EESTEC Hackathon- Radar Based Vital Sensing

Problem Statement

- Build a vital sensing solution using Infineon's BGT60TR13C radar chip
 - Target Scenario Single Person sitting in front of the radar facing towards the chest (<1m).
 - Challenges to be addressed:
 - Detect if the person is moving or quasistatic.
 - Predict Resting Stage Vs After-activity or Anxious Stage
 - Avoid/smoothen noisy predictions.

Criteria	Points
Algorithm Innovation (Data Collection, Overall Flow, etc.)	20
Moving / Quasistatic Person Classification	20
Resting/Anxious Accuracy	20
Pitch Deck	20
Solution Feasibility (Embedded Solution Perspective)	20

Sample Pre-Processing

1. ADC data corresponding to chirps are stored as the rows of a matrix

2. A range-FFT on each row resolved objects in range (real data is symmetric)

3. A doppler-FFT along the column resolves each column in velocity

Reference: https://training.ti.com/sites/default/files/docs/mmwaveSensing-FMCW-offlineviewing_0.pdf

Example Vital Sensing Algorithm

- Normal Adult BR Range 12-30 bpm
- Normal Adult HR Range 48-120
 - Example butterworth Bandpass filter parameters for HR
 - Fs=1, lowcut = 0.8/500, highcut = 2/500, order=6

Improved Contactless Heartbeat Estimation in FMCW Radar via Kalman Filter Tracking

Part of your life. Part of tomorrow.