# 1 Teoria de conjuntos

### Proposição 1.1.

$$(A - B) \cup B = A \cup B$$

Proof.

$$x \in (A - B) \cup B \iff$$

$$(x \in A \land x \notin B) \lor x \in B \iff$$

$$(x \in A \lor x \in B) \land (x \notin B \lor x \in B) \iff$$

$$(x \in A \lor x \in B) \land t \iff$$

$$x \in A \lor x \in B \iff$$

$$x \in A \cup B \iff$$

Observação1.1. Acima, t representa tautologia. Algo que sempre tem valor lógico verdadeiro.

**Proposição 1.2.** Se  $f: X \to Y$  e  $g: Y \to Z$  são bijeções, então  $(g \circ f): X \to Z$  é uma bijeção.

Proof. Temos  $g(f(a)) = g(f(b)) \implies f(a) = f(b) \implies a = b$ . Logo  $g \circ f$  é injetiva.

Tomando  $z \in Z$ . Como g é sobrejetiva, existe  $y \in Y$  tal que g(y) = z. Como f é sobrejetiva, existe  $x \in X$  tal que f(x) = y. Logo existe  $x \in X$  tal que g(f(x)) = g(y) = z. Logo  $g \circ f$  é sobrejetiva.

**Proposição 1.3.** Seja  $f: X \to Y$  uma função sobrejetiva. f admite inversa à direita.

*Proof.* Para todo  $y \in Y$ , temos  $f^{-1}(y) \neq \emptyset$ , logo existe  $x_y \in f^{-1}(y)$  tal que  $f(x_y) = y$ . Defina  $g: Y \to X$ , que associa  $y \to x_y$  (axioma da escolha). Logo temos  $f(g(y)) = f(x_y) = y$ .

**Proposição 1.4.** Se  $f: X \to Y$  é uma injeção então  $f': X \to f(X)$ , definida como f'(x) = f(x), é uma bijeção.

*Proof.* Seja  $y \in f(X)$ . Por definição de f(X), existe  $x \in X$  tal que f(x) = y. Logo f' é sobrejetiva. Dados  $a, b \in X$  com f'(a) = f(a) = f(b) = f'(b). Como f é injetiva, temos a = b, logo f' é injetiva.

**Proposição 1.5.** Se  $f: A \cup B \to C$  é uma bijeção, então  $f': A \to C - f(B)$ ,  $a \mapsto f(a)$  é uma bijeção.

*Proof.* Se  $a, b \in A \subset A \cup B$ , temos  $f'(a) = f'(b) \iff f(a) = f(b) \implies a = b$  ( $f \notin injetiva$ ). Logo  $f' \notin injetiva$ .

Tomando  $y \in C - f(B)$ . Como f é sobrejetiva, existe  $x \in A \cup B$  tal que f(x) = y. Se  $x \in B$ , teríamos  $f(x) \in f(B)$ , logo  $f(x) \notin C - f(b)$  (contradição). Logo devemos ter  $x \in A$ . Logo existe  $x \in A$  tal que f'(x) = f(x) = y. Logo f' é sobrejetiva.

**Proposição 1.6.** Se  $f: A \to B$  é uma bijeção e  $C \subset B$ , então  $f': f^{-1}(C) \to C$ ,  $x \mapsto f(x)$  é uma bijeção.

*Proof.* Se  $a, b \in f^{-1}(C) \subset A$ , temos  $f'(a) = f'(b) \iff f(a) = f(b) \implies a = b$  (f é injetiva). Logo f' é injetiva.

Tomando  $y \in C$ . Como f é sobrejetiva, existe  $x \in A$  tal que  $f(x) = y \in C$ . Como  $f(x) \in C$ , temos  $x \in f^{-1}(C)$ . Logo existe  $x \in f^{-1}(X)$  tal que f(x) = f'(x) = y. Logo f' é sobrejetiva.

**Proposição 1.7.** Seja  $f: A \to B$  uma função e  $X \subset Y \subset B$ . Temos  $f^{-1}(X) \subset f^{-1}(Y)$ .

*Proof.* Se  $x \in f^{-1}(X)$ , temos  $f(x) \in X$ . Como  $X \subset Y$ , temos  $f(x) \in Y$ . Portanto  $x \in f^{-1}(Y)$ . Como  $x \in f^{-1}(X) \implies x \in f^{-1}(Y)$ , temos  $f^{-1}(X) \subset f^{-1}(Y)$ .

**Proposição 1.8.** Seja  $f: A \to B$  uma função bijetiva e  $X,Y \subset B$ . Temos  $f^{-1}(X) = f^{-1}(Y) \iff X = Y$ .

Proof. Se X = Y é direto. Supondo  $f^{-1}(X) = f^{-1}(Y)$ . Se  $x \in X$ , existe  $a \in A$  tal que f(a) = x. Logo  $a \in f^{-1}(X)$ . Portanto  $a \in f^{-1}(Y)$ . Logo  $x = f(a) \in Y$ . Temos  $x = f(a) \in X \implies x = f(a) \in Y$ . Para  $y \in Y$  é análogo. Logo temos X = Y.

**Proposição 1.9.** Se existe a bijeção  $f: a \to X$ , então X = b para algum b.

*Proof.* Seja  $b = f(a) \in X$ . Seja  $c \in X$ . Como f é sobrejetiva, existe  $k \in \{a\}$  tal que f(k) = c. Temos obrigatoriamente que k = a, logo b = f(a) = c. Logo  $X = \{b\}$ .

## 2 Conjuntos Finitos e Infinitos

#### 2.1 Números naturais

Temos como conceitos primitivos o conjunto dos naturais, denotado por  $\mathbb{N}$ , cujos elementos são os números naturais, e uma função  $s: \mathbb{N} \to \mathbb{N}$ . Para cada  $n \in \mathbb{N}$ , o número s(n) é o sucessor de n. Temos os axiomas:

**Axioma 1.**  $s: \mathbb{N} \to \mathbb{N}$  é injetiva.

**Axioma 2.**  $\mathbb{N} - s(n) = \{1\}$ . Ou seja, só existe um número natural que não é sucessor de nenhum outro, e ele é denotado por 1.

Proposição 2.1. Todo natural diferente de 1 possui um antecessor.

*Proof.* Seja  $n \neq 1$  um número natural. Suponha que não exista  $n_0$  natural com  $s(n_0) = n$ . Logo  $n \notin s(\mathbb{N})$ . Logo  $n \in \mathbb{N} - s(n)$ . Mas  $\mathbb{N} - s(n) = \{1\}$ . Logo n = 1. Contradição. Logo existe  $n_0 \in \mathbb{N}$  tal que  $s(n_0) = n$ .

Observação 2.1. Observe que a função  $s: \mathbb{N} \to \mathbb{N} \setminus \{1\}$  é injetiva por definição e sobrejetiva pela proposicao 2.1, logo é uma bijeção entre um subconjunto dos naturais com os naturais.

**Axioma 3** (Princípio de indução). Se  $X \subset \mathbb{N}$  é um subconjunto tal que:

$$\begin{cases} 1 \in X \\ n \in X \implies s(n) \in X \end{cases}$$

 $Ent\tilde{ao} \ \mathbb{N} = X.$ 

**Definição 2.1** (Soma). Dados  $m, n \in \mathbb{N}$ , sua soma m + n é definida como:

$$m+n := s^n(m)$$
.

A soma deve obedecer

$$m+1 = s(m) \tag{1}$$

$$m + s(n) = s(m+n) \tag{2}$$

para todos os m, n naturais.

Observação 2.2. Dedekind prova o "Teorema da Definição por Indução" para garantir que a notação  $s^n(m)$  faça sentido.

**Proposição 2.2** (Associatividade da Soma). Para todos  $p, m, n \in \mathbb{N}$ , temos m + (n + p) = (m + n) + p.

*Proof.* Seja  $X=\{p\in\mathbb{N}\mid \forall m,n\in\mathbb{N}: m+(n+p)=(m+n)+p\}$ . Da definição de adição, temos pra qualquer m,n que n+1=s(n), logo  $m+(n+1)=m+s(n)=s(m+n)=(m+n)+1\implies m+(n+1)=(m+n)+1$ . Logo  $1\in X$ . Se  $p\in X$ , temos m+(n+p)=(m+n)+p. Logo

$$m + (n + s(p)) = m + s(n + p)$$
$$= s (m + (n + p))$$
$$= s ((m + n) + p)$$
$$= (m + n) + s(p).$$

Logo  $p\in X\implies s(p)\in X.$  Temos que  $X=\mathbb{N}$  pelo princípio de indução. Logo a soma é associativa nos naturais.

**Lema 1** (Comutatividade da soma com o 1). Para todo  $m \in \mathbb{N}$ , temos m+1=1+m.

*Proof.* Seja  $X=\{m\in\mathbb{N}\ | m+1=1+m\}$ . Temos  $1\in X$ , pois 1+1=1+1. Supondo  $m\in X$ , logo m+1=1+m. Temos

$$1 + s(m) = s(1 + m)$$
$$= s(m + 1)$$
$$= (m + 1) + 1$$
$$= s(m) + 1$$

Como  $m \in X \implies s(m) \in X \text{ e } 1 \in X, \text{ temos } X = \mathbb{N}.$ 

**Proposição 2.3** (Comutatividade da soma). Para todos  $m, n \in \mathbb{N}$ , temos m + n = n + m.

*Proof.* Seja  $X = \{m \in \mathbb{N} \mid \forall n \in \mathbb{N} : m+n=n+m\}$ . Temos  $1 \in X$  pelo Lema

1. Supondo  $m \in X$ , logo m+n=n+m para todo  $n \in \mathbb{N}.$  Temos

$$n + s(m) = s(n + m)$$

$$= s(m + n)$$

$$= (m + n) + 1$$

$$= 1 + (m + n)$$

$$= (1 + m) + n$$

$$= (m + 1) + n$$

$$= s(m) + n$$

Como 1 <br/>  $\in X$ e  $m \in X \implies s(m) \in X,$ temos  $X = \mathbb{N}$ pelo princípio de indução.<br/>  $\Box$ 

**Proposição 2.4** (Lei do corte). Para todos  $m, n, p \in \mathbb{N}$ , temos  $m + n = m + p \implies n = p$ .

*Proof.* Seja  $X=\{m\in\mathbb{N}\mid \forall n\in\mathbb{N}\ \forall p\in\mathbb{N}: m+n=m+p \Longrightarrow n=p\}$ . Temos  $1\in X$  pois  $1+n=1+p \Longrightarrow n+1=p+1 \Longrightarrow s(n)=s(p) \Longrightarrow n=p$  pela injetividade de s. Supondo  $m\in X$ , temos  $m+n=m+p \Longrightarrow n=p$  para todos n,p naturais. Temos

$$s(m) + n = s(m) + p \implies$$
  
 $n + s(m) = p + s(m) \implies$   
 $s(n + m) = s(p + m) \implies$   
 $n + m = p + m \implies$   
 $m + n = m + p \implies$ 

$$n = p$$
.

Logo  $s(m)+n=s(m)+p \implies n=p$ . Como  $1\in X$  e  $m\in X \implies s(m)\in X$ , temos  $X=\mathbb{N}$  pelo princípio de indução.

**Lema 2** (Não existem ciclos nos naturais). Para todos  $m, p \in \mathbb{N}$ , temos  $m \neq m + p$ .

*Proof.* Suponha que m=m+p com  $m,p\in\mathbb{N}$ . Logo  $s(m)=s(m+p)\Longrightarrow m+1=(m+p)+1\Longrightarrow m+1=m+(p+1)\Longrightarrow 1=p+1\Longrightarrow s(p)=1$ . Como 1 não é sucessor de nenhum natural, temos uma contradição. Logo  $m\neq m+p$  para todos naturais m,p.

**Lema 3** (Unicidade da Tricotomia). Dados dois naturais m e n, apenas uma das 3 possibilidades ocorre:

$$\begin{cases} m = n \\ \exists p \in \mathbb{N} : m = n + p \\ \exists q \in \mathbb{N} : n = m + q \end{cases}$$

*Proof.* Pelo lema 2, se m=n, não podemos ter m=n+p=m+p ou n=m+q=n+q para algum  $p,q\in\mathbb{N}$ . Se  $\exists p\in\mathbb{N}: m=n+p$ , não podemos ter m=n pelo lema 2 e não podemos ter  $\exists q\in\mathbb{N}: n=m+q$ , pois teríamos  $m=n+p=(m+q)+p=m+(q+p) \implies m=m+(q+p)$ , que contradiz o lema 2.

**Proposição 2.5** (Tricotomia). Dados dois naturais m e n, exatamente uma das 3 possibilidades ocorre:

$$\begin{cases} m = n \\ \exists p \in \mathbb{N} : m = n + p \end{cases}$$
$$\exists q \in \mathbb{N} : n = m + q$$

*Proof.* Seja  $X = \{m \in \mathbb{N} | \forall n \in \mathbb{N} : (m = n) \lor (\exists p \in \mathbb{N} : m = n + p) \lor (\exists q \in \mathbb{N} : n = m + q) \}$ , ou seja: o conjunto dos números naturais que satisfazem pelo menos uma das condições da tricotomia para todo n.

 $1 \in X$ , pois dado  $n \in \mathbb{N}$ , temos n = 1 ou  $n \neq 1$ . Se n = 1, temos m = 1 = n. Se  $n \neq 1$ , como  $\mathbb{N} - s(\mathbb{N}) = \{1\}$ , temos que existe um  $n_0 \in \mathbb{N}$  tal que  $s(n_0) = n$ . Logo  $n = n_0 + 1 \implies \exists q : n = q + 1 = q + m$ .

Supondo  $m \in X$ . Dado  $n \in \mathbb{N}$ , se m = n, temos s(m) = s(n) = n + 1, logo  $\exists p \in \mathbb{N} : s(n) = n + p$ . Se  $\exists p \in \mathbb{N} : m = n + p$ , temos s(m) = s(n + p) = (n + p + 1) = n + s(p), logo  $\exists p' \in \mathbb{N} : s(n) = n + p'$ . Se  $\exists q \in \mathbb{N} : n = m + q$  com q = 1, temos n = m + 1 = s(m). Se  $\exists q \in \mathbb{N} : n = m + q$  com  $q \neq 1$ , existe  $q_0 \in \mathbb{N}$  tal que  $s(q_0) = q$ , logo temos  $n = m + q = m + s(q_0) = m + (q_0 + 1) = m + 1 + q_0 = s(m) + q_0 \implies \exists q' \in \mathbb{N} : n = s(m) + q'$ .

