```
& 8.2 Power Iteration = "chap 06_eigenvalue. key"
Numerical experiments

[Example 8.2.1 magic power]
>> A = magic (5)/65
>> for j=1:p; x= A * x; x= x/norm(x); end
   For any x, x converges to [1,1,1,1] WHY?
Analysis ( of Power iteration)
Dominant Eigenvector
Suppose the eigenpairs of A are (Di, Vi) and
        1212121312 ··· 2 121
        La dominant eigenvalue
 Vx, we have x = I C; x;
Then Ax = CIAVI + C2AVI + ... + CnAVn
                  = Cid, V, + Cz Azuz + ... + Ca Anun
        =) Akx = C, D, V, + C, D, V2+ ... + Ca D, Vn
               = \frac{1}{\lambda_{1}} \left[ C_{1} U_{1} + C_{2} \left( \frac{\lambda_{2}}{\lambda_{1}} \right)^{k} V_{2} + \cdots + C_{n} \left( \frac{\lambda_{n}}{\lambda_{n}} \right)^{k} V_{n} \right]
       => || AK - CIVIII & ICU | 1/2 | 11V2 || + " + 1 CU || 2/4 || 11V4 ||
       =) A x // V. ! (Note: A(A(...(Ax))))
```

Known already. But 7, a can make 11 A"x11 very big er very small (: 11 Atx - C, b, 11 - 0) Solution: normalization Given $\chi^{(0)} \in \mathbb{C}^n$ and let $y^{(0)} = \frac{\chi^{(0)}}{\|\chi^{(0)}\|}$ for i=1,2, ... until converges $\chi^{(1k)} = A y^{(k-1)}$ y(k) = x(k) | nurmalized eigenvector 2 = [y(x)] * A y (x) eigen also by Rayleigh quotient Note: (1) As y (4) converges to the dominant eigenvector $Ay^{(k)} \approx Ay^{(k)} \Rightarrow (y^{(k)})^*Ay^{(k)} \approx \lambda (y^{(k)})^*y^{(k)}$ (2) In short, $g^{(k)} = g^{(k)} A^{k} y^{(0)} = \frac{k}{\pi} \frac{1}{\|\chi^{(i)}\|} A^{k} y^{(0)}$

§ 8.4	4 Kryl	ou Sub	space							
_ BA	tiva tiva									
pro							_			
	In	10mer	Method	, we	have	u, A	u, A'	·u,	but	use
	only	Power the I	atest u	ectu	Au		根金	伞		
- Id	la:									
	Use	linear	- comb	ination.	s dr	}u, /	Au, A	² a,	A 43	(m-dim)
					~~		_ 31	1/4	44 =	(m-dim)
					nxm		57	又化	础 及	好為国
- Ku	ylor no	atvix	Km	C		-	New	es au	y wtr	-vec mul
			% .	_						
					Λ.	10 1/ 10				
	k -		[m-l			n×n				
	Km = n	Ill Au	A u		Km	: NX n	n			
		+' '	1	J						
- K	rylov Si	ahspar a	12	, , e	Cn					
	7.50			- /11 -						
	Range	- dr k	² m			K.,			V.	
	o l	.11			(1	Km nxm)	v V I m	, , ,) =) (N×))
	Column	n space	e of k	< m						. ,
		•	, i							
- No	tes:	1	\)							
	- Kn	n and	Km	depan	ds on	LA	d n	, sut	سو	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	usu	ally der	it m	(the	dimen	shn of	12 4	rank	o K	m) only.
	Ral	her el	non K	m,A,u	n	102 m,	A,u			

Dimension Reduction by	2 Krylo	v Subsp	ace Appr	nach
Replace the full with a much lower				14. 65. 10
				subspace
A x = 5				
(=) min Ax-b	x e d	_ n		
$x \in \mathbb{C}^n = \frac{1}{2} = \frac{1}{2}$ $\Rightarrow \min \ A \times -b\ $	~ < 1		la la	
x 6 2 (m	放鞋		低維度	空間(比11)
	的最	佳超山	丘海	
(=) min A (Knz) - b	11 3 E	Cm, n Ekm,	x = Km	} (lemma f.4)
~ [] -	~ Le	ast squ	are probl	len!
Note: In Km=[b, Ab	, A ² b,	, A"	n-1 b], we
(take 6 as				
compute A	7 6 =	(A LA	··:(A(A	· b))···))
Nut (A.	A	A).b.		S All sparse mi
Dense	! even	A is of	oarse	vector mult.

											•								
5	x Ou	~p	le	8	.4	.)	C (-	2. 3	33	,	Kv	rylo	VW	nst	abl	e.)		

