

# **Project Plan**

02/02/2016

Elis Bardhi 790135

**Andrea Cavalli** 841512

773705 **Mario Dolci** 

| 1. | Intro | duction                             | 3  |
|----|-------|-------------------------------------|----|
| 2. | Fund  | tion Point and COCOMO Approach      | 3  |
|    | 2.1   | Counting with Function Points FP    |    |
|    | 2.2   | FP Estimation                       |    |
|    | 2.2.1 | . Internal Logical Files            | 4  |
|    | 2.2.2 | . External Logical Files            | 4  |
|    | 2.2.3 | . External Inputs                   | 5  |
|    | 2.2.4 | . External Outputs                  | 5  |
|    | 2.2.5 | . External Inquiries                | 6  |
|    | 2.2.6 | . Resuming                          | 6  |
|    | 2.3   | Cocomo II                           | 7  |
|    | 2.3.1 | . Brief Introduction                | 7  |
|    | 2.3.2 | . Scale Drivers                     | 7  |
|    | 2.3.2 | . Cost Drivers                      | 9  |
|    | 2.3.3 | . Effort Equation                   | 13 |
|    | 2.3.4 | . Duration Equation                 | 13 |
| 3. | Task  | s and Schedule                      | 14 |
| 4. | Resc  | ources for the tasks                | 15 |
| 5. | Risk  | s and their relevance               | 16 |
|    | 5.1.  | Risks Identification                | 16 |
|    | 5.1.1 | . Schedule risks                    | 16 |
|    | 5.1.2 | . Organization and Management Risks | 17 |
|    | 5.1.3 | . Development Environment Risks     | 17 |
|    | 5.1.4 | . Personnel Risks                   | 18 |
|    | 5.1.5 | . Design and Implementation Risks   | 18 |
|    |       |                                     |    |

#### Introduction 1.

In this document the time and resources necessary to MyTaxiService project are evaluated. There is also a description of the assignments that have been done during this project, then an estimation of the risks linked to MyTaxiService are explained, with their probabilities, impacts and solutions.

#### **Function Point and COCOMO Approach** 2.

#### 2.1 **Counting with Function Points FP**

The Function Point estimation approach is based on the amount of functionalities in a software and their complexity. Function Points estimators are useful because they are based on information that is available early in the project life cycle.

To perform this estimation, we have based our parameters on the following tables, taken from COCOMO II, Model Definition Manual at:

http://csse.usc.edu/csse/research/COCOMOII/cocomo2000.0/CII\_modelman2000.0.pdf

• This first schema is used for determining complexity-level function counts. It allows us to classify each functionality into Low, Average and High complexity levels.

| Table 2. FP Counting Weights |              |               |            |
|------------------------------|--------------|---------------|------------|
| For Internal Logical         | Files and E  | xternal Inter | face Files |
|                              |              | Data Element  | s          |
| Record Elements              | 1 - 19       | 20 - 50       | 51+        |
| 1                            | Low          | Low           | Avg.       |
| 2-5                          | Low          | Avg.          | High       |
| 6+                           | Avg.         | High          | High       |
| For External Output          | t and Extern | nal Inquiry   |            |
|                              |              | Data Element  | s          |
| File Types                   | 1 - 5        | 6 - 19        | 20+        |
| 0 or 1                       | Low          | Low           | Avg.       |
| 2-3                          | Low          | Avg.          | High       |
| 4+                           | Avg.         | High          | High       |
| For External Input           | 1,46         | 30 E          | 11127      |
|                              |              | Data Element  | s          |
| File Types                   | 1-4          | 5 - 15        | 16+        |
| 0 or 1                       | Low          | Low           | Avg.       |
| 2-3                          | Low          | Avg.          | High       |
| 3+                           | Avg.         | High          | High       |

• The following one defines the weights values that we've to use to perform the FP value.

| Table 3. UFF              | Comple | xity Weights |      |
|---------------------------|--------|--------------|------|
| Complexity-Weight         |        |              |      |
| Function Type             | Low    | Average      | High |
| Internal Logical Files    | 7      | 10           | 15   |
| External Interfaces Files | 5      | 7            | 10   |
| External Inputs           | 3      | 4            | 6    |
| External Outputs          | 4      | 5            | 7    |
| External Inquiries        | 3      | 4            | 6    |

Then we need to convert the FP to lines of code. We will be using the table found at this URL: http://www.qsm.com/resources/function-point-languages-table

[SLOC/UFP] 53

#### 2.2 FP Estimation

#### 2.2.1. Internal Logical Files

The application includes a number of ILFs that will be used to store the information about clients, taxi drivers, taxis, taxi requests, route, city zones and GPS location. Now we analyze this section more in detail.

