Listing of Claims

1	 (Original) A processor implemented data processing method comprising: 		
2	identifying a first plurality of regions within a first recursively		
3	partitioned/nested geometric structure that correspond to a first plurality of		
4	normalized multi-dimensional data of a first normalized multi-dimensional data		
5	space, the first recursively partitioned/nested geometric structure being		
6	corresponding to the first normalized multi-dimensional data space;		
7	determining corresponding first graphing values for said first corresponding		
8	regions within said first recursively partitioned/nested geometric structure		
9	determined for said first normalized multi-dimensional data of said first normalized		
10	multi-dimensional data space;		
11	associating corresponding first visual attributes with said first corresponding		
12	regions within said first recursively partitioned/nested geometric structure, based at		
13	least in part on corresponding ones of said determined first graphing values; and		
14	displaying said first recursively partitioned/nested geometric structure, visuall		
15	differentiating said first corresponding regions based at least in part on		
16	corresponding ones of said associated first visual attributes.		

- 1 2. (Original) The method of claim 1, wherein each of said first normalized multi-2 dimensional data of said first normalized multi-dimensional data space comprises a 3 plurality of relative coordinate values, and the method further comprises constructing 4 a polynary string to represent each of said first normalized multi-dimensional data 5 and its corresponding one of said first regions within said first recursively partitioned/nested geometric structure in accordance with the relative coordinate 6 7 values.
- 3. 1 (Original) The method of claim 2, wherein said constructing of a polynary 2 string to represent each of said first normalized multi-dimensional data and its 3 corresponding one of said first regions within said first recursively partitioned/nested 4 geometric structure in accordance with the relative coordinate values comprises

- 5 selecting a symbol as the next symbolic member of the polynary string based on
- 6 which of the relative coordinate values is the current highest relative coordinate
- 7 value.
- 1 4. (Original) The method of claim 3, wherein said constructing of a polynary
- 2 string to represent each of said first normalized multi-dimensional data and its
- 3 corresponding one of said first regions within said first recursively partitioned/nested
- 4 geometric structure in accordance with the relative coordinate values further
- 5 comprises reducing the highest relative coordinate value in by an amount (G), upon
- 6 each selection, and reducing the amount (G) after each reduction.
- 1 5. (Original) The method of claim 4, wherein the amount (G) initially equals 1 –
- 2 F, and thereafter reduced each time by $G^*(1 F)$, where F equals (n 1)/n, and n
- 3 equals the number of relative coordinate values.
- 1 6. (Original) The method of claim 2, wherein said determining of corresponding
- 2 first graphic values comprises determining frequencies of occurrence of the various
- 3 polynary strings of said first normalized multi-dimensional data, and assigning the
- 4 determined frequencies of occurrence to the corresponding first regions within the
- 5 first recursively partitioned/nested geometric structure as the determined first
- 6 graphing values of the corresponding first regions.
- 1 7. (Original) The method of claim 1, wherein said determining of corresponding
- 2 first graphic values comprises assigning first output values corresponding to the first
- 3 normalized multi-dimensional data as the determined first graphing values of the
- 4 corresponding first regions within the first recursively partitioned/nested geometric
- 5 structure.
- 1 8. (Original) The method of claim 7, wherein said determining of corresponding
- 2 first graphic values further comprises computing said first output values.

1	9. (Original) The method of claim 8, wherein each of said first normalized multi-
2	dimensional data of said first normalized multi-dimensional data space comprises a
3	polynary string having a plurality of symbols, encoding a plurality of relative
4	coordinate values, and said computing of the first output values comprises
5	for each constituting symbols of a polynary string, summing one or more
6	appearance values corresponding to one or more appearances of the particular
7	symbol in the polynary string, and adding the sum to an average residual relative
8	coordinate value.

