

Algebraic Geometry 2 Exercises / Scratch work.

|      | Wiskunde en walden welenschappen Cheuses 130m - Comment                                                                                                                                                                                                                                                                                                                                                                                                         |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vak: | Naam:                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | Studierichting:                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      | Collegekaartnummer:                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | 2) X, Y and Z separated schemes. f: X-> Y surjecture. g: Y-> Z of<br>finite type, g.f proposer. Show that g proper.                                                                                                                                                                                                                                                                                                                                             |
|      | Lenna: X — Y Commutative diagram of northwar of scheme.  P = 19 If f surjecture & p v quasi-compact, then  q v quasi-compact  Pxof: Let WCZ be a quasi-compact open. By assumption p-1(W)  v quasi-compact. Hence by Topology, Lemma 12.7 (?) the inverse                                                                                                                                                                                                       |
|      | Image $q^{-1}(W) = f(p^{-1}(W))$ is guasi compact too. $\blacksquare$ A ring may $R \to A$ is said to be if finite type if A is warmaphic to a quarkent if $R[x_1, -, x_1]$ as an $R$ -algebra.                                                                                                                                                                                                                                                                 |
|      | Def: Let f: X-> 5 be a maphism of schemes.  (1) f u of finite type at x EX if there exists an affine open neighborhood type A = U C X of x and an affine open Spa(R) = V CS with f(U) C V with that the induced ting map R-> A w of finite type.  (i) f w locally of finite type if it is of finite type at every point of X.  (3) f u of finite type of it is locally of finite type and quasi-compact.                                                        |
|      | Proposition: Let X = Y = Z be marphisms of schemes such that the composition gof a proper  (i) If g a separated, f a proper  (ii) If g a separated and of finite type and if f a surjective, their g                                                                                                                                                                                                                                                            |
|      | Proof: (i) from somewhere for squarted, since gof is squarted.  Forthernore, write fas a composition $f: X = X \times_{Y} Y \xrightarrow{f'} X \times_{Z} Y \xrightarrow{f''} Z \times_{Z} Y = Y$ where $f'$ is the canonical maghism and $f''$ is the maphism obtained from $g \circ f: X \longrightarrow Z$ via base charge with $g: Y \longrightarrow Z$ . Since $g$ is separated, we see fine somewhere that $f'$ is a closed immersion. Moreover, $f''$ is |

closed, since gof is universally closed. Therefore f is closed and the some argument in carguachen with the fact that separated and proper maphisms are stable under pase sharpe shows that f is, in fact, inversally closed.

In addition, these cansiderations show that for guasi-compact. Indeed, being a closed innersean, f'is quasi-compact and f" is obtained from the quasi-compact morphism gof: X -> Z na base charge. Thereby it only remains to check that for locally of finite type, which, however, is clear, since a maphism of rings B -> A is of finite type as soon as there is a nor-phism of rings C -> B HAMA that the composition C -> B -> A is of finite type.

In the situation of (ii) it is only to show that g is immucisally closed. To do thus, book at a closed subset  $f \subset Y$ . Then we get  $g(f) = (g \cdot f)(f'(f))$  from the suyechning of f and it follows that, if  $g \cdot f'(f) = g \cdot f(f)(f'(f))$  is image under  $g \cdot f = g \cdot f(f) = g \cdot$ 

Relevant!

(sousechne)

X

f

y

g

g

f

g

g

g

g

g

Proposition: Let S be a scheme, and let f:X -> Y be a surjective maphism of S-schemes. Let X be project over S and Y separated and of finite type over S. Then Y is proper over S.

Proof- De have to show that Y is universally closed over S. Let S'-> S be a maphism of schemes. Consider the base charge X x<sub>5</sub> S' -> X<sub>5</sub> S' -> S'. The carposition is closed and the first maphism is surjective. We know that the surjectivity assumption of f is stable index base charge. Therefore the second mapphism is closed.

X and Y are Noetheron schames and f: X -> Y affine marghism. Show That I finite & f. Ox coherent. ( for a sheaf F an X, The duect inage a push-forward sheaf fxF on Yu defined via (fxF)(V)=F(f'(V)), with the obvious restriction maps (it is indeed a sheaf). Note that for Ox has a natural structure of Oy-module).

Def: A maghism of schemes f: X -> 5 is called affine if the inverse mage of every affere open of S is an affine of en of X.

Of: A topological space is called nother of every descending chain of closed subsets is eventually careful, i.e., if {Zi}iem is a family of closed subsets Zi with Zin CZi, there is an in such that Zin Zi for i Zio.

