Regular functions and regular maps.
R = Alg closed field.
Recall from last time:
X cxx affine algebraic set.
f: X -> k regular if it is the restriction
of a polynomial function.
$k[X] = k$ -algebra of regular functions on X $\stackrel{\sim}{=} k[X_1, \dots, X_n]/I(X).$
= Finitely generated nilpotent free K-algebra.
Observe - Any finitely generalted nilpotent free k-algebra is g the form K[X] for some X.
Why? Let A be such an algebra. Let a,,, an EA be a set of generators.
Then we have a map

Let a,,, an EA be a set of generators

Then we have a map $q: k[x_1,...,x_n] \rightarrow A$ $\alpha: \mapsto \alpha:$

This map is subjective because 29i3 generals

A. By the first iso thm $A \cong k[x_1, ..., x_n] (I$

where $I = \text{Ker } \varphi$. Since A is nilpotent free, I is radical. Then take X = V(I). By the Null stellen sutz,

the Null Stellen sutz,

$$k[X] = k[X,-,X_n] / T(X)$$

$$= k[X,-,Y_n] / T$$

$$\stackrel{\sim}{=} A$$

As a result we have the dictionary.

Algebra

- · Finitely generated reduced k-alg. A
- · max ideal of A
- · Given J C A V(J) = § m | m > J }

In partialer

Geometry

- · Alg of regular functions on affine alg set X.
- . Point of X
- · Given T ck[x] V(J) = { x | h(x) = 0 +feJ}

V(J) = \beta if J= (i).

Regular Maps
XCA, YCA offine alg sets. f: X-14 is a regular function if
I firm E K[X] such that
$f(x) = (f_1(x), \dots, f_m(x)) \forall x \in X.$
Equivalently, if there exist $F_{1,-1}, F_{m}$ in $k(x_{1},-1,x_{n})$ such that $f(x) = (F_{1}(x_{1}),-1,F_{m}(x_{1})) \forall x \in X$.
Ex 1: f: X-12 regular map f is a regular function.
Ex2: L: A-1/A" linear transf" is regular.
Ex3: Projections A-A
Ex4: Compositions of regular maps are regular

Ex5: XCA Zaniski closed. The inclusion X-1/A is regular.

Def: A regular f: X->Y is an isomorphism if there exists a regular inverse map J: Y->X.

 $\frac{E \times 6}{Y} = \frac{1}{2} y^{2} - x^{3} = 0$ $C \propto 2$

t: X->Y

the (t,t) is a regular

bijection but not an isomorphism!

fluw dues one see that it's not an

iso? Wait and see...

Let $\varphi: X \to Y$ be any map. Then we get an induced map

φ*: Functions on Y -> Functions on X

f +> fo φ.

Proposition: Q is regular if and only if cp^* sends regular functions on Y he regular functions on X.

Pt: Suppose of is regular

If $f: Y \rightarrow A'$ is a regular function then

of of is regular because composition of regular

maps is regular.

Convenely, suppose $f^*(f)$ is regular for every regular f. Let $f(x) = (f_1(x), \dots, f_m(x))$. We want to show each $f_i(x)$ is regular. But $f_i = f^*(x)$ and $f_i \in k[f]$ is regular.

Thus a regular map $\varphi: Y \to X$ induces a k-alg. hom $\varphi^*: k[Y] \to k[X]$.

Prop: Let $\alpha: K[Y] \rightarrow K[X]$ be a k-alg hom. Then there is a unique regular $\varphi: X\rightarrow Y$ such that $\alpha = \varphi^*$.

H: suppose $Y = V(J) \subset A^m$ and $X = V(I) \subset A^m$ Then k[Y] = k[Y,-y,Y,m]/J k[X] = K[X,y,-y,X,m]/J.

Let $Q_i = \alpha(y_i) \in k[X]$ Consider $Q := (Q_1,-y,Q_m) : X \rightarrow A^m$.

Let us check that Q maps X to Y.

To see this, we must show that $f(Q_i(x),-y,Q_m(x)) = 0 + 2 \in X$ $f \in J$.