- 1 10. (Original) The method of claim 9, wherein each appearance value
- 2 corresponding to an appearance of a particular symbol is dependent on the position
- 3 of the particular appearance of the particular symbol in the polynary string.
- 1 11. (Original) The method of claim 10, wherein each appearance value
- 2 corresponding to an appearance of a particular symbol is equal to a positional value
- 3 associated with the position of the particular appearance in the polynary string.
- 1 12. (Original) The method of claim 11, wherein
- each positional value equals to $(1 F) \times F^{**}(k 1)$, and
- 3 the average residual relative coordinate value equals $(1 F) \times F^{**}K$,
- 4 where F equals (n 1)/n,
- 5 k denotes a position in a polynary string,
- n equals the number of relative coordinate values, and
- 7 K equals the length of the polynary string.
 - 13. (Original) The method of claim 2, wherein the method further comprises
- 2 receiving a first zooming specification comprising one or more of said
- 3 polynary string constituting symbols;

1

- 4 excluding a first subset of said first regions based at least in part on said
- 5 received first zooming specification; and

6		repeating said displaying for the remaining ones of said first regions in an	
7	expanded manner.		
1	14.	(Original) The method of claim 13, wherein the method further comprises	
2		receiving a second zooming specification comprising one or more additional	
3	ones	of said polynary string constituting symbols;	
4		excluding a second subset of said remaining ones of said first regions based	
5	at leas	st in part on said received second zooming specification; and	
6		repeating said displaying for the remaining ones of said first regions.	
4	45	(Original) The method of plain 11 wherein the method further comprises	
1	15.	(Original) The method of claim 14, wherein the method further comprises	
2		receiving an unzoom specification;	
3		restoring the remaining ones of said first regions to re-include said excluded	
4	second subset of said first regions; and		
5		repeating said displaying for the remaining ones of said first regions.	
1	16.	(Original) The method of claim 13, wherein the method further comprises	
2		receiving an unzoom specification;	
3		restoring the remaining ones of said first regions to re-include said excluded	
4	first su	ubset of said first regions; and	
5 .		repeating said displaying for said first regions.	
1	17.	(Original) The method of claim 1, wherein said associating comprises for	
2		of said first regions, associating a selected one of a plurality of symbols with	
3		gion based at least in part on the determined graphing value of the region.	
	,		
1	18.	(Original) The method of claim 1, wherein said associating comprises for	
2	each o	of said first regions, associating a selected one of a plurality of color attributes	

with the region based at least in part on the determined graphing value of the region.

3

1 19. (Original) The method of claim 1, wherein said associating comprises for 2 each of said first regions, associating a selected one of a plurality of colored 3 geometric primitives with the region based at least in part on the determined 4 graphing value of the region. 1 20. (Original) The method of claim 1, wherein said associating comprises for 2 each of said first regions, associating a selected blending of a plurality of colors with 3 the region based at least in part on contributions to the determined graphing value 4 of the region. 1 21. (Original) The method of claim 1, wherein said first regions correspond to all 2 constituting regions of the first recursively partitioned/nested geometric structure, 3 said first normalized multi-dimensional data are values of independent variables of a 4 function, and said first graphing values are corresponding values of a dependent 5 variable of the function. 1 22. (Original) The method of claim 1, wherein the method further comprises 2 identifying a second plurality of regions within a second recursively 3 partitioned/nested geometric structure that correspond to a second plurality of 4 normalized multi-dimensional data of a second normalized multi-dimensional data 5 space, the second recursively partitioned/nested geometric structure being 6 corresponding to the second normalized multi-dimensional data space; determining corresponding second graphing values for said second 7 8 corresponding regions within said second recursively partitioned/nested geometric 9 structure determined for said second normalized multi-dimensional data of said 10 second normalized multi-dimensional data space; 11 associating corresponding second visual attributes with said second 12 corresponding regions within said second recursively partitioned/nested geometric

structure, based at least in part on corresponding ones of said determined second

