Omitting types and ω -categoricity

Introductory Model Theory

December 16, 2021

Recommended reading: Section 10.1 and Theorem 10.11, though both use a slightly different approach from what we do here. Section 10.1 uses Henkin enumerations; we do something simpler. Theorem 10.11 uses atomic models; we use saturated models instead.

1 Topology on type-spaces

Suppose M is an L-structure and $A \subseteq M$. Fix $n \leq \omega$ [sic].

Definition 1. If $\phi(x_1,\ldots,x_n)$ is an L(A)-formula, then $[\phi] = \{p \in S_n(A) : \phi \in p\}$.

If $N \succeq M$ and $b \in \mathbb{N}^n$, then

$$\operatorname{tp}^{N}(b/A) \in [\phi] \iff \phi \in \operatorname{tp}^{N}(b/A) \iff N \models \phi(b).$$

Thus

$$[\phi \wedge \psi] = [\phi] \cap [\psi]$$
$$[\phi \vee \psi] = [\phi] \cup [\psi]$$
$$[\neg \phi] = S_n(A) \setminus [\phi].$$

Definition 2. A set $X \subseteq S_n(A)$ is *clopen* if $X = [\phi]$ for some $\phi(\bar{x}) \in L(A)$. A set $X \subseteq S_n(A)$ is *open* if $X = \bigcup_{i \in I} Y_i$ where the Y_i are clopen.

Lemma 3. If X, Y are open, then $X \cap Y$ is open.

Proof. Let $X = \bigcup_{i \in I} X_i$ and $Y = \bigcup_{j \in J} Y_j$, where the X_i and Y_j are clopen. Then $X \cap Y = \bigcup_{(i,j) \in I \times J} (X_i \cap Y_j)$, where the $X_i \cap Y_j$ are clopen. \square

Lemma 4. Let X_i be clopen for $i \in I$. Suppose $\{X_i : i \in I\}$ has the FIP: for any $I_0 \subseteq_f I$, $\bigcap_{i \in I_0} X_i \neq \emptyset$. Then $\bigcap_{i \in I} X_i \neq \emptyset$.

Proof. Let $X_i = [\phi_i]$. Let $\Sigma = \{\phi_i : i \in I\}$. Then Σ is finitely satisfiable, so there is a type $p \in S_n(A)$ with $p \supseteq \Sigma$. Then $p \in \bigcap_{i \in I} [\phi_i]$.

Lemma 5. If $S_n(A) = \bigcup_{i \in I} X_i$ and each X_i is clopen, then there is $I_0 \subseteq_f I$ such that $S_n(A) = \bigcup_{i \in I_0} X_i$.

Proof. Let $Y_i = S_n(A) \setminus X_i$. By assumption, $\bigcap_{i \in I} Y_i = \emptyset$, so there must be $I_0 \subseteq_f I$ such that $\bigcap_{i \in I_0} Y_i = \emptyset$, or equivalently, $\bigcup_{i \in I_0} X_i = S_n(A)$.

Definition 6. ϕ isolates p if for any $N \succeq M$ and $\bar{b} \in N^n$,

$$\operatorname{tp}(\bar{b}/A) = p \iff N \models \phi(\bar{b})$$

or equivalently

$$\operatorname{tp}(\bar{b}/A) = p \iff \operatorname{tp}(\bar{b}/A) \in [\phi]$$

or equivalently

$$\operatorname{tp}(\bar{b}/A) \in \{p\} \iff \operatorname{tp}(\bar{b}/A) \in [\phi].$$

Equivalently, ϕ isolates p if $\{p\} = [\phi]$.

A type p is *isolated* if some formula isolates it, or equivalently, $\{p\}$ is clopen.

Lemma 7. $S_n(A)$ is finite iff all types in $S_n(A)$ are isolated.

Proof. Suppose $S_n(A) = \{p_1, \dots, p_m\}$. For $1 < i \le m$, take $\phi_i \in p_1, \phi_i \notin p_i$. Then $p_1 \in [\phi_i]$, $p_i \notin [\phi_i]$. Therefore $[\bigwedge_{i=1}^m \phi_i] = \bigcap_{i=1}^m [\phi_i] = \{p_1\}$, and p_1 is isolated. Similarly, p_i is isolated.