Como  $1 \in X$  e  $m \in X \implies s(m) \in X$ , temos  $X = \mathbb{N}$ . Logo para todo par  $m, n \in \mathbb{N}$ , pelo menos uma das condições da tricotomia ocorre. Pelo lema 3, apenas uma das possbilidades ocorre.

### Definição 2.2 (<).

$$m < n \iff \exists p \in \mathbb{N} : n = m + p$$

Dados m, n naturais, dizemos que m é menor que n ( m < n) quando existe  $p \in \mathbb{N}$  tal que n = m + p.

**Proposição 2.6.** Temos 1 < n para todo  $1 \neq n \in \mathbb{N}$ .

*Proof.* Como  $n \neq 1$ , temos pela proposição que n possui um antecessor. Logo existe  $n_0$  tal que  $s(n_0) = n \implies n = 1 + n_0$ . Logo 1 < n.

Definição 2.3 ( $\leq$ ).

$$m \le n \iff (m = n) \lor (m < n)$$

**Proposição 2.7** (Transitividade da relação <).  $m < n \land n < p \implies m < p$ 

Proof. Se m < n e n < p, temos n = m + q e p = n + r para algum par  $q, r \in \mathbb{N}$ . Logo p = n + r = (m + q) + r = m + (q + r). Logo m < p.

**Proposição 2.8** (Tricotomia da relação <). Dados  $m, n \in \mathbb{N}$ , exatamente uma das afirmações ocorre: m = n, ou m < n, ou n < m.

Proof. Segue diretamente da proposição 2.5.

#### Proposição 2.9.

$$p \le q \land q \le p \iff p = q$$

*Proof.* Supondo p = q, temos  $p \le q$  e  $q \le p$ .

Supondo  $p \le q \land q \le p$ . Se p=q, acabou a demonstração. Supondo  $p \ne q$ . Logo devemos ter p < q e q < p (contradição). Logo devemos ter p=q.

Proposição 2.10. Dados m, n, p naturais, temos

$$m + p < n + p \implies m < n$$
.

*Proof.* Temos  $m+p < n+p \implies \exists q \in \mathbb{N} : n+p = (m+p)+q \implies \exists q \in \mathbb{N} : n=m+q \implies m < n.$ 

#### Lema 4.

$$m < n + 1 \iff m < n$$

Proof. Supondo m < n+1. Logo existe  $q \in \mathbb{N}$  tal que n+1=m+q. Se q=1, temos  $n+1=m+1 \implies n=m \implies m \le n$ . Se  $q \ne 1$ , existe  $q_0$  tal que  $s(q_0)=q$ . Logo  $n+1=m+s(q_0)=m+q_0+1 \implies n=m+q_0 \implies m < n \implies m \le n$ .

Se  $m \le n$ , temos  $m \le n < n+1 \implies m < n+1$ .

**Definição 2.4** (Multiplicação). Para todo  $m \in \mathbb{N}$ , seja  $f_m : \mathbb{N} \to \mathbb{N}$  que associa cada  $p \in \mathbb{N}$  a  $f_m(p) = m + p$ . Dados  $m, n \in \mathbb{N}$ , o produto entre naturais satisfaz  $m \cdot 1 = m$  e  $m \cdot (n+1) = (f_m)^n(m)$ .

Lema 5 (Distributiva do sucessor).

$$m \cdot (n+1) = mn + m$$

Proof. Se n = 1, temos  $m \cdot (1+1) = (f_m)^1(m) = f_m(m) = m+m = m \cdot 1 + m$ . Se  $n \neq 1$ , existe  $n_0 \in \mathbb{N}$  tal que  $s(n_0) = n$ . Logo temos  $m \cdot (n+1) = (f_m)^n(m) = (f_m)^{s(n_0)}(m) = f_m((f_m)^{n_0}(m)) = f_m(m(n_0+1)) = f_m(m \cdot n) = mn + m$ .

Proposição 2.11 (Distributiva à esquerda).

$$m \cdot (n+p) = mn + mp$$

*Proof.* Seja  $X=\{p\in\mathbb{N}|\forall m,n\in\mathbb{N}:n\cdot(m+p)=nm+np\}$ . Temos  $1\in X$  pelo lema 2.1. Supondo  $p\in X$ . Temos

$$n \cdot (m + s(p)) = n \cdot ((m + p) + 1)$$

$$= n \cdot (m + p) + n$$

$$= nm + np + n$$

$$= nm + n(p + 1)$$

$$= nm + n \cdot s(p)$$

Como  $p \in X \implies s(p) \in X$  e  $1 \in X$ , temos  $X = \mathbb{N}$ .

