

Docket No.: 50427-726

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

#3 PRIORITY  
3-26-01  
R Stiles

In re Application of

Masao FUKUYAMA, et al.

Serial No.: Group Art Unit:

Filed: December 21, 2000 Examiner:

For: ORGANIC ELECTROLUMINESCENT DEVICE

**CLAIM OF PRIORITY AND**  
**TRANSMITTAL OF CERTIFIED PRIORITY DOCUMENT**

Commissioner for Patents  
Washington, DC 20231

Sir:

In accordance with the provisions of 35 U.S.C. 119, Applicants hereby claim the priority of:

Japanese Patent Application No. 11-367200,  
filed December 24, 1999;

Japanese Patent Application No. 2000-73836,  
filed March 16, 2000;

Japanese Patent Application No. 2000-196111,  
filed June 29, 2000;  
and

Japanese Patent Application No. 2000-341560,  
filed November 9, 2000

cited in the Declaration of the present application. Certified copies are submitted herewith.

Respectfully submitted,

MCDERMOTT, WILL & EMERY

  
Edward J. Wise  
Registration No. 34,523

600 13<sup>th</sup> Street, N.W.  
Washington, DC 20005-3096  
(202) 756-8000 EJW:dtb  
**Date: December 21, 2000**  
Facsimile: (202) 756-8087

日本国特許庁  
PATENT OFFICE  
JAPANESE GOVERNMENT

50427-726  
Takao Yamamoto  
December 21, 2000  
U.S. Demitt, U.S. & Emery

別紙添付の書類に記載されている事項は下記の出願書類に記載されて  
いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

jc914 U.S. PTO  
09/740858  
12/21/00

出願年月日  
Date of Application: 1999年12月24日

出願番号  
Application Number: 平成11年特許願第367200号

出願人  
Applicant(s): 松下電器産業株式会社

2000年12月 8日

特許庁長官  
Commissioner,  
Patent Office

及川耕造



出証番号 出証特2000-3103171

【書類名】 特許願  
【整理番号】 2931010116  
【提出日】 平成11年12月24日  
【あて先】 特許庁長官殿  
【国際特許分類】 H05B 33/00  
【発明者】  
【住所又は居所】 神奈川県川崎市多摩区東三田3丁目10番1号 松下技研株式会社内  
【氏名】 鈴木 瞳美  
【発明者】  
【住所又は居所】 神奈川県川崎市多摩区東三田3丁目10番1号 松下技研株式会社内  
【氏名】 福山 正雄  
【発明者】  
【住所又は居所】 神奈川県川崎市多摩区東三田3丁目10番1号 松下技研株式会社内  
【氏名】 堀 義和  
【特許出願人】  
【識別番号】 000005821  
【氏名又は名称】 松下電器産業株式会社  
【代理人】  
【識別番号】 100097445  
【弁理士】  
【氏名又は名称】 岩橋 文雄  
【選任した代理人】  
【識別番号】 100103355  
【弁理士】  
【氏名又は名称】 坂口 智康

【選任した代理人】

【識別番号】 100109667

【弁理士】

【氏名又は名称】 内藤 浩樹

【手数料の表示】

【予納台帳番号】 011305

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 9809938

【ブルーフの要否】 不要

【書類名】 明細書

【発明の名称】 有機電界発光素子

【特許請求の範囲】

【請求項1】 一対の電極とその間に挟まれた少なくとも一層以上の有機層を有し、前記有機層の少なくとも一つが発光層であり、前記発光層が置換または無置換のチオフェンオリゴマーを含む複数の材料で構成されていることを特徴とする有機電界発光素子。

【請求項2】 チオフェンオリゴマーが4つ以上のチオフェン環を有することを特徴とする請求項1記載の有機電界発光素子。

【請求項3】 一対の電極とその間に挟まれた少なくとも一層以上の有機層を有し、前記有機層の少なくとも一つが2種類以上の構成材料の混合物を含む正孔輸送層かつ／または正孔注入層であり、前記構成材料の少なくとも一つがオリゴマー材料を含むことを特徴とする有機電界発光素子。

