Adaptive Mesh Refinement

- •Implementation
- •Tests
- Applications

Why Adaptive Mesh?

- Multi dimensional solution of hyperbolic system of conservation laws often too time consuming
- Large range of spatial scale
- Often locally enhancement of resolution is sufficient

Simple Mesh: Euler equations

$$\frac{\partial}{\partial \tau} \begin{pmatrix} \rho \\ \rho V_x \\ \rho V_y \\ E_t \end{pmatrix} + \frac{\partial}{\partial x} \begin{pmatrix} \rho V_x \\ P + \rho V_x^2 \\ \rho V_x V_y \\ (E_t + P) V_x \end{pmatrix} + \frac{\partial}{\partial y} \begin{pmatrix} \rho V_y \\ \rho V_y V_x \\ P + \rho V_y^2 \\ (E_t + P) V_y \end{pmatrix} = 0.$$

Equation of state (here ideal gas)

$$P = (\gamma - 1)(E_t - \frac{1}{2}\rho[u^2 + v^2])$$

• External force (e.g. gravitation)

Simple Mesh: Euler equations

Conserved variables for every mesh point

- Mass density
- Momentum density
- Energy density

$$\mathbf{W} = \left(egin{array}{c}
ho \
ho V_n \
ho V_t \ E_t \end{array}
ight)$$

- Simple approach: finite differencing
 - Differential equations -> difference equations
 - Calculate on mesh
- **Problem**: not conserving, not monotonic conserving
- Solution: finite volume upwind discretization

Finite volume differencing on a simple mesh

Fluxes

• Calculate:
$$W_{i,j}(t + \Delta t) = W_{i,j}(t) + \frac{\Delta t}{\Delta x} (F_{i-1/2,j} - F_{i+1/2,j})$$

- **Problem**: find the right fluxes
 - → Riemann solvers

Riemann solvers

Riemann problem

- Piecewise constant function
- Intermediate states W* at a given time
- Fluxes can be calculated exact

Time evolution

Jan Homann, Adaptive Mesh Refinement, 2005

Riemann solvers

Courant condition

• Time step limit, to avoid that neighbouring Riemann problems affect each other

$$v \cdot \Delta t < \Delta x$$

Jan Homann, Adaptive Mesh Refinement, 2005

Summary of single mesh solution algorithm

For calculation: higher order schemes are used

Interpolate a function between grid points

Summary

- Conservation
- Conserves shock shape and right speed
- No wiggles behind discontinuities
- Computational cost scales like N^3 in 2D $(N_x * N_y * N_t)$ N^4 in 3D $(N_x * N_y * N_z * N_t)$
 - → AMR might be of advantage

Adaptive Mesh

- Finer meshes overlie coarser
- Properly nested
- Refinement in space and time (e.g. factor 2)

The calculation path

- From coarser to finer mesh
 - 1 step in coarser mesh = 2 steps in next finer mesh
 - Boundaries for finer mesh
 - Projection to the coarser mesh + fix fluxes
- Make it recursive!

Building the boundaries for the finer mesh

- Boundaries necessary for finer meshes
- Calculate from coarser mesh
- Interpolate in space and in time
- Use same order interpolation, as in the PDE solver

Interpolation in space

Update the cells of coarser mesh

- Build new coarse cell values
- Flux through boundary has changed because of finer calculations
- Need a fix-up for boundary cells
- Use sum over fine fluxes instead of coarse flux

- Update mesh after fixed number of steps on a given level
- Mash is recreated (no "moving" grid)
- Grid generation recursively: from finest to coarsest grid

Steps

- Error estimation
- Flagging for refinement
- Build a buffer zone
- Grouping/clustering
- Transfer old solutions
- Or interpolate coarser mesh (careful! Not automatically conservative!)

Flagging

estimate potential error

- Compare finer solution with coarser solution
- Difference too high: refine!