Proposição 2.12 (Distributiva à direita).

$$(m+n) \cdot p = mp + np$$

*Proof.* Seja  $X = \{p \in \mathbb{N} | \forall m, n \in \mathbb{N} : (m+n) \cdot p = mp + np \}$ . Temos  $1 \in X$ ,

pos 
$$(m+n)\cdot 1=m+n=m\cdot 1+n\cdot 1$$
 . Supondo  $p\in X$ . Temos 
$$(m+n)\cdot s(p)=(m+n)\cdot (p+1)$$
 
$$=(m+n)\cdot p+(m+n)$$
 
$$=mp+np+m+n$$
 
$$=mp+m+np+n$$
 
$$=m(p+1)+n(p+1)$$
 
$$=m\cdot s(p)+n\cdot s(p)$$

Como  $p \in X \implies s(p) \in X$  e  $1 \in X$ , temos  $X = \mathbb{N}$ .

Proposição 2.13 (Associatividade).

$$m \cdot (n \cdot p) = (m \cdot n) \cdot p$$

*Proof.* Seja  $X=\{p\in\mathbb{N}|\forall m,n\in\mathbb{N}:m\cdot(n\cdot p)=(m\cdot n)\cdot p\}$ . Temos  $m\cdot(n\cdot 1)=m\cdot n=(m\cdot n)\cdot 1,$  logo  $1\in X.$ 

Supondo  $p \in X$ . Temos

$$m \cdot (n \cdot s(p)) = m \cdot (n \cdot (p+1))$$

$$= m \cdot (n \cdot p + n)$$

$$= m \cdot (n \cdot p) + m \cdot n$$

$$= (m \cdot n) \cdot p + (m \cdot n)$$

$$= (m \cdot n) \cdot (p+1)$$

$$= (m \cdot n) \cdot s(p)$$

Como  $p \in X \implies s(p) \in X$  e  $1 \in X$ , temos  $X = \mathbb{N}$ .

Lema 6 (Comutatividade com 1).

$$m\cdot 1=1\cdot m$$

*Proof.* Seja  $X=\{m\in\mathbb{N}|m\cdot 1=1\cdot m\}$ . Temos  $1\cdot 1=1\cdot 1,$  logo  $1\in X.$  Supondo  $m\in X.$  Temos

$$s(m) \cdot 1 = (m+1) \cdot 1$$

$$= m+1$$

$$= m \cdot 1 + 1 \cdot 1$$

$$= 1 \cdot m + 1 \cdot 1$$

$$= 1 \cdot (m+1)$$

$$= 1 \cdot s(m)$$

Como  $m \in X \implies s(m) \in X$  e  $1 \in X$ , temos  $X = \mathbb{N}$ .

Proposição 2.14 (Comutatividade).

$$m \cdot n = n \cdot m$$

*Proof.* Seja  $X=\{n\in\mathbb{N}|\forall m\in\mathbb{N}:\ m\cdot n=n\cdot m\}$ . Temos  $1\in X$  pelo lema 6. Supondo  $n\in X$ . Temos

$$m \cdot s(n) = m \cdot (n+1)$$

$$= mn + m \cdot 1$$

$$= nm + 1 \cdot m$$

$$= (n+1) \cdot m$$

$$= s(n) \cdot m$$

Como  $p \in X \implies s(p) \in X$  e  $1 \in X$ , temos  $X = \mathbb{N}$ .

Proposição 2.15 (Monotonicidade).

$$m < n \implies mp < np$$

*Proof.* Supondo m < n. Logo n = m + q com  $q \in \mathbb{N}$ . Logo np = (m + q)p = mp + qp. Como  $qp \in \mathbb{N}$ , temos mp < np.

Proposição 2.16 (Lei do cancelamento).

$$mp < np \implies m < n$$

Proof. Supondo mp < np. Pela tricotomia, temos  $n < m,\, m=n,$  ou m < n. Se n < m, temos np < mp (contradição). Se m=n, temos mp=np (contradição). Logo devemos ter m < n.

**Definição 2.5** (Elemento Mínimo). Dado  $X \subset \mathbb{N}$ , dizemo que  $p \in X$  é o menor elemento (ou elemento mínimo) de X se  $\forall n \in X : p \leq n$ .

Observação 2.3. Como  $\forall n \in \mathbb{N} : 1 \leq n$ , temos que  $1 \in X$  implica 1 menor elemento de X.

**Proposição 2.17.** O elemento mínimo de um conjunto  $X \subset \mathbb{N}$ , quando existir, é unico.

*Proof.* Suponha que dado um conjunto  $X \subset \mathbb{N}$ , existam  $p,q \in X$  elementos mínimos. Logo  $p \leq q$  e  $q \leq p$ . Logo p = q.

**Definição 2.6** (Maior elemento). Dado  $X \subset \mathbb{N}$ , dizemo que  $p \in X$  é o maior elemento (ou elemento máximo) de X se  $\forall n \in X : p \geq n$ .

Proposição 2.18. Os naturais não possuem maior elemento.

*Proof.* Suponha que  $x \in \mathbb{N}$  seja o maior elemento de  $\mathbb{N}$ . Teríamos  $s(x) \in \mathbb{N}$  e x < s(x) (contradição). Logo os naturais não possuem maior elemento.

