AD/A-002 280

EXPERIMENTS ON RUDDERS WITH SMALL FLAPS IN FREE-STREAM AND BEHIND A PROPELLER

Justin E. Kerwin, et al

Massachusetts Institute of Technology

Prepared for:

Office of Naval Research

October 1974

DISTRIBUTED BY:

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM	
1. REPORT NUMBER 74-16	ADA-002 280	
4. TITLE (and Subtitle)	S. TYPE OF REPORT & PERIOD COVERED	
EXPERIMENTS ON RUDDERS WITH SMALL I		
IN FREE-STREAM AND BEHIND A PROPELI	6. PERFORMING ORG. REPORT NUMBER	
7. Author(s) Justin E. Kerwin	8. CONTRACT OR GRANT NUMBER(s)	
S. Dean Lewis Bohdan W. Oppenheim	N00014-67-A-0204-0067	
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK	
Dept. of Ocean Engineering	AREA & WORK UNIT NUMBERS	
Massachusetts Institute of Technolo Cambridge, Ma 02139	рду	
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DAYE	
Office of Nevel Bearing	October 1974	
Office of Naval Research	17 WILLIAMS OF PAGES 157	
14 MONITORING AGENCY NAME & ADDRESS(If different from Contr	rolling Office) 18. SECURITY CLASS. (of this report)	
	Unclassified	
	18a. DECLASSIFICATION/DOWNGRADING SCHEDULE	
16. DISTRIBUTION STATEMENT (of this Report)		
Distribution of this document is u	nlimited	
17. DISTRIBUTION STATEMENT (of the ebetrect entered in Block 20,	, if different from Report)	
18. SUPPLEMENTARY NOTES Reproduced by		
NATIONAL TECH	NICAL	
INFORMATION S US Department of Corn		
Springfield, VA. 221	51	
19. KEY WORDS (Continue on reverse side if necessary and identify by	y block number)	
Control Surfaces		
Flapped Rudders		
Water Tunnel Test		
Rudder Test Behind a Propeller		
20. ABSTRACT (Continue on reverse side if recessory and identify by black number)		
Water tunnel experiments were performed to determine the charac-		
teristics of rudders with small fl		

behind a propeller. The results include plots of lift, drag, rudder moment, and flap moment coefficient for a complete range of angles

of attack and flap deflection.

Best Available Copy

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Ocean Engineering Cambridge, MA 02139

Report No. 74-16

EXPERIMENTS ON RUDDERS WITH SMALL FLAPS IN FREE-STREAM AND BEHIND A PROPELLER

bу

Justin E. Kerwin
S. Dean Lewis
and
Bohdan W. Oppenheim

October 1974

This work was supported by the Office of Naval Research, Contract N00014-67-A-0204-0067, NR 062-467, MIT OSP 80464.

Approved for public release; distribution unlimited.

EXPERIMENTS ON RUDDERS WITH SMALL FLAPS IN FREE-STREAM AND BERIND A PROPELLER

TABLE OF CONTENTS

		Page
	Abstract	i
	Nomenclature	ii
I.	Introduction	•
II.	Test Configuration	2
III.	Data Reduction	
IV.	Results	
V.	Conclusions	15
	List of References	17
	List of Tables	18
	List of Figures	19
	List of Appendices	21
	Tables	22
	Figures	
	Appendix 1	48
	Appendix 2	
	Appendix 3	
	Appendix 4	
	Appendix 5	
	Appendix 6	
	Appendix 7	112

ABSTRACT

Water tunnel experiments were performed to determine the characteristics of rudders with small flaps both in the free stream and behind a propeller.

The results include plots of lift, drag, rudder moment, and flap moment coefficient for a complete range of angles of attack and flap deflection.

List of Symbols

- A = total rudder area (flap plus skeg)
- a = half width of tip chord @ 20% of tip chord forward of trailing edge (see Fig. 2, sketch 9)
- b = half width of root chord @ same lorgitudinal position
- $\frac{1}{c} = 1 \text{ ength of mean aerodynamic chord } \frac{2}{3} \left[c_t + c_r \frac{c_t c_r}{c_r c_r} \right]$
- $C_{D} = \text{drag coefficient} = D/\frac{\rho}{2} AU_{\infty}^{2}$
- $C_L = 1ift coefficient = L/\frac{\rho}{2} AU_{\infty}^2$
- $C_{M} = \text{rudder moment coefficient} = M/\frac{\rho}{2} \overline{\text{AcU}}_{\infty}^{2}$
- C_{MF} = flap moment coefficient = $MF/\frac{c}{2}$ AcU_{∞}^2
- c, = tip chord
- c, = root chord
- D * propeller diameter, rudder drag
- E = propeller efficiency, $JK_T/2\pi K_0$
- flap = movable after portion of rudder
- flap area = rudder area between flap hinge location and trailing edge of rudder
- flap gap = distance between trailing edge of skeg and leading edge of flap measured in the rudder plane of symmetry with zero flap deflection
- J = U_n/ND
- $K_{\rm T} = T/\rho N^2 D^4$
- $K_{\rm C} = Q/\rho N^2 D^5$
- L = total lift of rudder
- M = total moment acting on rudder about stock axis

MAC = mean aerodynamic chord = c

MF = moment acting on flap about flap hinge line

N = propeller speed

Q = torque on propeller

rudder = flap plus skeg

skeg = forward portion of rudder

T = thrust on propeller

taper ratio = c_t/c_r

U = local velocity near wall or near splitter plate in water tunnel

U_m = uniform flow velocity well away from wall

U = average velocity of flow over rudder in wake of a propeller

 $\mathbf{x}_{_{\mathbf{C}}}$ - axial clearance between end of propeller hub and the leading edge of the NAC

x' = axial distance along chord of rudder, nondimensionalized by a rudder local chord

 y_c = transverse clearance between propeller axis and nudder plane of symmetry $\alpha = 0$

y' = transverse distance along thickness of rudder, nondimensionalized by a local rudder chord

z = spanwise distance from splitter plate

= angle of attack on skeg = rudder angle

ā = angle of deflection of flap relative to skeg = flap angle

fluid mass density

I. INTRODUCTION

In 1963-72, a project was carried out at MIT, to provide the beginning of a systematic series of experiments on flapped rudders [1]. Free stream characteristics of a series of twelve rudders with systematic variations in the amount of flap area and flap balance were measured. In this series, the flap size varied from 20% to 60% of the total projected rudder area, and the flap balance varied from 0 to 40% of the flap chord.

One of the conclusions of this study was that flap balance, while beneficial in reducing flap moment, greatly reduced rudder effectiveness. It was also observed that the rudder with the smallest flap had quite good performance characteristics. If the flap is sufficiently small there is obviously less need for reducing flap moment through balance. It therefore would appear that a rudder with a small, unbalanced flap might offer substantial improvement over an all-movable rudder and still be practical from a structural point of view. The presen: experimental program was therefore planned to explore this possibility.

In addition, it is well known that the characteristics of an fil-movable rudder are influenced by the presence of a propeller. However, there is very little information available on the influence of a propeller on the effectiveness of a rudder with a small flap, or on the influence of propeller-rudder clearance on rudder performance. Rudder tests both in free-stream and behind a propeller were therefore included in the current experimental program.

II. TEST CONFIGURATION

Rudder and Flap Configurations

Table 1 compares the overall rudder and flap configurations of the current program to the configurations tested under the previous series tested in 1968-72 [1]. The current series has only two model rudders, one with a 20% flap, and a second with a 10% flap. These flap sizes are either equal to or smaller than any of the flaps used in the previous series. Characteristics of an all-movable rudder with the current planform can be estimated with sufficient accuracy from the results for zero flap deflection from either model.

The geometric aspect ratio of the current rudder series and the previous series was selected to be identical, with a value of 1.4. Other geometric features of the current series such as taper ratio and sweep angle were intended to be chosen as optimum values from the program developed and described in [2]. Following exercise of this program other changes became desirable. Each of these changes will be discussed.

Flap Size

The reason for the flap sizes selected for the current series is that the 20% flap, zero balance rudder was the best of the rudders tested in the previous program and the results of that program aroused speculation that a rudder with a flap smaller than 20% might exhibit even more favorable characteristics than the 20% flap. A 10% flap rudder was therefore added to the current series.

Sweep Angle and Taper Ratio

The sweep angle and taper ratio of the current series was determined on the basis of the lifting surface program calculations given in [2]. The

optimum taper ratio from these calculations came out to be, coincidentally, identical with that of the previous series, namely 0.60. The optimum sweep angle came out to be 15° aft compared to 11° aft used with the previous rudders. Furthermore the combination of a taper ratio of 0.60 and a sweep angle of 15° of the quarter chord resulted in the trailing edge of the rudder being perpendicular to the root and tip chords. Since the flap hinge is also normal to the root chord, significant simplification in the geometry of the flap was made possible.

Sectional Shape and Thicknes, Ratio

An NACA 66 profile was selected for the previous tests because its maximum thickness is well aft of the leading edge, which was desirable for the large-flap runders included in that series. Since no large-flap runders are included in the current program this constraint no longer applies. An NACA 63a profile was therefore selected for the current series because it should have a larger stall angle and higher maximum lift than the 66 profile.

The previous series tapered from a root thickness ratio of 0.20 to a tip thickness ratio of 0.10 following typical destroyer rudder practice. However, one of the reasons given in [1] for the poor maximum lift coefficient of the previous series compared, for example, to the Whicker-Fehlner data [3] is that the latter had a uniform thickness ratio of 0.15. For this reason it was decided to adopt an NACA 632A015 profile, [4].

The 632A015 sections have however been slightly altered in order to develop a two-dimensional prismatic flap and flap gap. This permits the flap section to consist only of a circular arc leading edge and straight lines emanating from the tangency points of the leading edge to the sharp trailing edge with a selected trailing edge thickness of 0.20 inches. The details of how this alteration was accomplished are described in Appendix 1

and depicted in Fig. 2.

As a result of this alteration, the final thickness ratio is not a constant 0.15 but in fact varies from 0.1507 at the root to 0.1562 at the tip. A comparison of the original and modified airfoil coordinates appears in Table 2.

Scale

Testing of rudder and propeller combinations imposes the constraint that the models simulate current ship practice in their relation to each other and to the boundary which models the ship's hull. We assume in terms of propeller diameter, D, that rudder span is 1.05D, propeller tip clearance from hull is 0.3D, and the propeller tip extends 0.25D beyond the rudder tip. Since our propeller drive is mounted in the center of the tunnel, then one possible combination would be a 12.5" dia. propeller, and a rudder with a 13.12" span. This would have resulted in very large hydrodynamic loads for our dynamometer and would have been much too large for blockage of the flew. In fact, for some transverse locations of the rudder and at large flap deflections the flap would touch the tunnel wall.

The rudder model tested as shown in Fig. 1, is 21% smaller than the previous series. Its span was determined by the above restrictions and by the availability of a suitable propeller.

Propeller

The propeller used in the current tests is a typical modern five-bladed propeller designated as No. 4427 by NSRDC, with a diameter of 7.48" and a pitch of 8.03". The design value of J is 0.8. The characteristics of this propeller in uniform flow as measured in the MIT tunnel, corrected for wall effects, are show in Fig. 3. Tabulated values of the faired data in the regio of the design J appear in Table 3.

Overall Test Set-up

The final form of the test set-up of the rudder and propeller for the experiments of this report in the MIT Water Tunnel is shown in Fig. 4.

Aside from the introduction of the propeller, this set-up differs from the one described in [1] in two important respects:

- a) A splitter plate is introduced;
- b) The rudder is mounted on a turntable fitted into the splitter plate so that there is no longer a gap between the root of the rudder and the plate against which it is mounted. Also, the rudder may be moved laterally on the turntable.

This first change came about because of the reduction in rudder size.

To achieve the desired propeller tip clearance of 0.3D with the selected 7.48rd

propeller, a splitter plate was essential. Furthermore the splitter plate

was expected to reduce the thickness of the boundary layer at the rudder

which was desirable.

The turntable was a necessary complication since the main dynamometer could not be displaced laterally to provide transverse clearance between the rudder and propeller. Provision was therefore made to displace the rudder model laterally on the turntable. This arrangement had the undesirable result of coupling rudder angle of attack with propeller-rudder longitudinal clearance. Thus, if the rudder is a distance, y_c , off of the propeller axis, the axial location of the propeller is changed by a distance y_c sin a where a is the rudder angle. This change could be compensated for by a corresponding change in propeller longitudinal position or by cross fairing of the data.

In the current tests, the rudder stock location must be fixed relative to the chord of the rudder because it affects both the axial clearance and

the transverse positions of the rudder relative to the propeller. These dimensions are two of the most important variables whose effects we are eager to determine in our tests. It would be desirable to locate the stock at the position in which it is likely to be installed in practice. This position is roughly that corresponding to zero torque on the rudder stock at an angle of attack between 10° and 15°. According to [1], this corresponds to roughly 30% of the MAC aft of the leading edge at the MAC for the 20% flap rudder at a rudder deflection angle of 12.5° and a flap deflection relative to the rudder of 12.5°. Unfortunately, because of structural reasons, it was not possible to locate the stock at this point. In the current series, the stock is 38.28% of the MAC aft of the leading edge at the MAC.

An additional complication of mounting the rudder lower in the tunnel on the turntable was that this imposed larger bending moments on the mounting shaft which supports the turntable. To reduce deflections to a minimum under hydrodynamic and vibratory loads it was necessary to increase shaft diameter to 1.5 inches. This required extensive changes to the dynamometer, including a new shaft clamp, a larger hole bored through the measuring element and new shaft seals.

The test set-up allows for the following changes in propeller-rudder relative positions:

- a) Axial clearance between the propeller and the leading edge of the rudder can be varied continuously between 0.5D and 1.0D where D is the propeller diameter;
- b) The transverse position of the rudder can be adjusted so that it can be tested at values of y_C of 0, 0.5" (0.067D), 1.0" (0.134D), 1.5" (0.201D) and 2" (0.268D) off of the propeller axis. (These positions correspond only to zero rudder deflection angle for all cases where the rudder is off of the propeller axis.)

As noted earlier, propeller tip clearance to the splitter plate simulating the ship's hull is 0.3D. The rudder extends to within 0.25D of the bottom of the propeller. The arrangement of the rudder on the turntable is shown in Fig. 5. The range of axial clearances and transverse positions in which the rudder can be tested is more than adequate to cover current design practice.

The previous method for measuring angle of attack on the rudder was by a mechanical counter which was geared to the base plate of the dynamometer. An optical check of this system revealed errors of up to ±0.2 degrees, presumably due to gear imperfections, wear, and backlash. A new optical system was therefore designed and installed. A curved scale made to order was mounted rigidly on the wall such that it was at constant radius from the dynamometer center of rotation. A telescope with cross hairs mounted on top of the dynamometer was used to read angle of attack. The scale divisions were selected so that angle of attack could be read directly in degrees. The accuracy of this system was approximately ±0.01 degrees, which was more than adequate to improve the quality of the data.

The basic rudder dynamometer used in these tests was described in [1] by text and photographs, and is unchanged except as previously mentioned. Briefly, the measuring system is supported in space by six load cells, whose reactions are measured by six Lebow digital strain indicators. These outputs provide all the information necessary to determine forces and moments on the rudder about any three convenient axes. Hinge moment of the flap about the flap axis was measured by a special sensor which also serves to clamp the flap at any desired deflection. Four strain gages were mounted on the sensor forming a full four-arm bridge to achieve a temperature compensated output.

This output was read on a seventh Lebow digital strain indicator. A special jig was built to measure flap deflection.

Fig. 6 is a photograph of the MIT Water Tunnel with the complete set-up used for this test program, and showing the instrumentation. Fig. 7 is a synchronized strobe photograph of the flow interaction between propeller and rudder under test conditions.

Tunnel Flow Calibration

The velocity distribution in the plane of the rudder was measured using a Pitot-static tube mounted on the propeller drive system. From these data, the mean value of velocity was determined to be 9.47% higher than for the standard calibration for the test section without the splitter plate. The variation of velocity relative to this mean value is shown in Fig. 8 to be quite uniform away from the boundary layer on the walls and splitter plate. During testing, flow mean velocity was determined in the usual manner from manometer measurements of pressure taps in the converging nozzle, and the result increased by the factor 1.0947.

The boundary layer thickness on the splitter plate has been measured both at the propeller and at the rudder positions, and the results are plotted in Fig. 9. This thickness was expected to be smaller than at the tunnel wall due to the shorter length of the splitter plate, the plate itself being away from the tunnel wall boundary layer. This was unfortunately not the case. The boundary layer thickness was approximately 1.4 inches, and the measured profiles, as shown in Fig. 9, were somewhat unusual in shape. Subsequent to the completion of this test series, a detailed examination of the flow near the leading edge of the splitter plate was made. It was found that a substantial region of separated flow existed, thus explaining the

lack of improvement in boundary layer thickness. Subsequent modifications to the leading edge of the splitter plate have resulted in a boundary layer which is substantially thinner [5], with a value of boundary layer thickness of 0.35 inches. The influence of this change in boundary layer thickness on rudder characteristics is described in Section 4.

III. DATA REDUCTION

Sample test data recording sheets which appear in Appendix 2, were used to supply data cards to the program listed in Appendix 3. Appendix 4 contains a brief explanation of the data reduction program. Appendices 5 and 6 contain copies of all the data reduction runs for the 20% and 10% flap rudders respectively. Appendix 7 contains the data reduction for a run with the modified splitter plate having an improved leading edge contour.

IV. RESULTS

Table 4 summarizes the overall testing program. Results of the performance tests of the 20% flap rudder located on the propeller axis are shown in Figs. 10-17. In all tests the tunnel static pressure was at ambient atmospheric pressure and on those runs where the propeller was operational it was at the design J value of 0.8. Figs. 10-13 show rudder performance in uniform flow for all combinations of angle of attack and flap deflection, whereas Figs. 14-17 show the comparison between rudder performance in uniform flow and behind an operational propeller at three longitudinal locations. These latter runs are at zero flap angle.

Data shown on Figs. 6-13 include lift coefficient, C_L , drag coefficient, C_D , rudder moment coefficient, C_{II} , and flap moment, C_{MF} . The moment data in Figs. 12 and 16 are referred to a phantom stock axis located 51.57% of MAC aft of the leading edge. At this point rudder moment becomes essentially independent of flap deflection in the non-stalled range of angle of attacks, and all the data collapses to a single curve. The same data reduced to an axis 24.88% of the MAC from the leading edge would result in a family of curves with shape similar to those of Fig. 16 of [1] and Fig. 20 in this report.

Comparison of Fig. 10 with similar data from Fig. 16 of [1] shows that the current 20% flap rudder does achieve somewhat better maximum lift and lift curve slope than the comparable rudder of [1]. Another expected result of these experiments is the large increase in lift achieved in the behind the propeller condition shown in Fig. 14. One conclusion from these data is that rudder selection based solely on uniform flow conditions may lead to far from the optimum solution for the realistic behind the propeller condit.

Figs. 18-20 show performance data from measurements on the 10% flap rudder at all positive flap angles in the free stream and at 0 and 35 degrees flap deflection behind the propeller. Rudder moment coefficients in Fig. 20 are about a stock axis at 24.88% of the MAC which is the balance point at zero flap deflection. Clearly this smaller flap is less effective than the 20% flap as can be seen in the comparative data in Figs. 21 and 22. Also, the C_{LMAX} increment for 35° flap deflection for the 20° flap is about 0.43 compared to 0.41 for the 10% flap. Fig. 18 indicates a C_{LMAX} of 1.65 for the flap deflected 35 degrees behind the propeller. Unfortunately, no comparative data was taken for the 20% flap.

Figs. 21 and 22 compare lifting surface characteristics for the two rudders. Fig. 21 has $dC_1/d\alpha$ and also C_L at α =0, both plotted against flap deflection. Fig. 22 has C_D at α =0, $dC_D/d\alpha$ and $dC_D/d\alpha^2$ plotted against flap deflection. The plotted test values were obtained directly from the data reduction program for the tests on the 10% flap rudder by means of DYCOR, which is expalined in Appendix 4. For the earlier 20% flap rudder, a special program was written to obtain these values from the reduced data. In both cases, the data are obtained for data below the stall angle.

Fig. 21 also has a comparison of these results with theory [2] for this rudder geometry (aspect ratio, taper ratio, sweep angle, and flap geometry). For these rudders, the lift curve slope versus flap deflection data are nearly identical and they tend to be low at small flap deflections but approach the theoretical value [2] of .0547 per degree at larger flap deflections. The lower graph on Fig. 21 shows CL at $\alpha=0$ versus flap deflection, whose slope is $\mathrm{dC_L/d\delta_F}$. The measured test data are somewhat lower than the theoretical values [2] of .0319 δ_F for the 20% flap rudder and

.02360 $_{
m F}$ for the 10% flap rudder. The 20% flap rudder data is in better agreement with theory.

Another interesting result of the behind the propeller experiments is that steady state rudder performance is independent of axial clearance downstream of the propeller for the range of locations 0.5D to 1.0D tested (Figs. 14-16). This is in contrast to the unsteady test results of F. M. Lewis, who found that very small changes in axial clearance between the propeller and rudder could result in a very large reduction in the blade frequency vibration force on the rudder [7].

One of the most dramatic yet potentially useful results of these new experiments is the opportunity they present for observing the flow around the rudder downstream of the propeller at a cavitation number corresponding to the full scale ship. The impingement on the rudder of the tip vortices shed by the propeller can be observed as well as the vortices shed by the rudder itself. These opportunities for visual observation may in the future help explain Professor Lewis' finding that large changes in blade frequency vibration force on the rudder take place as the rudder is moved longitudinally relative to the propeller. A pair of photographs showing the influence of rudder angle of attack on the location of impingement of the propeller hub vortex on the rudder appear in Fig. 23. Propeller tip vortices are also greatly distorted by rudder deflections but not at the small rudder deflections in Fig. 23.

Splitter Plate Modification

After all the present test data were obtained the splitter plate leading edge was modified to improve the boundary layer. A new leading edge contour was built with a larger radius of curvature and extending near the top wall of the tunnel. The result was to reduce the boundary layer thickness from

1.4" to 0.35" at the rudder locatio. A final run was made using the 20% flap rudder model at $\delta_{\rm p}$ =0 for which the data reduction appears in Appendix 7. These results are dided to Figs. 21 and 22. Fig. 21 indicates that $dC_{\rm p}/d\alpha$ for 20% flap at zero flap deflection has increased from .0492 with the original splitter plate to .051 with the modified splitter plate. This is in better agreement with the theoretical value of .0546. Fig. 22 indicates a lower $C_{\rm p}$ at α =0 of .0127, $dC_{\rm p}/d\alpha$ is zero, and $dC_{\rm p}/d\alpha^2$ has increased to .00043 for the test with the modified splitter plate.

V. CONCLUSIONS

- 1. The new test apparatus performed well. Improvements such as the optical angle of attack device resulted in more accurate data. The new data reduction program provided more accurate data from the dynamometer and gave additional hydrodynamic coefficients directly.
- 2. The rudder worked in a thicker boundary layer on the splitter plate than desired. A later test with a thinner boundary layer over an improved splitter plate indicates that lift and drag forces would have been later with a thinner boundary layer and that lift curve slope would have agreed better with theory.
- 3. Comparing the new test with the previous test for 20% flap rudders, $C_{\underline{IMAX}}$ and $C_{\underline{D}}$ at $C_{\underline{IMAX}}$ are in excellent agreement at 35° flap deflection, but at zero flap deflection the $C_{\underline{IMAX}}$ is higher and $C_{\underline{IMAX}}$ is lower for the new test. In general, at points other than near $c_{\underline{IMAX}}$ the new data shows higher lift and lower drag at comparable convisions. The new data shows higher series at zero flap deflection was .047; for the resent series it is .049 and with the improved splitter plate it is .051 compared to the theoretical value of .0546 for this rudder.
- 4. Placing the propeller upstream of the 20% flap rudder compared to the rudder in uniform flow leads to three conclusions:
 - a. The rudder lift curve slope is increased from .049 to .062 which would indicate an effective velocity increment of 12.5%;
 - This increase is constant over the range of longitudinal propeller locations tested;

- c. Maximum lift coefficient has been increased an additional amount by increasing the stall angle of attack by 9.5°
- 5. The 10% flap rudder is roughly naif as eigestive in terms of $dC_L/d\delta_F$ as is the 20% flap rudder. Maximum lift coefficient for the 10% flap rudder is only 1.2 compared to 1.4 for the 20% flap reader, both at $\delta_F = 35^\circ$.
- 6. Placing the propeller upstream of the LAZ flap rudder compared to the rudder in uniform flow leads to the following conclusions:
 - a. Rudder lift curve slope is increased from .486 to .0606 at $\delta_F = 0$ which would indicate an effective velocity incresent of
 - 11.66% which is approximately the same as for the 20% flap;
 - b. Rudder lift curve slope is increased from .0535 to .0647 at $\delta_F = 35^{\circ}$ which would indicate an effective velocity increases, of 9.972.
- 7. In general, for an all movable rudder design, a 20% flap would be recommended with the flap angle geared so that flap deflection reaches 35° relative to the rudder when rudder deflection reaches 20° relative to the ship.

List of References

- Kerwin, J. E., Mandel, P., and Lewis, S. D., "An Experimental Study of a Series of Flapped Rudders," Journal of Ship Research, Vol. 16, No. 4, Dec., 1972.
- 2. Kerwin, J. E., Oppenheim, B. W., "A Lifting-Surface Program for Trapezoidal Control Surfaces with Flaps," MIT Report 74-15, August, 1974.
- Whicker, L. F., Fehlner, L. F., "Free Stream Characteristics of a Family of Low Aspect Ratio Control Surface," DTMB Report 933, May, 1958
- 4. Abbot, I. H. and Von Doenhoff, A. E., "Theory of Wing Sections," Dover Publications, N.Y..
- 5. Oppenheim, B. W., "A Theoretical and Experimental Investigation of the Performance of Flapped Rudders," Engineer Thesis, MIT Dept. of Ocean Engineering, May, 1974.
- 6. Glauert, H., "The Elements of Airfoil and Airscrew Theory," 2nd edition, Cambridge University Press, 1959.
- 7. Lewis, F. M., "Propeller Excited Hull and Rudder Force Measurements," MIT Report No. 73-10, April, 1973.

List of Tables

- 1. Comparison of Current Rudder with Rudder Tested in Previous Series
- 2. Comparison of Airfoil Coordinates
- 3. Characteristics of NSRDC Propeller 4427 as Measured in the MIT Tunnel
- 4. Summary of Test Program

List of Figures

ş

- 1 Planform of the 10% and 20% Flap Rudders.
- 2 Sketches Depicting Modifications to NACA 63,A015 Airfoil.
- 3 Open Water Characteristics of NSRDC Propeller 4427 as Measured in the MIT Water Tunnel for all J Values.
- 4 Apparatus for Rudder Testing.
- 5 Scheme of the Mechanism for Testing Rudders at Several Transverse Locations.
- 6 Rudde: Model in the Tunnel Test Section.
- 7 Propeller-Rudder Flow Interaction
- 8 Wake Survey about Propeller Axis at Rudder Station, Looking Downstream
- 9 Boundary Layers at Two Locations Under Splitter Plate.
- 10 Lift Coefficient Versus Angle of Attack for 20% Flapped Rudder in Uniform Flow.
- 11 Drag Coefficient Versus Angle of Attack for 20% Flapped Rudder in Uniform Flow.
- 12 Rudder Moment Coefficient Versus Angle of Attack for 20% Flapped Rudder in Uniform Flow.
- 13 Flap Moment Coefficient Versus Angle of Attack for 20% Flapped Rudder in Uniform Flow.
- 14 Lift Coefficient Versus Angle of Attack for 20% Flapped Rudder Downstream of Propeller, $y_c = 0$.
- 15 Drag Coefficient Versus Angle of Attack for 20% Flapped Rudder Downstream of Propeller, $y_c = 0$.
- 16 Rudder Moment Coefficient Verses Angle of Attack for 20% Flapped Rudder Downstream of Propeller, $y_c = 0$.
- 17 Flap Moment Coefficient Versus Angle of Attack for 20% Flapped Rudder Downstream of Propellar, $y_c = 0$.
- 18 Lift Coefficient Versus Angle of Attack for 10% Flapped Rudder in Uniform Flow and Also Behind a Propeller.
- 19 Drag Coefficient Versus Angle of Attack for 10% Flapped Rudder in Uniform Flow and Also Behind a Propeller.

#

- 20 Rudder Moment Coefficient Versus Angle of Attack for 10% Flapped Rudder in Uniform Flow and Also Behind a Propeller.
- 21 Comparison of Flapped Rudder Airfoil Data with Theory; $\, c_L \,\, \text{@} \,\, \alpha \text{=}0 \,, \,\, dc_L/d\alpha \,.$
- 22 Comparison of Flapped Rudder Airfoil Data with Theory; c_D @ α =0, $dc_D/d\alpha$, and $dc_D/d\alpha^2$.
- 23 Photographs Showing Effect of Rudder Deflections on Propeller Hub Vortex Impingement on Rudder.

List of Appendices

- # 1 Modification of the Rudder to Simplify Construction
- 2 Sample Data Sheets
- 3 Program Listing
- 4 Rudder Dynamometer Data Reduction Program
- 5 Data Reduction 20% Flap
- 6 Data Reduction 10% Flap
- 7 Comparative Data with Modified Splitter Plate

Comparison of Current Rudder with Rudder Tested in the Previous Series

Section Cha-	Current Rudders	Previous Series (See [1])	
Section Shape	Modified 63 ₂ A015	66 ₂ 020 66 ₂ 010	
Taper Ratio	0.60	0.60	
Geom. Aspect Ratio	1.40	1.40	
Root Thickness Ratio	0.1507	0.20	
Tip Thickness katio	0.1562	0.10	
Root Chord, inches Tip Chord, inches	7.031	8.925	
Span, inches	4.219	5.355	
20% Flap Chord, inches	7.875	10	
10% Flap Chord, inches	1.125	~~~	
Sweep Angle, degrees	0.562		
M.A.C., inches	15	11	
Area, sq. in.	5.7421 44.3	7.289	
Tip Shape	squared off	71.4	
Location of stock axis in %M.A.C. aft of leading edge		squared off	
Flap Size and Flap balance, % Of M.A.C.	38.28 flap - bal. 10% " - 0 " 20% " - 0 "	variable Tap - bal.	

Table 2.

Comparison of Airfoil Coordinates

NACA 63₂A015 Basic Thickness Form (From [4])

Modified Section Shape

y (per cent c)	y Tip	y Root
0	n	0
		1.122
		1.298
		1.663
		2.514
2.375	2.500	2.314
3, 618	3 833	3.715
		4.359
		4.993
		5.956
0.019	6.910	6.652
7 001	7 207	7 117
		7.117
		7.420
		7.533
		7.483
7.215	7.487	7.271
		6.915
		6.450
5.820	6.004	5.883
5.173	5.339	5.224
4.468	4.616	4.550
3.731	3.884	3.813
		3.080
		2.346
		1.612
		0.878
V. // L	0.301	0.070
0 032	0 234	0:144
0.032	0.234	U 4
	(per cent c) 0 1.203 1.448 1.844 2.579 3.618 4.382 4.997 5.942 6.619 7.091 7.384 7.496 7.435 7.215 6.858 6.387 5.820 5.173	(per cent c) Tip 0 0 1.203 1.139 1.448 1.330 1.844 1.707 2.579 2.586 3.618 3.833 4.382 4.511 4.997 5.171 5.942 6.174 6.619 6.910 7.091 7.397 7.384 7.704 7.496 7.812 7.435 7.733 7.215 7.487 6.858 7.104 6.387 6.602 5.820 6.004 5.173 5.339 4.468 4.616 3.731 3.884 2.991 3.154 2.252 2.424 1.512 1.694 0.772 0.964

MODEL	4427	5-BLADED

J-COR	КT	KQ	_	
0.550	0.283	0.0471	E	KT/J**2
0.560	0.279	0.0465	0.526	0.737795
0.570	C.273	0.9458	0.534	0.888984
0.500	0.269	0.0451	0.542	0.843023
0.590	0.264	0.0444	C.550	0.799716
0.600	0.259	0.0438	0.557	0.753886
0.610	0.254	0.0438	0.565	0.720368
0.620	0.249	0.0425	0.572	0.684012
0.630	0.245	0.0418	0.579	0.649679
0.640	0.240	0.0412	0.586	0.617242
0.650	0.235	0.0405	0.593	0.586582
0.660	0.231	0.0329	0.600	0.557591
0.670	0.226	0.0393	0.607	0.530162
0.580	9.221	0.0397	0.613	0.504189
0.690	0.217	0.0380	0.520	0.479574
0.760	0.212	0.0374	0.626	0.456224
0.710	(.203	0.0368	0.632	0.434057
0.720	0.203	0.0362	0.637	0.412794
0.730	6.199	0.0356	0.643	0.372965
0.743	6.194	0.0350	0.649	0.373901
0.750	C.190	0.0344	0.654	C.355742
0.760	6.195	0.0338	0.659	0.339432
0.770	0.181	0.0332	0.564	0.321915
0.790	0.177	0.0326	0.668	0.306145
2.790	0.172	0.0326	0.573	0.271073
0.500	0.169	0.0314	C.677	0.276659
0.810	0.163	0.030g	0.681	0.262862
0.820	C-159	0.0301	0.684 0.683	0.249646
C.230	0.154	0.0295	0.651	0.236975
0.940	c.150	0.0289	0.694	0.224818
0.050	0.145	0.0283	0.696	0.213144
0.260	6.141	0.0276	0.699	0.201925
0.870	0.136	0.0270	0.700	0.191136
0.000	C.132	0.0263	0.702	0.180750
0.600	C.127	0.0256	0.702	0.170746
0.909	0.122	0.0243	0.703	0.161102
0.919	0.118	0.0242	0.764	0.151796
0.920	0.113	0.0235	0.703	0.142812
0.930	0.108	0.0228	0.702	0.134130
0.940	0.103	0.0221	0.700	0.125738
6.950	0.600	0.0214	0.679	0.117626
0.960	0.094	0.0266	0.694	0.102784
0.970	0.029	0.0199	0.690	0.172201
0.050	0.004	0.0191	C.684	0.094870
U.33r	6.079	0.0153	0.678	0.087780
1.000	5.074	0.0175	0.669	0.040924
				0.074293

Table 4.

Summary of Test Program

20% Flap

Free Stream,
$$C_L$$
, C_D , C_H , C_{MF}
$$\begin{cases} \alpha = -30 \text{ to } +30^{\circ} \\ \delta = 0,5,10,15,20,30,35^{\circ} \end{cases}$$

With Propeller, J = 0.8
$$C_L, C_D, C_M, C_{MF}$$

$$\begin{cases} \alpha = -30 \text{ to } +30^{\circ} \\ \delta = 0 \end{cases}$$

10% Flap

Free Stream,
$$C_L, C_D, C_M$$

$$\begin{cases} \alpha = -30 \text{ to } +30^{\circ} \\ \delta = 0,5,10,15,20,25,30,35^{\circ} \end{cases}$$

With Propeller
$$C_L, C_D, C_M$$

$$\begin{cases} \alpha = -30 \text{ to } +30^{\circ} \\ \delta = 0,35^{\circ} \end{cases}$$

Figure 1 Planform of the 10% and 20% Flap Rudders.

Figure 2 Sketches Depicting Modifications to NACA 63 A015 Section.

Figure 3 Open-water Characteristics of NSRDC Propeller 4427 as measured in the MIT Tunnel.

Figure 4 Apparatus for Rudder Testing.

Figure 5 Scheme of the Mechanism for Testing Rudders at Several Transverse Locations.

Figure 6 Rudder Model in the Tunnel Test Section.

Figure 7 Propeller-Rudder Flow Interaction. (Phocograph taken with a strobe-light)

Figure 8 Wake Survey about Propeller Axis at Rudder Station, Looking Downstream.

0.0 0.2 0.4 0.6 8.0 1.0 0.0 0.2 0.4 0.6 0.8 LO 1.2 1.4 1.6 1.8 z (inches)

BOUNDARY LAYER
PROPELLER POSITION (UPSTREAM)

BOUNDARY LAYER AT RUDDER POSITION (DOWNSTREAM)

Figure 3 Boundary Layers at Two Locations under Splitter Plate.

Figure 10 Lift Coefficient Versus Angle of Attack for 10% Flapped Rudder in Uniform Flow.

Figure 11 Drag Coefficient Versus Angle of Attack for 20 % Flapped Rudder in Uniform Flow.

Figure 12 Rudger Moment Coefficient Versus Angle of Attack for 20% Flapped Rudder in Uniform Flow.

Figure 13 Flap Moment Coefficient Versus Angle of Attack for 20% Flapped Rudder in Uniform Flow.

Figure 14 Lift Coefficient Versus Angle of Attack for 20% Flapped Rudder Downstream of Propellér, $y_c = 0$.