The system stores few information about clients and taxi drivers such as name, surname, username, password and email. All this are simple strings, integers and data-time, so we will classify them with a medium complexity.

Like above, taxies are described with simple information such as plate, frame number and production year, so these data will have a medium complexity.

Then, for what concern a taxi request, it will be classified with a high complexity because it contains complex data structures that are used to manage taxi requests or reservations.

Finally, routes, city zones and GPS location will be classified respectively with a medium, simple and medium complexity.

| ILF          | ILF Complexity |    |  |  |
|--------------|----------------|----|--|--|
| Client       | Medium         | 10 |  |  |
| Taxi driver  | Medium         | 10 |  |  |
| Taxi         | Medium         | 10 |  |  |
| Request      | High           | 15 |  |  |
| Route        | Medium         | 10 |  |  |
| City zone    | Simple         | 7  |  |  |
| GPS location | Medium         | 10 |  |  |
|              | 72             |    |  |  |

#### 2.2.2. External Logical Files

Since the main system uses an external service for tracking the taxis, we have also to include this in our cost estimation. In the RASD document we have assumed that data incoming from the external service are encoded in a JSON structure, so we can classify this with a high complexity since JSON is not a simple structure.

| ELF          | Complexity | FP |
|--------------|------------|----|
| GPS tracking | Complex    | 10 |
|              | 10         |    |

## 2.2.3. External Inputs

The application interacts with clients and taxi drivers and allows them to:

Client

 Login /Logout : simple operations

 Modify credentials : medium operation

 Ask for a taxi (normal or reservation) : this is a complex operation since it involves many operations such as a route calculation

 Manage requests (modify or delete) : this can be classified with a high complexity since it involves many operations

 Manage taxi sharing : this is a medium operation

Taxi driver

 Login /Logout : these are simple operations

 Modify credentials : medium operation : medium operation Manage taxi status

: complex operation because involves Manage client requests

many operations

The results are resumed in the following table.

| El                     | Complexity | FP  |
|------------------------|------------|-----|
| Login /Logout          | Simple     | 3x4 |
| Modify credentials     | Medium     | 4x2 |
| Ask for taxi           | High       | 6   |
| Manage request         | High       | 6   |
| Manage taxi sharing    | Medium     | 4   |
| Manage taxi status     | Simple     | 4   |
| Manage client requests | High       | 6   |
| Tota                   | 46         |     |

#### 2.2.4. External Outputs

The application performs two external outputs:

- the suggestions sent to users while they are compiling the string form to insert street names and numbers;
- notifications sent to users to inform them about their requests or if something is changed. Both this has a medium complexity.

| EO            | Complexity | FP |  |  |
|---------------|------------|----|--|--|
| Suggestions   | Medium     | 5  |  |  |
| Notifications | Medium     | 5  |  |  |
| Tota          | Total      |    |  |  |

## 2.2.5. External Inquiries

The application allows taxi drivers to request information about theri clients to request information about:

- their profiles;
- rides that they have asked for;
- the route of a ride;
- ride information, such as number of passengers or direction;

and allow taxi drivers to request information's about their and clients profiles.

| EQ                            | Complexity                 | FP  |
|-------------------------------|----------------------------|-----|
| Visualize profile             | Simple                     | 3x3 |
| Ride information's            | Ride information's Complex |     |
| Visualize rides<br>chronology | Medium                     | 4   |
| Visualize route Complex       |                            | 6   |
|                               | 22                         |     |

#### 2.2.6. Resuming

By summing up all these numerical values, we get a total estimation of 160 FPs. This value is used to get the estimation of the number of lines of code. By using the parameter that was wrote in the first paragraph, we get a SLOC equal to 8480.

The following table resumes our estimations:

| Function type         | Value |
|-----------------------|-------|
| Internal Logical File | 72    |
| External Logical File | 10    |
| External Input        | 46    |
| External Output       | 10    |
| External Inquiries    | 22    |
| Total                 | 160   |

#### 2.3 Cocomo II

#### 2.3.1. Brief Introduction

This estimation is achieved through a complex, non linear model that takes in account the characteristics of the product but also of people and process.

