Quasianalytic Ilyashenko Algebras

Zeinab GALAL
Supervisor: Prof. P. Speissegger
McMaster University

 $\operatorname{Re}(z)$

Abstract

A recent result was the construction of a quasianalytic class containing all transition maps at hyperbolic singularities with logarithmic monomials in their series expansions. The end goal being obtaining o-minimality of this structure, we need an extension to several variables stable under certain operations (such as blow-up substitutions). As a first step towards the several variables extension, we construct a quasianalytic Hardy field extending the previous class where the monomials are now allowed to be any definable function in $\mathbb{R}_{an,exp}$.

1. Motivation

Hilbert's 16th problem (2nd part)

"This is the question as to the maximum number and position of Poincaré's boundary cycles (cycles limites) for a differential equation of the first order and degree of the form $\frac{dy}{dx} = \frac{Y}{X}$ where X and Y are rational integral functions of the n-th degree in x and y." (Hilbert, 1900)

Question 1 Is it true that a polynomial vector field on the real plane has a finite number of limit cycles?

Question 2 Is it true that the number of limit cycles of a polynomial vector field of degree d on the real plane is bounded by a constant depending on d only?

Question 2 bis: Is there a uniform bound on the number of limit cycles in analytic families of real analytic planar vector fields?

Dulac's Problem

• Dulac:

- If an analytic vector field $\xi : \mathbb{R}^2 \to \mathbb{R}^2$ has infinitely many limit cycles, then they must converge to a **polycycle** Γ .
- The **Poincaré first return map** can be written as a finite composition of correspondence maps and real analytic maps.
- Each correspondence map σ_i (and hence the Poincaré map) has an asymptotic expansion of the form

$$\widehat{\sigma_i} = \sum_{j=0}^{+\infty} P_j(\log(x)) x^{\nu_j}$$

where $P_i \in \mathbb{R}[x]$ with $P_0 \in \mathbb{R}^{>0}$ and $0 < \nu_0 < \nu_1 \nearrow +\infty$.

Figure: Example of a polycycle for ξ

Let ξ be a real analytic vector field in \mathbb{R}^2 and Γ a polycycle of ξ with singular points p_0, p_1, \ldots, p_k and trajectories $\gamma_0, \ldots, \gamma_k$ connecting the p_i 's in the order following the flow. For each i, it is possible to choose transverse segments Λ_i^-, Λ_i^+ sufficiently close to p_i such that:

- 1 there exists **real analytic maps** $h_i: \Lambda_i^+ \to \Lambda_{i+1}^-$ representing the flow of ξ from Λ_i^+ to Λ_{i+1}^- ,
- **2** each trajectory starting on Λ_i^- sufficiently close to p_i crosses Λ_i^+ near p_i . We can therefore define **correspondence maps** $\sigma_i : \Lambda_i^- \to \Lambda_i^+$.

The Poincaré map σ is then represented by the finite composition $\sigma = h_k \circ \sigma_k \circ \cdots \circ \sigma_1 \circ h_0 \circ \sigma_0$.

Ilyashenko:

If ξ is analytic and all the singularities of Γ are hyperbolic then each $\sigma_i \circ e^{-x}$ is an **almost regular map**.

2. Background

Almost Regular Maps and the Phragmén-Lindelöf Principle

Definition. A map f is said to be **almost regular** if it has a holomorphic extension f to some standard quadratic domain Ω and can be expanded in an asymptotic $Dulac\ exponential\ series$ in this domain, i.e., if:

$$\forall N \in \mathbb{N}, \left| \mathfrak{f}(z) - \sum_{j=0}^{N} P_j(z) e^{-\nu_j z} \right| = o(e^{-\nu_N z}) \text{ as } |z| \to +\infty \text{ in } \Omega$$

where

- $P_j \in \mathbb{R}[x]$ with $P_0 \in \mathbb{R}^{>0}$
- $0 < \nu_0 < \nu_1 \nearrow +\infty$.

The class of all almost regular maps is denoted by \mathcal{I} .