Compare!

simpler: upper limit of value change from cell to cell

- e.g. 10%
- Faster, also good results

Flagged for refinement

Other refinement criteria possible

Flagging

- Flag all cells from level 1+2 in level 1 because the finest variations would not have been recognised (maintain proper nesting)
- Flag a buffer zone to keep the fine structures in the fine mesh

Creation of grids

- Build basic grid
- Flagging ratio <60%: bisect
- Go on recursive
- Merge where necessary, to avoid bad cell/border ratio

Lock for proper nesting

Initialise new grids

- Transfer of solutions where possible
- Building an average where only coarser meshes exist

Not properly nested!

Code tests (J J Quirk, Ph.D. Thesis)

Figure 4.24: Single Mach reflection: $M_s = 2.12, \theta = 30^{\circ}, \gamma = 1.4.$

Angle	Experiment	Computation
α	38.5	38.4
β	92.0	91.6
δ	63.5	63.7

Jan Homann, Adaptive Mesh Refinement, 2005

Code tests

Final grid structure

Jan Homann, Adaptive Mesh Refinement, 2005

CPU-time split-up

Grid integration takes most of time.

Justifies AMR (for this problem)

Procedure	% of total run time
Integrate Grid	93.5
Evaluate gradient for flagging	1.6
Adapt	2.5
Project Solution	0.9
Apply Fixup	0.1

Adding different physical Processes

- Radiative cooling (in optically thin case)
- Nuclear burning
- Physical viscosity
- Radiation transport
- Photoionization
- Gravitational forces

(T. Abel et al.)

Problem setup:

- Dark Matter with SPH
- Gas with AMR
- Chemical and radiative processes included
- Start at Z=100 with 120kpc box (comoving)

Appropriate refinement criterion

- gravitational collapse
 - ightarrow Need resolved Jeans length scale λ_{J}
- Else: artificial fragmentation

Collapsing gas cloud

• Left: J = 0.5

• Right: J = 0.125

Results

- Calculation stopped when first "star" is built,
 - Time steps become very small
 - Implemented physics unreliable
- >5500 grids, 27 refinement levels, 260³ grid cells
- Pregalactic halo with a total mass of $7 \cdot 10^5 M_{\odot}$
- Protostar in the center

Gas Density

Temperature

Videos: www.slac.stanford.edu/~tabel/GB

Grids

Level 3

Level 5 1924 grids

Level 4

Level 6 1423 grids

Jan Homann, Adaptive Mesh Refinement, 2005

Other applications

- Supernova explosions
- Supernova remnants
- Protostellar disks
- ...

Interaction of Shock Waves with Inhomogeneous Media
(A. Poludnenko et al., Rochester)

References

- **J J Quirk**, 1991, Ph.D. Thesis, An Adaptive Grid Algorithm for computational Shock Hydrodynamics
- **T.Plewa, E. Müller**, 2005, arXiv:astro-ph, AMRA: An adaptive mesh refinement hydrodynamic code for astrophysics
- **T. Abel, G. Bryan, M. Norman**, 2000, The Astrophysical Journal 540:39, The formation and fragmentation of primordial molecular clouds
- **T. Abel, G. Bryan, M. Norman**, 2002, Science 295:93, The formation of the first star in the universe
- **K. Truelove**, 1997, The Astrophysical Journal 489:179, The Jeans Condition: a new constraint on spatial resolution in simulations of isothermal self-gravitational hydrodynamics
- **R. Klein et al.**, 1998, arXiv:astro-ph, Gravitational collapse and fragmentation in molecular clouds with adaptive mesh refinement hydrodynamics
- **W. Hillebrandt, E. Müller**, 2005, Lecture Notes, Hydrodynamik: Grundlagen und numerische Verfahren
- M. J. Berger, P. Colella, 1989, Journal of Computational Physics 82:64
- R. J. LeVeque, D.Milhalas, E.A. Dorfi, E. Müller, 1997, Computational Methods for Astrophysical Fluid Flow