Predicting Graph Labels using Perceptron

Shuang Song shs037@eng.ucsd.edu

Online learning over graphs

M. Herbster, M. Pontil, and L. Wainer, Proc. 22nd Int. Conf. Machine Learning (ICML'05), 2005

Prediction on a graph with a perceptron

M. Herbster, and M. Pontil, NIPS 20, 2006

Outline

- 1. Problem Setting
- 2. Perceptron
- 3. Properties of Graphs
- 4. Bound # of mistakes

Problem Setting

- Known graph, unknown labels on vertices
 - eg. Advertisement service on web page
 - eg. Digit recognition task on USPS (graph is built using NN)

Problem Setting

- Given a graph G = (V, E) where $V = \{1, ..., n\}$
- for t = 1, ..., l
 - nature selects $v_t \in V$
 - learner predicts $\hat{y}_t \in \{1, -1\}$
 - nature reveals y_t ∈ {1, −1}
 - $\text{ if } \hat{y}_t \neq y_t, mistakes = mistakes + 1$
- minimize mistakes

Node	Predict	Nature	Mistakes
1	1	-1	1
2	-1	-1	1
3	-1	-1	1
4	-1	-1	1
5	-1	1	2
6	1	1	2
7	1	1	2
8	1	1	2

"easy"

"hard"

Problem Setting

- Implicit assumption: adjacent nodes have similar labels
- The nature can be adversarial, and the learner can always make mistake; yet if the nature is regular and simple, then it is possible for the learner to make only a few mistake.
- Bound mistakes using complexity of nature's labelling
- Assume graph is connected, unweighted

What algorithm are we going to use?

Perceptron

- simply linear classification
- assume linearly separable with margin 1

Perceptron: algorithm

- data: $\{(x_1, y_1), ..., (x_l, y_l)\} \subset (\mathcal{H} \times \{1, -1\})^l$
- Initial $w_1 = 0 \in \mathcal{H}$
- For t = 1, ..., l
 - − receive $x_t \in \mathcal{H}$
 - predict $\hat{y}_t = \text{sign}(\langle w_t, x_t \rangle)$
 - receive y_t ∈ {1, −1}
 - $\text{ if } \hat{y}_t \neq y_t$
 - mistake = mistake + 1
 - $\bullet \ \mathbf{w}_{t+1} = \mathbf{w}_t + y_t \mathbf{x}_t$
 - else
 - $w_{t+1} = w_t$

Perceptron: mistake bound

• Theorem: given a sequence $\{(x_t, y_t)\}_{t=1}^l \in \mathcal{H} \times \{-1,1\}$, and M as the set of trails in which the perceptron predicted incorrectly, then

$$|M| \le ||w||^2 \max_{t \in M} ||x_t||^2$$

for all $\mathbf{w} \in \{-1,1\}^n$ st. $w_t = y_t$, t = 1, ..., l norm is taken w.r.t. the inner product of \mathcal{H}

Perceptron: how to use

- For us, what is the inner product? what is x_t ?
- We would want a x_t that captures the structure of the whole graph.

Perceptron: algorithm

- data: $\{(x_1, y_1), ..., (x_l, y_l)\} \subset (\mathcal{H} \times \{1, -1\})^l$
- Initial $\mathbf{w}_1 = \mathbf{0} \in \mathcal{H}$
- For t = 1, ..., l
 - − receive $x_t \in \mathcal{H}$
 - predict $\hat{y}_t = \operatorname{sign}(\langle w_t, x_t \rangle)$
 - receive y_t ∈ {1, −1}
 - $\text{ if } \hat{y}_t \neq y_t$
 - mistake = mistake + 1
 - $\bullet \ \ w_{t+1} = w_t + y_t x_t$
 - else
 - $w_{t+1} = w_t$

For us, what is x_t ? What is the inner product?

We would want a x_t that captures the structure of the whole graph.

• Graph Laplacian L=D-A, where A is adjacency matrix and $D=\mathrm{diag}(d_1,\ldots,d_n)$

• Inner product: $\langle f, g \rangle = f^T L g, \forall f, g \in \mathbb{R}^n$

Semi-norm:

$$\|\boldsymbol{f}\|^2 = \langle \boldsymbol{f}, \boldsymbol{f} \rangle = \sum_{(i,j) \in E} (f_i - f_j)^2$$

Norm measures "smoothness" or "complexity" of a labelling g:

$$\|g\|^2 = 3 \times 4$$

$$\|\boldsymbol{g}\|^2 = 12 \times 4$$

$$||g||^2 = 1 \times 4$$

$$||g||^2 = 9 \times 4$$

- Eigenvalue λ_i and eigenvector \boldsymbol{u}_i of L:
 - Connected $\rightarrow 0 = \lambda_1 < \lambda_2 \le \lambda_3 \le \cdots \le \lambda_n$ with u_1 as constant vector

