Nom: Prénom:

EXAMEN ECRIT MATHÉMATIQUE APPLIQUEE 1 B. LE BAILLY

Bachelier en Informatique et Systèmes, Première Année Bachelier en Electronique, Première Année Bachelier en Biotechnique, Première Année

12/01/2015, Durée: 3 heures, tous appareils électroniques interdits

Q1 /20	Q2 /20	Q3 /20	Q4 /20	Q5 /20	Q6/20	Total /120	Total /20

Question 1

En supposant que les expressions utilisées ci-dessous soient bien définies, montrer que

a)
$$\sqrt[5]{a^4}$$
 $\sqrt[10]{a^3}$ $\sqrt{a} = a \sqrt[5]{a^3}$

b)
$$\frac{1+\sqrt{6}}{4-\sqrt{6}} = 1 + \frac{\sqrt{6}}{2}$$

c)
$$\frac{3^{x^2}}{(3^{2x})^{(x-1)}}$$
 : $\frac{9^x}{3^{x^2}}$ = 1

Prénom:

Question 2

Soit $g: \mathbb{R} \to \mathbb{R}$, $x \leadsto y = g(x) = -x^2 + 2x + 8$ et soient $f: \mathbb{R} \to \mathbb{R}$, $x \leadsto y = f(x)$ et $h: \mathbb{R} \to \mathbb{R}$, $x \leadsto y = h(x)$ représentées par les graphes cartésiens suivants :

a) Représenter ci-dessus le graphe cartésien de la parabole y = g(x) en précisant son axe de symétrie, son sommet et ses intersections avec les axes. Représenter également ci-dessus la solution dans le plan \mathbb{R}^2 de l'inéquation $y + x^2 - 2x - 8 \le 0$.

2

- b) A partir des graphes ci-dessus, déterminer, en justifiant,
- 1) les expressions analytiques de f et h.
- 2) h(2) et f(0).
- 3) le(s) zéro(s) de g.
- 4) la période et la parité de f.
- 5) si h est une application bijective.
- 6) si g est injective.
- 7) $\sin f$ est surjective.
- 8) les solutions de l'équation $f(x) = \frac{1}{2}$. Vérifier analytiquement.

9) si h admet une fonction réciproque. Si oui, représenter cette fonction réciproque sur le graphique ci-dessus en expliquant vos manipulations, donner son expression analytique et évaluer $h^{-1}(2)$.

10) si g o f existe. Si oui préciser son expression analytique et évaluer $(g \circ f)(0)$.

Prénom:

Question 3

- a) Quelle est l'équation de la droite d passant par les points (0,1) et (-1,-4) ?
- b) Quelle est la pente de la droite $d_1 \equiv 4x + 2y 4 = 0$?
- c) La droite d_1 est-elle parallèle à la droite $d_2 \equiv y = 2x$? Justifier. En cas de parallélisme, préciser si les deux droites sont parallèles distinctes ou confondues. En cas de non-parallélisme, calculer le point de concours de ces deux droites. Vérifier graphiquement en représentant d_1 et d_2 ci-dessous.

d) La droite d_1 est-elle perpendiculaire à la droite $d_3 \equiv 2y = x$? Justifier. Vérifier graphiquement en représentant d_1 et d_3 ci-dessous.

Prénom:

Question 4 : Résoudre dans $\mathbb R$

a)
$$-4x^2 + x^3 + 3x = 0$$

b)
$$\sqrt{3x^2 + 4} = x^2$$

c)
$$\frac{-x^2+5x-4}{2+x} \ge 0$$

d)
$$-e^{2x} + 2e^x + 3 = 0$$

e)
$$2 \log_4 x = \log_4 3x + \log_4 (x - 1)$$

Prénom:

Question 5

a) Calculer à l'aide du cercle trigonométrique

sin(150°) =	arctg (1) =
arcsin (1) =	cos(-390°) =
$cotg\left(\frac{-2\pi}{3}\right) =$	$cos\left(\frac{5\pi}{4}\right) =$
$\sin\left(\frac{4\pi}{3} + 4\pi\right) =$	$tg\left(\frac{9\pi}{4}\right) =$

- b) Résoudre, dans \mathbb{R} , en radians et en orientant les angles positivement, les équations trigonométriques suivantes :
- $tg\left(\frac{x}{2}\right) = \sqrt{3}$

Prénom:

• $\sin^2 x = \frac{1}{2}$

 $\bullet \quad 5\cos x + 1 = -2\sin^2 x$

c) La toiture d'un hangar est représentée ci-dessous. Sachant que $\alpha=30^\circ$, AK=3m, $AG=\frac{27}{2}m$, $AB\perp BK$, AB=BC=CD et $CJ\perp BD$, calculer, en utilisant les formules trigonométriques des triangles rectangles ou quelconques, BK, AD, β et la surface totale de la toiture.

Prénom:

Question 6

a) Représenter en expliquant les manipulations graphiques effectuées les graphes cartésiens des fonctions suivantes à partir des graphes cartésiens des fonctions exponentielles ou logarithmiques de base :

f(x) =	$3^{x+2}-1$	$g(x) = 2\log_4 x $			
	5	5			
	J-	4			
3	3	3			
	2	2			
1	1				
-5 -4 -3 -2 -1	0 1 2 3 4 5	-5 -4 -3 -2 -1 0 1 2 3 4 5			
	1				
	2				
	3	-3-			
	;+				

b) Calculer les domaines de définition des fonctions suivantes :

•
$$f(x) = \log((2x - 3)(-5x + 1))$$

- c) Calculer la valeur exacte des expressions suivantes :
 - $\ln e^2$. $\ln \sqrt{e} =$
 - $4^{\log_4 4 + \log_4 3} =$
 - $\log_3 9 + \log_3 \frac{1}{9} =$
 - $\bullet \quad \frac{\log_2 128}{7} =$
- d) Le nombre n(t) de bactéries dans une culture grandit exponentiellement avec le temps t exprimé en heures selon la loi $n(t) = n_0 e^{kt}$.
 - Déterminer k sachant qu'après une heure le nombre de bactéries a triplé par rapport à l'instant t = 0.

- Si le nombre de bactéries à l'instant t = 0 est 10 000, calculer
 - > le nombre de bactéries après 5 heures ;

 \triangleright au bout de combien de temps n(t) atteindra 50 000 bactéries.

Nom: Prénom: