Solutions to examples to do

December 14, 2019 4:29 PM

- For accurate results two strain gages at locations B and C should be installed
- A single sensor at B is also a good approximation since the bearing friction is small
- Motor torque T_m is also approximately equal to transmitted torque when inertia and friction are small

Sensing Bandwidth Example

Rigid load of inertia J_{l} driven by motor with rigid rotor of inertia J_{m} .

Torque sensing member: Stiffness K_s between rotor and load

- (a) Determine transfer function between motor torque T_m and twist angle of torsion member
- (b) What is the torsional natural frequency ω_n of the system?
- (c) Discuss why system bandwidth depends on ω_n . Show that the bandwidth can be improved by increasing K_s , decreasing J_m , or decreasing J_L
- (d) Mention advantages and disadvantages of introducing a gearbox at motor output.

Example: Solution

For Motor: $T_m = J_m \ddot{\theta}_m + K_s(\theta_m - \theta_L)$; For Load: $K_s(\theta_m - \theta_L) = J_L \ddot{\theta}_L$

$$\Rightarrow \qquad \ddot{\theta}_m - \ddot{\theta}_L = -K_s \left(\frac{1}{J_m} + \frac{1}{J_L} \right) (\theta_m - \theta_L) + \frac{T_m}{J_m}$$

Let: $\theta = \theta_m - \theta_I$

$$\Rightarrow \quad \ddot{\theta} + K_s \left(\frac{1}{J_m} + \frac{1}{J_L} \right) \theta = \frac{T_m}{J_m} \quad ;$$

$$G(s) = \frac{\theta(s)}{T_m(s)}$$

 $G(s) = \frac{1/J_m}{s^2 + K_s(1/J_m + 1/J_I)}$

 $\omega_n = \sqrt{K_s \left(\frac{1}{J_m} + \frac{1}{J_I}\right)}$

When gears are added, equivalent inertia increases and equivalent stiffness decreases -> Reduction in BW

BW can be increased by increasing Ks and by decreasing J_m and J_L

Example (cont'd)

 Obtain an expression relating applied acceleration a (in units of g) to bridge output (bridge balanced at zero acceleration) in terms of the following parameters:

W = Mg = weight of seismic mass at free end of cantilever; E = Young's modulus of cantilever;

 ℓ = length of cantilever; b = X-section width of cantilever; h = X-section height of cantilever; S_s = gauge factor (sensitivity) of each strain gage; v_{ref} = supply voltage to the bridge.

- For M=5 gm, $E=5 \times 10^{10}$ N/m², $\ell=1$ cm, b=1 mm, h=0.5 mm, $S_s=200$, and $v_{ref}=20$ V, determine sensitivity of accelerometer in mV/g.
- If yield strength of cantilever element is 5xl0⁷ N/m2, what is the max acceleration that could be measured?
- If the ADC from bridge to computer has the range 0 to 10 V, how much amplification (bridge amplifier gain) would be needed so that this maximum acceleration corresponds to the upper limit of ADC (10 V)?
- Is the cross-sensitivity (i.e., sensitivity for tension and other direction of bending small with this arrangement? Explain.
- Hint: For a cantilever subjected to force F at free end, max stress at root =

$$\sigma = \frac{6F\ell}{bh^2} +$$

SG Torque Sensor Design Example

Design a tubular torsion element.

Design specifications: $\varepsilon_{\text{max}} = 3{,}000\mu\varepsilon; N_p = 5\%; v_o = 10\text{ V};$

System bandwidth = 50 Hz, $K = 2.5 \times 10^3$ N.m/rad.

Use a bridge with 4 active SGs I

Given parameter values:

- 1. For strain gages: $S_s = S_1 = 115$, $S_2 = 3500$
- 2. For the torsion element: Outer radius r = 2 cm, Shear

modulus $G = 3x10^{10} \text{ N/m2}$, Length L = 2 cm

3. For bridge circuit: $v_{ref} = 20 \text{ V}$, $K_a = 100$

Expected max torque $T_{\text{max}} = 10 \text{ N.m}$

Compute operating parameter limits for the designed sensor.

SG Torque Sensor Design Example

Design a tubular torsion element.

Design specifications: $\varepsilon_{\text{max}} = 3{,}000\mu\varepsilon; N_p = 5\%; v_o = 10\text{ V};$

System bandwidth = 50 Hz, $K = 2.5 \times 10^3$ N.m/rad.

Use a bridge with 4 active SGs I

Given parameter values:

- 1. For strain gages: $S_s = S_1 = 115$, $S_2 = 3500$
- 2. For the torsion element: Outer radius r = 2 cm, Shear

modulus $G = 3x10^{10} \text{ N/m2}$, Length L = 2 cm

3. For bridge circuit: $v_{ref} = 20 \text{ V}$, $K_a = 100$

Expected max torque $T_{\text{max}} = 10 \text{ N.m}$

Compute operating parameter limits for the designed sensor.

Solution:

From triangular speed profile: $d = \frac{1}{2}v_{\text{max}}T$

Substituting numerical values: $0.1 = \frac{1}{2}v_{max} = 0.2$ \rightarrow $v_{max} = 1.0 \text{ m/s}$

Acceleration/deceleration of system: $a = \frac{v_{\text{max}}}{T/2} = \frac{1.0}{0.2/2} \text{ m/s}^2 = 10.0 \text{ m/s}^2$

Corresponding angular acceleration/deceleration of motor: $\alpha = \frac{pa}{a}$.

With efficiency
$$\eta$$
, motor torque T_m needed to accelerate/decelerate the system:
$$\eta T_{\rm m} = J_e \alpha = J_e \frac{pa}{r} = \left[J_{\rm m} + J_{\rm g1} + \frac{1}{p^2} (J_{\rm g2} + J_{\rm d} + J_{\rm s}) + \frac{r^2}{p^2} (m_{\rm c} + m_{\rm L}) \right] \frac{pa}{r}$$
 Maximum speed of motor: $\omega_{\rm max} = \frac{pv_{\rm max}}{r}$

Without gears (p = 1): $\eta T_m = [J_m + J_d + J_s + r^2(m_c + m_L)] \frac{a}{a}$

Stepper Motor Selection (Example 8.9, Cont'd)

44

Case 1: Without Gears

For
$$\eta = 0.8$$
 (i.e., 80% efficient): $0.8T_m = [J_m + 2 \times 10^{-3} + 2 \times 10^{-3} + 0.1^2 (5+5)] \frac{10}{0.1}$ N.m

$$T_m = 125.0[J_m + 0.104] \text{ N.m} \text{ and } \omega_{\text{max}} = \frac{1.0}{0.1} \text{ rad/s} = 10 \times \frac{60}{2\pi} \text{ rpm} = 95.5 \text{ rpm}$$

Operating speed range: 0-95.5 rpm.

Note: Torque at 95.5 rpm < starting torque, for first two motors, not so for other two (See speed-torque curves). In motor selection, use the weakest point (i.e., lowest torque) in the operating speed range Without gears, motors cannot meet system requirements (see Table)

Data for Selecting a Motor Without a Gear Unit.				
Motor Model	Available Torque at ω_{max} (N.m)	Motor–Rotor Inertia (× 10 ⁻⁶ kg.m ²)	Required Torque (N.m)	
50 SM	0.26	11.8	13.0	
101 SM	0.60	35.0	13.0	
310 SM	2.58	187.0	13.0	
1010 SM	7.41	805.0	13.1	

Stepper Motor Selection (Example 8.9, Cont'd)

Case 2: With Gears

Note: Usually system efficiency drops when gears. Ignore this here.

With 80% efficiency (
$$\eta = 0.8$$
):

$$0.8T_{m} = \begin{bmatrix} J_{m} + 50 \times 10^{-6} + \frac{1}{p^{2}} (200 \times 10^{-6} + 2 \times 10^{-3} + 2 \times 10^{-3}) + \frac{0.1^{2}}{p^{2}} (5+5) \end{bmatrix} p \times \frac{10}{0.1} \text{ N.m}$$
and $\omega_{\text{max}} = \frac{1.0 \ p}{0.1} \text{ rad/s} = 10 \ p \times \frac{60}{2\pi} \text{ rpm}$

and
$$\omega_{\text{max}} = \frac{10 \, p \times \frac{1}{2\pi} \, \text{rpm}}{0.1}$$

 $T_m = 125.0 \left[J_m + 50 \times 10^{-6} + \frac{1}{p^2} \times 104.2 \times 10^{-3} \right] p \text{ N.m and } \omega_{\text{max}} = 95.5 \, p \text{ rpm}$
For $p = 2$: $\omega_{\text{max}} = 191.0 \, \text{rpm}$

With p = 2, model 1010 SM satisfies the requirement (see Table)

With full stepping, step angle = 1.8°. Corresponding step in conveyor motion = positioning resolution. With p = 2 and r = 0.1 m, positioning resolution =

$$\frac{1.8^{\circ}}{2} \times \frac{\pi}{180^{\circ}} \times 0.1 = 1.57 \times 10^{-3} \text{ m}.$$

Data for Selecting a Motor With Gear.				
Motor Model	Available Torque at ω_{max} (N.m)	Motor–Rotor Inertia (× 10 ⁻⁶ kg.m²)	Required Torque (N.m)	
50 SM	0.25	11.8	6.53	
101 SM	0.58	35.0	6.53	
310 SM	2.63	187.0	6.57	
1010 SM	7.41	805.0	6.73	