第六讲虚拟存储概念 第7节 RISC-V 缺页异常

向勇、陈渝

清华大学计算机系xyong,yuchen@tsinghua.edu.cn

2020年5月5日

提纲

- 第7节 RISC-V 缺页异常
 - 内核态的中断处理机制回顾
 - RISC-V 缺页异常
 - rCore 中的 RISC-V 缺页异常处理函数

向勇、陈渝 (清华大学) 9020 年 5 月 5 日

内核态的中断处理机制回顾

Supervisor Trap Handling				
0x140	SRW	sscratch	Scratch register for supervisor trap handlers.	
0x141	SRW	sepc	Supervisor exception program counter.	
0x142	SRW	scause	Supervisor trap cause.	
0x143	SRW	stval	Supervisor bad address or instruction.	
0x144	SRW	sip	Supervisor interrupt pending.	

中断原因寄存器(scause)

Trap code[62:0]	Exception (Cause[MSB]=0)	Interrupt (Cause[MSB]==1)	
0	Instruction addr misaligned	User Software Interrupt	
1	Instruction access fault	Supervisor Software Interrupt	
2	Illegal instruction	Reserved	
3	Breakpoint	Machine Software Interrupt	
4	Load address misaligned	User Timer Interrupt	
5	Load access fault	Supervisor Timer Interrupt	
6	Store/AMO addr misaligned	Reserved	
7	Store/AMO access fault	Machine Timer Interrupt	
8	Environment call	User External Interrupt	
9		Supervisor External Interrupt	
10	Reserved	Reserved	
11		Machine External Interrupt	
12	Instruction page fault		
13	Load page fault	Reserved	
14	Reserved		
15	Store/AMO page fault		
>=16	Reserved	Reserved	

Volume II: RISC-V Privileged Architectures V1.10

Interrupt	Exception Code	Description
1	0	User software interrupt
1	1	Supervisor software interrupt
1	2-3	Reserved
1	4	User timer interrupt
1	5	Supervisor timer interrupt
1	6-7	Reserved
1	8	User external interrupt
1	9	Supervisor external interrupt
1	≥10	Reserved
0	0	Instruction address misaligned
0	1	Instruction access fault
0	2	Illegal instruction
0	3	Breakpoint
0	4	Reserved
0	5	Load access fault
0	6	AMO address misaligned
0	7	Store/AMO access fault
0	8	Environment call
0	9-11	Reserved
0	12	Instruction page fault
0	13	Load page fault
0	14	Reserved
0	15	Store/AMO page fault
0	≥16	Reserved

图: Supervisor cause register (scause) values after trap

rCore 的缺页异常处理

- 缺页异常只会在 MMU 启用后,虚拟地址翻译失败时产生,这时候根据是取指还是访存,分别触发不同的缺页异常。
- 当状态码是 Instruction page fault、Load page fault、Store page fault 时,将被判断为是缺页异常,并调用 'handle_page_fault()' 处理缺页异常。
- 发生缺页异常时,虚拟地址将会被保存到 stval 寄存器中;再调用 'crate::memory::page_fault_handler(addr)' 来做具体的缺页处理。
- 出处: rCore (Commit ID cd81f4c)

rCore 中 RISC-V 的缺页处理函数 handle_page_fault

```
• kernel/src/arch/riscv/interrupt.rs
fn rust_trap(tf: &mut TrapFrame)
```

- kernel/src/arch/riscv/interrupt.rsfn page_fault(tf: &mut TrapFrame)
- kernel/src/memory.rs
 pub fn handle_page_fault(addr: usize) -> bool
- o crate/memory/src/memory_set/mod.rs
 pub fn handle_page_fault(&mut self, addr: VirtAddr) -> bool
- crate/memory/src/memory_set/handler/delay.rs fn handle_page_fault(&self, pt: &mut dyn PageTable, addr: VirtAddr)

crate/memory/src/memory_set/handler/delay.rs

```
fn handle page fault(&self, pt: &mut dyn PageTable, addr: VirtAddr) -> b
let frame = self.allocator.alloc().expect("failed to alloc frame");
                       ///分配物理页面
entry.set_target(frame); ///设置物理页号
entry.set present(true); ///设置页表项标志位
               ///TLB刷 新
entry.update();
```