Number Theory

NPTEL - II Web Course

Anupam Saikia

Department of Mathematics Indian Institute of Technology Guwahati

Contents

1	\mathbf{Div}	isibilit	y and Primes	1
	1.1	Lectur	re 1	1
		1.1.1	Introduction	1
		1.1.2	Well-ordering Principle	3
		1.1.3	Division Algorithm	4
	1.2	Lectur	re 2	6
		1.2.1	Decimal Expansion of a Positive Integer	6
		1.2.2	Greatest Common Divisor	7
	1.3	Lectur	re 3	9
		1.3.1	Euclid's Algorithm	9
		1.3.2	Fibonacci Sequence	10
	1.4	Lectur	re 4	12
		1.4.1	Coprime Integers	12
		1.4.2	Least Common Multiple	13
		1.4.3	Linear Diophantine Equations	14
	1.5	Lectur	re 5	16
		1.5.1	Prime Numbers	16
		1.5.2	Fundamental Theorem of Arithmetic	17
		1.5.3	Infinitude of Primes	18
	1.6	Lectu	re 6	20

		1.6.1	Prime Number Theorem	20
		1.6.2	Conjectures about Primes	21
		1.6.3	Goldbach Conjecture	22
	1.7	Exerci	ises	23
2	Con	ıgruen	ce	26
	2.1	Lectur	re 1	26
		2.1.1	Congruence	26
		2.1.2	Properties of Congruence	28
		2.1.3	Divisibility Criterion for 9 and 11	29
	2.2	Lectur	re 2	31
		2.2.1	Linear Congruence	31
	2.3	Lectur	re 3	34
		2.3.1	Simultaneous Linear Congruences	34
		2.3.2	Chinese Remainder Theorem	34
	2.4	Lectur	re 4	38
		2.4.1	System of Congruences with Non-coprime Moduli	38
	2.5	Lectur	re 5	41
		2.5.1	Linear Congruences Modulo Prime Powers	41
		2.5.2	Non-linear Congruences Modulo Prime Powers	42
		2.5.3	Hensel's Lemma	43
	2.6	Lectur	re 6	45
		2.6.1	Fermat's Little Theorem	45
		2.6.2	Wilson's Theorem	46
	2.7	Lectur	re 7	48
		2.7.1	Pseudo-primes	48
		2.7.2	Carmichael Numbers	50
	28	Everci	isas	52

3	Nu	Number Theoretic Functions			
	3.1	Lecture 1	4		
		3.1.1 Greatest Integer Function	4		
		3.1.2 Applications	7		
	3.2	Lecture 2	9		
		3.2.1 Euler's ϕ -function	9		
		3.2.2 Multiplicativity of Euler's ϕ -function 6	0		
		3.2.3 Euler's Theorem	1		
	3.3	Lecture 3	4		
		3.3.1 The RSA Cryptosystem 6	4		
	3.4	Lecture 4	8		
		3.4.1 Arithmetic Functions	8		
		3.4.2 Perfect Numbers	0		
	3.5	Lecture 5	2		
		3.5.1 Mobius Function	2		
		3.5.2 Mobius Inversion Formula	3		
	3.6	Lecture 6	7		
		3.6.1 Dirichlet Product	7		
	3.7	Exercises	2		
4	Pri	mitive Roots 8	5		
-	4.1	Lecture 1			
	1.1	4.1.1 Units Modulo an Integer			
		4.1.2 Order of a Unit Modulo an Integer			
		4.1.3 Primitive Roots			
	4.2	Lecture 2			
	4.4	4.2.1 Existence of Primitive Roots for Primes			
	12	Lecture 3			

		4.3.1	Primitive Roots for Powers of 2	92
		4.3.2	Primitive Roots for Powers of Odd Primes	93
		4.3.3	Characterization of Integers with Primitive Roots	94
		4.3.4	Application of Primitive Roots	95
	4.4	Exerci	ises	97
5	Qua	adratic	Residues	100
	5.1	Lectur	re 1	100
		5.1.1	Definition and Examples	100
		5.1.2	Euler's Criterion	101
		5.1.3	The Legendre Symbol	102
	5.2	Lectur	re 2	104
		5.2.1	Gauss Lemma	104
		5.2.2	An Application of Gauss Lemma	106
	5.3	Lectur	re 3	107
		5.3.1	Quadratic Reciprocity	107
	5.4	Lectur	re 4	111
		5.4.1	Quadratic Residues of Powers of an Odd Prime	111
		5.4.2	Quadratic Residues of Powers of 2	112
		5.4.3	Quadratic Residues of Arbitrary Moduli	113
	5.5	Lectur	re 5	115
		5.5.1	The Jacobi Symbol	115
		5.5.2	The Jacobi Symbol of -1 and $2 \dots \dots \dots \dots \dots \dots$	116
		5.5.3	Quadratic Reciprocity for the Jacobi Symbol	118
	5.6	Exerci	ises	120
6	Bin	ary Qı	uadratic Forms	122
	6.1	Lectur	re 1	122
		6.1.1	Definition and Examples	122

