EKSAMEN DATABLAD VIR DIE FISIESE WETENSKAPPE (FISIKA)

TABEL 1 FISIESE KONSTANTES

NAAM	SIMBOOL	WAARDE
Versnelling a.g.v. gravitasie	g	9,8 m⋅s ⁻²
Spoed van lig in 'n vakuum	С	$3.0 \times 10^8 \text{ m} \cdot \text{s}^{-1}$
Universele gravitasiekonstante	G	$6.7 \times 10^{-11} \text{ N} \cdot \text{m}^2 \cdot \text{kg}^{-2}$
Coulomb se konstante	k	$9.0 \times 10^9 \text{ N} \cdot \text{m}^2 \cdot \text{C}^{-2}$
Grootte van die lading op 'n elektron	е	1,6 × 10 ⁻¹⁹ C
Massa van 'n elektron	m _e	$9,1 \times 10^{-31} \text{ kg}$
Planck se konstante	h	6,6 × 10 ⁻³⁴ J⋅s
1 elektronvolt	eV	1,6 × 10 ⁻¹⁹ J

TABEL 2 FISIESE FORMULES

BEWEGING

$v = u + at$ of $V_f = V_i + a\Delta t$	$S = \left(\frac{V+U}{2}\right)t \text{ of } \Delta X = \left(\frac{V_f + V_i}{2}\right)\Delta t$	
$v^2 = u^2 + 2as$ of $V_f^2 = V_i^2 + 2a\Delta x$	$s = ut + \frac{1}{2}at^2 \text{ of } \Delta x = V_i \Delta t + \frac{1}{2}a(\Delta t)^2$	

KRAG EN MOMENTUM

F _{net} = ma	$F_{net} = rac{\Delta p}{\Delta t}$ of $F_{net} \Delta t = m \Delta v$	$J = \Delta p = mv - mu$ of $J = \Delta p = mv_f - mv_i$
p = mv	$F_g = mg$	$m{\mathcal{F}_{fs}^{ma ks}} = \mu_{s} m{\mathcal{F}_{N}}$ $m{\mathcal{F}_{fk}} = \mu_{k} m{\mathcal{F}_{N}}$

WERK. ENERGIE EN DRYWING

$W = Fs$ of $W =$ of $W = F\Delta x$ co		$P = \frac{W}{t}$		P = Fv
$E_p = mgh$	$E_k =$	$=\frac{1}{2}mv^2$	$W_{net} = \Delta E_{\kappa}$	effektiwiteit = $\frac{drywing_{uit}}{drywing_{in}} \times 100$

IEB Copyright © 2020 BLAAI ASSEBLIEF OM

GRAVITASIE EN ELEKTRIESE VELDE

$F = G \frac{m_1 m_2}{r^2}$	$g = \frac{F}{m}$	$g = G \frac{M}{r^2}$
$F = k \frac{q_1 q_2}{r^2}$	$E = \frac{F}{q}$	$E = \frac{kQ}{r^2}$

ELEKTRIESE STROOMBANE

$I = \frac{q}{t}$	$V = \frac{W}{q} k$
$R = \frac{V}{I}$	$emk = I(R_{eks} + r)$ of $emk = V_{ekstem} + V_{inteme\ weerstand}$
$R_{\rm S} = R_1 + R_2 + \dots$	$\frac{1}{R_P} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$
$P = \frac{W}{t}$ of	W = Pt
W = VIt of $W = VI$	$= I^2 R t \qquad \text{of} \qquad W = \frac{V^2}{R} t$
<i>P</i> = <i>VI</i> of <i>P</i> =	$= I^2 R \qquad \text{of} \qquad P = \frac{V^2}{R}$

ELEKTRODINAMIKA

$\Phi = BA\cos\theta$	$emk = -\frac{N\Delta\Phi}{\Deltat}$	$F = IB\ell \sin \theta$
$V_{\rho}I_{\rho}=V_{s}I_{s}$		$\frac{N_s}{N_p} = \frac{V_s}{V_p}$

FOTONE EN ELEKTRONE

$c = f \lambda$	E =	hf of	$E = \frac{hc}{\lambda}$
$E = W_0 + E_{K(maks)}$	$W_0 = hf_0$	E _{K(m}	$_{maks)} = \frac{1}{2} m v_{maks}^2$