

FONCTIONS D'UNE VARIABLE RÉELLE: DÉRIVATION

Version 1

Dr Euloge KOUAME © UVCI

Septembre 2017

Table des matières

Objecti	ifs	5
I - Défi	initions de la dérivabilité	7
А	. Dérivée en un point	
В	. Autres formulations de la dérivabilité	8
С	. Exercice	8
II - Cal	lcul des dérivées	11
А	. Somme, Produit	11
В	. Dérivée de fonctions usuelles	11
С	. Composition	12
D	. Exercice	12
III - E>	ktremum et Théorèmes fondamentaux	15
А	. Extremum local	15
В	. Théorème de Rolle	16
С	. Théorème des accroissements finis	16
D	. Fonction monotonie et dérivée	17
E	. Règle de l'Hospital	17
F.	Exercice	18
Solutio	n des exercices	19
Bibliog	raphie	21
Webog	raphie	23

À la fin de cette leçon, vous serez capable de :

- Comprendre la notion de dérivée et son interprétation ;
- Calculer les dérivées de fonctions ;
- **Utiliser** les théorèmes liés à la dérivabilité pour résoudre des problèmes de calcul.

Dérivée en un point	7
Autres formulations de la dérivabilité	8
Exercice	8

A. Dérivée en un point

Soit $f: I \to R$ une fonction définie sur un intervalle I de R. Soit $x_0 \in I$.

Définition : Définition 1.

f est **dérivable en x_0** si **le taux d'accroissement** $\frac{f(x)-f(x_0)}{x-x_0}$ a une limite finie

lorsque x tend vers x_0 .

La limite s'appelle alors le **nombre dérivé** de f en x_0 et est noté $f'(x_0)$. Ainsi

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Définition : Définition 2.

f est **dérivable sur I** si f est dérivable en tout point $x_0 \in I$. La fonction $x \mapsto f'(x)$ est la **fonction dérivée** de f, elle se note f' ou df/dx.

Exemple

La fonction définie par
$$f(x)=x^2$$
 est dérivable en tout point $x_0\in\mathbb{R}$. En effet :
$$\frac{f(x)-f(x_0)}{x-x_0}=\frac{x^2-x_0^2}{x-x_0}=\frac{(x-x_0)(x+x_0)}{x-x_0}=x+x_0\xrightarrow[x\to x_0]{}2x_0.$$

On a même montré que le nombre dérivé de f en x_0 est $2x_0$, autrement dit : f'(x) = 2x.

B. Autres formulations de la dérivabilité

Proposition 1.

- f est dérivable en x_0 si et seulement si $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}$ existe et est finie.
- f est dérivable en x_0 si et seulement s'il existe $\ell \in \mathbb{R}$ (qui sera $f'(x_0)$) et une fonction $\epsilon : I \to \mathbb{R}$ telle que $\epsilon(x) \xrightarrow[x \to x_0]{} 0$ avec

$$f(x) = f(x_0) + (x - x_0)\ell + (x - x_0)\epsilon(x).$$

Proposition 2.

Soit I un intervalle ouvert, $x_0 \in I$ et soit $f : I \to R$ une fonction.

- Si f est dérivable en x_0 alors f est continue en x_0 .
- Si f est dérivable sur I alors f est continue sur I.

Remarque

La réciproque est **fausse** : par exemple, la fonction valeur absolue est continue en 0 mais n'est pas dérivable en 0.

En effet, le taux d'accroissement de f(x) = |x| en $x_0 = 0$ vérifie :

$$\frac{f(x) - f(0)}{x - 0} = \frac{|x|}{x} = \begin{cases} +1 & \text{si } x > 0\\ -1 & \text{si } x < 0 \end{cases}$$

Il y a bien une limite à droite (qui vaut +1), une limite à gauche (qui vaut -1) mais elles ne sont pas égales :

il n'y a pas de limite en 0. Ainsi f n'est pas dérivable en x = 0.

Cela se lit aussi sur le dessin, il y a une demi-tangente à droite, une demi-tangente à gauche, mais elles ont des directions différentes.

C. Exercice

Question 1

Montrer que la fonction f (x) = x3 est dérivable en tout point $x_0 \in R$ et que f'(x_0) = $3x2_0$.

