2-3-1.삼차방정식과 사차방정식

수학 계산력 강화

(3)삼차방정식의 근과 계수와의 관계, 켤레근

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

- 1) 제작연월일 : 2018-02-15
- 2) 제작자 : 교육지대㈜
- 3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호 되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무 단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

삼차방정식의 근과 계수와의 관계

삼차방정식 $ax^3 + bx^2 + cx + d = 0$ (a, b, c, d는 상수, $a \neq 0)$ 의 세 근을 α, β, γ 라 하면 $\alpha + \beta + \gamma = -\frac{b}{a}$, $\alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a}$, $\alpha\beta\gamma = -\frac{d}{a}$

- ightharpoonup 삼차방정식 $x^3-3x^2+3x+1=0$ 의 세 근을 $lpha,eta,\gamma$ 라 할 때, 다음 식의 값을 구하여라.
- 1. $\alpha + \beta + \gamma$
- 2. $\alpha\beta + \beta\gamma + \gamma\alpha$
- 3. $\alpha\beta\gamma$
- ightharpoons 삼차방정식 $3x^3+6x-1=0$ 의 세 근을 $lpha,eta,\gamma$ 라 할 때, 다음 식의 값을 구하여라.
- 4. $\alpha + \beta + \gamma$
- 5. $\alpha\beta + \beta\gamma + \gamma\alpha$
- 6. $\alpha\beta\gamma$

- $oldsymbol{\square}$ 삼차방정식 $2x^3-4x^2+5x-2=0$ 의 세 근을 $lpha,eta,\gamma$ 라 할 때, 다음 식의 값을 구하여라.
- 7. $\alpha + \beta + \gamma$
- 8. $\alpha\beta + \beta\gamma + \gamma\alpha$
- 9. $\alpha\beta\gamma$
- **10.** $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$
- \square 삼차방정식 $x^3-2x^2+3x+5=0$ 의 세 근을 α,β,γ 라 할 때, 다음 식의 값을 구하여라.
- **11.** $(1+\alpha)(1+\beta)(1+\gamma)$
- **12.** $\alpha^2 + \beta^2 + \gamma^2$
- **13.** $\alpha^3 + \beta^3 + \gamma^3$
- **14.** $\alpha^2 \beta^2 + \beta^2 \gamma^2 + \gamma^2 \alpha^2$

$$15. \quad \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$$

16.
$$\frac{1}{\alpha\beta} + \frac{1}{\beta\gamma} + \frac{1}{\gamma\alpha}$$

ightharpoonup 삼차방정식 $x^3+3x-2=0$ 의 세 근을 α,β,γ 라 할 때, 다음 식의 값을 구하여라.

17.
$$(\alpha-1)(\beta-1)(\gamma-1)$$

18.
$$\alpha^2 \beta^2 + \beta^2 \gamma^2 + \gamma^2 \alpha^2$$

 \blacksquare 삼차방정식 $x^3-2x^2+4x-8=0$ 의 세 근을 α,β,γ 라 고 할 때, 다음 식의 값을 구하여라.

19.
$$\alpha + \beta + \gamma$$

20.
$$\alpha\beta + \beta\gamma + \gamma\alpha$$

21.
$$\alpha\beta\gamma$$

22.
$$(\alpha-1)(\beta-1)(\gamma-1)$$

23.
$$\alpha^2 + \beta^2 + \gamma^2$$

24.
$$(\alpha+\beta)(\beta+\gamma)(\gamma+\alpha)$$

$$25. \quad \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$$

 \square 삼차방정식 $x^3+4x^2+3x-5=0$ 의 세 근을 α,β,γ 라 고 할 때, 다음 식의 값을 구하여라.

26.
$$\alpha + \beta + \gamma$$

27.
$$\alpha\beta + \beta\gamma + \gamma\alpha$$

28.
$$\alpha\beta\gamma$$

$$29. \quad \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$$

30.
$$(\alpha-1)(\beta-1)(\gamma-1)$$

$$31. \quad \alpha^2 + \beta^2 + \gamma^2$$

32. 삼차방정식 $x^3 - x^2 - 3x + 2 = 0$ 의 세 근을 α, β, γ 라 할 때, $(\alpha+\beta)(\beta+\gamma)(\gamma+\alpha)$ 의 값을 구하여라.

 x^3 의 계수가 1이고 세 근이 α, β, γ 인 삼차방정식은 $(x-\alpha)(x-\beta)(x-\gamma) = 0$ $\Leftrightarrow x^3 - (\alpha + \beta + \gamma)x^2 + (\alpha\beta + \beta\gamma + \gamma\alpha)x - \alpha\beta\gamma = 0$

- ☑ 다음 세 수를 근으로 하고 x^3 의 계수가 1인 삼차방 정식을 $x^3 + ax^2 + bx + c = 0$ 의 꼴로 나타내어라.
- **33.** 2, 3, −4
- **34.** 0, 1, -3
- **35.** -1, -3, -4
- **36.** -1, 2, 4
- **37.** $\frac{1}{2}$, $-\frac{1}{2}$, 6
- **38.** 2, 5, 4
- **39.** 0, 1, -2
- **40.** -1, -3, -5

41.
$$\frac{1}{2}$$
, $-\frac{1}{4}$, $-\frac{1}{2}$

- ☑ 다음 삼차방정식을 구하여라.
- **42.** 세 수 -3, 1+2i, 1-2i를 근으로 하고 x^3 의 계 수가 1인 삼차방정식
- **43.** 세 수 $1,3+\sqrt{2},3-\sqrt{2}$ 를 근으로 하고 x^3 의 계 수가 1인 삼차방정식
- **44.** 삼차방정식 $x^3-2x-1=0$ 의 세 근을 α,β,γ 라 할 때, $\alpha+\beta,\beta+\gamma,\gamma+\alpha$ 를 세 근으로 하고 x^3 의 계 수가 1인 삼차방정식
- \blacksquare 삼차방정식 $x^3+2x^2+4x-2=0$ 의 세 근을 α,β,γ 라 할 때, x^3 의 계수가 1이고 다음을 세 근으로 하는 삼차방정식을 구하여라.
- **45.** $-\alpha, -\beta, -\gamma$
- **46.** $\alpha + 1, \beta + 1, \gamma + 1$
- **47.** $\alpha\beta, \beta\gamma, \gamma\alpha$
- **48.** $\frac{1}{\alpha}, \frac{1}{\beta}, \frac{1}{\gamma}$
- **49.** $2\alpha 1, 2\beta 1, 2\gamma 1$

 \square 삼차방정식 $x^3+2x^2-x-3=0$ 의 세 근을 α,β,γ 라 할 때, x^3 의 계수가 1이고 다음을 세 근으로 하는 삼차방정식을 구하여라.

