A Supplementary Material: Proof Appendix

Lemma 5. Let $\mathcal{B}_0, \mathcal{B}_1, \ldots$ be the ones in the definition of section 3.1. Then, for each $i \geq 0$,

- (i) $\mathcal{B}_{i+1} \subseteq \mathcal{B}_i$;
- (ii) there is a (smallest) $k \geq 0$ such that $\mathcal{B}_{k+1} = \mathcal{B}_k$;
- (iii) \mathcal{B}_i is reflexive, symmetric and transitive.

Proof. (i) Base: it is clear for i = 0 by the above definition. Step: suppose it holds for i = n, i.e., $\mathcal{B}_{n+1} \subseteq \mathcal{B}_n$. $(s, s') \in \mathcal{B}_{n+2}$ \Rightarrow (a) $(s, s') \in \mathcal{B}_n$ (b) for every $(s, s_1) \in \mathcal{B}_n$ there is

- \Rightarrow (a) $(s,s') \in \mathcal{B}_0$, (b) for every $(s,s_1) \in R$, there is $(s',s_1') \in R'$ such that $(s_1,s_1') \in \mathcal{B}_{n+1}$, and (c) for every $(s',s_1') \in R'$, there is $(s,s_1) \in R$ such that $(s_1,s_1') \in \mathcal{B}_{n+1}$ \Rightarrow (a) $(s,s') \in \mathcal{B}_0$, (b) for every $(s,s_1) \in R$, there is $(s',s_1') \in R'$ such that $(s_1,s_1') \in \mathcal{B}_n$ by inductive assumption, and (c) for every $(s',s_1') \in R'$, there is $(s,s_1) \in R$ such that $(s_1,s_1') \in \mathcal{B}_n$ by inductive assumption $\Rightarrow (s,s') \in \mathcal{B}_{n+1}$.
 - (ii) and (iii) are evident from (i) and the definition of \mathcal{B}_i .

Lemma 1 The relation \leftrightarrow_V is an equivalence relation.

Proof. It is clear from Lemma 5 (ii) such that there is a $k \ge 0$ where $\mathcal{B}_k = \mathcal{B}_{k+1}$ which is \leftrightarrow_V , and it is reflexive, symmetric and transitive by (iii).

Proposition 1 Let $i \in \{1,2\}$, $V_1, V_2 \subseteq \mathcal{A}$, s_i' s be two states and π_i' s be two paths, and $\mathcal{K}_i = (\mathcal{M}_i, s_i)$ (i = 1, 2, 3) be K-structures such that $\mathcal{K}_1 \leftrightarrow_{V_1} \mathcal{K}_2$ and $\mathcal{K}_2 \leftrightarrow_{V_2} \mathcal{K}_3$. Then:

- (i) $s'_1 \leftrightarrow_{V_i} s'_2 \ (i=1,2) \text{ implies } s'_1 \leftrightarrow_{V_1 \cup V_2} s'_2;$
- (ii) $\pi'_1 \leftrightarrow_{V_i} \pi'_2 \ (i = 1, 2)$ implies $\pi'_1 \leftrightarrow_{V_1 \cup V_2} \pi'_2$;
- (iii) for each path π_{s_1} of \mathcal{M}_1 there is a path π_{s_2} of \mathcal{M}_2 such that $\pi_{s_1} \leftrightarrow_{V_1} \pi_{s_2}$, and vice versa;
- (iv) $\mathcal{K}_1 \leftrightarrow_{V_1 \cup V_2} \mathcal{K}_3$;
- (v) If $V_1 \subseteq V_2$ then $\mathcal{K}_1 \leftrightarrow_{V_2} \mathcal{K}_2$.

Proof. In order to distinguish the relations $\mathcal{B}_0, \mathcal{B}_1, \ldots$ for different set $V \subseteq \mathcal{A}$, by \mathcal{B}_i^V we mean the relation $\mathcal{B}_1, \mathcal{B}_2, \ldots$ for $V \subseteq \mathcal{A}$. Denote as $\mathcal{B}_0, \mathcal{B}_1, \ldots$ when the underlying set V is clear from the context. Moreover, for the ease of notation, we will refer to \leftrightarrow_V by \mathcal{B} (i.e., without subindex).

(i) Base: it is clear for n = 0.

Step: For n>0, supposing if $(\mathcal{K}_1,\mathcal{K}_2)\in\mathcal{B}_i^{V_1}$ and $(\mathcal{K}_1,\mathcal{K}_2)\in\mathcal{B}_i^{V_2}$ then $(\mathcal{K}_1,\mathcal{K}_2)\in\mathcal{B}_i^{V_1\cup V_2}$ for all $0\leq i\leq n$. We will show that if $(\mathcal{K}_1,\mathcal{K}_2)\in\mathcal{B}_{n+1}^{V_1}$ and $(\mathcal{K}_1,\mathcal{K}_2)\in\mathcal{B}_{n+1}^{V_2}$, then $(\mathcal{K}_1,\mathcal{K}_2)\in\mathcal{B}_n^{V_1\cup V_2}$

 $\mathcal{B}_{n+1}^{V_2} \text{ then } (\mathcal{K}_1,\mathcal{K}_2) \in \mathcal{B}_{n+1}^{V_1 \cup V_2}.$ (a) It is evident that $L_1(s_1) - (V_1 \cup V_2) = L_2(s_2) - (V_1 \cup V_2).$ (b) We will show that for each $(s_1,s_1^1) \in R_1$ there is a $(s_2,s_2^1) \in R_2$ such that $(s_1^1,s_2^1) \in \mathcal{B}_n^{V_1 \cup V_2}.$ There is $(\mathcal{K}_1^1,\mathcal{K}_2^1) \in \mathcal{B}_{n-1}^{V_1 \cup V_2}$ due to $(\mathcal{K}_1,\mathcal{K}_2) \in \mathcal{B}_n^{V_1 \cup V_2}$ by inductive assumption. Then we only need to prove for each $(s_1^1,s_1^2) \in R_1$ there is a $(s_2^1,s_2^2) \in R_2$ such that $(\mathcal{K}_1^2,\mathcal{K}_2^2) \in \mathcal{B}_{n-2}^{V_1 \cup V_2}$ and for each $(s_1^1,s_1^2) \in R_1$ there is a $(s_1^1,s_1^2) \in R_1$ such that $(\mathcal{K}_1^2,\mathcal{K}_2^2) \in \mathcal{B}_{n-2}^{V_1 \cup V_2}.$ Therefore,

we only need to prove that for each $(s_1^n,s_1^{n+1}) \in R_1$ there is a $(s_2^n,s_2^{n+1}) \in R_2$ such that $(\mathcal{K}_1^{n+1},\mathcal{K}_2^{n+1}) \in \mathcal{B}_0^{V_1 \cup V_2}$ and for each $(s_2^n,s_2^{n+1}) \in R_2$ there is a $(s_1^n,s_1^{n+1}) \in R_1$ such that $(\mathcal{K}_1^{n+1},\mathcal{K}_2^{n+1}) \in \mathcal{B}_0^{V_1 \cup V_2}$. It is apparent that $L_1(s_1^{n+1}) - (V_1 \cup V_2) = L_1(s_2^{n+1}) - (V_1 \cup V_2)$ due to $(\mathcal{K}_1,\mathcal{K}_2) \in \mathcal{B}_{n+1}^{V_1}$ and $(\mathcal{K}_1,\mathcal{K}_2) \in \mathcal{B}_{n+1}^{V_2}$. Where $\mathcal{K}_i^j = (\mathcal{M}_i,s_i^j)$ with $i \in \{1,2\}$ and $0 < j \le n+1$.

- (c) It is similar with (b).
 - (ii) It is clear from (i).
- (iii) The following property show our result directly. Let $V\subseteq \mathcal{A}$ and $\mathcal{K}_i=(\mathcal{M}_i,s_i)$ (i=1,2) be K-structures. Then $(\mathcal{K}_1,\mathcal{K}_2)\in \mathcal{B}$ if and only if
- (a) $L_1(s_1) V = L_2(s_2) V$,
- (b) for every $(s_1,s_1')\in R_1$, there is $(s_2,s_2')\in R_2$ such that $(\mathcal{K}_1',\mathcal{K}_2')\in \mathcal{B}$, and
- (c) for every $(s_2, s_2') \in R_2$, there is $(s_1, s_1') \in R_1$ such that $(\mathcal{K}_1', \mathcal{K}_2') \in \mathcal{B}$,

where $\mathcal{K}'_i = (\mathcal{M}_i, s'_i)$ with $i \in \{1, 2\}$.

We prove it from the following two aspects:

