Управление данными

Лекция 2 РЕЛЯЦИОННАЯ АЛГЕБРА

Формальные языки манипулирования данными для реляционной модели

Техника формулирования запросов является наиболее важным аспектом языка манипулирования данными.

Остальные функции реляционного языка манипулирования данными достаточно просты и связаны с включением, удалением и обновлением кортежей.

Языки запросов для реляционной модели разбиваются на два класса:

- 1) Алгебраические языки, позволяющие выражать запросы средствами специализированных операторов, применяемых к отношениям.
- 2) Языки исчисления предикатов, где запросы описывают требуемое множество кортежей путем спецификации предиката, которому должны удовлетворять эти кортежи.

Языки, основанные на исчислении предикатов, в свою очередь, делятся на два класса:

- 1) Реляционное исчисление с переменными кортежами
- 2) Реляционное исчисление с переменными на доменах

В зависимости от того, являются информационными объектами кортежи или элементы домена некоторого атрибута.

Таким образом, существует три различных вида языков запросов к реляционным базам данных.

Каждый из трех указанных абстрактных языков запросов эквивалентен по своей выразительности двум другим.

Реляционная алгебра — это коллекция операций, которые принимают отношения в качестве операндов и возвращают отношение в качестве результата.

Первая версия этой алгебры была определена Э. Коддом в 1970 годах. Базировалась алгебра на теоретико-множественных отношениях.

Эта "оригинальная" алгебра включала восемь операций, которые подразделялись на описанные ниже две группы с четырьмя операциями каждая.

- 1. Традиционные операции с множествами объединение, пересечение, разность и декартово произведение (их операндами являются именно отношения, а не произвольные множества).
- 2. Специальные реляционные операции, такие как сокращение (известное также под названием выборки), проекция, соединение и деление.

Реляционная алгебра - это язык операций, выполняемых над отношениями - таблицами реляционной базы данных.

Операции реляционной алгебры позволяют на основе одного или нескольких отношений создавать другое отношение без изменения самих исходных отношений.

Полученное другое отношение обычно не записывается в базу данных, а существует в результате выполнения SQL-запроса - массиве, создаваемом функциями для работы с базами данных в языках программирования.

Для каждой операции реляционной алгебры будет дана её реализация в виде запросов на языке SQL(*structured query language* — «язык структурированных запросов»).

Основы реляционной алгебры - математическая теория множеств и операции над множествами.

Приоритеты выполнения операций реляционной алгебры (в порядке убывания пунктов списка, а в одном пункте - операции с равными приоритетами):

- 1. селекция, проекция
- 2. декартово произведение, соединение, пересечение, деление
- 3. объединение, разность.

Для простоты изложения материала, будем обозначать отношения буквами R, R1, и т.д.

Атрибуты: А1, А2, и т. д.

Операция выборки

Операция выборки работает с одним отношением и определяет результирующее отношение R, которое содержит только те кортежи (или строки, или записи), отношения, которые удовлетворяют заданному условию (предикату Р).

Таким образом, операция выборки - унарная операция - и записывается следующим образом:

$$R = \sigma_P(R_1)$$

где Р - предикат (логическое условие).

Запрос SQL

SELECT *

from R3

WHERE A3>'d0'

Теперь посмотрим, что получится в результате выполнения этой операции реляционной алгебры и соответствующего ей запроса SQL.

В таблице ниже дано одно отношение, с которым работает эта операция.

Пример

R3						
A1	A2	A3	A4			
2	RH	Y1	MS			
4	HF	A3	MR			
7	AA	Y1	MS			

Просматриваем столбец А3 и устанавливаем, что предикату А3>'d0' удовлетворяют записи в первой и третьей строках исходного отношения (так как номер буквы у в алфавите больше номера буквы d).

В результате получаем следующее новое отношение, в котором две строки:

R						
A1	A2	A3	A4			
2	RH	Y1	MS			
7	AA	Y1	MS			

Операция проекции

Операция проекции $R = \pi_{a1,...,an}(R_1)$ работает, как и операция выборки, только с одним отношением и определяет новое отношение R, в котором есть лишь те атрибуты (столбцы), которые заданы в операции, и их значения.

