MATH 603 Notes

David Zhu

April 22, 2024

1 More on Commutative Rings

Let $a, b \in R$. Then $a|b \iff \exists a' \in R, b = aa'$; A semi ring on (R, \leq) defined by $a \leq b \iff a|b$. Note that \leq is usally not a partial order: let $b \in R^{\times}$, then $a \leq ab \leq a$, but $a \neq ab$.

Proposition 1.1. $a \sim b$ iff $a \leq b$ and $b \leq a$ iff (a) = (b) is an equivalence relation.

For R a domain, the induced relation gives a well-defined definition of greatest common divisor.

Definition 1.1. The $\underline{\mathbf{gcd}}$ of a, b, denoted by gcd(a, b), if exists, is any $d \in R$ such that d|a, b and for any other d' satisfying the condition, d'|d.

Definition 1.2. The <u>lcm</u> of a, b, denoted by lcm(a, b), if exists, is any $d \in R$ such that a, b|d and for any other d' satisfying the condition, d|d'.

Proposition 1.2. If gcd(a,b) exists, then $gcd(a,b) = sup\{d : d \le a,b\}$. If lcm(a,b) exists, then $lcm(a,b) = \inf\{d : a,b \le d\}$.

Note that maximal/minimal elements always exists by Zorn's lemma. However, the unique supremum/infimum may not exist. We have our following example:

Example 1.1. Take $R = [\sqrt{-3}]$. Let $a = 4 = (1 + \sqrt{-3})(1 - \sqrt{-3})$ and $b = 2(1 + \sqrt{-3})$. Then, $(1 + \sqrt{-3})$ and 2 are both maximal divisors, but they are not comparable since the only divisors of 2 are $\{\pm 1, \pm 2\}$ by norm reasons, and none divides $1 + \sqrt{-3}$.

Proposition 1.3. Let $a, b \in R$ be given. Then the following hold: gcd(a, b) = d exists iff (d) is the unique maximal prinipal ideal such that $(a) + (b) \subseteq (d)$. Dually, lcm(a, b) = c exists iff $(c) = (a) \cap (b)$. If both holds, then $a \cdot b = lcm(a, b) \cdot gcd(a, b)$

Proof. Easy exercise. Note that the inclusion can be proper, for example, take R = k[x, y] and ideals (x), (y). Then (1) is the gcd, but the containment is proper.

Recall that Id(R) is partially ordered by inclusion.

Definition 1.3. $(Id(R), +, \cap, \cdot, \leq)$ is the lattice of ideals of R.

Note that $+, \cap$ are simply the sums and intersection, but \cdot is the ideal generated by the products, i.e the set of finite sums of products.

Theorem 1.1. Let $Id^{\infty}(R)$ be the set of non-finitely generated ideals for R; the following are equivalent:

- 1. $Id^{\infty}(R)$ is non-empty;
- 2. There exists an infinite non-stationary chain of ideals (σ_i) , where $\sigma_i \in Id(R)$;

Proof. For $1 \implies 2$, let I be a non-finitely generated ideal of R and pick $x_1 \in I$. Let $\sigma_1 = (x_1)$. Because the ideal is non-finitely generated, we can pick $x_2 \in I$ such that $x_2 \notin \sigma_1$. Let $\sigma_2 = (x_1, x_2)$. Continue inductively gives us an infinite non-stationary chain of ideals.

For $2 \implies 1$, take the union of all the ideals in the infinite non-stationary chain. It is an ideal and it cannot be finitely generated.

Theorem 1.2. (Cohen's lemma): Let $Id^{\infty}(R) \neq \emptyset$. Then, it has a maximal element and any such maximal element is prime.

Before proving Cohen's lemma, we need the following technical lemma:

Lemma 1.3. Let I be an ideal. Define $(I:a) := \{b \in R : ab \in I\}$. If I + (x) and (I:x) are both finitely generated, then I is finitely generated.

Proof of Lemma 1.3. By assumption, there is finite set $\{\alpha_i := a_i + f_i x : a_i \in I, f_i \in R, i = 1, ..., k\}$ that generate I + (x), and a finite set $\{b_j : j = 1, ..., l\}$ that generate (I : x). We claim that the set $\{a_i, b_j x : i \in I, j \in J\}$ generate the entire I: since $I \subseteq I + (x)$, we can write any element $\pi \in I$ as a finite linear combination $\pi = \sum_{i=1}^k g_i \alpha_i = \sum_{i=1}^k g_i (a_i + f_i x)$, where $g_i \in R$. We note that $\pi - \sum_{i=1}^k g_i a_i = \sum_{i=1}^k g_i f_i x$ is in I; it follows that $\sum_{i=1}^k g_i f_i \in (I : x)$, so $\sum_{i=1}^k g_i f_i x$ is generated by the set $\{b_j x\}$, and we are done. \square

With the lemma in hand, now we can prove Theorem 1.2

Proof of Theorem 1.2. Zorn's lemma implies $Id^{\infty}(R)$ has maximal elements. Let I one such maximal element, and suppose it is not prime. Then, there exists $xy \in I$ and WLOG suppose $x \notin I$. By maximality, I + (x) must be finitely generated. By definition, we have $y \in (I : x)$. Lemma 1.3 implies (I : x) is not finitely generated, and in particular, $I \subseteq (I : x)$. Applying maximality again, we have I = (I : x), which forces $y \in I$, a contradiction.

2 Euclidean Rings

Definition 2.1. A <u>Principal Ideal Ring</u> is any ring R i which every ideal is principally generated. If R is a domain, then R is called a <u>PID</u>.

Definition 2.2. A <u>Factorial Ring</u> is any ring R in which all units can be written as a finite product of irreducible elements, unique up to a unit. If R is domain, then it is called a <u>UFD</u>.

Note that if the ring R it is not a domain, x|y and y|x does not imply x=uy for some unit u. Let us prove that this holds for a domain: suppose x=ys and y=xt, and $x,y\neq 0$ then x=xts, which implies x(1-ts)=0. This forces 1-ts=0, and t,s are then units. We can concoct counterexamples when R is not a domain accordingly: let $R=k[x]/(x^3-x)$ and take $a=x, b=x^2$. Clearly, a|b and $b=x^2\cdot x=x^3$, so b|a. However, x is not a unit.

Definition 2.3. A **Noetherian Ring** is any ring R such that any ideal is finitely generated.

Definition 2.4. Let R be a domain. A <u>Euclidean norm</u> on R is any map $\phi: R \to \mathbb{N}$ satisfying $\phi(x) = 0$ iff x = 0 and for every $a, b \in R$ with $b \neq 0$, then there exists $q, r \in R$ such that a = bq + r with $\phi(r) < \phi(b)$. A <u>Euclidean Domain</u> is any domain equipped with a Euclidean norm.

Example of Euclidean domains include $\mathbb{Z}, \mathbb{Z}[i]$. A non-trivial example R = F[t], with $\phi(p(t)) = 2^{deg(p(t))}$. A non-example is $\mathbb{Z}[\sqrt{6}]$ for it is not a PID.

Proposition 2.1. Eucldiean Domains are PIDs.

Proof. By the well-ordering principal, for every ideal I in a Euclidean domain, there exists an element other than 0 of the smallest norm. It is easy exercise that such element generate the entire ideal.

Proposition 2.2. (The Euclidean Algorithm): Given $a, b \in R$, $b \neq 0$. Set $r_0 = a, r_1 = b$, and continue inductively $r_{i-1} = r_i \cdot q_i + r_{i+1}$. Then, $r_i = 0$ for $i > \phi(b)$ and if $r_{i_0} \geq 1$ maximal with $r_{i_0} \neq 0$, then $r_{i_0} = \gcd(a, b)$.

Proof. Note that the remainder is strictly decreasing, so r_i must become 0 after $\phi(b)$ steps. Note that once $r_{i+1} = 0$, we have $r_i | r_n$ for all $n \le i$. Coversely, it is clear that any divisor of a, b divides all r_n for $n \le i$. \square

3 Principal Ideal Domains

Theorem 3.1. (Charaterization) For A domain R, the following are equivalent:

- 1. R is a PID.
- 2. every $p \in Spec(R)$ is principal.

Proof. One direction is trivial; for the other direction, assume that every prime is principal. Then, Cohen's Lemma implies $Id^{\infty}(R) \neq \emptyset$; In particular, every ideal is finitely generated, so the ring is Noetherian. We may apply Zorn's lemma on the set of non-principally generated ideal (since every chain stablizes and has a maximal element), and let P be a maximal non-principally generated ideal. Suppose it is not prime, and let $xy \in P$ with $x \notin P$. Then, $P \subset (P:x)$ and $P \subset P + (x)$ properly. By maximality, we have (P:x) = (c), and (I:c) = (d). By definition, we have $cd \in I$; moreover, suppose $x \in I$, then x = cr = cdt for some $r, t \in R$. Thus, I = (cd) is principal, a contradiction.

Proposition 3.1. PIDs are UFDs.

Proof. Let $a \in R$ such that a is non-zero and not a unit. Then, there exists $p \in Spec(R)$ such that $(a) \subseteq p$. Hence R being a PID implies $\exists \pi \in R$ such that $p = (\pi)$. Hence, π must be prime and $\pi|a$. Set $a_1 = a$, $\pi_1 = \pi$, and let a_2 be the element such that $\pi_1 a_2 = a_1$. If a_2 is not a unit, find $(a_2) \subset (\pi_2)$, where π_2 is prime. Let a_3 be the element such that $\pi_2 a_3 = a_2$. Continue inductively until a_n is a unit. The process must terminate, for otherwise we get an infinite chain of distinct principal ideals (a_i) that does not stablize (stablizing is equivalent to $(a_n) = (a_{n+1})$ for some n, which implies they differ by a unit).

Corollary 3.1.1. Let R be a PID; let $P \subset R$ be a set of representatives for the prime elements up to association. For every $a \in R$, $\exists \epsilon \in R^{\times}$ and $e_{\pi} \in \mathbb{N}$ such that almost all $e_{\pi} = 0$. Then, every $a \in R$ can be written as $a = \epsilon \prod_{\pi \in P} \pi^{e_{\pi}}$. We proceed to recover gcd and lcm, up to associates.

Note that the above corollary generalizes to the quotient field by replacing $\mathbb N$ with $\mathbb Z$.

4 Unique Factorization Domains

Definition 4.1. The following are equivalent for a domain R:

- 1. R is a UFD.
- 2. Every minimal prime ideal (prime of height 1) is principal and every non-zero, non-invertible elements in contained in finitely many primes.

Proof. 1 \implies 2: For every non-zero prime P, pick $x \in P$ has factor. One of the prime factors must be in P, and it follows by minimality that P must be generated by such prime factor. For the second part, the finite factorization of the element gives precisely the finite primes that it is contained in. 2 \implies 1:given $x \in R$, the finitely many primes containing x are principally generated by prime elements, which gives a factorization.

Remark: we recover the gcd and lcm definition using the same factorization as Corollary 3.1.1.

Theorem 4.1. (Gauss Lemma)Let R be a UFD; then R[t] is a UFD.

To prove the theorem, we need the following lemma on contents:

Definition 4.2. Let $f(t) = a_0 + ... + a_n t^n$ be given. Then, the <u>content</u> of f, denoted C(f), is the GCD of all coefficients. In particular, $C(f)|a_i$ for all i, and $f_0 := f/(C(f))$ has content 1.

Lemma 4.2. Let R be a UFD, then the following hold: (1). $C(f): R[t] \to R$ given by $f \mapsto C(f)$ is multiplicative; in particular, if C(f) = C(g) = 1, then C(fg) = 1.

Proof of lemma 4.2. given $f(t) = a_0 + ... + a_n t^n$ and $g(t) = b_0 + ... + b_m t^m$. If one of f, g is constant, then it is easy exercise; suppose neither is constant, then set $f = f_0 \cdot C(f)$ and $g = g_0 \cdot C(g)$. Clearly we have $C(f) \cdot C(g)|C(fg)$. Hence it suffices to prove that $C(f_0g_0) = 1$. Equivalently, let $\pi \in R$ be a prime element, we want to show there exists a coefficient $c_k \in f_0g_0$ such that π does not divide c_k . Suppose

4

 $\pi | c_k = \sum_{i+j=k} a_i b_j$ for all k. Because $C(f_0) = C(g_0) = 1$, then there exists minimal a_i, b_j such that π does not divide a_{i_0}, b_{j_0} . Then, π does not divide $C_{i_0+j_0}$.