**Proposição 2.19.** O elemento máximo de um conjunto  $X \subset \mathbb{N}$ , quando existir, é unico.

Definição 2.7  $(I_n)$ .

$$I_n := \{ x \in \mathbb{N} \mid x \le n \}$$

Lema 7.

$$I_{n+1} = I_n \cup \{n+1\}$$

Proof.

$$x \in I_{n+1} \iff$$

$$x \le n+1 \iff$$

$$x < n+1 \lor x = n+1 \iff$$

$$x \le n \lor x = n+1 \iff$$

$$x \in I_n \lor x \in \{n+1\} \iff$$

$$x \in I_n \cup \{n+1\}$$

**Teorema 1** (Princípio da boa Ordenação). Todo subconjunto  $A \neq \emptyset$  dos naturais admite menor elemento.

*Proof.* Dado  $A \subset \mathbb{N}$  não vazio. Se  $1 \in A$ , temos 1 menor elemento.

Supondo  $1 \notin A$ . Logo  $1 \in \mathbb{N} - A$ . Seja  $X = \{x \in \mathbb{N} \mid I_n \subset \mathbb{N} - A\}$ . Como  $1 \in \mathbb{N} - A$ , temos  $I_1 = \{1\} \subset \mathbb{N} - A$ , logo  $1 \in X$ . Como A é não vazio, existe  $a \in A$ . Logo  $a \notin \mathbb{N} - A$ . Temos  $a \leq a \implies a \in I_a$ . Logo  $I_a \notin \mathbb{N} - A$ . Logo  $a \notin X$ . Temos  $1 \in X$  e  $X \neq \mathbb{N}$ , logo o axioma da indução deve falhar. Logo deve existir  $n \in X$  com  $n + 1 = s(n) \notin X$ .

Afirmo que n+1 é o menor elemento de A. Como  $n \in X$ , temos  $I_n \subset \mathbb{N} - A$ , logo  $x \leq n \implies x \in \mathbb{N} - A$ . Como  $n+1 \not\in X$ , temos  $I_{n+1} \not\subset \mathbb{N} - A$ . Logo existe um  $m \in I_{n+1}$  com  $m \not\in \mathbb{N} - A \implies m \in A$ . Observe que  $m \in I_{n+1} \implies m \leq n+1 \implies m=n+1 \lor m < n+1$ . Se m < n+1, temos pelo Lema 4 que  $m \leq n$ , que implica  $m \in I_n$ , logo  $m \in \mathbb{N} - A$  (contradição). Logo devemos ter m = n+1. Temos portanto que  $n+1 \in A$ .

Suponha que exista  $p \in A$  tal que p < n + 1. Teríamos  $p \le n \implies p \in I_n \implies p \in \mathbb{N} - A \implies p \notin A$ . Contradição. Logo temos  $n + 1 \le p$  para todo  $p \in A$ . Logo n + 1 é o menor elemento de A.

**Teorema 2** (Indução completa). Seja  $X \subset \mathbb{N}$  tal que  $(\forall m \in \mathbb{N} : m < n \implies m \in X) \implies n \in X$ . Então  $X = \mathbb{N}$ 

*Proof.* Temos  $1 \in X$ , pois  $1 \notin X$  implicaria na existência de um m < 1 com  $m \notin X$ . Supondo  $X \neq \mathbb{N}$  e  $A = \mathbb{N} - X$ . Como  $X \neq \mathbb{N}$ , temos  $A \neq \emptyset$ . Logo A possui um menor elemento  $a \in A$ . Se  $p \in \mathbb{N}$  com p < a, então  $p \notin A$ , logo  $p \in X$ . Como  $\forall p \in \mathbb{N} : p < a \implies p \in X$ , temos  $a \in X$ . Contradição. Logo A é vazio. Logo  $X = \mathbb{N}$ . □

# 3 Conjuntos Finitos e Infinitos

**Definição 3.1** (Conjuntos finitos). Um conjunto X é finito quando for vazio ou quando existir para algum  $n \in \mathbb{N}$  uma bijeção  $\phi: I_n \to X$ 

**Definição 3.2** (Tamanho de um conjunto). Dado um conjunto finito. Dizemos que ele tem zero elementos se for vazio e que ele tem n elementos se tiver bijeção com  $I_n$ .

Observação 3.1. O conjunto  $I_n$  é finito e possui n elementos.

Observação 3.2. Denota-se |A| como o tamanho do conjunto A.

