Chapter 11 Linear Regression and Correlation

STAT 441/541 Statistical Methods II

Sections Covered in Chapter 11

- Section 11.1 Introduction and Abstract of Research Study
- Section 11.2 Estimating Model Parameters
- Section 11.3 Inferences About Regression Parameters
- Section 11.4 Predicting New y-values Using Regression
- Section 11.6 Correlation

Example: Predict weight using height

	Α	В	
1	height	weight	
2	63	127	
3	64	121	
4	66	142	
5	69	157	
6	69	162	
7	71	156	
8	71	169	
9	72	165	
10	73	181	
11	75	208	

For each observation, plot height using the horizontal axis and the corresponding weight using the vertical axis. This is called a scatterplot.

What is simple linear regression?

There is a single independent variable x and the equation for predicting a dependent variable y is a linear function of x.

What is the simple linear regression model?

The model is

$$y = \beta_0 + \beta_1 x + \varepsilon$$

y is the dependent variable

x is the independent variable

 β_0 is the true y-intercept (the value of the line when x=0)

 β_1 is the true slope of the line (the predicted change in y corresponding to a one-unit increase in x)

 ε is random error

What is the prediction equation for simple linear regression?

The equation is

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

 \hat{y} are predicted values of the dependent variable x are values of the independent variable $\hat{\beta}_0$ is the estimated y-intercept $\hat{\beta}_1$ is the estimated slope of the line

What are the four formal assumptions for simple linear regression analysis?

- 1. The model has been properly specified
- 2. The errors have the same variance, that is, $Var(\varepsilon_i) = \sigma_{\varepsilon}^2$ for all i
- 3. The errors are independent of each other
- 4. The errors are all normally distributed, that is, ε_i is normally distributed for all i

In statistical notation: $\varepsilon_i \sim Normal(0, \sigma_{\varepsilon}^2)$

Transformations

- For simple linear regression, if the relationship between x and y is not linear, then it can often be "straightened out" by transforming the independent variable, dependent variable, or both
- The text provides several graphs and "Steps for choosing a transformation"
- The regression analysis is then performed on the transformed variables(s) as long as the assumptions are met

What is a residual?

- A residual is defined as an observed value of y minus its predicted value, that is, $y \hat{y}$
- Residuals measure how far each observed value is from the regression line (parallel to y-axis)

Residuals are used to estimate the common

variance $\sigma_{arepsilon}^2$

The residual for Height=75 is 208 – 193.8 = 14.2

How do we estimate the true error variance σ_{ε}^2 ?

The estimated variance around the line is

$$s_{\varepsilon}^{2} = \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{n-2}$$

(Note the similarity with a sample standard deviation)

Observations with high leverage and influence

- An observation that affects the estimate of the regression slope is classified as high leverage or high influence
- What is a high leverage point?
 - An observations that has a very high or very low value of the independent variable (outliers in the x direction)
- What is a high influence point?
 - An observation that is a high leverage point and also has a very high or very low value of the dependent variable (outliers in the y direction)

What three terms in the simple regression model are estimated based on limited data?

Recall the simple linear regression model:

$$y = \beta_0 + \beta_1 x + \varepsilon$$

- The slope, B_1
- The intercept, B_0
- ullet The variance of the random errors, $\sigma_{arepsilon}^2$

What two concepts apply to regression summary figures?

- 1. Hypothesis tests
- 2. Confidence intervals

Both use the *t* distribution

Summary of a statistical test for eta_1

- Hypotheses
 - Case 1: H_0 : $\beta_1 \le 0$ versus H_a : $\beta_1 > 0$
 - Case 2: H_0 : $\beta_1 \ge 0$ versus H_a : $\beta_1 < 0$
 - Case 3: H_0 : $\beta_1 = 0$ versus H_a : $\beta_1 \neq 0$
- Test Statistic: t value from software output
- Compare p-value from output to significance level α
 - Reject the null hypothesis H_0 if p-value $\leq \alpha$ (If p-value is low, H_0 must go)
 - Fail to reject the null hypothesis H_0 if p-value > α (If p-value is high, with H_0 we must comply)
- Check assumptions and draw conclusions

Most common test of the true slope parameter (a t test)

The most common test is

$$H_0$$
: $\beta_1 = 0$ versus H_a : $\beta_1 \neq 0$

This tests whether the independent variable x should be in the model.

