

Universidade Federal de São João del Rei Departamento de Ciência da Computação Curso de Ciência da Computação

Trabalho Prático 1: uma resolução para o problema de Hipercampos em tempo $O(n^2)$

Rodrigo José Zonzin Esteves

Introdução e abordagem matemática

Breve descrição do problema

Dados dois pontos-âncoras $A=(x_a,0)$ e $B=(x_b,0)$ e um conjunto de pontos \mathbb{P} , qual a maior sequência possível de segmentos tais que os segmentos \overline{Ap} e \overline{pB} $\forall p \in \mathbb{P}$ se interceptem apenas nos pontos-âncoras.

Pela definição do problema, garantimos as seguintes restrições: $0 < p_x$ e $0 < p_y < 10^4 \ \forall p \in \mathbb{P}$ e $0 < X_a < X_b < 10^4$.

Natureza geométrica do problema

Determinar se dois segmentos de reta se interceptam é um problema clássico de geometria computacional (Cormen et al., 2009). Um algoritmo que implementa uma técnica para resolvê-lo é conhecido como *Varredura*.

Nossa abordagem, no entanto, se baseia em conclusões geométricas a respeito da avaliação de um triângulo determinado pelos pontos-âncora e um ponto genérico $p \in \mathbb{P}$.

A imagem a seguir, mostra os pontos de um conjunto $\mathbb{P}_1 = \{C(3,4), D(3,2), E(7,4)\}$. Para determinarmos se há intersecção entre os pontos C e E, olhamos para o os triângulos determinados pelos pontos ACB e AEB. A intersecção acontecerá se o ponto E não estiver contido no triângulo ACB ou se o ponto C não estiver contido no triângulo AEB.

Se fixarmos o ponto D e compararmo-lo aos pontos C e E, temos que $D \subset ACB$ e $D \not\subset AEB$.

Figura 1: Conjuntos de pontos \mathbb{P}_1

Perceba, no entanto, que contar quantos pontos um triângulo ΔABp_i contém e tomar o máximo dentre todas as possibilidades não é suficiente, uma vez que dois pontos p_1 e p_2 podem não formar uma sequência entre si. A imagem a seguir ilustra essa situação.

Figura 2: Conjunto de pontos que não satisfazem a proposta de abordagem

Os pontos D e E não formam uma sequência válida entre si. Se contássemos quantos pontos ΔABC contém, encontraríamos 2 como resposta. No entanto, há apenas um arranjo que respeita nossa restrição.

Para solucionar esse problema, adotamos a seguinte abordagem: para um ponto genérico p_i , contamos quantos pontos subjacentes (i.e., contidos em ΔABp_i) ele contém. Se ele não contém nenhum, adicionamos uma flag em p_i que passa a valer 1 (uma sequência válida). Por outro lado, se ele contém pelo menos um ponto abaixo de si, analisamo-o com todos os pontos anteriores $p_j tal$ que 0 < j < i. Se p_j está dentro de p_i , setamos uma variável auxiliar que vale $1 + p_j tag$ (todas as sequências válidas mais essa). Se a variável auxiliar for maior do que a tag do ponto p_i , então atualizamo-a com o valor da variável auxiliar.

Por fim, analisamos para o ponto p_i se sua tag é maior do que o a sequência máxima até aquele momento. Caso seja, a sequência máxima passa ser a tag do ponto p_i .

O pseudo-código abaixo sintetiza essa abordagem:

```
1
                maior
2
                   for p_i in \mathbb{P}:
3
                      aux = contar_pontos_subjacentes (\Delta ABp_i)
 4
                      if aux == 0:
5
                        p_i \rightarrow tag = 1
6
7
                         for p_i \in \mathbb{P} talque 0 < j < i:
8
                           if esta_dentro(p_i, p_j) == true:
9
                              aux = 1 + p_j \rightarrow tag
10
                           if aux > p_i->tag:
11
                              p_i \rightarrow tag = aux
12
                      if p_i->tag > maior:
13
                        maior = p_i->tag
14
                return maior
```

Através dessa abordagem, asseguramos que somente sequências de pontos válidos serão contabilizados durante a análise de um ponto p_i . Analisamos os n pontos disponíveis e salvamos a maior sequência a medida que a formos encontrando.

