1 Motivation

Let $\{X_i : \Omega \longrightarrow \mathbb{R}\}_{i \in \mathbb{N}}$ be a sequence of independent and identically distributed (i.i.d.) random variables, with common mean (expected value) $\mu := E(X_i)$, for any $i \in \mathbb{N}$, and finite variance $\sigma^2 > 0$. For each $n \in \mathbb{N}$, let

$$\overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i$$
 and $Z_n := \frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}}$.

The random variable \overline{X}_n is called the sample mean (of the sample consisting of X_1, \ldots, X_n). Then,

• $E(\overline{X}_n) = \mu$ and $Var(\overline{X}_n) = \frac{\sigma^2}{n}$. Thus, \overline{X}_n is an unbiased estimator for the parameter μ , and for large n, any observed value of \overline{X}_n is expected to closely approximate μ (since $Var(\overline{X}_n) \longrightarrow 0$ as $n \longrightarrow \infty$).

Thus, we may estimate the value of the parameter μ by taking the average $\overline{x} := \frac{1}{n} \sum_{i=1}^{n} x_i$ of a set of sampled values x_1, \ldots, x_n of X_1, \ldots, X_n , respectively.

• Assume the value of $\sigma^2 > 0$ is known while that of μ is not known. Then, given any explicit candidate value μ_0 for the unknown parameter μ , we may assess the reliability of the hypothesis $\mu = \mu_0$ by taking sampled values x_1, \ldots, x_n for X_1, \ldots, X_n , respectively.

Given the sampled values x_1, \ldots, x_n , define $\overline{x} := \frac{1}{n} \sum_{i=1}^n x_i$. By the Central Limit Theorem, the distribution of Z_n approaches the standard normal distribution $\mathcal{N}(0,1)$ as $n \longrightarrow \infty$, which allows us to approximate the conditional probability $P(|\overline{X}_n - \mu| \ge |\overline{x} - \mu| | \mu = \mu_0)$ as follows:

$$P(|\overline{X}_n - \mu| \ge |\overline{x} - \mu| \mid \mu = \mu_0) = P\left(\frac{|\overline{X}_n - \mu|}{\sigma/\sqrt{n}} \ge \frac{|\overline{x} - \mu|}{\sigma/\sqrt{n}} \mid \mu = \mu_0\right)$$

$$\approx P\left(|Z_n| \ge \frac{|\overline{x} - \mu|}{\sigma/\sqrt{n}} \mid \mu = \mu_0\right), \text{ for large } n.$$

The conditional probability $P\left(|Z| \ge \frac{|\overline{x} - \mu|}{\sigma/\sqrt{n}} \mid \mu = \mu_0\right)$ is called the *p*-value corresponding to the set $\{x_1, \ldots, x_n\}$ of sampled values under the null hypothesis $\mu = \mu_0$. If the *p*-value subceeds a certain threshold α (common values for α include 0.05 and 0.01), the null hypothesis $\mu = \mu_0$ is rejected, the underlying intuition being that, under the assumption $\mu = \mu_0$, the probability of obtaining a set of sampled values "as extreme as or more extreme than" $\{x_1, \ldots, x_n\}$ is "too low" (i.e. subceeding α).

However, the hypothesis test mentioned above relies on the requirement that the value of $\sigma^2 > 0$ be known. In practice, this is seldom the case. In the predominant case that the value of σ^2 is unknown, we could only approximate the value of σ^2 based on sampled data somehow.

To this end, we now assume that $X_1, X_2, \ldots \sim \mathcal{N}(\mu, \sigma^2)$, i.e. the random variables X_1, X_2, \ldots are *i.i.d.* normal random variables, where the values of both μ and σ^2 are not known. The maximum likelihood estimators for μ and σ^2 , based on sampled values for X_1, \ldots, X_n , are then respectively

$$\widehat{\mu}_{\text{MLE}} = \overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i \quad \text{and} \quad \widehat{\sigma}_{\text{MLE}}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}_n)^2.$$

See Example 4, §8.3, [1] for the derivation of $\widehat{\mu}_{\text{MLE}}$ and $\widehat{\sigma}_{\text{MLE}}^2$. Now, $E(\widehat{\mu}_{\text{MLE}}) = E(\overline{X}_n) = \mu$; so, $\widehat{\mu}_{\text{MLE}}$ is an unbiased estimator for μ . On the other hand,

$$E\left(\sum_{i=1}^{n} \left(X_i - \overline{X}_n\right)^2\right) = (n-1)\sigma^2.$$

Consequently,

$$E(\widehat{\sigma^2}_{\text{MLE}}) = E\left(\frac{1}{n}\sum_{i=1}^n (X_i - \overline{X}_n)^2\right) = \left(\frac{n-1}{n}\right)\sigma^2.$$

Thus, $\widehat{\sigma^2}_{\text{MLE}}$ is NOT an unbiased estimator for σ^2 , but S_n^2 is an unbiased estimator for σ^2 , where S_n^2 , called the *unbiased* sample variance, is defined by:

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2.$$

Hence, in the case that $X_1, X_2, ...$ are *i.i.d.* normal random variables with common distribution $\mathcal{N}(\mu, \sigma^2)$, we may assess the reliability of the hypothesis $\mu = \mu_0$, for some candidate value μ_0 for the parameter μ , provided we know the probability distribution of **Student's** t **ratio**, which is defined by:

$$T_{n-1} := \frac{\overline{X}_n - \mu}{\sqrt{S_n^2 / n}}.$$

The probability distribution of T_{n-1} is the **Student** t **distribution with** (n-1) **degrees of freedom**.

