UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE	FILE COP	<u>Y</u>			
	REPORT DOCU	MI ΔD-	-A223	705	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1a. REPORT SECURITY CLASSIFICATION UNCLASSIFIED			~~~	733	
2a. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION	AVAILABILITY OF	REPORT	
26 DECLASSIFICATION / DOWNGRADING SCHEDU	JLE	1	OR PUBLIC RE ON IS UNLIMI		-
4 PERFORMING ORGANIZATION REPORT NUMB	ER(S)	5. MONITORING C	ORGANIZATION RE	PORT NUMBE	R(S)
MAR Technical Report No. 564		DTNSRDC-SS	ID-CR-17-86		
5a. NAME OF PERFORMING ORGANIZATION	6b OFFICE SYMBOL (If applicable)		ONITORING ORGAN Lylor Naval Center		
MAR, INC 6c ADDRESS (City, State, and ZIP Code)		<u> </u>	y, State, and ZIP (ode)	
6110 Executive Blvd., Suite 4 Rockville, MD 20852	10	CODE 1240	4D 20084-50		
8a. NAME OF FUNDING/SPONSORING ORGANIZATION David W. Taylor Naval Ship	8b. OFFICE SYMBOL (If applicable)		INSTRUMENT ID	•	NUMBER
R&D Center			D 3166 DEL C		
8c. ADDRESS (City, State, and ZIP Code) Code 1240		PROGRAM	PROJECT	TASK	WORK UNIT
Bethesda, MD 20084-5000		ELEMENT NO.	NO.	NO.	DN978568
11 TITLE (Include Security Classification)		62543N	F43455	<u>i</u>	805975טת
HWSTD HIGH WATER SPEED TECHNOL	OGY DEMONSTRATOR	R - POWER PAC	K - CONCEPT	JAL DESIG	N STUDY
12 PERSONAL AUTHOR(S) ZOLLER					
13a. TYPE OF REPORT 13b. TIME		14. DATE OF REPO		Day) 15. PA	GE COUNT
FINAL FROM 8 16 SUPPLEMENTARY NOTATION	/85 TO 4/86	86 April			
		······································			
FIFLD GROUP SUB-GROUP	18. SUBJECT TERMS	(Continue on revers	e if necessary and	d identity by t	olock number)
FIELD GROUP SUB-GROUP	TRACKED AMPHIL	TOWN UPUTOLE	(street)	_	
			a (3/20)		
Conceptual Design Study that assembly as required to meet to operation of a 14-ton amphi	encompasses the he requirements	layout and do of land born	e, transiti	e engine on, and s	and powerpac
				ELEC JUL 02	TE 1990
			C)	Co	
20 DISTRIBUTION/AVAILABILITY OF ABSTRAC	т		CURITY CLASSIFIC	ATION	· · · · · · · · · · · · · · · · · · ·
WUNCLASSIFIED/UNLIMITED - SAME AS	RPT. DTIC USER	S UNCLASSIFI	ED	41 224 OSSIC	E SYMP()
228 NAME OF RESPONSIBLE INDIVIDUAL		(310) 227-18	(Include Area Cod	DTRC-M	
WALTER ZEITFUSS			114		W. V

HWSTD

HIGH WATER SPEED
TECHNOLOGY DEMONSTRATOR

POWER PACK

CONCEPTUAL DESIGN STUDY

MAR Technical Report No. 564

90 06 29 061

TECHNICAL REPORT

MOTOREN- UND TURBINEN UNION (MTU)

April 22, 1986

prepared for

US-NAVY MAR, Inc./S. Simko

Contract No.: N00600-82-D-3166

Purchase Order No. 301133

Author: Folke
Approved: Recur

Acces	sion For	
NTIS	GRA&I	Y
DTIC	TAB	
Unanr	ounced	
Just	lfication_	
By		
	ribution/	
Ava	llability (Codes
	Avail and	/or
Dist	Special	
1	1	
1		
H-I	/}	
7-1	-L	

Intlu

TABLE OF CONTENTS

1.	Overview
1.1	Summary
1.2	Scope of Work according to Contract
2.	Results
2.1	Engine Data
	•
2.1.1	Introduction
2.1.2	Technical Concept
2.1.3	Design Characteristics
2.1.4	Dimensions
2.1.5	Dry Weight
2.1.6	Performance Map land/water mode
2.1.7	Max. Power over Ambient Temperature
2.1.8	Heat Rejection Requirements
2.2	Air Filtration System
2.2.1	Technical Description
2.2.2	Technical Data
2.2.3	Proposed or Currently Available Hardware
2.3	Cooling System
2.3.1	Technical Description
2.3.2	Technical Data
2.3.3	Performance Prediction
2.3.4	Proposed or Currently Available Hardware

FRIEDRICHSHAFEN

2.4	Cooling Fan Drive System
2.4.1	Description
2.4.2	Technical Data
2.4.3	Fan Speed Control
2.4.4	Proposed or Currently Available Hardware
2.5	Engine Compartment Venting System
2.5.1	Concept Evaluation
2.5.2	Technical Data
2.5.3	Proposed or Currently Available Hardware
2.6	Vehicle Power Pack Interface
2.6.1	Connectors, Couplings
2.6.2	Mounting Requirements
2.6.3	Inlet and Exhaust Grill and Sealing Requirements
2.6.4	Power Pack Removal Provisions
2.6.5	Maintenance Openings
2.7	Monitoring and Control System
2.7.1	Overview
2.7.2	Description
2.7.3	Dimension and Weight
2.8	Performance
2.8.1	Degradation of Performance due to Power Derating
2.8.2	Projected Vehicle Performance
2.8.3	Max. Available Net Power

ntu

2.9	Fuel Consumption
2.10	Fuels, Oils and Coolant Requirements
2.10.1	Engine Lubrication
2.10.2	Fuel
2.10.3	Coolant
2.11	Weight Estimates
2.12	Cost and Schedule Estimate

LIST OF ILLUSTRATIONS

	•	No.
•	H.W.S.T.D. Basic Engine Dimensions and Centre of Gravity No. 657 883	1
•	H.W.S.T.D. Engine Performance Map (Water Mode) No. 657 893	2
•	H.W.S.T.D. Engine Performance Map (Proposed Land Mode Power) No. 657 898	3
•	Max. Power Land Mode over Air Inlet Temperature	4
•	H.W.S.T.D. Engine Heat Rejection (Water Mode)	5
•	Comparison of Atmospheric and Pressurized Filter Systems	6
•	H.W.S.T.D. Coolant/Hydraulic Circuit, Power/Heat Balance 298 kW, 400 HP Pump Input	7
•	H.W.S.T.D. Coolant/Hydraulic Circuit, Power/Heat Balance 298 kW, 400 HP Engine Power	8
•	H.W.S.T.D. Prop. System Heat Capacity/ Heat Rejected, land mode	9
•	H.W.S.T.D. Coolant/Hydraulic Circuit, Power/Heat Balance (Water Mode)	10
•	Sea Water Heat Exchanger	11
•	Sea Water Pump Map	12
•	H.W.S.T.D. Fan Speed Control Map	13
•	Control & Diagnostic System	14
•	Time/Cost Schedule H.W.S.T.D. Power Pack	15
•	Installation Drawing No. 657 900	Attachment

Overview

1.1 Summary

This Conceptual Design Study has been executed according to the Purchase Order No. 301133, issued under the Contract No. N00600-82-D-3166 and the Scope of Work listed herein.

The Marine Corps Program Office is planning to produce a High-Water-Speed Technology Demonstrator (H.W.S.T.D.) that requires approx. 1500 HP for watermode and reduced power for landmode. As prime mover the new MTU 12-cylinder light-weight and low volume MT 883 Ka-500 diesel engine has been selected.

The drive system for both operating conditions is solely hydraulic. The engine drives three hydraulic pumps via a splitter box which is directly connected with the engine output flange. During watermode, three water jets driven by hydromotors provide the vehicle propulsion. During landmode, the sprockets on both sides are driven by separate hydromotors.

The task of the study is the concept design of the propulsion system, to analyse the interface requirements of the engine and vehicle and to verify the utilization of the engine in the H.W.S.T.D.

The evaluated concept shows that the MT 883 Ka-500 fulfils the power requirements for the H.W.S.T.D. and fits the given vehicle envelope. The power pack concept (see Attachment 1) with the peripheral components arranged over the engine as charge-air system, cooling system and fan drive system and the directly flanged splitter box results in a very short power pack length. The engine and all components are easily accessible even in the installed position - an important factor for a test vehicle with new components.

All required performance targets have been reached and are fully described in the report.

For the specified watermode power of 1500 HP, the engine operates with a max. speed of 3000 rpm. During land mode the engine max. speed range is limited to 2200 rpm with regard to the lower fuel consumption in the lower speed range.

Two max. landmode power levels have been considered at 2200 rpm. The first power level assures an hydraulic pump input power of 400 HP, which the cooling system is designed for. The second power level is based on a 400 HP engine output, which gives a similar tractive effort as the present test vehicle regarding the required cooling-fan power and splitter box losses.

It should be noted that a parallel procurement of MVO-contract engines with the two H.W.S.T.D. engines shows cost improvements for the basic engines as described in 2.12.

In addition to the contract-defined responsibility, the subcontractor offers to provide the splitter box with mounting equipment to be developed and built in collaboration with the German firm, "Zahnradfabrik Friedrichshafen" (ZF). This would minimize the interface clarification effort of the subcontractor. In addition, with respect to the required test of the engine with the splitter box, shipment cost can be reduced.

The cost and time schedule shows that 10 months after the main contract signing, the power pack is ready for delivery. This is based on a pre-contract signing for long-lead basic engine parts 5 months previously.