13

14

graphing values; and

15	displaying said second recursively partitioned/nested geometric structure,		
16	ovisually differentiating said second corresponding regions based at least in par		
17	corresponding ones of said associated second visual attributes.		
1	23. (Original) The method of claim 22, wherein said first and second recursivel	у	
2	partitioned/nested geometric structures are displayed in a manner such that both		
3	recursively partitioned/nested geometric structures are visible concurrently.		
1	24. (Original) The method of claim 23, wherein each of said first and second		
2	normalized multi-dimensional data of said first and second normalized multi-		
3	dimensional data spaces comprises a polynary string having a plurality of symbols,		
4	encoding a plurality of relative coordinate values, the method further comprises		
5	receiving a first zooming specification comprising one or more of said		
6	polynary string constituting symbols;		
7	excluding a first subset of said first regions based at least in part on said		
8	received first zooming specification;		
9	excluding a second subset of said second regions based at least part on the	ıe	
10	removed ones of said first regions; and		
11	repeating said displaying for the remaining ones of said first and second		
12 ·	regions.		
1	25 (Original) The method of claim 22 wherein said first and second normalize	h	

- 25. (Original) The method of claim 22, wherein said hist and second normalized
- 2 multi-dimensional data are values of first and second input variables.
- 1 26. (Original) The method of claim 22, wherein said first normalized multi-
- 2 dimensional data are values of input variables, and said second normalized multi-
- 3 dimensional data are values of corresponding output variables.
- 1 27. (Original) The method of claim 1, wherein the method further comprises
- 2 computing a location for a centroid for each of a plurality primitive elements of the
- 3 geometric structure.

Attorney Docket No. 110215-131398 Application No.: 10/036,811

- 1 28. (Original) The method of claim 27, wherein coordinates (x_p, y_p) of the location
- 2 of each centroid is computed as follows:

3
$$Xp = Xc + R * \sum_{k=1}^{K} V(N,k) * C(N,m[Lk])$$

4
$$Yp = Yc + R * \sum_{k=1}^{K} V(N,k) * S(N,m[Lk])$$

- 5 where:
- 6 (X_c, Y_c) are coordinate values of the geometric structure's centroid;
- R is a radius extending from the geometric structure's centroid to an
- 8 outermost vertex of the geometric structure;
- 9 V(N, k) is $w^*(1 w)^{**}(k 1)$ where $w = 1/(1+\sin(\pi/N))$;
- 10 m[L_k] is outer vertex number (1, 2, ..., N) assigned to the kth symbol
- 11 appearing in a corresponding polynary string;
- 12 $C(N, m[L_k]) = cosine(a^* \pi);$ and
- 13 $S(N, m[L_k]) = sine(a^* \pi)$ [where $a = (5^*N 4^*m[L_k])/(2^*N)$].
- 1 29. (Original) The method of claim 28, wherein the K values of V(N, k) are
- 2 computed once responsive to a specification of N.
- 1 30. (Original) The method of claim 28, wherein at least the N values of C(N,
- 2 m[Lk]) or the N values of S(N, m[Lk]) are computed once responsive to a
- 3 specification of N.
- 1 31. (Withdrawn) A processor implemented data processing method for
- 2 generating a polynary string representation for an entity defined by n relative
- 3 coordinate values, n being an integer, comprising:
- 4 associating n symbolic representations with said n relative coordinate values;
- 5 and
- 6 selecting the symbolic representation corresponding to the highest relative
- 7 coordinate value as the first constituting member of the polynary string
- 8 representation.

1	32.	(Withdrawn) The method of claim 31, wherein the method further comprises
2		computing a constant value (F) by dividing $(n - 1)$ by n; and
3		computing a variable value (G) by subtracting F from 1;
4		subtracting G from the current highest relative coordinate value; and
5		selecting the symbolic representation corresponding to the current highest
6	relati	ve coordinate value as the next constituting member of the polynary string
7	repre	esentation.

