MINORS OF TREE DISTANCE MATRICES

HARRY RICHMAN, FARBOD SHOKRIEH, AND CHENXI WU

ABSTRACT. We prove an identity that relates the principal minors of the distance matrix of a tree, on one hand, to a combinatorial expression involving counts of rooted spanning forests of the underlying tree. This generalizes a result of Graham and Pollak. A variant of this identity applies to the case of edge-weighted trees.

Contents

1.	Introduction	1
2.	Graphs and matrices	3
3.	Proofs	6
4.	Optimization: quadratic programming	11
5.	Physical interpretation	12
6.	Examples	13
7.	Further work	14
Acknowledgements		15
References		15

1. Introduction

Suppose G = (V, E) is a tree with n vertices. Let D denote the distance matrix of G. In [4], Graham and Pollak proved that

eq:full-det

(1)
$$\det D = (-1)^{n-1} 2^{n-2} (n-1).$$

This identity is remarkable in that the result does not depend on the tree structure, beyond the number of vertices. The identity (\blacksquare) was motivated by a problem in data communication, and inspired much further research on distance matrices. The main result of this paper is to generalize (\blacksquare) by replacing det D with any of its principal

The main result of this paper is to generalize ($\overline{|I|}$ by replacing det D with any of its principal minors. For a subset $S \subset V(G)$, let D[S] denote the submatrix consisting of the S-indexed rows and columns of D.

thm:main

Theorem 1. Suppose G is a tree with n vertices, and distance matrix D. Let $S \subset V(G)$ be a nonempty subset of vertices. Then

(2)
$$\det D[S] = (-1)^{|S|-1} 2^{|S|-2} \left((n-1) \kappa(G;S) - \sum_{\mathcal{F}_2(G;S)} (\deg^o(F,*) - 2)^2 \right),$$

where $\kappa(G; S)$ is the number of S-rooted spanning forests of G, $\mathcal{F}_2(G; S)$ is the set of (S, *)-rooted spanning forests of G, and $\deg^o(F, *)$ denotes the outdegree of the *-component of F.

For definitions of (S,*)-rooted spanning forests and other terminology, see Section 2. Note that the quantity $\deg^o(F,*)$ satisfies the bounds

$$1 \le \deg^o(F, *) \le |S|.$$

When S = V is the full vertex set, the set of V-rooted spanning forests is a singleton, consisting of the subgraph with no edges, so $\kappa(G; V) = 1$; and moreover the set $\mathcal{F}_2(G; V)$ of (V, *)-rooted spanning forests is empty. Thus (2) recovers the Graham–Pollak identity (I) when S = V.

1.1. Weighted trees. If $\{\alpha_e : e \in E\}$ is a collection of positive edge weights, the α -distance matrix D_{α} is defined by setting the (u,v)-entry to the sum of the weights α_e along the unique path from uto v. Then

eq:w-full-det

(3)
$$\det D_{\alpha} = (-1)^{n-1} 2^{n-2} \sum_{e \in E} \alpha_e \prod_{e \in E} \alpha_e$$

 $\det D_{\alpha} = (-1)^{n-1} 2^{n-2} \sum_{e \in E} \alpha_e \prod_{e \in E} \alpha_e.$ This weighted version of the versio of our main theorem.

thm:w-main

Theorem 2. Suppose G = (V, E) is a finite, weighted tree with edge weights $\{\alpha_e : e \in E\}$, and corresponding weighted distance matrix $D = D_{\alpha}$. For any nonempty subset $S \subset V$, we have

eq:w-main

(4)
$$\det D[S] = (-1)^{|S|-1} 2^{|S|-2} \left(\sum_{E(G)} \alpha_e \sum_{\mathcal{F}_1(G;S)} w(T) - \sum_{\mathcal{F}_2(G;S)} (\deg^o(F,*) - 2)^2 w(F) \right).$$

where $\mathcal{F}_1(G;S)$ is the set of S-rooted spanning forests of G, $\mathcal{F}_2(G;S)$ is the set of (S,*)-rooted spanning forests of G, w(T) and w(F) denote the α -weights of the forests T and F, and $\deg^o(F,*)$ is the outdegree of the *-component of F, as above.

Theorem $\frac{\text{thm:w-main}}{2 \text{ also reduces to Theorem}}$ this main taking all unit weights, $\alpha_e = 1$. It is worth observing that depending on the chosen subset $S \subset V$, the distances appearing in the submatrix D[S] may ignore a large part of the ambient tree G. We could instead replace G by the subtree $\operatorname{conv}(S,G)$ consisting of the union of all paths between vertices in S, which we call the convex hull of $S \subset G$. To apply formula (2) or (4) "efficiently," we should replace G on the right-hand side with the subtree conv(S,G). However, the formulas as stated are true even without this replacement due to cancellation of terms.

1.2. **Applications.** Given a matrix A, let $\operatorname{cof} A$ denote the sum of cofactors of A, i.e.

$$\operatorname{cof} A = \sum_{i=1}^{|S|} \sum_{j=1}^{|S|} (-1)^{i+j} \det A_{ij}$$

If A is invertible, then $\cos A$ is related to the sum of entries of the matrix inverse A^{-1} by a factor of $\det A$, i.e. $\cot A = (\det A)(\mathbf{1}^{\intercal}A^{-1}\mathbf{1})$. In [2], Bapat and Sivasubramanian showed the following identity for the sum of cofactors of a distance submatrix D[S] of a tree.

eq:cof-trees

(5)
$$\operatorname{cof} D[S] = (-2)^{|S|-1} \sum_{T \in \mathcal{F}_1(G;S)} w(T).$$

Using the Bapat–Sivasubramanian identity (b), an immediate corollary to Theorem 2 is the following result.

Theorem 3. Suppose G = (V, E) is a finite, weighted tree with edge weights $\{\alpha_e : e \in E\}$. Let $D=D_{\alpha}$ denote the weighted distance matrix of G. For any nonempty subset $S\subset V$, we have

$$\frac{\det D[S]}{\cot D[S]} = \frac{1}{2} \left(\sum_{e \in E} \alpha_e - \frac{\sum_{F \in \mathcal{F}_2(G;S)} w(F) k(F,*)^2}{\sum_{T \in \mathcal{F}_1(G;S)} w(T)} \right)$$

where $k(F, *) = 2 - \deg^{o}(F, *)$.

\Diamond add remark / theorem that det/cof is achieved as result of optimization problem \Diamond

We remark that the calculation of det D[S] is related to the following quadratic optimization problem: for all vectors $\mathbf{m} \in \mathbb{R}^{S}$,

optimize objective function: $\mathbf{m}^{\mathsf{T}}D[S]\mathbf{m}$

with constraint: $\mathbf{1}^{\mathsf{T}}\mathbf{m} = 1$.

Proposition 4. If D[S] is a principal submatrix of distance matrix indexed by S, then

$$\frac{\det D[S]}{\operatorname{cof} D[S]} = \max\{\mathbf{m}^\intercal D[S]\mathbf{m}: \mathbf{m} \in \mathbb{R}^S, \, \mathbf{1}^\intercal \mathbf{m} = 1\}$$

where cof D[S] denotes the sum of cofactors of D[S].

This result can be shown using Lagrange multipliers; for details, see Section 4 sec: optimization

Theorem 5 (Monotonicity of principal minor ratios). If $A, B \subset V(G)$ are nonempty subsets with $A \subset B$, then

$$\frac{\det D[A]}{\cot D[A]} \le \frac{\det D[B]}{\cot D[B]}.$$

Theorem 6 (Bounds on principal minor ratios). Suppose G = (V, E) is a finite, weighted tree with distance matrix D.

(1) If $S \subset V(G)$ is nonempty,

$$0 \le \frac{\det D[S]}{\cot D[S]} \le \frac{1}{2} \sum_{E(G)} \alpha_e.$$

(2) If conv(S,G) denotes the subtree of G consisting of all paths between points of $S \subset V(G)$,

$$\frac{\det D[S]}{\operatorname{cof} D[S]} \le \frac{1}{2} \sum_{E(\operatorname{conv}(S,G))} \alpha_e.$$

(3) If γ is a simple path between vertices $s_0, s_1 \in S$, then

$$\frac{1}{2} \sum_{e \in \gamma} \alpha_e \le \frac{\det D[S]}{\cot D[S]}$$

Theorem 7 (Nonsingular minors). Let G be a finite tree with (weighted) distance matrix D, and let $S \subset V(G)$ be a subset of vertices. If $|S| \ge 2$ then $\det D[S] \ne 0$.

1.3. Previous work. A formula for the inverse matrix D^{-1} was found by Graham and Lovász in [3].

1.4. **Notation.** G a finite graph, loops and parallel edges allowed, possibly disconnected

E(G) edge set of G

V(G) vertex set of G

 $\mathcal{F}_1(G;S)$ the set of S-rooted spanning forests of G

 $\mathcal{F}_2(G;S)$ the set of (S,*)-rooted spanning forests of G

2. Graphs and matrices

For background on enumeration problems for graphs and trees, see Moon 5. \diamond decide on reference / references here \diamond

Given a graph G = (V, E) with edge weights $\{\alpha_e : e \in E\}$, for any edge subset $A \subset E$ we define the weight of A as

$$w(A) = \prod_{e \in A} \alpha_e.$$

:graphs-matrices

We define the co-weight of A as

$$w(\overline{A}) = \prod_{e \notin A} \alpha_e.$$

By abuse of notation, if H is a subgraph of G, we use $w(\overline{H})$ to denote $w(\overline{E(H)})$.

2.1. **Spanning trees and forests.** A spanning tree of a graph G is a subgraph which is connected, has no cycles, and contains all vertices of G. A spanning forest of a graph G is a subgraph which has no cycles and contains all vertices of G.

Given a set of vertices $S = \{v_1, v_2, \dots, v_k\}$, an S-rooted spanning forest of G is a spanning forest which has exactly one vertex v_i in each connected component. An (S, *)-rooted spanning forest of G is a spanning forest which has |S| + 1 components, where |S| components each contain one vertex of S, and the additional component is disjoint from S. We call the component disjoint from S the "floating component."

Let

$$\kappa_k(v_1|v_2|\cdots|v_k)$$

denote the number of k-component spanning trees which have a vertex v_i in each component. If $S = \{v_1, \ldots, v_k\}$, then $\kappa_k(v_1|\cdots|v_k) = \kappa(G/S)$.

If u, v, w are vertices, then let

$$\kappa_2(uv|w)$$

denote the number of two-forests which have u, v in one component and w in the other component.

Example 8. Suppose G is the tree with unit edge lengths shown below.

Let S be the set of three leaf vertices. Then $\mathcal{F}_1(G;S)$ contains 11 forests, while $\mathcal{F}_2(G;S)$ contains 19 forests. These are shown in Figures 1 and 2, respectively.

FIGURE 1. Forests in $\mathcal{F}_1(G;S)$.

fig:1-forests

2.2. **Laplacian matrix.** Given a graph G = (V, E), let $L \in \mathbb{R}^{V \times V}$ denote the *Laplacian matrix* of G. If G is a weighted graph with edge weights $\alpha_e \in \mathbb{R}_{>0}$ for $e \in E$, let L denote the weighted Laplacian matrix of G.

Given $S \subset V$, let $L[\overline{S}]$ denote the matrix obtained from L by removing the rows and columns indexed by S.

