A few applications of the SVD

Many methods require to approximate the original data (matrix) by a low rank matrix before attempting to solve the original problem

- ightharpoonup Regularization methods require the solution of a least-squares linear system Ax = b approximately in the dominant singular space of A
- The Latent Semantic Indexing (LSI) method in information retrieval, performs the "query" in the dominant singular space of \boldsymbol{A}
- ➤ Methods utilizing Principal Component Analysis, e.g. Face Recognition.

Commonality: Approximate A (or A^{\dagger}) by a lower rank approximation A_k (using dominant singular space) before solving original problem.

➤ This approximation captures the main features of the data while getting rid of noise and redundancy

Note: Common misconception: 'we need to reduce dimension in order to reduce computational cost'. In reality: using less information often yields better results. This is the problem of overfitting.

➤ Good illustration: Information Retrieval (IR)

Information Retrieval: Vector Space Model

▶ Given: a collection of documents (columns of a matrix A) and a query vector q.

- lacksquare Collection represented by an m imes n term by document matrix with $\overline{a_{ij}=L_{ij}G_iN_j}$
- ➤ Queries ('pseudo-documents') q are represented similarly to a column

Vector Space Model - continued

- Problem: find a column of A that best matches q
- ightharpoonup Similarity metric: angle between the column and q Use cosines:

$$\frac{|c^T q|}{\|c\|_2 \|q\|_2}$$

➤ To rank all documents we need to compute

$$s = A^T q$$

- ightharpoonup s = similarity vector.
- **▶** Literal matching not very effective.

Use of the SVD

- Many problems with literal matching: polysemy, synonymy, ...
- ➤ Need to extract intrinsic information or underlying "semantic" information —
- ➤ Solution (LSI): replace matrix *A* by a low rank approximation using the Singular Value Decomposition (SVD)

$$A = U \Sigma V^T \quad o \quad A_k = U_k \Sigma_k V_k^T$$

- $ightharpoonup U_k$: term space, V_k : document space.
- Refer to this as Truncated SVD (TSVD) approach

New similarity vector:

$$s_k = A_k^T q = V_k \Sigma_k U_k^T q$$

Issues:

- ➤ Problem 1: How to select *k*?
- Problem 2: computational cost (memory + computation)
- ➤ Problem 3: updates [e.g. google data changes all the time]
- ➤ Not practical for very large sets

LSI: an example

- Number of documents: 8
- Number of terms: 9

➤ Raw matrix (before scaling).

Get the anwser to the query Child Safety, so

$$q = [0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0]$$

using cosines and then using LSI with k=3.

Dimension reduction

Dimensionality Reduction (DR) techniques pervasive to many applications

- ➤ Often main goal of dimension reduction is not to reduce computational cost. Instead:
- Dimension reduction used to reduce noise and redundancy in data
- Dimension reduction used to discover patterns (e.g., supervised learning)
- ➤ Techniques depend on desirable features or application: Preserve angles? Preserve distances? Maximize variance?

• •

The problem

ightharpoonup Given $d \ll m$ find a mapping

$$\Phi:x\ \in \mathbb{R}^m \longrightarrow y\ \in \mathbb{R}^d$$

Mapping may be explicit (e.g., $y = V^T x$)

Or implicit (nonlinear)

Practically:

Find a low-dimensional representation $Y \in \mathbb{R}^{d \times n}$ of $X \in \mathbb{R}^{m \times n}$.

➤ Two classes of methods: (1) projection techniques and (2) nonlinear implicit methods.

Example: Digit images (a sample of 30)

A few 2-D 'reductions':

Projection-based Dimensionality Reduction

Given: a data set $X = [x_1, x_2, \dots, x_n]$, and d the dimension of the desired reduced space Y.

Want: a linear transformation from X to Y

ightharpoonup m-dimens. objects (x_i) 'flattened' to d-dimens. space (y_i)

Problem: Find the best such mapping (optimization) given that the y_i 's must satisfy certain constraints

9-13 ______ Csci 5304 - November 15, 2013

Principal Component Analysis (PCA)

- ightharpoonup PCA: find V (orthogonal) so that projected data $Y=V^TX$ has maximum variance
- \blacktriangleright Maximize over all orthogonal $m \times d$ matrices V:

$$\sum_i \|y_i - rac{1}{n} \sum_j y_j\|_2^2 = \cdots = \mathsf{Tr}\,\left[V^ op ar{X}ar{X}^ op V
ight]^2$$

Where: $ar{X}=[ar{x}_1,\cdots,ar{x}_n]$ with $ar{x}_i=x_i-\mu$, $\mu=$ mean.

Solution:

 $V = \{$ dominant eigenvectors $\}$ of the covariance matrix

 \blacktriangleright i.e., Optimal V= Set of left singular vectors of \bar{X} associated with d largest singular values.

- Show that $\bar{X} = X(I \frac{1}{n}ee^T)$ (here e = vector of all ones). What does the projector $(I \frac{1}{n}ee^T)$ do?
- lacksquare Show that solution V also minimizes 'reconstruction error' ..

$$\sum_i \|ar{x}_i - VV^Tar{x}_i\|^2 = \sum_i \|ar{x}_i - Var{y}_i\|^2$$

 $ilde{m m eta}$.. and that it also maximizes $\sum_{i,j} \|y_i - y_j\|^2$