CS2040S

AY20/21 sem 2 github.com/jovyntls

ORDERS OF GROWTH

definitions

$$T(n) = \Theta(f(n))$$

$$\iff T(n) = O(f(n)) \text{ and } T(n) = \Omega(f(n))$$

$$T(n) = \Theta(f(n))$$

$$c_1f(n)$$

$$c_2f(n)$$

$$T(n) = O(f(n))$$
 if $\exists c, n_0 > 0$ such that for all $n > n_0, T(n) \le cf(n)$
$$T(n) = \Omega(f(n))$$
 if $\exists c, n_0 > 0$ such that for all $n > n_0, T(n) > cf(n)$

if $\exists c, n_0 > 0$ such that for all $n > n_0, T(n) > cf(n)$

properties

Let T(n) = O(f(n)) and S(n) = O(g(n))

- addition: T(n) + S(n) = O(f(n) + g(n))
- multiplication: T(n) * S(n) = O(f(n) * g(n))
- composition: $f_1 \circ f_2 = O(q_1 \circ q_2)$
- · only if both functions are increasing
- if/else statements: cost = max(c1, c2) < c1 + c2
- max: $\max(f(n), g(n)) \le f(n) + g(n)$

notable

- $\sqrt{n} \log n$ is O(n)
- $O(2^{2n}) \neq O(2^n)$
- $O(\log(n!)) = O(n \log n) \Rightarrow$ sterling's approximation
- $T(n-1) + T(n-2) + \cdots + T(1) = 2T(n-1)$

master theorem

$$\begin{split} T(n) &= aT(\frac{n}{b}) + f(n) \quad a \geq 0, b > 1 \\ &= \begin{cases} \Theta(n^{\log_b a}) & \text{if } f(n) < n^{\log_b a} \text{ polynomially} \\ \Theta(n^{\log_b a} \log n) & \text{if } f(n) = n^{\log_b a} \\ \Theta(f(n)) & \text{if } f(n) > n^{\log_b a} \text{ polynomially} \end{cases} \end{split}$$

space complexity

- $\Theta(f(n))$ time complexity $\Rightarrow O(f(n))$ space complexity
- the maximum space incurred at any time at any point
- · NOT the maximum space incurred altogether!
- · assumption: once we exit the function, we release all memory that was used

SORTING

overview

- · BubbleSort compare adjacent items and swap
- · SelectionSort takes the smallest element, swaps into place
- InsertionSort from left to right: swap element leftwards until it's smaller than the next element. repeat for next element
- tends to be faster than the other $O(n^2)$ algorithms
- MergeSort mergeSort 1st half; mergeSort 2nd half; merge
- QuickSort
- partition algorithm: O(n)
- stable quicksort: $O(\log n)$ space (due to recursion stack)
 - · first element as partition. 2 pointers from left to right
 - · left pointer moves until element > pivot
 - · right pointer moves until element < pivot
 - · swap elements until left = right.
 - then swap partition and left=right index.

optimisations of QuickSort

- array of duplicates: $O(n^2)$ without 3-way partitioning
- stable if the partitioning algo is stable.
- · extra memory allows quickSort to be stable.

choice of pivot

- worst case $O(n^2)$: first/last/middle element
- worst case $O(n \log n)$: median/random element • split by fractions: $O(n \log n)$
- choose at random: runtime is a random variable

auickSelect

- O(n) to find the k^{th} smallest element
- · after partitioning, the partition is always in the correct position

TREES

binary search trees (BST)

- a BST is either empty, or a node pointing to 2 BSTs.
- tree balance depends on order of insertion
- balanced tree: $O(h) = O(\log n)$
- for a full-binary tree of size $n, \exists k \in \mathbb{Z}^+$ s.t. $n = 2^k 1$

