

MACHINE LEARNING & DATA MINING

image from: theportalwiki.com

Model selection and assessment

Model selection:

estimating the performance of a set of models to choose the best one.

Model assessment:

once having selected the best model, estimating its prediction error on new data.

Model selection and assessment

Model selection:

estimating the performance of a set of models to choose the best one.

Model assessment:

once having selected the best model, estimating its prediction error on new data.

How do you do it when you have plenty of data?

The nature of the test error

Expected error at a given point x_0 :

$$\operatorname{Err}(x_0) \equiv \underset{\tau, Y \mid X = x_0}{\mathbb{E}} \left[L(Y, \hat{f}(x_0, \tau)) \right]$$

 τ —training dataset

The nature of the test error

Example: MSE

$$y = f(x) + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \sigma_{\epsilon}^{2})$$
$$L(y, \hat{y}) = (y - \hat{y})^{2}$$

$$\operatorname{Err}(x_0) = \underset{\tau,Y|X=x_0}{\mathbb{E}} \left[(Y - \hat{f}(x_0, \tau))^2 \right]$$
$$= \sigma_{\epsilon}^2 + \left[f(x_0) - \underset{\tau}{\mathbb{E}} [\hat{f}(x_0, \tau)] \right]^2 + \underset{\tau}{\mathbb{E}} \left[\hat{f}(x_0, \tau) - \underset{\tau'}{\mathbb{E}} [\hat{f}(x_0, \tau')] \right]^2$$

The nature of the test error

Example: MSE

$$y = f(x) + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \sigma_{\epsilon}^{2})$$
$$L(y, \hat{y}) = (y - \hat{y})^{2}$$

$$\operatorname{Err}(x_0) = \underset{\tau,Y|X=x_0}{\mathbb{E}} \left[(Y - \hat{f}(x_0, \tau))^2 \right]$$
$$= \sigma_{\epsilon}^2 + \left[f(x_0) - \underset{\tau}{\mathbb{E}} [\hat{f}(x_0, \tau)] \right]^2 + \underset{\tau}{\mathbb{E}} \left[\hat{f}(x_0, \tau) - \underset{\tau'}{\mathbb{E}} [\hat{f}(x_0, \tau')] \right]^2$$

Irreducible error

Bias²

Variance

Example: KNN

$$\hat{f}(x_0) = \frac{1}{k} \sum_{\substack{l=1\\y_l \in \text{neighb.}(x_0,k)}}^{k} y_l$$

For simplicity consider x_l fixed when calculating expectation over T

Example: KNN

$$\hat{f}(x_0) = \frac{1}{k} \sum_{\substack{l=1\\y_l \in \text{neighb.}(x_0,k)}}^{k} y_l$$

For simplicity consider x_l fixed when calculating expectation over T

$$\operatorname{Err}(x_0) = \sigma_{\epsilon}^2 + \left[f(x_0) - \frac{1}{k} \sum_{l=1}^k f(x_l) \right]^2 + \frac{\sigma_{\epsilon}^2}{k}$$

$$\hat{f}(x_0) = x_0^T w$$

$$\hat{f}(x_0) = x_0^T w = x_0^T (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T y = h^T (x_0) y$$
$$h(x_0) \equiv \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1} x_0$$

$$\hat{f}(x_0) = x_0^T w$$

$$\hat{f}(x_0) = x_0^T w = x_0^T (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T y = h^T (x_0) y$$
$$h(x_0) \equiv \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1} x_0$$

$$\operatorname{Err}(x_0) = \sigma_{\epsilon}^2 + \left[f(x_0) - \underset{\tau}{\mathbb{E}} \hat{f}(x_0, \tau) \right]^2 + ||h(x_0)||^2 \sigma_{\epsilon}^2$$

$$\operatorname{Err}(x_0) = \sigma_{\epsilon}^2 + \left[f(x_0) - \underset{\tau}{\mathbb{E}} \hat{f}(x_0, \tau) \right]^2 + ||h(x_0)||^2 \sigma_{\epsilon}^2$$

Consider average error over training points x_l :

$$\operatorname{Err}(x_0) = \sigma_{\epsilon}^2 + \left[f(x_0) - \underset{\tau}{\mathbb{E}} \hat{f}(x_0, \tau) \right]^2 + ||h(x_0)||^2 \sigma_{\epsilon}^2$$

