

Laboratorio 5 - Solución

Sesión #5 Modelos OSI y TCP/IP

Título del Laboratorio: Entendiendo los Modelos OSI y TCP/IP

Duración: 2 hora

Objetivos del Laboratorio:

- 1. Comprender y aplicar los principios de los modelos OSI y TCP/IP mediante la configuración y análisis de una red simulada en Cisco Packet Tracer.
- 2. Identificar y analizar el flujo de datos a través de las capas del modelo OSI y TCP/IP, utilizando herramientas de simulación de red y captura de paquetes como Wireshark dentro de Packet Tracer.
- 3. Demostrar la relación entre los dispositivos de red y los protocolos en diferentes capas de los modelos OSI y TCP/IP, correlacionando la teoría con la simulación práctica.

Materiales Necesarios:

- 1. Utilizar GitHub como repositorio
- 2. Utilizar Academia Cisco
- 3. Computador
- 4. Acceso a internet

Estructura del Laboratorio:

El objetivo de este laboratorio es comprender el funcionamiento de las capas del Modelo OSI y el Modelo TCP/IP mediante la simulación de una red en Cisco Packet Tracer. Los estudiantes configurarán una red simple, observarán el tráfico que fluye entre los dispositivos y analizarán cómo los protocolos y dispositivos operan en diferentes capas.

Paso 1: Diseño de la red en Packet Tracer

1. Abrir Cisco Packet Tracer:

 Inicia Cisco Packet Tracer y selecciona un nuevo proyecto. Asegúrate de que el área de trabajo esté limpia para comenzar a diseñar la red.

2. Agregar dispositivos:

- En la parte inferior, selecciona los dispositivos necesarios desde la pestaña End Devices y Network Devices.
- o Arrastra dos **PCs** desde la categoría de dispositivos finales (End Devices).
- o Arrastra un **Switch 2960** desde la categoría de switches.
- Arrastra un Router 1841 desde la categoría de routers.

3. Conectar los dispositivos:

- Haz clic en el ícono de conexión (que parece un rayo) y selecciona el tipo de cable
 Copper Straight-Through.
- o Conecta PC1 al Switch y luego PC2 al Switch.

 Conecta el Switch al Router utilizando también el cable Copper Straight-Through.

4. Verificar conexiones:

 Asegúrate de que las luces de los puertos en el Switch y Router estén encendidas (esto indica que los dispositivos están conectados correctamente).

Paso 2: Configuración de direcciones IP

1. Configurar IP en PC1:

- Haz clic en PC1 y selecciona la pestaña Desktop, luego elige IP Configuration.
- Asigna la siguiente dirección IP:
 - Dirección IP: 192.168.1.2
 - Máscara de Subred: 255.255.255.0
 - Gateway predeterminado: 192.168.1.1

2. Configurar IP en PC2:

- o Repite los mismos pasos para **PC2**, asignando:
 - Dirección IP: 192.168.1.3
 - Máscara de Subred: 255.255.25.0
 - Gateway predeterminado: 192.168.1.1

3. Configurar IP en el Router:

- o Haz clic en el **Router**, selecciona la pestaña **Config**.
- Selecciona la interfaz GigabitEthernet0/0 y activa la interfaz marcando la opción
 On
- o Asigna la siguiente IP a la interfaz G0/0:
 - Dirección IP: 192.168.1.1
 - Máscara de Subred: 255.255.255.0
- Haz clic en Save o simplemente cierra la ventana del router para aplicar los cambios.

Paso 3: Verificación de conectividad

1. Realizar pruebas de conectividad con ping:

- En PC1, abre la terminal seleccionando la pestaña Desktop y luego Command Prompt.
- Escribe el comando ping 192.168.1.3 para verificar la conectividad con PC2.
 Deberías recibir respuestas exitosas, lo que indica que la red está configurada correctamente.

2. Solución de problemas:

- o Si no recibes respuestas en el ping, revisa que las direcciones IP estén correctamente asignadas y que las interfaces del Router estén activadas.
- Asegúrate de que los cables estén conectados correctamente y que el estado de los puertos del Switch y el Router esté en verde.

