

<u>Home</u> <u>Gameboard</u> <u>Biology</u> <u>Physiology</u> <u>Breathing & Circulation</u> <u>Respiratory Systems Revision</u>

Respiratory Systems Revision

Part A	Fish gills
Which o	of the following statements describe how fish gills take in oxygen? Select all that apply.
	water moves in through the mouth and out across the gills
	water moves in across the gills and out through the mouth
	blood is pumped through the gills in the same direction to the flow of water across the gills
	blood is pumped through the gills in the opposite direction to the flow of water across the gills
	because blood and water flow in the same direction, a steep diffusion gradient is maintained across the gill capillaries, thus increasing gas exchange efficiency
	because blood and water flow in opposite directions, a steep diffusion gradient is maintained across the gill capillaries, thus increasing gas exchange efficiency

Part B Mammalian lungs adaptations

Fill in the table below by matching the feature of the mammalian lungs to the description of how this feature improves efficiency of gas exchange between the air and the bloodstream.

Feature	How this feature improves efficiency of gas exchange
	ensures a very small distance for gases to diffuse across
	increases the surface area for diffusion of gases to occur
	increases the concentration gradient of oxygen by ensuring that the lungs are continuously supplied with oxygen-poor blood
	increases concentration gradient of oxygen by ensuring that the lungs are continuously filled with oxygen-rich air

Items:

lungs are composed of a large number of alveoli alveoli are surrounded by blood capillaries alveoli are lined with a thin layer of cells (squamous epithelium)

lungs are actively ventilated

Part C Mammalian ventilation

Which of the following statements describe how mammalian lungs take in air? Select all that apply.
The diaphragm contracts , changing from a more domed shape to a fl atter shape, causing the l ungs to expand downwards.
The diaphragm relaxes , changing from a fl atter shape to a more domed shape, causing the l ungs to expand downwards.
The external intercostal muscles contract , causing the lungs to expand outwards and upwards.
The external intercostal muscles relax , causing the lungs to expand outwards and upwards.
The expansion of the lungs increases thoracic pressure, which causes air to move into the lungs from outside the body.
The expansion of the lungs decreases thoracic pressure, which causes air to move into the lungs from outside the body.

Part D Pulmonary ventilation

A group of students were investigating the effect of exercise on pulmonary ventilation.

The table below shows some of the results recorded for one of the students in the group.

Tidal volume	$0.45\mathrm{dm^3}$
Vital capacity	$3.45\mathrm{dm}^3$
Mean breathing rate at rest	14 min ⁻¹
Mean breathing rate during exercise	18 min ⁻¹

Calculate the total volume of air that moved in and out of this student's lungs in a five minute period **before** the start of exercise.

Created for isaacphysics.org by Lewis Thomson. Part B adapted with permission from OCR AS Level Biology A, May 2013, Cells, Exchange and Transport, Question 2c. Part D adapted with permission from OCR AS Level Biology B, June 2016, Foundations of Biology, Question 9.

Home Gameboard Biology Physiology Breathing & Circulation Circulatory Systems Revision

Circulatory Systems Revision

Part A	Double circulation
Which	of the following statements about double circulation are correct? Select all that apply.
	double circulation refers to the fact that the heart has two types of chambers: atria and ventricles
	double circulation refers to the fact that blood passes through the heart twice for each complete circuit of the circulatory system
	all vertebrates have a double circulatory system
	mammals and birds have a double circulatory system, whereas fish have a single circulatory system
	double circulation ensures that blood travels through the body at a higher pressure and faster speed than in a single circulatory system
	double circulation ensures that blood travels through the body at a lower pressure and slower speed than in a single circulatory system

Part B Systole vs diastole

In the table below, show which process each statement refers to: systole or diastole.

Statement	Systole or Diastole
blood moves from the vena cava and pulmonary veins into the atria	
blood moves from the ventricles out into the aorta and pulmonary artery	
the semi-lunar valves open	
the atrioventricular valves open	
caused by electrical excitation (i.e. depolarisation)	
ems: systole diastole	

Part C Oxygen saturation

In mammalian blood, oxygen is mainly transported combined with haemoglobin. The presence of haemoglobin greatly increases the oxygen carrying capacity of blood.

- $100\,\mathrm{cm^3}$ of plasma contains $0.3\,\mathrm{cm^3}$ of oxygen when fully saturated.
- $100\,\mathrm{cm^3}$ of blood contains $20.1\,\mathrm{cm^3}$ of oxygen when fully saturated.

Calculate the percentage increase in oxygen carried in fully saturated blood compared with oxygen carried in fully saturated plasma. Give your answer to the nearest percent.

Part D Cardiac output

The average stroke volume of a particular person is 60 ml, and their average heart rate is 82 bpm.

Calculate this person's cardiac output.

Created for isaacphysics.org by Lewis Thomson. Part C adapted with permission from OCR AS Level Biology A, May 2016, Breadth in Biology, Question 24

Gameboard:

STEM SMART Biology Week 45

All materials on this site are licensed under the **<u>Creative Commons license</u>**, unless stated otherwise.

