Answer to Assignment 2

12112627 李乐平

1. Solution.

Barnard's exact test is a statistical method used to analyze 2×2 contingency tables, examining the association between two categorical variables. It's known to be more powerful than Fisher's exact test for such tables.

X	Column 1	Column 2	Count
Row 1	X ₁₁	x ₁₂	
Row 2	X ₂₁	X_{22}	
Count	c_1	\mathbf{c}_2	t

Say there is a 2×2 contingency table $\mathbf{X_0}$ like above to be tested. Define p_1 , p_2 the theoretical binomial probabilities for x_{11} and x_{12} . Here are the steps for performing Barnard's exact test:

1. Define the null and alternative hypotheses:

Null hypothesis H_0 typically assumes no association between variables: $p_1 = p_2$.

Alternative hypotheses H₁ could be one of the follows:

- $H_1: p_1 < p_2$
- $H_1: p_1 > p_2$
- $-H_1: p_1 \neq p_2$

2. Compute the Wald statistic T(X):

Estimate the probabilities p_1 and p_2 from the observed sample.

Calculate the Wald statistic using pooled or unpooled variance:

- Pooled variance:

$$T(X) = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})(\frac{1}{c_1} + \frac{1}{c_2})}}, \text{ where } \hat{p} = \frac{c_1\hat{p}_1 + c_2\hat{p}_2}{c_1 + c_2}$$

- Unpooled variance:

$$T(X) = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{c_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{c_2}}}$$

where $\hat{p}_1 = \frac{x_{11}}{c_1}$ and $\hat{p}_2 = \frac{x_{22}}{c_2}$ are the estimated probabilities, and c_1 and c_2 are the column

sums in the contingency table.

3. Compute the p-value:

The p-value is computed as

$$p - value = \max_{0 \le \pi \le 1} \sum_{X} C_{c_1}^{x_{11}} C_{c_2}^{x_{22}} \pi^{x_{11} + x_{12}} (1 - \pi)^{t - x_{11} - x_{12}},$$

where

- for $p_1 < p_2$ alternative: sum probabilities of all table Xs with $T(X) < T(X_0)$;
- for $p_1 > p_2$ alternative: sum probabilities of all table Xs with $T(X) > T(X_0)$;

- for $p_1 \neq p_2$ alternative: sum probabilities of all table Xs with $|T(X)| > |T(X_0)|$, and $0 \le \pi \le 1$ is the nuisance parameter that maximizes the p-value.

4. Complexity:

The complexity of this function is $O(nc_1c_2)$, where n is the number of sample points used to optimize the parameter π .

2. Solution.

(1). We want to test H_0 : $\sigma_1 = \sigma_2$ against H_1 : $\sigma_1 \neq \sigma_2$.

Under H_0 , we have S_2/S_1 as test statistic:

$$\frac{\sigma_2^2 S_1^2}{\sigma_1^2 S_2^2} = \frac{S_1^2}{S_2^2} \sim F(n_1 - 1, n_2 - 1) = F(16, 18)$$

Because $S_1^2/S_2^2=1.4938>1$, the critical region is given by

$$\overline{[F(0.975,16,18),F(0.025,16,18)]} = (-\infty,0.368) \cup (2.640,+\infty)$$

where $F(\alpha, n_1, n_2)$ is the upper α -th quantile of $F(n_1, n_2)$.

p-value= $2Pr(F(16, 18)>1.4938 \mid H_0)=0.41>0.05$, hence we cannot reject H_0 under the significance level of 95%.