All technical data is based on the preliminary power pack design. It should be mentioned that the preliminary power pack design can be further adapted to not yet fully defined vehicle interfaces.

In addition, the subcontractor shall have the opportunity to introduce any technical improvements thought necessary during later detailed-design stages.

1.2 Scope of Work According to Contract

The Contractor shall design as many components around commercially available items that can be found in the Continental United States.

- 1.1 The Contractor shall address the following items when preparing the conceptual design layout:
 - 1.1.1 Utilization of one 12-Cylinder diesel engine (MT 883) rated at 1500 HP at 3000 RPM
 - 1.1.2 The engine will provide power to two Government Furnished gearboxes that will mount either transmission drive hydrostatic pumps or electric generators. Auxiliary system hydraulic pumps and alternators/generators can be either gearbox driven or engine mounted and driven. Gearbox drive shall be from both sides of the engine and the preliminary design shall incorporate a suitable coupling (such as a "Geislinger" coupling) between the engine and gearbox connections
 - 7.1.3 The engine shall have the ability to be derated and scheduled over its full speed range while providing only 600 HP in the land and transition modes of operation in a fuel efficient manner
 - 1.1.4 The engine shall be shock mounted with the definition of a suitable mounting/isolation system and all required brackets and assembly parts
 - 1.1.5 Air filtration system design of the combustion air intake system for all three modes of operation (land/transition/sea) (aspiration system with seawater plenum and shut-off will be part of the vehicle design and need not be covered), however engine demands shall be definitized
 - 1.1.6 Cooling system requirements and design for all three modes of operation that include:
 - 1.1.6.1 Layout and design requirements for seaborne cooling for 1500 HP at seawater temperature of 70 degrees Fahrenheit
 - 1.1.6.2 layout and design requirements for landborne cooling for approximately 600 HP at an ambient air temperature of 100 degrees Fahrenheit
 - 1-1-6-3 Layout and design requirements for transition mode cooling for approximately 600 HP at an ambient air temperature of 100 degrees Fahrenheit

- 1.1.6.4 Layout of cooling fan drive system and speed control
- 1.1.6.5 layout of engine compartment venting system that will be at below ambient pressure
- 1.1.6.6 mode control and seawater heat exchangers will be part of the vehicle design
- 1.1.7 Layout and interface requirements of engine monitoring, protection, diagnostic and engine mounted control system to allow tie-in with vehicle computer system
- 1.1.8 Complete electrical wiring of powerpack. This includes engine mounted electrical DC generator capable of 30 kW with associated protection
- 1.1.9 Layout and identification of quick disconnect couplings, breakpoints, fittings, and wiring for powerpack quick removal and description for all electrical connectors and hydraulic and pneumatic fittings
- 1.1.10 Description and requirements of any special hydraulic needs or electrical signal conditioning
- 1.2 The Contractor shall provide the following technical and descriptive data that will be utilized by the Government and HWSTD vehicle fabricator for the vehicle design and provisioning in the vehicle for the powerpack. All installation drawings shall be in English units and to either 1/8 or 1/4 scale.

1.2.1 - Engine data:

Technical description
Dimensions, including inertias and center-of-gravity
Weight (dry)
Performance map for 70 degrees F
Maximum Power Loss versus Ambient Temperature
Fuel Map curves for 1500 HP and expanded for 600 HP
Heat Rejection requirements for: Coolant
Oil Systems
Change Air

Charge Air Survey of proposed or currently availble hardware

1.2.2 - Air Filtration System:

Technical description
Dimensions
Weight
Pressure loss
Effectiveness
Service Life (utilizing components available in CONUS)
Maintenance requirements
Filtering means, provisions, and availablity
Survey of proposed or currently available hardware

1.2.3 - Cooling System

Technical description
Dimensions
Weight
Coolant ciruit for each mode of operation and required
coolant/air flows
Coolant/air temperatures
Valving system, selection and control process for each
mode of vehicle operation
Performance prediction and degradation as a function of
ambient air temperature rise for land operation
Performance prediction for seaborne and transition operation
Required heat capacity for seawater heat exchanger
Air/coolant pressure loss
Survey of proposed or currently available hardware

1.2.4 - Coolant Fan Drive System

Technical description
Dimensions
Weight
Required Fan Power
Fan Drive Efficiency
Proposed Drive Circuitry (electric or hydraulic)
Fan Speed Control
Survey of proposed or currently available hardware

1.2.5 - Engine Compartment Venting System

Technical description Cooling flow requirements for each mode of operation Haximum Pressure Loss Survey of proposed or currently available system

1.2.6 - Vehicle/Powerpack Interface

Definition of, number, and locations of connectors, and self-sealing couplings for fuel, oil and coolant Mounting requirements in hull Inlet and Exhaust Grill requirements Sealing and Screen System requirements Powerpack removal provisions Maintenance access openings

. 1.2.7 - Engine Monitoring and Control System

Technical description
Dimensions
Weight
Electrical Block diagrams and schematics
Interface capabilities with other vehicle controls

1.2.8 - Performance Calculations

Degradation of performance due to power derating Projected vehicle performance for each mode of operation Maximum available net power in seaborne mode of operation

1.2.9 - Fuel Requirements

Projection for vehicle operating range based on 70 and 100 degrees Fahrenheit days, in Landborne and seaborne modes of operation

1.2.10 - Fuel, Oils, and Coolant Requirements

Indication of any special requirements for special fuels,

oite

or coolant types to be used
Indication of quantities of each to be required

1.2.11 - Weight Estimates

Weight break-down, inertia and center-of-gravity figures provided for dry and operating wet weight

1.2.12 - Cost and Schedule Estimate of the following tasks

Development effort of the powerpack
Hardware and assembly effort
(including nominal spare parts for two years operation)
Test Cell effort to cerify engine and provide engine
performance and fuel use/scheduling curves
Technical Assistance for 400 Technician Man-hours during
the vehicle fabrication and testing phases in 1987, and
800 Technician man-hours during FY-88 vehicle testing

- 1.3 The Contractor shall submit the following technical and narrative descriptions during the performance of this effort:
 - 1.3.1 Monthly Progress Reports to document progress being made in the course of performance of work. These reports shall be due by the fifth day of each month during each month.

 (DD Form 1423, CDRL Item A001)
 - 1.3.2 Level 1 Engineering and Associated Drawings and Lists for all major systems as listed in Section 1.2 above. These shall be due 140 days after contract award.

 (DD Form 1423, CDRL Item ADD2)
 - 1.3.2 Final Technical Report that describes and details the tradeoffs, studies, analyses, and designs performed in the completion of this design study. This report shall be due 140 days after contract award.

 (DD Form 1423, CDRL Item A003)

- 2. Results
- 2.1. Engine Data

Technical Description

2.1.1 Introduction/History

The technical concepts of the Series 837 engines were laid-down in the mid-fifties. To date more than 14000 of these 6, 8 and 10-cylinder, liquid-cooled, V-configuration engines have been delivered. They have proven extremely successful in practical service in a great number of different types of vehicles as naturally aspirated, mechanically supercharged or turbocharged engines.

Comparison, Series 837-870-880

Development of the second-generation tank engine, the Series 870, started in the mid-sixties. With reduced external dimensions and higher cylinder power ratings it has considerably higher power utilization than the Series 837. The 12-cylinder MB 873 engine with 1500 mHP for the Leopard 2 and the 8-cylinder MB 871 with 1200 mHP are currently in series production.

Since the mid-seventies, MTU has been working on the third-generation tank engine, the Series 880. With these engines the installation volume has again been considerably reduced so that, in future, engines with extremely small external dimensions will be available to cover the 500 to 1500 mHP power range. For instance, the 12-cylinder MT 883 engine has the same power rating as the Leopard 2 engine but requires only 60% of the installation space.

2.1.2 Technical Concept

The design of this new engine series was based on the fact that the mean piston speed should be maintained at a level which had already been introduced, and proven, in series production but that the Mean Effective Pressure (MEP) - the second important design parameter for reciprocating piston engines - could be raised without exceeding mechanical or thermal load limits.

An additional design condition was that the highest power rating required for battle tank propulsion should represent the optimum for the engine series. The 12-cylinder version was selected for this purpose as it offers the most favourable power-to-weight and power-to-volume ratios. Together with the bore/stroke relationship determined by design considerations, this led to a cylinder displacement of 2.09 liters with a bore of 140 mm and a stroke of 136 mm.

The 10, 8 and 6-cylinder V-configuration versions were based on the 12-cylinder engine and these, in turn, led to the development of the 6, 5 and 4-cyl. in-line models so that in future the 500 to 1500 mHP power range can be covered by a technically highly attractive engine series with common, standardized logistics requirements.

The arrangement of the sub-assemblies required for engine operation is determined in consideration of the engine being an individual part of the complete propulsion system of an armoured vehicle. Thus, for instance, a generator with a max. electrical output of 23 kW can be include within the engine envelope. Furthermore, the positions of turbochargers and intercoolers can be matched to the in-vehicle combustion air and exhaust systems as arranged for the HWSTD engine. A particular advantage in this respect is the arrangement of the exhaust pipework in the engine saddle.

12-Cylinder Engine MT 883

To reduce space and weight, particular care was taken to keep the pipework connecting the various sub-assemblies as short as possible. Thus, for instance, the oil cooler and oil filter have been combined into a single unit, the coolant manifolds have been integrated into the cylinder heads and the lengths of both the combustion air and exhaust pipework minimized. Hose lines have been completely eliminated.

Above all, the total number of components required has been considerably reduced in comparison to the tank engines now in service. The resultant advantages are favourable for both reliability and logistics.