- 33. (Withdrawn) The method of claim 32, wherein the method further comprises
 multiplying the current value of G by F;
 subtracting G from the current highest relative coordinate value; and
 selecting the symbolic representation corresponding to the current highest
 relative coordinate value as the next constituting member of the polynary string
 representation.
- 1 34. (Withdrawn) The method of claim 33, wherein the method further comprises 2 repeating said multiply, subtracting and selecting operations set forth in claim 29.
- 1 35. (Withdrawn) The method of claim 31, wherein said symbolic representation comprises a letter.
- 1 36. (Withdrawn) The method of claim 31, wherein said symbolic representation comprises a special character.
- 37. (Withdrawn) A processor implemented data processing method for
 generating a relative coordinate value for an constituting variable of an entity, the
 entity being represented by a polynary string representation having a plurality of
 symbolic members representing the constituting variables, the method comprising:
 determining appearance positions of appearance instances of the symbolic
 members in said polynary string representation;

7		summing positional values corresponding to the appearance instances of the
8	symb	polic members in said polynary string representation; and
9		adding the sum to an average residual relative coordinate value.
1	38.	(Withdrawn) The method of claim 37, wherein
2		each positional value equals to $(1 - F) \times F^{**}(k - 1)$, and
3		the average residual relative coordinate value equals $(1 - F) \times F^{**}K$,
4		where F equals (n – 1)/n,
5		n equals the number of coordinate values,
6		k denotes a position in the polynary string representation; and
7		K equals the length of the polynary string.
1	39.	(Original) An apparatus comprising:
2		storage medium having stored therein programming instructions designed to
3	enab	le the apparatus to
4		identify a first plurality of regions within a first recursively
5		partitioned/nested geometric structure that correspond to a first
6		plurality of normalized multi-dimensional data of a first normalized
7		multi-dimensional data space, the first recursively partitioned/nested
8		geometric structure being corresponding to the first normalized multi-
9		dimensional data space,
10		determine corresponding first graphing values for said first corresponding
11		regions within said first recursively partitioned/nested geometric
12		structure determined for said first normalized multi-dimensional data of
13		said first normalized multi-dimensional data space;
14		associate corresponding first visual attributes with said first corresponding
15		regions within said first recursively partitioned/nested geometric
16		structure, based at least in part on corresponding ones of said
17		determined first graphing values, and
18		display said first recursively partitioned/nested geometric structure,
19		visually differentiating said first corresponding regions based at least in

20	part on corresponding ones of said associated first visual attributes;	
21	and	
22	at least one processor coupled to the storage medium to execute the	
23	programming instructions.	
1	40. (Original) The apparatus of claim 39, wherein each of said first normalized	
2	multi-dimensional data of said first normalized multi-dimensional data space	
3	comprises a plurality of relative coordinate values, and the programming instructions	
4	are further designed to enable the apparatus to construct a polynary string to	
5	represent each of said first normalized multi-dimensional data and its corresponding	
6	one of said first regions within said first recursively partitioned/nested geometric	
7	structure in accordance with the relative coordinate values.	
1	41. (Original) The apparatus of claim 40, wherein said programming instructions	
2	are designed to enable the apparatus to perform said constructing of a polynary	
3	string by selecting a symbol as the next symbolic member of the polynary string	
4	based on which of the relative coordinate values is the current highest relative	
5	coordinate value.	
1	42. (Original) The apparatus of claim 41, wherein said programming instructions	
2	are further designed to enable the apparatus to perform said constructing of a	
3	polynary string by reducing the highest relative coordinate value in by an amount	
4	(G), upon each selection, and reducing the amount (G) after each reduction.	
1	43. (Original) The apparatus of claim 42, wherein said programming instructions	
2	are designed to enable the apparatus to set the amount (G) initially to $1 - F$, and	
3	thereafter reduced each time by $G^*(1 - F)$, where F equals $(n - 1)/n$, and n equals	
4	the number of relative coordinate values.	
1	44. (Original) The apparatus of claim 40, wherein said programming instructions	
2	are designed to enable the apparatus to perform said determining by determining	
	,	

