## 4. Regulaattoripiirit

Regulaattoripiirit vakavoivat elektroniikkalaitteita syöttäviä tasajännitteitä. Syöttöjännitteet pyrkivät muuttumaan tulevan jännitteen tai kuormitusvirran vaihdellessa tai lämpötilan muuttuessa ja regulaattori korjaa näitä muutoksia. Syöttöjännite syntyy tavallisesta jakelujännitteestä. Verkkomuuntaja alentaa jännitteen ensin sopivaksi, ja sitten jännite tasasuunnataan ja suodatetaan. Lopuksi jännite tavallisesti vakavoidaan sopivalla regulaattoripiirillä.



#### Toimintamuodot

Vakiojännitelähteen antama jännite  $U_L$  pysyy samansuuruisena kuormitusvirran  $I_L$  suuruudesta riippumatta (kuva 2). Ihanteellisen vakiojännitelähteen sisäinen resistanssi on nolla.

Vakiovirtalähteen antama virta pysyy samana kuormitusresistanssin arvosta riippumatta. Ihanteellisen vakiovirtalähteen sisäinen resistanssi on ääretön.

Yhdistelmälaite toimii vakiojännitelähteenä, jos kuormitusvirran arvo on maksimiarvoa I<sub>Imax</sub> pienempi. Kun virta kasvaa maksimivirta-arvoon, laite muuttuu vakiovirtalähteeksi, joka syöttää kuormitukseen em. vakiovirran I<sub>Imax</sub> (kuva 4). Yhdistelmälaite on erityisen edullinen laboratoriotyöskentelyssä, sillä virran rajoitus suojaa laitteita esimerkiksi oikosulkutapauksissa.



Elektroninen sulake (kuva 5) toimii hiukan samaan tapaan kuin yhdistelmälaite. Se antaa kuormitukseen vakiojännitteen, jos kuormitusvirta on kohtuullinen. Jos kuormitusvirta ylittää ennalta asetetun maksimivirta-

ar $\underline{v}$ on I $\underline{I}_{max}$ , laite katkaisee jännitteen kokonaan. Laita palautuu tämän jälkeen toimintakuntoon painamalla ns. kuittausnappia.

Osan I luku 3 käsittelee vaihtojännitteen tasasuuntaamista ja suodattamista sekä kiinteälle jännitteelle tarkoitettuja regulaattoripiirejä. 7800 - Accept

## Vakiovirtalähde

Vakiovirtalähde antaa kuonmitusresistanssin suuruudesta riippumatta vakiosuuruisen virran. Kuva 6 a esittää yksinkertaista vakiovirtalähdettä. Kun kuormitusvastuksen  $R_L$  virtaa yritetään lisätä, kasvaa samalla vastuksessa  $R_1$  jännitehäviö  $I_LR_1$ . Kun tämä jännitehäviö yhdessä transistorin kanta-emitterijännitteen  $U_{BE}$  kanssa saavuttaa zenerjännitearvon  $U_Z$ , eli

$$I_L R_1 + U_{BE} = U_Z$$

zenerdiodi alkaa sulkea transistoria. Virta  $\mathbf{I}_{\mathbf{L}}$  ei näinollen voi ylittää arvoa I<sub>Imax</sub>, jonka suuruus on:

$$I_{\text{Lmax}} = \frac{U_{\text{Z}} - U_{\text{BE}}}{R_1}$$

Esimerkki: Jos transistorin U<sub>BE</sub> = 0,8 V, kuvan 6 a kytkentä antaa



Myös liitoskanavatransistori voi toimia vakiovirtalähteenä. Sen ominaiskäyrät ovat lähes vaakasuoria, jos jännite  $U_{\mathrm{DS}}$  on muutamaa volttia suurempi (kuva 6 b). Hilajännitteen määrää kuvaan piirretty suora

$$U_{GS} = -I_{D}R_{S}$$

Tämän suoran ja siirtokäyrän leikkauspiste määrää vakiovirran arvon.

## Sarjaregulaattorit ja hakkurit

Sarjaregulaattorin tulojännite on aina lähtöjännitettä suurempi. Ylimääräinen jännite muuttuu regulaattorissa lämmöksi, ja regulaattorin lähtöjännite pysyy aina samana. Regulaattorissa on sisäinen vertailujännite U<sub>REF</sub>, johon piiri vertaa lähtöjännitettä. Jos lähtöjännite muuttuu, regulaattori korjaa sen oikeaan arvoonsa (kuva 7 a).

