The Twelvefold Way

Ben Wallberg

November 9, 2019

Abstract

In combinatorics, the twelvefold way is a systematic classification of 12 related enumerative problems concerning two finite sets, which include the classical problems of counting permutations, combinations, multisets, and partitions either of a set or of a number. This is my cheat sheet, compiled from Stanley [3] by way of Knuth [1] and Wikipedia [4], et al. I use this aid to help me understand and solve Project Euler [2] problems. Project Euler is a series of challenging mathematical/computer programming problems that require more than just mathematical insights to solve.

f- $class$		Any f	Injective f	Surjective f
	balls per urn	unrestricted	≤ 1	≥ 1
f		n -sequence in \mathbf{X}	n -permutation of \mathbf{X}	composition of \mathbf{N} with x subsets
	n labeled balls, m labeled urns	n-tuples of m things	n-permutation of m things	partitions of $\{1, \ldots, n\}$ into m ordered parts
		x^n	$x^{\underline{n}}$	$x! \binom{n}{x}$
$f \circ \mathbf{S}_n$		n -multisubset of \mathbf{X}	n -subset of \mathbf{X}	composition of n with x terms
	n unlabeled balls, m labeled urns	n-multicombinations of m things	n-combinations of m things	compositions of n into m parts
		$\binom{x}{n}$	$\binom{x}{n}$	$\binom{x}{n-x}$
$\mathbf{S}_x \circ f$		partition of N into $\leq x$ subsets	partition of N into $\leq x$ elements	partition of \mathbf{N} into x subsets
	n labeled balls, m unlabeled urns	partitions of $\{1, \ldots, n\}$ into $\leq m$ parts	n pigeons into m holes	partitions of $\{1, \ldots, n\}$ into m parts
		$\sum_{k=0}^{x} \begin{Bmatrix} n \\ x \end{Bmatrix}$	$[n \le x]$	$\begin{Bmatrix} n \\ x \end{Bmatrix}$
$\mathbf{S}_x \circ f \circ \mathbf{S}_n$		partition of n into $\leq x$ parts	partition of n into $\leq x$ parts 1	partition of n into x parts
	n unlabeled balls, m unlabeled urns	partitions of n into $\leq m$ parts	n pigeons into m holes	partitions of n into m parts
		$p_x(n+x)$	$[n \le x]$	$p_x(n)$

Equations of Interest

Falling Factorial or the first n elements of x!

$$x^{\underline{n}} = \frac{x!}{(x-n)!} = x(x-1)(x-2)\cdots(x-n+1)$$
$$x^{\underline{x}} = \frac{x!}{x-x}! = x!$$

Binomial Coefficient (aka n choose k)

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n^{\underline{k}}}{k!}$$

The recurrence relation for Pascal's Triangle:

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$

Multiset (aka bag or multicombination) is modification of the concept of a set that allows for multiple instances of its elements

$$\binom{n}{k} = \binom{n+k-1}{k} = \frac{n^k}{k!}$$

$$\left(\binom{x}{n-x} \right) = \binom{n-1}{n-x}$$

Stirling number of the second kind (or Stirling partition number) is the number of ways to partition a set of n objects into k non-empty subsets

$${n \brace k} = \frac{1}{k!} \sum_{i=0}^{k} (-1)^{i} {k \choose i} (k-i)^{n}$$

$$\sum_{k=0}^{n} {n \brace k} x^{\underline{k}} = x^n$$

Bell number is the total number of partitions of a set with n members over all values of k

$$B_n = \sum_{k=0}^n \begin{Bmatrix} n \\ k \end{Bmatrix}$$

Details

$$n\text{-sequence in }\mathbf{X}\ (f,\,\mathbf{Any}\ f)$$

$$x^n$$

$$\text{itertools.product(range(x),\,repeat=n)}$$

$$n\text{-permutation of }\mathbf{X}\ (f,\,\mathbf{Injective}\ f)$$

$$x^n$$

$$\text{itertools.permutations(range(x),\,n)}$$

$$\mathbf{composition of }\mathbf{N}\ \text{with }x\ \text{subsets }(f,\,\mathbf{Surjective}\ f)$$

$$x!\binom{n}{x}$$

$$n\text{-multisubset of }\mathbf{X}\ (f\circ\mathbf{S}_n,\,\mathbf{Any}\ f)$$

$$\binom{x}{n}$$

```
n\text{-subset of X } (f \circ \mathbf{S}_n, \mathbf{Injective} \ f)
\binom{x}{n}
\mathsf{itertools.combinations}(\mathsf{range}(\mathbf{x}), \ \mathsf{n})
\mathsf{composition of } n \ \mathsf{with} \ x \ \mathsf{terms} \ (f \circ \mathbf{S}_n, \mathbf{Surjective} \ f)
\binom{x}{n-x}
\mathsf{partition of } \mathbf{N} \ \mathsf{into} \ x \ \mathsf{subsets} \ (\mathbf{S}_x \circ f, \mathbf{Any} \ f)
\binom{n}{x}
\binom{n}{x}
\binom{n}{x}
\mathsf{partition of } n \ \mathsf{into} \ x \ \mathsf{parts} \ (\mathbf{S}_x \circ f \circ \mathbf{S}_n, \mathbf{Any} \ f)
p_x(n+x)
\mathsf{partition of } n \ \mathsf{into} \ x \ \mathsf{parts} \ 1 \ (\mathbf{S}_x \circ f \circ \mathbf{S}_n, \mathbf{Injective} \ f)
[n \le x]
\mathsf{partition of } n \ \mathsf{into} \ x \ \mathsf{parts} \ (\mathbf{S}_x \circ f \circ \mathbf{S}_n, \mathbf{Surjective} \ f)
p_x(n)
```

References

- [1] Donald E. Knuth. The Art of Computer Programming: Volume 4A, Combinatorial Algorithms, Part 1. English. Upper Saddle River, NJ: Addison-Wesley, 2011. ISBN: 978-0-201-03804-0.
- [2] Project Euler. URL: https://projecteuler.net/.
- [3] Richard P. Stanley. *Enumerative Combinatorics*, *Volume 1*. English. 2nd ed. Vol. 1. Cambridge studies in advanced mathematics 49. Cambridge; Cambridge University Press, 1997. ISBN: 0-521-55309-1.
- [4] Twelvefold way Wikipedia. URL: https://en.wikipedia.org/wiki/Twelvefold_way.