Homework 2 by Jingmin Sun Jan.29 2020

ALL REFERENCE NUMBERS ARE CORRESPONDING TO THE TEXT

1. Page 37, 1

Since v_1, v_2, v_3, v_4 spans V, we can get $span\{v_1, v_2, v_3, v_4\} = V$, which means for each $x \in V$, we can always find $a_1, a_2, a_3, a_4 \in \mathbf{F}$ such that $x = a_1v_1 + a_2v_2 + a_3v_3 + a_4v_4$.

Since

$$v_1 = (v_1 - v_2) + (v_2 - v_3) + (v_3 - v_4) + v_4$$

$$v_2 = (v_2 - v_3) + (v_3 - v_4) + v_4$$

$$v_3 = (v_3 - v_4) + v_4$$

$$v_4 = v_4$$

Thus, we can get

$$x = a_1v_1 + a_2v_2 + a_3v_3 + a_4v_4$$

$$= a_1((v_1 - v_2) + (v_2 - v_3) + (v_3 - v_4) + v_4) + a_2((v_2 - v_3) + (v_3 - v_4) + v_4) + a_3((v_3 - v_4) + v_4) + a_4v_4$$

$$= a_1(v_1 - v_2) + (a_1 + a_2)(v_2 - v_3) + (a_1 + a_2 + a_3)(v_3 - v_4) + (a_1 + a_2 + a_3 + a_4)v_4$$

Let $c_1 = a_1$, $c_2 = a_1 + a_2$, $c_3 = a_1 + a_2 + a_3 + a_4$, $c_4 = a_1 + a_2 + a_3 + a_4$, so that the new list of the vectors spans V.

2. Page 37, 3

Since we need three vectors are not linear independent, which means:

$$a \begin{bmatrix} 3 \\ 1 \\ 4 \end{bmatrix} + b \begin{bmatrix} 2 \\ -3 \\ 5 \end{bmatrix} = \begin{bmatrix} 5 \\ 9 \\ t \end{bmatrix}$$

From the first two rows, we can get

$$3a + 2b = 5$$
$$a - 3b = 9$$

Solve the system and get

$$a = 3$$
$$b = -2$$

And we can get t = 4a + 5b = 12 - 10 = 2

3. Page 37, 7

Suppose there exists $a_1, a_2 \cdots a_m \in \mathbf{F}$ such that

$$a_1(5v_1 - 4v_2) + a_2v_2 + a_3v_3 + \cdots + a_mv_m = 0$$

$$5a_1v_1 + (-4a_1 + a_2)v_2 + a_3v_3 + \cdots + a_mv_m = 0$$

Since the set of vectors $v_1, v_2, v_3 \cdots v_m$ are linearly independent. so

$$5a_1 = 0$$

 $-4a_2 + a_2 = 0$
 $a_i = 0$ for $i = 3, 4, \dots m$

So we can get $a_i = 0$ for all $i = 1, 2, 3, \dots m$, which means the new set is linearly independent.

4. Page 37, 9

Counterexample:

Let

$$v_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad v_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

and

$$w_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad w_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

then we can get

$$v_1 + w_1 = v_2 + w_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

so, they are not linearly independent.

5. Page 37,10

If $v_1 + w$, $v_2 + w$, $\cdots v_m + w$ is linearly dependent, then for $a_1, a_2 \cdots a_m \in \mathbf{F}$, we can get

$$a_1(v_1 + w) + a_2(v_2 + w) + \dots + a_m(v_m + w) = 0$$
$$a_1v_1 + a_2v_2 + \dots + a_mv_m + (a_1 + a_2 + \dots + a_m)w = 0$$

Since linearly dependency, we can get

$$a_1, a_2, a_3 \cdots a_m \neq 0$$

And we can get

$$a_1 + a_2 + \dots + a_m \neq 0$$

Since if $a_1 + a_2 + \cdots + a_m = 0$, then $a_1v_1 + a_2v_2 + \cdots + a_mv_m = 0$, and $a_1 = a_2 = \cdots = a_m = 0$ follows, which contradict with previous statement.

Then,

$$w = \frac{a_1 v_1 + a_2 v_2 + \dots + a_m v_m}{a_1 + a_2 + \dots + a_m} \in \text{span}(v_1, v_2 \dots v_m)$$

6. Page 43,3

(a) We can express U as $U = \{(3x_2, x_2, 7x_4, x_4, x_5) \in \mathbb{R}^5 : x_2, x_4, x_5 \in \mathbb{R}\}$

So, any $\mathbf{x} \in U$ can be expressed as

$$\mathbf{x} = x_2 \begin{bmatrix} 3 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 0 \\ 0 \\ 7 \\ 1 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

So we can get the following vectors spans U,

$$\begin{bmatrix} 3 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 7 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

And we can show that they are linearly independent: Suppose

$$a \begin{bmatrix} 3\\1\\0\\0\\0 \end{bmatrix} + b \begin{bmatrix} 0\\0\\7\\1\\0 \end{bmatrix} + c \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix} = 0$$
$$a = b = c = 0$$

