Dynamic Resource Allocation to Strategic Agents under Cost Constraints

Yan Dai
Operations Research Center, MIT

(project overseen by Prof. Negin Golrezaei and Prof. Patrick Jaillet)

Dynamic Allocation of Reusable Resources

ullet T rounds, 1 planner, K agents, 1 indivisible resource

Motivation

Dynamic Allocation of Reusable Resources

- ullet T rounds, 1 planner, K agents, 1 indivisible resource
- Agents have agent- & round- dependent value private

Dynamic Allocation of Reusable Resources

- T rounds, 1 planner, K agents, 1 indivisible resource
- Agents have agent- & round- dependent value private
- Agents craft arbitrary reports on their own self-interested

Dynamic Allocation of Reusable Resources

- ullet T rounds, 1 planner, K agents, 1 indivisible resource
- Agents have agent- & round- dependent value private
- Agents craft arbitrary reports on their own self-interested
- Allocation incurs d-dimensional cost facing constraints

Dynamic Allocation of Reusable Resources

- T rounds, 1 planner, K agents, 1 indivisible resource
- Agents have agent- & round- dependent value private
- Agents craft arbitrary reports on their own self-interested
- Allocation incurs d-dimensional cost facing constraints

Trilemma: Efficiency, Incentives, & Feasibility

• Efficiency. Max social welfare (allocate to whom in need)

Dynamic Allocation of Reusable Resources

- T rounds, 1 planner, K agents, 1 indivisible resource
- Agents have agent- & round- dependent value private
- Agents craft arbitrary reports on their own self-interested
- Allocation incurs d-dimensional cost facing constraints

Trilemma: Efficiency, Incentives, & Feasibility

- Efficiency. Max social welfare (allocate to whom in need)
- Incentives. Handle strategic manipulations

Dynamic Allocation of Reusable Resources

- T rounds, 1 planner, K agents, 1 indivisible resource
- Agents have agent- & round- dependent value private
- Agents craft arbitrary reports on their own self-interested
- Allocation incurs d-dimensional cost facing constraints

Trilemma: Efficiency, Incentives, & Feasibility

- Efficiency. Max social welfare (allocate to whom in need)
- Incentives. Handle strategic manipulations
- Feasibility. Obey long-term constraints (e.g., cost, energy)

Dynamic Allocation of Reusable Resources

- T rounds, 1 planner, K agents, 1 indivisible resource
- Agents have agent- & round- dependent value private
- Agents craft arbitrary reports on their own self-interested
- Allocation incurs d-dimensional cost facing constraints

Trilemma: Efficiency, Incentives, & Feasibility

- Efficiency. Max social welfare (allocate to whom in need)
- Incentives. Handle strategic manipulations
- Feasibility. Obey long-term constraints (e.g., cost, energy)

Question. Can all three be achieved simultaneously?

• Efficiency + Incentives. Classical mechanism design (e.g., VCG [Vickrey, 1961; Clarke, 1971; Groves, 1973] & many variants)

- Efficiency + Incentives. Classical mechanism design (e.g., VCG [Vickrey, 1961; Clarke, 1971; Groves, 1973] & many variants)
- Efficiency + Feasibility. Online linear programming (many primal-dual framework [Li et al., 2023; Balseiro et al., 2023])

- Efficiency + Incentives. Classical mechanism design (e.g., VCG [Vickrey, 1961; Clarke, 1971; Groves, 1973] & many variants)
- Efficiency + Feasibility. Online linear programming (many primal-dual framework [Li et al., 2023; Balseiro et al., 2023])
- Efficiency + Incentives + Feasibility? No unless super restrictive assumptions (e.g., homogeneous agents [Yin et al., 2022] & "fair share"-like constraints & non-social-welfare objective [Gorokh et al., 2021]) "Impossible triangle"?

