Remote Sensing Time Series as Covariance Matrices for Crop Classification

Master Thesis Defense

Khizer Zakir 26/06/2024

RESULTS

FUTURE PERSPECTIVES

Introduction

Representation of multi-variate TS. Source: Akodad, S., 2021

$$\{(X_1, y_1), (X_2, y_2), \dots, (X_n, y_n)\}\$$

$$X_k = (x_i^1, x_i^2, \dots, x_i^T)_{i=1}^q$$

- Large timeseries (TS) of **multi-spectral** images.
- Captures **spectral** information across multiple wavelengths across a finite **temporal** sequence.

Supervised learning task for crop classification using remote sensing TS data through second-order statistics, specifically **covariance matrices**.

Motivations

In remote sensing TS, we have **high-dimensional data**.

With long sequences, we get **large** data sizes.

Limited labeled sample, and irregular temporal sampling, leading to missing data, particularly due to cloud cover.

Reliance on **first-order statistics**, which address the **global structure** but fail to capture **local intricacies**.

Objectives

Following the classical manifold learning theory, **learning** or **preserving** the original data structure can enhance classification performance (Huang, Z. and Gool, L. V., 2016). We focus on the following research objectives:

- 1. Explore the unique **covariance representation** of remote sensing timeseries data to capture the **spectral-temporal** intricacies and dependencies.
- 2. Leveraging the underlying **Riemannian structure** of the data and engineer a state-of-the-art supervised learning algorithm.
- 3. Explore possible **variants** of the model with combinations of data representation.
- 4. Utilize **benchmark** datasets to evaluate the performance of the proposed models.

Riemannian Networks

Source: (Zhiwu Huang and Luc Van Gool, 2017)

Source: (Wang et.al, 2022)

SPDNet: A Riemannian Network

- SPDNet works on SPD matrices directly and exploits multiple layers tailored for SPD matrix deep learning.
- Our implementation is based on the foundational concept of this model.

DreamNet: A Stacked Riemannian Autoencoder (SRAE) Network

• DreamNet implants several residual-like blocks using shortcut connections to augment the representational capacity of SRAE.

Applications of Riemannian Approach

EEG classification. Source: (Pedro L. C. Rodrigues, 2019)

- Brain Computer Interface (BCI) classification [1]
- Radar signals classification [2]
- Text, audio, and video classification [3]
- Stock market-state classification [4]

Fall detection from multiple wearable sensors. Source: (Bouetella, 2019)

Methodology

Covariance Estimation

Spectral

Spectral bands

Sample Covariance Matrix

$$P = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})(X_i - \overline{X})^T$$

$$P = \frac{1}{n-1} \sum_{i=1}^{n} (X_i)(X_i)^T$$

Regularization

$$P_{reg} = P + \epsilon I$$

$$P_{shrink} = (1 - \alpha)P + \alpha I$$

Covariance Matrix → **SPD Matrix**

• Symmetric Positive Definite (SPD)

- $P = P^T$
- Each **P** satisfies $x^T P x > 0$ for all non-zero vectors $x \in \mathbb{R}^n$
- A **Riemannian manifold** \mathcal{M} is a differentiable manifold, where the **tangent space** $\Rightarrow T_P \mathcal{M}$ at each point P is a finite-dimensional Euclidean space.
- SPD manifold $S_+^d \in \mathcal{M} \to tangent \ space \Rightarrow T_P S_+^d$
- Riemannian metric \Rightarrow inner product: $g_p: T_pS_+^d \times T_pS_+^d \to \mathbb{R}$

This represents the tangent space of the SPD manifold S_+^d at point P, where S_i the tangent vector of P_i and $\gamma(t)$ is the geodesic between P and P_i . Source: Barachant, A. et.al.

LogEucResNet (LERN) Model

First Block

BiMap Layer

$$X_k = f_{(b)}^k (X_{k-1}, W_k) = W_k X_{k-1} W_k^T$$

- Input SPD matrices to new SPD matrices in a sub-space.
- **Reduce** dimension while preserving the **geometric structure** of the data.

