Universidad Torcuato Di Tella Maestría en Economía & Finanzas Segundo Trimestre 2025

Machine Learning para Finanzas Problem Set 3

Alumna: Paola Nuñez | Profesor: Lionel Modi

1 Introducción

Este trabajo presenta la clase AnalistaDeRiesgo, que implementa un flujo para estimar la probabilidad de default (PD) de bancos y cuantificar los activos en riesgo del sistema. Se usan datos históricos etiquetados de la FDIC para entrenar y seleccionar modelos, y un panel de bancos actuales para inferir la probabilidad de default y marcar entidades en riesgo según distintos criterios de umbral. La implementación sigue PEP 8 y docstrings estilo NumPy.

2 Estructura del proyecto

El código fuente completo está disponible en el siguiente repositorio de GitHub: https://github.com/nunezpaola/MLforfinance. Desde la carpeta raíz, la resolución del Problem Set 3 está organizada como sigue:

- ps/ps3.py: clase AnalistaDeRiesgo. Incluye el preprocesamiento, selección por GridSearchCV, elección de umbral para definir cuándo una probabilidad es lo *suficientemnte alta* como para indicar riesgo de default y cálculo de métricas (entidades y activos en riesgo).
- ps/ps3_test.py: módulo de test. Carga datos, define modelos y grillas, corre la clase un loop de métodos de umbral y genera gráficos.
- ps/ps3_logs.txt: logs INFO en terminal obtenidos al correr el módulo de test
- mlfin/plotting.py: utils para gráficos.
- mlfin/printing.py: helpers de logging.
- data/central_bank_data.h5: base de datos con información histórica y actual de entidades financiera usada para entrenar el modelo.

3 Documentación

3.1 Clase AnalistaDeRiesgo

La clase se disponibiliza en el archivo ps/ps3.py y cuenta con métodos públicos y privados:

Constructor __init__(modelos_y_grids, scoring="roc_auc", random_state=42). Toma como inputs una lista de pares (estimador, grilla), métrica para cross-validation (CV) y semilla.

load_data(df_train, default_col). Valida y almacena el pd.dataFrame histórico etiquetado y el nombre de la columna objetivo (defaulter).

_make_preprocessor(features, scale). Pipeline numérico con SimpleImputer(strategy="median") y, si corresponde (SVC/KNN), StandardScaler. Se inserta en un ColumnTransformer.

_wrap_grid(grid, "clf"). Prefija los hiperparámetros con "clf__" para usarlos dentro del Pipeline de scikit-learn.

_fit_and_select(X, y, features). Para cada modelo: construye Pipeline, hace GridSearchCV (5x5, scoring="roc_auc"), guarda el mejor y devuelve el de mayor score.

pick_threshold(y_true, y_proba, method, ...). Selector de umbral:

- fixed: umbral fijo (por defecto 0.5). Se elige si resulta indiferente cuántas/cuales son las entidades que defaultean y no incorpora el tradeoff entre subestimar un default (riesgo sistémico) o sobreestimar uno.
- youden: maximiza la cantidad de verdaderos positivos respecto de los falsos (TPR FPR) en la ROC.
- f1: maximiza F1 (balance precisión/recall).
- **cost:** minimiza pérdida esperada según el costo de un falso positivo y el costo de un máximo negativo (C_{FP}, C_{FN}) y permite diferenciar entre estos. En este trabajo, además se pondera por activos actuales.
- target_rate: se utiliza en caso de querer estimar riesgo sistémico. Es decir, estamos pensando que, después de que defaulteen cierta cantidad (es decir, target_rate, en puntos porcentuales) de entidades se puede generar riesgo sistémico y buscamos la cantidad de activos a cubrir en tal caso.

get_report(df_predict, features, umbral_riesgo, threshold_kwargs).

- 1. Selecciona el mejor Pipeline por CV sobre histórico.
- 2. Predice probabilidad de default en los bancos actuales.
- 3. Elige umbral:
 - fixed: usa el valor numérico.
 - cost: minimiza $\sum_{i} \left[\mathbb{1}_{p_i \geq t} (1 p_i) C_{FP} + \mathbb{1}_{p_i < t} p_i C_{FN} \right] \cdot \text{activos}_i \text{ con } p_i \text{ de } actuales.$
 - $target_rate$: percentil de p_i de actuales.
 - youden/f1: calcula el umbral sobre histórico (predicciones in-sample).
- 4. Etiqueta riesgo $(p_i \ge t)$ y computa:
 - % de entidades marcadas.
 - % de activos en riesgo y activos en riesgo (USD B).
 - Total de activos del sistema (USD B).
- 5. Devuelve un diccionario con nombre del modelo ganador, AUC de CV, hiperparámetros, umbral usado y métricas.

