University of Texas at El Paso DigitalCommons@UTEP

Departmental Technical Reports (CS)

Department of Computer Science

8-1-2005

On Quantum Versions of Record-Breaking Algorithms for SAT

Evgeny Dantsin

Vladik Kreinovich University of Texas at El Paso, vladik@utep.edu

Alexander Wolpert

Follow this and additional works at: http://digitalcommons.utep.edu/cs_techrep

Part of the Computer Engineering Commons

Comments:

UTEP-CS-05-26.

Published in *ACM SIGACT News*, 2005, Vol. 36, No. 4, pp. 103-108.

Recommended Citation

Dantsin, Evgeny; Kreinovich, Vladik; and Wolpert, Alexander, "On Quantum Versions of Record-Breaking Algorithms for SAT" (2005). Departmental Technical Reports (CS). Paper 257.

http://digitalcommons.utep.edu/cs_techrep/257

This Article is brought to you for free and open access by the Department of Computer Science at DigitalCommons@UTEP. It has been accepted for inclusion in Departmental Technical Reports (CS) by an authorized administrator of Digital Commons@UTEP. For more information, please contact lweber@utep.edu.

On Quantum Versions of Record-Breaking Algorithms for SAT

Evgeny Dantsin¹, Vladik Kreinovich², and Alexander Wolpert^{1*}

¹Department of Computer Science, Roosevelt University Chicago, IL 60605, USA, {edantsin,awolpert}@roosevelt.edu ²Department of Computer Science, University of Texas at El Paso El Paso, TX 79968, USA, vladik@utep.edu

Abstract

It is well known that a straightforward application of Grover's quantum search algorithm enables to solve SAT in $O(2^{n/2})$ steps. Ambainis (SIGACT News, 2004) observed that it is possible to use Grover's technique to similarly speed up a sophisticated algorithm for solving 3-SAT. In this note, we show that a similar speed up can be obtained for all major record-breaking algorithms for satisfiability. We also show that if we use Grover's technique only, then we cannot do better than quadratic speed up.

1 Quantum Computing and Satisfiability

Faster quantum algorithms for SAT. In the satisfiability problem (SAT), we are given a Boolean formula F in conjunctive normal form $C_1 \& ... \& C_m$, where each clause C_j is a disjunction $l_1 \lor ... \lor l_k$ of literals, i.e., variables or their negations. We need to find a truth assignment $x_1 = a_1, ..., x_n = a_n$ that makes F true. A simple exhaustive search can solve this problem in time $\sim 2^n$, where \sim means equality modulo a term which is polynomial in the length of the input formula.

The main attraction of quantum computing is that it can speed up computations. In particular, Grover's quantum algorithm [9, 10, 11, 15] searches an unsorted list of N elements to find an element with a given property. In non-quantum computations, every such search algorithm requires, in the worst case, N steps; Grover's algorithm can find this element in time $O(\sqrt{N})$ with arbitrary high probability of success. Thus, a straightforward application of Grover's technique can solve SAT in time $\sim 2^{n/2}$.

Computer simulation of quantum computing suggests that it may be possible to solve SAT even faster [12]. Can we actually use quantum computing to solve SAT faster than in time $\sim 2^{n/2}$? In this note, we discuss some aspects of this question.

^{*©}E. Dantsin, V. Kreinovich, and A. Wolpert, 2005

Remark. We only consider quantum computing within the standard quantum physics. It is known that if we consider non-standard versions of quantum physics (e.g., a version in which it is possible to distinguish between a superposition of $|0\rangle$ and $|1\rangle$ and a pure state) then, in principle, we can solve NP-complete problems in polynomial time; see, e.g., [1] and references therein, and also [2, 14, 16].

Ambainis' observation. In [3], Ambainis considers algorithms for k-SAT, a restricted version of SAT where each clause has at most k literals. He shows that one of the fastest algorithms for k-SAT, namely, the algorithm proposed by Schöning [21], can be similarly sped up from time $T \sim (2 - 2/k)^n$ to $\sqrt{T} \sim (2 - 2/k)^{n/2}$.