Paso 4: Uso del modo de simulación para analizar el tráfico

1. Activar el modo de simulación:

- En la esquina inferior derecha de Packet Tracer, selecciona el modo Simulation.
- o Esto permitirá ver cómo los paquetes viajan por la red paso a paso.

2. Generar tráfico con ping:

- o Desde PC1, ejecuta de nuevo el comando ping 192.168.1.3 para enviar paquetes ICMP a PC2.
- Packet Tracer comenzará a capturar el tráfico entre los dispositivos.

3. Observar el flujo de paquetes:

- Paso a paso, puedes observar cómo los paquetes viajan desde PC1 a PC2 a través del Switch y el Router.
- Haz clic en el botón Capture/Forward para ver cómo los paquetes se mueven por la red.
- En cada paso, podrás ver cómo los datos se encapsulan y desencapsulan a medida que atraviesan las capas del modelo OSI.

Paso 5: Análisis del tráfico en el modelo OSI

1. Inspección de paquetes:

- Haz clic en uno de los paquetes que aparece en la simulación para abrir la ventana de análisis del paquete.
- Packet Tracer mostrará la información de las diferentes capas del paquete, desde la capa física hasta la capa de aplicación.
- Observa cómo el paquete ICMP se encapsula con la dirección MAC en la capa 2, la dirección IP en la capa 3, y cómo viaja por la red.

2. Relación con el modelo OSI:

- A medida que los paquetes avanzan, podrás identificar cómo se procesan en cada capa del modelo OSI:
 - Capa 1 (Física): Los datos se transmiten a través de los cables.
 - Capa 2 (Enlace de Datos): El Switch utiliza las direcciones MAC para reenviar el paquete.
 - Capa 3 (Red): El Router utiliza direcciones IP para dirigir los paquetes.
 - Capa 4 (Transporte): El protocolo ICMP es manejado a nivel de transporte, enviando paquetes de control.
 - Capas 5-7: Las capas superiores se encargan de la sesión y presentación de la información, aunque en el caso de ping, no se usa aplicación específica aparte del protocolo ICMP.

3. Completar la tabla de análisis:

 Completa la siguiente tabla basándote en los resultados del análisis de los paquetes capturados:

No. de Paquete	Protocolo	Capa OSI	Fuente IP	Destino IP	Descripción
1	ICMP	3 (Red)	192.168.1.2	192.168.1.3	Ping de PC1 a PC2

No. de Paquete	Protocolo	Capa OSI	Fuente IP	Destino IP	Descripción
2	ARP	2 (Enlace de Datos)	192.168.1.2 F	F:FF:FF:FF	Resolución de IP a MAC

Paso 6: Comparación entre OSI y TCP/IP

1. Identificación de capas en el modelo TCP/IP:

- Al analizar los paquetes ICMP, observa cómo las capas del modelo TCP/IP también están presentes.
- La capa de transporte en TCP/IP (en este caso, ICMP) corresponde a las capas 3 y 4 del modelo OSI.

2. Completar la tabla de comparación:

 Completa la siguiente tabla con las capas equivalentes entre los modelos OSI y TCP/IP:

Capa OSI	Capa TCP/IP	Protocolos involucrados			
Capa de Aplicación	Capa de Aplicación	HTTP, FTP, SMTP, ICMP			
Capa de Transporte	Capa de Transporte	TCP, UDP			
Capa de Red	Capa de Internet	IP, ICMP, ARP			
Capa de Enlace de Datos Capa de Acceso a la Red Ethernet, ARP					

Conclusión del Laboratorio

Has configurado correctamente una red, analizado el tráfico que circula entre dispositivos, y relacionado este tráfico con las capas del modelo OSI y TCP/IP. A través de la simulación en Packet Tracer, pudiste observar cómo los dispositivos y protocolos operan en diferentes capas para garantizar la entrega exitosa de datos.