Efficiency

Incentives

Feasibility

Standard Methods Fail: The Strategic Gap

Standard Primal-Dual Methods

Decide $\textit{dual } \pmb{\lambda}_1, \dots, \pmb{\lambda}_T$ ("shadow prices" for cost constraints) Give dual-adjusted primal allocation ($\tilde{i}_t^* := \text{argmax}_i(v_{t,i} - \pmb{\lambda}_t^\mathsf{T} \pmb{c}_{t,i})$)

Standard Methods Fail: The Strategic Gap

Standard Primal-Dual Methods

Decide *dual* $\lambda_1, \ldots, \lambda_T$ ("shadow prices" for cost constraints)

Give dual-adjusted primal allocation $(\tilde{i}_t^* := \operatorname{argmax}_i(v_{t,i} - \lambda_t^\mathsf{T} c_{t,i}))$

Fragile to strategic manipulation due to frequent dual updates

Standard Methods Fail: The Strategic Gap

Standard Primal-Dual Methods

Decide *dual* $\lambda_1, \ldots, \lambda_T$ ("shadow prices" for cost constraints)

Give dual-adjusted primal allocation $(\tilde{i}_t^* := \operatorname{argmax}_i(v_{t,i} - \lambda_t^\mathsf{T} c_{t,i}))$

Fragile to strategic manipulation due to frequent dual updates

ullet T rounds, 1 planner, K agents, 1 indivisible resource

- ullet T rounds, 1 planner, K agents, 1 indivisible resource
- ullet Agent i private value $v_{t,i} \overset{i.i.d.}{\sim} \mathcal{V}_i$ dist. fixed but unknown

- ullet T rounds, 1 planner, K agents, 1 indivisible resource
- ullet Agent i private value $v_{t,i} \overset{i.i.d.}{\sim} \mathcal{V}_i$ dist. fixed but unknown
- ullet Agent i public cost $oldsymbol{c}_{t,i} \overset{i.i.d.}{\sim} \mathcal{C}_i$ dist. fixed but unknown

- ullet T rounds, 1 planner, K agents, 1 indivisible resource
- ullet Agent i private value $v_{t,i} \overset{i.i.d.}{\sim} \mathcal{V}_i$ dist. fixed but unknown
- ullet Agent i public cost $c_{t,i} \overset{i.i.d.}{\sim} \mathcal{C}_i$ dist. fixed but unknown
- Agent i gives arbitrary report $u_{t,i}$ very strategic

- ullet T rounds, 1 planner, K agents, 1 indivisible resource
- ullet Agent i private value $v_{t,i} \overset{i.i.d.}{\sim} \mathcal{V}_i$ dist. fixed but unknown
- ullet Agent i public cost $oldsymbol{c}_{t,i} \overset{i.i.d.}{\sim} \mathcal{C}_i$ dist. fixed but unknown
- Agent i gives arbitrary report $u_{t,i}$ very strategic
- ullet Planner decides allocation i_t & payment p_{t,i_t}

Related Works

- ullet T rounds, 1 planner, K agents, 1 indivisible resource
- ullet Agent i private value $v_{t,i} \overset{i.i.d.}{\sim} \mathcal{V}_i$ dist. fixed but unknown
- ullet Agent i public cost $oldsymbol{c}_{t,i} \overset{i.i.d.}{\sim} \mathcal{C}_i$ dist. fixed but unknown
- Agent i gives arbitrary report $u_{t,i}$ very strategic
- Planner decides allocation i_t & payment p_{t,i_t}

Agents. max $\mathbb{E}[\sum_t \gamma^t \mathbb{1}[i_t = i](v_{t,i} - p_{t,i})]$ $(\gamma$ -discounted value-pay)

- ullet T rounds, 1 planner, K agents, 1 indivisible resource
- ullet Agent i private value $v_{t,i} \overset{i.i.d.}{\sim} \mathcal{V}_i$ dist. fixed but unknown
- ullet Agent i public cost $oldsymbol{c}_{t,i} \overset{i.i.d.}{\sim} \mathcal{C}_i$ dist. fixed but unknown
- Agent i gives arbitrary report $u_{t,i}$ very strategic
- ullet Planner decides allocation i_t & payment p_{t,i_t}

Agents. max $\mathbb{E}[\sum_t \gamma^t \mathbb{1}[i_t=i](v_{t,i}-p_{t,i})]$ (γ -discounted value-pay) Planner. max $\mathbb{E}[\sum_t v_{t,i_t}]$ (undiscounted total social welfare) subject to $\frac{1}{T}\sum_t \mathbf{c}_{t,i_t} \leq \boldsymbol{\rho}$ (d-dimensional cost constraint)

- ullet T rounds, 1 planner, K agents, 1 indivisible resource
- ullet Agent i private value $v_{t,i} \overset{i.i.d.}{\sim} \mathcal{V}_i$ dist. fixed but unknown
- ullet Agent i public cost $oldsymbol{c}_{t,i} \overset{i.i.d.}{\sim} \mathcal{C}_i$ dist. fixed but unknown
- Agent i gives arbitrary report $u_{t,i}$ very strategic
- ullet Planner decides allocation i_t & payment p_{t,i_t}