Estruturas de dados e especificação do código

Para modelarmos o problema, utilizamos os Tipos Abstratos de Dados apresentados na figura 3.

O TAD Ponto é o principal tipo utilizado no programa. Essa acepção não só é verdadeira, como elegante, já que dos postulados euclidianos, sabemos:

1. "Fique postulado traçar uma reta a partir de todo ponto até todo ponto". Euclides De forma geral, "dois pontos distintos determinam uma reta".

Vetor

- x : int
- y : int
+ cria_vetor(p1 : Ponto*, p2 : Ponto*) : Vetor*
+ destroi_vetor(Vetor* : int) : void
+ produto_vetorial(u : Vetor*, v : Vetor*) : double

(a) TAD Ponto

(b) TAD Vetor

Figura 3: TADs utilizados

2. "Figuras retilíneas são as contidas por retas, por um lado, triláteras, as por três [...]". Euclides. Dessa definição e de outros postulados segue a famosa expressão: "três pontos não todos colineares determinam um triângulo".

Outra estrutura de dados importante é o tipo Vetor. De acordo com Boulos (2010), a cada ponto $P \in E^3$ e a cada vetor $\vec{v} \in V^3$, a soma de P com \vec{v} é definida em termos de um único representante de $\vec{v} \in V^3$: o segmento orientado (P,Q). Segue:

$$\begin{aligned} P + \overline{PQ} &= Q \\ P + \overrightarrow{v} &= Q \end{aligned}$$

Somando -P dos dois lados, temos:

$$\vec{v} = Q - P$$

Se sabemos as componentes $x \ e \ y$ de Q e P em uma base qualquer de E^3 , podemos definir o vetor apenas subtraindo essas componentes. Nosso programa usa essa abordagem para instanciar um TAD Vetor.

Usamos esse resultado pois sabemos da álgebra linear que dado dois vetores $\vec{u}, \vec{v} \in V^3$, o produto vetorial euclidiano $\vec{u} \times \vec{v}$ determina a área do paralelogramo contido entre eles. Anton and Rorres (2012). Calcular área de um triângulo é algo primordial para uma de nossas funções.

Para determinamos se um ponto p_i está dentro de um triângulo ΔABP , verificamos se $|\Delta ABP|^1 = |\Delta APp_i| + |\Delta ABp_i| + |\Delta PBp_i|$.

Com o resultado anterior, basta fazer o produto vetorial dos três vetores e verificar o valor se suas somas é igual ao produto vetorial do triângulo mais externo. Note que: $|\Delta ABP| = \vec{AP} \times \vec{BP}$

Figura 4: Produtos vetoriais

$$\begin{split} |\Delta ABp_i| &= \vec{Ap_i} \times \vec{Pp_i} \\ |\Delta APp_i| &= \vec{AP} \times \vec{Ap_i} \\ |\Delta PBp_i| &= \vec{Bp_i} \times \vec{Pp_i} \end{split}$$

¹Notação: $|\Delta A|$ = área do triângulo A

Se $|\Delta ABP|$ for igual à soma dos demais vetoriais, então sabemos que o ponto p_i está contido em ΔABP .

Todas as metodologias analíticas foram descritas em módulo separado, para facilitar a interação com a main. Além de funções de análise, o módulo analítico também conta com um algoritmo de ordenação para o array de pontos. O algoritmo escolhido foi o $Selection\ Sort$. Optamos por esse algoritmo pois consideramos que o desempenho assintótico $O(n^2)$ é compensado pela facilidade de implementação.

Complexidade e análise dos resultados obtidos

A tabela a seguir lista a ordem de complexidade das principais funções do programa. Definimos a operação comparação como a variável de interesse para a análise de complexidade. Ressaltamos que funções tradicionalmente O(1), como alocar uma estrutura de dados e inicializá-la (construtor), não foram listadas. As justificativas podem ser conferidas nos comentários do código.

