赋值

王捍贫

北京大学信息科学技术学院软件研究所

复习

- 命题演算推理形式系统N和P.
- N和P的核心是推理。
- 但在N或P中,符号、公式本身是没有含义的。
 - 一 在推理过程中并不看公式的真假,而只看是否 为公理或规则。
- 形式系统是否具有预计的性质?
 - 一 内定理是否一定是正确的?
- 什么叫"公式是正确的"?

§**9** 赋值

- 对形式系统P(等价地, N)进行赋值, 就是对P的 每个公式分配一个值.
- 首先要对每个命题符号分配一个值.

指派

定义17:形式系统P的一个指派是指如下的映射 σ :

$$\sigma: \{p_0, p_1, p_2, \cdots\} \rightarrow \{0, 1\}$$

 $\sigma(p_i)$ $(i \in \mathbb{N})$ 称为命题符号 p_i 在指派 σ 下的值.

赋值

定义18:设 σ 是形式系统**P**的一个指派,如下归纳定义**P**中公式 α 在指派 σ 下的值 α σ :

- 若 α 是命题变元 p_i , 则 $\alpha^{\sigma} = \sigma(p_i)$.
- 者 α 是 $(\neg \beta)$, 则 $\alpha^{\sigma} = 1 \beta^{\sigma}$.

简单性质

(1) 对任意公式 α 和指派 σ , $\alpha^{\sigma} \in \{0, 1\}$.

(2) $(\neg \beta)^{\sigma}$ 和 $(\beta \rightarrow \gamma)^{\sigma}$ 的值如下表:

α^{σ}	$(\neg \alpha)^{\sigma}$
0	1
1	0

α^{σ}	eta^{σ}	$(\alpha \rightarrow \beta)^{\sigma}$
0	0	1
0	1	1
1	O	0
	1	1

与¬、→的真值表相同。

$\alpha \vee \beta$ 的值

(1) $\alpha \vee \beta$ 是($\neg \alpha$) $\rightarrow \beta$ 的简写.

$$(\alpha \vee \beta)^{\sigma}$$

$$=((\neg \alpha) \rightarrow \beta)^{\sigma}$$

$$= \max\{1 - (\neg \alpha)^{\sigma}, \beta^{\sigma}\}\$$

$$= \max\{1 - (1 - \alpha^{\sigma}), \beta^{\sigma}\}\$$

$$=\max\{\alpha^{\sigma},\beta^{\sigma}\}$$

α^{σ}	eta^{σ}	$(\alpha \vee \beta)^{\sigma}$
О	О	0
О	1	1
1	O	1
1	1	1

$\alpha \wedge \beta$ 的值

(1)
$$\alpha \wedge \beta$$
是¬ $(\alpha \rightarrow \neg \beta)$ 的简写.

$$(\alpha \wedge \beta)^{\sigma}$$

$$= 1 - (\alpha \rightarrow \neg \beta)^{\sigma}$$

$$= 1 - \max\{1 - \alpha^{\sigma}, (\neg \beta)^{\sigma}\}$$

$$= 1 - \max\{1 - \alpha^{\sigma}, 1 - \beta^{\sigma}\}\$$

$$= 1 - (1 + \max\{-\alpha^{\sigma}, -\beta^{\sigma}\})$$

$$= -(-\min\{\alpha^{\sigma}, \beta^{\sigma}\})$$

$$= \min\{\alpha^{\sigma}, \beta^{\sigma}\}$$

α^{σ}	$oxed{eta^{\sigma}}$	$(\alpha \wedge \beta)^{\sigma}$
O	0	0
O	1	0
1	0	0
1	1	1

$\alpha \leftrightarrow \beta$ 的值

$$(1) \alpha \leftrightarrow \beta \mathbb{E} \neg ((\alpha \to \beta) \to \neg (\beta \to \alpha))$$
的简写.
$$(2) (\alpha \leftrightarrow \beta)^{\sigma}$$

$$= 1 - ((\alpha \to \beta) \to \neg (\beta \to \alpha))^{\sigma}$$

$$= 1 - \max\{1 - (\alpha \to \beta)^{\sigma}, 1 - (\beta \to \alpha))^{\sigma}\}$$

$$= \min\{(\alpha \to \beta)^{\sigma}, (\beta \to \alpha)^{\sigma}\}$$

$$= \min\{\max\{1 - \alpha^{\sigma}, \beta^{\sigma}\}, \max\{1 - \beta^{\sigma}\alpha^{\sigma}\}\}\}$$

$$= \min\{\max\{1, \alpha^{\sigma} + \beta^{\sigma}\} - \alpha^{\sigma}, \max\{1, \alpha^{\sigma} + \beta^{\sigma}\} - \beta^{\sigma}\}$$

$$= \max\{1, \alpha^{\sigma} + \beta^{\sigma}\} - \min\{-\alpha^{\sigma}, -\beta^{\sigma}\}$$

$$= \max\{1, \alpha^{\sigma} + \beta^{\sigma}\} - \max\{\alpha^{\sigma}, \beta^{\sigma}\}$$