Hakkuripiirissä on puolijohdekytkin, bipolaarinen tai kanavatransistori, joka katkoo virtaa sopivassa tahdissa. Teho varastoituu välillä kelaan ja purkautuu sieltä myöhemmin käyttöön (kuva 7 b). Hakkuriregulaattorin rakenteesta riippuen l<u>ähtöjännite voi</u> olla joko tulojännitettä pienempi tai

tulojännitettä suurempi.

Sarjaregulaattorin antama jännite on laadultaan hyvää, säätö on tarkka, ja ripple-jännite pieni. Sarjaregulaattorin hyötysuhde on huono, sillä osa tehosta kuluu hukkaan sarjaelimessä. Hakkuripiirillä on huonompi säätötarkkuus, suurempi ripple-jännite, ja lisäksi virran katkonta tuottaa häiriöitä. Hyötysuhde on oleellisesti sarjaregulaattoria parempi, jopa 80... 90 %, sillä hakkuriregulaattori varastoi ylimääräisen energian kelaan ja käyttää sen myöhemmin hyödyksi.



# Integroidut sarjaregulaattoripiirit

Säädettävillä sarjaregulaattoripiireillä jännitettä voi säätää laajoissa rajoissa, tavallisesti muutamasta voltista noin 40 volttiin. Joissakin piireissä säätöalue alkaa nollasta. Piirejä on saatavissa kahta perustyyppiä, toiset antavat maata vastaan positiivisen ja toiset negatiivisen jännitteen.



Kuva 8. National Semiconductor (Fairchild)

Regulaattoripiiri 723 on positiiselle jännitteelle tarkoitettu säädettävä regulaattori. Sen lähtöjännite on säädettävissä 2 V ... 37 V välillä. Piirin tehonkestoisuus on vaatimaton, joten se ei voi yksinään antaa suuria virtoja. Ulkopuolisella tehotransistorilla virtakestoisuutta on helppo kasvattaa. Käyttäjä määrää regulaattoripiirin lähtöjännitteen ulkopuolisten vastusten avulla. Käyttäjä voi myös asettaa piirille haluamansa virranrajoituksen lisävastuksella.

Kuva 8 esittää regulaattorin sisäistä kytkentää. Vertailujännite  $U_{\rm REF}$  muodostuu lämpötilakompensoidussa zenerdiodissa, jota syöttää vakiovirta. Tämä vertailujännite tulee jänniteseuraajan kautta napaan 6. Vertailujännitteen arvo on 7,15 V. Regulaattorissa on operaatiovahvistimen tapainen erovahvistin, jossa on invertoiva ja ei-invertoiva tulo, navat 4 ja 5. Erovahvistin ohjaa transistoria  $T_1$ , jonka tehtävänä on säätää piirin lähtöjännitettä ja -virtaa. Virranrajoitustransistoria  $T_2$  ohjaa napojen 2 ja 3 välille tuleva jännite.

#### Kytkentä 2 V ... 7V

Pienen, alle 7 voltin jännitteen antaa kuvan 9 esittämä kytkentä. Jännitteenjakokytkentä  $R_1$ ,  $R_2$  muodostaa vertailujännitteestä  $U_{REF}$  jännitteen



Kuva 9

joka siirtyy erovahvistimen ei-invertoivaan tuloon. Lähtöjännite  $\rm U_O$  tulee vastuksen  $\rm R_3$  kautta invertoivaan tuloon. Erovahvistin ja transistori $\rm T_1$  pitävät lähtöjännitteen  $\rm U_O$  jännitteen U suuruisena. Jos  $\rm U_O > U$ , erovahvistin ohjaa transistoria, joka laskee lähtöjännitettä. Jos taas  $\rm U_O < U$ , erovahvistin ja  $\rm T_1$  nostavat lähtöjännitettä. Lähtöjännitteen arvo on näinollen

$$U_0 = U = \frac{R_2}{R_1 + R_2} U_{REF}$$

Vastuksen  $R_3$  arvon voi valita vapaasti. Edullisinta on valita vastuksen  $R_3$  arvoksi  $R_1$ :n ja  $R_2$ :n rinnankytkentäarvo, sillä regulaattorin lämpöryömintä on silloin vähäisin.

$$R_3 = \frac{R_1 R_2}{R_1 + R_2}$$

Vastuksen R $_2$  rinnalla voi olla noin 5  $\mu F$  suuruinen kondensaattori C $_{REF}$ . Se on suositeltava, mutta ei välttämätön. Kondensaattori vaimentaa tehokkaammin ripple-jännitettä.

Regulaattoripiiri 723 vaatii vielä invertoivan tulonavan ja kompensointinavan 13 (Comp) välille n. 100 pF suuruinen kompensointikondensaattorin. Se estää regulaattoria värähtelemästä.

