Dualidade Onda-partícula

Ney Lemke

Mecânica Quântica

2011

Outline

- Prolegômeno
- Pacotes de Onda
- 3 Equação de Schrödinger
- Interpretação

Outline

- Prolegômeno
- Pacotes de Onda
- 3 Equação de Schrödinger
- Interpretação

Base Experimental

- Fótons são partículas e ondas: $E = h\nu = \hbar\omega$
- Elétrons são partículas e ondas: $p = \frac{h}{\lambda} = \hbar k$

Outline

- Prolegômeno
- Pacotes de Onda
- 3 Equação de Schrödinger
- Interpretação

Pacote de Onda

$$\psi(\mathbf{x},t) = Ae^{i(k\mathbf{x} - \omega t)}$$

onde $\omega=2\pi\nu$ é a frequência angular e $k=2\pi/\lambda$ é o número de onda.

Onda de Luz

No caso de uma onda de luz no vácuo, temos que:

$$\nu = \frac{c}{\lambda}$$

$$\omega = \textit{ck}$$

em um meio dispersivo temos o caso mais geral:

$$\omega = \omega(\mathbf{k})$$

Em linhas gerais isso significa que luz se propaga com uma velocidade que depende do comprimeto de onda.

Pacote de Onda

Como transformar um onda em partícula?

A solução de Schrödinger é somar um número muito grande de ondas para obter uma distribuição concentrada.

$$\psi(\mathbf{x},t) = \int_{-\infty}^{\infty} A(\mathbf{k}) e^{i(\mathbf{k}\mathbf{x} - \omega t)}$$

Intuitivamente podemos pensar que:

$$\lim_{L\to\infty}\sum_{n=-\infty}^{\infty}A_n\exp\left(\frac{in\pi x}{L}\right)=\int_{-\infty}^{\infty}A(k)e^{i(kx-\omega t)}$$

onde n=k/L, para facilitar pense que "a corda" está em [-L/2,L/2].

Exemplo

Considere o caso:

$$A(k) = \exp\left(\frac{-\alpha(k-k_o)^2}{2}\right)$$

Neste caso teremos que:

$$\psi(x,0) = \int_{-\infty}^{\infty} A \exp\left(\frac{-\alpha(k-k_o)^2}{2}\right) e^{ikx}$$

Exemplo

Para fazer este cálculo vamos usar a integral tabelada (Tabela Schaum 15.75):

$$\int_{-\infty}^{\infty} e^{-(ax^2+bx+c)} dx = \sqrt{\frac{\pi}{a}} e^{(b^2-4ac)/4a}$$

Obtemos que:

$$\psi(x,0) = \sqrt{\frac{2\pi}{\alpha}} e^{ik_0 x} e^{-x^2/2\alpha}$$

Exemplo

Considerando

$$e^{-x_L^2/2\alpha} \sim e^{-1/2}$$

$$\Delta x = 2|x_L|$$

Procedendo de forma análoga para *k* podemos concluir que:

Movimento do Pacote

No caso mais geral $\omega = \omega(k)$, vamos caracterizar esse movimento.

$$\omega(\mathbf{k}) = \omega(\mathbf{k}_0) + (\mathbf{k} - \mathbf{k}_0) \left(\frac{\partial \omega}{\partial \mathbf{k}}\right)_{\mathbf{k} = \mathbf{k}_0} + (\mathbf{k} - \mathbf{k}_0)^2 \left(\frac{\partial^2 \omega}{\partial \mathbf{k}^2}\right)_{\mathbf{k} = \mathbf{k}_0}$$

$$kx - \omega t = (k_o x - \omega(k_o)t)$$

$$+ (k - k_o) \left[x - \left(\frac{\partial \omega}{\partial k} \right)_{k = k_o} t \right]$$

$$+ (k - k_o)^2 \left(\frac{\partial^2 \omega}{\partial k^2} \right)_{k = k_o} t$$

Movimento do Pacote

Definimos a velocidade de grupo por:

$$v_g = \left(\frac{\partial \omega}{\partial k}\right)_{k=k_0}$$

Esta velocidade estará associada ao movimento do pacote como um todo.

