Using Exponential Smoothing Models in Python

Martin Burger

STATS PROGRAMMING TUTOR

www.r-tutorials.com

Exponential Smoothing

The most common analytical tool for univariate time series besides ARIMA

Exponential smoothing models theory

Demo in Python with the nottem dataset

- Identifying the model parameters
- Modulating the trend component
- Forecasting

Exponential Smoothing

Describing an Exponential Smoothing Model

Exponential Smoothing Model Types

Additive

Components are summed up

Multiplicative

Components are multiplied

Non-present

Components are omitted

Exponential smoothing:

A model for univariate time series where fluctuations are smoothed out by weights which decrease exponentially over time.

Smoothing Coefficients Determine the Importance of a Time Lag

Smooth model

Reactive model

Smoothing Coefficients

Alpha: Initial level

Beta: Trend

Gamma: Seasonality

Phi: Damping parameter

Damping Parameter (ϕ)

Trend must be present, but it is not constant (e.g. Holt-Winters trend model)

Parameter phi defines the degree of trend damping

- $\phi \approx 1$: Constant trend model
- $\phi \approx 0$: Flattened trend curve
- $-0.8 < \varphi < 0.98$

Python Tools for Exponential Smoothing

statsmodels.tsa.holtwinters

SimpleExpSmoothing (α)

Exponential Smoothing $(\alpha, \beta, \gamma + \varphi)$

In [2]: help(ExponentialSmoothing)

```
Help on class ExponentialSmoothing in module statsmodels.tsa.holtwinters:
class ExponentialSmoothing(statsmodels.tsa.base.tsa_model.TimeSeriesModel)
   Holt Winter's Exponential Smoothing
   Parameters
   endog : array-like
       Time series
   trend : {"add", "mul", "additive", "multiplicative", None}, optional
       Type of trend component.
   damped : bool, optional
        Should the trend component be damped.
    seasonal : {"add", "mul", "additive", "multiplicative", None}, optional
        Type of seasonal component.
    seasonal_periods : int, optional
        The number of seasons to consider for the holt winters.
   Returns
   results : ExponentialSmoothing class
```


In [2]: help(ExponentialSmoothing)

```
fit(self, smoothing_level=None, smoothing_slope=None, smoothing_seasonal
=None, damping slope=None, optimized=True, use boxcox=False, remove bias=Fal
se, use basinhopping=False)
        fit Holt Winter's Exponential Smoothing
        Parameters
        smoothing level : float, optional
            The alpha value of the simple exponential smoothing, if the value
e is
            set then this value will be used as the value.
        smoothing_slope : float, optional
            The beta value of the holts trend method, if the value is
            set then this value will be used as the value.
        smoothing_seasonal : float, optional
            The gamma value of the holt winters seasonal method, if the value
e is
            set then this value will be used as the value.
        damping_slope : float, optional
            The phi value of the damped method, if the value is
            set then this value will be used as the value.
        optimized : bool, optional
            Should the values that have not been set above be ontimized
```

Exponential Smoothing Model Variations

SES

Deducts the present observation by the last few observations

Holt

Initial level (α) and trend (β) with optional damping (φ)

Holt-Winters

A Holt model with seasonality (γ)

Drawbacks of Exponential Smoothing Models

Sensitivity towards outliers

Cannot handle multiple trends

Changes in the intercept cannot be handled accurately

Demo

Modeling the nottem seasonal dataset

- No trend and constant seasonality

Model: Holt-Winters(A,N,A)

- Additive level, no trend, additive seasonality

Smoothing Coefficients Determine the Importance of a Time Lag

Smooth model

Reactive model

The Nottem Dataset


```
expsfcast = model.predict(start = 240, end = 251)
# or
expsfcast = model.forecast(steps = 12)
```

Choosing a Forecast Method StatsModels offers two tools for predictive modeling

- Method 'predict'
- Method 'forecast'

Exponential Smoothing Model

Model setup: ExponentialSmoothing()

Fitting the model: model.fit()

Prediction with the fitted model: model.predict(start = , end =)

Exponential Smoothing

Exponential smoothing implements trend, seasonality and the initial level

Demo on a non-trending seasonal dataset

Smoothing coefficients: alpha, beta and gamma

- Determine the number of lags to be included in the model
- Additional trend dampening parameter phi