BST operations

- height, h(v) = max(h(v.left), h(v.right))
- leaf nodes: h(v) = 0
- modifying operations
- search, insert O(h)
- delete O(h)
- · case 1: no children remove the node
- case 2: 1 child remove the node, connect parent to
- case 3: 2 children delete the successor; replace node with successor
- · query operations
 - searchMin O(h) recurse into left subtree
 - searchMax O(h) recurse into right subtree
 - successor O(h)
 - if node has a right subtree: searchMin(v.right)
 - else: traverse upwards and return the first parent that contains the key in its left subtree

AVL Trees

- · height-balanced (maintained with rotations)
- ← |v.left.height v.right.height| < 1
- each node is augmented with its height v.height = h(v)
- space complexity: O(LN) for N strings of length L

rebalancing

[case 1] B is balanced: right-rotate

[case 2] B is left-heavy: right-rotate

[case 3] B is right-heavy: left-rotate(v.left), right-rotate(v)

updating nodes after rotation

weights

- · insertion: max. 2 rotations
- · deletion: recurse all the way up
- · rotations can create every possible tree shape.

- search, insert O(L) (for string of length L)
- space: O(size of text · overhead)

interval trees

- search(key) $\Rightarrow O(\log n)$
- · if value is in root interval, return
- if value > max(left subtree), recurse right
- else recurse left (go left only when can't go right)
- all-overlaps $\Rightarrow O(k \log n)$ for k overlapping intervals

orthogonal range searching

- · binary tree; leaves store points, internal nodes store max value in left subtree
- buildTree(points[]) $\Rightarrow O(n \log n)$ (space is O(n))
- query(low, hight) $\Rightarrow O(k + \log n)$ for k points
- v=findSplit() $\Rightarrow O(\log n)$ find node b/w low & high • leftTraversal(v) $\Rightarrow O(k)$ - either output all the right
- subtree and recurse left, or recurse right
- rightTraversal(v) symmetric
- insert(key), insert(key) $\Rightarrow O(\log n)$
- 2D_query() $\Rightarrow O(\log^2 n + k)$ (space is $O(n \log n)$) • build x-tree from x-coordinates; for each node, build a
- y-tree from y-coordinates of subtree • 2D_buildTree(points[]) $\Rightarrow O(n \log n)$

kd-Tree

- stores geometric data (points in an (x, y) plane)
- alternates splitting (partitioning) via x and y coordinates
- construct(points[]) $\Rightarrow O(n \log n)$
- search(point) $\Rightarrow O(h)$
- searchMin() $\Rightarrow T(n) = 2T(\frac{n}{4}) + O(1) \Rightarrow O(\sqrt{n})$

(a, b)-trees

e.g. a (2, 4)-tree storing 18 keys

- rules
- 1. (a, b)-child policy where 2 < a < (b+1)/2

	# keys		# children	
node type	min	max	min	max
root	1	b-1	2	b
internal	a-1	b-1	a	b
leaf	a-1	b-1	0	0

- 2. an internal node has 1 more child than its number of keys 3. all leaf nodes must be at the **same depth** from the root
- terminology (for a node z)
- key range range of keys covered in subtree rooted at z
- keylist list of keys within z
- treelist list of z's children
- max height = $O(\log_a n) + 1$
- min height = $O(\log_b n)$
- search(key) $\Rightarrow O(\log n)$
- = $O(\log_2 b \cdot \log_2 n)$ for binary search at each node
- insert(key) $\Rightarrow O(\log n)$
- split() a node with too many children
- 1. use median to split the keylist into 2 halves
- 2. move median key to parent; re-connect remaining nodes
- 3. (if the parent is now unbalanced, recurse upwards; if the root is reached, median key becomes the new root)

- delete(key) $\Rightarrow O(\log n)$
- if the node becomes empty, merge(y, z) join it with its left sibling & replace it with their parent

• if the combined nodes exceed max size: share(y, z) = merge(y, z) then split()

