Appunti di Algoritmi e Strutture Dati

Luca Facchini

Matricola: 245965

Corso tenuto dal prof. Montresor Alberto Università degli Studi di Trento

A.A. 2024/2025

Sommario

Appunti del corso di Algoritmi e Strutture Dati tenuto dal prof. Montresor Alberto presso l'Università degli Studi di Trento nell'anno accademico 2024/2025.

¹Le immagini e gli algoritmi (identificati da Algorithm ##) presenti in questo documento sono stati presi dai materiali forniti dal professor Montresor Alberto (alberto.montresor@unitn.it) durante il corso, sono condivisi sotto licenza Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0). Come conseguenza le sole immagini sono soggette a questa licenza, il contenuto testuale in quanto appunti personali tratti da lezioni ed altro è soggetto alla licenza "genitore" del quale questo documento fa parte

Indice

1	Ana	alisi di	Algoritmi	4
	1.1	Model	li di calcolo	4
		1.1.1	Definizioni	4
		1.1.2	Esempi di Analisi	5
		1.1.3	Ordini di Complessità	6
	1.2	Notazi	one asintotica	6
		1.2.1	Notazioni O,Ω,Θ	6
		1.2.2	Esempi e Esercizi	7
	1.3	Compl	lessità problemi v/s algoritmi	8
		1.3.1	Moltiplicazione numeri complessi	8
		1.3.2	Sommare numeri binari	8
		1.3.3	Moltiplicare numeri binari	8
	1.4	Algori	tmi di Ordinamento	9
		1.4.1	Selection Sort	10
		1.4.2	Insertion Sort	10
		1.4.3	Merge Sort	11
2	Ana	alisi di	funzioni 1	13
	2.1	Notazi	one asintotica	13
		2.1.1	Definizioni	13
	2.2	Propri	età della notazione asintotica	13
		2.2.1	Regola Generale	13
		2.2.2		14
		2.2.3		16
		2.2.4	Giocando con le espressioni	16
		2.2.5	Classificazione delle funzioni	16
	2.3	Ricorr	enze	16
		2.3.1	Introduzione	16
		2.3.2	Metodo dell'albero di ricorsione, o per livelli	17
		2.3.3	Metodo di sostituzione	18
		2.3.4	Metodo dell'esperto, o delle ricorrenze comuni	21
3	Alb	eri	2	23
	3.1			23
	3.2			23
	~· -	3.2.1		24
		3.2.2	•	25
	3.3			 26
				26

INDICE

4	\mathbf{Alb}	eri Bi	nari di Ricerca	28
	4.1	Alberi	Binari di Ricerca	28
		4.1.1	Ricerca - lookupNode()	29
		4.1.2	Minimo & Massimo	30
		4.1.3	Successore e Predecessore	30
		4.1.4	Inserimento - insertNode()	31
		4.1.5	Cancellazione - remove()	32
	4.2	Alberi	Binari di Ricerca Bilanciati	33
		4.2.1	Definizione	33
		4.2.2	Alberi Red-Black	33
		4.2.3	Inserimento	34
		4.2.4	Teoremi su un albero Red-Black	38
		4.2.5	Cancellazione	
_	C	.c		41
Э	Gra			
	5.1	Introd	luzione	
		5.1.1	Definizioni	41
		5.1.2	Specifica	42
		5.1.3	Memorizzazione	42
	5.2	Visite	dei grafi	44
		5.2.1	Visita in ampiezza BFS	45
		5.2.2	Visita in profondità - DFS	47

Capitolo 1

Analisi di Algoritmi

1.1 Modelli di calcolo

1.1.1 Definizioni

Complessità

Definizione 1.1. La complessità di un algoritmo è definita come la quantità di tempo necessaria per eseguirlo in funzione della dimensione dell'input.

Le domande spontanee che ci si pone sono dunque:

- Come definire la dimensione dell'input?
- Come misurare il tempo?

Dimensione dell'input

Definizione 1.2. Per definire la dimensione dell'input abbiamo due criteri:

Costo Logaritmico Il costo logaritmico è definito come il numero di bit necessari per rappresentare l'input.

Costo Uniforme La taglia dell'input è definita come il numero di elementi da cui è composto.

Ma in molti casi possiamo assumere che tutti gli elementi siano rappresentati dallo stesso numero di bit costante e che coincidono a meno di costante moltiplicativa

Tempo

Definizione 1.3. Un'istruzione si considera elementare se può essere eseguita in tempo "costante" dal processore, dunque un esempio ne è la moltiplicazione o una funzione matematica ad esempio $\cos(d)$, ma una istruzione come il massimo tra due numeri non è elementare.

Modello di calcolo

Definizione 1.4. Un modello di calcolo è definito come la rappresentazione astratta di un calcolatore che rispetta i seguenti criteri:

Astrazione Il modello deve permettere di nascondere i dettagli.

Realismo Il modello deve riflettere una situazione reale.

Potenza Matematica Il modello deve permettere di dimostrare "formalmente" la complessità di un algoritmo.

Esempio di modello di calcolo è la Macchina di Turing.

1.1.2 Esempi di Analisi

Tempo di calcolo min()

Sappiamo che ogni istruzione richiede un tempo costante per essere eseguita e che ogni operazione potenzialmente ha una costante diversa dalle altre e che ogni istruzione viene eseguita un numero di volte diversa dalle altre.

ITEM $min(ITEM[]A, int n)$	
	Costo # Volte
ITEM $min = A[1]$	$c_1 \hspace{1cm} 1$
for $i = 2$ to n do	$c_2 \hspace{1cm} n$
if $A[i] < min$ then	$c_3 \qquad n-1$
$\bigsqcup \ min = A[i]$	$c_4 \qquad n-1$
return min	c_5 1

Otteniamo quindi che il tempo di calcolo è:

$$T(n) = c_1 + c_2 n + c_3 (n - 1) + c_4 (n - 1) + c_5$$

= $(c_2 + c_3 + c_4)n + (c_1 + c_5 - c_3 - c_4) = an + b$

Tempo di calcolo di binarySearch()

In questo algoritmo il vettore viene suddiviso in due parti: Parte SX: $\lfloor (n-1)/2 \rfloor$ e Parte DX: $\lfloor n/2 \rfloor$.

	Costo	$\# \ (i>j)$	$\# (i \leq j)$
i > j then	c_1	1	1
return 0	c_2	1	0
lse			
$\int \mathbf{int} \ m = \lfloor (i+j)/2 \rfloor$	c_3	0	1
$ \mathbf{if} \ A[m] = v \ \mathbf{then} $	c_4	0	1
$\mathbf{return} m$	c_5	0	0
else if $A[m] < v$ then	c_6	0	1
return binarySearch $(A, v, m + 1, j)$	$c_7 + T(\lfloor n/2 \rfloor)$	0	0/1
else			
return binarySearch $(A, v, i, m-1)$	$c_7 + T((n-1)/2 $) 0	1/0

A questo punto dobbiamo fare delle assunzioni:

- Assumiamo che la n potenza di 2 sia: $n = 2^k$.
- L'elemento cercato non è presente.
- Ad ogni passo andiamo sempre a destra in quanto il numero di elementi da valutare è maggiore: n/2.

possiamo ora suddividere il problema in due casistiche:

$$i > j$$
 $(n = 0)$ $T(n) = c_1 + c_2$
 $i \le j$ $(n > 0)$ $T(n) = T(n/2) + c_1 + c_2 + c_3 + c_4 + c_6 + c_7$
 $= T(n/2) + d$

[&]quot;Appunti di Algoritmi e Strutture Dati" di Luca Facchini

unendo i due casi otteniamo la Relazione di ricorrenza:

$$T(n) = \begin{cases} c & \text{se } n = 0\\ T(n/2) + d & \text{se } n > 0 \end{cases}$$

ottenuta la relazione generalmente per un numero n di elementi otteniamo che il tempo è dato da:

$$T(n) = T(n/2) + d$$

= $T(n/4) + 2d$
...
= $T(1) + kd$
= $T(0) + (k+1)d$
= $kd + (c+d)$ = $d \log n + e$

ottenendo quindi che il tempo di calcolo è $O(\log n)$ di natura logaritmica.

1.1.3 Ordini di Complessità

f(n)	$n = 10^1$	$n = 10^2$	$n = 10^3$	$n = 10^4$	Tipo
$\log n$	3	6	9	13	Logaritmica
\sqrt{n}	3	10	31	100	sub-lineare
n	10	100	1000	10000	Lineare
$n \log n$	30	664	9965	132877	log-lineare
n^2	10^{2}	10^{4}	10^{6}	10^{8}	Quadratica
n^3	10^{3}	10^{6}	10^{9}	10^{12}	Cubica
2^n	1024	10^{30}	10^{301}	10^{3010}	Esponenziale

1.2 Notazione asintotica

1.2.1 Notazioni O, Ω, Θ

Notazione O

Definizione 1.5. Sia g(n) una funzione di costo; indichiamo con O(g(n)) l'insieme delle funzioni f(n) tali per cui:

$$\exists c > 0, \ \exists m \ge 0 : f(n) \le cg(n), \ \forall n \ge m$$

La seguente notazione si legge: f(n) è "O grande" (big O) di g(n), con un abuso di notazione si scrive $f(n) = O(g(n))^1$. Inoltre per la precedente definizione possiamo dire che g(n) è un **limite asintotico** superiore per f(n), in quanto dopo qualche valore m la funzione g(n) è sempre maggiore di f(n). Inoltre per questo motivo sappiamo che f(n) cresce al più come g(n).

Notazione Ω

Definizione 1.6. Sia g(n) una funzione di costo; indichiamo con $\Omega(g(n))$ l'insieme delle funzioni f(n) tali per cui:

$$\exists c > 0, \ \exists m \ge 0 : f(n) \ge cg(n), \ \forall n \ge m$$

La seguente notazione si legge: f(n) è "Omega" di g(n), con un abuso di notazione si scrive $f(n) = \Omega(g(n))^1$. Inoltre per la precedente definizione possiamo dire che g(n) è un **limite asintotico inferiore** per f(n), in quanto dopo qualche valore m la funzione g(n) è sempre minore di f(n). Inoltre per questo motivo sappiamo che f(n) cresce almeno come g(n).

 $^{^1}$ Questo è un abuso di notazione in quanto O(g(n)) è una classe di funzioni e non può essere eguagliata una singola funzione, il simbolo più appropriato sarebbe $f(n)\in O(g(n))$

Notazione Θ

Definizione 1.7. Sia g(n) una funzione di costo; indichiamo con $\Theta(g(n))$ l'insieme delle funzioni f(n) tali per cui:

$$\exists c_1 > 0, \ \exists c_2 > 0, \ \exists m \ge 0 : c_1 g(n) \le f(n) \le c_2 g(n), \ \forall n \ge m$$

La seguente notazione si legge: f(n) è "Theta" di g(n), con un abuso di notazione si scrive $f(n) = \Theta(g(n))^1$. Inoltre per la precedente definizione possiamo dire che f(n) cresce esattamente come g(n), detto ciò $f(n) = \Theta(g(n))$ se e solo se f(n) = O(g(n)) e $f(n) = \Omega(g(n))$.

Esempio grafico

1.2.2 Esempi e Esercizi

Esempio 1

$$f(n) = 10n^3 + 2n^2 + 7 \stackrel{?}{=} O(n^3)$$

Dobbiamo provare che $\exists c > 0, \ \exists m \ge 0 : f(n) \le cn^3, \ \forall n \ge m.$

$$f(n) = 10n^{3} + 2n^{2} + 7$$

$$\leq 10n^{3} + 2n^{3} + 7 \qquad \forall n \geq 1$$

$$\leq 10n^{3} + 2n^{3} + n^{3} \qquad \forall n \geq \sqrt[3]{7}$$

$$= 13n^{3} \stackrel{?}{\leq} cn^{3}$$

Che è verificata per qualsiasi $c \ge 13$ e $m \ge \sqrt[3]{7}$, arrotondiamo m ad un intero superiore ottenendo m = 2.

1.3 Complessità problemi v/s algoritmi

1.3.1 Moltiplicazione numeri complessi

Per moltiplicare numeri complessi bisogna svolgere la seguente operazione:

$$(a+bi)(c+di) = [ac-bd] + [ad+bc]i$$

dunque dai parametri a, b, c, d otteniamo che il risultato da restituire: ac - bd e ad + bc.

Domande Considerando che addizioni e sottrazioni costino $c_1 = 0.01$ e moltiplicazione costi $c_2 = 1$ possiamo chiederci:

- Quanto costa l'algoritmo?
- Si può fare meglio?
- Qual'è il ruolo del modello di calcolo?

Dato che si devono fare almeno 4 moltiplicazioni e 2 somme otteniamo che il costo totale è $4c_2 + 2c_1 = 4.02$. Ora si può fare meglio? La risposta è no in quanto se si potesse fare meglio si potrebbe fare meglio allora bisognerebbe trovare un algoritmo che esegua meno di 4 moltiplicazioni e 2 somme, ma per fare ciò bisognerebbe cambiare il modello di calcolo.

1.3.2 Sommare numeri binari

Algoritmo elementare della somma - sum()

Ipotizziamo che l'operazione da fare sia la somma di due bit singoli e generare il riporto, assegniamo a questa operazione costo c. Dopo ciò indichiamo con n il numero massimo di bit tra i due numeri da sommare, otteniamo dunque che:

- $\bullet\,$ Richiede di esaminare tutti glin bit
- Costo totale cn = O(n)

Esiste allora un algoritmo più efficiente?

La risposta è no in quanto se esistesse un algoritmo di tale genere allora potremmo cambiare un solo bit di uno dei due numeri e ottenere un risultato diverso senza che l'algoritmo lo vada ad analizzare, il che è impossibile.

1.3.3 Moltiplicare numeri binari

Algoritmo elementare del prodotto - prod()

L'operazione elementare per moltiplicare due numeri binari è la seguente:

							1	0	1	1	1	0	1	*
							1	1	0	1	1	1	0	
							0	0	0	0	0	0	0	
						1	0	1	1	1	0	1		
					1	0	1	1	1	0	1			
				1	0	1	1	1	0	1				
			0	0	0	0	0	0	0					
		1	0	1	1	1	0	1						
	1	0	1	1	1	0	1							
1	0	0	1	1	1	1	1	1	1	0	1	1	0	

deduciamo che:

- Dobbiamo accedere a tutti i bit
- Il costo totale è $cn^2 = O(n^2)$ perché dobbiamo fare n somme di n bit.