$\alpha \leftrightarrow \beta$ 的值表

α^{σ}	eta^{σ}	$(\alpha \leftrightarrow \beta)^{\sigma}$
0	0	1
О	1	О
1	0	О
1	1	1

结论

 α 在指派 σ 下的值 α

=

将 α 作为命题形式时, α 关于 p_0 , p_1 , p_2 ,···的指派 $< \sigma(p_0)$, $\sigma(p_1)$, $\sigma(p_2)$,···>的值.

例34

求 \mathbf{P} 中下列公式在指派 σ 下的值:

(1)
$$(p_1 \lor p_2) \to p_3$$
, σ 定义为:

$$\sigma(p_i) = \begin{cases} 0 & i = 2k+1 \\ 1 & i = 2k \end{cases} (k \text{ (k为任意自然数)}.$$

(2)
$$p_1 \to (p_2 \to (p_1 \land p_2))$$
, σ 是任意的指派.

例34(1)的解

(1)
$$(p_1 \lor p_2) \to p_3$$

 \mathbf{m} : $(p_1 \lor p_2)^{\sigma}$
 $= \max\{1 - (\neg p_1)^{\sigma}, p_2^{\sigma}\}$
 $= \max\{1 - (1 - p_1^{\sigma}), p_2^{\sigma}\}$
 $= \max\{p_1^{\sigma}, p_2^{\sigma}\}$
 $= \max\{\sigma(p_1), \sigma(p_2)\}$
 $= \max\{0, 1\}$
 $= 1$

例34(1)的解(续)

(1)
$$(p_1 \lor p_2) \to p_3$$

 \mathbf{M} : $((p_1 \lor p_2) \to p_3)^{\sigma}$
 $= \max\{1 - (p_1 \lor p_2)^{\sigma}, p_3^{\sigma}\}$
 $= \max\{1 - 1, \sigma(p_3)\}$
 $= \max\{0, 0\}$
 $= 0$

例34(2)的解

(2) $p_1 \to (p_2 \to (p_1 \land p_2))$, σ 是任意的指派.

解: (2) 直接根据联结词的真值表来确定公式的值.

$\sigma(p_1)$	$\sigma(p_2)$	$(p_1 \wedge p_2)^{\sigma}$	$(p_2 \to (p_1 \land p_2))^{\sigma}$	α^{σ}
0	0	0	1	1
0	1	0	0	1
1	0	0	1	1
1	1	1	1	1

哑元无关性

定理16 设在**P**的公式 α 中出现的命题符号都在 $p_{i_1}, p_{i_2}, \dots, p_{i_n}$ 中,若**P**的两个指派 σ_1, σ_2 满足: $\sigma_1(p_{i_k}) = \sigma_2(p_{i_k})$ $(k = 1, 2, \dots, n), 则<math>\alpha^{\sigma_1} = \alpha^{\sigma_2}$.

公式的分类

定义20

- 若对**P**的任一指派 σ , $\alpha^{\sigma} = 1$, 则称 α 为一个重言式(或永真式).
- 若对**P**的任一指派 σ , $\alpha^{\sigma} = 0$, 则称 α 为一个矛盾式(或永假式).
- 若存在**P**的指派 σ , 使 $\alpha^{\sigma} = 1$, 则称 α 为一个可满足式.

永真式的例子

定理17 P的公理都是永真式

证: 下证(A3)是永真式。

$\sigma(\alpha)$	$\sigma(\beta)$	$(\neg \alpha \rightarrow \neg \beta)^{\sigma}$	$(\beta \rightarrow \alpha)^{\sigma}$	$(A3)^{\sigma}$
0	0	1	1	1
0	1	0	0	1
1	0	1	1	1
1	1	0	1	1

(M)的保真性

定理18 P的分离规则保持永真性,

即:若 α 和 $\alpha \rightarrow \beta$ 都是永真式,则 β 也是永真式.

证:

若不然,则存在**P**的指派 σ 使 $\beta^{\sigma} = 0$. 由于 α 为重言式,故 $\alpha^{\sigma} = 1$,从而 $(\alpha \to \beta)^{\sigma} = 0$,与 $\alpha \to \beta$ 为重言式矛盾.

替换定理

定理19 设 α 是**P**中公式, q_1 , q_2 , \cdots , q_n 是**P**中命题变元符号, β_1 , β_2 , \cdots , β_n 是**P**中另外n个公式, 将 α 中每个 q_i (若有)换为 β_i (1 $\leq i \leq n$)所得的公式为 β . 若 α 为重言式, 则 β 也为重言式..

