O SKUPOVIMA

Do pojma skupa može se vrlo lako doći empirijskim putem , posmatrajući razne grupe, skupine, mnoštva neke vrste objekata , stvari, živih bića i dr. Tako imamo skup stanovnika nekog grada, skup knjiga u biblioteci, skup klupa u učionici itd.

Tvorac teorije skupova je **Georg Kantor**, nemački matematičar, koji je prvi dao "opisnu" definiciju skupa. Mnogi drugi matematičari su takođe pokušavali da definišu skup. **Danas, po savremenom shvatanju, pojam skupa se ne definiše, već se usvaja intuitivno kao celina nekih razičitih objekata**. Predmeti iz kojih je skup sastavljen zovu se **elementi** skupa. Postoje skupovi sa konačno mnogo elemenata, koje nazivamo **konačnim skupovima**, i skupovi sa beskonačno mnogo elemenata, odnosno **beskonačni skupovi.** Tako, na primer , skup stanovnika na zemlji predstavlja jedan konačan skup, dok skup svih celih brojeva sadrži beskonačno mnogo elemenata.

Skupove najčešće obeležavamo velikim slovima A,B ,....X, Y,... , a elemente skupa malim slovima a,b,...,x,y,...

Ako je x element skupa X, tu činjenicu ćemo označavati sa $x \in X$, a ako ne pripada skupu X, označićemo sa $x \notin X$. Oznake ćemo čitati: "x pripada skupu X" ili "x je element skupa X". Oznaku $x \notin X$ ćemo čitati "x ne pripada skupu X" ili "x nije element skupa X" Postavimo sada pitanje: "Koliko elemenata ima skup prirodnih brojeva većih od jedan a manjih od dva"? Jasno je da takav skup nema ni jednog elementa. Za takav skup kažemo da je **prazan** i obeležava se sa \emptyset .

Međutim, desiće nam se nekad da nije zgodno, a ni moguće, da neposredno navedemo sve elemente nekog skupa. Stoga se koristi i ovakvo zapisivanje skupova: $\{x \mid S(x)\}\$ ili, isto $\{x \mid x \text{ ima svojstvo S}\}\$, što bi značilo"skup svih x koji imaju svojstvo S". Na primer skup $X = \{7,8,9,10,11,12\}$ možemo zapisati i na sledeći način:

Za neka dva skupa kažemo da su **jednaki** ako su svi elementi jednog skupa ujedno elementi drugog skupa, i obrnuto, svi elementi drugog skupa su elementi prvog skupa. Zapisujemo: A=B ako i samo ako ($\forall x$) ($x \in A \Leftrightarrow x \in B$), na primer po definiciji biće {a,a,a,b,b,c}={a,b,b,c,c,c}={a,b,c}.

Dakle, svaki član skupa je prisutan jednim pojavljivanjem, a sva ostala njegova pojavljivanja, ukoliko ih ima, nisu važna, i, uz to, ni redosled navođenja članova nije bitan.

Kažemo da je skup B **podskup** skupa A, što označavamo B⊂A, ako su svi elementi skupa B takođe i elementi skupa A, tj.

$$B \subset A$$
 ako i samo ako $(\forall x) (x \in B \Rightarrow x \in A)$

Relacija uvedena ovom definicijom se zove relacija **inkluzije.** Ovde moramo voditi računa da se svi skupovi ne mogu upoređivati.

Prazan skup je podskup svakog skupa.

 $X = \{x \mid x \in N \land 6 < x < 13 \}.$

OPERACIJE SA SKUPOVIMA

- UNIJA
- PRESEK
- RAZLIKA
- SIMETRICNA RAZLIKA
- PARTITIVNI SKUP
- DEKARTOV PROIZVOD
- KOMPLEMENT SKUPA

UNIJA

Skup svih elemenata koji su elementi bar jednog od skupova A ili B , zove se unija skupova A i B i označava se sa $A \cup B$.

$$A \cup B = \{x | x \in A \lor x \in B\}$$

Na dijagramu bi to izgledalo ovako:

Primer: Ako je A= $\{1,2,3\}$ i B= $\{2,3,4\}$ A \cup B= $\{1,2,3,4\}$

PRESEK

Skup svih elemenata koji su elementi skupa A i skupa B zove se presek skupova A i B i obeležava se sa $A\cap B$.

$$A \cap B = \{x | x \in A \land x \in B\}$$

Graficki prikaz bi bio:

Primer: Ako je $A=\{1,2,3\}$ i $B=\{2,3,4\}$ $A \cap B=\{2,3\}$

RAZLIKA

Skup svih elemenata koji su elementi skupa A ali nisu elementi skupa B zove se razlika redom skupova A i B u oznaci A\B.

$$A \setminus B = \{ x \mid x \in A \land x \notin B \}$$

Naravno možemo posmatrati i skup B\A, to bi bili svi elementi skupa B koji nisu u A. Na dijagramima to bi izgledalo ovako:

Za nas primer je $A\B=\{1\}$

Za nas primer je $B A = \{4\}$

B∖A

SIMETRIČNA RAZLIKA

Skup $(A \setminus B) \cup (B \setminus A)$ naziva se simetrična razlika i najčešće se obeležava sa Δ .

 $\mathbf{A} \Delta \mathbf{B} = (\mathbf{A} \backslash \mathbf{B}) \cup (\mathbf{B} \backslash \mathbf{A})$. Na dijagramu je:

Za naš primer je $\mathbf{A} \Delta \mathbf{B} = \{1,4\}$

PARTITIVNI SKUP

Skup svih podskupova skupa A naziva se **partitivni skup** skupa A i obeležava se sa P(A).

Primer:

Ako je A=
$$\{1,2,3\}$$
, onda je P(A)= $\{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$

KOMPLEMENT SKUPA

Unija, presek i razlika su binarne skupovne operacije, dok je komplement skupa unarna operacija. To je skup svih elemenata koji nisu sadržani u posmatranom skupu.

Komplement najčešće obeležavamo sa \overline{A}

Na slici bi bilo:

$$\overline{A} = \{ \mathbf{x} \mid \mathbf{x} \notin \mathbf{A} \}$$

Primer: Ako je $A=\{1,3,7\}$ i $B=\{1,2,3,4,5,6,7\}$ onda je :

$$\overline{A} = \{2,4,5,6\}$$

DEKARTOV PROIZVOD

Čuveni francuski filozof i matematičar Dekart je u matematiku uveo pojam pravouglog koordinatnog sistema, koji se i danas, u njegovu čast, naziva Dekartovim koordinatnim sistemom. U tom sistemu svakoj tački ravni odgovara jedan uređeni par realnih brojeva

(x,y) i, obrnuto, svakom paru brojeva (x,y) odgovara tačno jedna tačka u koordinatnoj ravni. Prvi broj x u tom paru nazivamo prvom koordinatom (apscisom), a drugi y, drugom koordinatom (ordinatom). Za uređene parove je karakteristična osobina:

(x,y)=(a,b) ako i samo ako $x=a \land y=b$

Dekartov proizvod skupova je skup:

$$A \times B = \{(a,b) \mid a \in A, b \in B\}.$$

Treba voditi računa da $\mathbf{A} \times B \neq B \times \mathbf{A}$ Primer:

Ako je $M=\{1,2,3\}$ i $N=\{A,B\}$ onda je:

 $M \times N = \{(1,A),(1,B),(2,A),(2,B),(3,A),(3,B)\}$. Na slici:

ZADACI

1. Dokazati da je prazan skup podskup svakog skupa.

Dokaz:

Mi ustvari trebamo dokazati da važi: $\emptyset \subset A \Leftrightarrow (\forall x)(x \in \emptyset \Rightarrow x \in A)$

Kako prazan skup nema elemenata, to je istinitosna vrednost $x \in \emptyset$ sigurno netačna.