All the tables used in this analysis have been taken from COCOMO II, Model Definition http://csse.usc.edu/tools/COCOMOII.php

#### 2.3.2. Scale Drivers

Table 10. Scale Factor Values, SFi, for COCOMO II Models

|                   |                                                           |                              | ,,,,                          |                        |                       |                          |
|-------------------|-----------------------------------------------------------|------------------------------|-------------------------------|------------------------|-----------------------|--------------------------|
| Scale<br>Factors  | Very Low                                                  | Low                          | Nominal                       | High                   | Very High             | Extra High               |
| PREC              | thoroughly<br>unpreceden<br>ted                           | largely<br>unpreceden<br>ted | somewhat<br>unpreceden<br>ted | generally<br>familiar  | largely<br>familiar   | thoroughly<br>familiar   |
| FILE              |                                                           |                              |                               |                        |                       |                          |
| SF <sub>i</sub> : | 6.20                                                      | 4.96                         | 3.72                          | 2.48                   | 1.24                  | 0.00                     |
| FLEX              | rigorous                                                  | occasional<br>relaxation     | some<br>relaxation            | general<br>conformity  | some<br>conformity    | general<br>goals         |
| SF,:              | 5.07                                                      | 4.05                         | 3.04                          | 2.03                   | 1.01                  | 0.00                     |
| RESL              | little (20%)                                              | some (40%)                   | often (60%)                   | generally<br>(75%)     | mostly<br>(90%)       | full (100%)              |
| SF <sub>i</sub> : | 7.07                                                      | 5.65                         | 4.24                          | 2.83                   | 1.41                  | 0.00                     |
|                   | very difficult<br>interactions                            | some<br>difficult            | basically<br>cooperative      | largely<br>cooperative | highly<br>cooperative | seamless<br>interactions |
| TEAM              |                                                           | interactions                 | interactions                  |                        |                       |                          |
| SF,:              | 5.48                                                      | 4.38                         | 3.29                          | 2.19                   | 1.10                  | 0.00                     |
|                   | The estimated Equivalent Process Maturity Level (EPML) or |                              |                               |                        |                       |                          |
|                   | SW-CMM                                                    | SW-CMM                       | SW-CMM                        | SW-CMM                 | SW-CMM                | SW-CMM                   |
| PMAT              | Level 1                                                   | Level 1                      | Level 2                       | Level 3                | Level 4               | Level 5                  |
|                   | Lower                                                     | Upper                        |                               |                        |                       |                          |
| SF <sub>i</sub> : | 7.80                                                      | 6.24                         | 4.68                          | 3.12                   | 1.56                  | 0.00                     |

These values are evaluated according to the following table:

- **Precedentedness:** it reflects the previous experience that we had with this kind of projects. Since for us this was the first experience using this framework and these developments methodologies, this value will be low.
- **Development flexibility**: it reflects the degree of flexibility in the development process. The professors set the general specifications without going too much in detail, for this reason this value will be high.
- Risk resolution: it reflects the extent of risk analysis carried out. Thanks to filters, and security access mostly of the risks were eliminated then this value will be very high.
- **Team cohesion**: it reflects how well the development team know each other and work together. In our case we had some problems, in particular for the difference of working time

- and initial synchronization issues. Nonetheless, we overcame those difficulties by thoroughly describing guidelines and goals in our development process. Since this approach was successful the final value for this attribute is very high.
- Process maturity: this was evaluated around the 18 Key Process Area (KPAs) in the SEI Capability Model. Because of the goals were consistently achieved these values will be set to high, level 3.

The results are resumed in the following table.

| Scale Driver            | Factor    | Value |
|-------------------------|-----------|-------|
| Precedentedness         | Low       | 4.96  |
| Development Flexibility | High      | 2.03  |
| Risk Resolution         | Very High | 1.41  |
| Team Cohesion           | Very High | 2.19  |
| Process Maturity        | High      | 3.12  |
| To                      | 13.71     |       |

#### 2.3.2. Cost Drivers

Since we haven't implemented the system some values are invented.

#### **Required Software Reliability (RELY):**

This measure is set to high, in particular because software failures may cause financial losses of money.

Table 17. RELY Cost Driver

| RELY<br>Descriptors: | slight<br>inconven-<br>ience | low, easily<br>recoverable<br>losses | moderate,<br>easily<br>recoverable<br>losses | high<br>financial<br>loss | risk to<br>human life |            |
|----------------------|------------------------------|--------------------------------------|----------------------------------------------|---------------------------|-----------------------|------------|
| Rating Levels        | Very Low                     | Low                                  | Nominal                                      | High                      | Very High             | Extra High |
| Effort Multipliers   | 0.82                         | 0.92                                 | 1.00                                         | 1.10                      | 1.26                  | n/a        |

#### • Database Size:

It translates the effects that large data have in our application. Our test database size is equal to 1000 KB and the program size is equal to 8480 SLOC, the division D/P = 117.92 and then this parameter has a high value 1.14.

