正则语言的性质

- 正则语言的泵引理
- 正则语言的封闭性
- 正则语言的判定性质
- 自动机的最小化

正则语言的判定性质

正则语言, 或任何语言, 典型的 3 个判定问题:

- 以某种形式化模型描述的语言是否为空? 是否无穷?
- ② 某个特定的串 w 是否属于所描述的语言?
- ❸ 以两种方式描述的语言, 是否是相同的? 语言的等价性

我们想知道,要回答这类问题的具体算法,是否存在.

空性,有穷性和无穷性

定理 14

具有 n 个状态的有穷自动机 M 接受的集合 S:

- S 是非空的, 当且仅当 M 接受某个长度小于 n 的串;
- ② S 是无穷的, 当且仅当 M 接受某个长度为 m 的串, $n \leq m < 2n$.

所以,对于正则语言:

- 存在算法,判断其是否为空,只需检查全部长度小于 n 的串;
- 存在算法, 判断其是否无穷, 只需检查全部长度由 n 到 2n-1 的串.

证明: 设接受正则语言 S 的 DFA 为 M.

- 必要性: 显然成立. 充分性:
 - \blacksquare 如果 S 非空, 设 w 是 M 接受的串中长度最小者之一;
- $lacksymbol{\oplus}$ 必然 |w| < n, 否则由泵引理 w = xyz, 接受 xz 更短.
- ② 必要性: 由泵引理, 显然成立. 充分性: \bullet 如果 S 无穷, 假设没有长度 n 到 2n-1 之间的串:

 - **●** 那么取 $w \in \mathbf{L}(M)$ 是长度 $\geq 2n$ 中最小者之一;
 - **m** 由泵引理 w = xyz, 且 M 会接受更短的串 xz;
 - 于是, 或者 w 不是长度最小的, 或者长度 n 到 2n-1 之间有被接受的串, 因此假设不成立

正则语言的等价性

定理 15

存在算法, 判定两个有穷自动机是否等价(接受语言相同).

证明:

- \bullet 设 M_1 和 M_2 是分别接受 L_1 和 L_2 的有穷自动机;
- ② 则 $(L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2)$ 是正则的, 所以可被某个有穷自动机 M_3 接受;
- **3** 而 M_3 接受某个串, 当且仅当 $L_1 \neq L_2$;
- lack 由于存在算法判断 $lack L(M_3)$ 是否为空, 因此得证. $\ \square$

正则语言的性质

- 正则语言的泵引理
- 正则语言的封闭性
- 正则语言的判定性质
- 自动机的最小化

状态的等价性

定义

 $DFA\ A = (Q, \Sigma, \delta, q_0, F)$ 中两个状态 p 和 q, 对 $\forall w \in \Sigma^*$:

$$\hat{\delta}(p, w) \in F \Leftrightarrow \hat{\delta}(q, w) \in F$$
,

则称这两个状态是等价的, 否则称为可区分的.

• 等价性只要求 $\hat{\delta}(p,w)$ 和 $\hat{\delta}(q,w)$ 同时在或不在 F 中, 而不必是相同状态.

填表算法

递归寻找 DFA 中全部的可区分状态对:

- 如果 $p \in F$ 而 $q \notin F$, 则 [p,q] 是可区分的;
- ② $\forall a \in \Sigma$, 如果

$$[r = \delta(p, a), s = \delta(q, a)]$$

是可区分的,则[p,q]是可区分的.

定理 16

如果填表算法不能区分两个状态,则这两个状态是等价的.

● 直接标记终态和非终态之间的状态对:

 ${C} \times {A,B,D,E,F,G,H}.$

② 标记所有经过字符 () 到达终态和非终态的状态对:

 ${D,F} \times {A,B,C,E,G,H}.$

❸ 标记所有经过字符 1 到达终态和非终态的状态对:

 ${B, H} \times {A, C, D, E, F, G}.$

● 此时还有 [A,E], [A,G], [B,H], [D,F], [E,G] 未标记, 只需逐个检查.

- 此时还有 [A,E], [A,G], [B,H], [D,F], [E,G] 未标记, 只需逐个检查.
 - \times [A,G] 是可区分的, 因为经串 01 到可区分的 [C,E];
 - × [E,G] 是可区分的, 因为经串 10 到可区分的 [C,H].

而 [A,E], [B,H] 和 [D,F] 在经过很短的字符串后,都会到达相同状态,因此都是等价的.

DFA 最小化

根据等价状态, 将状态集划分成块, 构造等价的最小化 DFA. 续例 16. 构造其最小化的 DFA.

思考题

NFA 能否最小化?