Tutorato MMI - Resto 1 26/05/2023

Esercizio 1

Induzione matematica e strutturale

Sia $ODD := \{ w \in \{a,b\}^* \mid \exists k \geq 0 : |w| = 2k+1 \}$. Fornire una definizione ricorsiva ODD_R dell'insieme ODD. Dimostare per induzione, specificando quale induzione si usa, che $ODD = ODD_R$.

Soluzione

Definiamo ricorsivamente l'insieme ODD_R come segue:

- Passo base. $a, b \in ODD_R$.
- Passo ricorsivo. Se $w \in ODD_R$, allora $waa, wab, wba, wbb \in ODD_R$.

Dimostriamo ora che $ODD = ODD_R$, ovvero che:

 $ODD \subseteq ODD_R \in ODD_R \subseteq ODD$.

Soluzione

Dimostriamo che $ODD \subseteq ODD_R$.

Sia $P(n) := \text{Se } w \in \{a,b\}^*, |w| = 2n+1 \text{ allora } w \in ODD_R.$ Dimostreremo, per induzione matematica su n, che P(n) è vera per ogni $n \ge 0$. Questo equivale a provare che $ODD \subseteq ODD_R$.

• Passo base. Sia n = 0. Allora |w| = 1. Abbiamo due casi w = a oppure w = b, ma in entrambi i casi si ha che $w \in ODD_R$ per il passo base della definizione ricorsiva di ODD_R .

Soluzione

• Passo induttivo. Sia $k \ge 0$ e sia P(k) vera, ossia se |x| = 2k + 1, allora $x \in ODD_R$. Consideriamo una stringa $w \in ODD$, ossia $|w| = 2(k + 1) + 1 \ge 3$. Dimostriamo P(k + 1). Dunque $w = w'\sigma_1\sigma_2$, dove $w' \in \{a, b\}^*$, $\sigma_1, \sigma_2, \in \{a, b\}$. Allora:

$$|w| = |w'\sigma_1\sigma_2| =$$
 (per def. ricorsiva di lunghezza)
= $|w'\sigma_1| + 1 = |w'| + 2$.

Siccome $|w|=|w'\sigma_1\sigma_2|=2(k+1)+1$ allora |w'|=2k+1, e quindi $w'\in ODD_R$. Per il passo ricorsivo della definizione ricorsiva di ODD_R , $w'\sigma_1\sigma_2\in ODD_R$ per qualsiasi $\sigma_1,\sigma_2\in\{a,b\}$.

Poiché abbiamo dimostrato sia il passo base che il passo induttivo, per il principio di induzione matematico, abbiamo dimostrato che $ODD \subset ODD_R$.

Soluzione

Dimostriamo che $ODD_R \subseteq ODD$, per induzione strutturale.

- Passo base. Sia w = a oppure w = b. Per definizione di lunghezza, in entrambi i casi abbiamo che $w \in ODD$, poiché |w| = |a| = 1 = |b| = |w|.
- Passo induttivo. Sia w ∈ ODD_R e w ∉ {a, b}, cioè w non è ottenuta nel passo base. Allora, per il passo ricorsivo, esiste x ∈ ODD_R tale che w ∈ {xaa, xab, xba, xbb}. Dobbiamo dimostrare che la lunghezza di w è dispari. Per ipotesi induttiva, x ∈ ODD, ovvero |x| = 2k + 1, k ≥ 0. Se w = xaa, |w| = |xaa| = |xa| + 1 = |x| + 2 = 2k + 1 + 2 = 2(k + 1) + 1. Questo significa che k' = k + 1 : |w| = 2k' + 1, e quindi w ∈ ODD. Stesso ragionamento se w è uguale a xab, xba oppure xbb.

Soluzione

Poiché abbiamo dimostrato sia il passo base che il passo induttivo, per il principio di induzione strutturale, abbiamo dimostrato che $ODD_R \subseteq ODD$.

Abbiamo dimostrato che $ODD \subseteq ODD_R$ e che $ODD_R \subseteq ODD$. Possiamo quindi concludere affermando che $ODD = ODD_R$.

Esercizio 2

Induzione matematica e strutturale

L'insieme $\{a\}^*$ delle stringhe sull'alfabeto $\{a\}$ è definito ricorsivamente come segue:

- Passo base. $\lambda \in \{a\}^*$.
- Passo ricorsivo. Se $x \in \{a\}^*$, allora $xa \in \{a\}^*$.

Sia $A := \{ a^n \mid n \in \mathbb{N} \}$, dove \mathbb{N} è l'insieme dei numeri interi non negativi. Dimostrare che $A = \{a\}^*$.

Soluzione

Dimostriamo che $A \subseteq \{a\}^*$.

Sia $P(n) := \text{Se } w = a^n$ allora $w \in A$. Dimostreremo, per induzione matematica su n, che P(n) è vera per ogni $n \ge 0$. Questo equivale a provare che $A \subseteq \{a\}^*$.

- **Passo base.** Sia n=0. Allora $w=a^0=\lambda$. Per il passo base della definizione ricorsiva di $\{a\}^*$, risulta che $w=\lambda\in\{a\}^*$.
- Passo induttivo. Sia $k \ge 0$ e sia P(k) vera, ovvero se $w = a^k$ allora $w \in \{a\}^*$. Dimostriamo che P(k+1) è vera, ossia che $a^{k+1} \in \{a\}^*$. Risulta che $a^{k+1} = a^k a$. Per ipotesi, P(k) è vera, ovvero $a^k \in \{a\}^*$. Applicando il passo ricorsivo della definizione ricorsiva di $\{a\}^*$, abbiamo che $a^k a \in \{a\}^*$.

Poiché abbiamo dimostrato sia il passo base che il passo induttivo, per il principio di induzione matematico, abbiamo dimostrato che $A \subset \{a\}^*$.

Soluzione

Dimostriamo che $\{a\}^* \subseteq A$, per induzione strutturale.

- **Passo base.** Sia $w = \lambda$. Per definizione ricorsiva di potenza di una stringa $\lambda = a^0 \in A$.
- Passo induttivo. Sia $w \in \{a\}^* \setminus \{\lambda\}$, ovvero una stringa non ottenuta nel passo base. Allora per il passo ricorsivo, esiste $x \in \{a\}^*$ tale che w = xa. Per ipotesi induttiva, $x \in A$, ovvero $\exists k \geq 0 : x = a^k$. Risulta quindi che $w = xa = a^k a = a^{k+1} \in A$, essendo $(k+1) \in \mathbb{N}$.

Poiché abbiamo dimostrato sia il passo base che il passo induttivo, per il principio di induzione strutturale, abbiamo dimostrato che $\{a\}^* \subseteq A$. Poiché $A \subseteq \{a\}^*$ e $\{a\}^* \subseteq A$, allora $A = \{a\}^*$.