Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

Data Transformation, Modeling and Serving

Data Modeling and Transformation for Machine Learning

Data Modeling and Transformation for Machine Learning

Week 2 Overview

Data Engineering for Machine Learning Transformation Ingestion Serving Storage Generation Machine Learning Data Engineer Scientist Data Engineer Shape the data into a format suitable for the ML algorithm Maybe clean the data, convert it, or even create additional columns **Algorithm Development Scoping Deployment Data** Monitor & Define data Perform error Deploy in Label and Select and Define project maintain and establish

Machine Learning Project Lifecycle Framework

train model

organize data

production

system

analysis

baseline

Data Engineer, Data Scientist and Machine Learning Engineer

Separate teams

No mature ML team

Handle some extremely ML-specific tasks

Machine Learning Project Lifecycle Framework

This Week's Plan

ML terminology and the Machine Learning Project Lifecycle

Tabular

How to structure tabular data for classical ML algorithms

Image

How to prepare image data for classical and advanced ML algorithms

Text

How to preprocess text data and transform text into vectors (Manually processing text to meet specific cost and system requirements)

Modeling and Processing Tabular Data for Machine Learning

Machine Learning Overview

ML System 2

ML System 2 Predict the sales for the next new year holiday

Regression

Features

ML Engineer / Data Scientist

Determine what features and labels you need to collect

Data Engineer

Split the data into:

- training set
- test set

Use the training set to train several ML algorithms

Classical ML algorithms:

- Linear regression
- Logistic regression
- Decision trees
- Random forest and boosted trees

Complex ML algorithms:

- Deep neural networks
- Convolutional neural networks
- Recurrent neural networks
- Large language models

Select the best model through cross-validation

Evaluate the model performance using the test set

Split the data into:

- training set
- test set

Use the training set to train several ML algorithms

Classical ML algorithms:

- Linear regression
- Logistic regression
- Decision trees
- Random forest and boosted trees

Complex ML algorithms:

- Deep neural networks
- Convolutional neural networks
- Recurrent neural networks
- Large language models

Select the best model through cross-validation

Evaluate the model performance using the test set

- Check to make sure the system's performance is good and reliable
- Write software to put system into production
- Monitor the system, track data, and maintain system

Data Scientist

- Prepare and serve the data that is needed for the deployed model
- Serve an updated set of data to re-train and update the model

Set up the pipeline to serve data that supports these phases

Modeling and Processing Tabular Data for Machine Learning

Modeling Data for Traditional Machine Learning Algorithms

Numerical Tabular Form

Customer

	No. of items purchased	Date of last purchase	Customer income	Minutes on Platform	Account type	Churned
r	14	7/5/2024	\$50,000	15	Family	No
	9	3/4/2024	\$40,000	13	Platinum	Yes
	Null	Null 8/12/2024		Null	Null	Yes
	2	2 8/24/2024		35	Basic	No

Numerical Tabular Form

What most classical ML algorithms expect as training data

No. of items purchased	Days since last purchase	Customer income	Minutes on Platform	Account type	Purchases per minute	Churned	
0.93	0.90	0.5	0.24	1	0.93	0	
0.57	0.29	0.4	0.20	2	0.69	1 Chi	ırn
0.07	0.03	0.35	0.64	0	0.06	0 Not (hurn

Features Labels

- No missing values or duplicate rows
- Each column consists of numerical values that are within a similar range

Feature Engineering

Feature Engineering

Any change or processing done to a raw column, and any creation of new features

- Handling missing values
- Feature scaling
- Converting categorical columns into numerical ones
- Creating new columns by combining or modifying existing ones

Handling Missing Values

Understand why the values are missing and then determine the most appropriate way

No. of items purchased	Days since last purchase	Customer income	Minutes on Platform	Account type	Churned	
14	28	\$50,000	15	Family	No	
9	9 9		13	Platinum	Yes	
Null	12	Null	Null	Null	Yes	
2	1	Null	35	Basic	No	

- Delete the entire column or row (if there's no risk of losing valuable data)
- Impute the missing values with summary statistics
 - Replace missing values with the column mean or median
 - Replace missing values with values from a similar record

Handling Missing Values

Understand why the values are missing and then determine the most appropriate way

No. of items purchased	Days since last purchase	Customer income	Minutes on Platform	Account type	Churned	
14	28	\$50,000 15		Family	No	
9	9	9 \$40,000		Platinum	Yes	
2	1	\$35,000	35	Basic	No	

- Delete the entire column or row (if there's no risk of losing valuable data)
- Impute the missing values with summary statistics
 - Replace missing values with the column mean or median
 - Replace missing values with values from a similar record

