PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-276708

(43)Date of publication of application: 28.10.1997

(51)Int.Cl.

B01J 35/04 B01D 39/20 B01D 53/94 B01J 21/16 B01J 37/02 F01N 3/10

(21)Application number: 08-091266

1266

(71)Applicant:

NIPPON SOKEN INC

DENSO CORP

(22)Date of filing:

12.04.1996

(72)Inventor:

NAKAYAMA YOSHINORI NAKANISHI TOMOHIKO KAGEYAMA TERUTAKA KONDO TOSHIHARU

(54) CATALYST FOR CLEANING OF EXHAUST GAS FROM DIESEL ENGINE

(57)Abstract:

PROBLEM TO BE SOLVED: To prevent the cofft. of thermal expansion of a filter from being increased by sealing the openings of the cells of a ceramic honeycomb structure by a specified method, coating the structure capturing particulates only through the side wall with a specified activated alumina slurry and carrying out firing. SOLUTION: The openings of the cells of a ceramic monolith having a honeycomb structure on the gas inlet 6 side and the gas outlet 7 side are alternately sealed to obtain a filter for purification of exhaust gas from a diesel. The surface of this honeycomb filter made of cordierite and the insides of the pores in the filter are coated with a slurry 3 of activated alumina including ≤ 15 wt.% particles each having ≤ 0.2 µm particle diameter and then sintering is carried out. The amt. of the slurry penetrating into microcracks in the cordierite crystals is limited, the coefft. of thermal expansion of the resultant catalyst is regulated to $\leq 0.5 \times 10^{-6}$ C and coating strength is enhanced.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

30.05.2002

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-276708

(43)公開日 平成9年(1997)10月28日

(51) Int.Cl.6		識別記号	庁内整理番号	FΙ					技術表示箇所
B01J	35/04	301		B 0 1 J	35/04		3 0	1 K	
B01D	39/20			B 0 1 D	39/20			D	
	53/94			. B01J	21/16				
B01J	21/16				37/02		3 0	1 B	
	37/02	301		F 0 1 N	3/10			Α	
			審查請求	未請求 請	求項の数4	OL	(全	7 頁)	最終頁に続く
(21)出願番		特願平8-91266		(71) 出願	人 000004	1695			
					株式会	社日本	自勁車	部品総	合研究所
(22)出願日		平成8年(1996)4)		型知県	西尾市	下羽角	町岩谷	14番地	
				(71)出顧	人 000004	260			
		•			株式会	社デン	ソー		
					愛知県	小谷市	昭和町	1丁目	1 番地
				(72)発明	者 中山	慶則			
					爱知県	西尾市	下羽角	町岩谷	14番地 株式会
					社日本	自動車	部品総	合研究	所内
			•	(72)発明	者 中西	友彦			
					愛知県	西尾市	下羽角	町岩谷	14番地 株式会
					社日本	自動車	部品級	合研究	所内
				(74)代理	人 弁理士	: 石田	敬	(外3	名)
									最終頁に続く

(54) 【発明の名称】 ディーゼル排ガス浄化触媒

(57)【要約】

【課題】 コーディエライトハニカムフィルタに活性化 コーティングするとフィルタの熱膨張係数が増加することを防止すること。

【解決手段】 活性アルミナスラリーとして固体成分中 0.2μ m以下が 15 wt%以下のスラリーを用いてコーティング及び焼成する。熱膨張係数を 0.5×10^{-6} / $^{\circ}$ C以下とする。

1

【特許請求の範囲】

【請求項1】 コーディエライトからなるセラミックハニカム構造体のセル開□部の両端を交互に目封じするととによりハニカムのセル側壁の気孔を通過して排ガスを隣接するセルに流し、ディーゼル排ガスに含まれるパティキュレートのみを側壁の表面および内部で捕集するようにした多孔質セラミックハニカムフィルタにおいて、固体成分のうち粒径0.2μm以下が15wt%以下の量である活性アルミナスラリーでコーティングし焼成してフィルタセル側壁の細孔を閉塞しないようにコーティン 10 グされ、かつ熱膨張係数が0.5×10-6/℃以下であることを特徴とするディーゼル排ガス浄化触媒。

【請求項2】 請求項1記載の触媒において、活性アルミナスラリーの固体成分のうち粒径0.2μm以下が10wt%以下の量であるスラリーでコーティングし、焼成することでフィルタセル側壁の細孔を閉塞しないようにコーティングしてあり、さらに熱膨張係数が0.4×10-6/℃以下であることを特徴とするディーゼル排ガス浄化触媒。