Suppose each $p \in S_n(A)$ is isolated. The family $\{\{p\} : p \in S_n(A)\}$ covers $S_n(A)$, so there is a finite subcover. This is impossible unless $S_n(A)$ is finite.

Definition 8. A set $X \subseteq S_n(A)$ is *dense* if X intersects any non-empty clopen set Y.

Taking $Y = [\top] = S_n(A)$, we see dense sets are non-empty.

Theorem 9 (Baire Category Theorem for $S_n(A)$). Let U_1, U_2, U_3, \ldots be dense open sets. Then $\bigcap_{i=1}^{\infty} U_i$ is dense (hence non-empty).

Proof. Let V_0 be a non-empty clopen set. Then $V_0 \cap U_1$ is a non-empty open set. It contians a non-empty clopen set V_1 . Continuing, we can build a descending chain of clopen sets

$$V_0 \supseteq V_1 \supseteq V_2 \supseteq \cdots$$

with $V_i \subseteq U_i$. The family $\{V_0, V_1, V_2, \ldots\}$ has the FIP, so there is $p \in \bigcap_{i=0}^{\infty} V_i \subseteq \bigcap_{i=1}^{\infty} U_i$.

Definition 10. A set $X \subseteq S_n(A)$ is *comeager* if $X \supseteq \bigcap_{i=1}^{\infty} U_i$ for some dense open sets U_i .

In other words, a set is comeager if it contains a countable intersection of dense open sets. By Theorem 9, any comeager set is dense.

Lemma 11. If X_1, X_2, \ldots are comeager, then $\bigcap_{i=1}^{\infty} X_i$ is comeager.

Proof. Take dense open sets $U_{i,1}, U_{i,2}, \ldots$ with $X_i \supseteq \bigcap_{j=1}^{\infty} U_{i,j}$. Then $\bigcap_{i=1}^{\infty} X_i \supseteq \bigcap_{i=1}^{\infty} \bigcap_{j=1}^{\infty} U_{i,j}$, so $\bigcap_{i=1}^{\infty} X_i$ is comeager.

2 Half of Ryll-Nardzewski

Fix a countable language L, and a complete L-theory T with infinite models.

Lemma 12. If $p \in S_n(A)$ is isolated, then p is realized in M.

Proof. Take ϕ isolating p. Then $\{\phi\} \subseteq_f p$, so ϕ is satisfied by some $b \in M^n$. (Types are finitely satisfiable.) Then $\operatorname{tp}(b/A) \in [\phi] = \{p\}$, so $\operatorname{tp}(b/A) = p$.

In contrast, we'll see below in §3 that non-isolated types are not necessarily realized—they are *omitted* in certain models.

Lemma 13. If |A| = m, then $|S_n(A)| \leq |S_{n+m}(\varnothing)|$.

Proof. See Lemmas 11 and 13 in last week's notes. It's because if $A = \{a_1, \ldots, a_m\}$, then there is an injection $S_n(A) \to S_{n+m}(\emptyset)$ sending $\operatorname{tp}(\bar{b}/A)$ to $\operatorname{tp}(\bar{b}, \bar{a}/\emptyset)$.

Recall that T is ω -categorical if T has a unique model of size ω . If T is a complete theory, then $S_n(T)$ denotes $S_n(\varnothing)$ in any model of T.

Theorem 14. Let T be a complete theory. Suppose $S_n(T)$ is finite for all $n < \omega$. Then T is ω -categorical.

Proof. If $M \models T$ and $A \subseteq_f M$, then $S_n(A)$ is finite by Lemma 13. By Lemma 7, every type in $S_n(A)$ is isolated. By Lemma 12, every type in $S_n(A)$ is realized.

So every model of T is ω -saturated. Every countable model is saturated. There is a unique countable saturated model, so there is a unique countable model.

3 Omitting types

Work in $S_{\omega}(T)$, the space of types in ω -many variables $x_0, x_1, x_2, x_3, \ldots$ We will show that if $\operatorname{tp}(c_0, c_1, c_2, \ldots / \varnothing)$ is "generic," then $\{c_0, c_1, c_2, \ldots\}$ is a model of T omitting whatever non-isolated types we want.