50.
$$\alpha + 1, \beta + 1, \gamma + 1$$

51.
$$\frac{1}{\alpha}, \frac{1}{\beta}, \frac{1}{\gamma}$$

 \blacksquare 삼차방정식 $x^3+3x^2-2x-1=0$ 의 세 근을 α,β,γ 라 고 할 때, 다음을 세 근으로 하고 x^3 의 계수가 1인 x에 대한 삼차방정식을 $ax^3 + bx^2 + cx + d = 0$ 의 꼴로 나타내어라.

52.
$$-\alpha, -\beta, -\gamma$$

$$53. \quad \frac{1}{\alpha}, \frac{1}{\beta}, \frac{1}{\gamma}$$

 \blacktriangle 삼차방정식 $x^3-3x^2+x-1=0$ 의 세 근을 α,β,γ 라 고 할 때, 다음을 세 근으로 하고 x^3 의 계수가 1인 x에 대한 삼차방정식을 $ax^3 + bx^2 + cx + d = 0$ 의 꼴로 나타내어라.

54.
$$-\alpha, -\beta, -\gamma$$

55.
$$\frac{1}{\alpha}, \frac{1}{\beta}, \frac{1}{\gamma}$$

03 / 삼차방정식의 켤레근

삼차방정식 $ax^3 + bx^2 + cx + d = 0$ 에서

- (1) a, b, c, d가 유리수일 때, $p+q\sqrt{m}$ 이 근이면 $p-q\sqrt{m}$ 도 근이다. (단, p, q는 유리수, \sqrt{m} 은 무리수)
- (2) a, b, c, d가 실수일 때, p+qi가 근이면 p-qi도 근이다. (단, p, q는 실수, $i=\sqrt{-1}$)
- \blacksquare 다음 삼차방정식에 대하여 a, b, α 의 값을 구하여라.
- **56.** 삼차방정식 $x^3 ax + b = 0$ 의 두 근이 $-2,1+\sqrt{2}$ 이다.
- **57.** 삼차방정식 $x^3 5x^2 + ax + b = 0$ 의 두 근이 3.1+i이다.
- **58.** 삼차방정식 $x^3 + ax^2 + bx 6 = 0$ 의 한 군이 $\frac{2}{1-i}$ 이고 나머지 두 근 중 실근을 α 라고 한다.
- ☑ 다음을 만족시키는 실수 a,b의 값을 구하여라. (단, $i=\sqrt{-1}$)
- **59.** 삼차방정식 $x^3-3x^2+ax+b=0$ 의 한 근이 1+i이다.
- **60.** 삼차방정식 $x^3 + ax^2 + 6x b = 0$ 의 한 근이 1-i이다.

61. 삼차방정식
$$x^3 + ax^2 + bx - 3 = 0$$
의 한 근이 $1 + \sqrt{2}i$ 이다.

69.
$$x^3 + ax^2 + bx + 4 = 0$$
의 한 근이 $1 + \sqrt{3}i$

70.
$$x^3 - 5x^2 + ax + b = 0$$
의 한 근이 $2+i$

62. 삼차방정식
$$x^3 - 5x^2 + ax + b = 0$$
의 한 근이 $1 + \sqrt{2}$ 이다.

71.
$$x^3 + ax^2 + bx + 5 = 0$$
의 한 군이 $2-i$

63. 삼차방정식
$$x^3 + ax^2 - 2x + b = 0$$
의 한 근이 $3 + \sqrt{5}$ 이다.

72.
$$x^3 + ax^2 + bx - 10 = 0$$
의 한 근이 $1 - 2i$

64. 삼차방정식
$$x^3 + ax^2 + bx + 2 = 0$$
의 한 근이 $1 - \sqrt{3}$ 이다.

$$\blacksquare$$
 주어진 삼차방정식의 한 근이 다음과 같을 때, 실수 a,b 의 값을 구하여라.(단, $i=\sqrt{-1}$)

65.
$$x^3 + x^2 + ax - b = 0$$
의 한 근이 $2+i$

66.
$$x^3 - x^2 + ax + b = 0$$
의 한 근이 $-i$

67.
$$x^3 - x^2 + ax + b = 0$$
의 한 근이 $1+i$

68.
$$x^3 - 6x^2 + ax + b = 0$$
의 한 근이 $1+i$

4

정답 및 해설

1)
$$\alpha + \beta + \gamma = 3$$

2)
$$\alpha\beta + \beta\gamma + \gamma\alpha = 3$$

3)
$$\alpha\beta\gamma = -1$$

4)
$$\alpha + \beta + \gamma = 0$$

5)
$$\alpha\beta + \beta\gamma + \gamma\alpha = 2$$

6)
$$\alpha\beta\gamma = \frac{1}{3}$$

7)
$$\alpha + \beta + \gamma = 2$$

8)
$$\alpha\beta + \beta\gamma + \gamma\alpha = \frac{5}{2}$$

9)
$$\alpha\beta\gamma = 1$$

10)
$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{5}{2}$$

11) 1

$$\Rightarrow x^3 - 2x^2 + 3x + 5 = 0$$
의 세 근이 α, β, γ 이므로 삼차방정식의 근과 계수의 관계에 의해 $(1+\alpha)(1+\beta)(1+\gamma)$ = $1+(\alpha+\beta+\gamma)+(\alpha\beta+\beta\gamma+\gamma\alpha)+\alpha\beta\gamma$ = $1+2+3+(-5)=1$

