78DXXL

LINEAR INTEGRATED CIRCUIT

3-TERMINALS 0.5A POSITIVE VOLTAGE REGULATOR

■ DESCRIPTION

The UTC **78DXXL** family is monolithic fixed voltage regulator integrated circuit. They are suitable for applications that required supply current up to 0.5 A.

■ FEATURE

- * Output Current Up To 0.5 A
- * Fixed Output Voltage Of 5V, 6V, 8V, 9V, 12V, 15V and 18V Available
- * Thermal Overload Shutdown Protection
- * Short Circuit Current Limiting
- * Output Transistor SOA Protection

■ ORDERING INFORMATION

Ordering Number		Package	Pin	Assignn	Packing	
Lead Free	Halogen Free	Fackage	1	2	3	Packing
78DXXLL-AA3-R	78DXXLG-AA3-R	SOT-223	I	G	0	Tape Reel
78DXXLL-AB3-B-R	78DXXLG-AB3-B-R	SOT-89	0	G	_	Tape Reel
78DXXLL-TM3-T	78DXXLG-TM3-T	TO-251	I	G	0	Tube
78DXXLL-TN3-R	78DXXLG-TN3-R	TO-252	I	G	0	Tape Reel
78DXXLL-TNA-R	78DXXLG-TNA-R	TO-252-3	I	G	0	Tape Reel

Note: 1. XX: Output Voltage, refer to Marking Information

2. Pin Code: I: Input G: GND O: Output

- (1) R: Tape Reel, T: Tube
- (2) refer to Pin Assignment
- (3) AA3: SOT-223, AB3: SOT-89, TM3: TO-251, TN3: TO-252, TNA: TO-252-3
- (4) G: Halogen Free and Lead Free, L: Lead Free
- (5) XX: refer to Marking Information

www.unisonic.com.tw 1 of 8

■ MARKING INFORMATION

■ BLOCK DIAGRAM

■ TYPICAL APPLICATION CIRCUIT

Note: Bypass capacitors are recommended for optimum stability and transient response and should be located as close as possible to the regulators.

■ ABSOLUTE MAXIMUM RATINGS (T_J=25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Input Voltage		V_{IN}	35	V
Output Current		I _{OUT}	0.5	Α
	SOT-223		8.3	
Power Dissipation (T _C =25°C)	SOT-89	P_{D}	2.3	W
	TO-251/TO-252		10	
Junction Temperature		TJ	-20~ +150	°C
Storage Temperature		T _{STG}	-65 ~ +150	°C

Notes: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

PARAMETER		SYMBOL	RATINGS	UNIT
	SOT-223		15	
Junction to Case	SOT-89	$\theta_{ m JC}$	55	°C/W
	TO-251/TO-252]	12.5	

■ ELECTRICAL CHARACTERISTICS

 $(T_J=25^{\circ}C, C_I=0.33\mu F, C_O=0.1\mu F, P_D\leq 7W, unless otherwise specified)$

For 78D05L (V_{IN}=10V, I_{OUT}=0.5A)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
0.4	.,	I _{OUT} =5mA~0.5A	4.8	5	5.2	V
Output Voltage	V_{OUT}	V _{IN} =7.5~20V, I _{OUT} =5mA~0.5A	4.75		5.25	V
Load Degulation	۸۱/	I _{OUT} =5mA~0.5A			100	mV
Load Regulation	ΔV_{OUT}	I _{OUT} =5mA~200mA			50	mV
Line Degulation	۸۱/	V _{IN} =7V~25V			100	mV
Line Regulation	// //	V _{IN} =7.5~20V, I _{OUT} =0.5A			100	mV
Quiescent Current	IQ	I _{OUT} =0.5A			8	mA
Quiggeont Current Change	ΔI_Q	V _{UT} =7.5~20V			1	mA
Quiescent Current Change		I _{OUT} =5mA~0.5A			0.5	mA
Output Noise Voltage	e _N	10Hz≤f≤100kHz		40		μV
Temperature coefficient of V _{OUT}	$\Delta V_{OUT}/\Delta T$	I _{OUT} =5mA		-0.6		mV/°C
Ripple Rejection	RR	V _{IN} =8~18V,f=120Hz	62	80		dB
Peak Output Current	I _{PEAK}			1.2		Α
Short-Circuit Current	I _{SC}	V _{IN} =V _{OUT} +19V		250		mA
Dropout Voltage	V_D			2		V

■ ELECTRICAL CHARACTERISTICS (Cont.)