2 Summary

• Let X_1, X_2, \ldots, X_n be *i.i.d.* normal random variables with common mean μ and finite variance $\sigma^2 > 0$.

$$\overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i, \quad \text{and} \quad S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2.$$

 \overline{X}_n is called the **sample mean**, and S_n^2 is called the (**unbiased**) **sample variance**. They are random variables and are unbiased estimators for μ and σ^2 , respectively.

• Note that

$$T_{n-1} := \frac{\overline{X}_n - \mu}{\sqrt{S_n^2 / n}} = \frac{\frac{\overline{X} - \mu}{\sigma / \sqrt{n}}}{\sqrt{\left(\frac{(n-1)S_n^2}{\sigma^2}\right) / (n-1)}}.$$

We claim:

- The numerator $\frac{\overline{X}_n \mu}{\sigma/\sqrt{n}}$ of T_{n-1} has the standard normal distribution.
- The term $\frac{(n-1)S_n^2}{\sigma^2}$ in the denominator of T_{n-1} is a random variable whose distribution is a χ^2 distribution with (n-1) degrees of freedom.
- The two random variables $\frac{\overline{X}_n \mu}{\sigma/\sqrt{n}}$ and $\frac{(n-1)S_n^2}{\sigma^2}$ are independent of each other.

• Definition 2.1

Let Z be a standard normal random variable and X be a χ^2 random variable with n degrees of freedom. Suppse Z and X are independent. The **Student** t **distribution with** n **degrees of freedom** is the probability distribution of the following random variable:

$$T_n := \frac{Z}{\sqrt{X/n}}.$$

The random variable T_n is called the **Student's** t ratio with n degrees of freedom.

• Theorem 2.2

The probability density function of the Student t distribution with n degrees of freedom is given by:

$$f_{T_n}(t) \; = \; \frac{\Gamma\!\left(\frac{n+1}{2}\right)}{\sqrt{n\,\pi}\,\Gamma\!\left(\frac{n}{2}\right)} \cdot \frac{1}{\left(1+\frac{t^2}{n}\right)^{(n+1)/2}} \,, \quad \text{for} \quad -\infty < t < \infty.$$

The diagram below shows the graphs of the probability density functions $f_{T_{20}}$ in black and f_{T_2} in red.

The above graph is generated with R with the following command:

$$>$$
 y20 = dt(x,df=20); y2 = dt(x,df=2); plot(x,y20,type="1"); points(x,y2,type="1",col="red");

3 χ_n^2 — the distribution of the sum of squares of $n \in \mathbb{N}$ independent standard normal random variables

Theorem 3.1

Let Z_1, Z_2, \ldots, Z_n be n independent standard normal random variables, and let $X := \sum_{i=1}^n Z_i^2$. Then, X has a Gamma distribution with parameter values $r = \frac{n}{2}$ and $\lambda = \frac{1}{2}$. Equivalently, the probability density function of X is given by

$$f_X(x) = \frac{1}{2^{n/2} \Gamma(\frac{n}{2})} x^{(n/2)-1} e^{-x/2}, \text{ for } x \ge 0.$$

PROOF First, take m = 1. We claim that $Z^2 \sim \Gamma(r, \lambda)$, for $r = \lambda = \frac{1}{2}$, where $\Gamma(r, \lambda)$ denotes the Gamma distribution. Indeed, for any $x \geq 0$,

$$F_{Z^{2}}(x) = P(Z^{2} \le x) = P(-\sqrt{x} \le Z \le \sqrt{x}) = 2P(0 \le Z \le \sqrt{x})$$

$$= 2 \int_{0}^{\sqrt{x}} f_{Z}(\zeta) d\zeta = 2 \int_{0}^{\sqrt{x}} \frac{1}{\sqrt{2\pi}} e^{-\zeta^{2}/2} d\zeta$$

$$= \sqrt{\frac{2}{\pi}} \int_{0}^{\sqrt{x}} e^{-\zeta^{2}/2} d\zeta.$$

Differentiating $F_{Z^2}(x)$ with respect to x yields:

$$f_{Z^{2}}(x) = \frac{\mathrm{d}}{\mathrm{d}x} F_{Z^{2}}(x) = \sqrt{\frac{2}{\pi}} \frac{\mathrm{d}}{\mathrm{d}x} \left(\int_{0}^{\sqrt{x}} e^{-\zeta^{2}/2} \, \mathrm{d}\zeta \right) = \sqrt{\frac{2}{\pi}} e^{-x/2} \frac{\mathrm{d}}{\mathrm{d}x} (\sqrt{x}) = \sqrt{\frac{2}{\pi}} e^{-x/2} \frac{1}{2\sqrt{x}}$$
$$= \frac{1}{\sqrt{2} \Gamma(\frac{1}{2})} x^{(1/2)-1} e^{-x/2}, \quad \text{for } x > 0.$$