Napojen 3 (Current Sense) ja 2 (Current Limit) välinen vastus R<sub>SC</sub> rajoittaa regulaattorikytkennän virran sopivaan maksimiarvoon. Koko lähtövirta kulkee tämän vastuksen läpi ja aiheuttaa siinä jännitehäviön

Kun tämä jännitehäviö ylittää n. 0,7 V arvon, transistori  $T_2$  alkaa johtaa ja sen kollektorin jännite laskee lähelle maan potentiaalia. Silloin transistori  $T_1$ , jonka kanta on yhteydessä  $T_2$ :n kollektoriin, sulkeutuu ja piirin lähtövirta kuristuu. Regulaattorikytkennän maksimivirta on

$$I_{\text{OMBX}} = \frac{0.7 \text{ V}}{R_{\text{SC}}}$$

Esimerkki: Mitoitetaan kuvan 9 mukainen regulaattorikytkentä, joka antaa 5 V jännitteen ja korkeintaan 50 mA virran. Kytkennän lähtöjännite on

$$U_{o} = \frac{R_{2}}{R_{1} + R_{2}}$$

josta tulee resistanssilausekkeelle arvo

$$\frac{R_2}{----} = \frac{U_0}{----} = \frac{5V}{-----} = 0.70$$
 $R_1 + R_2 \quad U_{REF} = 7.15V$ 

Vastuksen  $R_2$  arvoksi voi valita esim. 5.1 k $\Omega$ , jolloin vastuksen  $R_1$  arvo ratkaistaan yhtälöstä

$$R_1 + R_2 = \frac{R_2}{0.70} = \frac{5.1 \text{kg}}{0.70} = 7.3 \text{kg}$$

$$R_1 = 7.3k\Omega - 5.1k\Omega = 2.2k\Omega$$

Vastuksen  $R_3$  arvon voi valita vapaasti, mutta edullisinta on valita

$$R_3 = \frac{R_1 R_2}{R_1 + R_2} = \frac{2.2 k\Omega \cdot 5.1 k\Omega}{7.3 k\Omega} = 1.5 k\Omega$$

Virranrajoitusvastus on

$$R_{SC} = \frac{0.7V}{----} = \frac{0.7V}{50mA} = 14\Omega$$

Jos kytkennän on annettava varmasti em. 50 mA maksimivirta, RETMA-sarjasta on valittava lähinnä pienempi arvo, eli 5 % sarjasta 13  $\Omega$ , jolloin maksimivirta ylittää hiukan 50 mA arvon.

Virranrajoituksesta tulee säädettävä, jos  $R_{sc}$ :n tilalla on potentiometri. Jos myös lähtöjännitettä pitää voida säätää, vastusten  $R_1$  ja  $R_2$  tilalla on käytettävä potentiometria

Reg

## Kytkentä 7 ... 37V

Kuvan 10 esittämä kytkentä antaa 7 V ... 37 V jännitteitä. Vertailujännite  $U_{\rm REF}$  tulee sellaisenaan vastuksen  $R_3$  kautta erovahvistimen einvertoivaan tuloon, ja jännitteenjakaja R1,  $R_2$  muodostaa lähtöjännitteestä  $U_{\rm O}$  invertoivaan tuloon jännitteen

6



Kuva 10

Jännitteen U tulee nyt olla vertailujännitteen suuruinen. Jos jännitteet eroavat toisistaan, erovahvistin ja transistori  $\mathbf{T}_1$  ohjaavat lähtöjännitettä niin, että em. yhtäsuuruus saavutetaan. Lähtöjännite on siten:

$$U_{O} = \frac{R_1 + R_2}{R_2} U_{REF}$$

Jos vastuksen  $R_1$  tilalla on potentiometri, lähtöjännitettä voi säätää. Virranrajoitus toimii tässä kytkennässä samalla tavoin kuin edellä.

Vakavointipiirin 723 tehonkesto on vaatimaton, mallista riippuen 0,6 W ... 1 W. Piiristä ei voi sen vuoksi saada suurta lähtövirtaa. Tehonkestoisuus kasvaa, jos regulaattori pannaan ohjaamaan tehotransistoria, jonka kautta suurin osa virrasta kulkee. Kuvan 11 kytkennässä regulaattori ohjaa tehotransistorin T kantavirtaa ja lähtövirta tulee transistorin



Kuva 11

emitteristä. Lähtöjännite voi vaihdella kuten edellisessäkin kytkennässä 7 V  $\dots$  37 V välillä. Virranrajoitus toimii samalla tavoin kuin edellä. Jos jännitehäviö vastuksessa R<sub>SC</sub> ylittää 0,7 V, piiri sulkee transistorin T ja lähtöjännite alkaa laskea.