Indice:

appliquer la définition et effectuer les calculs

Question 2

Montrer que la fonction f (x) = \sqrt{x} est dérivable en tout point $x_0 > 0$ et que f'(x_0) = $1/2\sqrt{x_0}$

Définitions de la dérivabilité

Question 3

Montrer que la fonction f (x) = \sqrt{x} (qui est continue en $x_0 = 0$) n'est pas dérivable en $x_0 = 0$.

Calcul des dérivées

Somme, Produit	11
Dérivée de fonctions usuelles	11
Composition	12
Exercice	12

A. Somme, Produit

Proposition 3.

Soient f, $g:I\to R$ deux fonctions dérivables sur I. Alors pour tout $x\in I$:

- (f+g)'(x) = f'(x) + g'(x)
- $(\lambda f)'(x) = \lambda f'(x)$ où λ est un réel fixé
- $(f \times g)'(x) = f'(x)g(x) + f(x)g'(x)$
- $\left(\frac{f}{f}\right)'(x) = -\frac{f'(x)}{f(x)^2} \quad (\text{si } f(x) \neq 0)$ $\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) f(x)g'(x)}{g(x)^2} \quad (\text{si } g(x) \neq 0)$

B. Dérivée de fonctions usuelles

Le tableau de gauche est un résumé des principales formules à connaître, x est une variable. Le tableau de droite est celui des compositions (voir paragraphe suivant), u représente une fonction $x \mapsto u(x)$.

Fonction	Dérivée
x^n	nx^{n-1} $(n \in \mathbb{Z})$
1 x	$-\frac{1}{\chi^2}$
\sqrt{X}	$\frac{1}{2}\frac{1}{\sqrt{x}}$
x^a	$\alpha x^{\alpha-1} (\alpha \in \mathbb{R})$
e^x	e^x
$\ln x$	1/x
cos x	$-\sin x$
sin x	cosx
tan x	$1 + \tan^2 x = \frac{1}{\cos^2 x}$

Fonction	Dérivée
u^n	$nu'u^{n-1} (n \in \mathbb{Z})$
$\frac{1}{u}$	$-\frac{u'}{u^2}$
\sqrt{u}	$\frac{1}{2} \frac{u'}{\sqrt{u}}$
u^{α}	$\alpha u'u^{\alpha-1} (\alpha \in \mathbb{R})$
e^{u}	u'e ^u
$\ln u$	$\frac{u'}{u}$
cosu	$-u'\sin u$
sin u	u' cos u
tan u	$u'(1+\tan^2 u) = \frac{u'}{\cos^2 u}$

Remarque

Si vous devez dériver une fonction avec un exposant dépendant de x il faut absolument repasser à la forme exponentielle.

Par exemple si $f(x) = 2^x$ alors on réécrit d'abord $f(x) = e^{x \ln 2}$ pour pouvoir calculer $f'(x) = \ln 2$. $e^{x \ln 2} = \ln 2$.

C. Composition

Proposition 4.

Si f est dérivable en x et g est dérivable en f (x) alors go f est dérivable en x de dérivée :

$$(g \circ f)'(x) = g'(f(x)). f'(x)$$

Exemple

Calculons la dérivée de $ln(1 + x^2)$. Nous avons g(x) = ln(x) avec g'(x) = 1/x; et $f(x) = 1 + x^2$ avec f'(x) = 2x. Alors la dérivée de $ln(1 + x^2) = g$ o f(x) est : $(g \circ f)'(x) = g'(f(x))$. $f'(x) = g'(1 + x^2)$. $2x = 2x/(1 + x^2)$

Corollaire 1.

Soit I un intervalle ouvert. Soit $f:I\to J$ dérivable et bijective dont on note $f\text{-}1:J\to I$ la bijection réciproque.

Si f' ne s'annule pas sur I alors f-1 est dérivable et on a pour tout $X \in J$:

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$

Dérivées successives

Soit $f: I \to R$ une fonction dérivable et soit f' sa dérivée. Si la fonction $f': I \to R$ est aussi dérivable on note f'' = (f')' la **dérivée seconde** de f. Plus généralement on note : $f^{(0)} = f$, $f^{(1)} = f'$, $f^{(2)} = f''$ et $f^{(n+1)} = (f^{(n)})'$.