- $(\Rightarrow) \text{ (a) It is apparent that } L_1(s_1) V = L_2(s_2) V; \text{ (b)} \\ (\mathcal{K}_1, \mathcal{K}_2) \in \mathcal{B} \text{ iff } (\mathcal{K}_1, \mathcal{K}_2) \in \mathcal{B}_i \text{ for all } i \geq 0, \text{ then for each} \\ (s_1, s_1') \in R_1, \text{ there is a } (s_2, s_2') \in R_2 \text{ such that } (\mathcal{K}_1', \mathcal{K}_2') \in \mathcal{B}_{i-1} \text{ for all } i > 0 \text{ and then } L_1(s_1') V = L_2(s_2') V. \\ \text{Therefore, } (\mathcal{K}_1', \mathcal{K}_2') \in \mathcal{B}. \text{ (c) This is similar with (b)}.$
- $(\Leftarrow) \text{ (a) } L_1(s_1) V = L_2(s_2) V \text{ implies that } (s_1, s_2) \in \mathcal{B}_0; \text{ (b) Condition (ii) implies that for every } (s_1, s_1') \in R_1, \text{ there is } (s_2, s_2') \in R_2 \text{ such that } (\mathcal{K}_1', \mathcal{K}_2') \in \mathcal{B}_i \text{ for all } i \geq 0; \text{ (c) Condition (iii) implies that for every } (s_2, s_2') \in R_2, \text{ there is } (s_1, s_1') \in R_1 \text{ such that } (\mathcal{K}_1', \mathcal{K}_2') \in \mathcal{B}_i \text{ for all } i \geq 0 \\ \Rightarrow (\mathcal{K}_1, \mathcal{K}_2) \in \mathcal{B}_i \text{ for all } i \geq 0 \\ \Rightarrow (\mathcal{K}_1, \mathcal{K}_2) \in \mathcal{B}.$
- (iv) Let $\mathcal{M}_i = (S_i, R_i, L_i, s_i)$ $(i = 1, 2, 3), s_1 \leftrightarrow_{V_1} s_2$ via a binary relation \mathcal{B} , and $s_2 \leftrightarrow_{V_2} s_3$ via a binary relation \mathcal{B}'' . Let $\mathcal{B}' = \{(w_1, w_3) | (w_1, w_2) \in \mathcal{B} \text{ and } (w_2, w_3) \in \mathcal{B}_2\}$. It's apparent that $(s_1, s_3) \in \mathcal{B}'$. We prove \mathcal{B}' is a $V_1 \cup V_2$ -bisimulation containing (s_1, s_3) from the (a), (b) and (c) of the previous step (iii) of X-bisimulation (where X is a set of atoms). For all $(w_1, w_3) \in \mathcal{B}'$:
- (a) there is $w_2 \in S_2$ such that $(w_1, w_2) \in \mathcal{B}$ and $(w_2, w_3) \in \mathcal{B}''$, and $\forall q \notin V_1, \ q \in L_1(w_1)$ iff $q \in L_2(w_2)$ by $w_1 \leftrightarrow_{V_1} w_2$ and $\forall q' \notin V_2, \ q' \in L_2(w_2)$ iff $q' \in L_3(w_3)$ by $w_2 \leftrightarrow_{V_2} w_3$. Then we have $\forall r \notin V_1 \cup V_2, \ r \in L_1(w_1)$ iff $r \in L_3(w_3)$.
- (b) if $(w_1,u_1) \in \mathcal{R}_1$, then $\exists u_2 \in S_2$ such that $(w_2,u_2) \in \mathcal{R}_2$ and $(u_1,u_2) \in \mathcal{B}$ (due to $(w_1,w_2) \in \mathcal{B}$ and $(w_2,w_3) \in \mathcal{B}''$ by the definition of \mathcal{B}'); and then $\exists u_3 \in S_3$ such that $(w_3,u_3) \in \mathcal{R}_3$ and $(u_2,u_3) \in \mathcal{B}''$, hence $(u_1,u_3) \in \mathcal{B}'$ by the definition of \mathcal{B}' .
- (c) if $(w_3, u_3) \in \mathcal{R}_3$, then $\exists u_2 \in S_2$ such that $(w_2, u_2) \in \mathcal{R}_2$ and $(u_2, u_3) \in \mathcal{B}_2$; and then $\exists u_1 \in S_1$ such that $(w_1, u_1) \in \mathcal{R}_1$ and $(u_1, u_2) \in \mathcal{B}$, hence $(u_1, u_3) \in \mathcal{B}'$ by the definition of \mathcal{B}' .
- (v) Let $\mathcal{K}_{i,j}=(\mathcal{M}_i,s_{i,j})$ and $(s_{i,k},s_{i,k+1})\in R_i$ mean that $s_{i,k+1}$ is the (k+2)-th node in the path

```
(\mathcal{K}_1, \mathcal{K}_2) \in \mathcal{B}_n^{V_2} \text{ for all } n \geq 0 \text{ inductively.}
\text{Base: } L_1(s_1) - V_1 = L_2(s_2) - V_1
\Rightarrow \forall q \in \mathcal{A} - V_1 \text{ there is } q \in L_1(s_1) \text{ iff } q \in L_2(s_2)
\Rightarrow \forall q \in \mathcal{A} - V_2 there is q \in L_1(s_1) iff q \in L_2(s_2) due to
V_1 \subseteq V_2
\Rightarrow \overline{L}_1(\overline{s}_1) - V_2 = L_2(s_2) - V_2, \text{ i.e., } (\mathcal{K}_1, \mathcal{K}_2) \in \mathcal{B}_0^{V_2}.
Step: Supposing that (\mathcal{K}_1, \mathcal{K}_2) \in \mathcal{B}_i^{V_2} for all 0 \leq i \leq k (k > 0), we will show (\mathcal{K}_1, \mathcal{K}_2) \in \mathcal{B}_{k+1}^{V_2}.
(a) It is apparent that L_1(s_1) - V_2 = L_2(s_2) - V_2 by base.
(b) \forall (s_1, s_{1,1}) \in R_1, we will show that there is a
        (s_2,s_{2,1})\in R_2 \text{ s.t. } (\mathcal{K}_{1,1},\mathcal{K}_{2,1})\in \mathcal{B}_k^{V_2}. \ (\mathcal{K}_{1,1},\mathcal{K}_{2,1})\in
        \mathcal{B}_{k-1}^{V_2} by inductive assumption, we need only to prove
        the following points:
        (a) \forall (s_{1,k}, s_{1,k+1}) \in R_1 there is a (s_{2,k}, s_{2,k+1}) \in R_2
       s.t. (\mathcal{K}_{1,k+1}, \mathcal{K}_{2,k+1}) \in \mathcal{B}_0^{V_2} due to (\mathcal{K}_{1,1}, \mathcal{K}_{2,1}) \in \mathcal{B}_k^{V_1}.
       It is easy to see that L_1(s_{1,k+1})-V_1=L_1(s_{2,k+1})-V_1, then there is L_1(s_{1,k+1})-V_2=L_1(s_{2,k+1})-V_2. There-
        fore, (K_{1,k+1}, K_{2,k+1}) \in \mathcal{B}_0^{V_2}.
        (b) \forall (s_{2,k}, s_{2,k+1}) \in R_1 there is a (s_{1,k}, s_{1,k+1}) \in R_1
        s.t. (\mathcal{K}_{1,k+1},\mathcal{K}_{2,k+1}) \in \mathcal{B}_0^{V_2} due to (\mathcal{K}_{1,1},\mathcal{K}_{2,1}) \in \mathcal{B}_k^{V_1}.
        This can be proved as (a).
(c) \forall (s_2, s_{2,1}) \in R_1, we will show that there is a
        (s_1, s_{1,1}) \in R_2 s.t. (\mathcal{K}_{1,1}, \mathcal{K}_{2,1}) \in \mathcal{B}_k^{V_2}. This can be
        proved as (ii).
Theorem1 Let V \subseteq \mathcal{A}, \mathcal{K}_i (i = 1, 2) be two K-structures
such that \mathcal{K}_1 \leftrightarrow_V \mathcal{K}_2 and \phi a formula with IR(\phi, V). Then
\mathcal{K}_1 \models \phi if and only if \mathcal{K}_2 \models \phi.
Proof. This theorem can be proved by inducting on the for-
mula \phi and supposing Var(\phi) \cap V = \emptyset. Let \mathcal{K}_1 = (\mathcal{M}, s)
and \mathcal{K}_2 = (\mathcal{M}', s').
     Case \phi = p where p \in \mathcal{A} - V:
(\mathcal{M}, s) \models \phi \text{ iff } p \in L(s) \text{ (by the definition of satisfiability)}
\Leftrightarrow p \in L'(s')
                                                                                              (s \leftrightarrow_V s')
\Leftrightarrow (\mathcal{M}', s') \models \phi
     Case \phi = \neg \psi:
(\mathcal{M}, s) \models \phi \text{ iff } (\mathcal{M}, s) \nvDash \psi
\Leftrightarrow (\mathcal{M}', s') \nvDash \psi
                                                                       (induction hypothesis)
\Leftrightarrow (\mathcal{M}', s') \models \phi
     Case \phi = \psi_1 \vee \psi_2:
(\mathcal{M},s) \models \phi
\Leftrightarrow (\mathcal{M}, s) \models \psi_1 \text{ or } (\mathcal{M}, s) \models \psi_2
\Leftrightarrow (\mathcal{M}', s') \models \psi_1 \text{ or } (\mathcal{M}', s') \models \psi_2 \text{ (induction hypothesis)}
\Leftrightarrow (\mathcal{M}', s') \models \phi
     Case \phi = EX\psi:
\mathcal{M}, s \models \phi
\Leftrightarrow There is a path \pi=(s,s_1,...) such that \mathcal{M},s_1\models\psi
\Leftrightarrow There is a path \pi' = (s', s'_1, ...) such that \pi \leftrightarrow_V \pi'
(s \leftrightarrow_V s', \text{Proposition 1})
                                                                                             (\pi \leftrightarrow_V \pi')
\Leftrightarrow s_1 \leftrightarrow_V s_1'
\Leftrightarrow (\mathcal{M}', s_1') \models \psi
\Leftrightarrow (\mathcal{M}', s') \models \phi
                                                                       (induction hypothesis)
```

 $(s_i, s_{i,1}, s_{i,2}, \dots, s_{i,k+1}, \dots)$ (i = 1, 2). We will show that

```
Case \phi = EG\psi:
\mathcal{M}, s \models \phi
\Leftrightarrow There is a path \pi = (s = s_0, s_1, ...) such that for each
i \geq 0 there is (\mathcal{M}, s_i) \models \psi
\Leftrightarrow There is a path \pi' = (s' = s'_0, s'_1, ...) such that \pi \leftrightarrow_V \pi'
(s \leftrightarrow_V s', \text{Proposition 1})
\Leftrightarrow s_i \leftrightarrow_V s_i' for each i \geq 0
                                                                                (\pi \leftrightarrow_V \pi')
\Leftrightarrow (\mathcal{M}', s_i') \models \psi \text{ for each } i \geq 0
                                                             (induction hypothesis)
\Leftrightarrow (\mathcal{M}', s') \models \phi
    Case \phi = E[\psi_1 U \psi_2]:
\mathcal{M}, s \models \phi
\Leftrightarrow There is a path \pi = (s = s_0, s_1, ...) such that there is
i \geq 0 such that (\mathcal{M}, s_i) \models \psi_2, and for all 0 \leq j < i,
\Leftrightarrow There is a path \pi' = (s = s'_0, s'_1, ...) such that \pi \leftrightarrow_V \pi'
(s \leftrightarrow_V s', \text{Proposition 1})
\Leftrightarrow (\mathcal{M}', s_i') \models \psi_2, and for all 0 \leq j < i (\mathcal{M}', s_j') \models \psi_1
(induction hypothesis)
\Leftrightarrow (\mathcal{M}', s') \models \phi
                                                                                               Proposition 2 Let V \subseteq \mathcal{A} and (\mathcal{M}_i, s_i) (i = 1, 2) be two
K-structures. Then
(s_1, s_2) \in \mathcal{B}_n iff \operatorname{Tr}_i(s_1) \leftrightarrow_V \operatorname{Tr}_i(s_2) for every 0 \leq j \leq n.
Proof. We will prove this from two aspects:
```

