Product Profit Optimization Using a Linear Programming Model: New Chemicals Company in Tire Manufacturing Industry

Hassan Ali, Ethan Norton, Jamia Russell

Problem Statement and Background

Use Case: CB Corporation

Company Mission

- Increase customer
 engagement for future sales by
 delivering on price and
 performance targets
- Maximize efficiency of labor and resources to products chosen for sale and keep in line with internal sustainability targets
- Select products that will maximize short-term profit for business

Background

CB Corporation wants to begin pilot scale production for their new R&D product formulations that they seek to sell to three prospective tire industry customers: Wheel Works, Tirevana, and Grip Gurus.

Problem

CB Corporation now needs to decide on what products are worth making and how much of the product to sell. They have a production trial week planned for the given sale period and two available sites ready for production.

Areas we explore

Research Questions

- 1. Will labor hours be a bigger constraint on **site choice** than inventory availability?
- 2. How many products will prove **unprofitable** and will not be sold due to low sale price and high raw material costs?
- 3. Can we **sell or trade unused raw materials** to gain more resources for profitable products?
- 4. What **model solving method** will be best for the decision problem?
- 5. How should we **allocate or forecast resources** in the future to maximize profit?
- 6. If we migrate this to a circular economy, how would that meet **sustainability goals** and further drive profit?

Literature Review: Similar Approaches

- Product Mix Optimization
 - Model Simplicity vs Complexity
- Advantages and Disadvantages of Literature Approaches

Literature Review: Alternative Approaches

- Deterministic vs Stochastic Models
 - Linear Programming
 - o Monte Carlo
 - Simulated Annealing

Literature Review: Model Applications

- Complexity of Linear Programming Models
- Interdependencies
- Real-World Application

Model Implementation and Assumptions

- 168 hour constraint on labor per site
- Material availability constraint max per site
- Objective Function

$$P = \sum_{j=1}^{2} \sum_{i=1}^{9} (R_{i} X_{i,j} - C_{i} X_{i,j})$$

- R_i = Revenue (Product Sales Price) per Batch Unit of Product i (equiv. 15 kg) C_i = Raw Material Cost per Batch Unit of Product i (equiv. 15 kg)

$$= 15 * \sum_{i=1}^{9} (V_m * M_{m,i})$$

- $i = \{P1, P2, P8^*, P3, P4, P4^*, P10, P6, P9\}$
- $j = \{ \text{Site 1, Site 2} \}$
- $m = \{RSXX, STYY, CBAA, CBZZ, SBRXL, SLSM, C10, C20, C30, C40, C60\}$

Methodology and Challenges

- Cross-product calculated profitability of each material per product (cost is material level)
 - And then the profitability per product
 - Factors in an array of labor to produce each product
- Factors in labor constraint per site
- Solved utilizing GLPK

```
[(a_2 \times b_3) - (a_3 \times b_2)] i + c = [(a_3 \times b_1) - (a_1 \times b_3)] j + [(a_1 \times b_2) - (a_2 \times b_1)] k
```


Computational Experiments and Results

Total Maximized Profit Across Site 1 and Site 2: \$75, 203.05

1.	Optimal Value
----	---------------

- 2. Trade Offs
- 3. Raw Material Use
- 4. Sensitivity Analysis
- 5. Unused Materials
- 6. Production System

Optimal Product Value at Site 1			Optimal Product Value at Site 2	
Product	Value (Batch)	Profit (\$)	Value (Batch)	Profit (\$)
Product 1	0.000	0.00	170.756	6,813.16
Product 2	0.000	0.00	0.000	0.00
Product 8B*	88.610	4,092.43	0.000	0.00
Product 3	238.689	9,398.37	0.000	0.00
Product 4	0.000	0.00	0.000	0.00
Product 4*	0.000	0.00	0.000	0.00
Product 10	156.863	19,894.14	128.205	16,259.60
Product 6	152.381	7,965.71	152.381	7,965.71
Product 9	0.000	0.00	28.657	2,813.88
	Total	41,350.68	Total	33,852.37

Model Limitations and Areas for Future Work

- Circular Economy
 - Recycle
 - Waste Reduction
 - Cost Reduction

- Resource Management
 - Forecasting
 - Storage and Transportation

Research Question Answers

- 1. Will labor hours be a bigger constraint on **site choice** than inventory availability?
 - The biggest constraint on site choice appears to be inventory availability
- 2. How many products will prove **unprofitable** and will not be sold due to low sale price and high raw material costs?
 - There are 3 products: Products 2, 4, and 4*
- 3. Can we **sell or trade unused raw materials** to gain more resources for profitable products?
 - Yes, including certain materials in the production plan contributes to suboptimality
- 4. What **model solving method** will be best for the decision problem?
 - Linear Programming Model
- 5. How should we **allocate or forecast resources** in the future to maximize profit?
 - Historical data should be used to forecast resource acquisition and allocation through quantitative models such as linear regression
- 6. If we migrate this to a circular economy, how would that meet **sustainability goals** and further drive profit?
 - By selling unused raw materials to other companies that need it