Figure 15 Drag Coefficient Versus Angle of Attack for 20% Flapped Rudder Downstream of Propeller, $y_c = 0$.

Figure 16 Rudder Moment Coefficient Versus Angle of Attack for 20% Flapped Rudder Downstream of Propeller, $y_c = 0$.

Figure 17 Flap Moment Coefficient Versus Angle of Attack for 20% Flapped Rudder Downstream of Propeller, $y_c = 0$.

Figure 18 Lift Coefficient Versus Angle of Attack for 10% Flapped Rudder in Uniform Flow and Also Behind a Propeller.

Figure 19 Drag Coefficient Versus Angle of Attack for 10% Flapped Rudder in Uniform Flow and Also Behind a Propeller.

Figure 20 Rudder Moment Coefficient Versus Angle of Attack for a 10% Flapped Rudder in Uniform Flow and Also Behind a Propeller.

Figure 21 Comparison of Flapped Rudder Airfoil Data with Theory; C_L @ α = 0, $dC_L/d\alpha$.

Figure 22 Comparison of Flapped Rudder Airfoil Data with Theory; C_D @ α = 0, $dC_D/d\alpha$, and $dC_D/d\alpha^2$.

Figure 23 Photographs Showing Effect of Rudder Deflection on Propeller Hub Vortex Impingement on Rudder.

Appendix 1

Modification of the Rudder to Simplify Construction

The rudder geometry which has been chosen has a constant chord flap. To simplify construction, it was decided to make the flap and adjacent skeg surface exactly "wo-dimensional. Due to the taper of the rudder, this required a modification to the airfoil section for both the tip and the root. The NACA 632A015 section which is the basic airfoil chosen has a straight line section from 70% to 100% of chord which made modification easier.

A program outlined in the following paragraphs is written to modify the 63₂A015 section to produce the tip section and the root section needed to meet the above requirement. The output of this program is tabulated data in a form convenient to the machinist-model maker who machined the model from 6061-T6 aluminum alloy. In particular, 230 spanwise cuts are specified along straight lines connecting points of constant percent chord at root and tip. The final machine marks are small and are removed by polishing the surfaces by hand. The resultant accuracy of the rudder surfaces is very satisfactory. Roughness does not exceed 0.002" and the tolerance of the ofisets is smaller than 0.005".

Modification of the tip foil section by numerical methods is accomplished in the following steps: (the sketches referred to are shown in Fig. 2)

- a) Begin with the original 63 A015 profile which has a finite trailing edge thickness (see sketch 1);
- b) From this section a wedge is removed centered around the plane of symmetry of the section leaving a sharp trailing edge: (see sketch 2)

$$y_1^t = y_0^t - 0.032 \cdot x^t$$
 $0 \le x^t \le 1$ (1)

where y_0^{\dagger} = non-dimensional offsets of 63₂A015 section

- c) Straight lines that form the trailing edge of the last 25% chord are extended beyond the trailing edge so that the last 30% of the new chord is linear (see sketch 3);
- d) A new wedge is added to remove the negative thickness from the previous step and the abscissa is rescaled to go from 0 to 100%. This foil now has a sharp trailing edge (see sketches 4 and 5);
- e) A wedge is then added to bring the trailing edge thickness on model scale to 0.020" (±0.010"): (see sketch 6)

$$y_2^t = y_1^t + \frac{0.010}{c_t} \cdot x^t$$
 (2)

As shown in sketch 7, root and tip sections differ in the flap region. The root section is therefore next modified to be identical to the tip section between 70% of tip chord and the trailing edge for this model with a 0.60 taper ratio. (Other taper ratios than 0.6 would require a similar procedure and would result in other profiles.) These steps are as follows:

1) The 63₂A015 foil trailing edge thickness is removed by subtracting a wedge and then brought to 0.020" thickness by adding a wedge: (see sketch 8)

$$y_3' = y_0' - 0.032 \cdot x' + \frac{0.010}{c_r} \cdot x'$$
, $0 \le x' \le 1$. (3)

- 2) Compare the root trailing edge wedge with that of the tip to evaluate a ratio, N=a/b (see sketch 9), by which all coordinates on the root section could be multiplied to make the trailing edge angles of root and tip identical.
- 3) Reevaluate the root foil with a sharp trailing edge, then multiply all ordinates by the ratio N:

$$y_4' = y_3' - \frac{0.010}{c_r} \cdot x'$$
, $0 \le x' \le 1$; (4)

$$y_5^{\dagger} = y_4^{\dagger} \cdot N$$
 , $0 \le x^{\dagger} \le 1$. (5)

4) The last step is to bring the trailing edge thickness at the root to 0.020":

$$y_6^{\dagger} = y_5^{\dagger} + \frac{0.010}{c_r} \cdot x^{\dagger}$$
, $0 \le x^{\dagger} \le 1$. (6)

Table 2 shows the comparison between the original NACA 63₂A015 coordinates for the tip and root sections on the current flapped rudder models, modified in accordance with the preceding steps.

194 -174					146		T	0.5101,C14,D145			+	+	-	SALS DEPOSITE AND ADDRESS OF	4
:						The state of the s									
•		1 1 1 1 1	î		: G 2: E	: :	FORTRAN STATEMENT	TATEMENT				ı			IDENTIFICATION STOCKINGS
EST	9	RMAC C	0 111, DEL	10	8	DEG, X=	= 24	70,	9	PKAPS	CAPARPA	No Prop	186	3 £ # 7 4 3 S	
PLAN ANGE -	4	<u></u>	8	Rub. ngen	· · i.	Rub. St	- N.	Mac	X XX X		N A A	14 f. 13 spare, 10.	- j -	426	
30.	22	120	4	3.30		5-875	3	7421	700 V	1600	40	<u>5780.</u>	9 1	2.00	20770
		-		-						-		-		7	SC L
	 -		7-11	 	2	2- V	3- 1	3-6	4-N	4-R	5-11	2-K	9	8-B	- N-T
9	ZERO	SEFORE	001	100	001	007	0	O	100	109	109	00)	00/	100	} -
	ZERS.	AFTER		T C	2	100	C		001		1 (1.	-	4.	
40 Kinds 100	100	711				Fi.	7	7		d	007	₹	00	7	
21112	252	- 2.00	P	505	3	301		17/9	200	40	200	15.7	2/6/	9	3,5
=	243	·o		040		248		1680		159	+	9		130	+
1.5	8	· `		773		199		1617		794		224		8	 -
71: · · · · ·	23	4		900		50		189		942		40		82	
27# 1 -1-	237	9		8		50/	 ; ;	1307		1098		272		125	
7	522	•	=	179		63		17.9+		250		2961		121	
771	O	10.	7	30年	_ <u>:</u>	200	- -	235		504				5/	
	2(12.	=	430	₹	28	; ;	280		555		4		80/	-
	0	4.		2/5		236	- -	560	7]]	639		353			
7 7 7	2	. 97	<u> </u>	546		9	T .	900	<u> </u>	209		358		74	
7.	8	0	<u> </u>	550	Ξ.	236		1600	71-1	566		359		4	
	1987	23.03	11-1-	49.5	-	9	+	000		475		347		44	_
1:1	34	28.00		405	-	344	=	200		450		34.0		46	
	7491	8		36PI		355	7	667		370		145		127	
1)410 MI,	101 000,000 046157			2		* * * * * * * * * * * * * * * * * * * *	3 16 17	10 10 10 ft IP	2 2 2 2	11 42 43 14 1	1 12 17 26 30	5 5 5	8 3	2 2 2 20 2	1 10 10 10 10 10 10 10 10 10 10 10 10 10

Appendix 2 Sample Data Sheets

X36-7377-6 (L')A050 Printed in U.S.A. 7 DYCOR MANINGARON MOURNELL 1) 14 71 78 7 N-1 PAGE OF CALCULAR PERSONNELS 36 Se 1977 3 288 2 34 90 74 4 ò 9 121 V ð ≥ ত 4 2 4: 1 5mr 57 29 17 U. 95 95 . 200 S 11-5 10 35 HI 1. P. P. P. P. X AXIS SAINT 10. 3200 236 4-5 620 739 900 528 998 3 Putfit. · 0 PARAMETERS 570 428 400 456 456 1278 0057 88 Shre 450 FORTRAN STATEMENT 743 9 5 PORTRAN š 5 DEGS 554 Rub. St • • 659 293 277 470 ~ 1 'n İ. 1/2 42200 800 See • • • 1 105 B 5 ₹ -22-430 15.7 000 32500 -30 RNAC 9 1.5.7 ð ٧. 1252 1253 1251 1251 1251 607 246 252 242 224 9 78 1-8 379 (11) CAN'E 0. 17 1-TES . Winije id ı Ina. ...

THE STATE OF THE PROPERTY OF T

Appendix 2 Concluded

BEFORE FIRST DIGIT

2 = MERCUIEY

3078 =

FLUISCODE

b 11

57.17.10

P: 707

ト

5/4 " 2

M

「のひず

5010 2 11

b

હે

-=

.\\

K. P. W. W. K.S.

ンクをなって

y

Appendix 3

Program Listing

```
// *DEAN LEWIS**CLASS=3+REGION=123K
/*MITID USER=(M]]314+7332++*SEKAWDEM)
/*SRI LON
```

```
I= IN I NIAMON
1/4117047 EXEC FU-COU
//C.5YSIN DU 4.0Cm=mLKSIZE=2000
      MK5 HUDDER LYNAMOMETER DATA REDUCTION PRUGRAM KERWIN/LEWIS/OPPENHEIM JU73
      INTEGEN NS, SOBLANK
      WEST PROMISOOMSOOMSCAPOMAC
      01"ENS10N I :ENT(2%) .ZM(2) .Z1(7.2.2) .ZF(2) .NTAP(40) .NFLD(40) .ANOM(4
     10) + 4NGL (40) +5 (40+7) +R (40+7) +DZ1 (7+2) +CL (40) +CD (40) +CM(40) +CPL (40) +
     2CY (40) - CHF (-0) + VC (5) + VF (5) + FM(2) + C(7) + CLU(40) + CLSO(40) + RN(40) + SI (4
     301 +CU (+U)
     12)/ CYF 1/+ [JENT (23)/ CPL 1/+ [DENT (24)/ CY 1/
      PATA VC/4.1144/.2.600H4.0.4016.0.6214.4./381/.VE/.44353..5..4724.0
     1.50636... 5/445/4R*/+HLA IK/* */
      WEAT (KI-104) (C(V) -N=1-7) - Taist-SHAFT
 104 FURYAT (7F0.5.2F12.5)
      WEAR (# 1+1+4) (IDENT(N) -N=1+18)
 101 F 19841 (1444)
      WEAR (-1-10) JF -NHT-NTT-AREA-SPAN-MAC-XMAC-ZMAC-AZL-DYCOR-VELINC
 100 FG454T(F6.1.14.14.F9.2.F8.3.F6.4.F8.4.F8.4.F8.2.F9.4.F8.4)
      IF (49tA.Lt. 0) GO TO 49
      RMO=1.55/4-0.0002896TT
      SCALE=1.090472-13.36-601.41
      F4(1)=1.4575-.000719N4T
      FV(2)=24.5074-.002364N~T
      WHITE (KU-200) (IDENT(N)-N=1-1A)
 200 F )-MAT (*1*+1x+1444//1/x+*FLAPPED HUDDER INPUT DATA*//3X+*DF*+3X+*
     1TP++2x++TT++4x+1AMFA++4x++5PAN++5x++MAC++4x++XMAL++4x++2MAC++4x++A
     276 * +4x + *UTC7~ * +2x + *VEL INC*)
      YPITE(MO+1-1)OF+WHT+WTT-APEA+SPAN+MAC+XMAC+ZMAC+A7E+DYCOH+VELINC
 130 FOWMAT (FO. 1 . 14 . 14 . FY . 2 . FM . J . FB . 4 . FB . 4 . FB . 2 . F9 . 4 . FB . 4)
      44C12=1
      DYCIM=UYC 12
                                                                               195EP73
      IF (DYC ... . LT . 10 . 0) GU T.) 30
      DYCOMEGG.
                                                                               195EP73
      DYCY=0.9
      MYCOW=>
      PEAR (KI.101) (/7(K).((71(W.L.K).L=1.2).M=1.7).K=1.2)
 101 FORYAT (FD. 0.124.FD. 0.F4. 0.FD. 0.F4. 0.: 5.0.F4.0.F5.0.F4.0.F5.0.F4.0.
     1F5.0.f4.0.F5.0.f4.01
      HITE (KO+ZOI)
     FORMATION JEHO READINGS REFORE AND AFTERING ANOW 1-N 1 2-H 3-1 3-K 4-N 4-R 5-N 5-K 6-N 6-R
                                                                   1 -R
                                                                         2-N
                                                                 7-N
                                                                       7-81)
      WEITE (170.204) (74(K). ((Z[(M.L.K).L=1.2).M=1.7).K=1.2)
 204 FOWMAT (2(F4.0.4(2%.F4.0).2(1X.F4.0).8(2X.F4.0)/))
       4-11E (-0+212) (C(V)+N=1+7)+T41ST+SHAFT
  212 F09M4T(* CELL LUS/COUNT 1=++F7.5++ 2=++F7.5++ 3=++F7.5++ 4=++F
     17.5 1 5=1.F/.5.1 6=1.F7.5.1 7=1.F7.5./1
                                                  TWIST=+.F7.1.*
                                                                      SHAFT
     2014.= ** F7.2. * 14.1)
      #HITE (- ) - 2021
 202 FI) HMAT ( /+
                     INPUT DATA AS RECORDED 1/1 IF ANOM ANGLE S
     15 2 5
                              4
                      5 د
                                   S
                                         5 5
                                                   6
                                                       5
      1)0 2 J=1+411
      JT=J-1
```

Appendix 3 (cont.)

```
7. 1=Me (Me(L) Pe (Me(L) 2) e (L) NOMA (L) MOPA (L) (H=Pe (L) 43TP (SU1 • 1) (NA3Q
102 FORMAT(14-11-65-0-67-2-2X-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-A1-F8-2-
        IA1.FS.C.Al.FA.O)
           IF (ANOM(J).1 :. 0.0) 60 TO 3
          17.1=M. (M.L) F. (M.L) S. (L) SPA. (L) MONA. (L) CJIM. (L) SATN (E05.0X) 371WE
203 FORMAT(1x-12-11-F6.0-F7.2-2x-7(A1-F6.0-2X))
          60 TU 34
          HUG=1.6/(JT-1)
           DZM= (ZM(2) + /4(1)) MAININ
          00 4 V=1+7
           D( 4 L=1.2
          DZI(M+L)=(ZI(M+L+2)-ZI/M+L+1))+AUG
          ()() 7 J=1+JT
           IF (.J.Eu.1) 60 TO 6
           IF (MTAP(J).FU.O) WTAP(J)=WTAP(J+1)
           IF (MFED (J) . MOD NFED (J-1)
           1-1=2114
          ANOM (J) = ANJM (J) - 7M (1) - 7H (C+DZM
           ANGL (J) = Andol. (J) - 42L
           00 7 V=1.7
           IF(5(1+M) - + CLANK) +0 10 2/
           1F(S(J.4) .- 1.25) 60 TO m
           @(J.w)=@(J.M)-71(M.1.1)-3UG~U71(M.1)
          60 TO 1
           # (Joh) =- # (Joh) + ZI (Mo2+1) + #U3+DZI (Mo2)
          50 70 7
    27 w'J.W) =-A(J.W)+D7I(M.I) +A(J.
           CONTINUE
           *RITE (*0.204) (FDE'sT(N).4=1.18)
                                                                                                                                                            19SEP73
  265 FOWMAT(+1+.1x.1844//)
                                                                                                                                                            145EP73
           2793261 Lefate, (7.1-10) (Met.) 9) + (Met.) 9) MONA+ (L) MUNA+ (L) MARCO (Met.) (Met.) 17: (7.0-7)
        11)
                                                                                                                                                             195FP73
  705 FORMATICE
                                    INPUT DATA CORRECTED FOR ZEHO READINGS AND SIGNS*/(13. 19SEP73
        111.50.4.61.2.21.154.21)
                                                                                                                                                            19SFP73
           -FITE (<0.207) (IDENT(N).N=1.18)
  207 FOW/AT (-11.1x.144//)
                                                                                                                                                            195EP73
                                                                                                                                                            195EP73
          IF (DYCGH.ST. 9A.) 60 TO 407
                                                                                                                                                            195EP73
           #~{Tf (~()+3+7) - 91€...
  307 FOR -- T (174. +UYC) 2=+.FA. .//)
                                                                                                                                                            195FP73
          56 TU + 67
                                                                                                                                                             195EP73
                                                                                                                                                            195EP73
  407 mm [ 15 (r () + 507)
  707 FULLATITIES TO TOUR 15 HEING COMPUTEDINI
                                                                                                                                                             19SFP73
  507 2-175 (**)+7-7)
                                                                                                                                                             19SEP73
  707 FORMAT' * **FLAPPEU HUNDER DATA RÉDUCTION***//*
                                                                                                                                              FX-LB 19SEP73
                                                                                                                      AL PHA
                   FZ-LO WA-14LO MZ-INLO FXO-LO FYO-LO F70-LO MXO-INLO MY 195EP73
         27-INLE MEU-INLH MYDFLAP-INLS VEL-FPS+)
                                                                                                                                                             14SEP73
           HEAF=MAC/(12+3.4739+EXP(67.6832/NTT))
          10.f=L + 00
           [=MTAF(J)
           If (I.LT.1.)-.1.61.5) GO TO 49
           K=NFL((J)
          IF (".LT.1.) -. K. UT. 2) GU TO 99
           V=(ANO4(J)+F*(K)+SCALE/(VC(I)+HHO))++BUG+(1.0+VELINC)
          FYMAFT=0.00327+5-AFT++2+V++2
          FHI) #1=C(1) ** (J.1)
           F90x2=C(2) += (J.2)
          F#0+3=0(3)+~(J.3)
           FA0x4=C(4) % (J.4) . FYHAFT #0.41477
```

Appendix 3 (cont.)

```
F90x5=C(5) +~ (J.5) +FYMAFT=0.41477
            FHUX0=C(6) = U(J.6) + FYHAFT = 0.17045
            FX=-Fmilxs
            FY=-F5UX4-FHUX5-FdUX6
            FZ=-FBUX1-FHOX2
            ₩X=4.725*(FHOX1*FUOX2)+5.062*(FBOX5~FBOX4)
            4Y=-18.04F4012
            42=17.034*F40x6-4.725*F60x3-3.5*(F80x4*F80x5)
           PAT=(ARGL(J)+AZL-DYCOR)+0.0174532
            SI(J)=SI +(J&T)
            CO(J) =CO>(-AT)
           FX0=F # * CU(J) + F Z * SI(J)
           FYO=FY
           FZQ=FZ*Cu(J) -F x*SI(J)
           MX0=MX+CU())+M7+5[(J)
           MYO=4Y
           MZ0=MZ*CU(J)-Mx*S1(J)
           MFLAP=~(J.7)+C(7)
           ANGO (J) =ANGL (J) +MYO/THIST
           SIE=51-(4160(J) *0.0174532)
           COE=CO5 (A'1011(J) +0.0174532)
           WESTE (NO+ZIA) AND TO JO FROFZ ON AND TENDON TO ME ON TO ME OF THE CONTROL OF THE
           F9-441(11F9.2.F13.2.Fn.2)
          C1 (J) =+ 7-1/+US
          CL53(J)=CL(J)++2
           CO())=F 20/495
          CLD(J)=CL(J)/CD(J)
          CM(J)=MYO/D (S/MAC+(CL(J)+CUE+CU(J)+SIE)+XMAC/MAF+(CL(J)+CDE+CD(J)+
        ISIE1 *ZMAC/WAC
          CPL (J) = (MIO/F ZO) /SPAN
          CY (J) =FY )/3/5
          40. (J) = 400r au
      4 CMS (J) =-MF LAD/AVS/MAC
                                                                                                                                                                  195EP73
          ## ITE (40.20%) (1)ENT(N) . N=1.18)
 204 FORWAT(*1*+17+104+//)
                                                                                                                                                                  195EP73
          IF (D1CUM. GT. YM.) GO TO WOR
                                                                                                                                                                  19SFP73
          42 ITE (KI) + 3U-) DYCOH
                                                                                                                                                                  19SEP73
  304 FOWMAT (17x++3YC0+=++F8.4//)
                                                                                                                                                                  19SEP73
         60 TO 566
                                                                                                                                                                  195EP73
 400 +6 [TE (+1)+> 1+)
                                                                                                                                                                  195EP73
508 FORMAT(17) . + DYCU- IS BEING COMPUTED + //)
                                                                                                                                                                  195FP73
 604 -- ITE (411./gm)
                                                                                                                                                                  14SEP73
 70H FOUMATE
                               **FLAPPED PUDDER DATA IN NON-DIMENSIONAL FORM***//*
                                                                                                                                                             A 195EP73
                         CŁ
        21,000
                                                          CM
                                                                          CPL
                                                                                          CY
                                                                                                          L/0
                                                                                                                           CMF
                                                                                                                                          RN-10--- 195EP73
                     CL53*1
         4MITE (RO+204) (4MHU(J)+CL(J)+CD(J)+CM(J)+CPL(J)+CY(J)+CLD(J)+CMF(J)
                                                                                                                                                                 195EP73
       1.PM(J).CLS..(J).J=1.JT)
209 F()#VAT (FB. 2. F7. J. 2 F 8. 4. 3 F7. J. F8. 4. F8. 3. 5x. F7. 4)
         90 15 J=1.JT
         #160 (J) = A450 (J) +0.01962 + AHEA+CL (J)
         CD(J)=CD(J)+0.0003425+A+EA+CL(J)++2
         C(0(3)=C((3)\C0(3)
         #RITE(#0+211) (IDENT(N)+N≈1+16)
<!! FORMAT(*!**!x*!na4//)</pre>
                                                                                                                                                                 195EP73
         IF (DYCOH.GT.98.) GO TO 411
                                                                                                                                                                 195EP73
         WHITE (KO+311) DYCUR
                                                                                                                                                                 195EP73
311 FORMAT(17x.+3YCO==+.F8.4//)
                                                                                                                                                                 195EP73
        60 TO 611
                                                                                                                                                                 195EP73
411 #PITE (KO+511)
                                                                                                                                                                195EP73
```

Appendix 3 Concluded

```
511 FORMAT(174. DYCOR IS BEING COMPUTED 1//)
                                                                                19SEP73
                                                                              - 19SEP73
 611 wRITE(KO.711)
                                                                           AL 195EP73
                    PRIOR DATA CORRECTED FOR TUNNEL INTERFERENCE ! //
  711 FORMATICE
                                                    L/D
                                                                    RN-10--- 195EP73
             CL
                                           CY
                                                           CHF
     1PHA
                     Cυ
                            CM
                                     CPL
                                                                                19SEP73
          CL SQ 1
     2
      44ITE (KO.2119) (ANGD(J).CL (J).CD(J).CM(J).CPL(J).CY(J).CLD(J).CMF(J)
     1.PN(J).CLSJ(J).J=1.JT)
      IF (DYCOM.E).0.0) 00 TO 1
      00 31 J=1.15
      4=.1
      IF (J.61.8) W=J.7
      A(J.1)=1.0
      A (J+2) = ANOD (M)
      A(J+3)=CL(4)
      CALL PILSDIA . MHS . 15 . 2 . KERKURI
      SL= 45 (2)
      WHITE (5+214) MM5(1)+HM5(2)
                          CL COEFFS . 2F12.6)
                                                                                195EP73
  214 FOPMAT(//////
      00 32 J=1.15
      M=.1
      [F(J.GT.n) Y=J.5
      A(J.1)=1.0
      (M)( )(A=(5.L)A
      4 (J. 3) = ANG-) (4) 40 A
      A(J.4)=CU(4)
      CALL PILSU(4+#HS+15+3+KERROR)
      IF (MYC ) = . 42.0) UYCOR=57.2969RHS(2)/SL
      りょくしゅこりょくりゃ
      ##17E (N.213) (##5(M) . M=1.3) . UYCOH
      IF (MYCGR.ED.O) 60 TO 1
                   CO COEFFS+.3F12.6+ DYCOH+.F12.5)
 213 FOWWATE
      MYCON=MYCU-1
      IF (MYCC#.E).6) 60 TO 1
      GO TO 33
 94
      STOP
      €.45
      SUBPULITIVE -TESU (A.M.NEO.NUN.KERROR)
      A IS THE WATER OF COEFFICIENTS WITH NEW EQUATIONS (ROWS) AND MUN COLUMNS.
      MUN=NUN+1 I.E.NUMBER OF UNKNOWNS PLUS ONL. RIGHT MAND SIDE IS IN THE LAST COLUMN OF A . A ARE THE RETURNED SOLUTIONS. IF KERROR .NE.O THE GAUSS
      WEDUCTION 45N+T SUCCESFUL . MSQ=NUN+2 . DIMENSIONS: A(NEQ.MUN).R(NEQ).
C
      4 (463)
      014E45104 4(15+4)+2(4)+8(16)
      MUN=NUN+1
      MSG=NUMME>
      00 1 F=1 N P
      00 1 t=1.NJ%
      L=N+ (M-1)+V IV
      d(L)=0.0
      00 , J=1+ 1Ei
      # (L) =# (L) +A (J+M) +A (J+N)
1
      00 2 M=1.NUN
      # (M) = U. 0
      00 S N=1+NEO
      H (M) =F (M) +A (N+4UN) +A (N+M)
      CALL SIMO (F.P.NUN-KERROR)
      RETURN
      END
//U.SYSI4 00 *.JCH=#LKSIZE=2000
```

Appendix 4

Rudder Dynamometer Data Reduction Program

Appendix 2 shows sample data sheets used as input to the data reduction program. The first line (card) contains whatever identification is useful. The second card has inputs for room and tunnel temperature necessary for tunnel water speed and density determination; also rudder dimensional data needed to determine airfoil characteristics in coefficient form and Reynolds number. XMAC and ZMAC are used if it is required to transfer the axis of moment coefficient data along the rudder chord or normal to the chord respectively, relative to the dynamometer axis. AZL is used to relate the dynamometer measuring axis to the rudder chord.

DYCOR relates to a modification to the data reduction program to correct data taken on a symmetrical airfoil to make the drag curve symmetrical. It corrects for an assumed fault in the dynamometer geometry which results in cross-talk between lift and drag measurements. When applied to flapped rudders, a zero flap deflection run will be used to compute DYCOR. If 99. is entered under DYCOR as in Test 7 under Appendix 6, the program will compute DYCOR and the result appears on the fifth page of data reduction. On subsequent runs for flap deflections other than zero and including propeller runs this value of DYCOR will be entered and the appropriate correction will be made. For example see any other data reduction runs in Appendix 6.

The following entries on the data sheet are zero readings before and after the run. The program uses these values to correct the load cell raw data for zero drift by linearly interpolating between the before and after zero values.

A calibration card precedes all the data runs. The values contained on it are printed out by the data reduction program, following Cell lbs/count. The first seven values are in fact the values used to convert digital indicator readings to pounds. Twist is related to shaft stiffness and used to correct the angle of attack of the rudder for shaft twist due to moment MY.

The main body of the data sheet has columns for the following: indication of static pressure taps and fluid being used; manometer zeading due to velocity; rudder angle of attack; and then seven columns of data for load cell output on the digital indicators. The first six are for the rudder dynamometer load cells which read the total reaction from the rudder. The seventh is the output of a flap hinge moment sensor when used.

The tabulated output of the computer program requires five pages if DYCOR is not being computed. The first page repeats all the input data. The second page contains input data corrected for zero readings and signs. The third page contains forces and moments about the three axes in pounds and inch pounds and water velocity in feet-per-second. The fourth page gives all the rudder data in coefficient form tabulated against rudder angle of attack alpha. Lift-to-drag ratios and also Reynolds numbers have been computed for this table. On the fifth page are the final data corrected for DYCOR and for tunnel wall effect. At the bottom of the fifth page are lifting surface characteristics calculated by DYCOR: next to CL coefficients are C_L at $\alpha=0$, and $dC_L/d\alpha$; next to CD coefficients are C_D at $\alpha=0$, $dC_D/d\alpha$, and $dC_L/d\alpha^2$. The final value is the numerical value of DYCOR in degrees.

Tunnel wall corrections for the resulting test section dimensions and model size, found in accordance with [6] are:

$$\Delta c_{\rm D} = 0.9618 \cdot c_{\rm L} \text{ [deg]}$$

$$\Delta c_{\rm D} = 0.01674 c_{\rm L}^{2}$$

Typical value of $\Delta\alpha$ so the highest lift is 1.3° and this amount is added algebraically to the measured value. Typical corresponding value of ΔC_D is 0.032 and again this amount is added to the measured drag coefficient.

			• •	2273																										
			4 0 2 2	7-0-02273															0	~	2	0	~	2	9	<u>.</u>	~	9	~	25
		>°	7-N 20.		•		•	-	,	35.	22.	-	_	~	166.	=	8		-214.0	-196.6	-41.1	-57.0	•	-11.3	•	•	•	33.5	•	
			# 22. 21.	0.0002.000		•	2 •	~	•		-	÷.	•	-	٠.				90.4	1.92	5.17	0.75	2.67	7.58	4.50	4.42	1.67	1.75	2.13	20.0
			4	5-0-46970		· «	•	 z	→ ~	• ~	~	_	z		~	-														
	52.	2AC 3.15	1000		•	20.	60	306	0 -	. R.	0	8	=		•	3	±		-50.0	209.1	208.3	168.5	113.6	55.8	-1.5	-82.4	-	~	-231.1	-234.00
	1/29/13	- 24°	100 100 100	4*0*10000		288. N	ě.	• •			« •	•	ė		·.	ė	Š.	v	8.0	•	0	0	0	0	0	0	0	80	•	00.00
	FLAP	× O	100 100	1000		£ 28	-	5 ·	° 4	88	z	<u>~</u>	5	6	2	5	6	SIS	-	-13	+1-	7	~	*	•	~	š	-	¥	3 7
CATA	PROP, 201	C-MAC . 7421	100 100	3.0.01000 1N.	-	826.	162	596	-220-	204	232.	-122.	996	950	- 126.	2 60.	•	_	-826.0	-161.8		968.5	220.6		-231.0	123.1	•	1921.5	727.6	-558.17
TUPNI	ONG ON.	SPA4 7.875 \$	8 - K	.21000			;		•		2 •		•	•	_:	•	•	ü	0.	4.75	3.50	9.25	00.0	4.75	3.00	7.17	2,33	0.50	2.67	6.83
RUDDER	066.	35	FTER J-N	0		~ Z		25	6 ¢	0	~	11	Ä	4.5	=	2	*	ZERO	1		•	•	•	•						138.
	וויי ט	AR FA	AND A 2-8 20.	1-0-15000 SHAFT DIA.	A DED	280.	350.	350.		430.	102.	4 50 .	703.	0.0	•	250.	- C -	c	1 80.00	250.00	250.00	90.00	655.00	330.00	2.00	350.00	90.08	990.00	00.000	120.00
FLAPPEN	IN, NFL	< ÷	HEFORE 2-N 20.		SRECOR				-		7			<u> </u>			-	DRRECTE												
	•	7.6	1000 1000	1800.0 1500.0	ATA A	2	21.9	6.9	- 0	-	-3.1	-8-	_	-18.1	2	2	ဓ္က	ATA	30.	25.05	20.03	15.05	10.0	5.05	0.0	÷	-9.93	<u>:</u>	5	-24.95
	100.	3 E	100.	ור רט: ור רט	DEUT D	284	283	314	336.	333	339	337.	1332.	322	1287.	253	249	•	284.	213	~	325	334	338	•	337	•	322	287	263
	TEST	0.0	ANGH O.	S A	Z	- - ≂	0	88	. .	0	0	0	_	0	0	0	0	Ž	٠,	_	_	_	_	_	_	_	_	_	•	77

AL PHA	FX-LA		FZ-LA MX-INL	ALM AV-IND	6 1 C X S							
30.05	9.26	117.	9 591.97	•	2	•	9	NE CO	JAL-UAM G	W SINITE MANUAL	MYDELAP-INLE VI	> E
50	1.62	128.68					***	- DC -	د 0	304.15	-4. A6	<u>ه</u>
2					40.17	36.24	115.98	792.	٠. ا	-102.93	-4.47	20,
300	P :	0.00			22.53	39.UL	129.06	A71.	90.00	- 160.09		-
•	-9.68	173.49	9 178 19	-281.12	11.84	-40.48	101.27	* *				7
•	-2.21	A. A.						•	00.00	クロ・ノアント	06 •1 -	<u>.</u>
40		76					58.57	*77.	29.00	- 19.36	-0.64	21
2	\$		_		× 1.8	12.83	34.66	243	31.00	-14.79	. 4.3	
60.0	7.31	-0-14	-48.68	-37.92	2.32	- C	40	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			37.00	• ·
-4.45		-16.47	•						•	****	-0 · 14	~
¥			ا	* C • C •	2.46	0 · K	-36.28	-248	- 24.00	-16.26	-7.13	71.
	0 • 0	76.07.		07.81	\$ * *	15.25	-71.19	-603-	26.00	-40.33		
***	- 19.21	-103.31	-725.32	1 2 3 . 4 7	11.03	33.66	71 701			F	2.0	:
10.04	-7.28	1000						5	00.7.	トナンピワー	0.76	21.
•			ŀ	24.13	10.28	14.92	50.0	-681-	-27.00	-211.00		•
<***	2.58	-113.39	-728.96	101.70	S. 1.3	17.30	47.10	404			() () ()	5
£		A1.401.	1470 43					•			9E . N	2
.			1	20.00	24.70			900		101	•	1

2 VFL-FPS 200-690 200-690 211-23 211-32 211-32 200-62 200-72

Appendix 5 (cont.)

FLAPPED RUPDER JATA IN NIN-DIMENSIONAL FORM

1251	1)C. Y=		IN.GEL = " DEG. NC PRCP.23%	.G. • NC	PRCP+231	FLAP	1129;13	73	
ALFHA	ວ	د	1	נפנ	۲	3/1	CMF	CL 50	RN+10**-6
3' 5	34. 5 1.782	61940,	1.4679 4.1.1238 -0.638	-0.639	0.376 1.671	1.671		0.6111	1.156
25.06	9.84	0.3728	40.1435	A.868	0.279	2.359	-J. CC6	6.7993	1.155
20.11	1.971	.1696	+ 1.2487	. 85A	1,291	5.729	-0.003	.1.9436	
15.10	0.771	0.0886	40.2066	0.059	-0.520	8.704	-0.002	0.5941	
10.09	3.5CB	0.0450	40.1440	U.874	C. 145	11.287	-3.001	C.2584	
5. 17	1.256	. 1235	+0.0740	0.893	0.095	10.851	-0.001	0.0656	
0.05	-3.000	0.0171	-0.00021	31.873	-0.002	-C. C19	-0.000	0.0000	1.180
14.47	-1.268	165.	1693	598 .	99. • ,	-9.257	-11.103	0.0723	
66 • 6 -	-3.529	3,3554	-0.1399	C. 880	0.113	-9.545	C. 000	0.2794	
-15.00	-0.179	0.1035	-0.2030	0.891	0.176	-7.532	0.001	C.6C73	
-10.97	- 3.796	.278₽	-0.1430	0.83F	0.145	-2.856	0.004	C.6338	
-24.97	-0.763	0.4568	-3.1507	106.0	0.135	-1.67C	C.005	C.5817	
-26.85	- 1.713	.415	- 1.1123	. 845	6116	-1.718	1, 175	0.5080	

ARAVE NATA CARBECTED FOR TUNNEL INTERFERENCE

							1.180						
CLSG	C.6111	C.7993	0.9436	C.5941	0.2584	0.0656	0.0000	0.0720	C.2794	0.6373	C.6338	C.5817	C.5080
T.M.F	40.C07	+0.006	+ 1, 293	+0.002	+))1	+0.001	+0.000	CC - 0+	000.0-	1.00.0-	-0.004	-0.005	-0.00
1/0	1.635	2.315	5.241	7.825	11.298	10.405	-0.019	-8.8R7	-8.805	-6.858	-2.751	-1.635	-1.683
ځ	0.376	0.279	J. 291	-0.520	0.145	950.0	-0.002	166	0.113	0.176	0.145	0.135	0.119
Col	-0.63A	0.968	J. 858	0.059	0.874	0.853	31.873	698 *.	C.880	0.491	0.835	0.901	· 945
¥.	40.1203	+0.1435	+ 1.248	+0.2056	40.1440	+0.0747	1 - 0.00.021	1694	- 0.1399	-0.2013	-0.1430	- 0.1507	۶۷۱۱۰۰ -
دی	0.4782	0.3862	7.1854	0.0985	0.0494	0.0246	0.0171	21.8	0090.0	0.1136	0.2894	3.4665	• 4235
۲	0.782	0.894	1.971	3.771	0.5CA	J.256	-0.000	- 1.269	-0.529	-0.779	-0.796	-0.763	- •713
AL PHA	30.80	25.92	21.74	15.84	10.58	5.32	0.45	-5.23	-10.49	-15.75	-20.73	-25.70	-27.54

	φ Ο 8	52273					
, ° °	-N 7-R 20. 20. 18. 18.	6=1,2JJJ 1 7=3,)227 7	278. 301. 218.		444 456 456	25.	-258.0) -198.33 -112.67 -112.67 -92.68 -67.17 -55.33
í o		.23.1.	. K . K M S	777	2		
	6-3 10 11			488	32. 21. 13. 32.		1388-55 178-692 178-692 178-692 178-693 178-69
	6-h 10.	997) a	14 (**)	Za		
24.5 96.90	5-R 10C. 101.	.0c 5≈0. 5	315. 362. 350.	319. 257. 191.	120. 160. 338.	326.	215.33 250.33 219.50 151.60 21.60 -150.33 -237.25
X-MAC 0.763 9	5-N 100. 98.	~	1345. N 1677. 1690.	540. 1110. 705.	315 250. 840. 840.	880.	
× 6	4-R 100.	1000	, a E1 33	112	<i>Z</i>		0 S S S S S S S S S S S S S S S S S S S
C-MAC 5. 7421	4-N 100. 95.		950. 541.	-682. -52. 380.	398. 0. -838. -1520.	1 · C · C ·	1005 AND -550-77 -550-83 -650-83 882-50 -379-11 -397-00 -307-00 -307-00 -307-00 -307-00 -307-0
7.875	3-b	٠. د	102. 28. 260.	55.	127. 798. 670.	20°	2FR0 RFATINGS B2.37 - 958 7.00 - 533 -241.67 - 453 -248.33 - 548 -112.00 - 39 -271.00 - 34 -271.00 - 39 -447.00 - 63 -447.00 - 63 -447.00 - 63
ÿ ~	9 Z C K	A = = (2 ° Z	3 %	2		
AP F A 44. 30	ANU AFT 2-4 3-70.	96		360. 995. 635.	265. 313. 693. 033.	135	ECTED FOR -129). 1 -1850.00 -1260.00 -835.00 -1650.00 593.00 933.00
< 3	7-N 2-N 20.	α	^ ~		7		•
T T 85	ADINGS RE 1-R 100.	THIST 15:0.0 INPUT DATA AS	126.5 121.5 116.5	111.5	96.00 96.00 91.00 91.00	711.5	29.66 24.60 129.60 14.60 14.60 14.60 16.60 16.60 17.60
18 82	A - 100	CFLL LA TWIST = INPUT D				1400.	1275. 1399. 1447. 1459. 1472. 1472. 1472. 1472.
0.5 5.0	ZERN ANDM 0.	# 1	12.00	668	28828	828	

Appendix 5 (cont.)

