Examen de Teoría de Percepción - Segundo Parcial ETSINF, Universitat Politècnica de València, Junio de 2022

Apellidos:	Nombre:	

Profesor: \Box Jorge Civera \Box Carlos Martínez

Cuestiones (1.5 puntos, 30 minutos, sin apuntes)

D Se tiene el siguiente conjunto de muestras extraídas de una distribución de Bernoulli:

\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4	\mathbf{x}_5	\mathbf{x}_6	\mathbf{x}_7	\mathbf{x}_8
0	0	0	1	1	0	0	0
1	1	0	0	0	1	0	1

¿Cuál es el valor del parámetro de Bernoulli estimado por máxima verosimilitud?

- A) $\mathbf{p} = \left(\frac{5}{8} \frac{3}{8}\right)$
- B) $\mathbf{p} = \begin{pmatrix} 8 & 87 \\ \frac{1}{2} & \frac{1}{2} & 0 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix}$ C) $\mathbf{p} = \begin{pmatrix} \frac{3}{4} & \frac{1}{2} \end{pmatrix}$ D) $\mathbf{p} = \begin{pmatrix} \frac{1}{4} & \frac{1}{2} \end{pmatrix}$

- |C|| Si estamos suavizando una distribución Bernoulli con parámetro $\hat{\mathbf{p}} = (0.1 \ 0.9 \ 0.5)$ mediante truncamiento simple, ¿qué valor del hiperparámetro ϵ se ha utilizado si $\tilde{\mathbf{p}} =$ $(0.2\ 0.8\ 0.5)$?
 - A) $\epsilon = 0.05$
 - B) $\epsilon = 0.10$
 - C) $\epsilon = 0.20$
 - D) $\epsilon = 0.30$
- B ¿Qué finalidad tiene el coeficiente multinomial $\binom{x+}{x}$?
 - A) Convertir secuencias a vectores de contadores
 - B) Ponderar la probabilidad de un vector de contadores de acuerdo al número de secuencias diferentes que se pueden generar con ese vector de contadores
 - C) Aumentar la probabilidad de aquellos vectores de contadores cuyo número de secuencia diferentes asociado es menor
 - D) Suavizar la distribución multinomial para evitar probabilidades ceros de aquellos vectores de contadores que no se observan en el conjunto de entrenamiento.

- A Dado un problema de clasificación en un espacio bidimensional entre dos clases A y B equiprobables, con probabilidades condicionadas gaussianas de parámetros $\mu_A = (0-1)$ y $\mu_B = (1\ 0)$, y $\Sigma = I$ común a ambas clases, la frontera de decisión entre las dos regiones definidas por las distribuciones viene dada por:
 - A) $x_2 = -x_1$
 - B) $x_2 = \frac{1}{2}x_1^2 x_1$
 - C) $x_2 = x_1$
 - D) $x_2 = 1 x_1$
- C En un suavizado de la matriz de covarianzas por *flat smoothing* se interpola la matriz de covarianzas estimada para cada clase con:
 - A) La matriz identidad
 - B) La matriz de covarianza global
 - C) La matriz de covarianza global suavizada
 - D) La matriz de covarianza estimada de la clase de media más próxima
- Dadas dos funciones Kernel K_1 y K_2 , indicar cuál de las siguientes **no** es una función Kernel:
 - A) $3K_1(\mathbf{x}, \mathbf{y}) + \exp(K_2(\mathbf{x}, \mathbf{y}))$
 - B) $K_1(\mathbf{x}, \mathbf{y})^2 + K_2(\mathbf{x}, \mathbf{y})^4$
 - C) $\mathbf{x}^t \mathbf{x} K_1(\mathbf{x}, \mathbf{y}) \cdot K_2(\mathbf{x}, \mathbf{y}) \mathbf{y}^t \mathbf{y}$
 - D) $K_2(\mathbf{x}, \mathbf{y})^3 5K_1(\mathbf{x}, \mathbf{y})^5$
- A Sabiendo que $S_b = \sum_{c=1}^C N_c (\overline{\mathbf{x}}_c \overline{\mathbf{x}}) (\overline{\mathbf{x}}_c \overline{\mathbf{x}})^t$ y $S_w = \sum_{c=1}^C \Sigma_c$, ¿en qué consiste el criterio de optimización de LDA?
 - A) Maximizar S_b y minimizar S_w
 - B) Maximizar S_b y maximizar S_w
 - C) Minimizar S_b y minimizar S_w
 - D) Minimizar S_b y maximizar S_w
- B Los clasificadores débiles:
 - A) Presentan gran flexibilidad
 - B) Tienen un número de parámetros relativamente bajo
 - C) Son, entre otros, clasificadores como el de k vecinos más cercanos
 - D) Sólo son aplicables a datos vectoriales