Thus, they are linearly independent. So, this is a basis of U

(b) So we can add other two linearly independent vector to independent to all three vectors above:

$$\begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \quad \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

We can see that for all $x \in \mathbf{R}^5$, we can set

$$a \begin{bmatrix} 3 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + b \begin{bmatrix} 0 \\ 0 \\ 7 \\ 1 \\ 0 \end{bmatrix} + c \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} + d \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + e \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix}$$

$$3a = x_1$$

$$a + d = x_2$$

$$7b + e = x_3$$

$$b = x_4$$

$$c = x_5$$

And we can get

$$\begin{cases} a &= \frac{x_1}{3} \\ b &= x_4 \\ c &= x_5 \\ d &= x_2 - \frac{x_1}{3} \\ e &= x_3 - 7x_4 \end{cases}$$

So we can get the set spans \mathbb{R}^5 , and we can prove it is linearly independent: when $x_1 = x_2 = x_3 = x_4 = x_5 = 0$, we can get a = n = c = d = e = 0 is the only solution, so they are linearly independent.

(c)
$$W = \text{span} \left\{ \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \right\}$$

As we have shown above, $\mathbf{R}^5 = U + W$, and we need to show that $U \cap W = \vec{0}$, it's obvious that $0 \in U \cap W$, and suppose $x \in U \cap W$, so $x \in U$ and $x \in W$, so $x \in U$ meas

$$x_1 = 3x_2$$
$$x_3 = 7x_4$$

And $x \in W$ means $x_1 = x_4 = x_5 = 0$, so we can get $x_1 = x_2 = x_3 = x_4 = x_5 = 0$. So, $U \cap W = \vec{0}$, and $\mathbf{R}^5 = U \oplus W$.

7. Page 43,5

Since this is a there exists statement, so we can proof by an example:

Let

$$p_0 = 1$$

$$p_1 = x$$

$$p_2 = x^3 + x^2$$

$$p_3 = x^3$$

Then this is a basis of $\mathcal{P}_3(\mathbf{F})$.

Since for all $p \in \mathcal{P}_3(\mathbf{F})$, $p = a_1 + a_2x + a_3x^2 + a_4x^3 = a_1p_0 + a_2p_1 + a_3p_2 + (-a_3 + a_4)p_3$, and a_i are unique for i = 1, 2, 3, 4.

8. Page 43,6

We need to prove the four vectors are linearly independent first, which is easy to prove:

Suppose $a_1(v_1 + v_2) + a_2(v_2 + v_3) + a_3(v_3 + v_4) + a_4v_4 = 0$, then we can get

$$a_1v_1 + (a_1 + a_2)v_2 + (a_2 + a_3)v_3 + (a_3 + a_4)v_4 = 0$$

Since v_1, v_2, v_3 and v_4 are linearly independent, we can get

$$a_1 = 0$$
 $a_1 + a_2 = 0$
 $a_2 + a_3 = 0$
 $a_3 + a_4 = 0$

So that $a_1 = a_2 = a_3 = a_4 = 0$, which means they are linearly independent.

Since v_1, v_2, v_3 and v_4 are basis of V, so for all $v \in V$,

$$v = b_1 v_1 + b_2 v_2 + b_3 v_3 + b_4 v_4$$

= $b_1 (v_1 + v_2) + (-b_1 + b_2)(v_2 + v_3) + (-b_2 + b_3)(v_3 + v_4) + (-b_3 + b_4)v_4$

Since b_1, b_2, b_3, b_4 are unique, then the coefficient for new set are unique as well. Thus the new set is a basis of V.

9. Page 43,7

Counterexample:

$$v_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \quad v_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \quad v_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix} \quad v_4 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

And
$$U = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_4 = 0\}$$

10. Page 43,8

Suppose

$$a_1u_1 + a_2u_2 + \cdots + a_mu_m + b_1w_1 + b_2w_2 + \cdots + b_nw_n = 0$$

Since $V = U \oplus W$, so for $0 \in V$, there exists a unique combination $u \in U, w \in W$, such that u + w = 0, namely, u = w = 0. Thus

$$a_1u_1 + a_2u_2 + \cdots + a_mu_m = 0$$

 $b_1w_1 + b_2w_2 + \cdots + b_nw_n = 0$

Since $u_1 \cdots u_m$ is a basis for U, so they are linear independent, and $w_1 \cdots w_n$ is a basis for W, and they are linearly independent as well. So $a_i = b_j = 0$ for $i = 1, 2 \cdots m; j = 1, 2, \cdots n$

So, $u_1 \cdots u_m, w_1 \cdots w_n$ are linearly independent, and since $V = U \oplus W$, so for $v \in V$, there exists a unique combination $u \in U, w \in W$, such that u + w = v, namely,

$$v = a_1 u_1 + a_2 u_2 + \dots + a_m u_m + b_1 w_1 + b_2 w_2 + \dots + b_n w_n$$

for all $v \in V$

Thus, it's a basis for V.