CLAIMS

1	1. (currently amended) A method for processing a data signal, comprising:
2	transmitting the an original data signal through an electrical backplane or through the electrical
3	backplane and at least one filter, wherein:
4	the original data signal is a binary data signal; and
5	the transfer function property of the electrical backplane or the transfer function property
6	of the combination of the electrical backplane and the at least one filter corresponds to the transfer
7	function property of a binary-to-duobinary converter; and
8	receiving the data signal after being transmitted through the electrical backplane or through the
9	electrical backplane and the at least one filter, wherein the received data signal is interpreted processed
10	as a duobinary data signal.
1	2. (currently amended) The invention of claim 1, further comprising precoding an input
2	binary data signal, wherein the original data signal transmitted through the electrical backplane is based
3	on the precoded binary data signal.
1	3. (currently amended) The invention of claim 1, further comprising filtering the data
2	signal using the at least one filter prior to interpreting processing the received data signal as the
3	duobinary data signal.
1	4. (original) The invention of claim 3, wherein the filtering is implemented before
2	transmission through the electrical backplane.
1	5. (original) The invention of claim 3, wherein the filtering comprises equalizing filtering.
1	6. (original) The invention of claim 3, wherein the filtering is designed to emphasize high-
2	frequency components in the data signal and flatten group delay of the electrical backplane.
1	7. (original) The invention of claim 3, wherein the filtering is implemented using an FIR
2	filter.
1	8. (original) The invention of claim 3, wherein the filtering:
2	delays a first copy of the data signal;
3	attenuates the delayed first copy; and

4	adds the delayed first copy to a second copy of the data signal to generate the filtered data signal.
1	9. (original) The invention of claim 3, wherein the combination of the filtering and the
2	transmission through the electrical backplane approximates binary-to-duobinary conversion.
1	10. (currently amended) The invention of claim 1, wherein duobinary-to-binary (D/B)
2	conversion is applied to the received data signal to generate an output binary data signal.
1	11. (original) The invention of claim 10, wherein the D/B conversion comprises:
2	comparing amplitude of the received data signal with first and second threshold voltages to
3	generate first and second binary streams; and
4	applying a logic function to the first and second binary streams to generate the output binary data
5	signal.
1	12. (original) The invention of claim 11, wherein the logic function comprises an
2	exclusive-OR (XOR) function.
1	13. (original) The invention of claim 11, wherein the logic function comprises an
2	exclusive-NOR (XNOR) function.
1	14. (currently amended) The invention of claim 11, wherein:
2	the output data signal is an NRZ binary data signal; and
3	the first and second threshold voltages are selected such that one of the first and second binary
4	streams is always zero or always one.
1	15. (original) The invention of claim 1, wherein the electrical backplane comprises a multi-
2	layer board.
1	16. (currently amended) The invention of claim 1, further comprising:
2	precoding an input binary data signal, wherein the original data signal transmitted through the
3	electrical backplane is based on the precoded binary data signal;
4	filtering the data signal using the at least one filter prior to interpreting processing the received
5	data signal as the duobinary data signal; and