Defx (i) A scheme is quasi-compact if every open cover of X has a finite sub-

(ii) A schene is locally noetherrar if it can be covered by open affine subsch Spec A; where each A; is a no exherin my.

(iii) A scheme is northerin if it is both locally northerin and grasi-compact.

Let  $f:(X,O_X) \to (Y,O_X)$  be a maghism of schemes. If F is a sheaf on XThe gush forward fx F is naturally a fx Ox-medule via the addition and nullyliation negs  $f*F \times f*F \longrightarrow f*F$ ,  $f*O_{\times} \times f*F \longrightarrow f*F$ . Via f#: Ox -> f\* Ox we obtain the structure of a Ox-module on f\* F. Off The above Ox module is called the direct image of Funder f.

Let A be a ring and let M be an A-midule. The module M is of finite presentahan if for some integers n and on there is an exact sequence  $A^n \longrightarrow A^m \longrightarrow M \longrightarrow O$ 

One says that M is coherent if the following two requirements are fulfalled:

M is finishly generated.
 The beared of every surjection A<sup>n</sup> → M is finishly presented.

of schenes

for maphisms,  $f: X \rightarrow Y$ , it is not expected that the pushforward of a coherent sheet is again coherent, even for 'nice' morphisms f. A simple example is the following:

Example: Let X = Speck[t] and consider the structure mythorn f: X -> Speck (induced by k C k[t]). The sheaf Ox is of course coherent, but fx Ox is not indeed, this is k[t], and k[t] is clearly not finitely generated as a k-module.

However, for finite nighisms:

denna: Let f: X -> Y be a finite naphusm of schemes. If F is a quasi-coherent sheaf on X, then fx F is quasi-coherent on Y. If X and Y are noetherian. fx F is even coherent if F is.

roetherian, f\* F is even coherent if F is.

Proof. Since f is finite, we can cover Y by open affires spec A such that each f -1 Spec A = Spec B is also affire, where B is a finite A-module. We then have f\* F (Spec A) = F (Spec B). Now, since F is quasi coherent, we have F | Spec B = M for some B-module, which we can view as an A-module via f. Hence f\* F is quasi-coherent. If X and Y are noetherian, and F is coherent, the module M is finitely generated as a B-module, and hence as an A-module, since B is a finite A-module.



Algebraic geometry 2 Exercises / Soratch work.

|         | txercises / Soratch work.                                                                                                                                     |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vak:    |                                                                                                                                                               |
|         | Studierichting:                                                                                                                                               |
| Docent: | Collegekaartnummer:                                                                                                                                           |
|         | Let $f = (f, \Theta) : X \longrightarrow Y$ be a naphrom of schemes.                                                                                          |
|         | If F is a quasi-coherent Ox-module, then its obsect image for F under an                                                                                      |
|         | affine majorism f: X → Y is a grasi-coherent Ox-module. Indeed, if V⊆Y                                                                                        |
|         | is an affine open subset, then $f_{+}(F_{v}) = \Gamma(f'(v), F)$ , where $\Gamma(f'(v), F)$                                                                   |
|         | has to be considered as a $\Gamma(V, O_r)$ -module with respect to the home                                                                                   |
|         | maphism $\Theta_{V}: \Gamma(V, O_{Y}) \longrightarrow \Gamma(f^{-1}(V), O_{X}).$                                                                              |
|         | Moreover, if f: X -> Y is a finite maghism of locally Noetherian scheme                                                                                       |
|         | and if F is coherent, then the direct image for F is also coherent. Nomel                                                                                     |
|         | by definition, for any after open subset Vin Y, $\Gamma(f'(V), O_X)$ is a finite                                                                              |
|         | $\Gamma(V, O_Y)$ -algebra with respect to $\Theta_V$ and $\Gamma(f'(V), F)$ is a finite $\Gamma(f'(V), O_X)$ -module.                                         |
|         | y CV), CX) Williams.                                                                                                                                          |
|         | Nel. A marghism X + Y is affine if equivalently:                                                                                                              |
|         | Def. A maphism X f > Y is affine if equivalently:  i) There exists on affine open covering (Ui) of Y such that f'(Ui) is                                      |
|         | affere, for all 1,                                                                                                                                            |
|         | ii) V affire open sess VCY, f-1(V) is affire.                                                                                                                 |
|         |                                                                                                                                                               |
|         | Def: A scheme X is noetherian if, equivalently:                                                                                                               |
|         | Def: A scheme X is noetherian if, equivalently:  i) There exists a firste gren affine covering (U;) of X such that                                            |
|         | 1 (O, Ox) is notionerin;                                                                                                                                      |
|         | ii) X is quasi-compact, and for all affine $U\subset X$ , $\Gamma(U,O_X)$ is noetherial iii) the ordered set of closed subschemes of X satisfies the descende |
|         | 111) The ordered set of closed subschemes of x sanspes the descence                                                                                           |
|         | ng chair condition.                                                                                                                                           |
|         | Oct: A guasi-coherent sheaf F an a northern scheme X as coheren                                                                                               |
|         | f, equivalantly:                                                                                                                                              |
|         | i) There exists an affine open covering (Vi) of X such that \( (Vi, F)                                                                                        |
|         | i) There exists an affine open covering (Vi) of X such that $\Gamma(V_i, F)$ is a $\Gamma(V_i, O_X)$ -module of finte type;                                   |
|         | ii) care of all places as 110 V                                                                                                                               |