Schöning's algorithm is a *multi-start random walk* algorithm that repeats the polynomial-time random walk procedure S exponentially many times. This procedure S takes an input formula F and does the following:

- Choose an initial assignment a uniformly at random.
- Repeat 3n times:
 - If F is satisfied by the assignment a, then return a and halt.
 - Otherwise, pick any clause C_j in F such that C_j is falsified by a; choose a literal l_s in C_j uniformly at random; modify a by flipping the value of the variable x_i from the literal l_s .

As shown in [21], if the formula F is satisfiable, then each random walk of length 3n finds a satisfying assignment with the probability $\geq (2-2/k)^{-n}$. Therefore, for any constant probability of success, after $O((2-2/k)^n)$ runs of the random walk procedure \mathcal{S} , we get a satisfying assignment with the required probability. Since \mathcal{S} is a polynomial time procedure, the overall running time of this algorithm is also $T \sim (2-2/k)^n$. This upper bound is close to the best known upper bound for k-SAT (see below). Schöning's algorithm was derandomized in [6].

In Schöning's algorithm, there are $N \sim (2-2/k)^n$ results of different runs of S, and we look for a result in which the input formula F is satisfied. Grover's algorithm enables us to find this result in time $\sim \sqrt{N}$. More exactly, this reduction comes from the modification of the original Grover's algorithm called *amplitude amplification*) [3, 5]. Thus, there exists a quantum algorithm that solves k-SAT in time $\sim \sqrt{T} \sim (2-2/k)^{n/2}$.

For 3-SAT, Schöning's algorithm was improved by Rolf [19] to $T \sim 1.330^n$. This improvement also consists of exponentially many runs of a polynomial-time algorithm. Therefore, Rolf's non-quantum running time $T \sim 1.330^n$ leads to the corresponding quantum time $\sqrt{T} \sim 1.154^n$.

SAT is a particular case of a more general discrete constraint satisfaction problem (CSP), where variables x_1, \ldots, x_n can take $d \geq 2$ possible values, and constraints can be more general than clauses. In particular, we can consider k-CSP, in which every constraint contains $\leq k$ variables. Schöning's algorithm can be naturally extended to k-CSP [21]. The running time of the corresponding algorithm is $T \sim (d \cdot (1 - 1/k) + \varepsilon)^n$, where ε can be arbitrarily small. Similar to Schöning's algorithm for k-SAT, this extension to k-CSP can be quantized with

the running time $T_Q \sim \sqrt{T} \sim (d \cdot (1-1/k) + \varepsilon)^{n/2}$. A different quantum algorithm for 2-CSP is described in [4].

The fastest algorithm for k-SAT. The best known upper bound for k-SAT is given by the algorithm proposed by Paturi, Pudlák, Saks, and Zane [17, 18]; this algorithm is called PPSZ. This algorithm consists of exponentially many runs of a polynomial-time procedure. This procedure is based on the following approach:

- Pick a random permutation $\pi(1), \pi(2), \ldots, \pi(n)$ of the variables.
- Select a truth value of the variable $x_{\pi(1)}$ at random.
- Simplify the input formula as follows:
 - Substitute the selected truth value for $x_{\pi(1)}$.
 - If one of the clauses reduces to a single literal, simplify the formula again by using this literal.
 - Repeat such simplification while possible.
- Select a truth value of the first unassigned variable (in the order $\pi(1), \pi(2), \ldots$) at random.
- Simplify the formula as above.
- Continue this process until all *n* variables are assigned.

As shown in [18], the PPSZ algorithm runs in time $T \sim 2^{n \cdot (1-\mu_k/k)}$, where $\mu_k \to \pi^2/6$ as k increases. The PPSZ algorithm was derandomized in [20] for the case when there is at most one satisfying assignment.

