Motion Control, Precision Mechatronics, and Robotics in Advanced Manufacturing

Xu Chen

Assistant Professor

Department of Mechanical Engineering

University of Conneticut

www.engr.uconn.edu/~xchen

www.xchen.lab.uconn.edu

NSF US-Korea Workshop 2014-08-11

Outline

- Examples
 - Advanced semiconductor manufacturing
 - Nm-scale precision systems
- Theory
 - All-stabilizing Control
 - Adaptive Control
- Outlooks

Introduction: Semiconductor Manufacturing

Billions of transistors are "built" into chips at the size of a finger nail, via photolithography.

Courtesy of ASML

The Control Problem

Courtesy of ASML

Photolithography

nm-scale precision manufacturing

The Control Problem

Courtesy of ASML

Photolithography

Analogous to driving:

Role of Systems and Control Engineering

^{*} Experiments done on a wafer-scanner testbed at UC Berkeley

Role of Systems and Control Engineering

Hardware

Precision Mechatronics

Task Arrangement

System Automation, Supervisory Control

Dedicated Control

Vibration Suppression, Trajectory Tracking, Temperature Control, etc

More Details: Sources of Errors

Sub-10nm position-error tolerance for data read and write

>900,000 tracks per inch

~ ten thousand tracks on a human hair...

Structured Errors from Hardware Imperfection

Complicated vibration sources:

- Complex air dynamics
- Product-dependent characteristics

These complications are also common in general precision manufacturing.

Overview of Error Sources

Systems

- Hardware imperfection
- Task arrangements
- Operation environment

Active suspension

HDD

Diffraction Grating Ruling Machine

- Precision and speed
- Robustness and intelligence
- Flexibility: setup time, etc

Outline

- Examples
 - Advanced semiconductor manufacturing
 - Nm-scale precision systems
- Theory
 - All-stabilizing Control
 - System Identification and Adaptation
- Outlooks

The Sensitivity Function S=1/(1+PC)

Standard All-stabilizing Parameterization

Theorem:

- Coprime factorizations: P = N/D, C = X/Y, NX+DY = 1
- Any stabilizing controller can be formed as:

• **S**:={stable, proper, and rational transfer functions}

Much simplified design on Q

Standard All-stabilizing Parameterization

Theorem:

- Coprime factorizations: P = N/D, C = X/Y, NX+DY = 1
- Any stabilizing controller can be formed as:

$$C_{all} = \frac{X + DQ}{Y - NQ}, \ Q \in \mathbf{S}.$$

• **S**:={stable, proper, and rational transfer functions}

Challenge: general Q design for different applications

Inverse-based All-stabilizing Parameterization

- "Coprime" factorizations: $P(z^{-1}) \approx \frac{z^{-m}}{z^{-m}\hat{P}^{-1}(z^{-1})} \quad C(z^{-1}) = \frac{C(z^{-1})}{1}$
- The following parameterization is always stabilizing:

$$C_{all}\left(z^{-1}\right) = \frac{C\left(z^{-1}\right) + z^{-m}P^{-1}\left(z^{-1}\right)Q\left(z^{-1}\right)}{1 - z^{-m}Q\left(z^{-1}\right)}, \ Q(z^{-1}) \in \mathbf{S}$$

X. Chen, "Adaptive Local Loop Shaping and Inverse-based Youla-Kucera Parameterization with Application to Precision Control," *UC Berkeley*, Ph.D. Dissertation, 2013.

X. Chen and M. Tomizuka, "Control Methodologies for Precision Positioning Systems," in *Proceedings of 2013 American Control Conference, Washington, DC,* Jun. 17-19, 2013, pp. 3710-3717. ***Tutorial Paper**

Mathematical Benefits of Inverse Parameterization

New sensitivity function:

Affine Q parameterization (Simplicity)

$$S(z^{-1}) \approx S_o(z^{-1})(1 - z^{-m}Q(z^{-1}))$$

"Plant-independent" Q design (Flexibility)

Achieved Loop Shapes

Achieved Loop Shapes

Enhanced repetitive control for harmonic cancellation

X. Chen and M. Tomizuka, "New Repetitive Control with Improved Steady-state Performance and Accelerated Transient," *IEEE Transactions on Control Systems Technology*, vol. 21, no. 3, doi:10.1109/TCST.2013.2253102.

X. Chen and M. Tomizuka, "An Enhanced Repetitive Control Algorithm using the Structure of a Disturbance Observer," in *Proceedings of 2012 IEEE/ASME International Conference on Advanced Intelligent Mechatronics*, Taiwan, Jul. 11-14, 2012, pp. 490-495.

Achieved Loop Shapes

Local loop shaping

Outline

- Examples
 - Advanced semiconductor manufacturing
 - Nm-scale precision systems
- Theory
 - All-stabilizing Control
 - Adaptive Control
- Outlooks

Adaptive Control for System Intelligence

Parameter Adaptation Algorithm (PAA):

- Different choices for adaptation:
 - Equation-error methods: simple, guaranteed convergence in the noise-free case
 - Output-error methods: good performance in noisy environments

Example on An Active Suspension

X. Chen and M. Tomizuka, "Selective Model Inversion and Adaptive Disturbance Observer for Time-varying Vibration Rejection on an Active-Suspension Benchmark," *European Journal of Control*, vol. 19, no. 4, pp. 300-312, Jul. 2013.

X. Chen and M. Tomizuka, "Adaptive Model Inversion For Rejection of Time-varying Vibrations On A Benchmark Problem," in *Proceedings of The European Control Conference 2013*, Zurich, Switzerland, Jul. 17-19, 2013, pp. 2897-2903.

Example on An Active Suspension

Simulation

Experiments

More Details

- Benchmark on Adaptive Regulation
 - Special Session in 2013 European Control Conference

Special Session in European Journal of Control, July 2013

Benchmark Performance Comparison

I.D. Landau et al, "An Active Vibration Control System as a Benchmark on Adaptive Regulation," *Proc. 2013 European Control Conf. (ECC)*, July 17-19, 2013, Zürich, Switzerland, pp. 2873-2878.

I. Landau, et al, Benchmark on adaptive regulation—rejection of unknown/time-varying multiple narrow band disturbances, *European Journal of Control*, Volume 19, Issue 4, July 2013, Pages 237-252.

Outline

- Examples
 - Advanced semiconductor manufacturing
 - Nm-scale precision systems
- Theory
 - All-stabilizing Control
 - Adaptive Control
- Outlooks

Outlook: Intelligent and Adaptive Systems

- Make machines more "human-like"
- Developing rapidly
 - iRobot
 - Nest Thermostat
 - HVAC
 - **—** ...
- Lots of challenges in large-scale complex systems

Acknowledgement

Sponsors:

- Acknowledgement:
 - Ph.D. Advisor at UC Berkeley: Masayoshi Tomizuka
 - UC Berkeley Colleagues: Roberto Horowitz, Andrew Packard
 - loan Landau and his Grenoble team (France): benchmark
 - Atsushi Oshima, Hironori Ogawa (NSK, Japan): human-machine interaction