	(b)	Determine area of the triangle whose vertices are (2,2), (5,2), (3,4).	2
	(c)	Calculate the eigenvalues and eigenvectors of AA^T and A^TA where $A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$.	2
9.	(a)	Calculate the lengths and inner product of $x = \begin{bmatrix} 1 \\ i \end{bmatrix}$ and $y = \begin{bmatrix} 2+i \\ 2-4i \end{bmatrix}$.	2
	(p)	Prove that eigenvalues of a Hermitian matrix are real.	2
	(c)	Decide for or against the positive definiteness of the following matrix.	2
10		$A = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$	
10.	(a)	Determine the Singular Value Decomposition and Pseudo- inverse of the matrix given in Q.8(c).	2
	(b)	Calculate the norm and condition number of the matrix $A = \begin{bmatrix} 1 & 0 \\ 2 & 2 \end{bmatrix}$.	2
	(c)	Compute the Jacobi matrix of the matrix $A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$.	2
		End of Questions	

END SEM. EXAMINATION, JULY-2023 APPLIED LINEAR ALGEBRA (MTH - 3003)

Programme: B. Tech

Semester 4th

Full Marks: 60

Time: 3 Hours

Subject/Commo V	2				
Subject/Course Learning Outcome	*Taxonomy Level	Ques.	Marks		
Apply Gauss elimination principle to solve system of linear equations and elementary matrices to get LU & LDU factorization of a matrix.	L3 L3L3L3L3L3	1 a,b,c 2 a,b,c	6+6		
Explain vector space, subspace, null space and column space, linear independence, rank of a matrix	L4 L4 L3	3 a,b,c	6		
Explain basis and dimension of vector space and four fundamental subspaces, linear transformations and their applications	L4 L3 L3 L4,L3	4 a,b,c 5 a,b	6+4		
Explain orthogonality and its applications to find best fit solutions by least squares. Apply properties of determinants to solve the system of equations	L3,L3,L3 L3,L3,L3 L3,L3,L3	5c, 6a,b,c 7a,b,c 8b	2+6+6 +2		
Explain eigenvalues and eigenvectors and their application to solve system of differential equations.	L3 L3L3L3	8a,c,9a,b	4+4		
Diagonalizations and complex matrices Hermitian, skew Hermitian, Unitary matrices Bloom's taxonomy levels: Remembering (L3 L3L3	9c 10 a,b,c	2+6		

Bloom's taxonomy levels: Remembering (L1), Understanding (L2), Applying (L3), Analyzing (L4), Evaluating (L5), Creating (L6)

Answer all questions. Each question carries equal mark.

- 1. (a) Determine the values of b that lead to missing pivot in the 2 following system. x+by=0, x-2y-z=0, y+z=0
 - (b) Solve by sketching the row picture for the equations x + y = 2, 2x 2y = 4.

(c)	Apply Gaussian elimination to solve the system				
	2x+3y=0, $4x+5y+z=3$, $2x-y-3z=5$.				

Find the LDU factorization of the following matrix, where L is 2 lower triangular matrix, D is diagonal matrix and U is upper triangular matrix.

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix}.$$

- (b) Evaluate the value(s) of d for which the system of equations has a unique solutions. x+y+2z = 1, x+2y+3z=2, x+4y+2dz=1
- Use the Gauss-Jordan method to find inverse of the matrix 2
- Examine whether the following subset of R^3 is a subspace or R^3 not. $V = \{The plane of vectors(b_1, b_2, b_3) \text{ with } b_1 = 0\}.$
 - (b) Describe the column space and null space of the matrix 2 $A = \begin{bmatrix} 0 & 2 \\ 5 & 0 \end{bmatrix}$
 - (c) Let $P = \begin{bmatrix} 1 & 1 & -1 \\ 2 & -3 & 4 \\ 3 & -2 & 3 \end{bmatrix}$ and $Q = \begin{bmatrix} -1 & -2 & -1 \\ 6 & 12 & 6 \\ 5 & 10 & 5 \end{bmatrix}$ be two matrices.
- Examine whether the following set a basis of R^3 or not. $\{(1,2,2),(-1,2,1),(0,8,6)\}$
 - Find a basis for the plane x+y+z=0 in \mathbb{R}^3 . Then find a basis 2 for the intersection of that plane with yz-plane.
 - Write the dimension of the four fundamental subspaces of the 2 matrix

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 3 \\ 3 & 6 & 4 \end{bmatrix}$$

5. (a) Let $c_1, c_2, ..., c_n$ be scalars not all zero and $a_i \in \mathbb{R}^n$ be column vectors of a matrix A such that $\sum_{i=1}^n c_i a_i = 0 \& b = \sum_{i=1}^n a_i$. Then Ax = b has how many solutions? Justify your answer.

- (b) Calculate the left inverse (if exists) for the matrix A = |1|1
- Determine the relation between determinant of A and determinant of B. Where

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \\ 3 & 4 & 1 & 2 \\ 2 & 3 & 4 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3 \\ 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{bmatrix}$$

6. (a) Determine a vector x orthogonal to the row space of A and a vector y orthogonal to the column space of A, where

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 3 \\ 3 & 6 & 4 \end{bmatrix}$$

- (b) Determine the projection matrix that projects any vector onto the line passing through the vector perpendicular to
- Compute the projection of b = (1, 1) on to the line passing through a = (1, -1).
- Determine the projection of b onto the column space of A, where $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}, b = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$
 - Determine the largest eigenvalue of A

$$A = uv^T$$
 where $u = inom{1}{2}, v = inom{1}{1}$

- $A = uv^T$ where $u = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, v = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ If A is a 4 by 4 matrix with det. $A = \frac{1}{3}$, then calculate det. (3A) and det. (A^{-1}) .
- Solve the following system using Cramer's rule. 2x+5y=1, x+4y=2