User-based collaborative filtering

Using cosine similarities

	Broccoli	Brussels Sprouts	Hamburger	
Markus	8	8	1	
Peter	6	6	8	
Shikha	7	1	?	
Hashim	8	2	9	

Cosine similarity

Shikha likes burger (4) but does not like broccoli (4), while Marcus likes broccoli (10) and does not like burger (2): Their cosine similarity is 0.61:

 $cos\Theta$ = cosine similarity = **0.61**

Peter likes broccoli and burger the same. That makes him more similar to Marcus compared to Shikha: Their cosine similarity is therefore greater (0.82):

 $cos\Theta$ = cosine similarity = **0.82**

 $cos\Theta$ = cosine similarity = **0**

Zip and Zap both like Burger as much as Broccoli. Even if Zap likes both ingredients much more, their vectors form an angle of 0°, and their cosine similarity is 1:

Broccoli

Zip

Zap

 $cos\Theta$ = cosine similarity = **1**

We can easily compute cosine similarities between each pair of users using cosine_similarity from sklearn.metrics.pairwise

	Markus	Peter	Shikha	Hashim
Markus	1			
Peter	0.79	1		
Shikha	0.80	0.58	1	
Hashim	0.64	0.93	0.67	1

How would Shikha rate the hamburger?

We will compute the weighted average of the ratings others gave to hamburger. The weights will be the similarities others have with Shikha (divided by their total so that the weights add up to 1)

	Similarities with Shikha	Weights	Burger ratings		
Markus	0.79	0.39	1		
Peter	0.58	0.28	8		
Hashim	0.67	0.33	9		
	2,04				

Shikha's rating to burger = (1 * 0.39) + (8 * 0.28) + (9 * 0.33) =**5.6**

Recommending movies

We have used **pivot_table()** to create the **movie_user** dataframe:

	mov1	mov2	mov3	mov4	mov5	mov6	•••
1	5	NaN	NaN	NaN	2	NaN	NaN
2	NaN	NaN	NaN	NaN	NaN	4	NaN
3	2	4	4	NaN	NaN	NaN	NaN
4	NaN	NaN	NaN	NaN	NaN	3	NaN
5	NaN	NaN	1	NaN	NaN	NaN	NaN
6	NaN	NaN	NaN	5	NaN	NaN	NaN
7	5	NaN	NaN	NaN	NaN	NaN	NaN
•••	NaN	NaN	NaN	NaN	NaN	2	NaN

We have used pd.DataFrame.fillna() to replace NaNs with zeros in the movie_user table:

	mov1	mov2	mov3	mov4	mov5	mov6	•••
1	5	0	0	0	2	0	0
2	0	0	0	0	0	4	0
3	2	4	4	0	0	0	0
4	0	0	0	0	0	3	0
5	0	0	1	0	0	0	0
6	0	0	0	5	0	0	0
7	5	0	0	0	0	0	0
•••	0	0	0	0	0	2	0

We have used cosine_similarities() to create the user_similarities table:

	1/1/	2	3	4	5	6	7	
1								
2	0.15	1						
3	0.14	0.19	1					
4	0.3	0.077	0.21	1				
5	0.25	0.081	0.003	0.033		7		
6	0.21	0.001	0.05	0.21	0.04			
7	0.17	0.03	0.02	0.001	0.003	0.006	1	
•••	0.002	0.06	0.15	0.002	0.02	0.001	0.21	1

These are their similarities with the other users:

2	0.15
3	0.14
4	0.3
5	0.25
6	0.21
7	0.17

Total	1.22

We transform the similarities into weights:

	0.12	
	0.11	-
#	0.25	
	0.20	
	0.17	之
	0.14	

Total

0.15 / 1.22 =

0.14 / 1.22 =

0.3 / 1.22 =

0.25 / 1.22 =

0.21 / 1.22 =

0.17 / 1.22 =

Now we want to compute the rating that our **user 1** would give to each movie:

movie_user

weights	
2	0.12
3	0.11
4	0.25
5	0.20
6	0.17
7	0.14

	mov1		mov2	mov3	mov4	mov5	mov6				
4 / /											
2	0		0	0	0	0	4				
3	2	\downarrow	4	4	0	0	0				
4	0	#	0	0	0	0	3				
5	0		0		0	3	0				
6	0		0	0	5	0	0				
7	5	7	0	0	0	0	0				

mov1 =
$$(0.12 * 0) + (0.11 * 2) + (0.25 * 0) + (0.20 * 0) + (0.17 * 0) + (0.14 * 5) = 0.92$$

mov2 =
$$(0.12 * 0) + (0.11 * 4) + (0.25 * 0) + (0.20 * 0) + (0.17 * 0) + (0.14 * 0) = 0.44$$

Now we want to compute the rating that our user 1 would give to each movie:

weight	ts	movie_	user.T	/						
			2	3	4	5	6	7		
2	0.12	mov1	0	2	0	0	0	5	mov1	0.92
3	0.11	mov2	0	4	0	0	0	0	mov2	0.44
4	0.25	mov3	0	4	0	1	0	0	= mov3	0.32
5	0.20	mov4	0	0	0	0	5	0	mov4	0.82
5	0.17	mov5	0	0	0	3	0	0	mov5	0.77
7	0.14	mov6	4	0	4	0	0	0	mov6	0.12

mov1 =
$$(0.12 * 0) + (0.11 * 2) + (0.25 * 0) + (0.20 * 0) + (0.17 * 0) + (0.14 * 5) = 0.92$$

mov2 =
$$(0.12 * 0) + (0.11 * 4) + (0.25 * 0) + (0.20 * 0) + (0.17 * 0) + (0.14 * 0) = 0.44$$

Train - test split "manually":

	mov1	mov2	mov3	mov4	mov5	mov6	
	5	0	0	0	2	0	0
2	0	0	0	0	0	4	0
3	2	4	0	0	0	0	0
4	0	0	0	0	0	3	0
5	0	0	1	0	0	0	0
6	0	0	0	0	0	0	0
7	5	0	0	0	0	0	0
•••	0	0	0	0	0	2	0