Agents. max $\mathbb{E}[\sum_t \gamma^t \mathbb{1}[i_t=i](v_{t,i}-p_{t,i})]$ (γ -discounted value-pay) Planner. max $\mathbb{E}[\sum_t v_{t,i_t}]$ (undiscounted total social welfare) subject to $\frac{1}{T}\sum_t c_{t,i_t} \leq \rho$ (d-dimensional cost constraint)

Main Result: $\widetilde{\mathcal{O}}(\sqrt{T})$ Social Welfare Regret & 0 Constr Violation

Regret. $\mathbb{E}[\sum_t (v_{t,i_t^*} - v_{t,i_t})] = \widetilde{\mathcal{O}}(\sqrt{T}) \ (\{i_t^*\} := \text{offline optimum})$ **Constr Violation.** $\frac{1}{T} \sum_t c_{t,i_t} \leq \rho \ \textit{a.s.} \ (0 \text{ constraint violation})$

Goal. Given dual λ_t , make allocations – despite strategic reports

Goal. Given dual λ_t , make allocations – despite strategic reports

Incentive-Aware Primal Allocation Framework: 3 Innovations

- Epoch-Based Lazy Updates.
 - ullet Fix dual variables / shadow prices $oldsymbol{\lambda}_\ell$ within long "epochs"
 - \Longrightarrow Reduce agents' manipulation incentive & ability

Goal. Given dual λ_t , make allocations – despite strategic reports

Incentive-Aware Primal Allocation Framework: 3 Innovations

- Epoch-Based Lazy Updates.
 - ullet Fix dual variables / shadow prices $oldsymbol{\lambda}_\ell$ within long "epochs"
 - ◆ ⇒ Reduce agents' manipulation incentive & ability
- **2** Uniform Exploration.
 - With low prob offer random prices to random agents
 - \Longrightarrow Impose immediate utility loss for misreporting

Goal. Given dual λ_t , make allocations – despite strategic reports

Incentive-Aware Primal Allocation Framework: 3 Innovations

- Epoch-Based Lazy Updates.
 - Fix dual variables / shadow prices λ_{ℓ} within long "epochs"
 - ◆ ⇒ Reduce agents' manipulation incentive & ability
- **2** Uniform Exploration.
 - With low prob offer random prices to random agents
 - \Longrightarrow Impose immediate utility loss for misreporting
- Oual-Adjusted Payments.
 - VCG-like rule aligning social welfare & dual-adjusted value
 - \Longrightarrow Truth-telling is optimal in normal rounds

Goal. Given dual λ_t , make allocations – despite strategic reports

Incentive-Aware Primal Allocation Framework: 3 Innovations

- Epoch-Based Lazy Updates.
 - Fix dual variables / shadow prices λ_{ℓ} within long "epochs"
 - → Reduce agents' manipulation incentive & ability
- **2** Uniform Exploration.
 - With low prob offer random prices to random agents
 - \Longrightarrow Impose immediate utility loss for misreporting
- Oual-Adjusted Payments.
 - VCG-like rule aligning social welfare & dual-adjusted value
 - \Longrightarrow Truth-telling is optimal in normal rounds

Theorem. $\widetilde{\mathcal{O}}(1)$ misreports & $\widetilde{\mathcal{O}}(1)$ misallocations per epoch

Goal. Update duals to capture constraints – despite lazy updates

Goal. Update duals to capture constraints – despite lazy updates

Challenge: Lazy Updates ⇒ Slow Learning

- ullet Standard online learning (e.g., FTRL, FTPL) gives $\widetilde{\mathcal{O}}(T^{2/3})$
- ullet Learning Barrier. Lazy updates $\Longrightarrow \Omega(T^{2/3})$ [Dekel et al., 2014]

Goal. Update duals to capture constraints – despite lazy updates

Challenge: Lazy Updates \Rightarrow Slow Learning

- ullet Standard online learning (e.g., FTRL, FTPL) gives $\widetilde{\mathcal{O}}(T^{2/3})$
- ullet Learning Barrier. Lazy updates $\Longrightarrow \Omega(T^{2/3})$ [Dekel et al., 2014]