Def: In affine marghism X + Y, where Y is noetherian is finishe if equivalently:

i) fx Ox w coherent on Y;

ii) f u of frute type (hence X u noetheran) and for all coherent F on X, f\* F u coherent on Y.

We have an affine maghiom  $f: X \longrightarrow Y$  of Noethern schemes. Suppose that the sheef f\* Ox is coherent. We want to show that f is finite. f\* Ox is coherent means that f: F an affine gen covering  $(V_i)$  of Y such that  $\Gamma(V_i, f* Ox)$  is a  $\Gamma(V_i, O_Y)$ -module of finite type i.e. such that  $\Gamma(V_i, f* O_X)$  is a finitely generated  $\Gamma(V_i, O_Y)$ -module.

Def: A maphism  $f: X \to Y$  is locally of finite type if there exists a covering of Y by open affine subsets  $V_i = Spec B_i$  such that for each i, we have an open affine over  $\{V_{i,j} = Spec A_{i,j}\}$  of  $f^{-1}(V)$ , with each  $A_{i,j}$  finitely generated as a  $B_i$ -algebra. I be finite type if further for each i, the cover  $\{V_{i,j}\}$  on be chosen to be finite.

Def: A maphon f: X -> Y is finite if there exists a covering of Y by open affine subschenes V; = SpecB; such that each f (V;) is affine, say, say SpecA; and each; A; is finitely generated as a B; module.

Suppose we are given a maphion between how affine schemes X and Y; Say  $f: X \longrightarrow Y$ . Let  $X = \operatorname{Spec} A$  and  $Y = \operatorname{Spec} B$  and let  $f^{\#}: B \longrightarrow A$  be The map corresponding to f. Let M be an A-module, Then it can be considered a B-module via The map B -> A (denoted by MB). This is a finctional construction in M. In this setting we have  $f*M = M_B$ . Proofs There is an obvious may Mo -> f\* (M) as T(Y, f\*(M))= T(X, M)=M. To show it is an isomorphism, it is sufficient to verify Mat sechans over distinguished open sets of the two sides coincide. The myortand observation is that & f'(DG)) = O(f#g) - indeed, a prime ideal  $f \in A$  sahefres  $g \in f^{\#-1}(f) \iff f^{\#}(g) \in f$ . As g acts an  $M_B$  as multipli-Capar by  $f^{\#}(g)$ , we have  $(M_{\mathcal{E}})_{g} = M_{\mathcal{E}}(g) = \Gamma(D(f^{\#}(g)), M)$ . Prof: Suppose that α: F → G is among of grass-coherent scheaves on The scheme X. The kerrel, cokernel and the maye of a are all quasicoherent. The alegary QCohx is closed under entensians; i.e., if  $0 \longrightarrow M' \longrightarrow M \longrightarrow M'' \longrightarrow 0$ is a short exact sequence of Ox-modules with M' and M" quasi-coherent, then my M is quasi-coherent as well. Proof to the : F -> G is a map of quasi-coheren Ox-modules, on any open affire subsets U = SpecA of X it may be described as celv = a where a: M -> N is a A-module hamomaghism and M and N me A-modules with Flu = M and Glu = N. Since the helde functor is exact, are has ker alo = (kera). Mareover by the same reasoning it holds true that cokeral = (cokera) ad in al = (ima). Suppose now that an entensian as above is guen. M' being guasi-coherent wears that The induced segmence of global sechans is exact (eyes horizontal sequence in below diagram. The three vertical maps are natural maps. Since M and M" both are quasi-coherent sheaves, the two flanking vertical maps are womaghioms, and the snake Comma implies that the middle verheal map is on isomorphism as well. Hence M is guasi-coherent.  $0 \longrightarrow \Gamma(X, M')^{\sim} \longrightarrow \Gamma(X, M)^{\sim} \longrightarrow \Gamma(X, M'')^{\sim} \longrightarrow 0$  $O \longrightarrow M' \longrightarrow M \longrightarrow M'' \longrightarrow O$ 