Movimento do Pacote

$$\psi(\mathbf{x},t) = \int_{-\infty}^{\infty} d\mathbf{k} A(\mathbf{k}) e^{i(\mathbf{k}\mathbf{x} - \omega t)}$$

Definindo $q = k - k_o$ e

$$\beta = \left(\frac{\partial^2 \omega}{\partial k^2}\right)_{k=k_0}$$

temos que:

$$\psi(x,t) = e^{i(k_o - \omega(k_o)t)} \int_{-\infty}^{\infty} dq A(q + k_o) e^{iq(x - v_g t)} e^{-i\frac{q^2}{2}\beta t}$$

Considere agora:

$$A(q+k_0)=e^{-\alpha q^2/2}$$

$$\psi(x,t) = e^{i(k_o - \omega(k_o)t)} \int_{-\infty}^{\infty} dq e^{-\alpha q^2/2} e^{iq(x - v_g t)} e^{-i\frac{q^2}{2}\beta t}$$
$$= \sqrt{\frac{2\pi}{\alpha + 2i\beta t}} e^{i(k_o x - \omega(k_o))t} e^{\frac{-(x - v_g t)^2}{2\alpha + 4i\beta t}}$$

$$|\psi(x,t)|^{2} = \psi(x,t)\psi^{*}(x,t)$$

$$= \frac{2\pi}{\sqrt{\alpha^{2} + 4\beta^{2}t^{2}}}e^{\frac{-(x-v_{g}t)^{2}}{\alpha^{2} + 4\beta^{2}t^{2}}}$$

Pacote de Onda

Interpretação Probabilística

$$P(x,t)dx = |\psi(x,t)|^2 dx$$

O módulo quadrado da função de onda está relacionado a probabilidade de encontramos a partícula em algum ponto. Note que a função de onda que representa uma partícula deve ser complexa para conseguirmos representar o fenômeno de interferência.

Seja $\psi = \psi_1 + \psi_2$ temos que:

$$|\psi|^2 = (\psi_1 + \psi_2)(\psi_1^* + \psi_2^*)$$

= $|\psi_1|^2 + |\psi_2|^2 + 2\Re(\psi_1\psi_2^*)$

Plano

- Partículas são descritas por somatórios de ondas.
- A velocidade clássica equivale a velocidade de grupo.
- A dispersão do pacote está relacionado ao erro da medida.

Outline

- Prolegômeno
- Pacotes de Onda
- 3 Equação de Schrödinger
- Interpretação

Relações de Broglie

$$k=rac{
ho}{\hbar}$$
 $\omega=rac{E}{\hbar}$ $\psi(x,t)=rac{1}{\sqrt{2\pi\hbar}}\int_{-\infty}^{\infty}dp\phi(p)e^{i(px-Et)/\hbar}$

Partícula Livre

$$v_g = \frac{\partial \omega}{\partial k} = \frac{\partial E}{\partial p} = \frac{p}{m}$$

$$E = \frac{p^2}{2m}$$

Teorema PL

$$i\hbar\frac{\partial\psi(x,t)}{\partial t} = \frac{-\hbar^2}{2m}\frac{\partial^2\psi(x,t)}{\partial x^2}$$

Basta usar a definição:

$$\psi(x,t) = rac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} dp \phi(p) e^{i(px-Et)/\hbar}$$

Equação de Schrödinger

No caso geral temos que:

$$E = \frac{p^2}{2m} + V(x)$$

$$i\hbar \frac{\partial \psi(x,t)}{\partial t} = \left[\frac{-\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x) \right] \psi(x,t)$$

Função de onda no espaço p

$$\psi(\mathsf{x},\mathsf{0}) = rac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} dp \phi(p) e^{ip\mathsf{x}/\hbar}$$

$$\phi(p) = ?$$

$$\int_{-\infty}^{\infty} \psi(x,0)e^{-i\rho'x/\hbar} dx = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dp dx \phi(p)e^{ix(p-p')/\hbar}$$
$$= \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} dp \phi(p)2\pi\hbar\delta(p-p')$$
$$= \sqrt{2\pi\hbar}\phi(p')$$

$$\phi(p) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} dx e^{-ipx/\hbar} \psi(x,0) dx$$

