Homework 5 (Due Feb 26, 2025)

Jack Hyatt MATH 547 - Algebraic Structures II - Spring 2025

June 8, 2025

Justify all of your answers completely.

- 1. Let R be a PID and let $a, b \in R$ not zero and not units. Assume $d = \gcd(a, b)$. Recall this implies that there exist elements $a', b' \in R$ s.t. a = da' and b = db'.
 - (a) Prove that gcd(a', b') = 1.

Proof. Let d' be a common divisor of a' and b'. Then a' = d'a'' and b' = d'b''.

Then we have a = dd'a'' and b = dd'b''. So then dd'' is a common divisor of a and b. But d is already the greatest common divisor, making d' a unit.

So since the only common divisors of a' and b' are units, then gcd(a',b') = 1.

(b) Let $\ell = a'b'd$ (note that his is equal to (ab)/d). Prove that ℓ is the least common multiple of a, b (meaning that $a|\ell, b|\ell$, and for any element $L \in R$, if a|L and b|L then $\ell|L$).

Proof. With a = da' and b = db', we easily get $\ell = ab'$ and $\ell = ba'$. So $a|\ell$ and $b|\ell$. Let $L \in R$ with a|L and b|L. So L = an and L = bm for some $n, m \in R$.

$$L = an = da'n$$

$$L = bm = db'm$$

$$\implies a'n = b'm$$

Since gcd(a',b')=1, there exists $x,y\in R$ s.t. a'x+b'y=1.

$$a'x + b'y = 1$$

$$n(a'x + b'y) = n$$

$$a'nx + b'ny = n$$

$$b'mx + b'ny = n$$

$$b'(mx + ny) = n$$

So then b'|n, and it is a similar argument for a'|m. So we have n = b'z for some $z \in R$, meaning $L = da'n = da'b'z = \ell z$. So finally we have $\ell|L$.

2. (a) Prove that 5 is not irreducible as an element of $\mathbb{Z}[i]$.

We know that 5 is not irreducible because we can write $5 = (2-i) \cdot (2+i)$, and it is easy to see that the multiplicative inverse of 2-i would need to be $2/5+i/5 \notin \mathbb{Z}[i]$, and similarly for 2+i. So neither 2-i or 2+i are units.

(b) If p is a prime number (i.e. prime as an element of \mathbb{Z}) and $p \equiv 3 \mod 4$, prove that p is irreducible as an element of $\mathbb{Z}[i]$.

Proof. BWOC, assume p = fg with $f, g \in \mathbb{Z}[i]$ not units. Take $N(a + bi) = a^2 + b^2$ to be the usual norm for $\mathbb{Z}[i]$. We can take the norm of both sides of p = fg to get

$$N(p) = N(f)N(g)$$
$$p^2 = N(f)N(g)$$

Since N(f) and N(g) are both positive integers, they must be factors of p^2 . Since p is prime, the possible factorizations of p^2 are limited to $p \cdot p$ or $1 \cdot p^2$. We can ignore the $1 \cdot p^2$ case since that would mean one of the factors, f or g, is a unit, but we assumed that was not the case.

So assume N(f) = p and N(g) = p.

Then f = a + bi for some $a, b \in \mathbb{Z}$, so $N(f) = a^2 + b^2 = p$. Since $0^2 \equiv 2^2 \equiv 0 \mod 4$ and $1^2 \equiv 3^2 \equiv 1 \mod 4$, we know that $a^2 \mod 4$ and $b^2 \mod 4$ must also be either 0 or 1. But then $a^2 + b^2 \not\equiv 3 \mod 4$, which is a contradiction since $p \equiv 3 \mod 4$.

3. Find gcd(5, 3-i) as elements in $\mathbb{Z}[i]$. Prove your answer.

Proof. Let the norm of $\mathbb{Z}[i]$ be the usual $N(a+bi)=a^2+b^2$. Let $d=\gcd(5,3-i)$.

Since d divides 5, its norm N(d) must divide N(5), which is N(5) = 25. Similarly, since d also divides 3 - i, N(d) must also divide N(3 - i) = 10.

Thus, N(d) must be a common divisor of 25 and 10, giving gcd(25, 10) = 5.

Since norms in $\mathbb{Z}[i]$ must be sums of squares, the possible values for N(d) are either 1 or 5.

If N(d) = 1, then d is a unit. So let us assume this is not the case.

Then N(d) = 5, we solve for integers a, b such that $a^2 + b^2 = 5$.

The integer solutions are:

$$(\pm 2, \pm 1)$$
 or $(\pm 1, \pm 2)$.

Thus, possible values for d are:

$$\pm(2+i), \quad \pm(2-i), \quad \pm(1+2i), \quad \pm(1-2i).$$

We will need to only check if 2 + i and 2 - i divides both 5 and 3 - i, as the pairs 2 + i and 1 - 2i, and 2 - i and 1 + 2i are associates (the unit to multiply with is i).

$$(2-i)(7/5+i/5) = 3-i$$

So then we know that 2-i is not a divisor of 3-i in $\mathbb{Z}[i]$, meaning it isn't a common divisor either.

$$(2+i)(1-i) = 3-i$$
 $(2+i)(2-i) = 5$

Since 2 + i is a common divisor and has norm 5, which is the largest possible for a non-unit common divisor, we conclude gcd(5, 3 - i) = 2 + i (and its associates).

4. Recall that $\mathbb{Z}[i]$ is a PID. Consider the ideal I = (1 + 2i, 1 + 5i). Find a generator for I. Prove your answer.

Proof. Finding the generator for I is only a matter of finding gcd(1+2i, 1+5i).

Let the norm of $\mathbb{Z}[i]$ be the usual $N(a+bi)=a^2+b^2$. Let $d=\gcd(1+2i,1+5i)$.

Since d divides 1 + 2i, its norm N(d) must divide N(1 + 2i) = 5. Similarly, since d also divides 1 + 5i, N(d) must also divide N(1 + 5i) = 26.

Thus, N(d) must be a common divisor of 5 and 26, giving 1 as the only possibility. So then d is a unit, which means gcd(1+2i, 1+5i) = 1.

So then I = (1), which is the whole ring $\mathbb{Z}[i]$.