Machine Learning: Boosting

Mahbub Majumdar

BRAC University 66 Mohakhali Dhaka, Bangladesh

December 10, 2019

Convexity sets

Convex sets:

Figure: Convex and non-convex sets

- Convex: Straight line between two points is contained in the set.
- Non-convex: straight lines pass through the exterior

Convex functions

Convex function:

Figure: Convex function

• Straight line between two points lies above the function

$$f(\alpha \mathbf{u} + (1 - \alpha)\mathbf{v}) \le \alpha f(\mathbf{u}) + (1 - \alpha)f(\mathbf{v})$$

 $\frac{1}{3}$

Global Minima

- ERM ⇒ minimize the error.
- · Local minima of convex functions are global minima
- Draw a straight line between any two points. Minimum will be below the straight line ⇒ Global Minimum

Loss functions that are convex are convenient.

Derivative of a convex function

Figure: Tangent lies below f

• The tangent line to f lies below f,

$$\forall \mathbf{u}, \quad f(\mathbf{u}) \geq f(\mathbf{w}) + \langle \nabla f(\mathbf{w}), \mathbf{u} - \mathbf{w} \rangle$$

5/

(2)

Conditions for convexity

Lemma 12.3

Let $f: \mathbb{R} \to \mathbb{R}$ be a scalar twice differential function, and let f', f'' be its first and second derivatives, respectively. Then, the following are equivalent

- 1. *f* is convex
- 2. f is monotonically nondecreasing
- 3. f'' is nonnegative
- $f(x) = x^2$ is convex
- $f(x) = \log(1 + e^x)$ is convex

More examples

- Suppose $\{f_1, \dots f_i, \dots f_n\}$ are convex then linear combinations and the following are convex,
- $g(x) = \max\{f_i\}$, is convex
- $g(x) = \sum_{i} \alpha_{i} f_{i}(x)$, is convex
- Also, compositions of convex functions and linear functions are convex: $f(\langle w, x \rangle)$ is convex.

Lipschitzness

Denition 12.6 (Lipschitzness)

Let $C \subset \mathbb{R}^d$. A function $f: \mathbb{R}^d \to \mathbb{R}^k$ is ρ -Lipschitz over C if for every $\mathbf{w}_1, \mathbf{w}_2 \in C$ we have that $\|f(\mathbf{w}_1) - f(\mathbf{w}_2)\| \le \rho \|\mathbf{w}_1 - \mathbf{w}_2\|$

Lipschitz functions don't change very fast (MVT):

$$f(w_1) - f(w_2) = f'(u)(w_1 - w_2)$$
 (3)

- |x| is Lipschitz
- $\log(1 + e^x)$ is Lipschitz
- $f(x) = x^2$ is not ρ -Lipschitz over the set $C = \mathbb{R}$ for any ρ . But it is ρ -Lipschitz over the set $C = \{x | x \le \rho/2\}$.
- $f : \mathbb{R}^d \to \mathbb{R}$ is **v**-Lipschitz for $\mathbf{v} \in \mathbb{R}^d$, where $f(\mathbf{w}) = \langle \mathbf{w}, \mathbf{v} \rangle + b$.
- Let $f(x) = g_1(g_2(x))$, where g_1 is ρ_1 -Lipschitz and g_2 is ρ_2 -Lipschitz. Then, f is $(\rho_1\rho_2)$ -Lipschitz.

/ 14

Smoothness

Denition 12.8 (Smoothness)

A differentiable function $f: \mathbb{R}^d \to \mathbb{R}$ is β -smooth if its gradient is β -Lipschitz; namely, for all v,w we have

$$\|\nabla f(\mathbf{v}) - \nabla f(\mathbf{w})\| \le \beta \|\mathbf{v} - \mathbf{w}\|$$

• For all v, w, smoothness implies

$$f(\mathbf{v}) \le f(\mathbf{w}) + \langle \nabla f(\mathbf{w}), \mathbf{v} - \mathbf{w} \rangle + \frac{\beta}{2} \|\mathbf{v} - \mathbf{w}\|^2$$
 (4)

- Convexity implies: $f(\mathbf{v}) \ge f(\mathbf{w}) + \langle \nabla f(\mathbf{w}), \mathbf{v} \mathbf{w} \rangle$
- Thus smoothness and convexity give an upper and lower bound on f.

