

AWS Networking fundamentals

Perry Wald & Tom Adamski AWS Solutions Architects

Introductory - 200

"These sessions provide an overview of AWS services and features, and they assume that attendees are **new to the topic**. These sessions highlight **basic use cases, features, functions, and benefits**."

Default VPC

/16 IPv4 CIDR block (172.31.0.0/16).

/20 default subnet

Connected Internet Gateway

Security Group (SG)

Network Access Control List (NACL)

VPC concepts & fundamentals

VPC concepts & fundamentals

Choosing an IP address range

Choosing an IP address range for your VPC

Avoid ranges that overlap with other networks to which you might connect

172.31.0.0/16

RFC1918 range:

- 10.0.0.0/8
- 172.16.0.0/12
- 192.168.0.0/16

Recommended: /16 (65,536 addresses)

Creating subnets in a VPC

VPC subnets and Availability Zones

IPv6 in your VPC

- Can have a dual-stack VPC by adding an IPv6 CIDR
- Fixed sizes for VPC and subnets:
 - /56 VPC (4,722,366,482,869,645,213,696 addresses)
 - /64 subnets (18,446,744,073,709,551,616 addresses)

VPC subnets and Availability Zones

Routing in a VPC

Routing in your VPC

- Route tables contain rules for which packets go where
- Your VPC has a default route table
- But, you can create and assign different route tables to different subnets

But what about the Internet?

aws summit

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Outbound internet access

Flow logs

Network security

Network security

Security groups follow application structure

Security groups example: Web servers

Security groups example: Backends

Network security

Security groups vs. NACLs

Security group	Network ACL	
Operates at instance level	Operates at subnet level	
Supports allow rules only	Supports allow and deny rules	
Is stateful: return traffic is automatically allowed regardless of any rules	Is stateless: return traffic must be explicitly allowed by rules	
All rules evaluated before deciding whether to allow traffic	Rules evaluated in order when deciding whether to allow traffic	
Applies only to instances explicitly associated with the security group	Automatically applies to all instances launched into associated subnets	
Doesn't filter traffic to or from link-local addresses (169.254.0.0/16) or AWS-reserved IPv4 addresses; these are the first four IPv4 addresses of the subnet (including the Amazon VPC DNS server)		

Network security

VPC flow logs

Visibility

Troubleshooting

 Analyze traffic flow

VPC flow logs: Setup

VPC flow logs format

	Time (UTC +00:00)	Message	
	2019-04-17		
	No older events found at the moment. Retry.		
•	15:24:37	2 eni-097850ddeaa3984a0 178.19.107.42 172.31.30.243 48335 8545 6 1 40 1555514677 1555514709 REJECT OK	
•	15:25:11	2 eni-097850ddeaa3984a0 210.21.226.2 172.31.30.243 30444 22 6 12 1345 1555514711 1555514769 ACCEPT OK	
2	eni-097850ddeaa3984a0 210.21.226.2 172.31.30.243 30444 22 6 12 1345 1555514711 1555514769 ACCEPT OK		
•	15:25:11	2 eni-097850ddeaa3984a0 207.244.86.222 172.31.30.243 55216 3337 6 1 40 1555514711 1555514769 REJECT OK	
•	15:25:11	2 eni-097850ddeaa3984a0 68.183.37.224 172.31.30.243 42222 8088 6 1 40 1555514711 1555514769 REJECT OK	
•	15:25:11	2 eni-097850ddeaa3984a0 172.31.30.243 210.21.226.2 22 30444 6 12 2349 1555514711 1555514769 ACCEPT OK	
•	15:26:31	2 eni-097850ddeaa3984a0 178.128.249.60 172.31.30.243 60214 8088 6 1 40 1555514791 1555514829 REJECT OK	

VPC flow logs format

DNS in a VPC

VPC DNS options

Connectivity options for VPCs

Connecting your VPC

Connecting to your on-premises network

Connecting to other VPCs

Connecting to other VPCs

VPC peering

VPC peering

 Full private IP connectivity between two VPCs

- Can peer VPCs across regions
- VPCs can be in different accounts
- VPC CIDR ranges must not overlap

Establish a VPC peering: Initiate request

Establish a VPC peering: Accept request

Establish a VPC peering: Create a route

Connecting to other VPCs

Before Transit Gateway ...

With Transit Gateway ...

With Transit Gateway

With Transit Gateway ...

Centralized private IP connectivity between multiple VPCs

VPCs must be in the same region as Transit Gateway

VPCs can be in different accounts

VPC peering or TGW?

	VPC Peering	Transit Gateway
VPC LIMIT	125 peerings	5,000 attachments
BANDWIDTH LIMIT	N/A (intra-region)	50Gbps per VPC attachment
MANAGEMENT	Decentralised	Centralised
COST DIMENSIONS	Data Transfer	Data Transfer & Attachment

Connecting to on-premises networks:

Extend an on-premises network into your VPC

AWS VPN basics

Before Transit Gateway ...

With Transit Gateway ...

With Transit Gateway ...

What about DNS?

Amazon Route 53 Resolver for hybrid clouds

...and there's more

...more AWS networking

VPC Sharing

VPC endpoints and AWS PrivateLink

Amazon Global Accelerator

Sharing VPC resources

VPC Sharing – participant account

Account Web

Subnet A

Account DB

Subnet B

Account APP

- Subnet A
- Subnet B

Why VPC sharing?

Preserve IP space
Use fewer IPv4 CIDRs

Interconnectivity
No VPC Peering required

Separation of duties

A central team can create and manage your Amazon VPC

Billing and Security

Continue to enjoy segregation with multiple accounts

Same AZ cost for data transfer is nil!

VPC endpoints

Gateway VPC endpoints: Amazon S3 and DynamoDB

Interface VPC endpoints

AWS PrivateLink: VPC endpoint services

Amazon Global Accelerator

Introducing AWS Global Accelerator

A network layer service that you can deploy in front of your Internet facing applications to improve availability and performance for your globally distributed users

Introducing AWS Global Accelerator

Attceasintgkeomaanpphiætatrionkisstoorealds theaghptlfoatriond!

Paths to and from the application may differ Each hop impacts performance and can introduce risk

Accessing your web applications with AWS Global Accelerator

Adding AWS Global Accelerator removes these inefficiencies

Leverages the Global AWS Network

Resulting in improved performance

Wrap-up

Thank you!

Perry Wald perrwald@amazon.co.uk

Tom Adamski tomada@amazon.co.uk

Please complete the session survey.