12) -2

당
$$x^3-2x^2+3x+5=0$$
의 세 근이 α,β,γ 이므로
삼차방정식의 근과 계수의 관계에 의해
 $\alpha+\beta+\gamma=2,\alpha\beta+\beta\gamma+\gamma\alpha=3,\alpha\beta\gamma=-5$
 $\alpha^2+\beta^2+\gamma^2=(\alpha+\beta+\gamma)^2-2(\alpha\beta+\beta\gamma+\gamma\alpha)$
 $=2^2-2\cdot 3=-2$

13) -25

14) 29

다
$$x^3 - 2x^2 + 3x + 5 = 0$$
의 세 근이 α, β, γ 이므로 삼차방정식의 근과 계수의 관계에 의해 $\alpha + \beta + \gamma = 2, \alpha\beta + \beta\gamma + \gamma\alpha = 3, \alpha\beta\gamma = -5$ $\alpha^2\beta^2 + \beta^2\gamma^2 + \gamma^2\alpha^2 = (\alpha\beta + \beta\gamma + \gamma\alpha)^2 - 2(\alpha\beta^2\gamma + \alpha\beta\gamma^2 + \alpha^2\beta\gamma) = (\alpha\beta + \beta\gamma + \gamma\alpha)^2 - 2\alpha\beta\gamma(\alpha + \beta + \gamma) = 3^2 - 2 \cdot (-5) \cdot 2 = 29$

15)
$$-\frac{3}{5}$$

$$\Rightarrow x^3-2x^2+3x+5=0$$
의 세 근이 α,β,γ 이므로 삼차방정식의 근과 계수의 관계에 의해 $\alpha+\beta+\gamma=2,\alpha\beta+\beta\gamma+\gamma\alpha=3,\alpha\beta\gamma=-5$
$$\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}=\frac{\alpha\beta+\beta\gamma+\gamma\alpha}{\alpha\beta\gamma}=-\frac{3}{5}$$

16)
$$-\frac{2}{5}$$

다
$$x^3-2x^2+3x+5=0$$
의 세 근이 α,β,γ 이므로 삼차방정식의 근과 계수의 관계에 의해 $\alpha+\beta+\gamma=2,\alpha\beta+\beta\gamma+\gamma\alpha=3,\alpha\beta\gamma=-5$
$$\frac{1}{\alpha\beta}+\frac{1}{\beta\gamma}+\frac{1}{\gamma\alpha}=\frac{\alpha+\beta+\gamma}{\alpha\beta\gamma}=-\frac{2}{5}$$

17)
$$-2$$

다
$$x^3+3x-2=0$$
에서 세 근이 α,β,γ 이므로 삼차방정식의 근과 계수의 관계에 의해 $\alpha+\beta+\gamma=0,\alpha\beta+\beta\gamma+\gamma\alpha=3,\alpha\beta\gamma=2$ $(\alpha-1)(\beta-1)(\gamma-1)=\alpha\beta\gamma-(\alpha\beta+\beta\gamma+\gamma\alpha)+(\alpha+\beta+\gamma)-1=2-3+0-1=-2$

18) 9

$$\Rightarrow$$
 $x^3+3x-2=0$ 에서 세 근이 α,β,γ 이므로
삼차방정식의 근과 계수의 관계에 의해
 $\alpha+\beta+\gamma=0,\alpha\beta+\beta\gamma+\gamma\alpha=3,\alpha\beta\gamma=2$
 $\alpha^2\beta^2+\beta^2\gamma^2+\gamma^2\alpha^2=(\alpha\beta+\beta\gamma+\gamma\alpha)^2-2\alpha\beta\gamma(\alpha+\beta+\gamma)$
 $=3^2-2\cdot2\cdot0=9$

$$\Rightarrow \alpha + \beta + \gamma = -(-2) = 2$$

20) 4

$$\Rightarrow \alpha\beta + \beta\gamma + \gamma\alpha = 4$$

21) 8

$$\Rightarrow \alpha\beta\gamma = -(-8) = 8$$

22) 5

$$\Rightarrow (\alpha - 1)(\beta - 1)(\gamma - 1) = \alpha\beta\gamma - (\alpha\beta + \beta\gamma + \gamma\alpha) + (\alpha + \beta + \gamma) - 1 = 8 - 4 + 2 - 1 = 5$$

$$23) -4$$

$$\Rightarrow \alpha^2 + \beta^2 + \gamma^2$$

$$= (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \gamma\alpha)$$

$$= 2^2 - 2 \cdot 4 = -4$$

24) 0

$$\Rightarrow \alpha + \beta + \gamma = 2 \circ] 므로$$

$$\alpha + \beta = 2 - \gamma, \ \beta + \gamma = 2 - \alpha, \ \gamma + \alpha = 2 - \beta$$

$$(\alpha + \beta)(\beta + \gamma)(\gamma + \alpha)$$

$$= (2 - \gamma)(2 - \alpha)(2 - \beta)$$

$$= 8 - 4(\alpha + \beta + \gamma) + 2(\alpha\beta + \beta\gamma + \gamma\alpha) - \alpha\beta\gamma$$

$$= 8 - 4 \cdot 2 + 2 \cdot 4 - 8 = 0$$

25)
$$\frac{1}{2}$$

$$\ \, \Longrightarrow \ \, \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{\alpha\beta + \beta\gamma + \gamma\alpha}{\alpha\beta\gamma} = \frac{4}{8} = \frac{1}{2}$$

