# INVERSE LAPLACE TRANSFORM

23

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 1             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------|
| Inverse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lap | ace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | agn | storm         |
| <br>The state of the s |     | Service of the servic |     | A commence of |

is called as the inverse Laplace transform of 
$$\phi(s)$$
 and it is denoted by  $1^{-1}[\phi(s)] = f(t)$ .

### · Formulae

|    | Laplace Transform       | Inverse Laplace Transform                                            |
|----|-------------------------|----------------------------------------------------------------------|
| 1> | 1(1)=1                  | 1>1-1(1)=1                                                           |
| 2) | L(eat) - 1              | 2) 17 (1) = eat                                                      |
|    | 1(e-at)= 1<br>S+a       | 3) 17 (1 = e-at :                                                    |
| 4> | L(sinat) - a            | 4) $L^{-1}\left(\frac{1}{3^2+a^2}\right) = \frac{1}{a}$ sinat        |
| 5) | L(rosat)= S<br>S2+a2    | 5> 1-1( s ) - cosat                                                  |
| 6> | L(sinhat) = a           | 6) $1^{-1}\left(\frac{1}{s^2-a^2}\right) - \frac{1}{a} \sinh at$     |
|    | 1 (coshat) = 5<br>s2-a2 | $7$ $1^{-1}$ $\left(\frac{9}{8^2-6^2}\right)$ = coshat               |
|    | L(tm) = 10+1<br>9n+1    | $8 > 1^{-1} \left( \frac{1}{s^n} \right) = \frac{t^{n-1}}{\sqrt{n}}$ |
|    |                         | T. S.                            |

Prof. Nancy Sinollin

Sundaran

FOR EDUCATIONAL USE

|                  | Problems:                                                                                                        |
|------------------|------------------------------------------------------------------------------------------------------------------|
| 41               | Find 17 3+25+52                                                                                                  |
|                  |                                                                                                                  |
| sodn             | 1 3+25+32 - 1 3 + 2 + 1 S3 + 82 + 5                                                                              |
|                  |                                                                                                                  |
|                  | $= 32^{r} \left[ \frac{1}{5^3} \right] + 22^{r} \left[ \frac{1}{5^2} \right] + 2^{r} \left[ \frac{1}{5} \right]$ |
|                  | $\frac{-3t^2+2t+1}{13}$                                                                                          |
|                  |                                                                                                                  |
|                  | $= \frac{3t^2}{2!} + \frac{2t}{1!} + 1$                                                                          |
|                  | $= 3t^2 + 2t + 1$                                                                                                |
|                  | <u> </u>                                                                                                         |
| 2>               | If L[f(+)]= S+3 Find L[f(+)]                                                                                     |
| Sol <sup>h</sup> | L[f'(+)] = -f(0) + S L[f(+)]                                                                                     |
| -                | $= -f(0) + 5\left(\frac{5+3}{5^2+4}\right).$                                                                     |
|                  | $(S^2+4)$                                                                                                        |
|                  | How to find of (t)                                                                                               |
|                  | $all(f(+)) = \frac{S+3}{S^2+4}$                                                                                  |
|                  | 5                                                                                                                |
|                  | $f(t) = 1^{-1}   st3  $                                                                                          |
|                  | = 11 S + 3 ]                                                                                                     |
|                  | [32+4   32+4]                                                                                                    |
|                  | $= \cos 2t + 3 \sin 2t$                                                                                          |
|                  | $\Rightarrow$ $f(0) = cos(0) + 3/2 sin(0) = 1$                                                                   |
|                  | Hence, L[f'(t)] = -1 + S(S+3)-from (1).                                                                          |
| Sundaram         | FOR EDUCATIONAL USE                                                                                              |