Proposition 4.1. Let $K := \operatorname{Quot}(R)$, and $f \in K[t]$. Then, let d be the least common multiple of the denominators of the coefficients of f. Then, f = df/d, and $df \in R[t]$. Define $C_K(f) = C(df)/d$. It is standard to check the analog for lemma 4.2 holds for C_K as well.

Proposition 4.2. Let R be a UFD. For any irreducible $f \in R[t]$, either f is a constant and thus prime in R, or f is primitive, i.e C(f) = 1.

Proof. If f is a constant, the first part of the proposition is obvious; now suppose f has degree > 0; then f can be factored into its primitive part and content; if $C(f) \neq 1$, we either have a non-trivial factorization of f or f will be a constant multiplied by a unit, a contradction.

Theorem 4.3. Let R be a UFD. For $f(t) \in R[t]$, let $K := \operatorname{Quot}(R)$. Then, the following are equivalent:

- 1. f(t) is prime
- 2. f(t) is irreducible
- 3. Either f is an irreducible constant in R or f is irreducible in K[t] and $C_K(f) = 1$.

Proof. 1 \implies 2 holds in every domain: suppose a is prime and a = bc. Then by primeness, we have a|b or a|c. WLOG, suppose a|b, such that ax = b and a = axc, so cx - 1 = 0, which implies c is a unit.

 $2 \implies 1$ in UFDs: suppose f is an irreducible and f|gh, then we have some l such that fl = gh. Because g, h, l can be uniquely written as a product of irreducibles up to permutation and units, we see that the irreducible f must appear on the RHS once, i.e f|g or f|h.

For $2 \implies 3$: If f is a constant, then it become a unit in the field of fractions; suppose deg(f) > 0, so irreducibility implies C(f) = 1. Suppose by contradiction that f is reducible over K[t], and let f = gh for $g, h \in K[t]$ be a factorization in K[t]. Note that given $g, h \in K[t]$, there is some $x_g, x_h \in K$ such that $x_g g, x_h h \in K[t]$ and $C(x_h h) = C(x_g g) = 1$. Then, $x_g x_h f = (x_g g)(x_h h) \in R[t]$. By Proposition 4.2, we have $C(x_g x_h f) = x_g x_h C(f) = 1$, which implies $x_g x_h = 1$ (up to a unit in R). However, this implies $f = (x_g g)(x_h h)$, a contradiction.

So we are left to prove $3 \implies 2$. Suppose f is not a constant and f primitive and irreducible. Suppose $f = gh \in R[x]$. WLOG g is a unit in K[x], so g is a nonzero element of R. Now g divides all the coefficients of f, so g is a unit in R.

Proposition 4.3. $R[t_i]_{i \in I}$ is UFD if R is UFD.

Proof. By induction it suffices to show that R[t] is a UFD. The idea is that K[t] is PID so it is a UFD. A factorization in K[t] will correspond to a factorization in R[t] by the equivalence of 2 and 3 in Theorem 4.3.

5 Noetherian Rings

Definition 5.1. A commutative ring R is called a <u>Noetherian</u> ring if every chain of ideals in R is stationary.

Proposition 5.1. The following are equivalent:

- 1. Every chain of ideals is stationary.
- 2. All ideals are finitely generated.
- 3. $Spec(R) \subseteq Id^f(R)$.

Terminology: the condition 1 is called the ACC (Ascending Chain Condition).

Proof. By Cohen's lemma, we deduce $2 \iff 3$; $1 \iff 2$ is an easy exercise.

For non-commutative rings, it is possible that a ring is left Noetherian but not right Noetherian.

Example 5.1. $R = \{ \begin{bmatrix} p & q \\ 0 & m \end{bmatrix} : p, q \in \mathbb{Q}; m \in \mathbb{Z} \}$ is left Noetherian but not right Noetherian.

Proposition 5.2. (Basic Properties) Let R be a Noetherian ring. The the following hold:

- 1. If \mathfrak{a} is an ideal of R, then R/\mathfrak{a} is Noetherian if R is Noetherian.
- 2. If $\Sigma \subset R$ is a multiplicative system, then R_{Σ} is Noetherian.
- 3. The radical of an ideals \mathfrak{a} , $rad(\mathfrak{a})$, has a power contained in \mathfrak{a} .
- 4. Let $Spec_{min}(\mathfrak{a}) := \{ p \in Spec(R) : \mathfrak{a} \subseteq p, p \text{ minimal} \}$ is finite.

Proof. To 1. Ideals in R/\mathfrak{a} corresponds bijectively to ideals in R that contains \mathfrak{a} . Finite generation of ideals in R clearly implies the finite generation of ideals in the quotient.

To 2. $Spec(R_{\Sigma})$ corresponds bijectively to primes in Spec(R) with empty intersection with Σ . We also have p finite generated implies p^e f.g.

To 3. Suppose $rad(\mathfrak{a}) = (r_1, ..., r_n)$ f.g. For every i, we have $r_i^{n_i} \in \mathfrak{a}$ for some n_i . Take $n = \sum n_i$ and $nil(\mathfrak{a})^n \subset \mathfrak{a}$.

To 4. The first method to prove this is by contradiction: let $A = \{\mathfrak{a} : Spec_{min}(\mathfrak{a}) \text{ is infinite}\}$. Then A has maximal elements. Let $\mathfrak{a}_{\mathfrak{o}}$ be maximal. Note that $\mathfrak{a}_{\mathfrak{o}}$ cannot be prime for it is over itself. Suppose it is not prime, then there exists $xy \in \mathfrak{a}$ with both x and y not in \mathfrak{a} ; for every prime ideal P containing \mathfrak{a} , P contains either x or y. By pigeonhole, there must be infinite such primes containing either $\mathfrak{a} + (x)$ or $\mathfrak{a} + (y)$, which contradicts maximality.

The second method is using the fact that Spec(R) is a Noetherian topological space, which has finitely many irreducible components.

The third method is through primary decomposition. An ideal I is irreducible if $I = a_1 \cap a_2$ then, $I = a_1$ or $I = a_2$. For principal ideals, this is equivalent to the generator being irreducible.

Proposition 5.3. If R is Noetherian, then every ideal $I \in R$ is in the finite intersection of irreducible ideals in R.

Proof. By contradction, let X be the set of ideals that does not satisfy the proposition. Then, X is non-empty, and by Noetherian assumption, there is a maximal element $\mathfrak{a}_{\mathfrak{o}}$. Then, $\mathfrak{a}_{\mathfrak{o}}$ is not irreducible, for it would be the intersection of itself. Therefore, there exists I_0, I_1 such that $a_0 = I_0 \cap I_1$, where a_0 is properly contained in both. By maximality, I_0, I_1 are both finite intersection of irreducibles, and we can decompose a_0 based on such, a contradction.

Definition 5.2. Let R be a commutative ring. Then an ideal $I \subset R$ is primary if for all $x, y \in R$ we have: if $xy \in I$, $x \notin I$, then ther exists $n \in \mathbb{N}$ such that $y^n \in I$.

In general, a power of prime ideal is not primary. If $I = \mathfrak{m}^n$ for some maximal ideal \mathfrak{m} , then I is in fact primary.

Proposition 5.4. Let R be Noetherian, and $\mathfrak{a} \in Id(R)$ be a irreducible ideal. Then, \mathfrak{a} is primary, and $nil(\mathfrak{a})$ is prime.

Proof. Exercise \Box

These two facts imply $Spec_{min}$ must be finite. In general, quotient of UFD and PID are not UFD or PID. but this holds for Noetherian rings.

Theorem 5.1. Let R be a Noetherian ring. Then the following hold:

- 1. (Hilbert Basis Theorem): $R[t_1, ..., t_n]$ is Noetherian.
- 2. Every finitely generated R-algebra S is Noetherian.
- 3. The power series ring R[[x]]

Proof. Note that $1 \implies 2$ since every finitely generated algebra is a quotient of polynomial rings over finitely many variable. To prove 1, by induction it suffices to show for i=1. We now present a proof that applies for both 1 and 3. Let $I \in R[t]$ be an ideal. Claim: I is f.g. Inductively, we may choose elements $f_i \in I$ with $deg(f_i)$ being minimal in $I \setminus (f_1, ..., f_{i-1})$. If the process terminates, then we are done; otherwise, let a_i be the leading coefficient of f_i , and the chain of ideals $(I_i := (a_1, ..., a_i))$ must stablizes by Noetherian assumption on R. Suppose it stablizes at step N, and moreover suppose by contradction that $f_1, ..., f_N$ does not generate $\mathfrak a$. Then, consider the elment f_{N+1} , which by our argument is not contained in $(f_1, ..., f_N)$ and of minimal degree. The leading coefficient of f_{N+1} is expressed as $a_{N+1} = \sum_{i=1}^{N} \mu_i a_i$. Then, we cook up

$$g = \sum_{i=1}^{N} \mu_i f_i x^{deg(f_{N+1}) - deg(f_i)}$$

where $g \in (f_1, ..., f_N)$ by construction, and $f_{N+1} - g \notin (f_1, ..., f_N)$. However, $f_{N+1} - g$ has degree strictly less than f_N since we cancelled the leading term, which is impossible.

6 Valuation Rings

Proposition 6.1. Let R be a domain. Then the following are equivalent:

- 1. The ideals in R are totally ordered by inclusion.
- 2. The principal ideals in R are totally ordered by inclusion, i.e id(R) is a chain
- 3. For every $x \in \text{Quot}(R)$, if $x \notin R$ then $x^{-1} \in R$.

Proof. $1 \implies 2$ is trivial; for $2 \implies 3$, suppose $\frac{a}{b} \notin R$; then since the principal ideals are totally ordered, the elements are totally ordered by divisibility. Hence, $b \not| a$ implies a|b, so $\frac{b}{a} \in R$. For $3 \implies 1$, suppose we are given ideals I, J. If there exists $j \in J$ such that $j \notin I$, then $\frac{i}{j} \in R$ for all $i \in I$, for otherwise there exists i' such that $\frac{j}{i'} \in R$, which implies $j \in I$. Thus, $I \subseteq J$.

Definition 6.1. A ring R satisfy one of the conditions above is called a (Krull) Valutation Ring.

Example 6.1. $\mathbb{Z}_{(p)} = \{ \frac{q}{l} \in \mathbb{Q} : \gcd(l,p) = 1 \}$ is a valuation ring with maximal ideal (p). The valuation on v_p is defined by $v(\frac{q}{l}) = r$ where r is the maximal natural number such that $p^r|q$. The natural extension of such valuation on the entire \mathbb{Q} is $v(\frac{p}{q}) = v(p) - v(q)$.

Proposition 6.2. (Properties) Let R be a valuation ring, and K be its quotient field. The the following hold:

- 1. R is local, and $m = \{x \in R : x^{-1} \notin R\}$. The maximal ideal is called <u>valuation ideal</u> of R.
- 2. $\Gamma_R := K^{\times}/R^{\times}$ is totally ordered by $xR^{\times} \leq yR^{\times}$ iff $yR \subseteq xR$ iff x|y in R^{\times} . The group is called the **value group** of R.
- 3. The natural map $v_R: K \to \Gamma_R \cup \{\infty\}$, $v(0) = \infty$ satisfies v(xy) = v(x) + v(y) and $v(x+y) \ge min(v(x), v(y))$. Such map is called the (canonical) **valuation** of R.

Proof. To 1, note that by Proposition 6.1.1, the ideals are linearly ordered, so there exists a unique maximal ideal, and the ring is local. In a local ring, the maximal ideal is precisely the non-units.

To 2, the statement is obvious from 6.1.2 that elements in R are totally ordered by divisibility.

To 3, it is clear that if x|y, then x|x+y. Therefore, $v(x+y) \ge min\{v(x),v(y)\}$.

Note R is the set $\{x \in K : v_R(x) \ge 0\}$; m is the set $\{x \in K : v_R(x) > 0\}$;

Definition 6.2. Let R be a domain, and K be a field, $(\Gamma, +, \leq)$ be a totally orderedd abelian group. Let $v: K \to \Gamma \cup \{\infty\}$ be a map satisfying

- 1. $v(x) = \infty$ iff x = 0
- 2. v(xy) = v(x) + v(y)
- 3. $v(x+y) \ge min(v(x), v(y))$

Then, the map v is called a <u>valuation</u> of K.

Proposition 6.3. $R_v = \{x \in K : v(x) \geq 0\}$ is a valuation ring. The map $\tau : \Gamma_{R_v} \to \Gamma$, given by $xR_v^{\times} \mapsto v(x)$ is an order preserving embedding. Moreover, $v = \tau \circ v_{R_v} : K \to \Gamma \cup \{\infty\}$.