Scaling Numerical Features

Scale features so that the values of each feature end up within a similar range

No. of items purchased	Days since last purchase	Customer income	Minutes on Platform	Account type	Churned
14	28	\$50,000	15	Family	No
9	9	\$40,000	13	Platinum	Yes
2	1	\$35,000	35	Basic	No

- Training an ML algorithm is based on solving an optimization problem:
 - If values vary drastically → take longer for the optimization algorithm to converge
- Certain ML algorithms are based on distance metrics:
 - Their accuracies can be affected by different ranges of values

Scaling Numerical Features

Scale features so that the values of each feature end up within a similar range

No. of items purchased	Days since last purchase	Customer income	\$50,000 \$100,00	0 - \$0 = 0.5	rned
14	28	0.5	\$100,00	0 - \$0	О
9	9	0.4	\$40,000	es	
2	1	\$35,000	\$40,000 \$100,00	О	

Standardization

value - column mean

column standard deviation

Resulting value has mean of 0 and variance of 1

Min: \$0 Max: \$100,000 Min-Max Scaling

value - column min

column max - column min

Resulting value is between 0 and 1

Converting Categorical Columns into Numerical Ones

No. of items purchased	Days since last purchase	Customer income	Minutes on Platform	Account type	Churned
14	28	0.5	15	Family	No
9	9 0.4		13	Platinum	Yes
2	1	0.35	35	Basic	No

One Hot Encoding

Account type	Basic	Family	Platinum
Family	0	1	0
Platinum	0	0	1
Basic	1	0	0

middle most expensive cheapest

Ordinal Encoding

Account type		Account type
Family		2
Platinum	-	3
Basic	-	1

Embeddings

More on this later

Modeling and Processing Tabular Data for Machine Learning

Processing Tabular Data for Classical Machine Learning Algorithms Using Scikit-Learn (Part 1)

Install User Guide API Examples Community

ble - BSD license

scikit-learn

Machine Learning in Python

Getting Started Release Highlights for 1.5 Simple and efficient tools for predictive data analysis

 Accessible to everybody, and reusable in various contexts

Two Processing Methods:

Dutte and Name Day Cathan and and :plotlib

Classification

One-hot encoding for the categorical columns

Standardization for the numerical columns

Identifying which category an object belongs to.

Applications: Spam detection, image

recognition. Algorithms: Gradient boosting, nearest neighbors, random forest, logistic regression, and more...

Predicting a continuous-valued attribute associated with an object.

> **Applications:** Drug response, stock prices. Algorithms: Gradient boosting, nearest neighbors, random forest, ridge, and more...

Automatic grouping of similar objects into sets.

Applications: Customer segmentation, grouping experiment outcomes.

Algorithms: k-Means, HDBSCAN, hierarchical clustering, and more...

Download Dataset

CustomerID	Age	Tenure	Usage Frequency	Support Calls	Payment Delay	Subscription Type	Contract Length	Total Spend	Last Interaction	Churn
1	22	25	14	4	27	Basic	Monthly	598	9	1
2	41	28	28	7	13	Standard	Monthly	584	20	0
3	47	27	10	2	29	Annual	Annual	757	21	0

https://www.kaggle.com/datasets/muhammadshahidazeem/customer-churn-dataset

Preparing Data for Training a Machine Learning Model

Dataset

CustomerID	Age	Tenure	Usage Frequency	Support Calls	Payment Delay	Subscription Type	Contract Length	Total Spend	Last Interaction	Churn
1	22	25	14	4	27	Basic	Monthly	598	9	1
2	41	28	28	7	13	Standard	Monthly	584	20	0
3	47	27	10	2	29	Annual	Annual	757	21	0

Training Dataset

Customer_id
Standardized numerical columns
One-hot encoded categorical columns

Testing Dataset

Customer_id
Standardized numerical columns
One-hot encoded categorical columns

Preparing Data for Training a Machine Learning Model

1. Split the data into training and test sets

2. Process the training data

- a. Numerical columns → standardize
- b. Categorical columns \rightarrow one hot encoding
- c. Combine processed columns with the Customer ID into a Pandas data frame
- d. Convert Pandas data frame into a parquet file

Use the same computed

statistics used on the

training set

3. Process the test data

- a. Numerical columns \rightarrow standardize
- b. Categorical columns \rightarrow one hot encoding
- c. Combine processed columns with the Customer ID
- d. Convert Pandas data frame into a parquet file

Modeling and Processing Tabular Data for Machine Learning

Processing Tabular Data for Classical Machine Learning Algorithms Using Scikit-Learn (Part 2)

Preparing Data for Training a Machine Learning Model

1. Split the data into training and test sets

2. Process the training data

- a. Numerical columns → standardize
- b. Categorical columns → one hot encoding
- c. Combine processed columns with the Customer ID into a Pandas data frame
- d. Convert Pandas data frame into a parquet file

