Homework #7

You are encouraged to work together for this homework.

Problem 1

Mathieu's equation arises in several different ways, for example from separation of the wave equation in elliptical coordinates. It first appeared in celestial mechanics. A standard form is

$$\frac{d^2y}{dt^2} + (a - 2q\cos 2t)y = 0, (1)$$

February 23, 2023

Due: March 2, 2023

where a and q are real constants. We are usually interested in solutions for which y is periodic, with period π or 2π . There exists a countably finite set of eigenvalues $a_n(q)$, $n=0,1,\ldots$, for which y is an even periodic solution, with n zeros in the interval $0 \le t < \pi$. For n even, y has period π ; while for n odd, y has period 2π . There is another set of eigenvalues $b_n(q)$, $n=1,2,\ldots$, for which y is an odd periodic solution, also with n zeros in the interval $0 \le t < \pi$ and with the same periodicity properties as the even solutions. You can see roughly the behavior of the solutions by noting that for q=0 the even solutions are $\cos nt$ and the odd solutions are $\sin nt$, with $a_n=b_n=n^2$.

Compute a_n and b_n for n = 0, 1, 2, 10, 15 with q = 5 and q = 25. Also, plot the eigenfunctions for each case. Your writeup should explain what your strategy is.

Boundary Conditions: First of all, note that all of the even and odd solutions that have period 2π but do not have period π are actually *antiperiodic* in π , that is, $y(t+\pi) = -y(t)$. For a proof of this, see the appendix. Because of this, we need only consider the region $[0,\pi]$. Here is one possible set of boundary conditions (to within an arbitrary multiplicative constant):

	y(0)	y'(0)	$y(\pi)$	$y'(\pi)$
Periodic Even	1	0	1	0
Antiperiodic Even	1	0	-1	0
Periodic Odd	0	1	0	1
Antiperiodic Odd	0	1	0	-1

Alternatively, the antiperiodic solutions can be found, if desired, using the boundary conditions

Even Solutions:
$$y(2\pi) = 1$$
 $y'(2\pi) = 0$
Odd Solutions: $y(2\pi) = 0$ $y'(2\pi) = 1$,

but these boundary conditions are common to both periodic and antiperiodic solutions.

In addition, there is yet another way to write the boundary conditions: Using evenness/oddness and periodicity/antiperiodicity, one can show that $y'(\pi/2) = 0$ for periodic even solutions and antiperiodic odd solutions, and $y(\pi/2) = 0$ for periodic odd solutions and antiperiodic even solutions. Therefore, it is only necessary to integrate up to $\pi/2$ instead of π . The full set of boundary conditions (up to an overall normalization factor) can therefore be written as follows:

Periodic Even	y(0) = 1	y'(0) = 0	$y'(\pi/2) = 0$
Antiperiodic Even	y(0) = 1	y'(0) = 0	$y(\pi/2) = 0$
Periodic Odd	y(0) = 0	y'(0) = 1	$y(\pi/2) = 0$
Antiperiodic Odd	y(0) = 0	y'(0) = 1	$y'(\pi/2) = 0$

Appendix

Let's show that any even solution of Mathieu's equation that is periodic in 2π must be either periodic or antiperiodic in π . (For an odd solution, the proof is similar.)

If y(t) is an even function that has periodicity 2π , its derivative is an odd function with periodicity 2π . Therefore, $y'(0) = y'(2\pi) = 0$. In addition, from oddness and periodicity we have

$$y'(t+\pi) = y'(t-\pi) = -y'(\pi-t) = -y'(-\pi-t).$$
 (2)

Plugging t = 0 into the above relation gives $y'(\pi) = 0$.

Therefore, if one integrates equation 1 from t = 0 to $t = \pi$ with a equal to an eigenvalue and initial conditions y'(0) = 0, y(0) = A, then one will end up with $y'(\pi) = 0$, and $y(\pi)$ will be equal to some number that I'll call B.

Now the crucial point is that if you pick any t, the factor $(a - 2q\cos 2t)$ appearing in Mathieu's equation has the *same value* for $t + \pi$ as it has for t. Because of this, if one integrates from from t = 0 to $t = \pi$ with initial conditions y'(0) = 0, y(0) = A, and if one integrates from $t = \pi$ to $t = 2\pi$ with initial conditions $y'(\pi) = 0$, $y(\pi) = B$, one must have

$$y(t+\pi)/B = y(t)/A \tag{3}$$

for t between zero and π . In other words, y(t) and $y(t+\pi)$ are identical up to a normalization factor.

If we plug $t = \pi$ into this equation, we see that $By(\pi) = Ay(2\pi)$. Since we already know that $y(\pi) = B$ and $y(2\pi) = y(0) = A$, we end up with $A^2 = B^2$. Therefore, equation 3 reduces to

$$y(t) = \pm y(t+\pi),\tag{4}$$

which says that any solution that is periodic in 2π is either periodic or antiperiodic in π .