 $(\Rightarrow) \text{ If } (s_1,s_2) \in \mathcal{B}_n \text{, then } Tr_j(s_1) \leftrightarrow_V Tr_j(s_2) \text{ for all } 0 \leq j \leq n. \ (s,s') \in \mathcal{B}_n \text{ implies both roots of } Tr_n(s_1) \text{ and } Tr_n(s_2) \text{ have the same atoms except those atoms in } V. \text{ Besides, for any } s_{1,1} \text{ with } (s_1,s_{1,1}) \in R_1, \text{ there is a } s_{2,1} \text{ with } (s_2,s_{2,1}) \in R_2 \text{ s.t. } (s_{1,1},s_{2,1}) \in \mathcal{B}_{n-1} \text{ and vice versa.} \text{ Then we have } Tr_1(s_1) \leftrightarrow_V Tr_1(s_2). \text{ Therefore, } Tr_n(s_1) \leftrightarrow_V Tr_n(s_2) \text{ by use such method recursively, and then } Tr_j(s_1) \leftrightarrow_V Tr_j(s_2) \text{ for all } 0 \leq j \leq n.$

 $(\Leftarrow) \text{ If } Tr_j(s_1) \leftrightarrow_V Tr_j(s_2) \text{ for all } 0 \leq j \leq n, \text{ then } (s_1,s_2) \in \mathcal{B}_n. \ Tr_0(s_1) \leftrightarrow_V Tr_0(s_2) \text{ implies } L(s_1) - V = L'(s_2) - V \text{ and then } (s,s') \in \mathcal{B}_0. \ Tr_1(s_1) \leftrightarrow_V Tr_1(s_2) \text{ implies } L(s_1) - V = L'(s_2) - V \text{ and for every successors } s \text{ of the root of one, it is possible to find a successor of the root of the other } s' \text{ such that } (s,s') \in \mathcal{B}_0. \ \text{Therefore } (s_1,s_2) \in \mathcal{B}_1, \text{ and then we will have } (s_1,s_2) \in \mathcal{B}_n \text{ by use such method recursively.}$

Proposition 3 Let $V \subseteq \mathcal{A}$, \mathcal{M} be a model structure and $s, s' \in S$ such that $s \nleftrightarrow_V s'$. There exists a least k such that $\operatorname{Tr}_k(s)$ and $\operatorname{Tr}_k(s')$ are not V-bisimilar.

Proof. If $s \nleftrightarrow_V s'$, then there exists a least constant c such that $(s_i, s_j) \notin \mathcal{B}_c$, and then there is a least constant m $(m \leq c)$ such that $\mathrm{Tr}_m(s_i)$ and $\mathrm{Tr}_m(s_j)$ are not V-bisimilar by Proposition 2. Let k=m, the lemma is proved.

Lemma2 Let $V \subseteq \mathcal{A}$, \mathcal{M} and \mathcal{M}' be two model structures, $s \in S$, $s' \in S'$ and $n \geq 0$. If $\operatorname{Tr}_n(s) \leftrightarrow_{\overline{V}} \operatorname{Tr}_n(s')$, then $\mathcal{F}_V(\operatorname{Tr}_n(s)) \equiv \mathcal{F}_V(\operatorname{Tr}_n(s'))$.

Proof. This result can be proved by inducting on n.

Base. It is apparent that for any $s_n \in S$ and $s'_n \in S'$, if $\operatorname{Tr}_0(s_n) \leftrightarrow_{\overline{V}} \operatorname{Tr}_0(s'_n)$ then $\mathcal{F}_V(\operatorname{Tr}_0(s_n)) \equiv \mathcal{F}_V(\operatorname{Tr}_0(s'_n))$ due to $L(s_n) - \overline{V} = L'(s'_n) - \overline{V}$ by known.

Step. Supposing that for k=m $(0< m \le n)$ there is if $\mathrm{Tr}_{n-k}(s_k) \leftrightarrow_{\overline{V}} \mathrm{Tr}_{n-k}(s_k')$ then $\mathcal{F}_V(\mathrm{Tr}_{n-k}(s_k)) \equiv \mathcal{F}_V(\mathrm{Tr}_{n-k}(s_k'))$, then we will show if $\mathrm{Tr}_{n-k+1}(s_{k-1}) \leftrightarrow_{\overline{V}} \mathrm{Tr}_{n-k+1}(s_{k-1}')$ then $\mathcal{F}_V(\mathrm{Tr}_{n-k+1}(s_{k-1})) \equiv \mathcal{F}_V(\mathrm{Tr}_{n-k+1}(s_{k-1}'))$. Apparent that:

$$\mathcal{F}_{V}(\operatorname{Tr}_{n-k+1}(s_{k-1})) = \left(\bigwedge_{(s_{k-1},s_{k})\in R} \operatorname{Ex} \mathcal{F}_{V}(\operatorname{Tr}_{n-k}(s_{k})) \right) \wedge$$

$$\operatorname{AX}\left(\bigvee_{(s_{k-1},s_{k})\in R} \mathcal{F}_{V}(\operatorname{Tr}_{n-k}(s_{k})) \right) \wedge \mathcal{F}_{V}(\operatorname{Tr}_{0}(s_{k-1}))$$

$$\begin{split} \mathcal{F}_V(\mathrm{Tr}_{n-k+1}(s'_{k-1})) &= \left(\bigwedge_{(s'_{k-1},s'_k)\in R} \mathrm{EX} \mathcal{F}_V(\mathrm{Tr}_{n-k}(s'_k))\right) \wedge \\ \mathrm{AX}\left(\bigvee_{(s'_{k-1},s'_k)\in R} \mathcal{F}_V(\mathrm{Tr}_{n-k}(s'_k))\right) & \wedge & \mathcal{F}_V(\mathrm{Tr}_0(s'_{k-1})) \\ \mathrm{by} & \text{the definition of characterizing formula of the computation tree.} & \mathrm{Then} & \text{we have for any} \\ (s_{k-1},s_k) &\in R & \text{there is } (s'_{k-1},s'_k) &\in R' & \text{such that} \\ \mathrm{Tr}_{n-k}(s_k) & \leftrightarrow_{\overline{V}} \mathrm{Tr}_{n-k}(s'_k) & \text{by } \mathrm{Tr}_{n-k+1}(s_{k-1}) & \leftrightarrow_{\overline{V}} \\ \mathrm{Tr}_{n-k+1}(s'_{k-1}). & \mathrm{Besides, for any} \left(s'_{k-1},s'_k\right) &\in R' & \text{there is} \\ (s_{k-1},s_k) &\in R & \text{such that } \mathrm{Tr}_{n-k}(s_k) & \leftrightarrow_{\overline{V}} \mathrm{Tr}_{n-k}(s'_k) & \text{by} \\ \mathrm{Tr}_{n-k+1}(s_{k-1}) & \leftrightarrow_{\overline{V}} \mathrm{Tr}_{n-k+1}(s'_{k-1}). & \mathrm{Therefore, we have} \end{split}$$

Theorem 2 Given $V \subseteq \mathcal{A}$, let $\mathcal{M} = (S, R, L, s_0)$ and $\mathcal{M}' = (S', R', L', s'_0)$ be two model structures. Then,

 $\mathcal{F}_V(\operatorname{Tr}_{n-k+1}(s_{k-1})) \equiv \mathcal{F}_V(\operatorname{Tr}_{n-k+1}(s_{k-1}'))$ by induction

(i)
$$(\mathcal{M}', s_0') \models \mathcal{F}_V(\mathcal{M}, s_0)$$
 iff $(\mathcal{M}, s_0) \leftrightarrow_{\overline{V}} (\mathcal{M}', s_0')$;

(ii)
$$s_0 \leftrightarrow_{\overline{V}} s'_0$$
 implies $\mathcal{F}_V(\mathcal{M}, s_0) \equiv \mathcal{F}_V(\mathcal{M}', s'_0)$.

In order to prove Theorem 2, we prove the following two lemmas at first.

Lemma 6. Let $V \subseteq A$, $M = (S, R, L, s_0)$ and $M' = (S', R', L', s'_0)$ be two model structures, $s \in S$, $s' \in S'$ and n > 0.

(i)
$$(\mathcal{M}, s) \models \mathcal{F}_V(Tr_n(s))$$
.

hypothesis.

(ii) If
$$(\mathcal{M}, s) \models \mathcal{F}_V(\mathit{Tr}_n(s'))$$
 then $\mathit{Tr}_n(s) \leftrightarrow_{\overline{V}} \mathit{Tr}_n(s')$.

Proof. (i) It is apparent from the definition of $\mathcal{F}_V(\operatorname{Tr}_n(s))$. Base. It is apparent that $(\mathcal{M},s)\models \mathcal{F}_V(\operatorname{Tr}_0(s))$. Step. For $k\geq 0$, supposing the result talked in (i) is correct in k-1, we will show that $(\mathcal{M},s)\models \mathcal{F}_V(\operatorname{Tr}_{k+1}(s))$, i.e.,:

$$(\mathcal{M},s) \models \left(\bigwedge_{(s,s') \in R} \mathsf{ex} T(s') \right) \land \mathsf{ax} \left(\bigvee_{(s,s') \in R} T(s') \right) \land \mathcal{F}_V(\mathsf{Tr}_0(s)).$$

Where $T(s') = \mathcal{F}_V(\operatorname{Tr}_k(s'))$. It is apparent that $(\mathcal{M},s) \models \mathcal{F}_V(\operatorname{Tr}_0(s))$ by Base. It is apparent that for any $(s,s') \in R$, there is $(\mathcal{M},s') \models \mathcal{F}_V(\operatorname{Tr}_k(s'))$ by inductive assumption. Then we have $(\mathcal{M},s) \models \operatorname{Ex}\mathcal{F}_V(\operatorname{Tr}_k(s'))$, and then $(\mathcal{M},s) \models \left(\bigwedge_{(s,s')\in R}\operatorname{Ex}\mathcal{F}_V(\operatorname{Tr}_k(s'))\right)$. Similarly, we have that for any $(s,s') \in R$, there is $(\mathcal{M},s') \models \bigvee_{(s,s'')\in R}\mathcal{F}_V(\operatorname{Tr}_k(s''))$. Therefore, $(\mathcal{M},s) \models \operatorname{Ax}\left(\bigvee_{(s,s'')\in R}\mathcal{F}_V(\operatorname{Tr}_k(s''))\right)$.

(ii) **Base**. If n = 0, then $(\mathcal{M}, s) \models \mathcal{F}_V(\operatorname{Tr}_0(s'))$ implies $L(s) - \overline{V} = L'(s') - \overline{V}$. Hence, $\operatorname{Tr}_0(s) \leftrightarrow_{\overline{V}} \operatorname{Tr}_0(s')$.

Step. Supposing n > 0 and the result talked in (ii) is correct in n - 1.

(a) It is easy to see that $L(s) - \overline{V} = L'(s') - \overline{V}$.

