AtCoder Beginner Contest 094

Problema D: Binomial Coefficients

Prof. Edson Alves - UnB/FGA

AtCoder Beginner Contest 094D - Binomial Coefficients

Let $\operatorname{comb}(n,r)$ be the number of ways to choose r objects from among n objects, disregarding order. From n non-negative integers a_1,a_2,\ldots,a_n , select two numbers $a_i>a_j$ so that $\operatorname{comb}(a_i,a_j)$ is maximized. If there are multiple pairs that maximize the value, any of them is accepted.

Entrada e saída

Constraints

- $2 < n < 10^5$
- $0 \le a_i \le 10^9$
- a_1, a_2, \ldots, a_n are pairwise distinct.
- · All values in input are integers.

Input

Input is given from Standard Input in the following format:

```
n
a_1 \ a_2 \ \dots \ a_n
```

Output

Print a_i and a_j that you selected, with a space in between.

Exemplos de entradas e saídas

Entrada	Saída
5 6 9 4 2 11	11 6
2 100 0	100 0

Solução com complexidade ${\cal O}(N)$

- · Este problema pode ser resolvido mediante duas importantes observações
- \cdot A primeira delas é que, para um inteiro não-negativo m fixo,

$$\binom{i}{m} < \binom{j}{m}$$

para $i < j, m \le i, j$

- Isto significa que, para uma coluna fixa, quanto maior a linha do Triângulo de Pascal, maior o valor do coeficiente binomial correspondente
- \cdot A segunda observação é que, para uma linha n fixa, os coeficientes formam uma sequência crescente até o coeficiente central e segue numa sequência decrescente até o último coeficiente

Solução com complexidade $O(N \log N)$

- Assim, o coeficiente $\binom{n}{\lfloor n/2 \rfloor}$ é o maior dentre todos de uma mesma linha e, quanto mais próximo deste centro, maior o coeficiente
- \cdot Assim, se os valores da sequência deles forem ordenados, o maior deles será o a_i procurado
- \cdot Para determinar o a_j , é preciso avaliar os N-1 termos restantes, em relação à sua distância ao centro: o mais próximo deles é o a_j desejado
- Esta solução tem complexidade $O(N \log N)$

Solução com complexidade $O(N \log N)$

```
5 pair<int, int> solve(vector<int>& as) {
      sort(as.begin(), as.end());
      auto ai = as.back(), aj = -1, dist = 2000000010;
8
      as.pop back():
9
10
     for (auto a : as) {
          auto k = min(a, ai - a);
         if (ai/2 - k < dist) {
             ai = a:
15
              dist = ai/2 - k;
18
      return { ai, aj };
20
21 }
```