FLAPPED RUDPER DATA REPUCTION

151.93 1011.97 6.57 151.93 1011.97 6.57 147.42 110.99.54 51.93 129.21 54.31 381.48 -12.21	1	51.037		•	FZ7-L8 10.47 139.38 42.63 29.00 91.45	FZn-LB MX0-INLR MY0-INLR MZn-INLB 1.47 696.86 -14.00 -366.79 1.38 943.87 -1.00 -364.74 1.63 983.10 43.00 -237.04 1.00 906.51 69.00 -110.06 1.45 642.79 44.30 -53.19 1.19 381.03 14.00 -22.19	-14.00 -1.00 43.00 69.00 44.00	-366.79 -364.74 -237.04 -110.06 -53.10		21.982 22.20 22.20 22.36
3.97 3.97 -0.1 -8.39 -19.21 -6.32	11177	181.04 1157.00 1157.00 1643.05 1646.05 1642.22	 2.67 3.667 113.02 113.02 34.02 50.62 11.62	11.58 12.20 27.00 33.73 -1 34.67 -		108.68 -436.17 -692.81 -692.19 -576.58	20.10 -48.00 -79.00 -104.00 -24.00 -15.00	-9.49 -10.58 -40.38 -94.22 -238.49 -336.56	1.77 -1.53 -1.53 -0.60 -0.60 -1.74 -2.34	22.39 22.39 22.39 22.02 21.83

**FLAPPED HUDGE DATA IN NON-CIMENSIONAL FORMS.

TEST	5C . Yalı		1N, DEL#5 OF	ניייאין י	# C+ d'ad DN++1) ju	FLAP	7/27/73	73	
AL PHA	ご	0.0	3	100	۲	170	H T L	CL 50	DN41044-6
29,59	1.956	. 51.88	113	1 .8 .	. 1 R3	1.682	-0. CCR	C. 7321	
24.60	0.9P4	0.4285	-0.1413	C - 860	0.226	2.256	-0.008	6.9679	
19.63	0.993	0.2615	-0.1836	. P75		3.798	-1.115	.).9866	
14.65	0.883	C. 1176	-O.144P	0.992	0.229	7.483	-3.0C4	C. 7750	
9.63	0.619	3,0669	-0.1346	0.893	0.159	9.247	-0.003	C. 3431	1.210
4.61	1.36.	1. 335.1	0+91	F 8 8 .	., 111	10, 398	-0.002	C.1327	
-0.39	0.120	4610.0	-0.0391	0.774	0.078	6.176	-6.602	0.0143	
-5.43	-0.157	0.0234	0.0772	. 851	82	-6.714	- 1. 3.2	7.7247	
-10.45	-0.427	0.0446	0.1483	C. 87C	C. 148	-9.577	100.0-	C. 1822	
-15.47).673	0.0889	3.2124	0.879	0.277	-7.565	-0.001	0.4532	
-20.44	- 1.657	· 2377	1578	84B	1.224	-2.762	0.002	0.4311	
-25.42	-0.648	n. 3571	0.1279	0.157	0.245	-1.814	J. CO3	1514.3	
-30.41	-3.634	0.4386	0.1211	. 83.	. 287	-1.446	3.713	13.4721	

ARNVE NATA COPPECTED FOR TUNNEL INTERFRENCE

PN#1044-6	1.131	1.185	1.193	1.205	1.210	1.215	1.216	1.216	1,216	1.214	1.196	1.186	3.1.5
CL SQ	0.7321	0.9679	99860	0.1750	0.3831	C. 1327	C.0143	13.1247	0.1822	C.4532	C.4311	C.4197	0.4321
T M	40.008	+0.004	+13.105	+00.00+	+0° CO3	+0° c05	+0.C02	41.0:12	100.0+	+0.001	-0.002	-0.003	-1.133
1/0	1.642	2.212	3.573	6.735	6.439	9.178	6.100	-6.597	-8.964	-4.574	-2.681	-1.779	-1.424
ځ	0.187	3.226	. 52.	0.229	0.159	0.111	C.078	1. '82	C.148	0.227	0.224	0.245	785.1
נ 16	C. 8C!	ر 96 ° ۲	A 75	0.892	0.891	0.853	2.774	.851	0.870	0.879	C. 948	· . 757	. 43,
£	40.1130	40.1413	9641.4	40°1004	40.1346	♦). 0649	10.00.04	277	-0-1498	-0.2104	-1.1578	-0-1278	1211
e e	5211	C + + + + C	. 27R.	0.1306	0.0734	F 1373	0.0196	1. 1238	3.3476	3.3965	1.245.	0.3641	4453
				0.883									
AL PHA	30.41	25.55	20.58	15.49	10.72	40.96	-0.27	-5.5A	-10.86	-16.12	-210.7	-26.04	-31.02

FLADDER DIMMER TYPUT FATA

		7-R 20. 2.	£220°0=1
	≻ °°	7-N 20.	0000
		6-8 10.	6=0.2
		N19	. 48970
73	7AC 3.15	5-R 133.	0=5 00
16711	X-MAC 2AC C.764 -3.15	2 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	0071 • L-
LAP	X C	1 7. B	* 361
#02°at	C-48C	1	1 N 1 . N 1
. 44 CA.	SPAN C-4AC 7.875 5.7421	3-E	J6*T
TEST 9/C. Y=0 14-061=-100FG.A PRJ0.208 FLAP 7/29/73	AF + A 44 + 3C	ZERT PEADINUS REFIDE AND AFTER AND 4-P 5-N 5-P 6-N 6-R 7-N 7-R ANJM 1-N 1-P 2-N 2-R 3-N 3-P 4-N 4-P 5-N 5-N 5-P 6-N 6-R 7-N 7-R 3NJM 1-N	FELL LASZCOUNT 1216111 28 00 010 1816 11070 440 10000 580648970 680620700 780602273 TWISTE 1500-0 SHAFF DIA.R 1.50 IN.
\ \circ	1187	1-8 27 11-8 2 11.3.	10 70 10 1 5 00 5 C
9/0.	0 £	PFADI 1-N 105.	1 135
TEST	0F 12 11 10.0 85 87	ZER7 AN 3M	P 7

~ `	, ,	: :	.77	21.	43.	48	61.	71.	•	0 !	13/	233.	258.		. 07
S	r	•	z												
-c g		, ,	. 7 .	=	24.	5 8•	24.	5		• • • • • • • • • • • • • • • • • • • •	38.	<u>:</u>	13,		-12
v.	,		7	œ					:	z .	x				
ب	254.	265	262.	21¢•	158.	1 76.	179.	186		341.	417.	4.10	103	946	366.
<i>ر</i> م	~					œ									
•	. 6.	1200.	1290.	950.	555.	17:	305			10001	1255.	4:15.		16021	1185.
~	œ						7	•							
ر. د	6 de	118.	-1523.	-804-	-60-	27.	214	· ·	-504.	-1146	-2076.	-1287		-040-	2.
~	213.	290.	695.	635.	516.	25.0		•	20.	188	318	1 42		4.0	138.
·	œ								Z						œ
AECHADEN S 1 S	, 1061.	1133.	1075	787	777	•	•	*00*	.01 e	115.	1663.		• • • • • • • • • • • • • • • • • • • •	1510.	1415.
AATA AS ANGLE															
ANOM A	1333.	1338.	1372	306		1661	1343	1396.	1393.	1383	1 24.7		1 155.	1303	1296.
1 1		ĉ	9 6	3 ?	?	3 6	3	င္ပ	00	7		3 9	င်	C	9 6

		3667 4 4 4 6			INCS AND	SIGNS			
;	-				(.·/ · (OB -	-991	154.7)	-41.00	-84.00
~	1333.							000	- K 9 . K/
•	95.5	30 36	-1329.75	- 273	-315.00	- 1 100° co	10201	00067-	
7	1230	1000					14.3.33	71,17	
5	1372.	20.05	-074.50	-675	1528.00		(6.20)	4	
7					600	00.030	714.50	00.1-	· ·
7	1385	15.05	C2 • 98 9 -	-012	2000	00.00			
		4	1344 000	400	72,00	-455,00	56.67	14.00	2.0
77	1391	10.02	2001					41-	
-		4	7.92	339	-255	うつ・フトー	12.08	20.01	
7	• • • • • •						C 0 0 C 1	00.41.	30.05
	1 306	0,05	36.2.50	- 1	00.051-	74.50	00.00		
,				•		413.08	-186.42	00.8-	900
7	1393	-4.95	20.707	Ĭ	02.662	0. • 3 1 0	3 - 0 - 4		
				771	1170,00	896.67	-24C-33	11.57	23.5
2	1383	CA - 5 - 1	0.000	200				00	3 000
•		30 71 T	1156.25	706	2103.00	1151.75	-310.25	00.82-	
7		C	\				41 000	ć	7070
2	11114.	-19.95	1395, 83	_		30.00	110667-		
J					333	1140.42	-291,08	-3.00	217.8
~	1308.	-24.95	75.6041	`					326
. •		30 AC-	1110.00	- 120	34.00	1080.	_265.ņ∪	22.11.	11077
7	1230	C . 0 .			• • • •				

FLAPPED PURDER DATA REPUCTION

TE ST 9/C, Y=0		01140471	14.0FL = 100EG. NO PROP. ZOT FL	00,20% FLAP	010011	C.						
						2		A MX.J-IN	9 MYD-INL	13CAM BINI-UZH BINI-UAM BINI-CXW BI-UCB	MYTELAP-INI B VEL-FPS	A VEL-FPS
AL PHA	×	-7 4 tl-X 4	Tul-XW ul.	1141-78 x						1270 61	-1.91	21.29
	9	C	504.59	-11.67	52.24	24.25	83.31	07.476	00.00	11017		. (
20.05		•					66.40	425.51	68.30	-239.4+	-1,33	21.32
25.08	3.15	2	665.6R	*! •! !	* * * * *					37. 60.	40.0-	21.59
		-	710.61	104.11	15.67		104.15	110.48	121.00	60.01.		
50°	0/0/1	2	10000				30 76	508.43	113.00	06.64-	0.03	21.70
15.12	- A.13	_	507.17	20.100	¢*.		2001	•			76 0	21.74
		•	70 070	7.4.	4.12		39.20	262.83	84.00	- 64 • 1 3		7 . 64 3
17.11	7) • (-	•	CD • CO 2	•	J .			76 61	41.00	- A . A .		21.76
900	2,55		13.54	-8-39	2.54		70.7	02.61				
2.03		•		**	. 0		36.35	-246.58	31.00	-19.63		2/10/2
0.0	96.	1	ケン・ノラント	44.01						57 47		21.76
	3 6	,	10,000	23,36	7.15		E * · O / -	(12.66.41	00.1	37.		
C.P. *	000						-166.22	-753.65	- 29.00	-90.62		20.12
16.6-	-11.70	-	- 124.2%	クロ・ノエ	2					267.04		21,55
		-	48,100-	-55.66	73.07		-138.21	Br. 614-	00.00	1001001		
A6.+1.	117	-	000				114.55	-508.76	-19.00	158.68		21.30
-19.96	-13.10	7	11.505-	140.00	4 3 • 1 3					1000		21.08
		7 7	-902,20	0.81 -902.20 48.37	50.05	23.83	-127.62	*0.518-		7 9 7 9 6		
CF * + 2							-112. SA	-735.6A	21.00	-381,88		***O*
-26.84	-0 · 34	- 15	00°% %	31015	10.40		200			1		

Appendix 5 (cont.)

:1/1
1129/13
FLAP
PRCP , 209
ž
1N. CFL * - 130FG NO
1 9/6
TFCT

RN#1100-6	1.177	1.179	1.194	1.200	1.213	1.203	1.205	1.2)3	1.199	1.192	1.178	1.166	19101
6573	0.3824	0.5133	1.5642	0.2860	0.0778	C.0003	0.0553	25:37	C.5776	1.0011	0.9946	0.9321	0.7389
F (0.007	0.001	1.006	0.003	9. 172	100.0	0.001	1	00000	00000	-0.000	-0.00-	- 1. 12
1/0	1.743	2.129	3.118	5.994	8.360	9.854	3.98°	557	-9.755	16.027	-6.645	-2.288	-1.595
≻	0. ~ 10	0.219	956	0.176	0.114	0.067	0.000	35 0	0.159	0.303-	C. 838	0.130	1.158
C Pt	000	C. 473	. 966	0.863	C. 851	0.66R	116.5	. 999	1,600	0.841	いるない	0.815	. 83
£ ,	-0.1434	-0.1697	P187	-0.2079	-3.1475	-0.0179	-0.0058	1.691	0.1372	0.2001	3.1641	3.1468	. 1 1 3 8
5	C 6 4 0 3 1	C.4535	J. 3198	0.1670	0.0900	U. 2508	0.0271	187	0.3286	0.0533	O. 113C	0.3131	. 1A 7A
.													
AL PHA	10.07	25.08	2113	15.12	10.11	5.09	0.07	-4.05	10.6-	-14.99	-19.96	-24.95	-26.84

AROVE DATA COFPECTED FOR TUNNEL INTERFERENCE

PN 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1,700 - 0.007 2,059 - 0.007 2,059 - 0.007 2,944 - 0.007 7,554 - 0.007 7,556 - 0.007 7,556 - 0.007 7,556 - 0.007 1,000 - 0.007 1,
1
00000000000000000000000000000000000000
7.00.000.00000000000000000000000000000
++++++++++++++++++++++++++++++++++++++
0.5056 0.4691 0.1837 0.1006 0.0550 0.0281 0.187 0.0591 0.0591
0.000000000000000000000000000000000000
100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000

			523
		7-R 20.	.=0°05
	≻ °°	7-N 20.	0000
		6-R 10.	6 ± 0 • 2
		× 000	.48970
2	2AC 1.15	5-R 6-N 6-R 7-N 130. 10. 10. 20. 102. 9. 11. 43.	00 5*0.
1/53/1	7 E	4-R 5-N 100. 100.	.0.100
LAP	X-X-0	100.	. 0001
, 20% f	74.21	100.	N. C. O.
NC PROF	SPAN C-MAC X-MAC 2AC 7.875 5.7421 0.763 -3.15	2 Z Z Z Z	1.50
TEST 7/C, Y=0 IN-DEL=-15DEG.NC PROP.20% FLAP 7/29/73	ARFA 44.30	ZERO READINGS REFORE AND AFTER 4-N ANCH I-N 1-R 2-N 2-0 3-N 3-R 4-N 0. 100. 100. 20. 20. 20. 0. 100. 0. 100. 10	CELL LBS/COLMY 1 = 0.10070 2 = 0.C1000 1 = C.01000 4 = 0.10000 5 = 0.48970 6 = 0.20000 7 = 0.02273 TWIST = 1500.0 SHAFT DIA. = 1.50 IN.
NI 0=A	11	NGS RFF0 1-8 2- 100. 2	1500.0
1/6.	# # # #	2 F A D	.t LBS
TEST	EF TR TT 15.0 84 95	ANCH I	CEL

۲.	- (Š		58 •	*	9	75.	80.	121.	170.	250.	284.	291.
s a	Ĺ		Z	2	z								
9 [;;	•	5 1 .		27.	30.	28.	18.	18.	33.	12.	27.	28.
S	K		z	œ					z		Œ		
۲ ,	*4 2	256.	237.	186.	125.	143.	219.	295.	363.	460.	**	415.	195.
s s	Z					œ							
4	0	080	100	750.	385.	205	\$70.	875.	1175.	1420.	1410.	1332.	1285.
ν,	¥					z							
S .	1020	340.	-1216.	-558.	70.	362.	264.	-254	-1172.	-2110	-1070-	-440	48.
~	326.	408.	797	723.	600	448.	278.	6	104.	241.	72.	105	201.
s,	œ								z			Œ	
RFCCRCFD S 1	R 940.	1000	905	400	265.	3000	665	555	1345	1650.	1676	1605	1570.
DATA AS ANGLE	54.9	21.9	16.9	11.9	0	-			, , , , , , , , , , , , , , , , , , ,		- 2 -	-28.1	- 30.0
TOPUT	1363.	1385.	1411.										
-	2	0	0	Č	6	ć	ś è	5 6	óò	ς ζ	ح د	ćč	88

-17.00		50.1	3.17	-13.50	20.33	30.42	42.60		25.36	85.67	132.75	210	20.0	242.92	24.00	00.0
-37.00		- 23.42	11.17	-2.75	-16.67	-19.58			-7.42	8.67	23.75			-16.08		00.1-
143.00		126.17	137,33	86.50	25.67	-42.17		20.011	-193.83	-281.67	-158.50		-338.33	-313.17		-243.00
SIGNS	2000	-980.00	-1000.00	-650.00	-285.00	105.00		00.07	175.00	1075.00	1320.00		1310.00	1232.00		1182.00
ADINGS ANE SI	00.000	-343.50	1209.00	547.50	00.48	770.50		-285.00	224.50	1144.00	20.00		1035.00	401.50		-90.00
LERO RE	2000	- 386.5	-777-	-704-7	- KA2-	430		-261.5	-77.0	0.08	3 1 4		4.0	7.10-		-188.0
CTED FOR		-900	00.500	00.00	200		2000	265.00	895.00	1245.00		20000	1570.00	00.3031		1470.00
DATA CORRE	30.05	25.05	20.06				2, 02	0.0	-4.95	90		C] -	-19.95	30 10	C4+47	-26.85
TUPUT																
•	~	•	•	ų r	y (•	~	~	•	<i>,</i> c	4	V	^		•	~

Appendix 5 (cont.)

FLAPPED RUDDER CATA RECUCTION

TEST 7/C. Y=0		IN.DEL 1	IN.DEL =- 150EG., NO PROP. 20% FLAP	DP.208 FLAP	1/29/73	5						
ALPHA		FX-LB FZ	S FZ-LA MX-INLB MZ-INL	8 M2-1NLB	FXO-LB	FYO-LB	1 -02-1	B MXO-INC	B MYO-IN	LA MZO-INLA	MYOFLAP-INE	S VEL-FPS
30.09	10.20	87.36	522.35			17.91	73.03	452.74	55.00	-262.15	-0.39	21.69
25.10	3.43	93.89	90.419		30.21	22.84	85.83	65.83 573.51 6	69.00		-0.04 21.70	21.70
20.14	-12.09	88.23	596.99	54		26.98	87.94	596.96	139.00	-82.14	0.07	16.12
15.13	-5.48	57.05	391.26	13.44		19.64	56.95	382.14	126.00	-35.56	-0-31	21.98
10.12	0.84	22.32		2.95		14.71	22.06	142.80	104.00	-14.31	94.0	21.99
5.1c	3.79	-15.69	-114.69	-13.26		10.50	-15.81	-115.06	17.00	-9.45	0.69	22.00
80°0	2.85	-53.8	8 -380.60			10.73	-53.65	-379.59	47.00	-28.98	0.0	21.99
16.4-	-2.30	-88.7	-625.97			15.17	-88.17	-623.22	13.00	-63.59	1.26	21.93
-9.96	-11.44	-125.3	-895.77			- 81.65	124.63	+0.166-	-14.00	-123.18	1.95	21.66
-14.98	-20.78		-157.17 -1121.61	135.15		35.33 -	-155.85 -	1108.29	-36.00	-220.05	3.02	21.74
-19.96	-10.35		-1054.44			31.52 -	148.91	-996.17	-8.00	-350.68	4.79	21.48
-24.94	-4.02	-149.59	-569.70			30.06 -	133.84	-870.37	16.00	-428.70	5.52	21.22
-26.83	0.0	-145.12	-902.44			- 11.55	125.23	-798.43	33.00	-421.97	5.64	21.08

...FLAPPED RUDDER DATA IN NCH-DIMENSIONAL FCRM.

TEST 7/C.	2	10101 - 1011 - 101	2	180P + 2C	4 C A P	1129/73	-1.3	
ರ	60	3	ر م	ځ	0/1	CMF	02.13	ALGOLONG
			0.787	0.128	1. 708	0.007	0.2724	
			0.848	0.163	000	0.00	275	
20.14 1.086			0.845	0	040		70.00	
						600.0	0.9745	061.1
			7600	0.13	7.301	*00.0	0.1570	1010
			0.822	0.109	7.222	0.002	0.0235	1010
0.616			0.924	0.073	8.619	0.002	0.0121	90
0.373			A98.0	0.075	215			
							1461.0	
			0 • 0	•	2000	100.0	0.3799	161.1
			0.408	0.177	-6.275	0.001	0.7667	
			0.903	0.251	COR . 8-	000	1.2284	-
								3 D 4 0 1
			000		.0.743	0000	1.1783	1.166
\$10.0 - 46.42-			0.826	0.224	-2.247	00000-	0.9986	1.152
			0.810	0.100	-1.506	-0.000	0.8971	1.145

AROVE DATA COPRECTED FOR TUNNEL INTERFERENCE

8N+10++15	1.178	1 70					1.195	1.194	1017		001	181:1	1.166		37	1.145
CL SO	0.2724	0.3753	706			20032	0.0121	0.1391	0.3799	0.7447		1.2284	1.1783	A 800 . C		0.8971
T.	-0.007	10000	400			20001	-0.00-	100.00	100.00	100		000.0	-0000	000		-0.000
1/0	1.662	1.935	2.709	A. 8.74		1000	7.915	8.803	4.788	-6.175		-8.543	-5.867	-2.19k		-1.487
č	0.128	0.163	0.189	0.137			0.073	0.075	0.107	0.177		162.0	0.230	0.224		0.190
ر 4ر	0.747	0.848	0.865	0.852	0.822		0.924	0.898	0.898	0.908	600	20.00	0.850	0.826		018.0
3	40.1511	+0.1748	+0.2517	+1.2054	+0-1465		+0.0787	+0.00+	-0.0646	-0.1341	1000	00110	-0.1627	-0.1276		-0.1024
ບ																
ฮ	0.947	666.0	1.086	1.104	0.876		0.0	0.373	011.0	-0.153	-0.10h		010.0	-0.613		**C • O
AL PHA	31.00	56.06	21.19	16.20	10.96		0.0	***	-4.84	-10.11	-15.16		- CO - 22	-25.53	EL 76-	56.00

ZFPT READINGS HISTORY AND AFTER 4-8 4-8 5-8 7-8 6-8 7-8 7-9 8-9 100 100 100 100 20 20 20 20 100 100 100	č			6	•	2	-	7 M T	3	,	74.			,	
2FPT BEADINGS HEFDRE AND AFTER 1-6 4-7 4-8 5-N 7-8 6-N 6-8 7-N 7-9 AND 1-4 1-4 2-N 2-1 1-0 1-4 2-1 1-4 2-1 2-1 2-1 2-1 1-4 1-5 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4		¥ .	- &	7			· .£	5.7421		3.5	-3.1%				
ANDERT-W 1-4 2-8 2-6 4-8 4-8 4-8 5-6 7-8 6-8 6-8 7-8 7-8 0-100, 100, 100, 100, 20, 20, 20, 100, 100	7 F D C	0 5 A.)	11.65 pt	FORF	ANCAF	1111									
0. 100. 160. 20. 20. 0. 0. 166. 100. 100. 100. 10. 20. 20. 20. 0. 10. 10. 20. 20. 20. 10. 10. 10. 20. 20. 20. 10. 10. 10. 10. 10. 10. 10. 10. 10. 1	30.71	7-	3-	Z - ~	7-6	<i>z</i> !	9-1	714	1	5-2	α ,	V-9	6-A	N	7-0
0. 105. 105. 14. 9. N. 11. 17. 17. 18. 1.1. 9. 17. 37. 21.	•	1001	100		3.	ċ	ċ	100	100.	100	100.	<u>.</u>	.01	20.	50.
	•	105.	105.	;	<u>.</u>	œ;	÷	: -	• ;	B.	-	6	12.	37.	2.7.

	~	* * *	42.	·15	112.	132.	152.	171.	184.	2C 8.	248.	332.	357.	364.
	S	z												
	•	57.	* ! *	.5.	-61	30	32.	32.	23.	- 4.	28.	-+-	29.	31.
	S	œ		z	œ					z		æ		
	ĸ	216.	2270	211.	164.	107	156.	230.	303.	347.	457.	427.	*0*	401.
	r	Z.					œ							
	3	350.	950	978.	640.	260.	115.	63.5	924.	17.15.	1435.	1425.	1345.	1295.
	·	œ					Z							
	•	1160.	\$00	-1146.	-376.	230.	526.	40U	-110.	-1.16.	-1872.	-1000	-176.	126.
	٨	184.	470.	805.	734.	625.	487.	326.	153.	42.	169.	٠.	151.	23A.
	v	œ								7			œ	
OFUEN		a 05.	A65.	780.	· A 5.	155.	300	735.	1045.	1385.	1665.	1690.	1670.	157.
ن ات ط	v	œ					z							
MATA AS	ANGLE	76.	21.0	10.0	11.9	6.9	١.٥	-3.1	1.6-	-13.1	-18.1	-23.1	-24.1	20.06-
V PUT	ACSA	1317.	1319.	1340.	1354.	1356.	1355.	1348.	1342.	1331.	1315.	1284.	1255.	1245.
	u F	7	C	8	ĉ	က် က	င်	?	င်	Ξ	င်	8	ĉ	ŝ

	J	21.17	69.33	89.50	108.67	127.83	146.00	158.17	181.33	220.50	3,3.67	327.83	334.00
	- つ。 とすー	-30.43	5.17	-8.50	-19.33	-21.17	-21.00	-11.83	4.67	13.75	-2.33	-17.17	-10.00
	110.11	127.17	111.33	64.50	7.67	-57.58	-129.50	-202.42	-266.33	-356.25	-326.17	.303.08	-300.00
SIGNS	-750.00	-850.00	-874.00	-540,00	-160.00	215. 33	515.00	825.00	1105.00	1335.30	1325. 33	1245.00	1195.00
INC SONT	-116). 1)	-494.33	1147.13	378.00	-231.33	-522.67	- 396.00	114.67	1.21.33	1878.00	17, 16.67	187.13	-118.00
Jean Jose	- 369.13	-450.17	. 785.33	-714.50	-405.67	-467.83	- 167.00	-134.17	19.33	146.00	4.67	-132.83	-226.00
ECTER FIR	-7.15.1	-764.58	-479.17	-343.75	-53.33	20.502	04.50	942.08	1201051	1561.25	1575.83	1565.47	1465,00
ATA CORPE													
1 TUGHI	11 1317.	1 1319.	1 1349.	1 1354.	1 1356.	1 1355.	1 1348.	1 1342.	1 1331.	1 1315.	1 1284.	1 1255.	11 1245.
	~	~	^	~	~	~	~	~	~	~	~	~	~

**FLAPPED KURD'R DATS BENUTTICNS*

	VEL-FPS	1.16	1.17	4.4.	1.45	1.47	1.46	\$	1.36	1.27	1.14		3.65	20.57
	MYOFLAP-INLB VEL-FPS	0.09	3.48	1.50 2	2.03	2.47			3.60					7.59 2
	F20-L8 MXO-INLR MYO-INLB M20-INLB M		-192.38	-70.78	-31.68	-19.81	-17.82	-41.05	-80.98	-137.22	-236.03	-366.21	-419.21	-434.72
	MYD-1NL	99	81.00	141.00	128.00	109.00	84.00	55.00	24.00					
	B MXO-INLR	381.14	472.70	11.405	303.73	64.02	-185.67	-422.79	-657.35	-905.82	1103.52	-959.95	-820.30	-826.53
		16.09				11.73			-92.10					
73	FYO-LR	24.30	25.59	28.57	20.73	12.72			15.63	·	٠	•	٠	•
1/29/13	FXC-LP	43.91	34.83	11.05	5.69	3.68	4.41	7.21	11.95	19.15	31.11	52.58	71.49	73.17
P. 208 FLAP	PX-INIA WZ-INLP	-41.63	16.1-	78.83	31.63	-11.98	-23.52	-18.13	12045	71.65	118.49	39.17	16.57	16.78
IN. NEL 200EG. N) PROP. 208 FI	PINI-X4 R	448.50	510.24	4 32.91	303.74	65.43	-184.97	-474.40		-913.35	1122.24	1026.66	-921.06	- 433. 16
• ne t = -20g		14.18	80.96	75.77	45.52	11.39	-24.61	60.18	-92.87	-178.36 -913.35	-157.59 -	-157.63 -	-155.21	-144.30
	FX-LP	11.60	06.4	-11.47	-3.78	2.33	5.23	3.96						. 18
TEST 8/C. V.O	ALPHA	30.09	25.10	20.14	15.14	10.12	5.11	0.09	.4.43		-14.97		-24.93	-20.82

Appendix 5 (cont.)

MOFIADDED RUTHE DATA IN NINKERSINAL FIRMS

**

16.41	8/C. Y.		18.DF1 =-2 10FG. + VC	9 27 . 5	PA('P.2.)\$	FLAP	1/29/73	2	
ALPINA	ALPINA CL	رع	3	و	>	1/0		0130	107070
£. 70	080.	. 5H1C.	- 1. 16 14	, 101,		1. 7.11.	0.0	0.2094	
25.10	1.086	0.5647	-0.1965	0. a. c	0.192	0.192 1.927	0.01	0.3020	1.171
20.14	1.148	0.40%	C.2540	. 444	(.1 ~ .)	2.832	`.	40.8.0	
15.14	1.12	0.2341	12000-0-	7. #51	C. 151	5.0C3	0.00	C. 1097	
10.12	0.947	0.1423	-0.1496	1.1.0	0.001	6.651	00.0	0.0065	
7.11	2.679	1881 **	18.30	2:601	1. 155	7.767	0000	0.0327	
0.00	0.440	0.0579	-0.0116		0.000	A. 306	0.00	0.1932	
-4.93	O. 1.8.	0.3322	2. 40°C	\$ 76.		5.62)		1.4612	
-0.95	-3.080	0.0269	0.1307	0.903	0.189	- 2. 993	0.00	C.8962	
.14.97	-0.331	0140.0	0.1916	000.0	0.255	-7.564	00.0	1.3713	
-14.05	-7.556	·• 18 1··	.1. 161.	dln	189	-6. 864	0.00	1.3175	
-24.93	-0.550	0.2613	0.1310	0.756	6.191	- i. 103	0.00	1.1802	
-26.82	たいす つー	3.3290	3.000	7 9 6		-1. 1A!	5	1.0772	

ARNVE DATA COPPLCTED FOR TUNNEL INTEPFERENCE

				,					
¥ I				ت و	>	ت د (u I U	CL SO	_
1. 14				0.795	0.183	1.653	110-0-	0.2094	
6.15				0.819	0.192	1.862	0.00	02010	
1.25				**		2.686	0.004	7.3394	
6.76				0.851	C-151	4.556	0.007	0.1097	
1.03				0.717	0.093	6.017	0.00	0.0065	
5.76	2.679	1. 1958	+ 1. CA29	0.952	0.05%	7.086	00 00	C.0327	1.187
0.51				456.0	0.079	7.828	-0. CO4	C. 1932	
4. 76.				3.90.6	. 115	5.526	40.00	0.4612	
0.03				0.903	0.189	-2.581	.00 0	0.8962	
5.29				00000	0.75%	-7.631	0.003	1.3713	
E+. 0				£.8.3	1 AG	-6.451	0.002	1.3175	
5.40				0.756	0.191	-2.063	-0.001	1.1802	
7.26				1.844	1.223	-1.373	2000	0.9772	

	•	2 A C
	1/33/73	
	PROP.	×
ATAG TE	FLAP AC	SPAN CLEAG
JOSE TAP	.X-0.20E	262
FLAPPED AUDINER INPUT DATA	TEST 3/C.Y#O .5F1+30 DEG .X+0,202 FLAP AG PROP, 7/33/73	ARFA
	o.	-
	3/6,74	1 M 1 T
	TE 5.1	ů.