6	applying duobinary-to-binary conversion to the received data signal to generate an output binary
7	data signal.
1	17. (currently amended) The invention of claim 16, wherein:
2	the combination of the filtering and the transmission through the electrical backplane
3	approximates binary-to-duobinary conversion; and
4	the duobinary-to-binary conversion comprises:
5	comparing amplitude of the received data signal with first and second threshold voltages
6	to generate first and second binary streams; and
7	applying a logic function to the first and second binary streams to generate the output
8	binary data signal.
1	18. (currently amended) A transmission system for a data signal, comprising:
2	a transmitter subsystem adapted to transmit the an original data signal though an electrical
3	backplane or through the electrical backplane and at least one filter, wherein:
4	the original data signal is a binary data signal; and
5	the transfer function property of the electrical backplane or the transfer function property
6	of the combination of the electrical backplane and the at least one filter corresponds to the transfer
7	function property of a binary-to-duobinary converter; and
8	a receiver subsystem adapted to receive the data signal after being transmitted through the
9	electrical backplane or through the electrical backplane and the at least one filter, wherein the received
10	data signal is interpreted processed as a duobinary data signal.
1	19. (currently amended) The invention of claim 18, further comprising a the at least one
2	filter adapted to filter the data signal prior to the received data signal being interpreted processed as the
3	duobinary data signal.
1	20. (currently amended) The invention of claim 19, wherein the <u>at least one</u> filter is
2	designed to emphasize high-frequency components in the data signal and flatten group delay of the
3	electrical backplane.
1	21. (currently amended) The invention of claim 19, wherein the at least one filter comprises
2	one or more delays adapted to delay a first copy of the data signal;
3	an attenuator adapted to attenuate the delayed first copy; and

Serial No. 10/727,450 -4- Adamiecki 3-7 (990.0517)

4	a summing node adapted to add the attenuated, delayed first copy to a second copy of the data
5	signal to generate the filtered data signal.
_	
1	22. (currently amended) The invention of claim 21, wherein the <u>at least one</u> filter further
2	comprises a selector connected to receive an output from each of a plurality of delays and adapted to
3	select one of the delay outputs as the signal applied to the attenuator.
1	23. (currently amended) The invention of claim 19, wherein the combination of the at least
2	one filter and the electrical backplane approximates a binary-to-duobinary converter.
1	24. (currently amended) The invention of claim 18, wherein the receiver subsystem
2	comprises a duobinary-to-binary (D/B) converter adapted to apply duobinary-to-binary conversion to the
3	received data signal to generate an output binary data signal.
1	25. (currently amended) The invention of claim 24, wherein the D/B converter comprises:
2	a splitter adapted to split the received data signal;
3	two comparators, each adapted to compare a copy of the received data signal to a specified
4	threshold voltage; and
5	a logic gate adapted to generate the output binary data signal from outputs from the two
6	comparators.
1	26. (currently amended) The invention of claim 25, wherein:
2	the <u>output binary</u> data signal is an NRZ binary data signal; and
3	the threshold voltages for the two comparators are selected such that one of the comparator
<i>3</i>	outputs is always zero or always one.
1	27. (currently amended) The invention of claim 18, wherein:
2	the transmitter subsystem comprises a precoder adapted to precode an input binary data signal,
3	wherein the <u>original</u> data signal transmitted through the electrical backplane is based on the precoded
4	binary data signal;
5	the system comprises $\frac{1}{2}$ the at least one filter adapted to filter the data signal prior to the <u>received</u>
6	data signal being interpreted processed as the duobinary data signal; and
7	the receiver subsystem comprises a duobinary-to-binary converter adapted to apply duobinary-to-

binary conversion to the received data signal to generate an output binary data signal.

8

1	28. (currently amended) The invention of claim 27, wherein:
2	the combination of the at least one filter and the electrical backplane approximates a binary-to-
3	duobinary converter; and
4	the duobinary-to-binary converter comprises:
5	a splitter adapted to split the received data signal;
6	two comparators, each adapted to compare a copy of the received data signal to a
7	specified threshold voltage; and
8	a logic gate adapted to generate the output binary data signal from outputs from the two
9	comparators.
1	29. (currently amended) Apparatus for processing a data signal, comprising:
2	means for transmitting the an original data signal through an electrical backplane or through the
3	electrical backplane and at least one filter, wherein:
4	the original data signal is a binary data signal; and
5	the transfer function property of the electrical backplane or the transfer function property
6	of the combination of the electrical backplane and the at least one filter corresponds to the transfer
7	function property of a binary-to-duobinary converter; and
8	means for receiving the data signal after being transmitted through the electrical backplane or
9	through the electrical backplane and the at least one filter, wherein the received data signal is interpreted
10	processed as a duobinary data signal.