- $\mathcal{H} = \text{span}\{u_2, ..., u_n\} = \{g: g^T u_1 = 0\}$
- = $\{g: \sum_{i=1}^{n} g_i = 0\}$
 - Semi-norm becomes norm

Pseudoinverse

$$K = L^+ = \sum_{i=2}^n \lambda_i^{-1} \boldsymbol{u}_i \boldsymbol{u}_i^T$$

• It is the reproducing kernel of \mathcal{H} : $\forall g \in \mathcal{H}$, $K_i = K(:,i)$

$$\langle K_i, \boldsymbol{g} \rangle = g_i$$

• $||K_t||^2 = K_{tt}$ measures the "remoteness" of vertex t and it decreases with connectivity

Grey-scaled $\mathbf{K}_{tt}: \mathbf{K}_{30,30} = .21$ (min), $\mathbf{K}_{15,15} = .94$ (max)

This will be our "feature" of a vertex, i.e.,

$$x_t = K_t$$

- For $p \in V$, define
 - Distance (of two vertices): $d(p,q) = \min |P(p,q)|$ where P is a path from p to q

– Eccentricity (of a vertex): $\rho_p = \max_{q \in V} d(p, q)$

– Diameter (of a graph): $D_G = \max_p \rho_p$

Bound

- $|M| \le ||w||^2 \max_{t \in M} ||x_t||^2$
- We want to know what $\| \mathbf{w} \|^2$ and $\max_{t \in M} \| \mathbf{x}_t \|^2$ is with the properties of graph

Bound # of mistakes: $||w||^2$

- Firstly we look at w:
- $w \in \{-1, +1\}^n$
- $\|\mathbf{w}\|^2 = \sum_{(i,j)\in E} (w_i w_j)^2$
- "smoothness" or "complexity"
- $||w||^2$ = 4 × (# edges spanning different labels)

Bound # of mistakes: $||x_t||^2$

- Then we look at $x_t = K_t$:
- $||K_t||^2 = K_{tt}$. So we want to bound K_{tt}
- Theorem: For a connected graph G with Laplacian kernel K,

$$K_{tt} \le \min\left(\frac{1}{\lambda_2}, \rho_t\right), t \in V$$

2nd smallest eigenvalue

eccentricity: $\rho_t = \max \min_{q \in V} |P(p, q)|$

Bound # of mistakes : $||x_t||^2$

- Proof:
- $K_{tt} \leq \frac{1}{\lambda_2}$
 - $-g^T Lg \ge \lambda_2 g^T g$, $\forall g \in \mathcal{H}$
 - Taking $g = K_t$, $K_{tt} \ge \lambda_2 \sum g_p^2 \ge \lambda_2 K_{tt}^2$
- $K_{tt} \leq \rho_t$
 - If $g_t > 0$, then $\exists s$, s.t. $g_s < 0$
 - ∃path P from t to s, s.t. $|E(P)| ≤ ρ_t$

Bound # of mistakes : $||x_t||^2$

$$-\sum_{(i,j)\in E(P)} |g_i - g_j| \ge g_t - g_s > g_t$$

– By $n \sum_{i=1}^n a_i^2 \ge (\sum_{i=1}^n a_i)^2$ for non–negative $\{a_i\}$, we have

$$\sum_{(i,j)\in E(P)} (g_i - g_j)^2 \ge \frac{\left(\sum_{(i,j)\in E(P)} |g_i - g_j|\right)^2}{|E(P)|}$$

$$\ge \frac{\left(\sum_{(i,j)\in E(P)} |g_i - g_j|\right)^2}{\rho_t} \ge \frac{g_t^2}{\rho_t}$$

Bound # of mistakes : $||x_t||^2$

- Taking $g=K_t$, we have $\|K_t\|^2=\sum_{(i,j)\in E(G)}\bigl(K_{ti}-K_{tj}\bigr)^2 \text{ and } \|K_t\|^2=\langle K_t,K_t\rangle=K_{tt}$
- $-K_{tt} = \sum_{(i,j) \in E(G)} (K_{ti} K_{tj})^2 \ge \frac{K_{tt}^2}{\rho_t}$
- $K_{tt} \leq \frac{1}{\lambda_2}$ and $K_{tt} \leq \rho_t$

Bound # of mistakes

Further improvement

Noisy samples:

$$|M| \le 2|M \cap M_w| + \frac{||w||^2 X^2}{2} + \sqrt{2|M \cap M_w| ||w||^2 X^2 + \frac{||w||^4 X^4}{4}}$$

• Bound K_{pp} using resistance

$$K_{pp} \le \max_{(p,q) \in V} r(p,q)$$