**Proposição 3.1.** Se  $f: X \to Y$  é uma bijeção, então X é finito se, e somente se, Y for finito.

*Proof.* Se X for finito, então existe um bijeção  $\phi:I_n\to X$ . A composição  $(\phi\circ f):I_n\to Y$  é uma bijeção, logo Y é finito. O caso Y finito é análogo.  $\square$ 

**Teorema 3.** Seja  $A \subset I_n$  não vazio. Se exite uma bijeção  $f: I_n \to A$ , então  $A = I_n$ .

Proof. Seja  $X = \{n \in \mathbb{N} \mid \forall A \subset I_n : \text{(Existe uma bijeção } f : I_n \to A) \implies A = I_n\}$ . Temos  $1 \in X$ , pois  $I_1 = \{1\}$  e  $A \subset I_1 \implies A = \{1\} = I_1$ . Supondo  $n \in X$ . Seja  $A \subset I_{n+1}$  com uma bijeção  $f : I_{n+1} \to A$ . Restringindo f a  $I_n$ , obtemos  $f' : I_n \to A - \{f(n+1)\}$ , que é uma bijeção pela proposição 1.5.

Se  $A - \{f(n+1)\} \subset I_n$ , temos por  $n \in X$  que  $A - \{f(n+1)\} = I_n$ . Como o contra-domínio de f é A e  $A \subset I_{n+1}$ , temos que  $f(n+1) \in A \implies f(n+1) \in I_{n+1} \implies f(n+1) \in I_n \vee f(n+1) \in \{n+1\}$ . Se  $f(n+1) \in I_n$ , temos  $f(n+1) \notin A - \{f(n+1)\}$ , logo  $A - \{f(n+1)\} \neq I_n$  (contradição). Logo temos f(n+1) = n+1. Logo  $f(n+1) = n+1 \in A$ . Como  $A - \{n+1\} = A - \{f(n+1)\} = I_n$ , temos  $(A - \{n+1\}) \cup \{n+1\} = I_n \cup \{n+1\} \implies A \cup \{n+1\} = I_{n+1} \implies A = I_{n+1}$ . Logo temos  $A = I_{n+1}$ .

Se  $A - \{f(n+1)\} \not\subset I_n$ . Logo existe  $a \in A$  tal que  $a \not\in I_n$  e  $a \neq f(n+1)$ . Mas  $A \subset I_{n+1}$ . Logo  $a \in I_{n+1} = I_n \cup \{n+1\}$ . Logo devemos ter a = n+1. Como f é sobrejetiva, existe  $m \in I_{n+1}$  tal que f(m) = n+1. Definindo a função

$$g: I_{n+1} \to A, \text{ como } g(x) = \begin{cases} f(x), & x \neq f(n+1) \land x \neq n+1 \\ n+1, & x=n+1 \\ f(n+1), & x=m \end{cases}$$
. Temos  $g(x) = \begin{cases} f(x), & x \neq f(n+1) \land x \neq n+1 \\ f(n+1), & x=m \end{cases}$ .

uma bijeção. Logo a restrição  $g': I_n \to A - \{g(n+1)\}$  é uma bijeção com  $A - \{g(n+1)\} \subset I_n$ . Portanto temos  $A - \{g(n+1)\} = I_n$  com  $A = I_{n+1}$ .  $\square$ 

**Proposição 3.2.** Se existe uma bijeção  $f: I_n \to I_m$ , então  $I_m = I_n$ .

Proof. Se  $m \leq n$ , então existe uma bijeção  $f: I_n \to I_m$  com  $I_m \subset I_n$ . Logo pelo teorema anterior, temos  $I_m = I_n$ . Se n > m, temos a bijeção  $f^{-1}: I_m \to I_n$  com  $I_n \subset I_m$ . Logo pelo teorema anterior  $I_m = I_n$ .

**Proposição 3.3.** Não existe uma bijeção  $f: X \to Y$  entre um conjunto finito X e uma parte própia  $Y \subset X$ .

Proof. Como X é finito, existe uma bijeção  $g:I_n\to X$ . Suponha que exista uma bijeção  $f:X\to Y$ . Como Y é parte própria, existe um  $x\in X-Y$ . Tome  $A=g^{-1}(Y)\subset g^{-1}(X)=I_n$ . Temos  $g^{-1}(x)\not\in A$ , logo A é uma parte própria de  $I_n$ . Queremos achar uma bijeção  $h:I_n\to A$ . Restringindo g a A, obtendo a bijeção  $g':A\to Y$ . Definindo a bijeção  $h=(g')\circ f\circ g:I_n\to A$ . Pelo teorema 3, temos que  $A=I_n$ . Uma contradição, pois A é parte própria de  $I_n$ . Logo não existe bijeção entre um conjunto finito X e uma parte própria  $Y\subset X$ .

Lema 8. Todo subconjunto A de  $I_n$  é finito e temos  $|A| \leq n$ 

*Proof.* Seja  $X = \{n \in \mathbb{N} \mid A \subset I_n \implies A \text{ finito } \land |A| \le n\}$ . Temos  $1 \in X$ , pois os subconjuntos de  $I_1 = \{1\}$  são  $\{\}$  e  $\{1\} = I_1$ , ambos finitos.

Suponha  $n \in X$ . Seja  $A \subset I_{n+1} = I_n \cup \{n+1\}$ . Se  $n+1 \notin A$ , então temos  $A \subset I_n$ . Pela hipótese de indução, temos A finito e  $|A| \le n < n+1$ .