【請求項3】 コーティングに使用した活性アルミナス 20 ラリー中のアルミナ固体成分の95 wt%以上が多孔質セラミックハニカムフィルタの平均細孔径よりも小さな粒径である請求項1記載のディーゼル排ガス浄化触媒。

【請求項4】 請求項1の触媒において、活性アルミナをコーティングした後の気孔率が40%以上で、平均細孔径が5μm以上35μm以下であるディーゼル排ガス浄化触媒。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ディーゼルエンジ 30 ン等の内燃機関から排出されるガスに含まれている物質 のうち少なくともパティキュレートを除去し、排気ガス を浄化するために用いられるパティキュレート捕集用の フィルタに関する。

[0002]

【従来の技術】ディーゼルエンジン等の内燃機関から排出されるパティキュレートには、人体に有害な物質が含まれており、これを除去することが環境上の課題となっている。このため、従来では、ディーゼルエンジンの排気系に設けたフィルタでパティキュレートを捕集し、一定量捕集した後パティキュレートを電気ヒータやバーナ等で燃焼除去する方法が行われている。また、フィルタに担持した白金族金属触媒でパティキュレートの燃焼温度を下げ、捕集したパティキュレートを連続的に燃焼させる方法もある。前者の捕集したパティキュレートを電気ヒータやバーナ等で燃焼除去する方法の場合、パティキュレートの捕集量が多いほど燃焼時のフィルタ最高温度が上昇し、フィルタにかかる熱応力でフィルタが破損することがあり、このため、パティキュレートの捕集量することがあり、このため、パティキュレートの捕集量

難である。後者の触媒による燃焼の場合、燃焼温度が比 較的低くなりフィルタにかかる熱応力が小さくなるた め、耐熱性に優れている。

【0003】上記の方法において、パティキュレートの 捕集にはおもに、セラミックのハニカム構造体を用いる ことが多く、その材質としては、低熱膨張性をしめすコーディエライトが一般的に用いられる。

【0004】本発明のディーゼル排ガス浄化フィルタは、ハニカム構造のセラミックモノリスの片端のセル開口部を目封じする、例えばガス入口側のセル開口部は一個おきに目封じしてあり、ガス出口側のセル開口部は入口側の開口部が目封じしていないセルについてのみ目封じする。したがって、排気ガスのうち気体成分はセル側壁の細孔を通過し、排気ガスの固体成分であるパティキュレートはこのセル側壁の表面およびセル側壁の細孔内部で捕集される。

[0005]

【発明が解決しようとする課題】上記のようなディーゼル排ガス浄化フィルタに白金等の金属触媒を担持する場合、金属触媒を分散させるために、予め触媒担体として高比表面積材料をフィルタの表面およびフィルタ細孔内部にコーティングさせておくことが必要である。(または、高比表面積材料と同時に金属触媒をフィルタにコーティングさせてもよい。)なかでも、高比表面積材料として活性アルミナが好適に用いられる。(フィルタ材に使用しているコーディエライトは比表面積がほとんどない。)

【0006】従来の活性アルミナ等の高比表面積材料は コーティング強度向上のため一般にバインダを使用する が、バインダとしてはアルミナゾル、シリカゾル、硝酸 アルミニウム等が好ましい。(特にこれら3種類のバイ ンダに限定することはなく、粒径0.2未満のアルミナ (活性アルミナを含む)でもよい。) これらパインダに は活性アルミナの粒径に比べて十分小さなアルミナ粒 子、あるいはシリカ粒子が含まれており(約0.1μm 以下)、活性アルミナとフィルタ材のコーディエライト の結合剤の働きをする。また、これらバインダは、スラ リーの分散性、コーティングの均一性を向上させる働き がある。しかし、これらを混合したスラリーでコーディ 40 エライト質フィルタにコーティングするとフィルタの熱 膨張係数が大幅に増加するという問題が生じる場合があ る。特にスラリー中に粒径の細かなものの占める割合が 多いほど熱膨張係数の増加が高い。

