

CENTRUL NAȚIONAL DE POLITICI ȘI EVALUARE ÎN EDUCAȚIE

VII. Országos Magyar Matematikaolimpia XXXIV. EMMV

megyei szakasz, 2025. február 1.

VI. osztály

- 1. feladat (10 pont). Kató, Laci, Melinda és Norbi jó barátok, mindegyiknek van kutyája, kedvenc csokija és családjuk különböző márkájú kocsit használ. A kutyák neve valamilyen sorrendben: Bodri, Füles, Morzsa, Tücsök. A használt autómárkák: Ford, Honda, Opel, Skoda és a kedvenc csokifajták: fekete csoki, tejcsoki, mogyorós csoki és marcipános csoki (valamilyen sorrendben). A következőket tudjuk róluk:
- (1) Bodri gazdája a mogyorós csokoládét szereti.
- (2) Norbi egy Hondában utazik sízni és fekete csokit eszik.
- (3) Kató minden nap sétálni viszi Fülest.
- (4) Tücsök gazdája az Opelt kedveli.
- (5) Melinda mindig tejcsokoládét vásárol.
- (6) Füles a Skoda hátsó ülésén utazik.

Hogy hívják Morzsa gazdáját? Ki szereti a marcipános csokit? Ki utazik Ford autóban? (Írd le a gondolatmenetedet lépésről lépésre!)

Matlap 10/2024, A:5015

Megoldás. Hivatalból
A (2) kijelentésből megtudjuk, hogy Norbinak Hondája van és fekete csokit eszik.
A (3) kijelentés alapján Kató kutyája Füles.
A (6) állítás szerint a Skoda a Katóé.
Az (5) kijelentésből megtudjuk, hogy Melinda tejcsokit eszik.
(1 pont)
Az (5) kijelentésből megtudjuk, hogy Melinda tejcsokit eszik.
(1 pont)
Ezeket az adatokat egyértelműen beírhatjuk az alábbi táblázatba:

	Kató	Laci	Melinda	Norbi
Autó	Skoda			Honda
Kutya	Füles			
Csoki			tejcsoki	fekete csoki

Az (1) állítás alapján Bodri csak a Laci kutyája lehet (mert a Katóé Füles és Melinda meg Norbi nem a mogyorós csokoládét szereti), illetve Laci a mogyorós csokoládét szereti. (2 pont)

	Kató	Laci	Melinda	Norbi
Autó	Skoda			Honda
Kutya	Füles	Bodri		
Csoki		mogyorós csoki	tejcsoki	fekete csoki

Innen kizárásos alapon, Kató szereti a marcipános csokit.

(1 pont)

A (4) állítás szerint csak Melinda lehet a Tücsök gazdája és Melinda Opelt vezet.

(1 pont)

	Kató	Laci	Melinda	Norbi
Autó	Skoda		Opel	Honda
Kutya	Füles	Bodri	Tücsök	
Csoki	marcipános csoki	mogyorós csoki	tejcsoki	fekete csoki

Ezek után már egyértelmű, hogy Laci autója Ford és Morzsa gazdája Norbi.

(1 pont)

Megjegyzés. Amennyiben a diák csak az alábbi táblázatot tölti ki, magyarázat nélkül, akkor a feladatra 5 pont jár.

	Kató	Laci	Melinda	Norbi
Autó	Skoda	Ford	Opel	Honda
Kutya	Füles	Bodri	Tücsök	Morzsa
Csoki	marcipános csoki	mogyorós csoki	tejcsoki	fekete csoki

- 2. feladat (10 pont). Adottak az $\widehat{AOA_1} = 2^\circ$, $\widehat{A_1OA_2} = 3^\circ$, $\widehat{A_2OA_3} = 4^\circ$, ..., $\widehat{A_{n-1}OA_n} = (n+1)^\circ$ szögek úgy, hogy az előbbi felsorolásban közvetlenül egymás után következő szögek egymás melletti szögek legyenek és a felsorolt szögek mértékének összege 135°.
- a) Tudva, hogy n a fenti kijelentésben szereplő szögek száma, határozd meg az n értékét!
- b) Ha az OM félegyenes az $\widehat{A_4OA_9}$ szögfelezője, számítsd ki az $\widehat{A_3OM}$ mértékét!

