BCB 569: Bioinformatics III

Lecture 7: Knowledge-based Energy Functions

Guang Song

Why energy functions are important

- Anfinsen (Nobel Prize in chemistry, 1972)
 - a protein's primary structure has all the information it needs to fold to the native state
- Thermodynamic hypothesis of protein folding
 - the native state has global minimum free energy

 Implication: free energy can be used to locate the native state, the tertiary structure

Why energy functions are important

- In protein structure prediction, structure refinement, and molecular docking, there are two essential components
 - conformation sampling
 - scoring function
- The challenge in sampling is to be able to generate conformations close to the native state
- The challenge in scoring is that, given that those conformations are sampling, can you pick them out?

Why knowledge-based potentials

- Physics-based (or semi-empirical)
 - the parameters are based on fitting experimental data for small molecules or quantum-mechanics calculations
- Knowledge-based
 - parameters are based on statistical analysis of a database of known structures
- Physics-based potentials are computationally more expensive
- Knowledge-based potentials are much simpler, and can yield results comparable to semi-empirical potentials in structure predictions, fold recognition, docking and binding

Knowledge-based Potentials

Statistical potential

- based on statistical analysis of a dataset of known structures
- the potential of an interacting pair is determined by its relative frequency in the database

Optimization-based

- the sets of parameters for potential functions are optimized based on some criterion
 - e.g., by maximizing the energy gap between known native state and a set of "decoy" conformations

Statistical Potentials (SPs)

Three main ingredients

- a protein descriptor
- a function form of the potential function
- a method to derive the values of the parameters

SP categories

- distance-independent vs. distance-dependent
- residue-level vs. atomic level
- orientation-dependent vs. orientation-independent

Protein descriptor

Protein descriptor

 a description of the shape of a protein that best characterizes its features

Example:

- First, we define two residues are in contact if their side chain center are within, say, 6 angstroms
- Given a conformation, there are many pairs of residues are in contact
- one possible protein descriptor is total number of contacts

A better descriptor

- Since there are 20 types of amino acid and 210 types of amino acid pairs
- Another descriptor would be to count how many contacts for each type of amino acid pairs
 - the descriptor is a vector: [p_{1,1}, p_{1,2}, ... p_{20,20}]
 - For residues that like to form contacts, such as hydrophobic residues, we thus expect a good conformation will give higher frequency for such types of contacts

Function form

 The easiest and mostly used form for energy function is a linear function

$$F([p_{1,1}, p_{1,2}, ... p_{20,20}]) = \sum \sum e_{i,j} * p_{i,j}$$

- As soon as the weights e_{i,j} are determined, the potential is known
 - ei,j is the contact energy for amino acid pair pi

Deriving the parameters

- The contact energy e_{i,j} is normally derived by characterizing the frequency distributions of the structural descriptors
 - e.g., how often two Cystine residues are in contact

- A database of experimentally determined structures are used
 - such as Protein Data Bank (PDB)

Statistical Potentials: Background

- In statistical potentials, the observed frequency of various structure features are converted to effective free energy (or potential of mean field)
- Based on the assumption that frequently observed features corresponds to low free energy state
 - Boltzmann distribution

Boltzmann Distribution

- Boltzmann distribution basically says that a particle has a higher propensity to stay in lows energy states
 - The probability is proportional to e^(-E/KT), where E is the energy of the state, T is temperature, K is the Boltzmann constant

$$\frac{N_i}{N} = \frac{g_i e^{-E_i/k_B T}}{Z(T)}$$

Therefore, the free energy of a state is proportional to $-ln(N_i) => high frequency means low energy$

Miyazawa-Jernigan Potential

References

- Miyazawa & Jernigan (1985)
- Miyazawa & Jernigan (1996)

Miyazawa-Jernigan Potential

- MJ potential is a distance-independent residuebased statistical potential
- The protein descriptor: [p_{1,1}, p_{1,2}, ... p_{20,20}]
 - the frequency of residue contacts of each type of amino acid pair
- The energy function:

```
F([p_{1,1}, p_{1,2}, ... p_{20,20}]) = \sum \sum e_{i,j} * p_{i,j}
```

 e_{i,j:} the free energy change when residues of type i and j form a contact

determine the contacts

- Given a conformation, all the atom coordinates are known
- For each residue, compute the coordinates of its side chain center
- Compute the pairwise distances of all side chain centers, for residue pairs whose center side centers are within 6.5 angstrom, consider them in contact
- group the contacts based on the type of amino acid pairs and count the frequencies

Determine ei,j

 First, look at the following chemical reaction (o denotes solvent):

- e_{i,j} is the free energy change after forming contacts between residue of type i and type j
 - Therefore, $e_{i,j} = -ln ([m_{ij}][m_{00}]) / [m_{i0}][m_{j0}])$
 - [mij] is the numbers of i-j contacts
- Thus, if we can estimate the values of [mij], [moo], [mio], and [mjo], we can determine ei,j
 - These values can be estimated from some statistical analysis of a database

What the potential looks like

Table 3. Contact energies in RT units; e_e for upper half and diagonal and e_e for lower half