Soluzione Divide-et-impera

La base del principio **Divide-et-impera** è la seguente:

Divide Dividere il problema in sotto-problemi più piccoli.

Impera risolvi i sotto-problemi in modo ricorsivo.

Combina combina le soluzioni dei sotto-problemi per ottenere la soluzione del problema originale.

La soluzione divide-et-impera per il problema della moltiplicazione binaria è la seguente:

$$\begin{array}{lll} X=a\cdot 2^{n/2}+b & X=\operatorname{Parte\ SX} & \operatorname{Parte\ DX} \\ Y=c\cdot 2^{n/2}+d & X=\operatorname{Parte\ SX} & \operatorname{Parte\ DX} \\ XY=ac\cdot 2^n+(ad+bc)\cdot 2^{n/2}+bd & Y=\operatorname{Parte\ SX} & \operatorname{Parte\ DX} \end{array}$$

Ora possiamo scrivere l'algoritmo: La funzione di costo associata all'algoritmo è:

Algorithm 1 boolean[] pdi(boolean[] X, boolean[] Y, int n)

- 1: **if** n = 1 **then** 2: **return** $X[1] \cdot Y[1]$
- 3: **else**
- 4: spezza X in $a \in b \in Y$ in $c \in d$
- 5: **return** $pdi(a, c, n/2) \cdot 2^n + (pdi(a, d, n/2) + pdi(b, c, n/2)) \cdot 2^{n/2} + pdi(b, d, n/2)$

$$T(n) = \begin{cases} c_1 & n = 1\\ 4T(n/2) + c_2 \cdot n & n > 1 \end{cases}$$

Nota: moltiplicare per 2^n corrisponde a uno shift a sinistra di n posizioni, svolta in tempo lineare.

Ora in quanto abbiamo 4 chiamate ricorsive, assumendo che c_1 sia il tempo per moltiplicare due bit e che c_2 sia il tempo per sommare due numeri binari otteniamo che il tempo di calcolo è $c_2 \cdot 4^i \cdot \frac{n}{2^i} = T(1) \cdot 4^{\log_2 n} = c_1 \cdot n^{\log_2 4} = c_1 \cdot n^2$.

Ma allora è possibile fare meglio? Long story short: si in quanto è stato provato nel 2021 l'esistenza di un algoritmo di complessità $O(n \log n)$.

1.4 Algoritmi di Ordinamento

Introduzione L'obbiettivo di questa sezione è valutare la complessità degli algoritmi in base all'input, in alcuni casi gli algoritmi si comportano differentemente in base all'input se siamo a conoscenza dell'input questa ci consente di scegliere un algoritmo più adeguato alla nostra soluzione.

Come analiziamo gli algoritmi Possiamo analizzare l'efficienza degli algoritmi in base a diversi casi:

Caso Pessimo Questa analisi è la più importante in quanto sappiamo che questa restituisce il limite superiore al tempo di esecuzione qualsiasi sia l'input.

Caso Medio Questa analisi è la più complessa in quanto bisogna definire il "caso medio" e cosa si intende per "medio", ma è utile con una distribuzione uniforme degli input.

[&]quot;Appunti di Algoritmi e Strutture Dati" di Luca Facchini

Caso Ottimo Utile solo se conosciamo qualcosa sull'input, altrimenti non risulta utile se abbiamo un input arbitrario.

1.4.1 Selection Sort

Algoritmo Selection Sort:

Algorithm 2 selectionSort(Item[] A, int n)

```
1: for i = 1 to n - 1 do

2: int min \leftarrow \min(A, i, n)

3: A[i] \leftrightarrow \min(A, i, n)
```

Algoritmo di supporto min: Avendo analizzato il seguente algoritmo notiamo come in ogni caso, ottimo,

Algorithm 3 int min(Item[] A, int i, int n)

```
1: \operatorname{int} \min \leftarrow i
2: \operatorname{for} j = i + 1 \operatorname{to} n \operatorname{do}
3: \operatorname{if} A[j] < A[min] \operatorname{then}
4: \min \leftarrow j
5: \operatorname{return} \min
```

medio e pessimo, il "ciclo" esterno della funzione selectionSort() viene eseguito n-1 volte, mentre il ciclo interno della funzione min() viene eseguito n-i dove i è il valore dell'iterazione del ciclo esterno, quindi $n-1+n-2+n-3+\ldots+1=\frac{n(n-1)}{2}$ volte, otteniamo quindi che il tempo di calcolo è $O(n^2)$ in quanto questo si può approssimare a $\frac{n^2}{2}$.

$$\sum_{i=1}^{n-1} n - i = \sum_{i=1}^{n-1} i = \frac{n(n-1)}{2} = O(n^2)$$

1.4.2 Insertion Sort

L'algoritmo di insertion sort è efficiente per ordinare piccoli insiemi, il concetto dietro a questo si bassa sull'inserimento dell'elemento preso in analisi al posto giusto.

Algoritmo Insertion Sort:

Algorithm 4 insertionSort(Item[] A, int n)

```
1: for i = 2 to n do
2: Item temp \leftarrow A[i]
3: int j \leftarrow i
4: while j > 1 and A[j - 1] > temp do
5: A[j] \leftarrow A[j - 1]
6: j \leftarrow j - 1
7: A[j] \leftarrow temp
```

Il costo di esecuzione non dipende esclusivamente dalla dimensione ma anche dall'ordine degli elementi in ingresso.

Caso Pessimo Il costo dunque nel **caso pessimo** è $O(n^2)$ in quanto vengono eseguiti n-1 cicli esterni e n-1 cicli interni, ottenendo dunque $(n-1)+(n-2)+\ldots+1=\frac{n(n-1)}{2}=O(n^2)$.

Caso Medio Nel caso medio il costo rimane $O(n^2)$ in quanto il ciclo interni viene eseguito n/2 volte, ottenendo dunque $\frac{n(n-1)}{4} = O(n^2)$.

Caso Ottimo Nel caso ottimo il costo è O(n) in quanto il ciclo interno non viene mai eseguito.

Questo ci porta a dire che il insertionSort() è un algoritmo di ordinamento utile nei casi in cui l'input è già ordinato o quasi ordinato, nei casi nei quali non conosciamo la natura dell'input è meglio utilizzare un algoritmo di ordinamento differente.

1.4.3 Merge Sort

L'algoritmo di mergeSort() è un algoritmo di ordinamento basato sul principio divide-et-impera.

Divide: Spezza virtualmente il vettore di n elementi in sotto-vettori di n/2 elementi.

Impera: Chiama mergeSort() ricorsivamente sui due sotto-vettori.

Combina: Unisci (merge) i due sotto-vettori ordinati in un unico vettore ordinato.

In input si ha:

- A: vettore di n elementi.
- start, end, mid sono tali che $1 \le \text{start} < \text{mid} < \text{end} \le n$.
- I sotto-vettori $A[\text{start}, \dots, \text{mid}]$ e $A[\text{mid} + 1, \dots, \text{end}]$ sono ordinati.

In output si hanno i due sotto-vettori fusi in un unico sotto-vettore ordinato, tramite un vettore di appoggio B.

Funzione di appoggio Merge:

```
Algorithm 5 Merge(Item[] A, int start, int end, int mid)
```

```
1: int i, j, k, h
 2: int i \leftarrow \text{start}
 3: int j \leftarrow \text{mid} + 1
 4: int k \leftarrow \text{start}
 5: while i \leq \text{mid} and j \leq \text{end} do
           if A[i] \leq A[j] then
 6:
 7:
                 B[k] \leftarrow A[i]
                i \leftarrow i+1
 8:
           else
 9:
                 B[k] \leftarrow A[j]
10:
11:
                j \leftarrow j + 1
           k \leftarrow k + 1
12:
13: j \leftarrow \text{end}
14: for h = \text{mid downto } i \text{ do}
15:
           A[j] \leftarrow A[h]
           j \leftarrow j - 1
16:
17: for j = \text{start to } k - 1 \text{ do}
           A[j] \leftarrow B[j]
18:
```

Il costo computazionale di Merge() è O(n), questa è la base del costo computazionale di mergeSort().

Funzione completa mergeSort():

Algorithm 6 mergeSort(Item[] A, int start, int end)

- 1: $\mathbf{if} \ \mathrm{start} < \mathrm{end} \ \mathbf{then}$
- 2: **int** $mid \leftarrow (start + end)/2$
- 3: mergeSort(A, start, mid)
- 4: mergeSort(A, mid + 1, end)
- 5: merge(A, start, end, mid)

Assumendo per semplificare che $n=2^k$ dove k è un intero allora l'altezza dell'albero è esattamente $k=\log n$, in questo modo tutti i sotto-vettori hanno dimensione che è potenza di 2. Così facendo il costo computazionale di mergeSort() è:

$$T(n) = \begin{cases} c & n = 1\\ 2T(n/2) + dn & n > 1 \end{cases}$$

dove c è il costo di un'operazione elementare, d è il costo di Merge() e n è il costo di copiare i valori da B a A.

Capitolo 2

Analisi di funzioni

2.1 Notazione asintotica

2.1.1 Definizioni

Si rimanda al sezione 1.2 per le definizioni di O, Ω e Θ .

2.2 Proprietà della notazione asintotica

2.2.1 Regola Generale

Da qui si prende in considerazione la seguente espressione polinomiale:

$$f(n) = a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0, \quad a_k > 0 \Rightarrow f(n) = \Theta(n^k)$$

Limite Superiore $\exists c > 0, \exists m \geq 0 : f(n) \leq cn^k, \forall n \geq m$

$$f(n) = a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0$$

$$\leq a_k n^k + |a_{k-1}| n^{k-1} + \dots + |a_1| n + |a_0|$$

$$\leq a_k n^k + |a_{k-1}| n^k + \dots + |a_1| n^k + |a_0| n^k$$

$$= (a_k + |a_{k-1}| + \dots + |a_1| + |a_0|) n^k \quad \forall n \geq 1$$

$$\stackrel{?}{\leq} c n^k$$

questa è vera per $c \ge (a_k + |a_{k-1}| + \ldots + |a_1| + |a_0|) > 0$ e per m = 1

Limite Inferiore $\exists d > 0, \exists m \geq 0: f(n) \geq dn^k, \forall n \geq m$

$$f(n) = a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0$$

$$\geq a_k n^k - |a_{k-1}| n^{k-1} - \dots - |a_1| n - |a_0|$$

$$\geq a_k n^k - |a_{k-1}| n^k - \dots - |a_1| n^k - |a_0| n^k$$

$$= (a_k - |a_{k-1}| - \dots - |a_1| - |a_0|) n^k \qquad \forall n \geq 1$$

$$\stackrel{?}{>} dn^k$$

questa è vera se: $d \le a_k - \frac{|a_{k-1}|}{n} - \ldots - \frac{|a_1|}{n} - \frac{|a_0|}{n} > 0 \Leftrightarrow n > \frac{|a_{k-1}|+\ldots+|a_1|+|a_0|}{a_k}$

[&]quot;Appunti di Algoritmi e Strutture Dati" di Luca Facchini

Casi Particolari

Complessità di f(n) = 5

$$f(n) = 5 \ge c_1 n^0 \Rightarrow c_1 \le 5$$

$$f(n) = 5 \le c_2 n^0 \Rightarrow c_2 \ge 5$$

$$\Rightarrow f(n) = \Theta(n^0) = \Theta(1)$$

Complessità di $f(n) = 5 + \sin(n)$ La complessità di calcolo di f(n) è $\Theta(1)$, in quanto $\sin(n)$ è una funzione oscillante tra -1 e 1, quindi $5 + \sin(n)$ oscilla tra 4 e 6.

2.2.2 Proprietà delle notazioni

Dualità

$$f(n) = O(g(n)) \Leftrightarrow g(n) = \Omega(f(n))$$

Dimostrazione.

$$\begin{split} f(n) &= O(g(n)) \Leftrightarrow & f(n) \leq cg(n), \forall n \geq m \\ & \Leftrightarrow & g(n) \geq \frac{1}{c} f(n), \forall n \geq m \\ & \Leftrightarrow & g(n) \geq c' f(n), \forall n \geq m, c' = \frac{1}{c} \\ & \Leftrightarrow & g(n) = \Omega(f(n)) \end{split}$$

Eliminazione di costanti

$$\begin{split} f(n) &= O(g(n)) \Leftrightarrow af(n) = O(g(n)), \forall a > 0 \\ f(n) &= \Omega(g(n)) \Leftrightarrow af(n) = \Omega(g(n)), \forall a > 0 \end{split}$$

Dimostrazione.

$$\begin{split} f(n) &= O(g(n)) \Leftrightarrow & f(n) \leq cg(n), \forall n \geq m \\ & \Leftrightarrow & af(n) \leq acg(n), \forall n \geq m, \forall a > 0 \\ & \Leftrightarrow & af(n) \leq c'g(n), \forall n \geq m, c' = ac > 0 \\ & \Leftrightarrow & af(n) = O(g(n)), \forall a > 0 \end{split}$$

Sommatoria (sequenza di algoritmi)

$$f_1(n) = O(g_1(n)), f_2(n) = O(g_2(n)) \Rightarrow f_1(n) + f_2(n) = O(\max(g_1(n), g_2(n)))$$

$$f_1(n) = \Omega(g_1(n)), f_2(n) = \Omega(g_2(n)) \Rightarrow f_1(n) + f_2(n) = \Omega(\max(g_1(n), g_2(n)))$$

Dimostrazione (Lato O).