Proof. It is easy to check $R_v = \{x \in K : v(x) \ge 0\}$ is a ring from the definition of a valuation above. To see that it is valuation ring, note that $v(\frac{x}{y}) = v(x) - v(y) = -v(\frac{y}{x})$. Therefore one of them is ≥ 0 and thus in R_v . The order on Γ_{R_v} is given by $xR_v^{\times} \le yR_v^{\times}$ iff x|y in R_v^{\times} iff $v(\frac{y}{x}) \ge 0$ iff $v(x) \le v(y)$. The final composition is easy to check by definition.

Given a valuation ring, $R \subset K$, every embedding of totally ordered groups $\Gamma_R \to \Gamma$ gives rise to a valuation.

Definition 6.3. The following are equivalent definitions for equivalence of valuations on K:

- 1. Two valuations v, w on K are equivalent if $R_v = R_w$.
- 2. Two valuations v, w on K are equivalent if $\mathfrak{m}_v = \mathfrak{m}_w$
- 3. Given $v: K \to \Gamma_v \cup \{\infty\}$ and $w: K \to \Gamma_w \cup \{\infty\}$, with embeddings $\tau_v: \Gamma_{R_v} \to \Gamma_v \ \tau_w: \Gamma_{R_w} \to \Gamma_w$. Then, v, w are equivalent if there exists an order preserving isomorphism $\tau_{vw}: \tau_v(\Gamma_{R_v}) \to \tau_w(\Gamma_{R_w})$ that fits into the following commutative diagram

$$\Gamma_{R_v} \longrightarrow \tau_v(\Gamma_{R_v}) \longrightarrow \Gamma_v$$

$$\downarrow^{\tau_{vw}}$$

$$\Gamma_{R_w} \longrightarrow \tau_w(\Gamma_{R_w}) \longrightarrow \Gamma_w$$

To see that the above definitions are indeed equivalent, note that $1 \Longrightarrow 2$ is trivial; for $2 \Longrightarrow 1$, suppose there exists $a \in R_v - \mathfrak{m}_v$ such that $a \not\in R_w - \mathfrak{m}_w$. Then, by properties of a valuation ring, $a^{-1} \in R_w$ and in particular, it is not in the maximal ideal, so it is a unit, and $a \in R_w$. For $1 \Longrightarrow 3$: if $R_v = R_w$, then $\Gamma_{R_v} = \Gamma_{R_w}$ by definition. For $k \in \tau_v(\Gamma_{R_v})$, pick a representative $\tau_v^{-1}(k) \in \Gamma_{R_v} = \Gamma_{R_w}$, and define $\tau_{vw}(k) = \tau_w(\tau_v^{-1}(k))$. It is standard to verify the map is an order-preserving isomorphism. For the converse, the map is also easy to construct given the isomorphism τ_{vw} .

Definition 6.4. A valuation ring R is called <u>discrete</u>, if $v_R(K) \cong \mathbb{Z}$ as ordered abelian groups. An element π such that $v_R(\pi)$ generates \mathbb{Z} is called a **uniformizing parameter**.

Example 6.2. $\mathbb{Z}_{(p)} \subset \mathbb{Q}$ is a discrete valuation ring. The uniformation parameter is $p\epsilon$ with ϵ a unit.

A valuation ring R is called rank 1 if $v_r(K)$ satisfies the Archimedian axiom, i.e for $\forall \gamma_1, \gamma_2 \in \Gamma_R, \gamma_1 > 0$, $\exists n \in \mathbb{N}$ such that $\gamma_2 \leq n \cdot \gamma_2$. A totally ordered group Γ is Archimedian if there is an ordered preserving embedding into the reals. In relation to absolute values,

Definition 6.5. An absolute value of a field K is any map $|-|: K \to \mathbb{R}^+_{\geq 0}$ iff it satisfies the norm axioms. An absolute value is called **non-Archimedian** or **ultra-metric** if $|x + y| \leq max\{|x|, |y|\}$.

Example 6.3. Let $|-|: K \to \mathbb{R}$ be a non-Archimedian absolute value. Then $v(-) := -log(|-|): K \to \mathbb{R} \cup \{\infty\}$ is rank 1 valuation. Conversely, let $v: K \to \mathbb{R} \cup \{\infty\}$ be a rank one valuation, then $|-|_v := e^{-v(-)}: K \to \mathbb{R}_{\geq 0}$ is a non-Archimedian absolute value.

Theorem 6.1. The following facts about possible valuations

- 1. If $K|F_p$ algebraic, then no non-trivial valuations exists on K.
- 2. If v is a valuation of F(t) such v is trivial on F, then $R_v = F[t]_{p(t)}$, where p(t) irreducible or $R_v = F[\frac{1}{t}]_{(\frac{1}{t})}$.
- 3. If v is a non-trivial valuation on \mathbb{Q} , then $R_v = \mathbb{Z}_{(p)}$ for some p prime.

Proof. For 1, let $K|F_p$ be an algebraic extension. Then, any element $a \in K$ is a root to the polynomial of the form $x^{p^k-1}-1$. A valuation on K satisfies $0=v(1)=v(a^{p^k-1})=(p^k-1)v(a)=v(a)$. Thus, the valuation must be trivial.

For 2, 3, refer to HW7 problem 6.

Theorem 6.2. (Ostrowski's Theorem) Every non-trivial absolute value on \mathbb{Q} is equivalent to either the usual real absolute value or a p-adic absolute value.

In general, the space of all valuations on K, denoted Val(K), is called the Zariski-Riemann space. Moreover, Val(K) carries a topology called a patch topology, or constructible topology, which makes the space compact and totally disconnected. The space is usually very complicated.

Theorem 6.3. (Chevalley's Theorem for extension of Valuations) Let A be a domain, $p \in Spec(a)$ a prime ideal, Then, there exists a valuation ring R of K = Quot(A) such that $\mathfrak{m}_R \cap A = p$.

Proof. Replace A with A_p if needed, so that we may assume A is local with maximal ideal p. Let $H = \{B \subset K : B \text{ local}, \mathfrak{m}_B \cap A = p\}$. Then, it is easy to check that the union of a chain of ascending local rings is again a local ring, with maximal ideal containing p. Applying Zorn's lemma gives us the maximal local ring R containing A such that $\mathfrak{m}_R \cap A = p$. It remains to show that R is local.

Suppose $x \in K$ but $x \notin R$. Suppose neither $x, \frac{1}{x}$ is in R; if either $x, \frac{1}{x}$ is integral over R, then R[x] has a maximal ideal lying over p. After localization, we get a local ring lying over A that strictly contains R, which contradicts maximality. In particular, $\frac{1}{x}$ is not integral over R, and we claim that \mathfrak{p}^e in $R[\frac{1}{x}]$ is not the entire ring: suppose other wise, then $1 = a_0 + \frac{a_1}{x} + \ldots + \frac{a_n}{x^n}$, where $a_i \in p$. Multiplying x^n to both sides yields $(1-a_0)x^n + a_1x^{n-1} + \ldots + a_n = 0$, and since $1-a_0$ is a unit, this shows x is integral over R, a contradiction. Thus, $R[\frac{1}{x}]$ localized at p^e gives us a local ring with maximal ideal \mathfrak{m}' lying over p. ($p \subseteq A \cap \mathfrak{m}'$, then apply maximality). This contradicts maximality of R, therefore one of $x, \frac{1}{x}$ is in R.

7 Artin Rings

Definition 7.1. A commutative ring R is called <u>Artin</u>, if every descending chain of ideals (I_n) is stationary.

Proposition 7.1. Let R be Artinian. Then the following hold:

- 1. If Σ is a multiplicative system, then $\Sigma^{-1}R$ is also Artinian.
- 2. If $I \subset R$ is an ideal. Then, R/I is Artinian.
- 3. An integral Artinian domain is a field.
- 4. Spec(R) = Max(R) is finite.

Proof. To 1, 2, ideals under localization and quotients have nice correspondence with those in R that respects inclusion.

To 3, given any $a \neq 0 \in R$, where R is an Artinian domain, the chain $(a) \subseteq (a^2) \subseteq (a^3)$... must stablize, so $(a^{n+1}) = (a^n)$ for some n. But this implies $a^n = a^{n+1}r$, which implies $a^n(1-ar) = 0$. By R being a domain, we get a is invertible.

To 4, let $p \in Spec(R)$. Then, R/p is an Artinian domain. Then, R/p must be a field. Thus, all primes are maximal.

If $\mathfrak{m}_1, \mathfrak{m}_2...$ is infinite, then we claim $\mathfrak{m}_1 \supset \mathfrak{m}_1\mathfrak{m}_2 \supset ... \supset \mathfrak{m}_1\mathfrak{m}_2\mathfrak{m}_3...$ does not stabilize: suppose otherwise $\mathfrak{m}_1\mathfrak{m}_2...\mathfrak{m}_k = \mathfrak{m}_1...\mathfrak{m}_{k+1} \subseteq \mathfrak{m}_{k+1}$ for some k. By primeness, this implies $\mathfrak{m}_j \subseteq \mathfrak{m}_{k+1}$ for some $1 \leq j \leq k$, which contradicts maximality.

Lemma 7.1. If R is Artin or Noetherian of Krull dimension 0, then J(R) = N(R) is nilpotent.

Proof. In Artinian rings or any ring of Krull dimension 0, all prime ideals are maximal, and we get the equality J(R) = N(R).

In the case of R is Artin, by DCC, $(N^n(R))_{n\in\mathbb{N}}$ stablizes at an ideal I where $I\subseteq N(R)$. Suppose $I\neq 0$. Then, let H be the set of all ideals of R whose product with I is not 0. The set is non-empty since I is in H; by artinian assumption, the set has a minimal element, call it \mathfrak{a} . By construction, there exists $x\in a$ such that $(x)I\neq 0$, so we must have $(x)=\mathfrak{a}$ by minimality. However, ((x)I)I=(x)I, so (x)I=(x). In particular, this implies xi=x and consequently $xi^n=x$ for some $i\in N(R)$ and $n\in\mathbb{N}$. However, i is nilpotent, which contradicts the assumption that $x\neq 0$.

In the case where R is Noetherian, we simply note that N(R) = rad((0)), and $nil((0))^k \subseteq (0)$ for k large enough by proposition 5.2.3,

If R is Artin or Noetherian of dimension 0, then every prime is both maximal and minimal, which means Max(R) is finite. We now present a proof of structure theorem for Artin rings, with an argument that also applies for Noetherian rings of dimension 0 without knowing a priori that they are in fact equivalent.

Theorem 7.2. (Structure Theorem) If R is Artin or Noetherian of dimension 0 with $Max(R) = \{m_1, ..., m_r\}$ is finite. Moreover, $R \cong R/(m_1)^n \times ... \times R/m_r^n$. Hence, R is a product of local Artinian rings.

Proof. We know the $J(R)^n = (\bigcap_{i=1}^k \mathfrak{m}_i)^n = 0$ for some n by Lemma 7.1. The goal is to use the Chinese Remainder Theorem and show that $R \cong R/(0) = R/J(R)$ has the desired form. First, we note that $\mathfrak{m}_i + \mathfrak{m}_j = 1$ by maximality, so (\mathfrak{m}_i) are pairwise coprime. Furthermore, this implies that $\mathfrak{m}_i^n + \mathfrak{m}_j^n = 1$ for all i, j: if not, then there exists minimal prime p over $\mathfrak{m}_i^n + \mathfrak{m}_j^n$, which implies $\mathfrak{m}_i^n \subseteq p$ and $\mathfrak{m}_i^n \subseteq p$, which in turn implies $\mathfrak{m}_i \subseteq p$ and $\mathfrak{m}_j \subseteq p$, which is impossible. Thus, (\mathfrak{m}_i^n) are also pairwise coprime. It follows that $0 = (J(R))^n = \prod \mathfrak{m}_i^n$, since intersection of ideals is product of ideals when the ideals are coprime. It is then a straight application of Chinese Remainder Theorem that $R \cong R/(m_1)^n \times ... \times R/m_r^n$.

Lastly, note that each ring of the form $R/(\mathfrak{m}^k)$ is local: any suppose $\mathfrak{m}^k \subset p$ for p prime, then for every $m \in \mathfrak{m}$, we have $m^k \in p$, so by primeness we have $m \in p$, and $\mathfrak{m} \subseteq p$. Thus, the only prime ideal is the image of \mathfrak{m} .