		6.1.2	Unimodular Substitution	. 123
		6.1.3	Equivalent Forms	. 124
		6.1.4	Proper Representation	. 125
	6.2	Lectur	re 2	. 127
		6.2.1	Discriminant of a Quadratic Form	. 127
		6.2.2	Definite and Indefinite Forms	. 128
	6.3	Lectur	re 3	. 130
		6.3.1	Proper Representation and Equivalent Forms	. 130
		6.3.2	Reduction of Binary Quadratic Forms	. 131
		6.3.3	Reduced Forms of a Given Discriminant	. 132
	6.4	Lectur	re 4	. 134
		6.4.1	Uniqueness of Equivalent Reduced Form	. 134
	6.5	Lectur	re 5	. 137
		6.5.1	Class Number	. 137
	6.6	Exerci	ises	. 139
7	Inte	egers o	f Special Forms	140
	7.1	Lectur	re 1	. 140
		7.1.1	Fermat Primes	. 140
		7.1.2	Mersenne Primes	. 141
	7.2	Lectur	re 2	. 144
		7.2.1	Primes Expressible as a Sum of Two Squares	. 144
		7.2.2	Integers Expressible as a Sum of Two Squares	. 146
	7.3	Lectur	re 3	. 148
		7.3.1	Sum of Three Squares	. 148
		7.3.2	Sum of Four Squares	. 149
		7.3.3	Waring's Problem	. 151
	7 4	Exerci	isos	153

8	Cor	ntinuec	d Fractions	155
	8.1	Lectur	re 1	155
		8.1.1	Finite Continued Fractions	155
		8.1.2	General Continued Fraction	157
	8.2	Lectur	re 2	159
		8.2.1	Euler's Rule	159
		8.2.2	Convergents	160
		8.2.3	Application in Solving Linear Diophantine Equations	162
	8.3	Lectur	re 3	163
		8.3.1	Infinite Continued Fractions	163
	8.4	Lectur	re 4	166
		8.4.1	Periodic Continued Fractions	166
		8.4.2	Quadratic Irrationals	167
		8.4.3	Purely Periodic Continued Fractions	167
	8.5	Lectur	re 5	169
		8.5.1	Conjugate of a Quadratic Irrational	169
		8.5.2	Reduced Quadratic Irrational	170
	8.6	Lectur	re 6	173
		8.6.1	Continued Fractions of Reduced Quadratic Irrationals	173
		8.6.2	Continued Fraction for \sqrt{N}	174
		8.6.3	Continued Fraction for Any Quadratic Irrational	175
	8.7	Lectur	re 7	177
		8.7.1	Best Rational Approximation to an Irrational	177
		8.7.2	A Sufficiently Close Rational is a Convergent	178
	8.8	Lectur	re 8	180
		8.8.1	Pell's Equation	180
		8.8.2	Fundamental Solution	182
	8.9	Exerc	ises	184

9	Rie	mann Z	Zeta Function	186		
	9.1	Lectur	e 1	. 186		
		9.1.1	Riemann Zeta Function	. 186		
		9.1.2	Convergence	. 187		
		9.1.3	Euler Product	. 189		
		9.1.4	Riemann Hypothesis	. 190		
	9.2	Lectur	e 2	. 191		
		9.2.1	Dirichlet Series	. 191		
		9.2.2	Euler Product for Dirichlet Series	. 192		
	9.3	Exerci	ses	. 195		
10	0 Additional Topics 1					
	10.1	Lectur	e 1	. 196		
		10.1.1	Lucas Test for Primality	. 196		
		10.1.2	Miller-Rabin Test for Primality	. 200		
	10.2	Lectur	e 2	. 202		
		10.2.1	Pollard's ρ -Method for Factorization	. 202		
		10.2.2	Pollard's $(p-1)$ -Method for Factorization	. 203		
	10.3	Lectur	e 3	. 205		
		10.3.1	Fermat's Factorization	. 205		
		10.3.2	Factorization by Continued Fraction	. 206		
	10.4	Lectur	e 4	. 209		
		10.4.1	Fermat's Conjecture	. 209		
		10.4.2	Pythagorean Triples	. 210		
		10.4.3	Method of Infinite Descent	. 211		
	10.5	Exerci	ses	. 213		
In	dex			215		