(b) We will show that for each $(s,s_1) \in R$, there is a $(s',s_1') \in R'$ such that $\mathrm{Tr}_{n-1}(s_1) \leftrightarrow_{\overline{V}} \mathrm{Tr}_{n-1}(s_1')$. Since $(\mathcal{M},s) \models \mathcal{F}_V(\mathrm{Tr}_n(s'))$, then $(\mathcal{M},s) \models \mathrm{AX}\left(\bigvee_{(s',s_1')\in R} \mathcal{F}_V(\mathrm{Tr}_{n-1}(s_1'))\right)$. Therefore, for each $(s,s_1) \in R$ there is a $(s',s_1') \in R'$ such that $(\mathcal{M},s_1) \models \mathcal{F}_V(\mathrm{Tr}_{n-1}(s_1'))$. Hence, $\mathrm{Tr}_{n-1}(s_1) \leftrightarrow_{\overline{V}} \mathrm{Tr}_{n-1}(s_1')$ by inductive hypothesis.

(c) We will show that for each $(s',s_1') \in R'$ there is a $(s,s_1) \in R$ such that $\mathrm{Tr}_{n-1}(s_1') \leftrightarrow_{\overline{V}} \mathrm{Tr}_{n-1}(s_1)$. Since $(\mathcal{M},s) \models \mathcal{F}_V(\mathrm{Tr}_n(s'))$, then $(\mathcal{M},s) \models \bigwedge_{(s',s_1') \in R'} \mathrm{Ex} \mathcal{F}_V(\mathrm{Tr}_{n-1}(s_1'))$. Therefore, for each $(s',s_1') \in R'$ there is a $(s,s_1) \in R$ such that $(\mathcal{M},s_1) \models \mathcal{F}_V(\mathrm{Tr}_{n-1}(s_1'))$. Hence, $\mathrm{Tr}_{n-1}(s_1) \leftrightarrow_{\overline{V}} \mathrm{Tr}_{n-1}(s_1')$ by inductive hypothesis. \square

A consequence of the previous lemma is:

Lemma 7. Let $V \subseteq A$, $M = (S, R, L, s_0)$ a model structure, k = ch(M, V) and $s \in S$.

(i)
$$(\mathcal{M}, s) \models \mathcal{F}_V(Tr_k(s))$$
, and

(ii) for each
$$s' \in S$$
, $(\mathcal{M}, s) \leftrightarrow_{\overline{V}} (\mathcal{M}, s')$ if and only if $(\mathcal{M}, s') \models \mathcal{F}_V(Tr_k(s))$.

Proof. (i) It is apparent from the (i) of Lemma 6.

(ii) Let $\phi = \mathcal{F}_V(\operatorname{Tr}_k(s))$, where k is the V-characteristic number of \mathcal{M} . $(\mathcal{M},s) \models \phi$ by the definition of \mathcal{F} , and then $\forall s' \in S$, if $s \leftrightarrow_{\overline{V}} s'$ there is $(\mathcal{M},s') \models \phi$ by Theorem 1 due to $\operatorname{IR}(\phi, \mathcal{A} - V)$. Supposing $(\mathcal{M},s') \models \phi$, if $s \nleftrightarrow_{\overline{V}} s'$, then $\operatorname{Tr}_k(s) \nleftrightarrow_{\overline{V}} \operatorname{Tr}_k(s')$, and then $(\mathcal{M},s') \nvDash \phi$ by Lemma 6, a contradiction.

Now we are in the position of proving Theorem 2.

Proof. (i) Let $\mathcal{F}_V(\mathcal{M}, s_0)$ be the characterizing formula of (\mathcal{M}, s_0) on V. It is apparent that $IR(\mathcal{F}_V(\mathcal{M}, s_0), \overline{V})$. We will show that $(\mathcal{M}, s_0) \models \mathcal{F}_V(\mathcal{M}, s_0)$ at first.

It is apparent that $(\mathcal{M}, s_0) \models \mathcal{F}_V(\operatorname{Tr}_c(s_0))$ by Lemma 6. We must show that $(\mathcal{M}, s_0) \models \bigwedge_{s \in S} G(\mathcal{M}, s)$. Let $\mathcal{X} = \mathcal{F}_V(\operatorname{Tr}_c(s)) \to \left(\bigwedge_{(s,s_1) \in R} \operatorname{Ex} \mathcal{F}_V(\operatorname{Tr}_c(s_1))\right)$ $\land \operatorname{AX}\left(\bigvee_{(s,s_1) \in R} \mathcal{F}_V(\operatorname{Tr}_c(s_1))\right)$, we will show $\forall s \in S$, $(\mathcal{M}, s_0) \models G(\mathcal{M}, s)$. Where $G(\mathcal{M}, s) = \operatorname{AG} \mathcal{X}$. There are two cases we should consider:

- If $(\mathcal{M}, s_0) \nvDash \mathcal{F}_V(\operatorname{Tr}_c(s))$, it is apparent that $(\mathcal{M}, s_0) \models \mathcal{X}$;
- If $(\mathcal{M}, s_0) \models \mathcal{F}_V(\operatorname{Tr}_c(s))$: $(\mathcal{M}, s_0) \models \mathcal{F}_V(\operatorname{Tr}_c(s))$

 $\Rightarrow s_0 \leftrightarrow_{\overline{V}} s$ by the definition of characteristic number and Lemma 7.

and Lemma 7. For each
$$(s, s_1) \in R$$
 there is: $(\mathcal{M}, s_1) \models \mathcal{F}_V(\operatorname{Tr}_c(s_1))$ $(s_1 \leftrightarrow_{\overline{V}} s_1)$ $\Rightarrow (\mathcal{M}, s) \models \bigwedge_{(s, s_1) \in R} \operatorname{Ex} \mathcal{F}_V(\operatorname{Tr}_c(s_1))$ $\Rightarrow (\mathcal{M}, s_0) \models \bigwedge_{(s, s_1) \in R} \operatorname{Ex} \mathcal{F}_V(\operatorname{Tr}_c(s_1))$ (by $\operatorname{IR}(\bigwedge_{(s, s_1) \in R} \operatorname{Ex} \mathcal{F}_V(\operatorname{Tr}_c(s_1)), \overline{V}), s_0 \leftrightarrow_{\overline{V}} s$). For each (s, s_1) there is: $\mathcal{M}, s_1 \models \bigvee_{(s, s_2) \in R} \mathcal{F}_V(\operatorname{Tr}_c(s_2))$

$$\Rightarrow (\mathcal{M}, s) \models \operatorname{AX} \left(\bigvee_{(s, s_2) \in R} \mathcal{F}_V(\operatorname{Tr}_c(s_2)) \right)$$

$$\Rightarrow (\mathcal{M}, s_0) \models \operatorname{AX} \left(\bigvee_{(s, s_2) \in R} \mathcal{F}_V(\operatorname{Tr}_c(s_2)) \right) \quad \text{(by }$$

$$\operatorname{IR}(\operatorname{AX} \left(\bigvee_{(s, s_2) \in R} \mathcal{F}_V(\operatorname{Tr}_c(s_2)) \right), \overline{V}), s_0 \leftrightarrow_{\overline{V}} s)$$

$$\Rightarrow (\mathcal{M}, s_0) \models \mathcal{X}.$$

For any other states s' which can reach from s_0 can be proved similarly, i.e., $(\mathcal{M}, s') \models \mathcal{X}$. Therefore, $\forall s \in S$, $(\mathcal{M}, s_0) \models G(\mathcal{M}, s)$, and then $(\mathcal{M}, s_0) \models \mathcal{F}_V(\mathcal{M}, s_0)$.

We will prove this theorem from the following two aspects:

 (\Leftarrow) If $s_0 \leftrightarrow_{\overline{V}} s'_0$, then $(\mathcal{M}', s'_0) \models \mathcal{F}_V(M, s_0)$. Since $(\mathcal{M}, s_0) \models \mathcal{F}_V(\mathcal{M}, s_0)$ and $IR(\mathcal{F}_V(\mathcal{M}, s_0), \overline{V})$, hence $(\mathcal{M}', s_0') \models \mathcal{F}_V(M, s_0)$ by Theorem 1.

 (\Rightarrow) If $(\mathcal{M}', s_0') \models \mathcal{F}_V(M, s_0)$, then $s_0 \leftrightarrow_{\overline{V}} s_0'$. We will prove this by showing that $\forall n \geq 0, Tr_n(s_0) \leftrightarrow_{\overline{V}} Tr_n(s'_0)$.

Base. It is apparent that $Tr_0(s_0) \equiv Tr_0(s'_0)$.

Step. Supposing $\operatorname{Tr}_k(s_0) \leftrightarrow_{\overline{V}} \operatorname{Tr}_k(s'_0)$ (k > 0), we will prove $\operatorname{Tr}_{k+1}(s_0) \leftrightarrow_{\overline{V}} \operatorname{Tr}_{k+1}(s'_0)$. We should only show that $\operatorname{Tr}_1(s_k) \leftrightarrow_{\overline{V}} \operatorname{Tr}_1(s'_k)$. Where $(s_0, s_1), (s_1, s_2), \ldots, (s_{k-1}, s_k) \in R$ and $(s'_0, s'_1), (s'_1, s'_2), \ldots, (s'_{k-1}, s'_k) \in R'$, i.e., s_{i+1} (s'_{i+1}) is an immediate successor of s_i (s'_i) for all $0 \le i \le k - 1$.