- A subset of \mathbb{C} is called a **standard quadratic domain** if it is of the form $\Omega_C := \{z + C\sqrt{1+z} \mid Re(z) > 0\}$ for some C > 0.
- ightharpoonup A set $\Omega \subset \mathbb{C}^{>0}$ is said to be a **standard domain** if there exists a>0 and a continuous function $f:]a,+\infty[\to]0,+\infty[$ such that:
 - $\Omega = \{ z \in \mathbb{C} | \operatorname{Re}(z) > a \text{ and } |\operatorname{Im}(z)| < f(\operatorname{Re}(z)) \}.$

Phragmén-Lindelöf Principle:

Let $\Omega \subset \mathbb{C}$ be a standard quadratic domain and $f : \overline{\Omega} \to \mathbb{C}$ be a holomorphic function. If f is bounded and for all $n \in \mathbb{N}$ and $z \in \Omega$, $f(z) = o(e^{-nz})$ as $|z| \to +\infty$ then $f \equiv 0$.

Quasianalytic Asymptotic Algebras

Definition. A tuple (K, \mathcal{M}, T) is called a *quasianalytic asymptotic* (qaa) algebra if:

- **1** K is an \mathbb{R} -algebra of \mathcal{C}^{∞} germs at $+\infty$.
- ${\mathfrak D} {\mathcal M}$ is a multiplicative subgroup of some Hardy field ${\mathcal H}$ of ${\mathcal C}^{\infty}$ germs at $+\infty$ and the valuation map is injective on ${\mathcal M}$.
- **3** T is an injective \mathbb{R} -algebra homomorphism from K to $\mathbb{R}(\mathcal{M})$ such that:
- T(K) is truncation closed, i.e., for every $f \in K$ and $m \in \mathcal{M}$, there exists $h \in K$ such that $T(h) = T(f)_m$,
- $\forall f \in K, \forall m \in \mathcal{M}, |f(x) T^{-1}((T(f)_m))(x)| = o(m(x))$ as $x \to +\infty$.

Objective

Objective: Given an analytic family ξ of real analytic planar vector fields with hyperbolic singularities, we want to construct a multivariable quasianalytic algebra (stable under the operations needed for o-minimality) containing \mathcal{I} and prove that the obtained stucture is o-minimal.

T. Kaiser, J.-P. Rolin and P. Speissegger (2009): If all the singularities are in addition non-resonant, the P_j 's are actually real numbers and the Poincaré map is definable in an o-minimal structure which leads to uniform bounds on the number of limit cycles (see [2]).

Steps of the proof:

- Step 1. extend \mathcal{I} into a quasianalytic asymptotic algebra
- Step 2. obtain a multivariate version of \mathcal{I} (stable under the operations needed for o-minimality)
- Step 3. prove o-minimality

3. Approach

Step 1: Ilyashenko Algebras with log Monomials

- P. Speissegger (2016): Step 1 using logarithmic generalized power series (see [3])
- Set of monomials: $\mathcal{L} := \{(\log_{-1}^{r_{-1}}) \dots (\log_k^{r_k}) \mid r_{-1}, \dots, r_k \in \mathbb{R}\}$
- **Theorem.** There exists a qaa field $(\mathcal{F}, \mathcal{L}, T)$ that contains the class \mathcal{I} . The field \mathcal{F} is closed under differentiation and log-composition.
- ightharpoonup Problem: multivariable extension, for example the blow-up substitution $x \mapsto xy$ will map $\log_2(x)$ to $\log_2(xy) = \log(\log(x) + \log(y))$.
- \triangleright Question: what is a good multivariable version of $\mathbb{R}((\mathcal{L}))$?

Candidate for the monomials: $\mathcal{H}_{an \text{ exp}}$

Approach: allow any element of $\mathcal{H}_{an,exp}$ the Hardy field of all germs at $+\infty$ of one-variable functions definable in $\mathbb{R}_{an,\text{exp}}$ as a monomial.

Problem. Not all elements of $\mathcal{H}_{an,\text{exp}}$ have the extensions to standard quadratic domains that we want!

Geometrically Pure Functions

(Work in progress by T. Kaiser and P. Speisseger) Let f be an element of $\mathcal{H}_{an,\text{exp}}$.