(2). With $\sigma_1^2 = \sigma_2^2$, denoted as σ^2 , we have

$$\begin{split} \overline{X} &\sim N(\mu_1, \frac{\sigma^2}{n_1}), \overline{Y} \sim N(\mu_2, \frac{\sigma^2}{n_2}), \\ \overline{X} &- \overline{Y} \sim N(\mu_1 - \mu_2, (\frac{1}{n_1} + \frac{1}{n_2})\sigma^2), \\ Z &= \frac{\overline{X} - \overline{Y} - (\mu_1 - \mu_2)}{\sigma \sqrt{1/n_1 + 1/n_2}} \sim N(0, 1) \end{split}$$

and

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2},$$

$$W = \frac{(n_1 + n_2 - 2)S_p^2}{\sigma^2} \sim \chi^2(n_1 + n_2 - 2)$$

therefore,

$$T = \frac{Z}{\sqrt{W/(n_1 + n_2 - 2)}} = \frac{\overline{X} - \overline{Y} - (\mu_1 - \mu_2)}{S_p \sqrt{1/n_1 + 1/n_2}} \sim t(n_1 + n_2 - 2)$$

$$\therefore S_p = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}} = 4.9956,$$

$$\therefore T = \frac{\overline{X} - \overline{Y} - (\mu_1 - \mu_2)}{S_p \sqrt{1/n_1 + 1/n_2}} = \frac{3 - (\mu_1 - \mu_2)}{1.6678}$$

Hence a 95% CI of μ_1 - μ_2 is given by

$$[\overline{X}_{1} - \overline{X}_{2} - t(\alpha/2,34)S_{p}\sqrt{1/n_{1} + 1/n_{2}}, \overline{X} - \overline{Y} + t(\alpha/2,34)S_{p}\sqrt{1/n_{1} + 1/n_{2}}] = [-0.3894,6.3894].$$

(3). Now we want to compute the Type II error rate of the test H_0 : μ_1 - μ_2 =0 against H_1 : μ_1 - μ_2 >0.

:
$$Z = \frac{\overline{X} - \overline{Y} - (\mu_1 - \mu_2)}{\sigma \sqrt{1/n_1 + 1/n_2}} \sim N(0,1)$$

the critical region is given by

$$[\Phi(1-\alpha)\sqrt{1/n_1+1/n_2}\sigma,+\infty) = [2.744,+\infty)$$

Therefore, by using the fact of

$$Z = \frac{\overline{X} - \overline{Y} - (\mu_1 - \mu_2)}{\sigma \sqrt{1/n_1 + 1/n_2}} \sim N(0,1)$$

we have

$$\beta = \Pr(\overline{X} - \overline{Y} < \Phi(1 - \alpha)\sqrt{1/n_1 + 1/n_2}\sigma \mid H_1)$$

$$= \Pr(N(0,1) < z_\alpha - \frac{\mu_1 - \mu_2}{\sqrt{1/n_1 + 1/n_2}\sigma})$$

$$= \Phi(z_\alpha - \frac{\mu_1 - \mu_2}{\sqrt{1/n_1 + 1/n_2}\sigma})$$

$$= 0.5584$$

where z_{α} is the upper α -th quantile of standard normal distribution, and $\Phi(\cdot)$ is the c.d.f. of standard normal distribution.

(4). Now we want $p = 1-\beta \ge 0.8$, that is to say,

$$\Phi(z_{\alpha} - \frac{\mu_{1} - \mu_{2}}{\sqrt{1/n_{1} + 1/n_{2}}\sigma}) \leq 0.2$$

$$\therefore z_{\alpha} - \frac{\mu_{1} - \mu_{2}}{\sqrt{1/n_{1} + 1/n_{2}}\sigma} \leq z_{0.8}$$

$$\therefore 1/n_{1} + 1/n_{2} = \frac{n_{1} + n_{2}}{n_{1}n_{2}} \leq (\frac{\mu_{1} - \mu_{2}}{(z_{\alpha} - z_{0.8})\sigma})^{2} = 0.040436$$

$$\therefore n_{1} + n_{2} \leq 0.040436n_{1}n_{2} \leq 0.040436\frac{(n_{1} + n_{2})^{2}}{4}$$

$$\therefore n_{1} + n_{2} \geq \frac{4}{0.040436} > 98$$

When n_1 = 49, n_2 = 50, $(n_1 + n_2) / (n_1 n_2) = 0.040408 < 0.040436$, hence the minimum of $n_1 + n_2$ is 99.