The Arnoldi	Iteration		
The Arnoldi F		an orthonorma	el basis
for a Krylou	subspace		
Issues:			
Km=[u A	4u A ² u	Amin]	
	appn	each to the i	dominant eigenvector
Ą	文朱念 "平代	5" 3 = B - 6 =	1
ă	定渊失艺点	张华军是元	急来您 結婚相论
=)	Niverical C	concellation	
	Km 63 cond	ition number	1 as m 1
Ideas:	0		
7md au	orthonormal b	pasis	
Approach:			
Conceptua	My, we can p	perform skinny	QR on Km to get
ν	0 54 0		R12 Rim
m	Rm = [9, 8	oz " gm]	Ruz ··· Rzm
n n	m orthon	normal	'Rmm J
	busis	et Kn	

```
General case
    To construct Km = Cu, Au, A2u, ... Ama7
                       = span (9,,9,2, .- , 9m)
     (1) let g = u
     (2) For m=1,2, --.
            (i) Let Him = 8 = A gm for c=1:m
            (ii) let v= Agm - Hing, - ... - Hum gm
            (iii) let Hm+1, m = ||V|| normalization
(iv) let Gm+1 = \frac{\tau}{Hm+1,m}
       check orthonormal: Q= [9, 9, 93]
                                3) Compute || QTQ - I311
      check span: K= [u, Au, A2a]
                                => compute rank ([QK])
Check: But I Bi for i=1:m

8: 9 mt1 = 9: 1 (A9m - High - ... - (9: A9m) 9: -... - Hum 9m)
```

 $= \frac{1}{\pi v \pi} \left[2^* A 9 m - (2^* A 9 m) 2^* R^{-1} \right] = 0$

Exer	rcise	f. 4.7	m	ρ. 3.	4 8				
. Ha	u to	solve	the	eig.	enval	ce pr	no blem	Ax	-λ×
		the							
That	is,	how to	арры	o kî M-a	le ti	he ei	genua	le pr	vllen
Ąχ	= 7 X	over	Km	?					

§	5 GMRES	
	The Arnoldi iteration can be used to solve AX=6	
	A x = 5	
	=) min Ax-6 x & C"	
	~ min 11 Ax-511 x6 Km > ill-conditioned as m 1	
	= min 11 AKm z - b 11 3 6 Cm dun't use x = Km z	
	use x = Qm } (orthonormal basis)	
least square	⇒ mor 11 A Qm 3 - 511 3 € Cm by the key identify	
(N+m)	=) min 11 Qm+1 Han 3 - 611 3 € Cm 31 = 11511 => 6 = 11611. 3,	1
n D	=> min Qme! (Hm] - 11611e.) =11611. Qme: e.	<u> </u>
L	T (1) A (1) 1 A (2) A (2)	1/2
	=) mm [[[] [] [] [] [] [] [] [] [)
	mupper Hessenberg and = $(w^* w)^{1/2} = 11 w 11$ m+1 maller (m+1 x m) size! (No n, where mccn)	
	=) 3m = argum 11 Hun 2 - 116/10/11	
	=) Xm = Qm Im is the mth approximation solution & Ax	(2b

	arting
Issu	e:
	Entries on Hm T, dimension of Knylov subspace)
	columns on Qmt, computation & storage of
	As m 1
Solu	tren:
	Restarting.
	Let $x = \hat{x} + \mu$. \Rightarrow $A(\hat{x} + \mu) = b \Rightarrow A \mu = b - \mu$
	True Approx.
⇒)	Solve Au = + to get a "correction"
	However.
	- Restarting preserves progress made in previous
	iteration,
	- the Krylov space information is discarded and the residual minimization process starts again
	ver lower-dimensional choices
	- Which can retard or even stagnate the converge
	減慢停滯

																	-
Cx	(au	ple	ક	:5.	1	(P.	33	۲,	k	rylo	ust	ablu	2)				
																	Ī
																	-
																	_
																	-
																	F
																	-

$$- \begin{cases} f(x + y) = f(x) + f(y) \\ f(x + x) = \alpha f(x) \end{cases}$$

 Every linear transformation between finite dimensional vector spaces can be represented as a matrix vector multiplication.

- By computing fix, we can do many things.
- ① $\frac{1}{3}$ $\frac{1}{4}$ $\frac{f(x_1) f(x_1)}{x_2 x_1}$ novt-finding $f(x_1) = 0$ in the secont method (or find $f^{-1}(0)$)
- (2) Matrix rector mult. GMRES, MIRES, CG

 fix) = Ax

 for solving Ax > 6

 Knylov sub-space methods can be used to

 invert a linear transformation of one provides

 code for the transformation, even if its

 associated matrix is not known explicitly.

<u>De blurring</u>
To most blur (8). But how?
Idea: (1) blur (8) = B & C k is a linear transformation
(2) let vec (8)= x and unvec (x)= 8 x, x2 xy = x1
(2) Let $vec(8) = x$ and $vuvec(x) = 8$ $ x_1 \times x_2 \cdot x_3 = x_1 $ $ x_1 \times x_2 \cdot x_3 = x_1 $ $ x_1 \times x_2 \cdot x_3 = x_2 $ $ x_1 \times x_2 \cdot x_3 = x_1 $ $ x_1 \times x_2 \cdot x_3 = x_2 $ $ x_1 \times x_2 \cdot x_3 = x_1 $ $ x_1 \times x_2 \cdot x_3 = x_2 $ $ x$
For an 1024×765 mage, $mn = 156432$ and A has $186432^2 = 615,495,290,624$ entries!
=> Consume a lot of memory of almost impossible to
(3) $X \stackrel{\text{vec}}{\rightleftharpoons} X \stackrel{\text{Blur}}{\rightleftharpoons} A \times = 3$ $X \stackrel{\text{unvec}}{\rightleftharpoons} X \text{unve$
$\forall u, Au = vec(B(unvec(u)))(k)$ $(mn \times mn) = mn \times 1$
Then we can solve $Ax = J$ by, e.g. GMRES

Example	8.7.1	(p. 350	, blurimage)
Example	8.7.2	cp. 351,	deblurimage)