For 78D06L (V_{IN}=11V, I_{OUT}=0.5A)

101102002 (11111111111111111111111111111						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Output Valtage	\ /	I _{OUT} =5mA~0.5A	5.76	6	6.24	V
Output Voltage	V _{OUT}	V _{IN} =8.5~21V,I _{OUT} =5mA~0.5A	5.7		6.3	V
Load Regulation	ΔV _{OUT}	I _{OUT} =5mA~0.5A			120	mV
Load Regulation	ΔV _{OUT}	I _{OUT} =5mA~200mA			60	mV
Line Degulation	A\/	V _{IN} =8~25V			120	mV
Line Regulation	ΔV_{OUT}	V _{IN} =8.5~21V, I _{OUT} =0.5A			120	mV
Quiescent Current	IQ	I _{OUT} =0.5A			8	mA
Quiescent Current Change	ΔI_Q	V _{IN} =8.5~21V			1	mA
Quiescent Current Change		I _{OUT} =5mA~0.5A			0.5	mA
Output Noise Voltage	e _N	10Hz≤f≤100kHz		45		μV
Temperature coefficient of V _{OUT}	$\Delta V_{OUT}/\Delta T$	I _{OUT} =5mA		-0.7		mV/°C
Ripple Rejection	RR	V _{IN} =9~19V,f=120Hz	59	75		dB
Peak Output Current	I _{PEAK}			1.2		Α
Short-Circuit Current	I _{SC}	V _{IN} =V _{OUT} +19V		250		mA
Dropout Voltage	V_D			2		V

For 78D08L (V_{IN}=14V, I_{OUT}=0.5A)

1 01 10 DOCE (VIII 11V, 1001 0.071)		<u> </u>				
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Outsut Valtage	\/	I _{OUT} =5mA~0.5A	7.68	8	8.32	V
Output Voltage	V _{OUT}	V _{IN} =10.5~23V, I _{OUT} =5mA~0.5A	7.6		8.4	V
Load Degulation	A\/	I _{OUT} =5mA~0.5A			160	mV
Load Regulation	ΔV_{OUT}	I _{OUT} =5mA~200mA			80	mV
Line Degulation	A\/	V _{IN} =10.5~25V			160	mV
Line Regulation	ΔV_{OUT}	V _{IN} =10.5~23V, I _{OUT} =0.5A			160	mV
Quiescent Current	IQ	I _{OUT} =0.5A			8	mA
Ouissant Current Change	ΔlQ	V _{IN} =10.5~23V			1	mA
Quiescent Current Change		I _{OUT} =5mA~0.5A			0.5	mA
Output Noise Voltage	e _N	10Hz≤f≤100kHz		58		μV
Temperature coefficient of V _{OUT}	$\Delta V_{OUT}/\Delta T$	I _{OUT} =5mA		-0.9		mV/°C
Ripple Rejection	RR	V _{IN} =11.5~21.5V, f=120Hz	56	72		dB
Peak Output Current	I _{PEAK}			1.2		Α
Short-Circuit Current	I _{SC}	V _{IN} =V _{OUT} +19V		250		mA
Dropout Voltage	V_D			2		V

For 78D09L (V_{IN}=15V, I_{OUT}=0.5A)

1 01 1 02 00 2 (1 1 1 1 1 1 1 1						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Output Valtage	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	I _{OUT} =5mA~0.5A	8.64	9	9.36	V
Output Voltage	V _{OUT}	V _{IN} =11.5~24V,I _{OUT} =5mA~0.5A	8.55		9.45	V
Load Pogulation	۸۱/	I _{OUT} =5mA~0.5A			180	mV
Load Regulation	ΔV_{OUT}	I _{OUT} =5mA~200mA			90	mV
Line Degulation	۸۱/	V _{IN} =11.5~25V			180	mV
Line Regulation	ΔV_{OUT}	V _{IN} =11.5~24V, I _{OUT} =0.5A			180	mV
Quiescent Current	IQ	I _{OUT} =0.5A			8	mA
Quiaccant Current Change	ΔI_Q	V _{IN} =11.5~24V			1	mA
Quiescent Current Change		I _{OUT} =5mA~0.5A			0.5	mA
Output Noise Voltage	e _N	10Hz≤f≤100kHz		58		μV
Temperature coefficient of V _{OUT}	ΔV _{OUT} /ΔΤ	I _{OUT} =5mA		-1.1		mV/°C
Ripple Rejection	RR	V _{IN} =12.5~22.5V,f=120Hz	56	72		dB
Peak Output Current	I _{PEAK}			1.2		Α
Short-Circuit Current	I _{SC}	V _{IN} =V _{OUT} +19V		250		mA
Dropout Voltage	V_D			2		V

■ ELECTRICAL CHARACTERISTICS (Cont.)