We have used the fact that $\Gamma(\frac{1}{2}) = \sqrt{\pi}$. Thus, $f_{Z^2}(x)$ is the probability density function of the Gamma distribution $\Gamma(r,\lambda)$ with $r=\frac{1}{2}$ and $\lambda=\frac{1}{2}$, since for any $r,\lambda>0$,

$$f_{\Gamma(r,\lambda)}(y) = \frac{\lambda^r}{\Gamma(r)} y^{r-1} e^{-\lambda y}, \text{ for } y \ge 0.$$

Next, recall that: If $G_1 \sim \Gamma(r_1, \lambda)$ and $G_2 \sim \Gamma(r_2, \lambda)$ are independent random variables, then $G_1 + G_2 \sim \Gamma(r_1 + r_2, \lambda)$. Induction thus immediately gives: If $G_i \sim \Gamma(r_i, \lambda)$, $i = 1, \ldots, n$, are independent random variables, then

$$\sum_{i=1}^{n} G_i \sim \Gamma\left(\sum_{i=1}^{n} r_i, \lambda\right).$$

(See, for example, Theorem 4.6.4, [3], or $\S 2.4$, [4]).

Since $Z_1^2, Z_2^2, \dots, Z_n^2 \sim \Gamma(r = \frac{1}{2}, \lambda = \frac{1}{2})$ and they are independent random variables, it now follows that

$$X \ := \ \sum_{i=1}^n Z_i^2 \ \sim \ \Gamma \bigg(r = \frac{n}{2} \, , \, \lambda = \frac{1}{2} \bigg) \, .$$

In other words, the probability density function of X is given by:

$$f_X(x) = f_{\Gamma(r=n/2,\lambda=1/2)}(x) = \frac{\left(\frac{1}{2}\right)^{n/2}}{\Gamma\left(\frac{n}{2}\right)} x^{(n/2)-1} e^{-(1/2)\cdot x} = \frac{1}{2^{n/2} \Gamma\left(\frac{n}{2}\right)} x^{(n/2)-1} e^{-x/2}, \quad \text{for } x > 0,$$

as required.

Definition 3.2

The chi-square distribution with $n \in \mathbb{N}$ degree(s) of freedom is, by definition, Gamma distribution $\Gamma(r = \frac{n}{2}, \lambda = \frac{1}{2})$. It is denoted by χ_n^2 .

Remark 3.3

The sum $X := Z_1^2 + Z_2^2 + \cdots + Z_n^2$ of the squares of $n \in \mathbb{N}$ independent standard normal random variables $Z_1, Z_2, \ldots, Z_n \sim \mathcal{N}(0,1)$ has a chi-square distribution with n degree(s) of freedom. In other words, $X := Z_1^2 + Z_2^2 + \cdots + Z_n^2 \sim \chi_n^2$.

Remark 3.4

Note that

$$f_{\chi_1^2}(x) \; = \; \frac{1}{2^{1/2} \, \Gamma\!\left(\frac{1}{2}\right)} \; x^{(1/2)-1} \; e^{-x/2} \; = \; \frac{1}{\sqrt{2} \, \sqrt{\pi}} \; x^{-1/2} \; e^{-x/2} \; = \; \frac{1}{\sqrt{2\pi} \cdot x^{1/2} \cdot e^{x/2}}$$

has a singularity at x = 0, and

$$f_{\chi^2_2}(x) \; = \; \frac{1}{2^{2/2} \, \Gamma\!\left(\frac{2}{2}\right)} \; x^{(2/2)-1} \; e^{-x/2} \; = \; \frac{1}{2 \; \Gamma\!\left(1\right)} \; x^0 \; e^{-x/2} \; = \; \frac{1}{2} \, e^{-x/2}$$

is simply an exponential decay in $x \geq 0$.

The diagram below shows graphs of the probability density functions $f_{\chi_1^2}, \dots, f_{\chi_5^2}$. It is generated with R with the following command:

- > x<-seq(0,10,0.001);
- $y^{4-dchisq(x,df=1)}$; $y^{4-dchisq(x,df=2)}$; $y^{4-dchisq(x,df=3)}$; $y^{4-dchisq(x,df=4)}$; $y^{4-dchisq(x,df=4)}$;
- > plot(x,y1,ylim=c(0,0.6),type="l"); > points(x,y2,type="l",col="blue"); points(x,y3,type="l",col="green");
- > points(x,y4,type="l",col="red");points(x,y5,type="l",col="cyan");
- > legend("topright",c("df=1","df=2","df=3","df=4","df=5"),text.col=c("black","blue","green","red","cyan"));

4 \mathcal{F}_n^m — the distribution of the ratio of two χ^2 random variables

Definition 4.1

Let $m, n \in \mathbb{N}$. Let $X_m \sim \chi_m^2$ and $X_n \sim \chi_n^2$ be independent χ^2 random variables with the indicated degrees of freedom. For $m, n \in \mathbb{N}$, the **F** distribution with m and n degrees of freedom, denoted by \mathcal{F}_n^m , is the probability distribution of the following random variable:

 $F := \frac{X_m/m}{X_n/n}.$

Theorem 4.2

The probability density function of the F distribution \mathcal{F}_n^m with m and n degrees of freedom is given by:

$$f_{\mathcal{F}_n^m}(\zeta) = \left(m^{m/2} \cdot n^{n/2} \cdot \frac{\Gamma\left(\frac{m+n}{2}\right)}{\Gamma\left(\frac{m}{2}\right) \Gamma\left(\frac{n}{2}\right)} \right) \cdot \frac{\zeta^{(m/2)-1}}{(m\,\zeta + n)^{(m+n)/2}}, \quad \text{for } \zeta \ge 0.$$

Remark 4.3

The "F" in "F distribution" commemorates the renowned statistician Sir Ronald Fisher.