B-Tree

- (B, 2B)-trees $\Rightarrow (a, b)$ -tree where a = B, b = 2B
- possible augmentation: use a linkedList to connect between each level

Merkle Trees

- · binary tree nodes augmented with a hash of their children
- · same root value = identical tree

HASH TABLES

Let the m be the table size; let n be the number of items; let cost(h) be the cost of the hash function

- $load(hash table), \alpha = \frac{n}{n}$
- = average number of items per bucket
- = expected number of items per bucket
- designing hashing techniques
- division method: $h(k) = k \mod m$ (m is prime)
 - ullet don't choose $m=2^x$
 - if k and m have common divisor d, only $\frac{1}{d}$ of the table will be used
- · multiplication method -

 $h(k) = (Ak) \bmod 2^w \gg (w-r)$ for odd constant A and $m = 2^r$ and w =size of a key in bits

hashing assumptions

- simple uniform hashing assumption
- every key has an equal probability of being mapped to every bucket
- keys are mapped independently
- uniform hashing assumption
- every key is equally likely to be mapped to every permutation, independent of every other key.
- NOT fulfilled by linear probing

properties of a good hash function

- 1. able to enumerate all possible buckets $h: U \to \{1..m\}$
- for every bucket j, $\exists i$ such that h(key, i) = j
- 2. simple uniform hashing assumption

hashCode

rules for the hashCode() method

- 1. always returns the same value, if object hasn't changed
- 2. if two objects are equal, they return the same hashCode

rules for the equals method

- reflexive x.equals(x) => true
- symmetric $x.equals(y) \Rightarrow y.equals(x)$
- transitive x.equals(y), y.equals(z) \Rightarrow x.equals(z)
- · consistent always returns the same answer
- null is null x.equals(null) => false

chaining

- insert(key, value) $O(1 + cost(h)) \Rightarrow O(1)$
- for n items: expected maximum cost = $O(\log n)$
- $\bullet = \Theta(\frac{\log n}{\log(\log(n))})$
- search(kev)
- worst case: $O(n + cost(h)) \Rightarrow O(n)$
- expected case: $O(\frac{n}{m} + cost(h)) \Rightarrow O(1)$ total space: O(m+n)

open addressing - linear probing

- redefined hash function: $h(k, i) = h(k, 1) + i \mod m$
- delete(key): use a tombstone value DON'T set to null

performance

- if the table is $\frac{1}{4}$ full, there will be clusters of size $\Theta(\log n)$
- expected cost of an operation, $E[\#probes] \leq \frac{1}{1-\alpha}$ (assume $\alpha < 1$ and uniform hashing)
- degrades badly as $\alpha \to 1$
- advantages
- · saves space (use empty slots vs linked list)

- better cache performance (table is one place in memory)
- · rarely allocate memory (no new list-node allocation)
- disadvantages
- · more sensitive to choice of hash function (clustering)
- more sensitive to load (as $\alpha \to 1$, performance degrades)

double hashing

for 2 functions
$$f, g$$
, define $h(k, i) = f(k) + i \cdot g(k) \mod m$

- if q(k) is relatively prime to m, then h(k,i) hits all buckets
- e.g. for $q(k) = n^k$, n and m should be coprime.

table size

assume chaining & simple uniform hashing let m_1 = size of the old hash table; m_2 = size of the new hash table; n = number of elements in the hash table

- growing the table: $O(m_1 + m_2 + n)$
- rate of growth

ato or grown.		
table growth	resize	insert n items
increment by 1	O(n)	$O(n^2)$
double	O(n)	O(n), average $O(1)$
square	$O(n^2)$	O(n)