Definition 9 (Weighted Laplacian matrix). Given a graph G = (V, E) and edge weights $\{\alpha_e : e \in E\}$, the weighted Laplacian matrix $L_{\alpha} \in \mathbb{R}^{V \times V}$ is defined by

$$(L_{\alpha})_{v,w} = \begin{cases} 0 & \text{if } v \neq w \text{ and } (v,w) \notin E \\ -\alpha_e^{-1} & \text{if } v \neq w \text{ and } (v,w) = e \in E \\ \sum_{e \in N(v)} \alpha_e^{-1} & \text{if } v = w. \end{cases}$$

FIGURE 2. Forests in $\mathcal{F}_2(G;S)$.

fig:2-forests

For any graph G, let $\kappa(G)$ denote the number of spanning trees of G. The following theorem is due to Kirchhoff.

thm:matrix-tree

Theorem 10 (All-minors matrix tree theorem). Let G = (V, E) be a finite graph, and let L denote the Laplacian matrix of G. Then for any nonempty vertex set $S \subset V$,

$$\det L[\overline{S}] = \kappa(G; S).$$

Note that $\kappa(G; S)$ is also the number of spanning trees of the quotient graph G/S, which "glues together" all vertices in S as a single vertex.

The following result is due to Bapat–Siviasubramanian.

Theorem 11 (Distance matrix cofactor sums [2]). Given a tree G, let D be the distance matrix of G, and L the Laplacian matrix. Let $S \subset V(G)$ be a nonempty subset of vertices of G. Then

$$\operatorname{cof} D[S] = (-2)^{|S|-1} \det L[\overline{S}].$$

sec:splits

ec:tree-distance

2.3. **Tree splits.** Given a tree G = (V, E) and an edge $e \in E$, the edge deletion $G \setminus e$ contains two connected components. The components of $G \setminus e$ splits the vertex set into two disjoint parts $V = A \sqcup B$.

Using the implicit orientation on $e = (e^+, e^-)$, we let $(G \setminus e)^+$ denote the component that contains endpoint e^+ , respectively $(G \setminus e)^-$ and endpoint e^- .

For any $e \in E$ and $v \in V$, we let $(G \setminus e)^v$ denote the component of $G \setminus e$ containing v, respectively $(G \setminus e)^{\overline{v}} \diamondsuit$ or $(G \setminus e)^{-v} \diamondsuit$ for the component not containing v.

2.4. Tree distance. Given an edge $e \in E$ and vertices $v, w \in V$, let

$$\delta(e; v, w) = \begin{cases} 1 & \text{if } e \text{ separates } v \text{ from } w, \\ 0 & \text{otherwise.} \end{cases}$$

(Note that $\delta(e; v, v) = 0$ for any e and v.)

$$\delta(e; v, w) = \begin{cases} 1 & \text{if } e \text{ lies on } v \sim w \text{ path,} \\ 0 & \text{otherwise.} \end{cases}$$

We can express the tree distance d(v, w) as a sum over edges

$$d(v,w) = \sum_{e \in E(G)} \delta(e;v,w) \qquad \text{where } \delta(e;v,w) = \begin{cases} 1 & \text{if e lies on $v \sim w$ path,} \\ 0 & \text{otherwise.} \end{cases}$$

We have the following perspectives on the function $\delta(e; v, w)$:

- If we fix v and w, then $\delta(-; v, w) : E(G) \to \{0, 1\}$ is the indicator function for the unique v w path in G.
- On the other hand if we fix e and v, then the deletion $G \setminus e$ has two connected components, and $\delta(e; v, -) : V(G) \to \{0, 1\}$ is the indicator function for the component of $G \setminus e$ not containing v.

rop:distance-sum

Proposition 12 (Weighted tree distance). For a tree G = (V, E) with weights $\{\alpha_e : e \in E\}$, the weighted distance function satisfies

$$d_{\alpha}(v, w) = \sum_{e \in E} \alpha_e \, \delta(e; v, w).$$

2.5. Outdegree of rooted forest. Given a rooted forest F in $\mathcal{F}(G; S)$ and $s \in S$, let F(s) denote the s-component of F. We define the outdegree $\deg^o(F, s)$ by

eq:outdeg

(6)
$$\deg^{o}(F,s) = \#\{e = (a,b) \in E : a \in F(s), b \notin F(s)\}.$$

In words, $\deg^o(F, s)$ is the number of edges which connect the s-component of F to a different component.

 $\#\{e \in E : e \text{ connects the } s\text{-component of } F \text{ to a different component}\}\$

If F is a forest in $\mathcal{F}_2(G;S)$, let $\deg^o(F,*)$ denote the outdegree of the floating component.

lem:outdeg-sum

Lemma 13. Suppose G is a tree and $H \subset G$ is a (nonempty) connected subgraph. Then

$$\sum_{v \in V(H)} (2 - \deg(v)) = 2 - \deg^{o}(H).$$

Proof. This is straightforward to check by induction on |V(H)|, with base case |V(H)| = 1: if $H = \{v\}$ consists of a single vertex, then $\deg^o(H) = \deg(v)$.

3. Proofs

In this section we prove Theorem 2.

Outline of proof: given a subset $S \subset V$ and distance submatrix D[S], we will

- (i) Find vector $\mathbf{m} \in \mathbb{R}^S$ such that $D[S]\mathbf{m} = \lambda \mathbf{1} \in \mathbb{R}^S$.
- (ii) Compute the sum of entries of \mathbf{m} , i.e. $\mathbf{1}^{\mathsf{T}}\mathbf{m}$.
- (iii) Using (i), relate the sum 1^{T} m to the sum of entries of the inverse matrix $D[S]^{-1}$:

$$\mathbf{1}^{\mathsf{T}}\mathbf{m} = \lambda(\mathbf{1}^{\mathsf{T}}D[S]^{-1}\mathbf{1}) = \lambda \frac{\cot D[S]}{\det D[S]}.$$

where $\operatorname{cof} D[S]$ is the sum of cofactors of D[S].

(iv) Use known expression for cof D[S] to compute

$$\det D[S] = \lambda(\operatorname{cof} D[S]) \left(\mathbf{1}^{\mathsf{T}}\mathbf{m}\right)^{-1}.$$

The interesting part of this expression will turn out to be in the constant λ .

