MATH 220A: Homework #5

Due on Nov 1, 2024 at 23:59pm $Professor\ Ebenfelt$

Ray Tsai

A16848188

Problem 1

Suppose $f:G\to\mathbb{C}$ is analytic and that G is connected. Show that if f(z) is real for all z in G then f is constant.

Proof. Put f(x+iy)=u(x,y)+iv(x,y), where u,v are real-valued functions. Since f is real-valued, v(x,y)=0 for all $x,y\in G$. By the Cauchy-Riemann equations,

$$u_x = v_y = 0 \qquad u_y = -v_y = 0.$$

But then u is constant, and thus f is constant.

Problem 2

Find an open connected set $G \subset \mathbb{C}$ and two continuous functions f and g defined on G such that $f(z)^2 = g(z)^2 = 1 - z^2$ for all z in G. Can you make G maximal? Are f and g analytic?

Proof. Let $G = (\mathbb{C} \setminus \mathbb{R}) \cup [-1,1]$. Consider $f(z) = \exp(\frac{1}{2}Log(1-z^2))$ and $g(z) = \exp(\frac{1}{2}Log(1-z^2))$. Then $f(z)^2 = g(z)^2 = 1 - z^2$ for all $z \in G$. Notice that G is maximal in \mathbb{C} , as any larger set would contain points where $Log(1-z^2)$ is undefined. Since f,g are compositions of analytic functions, they are analytic. \square

Problem 3

Let G be a region and define $G^* = \{z : \overline{z} \in G\}$. If $f : G \to \mathbb{C}$ is analytic, prove that $f^* : G^* \to \mathbb{C}$, defined by $f^*(z) = \overline{f(\overline{z})}$, is also analytic.

Proof. Let z = x + iy and f(z) = u(x,y) + iv(x,y). Then $f^*(z) = u(x,-y) - iv(x,-y)$. By the Cauchy-Riemann equations, $u_x = v_y$ and $u_y = -v_x$, and so

$$\partial_x u(x,-y) = -\partial_y v(x,-y) = \partial_y [-v(x,-y)], \quad \partial_y u(x,-y) = \partial_x v(x,-y) = -\partial_x [-v(x,-y)].$$

Thus, f^* is analytic.

Problem 4

Prove that there is no branch of the logarithm defined on $G = \mathbb{C} \setminus \{0\}$. (Hint: Suppose such a branch exists and compare this with the principal branch.)

Proof. Denote Log as the principal branch of the logarithm and let H be its domain. Suppose there exists a branch of the logarithm f defined on G. There exists $k \in \mathbb{Z}$ such that $f(z) = Log(z) + i2\pi k$, for all $z \in H$. Consider the limit of Log at z = -1. Approaching from above and below the real axis, we get

$$\lim_{\theta \to \pi} \log |z| + i\theta = i\pi \neq -i\pi = \lim_{\theta \to -\pi} \log |z| + i\theta,$$

so $\lim_{z\to -1} Log(z)$ does not exist. But then $\lim_{z\to -1} f(z)$ does not exist, contradicting the continuity of f.