Examen de Teoría de Percepción - Segundo Parcial

ETSINF, Universitat Politècnica de València, Junio de 2022

Apellidos:	Nombre:	

Profesor: \Box Jorge Civera \Box Carlos Martínez

Problemas (2 puntos, 90 minutos, con apuntes)

1. (1 punto) Se tiene el siguiente conjunto de imágenes de 4 × 4 píxeles representado a 8 niveles de gris pertenecientes a imágenes de palos de la baraja francesa (tréboles, diamantes, corazones y picas):

	7	5	6	7	7	2	2	7	7	3	5	7	7	6	6	7	7	6	6	7
Tréboles	6	2	3	7	5	0	1	5	6	3	4	6	4	2	2	4	5	3	3	5
	6	3	3	6	2	0	0	2	5	3	4	6	6	3	2	6	4	3	3	4
	7	7	7	7	5	3	3	6	6	5	5	7	7	5	4	7	7	7	7	7
	7	7	7	7	7	5	5	7	7	5	5	7	7	6	5	7	7	7	7	7
Diamantes	6	5	5	6	6	2	2	6	6	2	2	5	6	3	2	5	6	4	4	5
	6	5	5	6	6	3	3	6	6	2	2	6	5	2	2	6	6	5	5	6
	7	7	7	7	7	6	6	7	7	5	5	7	7	5	6	7	7	7	7	7
	7	6	6	7	4	3	3	4	7	6	6	7	3	3	3	3	6	6	6	6
Corazones	6	2	2	6	3	2	2	3	6	2	3	6	2	2	2	3	5	4	4	5
	7	4	4	7	6	2	2	6	5	1	1	5	4	3	4	5	6	5	5	6
	7	7	7	7	7	5	5	7	5	4	3	6	7	6	6	6	7	7	7	7
	7	6	6	7	7	4	4	7	7	6	6	7	7	6	6	7	7	6	6	7
Picas	6	1	1	6	4	0	0	5	6	2	2	6	3	3	3	3	5	3	3	5
	5	1	1	5	2	0	0	3	5	2	2	4	4	3	3	4	4	2	2	4
	7	7	7	7	6	3	3	6	7	5	5	7	7	6	6	7	7	6	6	7

Se pide:

- a) Realizar la representación por histograma de niveles de gris de las distintas imágenes (**0.2** puntos)
- b) Estimar los parámetros de las distribuciones multinomiales de cada clase tomando como datos de entrenamiento las cuatro primeras imágenes presentadas de cada una de ellas (0.5 puntos)
- c) Calcular la tasa de error del clasificador estimado al clasificar la última imagen de cada clase, considerando las clases equiprobables. Asume $0^0 = 0$ y $0 \log(0) = 0$. (0.3 puntos)

Solución:

a)

		Т	rél	ool	es					Dia	am	an	tes	3				Сс	ora	ZOI	nes	;					Pi	cas	;		
0	0	1	3	0	1	4	7	0	0	0	0	0	4	4	8	0	0	2	0	2	0	4	8	0	4	0	0	0	2	4	6
3	1	4	2	0	3	1	2	0	0	2	2	0	2	6	4	0	0	4	4	2	2	2	2	4	0	1	3	3	1	2	2
0	0	0	3	2	4	4	3	0	0	4	0	0	5	3	4	0	2	1	2	1	3	5	2	0	0	4	0	1	3	4	4
0	0	3	1	3	1	4	4	0	0	3	1	0	4	4	4	0	0	3	6	2	1	3	1	0	0	0	6	2	0	4	4
0	0	0	4	2	2	2	6	0	0	0	0	2	3	3	8	0	0	0	0	2	4	6	4	0	0	2	2	2	2	4	4

b)
$$p_T = \begin{pmatrix} \frac{3}{64} & \frac{1}{64} & \frac{8}{64} & \frac{9}{64} & \frac{5}{64} & \frac{9}{64} & \frac{13}{64} & \frac{16}{64} \end{pmatrix}$$