	7 000 000	CFIL LAS/COLMY 1.0.10000 2.0.01000 3.0.01000 4.0.10000 5.0.48970 6.0.20000 7.0.02273
0.0	7.N 20.	0000
	# 0 -1	6.0.2
	Z 0 0	. 48970
06.96		00 8*0
6.763 9	208 109 5.4	•0•100
	100 100	1000
.7421	100 000 000	3*0.0
7.875 5.7421	ZERO READINGS REFORE AND AFTER ANDM 1-N 1-R 2-N 2-R 3-N 3-R 0. 100. 100. 20. 20. 0. C. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	001000
	A NO.	0.2.0
44.33	A 212 200	10000
	2-N-2-N-2-N-2-N-2-N-3-N-3-N-3-N-3-N-3-N-) + 1 + 1
* **	MCS 7	\$0000 \$0000
30.0	##AD 100.	157.
0.0	ANOM O.	C

	~	R 579.	561.	517	504.	205	101	***	487	447		326	310
	•	81.	~	0	3	2	2	76.	2	2	35	32.	-
	S	•											z
	S	413.	435.	455	431.	373.	346	305	25.9	224.	143		257.
	v	Z											æ
	*	1780.	1945.	2175.	2050	1637.	1465.	1215.	950	775.	373	220.	\$ 70.
	S	¥										Z	
	~	1580.	1150.	400	198.	100	1345.	1600	1665.	1504	1173.	304	1000
	~												£
	~	318.	E	6.5	ç	113.	17.	× 70.	366.	. O I 4	576.	723.	A07.
	v:	z		æ		z							
ことによいし	~	18 50.	1984.	29.55	1925.	1575.	1430.	:210.	970	#0\$	400.	225.	\$
Œ.	•	-										7	
ATA AS	ANGLE	125.2	120.2	115.2	110.2	105.2	103.2	100.2	97.2	95.2	40.2	15.7	A.0.2
Z 1047	ANCE	1311.	148.	1377.	1412.	1437.	1445.	1458. 100.2	1467.	1471.	1476.	1474.	.448
-	u.	~	8	3	8	3	8	3	5	8	00	00	8

	-559.00	-540-33	-445.47	-484.00	-479.33	-474.67	-470.00	-462.33	-441.67	-341.00	-159.33	-202.67	-173.00
	-71.00	-62.92	-40.83	:43.75	-59.67	-62.50	-65.50	-63.42	-99.33	-44.25	-21.17	5.63	20.00
	313.00	335.17	355.33	331.50	273.67	246.83	204.00	160-17	126.33	44.50	50.67	-156.00	-147.00
SIGNS	-1680.00	-1844.58	-2074.17	-1948.75	-1535.33	-1362.92	-1112.50	-847.08	-671.67	-266.25	125.03	476.42	507.00
INGS AND	-1980,00	-114175	-347.50	-194.25	-45.00	-1338.75	-1542.50	-1656. 25	-1584.00	-1161.75	-291.50	1013.75	-3%.00
=	0	c.	~	0	^	0	_	ė.	407.00	•	$\overline{}$	~	•
PECTED FOR	-1750.00	-1884.67	-1954.33	-1824.00	-1477.67	-1328.33	-1108.00	-867.67	-702.33	-297.33	127.50	562.75	6 38.00
DATA COR	28.30	23.30	1 30	13.30	6 .30	6.30	3.37	0.30	-1.70	-6.70	-11.70	-16.70	-10.40
									21 1471.				
	-	-	_		_	•	•	•	. •	•	. •	•	

flappen EUFDES DATA REDUCTION

MYDEL AP-INI B VELLEDS	21.10	61.15	21.40	21.62	21.00		£0.22	22.15	22.25		76.32	22,35	22,30		22.37	22.33	22.16
		1 0 0 0	87.71-	-11.27	-11,00			-13.79	~10.68		10.01	-10.04	18,80		11.8-	-6-63	. 4. 0.
FZO-LB MXO-INLB MYO-INL9 MZO-INLB	-570.74		16.000	-396.45	-256.02	-225.23		67.841-	-114.30	-84.50	17.00	-69.35	-47.17		10.0*1	-83.49	-3.69
LA MYO-IN	-53.00		00.41	7.00	8.00	-17.00	000	.11.*07_	-46.00	-44.00	0	-73.00	-101.00	000	10.021	-143.00	-109.00
LB MX0-IN	985.57	1120 24	F20034	1329.31	1276.20	1035,33	00 110	66.106	174.09	600.62		411.02	100.68	211 02	300173	-446.67	-447.74
	147.22	172.17	- 1 - 1 - 1 - 1	16.181	179.63	145.69	13/1 20	670007	168.18	83.95		97.19	25.68	97 81-		-63.89	-64.18
FYD-LR	25.65	29.54		37.5	37.76	27.86	24. 32	36.4.	56.63	15.29		13.47	10.00				12.07
FXJ-[a	91.16	75.59		61.00	34.29	14.71	99712		16.10	12.48	20.00	12.67					27.62
LA MZ-TNLP	-96.79	-88.92	30 34 -	00.40	-25.48	-130.47	-95.99) : ! ! : :	-115.83	-1 0 7	# 1 00 / T	- 78.94	-189.22	, ,	67.57	171.54
FZ-LR MX-INLR	1134.79	1226.38	1396 75		13:10:37	1051.49	938. A1		アオ・ナー	505.67	146.57		16.4.	169.05	77 077	***	-413.59
	172.92	187.68	105.86			146.39	131.24	1001	A 2 0 0 1 1	43.24	46.14		24.05	-10.48	20 74-	C 2 • F 0	10.50-
۲ - X - X	08.01	11.49	30.5		† · ·	66.0	13,39	40 41		16.56	15.8.		70.11	16.7	-11).14		0.35
AHOIA	97.47	53.59	12,30			x .	6.24	1.27		97.0	-1.75	-6 7 7		2:11-	-16.80		15.01-

Appendix 5 (cont.)

	۰													
	RN#10##-	1.146	1.162	1.174	1.189	1.200	1.203	1.208	1.212	1.214	1.216	1.215	1.213	1.203
	Ct 50	1.2360	1.5989	1.8264	1.5863	1.0075	0.7969	0.5396	0.3210	C.2049	0.0297	0.0154	0.1857	0.1931
1/30/73	7.47	-0.017	-).016	-0.014	-0.C13	-0.013	-0.013	-0.013	-0.012	-0.012	-0. C10	-0.010	-0.308	-0.005
PROP. 1	1/0	1.615	2.278	3.466	5.238	10.251	6.296	6.636	6.728	6.563	3.491	-2.340	-5.225	-2,323
FLAP NO	ځ	0.194	0.217	0.287	0.265	0.192	0.167	1.135	0.103	0.091	0.067	-0.247	1).162	0.083
	CPL	0.850	1.826	0.898	0.902	0.962	0.908	656.0	606.0	106.0	0.943	-1.449	0.888	0.886
3/C.Y=0 ,PEL=30 DEG ,X=0,209								- 1.0433						
, PFL = 30														0.1891
3/C,Y=0								7.735						
TEST	ALPHA	28,26	23.29	18.30	13,31	8.29	6.2A	3.27	0.26	-1.75	-6.77	-11.79	-16.80	-19.97

** FLAPPED RUDDER DATA IN NON-DIMFNSICAL FORM**

RN#10##-6								1.212					
CL SQ	1.2360	1.5989	1.8264	1.5863	1.0075	0.7969	0.5396	0.3210	0.2749	C.0297	0.0154	0.1857	0.1931
CMF	+0.017	+0.016	+10.0+	+7.013	+0.013	+0.013	+0.013	+0.012	+1.012	+C. C1C	+0.010	+0. 108	40.005
١/٥	1.568	2.173	3.162	4.717	8.744	5.755	6.135	6.325	6.252	3.456	-2.328	-5.035	-2.284
۲	0.194	7.217	0.287	0.265	C. 192	0.167	n.135	0.103	0.091	0.067	-0.247	A.162	0.083
רפנ	0.850	A. 826	0.898	0.902	0.902	0.909	1.909	606.0	0.961	0.943	-1.449	7. SeB	0.886
5	40.102ª	+1.1653	+0.1959	+C.1801	+0.1136.	+0.0861	+1.7433~	40.00.0+	-0.0264	-0.09657	-9.1675	- 3.2255	-0.1935 V J. 886
00	0.7091	.).5819	0.4274	0.2670	0.1148	3.1551	1.1197	9680.0	0.0724	0.0408	9.0533	7.7856	0.1924
ئ	1.112	1.264	1.351	1.259	1.004	0.893	1.735	0.567	0.453	0.172	-0.124	-,.431	-0.439
ALPHA	29,33	24.51	19.60	14.52	9.25	7.14	3.98	0.80	-1.31	-6.60	-11.90	-17.21	-20.40

ABOVE DAYA CORPECTED FOR THINNEL INTERFERENCE

			7-8 20• 23•	.02273																												
		≻ °°	7-N 7-20.	=0. [0000 7=0.0 [030 3=0.0 000 4=0. 0000 5=0.48970 6=0.20300 7=0.02273 SHAFT 714.= 1.50 1N.	•	559.	549.	· .		•	, ,	200	• • • • • • • • • • • • • • • • • • • •	404	430.	398.	332.	150.		-539.00	-528.75	-488.50	-493.25	-490.30	-487.75	-480.50	-467.25	-447.00	-427.75	-375.50	-309.25	-127.00
			A-0 001	70 6×0.2	9	84. P	.	• 00	960	•	•	. 78	.62	75.	61.	38.	12.	34.		-74.00	-68.08	-56.17	-50.25	-66.33	-70.42	-72.50	-69.58	-65.67	-51.75	-28.83	-2.92	-55•00
			N - 0 - 60	489	v	• •														•											€0	·
		26.90	5-R 10C.	0=5 000	ď	422	***	104	440	0 0	35.	313.	271.	237.	157	134	235.	282.		322.0	344.25	361.5	340.7	284.0	258.25	216.5	172.7	139.0	89.2	-33.1	-134.0	-181-00
	877	X-MAC 0.763	5-N 1000 97.	4 * C • 100	4	179C. N	90	2.197.	2065.	•	.495	235.	985.	910 .		167. R	495.	715.	SNS	-1690.00	900.00	999. A3	-1965.00	-1560.00	-1395.00	-1135.00	-885-30	-710.00	-315.00	64.17	399.58	629.90
	CE //	×°	100°	1000	,	<u> </u>	20	Ξ,	2.	2 :	- :	7	.	æ		z	4	~	S S I GN S										7			-
SATA	20% FLAP 7/33/73	5-7421	4-N 100. 95.	3#0.0	*	2110.	1420.	83).	200	• 60 e 7	1656.	1898.	1958.	1894.	1480.	635.	-666.	-247.	ZERD READINGS AND	-2110,00	-1419.50	-829.30	-498.50	-1406.00	-1653.50	-1895.00	-1954.50	-1890.30	-1475.50	-627.00	7	246.39
FLADPED RUDDER INPUT SATA	ic 'dund	SPAN 7.975 5	a-k 0 0	0.01030 3 1.50 IN	•		45.	33.		.20.	216.	306.	392.	449.	595.	724.		.404	r READI	308.00					197.25					706.50	793.75	٦٢٠٠٤
المادية	4	<i>⊽</i> ~	AND AFTER 2-P 3-N 270 0.	00 2 T	U	~ ~ ~	~		•		~ (M	~	•	S	~	œ	4													_	
PED RI		A9FA		1=0.10000 2 SHAFT 014.=	PECORPED	19 1.	2000.	2040.	960	6 3 C	1485	255.	025.	855.	460.	16).	580.	873.	CORPECTED FOR	-1800-00	-1900.00	-1947.30	-1860.00	-1510.00	-1385.00	-1155.00	-925.00	-755.00	360.00	00.09	480.00	CT.17.
FL AD	*DFL:35 DEG	< 4	PEF JRE 2-N 20. 17.		PECJ	~	~:	~:		_	. ب	~	_			z			PP ECT	7	1	7	-	-	7	7	t	•	•			
		F 6	Anings PE 1-R 100.	CELL 195/COUNT TWIST = 1500.0	DATA AS	125.2	120.2	115.2	110.2	105.2	103.2	100.2	97.2	95.2	90.2	85.2	80.2	77.C	DATA COR			18.	_	œ	•	3.30	J. 3C	-1.70	-6.70	-11.70	-16.70	-19.90
	0= A+ 3/C	10 36	# 1000	LL 19 15T=	C TUGNI	278.	303.	321.	355.	371.	383.	395.	+00	413.	422.	426.	425.	396.	INPUT	•	1303	321.	355.	371.	383.	395.	409.	413.	422.	426.		
	15.51	ηF 35. υ	2580 ANOM 1	S ₹	2	~		_	00	~	-1		8	~		_	00	-	2							_	-	-			_	21 1

PARTE STORE ST

TEST 2/C+Y*0 +0FL*35 DEG +N PROP, 20\$ FLAP 7/30/73

B VEL-FPS	20.84	21.04	21.18	21.45	21.58	21.67	21, 77	21.88	21.91	21.98	22.01	22.00	21.78
MYOFLAP-INLB VEL-FPS	-12.25	-12.02	-11.10	-11-21	-11-14	-11.09	-10.92	-10.62	-10.16	-9.27	-8.54	-7.03	-2.89
MYO-INLS MZO-INLB	-589.32	-527.00	-430.12	-277.66	-197.08	-169.95	-134.06	-1001-	-81.32	-58.33	-52.40	-81.91	-209.12
MYO-IN	-55.30	-22.00	-2.00	0.0	-24.00	-35.00	-51.00	-67.00	-77.00	103.00	127.00	142.00	-85.00
LB MXO-INLB	987.47		1296.03	1295.20									
F 20-1	51.10	72.24	84.91	182.17									
FYO-LB	22.92	31.78 1	16.6	36.30								٠	·
FXO-L B	4.42	R. 57	8.83	7.84	7.74	6.13	9.34	5.19	2.88	9.39	9.40	2.63	9.69
LA M2-1418	-112.80	-89.93	-75.27	185.99 1123.90 -43.92 3	-100.31	-116.14	-131.27	-131.04	-124.15	-97.89	-34.22	48.29	-3.57
ZI-XH T	1144.41	1281.87	1363.46	1123.90	1072.29	967.:9	748.58	629.90	506.66	224.02	-75.62	-375.96	-526.79
J-7 3	176.92	188.75	191.87	185.99	151.63	136.53	112.63	88.76	71.19	30-23	-13.06	-55.94	-81.77
FX-LB	21.10	14.21	8.29	66.4	14.06	16.53	14.95	19.54	18.90	14.76	6.27	-6.71	-2.46
				13.30									

Appendix 5 (cont.)

Appendix 5 (cont.)

FORMS
STONAL
NON-OIMER
D-NCN NI
DATA
RUDDER
SEL APPER

2
-
1/30/13
1
LAP
FLAP
100
9
PROP
CZ.
•
nec
č
¢
K.
*0FL=35
ح
ő
جّ
ů
2/C.Y*0
S
TEST

											1.173		
CLSQ	1.3687	1.7109	1.9185	1.7698	1.1679	0.9384	0.6375	0.3961	0.2579	0.0505	0.0059	0.1454	0.2920
A N	-0.017	-0.016	-0.014	-0.014	-0.014	-0.014	-0.013	-0.013	-0.012	-0.011	-0.010	-0.009	-0.004
1/0	1.600	2.194	3-143	4.814	5.397	5.611	5.819	5.901	5.632	3.438	-1.173	-4.347	-2,568
ځ	0.177	0.241	0.224	0.265	9.193	0-169	0.131	0010	0.098	0.065	0.083	0.158	0.200
CPL	0.830	0.854	0.830	0.903	0.858	0.900	006.0	106.0	0.902	0.933	0.741	0.856	0.805
3	-0.1079	-0.1614	-0-1904	-0.1805	-0.1153	-0.0862	-0.0432	-0.0309	0.0277	9960	0.1655	0.2233	7,1819
0	0.7311	0.5961	0.4407	0.2766	0.2002	0.1727	0.1372	0.1066	0.0907	0.0654	0.0652	0.0877	0.2164
5	1.170		1.385	044	1807	040	0.798	0.4.0	0.508	0.25	-0-077	-0.381	-2.540
AHOHA	28.26	23.20	06.41		200	* C			7.	-4-77	8 Z	16.79	-19.96

ABOVE DATA COPRECTED FOR TUNNEL INTERFERENCE

_													
RN#10##-6	1.110	1.121	1.129	1.143	1.150	1.155	1.160	1.166	1.167	1.171	1.173	1.172	1.160
CL 50	1.3687	1.7109	1.9185	1.7698	1.1679	0.9384	0.6375	0.3961	0.2579	0.0505	0.0059	0.1454	0.2920
CMF	40.017	+0.016	+10.0+	+10.0+	+10°C+	+0.014	+0.013	+0.013	+0.012	+0.011	+0.010	40.004	+00.00+
1.70	1.552	2.094	2.930	4.348	4.917	5.143	5.399	5.556	5.375	3, 394	-1.172	-4.230	-2.510
۲	0.177	0.241	0.224	0.265	· 193	0.169	0.131	0.100	0.088	0.065	0.083	0.158	002.0
נפנ	0.830	0.864	0.85C	0	C. 898	0.900	0.400	0.901	0.902	0.933	0.741	0.856	0.805
X.	40.1079	+0.1614	+0-1904	+0.1805	+0.1153	+0.0862	+0.0432	40.0004	-0.0277	9966-6-	-0-1655	-0.2233	61810
CO	0.7540	0.6248	0.4728	0906.0	0.2198	0.1884	0.1479	0.1133	0.0945	0.0662	0.0653	0.000	0.2153
													-0.5540
₹H Q	00	75.4	6		2			8	72.	2	4		20.48

		7-8 20. 10.	0.0227									0	•		•	_	.			\ m	~	
	>°°	7-N 20.	2000	313.	173. 91.	33.	23. 28.	53.	122.	184.		-293.0(2.1.2	00000	-31.3	-17.17	0.0	1.58	57.7	95.8	153.9	250.0
		6-R 10.	(+ 9	0 4 4 0 4 0 4		12. 23.	24. 19. z	13.		51. 36.						-12.58		24.6	22.78	61.83	41.92	27.03
2468		10.	.4897	Λ α	z			α 2														
P4 8 1 1 9 5 1 1	2AC 3.15	5-P 10C.	0=5 00	355°	361.	261. 154.	118.	264.	467	532. 555.		259.00	291.0	216,00	161.00	94.00	28.0	-66.42	C 7661	-366-1	-431.0	-454-0
17291	,	1000 1000	#C*100	n z	865. 550.	÷.%	295. 315. R	705.	4C.50	o v	S	00.00	9.58	7.0	5.33	-619.52						
FLAC	X-MAC 0.763	4-P 100.	10001	1 900	187 155	1157.	2 2 3 3		1405	1660			3 -179	44 (- 6	-105	7 -61	61-0	7 21	- 6		7	20 167
3716., X20.5 C, 208 FLAF	C-MAC 5.7421	100 105		674. -230.	-1166. -1366.	-672.	272.	-590	- 2634	-2886. -2150.	AGS AND	-674.00	229.83	1105.4	671.3	49.17	-223.0	-47.17	0.00	2632	2884	2148.0
7=0.X	CPAN 7.875 \$	4-P	010.	36. 226.			173. 33.			432	READINGS	6.30						3.56		0.6	2.92	146. 3
,	۸۶ ۲.	84 FB	0 2 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	55°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	4.5 E.5	4 F	~ ~ z		3	1,43	2 E & C											_
	44.30	AND AFTER 2-8 20. 0	1±0,10000 2=C SHAFT n14,# ECOPORD	1 1695. 1760.	1618.	.005 625	235°	785.	1575.	890.	b(± J3.	-1595.00	1663.00	518.7	-965.00	-525.00	135.00	265.1	685.00	11.20.00	793.30	97.19
* 150.4×1	44	AFF19F 2-N 20. 19.	•	~ ~		_	7			- 1	CORRECT											
X * 3	1 T A 7 P	100° 100°	1 4 5 7 C JUN = 1500.0	ANGL F 25.9	16.9	\$ -	7.7	-13.1	-18-1	-28.1	DATA C	29.0	25.0	2, 5		5.05	c o	9	26.6	-14.45	-24.0	-28.95
T 11C.	4 R	# Z 0 0	- T	ANOW 1244. 1245.					44.		Tion.		1245.	1269.	1238	1243.	1254.	1241.	1241	1744.	1240	1237.
15 21	3.0	ZFR7 ANJM 1	<u>ب</u> ج	± 700				86	£ 5	88	-	•		<u>ت</u> :		; -	7	21	21	<u>.</u> .	7 7	212

Appendix 5 (cont.)

**FLADDED RUDDER NATA BENUCTION*"

	MYOFLAP-INLB VEL-FPS						-0.39 20.57							
	MYO-INLR MZO-INLB MYC	0 -458.05	16-204- () -246.28	-98.84	0 -24.60	0 -2.32	5 6.43	0 -15.13	1 -84.64	0 -153.44	0 -279.44	0 -462.01	
		-2.00	37.05	82.00	104.00	85.00	58.00	27.00	-2.00				-74.00	-26.00
	FZO-LB MXC-INLB	940.95	1.54.98	1042.33	911.86	669.58	391.62	98.93	-199.73	-511.96	-87C.86	-1140.54	-1291.98	-1302.75
246P		*	156.79	153.03	130.2)	95.35	55.72	15, 12	-26.30	-69.72	-113.54	-145.87	-175-13	-179.53
1/29/73 RPM 2	FYO-LA	50.85	46.42	40.59	33.26	23.52	15.36	60 6	68.6	17.17	27.51	37.76	44-17	46.82
Ī	FXO-L	75.64	60.55	14. 71	14.1	4.78	1.36	1 9 0 1	7	10.18	20.21	35.31	611-81	87.76
C,20% FLAP			15.01	67.35	61,19	56.02	10.67	7.7.	13.16	33.60	124.71	190.44	80,176	184.12
TEST 110, Y=0 14,DFL= 00FG.,X=0.5 0,20% FL	FZ-1 A MX-INLA	1046.52	00.00	1068.48	012.66	647.44	64.101	000	-199.87	-517.82	17.75.66	1158.73	-1167.13	-198.46 -1422.16
4.0613 0		2	15.8.15	156.40		70.50	56.76		-26. 64	- 20.02	114.20	161 71		-148.46
Y=0 1	6 X-1 A	7. 74		44 - 1 -	90.61	12.41	07		7 4 7	- C	200	26 42 -	70 00	85.12
TEST 11C.	A HO IA	20.05	25.22	01 (12	61.91		3 6 5		40	66	00 71-		20.00	-28.97

Appendix 5 (cont.)

Appendix 5 (cont.)

SPFLA	PPED RU	SEFLAPPED RUDDEP DATA IN NON-DIMENSICHAL	-NON 71 V	OIMENSI		FURMAG			
TEST	TEST 11C+ Y=0		IN. DEL . ODEG. : X . 0.5 F. 20\$	6. , X * 0.	5 C.20%	FLAP	162/1	7/29/73 RPM 2468	8942
Al PHA	τ	ç	3	C P L	۲	1/0	7 10	CL S G	01 +Na
29.05	1.433		-0.1653	0.851	0.404	2.057	0.00	1.2420	
25.07	1.395		-U.22A2	0.854	0.368	2.880	0.005	1.5466	
20.10	1.196		-0.2723	0. 965	0.319	4.245	0.003	1.4182	
15.12	0.901		-0.2838	0.889	0.264	5.618	0.002	1.0648	
10.1	3.555		-11.2190	9.852	7.191	6.846	100.0	0.5785	
5.09	0.200		-0.139;	0.852	0.122	6.233	0.000	0.:960	
0.07	-0.119		-0.0528	0.831	0.079-	10.654	-0.000	0.0142	
-4.95	- 3.443		0.0309	995 0	0.079-	41.077	100.0-	0.0438	
-9.97	-0.761		0.1158	0.932	0.137	19.962	-0.001	0.3078	
-14.98	-1.032		1.1744	6.974	0.218	-9.237	-0.00-	0.8123	
-20.00	161.1-		0.2652	0.966	0.301	-4.460	-0.005	1.4315	
-25.00	-1.244		0.2964	0.937	0.351	-2.585	-C.008	1.9451	
-28.97	-1.114	900900	0.2467	0.921	0.374 -1.855	-1.855	600 0-	2.0542	==

ALPHA	บ	00	ž	CP.	<u>ک</u>	١/٥	CMF	CL SQ	RNelDee.
30.43	30.43 1.433	0.7310	40.1653	0.851	0.404 1.961 - 0.008 1	1.961	- 0.008	1.2420	
26.42	1.395	0.5169	+0.2282	0.854	0.368	2.4.58	~ 0.005	1.5466	
21.26	1.196	0.3058	+0.2728	0.865	0.319	3.912	- 0.003	1.4182	
15.99	106.0	0.1740	+0.2808	0.889	0.264	5.179	- 0.002	1.0648	
10.64	7.553	3.0862	£3.2193	1.852	161.6	6.439	- 0.301	0.5785	
5.29	0.209	0.0343	+0.1391	0.892	0.122	6.100	-0.000	0.1960	
-0.05	-0.119	0.0114	+0.0528	0.831	0.079-	10.471	+0.000	0.0142	
-5.38		0.0141	-0.0309	0.964	0.079-	31.489	+0.001	0.0438	
10.70	-0.761	0.0478	-0.1158	0.932	0.137-	15.916	+0.001	0.3078	
15.97	-1.032	(- 1295	*** 1.1.	426.0	0.218	-7.966	+0.002	0.6123	
-21.15	-1:191	0.2908	-0.2652	0.966	0.301	-4.096	+0.005	1.4315	
26.20	-1.244	0.5062	-0.2964	0.937	0.351	-2.457	+0.009	1.9451	
40.06	41171-	0.6214	-0-2467	0.921	0.374	-1.793	+0+000	2.0542	

ABOVE DATA CORPECTED FOR TUNNEL INTERFERENCE

	4 2468	
	19/73 APA	2AC
	.AP 7/2	
CATA	15C+27# FL	DAN-X CAM-C NAGA
FLAPPED RUPHER INPUT CATA	TEST 12C+ Ya. 1N. DET JOEG . X . J. 75C+234 FLAP 7/29/73 APM 2468	2400
FLAPPED R	1 N. OF 1 .	A :: 9A
		OF TR TT
	120,	4
	TEST	J.

	7-R 20.	CFIL INS/CHIMI 140.10300 240.31000 349.01000 440.10000 540.48970 643.20300 740.022
> °°	7-N 20. 31.	0000
	6-8 10.	6=3.2
	400	49970
2AC -3.15	5-R 100. 101.)C 5±C.
	5-N 100.	.0.100
X-MAC 0.763	4-P 100.	. 4 0001
C-MAC 5.7421	100 100 100 100 100	3 . O . O
SPAN 7.875 5	9-6 0 - 5	30010.
4.	1 EB) 2
AP F.A	AND	10300
A 4.	7.18 7.28 7.20 2.20 2.00 1.00 1.00 1.00 1.00 1.00 1	C= 1
11	ZERO READINGS REFIDE AND AFTER ANOM 1-N 1-P 2-N 3-P 3-N 3-P 0. 100. 100. 20. 70. 0. 0. 0. 100. 150. 19. 7122.	1. C.
1 P	READ 100.	וו וש
0F TR	ZERO ANOM 0.	

7=0.02273	
70 6=3.20300	
5 mc 489	
4-6-10000	
3-9.01000	ž
0.01000	1.50 LN.
1#6.10300 2#	SHAFT DIA.
CFIL [INS/CHIMT 140,10300 240,31000 340,01000 440,10000 540,48970 643,20300 740,02273	TWIST # 15075.3

						ì								
	~	306.	260.	167.	68.	24.	25.	38.	56.	-	115.	144.	203.	284.
	S	œ					z							
	•	63.	* *	15.	18.	Ë	21.	24.	6	12.	31.	52.	3.	34.
	v:	œ			z	•				z			•	
	S	363.	378.	355.	321.	263.	155.	1.9.	165.	276.	341.	470.	537.	543.
	s	z							ď					
	-\$	1760.	1970.	1775.	1540.	1150	716.	290.	30%	700	1139.	1405.	1665.	1735.
	S	œ							z					
	₩,	640	-278.	-1210	.1346.	- 744.	-112.	150.	-28.	-660.	1696.	.2700.	.2858.	2188.
	v			•	'						•	•	•	•
	~	34.	21R.	4634	580.	462.	330.	164.	44.	205	349.	462.	457	221.
	<u>~</u>	z	Œ						z					
ORDED		1680	1750.	1595.	1345.	1115.	635.	245.	355	780.	1235.	15.83.	1900.	20 30
T.	جر.	a							=					
ATA AS	ANGLE	25.9	21.9	16.9	11.9	6.9	6.1	-3.1	-8•1	-13.1	-14.1	-23.1	-28.1	-32.1
NPUT	NON A	1234.	1250.	1225.	1219.	1245.	1244.	1246.	1237.	1248.	1252.	1251.	1258.	1235
	¥	77	8	?	8	2	õ	8	ŝ	00	5	000	၁	=

	-286.	-240.	-148.	-80.	-7-	•	12.	29.	20.0	16.	114.	172.	253.(
	-53.00	-33.92	-4.83	8.29	0.33	-10.58	-13.50	-0.42	2.67	21.75	42.83	40.92	28.00
	263.00	278.30	259.00	221.00	163.00	95.00	19.00	-68.42	-169.33	-280.25	365.17	-436.08	-445.00
SIGNS	-1660.00	-1769.58	-1674.17	-1438.75	-1048,33	-613.92	-187.50	202.08	596.67	996,25	1300.83	1563.42	1630.00
INGS AND	-640.00	277.83	1209.67	1345.50	743.33	111.17	-151.30	26.83	658.67	1694.50	2698.33	2896.17	2186.00
ZERC VEAN	14.00	-197.92	-442.83	-559.75	-461.67	- 309.48	-143.50	24.58	185.67	129.75	442.83	437.92	202.00
PECTED FOR	-1580.30	-1653.33	-1495.00	-1245.00	-1.315. 3.1	-535.00	-145.00	255.00	680.00	1135.11	1483.00	18:1)	1930.00
NATA COR	29.05	25.75	20.05	15.05	1 . 05	5.05	os	-4.95	-9.95	-14.95	-19.95	-24.95	28.95
INPUT	21 1234.	21 1250.	21 1225.	21 1239.	21 1245.	21 1244.	21 1246.	21 1237.	21 1248.	21 1252.	21 1251.	21 1258.	21 1233.

FLAPPED RUGDER DATA REDUCTION

	MYOFLAP-INLS VEL-FPS -6.50 20.50 -5.47 20.63 -3.38 20.43 -1.15 20.59 0.01 20.59 0.01 20.59 0.01 20.59 1.15 20.65 1.97 20.65 2.61 20.65 3.93 20.70 5.75 20.69
	# #YOFLAP-II 6.50 1.15 1.15 0.01 0.02 1.15 1.15 1.15 1.97 1.97 3.93
	MYO-INLR MZO-INLB 35.00 -472.84 79.00 -241.64 00.00 -100.98 83.00 -21.07 55.00 -2.09 25.00 -12.31 33.00 -155.18 79.00 -276.60 78.00 -465.14
	720-LB HXD-17LB 921 1034-27 90 1030-69 90 1030-69 50 919-93 50 94-95 50 94-95 50 1303-85 50 1303-88
PM 2468	
7/29/73 8PM 2468	
OR FLAP	
.X.0.75F.2	2
.r. obec.	157.85 1041.13 166.98 1109.00 153.93 1056.45 106.12 913.51 106.12 913.51 15.94 94.77 -25.75 -203.30 -116.80 -834.00 -152.43 -1164.23 -164.38 -1369.27
10.N1 O.	6.45 19.66
TEST 12C. Ymo IN,DFLm ODFG.,Xm0,75F,23R FL	Al PHA 29.05 25.00 25.00 105.12 105.00 120.00 120.00 120.00 120.00

Appendix 5 (cont.)

om Hannisdorfin das niede des verroldes actividades kan kan de ka

FLAPDED PUDDIE HATA IN NIN-DIMFNSICNAL FORM

16 5 1	12C . Y . O		18.0Ft. 30E	6 x # 3.	3086. ***3. 75C, 20R	FL AP	16212	7/29/73 RPM	2468
ALPHA	ALPHA (1	ر. د	Š	ē	ځ	0/1	CMF	CLSC	8A*10***
29.05	1.416	0.0817	-0.1651	0.844	0.358	2.077	C. 308	1.2410	
25.17	1.38.	v. +812	- 1.2234	6400	0.151 2.876	2.876	0.005	1.5102	1+1-1
20° E	1.190	0.2761	-0.2758	0.668	0.310	4.310	0.00	1.4777	
15.12	2.017	.1592	- 1.2766	154.1	1.246	5.762	1. 13	1.0748	
10.11	3.550	3.3745	- 7.2265	0.741	0.173	7.383	0.002	0.7101	
5.09	40.0	0.3768	-0.1357	0.864	0.110	7.593	0.001	0.2019	
7	- 10:27	51	F141	1. 754	0.072-	24. 756	0000	0.0161	
-4.05		C. UC 61	0.0320	1.016	-560.0	13.952	3.000	0.0415	
-9.47	-J. P. S	. 1426	1.1149	5.476	1-861.6	19.788	- ('Y')	1.3727	
-14.90	-1.037	0.1089	0.2035	0.950	0.238	-5.522	-0.002	0.8412	
-20.00	-1.716	0.2674	0.2695	C - 96 7	0.308	4.546	-0.0cs	1.4169	
- 25.1.	-1.232	. 4717	- 506.	1.939	0.362 -	-2.512	-0. COP	1.9150	
-28.97	- - -	0.5079	J.2573	0.403	0.363 -	.1.863	-0.009	2,0055	

ARAVG DATA CARPECTEN FOR TUNNEL INTERFERENCE

76 980 - 0.008 1.2410 986 - 0.004 1.477 989 - 0.004 1.477 913 - 0.001 0.2019 900 - 0.001 0.2019 915 - 0.001 0.2019 915 - 0.001 0.0015 171 + 0.002 0.0415 171 + 0.002 0.0415 171 + 0.002 0.0415	1.133
	2.0055
00000000000000000000000000000000000000	\$0.00 \$0.00
	-1.801
0.358 1.980 0.351 2.656 0.351 2.656 0.310 3.569 0.173 6.913 0.170 2.94 0.005-47.515 0.239 -8.171 0.308 -4.161	0.363
00000000000000000000000000000000000000	
0.2153 40.1651 0.5133 40.2234 0.2999 40.2236 0.0296 40.2265 0.0296 40.2265 0.0276 40.2366 0.0596 40.031 0.0596 40.031 0.0592 -0.0329 0.2922 -0.2685	10.24.2R
CD 0.5133 0.5133 0.0599 0.00796 0.00796 0.00796 0.00796 0.00797	0.6177
11.037 12.037 12.037 12.037 11.037 11.037	-1.1.4
ALPHA 30.41 26.40 21.25 10.63 10.63 10.63 ->.02 ->.02 ->.03 ->.04 -1.78 -1.78 -1.649 -1.78 -1.649 -1.78 -1.649 -1.78 -1.649 -1.78 -1.649	-30.02

ARFA SPAN FLAME X-MAC ZAC 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0					2273																								
ODEG. XXII.O D. 20% FLAP 7/29/73 RPM 2468 YEBTS 5.7421 0.743 -3.15 AFFFR 1.0 0.20% FLAP 7/29/73 RPM 2468 YEBTS 5.7421 0.743 -3.15 OO 00 0.0 0.0 100. 100. 100. 100. 100. 20.0 OO 00 0.0 0.0 100. 100. 100. 100. 100. 20.0 OO 00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.				£ 20	7.0.0													0	53	~	9	<u> </u>	<u>~</u> ;	2 :		. 4			
ODEG.*X O D 2 OE FLAP 7/29/73 RPH 2468 59AN			» °	7-N 20.		•	308.	176.	15.	**	21:	32.	*	128.	191	274.		286.	240.	157.		-27.		•					
ODEG.XXILO D.20% FLAP 7/29/73 RPH 24 SPAN FLAP 7/29/73 RPH 24 N. 7.875 S.7421 O.763 -3.15 N. 10. 100. 100. 100. 100. 10. 0. 100. 100. 100. 100. 10. 0. 0. 100. 100. 100. 100. 10. 0. 0. 100. 100. 100. 10. 0. 100. 100. 100. 10. 0. 100. 100. 100. 10. 0. 1				K O -	6=9.2			::	•	• 6	::		•	و د				9	5.92	7.83	6.25	~ • •	.56	00.00	74.	76.1			
ODEG. X = 1.0 D : 20% FLAP 7/29/73 RPH 7 PAPE 5 PAPE 5 PAPE 5 PAPE 6 PAPE 5 PAPE 6 PAPE 5 PAPE 6 PAP		2468		× 01 0	48970			* ~			Ň			ři c	•	M													
ODEG. X 10 D 20 E FLAP SPAN C 10 C 10 C 10 C SPAN		73 RPH	2AC 3.1	400	5 * 0	•	360.	364.	325.	264.	119.	169.	269.	381.	537.	541.		3	283.00	264.00	225.00	164.00	98.0			-380.2	-367.17		
AFTER STANDOLEGY NUMBER OF STANDOLEGY NAME OF STAND		1/50/	93	100 100 100 100	*0.100			• •		ċċ		_	•	• •			J.	0	-	_	_	_	-		B *	- 4	<u>.</u> _	•	
AFTER		LAP	ī.	4-R 100.			_		150	/	` Ø		2	711	9	175	-	7		•	•								
000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CATA		MAC .	1000 1000 105	-	-	752.	1100	1340	-730	192.	22.	629	1656 2668	2982	2066	ž	7	294.00	1100.00	1347.00	730.00	80.00	_	00.77	, ,	•	•	١
20 00 00 00 00 00 00 00 00 00 00 00 00 0			~ *	400	.31000	•	•	•	ı						٠	•	FACI		8.92	7.83	9.75	4.67	2.58); ;	E (N (F)		
	× 100	JEG.	\$ ~	E ZOC	5 • 0				\$	S			<u> </u>		4	2	4	•	•	•	•	•	•	ţ					
lottu ii ii caaaa aaak baaaalii aa	FLAPPEG MU	1.0EL* 00	ARFA 44.30		10-1000 1AFT 01/				375.	020.	243.		790.	~ √	92.	045	803 G3	5 80.00	665.00	1520.00	1275.00	923.00	535.00	0000	200-100-1	40.00	- 4		١
		0 • A	11	100 100 100	~ ~	ATA A	25.9	21.9	11.9	۰ ، -	-3.1	-8-1	. 3		2.8	32.	~		25.05	20.05	15.05	10.05	5.05	9.0	6.47	, -		•	
		136	1 &	100.	IL LA	10 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	242	243.	265.	244.	249.	253.	256.	252.	249.	239.	¥11.0	245	258	24	265	**	249	5	222	26.2	240.		
		TEST	0.0	ANOM O.	G. ₹	¥	7 1 7										Z	٠_	_	_	_	_		-	. .		1 7 7	•	•

Appendix 5 (cont.)