Запрос SQL

SELECT DISTINCT A4, A3

from R3

Пусть вновь дано то же отношение R3:

R3						
A1	A2	A3	A4			
2	RH	Y1	MS			
4	HF	A3	MR			
7	AA	Y1	MS			

Из исходного отношения выбираем только столбцы A4 и A3 и видим, что строки со значениями - первая и третья - идентичны.

Исключаем дубликат (за это отвечает ключевое слово DISTINCT в SQL-запросе, которое говорит, что нужно выбрать только уникальные записи) и получаем следующее новое отношение, в котором два атрибута и две строки (записи):

R					
A4	A3				
MS	Y1				
MR	A3				

Операция объединения

Результатом объединения двух множеств (отношений) А и В (А U В) будет такое множество (отношение) С, которое включает в себя те и только те элементы, которые есть или во множестве А или во множестве В.

Говоря упрощённо, все элементы множества A и множества B, за исключением дубликатов, образующихся за счёт того, что некоторые элементы есть и в первом, и во втором множестве.

Запрос SQL

SELECT A1, A2, A3

from R1

UNION

SELECT A1, A2, A3

from R2

Теперь посмотрим, что получится в результате выполнения этой операции реляционной алгебры и соответствующего ей запроса SQL.

Даны два отношения, так как операция объединения - бинарная операция:

	R1			R2	
A1	A2	А3	A1	A2	А3
Z7	aa	w11	X8	рр	k21
В7	hh	h15	Q2	ee	h15
X8	рр	w11	X8	рр	w11

Объединяем строки первого и второго отношения и видим, что третья строка, которая является третьей и в первом, и во втором отношении - идентичны, поэтому её включаем в новое отношение только один раз.

R						
A1	A2	A3				
Z 7	aa	w11				
B7	hh	h15				
X8	pp	w11				
X8	pp	k21				
Q2	ee	h15				

Важно следующее: операция объединения может быть выполнена только тогда, когда два отношения обладают одинаковым числом и названиями атрибутов (столбцов), или, говоря формально, совместимы по объединению.

Операция пересечения

Результатом пересечения двух множеств (отношений) А и В $(A \cap B)$ будет такое множество (отношение) С, которое включает в себя те и только те элементы, которые есть и во множестве А, и во множестве В.

Запрос SQL

SELECT A1, A2, A3 from R1 INTERSECT SELECT A1, A2, A3 from R2 В некоторых диалектах SQL отсутствует ключевое слово INTERSECT.

Поэтому, например, в MySQL и других, операция пересечения множеств может реализована с применением предиката EXISTS.

Даны два отношения. Выполним запрос

	R1	
A1	A2	А3
Z 7	aa	w11
В7	hh	h15
X8	рр	w11

Просматриваем все записи в двух отношениях, и обнаруживаем, что и в первом, и во втором отношении есть одна строка - та, которая является третьей и в первом, и во втором отношении. Получаем новое отношение:

R					
A1	A2	A3			
X8	рр	w11			

Операция разности

Разность двух отношений R1 и R2 ($R_1 - R_2$) состоит из кортежей (или записей, или строк), которые имеются в отношении R1, но отсутствуют в отношении R2.

Отношения R1 и R2 должны быть совместимы по объединению.

Запрос SQL

SELECT A1, A2, A3

from R2

EXCEPT

SELECT A1, A2, A3

from R1

Установим, что получится в результате выполнения этой операции реляционной алгебры и соответствующего ей запроса SQL. Вновь даны два отношения R1 и R2:

	R1			R2	
A1	A2	А3	A1	A2	А3
Z 7	aa	w11	X8	рр	k21
В7	hh	h15	Q2	ee	h15
X8	рр	w11	X8	рр	w11

Из отношения R2 исключаем строку, которая есть также в отношении R1 - третью - и получаем новое отношение:

R					
A1	A2	А3			
X8	рр	k21			
Q2	ee	h15			

В некоторых диалектах SQL отсутствует ключевое слово EXCEPT. Поэтому, например, в MySQL и других, операция пересечения множеств может реализована с применением предиката NOT EXISTS.