Consider average error over training points x_l :

$$\frac{1}{N} \sum_{i} \operatorname{Err}(x_i) = \sigma_{\epsilon}^2 + \frac{1}{N} \sum_{i} \left[f(x_i) - \underset{\tau_y}{\mathbb{E}} \hat{f}(x_i, \tau) \right]^2 + \frac{d}{N} \sigma_{\epsilon}^2$$

$$Y \in \{0, 1\}$$

$$\Pr(Y = 1 | x_0) = f(x_0)$$

$$G(x) = I\left(f(x) > \frac{1}{2}\right) \qquad - \text{ optimal Bayes classifier}$$

$$\hat{G}(x) = I\left(\hat{f}(x) > \frac{1}{2}\right) \qquad - \text{ estimator }$$

$$\operatorname{Err}(x_0) = \Pr(\hat{G}(x_0) \neq Y)$$

$$\operatorname{Err}(x_0) = \Pr(\hat{G}(x_0) \neq Y)$$
$$= \Pr(\hat{G} = G, G \neq Y) + \Pr(\hat{G} \neq G, G = Y)$$

$$\operatorname{Err}(x_0) = \operatorname{Pr}(\hat{G}(x_0) \neq Y)$$

$$= \operatorname{Pr}(\hat{G} = G, G \neq Y) + \operatorname{Pr}(\hat{G} \neq G, G = Y)$$

$$= \operatorname{Pr}(\hat{G} = G) \operatorname{Pr}(G \neq Y) + \operatorname{Pr}(\hat{G} \neq G) \operatorname{Pr}(G = Y)$$

$$\operatorname{Err}(x_0) = \operatorname{Pr}(\hat{G}(x_0) \neq Y)$$

$$= \operatorname{Pr}(\hat{G} = G, G \neq Y) + \operatorname{Pr}(\hat{G} \neq G, G = Y)$$

$$= \operatorname{Pr}(\hat{G} = G) \operatorname{Pr}(G \neq Y) + \operatorname{Pr}(\hat{G} \neq G) \operatorname{Pr}(G = Y)$$

$$= (1 - \operatorname{Pr}(\hat{G} \neq G)) \operatorname{Pr}(G \neq Y) + \operatorname{Pr}(\hat{G} \neq G) (1 - \operatorname{Pr}(G \neq Y))$$

$$\operatorname{Err}(x_0) = \operatorname{Pr}(\hat{G}(x_0) \neq Y)$$

$$= \operatorname{Pr}(\hat{G} = G, G \neq Y) + \operatorname{Pr}(\hat{G} \neq G, G = Y)$$

$$= \operatorname{Pr}(\hat{G} = G) \operatorname{Pr}(G \neq Y) + \operatorname{Pr}(\hat{G} \neq G) \operatorname{Pr}(G = Y)$$

$$= (1 - \operatorname{Pr}(\hat{G} \neq G)) \operatorname{Pr}(G \neq Y) + \operatorname{Pr}(\hat{G} \neq G)(1 - \operatorname{Pr}(G \neq Y))$$

$$= \operatorname{Pr}(G \neq Y) + \operatorname{Pr}(\hat{G} \neq G)(1 - 2\operatorname{Pr}(G \neq Y))$$

$$\operatorname{Err}(x_{0}) = \operatorname{Pr}(\hat{G}(x_{0}) \neq Y)$$

$$= \operatorname{Pr}(\hat{G} = G, G \neq Y) + \operatorname{Pr}(\hat{G} \neq G, G = Y)$$

$$= \operatorname{Pr}(\hat{G} = G) \operatorname{Pr}(G \neq Y) + \operatorname{Pr}(\hat{G} \neq G) \operatorname{Pr}(G = Y)$$

$$= (1 - \operatorname{Pr}(\hat{G} \neq G)) \operatorname{Pr}(G \neq Y) + \operatorname{Pr}(\hat{G} \neq G) (1 - \operatorname{Pr}(G \neq Y))$$

$$= \operatorname{Pr}(G \neq Y) + \operatorname{Pr}(\hat{G} \neq G) (1 - 2 \operatorname{Pr}(G \neq Y))$$