Integral

$$\int_{-\infty}^{\infty} e^{ipx/\hbar} dx = \lim_{\epsilon \to 0} \int_{-\infty}^{\infty} dx e^{ipx/\hbar - \epsilon |x|}$$

Sabemos que

$$\int_{-\infty}^{\infty} dp \delta(p) = 1$$

Calculando esta integral para o nosso caso:

$$\lim_{\epsilon \to 0} \int_{-\infty}^{\infty} dx \int_{-\infty}^{\infty} dp e^{ipx/\hbar - \epsilon |x|} =$$

$$\lim_{\epsilon \to 0} \int_{-\infty}^{\infty} dx \int_{-\infty}^{\infty} dp \cos(px/\hbar) e^{-\epsilon |x|} =$$

Integral

$$\lim_{\epsilon \to 0} \int_{-\infty}^{\infty} dp \frac{2\hbar^2 \epsilon}{p^2 + \hbar^2 \epsilon^2} =$$

$$\lim_{\epsilon \to 0} 2\pi \hbar = 2\pi \hbar$$

Logo temos que:

$$\int_{-\infty}^{\infty} e^{ipx/\hbar} dx = 2\pi\hbar\delta(p)$$

Outline

- Prolegômeno
- Pacotes de Onda
- 3 Equação de Schrödinger
- Interpretação

Relações de Incerteza de Heisenberg

$$\Delta x \Delta p \geq \frac{\hbar}{2}$$

Para construir um pacote de onda temos que somar ondas com vários "comprimentos" de onda, isso equivale a somar ondas com diferentes "velocidades" de propagação. Ou seja para concentrar a partícula em uma posição vamos precisar de uma distribuição larga nos momentos.

Órbitas de Bohr

Prolegômeno

Para observar uma órbita de Bohr precisariamos de um fóton com comprimento de onda pequeno em comparação com a diferença entre as órbitas.

$$\lambda << r_{n+1} - r_n$$
 $<< rac{\hbar}{mc\alpha}[(n+1)^2 - n^2] \sim rac{\hbar n}{mc\alpha}$
 $p_{\gamma} = rac{\hbar}{\lambda} >> rac{mc\alpha}{n}$

$$\Delta E = rac{p\Delta p}{m} \sim rac{pp_{\gamma}}{m} >> rac{m(c\alpha)^2}{n^2}$$

Compare com as energias de Bohr:

$$E = \frac{m(\alpha c)^2}{n^2}$$

Princípio da Incerteza para a Energia

$$\Delta E \Delta t \geq \hbar$$

Esta equação é mais difícil de interpretar que a anterior. Mas de qualquer forma ela possui aplicações em Físicas de partículas relacionando a incerteza da massa com a meia vida.

Comentários

Comentários

- O princípio da Incerteza não é um princípio, ele é uma consequência da MQ.
- Ele não afirma que as teorias não possam fazer predições com precisão absoluta. Ex. podemos medir a posição com precisão arbitrária.
- O que não podemos fazer é que as partículas possuem simultaneamente posição e momento bem definidos.

Comentários

Interpretação Probalística

$$\int_{-\infty}^{\infty} P(x,t) dx = \int_{-\infty}^{\infty} |\psi(x,t)|^2 dx = 1$$

$$\int_{-\infty}^{\infty} \psi^*(x,t) x^n \psi(x,t) dx < \infty$$

$$\int_{-\infty}^{\infty} \psi^*(x,t) \frac{\partial^n}{\partial x^n} \psi(x,t) dx < \infty$$

Corrente de Probabilidade

$$-i\hbar \frac{\partial \psi^*}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \psi^*}{\partial x^2} + V(x)\psi^*$$
$$\frac{\partial P(x,t)}{\partial t} = \psi \frac{\partial \psi^*}{\partial t} + \psi^* \frac{\partial \psi}{\partial t}$$
$$= \frac{1}{i\hbar} \frac{\hbar^2}{2m} \left(\psi \frac{\partial^2 \psi^*}{\partial x^2} - \psi^* \frac{\partial^2 \psi}{\partial x^2} \right)$$
$$= -\frac{\partial}{\partial x} \left[\frac{\hbar}{2im} \left(\psi^* \frac{\partial \psi}{\partial x} - \psi \frac{\partial \psi^*}{\partial x} \right) \right]$$