3. Solution.

Now we want to test whether 2 beverages differ significantly with the hypothesis test H_0 : $m_D=0$ against H_1 : $m_D\neq 0$,

where m_D is the population median of the difference between the scores of 2 beverages.

	1	2	3	4	5	6	7	8	9	10	11	12
A	10	8	6	8	7	5	1	3	9	7	6	9
В	6	5	2	2	4	6	4	5	9	8	5	7
Diff	4	3	4	6	3	-1	-3	-2	0	-1	1	2
AbsDiff	4	3	4	6	3	1	3	2	0	1	1	2
Rank	9.5	7	9.5	11	7	2	7	4.5	-	2	2	4.5
PosRank	9.5	7	9.5	11	7						2	4.5
NegRank						2	7	4.5		2		

 S^+ =50.5, S^- =15.5. We take w_{obs} = S^+ as test statistic. At the significance level of 99%, our criterion is to reject H_0 if $w_{obs} \le 5$ or $w_{obs} \ge 61$.

Since $5 < w_{obs} = 50.5 < 61$, we cannot reject H_0 at the significance level of 99%.

4. Solution.

By plotting the distribution of p-values, we can observe that the p-value is somehow uniformly distributed.

5. Solution.

We tested two types of standard error estimations with the following results.

As we can see, the Type I error rate of 2 SEs satisfies

$$\alpha_1 = 0.0437 < 0.05 < \alpha_2 = 0.0821$$

under the criterion of p-value < 0.05. That implies SE_1 is a better estimate than SE_2 because it is more consistent with the criterion.

6. Solution.

(1). The data table is as shown below.

(2). As the figure shown below, we can know that the proportion of the homicide convicts receive death penalty is about 0.1104, irrespective to the victims and convicts' race, and its 95% confidence intervals are

Wald: [0.0764,0.1445] Exact: [0.0786,0.1496]

二项式比例的置	置信限			
比例 = 0.11	04			
类型	95% 置信限			
Clopper-Pearson (精确)	0.0786	0.1496		
Wald	0.0764	0.1445		

(3). As the result shows, under the hypothesis test of H_0 : $p \le 0.1$ against H_1 : p>0.1, where p is the proportion of homicide convicts receive death penalty, the test statistic Z=0.6277.

And that leads to

$$p - value(Z) = 0.2651 > 0.05$$

 $p - value(Exact) = 0.2902 > 0.05$

hence we cannot reject H₀ under the significance level of 95%.

H0: 比例 = 0.1	的检验
H0 下的 ASE	0.0166
Z	0.6277
单侧 Pr > Z	0.2651
双侧 Pr > Z	0.5302
精确检验	
单侧 Pr >= P	0.2902
双侧 = 2 * 单侧	0.5804

(4). Under the hypothesis test of H_0 : p_1 - p_2 =0 against H_1 : p_1 - $p_2 \neq 0$, where p_1 and p_2 are respectively the proportion of white and black homicide convicts receive death penalty, the test statistic Z=0.3925, leading to a p-value=0.6947>0.1, therefore, we cannot reject H_0 at the significance level of 0.1.

H0: P1 - P2 = 0	Wald 方法
风险差值	0.0136
ASE (H0)	0.0347
z	0.3925
单侧 Pr > Z	0.3474
双侧 Pr > Z	0.6947
列 1 (death_pe	enalty = 0)

(5). Under the hypothesis test of H_0 : $p_1 \le p_2$ against H_1 : $p_1 > p_2$, where p_1 and p_2 are respectively the proportion of black and white homicide victims whose convicts receive death penalty, the test statistic Z=2.0343, leading to a p-value=0.0210<0.05, therefore, we have to reject H_0 at the significance level of 0.05.

风险差值	检验
H0: P1 - P2 = 0	Wald 方法
风险差值	0.0742
ASE (H0)	0.0365
Z	2.0343
单侧 Pr > Z	0.0210
双侧 Pr > Z	0.0419
列 1 (death_pe	enalty = 0)

(6). From the results above, we may infer that the convict is more likely receives a death penalty in the case of the victim is white in a homicide sentence, yet the race of the convict himself/herself is rather irrelevant.