Example: height and weight data

```
Coefficients:
```

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) -266.5344 51.0320 -5.223 8e-04 ***
height 6.1376 0.7353 8.347 3.21e-05 ***
```

Since p-value = 0.0000321 < 0.05, we reject the null hypothesis and conclude $\beta_1 \neq 0$. There is a significant relationship between height and weight. For a one inch increase in height, the average weight increases by 6.1 pounds.

F Test for Predictive Value of a Regression Model

This tests the null hypothesis that all independent variables have no value in predicting y (more useful for multiple regression; for simple linear regression this is same as the t test for β_1)

Example: height and weight data

```
Residual standard error: 8.641 on 8 degrees of freedom Multiple R-squared: 0.897, Adjusted R-squared: 0.8841 F-statistic: 69.67 on 1 and 8 DF, p-value: 3.214e-05
```

The F test for using height to predict weight. The p-value is 0.00003214 so the null hypothesis that the model has no predictive value is rejected at significance level $\alpha=0.05$. We conclude that height has value in predicting weight.

Is it useful to interpret the intercept β_0 ?

The intercept term in the model, β_0 , is the value of y when x = 0.

The intercept is interpretable only when x=0 is meaningful.

Example: For the height and weight data,

$$\hat{\beta}_0 = -266.5344$$

This is not interpretable since a height of 0 inches is not meaningful.

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) -266.5344 51.0320 -5.223 8e-04 ***
height 6.1376 0.7353 8.347 3.21e-05 ***
```

What are two interpretations of a y prediction for a given x value?

- The average response value [E(y)] of the population of all possible values for a specific x value
- The response value y_{n+1} for a specific x value

In the road-resurfacing example in our text, the county highway director wants to predict the cost of a new contract for x = 6 miles that is up for bids.

The average cost E(y) of all resurfacing contracts for 6 miles of road will be \$20,000.

The cost y of this specific resurfacing contract for 6 miles of road will be \$20,000.

Confidence Interval for mean response $E(y_{n+1})$

We will use software to compute a confidence interval on the mean response for a specified value of the independent variable

```
Example: Develop a 95% confidence interval of the mean weight for height = 68 inches

First, create a new data frame that sets the height value,

Second, use the predict function and set the interval type as

"confidence" using the default 0.95 confidence level

Third, interpret the interval: We are 95% confident that the interval from 144.1452 to 157.4971 captures the mean weight in pounds for a height of 68 inches
```

Prediction Interval for y_{n+1}

 We will use software to compute a prediciton interval on the response value for a specified value of the independent variable

```
Example: Develop a 95% prediction interval of the weight in pounds for height = 68 inches
First, create a new data frame that sets the height value,
Second, use the predict function and set the interval type as "predict" using the default 0.95 confidence level
Third, interpret the interval: We are 95% confident that the interval from 129.8056 to 171.8367 captures the individual weight in pounds for a height of 68 inches

> # prediction interval of weight for height=68 inches
```

What are residual plots?

- A residual plot has residuals on the vertical axis and predicted values on the horizontal axis. Look for:
- Outliers or erroneous observations. Look for data points with unusually high (in absolute value) residuals.

• Violation of assumptions. Look for non-random patterns in the residuals.

R output labels this plot as "Residuals vs Fitted"

What are two ways to check the constant variance assumption?

(1) The residual plot and (2) the Scale-Location plot.

How can we check for normality of errors?

(1) The Normal Q-Q plot and (2) the Shapiro-Wilk test for normality

Cook's Distance for Potential Outliers

- Cook's distance is a measure of influence that considers the effect of a single observation on the model as a whole is. It is a measure of the overall influence of an observation on the model and values greater than one (1) may be cause for concern.
- Cook's distance, sometimes denoted by D_i , depends on both the residual and the leverage. That is, both the x value and the y value of the data point play a role in the calculation of Cook's distance.

• In short:

- D_i directly summarizes how much *all* of the fitted values change when the i^{th} observation is deleted.
- A data point having a large D_i indicates that the data point strongly influences the fitted values.

Using Cook's Distance

- We must rely on guidelines for deciding when a Cook's distance measure is large enough to warrant treating a data point as influential.
- The guidelines commonly used are:
- If D_i is greater than 0.5, then the i^{th} data point is worthy of further investigation as it **may be influential**.
- If D_i is greater than 1, then the i^{th} data point is **quite likely to** be influential.
- Or, if D_i sticks out like a sore thumb from the other D_i values, it is **almost certainly influential**.