For 78D12L (V_{IN}=19V, I_{OUT}=0.5A)

1 01 1 02 122 (1111 10 1 1 100 1 0 10 1 1)						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Output Valtage	W	I _{OUT} =5mA~0.5A	11.52	12	12.48	V
Output Voltage	V _{OUT}	V _{IN} =14.5~27V,I _{OUT} =5mA~0.5A	11.4		12.6	V
Load Degulation	۸۱/	I _{OUT} =5mA~0.5A			240	mV
Load Regulation	ΔV_{OUT}	I _{OUT} =5mA~200mA			120	mV
Line Degulation	۸۱/	V _{IN} =14.5~30V			240	mV
Line Regulation	ΔV_{OUT}	V _{IN} =14.6~27V, I _{OUT} =0.5A			240	mV
Quiescent Current	IQ	I _{OUT} =0.5A			8	mA
Quicacent Current Change	ΔI_Q	V _{IN} =14.5~30V			1	mA
Quiescent Current Change		I _{OUT} =5mA~0.5A			0.5	mA
Output Noise Voltage	e _N	10Hz≤f≤100kHz		75		μV
Temperature coefficient of V _{OUT}	$\Delta V_{OUT}/\Delta T$	I _{OUT} =5mA		-1.5		mV/°C
Ripple Rejection	RR	V _{IN} =15~25V, f=120Hz	55	72		dB
Peak Output Current	I _{PEAK}			1.2		Α
Short-Circuit Current	I _{SC}	V _{IN} =V _{OUT} +19V		250		mA
Dropout Voltage	V_D			2		V

For 78D15L (V_{IN} =23V, I_{OUT} =0.5A, C_I =0.33 μ F, C_O =0.1 μ F,)

1 01 1 0D 10L (VIN 20V, 1001 0.071, 01	σ.σομι , σ υ					
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Outsid Vallage	.,	I _{OUT} =5mA~0.5A	14.4	15	15.6	V
Output Voltage	V _{OUT}	V _{IN} =17.5~30V, I _{OUT} =5mA~0.5A	14.25		15.75	V
Load Degulation	۸۱/	I _{OUT} =5mA~0.5A			300	mV
Load Regulation	ΔV_{OUT}	I _{OUT} =5mA~200mA			150	mV
Line Regulation	۸۱/	V _{IN} =18.5~30V			300	mV
Line Regulation	ΔV_{OUT}	V _{IN} =17.5~30V, I _{OUT} =0.5A			300	mV
Quiescent Current	ΙQ	I _{OUT} =0.5A			8	mA
Quiaccant Current Change	ΔlQ	V _{IN} =17.5~30V			1	mA
Quiescent Current Change		I _{OUT} =5mA~0.5A			0.5	mA
Output Noise Voltage	e _N	10Hz≤f≤100kHz		90		μV
Temperature coefficient of V _{OUT}	$\Delta V_{OUT}/\Delta T$	I _{OUT} =5mA		-1.8		mV/°C
Ripple Rejection	RR	V _{IN} =18.5~28.5V, f=120Hz	54	70		dB
Peak Output Current	I _{PEAK}			1.2		Α
Short-Circuit Current	I _{SC}	V _{IN} =V _{OUT} +19V		250		mA
Dropout Voltage	V_D			2		V

For 78D18L (V_{IN}=27V, I_{OUT}=0.5A)

101 10D 10L (VIN-21 V, 1001-0.5/1)		+				
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Output Valtage	\/	I _{OUT} =5mA~0.5A	17.28	18	18.72	V
Output Voltage	V _{OUT}	V _{IN} =21~33V,I _{OUT} =5mA~0.5A	17.1		18.9	V
Load Regulation	۸۱/	I _{OUT} =5mA~0.5A			360	mV
Load Regulation	ΔV_{OUT}	I _{OUT} =5mA~200mA			180	mV
Line Regulation	ΔV_{OUT}	V _{IN} =21~33V			360	mV
Line Regulation	ΔVOUT	V _{IN} =21~33V, I _{OUT} =0.5A			360	mV
Quiescent Current	IQ	I _{OUT} =0.5A			8	mA
Quiagont Current Change	ΔI_Q	V _{IN} =21.5~33V			1	mA
Quiescent Current Change		I _{OUT} =5mA~0.5A			0.5	mA
Output Noise Voltage	e _N	10Hz≤f≤100kHz		110		μV
Temperature coefficient of V _{OUT}	$\Delta V_{OUT}/\Delta T$	I _{OUT} =5mA		-2.2		mV/°C
Ripple Rejection	RR	V _{IN} =22~32V,f=120Hz	53	69		dB
Peak Output Current	I _{PEAK}			1.2		Α
Short-Circuit Current	I _{SC}	V _{IN} = 35V		250		mA
Dropout Voltage	V_D			2		V

■ TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

