Consider the following dataset of a credit card promotion database. The credit card company has authorized a new life insurance promotion similar to the existing one. We are interested in building a classification data mining model for deciding whether to send the customer promotional material.

Customer ID	Magazine Promotion	Watch Promotion	Credit Card Insurance	Sex	Life Insurance Promotion
1	Y	N	N	M	N
2	Y	Y	Y	F	Y
3	N	N	N	M	N
4	Y	Y	Y	M	Y
5	Y	N	N	F	Y
6	N	N	N	F	N
7	Y	Y	Y	M	Y
8	N	N	N	M	N
9	Y	Y	Y	M	N
10	N	Y	N	F	Y

(a) Build a Naive Bayes classifier for this dataset, by filling in the following with counts and probabilities.

		Life Insurance Promotion (LIP)	
		Y	N
Magazine Promotion (MP)	Y	4	2
	N	1	3
$P(MP = ? \mid LIP = ?)$	Y	4/5	2/5
	N	1/5	3/5

		Life Insurance Promotion (LIP)	
		Y	N
Watch Promotion (WP)	Y	4	1
	N	1	4
$P(WP = ? \mid LIP = ?)$	Y	4/5	1/5
	N	1/5	4/5

		Life Insurance Promotion (<i>LIP</i>)	
		Y	N
Credit Card Insurance (CCI)	Y	3	1
	N	2	4
D(CCI = 9 11D = 9)	Y	3/5	1/5
$P(CCI = ? \mid LIP = ?)$	N	2/5	4/5

		Life Insurance Promotion (LIP)	
		Y	N
Cov. (C)	M	2	4
Sex (S)	F	3	1
$D(C=2 \mid ID=2)$	M	2/5	4/5
$P(S = ? \mid LIP = ?)$	F	3/5	1/5

	Life Insurance Promotion (LIP)	
	Y	N
Counts	5	5
P(LIP = ?)	5/10	5/10

(b) Let X = (MP = Y, WP = Y, CCI = N, S = F). Calculate the conditional probabilities $P(LIP = Y \mid X)$ and $P(LIP = N \mid X)$ in terms of P(X).

Hint: Use Bayes theorem

$$P(H \mid X) = \frac{P(X \mid H)P(H)}{P(X)}$$

and assume class conditional independence, i.e.,

 $P(X \mid H) = P(MP = Y \mid H) \times P(WP = Y \mid H) \times P(CCI = N \mid H) \times P(S = F \mid H)$ where H is LIP = Y or LIP = N.

Solution:

Let
$$H_1 = (LIP = Y)$$
,
 $P(X \mid H_1) = P(MP = Y \mid H_1) \times P(WP = Y \mid H_1) \times P(CCI = N \mid H_1) \times P(S = F \mid H_1)$
 $= \frac{4}{5} \times \frac{4}{5} \times \frac{2}{5} \times \frac{3}{5} = \frac{96}{625}$
 $P(LIP = Y \mid X) = P(H_1 \mid X)$
 $= \frac{P(X \mid H_1)P(H_1)}{P(X)}$
 $= \frac{\frac{96}{625} \times \frac{5}{10}}{P(X)} = \frac{\frac{48}{625}}{P(X)} = \frac{0.0768}{P(X)}$

Let
$$H_2 = (LIP = N)$$
,
 $P(X \mid H_2) = P(MP = Y \mid H_2) \times P(WP = Y \mid H_2) \times P(CCI = N \mid H_2) \times P(S = F \mid H_2)$
 $= \frac{2}{5} \times \frac{1}{5} \times \frac{4}{5} \times \frac{1}{5} = \frac{8}{625}$
 $P(LIP = N \mid X) = P(H_2 \mid X)$
 $= \frac{P(X \mid H_2)P(H_2)}{P(X)}$
 $= \frac{\frac{8}{625} \times \frac{5}{10}}{P(X)} = \frac{\frac{4}{625}}{P(X)} = \frac{0.0064}{P(X)}$

(c) Use the Naive Bayes classifier obtained in part (a) and results in part (b) to determine the value of Life Insurance Promotion for the following instance:

Magazine Promotion = Y

Watch Promotion = Y

Credit Card Insurance = N

Sex = F

Life Insurance Promotion = ?

Explain your answers clearly.

Solution:

Since $P(LIP = Y \mid X) > P(LIP = N \mid X)$, therefore we predict that LIP = Y.