math - mathematical functions %

This module implements a subset of the corresponding CPython module, as described below. For more information, refer to the original CPython documentation: math.

The math module provides some basic mathematical functions for working with floating-point numbers.

Note: On the pyboard, floating-point numbers have 32-bit precision.

Availability: not available on WiPy. Floating point support required for this module.

Functions

math.acos(x)

Return the inverse cosine of x.

math.acosh(x)

Return the inverse hyperbolic cosine of x.

math.asin(x)

Return the inverse sine of x.

math.asinh(x)

```
Return the inverse hyperbolic sine of \mathbf{x}.
math.atan(x)
  Return the inverse tangent of \mathbf{x}.
math.atan2(y, x)
  Return the principal value of the inverse tangent of y/x.
math.atanh(x)
  Return the inverse hyperbolic tangent of \mathbf{x}.
math.ceil(x)
  Return an integer, being x rounded towards positive infinity.
math.copysign(x, y)
  Return x with the sign of y.
math.cos(x)
  Return the cosine of \mathbf{x}.
math.cosh(x)
  Return the hyperbolic cosine of \mathbf{x}.
```

math.degrees(x)

Return radians x converted to degrees.

```
math.erf(x)
   Return the error function of \mathbf{x}.
math.erfc(x)
   Return the complementary error function of \mathbf{x}.
math.exp(x)
   Return the exponential of \mathbf{x}.
math.expm1(x)
   Return exp(x) - 1.
```

math.fabs(x)

Return the absolute value of \mathbf{x} .

math.floor(x)

Return an integer, being x rounded towards negative infinity.

math.fmod(x, y)

Return the remainder of x/y.

math.frexp(x)

Decomposes a floating-point number into its mantissa and exponent. The returned value is the tuple (m, e) such that x == m * 2**e exactly. If x == 0 then the function returns (0.0, 0), otherwise the relation 0.5 <= abs(m) < 1 holds.

```
math.gamma(x)
  Return the gamma function of \mathbf{x}.
math.isfinite(x)
  Return True if x is finite.
math.isinf(x)
  Return True if x is infinite.
math.isnan(x)
  Return True if x is not-a-number
math.ldexp(x, exp)
  Return x * (2**exp).
math.lgamma(x)
  Return the natural logarithm of the gamma function of \mathbf{x}.
math.log(x)
  Return the natural logarithm of \mathbf{x}.
math.log10(x)
  Return the base-10 logarithm of x.
```

math.log2(x)

```
Return the base-2 logarithm of \mathbf{x}.
math.modf(x)
   Return a tuple of two floats, being the fractional and integral parts of \mathbf{x}. Both return values
   have the same sign as \mathbf{x}.
math.pow(x, y)
   Returns \mathbf{x} to the power of \mathbf{y}.
math.radians(x)
   Return degrees x converted to radians.
math.sin(x)
   Return the sine of \mathbf{x}.
math.sinh(x)
   Return the hyperbolic sine of \mathbf{x}.
math.sqrt(x)
   Return the square root of \mathbf{x}.
math.tan(x)
   Return the tangent of \mathbf{x}.
math.tanh(x)
```

Return the hyperbolic tangent of \mathbf{x} .

math.trunc(x)

Return an integer, being x rounded towards 0.

Constants

math.e

base of the natural logarithm

math.pi

the ratio of a circle's circumference to its diameter