SET ADT

- ✓ speed ✓ space × no orderina
- ✓ no false negatives × may have false positives
- hash table: more space, but resolves collisions

fingerprint hash table

- only stores m bits does not store the key in a table
- P(no false positives) with SUHA $= (1 \frac{1}{m})^n \approx (\frac{1}{e}^{n/m})^n$
- i.e. probability of nothing else in the given (same) bucket
- for $P(\text{no false positives}) < p, \text{ need } \frac{n}{m} \le \log(\frac{1}{1-n})$

bloom filter

- · 2 hash functions requires 2 collisions for a false positive
- for k hash functions (assume independent slots):
- $P(\text{a given bit is }\mathbf{0}) = (1-\frac{1}{m})^{kn} \approx (\frac{1}{e})^{kn/m}$ $P(\text{false positive}) = (1-(\frac{1}{e})^{kn/m})^k$
- $P(\text{no false positives}) < p, \text{ need } \frac{n}{m} \le \frac{1}{k} \log(\frac{1}{1-n^{1/k}})$
- optimal $k = \frac{m}{n} \ln 2$ \Rightarrow error probability $= 2^{-k}$
- · delete operation: store counter instead of 1 bit
- insert, delete, query $\Rightarrow O(k)$
- intersection (bitwise AND), union (OR) $\Rightarrow O(m)$
- · gives the same false positives as both

PROBABILITY THEORY

- if an event occurs with probability p, the expected number of iterations needed for this event to occur is $\frac{1}{2}$.
- · for random variables: expectation is always equal to the
- linearity of expectation: E[A+B]=E[A]+E[B]

UNIFORMLY RANDOM PERMUTATION

- for an array of n items, every of the n! possible permutations are producible with probability of exactly $\frac{1}{1}$
- the number of outcomes should distribute over each permutation uniformly. (i.e. $\frac{\text{\# of outcomes}}{\text{\# of permutations}} \in \mathbb{N}$)
- probability of an item remaining in its initial position $=\frac{1}{2}$

AMORTIZED ANALYSIS

it with a random index in array A.

an operation has **amortized cost** T(n) if for every integer k, the cost of k operations is $\leq kT(n)$.

• KnuthShuffle $\Rightarrow O(n)$ - for every element in array A, swap

- binary counter ADT: increment $\Rightarrow O(1)$
- hash table resizing: O(k) for k insertions $\Rightarrow O(1)$
- search operation: expected O(1) (not amortized)

GRAPHS

- · degree (node): number of adjacent edges
- · degree (graph): max. degree of a node
- in-/out-degree: number of incoming/outgoing edges
- diameter: max. shortest path
- · even cycles are bipartite!
- graph is **dense** if $|E| = \theta(V^2)$

adj	space	(cycle)	(clique)	use for
list	O(V+E)	O(V)	$O(V^2)$	sparse
matrix	$O(V^2)$	$O(V^2)$	$O(V^2)$	dense

searching

- breadth-first search $\Rightarrow O(V + E)$
- O(V) every vertex is added exactly once to a frontier
- O(E) every neighbourList is enumerated once
- ullet parent edges form a tree & shortest path from S
- · implement with queue • depth-first search $\Rightarrow O(V+E)$
 - O(V) DFSvisit is called exactly once per node
 - O(E) DFSvisit enumerates each neighbour
 - with adjacency matrix: O(V) per node \Rightarrow total $O(V^2)$
 - · implement with stack

shortest paths

- Bellman-Ford $\Rightarrow O(VE)$
- |V| iterations of relaxing every edge terminate when an entire sequence of |E| operations have no effect
- Dijkstra $\Rightarrow O((V+E)\log V) = O(E\log V)$
 - · using a PQ to track the min-estimate node, relax its outgoing edges and add incoming nodes to the PQ
- · no negative weight edges!
- |V| times of insert/deleteMin ($\log V$ each)
- |E| times of relax/decreaseKey ($\log V$ each) • with fibonacci heap $\Rightarrow O(E + V \log V)$
- for DAG $\Rightarrow O(E)$ (topo-sort and relax in this order)
- longest path: negate the edges/modify relax function • for Trees $\Rightarrow O(V)$ (relax each edge in BFS/DFS order)