Theorem 7.3. (Relations of Artin Rings and Noether Rings) Let R be a commutative ring. The the following are equivalent:

- 1. R is an Artin ring
- 2. R is Noether and Krull dimension of R is 0.

Proof. Step one is reduce to the case where R is local by structure theorem, since product of Noetherian rings is Noetherian and product of Artin rings is Artin.

Now assume (R, \mathfrak{m}) is a local Artin ring. For k > 0, we have the exact sequence of R-modules

$$0 \longrightarrow \mathfrak{m}^k/\mathfrak{m}^{k+1} \stackrel{i}{\longrightarrow} R/\mathfrak{m}^{k+1} \stackrel{p}{\longrightarrow} R/\mathfrak{m}^k \longrightarrow 0$$

where i is the inclusion map and p is the canonical projection. By proposition 9.2, which we will prove latter, R/\mathfrak{m}^{k+1} is Noetherian provided both R/\mathfrak{m}^k and $\mathfrak{m}^k/\mathfrak{m}^{k+1}$ are Noetherian. Moreover, R being Artinian implies $\mathfrak{m}^k = 0$ for k large enough, and we have $R/\mathfrak{m}^k \cong R$ for k large enough. Our goal is to inductively show R/\mathfrak{m}^k Noetherian for all k: when k = 1, R/m is a field and thus Noetherian; now suppose R/\mathfrak{m}^n is Noetherian.

Note $\kappa := R/\mathfrak{m}$ is a field, and κ acts on $\mathfrak{m}^n/\mathfrak{m}^{n+1}$ in the following way: $\overline{r} \cdot \overline{m} := \overline{rm}$, So, $\mathfrak{m}^n/\mathfrak{m}^{n+1}$ has a canonical κ -vector space structure.

In particular, there is an inclusion preserving bijection

$$\{\kappa - \text{vector subspaces of } \mathfrak{m}^n/\mathfrak{m}^{n+1}\} \iff \{R - \text{ideals } \mathfrak{n} : \mathfrak{m}^{n+1} \subseteq \mathfrak{n} \subseteq \mathfrak{m}^n\} = \epsilon$$

Note R Artinian implies R/\mathfrak{m}^{n+1} is Artinian. Thus, the set ϵ is finite, and $\mathfrak{m}^n/\mathfrak{m}^{n+1}$ is a finite dimensional vector space. This condition forces ϵ to satisfy both ACC and DCC, and by ideal correspondence, $\mathfrak{m}^k/\mathfrak{m}^{k+1}$ as an R-module satisfies ACC and is thus Noetherian.

For the converse, let (R, \mathfrak{m}) be a Noetherian local ring of dimension 0. Note we also have $\mathfrak{m}^k = 0$ for k large enough, since $\mathfrak{m} = N(R)$, which is nilpotent by proposition 7.1.

We proceed inductively as before: if k=0,1 then R/\mathfrak{m}^k is clealy Artin. Now suppose it holds for k=n such that R/\mathfrak{m}^n is Artin. By using the same argument as before, R/\mathfrak{m}^{n+1} is Noetherian and satisfies ACC, so $\mathfrak{m}^n/\mathfrak{m}^{n+1}$ is again finite dimensional, which forces $\mathfrak{m}^n/\mathfrak{m}^{n+1}$ satisfying DCC as well.

8 Krull's Theorem on Noetherian Rings

Definition 8.1. Let R be a commutative ring; $\mathfrak{a} \subset R$ a proper ideal. Consider \mathfrak{a}^n and the projection $p_n: R/\mathfrak{a}^{n+1} \to R/\mathfrak{a}^n$. Then, $(R/\mathfrak{a}^n, p_n)_{n \in \mathbb{N}}$ is a projective system. The limit $\widehat{R} := \varprojlim R/\mathfrak{a}^n$, together with $i: R \to \widehat{R}$ is called \mathfrak{a} -adic completion of R.

Proposition 8.1. The kernel of the inclusion $\pi: R \to \widehat{R}$ is the intersection of all \mathfrak{a}^n .

Proof. We note
$$a \in ker(\pi)$$
 iff $\pi(a) = 0$ iff $pr_n(a) = 0$ for all n iff $a \in \bigcap_{i=0}^{\infty} \mathfrak{a}^n$.

The reason we refer i as the inclusion map is because when R is Noetherian and local/integral, the kernel of i is trivial by the following theorem by Krull.

Theorem 8.1. (The Intersection Theorem) Let R be a Noetherian ring that is local or integral. Let $\mathfrak{a} \subset R$ be a proper ideal. Then, $\bigcap_{n=0}^{\infty} \mathfrak{a}^n = 0$. In particular, the inclusion map in the \mathfrak{a} -adic completion is injection.

Proof. Suppose R is Notherian and local with maximal ideal \mathfrak{m} . By Noetherian assumption, the ideal $\mathfrak{a}_0 := \cap \mathfrak{a}^k$ is finitely generated. Moreover, $\mathfrak{m}_0 := \cap \mathfrak{m}^k$ is f.g with $\mathfrak{a}_0 \subseteq \mathfrak{m}_0$. We then have $\mathfrak{m} \cdot \mathfrak{m}_0 = \mathfrak{m}_0$, and apply Nakayama's lemma, we get $\mathfrak{m}_0 = (0)$.

Now suppose R is Noetherian and integral, and choose \mathfrak{m} be a maximal ideal over \mathfrak{a} . The integral assumption implies $\phi: R \to R_{\mathfrak{m}}$ is injective, and we reduce to the local case.

Example 8.1. The intersection theorem does not hold for generic Noetherian Rings. For example, in $\mathbb{Z}/6$, which is not a domain nor local, and the ideal I = (2) is idempotent. Thus, $\bigcap_{i=0}^{\infty} = I$.

Definition 8.2. Given a ring R and I an ideal, we equip R with I-adic topology given by the following basis $\{x + I^n : x \in R, n \in \mathbb{N}\}$. Moreover, a sequence of points (x_n) is called <u>Cauchy</u> if for every k > 0, there exists N such that for m, n > N, we have $x_n - x_m \in I^k$.

It is standard to verify that this is well-defined basis. Heuristically, the larger n the smaller the open neighborhood is. In particular, the intersection theorem says if R is Noetherian and integral/local, then the I-adic topology is Hausdorff. (an element eventually lives outside of I^n for n large enough). Then, the I-adic completion \widehat{R}_I is the topological completion of R.

It is easy to extend the whole package of definitions up to this point to R-modules. Given an R-modules M equipped with a choice of I-adic topology and a submodule N, it is natural to ask whether the subspace topology and I-adic topology on N agrees. The Artin-Rees lemma gives us a positive answer in the case when the ring is Noetherian and M is finitely generated.

Theorem 8.2. (Artin-Rees Lemma) Let R be a Noetherian ring and I an ideal. Let M be a finitely generated R-module and $N \subset M$ a submodule. Then, there exists an integer $k \geq 1$ such that for $n \geq k$, we have

$$I^nM\cap N=I^{n-k}(I^kM\cap N)$$

Before proving Theorem 8.2, we first set up some necessary tools.

Definition 8.3. Let R be a ring and $I \subset R$ an ideal. Then, the **blow-up algebra** of R is the graded R-algebra

$$B_I R := \bigoplus_{i=0}^{\infty} I^i$$

Note that when R is Noetherian, I is finitely generated as an R-module, and the generators generate B_IR as an R-algebra, which implies B_IR is a Noetherian ring as well.

Definition 8.4. Let R be a ring and $I \subset R$ an ideal, and let M be an R-module. A filtration $M = M_0 \supset M_1 \supset ...$ is called an I-filtration if $IM_n \subset M_{n+1}$ for all n. The filtration is called I-stable if $IM_n = M_{n+1}$ for n-large enough. Given an I-filtration J of M, define the **blow-up** module as $B_JM := \bigoplus_{i=1}^{\infty} M_i$.

Note that B_JM has a natural B_IR -module structure. We now introduce a proposition that relates stability and finite generation of blow-up modules.

Proposition 8.2. Let R be a ring, $I \subset R$ an ideal, and let M a finitely generated R-module with I-filtration $J: M = M_0 \supset M_1 \supset ...$, where each M_i is finitely generated. Then, the filtration J is I-stable iff the B_IR -module B_JM is finitely generated.

Proof. Easy Exercise.

We are now ready to prove Artin-Rees:

Proof of Theorem 8.2. Note $B_JM \cap N$ has a natural B_IR -module structure, which makes it a submodule of B_JM . In particular, if J is an I-stable filtration of M, then B_jM is finitely generated over a Noetherian ring B_IR , so the submodule $B_JM \cap N$ is a finitely generated B_IR -module, which implies the desired equality. \square

Theorem 8.3. If R is Noetherian, then all \mathfrak{a} -adic completions of R is Noetherian.

Proof. Let $(f_1,...,f_n)$ be a set of generators for a given \mathfrak{a} . There is a natural surjection from the power series ring $R[[x_1,...,x_n]] \to \widehat{R}_{\mathfrak{a}}$ given by the map $x_i \mapsto f_i$. Then, $\widehat{R}_{\mathfrak{a}}$ is a quotient of a Noetherian ring and is thus Noetherian.

Definition 8.5. Let R be a ring. For $r \in R$, define $Spec_{min}(r) := \{p \in Spec(R) : (r) \subset p \text{ minimal}\}$. For a set of elements $\{r_1, ..., r_n\}$, define similarly $Spec_{min}(r) = \{p \in Spec(R) : (r_1, ..., r_n) \subset p \text{ minimal}\}$

Definition 8.6. For $p \in Spec(R)$, the <u>height</u> of p is the krull dimension of R_p . The <u>coheight</u> is the krull dimension of R/p.

Proposition 8.3. $height(p) + coheight(p) \leq Krull dimension of R.$

Proof. Trivial. \Box

Definition 8.7. For $q \in Spec(R)$, the symbolic *n*-th power of q is defined as $q^{(n)} := q^n R_q \cap R$. In other words, $q^{(n)} = \{r \in R : sr \in q^n \text{ for some } s \in R \setminus q : \}$

Lemma 8.4. $q^{(n)}R_q = (qR_q)^n$.

Proof. Suppose $x \in (qR_q)^n$, then $x = x_1...x_n$ where $x_i = \frac{r}{s}$, where $r_i \in q$ and $s_i \in R \setminus q$. It is clear that $(\prod s_i)x \in q^n$, so $x = \prod_{i=1}^{n} \frac{x_i}{s_i} \in q^{(n)}R_q$; on the other hand, if $y \in q^{(n)}R_q$, then $y = \frac{m}{n}$ where $m \in q^{(n)}$ and $n \in R \setminus q$. By definition, there exists $s \in R/q$ such that $sm = q_1...q_n \in q^n$, where $q_i \in q$. Then, $y = \frac{m}{n} = \frac{q_1...q_n}{sn} = \prod_{i=1}^{n} \frac{q_i}{sn} \in (qRq)^n$.

Lemma 8.5. For $q \in Spec(R)$, the *n*th symbolic power $q^{(n)}$ is primary. If $ax \in q^{(n)}$, and $x \notin q$, then $a \in q^{(n)}$.

Proof. Note that $q^{(n)}$ is the contraction of the ideal $q^n R_q$, which is a power of maximal ideal and thus primary. Thus, $q^{(n)}$ is primary as well. By definition, if $ax \in q^{(n)}$, then $a(sx) \in q^n$ with $s, x \notin q$, which implies $a \in q^{(n)}$.

Theorem 8.6. (Krull's Principal Ideal Theorem/ Hauptidealsatz) Let R be a Noetherian ring. Then, for all non-units $r \in R$, one has $height(q) \leq 1$ for all $q \in Spec_{min}(r)$, with equality when r is not a zero-divisor.

Proof. Suppose there exists a chain $q_0 \subset q$ of prime ideals, and we want to show that $height(q_0) = 0$, so that $height(q) \leq 1$. We may localize at q so that we may assume R is local with maximal ideal q. By the assumption that p is minimal over r, the ring R/(x) is Noetherian and of dimension 0, hence Artinian. Thus, the chain

$$(r) + q_0^{(n)}$$

stablizes. Say we have $(r) + q_0^{(k)} = (r) + q_0^{(k+1)}$. It follows that $q_0^{(k)} \subset (r) + q_0^{(k+1)}$, so for any $f \in q_0^{(k)}$ we may write f = ar + g with $g \in q_0^{(k+1)}$. It is immediate that $ar \in q_0^{(k)}$, but $r \notin q_0$ by minimality, so $a \in q_0^{(k)}$

From this we have $q_0^{(k)}=(x)q_0^{(k)}+q_0^{(k+1)}$. Taking things modulo $q_0^{(k+1)}$, we have $x\in J(R)$, and an application of Nakayama's lemma says $q_0^{(k)}=q_0^{(k+1)}$. We further localize to R_{q_0} , and Lemma 8.4 and another application of Nakayama's lemma gives us $(q_0R_{q_0})^k=0$. In other words, the maximal ideal $q_0R_{q_0}$ is nilpotent in the local ring R_{q_0} . It follows that $q_0R_{q_0}\subseteq N(R_{q_0})$, which forces $q_0R_{q_0}$ to be the unique prime ideal. We have R_{q_0} is of dimension 0, as desired.

