1 Bendroji salyga.

- 1. Pagal nurodytą uždavinį sudarykite diferencialinę lygtį arba lygčių sistemą. Lygties ar lygčių sistemos sudarymą paaiškinkite ataskaitoje ir išspręskite pasirinktu skaitiniu metodu. Atsakykite į uždavinyje pateiktus klausimus.
- 2. Keisdami metodo žingsnį įsitikinkite, kad gavote tikslų sprendinį. Sprendinius, gautus naudojant skirtingus žingsnius, pavaizduokite grafike.
- 3. Koks didžiausias žingsnis galimas, kad metodas išliktų stabilus?
- 4. Patikrinkite gautą sprendinį su MATLAB standartine funkcija ode45.

2 Uždaviniuose taikomi dėsniai

2.1 Niutono dinamikos dėsniai

Judančio kūno matematiniame modelyje taikomi Niutono dėsniai.

Pirmasis Niutono dėsnis teigia, kad egzistuoja tokios atskaitos sistemos, kurių atžvilgiu kūnai juda tiesiai ir tolygiai arba yra rimties būsenoje, kai jų neveikia kiti kūnai (kai kūną veikiančių jėgų suma lygi nuliui).

Antrasis Niutono dėsnis teigia, kad pagreitis \vec{a} , kuriuo juda kūnas yra tiesiogiai proporcingas kūną veikiančiai jėgai \vec{F} ir atvirkščiai proporcingas to kūno masei m.

$$\vec{F} = m\vec{a}$$

Žinome, kad greitis yra pirmoji kelio funkcijos s(t) išvestinė, o pagreitis – pirmoji greičio funkcijos v(t) išvestinė (antroji kelio funkcijos s(t) išvestinė), t.y. $\frac{ds}{dt} = v$, $\frac{d^2s}{dt^2} = \frac{dv}{dt} = a$.

Uždaviniuose naudokite laisvojo kritimo pagreitį $g = 9.8 \text{ m/s}^2$.

Uždavinio pavyzdys.

 m_1 kg masės parašiutininkas iššoka iš lėktuvo (įrangos masė nevertinama). Pasiekęs h_0 m aukštį parašiutininkas išskleidžia parašiutą. Tuo metu jo greitis lygus v_0 m/s. Oro pasipriešinimo jėga proporcinga greičio kvadratui, o proporcingumo koeficientas lygus k kg/m. Raskite, kaip kinta parašiutininko greitis.

1 pav. Kūna veikiančių jėgų schema.

Remiantis Niutono dėsniai sudaroma lygtis:

$$F = F_{gravitacija} - F_{oro\ pasipriesinimas}$$

Po pertvarkymų sprendžiama diferencialinė lygtis: $\frac{dv}{dt} = \frac{mg - kv^2}{m}$

2.2 Niutono temperatūros kaitos dėsnis

Niutono temperatūros kaitos dėsnis teigia, kad kūno temperatūros kitimo greitis yra proporcingas skirtumui tarp kūno ir aplinkos temperatūrų. Jeigu T(t) apibrėžia kūno temperatūrą laiko momentu t, T_A – aplinkos temperatūra, $\frac{dT}{dt}$ – kūno temperatūros kitimo greitis, tada Niutono temperatūros kitimo dėsnis išreiškiamas $\frac{dT}{dt} = k(T - T_A)$.

Uždavinio pavyzdys.

 T_0 K temperatūros kūnas patalpinamas į aplinką, kurios temperatūra T_A K. Žinoma, kad Niutono temperatūros kaitos dėsnyje taikomas proporcingumo koeficientas lygus k. Tariama, kad aplinkos temperatūra palaikoma pastovi ir kūno temperatūra aplinkos temperatūrai įtakos neturi. Raskite, kaip kinta kūno temperatūra.

Sprendžiama diferencialinė lygtis: $\frac{dT}{dt} = k(T - T_A)$.