$$f_{1}(n) = O(g_{1}(n)) \land f_{2}(n) = O(g_{2}(n)) \Rightarrow$$

$$f_{1}(n) \leq c_{1}g_{1}(n) \land f_{2}(n) \leq c_{2}g_{2}(n) \Rightarrow$$

$$f_{1}(n) + f_{2}(n) \leq c_{1}g_{1}(n) + c_{2}g_{2}(n) \Rightarrow$$

$$f_{1}(n) + f_{2}(n) \leq \max\{c_{1}, c_{2}\}(2 \cdot \max(g_{1}(n), g_{2}(n))) \Rightarrow$$

$$f_{1}(n) + f_{2}(n) = O(\max(g_{1}(n), g_{2}(n)))$$

Prodotto (cicli annidati)

$$f_1(n) = O(g_1(n)), f_2(n) = O(g_2(n)) \Rightarrow f_1(n) \cdot f_2(n) = O(g_1(n) \cdot g_2(n))$$

$$f_1(n) = \Omega(g_1(n)), f_2(n) = \Omega(g_2(n)) \Rightarrow f_1(n) \cdot f_2(n) = \Omega(g_1(n) \cdot g_2(n))$$

Dimostrazione.

$$f_1(n) = O(g_1(n)) \land f_2(n) = O(g_2(n)) \Rightarrow$$

 $f_1(n) \le c_1 g_1(n) \land f_2(n) \le c_2 g_2(n) \Rightarrow$
 $f_1(n) \cdot f_2(n) \le c_1 c_2 g_1(n) g_2(n)$

Simmetria

$$f(n) = \Theta(g(n)) \Leftrightarrow g(n) = \Theta(f(n))$$

Dimostrazione. Grazie alla proprietà della dualità, si ha che:

$$\begin{split} f(n) &= \Theta(g(n)) \quad \Rightarrow \quad f(n) = O(g(n)) \Rightarrow g(n) = \Omega(f(n)) \\ f(n) &= \Theta(g(n)) \quad \Rightarrow \quad f(n) = \Omega(g(n)) \Rightarrow g(n) = O(f(n)) \end{split}$$

Transitività

$$f(n) = O(g(n)), g(n) = O(h(n)) \Rightarrow f(n) = O(h(n))$$

Dimostrazione.

$$f(n) = O(g(n)) \land g(n) = O(h(n)) \Rightarrow$$

$$f(n) \le c_1 g(n) \land g(n) \le c_2 h(n) \Rightarrow$$

$$f(n) \le c_1 c_2 h(n) \Rightarrow$$

$$f(n) = O(h(n))$$

[&]quot;Appunti di Algoritmi e Strutture Dati" di Luca Facchini

2.2.3 Altre funzioni di costo

Logaritmi v/s funzioni lineari

Proprietà dei Logaritmi Vogliamo provare che log(n) = O(n). Dimostriamo per induzione che

$$\exists c > 0, \exists m \geq 0 : \log n \leq cn, \forall n \geq m$$
 definizione di O

Dimostrazione.

Caso Base. (n = 1): $\log 1 = 0 \le \stackrel{c}{0} \cdot \stackrel{n}{1} = 0$ Ipotesi induttiva: $\sin \log k < ck, \forall k < n$.

Passo Induttivo. Dimostriamo la proprietà per n + 1:

$$\log(n+1) \leq \log(n+n) = \log 2n \qquad \forall n \geq 1$$

$$= \log 2 + \log n \qquad \log ab = \log a + \log b$$

$$= 1 + \log n \qquad \log 2 = 1$$

$$\leq 1 + cn \qquad \text{per induzione}$$

$$\stackrel{?}{\leq} c(n+1) \qquad \text{Obbiettivo}$$

$$1 + cn \leq c(n+1) \Leftrightarrow c \geq 1$$

2.2.4 Giocando con le espressioni

Es 1 È vero che
$$\log_a n = \Theta(\log n)$$
?
Si: $\log_a n = (\log_a 2) \cdot (\log_2 n) = \Theta(\log n)$

Es 2 È vero che
$$\log n^a = \Theta(\log n)$$
, per $a > 0$?
Si: $\log n^a = a \log n = \Theta(\log n)$

Es 3 È vero che
$$2^{n+1} = \Theta(2^n)$$
?
Si: $2^{n+1} = 2 \cdot 2^n = \Theta(2^n)$

Es 4 È vero che
$$2^n = \Theta(3^n)$$
?
Ovviamente $2^n = O(3^n)$

Ma: $3^n = \left(\frac{3}{2} \cdot 2\right)^n = \left(\frac{3}{2}\right)^n \cdot 2^n$: Quindi non esiste c > 0 tale per cui $\left(\frac{3}{2}\right)^n \cdot 2^n \le c2^n$, quindi $2^n \ne O(3^n)$

2.2.5 Classificazione delle funzioni

È possibile definire un ordinamento delle principali classi estendendo le relazioni che abbiamo dimostrato: Per ogni r < s, h < k, a < b:

$$o(1) \subset O(\log^r n) \subset O(\log^s n) \subset O(n^h) \subset O(n^h \log^r n) \subset O(n^h \log^s n) \subset O(n^k) \subset O(a^n) \subset O(b^n)$$

2.3 Ricorrenze

2.3.1 Introduzione

Equazioni di ricorrenza Quando si calcola la complessità di un algoritmo ricorsivo, questa viene espressa tramite un'**equazione di ricorrenza**, ovvero una formula definita in maniera ricorsiva.

MergeSort

$$T(n) = \begin{cases} 1 & \text{se } n = 1\\ 2T\left(\frac{n}{2}\right) + n & \text{se } n > 1 \end{cases}$$

Forma Chiusa L'obbiettivo è quello di ottenere, quando possibile, una formula chiusa che rappresenti la classe di complessità della funzione.

MergeSort

$$T(n) = \begin{cases} T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + \Theta(n) & n > 1 \\ \Theta(1) & n \le 1 \end{cases} \Longrightarrow T(n) = \Theta(n \log n)$$

2.3.2 Metodo dell'albero di ricorsione, o per livelli

Introduzione "Srotoliamo" la ricorrenza in un albero i costi ai vari livelli della ricorsione.

Esempio 1

$$T(n) = \begin{cases} T(n/2) + b & n > 1\\ c & n \le 1 \end{cases}$$

È possibile risolvere questa ricorrenza nel modo seguente:

$$T(n) = b + T(n/2)$$

$$= b + b + T(n/4)$$

$$= b + b + b + T(n/8)$$

$$= \dots$$

$$= \underbrace{b + b + \dots + b}_{\log n} + T(1)$$

Assumiamo per semplicità che $n=2^k$. $T(n)=b\log n+c=\Theta(\log n)$

Esempio 2

$$T(n) = \begin{cases} 4T(n/2) + n & n > 1\\ 1 & n \le 1 \end{cases}$$

È possibile risolvere questa ricorrenza nel modo seguente:

$$T(n) = n \sum_{j=0}^{\log(n-1)} 2^{j}$$

$$\Rightarrow n \cdot \frac{2^{\log n}}{2-1}$$

$$\forall x \neq 1: \sum_{j=0}^{k} x^{j} = \frac{x^{k+1}-1}{x-1}$$

$$= n(n-1)$$

$$= n^{2} - n$$

$$= 2n^{2} - n = \Theta(n^{2})$$

$$+4^{\log n}$$

[&]quot;Appunti di Algoritmi e Strutture Dati" di Luca Facchini

Esempio 3

$$T(n) = \begin{cases} 4T(n/2) + n^3 & n > 1\\ 1 & n \le 1 \end{cases}$$

Da questa equazione notiamo che il primo livello ha costo n^3 , il secondo $4\left(\frac{n}{2}\right)^3$ il terzo $4^2\left(\frac{n}{2^2}\right)^3$ e così via. Quindi possiamo scrivere la sommatoria:

$$T(n) = n^{3} + 4\left(\frac{n}{2}\right)^{3} + \dots + 4^{\log n - 1}\left(\frac{n}{2^{\log n - 1}}\right)^{3} + 4^{\log n}$$

$$= \sum_{i=0}^{\log n - 1} 4^{i}\left(\frac{n}{2^{i}}\right)^{3} + 4^{\log n}$$

$$= n^{3} \sum_{i=0}^{\log n - 1} \left(\frac{2^{2i}}{2^{3i}}\right) + 4^{\log n}$$

$$= n^{3} \sum_{i=0}^{\log n - 1} \left(2^{2i - 3i}\right) + 4^{\log n}$$

$$= n^{3} \sum_{i=0}^{\log n - 1} \left(2^{-1 \cdot i}\right) + 4^{\log n}$$

$$= n^{3} \sum_{i=0}^{\log n - 1} \left(\frac{1}{2}\right)^{i} + n^{2}$$

$$\leq n^{3} \sum_{i=0}^{\infty} \left(\frac{1}{2}\right)^{i} + n^{2}$$

$$= n^{3} \cdot \underbrace{1 - \frac{1}{2}}_{1 - \frac{1}{2}} + n^{2}$$

$$= 2n^{3} + n^{2}$$

Abbiamo dunque dimostrato che $T(n) \leq 2n^3 + n^2 = O(n^3)$ però non possiamo, tramite la dimostrazione precedente, dire che $T(n) = \Theta(n^3)$ in quanto siamo passati ad una disequazione. In questo particolare caso d'altra parte possiamo notare che $T(n) \geq n^3$ il che ci porta ad affermare che $T(n) = \Omega(n^3)$ e quindi $T(n) = \Theta(n^3)$.

2.3.3 Metodo di sostituzione

Introduzione È il metodo in cui si cerca di indovinare (guess) la soluzione e si prova a dimostrarla per induzione.

Primo esempio

$$T(n) = \begin{cases} T(\lfloor n/2 \rfloor) + n & n > 1\\ 1 & n \le 1 \end{cases}$$

 $^{^1}$ In quanto la sommatoria tende a crescere allora abbiamo potuto sostituire log n con ∞ e modificare il segno di uguaglianza con quello di \leq in quanto la sommatoria verso l'infinito converge è più grande di quella finita

Notiamo come il costo dei vali livelli sia $n + n/2 + n/4 + \dots$ Dunque possiamo ipotizzare di poter scrivere:

$$T(n) = n \cdot \sum_{i=0}^{\log n} \left(\frac{1}{2}\right)^{i}$$

$$\leq n \cdot \sum_{i=0}^{\infty} \left(\frac{1}{2}\right)^{i}$$

$$= n \cdot \underbrace{\frac{1}{1 - \frac{1}{2}}}_{\text{usando } \forall x, |x| < 1: \sum_{i=0}^{\infty} x^{i} = \frac{1}{1-x}}_{=2n}$$

2

Limite superiore Tentiamo quindi ora di dire che T(n) = O(n):

Caso Base
$$T(1) = 1 \stackrel{?}{\leq} 1 \cdot c \Leftrightarrow \forall c \geq 1$$

Passo Induttivo Dimostriamo la disequazione per T(n)

$$T(n) = T(\lfloor n/2 \rfloor) + n$$

$$\text{ipotizzato}O(n)$$

$$\leq c \lfloor n/2 \rfloor + n$$

$$\text{intero inferiore}$$

$$\leq c \cdot n/2 + n$$

$$= n(c/2 + 1)$$

$$\stackrel{?}{\leq} cn$$

$$\Leftrightarrow c/2 + 1 < c \Leftrightarrow c > 2$$

Dunque abbiamo provato che: $T(n) \le cn$, nel caso base $c \ge 1$ e nel passo induttivo $c \ge 2$. In quanto deve valere per entrambi i casi allora il primo valore utile di c è 2, avendo provato che per n = 1 la disequazione vale e che per tutti i successivi valori di n la disequazione vale allora possiamo dire che T(n) = O(n).

Limite Inferiore Tentiamo di dimostrare che $T(n) = \Omega(n)$:

Caso Base Dimostriamo che $T(1) = 1 \stackrel{?}{\geq} 1 \cdot d \Leftrightarrow \forall d \leq 1$

 $^{^2}$ Abbiamo potuto usare il \leq in quanto la sommatoria in questione all'infinito è sempre maggiore di quella finita e ci stiamo calcolando il costo massimo

[&]quot;Appunti di Algoritmi e Strutture Dati" di Luca Facchini

Passo Induttivo Dimostriamo la disequazione per T(n):

$$T(n) = T(\lfloor n/2 \rfloor) + n$$
per ipo. induttiva sostituzione
$$\geq \frac{d \lfloor n/2 \rfloor}{d \lfloor n/2 \rfloor} + n$$
intero inferiore
$$\geq d \cdot \frac{n}{2} - 1 + n$$

$$= \left(\frac{d}{2} - \frac{1}{n} + 1\right) n \stackrel{?}{\geq} dn$$

$$\Leftrightarrow \frac{d}{2} - \frac{1}{n} + 1 \geq d$$

$$\Leftrightarrow d \leq 2 - \frac{2}{n}$$

Abbiamo quindi dimostrato che $T(n) \ge dn$, nel caso base $d \le 1$ e nel passo induttivo $d \le 2 - \frac{2}{n}$. In quanto deve valere per entrambi i casi allora il primo valore utile di d è 1, avendo provato che per n = 1 la disequazione vale e che per tutti i successivi valori di n la disequazione vale allora possiamo dire che $T(n) = \Omega(n)$.

Conclusione Avendo provato che T(n) = O(n) e $T(n) = \Omega(n)$ e ricordando che se $T(n) = O(n) \wedge T(n) = \Omega(n) \Leftrightarrow T(n) = \Theta(n)$ concludendo che la funzione di costo di T(n) cresce in maniera lineare.