Running Gear for 12 Cylinder Engine MT 883

2.1.3 Design Characteristics

Cross Section

During the design phase, special emphasis was laid on the use of series-standard materials and production methods and that the mechanical and thermal loads on the individual components were maintained at proven levels.

Equal importance was attached to the arrangement and construction of the various functional groups. Novel design solutions were thus found for the connecting rods and the crankshaft counterweights which resulted in extremely small crankshaft chambers. Unit injection pumps were assigned to each individual cylinder and located, in the otherwise unused space, between the cylinder heads; injection pump drive is direct from the camshaft. The inlet and exhaust valves are identical and are actuated via three push rods. This allows extremely low valve gear dimensions and distributes the actuating forces equally between the roller tappets. The dry-sump oil pan, with sidemounted oil tank, is extremely flat and meets all operational requirements for inclined vehicle positions. As a matter of course, all sub-assemblies such as oil pumps, coolant pump and generator are gear-driven, the drive gear shafts being supported in ball bearings. As with the other tank engines, the crankcase is of cast aluminium and the main bearing caps are of forged steel. The individual grey cast-iron cylinder heads can be supplied for both pre-chamber and direct fuel injection.

Main Data

				125 n	nHP per cy	linder		· ·
		In	-line engin	es		9 0° V-	engines	
Engine Type		MT 884	MT 885	MT 886	MT 880	MT 881	MT 882	MT 883
No. of cylinders		R 4	R 5	R6	∨6	V 8	V 10	V 12
Displacement	1	8.4	10.5	12.6	12.6	16.7	20.9	25.1
Bore	mm	140	140	140	140	140	140	140
Stroke	mm	136	136	136	136	136	136	136
Engine Speed	rpm	3000	3000	3000	3000	3000	3000	3000
Power	metric HP	500	625	750	750	1000	1250	1500
Mean Effective Pressure	bar	17.6	17.6	17.6	17.6	17.6	17.6	17.6
Mean Piston Velocity	m/s	13.6	13.6	13.6	13.6	13.6	13.6	13.6
Installation Volume	dm³	531	628	701	674	804	878	975
Dry Engine Weight	kg	800	940	1050	1010	1220	1430	1650

2.1.4 Dimensions

Dimension of basic engine (individual dimension depends on specific application and component arrangement as turbocharger and charge-air cooler)

Length: 47.6" 1210 mm Hard crankcase length 129 mm 5.1" Accessory gear case at main output 130 mm 5.1" Front casing for injection control and damper 57.8" Total hard length 1459 mm 950 mm 37.4" Width 17.4" Height over crankshaft 442 mm 8.4" Height below crankshaft 214 mm 284 mm 11.2" at output flange

- Dimension of H.W.S.T.D. engine see drawing No. 657 883 Fig. 1.

656 mm 915 mm

- Center-of-gravity see drawing No. 657 883 Fig. 1.
- 2.1.5 Engine Dry Weight

Total height

with turbocharger

Including starter 1650 kg 3637.6 lb

- 2.1.6 Performance Map for Water Mode

 See drawing No. 657 893 Fig. 2

 Performance map for land mode 100°F drwg. No. 657 898 Fig. 3.
- 2.1.7 Maximum Land Mode Power over Ambient Temperature

 See drawing No. 657 894, Fig. 4.

Based are 4 percent power degradation per 10°C, 18°F totally.

Influence parameters: fuel temp. 2.5% per 10°C

ambient temp. 1.0% per 10°C

25.8"

36.0"

coolant temp. 0.5% per 10°C

2.1. Heat Rejection Requirements

Water Mode

Conditions:

1100 kW at 3000 rpm

1475 HP at 3000 rpm

- seawater temp.: 26.7°C (80°F)

- ambient temp.: 30.0°C (86°F)

Heat Sources:

- engine coolant 550 kW (521 BTU/sec)

- engine oil 140 kW (133 BTU/sec)

- charge air 190 kW (180 BTU/sec)

Engine total heat 880 kW (834 BTU/sec)

Engine heat over speed see drwg. No. 657 887, Fig. 5.

- oil heat
 splitter box

43.8 kW (41.5 BTU/sec)

- oil heat hydr.
 drive system

156.6kW (148.5BTU/sec)

Total heat to

be absorbed 1080.4 kW (1024 BTU/sec)

Land Mode

Condition for power level 1, 400 HP pump input:

404 kW at 2200 rpm 542 HP at 2200 rpm

- ambient temp.: 38°C (100°F)

- cooling air
inlet temp.: 43°C (109°F)

(5°C, 9°F hot air recirculation assumed)

- max. coolant design temperature: 107°C (224.6°F)

Heat Sources: - engin

- engine coolant 260 kW (246.4BTU/sec)
- engine oil 65 kW (61.6BTU/sec)
- charge air 10 kW (9.5BTU/sec)

Engine total heat 335 kW (317.5 BTU/sec)

- oil heat hydr.
 drive system 70 kW (66.4 BTU/sec)

Total heat to be absorbed 423 kW (401.0 BTU/sec)

Condition for power level2 400 HP engine output:

298 kW at 2200 rpm

400 HP at 2200 rpm

- ambient temp.: 38°C (100°F)

- cooling air

inlet temp.: 43°C (109°F)

(5°C, 9°F hot air recirculation assumed)

- max. coolant

temp.: 99.3°C (211°F)

Heat Sources: - engine coolant 192 kW (182 BTU/sec)

- engine oil 60 kW (56.9 BTU/sec)

- charge air 2 kW (1.9 BTU/sec)

Engine total heat 254 kW (240.8BTU/sec)

- oil heat

splitter box 17 kW (16.1 BTU/sec)

- oil heat hydr.

drive system 50 kW (47.4BTU/sec)

Total heat to

be absorbed 321 kW (304.3BTU/sec)

2.1.8 Proposed Available Hardware

Basic test engines are currently in procurement for one other project of the same horsepower and speed.

The arrangement of engine peripheral equipment as location of turbocharger, charge-air cooler, mounting, piping, connecting parts and engine control must be modified for the H.W.S.T.D.

The turbochargers and the piping can be used as for the planned engines.

The charge-air cooler and connecting pipes must be new designed. The rear and forward engine flange must be adapted on the mounting requirement of the H.W.S.T.D. engine.

The individual engine coolant piping must be new designed for the H.W.S.T.D. special coolant circuit with regard to the hydraulic cooling requirement and to the landmode and seamode compatibility.

- 2.2 Air Filtration System
- 2.2.1 Technical Description

Air Supply System (see Attachment 1)

Air for the main engine and engine-compartment venting is through a hood, located on the top deck of the vehicle, to be defined by the vehicle designer: this hood closes in case of submersion.

To remove spray water from the air, a plenum chamber should be included in this duct.

A smaller amount of this intake air - approx. 5% of the main air flow - is required for engine compartment venting and will be drawn off by an electrically driven blower.

The connection to the engine-air filter system can be adapted to the vehicle intake system. It is proposed to use a flexible hose with a V-band connection to the engine-air filter system. This connection can be arranged either from the top or axially. A flexible connection is required in order to withstand the movements between the resiliently mounted engine and the vehicle-mounted intake duct.

Air Filter System (Pressurized Fine-Filter System)

For the engine filter system, a new type of filter is used. The primary difference is shown in Fig. 6.

Contrary to an atmospheric system a two-stage cyclone module is used instead of a single stage, providing a higher degree of dust separation. The separation efficiency of cyclone filters has been improved recently to such an extent that the turbocharger can be supplied with pre-cleaned air. Furthermore, during landmode operation the turbocharger speed will be very low, which causes no erosion problems. During marinemode no dust concentration in the air is to be expected.

The fine filter is located downstream of the charge-air cooler, where the air density is highest. The combination of better raw air pre-cleaning, together with high air density on the filter side, allows the fine-filter dimensions to be approx. 1/4 that of an atmospheric fine filter with the same replacement intervals.

The dust capacity of the pressurized finefilter cartridges is lower than that of an atmospheric fine filter because the particle size is smaller, resulting in quicker clogging. This was taken into consideration when determining the fine-filter size and maintenance interval.

2.2.2 Technical Data

Flow_requirements

- Combustion air flow at nominal power 1100 kW, 1475 HP at 3000 rpm	1.65 kg/s	3.64 lb/sec
- Scavenge flow rate 12%	0.20 kg/s	2.44 lb/sec
- Total intake air flow	1.85 kg/s	4.08 lb/sec
Precleaner		

- Design type: 2 stage-cylone with electric diven scavenge blower, one unit for each turbocharger

-	Dimension:	height	370 mm	14.57 inches
		width	270 mm	10.63 inches
		length without	165 mm air duct	6.50 inches
-	Pressure loss at nominal flow		2000 N/m²	8.0 inchWG
-	Absorbtion efficien	ncy	98%	98%
_	Scavenge blower			
	Power requirement		1.12 kW	
	current		28.0 V DC	
	speed		13000 rpm	
	pressure	approx.	5000 N/m ²	20 inchWG

-	- Weight per unit	25	kg	55	1ь
Ē	<u> </u>				
-	 Design type: pressurized fine filter, one cartridge for each cylinder bank 				
-	- Cartridge effective diameter	270	mm	10.63	inches
_	- Cartridge length	390	mm	15.35	inches
-	- Effective paper area per cartridge	16.3	m²	175.0	sqft
-	Pressure loss clean cartridges	600	N/m²	2.4	inchWG
-	- Max. pressure increase for dust ingestion	2500	N/m²	10.0	inchWG
-	- Expected time between removal for land mode operation in zero visibility environment 1 g/m³ dust concentration	100	hrs.		
-	- Weight	75	kg	265.0	lb.