Since the PPSZ algorithm also consists of exponentially many runs of a polynomial-time procedure, we can use Grover's technique to design its quantum version which requires time $T_Q \sim \sqrt{T}$.

A combination of the PPSZ and Shöning's approaches leads to the best known upper bound for 3-SAT: $T \sim 1.324^n$ (Iwama and Tamaki [13]). Similarly to the previous algorithms, this algorithm also consists of independent runs of a polynomial-time procedure. So, by applying Grover's algorithm, we can similarly get a quantum algorithm with time $\sqrt{T} \sim 1.151^n$.

The fastest algorithm for SAT with no restriction on clause length. The best known upper bound for SAT with no restriction on clause length is given in [8]. The corresponding algorithm is based on the *clause shortening* approach proposed by Schuler in [22]. This approach suggests exponentially many runs of the following polynomial-time procedure S:

• Convert the input formula F to an auxiliary k-CNF formula F'. Namely, for each clause C_i longer than k, keep the first k literals and delete the other literals in C_i .

- Use a k-SAT algorithm, e.g., one random walk of Schöning's algorithm, to test satisfiability of F'. Assuming that F has a satisfying assignment a, there are two possible cases:
 - First, the k-SAT algorithm has found a; then we are done.
 - Second, some clause C'_j in F' is false under a. If we guess this clause, we can reduce the number of variables in F by substituting the corresponding truth values for the variables of C'_j . Therefore, we choose a clause in F' at random and simplify F by replacing the variables that occur in this clause with the corresponding truth values.
- \bullet Finally, we recursively apply $\mathcal S$ to the result of simplification.

The procedure S runs in polynomial time and finds a satisfying assignment (if any) with probability at least

$$2^{-n\cdot\left(1-\frac{1}{\ln\left(\frac{m}{n}\right)+O(\ln\ln(m))}\right)}$$
.

This probability can be increased to a constant by repetition in the usual way, so the algorithm for SAT requires time

$$T \sim 2^{n \cdot \left(1 - \frac{1}{\ln\left(\frac{m}{n}\right) + O(\ln\ln\left(m\right))}\right)}$$

By using Grover's technique, we can produce a quantum version of this algorithm that requires time T_Q :

$$T_Q \sim \sqrt{T} \sim 2^{-(n/2) \cdot \left(1 - \frac{1}{\ln\left(\frac{m}{n}\right) + O(\ln\ln\left(m\right))}\right)}.$$

2 How Much More Can Grover's Algorithm Help?

At most quadratic speed-up. So far, we have used Grover's technique to speed up the non-quantum computation time T to the quantum computation time $T_Q \sim \sqrt{T}$. Let us show that if Grover's technique is the only quantum technique that we use, then we cannot get a further time reduction. Informally speaking, let us call a quantum algorithm that uses only Grover's technique (and no other quantum ideas) *Grover-based*. We show that the following two statements hold:

- Statement 1. If we have a Grover-based quantum algorithm \mathcal{A}_Q that solves a problem in time T_Q , then we can "dequantize" it into a non-quantum algorithm \mathcal{A} that requires time $T = O(T_Q^2)$.
- Statement 2. If we have a non-quantum algorithm that solves a problem in time T, then any Grover-based quantum algorithm for solving this problem requires time at least $T_Q = \Omega(\sqrt{T})$.

First statement. Without loss of generality, we can assume that the time is measured in number of steps. Then $T_Q = t_0 + t_1 + \ldots + t_s$, where t_0 denotes the number of non-quantum steps in \mathcal{A}_Q , s denotes the number of Grover's searches, and t_i denotes the time required for i-th quantum search.

