DISPOSITIVOS LÓGICOS PROGRAMABLES

Dispositivos lógicos programables

Tipos de PLDs

- Read Only Memory (ROM)
- Programmable ROM (PROM, etc.)
- Programmable Logic Arrays (PLA)
- Programmable Array Logic (PAL)
- Erasable PLD (EPLD)
- Field Programmable Gate Arrays (FPGA)

Dispositivos lógicos programables

Arreglos lógicos sencillos

- Basados en circuitos lógicos de 2 niveles (AND/OR)
- Tienen una estructura de arreglo regular
- Distintos tipos
 - Memorias de solo lectura, Read Only Memories (ROMs, PROMs, etc.)
 - Programmable Logic Array (PLA)
 - Programmable Array Logic (PAL)

Arreglos programables in situ Field Programmable Gate Arrays (FPGA)

- Bloque básico común replicado muchas veces
- Cada bloque puede configurarse para producir distintas funciones lógicas y en general incluyen biestables (flip-flops)
- Interconexiones programables
- las FPGAs más grandes tienen alrededor de 500K compuertas además de 500 Kb de SRAM

Memoria de solo lectura, Read-Only Memory (ROM)

- Un decodificador genera para las n variables de entradas 2ⁿ **minitérminos**.
- Utilizando compuertas OR para unir los minitérminos de las funciones Booleanas, se puede generar cualquier circuito combinatorio.
- Las memorias ROM son dispositivos que incluyen el decodificador (compuertas AND) y las compuertas OR en un solo circuito integrado.
- Un depósito de información binaria fija
- Los CI ROM y PROM tienen uniones internas que pueden quemarse o romperse ("programando")
- Consisten en n líneas de entrada y m de salida
- Cada combinación de entrada se llama dirección
- Cada combinación de salida es una palabra
- La cantidad de bits por palabra es m
- La cantidad de direcciones posibles es 2ⁿ
- Una palabra de salida es seleccionada por una dirección única

Construcción de una memoria ROM / PROM

- Las ROM y PROM pueden construirse utilizando arreglos ortogonales de cables.
 - Conexión opcional en cada intersección.
 - El decodificador coloca un 1 lógico en solo uno de los cables horizontales, que se puede detectar a la salida si hay una conexión realizada.
- Algunas PROMs se pueden configurar quebrando conexiones.
 - Alta tensión ubicada entre una entrada y una salida por vez.
 - La gran corriente causa que el fusible en la interconexión se queme.
- Otras PROMs pueden borrarse y reprogramarse (EPROMs, EEPROMs, Flash).

Funciones almacenadas

 Σ (0,1,3,4,6), Σ (0,1,3,5,7), Σ (2,3,6,7), Σ (0,3,4,6)

Read-Only Memory (ROM / PROM)

Read-Only Memory (ROM / PROM)

Ejemplo: ROM 32x4

Read-Only Memory (ROM / PROM)

Programmable Logic Array (PLA)

PLA: Notación de programación

before programming: all fuses intact

after programming: fuses blown to remove unneeded connections

Las PLA son estructuras más generales que las PAL o ROM. También tienen un arreglo de ANDs y uno de ORs ambos programables . El tamaño del arreglo AND depende de la cantidad de entradas pero no tiene la cantidad de ANDs como una PROM (2ⁿ); mientras que el tamaño del arreglo OR depende de la cantidad de salidas.

Programmable Logic Array (PLA)

- PLA: tiene configurable "AND-plane" y "OR-plane".
- "AND-plane" entrada y "OR-plane" salida
- Utilizado para implementar suma de productos de dos niveles

Programmable Logic Array (PLA)

• Diagrama en bloques de una PLA (Suma de Productos)

Programmable Devices

F1 = ABC

F2 = A + B + C

F3 = ABC

F4 = A + B + C

F5 = A xor B xor C

 $F6 = A \times B \times C$

- PAL es similar a las PLAs pero tiene fijo el arreglo OR.
- Más simple de programar y de construcción más barata.
- Para cada salida está determinada la cantidad de términos.

PAL notación de programación

an X is used to indicate a programmed

complemented and uncomplemented outputs are available

La PAL de la figura consiste de un número fijo de compuertas AND de entradas múltiples combinadas con compuertas OR. Las conexiones a cada AND son programables, hay flexibilidad en las funciones lógicas realizables. La única limitación es la cantidad fija de miniterminos..

Ejemplo de diseño: Conversor BCD a código de Gray

Tabla de verdad

Α	В	С	D	W	Χ	Υ	Z
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0 1 1 0 0
0	0	1	0	0	0	1	1
0	0	1	1	0	0	1	0
0	1	0	0	0	1	1	
0	1	0	1	1	1	1	0
0	1	1	0 1	1	0	1	
0	1	1		1	0	1	0 1 1 0 X X X
1	0	0	0	1 1	0	0	1
1		0	1	1	0	0	0
1	0 0	1	0	Χ	0 X	Χ	Χ
1	0	1	1	Χ	Χ	Χ	X
1	1	0	0	Χ	Χ	Χ	X
1	1	0	1	X X X	Χ	Χ	X
1	1	1	0	Χ	Χ	Χ	Χ
1	1	1	1	Х	Χ	Χ	Χ

Funciones mínimas:

$$W = A + B D + B C$$

X = B C'

Y = B + C

Z = A'B'C'D + BCD + AD' + B'CD'

10

K-map for W

11

00

01

11

10

10

В K-map for Y

Mapas K

K-map for X

K-map for Z

Ejemplo de diseño: Conversor BCD a código de Gray

PAL programada

LABCD BCD всБ

4 términos de producto para cada compuerta OR

Comparación de PROM, PLA y PAL

- Se pueden considerar las PROMs y las PALs como versiones restringidas de PLAs.
 - La PROM es una PLA con arreglo AND que genera todos los minitérminos y un arreglo OR configurable
 - La PAL es una PLA con un arreglo OR fijo, y cada salida es un subconjunto de las ANDs
- Selección de acuerdo a las necesidades.
 - Se observará las ecuaciones a implementar
 - Tener en cuenta la cantidad de entradas y salidas
 - Comparar costos
- Las PROMs son más flexibles, pero utilizar PALs y PLAs donde resulte posible.
 - Las que incluyen biestables permiten realizar circuitos secuenciales sincrónicos

Herramientas de diseño

- Las herramientas CAD realizan diseño en base a especificaciones en lenguajes descriptores de hardware
- PALASM y ABEL elementales
- VHDL y Verilog