Lin algebra ~> Prob & Stats ~> Info theory ~> Optimization
Toolbox ~> our main python friend ~> np
training data X nxd Training labels or target Values X nxd
Jun supervisced learning ~> Clustering
> Supervised learning >> Regression >> Classification

Clustering Analysis and K-Means

Mahdi Roozbahani Georgia Tech

60+ hours on 16 GPU nvidia CUDA cluster.

Outline

- Clustering
- Distance Function
- K-Means Algorithm
- Analysis of K-Means

Clustering Images

Goal of clustering:

Divide object into groups, and objects within a group are more similar than those outside the group

Clustering Other Objects

Clustering Hand Digits

0 1 2 3 4 5 6 7 8

Clustering is Subjective

What is consider similar/dissimilar?

Are they similar or not?

So What is Clustering in General?

- You pick your similarity/dissimilarity function
- The algorithm figures out the grouping of objects based on the chosen similarity/dissimilarity function
 - Points within a cluster is similar
 - Points across clusters are not so similar
- Issues for clustering
 - How to represent objects? (Vector space? Normalization?)
 - What is a similarity/dissimilarity function for your data?
 - What are the algorithm steps?

Outline

- Clustering
- Distance Function

- K-Means Algorithm
- Analysis of K-Means

Properties of Similarity Function

- Desired properties of dissimilarity function
 - Symmetry: d(x,y) = d(y,x)
 - Otherwise you could claim "Alex looks like Bob, but Bob looks nothing like Alex"
 - Positive separability: d(x,y) = 0, if and only if x = y
 - Otherwise there are objects that are different, but you cannot tell apart
 - Triangular inequality: $d(x, y) \le d(x, z) + d(z, y)$
 - Otherwise you could claim "Alex is very like Bob, and Alex is very like Carl, but Bob is very unlike Carl"

Distance Functions for Vectors

Suppose two data points, both in R^d

$$\Rightarrow x = (x_1, x_2, ..., x_d)$$

$$\Rightarrow y = (y_1, y_2, ..., y_d)$$

$$\|x - y\|_{2}^{2} = \sum_{i=1}^{2} (x_{i} - y_{i})^{2}$$

- Euclidean distance: $d(x,y) = \sqrt{\sum_{i=1}^{d} (x_i y_i)^2} = \|x y\|_2$
- Minkowski distance: $d(x, y) = \sqrt[p]{\sum_{i=1}^{d} (x_i y_i)^p}$
 - Euclidean distance: p = 2
 - Manhattan distance: p = 1, $d(x, y) = \sum_{i=1}^{d} |x_i y_i|$
 - "inf"-distance: $p = \infty$, $d(x, y) = \max_{i=1}^{d} |x_i y_i|$

Example

- Euclidean distance: $\sqrt{4^2 + 3^2} = 5$
- Manhattan distance: 4 + 3 = 7
- "inf"-distance: $max\{4,3\} = 4$

Some problems with Euclidean distance

Hamming Distance

- Manhattan distance is also called Hamming distance when all features are binary
 - Count the number of difference between two binary vectors
 - Example, $x, y \in \{0,1\}^{17}$

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
\overline{x}	0	1	1	0	0	1	0	0	1	0	0	1	1	1	0	0	1
y	0	1	1	1	0	0	0	0	1	1	1	1	1	1	0	1	1

$$d(x,y)=5$$

Edit Distance

 Transform one of the objects into the other, and measure how much effort it takes

d: deletion (cost 5)

$$d(x, y) = 5 \times 1 + 3 \times 1 + 1 \times 2 = 10$$

s: substitution (cost 1)

i: insertion (cost 2)

d: deletion (cost 5)

s: substitution (cost 1)

i: insertion (cost 2)

Outline

- Clustering
- Distance Function
- K-Means Algorithm

Analysis of K-Means

Results of K-Means Clustering:

Image

Clusters on intensity

Clusters on color

K-means clustering using intensity alone and color alone

Image

Clusters on color

K-means using color alone, 11 segments (clusters) (Components)

