

MRI Sequence, Axial View

0:32 / 3:26

MRI Example consists of multiple imaging sequences

Pick a slice

Different Channels

Play

Misaligned

Combine Channels

Misaligned

(Seeplearning.a)

Aligned

Image Registration

1.00

Segmentation Architecture

1.00 ☑ Share **U-Net** Down conv1 max pool Down conv2 conv2 Contracting Expanding max pool sample Path Path Down Up ➤ concat conv3 Down max pool conv4

3D U-Net

Mass

Mass

Mass

Mass

Data Augmentation

Data Augmentation

Prediction

Ground Truth

Loss

1 (Tumor)

0 (Normal Brain Tissue)

	P			G		
p ₁	p ₂	p ₃	g ₁	$egin{pmatrix} \mathbf{g}_2 \ 0 \end{bmatrix}$	g ₃	
0.1	0.1	0.1	0		0	
0.8	p ₅ 0.9	p ₆ 0.9	<u>g</u> ₄ 0	$\mathbf{g_5} \\ 1$	g ₆ 1	
p ₇	p ₈	p ₉	g ₇	g ₈	g ₉	
0.1	0.4	0.1	0	1	0	

i	p	g
1	0.1	0,
2	0.1	0
3	0.1	0
4	0.8	0
5	0.9	1
6	0.9	1
7	0.1	0
8	0.4	1
9	0.1	0

1.00

☑ Share

Soft Dice Loss

$$L(P,G) = 1 - \frac{2\sum_{i}^{n} p_{i}g_{i}}{\sum_{i}^{n} p_{i}^{2} + \sum_{i}^{n} g_{i}^{2}}$$

$$= 1 - \frac{2 \times 2 \cdot 2}{2 \cdot 47 + 3}$$

$$= 1 - \frac{4 \cdot 4}{5 \cdot 47}$$

1.00 US INDIA the hospitals where we've trained our model in the US.

set is drawn from the same distribution

training and validation set and then fine-tune the model on this new data.

aceptearning.ar

Retrospective (Historical) Data

Dataset

Real-World / Prospective Data

Play

Dataset

AUROC

0:49 / 3:14

Dice Score

Decision Curve Analysis

Randomized Controlled Trials

Age

Sex

Socioeconomic Status

Model Interpretation

Play