2.3 Torricelli dėsnis

Torricelli dėsnis teigia, kad pro atviros talpos, pripildytos iki aukščio h, dugne esančią A_h ploto ertmę skystis teka tokiu greičiu v, koks būtų pasiekiamas numetus objektą iš aukščio h. Dėl trinties ir susidarančių skysčio srautų šalia ertmės, ištekančio vandens tūris yra mažesnis, todėl įvedama empirinė konstanta c. Skysčio tūris V talpoje kinta pagal dėsnį $\frac{dV}{dt} = -cA_h\sqrt{2gh}$. Iš kitos pusės, tūrio kitimo greitį galima išreikšti $\frac{dV}{dt} = A_W(h)\frac{dh}{dt}$, kur $A_W(h)$ – skerspjūvio plotas aukštyje h. Taigi, aukščio kitimo greitis talpoje gali būti užrašomas diferencialine lygtimi $\frac{dh}{dt} = -\frac{cA_h}{A_W(h)}\sqrt{2gh}$.

Uždaviniuose naudokite laisvojo kritimo pagreitį $g = 9.8 \text{ m/s}^2$.

Uždavinio pavyzdys.

Iš cilindro (spindulys r_C m) formos indo pro apačioje esančią apvalią ertmę, kurios spindulys r m, bėga skystis, kurio proporcingumo daugiklis lygus c. Nustatykite, kaip kinta skysčio lygis inde.

Išreiškiamas cilindro skerspjūvio plotas $A_w=\pi r_c^2$ ir ertmės plotas $A_h=\pi r^2$. Sprendžiama diferencialinė lygtis $\frac{dh}{dt}=-\frac{cr^2}{r_c^2}\sqrt{2gh}$.

3 Uždavinys variantams 1-5

Sujungti m_1 ir m_2 masių objektai iššaunami vertikaliai į viršų pradiniu greičiu v_0 . Oro pasipriešinimo koeficientas sujungtiems kūnams lygus k_s . Praėjus laikui t_s , objektai pradeda judėti atskirai. Oro pasipriešinimo koeficientai atskirai judantiems objektams atitinkamai yra k_1 ir k_2 . Oro pasipriešinimas proporcingas objekto greičio kvadratui. Raskite, kaip kinta objektų greičiai nuo 0 s iki t_{max} . Kada kiekvienas objektas pasieks aukščiausią tašką ir pradės leistis?

1 Lentelė.	Uždavinyje	naudoiami	dvdžiai.
I Delitere.	CZaarinije	mada jami	a , aziai.

Varianto numeris	m_1 , kg	m_2 , kg	v_0 , m/s	k_s , kg/m	t_s , s	k_1 , kg/m	k_2 , kg/m	t_{max} , s
1	0,1	0,5	60	0,01	1	0,01	0,005	10
2	0,3	0,3	60	0,005	2	0,05	0,01	10
3	0,05	0,3	100	0,01	3	0,05	0,01	10
4	0,4	0,8	50	0,001	2	0,02	0,02	10
5	0,8	0,8	200	0,01	2	0,02	0,005	15

4 Uždavinys variantams 6-10

 m_1 masės parašiutininkas su m_2 masės įranga iššoka iš lėktuvo, kuris skrenda aukštyje h_0 . Po t_g laisvo kritimo parašiutas išskleidžiamas. Oro pasipriešinimo koeficientas laisvo kritimo metu lygus k_1 , o išskleidus parašiutą - k_2 . Tariama, kad paliekant lėktuvą parašiutininko greitis lygus 0 m/s, o oro pasipriešinimas proporcingas parašiutininko greičio kvadratui. Raskite, kaip kinta parašiutininko greitis nuo 0 s iki nusileidimo. Kada ir kokiu greičiu parašiutininkas pasiekia žemę? Kokiame aukštyje išskleidžiamas parašiutas?

2 Lentelė. Uždavinyje naudojami dydžiai.

Varianto numeris	m_1 , kg	m_2 , kg	h_0 , m	t_g , s	k_1 , kg/m	k_2 , kg/m
6	100	15	3000	40	0,5	10
7	70	15	4000	40	0,1	5
8	50	15	3500	35	0,1	7
9	125	25	2000	20	0,5	10
10	120	10	2500	25	0,25	10

5 Uždavinys variantams 11-15

m masės sviedinys iššaunamas vertikaliai į viršų pradiniu greičiu v_0 iš aukščio h_0 . Žinoma, kad oro pasipriešinimo koeficientas proporcingas sviedinio greičio kvadratui, o proporcingumo koeficientas lygus k_1 , kai sviedinys kyla, ir k_2 , kai sviedinys leidžiasi. Kokį maksimalų aukštį ir kada pasieks sviedinys? Kada sviedinys nusileis ant žemės?

