Predicción de propiedades farmacológicas de moléculas para el virus Chikungunya mediante el uso de machine learning

Miguel Jiménez Morcuende

Dr. Jorge Valencia Delgadillo

15/01/2023

de Catalunya

Contexto y Justificación

Aislado a mediados del siglo XX en Tanzania

Representación esquemática del genoma de un alfavirus (Bakar & Ng., 2018).

- Alfavirus de ARN monocatenario positivo
- Aproximadamente 11.8 kb
- 2 ORF:
 - 5′ → proteínas no estructurales
 - 3′ → estructuras proteicas

- Síntomas (7-10 días):
 - Fiebre alta
 - Dolor punzante
 - Irrupción de sarpullidos
 - Fatiga intensa
 - Vómitos
 - Diarrea

- Síntomas crónicos
 - Artritis
 - Poliartralgias
 - Depresión
 - Fatiga

Vector de transmisión

- Aedes aegypti
- Aedes albopictus

Linajes enzoóticos:

- África Occidental
- África Este, Centro y Sur
- Asiática
- Océano Índico
- Transmisión a través de la saliva del mosquito hembra
- Aumento del riesgo:
 - Cambio climático
 - Globalización
- Entre 2.004 y 2.019:
 - Más de 100 países
 - Más de 10 millones de casos
 - Riesgo de infección a 1,3 billones de personas

Objetivos del trabajo

Objetivos generales:

- 1. Creación de una serie de modelos que ayuden a la predicción de nuevas moléculas con actividad inhibitoria frente al virus chikungunya.
- 2. Comparativa de los modelos creados y selección del más fiable.

Objetivos secundarios:

- 1.1. Obtención del set de datos y cálculo de descriptores
- 1.2. Identificación de las variables más descriptivas
- 1.3. Entrenamiento de los diferentes modelos

- 2.1. Análisis de rendimiento y realización curvas ROC
- 2.2. Optimización del modelo seleccionado

Impactos

- No presenta ningún impacto a nivel de sostenibilidad.
- No presenta impacto del tipo ético-social.
- Si que supone un impacto positivo en la dimensión de diversidad y derechos humanos

Países en vías de desarrollo = Gran riesgo social y económico

Hábitat de los mosquitos del género *Aedes*

Peores condiciones de vida e higiene

Falta de material de prevención

Peor sanidad pública

Enfoque y Método

Desarrollo novel de un medicamento

Alto coste y tiempo

- Técnicas de investigación de estructuras 3D
- Evita los ensayos con animales
- Gran reducción de costes

- Selección de moléculas activas frente a Chikungunya (ChEMBL ID 4296563) y creación de descriptores
- Realización de los modelos y curvas ROC mediante Rstudio (2022.07.2 +576)

Planificación del trabajo

PEC 1 - Definición y plan de trabajo Selección de una enfermedad

Inicio revisión bibliográfica Obtener set de datos

Obtener set de datos Generar descriptores

PEC 2 - Desarrollo del trabajo - Fas... Revisión set de datos

Procesamiento set de datos Entrenamiento de los modelos

Realización de curvas ROC

PEC 3 - Desarrollo del trabajo - Fas...

Entrenamiento de los modelos Análisis de los resultados Finalizar introducción

PEC 4 - Cierre de la memoria y de I...

Optimización hiperparámetros Extracción de conclusiones de los re... Redacción memoria

Elaboración presentación

Defensa pública

Diagrama de Grantt

Planificación del TFM.

T.9. Conclusiones

Redacción memoria

Defensa pública

Elaboración presentación

Tareas
PEC1- Definición y plan de trabajo
T.1. Selección de una enfermedad
T.2. Revisión bibliográfica
T.3. Set de datos
T.4. Generación de descriptores
PEC2- Desarrollo del trabajo - fase I
T.4. Revisión del set de descriptores
T.5. Procesamiento de los datos
T.6. Entrenamiento de los modelos
PEC3- Desarrollo del trabajo – fase II
T.6. Entrenamiento de los modelos
T.7. Análisis de los resultados y curvas ROC
T.8. Optimización de hiperparámetros

PEC4-Cierre de la memoria y de la presentación

Análisis de Riesgos

- Valores de confianza inferiores a lo esperado
- No se observan diferencias aparentes entre modelos

Producto obtenido

- Modelo de predicción de actividad frente al Chikungunya

Estado del arte

Actualmente no existe ningún tipo de medicamento o vacuna, solo el tratamiento de los síntomas

La vacuna en estudio VLA1553 obtuvo niveles de seroprotección en el 98.9% de los participantes con un 0.45% de efectos adversos

En cuanto al diseño de fármacos

- Tipos de enfoque:
- Reutilización de medicamentos
- Detección basada en células fenotípicas
- Detección basada en ensayos
- Diseño basado en estructuras

- Función:
- Inhibidores de entrada
- Inhibidores de proteínas no estructurales
- Inhibidores de la proteasa de la cápside
- Inhibidores de la proteína 6K

homoaristeromicina, b) Ácido lobárico, c) MADTP, d) Quininas.

