Functions

What is a Function?

• Map from set *A* to set *B*

R->R

Definitions

 $f: A \longrightarrow B$ $f: x \longmapsto f(x)$

· Domain starting set A

· Codomain set mapped to (B)

· Range set of object in B achally mapped to

· Argument Particular point in A considered

Value = output

Graphs of Functions

• For functions $\mathbb{R} \to \mathbb{R}$, can graph functions as points (x, f(x)) in \mathbb{R}^2

• Sketching graphs is **still** a useful skill!

Key Features

- Intercept
- Roots
- Stationary Points
- Points of inflection
- Range
- Asymptotes

Intercept

• f(0)

Point where graph meets yaxis

Roots

- Solutions of f(x) = 0
- Functions can have any number of roots from 0 to ∞

Stationary Points

• Solutions of f'(x) = 0

- Positive derivative ⇒ increasing function
- Negative derivative ⇒ decreasing function
- 0 derivative ⇒ stationary function

Stationary Points

• Extremum: minimum or maximum

Saddle point

Second Derivatives

Positive 2nd derivative ⇒ increasing slope ⇒ function curves up

Negative 2nd derivative ⇒ decreasing slope ⇒ function curves down

0 2nd derivative ⇒ stationary slope ⇒ change in curvature

Testing Stationary Points with 2nd Derivative

- For stationary point:
- $f''(x) > 0 \Rightarrow \min$ mum
- $f''(x) < 0 \Rightarrow \text{maximum}$
- $f''(x) = 0 \Rightarrow$
- Can determine by considering behaviour between stationary points

Points of Inflection

• Saddle Points

Non-stationary points of inflection

Asymptotes

- Vertical asymptote / singular point / pole
 - Palue not in domain
 - Value of function nearby tends to $\pm \infty$

• Can tend to same or different values either side

Asymptotes

- Horizontal asymptote
 - Behaviour of function at large x tends to constant value

Eg
$$f(x) = \frac{3x-1}{4x+7} = \frac{3-\frac{1}{2}}{4+\frac{7}{2}} \rightarrow \frac{3-0}{4+0} = \frac{3}{4}$$

Asymptotes

- Oblique asymptote
 - Function tends to linear function at large x

$$f(x) = \frac{x^2 + 3x + 4}{x} = x + 3 + \frac{4}{x} \rightarrow x + 3$$

Asymptotic Curves

- More general case
- Function can be approximated by other simple function at large x

$$F(x) \xrightarrow{x^3 + 3x + 4} = x^2 + 3 + \frac{4}{x} \rightarrow x^2 + 3$$

Range

- Consider
 - Behaviour at $\pm \infty$ (if infinite, range is infinite)
 - Any vertical asymptotes (if asymptotes exist, range is infinite)
 - Any stationary points

• If finite range, max of behaviour at $\pm\infty$ and local maxima is global

maximum

Function Composition

A B gof

• Given $f: A \to B$ and $g: B \to C$, define

$$g \cdot f : A \longrightarrow C$$

 $(g \cdot f)(x) = g(f(x))$

More Complex Sketching

- Can combine functions through
 - Addition
 - Multiplication
 - Composition

$$f(x) = g(x) + h(x)$$

$$f(x) = g(x) \times h(x)$$

$$f(x) = g(h(x))$$

Eq.
$$f(x) = e^{-x^2}$$

$$h(x) = -x^{2}$$

$$g(x) = e^{x}$$