|               |      | Using First Shifting Theorem                                                                                   |
|---------------|------|----------------------------------------------------------------------------------------------------------------|
|               |      | We know that.                                                                                                  |
|               |      | If $L[f(t)] = \phi(s)$ then $L[\bar{e}^{at}f(t)] = \phi(sta)$                                                  |
|               |      |                                                                                                                |
|               |      | Hence, L-1 [ \$(s+a)] = = = at p(+) = = at 1-1 [\$(s)]                                                         |
|               |      | as L[+(+)] = \$\psi(s)                                                                                         |
|               |      |                                                                                                                |
|               |      | Therefore, [-1[\$(s+a)]= eat [1[\$(s)]                                                                         |
|               |      |                                                                                                                |
| $\overline{}$ |      | 17 (9(s-a) = eat 1-1 (4(s))                                                                                    |
|               |      |                                                                                                                |
|               |      | Problems -                                                                                                     |
|               | 1>   | Find US+2                                                                                                      |
|               | - 1  | Find U S+2<br>(S+2)2-1                                                                                         |
|               | soln | $\lfloor \frac{1}{(s+2)^2-1} \rfloor = e^{-2t} \lfloor \frac{1}{s} \rfloor - $ (we can use above formula since |
|               |      | $(5+2)^2-1$ $5^2-1$ formula since                                                                              |
|               |      | = e-2t cosht every s is in the form of (s+2)                                                                   |
|               |      |                                                                                                                |
|               | 2)   | Find Lt [ s<br>(S+1)2+2]                                                                                       |
| 0             | 2.79 | $(S+1)^2+2$                                                                                                    |
| 8             | Soln | 1+1 S = 1-1((S+1)-1                                                                                            |
| 1             |      | $(s+1)^2+2$ $(s+1)^2+(\sqrt{2})^2$                                                                             |
|               |      | = e-t 1-1 s-1                                                                                                  |
|               |      | S2+(V2)2                                                                                                       |
|               |      | - ot 1-1 s - 1                                                                                                 |
|               |      | S2+(V2)2 S2+(V2)2                                                                                              |
|               |      | - et (cosvat - 1 sinvat)                                                                                       |
|               |      | N2 /                                                                                                           |
|               |      |                                                                                                                |
|               |      | Prof. Nancy Sinollin                                                                                           |

FOR EDUCATIONAL USE

Sundaram

## A CANADA MARINE OF THE MARINES OF THE PARTY OF THE PARTY

| 3>   | Evaluate LT[ 1 ]                                                                                     |
|------|------------------------------------------------------------------------------------------------------|
|      | (S+3)3/2                                                                                             |
| Qu'n | 1 1 1 23t C 1 1                                                                                      |
|      | (S+3)3/2   S <sup>3/2</sup>                                                                          |
|      | = e <sup>-3t</sup> -1 <sup>3/2-1</sup>                                                               |
|      | [3/2                                                                                                 |
|      | = e-3+ + V2                                                                                          |
|      | 之压                                                                                                   |
|      | $=20^{-3t}+v_2$                                                                                      |
|      | VIII                                                                                                 |
|      | = 2 ē3t \t                                                                                           |
|      | T-:                                                                                                  |
|      | 7"                                                                                                   |
| 4>   | L7[S]                                                                                                |
| 3    | (S-2)6                                                                                               |
| San  |                                                                                                      |
| 307  | (C 206)                                                                                              |
|      | $= e^{2t} \begin{bmatrix} (s-2)^s \end{bmatrix}$ $= e^{2t} \begin{bmatrix} s+2 \\ s^c \end{bmatrix}$ |
|      | =eL STZ                                                                                              |
|      |                                                                                                      |
|      | $= e^{2t} \left[ \left[ 1 + 2 \right] \right]$                                                       |
| *    | S <sup>5</sup> S <sup>c</sup>                                                                        |
|      | $-e^{2t} \int +4 + 2t^{5}$                                                                           |
|      | 15 6                                                                                                 |
|      | $=e^{2t}\left[ \pm 4 + 2 \pm 5 \right]$                                                              |
|      | 41 + 51                                                                                              |
|      |                                                                                                      |
|      | I .                                                                                                  |





| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Find L-1 [ 65-4 ]                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32-45+20                                                                                                                |
| Soln                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L+ [65-4] = 1+ [65-4]                                                                                                   |
| The same of the sa | $L^{+} \begin{bmatrix} 65-4 \\ S^{2}-45+20 \end{bmatrix} = L^{+} \begin{bmatrix} 65-4 \\ S^{2}-45+4-4+20 \end{bmatrix}$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - L-1 (6(3-4/6) 7                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (s-2)2+16                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 6 L-1 [ S-2+2-2/3]                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (5-2)2+16                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = 602t [ 5 + 4/3]                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s <sup>2</sup> +1c                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $= 6e^{2t} \left[ \frac{1}{s^2 + 16} + \frac{4}{3} \frac{1}{s^2 + 16} \right]$                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 602+ [cas4+ + 4 = 1 sin4+]                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = 6e2t [cos4t + 4 x   sin4t]                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 602+ [ cos4+ + 1 strut]                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $= 6e^{2t} \left[ \cos 4t + 1 \sin 4t \right]$                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *                                                                                                                       |

#### Note:

We will use above method only when, we have factors of denominator as not in integer form. otherwise we will use method of partial fraction.



· Method of Partial Fraction:

We can use portial fraction directly when degree of polynomial in numerator is less than the degree of polynomial in denominator

How to apply partial Fraction

Consider degree of fex is less than degree of polynomial in denominator

+(x) - A + B (x-a)(x-b) x-a x-b

2)  $\frac{f(x)}{(x-0)^{\gamma}(x-b)} = \frac{A_1}{(x-a)^{\gamma}} + \frac{A_2}{(x-a)^{\gamma-1}} + \cdots + \frac{A_r}{(x-a)} + \frac{B}{x-b}$ 

3) f(x) = -Ax+B + C + D $(x^2+a^2)(x+b)(x-c) = (x^2+a^2) + x+b + x-c$ 

Problems:

Find . .

 $\begin{bmatrix} -1 & 3s + 7 \\ s^2 - 2s - 3 \end{bmatrix}$ 

 $\frac{SH^{n}}{S^{2}-2S-3} = \frac{1}{(5-3)(S+1)}$ 

 $\frac{35+7}{(S-3)(S+1)} = \frac{A}{S-3} + \frac{B}{S+1} = \frac{A(S+1)+B(S-3)}{(S-3)(S+1)}$ 

3S+7 - A (S+1) + B(S-3)

pws=3 9+7=4A => 16=4A => A=4pws=-1 -3+7=-48 => 4=-48 => B=-1

 $\begin{bmatrix} -1 & 3s + 7 \\ s^2 - 2s - 3 \end{bmatrix} = \begin{bmatrix} -1 & 4 \\ s - 3 \end{bmatrix} = -4e^{3t} - e^{-t}$ 



(Sundaram)

$$\begin{array}{c} \text{pwt } S = 0 \quad \text{in } \emptyset \text{ , as } \text{get} \\ 1 = A(2)^2 + B(-2) + C(-2)(2) \\ 1 = 4A - 2B - 4C \\ \Rightarrow 1 = 4\frac{1}{16} - 2\left(-\frac{1}{4}\right) - 4C \\ \Rightarrow 1 = 4\frac{1}{16} - 2\left(-\frac{1}{4}\right) - 4C \\ \Rightarrow 1 = 4\frac{1}{16} - 2\left(-\frac{1}{4}\right) - 4C \\ \Rightarrow 1 = 4\frac{1}{16} - 2\left(-\frac{1}{4}\right) - 4C \\ \Rightarrow 1 = 4\frac{1}{16} - 2\left(-\frac{1}{4}\right) - 4C \\ \Rightarrow 1 = 4\frac{1}{16} - 2\left(-\frac{1}{4}\right) - 4C \\ \Rightarrow 1 = 1\frac{1}{16} - 4\frac{1}{16} -$$



