Predicting House Prices with Regression Techniques

A Kaggle Project

Tyler Wilbers
NYC Data Science Academy

Outline

- EDA
 - Missingness
 - Imputations
 - Other interesting EDA
 - Neighborhoods vs. Price Exploration
- Preprocessing
 - Skewness and Outliers
 - Box Cox Transformations
 - Standardize Predictors
 - Correlation
 - Multicollinearity
 - Selection
- Modeling
 - Tree methods
 - Linear
 - What we did wrong
 - What we did right
- Future Improvement
 - Kaggle Score
 - Future improvement

Exploratory Data Analysis (EDA)

Findings

- 80 variables(Exclude: ID)
 - \circ Categorical \rightarrow 63
 - \circ Continuous \rightarrow 17
- Counts of all NAs: 6965
- Number of Variables that contains missing values: 19

Amount of Missingness of each column

Relationship of missingness b/w each variable

Imputations

- We took a two part approach:
 - For continuous variable, Group by = neighborhood and impute mean.
 - For categorical variable, we just dummified;

Mis	creature
0	NaN
1	NaN
2	NaN
3	NaN
4	NaN
5	Shed

	Gar2	Othr	Shed	TenC
0	0	0	0	0
1	0	0	0	0
2	0	0	0	0
3	0	0	0	0
4	0	0	0	0
5	0	0	1	0

Correlation of each numerical predictor to the response OverallQual GrLivArea GarageCars GarageArea TotalBsmtSF 1stFlrSF FullBath TotRmsAbvGrd YearBuilt YearRemodAdd GarageYrBlt MasVnrArea Fireplaces BsmtFinSF1 Numerical Variables LotFrontage WoodDeckSF 2ndFlrSF OpenPorchSF HalfBath LotArea BsmtFullBath **BsmtUnfSF** BedroomAbvGr ScreenPorch PoolArea MoSold 3SsnPorch BsmtFinSF2 BsmtHalfBath MiscVal LowQualFinSF YrSold OverallCond MSSubClass EnclosedPorch KitchenAbvGr 0.0 0.2 0.6 0.8 Correlation to SalePrice

Further Exploration - Group by Neighborhood

Data Preprocessing

Skewness

Skewness (cont.)

 We used scipy.stats.skew which calculates the coefficient of skewness:

$$\frac{\mu_3}{\mu_2^{3/2}}$$

Where μ_i is the central moment.

- Negative skew usually indicates that the tail is on the left side of the distribution, and positive skew indicates that the tail is on the right.
- For normally distributed data, the skewness should be about 0.

Skewness of continuous variables

Box cox transformation

• We decided to perform a one parameter box cox transformation to the skewed variable that have a skewness s such that 2 < s < -2

$$y_i^{(\lambda)} = egin{cases} rac{y_i^{\lambda} - 1}{\lambda} & ext{if } \lambda
eq 0, \ \ln y_i & ext{if } \lambda = 0, \end{cases}$$

- Making this transformation with scipy.stats.boxcox1p helped us achieve symmetry, normality, or independence of the error terms.
 - It will also help us stabilize the variance of the distributions and improve the validity of association measures (e.g. correlation).

Example - Lot Area

Skewness (After box cox)

Feature Selection - Identifying Multicollinearity

Correlation HeatMap

-0.6

-0.3

-0.0

117					COLLCI	acion ne	Lacinap				
YearBuilt	1.00	0.25	0.15	0.40	0.28	0.19	0.09	0.83	0.54	0.48	0.59
BsmtFinSF1	0.25	1.00	-0.52	0.47	0.39	0.14	0.01	0.15	0.23	0.27	0.39
BsmtUnfSF	0.15	-0.52	1.00	0.44	0.33	0.25	0.25	0.19	0.21	0.18	0.22
TotalBsmtSF	0.40	0.47	0.44	1.00	0.81	0.41	0.27	0.33	0.45	0.48	0.65
1stFIrSF	0.28	0.39	0.33	0.81	1.00	0.53	0.39	0.23	0.45	0.48	0.62
GrLivArea	0.19	0.14	0.25	0.41	0.53	1.00	0.83	0.23	0.47	0.46	0.72
TotRmsAbvGrd	0.09	0.01	0.25	0.27	0.39	0.83	1.00	0.15	0.36	0.33	0.54
GarageYrBlt	0.83	0.15	0.19	0.33	0.23	0.23	0.15	1.00	0.59	0.57	0.54
GarageCars	0.54	0.23	0.21	0.45	0.45	0.47	0.36	0.59	1.00	0.89	0.68
GarageArea	0.48	0.27	0.18	0.48	0.48	0.46	0.33	0.57	0.89	1.00	0.66
SalePrice	0.59	0.39	0.22	0.65	0.62	0.72	0.54	0.54	0.68	0.66	1.00
	YearBuilt	BsmtFinSF1	BsmtUnfSF	TotalBsmtSF	1stFIrSF	GrLivArea	TotRmsAbvGrd	GarageYrBlt	GarageCars	GarageArea	SalePrice

