Fuel-minimal rdv with a large population of temporarily captured orbiters

Contexte

- Trajet : L2 → Astéroïde → L2
 - Pour l'instant : EMB → Astéroïde → EMB
- Contrôle impulsionnel : \circ État du spacecraft : $q(r, v) = \begin{cases} r : position \\ v : vitesse \end{cases}$

• Dynamique à 2 corps : $\begin{vmatrix} dr/dt = v \\ v_i = \alpha_i(r) + (T_{max}/m).u_i, i=1..3 \end{vmatrix}$

Contraintes & Critère

- 3 boosts : δv_0 , δv_1 , δv_f aux temps t_0 , δt_1 et δt_f où t_0 ϵ [2028, 2048] et δt_1 , δt_f ϵ [1, 360]
- 1^{er} boost (aller) dans le plan orbital Terre Lune
- 3^e boost (retour) dans le plan orbital Terre Lune

• min $\sum ||\delta v_i|| + 0.5 \text{max}(0, \delta v_f - v_0)$

Objectifs

- Pour l'aller, le retour et l'aller-retour :
 - Changement EMB → L2
 - Jouer sur le critère : avec / sans le max
- Changement impulsionnel -> contrôle optimal dans la sphère de Hill :
 - Fuel-minimum (masse constante fixée)
 - Temps minimum (masse variable)
- Construire un classifieur à partir des 4000+ astéroïdes fournis