Corrente de Probabilidade

$$j(x,t) = \frac{\hbar}{2im} \left(\psi^* \frac{\partial \psi}{\partial x} - \psi \frac{\partial \psi^*}{\partial x} \right)$$
$$\frac{\partial P(x,t)}{\partial t} + \frac{\partial j(x,t)}{\partial x} = 0$$

Corrente de Probabilidade

$$\int_{-\infty}^{\infty} dx \frac{\partial P(x,t)}{\partial t} + \int_{-\infty}^{\infty} dx \frac{\partial j(x,t)}{\partial x}$$
$$\frac{\partial}{\partial t} \int_{-\infty}^{\infty} dx P(x,t) + j(\infty,t) - j(-\infty,t)$$

O primeiro termo é zero pois a integral é sempre 1 e o segundo é zero porque não existem correntes vindos do infinito.

$$\langle f(x) \rangle = \int_{-\infty}^{\infty} f(x) P(x, t) dx$$

 $\langle f(x) \rangle = \int_{-\infty}^{\infty} \psi^*(x, t) f(x) \psi(x, t) dx$

 $p = m \frac{dx}{dt}$

$$\langle \rho \rangle = m \frac{d\langle x \rangle}{dt} = m \frac{d}{dt} \int_{-\infty}^{\infty} dx \psi^* x \psi$$

$$= m \int_{-\infty}^{\infty} dx \left[\frac{d\psi^*}{dt} x \psi + \psi^* x \frac{d\psi}{dt} \right]$$

$$= \frac{-m}{i\hbar} \int_{-\infty}^{\infty} dx \left[\left(\frac{-\hbar^2}{2m} \frac{\partial^2 \psi^*}{\partial x^2} + V(x) \psi^* \right) x \psi \right.$$

$$\left. - \left(\frac{-\hbar^2}{2m} \frac{\partial^2 \psi}{\partial x^2} + V(x) \psi \right) x \psi^* \right]$$

$$= \frac{-m}{i\hbar} \int_{-\infty}^{\infty} dx \left[\left(\frac{-\hbar^2}{2m} \frac{\partial^2 \psi^*}{\partial x^2} \right) x \psi - \left(\frac{-\hbar^2}{2m} \frac{\partial^2 \psi}{\partial x^2} \right) x \psi^* \right]$$

Note que:

$$\psi x \frac{\partial^{2} \psi^{*}}{\partial x^{2}} - \psi^{*} x \frac{\partial^{2} \psi}{\partial x^{2}} =$$

$$\frac{\partial}{\partial x} \left[\frac{\psi^{*}}{\partial x} x \psi - \frac{\psi}{\partial x} x \psi^{*} - \psi \psi^{*} \right] + 2 \psi^{*} \frac{\partial \psi}{\partial x}$$

$$\langle p \rangle = \frac{\hbar}{2i} \int_{-\infty}^{\infty} dx 2 \psi^{*} \frac{\partial \psi}{\partial x}$$

$$\langle \mathbf{p} \rangle = \int_{-\infty}^{\infty} \mathbf{d} \mathbf{x} \psi^* \left(\frac{\hbar}{i} \frac{\partial}{\partial \mathbf{x}} \right) \psi$$

$$\langle p^{n} \rangle = \int_{-\infty}^{\infty} dx \psi^{*} \left(\frac{\hbar}{i} \frac{\partial}{\partial x} \right)^{n} \psi$$
$$\langle f(p) \rangle = \int_{-\infty}^{\infty} dx \psi^{*} f \left(\frac{\hbar}{i} \frac{\partial}{\partial x} \right) \psi$$
$$\hat{p} = \left(\frac{\hbar}{i} \frac{\partial}{\partial x} \right)$$

