Домашняя работа № 5

Автор: Минеева Екатерина

Задача 2 (b)

Пусть $\overline{s_0s_1s_2\dots s_n}$ — запись числа в пятеричной системе счисления $s_i\in\{0,1,\dots 4\}, i=0,1\dots,n$. Заметим, что на каждом шаге, при приписывании к текщему числу $\overline{s_0s_1s_2\dots s_n}$ в конец цифры $s\in\{0,1,\dots 4\}$, остаток при делении на 3 числа $\overline{s_0s_1s_2\dots s_ns}$ однозначно определяется остатком при делении на 3 числа $\overline{s_0s_1s_2\dots s_ns}$ и цифрой s. Действительно: Если $\overline{s_0s_1s_2\dots s_n}=3p+t$, то $\overline{s_0s_1s_2\dots s_ns}=5(3p+t)+s$, то есть $\overline{s_0s_1s_2\dots s_ns}\equiv 5t+s \mod 3$.

Используя эти соображения, сделаем в автомате 3 состояния q_0, q_1, q_2 , отвечающий соответственно остаткам 0, 1 и 2 при делении на 3. И начальным, и финальным состоянием буде, конечно, q_0 . Ниже приведена таблица переходов из состояний по символам алфавита и сам автомат:

$q \setminus s$	0	1	2	3	4
q_0	0	1	2	0	1
q_1	2	0	1	2	0
q_2	1	2	0	1	2

Докажем, что данный автомат минимален.

▲ Допустим, существует автомат с меньшим числом состояний. Если стостояние только одно, то в случае, если оно финальное, то автомат допускает все числа; если же оно финальным не является, то автомат не допускает ни одно число. Оба варианта не соответствуют языку из условия, поэтому состояния хотя бы 2.

Начальное состояние q_0 будет одновременно и финальным, поскольку пустая строка задает 0, а $3 \mid 0$. Другое (не начальное) состояние q_1 не может быть финальным: аналогично, иначе бы автомат допускал все числа. Поскольку 0 и 3 делятся на 3, а 1, 2, 4 — не делятся, то из q_0 по символам 1, 2, 4 осуществляется переход в q_1 , по символам 0 и 3 — остаемся в q_0 . Таким образом все переходы из q_0 определены однозначно.

Рассмотрим теперь числа $11_5=6_{10},\ 14_5=9_{10},\ 22_5=12_{10}.$ Все они делятся на 3, поэтому из стостояния q_1 по символам 1, 2 и 4 осуществляется переход в q_0 . Но при этом тогда автомат допускает $12_5=7_{10},$ но 7 не делится на 3 — противоречие. Следовательно, построенный атомат минимален.