- 3 frequencies of occurrence of the various polynary strings of said first normalized
- 4 multi-dimensional data, and assigning the determined frequencies of occurrence to
- 5 the corresponding first regions within the first recursively partitioned/nested
- 6 geometric structure as the determined first graphing values of the corresponding first
- 7 regions.
- 1 45. (Original) The apparatus of claim 39, wherein said programming instructions
- 2 are designed to enable the apparatus to perform said determining by assigning first
- 3 output values corresponding to the first normalized multi-dimensional data as the
- 4 determined first graphing values of the corresponding first regions within the first
- 5 recursively partitioned/nested geometric structure.
- 1 46. (Original) The apparatus of claim 45, wherein said programming instructions
- 2 are further designed to enable the apparatus to perform said determining by
- 3 computing said first output values.
- 1 47. (Original) The apparatus of claim 46, wherein each of said first normalized
- 2 multi-dimensional data of said first normalized multi-dimensional data space
- 3 comprises a polynary string having a plurality of symbols, encoding a plurality of
- 4 relative coordinate values, and said programming instructions are designed to
- 5 enable the apparatus to perform said computing by
- 6 summing one or more appearance values corresponding to one or more
- 7 appearances of the particular symbol in a polynary string, and adding the sum to an
- 8 average residual relative coordinate value, and
- 9 repeating said summing and adding for each constituting symbols of the
- 10 polynary string.
- 1 48. (Original) The apparatus of claim 47, wherein each appearance value
- 2 corresponding to an appearance of a particular symbol is dependent on the position
- 3 of the particular appearance of the particular symbol in the polynary string.

- 1 49. (Original) The apparatus of claim 48, wherein each appearance value
- 2 corresponding to an appearance of a particular symbol is equal to a positional value
- 3 associated with the position of the particular appearance in the polynary string.
- 1 50. (Original) The apparatus of claim 49, wherein
- each positional value equals to $(1 F) \times F^{**}(k 1)$, and
- 3 the average residual relative coordinate value equals $(1 F) \times F^{**}K$,
- 4 where F equals (n 1)/n,
- 5 k denotes a position in a polynary string,
- 6 n equals the number of relative coordinate values, and
- 7 K equals the length of the polynary string.
- 1 51. (Original) The apparatus of claim 40, wherein said programming instructions
- 2 are further designed to enable the apparatus to
- 3 receive a first zooming specification comprising one or more of said polynary
- 4 string constituting symbols;
- 5 exclude a first subset of said first regions based at least in part on said
- 6 received first zooming specification; and
- 7 repeat said displaying for the remaining ones of said first regions in an
- 8 expanded manner.
- 1 52. (Original) The apparatus of claim 51, wherein said programming instructions
- 2 are further designed to enable the apparatus to
- 3 receive a second zooming specification comprising one or more additional
- 4 ones of said polynary string constituting symbols;
- 5 exclude a second subset of said remaining ones of said first regions based at
- 6 least in part on said received second zooming specification; and
- 7 repeat said displaying for the remaining ones of said first regions.
- 1 53. (Original) The apparatus of claim 52, wherein said programming instructions
- 2 are designed to enable the apparatus to

- 3 receive an unzoom specification;
- 4 restore the remaining ones of said first regions to re-include said excluded
- 5 second subset of said first regions; and
- 6 repeat said displaying for the remaining ones of said first regions.
- 1 54. (Original) The apparatus of claim 51, wherein said programming instructions
- 2 are further designed to enable the apparatus to
- 3 receive an unzoom specification;
- 4 restore the remaining ones of said first regions to re-include said excluded
- 5 first subset of said first regions; and
- 6 repeat said displaying for said first regions.
- 1 55. (Original) The apparatus of claim 39, wherein said programming instructions
- 2 are designed to enable the apparatus to perform said associating by associating, for
- 3 each of said first regions, a selected one of a plurality of symbols with the region
- 4 based at least in part on the determined graphing value of the region.
- 1 56. (Original) The apparatus of claim 39, wherein said programming instructions
- 2 are designed to enable the apparatus to perform said associating by associating, for
- 3 each of said first regions, a selected one of a plurality of color attributes with the
- 4 region based at least in part on the determined graphing value of the region.
- 1 57. (Original) The apparatus of claim 39, wherein said programming instructions
- 2 are designed to enable the apparatus to perform said associating by associating, for
- 3 each of said first regions, a selected one of a plurality of colored geometric
- 4 primitives with the region based at least in part on the determined graphing value of
- 5 the region.
- 1 58. (Original) The apparatus of claim 39, wherein said programming instructions
- 2 are designed to enable the apparatus to perform said associating by associating, for
- 3 each of said first regions, a selected blending of a plurality of colors with the region