(a) It is apparent that $L(s_k) - \overline{V} = L'(s'_k) - \overline{V}$ by induc-

Before talking about the other points, note the following fact that:

$$\begin{split} &(\mathcal{M}',s_0') \models \mathcal{F}_V(\mathcal{M},s_0) \\ \Rightarrow \forall s' \in S', \ &(\mathcal{M}',s') \models \mathcal{F}_V(\operatorname{Tr}_c(s)) \to \\ &\left(\bigwedge_{(s,s_1) \in R} \operatorname{EX} \mathcal{F}_V(\operatorname{Tr}_c(s_1)) \right) & \wedge \\ &\operatorname{AX} \left(\bigvee_{(s,s_1) \in R} \mathcal{F}_V(\operatorname{Tr}_c(s_1)) \right) & \text{for any } s \in S. \\ &(\operatorname{\mathbf{fact}}) \\ &(\operatorname{I}) \quad &(\mathcal{M}',s_0') \quad \models \quad \mathcal{F}_V(\operatorname{Tr}_c(s_0)) & \to \\ &\left(\bigwedge_{(s_0,s_1) \in R} \operatorname{EX} \mathcal{F}_V(\operatorname{Tr}_c(s_1)) \right) & \wedge \\ &\operatorname{AX} \left(\bigvee_{(s_0,s_1) \in R} \mathcal{F}_V(\operatorname{Tr}_c(s_1)) \right) & (\operatorname{\mathbf{fact}}) \\ &(\operatorname{II}) \left(\mathcal{M}',s_0' \right) \models \mathcal{F}_V(\operatorname{Tr}_c(s_0))) & (\operatorname{\mathbf{known}}) \\ &(\operatorname{III}) \quad &(\mathcal{M}',s_0') \models \left(\bigwedge_{(s_0,s_1) \in R} \operatorname{EX} \mathcal{F}_V(\operatorname{Tr}_c(s_1)) \right) & \wedge \\ &\operatorname{AX} \left(\bigvee_{(s_0,s_1) \in R} \mathcal{F}_V(\operatorname{Tr}_c(s_1)) \right) & ((\operatorname{\mathbf{I}}),(\operatorname{\mathbf{II}})) \end{split}$$

(b) We will show that for each $(s_k, s_{k+1}) \in R$ there is a $(s_k',s_{k+1}')\in R' \text{ such that } L(s_{k+1})-\overline{V}=L'(s_{k+1}')-\overline{V}.$ $(1) \stackrel{\kappa}{(\mathcal{M}', s'_0)} \models \bigwedge_{(s_0, s_1) \in R} \mathsf{EX} \mathcal{F}_V(\mathsf{Tr}_c(s_1)) \qquad (III)$ $(2) \ \forall (s_0, s_1) \in R, \ \exists (s'_0, s'_1) \in R' \ \text{s.t.} \ (\mathcal{M}', s'_1) \models R'$ $\mathcal{F}_V(\operatorname{Tr}_c(s_1))$ (2) $\begin{array}{lll}
\mathcal{F}_{V}(\Pi_{c}(s_{1})) \\
(3) \operatorname{Tr}_{c}(s_{1}) & \leftrightarrow_{\overline{V}} \operatorname{Tr}_{c}(s'_{1}) \\
(4) L(s_{1}) - \overline{V} = L'(s'_{1}) - \overline{V} \\
(5) (\mathcal{M}', s'_{1}) & \models & \mathcal{F}_{V}(\operatorname{Tr}_{c}(s_{1}))
\end{array}$ ((2), Lemma 6) $((3), c \ge 0)$ $\left(\bigwedge_{(s_1,s_2)\in R} \operatorname{Ex}\mathcal{F}_V(\operatorname{Tr}_c(s_2))\right)$ $\operatorname{AX}\left(\bigvee_{(s_1,s_2)\in R}\mathcal{F}_V(\operatorname{Tr}_c(s_2))\right)$ (fact) (6) $(\mathcal{M}', s_1') \models \left(\bigwedge_{(s_1, s_2) \in R} \operatorname{Ex} \mathcal{F}_V(\operatorname{Tr}_c(s_2)) \right) \wedge$

((2), (5))

 $AX\left(\bigvee_{(s_1,s_2)\in R}\mathcal{F}_V(\operatorname{Tr}_c(s_2))\right)$

$$(\mathcal{M}', s'_k) \models (\bigwedge_{(s_i, s_i)} s_i)$$

$$\begin{array}{lll} \text{(8)} & (\mathcal{M}', s_k') & \models & \left(\bigwedge_{(s_k, s_{k+1}) \in R} \operatorname{Ex} \mathcal{F}_V(\operatorname{Tr}_c(s_{k+1})) \right) \wedge \\ \operatorname{AX} \left(\bigvee_{(s_k, s_{k+1}) \in R} \mathcal{F}_V(\operatorname{Tr}_c(s_{k+1})) \right) & \text{(similar with (6))} \\ \text{(9)} & \forall (s_k, s_{k+1}) & \in R, & \exists (s_k', s_{k+1}') & \in R' & \text{s.t.} \\ (\mathcal{M}', s_{k+1}') & \models \mathcal{F}_V(\operatorname{Tr}_c(s_{k+1})) & \text{(8)} \\ \text{(10)} & \operatorname{Tr}_c(s_{k+1}) \leftrightarrow_{\overline{V}} \operatorname{Tr}_c(s_{k+1}') & \text{((9), Lemma 6)} \\ \text{(11)} & L(s_{k+1}) - \overline{V} = L'(s_{k+1}') - \overline{V} & \text{((10), $c \geq 0$)} \end{array}$$

(c) We will show that for each $(s_k', s_{k+1}') \in R'$ there is a $(s_k, s_{k+1}) \in R$ such that $L(s_{k+1}) - \overline{V} = L'(s'_{k+1}) - \overline{V}$.

(1)
$$(\mathcal{M}', s_k') \models AX \left(\bigvee_{(s_k, s_{k+1}) \in R} \mathcal{F}_V(\operatorname{Tr}_c(s_{k+1}))\right)$$
 (by (8) talked above)

(2)
$$\forall (s'_k, s'_{k+1}) \in R', \exists (s_k, s_{k+1}) \in R \text{ s.t. } \\ (\mathcal{M}', s'_{k+1}) \models \mathcal{F}_V(\operatorname{Tr}_c(s'_{k+1}))$$
 (1)

$$(3) \operatorname{Tr}_{c}(s_{k+1}) \leftrightarrow_{\overline{V}} \operatorname{Tr}_{c}(s'_{k+1})$$

$$((2), \operatorname{Lemma 6})$$

$$(4) L(s_{k+1}) - \overline{V} = L'(s'_{k+1}) - \overline{V}$$
 ((3), $c \ge 0$)

(ii) This is following Lemma 2 and the definition of the characterizing formula of initial K-structure K on V.

Lemma 3 Let φ be a formula. We have

$$\varphi \equiv \bigvee_{(\mathcal{M}, s_0) \in Mod(\varphi)} \mathcal{F}_{\mathcal{A}}(\mathcal{M}, s_0). \tag{3}$$

Proof. Let (\mathcal{M}', s'_0) be a model of φ . $(\mathcal{M}', s_0') \models \bigvee_{(\mathcal{M}, s_0) \in Mod(\varphi)} \mathcal{F}_{\mathcal{A}}(\mathcal{M}, s_0) \text{ due to}$ $(\mathcal{M}', s_0') \models \mathcal{F}_{\mathcal{A}}(\mathcal{M}', s_0')$. On the other hand, suppose that (\mathcal{M}', s_0') is a model of $\bigvee_{(\mathcal{M}, s_0) \in Mod(\varphi)} \mathcal{F}_{\mathcal{A}}(\mathcal{M}, s_0)$. Then there is a $(\mathcal{M}, s_0) \in Mod(\varphi)$ such that $(\mathcal{M}',s_0') \models \mathcal{F}_{\mathcal{A}}(\mathcal{M},s_0)$. And then $(\mathcal{M},s_0) \leftrightarrow_{\emptyset} (\mathcal{M}',s_0')$ by Theorem 2. Therefore, (\mathcal{M}, s_0) is also a model of φ by

Theorem 3 (**Representation theorem**) Let φ , φ' and ϕ be CTL formulas and $V \subseteq A$. Then the following statements are equivalent:

(i)
$$\varphi' \equiv \mathcal{F}_{\text{CTL}}(\varphi, V)$$
,

(ii) $\varphi' \equiv \{\phi | \varphi \models \phi \text{ and } IR(\phi, V)\},\$

(iii) Postulates (W), (PP), (NP) and (IR) hold.

Proof. $(i) \Leftrightarrow (ii)$. To prove this, we will show that:

$$\begin{split} &\mathit{Mod}(\mathbf{F}_{\mathsf{CTL}}(\varphi,V)) = \mathit{Mod}(\{\phi|\varphi \models \phi, \mathsf{IR}(\phi,V)\}) \\ &= \mathit{Mod}(\bigvee_{\mathcal{M}, s_0 \in \mathit{Mod}(\varphi)} \mathcal{F}_{\mathcal{A}-V}(\mathcal{M}, s_0)). \end{split}$$

Firstly, suppose that (\mathcal{M}', s_0') is a model of $F_{CTL}(\varphi, V)$. Then there exists an initial K-structure (\mathcal{M}, s_0) such that (\mathcal{M}, s_0) is a model of φ and $(\mathcal{M}, s_0) \leftrightarrow_V (\mathcal{M}', s_0')$. By Theorem 1, we have $(\mathcal{M}', s_0') \models \phi$ for all ϕ that $\varphi \models \phi$ and $IR(\phi, V)$. Thus, (\mathcal{M}', s_0') is a model of $\{\phi | \varphi \models \phi\}$ ϕ , IR(ϕ , V)}.

Secondly, suppose that (\mathcal{M}', s_0') is a models of $\{\phi|\varphi \models \phi, IR(\phi, V)\}$. Thus, (\mathcal{M}', s_0')

 $\models\bigvee_{(\mathcal{M},s_0)\in \mathit{Mod}(\varphi)}\mathcal{F}_{\mathcal{A}-V}(\mathcal{M},s_0)\quad\text{due}\quad\mathsf{to}\\\bigvee_{(\mathcal{M},s_0)\in \mathit{Mod}(\varphi)}\mathcal{F}_{\mathcal{A}-V}(\mathcal{M},s_0)\text{ is irrelevant to }V.$

Finally, suppose that (\mathcal{M}',s_0') is a model of $\bigvee_{\mathcal{M},s_0\in \mathit{Mod}(\varphi)}\mathcal{F}_{\mathcal{A}-V}(\mathcal{M},s_0)$. Then there exists $(\mathcal{M},s_0)\in \mathit{Mod}(\varphi)$ such that $(\mathcal{M}',s_0')\models\mathcal{F}_{\mathcal{A}-V}(\mathcal{M},s_0)$. Hence, $(\mathcal{M},s_0)\leftrightarrow_V(\mathcal{M}',s_0')$ by Theorem 2. Thus (\mathcal{M}',s_0') is also a model of $F_{\mathrm{CTL}}(\varphi,V)$.

 $(ii) \Rightarrow (iii)$. It is not difficult to prove it.

- $(iii)\Rightarrow (ii)$. Suppose that all postulates hold. By Positive Persistence, we have $\varphi'\models\{\phi|\varphi\models\phi,\operatorname{IR}(\phi,V)\}$. Now we show that $\{\phi|\varphi\models\phi,\operatorname{IR}(\phi,V)\}\models\varphi'$. Otherwise, there exists formula ϕ' such that $\varphi'\models\phi'$ but $\{\phi|\varphi\models\phi,\operatorname{IR}(\phi,V)\}\not\models\phi'$. There are three cases:
- ϕ' is relevant to V. Thus, φ' is also relevant to V, a contradiction to Irrelevance.
- ϕ' is irrelevant to V and $\varphi \models \phi'$. This contradicts to our assumption.
- ϕ' is irrelevant to V and $\varphi \nvDash \phi'$. By Negative Persistence, $\varphi' \nvDash \phi'$, a contradiction.

Thus, φ' is equivalent to $\{\phi | \varphi \models \phi, IR(\phi, V)\}$.

