Esame di Progettazione di Sistemi Digitali – 16 settembre 2024

Cognome Nome _____ Matricola _____

Gli studenti DSA devono svolgere i primi 4 esercizi

Esercizio 4 (7 punti)

Progettare un circuito sequenziale con due ingressi x1, x0, che codificano i caratteri A, G, S nel seguente modo:

x1, x0	carattere			
00	A			
01	G			
10	S			

Il circuito ha 2 uscite z1 e z0 e fornisce z1=1 quando riceve in ingresso la sequenza GAS e z0=1 quando riceve in ingresso la sequenza GAG. Sono ammesse sovrapposizioni.

Soluzione:

Automa

Tabella degli stati.

PS	S ₁	S ₀	x1	x0	NS	S ₁ '	So'	z1	z 0
R	0	0	0	0	R	0	0	0	0
R	0	0	0	1	G	0	1	0	0
R	0	0	1	0	R	0	0	0	0
R	0	0	1	1	-	-	-	-	1
G	0	1	0	0	GA	1	0	0	0
G	0	1	0	1	G	0	1	0	0
G	0	1	1	0	R	0	0	0	0
G	0	1	1	1	-	-	-	-	-
GA	1	0	0	0	R	0	0	0	0
GA	1	0	0	1	G	0	1	0	1
GA	1	0	1	0	R	0	0	1	0
GA	1	0	1	1	-	-	_	-	-

Equazioni del circuito:

$$S1' = S_0 \bar{x}_1 \bar{x}_0$$

$$S0' = x_0$$

$$z_1 = S_1 \bar{S}_0 x_1 \bar{x}_0$$

$$z_0 = S_1 \bar{S}_0 \bar{x}_1 x_0$$

Esercizio 2 (4 punti) Si consideri il seguente circuito combinatorio:

Si scriva l'espressione booleana di f.

$$\overline{x3} \overline{x2} (x1+x0) + x3 \overline{x2} x1 \overline{x0} + x3 x2 \overline{x0}$$

Si scriva f in forma canonica SOP e in forma canonica POS.

canonica SOP:

$$\overline{x3} \overline{x2} \overline{x1} x0 + \overline{x3} \overline{x2} x1 \overline{x0} + \overline{x3} \overline{x2} x1 \overline{x0} + \overline{x3} \overline{x2} x1 x0 + x3 \overline{x2} x1 \overline{x0} + x3 x2 \overline{x1} \overline{x0} + x3 x2 x1 \overline{x0}$$

canonica POS:

$$\begin{array}{l} (x3+x2+x1+x0) + (x3+\overline{x2}+x1+x0) + (x3+\overline{x2}+x1+\overline{x0}) + (x3+\overline{x2}+\overline{x1}+x0) + \\ (x3+\overline{x2}+\overline{x1}+\overline{x0}) + (\overline{x3}+x2+x1+x0) + (\overline{x3}+x2+x1+\overline{x0}) + (\overline{x3}+x2+\overline{x1}+\overline{x0}) + (\overline{x3}+\overline{x2}+x1+\overline{x0}) + (\overline{x3}+x1+\overline{x2}+x1+\overline{x0}) + (\overline{x3}+\overline{x2}+x1+\overline{x2}+x1+\overline{x2}+x1+\overline{x2}) + (\overline{x3}+\overline{x2}+x1+\overline{x2}+x1+\overline{x2}+x1+\overline{x2}) + (\overline{x3}+\overline{x2}+x1$$

Esercizio 3 (5 punti): Si analizzi il circuito sequenziale in figura e si disegni la FSM corrispondente.

Tabella degli stati

PS	Q ₁	\mathbf{Q}_{0}	X	NS	Q ₁ '	Q ₀ '	Z
A	0	0	0	A	0	0	0
A	0	0	1	В	0	1	1
В	0	1	0	C	1	0	0
В	0	1	1	D	1	1	0
C	1	0	0	A	0	0	1
C	1	0	1	В	0	1	0
D	1	1	0	C	1	0	0
D	1	1	1	D	1	1	1

Automa

Esercizio 4 (5 punti): Un circuito combinatorio prende in ingresso un numero di 4 bit A= a3a2a1a0 in complemento a 2 fornisce un'uscita Z=z1z0 tale che:

Z=0 se 3≤A≤7

Z=1 se -4≤A<3

Z=2 se -7≤A<-4

Z=3 se A=-8

Realizzare:

- la tabella della verità corrispondente
- la forma minima POS di z1
- la forma all-NAND ed all-NOR di z1 (è possibile usare porte NOT)
- z₁ utilizzando un MUX 4:1

Soluzione:

a3	a2	a1	a0	<i>z1</i>	<i>z0</i>
0	0	0	0	0	1
0	0	0	1	0	1
0	0	1	0	0	1
0	0	1	1	0	0
0	1	0	0	0	0
0	1	0	1	0	0
0	1	1	0	0	0
0	1	1	1	0	0
1	0	0	0	1	1
1	0	0	1	1	0
1	0	1	0	1	0
1	0	1	1	1	0
1	1	0	0	0	1
1	1	0	1	0	1
1	1	1	0	0	1
1	1	1	1	0	1

Forma NOR:

Forma NAND:

MUX:

Esercizio 5 (5 punti):

Si converta il numero (espresso in base 10) X=1.25 in un numero con la virgola in base 2. Si porti poi quest'ultimo numero nel formato IEEE 754 half-precision. Si prenda la rappresentazione esadecimale IEEE 754 di Y= 0x4A00 e la si interpreti come rappresentazione in virgola mobile. Si effettui la moltiplicazione Z=X*Y.

Soluzione:

$$X=1.25 \rightarrow 1.01_2*2^0 \rightarrow$$
 $S_X=0$, $E_X=01111$, $M_X=0100_0000_00$
 $Y=0_10010_10000000000 \rightarrow S_Y=0$, $E_Y=18-15=3$, $M_Y=1.1_2 \rightarrow 1.1_2*2^3$

Z=X*Y

 $S_z=0$,

 $E_z=3+0=3$,

 $M_Z=M_X * M_Y$ 1.01 *

1.10 =

0.101+

1.010 =

1.111

 $M_Z = 1111$

Quindi Z = $0_{10010}_{11100000000} \rightarrow 0x4B80$

Esercizio 6 (4 punti):

Usando gli assiomi dell'algebra di Boole, verificare la seguente identità:

$$(\bar{a} \oplus b) + \overline{(ac + b)(a + bc)} = \bar{a} + b + c$$

Soluzione:

Sono segnati in rosso le applicazioni del teorema di assorbimento ed in verde l'assorbimento del complemento

$$(\bar{a} \oplus b) + \overline{(ac + b)}(a + bc) = \\ \bar{a} \bar{b} + ab + \overline{(ac + b)} + \overline{(a + bc)} = \\ \bar{a} \bar{b} + ab + (ac + b) + \bar{a} \cdot \overline{bc} = \bar{a} \bar{b} + ab + ac + b + \bar{a} \cdot \overline{bc} = \\ \bar{a} \bar{b} + ac + b + \bar{a} \bar{b} + \bar{a} \bar{c} = \\ ac + b + \bar{a} \bar{b} + \bar{a} \bar{c} = \\ ac + b + \bar{a} + \bar{a} \bar{c} = \\ c + b + \bar{a} = \\ c + b + \bar{a} =$$