Introduction to Network Flows

Admin

- Assignment 6 will be released today afternoon
 - More practice with dynamic programming
 - Shortest path with negative weights
- Some network flow questions (topic we'll start today)
- Due next week (Wed 11 pm, April 14)
 - In a week & a half
 - Utilize office & TA hours this week as well as next

Health Days Coming Up!

You are here

05Apr Intro to Network Flows	06Apr	07Apr Ford-Fulkerson Algorithm	08Apr	09Apr Flow Applications
Reading: KT §7.1–7.2 E §10.1–10.2		Reading: KT §7.2–7.3 E §10.3		Reading: KT §7.2–7.3 E §10.3
Assignment 6 out				
12Apr P vs NP and NP-hardness	13Apr	14Apr Problem Reductions	15Apr	16Apr NP-hard Reductions
Reading: KT §7.6 E §11		Reading: KT §8.1, 8.3 E §12.1–12.5		Reading: KT §8.1, 8.3 E §12.1–12.5
		Assignment 7 out Assignment 6 due		
19Apr Intractability Wrap Up	20Apr	21Apr	22Apr	23Apr Probability Review 1
Reading: Reading: KT §8.2, 8.4 E §12.6–12.8		Health Day	Health Day	Reading: KT §8.5–8.7; E §12.6–12.8
26Apr	27Apr	28Apr	29Apr	30Apr
Probability Review 2		Randomized Analyses		Karger's Min Cut & Rand QuickSort
Reading: See Glow Syllabus		Reading: See Glow Syllabus		Reading: See GLOW Syllabus
		Assignment 8 out Assignment 7 due		

Rest and sunshine is here!

Story So Far

- Algorithmic design paradigms:
 - Greedy: simplest to design but works only for certain limited class of optimization problems
 - A good starting point for most problems but rarely optimal

Divide and Conquer

 Solving a problem by breaking it down into smaller subproblems and recursing

Dynamic programming

- Recursion with memoization: avoiding repeated work
- Trading off space for time

New Algorithmic Paradigm

- Network flows model a variety of optimization problems
- These optimization problems look complicated with lots of constraints; on the face of it seem to have nothing to do with networks or flows
- Very powerful problem solving frameworks
- We'll focus on the concept of problem reductions
 - Problem A reduces to B if a solution to B leads to a solution to A
- Learn how to prove that our reductions are correct

What's a Flow Network?

- A flow network is a directed graph G = (V, E) with a
 - A **source** is a vertex s with in degree 0
 - A **sink** is a vertex t with out degree 0
 - Each edge $e \in E$ has edge capacity c(e) > 0

Assumptions

- Assume that each node v is on some s-t path, that is, $s \leadsto v \leadsto t$ exists, for any vertex $v \in V$
 - Implies G is connected and $m \ge n-1$
- Assume capacities are integers
 - Will revisit this assumption and what happens if its not
- Directed edge (u, v) written as $u \to v$
- For simplifying expositions, we will sometimes write $c(u \rightarrow v) = 0$ when $(u, v) \notin E$

What's a Flow?

- Given a flow network, an (s, t)-flow or just flow (if source s and sink t are clear from context) $f: E \to \mathbb{Z}^+$ satisfies the following two constraints:
- [Flow conservation] $f_{in}(v) = f_{out}(v)$, for $v \neq s, t$ where

$$f_{in}(v) = \sum_{u} f(u \to v)$$

$$f_{out}(v) = \sum_{w} f(v \to w)$$

$$f_{out}(v) = \sum_{w} f(v \to w)$$

flow

capacity

• To simplify, $f(u \rightarrow v) = 0$ if there is no edge from u to v

Feasible Flow

 And second, a feasible flow must satisfy the capacity constraints of the network, that is,

[Capacity constraint] for each $e \in E$, $0 \le f(e) \le c(e)$

• **Definition.** The **value** of a flow f, written v(f), is $f_{out}(s)$.

$$v(f) = 5 + 10 + 10 = 25$$

• **Definition.** The **value** of a flow f, written v(f), is $f_{out}(s)$.

Intuitively, why do you think this is true?

- Lemma. $f_{out}(s) = f_{in}(t)$
- Proof. Let $f(E) = \sum_{e \in E} f(e)$

Then,
$$\sum_{v \in V} f_{in}(v) = f(E) = \sum_{v \in V} f_{out}(v)$$

- For every $v \neq s, t$ flow conversation implies $f_{in}(v) = f_{out}(v)$
- Thus all terms cancel out on both sides except $f_{in}(s) + f_{in}(t) = f_{out}(s) + f_{out}(t)$
- But $f_{in}(s) = f_{out}(t) = 0$

- Lemma. $f_{out}(s) = f_{in}(t)$
- Corollary. $v(f) = f_{in}(t)$.

Max-Flow Problem

 Problem. Given an s-t flow network, find a feasible s-t flow of maximum value.

Minimum Cut Problem

Cuts are Back!

- Cuts in graphs played a lead role when we were designing algorithms for MSTs
- What is the definition of a cut?

Cuts in Flow Networks

- Recall. A cut (S,T) in a graph is a partition of vertices such that $S \cup T = V$, $S \cap T = \emptyset$ and S,T are non-empty.
- **Definition**. An (s, t)-cut is a cut (S, T) s.t. $s \in S$ and $t \in T$.