For the second part of the statement, if height(q) = 0, then q is nilpotent in R_q , and let n be minimal such that $r^n = 0 \in R_q$, which implies $sr^n = 0 \in R$ for some $s \neq 0$. By minimality, $sr^{n-1} \neq 0$, so r must be a zero divisor.

Definition 8.8. A sequence of elements $r_1, ..., r_n$ is called a <u>regular</u> sequence if $(x_1, ..., x_d)$ is a proper ideal for all $d \le n$, and r_i is not a zerodivisor in $R/(r_1, ..., r_{i-1})$ for all $i \le n$.

We have a generalization of the PIT for a system of elements:

Theorem 8.7. (Krull's Dimension Theorem) Let R be a Noether ring, and $r = (r_1, ..., r_m)$ a system. Then $Spec_{min}(r)$ contains prime ideals of height $\leq m$, with equality when r is regular.

Proof. We proceed by induction: n = 1 is PIT; now assume the dimension theorem holds for n = m. Given $r = (r_1, ..., r_{m+1})$, and $p \in Spec_{min}(r)$, let $q \subset p$ be a maximal prime ideal contained in p. Our goal is to show that ht(q) = m, which immediately implies that ht(p) = m + 1. By localizing at p, we may assume that R is local with maximal ideal p.

Since q is properly contained in p, we have WLOG that $r_{m+1} \not\in q$ by minimality. Consider $\mathfrak{a} = q + (r_{m+1})$, $q \subset \mathfrak{a} \subseteq p$. Then, $nil(\mathfrak{a}) = p$ since p is the only prime ideal containing a. By definition, we have $r_i \in p$ for all i = 1, ..., m+1, and there exists $a_i \in R$ and $s_i \in q$ such that $r_i^{n_i} = s_i + a_i r_{m+1}$. Thus, we have $r_i^{n_i} \in (s_1, ...s_m, r_{m+1})$, and a prime containing $(s_1, ...s_m, r_{m+1})$ will contain all r_i as well. It follows that p

is minimal over $(s_1, ...s_m, r_{m+1})$. Let $s = (s_1, ..., s_m)$. The image of p under the quotient map $R \to R/s$ is minimal over r_{m+1} . Therefore by PIT, \bar{p} has height at most 1, which forces the image of q having height 0, which means q is minimal over $(s_1, ..., s_m)$. By induction hypothesis, we are done.

Note that in our proof, \bar{p} has height 1 when r_{m+1} is not a zero-divisor under the quotient by PIT, which is equivalent to saying the system is regular.

Corollary 8.7.1. Let R be Noether. Then, the following hold:

- 1. Every descending sequence of prime ideals is staionary.
- 2. if ht(p) = m, then there exists a regular system of length m with p a minimal prime over it.

Proof. To 1: every prime ideal in a Noetherian ring is finitely generated. In particular, given p we can find a system of generators $(r_1, ..., r_m)$ for p such that p is minimal over the system by definition. Then, $ht(p) \leq m$ by dimension theorem.

To 2: we proceed by induction: it is trivial if m=1 by taking the system r=(0). Inductively suppose m=k+1. Let $p_1 \subset ... \subset p_k \subset p_{k+1}=p$ be a chain of length k+1. Then, p_k is minimal over a regular system $(x_1,...,x_k)$. First, quotient out the bottom prime so the ring is assumed to be integral. By Noetherian assumption, there is only a finite set of primes $\{q_i\}$ minimal over $(x_1,...,x_k)$. Then by prime avoidance, p cannot be contained in the union of $\{q_i\}$, otherwise contradicting minimality. Therefore, we may choose an element $x_{k+1} \notin (x_1,...,x_k)$ such that p is minimal over $(x_1,...,x_{k+1})$, and it is regular.

9 Modules over special classes of rings

9.1 Modules over PIDs

The motivating fact for the following lemma is this: given a non-zeron functional on a finite dimensional real vector space $\phi: V \to \mathbb{R}$, the range is one dimensional, say generated by $v \in V$. Then, we may decompose V as $V = span(v) \oplus ker(\phi)$.

Lemma 9.1. Let R be a PID and M a free R-module. Given a submodule $N \subset M$, there exists $y, y_1 \in N$ and $v \in Hom_R(M, R)$ such that the following hold:

- 1. $M = Ry_1 \oplus ker(v)$;
- 2. $N = Ry \oplus (N \cap ker(v))$

Proof. The proof is trivial if N = 0, so assume N is not trivial. First, note that for any $\phi \in Hom_R(M, R)$, the image $\phi(N)$ is an ideal of R and thus principally generated by some element $a_{\phi} \in R$. Let

$$\Sigma = \{a_{\phi} : \phi \in Hom_R(M, R)\}\$$

Then, Σ is not empty because $0 \in \Sigma$. Since PID are noetherian, Σ has a maximal element. Let v be the homomorphism such that $v(N) = (a_v)$ is maximal, and $y \in N$ be the element such that $v(y) = a_1$. To see that a_1 is not trivial, it suffices to demonstrate one homomorphism where N is not contained in the kernel. Let $(x_1, ..., x_n)$ be a basis for $M = \bigoplus_{i=1}^n Rx_i$. Since $N \neq 0$, there must the projection map onto the ith summand restricts to a homomorphism where N is not contained in the kernel.

The next step is to demonstrate a_1 divides all $\phi(y)$ for $\phi \in Hom_R(M, R)$. Note that ideal generated by a_1 and $\phi(y)$ is principal, and let b be its generator. Then, we may write $b = r_1 a_1 + r_2 \phi(y)$ for some $r_1, r_2 \in R$.

Consider the homomorphism $r_1v + r_2\phi \in Hom_R(M, R)$, which sends y to $r_1v(y) + r_2\phi(y) = b$. Therefore by maximality, we must have $(a_1) = (b)$, and it follows that $a_1|\phi(y)$.

In particular, we have $a_1|\pi_i(y)$, where π_i is the projection onto the Rx_i summand. In other words, $y = \sum_{i=1}^n (a_1b_i)x_i$ for $b_i \in R$. By factoring out the a_1 term from the coefficients, we get $y_1 := \sum_{i=1}^n (b_i)x_i$ where $v(y_1) = 1$. The claim is that $M = Ry_1 \oplus ker(v)$ and $N = Ry \oplus (N \cap ker(v))$. For the first equality, we note that every $x \in M$ can be written as $x = v(x)y_1 + (x - v(x)y_1)$, where $(x - v(x)y_1) \in ker(v)$ by a direct verification. For the second equality, for every $x' \in N$, we have $x' = v(x')y_1 + (x' - v(x')y_1)$. Note that $a_1|v(x')$, so $v(x')y_1 \in Ry$; by similarly reasoning, we have $(x' - v(x')y_1) = N$ and $v(x' - v(x')y_1) = 0$. Both sums are easily seen to be direct.

Theorem 9.2. Every submodule of a finitely generated free module over PID is free.

We use induction on rank. Suppose $N \subset M$ is of rank 0, then it must be torsion and any non-zero submodule of a free module is torsion free. Thus, N=0 and it is free. Suppose the statement holds for submodules of rank m. For submodule N of rank m+1, we decompose $N=Ry\oplus N\cap ker(v)$, where $N\cap ker(v)$ must be of rank m. It follows from the induction hypothesis that N is a direct sum of free modules and thus free.

Note that we may alter the proof slightly by choosing a well-ordered basis for M if it is not finitely generated and use transfinite induction to prove the result in general.

Theorem 9.3. (Invariant Factors Theorem) Let R be a principal ideal domain and M a free R-module, $N \subset M$ a submodule. Then, there exists R-basis $A = (\alpha_1, ..., \alpha_m)$ of M and $\delta_1 | \delta_2 | ... | \delta_n$ in R such that $\delta_1 \alpha_1 ..., \delta_n \alpha_n$ is an R-basis for N, unique up to association.

Proof. We induct on rank of M: if rank of M=0, then there is nothing to prove. Suppose the statement holds for rk(M)=n. Since $M=Ry_1\oplus ker(v)$, we know there is a basis $y_2,...,y_n$ of ker(v) and $\delta_2|...|\delta_n$ such that $\delta_2\alpha_2...,\delta_n\alpha_n$ is an R-basis for $N\cap ker(v)$. We are left to show that $\delta_1:=a_1$ divides all δ_i , and in particular it suffices to prove $\delta_1|\delta_2$. The proof follows from the similar vein as in Lemma 9.1, based on the maximality of δ_1 .

Theorem 9.4. (Structure Theorem) Let R be a PID, and M a finite R-module. Then, there exists non-units $\delta_1|...|\delta_n$ unique up to association such that $M \cong \oplus R/(\delta_i) \oplus R^f$

Proof. Let $(x_1,...,x_n)$ be a system of generators for M. Let $f: R^n \to M$ be the morphism given by $e_i \mapsto x_i$. Then, the kernel is a submodule of R^n , so by invariant factors theorem we get a basis $(e'_1,...,e'_n)$ for R^n and a basis $\delta_1e'_1,...,\delta_me'_m$ for ker(f). By isomorphism theorem, we have

$$M \cong R^n/ker(f) = Re'_1 \oplus ... \oplus Re'_n/R\delta_1e'_1 \oplus ... \oplus \delta_me'_m \cong \oplus R/(\delta_i) \oplus R^{n-m}$$

For uniqueness, given $M \cong \oplus R/(\delta_i) \oplus R^f$ and the projection $p: R^n \to M$. We get N = ker(p) has basis required in the invariant factors theorem, which is unique.

Corollary 9.4.1. The following hold for finitely generated modules over PID:

- 1. M is torsion free iff M is free.
- 2. The torsion submodule of M is finitely generated.

Example 9.1. For a finitely generated abelian group $A, A \cong \mathbb{Z}/(d_1) \oplus ... \oplus \mathbb{Z}/(d^r) \oplus \mathbb{Z}^f$

Example 9.2. (Smith Normal Form) Given an $n \times m$ matrix A with entries in PID, there exists a decomposition A = LDR, where L, R are invertible matrices representing row and column operations, and D is a diagonal matrix of the form

$$\begin{bmatrix} \delta_1 & & & \\ & \delta_2 & & \\ & & \cdots & \\ & & & \delta_n \end{bmatrix}$$

where $\delta_1|...|\delta_n$. The diagonal matrix is called the Smith Normal Form of A. In the context of Invariant factor theorem, the decomposition says that under the basis change to $y_1,...,y_m$ given by R, the vectors $\delta_1y_1,...\delta_ny_m$ spans the range, under the base change L.

The algorithm of reducing a matrix A to the smith normal form is as follows: starting with the first column, we may use elementary row operations to reduce the 1,1 entry to the $d = \gcd(a_{1,1}, a_{2,1})$: R being a PID implies there exists $r_1, r_2 \in R$ such that $r_1a_{1,1} + r_2a_{2,1} = d$ (note that having a Euclidean Algorithm will make this actually algorithmically computable instead of theoretically exists). The row operation corresponds to the matrix

$$\begin{bmatrix} r_1 & r_2 \\ -a_{1,1}/d & a_{2,1}/d \end{bmatrix}$$

which has determinant 1 and thus invertible. Now we can subtract and get rid of all entries in the first column other than $a_{1,1} = d$. Do the same for the first row, which possibly adds new entries back to the first column, but the number of prime factors of $a_{1,1}$ reduces, therefore the algorithm must terminate.

Now we have obtained a diagnonal matrix. To put it into the desired form, suppose $\delta_1 \not| \delta_2$. Then, we may add δ_2 back to the first column, and perform the same operations to turn δ_1 into $gcd(\delta_1, \delta_2)$. By the same reasoning, the process terminates.