Lemma 4 Let φ and α be two CTL formulae and $q \in \overline{Var(\varphi) \cup Var(\alpha)}$. Then $F_{CTL}(\varphi \land (q \leftrightarrow \alpha), q) \equiv \varphi$.

Proof. Let $\varphi' = \varphi \land (q \leftrightarrow \alpha)$. For any model (\mathcal{M}, s) of $F_{\text{CTL}}(\varphi', q)$ there is an initial K-structure (\mathcal{M}', s') s.t. $(\mathcal{M}, s) \leftrightarrow_{\{q\}} (\mathcal{M}', s')$ and $(\mathcal{M}', s') \models \varphi'$. It's apparent that $(\mathcal{M}', s') \models \varphi$, and then $(\mathcal{M}, s) \models \varphi$ since $\operatorname{IR}(\varphi, \{q\})$ and $(\mathcal{M}, s) \leftrightarrow_{\{q\}} (\mathcal{M}', s')$ by Theorem 1.

Let $(\mathcal{M}, s) \in Mod(\varphi)$ with $\mathcal{M} = (S, R, L, s)$. We construct (\mathcal{M}', s) with $\mathcal{M}' = (S, R, L', s)$ as follows:

 $L': S \to \mathcal{A} \text{ and } \forall s^* \in S, L'(s^*) = L(s^*) \text{ if } (\mathcal{M}, s^*) \nvDash \alpha,$ else $L'(s^*) = L(s^*) \cup \{q\},$

$$L'(s) = L(s) \cup \{q\} \ if \ (\mathcal{M}, s) \models \alpha, \ and \ L'(s) = L(s)$$
 otherwise.

It is clear that $(\mathcal{M}',s) \models \varphi$, $(\mathcal{M}',s) \models q \leftrightarrow \alpha$ and $(\mathcal{M}',s) \leftrightarrow_{\{q\}} (\mathcal{M},s)$. Therefore $(\mathcal{M}',s) \models \varphi \land (q \leftrightarrow \alpha)$, and then $(\mathcal{M},s) \models F_{\text{CTL}}(\varphi \land (q \leftrightarrow \alpha),q)$ by $(\mathcal{M}',s) \leftrightarrow_{\{q\}} (\mathcal{M},s)$.

Proposition 4 Given a formula $\varphi \in \text{CTL}$, V a set of atoms and p an atom such that $p \notin V$. Then,

$$F_{CTL}(\varphi, \{p\} \cup V) \equiv F_{CTL}(F_{CTL}(\varphi, p), V).$$

Proof. Let (\mathcal{M}_1, s_1) with $\mathcal{M}_1 = (S_1, R_1, L_1, s_1)$ be a model of $F_{CTL}(\varphi, \{p\} \cup V)$. By the definition, there exists a model (\mathcal{M}, s) with $\mathcal{M} = (S, R, L, s)$ of φ , such that $(\mathcal{M}_1, s_1) \leftrightarrow_{\{p\} \cup V} (\mathcal{M}, s)$. We construct an initial K-structure (\mathcal{M}_2, s_2) with $\mathcal{M}_2 = (S_2, R_2, L_2, s_2)$ as follows:

- (1) for s_2 : let s_2 be the state such that:
 - $p \in L_2(s_2)$ iff $p \in L_1(s_1)$,
 - for all $q \in V$, $q \in L_2(s_2)$ iff $q \in L(s)$,

- for all other atoms $q', q' \in L_2(s_2)$ iff $q' \in L_1(s_1)$ iff $q' \in L(s)$.
- (2) for another:
 - (i) for all pairs $w \in S$ and $w_1 \in S_1$ such that $w \leftrightarrow_{\{p\} \cup V} w_1$, let $w_2 \in S_2$ and
 - $p \in L_2(w_2)$ iff $p \in L_1(w_1)$,
 - for all $q \in V$, $q \in L_2(w_2)$ iff $q \in L(w)$,
 - for all other atoms q', $q' \in L_2(w_2)$ iff $q' \in L_1(w_1)$ iff $q' \in L(w)$.
 - (ii) if $(w_1', w_1) \in R_1$, w_2 is constructed based on w_1 and $w_2' \in S_2$ is constructed based on w_1' , then $(w_2', w_2) \in R_2$.
- (3) delete duplicated states in S_2 and pairs in R_2 .

Then we have $(\mathcal{M}, s) \leftrightarrow_{\{p\}} (\mathcal{M}_2, s_2)$ and $(\mathcal{M}_2, s_2) \leftrightarrow_V (\mathcal{M}_1, s_1)$. Thus, $(\mathcal{M}_2, s_2) \models F_{CTL}(\varphi, p)$. And therefore $(\mathcal{M}_1, s_1) \models F_{CTL}(F_{CTL}(\varphi, p), V)$.

On the other hand, suppose that (\mathcal{M}_1, s_1) be a model of $F_{\text{CTL}}(F_{\text{CTL}}(\varphi, p), V)$, then there exists an initial K-structure (\mathcal{M}_2, s_2) such that $(\mathcal{M}_2, s_2) \models F_{\text{CTL}}(\varphi, p)$ and $(\mathcal{M}_2, s_2) \leftrightarrow_V (\mathcal{M}_1, s_1)$, and there exists (\mathcal{M}, s) such that $(\mathcal{M}, s) \models \varphi$ and $(\mathcal{M}, s) \leftrightarrow_{\{p\}} (\mathcal{M}_2, s_2)$. Therefore, $(\mathcal{M}, s) \leftrightarrow_{\{p\} \cup V} (\mathcal{M}_1, s_1)$ by Proposition 1, and consequently, $(\mathcal{M}_1, s_1) \models F_{\text{CTL}}(\varphi, \{p\} \cup V)$.

Proposition 5 Let φ , φ_i , ψ_i (i = 1, 2) be formulas and $V \subseteq \mathcal{A}$. We have

- (i) $F_{CTL}(\varphi, V)$ is satisfiable iff φ is;
- (ii) If $\varphi_1 \equiv \varphi_2$, then $F_{\text{CTL}}(\varphi_1, V) \equiv F_{\text{CTL}}(\varphi_2, V)$;
- (iii) If $\varphi_1 \models \varphi_2$, then $F_{CTL}(\varphi_1, V) \models F_{CTL}(\varphi_2, V)$;
- (iv) $F_{CTL}(\psi_1 \vee \psi_2, V) \equiv F_{CTL}(\psi_1, V) \vee F_{CTL}(\psi_2, V);$
- (v) $F_{CTL}(\psi_1 \wedge \psi_2, V) \models F_{CTL}(\psi_1, V) \wedge F_{CTL}(\psi_2, V);$

Proof. (i) (\Rightarrow) Supposing (\mathcal{M},s) is a model of $F_{\text{CTL}}(\varphi,V)$, then there is a model (\mathcal{M}',s') of φ s.t. (\mathcal{M},s) $\leftrightarrow_V (\mathcal{M}',s')$ by the definition of F_{CTL} .

 $(\Leftarrow) \mbox{ Supposing } (\mathcal{M},s) \mbox{ is a model of } \varphi, \mbox{ then there is an initial Kripke structure } (\mathcal{M}',s') \mbox{ s.t. } (\mathcal{M},s) \leftrightarrow_V (\mathcal{M}',s'), \mbox{ and then } (\mathcal{M}',s') \models \mbox{ } F_{\rm CTL}(\varphi,V) \mbox{ by the definition of } F_{\rm CTL}.$

The (ii) and (iii) can be proved similarly.

- $(\mathrm{iv}) (\Rightarrow) \, \forall (\mathcal{M},s) \in \mathit{Mod}(\mathrm{F}_{\mathrm{CTL}}(\psi_1 \vee \psi_2,V)), \, \exists (\mathcal{M}',s') \in \mathit{Mod}(\psi_1 \vee \psi_2) \text{ s.t. } (\mathcal{M},s) \leftrightarrow_V (\mathcal{M}',s') \text{ and } (\mathcal{M}',s') \models \psi_1 \text{ or } (\mathcal{M}',s') \models \psi_2$
- $\Rightarrow \exists (\mathcal{M}_1, s_1) \in \mathit{Mod}(\mathsf{F}_{\mathsf{CTL}}(\psi_1, V)) \text{ s.t. } (\mathcal{M}', s') \leftrightarrow_V \\ (\mathcal{M}_1, s_1) \text{ or } \exists (\mathcal{M}_2, s_2) \in \mathit{Mod}(\mathsf{F}_{\mathsf{CTL}}(\psi_2, V)) \text{ s.t. } \\ (\mathcal{M}', s') \leftrightarrow_V (\mathcal{M}_2, s_2)$
- $\Rightarrow (\mathcal{M}, s) \models \mathsf{F}_{\mathsf{CTL}}(\psi_1, V) \vee \mathsf{F}_{\mathsf{CTL}}(\psi_2, V) \text{ by Theorem 1.}$ $(\Leftarrow) \forall (\mathcal{M}, s) \in Mod(\mathsf{F}_{\mathsf{CTL}}(\psi_1, V) \vee \mathsf{F}_{\mathsf{CTL}}(\psi_2, V))$
- $\Rightarrow (\mathcal{M}, s) \models F_{CTL}(\psi_1, V) \text{ or } (\mathcal{M}, s) \models F_{CTL}(\psi_2, V)$
- \Rightarrow there is an initial K-structure (\mathcal{M}_1, s_1) s.t. $(\mathcal{M}, s) \leftrightarrow_V (\mathcal{M}_1, s_1)$ and $(\mathcal{M}_1, s_1) \models \psi_1$ or $(\mathcal{M}_1, s_1) \models \psi_2$
- $\Rightarrow (\mathcal{M}_1, s_1) \models \psi_1 \vee \psi_2$
- \Rightarrow there is an initial K-structure (\mathcal{M}_2, s_2) s.t. $(\mathcal{M}_1, s_1) \leftrightarrow_V (\mathcal{M}_2, s_2)$ and $(\mathcal{M}_2, s_2) \models F_{CTL}(\psi_1 \lor \psi_2, V)$
- \Rightarrow $(\mathcal{M}, s) \leftrightarrow_V (\mathcal{M}_2, s_2)$ and $(\mathcal{M}, s) \models F_{CTL}(\psi_1 \lor \psi_2, V)$. The (v) can be proved as (iv).

Proposition 6 (Homogeneity) Let $V \subseteq \mathcal{A}$ and $\phi \in \text{CTL}$,

- (i) $F_{CTL}(AX\phi, V) \equiv AXF_{CTL}(\phi, V)$.
- (ii) $F_{CTL}(EX\phi, V) \equiv EXF_{CTL}(\phi, V)$.
- (iii) $F_{CTL}(AF\phi, V) \equiv AFF_{CTL}(\phi, V)$.
- (iv) $F_{CTL}(EF\phi, V) \equiv EFF_{CTL}(\phi, V)$.