But $f(Q_i(x),-y,Q_m(x))$ $= f(\alpha(y_i),-y,\alpha(y_m))$ $= \alpha(y_i,-y,y_m)$ $= \alpha(y_i,-y,y_m)$

So $f: X \rightarrow Y$. Note $\varphi^*(yi) = \chi(yi)$ so $\varphi^* = \chi$ because Yi? generate $\chi[Y]$. Finally, it $\varphi: X \rightarrow Y$ is such that $\varphi^* = \chi$, and $\varphi = (P_1, \dots, \varphi_m)$, then $\varphi^*(yi) = \varphi_i = \chi(y_i)$, so there is only one possible φ . Conseg: X ---> 1/2 défines an equivalence of catégories Sets with

regular maps

Fin gen reduced

k-eyebrus

with k-elg.

homs Ex: X = A $Y = V(y^2 - x^3) \subset A^2$ $k[X] = k[t] \qquad k[Y] = k[Xri]/23$ $\varphi(t) = (t,t^3)$ 9 : K[Y] -> k[X] $x \mapsto t^2$ $y \mapsto t^3$ It is not an isomorphism? Any element in the image of of has vanishing linear term.

<u>Next</u>: Algebraic varieties (more general spaces than affine algebraic sets).

To do that, we want to define the notion of regularity more docally.

Let $X \subset A$ be an affine alg. set, $f: X \to k$ a function, and $x \in X$ a point. We say that f is regular at x if there exist $F, G \in k[X_1, ..., X_n]$ with $G(x) \neq 0$ such that f = F/G on the open set $X \cap \{G \neq 0\}$.

Claim: It f is regular at all xeX, then f is regular (i.e. given by a polynomial).

If: $\forall x \in X$ $\exists F_x \otimes G_x$. st. $G_x(x) \neq 0$ & $f = F_x/G_x$. Then $3G_x^3$ has no common zero on $X \Rightarrow \langle G_x \rangle = (1)$ in $\langle E[X] \rangle$. Write $1 = h_1G_1 + \dots + h_nG_n$. Then X is the union of the opens $X \cap \{G_i \neq 0\}$, and on each open $f = \frac{T_i}{G_i}$ Take $F = h_i F_i + \cdots + h_e F_e \cdot \in k[X]$ Then F = f on X.

The above motivates the following.

Let XCA be an offine alg. set and UCX an open set. A function f. U > 1k is regular on U if it is regular at every xe U. That is for every xeU & F,G ck[KI,-,Kn] G(x) to such that

f = E on UN ?G to?.

Similarly $\varphi: U\rightarrow Y$ is regular if $\varphi=(\varphi_1,\ldots,\varphi_m)$ where each φ_i is a regular function on Q.

Now we have Sabline alg. subsets?

Yaniehes = Soffine alg. subsets? S Quari-affine } = { open subsets ? } Varieties } = { offine alg subsets } Morphisms = Regular maps Examples: (1) Let X = /// > 503. $Y = V(xy-1) C//^2$. Then we have an isomorphism $\times \times \times$ In particular X is (isomorphic to) an affine algebraic variety). The iso is given by $X \rightarrow Y$ $t \mapsto (t, t')$

(2) More generally, let $f \in k[x_1,...,x_n]$ and $X = \{x \in \mathbb{Z}^n \mid f(x) \neq 0\}$ $= \sum_{n=1}^{\infty} v(f)$.

Let $Y \subset A^{nH} = \{(x_1, -1, x_n, y)\}$ $Y = V (y f(x_1, -1, x_n) - 1).$

Then we have an iso $X \xrightarrow{\sim} Y$ given by

(x1,-,xn) H (x1,-,xn, \f(x1,-,xn))

with inverse (21,-,2n,4) H (21,-,2n).

In particular X is an offine alg. variety!

3 Not all quesi-affine varieties are isomorphic to affine varieties.

To see an example, recall that affine algorithms satisfy the Null stellen satz. — there is a bijection between max ideals of the [XT] and points of X given by m 1-3 V(m).

Take $X = A \setminus \{(0,0)\}$. CA^2 Claim: The k-algebra of regular functions on X is the same as $k[A^2] = k[X,Y]$.

Pf: Deferred.

But now $m=(x_{1})$ $\subset k[x]$ is a non-unit ideal such that $V(m)=\emptyset$ (in X). Therefore, X cannot be affine.