说明:

 α : \cdots q_1 \cdots q_2 \cdots q_n \cdots

 β : \cdots β_1 \cdots β_2 \cdots \cdots β_n \cdots

替换定理的证明

证:

若对**P**的任一个指派 σ , 令 $\beta_i^{\sigma} = t_i$ (1 ≤ $i \le n$). 作**P**的另一个指派 τ 如下:

$$\tau(p) = \begin{cases} t_i & \stackrel{\text{height}}{=} q_i (1 \le i \le n) \\ \sigma(p) & \stackrel{\text{height}}{=} q_2, \dots, q_n \end{cases}$$

任意 $p \in \{p_0, p_1, p_2, \dots\}$

则 $\beta^{\sigma} = \alpha^{\tau}$ (可对 α 归纳证之).

由于 α 为重言式,故 $\beta^{\sigma} = \alpha^{\tau} = 1$,即 β 为重言式.

使用替换定理要注意的问题

作替换时要注意两个问题,否则不能保证永真性:

- 若将 q_i 替换为 β_i , 须将 q_i 的所有出现都换为 β_i . 反例: $p_1 \rightarrow p_1 \rightsquigarrow p_2 \rightarrow p_1$, 前者是重言式,后者不是.
- 替换时只能替换命题变元,不能替换公式. 反例: $p_1 \rightarrow (p_2 \rightarrow p_1) \rightsquigarrow p_1 \rightarrow p_2$, 前者是重言式,后者不是.

作业

p.509(p.102). 21

谢谢

复习

- 赋值就是(在给定的指派下)赋给每个公式一个真假值。
- 赋值的方式与命题形式相同。
- 公式可以分为三类:
 - 永真式
 - 永假式
 - 可满足式
- 永真式的性质,替换定理。

下面考虑一类特殊的永真式。

公式的等值

定义21

- (1) 若 $(\alpha \leftrightarrow \beta)$ 是一个重言式,则称 α 等值于 β ,记为 $\alpha \leftrightarrow \beta$.
- (2) 若 $(\alpha \rightarrow \beta)$ 是一个重言式,则称 α 逻辑蕴含 β ,记为 $\alpha \rightarrow \beta$.

注意↔和⇔、→和⇒的不同用法。

常用等值公式(I)

交换律

$$(\alpha \vee \beta) \iff (\beta \vee \alpha)$$

$$(\alpha \wedge \beta) \iff (\beta \wedge \alpha)$$

$$(\alpha \leftrightarrow \beta) \iff (\beta \leftrightarrow \alpha).$$

常用等值公式(II)

结合律

$$(\alpha \vee \beta) \vee \gamma \iff \alpha \vee (\beta \vee \gamma)$$

$$(\alpha \wedge \beta) \wedge \gamma \Longleftrightarrow \alpha \wedge (\beta \wedge \gamma)$$

$$(\alpha \leftrightarrow \beta) \leftrightarrow \gamma \iff \alpha \leftrightarrow (\beta \leftrightarrow \gamma)$$

常用等值公式(III)

分配律

$$\alpha \wedge (\beta \vee \gamma) \iff (\alpha \wedge \beta) \vee (\alpha \wedge \gamma)$$

$$\alpha \vee (\beta \wedge \gamma) \iff (\alpha \vee \beta) \wedge (\alpha \vee \gamma)$$

$$\alpha \rightarrow (\beta \rightarrow \gamma) \iff (\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \gamma).$$

常用等值公式(IV)

否定律

$$\alpha \iff \neg \neg \alpha$$

$$\neg (\alpha \lor \beta) \iff (\neg \alpha) \land (\neg \beta)$$

$$\neg (\alpha \land \beta) \iff (\neg \alpha) \lor (\neg \beta).$$

德·摩根率

常用等值公式(V)

幂等律

$$\alpha \vee \alpha \iff \alpha$$

$$\alpha \wedge \alpha \iff \alpha$$
.

吸收率

$$\alpha \vee (\alpha \wedge \beta) \Leftrightarrow \alpha$$

$$\alpha \wedge (\alpha \vee \beta) \Leftrightarrow \alpha$$
.

常用等值公式(VI)

蕴含等值式

$$\alpha \rightarrow \beta \iff (\neg \alpha) \lor \beta$$

假言易位

$$\alpha \rightarrow \beta \iff (\neg \beta) \rightarrow (\neg \alpha)$$

归谬律

$$(\alpha \rightarrow \beta) \land (\alpha \rightarrow \neg \beta) \iff \neg \alpha$$

常用等值公式(VII)

等价等值式

$$\alpha \leftrightarrow \beta \iff (\alpha \to \beta) \land (\beta \to \alpha).$$

等价否定等值式

$$\alpha \leftrightarrow \beta \iff \neg \alpha \leftrightarrow \neg \beta$$
.

