Computational Biology Lab

BE21B037 P2

- 1. Install Weka (https://waikato.github.io/weka-wiki/downloading_weka/)
- 2. Prepare the input file in .arff format using amino acid composition (see example)
- 3. Open the file using Weka
- 4. Classify them using different machine learning techniques (select any 10 from different classes/sub-classes)
- 5. Use training set and compute sensitivity, specificity and accuracy from the confusion Matrix.

The 10 ML techniques used are:

1) bayes.BayesNet

```
=== Confusion Matrix ===

a b <-- classified as

2250 103 | a = alpha

70 173 | b = beta
```

2) bayes. Naive Bayes

```
=== Confusion Matrix ===

a b <-- classified as

2211 142 | a = alpha

58 185 | b = beta
```

3) functions.Logistic

```
=== Confusion Matrix ===

a b <-- classified as

2315 38 | a = alpha

102 141 | b = beta
```

4) functions. Multilayer Perceptron

5) lazy.KStar

6) rules. DecisionTable

7) trees. DecisionStump

8) trees.Random Forest

10) meta.Bagging

Using the confusion matrix we can calculate the sensitivity, specificity and accuracy which has been tabulated below

Method	TP	TN	FP	FN	sensitivity	specificity	accuracy
BayesNet	2250	173	70	103	0.956	0.712	0.933
Naive Bayes	2211	185	58	142	0.940	0.761	0.923
Logistic	2315	141	102	38	0.984	0.580	0.946
Multilayer Perceptron	2348	189	54	5	0.998	0.778	0.977
KStar	2353	242	1	0	1.000	0.996	1.000
DecisionTable	2318	127	116	35	0.985	0.523	0.942
DecisionStump	2353	0	243	0	1.000	0.000	0.906
Random Forest	2353	242	1	0	1.000	0.996	1.000
LogitBoost	2330	120	123	23	0.990	0.494	0.944
Bagging	2350	130	113	3	0.999	0.535	0.955

Alpha - Positive Beta - Negative

6. Repeat with 5-fold, 10-fold, 20-fold and 66% split cross-validations. Select the best method from the performance

Method	5-Fold			10-Fold			
	sensitivity	specificity	accuracy	sensitivity	specificity	accuracy	
BayesNet	0.949	0.650	0.921	0.951	0.654	0.923	
Naive Bayes	0.941	0.733	0.922	0.938	0.737	0.919	
Logistic	0.981	0.564	0.942	0.980	0.547	0.940	
Multilayer Perceptron	0.968	0.593	0.933	0.972	0.634	0.940	
KStar	0.965	0.523	0.924	0.965	0.523	0.924	
DecisionTable	0.985	0.399	0.930	0.985	0.383	0.929	
DecisionStump	1.000	0.000	0.906	1.000	0.000	0.906	
Random Forest	0.995	0.453	0.943	0.993	0.469	0.944	
LogitBoost	0.982	0.481	0.935	0.985	0.486	0.938	
Bagging	0.989	0.424	0.936	0.991	0.453	0.941	

Method	20-Fold			66% split			
	sensitivity	specificity	accuracy	sensitivity	specificity	accuracy	
BayesNet	0.950	0.654	0.923	0.955	0.623	0.926	
Naive Bayes	0.938	0.745	0.920	0.943	0.753	0.926	
Logistic	0.982	0.564	0.943	0.983	0.532	0.943	
Multilayer Perceptron	0.966	0.597	0.931	0.981	0.597	0.948	
KStar	0.966	0.527	0.924	0.968	0.519	0.929	
DecisionTable	0.985	0.366	0.927	0.964	0.403	0.915	
DecisionStump	1.000	0.000	0.906	1.000	0.000	0.913	
Random Forest	0.993	0.465	0.943	0.995	0.442	0.947	
LogitBoost	0.986	0.481	0.939	0.984	0.442	0.937	
Bagging	0.992	0.424	0.939	0.988	0.429	0.939	

Alpha - Positive Beta - Negative

We pick Naive Bayes as the algorithm with the best performance, since we need the model to best classify beta values. The sensitivity values are all close to 0.9 but specificity values are lower, so we pick the model with the best specificity reading, which happens to be naive bayes model

^{7.} Keep 70%, 60% and 50% of the data as training and use others as test set to evaluate the performance of the best method.

Method	Percentage	sensitivity	specificity	accuracy
Naive Bayes	70%	0.945	0.753	0.927
	60%	0.930	0.800	0.919
	50%	0.939	0.764	0.922

8. Evaluate the importance of each residue by eliminating each residue (repeat 20 times). See the decrease in performance.

Method	removed aa	sensitivity	specificity	accuracy
	Α	0.938	0.765	0.922
	С	0.937	0.770	0.921
	D	0.941	0.741	0.923
	E	0.941	0.753	0.923
	F	0.947	0.737	0.927
	G	0.928	0.761	0.913
	Н	0.940	0.749	0.922
	I	0.928	0.761	0.913
	К	0.935	0.749	0.918
Naivo Pavos	L	0.946	0.724	0.925
Naive Bayes	М	0.944	0.720	0.923
	N	0.935	0.708	0.913
	Р	0.933	0.761	0.917
	Q	0.941	0.741	0.922
	R	0.941	0.761	0.924
	S	0.934	0.753	0.917
	Т	0.941	0.753	0.923
	V	0.941	0.757	0.924
	W	0.941	0.761	0.924
	Y	0.939	0.765	0.923

We see that the residue that decreases the accuracy the most is amino acids, G, I and N. Which are glycine, isoleucine, asparagine respectively.

9. Analyze the same using only one residue at the time.

Method	only aa	sensitivity	specificity	accuracy
	Α	1.000	0.000	0.906
	С	1.000	0.000	0.906
	D	0.992	0.008	0.900
	E	1.000	0.000	0.906
	F	1.000	0.000	0.906
	G	0.999	0.000	0.905
	Н	1.000	0.000	0.906
	I	1.000	0.000	0.906
	K	1.000	0.000	0.906
Naive Bayes	L	1.000	0.000	0.906
Naive Bayes	М	1.000	0.000	0.906
	N	0.977	0.140	0.899
	Р	1.000	0.000	0.906
	Q	0.997	0.000	0.904
	R	1.000	0.000	0.906
	S	1.000	0.000	0.906
	Т	0.994	0.016	0.902
	V	1.000	0.000	0.906
	W	1.000	0.000	0.906
	Y	0.996	0.000	0.903

We see the residues that cause the algorithm to perform the best is N which is asparagine. The specificity is higher than the for other residues while still maintaining the accuracy and sensitivity.

10. Construct a balanced dataset (243 each for alpha and beta) and obtain the results with 5-fold cross validation.

Method (5-fold)	TP	TN	FP	FN	sensitivity	specificity	accuracy
Naive Bayes	185	209	34	58	0.761	0.860	0.811
	0.941	0.733	0.922				

11. Tabulate and discuss the results.

The tabulated results have been attached above for each of the specific questions. When picking the best ML model we picked the one that had high, specificity, sensitivity and accuracy. Since all the ML models had > 90% accuracy, the key factor was specificity, due to the unbalanced dataset which contains more alpha compositions than beta. We see that **all three performance factors decrease**, when the data is balanced.

The files used can be found <u>here(balanced dataset)</u>.