Exercice 2 : Soit la matrice
$$A = \begin{pmatrix} 3 & -3 & 2 \\ -1 & 5 & -2 \\ -1 & 3 & 0 \end{pmatrix}$$

- 1- Donner le polynôme caractéristique de A.
- 2- Déterminer Sp(A).
- 3- En déduire det(A).
- 4- Calculer A^{-1} en fonction de A.
- 5- Calculer (A-2I)(A-4I).
- 6- En déduire A^2 en fonction de A.

6- En déduire
$$A^2$$
 en fonction de A .

7- Monter que : $\forall n \in \mathbb{N}^*$ on a : $A^n = 2^{n-1}\begin{pmatrix} 2^n+1 & -3(2^n-1) & 2(2^n-1) \\ -2^n+1 & 3.2^n-1 & -2(2^n-1) \\ -2^n+1 & 3(2^n-1) & 4-2^{n+1} \end{pmatrix}$

Exercice 3 : Soit la matrice $A = \begin{pmatrix} 0 & 2 & -1 \\ 3 & -2 & 0 \\ -2 & 2 & 1 \end{pmatrix}$

1- Donner le polynôme caractéristique de A .

Exercice 3 : Soit la matrice
$$A = \begin{pmatrix} 0 & 2 & -1 \\ 3 & -2 & 0 \\ -2 & 2 & 1 \end{pmatrix}$$

- 1- Donner le polynôme caractéristique de A
- 2- Déterminer Sp(A).
- 3- En déduire det(A).
- 4- Calculer A^{-1} en fonction de A.

Exercice 4 : Soit la matrice
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

- 1- Déterminer J tel que A = I + J.
- 2- Monter que pour tout $n \ge 3$ on a : $J^n = 0$.
- 3- Montrer que pour tout $n \ge 1$ on $a: A^n = I + nJ + \frac{n(n-1)}{2}J^2$.
- 4- Donner A^n pour tout $n \ge 1$.

Exercise 5: Soit les matrice
$$A = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 et $B = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$

- 1- Calculer A^3 et B^3 .
- 2-A et B sont-elles semblables.

2.8.2 Série 2

Exercice 1 : Soit la matrice
$$A = \begin{pmatrix} 0 & 1 & 0 \\ -4 & 4 & 0 \\ -2 & 1 & 2 \end{pmatrix}$$
.

- 1- Donner P_A .
- 2-A est elle diagonalisable.
- 3- Calculer $(A-2I), (A-2I)^2$ et $(A-2I)^n; n \ge 3$, en déduire A^n

Exercise 2: Soit la matrice
$$A = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 2 & 1 \\ 2-m & m-2 & m \end{pmatrix}$$
; avec $m \in \mathbb{R}$.

- 1- Donner P_A , et déterminer Sp(A).
- 2- Déterminer les valeurs de m pour que A soit diagonalisable.
- 3- Calculer A^k avec m = 2.

Exercice 3: Diagonaliser la matrice
$$A = \begin{pmatrix} a & c & b \\ c & a+b & c \\ b & c & a \end{pmatrix}$$
, où a,b,c sont des réels.

Exercice 4: Trigonaliser les matrices suivantes:

$$\underline{A_1 = \begin{pmatrix} 1 & 4 & -2 \\ 0 & 6 & -3 \\ -1 & 4 & 0 \end{pmatrix}, \ A_2 = \begin{pmatrix} 2 & -1 & -1 \\ 2 & 1 & -2 \\ 3 & -1 & -2 \end{pmatrix}, \ A_3 = \begin{pmatrix} 0 & 1 & 1 \\ -1 & 1 & 1 \\ -1 & 1 & 2 \end{pmatrix}, \ A_4 = \begin{pmatrix} 2 & -1 & -1 \\ 2 & 1 & -2 \\ 3 & -1 & -2 \end{pmatrix}, \ A_5 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix}}$$

$$\underline{\mathbf{Exercice} \ \mathbf{5} : \mathrm{Soit} \ A \in M_2(\mathbb{C}), \ \mathrm{et} \ \alpha \ \mathrm{et} \ \beta \ \mathrm{deux} \ \mathrm{r\acute{e}els} \ \mathrm{non} \ \mathrm{nuls}.}$$

- 1- Montrer que les matrices $T_{\alpha} = \begin{pmatrix} a & \alpha \\ 0 & a \end{pmatrix}$ et $T_{\beta} = \begin{pmatrix} a & \beta \\ 0 & a \end{pmatrix}$ sont semblables pour tout $a \in \mathbb{R}$. (Ind: utiliser $P = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$
- 2- Montrer que A et A T sont semblables.
- 3- Supposons que $A \in M_3(\mathbb{C})$, montrer que si A et -A sont semblables, alors det(A) = Tr(A) = 0.