To show that the first statement holds, let us recall that the Grover's algorithm searches the list of N elements to find an element with the desired property. Exhaustive search can find this element by N calls to a procedure which checks whether a given element has this property. While the (worst-case) running time of exhaustive search is $r \cdot N$, where r is the running time of the checking procedure, Grover's algorithm enables us to find the desired element in $c \cdot \sqrt{N}$ calls to this procedure, where c is a constant determined by the required probability of success. So, the running time of Grover's algorithm is $r \cdot c \cdot \sqrt{N}$.

In the *i*-th Grover's search, $t_i = r_i \cdot c \cdot \sqrt{N_i}$, where N_i is the number of elements in the corresponding list and r_i is the running time of the corresponding checking procedure. So, we can conclude that

$$N_i = \frac{t_i^2}{r_i^2 \cdot c^2}.$$

Hence, by using (non-quantum) exhaustive search algorithm, we can perform the same search in time

$$t_i' = r_i \cdot N_i = \frac{t_i^2}{r_i \cdot c^2}.$$

Since $r_i \ge 1$, we conclude that $t'_i \le c' \cdot t_i^2$, where $c' = \max(1, c^{-2})$.

Since t_0 is a non-negative integer, we have $t_0 \leq t_0^2$; since $c' \geq 1$, we have $t_0 \leq c' \cdot t_0^2$. Thus, by replacing each Grover's search by the non-quantum search, we get the time $T = t_0 + t_1' + \ldots + t_s'$. Here, $t_i' \leq c' \cdot t_i^2$ for all i, hence $T \leq c' \cdot (t_0^2 + t_1^2 + \ldots + t_s^2)$. Since

$$t_0^2 + \ldots + t_s^2 \le (t_0 + \ldots + t_s)^2 = t_0^2 + \ldots + t_s^2 + 2 \cdot t_0 \cdot t_1 + \ldots,$$

we conclude that $T \leq c' \cdot T_Q^2$.

Second statement. Since $T \leq c' \cdot T_Q^2$, we have $T_Q \geq (1/\sqrt{c'}) \cdot \sqrt{T}$, i.e., $T_Q = \Omega(\sqrt{T})$.

Remark. Our observation is valid only if we restrict the use of quantum computation to Grover's algorithm. There are quantum techniques which lead to a faster speed-up. For example, the well-known Shor's algorithm for factoring large integers requires polynomial time [23, 24, 15], while all known non-quantum factorization algorithms require, in the worst case, exponential time. If we can use such techniques, we might get more than quadratic speed-up.

Acknowledgments. This work was supported in part by NASA under cooperative agreement NCC5-209, NSF grant EAR-0225670, NIH grant 3T34GM008048-20S1, and Army Research Lab grant DATM-05-02-C-0046.

