- 1. This Relational ER diagram depicts a structured relational data model designed for a data warehouse, transforming unstructured JSON data into an organized schema. It adheres to normalization principles, ensuring data integrity, efficient querying, and minimal redundancy.
- 2. The users table (user_id UUID, state VARCHAR, created DATETIME, last_login DATETIME, role VARCHAR, active BOOLEAN) stores user details. It has a one-to-many (1:N) relationship with the receipts table (receipt_id UUID, bonus_points_earned INT, ..., user_id UUID) as each user can have multiple receipts. The receipts table captures transactional data, including purchase details, points earned, total spent, and more. It connects to the receipt_items table (item_id INT, receipt_id VARCHAR, barcode VARCHAR, ...) in another 1:N relationship, where each receipt can have multiple items.
- 3. The receipt_items table records individual products on a receipt, referencing the barcode_data table (barcode VARCHAR, description TEXT) in a many-to-one (N:1) relationship, as multiple items can share the same barcode. The barcode_data table stores information about the products associated with each barcode.
- 4. A junction table, brand_barcode (barcode VARCHAR, brand_id UUID), resolves the many-to-many (N:M) relationship between barcode_data and brands (brand_id UUID, brand_code VARCHAR, ..., top_brand BOOLEAN). This allows a product (barcode) to be associated with multiple brands and a brand to have multiple products.
- 5. This model is optimized for data retrieval and scalability, conforming to normalization principles to minimize redundancy and maintain data integrity. Indexes on key columns like user_id, receipt_id, barcode, and brand_id enhance query performance for analytical purposes.