Notation

 $\mathbb{N}:$ the set of natural numbers, i.e., $\{1,\ 2,\ \cdots\}$

 \mathbb{Z} : the set of integers, i.e., $\{0, \pm 1, \pm 2, \cdots\}$

 \mathbb{Q} : the set of rational numbers, i.e., $\{\frac{m}{n} \mid m, n \in \mathbb{Z}, n \neq 0\}$

 \mathbb{R} : the set of real numbers

For a real number x, $\mid x \mid$ denotes the absolute value of x, i.e., $\mid x \mid = x$ if $x \geq 0$ and $\mid x \mid = -x$ if x < 0.

#S: the number of elements is a set S.

Re(s): the real part of a complex number s.

Module 1

Divisibility and Primes

1.1 Lecture 1

Preamble: In this lecture, we will look into the notion of divisibility for the set of integers. Then we will discuss the division algorithm for integers, which is crucial to most of our subsequent results.

Keywords: divisibility, well-ordering principle, induction, division algorithm.

1.1.1 Introduction

We will start by discussing the notion of divisibility for the set \mathbb{Z} of integers. We will be frequently using the fact that both addition and multiplication in \mathbb{Z} are associative, commutative and we also have distributivity property a(b+c) = ab + ac for any integers a, b, c. These operations give the structure of a commutative ring to the set \mathbb{Z} . Divisibility can be studied more generally in any commutative ring, for example, the ring of polynomials with rational coefficients. However, you need not be familiar with concepts of ring theory to understand these lectures as our focus will be on integers.

DEFINITION 1.1. If a and $b \neq 0$ are integers and a = qb for some integer q, then we say that b divides a, or that a is a multiple of b, or that b is a factor/divisor of a. If b divides a, we denote it by $b \mid a$, and if b does not divide a we denote it by $b \nmid a$.

For example, $6 \mid 36$ but $7 \nmid 36$. Note that $b \mid 0$ for any non-zero integer b and $1 \mid a$

for any integer a. When we write $b \mid a$, it is tacitly assumed that b is a non-zero integer. We can easily deduce the following properties from the definition of divisibility itself.

PROPOSITION 1.2. Let a, b, c d be any non-zero integers.

- 1. If $a \mid b$ and $b \mid c$ then $a \mid c$.
- 2. If $a \mid b$ and $c \mid d$ then $ac \mid bd$.
- 3. If m is a non-zero integer then $a \mid b$ if and only if $ma \mid mb$.
- 4. If d is a non-zero integer such that $d \mid a$ and $a \neq 0$ then $|d| \leq |a|$.
- 5. If a divides x and y then a divides cx + dy for any integers c, d.
- 6. $a \mid b$ and $b \mid a$ if and only if $a = \pm b$.

Proof: 1. Suppose b = na and c = mb, where $n, m \in \mathbb{Z}$. Then c = m(na) = (mn)a and so $a \mid c$.

- 2. Suppose b = na and d = mc where $n, m \in \mathbb{Z}$. Then bd = (na)(mc) = (mn)(ac), i.e., $ac \mid bd$.
- 3. Suppose b=na. Then mb=m(na)=n(ma) and $ma\mid mb$. Conversely, let mb=d(ma)=m(da). Then m(b-da)=0. But $m\neq 0$, hence b=da, i.e., $b\mid a$.

4.

$$\begin{aligned} a &= dq &\implies |a| = |dq| = |d| \ |q| \\ a &\neq 0 \implies q \neq 0 \implies |a| = |d| \ |q| \geq |d|. \end{aligned}$$

5.

$$x = an,$$
 $y = am$
 $\implies cx + dy = c(an) + d(am)$
 $= a(cn + dm).$

6. By (4) above,

$$\begin{array}{lll} a \mid b & \Longrightarrow & |a| \leq |b|, \\ b \mid a & \Longrightarrow & |b| \leq |a| \\ & \Longrightarrow & |a| = |b|, \\ & \Longrightarrow & a = \pm b. & \Box \end{array}$$

1.1.2 Well-ordering Principle

We begin this section by mentioning the well-ordering principle for non-negative integers.