 $p_D = \begin{pmatrix} 0 & 0 & \frac{9}{64} & \frac{3}{64} & 0 & \frac{15}{64} & \frac{17}{64} & \frac{20}{64} \end{pmatrix}$
 $p_C = \begin{pmatrix} 0 & \frac{2}{64} & \frac{10}{64} & \frac{12}{64} & \frac{7}{64} & \frac{6}{64} & \frac{14}{64} & \frac{13}{64} \end{pmatrix}$
 $p_P = \begin{pmatrix} \frac{4}{64} & \frac{4}{64} & \frac{5}{64} & \frac{9}{64} & \frac{6}{64} & \frac{14}{64} & \frac{16}{64} \end{pmatrix}$

$$p_D = \left(0\ 0\ \frac{9}{64}\ \frac{3}{64}\ 0\ \frac{15}{64}\ \frac{17}{64}\ \frac{20}{64}\right)$$

$$p_C = \left(0 \frac{2}{24} \frac{10}{24} \frac{12}{24} \frac{7}{24} \frac{6}{24} \frac{14}{24} \frac{13}{24}\right)$$

$$p_P = \begin{pmatrix} \frac{4}{64} & \frac{4}{64} & \frac{5}{64} & \frac{9}{64} & \frac{6}{64} & \frac{14}{64} & \frac{16}{64} \end{pmatrix}$$

c) Como las P(c) son equiprobables, se puede usar $g_c(\mathbf{x}) = \prod_{d=1}^D p_{cd}^{x_d}$

Para trébol: $\mathbf{x} = (0\ 0\ 0\ 4\ 2\ 2\ 2\ 6)^t$

$$g_T(\mathbf{x}) = 1 \cdot 1 \cdot 1 \cdot \frac{9^4}{64^4} \cdot \frac{5^2}{64^2} \cdot \frac{9^2}{64^2} \cdot \frac{13^2}{64^2} \cdot \frac{16^6}{64^6} = 5^2 \cdot 9^2 \cdot 13^2 \cdot \frac{9^4 \cdot 16^4}{64^{16}} = 342225 \cdot \frac{9^4 \cdot 16^4}{64^{16}}$$

- $g_C(\mathbf{x}) = 0$

$$g_P(\mathbf{x}) = 1 \cdot 1 \cdot 1 \cdot \frac{9^4}{64^4} \cdot \frac{6^2}{64^2} \cdot \frac{6^2}{64^2} \cdot \frac{14^2}{64^2} \cdot \frac{16^6}{64^6} = 6^2 \cdot 6^2 \cdot 14^2 \cdot \frac{9^4 \cdot 16^4}{64^{16}} = 254016 \cdot \frac{9^4 \cdot 16^4}{64^{16}}$$

Se clasifica como trébol, acierta.

Para diamantes y corazón, $g_D(\mathbf{x}) = g_C(\mathbf{x}) = 0$, con lo que falla para ambas.

Para pica: $\mathbf{x} = (0\ 0\ 2\ 2\ 2\ 4\ 4)^t$

- $q_C(\mathbf{x}) = 0$

$$g_P(\mathbf{x}) = 1 \cdot 1 \cdot \frac{5^2}{64^2} \cdot \frac{9^2}{64^2} \cdot \frac{6^2}{64^2} \cdot \frac{6^2}{64^2} \cdot \frac{14^4}{64^4} \cdot \frac{16^4}{64^4} = 5^2 \cdot 6^2 \cdot 6^2 \cdot 14^4 \cdot \frac{9^2 \cdot 16^4}{64^{16}} = 1244678400 \cdot \frac{9^2 \cdot 16^4}{64^{16}}$$

Se clasifica como trébol, falla.