Example 14. Suppose G is a tree consisting of three paths joined at a central vertex. Let S consist of the central vertex, and the three endpoints of the paths. The corresponding submatrix of the distance matrix is

$$D[S] = \begin{bmatrix} 0 & a & b & c \\ a & 0 & a+b & a+c \\ b & a+b & 0 & b+c \\ c & a+c & b+c & 0 \end{bmatrix}.$$

Following the steps outlined above:

(i) The vector
$$\mathbf{m} = \begin{bmatrix} -1\\1\\1\\1 \end{bmatrix}$$
 satisfies $D[S]\mathbf{m} = (a+b+c)\mathbf{1}$

- (ii) The sum of entries of \mathbf{m} is $\mathbf{1}^{\mathsf{T}}\mathbf{m} = 2$.
- (iii) We have

$$2 = \mathbf{1}^{\mathsf{T}} \mathbf{m} = \lambda (\mathbf{1}^{\mathsf{T}} D[S]^{-1} \mathbf{1}) = \lambda \frac{\operatorname{cof} D[S]}{\det D[S]}.$$

(iv) The cofactor sum cof D[S] is -8abc, so the determinant is

$$\det D[S] = \lambda \frac{\cot A}{\mathbf{1}^{\mathsf{T}} \mathbf{m}} = (a+b+c)(-8abc)\frac{1}{2} = -4(a+b+c)abc.$$

3.1. Warmup case: S = V.

Proposition 15. Let G = (V, E) a tree, and consider the vector $\mathbf{m} \in \mathbb{R}^V$ defined by

$$\mathbf{m}_v = 2 - \deg v$$
 for each $v \in V$.

Then $\mathbf{1}^{\intercal}\mathbf{m} = \sum_{v \in V} (2 - \deg v) = 2$.

Proof. For any graph, $\sum_{v \in V} \deg v = 2|E|$. Since G is a tree, |E| = |V| - 1.

Proposition 16. Let **m** be the vector defined above, and let D be the distance matrix of G. Then $D\mathbf{m} = \lambda \mathbf{1}$ for some constant λ .

Proof. It suffices to show that for each edge e, with endpoints (e^+, e^-) , we have

$$(D\mathbf{m})_{(e^+)} = (D\mathbf{m})_{(e^-)}.$$

We compute

$$(D\mathbf{m})_{(e^+)} - (D\mathbf{m})_{(e^-)} = \sum_{v \in V} (d(v, e^+) - d(v, e^-))(2 - \deg v)$$
$$= \sum_{v \in (G \setminus e)^-} \alpha_e (2 - \deg v) - \sum_{v \in (G \setminus e)^+} \alpha_e (2 - \deg v)$$

since

(7)

eq:12-1

eq:m-vector

-distance-warmup

$$d(v, e^+) - d(v, e^-) = \begin{cases} \alpha_e & \text{if } v \text{ is closer to } e^- \text{ than } e^+, \\ -\alpha_e & \text{if } v \text{ is closer to } e^+ \text{ than } e^-. \end{cases}$$

 \lozenge TO DO: define notation $(G \setminus e)^{\pm} \diamondsuit$ For each sum in (7), we apply Proposition \diamondsuit cite \diamondsuit to obtain

$$\alpha_e \sum_{v \in (G \setminus e)^-} (2 - \deg v) = \alpha_e (2 - \deg^o((G \setminus e)^-)) = \alpha_e.$$

The same identity applies to the sum over $(G \setminus e)^+$, so $(D\mathbf{m})_{(e^+)} = (D\mathbf{m})_{(e^-)}$ as desired.

3.2. **General case:** $S \subset V$. Fix a tree G = (V, E) and a nonempty subset $S \subset V$.

dfn:m-vector Definition 17. Let $\mathbf{m} = \mathbf{m}(G; S) \in \mathbb{R}^S$ be defined by

(8)
$$\mathbf{m}_v = \sum_{T \in \mathcal{F}_1(G;S)} (2 - \deg^o(T,v)) w(T) \quad \text{for each } v \in S.$$

where $\deg^o(T,v)$ is the outdegree of the v-component of T, (6).

Let 1 denote the all-ones vector.

Proposition 18. For **m** defined above,
$$\mathbf{1}^{\intercal}\mathbf{m} = 2\sum_{T \in \mathcal{F}_1(G;S)} w(T)$$
.

Proof. We have

$$\mathbf{1}^{\mathsf{T}}\mathbf{m} = \sum_{s \in S} \mathbf{m}_s = \sum_{s \in S} \left(\sum_{T \in \mathcal{F}_1(G;S)} (2 - \deg^o(T,s)) w(T) \right)$$
$$= \sum_{T \in \mathcal{F}_1(G;S)} w(T) \left(\sum_{s \in S} \sum_{v \in T(s)} 2 - \deg(v) \right)$$
$$= \sum_{T \in \mathcal{F}_1} w(T) \left(\sum_{v \in V} 2 - \deg(v) \right) = \sum_{T \in \mathcal{F}_1} w(T) \cdot 2.$$

In the second line we apply Lemma \Box and exchange the outer summations. To obtain the third line, we observe that the vertex sets of T(s) for $s \in S$ form a partition of V, since T is an S-rooted spanning forest. Finally we again apply Lemma \Box for the last equality, as $\deg^o(G) = 0$.

Corollary 19. If G is a graph with unit edge weights $\alpha_e = 1$, then the vector \mathbf{m} defined in (8) satisfies $\mathbf{1}^{\mathsf{T}}\mathbf{m} = 2 \kappa(G; S)$.

Theorem 20. With $\mathbf{m} = \mathbf{m}(G; S)$ defined as in (8), $D[S]\mathbf{m} = \lambda \mathbf{1}$ for the constant

$$\lambda = \sum_{E(G)} \alpha_e \sum_{\mathcal{F}_1(G;S)} w(T) - \sum_{\mathcal{F}_2(G;S)} (2 - \deg^o(F,*))^2 w(F)$$

where $\deg^{o}(F, w)$ is the out-degree of the w-component of F (as a spanning forest).