Operadores

$$\hat{H} = \frac{\hat{p}^2}{2m} + V(x)$$

Equação de Schrödinger

$$i\hbar\frac{\partial\psi}{\partial t} = \hat{H}\psi$$

Funções de onda em ho

$$\phi(p) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} dx e^{-ipx/\hbar} \psi(x,0) \, dx$$

$$\int_{-\infty}^{\infty} dp \phi^*(p) \phi(p) =$$

$$\int_{-\infty}^{\infty} dp \phi^*(p) \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} dx \psi(x) e^{-ipx/\hbar} =$$

$$\frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} dx \psi(x) \int_{-\infty}^{\infty} dp \phi^*(p) e^{-ipx/\hbar} =$$

$$\int_{-\infty}^{\infty} dx \psi(x) \psi^*(x) = 1$$

Funções de onda em ρ

$$\langle p \rangle = \int_{-\infty}^{\infty} dx \psi^*(x) \left(\frac{\hbar}{i} \frac{\partial}{\partial x} \right) \psi(x)$$

$$\langle p \rangle = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} dx \psi^*(x) \left(\frac{\hbar}{i} \frac{\partial}{\partial x} \right) \int_{-\infty}^{\infty} dp \phi(p) e^{ipx/\hbar}$$

$$\langle p \rangle = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} dp \phi(p) \int_{-\infty}^{\infty} dx p \psi^* e^{ipx/\hbar} = \int_{-\infty}^{\infty} dp \phi^*(p) p \phi(p)$$

Funções de onda em p

$$\langle x \rangle = \int_{-\infty}^{\infty} dp \phi^*(p) \left(i\hbar \frac{\partial}{\partial p} \right) \phi(p)$$

Exemplo

Seja $\psi(x) = 2\alpha^{3/2}xe^{-\alpha x}$ se x > 0 e zero nos demais casos.

- Determine a posição do máximo de P(x).
- Determine $\langle x \rangle$ e $\langle x^2 \rangle$,
- Qual é a probabilidade de encontrar a partícula entre x = 0 e $x = 1/\alpha$?
- Calcule $\phi(p)$, $\langle p \rangle$ e $\langle p^2 \rangle$,

15.70
$$\int_{0}^{\infty} \frac{e^{-ax} \sin bx}{x} dx = \tan^{-1} \frac{b}{a}$$

15.71
$$\int_0^\infty \frac{e^{-ax} - e^{-bx}}{x} dx = \ln \frac{b}{a}$$

15.72
$$\int_0^\infty e^{-ax^2} dx = \frac{1}{2} \sqrt{\frac{\pi}{a}}$$

15.73
$$\int_0^\infty e^{-ax^2} \cos bx \ dx = \frac{1}{2} \sqrt{\frac{\pi}{a}} e^{-b^2/4a}$$

15.74
$$\int_0^\infty e^{-(\alpha x^2 + bx + c)} dx = \frac{1}{2} \sqrt{\frac{\pi}{a}} e^{(b^2 - 4ac)/4a} \text{ erfc}$$
where erfc $(p) = \frac{2}{\sqrt{c}} \int_0^\infty e^{-x^2} dx$

15.75
$$\int_{-\infty}^{\infty} e^{-(ax^2+bx+c)} dx = \sqrt{\frac{\pi}{a}} e^{(b^2-4ac)/4a}$$

15.76
$$\int_0^\infty x^n e^{-ax} dx = \frac{\Gamma(n+1)}{a^{n+1}}$$

15.77
$$\int_0^\infty x^m e^{-ax^2} dx = \frac{\Gamma[(m+1)/2]}{2a^{(m+1)/2}}$$

15.78
$$\int_0^\infty e^{-(ax^2+b/x^2)} dx = \frac{1}{2} \sqrt{\frac{\pi}{a}} e^{-2\sqrt{ab}}$$

Comutação

$$x\hat{p}\psi = -i\hbar x \frac{\partial \psi}{\partial x}$$

$$\hat{p}x\psi = -i\hbar \frac{\partial x\psi}{\partial x} = -i\hbar \psi - i\hbar \frac{\partial \psi}{\partial x}$$

$$x\hat{p} - \hat{p}x = [x, \hat{p}] = i\hbar$$

Comentarios

