KLASIFIKASI DIABETES RETINOPATI BERDASARKAN CITRA FUNDUS MENGGUNAKAN NEURAL NETWORK

PRA PROPOSAL PROYEK AKHIR

Diajukan sebagai syarat untuk mengikuti Sidang Komite Proyek Akhir

oleh : **DWI OKTA SATRIA**

6705184056

D3 TEKNOLOGI TELEKOMUNIKASI
FAKULTAS ILMU TERAPAN
UNIVERSITAS TELKOM
2021

Latar Belakang

Diabetes adalah penyakit kronis atau yang berlangsung jangka panjang yang ditandai dengan meningkatnya kadar gula darah (glukosa) hingga di atas nilai normal. Ada dua jenis utama diabetes, yaitu diabetes tipe 1 dan tipe 2. Diabetes disebabkan karena adanya gangguan dalam tubuh, sehingga tubuh tidak mampu menggunakan glukosa darah ke dalam sel, sehingga glukosa menumpuk dalam darah. Pada diabetes tipe 1, gangguan ini disebabkan system kekebalan tubuh yang biasanya menyerang virus atau bakteri berbahaya lainnya, malah menyerang dan menghancurkan sel penghasil insulin. Akibatnya, tubuh kekurangan atau bahkan tidak dapat memproduksi insulin sehingga gula yang seharusnya diubah menjadi energi oleh insulin menyebabkan terjadinya penumpukan gula dalam darah. Sedangkan pada diabetes tipe 2, tubuh bisa menghasilkan insulin secara normal, tetapi insulin tidak digunakan secara normal. Kondisi ini dikenal sebagai Resistansi Insulin. Saat ini masyarakat yang mempunyai penyakit Diabetes di Indonesia meningkat sebesar 6.2% selama pandemi Covid-19 ini. Pada saat ini Diabetes tertinggi yakni 10.3 Juta pasien, dan di perkirakan akan meningkat menjadi 16.7 Juta pasien pada tahun 2045 yang akan datang.

Oleh karena itu dibutuhkan teknologi yang dapatan mencegah penyakit Diabetes dengan melakukan pemeriksaan dini menggunakan metode *Neural Network* melalui aplikasi Python, yang akan di implementasikan menggunakan kamera yang dapat medeteksi penyakit Diabetes melalui retina mata pada penderita penyakit Diabetes tersebut.

Dengan pendeteksi Diabetes melalui retina mata, yang dapat membantu penderita Diabetes dengan melakukan pemeriksaan dini. Oleh karena itu penulis membuat tugas akhir dengan judul "KLASIFIKASI DIABETES RETINOPATI BERDASARKAN CITRA FUNDUS MENGGUNAKAN *NEURAL NETWORK*". Dengan alat atau aplikasi yang dibuat diharapkan dapat membantu masyarakat untuk menghindari atau mencegah penyakit diabetes dengan cara melakukan pemeriksaan dini sebelum Diabetes yang dialami oleh penderita mencapai tahap kronis.

Studi Literatur Penelitian Terkait

Tabel 1 Merupakan hasil studi literature terhadap penelitian yang terkait dengan judul yang diangkat.

Tabel 1 Hasil Studi Literatur

No	Judul Penelitian /Karya Ilmiah	Tahun	Keterangan	Perbedaan dengan judul PA yang akan diangkat
1.	Deteksi Diabetic Retinopathy pada Citra Digital Fundus Mata Menggunakan Metode Statistical Region Merging [1]	2014	Dalam penelitian ini penulis menggunakan metode SRM atau Statistical Region Merging	Berbeda dengan penelitian [1] yang menggunakan Statistical Region Merging (SRM), sedangkan pada penelitian ini menggunakan metode Neural Network.
2.	Klasifikasi Diabetik Retinopati Menggunakan Wavelet Haar [2]	2018	Dalam penelitian ini penulis mengklasifikasi menggunakan metode <i>Wavelet Haar</i> .	Berbeda dengan penelitian [2] yang mendeteksi diabetes menggunakan metode Wavelet Haar, sedangkan pada penelitian ini menggunakan metode Neural Network.
3.	Klasifikasi Untuk Diagnosa Diabetes Menggunakan Metode <i>Bayesian</i> Regularization Neural Network [3]	2017	Dalam penelitian ini penulis menggunakan metode <i>Bayesian Regularization Neural Network</i> untuk mendeteksi penyakit diabetes cara kerjanya dengan memodelkan hubungan yang	Berbeda dengan penelitian [3] yang menggunakan metode <i>Bayesian Regularization Neural Network</i> untuk mengambil data diagnosa, sedangkan pada penelitian ini sementara menggunakan metode