** FLADDER GUPDER DATA BEFRICTION**

	LB VEL-FPS	20.57	20.70	20.57	20.76	20.58	20.62	20.62	20.66	20.68	20.65	20.62	20.62	20.54
	MYOFLAP-INLB VEL-FPS	-6.55	-5.47	-3.58	-1.53	-0.62	-0.25	\$1.0-	0.13	19:0	1.38	2.28	3.66	5.52
	4 470-14LA	-459.75	-416.17	-249.78	-103.55	-25.66	0.25	-1.62	-18.80	-61.53	-153.61	-278.76	-469.97	-591.33
	MYD-INLA	00.4-												-26.10
	FZN-LA MXO-1NLA	924.71				678.70	194.38	102.77	-211.55	-539.34	-890.73	1143.00	1307.44	1254.93
2468	ı	134.64		153.01		57.02	56.82	15.66	-26.55	-70.33	-116.51	-151.97 -	-176.51 -	-177.31 -
3 494 2	1-UA 3	10.17	64.40	60.5	33.77			10.42						_
7/29/73 HPM	d 1-UX							07		75.7			61.51	•
C.239 FLAP	u 141 -/ n	æ						-1.17						
TEST 135, Y+) 14,016.4 106G.+X+1. C+2.4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1,32.65	1128.36	156.59 1179.96	917.07	676.H7	194.15	102.54	-212.10	-419.25	-117.17 -804.17	1160.73	-1374.69	-1377.31
1. 1.30.1		157.77	168.59	150.59	171.40	96.45	56.E3	15.58	2 h. 8 h	- 70, 74	-117.17	- 157.94	-136.44	- 105,00
Y-)	ע ז-x,	1.52	40. 2-	-11.00	-13.40	-7.30	£ 8	1.92	3.22	= e - y =	-10.50	20.68	-29.82	-20.66
TEST 13C.	ALPHA	29.05	25.07	22,10	15.17	10.1	5.19	2.07	-4.95	16.6-	-14.90	-21."	-25.00	-28.97

Appendix 5 (cont.)

.. MBUH IVUIT DATA IN MYA-DIMERSTAND CHARLE

77 57	11C. Y*C		14.04 + 120.A1	00f6. x*1.3 C.20#	J C.20#	4 1 1 4 10	1/29/73	3 2	246R
ALPHA	٦	ئ	3	ره	ځ	۲/۶	ŭ X	יו נפ	FN-10++-6
29.05	1.4.1	0.6906	-3.1611	0.947	0.367		A. J. A.	1.2151	1.138
25.07	1.4.1	D. 4867	-0.2764	0.846	0.369	2.962	0.005	1.5289	
20.10	1.202	0.2832	-0.7787	0.874	A1.0	4.243	0.003	1.4777	
15.12	616.1	. 103	- 1.2 H25	. 892	264	5.675	0.002	1.0A27	
10.11	0.553	0.07nc	-0.2224	D. B. B.	0.147	7.091	0.001	C. 5932	
4.09	0.200	0.3315	-0.1409	184.0	0.122	6.436		1.2.16	
0.07	-0-124	0. 00 PM	-0.0549	4. A . O	0.082-	14.565	00000-	C.0153	
-4.95	-0.440	C 200.0	P.0139	1.312	-4.000	.56.567	-0.000	0.0438	
-9.97	-7.47.	345	1164	1.974	-131-	.22.113		r. 3058	
-14.99	-1.041	0.1124	0.2011	0.971	0.217	~ 5.260	-0.00-	0.8446	
-20.00	-1.216	0.2730	3.2690	0.455	0.287	-4.373	-1	1.4437	
-25.00	-1.217	0.472	0. 1046	0.6.0	141.0	-2.619	-0.00-	1.991	
- 28.97	701.1-	5.6017	0.2417	C06.0	0.342	0.342 -1.832	-0.009	1.99/.7	1.136

ANDVE DATA COKOFCIED FOR THINKE INTERFEBENCE

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11110:0000 111110:0000 100000 100000 100000 100000 100000 1000000
######################################
POST PONT ON THE POST PONT ON THE POST PONT ON THE POST PONT PONT PONT PONT PONT PONT PONT PON
C .00.C . 0 - C 0
######################################
00.00 00
111111111111111111111111111111111111111
140000 1111111 0440000000000000000000000

在中国的人,这个人的,这个人的,我们是一个人的,我们是一个人的,我们是一个人,我们是我们是我们是我们是我们是我们是我们是我们的,我们就是我们的,我们就是我们的,我们

FEST 7 .ZAC= 0 IN.DEL= 3. DEG, X=24.7 D, 10 2FLAP, RPM=NCPROP 26SEPT73

			273
		K C D	.022
	5 00	-	7=0
	CYCOR 99.0000	6-8 7-N 7-R 100. 0. 0. 100. 0. 0.	20002
	ة ت	100 100	6=0.
	A21.	100 100	. 48970
	2 PAC 0.0	3-8 100 101	00 5=0
		8-8 800 800	C-1000
	XMAC -0. 7659	4-R 100. 105.	000
174	SPAN HAC 7.875 5.7421	100 100 100 100	CELL LBS/COUNT 1=0.10000 2=0.01CCC 3=0.01CC0 4=C.1CCCO 5=0.4897C 6=0.20CC0 7=0.2273 TWIST=11570.0 SHAFT DIA.= 1.50 IN.
FLAPPEC RUDDER INPUT DATA	IN 175 5.		1.50 1
DER 1N	SP.	3-N 3-N -12.	0 2=0.
כ אנט	AREA 44.30	AND 2-R 2-R 1000	1000 FT DI
FLAPPE	4	EFORE 2-N 100.	SHA
_	7.8	ZERO READINGS BEFORE AND AFTER LNDM 1-N 1-R 2-N 2-R 3-N 3-R 0. 100. 100. 100. 0. 0. 0. 0. 0. 101. 101. 101. 101. 1011212.	7C0UN 570.0
	DF TR 0.0 78	READ1 1-N 100. 101.	LL LBS
	0.0	NON O.	18 T

	~	ċ	ö	ö	ð	ċ	ċ	•	•	ċ	å	ċ	ó	ö	ö	ċ	å	ö	ö	ö	ö	ċ	ċ	ö	ó	•
	Ŋ																									
	•	86.	8 5.	86.	86.	88.	93.	98.	104	110.	95.	76.	70.	67.	112.	109.	104.	99.	92.	84.	76.	69.	ģ	102.	109.)
	S	~													~											
	ĸ	92.	117.	1+1	163.	186.	208.	225.	248.	268.	272.	278.	276.	272.	136.	163.	191.	220.	250.	280.	306.	335.	326.	313.	303.	
	S	z													œ											
	*	144.	275.	401.	536.	665.	806.	941.	1075.	1214.	1188.	1165.	1086.	1126.	189.	310.	434	548.	664.	770.	871.	962.	1004.	1005.	975.	
	S	Œ													Z											
	m	208.	188.	154.	77.	-60.	-255	-505-	-196.	1111.	-400.	200	650.	860.	142.	20.	-155.	-383.	-672.	1015.	1389.	1754.	1100.	-300.	50.	,
	S									,										•	•	ı	•			
	~	106.	166.	225.	286.	343.	394.	440.	484.	512.	443.	270.	153.	130.	159.	218.	2781	338.	393.	446.	495.	537.	376.	235.	135.	,
	S	œ													z											
ORDEO		8	225.	345.	469.	5.89.	710.	824.	935.	1051.	1076.	1106.	1070.	1125.	230.	356.	484.	610.	736.	861.	977.	1085.	1115.	1124.	1109.	
REC	S	œ													z											
MATA AS	ANGLE	-2.0	0.0	2.0	4.0	6.0	8.0	10.0	12.0	14.0	16.0	18.0	23.0	28.0	0.4-	-6.0	-8.0	-10.0	-12.0	-14.0	-16.0	-18.1	-20.0	-22.0	-27.0	
NPUT D	ANOM	1239.	1232.	1223.	1244.	1242.	1237.	1238.	1236.	1232.	1221.	1208.	1169.	1171.	1258.	1260.	1260.	1262.	1259.	1255.	1253.	1251.	1232.	1217.	1199.	
-	7.	21	00	ဗ္ဗ	90	8	8	8	S	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	

Appendix 6 Data Reduction - 10% Flap

Appendix 6 (cont.)

		0.0	ပ ပ	0.0	0.0		ပီ	0.0	0.0	0.0	ဂ ၁	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0) •	0.0	0.0	0.0	0.0
	-14.33	-15.00	-14.00	-14.00	-11.00	-7.00	-2.00	00°¢	10.00	-5.00	-24.00	-30.00	-33.60	-12.00	-9.00	20.4-	1.00	8.00	16.00	24.00	32.00	10.00	-2.00	-9.00	00*/-
	-8.00	17.04	41.CB	63.12	66.17	128.21	125.25	148.29			178.42				-62.42	-90.38	-115.33	-145.29	-175.25	-207.21	-234.17	-225.12	-217.08	202.04	-205.00
SIGNS	-44.00	-174.75	-3CC.58	-435,37	-568.17		835.75	-573.54	-1112,33	-1086.12	-1062.92	-583.71	7	85.00	210.00	334.10	448.00	564.00	67C•00	171.00	862.00	204.00	205.00	875.00	886. CC
INGS AND	- 208.00	-188.50	-155.00	-78.50	58.00	252.50	5C2.CC	752.50	1107.00	355.50	~205.00	-655.50	-886.CC	-148.50	-27.0C	147.50	375.00	663.50	1006.00	1375.50	1744.00	1035.50	289.00	-61.50	-212.00
ZERO READINGS	-6.00	-65.96	-124.52	-185.87	-242.83	-293.79	-339.75	-383.71	-411.67	-345.62	-169.58	-52.54	-29.50	59.00	118.00	178.00	238°CC	293.00	346.30	395.00	437.00	278.00	135.00	35,00	14.00
CORRECTER FOR	o.°	~		-368, 37	-488.83	-605.79		-834.71	-950.67	-975.62	-1005.58	-969.54	-1024.50	129.46	255.42	383.37	505.33	635.29	760.25	876.21	984.17	1014.12	1023.08	1008.04	1034.00
DATA CORR	0.0	2.00	4.01	6.10	8.03	10.01	12.00	14.04	16,33	17.99	20.03	25.00	30.00	-2.04	-4.00	-6.00	-8.00	-10.00	-12.00	-14.00	-16.05	-18,00	-20.00	-25.00	-30.00
INPUT																								1199.	1182
	2	7	2	~;	13		~	~	2	2	~	_	2	2	12	2	-	2	7.2	12	7.7	2	2	2	2

.2AC= 0 IN.DEL= 0. DEG.X=24.7 D. 1C #FLAP, 9PM=NCPROP 26SEPT73

TEST

TEST 7 .ZAC= 0 IN.DEL= 0. DEG,x-24.7 D. 10 TFLAP.PP=NCPRCP 26SFP173

NYCOP IS BEING CCMPLTED

FLAPPED RUDDER DATA REDUCTION

VEL-FPS	20.55	20.49	20.42	20.59	20.57	20.53	2C. 54	20.52	20.43	7C-40	20.29	20, 13		0.4.7	20.71	2C • 72	20.12	20.74		11.77	20.02	20.07	20.65	20.49	20.37	12, 115	1000	.,.,
~						0.0																						
M20-1NL8	-8.66	-10,23	-11.98	-18.51	-26.49	-36.98	-51.64	-67.50	-90.4	-143.80	-219.39	-26A.32		-310.63	-10.54	-15.41	-21.90	- 32.02	30035	\$1.55	-58.89	-81.18	-106.76	-198.71	-231.13	306 17	11.007-	-324.54
MYO-INLB	1.00	11.00	22.00	33.00	43.00	52.00	61.00	69.00	74.00	41.00	30.00	C		2.00	-10.00	-21.00	-32.00	00.27	00006	-52.00	-62.0C	-71.00	- 78.00	-50.00	-24.00		00.0	-2.00
HXO-INLB	5.94	94.39	182.24	267.60	356.94	445.76	533.86	617.34	704.34	675.63	655.09	663.33	79500	567.56	-94.72	-185.74	-28C.88	76 76 -	*****	-472.07	-565.27	-652.73	-735.11	-698-13	-645.10		->80.73	-571.21
F 20-LB	0.13	13.16	25.67	36.60	51.09	63.65	15.49	97.04	58.51	58.17	96.60			86.56	-13.40	-26.55	-36.03		C7 • C %-	-66.39	-79.56	-91.83	-103.13	-101-64	C 7 . 10		-85.05	-86.68
FYC-LB	8.01	40.6	9.67	12.21	13.71	15.60	17.98	20.84	23,71	22.14	20.69		76.11	21.54	7.71	8.21	C 4		17.1	11.95	14.43	16.43	18.53	16.75	2		10.23	10.22
FXC-LP	2.08	88.	2.45	7.40	4. A1	4 4	8.21	70.66	13,31	24.02	20.6		71.44	56.06	2.43	3.06	4 . 1 2		2.30	7.33	4.47	11.98	15.27	25.60	91 76		46.47	26.67
PZ-1NLB	-8.76	-16.23	۷,	200	20.0	24.4	41.85	42.74	9	80.00			-19.09	55.4-	-4.24	90.4	0.7	7	33.42	54.38	79.10	101.88	126.26	50.04		70.0	12.28	27.43
MX - 1 N. 9	2.64	66.42	187.55	268.24	357.77	177	534.72	70 617	70.00	40.004	K 00 00 4		641.75	647.05	-95.26	- 186.33		0301031	-373.92	-471.06	-562.70	-645.82	-712.02	72 2 99		- /03.62	-652.24	-656.42
F 7-L B	90.0	77.7	26.76	20.00		1000	75. 37		- C - C - C - C - C - C - C - C - C - C	000	1000	(200)	97.48	102.75	-13.54	-26.72	200	71.04	-53.31	-66.46	-79.49	-91.57	-102.79	104 10		-103.00	-101-15	-103.54
F = 1 B	80.0	9 6				0.4	15.05	700	70011	000	0.00	60.3	6.55	8.86	8.5			* - 1	-3.75	-0.04	-10.06	-13.80	77.44		200	7 R • % -	0.61	2.12
A) PHA		3					7.00	10.21	707	• • • • • • • • • • • • • • • • • • • •	20.00	50.07	25.00	30.00	12.04	ē	200	-6.00	-8.00	-10.00	-12.01	- 14.01	40 41		0000	-20.00	-25.00	-30.00

.ZAC# i) IN.DFI # 11. DEG.X#24.7 D. IC TFLAP.RPM=NCPRCP 26SEPT73

TEST

DYCOR IS BEING COMPUTED

##F L AF	mertappen kundek	UER DATA		IN MONICIATION FORMA		• • • • • • • • • • • • • • • • • • • •		
ALPHA	ರ	ຍ	ر ،	CPL	ځ	2/1	CMF	RN#10##-6
00.0	1.00.0	c. 1165	3	2.621	490.0	つ	0.0	1.039
2.00	0.105	0.0151	ာ်	C. 911	0.072	Ð	ပ	1.036
10.4	0.207	0.0198	o	106.0	0.378	2	7.3	1.132
00.9	0.306	0.0276	ċ	C. 88C	C 50 3	_	ပ္	1.041
8.03	0.405	0.0382	o	0.887	C. 1C9	2	ပ (2.040
10.01	7.50	J. 7510	ئ	3.889	J. 126	v	0.0	1.038
12.01	109.0	0.0654	ċ	0.858	C . 143	v	၁•၀	1.039
14.05	0.694	0.0834	ó	126.2	C.166	æ	 	1.038
16.04	0.791	0.1064	9	0.504	251.2	~	0	1.036
18.00	3.792	0.1938	o	0.879	0.179	4	0.0	1.031
20.03	J. 788	0.2741	6-	J. 861	6.169	~	ပ •	1.026
25.00	0.722	0.3657	ç	C. 850	0.148	_	ပ	1.018
30.00	0.728	0.4718	0	0.833	0.181	~	၁ ၁	010.1
-2.04	-0.105	0.0191	o	C. 858	0.060	S	ပ	1.047
-4.00	-0.208	0.0239	Ö	0.888	0.064	و	င်	1.048
-6.00	,-312	0.3322	-0.0015	U. A53	0.066	-9.686	ပ ပ	1.048
-8.00	-0.415	0.0435	Ç	0.854	C.080	51	ပ ပ	1.049
-10.00	-0.520	0.0574	ပ္	0.963	450.0	5		1.047
-12.01	-0.625	0.37.3	ပံ	C. 5C2	C-113	ျ	0.0	1.046
-14.01	-0.722	0.0942	ပ္	0.903	0.129	7	0.0	1.045
-16.06	-).812	11.1203	÷	·). 9C5	6.149	1	ပီ	1.044
-18.00	-0.913	0.2032	Ö	0.872	0.118	1	ပီ	1.036
-20.00	-0.787	0.2927	Ö	0.869	0.101	?	٠. ت	1.036
-25.00	-0.739	6.3820	ċ	0.825	0.084	-1.933	ပ္	1.022
-30.00	-0.723	0.4725	Ö	0.837	96	-1.530	ပ	1.015

CLSC 0.0000 0.00438 0.00438 0.00438 0.00431

Appendix 6 (cont.)

CEG, X#24.7 C. 10 TFLAP, RPMHNCPROP 26SEPT73 • IN DEL " Ó . 2 AC. 1651

是一个,我们就是一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,我们们的一个时间,我们们的一个时间,我们们的一个时间,我们们们的时间,我们们们的

DYCOR IS REING CCMPUTED

CC.0000 CC.00000 CC.0000 CC.0000 CC.0000 CC.0000 CC.0000 CC.0000 CC.0000 CC.00 RN# 10##-6 100.00 10 -8.214 -8.951 -7.724 -7.724 -6.187 -3.495 -2.557 -1.888 -8.417 INTERFERENCE CORRECTED FOR TUNNEL 0.000.0 PRIOR DATA

CL CCEFFS -0.005266 0.048579 CD CDEFFS 0.016314 -C.003370 0.0043377 0YCCR -0.43675

Appendix 6 (cont.)

.ZAC = O IN.JEL = D. DrG.x=Z4.7 P. 1C #FLAP.HPM=NCPP(P Z64(PT73 TEST 7

DYCOR# -0.4368

FLAPPED RUCOFP DAYA RECUCTION

VEL-FPS 20.55 20.49	20.59	20.53 20.52 20.52	20.40	2C.13	20.72	20.74	20.68 20.67 20.65	20.49	20°52
~	0 , 0 0 7 0	2000 2000 2000		00 00		7 (O	0 0 0 0 0	000	0.0
420-1NLB -8.68 -10.95	-13.37	-40.38 -55.70 -72.21	-148.97	-272.76	-13.22	-29.17	-54.49	-193.39	-287.69
MY7-1NLB 1.00 11.00	22.00 33.00 43.00	52.00 61.00 59.00	30.00	5. cc	-10.60	00 • 2 4 - 1 00 • 2 4 - 1	-62.00	-50.00	-6.16
PXO-16L8 P 2.9P 94.31	182.14 267.45 356.72	445.46 533.45 615.81	078.51 078.51 053.40	581.21 565.18	-84.87	-374.28	-565.7c	-675.62	-598.89
F 20-LP P			7.6.00 .000 .000	86.83 Fe.13	-13.42	153.20	16.15	-101-83	-92.2)
FYC-18 8-C1 9-04	9.67 12.31 13.71	15.80 17.90 20.98	23.71	17.92	7.5	10.27	4.4.4 4.4.4 4.4.4	24. 24. 24. 25.	17.23
f xU-LB 2.CB 1.99	2.65 3.78 5.00	6.89 6.79 11.12	24.76	56.72	2.33	5.16 5.16 6.82	8.86 11.28	24.62 35.41	56.00
#2-161.8 -4.76 -10.23	-5.58 0.20 10.56	25.49 b 41.85 8 62.76 11	87.46 48.48 15.84	50.51-	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	17.40 23.42 44.38	79.73 101.8P	50.04 50.04 50.04	12.28
		446.50 534.72 017.84						- 723.99	
		63.92				-53.31			
FX-L n 2.08	1.55 0.78 -0.58	-2.52 -5.02 -7.93	-11.07	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00					
4LPHA 0.00 2.35	4.01 8.00 8.03 8.03	10.01	19.00	25.33	700.7	- 16.00 - 16.00	-12.01	-18-90	-25.00

Appendix 6 (cont.)

DYCOR= -0.4368

##FLAPPED RUDDER DATA IN NON-DIMENSICNAL FORM##

CLSC	0.000	0.0110	0.0427	0.0934	0.1641	0.2567	C.36C5	0.4807	0.6247	0.6255	0.6177	C.5180	0.5254	0.0110	0.0432	0.0977	0.1726	0.2705	0.3910	0.5226	0.6615	0.6634	0.6229	0.5457	0.5275
RN+10++-6	1.039	1.036	1,032	1.041	1.040	1.038	1.039	1.038	1.036	1.031	1.026	1.018	010*1	1.047	1.048	1.048	1.045	1.047	1.046	1.045	1.044	1.036	1.030	1.022	1.015
CMF	0.0	0	0.0	o• c	0.0	٠ .	0.0	0.0	0.0	ر. د	0	0	0.0	۰ د	0.0	0.0	0.0	0.0	0	0.0	ပ ပ	ပ္	0.0	ن ن	0.0
1/0	0.056	6.615	9.689	10.264	5.812	9.228	8.582	7.817	7.028	3.557	2.ec6	1.535	1.515	-5.751	-6.293	10.467	10.311	-5.740	-6.586	-8.145	-7.130	-4.136	-2,753	-1.57C	-1.556
۲	0.064 0.056	0.072	C378	0.097	0.109	C.126	0.143	C. 166	051.0	6.179	0.165	0.148	3.181	0.060	C-064	-990 0	C.080-	956.0	0.113	0-129	C. 149	0.118	0.107	0.084	0.085
	3,132																								
3.0	0.0013	0.0012	9.0030	0.0044	0.0049	0.0040	0.0039	0.3027	-0.0029	-0.0234	-0.0692	-0.0955	-7.1088	0.0005	-0.0006	-0.0015	-0.0012	-3.0013	-C.00CB	-0.0003	0.0000	0.0424	0.0787	0.1028	0.1127
	0.0165																								
ฮ	0.001	0.105	7.237	0.306	0.405	0.567	009.0	J.693	0.190	0.791	0.786	0.720	J.725	-0.105	-0.208	-0.313	-0.415	-0.520	-0.625	-0.723	-0.813	-0.815).789	-0.741	-0.726
	00.00																								

.ZAC # 0 IN.DEL# D. DIS.X#24.7 E. IL TELAP.RP##NCPROP 26SEPT73 ٨.

DYCCR -0.4368

KN+10++·6 -2.656-1.923 -6.601 -6.621 -6.621 -6.513 1.451 -3.915 4.499 FOR TUNNEL INTERFERENCE 0.167 C. 118 CORRECTER PRIOR DATA

	-0.00052
	DYCCA
	0.000176
0.048581	-0.00000
-0.005587	6,016318
CI COFFES	CC COEFFS

Appendix 6 (cont.)

Appendix 6 (cont.)

19.51 14 +2 WACAO 18.011+ 5 C(C+F+24.7 D+10961AP.F) PROP. 1 DROP.1 OCT 73

0414	1
INGNI	
AUPDER INPUT	
1 34 66 5	
•	

_ ;	a :	A. 7. C.A.		4 5 6 7 7 7	. i	27 28 20 31 31	.7421 -0.7439	10. X	ت منا منا	0.0	A 21.	ر د <u>د</u>	07COH -0.4368	
7605	PF AC	INGC RE	430.1	AND	2									
7	<i>z</i> -	a -	Z - ~		z	٠ <u>٠</u>	á I °		₹-V			\$ - ¢		7-0
:	100.		ارر•	.03	:	'n	130.		100			137.		•
:	165.	C. 105. 98. 101. 101. 12. 12.	101	101	7.	<u>:</u>	١٥٥.	104.	C H 5	100	•50	1001	•	ئ.
ť	֞֞֞֞֝֞֞֜֝֟֝ <u>֚</u>	SZCC041	-	10000	• • •	00(1)		1000	°C.10°	36 5*6	U4284.	6.0.2	0000	1111 1 45/1000 1 111, 10000 2*0.01000 3*0.01000 4*0.10000 5*0.*8670 6*0.20000 5*0.02273
_	1151.	1577.0	∀	ALC 11	•	ر د د د	2							

	£	- 1 4.	113.	113.	113.	101	105.	100	9,0	112.	113.	79.	127.	130.	1:2.	108.	104.	5B.	9.	83.	75.	6.7°	66.	9 H C	106.	103.
	s	2								z			œ.			2										
	Š	110	1.5,	160.	187.	300	. 29.	250.	.07%	283.	305.	28A.	28h.	286.	A3.	57.		200	233.	260.	285.	315.	335.	309.	285.	294.
	v	z														z		œ								
	٠	22%	355.	492.	619	762.	963.	1049.	1187.	1110.	1400.	1220.	1165.	1177.	C3	٠,٧٠	160.	4.92	507	7C 9.	# 10.	900	180.	970.	615	960.
	S	¥														z										
	-	246.	2 5 A B .	196.	100.	-50.	- 52-	-536.	- 844	-1174.	-1266.	126.	730.	B 42.	198.	74.	- 96 -	-312.	-596.	-014.	-1250.	-1654.	-1820.	-4.5.	212.	744.
	~									_	-										-	٠	Ť			
	~	149.	.47.	-11.	211.	20°	143.	192€	435.	477.	. 104	, CO.	106.	69	~ 10.	273.	374.	393.	449.	40%	6.52	, 69°	604.	354.	201.	175.
	J	z		۵											z	~										
WILCEPED		190.	٠ ٢٠ ٢	445.	564.	*C. 2.4	115.	5.36.	1047	1165.	1745.	1120.	1141	1157.	.53	· 260.	393.	516.	645.	170.	466	. 635	1387.	1005	1010.	1676.
PATA AS	ANGI F	٥٠٠-) ·)	?. ~	٠.,	ۇ . ر _ا	٠.	١٠.٠	J	14.0	16.0	٦.٠	> 3 · C	> ° <	J • • ·	7.4.	٠. م.	0.0	٠, ٠٠	つ・ナート	٠.	-18.0	-20°C	-22.0	-27.6	-32.0
																									1221.	
	-	~	J	رن	,	.,)	7	၁	Ü	S	.5	Ç	0,	?	J	.,	<u>ں</u>	S	20	ij	္ပ	ر،	J	č	3

Appendix 6 (cont.)

	0.0	0.0	0.0	٥.٥	0.0	٠. د	0.0	ပ်	0.0	٥.	ပ ဝ	٥ د	0.0	0.0	0	ပ	٥ ٠ ٥	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0
1 73	-14.00	-13.03	-13.00	-13.33	-10.00	-4.00	0.0	٠. دي.	12.33	13.17	-20.58	-27.0)	-30.33	-12.0)	- P • C J	20.4-	>· 00	0.00	17.03	25.33	33.00	34.0)	2.00	-6.30	- 3.00
PROP, 1 OCT	10.00	35.08	60.17	82.25	104.11	129.42	150.50	173.58	183.67	202.75	188.84	186.92	157,00	-16.92	-42. A3	- 70. 75	- 100.00	-133.00	-160.00	-185.00	-215.00	-235.00	-208.00	-145.00	-194.00
DEC.X.24.7 D. LOTFI AD. UPM-NO PROP. L	SIGNS -125.00	-254.R3	- 391.67	-514.50	-661.33	-802.17	-948.00	-1085.83	-1217.67	-1208.53	-1118.71	-1361-17	03.4761-	21.5	117.00	200.00	102.00	497.00	6CB.C3	210.03	SO. COX	380.00	970.00	915.00	363.63
7 n, 104ft	1405 ANG	-237.50	-197.00	-98.5C	\$2.CC	26.465	335.00	151.50	1178.00	1270.40	-121.66	34.40V-	-886.00	-101.5C	-67.00	133.50	37.361	A04.5C	24.40	1 14 7.50	1664.00	1830.50	75.60	25.206-	-232.00
DF C+ X+24.	ZEFO FFACTNOS AND	-13.0%	- 72.92	-112.87	-140.41	-247.79	-241.75	- 734.71	- 271.67	- 340.63	-108.51	4.6.9.	11.53	100.46	177.42	713.17	292.11	148.70	47.104	451.21	488.17	10101	753.04	100.00	(0.**
	0(.08-	-22C.CH	-345.17	-464.25	- 540.11	-115.42	- P. O. O.	-667.50	-1005.07	-1144.75	160001-	-1061.92	1643.00	70.66	14.7.30	14.080	417.67	441.45	6.66.75	784.04	P 50.41	50.595	566.43	16.405	571.33
15 119 .7 WAC . U IN . DELL 'S	CATA COBBE	2.03	4.00	5.60	60.8	13.03	12.00	14.30	10.00	00.61	62.66	22.4.									-10.30	-13.C1	-20.03	25.50	-10.63
1151 15	1266.		_	71 1256.	_	21 1254.		21 1241.	_		21 1234.	_			31 1227.									21 1221.	21 12C4.

TEST IN ADMINISTRATION OF PECTANDAM DAILUBELANGUADMIN DAILUBELL OF THE

FYCEPS -0.5368

e of LAPPF	r Pirnta	LAPPER PIENES CATA BEFULTION.	UCTION.									
VHO EV	5 1 = X 3	6 7-1 3	2121-71	8741-72	נ אני-1 ני	נ אט-ו ש	r 1-07 J	MXC-INLA	N INI -CAM	M70-1NLR	MYCFLAP-INLA	VEL-FPS
00.0-	34.		6.5	0.0	2.23	7.72	8.57	65.48	30°E-		0.0	23.80
) · · · ·		22.14	156.22	17.4.	44.0	7.75	22.12	153.99	>. ℃		0.0	20.71
, OC - 4	. 0		240.40	-1.32	7.47	0.12	15.13	240.23	13.03		0.0	72.41
9	00.0	47.74	137.84	2.4.0	4.68	11.32	47.53	331.91	23.00	-24.88	0.0	23.71
200	-0.52	40.04	478.46	12.69	٨. ١.	17.48	14.00	427.38	14.03	- 15.	0:	10.00
00.00	-2.60	73.97	85.718	30.04	A. 20	15.15	73.56	16.010	4.00	-45.	0.0	23.78
12.00		P. 5. 7.7	612.41	40.29	10.10	17.91	H6.11	611.05	52.00	ř	0.0	20.76
7 7 7		5.8.7.1	45.000	2.00	15.01	20.04	50.00	696.47	60.64		0.0	20.76
	87 - 11 -	110.28	762.29	\$7.70	10.00	24.10	109.74	762.50	00.00	ĭ	0.0	20.75
19.61	27.77	E4.81	00.00		21.14	74.74	117.23	A71.49	70.00	•	0.0	50.69
20.30		165.17	722.67	7.16	15.67	20.19	103.13	686.64	63.61		٠°٥	20.53
2,50,00	5	100.25	\$5.7.35	- 7 - 4 3	40.00	17.13	54.72	6 16.36	0.0	~	0.0	20.36
30.00	4.8	100.58	A 4.1. P.		39.69	. H. O.	24.10	£1.404	-5.00	-	?•°	23.15
0 0	1 H 1	64.41	-27.37		\$ C &	6.77	-4.36	-26.45	00.61-		0.0	20.89
		-17.41	-124.90			6.17	-17.29	-124.52	-31.30	•	C•3	70.89
	7		-219.44	11.74	-	6.43	-11.19	-219.28	-42.00	•	0.0	\$6.05
20.2	07-1-	61.44.	-119.61	20.19	4.10	7.18	-44.11	- 120.07	-52.00	7	3	20.02
10.01.	4C - 9 -	- 5.7 .0 .	-414.50	30.00	5.63	8.05	-47.67	-416.69	-62.00	-33.24	0.0	23.93
10.71-	7 7 0 -	* 40.07 -	-509.78	74.75	U\$ °~	10.01	- 75.118	.513.10	-72.03		0.0	2C.87
-14.0	-11.07	-62.92	-507.81	41.07	69.0	11.40	- E3. 1H	16.004-	-N1.CO	-69.11	0.0	20.84
10.01	- 10.04	20.65-	-679.22	122.10	04.71	15.50	1000	-604.46	-47.00		٠. ن	23.80
- 18.0		. 103.29	- 763.00	124.12	17.14	17.12	-163.46	-741.45	-10.00	•	0.0	23.73
	27	. 28. 5.	-679.10	55.24	15.52	11.34	45.10-	-451.88	-45.03	•	0.0	73.59
-25.00	10.7	-51.52	-613.80	70.E6	42.12	7.23	-90.06-	-555.65	-19.00	?	0.0	20.42
-10.33	\ \ \ \ \	-57.84	-636.64	12.25	\$1.19	6.58	-82.15	-457.89	-13.00	-304.87	0.0	20.28

TEST 15 .24AC+O IN.DEL* S CEG.X*24.7 D.108FLAP.RPM*NO PROP.1 OCT 73

DYCC# -0.4368

FLAPPEC BUDDER CATA IN NON-DIRENSIONAL FORM

CL 50	*****	00.000	0.0743	0.1384	0.2211	0.3273	0.4400	0.5863	0.7329	0.8459	0.6756	0.5892	0.5737	0.0011	0.0177	0.0572	0.1146	0.1965	0.2986	0.4199	0.5396	0.6535	0.5305	0.4249	0.44.0
8-0010NB	040.	1.036	0.00	1.036	0.00	1.039	1.018	1.038	1.037	1.034	1.027	1.018	1.008	1.044	1.044	1.045	1.046	1.045	1.043	1.042	1.040	1.036	1.029	1.021	1.014
T.	0	0	0	0	0.0	0	0.0	0,0	o c	٠ د	0	ပ	0	0.0	0	0	•	0.0	၀	0	0	0	0	0	0.0
1/0	3.850	8.696	10.133	10.165	9.598	8.975	8.295	7.589	6.822	5.494	>.89 5	1.948	1.535	-2.088	-7.374	10.01	10.537	10.245	-9.540	-8.640	-7.574	-9.961	-2.588	-1.895	-1.545
<u>۲</u>	0.056	190.0	0.071	0.086	0,10	0.118	0.140	0.161	0.204	461.0	0.142	0.139	0.157	0.042	0.047	0.040	0.055	0.064	0.084	0.00	0.120	C. 134	0.000	0.030	0.034
7 6 5	0.470	408.0	100.0	0.887	0.845	C. 892	100.0	0.430	0.882	0.8.0	0.843	0.854	0.840	0.784	0.915	0.893	0.921	0.916	0.010	000.0	0.919	0.910	0.400	0.871	0.862
3	-C.0157	-0.3266	-0.0141	-0.0188	-0.0174	-0.0168	-0.0197	-0.C214	-C.0253	-0.0286	-0.000-	-0.1156	-0.1282	-0.020\$	-0.0236	-0.0239	-0.0240	-0.0235	-C. 3234	-0.0228	-0.0194	-0.0130	0.0426	0.0735	0.0885
S	0.0175	0.0155	0.0265	0.0366	0.0400	0.0637	0.0809	0.1009	0.1245	0.1674	0.2842	0.3941	0.4935	0.0161	0.010	C.0237	0.0321	C. C4.13	0.0570	0.0746	C . C \$ 7C	0.1356	0.2814	0.3439	0.4343
ಕ	0.067	C.173	C.273	C. 372	0.4.0	C.572	C.671	C. 766	0.8%	0.920	C.822	C. 768	C. 29.2	-0.034	-0.133	-0.239	-0.338	-0.443	-0.946	-0.645	-0.735	-0.808	-0.728	-6.4.52	-0.671
																									-10.00

IEST 15 .ZMAC=O IN.DEL= 5 CEG.X=24.7 O.10#FLAD.RPM=NO PRUP.1 OCT 73

DYCCR* -0.4268

ALPHA CL CC CM CPL CY L/D CMF National-6 Co.Cc G.C67 3.674 G.C G.C6 G.C67 3.014 G.C G.C67 3.017 G.C56 3.634 G.C G.C67 3.017 G.C65 3.634 G.C G.C67 3.017 G.C65 3.634 G.C G.C67 G.C67 G.C68 G.C67
O

Appendix 6 (cont.)