【請求項4】 オリゴマー材料が置換または無置換のトリフェニルアミンオリゴマーであることを特徴とする請求項3記載の有機電界発光素子。

【請求項5】 オリゴマー材料が置換または無置換のチオフェンオリゴマーであることを特徴とする請求項3記載の有機電界発光素子。

【請求項6】 一対の電極とその間に挟まれた少なくとも二層以上の有機層を有し、前記有機層の少なくとも一つが発光層であり、前記発光層と隣接する有機層に、前記発光層から発せられる光のピーク波長よりも短波長に吸収ピーク波長を有する蛍光材料が混合していることを特徴とする有機電界発光素子。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】

本発明は、各種の表示装置として広範囲に利用される発光素子であって、高効率かつ安定性に優れた有機電界発光素子に関するものである。

【0002】

【従来の技術】

電界発光素子は、自己発光のために液晶素子にくらべて明るく、鮮明な表示が

可能であるため、古くから多くの研究者によって研究されてきた。現在実用レベルに達した電界発光素子としては、無機材料のZnSを用いた素子がある。しかし、この様な無機の電界発光素子は、発光のための駆動電圧として200V以上が必要であるため、広く使用されるには至っていない。

## 【0003】

これに対して有機材料を用いた電界発光素子である有機電界発光素子は、従来実用的なレベルからはほど遠いものであったが、1987年にイーストマン・コダック社のシー.ダブリュ.タン(C. W. Tang)らによって開発された積層構造素子によりその特性が飛躍的に進歩した。彼らは蒸着膜の構造が安定で電子を輸送することのできる蛍光体からなる層(電子輸送性発光層)と、正孔を輸送することのできる有機物からなる層(正孔輸送層)とを積層し、両方のキャリヤーを蛍光体中に注入して発光させることに成功した。これによって有機電界発光素子の発光効率が向上し、10V以下の電圧で $1000\text{cd}/\text{m}^2$ 以上の発光が得られる様になった。その後多くの研究者によってその特性向上のための研究が行われ、現在では $10000\text{cd}/\text{m}^2$ 以上の発光特性が得られている。

## 【0004】

この様な有機電界発光素子においては、素子の有機層を構成する有機材料及び電極を構成する金属材料によって特性が大きく変化する。特に有機層は、電荷の注入・輸送・再結合・発光といった重要な機能を果たしており、特性の優れた素子を実現するには、それぞれの層の機能に適した材料を選択することが重要である。また、耐久性に優れた素子を得るためにには、有機層に凝集を起こさない安定性に優れた膜を用いることが重要である。

## 【0005】

電荷注入輸送層は、正孔注入輸送層と電子注入輸送層に大別される。それぞれ、電極からの電荷の注入を容易にし、注入された電荷を発光領域まで輸送するという働きをする。電荷注入層と電荷輸送層を一つの材料で兼ねる場合と別々の材料を用いる場合がある。正孔注入層のための材料としては、陽極からの正孔の注入を容易にするため、HOMOレベルの小さい材料が使用される。具体的には銅フタロシアニン(CuPc)、トリス(4-[3-メチルフェニル]フェニル

アミノ]フェニル)・アミン (m-MTDATA) などが挙げられる。また、正孔輸送材料としてはトリフェニルアミン誘導体が一般的に用いられている。特許2826381号公報によれば、正孔注入層あるいは正孔注入輸送層としての有機半導体域を形成する材料として、導電性高分子のオリゴマー、特にチオフェンオリゴマーを含むものが好ましいとされている。一方、電子輸送材料としては、オキサジアゾール誘導体やトリス(8-ヒドロキシキノリラト)アルミニウム(A1q)などに代表されるキノリノール金属錯体などが検討されている。

## 【0006】

しかしこれらの材料の中には、チオフェンオリゴマー、オキサジアゾール誘導体などのように、電荷の注入輸送機能には優れても、薄膜の安定性にかけるものも多い。

## 【0007】

発光層用の材料としては数多くの化合物群が検討されている。また、製膜性に優れた材料の中に蛍光性の色素を少量分散させた膜を発光層として用いることにより、素子の高効率化、長寿命化および発光色の調整をすることも検討されている。この手法は、単独では結晶化しやすい、あるいは濃度消光を起こしやすい蛍光色素に対して非常に有効である。しかし、発光効率・駆動耐久性ともに、実用化するためには十分な特性を満たすものは得られていなかった。