$$26) -4$$

$$\Rightarrow \alpha + \beta + \gamma = -4$$

27) 3

$$\Rightarrow \alpha\beta + \beta\gamma + \gamma\alpha = 3$$

28) 5

$$\Rightarrow \alpha\beta\gamma = -(-5) = 5$$

29)
$$\frac{3}{5}$$

$$\Rightarrow \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{\alpha\beta + \beta\gamma + \gamma\alpha}{\alpha\beta\gamma} = \frac{3}{5}$$

$$30) -3$$

$$\Rightarrow (\alpha - 1)(\beta - 1)(\gamma - 1) = (\alpha \beta - \alpha - \beta + 1)(\gamma - 1) = \alpha \beta \gamma - \alpha \gamma - \beta \gamma + \gamma - \alpha \beta + \alpha + \beta - 1 = \alpha \beta \gamma - (\alpha \beta + \beta \gamma + \gamma \alpha) + (\alpha + \beta + \gamma) - 1 = 5 - 3 - 4 - 1 = -3$$

31) 10

$$\Rightarrow \alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \gamma\alpha)$$

$$= (-4)^2 - 2 \cdot 3$$

$$= 16 - 6 = 10$$

32) -1

다
$$x^3 - x^2 - 3x + 2 = 0$$
의 세 근이 α, β, γ 이므로 삼차방정식의 근과 계수의 관계에 의해 $\alpha + \beta + \gamma = 1, \alpha\beta + \beta\gamma + \gamma\alpha = -3, \alpha\beta\gamma = -2$ $\therefore (\alpha + \beta)(\beta + \gamma)(\gamma + \alpha) = (1 - \gamma)(1 - \alpha)(1 - \beta) = 1 - (\alpha + \beta + \gamma) + (\alpha\beta + \beta\gamma + \gamma\alpha) - \alpha\beta\gamma = 1 - 1 + (-3) - (-2) = -1$

[다른 풀이]

$$x^3 - x^2 - 3x + 2 = 0$$
의 세 근이 α, β, γ 이므로 $x^3 - x^2 - 3x + 2 = (x - \alpha)(x - \beta)(x - \gamma)$ 위 식의 양변에 $x = 1$ 을 대입하면 $1 - 1 - 3 + 2 = (1 - \alpha)(1 - \beta)(1 - \gamma)$ $\therefore (1 - \alpha)(1 - \beta)(1 - \gamma) = -1$

33)
$$x^3 - x^2 - 14x + 24 = 0$$

$$x^3 - x^2 - 14x + 24 = 0$$

34)
$$x^3 + 2x^2 - 3x = 0$$

(두 근끼리의 곱의 합)=
$$0\cdot 1+1\cdot (-3)-3\cdot 0=-3$$

(세 근의 곱)=
$$0 \cdot 1 \cdot (-3) = 0$$

$$\therefore x^3 + 2x^2 - 3x = 0$$

35)
$$x^3 + 8x^2 + 19x + 12 = 0$$

$$\therefore x^3 + 8x^2 + 19x + 12 = 0$$

36)
$$x^3 - 5x^2 + 2x + 8 = 0$$

$$(두 근끼리의 곱의 합)=-1\cdot2+2\cdot4+4\cdot(-1)=2$$

$$\therefore x^3 - 5x^2 + 2x + 8 = 0$$

37)
$$x^3 - 6x^2 - \frac{1}{4}x + \frac{3}{2} = 0$$

$$\Rightarrow$$
 (세 근의 합)= $\frac{1}{2}$ - $\frac{1}{2}$ +6=6

(두 근끼리의 곱의 합)=
$$\frac{1}{2}\cdot\left(-\frac{1}{2}\right)-\frac{1}{2}\cdot6+6\cdot\frac{1}{2}=-\frac{1}{4}$$

(세 근의 필)=
$$\frac{1}{2} \cdot \left(-\frac{1}{2}\right) \cdot 6 = -\frac{3}{2}$$

$$\therefore x^3 - 6x^2 - \frac{1}{4}x + \frac{3}{2} = 0$$

38)
$$x^3 - 11x^2 + 38x - 40 = 0$$

$$\Rightarrow x^3 - (2+5+4)x^2 + (10+20+8)x - 2 \cdot 5 \cdot 4 = 0$$

$$\therefore x^3 - 11x^2 + 38x - 40 = 0$$

39)
$$x^3 + x^2 - 2x = 0$$

$$\Rightarrow x^3 - (0+1-2)x^2 + (0-2+0)x - 0 \cdot 1 \cdot (-2) = 0$$

$$\therefore x^3 + x^2 - 2x = 0$$

40)
$$x^3 + 9x^2 + 23x + 15 = 0$$

$$x^{3} - (-1 - 3 - 5)x^{2} + (3 + 15 + 5)x - (-1)(-3)(-5) = 0$$

$$\therefore x^{3} + 9x^{2} + 23x + 15 = 0$$

41)
$$x^3 + \frac{1}{4}x^2 - \frac{1}{4}x - \frac{1}{16} = 0$$

$$\Rightarrow x^3 - \left(\frac{1}{2} - \frac{1}{4} - \frac{1}{2}\right)x^2 + \left(-\frac{1}{8} + \frac{1}{8} - \frac{1}{4}\right)x \\ -\frac{1}{2} \cdot \left(-\frac{1}{4}\right) \cdot \left(-\frac{1}{2}\right) = 0$$

$$\therefore x^3 + \frac{1}{4}x^2 - \frac{1}{4}x - \frac{1}{16} = 0$$

42)
$$x^3 + x^2 - x + 15 = 0$$

$$\Rightarrow$$
 x^3 의 계수가 1이고 근이 $-3,1+2i,1-2i$ 인 삼차방 정식은

$$x^{3} - \{-3 + (1+2i) + (1-2i)\}x^{2} + \{(-3) \cdot (1+2i) + (1+2i)(1-2i) + (1-2i) \cdot (-3)\}x - (-3) \cdot (1+2i)(1-2i) = 0$$