Por tanto, el clasificador presenta una tasa de error del 75 %.

2. (0.5 puntos) Se tiene la siguiente matriz Gramm asociado al conjunto de muestras $\{(\mathbf{x}_1, +1), (\mathbf{x}_2, +1), (\mathbf{x}_3, -1), (\mathbf{x}_4, -1)\}$

$$\mathbb{K} = \begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{2} & \frac{1}{4} \\ \frac{1}{2} & 1 & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{3} & 1 & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{3} & \frac{1}{4} & 1 \end{pmatrix}$$

Se pide realizar dos iteraciones del algoritmo Kernel perceptron partiendo del conjunto de pesos $\alpha=(0~0~0~0)$ e indicar el conjunto de pesos resultante.

Solución:

La fórmula general del clasificador es $g(\mathbf{x}) = \sum_{n=1}^N \alpha_n c_n K(\mathbf{x}_n, \mathbf{x}) + \alpha_n c_n$

Primera iteración:

- n = 1: $g(\mathbf{x}_1) = 0$, $c_1 g(\mathbf{x}_1) = 0 \le 0 \to \alpha = (1 \ 0 \ 0)$
- n = 2: $g(\mathbf{x}_2) = \alpha_1 c_1 K(\mathbf{x}_1, \mathbf{x}_2) + \alpha_1 c_1 = \frac{1}{2} + 1 = \frac{3}{2}, c_2 g(\mathbf{x}_2) = \frac{3}{2} > 0 \rightarrow \alpha = (1 \ 0 \ 0)$
- n = 3: $g(\mathbf{x}_3) = \alpha_1 c_1 K(\mathbf{x}_1, \mathbf{x}_3) + \alpha_1 c_1 = \frac{1}{2} + 1 = \frac{3}{2}, c_3 g(\mathbf{x}_3) = -\frac{3}{2} \le 0 \to \alpha = (1 \ 0 \ 1 \ 0)$
- $n = 4: g(\mathbf{x}_4) = \alpha_1 c_1 K(\mathbf{x}_1, \mathbf{x}_4) + \alpha_1 c_1 + \alpha_3 c_3 K(\mathbf{x}_3, \mathbf{x}_4) + \alpha_3 c_3 = \frac{1}{4} + 1 \frac{1}{4} 1 = 0, c_4 g(\mathbf{x}_4) = 0 \le 0 \to \alpha = (1 \ 0 \ 1 \ 1)$

Segunda iteración:

- n = 1: $g(\mathbf{x}_1) = \alpha_1 c_1 K(\mathbf{x}_1, \mathbf{x}_1) + \alpha_1 c_1 + \alpha_3 c_3 K(\mathbf{x}_3, \mathbf{x}_1) + \alpha_3 c_3 + \alpha_4 c_4 K(\mathbf{x}_4, \mathbf{x}_1) + \alpha_4 c_4 = 1 + 1 \frac{1}{2} 1 \frac{1}{4} 1 = -\frac{3}{4}, c_1 g(\mathbf{x}_1) = -\frac{3}{4} \le 0 \rightarrow \alpha = (2\ 0\ 1\ 1)$
- $n = 2: g(\mathbf{x}_2) = \alpha_1 c_1 K(\mathbf{x}_1, \mathbf{x}_2) + \alpha_1 c_1 + \alpha_3 c_3 K(\mathbf{x}_3, \mathbf{x}_2) + \alpha_3 c_3 + \alpha_4 c_4 K(\mathbf{x}_4, \mathbf{x}_2) + \alpha_4 c_4 = 1 + 2 \frac{1}{3} 1 \frac{1}{3} 1 = \frac{1}{3}, c_2 g(\mathbf{x}_2) = \frac{1}{3} > 0 \rightarrow \alpha = (2\ 0\ 1\ 1)$
- n = 3: $g(\mathbf{x}_3) = \alpha_1 c_1 K(\mathbf{x}_1, \mathbf{x}_3) + \alpha_1 c_1 + \alpha_3 c_3 K(\mathbf{x}_3, \mathbf{x}_3) + \alpha_3 c_3 + \alpha_4 c_4 K(\mathbf{x}_4, \mathbf{x}_3) + \alpha_4 c_4 = 1 + 2 1 1 \frac{1}{4} 1 = -\frac{1}{4}, c_3 g(\mathbf{x}_3) = \frac{1}{4} > 0 \rightarrow \alpha = (2\ 0\ 1\ 1)$
- n = 4: $g(\mathbf{x}_4) = \alpha_1 c_1 K(\mathbf{x}_1, \mathbf{x}_4) + \alpha_1 c_1 + \alpha_3 c_3 K(\mathbf{x}_3, \mathbf{x}_4) + \alpha_3 c_3 + \alpha_4 c_4 K(\mathbf{x}_4, \mathbf{x}_4) + \alpha_4 c_4 = \frac{1}{2} + 2 \frac{1}{4} 1 1 1 = -\frac{3}{4}, c_4 g(\mathbf{x}_4) = \frac{3}{4} > 0 \rightarrow \alpha = (2\ 0\ 1\ 1)$

