The Future of Kubernetes

AI-Driven Management

Kunal Das

ABOUT ME

KUNAL DAS DEVELOPER ADVOCATE APAC, CASTAI

Organizer of CNCF Kolkata, HUG Bangalore, Cloud Computing Circle.
7x Azure,1x Hashicorp Certified

Contents

Containers

Traditional workflow of K8s

AI tools in Kubernetes

Problems

AI Management

Containerized Workloads with Docker

- Fast Deployment & Scaling

 Lightweight containers → rapid launch & scale
- Efficient Resource Usage
 Run more with less → lower costs
- Consistent Environments

 No more "works on my machine" issues
- Easy Updates & Rollbacks
 Redeploy quickly → less downtime

- Automates container deployment, scaling, and management across the cluster.
- Delivers self-healing, rolling updates, and built-in service discovery.
- Manages complex, production-grade systems beyond Docker Compose's limits.
- Offers a rich ecosystem of tools for monitoring, security, and integrations.

Issue with Kubernetes Management

Deployment

Engineers use YAML files with kubectl or helm to deploy, update, and scale applications

Application and node scaling are managed based on current Context

Monitor/Troubleshoot

Teams check logs, events and resource metrics using built-in tools and dashboards

Incident Response

Alerts guide teams to investigate and fix issues with standard procedures

Managing K8S Smartly

01 WORKLOAD

WORKLOADS & TROUBLESHOOTING

K8sGPT uses AI to quickly diagnose, explain, and resolve Kubernetes workload issues, making operations smoother and more efficient

02 SCALLING AUTOMATION

PredictKube intelligently predicts demand and automates scaling decisions, optimizing resource usage while maintaining application reliability

The Enterprise Scale

INDIVIDUAL DEVELOPER

- 1–3 clusters
- 10-50 nodes
- 100s of pods
- Manual oversight
- Single team decisions

ENTERPRISE CHALLENGE

500+ clusters across regions

50,000+ nodes (multi-cloud)

1M+ pods with complex dependencies

24/7 autonomous operations required

100+ teams, governance required

Security at Light Speed

2025 Threat Landscape

CVE-2025-23266: NVIDIA CONTAINER ESCAPE

SUPPLY CHAIN ATTACKS: 188% INCREASE IN MALICIOUS PACKAGES TARGETING K8S

AVERAGE BREACH COST: \$4.88M WITH 287 DAYS TO IDENTIFY AND CONTAIN

Why Individual Tools Fail at Scale?

Delayed Correlation

Incomplete Context

Human Bottleneck

No Automated Response

Orchestrated Intelligence Platform

From Tool Collection to Unified AI Brain.

- RESOURCE MANAGEMENT
- SECURITY
- COST OPTIMIZATION

Question For the Audience

CPU and memory utilization

The average CPU utilization across clusters remained low at 10% (-23% YoY), while average memory utilization was marginally better at 23% (+15% YoY), indicating no significant year-over-year improvement in resource efficiency across cloud platforms compared to our previous report from 2024.