Let $T = \frac{Z}{\sqrt{X/n}}$ be a Student t ratio, i.e. Z and X are independent random variables with $Z \sim \mathcal{N}(0,1)$ and $X \sim \chi_n^2$.

Then, $Z^2 \sim \chi_1^2$. Hence, $T^2 = \frac{Z^2}{X/n} = \frac{Z^2/1}{X/n} \sim \mathcal{F}_n^1$, the F distribution with m=1 and n degrees of freedom. We will derive the probability density function for the distribution of T by using that of T^2 as given by Theorem 4.2.

PROOF OF Theorem 4.2: We first find the probability density function for X_m/X_n . Now,

$$X_m \sim \chi_m^2 \implies f_{X_m}(x) = \frac{1}{2^{m/2} \Gamma(\frac{m}{2})} x^{(m/2)-1} e^{-x/2},$$

 $X_n \sim \chi_m^2 \implies f_{X_n}(x) = \frac{1}{2^{n/2} \Gamma(\frac{n}{2})} x^{(n/2)-1} e^{-x/2}$

By Theorem A.1,

$$\begin{split} f_{X_m/X_n}(x) &= \int_0^\infty |\zeta| \cdot f_{X_n}(x) \cdot f_{X_m}(x\,\zeta) \,\mathrm{d}\zeta \\ &= \int_0^\infty \zeta \cdot \left(\frac{1}{2^{n/2}\,\Gamma\!\left(\frac{n}{2}\right)}\,\zeta^{(n/2)-1}\,e^{-\zeta/2}\right) \cdot \left(\frac{1}{2^{m/2}\,\Gamma\!\left(\frac{m}{2}\right)}\,(x\,\zeta)^{(m/2)-1}\,e^{-(x\,\zeta)/2}\right) \,\mathrm{d}\zeta \\ &= \frac{1}{2^{(m+n)/2}\cdot\Gamma\!\left(\frac{n}{2}\right)\cdot\Gamma\!\left(\frac{m}{2}\right)} \cdot \left(x^{(m/2)-1}\right) \cdot \left(\int_0^\infty \zeta^{\frac{m+n}{2}-1} \cdot \exp\left(-\frac{1+x}{2}\cdot\zeta\right) \,\mathrm{d}\zeta\right) \end{split}$$

Now, recall again that the probability density function of the $\Gamma(r,\lambda)$ distribution is given by:

$$f_{\Gamma(r,\lambda)}(\zeta) = \frac{\lambda^r}{\Gamma(r)} \zeta^{r-1} e^{-\lambda \zeta}, \text{ for } \zeta \ge 0.$$

In particular,

$$1 \ = \ \int_0^\infty f_{\Gamma(r,\lambda)}(\zeta) \,\mathrm{d}\zeta \ = \ \int_0^\infty \frac{\lambda^r}{\Gamma(r)} \ \zeta^{r-1} \ e^{-\lambda \zeta} \,\mathrm{d}\zeta, \quad \text{which implies} \quad \int_0^\infty \zeta^{r-1} \ e^{-\lambda \zeta} \,\mathrm{d}\zeta \ = \ \frac{\Gamma(r)}{\lambda^r}.$$

We now see that

$$\begin{split} f_{X_m/X_n}(x) &= \frac{1}{2^{(m+n)/2} \cdot \Gamma\left(\frac{n}{2}\right) \cdot \Gamma\left(\frac{m}{2}\right)} \cdot \left(x^{(m/2)-1}\right) \cdot \left(\int_0^\infty \zeta^{\frac{m+n}{2}-1} \cdot \exp\left(-\frac{1+x}{2} \cdot \zeta\right) \, \mathrm{d}\zeta\right) \\ &= \frac{1}{2^{(m+n)/2} \cdot \Gamma\left(\frac{n}{2}\right) \cdot \Gamma\left(\frac{m}{2}\right)} \cdot \left(x^{(m/2)-1}\right) \cdot \frac{\Gamma\left(\frac{m+n}{2}\right)}{\left(\frac{1+x}{2}\right)^{(m+n)/2}} \\ &= \frac{\Gamma\left(\frac{m+n}{2}\right)}{\Gamma\left(\frac{m}{2}\right) \cdot \Gamma\left(\frac{n}{2}\right)} \cdot \frac{x^{(m/2)-1}}{(1+x)^{(m+n)/2}} \end{split}$$

Lastly, note that for any $\alpha > 0$ and random variable Y, we have:

$$F_{\alpha Y}(y) = P(\alpha Y \le y) = P\left(Y \le \frac{1}{\alpha}y\right) = F_Y\left(\frac{1}{\alpha}y\right).$$

Hence,

$$f_{\alpha Y}(y) \; = \; \frac{\mathrm{d}}{\mathrm{d}y} \, F_{\alpha \, Y}(y) \; = \; \frac{\mathrm{d}}{\mathrm{d}y} \, F_Y\bigg(\frac{1}{\alpha} \, y\bigg) \; = \; F_Y'\bigg(\frac{1}{\alpha} \, y\bigg) \cdot \frac{\mathrm{d}}{\mathrm{d}y} \, \bigg(\frac{1}{\alpha} \, y\bigg) \; = \; \frac{1}{\alpha} \, f_Y\bigg(\frac{1}{\alpha} \, y\bigg) \, .$$