2.2.3 Proposed or Currently Available Hardware

- Two-stage cyclone pre-filter have been built for various test vehicles. The cyclone cells are in production at Mann & Hummel. The special size for H.W.S.T.D. must be ordered.
- The scavenge blower is a serial product for the Leo 2 powerpack.
- The fine-filter cartridges have the same diameter as used for the Leo 2, Self-Propelled Howitzer and XK1 powerpack. The length required for the H.W.S.T.D. powerpack can be furnished with serial production tools.

2.3 Cooling System

2.3.1. Technical Description

Requirements

The heat to be dissipated from the following sources must be provided for in designing the cooling system.

- Main engine (landmode, watermode)
 - · coolant
 - · lube oil
 - · charge air
- Splitter box
 - · oil
- Hyuraulic drive system
 - · oil

In the landmode heat must be dissipated into the ambient air via radiators; in the watermode a seawater/coolant heat exchanger dissipates the total heat of the power plant.

Operation of the vehicle on land and in the water necessitates a cooling concept which will ensure maximum efficiency for both propulsion modes as well as trouble-free transition operation at a minimum of expense and complexity. The transition phase requires safe operation under undefined cooling conditions.

For landmode operation two different engine power levels have been considered. Power level 1 assures a hydropump power requirement of 400 HP. Power level 2 is based on an engine power level of 400 HP. The landmode cooling system has to be designed so that the heat for both power levels can be dissipated to a max. ambient temperature of 38°C, 100°F, without max. power restriction.

Selected Concept for:

Landmode Operation - see Fig. 7, 8, 9 and Attachment 1

A cooling system over the engine is used to dissipate heat in landmode; it exists of two, layered, low-profile radiators with one hydrostatically-driven radial fan.

Cool air is drawn in by the fan through louvers which can be closed during watermode. The connection between the radiator system and the intake louvers is sealed by a flexible rubber seal. The cooling air is sucked through the radiator by the fan (suction-system) and then expelled through an air duct to the vehicle exit louvers, which will also be closed during watermode. The radial fan has been selected because of the insensitivety to corrosion, water ingestion and with regard to low cost and stable pressure characteristic over speed. The fan is driven by a hydromotor. Fan speed is automatically controlled to provide a constant coolant temperature at the outlet of the two cylinder banks of the engine.

The selected coolant circuit is adapted to the requirements of two temperature levels in the circuit. The lower temperature level is used for the cooling of the hydraulic-oil circuit and the charge-air circuit, the higher level is taken to cool the engine itself. Therefore, the circuit consists of two coolant branches having separate radiators and heat exchangers and one engine driven coolant pump. The individual coolant branches are brought together at the water pump inlet.

The radiator at the inlet side of the cooling-air inlet cools approx. 30% of the total coolant flow to a temperature (85.5°C, 186°F at 38°C, 100°F ambient temperature) resulting in a relatively low oil temperature of approx. 90°C, 194°F, in the hydraulic circuit during landmode.

The radiator at the fan side cools approx. 70% of the coolant flow to a higher temperature (101°C, 213.8°F at 38°C, 100°F ambient temperature) which the engine can operate with.

Cooling of the splitter-box oil and of the charge air is provided by heat exchangers cooled by the low temperature circuit. This circuit has been selected with regard to minimizing the amount of piping and valves. For watermode the smaller, low-temperature circuit is to be switched by a two-way valve only. During watermode the low-temperature circuit is cooled by a seawater heat exchanger instead of the radiator for landmode. The reasons for the selected circuit can be summarized as follows:

- Simple system
- System can be used for watermode as well as transition operation without special equipment refer to watermode operation.
- Lower charge-air and hydrostatic-oil temperature can be achieved without influencing the temperature levels of the main radiator module and the engine coolant.
- The operating temperature of the main branch can be selected independently of the secondary branch, enabling greater efficiency (higher temperature and smaller volume).
- Pre-heating of charge air for cold starting by joining both branches upstream of the pump. This is also favourable in the land mode low power range.
- Equalization of thermal capacities by joining both branches: permits utilization of thermal capacity of total system of all subsystems.
- Integration of all subsystems' cooling requirements enables minimum dimensions because the cooling capacity of the total system is available for incidents such as the transition mode which does assure cooling capacity either from the landmode cooling system or the seamode cooling system.

Watermode operation - see Fig. 10

(Marinemode)

During travel in the water, heat from the power pack is dissipated by a water-tube heat exchanger. The lower temperature-level coolant flow (already described in landmode operation) is cooled in this heat exchanger by seawater which is supplied by a hydromotor-driven seawater pump. The selection of the branched or mixed cooling circuit allows 30% of the total coolant flow to cool to a very low temperature (e.g. with 26.7°C, 80°F seawater temperature, 54°C, 129.2°F coolant temperature). Triggered by an electrical signal or by manual changeover of a two-way valve, coolant flow to the landmode radiator is blocked. In addition, a semi-switched position for the transition phase can be realized. The low temperature branch cools the hydraulic oil via a heat-exchanger to a favourable low temperature of approx. 62.7°C, 144°F with regard to the high power level of the hydraulic drive system for watermode.

After the hydraulic heat exchanger, the coolant flows partially through the oil-heat exchanger of the splitter box and cools then the charge air in the charge-air coolers. After leaving the charge-air cooler, the coolant is still at a relatively low temperature, low enough to cool the main coolant branch to the required engine inlet temperature.

The main engine branch - 70% of the total coolant flow - flows through the engine radiator although the radiator dissipates no heat, because the fan is cut out and the cooling-air inlet and outlet louvers are shut for water-mode.

To change from land to watermode, the following operations are required:

- Close cooling air inlet and outlet
- Change two-way valve over to watermode.
- Stop fan
- Changing the hydrosystem to the watermode automatically switches on the water-jet system and the seawater pump.

2.3.2 Technical Data

Cooling System Design Data (see 2.1.7)

total heat to be dissipated for land mode operation

power level 1: 423 kW, 401 BTU/sec

power level 2: 321 kW, 304.3 BTU/sec

ambient temperature: 38°C, 100°F

engine speed: 2200 rpm

coolant flow: 59.4 m³/hr, 261.6 GPM

total heat to be dissipated

for water mode operation 1080.4 kW, 1024 BTU/sec

ambient temperature: 30°C, 86°F

sea water temperature: 26.7°C, 80°F

engine speed: 3000 rpm

coolant flow: 81 m³/hr, 356.7 GPM

Components temperature/flow data see Fig. 7,8

· low temperature radiator:

- type: plate-fin, louvered fin type

- material: aluminium

- supplier: Behr

- fin density: 70 fins/dm, 17.8 fins/inch

- flow: cross counter flow

_	heigh	t tota	1:
---	-------	--------	----

- air side area:

- air core length:

- coolant core length:

- coolant pressure loss
for:

- air pressure loss for:

- heat (power level 1):

- weight (dry):

70 mm, 2.75"

0.64 m², 6.9 sqft

60 mm, 2.36"

2 x 800 mm, 2 x 31.5"

18.33 m³/hr, 80.7 GPM

0.4 bar, 5.8 psi

8 kg/s, 17.6 lb/sec 1200 N/m², 4.8"WG

255.7 kW, 242 BTU/sec

32 kg, 70.5 lb

Engine main radiator

- type:

- material:

- supplier:

- fin density:

- flow:

- height total:

- air side area:

- air core length:

- coolant core length:

plate fin louvered fin type

aluminium

Behr

70 fins/dm, 17.8 fins/inch

cross counter flow

85 mm, 3.35"

0.64, 6.9 sqft

75 mm, 2.95"

2 x 800 mm, 2 x 31.5"

- coolant pressure loss for: 41.1 m³/hr, 180.9 GPM

= 1.2 bar, 17.4 psi

- air pressure loss for:

8 kg/s, 17.6 lb/sec = 1500 N/m², 6 "WG

- heat (power level 1):

167.3 kW, 158.5 BTU/sec

- weight (dry)

40 kg, 88.2 lb

Oil heat exchanger

Splitter box:

- type:

- material:
- supplier:

- flow:

- oil face area:

- coolant face area:

- block dimension, edges
to be added:

- coolant pressure loss
for land mode:

for sea mode:

- oil pressure loss for:

- heat: power level 1 water mode

- weight:

plate fine louvered fin type

aluminium

Behr

single flow for coolant cross-

counter flow for oil

100 mm x 300 mm, 4" x 12"

100 mm x 160 mm, 4" x 6.3"

100 mm x 160 x 300 mm

4" x 6.3" x 12"

18.33 m³/hr, 80.7 GPM

0.15 bar, 2.18 psi

25 m³/hr, 110 GPM 0.25 bar, 3.62 psi

2500 1/hr, 11 GPM

0.4 bar, 5.8 psi

18 kW, 17.06 BTU/sec

43.8 kW, 41.51 BTU/sec

10 kg, 22 lb

Hydraulic oil heat exchanger:

- type:

- material:

- supplier:

- flow:

- oil face area:

- coolant face area:

- block dimension, edges
to be added:

- coolant pressure loss:
 for land mode

for sea mode

plate fin, louvered fin type

aluminium

Behr

single flow for oil cross-

counter flow for coolant

650 mm x 300 mm 25.6" x 11.8"

700 mm x 300 mm 27.6" x 11.8"

700 mm x 650 mm x 300 mm 27.6" x 25.6" x 11.8"

18.33 m³/hr, 80.7 GPM

0.3 bar, 4.35 psi

25 m³/hr, 110 GPM 0.35 bar, 5.08 psi

170 kg, 375 lb

- weight

- heat: for land mode

power level 1

70 kW, 663. BTU/sec

for water mode

156.6 kW, 148.4 BTU/sec

Sea water heat exchanger (see Fig. 11)

