沈阳市城郊市重点联合体

2018-2019 学年度下学期期中考试高二年级生物试题

试卷说	眀	
MINE NO	.71	•

- 1、命题范围:人教版生物选修一;
- 2、考试时间为90分钟,满分100分。
- 3、试卷分两卷,第一卷为单选题,30题,每题2分,计60分,用2B铅笔将正确答案涂在答题卡上; 第二卷为非选择题.请将正确答案用黑色水性笔答在答题纸指定位置上:

命题人: 沈大附中生物组田菲菲

审核人: 赵晓东

第一卷: 单项选择题(每题2分,共30题,60分)

- 1. 下列 4 种生物中,哪一种生物的细胞结构与其他 3 种生物的细胞有明显区别 ()
 - A. 酵母菌
- B. 乳酸菌
- C. 青霉菌
- D. 蘑菇
- 2. 用酵母菌使葡萄汁产生葡萄酒,当酒精含量达到 12%~16%时,发酵就停止了.有关解释不正确的是()
 - A. 酒精对酵母菌有毒害作用
- B. 营养物质因消耗而不足
- C. 产物积累使 pH 值发生改变
- D. 氧气过少导致其无法呼吸
- 3. 在制作果酒、果醋、腐乳、泡菜时,发酵过程对氧气的需求,叙述正确的是()
 - A. 四个过程中,均需氧气参与,无氧时不能完成这四个过程
 - B. 四个发酵过程中只有果酒制作是在完全无氧的条件下完成的
 - C. 泡菜发酵和果酒制作应用到了微生物的无氧发酵, 而醋酸菌和毛霉则需在有氧条件下才能正常 繁殖
 - D. 腐乳制作时进行的是无氧发酵
- 4. 下列关于"腐乳的制作"实验,叙述正确的是()
 - A. 控制发酵温度的主要目的是腐乳调味
 - B. 腐乳制作后期加入香辛料和料酒有防腐作用
 - C. 毛霉的主要作用是分解脂肪和淀粉
 - D. 成品腐乳表面的粘性物质主要由细菌产生

5. 下图为果酒和果醋制作过程中的物质变化过程,下列叙述正确的是(

- A. 过程①和②都只能发生在无氧条件下
- B. 过程①和③都发生在酵母细胞的线粒体中
- C. 过程①~④所需的最适温度基本相同
- D. 过程③和④都需要氧气的参与
- 6. 下列关于腐乳制作的叙述,错误的是()
 - A. 毛霉可利用其体内的酶将豆腐中的蛋白质分解成小分子肽和氨基酸
 - B. 卤汤中酒的含量越高,杂菌繁殖越快,豆腐越易腐败
 - C. 用盐腌制腐乳的过程中,要控制盐用量,过低则难以抵制杂菌生长,导致豆腐腐败
 - D. 其制作过程可以表示为让豆腐上长出毛霉→加盐腌制→加卤汤装瓶→密封腌制
- 7. 有关倒平板的操作错误的是()
 - A. 将灭过菌的培养皿放在火焰旁的桌面上 B. 使打开的锥形瓶瓶口迅速通过火焰
 - C. 将培养皿打开, 培养皿盖倒放在桌子上 D. 等待平板冷却凝固后需要倒过来放置
- 8. 不同的微生物对营养物质的需要各不相同.下列有关一种以 CO₂为唯一碳源的自养微生物营养的描述中,不正确的是()
 - A. 氮源物质为该微生物提供必要的氮素
- B. 水是该微生物的营养要素之一
- C. 无机盐是该微生物不可缺少的营养物质
- D. 碳源物质也是该微生物的能源物质
- 9. 通过实验测定土壤中的细菌数量,下列与此操作有关的叙述中,不正确的是
 - A. 用蒸馏水配制牛肉膏蛋白胨培养基, 经高压蒸汽灭菌后倒平板()
 - B. 将土壤用无菌水进行一系列的梯度稀释
 - C. 将培养皿倒置,37℃恒温需培养5~7天 D. 选择菌落数在30~300的培养皿进行计数