Table 18. DATA Cost Driver

| DATA*<br>Descriptors |          | Testing DB<br>bytes/Pgm<br>SLOC < 10 | 10 ≤ D/P <<br>100 | 100 ≤ D/P <<br>1000 | D/P ≥ 1000 |            |
|----------------------|----------|--------------------------------------|-------------------|---------------------|------------|------------|
| Rating Levels        | Very Low | Low                                  | Nominal           | High                | Very High  | Extra High |
| Effort Multipliers   | n/a      | 0.90                                 | 1.00              | 1.14                | 1.28       | n/a        |

#### Product Complexity:

It is set to Very High according to the new COCOMO II CPLEX rating scale.

Table 20. CPLX Cost Driver

| Rating Levels      | Very Low | Low  | Nominal | High | Very High | Extra High |
|--------------------|----------|------|---------|------|-----------|------------|
| Effort Multipliers | 0.73     | 0.87 | 1.00    | 1.17 | 1.34      | 1.74       |

#### Required Reusability (RUSE):

In our project there are different reusable components since our aim was to design the system as modular as possible. Since the RELY should be at most one level below the RUSE, we set this to high.

Table 21. RUSE Cost Driver

| RUSE<br>Descriptors: |          | none | across<br>project | across<br>program | across<br>product line | across<br>multiple<br>product |
|----------------------|----------|------|-------------------|-------------------|------------------------|-------------------------------|
| Rating Levels        | Very Low | Low  | Nominal           | High              | Very High              | lines<br>Extra High           |
| Effort Multipliers   | n/a      | 0.95 | 1.00              | 1.07              | 1.15                   | 1.24                          |

## Documentation match to life-cycle needs:

This parameter describes the relation between the provided documentation and the application requirements. Its suitability is set to nominal since each aspect of our system to be described has been expressed in the RASD or in the DD. On the other hand, there is no part of those document unrelated to the actual phase of the development the document is addressed to.

Table 22. DOCU Cost Driver

| DOCU<br>Descriptors: | Many life-<br>cycle needs<br>uncovered | Some life-<br>cycle needs<br>uncovered. | Right-sized<br>to life-cycle<br>needs | Excessive<br>for life-cycle<br>needs | Very<br>excessive<br>for life-cycle<br>needs |            |
|----------------------|----------------------------------------|-----------------------------------------|---------------------------------------|--------------------------------------|----------------------------------------------|------------|
| Rating Levels        | Very Low                               | Low                                     | Nominal                               | High                                 | Very High                                    | Extra High |
| Effort Multipliers   | 0.81                                   | 0.91                                    | 1.00                                  | 1.11                                 | 1.23                                         | n/a        |

#### **Execution Time Constraint:**

In our case this parameter is not relevant, so is reasonable to set it as very low.

| Tab | e 23. | TIME | Cost | Driver |
|-----|-------|------|------|--------|

| TIME<br>Descriptors: |          |     | ≤ 50% use<br>of available<br>execution<br>time | 70% use of<br>available<br>execution<br>time | 85% use of<br>available<br>execution<br>time | 95% use of<br>available<br>execution<br>time |
|----------------------|----------|-----|------------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|
| Rating Levels        | Very Low | Low | Nominal                                        | High                                         | Very High                                    | Extra High                                   |
| Effort Multipliers   | n/a      | n/a | 1.00                                           | 1.11                                         | 1.29                                         | 1.63                                         |

#### Main Storage Constraint:

This parameter represents the degree of main storage constraint. In our application this parameter is not relevant so is set as very low.

Table 24. STOR Cost Driver

| STOR<br>Descriptors: |          |     | ≤ 50% use<br>of available<br>storage | 70% use of<br>available<br>storage | 85% use of<br>available<br>storage | 95% use of<br>available<br>storage |
|----------------------|----------|-----|--------------------------------------|------------------------------------|------------------------------------|------------------------------------|
| Rating Levels        | Very Low | Low | Nominal                              | High                               | Very High                          | Extra High                         |
| Effort Multipliers   | n/a      | n/a | 1.00                                 | 1.05                               | 1.17                               | 1.46                               |

#### Platform Volatility:

In our application is reasonable to consider as platforms the DBMS, the operating system, the browser that perform injections and the hardware as far as the environment concerns. We have to consider also the compiler and the web server that has taken an important role in the developing phase. The platform should not change too often, so this value is set to low.