Model Hyperparameter 🖳

 $dim_1 = Bimap \ dimension$

Second Block (a)

Single-Value Decomposition (SVD)

$$X_k = f_{(svd)}^k (X_{k-1}) = U_{k-1} \lambda_{k-1} U_{k-1}^T$$

Spectrum Map

$$\widehat{\boldsymbol{v}} = f_{(eigs)}^k(\boldsymbol{\lambda}_{k-1})$$

Projection

$$\boldsymbol{v} = f_{(proj)}^{k}(\widehat{\boldsymbol{v}}) = \boldsymbol{P}\,\widehat{\boldsymbol{v}}\,\boldsymbol{P}^{T}$$

Second Block (b)

Single-Value Decomposition (SVD)

$$X_{k} = f_{(svd)}^{k} (X_{k-1}) = U_{k-1} \lambda_{k-1} U_{k-1}^{T}$$
ReEig Layer

$$X_k = f_{(r)}^k (X_{k-1}) = U_{k-1} \max(\lambda_{k-1}, \epsilon I) U_{k-1}^T$$

$$\max(\lambda_{k-1}, \epsilon \mathbf{I}) = \begin{cases} \lambda_{k-1}(i, i) & \text{if } \lambda_{k-1}(i, i) > \epsilon \\ \epsilon & \text{if } \lambda_{k-1}(i, i) \le \epsilon \end{cases}$$

LogEig

$$X_k = f_{(l)}^k (X_{k-1}) = U_{k-1} \log(\lambda_{k-1}) U_{k-1}^T$$

Third Block

Residual Block

$$X = X_k \oplus v$$

Classification Block

$$S_i = \log \boldsymbol{X} \cdot \operatorname{proto}_i^T$$

$$D = \begin{bmatrix} S_1 \\ S_2 \\ \vdots \\ S_{n_{\text{proto}}} \end{bmatrix}$$

LERN - Combo

Conceptual Diagram for LERN-Combo

- This framework draws inspiration from the
 Duplo network by Interdonato, R., et.al (2019).
- **Fusing** two chains of networks OR sub-models
- Handle spectral and temporal covariance representations and captures distinct patterns and features

Loss Function

Focal Loss

It was introduced by Lin et al. (2018), primarily designed for object detection to address class imbalance

$$\mathcal{L}_{\text{focal}} = -\alpha (1 - p_t)^{\gamma} \log(p_t)$$

 α is class weights

 γ is the **focusing parameter**

 p_t is the model's **predicted probability**

Performance Metric

• Weighted F-1 Score

F1-weighted =
$$\frac{1}{\sum_{i=1}^{n} N_i} \sum_{i=1}^{n} N_i \cdot \frac{2 \cdot \operatorname{Precision}_i \cdot \operatorname{Recall}_i}{\operatorname{Precision}_i + \operatorname{Recall}_i}$$

Macro F-1 Score

$$\text{F1-macro} = \frac{1}{n} \sum_{i=1}^{n} \frac{2 \cdot \text{Precision}_i \cdot \text{Recall}_i}{\text{Precision}_i + \text{Recall}_i}$$

Datasets

MiniTimeMatch → SITS for 4 regions across Europe **BreizhCrops** → SITS for *Breizh* = *Bretagne* region

Table 1. Characteristics of the datasets

Region	# Observations	Bands	Sequence Length	# Classes			
MiniTimeMatch							
FR1	106,028	10	36	11			
FR2	74,156	10	38	12			
DK	53,823	10	28	12			
AT	43,809	10	28	10			
Total	277,816						
BreizhCrops							
frh01	178,602	10	71	7			
frh02	140,621	10	71	7			
frh03	166,371	10	71	7			
frh04	122,601	10	71	7			
Total	608,195						

MiniTimeMatch. Source: link

Experiments

- **Default settings** with spectral-temporal covariance representations
- Manual empirical hyperparameter tuning
 - Bimap Layer Dimension
 - Gamma (γ) value
- Model evaluation with optimal hyperparameters
- Testing on **other regions**
- Larger dataset experimentation

Table 3. Initial configurations for the LERN models

Hyperparameter	Value			
BiMap dim	$0.7 \times input_{dim}$			
Number of Classes	11 (FR1 dataset)			
Learning Rate (η)	10^{-2}			
Batch Size	64			
Epochs	200			
Optimizer	RiemannianAdam			
Scheduler	StepLr with step-size = 30			
Loss function (\mathcal{L})	Focal loss			
Focusing parameter (γ)	2			
Spectrum Map Parameters	Conv filter 10, 5, 1			

Results: MiniTimeMatch

MACRO F1-SCORE

Region	1-nn Log-Euc	1-nn Riem	CNN	LERN-Spec	LERN-Temp	LERN-Combo
AT	0.66	0.68	0.70	0.68	0.80	0.81
DK	0.56	0.64	0.51	0.54	0.61	0.69
FR1	0.63	0.65	0.78	0.71	0.78	0.84
FR2	0.59	0.64	0.61	0.63	0.67	0.73
WEIGHTED F1-SCORE						
AT	0.90	0.91	0.95	0.93	0.94	0.95
DK	0.75	0.79	0.86	0.80	0.85	0.89
FR1	0.89	0.90	0.96	0.93	0.95	0.97
FR2	0.89	0.90	0.95	0.94	0.94	0.94