10.	下列有关培养基和菌种鉴定的叙述不正确的是()	16.	 某人利用乳酸菌制作泡菜因操作不当泡菜腐烂。下列原因中正确的是()
	A. 植物组织培养常用的是固体培养基		①罐口密闭缺氧,抑制了乳酸菌的生长繁殖
	B. 可利用固体培养基上菌落的特征来判断和鉴别细菌的类型		②罐口封闭不严,氧气抑制了乳酸菌的生长繁殖
	C. 利用刚果红培养基上是否形成透明圈来筛选纤维素分解菌		③罐口封闭不严,氧气抑制了其他腐生菌的生长和繁殖
	D. 在无氮培养基中加入酚红指示剂鉴定尿素分解菌		④罐口封闭不严促进了需氧腐生菌的生长和繁殖.
11.	微生物体内能够使纤维素分解成纤维二糖的酶是 ()		A. ①③ B. ②④ C. ②③ D. ①④
	A. C ₁ 酶和 C _x 酶 B. C ₁ 酶和葡萄糖苷酶	17.	7. 在做分离分解尿素的细菌实验时,A 同学从对应 10 ⁶ 培养基上筛选出大约 150 个菌落,而其他同学
	$C. C_x$ 酶和葡萄糖苷酶 $D. C_x$ 酶和葡萄糖苷酶		只选择出大约 50 个菌落. 产生 A 同学结果的原因可能有()
12.	某学者欲研究被石油污染过的土壤中细菌数量,并从中筛选出能分解石油的细菌.下列操作错误的		①土样不同 ②培养基污染 ③操作失误 ④没有设置对照.
	是()		A. 1)2(3) B. 2(3)4) C. 1)3(4) D. 1)2(3)4)
	A. 以石油为唯一碳源的培养基筛选 B. 采用稀释涂布平板法分离菌种	18.	3. 在将样品稀释涂布到鉴别纤维分解菌的培养基之前,通常进行选择培养,其目的是()
	C. 称取和稀释土壤时应在火焰旁进行 D. 利用平板划线法对细菌进行计数		A. 分离纤维素分解菌 B. 加快纤维素分解菌的生长速度
13.	在富含纤维素的环境中寻找纤维素分解菌,符合生物学观点是()		C. 使纤维素分解菌均匀地分布在稀释液中
	A. 生物结构与功能相适应的观点 B. 生物结构与功能的整体性观点		D. 增加纤维素分解菌的浓度,以确保能够从样品中分离得到所需微生物
	C. 生物与环境相适应的观点 D. 生物发展进化的观点	19.	9. 鉴定纤维素分解菌时,可以使用刚果红对其染色,常用的刚果红染色法有两种,一种是先培养微生
14.	下列有关果胶酶及与果胶酶实验探究的有关叙述正确的是()		物,再加入刚果红进行颜色反应,另一种是在倒平板时就加入刚果红.两种染色法的结果是()
	A. 探究果胶酶的用量时,pH、温度不影响实验结果		A. 均会出现透明圈 B. 均不会出现透明圈
	B. 果胶酶包括多聚半乳糖醛酸酶、果胶分解酶和葡萄糖异构酶等		C. 方法一出现, 方法二不出现 D. 方法一不出现, 方法二出现
	C. 探究温度对果胶酶活性影响时,温度、苹果泥、果胶酶用量及反应时间等都是无关变量	20.). 分离土壤中分解尿素的细菌,对培养基的要求是()
	D. 可以用相同时间内过滤得到的果汁体积来确定果胶酶的用量		①加尿素 ②不加尿素 ③加琼脂糖 ④不加琼脂糖
15.	蛋白酶能分解其他蛋白质类的酶,但洗衣粉中,蛋白酶并没有将其他几种酶分解掉,以下解释正确		⑤加葡萄糖 ⑥不加葡萄糖 ⑦加硝酸盐 ⑧不加硝酸盐.
	的是()		A. 1357 B. 2468 C. 1358 D. 1467
	A. 蛋白酶处于抑制状态 B. 其他几类酶不是蛋白质类	21.	1. 如图为实验室培养和纯化大肠杆菌过程中的部分操作步骤,下列说法错误的是()
	C. 蛋白酶具有识别作用,不分解作为酶作用的蛋白质		
	D. 缺少水环境或各种酶在添加前已作了保护性修饰		
		2	① ② ③ ④