Операция декартова произведения

Операция декартова произведения ($R_1 \times R_2$) определяет новое отношение R, которое является результатом конкатенации каждого кортежа отношения R1 с каждым кортежем отношения R2.

Запрос SQL

SELECT *

from R3, R4

Установим, что получится в результате выполнения этой операции реляционной алгебры и соответствующего ей запроса SQL. Даны два отношения R3 и R4:

R3			R	4	
A1	A2	A3	A4	A5	A6
3	hh	yl	ms	3	hh
4	pp	al	sr	4	pp
1	rr	yl	ms		

В новом отношении должны присутствовать все атрибуты (столбцы) двух отношений. Сначала первая строка отношения R3 сцепляется с каждой из двух строк отношения R4, затем вторая строка отношения R3, затем третья.

В результате должно получиться 3 X 2 = 6 кортежей (строк). Получаем такое новое отношение:

R							
A1	A2	A3	A4	A5	A6		
3	hh	yl	ms	3	hh		
3	hh	yl	ms	4	рр		
4	рр	a1	sr	3	hh		
4	рр	a1	sr	4	рр		
1	rr	yl	ms	3	hh		
1	rr	yl	ms	4	рр		

Операция деления

Результатом операции деления ($R = R_1 \div R_2$) является набор кортежей (строк) отношения R1, которые соответствуют комбинации всех кортежей отношения R2.

Для этого нужно, чтобы в отношении R2 была часть атрибутов (можно и один), которые есть в отношении R1.

В результирующем отношении присутствуют только те атрибуты отношения R1, которых нет в отношении R2.

Запрос SQL

SELECT DISTINCT A1, A4

from R5

WHERE

NOT EXIST (SELECT * from R6

WHERE NOT EXIST

R6.A2 = R5.A2 AND

R6.A3 = R5.A3

Получим результат выполнения этой операции реляционной алгебры и соответствующего ей запроса SQL.

Даны два отношения R5 и R6:

R5			R5		R	.6
A1	A2	A3	A4		A2	A3
2	S3	4	sun		R4	8
3	X8	7	kab		X8	7
3	R4	8	kab			

Комбинации всех кортежей отношения R6 соответствуют вторая и третья строки отношения R5.

Но после исключения атрибутов (столбцов) A2 и A3 эти строки становятся идентичными.

Поэтому в новом отношении присутствует эта строка один раз. Новое отношение:

R				
A1	A4			
3	kab			

Операция тета-соединения

В результате этой операции получается отношение, которое содержит кортежи из декартова произведения отношений R1 и R2 удовлетворяющие предикату P.

Значением предиката P может быть один из операторов сравнения (<, <=, >, >=, = или !=).

Запрос SQL

SELECT *

from R3, R4

WHERE A1 > = A5

Посмотрим, что получится в результате выполнения этой операции реляционной алгебры и соответствующего ей запроса SQL.

Даны два отношения R3 и R4:

R3			R4		
A1	A2	А3	A4	A5	A6
3	hh	yl	ms	3	hh
4	рр	a1	sr	4	рр
1	rr	yl	ms		

Выполняем операцию декартового произведения.

R						
A1	A2	А3	A4	A5	A6	
3	hh	yl	ms	3	hh	
3	hh	yl	ms	4	рр	
4	рр	a1	sr	3	hh	
4	рр	a1	sr	4	рр	
1	rr	yl	ms	3	hh	
1	rr	yl	ms	4	рр	

Видим, что условию предиката Р удовлетворяют два кортежа декартового произведения - первый (так как 3>=3) и четвёртый. Получаем следующее новое отношение:

R					
A1	A2	A3	A4	A5	A6
3	hh	yl	ms	3	Hh
4	рр	a1	sr	4	рр

СПАСИБО ЗА ВНИМАНИЕ!