常用等值公式(VIII)

零律

$$\alpha \vee 1 \iff 1, \qquad \alpha \wedge 0 \iff 0.$$

同一律

$$\alpha \vee 0 \iff \alpha, \qquad \alpha \wedge 1 \iff \alpha.$$

排中律

$$\alpha \vee (\neg \alpha) \iff 1.$$

矛盾律

$$\alpha \wedge (\neg \alpha) \iff 0.$$

- 注1: 这里"0"、"1"都不是公式,分别代表了任意的 矛盾式和重言式
- 注2: Bool代数。

第一替换定理

定理20 将 α , β 中命题符号 q_1 , q_2 , \cdots , q_n (若有)全都分别换为公式 γ_1 , γ_2 , \cdots , γ_n 后分别得公式 α' , β' . 若 $\alpha \iff \beta$, 则 $\alpha' \iff \beta'$.

说明: α : ··· q_1 ··· q_2 ··· ··· q_n ···

 β : \cdots q_2 \cdots q_3 \cdots q_n \cdots

第一替换定理

定理20 将 α , β 中命题符号 q_1 , q_2 , \cdots , q_n (若有)全都分别换为公式 γ_1 , γ_2 , \cdots , γ_n 后分别得公式 α' , β' . 若 $\alpha \iff \beta$, 则 $\alpha' \iff \beta'$.

```
说明: \alpha: \cdots q_1 \cdots q_2 \cdots \cdots q_n \cdots \beta: \cdots q_2 \cdots q_3 \cdots \cdots q_n \cdots \alpha': \cdots \gamma_1 \cdots \gamma_2 \cdots \cdots \gamma_n \cdots \beta': \cdots \gamma_2 \cdots \gamma_3 \cdots \cdots \gamma_n \cdots
```

第一替换定理

定理20 将 α , β 中命题符号 q_1 , q_2 , \cdots , q_n (若有)全都分别换为公式 γ_1 , γ_2 , \cdots , γ_n 后分别得公式 α' , β' . 若 $\alpha \longleftrightarrow \beta$, 则 $\alpha' \longleftrightarrow \beta'$.

说明:
$$\alpha$$
: \cdots q_1 \cdots q_2 \cdots q_n \cdots β : \cdots q_2 \cdots q_3 \cdots \cdots q_n \cdots α' : \cdots γ_1 \cdots γ_2 \cdots γ_n \cdots β' : \cdots γ_2 \cdots γ_3 \cdots \cdots γ_n \cdots

证:由于 $\alpha \iff \beta$,故 $\alpha \leftrightarrow \beta$ 为重言式。由定理**19**知: $\alpha' \leftrightarrow \beta'$ 也为重言式,故 $\alpha' \iff \beta'$.

第二替换定理

定理21 设 α , β , γ , δ 为 \mathbf{P} 中公式, 且 δ 是用 β 替换 γ 中的某些 α 得到的公式, 若 $\alpha \longleftrightarrow \beta$, 则 $\gamma \longleftrightarrow \delta$.

说明: γ : ··· α ··· α ··· α ···

 δ : \cdots β \cdots α \cdots β \cdots

证:对**P**的任一指派 σ ,因 $\alpha \Longleftrightarrow \beta$,故 $\alpha^{\sigma} = \beta^{\sigma}$,从而 $\gamma^{\sigma} = \delta^{\sigma}$,故 $\gamma \Longleftrightarrow \delta$.

注意:这两个定理的使用条件.

第二替换定理的应用

设 $\alpha_1 \iff \beta_1, \quad \alpha_2 \iff \beta_2, \quad \text{则}$:

(1)
$$(\neg \alpha_1) \iff (\neg \beta_1)$$
.

(2)
$$(\alpha_1 \vee \alpha_2) \iff (\beta_1 \vee \beta_2)$$
.

(3)
$$(\alpha_1 \wedge \alpha_2) \iff (\beta_1 \wedge \beta_2)$$
.

(4)
$$(\alpha_1 \rightarrow \alpha_2) \iff (\beta_1 \rightarrow \beta_2)$$
.

(5)
$$(\alpha_1 \leftrightarrow \alpha_2) \iff (\beta_1 \leftrightarrow \beta_2)$$
.

简单性质

等值关系定义了P的公式集 F_P 上的一个等价关系,即:

- (1) 任意 $\alpha \in F_P$, $\alpha \iff \alpha$.
- (2) 任意 α , $\beta \in F_P$, 若 $\alpha \iff \beta$, 则 $\beta \iff \alpha$.
- (3) 任意 α , β , $\gamma \in F_P$, 若 $\alpha \iff \beta$, $\beta \iff \gamma$, 则 $\alpha \iff \gamma$.

作业

```
p.509(p.102). 23 (1)(5)(7)
25 (1)(2)(3)
26
```

谢谢