Properties of Smoothness

• Setting $\mathbf{v} = \mathbf{w} - \frac{1}{\beta} \nabla f(\mathbf{w})$, we can show that

$$\frac{1}{2\beta} \|\nabla f(\mathbf{w})\|^2 \le f(\mathbf{w}) - f(\mathbf{v}) \tag{5}$$

• If $f(\mathbf{v}) \geq 0$ for all \mathbf{v} then, f is self-bounded,

$$\|\nabla f(\mathbf{w})\|^2 \le 2\beta f(\mathbf{w}) \tag{6}$$

- $f(x) = x^2$ is 2-smooth
- $f(x) = \log(1 + e^x)$ is $\frac{1}{4}$ -smooth. f'(x) is $\frac{1}{4}$ -Lipschitz. Thus f is also self-bounded.

Examples of smooth functions

• Let $f(\mathbf{w}) = g(\langle \mathbf{w}, \mathbf{x} \rangle + b)$, where $g : \mathbb{R} \to \mathbb{R}$ is a β -smooth function, $\mathbf{x} \in \mathbb{R}^d$, and $b \in \mathbb{R}$. Then, f is $(\beta ||\mathbf{x}||^2)$ -smooth.

Proof: Using the chain rule, $\nabla f(\mathbf{w}) = g'(\langle \mathbf{w}, \mathbf{x} \rangle + b)\mathbf{x}$,

$$f(\mathbf{v}) = g(\langle \mathbf{v}, \mathbf{x} \rangle + b)$$

$$\leq g(\langle \mathbf{w}, \mathbf{x} \rangle + b) + g'(\langle \mathbf{w}, \mathbf{x} \rangle + b) \langle \mathbf{v} - \mathbf{w}, \mathbf{x} \rangle + \frac{\beta}{2} (\langle \mathbf{v} - \mathbf{w}, \mathbf{x} \rangle)^{2}$$

$$\leq g(\langle \mathbf{w}, \mathbf{x} \rangle + b) + g'(\langle \mathbf{w}, \mathbf{x} \rangle + b) \langle \mathbf{v} - \mathbf{w}, \mathbf{x} \rangle + \frac{\beta}{2} (\|\mathbf{v} - \mathbf{w}\| \|\mathbf{x}\|)^{2}$$

$$= f(\mathbf{w}) + \langle \nabla f(\mathbf{w}), \mathbf{v} - \mathbf{w} \rangle + \frac{\beta \|\mathbf{x}\|^{2}}{2} \|\mathbf{v} - \mathbf{w}\|^{2}$$

• Then $f(\mathbf{w}) = (\langle \mathbf{w}, \mathbf{x} \rangle - y)^2$ is $2||x||^2$ -smooth, and $f(\mathbf{w}) = \log(1 + \exp(-y\langle \mathbf{w}, \mathbf{x} \rangle))$ is $\frac{1}{4}||x||^2$ -smooth.

Convex Learning Problems

- H ⊂ C.
- For example $C = \mathbb{R}^d$.
- Then for every $\mathbf{w} \in \mathbb{R}^d$, there is a h in \mathcal{H} .
- Regression problems \rightarrow find the weights \mathbf{w} .

Definition 12.10 (Convex Learning Problem)

A learning problem, $(H, \ell, Z,)$, is called convex if the hypothesis class \mathcal{H} is a convex set and for all $z \in Z$, the loss function, $\ell(\cdot, z)$, is a convex function (where, for any $z, \ell(\cdot, z)$ denotes the function $f: \mathcal{H} \to R$ defined by $f(\mathbf{w}) = \ell(w, z)$).

Convex Learning Problems

Lemma 12.11

If ℓ is a convex loss function and the class $\mathcal H$ is convex, then the ERM $_{\mathcal H}$ problem, of minimizing the empirical loss over $\mathcal H$, is a convex optimization problem (that is, a problem of minimizing a convex function over a convex set).

Proof:

$$ERM_{\mathcal{H}}(S) = \underset{\mathbf{w} \in \mathcal{H}}{\operatorname{argmin}} L_{S}(\mathbf{w}) \tag{7}$$

- $S = \{z_1, \ldots, z_n\}$
- $L_S(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^{m} \ell(\mathbf{w}, z_i)$ is a convex function.
- Therefore, the ERM rule is a problem of minimizing a convex function subject to the constraint that the solution should be in a convex set.

Convex-Lipschitz/Smooth-Bounded Learning Problems

Denition 12.12 (Convex-Lipschitz-Bounded Learning Problem)

The hypothesis class $\mathcal H$ is a convex set and for all $\mathbf w \in \mathcal H$ we have $\|\mathbf w\| \leq B$. For all $z \in Z$, the loss function, $\ell(\cdot,z)$, is a convex and ρ -Lipschitz function.