

SERVIÇO PÚBLICO FEDERAL

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE PRÓ-REITORIA DE PESQUISA E INOVAÇÃO COORDENAÇÃO DE PESQUISA E INOVAÇÃO – COPEIN/CAMPUS NATAL-CENTRAL PROGRAMA DE BOLSAS DE PESQUISA E INOVAÇÃO

RELATÓRIO PARCIAL

DESENVOLVIMENTO DE DISPOSTIVO PARA AUTOMATIZAÇÃO DE AMBIENTES NO IFRN UTILIZANDO TECNOLOGIAS OPEN SOURCE.

Nome do pesquisador: Ailton Deuzimar de Sousa Junior

> Orientados Laica: Thales Azevedo Silva Mateus Batista de Almeida Lucas Gabriel Amaro Pereira

DESENVOLVIMENTO DE DISPOSITIVO PARA AUTOMATIZAÇÃO DE AMBIENTES NO IFRN UTILIZANDO TECNOLOGIAS OPEN SOURCE.

Thales Azevedo Silva Mateus Batista de Almeida Lucas Gabriel Amaro Pereira

Relatório parcial referente à prestação de contas do Edital 01/2018 corrigido pelo coordenador do projeto Ailton Deuzimar de Sousa Junior:

Assinatura do coordenador do projeto

SUMÁRIO

1.	METAS ATINGIDAS	5
2.	RELATÓRIO DESCRITIVO	5
	RESULTADOS E DISCUSSÕES	
	CONCLUSÕES	
RE	FERÊNCIAS BIBLIOGRÁFICAS	10

RESUMO

Este projeto tem a intenção de desenvolver um sistema de automação, que possibilita monitorar e controlar dispositivos a distância, tal como, monitorar o consumo de energia de salas e laboratórios do IFRN/CNAT. Tendo em vista, um sistema de controle portátil desenvolvido através da plataforma Arduino, unificando o sistema de luzes e ar-condicionado, manipulando ferramentas como Shields Xbee's e circuitos auxiliares. Dessa forma, utilizando tecnologia de baixo custo, este projeto viabiliza a automação de ambientes de forma remota, otimizando a utilização dos recursos disponíveis no ambiente.

1. METAS ATINGIDAS

A tabela abaixo representa as metas atingidas no 1° trimestre de atividades referente ao Edital 01/2018 – PROPI/IFRN.

Período	Descrição da atividade	Observação
De 16/04/2018 até 16/05/2018	Estudo sobre o princípio de funcionamento da Plataforma Arduíno, por meio de atividades práticas utilizando componentes eletrônicos.	Atividade atendida.
De 16/05/2018 até 16/06/2018	Desenvolvimento de protótipos capazes de envolver os conhecimentos adquiridos até então, trabalhando tanto com a eletrônica quanto com instalações elétricas de baixa tensão.	Atividade atendida.
De 16/06/2018 até 16/07/2018	Mapeamento da instalação elétrica do laboratório de pesquisa, para viabilizar a devida instalação dos dispositivos utilizados e dimensionados pelos alunos.	Atividade atendida.

2. RELATÓRIO DESCRITIVO

2.1. MATERIAIS

Os materiais utilizados para o desenvolvimento da pesquisa foram:

- Arduino uno;
- Diodo emissor de luz LED;
- Shield Xbee;
- Sensor Infravermelho;
- Sensor de corrente;
- Lâmpadas;
- Resistores.

2.2. MÉTODOS

O projeto foi desenvolvido a partir da utilização da plataforma de prototipagem Arduino Uno que usa a linguagem C, com pequenas modificações, para a criação dos códigos de controle. Para aprendizado e familiarização com a plataforma, tanto do hardware quanto do software, foram desenvolvidos pequenos

projetos clássicos do mundo da eletrônica que usam protoboard, LEDs, botões, Shields e xbee's, sensores. Os projetos realizados foram:

Acionamento de um diodo emissor de luz - LED:

No mundo da eletrônica essa é a atividade inicial para quem está ingressando nessa área, para o aprendizado da plataforma Arduino não poderia ser diferente. Essa atividade é bastante importante, devido ao fato que o novo usuário aprende sobre a alimentação, a pinagem, as portas analógicas e digitais da plataforma.

Acionamento de um diodo emissor de luz - LED Fonte: Autores.

• Piscar um Led:

Após acionar o Led, a próxima atividade é fazê-lo piscar. Para esta atividade foram utilizadas as funções digitalwrite e delay, responsáveis por gerar uma pausa calculada e alternar o estado do Led entre alto ou baixo, fazendo o mesmo piscar a cada meio segundo, por exemplo.

Acionamento de cargas através do acionamento de um botão:

Para esta atividade, foi usado um botão para acionar o Led, associado a um resistor pull-up, ou resistor de elevação, com o intuito de evitar que o pino de entrada da plataforma fique em estado flutuante. O resistor de elevação é o responsável por evitar esse fenômeno, pois mantêm o pino de leitura sempre em nível alto até que o botão seja pressionado.

Circuito utilizando um resistor de elevação. Fonte: Bóson Treinamentos em Tecnologia

• Comunicação entre Xbee's:

Para acionar uma carga sem fio é necessária a utilização dos shields relé e do Shield Xbee. Os Xbee's trabalham com o protocolo de comunicação zigbee, e para efetuar a comunicação entre eles é utilizada a lógica master-slave, ou mestre-escravo. Neste caso, um Xbee tem que estar configurado com mestre e o outro como escravo e ambos compartilhando a uma mesma rede. Já o shield relé, permite que o Arduino realize o acionamento de uma carga de corrente alternada. A fim de validar esta atividade, foi desenvolvido um teste entre dois módulos compostos por Arduino, Xbee e outros componentes eletrônicos. O módulo mestre é responsável por enviar um comando ao módulo slave, e o mesmo deve executar uma ação, que neste caso é acender um LED, mesmo comando utilizado para acionar uma carga AC.