Função	Complexidade	Justificativa
destroi_vetor_de_pontos()	O(n)	É preciso iterar sobre cada ponto e desalocar cada ponto individualmente.
$imprime_vetor_de_pontos()$	O(n)	Iterar sobre cada ponto do array e printa as componentes x e y
${ m cria_vetor}()$	O(1)	Aloca-se o tamanho de um vetor e realiza aritmética de floats para os componentes x e y.
produto_interno()	O(1)	Realiza aritmética.
area_triangulo()	O(1)	Realiza aritmética e 1 comparação por chamada.
contar_pontos_subjacentes()	O(n)	O loop for itera sobre $n-2$ pontos. Portanto, a complexidade do loop é $O(n)$. Dentro do loop, há operações que têm complexidade constantes.
$esta_dentro()$	O(1)	Chama a função cria_vetor() e realiza 2 comparações.
$ordena_vetor()$	$O(n^2)$	Complexidade do a´lgoritmo Selection Sort. Cormen et al. (2009)
$analisa_todos_os_pontos()$	$O(n^2)$	No corpo do loop mais externo há a chamada da função contar_pontos_subjacentes(), de complexidade $O(n)$ e de um for interno. Pela propriedade aditiva podemos considerar o corpo do loop externo como um bloco de código de complexidade $O(O_{func}(n) + O_{for_interno}(n)) = O(n)$. Como cada passagem do for tem complexidade $O(n)$, usamos a propriedade $O(O(n) \cdot O(n)) = O(n^2)$ e obtemos a complexidade final da função.

Tempo de execução vs número de entradas

Para verificar o comportamento quadrático do nosso código, simulamos várias execuções para diferentes tamanhos de n.

Primeiramente, definimos aleatoriamente 10⁴ pares ordenados usando a linguagem *JavaScript*.

Alteramos nossa main e colocamos um for para que ela variasse o range de acesso do vetor de pontos para a função $analisa_todos_os_pontos()$.

Inicialmente, nossa proposta era analisar o tempo de execução para cada execução de n = 1 até $n = 10^4$. No entanto, o aumento progressivo do tempo nos fez desistir dessa abordagem.

De fato, se tomarmos o tempo das 10 mil primeiras execuções, encontramos o tempo total que duraria o teste. Como estimamos a função de complexidade $\hat{f}(n)$ - $ver\ a\ sequir$ -, podemos integrar no intervalo

descrito e assim sabemos que o tempo gasto seria da seguinte ordem:

$$\int_{0}^{10k} \hat{f}(n) \ dn = 8h10min$$

Para contornar essa demora, optamos por iterar de 50 em 50, formando um dataset de 200 elementos de n=1, n=51, ..., n=9951 entradas. Usamos o software R para plotar o gráfico e realizar uma regressão polinomial. R Core Team (2023).

Tempo de usuário vs Tamanho Entrada

Figura 5: Curva obtida em testes

O comportamento da curva condiz com um programa de complexidade $O(n^2)$. Ainda sim, optamos por analisar uma regressão para os dados. Obtivemos a função descrita a seguir, com a não significância de β_0 e β_1 ao nível de 0,05:

$$\hat{f}(n) = 8,830528 \cdot 10^{-8} n^2 \ (em \ segundos)$$

$$R^2 = 0.9982$$

O tempo de sistema foi 0,0s para basicamente todas as execuções testadas. Tomando a média de tempo das execuções, obtemos um tempo de 0.000119985s. Realizando-se um teste-t sob $H_0: \mu = 0$, não rejeitamos a hipótese nula e não temos evidência estatística de que a média seja diferente de zero para $\alpha = 0,05$. (p-valor =0.0139).

Tempo de usuário vs tempo de sistema

De acordo com Tanenbaum (2016), "quando um computador é multiprogramado, ele frequentemente tem múltiplos processos ou threads competindo pelo uso da CPU ao mesmo tempo". Se dois processos estão prontos para serem executados, quem decide quem será executado primeiro é o escalonador do sistema.