$$\therefore x^3 + x^2 - x + 15 = 0$$

43)
$$x^3 - 7x^2 + 13x - 7 = 0$$

당
$$x^3$$
의 계수가 1이고 근이 $1,3+\sqrt{2},3-\sqrt{2}$ 인 삼차 방 정 식 은
$$x^3-\left\{1+(3+\sqrt{2})+(3-\sqrt{2})\right\}x^2\\+\left\{1\cdot(3+\sqrt{2})+(3+\sqrt{2})(3-\sqrt{2})+(3-\sqrt{2})\cdot 1\right\}x\\-1\cdot(3+\sqrt{2})(3-\sqrt{2})=0$$

$$\therefore x^3 - 7x^2 + 13x - 7 = 0$$

44)
$$x^3 - 2x + 1 = 0$$

다
$$x^3 - 2x - 1 = 0$$
의 세 근이 α, β, γ 이므로 삼차방정식의 근과 계수의 관계에 의해 $\alpha + \beta + \gamma = 0, \alpha\beta + \beta\gamma + \gamma\alpha = -2, \alpha\beta\gamma = 1$ 이때, $\alpha + \beta = -\gamma$, $\beta + \gamma = -\alpha$, $\gamma + \alpha = -\beta$ 이므로 $(\alpha + \beta) + (\beta + \gamma) + (\gamma + \alpha) = -\gamma - \alpha - \beta$ $= -(\alpha + \beta + \gamma) = 0$ $(\alpha + \beta)(\beta + \gamma) + (\beta + \gamma)(\gamma + \alpha) + (\gamma + \alpha)(\alpha + \beta)$ $= (-\gamma) \cdot (-\alpha) + (-\alpha) \cdot (-\beta) + (-\beta) \cdot (-\gamma)$ $= \alpha\beta + \beta\gamma + \gamma\alpha = -2$ $(\alpha + \beta)(\beta + \gamma)(\gamma + \alpha) = (-\gamma) \cdot (-\alpha) \cdot (-\beta)$ $= -\alpha\beta\gamma = -1$

$$\therefore x^3 - 2x + 1 = 0$$

45)
$$x^3 - 2x^2 + 4x + 2 = 0$$

 $\Rightarrow x^3 + 2x^2 + 4x - 2 = 0$ 의 세 근이 α, β, γ 이므로
삼차방정식의 근과 계수의 관계에 의해
 $\alpha + \beta + \gamma = -2, \alpha\beta + \beta\gamma + \gamma\alpha = 4, \alpha\beta\gamma = 2$
 $(-\alpha) + (-\beta) + (-\gamma) = -(\alpha + \beta + \gamma) = 2$
 $(-\alpha) \cdot (-\beta) + (-\beta) \cdot (-\gamma) + (-\gamma) \cdot (-\alpha)$
 $= \alpha\beta + \beta\gamma + \gamma\alpha = 4$
 $(-\alpha) \cdot (-\beta) \cdot (-\gamma) = -\alpha\beta\gamma = -2$
 $\therefore x^3 - 2x^2 + 4x + 2 = 0$

 $\Rightarrow x^3 + 2x^2 + 4x - 2 = 0$ 의 세 근이 α, β, γ 이므로

46)
$$x^3 - x^2 + 3x - 5 = 0$$

삼차방정식의 근과 계수의 관계에 의해
$$\alpha+\beta+\gamma=-2, \alpha\beta+\beta\gamma+\gamma\alpha=4, \alpha\beta\gamma=2$$
 $(\alpha+1)+(\beta+1)+(\gamma+1)=\alpha+\beta+\gamma+3=-2+3=1$ $(\alpha+1)(\beta+1)+(\beta+1)(\gamma+1)+(\gamma+1)(\alpha+1)=(\alpha\beta+\alpha+\beta+1)+(\beta\gamma+\beta+\gamma+1)+(\gamma\alpha+\gamma+\alpha+1)=(\alpha\beta+\beta\gamma+\gamma\alpha)+2(\alpha+\beta+\gamma)+3=4+2\cdot(-2)+3=3$ $(\alpha+1)(\beta+1)(\gamma+1)=\alpha\beta\gamma+(\alpha\beta+\beta\gamma+\gamma\alpha)+(\alpha+\beta+\gamma)+1=2+4+(-2)+1=5$ $\therefore x^3-x^2+3x-5=0$

47)
$$x^3 - 4x^2 - 4x - 4 = 0$$

$$\therefore x^3 - 4x^2 - 4x - 4 = 0$$

48)
$$x^3 - 2x^2 - x - \frac{1}{2} = 0$$

$$\Rightarrow x^3 + 2x^2 + 4x - 2 = 0 의 세 근이 \alpha, \beta, \gamma 이므로 삼차방정식의 근과 계수의 관계에 의해
$$\alpha + \beta + \gamma = -2, \alpha\beta + \beta\gamma + \gamma\alpha = 4, \alpha\beta\gamma = 2$$

$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{\alpha\beta + \beta\gamma + \gamma\alpha}{\alpha\beta\gamma} = \frac{4}{2} = 2$$

$$\frac{1}{\alpha} \cdot \frac{1}{\beta} + \frac{1}{\beta} \cdot \frac{1}{\gamma} + \frac{1}{\gamma} \cdot \frac{1}{\alpha} = \frac{\alpha + \beta + \gamma}{\alpha\beta\gamma} = \frac{-2}{2} = -1$$

$$\frac{1}{\alpha} \cdot \frac{1}{\beta} \cdot \frac{1}{\gamma} = \frac{1}{\alpha\beta\gamma} = \frac{1}{2}$$