$$= \operatorname{Pr}(G \neq Y) + |2f(x_{0}) - 1| \operatorname{Pr}(\hat{G} \neq G)$$

$$\operatorname{Err}(x_0) = \Pr(G \neq Y) + |2f(x_0) - 1|\Pr(\hat{G} \neq G)$$

Assume:
$$\hat{f}(x_0) \sim \mathcal{N}(\mu(x_0), \sigma^2(x_0))$$

Then it can be shown:

$$\Pr(\hat{G} \neq G) = \Phi\left(\frac{(\mu(x_0) - \frac{1}{2})\operatorname{sign}(\frac{1}{2} - f(x_0))}{\sigma(x_0)}\right)$$
$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$$

$$\operatorname{Err}(x_0) = \Pr(G \neq Y) + |2f(x_0) - 1| \cdot \Phi\left(\frac{(\mu(x_0) - \frac{1}{2})\operatorname{sign}(\frac{1}{2} - f(x_0))}{\sigma(x_0)}\right)$$

$$\operatorname{Err}(x_0) = \Pr(G \neq Y) + |2f(x_0) - 1| \cdot \Phi \left(\frac{(\mu(x_0) - \frac{1}{2})\operatorname{sign}(\frac{1}{2} - f(x_0))}{\sigma(x_0)} \right)$$
 | Irreducible error 'Boundary' bias | Variance

$$\operatorname{Err}(x_0) = \Pr(G \neq Y) + |2f(x_0) - 1| \cdot \Phi \left(\frac{(\mu(x_0) - \frac{1}{2}) \operatorname{sign}(\frac{1}{2} - f(x_0))}{\sigma(x_0)} \right)$$
 | Irreducible error 'Boundary' bias | Variance

 Note that depending on the sign of the bias term, increased variance may increase or decrease the overall error

Optimism of the training error

• The usual training set error estimate:

$$\overline{\text{err}} = \frac{1}{N} \sum_{i} L(y_i, \hat{f}(x_i))$$

• Compare it with the *in-sample* error:

$$\mathrm{Err_{in}} = \frac{1}{N} \sum_{i} \mathbb{E} \left[L(Y_i^0, \hat{f}(x_i)) \middle| \tau \right]$$
 New targets sampled at the same x_i points

Optimism of the training error

 Typically training set error is smaller than the in-sample error, hence the optimism is:

$$op \equiv Err_{in} - \overline{err}$$

- This is a function of training set \mathcal{T}
- Finally, the average optimism is:

$$\omega = \mathbb{E}\left[\mathrm{op}\right]$$

expectation over targets of the training set

Optimism of the training error

• For some loss functions (e.g. MSE, 0-1) it can be shown that:

$$\omega = \frac{2}{N} \sum_{i} \operatorname{cov}(\hat{y}_i, y_i)$$

• For linear regression this can be simplified:

$$\sum_{i} \operatorname{cov}(\hat{y}_i, y_i) = d\sigma_{\epsilon}^2$$

and hence the expected in-sample error is:

$$\mathbb{E}_{\tau_y}[\text{Err}] = \mathbb{E}_{\tau_y}[\overline{\text{err}}] + \frac{2d}{N}\sigma_{\epsilon}^2$$

In-sample error estimates

• Therefore a natural estimator of the in-sample error is (the so called C_p statistic):

$$C_p \equiv \overline{\operatorname{err}} + \frac{2d}{N} \sigma_{\epsilon}^2$$

- This can be used for model selection
- If we somehow generalize the number of free parameters d (i.e. model complexity, number of degrees of freedom), this can be used for other models as well

Model complexity

For linear regression we had:

$$\sum_{i} \operatorname{cov}(\hat{y}_i, y_i) = d\sigma_{\epsilon}^2$$

• Therefore its naturally to introduce the effective number of degrees of freedom to be:

$$df(\hat{y}) \equiv \frac{\sum_{i} cov(\hat{y}_i, y_i)}{\sigma_{\epsilon}^2}$$

Model complexity

• If our model minimizes some function R(w) with a penalty on weights $\alpha ||\mathbf{w}||^2$ (e.g. neural net or Ridge Regression), then:

$$\mathrm{df} = \sum_{k} \frac{\theta_k}{\theta_k + \alpha}$$

• where θ_k are the eigenvalues of the Hessian matrix:

$$\frac{\partial^2 R}{\partial w \partial w^T}$$

In-sample error estimates (2)