度を下げ、捕集したパティキュレートを連続的に燃焼さ 【0007】フィルタ材として用いているコーディエラ せる方法もある。前者の捕集したパティキュレートを電 イトは、組成や焼成条件をコントロールすることによっ 気ヒータやパーナ等で燃焼除去する方法の場合、パティ キュレートの捕集量が多いほど燃焼時のフィルタ最高温 成することができる。コーディエライトの低熱膨張性 は、コーディエライト結晶自体、低熱膨張性を示すのに することがあり、このため、パティキュレートの捕集量 加えて、押し出し成形によるコーディエライト結晶の配制御が重要であるが、完全に捕集量を制御することは困 50 向により、ハニカムの押し出し方向の熱膨張係数が特に

小さくなることに起因している。さらにきわめて低い熱 膨張性は、焼成過程にコーディエライト結晶に発生する マイクロクラックによって、コーディエライト結晶の熱 膨張を吸収することにより達成される。したがって、マ イクロクラックの数が多いほど、より低い熱膨張係数が 得られる。しかし、活性アルミナおよび前記バインダを 含むスラリーでコーティングするアルミナゾルは粒径が 小さいためにマイクロクラックの隙間に入り込むことに よりマイクロクラックの熱膨張吸収機能が損なわれるた め、熱膨張係数が増加する。

【0.008】組成は焼成により多くのコーディエライト 結晶ができる範囲、つまりコーディエライト理論組成値 付近SiО,:Al,O,:MgO=50.3:35. 9:13.8 (wt%) が最も好適で、SiO2 = 49. $8 \sim 50$. 8, A1, O₃ = 35. $4 \sim 36$. 4, Mg $O=13.3\sim14.3$ がコーディエライト結晶以外の 結晶相 (例えば、ムライト、スピネル等) が少なくなる ため、熱膨張係数が低くなる。

【0009】また、焼成条件は押し出しにより成形され たハニカム型フィルタが焼結による収縮で割れない昇温 20 速度であればよく、室温から最高温度を5 ℃/h~15 0 ℃/h が好ましい。最高温度範囲は、1420 ℃~1 440°Cが好ましく、最も好ましくは1425°C~14 35℃である。特に最高温度はコーディエライトが溶融 する温度より数℃低い温度が最適である。最高温度の保 持時間は、フィルタ内部まで均一な温度で焼成するた め、5時間~20時間が好ましい。

【0010】とうして焼結されたコーディエライト質ハ ニカムフィルタは、組成をコーディエライト理論組成に 調製したため、スピネルやムライト等のコーディエライ ト以外の相が少なく、焼成条件をコントロールしてコー ディエライト結晶中にマイクロクラックを多く発生させ ている。そのため、熱膨張係数が0.2×10⁻⁶/℃以 下と極めて低い値となる。

【0011】焼成過程にコーディエライト結晶中に発生 するマイクロクラックの幅は約0.05μm~約0.2 μ mで長さは数 μ m~数十 μ mである。活性アルミナス ラリーの粒径が0.2μm以下であれば、マイクロクラ ックの隙間に浸入してしまい、マイクロクラックによる 熱膨張吸収機構を破壊し、コーディエライトの熱膨張係 数を大幅に増大させる。

[0012]

【課題を解決するための手段】本発明のディーゼル排ガ ス浄化触媒は、コーディエライト材質のハニカム型フィ ルタの表面及び細孔内部に 0.2 μm以下の粒径が全重 量の10wt%以下、より好ましくは5wt%以下の活性ア ルミナスラリーでコーティングし、コーディエライト結 晶中のマイクロクラックに浸入する活性アルミナスラリ 一の量を制限することでマイクロクラックの熱膨張吸収 機構を維持し、活性アルミナをコーティングしても熱膨 50 体にコーティングするのはセル側壁の表面のみであった

張係数の増加が小さいことを特徴とするものである。さ らにはフィルタ表面及び細孔内部に白金等の少なくとも 一種の白金族が好ましい金属触媒を担持される。本発明 の触媒は活性アルミナコーティング後に0.5×10° /℃以下の熱膨張係数であることが可能である。さらに は0. 4×10⁻⁶/℃以下であることが好ましい。

【0013】本発明のコーティング方法でハニカム型フ ィルタに活性アルミナ等の高比表面積材料をコーティン グした後のフィルタの気孔率は、40%以上65%以下 で平均細孔径が5μm以上35μm以下で、好ましくは 10μm~30μmであれば、圧損が低くて捕集効率が 高いためディーゼルパティキュレートフィルタとして使 用するのに適している。