			• •	2273	
			400	0	
		DYCOR -0.4368	zaů	2=6.01000 3=0.01000 4=0.10000 5=0.48970 6=0.20300 7=0.02273	~ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p173			6-8 100 102	\$=0.2	v
BSEI		AZL 2.00		10 (
PRCP28SEPT7		7	200 200 200	. 489	v1 < α
A DN MAR		ZHAC	100 100 100	00 3#0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
٠ م		0	100°	• 100	υ Σ Σ Ε
FLAP		XMAC -0.7659		4	
104		9	4001	1000	न ने मन न न न अर्थ
24.7.	CATA	MAC 5.7421	100k	3#C.0	# 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
×	7		# 0 0	000	٠
.0066	AUDDER INPUT	SPAN 7.875	• •	2=0.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
.* 10	JOOE		AFTER 3-N 0.0	000 1.4.	ν <i>z</i> α
0 50	<u>ج</u> ت	AREA 44.30	AND A 2-R 100.	1=0.10000 2: SHAFT DIA.=	08 CE
0.1N	FLAPPEC	4 4	8EFCRE 2-N 100. 130.		A A A A A A A A A A A A A A A A A A A
IEST 14, ZMAC 0.1N, DEL. 10.0DEG, X=24.7, 10% FLAP,	u.	1 8 3	• •	CELL LBS/COUNT THIST=11570.0	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ST 14		7 T 8	3 READINGS 1-N 1-R 100. 100 103. 102	1157=1	NPUT OATA 1246. 1236. 1228. 1218. 1214. 1214. 1250. 1134. 11551. 1255. 1255. 1255. 1255. 1255. 1255. 1255. 1256. 1256. 1257
ă		10.0	ZERO ANOM 1 0. 1	₩ .	#1000000000000000000000000000000000000

	INPUT	DATA C	ORRECTEC FOR 2	ERO RI		SIGNS			
21	1246.	0	-205.00	103.0	-	-225.00	33.00	-16.00	ö
2	1236.	2.0	-326.92	45.0	-310.00	-353.96	55.00	-16.92	9
2	1228.	0.4	-447.83	-15.0	-	-480.52	81.00	-16.93	ပ
2	1218.	9	-556.75	-74-		-603.87	102.00	-15.75	0
2	1214.	8	-673.67	-127.	13 10.00	-734.83	124.00	-11.67	9
7	1208.	10.0	-790.58	-177.		-871.79	146.00	-6.58	ċ
21	1200	12.0	-899.50	-222.	•	-499.75	162.00	-1.50	0
21	1196.	14.0	-1006.42	-264.	=	-1129.71	163.00	3.58	0
21	1189.	16.0	-1110.33	-297.		-1255.67	200.00	15.33	0
77	1172.	18.0	-1139.25	-225.	472.00	-1227.62	302.00	-5.63	0
21	1157.	20.0	-1147.17	-80	-70.00	-1189.58	207.00	-21.17	•
2	1134	25.0	-1121.08	43	-682.00	-1112.54	199.00	-30.08	0
21	1113.	30.0	-1093.00	- T	-890.00	-1063.50	196.00	-31.00	•
7	1261	-2.0	-82.92	166.	-264.00	-99.46	••	-13.92	0
21	1261.	0	43.17	226.	-156.00	25.58	-14.00	-9.83	ö
21	1257.	9-	169.12	286.	0.0	1.5.87	-47.00	-5.75	•
2	1258.	9	294.00	344.		268.00	-75.00	-0.67	0
2	1255.	-10.0	416.87	400		303.12	-103.00	5.42	0
21	1255.	-12.0	542.75	454		493, 25	-132.00	14.75	٥
21	1250.	-14.0	657.62	501.		593.37	-160.00	22.79	6
21	1246.	-16.0	768.50	537.		687.50	-187.00	30.43	•
21	1241	-18.0	867,37	558.		772.62	-216.00	35.87	•
7	1219.	-20.0	879.25	338.00	518.00	797.75	-187.00	7.92	•
21	1196.	-25.0	860.12	181.		784.87	-173.00	-5.04	•
21	1182.	-30.0	867.00	145.	-348.00	760.00	-170.00	00.4-	•

TEST 14, ZMAC . DE: +10.0DEG, X=24.7, 108 FLAP, RPM-NO PROP28SEPT73

D) .. OR. -0.4368

FLAPPED RUDDER DATA RECUCTION

T
T
TO 000000000000000000000000000000000000
XX
T
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1
mm 4 & a a b o 1
T
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Appendix 6 (cont.)

TEST 14, 2MAC 0.1N, DEL 10.0DEG, X=24.7. TE FLAP, RPPAC PRCP28SEPT73

DYCOR -0.4368

CL 59	0.0239	0.0660	0.1292	0.2063	0.3067	0.4290	0.5651	0.7142	0.8798	0.8990	0.8679	0.7514	0.6516	0.0028	0.0025	0.0236	0.0657	0.1239	0.2148	0.3153	0.4301	0.5441	0.4926	0.4111	0.3734
RN+10++-6	1.098	1.054	1.090	1.086	1.084	1.081	1.078	1.076	1.073	1.065	1.058	1.046	1.038	1.105	1.105	1.103	1.104	1.102	1.102	1.100	940.1	1.094	1.086	1,076	1.070
CMF	0	0	0.0	0.0	0.0	•	0	0	0.0	0.0	0.0	0,0	0.0	0.0	0.0	0	0.0	•	0	0.0	0	0	0.0	•0	0.0
2	7.496	5.629	6.978	5.482	8.981	8.325	7.680	7.050	4.385	3.972	2.940	1.968	1.532	3.052	-2.92C	-7.532	-9.446	-9.992	-5.593	-6.654	-7.904	-6.492	-3.021	-1.909	-1.492
																									0.044
CPL	0.528	0.888	404.0	0.906	906.0	0.912	0.900	0.910	0.912	C.872	0.867	0.850	0.841	1001	0.802	0.872	0.895	0.892	0.857	C. 903	0.904	C.903	C. 850	0.822	0.830
5	-0.0455	-0.0457	-0.0456	-0.0429	-0.0422	-0.0429	-0.0441	-0.0464	-0.0498	-0.0722	-0.1111	-0.1409	-0.1506	-0.0465	-0.0476	-0.0489	-0.0497	-0.0500	-0.0486	-C.04ES	-0.0446	-0.0395	0.0146	0.0510	0.0606
6	0.0206	0.0267	0.0360	0.0479	0.0617	0.0787	0.0979	0.1199	0.1468	0.2387	0.3168	4044.0	0.5267	0.0174	0.0171	0.0204	0.0271	0.0361	0.0483	0.0634	0.0830	0.1136	0.2323	0.3358	0.4094
																									-0.611
ALPHA	-0.00	2.00	00.4	9.00	8.00	10.00	12.00	14.01	16.01	18.02	20.00	25.00	30.00	-2.00	- 00	- 00.9-	-8.01	-10.01-	-12.01 -	-14.01 -	- 16.01 -	-18.01 -	-20.01 -	-25.00 -	-30.00 -

TEST 14, ZMAC 0.1N, DEL-10.0DEG, X-24.7, 10% FLAP, RPM-NO PROP28SEPTT3

DYCOR -0.4368

PRIOR DATA CORRECTED FOR TUNNEL INTERFERENCE

00000000000000000000000000000000000000
6 0 40 0 4 m 0 0 m m 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
OLJOHMBABBRUTHTAPHARTAMBA JULIANNABEROHENOEORAPHAR PROONTAPORGENBEROHER PROSESSION STANDARTARE PROONTAPORGENBEROHER PROSESSION STANDARTARE PROSESSION STANDARTARE
00000000000000000000000000000000000000
00.00000000000000000000000000000000000

-0.43660
DYCOR
0.000368
0.046170
0.142341
CL CCEFFS CD CDEFFS

Appendix 6 (cont.)

			• •	2273																						
			¥ 0 0	7-0-02273																						
		0YCOR	Z 00		^	ó	•	ó	o ·		•	ċ	ċ		ċċ	ó	ċ	.		o	ö	ċ	ċ		ċ	ċ
173		0	6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	6 -0.20090	S	•							•					•			•	•			•	
28SEPT7		A2L 2.00	• •		•	6	10	118	<u> </u>	000	5	91,	100	122		115			207	67	116	26	N	90		90
a		•	N 001	0.45	S	z	K										Œ				z				•	œ
NO PROP		2MAC 0.0	2000	00 %	•	151	199.	221.	245	263.	300	326.	328.	330	312.	125.	÷ 6	.2.	138.	215	248.	272.	291.	279.	259.	257.
I d			2000 000	.100	S	z											Z	•	X							
AP.		XMAC 0.7699		7 * 4	•	904	677	901.	9	1085.	376.	. 861	\$60	523	286.	284.	155.	9	410.	522.	545	732.	900	839.	603	904
F .3		o	400	0001	ر.	•			•	Ξ:	-	-		. نــ	_, _	•	œ		z				_			-
244C C.IN.DEL 15.0 PEG. X . 24.7, 1(, FLAP, APM NO	CATA	MAC . 7421	1000	3 = 0. 01 CCO 4 = C. 1 0000 5 = 0.45970 IN.	•	90	324.	5	30	200	-012.	070	.496.	152.	728.	354.	.50.	200	.98.	660	920	1394.	1420.	3	276.	476.
, X=24		•	404	1000	s	ı				•	•	7	•						•	•	7	7	Ť	•		
O PEG	TUPUT	SPAN 7.875	6 X O 4	> 0 ° C	~	· •	134.	2	181	?:	300	5	278.	3	206.	1	_		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	602	641.	677.	704	\$29.	338.	318.
.15.	AUOCER		¥ ~ 0 ~	0.00	S	Z			œ						Z		z									
• 0EL		ARFA	A V	1.0.10030 SHAFT GIA.	₽ ₽₽₽	355.	5643	~	980.		247.	351.	369.	300.	1315	273.	145.	20	÷ 0	5.56	5	2	880.	\$00.	073.	€.
C. 1.	13447 19	₹ 4	67086 200 100.	_	PFCOMD S	Œ										•	•		z							
2 ZHAC	•	11	168 ME 100. 100.	S /C n UN 1	ATA AS ANGLE		0.0	4	0.9	C (20.0	7.4	16.0	19.0	23. 0	0	2.6-	-8-0		-	•	_	~	~	-27.0	~,
TEST 136		7. 2.	RE #0	Lt LB	PL1 D	262.	\$ \$	2 5 5	23	249	7 7	539	221	202	2 1	263	263	2¢6	266.	26.30	26C.	256.	249.	230.	212	.951
-		15.0	ANC # 0	7.E	z			. —	~			-	-	_			_			-	-		-	_	-	

		0.0	0.0	0	0.0	0.0	0.0	0.0	••	0.0	0.0	•	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	••	0	0.0	0.0	0.0	0.0
28569773		-19.00	-19.04	-18.08	-10.12	-13.17	-0.21	-3.25	4.71	19.8	-0.37	-22.42	-30.46	-34,50	-15.54	-11.58	-1.62	-2.67	8.29	12.25	15.21	25.17	31.13	5.00	-12.96	00.0-
NO PROP		51.00	75.00	99.00	121.00	142.00	163.00	183.00	208.00	226.00	228.CC	230.00	215.00	212.00	25.00	-2.00	-28.00	-57.33	-85.29	-114.25	-147.21	-171.17	-190.12	-178.08	-158.04	-156.00
FLAP, 3P4=NO	SIGNS	-306.00	-444.00	-577.00	-701.00	-840.CO	-985.00	-1132.00	-1276.00	-1398.00	-1360.00	-1325.00	-1211.00	-1196.00	-184.00	-55.00	70.00	190.33	309.29	421.25	541.71	631.17	699.12	730.CB	702.04	703.00
24.7. 16.	INGS AND	-398.00						487.00				-153.67														
•0 DEG•X	ZFPC REAC	156.00 -396	40.46	34.09	-27.88	-80.83	-131.79	-177.75	-219.71	-257.67	-177.62	-34.58	106.44	134.50	214.54	274.54	334.62	393.67	450.71	\$02.75	441.79	577.83	604.87	429.92	238.96	219.00
244C 0.1A,CFL=15.0 DEG,X+24.7, 1C,	TEC FCR	-295.00						-1026.50							-171.92	-43.83	81.75	267.33	331.42	457.50	594.59	703.67	761.75	801.83	174.92	767.00
13. 24AC 0	DATA CORREC	•	2.00	•••	6.00	\$.00	10.00	12.00	14.00	16.00	18.00	20.00	25.00	30.03	- 2.00	00.4-	-6.00	-8.CO	-10.00	-12.00	-14.00	-16.00	-18.03	-20.00	-25.00	-30.00
16.4		1 1262.			-	_	_	21 1247.	-	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_

TEST 13, 2MAC C.IN. DEL HIS. C DEC. X+24.7, 1C. FLAP, RPM+NC PRCP 29SEPT73

DYCCR -C.4368

... FLAPPED AUDDER DATA REDUCTION.

X
A 140 0000000000000000000000000000000000
1
#0000000000000000000000000000000000000
1
######################################
7 CO 00 0 1111 0 10 10 10 10 10 10 10 10 10
1.0000
I
X w w w o - 4 = 0.4 = 0.00 + 0
40000000000000000000000000000000000000

Appendix 6 (cont.)

TEST 13, 2MAC G.IN.DEL-15.0 DEG.X-24.7, 1C, FLAP, PPMANG PROP. 28SEPT73

DYCC# -0.4368

ت د	<i>ن</i> ن	3	16.0	ر ح	١/٥	T T	BA . 1 0 6	CL 50
	19 0.0251		0.931	0.049	8.717	0	1.094	0.0480
C. 33	. C.C.	25 -0.0654	C.907		9.963	0.0	1.093	0.1051
_	22 0.043		0.916		9.714	0	1.001	0.1781
6.00 0.51	15 0.0544		0.410		9.135	0	1.091	0.2656
			0.402		6.564	0.0	1.090	0.3791
0 0.718	18 0.5966		006.0		7.924	0.0	1.098	0.5158
			0. A 9.R		7.132	0,0	1.00.1	0.6708
00 00			416.0		6.718	0.0	1.046	0.8444
			216.0		\$.904	0.0	1.034	1.0097
			C.882		1.942	0.0	1.076	1.0148
					2.985	ပ	1.069	C. 9958
25.00 0.85					0.45	ပ္	1.050	0.8057
					1.545	0	1.050	0.7420
					5.017	•	1.094	0.0142
					0.797	0	1.094	0.0002
					-4.449	0	1.096	0.0011
-0.01 -C.19					-7.752	0	1.096	0.0344
-10.01 -0.291	31 C.C322	12 -0.0705			-9.110	0.0	1.095	0.0858
					-9.219	ပ္	1.094	0.1579
					-8.615	0.0	1.093	0.2606
-16.01 -0.40	C 4 C O . C C				-7.901	0.0	160.1	0.3634
			0.839		-4.536	0	1.036	0.4479
1 - C. 648	C . 2 C .	34 -0.0165	0.963		-3.185	0	1.080	0.4197
0-0-5	11 0.31	10 0.0261	0.032		-1.836	င္	1.072	0.3261
		4	•					

TEST 13, 2MAC 0.1N.OFLMIS.U DEG.XM24.7, 1C. FLAP,RPMMNO PROP 28SEPT73

是一种,我们就是一种,我们就是一种,我们就是一种,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一种人,我们就是一个人, 1995年,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们

DYCCB* -0.4368

ฮ		3	ر ده		ر ٥	T T	8 N . 1 0	CL 50
C. 219		-0.3675	0.931		8.447	0.0	1.034	0.0480
324		-0.0654	C . 907		9.452	0.0	1.093	0.1051
7.45.0		-0.0651	0.010		0.000	ပ င	1.001	0.1781
515		-0.0627	016.0		B + 6.7	0.0	1.001	0.2656
414		-0.0639	0.962		7.840	0.0	1.090	0.1791
. 7.18		-0.0653	004.0		,	0.0	1.088	0.51%?
916		-0.0678	0.898		6.06.	0.0	1.387	0.6708
3		-0.0761	916.0		6.003	0.0	1.086	0.8444
.005		-0.0720	0.912		5.370	0.0	1.084	1.0097
.00		40000	C. 882		3.694	0.0	1.076	33 6C 73
K 5 5		-0.1330	0.855		2. 752	٠. د	ر بر مورد - « ريوم	せがアチ・ロ
. 858	0.4690	-0.1625	448.0	0.158	1.914	0.0	1.05.1	K 500 0
- 90		-0.1729	0.846		1.511	o, C	050.1	1. * * * * * * * * * * * * * * * * * * *
5113		-0.0675	0.961		5.750	ن د	* 0 · 1	0.0544
513		-0.0634	1.350		0.197	eri ;	1.094	C. 007
260		-0.0454	0.798		-4.420	ت ئ	1.096	0.0077
161.		-0.0692	0.440		-7.565	٠. 0	1.096	0.0364
. 5 3		-0.076	O.897		-8.720	0,0	3,095	0.00000
197		-0.0490	0.894		-8.686	?. //.	*60 * ~	0.1579
1.511		-0.0634	0.895		-8.024	٥. د	1.093	C.2606
. 6C7		-C.0617	0.883		-7.318	6	760.	0.3634
9.669		-0.0589	0.884		-6.090	ري ح	1.046	0.4479
643		-0.0165	0.861		-3.079		1.040	0, +197
. 47		0.0241	0.832		-1,805	0.0	1.0%	0.3261
. 548		0.0332	0.839		21411-	0	1.065	0.2598

cont.)

-0.43680

OYCOR

0.000374

0.048359

0.263970

CL CCEFFS CD COEFFS

Appendix 6 (cont.)

				273		
			400	.0.02		
		DYCOR -0.4368	200	6-0.20000 7-0.02273	-000000000000000	0000000000
573		-	1001	• • • • •	· · · · · · · · · · · · · · · · · · ·	
PROPRSEPTYS		A21.	Z 000	0448		
		Ų	500 1000 101	5.0.4	0 2 4 2 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
		2440		0000	nz	z
FLAP, RPM-NO		7 4 4	100	4 . C . 1	44400404040444444444444444444444444444	
101		XMAC -0.7409	100	1001	************	* Z
	4 A A	MAC 9.7421	¥ 000	1-0.10000 2-0.C1000 3-0.01000 4-C.10000 5-0.48970 SPAFT 014.* 1.50 IN.	4444 -444-4664 64-464-464-4644 64-464-464-464	
× • •	PUT DAY	_	404	1.50	v	1 1
244C 0.14.05L"20.0 0EG, X"24.7	FLAFFED RUDDER INPUT	SPAN 7.875	# Z U U	2.0		
١٠.٧٥	S COO	0	*	0000	w2	
1 N + C.E.	PED	44.30	4	SFAFT	A & & & & & & & & & & & & & & & & & & &	
•	FLA		2-N 2-N 10C.		₩	« Z
		- 3	3000 101,	CELL LBS/COUNT THIST-11570.0	# 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	90000000000000000000000000000000000000
ES1 12.		R C	2 2 0 5 2 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5	14 25 11	1	
÷		÷ 2	0	<u>بر</u> ش	* 4000000000000000000000000000000000000	

	0.0	•	0.0	0.0	9	0.0	0.0	0.0	0.0	0.0	•	•	0.0	o C	••	0.0	0.0	0.0	0.0	•	•	0.0	0.0	0.0	0.0
PROPOSEP173	-22.00	-19.96	-21.92	-19.00	-14.83	-12.79	-6.75	-0.71	2.33	-18.00	-32.00	-36.54	-37.5	-20.46	-17.42	-12.38	-7.33	-0.24	6.75	18.74	26.00	32.00	% ***	-14.00	-14.00
SCRF CKERF	\$6.00	40.48	108.08	130.12	154,17	179.21	203.25	226.29	241.33	243.37	245.42	222.46	224.50	32.54	5.5	-22.38	-50.33	-78.29	-107.25	-140.21	-171.17	-201.12	-183.00	-160.04	-188.00
104 FLAP, APHEND	-345.00	-484.79	-621.58	-764.37	-924.17	-1071.96	-1228.75	-1373.54	-1498.33	-1426.12	-1367.92	-1240-11	-1252.50	-217.29	-67.08	43.12	165.00	202.00	400.00	525.00	943.00	745.00	760.00	762.00	760.00
G. X=24.7 . 1		-478.25	-414.90	-292.79	189.00	140.75	438.90	778.29	968.00	5.74	-402.50	-432.75	-1053.00	-450.25	-359.90	-147.75	> >. CC	275.75	\$79.50	957.25	1359.00	1640.75	664.90	-343.75	-594.00
.0 OEG. X		107.96	48.92	-9.12	-63.00	-100.00	-148.00	-103.00	-225.00	-104.00	43.00	154.54	179.50	227.46	209.42	350.37	404.33	445.29	519.25	554.21	579.17	601.12	457.08	275.04	545.00
TEST 12. 2MAC 0.1N.DEL#20.0 DEG: X#24.7 .	•	-467.96	-597.92	-723.87	-865.83	-993.79	-1127.75	-1244.71	-1354.67	-1359.62	-1367.58	-1269.54	-1294.50	-209.46	-70.42	50.62	179.33	303.5	431.75	976.96	714.17	634.37	837.58	177.79	164.00
2+ 2MAC 0.		2.00	00.4	00.4	9.10	10.01	12.03			18.00							-8.00				-16.00		-20.00	-25.00	-10.00
7F.S.T. 1.	1268.	21 1269.			21 1268.											21 1286.									21 1210.

DYCCR4 -0.4368

	*	ċ	ċ	ċ	6	ċ	å	ċ	å	ċ	ċ	ċ	å	÷	ċ	ċ	ċ	ċ	ċ	ċ	ċ	ċ	ċ	ċ	20.45	ċ
	=	0.0	•	0.0	••	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	4.6	-20.58	-22.26	-40.50	-40.50	-56.15	-16.28	5	-143.50	172	254	312	351	-413.39	-10.96	-17.11	-16.33	-21.69	-26.67	-34.60	-44.30	-72.50	-103.27	=	-269.03	302
	MYO-THE	.30.		•	-	<u>:</u>	÷	26.	32.	ç	=	~	-29.	-35.	-40	-55.	-	-13.	-	: 93.	-	· 607-	-10	-82.	00.64-	-47
	MXO-INLB	226.10	327.19	416.11	504.44	603.33	702.18	100	897.82	961.34	904.76	344.95	741.41	711.53	141.55	47.40	-50.38	-143.76	-237.43	-332.30	-439.92	-536.21	-627.72	-554.28	******	-453.84
	_												_					•	•	•	•	•	•	•	- 70.49	•
	4																								5.10	
	F X0-18	*0.4	5.13	6.66	8.53	10.81	13.36	14.41	19.67	25.00	37.CB	47.04	58.48	70.08	3.42	3.05	3.04	3.44	4.32	5.71	7.75	10.34	14.05	26.26	39.00	44.70
		-26.74	-19.76	-22.78	-9.37	12.40	17.60	37.99	53.70	72.90	12.30	-26.72	-27.45	14.42-	-27.72	-21.63	-4.56	2.50	21.47	74.00	75.35	92.69	113.10	23.12	-23.19	-10.01
UC110N**		225.45	327.35	417.45	\$67.19	605.80	707.24	8C8.37	907.63	473.44	939.65	404.71	£20.18	822.54	140.10	45.51	-52.09	-145.36	~	~	•	•	Ž	ç	\$	\$
CATA RED	6 2-L B	11.73	45.72	59.30	72.48	87.21	******	114.76	126.30	137.73	137.00	135.33	125.36	127.66	19.67	5.05	-8.57	-22.03	-35.01	-48.37	-63.24	-77.21	-89.45	-68.33	-80.53	-79.55
FLAPPED RUDDER CATA REDUCTION.	FX-LB	46.3	# C . '	4.14	2.93	0.84	14.1-	-4.39	-7.78	-5.68	-1.76	4.02	9.33	10.51	4.80	3.55	1.98	-0.22	-2.76	-5.80	-4.57	-13.59	-16.91	-6.47	⁴.	5.94
OOFLAPPE	AL PHA	-0.00	2.00	0U.4	00.0	8.10	10.01	12.03	14.03	16.03	18.00	20.05	25.03	30.02	-2.00	00.4-	-6.0:	-8.C1	10.01-	-12.01	-14.01	-16.01	-18.03	-20.01	-25.00	-30.00

Appandtx 6 (cont.)

TEST 12, 2MAC C.IA,DEL=20.0 DEG, X=24.7 , 10% FLAP,RPM=NO PROP8SEPT73

DYCCR -0.4368

	CLSQ	0.0612	0.1256	0.2094	0.3118	0.4515	0.6032	0.7804	0.9771	1.1434	1.1182	1.0867	0.8547	0.8237	0.0213	0.0017	0.0040	0.0277	0.0713	0.1380	0.2396	0.3658	0.4892	0.4468	0.3209	0.2769
	RN#10##-6	1.086	1.087	1.088	1.087	1.086	1.084	1.083	1.076	1.078	1.069	1.061	1.050	1.040	1.090	1.093	1.094	1.094	1.093	1.092	1.090	1.085	1.085	1.077	1.068	1.061
	CHF	0.0	0.0	0.0	0.0	0	0.0	0.0	•	0.0	0.0	ပ ပ	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
* * W &	٦/١	7.783	8.903	8.866	8.449	P. CO4	7.451	6.881	6.356	5.413	3.557	2.721	1.903	1.530	5.527	1.761	-2.666	-6.320	-8.075	-8-473	-8.197	-7.514	104.9-	-3.221	-1.804	-1.385
ONAL FC	Ç	0.064	0.063	C.Cel	0.105	0.130	0.147	0.168	0.186	0.221	0.192	0.175	0.162	0.168	0.051	0.048	0.045	0.049	0.053	0.061	0.071	0.087	0.112	0.080	0.017	-0.003
THENST	CPL	106.0	0.910	0.894	0.890	0.885	0.896	006.0	C.912	0.899	0.871	0.843	0.846	0.843	0.950	1.121	0.117	0.839	C. 865	0.872	0.880	0.876	0.886	0.832	0.876	0.891
IN NCN-DIMENSIONAL FCRM##	5	-0.0737	-0.0733	-0.0725	-0.074C	-0.0759	-0.0792	-0.0841	-0.0856	-0.3962	-c.122c	-0.1588	-0.18C4	-0.1923	-0.0731	-0.0748	-0.0753	-0.0747	-0.0747	-0.0744	-0.0673	-0.0600	-0.0526	-0.0191	0.0181	0.0200
**FLAPFEC RUDDER CATA	ບ	0.0318				_					0.2973	0.3831	0.4858	0.5933	0.0264	0.0234	0.0236	0.0264	0.0321	8	_		_			0.3860
FEC RUDO						0.672	C-777	0.983	666.0	1.069	1.057	1.042	C.924	0.908	0.146	C.041	-0.063	-C.167	-0.267	-0.372	-0.489	-0.695	559.0-	-C.668	-0.567	-0.526
**FLAF									14.03					30.02		-4.00	-6.01		_	_		_				

TEST 12, ZMAC 0.1% DEL=20.0 DEG, X=24.7 , 10% FLAP, RPM=NO PROPBSEPT73

	CLSG 0.1256 0.1256 0.1256 0.45118 1.1634 1.1634 1.1634 0.00113 0.00113 0.00113 0.00113 0.00113 0.00113	0.3209
	AN 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	# 000000000000000000000000000000000000	
ENCE		かいてき
INTERFERE	00000000000000000000000000000000000000	080
TUNNE! IN	00000000000000000000000000000000000000	0.832
FOR	CM	2000
CORRECTED FOR T	00000000000000000000000000000000000000	125
DATA	00000000000000000000000000000000000000	
PRICA	14444000000000000000000000000000000000	-~~~

	-0.43680	
	DYCOR	
	O.000390	
C. 049809	0.003550	
0.238715	0.031188	
CL CCEFFS	CD COEFFS	

Appendix 6 (cont.)

Appendix 6 (cont.)

			-	ò																								
		07COR	NO O	6=0.20000 7=0	^	ċ	ö	óć	ó	ò	ċ	ċ	•	o c	•	ö	ວໍ	ö	•	• •	.	• c	•	id	; c	ċ	;;	
73		0	400	0.2	v)																						
27SEPT73		و بـ	400		•	•	5	124.		m	9.	2:	5	•	0 -	139.	.1.	•		· ·	•	: -	:	128.				
275		AZL -2.00	100°	5=0.48970		12	15	-	: =	=	=	~ :	<u>ن</u>	7 -	-	-	=		Ξ;	= :	≓ '	-		-	. •	=		
6		•	6	4	•	œ												œ				2	•			œ	2	
LOTFLAP.NUPRUP		ZHAC 0.0	2 000 .000	9 00	ď	159.	186.	210.	256.	281.	303.	324.	337.	338	110	324.	134.	109		146	25	,,,,	2 4 0	200		266.	264.	
LAP		0	5- K 100. 98.	001	U	Z												z	•	œ								
0.8F		99	700	ů Ž	4	467.	ò	735.	0.25		325.		550.	4 90•	2 4		10	e e	2	, ,	· ·		•	010	•	000		
		X#4C 0.7699	4R 100.	00		4	ě	~ a	0	1166	132	146	2	7	7 0	137	6	~	~ ;	~	ň	ř		- <u>-</u>	3 -	0 0	8	
24.		•		010	v	α.												~		Z								
DEG. X=24.7,	CATA	MAC 5. 7421	1000	3 = C. C1C00 4 = C. 10000 IN.	•	574.	556.		2 C C	30	-308-	-635.	-618.	160	000	1106.	548.	462	324.	130	2:					206.	482.	
25. 0			- 0 20 •	2=0.C1000	v	,																		, ,	ı			
	INFUT	SPAN 7.875	~	0.0	r	268.	12.	160.	70,	68.	90	238.	64.	5	9 0	306.	325.	83.	**	495	543	÷ ;	,	6.4	9 6	6 6	36.	
DEL.	RUGGER	8 ~	FTER 3-N C C	~ .					-		~	~	~		<u>-</u> ^	u m	m		4	4	R, F	Λ 4	۰ د	Ų 4) (n (4	ייי ני	
ž	2002	0	NC AF 2-8 100.	1=C.10000 2 SMAFT CLA.=	۵	`z			•	α • •		•	•	_				z							•			
0		AR E A 44.30		C.1(.	452,	580	705	2 4	685	220	335,	450	432,	\$ 0 \$ 0 \$ 0	398	322	8	2	255	382	֓֞֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֓֓֡֓֓֡֓֡		9 2	- 6	000	958	
A A	LAPPED	ā ý	FOR E 2-N 10C.	- V	FCORE	· œ					~	_	-			ه		œ		z				•		. •		
7 • (F		9EF	N O	A S R		_	0 (_	_		_		· ~		_	_		_	~ .	<u> </u>	~ .		٠.	, U	
TEST 10, ZMAC		11 8C	100 100 100	ELL LBS/COUNT WIST=1157C.0	ATA	-24	6	~	• 4	w	01	12.	14.	16.	200	28.	4	-6.	-8-	-10.	-12.0		011	 (v	22.	-32.	
-		78	# # # # # # # # # # # # # # # # # # #	.t LE	NPLT	4.6	25.	1204.	2 5	60	83.	1173.	165.	1155.	***	0,0	.10	117.	.19.	250.	60	. 13	•	13.	י ני	1 20	1153.	
		CF 25.0	2 K C C C C C C C C C C C C C C C C C C	CEL	ž.																						==	
		- 2	NZOU		•	~	ŏ	ō	ن ز	າ ປັ	ŏ	ັ	ŏ	ō	ပ် ပဲ	ō	Ũ	ŏ	ō	ō	ŏ (ပ် ပဲ	ة د	วี เ	خ ر	5 0	5 ŏ	

,我们也是一个人,我们也是一个人,我们也是一个人,我们也是一个人,我们也是一个人,我们也是一个人,我们也是一个人,我们也是一个人,我们也是一个人,我们也是一个人, 第122章 第1

Appendix 6 (cont.)

0	0.0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	o •	0	0.0	0	0	0	0.0	0.0	0	0.0	0.0
-24.00	-25.00	-24.00	-22.00	-18.00	-13.00	-8.00	-2.00	-5.00	-29.00	-35.00	-41.00	-39.00	-21.00	-21.00	-17.00	-12.00	-5.00	3.00	11.79	21.83	28.87	-5.08	-15.00	-16.00
59.00	86.08	110.17	134.25	156.33	181.42	203.50	224.58	237.67	238.75	241.83	230.92	225.00	35.08	10.17	-17.75	-46.00	-75.00	-104.00	-135.00	-168.00	-201.00	-181.00	-165.00	-164.00
S16NS -367.00	•	-634.58	-774.37	-924.17	•	-1223.75	•	7	-1388.12	-1387.92	7	7	-232.29	•	18.12	145.00	265.00	383.00	490.00	610.00	727.00	748.CO	700.00	100.00
READINGS AND	-555.17	-484.33	-367.50	-194.67	34.17	313.00	637.83	624.67	-172.50	-491.67	-940.83	-1096.00	-537.17	-450.33	-311.50	-116.67	140.17	471.0C	823.83	1238.67	1605.50	290.33	-276.83	-462.0C
ZERO REAC 168.00	111.75	59.50	12.25	-31.00	-69.04	-107.25	-139.46	-165.67	3.13	65.50	172.25	203.00	221.75	279.50	340.25	391.00	438.75	486.50	527.25	851.00	557.75	290.50	204.25	230.00
CORRECTED FOR	-480.00	-605.00	-730.00	-862.00	-585.00	-1120.00	-1235.00	-1320.00	-1332.00	-1358.00	-1306.00	-1298.00	-222.00	-100.00	25.00	155.00	285.00	415.00	542.00	685.00	821.00	820.00	800.00	196.00
DATA CORR	2.00	00.4	6.00	00.0	10.00	12.00	14.02	16.00	10.00	20.01	25.00	30.03	-2.00	20.4-	-6.00	-8.00	-10.01	-12.02	-14.00	-16.01	-18.00	-20.00	-25.00	-30.00
	1 1225	1 1204.	1 1201.	1 1196.	1 1180.	1 1183.	1 1173.	1 1169.	1 1155.	1 1144.	1 1126.	1 1104.	1 1216.	1 1217.	1 1219.	1 1226.	1 1209.	1 1218.	1 1216.	1 1213.	1 1205.	1 1186.	1 1170.	1153.
~	~	"	~	~	~	~	~	~	~	~	~	~	~	~	N	~	N	~	~	N	~	N	~	N

TEST 10, 2MAC G IN, DEL= 25, DEG, X=24.7, 10#FLAP, NOPROP 27SEPT73

TEST 10, 2Mil C IN, DFL= 25, DEG, X=24,7, 10%FLAP, NOPROP 27SEPT73

DYCOR* -0.4368

FLAPPED RUDDER DATA REDUCTION

VEL-FPS 20.59	20.26	20.23	20-19	20.06	20.08	20.00	13.96	19.84	14.75	19.59	19.40	26.31	20.37	20.39	20.39	20.30	20.38	20.36	20.34	20.27	20.11	19.97	14.13
YOFLAP-INLB	000	0	0.0	••	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	a.o	0.0
MZG-TNLB -20.78	-43.80	-57.11	-65.64	-89.25	-110.17	-140.33	-185.99	-274.04	-314.78	-377.50	-417.14	-15.59	-22.93	-23.66	-29.23	-33.83	-44.32	-52.94	-70.55	-102.58	-200.51	-235.64	-271.48
1Y0-1 NLB -30-00	-10.00	-2.00	2.00	12.00	19.00	25.00	29.00	0.0	-11.00	-31.00	-36.00	-39.00	-50.00	-61.00	-70.00	-78.00	-87.00	-94.00	-99.00	-100.00	-52.00	-36.00	8
HXO-1NLB 239-89	427.19	520.75	612.05	710.04	805.03	895.16	935.14	879.40	845.56	773.88	720.90	151.81	65.40	-32.96	-129.69	-225.69	-320.38	-417.91	-521.85	-624.83	-554.70	-470.83	-448.44
F20-L8 33.66	40.84 59.64	72.37	85.75	98.17	111.77	123,33	130.99	127.24	126.65	114.56	107.10	20.28	7.61	-5.44	-18.95	-32.50	-46.17	-59.50	-74.30	-87.99	-80.03	-72.14	-67.37
FY0-L B 9-49	9.75	13.08	16.46	17.30	21.35	24.03	26.52	24.80	24.50	21.57	21.60	7.21	7.10	7.22	7.37	8.19	R.97	11.70	13.86	16.93	11.88	10.87	10.62
FX0-LB	7.39	9.30	11.63	14.22	17.40	20.71	27.27	39.34	47.43	59.89	70.54	4.12	3.78	3.86	4.38	5.22	6.31	8.02	10.54	14.23	28.50	39.16	18.91
HZ-1NLB	~ v	•	•	S.	37.48	•	~	Ξ	2.	38	2	4	29	5	7	\sim	~	_	0	\sim	~	0	3.41
PX-INLB 239.24	137.00	3	\$	\$		\$			ċ	ċ	2	ö	2	Š	2	-	321.	416.	518.	÷	589.	526.	524.
F 2-L 8 33.52	59.90	~	•	ċ	3.	;	•	6	Š			\$		Š	6	-32.89	è	ċ	*	,	•	~	-81.90
FX-LB 5.74	5,55 4,84	3.68	1.95	-0.34	•	-6.38	·c	1.72	4.92	14.6	10.96	5.37	4.50	3.11	1.17	-	-4.71	•	~	1	7	N	4.62
AL PHA -0.00	2 00 •	9.00	8.00	ö	12.00	\$	•		•	S	•	2		•	60	0	2	:	16.	18	20.	25.	-30.00

TEST 10, 2MAC C IN, DEL= 25, DEG, X=24,7, 104FLAP, NOPROP 27SEPT73

YCOR* -C.4368

FLAPFED RUDDER CATA IN NON-DIMENSIONAL FORM

Appendix 6 (cont.)