10%

AVERAGE CPU UTILIZATION

23%

AVERAGE MEMORY UTILIZATION

WORKLOAD MANAGEMENT

How automation enables extreme efficiency for Kubernetes Optimization

RESOURCE MANAGEMENT

Rebalance: d8e9-8390 🗗

Completed

SAVING ACHIEVED

67.1% 67.1% predicted ①

OPTIMIZED COST

\$1,430.41 /mo \$1,430.41 /mo predicted ©

DURATION

18 min 31 sec

TIME

CPU/H ↓↑

\$0.005

\$0.009

\$0.03

\$0.009

\$0.006

Start: 2024-04-16 12:00 AM

Finish: 2024-04-16 12:18 AM

TOTAL/MO ↓↑

>

>

>

>

>

\$694.49

\$199.54

\$355.37

\$99.77

\$81.23

\$1,430.41 /mo

CLUSTER: \$1,430.41 /mo

NODES REPLACED

13 / 13

Current configuration		RESOURCES					Rebata	anced configuration	RESOURCES	
Q . ‡†	NAME ↓↑	CPU ↓↑	GIB ↓↑	CPU/H ↓↑	TOTAL/MO ↓↑		Q. ↓↑	NAME ↓↑	CPU ↓↑	GIB ↓↑
1 x	e2-custom-32-2 32 CPU, 29 GiB	32 CPU	29 GiB	\$0.027	\$628.57	>	2 x	n2-highcpu-96 96 CPU, 96 GiB	192 CPU	192 Gil
2 x	e2-custom-32-2 32 CPU, 22.5 GiB	64 CPU	45 GiB	\$0.026	\$1,224.27	>	1 x	c2d-highcpu-32 32 CPU, 64 GiB	32 CPU	64 GiB
2 x	e2-custom-32-2 32 CPU, 20.25 GIB	64 CPU	40.5 GiB	\$0.026	\$1,214.88	>	2 x	e2-custom-8-16 8 CPU, 16 GiB	16 CPU	32 GiB
1 x	n2d-highcpu-80 80 CPU, 80 GiB	80 CPU	80 GiB	\$0.009	\$553.57	>	1 x	c2d-highcpu-16 16 CPU, 32 GiB	16 CPU	32 GiB
1 x	c2d-highcpu-56 56 CPU, 112 GiB	56 CPU	112 GiB	\$0.009	\$349.20	>	2 x	n2-custom-10-1 10 CPU, 16 G/B	20 CPU	32 GiB
1 x	n2-custom-56 56 CPU, 34.5 GiB	56 CPU	34.5 GiB	\$0.005	\$202.49	>				
5 x	n2-custom-8-16 8 CPU, 16 GiB	40 CPU	80 GiB	\$0.006	\$169.65	>				
INITIA	AL COMPUTE COST:			ę	34,342.64 /n	20	PREC	OICTED OPTIMIZED COME	PUTE COST:	
13 INSTANCES 392 CPU 421 GIB				CLUSTER: \$4,342.64 /mo			8 INSTANCES 276 CPU 352 GIB			

13 clusters

ID	NAME =	∢ ▶ PRO. ↓↑	REGI ↓↑	NODES ↓↑	CPU ↓↑	MEMORY $\downarrow\uparrow$	CPU COST ↓↑	COMPUTE COST (i) ↓↑	STATUS ↓↑
ð	eks-demo-lio-04241039 445567108000	(0)	US East	4	14 CPU	44 GiB	\$0.0126 /h	\$180.65 /mo	Discovered READ ONLY
ð	eks-demo-jer-03281205 445567108000		US East	1	2 CPU	8 GiB	\$0.0278 /h	\$61.92 /mo	Discovered READ ONLY
ð	eks-demo-dan-0520072 445567108000	(0)	US East	2	4 CPU	16 GiB	\$0.0311 /h	\$138.24 /mo	Discovered READ ONLY
ð	kim-live-demo 445567108000	(0)	EU (Fran	5	16 CPU	58 GiB	\$0.0256 /h	\$451.01 /mo	Discovered READ ONLY
ð	eks-demo-vkl-03071520 445567108000	(0)	US East	1	2 CPU	8 GiB	\$0.0278 /h	\$61.92 /mo	Discovered READ ONLY
ð	eks-demo-tud-04251122 445567108000	(0)	US East	1	2 CPU	8 GiB	\$0.0278 /h	\$61.92 /mo	Discovered READ ONLY
ð	eks-demo-ami-0523135 445567108000	(0)	US East	0	0 CPU	0 Bytes	\$/h	\$/mo	Discovered READ ONLY
ð	eks-sf-cod-02112018 445567108000	(0)	US East	0	0 CPU	0 Bytes	\$/h	\$ /mo	Discovered READ ONLY
ð	phil-livedemo-0402 445567108000	(0)	EU (Fran	1	4 CPU	8 GiB	\$0.038 /h	\$139.33 /mo -	Discovered READ ONLY
ð	phil-demo-0305 445567108000	(0)	EU (Fran	1	4 CPU	16 GiB	\$0.0372 /h	\$165.60 /mo	Discovered READ ONLY
ð	live-demo-gs-4 445567108000	(0)	EU (Fran	3	10 CPU	36 GiB	\$0.0329 /h	\$352.66 /mo	Discovered READ ONLY
ð	eks-demo-lui-04020814 445567108000	(0)	US East	0	0 CPU	0 Bytes	\$/h	\$ /mo	Discovered READ ONLY
ð	laurent-livedemo-0304 445567108000	(0) + (8)	EU (Fran	4	16 CPU	32 GiB	\$0.038 /h	\$557.68 /mo	Discovered

Recap

Connected experience

Cost visibility

Multi-cloud coverage

Real-time rightsizing

Chat & Connect

Meet me at the CastAI Booth for further questions

