Combinational Logic Design

- Introduction
- Boolean Equations
- Boolean Algebra
- From Logic to Gates
- From Gates to Transistors
- X's and Z's
- Karnaugh Maps
- Combinational Building Blocks
- Timing

Chap 2

Introduction

- A logic circuit is composed of :
 - Inputs
 - Outputs
 - Functional specification
 - Timing specification
- Types of Logic Circuits
 - Combinational Logic
 - » Memoryless
 - » Outputs determined by current values of inputs
 - Sequential Logic
 - » Has memory
 - » Outputs determined by previous and current values of inputs

Nodes

- Inputs: A, B, C
- Outputs: Y, ZInternal: n1

Circuit elements

- E1, E2, E3
- Each a circuit

Example of combinational composition

- Every element is combinational
- Every node is either an input or connects to exactly one output
- The circuit contains no cyclic paths

Boolean Equations

- Functional specification of outputs in terms of inputs
- Some definitions
 - Complement : variable with a bar over it » A, B, C
 - **Literal**: variable or its complement » A, \overline{A} , B, \overline{B} , C, \overline{C}
 - Implicant : product of literals
 » ABC, AC, BC
 - Minterm: product that includes all input variables
 » ABC, ABC, ABC

• Sum-of-Products (SOP) Form

- All equations can be written in SOP form
- Each row has a minterm
- A minterm is a product (AND) of literals
- Each minterm is TRUE for that row (and only that row)
- Form function by ORing minterms where output is 1
- Thus, a sum (OR) of products (AND terms)

	Λ	B	V	minterm	minterm
_	<u>A</u>	В	Y	IIIIIIII	name
	0	0	0	$\overline{A} \overline{B}$	m_0
	0	1	1	$\overline{\mathtt{A}}$ B	m_1
	1	0	0	$A\overline{B}$	m_2
	1	1	1	АВ	m_3

$$Y = F(A, B) = \overline{AB} + AB = \Sigma(1, 3)$$

Boolean Algebra

- Axioms and theorems to **simplify** Boolean equations
- Like regular algebra, but simpler: variables have only two values (1 or 0)
- **Duality** in axioms and theorems:
 - ANDs and ORs, 0's and 1's interchanged

Axioms

Number	Axiom	Dual	Name
A1	B = 0 if B ≠ 1	B = 1 if B ≠ 0	Binary Field
A2	0 = 1	1 = 0	NOT
A3	0 • 0 = 0	1 + 1 = 1	AND/OR
A4	1 • 1 = 1	0 + 0 = 0	AND/OR
A5	0 • 1 = 1 • 0 = 0	1+0=0+1=1	AND/OR

• Theorems of One Variable

Number	Theorem	Dual	Name
T1	B • 1 = B	B + 0 = B	Identity
T2	B • 0 = 0	B + 1 = 1	Null Element
T3	B • B = B	B + B = B	Idempotency
T4	<u>■</u> = B		Involution
T5	$B \bullet \overline{B} = 0$	$B + \overline{B} = 1$	Complements

$$\begin{bmatrix} B \\ 0 \end{bmatrix}$$
 $=$ B

• Theorems of Several Variables

#	Theorem	Dual	Name
Т6	$B \bullet C = C \bullet B$	B+C = C+B	Commutativity
T7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	(B + C) + D = B + (C + D)	Associativity
T8	$B \bullet (C + D) = (B \bullet C) + (B \bullet D)$	B + (C•D) = (B+C) (B+D)	Distributivity
Т9	B • (B+C) = B	B + (B•C) = B	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	$(B+C) \bullet (B+\overline{C}) = B$	Combining
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D) =$ $(B \bullet C) + (\overline{B} \bullet D)$	$(B+C) \bullet (\overline{B}+D) \bullet (C+D) =$ $(B+C) \bullet (\overline{B}+D)$	Consensus

• Prove

- Example: T9 - Covering

Number	Theorem	Name
Т9	B• (B+C) = B	Covering

» Method 1: Perfect Induction

В	C	(B+C)	B(B+C)
0	0	0	0
0	1	1	0
1	0	1	1
1	1	1	1
		_	Τ

» Method 2: Prove true using other axioms and theorems

$$B \bullet (B+C) = B \bullet B + B \bullet C$$
 T8: Distributivity
= $B + B \bullet C$ T3: Idempotency
= $B \bullet (1 + C)$ T8: Distributivity
= $B \bullet (1)$ T2: Null element
= B T1: Identity

