Matemáticas e Ingeniería Informática

Hoja 6: Aplicaciones lineales. Cambio de base.

- **1.** Sean \mathbb{K} un cuerpo y V, W espacios vectoriales sobre \mathbb{K} . Si $f: V \longrightarrow W$ y $g: V \longrightarrow W$ son aplicaciones lineales, demuestra que:
- (a) $\ker f \cap \ker g \subset \ker(f+g)$.
- (b) Si Im $f \cap \text{Im } g = \{0\}$, entonces $\ker f \cap \ker g = \ker(f + g)$.
- **2.** En \mathbb{R}^3 se consideran las bases

$$\mathcal{B}_1 = \{ (1,0,1), (-1,1,1), (1,-1,0) \}, \quad \mathcal{B}_2 = \{ (2,1,1), (1,1,1), (1,-1,1) \}.$$

- (a) Calcula la matriz de $id_{\mathbb{R}^3}$ usando \mathcal{B}_1 en salida y \mathcal{B}_2 en llegada.
- (b) Calcula la matriz de id \mathbb{R}^3 usando \mathcal{B}_2 en salida y \mathcal{B}_1 en llegada.
- 3. Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$ dada por $f(\mathbf{x}) = \begin{bmatrix} 0 & 2 & 2 \\ 1 & 0 & -1 \\ 3 & 1 & 1 \end{bmatrix} \mathbf{x}$.
- a) Determina la matriz A de f usando la base estándar en salida y en llegada.
- b) Determina la matriz M de f usando la base $\mathcal{B} = \{(1, 1, 0), (2, 3, -1), (0, 0, 1)\}$ en salida y en llegada.
- c) Sea P la matriz cuyas columnas son los vectores de \mathcal{B} . Deduce, del cálculo que has hecho en b), la igualdad AP = PM.
- d) Describe P como la matriz de $id_{\mathbb{R}^3}$ en ciertas bases y vuelve a deducir AP = PM.
- **4.** Sean $V_1, V_2 \subset V$ dos subespacios vectoriales de V que son complementarios mutuos: $V = V_1 \oplus V_2$. Definimos una aplicación $T: V \to V$ de la manera siguiente:

Dado
$$u \in V$$
, hay $v_1 \in V_1$ y $v_2 \in V_2$ únicos tales que $u = v_1 + v_2$, entonces hacemos $T(u) \stackrel{\text{def}}{=} v_1$.

Llamamos a T la proyección de V sobre V_1 en la dirección de V_2 .

- (a) Demuestra que T es lineal. Halla su imagen y su núcleo. Demuestra que $T \circ T = T$.
- (b) Halla la matriz de T en una base $\{w_1, \ldots, w_{n+r}\}$, resultado de tomar una base $\{w_1, \ldots, w_n\}$ de V_1 y poner a continuación una base $\{w_{n+1}, \ldots, w_{n+r}\}$ de V_2 .
- (c) Sean $V = \mathbb{R}^2$ y u = (2, 1). Proyecta u sobre el eje $\langle \mathbf{e}_1 \rangle$ de abscisas en la dirección del eje $\langle \mathbf{e}_2 \rangle$ de ordenadas. Proyecta u sobre el eje de abscisas en la dirección de la recta $\langle (1, 3) \rangle$. Haz un dibujo.
- **5.** Sea $f: \mathbb{R}^2 \to \mathbb{R}^2$ dada por $f(\mathbf{x}) = A\mathbf{x}$, con $A = \begin{bmatrix} 0 & 1 \\ -10 & 7 \end{bmatrix}$.
- a) Halla, si es posible, una base \mathcal{B} de \mathbb{R}^2 tal que la matriz de f respecto de \mathcal{B} en salida y llegada sea $M = \begin{bmatrix} 5 & 0 \\ 0 & 2 \end{bmatrix}$. Misma pregunta con $M = \begin{bmatrix} 5 & 0 \\ 0 & 1 \end{bmatrix}$ y con $M = \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}$.

- b) Determina una igualdad $A=P\left[\begin{smallmatrix}5&0\\0&2\end{smallmatrix}\right]Q$, con P y Q inversas mutuas. Usa esta igualdad para hallar una raíz cuadrada de A, es decir una matriz R tal que RR=A.
- **6.** Consideramos la aplicación lineal $f: \mathbb{R}^6 \to \mathbb{R}^3$ dada por $f(\mathbf{x}) = A\mathbf{x}$, siendo

$$A = \left(\begin{array}{ccccc} 2 & 1 & 0 & -2 & 1 & 2 \\ 2 & 1 & -1 & 0 & 2 & 3 \\ -4 & -2 & 1 & 5 & 0 & -2 \end{array}\right).$$

- a) Utiliza el método de Gauss para hallar una base de $\operatorname{Im} f$ y una de $\ker f$.
- b) Extiende la base de ker f a una de \mathbb{R}^6 , añadiendo vectores de la base estándar.
- c) Utiliza el resultado para dar una base del espacio cociente $\mathbb{R}^6/\ker f$.
- 7. Sean V, W, espacios vectoriales, $F \subseteq V$ un subespacio vectorial y $f: V \to W$ una función lineal. Demuestra que si $F \subseteq \ker f$ entonces la fórmula g(v+F)=f(v) define correctamente una aplicación $g: V/F \to W$ y que esta g así definida es lineal.
- 8. Sea $f: \mathbb{R}^2 \to \mathbb{R}^2$ dada por $f(\mathbf{x}) = \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix} \mathbf{x}$.
- a) ¿Por qué es $(f \circ f)(\mathbf{x}) = \begin{bmatrix} 2 & 3 \\ 6 & 11 \end{bmatrix} \mathbf{x}$?
- b) Halla la matriz A de f respecto de la base $\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$ en salida y la base estándar en llegada.
- c) Halla la matriz B de $f^2=f\circ f$ respecto de $\mathcal B$ en salida y la base estándar en llegada.
- d) Explica por qué $B \neq A^2$.
- **9.** Para cada $a \in \mathbb{R}$ definimos $T_a : \mathbb{R}^2 \to \mathbb{R}^2$ por $T_a \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & a \\ 3 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$.
- a) Halla la matriz A_a de T_a respecto de la base $\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$ en salida y la base estándar en llegada.
- b) Halla la matriz B_a de T_a respecto de la base estándar en salida y la base $\mathcal B$ en llegada.
- c) Comprueba que A_a y B_a no son inversas la una de la otra, excepto si a=-1/3. Explica este fenómeno (indicación: para todo a calcula la compuesta $T_a \circ T_a$).