	ъ. г	***
	Математический а	інализ III
Конспект	г основан на лекциях Констан	тина Петровича Кохас

Оглавление

1	Многомерный анализ		
	1.1	Сведения из линейной алгебры	2
	1.2	Дифференцируемость функций нескольких переменных	6

Глава 1

Многомерный анализ

1.1 Сведения из линейной алгебры

Определение. $L(\mathbb{R}^m,\mathbb{R}^n)$ — пространство линейных отображений из \mathbb{R}^m в \mathbb{R}^n

Определение. Элементы $L(\mathbb{R}^m, \mathbb{R}^n)$ называются операторами

Определение. *Нормой* на множестве X называется отображение $\| \ \| : X \to \mathbb{R}$, удовлетворяющее свойствам

- i) $||x|| \ge 0$, $||x|| = 0 \iff x = 0$
- ii) $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$
- iii) $||x + y|| \le ||x|| + ||y||$

Определение. Нормированным пространством называется пара $\langle X, \| \ \| \rangle$

Замечание. Отображение, задаваемое формулой $d(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}||$ является метрикой. Поэтому все нормированные пространства сразу можно считать и метрическими.

Теорема 1.1.1. (Об эквивалентности норм в конечномерных пространствах) Пусть V — конечномерное линейное пространство, а $\| \ \|_1$ и $\| \ \|_2$ — нормы на V. Тогда

$$\exists c, C > 0: c \|\mathbf{x}\|_1 \le \|\mathbf{x}\|_2 \le C \|\mathbf{x}\|_1$$

Доказательство. Пусть $||x|| = ||c_1e_1 + c_2e_2 + \ldots + c_ne_n|| \stackrel{def}{=} \sqrt{\sum_{i=1}^n c_i^2}.$

i) || || — норма.

$$\cdot \sqrt{\sum_{i=1}^n c_i^2} \geqslant 0$$
 — очевидно

$$\cdot \sqrt{\sum_{i=1}^n (lpha c_i)^2} = lpha \sqrt{\sum_{i=1}^n c_i^2}$$
 — очевидно

$$\cdot \sqrt{\sum_{i=1}^n (c_i+b_i)^2} \leqslant \sqrt{\sum_{i=1}^n c_i^2} + \sqrt{\sum_{i=1}^n b_i^2}$$
 — неравенство Минковского

іі) Проверим теперь, что все нормы на V эквивалентны $\| \ \|$.

$$||x_1e_1 + \ldots + x_ne_n||_1 \leq \sum_{i=1}^n ||x_ie_i||_1 = \sum_{i=1}^n |x_i| ||e_i||_1 \leq_{\text{KEIII}} \sqrt{\sum_{i=1}^n |x_i|^2} \sqrt{\sum_{i=1}^n ||e_i||_1^2} = c\sqrt{\sum_{i=1}^n |x_i|^2}$$

тогда

$$|\|\mathbf{x}\|_{1} - \|\mathbf{y}\|_{1}| \le \|\mathbf{x} - \mathbf{y}\|_{1} \le c \|\mathbf{x} - \mathbf{y}\|_{1}$$

Поэтому $\| \ \|_1$ — непрерывное отображение $\mathbb{R}^m \to \mathbb{R}$. Раз так, найдем максимум и минимум этого отображения на сфере (компакт, поэтому максимум и минимум реализуются). Пусть

$$c_1 := \min_{\mathbf{x} \in S^n} \|\mathbf{x}\|_1$$
$$c_2 := \max_{\mathbf{x} \in S^n} \|\mathbf{x}\|_1$$

Ни c_1 , ни c_2 не равны нулю (потому что норма равна нулю только на нулевом векторе, который сфере не принадлежит). Тогда

$$\|\mathbf{x}\|_{1} = \left\| \frac{\mathbf{x}}{\|\mathbf{x}\|} \right\|_{1} \|\mathbf{x}\| \geqslant c_{1} \|\mathbf{x}\|$$
$$\|\mathbf{x}\|_{1} = \left\| \frac{\mathbf{x}}{\|\mathbf{x}\|} \right\|_{1} \|\mathbf{x}\| \leqslant c_{2} \|\mathbf{x}\|$$

что и доказывает утверждение теоремы.

Определение. Нормой оператора называется отображение $\| \ \| : L(\mathbb{R}^m, \mathbb{R}^n) \to \mathbb{R}$

$$\|\mathcal{A}\| \stackrel{def}{=} \sup_{\mathbf{x} \in S^m} \|\mathcal{A}\mathbf{x}\|_{\mathbb{R}^n}$$

Замечание. $\sup_{\|x\|=1} Ax = \sup_{\|x\| \leqslant 1} Ax$

Теорема 1.1.2. (Пространство линейных операторов) $\| \ \| : L(\mathbb{R}^m, \mathbb{R}^n) \to \mathbb{R}$ — действительно норма.