5	region.
1	59. (Original) The apparatus of claim 39, wherein said first regions correspond to
2	all constituting regions of the first recursively partitioned/nested geometric structure,
3	said first normalized multi-dimensional data are values of independent variables of a
4	function, and said first graphing values are corresponding values of a dependent
5	variable of the function.
1	60. (Original) The apparatus of claim 39, wherein said programming instructions
2	are further designed to enable the apparatus to
3	identify a second plurality of regions within a second recursively
4	partitioned/nested geometric structure that correspond to a second plurality of
5	normalized multi-dimensional data of a second normalized multi-dimensional data
6	space, the second recursively partitioned/nested geometric structure being
7	corresponding to the second normalized multi-dimensional data space;
8	determine corresponding second graphing values for said second
9	corresponding regions within said second recursively partitioned/nested geometric
10	structure determined for said second normalized multi-dimensional data of said
11	second normalized multi-dimensional data space;
12	associate corresponding second visual attributes with said second
13	corresponding regions within said second recursively partitioned/nested geometric
14	structure, based at least in part on corresponding ones of said determined second
15	graphing values; and
16	display said second recursively partitioned/nested geometric structure,
17	visually differentiating said second corresponding regions based at least in part on
18	corresponding ones of said associated second visual attributes.
1	61. (Original) The apparatus of claim 60, wherein said first and second

based at least in part on contributions to the determined graphing value of the

4

2

3

Attorney Docket No. 110215-131398 Application No.: 10/036,811

recursively partitioned/nested geometric structures are displayed in a manner such

that both recursively partitioned/nested geometric structures are visible concurrently.

1	62. (Original) The apparatus of claim 61, wherein each of said first and second
2	normalized multi-dimensional data of said first and second normalized multi-
3	dimensional data spaces comprises a polynary string having a plurality of symbols,
4	encoding a plurality of relative coordinate values, said programming instructions are
5	further designed to enable the apparatus to
6	receive a first zooming specification comprising one or more of said polynary
7	string constituting symbols;
8	exclude a first subset of said first regions based at least in part on said

- exclude a first subset of said first regions based at least in part on said received first zooming specification;
- exclude a second subset of said second regions based at least part on the removed ones of said first regions; and
- repeat said displaying for the remaining ones of said first and second regions.
- 1 63. (Original) The apparatus of claim 60, wherein said first and second
- 2 normalized multi-dimensional data are values of first and second input variables.
- 1 64. (Original) The apparatus of claim 60, wherein said first normalized multi-
- 2 dimensional data are values of input variables, and said second normalized multi-
- 3 dimensional data are values of corresponding output variables.
- 1 65. (Original) The apparatus of claim 39, wherein said apparatus is a selected
- 2 one of a palm sized processor based device, a notebook computer, a desktop
- 3 computer, a set-top box, a single processor server, a multi-processor server, and a
- 4 collection of coupled servers.

9

- 1 66. (Amended) The apparatus of claim <u>39</u>37, wherein said programming
- 2 instructions are further designed to compute a location for a centroid for each of a
- 3 plurality of primitive elements of the geometric structure.

Attorney Docket No. 110215-131398 Application No.: 10/036,811

- 1 67. (Original) The apparatus of claim 66, wherein said programming instructions
- 2 are designed to compute coordinates (x_p, y_p) of the location of each centroid as
- 3 follows:

