Sesiones de preparación de Olimpiadas de la RSME

Bloque de Geometría

Almería, 13 de diciembre de 2014

José María Lirola Terrez David Crespo Casteleiro

Lugares geométricos

Llamaremos lugar geométrico, a un conjunto de puntos que cumplen unas determinadas propiedades.

Veamos algunos ejemplos:

Ejemplo 1: Obtener el lugar geométrico de los puntos del plano que equidistan de otros dos puntos A y B

Solución: La recta que pasa por el punto medio entre A y B, esto es, la mediatriz del segmento AB.

Ejemplo 2: Obtener el lugar geométrico de los puntos del plano que equidistan de dos rectas secantes

Solución: La bisectriz del ángulo que forman dichas rectas

Ejemplo 3: Obtener el lugar geométrico de los puntos del plano cuya distancia a un punto C, es una cantidad fija r>0

Solución: La circunferencia de centro el punto C y radio r http://tube.geogebra.org/student/m388295

Ecuación de la circunferencia

Supongamos una circunferencia cuyo centro es el punto C(a, b) y de radio r.

Si P(x, y) es un punto de la misma, tenemos que:

$$d(C,P) = r \Leftrightarrow \sqrt{(x-a)^2 + (y-b)^2} = r \Leftrightarrow \sqrt{(x-a$$

Ejemplo 4: Obtener el lugar geométrico de los puntos del plano cuya suma de distancias a dos puntos fijos es constante

Solución: Una elipse. Los puntos fijos se llaman focos y la distancia constante la denotamos por 2-a.

http://tube.geogebra.org/student/m388385

Ecuación de la elipse

Supongamos una elipse centrada en el origen, cuyos focos son $F_1(c, 0)$ y $F_2(-c, 0)$. Consideremos la que la suma de las distancias desde cualquier punto de la elipse a los focos es 2-a. El punto de corte de la elipse con el eje OY^+ , (b, 0), ha

de cumplir que: $a^2 = b^2 + c^2$

Ecuación de la elipse

Es decir:

$$d(F_1, D) + d(F_2, D) = 2a \Rightarrow$$

$$\Rightarrow \sqrt{(x-c)^2 + y^2} + \sqrt{(x+c)^2 + y^2} = 2a$$

Desarrollando esta expresión se obtiene la ecuación reducida de la elipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Propiedades

- •Las longitudes a y b se llaman semiejes de la elipse .
- •Si consideramos como semieje mayor a, se define su excentricidad por e=c/a. Nótese que si c=0, a=b y tenemos una circunferencia.
- •Si el centro de la elipse es el punto C(x₀, y₀) la ecuación de la elipse es

$$\frac{\left(x - x_0^2\right)^2 + \left(y - y_0^2\right)^2}{a^2} = 1$$

Ejemplo 5: Obtener el lugar geométrico de los puntos del plano cuya diferencia de distancia a dos puntos fijos es constante

Solución: Una hipérbola. Los puntos fijos se llaman focos y la distancia constante la denotamos por 2-a.

http://tube.geogebra.org/student/m388567

Ecuación de la hipérbola

Supongamos una hipérbola centrada en el origen, cuyos focos son $F_1(c, 0)$ y $F_2(-c, 0)$. Consideremos que la diferencia de las distancias desde cualquier punto de la elipse a los focos es 2-a>0. El punto de corte de la hipérbola con el eje OX+ es (a, 0), y definimos: $b^2 = c^2-a^2$

Ecuación de la hipérbola

$$d(F_2, D) - d(F_1, D) = 2a \Rightarrow$$

$$\Rightarrow \sqrt{(x+c)^2 + y^2} - \sqrt{(x-c)^2 + y^2} = 2a$$

Desarrollando esta expresión se obtiene la ecuación reducida de la hipérbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

Propiedades

- •Las longitudes a y b se llaman **semiejes** de la elipse (real e imaginario respectivamente) .
- •Las rectas y=(b/a)x, y=-(b/a)x se llaman **asíntotas** de la hipérbola y contienen a las diagonales de un rectángulo de base 2-a y altura 2-b.
- •Si el centro de la elipse es el punto C(x₀, y₀) la ecuación viene dada por

$$\frac{\left(x - x_0^2\right)^2}{a^2} - \frac{\left(y - y_0^2\right)^2}{b^2} = 1$$

Propiedades

- •Si los semiejes son iguales, esto es a=b, la hipérbola se **llama equilátera**.
- •Puede <u>demostrarse</u> que haciendo un giro en los ejes, la ecuación de la hipérbola equilátera puede escribirse como

$$|x \cdot y = k, k \in \mathbb{R}|$$

Ejemplo 3: Obtener el lugar geométrico de los puntos del plano que equidistan de una recta y de un punto prefijados

Solución: La parábola. La recta se llama directriz y el punto foco

Ejercicio: Encontrar la ecuación de la parábola http://www.sectormatematica.cl/media/NM3/LA%20%20 PARABOLA%20jaime.pdf

Ejercicio: En el interior de una circunferencia de centro O y radio r, se toman dos puntos A y B, simétricos respecto de O. Se considera un punto variable P sobre esta circunferencia y se traza la cuerda PP', perpendicular a AP. Sea C el punto simétrico de B respecto de PP'. Halla el lugar geométrico del punto Q, intersección de PP' con AC, al variar P sobre la circunferencia

Construcción

Ejercicio: Hallar el lugar geométrico de los ortocentros de los triángulos inscritos en una hipérbola equilátera Construcción

Contacto

José María Lirola Terrez (fermatmat1@gmail.com)

David Crespo Casteleiro (davidcasteleiro@hotmail.com)