Si la **dérivée n-ième** $f^{(n)}$ existe on dit que f est **n fois dérivable**.

D. Exercice

Question 1

calcluer les derivees des fonctions suivantes :

$$f_1(x) = x \ln x, \quad f_2(x) = \sin(1/x), \quad f_3(x) = \sqrt{1 + \sqrt{1 + x^2}},$$

$$f_4(x) = \left(\ln(\frac{1+x}{1-x})\right)^{\frac{1}{3}}, f_5(x) = x^x$$

Question 2

[Solution n°1 p 19]

Soit $f:]1,+\infty[U]-1,+\infty[$ définie par $f(x)=x\ln(x)-x$. f est une bijection (vous pouvez le prouver). Notons $g=f^{-1}$. Calculer g(0) et g'(0).

Question 3

Calculer la dérivée seconde de f (x) = ln(1 + x)

Extremum local	15
Théorème de Rolle	16
Théorème des accroissements finis	16
Fonction monotonie et dérivée	17
Règle de l'Hospital	17
Evercice	18

A. Extremum local

Définition

Soit $f: I \to R$ une fonction définie sur un intervalle I.

- On dit que x_0 est un **point critique** de f si $f'(x_0) = 0$.
- On dit que f admet un maximum local en x_0 (resp. un minimum local en x_0) s'il existe un intervalle ouvert J contenant x_0 tel que

pour tout $x \in I \cap J$, $f(x) \leq f(x_0)$

(resp. $f(x) \ge f(x_0)$).

On dit que f admet un **extremum local en x_0** si f admet un maximum local ou un minimum local en ce point.

Théorème 1.

Soit I un intervalle ouvert et $f:I \rightarrow R$ une fonction dérivable. Si f admet un maximum local (ou un minimum local) en x_0 alors $f'(x_0) = 0$.

Remarque

En d'autres termes, un maximum local (ou un minimum local) x₀ est toujours un point critique. Géométriquement, au point $(x_0, f(x_0))$ la tangente au graphe est horizontale.

Remarque

- 1. La réciproque du théorème 1 est fausse. Par exemple la fonction $f: R \to R$, définie par $f(x) = x^3$ vérifie f'(0) = 0 mais $x_0 = 0$ n'est ni maximum local ni un minimum local.
- 2. L'intervalle du théorème 1 est ouvert. Pour le cas d'un intervalle fermé, il faut faire attention aux extrémités.

Par exemple si $f:[a,b] \to R$ est une fonction dérivable qui admet un extremum en x_0 , alors on est dans l'une des situations suivantes :

- $x_0 = a$,
- $x_0 = b$,
- x₀∈]a, b[et dans ce cas on a bien f'(x₀) = 0 par le théorème 1.
 Aux extrémités on ne peut rien dire pour f'(a) et f'(b), comme le montre les différents maximums sur les dessins suivants.

3. Pour déterminer $\max_{[a,b]} f$ et $\min_{[a,b]} f$ (où $f : [a,b] \to R$ est une fonction dérivable) il faut comparer les valeurs de f aux différents points critiques et en a et en b.

B. Théorème de Rolle

Théorème 2.

Soit $f:[a,b] \rightarrow R$ telle que

- f est continue sur [a, b],
- f est dérivable sur]a, b[,
- f(a) = f(b).

Alors il existe $c \in]a, b[$ tel que f'(c) = 0.

C. Théorème des accroissements finis

Théorème 3.

Soit $f:[a,b] \to R$ une fonction continue sur [a,b] et dérivable sur [a,b] et derivable sur [a,b] et derivable sur [a,b] et dérivable sur [a,b] et derivable sur

$$f(b) - f(a) = f'(c) (b - a)$$

Interprétation géométrique : il existe au moins un point du graphe de f où la tangente est parallèle à la droite (AB) où A = (a, f(a)) et B = (b, f(b)).

D. Fonction monotonie et dérivée

Corollaire 2.

Soit $f:[a,b] \rightarrow R$ une fonction continue sur [a,b] et dérivable sur [a,b].

