Announcements

Assignments

- HW6
 - Due Today, 11:59 pm

Midterm 2

- Mon, 11/9, during lecture
- See Piazza for details on practice exam tomorrow

Schedule change

Lecture on Friday instead of recitation

Plan

Last Time

• M(C)LE
$$\underset{\theta}{\operatorname{argmax}} p(y \mid \boldsymbol{x}, \boldsymbol{\theta})$$

$$= MAP \qquad \operatorname{argmax}_{\theta} p(y \mid x, \theta) p(\theta)$$

Today

• Generative models
$$\underset{\theta}{\operatorname{argmax}} p(x \mid y, \theta) p(y \mid \theta)$$

• Naïve Bayes
$$\underset{\theta}{\operatorname{argmax}} \prod_{m=1}^{M} p(x_m \mid y, \theta) p(y \mid \theta)$$

Introduction to Machine Learning

Generative Models & Naïve Bayes

Instructor: Pat Virtue

Recall: Fisher Iris Dataset

https://en.wikipedia.org/wiki/Iris flower data set

Recall: Fisher Iris Dataset

https://en.wikipedia.org/wiki/Iris flower data set

Fisher (1936) used 150 measurements of flowers from 3 different species: Iris setosa (0), Iris virginica (1), Iris versicolor (2) collected by Anderson (1936)

Species	Sepal Length	Sepal Width	Petal Length	Petal Width
0	4.3	3.0	1.1	0.1
0	4.9	3.6	1.4	0.1
0	5.3	3.7	1.5	0.2
1	4.9	2.4	3.3	1.0
1	5.7	2.8	4.1	1.3
1	6.3	3.3	4.7	1.6
1	6.7	3.0	5.0	1.7

Modeling the Fisher Iris Dataset

Image: CMU MLD, William Cohen

Modeling the Fisher Iris Dataset

Image: CMU MLD, William Cohen

Modeling the Fisher Iris Dataset

Image: CMU MLD, William Cohen

Generative vs Discriminative Modeling

Discriminative: modeling $X \rightarrow Y$ directly

Generative: Stronger modeling assumptions about where data came from

Generative vs Discriminative Modeling

Discriminative: model $p(y \mid x, \theta)$ directly

• Learn parameters θ from data

Generative: model $p(y \mid \theta_{class})$ and $p(x \mid y, \theta_{class\ conditional})$

- lacktriangle Learn parameters $heta_{class}$ and $heta_{class\ conditional}$ from data
- Use Bayes rule to compute $p(y \mid x, \theta_{class}, \theta_{class\ conditional})$

```
p(y \mid x, \theta_{class}, \theta_{class\ conditional}) \propto p(x \mid y, \theta_{class\ conditional}) p(y \mid \theta_{class})
```

Generative Story

News article topic classification

- Document class: Business, Entertainment, Politics
- Words in the document

SPAM classification

- Document class: SPAM or not
- Words in the document

Generative Story

Hand-written digits

- Digit class: 0-9
- Pixels in images

Generative vs Discriminative Modeling

Discriminative: $p(y \mid x)$

Generative: $p(y \mid x) = \alpha p(x, y) = \alpha p(x \mid y) p(y)$

Assumptions vs Data

- Discriminative:
- Generative:

Quick Check

How many parameters?

 \blacksquare P(Y), Y represents outcome of a 6-sided die roll

Multivariate Generative Models

Hand-written digits: How many parameters?

- \blacksquare P(Y)
- P(X | Y = 3)= $p(X_1, X_2, ... X_{64} | Y = 3)$

Naïve Bayes assumption (bag of pixels)

- P(Y)
- P(X | Y = 3)= $p(X_1 | Y = 3)p(X_2 | Y = 3) ... p(X_{64} | Y = 3)$

Conditional Independence and Naïve Bayes

Independence

Conditional independence

Conditional Independence

Example: Fire, Smoke, Alarm

Fire and Alarm are independent given Smoke

$$P(A \mid S, F) = P(A \mid S)$$

Image: http://ai.berkeley.edu/

Conditional Independence and Naïve Bayes

Independence

$$P(A \mid B) = P(A)$$

$$P(A,B) = P(A)P(B)$$

$$P(B \mid A) = P(B)$$

Conditional independence

$$P(A \mid B, C) = P(A \mid C) \qquad P(A, B \mid C) = P(A \mid C)P(B \mid C)$$

$$P(B \mid A, C) = P(B \mid C)$$

Naïve Bayes assumption

Naïve Bayes for Digits

y	P(Y)
1	0.1
2	0.1
3	0.1
4	0.1
5	0.1
6	0.1
7	0.1
8	0.1
9	0.1
0	0.1

у	$P(X_{5,5}=1\mid y)$
1	0.05
2	0.01
3	0.90
4	0.80
5	0.90
6	0.90
7	0.25
8	0.85
9	0.60
0	0.80