3 Lentelė. Uždavinyje naudojami dydžiai

3 Lenteie. Ozdavniyje naddojann dydziai.							
Varianto numeris	m, kg	v_0 , m/s	h_0 , m	k_1 , kg/m	k_2 , kg/m		
11	0,5	50	30	0,015	0,05		
12	10	100	30	0,05	0,01		
13	2	60	15	0,1	0,5		
14	0,2	50	100	0,01	0,005		
15	5	80	5	0,15	0,6		

6 Uždavinys variantams 16-20

 T_1 temperatūros kūnas patalpinamas į aplinką, kurios temperatūra T_{A1} . Tariama, kad aplinkos temperatūra yra palaikoma išorinių šaltinių ir kūno temperatūra neturi įtakos aplinkos temperatūrai. Praėjus laikui t_s aplinkos temperatūra pradeda kisti pagal nurodytą dėsnį $T_A(t)$ ir pakinta iki T_{A2} , kuri yra palaikoma likusį laiką. Žinoma, kad Niutono temperatūros kaitos dėsnyje taikomas proporcingumo koeficientas priklauso nuo kūno temperatūros pagal dėsnį k(T). Raskite, kaip kinta kūno temperatūra nuo pradinio laiko momento iki t_{max} . Kada kūno temperatūra pasiekia aplinkos temperatūrą?

Išspręskite tą pačią lygtį, jeigu pradinė kūno temperatūra lygi T_2 . Kaip skiriasi su skirtingomis pradinėmis kūno temperatūromis gauti sprendiniai ir jų savybės (stabilumo ir tikslumo žingsniai)?

	4 Lentelė. Uždavinyje naudojami dydžiai.						
Varianto numeris	<i>T</i> ₁ , K	T_{A1} , K	t_s , s	T_{A2} , K	t_{max} , s	<i>T</i> ₂ , K	
16	473	373	20	423	70	270	
17	400	320	30	460	80	270	
18	250	320	15	250	100	400	
19	240	350	15	270	70	460	
20	380	295	10	370	100	270	

5 Lentelė. Uždavinyje naudojami dėsniai.

Varianto numeris	$T_A(t)$, K	k(T)
16	$T_A(t) = T_{A1} + \frac{(T_{A2} - T_{A1})}{2} \left(1 - \cos\left(\frac{\pi}{10}(t - t_s)\right) \right)$	$k(T) = -0.15 - \frac{T - 273}{800} + \frac{3}{40} \left(\frac{T - 273}{100}\right)^2$
17	$T_A(t) = T_{A1} + \frac{(T_{A2} - T_{A1})}{2} \left(1 - \cos\left(\frac{\pi}{20}(t - t_s)\right) \right)$	$k(T) = -0.01 - 0.16 \left(\frac{T - 273}{100}\right) - 0.04 \left(\frac{T - 273}{100}\right)^2$
18	$T_A(t) = T_{A1} + \frac{(T_{A2} - T_{A1})}{2} \left(1 - \cos\left(\frac{\pi}{15}(t - t_s)\right) \right)$	$k(T) = -0.3 + 0.22 \left(\frac{T - 273}{100}\right) - 0.05 \left(\frac{T - 273}{100}\right)^2$
19	$T_A(t) = T_{A1} + \frac{(T_{A2} - T_{A1})}{2} \left(1 - \cos\left(\frac{\pi}{5}(t - t_s)\right) \right)$	$k(T) = -0.3 + 0.4 \left(\frac{T - 273}{100}\right) - 0.2 \left(\frac{T - 273}{100}\right)^2$
20	$T_A(t) = T_{A1} + \frac{(T_{A2} - T_{A1})}{2} \left(1 - \cos\left(\frac{\pi}{36}(t - t_s)\right) \right)$	$k(T) = -0.3 + 0.3 \left(\frac{T - 273}{100}\right) - 0.1 \left(\frac{T - 273}{100}\right)^2$

7 Uždavinys variantams 21-25

Iš vazos, kurios skerspjūvio forma yra skritulys, o jo spindulys aukštyje h apskaičiuojamas pagal dėsnį R(h), pro dugne esančią apvalią ertmę, kurios spindulys r_H , bėga skystis, kurio proporcingumo daugiklis lygus c. Pradiniu laiko momentu skysčio aukštis inde lygus h_0 . Raskite, kaip kinta skysčio lygis inde nuo pradinio laiko momento iki t_{max} . Kada iš indo išbėgs visas skystis?