Example 9.3. (Rational Canonical Form) Let k be a field and V a finite dimensional vector space over k. Fix some $\varphi \in End(V)$. Then, V becomes a k[t]-module by

$$p(t) \cdot v = p(\varphi)(v)$$

By Cayley-Hamilton, V is a finite-torsion F[t] module. Hence, $V \cong F[t]/(\delta_1) \oplus \ldots \oplus F[t]/(\delta_n)$, with $\delta_1|\ldots|\delta_n$. Let $\delta_i = t^{n_i} + a_{n_i-1}t^{n_i-1}\ldots + a_0$. Then $R_i := R/(\delta_i)$ has basis $(1,t,\ldots,t^{n_i-1})$, The action of t on the basis vectors is $t \cdot x^k = x^{k+1}$ for $k < n_i$ and $t \cdot x^{n_i} = -(a_{n_i-1}t^{n_i-1}\ldots + a_0)$. Thus, each R_i has the matrix form

$$\begin{bmatrix} 1 & & & & -a_0 \\ 1 & & & -a_1 \\ & 1 & & -a_2 \\ & & 1 & & -a_3 \\ & & \dots & \\ & & & 1 & -a_{n_i-1} \end{bmatrix}$$

and $V = R_1 \oplus ... \oplus R_n$.

Proposition 9.1. Given a $n \times n$ matrix A, the invariant factors $\delta_1, ..., \delta_n \in k[t]$ can be determined by reducing the matrix A - tI to the smith normal form.

Proof. It is easy to prove the lemma that each block $R_i - tI$ has a smith normal form

The proposition follows from the fact that two matrices A, B are similar iff their characteristic matrices are equivalent (i.e you can get from the other through elementary matrix operations). In particuar, the minimal polynomial of ϕ is δ_n , and the characteristic polynomial is the product $\prod_{i=1}^n \delta_i$.

Example 9.4. We find the invariant factors of the matrix

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 \end{bmatrix}$$

It is easy to calculate the characteristic polynomial to be $t(t-1)^3$, and the minimal polynomial is $t(t-1)^2$. We see that this forces the invariant factors to be t-1 and $t(t-1)^2$. The may sanity check by reducing the characteristic matrix to the smith normal form

$$A - tI \Longrightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & t - 1 & 0 \\ 0 & 0 & 0 & t(t - 1)^2 \end{bmatrix}$$

This means the rational canonical form of A is

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

9.2 Noetherian/Artinian Modules

Let R be a (not necessarily commutative) ring, and M be a (left/right/bi) module. We say that M satisfies ACC/DCC iff that set of submodules satisfies ACC/BCC with respect to inclusion.

Example 9.5. If R is a Noetherian/artinian ring. Then it is a Noetherian/Artinian module over itself.

Proposition 9.2. (Characterization) Let M be an R-module. Then the following hold:

- 1. M. satisfies ACC/DCC if every subset of submodules has maximal/minimal elements with respect to inclusions.
- 2. M. satisfies ACC iff every submodule is finitely generated.

Proof. To 1: Suppose X is a subset of submodules. If the subset has no maximal/minimal elements, then there exists a non-stablizing ascending/descending chain of submodules, so M cannot satisfy ACC/DCC. Conversely, if there is a infinite ascending/descending chain of submodules of M, then collection of the submodules in the chain is a subset with no maximal/minimal elements.

To 2: If $N \subseteq M$ is not finitely generated, we may inductively choose elements in $x_i \in M \setminus M_{i-1}$, where $M_{i-1} := (x_1, ..., x_{i-1})$ is the module generated by the elements in the parenthesis. Then, $(M_i)_{i \in \mathbb{N}}$ is a non-stablizing ascending chain. Conversely, if $(M_i)_{i \in \mathbb{N}}$ is a non-stablizing ascending chain of submodules, then $\bigcup_{i=0}^{\infty} M_i$ is a submodule that is not finitely generated.

Proposition 9.3. (Properties) The following hold:

- 1. If M satisfies ACC/DCC, then every submodule of M and quotient module of M satisfies ACC/DCC.
- 2. The category of R-modules satisfying ACC/DCC has finite products and coproducts.
- 3. Localization preserves ACC/DCC.

Proof. To 1: Trivial. To 2: Consider the projection $p:M\to M/IM$. The inverse image p^{-1} takes a submodule to a submodule, and it is (proper) inclusion preseving. Thus, every ascending/descending chain in M/IM, M/IM lifts to an ascending/descending chain in M. To 3: In **R-Mod**, finite product and coproducts agree, and it suffices to consider the direct product $M\times N$. If $M\times N$ has ascending/descending chain of submodules, then the projection map onto M and N takes the chain to ascending/descending chains as well. If both chains stablize after some finite degree n, then it is clear that the original chain stablize after degree n as well. To 4: consider the inclusion $i:M\to \Sigma^{-1}M$. The inverse image i^{-1} takes a submodule to a submodule, and it is (proper) inclusion preseving(a submodule in $\Sigma^{-1}M$ is equal to the localization of its contraction). Thus, every ascending/descending chain in $\Sigma^{-1}M$ lifts to an ascending/descending chain in M.

Proposition 9.4. For R-module M, the following hold:

1. Given a short exact sequence

$$0 \longrightarrow M_0 \longrightarrow M_1 \stackrel{p}{\longrightarrow} M_2 \longrightarrow 0$$

We have M_1 satisfies ACC/DCC iff M_0 and M_2 satisfies ACC/DCC.

2. Let

$$0 \longrightarrow M_0 \longrightarrow M_1 \longrightarrow \dots \longrightarrow M_n \longrightarrow 0$$

Then, (M_{2k}) satisfies ACC/DCC iff (M_{2k+1}) does so.

Proof. To 1: assume M_1 satisfies ACC/DCC: then M_0 is canonically a submodule of M_1 and M_2 is a quotient M_1 , so they satisfy ACC/DCC by Proposition 9.2.1; now suppose M_1 does not satisfy ACC/DCC, which means there is a non-stablizing ascending/descending chain $C = (C_n)$ of submodules. Now $C \cap M_1$ is naturally a chain of submodules of M_0 , and p(C) is an ascending/descending chain of submodules of M_2 . Suppose by contradiction that both chain stabilizes, which means there exists N such that $C_N + M_0 = C_{N+1} + M_0$ and

 $C_N \cap M_0 = C_{N+1} \cap M_0$. However, the first equality implies $C_{N+1} - C_N \subset M_0$ for ascending $(C_N - C_{N-1})$ for descending, and combined with the second equality we have $C_N = C_{N-1}$, a contraction.

To 2, we may break the long exact sequence to short exact sequences by adding in the kernel and cokerknel terms. The result is then a simple corollary of part 1.

Recall the discussion on composition series of R-modules. If a composition series exist, then all such have the same length and the same simple factors up to permutation. $0 \subseteq M_1 \subseteq M_2 \subseteq ... \subseteq M_n = M$ such that $\overline{M_i} = M_i/M_{i-1}$ is simple.

Proposition 9.5. Let M be a (left) modules. Then, M has a (left) composition series iff M satisfies ACC and DCC.

Proof. Let $0 \subseteq M_1 \subseteq M_2 \subseteq ... \subseteq M_n = M$ be a composition series, and make induction on n. For n = 1, the module is simple and it automatically satisfies ACC and DCC. For inductive step, suppose $0 \subseteq M_1 \subseteq M_2 \subseteq ... \subseteq M_n$ is a composition series, so M_n satisfies ACC and DCC. Then, there exists the exact sequence

$$0 \longrightarrow M_n \stackrel{f}{\longrightarrow} M_{n+1} \stackrel{g}{\longrightarrow} M_{n+1}/M_n \longrightarrow 0$$

and by proposition 9.2, M_{n+1} satisfies ACC and DCC sicne M_{n+1}/M_n is simple.

Suppose M satisfies ACC and DCC. In particular, M has minimal submodules M_1 by DCC, which must be simple. Proceed inductively, and consider the set $M' = \{N | M_1 \subset N\}$, which also has minimal elements, say M_2 . Then, M_2/M_1 must be simple. By ACC, the sequence must terminate and we get a finite composition series.

10 Integral extensions

10.1 Basic Facts

Definition 10.1. A commutative ring extension is any injective ring homomorphism $R \hookrightarrow S$. We denote such an entension by S|R. An element $x \in S$ is called <u>integral</u> or <u>algebraic</u> if it is a root of a monic polynomial in R[t].

Example 10.1. The canonical embedding $\mathbb{Z} \hookrightarrow \mathbb{Q}$ is a ring extension. The only integral elements are elements in \mathbb{Z} . In general, if R is a UFD, then $x \in S$ integral over R iff $x \in R$. For example, $\mathbb{Z}[t] \hookrightarrow \mathbb{Q}[t]$.

Proposition 10.1. Let S|R be a ring extension. Then, the following are equivalent:

- 1. $x \in S$ is integral over R.
- 2. R[x] is a finite R-module
- 3. There exists a subring T such that $R \subseteq T \subseteq S$ where $x \in T$, and T is a finite R-module.

Proof. For $1 \implies 2$, suppose x satisfies the minimal monic polynomial $p(t) = t^n + a_{n-1}t^{n-1} + ... + a_0$. Then, $R[x] \cong R[t]/(p(t))$, which is a finite R module generated by $1, t, ..., t^{n-1}$. $2 \implies 3$ is trivial.

For $3 \implies 1$, suppose T as an R module is finitely generate by $(v_1, ..., v_n)$. Then, x acts on T by left multiplication, and suppose $xv_i = \sum_{j=1}^n a_{i,j}v_j$. Let $A = (a_{i,j})$ and v be the column vector $(v_1, ..., v_n)^T$. Then, the equation says (A - xI)v = 0, which implies det(A - xI) = 0 (for R a domain, we may enlarge to the quotient field and the statement is purely linear algebra; for general R, this can be proven using Cramer's rule). Thus, x satisfies the characteristic polynomial of A, which makes it integral.

The proof of proposition 10.1.3 generalizes to the famous Cayley-Hamilton Theorem

Theorem 10.1. (Cayley-Hamilton) Let R be a ring, $I \subset R$ an ideal, M a finitely generated R-module that is generated by n elements. Fix $\varphi \in End_R(M)$. If

$$\varphi(M) \subset IM$$

then there exists a monic polynomial $p(x) = x^n + p_1 x^{n-1} + ... + p_n$ with $p_i \in I^i$ such that $p(\varphi) = 0$.

Proposition 10.2. Let S|R be a ring extension.

- 1. If $x_1, ..., x_n \in S$ are integral over R. Then, $R[x_1, ..., x_n]$ is a finite R-module.
- 2. $R := \{x \in S : x \text{ integral over } R\}$ is a subring containing R.
- 3. If $I \in Id(R)$, and $\tilde{I} = \{x \in S : x \text{ integral over } I\}$ is an ideal of \tilde{R} containing I. In particular, it is $N(I\tilde{R})$.

Proof. To 1: direct corollary of Proposition 10.1.2.

To 2. Note that if a, b are integral over R, then a + b and ab are contained in the ring R[a, b], which by 1 is finite over R. By Proposition 10.1.3, we are done.

To 3: For the $\tilde{I} \subseteq N(I\tilde{R})$ direction, let $x \in \tilde{R}$ be integral over I, which means there is $x^n + a_{n-1}x^{n-1} + = 0$. We may rewrite the equation as $x^n = (-a_{n-1}x^{n-1} +) \in I\tilde{R}$, hence $x \in N(I\tilde{R})$. For the other direction, let $y \in N(I\tilde{R})$, which implies $y^k = \sum_{i=1}^n b_i x_i$, where $b_i \in I$ and $x_i \in \tilde{R}$. Then, $M = R[x_1, ..., x_n]$ is finite module over R, and $y^k M \subset IM$. Left multiplication by y^k again is again an endomorphism of IM, and we finish by Cayley-Hamilton.

Definition 10.2. Let S|R be a ring extension. The ring $\tilde{R} = \{x \in S : x \text{ algebraic over } R\}$ is called **integral closure** of R. S|R is called **integral** if $\tilde{R} = S$. R is called **integrally closed in** S if $\tilde{R} = R$.

Definition 10.3. Let R be a domain and K its quotient field. R is called **integrally closed** if R is integrally closed in K.

Proposition 10.3. UFDs are integrally closed.

Proof. Suppose R is a UFD. Let $f(t) = a_0 + ...x^n$ be a monic polymial in R[x]. Suppose $\frac{p}{q} \in \text{Quot}(R)$ is a root to f(t) with $\gcd(p,q) = 1$. Then, $q^n f(\frac{p}{q}) = p^n + a_{n-1}p^{n-1}q + ... + a_0q^n = 0$. In particular, we see q clearly divides every term of degree < n, so it must divide p^n as well. By \gcd assumption, q must be a unit, and $\frac{p}{q} \in R$. We conclude R is integrally closed.