【0014】本発明のディーゼル排ガス浄化フィルタ は、ディーゼルエンジンの排ガス中に含まれるパティキ ュレートを捕集するための構造として入口側のセルから 流入したガスは出口側のセルは目封じされているため、 セル側壁を通り抜け隣接するセルの出口から排出され る。セル壁を通り抜けるとき排ガス中のパティキュレー トのみが捕集される。とのとき、フィルタの気孔率と平 均細孔径が前記の範囲より小さい場合、パティキュレー トの捕集効率が向上するが、フィルタの圧力損失が高く なりエンジン出力が低下するので好ましくない。また、 平均細孔径がこの範囲より大きいとパティキュレートの 捕集効率が低下し、気孔率がこの範囲より大きいとフィ ルタの機械的強度を低下させるので好ましくない。

【0015】一方、フィルタにコーティングする活性ア ルミナの粒径は、フィルタの平均細孔径よりも小さな粒 径であることが最も好ましいが、活性アルミナの少なく とも95wt%以上はフィルタの平均細孔径よりも小さい 粒径を用いるのが好ましい。活性アルミナ粒径がフィル タの平均細孔径よりも大きい場合、活性アルミナはフィ ルタのセル側壁内部の細孔に入らず、セル側壁表面を覆 う活性アルミナが相対的に増加し、コーティング層の膜 厚が厚くなり圧損上昇が大きくなるので好ましくない。 また、活性アルミナ粒径がフィルタの平均細孔径よりも 小さい場合、セル側壁内部の細孔に入る活性アルミナが 多くなる。このときエアーブローまたは、クリーナによ る吸引を十分行ない余分な活性アルミナスラリーを取り 40 除き、細孔内を閉塞させることなく均一に分散させてコ ーティングすることで、圧損の上昇を抑えることができ る。また、活性アルミナ粒径がフィルタの平均細孔径よ りも小さい粒径のうち、0.2μm以下のものは前述の 理由により、活性アルミナスラリー全重量の10wt%以 下が好ましく、より好ましくは5wt%以下である。

【0016】活性アルミナ等の高比表面積材料の粒子径 が前記のような範囲である理由は、高比表面積材料がフ ィルタのセル側壁の細孔内部に侵入する必要があるため である。従来、高比表面積材料をハニカム型モノリス担

が、排ガスがセル側壁の細孔内部を通過するような構造 のハニカム型フィルタの場合、排ガスに含まれるパティ キュレートがフィルタのセル側壁の表面上およびセル側 壁の細孔内部に留まるので、このとき、パティキュレー トはこの高比表面積材料と細孔内部で接触することが、 触媒作用を受けるために必要である。したがって、高比 表面積材料は前記の粒径が必要である。

【0017】本発明のディーゼル排ガス浄化フィルタ は、少なくともディーゼルエンジンの排ガスに含まれて いるパティキュレートを捕集し、燃焼除去させるもので 10 ある。活性アルミナ等の高比表面積物質をフィルタにコ ーティングするのは、白金族触媒金属をコーティングさ せるための担体にするためである。一般に白金族触媒金 属はパティキュレートの燃焼温度を下げる触媒として用 いられ、さらに一酸化炭素や炭化水素の酸化触媒として 用いられている。本発明のフィルタは、少なくとも一種 類の白金族元素からなる金属触媒を担持してあるディー ゼル排ガス浄化フィルタである。

【0018】次に、本発明のディーゼル排ガス浄化フィ ルタについて図1をもって具体的に説明する。図1aの 20 ように、このハニカム構造の多孔質セラミックフィルタ はモノリスハニカムの両端を目封じ材1で交互に目封じ することにより、ハニカム型フィルタのセル側壁2に活 性アルミナ粒子3からなるコーティング層4を形成して いる。図1bのようにフィルタの平均細孔径よりも小さ な粒径の活性アルミナを用いれば、セル側壁の細孔5の 内部を閉塞することなくコーティングされるのでフィル タの圧損上昇が少ない。しかし、図1 cのようにフィル タの平均細孔径よりも大きな粒径の活性アルミナを用い た場合、セル壁の細孔を閉塞させるので、フィルタの圧 損は大幅に上昇する。また、活性アルミナのコーティン グ部分に白金族触媒金属を担持することで、セル壁内部 で捕集されたパティキュレートおよび他の排ガス成分 (HC, CO等)の浄化効率を高めている。

【0019】パティキュレートを含むディーゼル排ガス は、セル入口側6からセル内に進入し、セル壁2を通過 してセル出口側7から出ていく。このとき、パティキュ レートはセル壁表面および内部の細孔で捕集される。白 金族触媒金属は、活性アルミナをコーティングした後に あらためてコーティングするが、活性アルミナと混合し た溶液でコーティングすることも可能である。