Variance Inflation Factor

$$ext{VIF}_{ ext{i}} = rac{1}{1-R_i^2}$$

where R2i is the R2 from a regression of Xi onto all of the other predictors. If R2, then collinearity is present, and so the VIF will be large.

Multicollinearity

- We found that **TotalBsmtSF** is co-linear with **1stFlrSF** (ρ = 0.82)
 - VIF (TotalBsmtSF) = 11.8922
 - VIF(1stFlrSF) = 36.4134
- Due to the higher VIF we opted to drop 1stFIrSF.

Multicollinearity

- We found that GarageArea is co-linear with GarageCars (ρ = 0.89).
 - VIF(GarageCars) = 8.28583
 - VIF(GarageArea) = 8.18866
- We opted to drop **GarageArea**.

Correlation HeatMap

-0.6

-0.3

-0.0

1172						acion ne					
YearBuilt	1.00	0.25	0.15	0.40	0.28	0.19	0.09	0.83	0.54	0.48	0.59
BsmtFinSF1	0.25	1.00	-0.52	0.47	0.39	0.14	0.01	0.15	0.23	0.27	0.39
BsmtUnfSF	0.15	-0.52	1.00	0.44	0.33	0.25	0.25	0.19	0.21	0.18	0.22
TotalBsmtSF	0.40	0.47	0.44	1.00	0.81	0.41	0.27	0.33	0.45	0.48	0.65
1stFir3F	0.20	0.39	0.33	0.61	1.00	0.53	0.33	0.23	0.45	0.40	0.62
GrLivArea	0.19	0.14	0.25	0.41	0.53	1.00	0.83	0.23	0.47	0.46	0.72
TotRmsAbvGrd	0.09	0.01	0.25	0.27	0.39	0.83	1.00	0.15	0.36	0.33	0.54
GarageYrBlt	0.83	0.15	0.19	0.33	0.23	0.23	0.15	1.00	0.59	0.57	0.54
GarageCars	0.54	0.23	0.21	0.45	0.45	0.47	0.36	0.59	1.00	0.89	0.68
GarageArea	0.48	9.27	9.18	9.48	0.18	0.16	0.33	0.57	0.80	1.00	0.66
SalePrice	0.59	0.39	0.22	0.65	0.62	0.72	0.54	0.54	0.68	0.66	1.00
	YearBuilt	BsmtFinSF1	BsmtUnfSF	TotalBsmtSF	1stFlrSF	GrLivArea	TotRmsAbvGrd	GarageYrBlt	GarageCars	GarageArea	SalePrice

Removing Outliers

Outliers Discovery - Examples

Modeling

Approach

Tree Models:

- Random Forest Regressor
- XGBoost

Linear Models:

- Lasso
- Ridge
- ElasticNet

Tree Methods and Hyperparameter optimization

Random Forest - Feature Importance

XGBoost - Feature Importance

Tree Method Results

Model	Train CV Scores (RMSE)
Random Forest	0.1361
XGBoost	0.1258

Distribution of Sale Price with Transformation

Before transformation

After log transformation

Log Transform for Normally Distributed Residuals

Regularized Regression: Hyperparameter Testing w/ GridSearch

Lasso Coefficients

Original # of Features: 285

of Features
After Lasso:
105

Lasso Predictions on Train

Model Cross Validation Scores

Model	Train CV Scores (RMSE)
Random Forest	0.1361
XGBoost	0.1258
Lasso	0.1084
Ridge	0.1099
Elastic Net	0.1112

Future Improvement

Conclusion

- We scored multiple models, but in the end Lasso scored the highest on Kaggle.
 - o RMSLE = 0.11544

House Prices: Advanced Regression Techniques

355/4295 Top 9%

Predict sales prices and practice feature engineering, RFs, and gradient boosti...

Getting Started ⋅ Ongoing ⋅ Natural tata, regression

Q & A