• De Morgan's Theorem

#	Theorem	Dual	Name
T12	$B_0 \bullet B_1 \bullet B_2 \dots =$	0 1 2	DeMorgan's
	$\overline{B}_0 + \overline{B}_1 + \overline{B}_2 \dots$	$B_0 \bullet B_1 \bullet B_2 \dots$	Theorem

•
$$Y = \overline{AB} = \overline{A} + \overline{B}$$

•
$$Y = \overline{A + B} = \overline{A} \cdot \overline{B}$$

• De Morgan's Theorem Examples

$$Y = (A + \overline{BD})\overline{C} \qquad Y = (\overline{ACE} + \overline{D}) + B$$

$$= (\overline{A} + \overline{BD}) + \overline{C} \qquad = (\overline{ACE} + \overline{D}) \cdot \overline{B}$$

$$= (\overline{A} \cdot (\overline{BD})) + C \qquad = (\overline{ACE} \cdot \overline{D}) \cdot \overline{B}$$

$$= (\overline{A} \cdot (BD)) + C \qquad = ((\overline{AC} + \overline{E}) \cdot D) \cdot \overline{B}$$

$$= \overline{ABD} + C \qquad = ((AC + \overline{E}) \cdot D) \cdot \overline{B}$$

$$= (ACD + D\overline{E}) \cdot \overline{B}$$

$$= A\overline{BCD} + \overline{BDE}$$

• Bubble Pushing

- Backward:
 - » Body changes
 - » Adds bubbles to inputs

- Forward:
 - » Body changes
 - » Adds bubble to output

- Rules
 - » Begin at output, then work toward inputs
 - » Push bubbles on final output back
 - » Draw gates in a form so bubbles cancel

Simplifying Equations

- Reducing an equation to the **fewest number of implicants**, where each implicant has the **fewest literals**
- Trial and Error approach
- Examples:

Recall: A' = A

```
Y = A(AB + ABC)
```

= A(AB(1 + C)) T8: Distributivity

= A(AB(1)) T2': Null Element

= A(AB) T1: Identity

= (AA)B T7: Associativity

= *AB* T3: Idempotency

Y = AB'C + ABC + A'BC

= AB'C + ABC + ABC + A'BC T3': Idempotency

= (AB'C+ABC) + (ABC+A'BC) T7': Associativity

= AC + BC T10: Combining

From Logic to Gates

Two-level logic: ANDs followed by ORs

• Example: $Y = \overline{ABC} + A\overline{BC} + A\overline{BC}$

• Example : Priority Circuit

- Don't Cares

A_3	A_2	A_1	A_{o}	Y ₃ 0 0 0 1	Y_2	Y ₁	Y_0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	Χ	0	0	1	0
0	1	X	Χ	0	1	0	0
1	X	X	Χ	1	0	0	0

A_3	A_2	A_1	A_{o}	Y ₃	Y_2	Y ₁	Y_{o}
0	0		0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	0
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0
1	0	1	0	1	0	0	0
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	0
A ₃ 0 0 0 0 0 0 1 1 1 1 1 1	0 0 0 0 1 1 1 0 0 0 1 1 1 1	0 0 1 1 0 0 1 1 0 0 1 1	01010101010101	000000011111111	0 0 0 0 1 1 1 0 0 0 0 0	0 0 1 1 0 0 0 0 0 0 0 0	Y _o 0 1 0 0 0 0 0 0 0 0 0
1	1	1	1	1	0	0	0

From Gates to Transistor

Contention: X

- **Contention**: circuit tries to drive output to 1 and 0
 - Actual value somewhere in between
 - Could be 0, 1, or in forbidden zone
 - Might change with voltage, temperature, time, noise
 - Often causes excessive power dissipation

$$A = 1 - Y = X$$

$$B = 0 - Y = X$$

- Warnings:
 - Contention usually indicates a **bug**.
 - X is used for "don't care" and contention
 - » Look at the context to tell them apart.

