Computer System II (Fall/Winter 2023)

Course Information and Policy

Yajin Zhou (http://yajin.org)

Zhejiang University

Instructor

- Yajin Zhou (周亚金)
 - A Zhejiang University 100 Young Professor
 - A system security researcher, build and hack systems
 - Published in all top 4: IEEE S&P, ACM CCS, USENIX Sec, NDSS
 - Research
 - Program analysis (source code/binary): how to find vulnerabilities
 - Secure System: how to make the system more secure
 - Hardware-software codesign: how to make the system more secure through hardware support?
 - Emerging threats: Blockchain systems

UNIX Family Tree

Windows Family Tree

- OS is highly complicated software running on most machines
 - Windows: 50M lines of source code
 - Linux: 15M lines of source code
- It contains many important system concepts
 - complexity hiding, performance tuning, resource allocation...
- Studying OS internals makes you a more capable programmer
 - know how it works, and how it works better

- OS concepts benefit whole life
 - OS concepts are re-usable when implementing other software
 - Lessons learned from OS study can be applied to complex software systems, such as mapreduce, DNS
- Foundation of ALL software
 - Better user-space software, including apps
 - Invoke proper kernel API: performance
 - What can and cannot be done: security/reliability
 - Better performance
 - Caching (memory cache/TLB)

- For Hacking
- The more you know OS, the better hacker you are
- Because the thing you are trying to hack into, probably is running an OS

- For Profit
 - Interview = coding + system design
 - Build your own company
 - Great system -> great product -> great company

OS Distributed Systems Products

Learning Objectives

- Understand operating system concepts
 - process management, CPU scheduling, synchronization, file systems...
- Comprehend OS concepts through programming
 - multi-threading and synchronization, system call, kernel modules...
- Get an overall a deep understanding of how the real-world operating systems work
 - You can never truly understand a concept unless you implemented (CODE) it

Prerequisites

- Data Structures
- Programming skills:
 - proficiency in UNIX(Linux) programming and debugging
 - proficiency in the C programming language

Course Material

- Lecture notes (posted at the class website)
- Textbook:
 - Operating System Concepts 10th
 - Operating Systems: Three Easy Pieces

Course Grading

 Homework Assignment 	10%
• TBD	
• Projects	60%
 Lab 0 – CPU Design Review 	
 Lab 1 – Pipeline CPU Design with Stall 	
 Lab 2 – Hazard and Forwarding 	
 Lab 3 – Kernel Boot 	
 Lab 4 – Interrupt 	
 Lab 5 – Simple Scheduling 	
 Lab 6 – Running OS on CPU 	
Final Exam	30%

Links Sinks

Your Responsibilities

- Understand lecture & reading materials
- Ask for extra help, if needed
 - if the class is too hard or you do not have necessary backgrounds
- Uphold academic integrity
- Turn in your assignments on time
- Check class web page regularly

UINNE UINNE

Dos and Don'ts

- Do share debugging experiences, knowledge of tools
- Do acknowledge help from others
- Do acknowledge sources of information from books and web pages

- Don't cheat or help others cheat
- Don't paraphrase code from others
 - e.g., changing variable names or indentation
- Don't post code to the discussion board