Proof. Let $\mathcal{M}=(S,R,L,s_0)$ with initial state s_0 and $\mathcal{M}'=(S',R',L',s_0')$ with initial state s_0' , then we call \mathcal{M}',s_0' be a sub-structure of \mathcal{M},s_0 if:

- $S' \subseteq S$ and $S' = \{s' | s' \text{ is reachable from } s'_0\},$
- $R' = \{(s_1, s_2) | s_1, s_2 \in S' \text{ and } (s_1, s_2) \in R\},\$
- $L': S' \to 2^{\mathcal{A}}$ and $\forall s_1 \in S'$ there is $L'(s_1) = L(s_1)$, and
- s'_0 is s_0 or a state reachable from s_0 .
- (i) In order to prove $F_{\text{CTL}}(\mathsf{AX}\phi,V) \equiv \mathsf{AX}(F_{\text{CTL}}(\phi,V))$, we only need to prove $\mathit{Mod}(F_{\text{CTL}}(\mathsf{AX}\phi,V)) = \mathit{Mod}(\mathsf{AX}F_{\text{CTL}}(\phi,V))$:
- $(\Rightarrow) \forall (\mathcal{M}',s') \in Mod(F_{CTL}(AX\phi,V))$ there exists an initial K-structure (\mathcal{M},s) s.t. $(\mathcal{M},s) \models AX\phi$ and $(\mathcal{M},s) \leftrightarrow_V (\mathcal{M}',s')$
- \Rightarrow for any sub-structure (\mathcal{M}_1, s_1) of (\mathcal{M}, s) there is $(\mathcal{M}_1, s_1) \models \phi$, where s_1 is a directed successor of s
- \Rightarrow there is an initial K-structure (\mathcal{M}_2, s_2) s.t. $(\mathcal{M}_2, s_2) \models F_{\text{CTL}}(\phi, V)$ and $(\mathcal{M}_2, s_2) \leftrightarrow_V (\mathcal{M}_1, s_1)$
- \Rightarrow it is easy to construct an initial K-structure (\mathcal{M}_3, s_3) by (\mathcal{M}_2, s_2) s.t. (\mathcal{M}_2, s_2) is a sub-structure of (\mathcal{M}_3, s_3) with
- s_2 is a direct successor of s_3 and $(\mathcal{M}_3, s_3) \leftrightarrow_V (\mathcal{M}, s)$ $\Rightarrow (\mathcal{M}_3, s_3) \models \operatorname{AX}(\mathsf{F}_{\operatorname{CTL}}(\phi, V))$ and $(\mathcal{M}_3, s_3) \leftrightarrow_V (\mathcal{M}', s')$
- $\Rightarrow (\mathcal{M}', s') \models AX(F_{CTL}(\phi, V)).$
- $(\Leftarrow) \ \forall \ (\mathcal{M}_3, s_3) \in Mod(\mathsf{AX}(\mathsf{F}_{\mathsf{CTL}}(\phi, V))), \text{ then for any sub-structure } (\mathcal{M}_2, s_2) \text{ with } s_2 \text{ is a directed successor of } s_3 \text{ there is } (\mathcal{M}_2, s_2) \models \mathsf{F}_{\mathsf{CTL}}(\phi, V)$
- \Rightarrow for any (\mathcal{M}_2, s_2) there is an initial K-structure (\mathcal{M}_1, s_1) s.t. $(\mathcal{M}_1, s_1) \models \phi$ and $(\mathcal{M}_1, s_1) \leftrightarrow_V (\mathcal{M}_2, s_2)$
- \Rightarrow it is easy to construct an initial structure (\mathcal{M}, s) by (\mathcal{M}_1, s_1) s.t. (\mathcal{M}_1, s_1) is a sub-structure of (\mathcal{M}, s) with s_1 is a direct successor of s and $(\mathcal{M}, s) \leftrightarrow_V (\mathcal{M}_3, s_3)$
- $\Rightarrow (\mathcal{M}, s) \models AX\phi$ and then $(\mathcal{M}_3, s_3) \models F_{CTL}(AX\phi, V)$.
- (ii) In order to prove $F_{\text{CTL}}(\text{EX}\phi,V) \equiv \text{EXF}_{\text{CTL}}(\phi,V)$, we only need to prove $Mod\ (F_{\text{CTL}}(\text{EX}\phi,\ V)) = Mod(\text{EXF}_{\text{CTL}}(\phi,V))$:
- $(\Rightarrow) \ \forall \mathcal{M}', s' \in \textit{Mod}(\mathsf{F}_{\mathsf{CTL}}(\mathsf{EX}\phi, V)) \ \text{there exists an initial K-structure} \ (\mathcal{M}, s) \ \mathsf{s.t.} \ (\mathcal{M}, s) \models \mathsf{EX}\phi \ \mathsf{and} \ (\mathcal{M}, s) \leftrightarrow_V \\ (\mathcal{M}', s')$
- \Rightarrow there is a sub-structure (\mathcal{M}_1, s_1) of (\mathcal{M}, s) s.t. $(\mathcal{M}_1, s_1) \models \phi$, where s_1 is a directed successor of s
- \Rightarrow there is an initial K-structure (\mathcal{M}_2, s_2) s.t. $(\mathcal{M}_2, s_2) \models F_{\text{CTL}}(\phi, V)$ and $(\mathcal{M}_2, s_2) \leftrightarrow_V (\mathcal{M}_1, s_1)$
- \Rightarrow it is easy to construct an initial K-structure (\mathcal{M}_3, s_3) by (\mathcal{M}_2, s_2) s.t. (\mathcal{M}_2, s_2) is a sub-structure of (\mathcal{M}_3, s_3) that s_2 is a direct successor of s_3 and $(\mathcal{M}_3, s_3) \leftrightarrow_V (\mathcal{M}, s)$
- $\Rightarrow (\mathcal{M}_3, s_3) \models \text{EX}(\mathsf{F}_{\text{CTL}}(\phi, V))$
- $\Rightarrow (\mathcal{M}', s') \models \text{EX}(\mathsf{F}_{\text{CTL}}(\phi, V)).$
- $(\Leftarrow) \ \forall \ (\mathcal{M}_3, s_3) \in \mathit{Mod}(\mathsf{EX}(\mathsf{F}_{\mathsf{CTL}}(\phi, V))), \text{ then there exists a sub-structure } (\mathcal{M}_2, s_2) \text{ of } (\mathcal{M}_3, s_3) \text{ s.t. } (\mathcal{M}_2, s_2) \models \mathsf{F}_{\mathsf{CTL}}(\phi, V)$

- \Rightarrow there is an initial K-structure (\mathcal{M}_1, s_1) s.t. $(\mathcal{M}_1, s_1) \models \phi$ and $(\mathcal{M}_1, s_1) \leftrightarrow_V (\mathcal{M}_2, s_2)$
- \Rightarrow it is easy to construct an initial K-structure (\mathcal{M}, s) by (\mathcal{M}_1, s_1) s.t. (\mathcal{M}_1, s_1) is a sub-structure of (\mathcal{M}, s) that s_1 is a direct successor of s and $(\mathcal{M}, s) \leftrightarrow_V (\mathcal{M}_3, s_3)$
- \Rightarrow $(\mathcal{M}, s) \models EX\phi$ and then $(\mathcal{M}_3, s_3) \models F_{CTL}(EX\phi, V)$. (iii) and (iV) can be proved as (i) and (ii) respectively.

Proposition7 (Model Checking on Forgetting) Let (\mathcal{M}, s_0) be an initial K-structure, φ be a CTL formula and V a set of atoms. Deciding whether (\mathcal{M}, s_0) is a model of $F_{\text{CTL}}(\varphi, V)$ is NP-complete.

Proof. The problem can be determined by the following two things: (1) guessing an initial K-structure (\mathcal{M}', s_0') satisfying φ ; and (2) checking if $(\mathcal{M}, s_0) \leftrightarrow_V (\mathcal{M}', s_0')$. Both two steps can be done in polynomial time. Hence, the problem is in NP. The hardness follows that the model checking for propositional variable forgetting is NP-hard (Zhang and Zhou 2008).

Theorem 5 (Entailment on Forgetting) Let φ and ψ be two CTL_{AF} formulas and V a set of atoms. Then, results:

- (i) deciding $F_{CTL}(\varphi, V) \models^? \psi$ is co-NP-complete,
- (ii) deciding $\psi \models^? F_{CTL}(\varphi, V)$ is Π_2^P -complete,
- (iii) deciding $F_{CTL}(\varphi, V) \models^{?} F_{CTL}(\psi, V)$ is Π_{2}^{P} -complete.

Proof. (1) It is proved that deciding whether ψ is satisfiable is NP-Complete (Meier et al. 2015). The hardness is easy to see by setting $F_{CTL}(\varphi, Var(\varphi)) \equiv \top$, i.e., deciding whether ψ is valid. For membership, from Theorem 3, we have $F_{CTL}(\varphi, V) \models \psi$ iff $\varphi \models \psi$ and $IR(\psi, V)$. Clearly, in CTL_{AF} , deciding $\varphi \models \psi$ is in co-NP. We show that deciding whether $IR(\psi, V)$ is also in co-NP. Without loss of generality, we assume that ψ is satisfiable. We consider the complement of the problem: deciding whether ψ is not irrelevant to V. It is easy to see that ψ is not irrelevant to V iff there exist a model (\mathcal{M}, s_0) of ψ and an initial K-structure (\mathcal{M}', s_0') such that $(\mathcal{M}, s_0) \leftrightarrow_V (\mathcal{M}', s_0')$ and $(\mathcal{M}', s_0') \nvDash \psi$. So checking whether ψ is not irrelevant to V can be achieved in the following steps: (1) guess two initial K-structures (\mathcal{M}, s_0) and (\mathcal{M}', s_0') , (2) check if $(\mathcal{M}, s_0) \models \psi$ and $(\mathcal{M}', s_0') \nvDash \psi$, and (3) check $(\mathcal{M}, s_0) \leftrightarrow_V (\mathcal{M}', s_0')$. Obviously (1) can be done in polynomial time and also (2) and (3) can be done in polynomial time.