3. Process the test data

- a. Numerical columns → standardize
- b. Categorical columns → one hot encoding
- c. Combine processed columns with the Customer ID
- d. Convert Pandas data frame into a parquet file

Modeling and Processing Unstructured Data for Machine Learning

Modeling Image Data for Machine Learning Algorithms

Training an ML Algorithm on Image Data

Traditional ML algorithms

	Days since last purchase		Minutes on Platform	Account type	Purchases per minute
0.93	0.90	0.5	0.24	1	0.93
0.57	0.29	0.4	0.20	2	0.69
0.07	0.03	0.35	0.64	0	0.06

77	 	
	 	22

		_
153	 	
	 	225

249	 	
	 	172

77									22
----	--	--	--	--	--	--	--	--	----

Churned

153							225
-----	--	--	--	--	--	--	-----

24	9								172
----	---	--	--	--	--	--	--	--	-----

- Lose spatial information that can be extracted from the relative location of pixels
- Can create a high-dimensional vector of features
 - e.g. 1000 pixels by 1000 pixels → vector of size 1 million
- Affect the performance of the ML algorithm

Training an ML Algorithm on Image Data

Convolutional Neural Network (CNN)

Each layer tries to identify more image features to help with the ML task

- First layer: Generic features
- Later layers: Complex patterns and textures

ML Engineer Team

- Start with pre-trained CNN algorithms
- Fine tune these models for the specific task

Preparing Image Data for the Training an ML Algorithm

Resizing

Flipping

Rotating

Scaling the pixels

Cropping

Adjusting brightness

Data Augmentation

Technique used to create new versions of existing images

(Increases the size & variety of training data)

Data Engineer

Modeling and Processing Unstructured Data for Machine Learning

Preprocessing Textual Data for Analysis and Text Classification

Pre-processing Texts for ML

Sentiment Analysis

Pre-processing Texts for ML

Textual data might contain typos, inconsistencies, & repetitions

May contain words or characters not relevant to the NLP task

Training LLMs is expensive and time consuming

Clean and high-quality data

Remove any irrelevant words or characters

Train a classical or advanced ML model

Other use cases

Processing Text

Normalization

Removing punctuations, extra spaces, characters that add no meaning

Tokenization

Removal of Stop Words

_emmatizatior

Reviews

This is a wonderful price for the amount #@% you get

Great product! Big amt

I bought this for my son as his hair is thinning. I don't know yet how well is helping. He said the smell is great.

Cleaned Reviews

This is a wonderful price for the amount you get

Great product Big amt

I bought this for my son as his hair is thinning I don't know yet how well is helping He said the smell is great

Normalization

Processing Text

Converting texts to consistent format:

Transforming to lower-case

Converting numbers or symbols to characters

Expanding contractions

kg --- kilograms

lbs pounds

DE / D.E - data engineering

Tokenization

Removal of Stop Words

_emmatizatior

Cleaned Reviews

This is a wonderful price for the amount you get

Great product Big amt amount

I bought this for my son as his hair is thinning I don't know yet how well is helping He said the smell is great

do not

Normalized Reviews

this is a wonderful price for the amount you get

great product big amount

i bought this for my son as his hair is thinning i do not know yet how well is helping he said the smell is great

Processing Text

Splitting each review into individual tokens (words, subwords, short sentences)

Normalization

Tokenization

Removal of Stop Words

_emmatization

Normalized Reviews

this is a wonderful price for the amount you get

great product big amount

i bought this for my son as his hair is thinning i do not know yet how well is helping he said the smell is great

Tokenized Reviews

[this, is, a, wonderful, price, for, the, amount, you, get]

[great, product, big, amount]

[i, bought, this, for, my, son, as, his, hair, is, thinning, i, do, not, know, yet, how, well, is, helping, he, said, the, smell, is, great]

Processing Text

- Removing frequently used words such as "is", "are", "the", "for", "a"
- Define your own list of stop words

spaCy

Normalization

• Or use built-in set of NLP libraries

Tokenization

Removal of Stop Words

Lemmatizatioi

Tokenized Reviews

[this, is, a, wonderful, price, for, the, amount, you, get]

[great, product, big, amount]

[i, bought, this, for, my, son, as, his, hair, is, thinning, i, do, not, know, yet, how, well, is, helping, he, said, the, smell, is, great]

Stop Words Removed

[this, wonderful, price, amount, you, get]

[great, product, big, amount]

[i, bought, this, my, son, his, hair, thinning, i, do, not, know, yet, how, well, helping, he, said, smell, great]

