

آزمایشگاه مدار منطقی

FEBRUARY 26, 2024

گزارش آزمایش سوم

Soheil Sayah Varg, Amirhossein Mousavifard

هدف آزمایش

هدف از این آزمایش طراحی یک پالس ژنراتور با فرکانس متغیر با استفاده از تراشهی 555 و اندازه گیری تاخیر انتشار در گیتها میباشد.

لوازم آزمایش

برد بورد $^{-1}$ پتاسیومتر $^{-1}$ تراشهی $^{-1}$ عدد تراشهی $^{-1}$ عدد تراشهی $^{-1}$ مقاومت $^{-1}$

شرح آزمایش

الف و ب)

در شكل زير ديتاشيت مربوط به تراشهي 555 را ميبينيد.

برای محاسبهی اندازهی مقاومت و خازن، از فرمول زیر استفاده می کنیم. (فرمولها از ویکیپدیا گرفته شدهاست.)

$$t_h = \ln(2) \cdot (R_1 + R_2) \cdot C$$

 $t_l = \ln(2) \cdot R_2 \cdot C$

و میدانیم که R_1 , R_2 و میدانیم که خازن را برابر $t_h=9\mu s$, برای سادگی خازن را برابر $t_h=9\mu s$, را به دست می آوریم.

$$R_1 \approx 12k\Omega, R_2 \approx 1.5k\Omega$$

بنابراین مدار را طبق چیزی که گفته شده میبندیم. خروجی را به یک کانال اوسیلوسکوپ و ولتاژ خازن خواسته شده را به کانال دیگر اوسیلوسکوپ وصل میکنیم.

¹ Bread board

با توجه به شکل، ولتاژ خازن بین 0.8V و 3.6V میباشد.

مىدانيم فركانس برابر است با

$$f = \frac{1}{t_h + t_l} = \frac{1}{\ln(2) \cdot (R_1 + 2R_2) \cdot C}$$

به عبارتی، برای اینکه فرکانس از 20kHz تا 20kHz تغییر کند، باید t_h از $9\mu s$ تا $9\mu s$ عوض شود. با محاسبات پی میبریم که مقاومت پتاسیومتر باید بیشتر از $57k\Omega$ باشد.

از آنجایی که در آزمایشگاه پتاسیومتر مورد نظر نبود، از یک پتاسیومتر $5k\Omega$ استفاده کردیم و در آن صورت فرکانس تقریبا از 30kHz تا نیست، 20kHz تغییر می کند. (چون پتاسیومتر ایده آل نیست، 20kHz تغییر می کند.

د وه)

در این حالت، $t_l=1\mu s$, $t_h=2\mu s$ و با حل معادلات مقاومتها را به دست می آوریم.

 $R_1 \approx R_2 \approx 1.5 k\Omega$

و در نهایت باید از یک NOT استفاده کنیم. برای بخش ه نیز از ۱۰ گیت NOT استفاده می کنیم.

 $(8.0 \pm 0.5) ns$ با توجه به شکل، ۱۰ تا تاخیر $0 \to 1, 1 \to 0$ با هم برابر و برابر $0 \to 1, 1 \to 0$ است. بنابراین تاخیر هر گیت برابر می شود.