			kompleks antara masukan dan keluaran untuk menemukan pola – pola pada data.	BackPropagation Neural Network untuk mendapatkan hasil.
4.	Implementasi Algoritma <i>Decision Tree</i> C4.5 untuk Prediksi Penyakit Diabetes [4]	2018	Dalam penelitian ini penulis menggunakan metode <i>Decision Tree</i> C4.5 dan diperuntukannya untuk prediksi penyakit diabetes	Berbeda dengan penelitian [4] yang menggunakan metode <i>Decision Tree</i> C4.5, sedangkan pada penelitian ini menggunakan metode <i>Neural Network</i> sebagai deteksi diabetes.
5.	Deteksi Multilevel Diabetes Secara Non- Invansive dengan Analisis Nafas Manusia Menggunakan <i>Breathalyzer</i> [5]	2017	Dalam penelitian ini penulis menggunakan metode <i>Breathalyzer</i> yang dimana mendeteksi diabetes melalui pernafasan.	Berbeda dengan penelitian [5] yang menggunakan metode <i>Breathalyzer</i> . Dimana mendeteksi melalui pernafasan si penderita diabetes, sedangkan pada penelitian ini menggunakan metode <i>Neural Network</i> .
6.	Implementasi Pengolahan Citra untuk Mendeteksi Anemia Sel Sabit dengan Metode Convolutional Neural Network [6]	2020	Dalam penelitian ini penulis menggunakan metode CNN (Convolutional Neural Network), dan untuk mendeteksi penyakit Anemia	Berbeda dengan penelitian [6] yang menggunakan metode CNN (Convolutional Neural Network), sedangkan pada penelitian ini menggunakan menggunakan Backpropagation Neural Network.
7.	Deteksi Diabetik Retinopati menggunakan Regresi Logistik [7]	2020	Pada Penelitian ini penulis menggunakan metode Regresi Logistik yang digunakan untuk prediksi	Berbeda dengan penelitian [7] yang menggunakan metode <i>Regresi Logistik</i> ,

	probabilitas kejadian suatu peristiwa dengan	sedangkan pada penelitian ini menggunakan
	mencocokan data pada fungsi logit kurva logistic.	metode Neural Network

Rancangan Sistem

Pada bab ini akan dijelaskan mengenai tahapan – tahapan dalam klasifikasi diabetes menggunakan metode *Neural Network*.

Gambar 1. Blok Diagram Sistem Neural Network dan Perbedaan Retina

Tahapan awal yaitu dengan menginput / memasukan gambar dari mata penderita. Kemudian alat akan mendeteksi bercak atau bitnik berdasarkan metode *Neural Network*. Dan tahap terakhir yaitu mendapatkan Output / Hasil yang menandakan menderita Diabetes atau tidak.

Referensi

- [1] Agung Riyadi, "Deteksi Diabetic Retinopathy pada Citra Digital Fundus mata Menggunakan Metode *Statistical Region Merging*" *SKRIPSI* 2014, *Universitas Islam Negeri Malang*
- [2] Suwanto Sanjaya, Arif Mudi Priyatno, Febi Yanto, Iis Afrianty "Klasifikasi Diabetik Retinopati menggunakan *Wavelet Haar*" INFORMASI (Seminar Nasional Teknologi Informasi, Komunikasi dan Industri) November 2018 *Universitas Islam Negeri Sultan Syarif Kasim Riau*
- [3] M. Fadly Rahman, M. Ilham Darmawidjadja, Dion Alamsah "Klasifikasi Untuk Diagnosa Diabetes Menggunakan Metode *Bayesian Regularization Neural Network*" INFORMASI (Jurnal Informatika): Vol.11 No.1 Mei 2017 *Teknik Informatika Universitas Padjadjaran*
- [4] Noviandi, "Implementasi Algoritma *Decision Tree* C4.5 untuk Prediksi Penyakit Diabetes" *Skripsi* Juni 2018, *Universitas Esa Unggul*
- [5] Hariyanto "Deteksi Multilevel Diabetes Secara Non-Invansive dengan Analisis Nafas Manusia Menggunakan Breathalyzer" Tugas Akhir – KI141502, 2017, Institut Teknologi Sepuluh November
- [6] Rizki Sari Dewi, "Implementasi Pengolahan Citra untuk Mendeteksi Anemia Sel Sabit dengan Metode *Convolutional Neural Network*" *Skripsi* 2020, *Universitas Sumatera Utara*
- [7] Raras Tyasnurita, Adhi Yoga Muris Pamungkas "Deteksi Diabetik Retinopai menggunakan *Regresi Logistik*" Jurnal Ilmiah : Vol.12 No.2 Agustus 2020