- f has $level \ s \in \mathbb{Z}$ if there exists $k \in \mathbb{N}$ such that $\log_k(f) \sim \log_{k-s}$. Then, s is unique and we write $\operatorname{level}(f) = s$.
- We can associate to every element f in $\mathcal{H}_{an,\text{exp}}$ a complexity corresponding to the number of times exp is used in the construction of the term in $\mathcal{L}_{an,\text{exp,log}}$. We call this complexity the **exponential height** of f and denote it by eh(f).
- **Examples.** For all $k \in \mathbb{N}$, $\operatorname{eh}(\log_k) = \operatorname{level}(\log_k) = -k$ and $\operatorname{eh}(exp_k(x)) = \operatorname{level}(exp_k(x)) = k$, in particular $\operatorname{eh}(x) = \operatorname{level}(x) = 0$.
 - $\operatorname{eh}(x + exp(-x)) = 1$ but $\operatorname{level}(x + exp(-x)) = 0$. • For all $f \in \mathcal{H}_{an, \exp}$, $\operatorname{level}(f) \leq \operatorname{eh}(f)$.
- Definition. We say that $f \in \mathcal{H}_{an,\text{exp}}$ is **geometrically pure** if level(f) = eh(f).
- Facts For all $f \in \mathcal{H}_{an, \exp}$, there exist geometrically pure g_1, \ldots, g_k such that $f = g_1 + \cdots + g_k$.
 - For all x > f with $eh(f) \le 0$, f has a holomorphic extension f on the right half-plane that maps standard quadratic domains into standard domains
 - For all x > f > g geometrically pure, $\operatorname{eh}(f \circ g^{-1}) \leq 0$.

4. Construction

4.1 Construction (Base Case)

Setup. $x = f_0 > f_1 > \cdots > f_k \in \mathcal{H}_{an,exp}$ where

- P1. The f_i 's are infinite and in distinct archimedean classes
- P2. For all $0 \le i < j \le k$, $\operatorname{eh}(f_j \circ f_i^{-1}) \le 0$.
- Define $M(f_0) := \{e^{-rx} | r \in \mathbb{R}\}.$
- Let $\mathcal{A}_{f^{<0>}}$ be the set of germs at $+\infty$ of functions $f:\mathbb{R}\to\mathbb{R}$ such that:
- **1** f has a bounded holomorphic extension $\mathfrak{f}:\overline{\Omega}\to\mathbb{C}$ where Ω is a standard quadratic domain.
- 2 there exists a series $F = \sum_{m \in M(f_0)} a_n n$ with natural support included in
- $M(f_0)$ and $a_n \in \mathbb{R}$ such that: $\forall m \in M(f_0), \left| \mathfrak{f} \sum_{n \geq m} a_n \mathfrak{n} \right| = o(|\mathfrak{m}|)$ as $|z| \to +\infty$ in Ω .
- A subset $S \subset \mathcal{H}_{an,\exp}$ is **natural** if for all $m \in \mathcal{H}_{an,\exp}$, $S \cap [m, +\infty[$ is finite (natural is stronger than anti well-ordered).
- Let $T_{f^{<0>}}: \mathcal{A}_{f^{<0>}} \to \mathbb{R}((M(f_0)))$ be the map defined by $T_{f^{<0>}}(f) := \Sigma a_n n$. Let $\mathcal{F}_{f^{<0>}}$ be the fraction field of $\mathcal{A}_{f^{<0>}}$.

$(\mathcal{F}_{f^{<0>}}, M(f_0), T_{f^{<0>}})$ is a qaa field.

Remark. The set $\mathcal{A}_{f^{<0>}} \circ (-\log)$ contains all analytic functions near 0^+ and all correspondence maps near non-resonant hyperbolic singularities of planar real analytic vector fields.