$$\therefore x^3 - 2x^2 - x - \frac{1}{2} = 0$$$$

 $\Rightarrow x^3 + 2x^2 + 4x - 2 = 0$ 의 세 근이 α, β, γ 이므로

49)
$$x^3 + 7x^2 + 27x + 5 = 0$$

삼차방정식의 근과 계수의 관계에 의해
$$\alpha+\beta+\gamma=-2,\alpha\beta+\beta\gamma+\gamma\alpha=4,\alpha\beta\gamma=2$$

$$(2\alpha-1)+(2\beta-1)+(2\gamma-1)=2(\alpha+\beta+\gamma)-3$$

$$=2\cdot(-2)-3=-7$$

$$(2\alpha-1)(2\beta-1)+(2\beta-1)(2\gamma-1)+(2\gamma-1)(2\alpha-1)$$

$$=(4\alpha\beta-2\alpha-2\beta+1)+(4\beta\gamma-2\beta-2\gamma+1)$$

$$+(4\gamma\alpha-2\gamma-2\alpha+1)$$

$$=4(\alpha\beta+\beta\gamma+\gamma\alpha)-4(\alpha+\beta+\gamma)+3$$

$$=4\cdot4-4\cdot(-2)+3=27$$

$$(2\alpha-1)(2\beta-1)(2\gamma-1)$$

$$=8\alpha\beta\gamma-4(\alpha\beta+\beta\gamma+\gamma\alpha)+2(\alpha+\beta+\gamma)-1$$

$$=8\cdot2-4\cdot4+2\cdot(-2)-1=-5$$

50)
$$x^3 - x^2 - 2x - 1 = 0$$

 $\therefore x^3 + 7x^2 + 27x + 5 = 0$

다
$$x^3 + 2x^2 - x - 3 = 0$$
에서 세 근이 α, β, γ 이므로 삼차방정식의 근과 계수의 관계에 의해 $\alpha + \beta + \gamma = -2, \alpha\beta + \beta\gamma + \gamma\alpha = -1, \alpha\beta\gamma = 3$ $(\alpha+1)+(\beta+1)+(\gamma+1)=\alpha+\beta+\gamma+3=-2+3=1$ $(\alpha+1)(\beta+1)+(\beta+1)(\gamma+1)+(\gamma+1)(\alpha+1)=(\alpha\beta+\alpha+\beta+1)+(\beta\gamma+\beta+\gamma+1)(\gamma\alpha+\gamma+\alpha+1)=(\alpha\beta+\beta\gamma+\gamma\alpha)+2(\alpha+\beta+\gamma)+3=-1+2\cdot(-2)+3=-2$ $(\alpha+1)(\beta+1)(\gamma+1)=\alpha\beta\gamma+(\alpha\beta+\beta\gamma+\gamma\alpha)+(\alpha+\beta+\gamma)+1=3+(-1)+(-2)+1=1$ $x^3-x^2-2x-1=0$

51)
$$x^3 + \frac{1}{3}x^2 - \frac{2}{3}x - \frac{1}{3} = 0$$

 $\Rightarrow x^3 + 2x^2 - x - 3 = 0$ 에서 세 근이 α, β, γ 이므로 삼차방정식의 근과 계수의 관계에 의해 $\alpha + \beta + \gamma = -2$, $\alpha\beta + \beta\gamma + \gamma\alpha = -1$, $\alpha\beta\gamma = 3$ $\frac{1}{\alpha}\!+\!\frac{1}{\beta}\!+\!\frac{1}{\gamma}\!=\!\frac{\alpha\beta\!+\!\beta\gamma\!+\!\gamma\alpha}{\alpha\beta\gamma}\!=\!\frac{-1}{3}\!=\!-\frac{1}{3}$ $\frac{1}{\alpha} \cdot \frac{1}{\beta} + \frac{1}{\beta} \cdot \frac{1}{\gamma} + \frac{1}{\gamma} \cdot \frac{1}{\alpha} = \frac{\alpha + \beta + \gamma}{\alpha \beta \gamma} = \frac{-2}{3} = -\frac{2}{3}$

$$\begin{split} &\frac{1}{\alpha} \cdot \frac{1}{\beta} \cdot \frac{1}{\gamma} = \frac{1}{\alpha \beta \gamma} = \frac{1}{3} \\ &\therefore x^3 + \frac{1}{3} x^2 - \frac{2}{3} x - \frac{1}{3} = 0 \end{split}$$

52)
$$x^3 - 3x^2 - 2x + 1 = 0$$

$$\Rightarrow \alpha + \beta + \gamma = -3, \quad \alpha\beta + \beta\gamma + \gamma\alpha = -2, \quad \alpha\beta\gamma = 1$$

$$x^3 - (-\alpha - \beta - \gamma)x^2 + (\alpha\beta + \beta\gamma + \gamma\alpha)x - (-\alpha\beta\gamma) = 0$$

$$x^3 + (\alpha + \beta + \gamma)x^2 + (\alpha\beta + \beta\gamma + \gamma\alpha)x + \alpha\beta\gamma = 0$$

$$\therefore x^3 - 3x^2 - 2x + 1 = 0$$

53)
$$x^3 + 2x^2 - 3x - 1 = 0$$

$$\Rightarrow \alpha + \beta + \gamma = -3, \quad \alpha\beta + \beta\gamma + \gamma\alpha = -2, \quad \alpha\beta\gamma = 1$$

$$x^{3} - \left(\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}\right)x^{2} + \left(\frac{1}{\alpha\beta} + \frac{1}{\beta\gamma} + \frac{1}{\gamma\alpha}\right)x - \frac{1}{\alpha\beta\gamma} = 0$$

$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{\alpha\beta + \beta\gamma + \gamma\alpha}{\alpha\beta\gamma} = -2$$

$$\frac{1}{\alpha\beta} + \frac{1}{\beta\gamma} + \frac{1}{\gamma\alpha} = \frac{\alpha + \beta + \gamma}{\alpha\beta\gamma} = -3$$

$$x^{3} + 2x^{2} - 3x - 1 = 0$$

54)
$$x^3 + 3x^2 + x + 1 = 0$$

$$\Rightarrow \alpha + \beta + \gamma = 3, \ \alpha\beta + \beta\gamma + \gamma\alpha = 1, \ \alpha\beta\gamma = 1$$
$$x^3 + (\alpha + \beta + \gamma)x^2 + (\alpha\beta + \beta\gamma + \gamma\alpha)x + \alpha\beta\gamma = 0$$
$$\therefore x^3 + 3x^2 + x + 1 = 0$$