Home Gameboard Biology Physiology Di

Digestion & Excretion

Digestive and Excretory Systems Revision

Digestive and Excretory Systems Revision

Part A	Insulin	& glucagor	1
--------	---------	------------	---

Fill in the table below to show the differences between insulin and glucagon.

	Insulin	Glucagon
Released from		
Released in response to		
Glycogen is		

- 1	$T\Delta$	m	•

α cells	β cells	high glucose blood levels	low glucose blood levels	produced from glucose
broken c	lown into g	lucose		

Part B ADH

Which of the following statements about antidiuretic hormone (ADH) are correct? Select all that apply.
It is released into the bloodstream from the adrenal glands
It is released into the bloodstream from the posterior pituitary gland
It is released in response to an increase in blood water potential
It is released in response to a decrease in blood water potential
It causes an increase in water reabsorption by the cells lining the collecting ducts of the nephrons
It causes a decrease in water reabsorption by the cells lining the collecting ducts of the nephrons
An increase in ADH causes more urine to be produced (and causes the urine to be more dilute)
An increase in ADH causes less urine to be produced (and causes the urine to be more concentrated)

Part C Ultrafiltration part 1

The table below shows the concentration of some of the components of blood, glomerular filtrate and urine.

Component	$\frac{\text{Blood}}{(\text{g}/100\text{cm}^3)}$	Glomerular filtrate $({ m g}/100{ m cm}^3)$	$\begin{array}{c} \textbf{Urine} \\ (\mathrm{g}/100\mathrm{cm}^3) \end{array}$
Glucose	0.10	0.10	0.00
Urea	0.03	0.03	1.80
Amino acids	0.05	0.05	0.00
Large proteins	8.00	0.00	0.00
Inorganic ions (total)	0.90	0.90	variable, up to 3.60

vnicn	or the following statements explain the changes in fluid composition shown in the table above?
	large molecules cannot be filtered out of the blood, whereas small molecules and ions can be
	water is reabsorbed in the collecting ducts
	glucose and amino acids do not pass from the glomerulus to the Bowman's capsule
	all of the urea and inorganic ions are reabsorbed in the proximal convoluted tubules
	urea and inorganic ions cannot be reabsorbed in the nephrons
	all of the glucose and amino acids are reabsorbed in the proximal convoluted tubules

Part D Ultrafiltration part 2

The table below shows the concentration of some of the components of blood, glomerular filtrate and urine.

Component	$\frac{\textbf{Blood}}{(\mathrm{g}/100\mathrm{cm}^3)}$	Glomerular filtrate $({ m g}/100{ m cm}^3)$	Urine $(\mathrm{g}/100\mathrm{cm}^3)$
Glucose	0.10	0.10	0.00
Urea	0.03	0.03	1.80
Amino acids	0.05	0.05	0.00
Large proteins	8.00	0.00	0.00
Inorganic ions (total)	0.90	0.90	variable, up to 3.60

Calculate the percentage increase in urea concentration from the blood to the urine. Give your answer to the nearest percent.

Created for isaacphysics.org by Lewis Thomson. Part C adapted with permission from OCR A Level Biology A, June 2013, Communication, Homeostasis and Energy, Question 3a

Gameboard:

STEM SMART Biology Week 45

All materials on this site are licensed under the **Creative Commons license**, unless stated otherwise.

Home Gameboard Biology Physiology Sense & Movement Nervous Systems Revision

Nervous Systems Revision

Figure 1: Diagram of a sensory neurone.

Part A Label the diagram
What is the name of part A in Figure 1 ?
What is the name of part B in Figure 1 ?
What is the name of part C in Figure 1 ?
What is the name of part D in Figure 1 ?
Part B Name the gaps
What is the name for the gaps in the myelin sheath?

In which direction(s) would an action potential be propagated in Figure 1? Select all that apply. From A to B From B to A From C to B From D to B

Part D Action potential

Drag the items below into the correct order on the right to show how an action potential occurs.

Available items

Na ⁺ channels or	pen
$K^{^{+}}$ ions move $oldsymbol{o}$	ut of the cell and repolarise this region of the membrane
This region of th	e membrane becomes hyperpolarised
Voltage-gated K	$^{^+}$ channels open and voltage-gated $\mathrm{Na}^{^+}$ channels close
Voltage-gated K	⁺ channels close and this region of the membrane returns to resting membrane potential
	nto the cell and depolarise this region of the membrane (also causing Na^+ channels further along to open, ion potential at that point)

Created for isaacphysics.org by Lewis Thomson. Parts A and C adapted with permission from OCR A Level Biology A, January 2013, Communication, Homeostasis and Energy, Question 1a

Gameboard:

STEM SMART Biology Week 45

All materials on this site are licensed under the **<u>Creative Commons license</u>**, unless stated otherwise.

Home Gameboard Biology Physiology Sense & Movement Muscular Systems Revision

Muscular Systems Revision

Part A Neuromuscular junction

Drag the items below into the correct order on the right to show how a motor neurone triggers muscle contraction at a neuromuscular junction.