Terzo esempio - Difficoltà matematiche

$$T(n) = \begin{cases} T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + T\left(\left\lceil \frac{n}{2} \right\rceil\right) + 1 & n > 1\\ 1 & n \le 1 \end{cases}$$

Limite Superiore Dalla seguente si può notare come il costo di ogni livello sia 1 e che il numero di livelli sia $\log n$. Inoltre la ricorsione viene eseguita su due rami, quindi possiamo scrivere la seguente sommatoria:

$$T(n) = \sum_{i=0}^{\log n} 2^{i}$$

$$= 1 + 2 + 4 + \dots + \frac{n}{4} + \frac{n}{2} + n$$

$$= O(n)$$

Proviamo ora a dimostrare che T(n) = O(n):

Passo Induttivo Ipotizzando che $\forall k < n : T(k) \le ck$, dimostriamo che $T(n) \le cn$:

$$T(n) = T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + T\left(\left\lceil \frac{n}{2} \right\rceil\right) + 1$$

$$\leq c \left\lfloor \frac{n}{2} \right\rfloor + c \left\lceil \frac{n}{2} \right\rceil + 1$$

$$\leq cn + 1$$

$$\stackrel{?}{\geq} cn \Rightarrow 1 \leq 0 \qquad \text{impossibile}$$

Sebbene la dimostrazione sia fallita ma l'intuizione ci dice che T(n) = O(n)Proviamo dunque a dimostrarlo per un **ordine inferiore**: $cn + 1 \le cn$ **Passo Induttivo** Ipotizzando che $\exists b > 0, \forall k < n : T(k) \le ck - b$ allora dimostriamo la disequazione per T(n):

$$T(n) = T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + T\left(\left\lceil \frac{n}{2} \right\rceil\right) + 1$$

$$\leq c \left\lfloor \frac{n}{2} \right\rfloor - b + c \left\lceil \frac{n}{2} \right\rceil - b + 1$$

$$= cn - 2b + 1$$

$$\stackrel{?}{\leq} cn - b$$

$$\Rightarrow c\pi - 2b + 1 \leq c\pi - b \Rightarrow b \geq 1$$

Dimostriamo il passo base per b=1: $T(1)=1 \stackrel{?}{\leq} 1 \cdot c - b \Leftrightarrow \forall c \geq b+1$

Limite Inferiore Proviamo ora a dimostrare che $T(n) = \Omega(n)$:

Passo Induttivo Ipotizzando che $\forall k < n : T(k) \ge dk$, dimostriamo che $T(n) \ge dn$:

$$T(n) = T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + T\left(\left\lceil \frac{n}{2} \right\rceil\right) + 1$$

$$\geq d\left\lfloor \frac{n}{2} \right\rfloor + d\left\lceil \frac{n}{2} \right\rceil + 1$$

$$= dn + 1$$

$$\stackrel{?}{>} dn \Rightarrow 1 > 0$$

Il che è vero $\forall d$ in quanto d è positivo per ipotesi.

Caso base Dimostriamo la disequazione per T(1):

$$T(1) = 1 \ge 1 \cdot d \Leftrightarrow d \le 1$$

Dunque abbiamo provato che $T(n) = \Omega(n)$

Avendo dimostrato in precedenza che T(n) = O(n) e T(n) = O(n) possiamo concludere che T(n) = O(n) e quindi la funzione di costo cresce linearmente.

2.3.4 Metodo dell'esperto, o delle ricorrenze comuni

Riccorenze comuni Esiste un'ampia classe di ricorrenze che si risolvono facilmente facendo ricorso a qualche teorema, ogni teorema è applicabile ad una particolare classe di ricorrenze.

Ricorrenze lineari con partizione bilanciata

Teorema 2.1. Siano a, b costanti intere tali che $a \ge 1$ e $b \ge 2$, e esistano c, β costanti reali tali che c > 0 e $\beta \ge 0$. Sia T(n) data dalla seguente relazione di ricorrenza:

$$T(n) = \begin{cases} aT(n/b) + cn^{\beta} & n > 1\\ 1 & n \le 1 \end{cases}$$
 (2.1)

Posto: $\alpha = \frac{\log a}{\log b} = \log_b a$ allora:

$$T(n) = \begin{cases} \Theta(n^{\alpha}) & \alpha > \beta \\ \Theta(n^{\alpha} \log n) & \alpha = \beta \\ \Theta(n^{\beta}) & \alpha < \beta \end{cases}$$
 (2.2)

Assunzioni Assumiamo che n sia una potenza intera di b, ovvero $n = b^k$, $k = \log_b n$.

Influisce sul risultato?

- Supponendo che l'input abbia dimensione $b^k + 1$
- Estendiamo l'input fino alla dimensione b^{k+1} (padding)
- \bullet L'input è stato esteso di un fattore b
- Il che non cambia la complessità computazionale

Dimostrazione caso 1

Dimostrazione caso 2 $\alpha = \beta$

Dimostrazione. Ne segue che: $q = b^{\alpha-\beta} = 1$ e dunque la funzione T(n):

$$T(n) = dn^{\alpha} + cb^{k\beta} \sum_{i=0}^{k-1} q^{i}$$
(2.3)

$$=n^{\alpha}d + cn^{\beta}k \qquad q^i = 1^i = 1 \tag{2.4}$$

$$=n^{\alpha}d + cn^{\alpha}k \qquad \qquad \alpha = \beta \tag{2.5}$$

$$=n^{\alpha}(d+ck) \tag{2.6}$$

$$=n^{\alpha} \left[d + c \frac{\log n}{\log b} \right] \qquad k = \log_b n \tag{2.7}$$

e come conseguenza $T(n) = \Theta(n^{\alpha} \log n)$

Ricorrenze lineari con partizione bilanciata (Estesa)

Teorema 2.2. Sia $a \ge 1, b > 1, f(n)$ asintoticamente positiva e sia:

$$T(n) = \begin{cases} aT(n/b) + f(n) & n > 1\\ \Theta(1) & n \le 1 \end{cases}$$

Sia $\alpha = \log_b a$ si distinguono i seguenti casi:

(1)	$\exists \epsilon > 0 : f(n) = O(n^{\alpha - \epsilon})$	\Rightarrow	$T(n) = \Theta(n^{\alpha})$
(2)	$f(n) = \Theta(n^{\alpha})$	\Rightarrow	$T(n) = \Theta(f(n)\log n)$
(3)	$\exists \epsilon > 0 : f(n) = \Omega(n^{\alpha + \epsilon}) \land$ $\exists c : 0 < c < 1,$ $\exists m \ge 0 : af(n/b) \le cf(n),$ $\forall n \ge m$	\Rightarrow	$T(n) = \Theta(f(n))$

Capitolo 3

Alberi

3.1 Introduzione

Albero Radicato (Rooted Tree)

Definizione 3.1. Un albero intero consiste in un insieme di nodi orientati che connettono coppie di nodi, con le seguenti proprietà:

- 1. Un nodo dell'albero è designato come nodo radice
- 2. Ogni nodo n, a parte la radice, ha esattamente un arco entrante
- 3. Esiste un cammino unico dalla radice ad ogni nodo
- 4. L'albero è connesso

Albero Radicato Ricorsivo

Definizione 3.2. Un albero è dato da:

- 1. Un insieme vuoto, oppure
- 2. Un nodo radice e zero o più sotto-alberi, ognuno dei quali è un albero.

La radice è connessa ai sotto-alberi tramite archi orientati.

Profondità nodi (Depth)

Definizione 3.3. Si definisce **profondità** di un nodo n la lunghezza del cammino semplice dalla radice al nodo n (misurato in numero di archi).

Livello (Level)

Definizione 3.4. Si definisce come livello di un albero l'insieme di tutti i nodi alla stessa profondità.

Altezza dell'albero (Height)

Definizione 3.5. Si definisce come altezza di un albero la profondità massima dei nodi dell'albero.

3.2 Alberi Binari

Definizione 3.6. Un **albero binario** è un albero radicato nel quale ogni nodo ha al massimo due figli, identificati come figlio **sinistro** e figlio **destro**.

[&]quot;Appunti di Algoritmi e Strutture Dati" di Luca Facchini

Specifica delle API

```
Algorithm 7 Tree
\% Costituisce unb nuovo nodo, contenente v, senza figli o genitori.
Tree(Item v)
% Legge il valore memorizzato nel nodo
Item read()
\% Modifica il valore memorizzato nel nodo
write(Item v)
% Restituisce il padre, oppure nil se questo nodo è radice
Tree parent()
% Restituisce il figlio sinistro (destro) di questo nodo; restituisce nil se assente Tree left()
Tree right()
% Inserisce il sotto-albero radicato in t come figlio sinistro (destro) di questo nodo
insertLeft(Tree t)
insertRight(Tree t)
% Distrugge (ricorsivamente) il figlio sinistro (destro) di questo nodo
deleteLeft()
deleteRight()
```

3.2.1 Implementazione

Campi memorizzati nei nodi:

parent Puntatore al nodo padre

left Puntatore al figlio sinistro

right Puntatore al figlio destro

Operazioni di base: Implementazione operazioni API:

Algorithm 8 Tree

```
\overline{\mathbf{function}} \ \mathrm{Tree}(\mathrm{Item} \ v)
    Tree t \leftarrow \mathbf{new} Tree
    t.value \leftarrow v
    t.left \leftarrow t.right \leftarrow
    t.parent \leftarrow \mathbf{nil}
    return t
function InsertLeft(Tree t)
    if left == nil then
         left \leftarrow t
         t.parent \leftarrow this
function InsertRight(Tree t)
    if right == nil then
         right \leftarrow t
         t.parent \leftarrow this
function Deleteleft
    if left \neq nil then
         left.deleteLeft()
         left.deleteRight()
         left \leftarrow \mathbf{nil}
```

```
function DELETERIGHT

if right \neq \mathbf{nil} then

right.deleteLeft()

right.deleteRight()

right \leftarrow \mathbf{nil}
```

3.2.2 Visite

Visita di un albero / ricerca Una visita è una strategia per analizzare (visitare) tutti i nodi di un albero. Le visite possono essere:

Visita in profondità (*Depth-First search* DFS) Usata per visitare un albero, si visita ricorsivamente ognuno dei suoi sotto-alberi.

```
Tre varianti: pre/in/post visita
Richiede uno stack
```

Visita in ampiezza (*Breadth-First search* BFS) Usata per visitare ogni livello dell'albero, partendo dalla radice.

Richiede una queue

Algorithm 9 dfs(Tree t¿)

```
if t \neq \text{nil then}

% pre-order visit of t

print t

dfs(t.left)

% in-order visit of t

print t

dfs(t.right)

% post-order visit of t

print t
```

Esmempi di applicazione

Contare i nodi in post-visita:

Algorithm 10 countNodes(Tree t)

```
 \begin{aligned} & \textbf{if } t \neq \textbf{nil then} \\ & c \leftarrow 1 \\ & c \leftarrow c + \text{countNodes}(t.left) \\ & c \leftarrow c + \text{countNodes}(t.right) \\ & \textbf{return } c \end{aligned}
```

Stampare espressioni con In-visita:

[&]quot;Appunti di Algoritmi e Strutture Dati" di Luca Facchini

Algorithm 11 int printExpression(Tree t)

```
 \begin{aligned} &\textbf{if} \ t. \operatorname{left}() == \textbf{nil} \ \textbf{and} t. \operatorname{right}() == \textbf{nil} \ \textbf{then} \\ &  \quad \textbf{print} \ t. \operatorname{read}() \\ & \textbf{else} \\ &  \quad \textbf{print} \ "(" \\ &  \quad \textbf{print} \ \operatorname{printExpression}(t. \operatorname{left}()) \\ &  \quad \textbf{print} \ t. \operatorname{read}() \\ &  \quad \textbf{print} \ \operatorname{printExpression}(t. \operatorname{right}()) \\ &  \quad \textbf{print} \ ")" \end{aligned}
```

3.3 Alberi Generici

Definizione 3.7. Un albero generico è un albero radicato nel quale ogni nodo può avere un numero arbitrario di figli.

Definizione delle API

Algorithm 12 Tree

```
\% Costituisce unb nuovo nodo, contenente v, senza figli o genitori.
Tree(Item v)
% Legge il valore memorizzato nel nodo
Item read()
\% Modifica il valore memorizzato nel nodo
write(Item v)
% Restituisce il padre, oppure nil se questo nodo è radice
Tree parent()
% Restituisce il primo figlio, oppure nil se è una foglia
Tree leftmostChild()
% Restituisce il prossimo fratello, oppure nil se è l'ultimo figlio
Tree rightSibling()
% Inserisce il sotto-albero radicato in t come primo figlio di questo nodo
insertChild(Tree t)
% Inserisce il sotto-albero radicato in t come prossimo fratello di questo nodo
insertSibling(Tree t)
% Distrugge (ricorsivamente) l'albero radicato identificato dal primo figlio di questo nodo
deleteChild()
% Distrugge (ricorsivamente) l'albero radicato identificato dal prossimo fratello di questo nodo
deleteSibling()
```

3.3.1 Visite

Breadh-First Search

Algorithm 13 bfs(Tree t)

```
QUEUE Q = \text{Queue}()

Q. \text{ enqueue}(t)

while not Q. \text{ isEmpty}() do

TREE u \leftarrow Q. \text{ dequeue}()

print u

u \leftarrow u. \text{ leftmostChild}()
```

while $u \neq \text{nil do}$ Q. enqueue(u) $u \leftarrow u$. rightSibling()

Memorizzazione

Esistono diversi modi per memorizzare un albero, più o meno indicati a seconda del numero massimo e medi dei figli presenti:

- 1. Realizzazione con vettore di figli
- 2. Realizzazione con primo figlio e prossimo fratello
- 3. Realizzazione con vettore dei padri

Capitolo 4

Alberi Binari di Ricerca

4.1 Alberi Binari di Ricerca

Dizionario

Definizione 4.1. Un dizionario è una struttura dati che implementa le seguenti funzionalità:

- Item lookup(Item k): restituisce l'elemento con chiave k se presente nel dizionario.
- insert(Item k, Item v): inserisce l'elemento i con chiave k e valore v nel dizionario.
- remove(Item k): elimina l'elemento con chiave k dal dizionario.

Possibili Implementazioni di seguito sono riportate le possibili implementazioni di un dizionario:

Struttura	lookup	insert	remove
Vettore Ordinato	$O(\log n)$	O(n)	O(n)
Vettore non Ordinato	O(n)	$O(1)^*$	$O(1)^*$
Lista non Ordinata	O(n)	O(1)	$O(1)^*$

^{*} Assumendo che l'elemento sia già stato trovato, altrimenti O(n).

Idea ispiratrice Portare l'idea di ricerca binaria negli alberi.