Доказательство.

$$\|\mathcal{A}(x_1e_1 + \ldots + x_ne_n)\| \le \sum_{i=1}^n |\mathbf{x}| \|\mathcal{A}e_i\| \le_{\text{KBIII}} \|\mathbf{x}\| \sum_{i=1}^n \|\mathcal{A}e_i\|$$

Поэтому супремум конечен для всех элементов $L(\mathbb{R}^m, \mathbb{R}^n)$, то есть отображение определено корректно. Проверим свойства нормы:

i) $\|A\| = 0 \iff \forall \mathbf{x} \in S^n \ A\mathbf{x} = 0 \iff A = 0$. Неотрицательность очевидна.

ii)
$$\|\alpha A\| = \sup_{\mathbf{x} \in S^n} \|\alpha A \mathbf{x}\| = \sup_{\mathbf{x} \in S^n} |\alpha| \|A \mathbf{x}\| = \alpha \|A\|$$

iii)
$$\|A + B\| = \sup_{\mathbf{x} \in S^n} A\mathbf{x} + B\mathbf{x} \le \sup_{\mathbf{x} \in S^n} A\mathbf{x} + \sup_{\mathbf{x} \in S^n} B\mathbf{x}$$

Теорема 1.1.3. (Липшицевость линейных опрераторов) $A \in L(\mathbb{R}^m, \mathbb{R}^n) \Longrightarrow A$ — липшицево

Доказательство.

$$\|\mathcal{A}\mathbf{x} - \mathcal{A}\mathbf{y}\| = \|\mathcal{A}(\mathbf{x} - \mathbf{y})\| = \left\|\mathcal{A}\left(\frac{\mathbf{x} - \mathbf{y}}{\|\mathbf{x} - \mathbf{y}\|}\right)\right\| \|\mathbf{x} - \mathbf{y}\| \le \|\mathcal{A}\| \|\mathbf{x} - \mathbf{y}\|$$

Теорема 1.1.4. (О произведении линейных операторов) $\mathcal{A} \in L(\mathbb{R}^m, \mathbb{R}^n), \ \mathcal{B} \in L(\mathbb{R}^n, \mathbb{R}^l), \ \text{тогда} \ \mathcal{B} \mathcal{A} \in L(\mathbb{R}^m, \mathbb{R}^l), \ \text{причем} \ \|\mathcal{B} \mathcal{A}\| \leq \|\mathcal{B}\| \|\mathcal{A}\|$ Доказательство.

$$\|\mathcal{B}\mathcal{A}\| = \sup_{\mathbf{x} \in S^n} \mathcal{B}(\mathcal{A}\mathbf{x})$$

$$= \sup_{\mathbf{x} \in S^n} \left(\|\mathcal{A}\mathbf{x}\| \cdot \mathcal{B}\left(\frac{\mathcal{A}\mathbf{x}}{\|\mathcal{A}\mathbf{x}\|}\right) \right)$$

$$\leq \sup_{\mathbf{x} \in S^n} \|\mathcal{A}\mathbf{x}\| \cdot \sup_{\mathbf{x} \in S^n} \mathcal{B}\left(\frac{\mathcal{A}\mathbf{x}}{\|\mathcal{A}\mathbf{x}\|}\right)$$

$$\leq \|\mathcal{A}\| \|\mathcal{B}\|$$

Определение. Ω_m — пространство обратимых линейных операторов на \mathbb{R}^m

Лемма 1.1.5. (Критерий обратимости линейного оператора) $A \in L(\mathbb{R}^m, \mathbb{R}^n)$ обратим тогда и только тогда, когда m = n и Ker(A) = 0

Доказательство. Линейная алгебра.

Лемма 1.1.6. (Об условиях, эквивалентных обратимости оператора) $\mathcal{A} \in L(\mathbb{R}^m, \mathbb{R}^m)$ обратим $\Longleftrightarrow \exists c > 0 \ \forall \mathbf{x} \ \|\mathcal{A}\mathbf{x}\| \geqslant \|\mathbf{x}\|,$ причем $\|\mathcal{A}^{-1}\| \leqslant \frac{1}{c}$

Доказательство. $||A\mathbf{x}|| \ge c \, ||\mathbf{x}|| \iff \operatorname{Ker}(A) = 0 \iff A$ обратим. $||A\mathbf{x}|| \ge c \, ||\mathbf{x}|| \iff ||\mathbf{y}|| \ge c \, ||A^{-1}\mathbf{y}|| \iff ||A^{-1}\mathbf{y}|| \le \frac{1}{c} \, ||\mathbf{y}||$

Теорема 1.1.7. (Об обратимости оператора, близкого к обратимому) $\mathcal{A} \in \Omega_m, \, \mathcal{B} \in L(\mathbb{R}^m, \mathbb{R}^m), \, \|\mathcal{A} - \mathcal{B}\| < \frac{1}{\|\mathcal{A}^{-1}\|}, \,$ тогда

i)
$$\mathcal{B} \in \Omega_m$$

ii)
$$\|\mathcal{B}^{-1}\| \le \frac{1}{\|\mathcal{A}^{-1}\|^{-1} - \|\mathcal{A} - \mathcal{B}\|}$$

iii)
$$\|\mathcal{A}^{-1} - \mathcal{B}^{-1}\| \le \frac{\|\mathcal{A}^{-1}\|}{\|\mathcal{A}^{-1}\|^{-1} - \|\mathcal{A} - \mathcal{B}\|} \|\mathcal{A} - \mathcal{B}\|$$