|          | i from O                                                                                                                                |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------|
|          | 1-1 S 7-1-1 S/-1 1 1 1                                                                                                                  |
|          | (s2+16)(s2+4) [ (12 s2+16 12 s2+4)]                                                                                                     |
|          | $-\frac{1^{-1}}{12} \left[ -\frac{1}{5^2 + 16} + \frac{1}{12} + \frac{S}{5^2 + 14} \right]$                                             |
|          | [12 52+16 12 52+4]                                                                                                                      |
|          | $\frac{-1}{12}\cos 4t + 1\cos 2t$                                                                                                       |
|          | 12 12                                                                                                                                   |
| 6>       | 17 1                                                                                                                                    |
| Vic.     | (s2+1)(s2+36)                                                                                                                           |
| Sortin   | 1 2 2 2 2                                                                                                                               |
|          | (s2+1)(s2+36)                                                                                                                           |
|          | put s2= x, we get                                                                                                                       |
|          | $\frac{1}{(\alpha+1)(\alpha+36)} - \frac{A}{\alpha+1} + \frac{B}{\alpha+36} = \frac{A(\alpha+36) + B(\alpha+1)}{(\alpha+1)(\alpha+36)}$ |
|          |                                                                                                                                         |
|          | $\Rightarrow 1 = A(x+36) + B(x+1)$                                                                                                      |
|          | put x = -1 -> 1 = A(35) => [A= 135]                                                                                                     |
|          | put $x = -36 \Rightarrow 1 = B(-35) \Rightarrow 73 = -1$                                                                                |
|          | => 1 - 135 + (-135)                                                                                                                     |
|          | (x+1)xx+36) x+1 x+36                                                                                                                    |
|          | resubstitute x=s2, we get                                                                                                               |
| 1        | 1 1 -1 1                                                                                                                                |
|          | (32+1) (32+36) 35 32+1 35 82+36                                                                                                         |
|          | -1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1                                                                                                |
|          | $(15^2+1)(5^2+36)$ $(35 3^2+1 35 3^2+36)$                                                                                               |
|          | - 1 sint - 1 sinet                                                                                                                      |
|          | 35 35×6                                                                                                                                 |
|          | = 1 Sint - 1 sinet                                                                                                                      |
|          | 35 210                                                                                                                                  |
|          | Prof. Nancy Sinollin                                                                                                                    |
| Sundaram | FOR EDUCATIONAL USE                                                                                                                     |

Sundaram

| 7>       | H [ S2+25+3                                                                                           |
|----------|-------------------------------------------------------------------------------------------------------|
| 8/8      | $(s^2+2s+5)(s^2+2s+2)$                                                                                |
| C4n      | L-1 [ s2+2s+3 ] - 1-1 [ s2+2s+1+2                                                                     |
| -        | $(s^2+2s+5)(s^2+2s+2)$ $(s^2+2s+1+4)(s^2+2s+1+1)$                                                     |
|          | = [-1 [ (S+1)2+2]                                                                                     |
|          | $[(s+1)^2+4][(s+1)^2+1]$                                                                              |
|          | = e-t 1-1 [ s2+2 ] -0                                                                                 |
|          | $(s^2+4)(s^2+1)$                                                                                      |
|          | $S^2 + 2$                                                                                             |
| -        | (s <sup>2</sup> +4)(s <sup>2</sup> +1)                                                                |
|          | put s2-x, we get                                                                                      |
|          | $\alpha + 2 - A + B - A(\alpha + 1) + B(\alpha + 4)$                                                  |
|          | (x+4)(x+1) x+4 - x+1 (x+4)(x+1)                                                                       |
|          | x+2 = A(x+1) + B(x+4)                                                                                 |
| ř        | put x = -4 , -2 = A(-3) => [A=2/3]                                                                    |
|          | put x=-1, 1 = B(3) => [B=1/3]                                                                         |
|          | $\frac{2}{(x+4)(x+1)} = \frac{2}{3} + \frac{1}{3}$ $\frac{2}{(x+4)(x+1)} = \frac{2}{3} + \frac{1}{3}$ |
|          | (x+4)(x+1) x+4 x+1                                                                                    |
|          | Resubstitute x=52                                                                                     |
| 14       | S2+2 - 2/3 + V3                                                                                       |
|          | $(9^2+4)(3^2+1)$ $S^2+4$ $S^2+1$                                                                      |
| 1        | . · from (1)                                                                                          |
|          | 1-1 52+2S+3 = et 1-1 52+2                                                                             |
|          | $[(s^2+2s+5)(s^2+2s+2)]$ $[(s^2+4)(s^2+1)]$                                                           |
|          | $= e^{-t} \left[ \frac{2}{3} \frac{1}{3^{2}+4} + \frac{1}{3} \frac{1}{3^{2}+1} \right]$               |
|          | 1                                                                                                     |
|          | $= e^{-t} \left[ \frac{2 \times 1}{3} \sin 2t + 1 \sin t \right]$                                     |
|          | $= e^{-t} \left( \sin 2t + \sin t \right)$                                                            |
|          | 3 (SINLE 7 3.1.2).                                                                                    |
| Sundaram | FOR EDUCATIONAL USE Prof. Nancy Sinollin                                                              |
|          |                                                                                                       |