Table 25. PVOL Cost Driver

| PVOL<br>Descriptors: |          | Major<br>change<br>every 12<br>mo.; Minor<br>change<br>every 1 mo. | Major: 6<br>mo.; Minor:<br>2 wk. | Major: 2<br>mo.;Minor:<br>1 wk. | Major: 2<br>wk.;Minor: 2<br>days |            |
|----------------------|----------|--------------------------------------------------------------------|----------------------------------|---------------------------------|----------------------------------|------------|
| Rating Levels        | Very Low | Low                                                                | Nominal                          | High                            | Very High                        | Extra High |
| Effort Multipliers   | n/a      | 0.87                                                               | 1.00                             | 1.15                            | 1.30                             | n/a        |

#### **Analyst Capability:**

Design and analysis abilities should be set to high, since we intentionally dedicated a lot of effort in analyzing the problem requirements and its potential integration in a real word scenario. In particular, not only we can grant that the requirements have been correctly studied and accomplished, but also that our design makes our application actually useful for an end user, providing each of the basic functionalities he may need. In particular, we resolved any ambiguity present in the initial description and explained our solution in the RASD.

Table 26. ACAP Cost Driver

| ACAP               | 15th       | 35th       | 55th       | 75th       | 90th       |            |
|--------------------|------------|------------|------------|------------|------------|------------|
| Descriptors:       | percentile | percentile | percentile | percentile | percentile |            |
| Rating Levels      | Very Low   | Low        | Nominal    | High       | Very High  | Extra High |
| Effort Multipliers | 1.42       | 1.19       | 1.00       | 0.85       | 0.71       | n/a        |

#### **Programmer Capability:**

This parameter is evaluated according to our degree of cooperation and, due to some small problems on it, it is set to high.

Table 27. PCAP Cost Driver

| PCAP               | 15th       | 35th       | 55th       | 75th       | 90th       |            |
|--------------------|------------|------------|------------|------------|------------|------------|
| Descriptors        | percentile | percentile | percentile | percentile | percentile |            |
| Rating Levels      | Very Low   | Low        | Nominal    | High       | Very High  | Extra High |
| Effort Multipliers | 1.34       | 1.15       | 1.00       | 0.88       | 0.76       | n/a        |

#### **Application Experience:**

Our project experience is evaluated according to our previous experience in web projects and also according to our abilities in programming in PHP, Android and Java, so this parameter is set to high.

| Table 29. APEX Cost Driv | CI |
|--------------------------|----|
|--------------------------|----|

| APEX Descriptors:  | ≤ 2 months | 6 months | 1 year  | 3 years | 6 years   |            |
|--------------------|------------|----------|---------|---------|-----------|------------|
| Rating Levels      | Very Low   | Low      | Nominal | High    | Very High | Extra High |
| Effort Multipliers | 1.22       | 1.10     | 1.00    | 0.88    | 0.81      | n/a        |

#### Platform Experience:

Our average knowledge about platforms such as databases, user interfaces and server side development are around 3 years, so this parameter is set to high.

| Table 30. PLEX Cost Driver |            |          |         |         |           |            |
|----------------------------|------------|----------|---------|---------|-----------|------------|
| PLEX Descriptors:          | ≤ 2 months | 6 months | 1 year  | 3 years | 6 year    |            |
| Rating Levels              | Very Low   | Low      | Nominal | High    | Very High | Extra High |
| Effort Multipliere         | 1.10       | 1.00     | 1.00    | 0.01    | 0.95      | n/a        |

#### **Language and Tool Experience:**

This parameter reflects the same experience of the previous one, so it is set to high.