4.2 Construction (Inductive Case)

$$egin{aligned} \mathcal{A}_{f^{< k>}}: \ x = f_0 > f_1 > \cdots > f_k \ & \circ (f_1 \circ f_0^{-1})^{-1} \, \bigg| \equiv \circ f_1^{-1} \ & \mathcal{A}_{f^{< k-1>}}: \ x = f_1 \circ f_1^{-1} > \cdots > f_k \circ f_1^{-1} \ & \circ (f_2 \circ f_1^{-1})^{-1} \, \bigg| \equiv \circ f_1 \circ f_2^{-1} \ & \mathcal{A}_{f^{< k-2>}}: \ x = f_2 \circ f_2^{-1} > f_3 \circ f_2^{-1} > \cdots > f_k \circ f_2^{-1} \ & dots \ & \mathcal{A}_{f^{< 1>}}: \ x = f_{k-1} \circ f_{k-1}^{-1} > f_k \circ f_{k-1}^{-1} \ & \circ (f_k \circ f_{k-1}^{-1})^{-1} \, \bigg| \equiv \circ f_{k-1} \circ f_k^{-1} \ & \mathcal{A}_{f^{< 0>}}: \ x = f_k \circ f_k^{-1} \ & \mathcal{A}_{f^{< 0>}}: \ x = f_k \circ f_k^{-1} \ & \mathcal{A}_{f^{< 0>}}: \ x = f_k \circ f_k^{-1} \ & \mathcal{A}_{f^{< 0>}}: \ x = f_k \circ f_k^{-1} \ & \mathcal{A}_{f^{< 0>}}: \ x = f_k \circ f_k^{-1} \ & \mathcal{A}_{f^{< 0>}}: \ x = f_k \circ f_k^{-1} \ & \mathcal{A}_{f^{< 0>}}: \ x = f_k \circ f_k^{-1} \ & \mathcal{A}_{f^{< 0>}}: \ x = f_k \circ f_k^{-1} \ & \mathcal{A}_{f^{< 0>}}: \ x = f_k \circ f_k^{-1} \ & \mathcal{A}_{f^{< 0>}}: \ x = f_k \circ f_k^{-1} \ & \mathcal{A}_{f^{< 0>}}: \ x = f_k \circ f_k^{-1} \ & \mathcal{A}_{f^{< 0>}}: \ x = f_k \circ f_k^{-1} \ & \mathcal{A}_{f^{< 0>}}: \ x = f_k \circ f_k^{-1} \ & \mathcal{A}_{f^{< 0>}}: \ x = f_k \circ f_k^{-1} \ & \mathcal{A}_{f^{< 0>}}: \ x = f_k \circ f_k^{-1} \ & \mathcal{A}_{f^{< 0>}}: \ x = f_k \circ f_k^{-1} \ & \mathcal{A}_{f^{< 0>}}: \ x = f_k \circ f_k^{-1} \ & \mathcal{A}_{f^{< 0>}}: \ x = f_k \circ f_k^{-1} \ & \mathcal{A}_{f^{< 0>}}: \ x = f_k \circ f_k^{-1} \ & \mathcal{A}_{f^{< 0>}}: \ x = f_k \circ f_k^{-1} \ & \mathcal{A}_{f^{< 0>}}: \ x = f_k \circ f_k^{-1} \ & \mathcal{A}_{f^{< 0>}}: \ x = f_k \circ f_k^{-1} \ & \mathcal{A}_{f^{< 0>}}: \ x = f_k \circ f_k^{-1} \ & \mathcal{A}_{f^{< 0>}}: \ x = f_k \circ f_k^{-1} \ & \mathcal{A}_{f^{< 0>}}: \ x = f_k \circ f_k^{-1} \ & \mathcal{A}_{f^{< 0>}}: \ x = f_k \circ f_k^{-1} \ & \mathcal{A}_{f^{< 0>}}: \ x = f_k \circ f_k^{-1} \ & \mathcal{A}_{f^{< 0>}}: \ x = f_k \circ f_k^{-1} \ & \mathcal{A}_{f^{< 0>}}: \ x = f_k \circ f_k^{-1} \ & \mathcal{A}_{f^{< 0>}}: \ x = f_k \circ f_k^{-1} \ & \mathcal{A}_{f^{< 0>}}: \ x = f_k \circ f_k^{-1} \ & \mathcal{A}_{f^{< 0>}}: \ x = f_k \circ f_k^{-1} \ & \mathcal{A}_{f^{< 0>}}: \ x = f_k \circ f_k^{-1} \ & \mathcal{A}_{f^{< 0>}}: \ x = f_k \circ f_k^{-1} \ & \mathcal{A}_{f^{< 0>}}: \ x = f_k \circ f_k^{-1} \ & \mathcal{A}_{f^{< 0>}}: \ x = f_k \circ f_k^{-1} \ & \mathcal{A}_{f^{< 0}}: \ x = f_k \circ f_k^{-1} \ & \mathcal{A}_{f^{< 0}}: \ x = f_k \circ f_k^{-1} \ & \mathcal{$$

