

Solution 1:

Solution 2

{a, b, c, abca}

{ a, abca, abcaa, aa, aba,
aca, ,
b, bacb, bacbb, bb
c, casc, abc, cc }

Example 5 – Equivalence Classes of a Relation Given as a set of Ordered Pairs

Let $A = \{0, 1, 2, 3, 4\}$ and define a relation R on A as follows:

$$R = \{(0, 0), (0, 4), (1, 1), (1, 3), (2, 2), (3, 1), (3, 3), (4, 0), (4, 4)\}.$$

The directed graph for R is as shown below. As can be seen by inspection, R is an equivalence relation on A . Find the distinct equivalence classes of R .

First find the equivalence class of every element of A.

$$[0] = \{x \in A \mid x R 0\} = \{0, 4\}$$

$$[1] = \{x \in A \mid x R 1\} = \{1, 3\}$$

$$[2] = \{x \in A \mid x R 2\} = \{2\}$$

$$[3] = \{x \in A \mid x R 3\} = \{1, 3\}$$

$$[4] = \{x \in A \mid x R 4\} = \{0, 4\}$$

Note that $[0] = [4]$ and $[1] = [3]$. Thus the *distinct* equivalence classes of the relation are

$\{0, 4\}$, $\{1, 3\}$, and $\{2\}$.

Relation $R_1 = \{(0,0), (1,1), (2,2), (3,3), (4,4), (0,4), (1,3)\}$ which satisfy the property of reflexivity, transitivity, antisymmetric.

$$R_1 = \{(0,0), (1,1), (2,2), (3,3), (4,4), (4,0), (3,1)\}$$

Q.3) $R = \{(a, b), (a, c), (a, d), (d, c), (d, e)\}$

$$R^* = \{(a, a), (b, b), (c, c), (d, d), (e, e), (a, b), (a, c), (a, d), (d, c), (d, e)\}$$

Directed graph:

(a, e)

Q4

b/c

No. of states = {A, B, C}

Input: 10011010

No. of Input symbols = {0, 1}

O/p: yyuyx yyuyy

No. of Output symbols = {x, y}

No. of State x O/P symbols =

$$\{A, B, C\} \times \{x, y\} = \{(A, x) (A, y) \\ (B, x) (B, y) \\ (C, x) (C, y)\}$$

B

$\{ ab, bb, bba,$
 $aba \dots \}$

$ba,$

3. Design a DFA that accepts the language L_3 , i.e., substring of x . Write down the DFA.

Ans. The DFA is

Q.7)

3. Design a DFA that accepts the language $L_3 = \{x \in \{0,1\}^* : |x|_0 \text{ is even and '00' is a substring of } x\}$. Write down the equations of states and find the regular expression for L_3 . [5]

Ans. The DFA is

The equations are

$$a_1 = 1a_1 + 0b_2$$

$$a_3 = 1a_3 + 0b_3 + \epsilon$$

$$b_1 = 1b_1 + 0a_2$$

$$b_2 = 0a_3 + 1b_1$$

$$b_3 = 1b_3 + 0a_3$$

From $a_3 = 1a_3 + 0b_3 + \epsilon$ we get $a_3 = 1^*(0b_3 + \epsilon) = 1^*0b_3 + 1^*$. Again $b_3 = 1b_3 + 0a_3 = 1b_3 + 0(1^*0b_3 + 1^*) = (1 + 01^*0)b_3 + 01^*$. So $b_3 = (1 + 01^*0)^*01^*$. So $a_3 = 1^*0((1 + 01^*0)^*01^*) + 1^*$.

$b_1 = 1b_1 + 0a_2$, so $b_1 = 1^*0a_2$.

$a_2 = 0b_3 + 1a_1 = 0(1 + 01^*0)^*01^* + 1a_1$.

$a_1 = 1a_1 + 0b_2 = 1a_1 + 0(0a_3 + 1b_1) = 1a_1 + 00(1^*0((1 + 01^*0)^*01^*) + 1^*) + 01b_1 = 1a_1 + 00(1^*0((1 + 01^*0)^*01^*) + 1^*) + 011^*0a_2 = 1a_1 + 00(1^*0((1 + 01^*0)^*01^*) + 1^*) + 011^*0(0(1 + 01^*0)^*01^* + 1a_1) = (1 + 011^*01)a_1 + 00(1^*0((1 + 01^*0)^*01^*) + 1^*) + 011^*00(1 + 01^*0)^*01^*$

So the final regular expression is

$$a_1 = (1 + 011^*01)^*00(1^*0((1 + 01^*0)^*01^*) + 1^*) + 011^*00(1 + 01^*0)^*01^*$$

Q8)

1. Construct an ϵ -NFA equivalent to the regular expression $((aa + bb + \epsilon)(ab + ba)^* + a)^* + b$.

~~(b, aa, bb, a)~~
 $(b, aa, bb, \epsilon, a,$

Solution

$((aa, bb, \epsilon), a)$
 $((aa, bb, \epsilon)(ab + ba)^*, a)$
 $((aa, bb, \epsilon)(aba))$

$$((aa+bb+\epsilon) \quad (ab+ba)^* + a)^* + b$$

$\{ G, b, \dots \}$