Memorizzaione

- Le associazioni chiave-valore vengono memorizzate in un albero binario
- Ogni nodo u contiene una coppia: (u.key, u.value)
- Le chiavi devono appartenete ad un insieme totalmente ordinato

Proprietà

- 1. Le chiavi contenute nei nodi del sotto-albero sinistro di un nodo u sono minori di u.key
- 2. Le chiavi contenute nei nodi del sotto-albero destro di un nodo u sono maggiori di u.key

Specifica

Getters

- Item key(): restituisce la chiave dell'elemento memorizzato nel nodo
- Item value(): restituisce il valore dell'elemento memorizzato nel nodo
- Node left(): restituisce il figlio sinistro del nodo
- Node right(): restituisce il figlio destro del nodo
- Node parent(): restituisce il genitore del nodo

Dizionario

- Item lookup(Item k): restituisce l'elemento con chiave k se presente nel dizionario
- insert(Item k, Item v): inserisce l'elemento i con chiave k e valore v nel dizionario
- remove(Item k): elimina l'elemento con chiave k dal dizionario

Ordinamento

- Tree successorNode(Node u): restituisce il nodo con chiave successiva a u.key
- Tree predecessorNode(Node u): restituisce il nodo con chiave precedente a u.key
- Tree min(): restituisce il nodo con chiave minima
- Tree max(): restituisce il nodo con chiave massima

Funzioni interne

- Node lookupNode (Tree T, Item k): restituisce il nodo con chiave k se presente nell'albero T
- Node insertNode(Tree T, Item k, Item v): inserisce l'elemento i con chiave k e valore v nell'albero T
- Node removeNode(Tree T, Item k): elimina l'elemento con chiave k dall'albero T

4.1.1 Ricerca - lookupNode()

La funzione Item lookup(Tree T, Item k) restituisce il presente nell'albero T con chiave k se presente, altrimenti restituisce nil. Implementazione con dizionario:

Algorithm 14 lookupNode(ITEM k)

```
TREE t \leftarrow \text{lookupNode}(tree, k)

if t \neq \text{nil} then

return t. value()

else

return nil
```

Versione Iterativa:

Algorithm 15 lookupNode(ITEM k)

```
TREE t \leftarrow \operatorname{root}()

while t \neq \operatorname{nil} \operatorname{and} u.key \neq k do

if k < t. \operatorname{key}() then

t \leftarrow t. \operatorname{left}()

else

t \leftarrow t. \operatorname{right}()

return t
```

Versione Ricorsiva:

Algorithm 16 lookupNode(Item k) function LookupNode(Tree t, Item k) if t = nil or t, key() = k then return tif k < t, key() then return LookupNode(t, left(), k) else return LookupNode(t, right(), k)

4.1.2 Minimo & Massimo

```
Algorithm 17 TREE min(TREE t)

TREE u \leftarrow t

while u. \operatorname{left}() \neq \operatorname{nil} \operatorname{do}

u \leftarrow u. \operatorname{left}()

return u
```

```
Algorithm 18 Tree max(Tree t)
```

```
Tree u \leftarrow t

while u. \operatorname{right}() \neq \operatorname{nil} \operatorname{do}

u \leftarrow u. \operatorname{right}()

return u
```

Queste due funzioni sono implementabili in nel modo mostrato solo in quanto assumiamo che l'albero sia un albero binario di ricerca ben formato, se ciò non fosse vero, sarebbe necessario scorrere l'intero albero. (Non in questo capitolo)

4.1.3 Successore e Predecessore

Successore

Definizione 4.2. Il successore di un nodo u è il più piccolo nodo maggiore di u.

Per rispondere a questo problema, possiamo distinguere diversi casi:

- 1. Se u ha un figlio destro allora il successore sarà il minimo del sotto-albero destro
- 2. Se u non ha un figlio destro, allora bisognerà risalire l'albero fino a trovare il nodo radice di un sotto-albero che contiene u a sinistra

```
Algorithm 19 Tree successorNode(Tree u)
```

```
if u = \mathbf{nil} then
    return t

if u \cdot \operatorname{right}() \neq \mathbf{nil} then
    return \operatorname{MIN}(u \cdot \operatorname{right}())

\triangleright \operatorname{Se} u = \mathbf{nil}, non ha successore

\triangleright \operatorname{Caso} 1 - \operatorname{Se} u ha un figlio destro
```

Predecessore

Definizione 4.3. Il **predecessore** di un nodo u è il più grande nodo minore di u.

Per rispondere a questo problema, possiamo distinguere diversi casi:

- 1. Se u ha un figlio sinistro allora il predecessore sarà il massimo del sotto-albero sinistro
- 2. Se u non ha un figlio sinistro, allora bisognerà risalire l'albero fino a trovare il nodo radice di un sotto-albero che contiene u a destra

Algorithm 20 Tree predecessorNode(Tree u)

```
if u = \mathbf{nil} then
    return t

if u = \mathbf{nil} then
    p Caso 1 - Se u ha un figlio sinistro
    return MAX(u. \operatorname{left}())

else

Tree p \leftarrow u. \operatorname{parent}()

while p \neq \operatorname{nil} and u == p. \operatorname{left}() do

u \leftarrow p

p \leftarrow p. \operatorname{parent}()

return p
```

4.1.4 Inserimento - insertNode()

La funzione insertNode (Tree t, Item k, Item v) inserisce un'associazione chiave-valore (k, v) nell'albero t, se la chiave k è già presente, il valore viene aggiornato, se $t = \mathbf{nil}$, viene restituito un nuovo nodo con chiave k e valore v, altrimenti si restituisce l'albero t inalterato.

Implementazione dizionario Questa è l'implementazione del dizionario con la funzione insertNode():

```
Algorithm 21 insertNode(ITEM k, ITEM v)
```

```
tree \leftarrow insertNode(tree, k, v)
```

Implementazione

Algorithm 22 Tree insertNode(Tree T, Item k, Item v)

```
TREE p \leftarrow \text{nil}

TREE u \leftarrow T

while u \neq \text{nil} and u \cdot \text{key}() \neq k do

p \leftarrow u

u \leftarrow \text{iff}(k < u \cdot \text{key}(), u \cdot \text{left}(), u \cdot \text{right}())

if u \neq \text{nil} and u \cdot \text{key}() == k then

u \cdot value \leftarrow v
```

```
else  \begin{array}{l} \text{Tree } new \leftarrow \mathbf{new} \; \text{Item} \; (k,v) \; \text{link}(p,new,k) \\ \text{if} \; p == \mathbf{nil} \; \; \mathbf{then} \\ T \leftarrow new \\ \text{return} \; T \end{array}
```

Definizione della funzione link():

Algorithm 23 link(Tree p, Tree u, Item k)

```
\begin{array}{c} \textbf{if } u \neq \textbf{nil then} \\ u. \, \textbf{parent} \leftarrow p \\ \textbf{if } p \neq \textbf{nil then} \\ \textbf{if } k < p. \, \textbf{key}() \textbf{ then} \\ p. \, \textbf{left} \leftarrow u \\ \textbf{else} \\ p. \, \textbf{right} \leftarrow u \end{array}
```

4.1.5 Cancellazione - remove()

La funzione tree = removeNode (TREE t, ITEM k) elimina l'elemento con chiave k dall'albero t, se la chiave k non è presente, l'albero t viene restituito inalterato.

In ogni caso bisogna prima cercare il nodo all'interno dell'albero poi il procedimento da eseguire dipende dai figli del nodo da eliminare. Assumiamo che il nodo da eliminare sia u e il suo genitore sia p.

Caso 1 - Nessun figlio

Se il nodo da eliminare non ha figli, allora basta eliminare il nodo e aggiornare il genitore del nodo da eliminare.

Caso 2 - Un figlio

Se il nodo da eliminare ha un solo figlio, allora dato che l'albero è un albero binario di ricerca, il figlio del nodo da eliminare può essere spostato al posto del nodo da eliminare, in quanto il figlio è maggiore o minore del genitore del nodo da eliminare.

Caso 3 - Due figli

Se il nodo da eliminare ha due figli allora le cose si complicano.

- 1. Identificare il nodo successore s del nodo da eliminare, per definizione il successore non ha figlio sinistro.
- 2. Si prende l'albero che ha come radice il nodo s e si "stacca" dal resto dell'albero
- 3. L'eventuale sotto-albero destro del nodo da eliminare viene attaccato al nodo padre di s
- 4. Ora il nodo s non ha figlio destro può essere spostato al posto del nodo da eliminare

Implementazione

Algorithm 24 Tree removeNode(Tree T, Item k)

```
TREE t

TREE u \leftarrow \text{lookupNode}(T, k)

if u \neq \text{nil} then
```

```
if u. \operatorname{left}() == \operatorname{\mathbf{nil}} \operatorname{\mathbf{and}} u. \operatorname{right}() == \operatorname{\mathbf{nil}} \overline{\operatorname{\mathbf{then}}}
                                                                                                                                                  ⊳ Caso 1 - Nessun figlio
            LINK(u. parent(), nil, k)
            delete u
     else if u. \operatorname{left}() \neq \operatorname{nil} \operatorname{and} u. \operatorname{right}() \neq \operatorname{nil} \operatorname{then}
                                                                                                                                                         ⊳ Caso 3 - Due figli
           Tree s \leftarrow u. successorNode()
           LINK(u. parent(), s.right(), s.key())
           u. \text{key} \leftarrow s. \text{key}()
            u. \text{ value} \leftarrow s. \text{ value}()
            delete s
     else if u. \operatorname{left}() == \operatorname{nil} \operatorname{and} u. \operatorname{right}() \neq \operatorname{nil} \operatorname{then}
                                                                                                                                            ⊳ Caso 2 - Un figlio destro
            LINK(u. parent(), u. right(), k)
           if u. parent() == nil then
                  T \leftarrow u. \operatorname{right}()
            delete u
     else
                                                                                                                                          ⊳ Caso 2 - Un figlio sinistro
            LINK(u. parent(), u. left(), k)
           if u. parent() == nil then
                  T \leftarrow u.\operatorname{left}()
            delete u
return T
```

Dimostrazione. Caso 1: Nessun figlio Eliminare foglie non cambia l'ordinamento dell'albero.

Caso 2: Un figlio (destro o sinistro) Se u è il figlio destro (o sinistro) di p, allora tutti i valori nel sotto-albero di f sono maggiori (o minori) di p. Quindi f può essere spostato come figlio destro (o sinistro) di p al posto di u.

Caso 3: Due figli Il successore s è sicuramente \geq dei nodi nel sotto-albero sinistro di u lo stesso successore è \leq dei nodi nel sotto-albero destro di u. Quindi s può essere spostato al posto di u. È ora si ha da gestire il sotto-albero destro di s gestibile con il caso 2.

4.2 Alberi Binari di Ricerca Bilanciati

4.2.1 Definizione

Definizione 4.4. L'altezza di ABR nel caso pessimo è O(n), dove n è il numero di nodi.

Definizione 4.5. L'altezza di un ABR nel caso medio dipende dall'ordine di inserimento delle chiavi ed è $O(\log n)$. Nel caso generale di inserimenti e cancellazioni casuali non è presente una garanzia sull'altezza.

4.2.2 Alberi Red-Black

Gli alberi Red-Black sono alberi binari di ricerca in cui:

- Ogni nodo è colorato di rosso o nero
- Le chiavi vengono mantenute solo nei nodi interni dell'albero
- Le foglie sono costituite da nodi fittizi colorati di nero (Nil)
- Vengono rispettati i seguenti vincoli:
 - 1. La radice è nera
 - 2. Tutte le foglie sono nere
 - 3. Entrambi i figli di un nodo rosso sono neri

Figura 4.2: Esempio di albero non Red-Black

4. Ogni cammino semplice da un nodo u ad una delle foglie contenute nel suo sotto-albero ha lo stesso numero di nodi neri

Figura 4.1: Esempio di albero Red-Black

Se un albero generico è "troppo" sbilanciato, allora potrebbe non rispettare le proprietà di un albero Red-Black.

4.2.3 Inserimento

Quando si và a modificare la struttura dell'albero allora è possibile che determinate condizioni vengano violate, per questo motivo è necessario introdurre delle operazioni di **ri-bilanciamento** come la **rotazione** e il **ri-coloramento**. Le rotazioni a loro volta possono essere di due tipi: **sinistra** e **destra**.

Figura 4.3: Esempio di rotazione a destra

Rotazione a destra

Rotazione a sinistra Assumiamo che la situazione all'interno del nostro albero di ricerca sia la seguente: Per una rotazione a sinistra si seguono questi passaggi:

- 1. far diventare B figlio destro di x
- 2. far diventare x figlio sinistro di y
- 3. far diventare y figlio di p dove p è il genitore vecchio di y

Implementazione di tale rotazione:

Algorithm 25 rotateLeft(Tree x)

```
TREE y \leftarrow x. right()

TREE p \leftarrow x. parent()

x. right \leftarrow y. left()

if y. left() \neq nil then

y. left . parent \leftarrow x

y. left \leftarrow x

x. parent \leftarrow y

y. parent \leftarrow p

if p \neq nil then

if p. left() == x then

p. left \leftarrow y

return y
```

Inserimento in alberi *Red-Balack* Per alberi del genere *Red-Black* l'inserimento di un nodo può violare le proprietà dell'albero, di base inseriamo il nodo come un nodo rosso e eseguiamo il normale inserimento per un albero binario di ricerca. Dopo l'inserimento è necessario verificare se le proprietà n. 3 e n. 4 sono state violate, in tal caso è necessario eseguire delle operazioni di **ri-bilanciamento**. La funzione

```
Algorithm 26 insertNode(Tree T, Item k, Item v)
```

```
Tree p \leftarrow \mathbf{nil}
                                                                                              ▷ Genitore del nodo da inserire
Tree u \leftarrow T
while u \neq \text{nil} and u. \text{key}() \neq k \text{ do}
                                                                                  ▷ Cerco la posizione del nodo da inserire
    u \leftarrow iff(k < u. \text{key}(), u. \text{left}(), u. \text{right}())
if u \neq \text{nil} and u. \text{key}() == k then
    u. value \leftarrow v
                                                                 ▶ Aggiorno il valore in quanto la chiave è già presente
else
    Tree new \leftarrow \mathbf{new} Item (k, v)
    LINK(p, new, k)
    BALANCEINSERT (new)
    if p == nil then
        T \leftarrow new
                                                                ⊳ Se il genitore è nullo, allora il nuovo nodo è la radice
return T
                                                                                                           ⊳ Restituisco l'albero
```

balanceInsert() è una funzione che si occupa di ri-bilanciare l'albero dopo l'inserimento di un nodo, questa funzione è necessaria in quanto l'inserimento di un nodo potrebbe violare le proprietà dell'albero Red-Black.

Il funzionamento di linea generale prevede: lo spostamento verso l'alto lungo il percorso di inserimento, ripristinare il vincolo dei figli di un nodo rosso che devono essere neri, spostare le violazioni verso l'alto (rotazione) rispettando il vincolo dei nodi neri (ri-coloramento). Terminiamo la funzione con il ri-coloramento della radice se necessario.