- type:

flat pipe type

- material:

G-CuZn15Si4

- supplier:

Behr

- flow:

single path for sea water single path for coolant

- total dimension:

611 mm x 390 mm x 225 mm

24" x 15.4" x 8.9"

- sea water pressure loss

for:

 $70 \text{ m}^3/\text{h}$, 308 GPM

0.75 bar, 10.9 psi

- coolant pressure loss

for:

25 m³/h, 110 GPM 0.65 bar, 9.43 psi

- heat (sea mode)

1080 kW, 1023,7 BTU/sec

- weight (dry)

60 kg, 132 lb

Charge air cooler (2)

- type:

plate fin louvered

fin type

- supplier:

Behr

- material:

aluminium

- fin density air core:

80 fins/dm,20.3 fins/inch

- air core length:

115 mm, 4.5"

- air face area:

700 mm x 150 mm, 27.5" x 5.9"

- flow:

single air path

cross-counter coolant

- pressure loss (water mode)

air:

1200 N/m², 4.8"WG

coolant:

0.2 bar, 2.9 psi

- heat (total)

landmode power level 1: 10 kW, 9.5 BTU/sec

sea mode:

190 kW, 180 BTU/sec

- weight:

12 kg, 26.5 lb

Sea water pump - pump map (see Fig. 12)

- type:

radial pump

- supplier:

MTU

- max. speed:

3300 rpm

- nom. speed:

3255 rpm

- nom. pressure:

3.4 bar, 49.3 psi

2.3.3 Performance Prediction

- land mode power level 1 400 HP pump input for ambient temperature of 38°C, 100°F power balance: see Fig. 7,9

engine power at 2200 rpm		404.0 kW		542.0	HP
electric power		5.0 kW		6.7	HP
engine output		399.0 kW		535.3	HP
power loss splitter box		18.0 kW		24.1	HP
charge pump power		3.0 kW		4.0	HP
pump input power	2 x	189.0 kW	2 x	253.5	HP
power loss hydr. (heat)		70.0 kW		93.9	HP
line loss hydr.		5.3 kW		7.1	HP
leakage loss approx. 2%		6.7 kW		9.0	HP
hydromotor output power		296.0 kW		397.0	HP
cooling fan power		68.0 kW		91.2	HP
land mode drive motor output (total)		228.0 kW		305.8	нр
- · · · · · · · · · · · · · · · · · · ·					

 land mode power level 2 400 HP engine power for ambient temperature of 38°C, 100°F

power balance: see Fig. 8,9

engine power at 2200 rpm	298.0 kW 400.0	HP
electric power		HP
engine output	293.0 kW 393.0	HP
power loss splitter box	17.0 kW 22.8	HP
charge pump power	3.0 kW 4.0	HP
pump input power	2 x 136.5 kW 2 x 183.1	HP
power loss hydrost. (heat)	50.0 kW 67.1	HP
line loss hydrost.	4.8 kW 6.4	HP
leakage loss approx. 2%	4.7 kW 6.3	HP
hydromotor output power	213.5 kW 286.4	HP
cooling fan power	45.5 kW 61.0	HP
land mode drive motor output (total)	168.0 kW 225.0	нр

- Sea mode power for seawater temperature of 26.7°C, 80°F and 30°C, 86°F ambient temperature

power balance: see Fig. 10

engine power at 3000 rpm	1100.0 kW	1475.3 HP
electric power	5.0 kW	6.7 HP
engine output	1095.0 kW	1468.6 HP
power loss splitter box $\eta = 0.96$	43.8 kW	58.7 HP
charge pump power	7.5 kW	10.0 HP
pump input power 13	k280 kW,2x378.1kW	1x375HP, 2x507 HP
power loss hydrost. (heat) η = 0.85	156.6 kW	210.0 HP
line loss hydrost.	7.5 kW	10.0 HP
leakage loss	30.2 kW	40.5 HP
hydromotor output power	849.4 kW	1139.0 HP
power seawater pump	12.4 kW	16.6 HP
seamode hydrojet pump input (to	otal) 837.0 kW	1122.6 HP

2.3.4 Proposed or Currently Avialable Hardware

Radiator:

Radiator type normally used for MTU-power packs size must be specially procured for H.W.S.T.D. p.p. Tools are available at Behr.

Similar turnable coolant connection used for M48 power pack. Applied mixed circuit used for several MTU-power packs. Similar hydrostatic cooling arrangement has been applied for special German Mine Remover.

Sea Water Heat Exchanger:

In production for MTU ship propulsion systems.

Hydraulic Oil Heat Exchanger:

Similar size used for Mine Remover.

Sea Water Pump:

Used for MTU ship propulsion system. Must be modified for hydromotor drive.

2.4 Cooling Fan Drive System

2.4.1 Description

With respect to the location of the cooling system above the engine and the hydrostatic propulsion system for landmode and watermode, a hydrostatic fan drive system has been chosen. The selected radial fan rotates at a maximum speed of 4850 rpm, altering use of a direct fan drive.

Because the cooling systems have to be cooled at full engine landmode output up to an ambient temperature of 38°C, 100°F, and since only minor fan performance is required with less severe climatic conditions, the fan speed - and therefore power control - is recommended from a fuel and power economy point of view.

The possibilities of fan-speed control have been considered:

- 1. Use the fixed displacement pump at the splitter box for the fan-drive system during landmode. Control the fan speed via the bypass valve in the circuit. The result is that fan power is reduced by the square of the speed respectively heat based on constant ambient temperature.
- 2. Change the fixed displacment pump to a variable displacement pump and control the fan speed by the angle of the pump. The fan power is then reduced by the cube of the speed respectively heat based on constant ambient temperature. This is a primary controlled fanspeed system.
- 3. Use a variable displacement motor which is supplied with constant pressure from the two displacement pumps at the splitter box. That means, these two pumps are primarily supplying oil for the landmode drive system and a small oil flow for the fan drive. Fan speed is controlled by the angle of the hydromotor. This is a secondary controlled fan-speed system. The power/speed respectively heat relation is the same as for option 2. In this case a "Stromag" coupling disengages the constant hydropump from the splitter box, switching from seamode to landmode.

Presently, the hydraulic supplier, "von Roll" is favourizing option 3 with regard to the total power pack weight. For the final decision, the advantages and disadvantages of the 3 options should be further considered in detail when the efficiency of the systems, for all displacement angles, are available and the weight of the different systems can be compared.

As parameter for the fan-speed control, the engine outlet temperature, which is limited to 107°C, 225°F as starting point for power reduction has been chosen. The max. allowable coolant temperature is 110°C, 230°F - see Fig. 13.

The fan-speed control is so adjusted that the max. fan speed is at approx. 103°C, 217°F. The fan starts to operate at approx. 98°C, 208°F.

The hydraulic-oil circuit is cooled by the cooling branch of the coolant through a heat exchanger. The heat dissipation and allowable hydraulic-oil temperature is therefore assured for all operating conditions.

2.4.2 Technical Data

Cooling Fan

		ens	• -	:
1 1 7	me	3 M C		· •

Dimension.			
max. diameter	581	mm ·	22.9"
intake diameter	460	mm	18.1"
max. height	175	mm	6.9"
Nom. speed:	4850	rpm	
Air pressure loss:			
inlet	500	N/m²	2.0"W.G.
radiator 1	1200	N/m^2	4.8"W.G.
radiator 2	1500	N/m²	6.0"W.G.
fan inlet	1000	N/m²	4.0"W.G.
fan outlet casing	500	N/m_3	2.0"W.G.
exit	500	N/m²	2.0"W.G.
total	5200	N/m^2	20.9"W.G.
Fan inlet under-pressure:	4200	N/m²	16.9"W.G.
Fan outlet back-pressure:	1000	N/m²	4.0"W.G.
Fan power requirement for nom. speed, sea level			
$\eta = 0.67$:	68	kW	91.2 HP
Fan weight:	20	kg	44.0 lb

Fan Motor

Option 1:		fixed displacement motor			
Type:	14/40	32 cm ³ /rev. 1.9 inch ³ /rev			
Supplier:		Behr, Hydromatik			
Oil flow:		162 l/min 42.8 GPM			
Speed:		4850 rpm			
Differential pressu	re:	290 bar 4206.0 psi			
Weight:		10 kg 22.0 lb			

Option 2 and 3: variable displacement motor

Type: A6VM-28

Supplier: von Roll, Rexroth

Differential pressure: depending on selected

circuit pressure

Weight: 22.7 kg 50.0 lb

Fan drive efficiency: combined sprocket drive, fan

drive system

 $\eta_{TOT} = 0.783$ (power level 1) $\eta_{TOT} = 0.782$ (power level 2)

2.4.3 Fan Speed Control (see Fig. 13 and 2.4.1)

Fan speed is controlled by variable displacement fan motor for option 2 and 3.

Fan speed is controlled by bypass valve for option 1.

Control parameter is engine coolant outlet temperature.

For over 103°C, 217°F fan speed is 100%. Fan speed is then linearly reduced as a function of the coolant outlet temperature up to zero for approx. 98°C, 208°F coolant temperature.

The relation between heat capacity fan power, fan speed and ambient temperature is shown in Fig.

2.4.4 Proposed or Currently Available Hardware

- The proposed cooling fan is in serie-production for the Leopard 2 power pack and AMX 30 repowering kit. Some few modifications have to be made for the direct connection of the hydromotor and fan flange.
- Hydrostatic units are standard components of Rexroth respect. Hydromatic.
- Coolant sensors can be taken from MTU power packs in serie-production. .
- Piping and valve should be ordered after finalized detailed design.