Form Kesediaan Membimbing Proyek Akhir

PROYEK AKHIR SEMESTER GENAP TA 2020/2021

Tanggal: 2 Juni 2021

Kami yang bertanda tangan dibawah in i:

CALON PEMBIMBING 1

Kode : SGO

Nama : Sugondo Hadiyoso, ST.MT

CALON PEMBIMBING 2

Kode : YSN

Nama : Yuli Sun Hariyani, ST.MT

Menyatakan bersedia menjadi dosen p embimbing Proyek Akhir bagi mahasiswa berikut,

NIM : 6705184056

Nama : DWI OKTA SATRIA

Prodi / Peminatan : D3TT

Calon Judul PA :KLASIFIKASI DIABETES RETINOPATI BERDASARKAN CITRA FUNDUS

MENGGUNAKAN NEURAL NETWORK

Dengan ini akan memenuhi segala hak dan kewajiban sebagai dosen pembimbing sesuai dengan Aturan Proyek Akhir yang berlaku.

Calon Pembimbing 1

Calon Pembimbing 2

Enden

(Sugondo Hadiyoso, ST.MT)

(Yuli Sun Hariyani, ST.MT)

CATATAN:

- 1. Aturan Proyek Akhir versi terbaru dapat diunduh dari : http://dte.telkomuniversity.ac.id/panduan-proyek-akhir/
- 2. Keputusan akhir penentuan pembimbing berada di tangan Ketua Kelompok Keahlian dengan memperhatikan aturan yang berlaku.
- 3. Pengajuan pembimbing boleh untuk kedua pembimbing sekaligus atau untuk salah satu pembimbing saja

Telkom UniversityJl.Telekomunikasi No.1,
Terusan Buah Batu
Bandung 40257
Indonesia

DAFTAR NILAI HASIL STUDI MAHASISWA

RAMADAN

NIM (Nomor Dosen Wali : DUM / DADAN NUR

Induk : 670518405

Mahasiswa) Program Studi : D3 Teknologi Telekomunikasi

Nama : DWI OKTA SATRIA

Mata Kuliah yang Lulus

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
1	DTH1F3	DASAR SISTEM TELEKOMUNIKASI	BASIC TELECOMMUNICATIONS SYSTEM	3	ВС
1	DTH1A2	K3 DAN LINGKUNGAN HIDUP	K3 AND ENVIRONMENT	2	А
1	DUH1A2	LITERASI TIK	ICT LITERACY	2	В
1	DTH1B3	MATEMATIKA TELEKOMUNIKASI I	MATHEMATICS TELECOMMUNICATIONSI	3	АВ
1	HUH1A2	PENDIDIKAN AGAMADAN ETIKA - ISLAM	RELIGIOUS EDUCATIONAND ETHICS - ISLAM	2	AB
1	DTH1D3	RANGKAIAN LISTRIK	ELECTRICAL CIRCUITS	3	С
1	DTH1E2	BENGKEL MEKANIKAL DAN ELEKTRIKAL	MECHANICAL AND ELECTRICAL WORKSHOP	2	АВ
1	DTH1C3	DASAR TEKNIK KOMPUTER DAN PEMROGRAMAN	BASIC COMPUTER ENGINEERING AND PROGRAMMING	3	АВ
2	DMH1A2	OLAH RAGA	SPORT	2	А
2	DTH1G3	MATEMATIKA TELEKOMUNIKASI II	MATHEMATICS TELECOMMUNICATIONSII	3	АВ
2	DTH1H3	TEKNIK DIGITAL	DIGITAL TECHNIQUES	3	AB
2	DTH1I3	ELEKTRONIKA ANALOG	ANALOG ELECTRONIC	3	С
2	DTH1J2	BENGKEL ELEKTRONIKA	ELECTRONICS WORKSHOP	2	С
2	DTH1K3	ELEKTROMAGNETIKA	ELECTROMAGNETIC	3	С
2	HUH1G3	PANCASILA DAN KEWARGANEGARAAN	PANCASILA AND CITIZENSHIP	3	В
2	LUH1B2	BAHASA INGGRIS I	ENGLISH I	2	В
3	DTH2G3	SISTEM KOMUNIKASI OPTIK	OPTICAL COMMUNICATION SYSTEMS	3	ВС
		·			