Exercice 6: Soit la matrice
$$A = \begin{pmatrix} 3 & 2 & 6 \\ 2 & 1 & 4 \\ -2 & 0 & -3 \end{pmatrix}$$
.

- 1- Donner le P_A , et déterminer le Sp(A)
- 2- Montrer que A est trigonalisable.
- 3- Déterminer les sous espaces propres, et déduire de A n'est diagonalisable.
- 4- Pour tout $n \in \mathbb{N}$, on effectue la division euclidienne de X^n par $P_A(X)$. Le reste est un polynôme de degré 2. Donc $X^n = P_A(X)Q(X) + a_nX^2 + b_nX + c_n$.
- 4-1 Montrer que

$$\begin{cases} a_n - b_n + c_n = (-1)^n \\ a_n + b_n + c_n = 1 \\ 2a_n + b_n = n \end{cases}$$

4-2 Ecrire A^n en fonction de A.

Exercice 7 : faire à la maison : Décomposition de Dunford

Soit la matrice $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$. Ecrire $A = \Delta + N$, avec Δ une matrice diagonalisable et N une matrice nilpotente

c.à. d il existe $p \in \mathbb{N}$ tel que $N^p = 0$.

2.8.3 Série 3

Exercice 1 : Soit $A = (a_{mn})$ une matrice telle que : $a_{mn} = 5(m+n) - i(m-n)$.

- 1- Montrer que A est hermitienne.
- 2- Soit $\alpha \in \mathbb{R}$ et $\beta \in \mathbb{C}$. αA et βA sont elles hermitiennes.

Exercice 2: Soit A, $B \in M_n(\mathbb{C})$ deux matrices. Démontrer que si AB = A et BA = B, alors $A^2 = A$ et $B^2 = B$.

Exercice 3 : Soit A, $B \in M_n(\mathbb{C})$ deux matrices.

- 1- Montrer que : $Sp(AB) \setminus \{0\} = Sp(BA) \setminus \{0\}$.
- 2- Montrer que : Sp(AB) = Sp(BA).
- 3- Montrer que si A et B sont semblables, alors $P_A = P_B$.
- 4- On suppose que A et B sont inversibles :
- 4-1 Montrer que AB et BA sont semblables.
- 4-2 En déduire que Sp(AB) = Sp(BA).

Exercice 4: Soit la matrice
$$A = \begin{pmatrix} a & -b & -c & -d \\ b & a & -d & c \\ c & d & a & -b \\ d & -c & b & a \end{pmatrix}$$
, où $a, b, c, d \in \mathbb{R}$.

- 1- Calculer $A.A^T$
- 2- Montrer que la matrice A est inversible, et déterminer son inverse.

3- En déduire la résolution du système d'équations linéaires :

$$\begin{cases} x - 2y - 3z + t = 1 \\ 2x + y + z + 3t = 0 \\ 3x - y + z - 2t = -1 \\ -x - 3y + 2z + t = 2 \end{cases}$$

Exercice 5: Soient (u_n) , (v_n) et (w_n) les suites numériques réelles définies par : $\forall n \in \mathbb{N}$:

$$\begin{cases} u_{n+1} = v_n \\ v_{n+1} = w_n \\ w_{n+1} = u_n - 3v_n + 3w_n \end{cases}$$

avec u_0 , v_0 et w_0 sont des nombres quelquences fixés. Et posons $x_n = \begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix}$ et $A = \begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & -3 & 2 \end{pmatrix}$.

- 1- Trouver M tel que $x_{n+1}=Mx_n$, pour tout $n\in\mathbb{N}$..
- 2- Montrer que $x_n = M^n x_0$ pour tout $n \in \mathbb{N}$.
- 3- Trouver les puissances A^n , pour tout $n \in \mathbb{N}$.
- 4- En déduire :
- a- Les puissances M^n de M, pour tout $n \in \mathbb{N}$.
- b- Les suites numériques $(u_n), (v_n)$ et (w_n) .