Table 31. LTEX Cost Driver

| LTEX Descriptors:  | ≤ 2 months | 6 months | 1 year  | 3 years | 6 year    |            |
|--------------------|------------|----------|---------|---------|-----------|------------|
| Rating Levels      | Very Low   | Low      | Nominal | High    | Very High | Extra High |
| Effort Multipliers | 1.20       | 1.09     | 1.00    | 0.91    | 0.84      |            |

# Personnel continuity:

This parameter is relevant in particular since in the current case our available time is less than half a year. For this reason, we set it to very low.

| Table 28. | PCON | Cost | Driver |
|-----------|------|------|--------|
|-----------|------|------|--------|

| PCON Descriptors:  | 48% / year | 24% / year | 12% / year | 6% / year | 3% / year | - mass myrad |
|--------------------|------------|------------|------------|-----------|-----------|--------------|
| Rating Levels      | Very Low   | Low        | Nominal    | High      | Very High | Extra High   |
| Effort Multipliers | 1.29       | 1.12       | 1.00       | 0.90      | 0.81      |              |

#### Usage of Software Tools:

We used NetBeans and Intellij IDEA with Maven to manage dependencies of our project such as libraries and development kits, and Git for the repository management. The most appropriate value is nominal.

Table 32. TOOL Cost Driver

| TOOL<br>Descriptors | edit, code,<br>debug | simple,<br>frontend,<br>backend<br>CASE, little<br>integration | basic life-<br>cycle tools,<br>moderately<br>integrated | strong,<br>mature life-<br>cycle tools,<br>moderately<br>integrated | strong,<br>mature,<br>proactive<br>life-cycle<br>tools, well<br>integrated<br>with<br>processes,<br>methods,<br>reuse |            |
|---------------------|----------------------|----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------|
| Rating Levels       | Very Low             | Low                                                            | Nominal                                                 | High                                                                | Very High                                                                                                             | Extra High |
| Effort Multipliers  | 1.17                 | 1.09                                                           | 1.00                                                    | 0.90                                                                | 0.78                                                                                                                  | n/a        |

#### Multisite development:

This parameter reflects how we handled the distribution of development over distance and multiple platforms. We have used phones, mail and Skype also with screen sharing, so this value is set to extra high.

| Table 33. SITE Cost Driver                                                      |                                           |                                                                 |                                                            |                                                                                |                                                                                             |                                                  |
|---------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------|
| SITE:<br>Collocation<br>Descriptors:<br>SITE:<br>Communications<br>Descriptors: | Inter-<br>national<br>Some<br>phone, mail | Multi-city<br>and Multi-<br>company<br>Individual<br>phone, FAX | Multi-city or<br>Multi-<br>company<br>Narrow<br>band email | Same city<br>or metro.<br>area<br>Wideband<br>electronic<br>communicat<br>ion. | Same<br>building or<br>complex<br>Wideband<br>elect.<br>comm.,<br>occasional<br>video conf. | Fully<br>collocated<br>Interactive<br>multimedia |
| Rating Levels                                                                   | Very Low                                  | Low                                                             | Nominal                                                    | High                                                                           | Very High                                                                                   | Extra High                                       |
| Effort Multipliers                                                              | 1.22                                      | 1.09                                                            | 1.00                                                       | 0.93                                                                           | 0.86                                                                                        | 0.80                                             |

#### Required development schedule:

Our efforts were well distributed over the available development time, but regardless of this fact, the implementation required high efforts at the later phases. Mainly this is due to the fact that we expanded the initial problem description in the more complex and profitable way for a real world application. For these reason this parameter should be set to high.

Table 34. SCED Cost Driver

| SCED              | 75%        | 85%        | 100%       | 130%       | 160%       |            |
|-------------------|------------|------------|------------|------------|------------|------------|
| Descriptors       | of nominal |            |
| Rating Level      | Very Low   | Low        | Nominal    | High       | Very High  | Extra High |
| Effort Multiplier | 1.43       | 1.14       | 1.00       | 1.00       | 1.00       | n/a        |

Our results are expressed in the following table.

| Scale Driver                            | Factor     | Value |
|-----------------------------------------|------------|-------|
| Required Software Reliability           | High       | 1.10  |
| Data Base Size                          | High       | 1.14  |
| Product Complexity                      | High       | 1.34  |
| Required Reusability                    | High       | 1.07  |
| Documentation match to life-cycle needs | Nominal    | 1.00  |
| Execution Time Constraint               | Very Low   | n∖a   |
| Main Storage Constraint                 | Very Low   | n∖a   |
| Platform Volatility                     | Low        | 0.87  |
| Analyst Capability                      | High       | 0.85  |
| Programmer Capability                   | High       | 0.88  |
| Application Experience                  | High       | 0.88  |
| Platform Experience                     | High       | 0.91  |
| Language and Tool Experience            | High       | 0.91  |
| Personnel continuity:                   | Very Low   | 1.29  |
| Usage of Software Tools                 | Nominal    | 1.00  |
| Multisite development                   | Extra High | 0.80  |
| Required development schedule           | High       | 1.00  |
| Product                                 |            | 0.88  |