Proposition 10.4. Valuation rings are integrally closed.

Proof. Let R be a valuation ring, and $f(t) = a_0 + ...x^n$ be a monic polymial in R[x]. If b is a root to f(t), we know one of b and b^{-1} is in R; if $b \in R$ we are done; if $b^{-1} \in R$, by f(b) = 0 we get $b + a_{n-1} + a_{n-2}b^{-1}... + a_0b^{-n+1} = 0$, so $b \in R$ as well. We conclude R is integrally closed.

Theorem 10.2. Let R be a domain. Then, R is integrally closed iff $R = \cap R_v$ where R_v is a valuation ring over R in the quotient field.

Proof. The intersection of integrally closed subrings of a common quotient field is clearly integrally closed in the quotient field: an element integral over the intersection is integral over every ring in the intersection, thus contained in every ring in the intersection.

Suppose R is integrally closed in the quotient field K. Clearly, $R \subseteq \cap R_v$ where R_v are valuation rings lying over R since they are integrally closed. Conversely, if $x \in K$ is an element not integral over R, then $x^{-1} \notin R$ by the same argument as above. Let $\mathfrak{m} \subset R$ be a maximal ideal containing x^{-1} . By Chevalley's extension theorem, there is a valuation ring (V, \mathfrak{m}_V) over R with $\mathfrak{m}_V \cap R = \mathfrak{m}$. In particular, V is a valuation ring containing x^{-1} but not x. Thus, $R = \cap R_v$

Proposition 10.5. The following hold:

1. (Transitivity) Let $S_2|S_1|R$ be ring extensions. Then, $S_2|R$ is integral iff $S_2|S_1$ is integral and $S_1|R$ is integral as well.

- 2. (Functoriality) Suppose S|R is integral, b a proper ideal of S, and let $a:=b\cap R$. Then S/b|R/a is integral.
- 3. Let S|R be integral, and Σ be a multiplicative system of R. Then, $S_{\Sigma}|R_{\Sigma}$ is integral.

Proof. To 1: if $S_2|R$ is integral, then clearly both $S_2|S_1$ and $S_1|R$ are integral. Conversely, suppose $S_2|S_1$ and $S_1|R$ are integral. Given $x \in S_2$, we have x satisfying $x^n + s_{n-1}x^{n-1} + ... + s_0 = 0$. Consider the subring $R' := R[s_0, ..., s_{n-1}]$, which is a finite module over R. Then, R[x] is finite over R', therefore finite over R as well.

To 2: Suppose we have $x \in S$, then $x^n + p_{n-1}x^{n-1} + ... + p_0 = 0$ for $p_i \in R$. Reduce the equation mod b gives us a monic polymial over R/a.

To 3: Let $\frac{s}{b} \in S_{\Sigma}$. By integral assumption, $s^n + p_{n-1}s^{n-1} + ... + p_0 = 0$. Replace p_i with p_i/b^i gives us a monic polynomial with coefficients in R_{Σ} and $\frac{s}{b}$ a root.

10.2 Going-Up Theorem

Proposition 10.6. Let S|R be a integral extension. If S is a domain, then S is a field iff R is a field. In particular, if \mathfrak{m} is maximal in S iff $\mathfrak{m} \cap R$ is maximal.

Proof. First, assume R is a field. Take $x \neq 0 \in S$, and there exists $a_0, ..., a_{n-1} \in R$ such that $a_0 + ... + a_{n-1}x^{n-1} + x^n = 0$. By the domain assumption, we may assume $a_0 \neq 0$, for otherwise we may factor out x^k as necessary. Then $x(x^{n-1} + ... + a_1) = -a_0$ is invertible, so $x \in S^{\times}$. Conversely, suppose $x \in R$. Then,

 $x^{-1} \in S$ is integral over R, satisfying $x^{-n} + p_{n-1}x^{-n+1} + ...p_0 = 0$. Multiplying both sides with x^{n-1} shows x^{-1} is in R as well.

Finally, if $\mathfrak{m} \in Max(S)$ and $\mathfrak{n} = \mathfrak{n} \cap R$. Then, S/\mathfrak{m} is integral over R/\mathfrak{n} by Proposition 10.5.2. Therefore, R/\mathfrak{n} is a field and thus \mathfrak{n} is maximal.

Proposition 10.7. Let S|R be an integral extension. Suppose we have $q_1, q_2 \in Spec(S)$ with $q_1 \subseteq q_2$ such that $q_1 \cap R = q_2 \cap R$. Then, $q_1 = q_2$.

Proof. We may localize both ring at $q_1 \cap R$. Then, q_1, q_2 are still primes in S, while $q_1 \cap R$ is maximal in R. By Proposition 10.6, we have q_1, q_2 both maximal, so we have $q_1 = q_2$.

Theorem 10.3. Let S|R be a integral ring extension. Then, the following hold:

- 1. (Lying-over) For every $p \in Spec(R)$, there exists $q \in Spec(S)$ such that $q \cap R = p$.
- 2. (Going-up) Let $p_1 \subseteq p_2 \subseteq \subseteq p_n$ be a chain in Spec(R), $p_1 \subseteq p_2 \subseteq \subseteq p_m$ a chain in Spec(S), such that m < n and $q_j \cap R = p_j$ for all $j \leq m$. Then, the chain in Spec(S) can be extended to length n. In particular, Krull dimension of R equals the Krull dimension of S.

Proof. To prove the lying over property: let $p \in Spec(R)$ be given. Consider $R_p \subset S_p$. Then, S_p over R_p is integral. In particular, R_p is local and p is maximal. Using Proposition 10.6, taking any maximal ideal in S_q finishes.

To prove going-up, it suffices to show n=2 and m=1: suppose we have $p_1 \subset p_2$ with q_1 such that $q_1 \cap R = p_1$. Then, consider $R' := R/p_1$ and $S' := S/q_1$. By lying over, there is a prime in S' lying over $\overline{p_2}$. Lift back to S finishes.

Corollary 10.3.1. Given a integral extension $i: R \to S$, the induced map $i^*: Spec(S) \to Spec(R)$ is surjective.

11 Noether Normalization Theorem

Let k be a field; R|k be a algebra of finite type. We first prove two lemma regarding change of variables. The first one applies when normalizing k-algebras when k is infinite.

Lemma 11.1. Suppose k is an infinite field. Given $q \in k[x_1, ..., x_n]$, there is a choice of $a_1, ..., a_n \in k$ such that the change of variables $x_i \mapsto x_i + a_i x_n$ for i < n and $x_n \mapsto a_n x_n$ take q to the form

 $q = cx_n^d + (\text{terms in which } x_n \text{ has exponent less than } d)$

Proof. It suffices to consider the homogeneous part of highest total degree d, denoted by q_d , since the linear change of variables does not change the total degree. The coefficients of x_n^d is precisely $q_d(a_1, ..., a_n)$. Thus, the lemma reduces to whether a homogeneous polynomial q_d does not vanish everywhere on k^n . When k is infinite, this is standard to prove by induction on number of variables, and the fact that a polynomial over R[x] has only finitely many roots.

Note that since k is a field and the polynomial is homogeneous, we can divide out an appropriate constant so that $c = q_d(a_1, ..., a_n) = 1$.

Example 11.1. This argument fails when k is finite. For example, the polynomial $x^3 + 2x = x(x-1)(x-2)$ vanishes everywhere on F_3 .

Now we prove a more generalized change of variables that applies without the assumption of the infinitude of k.

Lemma 11.2. Suppose D is a integral domain. Given $q \in D[x_1,...,x_n]$, there is a choice of $m_1,...,m_n \in k$ such that the change of variables $x_i \mapsto x_i + x_n^{m_i}$ for i < n and $x_n \mapsto x_n^{m_n}$ take q to the form

 $q = cx_n^m + (\text{terms in which } x_n \text{ has exponent less than } d)$

Proof. Let N be a natural number larger than the highest exponent of x_i anywhere in q, and take $m_i = N^i$. Then, let $c\underline{X}$ be a term in q, where the exponents of \underline{X} is given by the multindices $\alpha := (\alpha_0, ..., \alpha_n)$. Then, the term having the highest exponent of x_n is the monomial $x_n^{T_\alpha}$, where $T_\alpha = \sum_{i=0}^n \alpha_i N^i$. Note that given a different set of multindices α' , we have $T_\alpha \neq T_{\alpha'}$ by uniqueness of N-ary representation. Therefore, we obtain a monomial cx_n^m , with m being the unique largest exponent after the change of variables.

Again, if D is a field, we may take c = 1 by dividing out an appropriate constant.

Theorem 11.3. (Noether Normalization Theorem) Let $R = k[x_1, ..., x_n]$ be a k-algebra of finite type. Then, there exists $t_1, ..., t_d \in R$, $d \le n$ such that $\{t_i\}$ algebraically independent over R and R is integral over $R_0 := k[t_1, ..., t_d]$, a polynomial ring over d variables.

Proof. We induct on n. If n=1, and x_1 is algebraic over k, then k[x] is a vector space and thus we take $R_0=k$ as well; if x_1 is not algebraic over k, then take t be a transcendental variable and k[x]=k[t]. Now suppose the theorem holds for n=m. For n=m+1, if all elements $x_1,...,x_m$ again are algebraically independent, we may just take $t_i=x_i$. Otherwise, there exists a non-zero polynomial p such that $p(x_1,...,x_n)=0$. Using Lemma 11.2, we may let $x_i'=x_i-x_n^{m_i}$ for i< n, and x_n is integral over $R_0:=k[x_1',...,x_{n-1}']$. Then, $x_n^{m_i}$ are integral over R_0 , and the sum of integral elements $x_i+x_n^{m_i}=x_i'$ are integral as well. Therefore, $R|R_0$ is integral. By transitivity of integrality and the inductive hypothesis, we are done.

Definition 11.1. The new set of variables $t_1, ..., t_n$ is called a <u>Noether Basis</u> of R over k.

Proof. We proceed by induction: if n = 1, then the ring is a field or a PID and every non-zero prime ideal is maximal. Thus, every chain is of length 0 or 1, respectively.

Definition 11.2. Let R be a commutative ring, and $f \in R$. Then, $V(f) := \{ \mathfrak{m} \in Max(R), f \in \mathfrak{m} \}$. This is called the **zero set** of f in R. More generally, given $I \in Id(R)$, we denote $V(I) := \{ \mathfrak{m} \in Max(R), I \subset \mathfrak{m} \}$

Example 11.2. Let $R = k[x_1, ..., x_n]$. Then, every maximal ideal of R is of the form $(x_1 - a_1, ..., x_n - a_n)$ for $a_i \in k$.

Theorem 11.4. (Hilbert Nullstellensatz) Let $R = k[x_1, ..., x_n]$ be a k-algebra of finite type.

- 1. If R is a field, then R is a finite extension of k. In particular, $p \in Spec(R)$ is maximal iff R/p is algebraic over k.
- 2. Given $\mathfrak{a} \in Id(R)$, then $N(\mathfrak{a}) = J(\mathfrak{a})$
- 3. Let $g, f_1, ..., f_m \in R$ be given. Then, the zeros of $f_1, ..., f_m$ are contained in the zeroes of g iff there exists N > 0, $\lambda_i \in R$ such that $g^N = f_1 \lambda_1 + ... + f_m \lambda_m$.

Proof. To 1: By contradiction, suppose R|k is not algebraic. Then, by Noether Normalization, there exists $T=(t1,...,t_d)$ such that $R|R_0:=k[t_1,...,t_d]$ a finite extension. which leads to a contradiction.

To 2, Let $f \in J(\mathfrak{a})$, and suppose by contradiction that $f \notin N(\mathfrak{a})$. Then, $\Sigma = \{1, f^1, f^2, ...\}$ is a multiplicative system, and $R_{\Sigma} = R[\frac{1}{f}]$ is an R-algebra of finite type. let \mathfrak{m}_{Σ} be a maximal ideal. Let $\mathfrak{m} = (\mathfrak{m}_{\Sigma})^c$ is maximal in R. Then, $f \notin \mathfrak{m}$.

To 2: setg
$$\mathfrak{a} = (f_1, ..., f_m)$$
. Then, $V(\mathfrak{a}) \subset V(g)$. Show $g \in N(\mathfrak{a})$.

Geometric interretation of Hilbert Nullstellensatz: let K|k an algebraically closed field extension.