2.8.4 Série 4

Exercice 1:

1- Résoudre le système suivant, où x, y, z sont des réels strictement positifs :

$$\begin{cases} x^3y^2z^6 = 1\\ x^4y^5z^{12} = 2\\ x^2y^2z^5 = 3 \end{cases}$$
 (Ind : $x = \frac{3^6}{2^2}$; $y = \frac{3^{12}}{2^3}$; $z = \frac{2^2}{3^7}$)

2- Déterminer l'ensemble des quadruplets $(a,b,c,d) \in \mathbb{R}^4$ tels que $s(t) = (at^3 + bt^2 + ct + d)e^{2t}$ est une solution de l'équation différentielle : $y'' - 3y' + 2y = (t^2 + t - 1)e^{2t}$.

Exercice 2:

En utilisant la méthode de factorisation LU résoudre les systèmes d'équations linéaires suivants :

$$\begin{cases} 2x_1 + 3x_2 - x_3 &= 1\\ 4x_1 + 4x_2 - 3x_3 &= 4\\ -2x_1 + 3x_2 - 4x_3 &= -2 \end{cases} ; \text{ et} \begin{cases} x_1 + x_2 + 3x_4 &= 4\\ 2x_1 + x_2 - x_3 + x_4 &= 1\\ 3x_1 - x_2 - x_3 + 2x_4 &= -3\\ -x_1 + 2x_2 + 3x_3 - x_4 &= 4 \end{cases}$$

Exercice 3:

Soit le système d'équations suivant :

$$\begin{cases} 2x_1 + 3x_2 = 4\\ 3x_1 + 6x_2 + x_3 = 14\\ x_2 + 2x_3 = 12 \end{cases}$$

- 1) En utilisant le méthode de LU résoudre ce système.
- 2) Montrer que ce système peut être résolu par la méthode de Cholesky.
- 3) En utilisant la méthode de Cholesky résoudre ce système.

Exercice 4:

Soit le système d'équations suivant AX = b avec : $A = \begin{pmatrix} 1 & \alpha & \alpha^2 \\ \alpha & \alpha & 0 \\ \alpha^2 & 0 & \alpha^2 \end{pmatrix}$ et $b = \begin{pmatrix} 1 \\ \alpha \\ \alpha \end{pmatrix}$.

1- Pour quelle valeur de α la matrice A est symétrique définie positive

2- Supposons que : $\alpha = \frac{1}{2}$, donner la décomposition Cholesky et résoudre le système en utilisant cette décompo-Exercice 5:

Déterminer la solution du système ci-dessous par la méthode de Jacobi et de Gauss-Seidel (les 3 premières itérations) on prend $X^{(0)} = (0\ 0\ 0)^T$:

$$\begin{cases} 5x_1 + 2x_2 - x_3 = 6 \\ x_1 + 6x_2 - 3x_3 = 4 \\ 2x_1 + x_2 + 4x_3 = 7 \end{cases}$$

Exercice 6:

Soit la matrice
$$A = \begin{pmatrix} 1 & 2 & -2 \\ 1 & 1 & 1 \\ 2 & 2 & 1 \end{pmatrix}$$
.

- 1. Montrer que $\rho(B_J) < 1 < \rho(B_{GS})$, où B_J et B_{GS} désignent respectivement les matrices d'itérations des méthodes de Gauss-Seidel et Jacobi.
- 2. Soit maintenant $A = \begin{pmatrix} 2 & -1 & 1 \\ 2 & 2 & 2 \\ -1 & -1 & 2 \end{pmatrix}$.

Bibliographie

- 1. Algèbre linéaire : Réduction des endomorphismes, cours et exercises corrigés : Roger Mansuy et Rached Mneimné.
- 2. www.vuibert.fr.
- 3. http://faccanoni.univ-tln.fr/enseignements.html
- 4. Linear Algebra : Norms $URLhttps://www.deeplearningbook.org/contents/linear_algebra.html$
- 5. P. G. Ciarlet Introduction à l'analyse numérique matricielle et à l'optimisation. Masson (1982).
- 6. M. Parodi La localisation des valeurs caractéristiques des matrices et ses applications. Gauthier-Villars (1959).
- 7. J. E. Rombaldi Algorithmique numérique et Ada. Masson (1994).
- 8. J. E. Rombaldi Problèmes corrigés d'analyse numérique. Masson (1996).
- 9. J. E. Rombaldi. Éléments d'analyse réelle, deuxième édition. EDP Sciences (2019).
- 10. Analyse matricielle cours et exercises résolus : Jean-Etienne Rombaldi.