Boosting I

Gradient Boosting

Starting point: A decision tree...

$$T(x;\Theta) = \sum_{j=1}^{J} \gamma_j I(x \in R_j)$$

with tree parameters $\Theta = \{R_j, \gamma_j\}.$

Goal of tree construction:

$$\Theta = \operatorname{arg\,min}_{\Theta} \sum_{j=1}^J \sum_{x_i \in R_j} L(y_i, \gamma_i)$$

ightarrow Boosting: Minimizing loss over a sequence of trees

Boosting: Reduce the loss given $f_{m-1}(x_i)$

$$\Theta = \operatorname{arg\,min}_{\Theta_m} \sum_{i=1}^{N} L(y_i, f_{m-1}(x_i) + T(x_i; \Theta_m))$$

 \rightarrow Focus on pseudo-residuals for the *i*th obs on iteration *n*

$$r_{im} = -\left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f=f_{m-1}}$$

ightarrow Fit regression tree to pseudo-residuals/ negative gradients

$$\tilde{\Theta}_m = \operatorname{arg\,min}_{\Theta} \sum_{i=1}^N (-g_{im} - T(x_i; \Theta))$$

Boosting: Reduce the loss given $f_{m-1}(x_i)$

$$\Theta = \operatorname{arg\,min}_{\Theta_m} \sum_{i=1}^{N} L(y_i, f_{m-1}(x_i) + T(x_i; \Theta_m))$$

 \rightarrow Focus on pseudo-residuals for the *i*th obs on iteration m

$$r_{im} = -\left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f = f_{m-1}}$$

ightarrow Fit regression tree to pseudo-residuals/ negative gradients

$$ilde{\Theta}_m = \mathop{\mathsf{arg\,min}}_{\Theta} \sum_{i=1}^N (-g_{im} - T(x_i;\Theta))^i$$

Boosting: Reduce the loss given $f_{m-1}(x_i)$

$$\Theta = \operatorname{arg\,min}_{\Theta_m} \sum_{i=1}^{N} L(y_i, f_{m-1}(x_i) + T(x_i; \Theta_m))$$

 \rightarrow Focus on pseudo-residuals for the *i*th obs on iteration m

$$r_{im} = -\left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f=f_{m-1}}$$

 \rightarrow Fit regression tree to pseudo-residuals/ negative gradients

$$\tilde{\Theta}_m = \operatorname{arg\,min}_{\Theta} \sum_{i=1}^N (-g_{im} - T(x_i; \Theta))^2$$

Gradient Boosting Machines

- General approach to sequential learning
- Applicable with various loss functions
- Boosting trees
 - 1 Initialize model (with a constant $f_0(x)$)
 - 2 Compute pseudo-residuals based on current model

$$r_{im} = -\left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f = f_{m-1}}$$

- 3 Fit a regression tree to the pseudo-residuals
- **4** Compute $\gamma_{jm} = \arg\min_{\gamma} \sum_{x_i \in R_{im}} L(y_i, f_{m-1}(x_i) + \gamma)$
- ⑤ Update the current model: $f_m(x) = f_{m-1}(x) + \sum_{j=1}^{J_m} \gamma_{jm} I(x \in R_{jm})$
- Output $\hat{f}(x) = f_M(x)$
- \rightarrow Analogue to steepest descent

Gradient Boosting Machines

Table: GBM components for different loss functions

Setting	Loss function	r_i	$f_0(x)$
Regression	$\frac{1}{2}(y_i - f(x_i))^2$	$y_i - f(x_i)$	$mean(y_i)$
Regression	$ y_i - f(x_i) $	$\operatorname{sign}(y_i - f(x_i))$	$median(y_i)$
Classification	Deviance	$I(y_i = G_k) - p_k(x_i)$	prior p's

Algorithm 1: Gradient Boosting for regression

```
1 Set number of trees M:
2 Set interaction depth D;
3 Set shrinkage parameter \lambda;
4 Use \bar{y} as initial prediction;
5 for m=1 to M do
      compute residuals based on current predictions;
      assign data to root node, using the residuals as the outcome;
      while current tree depth < D do
          tree growing process;
      end
10
      compute the predicted values of the current tree;
11
12
      add the shrinked new predictions to the previous predicted values;
13 end
```

Table: Boosting Example with 5 obs and 2 \times 's

ID	x_1	x_2	y	$f_0(x)$
1	0	0	1	1.2
2	0	2	3	1.2
3	1	2	2	1.2
4	2	3	0	1.2
5	0	1	0	1.2

Table: Step 1: Split $x_2 > 2.5$

ID	x_1	<i>x</i> ₂	у	$f_0(x)$	r_{i1}	γ_{j1}	$f_1(x)$
1	0	0	1	1.2	-0.2	0.3	1.5
2	0	2	3	1.2	1.8	0.3	1.5
3	1	2	2	1.2	8.0	0.3	1.5
4	2	3	0	1.2	-1.2	-1.2	0
5	0	1	0	1.2	-1.2	0.3	1.5

Table: Step 2: Split $x_2 < 1.5$

ID	x_1	<i>x</i> ₂	У	$f_0(x)$	$f_1(x)$	r_{i2}	γ_{j2}	$f_2(x)$
1	0	0	1	1.2	1.5	-0.5	-1	0.5
2	0	2	3	1.2	1.5	1.5	0.66	2.166
3	1	2	2	1.2	1.5	0.5	0.66	2.166
4	2	3	0	1.2	0	0	0.66	0.66
5	0	1	0	1.2	1.5	-1.5	-1	0.5