Доказательство.

i, ii)

$$\|\mathcal{B}\mathbf{x}\| \ge \|\mathcal{A}\mathbf{x}\| - \|(\mathcal{A} - \mathcal{B})\mathbf{x}\| \ge \left(\frac{1}{\|\mathcal{A}^{-1}\|} - \|\mathcal{A} - \mathcal{B}\|\right)\|\mathbf{x}\|$$

первое неравенство — неравенство треугольника, а второе выполнено потому, что

$$\|\mathbf{x}\| = \|\mathcal{A}\mathcal{A}^{-1}\mathbf{x}\| \le \|\mathcal{A}\| \|\mathcal{A}^{-1}\mathbf{x}\|$$

Далее по лемме получаем обратимость В и оценку на его норму.

iii)

$$\begin{aligned} \mathcal{A}^{-1} - \mathcal{B}^{-1} &= \mathcal{A}^{-1} (\mathcal{B} - \mathcal{A}) \mathcal{B}^{-1} \\ \left\| \mathcal{A}^{-1} - \mathcal{B}^{-1} \right\| &\leq \left\| \mathcal{A}^{-1} \right\| \left\| \mathcal{B} - \mathcal{A} \right\| \left\| \mathcal{B}^{-1} \right\| \leq_{ij} \frac{\left\| \mathcal{A}^{-1} \right\|}{\left\| \mathcal{A}^{-1} \right\|^{-1} - \left\| \mathcal{A} - \mathcal{B} \right\|} \left\| \mathcal{A} - \mathcal{B} \right\| \end{aligned}$$

Следствие 1.1.8. Множество Ω_m открыто в метрической топологии $\langle L(\mathbb{R}^m,\mathbb{R}^m), \| \ \| \rangle$

1.2 Дифференцируемость функций нескольких переменных

Определение. Непустое множество $\Omega \subseteq \mathbb{R}^m$ называется *областью*, если оно открыто и связно.

Определение. Отображение $f:\Omega\to\mathbb{R}^n$, Ω — область в \mathbb{R}^m называется $\partial u \phi \phi$ еренцируемым в точке $\mathbf{x}\in\Omega$, если существуют $\mathcal{A}\in L(\mathbb{R}^m,\mathbb{R}^n)$, $\alpha\colon\Omega\to\mathbb{R}^n$ — бесконечно малое в точке \mathbf{x} , такие что

$$f(\mathbf{x} + \mathbf{h}) = f(\mathbf{x}) + A\mathbf{h} + \alpha(\mathbf{h}) ||\mathbf{h}||, \mathbf{h} \to 0$$

или, что то же самое

$$\lim_{\mathbf{h}\to 0} \frac{\|f(\mathbf{x}+\mathbf{h}) - f(\mathbf{x}) - \mathcal{A}\mathbf{h}\|}{\|\mathbf{h}\|} = 0$$

Замечание. Функция α из определения дифференцируемости зависит не только от **h**, но и от **x**.

Определение. Оператор $A \in L(\mathbb{R}^m, \mathbb{R}^n)$ из определения дифференцируемости будем называть $\partial u \phi \phi$ ренциалом f в точке x и обозначать $d_x f = A$.

Замечание. Отображение $\mathbf{x} \mapsto \mathrm{d}_{\mathbf{x}} f$, действующее из \mathbb{R}^m в $L(\mathbb{R}^m, \mathbb{R}^n)$ называют $\partial u \phi$ -ференциалом.

Определение. Матрицу, соответствующую производному оператору называют матрицей Якоби отображения f в точке \mathbf{x} .

Теорема 1.2.1. (Единственность производной)

 $f:\Omega\to\mathbb{R}^n$, $\mathbf{x}\in\Omega$, f дифференцируема в \mathbf{x} , тогда существует единственный производный оператор f в точке \mathbf{x} .

Доказательство. Проверим, что для любого $\mathbf{z} \in \mathbb{R}^m$ $A\mathbf{z}$ задано однозначно. Пусть $\mathbf{h} = t\mathbf{z}$ при $t \in \mathbb{R}$:

$$f(\mathbf{x} + t\mathbf{z}) = f(\mathbf{x}) + \mathcal{A}(t\mathbf{z}) + \alpha(||t\mathbf{z}||) ||t\mathbf{z}||, t\mathbf{z} \to 0$$

Это эквивалентно

$$f(\mathbf{x} + t\mathbf{z}) = f(\mathbf{x}) + tA\mathbf{z} + t\alpha(t), t \to 0$$

Так как $\|\mathbf{z}\|$ — константа. Тогда

$$A\mathbf{z} = \frac{f(\mathbf{x} + t\mathbf{z}) - f(\mathbf{x})}{t} - \alpha(t), \ t \to 0 \Longleftrightarrow$$

$$A\mathbf{z} = \lim_{t \to 0} \frac{f(\mathbf{x} + t\mathbf{z}) - f(\mathbf{x})}{t}$$