Consequently,

$$\begin{split} f_{\frac{X_m/m}{X_n/n}}(x) &= f_{\left(\frac{n}{m}\right)X_m/X_n}(x) &= \frac{m}{n} \cdot f_{X_m/X_n}\left(\frac{m}{n}x\right) \\ &= \frac{m}{n} \cdot \frac{\Gamma\left(\frac{m+n}{2}\right)}{\Gamma\left(\frac{m}{2}\right) \cdot \Gamma\left(\frac{n}{2}\right)} \cdot \frac{\left(\frac{m}{n}x\right)^{(m/2)-1}}{\left(1 + \frac{m}{n}x\right)^{(m+n)/2}} \\ &= \frac{m}{n} \cdot \left(\frac{m}{n}\right)^{(m/2)-1} \cdot n^{(m+n)/2} \cdot \frac{\Gamma\left(\frac{m+n}{2}\right)}{\Gamma\left(\frac{m}{2}\right) \cdot \Gamma\left(\frac{n}{2}\right)} \cdot \frac{x^{(m/2)-1}}{(n+mx)^{(m+n)/2}} \\ &= \left(m^{m/2} \cdot n^{n/2} \cdot \frac{\Gamma\left(\frac{m+n}{2}\right)}{\Gamma\left(\frac{m}{2}\right) \cdot \Gamma\left(\frac{n}{2}\right)}\right) \cdot \frac{x^{(m/2)-1}}{(mx+n)^{(m+n)/2}} \end{split}$$

This completes the proof of Theorem 4.2.

5 The Student t distribution with $n \in \mathbb{N}$ degrees of freedom

Definition 5.1

The Student t distribution with $n \in \mathbb{N}$ degrees of freedom is the probability distribution of a random variable T_n of the form

$$T_n = \frac{Z}{\sqrt{\frac{X}{n}}},$$

where Z and X are independent random variables, Z is a standard normal random variable, and X is a chi-square random variable with $n \in \mathbb{N}$ degrees of freedom.

Lemma 5.2

The probability density function f_{T_n} of the Student t distribution is an even function, i.e. $f_{T_n}(-t) = f_{T_n}(t)$, for any $t \in \mathbb{R}$.

PROOF By definition of the Student t distribution, $T_n = \frac{Z}{\sqrt{X/n}}$, where $Z \sim \mathcal{N}(0,1)$ and $X \sim \chi_n^2$ are independent random variables. Consequently, $-T_n = \frac{-Z}{\sqrt{X/n}}$ also has the Student t distribution, and thus $f_{(-T_n)}(t) = f_{T_n}(t)$ for all $t \in \mathbb{R}$. On the other hand,

$$F_{(-T_n)}(t) = P(-T_n \le t) = P(T_n \ge -t) = 1 - P(T_n \le -t)$$

Differentiating with respect to t yields:

$$f_{(-T_n)}(t) = \frac{\mathrm{d}}{\mathrm{d}t} F_{(-T_n)}(t) = \frac{\mathrm{d}}{\mathrm{d}t} (1 - P(T_n \le -t)) = -\frac{\mathrm{d}}{\mathrm{d}t} P(T_n \le -t) = -\left(\frac{\mathrm{d}}{\mathrm{d}(-t)} P(T_n \le -t)\right) \cdot \frac{\mathrm{d}(-t)}{\mathrm{d}t}$$

$$= -f_{T_n}(-t) \frac{\mathrm{d}(-t)}{\mathrm{d}t} = f_{T_n}(-t).$$

Thus, we have shown:

$$f_{T_n}(-t) = f_{(-T_n)}(t) = f_{T_n}(t).$$

Theorem 5.3

The probability density function of a random variable T_n having the Student t distribution with $n \in \mathbb{N}$ degrees of freedom is given by:

$$f_{T_n}(t) = \left(\frac{1}{\sqrt{n\pi}} \cdot \frac{\Gamma(\frac{n+1}{2})}{\Gamma(\frac{n}{2})}\right) \cdot \frac{1}{\left(1 + \frac{t^2}{n}\right)^{(n+1)/2}}, \quad \text{for } -\infty < t < \infty.$$

PROOF Note that $T_n^2 = \frac{Z^2}{X/n} = \frac{Z^2/1}{X/n} \sim F_n^1$. Hence,

$$f_{T_n^2}(t) = \frac{n^{n/2} \Gamma(\frac{n+1}{2})}{\Gamma(\frac{1}{2}) \Gamma(\frac{n}{2})} t^{-1/2} \frac{1}{(t+n)^{(n+1)/2}}, \text{ for } t > 0.$$