4
$$Xp = Xc + R * \sum_{k=1}^{K} V(N,k) * C(N,m[Lk])$$

5
$$Yp = Yc + R * \sum_{k=1}^{K} V(N,k) * S(N,m[Lk])$$

- 6 where:
- 7 (X_c, Y_c) are coordinate values of the geometric structure's centroid;
- R is a radius extending from the geometric structure's centroid to an
- 9 outermost vertex of the geometric structure;
- 10 V(N, k) is $w^*(1 w)^{**}(k 1)$ where $w = 1/(1+\sin(\pi/N))$;
- m[L_k] is outer vertex number (1, 2, ..., N) assigned to the kth symbol
- 12 appearing in a corresponding polynary string;
- 13 $C(N, m[L_k]) = cosine(a^* \pi);$ and
- 14 $S(N, m[L_k]) = sine(a^* \pi)$ [where $a = (5^*N 4^*m[L_k])/(2^*N)$].
 - 1 68. (Original) The apparatus of claim 67, wherein said programming instructions
- 2 are designed to compute the K values of V(N, k) once responsive to a specification
- 3 of N.
- 1 69. (Original) The method of claim 67, wherein said programming instructions are
- 2 designed to compute at least the N values of $C(N, m[L_k])$ or the N values of $S(N, m[L_k])$
- 3 $m[L_k]$) once responsive to a specification of N.
- 1 70. (Withdrawn) An apparatus comprising
- 2 storage medium having stored therein programming instructions designed to
- 3 enable the apparatus to
- 4 associate n symbolic representations with said n relative coordinate
- 5 values, and

6	select the symbolic representation corresponding to the highes	t	
7	relative coordinate value as the first constituting member of the	;	
8	polynary string representation; and		
9	at least one processor coupled to the storage medium to execute the		
10	programming instructions.		
1	71. (Withdrawn) The apparatus of claim 70, wherein the programming		
2	instructions further enable the apparatus to		
3	compute a constant value (F) by dividing $(n - 1)$ by n; and		
4	compute a variable value (G) by subtracting F from 1;		
5	subtract G from the current highest relative coordinate value; and		
6	select the symbolic representation corresponding to the current highe	st	
7	relative coordinate value as the next constituting member of the polynary string		
8	representation.		
1	72. (Withdrawn) The apparatus of claim 71, wherein the programming		
2	instructions further enable the apparatus to		
3	multiply the current value of G by F;		
4	subtract G from the current highest relative coordinate value; and		
5	select the symbolic representation corresponding to the current higher	st	
6	relative coordinate value as the next constituting member of the polynary stri	ng	
7	representation.		
1	73. (Withdrawn) The apparatus of claim 72, wherein the programming		
2	instructions further enable the apparatus to repeat said multiply, subtracting	and	
3	selecting operations set forth in claim 64.		
1	74. (Withdrawn) The apparatus of claim 70, wherein said symbolic repres	entation	
2	comprises a letter.		

- 1 75. (Withdrawn) The apparatus of claim 70, wherein said symbolic representation 2 comprises a special character. 1 76. (Withdrawn) The apparatus of claim 70, wherein said apparatus is a selected 2 one of a palm sized processor based device, a notebook computer, a desktop 3 computer, a set-top box, a single processor server, a multi-processor server, and a 4 collection of coupled servers. 1 77. (Withdrawn) An apparatus comprising: 2 storage medium having stored therein a plurality of programming instructions 3 designed to enable the apparatus to 4 determine appearance positions of appearance instances of symbolic 5 members of a polynary string representation of an entity having a 6 number of constituting variables, the symbolic members being 7 corresponding to the constituting variables, 8 sum positional values corresponding to the appearance instances of the 9 symbolic members in said polynary string representation, and 10 add the sum to an average residual relative coordinate value; and 11 at least one processor coupled to the storage medium to execute the 12 programming instructions. 1 78. (Withdrawn) The apparatus of claim 77, wherein 2 each positional value equals to $(1 - F) \times F^{**}(k - 1)$; and 3 the average residual relative coordinate value equals $(1 - F) \times F^{**}K$, 4 where F equals (n - 1)/n, 5 n equals the number of coordinate values, 6 k denotes a position in the polynary string representation; and 7 K denotes the length of the polynary string.
 - 79. (Withdrawn) The apparatus of claim 77, wherein said apparatus is a selected one of a palm sized processor based device, a notebook computer, a desktop

1

2

Attorney Docket No. 110215-131398 Application No.: 10/036,811

- 3 computer, a set-top box, a single processor server, a multi-processor server, and a
- 4 collection of coupled servers.