55)
$$x^3 - x^2 + 3x - 1 = 0$$

$$\Rightarrow \alpha + \beta + \gamma = 3, \quad \alpha\beta + \beta\gamma + \gamma\alpha = 1, \quad \alpha\beta\gamma = 1$$

$$x^{3} - \left(\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}\right)x^{2} + \left(\frac{1}{\alpha\beta} + \frac{1}{\beta\gamma} + \frac{1}{\gamma\alpha}\right)x - \frac{1}{\alpha\beta\gamma} = 0$$

$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{\alpha\beta + \beta\gamma + \gamma\alpha}{\alpha\beta\gamma} = 1$$

$$\frac{1}{\alpha\beta} + \frac{1}{\beta\gamma} + \frac{1}{\gamma\alpha} = \frac{\alpha + \beta + \gamma}{\alpha\beta\gamma} = 3$$

$$\therefore x^{3} - x^{2} + 3x - 1 = 0$$

56)
$$a = 5, b = -2$$

 \Rightarrow 주어진 삼차방정식의 계수가 유리수이므로 $1+\sqrt{2}$ 가 근이면 $1-\sqrt{2}$ 도 근이다.

따라서 주어진 방정식의 세 근이 $-2,1+\sqrt{2},1-\sqrt{2}$ 이므로 삼차방정식의 근과 계수의 관계에 의하여 $-a=-2(1+\sqrt{2})+(1+\sqrt{2})(1-\sqrt{2})+(1-\sqrt{2})\cdot(-2)$.

$$-b = -2(1 + \sqrt{2})(1 - \sqrt{2})$$

∴ $a = 5, b = -2$

57) a = 8, b = -6

 \Rightarrow 주어진 삼차방정식의 계수가 실수이므로 1+i가 근 이면 1-i도 근이다.

따라서 주어진 방정식의 세 근이 3,1+i,1-i이므로 삼차방정식의 근과 계수의 관계에 의하여 $a=3(1+i)+(1+i)(1-i)+(1-i)\cdot 3$.

$$-b = 3(1+i)(1-i)$$

$$\therefore a = 8, b = -6$$

58)
$$a = -5$$
, $b = 8$, $\alpha = 3$

다 계수가 모두 실수이므로
$$\frac{2}{1-i}$$
=1+ i 가 근이면 $1-i$ 도 근이다. 또, 나머지 한 근이 α 이므로 삼차방정식의 근과 계수의 관계에 의해 $\alpha(1+i)(1-i)=6, 2\alpha=6$ $\therefore \alpha=3$ 따라서 세 근이 $3,1+i,1-i$ 이므로 $-a=3+(1+i)+(1-i)$ 에서 $a=-5$ $b=3(1+i)+(1+i)(1-i)+3(1-i)$ 에서 $b=8$

59) a = 4, b = -2

이다. 나머지 한 근을 α 라 하면 삼차방정식의 근과 계수의 관계에 의해 $\alpha+(1+i)+(1-i)=3$ $\therefore \alpha=1$ 따라서 세 근이 1,1+i,1-i이므로 $a=1\cdot(1+i)+(1+i)(1-i)+1\cdot(1-i)$ 에서

 \Rightarrow 계수가 모두 실수이므로 1+i가 근이면 1-i도 근

a = 4

$$\begin{array}{l} -b=1\cdot (1+i)(1-i)\, \mathrm{에서} \\ b=&-2 \end{array}$$

60) a = -4, b = 4

다 계수가 모두 실수이므로 1-i가 근이면 1+i도 근이다. 나머지 한 근을 α 라 하면 삼차방정식의 근과 계수의 관계에 의해 $\alpha(1-i)+(1-i)(1+i)+\alpha(1+i)=6$ $2\alpha+2=6$ $\therefore \alpha=2$ 따라서 세 근이 2,1-i,1+i이므로 -a=2+(1-i)+(1+i)에서 a=-4 b=2(1-i)(1+i)에서 b=4

61) a = -3, b = 5

다 계수가 모두 실수이므로 $1+\sqrt{2}i$ 가 근이면 $1-\sqrt{2}i$ 도 근이다. 나머지 한 근을 α 라 하면 삼차방정식의 근과 계수의 관계에 의해 $\alpha(1+\sqrt{2}i)(1-\sqrt{2}i)=3,3\alpha=3$ $\therefore \alpha=1$ 따라서 세 근이 $1,1+\sqrt{2}i,1-\sqrt{2}i$ 이므로 $-a=1+(1+\sqrt{2}i)+(1-\sqrt{2}i)$ 에서 a=-3 $b=1\cdot(1+\sqrt{2}i)+(1+\sqrt{2}i)(1-\sqrt{2}i)+1\cdot(1-\sqrt{2}i)$ 에서 b=5

62) a = 5, b = 3

다 계수가 모두 유리수이므로 $1+\sqrt{2}$ 가 근이면 $1-\sqrt{2}$ 도 근이다. 나머지 한 근을 α 라고 하면 삼차방정식의 근과 계수의 관계에 의해 $\alpha+(1+\sqrt{2})+(1-\sqrt{2})=5$ $\therefore \alpha=3$ 따라서 세 근이 $3,1+\sqrt{2},1-\sqrt{2}$ 이므로

$$a=3(1+\sqrt{2})+(1+\sqrt{2})(1-\sqrt{2})+3(1-\sqrt{2})$$
에서 $a=5$ $-b=3(1+\sqrt{2})(1-\sqrt{2})$ 에서 $b=3$