11,500 0

मेनाइडोने क्षाप्तवीत

TEST 10. 2MAC 0 1N. DEL" 25. DEG.X"24.7. 108FLAP, NOPROP 27SEPT73

•
÷
•
4
٠
0
1
Œ
J
U
>
\circ

COPRECTED FOR TUNNEL INTERFERENCE 0.4056 DATA PR 10R ALPHA 0.25 2.36

	-0.43680
	DYCOR
	91400000
C.051381	0.003918
0.261791	0.039144
CL CCRFFS	CD CCEFFS

Appendix 6 (cont.)

			273																						
		8-F	•0•05																						
	0YC18	z ·c	4# 10 10 10 5 S#0.48970 6#0.20000 7#0.02273	~	:	::	ċ	ċ	•		ó	ċ	٠,	• •	ċ	ċ		ċ	š (å c	.		• •	s d	åå
:	P	.001	.0.	v	_			_								_	_	_			_		_		
	#21 -2.00	100.	970 6	•	129	130	128.	125.	121	108	111	134.	4.	•	127	124.	12%.		900	-	• •	6			
,	•		A . C	~	a (•										«									
APPEC RUDDER INDUT PATA	2840	100	· S	ທ	172.	224	248	272.	296.	345	353	356.	359	246	145	117.	89.	5.0	52	217			304	284	667
•		N- 00	٠, د١	S	z :	Z										z			•						
	-0. 75 40		:	4	5:	707	945	.0601	. 52.	5.50	639.	602.	568.		37.	236.	106.	230.	370.	604	020	739.	854	100	5
:	0	100	ر ب	~	ac c	¥			 -		. ~	~			•	ď		z							
ATA	MAC 5.7421	7 . 6	141 - 1 13 - 240 - 11 1 340 - 10 1 SHAFF DIA-F 1-50 IN-	~	718.	617	4 4 9	307.		580.	-96-	300.	900	1000	2 49	570	478.	204.	-105	-456	040	-1278	-1500	300	•
	·	.0	. 20	ø.																			•		
FLAPPEC RUNDER INPUT PATA	5PAN 7.875		, , , , ,	^	301.	199	15.	105.	63.	208.	236.	68.	238	301.		413.	470.	\$16.	554	595	635	00			243
JOPF		¥		r	z:	z				•			z			z									
FC .P.	AR FA	S C C C C C C C C C C C C C C C C C C C	A F 7	2 7 ED	\$08	773.	9.6	046.	173.	100	1512.	546.	\$ 50.	495		236.	105.	240	392.	537.	9 80	824.	457	.266	
LAPP	ā ÷	F.R. 2-N 103.		PFC OR NFD		2 0		=		→ —		~		<u>.</u>	•	۵		z			-				
u .	7.6	-N 1-P 2-N C: 1 : 1::	CFLL LAS/COUNT TWIST+11570.0	THPUT DATA AS	-2.0	0 0	, -	٠.9	e :	0.00		16.0	18.0	2,0		-6.0	-8.0	-10.0	-12.0		-16.0	-18.0	0.0	-22.0	-27.
	40	READ 1000	LL LA	PUT J		1243	1231.	237.	1229.	210	199	1175.	1140.	. 20.	1249	1249.	252.						•	224.	• 6 • 6 • 7
•	30.0	ANOW 1	T.Y.	4 4			: : ::			36			_	٦: ده			-		_	6		00			Ž:

	0.0	0	0	•	0.0	•	0.0	0.0	; ;	0.0	0.0	0.0	0.0	·	c 0	0	0	0.0	f .	0.0	••	0	0.0	۲. •	0.0
24SEPT73	-29.03	-30.00	-30.00	-28.	-25.00	-21.00	-15.00	-8.70	-11-	-34.00	-41.00	-44.00	-46.00	- 57."	-24.00	-20.00	. (• +1-	-6.00	3.0)	12.00	22.00	56.01	-1.00	-12.0.	-14.00
TFLAP, RPM=NCPRDP	12.00	98.00	124.00	148.0	172.00	196.00	220.00	242.00	253.0	258.00	259.00	. 547.	240.00	45.11	17.00	-11.00	(5.14-	-75.00	-11.9.25	-142.21	-177.17	-273.12	-194.08	-183.04	-178.00
10 TFLAP,R	SIGNS -410.00	-550.83				-1149.17	-1304.71	-1453.83	-1537.67	-1500.50	-1466.33	-1373-17	-1348.00	-267.83		-3.50	130.00	270.00	398.00		639.00		800.00	775.00	766.00
ċ	ZERO READINGS AND 201.00 -718.00	-68%	-617.00	-489. 17	1	-61.00	235. 17		560.03	- 300° Gu	-600.00	(1. °()1 -	-1200.00	-667.00	-570.00	-428.00	-204.11	102.00	456.00	845.00	1278.00	•	300.		-450.00
10. DEG. X	2FBU REAL 201.00	147.87	98.75	40.43	4.50	-37.62	-74.79	-108.29	-136.33	31.63	136.79	149.62	247.50	253.17	111.25	368.12	414.0	451.87	492.75	537.67	560.50	556.37	314.25	190.12	174.00
0 1N, DEL#30. DEG, X#24.7	DATA CPRECTED FOR	-539.92	-672.83	-805.75	-945.67	-1078.58	-12 3.50	-1379.42	-1411.33	-1445.25	-1449.17	-1394.18	-1387.00	-267.92	-134,83	-1.75	147.10	292.00	437.00	500.00	724.00	852.0:	842.00	880.00	880.00
. ZMAC	DATA CORR	٠. ٥	د. ٢٠	00.9	8.00 8	10,00	12.10	00.41	16.00		20.01										-16.00			-25.00	
TEST	1NPUT 21 1252.	21 1243.	21 1230.	21 1231.	21 1237.	21 1229.	21 1216.	21 1211.	21 1199.	21 1175	21 1180.							21 1252.						-	-

DYCCR -0.4368

	VEI -F	5 0	20	, 0,		~	<u>۰</u>	20.15	20, 31	20.21		20.02	19.85	19.70	20.63	2.63	20.65	20.66	20.65	20.64	2 . 68	20.65	20.57	20.45	20.25	2 . 14
	MYOFI AP-INI.R	0.0	0.0	0.0	c. 0	•	c. 0	0.0	6.0	c.	٠	0.0	0.0	0	0.0	•	c•0	0.0	0.0	0.0	•ر	0.0	0.0	0.0	0.0	• م
	420-1NI.A	-37.11	-48.12	-62.97	-75.51	-91.24	-114.90	-1+1-	-169	-212.	-294.	-349		-456.	-32.	- 29.		-35.	- 36.	-43.	-57.	- 7	-117,	-197.0	-251.13	
	A INI-CAN																					•	•		-34.00	
	HXO-TNL A	281.53	376.35	473.10	566.95	662.51	758.40	860.07	952.25	988.12	948.14	915.85	822.51	760.01	183.70	AS. 71	-11.12	-111.00	-224.15	-335.04	-438.92	-547.86	-631.17	-593.95	-532.28	-49 12
	F 20-t. B	30.67	95.46	65.97	79.46	93.58	106.97	119.52	132.13	139,39	137.44	134.27	122.06	114.12	24.63	10.87	-2.71	-17.55	-33.24	-48.34	-63.27	-78.23	-90.55	-86.98	-79.29	-74.11
	FVO-LA	04.8	• •	_:	14.19	۲.	ċ	'n	\$	ċ		š	~		-	6.71	6.60	4.14	7.79	96.6	12.10	15.32	15.26	12.17	11.52	1.38
	F KO-L P	6.13	7.20	8.98	11.07	13.65	16.48	14.43	23.2"	10.10	43.75	51.11	63.89	75.44	5.15	4.67	4.58	5.03	5.76	6.97	8.85	11.35	14.26	31.15	45.44	59.81
	MZ-INLR	-44. 78	-44.28	-42.8.	-31.42	-16.40	-2.39	17.13	39.41	40.62	-18.58	-42.02	-45.34	-39.56	-43.85	-37.18	-27.87	-13.28	8.79	36.67	62.69	94.57	100.20	35. 17	13.41	10.55
JC T I ON **	KX-IXI	780.41	176.71	475.35	\$71.09	668.56	767,05	871.38	946.44	1009.88	11.466	9 79. 48	916.38	885.71	181.33	82.49	16.41-	-114.91	-226.99	-335.82	-438.16	-544.72	-634.24	-624.79	-588.39	-568.73
DATA PEN	F 2-1.8	38.49	52.51	66.33	BO.08	94.52	108.23	121.10	134. '2	142.50	144.21	143,55	137.41	136.28	24.26	10.37	3.31	-18.14	-31.72	-41.63	-63.33	-78.01	-90.76	-92.34	-89, 40	-89.74
FI APPED RUDDER DATA PENUCTION	F X - 1 B	7.18	6.80	6.17	00.4	3.07	0.61	-2.35		-5.40	3.00	9	10.00	12.0	6.67	5.70	4.28	2.04	-1.:2	-4.56	18.45	-12.78	-15.00	17.61	2.50	4.50
4 4FI APPE	AL PHA	00-0-	2.00	00.4	00.4	00.0	10.00	12.00	5.91	16.00	18.03	20.01	25.03	30.00	-2.00	00.4-	-6-01	-8.01	10.01-	-12.01	-14.03	-16.01	-18.01	-20.00	-25.00	-30.00

Appendix 6 (cont.)

O IN.OFLEND. DEG.X=24.7 D. 1' BELAP, RPB-NOPROP 26SEPT73 .ZHAC æ 1831

是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人, 我们就是一个人,我们就

DYCOR - - 2.4368

	I U	نه د	۲.	0/1	E C	9-001 4NH	CL 50
1840	-0.0402	0.924	0.066	6.311	•	1.156	1, 1, 928
17.50	6160-0-	0.911	0.079	7.286	0	1.052	0.1732
0.070	-0.0951	1.6.0	60.0	7,344	0	940.	0.2747
181	F 10	\$	+11.	7.178	 •	74.47	15.+•
	1101.0-	0 % % C	0.139	t. 857	0	1.049	0.5564
	-0.1080	00000	0.161	6.490	0	940.1	0.7366
	-0.1132	0.914	0.183	6.040	•	1.040	0.9392
	-0.1191	0.913	0.207	5.695	0.0	1.038	1.1573
	- 11224		. 2 39	4.631	•	10.33	1.3140
	-0.1696	0.476	0.231	3.141	÷.	1.023	1.1302
	-0.1059	0.86F	0.204	2.627	0.0	1.025	1.2589
	-0.2094	0.855	0.140	1.910	°	1.015	0.000
	-0.2233	0.846	0.204	1.513	0	1.007	0.9759
	r. 877	1.947	5 S S S	4. 782	.•	1,755	846,00
	-1.0841	1.00.1	0.033	2.330	0:	1.055	0.0074
	-3.0872	0.520	0.052	-0.580	0.0	1.156	2. 1. 15
0.0395	.0.0033	0.803	0.053	-3.492	•	1.056	0.0191
	-0.0755	0.856	1.00.0	-5.771	0.0	1.056	0.06.5
	- 1.0693	ė e	(1, 17	-6.934		1.155	1,01452
	-0.0631	0.881	2.095	-7.149	0.0	1.057	0.2471
	-0.0544	0.983	0.121	-6.890	0	1.056	-1.3795
	-0.0412	0.884	0.121	-5.570	0	1.052	0.5147
0.2504	0.0212	0.867	0.098	-2.793	0	1.044	0164.0
	1.50.	F. 852	. 04	-1.968	- .•	1.035	L. 4217
4210	4400		4	687	•	•••	<

O IN-DEL #30. DEG.X+24.7 G. TO SFLAP, APM-NOPROP 26569773 .Z MAC

DYCOR* -0.4368

CORRECTED FOR TUNNEL INTERFRRENCE

DATA

PR ION

-0.43480 DYCOR 0000-0000-0000-0000-0000--1.437 -6.641 0.000470 000.C'C0.0 00 C-00'000'C0

1000.C'C0.0 00 C-00'000'C0

1000.C'C0.0 00 C-00'00'C0

1000.C'C0.0 00 C-00'C0

1000.C'C0.0 00 C-00' 0.051069 0.0155 | 0.0137 0.1181 | 0.1080 0.1246 | 0.1080 0.2646 | 0.1080 0.3846 | 0.1646 0.5641 | 0.1091 0.5641 | 0.1091 0.5641 | 0.2094 0.0348 | 0.0877 0.0348 | 0.0877 0.0348 | 0.0877 0.0348 | 0.0877 0.0574 | 0.0691 0.0574 | 0.0691 0.0574 | 0.0691 0.0574 | 0.0691 0.0574 | 0.0691 0.0574 | 0.0691 0.0574 | 0.0691 0.0574 | 0.0691 0.0574 | 0.0691 0.0574 | 0.0691 CM -0.0907 -7.0919 0.285869 0.0000 0011000 COEFFS

Appendix 6 (cont.)

ST G , PMAC O IN, DEL. TS. DEC, X=24.7 D. 10TELAD, BPM.NO PROP. 27SFPT71

75.0 76 79 44.30 7.875 5.7471 75.0 7.875 5.7471 75.0 7.875 5.7471 75.0 7.875 5.7471 75.0 7.875 5.7471 75.0 7.975 5.7471 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0
•

~	ċ	ċ	ċ	ċ	ċ	ċ	ċ	ċ	ċ	ċ	ċ	ċ	ċ	•	•	ċ	ပိ	ċ	ó	ċ	ċ	ċ	ċ	ċ	ċ
v.																									
٠	131.	132.	1.1	130.	121.	123.	118.	=======================================		133.	143.	147.	147.	129.	126.	122.	16.	104.	100	100	118.	126.	000	112.	:::
~	Œ														Œ					z				•	
*	177.	204.	230.	246.	280·	303.	129.	349.	169.	371.	171.	343.	144.	150.	122.	93.	138.	171.	203	237.	271.	303.	300	298.	242.
v	z														z	Œ									
*	935.	6A0.	829.	975.	1132.	1290.	1452.	1610.	1 705.	1667.	1624.	1410.	1470.	400	265.	134.	200.	335.	462.	585.	710.	829.	915.	£0.	865.
v	c														œ		Z								
pr.	790.	764.	707.	474.	192.	150	-142.	-804-	-484.	٠ <u>٠</u>	646.	1056.	1744.	C 5.	650.	492.	7 A B.		. E & C .	- 754.	1192.	1522.	-544.	-130.	146.
v																					ı	1			
^	310.	267.	217.	172.	128.	A7.	٠ ت	186.	200.	<u>,</u>	74.	133.	373.	37.	475.	401.	52 A.	\$66.	\$ 0 \$	641.	663.	667.	413.	25.5	223.
•	2							Œ			z				z										
CRUFO	515	674.	9 C¢	541.	1077.	1215.	1350.	1481.	1572.	1607.	1613.	1410.	1510.	400	263.	130.	215.	356.	\$ 00	644.	789.	927.	1004.	966	440.
ب د د	Œ														æ		z								
DATA AS ANGLE	->.00	0.0	2.03	4.00	9.00	8.01	10.01	12.03	14.02	16.01	18.01	23.10	29.00	-4.00	-6.00	-8.00	-10.00	-12.00		-16.02	-14.00	- 20.02	-22.01	-27.00	-32.00
ANGE	1234.	1232.	122.	1219.	1216.	1216.	1215.	1208.	1199.	1184.	1169.	1146.	112%.	1236.	1777.	1238.	1242.	1238.	1237.	1229.	1231.	1221.	1204.	1178.	1140.
1		00	00	0	0	ပ	Ĉ	00	8	0	ဝ	00	00	8	00	ပ	ö	00	8	8	00	8	8	8	00

Appendix b

0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0	0.0	0.0	0.0	0	0	c•0	0.0	0.0	0.0
-31.90	-32.00	-31.00	CO.OL-	-23.00	-23.00	-18.00	-11.00	-15.00	.33.00	-41.00	-47.00	-47.00	-29.00	-26.00	-22.00	-16.00	-9.00	0.0	9.79	16.83	26.97	0.92	-12.00	-11.00
77.00	104.00	130.00	156.00	180.00	203.00	220.0C	249.00	268.00	273.00	271.00	283.00	244.00	20.00	22.00	7.62	-37.33	-70.29	-102.25	-136.21	-170.17	-202-12	-199.08	-187.04	-191.00
515N5 -435,50	-579.79	-727.48	-874.37	-1031.17	-1188.96	-1350.75	-1508.54	-1603.33	-1565.17	-1521.92	-1407.71	-1367.50	-297.29	-162.08	-30.88	103.33	230.84	164.75	488.46	614.17	711.37	510.58	784.79	770.00
STACINGS AND	- 765.92	-701.83	-477.75	19.101-	-149.58	152.50	408.48	4.9.9.	-315.24	-645.17	-1055.08	-1247.00	-748.92		-490.75	-266.67	15.42	150.50	755.58	1187.67	1423.75	45.03	111.92	-144.00
76 PC 95 AC	166.96	116.92	71.84	27.87	-17.71	-50.2%	-86.03	-100.03		187.34		272.	272.	324.42	140.17	477.11	465.29	504.25	540.71	462.17	566.12	318.04	156.04	128.03
COMMECTED FOR	-573.87	-705.78	-840.47	-976.50	-1114.17	-1249.25	-1380-12	-1471.00	-1505.87	-1511.75	-1428.62	-1404.10	-298.17	-161.25	-28.13	114.00	258.30	400.00	844.00	689.00	627.00	908.00	495.00	A 40.00
0414 CO48	7.01	4.02	00.4	00.6	10.01	12.01	14.03	16.02	18.01	20.01	25.10	10.00	-2.00	-4.00	-6.00	-4.00	-10.00	-12.00	-14.02	-16.00	-18.02	-20.01	-25.00	-30.00
	1 1232.	1 1222.	1 1219.	1 1216.	1 1716.	1 1215.	1 1208.	1 1199.	1 1184.	1 1169.	1 1146.	1 1123.	1 1236.	1 1237.	1 1238.	1 1242.	1 1238.	1 1237.	1 1229.	1 1231.	1 1221.	1 1204.	1 1178.	1100.
	•	•	•	•	~		^	•	•	•	•		•	•	^	•		•		•	•		•	•

TEST 9 .2MAC O IN. DEL #34. DEG. X#24.7 P. 108FLAP, PPWENC PROP. 275EPT73

TEST 9 .2MAC 0 14.DFL=34. DFG.X=24.7 D.1OTFLAP.PPM=NP PROP.27SEPT74

DYCOR= -0.4368

FLAPPED RUDDER DATA REDUCTION

ZEC 200 200 200 200 200 200 200 200 200 20	20.41. 20.027 20.05 19.90
MYOFLAP-11NL 000000000000000000000000000000000000	0000
AZO-INC - 39.085 - 10.005 - 10.00	-107.19 -207.75 -269.67 -285.67
#YOP INTERPORT	-101.00 -57.00 -29.00
MXG-INEB 3996.70 3966.54 5966.73 696.11 787.11 893.09 1002.30 1002.49 105.99 105.99 -310.76	-627.45 -611.64 -536.69
720-C8 540-C8 560-66	-68.36 -89.13 -82.05 -75.12
74 801111200000000000000000000000000000000	17.20
A	15.26 29.37 39.55 50.19
71 1 1 1 1 1 1 1 1 1	
284 - 50 - 50 - 50 - 50 - 50 - 50 - 50 - 5	-627.09 -645.19 -600.63
10000000000000000000000000000000000000	188.36 191.08
7 7 7 7 7 7 7 7 7 7 7 7 7 7	-15.24 -5.24 -1.32 3.44
A C C C C C C C C C C C C C C C C C C C	-19.03 -25.00 -30.00

TEST 9 ,ZMAC 0 IN,DFL=35. DFG,X=24.7 D, 104FLAP,RPM=ND PRDP,27SEPT73

DYCOR= -0.4368

FLAPPED RUDDER DATA IN NEW-DIPFNSIONAL FORM

CL 50	0.1041	0.1978	0.3094	0.4456	0.6081	0.7951	1.0034	1.2411	1.4129	1.4139	1.3883	1.1463	1.0260	0.0481	0.0115	0000 0	0.0143	0.0564	0.1262	0.2282	0.3561	0.5076	0.5311	0.4703	0.4065
RN+10++-6	1.049	1.048	1.044	1.043	1.041	1.041	1.041	1.038	1.034	1.028	1.021	1.011	1.001	1.050	1.050	1.051	1.052	1.051	1.050	1.047	1.048	1.043	1.036	1.025	1.017
S S S S S S S S S S S S S S S S S S S	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0	0	0	ن د	0.0	0.0	0.0	0.0	0.0	0	0.0	0	0	0.0	0	0.0	0.0
20	6.080	6.877	6.913	6. 793	6.505	491.9	5.820	5.465	4.485	3, 143	2.617	1.894	1.506	4.754	2.582	-0.067	-2.978	-5.017	-6.313	-6.787	199.9-	-5.790	-3.035	-2.075	-1.497
																								0.105	
CPL	0.923	0.905	916.0	0.914	0.915	0.907	0.917	0.913	0.913	0.890	0.864	0.858	0.849	0.936	1001	9.892	0.8.0	0.880	0.884	0.892	0.896	206.0	0.871	0.831	0.849
ij			-0.10%													7								0.0613	
00																								0.3305	
																									-0.638
AHOJA			4.02													-6.01							0	-25.00 -	8

CC CM CPL CY L/D CMF 0.0559 -0.0983 0.973 0.071 5.983 0.07 0.0559 -0.0983 0.923 0.071 5.983 0.07 0.0559 0.0

19.15 21.14 26.13 30.97 -1, 79

6.64 8.75 10.87 12.97 15.10

CLSO 0.1081 0.1978 0.4456 0.4456 0.4456 1.2451 1.4120 1.4139

这种是一个时间,我们就是一个时间,我们就是我们的一个时间,我们也是我们的一个时间,我们就是我们的一个时间,我们就是我们的一个时间,我们们的一个时间,我们们们的一个

IN, DFL=35. DEG, X=24.7 D, 10FFLAP, RPM=NO PROP, 27SEPT73

0

. ZMAC

σ

TEST

TUNNEL INTERFERENCE

FOR

COPRECTED

DATA

ORIDA

ALPHA 0.31 2.44

-0.436

Appendix 6 (cont.)

-0.43680

COEFFS

50

			~	52273				
			x 00	0.0				
		9YCOR	Z 00	0000	F0000	00000		0000000000
			1000 1000	6 * 0 • 2	ν • • • •	• • • • •		• • • • • • • •
OCT 73		A2L -2.00	200 100	0269	9 8 8 8 8 8	109	2 4 4 8 8 9 0 4 4 9 8 0	109. 109. 119. 129. 149. 146.
<u>-</u>		•		4.0	w Z		2	
2477		ZHAC 0.0	500 000 000	00 5	2007	262. 262. 3085.	366. 366. 362. 362.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
N d		0	2001 990.	100	w Z		z	æ
FLAP, RPM=2477		XMAC -0.7699		\$ H C	4646	245. 1400. 1507.	615. 700. 690. 652. 100.	436. 600. 762. 1088. 11748. 11778.
		0	4.000	0001	vα	~~~	 2	, , , , , , , , , , , , , , , , , , ,
CEG.X*0.75 C.1C%	DATA	NAC 5.7421	100 100.	1000 3+0.0100C 4=C.10000 5+0.48970 6+0.200C0 7+0.02273	156. 72. -264.	-512. -794. -1064. -1318.	-1206 -334 -346 -164	-220. -220. -220. -1142. -244. -2430. -2810.
0	10 +		« o o	500	ν .	' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	₹'	1117777
CEG•X	RUDDER INPUT	SPAN 7.875	7 3-8 0.00 0.01	.0.0	4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	66 18 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0	1665. 167. 185.	00000000000000000000000000000000000000
0	DER		FTE 3-	. v. •	so ac		a c.	ž
DEL*C		AR EA	AND A 2-R 100.	1=0.10000 SHAFT DIA.	8 3 3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	635. 478. 1115. 124.	1454. 1570. 1620. 1630. 305.	464 6435 11150 1150 1150 1018
0 1%.	FLAPPED	4 4 4	BEFCRF 2-N 100.		86CCROED 8 218. 378. 535. 687.	***	Z 48.00 W	4-0-00-11-11-11-11-11-11-11-11-11-11-11-1
,ZMAC=0 12.0FL=0.0	Œ	7.8	READINGS BE -N 1-R CO. 100. CC. 1CO.	CELL LBS/COUNT TWIST=11570.0	M	0.000 0.000 0.000		11118 11220 12220 12220 12220
1 16		7 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		157=1	` .	1245. 1245. 1246.	1247. 1246. 1246. 1246. 1244.	
1651		7 0.0	ANCH 1	G #	Z ~			0000000000

	0.0	0	0	•	0	0	•	•	••	0.0	0.0	0	0.0	0.0	0	0.0	•	0	•	••	0.0	0	0.0	0.0	•
	-12.00	-10.00	-7.00	-2.00	3.00	9.00	15.00	16.00	15.00	10.00	-4.03	-36.00	-44.00	~12.00	-10.00	-8.00	-3.00	3.00	9.00	17.00	25.00	34.00	45.00	46.00	56. CO
	15.00	47.04	19.08	108.12	136.17	162.21	185.25	208.29	227.33	243.37	266.42	271.46	262.50	-17.46	-53.42	-89.38	-128.67	-170.71	-210.75	-248.79	-296.83	-340.87	-375.92	-434.96	-432.00
SIGNS	-164.00	-333.83	-505.67	-674.50	-841.33	-1009.17	-1167.30	-1298.83	-1405.67	-1513.50	-1598.33	-1588.17	-1550.00	2.17	174.42	135.37	499.33	661.29	824.25	987.21	1144.17	1301.12	1424.08	1673.04	1714.00
NGS AND	-156.00	-72.42		262.75	510.33	-	1061-50	1259.CB	1314.67			_	-941.00	-165.42	-107.83	15.75	213,32	480.92	774.50	1134.08	1563.67	2035.25	2420.83	2800.42	2106.00
ZERO READINGS	-150.00	-214.96	-281.92	-343.87	-403.83	-459.79	-511.75	-544.71	-532.67	-487.62	-384.58	-66.54	26.50	-84.46	-19.42	44.62	105.00	168.00	225.00	280.00	330.00	377.00	419.00	454.00	304.00
CORRECTED FOR			0	-587.00	-735.00	-878.00	-1015.00	-1134.00	- : 240.00	-1354.00	-1470.00	-1520.00	-1530.33	40.00	205.00	367.00	535.00	705.00	875.00	1050.00	1225.00	1400.00	1535.00	1818.00	1920.03
		2.00	*00	00.9	8.00	10.00	12.00	14.00	16.00	18.00	19.98	25.00	30.00	-2.00	-4.02	-6.00	-8.00	-10.00	-12.00	-14.00	-16.00	-18.00	-20.00	-25.00	-30.00
ATAC TIGHT	_	21 1244		_			_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	1 1247.
	~	, "	~	N	~	~	•	N	~	~	~	N	"	~	~	·V	N	17	"	~	17	~	.4	·V	N

TEST 16 , 2 MAC = 0 1 N.DF = 0.0 CEG, X=0.75 C, 1GE FLAP, RPM=2477 1 OCT 73

是一个时间,我们就是一个时间,我们就是一个时间,我们是一个时间,我们就是一个时间,我们也不是一个时间,我们也是一个时间,我们也是一个时间,我们是一个时间,我们们 一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,我们是一个时间,我们就是一个时间,我们就是一个时间,我们是一个时间,我们也是一

DYCCR -0.4368

FLAPPEC RUDDER CATA REDUCTION

VEL-FPS	20.62	20.61	20.60	20.62	20.62	20.62	20.62	20.63	20.62	20.64	20.63	20.60	20.63	20.61	20.61	20.60	20.60	20.62	20.62	20.61	20.63	20.63	20.63	20.60	20.64
MYOFLAP-INLB	0.0	0.0	0.0	0.0	3. 2.		0.0																		
M20-INLB	0.39	* .0*	0.92	-2.32	-14.53	-28.66	-46.15	-91.36	-139.90	-190.40	-283.39	-423.80	-486.14	-6.08	-14.85	-30.84	-45.82	-65.93	-99.52	-139.96	-101.02	-235.53	-291.22	-472.34	-622.32
Ĩ							92.00																		
MXO-INLB	91.12	200.54	322.77	437.38	549.70	659.64	757.77	844.26	909.75	962.62	1009.19	957.69	870.78	-37.93	-167.71	-291.58	-425.20	-564.83	-697.32	-820.16	-970.74	-1106.33	-1211.91	-1356.96	-1260.62
F 20-L B	13.34	29.94	46.30	62.16	77.62	92.56	106.78	118.77	128.52	137.95	145.74	138.04	129.83	-3.04	-20.10	-36.84	-54.15	-71.68	-89.0A	-106.89	-124.65	-142.29	-155.55	-179.19	-177.21
FYO-LB	8.33	9.22	10.12	11.77	13.72	16.55	19.85	21.55	23.11	27.04	27.04	29.96	32.12	7.61	7.59	8.71	10.55	13.74	15.85	16.59	22.81	26.98	30.15	33.37	31.62
FXO-LB	1.20	0.95	1.37	2, 19	3.62	5.72	A.87	13.30	19.51	20.14	39.78	65.41	10.18	1.89	3.05	4.73	96.9	9.76	13.52	18.00	23.05	28.96	35.44	58.28	84.15
M Z - I N L B	-1.82	5.57	14.70	31.53	47.19	68.43	91.89	92.61	91.13	89.76	40.04	-7.93	-12.85	-3.71	1.53	7.80	25.46	48.63	66.79	85.22	119.59	148.51	174.57	184.33	129.59
PX-INLB	61.10	230.50	322.44	436.25	547.87	656.70	753.59	844.13	515.90	977.15	1047.04	1047.24	847.18	-38.23	-166.36	-293.10	-426.50	-566.58	-701.22	-827.64	-980.36	-1121.34	-1234.13	-1424.94	-1399.88
F 2-L B	13.30	29.95	46.32	62.14	17.54	92.40	106.62	116.85	129.33	140.28	150.85	152.67	152.74	-3.16	-20.31	-37,15	-54.55	-72.18	-85.75	-167.80	-125.80	-143.77	-157.69	-186.34	-195.04
							-10.62																		
AL PHA	00.0	2.00	4.03	6.01	8.01	10.01	12,01	14.01	16.01	18.01	19,55	25.00	30.00	-2.00	-4.02	-\$.00	00.8-	-10.00	-12.00	-14.00	-16.01	-18.01	-20.01	-25.01	-30.00

TEST 16 . PAACHO INDOELHOLD DEGINATO 75 DISCE FLAP, HPMH2477 1 DCT 73

1CCR -0.4368

9 1651

-0.4368 DYCCR

15.114 14.465 14.465 17.865 17.865 0.066629 FOX 0.081954 CURPECTED CATA COFFFS -21.35

စ Appendix (cont.)

-0.43680

0.000570

			273																		
	_	¥) • C • C																		
	CYCCR -C. 4268	¥00	נננט	۰ ۵	<i>.</i>	ບໍ່ ເ	•	ပ်ဝ	ċ	ပ်င	•		;;	ះ	ن ،	•				ວ່	•
E		6-8 100 101	6=0.2	~ ,		•			•			•			•		•				
	2.00	100.	215	9 -	128.	=	20	10.5	201	2	141	165	132.	130	126.	121	0 7		11	120	136
	•		34.	v) Œ									Œ						z		
	2440	5-8 100.	*\$ 23	2 5	27.00	338.	֓֞֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֓֓֓֓	430.	470	455.	489.	452	167	129.	16	1 50	236.	279.	323.	342.	468.
		5- N 100.	,166	vs 2									4			Œ					
• •	X P A C - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -		4	4	1203	390	777.	1970.	2264.	2355.	225¢.	2301.	466.	28C.	108	25°		773.	935.	1092.	524.
	.	# 00 100 100	2221	v: a				-~	~	~ (4 * *	~	œ			Z.				_	~
	FAC 5.1421	100 100 100	1#0.1C00C 2#8.01CCC 3#C.C1CCC 4*C.1CCCC 5*C.4857C 6*C.2CCCO 7*C.C2273 SHAFT C1A.# 1.5C 1A.	כר	4 C C C C C C C C C C C C C C C C C C C	192.	-354.	-662.	-656	-574.	1272.	1358.	872.	174.	608.	378.	-219	- ROS -	-1012	-1480.	-2262,
		1.5.	1000 3#	S					•										•	*	•
FLAPPED RUCCER INPUT DATA	SPAN 7.875	~	2.0.0.	~ °	250.		151	195.	165.	9	576.	627.	404	482.	539.	594	932		796.	831.	719.
וננפ		AND AFTER 2-8 3-N 100. 0.	140.1CGGC 24	v 2			Œ				۲		z								
عد دي	AREA 44.30	AND A 2-8 200.	. 1C	CEC	1014.	349	1585.	1849.	2125.	2236.	2247	2315.	66 L	.50	13.	23C.		780	961.	1157.	23.
LAPPE	£ \$	BEFORE 2-N 1CO. 1C3.		RECCRUEC S 1	: 22		===	~ ~	:≂	2 ;	~	2	~			z		د		Ξ	7
FLAPPED RICCES INPUT CATA	71	2	CELL LES/CCUNT	E S	,,,,	0	. B	10.01	14.01	16.00	23.00	28.01	9.00	00.8-	-10.01-	-12.00	00.41	10000	-20.00	-22.00	-27.00
:	24	READ - N 00.	1 1 E	INPUT CATA	1245	246	1245.	1243	246.	245	1246.	1246.	1245.	245	_		246.			_	
2	ري د . د د . د	ZERO READIN ANCE 1-6 1 0. 100. 1 C. 96. 1	CEL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					_				21 00	_	_	_		-		_	_

		3	0	0.0	3	0	0	3	0	0	ີ່	S	0	ះ	ີ່	0	0	Š	0	0.0	3	0	0.0	3	3	0
20C 1 7 3		-31.00	-27,96	-23.92	-17.66	-12.83	-6.75	-5.75	-4.71	-7.67	- 20.43	-37.58	-60.54	-64.50	-34.46	-31.42	-29.36	-25.33	-20.29	-15.25	-6.21	2.83	11.00	30.08	36.00	18.00
~ ~ ~		139.C	170.5	207.6	237.7		366.5	379.	356.4	377.3	354.2	406.1	300.0	351.0	102.9	65.8	27.7	- 10.3	-49.2	-51.5	-134.2	-178.1	-222.1	-261.C		-375.C
T FLAP.RP	SIGNS	-731.00	-917.00	-1103.00	-1290.00	-1482.CC	-1677.00	-1e70.co	-2034.00	-2164.CC	-2255.CO	-2301.00	-2156.00	- 201.cc	-545.00	-366.00	-180.00	22.9-	148.58	325.50	498.42	671.33	833.25	400.17	1422.08	1502.00
0.756. 10	ZERO RESCINCS AND S	-812.CO	-647.5C	-441.00	-190.50	102.00	396.50	665.00	847.50	P.C.CC	578.5C	33.00	-1266.50	-1352.00	-885.50	-865.00	-766.50	-600.00	- 369.50	-163.60	227.50	00.809	1022.50	1451.00	2273.50	1614.CC
S CEG• **	ZERO REAL	205.00	149.67	92.75	41.63	- 7. 50	-51.42	-85.50	-96.58	-65.63	10.25	149.75	417.62	925.50	262.37	321.25	380.12	437.00	491.67	549.75	597.62	650.50	693.37	728.25	616.12	469.00
TEST 17, 2MAC 5.1N, DEL*35 CEG, X*G.75C, 10% FLAP, NPM*24.7	LI CATA COPRECTED FOR 26	-742.00	-913.56	-1084.92	-1248.87	-1415.83	-1584.79	-1748.75	-1900.11	-2024.67	-2135.62	-2216.58	- 2146.54	-2214.50	-560.46	-386.42	-204.37	-30.33	131.42	316.50	\$61.58	641.67	867.15	1058.83	1524.52	1644.00
7. 2PAC	CATA COR	٠	2.01	00.4	6.CC	7.58	10.00	12.61	14.62	16.01	18.00	20.00	25.00	30.01	-2.00	22.4.	00.9-	-e.c1	-10.00	-12.00	-14.00	- 16.00	-18.00	-20.00	-25.00	- 3C.CC
1E ST 1	INPLI	1 1246.	1 1245.	1 1245.	1 1246.	1 1245.	1 1245.	1 1243.	1 1244.	1 1246.	1 1245.	1 1247.	1 1246.	1 1246.	1 1244.	1 1245.	1 1245.	1 1247.	1 1243.	1 1246.	1 1246.	1 1245.	1 1245.	1 1245.	1 1246.	1 1243.