f: X -> Y a maghism of schemes. I quasi-coherent sheaf on X. If X is noetheran her f\* F is quasi-coherent on Y. Proofs We may assure Y = Spec A. Then since X is guasi- canyact, we can cover it by open affines Ur. O; OU; is again quasi-compact, so we can cover it with gen affects Vijk. for any open VEY, are has the exact sequence O → Γ(f'V, F) - TI, Γ(U, nf'V, F) - TI, Γ(U, nf'V, F) O The sequence is compatible with restriction mayer induced from an inclusian V'EV, hence gives use to the following exact sequence of sheares on X:

0 -> f\*F -> Tifi\*Fluir -> Tijik fijk \*Fluir . Q where fi = flu; and fijk = flujk. Now, each of the sheaves fix Flu; and Fig. Flug are guasi-coherent. They are finise in number as the covering Vi is finise. Hence Tifix Flu, and This fig. Flug are finishe products of guasi-coherent Ox-modules and therefore they are quasi-coherent. Now for F is the kernel of a horomorphism between two quasi-coherent shewes, and so f J & grast coherent, as required. In the anomical identification of the distinguished open subsets about the Spec (A), he Ox-madule M restricts to Mp. As  $\Gamma(D(f), M) = M_f$ , There is a map MI -- Moy, That an dishinguished gen subsets D(9) CD(f) induces an bornaghrom between the two spaces of sechars,



Algebraic geometry Exercise / Senatch work.

| Vak:      | Naam:                                                                                                                                           |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------|
|           | Studierichting:                                                                                                                                 |
|           | Collegekaartnummer:                                                                                                                             |
| 0         | Let X be a schene. Denote by X*X The fibre product over Spec II.                                                                                |
|           | $\det Z = \{ y \in X \times X \mid R(y) = P_2(y) \}. \text{ Show that Zeguals } \Delta(X), \text{ where } \Delta: X \longrightarrow X \times X$ |
|           | is the digional. Conclude that $\Delta(X)$ is closed $\Longrightarrow X$ is separated.                                                          |
|           | Gwen a relature scheme X over a base scheme S, we can causider the                                                                              |
| 1         | diagonal marphism D: X -> X x X, which is characterized by the fact that                                                                        |
| = spec Z. | The camposchan P: D: X -> X with each projection P., Pe: X xs X -> X w                                                                          |
|           | The identity maphism. The image D(X) is called the diagonal in X x X.                                                                           |
|           | Note that a northern of S-schenes Y: T-> X xs X foctors through the                                                                             |
|           | diagonal maphism D: X - X XX if and only if PioY = P2 of since                                                                                  |
|           | Then D.P. of = D.P. of coincides with Y, as can be checked by composing                                                                         |
|           | both napheoms with the projections P., P. On the other hand, The cardition                                                                      |
|           | that P. o & coincides with P2 of an all points teT is not sufficient for such                                                                   |
|           | a factorization. For exemple, view Spec C as a relative scheme over Spec R.                                                                     |
|           | Then, she fiber product Spec C X Spec R Spec C cansusts of two points and                                                                       |
|           | hence, the chajaral marphism D: Spec C Spec C x spec R Spec C will                                                                              |
|           | not be surjecture. In particular, for an arbitrary S-scheme X, we observe                                                                       |
|           | That the obvious inclusion $\Delta(X) \subset \{z \in X \times_s X; P_1(z) = P_2(z)\}$ will not be                                              |
|           | an equality in general.                                                                                                                         |

Relevant to 2 (May be also to 0?) When are says that a scheme X is separated, are mens separated over Spec(I) i.e., the inighe maphism X -> Spec(I) is separated. If X is a separated scheme, her for any scheme Y, any majhiom f: X -> Y is separated. This is because f can be factored as Tx:X -> X × ZY, The graph maybeam, followed by the projection X × ZX -> Y. The first maybeam is an immusian, hence appeared, and The second majhion is a base charge of the separated maphism X - Spec I. So f u a composite of separated maphrons, and Therefore is itself segarated