Lemma 15. For any formula $\phi(x_0, \ldots, x_n, y)$, there is a dense open set Z_{ϕ} such that if $M \models T$ and $\bar{c} \in M^{\omega}$ and $\operatorname{tp}^M(\bar{c}) \in Z_{\phi}$ and $M \models \exists y \ \phi(c_0, \ldots, c_n, y)$, then there is $i < \omega$ such that $M \models \phi(c_0, \ldots, c_n, c_i)$.

Proof. Take $A = [\neg \exists y \ \phi(x_0, \dots, x_n, y)]$ and $B_i = [\phi(x_0, \dots, x_n, x_i)]$ for $i < \omega$. Let $Z_{\phi} = A \cup \bigcup_{i=0}^{\infty} B_i$, which is open. If $p = \operatorname{tp}^M(\bar{c}) \in Z_{\phi}$ and $M \models \exists y \ \phi(c_0, \dots, c_n, y)$, then $p \notin A$, so there is $i < \omega$ such that $p \in B_i$, meaning $M \models \phi(c_0, \dots, c_n, c_i)$.

It remains to show that Z_{ϕ} is dense. Take non-empty $[\psi] \subseteq S_{\omega}(T)$; we claim $Z_{\phi} \cap [\psi] \neq \emptyset$. Take $p = \operatorname{tp}^{M}(\bar{e}) \in [\psi]$. We may assume $p \notin Z_{\phi}$, or we are done. Then $p \notin A$, so $M \models \exists y \ \phi(e_{0}, \ldots, e_{n}, y)$. Take $b \in M$ such that $M \models \phi(e_{0}, \ldots, e_{n}, b)$. Take i > n so large that x_{i} doesn't appear in ϕ . Let $\bar{c} = (e_{0}, \ldots, e_{i-1}, b, e_{i+1}, e_{i+2}, \ldots)$. We have $M \models \psi(\bar{e})$ because $\operatorname{tp}(\bar{e}) \in [\psi]$, and therefore $M \models \psi(\bar{c})$, so $\operatorname{tp}(\bar{c}) \in [\psi]$. Also, $M \models \phi(c_{0}, \ldots, c_{n}, c_{i})$, so $\operatorname{tp}(\bar{c}) \in B_{i} \subseteq Z_{\phi}$, showing $Z_{\phi} \cap [\psi] \ni \operatorname{tp}(\bar{c})$.

Proposition 16. There is a comeager set $W \subseteq S_{\omega}(T)$ such that if $\operatorname{tp}^{M}(\bar{c}) \in W$, then $\{c_{i}: i < \omega\} \leq M$.

Proof. Let $W = \bigcap_{\phi} Z_{\phi}$. Suppose $\operatorname{tp}^{M}(\bar{c}) \in W$. Then for any $\phi(x_{0}, \ldots, x_{n}, y)$, if $M \models \exists y \ \phi(c_{0}, \ldots, c_{n}, y)$, then there is $i < \omega$ such that $M \models \phi(c_{0}, \ldots, c_{n}, c_{i})$. By Tarski-Vaught, $\{c_{i} : i < \omega\} \leq M$.

Lemma 17. Let $p \in S_n(T)$ be non-isolated. For any $(j_1, \ldots, j_n) \in \mathbb{N}^n$, there is a dense open set $V_{p,\bar{j}} \subseteq S_{\omega}(T)$ such that $\operatorname{tp}^M(\bar{c}) \in V_{p,\bar{j}} \iff \operatorname{tp}^M(c_{j_1}, \ldots, c_{j_n}) \neq p$.

Proof. Let $V_{p,\bar{j}} = V = \bigcup_{\phi \in p} [\neg \phi(x_{j_1}, \dots, x_{j_n})]$. If $\operatorname{tp}^M(\bar{c}) \in V$, then there is some $\phi \in p$ such that $M \models \neg \phi(c_{j_1}, \dots, c_{j_n})$, and so $\operatorname{tp}^M(c_{j_1}, \dots, c_{j_n}) \neq p$. Conversely, if $\operatorname{tp}^M(c_{j_1}, \dots, c_{j_n}) \neq p$, there is $\phi \in p$ such that $M \models \neg \phi(c_{j_1}, \dots, c_{j_n})$, and then $\operatorname{tp}^M(\bar{c}) \in V$.