TEST 17, 2MAC 0.1N, CEL-35 CEG, X-C.75C, 107 FLAP, APM-2477

CYCOR -C.4368

	-	•		•	3:	•	•	3:	•		•		•	•	•	*	*	•	•	20.63	9	•	•	9.0	4.0	;	•
	Z	•	•	•	•	•	•		•	•	•	•	•	•	•	•		•	•	0.0	•	•	•	•		•	•
	MIC-INLE	Š	ç	-63.36	-17.46	101	-147.02	194	255	324	+:7	-512.02	635	-75C.75	-38.41	-26.43	-33.14	-40.17	-49.00	-73.C3	-43.51	-127.00	-166.74	217	9		-554.10
	ĭ	b. c	9	ņ	0.2	ó	ú	Ų	ó		ပ္	0	Ų	Š	ó	0	ب	0	5	- 56.00	٥	117.0	Ų	1316		3 '	ŭ
	PXC-INLB	516.C2	638.20	175.27	856.34	1024.01	1146.51	1247.15	1365.41	14 24. ¢C	1476.17	1473.80	1323.63	1265.C2	384.79	253.65	116.28	-13.01	-144.15	-263.49	-425.70	-571.35	-766.49	-617.66			-1647.62
	7-5			•	5.5	•	7. 4				•	6.6	:	3.4	8.5	-				-35.67	\$			•	, ,	:	٠.
	FYC-LP	8.10	10.47	10.16	13.02	15.56	15.13	23.67	26.68	30.02	33.43	35.58	34.52	38.40	7.57	7.8%	7.13	7.19	10.21	12.09	13.99	16.42	2C. 12	21 71	• • • •) · · · ·	24.71
	FXC-LP	6.1	7.36	90.0	.5		19.40		2.9	2.3		6	5.1	*	5.5	2.1.5	5.41	91.0	7.24	9.73	2.8	16.74	21.58	37 73		20.00	74.76
	P.2-18LP	•	-39.70	-30.34	-7.89	7.97	23.08	38.74	46.44	43.92	15.93	-20.40		•	-		1	•	7		^	51.33	78.24			146.58	162.65
UCTION.	*X-141-	514.85	638.50	777.36	89.658	1629.57	1157.65	1281.41	1368.41	1472.19	1528.74	1560.34	1467.34	1473.43	381.66	249.90	112.89	10.51	-151.06	-292.68	-415.31	40.68.	-724.10			-1262.02	-1224-77
DATA REDUCTION.	F 2 - L B	72.15	36.96	107.56	124.47	141.66	158.99	175.73	191.04	203.12	213.46	220.16	209.88	216.20	53.42	35.43	16.64	4	17.00	-37.15	-	7		•	•	c	-169.09
EO RUCCER	ور ا ا ا		60.0	4.51	5	-1.62	- 3.96	4 4	~ 4 · B -	09.8-	4.0	-0.33	12.67	13.52	44.8		7.67		9 9 9	1.05	.2.27					•	-10.14
FLAPPED	AH PHA		2.01	70.4) U	2 C	10.00	12.01	14.02	10.01		20.00	24.99	30,00		00			10.01	-12.61	14.01				- C	-25.01	-30.01

Appendix 6 (cont.)

TEST 17, 2MAC C.IN, DEL"35 DEG, M-C. 750, 1CE FLAP, RPF-2477

DYCOR. -C.4368

FLAPPED RUCCER DATA IN NCN-DIMENSIONAL FORM

Ct 50	C. 326	C . 5C3	0.718	C. 957	1.238	1.155	1.895	2. 217	7.463	2.657	2.716	2.150	2.101	C. 181		0.019	00000	3	C - C & C)	0.1067	C. 2320	C. 519	0.765	1.440	1.456
8A - 1 C 6	1.043	1.043	1.043	1.043	1.043	1.043	1.042	1.042	1.043	1.043	1.043	1.043	1.043	1.043	1.043	1.043	1.043	1.042	1.043	1.043	1.043	1.043	1.043	1.043	1.042
S S S	Ü	0	0		Ç	0	ပ		0.0	ပ ပ	ن ن	ပ ပ	S.		٠ د	0.0		0	0	C	ပ (၀	0	o o		0.0
1/5	11.766	12.181	11.815	10.752	9.508	0.135	6.872	5.72C	4.696	3.762	3.015	1.972	1.559	9.769	6.576	3.236	-6.095	-2.342	-3.685	-4.249	-4.363	-4.229	-3.594	-3.005	-2.040
																									0.211
ē	90.0	0.402	916.0	0.916	0.923	C. 924	C. 925	0.420	0.917	6.408	0.856	0.54	0.677	0.907	0.892	0.050	5.16C	1.080	1.004	0.986	0.994	0.986	C. 938	0.942	0.413
3	-0,1260	-0.1311	-0-1360	-6.1414	-0-1486	-C.1558	-C. 1655	-0.1788	-C.1995	-C. 22 72	-0.2684	-0.3392	-C. 3583	-0.1215	-0.1162	-C. 1114	-C.1C59	-0.1622	-C. 0954	-C. C876	-0.0817	-0.0716	- 0.0000	0.0173	0.0640
																									C. 5915
ε	175.0	012.0	C. 647	0.978	1.113	1.247	1.377	1.489	1.570	1.630	1.648	1.400	1.450	0.426	C. 285	C. 138	-0.003	-0.134	- C. 263	-0.432	-0.577	-C. 721	-0.875	-1.200	-1.267
10 14	0000		000	9	7.98	10.00	12.01	14.02	16.01	16.00	20,00	24.99	30.00	-2.00	27.4-	-6.01	-8.02	-10.01	- 12.01	- 14.01	-16.01	- 16.01	-26.01	-25.01	-30.01

TEST 17, 2MAC C.IN, DEL"35 NEG, X"C.750, 1CE FLAP, RPM-2477

DYCOR* -C.4368

PRICE DATA CCARECTER FOR TUNNEL INTERFERENCE

													1																				
25 72	C. 2261	(1)		1817-0	C. 45 72	1.2386	1.5550	1.6959	2.2178	2.4634	2.6577	2.7162	2.1509	2.1013	C. 1913	6 1 8 1 7		770.0		0.0380	C.0801	C. 1863	C. 1228	0.5196	C. 7651	1.4400		****					
BA - 10 6	u	E 7 0 -	n () ()	.043	1.043	7.043	1.043	1.042	1.42	1.043	1.043			1.043			7	6 FO - 1	1.043	1.042	1.043	1.043	1.043	1.043	1.043	1.(4)	, ,	7 * 3 * 1				2444.0-	
r L	0.0		•	٥.	ပ ပ	0.0	o.	0	0.0	0						•	•	0	o o	0.0	0	<u>.</u>	0	0.0	0		•	0				3	, ,
1/0	10.576		0.00	1C.119	9.142	8.077	6.954	5.932	\$ CO.	4.180	1.412				400		2010	3.212	-0.052	-2.329	-3.622	-4.123	-4.187	-4.024	- 1. 2. 2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.	20.0	P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	•				************	1000
۲.	440		E 0 . 0	0.030	C - 1 C 3	0.123	0.13	C. 187	0.211	76.00	7.244				, (700	C \$ C \$ 7	C • C • 1	0.081	C.095	0.110	0.130	0 1 2	(, 1 , 2)			G. 2. I.				ć	5
143	4000		C . 4C .	C. 918	0.916	0.923	C. 924	0.926	0.920			100					2.00	C. 8.7	5.140	1.080	1.004	0.988	966.0	480.0	4.0.0			0.913			1	.064763	76 96000
ž	0 7 7 0 0		-0.1311	-C.136C	-0.1414	-0.1486	-0.1358	-0.1655		4001						6171.0.	7611.5-	· C. 1114	-0.1059	-0.1022	-0.0554	-0.0476	-0.0817	A120.7=			2 - 2 - 2	C.064C			,	0 (J
Ç	4 4 6	7	.0667	. 6837	1070	1178	1703	2121	20.06	***			3366.			66.0	77.5	. C4 30	.0484	.0576	C 7 B 2	1047	1378	1 7 0 1			06 36.	. 4159				0.520928	
7	2,2		C. 7 IC	0.847	0.978		1.247	1 3 7 7			3 (000	0.4.0	C - < 6.2	0.138	100.0-	-0.134	F 40 7 3 -	0.412			- 0		7,7%.	-1.267					CCEPES
410.4		0	69	=	70	3																					-	31.12				3	

Appendix 6 Concluded

Appendix 7 Comparative Data With Modified Splitter Plate

	A SECTION OF THE
•	
NEW L.E. ON SPL.PLATE, DEL.O. 2048LAP, X O 9 MAR 74	. PLAPPED, AUDDER INPUL DAIA
0	H I THE SHEET HERE IN THE REAL PROPERTY AND ADDRESS OF THE PROPERTY AND ADDRESS OF THE PROPERTY AND ADDRESS OF THE PROPERTY AND ADDR
×	DAIA
SFLAP	INPUL
0.20	JODER
TE,05	PED. RI
7 P	r.L.Ag
S NO	;
٠ ٩	•
332	

0 0	F Z	F 60	E 4	17 E A	∽	SPAN 7.875	MAC 5. 7421	× • • •	X# AC 76 99	2MAC 0.0	0.0 0.0		00 to	
ANDM 1-	AE AD 1 1-N. 100.	NGS RE 1100.	AEFORE 2-N 10.	AND A 2-8 10.	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	40%	100.	100.	1001 999	100.	10.	13.	7N	400
CELL	LAS	CELL LAS/COUNT THIST+11570.0	1 * 0 SHA	1*0.13000 SHAFF DIA.	* * * • *	2*0.05000		00610	4.0.1	3.0.01000 4.0.10000 5-0.48970 N.	0.48970	6 * 3	. 20300 7	0.0
T. O. Y.		DATA AS	RECORDED	050			- B	10 10 10 10 10 10 10 10 10 10 10 10 10 1	Nemas actors: 11 to 1000 1 to	epide — M. D. J. Hers applied				
	· I	NCI.	S		S	~	~	w	•	<u>د</u>	٠ د	s	~	
21 12		0	^	9	<i>2</i> a	12.	164	~ ^ a	137. 0	. 108.	3	• •	તં	
-		30			K.	 	110	1 4			25	•	:	
	0	9	, w	515.		53.	10.	341	515	175	61		,	-
~		₽• 00	•	4 5•		÷.	- 134.	~ '	-0-	200	. :	•	• •	
۔ •-	· ·	2 2 2 3 3	~ 0	. 25.0			-242	~ ^	0.0 0.0	223.	≓ <u>~</u> z	•		
-		00	20	0 12.		07.	- 728	-	90	- o		• •	; ;	
-	154.	16.00	-	52		17.	-1286.		325.	287.	2.5	•	င်	
-4		19.00		260.	~	260	- 1.6 LB.	44.	5.65	900	8	نه حي	.	-
* 11 00		20.00	~ ·	2	æ	<u>.</u>	250	~ : ∝	z 000		~ ?	•	.	
00	•	23.00	22	0 0			0 4	- 0	• • •			•		
00		200	Z		z	. ~ ~	800	z	200. R		212	نه:	÷	
00 118	•	00 -+-	_	90.		42.	o i	ſ	315.	170	<u> </u>	.	ŝ	
00 118	5.	9.00	€.	5.		50.	109.		155	202			.	
00 11	.5	- (c. 00	•	6.00		÷	.386.		5.	230.		•	.	
00 11		10.00	~ '	790	•	£ :	.070	•	96	271.	- T	: .	ċ	
00	*:	12.00	c :	2.			-1012	1 0 0	300°	.00	6	•	i d	
	•	200	2:	•	• •	•	1011	- 0				•	ċ	
000	•	000	= =		-			- 0	946	100	<u>ئ</u> م	•	s c	
777		20.00	20	0.00	:	500	194	**************************************	- 016	316.			0	
00		22.00	: 2	00		20.	260	•	850.	298.	7		ં	
00 111	•	27.00	2	15.		23.	70A.	•	60	297.	¥	•	ô	

NEW LaE. ON SPL.PLATE, DEL=0,201FLAP1X =0...9.MAR 74

00 -13.00 -164.00 -37.00 -90.0 -19.04 -14.00 -13.00 -153.92 -196.00 19.04 -14.00 -15.75 -17.00 19.04 -12.00 -15.75 -475.00 75.12 -8.00 -75.20 -10.00 134.33 -620.00 100.17 -5.00 -97.00 928.58 -1080.00 137.25 31 18.00 -116.00 1618.75 -1365.00 137.25 31 18.00 -116.00 1618.75 -1365.00 137.00 -12.00 -12.00 -10.00 175.46 -11.00 -479.58 -1090.00 175.46 -11.00 -479.58 -1090.00 175.46 -11.00 -479.58 -1090.00 175.46 -11.00 -479.58 -1090.00 175.46 -11.00 -479.58 -1090.00 175.46 -11.00 -479.58 -1090.00 -39.00 -10.00 175.40 -10.00 -6.92 100.00 -39.00 -10.00 168.50 -10.00 -20.00 175.60 175.60 -10.00 -10.00 175.60 -10.00 175.		TUMNI	DATA CORF	CORRECTED FOR	ZERO READ	READINGS AND	SIGNS			
1197. 2.00 -140.00 -13.00 -163.92 -196.00 19.04 1187. 4.00 -285.00 -285.00 -15.75 -475.00 75.12 11172. 4.00 -455.00 -57.00 134.33 -475.00 175.12 11172. 4.00 -675.00 -77.00 342.42 -770.00 123.21 1158. 12.00 -805.00 -97.00 928.58 -1080.00 147.25 11159. 12.00 -932.00 -97.00 928.58 -1080.00 147.25 11159. 18.00 -1050.00 -107.00 1286.67 -1225.00 137.23 11156. 23.00 -1950.00 -116.00	21	1115.	0.0	0.0	2,00	-164.00	-37.00	-B.00	-12.00	a• a
11876 4.00 -285.00 -15.75 -475.00 75.12 1170. 6.00 -415.00 -43.00 -15.75 -475.00 75.12 1170. 6.00 -415.00 -57.00 134.33 -620.00 100.17 1155. 10.00 -675.00 -77.00 342.42 -770.00 123.21 1156. 12.00 -932.00 -97.00 928.58 -930.00 147.25 1156. 14.00 -1050.00 -1160.00 1286.67 -1260.00 137.23 1154. 126. 12.00 -1160.00 -1160.00 1286.67 -1260.00 137.25 1155. 18.00 -1160.00 -1160.00 168.67 -1260.00 175.46 1155. 1260.00 175.46 1115. 126. 1260.00 175.46 1115. 1260.00 175.46 1115. 1260.00 175.46 11165. 1260.00 175.46 11165. 1260.00 175.40 1160.00 175.40 1160.00 175.40 1160.00 175.40 1760.00 1760.	21	1197.	2.00	-140.00	-13,00	-163.92	-196.00	19.04	-14.96	0.0
1170. 6.00 -415.00 -43.00 -15.75 -475.00 75.12 1172. 8.00 -57.00 134.33 -620.00 100.17 1165. 10.00 -675.00 -77.00 342.42 -770.03 123.21 1158. 12.00 -805.00 -97.00 928.58 -1080.00 139.29 1154. 16.00 -1050.00 -107.00 128.647 -1225.00 187.25 1154. 16.00 -1050.00 -107.00 128.647 -1225.00 187.25 1154. 16.00 -1030.00 -1160.00 128.647 -1225.00 187.25 1155. 18.00 -970.00 -116.00 1618.75 -1365.00 206.37 1155. 28.00 -970.00 -116.00 -479.58 -1090.00 175.46 1115. 28.00 -970.00 -116.00 -479.58 -1090.00 175.46 1115. 28.00 -970.00 -116.00 -96.92 100.00 -39.00 175.46 111852.00 140.00 -116.00 -96.92 100.00 -39.00 175.46 111854.00 250.00 -116.00 275.00 -102.00 118510.00 820.00 91.00 1013.50 700.00 -228.00 117516.00 920.00 179.75 845.00 -228.00 117512.00 995.00 18.00 -756.00 179.75 845.00 -198.00 1113322.00 995.00 18.00 -756.00 750.00 -197.00 1113322.00 995.00 18.00 -756.00 750.00 -197.00 1113322.00 995.00 18.00 -756.00 700.00 -197.00 1113322.00 995.00 18.00 -756.00 750.00 -197.00 197.00 18.30 750.00 -197.00 1113322.00 995.00 18.00 -756.00 750.00 -197.00 197.00 18.30 750.00 -197.00 1113322.00 995.00 18.00 -756.00 750.00 -197.00 197.00 18.30 18.30 750.00 -197.00 197.00 18.30 750.00 -197.00 197.00 18.30 750.00 -197.00 197.00	21	1187.	4.00	-285.00	-28.00	-115, 83	-337,00	48.08	-12,92	0.0
1152. 8.00	21	1170.	8.9	-415.00	~43.00	-15.75	-475.00	75.12	-8.88	0.0
1165. 10.00	21	1172.	8,00	-545.00	-57,00	134,33	-620.00	100.17	-5.83	0.0
1158. 12.00	21	1165.	10.00	-675.00	-71.00	342.42		123.21	-0.79	0.0
1160. 14.00	21	1158.	12.00	-805.00		610.50		147.25	3.50	0.0
1154. 16.00	21	1160.	14.00	-932.00		928.58		139.29	11.58	0.0
1153. 18.00 -1160.00 -116.00 1618.75 -1365.00 206.37 1143. 20.00 -1030.00 -23.00 -219.17 -1120.00 191.42 11126. 23.00 -970.00 -11.00 -479.58 -1090.00 175.46 1115. 28.00 -920.00 -11.00 -959.00 -890.00 175.46 11185. -20.00 140.00 32.00 -96.92 100.00 -39.00 11185. -6.00 550.00 520.00 168.50 -71.7 235.00 -70.00 11185. -6.00 550.00 520.00 165.25 355.00 -170.00 11185. -10.00 690.00 78.00 679.42 590.00 -171.00 11185. -10.00 690.00 78.00 679.42 590.00 -171.00 11185. -16.00 945.00 103.00 1379.58 775.00 -228.00 11155. -18.00 945.00 103.00 179.75 845.00 -228.00 11153. -22.00 995.00 18.00 -558.00 750.00 -198.00 11133. -22.00 995.00 18.00 -706.00 760.00 -197.00 -19	21	1154.	16.00	-1050.00		1286.67	-1225.00	187.33	18.67	0.0
1143a 20a 00	21	1153.	18.00	-11 60.00		1618.75	-1365.00	206.37	25.75	0.0
1126. 23.00	2.1	1143.	20,00	-1030-00	-23, 00	-219, 17	-1120,03	191.42	-10.58	0.0
	21	1126.	23.00	-970.00	-11.00	-479.38	-1090.00	175.46	-11.54	0.0
11652.00	21	1115.	28.00	-920.00	-11.00	-859.00	-890-00	166.50	-18,50	0.0
11864.00	21	1165.	-2.00	140.00	17.00	-96.92	100.00	-39.00	-10.46	0.0
	21	1196.	-4.00	280.00	32.00	7.17	235.00	-70.00	-8.42	0.0
11858.00 550.00 78.00 387.33 475.00 -136.00 118510.00 690.00 78.00 679.42 590.00 -171.00 118612.90 820.00 91.00 1013.50 700.40 -205.00 117614.00 945.00 103.00 1379.58 795.00 -236.00 117516.00 1035.00 108.00 1497.67 810.00 -251.00 1115518.00 995.00 47.00 179.75 845.00 -228.00 1113322.00 990.00 18.00 -358.08 750.00 -198.00 111322.00 990.00 13.00 -366.00 750.00 -198.00 117727.00 915.00 13.00 -366.00 750.00 -198	21	1185.	-6.00	415.00	46.00	165, 25	355.00	-102.00	-6.38	<u>٠</u>
118510.00	21	1185.	-8,00	550.00	63.00	387.33	475.00	-136.00	-2,33	0.0
118412.50	21	1185.	-10.00	6 90.00	78.00	679.42	590,00	1	1.42	0.0
1 117514.00 945.00 103.00 1379.58 795.00 -236.00 1 117516.00 1035.00 108.00 1497.67 870.00 -257.00 1 115518.00 995.00 47.00 179.75 845.00 -228.00 -216.00 113322.00 900.00 18.00 -558.08 750.00 -198.00 -216.00 13327.00 915.00 13.00 -706.00 760.00 -197.00 -2	21	1104.	-12.00	820.00	91.00	1013,50	700-00	1	7.50	0.0
1 117516.00 1035.00 108.00 1497.67 870.00. ~257.00 1 115518.00 995.00 47.00 179.75 845.00 -228.00 -1114320.00 970.00 40.00 -182.17 810.00 -216.00 -113322.00 900.00 18.00 -558.08 750.00 -198.00 -111727.00 915.00 13.00 -706.00 760.00 -197.00 -	21	1178.	-14.00	945.00	103.00	1379.58	795.00		14.58	0.0
1 115518.00 995.00 47.00 179.75 845.00 -228.00 -1114320.00 970.00 40.00 -18217 810.00 -216.00 -1113322.00 900.00 18.00 -558.08 750.00 -198.00 -111727.00 915.00 13.00 -706.00 760.00 -197.00 -	23	1175.	-16.00	1035.00	108, 30	1497657	870,00	•	12.67	o o
1 115320.00 970.00 40.00 -182.17 810.00 -216.00 -113322.00 900.00 18.00 -558.08 750.00 -198.00 -111727.00 915.00 13.00 -706.00 760.00 -197.00 -	21	1155.	-18.00	995.00	47.00	179.75	845.00	•	-21.13	0.0
1 113322.00 900.00 18.00 -558.08 750.00 -198.00 -	21	1143.	-20,00	970,00	40.00	-182,17	810.00	•	-26.08	0.0
.00 13.00 -706.00 760.00 -197.00 -29	12	1133.	-22.00	900.00	18.00	-558.08	750.00	-198.00	-31.04	0.0
	21	1117.	-27.00	915.00	13.00	-706.00	760.00	-197.00	-29.00	0.0

NEW L.E. ON SPL.PLATE, DEL-0, 2017LAP, X = 0 9 MAR 74

DYCOR IS BEING COMPUTED

SOFLAPPE	*** PPPED RUDDER DATA REDUCTION**	DATA RED	**********									
AH PHA	FX-LB	F 2-LB	MX-INLE	MZ-INLB	F XO-LB	EYO-LR	F20-L8	M BINI-CXM	NYD-INE	MZO-INLD	MYDEL AE-INLB	VEL-FPS
00.0-	1.64	-0.10	-0.85	-6.47	1.64	6.70	-0.10	-0.85	-1.00	-6.47	0.0	21.24
6	1.66	14.45	102.48	-0.35	2,15	9.31	14.58	102.09	11.00	-12.92	0.0	21,35
	7	6	20.5	12,00	3.24	0.41	29, 75	205.04	25.00	-17.34	0.0	21.26
3		7. 46	70,		4.72	0.21	44.30	303.88	38.00	-23.90	0.0	21.10
3	010	2000	1000		7 .					33 04	C	21.12
8.	-1.34	57.35	402.22	19.10	6.65	10.83	20.43	06.00	21.00	90.76	•	71 17
10.01	-3.42	71.05	496.81	39,45	19.97	13.56	70.57	496-12	63.00	-47.42	0.00	21.00
12.01	-6-10	84.70	600-68	56.20	11,64	16.95	84.12	539.24	75.00	-69.92	0.0	20.99
14.01	-0.20	0 N O S		134.85	14.71	34.22	97,38	619.56	87.00	-15.50	0.0	21.01
16.01	-12.87	110.35		110.47	18.05	23.80	109.62	777.64	96.00	-108.36	0	20.96
10.81	-14.19	121.80		135.27	22.24	27.06	120.84	864.03	00.401	-138.52	٠. ع	20.95
	2.10	104,15		38.22	37.68	17.18	97.12	722.60	20.00	-222.33	0.0	20° #6
21,00	4.79	97.55	720-69	66,09	42.53	22 . 23	67.92	÷88°	9.00	-222-60	0.0	. 20 A 70
28.00	8.50	92.55		0.26	51.03	7.06	77.68	532.03	9.00	-282.59	0.0	20.60
2,00	0.07	-14.85	-106.23	0.79	1.49	7.87	-14.81	-106.19	-15.00	-2.41	0.0	21.24
90.4-	70.0-	-29.60	-210.40	8.71	1.99	9.14	-29, 53	-213.49	-28.00	-5.98	٠. ٥	21.25
9-4-	-1.65	-63.90	-310.57	21.05	2.95	12.41	-43.83	-311.07	-43.00	-11,53	0.0	21.24
00	-3.87	-58.15	-416.91	40.60	4.26	16.25	-58.12	-418.50	-56.00	-17.82	٥. ٥	21.24
-10.01	-6.79	-72.90	-520.83	59.31	5.97	21.14	-12.97	-523.22	-70.00	-32.03	6,0	21,24
-12.01	-10.13	-86.55	-623.95	84.02	8.08	25.57	-86.77	-627.78	-81.00	-47.54	0.0	21, 23
-14.01	-13-80	-99.65	-711.66	110.74	10.72	29.85	-100,63	-717.31	-92.00	-64.72	0.0	21.17
-16.01	-14.98	-108.90	-775.76	108.37	15.62	33.03	-108.81	-775.58	-97.00	-109.65	0.0	21.15
00.81-	-1-80	-101-85	-707-83	14.57	29, 76	28.14	-97.42	-677.69	-42.00	-204.87	C•0	20.97
	28.	00	-464-46	94.9	35.57	26.79	-92.41	-626.59	-36.00	-221.19	0.0	20.86
22.00		-00	-612.92	-2.52	39.23	25.00	-82.19	-567,35	-16.00	-231294	0.0	20.17
-27.00	7.06	-92.15	-610.11	6.21	48.13	23.14	-78.90	-546.43	-11.00	-271.45	c. 0	20.62

Appendix 7 (cont.)

NEW L.E. ON SPL.PLATE, DEL=0,20XFLAP, X = 3 9 MAR 74

DYCOR IS BEING COMPUTED

FLAPPED RUDDEP DATA IN NON-DIMENSIONAL FORM

CLS 3.	0. Jour	0.0116	0.0489	0.1072	0.1842	0.2859	0.4111	1644.0	7.31	0.4554	0.56.25	C.4751	0.3782	0.0122	0.0433	0.1006	J.1874	0.2955	0.4134	0.5618	C.6682	0.5543	0.5093	CO14.0	0.3899	
4N*10**-6	1.097	1.103	860•1	1.00	1.091	1.038	1.095	1.086	1.083	1.042	1.078	1.070	1.064	1.097	1.098	1.097	1.397	1,007	1.007	1.094	1.093	1.083	1.078	1.073	1.065	
CMF	0.0	0.0	C .		o.0	3.0	၁ ° င	0.0	0.0	0.0	0.0	•	3	٠ <u>.</u>	0.0	·.	ر. د	0.0	0. 0	0.0	٥ •	C.7	C • 0	د.	C	•
C/.1	-0.041	6.795	9, 178	9.195	H. 567	1.671	7.228	620	6.074	5.433	2.577	2.368	1. 522	-9.959	14.816	14.882	-13.653	12.227	10.737	-9,330	-6.966	-3.273	-2.598	-2.095	1.420	
۲	0.050	0.069	0.070	0000	0.082	0.133	0.129	0.260	0.182	0.207	0.133	0.174	0.056	0.059	0.068	0.392	0.121-	0.157	0.191	0.224	0.248	0.215	0.207	0.195		
CPL	1.075	0.989	0- 975	00000	0.854	0.893	U. 905	0.808	106.0	0.00	0.945	0.994	0. 47.0	116.5	0.905	0.901	0.914	0.910	916.0	0.911	0.905	0.983	0- 86 1	0.877	0.40	
ž	-0.0012	+CC0 0 -0 -	0-0026	0.058	0.000	0.0110	0.0130	0.0153	0.0147	0.0136	-0.0809	-0.0902	-0.0853	-0.0046	-0.0068	-0.0119	-0-0146	- 0- 01 90	-0-0187	-0.0199	-0.0172	0.0485	0.0541	0.0732	4000	0.00
ຣ	0.3122	0,0159	0-0241	3.0356	0.0501	0,0679	0.0987	0.1119	0.1381	0.1703	0. 2910	0.3334	0-4040	0.0111	0.0148	0.0219	0.0317	0.0445	0.0602	0.0803	0. 1173	0.2275	0-2747	30.00		60 50 00
ฮ	-0-001	301.0	0.22	0.327	0.429	0.535	0.641	0.741	0.838	0.925	0.750	0.689	0-615	0110	-0.220	-0-327	-0.633	-0-544	-0-647	-0.750	-0-817	-0-765	-0-714	4		+70.0-
AL PHA	00	2,00	1	000	00.4	10-01	12,01	14.01	16.01	18.01	20,00	23,00	28.00	2,00	00	-6-00	00	-10.01	-12.01	-14.03	-16.01	- 18.00	2000		30.33	-21.00

NEW L.E. ON SFL. PLATF OFLTO , 20% FLAP, X = 0 0 MAR 74

THE STATE OF THE S

DYFTR IS BEING CHAPITED

CARRECTED FUR TUNNEL INTERFERENCE

PRIUR DATA

CLSO 0.0000 0.0116 0.0489 0.1072 0.1842 CV C.050 -0.061 0.069 8.754 0.069 8.754 0.103 7.353 0.103 7.353 0.182 8.073 0.182 8.073 0.182 8.073 0.182 8.073 0.182 8.073 0.182 8.073 0.182 8.073 0.182 8.073 0.182 8.013 0.183 8.073 0.183 8.073 0.183 8.073 0.184 9.073 0.059 -1.093 0.059 -1.093 0.059 -1.093 0.059 -1.093 0.059 -1.093 0.059 -1.093 0.059 -1.093 0.059 -1.093 0.059 -1.093 -6.363 -3.145 -2.520 -2.049 0.000431 0.051221 0.00000 0.00000 0.00000 0.00100 0.00100 0.01100 0.01000 - C. 0902 - J. UR59 - 0. 0046 0.001770 0.0532 0.0727 0.0727 0.16955 0.3605 0.3605 0.0113 0.0737 0.0673 0.0374 0.1285 0.2367 0.2832 -0.110 -0.220 -0.327 -0.433 -0.750 -0.817 -0.745 -0.714 -0.640 -0.544 COEFFS ALPHA -0.00 110.53 114.43 116.43 116.43 120.69

Appendix 7 (cont.)

NEW L.E. ON SPL. PLATE, DEL"O, 20 PFLAP, X . O . 9 WAR 74

DYCAR 1.2306

OOFL APPE	O RUDDER	DATA REP	UCTION .							
AL PHA	FX-LA	F 2-19	MK-INLA	45-14LR	נ אט-ר ש	سر	£ 23-1 A	BINI-CXE	י שויו-ראמ	7
-0.00	1.6.	-0.10	-0.15	-6.47	1.6.	_	-0.05	-0.71	0001-	
2.00	1.64	14.65	102.48	-9.35	1.84	_	14.63	1.2.35	/···	
00	1.16	29.90	205.75	-2.99	2.63	_	29.81	20.5.37	25.00	
9	0.16	43.65	304.71	& 30	3. 79	_	43.49	304.32	ئ • مر.	
3.00	-1.34	57.35	402.22	19.10	5.43	* **	57.11	401.46	51.03	
10.01	-3.42	71.05	496.81	30.45	7.45	-3	70.74	497.32	43.00	
12.01	-6.10	84.70	600.68	56.20	S. A. 3		P4. 15	6 10.0	76.00	
14.01	-9.29	98.05	604.91	134.85	12.62	۸.	97.43	619.75	00.7ª	
16.01	-12.87	110,35	777. 10	110.47	15.649	۳.	109.43	719.74	66.67	
18.01	-16.19	121.40	864.54	135.27	19.64	_	121.29	866.96	1.14.70	
20.00	2.19	134.15	155.01	34.22	15.50	~	97.91	727.21	20,00	
23.00	4.70	97.55	720.69	60.40	40.53	-	88.17	6.38.07	ر ن ن	
28.00	x.59	92.55	407.42	0.26	40.45	_	78.75	537.94	9.30	
-2.00	0.97	-14.85	-106.23	0.79	. 4.7	_	-14.77	-100.10	-15.00	
-4.00	-0.0-	-29.60	-210.40	4.71	2.63		-29.48	-210.31	1,10°46'-	
20.9	-1.65	-43.90	-310.57	71.05	3.84	_	-43.76	-310.75	-43.00	
-8.00	-3.87	-58.15	-416.91	40.60	5.50	v.	-58.12	20.614-	-56.00	
- 10.01	-6.79	-12.40	520.43	59,31	7.53		-72.83	-522.41	- 76 - 30	
-12.01	-10.13	-86.55	-623.95	84.03	40.0	_	-86.57	-626.61	0414-	
-14.01	-13.83	.99.55	-71:.66	110.74	12.97	٠.	-99.77	-715.76	-92.00	
-16.01	-14.98	-108.90	-175.76	108.17	17.99	_	-108.45	-173.05	-97.00	
-18.00	-1.A.	-101.A5	- 707.93	14.57	31.45		-94.76	-573.17	C 24-	
-20.00	1.87	-99.00	-664.46	b.40	.37.55	~	29.10-	-621.70	-36.07	
-22.00	5.58	-90,40	-612,92	- 2.52	40.48	25.00	-41.33	-562.24	-16.00	
-27.00	7.06	-92.15	-610.11	6.21	49.41		-77.85	-540.48	-11.00	

NEW L.E. ON SPL.PLATE, OFLEW, 218FLAP, X = 0 MAR 74

是一个人,我们就是一个人,我们是我们是一个人,我们是我们是一个人,我们是我们是一个人,我们是我们是一个人,我们是我们的,我们是我们的,我们是我们的,我们是我们的,我们是我 一个人,我们也是我们的,我们是我们是我们的,我们是我们的,我们是我们的,我们是我们的,我们是我们的,我们是我们的,我们是我们的,我们是我们的,我们是我们的,我们是

THE STATE OF THE S

DYCAR* 1.2336

COFLAPFID RUDNER DATA IN NON-DIMENSIONAL FORMER

51.59	1). Just	0.0116	1643.0	0.1076	0.1850	0.2873	0.4135	42550	0.7377	0.8522	4.5717	0.484	0.3383	0.0121	0.04A2	v.1062	0.1309	C+62.0	0.4165	0.5589	C. 99.0	C. 546B	0°2008	0.4015	0.3785
9-001-NY	1.097	1.103	. 60.1	1.040	1.001	1.084	1.045	1.086	1.043	1.042	1.78	1.370	1.064	1.007	1.098	1.097	1.001	1.007	1.001	1.094	1.393	1.083	1.078	1.173	1.055
																									0.0
(/1	-0.039	7.969	11.458	11.485	10.525	4.498	8.591	7. 743	7.013	6-175	2.751	2.196	1.506	-8.196	11.223	11.261	10.540	- 9. 66. 7	-8.707	-7.754	1+0.9-	-3.039	-2.440	-1.985	0.143 -1.563
Š	0.053	0.069	0.070	0.069	0.082	0.133	0.129	3.260	0.182	0.207	0.133	2-174	0.056	05000	0.068-	-26 Jen	-121-	0.157	3.191	0.224	C. 24A	0.215	C. 20.7	0.195	0.143
10.	1.347	0.843	O. 875	0.989	0. 493	O. 492	0.934	90 40	000	O. 90A	0.043	196.0	0. A6.7	6.912	906.0	0.402	0.015	1100	0.419	0.911	3.905	0.843	0. 862	2.479	0.582
3	-3,0012	-0.0004	0.0025	0.000	0.0040	0.0110	C. 0132	0.0155	0.0150	0.0140	0160.0-	- 0.0933	-0.0960	7.400-1-	-0.00eA	-0.1119	-0.0145	-0.0179	-3.0195	-0.0197	-0.0159	3.0485	0-0540	12.000	0.0823
																									0.3936
5	-0.000	0.108	0.222	0.128	0-430	0.536	0.643	0.743	0.841	0.929	0.756	0.696	0.624	-0.110	-0.219	-0.326	-0-432	-0-542	-3.645	-0-748	-0.815	-0.739	-0- 7 OB	46.4.0	-0.615
																									-27.00

Appendix 7 (cont.)

L.F. ON SPL. PLATE, DFL = 0, 208FI. AP, X = 0 9 44R

JYCOB* 1.2306

CY 0.050 0.050 0.000 0.000 0.000 0.000 0.100 0.0 3.000431 0.051333 TUNNEL FOR -0.000856 CORRECTED DATA COEFFS 018 35

Appendix 7 Concluded