Le package tnsseq : théorie générale des suites

 ${\bf Code\ source\ disponible\ sur\ https://github.com/typensee-latex/tnsseq.git.}$

Version ${\tt 0.0.0\text{-}beta}$ développée et testée sur $\operatorname{Mac}\operatorname{OS}\operatorname{X}.$

Christophe BAL

2020-07-10

Table des matières

I. Introduction	2
II. Beta-dépendance	2
III.Packages utilisés	2
IV.Des notations complémentaires pour des suites spéciales	2
V. Sommes et produits en mode ligne	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 3 3 4
VIIIoutes les fiches techniques	5
1. Des notations complémentaires pour des suites spéciales	5
2. Sommes et produits en mode ligne	5
3. Comparaison asymptotique de suites et de fonctions	5
i. Les notations \mathcal{O} et σ	5
ii. La notation Ω	5
iii. La notation Θ	5

I. Introduction

Le package tnsseq propose quelques macros utiles quand l'on parle de suites ou de séries. La saisie proposée se veut sémantique et simple.

II. Beta-dépendance

\tnscom qui est disponible sur https://github.com/typensee-latex/tnscom.git est un package utilisé en coulisse.

III. Packages utilisés

La roue ayant déjà été inventée, le package tnsseq réutilise les packages suivants sans aucun scrupule.

• bm • mathtools • yhmath

IV. Des notations complémentaires pour des suites spéciales

Voici trois types de suites avec deux ou quatre indices.

V. Sommes et produits en mode ligne

Pour limiter l'espace, LATEX affiche $\sum_{k=0}^{n}$ et non $\sum_{k=0}^{n}$ sauf si l'on utilise la commande \displaystyle. Les macros \dsum et \dprod permettent de se passer de \displaystyle. Voici un exemple.

Remarque. On peut taper $\sum_{k=0}^{n} \frac{1}{n}$ où la fraction n'est pas en mode \displaystyle.

VI. Comparaison asymptotique de suites et de fonctions

1. Les notations \mathcal{O} et \mathcal{O}

Exemple 1

Les notations suivantes sont dues à Landau.

\$\$ ou \$\$	O ou o
--------------	--------

Exemple 2

$\sigma(x) \neq \$ \pi e^{t + \smallO{t}} = e^{\bigO{t}}\$	$\mathcal{O}(x) \neq \mathcal{O}(x)$ ou $e^{t+\mathcal{O}(t)} = e^{\mathcal{O}(t)}$
--	---

2. La notation Ω

Exemple 1

La notation suivante est due à Hardy et Littlewood.

<pre>\$\$</pre>	Ω	
-----------------	---	--

Exemple 2

Dans l'exemple suivant, $f(n) = \Omega(g(n))$ signifie : $\exists (m, n_0)$ tel que $n \ge n_0$ implique $f(n) \ge mg(n)$.

$f(n) = \sigma(g(n))$	$f(n) = \Omega(g(n))$
	I and the second

3. La notation Θ

Exemple 1

<pre>\$\$</pre>	Θ	

Exemple 2

Dans l'exemple suivant, $f(n) = \Theta(g(n))$ signifie : $\exists (m, M, n_0)$ tel que $mg(n) \le f(n) \le Mg(n)$ dès que $n \ge n_0$.

$$f(n) = \beta(g(n))$$

VII. Historique

Nous ne donnons ici qu'un très bref historique récent ¹ de tnsseq à destination de l'utilisateur principalement. Tous les changements sont disponibles uniquement en anglais dans le dossier change-log : voir le code source de tnsseq sur github.

2020-07-10 Première version 0.0.0-beta.

^{1.} On ne va pas au-delà de un an depuis la dernière version.

VIII. Toutes les fiches techniques

1. Des notations complémentaires pour des suites spéciales

\seqplus{#1#2}
— Argument 1: l'exposant à droite.
— Argument 2: l'indice à droite.
\seqhypergeo{#1#2}
— Argument 1: l'indice à gauche.
— Argument 2: l'indice à droite.
\seqsuprageo{#1#4}
— Argument 1: l'indice à gauche.
— Argument 2: l'indice à droite.
— Argument 3: l'exposant à droite.
— Argument 4: l'exposant à gauche.
2. Sommes et produits en mode ligne
Les opérateurs suivants ont un comportement spécifique vis à vis des mises en index et en exposant
\dsum

3. Comparaison asymptotique de suites et de fonctions

i. Les notations \mathcal{O} et \mathcal{O}

\big0 {#1} \small0{#1}

— Argument: un argument vide est ignoré, sinon il est mis entre des parenthèses après \mathcal{O} ou \mathcal{O} .

ii. La notation Ω

\bigomega{#1}

— Argument: un argument vide est ignoré, sinon il est mis entre des parenthèses après Ω .

iii. La notation Θ

\bigtheta{#1}

— Argument: un argument vide est ignoré, sinon il est mis entre des parenthèses après Θ .