Metodología

Esquema general de la metodología anti-CHIKV para el desarrollo de algoritmos predictivos para identificar inhibidores

K-Nearest Neighbor

Resultados obtenidos del modelo kNN para valores de k de 1,5 y 11. K (número de vecinos a considerar), VN (verdaderos negativos), VP (verdaderos positivos), FN (falsos negativos), FP (falsos positivos), TE (tasa de error), P (precisión), Kappa, SE (sensibilidad) y SP (especificidad).

K	VN	VP	FN	FP	TE	Р	Карра	SE	SP
1	31	29	14	16	0.3333	0.6667	0.3333	0.6744	0.6596
5	29	27	16	18	0.3778	0.6222	0.2444	0.6279	0.6170
11	29	26	17	18	0.3889	0.6111	0.2215	0.6047	0.6170

Naive Bayes

Resultados obtenidos del modelo NB para valores de laplace de 0,1 y 5. Laplace (valor añadido a las tablas de frecuencia), VN (verdaderos negativos), VP (verdaderos positivos), FN (falsos negativos), FP (falsos positivos), TE (tasa de error), P (precisión), Kappa, SE (sensibilidad) y SP (especificidad).

Laplace	VN	VP	FN	FP	TE	Р	Карра	SE	SP
0	36	22	21	11	0.3556	0.6444	0.2804	0.5116	0.7660
1	36	22	21	11	0.3556	0.6444	0.2804	0.5116	0.7660
5	36	22	21	11	0.3556	0.6444	0.2804	0.5116	0.7660

Support Vector Machine

Resultados obtenidos del modelo SVM para kernel (transformación y combinación de vectores) lineal o Gaussiano, valores de C de 1,3 y 7. C (coste de violación de las restricciones), VN (verdaderos negativos), VP (verdaderos positivos), FN (falsos negativos), FP (falsos positivos), TE (tasa de error), P (precisión), Kappa, SE (sensibilidad) y SP (especificidad).

Kernel	С	VN	VP	FN	FP	TE	Р	Карра	SE	SP
Lineal	1	31	30	13	16	0.3222	0.6778	0.3562	0.6977	0.6596
	3	30	26	17	17	0.3778	0.6222	0.2429	0.6047	0.6383
	7	29	28	15	18	0.3667	0.6333	0.2674	0.6512	0.6170
Gaussiano	1	29	27	16	18	0.3778	0.6222	0.2444	0.6279	0.6170
	3	32	25	18	15	0.3667	0.6333	0.263	0.5814	0.6809
	7	32	28	15	15	0.3333	0.6667	0.332	0.6512	0.6809

Decision Trees

Resultados obtenidos del modelo DT para el parámetro trial valores de 1, 15, 40 y 50 respectivamente. Trials (número de iteraciones de refuerzo), VN (verdaderos negativos), VP (verdaderos positivos), FN (falsos negativos), FP (falsos positivos), TE (tasa de error), P (precisión), Kappa, SE (sensibilidad) y SP (especificidad).

Trials	VN	VP	FN	FP	TE	Р	Карра	SE	SP
1	29	29	14	18	0.3556	0.6444	0.2903	0.6744	0.6710
15	33	30	13	14	0.3	0. 7	0.3994	0.6977	0.7021
40	33	31	12	14	0.2889	0.7111	0.4222	0.7209	0.7021
50	31	30	13	16	0.3222	0.6778	0.3562	0.6977	0.6596

Random Forest

Resultados obtenidos del modelo RF para el parámetro ntree valores de 50, 100, 150 y 200. Ntree (número de árboles), VN (verdaderos negativos), VP (verdaderos positivos), FN (falsos negativos), FP (falsos positivos), TE (tasa de error), P (precisión), Kappa, SE (sensibilidad) y SP (especificidad).

ntree	VN	VP	FN	FP	TE	Р	Kappa	SE	SP
50	34	31	13	12	0.2778	0.7222	0.4439	0.7045	0.7391
100	33	32	14	11	0.2778	0.7222	0.445	0.6957	0.7500
150	33	31	14	12	0.2889	0.7111	0.4222	0.6889	0.7333
200	33	29	14	14	0.3111	0.6889	0.3765	0.6744	0.7021

Extreme Gradient Boosting

Resultados obtenidos del modelo XGB para los parámetros max.depth valores de 6 y 12; y nrounds 1, 6 y 12. Max.depth (profundidad máxima), nrounds (número de iteraciones de refuerzo), VN (verdaderos negativos), VP (verdaderos positivos), FN (falsos negativos), FP (falsos positivos), TE (tasa de error), P (precisión), Kappa, SE (sensibilidad) y SP (especificidad).