A. ①②③步骤操作时需要在酒精灯火焰旁进行	26. 与普通洗衣粉相比,加酶洗衣粉能更有效地清除污渍。下列有关叙述错误的是()
B. 步骤①中待倒入的培养基冷却后盖上培养皿的皿盖	A. 加酶洗衣粉是添加了固定化酶的洗衣粉
C. 步骤③中,每次划线前后都需对接种环进行灼烧处理	B. 水质、水量、水温都会影响加酶洗衣粉的洗涤效果
D. 划线接种结束后,将图④平板倒置后放入培养箱中培养	C. 探究加酶洗衣粉的洗涤效果,应选择同一品牌的普通洗衣粉作对照
下列关于统计菌落数目的方法的叙述,不正确的是()	D. 加酶洗衣粉的使用,减少了磷的排放,降低了环境污染
A. 采用平板计数法获得的菌落数往往少于实际的活菌数	27. 下列关于酶的叙述,正确的是()
B. 当样品的稀释度足够高时,一个活菌会形成一个菌落	A. 感冒发烧时,食欲减退是因为唾液淀粉酶失去了活性
C. 为了保证结果准确,一般采用密度较大的平板进行计数	B. 口服的多酶片中的胰蛋白酶可在胃中发挥作用
D. 在某一浓度下涂布三个平板, 若三个平板统计的菌落数差别不大, 则应以它们的平均值作为统	C. 洗衣时,加少许白醋能增强加酶洗衣粉中酶的活性
计结果	D. 用果胶酶澄清果汁时,温度由低温适当的提高后澄清速度越快
下列关于微生物培养和利用的叙述不正确的是()	28. 有关"酵母细胞固定化"实验的叙述,错误的是()
A. 利用稀释涂布平板法只能分离微生物不能对微生物进行计数	A. 配置海藻酸钠溶液时,应小火或间断加热,以免出现焦糊现象
B. 接种时连续划线的目的是将聚集的菌种逐步稀释获得单菌落	B. 待海藻酸钠溶液冷却至室温再与活化的酵母菌溶液混合搅匀
C. 以尿素为唯一氮源且含酚红的培养基可选择和鉴别尿素分解菌	C. 凝胶珠在 NaCl 溶液中浸泡 30 分钟,有利于凝胶珠结构稳定
D. 用大白菜腌制泡菜的过程中亚硝酸盐含量变化是先增加后减少	D. 10%的葡萄糖溶液为固定化酵母细胞的发酵提供营养和适宜的渗透压
据报道,科学家正在打造可适用于火星环境的"地狱细菌",下列关于此类细菌特征的叙述,错误	29. 下列有关生物技术应用的叙述中,错误的是()
的是()	A. 腐乳制作中酒精含量过高会延长腐乳成熟时间
A. 具有叶绿体,可以独立完成光合作用	B. 制作果醋时中断通氧会引起醋酸菌死亡
B. 具有耐寒、耐热、抗干旱以及抗辐射等特征	C. 若固定化酵母细胞时, CaCl ₂ 溶液浓度过低, 将很难形成凝胶珠
C. 进行无性生殖,不遵守孟德尔遗传定律	D. 加酶洗衣粉中的酶制剂的作用是直接洗去衣服上的污垢
D. 无染色体,只能在分子水平产生可遗传变异	30. 下列有关固定化技术的叙述,正确的是()
某物质能够在室温下彻底分解果胶,降低果汁黏度,裂解细胞壁,提高果汁的产出量。下列对该物	A. 固定化酶只是在细胞内才能发挥作用
质的叙述正确的是()	B. 固定化酶能提高酶的利用率
A. 该物质是由脱氧核苷酸脱水缩合而来的	C. 固定化酶与固定化细胞的常用方法相同
B. 该物质在低温条件下会失活,恢复常温后依然处于失活状态	D. 固定化酶的固定方式就是吸附在固体表面上
C. 该物质可以分解纤维素 D. 该物质可以被蛋白酶分解	
3	

22.

23.

24.

25.

第二卷: 非选择题(共3题,每空2分,共40分)

31. 如图表示葡萄酒酿制的简单过程,请据图分析:

(3)将接种后的培养基和作为对照的 ______ 同时放入 37℃恒温培养箱中,培养 36 小时.取

平板3菌落数 33. 回答下列有关酶的问题。(1) 为了确定微生物 B 产生的脂肪酶的最适温度, 某同学测得相同时间内, 在 35 \mathbb{C} 、40 \mathbb{C} 、45 \mathbb{C} 温度下降解 10g 油脂所需酶量依次为 4mg 、1mg 、6mg ,则上述三个温度 中, ℃条件下该酶活力最小。为了进一步确定酶的最适温度,应围绕 ℃设 计后续实验。 (2) 若要提高衣物上血渍的去除效果,可在洗衣粉中加入 酶,因为该酶能将血红蛋白 水解成可溶性的 : 若要提高衣物上油渍的去除效果,洗衣粉中可添加 酶。 (3) 乳糖酶宜采用化学结合法进行固定化,可通过检测固定化乳糖酶的活力确定其应用价值。除化 学结合法外,酶的固定化方法还包括 、 、

经过消毒后的牛奶中,细菌数大约是 1mL 个.

 10^{-2}

牛奶稀释倍数

平板1菌落数

平板 2 菌落数

出后统计各平板的菌落数,结果如表所示.应该选择其中稀释倍数为 的平板进行计数,

 10^{-4}

 10^{-3}

10

12