Palyginkite, kaip skirtųsi sprendinys (skysčio lygio kitimo kreivė) ir jo savybės, jeigu nuo tokio paties pradinio aukščio pro apvalią r_H skersmens ertmę skystis bėgtų iš cilindro (2 pav.), kurio spindulys r_C ?

6 Lentelė. Uždavinyje naudojami dydžiai.

Varianto numeris	r_H , m	С	h_0 , m	t_{max} , s	r_C , m		
21	0,01	0,6	0,3	100	0,075		
22	0,005	0,6	0,28	110	0,075		
23	0,0075	0,6	0,5	120	0,1		
24	0,005	0,6	0,25	140	0,09		
25	0,01	0,6	0,25	50	0,1		

_	r . 1.	T T V 1		1		4
1	Lentelė	I l≱da:	vinvi	e naudo	namı	dėsniai.

Varianto	R(h)	Paveikslo
numeris	K(tt)	nr.
21	$R(h) = \frac{h}{2} + \frac{1}{40}\cos\left(\frac{50\pi h}{3}\right) + 0.09$	3 pav.
22	$R(h) = \frac{1}{40} \left(3 + \sin\left(\frac{20\pi h}{3}\right) \right)$	4 pav.
23	$R(h) = \frac{43}{400} + \frac{\cos(4\pi h)}{40}$	5 pav.
24	$R(h) = 0.3\sqrt{h} + 0.005$	6 pav.
25	$R(h) = 0.11 - \frac{\cos(8\pi h)}{40}$	7 pav.

8 Uždavinys variantams 26-30

Iš vazos, kurios skerspjūvio forma yra skritulys, o spindulys aukštyje h apskaičiuojamas pagal dėsnį R(h), pro dugne esančią apvalią ertmę, kurios spindulys r_H , bėga skystis, kurio proporcingumo daugiklis lygus c. Pradiniu laiko momentu skysčio aukštis inde lygus h_0 . Praėjus laikui t_s , ertmės spindulys r_H pradeda mažėti pagal nurodytą dėsnį $r_H(t)$ iki momento, kai ertmės nebelieka. Raskite, kaip kinta skysčio lygis inde ir ištekėjusio skysčio tūris laikotarpiu nuo pradinio laiko momento iki t_{max} . Koks skysčio aukštis inde laiko momentu t_{max} ? Koks skysčio tūris ištekėjo iš indo?

8 Lentelė. Uždavinyje naudojami dydžiai.

	o Echtere. Ozdavniyje naddojann dydziai.					
Varianto numeris	r_H , m	С	h_0 , m	t_s , s	t _{max} , s	
26	0,01	0,6	0,3	25	50	
27	0,01	0,6	0,3	30	50	
28	0,005	0,6	0,5	30	50	
29	0,01	0,6	0,15	20	50	
30	0,0075	0,6	0,4	30	50	

9 Lentelė. Uždavinyje naudojami dėsniai.

	> Zentere. Ezaarniyye naaaoyann aeeman.						
Varianto numeris	R(h)	Paveikslo nr.	$r_H(t)$				
26	$R(h) = \frac{h}{2} + \frac{1}{50}\cos\left(\frac{50\pi h}{3}\right) + 0.02$	3 pav.	$r_H(t) = 0.035 - 0.001t$				
27	$R(h) = \frac{1}{10} \left(1.5 + \sin\left(\frac{20\pi h}{3}\right) \right)$	4 pav.	$r_H(t) = 0.025 - 0.0005t$				
28	$R(h) = \frac{11}{200} + \frac{\cos(4\pi h)}{40}$	5 pav.	$r_H(t) = 0.0025 \left(1 + \cos\left(\frac{\pi(t-30)}{20}\right) \right)$				
29	$R(h) = 0.5\sqrt{h} + 0.01$	6 pav.	$r_H(t) = 0.005 \left(1 + \cos\left(\frac{\pi(t-20)}{20}\right) \right)$				
30	$R(h) = 0.0875 - \frac{\cos(5\pi h)}{40}$	7 pav.	$r_H(t) = \frac{3}{400} - \frac{3(t-30)^2}{10000}$				

9 Indų formos, naudojamos 21-30 variantų uždaviniuose