Proof. For $e \in E$ and $v, w \in V$, let $\delta(e; v, w)$ denote the function defined in Section Section Section For any $v \in S$, we have

$$(D[S]\mathbf{m})_{v} = \sum_{s \in S} d(v, s)\mathbf{m}_{s}$$

$$= \sum_{s \in S} \left(\sum_{e \in E(G)} \alpha_{e} \,\delta(e; v, s)\right) \left(\sum_{T \in \mathcal{F}_{1}(G; S)} (2 - \deg^{o}(T, s))w(T)\right)$$

$$= \sum_{T \in \mathcal{F}_{1}} w(T) \sum_{e \in E} \alpha_{e} \left(\sum_{s \in S} \delta(e; v, s)(2 - \deg^{o}(T, s))\right)$$

$$= \sum_{T \in \mathcal{F}_{1}} w(T) \sum_{e \in E} \alpha_{e} \left(\sum_{s \in S} \delta(e; v, s) \sum_{u \in T(s)} (2 - \deg(u))\right).$$

$$(9)$$

eq:14-1

We introduce additional notation to handle the double sum in parentheses in (9). Each S-rooted spanning tree T naturally induces a surjection $\pi_T: V \to S$, defined by

$$\pi_T(u) = s$$
 if and only if $u \in T(s)$.

Using this notation,

$$(D[S]\mathbf{m})_v = \sum_{T \in \mathcal{F}_1} w(T) \sum_{e \in E} \alpha_e \left(\sum_{u \in V} (2 - \deg(u)) \delta(e; v, \pi_T(u)) \right)$$

We will compare the above expression with the one obtained after replacing $\delta(e; v, \pi_T(u))$ with $\delta(e; v, u)$. From \diamondsuit cite previous prop \diamondsuit , for any $v \in V$ and $e \in E$ we have

$$\sum_{u \in V} (2 - \deg(u))\delta(e; v, u) = 2 - \deg^{o}((G \setminus e)^{\overline{v}}) = 1.$$

Thus

$$(D[S]\mathbf{m})_v - \sum_{T \in \mathcal{F}_1} w(T) \sum_{e \in E} \alpha_e = \sum_{T \in \mathcal{F}_1} w(T) \sum_{e \in E} \alpha_e \sum_{u \in V} (2 - \deg(u)) \left(\delta(e; v, \pi_T(u)) - \delta(e; v, u)\right)$$

When $e \in E$ and $v \in V$ are fixed, $u \mapsto \delta(e; v, u)$ is the indicator function of one component of the principal cut $G \setminus e$. Recall that $\delta(e; \cdot, \cdot)$ is a (0, 1)-valued pseudometric on V. We have

$$\delta(e; v, \pi_T(u)) - \delta(e; v, u) = \begin{cases} 0 & \text{if } \delta(e; \pi_T(u), u) = 0\\ 1 & \text{if } \delta(e; \pi_T(u), u) = 1 \text{ and } \delta(e; v, \pi_T(u)) = 1\\ -1 & \text{if } \delta(e; \pi_T(u), u) = 1 \text{ and } \delta(e; v, \pi_T(u)) = 0 \end{cases}$$

Now consider varying u over all vertices, when e, T, and v are fixed. We have the following three cases:

Case 1: if $e \notin T$, then u and $\pi_T(u)$ are on the same side of the principal cut $G \setminus e$, for every vertex u. In this case $\delta(e; v, \pi_T(\cdot)) - \delta(e; v, \cdot) = 0$.

Case 2: if $e \in T(s_0)$ and s_0 is separated from v by e, then $\delta(e; v, \pi_T(\cdot)) - \delta(e; v, \cdot)$ is the indicator function for the floating component of $T \setminus e$.

Case 3: if $e \in T(s_0)$ and s_0 is on the same component as v from e, then $\delta(e; v, \pi_T(\cdot)) - \delta(e; v, \cdot)$ is the negative of the indicator function for the floating component of $T \setminus e$.

FIGURE 3. Edge $e \in T(s_0)$ with $\delta(e; v, s_0) = 1$ (left) and $\delta(e; v, s_0) = 0$ (right). The floating component of $T \setminus e$ is highlighted.

Thus when multiplying the above term by $(2-\deg(u))$ and summing over all vertices u, we obtain

$$\sum_{u \in V} (2 - \deg(u))(\delta(e; v, \pi_T(u)) - \delta(e; v, u)) = \begin{cases} 0 & \text{if } e \not\in T, \\ 2 - \deg^o(T \setminus e, *) & \text{if } e \in T(s_0) \text{ and } \delta(e; v, s_0) = 1, \\ -(2 - \deg^o(T \setminus e, *)) & \text{if } e \in T(s_0) \text{ and } \delta(e; v, s_0) = 0. \end{cases}$$

Thus

$$\frac{\overline{\mathbf{q}:1}}{(10)} \quad (D[S]\mathbf{m})(v) - \sum_{T \in \mathcal{F}_1} w(T) \sum_{e \in E} \alpha_e$$

$$= \sum_{T \in \mathcal{F}_1} w(T) \sum_{s_0 \in S} \left(\sum_{\substack{e \in T(s_0) \\ \delta(e:v,s_0) = 1}} \alpha_e(2 - \deg^o(T \setminus e, *)) - \sum_{\substack{e \in T(s_0) \\ \delta(e:v,s_0) = 0}} \alpha_e(2 - \deg^o(T \setminus e, *)) \right).$$

We now rewrite the above expression in terms of $\mathcal{F}_2(G; S)$, observing that the deletion $T \setminus e$ is an (S, *)-rooted spanning forest of G, if $e \in T$, and that the corresponding weights satisfy

$$w(F) = \alpha_e \cdot w(T)$$
 if $F = T \setminus e$.

