## Tufts University Department of Mathematics Spring 2022

## MA 166: Statistics

## Homework 1 $(v1.1)^{-1}$

Assigned Monday 24 January 2022 Due Monday 31 January 2022 at 11:59 pm EDT.

This homework assignment concerns the random variable  $X \geq 0$ , which may be supposed to have the probability density function

$$f_X(x) = C(\beta) \frac{x^2}{1 + e^{\beta x}},$$

where  $\beta$  is a parameter and  $C(\beta)$  is a normalization constant. This kind of random variable turns out to be important in physics for understanding the behavior of a certain class of fundamental particles called fermions. In that context,  $\beta$  is related to the inverse of the temperature of the fermions, so it is something that one might wish to measure experimentally. Some examples of this distribution for various values of  $\beta$  are illustrated below.



The following definite integrals may be useful for the problems in this assignment,

$$\int_0^\infty dz \, \frac{z^2}{1+e^z} = \frac{3}{2}\zeta(3)$$

$$\int_0^\infty dz \, \frac{z^3}{1+e^z} = \frac{7\pi^4}{120}$$

$$\int_0^\infty dz \, \frac{z^4}{1+e^z} = \frac{45}{2}\zeta(5),$$

where  $\zeta(n) := \sum_{j=1}^{\infty} \frac{1}{j^n}$  is called the *Riemann zeta function*. You don't need to know anything about  $\zeta(3)$  and  $\zeta(5)$  except that they are constants, and you can simply write them as  $\zeta(3)$  and  $\zeta(5)$  most of the time, and not worry about their numerical values. In case you should need their numerical values, they are approximately  $\zeta(3) = 1.2020569...$  and  $\zeta(5) = 1.0369277...$ 

<sup>&</sup>lt;sup>1</sup>©2022, Bruce M. Boghosian, all rights reserved.

- 1. Find an expression for the normalization constant  $C(\beta)$  so that  $\int_0^\infty dx \ p_X(x)$  is equal to one. As the notation indicates, you should expect this normalization constant to depend on the parameter  $\beta$ . With this normalization constant, write the normalized distribution.
- 2. Now suppose that you have a list of experimental data,  $X_j = x_j$  for j = 1, ..., n, which you expect to be distributed according to the given density function, but you do not know the value of the parameter  $\beta$ , and you would like to infer it from the data. Find an equation for the maximum likelihood estimate of  $\beta$ , call it  $\beta_e$ . (You will not be able to solve this equation in general for  $\beta_e$ . All you need for your answer is the equation itself.)
- 3. Repeat the last problem, but this time use method of moments to find an estimate for  $\beta$ , call it  $\beta_m$ . This time, you will be able to find a solution for  $\beta_m$ , and you should provide that for your answer.
- 4. Suppose that you conduct n trials, and you miraculously find the same value  $x_j = 1$  all n times. You still won't be able to find an analytic solution to the equation you obtained for the maximum likelihood estimate  $\beta_e$ , but you should be able to reduce it to something very simple, so that you can solve what remains either graphically or using a root-finding calculator, or a software tool like *Mathematica*. Do so, and compare your numerical result to  $\beta_m$ , the method of moments estimate. Explain how you can make sense of the approximate values of your estimates from the plots of  $p_X(x)$  given on the first page of this assignment.