topological ordering

- post-order DFS $\Rightarrow O(V+E)$
- · prepend each node from the post-order traversal
- Kahn's algorithm (lecture vers.) $\Rightarrow O(E \log V)$ · add nodes without incoming edges to the topological order
 - remove min-degree node from PQ $\Rightarrow O(V \log V)$ • decreaseKey (in-degree) of its children $\Rightarrow O(E \log V)$
- Kahn's algorithm (tutorial vers.) $\Rightarrow O(E+V)$
- add nodes with in-degree=0 to a queue: decrement the in-degree of its adjacent nodes. dequeue & repeat

spanning trees

- · any 2 subtrees of the MSTs are also MSTs
- · for every cycle, the maximum weight edge is NOT in the MST
- for every partition of the nodes, the minimum weight edge across the cut is in the MST
- for every vertex, the minimum outgoing edge is in the MST.
- Steiner Tree: (NP-hard) MST containing a given set of nodes
- calculate the shortest path between any 2 vertices
- 2. construct new graph on required nodes
- 3. MST the new graph and map edges back to original

MST algorithms

- Prim's $O(E \log V)$
- add the minimum edge across the cut to MST
- PQ to store nodes (priority: lowest incoming edge weight)
- each vertex: one insert/extractMin $\Rightarrow O(V \log V)$
- each edge: one decreaseKey $\Rightarrow O(E \log V)$
- Kruskal's $O(E \log V)$
- · sort edges by weight, add edges if unconnected
- sorting $\Rightarrow O(E \log E) = O(E \log V)$
- each edge: find/union $\Rightarrow O(\log V)$ using union-find DS

- Boruvka's $O(E \log V)$
- each node: store a component $d \Rightarrow O(V)$
- one Boruvka step: for each cc, add minimum weight outgoing edge to merge cc's $\Rightarrow O(V+E)$ dfs/bfs
- at most $O(\log V)$ Boruvka steps
- update componentlds $\Rightarrow O(V)$
- directed MST with one root $\Rightarrow O(E)$
 - for every node, add minimum weight incoming edge

HEAPS

- · 2 properties:
- 1. **heap ordering** priority[parent] ≥ priority[child]
- complete binary tree every level (except last level) is full; all nodes as far left as possible
- operations: all $O(\max height) = O(\lfloor \log n \rfloor)$
 - insert: insert as leaf, bubble up to fix ordering
 - increase/decreaseKey: bubble up/down leftwards
 - $\bullet \ \, \text{delete: swap w bottom rightmost in subtree; bubble down}$
 - extractMax: delete(root)
- · heap as an array:
- left(x) = 2x + 1, right(x) = 2x + 2

- parent(x) = $\lfloor \frac{x-1}{2} \rfloor$
- HeapSort: $\Rightarrow O(n \log n)$ always
- unsorted array to heap: O(n) (bubble down, low to high)
- heap to sorted array: $O(n\log n)$ (extractMax, swap to back)

UNION-FIND

- · union connect 2 objects
- find check if objects are connected
- quick-find int[] componentId, flat trees
- O(1) find check if objects have the same componentld
- O(n) union enumerate all items in array to update id
- quick-union int[] parent, deeper trees
- O(n) find check for same root (common parent)
- O(n) union add as a subtree of the root
- weighted union int[] parent, int[] size
 - ullet $O(\log n)$ find check for same root (common parent)
- ullet $O(\log n)$ union add as a smaller tree as subtree of root
- path compression set parent of each traversed node to the root $O(\log n)$ find, $O(\log n)$ union
 - · a binomial tree remains a binomial tree

• weighted union + path compression - for m union/find operations on n objects: $O(n+m\alpha(m,n))$ • $O(\alpha(m,n))$ find, $O(\alpha(m,n))$ union