【0020】コーディエライト結晶8中に存在するマイ クロクラック9の隙間に活性アルミナスラリーが浸入す ることにより熱膨張係数が増大する(図2)。本発明で はコーティングに使用する活性アルミナスラリーの粒径 の範囲を規定することで、マイクロクラックに浸入する 活性アルミナスラリーを制限し、コーティングによるフ ィルタの熱膨張係数の増加を抑制する。

【0021】以上のような材料を用いてコーティングし たフィルタは、低圧損のディーゼルパティキュレートフ 50 【0026】フィルタがゆ5mm×L20mmの大きさにカ

ィルタとして好適に用いることができる。以下に、その 実施例と比較例を示す。

[0022]

【実施例】主原料にシリカ、水酸化アルミニウム、タル クを用い (原料の組成は表4)、コーディエライト (2 MgO・2Al、O,・5SiO,)組成になるように 調整し、つぎに多孔質にするためのカーボン (平均粒径 50μm)をこれら主原料に対して20wt%添加して、 公知の押し出し製法でセラミックハニカム構造体を作製 し、約1420℃~約1430℃の最高温度、約5℃~ 約150℃の昇温速度、最高温度で約10時間の保持時 間で焼成して、気孔率が約55%、平均細孔径約30μ mの細孔特性を持ち、セル側壁厚さ約0.45mm、1平 方インチあたりのセル数が約150個の直径約140m m、長さ約130mmの多孔質コーディエライトハニカム 構造体を12個得た。

【0023】一方、高比表面積材料として中心粒径5 µ m(図3)の活性アルミナ670gを水4リッターとと もに混合した溶液に、加えるアルミナゾル(日産化学 製、A1, O, 含有量約10wt%) の量を0g, 170 g, 330g, 670g, 1000, 1330g, 16 70gと変化させたコート液を6水準作製した(コート 液A, B, C, D, E, F, G)。

【0024】前記の多孔質コーディエライトハニカム構 造体を2個ずつそれぞれA~Fの活性アルミナスラリー に完全に浸す(ウォッシュコート)。その後、エアーク リーナーおよび圧縮エアーで余分に付着したスラリーを できるだけ完全に取り除く。コーティングを繰り返して コート量を約65g/LにしたA~Fの6種類のスラリ ーでコーティングした活性アルミナコーティングハニカ ムを各2個、合計12個作製した(A-1, A-2, B -1, …, G-1, G-2)。 さらにその後、それぞれ を約120℃で約2時間乾燥し、約800℃で焼成し た。単位体積当たりのコート量はウォッシュコート前後 のハニカム重量差から算出したくコート量〔g/L〕= (コート前重量-コート後重量)/(ハニカム体積) >。コート量及び各スラリーの配合量、粒径等の割合を 表1に示す。この後、それぞれを0.1mo7/Lの塩化 白金酸水溶液中に約30分浸し、約120℃で約2時間 乾燥させた後、約800℃で焼成して白金を担持させ た。白金の担持量は10個とも約2g/Lであった。 【0025】ウォッシュコート処理したハニカム構造体 のガス入口側のモル開口部を一個おきに目封じし、ガス 出口側では入口側で目封じしてないセルについてのみ目

作製した(担体A~担体G)。

封じする。目封じ材はコーディエライト、アルミナ、ジ ルコニアなどの1000℃以上の耐熱性のあるセラミッ

ク材料であれば特に限定せず、セラミック製の接着剤で もよい。このようにして、ディーゼル排ガス浄化触媒を

ットしたサンプルを作製し、熱膨張係数を測定した。結 *2に示す。活性アルミナ剥離割合は式-(1)により求 果を表3に示す。また、フィルタから□15mm×L10 rmの大きさにカットしたサンプルを冷熱サイクル試験を

めた。

【数1】

行い、活性アルミナの剥離割合を調べた。その結果を表*

活性アルミナ剝離量(g)=試験前重量-試験後重量

活性アルミナ剝離量(g) 活性アルミナ剝離割合(wt%)=・ - ×100(%) 式- (1)

【0027】熱膨張係数結果より、活性アルミナスラリ ※%以下であるャアルミナスラリーでウォッシュコートす ど、熱膨張係数は小さくなるが、一方剥離量は多くなる (図4)。とれらの結果より、活性アルミナスラリーの 固体成分のうち0.2μm以下の粒径が2.5wt%以上 1.5 wt%以下、より好ましくは、2.5 wt%以上10 wt%