2.5 Engine Compartment Venting System

2.5.1 Concept Evaluation

The main reason for venting the engine compartment is not to cool engine parts because the liquid-cooled engine does not really need cooling. The venting air is mainly required in order to avoid unventilated, respectively over-heated areas, that can damage peripheral power pack components such as electronic systems, hoses or sensors.

The air flow requirement is therefore very low. A flow of approx. 0.4 kg/s is enough in MTU-experience if a good flow distribution can be reached.

The engine compartment must be ventilated during water and landmode operation. Theoretically, air supply could be achieved by the cooling fan during landmode operation via a bypass duct at the fan suction side or casing. This possibility has often been used for MTU-power packs. During watermode, the cooling fan must be shut-down and the intake and exhaust louvers closed. A second source of ventilation is therefore required with a fording hood intake and exit which hinders water entering the engine compartment.

These fording components normally result in quite high pressure losses for the intake and exit air. The design of the inlet and exit hood has to be made by the vehicle designer.

It can be estimated that the total required air pressure should be approx. 500 mmWG, 20.0 WG.

The drive system for the blower can be an electric motor or a hydromotor. The electric motor is advantageous for engine shutdown. To avoid heat soak the electrically driven blower can be operated some minutes after engine shut down. The total efficiency of the electric or hydromotor drive will be nearly equal.

2.5.2 Technical Data

Required venting air flow 0.4 kg/s 9 lb/sec Required total pressure approx. 500 mmWG 20"WG

Location of inlet and outlet:

Recommended inlet:

over power pack electronic box

approx. over splitter box at both sides of the top deck

exit:

Proposed and Currently Available Hardware 2.5.3

It is recommended to use commercial or military components which are in production. Recommended is an electric driven blower but even an hydraulic driven is applicable.

German blower sources:

Hydraulic driven blower:

used in personal carrier "Marder"

Technical data:

3.34 kW 4.5 HP blower power:

2-stage axial blower type:

air flow: $20 - 24 \text{ m}^3/\text{min}$ 53.0 lb/min

27.0"WG 700 mmWG air pressure:

hydraulic flow: 30 1/min 7.9 GPM

hydraulic pressure: 80 bar 1160.0 psi

66.0 lb total weight: approx. 30 kg

BWB 23111290200 stock No.:

Electric driven blower:

Technical data:

Fa. Piller, Osterode supplier:

5.0 kW 6.7 HP blower power:

axial part No. 93614ANM0270 blower type:

11.6"WG 2900 N/m² air pressure:

 $66.0 \text{ m}^3/\text{min}$ 174.0 lb/min air flow:

49.0 kg 108.0 lb

total weight: approx. 13.0"

330.0 mm dimensions:max. DIA 18.5" max. length 470.0 mm

2.6 Vehicle/Power Pack Interface

2.6.1 Connectors, Couplings (see also installation drawing No. 657 900) Attachment 1

Electronic connectors and electronic supply:

Located at both sides of electronic box over fine filter.

Coolant:

Quick-disconnects below left prefilter for:

- coolant to sea water heat exchanger 45 mm, 1.8"min DIA, max. flow 25 m³/hr, 110 GPM, max. pressure 5 bar, 72.5 psi
- coolant to hydraulic heat exchanger 38 mm, 1.5 min DIA, max. flow 18.3 m³/hr, 80 GPM, max. pressure 5 bar, 72.5 psi
- coolant from splitter box heat exchanger, 45 mm, 1.8 min DIA, max. flow 25 m³/hr, 110 GPM, max. pressure 5 bar, 72.5 psi
- coolant venting from heat exchangers
 13 mm, 0.5 m³/hr, 2.2 GPM, max.
 pressure atmospheric

Hydraulic oil:

Quick disconnects below right prefilter for:

- oil to hydromotor for fan 25 mm,
 1"min DIA, max. flow 162 1/min,43 GPN
 350 bar, 5000 psia
- oil from hydromotor to hydraulic circuit, 25 mm, 1"min DIA, max. flow 162 1/min, 42.8 GPM, max. pressure 30 bar, 435 psia
- oil leakage flow from hydromotor 8 mm, 0.3"min DIA, max. flow approx. 2 1/min, 0.5 GPM, max. pressure: atmospheric

Fuel:

Quick disconnect location can be adapted on vehicle provision recommended location: front of engine below fine filter and front engine cover.

- fuel from tank system 16 mm, 0.63 min DIA, female connector, max. flow approx. 800 l/hr, 3115 GPM, max./min. pressure.6 bar, 9 psia
- fuel to tank system, 16 mm, 0.63 min DIA, male connector, max. flow approx. 800 1/hr, 3.5 GPM

2.6.2 Mounting Requirements

The power pack has three mounting locations at the length coordinate of the vehicle (see installation drawing 657 900), Attachment 1.

The rear splitter box mount is the length determinating mounting. It consists of two prestressed elastomeric conical elements for both sides. Simple screw threads must be provided in the hull bracket. The engine flexible mount at the output is an auxiliary mount used for disassembling the engine and taking vertical shocks in one direction didn't need any provision. A simple flat machined surface is needed at the hull basement.

The forward engine mount consists of flat rubber elements to take vertical shocks in both directions. This shock mount is relatively soft compared with the splitter box mounting system. The length misalignment and thermal expansion of the power pack will therefore be compensated by the forward rubber elements. One screw thread on each side is required to fix the power pack. The forward and rear basement of the engine mounting system must allow to move the engine horizontally approx. 2" in forward direction.

2.6.3 Inlet and Exhaust Grill and Sealing Requirements

For the cooling system an inlet and outlet grill with closeable louvers have to be provided by the vehicle manufacturer.

The following technical data for the cooling system design must be reflected for the grill design:

Inlet grill:

max. cooling air flow	8.0 kg/s 6.7 m³/s	17.6 lb/sec 235.0 cuft/sec
grill inlet area	mm 088x008	31"x35"
<pre>inlet sealing flange breadth required (machined surface):</pre>	approx. 30.0 mm	1.2"
max. pressure loss	500.0 N/m ²	2.0"WG

Outlet grill:

max. cooling outlet flow:	8.0 kg/s $8.55 \text{ m}^3/\text{s}$	17.6 lb/sec 301.0 cuft/sec
grill exit area	400 x 940 mm	15.7" x 37"
exit sealing flange breadth required (machined surface): approx.	30.0 mm	1.2"
max. pressure loss:	500 N/m ²	2.0"WG

For the inlet grill an protection screen against large particles is recommended. This grill should be removable or easy cleanable. Screen size recommended approx. 2.5 mm \times 2.5 mm, 0.1 " \times 0.1 ".

2.6.4 Power Pack Removal Provisions

With regard to the large hydraulic piping connections at the splitter box mounted pumps a possibility of the disassembling the engine from the splitter box in the engine compartment has been foreseen. The following procedure for the removal of the engine with peripherical equipment as cooling, air filter is required.

- Disengage the engine splitter box power connection via the movable spline shaft, which engages at the engine side in the spline of the Geislinger coupling and on the other end in the center gear of the splitter box. For that purpose the splitter box small rear cover must be removed.
- Loose the both forward mounting screws.
- Open the three quick-disconnect clamps of the flanges between engine and splitter box.
- Detach the quick-disconnect self sealing coupling at the engine for coolant and hydraulic oil of the fan drive system.
- Detach electrical connectors at the engine control box.
- Detach the quick-disconnect couplings for fuel at the forward engine end.
- Remove the engine horizontally for approx. 2" until the forward single guide pin attachs the guiding rail.
- Lift the engine out at the three lifting eyes (two at the forward engine end, one near the engine output).

2.6.5 Maintenance Access Openings

The maintenance locations are listed and shown in the installation drawing 657 900, Attachment 1.

Maintenance access is required at the forward engine top side for engine oil filling cap, dipstick and coolant filling cap. The fine filter cartridges can be replaced from the engine compartment at the forward engine side. The engine oil filters can be replaced at the left engine side, either in installed or removed position. The engine oil filters are replaced every second year or after 200 operating hours.

The vehicle designer could provide either a large opening at the forward top cover area or single small maintenance access openings.

2.7 Monitoring and Control System

2.7.1 Overview

The control and diagnostic system planned for the H.W.S.T.D. engine will be a standardized system as presently in development and hardware available in 1987, which is used for all power packs with 880 engines planned or in production. The system has the possibility to address the special requirement of the H.W.S.T.D. power pack. As for the H.W.S.T.D. engine specified, the monitoring and control system will control the engine power corresponding to the signal from the on-board computer. It will also reflect the power map limitation for water and land mode operation as shown in Fig. 2,3. In addition the power pack Monitoring and Control System will be provide an engine speed signal for the vehicle computer control system. For the indication of land or water mode a signal from the on-board computer must be transferred.

2.7.2 Description

The block diagram for the Control and Diagnostic System and the external units are shown in Fig. 14. The power pack mounted system is the Control and Diagnostic System (CDS), which consists of the Engine Control System (ECS) and the Power Pack Control System (PCS). In addition in the CDS is an Integrated Test System ITS, which has the function of CDS self-control and failure, loud profil memory and life-time indication.

The external units allow to collect data and transmit data and give the possibility to communicate with other system outside or inside of the vehicle.