Teste serial & Comunicação entre Shields e Xbee's. Fonte: Autores.

• Detectando a informação de um controle com o sensor infravermelho;

Nesta atividade utilizou-se um sensor infravermelho para mapear, em hexadecimal, os códigos de cada botão do controle Panasonic car áudio, mesmo princípio utilizado para extrair as informações do controle do ar-condicionado. Então foi elaborado um circuito para acender e apagar o LED, quando pressionados os botões 1 e 2 do controle, respectivamente.

Circuito do sensor infravermelho. Fonte: Autores.

Medidor de corrente elétrica com sensor SCT-013 e display LCD:

Além do que foi citado anteriormente, foi projetado um circuito capaz de calcular a potência instantânea, tendo em vista auxiliar o consumo de energia do protótipo. O sensor foi escolhido por não precisar interromper o circuito para realizar a medição de corrente consumida pela carga. Na saída deste sensor, associado a um circuito auxiliar, tem-se uma variação de corrente que viabiliza sua leitura a partir de um terminal analógico da plataforma aplicada. Baseando-se no valor medido pelo sensor, e admitindo-se um valor constante para a tensão fornecida pela concessionária, foi possível calcular e imprimir no display o valor da potência instantânea da carga.

Medidor de energia com sensor de corrente SCT-013 e Leitor LCD. Fonte: Autores.

O Arduino do protótipo está conectado com um shield Xbee relé, um shield ethernet w5100 e um roteador wi-fi, os quais são responsáveis por controlar as lâmpadas e o ar condicionado, seja por comando vindo do Xbee máster ou por sinal vindo do acesso remoto, o aplicativo. O circuito do sensor de corrente

também tem a finalidade de informar o acionamento ou não das cargas, para que seja informado no acesso remoto. O módulo Xbee escravo juntamente com o shield ethernet, trabalham como um servidor para informar a página web o estado das lâmpadas. É por meio deste módulo que o cliente, ou seja, o aplicativo ou a página web poderá verificar o estado das lâmpadas, e a potência instantânea do circuito total, até o momento.

Aplicativo

Este tem o papel de informar o estado das lâmpadas, bem como o consumo de energia elétrica das mesmas. O aplicativo em questão, forma aprimorada da versão anterior, conta com uma interface simples e intuitiva no qual é possível alterar entre os estados ligado e desligado das lâmpadas, de forma remota apenas alterando o status do botão correspondente a uma lâmpada na interface.

Interface do aplicativo. Fonte: Autores.

3. RESULTADOS E DISCUSSÕES

Diante do que está sendo desenvolvido até o presente momento, o projeto está sendo aplicado no Laboratório de Informática, Comunicação e Automação (LAICA) com o controle de circuito de iluminação e do ar condicionado.

Uma das dificuldades encontradas, foi interpretar o que o controle remoto do ar condicionado envia, pois, o sensor infravermelho capta muita interferência, o que dificulta na identificação do código que o controle do aparelho envia, além da dificuldade de replicar os comandos do controle.

No entanto, é escassa a quantidade de material para estudo voltado para a automação usando o Xbee e sensores infravermelho, principalmente quando se trata de ar condicionado, pois no mundo atual há uma infinidade de marcas e aparelhos. Desenvolver o aplicativo está sendo uma das maiores dificuldades, pois, necessita de um conhecimento maior sobre novas ferramentas de programação, tais como, lonic e Json a fim de conectar o Shield Ethernet do protótipo ao aplicativo móvel.

4. CONCLUSÕES

Apesar das dificuldades encontradas, o projeto tem dado bastante resultados e está perto de finalizar seus objetivos iniciais, concluindo-se que há bastante possibilidades e oportunidades para a melhoria do mesmo.

Com o avanço da tecnologia e devido ao fato da comunicação iterativa de equipamentos, a domótica permite uma maior qualidade de vida, reduz o trabalho doméstico, aumenta o bem-estar e a segurança, controla o gasto de energia e com sua evolução promete trazer continuamente novas aplicações. (MURATORI E DAL BÓ, 2012).

O desenvolvimento do projeto, tanto em software quanto hardware, mostra que o investimento na área abre um leque de possibilidades no âmbito da domótica, permitindo-se que ambientes sejam automatizados, aumentando a segurança, economia de energia, praticidade e conforto dos usuários dessa tecnologia. Proporcionando uma qualidade de vida e experiência para as futuras gerações.

5. REFERÊNCIAS BIBLIOGRÁFICAS

- 1. Flop, Felipi. Como fazer um medidor de energia elétrica com Arduino. Disponível em: < https://www.filipeflop.com/blog/medidor-de-energia-eletrica-com-arduino/>. Acesso em: 22 set. 2018.
- 2. Laboratório de Garagem. Tutorial: Como Utilizar o Xbee. Disponível em: < http://labdegaragem.com/profiles/blogs/tutorial-como-utilizar-o-xbee>. Acesso em: 22 set. 2018
- 3. REITER JR., A. R. Sistema de automação residencial com central de controle microcontrolada e independente de pc. 2006. 91 p. Trabalho de conclusão do curso (Bacharelado em Ciências da Computação) Centro de Ciências exatas e naturais, Universidade Regional de Blumenau, Blumenau
- 4. MURATORI, J.R.; DAL BÓ, P.H. Automação Residencial. Disponível em: https://www.osetoreletrico.com.br/capitulo-i-automacao-residencial-historico-definicoes-econceitos/. Acesso em: 02 set. 2018