SUPERVISED LEARNING BASICS

-MUKESH KUMAR

AGENDA

Definition and Overview

 Key Terminologies: Features, Labels, Training Data, Testing Data

 Difference between Regression and Classification

What is Supervised Learning

- Supervised learning is a type of machine learning algorithm that learns from labeled training data to make predictions or decisions.
- The training data consists of input data paired with the desired output, which acts as a "supervisor" to guide the learning process.
- The goal is for the algorithm to learn a mapping function that can accurately predict the output for new, unseen input data.

Features

- Features are the input variables or attributes used by the model to make predictions.
- Each feature represents a specific characteristic or aspect of the data.
- **Example:** In a house price prediction model, features might include the number of bedrooms, square footage, location, etc.

Features

- Features can be:
 - Numerical: Quantifiable values, such as age or height.
 - Categorical: Qualitative values, such as gender or color.
 - Text-based: Data derived from text, such as reviews or comments.
- In a dataset, features are typically represented as columns.
 For example, in a house price prediction model, features might include the number of bedrooms, square footage, and location

Labels

 Labels are the target variable or output that the model is trying to predict. In supervised learning, each data point in the training set has a corresponding label.

• **Example:** In a house price prediction model, the label would be the actual price of the house.

Training Data

- Training data is the dataset used to train the machine learning model.
- It contains input features along with their corresponding labels, allowing the model to learn the relationship between inputs and outputs.
- **Example:** A dataset containing various features of houses along with their prices is used to train the model.

Testing Data

- Testing data is a separate portion of the dataset used to evaluate the performance of the model.
- The model has not seen this data during training, so it helps in assessing how well the model generalizes to new, unseen data.
- Example: After training a house price prediction model, it is tested on a new set of houses (with known prices) to see how accurately it can predict those prices.

REGRESSION VS CLASSIFICATION

Classification

 This task involves predicting discrete labels or categories based on input features.

• The output is categorical, meaning it classifies data points into distinct classes.

 For example, determining whether an email is "spam" or "not spam" is a classification problem.

Classification

- Objective: Predict a discrete label or category.
- Output: A class label, such as 'spam' or 'not spam', 'cat' or 'dog'.
- Examples:
 - Email Spam Detection: Classifying emails as spam or not spam.
 - Image Classification: Identifying objects within images (e.g., identifying whether an image contains a cat or a dog).

Classification

- Algorithms: Logistic regression, decision trees, random forests, support vector machines (SVM), etc.
- Evaluation Metrics: Accuracy, precision, recall, F1 score, confusion matrix, etc.

Regression

- This task involves predicting continuous numerical values.
- The output is a real number, which can represent a wide range of values.
- For instance, predicting the price of a house based on its features (size, location, etc.) is a regression problem.

Regression

- Objective: Predict a continuous numerical value.
- Output: A real-valued number, such as the price of a house, temperature, or salary.
- Examples:
 - House Price Prediction: Predicting the price of a house based on its features (e.g., size, location).
 - Stock Price Forecasting: Estimating the future price of a stock.

Regression

- Algorithms: Linear regression, polynomial regression, support vector regression (SVR), etc.
- Evaluation Metrics: Mean squared error (MSE), mean absolute error (MAE), R-squared, etc.