## Hakkuriregulaattorit

Hakkuriteholähteiden hyötysuhde on normaalien sarjatyyppisten regulaattorien hyötysuhdetta korkeampi. Lämpöä kehittyy vähemmän ja laite mahtuu pienempään tilaan. Sopivalla suunnittelulla on mahdollista päästä jopa 80 ... 90 % hyötysuhteeseen. Hakkurilaitteiden säätötarkkuus on huonompi kuin tavallisissa sarjatyyppisissä regulaattoripiireissä, ripple-jännite on suurempi ja lisäksi hakkureissa syntyy suurtaajuisia häiriöitä.

## Buck-regulaattori

Buck-regulaattorissa (step-down-regulaattorissa) lähtevä jännite on tulevaa jännitettä alempi. Kytkimenä toimiva transistori T on vuorotellen kyllästys- ja estotilassa (kuva 12). Transistori johtaa ajan  $t_1$ , jolloin virta kulkee kelan L kautta kondensaattoriin C ja kuonmitusvastukseen  $R_L$ . Diodi D (Free-Wheeling-Diode) on tässä vaiheessa estotilassa. Kelaan



Kuva 12

varautuu energiaa. Kun transistori siirtyy estotilaan ajaksi  $t_2$ , kelaan varastoitunut energia vapautuu ja kela syöttää kondensaattoriin ja kuormitukseen virtaa. Tässä vaiheessa diodi D avautuu ja päästää virran purkautumaan kelasta eteenpäin. Kuormitusvastuksen saama virta on transistorin virran  $i_T$  ja diodin virran  $i_D$  summa.

$$i_L = i_T + i_D$$

Buck-regulaattorin hyötysuhde tavallisen sarjaregulaattorin hyötysuhdetta parempi, sillä energia varastoituu siinä välillä kelaan mutta sarjaregulaattorissa ylimääräinen energia muuttuu lämmöksi.

Buck-regulaattorin lähtöjännite on tulojännitettä alempi, ja sen arvo

riippuu regulaattorin pulssisuhteesta:

$$U_{L} = \frac{t_1}{t_1 + t_2} U_{i}$$

Jännitteen säätö on helppo toteuttaa pulssin leveyttä muuttamalla.

#### Boost-regulaattori

Boost-regulaattori (step-up-regulaattori) antaa tulojännitettä suuremman lähtöjännitteen. Transistori T siirtyy tässäkin vuorotellen kyllästystilaan ja estotilaan (kuva 13). Transistori johtaa ajan  $t_1$ , jonka kuluessa virta  $i_T$  kulkee kelan L ja transistorin kautta maahan. Energia varautuu tänä aikana kelaan. Transistori siirtyy sitten ajaksi  $t_2$  estotilaan, kelan energia purkautuu diodin D kautta kondensaattoriin C ja kuormitusvastukseen  $R_L$ . Jakson  $t_1$  aikana kuormitusvastus saa virtaa kondensaattorin varauksesta, jolloin kondensaattorin jännite alenee jonkin verran.

Boost-regulaattorin lähtöjännite on tulojännitettä korkeampi:

$$\mathbf{U_L} = \frac{\mathbf{t_1} + \mathbf{t_2}}{\mathbf{t_2}} \, \mathbf{U_i}$$

Jännitteensäätö on tässäkin mahdollista toteuttaa muuttamalla pulssin leveyttä.



Kuva 13

## Hakkuripiiri 3524

Hakkuripiiri 3524 riittää pienitehoisen regulaattorin toteuttamiseen sellaisenaan, ja suuritehoisia laitteita sillä voi toteuttaa tehotransistoreita käyttäen. Piiri soveltuu sekä buck- että boost-tyyppisten hakkureiden ohjaimeksi. Piirin toimintataajuuden määräävät ulkoiset komponentit, ja se voi vaihdella 120 Hz ... 300 kHz välillä. Piirillä on useita valmistajia.

usein yli 20 kHz, jolloin hakkuri ei anna häiritsevää ääntä. Diodin elpymisajan  $t_{rr}$  tulisi olla mahdollisimman lyhyt, mielellään alle 100 ns. Kelan induktanssin tulee varsinkin boost-regulaattorissa olla riittävä, jotta sen virta ei ennätä rynnätä liian suureksi aikana  $t_{\rm ON}$ , jolloin transistori johtaa.