Optimal hyperparameters

Sensitivity of the model to its main hyperparameters

t-SNE plots for FR1

Combo output Temp output Spec output

Results: BreizhCrops

MACRO F1-SCORE

Region	1-nn Log-Euc	1-nn Riem	CNN	LERN-Spec	LERN-Temp	LERN-Combo
frh01	-	-	-	0.70	0.76	0.75
frh02	-	-	-	0.72	0.77	0.76
frh03	-	-	-	0.68	0.73	0.74
frh04	-	-	-	0.69	0.74	0.73
WEIGHTED F1-SCORE						
frh01	-	-	-	0.79	0.82	0.82
frh02	-	-	-	0.77	0.80	0.81
frh03	-	-	-	0.76	0.78	0.79
frh04	-	-	-	0.75	0.78	0.79

Breizhcrops

Conclusion

LERN-Combo > LERN-Temp > LERN-Spec

Introduced LERN & LERN-Combo: second-order geometry-aware neural network.

Utilized covariance representation for remote sensing timeseries data.

Embedded covariance matrices onto a Riemannian manifold using the LERN network.

Enhanced understanding and classification of complex timeseries patterns for crop classification.

Challenges

Sampling inhomogeneity

SVD on high-dimensional matrices often computed on CPU only, making parallelization difficult.

Dataset imbalances

Spectral similarities

High computational demands, particularly for matrix operations

Future Perspectives

RIEMANNIAN BATCH NORMALIZATION (RBN)

STATISTICAL SIGNIFICANCE TESTS

CLASS-SPECIFIC ANALYSIS

References

- Akodad, S. (2021). Ensemble learning methods on the space of covariance matrices: application to remote sensing scene and multivariate time series classification. Theses, Universite de Bordeaux.
- Barachant, A., Bonnet, S., Congedo, M., and Jutten, C. (2010). Riemannian geometry applied to bei classification. In Vigneron, V., Zarzoso, V., Moreau, E., Gribonval, R., and Vincent, E., editors, Latent Variable Analysis and Signal Separation, pages 629–636, Berlin, Heidelberg. Springer Berlin Heidelberg.
- Brooks, D. (2020). Deep Learning and Information Geometry for Time-Series Classification. Theses, Sorbonne Universite.
- Huang, Z., and Gool, L. V. (2016). A riemannian network for SPD matrix learning.
- Interdonato, R., Ienco, D., Gaetano, R., and Ose, K. (2019). Duplo: A dual view point deep learning architecture for time series classification. ISPRS Journal of Photogrammetry and Remote Sensing, 149:91–104.
- Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollar, P. (2018). Focal loss for dense object detection.
- Painblanc, F., Chapel, L., Courty, N., Friguet, C., Pelletier, C., and Tavenard, R. (2023b). Match-and-deform: Time series domain adaptation through optimal transport and temporal alignment. https://github.com/rtavenar/MatchAndDeform.git.
- Ruswurm, M., Pelletier, C., Zollner, M., Lefevre, S., and Korner, M. (2020). Breizhcrops: A time series dataset for crop type mapping. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences ISPRS (2020).
- Wang, R., Wu, X.-J., Chen, Z., Xu, T., and Kittler, J. (2022). Dreamnet: A deep Riemannian network based on spd manifold learning for visual classification.

Appendix

Experiments

- Primary basline model 1-nn
- Secondary baseline model 1D-CNN
- Sampling inhomogeneity linear interpolation

Table 2. Trainable Parameters and Time per Epoch

	Model			
Metric	1D- CNN	LERN-Spec	LERN-Temp	LERN-Combo
Trainable Parameters Time per Epoch (secs)	41,323 9.21	1,412 12.6	15,391 17.78	31,965 32.3

Class Distribution - Split

 Table 4. Outputs from combined datasets - BreizhCrops

Region	LERN-Spec	LERN-Temp	LERN-Combo		
	Macro F1 Score				
frh01	0.68	-	-		
frh02	0.70	-	-		
frh03	0.65	-	-		
frh04	0.70	0.77	0.79		
	,	Weighted F1 Sc	ore		
frh01	0.76	_	-		
frh02	0.77	-	-		
frh03	0.74	-	-		
frh04	0.78	0.83	0.83		

Baseline

Output from CNN

Output from 1-nn

FR1-MiniTimeMatch

Curves for FR1

Cont...

Cont...