## 【0008】

連続駆動時の輝度低下を抑制するためには、発光材料以外にも様々な検討がされている。たとえば、発光層と電荷輸送層との間に両者の構成材料の混合物からなる層を設ける、あるいは電荷輸送層の高耐熱化などが行われている。しかし、これらの手法は必ずしも有効であるとは限らない。

## 【0009】

## 【発明が解決しようとする課題】

本発明の目的は、有機電界発光素子に用いる有機材料およびその使用法を改良することによって、発光効率が高く駆動耐久性に優れた有機電界発光素子を実現することにある。

## 【0010】

【課題を解決するための手段】

本発明の有機電界発光素子は、一対の電極とその間に挟まれた少なくとも一層以上の有機層を有しており、その有機層の一つである発光層が置換または無置換のチオフェンオリゴマーを含む複数の材料で構成されていることを特徴としたものである。

【0011】

【発明の実施の形態】

請求項1に記載の発明は、一対の電極とその間に挟まれた少なくとも一層以上の有機層を有し、前記有機層の少なくとも一つが発光層であり、前記発光層が置換または無置換のチオフェンオリゴマーを含む複数の材料で構成されていることを特徴とする有機電界発光素子であり、発光色を変化させ、かつ効率を向上させるという作用を有する。

【0012】

請求項2に記載の発明は、チオフェンオリゴマーが4つ以上のチオフェン環を有することを特徴とする請求項1記載の有機電界発光素子であり、このようなオリゴマーを用いることにより、より効率よい安定した発光を得ることができるという作用を有する。

【0013】

請求項3に記載の発明は、一対の電極とその間に挟まれた少なくとも一層以上の有機層を有し、前記有機層の少なくとも一つが2種類以上の構成材料の混合物を含む正孔輸送層かつ／または正孔注入層であり、前記構成材料の少なくとも一つがオリゴマー材料を含むことを特徴とする有機電界発光素子であり、正孔の注入輸送を容易にすると同時に、膜の安定性を向上させることにより、素子の効率および駆動耐久性を向上させるという作用を有する。

【0014】

請求項4に記載の発明は、オリゴマー材料が置換または無置換のトリフェニルアミンオリゴマーであることを特徴とする請求項3記載の有機電界発光素子であり、正孔輸送注入性に優れた材料を用いることにより、より素子の高効率化および駆動耐久性の向上が可能となるという作用を有する。

【0015】

請求項5に記載の発明は、オリゴマー材料が置換または無置換のチオフェンオリゴマーであることを特徴とする請求項3記載の有機電界発光素子であり、正孔輸送注入性に優れた材料を用いることにより、より素子の高効率化および駆動耐久性の向上が可能となるという作用を有する。

【0016】

請求項6に記載の発明は、一対の電極とその間に挟まれた少なくとも二層以上の有機層を有し、前記有機層の少なくとも一つが発光層であり、前記発光層と隣接する有機層に、前記発光層から発せられる光のピーク波長よりも短波長に吸収ピーク波長を有する蛍光材料が混合されていることを特徴とする有機電界発光素子であり、駆動耐久性を向上させるという作用を有する。

【0017】

以下に、本発明の実施の形態について、図面を用いて具体的に説明する。

【0018】

図1は本発明による有機電界発光素子の概略構成を示す断面図である。ガラス基板1上に陽極2を形成し、その上に正孔注入層3、正孔輸送層4、発光層5、電子輸送層6、電子注入層7、陰極8を形成したものである。前にも述べたように、正孔注入層と正孔輸送層、電子輸送層と電子注入層はそれぞれ一つの層で兼ねることができる。さらに発光層と正孔注入輸送層、発光層と電子注入輸送層を兼ねることもできる。

【0019】

以下、より詳細な本発明の実施の形態について代表的に説明する。これらによって本発明は限定されることは言うまでもない。

【0020】

(実施の形態1)

基板にはガラス上に透明な陽極としてインジウム錫酸化膜(ITO)をあらかじめ形成し、電極の形にバターニングしたもの用いた。この基板を充分に洗浄した後、蒸着する材料と一緒に真空装置内にセットし、 $10^{-4}$  Paまで排気した。その後、正孔注入輸送層としてN,N'-ビス[4'-(N,N-ジフェニルアミノ)-4-ビフ

