Copyright - not legal for resale.

27 Resistance and Power

From Isaac Covid lessons archive: isaacphysics.org/pages/covid19_gcse

Equations:

voltage = current
$$\times$$
 resistance $V = IR$
power = current \times voltage $P = IV$

Example 1 – Calculate the power dissipated in a $6.0\,\Omega$ resistor carrying 3.5 A.

Voltage =
$$IR$$
 = 3.5 A \times 6.0 Ω = 21 V
Power = IV = 3.5 A \times 21 V = 73.5 W = 74 W (2 sf)

Eliminating V, we have:

$$P = I \times V = I \times (IR) = I^2R$$
: rearranging gives $I^2 = P/R$ and $R = P/I^2$.

Example 2 – Calculate the resistance of a heater if it needs to carry $13~\rm A$ when dissipating $3~100~\rm W$.

$$R = P/I^2$$
, so $R = 3100/169 = 18 \Omega$ (2 sf)

Eliminating *I*, we have:

$$P=I\times V=(V/R)\times V=V^2/R$$
 : rearranging gives $V^2=PR$ and $R=V^2/P$.

Example 3 – Calculate the power dissipated when a $200~\Omega$ resistor is connected to a $240~\rm V$ supply.

$$P = V^2/R = 240^2/200 = 290 \text{ W (2 sf)}$$

Example 4 – Calculate the resistance of a $50~\mathrm{W}$ light bulb connected to a $12~\mathrm{V}$ supply.

$$R = 12^2/50 = 2.9 \Omega (2 sf)$$

- 27.1 Use a two stage method, as in example 1, where you need to first calculate the unknown voltages or the unknown currents: Calculate the power when
 - (a) 3.2 A flows through an 18Ω resistor;
 - (b) 32 A flows through a 2.0Ω wire;
 - (c) an 18Ω resistor is connected to a 24 V supply;
 - (d) a $2.0~\Omega$ wire is put across the terminals of a 240~V supply.
- 27.2 Complete the table, where each row is a separate situation.

Voltage	Current	Resistance	Power
9.0 V	(a)	300Ω	(b)
240 V	13 A	(c)	(d)
240 V	(e)	25 Ω	(f)
(g)	100 A	3.0 Ω	(h)
240 V	(i)	(j)	2500 W
240 V	(k)	(I)	60 W
23 kV	(m)	(n)	23 MW
9.0 V	(o)	22 kΩ	(p)
(q)	30 mA	(r)	0.75 W

- 27.3 What voltage is needed if 3.0 W of power is going to be dissipated in a 4.5 O resistor?
- 27.4 Some of the power coming into houses is wasted by the wires carrying the current due to their resistance.
 - (a) For a particular house, the wire which supplies it has a resistance of $1.5~\Omega$. If the current is 83~A, what is the power wastage in the supply wire?
 - (b) For a different house, the rules say that no more than 6.0 V may be 'dropped' across the supply wire. What power wastage does this correspond to if the wire has a resistance of 2.5Ω ?

- 27.5 What is the resistance of a 1.2 kW light bulb operating on a voltage of 115 V?
- 27.6 Old lamp dimmers were variable resistors wired in series with the light bulb. Suppose you put a $25~\Omega$ resistor in series with a lamp such that the voltage across the lamp is only half of the 230~V supply voltage. What is the power dissipated by the resistor?
- 27.7 The National Grid operates at voltages of up to 400 kV. A generator has an output power of 68 MW at 400 kV. If the wire supplying customers has a resistance of $6.5~\Omega$, calculate
 - (a) the current in the wire;
 - (b) the voltage 'dropped' along the wire, and;
 - (c) the power 'wasted' in the wire.
- 27.8 A resistor carries a current of 2.0 A.
 - (a) If its resistance is 50Ω , what is the power developed in it?
 - (b) If its resistance is 48Ω , what is the power developed in it?
- 27.9 What is the resistance of a resistor which develops $1\,000$ watts of power when 10 amps flows through it?
- 27.10 In the UK, mains voltage is 230 V.
 - (a) Calculate the power of a hair dryer element which is designed to operate from the mains and has an element of resistance $57.6\,\Omega$.
 - (b) What electric power is used by a light bulb which has a filament resistance of $1\,440\,\Omega$ and works on mains voltage?