Max.depth	nrounds	VN	VP	FN	FP	TE	Р	Карра	SE	SP
6	1	33	24	19	14	0.3667	0.6333	0.2616	0.5581	0.7021
	6	31	32	11	16	0.3	0.7	0.4018	0.7442	0.6596
	12	32	30	13	15	0.311	0.6889	0.3778	0.6977	0.6809
12	1	33	24	19	14	0.3667	0.6333	0.2616	0.5581	0.7021
	6	33	24	19	14	0.3667	0.6333	0.2616	0.5581	0.7021
	12	29	33	10	18	0.311	0.6889	0.3778	0.7674	0.6170

Gráfica comparativa de los resultados de sensibilidad obtenidos en cada modelo

Gráfica comparativa de los resultados de especificidad obtenidos en cada modelo

Gráfica comparativa de los resultados de precisión obtenidos en cada modelo.

Gráfica comparativa de los resultados de kappa obtenidos en cada modelo

 Se selecciona a RF como el mejor modelo de predicción de moléculas con actividad biológica anti-CHIKV

Importancia descriptores

SlogP smr_VSA3 Energy peoe_VSA7 peoe_VSA8 MQN29 NumHeavyAtoms slogp_VSA6 smr_VSA10 peoe_VSA6 MQN32 HallKierAlpha

Gráfica comparativa de la importancia de los descriptores para el modelo RF, usando el Gini de descenso medio que mide qué tan puros son los nodos al final de árbol sin cada variable.

Boxplot de la distribución de valores de los descriptores peoe_VSA8, MQN29, NumHeavyAtoms, slogp_VSA6 para el modelo RF teniendo en cuenta la actividad o no actividad de las moléculas de estudio.

Boxplot de la distribución de valores de los descriptores SlogP, smr_VSA3, Energy y peoe_VSA7 para el modelo RF teniendo en cuenta la actividad o no actividad de las moléculas de estudio.

La selección no significa que los modelos de RF sean lo modelos de referencia para la búsqueda de nuevos fármacos:

- Gawriljuk y su equipo trabajaron obuvieron mejores resultados en modelos de k-NN con una precisión del 0.85 y un valor AUC de 0.77, o de SVM con 0.82 y 0.81 respectivamente, , que los obtenidos con RF con una precisión de 0.83 y un AUC de 0.77.
- Kamboj et al, emplearon modelos de SVM, RF y k-NN, para descubrir moléculas capaces de actuar sobre proteínas no estructurales del virus de la hepatitis C. Obtuvieron unos valores del coeficiente de regresión (R2) de 0.72 para SVM, 0.62 para k-NN y RF.
- Para la predicción de inhibición de proteínas resistentes al cáncer de mama, Jiang y su grupo emplearon múltiples modelos. Los mejores resultados de precisión los obtuvo el modelo SVM con una precisión de 0.911 y un AUC de 0.958. Por debajo se encontraba XGB con una precisión de 0.891 y un AUC de 0.957. Descendían notablemente para k-NN (0.857) y NB (0.78).

Por tanto,

- No se puede tomar un único modelo como referencia
- Los descriptores y la variable a predecir, afectan a la capacidad de predicción

Optimización de Hiperparámetros

- Se tuvo en cuenta los parámetros mtry y ntree
- Mediante 10-fold cross validation se obtuvo un máximo de precisión de 0.701 para mtry = 22 y ntree= 75 en comparación a 0.687

Conclusión

- Se ha creado un sistema de predicción de nuevas moléculas anti-CHIKV - Valores de precisión entre 0.6444 a 0.722 // Valores AUC de 0.667 a 0.786

- Optimización modelo RF, precisión pasa de 0.68479 → 0.701177

- Se han cumplido los objetivos previstos
- Construcción de un método de predicción

Líneas futuras

- Optimización de los métodos -> uso de diferentes softwares y mayor número de descriptores
 - Predicciones con medicamentos en uso, molecular docking