It remains to show that V is dense. Suppose $[\psi] \subseteq S_{\omega}(T)$ is non-empty; we claim $V \cap [\psi] \neq \emptyset$. Take $q = \operatorname{tp}^M(\bar{e}) \in [\psi]$. We may assume $q \notin V$. By choice of V, $\operatorname{tp}(e_{j_1}, \ldots, e_{j_n}) = p$. Take m so large that $m \ge \max(j_1, \ldots, j_n)$ and ψ is a formula in x_0, \ldots, x_m . Let $\phi(y_1, \ldots, y_n)$ be

$$\exists x_0,\ldots,x_m \ \psi(x_0,\ldots,x_m) \ \land \ \bigwedge_{i=1}^n (y_i=x_{j_i}).$$

Then (e_{j_1},\ldots,e_{j_n}) satisfies ϕ (take $(x_0,\ldots,x_m)=(e_0,\ldots,e_m)$), and so $\phi\in p$. As p is not isolated, there is $N\models\phi(d_1,\ldots,d_n)$ with $\operatorname{tp}(d_1,\ldots,d_n)\neq p$. By definition of ϕ there are $c_0,\ldots,c_m\in N$ with $N\models\psi(c_0,\ldots,c_m)$ and $(d_1,\ldots,d_n)=(c_{j_1},\ldots,c_{j_n})$. Choose $c_{m+1},c_{m+2},\ldots\in N$ arbitrarily. Then $\bar{c}=(c_i:i<\omega)\in N^\omega$, and $\operatorname{tp}(\bar{c})\in [\psi]$, and $\operatorname{tp}(c_{j_1},\ldots,c_{j_n})=\operatorname{tp}(d_1,\ldots,d_n)\neq p$, so $\operatorname{tp}(\bar{c})\in V$, showing $V\cap [\psi]\neq\varnothing$.

Proposition 18. Let $p \in S_n(T)$ be non-isolated. There is a comeager set $V_p \subseteq S_{\omega}(T)$ such that if $\operatorname{tp}^M(\bar{c}) \in V_p$, then p is not realized by a tuple in $\{c_i : i < \omega\}$.

Proof. Let $V_p = \bigcap_{\bar{j} \in \mathbb{N}^n} V_{p,\bar{j}}$. If $\operatorname{tp}^M(\bar{c}) \in V_p$, then for any $j_1, \ldots, j_n \in \mathbb{N}$,

$$\operatorname{tp}^{M}(c_{j_{1}},\ldots,c_{j_{n}})\neq p.$$

Theorem 19 (Omitting types theorem). Let Π be a countable set of pairs (p, n), where $n < \omega$ and p is a non-isolated type in $S_n(T)$. There is a countable model $M \models T$ omitting p for every $(p, n) \in \Pi$.

Proof. The set $Q = W \cap \bigcap_{(p,n)\in\Pi} V_p$ is comeager, hence non-empty. Take $\operatorname{tp}^N(\bar{c}) \in Q$. Then $M := \{c_i : i < \omega\} \leq N$ because $\operatorname{tp}^N(\bar{c}) \in W$. For $(p,n) \in \Pi$, M omits p because $\operatorname{tp}(\bar{c}) \in V_p$.

Theorem 20 (Ryll-Nardzewski). Let T be a complete theory in a countable language. Then T is ω -categorical iff $S_n(T)$ is finite for every $n < \omega$.

Proof. One direction was Theorem 14. For the other, suppose $S_n(T)$ is infinite for some n. By Lemma 7 there is non-isolated $p \in S_n(T)$. By Theorem 19 there is a countable model $M_0 \models T$ omitting p. Take an elementary extension $M_1 \succeq M_0$ in which p is realized by $\bar{a} \in M_1^n$. By downward Löwenheim-Skolem we may assume M_1 is countable. Then $M_1 \ncong M_0$ because M_1 realizes p and M_0 does not.