DYNAMIC PROGRAMMING

- optimal sub-structure optimal solution can be constructed from optimal solutions to smaller sub-problems
- greedy algorithms / divide-and-conquer algorithms
- 2. overlapping sub-problems can memoize
 - optimal substructure but no overlapping subproblems = divide-and-conquer
- prize collecting: $\Rightarrow O(kE)$ or $O(kV^2)$ for k steps
- vertex cover (set of nodes where every edge is adjacent to at least one node) of a tree: $\Rightarrow O(V)$ or $O(V^2)$
- all pairs shortest path: dijksytra all $\Rightarrow O(VE \log V)$
- diameter of a graph: SSSP all $\Rightarrow O(V^2 \log V)$
- floyd warshall $\Rightarrow O(V^3)$
- $S[v,w,P_k]$ = shortest path from v to w only using nodes from set P
- $S[v, w, P_8] = \min(S[v, w, P_7], S[v, 8, P_7] + S[8, w, P_7])$

sort	best	average	worst	stable?	memory
bubble	$\Omega(n)$	$O(n^2)$	$O(n^2)$	✓	O(1)
selection	$\Omega(n^2)$	$O(n^2)$	$O(n^2)$	×	O(1)
insertion	$\Omega(n)$	$O(n^2)$	$O(n^2)$	✓	O(1)
merge	$\Omega(n \log n)$	$O(n \log n)$	$O(n \log n)$	✓	O(n)
quick	$\Omega(n \log n)$	$O(n \log n)$	$O(n^2)$	×	O(1)
heap	$\Omega(n \log n)$	$O(n \log n)$	$O(n \log n)$	×	O(n)

searching

sorting invariants		search	average
sort	invariant (after k iterations)	linear	O(n)
bubble	largest k elements are sorted	binary	$O(\log n)$
selection	smallest k elements are sorted	quickSelect	O(n)
insertion	first k slots are sorted	interval	$O(\log n)$
merge	given subarray is sorted	all-overlaps	$O(k \log n)$
quick	partition is in the right position	1D range	$O(k + \log n)$
		2D range	$O(k + \log^2 n)$

data structures assuming O(1) comparison cost

data structure	search	insert
sorted array	$O(\log n)$	O(n)
unsorted array	O(n)	O(1)
linked list	O(n)	O(1)
tree (kd/(a, b)/binary)	$O(\log n)$ or $O(h)$	$O(\log n)$ or $O(h)$
trie	O(L)	O(L)
heap	$O(\log n)$ or $O(h)$	$O(\log n)$ or $O(h)$
dictionary	$O(\log n)$	$O(\log n)$
symbol table	O(1)	O(1)
chaining	O(n)	O(1)
open addressing	$\frac{1}{1-\alpha} = O(1)$	O(1)
priority queue	(contains) $O(1)$	$O(\log n)$
skip list	$O(\log n)$	$O(\log n)$

orders of growth

$$1 < \log n < \sqrt{n} < n < n \log n < n^2 < n^3 < 2^n < 2^{2n}$$

$$\log_a n < n^a < a^n < n! < n^n$$

orders of growth

$$T(n) = 2T(\frac{n}{2}) + O(n) \qquad \Rightarrow O(n \log n)$$

$$T(n) = T(\frac{n}{2}) + O(n) \qquad \Rightarrow O(n)$$

$$T(n) = 2T(\frac{n}{2}) + O(1) \qquad \Rightarrow O(n)$$

$$T(n) = T(\frac{n}{2}) + O(1) \qquad \Rightarrow O(\log n)$$

$$T(n) = 2T(n-1) + O(1) \qquad \Rightarrow O(n)$$

$$T(n) = 2T(\frac{n}{2}) + O(n \log n) \qquad \Rightarrow O(n(\log n)^2)$$

$$T(n) = 2T(\frac{n}{4}) + O(1) \qquad \Rightarrow O(\sqrt{n})$$

$$T(n) = T(n-c) + O(n) \qquad \Rightarrow O(n^2)$$