MATH 265 HW3

Hanzhang Yin

Sep/12/2024

Question 1

Proof. proof by contradiction: suppose a < b. By assumption, we have $a \ge b - \epsilon$, for all $\epsilon > 0$. define d = b - a. Since a < b, by definition, $d = b - a \in \mathbb{P} > 0$. Now we pick $\epsilon = \frac{d}{2}$. Since d > 0, $\epsilon = \frac{d}{2} > 0$. We know that:

$$a > b - \epsilon$$

Sub $\epsilon = \frac{d}{2}$ in, we get:

$$a \ge b - \frac{d}{2}$$

Rewrite the expression in terms of a and b (Note: d = b - a):

$$a \geq b - \frac{b-a}{2} \Rightarrow a \geq \frac{2b-(b-a)}{2} = \frac{b+a}{2}$$

Multiply both side by 2 (using A2 and M1), we get:

$$2a \ge b + a$$

Then, use the A4, subtract a from both sides:

$$2a - a \ge b + a - a$$

Then, use A1 and A3, we can get:

$$a > b + (a - a) \Rightarrow a > b + 0 \rightarrow a > b$$

Hence we derived a contradiction. Using the field axioms, the given assumption implies $a \geq b$.

Question 2

Proof. Recall the hint that:

$$a^2 - b^2 = (a+b)(a-b)$$

Sub b = -a into the identity, we can get:

$$a^{2} - (-a^{2}) = (a + (-a))(a - (-a))$$

Using the axoim of additive inverses (A4): a + (-a) = 0.

$$\Rightarrow a^2 - (-a^2) = (0)(a - (-a))$$

By the Theorem of we know that $a\cdot 0=0$ for any $x\in\mathbb{R}.$ Thus we have,

$$\Rightarrow a^2 - (-a^2) = 0 \Rightarrow a^2 = (-a^2)$$

Question 3

Proof. First, we want to prove:

$$\left(\frac{1}{2}(a+b)\right)^2 \le \frac{1}{2}(a^2+b^2)$$

for all $a, b \in \mathbb{R}$.

First using axiom D (distributive property) twice, we can expand LHS:

$$\left(\frac{1}{2}(a+b)\right)^2 = \frac{1}{4}(a+b)^2 = \frac{1}{4}(a^2 + 2ab + b^2)$$

Now we reform the inequality and WTS that:

$$\frac{1}{4}(a^2 + 2ab + b^2) \le \frac{1}{2}(a^2 + b^2)$$

Multiply both sides by 4, then use M2, we can get:

$$(\frac{1}{4} \cdot 4) \cdot (a^2 + 2ab + b^2) \le (\frac{1}{4} \cdot \frac{1}{2}) \cdot (a^2 + b^2) \Rightarrow a^2 + 2ab + b^2 \le 2(a^2 + b^2)$$

Now we can rearrange terms using A1, A2, and D axiom:

$$a^{2} + 2ab + b^{2} \le 2a^{2} + 2b^{2} \Rightarrow a^{2} + 2ab + b^{2} - 2a^{2} - 2b^{2} \le 0$$

This simplifies to:

$$\Rightarrow -a^2 + 2ab - b^2 \le 0$$

By D axiom again, we can factor out the (-1) as:

$$\Rightarrow (-1)(a^2 - 2ab + b^2) \le 0$$

We know that $a^2 - 2ab + b^2 = (a - b)^2$, hence:

$$\Rightarrow (-1)(a-b)^2 \le 0$$

Therefore, the inequality always holds for $a, b \in \mathbb{R}$.

Then we want to show this equality holds iff a=b. Noting that since $(a-b)^2 \ge 0$, for any $a,b \in \mathbb{R}$, by A4, its additive inverse $(-1)(a-b)^2 \le 0$ must also hold. Since we have simplified $\left(\frac{1}{2}(a+b)\right)^2 \le \frac{1}{2}(a^2+b^2)$ to $(-1)(a-b)^2 \le 0$. Hence,

$$(a-b)^2 = 0 \Leftrightarrow a-b = 0 \Leftrightarrow a = b$$

Therefore, the given inequality holds if and only if for a = b.