### 2.3.3. Effort Equation

This final equation gives us the effort estimation measured in Person-Months (PM):

$$Effort = A * EAF * KSLOC^{E}$$

Where:

- $\rightarrow$  2.94 (for COCOMO.2000)
- EAF → product of all the cost drivers, equal to: 0.88
- → exponent derived from Scale Drivers. Is calculated as:
  - $\circ$  B + 0.01 \* sum{i}
  - o SF[i]:= B + 0.01 \*15.04 = 0.91 + 0.1504 = 1.0604 in which B is equal to: 0.91 for COCOMO.2000.
- KSLOC  $\rightarrow$  estimated lines of code using the FP analysis: **8.480**

With these parameters we can compute the Effort value, that is equal to:

$$Effort = 2.94 * 0.88 * 8.480^{1,0604} = 24.96 PM$$

Since we have not developed the program we use the estimated KLOC (8.480)

#### 2.3.4. Duration Equation

As far as the schedule estimation, we are going to use the following formula.

$$Duration = 3,67 * Effort^{F}$$

$$F = 0.28 + 0.2 * (1,0604-0.91) = 0.31$$

$$Duration = 3.67 * 24,96^{0.31} = 9.949$$

The duration calculated here is not even close to the actual time that we had to our disposal for this project, that could be estimated being around 4 months.

As for the required number of people the estimation is:

This result, since we are actually a team of tree persons, is coherent with the reality of the development environment keeping present that KSLOC is not real, it is estimated.

#### **Tasks and Schedule** 3.

The project is composed of five assignments:

- RASD Document: it contains the description of actors and the scenarios of MyTaxiService, the use cases that describe them, and models describing requirements and specification for the system. In this document a large use of UML is provided and the Alloy tool is used for the analysis of MyTaxiService.
- **Design Document**: it contains a functional description of the system. In this document the components of MyTaxiService are described and the relationships between them is analyzed. The document provides also a description of the main algorithms (calculation of the best route, calculation of the ride cost and the management of the zone queues).
- **Code inspection**: in this assignment a systematic examination of a computer source code has been done. We have analyzed a JEE class and four methods in it searching for coding errors or possible improvements.
- ITPD Document: this document the decisions for testing the integration of MyTaxiService components and its purpose is to test the interfaces between between the components that have already described in the Design Document;
- Project Plan Document: in this document a cost estimation of MyTaxiService system is calculated using Function Points and COCOMO; it also presents an overall description of the project' tasks, the members of the group that have worked on and a list of the risks for the project.

Each assignment has got the following submission deadlines:

RASD assignment: 6/11/2015 DD assignment: 4/12/2015

Code Inspection assignment: 05/01/2016

ITPD assignment: 21/01/2016

Project Plan assignment: 02/02/2016

#### Resources for the tasks 4.

Here are listed the real hours of work spent for MyTaxiService project.

**RASD** assignment:

o Elis Bardhi: 29 hours: Andrea Cavalli: 25 hours; o Mario Dolci: 24 hours;

DD assignment:

o Elis Bardhi: 20 hours; o Andrea Cavalli: 19 hours; Mario Dolci: 12 hours;

Code inspection assignment:

o Elis Bardhi: 6 hours; Andrea Cavalli: 5 hours; Mario Dolci: 5 hours;

ITPD assignment:

o Elis Bardhi: 6 hours; Andrea Cavalli: 5 hours; Mario Dolci: 5 hours;

Project Plan assignment:

 Elis Bardhi: 6 hours; Andrea Cavalli: 5 hours: o Mario Dolci: 3 hours.

The total hours of work spent during all phases of the project are 175 hours.

175 hours / (40\*4) hours = 1.094 Person/Month

where 40 hours are the amount of time that a man can work in a week.

Here is a comparative table between the estimated value and the actual value.

|                  | Estimated Value     | Effective Value     |
|------------------|---------------------|---------------------|
| Effort           | 24.96 person/months | 1.094 person/months |
| Duration         | 9.949 months        | 4 months            |
| Number of People | 2.508               | 3                   |

The estimation of COCOMO II is oversized respect to the real time spent for the project: this is due to the statistic nature of COCOMO II.

#### Risks and their relevance **5.**

Performing a risk assessment is an important step in being prepared for possible problems that can occur with MyTaxiService project. During this phase, if a potential risk is identified, a solution or plan of action should be developed.

