Scale Factor (Geodetic Distance) = K

$$\begin{array}{l} K = \ \mbox{Ko} \ [\ 1 \ + \ (XVIII) \ q^2 \ + \ 0.00003 q^4 \] \\ \mbox{Ko} \ = \ 0.09996 \end{array}$$

a = 0.09996 $a = 0.000001 \times E'$

Scale Factor (Horizontal Distance) = K*

$$K^* = K \times SLC$$

Mean Radius of Earth = 6,372,000 m or 20,906,000 ft

 $\Delta N = Grid Dist \times Cosine of Azimuth$ $\Delta E = Grid Dist \times Sine of Azimuth$

Linear Error of Closure (LEC)

$$LEC = \sqrt{Error \Delta N^2 + Error \Delta E^2}$$

Closure Ratio = 1:
$$\frac{\text{LENGTH (M)}}{\text{LEC}}$$

In any triangle

LAW of SINES $\frac{a}{SinA} = \frac{b}{SinB} = \frac{c}{SinC}$

LAW of CONSINES

$$a^2 = b^2 + c^2 - 2bc \cos A$$

 $b^2 = a^2 + c^2 - 2ac \cos B$

 $c^2 = a^2 + b^2 - 2ab Cos C$

LAW of TANGENTS

$$\frac{a-b}{a+b} = \frac{TAN \frac{1}{2}(A-B)}{TAN \frac{1}{2}(A+B)}$$

$$b - a = TAN \frac{1}{2}(B - A)$$

Algebraic signs of trig functions by QUADRANT

Quad I All Pos

Quad II Sin (+). Cos (-). Tan (-)Quad III Sin (-). Cos (-). Tan (+)

Quad IV Sin (-). Cos (+). Tan (-)

Trigonometric Elevation Computation Reduction of Reciprocal zenith distance observations

Correction (SECS) =
$$-\frac{(t-o) \sin ZD}{T-\sin 1''}$$
 or $-\frac{206265 (t-o) \sin ZD}{T}$

ZD = Mean Observed ZD

T = Slope Distance

 $\sin 1'' = 0.00000485$

Reciprocal Observations

 $h_2 - h_1 = T \sin \frac{1}{2} (ZD_2 - ZD_1)$

 $h_2 - h_1 = S Tan \frac{1}{2} (ZD_2 - ZD_1)$

T = Slope Distance

S = Geodetic Distance

Nonreciprocal Observations

 $h_2 - h_1 = T \sin (90^{\circ} - ZD, + k)$

 $h_2 - h_1 = 1 \text{ Sin} (90^\circ - 20, +k)$ $h_2 - h_1 = \text{S Tan} (90^\circ - \text{ZD}, +k)$

CONVERSION FACTORS and COMMON FORMULAS

DISTRIBUTION: US Army Training and Audiovisual Support Centers (TASCs)
Approved for public release; distribution is unlimited.
HEADQUARTERS, DEPARTMENT OF THE ARMY

CONVERSION FACTORS

LENGTH

DEGREE CONVERSIONS

1 Degree =
$$\frac{\pi}{180}$$
 Radians

1 Radian =
$$\frac{180}{\pi}$$
 Degrees

TEMPERATURE

$$C^{\circ} = 5/9(F^{\circ} - 32^{\circ})$$

$$F^{\circ} = (9/5 \, C^{\circ}) + 32$$

WEIGHT

$$1 \text{ lb} = 0.4536 \text{ Kg}$$

$$1 \text{ Kg} = 2.205 \text{ lb}$$

COMMON FORMULAS

In any right triangle

$$SINE = \frac{OPPOSITE LEG}{HYPOTENUSE}$$

$$COSECANT = \frac{1}{SINE}$$

$$SECANT = \frac{1}{COSINE}$$

$$TANGENT = \frac{OPPOSITE LEG}{ADJACENT LEG}$$

$$COTANGENT = \frac{1}{TAN}$$

TAN

SIN A =
$$\frac{a}{c}$$

CSC = $\frac{1}{a/c}$ = $\frac{c}{a}$

COS A = $\frac{b}{c}$
SEC = $\frac{1}{b/c}$ = $\frac{c}{b}$

TAN A = $\frac{a}{b}$
CTN = $\frac{1}{a/b}$ = $\frac{b}{a}$
 $c = \sqrt{a^2 + b^2}$
 $a = \sqrt{c^2 - b^2}$
 $b = \sqrt{c^2 - a^2}$

LEVELING ("C" FACTOR)

$$C'' Factor = \frac{Near Rod Readings - Far Rod Readings}{Far Intervals - Near Intervals}$$

MAXIMUM ALLOWABLE "C" FACTOR

 $t = 360^{\circ} - \beta$ if $\Delta E - \Delta N +$

INVERSE COMPUTATION