* Pictures from Mean Shift: A Robust Approach toward Feature Space Analysis, by D. Comaniciu and P. Meer http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

K-Means Algorithm

Visualizing K-Means Clustering

K-Means Algorithm

• Initialize k cluster centers, $\{c_1, c_2, ..., c_k\}$, randomly

- Do
 - Decide the cluster memberships of each data point, x_i by assigning it to the nearest cluster center (cluster assignment)

$$\pi(i) = \underset{\text{number of dusters}}{\operatorname{argmin}_{j=1,\dots,k}} \|x_i - e_j\|^2 \to \text{Expectation}$$

Adjust the cluster centers (center adjustment)

$$C_j = \frac{1}{|\{i: \pi(i) = j\}|} \left(\sum_{i: \pi(i)} x_i \right) \longrightarrow \text{Maximization}$$

While any cluster center has been changed

Outline

- Clustering
- Distance Function
- K-Means Algorithm
- Analysis of K-Means

Questions

Will different initialization lead to different results?

- Will the algorithm always stop after some iteration?
 - Yes, Local optimal Solution
 - No (we have to set a maximum number of iterations)
 - Sometimes

Formal Statement of the Clustering Problem

- Given n data points, $\{x_1, x_2, ..., x_n\}$ $x \in \mathbb{R}^d$
- Find k cluster centers, $\{c_1, c_2, ..., c_k\}$ $c \in \mathbb{R}^d$
- And assign each datapoint i to one cluster, $\pi(i) \in \{1, ..., k\}$
- Such that the averaged square distances from each datapoint to its respective cluster center is small

Clustering is NP-Hard

• Find k cluster centers, $\{c_1, c_2, ..., c_k\}$ $c \in R^d$, and assign each data point i to one cluster, $\pi(i) \in \{1, ..., k\}$, to minimize

$$\min_{c,\pi} \sum_{i=1}^{n} \|x_i - c_{\pi(i)}\|^2$$
NP-har

- A search problem over the space of discrete assignments
 - ullet For all $\, {\sf n} \,$ data point together, there are $k \, {\sf n} \,$ possibility
 - The cluster assignment determines cluster centers, and vice versa

• For all N data point together, there are k possibility

$$X = \{A,B,C\}$$

n=3 (data points)

k=2 clusters of two members

Convergence of K-Means

Will kmeans objective oscillate?

$$\min_{c,\pi} \sum_{i=1}^{n} ||x_i - c_{\pi(i)}||^2$$

- The minimum value of the objective is finite
- Each iteration of kmeans algorithm decrease the objective
 - Cluster assignment step decreases objective
 - $\pi(i) = argmin_{j=1,...,k} \|x_i c_{\pi(j)}\|^2$ for each data point i
 - Center adjustment step decreases objective

•
$$c_i = \frac{1}{|\{i:\pi(i)=j\}|} \sum_{i:\pi(i)=j} x_i = argmin_c \sum_{i:\pi(i)=j} ||x_i - c_{\pi(j)}||^2$$

Time Complexity

• Assume computing distance between two instances is O(d) where d is the dimensionality of the vectors.

 $X = [X_1 \quad Xd]$ $Y = [Y_1 \quad Yd]$ $|X - Y||_2 = (X_1 - Y_1)^2 + (-1)^2$ $(X_d - Xd)^2$

- Reassigning clusters for all datapoints:
 - ► O(kn) distance computations (when there is one feature)
 - O(knd) (when there is d features)
- Computing centroids: Each instance vector gets added once to some centroid (Finding centroid for each feature): O(nd).
- Assume these two steps are each done once for I iterations: O(Iknd).

How to Choose K? Elbow method Sum = altbit4 Objective Function Value i.e., Distortion **Best Number of Clusters** $\frac{(3)}{b}$ as $sum_3 = a3 + b3 + c3$ at the "Elbow" distortion = Sum1+ Sum2+ Sum3

Distortion score: computing the sum of squared distances from each point to its assigned center

Number of Clusters