References

- [1] S. Aaronson. NP-complete problems and physical reality. *ACM SIGACT News*, 36(1):30–52, 2005.
- [2] L. Accardi and M. Ohya. A stochastic limit approach to the SAT problem. *Open Systems and Infomation Dynamics*, 11:219–233, 2004.
- [3] A. Ambianis. Quatum search algorithms. ACM SIGACT News, 35(2):22–35, 2004.
- [4] O. Angelsmark, V. Dahllöf, and P. Jonsson. Finite domain constraint satisfaction using quantum computation, In: K. Diks and W. Rytter (Eds.), *Proceedings of the 27th International Symposium Mathematical Foundations of Computer Science MFCS'2002*, Warsaw, Poland, August 26–30, 2002, volume 2420 of *Lecture Notes in Computer Science*, pages 93–103, 2002.
- [5] G. Brassard, P. Hoyer, M. Mosca, and A. Tapp. Quantum amplitude amplification and estimation. In: *Quantum Computation and Quantum Information Systems*, American Mathematical Society, Contemporary Math Series, 2000, volume 305, pages 53–74.
- [6] E. Dantsin, A. Goerdt, E. A. Hirsch, R. Kannan, J. Kleinberg, C. Papadimitriou, P. Raghavan, and U. Schöning. A deterministic $(2 2/(k + 1))^n$ algorithm for k-SAT based on local search. Theoretical Computer Science, 289:69-83, 2002.
- [7] E. Dantsin and A. Wolpert. Derandomization of Schuler's algorithm for SAT. In: *Proceedings of the 7th International Conference on Theory and Applications of Satisfiability Testing SAT'2004*, pages 69–75, 2004; an extended version will appear in Springer Lecture Notes in Computer Science.
- [8] E. Dantsin and A. Wolpert. An improved upper bound for SAT, In: F. Bacchus and T. Walsh (eds.), *Proceedings of the 8th International Conference on Theory and Applications on Satisfiability Testing SAT'2005*, volume 3569 of *Lecture Notes in Computer Science*, pages 400–407, 2005.
- [9] L. K. Grover. A fast quantum mechanical algorithm for database search. In: *Proceedings* of the 28th Symposium on Theory of Computing STOC'96, ACM Press, New York, pages 212–219, 1996.
- [10] L. K. Grover. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Letters, 78(2):325–328, 1997.
- [11] L. K. Grover. A framework for fast quantum mechanical algorithms. In *Proceedings of the 30th Symposium on Theory of Computing STOC'98*, Dallas, Texas, May 23–26, 1998, ACM Press, New York, pages 53–62, 1998.
- [12] T. Hogg T. Adiabatic quantum computing for random satisfiability problem. Phys. Rev. A, 67:022314, 2003.

- [13] K. Iwama and S. Tamaki. Improved upper bounds for 3-SAT. In *Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms SODA* '2004, page 328, 2004.
- [14] T. Mihara and T. Nishino. On a method of solving SAT efficiently using the quantum Turing machine. In *Proceedings of the Workshop on Physics and Computation*, Dallas, Texas, November 17–20, 1994, pages 177–185, 1994.
- [15] M. A. Nielsen and I. L. Chuang. *Quantum computation and quantum information*. Cambridge University Press, Cambridge, U.K., 2000.
- [16] M. Ohya. Quantum algorithm for SAT problem and quantum mutual entropy. In Proceedings of the von Neumann Centennial Conference: Linear Operators and Foundations of Quantum Mechanics, Budapest, Hungary, 15–20 October, 2003, 2003.
- [17] R. Paturi, P. Pudlák, and F. Zane. Satisfiability coding lemma. In *Proceedings of the 38th Annual IEEE Symposium on Foundations of Computer Science FOCS'97*, pages 566–574, 1997.
- [18] R. Paturi, P. Pudlák, S. Saks, and F. Zane. An improved exponential-time algorithm for k-SAT. In *Proceedings of the 39th IEEE Conference on Foundations of Computer Science FOCS'98*, pages 628–637, 1998.
- [19] D. Rolf. 3-SAT in $RTIME(O(1.32971^n))$ improving randomized local search by initializing strings of 3-clauses. *Electronic Colloquium on Computational Complexity*, Report No. 54, July 2003.
- [20] D. Rolf. Derandomization of PPSZ for Unique-k-SAT. In: F. Bacchus and T. Walsh (eds.), Proceedings of the 8th International Conference on Theory and Applications on Satisfiability Testing SAT'2005, volume 3569 of Lecture Notes in Computer Science, pages 216–225, 2005.
- [21] U. Schöning. A probabilistic algorithm for k-SAT and constraint satisfaction problems. In Proceedings of the 40th Annual Symposium on Fundamentals of Computer Science FOCS'99, pages 410–414, 1999.
- [22] R. Schuler. An algorithm for the satisfiability problem of formulas in conjunctive normal form. Journal of Algorithms, 54(1):40–44, 2005.
- [23] P. W. Shor. Algorithms for quantum computations: discrete logarithms and factoring. In *Proceedings of the 35th Annual Symposium on Fundamentals of Computer Science FOCS'94*, pages 124–134, 1994.
- [24] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Computing, 26(5):1484–1509, 1997.