The individual system has the following functions:

• Engine Control System (ECS):

Engine governor to control

- idle speed
- rated speed (2) (land and water mode)
- full load characteristic (2) with coolant temperature limitation
- droop
- fuel injection timing

Engine monitoring system to check

- coolant circulation
- coolant level (2 switch points)
- coolant temperature
- oil pressure
- oil temperature
- · Integrated Test System (ICS):
 - continuous fault detection (self-testing) of sensors, transmitters and electronics
 - recording of operating profile
 - indication of time until maintenance
- Fleet Data System (FDS)

Data Base

- collects, stores and displays upon request fleet data transmitted from CDS and/or additional sensors
- transmits data to AI

Artificial Intelligence (AI)

- process, analyses and assesses the data transmitted from FDS
- displays proposals for corrective actions
- Dialog Unit (DU)
 - non-volatile storage of operating parameters
 - short-term storage of measured and computed data
 - up-dating or modification of operating parameters
 - display of measured and computed data
 - initiation of test routines
 - display of test results

Vehicle Interfaces

- CDS receives power requirements form the on-board computer controller
- CDS receives land or water mode signal
- PCS indicates max. power limitation
- PCS gives engine speed signal

2.7.3 Dimension and Weight

The rough dimension is shown in the installation drawing. This has been taken from a existing ECS/PCS system for the MT 883 engine as to be installed in a Leopard 2 chassis.

Weight and dimension are therefore rough estimation, because the hardware is just in development.

Dimension:

300 x 250 x 500 mm 11.8" x 10.0" x 20.0"

Weight:

approx. 25kg, 55 lb

2.8 Performance

2.8.1 Degradation of performance due to power derating.

Water mode operation: max. power see Fig. 5

For the maximum defined sea water temperature of 26.7°C, 80°F and ambient temperature of 30°C, 36°F no power derating is effective because the cooling system is designed for and the max. engine power of a charge-air cooled engine relies mainly on the charge-air temperature after the charge air cooler for the sea mode application.

The following power degradation is effective if the fuel temperature is above 30°C, 86°F.

2.5% per 10°C, 18°F fuel temp. increase.

If the coolant temperature at the engine outlet is above 107°C, 224.6°F for the case of failure in the sea mode coolant system an automatic power degradiation system will be effective. In the first approximation the automatic power degradation gives 100% power up to 107°C, 224.6°F max. and 70% power min. at 112°C, 233°F.

Land mode operation:

The max. power during land mode operation is limited by the design point of the cooling system, see Fig. 2

The power derating is shown in Fig. 4 for the max. land mode power of 404 kW, 542 HP respect. 298 kW, 400 HP pump input power. It is about 20% power degradation for 10°C, 18°F above the cooling system design point effective for full throttle position steady-state operation.

0.47 lb/HPhr

2.8.2 Projected vehicle performance

To be provided by vehicle designer based on 2.8.3

2.8.3 Max. Available Net Power

The projected drive-line performance is shown in the power/heat balance for 2 power levels of land mode operation and the water mode operation see Fig. 7,8.

For 404 kW, 542 HP engine power (power level 1) the power at the drive motor output is total 228 kW, 306 HP equivalent to a total drive line efficiency of 56.4%.

For 298 kW, 400 HP engine power (power level 2) the power at the drive motor output is total 168 kW, 225 HP equivalent to a total drive line efficiency of 56.4%.

For 1100 kW, 1475 HP engine power (water mode) the power at the water jets input is total 837 kW, 1122.6 HP equivalent to a total drive line efficiency of 76.1%, see Fig. 10.

2.9 Fuel Consumption

output related

The engine fuel consumption map is shown in Fig. 3 for land mode operation and in Fig. 2 for sea mode operation.

With respect to the required cooling fan power for max. land mode power (power level 1) the following fuel consumption is estimated:

- for 404 kW, 542 HP engine power at 30.0°C, 100°F sfc = 218 g/kWH, 0.36 lb/HPhr, 228 kW 306 HP drive line output 88.0 kg/hr 194.0 lb/hr 106.1 l/hr 28.0 GPhr specific fuel consumption output related 386.0 g/kWhr 0.63 lb/HPhr

For water mode operation the following fuel consumption is estimated

- for 1100 kW, 1475 HP specified water mode condition
sfc = 220 g/kWhr, 0.36 lb/HPhr, 837 kW, 1123 HP
drive line output 242.0 kg/hr 533.0 lb/hr
291.0 l/hr 77.0 GPhr
specific fuel consumption

289.0 g/kWhr

2.10 Fuel, Oils and Coolant Requirements

2.10.1 Engine Lubrication

0-236 according MIL-K-2104D (SAE 30) as year round lubricant for outside air temperature up to -10°C, 14°F 0-239 according MIL-L-2104D (SAE 40) for outside air temperature down to +10°C, 50° F

These lubricants can be used at lower outside air temperature after preheating to an oil temperature after preheating to an oil temperature as above mentioned outside air temperature limits.

2.10.2 Fuel

Diesel Fuel according DIN 51 601 or Diesel Fuel F54 according VV-F800C GRADE DF2 or Jet Fuel F34 according MIL-T83133A, Am2 or Jet Fuel F40 according MIL-T5624L, Am2 GrJP4

F40 pure only for emergency operation. Jet Fuel as F40 as supplied by Mineral Oil Industry has cetan rating of 30 or above.

Mixtures of all these fuels can be used.

Min. fuel supply to the engine: 14 l/min 3.7 GPM Min. fuel pressure: .6 bar 8.7 psia

2.10.3 Coolant

As year round coolant used at outside air temperatures to -40° C, -40° F a mixture of drinkable water and antifreeze in the ratio 1:1 by volume. Admitted antifreeze agents are listed in spec. TK6-03-010/2.

In areas with outside air temperatures above 0°C, 32°F a mixture of 98% up to 98.5% of drinking water and 1.5% up to 2% by volume of corrosion preventive soluble oil. Admitted corrosion preventive soluble oil manufacturer are listed in:

MTU-Fluid and Lubricants Specification MO 01061/11 E addition 0185

2.10.4 Filling Quantities

- Lube oil:	engine	80.0 96.0		176.4 25.0	lb gallons
	splitter box	10.0 12.0		22.0 3.2	lb gallons
- Fuel:	as required,	fuel	hour	range s	see 2.9
- Coolant:		20.0		264.5 32.0	lb gallons

PRIEDRICHSHAFEN

- 44	Wainht Batimata				
2.11	Weight Estimates		(ka)		(lb)
	Paris and a due in 1 stanton		(kg) 1650		3637.6
	Basic engine dry incl. starter		1630		3637.6
	Peripheral equipment as wiring, connection parts, mounting brackets, 20 kW-generator, coolant expansion tank and piping		300		661.4
	Air filter system:				
	<pre>2 x prefilter with scavenge blower</pre>	50		110.2	
	2 x fine filter	<u>75</u>		165.3	
	Total		125		275.5
	Cooling system (engine mounted)				
	Air duct casing	85		187.4	
	Cooling fan	20		44.1	
	Hydromotor	20		44.1	
·	Piping with quick- disconnect self- sealing coupling	10		22.0	
	<pre>2 radiator with mounting equipment</pre>	150		333.7	
	Total		285		628.0
	Exhaust system with silencer		60		132.3
	Splitter box with mounting and heat exchanger		200		440.9
	2 hydraulic pumps 4 V250		381		840.0
	1 hydraulic pump 2 F355		137		303.0
	1 hydraulic pump QC-200		75		165.3
	Total powerpack dry weight with hydr. pumps		3213		7083.3
	Filling quantities (hydraulic excluded)		75		165.3
	Engine oil	80		176.4	
	Coolant	120		264.5	
	Splitter box	10		22.0	
	Total		210		463.0
	Operation weight (wet)		3423	•	6459.5

2.12 Cost and Schedule Estimate

The Time and Cost Schedule is shown in Fig. 15. In order to avoid delay for the planned availability of the power pack, it is recommended to order at least the long-lead items before the main contract signing. This "pre-procurement" will save 5 months before the main contract must be placed. In this 5 months' period the interface should have been also clarified so that detailed designing can start after main contract award.

In addition to the Scope of Work specified for the Conceptual Design Study, the subcontractor has added the development cost and hardware cost for the splitter box, which can be furnished by the subcontractor in collaboration with the German firm, "Zahnradfabrik Friedrichshafen" (ZF). This is a proposed option with regard to saving interface problems and additional shipment cost. The decision hereto will be made by the main contractor, respectively the Marine Corps Program Office.

After design effort has been carried out on the to-bemodified engine parts for the H.W.S.T.D., such as the charge air cooler, air ducts, piping, assembly parts and brackets for peripheral components, the two basic engines will be assembled with hardware available 12 months after the "pre-contract" or main contract signing. Both engines are to undergoe an acceptance test on the MTU test stand. The contractor is invited to these tests. The peripheral components are available for powerpack assembly 8 months after main contract signing. After assembly the powerpack will first undergoe functional tests. A vibration test with the splitter box, without hydropump loads, will verify the vibration analysis: No load is expected to be the worst case of all operating conditions. After a fullload test with simulated brake power but without the splitter box, the power pack will finally undergoe an acceptance test.

The subcontractor will also assist with the power pack installation, with a check of the engine compartment approx. one month before installation and with an installation check prior to starting vehicle tests. It is planned to have a test-service man available for the time of the 8 months test and engineering support for approx. 4 months.

With the delivery of the power pack and spare engine, an Operation Instruction Manual for power pack maintenance and failure identification will be provided.

PREL. ENGINE PERFORMANCE MAP (WATERMODE)

EPF 3.4.86

657 893

CONDITIONS: AIR TEMP. 38°C, 100°F

AIR INLET PRESSURE LOSS 3000 N/m², INCH, W.G.

EXHAUST GAS PRESSURE LOSS 3000 N/m², 12 INCH, W.G.

