DESCRIPTION

The M74LS165AP is a semiconductor integrated circuit containing an 8-bit serial/parallel input — serial output shift register function.

FEATURES

- Parallel-to-serial data conversion
- Complementary output (Q₇ and Q₇)
- · Direct overriding load (data) input
- Clock inhibit input
- Wide operating temperature range ($T_a = -20 \sim +75^{\circ}C$)

APPLICATION

General purpose, for use in industrial and consumer equipment

FUNCTIONAL DESCRIPTION

This device is configured from eight R-S-T flip-flop circuits and is designed to accept serial data input through $D_{\rm S}$, or parallel data input through $D_0 \sim D_7$.

When D_S is used as the input, a clock pulse is applied to clock input T when load input \overline{LOAD} is high-level and the clock inhibit input T_{INH} is low-level.

Shift operations are initiated upon T transiting from low to high, and the data present at D_S appears as an output pulse from Q_7 , $\overline{Q_7}$ of the 8th flip-flop circuit. The output at $\overline{Q_7}$ is always an inverted value of that present at Q_7 .

When $D_0 \sim D_7$ is used as the input, $\overline{\text{LOAD}}$ is active-low. Since $D_0 \sim D_7$ are entered at the direct-set, direct-reset input of each flip-flop, read is executed regardless of the status of other inputs.

Care should be exercised to prevent the recording of erroneous data caused by a change in the value of $D_0 \sim D_7$ when \overline{LOAD} switches from low to high-value. Also, when T_{INH} is high, a shift operation will not be effected with clock pulse input. When T is low-level, and T_{INH} transits from low to high, a 1-bit shift operation will be executed.

M74LS165AP is an enhanced-performance version of M74LS165P having modified switching characteristics.

FUNCTION TABLE (Note 1)

		Inputs			Internal	Output	
LOAD	TINH	T	Ds	D ₀ …D ₇	Q ₀	Q ₁	Q1
L	×	×	×	D ₀ D ₇	Do	D ₁	D ₇
н	L	L	х	. x	Q ₀ 0	Q ₁ 0	Q7 ⁰
н	L	1	Н	×	н	Q ₀ 0	Q6 ⁰
н	L	1	L	х	L	Q ₀ 0	Q ₆ 0
· н	н	Х	х	х	Q ₀ 0	Q ₁ 0	Q7 ⁰

Note 1. X : Irrelevant

1 : Transition from low to high (positive edge trigger)

Q⁰: Status of output before † of T

TIMING DIAGRAM

ABSOLUTE MAXIMUM RATINGS ($T_a = -20 \sim +75^{\circ}C$, unless otherwise noted)

Symbol	Parameter	Conditions	Limits	Unit
Vcc	Supply voltage		-0.5 ~ +7	V
Vı	Input voltage		-0.5~+15	V
Vo	Output voltage	High-level state	-0.5 ~ V _{CC}	V
Topr	Operating free-air ambient temperature range		-20 -+ 75	°C
Tstg	Storage temperature range		-65 ~ + 150	°C

RECOMMENDED OPERATING CONDITIONS ($T_a = -20 - +75^{\circ}C$, unless otherwise noted)

_	, ,					
Symbol	Paramet	Min	Тур	Max	Unit	
Vcc	Supply voltage		4.75	5	5.25	V
Іон	High-level output current	V _{OH} ≥2.7V	0		-400	μА
		V _{OL} ≤ 0.4V	0	4		mA
lor	Low-level output current	V _{OL} ≦0.5V	0		8	mA

ELECTRICAL CHARACTERISTICS ($T_a = -20 - +75 \, \text{°C}$, unless otherwise noted)

C		Test conditions		Limits		ĺ	
Symbol	Parameter			Min	Тур*	Max	Unit
ViH	High-level input voltage		•	2			٧
VIL	Low-level input voltage					0.8	V
Vic	Input clamp voltage	Vcc=4.75V, lic=-	18mA			-1.5	V
	High level content values	$V_{CC} = 4.75V$, $V_{I} = 0.8V$ $V_{I} = 2V$, $I_{OH} = -400\mu A$		2.7	3.5		٧
Vон	High-level output voltage			2.1			
	4	Vcc=4.75V	IoL=4mA		0.25	0.4	V
VoL	Low-level output voltage	V1=0.8V , V1=2V	IoL = 8mA		0.35	0.5	٧
	Ulab land in the same	V _{CC} =5.25V, V _I =2.	7 V			20	μА
HII	High-level input current	V _{CC} =5.25V, V _I =10V				0.1	mΑ
IIL .	Low-level input current	$V_{CC} = 5.25 V, V_{I} = 0.4$	4 V			-0.4	mA
los	Short-circuit output current (Note 3)	Vcc=5.25V, Vo=0V		-20		- 100	mΑ
loc	Supply current	VCC=5.25V (Note 4)			18	30	mΑ

SWITCHING CHARACTERISTICS (Voc=5V, Ta = 25°C, unless otherwise noted)

	Parameter	Test conditions		Limits			
Symbol	raiametei	rest conditions	Min	Тур	Max	Unit	
fmax	Maximum clock frequency		25	38		MHz	
t PLH	Low-to-high-level, high-to-low-level output propagation			17	35	ns	
t PHL	time, from input \overline{LOAD} to outputs Q_7 and \overline{Q}_7			20	35	ns	
t _{PLH}	Low-to-high-level, high-to-low-level output propagation	0. – 15.5		14	25	ns	
t _{PHL}	time, from input T to outputs Q_7 and $\overline{Q_7}$	C _L = 15pF (Note 4)		13	25	ns	
t _{PLH}	Low-to-high-level, high-to-low-level output propagation	(Note 4)		9	25	ns	
t _{PHL}	time, from input D_2 to output Q_7			20	30	ns	
t _{PLH}	Low-to-high-level, high-to-low-level output propagation			16	30	ns	
t _{PHL}	time, from input D_7 to output $\overline{Q_7}$	•		12	25	ns	

 ^{* :} All typical values are at V_{CC} = 5V, T_a = 25°C.
Note 2. All measurements should be done quickly, and not more than one output should be shorted at a time.
3. With the outputs open, clock inhibit and clock at 4.5V, and a clock pulse applied to the LOAD input, I_{CC} is measured first with the parallel inputs grounded.

Note 4. Measurement Circuit

- (1) The pulse generator (PG) has the following characteristics: PRR = 1MHz, t_r = 6ns, t_f = 6ns, t_w = 500ns, V_P = $3V_P.P$, Z_o = 50Ω .
- (2) C_L includes probe and jig capacitance.

TIMING REQUIREMENTS (Vcc=5V, Ta=25°C, unless otherwise noted)

Symbol		T		Limits		
	Parameter	Test conditions	Min	Тур	Max	Unit
tw(T)	Clock pulse width		25	13		ns
tw (LOAD)	LOAD low-level pulse width		(15)	12		ns
tsu (T _{INH})	Setup time T _{INH} to T		30	13		ns
tsu (D ₀ ~ D ₇)	Setup time D ₀ ~ D ₇ to LOAD	,	10	9		ns
tsu (Ds)	Setup time D _S to T	7	20	8		ns
tsu(LOAD)	Setup time LOAD to T		45	0		ns
th	Hold time	·	0	0		ns

TIMING DIAGRAM (Reference level = 1.3V)

MITSUBISHI LSTTLs **PACKAGE OUTLINES**

MITSUBISHI {DGTL LOGIC} D7E D 6249827 0013561 3