	Cys	Met	Pho	Пe	Lea	Wit	Trp	Tyr	Ala	аy	The	Sec	Aso	Сlа	7
Cys	<u>-6.44</u>	-4.99	-5.80	-5.50	-583	4.96	4.95	-4.16	-3.57	-3.16	-3.11	-2.86	-2.59	-2.85	-2.
Met	0.46	-546	-6.56	-6.02	-641	-5.32	-5.55	-4.91	-3.94	-3.39	-3.51	-3.03	-2.95	-3.30	-2.
Pac	0.54	-0.20	-7.26	-6.8	-7.28	-6.29	-6.16	-5.66	-4.80	4.13	-4.28	4.02	-3.75	-4.10	-3.
De	0.49	-001	0.06	-6.5	-7.04	-6.05	-5.78	-5.25	→1.56	-3.78	-4.03	-3.52	-3.24	-3.62	-3
Leu	0.57	0.01	0.03	-0.08	-7.57	-6.48	-6.14	- 5.67	-4.90	-4.16	-4.34	-3.92	-3.74	-4.04	-3
Wil	0.52	0.18	0.10	-0.01	-0.04	-5.52	-5.18	-4.62	4.04	-3.38	-3.46	-3.05	-2.83	-3.07	-2
Iгр Тут	0.30	-0.29	0.00	0.02	0.08	0.11	-5.06	-4.66	-3.862	-3.42	-3.22	-2.99	-3.07	-3.11	-2
Tyr	0.64	-0.10	0.05	011	0.10	0.23	-0.04	-417	-3.36	-3.01	-301	-2.78	-2.78	-2.57	2
Ala	0.51	0.15	017	0.05	0.13	0.05	0.07	0.05	-2.72	-2.31	-2.32	-2.01	4.34	-1.55	-4
Oy	0.48	0.48	0.82	0.82	0.85	0.51	0.24	0.20	015	-2.24	-205	-0.82	4.74	-1.66	4
Tr	0.67	0.28	0.41	0.30	0.40	0.36	0.37	0.13	0.10	0.10	-2.12	-1.96	-1.88	-1.90	-1.
Ser	0.039	0.53	0.44	0.59	0.60	0.55	0.38	014	0.18	0.14	-0.06	-1.67	-1, 58	-1.49	-1.
As a	0.97	0.62	0.72	0.87	0.79	0.77	0.30	0.17	0.36	0.22	qqz	0.10	-1.68	-1.71	-1.
Ci.	0.64	0.20	0.30	0.37	0.42	0.46	0.19	-0.12	0.24	0.24	-0.08	0.11	-0.10	-1.54	-1.
Asp	0.91	0.77	0.75	0.71	0.89	0.89	0.30	-0.07	0.26	0.13	-0.14	-0.19	-0.24	-0.09	-1.
Qú	0.91	0.30	0.52	0.46	0.55	0.55	0.00	-0.25	0.30	0.36	-0.22	-0.19	-0.21	-0.19	0.
His	0.03	0.28	0.39	0.66	0.67	0.70	0.08	0.09	0.47	0.60	016	0.26	0.20	0.31	-0.
Acg	0.93	0.38	0.42	0.41	0.43	0.47	-0.11	-0.30	0.30	0.38	-0.07	-0.01	-0.02	-0.26	-0.
Lyš	0.83	0.31	0.33	0.32	0.37	0.33	-0.10	-0.46	0.11	0.05	-0.19	-0.15	-0.30	-0.46	-3
Fro	0.53	0.16	0.25	0.39	0.35	0.31	-0.33	-0.23	0.20	0.15	0.04	0.14	0.36	-0.06	0

How to use the potential

- Now for a given conformation of protein
 - we can first determine its corresponding
 protein descriptor vector: [p_{1,1}, p_{1,2}, ... p_{20,20}]

– Then, its energy should be:

$$F([p_{1,1}, p_{1,2}, ... p_{20,20}]) = \sum \sum e_{i,j} * p_{i,j}$$

Distance-dependant potentials

- It may desirable to add another feature to the previous protein descriptor
- We may not only consider the type of amino acid pairs that are in contact, but also their separation distance
- This can be used to determine a more sensitive distance-based potentials

The DFIRE potential

- DFIRE is distance-dependent atom-based statistical potential [Zhou and Zhou, Protein Science, 11:2714, 2002]
- The contact potential between a pair of atoms is

$$\overline{u}(i,j,r) = -RT \ln \frac{N_{obs}(i,j,r)}{N_{exp}(i,j,r)}$$

R is the gas constant, *T* is the temperature,

Nobs(i,j,r) is the observed number of atomic pairs (i,j) within a distance shell $r - \Delta r/2$ to $r + \Delta r/2$ in a database of folded structures Nexp(i,j,r) is the expected number of atomic pairs (i,j) in the same distance shell if there were no interactions between atoms (the reference state).

 There are a number of distance-dependent potentials. They differ mainly on how the <u>reference state</u> is selected

The DFIRE potential

Now let us go through the derivation of the DFIRE potential

http://www.ncbi.nlm.nih.gov/pmc/articles/PM C2373736/?tool=pubmed

The dDFIRE

 The dDFIRE is an extended version of DFIRE with an orientation-dependence [Yang and Zhou, Proteins 72:793, 2008]

- Atoms are classified as polar or non-polar
- Polar atoms are treated as dipoles
- The potential is a function of the following form:

$$\overline{u}^{\text{dDFIRE}}(r_{pq}, \theta_p, \theta_q, \theta_{pq})$$

Optimization method

- Another category of knowledge-based potential is based on optimization
- We may have a similar form of potential function as before, but the parameters are optimized according to some criteria
 - for example, the parameters may be set so that there is a energy gap between the native state and the "decoy" conformations
- Techniques used for optimization
 - support vector machine, neural network, etc

Recommended Readings

- Chapter 3 of the textbook by Xu, Xu, and Liang
- Miyazawa & Jernigan, Residue-Residue Potentials with
 Journal of Molecular biology, (1996), 256, 623-644
- DFIRE: distance-dependent atom-based statistical potential [Zhou and Zhou, Protein Science, 11:2714, 2002]
- dDFIRE: orientation-dependent potential [Yang and Zhou, Proteins 72:793, 2008]