Magnetization as a function of temperature

From degenerate pertubation theory, the energy correction from the applied magnetic field B is governed by the following equation:

$$\frac{e\hbar B}{2m_e}[H'][A] = W'[A]$$

Where the elements of [H']:

$$H'_{mn} = \int \psi *_{0m} L_z \psi_{0n} dV$$

This yields the following eigenvalue problem:

$$\frac{e\hbar B}{2m_e} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} A_1 \\ A_0 \\ A_{-1} \end{bmatrix} = W' \begin{bmatrix} A_1 \\ A_0 \\ A_{-1} \end{bmatrix}$$

The eigenvalues are found from solving the cubic equation:

$$\frac{e\hbar B}{2m_e}(1-W')(0-W')(-1-W')=0$$

The splitting of the degeneracy results in three distinct energy states (The lower energy being in direction of B):

$$W'_{1} = -1.7365E - 05[eV]$$

$$W'_{0} = 0.0000[eV]$$

$$W'_{-1} = 1.7365E - 05[eV]$$

The Maxwell-Boltzmann distribution has the form:

$$N_i = \frac{Nexp(-W_i/kT)}{\sum_i exp(-W_i/kT)}$$
$$W_i = W_0 + W_i'$$

The $exp(W_0/kT)$ will cancel in the numerator and denominator, giving:

$$N_i = \frac{Nexp(-W_i'/kT)}{\sum_i exp(-W_i'/kT)}$$

Substituting in $W'_i = -1.7365E - 05$, 0, 1.7365E - 05K and repeating the calcution for T = 300, 77, 4.2K:

N_i	T = 300	T = 77	T = 4.2K
N_{-1}	3.3356	3.3421	3.4945
N_0	3.3333	3.3333	3.3308
N_1	3.3311	3.3246	3.1747

Table 1: Distribution particles into the three energies (all values are to be multiplied by 1^{23}

Recalling the eigenvalues of L_z , the average z-component of angular momentum for a given temperature is:

$$\langle \bar{L}_z \rangle = \frac{\sum_i N_i \langle L_{zi} \rangle}{N}$$
$$= \frac{N_{-1} \times (1) + N_0 \times (0) + N_1 \times (-1)}{N}$$

Therefore, the macroscopic z-component of magnetization for a given temperature is:

$$\vec{\mu_z} = \frac{\langle \bar{L_z} \rangle QN}{2m_e}$$

Temperature	$u_z[J/T]$
300	0.0004153
77	0.0016180
4.2	0.029653

Table 2: Z-component of the magnetization