- (2) Membership. We consider the complement of the problem. We may guess an initial K-structure (\mathcal{M}, s_0) and check whether $(\mathcal{M}, s_0) \models \psi$ and $(\mathcal{M}, s_0) \nvDash F_{CTL}(\varphi, V)$. From Proposition 7, we know that this is in Σ_2^P . So the original problem is in Π_2^P . Hardness. Let $\psi \equiv \top$. Then the problem is reduced to decide $F_{CTL}(\varphi, V)$'s validity. Since a propositional variable forgetting is a special case temporal forgetting, the hardness is directly followed from the proof of Proposition 24 in (Lang, Liberatore, and Marquis 2003).
- (3) Membership. If $F_{CTL}(\varphi, V) \not\models F_{CTL}(\psi, V)$ then there exist an initial K-structure (\mathcal{M}, s) such that $(\mathcal{M}, s) \models F_{CTL}(\varphi, V)$ but $(\mathcal{M}, s) \not\models F_{CTL}(\psi, V)$, i.e.,, there is $(\mathcal{M}_1, s_1) \leftrightarrow_V (\mathcal{M}, s)$ with $(\mathcal{M}_1, s_1) \models \varphi$ but $(\mathcal{M}_2, s_2) \not\models$

 ψ for every (\mathcal{M}_2,s_2) with $(\mathcal{M},s) \leftrightarrow_V (\mathcal{M}_2,s_2)$. It is evident that guessing such (\mathcal{M},s) , (\mathcal{M}_1,s_1) with $(\mathcal{M}_1,s_1) \leftrightarrow_V (\mathcal{M},s)$ and checking $(\mathcal{M}_1,s_1) \models \varphi$ are feasible while checking $(\mathcal{M}_2,s_2) \nvDash \psi$ for every $(\mathcal{M},s) \leftrightarrow_V (\mathcal{M}_2,s_2)$ can be done in polynomial time. Thus the problem is in Π_2^P .

Hardness. It follows from (2) due to the fact that $F_{CTL}(\varphi, V) \models F_{CTL}(\psi, V)$ iff $\varphi \models F_{CTL}(\psi, V)$ thanks to $IR(F_{CTL}(\psi, V), V)$.

П

П

Proposition 8 (dual) Let V, q, φ and ψ are like in Definition 4. The ψ is a SNC (WSC) of q on V under φ iff $\neg \psi$ is a WSC (SNC) of $\neg q$ on V under φ .

Proof. (i) Suppose ψ is the SNC of q. Then $\varphi \models q \to \psi$. Thus $\varphi \models \neg \psi \to \neg q$. So $\neg \psi$ is a SC of $\neg q$. Suppose ψ' is any other SC of $\neg q$: $\varphi \models \psi' \to \neg q$. Then $\varphi \models q \to \neg \psi'$, this means $\neg \psi'$ is a NC of q on P under φ . Thus $\varphi \models \psi \to \neg \psi'$ by assumption. So $\varphi \models \psi' \to \neg \psi$. This proves that $\neg \psi$ is the WSC of $\neg q$. The proof of the other part of the proposition is similar.

(ii) The WSC case can be proved similarly with SNC case.

Proposition 9 Let Γ and α be two formulas, $V \subseteq Var(\alpha) \cup Var(\Gamma)$ and q is a new proposition not in Γ and α . Then, a formula φ of V is the SNC (WSC) of α on V under Γ iff it is the SNC (WSC) of q on V under $\Gamma' = \Gamma \cup \{q \leftrightarrow \alpha\}$.

Proof. We prove this for SNC. The case for WSC is similar. Let $SNC(\varphi, \alpha, V, \Gamma)$ denote that φ is the SNC of α on V under Γ , and $NC(\varphi, \alpha, V, \Gamma)$ denote that φ is the NC of α on V under Γ .

 $(\Rightarrow) \text{ We will show that if } SNC(\varphi,\alpha,V,\Gamma) \text{ holds, then } SNC(\varphi,q,V,\Gamma') \text{ will be true. According to } SNC(\varphi,\alpha,V,\Gamma) \text{ and } \alpha \equiv q \text{, we have } \Gamma' \models q \to \varphi \text{, which means } \varphi \text{ is a NC of } q \text{ on } V \text{ under } \Gamma' \text{. Suppose } \varphi' \text{ is any NC of } q \text{ on } V \text{ under } \Gamma', \text{ then } F_{\text{CTL}}(\Gamma',q) \models \alpha \to \varphi' \text{ due to } \alpha \equiv q, IR(\alpha \to \varphi',\{q\}) \text{ and } (\mathbf{PP}), \text{ i.e., } \Gamma \models \alpha \to \varphi' \text{ by Lemma 4, this means } NC(\varphi',\alpha,V,\Gamma). \text{ Therefore, } \Gamma \models \varphi \to \varphi' \text{ by the definition of SNC and } \Gamma' \models \varphi \to \varphi'. \text{ Hence, } SNC(\varphi,q,V,\Gamma') \text{ holds.}$

(\Leftarrow) We will show that if $SNC(\varphi,q,V,\Gamma')$ holds, then $SNC(\varphi,\alpha,V,\Gamma)$ will be true. According to $SNC(\varphi,q,V,\Gamma')$, it's not difficult to know that $F_{\text{CTL}}(\Gamma',\{q\}) \models \alpha \to \varphi$ due to $\alpha \equiv q$, $IR(\alpha \to \varphi,\{q\})$ and (\mathbf{PP}) , i.e., $\Gamma \models \alpha \to \varphi$ by Lemma 4, this means $NC(\varphi,\alpha,V,\Gamma)$. Suppose φ' is any NC of α on V under Γ . Then $\Gamma' \models q \to \varphi'$ since $\alpha \equiv q$ and $\Gamma' = \Gamma \cup \{q \equiv \alpha\}$, which means $NC(\varphi',q,V,\Gamma')$. According to $SNC(\varphi,q,V,\Gamma')$, $IR(\varphi \to \varphi',\{q\})$ and (\mathbf{PP}) , we have $F_{\text{CTL}}(\Gamma',\{q\}) \models \varphi \to \varphi'$, and $\Gamma \models \varphi \to \varphi'$ by Lemma 4. Hence, $SNC(\varphi,\alpha,V,\Gamma)$ holds. \square

Theorem 7 Let φ be a formula, $V \subseteq Var(\varphi)$ and $q \in Var(\varphi) - V$.

(i) $F_{CTL}(\varphi \wedge q, (Var(\varphi) \cup \{q\}) - V)$ is a SNC of q on V under φ .

(ii) $\neg F_{\text{CTL}}(\varphi \wedge \neg q, (Var(\varphi) \cup \{q\}) - V)$ is a WSC of q on V under φ .

Proof. We will prove the SNC part, while it is not difficult to prove the WSC part according to Proposition 8. Let $\mathcal{F} = F_{\text{CTL}}(\varphi \wedge q, (Var(\varphi) \cup \{q\}) - V)$.

The "NC" part: It's easy to see that $\varphi \wedge q \models \mathcal{F}$ by (W). Hence, $\varphi \models q \to \mathcal{F}$, this means \mathcal{F} is a NC of q on P under φ .

The "SNC" part: for all ψ', ψ' is the NC of q on V under φ , s.t. $\varphi \models \mathcal{F} \to \psi'$. Suppose that there is a NC ψ of q on V under φ and ψ is not logic equivalence with \mathcal{F} under φ , s.t. $\varphi \models \psi \to \mathcal{F}$. We know that $\varphi \land q \models \psi$ iff $\mathcal{F} \models \psi$ by (\mathbf{PP}) , since $IR(\psi, (Var(\varphi) \cup \{q\}) - V)$. Hence, $\varphi \land \mathcal{F} \models \psi$ by $\varphi \land q \models \psi$ (by suppose). We can see that $\varphi \land \psi \models \mathcal{F}$ by suppose. Therefore, $\varphi \models \psi \leftrightarrow \mathcal{F}$, which means ψ is logic equivalence with \mathcal{F} under φ . This is contradict with the suppose. Then \mathcal{F} is the SNC of q on P under φ .

Theorem 8 Let $\mathcal{K}=(\mathcal{M},s)$ be an initial K-structure with $\mathcal{M}=(S,R,L,s_0)$ on the set \mathcal{A} of atoms, $V\subseteq \mathcal{A}$ and $q\in V'=\mathcal{A}-V$. Then:

- (i) the SNC of q on V under K is $F_{CTL}(\mathcal{F}_{\mathcal{A}}(K) \wedge q, V')$.
- (ii) the WSC of q on V under \mathcal{K} is $\neg F_{\text{CTL}}(\mathcal{F}_{\mathcal{A}}(\mathcal{K}) \land \neg q, V')$.

Proof. (i) As we know that any initial K-structure \mathcal{K} can be described as a characterizing formula $\mathcal{F}_{\mathcal{A}}(\mathcal{K})$, then the SNC of q on V under $\mathcal{F}_{\mathcal{A}}(\mathcal{K})$ is $F_{\text{CTL}}(\mathcal{F}_{\mathcal{A}}(\mathcal{K}) \wedge q, \mathcal{A} - V)$.

(ii) This is proved by the dual property. \Box

Proposition10 Let φ be a CTL formula and $V \subseteq \mathcal{A}$ with $|\mathcal{S}| = m$, $|\mathcal{A}| = n$ and |V| = x. The the space complexity is $O((n-x)m^{2(m+1)}2^{nm})$ and the time complexity of Algorithm 1 is at least the same as the space.

Proof. Supposing each state or atom occupy one byte, then a state pair (s,s') occupy two bytes. For any $B\subseteq \mathcal{S}$ with $B\neq\emptyset$ and $s_0\in B$, we can construct an initial K-structure (\mathcal{M},s_0) with $\mathcal{M}=(B,R,L,s_0)$, in which there is at most $\frac{|B|^2}{2}$ state pairs in R and $|B|*n\ (s,A)\ (A\subseteq \mathcal{A})$ in L. Hence, the (\mathcal{M},s_0) occupy at most $|B|+|B|^2+|B|*n$ bytes. Besides, there is at most $|B|^{|B|+1}*2^{nm}$ number of initial K-structures. Therefore, there is at most $m^{m+2}*2^{nm}$ number of initial K-structures, hence it will at most cost $m^{m+2}*2^{nm}*(m+m^2+nm)$ bytes.

Let k=n-x, for any initial K-structure $\mathcal{K}=(\mathcal{M},s_0)$ with $i\geq 1$ nodes, in the worst, i.e., $ch(\mathcal{M},V)=i$, we will spend N(i) space to store the characterizing formula.

$$N(i) = (k + (\dots + (k+2ik) * (2i)) \dots * (2i))$$

$$= (2i)^{0}k + 2ik + (2i)^{2}k + \dots + (2i)^{(i-1)}k$$

$$= \frac{(2i)^{i} - 1}{2i - 1}k.$$

In the worst case, i.e., there is $m^{m+2}*2^{nm}$ initial K-structures with m nodes, we will spent $m^{m+2}*2^{nm}*N(m)$ bytes to store the result of forgetting.

Therefore, the space complexity is $O((n-x)m^{2(m+1)}2^{nm})$ and the time complexity is at least the same as the space. \Box