エニリル]-N,N'-ジフェニルベンジジン(TPT)を50nm製膜した。TPTはトリフェニルアミンオリゴマーの一種である。その後、発光層としてトリス(8-ヒドロキシキノリラト)アルミニウム(A1q)と(化1)に示すチオフェン誘導体(1)の混合膜を25nm製膜した。製膜は2つの材料を別々の蒸着源から蒸発させる共蒸着法により行い、A1qに対する化合物(1)の混合比は1mol%とした。

## 【0021】

## 【化1】



さらに、電子注入輸送層としてA1qを25nm製膜した後、陰極としてAlLi合金を150nmの厚さで製膜し、素子を作成した。これらの製膜は一度も真空を破ることなく、連続して行った。なお、膜厚は水晶振動子によってモニターした。素子作製後、直ちに乾燥窒素中で電極の取り出しを行い、引き続き特性測定を行った。得られた素子に電圧を印加したところ、均一な黄色の発光が得られた。100mA/cm<sup>2</sup>の電流を印加した場合の駆動電圧ならびに発光輝度を測定したところ、駆動電圧5.5V、発光輝度は3850cd/m<sup>2</sup>であった。この素子を乾燥窒素中において、初期輝度1000cd/m<sup>2</sup>で連続駆動(定電流)したところ、輝度が初期の半分である500cd/m<sup>2</sup>になるのに要する時間(輝度半減期)は850hであった。また、500h駆動後の電圧上昇分は0.8Vであった。

## 【0022】

## (実施の形態2)

発光層としてA1qと(化2)に示すチオフェン誘導体(2)との混合膜を用いたこと以外は実施例1と同様に素子を作製した。A1qに対するチオフェン誘導体(2)の混合比は1mol%とした。

## 【0023】

## 【化2】



得られた素子に電圧を印加したところ、均一な橙色の発光が得られた。100 mA/cm<sup>2</sup>の電流を印加した場合の駆動電圧ならびに発光輝度を測定したところ、駆動電圧5.4V、発光輝度は4200 cd/m<sup>2</sup>であった。この素子を乾燥窒素中において、初期輝度1000 cd/m<sup>2</sup>で連続駆動（定電流）したところ、輝度半減期は900 hであった。また、500 h駆動後の電圧上昇分は0.6 Vであった。

## 【0024】

## (実施の形態3)

基板にはガラス上に透明な陽極としてインジウム錫酸化膜（ITO）をあらかじめ形成し、電極の形にパターニングしたもの用いた。この基板を充分に洗浄した後、蒸着する材料と一緒に真空装置内にセットし、10<sup>-4</sup> Paまで排気した。その後、正孔注入層として（化1）に示すチオフェン誘導体（1）とTPTの混合膜を25 nm製膜した。混合膜は2つの材料を別々の蒸着源から蒸発させて作製し、混合比はモル比で1:1とした。それから、正孔輸送層としてTPTを25 nm製膜した。その後、発光層兼電子注入輸送層としてAlqを50 nm製膜した。さらに、陰極としてAlLi合金を150 nmの厚さで製膜し、素子を作成した。これらの製膜は一度も真空を破ることなく、連続して行った。

## 【0025】

なお、膜厚は水晶振動子によってモニターした。素子作製後、直ちに乾燥窒素中で電極の取り出しを行い、引き続き特性測定を行った。得られた素子に電圧を印加したところ、均一な黄緑色の発光が得られた。100 mA/cm<sup>2</sup>の電流を印加した場合の駆動電圧ならびに発光輝度を測定したところ、駆動電圧5.1V、発光輝度は2350 cd/m<sup>2</sup>であった。この素子を乾燥窒素中において、初期輝度1000 cd/m<sup>2</sup>で連続駆動（定電流）したところ、輝度半減期は540 hであった。また、500 h駆動後の電圧上昇分は0.5 Vであった。

## 【0026】

## (実施の形態4)

正孔注入層に(化1)に示すチオフェン誘導体(1)と(化3)に示すチオフェン誘導体(3)の混合膜を用いたこと以外は実施の形態3と同様に素子を作成した。

## 【0027】

## 【化3】



得られた素子に電圧を印加したところ、均一な黄緑色の発光が得られた。100 mA/cm<sup>2</sup>の電流を印加した場合の駆動電圧ならびに発光輝度を測定したところ、駆動電圧5.8 V、発光輝度は2440 cd/m<sup>2</sup>であった。この素子を乾燥窒素中において、初期輝度1000 cd/m<sup>2</sup>で連続駆動(定電流)したところ、輝度半減期は620 hであった。また、500 h駆動後の電圧上昇分は0.7 Vであった。

