Implementando um Simulador de Processos de Negócio

Instituto Federal do Espírito Santo (IFES) Bacharelado em Sistemas de Informação Disciplina: Gerência de Processos de Negócio Prof. Mateus Barcellos Costa

20 de janeiro de 2025

- Este simulador utiliza o modelo BPMN para definir processos de negócio.
- Objetivos principais:
 - Analisar o comportamento de processos de negócio.
 - Simular chegadas exponenciais negativas e tempos de execução exponenciais negativos.
 - ▶ Identificar gargalos e tempos de espera.
- ► Tecnologias utilizadas:
 - Biblioteca pm4py.
 - Python.

Antes de apresentarmos o modelo de simulação iremos ver conceitos necessários de Teoria das Filas

Introdução à Teoria das Filas

- ► A Teoria das Filas é usada para modelar sistemas que envolvem espera, como:
 - Call centers.
 - Sistemas de atendimento em bancos.
 - Redes de computadores.
- ightharpoonup O modelo M/M/1 é um dos mais simples:
 - ► M/M/1: Uma fila, chegadas e saídas exponenciais.
 - Um único servidor.

Distribuição Exponencial Negativa

- Modela o intervalo de tempo entre chegadas ou saídas.
- Fórmula da Função Densidade de Probabilidade (PDF):

$$f(t;\lambda) = \lambda e^{-\lambda t}, \quad t > 0$$

- Características:
 - A média é $\frac{1}{\lambda}$.
 - É uma distribuição contínua e decrescente.

Distribuição Exponencial Negativa

Características:

- Modelo contínuo que descreve o tempo entre dois eventos consecutivos.
- A função densidade de probabilidade (PDF) é dada por:

$$f(x; \lambda) = \lambda e^{-\lambda x}, \quad x \ge 0$$

onde λ é a taxa média de eventos por unidade de tempo.

Distribuição Exponencial ($\lambda = 1$)

Distribuição de Poisson

- Modela o número de chegadas em um intervalo de tempo.
- ► Fórmula da Probabilidade:

$$P(X=k) = \frac{(\lambda t)^k e^{-\lambda t}}{k!}, \quad k = 0, 1, 2, \dots$$

- Características:
 - ightharpoonup A média e variância são λt .
 - É uma distribuição discreta.

Distribuição de Poisson

Características:

- Modelo discreto que descreve o número de eventos ocorrendo em um intervalo fixo de tempo ou espaço.
- A probabilidade de ocorrer exatamente k eventos é dada por:

$$P(X=k) = \frac{\lambda^k e^{-\lambda}}{k!}, \quad k = 0, 1, 2, \dots$$

onde λ é a taxa média de eventos.

Distribuição de Poisson ($\lambda = 3$)

Comparação Intuitiva

Distribuição de Poisson:

- Discreta: modela o número de eventos.
- Exemplo: número de chegadas em um sistema em um intervalo fixo.
- A distribuição de Poisson está no domínio da frequência, pois ela modela o número de eventos que ocorrem em um intervalo fixo de tempo ou espaço. É usada para contar eventos em um dado intervalo, ao invés de medir o tempo entre eles.

Distribuição Exponencial Negativa:

- Contínua: modela o tempo entre eventos consecutivos.
- Exemplo: intervalo de tempo entre duas chegadas consecutivas.
- A distribuição Exponencial Negativa está no domínio do tempo, pois ela modela o tempo entre eventos consecutivos. Em outras palavras, ela descreve quanto tempo é necessário para que um próximo evento ocorra em um processo de Poisson.

Modelo M/M/1

Características:

- ▶ Chegadas: Processo de Poisson com taxa λ .
- Saídas: Tempo de serviço exponencial com taxa μ .
- Fila com capacidade infinita e apenas um servidor.
- ► Taxa de Utilização:

$$\rho = \frac{\lambda}{\mu}, \quad 0 \le \rho < 1$$

Probabilidade de n clientes na fila:

$$P_n = (1 - \rho)\rho^n$$

Teorema de Little

Relaciona medidas de desempenho de qualquer sistema estável:

$$L = \lambda W$$

- L: Número médio de clientes no sistema.
- λ: Taxa média de chegada.
- W: Tempo médio de espera no sistema.

Exemplo:

- $\lambda = 10$ chegadas/minuto.
- \triangleright W=2 minutos.
- $L = \lambda W = 10 \times 2 = 20.$

Exemplo Prático

Cenário:

- ▶ Taxa de chegada $\lambda = 5$ clientes/minuto.
- ▶ Taxa de saída $\mu = 8$ clientes/minuto.

Cálculos:

- $\rho = \frac{5}{8} = 0.625.$
- ► Tempo médio no sistema: $W = \frac{1}{\mu \lambda} = \frac{1}{8 5} = 0.33$ minutos.
- Número médio de clientes no sistema: $L = \lambda W = 5 \times 0.33 = 1.65$.

Conclusão

- O modelo M/M/1 é uma base simples e poderosa para analisar sistemas com filas.
- O entendimento de distribuições exponencial e de Poisson é fundamental.
- O Teorema de Little fornece uma ferramenta prática para cálculos rápidos.
- ▶ Aplicações incluem desde call centers até redes de computadores.

