

General Description

The MAX3188/MAX3189 single RS-232 transmitters in a SOT23-6 package are for space- and cost-constrained applications requiring minimal RS-232 communications. These devices consume only 150µA of supply current from ±4.5V to ±6V supplies. RS-232 data transmission is guaranteed up to 250kbps with the MAX3188 and up to 1Mbps with the MAX3189.

The MAX3188/MAX3189 transmitters are inverting level translators that convert CMOS-logic levels to 5V EIA/TIA-232 levels. They feature a shutdown input that reduces current consumption to only 1µA and forces the transmitter output into a high-impedance state. The MAX3188/MAX3189 transmitters have a standard inverting output.

Features

- ♦ Small 6-Pin SOT23 Package
- ♦ 150µA Supply Current
- ♦ Shutdown Reduces Supply Current to 1µA
- **♦** Guaranteed Data Rate 1Mbps (MAX3189) 250kbps (MAX3188)
- ♦ Three-State RS-232 Transmitter Output
- ♦ No External Components Required

Applications

Diagnostic Ports **Telecommunications** Networking Equipment

Set-Top Boxes

Digital Cameras

Hand-Held Equipment

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE	TOP MARK
MAX3188EUT-T	-40°C to +85°C	6 SOT23-6	AAHJ
MAX3189EUT-T	-40°C to +85°C	6 SOT23-6	AAHK

Typical Operating Circuit

SHDN Vcc V_{EE} CBYPASS2 MIXIM CBYPASS1 0.1µF MAX3188 MAX3189 TOUT GND CAPACITORS MAY BE POLARIZED OR UNPOLARIZED.

Pin Configuration

ABSOLUTE MAXIMUM RATINGS

V _{CC} to GND (Note 1)	0.3V to +7V
VEE to GND (Note 1)	+0.3V to -7V
V _{CC} to V _{EE} (Note 1)	+13V
TIN, SHDN to GND	
TOUT to GND (SHDN = GND)	±13.2V
TOUT to GND (SHDN = VCC)	±7V
Output Short-Circuit Duration	

Continuous Power Dissipation (T _A =	
6-Pin SOT23 (derate 8.7mW/°C	above +70°C)691mW
Operating Temperature Range	40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	
Lead Temperature (soldering, 10s).	+300°C

Note 1: V_{CC} and V_{EE} can have maximum magnitudes of 7V, but their absolute difference cannot exceed 13V.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +4.5V \text{ to } +6V, V_{EE} = -4.5V \text{ to } -6V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } V_{CC} = +5.4V, V_{EE} = -5.4V, \text{ and } T_A = +25^{\circ}C.) \text{ (Note 2)}$

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS	
DC CHARACTERISTICS		I						
Positive Supply Voltage	V _{CC}			4.5		6	V	
Negative Supply Voltage	VEE			-6		-4.5	V	
Positive Supply Current	Icc	VSHDN = 5V			110	170	μΑ	
Negative Supply Current	IEE	VSHDN = 5V		45	34		μΑ	
Shutdown Supply Current		VSHDN = 0			0.2	1	μΑ	
INPUT LOGIC (TIN, SHDN)	'						'	
Input Logic Threshold Low	VIL					8.0	V	
Input Logic Threshold High	VIH			2.0			V	
Input Leakage					±0.01	±1	μΑ	
TIN Input Hysteresis					100		mV	
TRANSMITTER OUTPUTS		-					'	
Output Voltage Swing	\/===	V_{CC} = 4.5V, V_{EE} = -4.5V, R_L = 3k Ω		±3.7			V	
Output voltage Swing	V _{TOUT}	$V_{CC} = 5.4V$, $V_{EE} = -5.4V$, $R_L = 3k\Omega$		±5				
Output Resistance	RTOUT	V _{CC} = V _{EE} = 0, V _{TOUT} = ±2V		300			Ω	
Output Short-Circuit Current					±35	±60	mA	
Output Leakage Current	Ітоит	$V_{OUT} = \pm 12V$; $V_{CC} = V_{EE} = 0$ or $V_{CC} = +5.4V$, $V_{EE} = -5.4V$; $\overline{SHDN} = 0$				±25	μА	
TIMING CHARACTERISTICS								
Maximum Data Rate		$R_L = 3k\Omega,$ $C_L = 1000pF$	MAX3188EUT	0.25			Mbps	
Maximum Data Hate			MAX3189EUT	1				
Transmitter Cleans			MAX3188EUT		100			
Transmiller Skew	nsmitter Skew t _{TS}			25		ns		
Transition-Region Slew Rate	ate $C_L = 150$ pF to 10 measured from to +3V or +3V to $V_{CC} = 5.4$ V, VEE	$R_L = 3k\Omega$ to $7k\Omega$, $C_L = 150pF$ to 1000pF, measured from -3V	MAX3188EUT	6		30	V/µs	
		to +3V or +3V to -3V, V _{CC} = 5.4V, V _{EE} = -5.4V, T _A = +25°C	MAX3189EUT	24		150	ν/μ3	
Transmitter Enable Time	t _{EN}				2		μs	