## 【0028】

## (実施の形態5)

基板にはガラス上に透明な陽極としてインジウム錫酸化膜(ITO)をあらかじめ形成し、電極の形にパターニングしたもの用いた。この基板を充分に洗浄した後、蒸着する材料と一緒に真空装置内にセットし、10<sup>-4</sup> Paまで排気した。その後、正孔注入層としてTPTを25 nm製膜した。さらに正孔輸送層として、TPTとペリレン(吸収ピーク波長438 nm)の混合膜を25 nm製膜した。製膜は2つの材料を別々の蒸着源から蒸発させる共蒸着法により行い、TPTに対するペリレンの混合比は1 mol %とした。さらに、発光層兼電子注入輸送層としてAlq(蛍光ピーク波長525 nm)を50 nm製膜した後、陰極としてAlLi合金を150 nmの厚さで製膜し、素子を作成した。

## 【0029】

得られた素子に電圧を印加したところ、均一な黄緑色の発光が得られた。EL

スペクトルを測定したところ、ペリレンからの発光は観測されなかった。100 mA/cm<sup>2</sup>の電流を印加した場合の駆動電圧ならびに発光輝度を測定したところ、駆動電圧6.1V、発光輝度は2300cd/m<sup>2</sup>であった。この素子を乾燥窒素中において、初期輝度1000cd/m<sup>2</sup>で連続駆動（定電流）したところ、輝度半減期は500hであった。また、500h駆動後の電圧上昇分は1.5Vであった。

## 【0030】

なお、本実施の形態では、蛍光材料としてペリレンを用いたが、それに限定されるものではない。

## 【0031】

## (比較例1)

比較例1として、発光層兼電子注入輸送層にAlqを用いたこと以外は実施の形態1と同様に素子を作製した。この素子に電圧を印加したところ、均一な黄緑色の発光が得られた。100mA/cm<sup>2</sup>印加時の駆動電圧は6.2V、発光輝度は2310cd/m<sup>2</sup>であった。また、初期輝度1000cd/m<sup>2</sup>で連続駆動（定電流）したときの輝度半減期は300h、500h駆動後の電圧上昇分は2.0Vであった。

## 【0032】

## (比較例2)

比較例2として、正孔注入層に（化1）に示すチオフェン誘導体（1）を用いたこと以外は実施の形態3と同様に素子を作製した。この素子に電圧を印加したところ、均一な黄緑色の発光が得られた。100mA/cm<sup>2</sup>印加時の駆動電圧は5.7V、発光輝度は2080cd/m<sup>2</sup>であった。また、初期輝度1000cd/m<sup>2</sup>で連続駆動（定電流）したところ、輝度が半減する前に電極間が短絡し、素子として機能しなくなった。

## 【0033】

実施の形態1から5および比較例1、2に示した結果より、本実施の形態で得られた素子は比較例で得られた素子よりも発光効率や駆動耐久性に優れていることが明らかになった。

【0034】

【発明の効果】

以上のように本発明によれば、発光効率が高く、駆動耐久性に優れた有機電界発光素子が得られるという有利な効果が得られる。

【図面の簡単な説明】

【図1】

本発明における有機電界発光素子の構成を示す断面図

【符号の説明】

- 1 ガラス基板
- 2 陽極
- 3 正孔注入層
- 4 正孔輸送層
- 5 発光層
- 6 電子輸送層
- 7 電子注入層
- 8 陰極

【書類名】 図面

【図1】



【書類名】 要約書

【要約】

【課題】 素子の発光効率が高く、駆動耐久性に優れた有機電界発光素子を実現することを目的とする。

【解決手段】 一対の電極とその間に挟まれた少なくとも一層以上の有機層を有する有機電界発光素子において、有機層の少なくとも一つが発光層5であり、その発光層5が置換または無置換のチオフェンオリゴマーを含む複数の材料で構成されているものとすることにより、素子の効率および駆動耐久性が向上する。

【選択図】 図1

出願人履歴情報

識別番号 [000005821]

1. 変更年月日 1990年 8月28日

[変更理由] 新規登録

住 所 大阪府門真市大字門真1006番地

氏 名 松下電器産業株式会社