Dakle $\perp \Rightarrow x \in A$, podsetimo se tablice za implikaciju:

p	q	$p \Rightarrow q$	
Т	Т	T	
Т	Τ	Τ	
	Т	Т	
	Т	T	

Implikacija je netačna jedino u slučaju kada je iskaz p tačan i iskaz q netačan.

– Iz laži sledi sve, odnosno iz netačnog sledi sve(uvek tačno)

Dakle, prazan skup je podskup svakog skupa.

2. Dati su skupovi: $A=\{x \mid x \text{ se sadrzi u } 12, x \text{ pripada } N\}$, $B=\{x \mid x \text{ se sadrzi u } 20, x \text{ pripada } N\}$ i skup $C=\{x \mid x \text{ se sadrzi u } 32, x \text{ pripada } N\}$.

Odrediti : $A\setminus (B \cup C)$, $A \cup (B \cap C)$, i $A\setminus (B\setminus C)$

Resenje:

Najpre moramo odrediti skupove A,B, i C. Kada se x sadrži u nekom broju to drugim rečima znači da se taj broj može podeliti sa x.

Kako se broj 12 može podeliti sa 1,2,3,4,6,12 to je:

$$A = \{1,2,3,4,6,12\}, \ slično je \ B = \{1,2,4,5,10,20\} \ i \ C = \{1,2,4,8,16,32\}$$

Odredimo A\(B \cup C). Najpre je B \cup C=\{1,2,4,5,8,10,16,20,32\}. Sada tražimo one koji su elementi skupa A a ne pripadaju B \cup C. To su 3,6,12, pa je A\(B \cup C)=\{3,6,12\}

Odredimo $A \cup (B \cap C)$. Najpre naravno $B \cap C$, to su elementi koji su zajednički za ova dva skupa, dakle: $B \cap C = \{1,2,4\}$. Dalje tražimo uniju skupa A i ovog skupa, to jest sve elemente iz oba skupa: $A \cup (B \cap C) = \{1,2,3,4,6,12\}$.

$$A\(B\C) = \{1,2,3,4,6,12\} \setminus \{\{1,2,4,5,10,20\} \setminus \{1,2,4,8,16,32\}\}$$

$$= \{1,2,3,4,6,12\} \setminus \{\{5,10,20\} \}$$

$$= \{1,2,3,4,6,12\} = A$$

3. Dati su skupovi A= $\{1,2,3,4,5\}$ i B= $\{4,5,6,7\}$. Odrediti skup X tako da bude: X\B= \varnothing i A\X = $\{1,2,3\}$

Rešenje:

Izgleda da ćemo ovde imati više mogućnosti za traženi skup X.

Kako je $X \mid B = \emptyset$, to nam govori da su svi elementi skupa B potencijalni elementi skupa X jer nema takvih elemenata da su u X a nisu u skupu B.

 $A\setminus X = \{1,2,3\}$ nam govori da u skupu X sigurno nisu elementi $\{1,2,3\}$. Dakle:

 $X=\{4,5\}$ ili $X=\{4,5,6\}$ ili $X=\{4,5,7\}$ ili $X=\{4,5,6,7\}$

4. Na jednom kursu stranih jezika svaki slušalac uči bar jedan od tri strana jezika(engleski, francuski i nemački) i to: 18 slušalaca uči francuski, 22 uči engleski, 15 slušalaca uči nemački, 6 slušalaca uči engleski i francuski, 11 slušalaca engleski i nemački, 1 slušalac uči sva tri jezika. Koliko ima slušalaca na tom kursu i koliko od njih uči samo dva jezika?

Rešenje: Najpre zapišimo pregledno podatke:

- 18 slušalaca uči francuski
- 22 uči engleski
- 15 slušalaca uči nemački
- 6 slušalaca uči engleski i francuski
- 11 slušalaca engleski i nemački
- 1 slušalac uči sva tri jezika

Najbolje je upotrebiti Venov dijagram sa tri skupa(njega popunjavamo tako što popunimo presek sva tri skupa, pa preseke po dva skupa, i na kraju, elemente koji pripadaju samo po jednom skupu)

Prvo upisemo 1 u preseku sva tri skupa.(slika 1.)