Lack of Fit (LOF) for the Simple Linear Regression model

- What is LOF? To test if $y = \beta_0 + \beta_1 x + \varepsilon$ is an appropriate model.
- When can we test for LOF? When there is more than one observation per level of the independent variable.
- What are the two parts of SS(Error)?
 - SSP_{exp} is the sum of squares Pure Experimental Error pooled over each level of the independent variable
 - $SS(Error) = SSP_{exp} + SS_{Lack}$
 - $SS_{Lack} = SS(Error) SSP_{exp}$

A Test for Lack of Fit in Linear Regression

- H_0 : A linear regression model is appropriate
- H_a : A linear regression model is not appropriate
- Test Statistic T.S.: $F = \frac{MS_{Lack}}{MSP_{exp}}$
- Conclusion: If the F test is significant at a specified alpha (e.g. $\alpha=0.01$), then the linear regression model is inadequate. A nonsignificant result indicates that there is insufficient evidence to suggest that the linear regression model is inappropriate.
- Results may be summarized in an Analysis of Variance Table for Regression Analysis

ANOVA for Simple Linear Regression

Source	df	Sum Sq	Mean Sq	F value	Pr(>F)
Model	1	SS(Regression)	$MS(Regression) = \frac{SS(Regression)}{1}$	$F_{model} = \frac{MS(Regression)}{MS(Residual)}$	
Residual	n-2	SS(Residual)	$MS(Residual) = \frac{SS(Residual)}{n-2}$		
Lack of Fit	n-2- $\sum_i (n_i-1)$	$SS_{Lack} = SS(Residual) - SSP_{exp}$	$MS_{Lack} = \frac{SS_{Lack}}{n-2-\sum_{i}(n_{i}-1)}$	$F_{LOF} = \frac{MS_{Lack}}{MSP_{exp}}$	
Pure Experimental Error	$\sum_i (n_i - 1)$	SSP_{exp}	$MSP_{exp} = \frac{SSP_{exp}}{\sum_{i}(n_i - 1)}$		
Total (Corrected)	n-1	SS(Total)			

See Section 11.5 Examining Lack of Fit in Linear Regression and Handout Example 11-1 Lack of Fit Using RStudio

Scatterplot

- A plot of each observation or (x,y) point
- The independent variable, x, is along the horizontal axis
- The dependent variable, y, is along the vertical axis
- Examine the pattern of points to determine if they basically follow a straight line or if there is a definite curve
- Also look to see whether there are any potential outliers falling far from the general pattern of the data

What is correlation?

- ullet Definition: Correlation measures the strength of the linear relation between x and y
- The formula for the sample correlation coefficient,
 r, can be found in our text. We will use software to
 compute sample correlation coefficients.
- Correlation coefficients range from -1 to +1
- Values over zero indicate positive correlation and values below zero indicate a negative correlation

Examples of various sample correlation coefficients

https://www.simplypsychology.org/correlation.html

Note: Figure 11.21 in our text displays 15 scatterplots for various values of the sample correlation coefficient

Example: height and weight

First, examine a scatterplot to verify there is a linear relationship

Second, use software to compute the sample correlation coefficient

> cor(dataobj\$height, dataobj\$weight, method="pearson")
[1] 0.9470984

$$r_{vx} = 0.947$$

Interpretation: There is a very strong linear relationship between weight and height.

A statistical test for population correlation coefficient ρ_{yx}

- Hypotheses
 - Case 1: H_0 : $\rho_{vx} \leq 0$ versus H_a : $\rho_{vx} > 0$
 - Case 2: H_0 : $\rho_{vx} \ge 0$ versus H_a : $\rho_{vx} < 0$
 - Case 3: H_0 : $\rho_{vx} = 0$ versus H_a : $\rho_{vx} \neq 0$
- Test Statistic: t value from software output
- Compare p-value from output to significance level α
 - Reject the null hypothesis H_0 if p-value $\leq \alpha$ (If p-value is low, H_0 must go)
 - Fail to reject the null hypothesis H_0 if p-value > α (If p-value is high, with H_0 we must comply)
- Check assumptions and draw conclusions

Coefficient of Determination

Definition: The proportionate reduction in error for regression is called the coefficient of determination.

For simple linear regression, the coefficient of determination is the square of the correlation coefficient.

Example: height and weight

```
Residual standard error: 8.641 on 8 degrees of freedom

Multiple R-squared: 0.897, Adjusted R-squared: 0.8841
F-statistic: 69.67 on 1 and 8 DF, p-value: 3.214e-05
```

Interpretation: Using height in the regression model explains 89.7% of the variation in weight.