Key Insight: Utilize Near-Truthfulness of Agents

Incentive-aware primal allocation \Longrightarrow near-truthful reports

Goal. Update duals to capture constraints – despite lazy updates

Challenge: Lazy Updates ⇒ Slow Learning

- ullet Standard online learning (e.g., FTRL, FTPL) gives $\widetilde{\mathcal{O}}(T^{2/3})$
- ullet Learning Barrier. Lazy updates $\Longrightarrow \Omega(T^{2/3})$ [Dekel et al., 2014]

Key Insight: Utilize Near-Truthfulness of Agents

Incentive-aware primal allocation \Longrightarrow near-truthful reports

 $\bullet \rightarrow \text{near-}i.i.d.$ future allocations & cost consumption

Goal. Update duals to capture constraints – despite lazy updates

Challenge: Lazy Updates \Rightarrow Slow Learning

- ullet Standard online learning (e.g., FTRL, FTPL) gives $\widetilde{\mathcal{O}}(T^{2/3})$
- ullet Learning Barrier. Lazy updates $\Longrightarrow \Omega(T^{2/3})$ [Dekel et al., 2014]

Key Insight: Utilize Near-Truthfulness of Agents

Incentive-aware primal allocation \Longrightarrow near-truthful reports

- $\bullet \Rightarrow \text{near-i.i.d.}$ future allocations & cost consumption
- near-truthful historical reports for reliable predictions

Goal. Update duals to capture constraints – despite lazy updates

Challenge: Lazy Updates \Rightarrow Slow Learning

- ullet Standard online learning (e.g., FTRL, FTPL) gives $\widetilde{\mathcal{O}}(T^{2/3})$
- ullet Learning Barrier. Lazy updates $\Longrightarrow \Omega(T^{2/3})$ [Dekel et al., 2014]

Key Insight: Utilize Near-Truthfulness of Agents

Incentive-aware primal allocation \Longrightarrow near-truthful reports

- \bullet near-*i.i.d.* future allocations & cost consumption
- $oldsymbol{2} \Longrightarrow ext{near-truthful}$ historical reports for reliable predictions

Novel Online Learning Framework: O-FTRL-FP

Equip Optimistic FTRL [Rakhlin and Sridharan, 2013] with Fixed Points Allow action-dependent predictions: If round-t loss func $f_t(x)$ depends on round-t action x_t , we allow $\hat{f}_t(x;x_t)$ -style predictions instead of only $\tilde{f}_t(x)$

Main Results & Takeaway

Main Contribution

First dynamic mechanism achieving the trilemma:

- ullet Efficiency. Optimal $\widetilde{\mathcal{O}}(\sqrt{T})$ regret (matching non-strategic LB)
- Incentives. Robust to strategic agents (∃ near-truthful PBE)
- Feasibility. Zero constraint violation (with probability 1)

Key Techniques

- Incentive-Aware Primal Allocations. Novel mixture of lazy updates, uniform exploration, & dual-adjusted payments
- Dual Learning via Predictions. Truthful ⇒ predictability (nearly) & novel O-FTRL-FP framework for online learning

Questions are more than welcomed!

References

- Santiago R Balseiro, Haihao Lu, and Vahab Mirrokni. The best of many worlds:: Dual mirror descent for online allocation problems. *Operations Research*, 71(1):101–119, 2023.
- Edward H Clarke. Multipart pricing of public goods. Public choice, pages 17-33, 1971.
- Ofer Dekel, Jian Ding, Tomer Koren, and Yuval Peres. Bandits with switching costs: T 2/3 regret. In *Proceedings* of the forty-sixth annual ACM symposium on Theory of computing, pages 459–467, 2014.
- Artur Gorokh, Siddhartha Banerjee, and Krishnamurthy lyer. The remarkable robustness of the repeated fisher market. In Proceedings of the 22nd ACM Conference on Economics and Computation, pages 562–562, 2021.
- Theodore Groves. Incentives in teams. Econometrica: Journal of the Econometric Society, pages 617-631, 1973.
- Xiaocheng Li, Chunlin Sun, and Yinyu Ye. Simple and fast algorithm for binary integer and online linear programming. *Mathematical Programming*, 200(2):831–875, 2023.
- Alexander Rakhlin and Karthik Sridharan. Online learning with predictable sequences. In Conference on Learning Theory, pages 993–1019. PMLR, 2013.
- William Vickrey. Counterspeculation, auctions, and competitive sealed tenders. *The Journal of finance*, 16(1):8–37, 1961.
- Steven Yin, Shipra Agrawal, and Assaf Zeevi. Online allocation and learning in the presence of strategic agents. Advances in Neural Information Processing Systems, 35:6333–6344, 2022.