For each risk, it is important to estimate its probability that it will occur and its impact (negligible, marginal, critical, catastrophic).

# 5.1. Risks Identification

In this phase risks are identified and their probability and rank are estimated.

#### Schedule risks 5.1.1.

| Risk                                                                                          | Probability | Impact       | Solution                                                                   |
|-----------------------------------------------------------------------------------------------|-------------|--------------|----------------------------------------------------------------------------|
| Schedule is optimistic<br>(only best cases and<br>expected cases are<br>described)            | High        | Critical     | Schedule must<br>consider all possible<br>scenarios                        |
| Schedule is based only on the use of specific team members, but them are not available        | Low         | Catastrophic | Schedule must be as portable as possible and its modularity has to be high |
| Development product is larger than estimated                                                  | Medium      | Low          | Development estimation must be as accurate as possible                     |
| Excessive schedule pressure reduces productivity                                              | Low         | Critical     | Schedule work has to<br>be intelligently<br>distributed among<br>actions   |
| Unfamiliar theme or<br>the product take more<br>time than expected to<br>design and implement | High        | Critical     | The product must be descripted as best as possible                         |

# 5.1.2. Organization and Management Risks

| Risk                                                                                                   | Probability | Impact   | Solution                                                             |
|--------------------------------------------------------------------------------------------------------|-------------|----------|----------------------------------------------------------------------|
| Nontechnical third-part<br>tasks take longer than<br>expected (legal<br>controls, budget<br>approvals) | Medium      | Marginal | Bureaucracy stuff<br>must be done as<br>soon as possible             |
| Management makes decisions that reduce the development team's motivation                               | Low         | Critical | Decisions must be<br>taken in a<br>democratic way                    |
| Management decisions cycle is slower than expected                                                     | Medium      | Critical | Management decision cycle estimation must be as accurate as possible |
| Management or marketing insists on technical decision that lengthen the schedule                       | Low         | Critical | Management decision must be as accurate as possible                  |

# 5.1.3. Development Environment Risks

| Risk                                                                                                               | Probability | Impact       | Solution                                                                     |
|--------------------------------------------------------------------------------------------------------------------|-------------|--------------|------------------------------------------------------------------------------|
| Development tools do not provide the planned productivity                                                          | Medium      | Critical     | The choses of the development tools to use must be as accurate as possible   |
| Error-prone modules requires more testing and implementation work than expected                                    | High        | Catastrophic | The decisions in the development phase must be as accurate as possible       |
| Requirement to operate under multiple operating systems and devices takes longer to satisfy requests than expected | High        | Critical     | More development teams could work in parallel on different operating systems |
| Working on an unfamiliar software environment causes unforeseen problems                                           | High        | Critical     | Software<br>environment<br>training could be<br>done                         |

# 5.1.4. Personnel Risks

| Risk                                                                                                | Probability | Impact       | Solution                                                                                                    |
|-----------------------------------------------------------------------------------------------------|-------------|--------------|-------------------------------------------------------------------------------------------------------------|
| Personnel need extra<br>time to learn<br>unfamiliar software<br>tools                               | Medium      | Marginal     | Software tools<br>training could be<br>done                                                                 |
| Personnel need extra<br>time to learn a new<br>programming language                                 | High        | Critical     | Software<br>environment<br>training could be<br>done                                                        |
| Development team members leave before the project is complete                                       | Low         | Catastrophic | The number of members in the development team must be calculated as accurate as possible for every scenario |
| New development<br>team members are<br>added later in the<br>project and they need<br>to be trained | Medium      | Critical     | A tutor can help<br>the new member<br>working on the<br>project for a while                                 |
| Not enough personnel is available for the project                                                   | High        | Catastrophic | The number of members in the development team must be calculated as accurate as possible for every scenario |

# 5.1.5. Design and Implementation Risks

| Risk                   | Probability | Impact       | Solution         |
|------------------------|-------------|--------------|------------------|
| Overly simple design   | Medium      | Catastrophic | The decisions in |
| fails to address major |             |              | the development  |
| issues and leads to    |             |              | phase must be as |
| redesign an            |             |              | accurate as      |
| reimplementation       |             |              | possible         |
| Components developed   | Low         | Catastrophic | The decisions in |
| separately cannot be   |             |              | the development  |
| integrated easily and  |             |              | phase must be as |
| they require redesign  |             |              | accurate as      |
| and rework             |             |              | possible         |