Colle 16 MPSI/MP2I Jeudi 29 février 2024

Planche 1

- 1. Décomposition des polynômes en produit d'irréductibles.
- 2. Soit $n \in \mathbb{N}^*$. Décomposer en éléments simples la fraction $F = \frac{1}{X^{2n} + 1}$ dans $\mathbb{C}(X)$, puis dans $\mathbb{R}(X)$.
- 3. Soit $n \ge 3$, $(A, B, C) \in \mathbb{C}[X]^3$ tel que $A^n + B^n + C^n = 0$. Montrer qu'alors

$$\exists P \in \mathbb{C}[X], \exists (\alpha, \beta, \gamma) \in \mathbb{C}^3, A = \alpha P, B = \beta P \text{ et } C = \gamma P$$

On commencera par le cas où A, B, C sont premiers entre eux dans leur ensemble.

Planche 2

- 1. Caractérisation des polynômes irréductibles de $\mathbb{C}[X]$ et $\mathbb{R}[X]$.
- 2. Soit $n \in \mathbb{N}^*$. Déterminer le pgcd de $X^{2n} + X^n + 1$ et de $X^2 + X + 1$.
- 3. Soit $n \in \mathbb{N}^*$, a < b deux réels, x_1, \ldots, x_n une famille de n réels distincts dans [a, b] et L_1, \ldots, L_n la famille des polynômes interpolateurs de Lagrange associés.
 - (a) Montrer que $\forall P \in \mathbb{R}_{n-1}[X], \exists ! (\alpha_1, \dots \alpha_n) \in \mathbb{R}^n, P = \sum_{i=1}^n \alpha_i L_i.$
 - (b) En déduire qu'il existe une unique suite de réels $(\mu_k)_{1\leqslant k\leqslant n}$ tel que

$$\forall P \in \mathbb{R}_{n-1}[X], \int_{a}^{b} P(x) dx = \sum_{k=1}^{n} \mu_{k} P(x_{k})$$

Planche 3

- 1. Élément simple d'un pôle simple.
- 2. Soit $P \in \mathbb{R}[X]$ tel que $\forall x \in \mathbb{R}, P(x) \ge 0$. Construire $(Q_1, Q_2) \in \mathbb{R}[X]^2$ tel que $P = Q_1^2 + Q_2^2$.
- 3. Soit $n \in \mathbb{N} \setminus \{0, 1\}$, a_1, \dots, a_n une famille de n entiers relatifs deux à deux distincts et $P = -1 + \prod_{i=1}^{n} (X a_i)$. Montrer que P est irréductible dans $\mathbb{Z}[X]$.

Bonus

Pour tout polynôme P dans $\mathbb{Z}[X]$, on appelle contenu de P, noté c(P) le pgcd de ses coefficients. Montrer que

$$\forall (S,T) \in \mathbb{Z}[X]^2, c(S) = 1 \text{ et } c(T) = 1 \Rightarrow c(ST) = 1$$