SPAM Classification

Breakout room exercise

https://tinyurl.com/301601spam

SPAM classification

- Y: Binary random variable Document is SPAM (Y = 1) or not (Y = 0)
- X_m : Binary random variable Word m appears in document ($X_m = 1$) or not ($X_m = 0$)

- Page 1: Estimate parameters from data
- Page 2: Calculate probabilities of new sentence given page 1 parameters

SPAM Classification

Breakout room exercise

$P(Y=0,X_1,\ldots,X_M)$	$P(Y=1,X_1,\ldots,X_M)$

$P(Y=0\mid X_1,\ldots,X_M)$	$P(Y=1\mid X_1,\ldots,X_M)$

Reminder MLE for Bernoulli

Bernoulli distribution:

$$Y \sim Bern(\phi)$$

$$p(y) = \begin{cases} \phi, & y = 1 \\ 1 - \phi, & y = 0 \end{cases}$$

What is the log likelihood for three i.i.d. samples, given parameter ϕ ?

$$\mathcal{D} = \{y^{(1)} = 1, y^{(2)} = 1, y^{(3)} = 0\}$$

$$L(\phi) = \phi \cdot \phi \cdot (1 - \phi) \qquad \qquad = \prod_{n} \phi^{y^{(n)}} (1 - \phi)^{(1 - y^{(n)})}$$

$$L(\phi) = \phi^2 \cdot (1 - \phi)^1 = \phi^{N_{y=1}} (1 - \phi)^{N_{y=0}}$$

Naïve Bayes MLE

$$\begin{split} L(\boldsymbol{\varphi}, \boldsymbol{\Theta}) &= p(\mathcal{D} \mid \boldsymbol{\varphi}, \boldsymbol{\Theta}) \\ &= \Pi_{n=1}^{N} \ p\left(\left.\mathcal{D}^{(n)} \mid \boldsymbol{\varphi}, \boldsymbol{\Theta}\right.\right) \quad \text{i.i.d assumption} \\ &= \Pi_{n=1}^{N} \ p\left(\left.\mathbf{y}^{(n)}, \boldsymbol{x}^{(n)} \mid \boldsymbol{\varphi}, \boldsymbol{\Theta}\right.\right) \\ &= \Pi_{n=1}^{N} \ p\left(\left.\mathbf{y}^{(n)} \mid \boldsymbol{\varphi}\right.\right) p\left(\left.\boldsymbol{x}^{(n)} \mid \boldsymbol{y}^{(n)}, \boldsymbol{\Theta}\right.\right) \quad \text{Generative model} \\ &= \Pi_{n=1}^{N} \ p\left(\left.\mathbf{y}^{(n)} \mid \boldsymbol{\varphi}\right.\right) p\left(\left.\boldsymbol{x}^{(n)}_{1}, \boldsymbol{x}^{(n)}_{2}, \dots, \boldsymbol{x}^{(n)}_{M} \mid \boldsymbol{y}^{(n)}, \boldsymbol{\Theta}\right.\right) \\ &= \Pi_{n=1}^{N} \ p\left(\left.\mathbf{y}^{(n)} \mid \boldsymbol{\varphi}\right.\right) \Pi_{m=1}^{M} \ p\left(\left.\boldsymbol{x}^{(n)}_{m} \mid \boldsymbol{y}^{(n)}, \boldsymbol{\theta}_{m,y}\right.\right) \quad \text{Na\"{ive Bayes}} \end{split}$$