Thus

Thus

$$\frac{(eq: 1)}{(I0)} = \sum_{F \in \mathcal{F}_2} w(F)(2 - \deg^o(F, *)) \sum_{T \in \mathcal{F}_1} \sum_{s_0 \in S} \left(\sum_{\substack{e \in T(s_0) \\ \delta(e; v, s_0) = 1}} \mathbb{1}(F = T \setminus e) - \sum_{\substack{e \in T(s_0) \\ \delta(e; v, s_0) = 0}} \mathbb{1}(F = T \setminus e) \right)$$

$$= \sum_{F \in \mathcal{F}_2} w(F)(2 - \deg^o(F, *)) \left(\#\{T \in \mathcal{F}_1 : F = T \setminus e \text{ for some } e \in T(s_0), \, \delta(e; v, s_0) = 1\} \right)$$

$$- \#\{T \in \mathcal{F}_1 : F = T \setminus e \text{ for some } e \in T(s_0), \, \delta(e; v, s_0) = 0\} \right)$$

Next, we note that $F = T \setminus e$ is equivalent to $T = F \cup e$, and in particular this only occurs when we choose the edge e to be in the floating boundary $\partial F(*)$:

$$v \xrightarrow{F(*)} v \xrightarrow{e} F(*)$$

FIGURE 4. Edge $e \in \partial F(*)$ with $\delta(e; v, F(*)) = 0$ (left) and $\delta(e; v, F(*)) = 1$ (right). The floating component F(*) is highlighted.

Now for any $e \notin F$, let $\delta(e; v, F(*)) = \delta(e; v, x)$ for any $x \in F(*)$, i.e.

$$\delta(e; v, F(*)) = \begin{cases} 1 & \text{if } e \text{ lies on path from } v \text{ to } F(*), \\ 0 & \text{otherwise.} \end{cases}$$

The condition $F = T \setminus e$ for some $e \in T(s_0)$ with $\delta(e; v, s_0) = 1$ (resp. $\delta(e; v, s_0) = 0$) is equivalent to $T = F \cup e$ for some $e \in \partial F(*)$ with $\delta(e; v, F(*)) = 0$ (resp. $\delta(e; v, F(*)) = 1$). Thus

$$(\stackrel{\mathsf{eq}\,:1}{\mathsf{ID}}) = \sum_{F \in \mathcal{F}_2} w(F)(2 - \deg^o(F, *)) \Bigg(\# \{ e \in \partial F(*) : \delta(e; v, F(*)) = 0 \}$$

$$- \# \{ e \in \partial F(*) : \delta(e; v, F(*)) = 1 \} \Bigg).$$

Finally, we observe that for any forest F in $\mathcal{F}_2(G;S)$, there is exactly one edge e in the boundary $\partial F(*)$ of the floating component which satisfies $\delta(e;v,F(*))=1$, namely the unique boundary edge on the path from the floating component F(*) to v. The previous expression (10) simplifies as

$$\#\{e \in \partial F(*): \delta(e; v, F(*)) = 1\} = 1 \qquad \text{and} \qquad \#\{e \in \partial(F, *): \delta(e; v, F(*)) = 0\} = \deg^o(F, *) - 1.$$

$$\begin{split} \binom{|\text{eq}:1}{10} &= \sum_{F \in \mathcal{F}_2} w(F) (2 - \deg^o(F,*)) \Big((\deg^o(F,*) - 1) - (1) \Big) \\ &= - \sum_{F \in \mathcal{F}_2} w(F) (2 - \deg^o(F,*))^2. \end{split}$$

as desired. \Box

Figure 5. Components rooted in $S(G \setminus e)^{\overline{v}}$.

\Diamond MOVE TO REMARK? If $e \in \text{conv}(G,S)$, then $S(G \backslash e)^{\overline{v}}$ is nonempty and \Diamond

Remark 21. The set $\mathcal{F}_2(G; S)$ of (S, *)-rooted spanning forests of G can be partitioned into two types: "active" and "inactive".

$$\mathcal{F}_2(G;S) = \mathcal{F}_2^{in}(G;S) \sqcup \mathcal{F}_2^{out}(G;S),$$

where

$$\mathcal{F}_{2}^{in}(G; S) = \{ F \in \mathcal{F}_{2}(G; S) \text{ such that } \deg^{o}(*, F) \geq 2 \},$$

 $\mathcal{F}_{2}^{out}(G; S) = \{ F \in \mathcal{F}_{2}(G; S) \text{ such that } \deg^{o}(*, F) = 1 \}.$

Remark 22. A key step in the above proof is the use of the map

$$E(G) \times \mathcal{F}_1(G; S) \mapsto S \sqcup \{\text{error}\}\$$

defined by

$$(e,T)\mapsto \begin{cases} s & \text{if } e\in T(s),\\ \text{error} & \text{if } e\not\in T. \end{cases}$$

Remark 23. For a given spanning forest $F \in \mathcal{F}_2(G; S)$, there are exactly $\deg^o(F, *)$ -many choices of pairs $(T, e) \in \mathcal{F}_1(G; S) \times E(G)$ such that $F = T \setminus e$. Consider the "deletion" map

$$E(G) \times \mathcal{F}_1(G;S) \to \mathcal{F}_2(G;S) \sqcup \mathcal{F}_1(G;S)$$

defined by ...

$$(e,T) \mapsto \begin{cases} T \setminus e & \text{if } e \in T, \\ T & \text{if } e \notin T. \end{cases}$$

For a forest F in $\mathcal{F}_2(G;S)$, the preimage under this map has $\deg^o(F,*)$ elements.

There is an associated "union" map

$$E(G) \times \mathcal{F}_2(G;S) \longrightarrow \mathcal{F}_1(G;S) \sqcup \mathcal{F}_2(G;S)$$

defined by

$$(e,F) \mapsto \begin{cases} F \cup e & \text{if } e \notin F, \\ F & \text{if } e \in F \end{cases}$$

4. Optimization: Quadratic programming

Proposition 24. If D[S] is a principal submatrix of a distance matrix indexed by S, then

$$\frac{\det D[S]}{\cot D[S]} = \max\{\mathbf{m}^{\intercal}D[S]\mathbf{m} : \mathbf{m} \in \mathbb{R}^{S}, \ \mathbf{1}^{\intercal}\mathbf{m} = 1\}$$

where $\operatorname{cof} D[S]$ denotes the sum of cofactors of D[S].