Figure: Shifts for the induction

Let $\mathcal{A}_{f^{\leq k}}$ be the set of germs at $+\infty$ of functions $f: \mathbb{R} \to \mathbb{R}$ such that:

- **1** f has a bounded holomorphic extension $\mathfrak{f}:\overline{\Omega}\to\mathbb{C}$ where Ω is a standard quadratic domain
- 2 there exists a series $F = \sum_{m \in M(f_0)} (a_n \circ f_1)n$ with natural support included in $M(f_0)^{\leq 1}$ and $a_n \in \mathcal{F}_{f^{\leq k-1}}$ such that:

$$\forall m \in M(f_0), \left| \mathfrak{f} - \sum_{n \geq m} (\mathfrak{a}_{\mathfrak{n}} \circ \mathfrak{f}_{\mathfrak{1}}) \mathfrak{n} \right| = o(|\mathfrak{m}|) \text{ as } |z| \to +\infty \text{ in } \Omega.$$

- ightharpoonup Define $T_{f^{< k>}}(f) := \Sigma\left(\left(T_{f^{< k-1>}}(a_n)\right) \circ f_1\right)n$.
- Let $\mathcal{F}_{f^{< k>}}$ be the fraction field of $\mathcal{A}_{f^{< k>}}$ and $M(f_0, \ldots, f_k)$ be the group $\{e^{-\alpha_0 f_0} \ldots e^{-\alpha_k f_k} \mid \alpha_i \in \mathbb{R}\}.$

 $(\mathcal{F}_{f^{\leq k}}, M(f_0, \ldots, f_k), T_{f^{\leq k}})$ is a qaa field.

The set of all fields $\mathcal{F}_{f^{< k>}}$ is a directed set (with respect to inclusion on the set of all finite tuples $(f_0, ..., f_k)$).

Taking the direct limit, we obtain a field \mathcal{F} and a common extension T such that $(\mathcal{F}, \mathcal{M}, T)$ is a quantified where $\mathcal{M} := \{ \prod_{i=0}^k e^{-\alpha_i f_i} \mid f_0 > \cdots > f_k \text{ verify } P1, P2 \text{ and } \alpha_i \in \mathbb{R} \}.$

Remark. In particular, $(\mathcal{F}, \mathcal{M}, T)$ is an extension of the qaa field of logarithmic generalized power series where the construction is done with $x = f_0 > \log > \log_2 > \dots$

4.3 General Construction

In general, the f_i 's are not in distinct archimedean classes so we generalize the notions of truncation, qua algebra and asymptotic expansion.

New setup. Let f_0, f_1, \ldots, f_k be elements of $\mathcal{H}_{an, \exp}$ verifying:

- P1. $x = f_0 > f_1 > \cdots > f_k$ infinite
- P2. the f_i 's are in $l \leq k+1$ distinct archimedean classes
- P3. for all $0 \le i < j \le k$, $\operatorname{eh}(f_j \circ f_i^{-1}) \le 0$

Result

The direct limit of the integral domains obtained with the generalized construction, $(\mathcal{F}, \mathcal{M}, \mathcal{T})$, is a qaa Hardy field containing \mathcal{I} , Ilyashenko's class of almost regular maps.

References

- [1] Yu. S. Ilyashenko. Finiteness theorems for limit cycles, volume 94 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI, 1991. Translated from the Russian by H. H. McFaden.
- [2] T. Kaiser, J.-P. Rolin, and P. Speissegger. Transition maps at non-resonant hyperbolic singularities are o-minimal. *J. Reine Angew. Math.*, 636:1-45, 2009.
- [3] P. Speissegger. Quasianalytic Ilyashenko algebras. ArXiv e-prints, June 2016.