FUEL TEMP. 48°C

PREL. ENGINE PERFORMANCE MAP (PROPOSED LANDMODE POWER)

FIG. 3

MAX POWER LANDMODE

EPF 3.4.8C

657 894

HWSTD ENGINE HEAT REJECTION (WATERMODE)

EPF 4.4.86 657 887

FIG. 5

ATMOSPHERIC SYSTEM

PRESSURIZED FILTER SYSTEM

COMPARISON OF ATMOSPHERIC AND PRESSURIZED FILTER SYSTEM

HWSTD PROPSYSTEM HEAT CAPACITY/HEAT REJECTED

EPF 3.4.86

657 889

FIG. 9

SEA WATER HEAT EXCHANGER

FUMP CHARACTERISTICS SMALL SEAWATER PUMP 555 200 15 01 12 8 17 Mere Seemusserpunge Pumpen - Kennfeld F16. ထဲ 20. CEMPENHATION ÷. Die dargesleiten Kennfelddaten sind Nennwerte gultig fur THE DATA SHOWN ARE RATED WILUES FOR III MAX WOUM AT PUMP NIET = 0.2 BAR INEG! I mm " = RPH] 100 Semb 1 \bullet PUMP SPEED $n_p = 1.55 \times ENGINE SPEED$ (4/₆ m) l boil (s) ■ MAX PUMP SPEED np = 3300 RPM OPERATING CONDITIONS : 15 ta = Ansaugzeit TIME TO ACHIEVE SUCTION V = Volumenstrom PUMP DISCHARGE RATE 4p = Unddifferenz PRESSURE OFFERENCE np = Pumpendrehzahl PUMP SPEED 2 DRIVE : 965/18-9 mox zulossiger Unterdruck vor Pumpe ± 0,2 bar ■ max zulassige Pumpendrehzahl=3300 min-1 --- PRESSURE AT PLMP NLET = Q2 BAR (POS) Betriebsbedingungen : - V (m³/h) PUMP DISCHARGE RATE WATER TEMPERATURE = 35°C (m3/h)? Print brade) --- 0.2 bor Uberdruck vor Pumpe -- 92bor Unterdruck vor Pumpe Mossertemperatur = 35 °C 11-100) Ou-Fordervolumenstrom TIME TO ACHIEVE SUCTION
MATER TEMERATURE = 35°C
VOLUME OF ARR IN SUCTION LINE = 0.040 M³ tullvolumen vur Pumpe = 0,040 m.3 Soughore / SUCTION FEAL h = 2m Soughore / SUCTION HEAD In a 1m Masserlemperatur = 35 °C ş 8 Ansaugzeit 3 1p!bor1 3

38°C, 100.4°F 28°C, 82.4°F COOLING SYSTEM DESIGN POINT COOLANT TEMP = 103°C, 100 90 80 102.5°C -90% FAN SPEED 70 RELATED FAN POWER % 60 50 40 101.5°C - 70% 30 101°C 60% 20 100.5°C - 50% 10 100°C 40% - 30% 200 500 100 300 400 423 HEAT CAPACITY KW

MAX. FAN POWER: 68 kW, 91.2 HP

48°C, 118.4°F

HWSTD FAN SPEED CONTROL MAP

FIG. 13 657 925 214.86 EPF

CDS: CONTROL AND DIAGNOSTIC SYSTEM

ECS: ENGINE CONTROL SYSTEM

PCS: POWER PACK CONTROL SYSTEM

ITS: INTEGRATED TEST SYSTEM

FDS: FLEET DATA SYSTEM

AI: ARTIFICIAL INTELLIGENCE

DB: DATA BASE

CONTROL & DIAGNOSTIC SYSTEM AND ITS CONNECTION TO EXTERNAL USE

Attachment 1

H.W.S.T.D. Installation Drawing

- side view
- top view
- front view
- rear view
- legend

HWSTD POWERPACK (PRELIMINARY DESIGN) 1/8 SCALE 657 900 1.m or 2.11

& CENTER OF GRANTY TOTAL DRY WEIGHT APPR 3213 Mg. 7883 LD

HWSTD POWERPACK (PRELIMINARY DESIGN) 1/8 SCALE 657 900 1:10 (17 Jun 2011)

```
FAN HYDRAULK LEAKKAGE OLIKK DISTONWELT OLIPPING
                                                                                                                                                                                                                                                                                                                                    FAW HYDRAULIC RETURN OLICK DISCONNECT COUPLING
                                                                                                                                                                                                                                                                                    COOLANT RETURN DUKK DISCONNECT COUPLING FROM
SPLITTER BOX OIL-IMYORAUUC OIL HEX
                                                                                                                                                                                                                                                                                                                                                    FAN HYDRAULIC SUPPLY DUICK DISCONNECT COUPLING
                                                                                                                                                                                                                                                       COCLANT SUPPLY DUKK DISCOWECT COUPLING FOR HYDRAULIC OIL HEX OP SEAWATER HEAT EXCH (2)
                                                                         30 FINE FILTER ACCESS COVER FOR REPLACEMENT
                                                                                                                                                                                                                                                                                                                                                                                       ELECTR CONNECTORS FOR POWERFACK/VEHICLE INTERFACE AND ELECTR POWER SUPPLY
                                                                                                                                                                                                                                                                                                              COOLANT VENTING QUICK DISCONNECT COUPLING
                                                                                                                                                                                                                                    ACCESS COVER FOR SPLINE SHAFT REMOVAL
                                                                                                                                                                                                                                                                                                                                                                                                                                        47 LIFTING GUIDE PINS FOR ENGINE REMOVAL
                                                        ENGINE POWERPACK CONTROL SYSTEM
                                    28 ENGINE COOLANT FILLING CAP
                                                                                                                                        ENGWE OIL HEAT EXCHANGER
                 27 ENGINE OIL FILLING CAP
                                                                                                                                                                                 FORWARD ENGINE MOUNT
                                                                                                                                                                                                                   SPLITTER BOX HOUNT
   ENGINE OIL DIP STICK
                                                                                                                     20 KW EL GENERATOR
                                                                                                                                                                                                  REAP ENGINE MOUNT
                                                                                                   ENGINE OIL FILTERS
                                                                                                                                                         ENGWE OIL TANK
                                                                                                                                                                                                                                                                                                                                                                                                                        LIFTING EYE
                                                       52
                                                                                                                  * *
                                                                                                                                                                                                                                                                                                                                                                                                                        97
                                                                                                                                                        ×
                                                                                                                                                                                .≍
                                                                                                                                                                                                  25
                                                                                                                                                                                                                  F
                                                                                                                                                                                                                                     2
                                                                                                                                                                                                                                                                                     9
                                                                                                    ጙ
                                                                                                                                                                                                                                                                                                                                    23
     ENGINE
HAINTENANCE
                                                                                                  COMPONENTS
                                                                                                                                                                                                                            POWERPACK/ VEHICLE INTERFACES
                                                                                                      BASIC ENG
                                        CONDUSTION ASPUMET (VEHICLE ASPOICT CONNECTION)
                                                                                                                                                                                                                                                                                                                                                                                                                           WARRE DISPLACEMENT HYDROPUMP ALV-25055 (2)
                                                                                                                                                                      COMBUSTION CLEAN AIR DUCT TO ENGINE MANFOLD
                                                                                                                                                                                                                                                                                                             16 RADIATOR FOR HYDRAUK CIRCUIT ITURNABLE)
                                                                                                                                                                                                                                                                                                                                                                                                                                               FIXED DISPLACEMENT HYDROPUMP A2F-355
                                                                                                                                                                                                                                                                                                                               RADIATOR FOR ENGINE COCLANT (TURNABLE)
MIU MT883 Ka-500 12 CYL DIESEL ENGINE
                                                                                                                                                                                                                                                  FLANGE FOR EXHAUST FORDING HOOD
                                                                                                                                                                                                                                                                                                                                                                                                      TRANSMISSON OR HEAT EXCHANGER
                                                            3' OPTIONAL COMBUSTION AR INLET
                                                                                                                                                                                              IN TURBOOMARGER- TURBINE QUILET
                                                                           TWO STAGE PREFILTER (CYCLON)
                                                                                                                                                                                                                                                                                                                                                                    HYDROHOTOR (COCKING FAN)
                                                                                                                                                      FINE FILTER IPRESSURIZED)
                                                                                                                                                                                                                                                                                                                                                                                     COCCING AIR OUTLET DUCT
                                                                                                                                                                                                                                                                                                                                                   18 COOLING FAN IRADIAL!
                                                                                                                                                                                                                                                                   SCAVENGE AIR DUTLET
                                                                                                                                                                                                             TI DOWNST GAS OUTLET
                                                                                                                                                                                                                                                                                          COOLING AIR INLET
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 25 STROMMG COUPLING
                                                                                              SCAVENGE BLOWER
                                                                                                                                    CHAPGE AIR CODLER
                  2 2F SPLITTER BOX
                                                                                                                                                                                                                                                                                                                                                                                                                                                               24 CHARGE PLMP
                                                                                                                 TURBOCHARGOR
                                                                                                                                                                                                                                 12 SAENCER
                                                                                                                                                                                                                                                                                                                                                                                                                                               23
                                                                                                                                                                                                                                                                                              2
                                                                                                                                                                                                                                                                                                                                                                                                                                SYSTEM
SYSTEM
                                                                                                                                                                                                                                                                                                                    COOLING SYSTEM
                                                           באפואב שוט וארבע
                                                                                                                                                                                         ENGINE EXHAUST
```

HWSTD POWERPACK (PRELIMINARY DESIGN) 1/8 SCALE

657 900 21 AL EPE ZOLET