3.2 Pruebas y validación

El módulo de test se encuentra en ps/ps3_test.py. A continuación, se detalla el proceso que se lleva a cabo:

- Carga df_train (bank_defaults_FDIC) y df_predict (regulated_banks).
- Define 3 clasificadores y sus grillas: KNN, SVC y DecisionTree, con las grillas especificadas en el enunciado.
- Corre un loop para evaluar los métodos de umbral: fixed, youden, f1, cost, target_rate (con $C_{FN}: C_{FP} = 20: 1$ y target_rate de 10%).
- Gráficos:
 - 1. ROC (obtenido de mlfin.plotting.plot_roc_curve).
 - 2. Calibración in-sample.
 - 3. Importancia de features
 - 4. **Histograma de probabilidades de default estimadas** en entidades financieras actuales con líneas de corte por método.

3.3 Variables utilizadas

En la estimación se emplean los siguientes regresores:

Columna	Descripción
log_TA	Logaritmo de activos totales (tamaño del banco).
NI_to_TA	Resultado neto / TA (rentabilidad).
<pre>Equity_to_TA</pre>	Patrimonio / TA (capitalización).
NPL_to_TL	Préstamos en mora / TL (calidad de cartera).
REO_to_TA	Real estate owned / TA (activos adjudicados).
ALLL_to_TL	Provisiones por pérdidas / TL.
core_deposits_to_TA	Depósitos "core" (estables) / TA.
brokered_deposits_to_TA	Depósitos intermediados / TA (volátiles).
liquid_assets_to_TA	Activos líquidos de alta calidad / TA.
loss_provision_to_TL	Carga de provisiones del período / TL.
NIM	Net Interest Margin (margen financiero).
${\tt assets_growth}$	Crecimiento $\%$ de activos (variación).

Notas: TA = Total Assets, TL = Total Loans.

4 Resultados

El modelo ganador por validación cruzada es SVC (RBF, C=10), con $AUC_{CV} \approx 0.986$. La calibración insample es globalmente buena (Fig. 1), con leve sobreestimación en probabilidades muy bajas y leve subestimación en la cola alta.

Figure 1: Curva de calibración (insample, histórico). La línea ideal (gris) indica que la estimación de probabilidad de default es igual a la observada.

En términos de *drivers*, la Fig. 2 muestra que el tamaño (log_TA) domina ampliamente, seguido por NPL_to_TL y Equity_to_TA. El resto de ratios tienen incidencia virtualmente baja. Por otro lado, en la Figura 3 se reporta la distribución de la estimación de probabilidades de default y los distintos *thresholds evaluados*.

Los resultados numéricos por método de umbral son:

Figure 2: Importancias (top 8). El tamaño explica gran parte de la separabilidad; calidad de cartera y capital le siguen.

Figure 3: Distribución de PD en bancos actuales con umbrales por método.

Método	AUC (CV)	Umbral	% Ent. en riesgo	% Activos en riesgo	Activos en riesgo (USD B)
fixed (0.50)	0.986	0.500	6.0%	0.09%	0.00
youden	0.986	0.229	10.0%	57.27%	0.68
f1	0.986	0.222	10.0%	57.27%	0.68
cost (20:1)	0.986	0.036	26.0%	61.55%	0.73
$target_rate~10\%$	0.986	0.217	10.0%	57.27%	0.68

Recordando que el total de activos del sistema es \sim USD 1.19 B, se desprenden dos conclusiones:

- fixed 0.5. Indica que el 6% de entidades tiene probabilidad de default lo suficientemente alta y captura apenas 0.09% de los activos totales bajo administración. Este método no internaliza ningún tradeoff entre falsos y verdaderos positivos, reportando una menor practicidad a la hora de tomar decisiones de política monetaria. Consecuentemente, podemos sostener que este umbral es muy alto para el riesgo sistémico que puede generar un default.
- youden/f1/target_rate(10%) reportan que el 10% de las entidades tienen probabilidades de default estimadas superiores al umbral de corte, y esto se corresponde con el 57.3% de los activos bajo administracion. Lo que implica un riesgo sistémico mucho más costoso de prevenir.

Interpretación. (i) El clasificador rankea muy bien (AUC alto) y las probabilidades estimadas son razonables (calibración cerca de la diagonal), con dos sesgos muestrales: conservador en la cola baja (prefiere falsas alarmas pequeñas) y algo optimista en la cola alta (probabilidad ligeramente subestimada). (ii) la importancia de las variables log_TA y NPL_to_TL sugiere que tamaño y calidad de cartera explican la mayor parte de la separación de riesgo. (iii) La concentración es extrema: con sólo 10% de entidades se cubre >50% de los activos totales en gestión.

References

- [1] NumPy Documentation Guide, "Docstring Standard", https://numpydoc.readthedocs.io/en/latest/format.html. Último acceso: Julio 2025.
- [2] PEP 8 Style Guide for Python Code, https://www.python.org/dev/peps/pep-0008/. Último acceso: Julio 2025.