奸么

得 分 15-16-2 几何与代数(B) 考试学期 课程名称 120 分钟 电类各专业 考试形式 闭 考试时间长度 适用专业 七 四 六 题号 \equiv Ŧī. 得分

一. (30%) 填空题

- 1. $\alpha = (1,2)$, $\beta = (3,4)$, $\mathbb{M}(\beta^{T}\alpha)^{2016} = \underline{\hspace{1cm}}$
- 2. 设 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 3 & -3 \end{pmatrix}$, 则 $|(3A)^{-1}| =$ _____;
- 3. 设 $A_{4\times4}$ 的秩为 3,则 A^* 的秩为______
- 4. 直线 $l: \begin{cases} x-2y+z+1=0 \\ 2x+y-z+3=0 \end{cases}$ 的一个方向向量______
- 5. 向量空间 $\left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 \ | 2x_1 x_2 + ax_3 = 0 \right\}$ 的一组基是_____;
- 7. 若矩阵 $\begin{pmatrix} a & 2 \\ 0 & 3 \end{pmatrix}$ 与 $\begin{pmatrix} 7 & 0 \\ -2 & b \end{pmatrix}$ 相似,则(a,b) =_____;
- 8. 二次型 $f(x_1, x_2) = (x_1, x_2) \begin{pmatrix} 1 & b \\ a & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ 的矩阵为______;
- 9. 已知 $A = \begin{pmatrix} \frac{1}{2} & a \\ \frac{\sqrt{3}}{2} & \frac{-1}{2} \end{pmatrix}$ 是正交矩阵,则a =______;

二. (8%) 计算行列式
$$D = \begin{vmatrix} 1 & 1 & 1 & 6 \\ 5 & 3 & -7 & 7 \\ 2 & 0 & 4 & 4 \\ 4 & -1 & 3 & -5 \end{vmatrix}$$
.

三. (12%) 已知矩阵
$$A = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{pmatrix}$$
, $XA - \begin{pmatrix} 1 & -1 & 0 \\ 1 & 2 & 1 \end{pmatrix} = X$. 求矩阵 X .

- 四. (15%) 已知向量组 $\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ \lambda \end{pmatrix}, \alpha_2 = \begin{pmatrix} 1 \\ \lambda \\ 1 \end{pmatrix}, \alpha_3 = \begin{pmatrix} \lambda \\ 1 \\ 1 \end{pmatrix}, \alpha_4 = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}.$
 - 1. 当 λ 取何值时, $\alpha_1, \alpha_2, \alpha_3$ 是这个向量组的极大线性无关组?

2. 当 λ 取何值时, $lpha_4$ 可由 $lpha_1,lpha_2,lpha_3$ 线性表示但表示不唯一?并求所有的表示式.

五. (10%) 已知球面 $\Sigma: x^2 + y^2 + z^2 - x + 2y + 6z = 0$; 平面 π 过球面 Σ 的球心且垂直于x 轴. 求 Σ 与 π 的交线在 yOz 平面上的投影曲线的方程.

- 六. (15%) 设二次型 $f(x_1, x_2, x_3) = x_1^2 + ax_2^3 + x_3^2 + 2x_1x_2 + 2x_1x_3 + 2x_2x_3$ 经正交变换 $x = Qy \text{ 化为} 4y_1^2 + y_2^2.$
 - (1) 求 α 的值; (2) 求一个合适的正交矩阵Q; (3) 求 $\max_{\|x\|=1} f(x)$,其中 $\|x\|$ 指x的长度.

- 七. (10%, 第一小题 6%, 第二小题 4%) 证明题:
 - 1. 已知 $\alpha_1,\alpha_2,...,\alpha_t$ 为正交向量组,证明: $\alpha_1,\alpha_2,...,\alpha_t$ 线性无关.
 - 2. 已知 A 为实正定矩阵. 证明:存在上三角矩阵 B,使得 $A=B^TB$.