Since $f_{T_n}(t)$ is an even function, we have, for t > 0,

$$F_{T_n}(t) = P(T_n \le t) = \frac{1}{2} + P(0 \le T_n \le t) = \frac{1}{2} + \frac{1}{2}P(-t \le T_n \le t) = \frac{1}{2} + \frac{1}{2}P(0 \le T_n^2 \le t)$$

$$= \frac{1}{2} + \frac{1}{2}F_{T_n^2}(t^2)$$

Differentiating with respect to t yields:

$$f_{T_n}(t) = \frac{\mathrm{d}}{\mathrm{d}t} F_{T_n}(t) = \frac{1}{2} F'_{T_n^2}(t^2) \frac{\mathrm{d}}{\mathrm{d}t}(t^2) = t \cdot f_{T_n^2}(t^2) = t \cdot \frac{n^{n/2} \Gamma(\frac{n+1}{2})}{\Gamma(\frac{1}{2}) \Gamma(\frac{n}{2})} \cdot (t^2)^{-1/2} \cdot \frac{1}{(t^2 + n)^{(n+1)/2}}$$

$$= \frac{n^{n/2} \Gamma(\frac{n+1}{2})}{\Gamma(\frac{1}{2}) \Gamma(\frac{n}{2})} \cdot \frac{1}{n^{(n+1)/2} \left(1 + \frac{t^2}{n}\right)^{(n+1)/2}} = \left(\frac{1}{\sqrt{n\pi}} \cdot \frac{\Gamma(\frac{n+1}{2})}{\Gamma(\frac{n}{2})}\right) \cdot \frac{1}{\left(1 + \frac{t^2}{n}\right)^{(n+1)/2}}$$

This completes the proof of Theorem 5.3

A The Probability Density Function of the Quotient of Two Random Variables

Theorem A.1

B A Technical Result

Theorem B.1

Let $X_1, X_2, ..., X_n$ be independent standard normal random variables with common mean μ and (finite) variance $\sigma^2 > 0$. Define:

$$\overline{X} := \frac{1}{n} \sum_{i=1}^{n} X_i$$
 and $S^2 := \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$.

Then,

- \overline{X} and S^2 are independent random variables.
- $\frac{n-1}{\sigma^2} S^2$ has a chi-square distribution with (n-1) degrees of freedom.

PROOF Let $Y_i := \frac{X_i - \mu}{\sigma}$, $i = 1, \ldots n$. Then, $Y_1, Y_2, \ldots, Y_n \sim \mathcal{N}(0, 1)$, and they are independent random variables. Let $A \in \mathbb{R}^{n \times n}$ be any orientation-preserving orthogonal matrix (hence, $A^T \cdot A = I_{n \times n}$ and $\det(A) = 1$) whose n^{th} row is $\left(\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}, \ldots, \frac{1}{\sqrt{n}}\right)$. Let \mathbf{Y} be the \mathbb{R}^n -valued random variable defined by $\mathbf{Y} := (Y_1, Y_2, \ldots, Y_n)^T$, and let \mathbf{Z} be the \mathbb{R}^n -valued random variable defined by $\mathbf{Z} := A \cdot \mathbf{Y}$. Let Z_1, Z_2, \ldots, Z_n denote the component random variables of \mathbf{Z} , i.e. $\mathbf{Z} = (Z_1, Z_2, \ldots, Z_n)^T$. Note that $Z_n = \frac{1}{\sqrt{n}} Y_1 + \frac{1}{\sqrt{n}} Y_2 + \cdots + \frac{1}{\sqrt{n}} Y_n = \sqrt{n} \, \overline{Y}$, where $\overline{Y} := \frac{1}{n} \sum_{i=1}^n Y_i$.

For any measurable $\Omega \subset \mathbb{R}^n$,

$$P(\mathbf{Z} \in \Omega) = P(A \cdot \mathbf{Y} \in \Omega) = P(\mathbf{Y} \in A^{-1}(\Omega))$$

$$= \int_{A^{-1}(\Omega)} f_{Y_1, \dots, Y_n}(y_1, \dots, y_n) \, \mathrm{d}y_1 \cdots \mathrm{d}y_n$$

$$= \int_{\Omega} f_{Y_1, \dots, Y_n}(A^{-1}\mathbf{Z}) \, \det J(g) \, \mathrm{d}z_1 \cdots \mathrm{d}z_n, \quad \text{where } g(\mathbf{Z}) := A^{-1} \cdot \mathbf{Z}$$

$$= \int_{\Omega} f_{Y_1, \dots, Y_n}(A^{-1}\mathbf{Z}) \cdot 1 \cdot \mathrm{d}z_1 \cdots \mathrm{d}z_n, \quad \text{since } \det(A^{-1}) = 1$$

$$= \int_{\Omega} \frac{1}{(\sqrt{2\pi})^n} \exp\left(-\frac{1}{2} \|A^{-1}\mathbf{Z}\|^2\right) \, \mathrm{d}z_1 \cdots \mathrm{d}z_n, \quad \text{since } Y_1, \dots, Y_n \sim \mathcal{N}(0, 1) \text{ are independent}$$

$$= \int_{\Omega} \frac{1}{(\sqrt{2\pi})^n} \exp\left(-\frac{1}{2} \|\mathbf{Z}\|^2\right) \, \mathrm{d}z_1 \cdots \mathrm{d}z_n, \quad \text{since } A^{-1} \text{ is an orthogonal matrix}$$

$$= \int_{\Omega} \prod_{i=1}^n \frac{\exp(-\frac{1}{2}z_i^2)}{\sqrt{2\pi}} \, \mathrm{d}z_1 \cdots \mathrm{d}z_n,$$

which shows that

$$f_{Z_1,\dots,Z_n}(z_1,\dots,z_n) = \prod_{i=1}^n \frac{\exp(-\frac{1}{2}z_i^2)}{\sqrt{2\pi}}.$$

