A _{0,1}	A _{0,2}	A _{0,3}
A _{1,0}	A _{1,1}	A _{1,2}	A _{1,3}
A _{2,0}	A _{2.1}	A _{2,2}	A _{2,3}
A _{3,0}	A _{3,1}	A _{3,2}	A _{3,3}

B _{0,0}	B _{0,1}	B _{0,2}	B _{0,3}
B _{1,0}	B _{1,1}	B _{1,2}	в _{1,3}
B _{2,0}	В _{2,1 в}	ў В _{2,2}	в _{2,3}
B _{3,0}	В _{3,1}	B _{3,2}	В _{3,3}

(b) Initial alignment of B

a) mittai angiinient of A	a)	Initial	alignment	of A
---------------------------	----	---------	-----------	------

	4	1	1	4	1	4
A _{0,0} ~	A _{0.1} ~	A _{0,2} ~	A _{0,3} ~	~ A _{0,1} ~	A _{0,2} ≈	
$\mathbf{B}_{0,0}$	$B_{1,1}$	B _{2,2}	B _{3,3}	B _{1,0}	B _{2,1}	
A _{1,1} <-	A _{1,2} ~	A _{1,3} ~	A _{1,0}	A _{1,2} ~	A _{1,3} ~	
B _{1,0}	B _{2,1}	B _{3,2}	B _{0,3}	B _{2,0}	B _{3,1}	1
A _{2,2} -	A23	A _{2,0} <	A _{2,1}	- A23-	A _{2,0} ~	
${\bf B}_{2,0}$	B _{3,1}	B _{0,2}	B _{1,3}	B _{3,0}	${}^{'}_{I}B_{0,1}$	4
A _{3,3} ⋖	A _{3,0} <	A _{3,1} ~	A _{3,2}	A _{3,0} ~	A _{3,1} ~	
$B_{3,0}$	B _{0,1}	B _{1,2}	B _{2,3}	$B_{0,0}$	B _{1,1}	2
	1			1	1	

(c) A and B after initial alignment

B _{1,0}	B _{2,1}	B _{3,2}	B _{0,3}	
A _{1,2} ~	A _{1,3} ~	A _{1,0} <	A _{1,1} ~	
B _{2,0}	B _{3,1}	B _{0,2}	B _{1,3}	
A23	A _{2,0} ~	A _{2,1} <	A _{2,2} <	
B _{3,0}	B _{0,1}	B _{1,2}	B _{2,3}	
A _{3,0} ~	A _{3,1} ~	A _{3,2} <	A _{3,3} <	
B _{0,0}	B _{1,1}	B _{2,2}	B _{3,3}	
1	1	1	1	
(d) Subm	atrix loca	tions afte	er first shi	ft

	4	4	4	. 4
4	A _{0,2} ~	A _{0.3}	A _{0.0} ~	A _{0.1} ~ · ·
	B _{2,0}	B _{3,1}	B _{0,2}	B _{1,3}
-	A _{1,3} <		A _{1,1} <	A _{1,2} <
	B _{3,0}	B _{0,1}	B _{1,2}	B _{2,3}
9	A _{2,0} <	A _{2,1} ~	A _{2,2} ~	A _{2,3}
	B _{0,0}	${}_{4}^{}$ B _{1,1}	B _{2,2}	B _{3,3}
4-	A _{3,1} <	A _{3,2} *		A _{3,0} <
	B _{1,0}	B _{2,1}	B _{3,2}	B _{0,3}

A _{0,3}	A _{0,0}	A _{0,1}	A _{0,2}
B _{3,0}	B _{0,1}	B _{1,2}	B _{2,3}
A _{1,0}	A _{1,1}	A _{1,2}	A _{1,3}
B _{0,0}	B _{1,1}	B _{2,2}	B _{3,3}
A _{2,1}	A _{2,2}	A _{2,3}	A _{2,0}
B _{1,0}	B _{2,1}	B _{3,2}	B _{0,3}
A _{3,2}	A _{3,3}	A _{3,0}	A _{3,1}
B _{2,0}	B _{3,1}	B _{0,2}	B _{1,3}

(e) Submatrix locations after second shift (f) Submatrix locations after third shift

Figure 8.3 The communication steps in Cannon's algorithm on 16 processes.