ーの固体成分のうち0.2μm以下の粒径が少ないほ 10 れば、低熱膨張係数でγアルミナのコーティング強度が 高く、ディーゼル排ガス浄化触媒に適している。

[0028]

【表1】

(wt%)

	SiO ₂	MgO	A1.0.	Pe.O.	TiO2	CaO	Na 20	K20	IgLoss
タルク	62.3	31. 4	0.30	0. 55	0. 01	0. 20	0.01	0. 01	5.20
シリカ	99. 9	*	*	*	*	*	*	*	*
水酸化アルミニウム	0. 01	*	99. 7	0. 01	*	*	0. 30	*	*

(*は未検出)

[0029]

★【表2】

活性アルミナスラリーの配合量及び粒径

·	スラリー A	スラリー B	スラリー C	スラリー D	スラリー E	スラリー F	スラリー G
水* (cc)	4000	4000	4000	4000	4000	4000	4000
活性アルミナ(g)	670	670	670	670	670	670	670
アルミナゾル(g) (アルミナゾル中のAl _z O, 量(g))	0 (0)	170 (17)	330 (33)	670 (67)	1000 (100)	1330 (133)	1670 (167)
粒径0.2 μm以下の活性アル ミナスラリーの割合(ψt%)	1. 5	3. 8	6. 6	10.0	14. 2	17. 6	21. 1
粒径30μm以上の活性アル ミナスラリーの割合(wt%)	5 未満	5 未満	5未満	5 未満	5未満	5未満	5未満

• イオン交換水

[0030]

【表3】

10

表 3

	平均細孔径	気孔率	活性アル	スラリー中の固 体成分のうち粒	熱膨張係	F数(× 1	活性ア		
	(µm)	(%)	序量 (g/L)	径0.2 μm以下 の割合 (wt%)	コート前 (OD)	コート後 (②)	增加量(②-①)	ルミナ 剝熊割 合(%)	備考
担体A-1	30	53	67	1.5	0. 11	0. 14	0. 03	7. 2	比較例
担体A-2	28	58	60	1.5	0.09	0. 18	0. 09	7. 0	比較例
担体B-1	27	55	63	3.8	0. 18	0. 26	0. 08	4. 5	比較例
担体 B - 2	33	59	59	3.8	0. 11	0. 17	0.06	4. 3	比较例
担体C-1	29	60	60	6. 6	0. 13	0. 29	0. 16	3. 5	本発明
担体C-2	28	55	71	6. 6	0. 15	0. 33	0. 18	3. 4	本発明
担体D-1	29	52	67	10. 0	0. 10	0. 35	0. 25	2. 7	本発明
担体D-2	30	49	71	10. 0	0. 12	0. 35	0. 23	2.4	本発明
担体E-1	28	55	66	14. 2	0. 14	0. 40	0. 26	2.0	本発明
担体E-2	31	54	65	14. 2	0.09	0. 39	0. 30	2.1	本発明
担体F-1	33	56	66	17. 6	0. 13	0. 44	0. 31	1.8	比較例
担体F-2	31	55	64	17. 6	0. 18	0. 45	0. 27	2. 3	比較例
担体G-1	30	55	60	21. 1	0. 20	0. 55	0. 35	1. 8	比較例
担体G-2	29	54	62	21. 1	0. 15	0. 56	0.41	1. 7	比較例

【図面の簡単な説明】

【図1】(a) \sim (c)はセラミックハニカム構造フィルタの模式図である。

【図2】 コーディエライトハニカムフィルタのマイクロクラックを示す。

【図3】実施例のスラリーの粒度分布を示す。

【図4】実施例のスラリーの粒度分布と活性アルミナ剥離の関係を示す。

【符号の説明】

* 2…セル側壁

3…活性アルミナ粒子

4…コーティング層

5…細孔

6…ガス入口

7…ガス出口

8…コーディエライト

30 9…マイクロクラック

•

[図2]

【図3】

フロントページの続き

(51)Int.Cl.⁶

識別記号

FΙ

技術表示箇所

F 0 1 N 3/10

庁内整理番号

B O 1 D 53/36 1 O 4 B

(72)発明者 影山 照高

愛知県刈谷市昭和町1丁目1番地 日本電

装株式会社内

(72)発明者 近藤 寿治

愛知県刈谷市昭和町1丁目1番地 日本電

装株式会社内