- 63) a = -5, b = 4
- 다 계수가 모두 유리수이므로 $3+\sqrt{5}$ 가 근이면 $3-\sqrt{5}$ 도 근이다. 나머지 한 근을 α 라 하면 삼차방정식의 근과 계수의 관계에 의해 $\alpha(3+\sqrt{5})+(3+\sqrt{5})(3-\sqrt{5})+\alpha(3-\sqrt{5})=-2$, $6\alpha+4=-2$ $\therefore \alpha=-1$ 따라서 세 근이 $-1,3+\sqrt{5},3-\sqrt{5}$ 이므로 $-a=-1+(3+\sqrt{5})+(3-\sqrt{5})$ 에서 a=-5 $-b=-1\cdot(3+\sqrt{5})(3-\sqrt{5})$ 에서 b=4
- 64) a = -3, b = 0
- 다 계수가 모두 유리수이므로 $1-\sqrt{3}$ 이 근이면 $1+\sqrt{3}$ 도 근이다. 나머지 한 근을 α 라 하면 삼차방정식의 근과 계수의 관계에 의해 $\alpha(1-\sqrt{3})(1+\sqrt{3})=-2,\ -2\alpha=-2$ $\therefore \alpha=1$ 따라서 세 근이 $1,1-\sqrt{3},1+\sqrt{3}$ 이므로 $-a=1+(1-\sqrt{3})+(1+\sqrt{3})$ 에서 a=-3 $b=1\cdot(1-\sqrt{3})+(1-\sqrt{3})(1+\sqrt{3})+1\cdot(1+\sqrt{3})$ 에서 b=0
- 65) a = -15, b = -25
- Arr 계수가 모두 실수이므로 2+i가 근이면 2-i도 근이다.

나머지 한 근을 α 라 하면 삼차방정식의 근과 계수의 관계에 의해 $\alpha+(2+i)+(2-i)=-1$ $\therefore \alpha=-5$ 따라서 세 근이 -5,2+i,2-i이므로 a=-5(2+i)+(2+i)(2-i)-5(2-i)에서 a=-15 b=-5(2+i)(2-i)에서 b=-25

- 66) a = 1, b = -1
- \Rightarrow 계수가 실수이고, 한 근이 -i이므로 다른 한 근은 i이다.

나머지 한 근을 α 라고 하면 근과 계수의 관계에 의하여 $(-i)+i+\alpha=1$ $\therefore \alpha=1$ $(-i)\cdot i+(-i)\cdot 1+i\cdot 1=a$ $\therefore a=1$ $(-i)\cdot i\cdot 1=-b$ $\therefore b=-1$

- 67) a = 0, b = 2
- Arr 계수가 모두 실수이므로 1+i가 근이면 1-i도 근이다.

이다. 나머지 한 근을 α 라 하면 삼차방정식의 근과 계수의 관계에 의해 $\alpha+(1+i)+(1-i)=1$ $\therefore \alpha=-1$ 따라서 세 근이 -1,1+i,1-i이므로 $a=-1\cdot(1+i)+(1+i)(1-i)-1\cdot(1-i)$ 에서 a=0 $-b=-1\cdot(1+i)(1-i)$ 에서 b=2

- 68) a = 10, b = -8
- 다 계수가 실수이고, 한 근이 1+i이므로 다른 한 근 은 1-i이다.

나머지 한 근을 α 라고 하면 근과 계수의 관계에 의하여 $(1+i)+(1-i)+\alpha=6 \quad \therefore \alpha=4 \\ (1+i)(1-i)+(1+i)\cdot 4+(1-i)\cdot 4=a \quad \therefore a=10 \\ (1+i)(1-i)\cdot 4=-b \quad \therefore b=-8$

- 69) a = -1, b = 2
- 다 계수가 모두 실수이므로 $1+\sqrt{3}i$ 가 근이면 $1-\sqrt{3}i$ 도 근이다. 나머지 한 근을 α 라 하면 삼차방정식의 근과 계수의 관계에 의해 $\alpha(1+\sqrt{3}i)(1-\sqrt{3}i)=-4$ $\therefore \alpha=-1$ 따라서 세 근이 $-1,1+\sqrt{3}i,1-\sqrt{3}i$ 이므로 $-a=-1+(1+\sqrt{3}i)+(1-\sqrt{3}i)$ 에서 a=-1 $b=-1\cdot(1+\sqrt{3}i)+(1+\sqrt{3}i)(1-\sqrt{3}i)-1\cdot(1-\sqrt{3}i)$ 에서 b=2
- 70) a=9,b=-5□ 계수가 실수이고, 한 근이 2+i이므로
 다른 한 근은 2-i이다.
 나머지 한 근을 α 라고 하면
 근과 계수의 관계에 의하여 $(2+i)+(2-i)+\alpha=5$ ∴ $\alpha=1$ $(2+i)(2-i)+(2+i)\cdot 1+(2-i)\cdot 1=a$ ∴ a=9 $(2+i)(2-i)\cdot 1=-b$ ∴ b=-5
- 71) a=-3,b=1 \Rightarrow 세 근을 각각 $2-i,2+i,\alpha$ 라고 하면
 근과 계수의 관계에 의하여 $(2-i)(2+i)\cdot\alpha=-5$ $\therefore \alpha=-1$ (2-i)+(2+i)+(-1)=-a $\therefore a=-3$ (2-i)(2+i)+(2-i)(-1)+(2+i)(-1)=b $\therefore b=1$
- 72) a=-4,b=9 \Rightarrow 세 근을 각각 $1-2i,1+2i,\alpha$ 라고 하면 근과 계수의 관계에 의하여 $(1-2i)(1+2i)\cdot\alpha=10$ $\therefore \alpha=2$ (1-2i)+(1+2i)+2=-a $\therefore a=-4$ (1-2i)(1+2i)+2(1-2i)+2(1+2i)=b $\therefore b=9$