## A SECRETARIAN SERVICE OF THE ASSESSMENT OF THE PROPERTY OF THE

|    | 8 17 5                                                                                                                                        |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------|
|    | 54+404                                                                                                                                        |
| C. | 4m 17 5 7 = 27 5 - 7                                                                                                                          |
|    | $\frac{d^{n}}{d^{n}} \left[ \frac{1}{s^{4} + 4\alpha^{4}} \right] = \frac{1}{s^{4}} \left[ \frac{s}{(s^{2})^{2} + (2\alpha^{2})^{2}} \right]$ |
|    | =14[_s                                                                                                                                        |
|    | $\left[ (s^2)^2 + (2a^2)^2 + 2s^2(2a^2) - 2s^2(2a^2) \right]$                                                                                 |
|    | 146 0 7                                                                                                                                       |
|    | $=1^{-1} \left[ \frac{S}{(S^2+2a^2)^2-(2aS)^2} \right]$                                                                                       |
|    | - 1+1 C 7                                                                                                                                     |
|    | $= L^{-1} $ $\leq$ $(s^2 + 2a^2 - 2as) (s^2 + 2a^2 + 2as)$                                                                                    |
|    | [(S +2a -2as) (S+2a +2as)]                                                                                                                    |
|    | $4a 	 S^2 + 2a^2 - 2as 	 S^2 + 2a^2 + 2as$                                                                                                    |
|    | 1 120 200 3 720 7200                                                                                                                          |
|    | $4a$ $s^2-2as+a^2+a^2$ $s^2+2as+a^2+a^2$                                                                                                      |
| 1  | 1                                                                                                                                             |
|    | $\frac{4a}{(s-a)^2+a^2}$ (s+a)2+a2                                                                                                            |
|    | 15145 1 7 195 1 77                                                                                                                            |
|    | 4a) (s-0)2+02 (s+0)2+02                                                                                                                       |
|    | = 1 [eat [] ] - Eat [] [1]                                                                                                                    |
|    | $\frac{1}{4a} \left[ \frac{1}{s^2 + a^2} \right] = \left[ \frac{1}{s^2 + a^2} \right]$                                                        |
| 3  | -1 [eat sinat - eat sinat]                                                                                                                    |
| 7  | 40 a a a                                                                                                                                      |
|    | = 1 sinat (eat_eat)                                                                                                                           |
|    | 402                                                                                                                                           |
|    |                                                                                                                                               |
|    | Ex. Find [1] (s2+20)2a]                                                                                                                       |
|    | S4+4a4 ]                                                                                                                                      |
|    | 2 3 1 7 4 3                                                                                                                                   |
|    |                                                                                                                                               |
|    | Prof. Nancy Sinollin                                                                                                                          |
|    |                                                                                                                                               |

Sundaran