$$\mathcal{D} = \{y^{(n)}, x^{(n)}\}_{n=1}^{N}$$

$$y^{(n)} \in \{0,1\}$$

$$x^{(n)} \in \{0,1\}^{M}$$

$$\phi \in [0,1]$$

$$\mathbf{\Theta} \in [0,1]^{M \times 2}$$

Naïve Bayes MLE

$$L(\phi, \mathbf{O}) = p(\mathcal{D} \mid \phi, \mathbf{O}) \qquad \qquad y^{(n)} \in \{0, 1\} \\ x^{(n)} \in \{0, 1\}^{M} \\ = \prod_{n=1}^{N} p(\mathcal{D}^{(n)} \mid \phi, \mathbf{O}) \quad \text{i.i.d assumption} \qquad \qquad \phi \in [0, 1]^{M} \\ = \prod_{n=1}^{N} p(\mathbf{y}^{(n)}, \mathbf{x}^{(n)} \mid \phi, \mathbf{O}) \qquad \qquad \Theta \in [0, 1]^{M \times 2} \\ = \prod_{n=1}^{N} p(\mathbf{y}^{(n)} \mid \phi) p(\mathbf{x}^{(n)} \mid \mathbf{y}^{(n)}, \mathbf{O}) \quad \text{Generative model} \\ = \prod_{n=1}^{N} p(\mathbf{y}^{(n)} \mid \phi) p(\mathbf{x}^{(n)}, \mathbf{x}^{(n)}_{2}, \dots, \mathbf{x}^{(n)}_{M} \mid \mathbf{y}^{(n)}, \mathbf{O}) \\ = \prod_{n=1}^{N} p(\mathbf{y}^{(n)} \mid \phi) p(\mathbf{x}^{(n)}_{1}, \mathbf{x}^{(n)}_{2}, \dots, \mathbf{x}^{(n)}_{M} \mid \mathbf{y}^{(n)}, \mathbf{O}) \\ = \prod_{n=1}^{N} p(\mathbf{y}^{(n)} \mid \phi) p(\mathbf{x}^{(n)}_{1}, \mathbf{x}^{(n)}_{2}, \dots, \mathbf{x}^{(n)}_{M} \mid \mathbf{y}^{(n)}, \mathbf{O}) \\ = \prod_{n=1}^{N} p(\mathbf{y}^{(n)} \mid \phi) p(\mathbf{x}^{(n)}_{1}, \mathbf{x}^{(n)}_{2}, \dots, \mathbf{x}^{(n)}_{M} \mid \mathbf{y}^{(n)}, \mathbf{O}) \\ = \prod_{n=1}^{N} p(\mathbf{y}^{(n)} \mid \phi) p(\mathbf{x}^{(n)}_{1}, \mathbf{x}^{(n)}_{2}, \dots, \mathbf{x}^{(n)}_{M} \mid \mathbf{y}^{(n)}, \mathbf{O}) \\ = \prod_{n=1}^{N} p(\mathbf{y}^{(n)} \mid \phi) p(\mathbf{x}^{(n)} \mid \mathbf{y}^{(n)}, \mathbf{O}) p(\mathbf{x}^{(n)} \mid \mathbf{y}^{(n)}, \mathbf{O}) \\ = \prod_{n=1}^{N} p(\mathbf{y}^{(n)} \mid \phi) p(\mathbf{x}^{(n)} \mid \mathbf{y}^{(n)}, \mathbf{O}) p(\mathbf{x}^{$$

 $\mathcal{D} = \left\{ y^{(n)}, \boldsymbol{x}^{(n)} \right\}_{n=1}^{N}$

Generative Models

SPAM:

- Class distribution: $Y \sim Bern(\phi)$
- Class conditional distribution: $X_m \sim Bern(\theta_{m,y})$
- Naïve Bayes X_i conditionally independent X_j given Y for all $i \neq j$ $p(X_i, X_i \mid Y) = p(X_i \mid Y) p(X_i \mid Y)$

Digits:

- Class distribution: $Y \sim Categorical(\phi)$
- Class conditional distribution: $X_m \sim Bern(\theta_{m,y})$
- Naïve Bayes X_i conditionally independent X_j given Y for all $i \neq j$ $p(X_i, X_j \mid Y) = p(X_i \mid Y) \, p(X_j \mid Y)$

Generative Models with Continuous Features

Iris dataset:

- Class distribution: $Y \sim Bern(\phi)$
- lacktriangle Class conditional distribution: Multivariate Gaussian $X \sim \mathcal{N}(\mu_y, \Sigma_y)$
- Naïve Bayes assumption?

Piazza Poll 1

Iris dataset:

- Class distribution: $Y \sim Bern(\phi)$
- Class conditional distribution: $X \sim \mathcal{N}(\mu_y, \Sigma_y)$
- Naïve Bayes assumption?

Which of the following pairs of Gaussian class conditional distributions satisfy the Naïve Bayes assumptions? Select ALL that apply.

A.
$$\mu_{y=0} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \Sigma_{y=0} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \mu_{y=1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \Sigma_{y=1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

B. $\mu_{y=0} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \Sigma_{y=0} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \mu_{y=1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \Sigma_{y=1} = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$

C. $\mu_{y=0} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \Sigma_{y=0} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}, \quad \mu_{y=1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \Sigma_{y=1} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$

D. $\mu_{y=0} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \Sigma_{y=0} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}, \quad \mu_{y=1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \Sigma_{y=1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

Piazza Poll 1

A.
$$\mu_{y=0} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \Sigma_{y=0} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \mu_{y=1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \Sigma_{y=1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

B. $\mu_{y=0} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \Sigma_{y=0} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \mu_{y=1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \Sigma_{y=1} = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$

C. $\mu_{y=0} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \Sigma_{y=0} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}, \quad \mu_{y=1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \Sigma_{y=1} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$

D. $\mu_{y=0} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \Sigma_{y=0} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}, \quad \mu_{y=1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \Sigma_{y=1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

Class-conditional Gaussian Distributions

Iris dataset:

- Class distribution: $Y \sim Bern(\phi)$ (or Categorical)
- Class conditional distribution: $X \sim \mathcal{N}(\mu_y, \Sigma_y)$
- Naïve Bayes assumption:
- Linear Decision Boundary:
- Quadradic Decision Boundary:

MLE vs MAP vs Generative vs Discriminative