Available items

 Na^{+} channels on the sarcolemma open and Na^{+} ions move in to the sarcoplasm

vesicles containing neurotransmitters fuse with the axon terminal membrane

neurotransmitters are released into the synaptic cleft and bind to Na^+ channels on the sarcolemma

 Ca^{2+} ions in the sarcoplasm allow myosin to bind to (and pull) actin in the sarcomeres, causing muscle contraction

voltage-gated Ca^{2+} channels in the membrane of the axon terminal open and Ca^{2+} ions move in

voltage-gated Ca^{2+} channels in the membrane of the sarcoplasmic reticulum open and Ca^{2+} ions move out into the sarcoplasm

Part B Muscle contraction Which of the following statements about muscle contraction are correct? Select all that apply. ATP binds to myosin heads, causing them to detach them from actin and enabling further muscle contraction Ca²⁺ ions are required to free up myosin-binding sites on the thin filaments (actin) thick filaments (myosin) pull thin filaments (actin) out towards the edges of each sarcomere ATP binds to actin, allowing it to bind to myosin and enabling muscle contraction muscle contraction is triggered by the release of Na^+ ions from the sarcoplasmic reticulum thick filaments (myosin) pull thin filaments (actin) in towards the centre of each sarcomere Part C **Energy expenditure** Muscle cells primarily use glycogen to provide the energy they need. Glycogen is broken down into glucose, which is used in respiration to produce ATP. An individual ("individual A") undergoes $45 \, \mathrm{minutes}$ of high-intensity exercise. During this exercise, their muscles break down, on average, 2 g of stored glycogen per minute. How many molecules of ATP did individual A's muscles produce during this period of exercise? Assume that: an average molecule of glycogen is composed of 30 000 glucose molecules each molecule of glucose produces 30 ATP molecules during aerobic respiration all of the glucose molecules that are produced are aerobically respired the muscles are only using stored glycogen to produce ATP Give your answer to 1 significant figure.

Created for isaacphysics.org by Lewis Thomson

Gameboard:

STEM SMART Biology Week 45

<u>Home</u> <u>Gameboard</u> <u>Biology</u> <u>Physiology</u> <u>Disease & Immunity</u> <u>Immune Systems Revision</u>

Immune Systems Revision

Part A Cell type & response type
What type of cell secretes antibodies?
Antibodies are released as part of an adaptive immune response. What is the name given to this particular type of adaptive immune response that involves the release of antibodies?

Part B Variable region

Figure 1: Antibody structure. Four parts of the left side of the antibody are labelled (A-D).

Which lett	er(s) in Figure 1	represent(s) t	he variable r	egion?
A				
В				

Why are second	ary immune responses faster than primary immune responses? Select all that apply.
memory B	cells divide and differentiate into plasma cells (effector B cells) more quickly than naïve B cells do
the antibo	dies produced in the primary immune response continue to circulate in the blood for many years
during a p	rimary immune response, specific memory B cells are produced which continue to circulate in the blood for many
activation	of immune cells (by binding to antigens) occurs more quickly
the existin	g antibodies replicate themselves to produce more antibodies
memory B	cells can produce and secrete antibodies into the bloodstream faster than naïve B cells
Part D Cell-r	nediated immune response
	ivate and tag pathogens that are found outside of cells (e.g. in the bloodstream). What is the type that destroys pathogens that are inside the body's cells by killing those infected cells?
Created for isaacphysic	cs.org by Lewis Thomson
Gameboard:	

Part C

STEM SMART Biology Week 45

Secondary immune response

All materials on this site are licensed under the **Creative Commons license**, unless stated otherwise.

Home Gameboard Biology Physiology Organ Blood Composition

Organ Blood Composition

The table shows concentrations of substances in blood entering and leaving three different organs of a person:

- kidney
- small intestine
- chambers of the right side of the heart

The blood sample was taken 10 minutes after the person had eaten a carbohydrate-rich meal.

(The oxygen concentration is given in arbitrary units (a.u.).)

Organ	Concentration in blood entering the organ			Concentration in blood leaving the organ		
	glucose / ${ m mgdm^{-3}}$	oxygen / a.u.	urea / ${ m mgdm^{-3}}$	glucose / ${ m mgdm^{-3}}$	oxygen / a.u.	urea / ${ m mg}{ m dm}^{-3}$
1	9.0	65	3.0	9.0	65	3.0
2	9.0	85	3.0	9.0	70	2.4
3	9.0	85	3.0	12.0	70	3.0

Part A Organ identification

Match the organ/organ part to the table row number.
• Row 1:
• Row 2:
• Row 3:
small intestine kidney chambers of the right side of the heart
Part B Kidney capillaries Give the name of the network of blood capillaries in the kidney where blood is filtered to enable the excretion of urea.
Part C Intestinal projections Give the name of the internal projections of the small intestine wall that are composed of multiple tissue layers and which improve the efficiency of digestion and absorption.
Part D Blood oxygenation Give the name of the blood vessel that carries oxygenated blood to the heart.

All materials on this site are licensed under the **Creative Commons license**, unless stated otherwise.