Proposition 25. If D[S] is a principal submatrix of a distance matrix indexed by S, then

$$\frac{\det D[S]}{\cot D[S]} = \max\{\mathbf{m}^{\mathsf{T}} D\mathbf{m} : \mathbf{m} \in \mathbb{R}^{V}, \mathbf{1}^{\mathsf{T}} \mathbf{m} = 1, \mathbf{m}_{v} = 0 \text{ if } v \notin S\}$$

where $\operatorname{cof} D[S]$ denotes the sum of cofactors of D[S].

The gradient of the objective function is $2D[S]\mathbf{m}$, and the gradient of the constraint is 1. By the theory of Lagrange multipliers, the optimal solution \mathbf{m}^* is a vector satisfying

$$D[S]\mathbf{m}^* = \lambda \mathbf{1}$$
 for some $\lambda \in \mathbb{R}$.

The constant λ is in fact the optimal objective value, since

$$(\mathbf{m}^*)^{\mathsf{T}}D[S]\mathbf{m}^* = (D[S]\mathbf{m}^*)^{\mathsf{T}}\mathbf{m}^* = \lambda(\mathbf{1}^{\mathsf{T}}\mathbf{m}^*) = \lambda.$$

sec:optimization

(The above computation uses the fact that D[S] is a symmetric matrix, and the given constraint $\mathbf{1}^{\mathsf{T}}\mathbf{m} = 1$.) On the other hand, assuming D[S] is invertible we have $\mathbf{m}^* = \lambda(D[S]^{-1}\mathbf{1})$, so that

$$1 = \mathbf{1}^{\mathsf{T}} \mathbf{m}^* = \lambda (\mathbf{1}^{\mathsf{T}} D[S]^{-1} \mathbf{1}) = \lambda \frac{\operatorname{cof} D[S]}{\det D[S]}.$$

Thus the optimal objective value is $\lambda = \frac{\det D[S]}{\cot D[S]}$

5. Physical interpretation

If we consider G as a network of wires with each edge containing a unit resistor, which is grounded at all nodes in S, then \mathbf{m}_S records the currents flowing to S when current is added on $V \setminus S$ in the amount $2 - \deg v$ for each $v \notin S$.

5.1. Alternate proof. Let 1 denote the all-ones vector. When we choose a subset $S \subset V(G)$, we no longer have a single "obvious" replacement for \mathbf{m} inside \mathbb{R}^S . Instead, we can take an average over S-rooted spanning forests.

In the outline above, our first goal is to find a "special" vector $\mathbf{m} \in \mathbb{R}^S$ satisfying $D[S]\mathbf{m} = \lambda \mathbf{1}$. We can approach this first goal as follows: consider \mathbb{R}^S inside the larger vector space $\mathbb{R}^V = \mathbb{R}^S \oplus \mathbb{R}^{V \setminus S}$, and we wish to find vectors $\mathbf{n}_i \in \mathbb{R}^V$ satisfying $\pi_S(D\mathbf{n}_i) = \lambda_i \mathbf{1}$. By finding sufficiently many such vectors \mathbf{n}_i , we can hope to find a linear combination that lies inside $\mathbb{R}^S \oplus \{0\}$.

prop:n-vector

Proposition 26. Suppose $v \in V \setminus S$. For each $s_j \in S$, let $\mu(v, s_j) = current$ flowing to s_j when G is grounded at S and one unit of current enters G at v. Explicitly,

$$\mu(v,s) = \frac{\# \ of \ S\text{-rooted spanning forests of } G \ whose \ s_{j}\text{-component contains } v}{\# \ of \ S\text{-rooted spanning forests of } G}$$

$$= \frac{\sum_{\mathcal{F}_{1}(G/S)} \mathbb{1}(v \in T(s))}{\kappa(G/S)}$$

$$= \frac{\kappa_{r}(s_{1}|\cdots|s_{j}v|\cdots|s_{r})}{\kappa_{r}(s_{1}|\cdots|s_{r})}$$

Consider the vector $\mathbf{n} = \mathbf{n}(G; S, v) \in \mathbb{R}^V$ defined by

$$\mathbf{n}_v = 1, \quad \mathbf{n}_s = -\mu(v, s) \text{ if } s \in S, \quad \mathbf{n}_w = 0 \text{ if } w \notin S \cup v$$

Then $D\mathbf{n}$ is constant on S, i.e. $\pi_S(D\mathbf{n}) = \lambda \mathbf{1}$ for some λ .

Proof sketch. For any $s, s' \in S$, consider tracking the value of $D\mathbf{n}$ along path from s to s'. The value of $D\mathbf{n}$ changes according to current flow in the corresponding network, i.e. $D\mathbf{n}$ records electrical potential. By assumption S is grounded, so $D\mathbf{n}$ takes the same value at s and s'.

Theorem 27. Let G be a tree, S a nonempty subset of vertices, and $D[\underline{S}]$ the corresponding submatrix of the distance matrix. Suppose $\mathbf{m} = \mathbf{m}(G;S) \in \mathbb{R}^S$ is defined by (8);

$$\mathbf{m}(G; S)_v = \sum_{T \in \mathcal{F}_1(G; S)} \sum_{w \in T_v} (2 - \deg w) = \sum_{T \in \mathcal{F}_1(G; S)} 2 - \deg^o(T, v).$$

Then $D[S]\mathbf{m} = \lambda \mathbf{1}$ for some constant λ .