Megoldás. Hivatalból (1 pont)

a) A megadott adatok alapján
$$\widehat{AOA_1} + \widehat{A_1OA_2} + \widehat{A_2OA_3} + \ldots + \widehat{A_{n-1}OA_n} = 135^{\circ}.$$
 (1 pont)

A szögek összege

$$2^{\circ} + 3^{\circ} + 4^{\circ} + \dots + (n+1)^{\circ} = \frac{(2+n+1)^{\circ} \cdot n}{2} = \frac{(n+3)^{\circ} \cdot n}{2}.$$
 (2 pont)

Így kapjuk, hogy

$$\frac{(n+3)^{\circ} \cdot n}{2} = 135^{\circ}$$
$$(n+3)^{\circ} \cdot n = 270^{\circ}.$$
 (1 pont)

Tudva hogy

 $n \in \mathbb{N}$ és $270 = 18 \cdot 15$ következik, hogy n = 15.

(1 pont)

b) Mivel

$$\widehat{A_4OA_9} = \widehat{A_4OA_5} + \widehat{A_5OA_6} + \widehat{A_6OA_7} + \widehat{A_7OA_8} + \widehat{A_8OA_9}$$
 (1 pont)

$$\widehat{A_4OA_9} = 6^{\circ} + 7^{\circ} + 8^{\circ} + 9^{\circ} + 10^{\circ}$$

$$\widehat{A_4OA_9} = 40^{\circ}. \tag{1 pont}$$

Tudjuk, hogy OM szögfelelzője az $\widehat{A_4OA_9}$ szögnek, így

$$\widehat{A_4OM} = \widehat{MOA_9} = \frac{\widehat{A_4OA_9}}{2} = 20^{\circ}.$$
 (1 pont)

Azaz

$$\widehat{A_3OM} = \widehat{A_3OA_4} + \widehat{A_4OM}$$

$$\widehat{A_3OM} = 5^{\circ} + 20^{\circ} = 25^{\circ}.$$
(1 pont)

3. feladat (10 pont). Tekintjük a

$$p$$
, $p+3^k$, $p+3^{k+1}$, $p+3^{k+2}$, $p+3^{k+3}$

számokat, ahol a k és p valamilyen természetes számok.

- a) Igazold, hogy az előbb felsorolt öt szám közül valamelyik osztható 5-tel!
- b) Lehet-e p páratlan, ha a felsorolt öt szám mindegyike prímszám?
- c) Határozd meg a k és p természetes számokat, amelyekre a felsorolt öt szám mindegyike prímszám! $Tempfli\ Gabriella,\ Szatmárnémeti$

- a) A 3 szám négy egymást követő hatványának az utolsó számjegyei valamilyen sorrendben 1, 3, 9, 7. Így ha p utolsó számjegye 9, 7, 1, 3 akkor a $p+3^k$, $p+3^{k+1}$, $p+3^{k+2}$, $p+3^{k+3}$ valamelyikének utolsó számjegye 0, míg ha p utolsó számjegye 4, 2, 6, 8 akkor a $p+3^k$, $p+3^{k+1}$, $p+3^{k+2}$, $p+3^{k+2}$, $p+3^{k+3}$ valamelyikének utolsó számjegye 5, tehát ezekben az esetekben az állítás teljesül. Ugyanakkor ha p utolsó számjegye 0 vagy 5, akkor p osztható 5-tel, tehát bármi is a p utolsó számjegye a $p, p+3^k$, $p+3^{k+1}$, $p+3^{k+2}$, $p+3^{k+3}$ valamelyikének utolsó számjegye 0 vagy 5 és így osztható 5-tel. (4 **pont**)
- b) Bármely $k \in \mathbb{N}$ esetén a 3^k , 3^{k+1} , 3^{k+2} , 3^{k+3} számok páratlan számok, ezért p páros szám kell legyen, mert ellenkező esetben az összegük páros lenne és nem lehetne prím. (2 pont)

c) Mivel p páros és p prímszám, így p = 2.

(1 pont)

Ha $k \ge 2$, akkor a $2+3^k$, $2+3^{k+1}$, $2+3^{k+2}$, $2+3^{k+3}$ számok 5-nél nagyobb számok és valamelyiknek az utolsó számjegye 5, tehát az nem lehet prím, mert osztható 5-tel. (1 pont)

Ha k=0, akkor a számok 2, 3, 5, 11, 29 és mind prímszámok. Ha k=1, akkor a számok 2, 5, 11, 29, 83 és ezek is mind prímszámok. (1 pont)

Tehát csak a p=2 és k=0, illetve p=2 és k=1 esetben lehet mind az öt felsorolt szám prímszám.