Thus, Z_1, Z_2, \ldots, Z_n are independent standard normal random variables. Lastly, observe that

$$\sum_{i=1}^{n-1} Z_i^2 + n \, \overline{Y}^2 \; = \; \sum_{i=1}^{n-1} Z_i^2 + (Z_n)^2 \; = \; \| \, \mathbf{Z} \, \|^2 \; = \; \| \, \mathbf{A}^{-1} \mathbf{Z} \, \|^2 \; = \; \| \, \mathbf{Y} \, \|^2 \; = \; \sum_{i=1}^{n} Y_i^2 \; = \; \sum_{i=1}^{n} \left(Y_i - \overline{Y} \right)^2 + n \, \overline{Y}^2,$$

which implies

$$\sum_{i=1}^{n} (Y_i - \overline{Y})^2 = \sum_{i=1}^{n-1} Z_j^2.$$

On the other hand, noting that $\overline{Y} = \frac{\overline{X} - \mu}{\sigma}$, we have

$$\frac{n-1}{\sigma^2} S^2 = \frac{n-1}{\sigma^2} \left(\frac{1}{n-1} \sum_{i=1}^n \left(X_i - \overline{X} \right)^2 \right) = \sum_{i=1}^n \left(\frac{X_i - \overline{X}}{\sigma} \right)^2$$

$$= \sum_{i=1}^n \left(\frac{\left(X_i - \mu \right) - \left(\overline{X} - \mu \right)}{\sigma} \right)^2 = \sum_{i=1}^n \left(Y_i - \overline{Y} \right)^2$$

$$= \sum_{i=1}^{n-1} Z_j^2.$$

This proves that $\frac{n-1}{\sigma^2}S^2 = \sum_{i=1}^{n-1}Z_j^2$ indeed has a chi-square distribution with (n-1) degrees of freedom, since Z_1, \ldots, Z_{n-1} are independent standard normal random variables. We may also conclude that $\overline{X} = \sigma \overline{Y} + \mu = \frac{\sigma}{\sqrt{n}}Z_n + \mu$ and $\frac{n-1}{\sigma^2}S^2 = \sum_{i=1}^{n-1}Z_j^2$ are indeed independent random variables, since Z_1, Z_2, \ldots, Z_n are independent.

C The Fourier transform of a probability measure on \mathbb{R} and the characteristic function of an \mathbb{R} -valued random variable

Definition C.1 (Fourier transform of a probability measure on \mathbb{R})

The Fourier transform $\widehat{\mu}$ of a probability measure μ on \mathbb{R} is the \mathbb{C} -valued function $\widehat{\mu}: \mathbb{R} \longrightarrow \mathbb{C}$ defined on \mathbb{R} via

$$\widehat{\mu}(\theta) := E\{e^{\mathbf{i}\theta X}\} = \int_{\mathbb{R}} e^{\mathbf{i}\theta x} \mu(\mathrm{d}x), \text{ for } \theta \in \mathbb{R}.$$

Definition C.2 (Characteristic function of a random variable)

Let X be an \mathbb{R} -valued random variable, and P_X its distribution measure on $\mathbb{R} = \operatorname{codomain}(X)$. The characteristic function of X is by definition the Fourier transform of P_X . Explicitly, the characteristic function of X is the function $\widehat{P}_X : \mathbb{R} \longrightarrow \mathbb{C}$ defined by:

$$\widehat{P}_X(\theta) = \int_{\mathbb{R}} e^{\mathbf{i}\theta x} P_X(\mathrm{d}x), \quad \text{for } \theta \in \mathbb{R}.$$

Theorem C.3 (Theorem 13.1, [2])

The Fourier transform $\widehat{\mu}$ of any probability measure μ on \mathbb{R} is a bounded and continuous \mathbb{C} -valued function on \mathbb{R} , and $\widehat{\mu}(0) = 1$.

Remark C.4

The Fourier transform can thus be regarded as a map from the set¹ of all probability measures on \mathbb{R} into the set of all bounded continuous \mathbb{C} -valued functions defined on \mathbb{R} .

Theorem C.5 (Theorem 13.3, [2])

Let X be an \mathbb{R} -valued random variable and $\alpha, \beta \in \mathbb{R}$. Then, for any $\theta \in \mathbb{R}$,

$$\widehat{P}_{\alpha X + \beta}(\theta) = e^{\mathbf{i}\beta\theta} \cdot \widehat{P}_X(\alpha \theta).$$

Proof

$$\widehat{P}_{\alpha X + \beta}(\theta) = E \left\{ e^{\mathbf{i}(\alpha X + \beta)\theta} \right\} = \int_{\mathbb{D}} e^{\mathbf{i}\beta\theta} \cdot e^{\mathbf{i}(\alpha\theta)x} P_X(\mathrm{d}x) = e^{\mathbf{i}\beta\theta} \cdot \int_{\mathbb{D}} e^{\mathbf{i}(\alpha\theta)x} P_X(\mathrm{d}x) = e^{\mathbf{i}\beta\theta} \cdot \widehat{P}_X(\alpha\theta)$$

Theorem C.6 (Theorem 15.2, [2])

The characteristic function of the sum of two independent \mathbb{R} -valued random variables is the product of their characteristic functions.