Zatim presek Francuzi i Englezi, ali tu ne pisemo 6, vec 6-1=5, onda presek Englezi i Nemci 11-1=10.(slika 2.)

Dalje je ostalo 18-5-1=12 koji uče samo francuski, 22-10-5-1=6 koji uče engleski i na kraju 15-10-1=4 koji uce nemacki. (slika 3.)

Broj slušaoca je 12+5+6+1+10+4=38, a broj onih koji uče samo dva jezika je 10+5=15

5. Dokazati skupovnu jednakost:

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$

Ovde uvek krećemo isto ($\forall x$) x pripada levoj strani, = zamenimo sa \Leftrightarrow , pa x pripada desnoj strani. Koristimo definicije skupovnih operacija dok potpuno ne rastavimo obe strane. Dalje preko logickih operacija dokažemo da je nastala formula tautologija.

Pazi: = menjamo sa \Leftrightarrow , \cup menjamo sa \vee , \cap menjamo sa \wedge , itd. Dokaz:

$$(\forall x) (x \in (A \cup B) \cap C) \Leftrightarrow (x \in (A \cap C) \cup (B \cap C))$$

$$(x \in (A \cup B) \land x \in C) \Leftrightarrow (x \in (A \cap C) \lor x \in (B \cap C))$$

$$((x \in A \lor x \in B) \land x \in C) \Leftrightarrow ((x \in A \land x \in C) \lor (x \in B \land x \in C))$$
neka je: $p = x \in A$

$$q = x \in B$$

$$r = x \in C$$

Dobili smo formulu: **F:** $((p \lor q) \land r) \Leftrightarrow ((p \land r) \lor (q \land r))$ Nju sad moramo dokazati preko tablice i upotrebom logickih operacija:

p	q	r	$p \vee q$	$(p \vee q) \wedge r$	p∧r	q∧r	(p∧r)	F
							$\vee (q \wedge r)$	
T	T	T	T	T	T	T	T	T
T	T		T	工		1		T
T		T	T	T	T	1	T	T
T			T	工		1		T
	T	T	T	T		T	T	T
	T		T	工		1		T
		T		工				T
\perp			1		1	1		T

Formula JESTE TAUTOLOGIJA, pa je time dokaz završen.

6. Dokazati skupovnu jednakost:

$$C\setminus(A\cap B)=(C\setminus A)\cup(C\setminus B)$$

Dokaz:
$$(\forall x)(x \in C \setminus A \cap B)) \Leftrightarrow (x \in (C \setminus A) \cup (C \setminus B))$$

 $(x \in C \land x \notin (A \cap B)) \Leftrightarrow (x \in (C \setminus A) \lor x \in (C \setminus B))$
 $(x \in C \land \neg (x \in A \land x \in B)) \Leftrightarrow (x \in C \land \neg (x \in A)) \lor (x \in C \land \neg (x \in B))$

neka je:
$$p=x \in A$$

 $q=x \in B$
 $r=x \in C$

F:
$$(r \land \neg (p \land q)) \Leftrightarrow ((r \land \neg p) \lor (r \land \neg q))$$

Ovo dokazujemo tablicno:

p	q	r	¬р	$\neg q$	$p \wedge q$	一	$r \wedge \neg (p \wedge q)$	$r \land \neg p$	$r \land \neg q$	$(r \land \neg p)$	F
						$(p \wedge q)$				$\vee (r \wedge \neg q)$	
T	T	T	1	1	T		上	1	上	上	T
T	T	\perp	1	1	T		上	1	上	上	T
T	\perp	T	1	T	上	T	T		T	T	T
T	\perp	\perp		T	上	T	上	上			T
	T	T	T		上	T	T	T		T	T
	T	\perp	T		上	T	上	1		上	T
L	\perp	T	T	T	上	T	T	T	T	T	T
	\perp	\perp	T	T	上	T	上	上		工	T

Dakle ova formula jeste TAUTOLOGIJA, pa je početna skupovna jednakost tačna.