Supondo  $n+1 \in A$ . Se  $A=\{n+1\}$ , temos A finito e  $|A|=1 \le n$ . Supondo  $A \ne \{n+1\}$ , temos  $B=A-\{n+1\}\ne \emptyset$  e  $B\subset I_n$ . Logo B é finito e temos

 $k = |B| \le n$ . Como B é finito, existe a bijeção  $f: I_k \to B$ . Definindo a bijeção  $f': I_{k+1} \to A$  pondo f'(x) = f(x) para  $x \in I_n$  e f(k+1) = n+1. Logo A é finito e temos  $|A| = k+1 \le n+1$ .

**Lema 9.** Seja  $A \subset I_n$ . Temos  $|A| = n \iff A = I_n$ .

*Proof.* Se |A| = n, existe a bijeção  $f: I_n \to A$ , com  $A \subset I_n$ , logo  $A = I_n$ .

**Teorema 4.** Todo subconjunto Y de um conjunto finito X é finito  $e |Y| \le |X|$ ,  $com |Y| = |X| \iff X = Y$ .

*Proof.* Se X é finito, existe uma bijeção  $f: I_n \to X$ . Seja  $A = f^{-1}(Y) \subset I_n$  e seja a bijeção  $f': A \to Y$  a restrição de f a A. Como  $A \subset I_n$ , temos A finito e  $|A| \le n$ . Logo Y é finito e  $|Y| = |A| \le n$ . Temos  $|Y| = |A| = n = |X| \iff |A| = I_n$ . Logo  $f^{-1}(Y) = I_n = f^{-1}(X)$ . Logo X = Y.

**Proposição 3.4.** Seja  $f: X \to Y$  uma função injetiva. Se Y é finito, então X é finito  $e |X| \le |Y|$ .

*Proof.* Como existe a injeção  $f: X \to Y$ , temos a bijeção  $f': X \to f(X)$ , com  $f(X) \subset Y$ . Como Y é finito, temos f(X) finito e  $|f(X)| \leq Y$ . Como existe a bijeção  $f': X \to f(X)$ , temos  $|X| = |f(X)| \leq Y$ .

**Proposição 3.5.** Seja  $f: X \to Y$  uma função sobrejetiva. Se X é finito, então Y é finito  $e |Y| \leq |X|$ .

*Proof.* Como f é sobrejetiva, ela admite inversa à direita. Seja  $g: Y \to X$  a inversa à direita de f. Se g(y) = g(y'), temos f(g(y)) = f(g(y')), logo y = y'. Logo g é injetiva. Pela proposição anterior, temos Y finito com  $|Y| \le |X|$ .  $\square$ 

Definição 3.3 (Conjunto infinito). Um conjunto é infinito quando não for finito.

Observação 3.3. A função sucessor com o contradomínio reduzido é uma bijeção entre uma parte dos naturais com os naturais:

$$s: \mathbb{N} \to \mathbb{N} - \{1\}$$

Logo os naturais são infinitos.

**Definição 3.4** (Conjunto limitado). Um conjunto  $X\subset \mathbb{N}$  é limitado quando existe  $p\in \mathbb{N}$  tal que  $\forall n\in \mathbb{X}: n\leq p$ .

**Teorema 5.** Seja  $X \subset \mathbb{N}$ . As seguintes afirmações são equivalentes:

- X é finito.
- X é limitado.
- X possui maior elemento.

*Proof.* (a)  $\Longrightarrow$  (b)

Seja  $A = \{n \in \mathbb{N} \mid |X| = n \Longrightarrow X \text{ limitado } \}$ . Se |X| = 1, temos que  $X = \{a\}$  para algum  $a \in \mathbb{N}$ . Logo X é limitado pelo a, pois  $a \le a$ . Supondo  $n \in X$ . Seja |X| = n+1. Logo existe uma bijeção  $f: I_{n+1} \to X$ . Tomando a bijeção  $f': I_n \to X - \{f(n+1)\}$ . Logo  $X - \{f(n+1)\}$  tem tamanho n. Pela hipótese de indução, temos  $X - \{f(n+1)\}$  limitado por um  $p \in \mathbb{N}$ , ou seja:  $\forall t \in X - \{f(n+1)\}$ :  $t \le p$ . Se  $f(n+1) \le p$ , temos que p limita X. Se  $p \le f(n+1)$ , temos para todo  $t \in X - \{f(n+1)\}$  que  $t \le p \le f(n+1)$  e  $f(n+1) \le f(n+1)$ , logo f(n+1) limita X.

Como  $1 \in A$  e  $n \in A \implies n+1 \in A$ , temos  $A = \mathbb{N}$ 

(a)  $\implies$  (b) [Outra forma]

Seja  $X = \{x_1, x_2, \dots x_n\}$ , defina  $a = x_1 + x_2 + \dots x_n$ . Temos  $x \leq a$  para todo  $x \in X$ , logo X é limitado.