Floating: Z

- Floating, high impedance, open, high Z
- Floating output might be 0, 1, or somewhere in between

- Floating nodes are used in tristate busses
 - Many different drivers
 - Exactly one is active at once

Karnaugh Maps (K-Maps)

11

0

0

10

0

0

- Boolean expressions can be minimized by combining terms
- K-maps minimize equations graphically
- PA + PA = P

Α	В	С	Y	Y AL	2	
0	0	0	1		00	01
0	0	1	1	C	00	U 1
0	1	0	0	0	4	_
0	1	1	0	U		0
1	0	0	0	-		
1	0	1	0	4	4	
1	1	0	0	1	1	U
1	1	1	0	L		

Y \ A	В			
C	00	01	11	10
0	ĀĒĈ	ĀBĒ	ABĈ	AĒĈ
1	ĀĒC	ĀBC	ABC	AĒC

$$Y = \overline{AB}$$

- Circle 1's in adjacent squares
- In Boolean expression, include only literals whose true and complement form are not in the circle

• K-Map Rules

- » Every 1 must be circled at least once
- » Each circle must span a power of 2 (i.e. 1, 2, 4) squares in each direction
- » Each circle must be as large as possible
- » A circle may wrap around the edges
- » A "don't care" (X) is circled only if it helps minimize the equation

Example

	Truth Table							
<u>A</u>	В	С	Y					
0	0	0	0					
0	0	1	0					
0	1	0	1					
0	1	1	1					
1	0	0	0					
1	0	1	0					
1	1	0	0					
1	1	1	1					

• Example of K-Map with 4 variables

Α	В	C	D	Y
0	0	0		1
0	0	0	1	0
0	0	1	0	1
0	0 0 0 1 1 1 0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
0 0 0 0 0 0 0 0 1 1 1 1 1 1	0 0 0 1 1	0 0 1 1 0 0 1 1 0 0 1 1 0 0 1	0 1 0 1 0 1 0 1 0 1 0 1	1 0 1 0 1 1 1 1 1 0 0 0 0
1	1	1	1	0

Α	В	С	D	Y
0	0	0	0	1
	0	0	1	0
0	0	1	0	1
0 0 0	0	1	1	1 1 0
0	1	0	0	0
0	1	0	1	
0 0 0	1	1	1	1 1 1 1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1 1 0 0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0 0
1	1	1	0	0
1	1	1	1	0

$$Y = \overline{A}C + \overline{A}BD + A\overline{B}\overline{C} + \overline{B}\overline{D}$$

• Example of K-Map with Don't Cares

Α	В	С	D	Υ
0	0	0	0	1
0	0	0	1	0
0	0	1	1 0	1
0 0	0	1	1	1
0	1	0	0	0
0	1	0	1	X
0	1	1	1	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	X
1	0	1	1	X
1	1	0	0	X
1	1	0	1	X
1	1	1	0	1 0 1 0 X 1 1 1 X X X
1	1	1	1	X

Α	В	С	D	Y
0	0	0	0	1
0 0 0 0 0	0	0	1	0
0	0	1	1 0	l
0	0	1		1 1 0
0	1	0	1 0	0
0	1	0		
0	1	1	1 0	X 1 1 1 X X X X X
0		1	1	1
1 1 1	1 0	0	1	1
1	0	0	1 0	1
1	0	1	0	X
1	0		1	X
1	1	1 0	1 0	X
1	1	0	1	X
1	1	1	0	
1	1	1	1	X

$$Y = A + \overline{B}\overline{D} + C$$

Combinational Building Blocks

- Multiplexer (Mux)
 - Selects between one of N inputs to connect to output
 - log₂N-bit select input control input
 - Multiplexer Implementations
 - » Logic gates
 - » Tristates

Y D ₀	D ₁	01	11	10
0	0	0	1	1
1	0	1	1	0
		$Y = D_0$		

2:1 Mux

S	D_1	D_0	Y	S	Y
0	0	0	0	0	D_0
0	0	1	1	1	D_1
0	1	0	0		
0	1	1	1		
1	0	0	0		
1	0	1	0		
1	1	0	1		
1	1	1	1		

- Logic using Multiplexers
 - Using mux as a lookup table

$$Y = AB$$

- Reducing the size of the mux

Decoder

- N inputs, 2^N outputs
- One-hot outputs : only one output HIGH at once
- Implementation

A_1	A_0	Y_3	Y_2	Y_1	Y_0
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

Logic Using Decoders
OR minterms

Timing

- Propagation & Contamination Delay
 - Propagation delay: t_{pd} = max delay from input to output
 - Contamination delay: t_{cd} = min delay from input to output

Critical (Long) Path: $t_{pd} = 2t_{pd_AND} + t_{pd_OR}$

Short Path: $t_{cd} = t_{cd \text{ AND}}$

• Glitches

- When a single (or more) input change causes an output to change multiple times

• Fixing the glitch

• Glitches don't cause problems because of **synchronous design** conventions (see next chapter)