Written Exercises, Pages 216-217

1. Assume temp. that $m \angle B \neq 40$. 3. Assume temp. that a - b = 0. 5. Assume temp. that $EF \parallel GH$.

7. Assume temp. that $\angle Y$ is a rt. \angle . Since $m \angle X = 100$, this contradicts Thm. 3-11 Cor. 3. The temp. assumption must be false. It follows that $\angle Y$ is not a rt. \angle . 11. Assume temp. that planes P and Q do not intersect, that is, they are \parallel . The lines in which plane N intersects planes P and Q, AB and CD, must be \parallel . This contradicts the given info. that $AB \nparallel CD$. The temp. assumption must be false. It follows that planes P and Q intersect. 15. Assume temp. that n does not int. k. Since n and k are coplanar, n and k must be \parallel . Then P is on n and l, and n and l are both \parallel to k. This contradicts the thm. which states that through a pt. outside a line there is exactly l line \parallel to the given line. The temp. assumption must be false. It follows that n does int. k.

17. Assume temp. that there is an n-sided reg. polygon with an interior \triangle of meas. 155. Then the meas. of each ext. \triangle is 25 and 25n = 360. This contradicts the fact that there is no whole number n such that 25n = 360. The temp. assumption must be false. It follows that there is no reg. polygon with an interior \triangle of meas. 155.

Self-Test 1, Page 218

1. True 2. True 3. False 4. False 5. If $\triangle ABC$ is not acute, then $m \angle C = 90$. False

6. If $m \angle C = 90$, then $\triangle ABC$ is not acute. True **7.** C **8.** a. ABCD is not a rhom. b. No concl.

c. No concl. d. GHIJ is a \square . 9. Assume temp. that $AC \neq 14$. 10. d, b, a, c

Written Exercises, Pages 222-223

1. 3, 15 **3.** 0, 200 **5.** a - b, a + b **7.** \angle 2 **9.** \angle 3 **11.** \overline{WT} **13.** \overline{WY} **15.** c > d > e > b > a **17.** $m \angle$ 2 > $m \angle$ X > $m \angle$ XZY > $m \angle$ Y > $m \angle$ 1 **19.** 1. EFGH is a \square ; EF > FG (Given) 2. HG > EH (Thm. 5-1 and Subst.) 3. $m \angle$ 1 > $m \angle$ 2 (Thm. 6-2)

Written Exercises, Pages 231-232

1. $m \angle 1 > m \angle 2$; SSS Ineq. 3. >; > 5. <; > 7. < 9. > 11. 1. $m \angle SUV > m \angle STU$ (Ext. \angle Ineq. Thm.) 2. $\overline{TU} \cong \overline{US} \cong \overline{SV}$ (Given) 3. $m \angle SVU = m \angle SUV$ (Isos. \triangle Thm.) 4. $m \angle SVU > m \angle STU$ (Subst.) 5. ST > SV (Thm. 6-3) 13. Key steps of proof: 1. $m \angle P > m \angle Q$ (SSS Ineq. Thm.) 2. $m \angle PCA + m \angle A + m \angle P = 180$; $m \angle QCB + m \angle QBC + m \angle Q = 180$ (Thm. 3-11) 3. $m \angle PCA = m \angle A$; $m \angle QCB = m \angle QBC$ (Isos. \triangle Thm.) 4. $m \angle PCA < m \angle QCB$ (Subst.)

Self-Test 2, Page 233

1. \overline{XY} 2. \overline{OD} 3. < 4. = 5. > 6. 1, 11 7. cannot be 8. must be 9. may be

Chapter Review, Pages 235-236

1. > 3. = 5. > 7. No concl. 9. Barbara is at least 18 years old. 11. $m \angle T$ 13. < 15. > 17. =

Algebra Review, Page 237

1. $\frac{1}{5}$ 3. $\frac{a}{2}$ 5. $\frac{1}{3}$ 7. $-4y^2$ 9. $\frac{ab}{2c}$ 11. 3x - 2y 13. $\frac{1}{3}$ 15. t + 1 17. $\frac{b + 5}{b - 7}$ 19. $\frac{3(x - 4)}{3x - 4}$

Preparing for College Entrance Exams, Page 238

1. A 2. A 3. B 4. B 5. B 6. E 7. E 8. C

Cumulative Review, Page 239

1. 57 3. a. Yes; SAS b. Yes; ASA c. No d. Yes; AAS 5. a. \overline{YZ} b. \overline{XZ} 7. 109, 71

9. Assume temp. that $\angle Q$, $\angle R$, and $\angle S$ are all 120° angles. Then $m \angle P > 0$ and $m \angle Q + m \angle R + m \angle S + m \angle P > 360$. This contradicts the thm. that states the sum of the int. \triangle of a quad. = 360. Therefore, the temp. assumption must be false. It follows that $\angle Q$, $\angle R$, and $\angle S$ are not all 120° angles.