I nodi coinvolti ricorsivamente sono i seguenti:

- \bullet Il nodo inserito t
- \bullet Suo padre p
- Suo nonno n
- ullet Suo zio z

La seguente testata di funzione è comune a tutte le funzioni di ribilanciamento:

Algorithm 27 balanceInsert(Tree t)

```
TREE p \leftarrow t. parent()
TREE n \leftarrow \text{iff}(p \neq \text{nil }, p. \text{ parent}(), \text{nil })
TREE z \leftarrow \text{iff}(n = \text{nil }, \text{nil }, \text{iff}(n. \text{left}() == p, n. \text{right}(), n. \text{left}()))
```

É possibile distinguere l'inserimento in 7 casi differenti quali:

Caso 1 Nuovo nodo t non ha padre, dunque è la radice dell'albero. In tal caso, lo coloriamo di nero.

Figura 4.4: Nuovo nodo t come radice.

Caso 2 Il padre p di t è nero; in tal caso, non c'è nessuna violazione delle proprietà dell'albero Red-Black e inseriamo il nodo t come nodo rosso.

Figura 4.5: Il padre p di t è nero.

Caso 3 Caso in cui l'elemento da inserire sia rosso e il padre sia rosso e lo zio sia rosso. Coloriamo dunque p e z di nero e n di rosso (l'altezza nera rimane invariata). La problematica ora sorge sul nonno n che potrebbe violare le proprietà 1 e/o 3 dell'albero Red-Black, in tal caso dobbiamo eseguire una ricorsione su n ponendo t=n e ripetendo il processo.

Caso 4 (a,b) In questo caso t è rosso, p è rosso e z è nero. Questo caso si divide in due sotto-casi ma il procedimento è speculare per entrambi (sostituendo left con right e viceversa). Assumendo che t sia figlio \underline{destro} di p e che p sia figlio $\underline{sinistro}$ di n, allora eseguiamo una rotazione a $\underline{sinistra}$ su p in modo da rendere t figlio $\underline{sinistro}$ di n con p come figlio $\underline{sinistro}$ di p. Ora abbiamo una violazione delle proprietà p e p e p Ricadiamo però nel caso p e p figlio p e p figlio p sinistro di p e p e figlio p e figlio p e figlio p e figlio p e p e figlio p e f

Caso 5 (a,b) In questo caso t è rosso, p è rosso e z è nero. Questo caso si divide in due sotto-casi, come il precedente, ma il procedimento è speculare per entrambi (sostituendo left con right e viceversa). Assumendo che t sia figlio $\underline{sinistro}$ di p e che p sia figlio $\underline{sinistro}$ di p, allora eseguiamo una rotazione a \underline{destra} su p in modo da rendere p nodo radice, p figlio p e p figlio destro di p. Ora coloriamo p di nero e p di rosso. In quando la posizione relativa di p rispetto a p non cambia allora i vincoli per l'albero p p sono rispettati.

Conclusioni I casi 1 e 2 non richiedono ulteriori operazioni, i casi 3, 4 e 5 richiedono una rotazione e un ri-coloramento (con eventuali ricorsioni). In generale, l'inserimento di un nodo in un albero Red-Black richiede $O(\log n)$ operazioni. É implementabile con il seguente pseudo-codice:

Algorithm 28 balanceInsert(Tree t) $t.\operatorname{color} \leftarrow \operatorname{RED}$ while $t \neq \text{nil} \ \mathbf{do}$ Tree $p \leftarrow t$. parent() Tree $n \leftarrow \text{iff}(p \neq \text{nil}, p. \text{parent}(), \text{nil})$ Tree $z \leftarrow \text{iff}(n = \text{nil}, \text{nil}, \text{iff}(n, \text{left}() == p, n, \text{right}(), n, \text{left}()))$ if p = nil then ⊳ Caso 1 $t. \operatorname{color} \leftarrow \operatorname{BLACK}$ $t \leftarrow \mathbf{nil}$ else if p. color == BLACK then ⊳ Caso 2 $t \leftarrow \mathbf{nil}$ else if z. color == RED then ⊳ Caso 3 $p. \operatorname{color} \leftarrow \operatorname{BLACK}$ $z.\operatorname{color} \leftarrow \operatorname{BLACK}$ $n. \operatorname{color} \leftarrow \operatorname{RED}$ $t \leftarrow n$ else if $t == p. \operatorname{right}()$ and $p == n. \operatorname{left}()$ then ⊳ Caso 4.a ROTATELEFT(p) $t \leftarrow p$ else if t == p. left()andp == n. right() then ▷ Caso 4.b ROTATERIGHT(p) $t \leftarrow p$ else if t == p. left()andp == n. left() then ⊳ Caso 5.a ROTATERIGHT(n)else if t == p. right()andp == n. right() then ⊳ Caso 5.b ROTATELEFT(n) $p. \operatorname{color} \leftarrow \operatorname{BLACK}$ $n.\operatorname{color} \leftarrow \operatorname{RED}$

4.2.4 Teoremi su un albero Red-Black

Teorema 4.1. In un albero RB, un sotto-albero di radice u contiene $n \ge 2^{\text{bh(u)}} - 1$ nodi interni (nodi senza foglie fittizie).

Dimostrazione. Si procede per ricorsione sull'altezza dell'albero:

Base: se h=0 allora u è una foglia **Nil** e il sotto-albero con radice u contiene: $n \ge 2^{\mathrm{bh}(u)} - 1 = 2^0 - 1 = 0$ nodi interni.

Passo: supponendo che h>1 e che la tesi sia vera per alberi di altezza < h, Allora u è un nodo interno con due figli non fittizi. Inoltre ogni figlio v di u ha un'altezza nera $\mathrm{bh}(v)$ pari a $\mathrm{bh}(u)$ se v è rosso o $\mathrm{bh}(u)-1$ se v è nero. Quindi il sotto-albero con radice v contiene almeno $2^{\mathrm{bh}(v)}-1$ nodi interni, per ipotesi induttiva. In quanto considerando anche il nodo u, allora il numero di nodi interni nel sotto-albero con radice u è almeno $n \geq 2 \cdot \left(2^{\mathrm{bh}(v)}-1\right)+1=2^{\mathrm{bh}(u)}-2+1=2^{\mathrm{bh}(u)}-1.\checkmark$

Teorema 4.2. In un albero RB, almeno la metà dei nodi dalla radice ad una foglia sono neri.

Dimostrazione. Per il vincolo (2) di un albero RB, se un nodo è rosso allora i suoi figli devono essere neri. Quindi la situazione nella quale si ottengono più nodi rossi possibili è nel caso questi siano con colori alterni. Quindi almeno la metà dei nodi dalla radice ad una foglia sono neri.

Teorema 4.3. In un albero RB dati due cammini dalla radice a due foglie non è possibile che un uno sia più lungo del doppio dell'altro.

Dimostrazione. Per il vincolo (4) di un albero RB, ogni cammino dalla radice ad una foglia deve avere lo stesso numero di nodi neri. Per il teorema precedente almeno la metà dei nodi in ognuno di questi cammini

Quindi al limite uno dei due cammini è costituito solo da nodi neri e l'altro è costituito da nodi alternati neri e rossi, rendendo la lunghezza del cammino con nodi alternati esattamente il doppio del cammino con nodi neri per (4).

Teorema 4.4. L'altezza massima di un albero RB con n nodi è al più $2\log(n+1)$.

Dimostrazione.

$$n \ge 2^{\operatorname{bh}(r)} - 1 \Leftrightarrow \overbrace{n \ge 2^{\frac{h}{2}}}^{\frac{h}{2}} - 1$$
$$\Leftrightarrow n + 1 \ge 2^{\frac{h}{2}}$$
$$\Leftrightarrow \log(n+1) \ge \frac{h}{2}$$
$$\Leftrightarrow 2\log(n+1) \ge h$$

Dunque conseguenza di questo teorema è che la complessità totale di un albero RB è $O(\log n)$, in quanto:

- 1. $O(\log n)$ per scendere fino al punto di inserimento del nodo
- 2. O(1) per inserire il nodo
- 3. $O(\log n)$ per risalire e ri-bilanciare l'albero (caso peggiore caso: 3)

4.2.5Cancellazione

La cancellazione di un nodo in un albero Red-Black è più complessa rispetto all'inserimento, in quanto la cancellazione di un nodo potrebbe violare le proprietà dell'albero. La procedura di cancellazione è simile a quella di un albero binario di ricerca, ma con delle operazioni di ri-bilanciamento. La procedura di cancellazione è composta da 8 casi differenti, con 4 casi principali e 4 casi simmetrici. In generale:

• Se il nodo da eliminare è rosso allora:

Altezza nera invariata

Non sono stati creati nodi rossi consecutivi

La radice resta nera

• Se il nodo da eliminare è nero allora:

Potrebbe essere violato il vincolo 1 in quanto la radice potrebbe essere diventata rossa

Potrebbe essere violato il vincolo 3 in quanto potrebbero esserci nodi rossi consecutivi se padre e figlio sono rossi

Potrebbe essere violato il vincolo 4 in quanto l'altezza nera è diminuita

Algorithm 29 balanceDelete(Tree T, Tree t)

```
while t \neq \text{and } t. \operatorname{color}() = \operatorname{black} do
     Tree p \leftarrow t. parent()
                                                                                                       ▷ Ottengo il genitore del nodo da eliminare
     if t = p. \operatorname{left}() then
                                                                                                                            \triangleright Sottocasi con t figlio sinistro
           Tree f \leftarrow p. \operatorname{right}()
                                                                                                        ▷ Ottengo il fratello del nodo da eliminare
          Tree ns \leftarrow f. \operatorname{left}()
                                                                                                              ⊳ Ottengo il nipote sinistro del fratello
          Tree nd \leftarrow f. right()
                                                                                                                ▷ Ottengo il nipote destro del fratello
          if f. \operatorname{color}() = \operatorname{red} \mathbf{then}
                                                                                                                                                                ⊳ Caso 1
                p.\operatorname{color} \leftarrow \operatorname{red}
                f. color \leftarrow black
                ROTATELEFT(p)
           else
                if ns. color() = black and nd. color() = black then
                                                                                                                                                                \triangleright Caso 2
                      f. \operatorname{color} \leftarrow \operatorname{red}
                      t \leftarrow p
                else if ns. color() = red and nd. color() = black then
                                                                                                                                                                \triangleright Caso 3
                      ns. color \leftarrow black
                      f. \operatorname{color} \leftarrow \operatorname{red}
                      ROTATERIGHT(f)
                else if nd. \operatorname{color}() = \operatorname{red} \operatorname{then}
                                                                                                                                                                ⊳ Caso 4
                      f. \operatorname{color} \leftarrow p. \operatorname{color}()
                      p.\operatorname{color} \leftarrow \operatorname{black}
                      nd.\operatorname{color} \leftarrow \operatorname{black}
                      ROTATELEFT(p)
                      t \leftarrow T
     else
                                                                       \triangleright Sottocasi con t figlio destro, tralasciati in quanto simmetrici
```

Dunque seppure complicata la cancellazione risulta efficiente in quanto:

- Dal caso (1) si passa ad uno dei casi (2,3,4)
- Dal caso (2) si risale ad uno degli altri casi, ma si risale di un livello
- Dal caso (3) si passa al caso (4)
- Nel caso (4) si termina

La complessità totale di una cancellazione in un albero Red- $Black
in <math>O(\log n)$.

Capitolo 5

Grafi

5.1 Introduzione

Problemi relativi ai grafi Per lo scopo del corso i nostri obbiettivi riguardanti i grafi li possiamo dividere in due categorie:

Problemi in grafi non pesati Studieremo problemi riguardanti grafi non pesati, ovvero grafi in cui gli archi non hanno un peso associato. In particolare, ci occuperemo di:

- Ricerca del cammino più breve tra due nodi.
- Componenti (fortemente) connesse, verifica ciclicità, ordinamento topologico.

Problemi in grafi pesati Studieremo problemi riguardanti grafi pesati, ovvero grafi in cui gli archi hanno un peso associato. In particolare, ci occuperemo di:

- Cammini di peso minimo.
- Alberi di copertura di peso minimo.
- Flusso massimo.

5.1.1 Definizioni

Grafo Orientato (directed)

Definizione 5.1. Un grafo orientato è una coppia G = (V, E) dove V è un insieme finito di nodi (node) o vertici (vertex) ed E è un insieme finito di coppie di nodi (u, v) detti anche archi (edge) o lati (link) orientati.

Grafo Non Orientato (undirected)

Definizione 5.2. Un grafo non orientato è una coppia G = (V, E) dove V è un insieme finito di nodi (node) o vertici (vertex) ed E è un insieme finito di coppie di nodi non orientati (u, v) detti anche archi (edge) o lati (link) non orientati.

Vertici

Definizione 5.3 (Adiacenza). Un vertice v è detto adiacente ad un vertice u se esiste un arco (u, v).

Definizione 5.4 (Incidenza). Un arco (u, v) è detto incidente al vertice u e al vertice v.

In un grafo indiretto la relazione di adiacenza è simmetrica, ovvero se v è adiacente ad u allora u è adiacente a v.

[&]quot;Appunti di Algoritmi e Strutture Dati" di Luca Facchini

CAPITOLO 5. GRAFI 5.1. INTRODUZIONE

Dimensioni del grafo

Numero di nodi: |V| = nNumero di archi: |E| = m

Teorema 5.1 (Relazioni tra $n \in m$). In un grafo non orientato con n nodi e m archi vale che $m \le \frac{n(n-1)}{2} = O(n^2)$.

In un grafo orientato con n nodi e m archi vale che $m \le n(n-1) = O(n^2)$.

La complessità è espressa in termini di $n \in m$ es. O(n+m).

Casi Speciali

Definizione 5.5 (Grafo Completo). Un grafo con un arco fra tutte le coppie di nodi è detto grafo completo.

Definizione 5.6 (Grafo sparso/denso (informale)). Si dice che un grafo è **sparso** se ha "pochi archi", ovvero grafi con m = O(n), $O(n \log n)$, e **denso** se ha "molti archi", ovvero grafi con $m = \Omega(n^2)$.