- 1. $\forall x \in]a, b[f'(x) \ge 0 \iff f \text{ est croissante};$
- 2. $\forall x \in]a, b[f'(x) \leq 0 \iff f \text{ est décroissante};$
- 3. $\forall x \in]a, b[f'(x) = 0 \iff f \text{ est constante};$
- 4. $\forall x \in]a, b[f'(x) > 0 \implies f \text{ est strictement croissante};$
- 5. $\forall x \in]a, b[f'(x) < 0 \implies f \text{ est strictement décroissante.}$

Remarque

La réciproque au point (4) (et aussi au (5)) est fausse. Par exemple la fonction x3 est strictement croissante et pourtant sa dérivée s'annule en 0.

E. Règle de l'Hospital

Corollaire 4 (Règle de l'Hospital).

Soient f, $g: I \rightarrow R$ deux fonctions dérivables et soit $x_0 \in I$. On suppose que

- $f(x_0) = g(x_0) = 0$,
- $\forall x \in I \setminus \{x_0\}, g'(x) \neq 0$

Si
$$\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = \ell$$
 ($\in \mathbb{R}$) alors $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \ell$.

Méthode

- 1. La limite / peut être finie ou infinie.
- 2. La règle de l'Hospital n'est à utiliser qu'en cas d'indétermination de la forme " 0/0"

Exemple

Calculer la limite en 1 de $\frac{\ln(x^2+x-1)}{\ln(x)}$. On vérifie que :

- $f(x) = \ln(x^2 + x 1)$, f(1) = 0, $f'(x) = \frac{2x+1}{x^2+x-1}$,
- $g(x) = \ln(x)$, g(1) = 0, $g'(x) = \frac{1}{x}$,
- Prenons $I =]0, 1], x_0 = 1$, alors g' ne s'annule pas sur $I \setminus \{x_0\}$.

$$\frac{f'(x)}{g'(x)} = \frac{2x+1}{x^2+x-1} \times x = \frac{2x^2+x}{x^2+x-1} \xrightarrow{x \to 1} 3.$$

Dono

$$\frac{f(x)}{g(x)} \xrightarrow[x \to 1]{} 3$$

F. Exercice

Question 1

[Solution n°2 p 19]

Calculer en quel point la fonction $f(x) = ax^2 + bx + c$ admet un extremum local.

Question 2

Soit $f:[0,2] \to R$ une fonction deux fois dérivable telle que f(0) = f(1) = f(2) = 0. Montrer qu'il

existe c_1 , c_2 tels que $f'(c_1) = 0$ et $f'(c_2) = 0$. Montrer qu'il existe c_3 tel que $f''(c_3) = 0$.

Question 3

[Solution n°3 p 19]

Soit f (x) = \sqrt{x} . Appliquer le théorème des accroissements finis sur l'intervalle [100, 101].

En déduire l'encadrement $10 + 1/22 \le \sqrt{101} \le 10 + 1/20$.

Question 4

[Solution n°4 p 19]

Appliquer la règle de l'Hospital pour calculer les limites suivantes (quand $x \to 0$) : $x / (1 + x)^n - 1$) ; $\ln(x + 1) / \sqrt{x}$;

 $(1-\cos x)/\tan x$; $(x-\sin x)/x^3$.

O

Solution des exercices

> Solution n°1 (exercice p. 13)

utiliser la définition : f(g(x) = x. calculer f(g(x)) et remplacer x par 0 puis déduire le résultat. g(0) = e. g'(0) = 2.

> Solution n°2 (exercice p. 18)

-b/2a

> Solution n°3 (exercice p. 18)

utiliser un encadrement de la dérivée de f pour déduire. (1/22 \leq f' \leq 1/20

> Solution n°4 (exercice p. 18)

1/n; 1; 0; $+\infty$. pour le dernier cas appliquez la règle aux dérivées successives (ordre 2).

Bibliographie

[04] François Liret, Maths en pratique à l'usage des étudiants Cours et exercices, Dunod, 2006

[04] Wieslawa J. Kaczor, Maria T. Nowak, PROBLÈMES D'ANALYSE I, Exercices et corrigés, EDP Sciences, 2008.

Webographie

[04] http://www.discmath.ulg.ac.be/