Stop words: {is, a, for, the, as, are}

Processing Text

Replacing each word with its base form or lemma (using NLP libraries)

getting / got → get

Normalization

Tokenization

Removal of Stop Words

Lemmatization

Stop Words Removed

[this, wonderful, price, amount, you, get]

[great, product, big, amount]

[i, bought, this, my, son, his, hair, thinning, i, do, not, know, yet, how, well, helping, he, said, smell, great]

Tokenized and Lemmatized Reviews

[this, wonderful, price, amount, you, get]

[great, product, big, amount]

[i, buy, this, my, son, his, hair, thin, i, do, not, know, yet, how, well, help, he, say, smell, great]

Modeling and Processing Unstructured Data for Machine Learning

Text Vectorization and Embedding

Traditional Vectorization

Bag of Words

Term-Frequency InverseDocument-Frequency (TF-IDF)

The vocabulary

[this, wonderful, price, amount, you, get, great, product, big, I, buy, my, son, his, hair, thin, do, not, know, yet, how, well, help, he, say, smell]

this	wonderful	price	amount	you	get	great	product	big	1	buy	my	son	his	hair	thin	do	not	not	know	yet	how	well	help	he	say	smell

Example

"buy" High frequency, little meaning

"break" Low frequency, more significant

Bag of Words

Term-Frequency Inverse-Document-Frequency (TF-IDF)

Each entry: number of occurrences

- Only takes into account the word frequency in each document
- Some frequently appearing words might carry little meaning

Reviews

[great, product, big, amount]

[I, buy, this, my, son, his, hair, thin, I, do, not, know, yet, how, well, help, he, say, smell, great]

this	wonderful	price	amount	you	get	great	product	big	I	buy	my	son	his	hair	thin	do	not	not	know	yet	how	well	help	he	say	smell
1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	1	0	0	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Bag of Words

Term-Frequency Inverse-Document-Frequency (TF-IDF)

Account for the weight and rarity of each word

TF: the number of times the term occurred in a document divided by the length of that document

IDF: how common or rare that word is in the entire corpus.

Reviews

[great, product, big, amount]

[I, buy, this, my, son, his, hair, thin, I, do, not, know, yet, how, well, help, he, say, smell, great]

Bag of Words

Term-Frequency Inverse-Document-Frequency (TF-IDF)

Account for the weight and rarity of each word

TF: the number of times the term occurred in a document divided by the length of that document

IDF: how common or rare that word is in the entire corpus.

Reviews

[great, product, big, amount]

[I, buy, this, my, son, his, hair, thin, I, do, not, know, yet, how, well, help, he, say, smell, great]

this	wonderful	price	amount	you	get	great	product	big	I	buy	my	son	his	hair	thin	do	not	not	know	yet	how	well	help	he	say	smell
0.33	0.44	0.44	0.33	0.44	0.44	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0.43	0	0	0.43	0.56	0.56	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.16	0	0	0	0	0	0.16	0	0	0.43	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22

Word Embedding

Word Embedding

Reviews

[this, wonderful, price, amount, you, get]

[great, product, big, amount]

[I, buy, this, my, son, his, hair, thin, I, do, not, know, yet, how, well, help, he, say, smell, awesome]

Represent each review, not just each word, by one vector

Word Embedding (great)

+

Word Embedding (product)

+

Word Embedding (big)

+

Word Embedding (amount)

Vector that represents the sentence

Does not account for the position of the words in the sentence

"A man ate a snake" ≠ "A snake ate a man"

Sentence Embedding

Lower dimension than the vector generated by TF-IDF

Sentence Embedding

Sentences

with similar

meaning

- Sentence Embedding
- Vector that reflects the semantic meaning of the sentence
- Lower dimension than the vector generated by TF-IDF

Sentence Embeddings

Data Modeling and Transformation for Machine Learning

Week 2 Summary

Tabular Data for Training an ML Algorithm

Numerical **Raw Data Tabular Form** 0.2 | 0.4 | 0.9 | 0.4 Small 4000 0.9 0.04 ML 0.6 0.7 0.5 0.2 0.02 Large 7000 Null System 0.5 | 0.7 | 0.1 | 0.2 Medium 7000 0.02

- 1. Impute data or delete empty records/columns
- 2. Convert categorical columns to numerical ones
 - One hot encoding, Ordinal encoding, etc.
- 3. Scale the numerical features

Image Data for Training an ML Algorithm

Classical ML algorithms

Unroll the images in a long sequence of pixels

Convolutional neural networks

- Pre-processing techniques:
 - Image reshaping
 - Image normalization
- Data augmentation:
 - Flipping
 - Rotation
 - Adding distortions

Textual Data for Training an ML Algorithm