Definizione 5.7 (Albero libero). Un albero libero (free tree) è un grafo connesso on m = n - 1.

Definizione 5.8 (Albero radicato). Un **albero radicato** (*rooted tree*) è un albero libero in cui uno dei nodi è designato come radice.

Proprietà

Definizione 5.9 (Grado). Nei grafi non orientati il **grado** (degree) di un nodo è il numero di archi incidenti su di esso.

Nei grafi orientati si distinguono il **grado entrante** e il **grado uscente** di un nodo, rispettivamente il numero di archi entranti e uscenti da esso.

Cammino

Definizione 5.10 (Cammino). In un grafo G = (V, E) orientato o meno, un **cammino** C di lunghezza k tra i nodi u_0, u_1, \ldots, u_k è una sequenza di nodi tale che $(u_i, u_{i+1}) \in E$ per $i = 0, \ldots, k-1$.

5.1.2 Specifica

5.1.3 Memorizzazione

Matrice di aderenza - Grafi orientati

Se si sceglie di memorizzare un grafo tramite una matrice di aderenza allora si avrà una matrice A di dimensione $n \times n$ dove n è il numero di nodi del grafo. La cella A_{ij} sarà pari a 1 se esiste un arco tra il nodo i e il nodo j, 0 altrimenti.

Esempio Assumendo che il grafo orientato

$$G = (\{0, 1, 2, 3, 4, 5\}, \{(0, 1), (1, 2), (0, 3), (3, 0), (2, 3), (3, 4), (4, 2)\})$$

sia memorizzato tramite una matrice di aderenza si avrà la seguente matrice:

Lista di adiacenza - Grafi orientati

Se si sceglie di memorizzare un grafo tramite una lista di adiacenza allora si avrà una lista di n elementi, uno per ogni nodo del grafo. Ogni elemento della lista sarà a sua volta una lista contenente i nodi adiacenti al nodo corrispondente.

Esempio Assumendo che il grafo orientato

$$G = (\{0, 1, 2, 3, 4, 5\}, \{(0, 1), (1, 2), (0, 3), (3, 0), (2, 3), (3, 4), (4, 2)\})$$

sia memorizzato tramite una lista di adiacenza si avrà la seguente lista:

Matrice di aderenza - Grafi non orientati

Se si sceglie di memorizzare un grafo tramite una matrice di aderenza allora si avrà una matrice A di dimensione $n \times n$ dove n è il numero di nodi del grafo. La cella A_{ij} sarà pari a 1 se esiste un arco tra il nodo i e il nodo j, 0 altrimenti. In un grafo non orientato la matrice sarà simmetrica rispetto alla diagonale principale.

Esempio Assumendo che il grafo non orientato

$$G = (\{0, 1, 2, 3, 4, 5\}, \{(0, 1), (1, 2), (0, 3), (2, 3), (3, 4), (4, 2)\})$$

sia memorizzato tramite una matrice di aderenza si avrà la seguente matrice:

Lista di adiacenza - Grafi non orientati

Se si sceglie di memorizzare un grafo tramite una lista di adiacenza allora si avrà una lista di n elementi, uno per ogni nodo del grafo. Ogni elemento della lista sarà a sua volta una lista contenente i nodi adiacenti al nodo corrispondente. In un grafo non orientato la lista di adiacenza non conterrà duplicati.

Esempio Assumendo che il grafo non orientato

$$G = (\{0, 1, 2, 3, 4, 5\}, \{(0, 1), (1, 2), (0, 3), (2, 3), (3, 4), (4, 2)\})$$

sia memorizzato tramite una lista di adiacenza si avrà la seguente lista:

Matrice di adiacenza - Grafici non orientati pesati

Se si sceglie di memorizzare un grafo tramite una matrice di aderenza allora si avrà una matrice A di dimensione $n \times n$ dove n è il numero di nodi del grafo. La cella A_{ij} sarà pari al peso dell'arco tra il nodo i e il nodo j, 0 altrimenti. In un grafo non orientato la matrice sarà simmetrica rispetto alla diagonale principale.

Esempio Assumendo che il grafo non orientato pesato

$$G = (\{0, 1, 2, 3, 4, 5\}, \{(0, 1, 3), (1, 2, 4), (0, 3, 1), (2, 3, 4), (3, 4, 8), (4, 2, 7)\})$$

sia memorizzato tramite una matrice di aderenza si avrà la seguente matrice:

Lista di adiacenza - Grafici non orientati pesati

Se si sceglie di memorizzare un grafo tramite una lista di adiacenza allora si avrà una lista di n elementi, uno per ogni nodo del grafo. Ogni elemento della lista sarà a sua volta una lista contenente i nodi adiacenti al nodo corrispondente e il peso dell'arco. In un grafo non orientato la lista di adiacenza non conterrà duplicati.

Esempio Assumendo che il grafo non orientato pesato

$$G = (\{0, 1, 2, 3, 4, 5\}, \{(0, 1, 3), (1, 2, 4), (0, 3, 1), (2, 3, 4), (3, 4, 8), (4, 2, 7)\})$$

sia memorizzato tramite una lista di adiacenza si avrà la seguente lista:

$$\begin{array}{l} 0 \rightarrow 1(3) \rightarrow 3(1) \\ 1 \rightarrow 0(3) \rightarrow 2(4) \\ 2 \rightarrow 1(4) \rightarrow 3(4) \rightarrow 4(7) \\ 3 \rightarrow 0(1) \rightarrow 2(4) \rightarrow 4(8) \\ 4 \rightarrow 3(8) \rightarrow 2(7) \\ 5 \end{array}$$

Liste di adiacenza - variazioni sul tema

Sia il grafo orientato che il grafo non orientato possono essere memorizzati tramite liste di adiacenza in diversi modi che variano a seconda del linguaggio di programmazione, di seguito alcuni esempi:

Struttura	Java	Python	C++
Lista collegata	LinkedList	list	
Vettore statico		list	
Vettore dinamico	ArrayList	list	vector
Insieme	HashSetTreeSet	set	set
Dizionario	HashMapTreeMap	dict	map

5.2 Visite dei grafi

Il problema Dato un grafo G = (V, E) e un vertice $r \in V(\mathbf{radice}, \mathbf{sorgente})$ visitare una volta e una sola volta tutti i nodi connessi a r.

Visita in ampiezza *Breath First Search* (BFS) Questo genere di visita dei nodi viene eseguita "per livelli" e si visita prima la radice e poi i nodi a distanza 1 dalla radice, poi i nodi a distanza 2 e così via, viene usata calcolare cammini più brevi da una singola sorgente.

Visita in profondità *Depth First Search* (DFS) Questo genere di visita dei nodi viene eseguita "in profondità" e si visita la radice e poi si scende il più possibile in profondità prima di risalire, viene usata per ordinamento topologico, analisi di componenti connesse e componenti fortemente connesse.

Problemi In entrambi i casi si deve tener conto del fatto che un grafo può essere ciclico e quindi si deve evitare di visitare più volte lo stesso nodo e di entrare in loop infiniti.

Algoritmo generico di attraversamento

Algorithm 30 graphTrasversal(GRAPH G, Node r)

```
S \leftarrow \operatorname{Set}()

S.\operatorname{insert}(r)

\{\operatorname{marca il nodo} r \}

\mathbf{while} \ S.\operatorname{size}() > 0 \ \mathbf{do}

\operatorname{NODE} \ u \leftarrow S.\operatorname{remove}() \ \{\operatorname{visita il nodo} \ u \}

\mathbf{for} \ \operatorname{NODE} \ v \in G.\operatorname{adj}(u) \ \mathbf{do}

\mathbf{if} \ v \notin S \ \mathbf{then} \ \{\operatorname{marca il nodo} \ v \}

S.\operatorname{insert}(v)
```

5.2.1 Visita in ampiezza BFS

Obbiettivi BFS Gli obbiettivi per la ricerca BFS sono: Visitare prima tutti i nodi a distanza k poi k+1 e così via, calcolare il cammino più breve da r a tutti gli altri nodi misurando la lunghezza degli archi attraversati, generare un albero **breadth-first** con radice r, quindi contente tutti i nodi raggiungibili da r tale per cui un cammino dalla radice r al nodo u al con il cammino più breve.

Algoritmo generico di visita in ampiezza

Algorithm 31 BFS(GRAPH G, NODE r)

```
\begin{array}{l} \text{Queue}\ Q \leftarrow \text{Queue}() \\ Q.\ \text{enqueue}(r) \\ \textbf{boolean}\ []\ visited \leftarrow \textbf{new boolean}\ [G.\ \text{size}()] \\ \textbf{for}\ u \in G.\ \text{V}() - \{r\}\ \textbf{do} \\ visited[u] \leftarrow \textbf{false} \\ visited[r] \leftarrow \textbf{true} \\ \textbf{while not}\ Q.\ \text{isEmpty}()\ \textbf{do} \\ \text{NODE}\ u \leftarrow Q.\ \text{dequeue}() \\ \{\ visita\ il\ \text{nodo}\ u\ \} \\ \textbf{for}\ v \in G.\ \text{adj}(u)\ \textbf{do} \\ \{\ visita\ l'\ \text{arco}\ (u,v)\ \} \\ \textbf{if not}\ \ \textbf{then}visited[v] \\ visited[v] \leftarrow \textbf{true} \\ Q.\ \text{enqueue}(v) \\ \end{array}
```

Calcolo minima distanza

Il principale problema risolto è quello del calcolo della minima distanza tra due nodi di un grafo, per farlo sfruttiamo la BFS e una coda. Il risultato di ciò è il seguente algoritmo:

Algorithm 32 distance(Graph G, Node r,int [] distance)

```
Queue \ Q \leftarrow Queue() \\ Q. \ enqueue(r) \\ \textbf{foreach} \ u \in G. \ V() - \{r\} \ \textbf{do} \\ distance[u] \leftarrow \infty \\ distance[r] \leftarrow 0 \\ \textbf{while not} \ Q. \ isEmpty() \ \textbf{do} \\ NODE \ u \leftarrow Q. \ dequeue() \\ \textbf{for} \ v \in G. \ adj(u) \ \textbf{do} \\ \textbf{if} \ distance[v] = \infty \ \textbf{then} \\ distance[v] \leftarrow distance[u] + 1 \\ Q. \ enqueue(v) \\ \end{pmatrix} \triangleright Se \ v \ non \ \grave{e} \ stato \ scoperto \ ancora
```

Albero BFS

L'albero BFS è un albero radicato con radice r utile per ottenere il cammino più breve tra r e tutti gli altri nodi del grafo. Questo genere di albero è solitamente memorizzato in un vettore di padri detto parent Come

Algorithm 33 distance(..., int [] parent)

```
[...] \\ parent[r] \leftarrow \textbf{nil} \\ \textbf{while not } Q. \text{ isEmpty}() \textbf{ do} \\ \text{Node } u \leftarrow Q. \text{ dequeue}() \\ \textbf{for } v \in G. \text{ adj}(u) \textbf{ do} \\ \textbf{if } distance[v] = \infty \textbf{ then} \\ distance[v] \leftarrow distance[u] + 1 \\ parent[v] \leftarrow u \\ Q. \text{ enqueue}(v) \\ \end{cases}
```

algoritmo ausiliario per la "stampa" di questo albero si può usare il seguente:

```
Algorithm 34 printPath(Node r,Node s, Node [] parent)
```

```
\begin{array}{l} \textbf{if } s == r \textbf{ then} \\ \textbf{ print } s \\ \textbf{else if } parent[s] == \textbf{nil then} \\ \textbf{ print "Error"} \\ \textbf{else} \\ \textbf{ PRINTPATH}(r, parent[s], parent) \\ \textbf{ print } s \end{array}
```

Complessità BFS

La complessità dell'algoritmo di visita in ampiezza è O(n+m), dove n è il numero di nodi inserito nella coda, e ciò avviene una sola volta, inoltre in quanto un nodo viene estratto tutti i suoi archi vengono visitati una sola volta. Dunque il numero di archi analizzati è:

$$m = \sum_{u \in V} d_{out}(u)$$

dove $d_{out}(u)$ è il grado uscente del nodo u. (In un grafo non orientato coincide con il grado del nodo).

5.2.2 Visita in profondità - DFS

La visita in profondità viene usata per la risoluzione di diversi problemi, a differenza della BFS la DFS considera tutti i nodi del grafo anche quelli non connessi ad un singolo nodo. Come risultato abbiamo non un albero ma una foresta depth-first $G_f = (V, E_f)$ formata da un insieme di alberi depth-first. Solitamente per memorizzare questo viene usato o uno Stack implicito (attraverso la ricorsione) o uno Stack esplicito.

Algoritmo stack implicito Usando uno stack implicito otteniamo il seguente algoritmo: Anche in questo

```
Algorithm 35 dfs(Graph G, Node u, boolean [] visited)
visited[r] \leftarrow \mathbf{true}
{ visita il nodo r (pre\text{-}order) }
foreach v \in G. adj(u) do
    if not then visited[v]
    { visita l'arco (u, v) }
    DFS(G, v, visited)
{ visita il nodo v (post\text{-}order) }
```

caso la complessità per la visita di tutti i nodi è O(n+m).

Algoritmo stack esplicito Usando uno stack esplicito otteniamo il seguente algoritmo:

```
Algorithm 36 dfs(Graph G, Node r)
```

```
\begin{array}{l} \operatorname{Stack} S \leftarrow \operatorname{Stack}() \\ S.\operatorname{push}(r) \\ \operatorname{\mathbf{boolean}} \left[ \right] \ visited \leftarrow \operatorname{\mathbf{new}} \operatorname{\mathbf{boolean}} \left[ G.\operatorname{size}() \right] \\ \operatorname{\mathbf{for}} \ u \in G.\operatorname{V}() - \{r\} \operatorname{\mathbf{do}} \\ visited[u] \leftarrow \operatorname{\mathbf{false}} \\ \operatorname{\mathbf{while}} \ \operatorname{\mathbf{not}} \ S.\operatorname{isEmpty}() \operatorname{\mathbf{do}} \\ \operatorname{NODE} \ u \leftarrow S.\operatorname{pop}() \\ \operatorname{\mathbf{if}} \ \operatorname{\mathbf{not}} \ \operatorname{\mathbf{then}} visited[u] \\ \{ \ visita \ il \ \operatorname{nodo} \ u \ (pre\text{-}order) \ \} \\ visited[u] \leftarrow \operatorname{\mathbf{true}} \\ \operatorname{\mathbf{for}} \ v \in G.\operatorname{adj}(u) \operatorname{\mathbf{do}} \ \{ \ \operatorname{visita} \ \operatorname{l'arco} \ (u,v) \ \} \\ S.\operatorname{push}(v) \end{array}
```

In questo algoritmo il nodo può essere inserito nella pila più volte, il controllo viene fatto all'estrazione e non all'inserimento, la complessità anche in questo caso è O(n+m) in quanto somma di O(m) visite agli archi, O(m) inserimenti e estrazioni e O(n) visite ai nodi.