Definition 11.3. An algebraic set over k with values in $K = \overline{k}$ is any set defined as follows: for $n \ge 1, f_1, ..., f_n \in k[x_1, ..., x_n]$ such that $\Sigma = \{a = (a_1, ..., a_n) \in K^n : f_i(a) = 0\}$ V=Verschwinden, to vanish. $I(\Sigma) = \{g \in R : g(\Sigma) = 0\}$.

12 Integral Extensions over Integral Domains

Proposition 12.1. Let S|R be an integral extension where R is integral domain. Let K be the quotient field of R, L be the quotient field of S. Then the following hold:

- 1. L|K is an algebraic field extension and there exists a basis in S.
- 2. If $x \in L$ algebraic over R iff $Mipo_K(x) \in R[t]$
- 3. If L|K is finite with basis $\beta_1, ..., \beta_n$. Then the integral closure of S in L is contained in $\sum_{i=1}^k R\beta_i^*$.

Proof. To 1: L|K algebraic is exercise. Let β_i' be a K basis of L|K. Rewrite things as a basis in S. To 2: Let $x \in S$ be integral over R. Hence, we have $f(t) = x^n + \ldots + a_0 = 0$ with $a_i \in R$. WLOG, we have $a_0 \neq 0$. Let $\tilde{S} = \{\tilde{x} \in \overline{L} : \tilde{x}stf(t) \in R[t]\}$. Hence, all \tilde{x} are algebraic independent over R; and f(t) splits over \tilde{S} . Hence, Mipo(x)|f(t). Then, $f(t) = \prod (t - \tilde{x}_i) = t^n + (\sum_{i=1}^k x_i)t^{n-1} + \ldots \prod \tilde{x}_i$. Show that all coefficients are in $\tilde{S} \cap K = R$.

Theorem 12.1. (Going Down) Let S|R be a integral ring extension of domains, with R integrally closed, then it satisfies the going down property.

Proof. By induction, reduce to the case where R is local.

Corollary 12.1.1. Let $R := k[x_1, ..., x_n]$ be a finitely generated k-algebra. Then, R is strongly catenary, i.e every maximal sequence of prime ideals has length n = d.

13 Introduction to Hilbert Decomposition Theory

Let R be an integrally closed domain. K the quotient field. L|K the algebraic separable extension. S the integral closure of R in L. The question is describe the behaviour of Spec(R) under the integral ring extension S|R. Especially when L|K is Galois. In some sense, this extends the usual Galois theory for field extension to ring extensions.

Proposition 13.1. Let G be a profinite group, acting continuously on a discrete ring S. Then, the oribit for every $x \in S$ is finite under G.

Proposition 13.2. Let $G_i = g/N_i$. Then, $S_i = S^{G_i} := \{x \in S : G_i x = x\}$.

- 1. Then, $\cup S_i = S$
- 2. Let $R = S^G$. Then, $S_i | G$ is integral. Moreover, $G_i \subset Aut_R(S_i)$, with $S_i^{G_i} = R$.

Proposition 13.3. Let $R = S^G$. Then, $S_i|R$ and S|R are integral ring extensions. Hence, $S_j|S_i$ for $N_i \subset N_i$ is integral extension.

Proposition 13.4. Let $p \in Spec(R)$, and denote $X_p^i = \{q \in Spec(S_i) : q_i \cap R = p\}$ and $X_p = \{q \in Spec(S) : q \cap R = p\}$. Then, G acts Transitivity on X_p , and G_i acts transitively on X_p^i .

Fact: Let L|K be Galois; let G be the galois group. Then, $\sigma \in G$ implies $\sigma(S) = S$.

The ring extensions $S_j|R$ satisfies $Spec(S_i) \to Spec(R)$ given by $q_i \mapsto q_i \cap R$ is surjective. Then, $Spec(R) = G_i \ Spec(S_i)$ is the G_i orbits of $Spec(S_i)$. Finally, Spec(S) is the projective limit of $Spec(S_i)$ as G-spaces.

Definition 13.1. Given $q \in Spec(X_p)$, the <u>q-decomposition group</u> $D_{q|p} = st_G(q) = \{\sigma \in G : \sigma q = q\}.$

Proposition 13.5. Let $\Sigma \subset R$ be a multiplicative system. Then, G acts on S_{Σ} $\sigma(\frac{q}{r}) = \frac{\sigma(q)}{r}$. And, $S_{\Sigma}^G = R_{\Sigma}$ Moreover, $p \cap \Sigma = \emptyset$. Then, $X_{P_{\Sigma}} = \{q_{\Sigma} : q \in X_p\}$. And $D_{q_{\Sigma}|p_{\Sigma}} = D_{q|p}$.

Proposition 13.6. Let $H \subset G$ be an open subgroup. Define $q^H = q \cap S^H$.

- 1. $q^H \cap R = p$ and $D_{q|q^H} = D_{q|p} \cap H$.
- 2. If H is normal, let $\overline{G}: G/H$. Then, \overline{G} acts on S^H by $\overline{\sigma}(h) = \sigma(h)$. Then, $(S^H)^{\overline{G}} = R$, and $D_{q^H|p} = \overline{D_{q|p}} := D_{q|p}/H$.

Corollary 13.0.1. Let G, S|R be as usual. Then,

1. The going-down for S|R holds. Given $p_1 \subset ... \subset p_n$ a chain in Spec(R), and $q_m \subset ...q_n$ with $m \leq n$, then there exists $q_1 \subset ... \subset q_m$ in Spec(S) that prolongs the sequence.

Proof. By induction, it suffice to consider n=2 and m=1. Hence $p_1 \subset p_2$ and $q_2 \cap R = p_2$. Recall there exists $q_1' \in Spec(S)$ such that $q_1' \cap R = p_1$. By going-up, there exists $q_2' \in Spec(S)$ such that $q_2' \cap R = p_2$. Since G acts transitively on X_{p_1} and X_{p_2} such that $\exists \sigma \in G$ such that $\sigma' q_2 = q_2'$. Take σ^{-1} finishes. \square

Theorem 13.1. The restriction map $Spec(S) \to Spec(R)$ by $q \mapsto q \cap R$ defines a bijection between the maximal chain of prime ideals in the two rings.

Let $H \subset G$ be a closed subgroup. S^H be the fixed ring. $Spec(S^H) \to Spec(R)$ be the restriction map. Then, the previous theorem also holds.

Example 13.1. Main example of the theory is: Let R be an integrally closed domain. K be the quotient field of R and L|K galois extensions. Take S be the integral closure of R in L. Recall G acts on S via L (check $\sigma s \in S$). Then, S|R is quasi-galois extension with $G = Aut_R(S)$. Hence, the Hilbert Decomposition Theory works for S|R, the going down.

Example 13.2. Let $R = \mathbb{Z}$, $K = \mathbb{Q}$ and $L = \mathbb{Q}[\sqrt{d}]$. Then, $S = \sqrt{\text{iff } d \neq 1 \mod 4}$. Otherwise $S = \mathbb{Z}[\frac{1+\sqrt{d}}{2}]$. Then $G = \mathbb{Z}/2$. Let $\mathfrak{P} \in X_p \in Spec(S)$. Then the decomposition group is either 1 or the entire G. Look at $x^2 - d(modp)$. If reducible, then p cannot be prime.

Example 13.3. R = k[t] and $K = k(t), L = k(\sqrt{f}).$

14 Dedekind domains

Definition 14.1. A domain R is called a <u>Dedekind</u> domain if every proper ideal can be written as a product of prime ideals.

Example 14.1. All PIDs are Dedekind Domains. The integral closure of a dedekind doamin under the galois extension is still a Dedekind domain.

Definition 14.2. Let R be a commutative ring and K be its total ring of fractions. If R is a domain, then K is a field. A fractional ideal of R is any R-submodule $M \subset K$ such that there exists non-zero divisor r such that $rM \subset R$.

Definition 14.3. Given $M \subset K$ a fractional ideal, it is called <u>invertible</u> if there exists $N \subset K$ fractional ideal such that MN = R.

Proposition 14.1. Let I'_R be the set of fractional ideals of R. Then, the set is closed under addition and multiplication.

Proposition 14.2. Every invertibe ideal M is finitely generated.

Definition 14.4. $I_R \subset S'_R$ is the set of invertible fractional ideals.

Proposition 14.3. The following hold:

- 1. I_R is the group of invertible elements in I'_R .
- 2. $M \subset I_R$ implies M finitely generated as R-module, and there exists $s \in \Sigma_R^0 \cap M$, meaning there must be non-zero divisors of M.
- 3. Let N' := (R : M), then $N'M \subset R$ and N'M = R iff $M \in I_R$

Proof. Exercise. To 2: let $N \in I_R$ such that NM = R; then there exists $n_i \in N$, $m_i \in M$ such that $\sum_{i=1}^k n_i m_i = 1 \in R$.

Proposition 14.4. Being invertible is a local property.

Proof. Exercise. The hint is $N_p := (R_p : M_p)$ for all prime p.

Theorem 14.1. (Characterization of Dedekind Domains) The following are equivalent:

- 1. R is a Dedekind domain,
- 2. $I'_R = I_R$. In other words, all non-zero fractional ideals are invertible.
- 3. All non-zero prime ideals of R are invertible.
- 4. For all $m \in Max(R)$, we have R Noetherian, and R_m is a DVR.
- 5. R is Noetherian, integrally closed, and Krull dimension is 1.

Proof. Let $M \in I'_R$, $M \neq 0$, and $r \in R$ such that $rM \in Id(R)$. Then, $M \in I_R$ iff $rM \subset R$ is invertible.

For $a \in Id(R)$, choose $r \neq 0$, $r \in a$. Then, $a \subset (r)$ both have a prime decomposition, with exponents comparable.

For $iii \implies iv$, if $M \in I_R$, then M is finitely generated. Hence, all $p \in Spec(R)$ are finitely generated and we get Noetherian. The claim now is $dim(R_m) = 1$. Let $p \in Spec(R_m)$, and $p \neq m$. Look at $a = pm^{-1}$. Then, p = ma. Thus, we have $a \subset p$. On the other hand $p \subset qm^{-1}$, we have p = a. By Nakayama, we have p = pm in a noetherian local ring and p must be 0. Check that the maximal ideal is principal, so that the ring is a DVR.

For $iv \equiv v$: see lemma below.

For $iv \implies i$: let $a \in Id(R)$ be a proper ideal. For every $m \in Max(R)$, there exists $N_m > 0$ such that $a_m = m_m^{N_m}$. Since the ring is noetherian and of krull dimension 1, the set $\{N_m : N_m > 0\} = Spec_{min}(a)$ is finite.

Lemma 14.2. Let R be a local domain. Then the following are equivalent:

- 1. R is integrally closed and of Krull dimension 1.
- 2. R is Noetherian and the maximal ideal is principal
- 3. R is a PID
- 4. R is DVR.

Proof. For $r \neq 0$, there exists minimal N such that $m^N \subset (r)$. Conclude that there exists $a \in m^{N-1}$ such that $\frac{a}{r}$ is not in R. But, $\frac{r}{a}m \subseteq R$. But m is finitely generated, we get $\frac{r}{a}$ is integral over R.

Theorem 14.3. (Permanence Properties) Let R be a Dedekind domain. Then, the following hold:

- 1. If $\Sigma \in R$ is a multiplicative system, and R_{Σ} not a field. Then, R_{Σ} is a dedekind domain.
- 2. Let K = Quot(R), and L|K a separable extension, S be the inetrgal closure of R in L. Then, S is Dedekind domain.

Proof. To 1: Exercise. To 2: suppose L|K is separable, then S is a finite R module hence noetherian and has the same krull dimension 1. Therefore, the S is Dedekind. Suppose L|K is purely inseperable, then it following from a theorem by Krull-Akizuki.

Proposition 14.5. Some remarks: Let R be Dedekind domain.

- 1. If Spec(R) is finite. Then, R is a PID.
- 2. If $a \in Id(R)$ there exists $x, y \in a$ such that a = (x, y).

Proof. Exercise.

Definition 14.5. The set of invertible ideals of R is callled the <u>Cartier divisors</u> of R. If R is Dedekind, then the group is called the divisor group of R. The group H_R is the subgroup of divisor group of R that are principally generated.

Definition 14.6. The Ideal class group is the quotient $Div(R)/H_R$.

Example 14.2. $cl(\mathbb{Z}) = 1$; cl(k[t]) = 1; If $K|\mathbb{Q}$ a quadratic number field, O_K be the ring of integers. Then, $cl(O_k)$ not always 1.