			'		
Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
3	DTH2F3	TEKNIK TRANSMISIRADIO	RADIO TRANSMISSION TECHNIQUES	3	С
3	DTH2B3	KOMUNIKASI DATA BROADBAND	BROADBAND DATA COMMUNICATIONS	3	АВ
3	DTH2E3	SISTEM KOMUNIKASI	COMMUNICATIONS SYSTEMS	3	С
3	DTH2D3	APLIKASI MIKROKONTROLERDAN ANTARMUKA	MICROCONTROLLER APPLICATIONS AND INTERFACES	3	AB
3	DTH2C2	BENGKEL INTERNETOF THINGS	INTERNET OF THINGS WORKSHOP	2	В
3	DTH2A2	BAHASA INGGRIS TEKNIK I	ENGLISH TECHNIQUE I	2	АВ
4	VTI2K3	JARINGAN TELEKOMUNIKASI BROADBAND	BROADBAND DATA NETWORKS	3	А
4	DTH2J2	TEKNIK TRAFIK	TRAFFIC ENGINEERING	2	AB
4	DTH2K3	ELEKTRONIKA TELEKOMUNIKASI	ELECTRONICS TELECOMMUNICATIONS	3	АВ
4	DTH2I3	DASAR KOMUNIKASI MULTIMEDIA	BASIC COMMUNICATION MULTIMEDIA	3	В
4	UKI2C2	BAHASA INDONESIA	INDONESIAN LANGUAGE	2	АВ
4	DMH1B2	PENGEMBANGAN PROFESIONALISME	PROFESSIONAL DEVELOPMENT	2	А
4	DTH2M3	SISTEM KOMUNIKASI SELULER	CELLULAR COMMUNICATION SYSTEMS	3	В
4	DTH2L3	TEKNIK ANTENNADAN PROPAGASI	ANTENNA TECHNIQUESAND PROPAGATION	3	ВС
4	VTI2H2	BAHASA INGGRIS TEKNIK II	ENGLISH TECHNIQUESII	2	В
4	DTH2H3	JARINGAN DATA BROADBAND	BROADBAND DATA NETWORK	3	В
5	UWI3E1	HEI	HEI	1	А
5	VTI3D3	KEAMANAN JARINGAN	NETWORK SECURITY	3	АВ
5	UWI3A2	KEWIRAUSAHAAN	ENTREPRENEURSHIP	2	А
5	VTI3E2	CLOUD COMPUTING	CLOUD COMPUTING	2	В
		Jumlah SKS		94	3.08

Mata Kuliah yang Belum Lulus

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
4	I DMH2A2	KERJA PRAKTEK	INTERSHIP	2	E

Jumlah SKS	21	

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
4	VTI2I3	TEKNIK FREKUENSI TINGGI	HIGH FREQUENCY TECHNIQUES	3	
6	VTI3F4	PROYEK AKHIR	FINAL PROJECT	4	
6	VPI3GC	MAGANG	APPRENTICE	12	
	Jumlah S	21			

Jumlah SKS	: 94 SKS		IPK: 3.02
Tingkat III	: 96 SKS	Belum Lulus	IPK: 3.02
Tingkat II	: 88 SKS	Belum Lulus	IPK: 2.97
Tingkat I	: 41 SKS	Lulus tanggal 01-08-2019	IPK: 2.99

Total SKS dan IPK dihitung dari mata kuliah lulus dan mata kuliah belum lulus. Nilai kosong dan T tidak diikutkan dalamperhitungan IPK.

Pencetakan daftar nilai pada tanggal 02 Juni 2021 16:11:42 oleh DWI OKTA SATRIA