universität freiburg

Stochastic processes

Winter semester 2024

Lecture: Prof. Dr. Peter Pfaffelhuber

Assistance: Samuel Adeosun

https://pfaffelh.github.io/hp/2024ws_stochproc.html

https://www.stochastik.uni-freiburg.de/

Tutorial 9 - Markov processes I

Exercise 1 (4 points).

Let $\mathcal{X} = (X_t)_{t \in [0,\infty)}$ be a stochastic process. Show that \mathcal{X} is Markov if and only if, for all $s \leq t \leq u$, and all measurable A,

$$\mathbf{P}(X_u \in A|X_s, X_t) = \mathbf{P}(X_u \in A|X_t).$$

Exercise 2 (2+2=4 points).

Decide and reason if or if not the following stochastic processes are Markov:

- (a) $X_t = \phi(B_t), t \ge 0$, where $\phi : \mathbb{R}_+ \to \mathbb{R}_+$ is strictly increasing and $(B_t)_{t \ge 0}$ is Brownian Motion.
- (b) For n = 1, 2, ... let $X_n = Z_n + Z_{n-1}$, where $Z_i, i = 0, 1, 2, ...$ are iid with $\mathbf{P}(Z_1 = 0) = \mathbf{P}(Z_1 = 1) = \frac{1}{2}$.

Exercise 3 (2+2=4 Points).

Let $(X_t)_{t\geq 0}$ be a standard Brownian motion and $(Y_t)_{t\geq 0} := e^{-t/2}X_{e^t-1}$.

- (a) Show that $(Y_t)_{t>0}$ is a Gaussian process and a Markov process.
- (b) Determine the weak limit of Y_t for $t \to \infty$.

Exercise 4 (2+2=4 Points).

Let $f:[0,\infty)\to[0,\infty)$ be strictly monotonically increasing with f(0)=0, $\mathcal{P}=(P_t)_{t\geq 0}$ a Poisson process with intensity 1 and $\mathcal{M}=(M_n)_{n=0,1,\dots}$ a Markov chain in discrete time with values in \mathbb{Z} and transition matrix $\Pi=(\pi_{ij})_{i,j\in\mathbb{Z}}$. Furthermore, let \mathcal{P} and \mathcal{M} be stochastically independent.

- (a) Show that $\mathcal{X} = (X_t)_{t \geq 0}$ with $X_t := M_{P_{f(t)}}$ is a Markov process with respect to its natural filtration.
- (b) Determine transition kernels and operators.