Induktanssin voi laskea lausekkeesta

$$L \ge \frac{U_i t_{ON}}{\Lambda I_L}$$

missä  $\Delta I_L$  on kelan virran vaihteluarvo ja  $t_{\rm CN}$  aika, jonka transistori on johtavana. Kelan sydämeksi sopii pot-core-tyyppinen ferriittisydän, jossa on ilmarako. Ilmarako estää sydämen kyllästymisen.

Suodatuskondensaattorin tulee olla riittävän nopea toimiakseen kytkentätaajuudella. Sopivia ovat tantaalielkot.

### Vakavointipiirien ominaisuuksia

Regulaattoripiirin on pidettävä lähtöjännite samansuuruisena olosuhteiden vaihteluista riippumatta. Piirien tehokkuutta kuvaavat ns. vakavointikertoimet:

 ${\bf Tulovakavointikerroin}~{\bf S_u}$ ilmoittaa, miten hyvin regulaattori vakavoi tulojännitteessä esintyvät vaihtelut

$$\mathbf{s_u} = \frac{\Delta \mathbf{u_o}}{\Delta \mathbf{u_i}}$$

Sisäinen resistanssi  $R_{\rm O}$  kertoo, miten kuormitusvirran vaihtelu muuttaa lähtöjännitettä:

$$R_{O} = \frac{\Delta U_{O}}{\Delta I_{L}}$$

Lämpötilakerroin  $\mathbf{S_T}$  kertoo, miten ympäristön lämpötilan vaihtelut vaikuttavat lähtöjännitteeseen:

$$\mathbf{S_{T}} = \frac{\Delta \mathbf{U_{O}}}{\Delta \mathbf{T}}$$

Lähtöjännitteen kokonaismuutos on eri tekijöistä aiheutuvien muutosten summa. Lähtöjännitteen lopullinen muutos on siten:

$$U = S_U \Lambda U_i + R_O \Lambda I_L + S_T \Lambda T$$

Esimerkki: Regulaattoripiiri 723 toimii kytkennässä, jossa lähtöjännite  $\mathbf{U}_{0} = 5\mathbf{V}$  ja tuleva jännite  $\mathbf{U}_{1}$  muuttuu 12 voltista 15 volttiin. Lähtöjännitteessä näkyy valmistajan mukaan (ks. datalehti) korkeintaan muutos, joka on 0,1% tulevan jännitteen muutoksesta. Kun tulevan jännitteen muutos on 3  $\mathbf{V}$ , lähtevän jännitteen muutokseksi tulee

$$U_{o} = \frac{0.1}{---} 5V = 5mV$$

Tulovakavointikerroin on siten

## Harjoitustehtäviä

- · A. 4 1. Määrää oheisen kytkennän virta  $I_L$ , kun a)  $R_L$  = 2/70  $\Omega$  ja b)  $R_L$  = 1 k $\Omega$ . Transistorin  $U_{\rm BE}$  = 0.8 V. (a. 17.7 mÄ ja b. 16 mÄ)
- C, 4.- 2. Määrää oheisessa kytkennässä virrat  $I_Z$ ,  $I_B$  ja  $I_L$ . ( $I_Z$  = 10 mA,  $I_B$  = 24  $\mu$ A ja  $I_L$  = 9.5 mA)



teht. 4 - 1



cuco 1

teht. 4 - 2

- % B. 4 3. Määrää oheisen kytkennän virta  $I_L$ , kun  $R_L$  on a) 1 kΩ, b) 2,2 kΩ ja c) 10 kΩ. (a. 3,4 mA, b. 3,4 mA ja c. < 3,4 mA)
- A. 4 4. Määrää oheisen vakavointikytkennän antama jännite  $U_L$  ja maksimilähtövirta  $I_{Lmax}$ . ( $U_L$  = 4,6 V ja  $I_{Lmax}$  = 21 mA)
  - B. 4 5. Määrää oheisen vakavointikytkennän antama jännite  $U_L$  ja maksimilähtövirta  $I_{Lmax}$ . Kestääkö regulaattori tässä kytkennässä, jos sen suurin sallittu tehohäviö on on 1000 mW? ( $U_L$  = 13,0 V ja  $I_{Lmax}$  = 47 mA)



D. 4 - 6. Käytettävissä on tasajännitelähde, joka antaa 22 V jännitteen. Suunnittele regulaattoripiiriä 723 käyttäen säädettävä jännitelähde, jonka lähtöjännitteen säätöalue on 9V ... 15 V ja maksimilähtövirran säätöalue 5 mA ... 50 mA välillä. Piirrä kytkentä.