Tuttavia la visita in post-order è più complessa da implementare con uno stack esplicito, in quanto bisogna introdurre un "tag" per identificare se il nodo è in stato "discovery" ovvero se è stato scoperto ma non visitato o se è in stato "finish" ovvero quando è stato estratto e poi re-inserito, solo quando ha questo stato allora i suoi vicini vengono inseriti nello stack. Quando viene infine estratto un nodo con il tag "finish" allora si può procedere con la visita del nodo.

Analisi di componenti (fortemente) connesse

La visita in profondità è utile per l'analisi di componenti connesse e fortemente connesse di un grafo. Prima di affrontare l'argomento è necessario introdurre diverse definizioni:

Definizione 5.11 (Compoennte connessa). Una componente connessa in un grafo <u>non orientato</u> è un sottoinsieme di nodi C tale che per ogni coppia di nodi $u, v \in C$ esiste un cammino da u a v. Quindi un grafo G' sotto-grafo di G deve essere un sotto-grafo connesso e massimale di G.

Definizione 5.12 (Componente fortemente connessa). Una componente connessa in un grafo <u>orientato</u> è un sottoinsieme di nodi C tale che per ogni coppia di nodi $u, v \in C$ esiste un cammino da u a v e da v a u.

Definizione 5.13 (Raggiungibilità). In un grafo non orientato si dice che un nodo v è **raggiungibile** da un nodo u se esiste un cammino da u a v, ne segue che la relazione di raggiungibilità è simmetrica e dunque se v è raggiungibile da u allora u è raggiungibile da v. In un grafo orientato si dice che un nodo v è **raggiungibile** da un nodo u se esiste un cammino da u a v e non necessariamente da v a u.

Definizione 5.14 (sotto-grafo). Un grafo G' = (V', E') è un sotto-grafo di un grafo G = (V, E) se $V' \subseteq V$ e $E' \subseteq E$.

Definizione 5.15 (Massimalità di un sotto-grafo). Un sotto-grafo G' = (V', E') di un grafo G = (V, E) è detto massimale $\Leftrightarrow \exists$ un sotto-grafo G'' = (V'', E'') di G tale che G'' sia connesso ed "più grande di G'" (ovvero $G' \subseteq G'' \subseteq G$).

Problema L'obbiettivo è quello di verificare se un grafo è connesso o meno, e se non lo è trovare le componenti connesse o fortemente connesse.

Soluzione Usando la DFS analizziamo se tutti i nodi sono marcati quando "non possiamo andare più avanti" e se non lo sono allora siamo in presenza di un grafo sconnesso e quelli marcati fino ad ora costituiscono una componente connessa. Usiamo per il problema un vettore id contenete l'identificativo delle componenti con id[u] uguale all'identificativo della componente connessa a cui appartiene il nodo u.

Algorithm 37 int [] cc(Graph G)

```
\begin{split} & \textbf{int} \ [] \ id \leftarrow \textbf{new int} \ [G.\operatorname{size}()] \\ & \textbf{foreach} \ u \in G. \ V() \ \textbf{do} \\ & id[u] \leftarrow -1 \\ & \textbf{int} \ count \leftarrow 0 \\ & \textbf{foreach} \ u \in G. \ V() \ \textbf{do} \\ & \textbf{if} \ id[u] == 0 \ \textbf{then} \\ & count \leftarrow count + 1 \\ & \texttt{CCDFS}(G, count, u, id) \\ & \textbf{return} \ id \end{split}
```

Come funzione ricorsiva di supporto si ha:

Algorithm 38 ccdfs(Graph G, int count, Node u, int [] id)

```
id[u] \leftarrow count

for each v \in G. adj(u) do

if id[v] == 0 then

CCDFS(G, count, v, id)
```

Analisi di presenza o meno di clicli

Definiamo in primo luogo un ciclo:

Definizione 5.16 (Ciclo per un grafo non orientato). In un grafo non orientato G = (V, E), un ciclo C di lunghezza k > 2 è una sequenza di nodi u_0, u_1, \ldots, u_k tale che $(u_i, u_{i+1}) \in E$ per $i = 0, \ldots, k-1$ e inoltre $u_k = u_0$.

Definiamo quindi un grafo aciclico un grafo che non contiene cicli.

Problema L'obbiettivo è quello di verificare se un grafo è aciclico (true) o meno (false).

Questa è la funzione ricorsiva di supporto che tiene in considerazione eventuali componenti sconnesse, per la funzione principale si ha:

```
Algorithm 40 boolean hasCycle(Graph G)

boolean [] visited \leftarrow new boolean [G. size()]

foreach u \in G. V() do

visited[u] \leftarrow false

foreach u \in G. V() do

if not visited[u] then

if hasCycleRec(G, u, nil , visited) then

return true

return false
```

Grafi orientati La definizione di ciclo per un grafo orientato è leggermente diversa:

Definizione 5.17 (Ciclo per un grafo orientato). In un grafo orientato G = (V, E), un ciclo C di lunghezza $k \ge 2$ è una sequenza di nodi u_0, u_1, \ldots, u_k tale che $(u_i, u_{i+1}) \in E$ per $i = 0, \ldots, k-1$ e inoltre $u_k = u_0$.

Inoltre come per i grafi non orientati un grafo aciclico è un grafo che non contiene cicli. Definiamo anche un **DAG** un grafo orientato aciclico (*Directed Acyclic Graph*).

Problema L'obbiettivo è quello di verificare se un grafo è aciclico (true) o meno (false).

Il suddetto problema non può essere risolto con l'algoritmo precedente, questo in quanto non basta rimuovere la condizione sul nodo di provenienza p, ma bisogna considerare solo la direzione degli archi, si veda la sotto-sotto-sezione "Analisi presenza o meno di cicli orientati" presente dopo la successiva sotto-sotto-sezione

Classificazione degli archi

Prima di poter parlare di Classificazione degli archi è necessario introdurre la definizione di albero di copertura DFS:

Definizione 5.18 (Albero di copertura DFS). Dato un grafo G = (V, E) allora esiste un albero di copertura DFS $G_f = (V_f, E_f)$ tale che $V_f = V$ e E_f è un sottoinsieme di E tale che per ogni nodo $u \in V$ esiste un cammino da F a U in G_f .

L'algoritmo di visita in profondità permette di classificare gli archi (u, v) non presi in considerazione dall'albero di copertura DFS in tre categorie:

- Se (u,v) è un arco tale che u è im "antenato" di v in G_f allora (u,v) è un arco in avanti
- Se (u,v) è un arco tale che u è un "discendente" di v in G_f allora (u,v) è un arco all'indietro
- In ogni altro caso (u, v) è un arco di attraversamento

[&]quot;Appunti di Algoritmi e Strutture Dati" di Luca Facchini

Algorithm 41 dfs-schema(Graph G,Node u,int &time,int [] dt,int [] ft)

```
{Visita il nodo u (pre-order)}
time \leftarrow time + 1
foreach dov \in G. adj(u)
   { visita l'arco (u, v) (qualsiasi) }
   if dt[v] == 0 then
                                                                        ⊳ Il nodo non è stato ancora visitato
       {Visita l'arco (u, v) albero }
       DFS-SCHEMA(G, v, time, dt, ft)
   else if dt[u] > dt[v] & ft[v] == 0 then
                                                  Nodo adiacente già visitato in precedenza e non ancora
finito
       {Visita l'arco (u, v) all'indietro }
   else if dt[u] < dt[v] & ft[v] \neq 0 then
                                                                        ⊳ Nodo adiacente già visitato e finito
       {Visita l'arco (u, v) in avanti }
   else
                                                                                           ⊳ Tuti gli altri casi
       {Visita l'arco (u, v) di attraversamento }
{Visito il nodo u (post-order)}
time \leftarrow time + 1
ft[u] = time
```

Si può ora definire l'algoritmo di classificazione degli archi. Usiamo all'interno dell'algoritmo le seguenti variabili time è il contatore del tempo passato, dt è il vettore contenete i tempi di discovery time per ogni nodo del grafo e ft è il vettore contenente i tempi di $\pounds finish$ " di ogni vettore. Si noti come alla fine dell'algoritmo otteniamo due vettori dt e ft popolati, su questi "tempi" di discovery può essere formulato un teorema:

Teorema 5.2. Data una visita DFS di un grafo G = (V, E), per ogni coppia di nodi $u, v \in V$, solo una delle seguenti condizioni è vera:

- GLi intervalli [dt[u], ft[u]] e [dt[v], ft[v]] sono non-sovrapposti, allora u, v non sono discendenti l'uno dell'altro nella foresta DF
- L'intervallo [dt[u], ft[u]] è contenuto nell'intervallo [dt[v], ft[v]], allora u è un discendente di v in un albero DF
- L'intervallo [dt[v], ft[v]] è contenuto nell'intervallo [dt[u], ft[u]], allora u è un antenato di v in un albero DF

Analisi presenza o meno di cicli orientati

Grazie alle conoscenze apprese dalla sotto-sotto-sezione precedente possiamo ora formulare un teorema riguardante la presenza o meno di cicli orientati:

Teorema 5.3 (Grafi orientati aciclici). Un grafo orientato è aciclico se e solo se non esistono archi all'indietro nel grafo.

Dimostrazione. Procediamo per entrambe le direzioni:

- se: Esiste un ciclo, allora sia u il primo nodo di questo e sia (v, u) un arco del ciclo. Allora il cammino che connette u ad v sarà visitato, ed eletto come cammino dell'albero di copertura, prima o poi. Quando si raggiungerà il nodo v si "scopre" l'esistenza di (v, u) ovvero un arco all'indietro.
- solo se: Se esiste un arco all'indietro (u, v), dove v è un antenato di u, allora esiste un cammino da v a u e un arco da u a v ovvero un ciclo.

Applichiamo dunque il teorema appena dimostrato tramite il seguente algoritmo che sfrutta gli algoritmi "hasCycleRec" e "dfs-schema" precedentemente definiti. 1

Algorithm 42 boolean hasCycleRec(Graph G, Node u, int &time,int [] dt,int ft)

```
\begin{array}{l} time \leftarrow time + 1 \\ dt[u] \leftarrow time \\ \textbf{foreach } v \in G. \, \text{adj}(u) \, \, \textbf{do} \\ \textbf{if } dt[v] == 0 \, \textbf{then} \\ \textbf{if } \text{HASCYCLEREC}(G, v, time, dt, ft) \, \textbf{then} \\ \textbf{return true} \\ \textbf{else if } ft[v] == 0 \, \textbf{then} \\ \textbf{return true} \\ time \leftarrow time + 1 \\ ft[u] \leftarrow time \\ \textbf{return false} \end{array}
```

Ordinamento topologico

La DFS può essere usata anche per stabilire un **ordinamento topologico** di un grafo DAG. Un ordinamento topologico è definito come segue:

Definizione 5.19 (Ordinamento topologico). Dato un DAG G un ordinamento topologico di G è un ordinamento lineare dei sue noti tale che se $u, v \in E$ allora u precede v nell'ordinamento.

Da questa definizione possiamo dedurre che per un DAG possano esistere più ordinamenti, inoltre se consideriamo un grafo qualunque nel quale sono presenti cicli non può esistere un ordinamento.

Problema L'obbiettivo è quello prendere in *input* un DAG e restituire un ordinamento topologico.

Soluzione "Naive" Si prende un nodo senza archi entranti (che esiste sempre) si aggiunge questo nodo all'ordinamento e si "elimina" il nodo dal grafo, si ripete il procedimento fino a quando non si è eliminato tutti i nodi.

Algoritmo Eseguiamo una DFS con l'operazione di visita, in *post-order*, che consiste nell'aggiungere il nodo in testa ad una lista, si restituisce la lista ottenuta (ribaltata).

Questo funziona in quanto quando un nodo è "finito" allora tutti i suoi discendenti sono stati scoperti e aggiunti.

```
Algorithm 43 STACK topSort(GRAPH g)
```

```
\begin{array}{l} \operatorname{STACK} S \leftarrow \operatorname{Stack}() \\ \mathbf{boolean} \ []visited \leftarrow \mathbf{boolean} \ (G.\operatorname{size}(), \mathbf{false} \ ) \\ \mathbf{foreach} \ u \in G. \ V() \ \mathbf{do} \\ \mathbf{if} \ \mathbf{not} \ visited[u] \ \mathbf{then} \\ \operatorname{TS-DFS}(G, u, visited, S) \\ \mathbf{return} \ S \end{array}
```

 $^{^{1}}$ Va modificato l'algoritmo "hasCycle" inizializzando dt e ft a vettori di 0 e time a 0. Per il resto l'algoritmo è identico, omesso quindi brevità.

[&]quot;Appunti di Algoritmi e Strutture Dati" di Luca Facchini

Algorithm 44 ts-dfs(Graph G, Node u, boolean [] visited, Stack S) $visited[u] \leftarrow \mathbf{true}$ for each $v \in G$. adj(u) do if not visited[v] then TS-DFS(G, v, visited, S) S. push(u)

Grazie al teorema precedentemente dimostrato possiamo affermare che l'algoritmo funziona in quanto se un nodo è "finito" allora tutti i suoi discendenti sono stati scoperti e aggiunti.

Applicazioni in the real world L'ordinamento topologico è utilizzato in diversi campi, tra cui: L'ordine di valutazione delle celle in uno *spreadsheet*, l'ordine di compilazione di un Makefile, la risoluzione di dipendenze in un package manager e la risoluzione di dipendenze in un task scheduler.

Componenti fortemente connesse