Well-ordering Principle: If S is a non-empty set of non-negative integers, then S has a least element, i.e., there is an integer $c \in S$ such that c < x for all $x \in S$.

The principle of mathematical induction follows directly from well-ordering principle. We will use the principle of induction in several arguments later.

THEOREM 1.3. (Principle of Induction): Let S be set of positive integers such that

1.
$$1 \in S$$

$$2. k \in S \implies k+1 \in S$$

Then S is the the set \mathbb{N} of all natural numbers.

Proof: Consider the complement S' of the set S in \mathbb{N} :

$$S' = \mathbb{N} - S$$
.

We want to show that S' is the empty set. Suppose S' is non-empty. Then by well-ordering principle it has a least element, say n'. Clearly, $n' \neq 1$ as $1 \in S$. Therefore n' - 1 is a natural number which is not in S'. Hence $n' - 1 \in S$. By hypothesis, $n' - 1 \in S \implies n' \in S$. Therefore, $n' \in S \cap S'$, which is a contradiction. Therefore S' must be empty, and $S = \mathbb{N}$. \square

There is a stronger form of the principle of induction. The stronger version says that if $S \subset \mathbb{N}$ such that

- 1. $1 \in S$ and
- 2. 1, 2, \cdots , $k \in S$ implies $k + 1 \in S$ for any natural number k,

then $S = \mathbb{N}$. It is an easy exercise to see that both the versions are equivalent. We often use the induction principle in the following way. If a mathematical statement is (i) valid for k = 1, and (ii) valid for k + 1 if it is valid for k (for all positive integers from 1 to k in the stronger version), then the statement is valid for all positive integers.

Example: Show that $3^n \ge 2n + 1$ for all natural number n.

Proof: Clearly the statement is true for n=1. Suppose it is true for n=k. Then,

$$3^{k+1} = 3 \cdot 3^k$$

 $\geq 3 \cdot (2k+1) = 6k+3$
 $> 2k+3 = 2(k+1) + 1.$

Thus the statement hold for k+1 if it hold for k. Hence the statement holds for all integers n.

1.1.3 Division Algorithm

The division algorithm for integers is a fundamental property that we will utilize time and again. The division algorithm follows from the well-ordering principle. It can be stated as follows:

THEOREM 1.4. If a ad b are integers with $b \neq 0$, then there is a unique pair of integers q and r such that

$$a = qb + r$$
 where $0 \le r < |b|$.

Proof: First assume that b > 0. Let

$$S = \{a - nb \mid n \in \mathbb{Z}, \ a - nb \ge 0\}.$$

The set S is clearly non-empty, as it contains the element

$$a + |a|b \ge a + |a| \ge 0$$
 (with $n = -|a|$).

By the well-ordering principle, S has a least element r so that r = a - qb for some integer q. So we have a = qb + r with $r \ge 0$. It is now enough to show that r < b. If $r \ge b$, then $r - b = a - (q + 1)b \ge 0$ and r - b is also contained in S, which contradicts the fact that r is the least element of S. Hence, we must have $0 \le r < b$.

To prove uniqueness, suppose $a = qb + r = q_1b + r_1$ with $0 \le r < b$ and $0 \le r_1 < b$. If $q \ne q_1$, we can assume $q > q_1$ without loss of generality. Then, $r - r_1 = (q - q_1)b \ge 1 \cdot b = b$. But r and r_1 are both non-negative and are strictly less than b, hence $r - r_1$ can not be bigger than b. So, $q = q_1$ and hence $r = r_1$.

For the case b < 0, simply apply the result for -b to obtain unique integers q and r such that a = q(-b) + r = (-q)b + r where $0 \le r < -b = |b|$.

For example, with a = 54 and b = -24, we have

$$54 = (-2)(-24) + 6$$
, with $0 \le 6 < |-24|$.

Application: If n is the square of an odd integer, then n leaves the remainder 1 when divided by 8, i.e., a perfect odd square must be of the form 8k + 1.

Proof: Let $n=(2a+1)^2=4a^2+4a+1=4a(a+1)+1$. Now one of a or a+1 must be even, hence n=8k+1 for some integer k. \square