4. feladat (10 pont). a) Határozd meg az \overline{ab} természetes számot, amelyre

$$\frac{\overline{aab}}{\overline{aa} - 7} = 15.$$

Faluvégi Melánia, Zilah

b) Határozd meg azt az \overline{abcd} természetes számot, amelyre

$$\frac{\overline{abcd}}{\overline{cd} + 2} = 75$$
 és $\frac{\overline{abcd}}{\overline{ab} + 5} = 81$.

Simon József, Csíkszereda

Első megoldás. Hivatalból

(1 pont)

a) Az aránypárok alaptulajdonsága alapján $\overline{aab} = 15 \cdot (\overline{aa} - 7)$, tehát az \overline{aab} szám osztható 15-tel. (1 pont)

Ez pontosan akkor teljesül, ha osztható 3-mal is és 5-tel is, tehát $b \in \{0, 5\}$ és 2a + 5 osztható 3-mal. (1 pont)

b=0 esetén a 330,660 és 990 számokat kell megvizsgálni, de egyikre sem teljesül a megadott egyenlőség. (1 pont)

b=5 esetén a 225,555 és 885 számokat kell megvizsgálni. Ezek közül csak a 225-re teljesül a 225 = $15 \cdot (22-7)$ összefüggés, tehát az \overline{ab} csak a 25 lehet. (1 pont)

b) A feltevésből következik, hogy $\overline{abcd} = (\overline{cd} + 2) \cdot 75$ és $\overline{abcd} = (\overline{ab} + 5) \cdot 81$, tehát az \overline{abcd} szám osztható 81-gyel és 75-tel. (1 pont)

Ez pontosan akkor teljesül, ha osztható $81 \cdot 25 = 2025$ -tel, tehát ki kell próbálni az

$$\overline{abcd} \in \{2025, 4050, 6075, 8100\}$$

eseteket. (2 pont)

Ha $\overline{abcd}=2025$, akkor $\overline{ab}=20$, $\overline{cd}=25$ és teljesülnek a megadott egyenlőségek (2025 = 27 · 75 = 25 · 81). (1 pont)

Ha $\overline{abcd} \in \{4050, 6075, 8100\}$, akkor nem teljesülnek a megadott egyenlőségek, mert $4050 \neq 52 \cdot 75$, $6075 \neq 77 \cdot 75$ és $8100 \neq 2 \cdot 75$. (1 pont)

4/5

Második megoldás. Hivatalból

(1 pont)

a) Az aránypárok alaptulajdonsága alapján $\overline{aab} = 15 \cdot (\overline{aa} - 7)$, innen pedig $\overline{aa0} + b = 15(\overline{aa} - 7)$, vagy $10 \cdot \overline{aa} + b = 15 \cdot \overline{aa} - 105$. (1 pont)

Rendezve az összefüggést kapjuk, hogy $b = 5 \cdot \overline{aa} - 105$, azaz b:5. (1 pont)

Mivel b számjegy és a $\overline{aa} \neq 21$, a b csak 5 lehet. (1 pont)

Innen 1 = 11a - 21 következik, hogy a = 2. Tehát a keresett szám a 25. (1 pont)

b) A feltevésből következik, hogy $\overline{abcd} = (\overline{cd} + 2) \cdot 75$ és $\overline{abcd} = (\overline{ab} + 5) \cdot 81$. (1 pont)

Tehát $(\overline{cd} + 2) \cdot 75 = (\overline{ab} + 5) \cdot 81$, ahonnan $(\overline{cd} + 2) \cdot 25 = (\overline{ab} + 5) \cdot 27$. (1 pont)

Mivel $(\overline{cd}+2)$:27, tehát $(\overline{cd}+2) \in \{27,54,81\}$, ahonan kapjuk, hogy $\overline{cd} \in \{25,52,79\}$. (1 pont)

Mivel az \overline{abcd} osztható 75 -tel következik, hogy d = 5 felel meg. (1 pont)

Tehát $\overline{cd} = 25$ és $\overline{ab} = 20$, vagyis $\overline{abcd} = 2025$. (1 pont)