Cut Capacity

- Recall. A cut (S,T) in a graph is a partition of vertices such that $S \cup T = V$, $S \cap T = \emptyset$ and S,T are non-empty.
- **Definition**. An (s, t)-cut is a cut (S, T) s.t. $s \in S$ and $t \in T$.
- Capacity of a (s, t)-cut (S, T) is the sum of the capacities of edges leaving S:

$$c(S,T) = \sum_{v \in S, w \in T} c(v \to w)$$

Quick Quiz

 $c(S,T) = \sum c(v \to w)$

 $v \in S, w \in T$

Question. What is the capacity of the *s-t* given by grey and white nodes?

A. 11
$$(20 + 25 - 8 - 11 - 9 - 6)$$

C.
$$45 (20 + 25)$$

D. 79
$$(20 + 25 + 8 + 11 + 9 + 6)$$

Min Cut Problem

Problem. Given an s-t flow network, find an s-t cut of minimum capacity.

Relationship between Flows and Cuts

- Cuts represent "bottlenecks" in a flow network
- For any cut, our flow needs to "get out" of that cut on its route from s to t
- Let us formalize this intuition

- Claim. Let f be any s-t flow and (S,T) be any s-t cut then $v(f) \le c(S,T)$
- There are two *s-t* cuts for which this is easy to see, which ones?

- Claim. Let f be any s-t flow and (S,T) be any s-t cut then $v(f) \le c(S,T)$
- There are two *s-t* cuts for which this is easy to see, which ones?

- To prove this for any cut, we first relate the flow value in a network to the net flow leaving a cut
- **Lemma**. For any feasible (s,t)-flow f on G=(V,E) and any (s,t)-cut, $v(f)=f_{out}(S)-f_{in}(S)$, where

$$f_{out}(S) = \sum_{v \in S, w \in T} f(v \to w) \text{ (sum of flow 'leaving' } S)$$

$$f_{in}(S) = \sum_{v \in S, w \in T} f(w \to v) \text{ (sum of flow 'entering' } S)$$

• Note: $f_{out}(S) = f_{in}(T)$ and $f_{in}(S) = f_{out}(T)$

Proof. $f_{out}(S) - f_{in}(S)$

$$= \sum_{v \in S, w \in T} f(v \to w) - \sum_{v \in S, u \in T} f(u \to v) \quad \text{[by definition]}$$

Adding zero terms

$$= \left[\sum_{v,w\in S} f(v\to w) - \sum_{v,u\in S} f(u\to v)\right] + \sum_{v\in S,w\in T} f(v\to w) - \sum_{v\in S,u\in T} f(u\to v)$$

These are the same sum: they sum the flow of all edges with both vertices in S

Proof. $f_{out}(S) - f_{in}(S)$

Rearranging terms

$$= \left[\sum_{v,w\in S} f(v\to w) - \sum_{v,u\in S} f(u\to v)\right] + \sum_{v\in S,w\in T} f(v\to w) - \sum_{v\in S,u\in T} f(u\to v)$$

$$= \sum_{v,w \in S} f(v \to w) + \sum_{v \in S,w \in T} f(v \to w) - \sum_{v,u \in S} f(u \to v) - \sum_{v \in S,u \in T} f(u \to v)$$

$$= \sum_{v \in S} \left(\sum_{w} f(v \to w) - \sum_{u} f(u \to v) \right)$$

$$= \sum_{v \in S} f_{out}(v) - f_{in}(v)$$

$$= f_{out}(s) = v(f)$$

except s

Cancels out for all except s

- We use this result to prove that the value of a flow cannot exceed the capacity of any cut in the network
- Claim. Let f be any s-t flow and (S,T) be any s-t cut then $v(f) \le c(S,T)$
- Proof. $v(f) = f_{out}(S) f_{in}(S)$

$$\leq f_{out}(S) = \sum_{v \in S, w \in T} f(v \to w)$$

$$\leq \sum_{v \in S, w \in T} c(v, w) = c(S, T)$$

When is v(f) = c(S, T)?

$$f_{in}(S) = 0, f_{out}(S) = c(S, T)$$

Max-Flow & Min-Cut

- Suppose the $c_{
 m min}$ is the capacity of the minimum cut in a network
- What can we say about the feasible flow we can send through it
 - cannot be more than c_{\min}
- In fact, whenever we find any s-t flow f and any s-t cut (S,T) such that, v(f)=c(S,T) we can conclude that:
 - f is the maximum flow, and,
 - (S, T) is the minimum cut
- The question now is, given any flow network with min cut c_{\min} , is it always possible to route a feasible s-t flow f with $v(f)=c_{\min}$

Max-Flow Min-Cut Theorem

- A beautiful, powerful relationship between these two problems in given by the following theorem
- Theorem. Given any flow network G, there exists a feasible (s,t)-flow f and a (s,t)-cut (S,T) such that,

$$v(f) = c(S, T)$$

- Informally, in a flow network, the max-flow = min-cut
- This will guide our algorithm design for finding max flow
- (Will prove this theorem by construction in a bit.)

Network Flow History

- In 1950s, US military researchers Harris and Ross wrote a classified report about the rail network linking Soviet Union and Eastern Europe
 - Vertices were the geographic regions
 - Edges were railway links between the regions
 - Edge weights were the rate at which material could be shipped from one region to next
- Ross and Harris determined:
 - Maximum amount of stuff that could be moved from Russia to Europe (max flow)
 - Cheapest way to disrupt the network by removing rail links (min cut)

Network Flow History

Acknowledgments

- Some of the material in these slides are taken from
 - Kleinberg Tardos Slides by Kevin Wayne (https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsl.pdf)
 - Jeff Erickson's Algorithms Book (http://jeffe.cs.illinois.edu/ teaching/algorithms/book/Algorithms-JeffE.pdf)