Sabemos que toda chamada de função ocasiona uma condição de corrida, gerando o escalonamento do processo e sua interrupção da execução pela CPU.

Dessa maneira, sabemos, por exemplo, que toda vez que a função analisa_todos_os_pontos() chama a função contar_pontos_subjacentes(), o nosso processo sai da CPU e aguarda até que o Sistema Operacional o coloque de novo em execução. O tempo de sistema mensura somente o tempo gasto na execução do programa, sem considerar o tempo de espera causado pelo escalonador do SO.

Uso de memória

Nosso programa faz n+2 alocações da estrutura de dados Ponto. Cada Ponto contém 3 inteiros de 4 bytes, o que totaliza 12 bytes por alocação. Além das n alocações para armazenar os n pares ordenados, alocamos os pontos A e B.

Além disso, cada chamada da função esta_dentro() realiza 3 allocs provisórios da estrutura Vetor. Ao final da função, esses objetos são destruídos/desalocados da memória. De alguma maneira, é como se essa função tratasse essas variáveis como se fossem estáticas da pilha.

Usamos o utilitário *valgrind* para analisar possíveis *leaks* de memórias. A figura abaixo apresenta o resultado da nossa análise quando executamos um caso de teste de tamanho 1000.

```
==289108==
==289108== in use at exit: 0 bytes in 0 blocks
==289108== total heap usage: 1,500,499 allocs, 1,500,499 frees, 12,025,532 bytes allocated
==289108== All heap blocks were freed -- no leaks are possible
==289108== For lists of detected and suppressed errors, rerun with: -s
==289108== FRROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)

zonzin@rodrigo:~/Documentos/Faculdade/AEDSIII/tp1/tp1$
```

Figura 6: Uso da heap após execução

Como se pode constatar, todos os *allocs* foram desalocados e "no leaks are possible". A alta quantidade de *allocs*, provavelmente se refere à função esta_dentro(), que aloca 3 vetores toda vez que é chamada (mas os desaloca logo no final de sua execução).

Se considerarmos que ela é chamada dentro de um for aninhado e a cada chamada ela faz 3 allocs, temos $3n^2$ allocs somente desta função. Consideramos ainda 1 alloc no Selection Sort, 1 alloc para a criação do array de pontos, n allocs para a cada ponto e 2 allocs para os pontos A e B. Definimos a função:

```
^{2} allocs(n) = 3n^{2} + n + 3
```

Como testamos 1000 pontos, temos que $allocs(1000) = 3(1000)^2 + 1000 + 3 \Rightarrow allocs(1000) = 3 001 003$. Segundo o valgrind, a quantidade de allocs foi 1 500 499. Esse valor é a metade do valor que nossa função descreve.

Para outros valores de teste, sempre alocamos metade do que allocs(n) modela. Isso nos sugere que, apesar de a análise estar incorreta por um termo de 1/2, ela provavelmente segue o caminho correto.

Instruções para compilação e execução

Basta usar o comando make para efetuar a compilação e make clear para limpar os arquivos intermediários. Para executar, digite:

./main -i suaEntrada.txt -o seuResultado.txt

Apêndice de dados

Todos as entradas testadas e arquivos .csv utilizados para a analise podem ser conferidos no seguinte repositório: https://github.com/RodrigoZonzin/tp1-aeds3.

 $^{^{2}}n = tamanhodaentrada$

Referências

Anton, H. and Rorres, C. (2012). Álgebra Linear com Aplicações. Bookman, 10th edition.

Boulos, P. (2010). Geometria Analítica: Um Tratamento Vetorial. Pearson, 3 edition.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). *Algorithms*. The MIT Press, Cambridge, MA, 3rd edition.

Euclides (2013). Os Elementos de Euclides. Editora da Universidade de São Paulo, São Paulo, Brasil, 1st edition.

R Core Team (2023). R: A Language and Environment for Statistical Computing. Vienna, Austria.

Tanenbaum, A. S. (2016). Sistemas Operacionais modernos. Pearson, 4 th edition.