# ☐ codebasics / py



# Outlier detection and removal using z-score and standard deviation in python pandas

```
In [162]: import pandas as pd
   import matplotlib
   from matplotlib import pyplot as plt
   %matplotlib inline
   matplotlib.rcParams['figure.figsize'] = (10,6)
```

We are going to use heights dataset from kaggle.com. Dataset has heights and weights both but I have removed weights to make it simple

https://www.kaggle.com/mustafaali96/weight-height (https://www.kaggle.com/mustafaali96/weight-height) (https://www.kaggle.com/mustafaali96/weight-height)

```
In [163]: df = pd.read_csv("heights.csv")
    df.sample(5)
```

Out[163]:

|      | gender | height    |
|------|--------|-----------|
| 1987 | Male   | 65.478267 |
| 4478 | Male   | 65.566101 |
| 5800 | Female | 66.258258 |
| 6054 | Female | 65.476903 |
| 2383 | Male   | 71.505206 |

In [164]:

```
plt.hist(df.height, bins=20, rwidth=0.8)
plt.xlabel('Height (inches)')
plt.ylabel('Count')
plt.show()
```





Read this awesome article to get your fundamentals clear on normal distribution, bell curve and standard deviation. <a href="https://www.mathsisfun.com/data/standard-normal-distribution.html">https://www.mathsisfun.com/data/standard-normal-distribution.html</a>)

### Plot bell curve along with histogram for our dataset

```
In [184]: from scipy.stats import norm
    import numpy as np
    plt.hist(df.height, bins=20, rwidth=0.8, density=True)
    plt.xlabel('Height (inches)')
    plt.ylabel('Count')

rng = np.arange(df.height.min(), df.height.max(), 0.1)
    plt.plot(rng, norm.pdf(rng,df.height.mean(),df.height.std()))
```

Out[184]: [<matplotlib.lines.Line2D at 0x205f1f13710>]



```
In [168]: df.height.mean()
```

Out[168]: 66.3675597548656

```
In [169]: df.height.std()
```

Out[169]: 3.847528120795573

Here the mean is 66.37 and standard deviation is 3.84.

## (1) Outlier detection and removal using 3 standard deviation

One of the ways we can remove outliers is remove any data points that are beyond **3 standard deviation** from mean. Which means we can come up with following upper and lower bounds

In [170]: upper\_limit = df.height.mean() + 3\*df.height.std()
 upper\_limit

Out[170]: 77.91014411725232

In [171]: lower\_limit = df.height.mean() -3\*df.height.std()
lower\_limit

Out[171]: 54.824975392478876

Here are the outliers that are beyond 3 std dev from mean

In [172]: df[(df.height>upper\_limit) | (df.height<lower\_limit)]</pre>

Out[172]:

|      |        | la a l'aula f |
|------|--------|---------------|
|      | gender | height        |
| 994  | Male   | 78.095867     |
| 1317 | Male   | 78.462053     |
| 2014 | Male   | 78.998742     |
| 3285 | Male   | 78.528210     |
| 3757 | Male   | 78.621374     |
| 6624 | Female | 54.616858     |
| 9285 | Female | 54.263133     |
| 4    |        |               |

Above the heights on higher end is **78 inch** which is around **6 ft 6 inch**. Now that is quite unusual height. There are people who have this height but it is very uncommon and it is ok if you remove those data points. Similarly on lower end it is **54 inch** which is around **4 ft 6 inch**. While this is also a legitimate height you don't find many people having this height so it is safe to consider both of these cases as outliers

#### Now remove these outliers and generate new dataframe

In [173]: df\_no\_outlier\_std\_dev = df[(df.height<upper\_limit) & (df.height>lower\_l
 imit)]
 df\_no\_outlier\_std\_dev.head()

Out[173]:

| gender |      | height    |
|--------|------|-----------|
| 0 Male |      | 73.847017 |
| 1      | Male | 68.781904 |
| 2      | Male | 74.110105 |
| 3 Male |      | 71.730978 |
|        |      |           |

```
In [174]: df_no_outlier_std_dev.shape
Out[174]: (9993, 2)
In [175]: df.shape
Out[175]: (10000, 2)
```

Above shows original dataframe data 10000 data points. Out of that we removed 7 outliers (i.e. 10000-9993)

## (2) Outlier detection and removal using Z Score

Z score is a way to achieve same thing that we did above in part (1)

Z score indicates how many standard deviation away a data point is.

For example in our case mean is 66.37 and standard deviation is 3.84.

If a value of a data point is 77.91 then Z score for that is 3 because it is 3 standard deviation away (77.91 = 66.37 + 3 \* 3.84)

## Calculate the Z Score

$$Z = \frac{x - \mu}{\sigma}$$

 $\mu$  = mean

 $\sigma$  = standard deviation

Out[176]:

|   | gender | height    | zscore   |
|---|--------|-----------|----------|
| 0 | Male   | 73.847017 | 1.943964 |
| 1 | Male   | 68.781904 | 0.627505 |
| 2 | Male   | 74.110105 | 2.012343 |
|   |        |           |          |

| 3 | Male | 71.730978 | 1.393991 |
|---|------|-----------|----------|
| 4 | Male | 69.881796 | 0.913375 |

Above for first record with height 73.84, z score is 1.94. This means 73.84 is 1.94 standard deviation away from mean

In [177]: (73.84-66.37)/3.84

Out[177]: 1.9453124999999998

Get data points that has z score higher than 3 or lower than -3. Another way of saying same thing is get data points that are more than 3 standard deviation away

In [178]: df[df['zscore']>3]

Out[178]:

|      | gender | height    | zscore   |
|------|--------|-----------|----------|
| 994  | Male   | 78.095867 | 3.048271 |
| 1317 | Male   | 78.462053 | 3.143445 |
| 2014 | Male   | 78.998742 | 3.282934 |
| 3285 | Male   | 78.528210 | 3.160640 |
| 3757 | Male   | 78.621374 | 3.184854 |

In [179]: df[df['zscore']<-3]</pre>

Out[179]:

|      | gender | height    | zscore    |
|------|--------|-----------|-----------|
| 6624 | Female | 54.616858 | -3.054091 |
| 9285 | Female | 54.263133 | -3.146027 |

Here is the list of all outliers

In [180]: df[(df.zscore<-3) | (df.zscore>3)]

Out[180]:

|      | gender | height    | zscore    |
|------|--------|-----------|-----------|
| 994  | Male   | 78.095867 | 3.048271  |
| 1317 | Male   | 78.462053 | 3.143445  |
| 2014 | Male   | 78.998742 | 3.282934  |
| 3285 | Male   | 78.528210 | 3.160640  |
| 3757 | Male   | 78.621374 | 3.184854  |
| 6624 | Female | 54.616858 | -3.054091 |
|      |        |           |           |

| **9285** | Female | 54.263133 | -3.146027

## Remove the outliers and produce new dataframe

Out[181]:

|   | gender | height    | zscore   |
|---|--------|-----------|----------|
| 0 | Male   | 73.847017 | 1.943964 |
| 1 | Male   | 68.781904 | 0.627505 |
| 2 | Male   | 74.110105 | 2.012343 |
| 3 | Male   | 71.730978 | 1.393991 |
| 4 | Male   | 69.881796 | 0.913375 |

In [182]: df\_no\_outliers.shape

O..±[403]. /OOO3 3\