3. (0.5 puntos) Se tiene el siguiente conjunto de datos y clasificadores lineales:

$$\mathbf{x}_1 = ((0,1,0),-1), \mathbf{x}_2 = ((1,0,1),+1), \mathbf{x}_3 = ((1,0,-1),-1), \mathbf{x}_4 = ((1,-1,1),+1)$$

$$g_1(\mathbf{z}) = \begin{cases} +1 & z_1 > 0 \\ -1 & z_1 \le 0 \end{cases} \qquad g_2(\mathbf{z}) = \begin{cases} +1 & z_2 > -1 \\ -1 & z_2 \le -1 \end{cases} \qquad g_3(\mathbf{z}) = \begin{cases} +1 & z_3 > 1 \\ -1 & z_3 \le 1 \end{cases} \qquad g_4(\mathbf{z}) = \begin{cases} +1 & z_1 + z_2 + z_3 \ge 0 \\ -1 & z_1 + z_2 + z_3 < 0 \end{cases}$$

Se pide realizar una primera iteración de AdaBoost sobre estos datos y clasificadores, indicando la tabla de acierto y fallo por clasificador, el clasificador escogido, el error en primera iteración (ϵ_1), el peso del clasificador escogido (α_1) y los pesos de las muestras en la siguiente iteración ($\mathbf{w}^{(2)}$).

Solución:

Tabla acierto/fallo:

	g_1	g_2	g_3	g_4
\mathbf{x}_1	√	X	√	X
\mathbf{x}_2	✓	✓	X	✓
\mathbf{x}_3	X	X	✓	X
\mathbf{x}_4	✓	X	X	✓

Vector de pesos de muestras inicial: $\mathbf{w}^{(1)} = (\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4})$

Error ponderado por clasificador: $g_1:\frac{1}{4},\,g_2:\frac{3}{4},\,g_3:\frac{2}{4},\,g_4:\frac{2}{4}$

Por tanto, escogemos g_1

Error de clasificación: $\epsilon_1 = \frac{1}{4}$

Peso del clasificador: $\alpha_1 = \frac{1}{2} \log 3$

Pesos de las muestras en la siguiente iteración:

	$w_n^{(1)} \exp(-c_n \alpha_1 C_1(\mathbf{x}_n))$	$\mathbf{w}^{(2)}$
\mathbf{x}_1	$\frac{1}{4} \frac{1}{\sqrt{3}}$	$\frac{1}{6}$
\mathbf{x}_2	$\frac{1}{4}\frac{1}{\sqrt{3}}$	$\frac{1}{6}$
\mathbf{x}_3	$\frac{1}{4}\sqrt{3}$	$\frac{1}{2}$
\mathbf{x}_4	$\frac{1}{4} \frac{1}{\sqrt{3}}$	$\frac{1}{6}$
Suma	$\frac{3}{4}\frac{1}{\sqrt{3}} + \frac{1}{4}\sqrt{3} = \frac{\sqrt{3}}{2}$	