

National Institute of Technology Mizoram Mid- Semester Examination, Odd Semester (2022-23)

Machine Learning (CSL - 1702)

Semester - 5th

Full Marks - 30

Duration - 1:30 hours

Answer all 3(Three) Questions. All Questions carry same marks (3 * 10 = 30 Marks)

1. (A) Realize the following function using MP neurons implemented for AND, OR, NOT/S X gates in the class: w = xyz + x'y

(B) Compute the output of the hidden-layer and the output-layer neurons with the hard limiter function for the input (0.5, 1.5) if applied to the network given in the following

OR

- (A) Illustrate why XOR logic is linearly non-separable.
- (B) Discuss a general model of learning agents

NATIONAL INSTITUTE OF TECHNOLOGY MIZORAM

End-Semester Examination, Odd Semester (2022-2023)

Machine Learning (CSL - 1702)

7th Semester Maximum

Marks: 50

Time: 3 hours

Answer all 5 (Five) Questions. All Questions Carry the Same Marks $(5 \times 10 = 50 \text{ Marks})$

- 1.a) Compare classification and regression
- b) What is a bias-variance dilemma
- c) You are training a logistic regression model and notice that it does not perform well on test data. Could the poor performance be due to underfitting? Justify.
- d)What is the interpretation of the values of Pearson's correlation?
- e) When no linear relationship exists between two variables, what would the regression look like?
- XI) What do you mean by VC dimension?
- Xg) What for the "kernel trick" is used?
 - h) What happens to the performance of the k-NN classifier for various k values?
 - i) What is an autoencoder?
- (i) What is the link between entropy and information content

 $1 \times 10 = 10$

2a). Consider this distance table given in Table 1 and perform hierarchical clustering using the Average linkage strategy.

	A	В	C	D	E	F
<u>A</u> _	0	1	7	8	11	2
В	1	0	2	7	8	2
C	7	2	0	4	5	4
D	8	7	4	0	12	9
Е	1	8	5	2	1.0	112
F	2	2	4	9	12	0

Table-1

Consider the following dataset

(0,i),(1,1),(1,2),(1,3), (2,1),(3,4),(5,5),(6,5),(6,6),(7,6),(7,7)

Perform clustering using the k-means clustering algorithm with three centers (k=2) as (0.1) and (6.1). (Two iterations only).

c) Write the algorithm for fuzzy c-means clustering.

d) Compare DB-index for clusterings {(1,2), (3,5,6,8)} and {(1,2), (3,5), (6.8)}

3. a) It is known that 1.5% of the population suffers from a particular disease. A blood test has a 95% chance of identifying the disease for a diseased individual and an 8% chance of falsely indicating that a hearthy person has a disease.

(i) What is the probability that a random person has a positive blood test? 0109305

(ii) if a blood test is negative, what's the probability that the person does not have the disease? c. 999

b) Consider a 2-class problem with $P(C_1) = 3/4$, $P(C_2) = 1/4$; a scalar feature x and three possible actions a, a, a, defined as:

100

5

5

a₁: choose C₁

a: choose C2

as: do not classify

Let the loss matrix $\lambda(a_i | C_i)$ be:

and let $P(x \mid C_1) = (2-x)/3$, $P(x \mid C_2) = 1/3$, $0 \le x \le 2$

(i) Which action to decide for a pattern x: $0 \le x \le 2$?

(ii) What is the proportion of patterns for which action a3 is performed (i.e., "do not classify")?

(iii) Compute the total minimum risk

2 + 2 + 1

5

a

!

 C_1

 C_2

1/4

1/4

OR

c) Consider Table 2 and compute the parameters for a Naïve Bayes classifier for predicting parameters for predicting "Play Golf."

	は行行には	Humidity.	Windy	Play Golf
Rainy	Hot	High	False	No
Rainy	Hot	High	True	No
Overcast	Hot	High	Faise	Yes
Sunny	Mild	High	False	Yes
Sunny	Cool	Normal	False	Yes
Sunny	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Rainy	Mild	High	False	No
Rainy	Cool	Normal	Faise	Yes
Sunny	Mild	Normal	False	Yes
Rainy	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Sunny	Mild	High	True	No

Table 2

d) (i) Explain the item-to-item Collaborative Filtering algorithm

(ii) Explain one technique for classifier combination in ensemble learning.

4.a) Realize nonlinear XOR logic using a RBF network. b) Give an outline of the backpropagation learning algorithm with a diagram

OR

() Discuss a convolutional neural network used in deep learning. Explain SVM for two-class classification.

5. a) Create a decision tree following the ID3 algorithm for data given in Table 2. b) Consider the data given in Table 3. Determine a decision tree through the Gini index to find E based on four attributes A, B, C, and D.

Page 2/3

3 + 2

5

5

5

5

5

5

1

2

Tr + 7N

P+N

III

4.8

5

3.4

3

1.9

1.6

0.2

1.2

positive

positive