• We have mentioned the C_p statistic:

$$C_p \equiv \overline{\operatorname{err}} + \frac{2d}{N} \sigma_{\epsilon}^2$$

• There is a generalization of this criterion, Akaike information criterion (named after Hirotugu Akaike), based on the likelihood approach:

$$\label{eq:alc} \text{AIC} = -\frac{2}{N} \text{loglik} + 2 \cdot \frac{d}{N} \quad \text{Likelihood, maximized on}$$

the given training sample

AIC estimates the expected (negative log) likelihood if we were to resample the targets, keeping the model parameters from the initial estimation

In-sample error estimates (3)

 Another criterion, also applicable in the likelihood maximization setting, Bayesian information criterion:

$$BIC = -2 \cdot \log lik + \log N \cdot d$$

- Motivated by Bayesian approach to model selection
- Tends to penalize complex models more heavily, compared to AIC (given that $N > e^2 \approx 7.4$)

Extra-sample and expected errors

- So far we've been looking at the in-sample error behavior
- Since our model is to be used on data it has not seen before, it's logical to consider the *extra-sample error*:

$$\operatorname{Err}_{\tau} = \underset{X^{0}, Y^{0}}{\mathbb{E}} \left[L(Y^{0}, \hat{f}(X^{0})) \middle| \tau \right]$$

- A way of estimating this value would be:
 - split the data into train-validation-test parts
 - select the best model on the validation set
 - estimate the extra-sample error on the test set
- In the limited data case it's easier to estimate the expected error:

$$\operatorname{Err} = \mathbb{E} \left[\operatorname{Err}_{\tau} \right] = \mathbb{E}_{\tau, X^{0}, Y^{0}} \left[L(Y^{0}, \hat{f}(X^{0})) \middle| \tau \right]$$

K-Fold Cross-Validation

To estimate the expected error:

- Split the data randomly into K roughly equal-sized parts
- For each part T_i of these K parts do:
 - Train the model on $\mathcal{T} \setminus \mathcal{T}_i$ i.e. on everything but \mathcal{T}_i
 - calculate the error estimate e_i on \mathcal{T}_i
- Estimate the expected error as:

$$\widehat{\operatorname{Err}} = \frac{1}{K} \sum e_i$$

Question

Consider the following scenario of using K-Fold CV:

- A binary classification problem with # features >> # samples
- Select top M features with maximal correlation with the target
- Using the selected M features, build your model
- Use CV to find the best hyper-parameters and estimate the prediction error of the final model

Question: would such approach give a reasonable result?

K-Fold CV - the right way

- In general, if your model pipeline consists of many steps, CV should be applied to the entire sequence of these steps
- Possible exception: unsupervised steps (i.e. steps not requiring the target values, e.g. scaling the data)

Vapnik-Chervonenkis Dimension

(a general measure of model complexity)

Definition: a set of points is shattered by a class of functions if

- for every binary class label assignment to these points
- there's a function in this class that perfectly separates the classes

<u>Definition</u>: the VC dimension h of the class C of functions is the largest number of points that can be shattered by C.

Examples

- A class of lines on 2D plane has VC dimension h = 3
- In general a linear indicator function in p dimensions has h = p + 1

Examples

• A class of functions $I(\sin(\alpha x) > 0)$ has $h = \infty$

VC dimension for extra-sample error estimation

- Using VC dimension, one can prove results about the optimism of the training error for a particular class of functions
- E.g. a bound for regression:

$$\operatorname{Err}_{\tau} \leq \overline{\operatorname{err}} \left(1 - \sqrt{\rho - \rho \log \rho + \frac{\log N}{2N}} \right)_{+}^{-1}$$

$$\rho = \frac{h}{N}$$

References

- CV vs AIC vs BIC example from scikit-learn: https://scikit-learn.org/stable/auto_examples/linear_model/plot_lasso_model_selection.html
- T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning:
 Data Minig, Inference, and Prediction (Chapter 7), Second Edition, Springer,
 2009