Proof. The vector $\mathbf{m} = \mathbf{m}(G; S)$ can be expressed as a linear combination

$$\begin{split} \mathbf{m}(G;S) &= \kappa(G;S) \left(\sum_{v \in V} (2 - \deg v) \boldsymbol{\delta}(v) - \sum_{v \in V \setminus S} (2 - \deg v) \mathbf{n}(G;S,v) \right) \\ &= \kappa(G;S) \left(\mathbf{m}(G;V) - \sum_{v \in V \setminus S} (2 - \deg v) \mathbf{n}(G;S,v) \right) \end{split}$$

♦ TODO: elaborate on this equation ↑ From Proposition brop:m-distance-warmup | 16 we know that $D\mathbf{m}(G;V)$ is constant on V, and from Proposition brop:m-vector | 16 we know that $D\mathbf{n}(G;S,v)$ is constant on S. Hence by linearity, $D\mathbf{m}(G;S)$ is constant on S.

Proposition 28. Let G = (V, E) be a tree, and $S \subset V$. Suppose we label $S = \{s_1, \ldots, s_r\}$ and $V \setminus S = \{t_1, \ldots, t_{n-r}\}$. For each $t_i \in V \setminus S$, consider $\mathbf{f}_i \in \mathbb{R}^V$ defined by

Example 29. If

$$D[S \cup t] = \begin{bmatrix} 0 & a & b & c \\ a & 0 & a+b & a+c \\ b & a+b & 0 & b+c \\ c & a+c & b+c & 0 \end{bmatrix}$$

then

$$\begin{bmatrix} 0 & a & b & c \\ a & 0 & a+b & a+c \\ b & a+b & 0 & b+c \\ c & a+c & b+c & 0 \end{bmatrix} \begin{bmatrix} ab+ac+bc \\ -bc \\ -ac \\ -ab \end{bmatrix} = \begin{bmatrix} -3abc \\ -abc \\ -abc \\ -abc \end{bmatrix}$$

6. Examples

Example 30. Suppose G is a tree consisting of three paths joined at a central vertex. Let S consist of the central vertex, and the three endpoints of the paths. The corresponding minor of the distance matrix is

$$D[S] = \begin{bmatrix} 0 & a & b & c \\ a & 0 & a+b & a+c \\ b & a+b & 0 & b+c \\ c & a+c & b+c & 0 \end{bmatrix} \sim \begin{bmatrix} 0 & a & b & c \\ a & -a & a & a \\ b & b & -b & b \\ c & c & c & c & -c \end{bmatrix} \sim \begin{bmatrix} 0 & a & b & c \\ a & -2a & 0 & 0 \\ b & 0 & -2b & 0 \\ c & 0 & 0 & -2c \end{bmatrix}.$$

The determinant is

$$\det D[S] = -4(a+b+c)abc.$$

Example 31. Suppose Γ is a tripod with lengths a, b, c and corresponding leaf vertices u, v, w.

Let $S = \{u, v, w\}$. Then

$$D[S] = \begin{bmatrix} 0 & a+b & a+c \\ a+b & 0 & b+c \\ a+c & b+c & 0 \end{bmatrix}.$$

and

$$\det D[S] = 2(a+b)(a+c)(b+c) = 2((a+b+c)(ab+ac+bc) - abc).$$

The "special vector" that satisfies $D[S]\mathbf{m} = \lambda \mathbf{1}$ in this example is

$$\mathbf{m} = \begin{bmatrix} a(b+c) & b(a+c) & c(a+b) \end{bmatrix}^{\mathsf{T}}.$$

Example 32. Suppose Γ is the tree with unit edge lengths shown below, with five leaf vertices.

Let S denote the set of five leaf vertices. Then

$$D[S] = \begin{bmatrix} 0 & 2 & 3 & 3 & 3 \\ 2 & 0 & 3 & 3 & 3 \\ 3 & 3 & 0 & 2 & 2 \\ 3 & 3 & 2 & 0 & 2 \\ 3 & 3 & 2 & 2 & 0 \end{bmatrix}.$$

Forests in $\mathcal{F}_1(G;S)$:

Forests in $\mathcal{F}_2(G;S)$:

and

$$\det D[S] = 368 = (-1)^4 2^3 \left(6 \cdot 11 - \left(3 \cdot 1^2 + 2 \cdot 2^2 + 1 \cdot 3^2 \right) \right)$$

Example 33. Suppose Γ is the tree with unit edge lengths shown below, with five leaf vertices and three internal vertices.

Let S denote the set of five leaf vertices. Then

$$D[S] = \begin{bmatrix} 0 & 2 & 3 & 4 & 4 \\ 2 & 0 & 3 & 4 & 4 \\ 3 & 3 & 0 & 3 & 3 \\ 4 & 4 & 3 & 0 & 2 \\ 4 & 4 & 3 & 2 & 0 \end{bmatrix}$$

and

$$\det D[S] = 864 = (-1)^4 2^3 \left(7 \cdot 21 - (14 \cdot 1^2 + 4 \cdot 2^2 + 1 \cdot 3^2)\right)$$

7. Further work

See [6].

7.1. Symanzik polynomials.

ACKNOWLEDGEMENTS

The authors would like to thank Ravindra Bapat for helpful discussion.

References

kirkland-neumann -sivasubramanian

graham-lovasz

graham-pollak

- R. Bapat, S. J. Kirkland, and M. Neumann. On distance matrices and Laplacians. Linear Algebra Appl., 401:193– 209, 2005.
- [2] R. B. Bapat and S. Sivasubramanian. Identities for minors of the Laplacian, resistance and distance matrices. Linear Algebra Appl., 435(6):1479–1489, 2011.
- [3] R. L. Graham and L. Lovász. Distance matrix polynomials of trees. Adv. in Math., 29(1):60–88, 1978.
- [4] R. L. Graham and H. O. Pollak. On the addressing problem for loop switching. Bell System Tech. J., 50:2495–2519, 1971

moon

- [5] J. W. Moon. Counting labelled trees. Canadian Mathematical Monographs, No. 1. Canadian Mathematical Congress, Montreal, Que., 1970. From lectures delivered to the Twelfth Biennial Seminar of the Canadian Mathematical Congress (Vancouver, 1969).
- [6] D. H. Richman, F. Shokrieh, and C. Wu. Capacity on metric graphs, 2022. in preparation.

шоол

hman-shokrieh-wu