Note 2: All devices are 100% tested at T_A = +25°C. All limits over temperature are guaranteed by design.

Typical Operating Characteristics

(V_{CC} = +5.4V, V_{EE} = -5.4V, R_L = $3k\Omega$, T_A = +25°C, unless otherwise noted.)

Pin Description

PIN	NAME	FUNCTION
1	SHDN	Active-Low Shutdown. Pull low to reduce the supply current and to force TOUT into a high-impedance state.
2	GND	Ground
3	TIN	TTL/CMOS Transmitter Input
4	TOUT	RS-232 Transmitter Output
5	VEE	Negative Supply Voltage
6	Vcc	Positive Supply Voltage

Detailed Description

The transmitter is an inverting level translator that converts CMOS-logic levels to 5V EIA/TIA-232 levels. The MAX3188 guarantees a 250kbps data rate, and the MAX3189 guarantees a 1Mbps data rate with worst-case loads of $3k\Omega$ in parallel with 1000pF. The transmitter input does not have a pull-up resistor and should be connected to GND if unused.

Shutdown

The MAX3188/MAX3189 feature a shutdown input. Drive \overline{SHDN} low to reduce the supply current to 1µA (max). Shutdown also forces TOUT into a high-impedance state that allows the signal line to be safely controlled by other transmitters. Drive \overline{SHDN} high for normal operation.

Power-Supply Decoupling

In most circumstances, $0.1\mu F$ bypass capacitors are adequate for power-supply decoupling. Connect the bypass capacitors as close to the IC as possible.

Applications Information

Power-Supply Sources

The MAX3188/MAX3189 require ±4.5V to ±6V dual supplies. For applications where these supply voltages are not present, a DC-DC converter must be added. Due to the devices' low current consumption, a charge pump can provide the proper supply voltages and requires a minimal amount of board space and cost.

Figure 1. Transmitter Propagation-Delay Timing

When using another RS-232 device containing an internal regulated charge pump (Table 1), the MAX3188/MAX3189 may be powered from the internal charge pump (Figure 2). This eliminates the need for additional external DC-DC converters to generate the required $\pm 4.5 \text{V}$ to $\pm 6 \text{V}$ dual supplies.

Table 1. RS-232 Devices with Internal Regulated Charge Pumps

PART	NO. OF Tx/Rx	±15kV ESD PROTECTION	AutoShutdown Plus™	AutoShutdown™	DATA RATE (bps)
MAX3221	1/1			✓	120k
MAX3221E	1/1	✓		1	250k
MAX3222	2/2				120k
MAX3222E	2/2	✓			250k
MAX3223	2/2			✓	120k
MAX3223E	2/2	✓		✓	250k
MAX3224	2/2		✓		250k
MAX3224E	2/2	✓	✓		250k
MAX3225	2/2		✓		1M
MAX3225E	2/2	✓	✓		1M
MAX3226	1/1		✓		250k
MAX3226E	1/1	✓	✓		250k
MAX3227	1/1		✓		1M
MAX3227E	1/1	✓	✓		1M
MAX3232	2/2				120k
MAX3232E	2/2	✓			250k
MAX3237	5/3				1M
MAX3238	5/3		✓		250k
MAX3241	3/5				120k
MAX3241E	3/5	✓			250k
MAX3243	3/5			✓	120k
MAX3243E	3/5	1		1	250k
MAX3244	3/5		✓		250k
MAX3244E	3/5	✓	✓		250k
MAX3245	3/5		✓		1M
MAX3245E	3/5	✓	✓		1M

AutoShutdown and AutoShutdown Plus are trademarks of Maxim Integrated Products.

Figure 2. Powering the MAX3188/MAX3189

_____Chip Information

TRANSISTOR COUNT: 111

Package Information

NOTES

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.