Modelo de Simulação

- **Taxa de chegada:** Eventos chegam ao processo com tempos determinados por uma distribuição exponencial negativa.
- **Tarefas:** Cada tarefa é executada com um tempo baseado em uma distribuição de Poisson.
- **Ocupação do recurso:** Apenas um recurso por tarefa. Se ocupado, eventos aguardam na fila.
- **Medições:**
 - Tempo de espera.
 - Tempo total de execução das tarefas.
 - ► Tempo de conclusão de cada evento.

Estrutura do Simulador

Classe BPMNProcess: Gerenciamento do Modelo BPMN

```
class BPMNProcess:
       def __init__(self, bpmn_file):
2
            self.bpmn_file = bpmn_file
3
            self.tasks = {}
4
            self.load_bpmn_file()
5
6
       def load_bpmn_file(self):
7
            tree = ET.parse(self.bpmn_file)
8
            root = tree.getroot()
            ns = {'bpmn': 'http://www.omg.org/spec/BPMN
10
                /20100524/MODEL'}
11
            for task in root.findall('.//bpmn:task', ns):
12
                task_id = task.attrib['id']
13
                task_name = task.attrib.get('name', f"
14
                    Unnamed_\(\)Task_\(\(\{\task_id}\\)\")
                self.tasks[task_id] = {
15
                     'name': task_name,
16
                     'mean_time': random.randint(1, 100)
18
                                           ◆□▶ ◆圖▶ ◆臺▶ ◆臺▶ ○臺
19
```

Estrutura do Simulador

Classe ProcessSimulator: Simulação de Processos

```
class ProcessSimulator:
       def __init__(self, bpmn_process, arrival_rate,
           simulation_time):
            self.process = bpmn_process
3
           self.arrival_rate = arrival_rate
           self.simulation_time = simulation_time
           self.token_arrivals = []
6
           self.events = []
8
       def generate_arrivals(self):
9
           time = 0
10
           while time < self.simulation_time:</pre>
11
                interarrival_time = np.random.exponential(
12
                    self.arrival_rate)
13
                time += interarrival_time
                if time < self.simulation_time:</pre>
14
                    self.token_arrivals.append(time)
15
```

Estimativa de Tempo de Espera

- O tempo de espera é calculado com base na ocupação dos recursos.
- Para cada chegada, verifica-se:
 - O próximo recurso disponível (menor tempo de término entre ocupações).
 - A diferença entre o tempo de chegada e o próximo recurso disponível.

Cálculo:

Execução das Tarefas

Lógica para simular o tempo das tarefas:

```
task_durations = []
   for trace in sim_result:
      for event in trace:
3
           task_name = event.get('concept:name', None)
4
           if task_name:
5
               task = next(
6
                   (task_id, t) for task_id, t in self.
                      process.tasks.items()
                   if t['name'] == task name
8
               task_id = task[0]
10
               task_data = task[1]
11
12
               if task_data and task_data['mean_time'] is
13
                   not None:
                   duration = np.random.poisson(task_data
14
                      ['mean time'])
                   formatted_duration = format_time(
15
                      duration)
                   task_durations.append(f"{task_id}:__{
16
```

Relatório da Simulação

- ▶ Detalhes registrados para cada chegada:
 - Tempo de chegada.
 - ► Tempo de conclusão.
 - ► Tempo total de execução das tarefas.
 - Tempo de espera.
 - Duração de cada tarefa.

Relatório da Simulação

```
def report(self):
       total_times = [event['completion_time'] - event['
           arrival_time'] for event in self.events]
       print("###"Simulation||Report||###")
3
       print(f"Total; Computers; Processed: { len(self.
           events)}")
       print(f"Average_Completion_Time:_{{format_time(np.}}
5
           mean(total_times))}")
       for idx, event in enumerate(self.events):
6
            arrival_hms = format_time(event['arrival_time'
                ])
            completion_hms = format_time(event['
8
                completion_time'])
            print(f"Computer_{\( \) \{ idx_{\( \) + \( \) 1}\} : \( \) Arrival_{\( \) = \( \) \{
9
                arrival_hms},,,Completion,=,(completion_hms
                }")
```

Descrição dos Resultados

- Os resultados sao de um modelo de processo de um SRC (reparos de computador):
 - Arrival (Chegada): Tempo em que o computador entra no sistema.
 - Completion (Conclusão): Tempo em que o processamento do computador é concluído.
 - ► Total Task Time (Tempo Total de Tarefas): Tempo gasto executando as tarefas.
 - Waiting Time (Tempo de Espera): Tempo que o computador ficou aguardando na fila antes de começar o processamento.
- Objetivo: Visualizar graficamente o comportamento do sistema e os tempos de espera.

Gráfico 1: Tempo de Conclusão por Computador

Gráfico 2: Tempo Total de Tarefas por Computador

Gráfico 3: Tempo de Espera por Computador

Desafios

- O simulador implementa conceitos de distribuição probabilística para modelar processos de negócio.
- Estima tempos de espera e desempenho com base na ocupação dos recursos.
- Próximos passos:
 - Adicionar analise de fluxos distintos.
 - Implementar métricas de desempenho detalhadas.
 - Validar o modelo de cálculo do Waiting time.