More precisely, if $X, Y : \Omega \longrightarrow \mathbb{R}$ are independent \mathbb{R} -valued random variables with respective characteristic functions $\widehat{P}_X, \widehat{P}_Y : \mathbb{R} \longrightarrow \mathbb{C}$, then the characteristic function \widehat{P}_Z of the random variable Z := X + Y is given in terms of \widehat{P}_X and \widehat{P}_Y bu:

 $\widehat{P}_Z(\theta) = \widehat{P}_X(\theta) \cdot \widehat{P}_Y(\theta), \text{ for each } \theta \in \mathbb{R}.$

Theorem C.7 (Theorem 13.2, [2])

Let X be an \mathbb{R} -valued random variable and suppose that $E\{|X|^m\} < \infty$ for some non-negative integer m. Then the Fourier transform \widehat{P}_X of the distribution measure P_X has continuous derivatives up to order m, and

$$\frac{\mathrm{d}^m}{\mathrm{d}\theta^m} \widehat{P}_X(\theta) = \mathbf{i}^m E\{X^m e^{\mathbf{i}\,\theta X}\}$$

Corollary C.8

For an \mathbb{R} -valued random variable X,

$$\begin{split} E\left\{|X|\right\} < \infty &\implies E\left\{X\right\} = -\mathbf{i}\,\widehat{P}_X'(0), \\ E\left\{X^2\right\} < \infty &\implies E\left\{X^2\right\} = -\widehat{P}_X''(0). \end{split}$$

¹Note that the set of probability measures on \mathbb{R} does not form a vector space.

D The Fourier transform of the standard normal distribution measure on \mathbb{R}

Recall that probability density function of the standard normal (or standard Gaussian) distribution measure $P_{\mathcal{N}(0,1)}$ is

$$f_{\mathcal{N}(0,1)}(z) := \frac{1}{\sqrt{2\pi}} e^{-z^2/2}, \text{ for } z \in \mathbb{R}.$$

The Fourier transform $\widehat{f}_{\mathcal{N}(0,1)}$ of $f_{\mathcal{N}(0,1)}$ is

$$\widehat{f}_{\mathcal{N}(0,1)}(\theta) \ := \ E\left(e^{\mathbf{i}\,\theta Z}\right) \ = \ \int_{-\infty}^{\infty} e^{\mathbf{i}\,\theta z} \, f_{\mathcal{N}(0,1)}(z) \, \mathrm{d}z \ = \ \int_{-\infty}^{\infty} \left(\cos(\theta z) + \mathbf{i}\,\sin(\theta z)\right) \frac{1}{\sqrt{2\pi}} e^{-z^2/2} \, \mathrm{d}z \ = \ e^{-\theta^2/2} \,, \ \ for \ \theta \in \mathbb{R},$$

The function $\widehat{f}_{\mathcal{N}(0,1)}$ is also, by definition, the Fourier transform $\widehat{P}_{\mathcal{N}(0,1)}$ of the standard Gaussian distribution measure $P_{\mathcal{N}(0,1)}$. In other words, $\widehat{P}_{\mathcal{N}(0,1)} = \widehat{f}_{\mathcal{N}(0,1)}$.

E Injectivity and continuity of the Fourier transform on the space of probability measures on $\mathbb R$

Theorem E.1 (Injectivity of the Fourier transform on the space of probability measures on R)

If the Fourier transforms of two probability measures on \mathbb{R}^d are equal (as \mathbb{C} -valued functions on \mathbb{R}^d), then the two probability measures themselves are equal.

See Theorem 14.1, [2].

Remark E.2

Recall that the Fourier transform can be regarded a map from the set of all probability measures on \mathbb{R} into the set of all bounded continuous \mathbb{C} -valued functions defined on \mathbb{R} . The above injectivity theorem states that this Fourier transform map is injective.

Theorem E.3 (Levy's Continuity Theorem of the Fourier transform)

Let $\{\mu_n\}_{n\in\mathbb{N}}$ be a sequence of probability measures on \mathbb{R}^d , $d\geq 1$, and let $\widehat{\mu_n}:\mathbb{R}^d\longrightarrow\mathbb{C}$ be the Fourier transform of μ_n .

- If μ_n converges weakly to a measure μ , then $\widehat{\mu_n}$ converges pointwise to $\widehat{\mu}$, i.e. $\widehat{\mu_n}(\theta)$ converges to $\widehat{\mu}(\theta)$, for each $\theta \in \mathbb{R}^d$.
- If $\widehat{\mu_u}$ converges pointwise to some function $f: \mathbb{R}^d \longrightarrow \mathbb{C}$, and f is continuous at $\mathbf{0} \in \mathbb{R}^d$, then there exists a probability measure μ on \mathbb{R}^d such that $\widehat{\mu} = f$, and μ_n converges weakly to μ .

See Theorem 19.1, [2].

References

- [1] EWENS, W. J., AND GRANT, G. R. Statistical Methods in Bioinformations, second ed. Statistics for Biology and Health. Springer, New York, 2005.
- [2] JACOD, J., AND PROTTER, P. Probability Essentials. Springer-Verlag, New York, 2004. Universitext.
- [3] LARSEN, R. J., AND MARX, M. L. An Introductio to Mathematical Statistics and its Applications, fourth ed. Pearson/Prentice Hall, Upper Saddle River, New Jersey, 2006.
- [4] Wasserman, L. A. All of Statistics: A Concise Course in Statistical Inference, first ed. Spinger Texts in Statistics. Springer-Verlag, New York, 2004.