

Instituto Politécnico Nacional.

INGENIERÍA EN COMUNICACIONES Y ELECTRÓNICA.

LABORATORIO DE CIRCUITOS.

Kirchhoff

Práctica Leyes de Kirchhoff. 3CM7

Autores:

José Emilio Hernández Huerta. SERGIO SAMUEL REYES MORENO.

Octubre 2023.

0.1. Primera parte. Cálculos teóricos

Figura 1: Calculos

0.2. Segunda parte. Simulación

Figura 2: Circuito original.

Figura 3: Resistencia equivalente.

Figura 4: Voltajes de cada elemento.

Figura 5: Corrientes de cada elemento.

Figura 6: Firma del profe.

0.3. Tercera parte. Mediciones

		Mediciones en laboratorio		
	Valor de resistores en ohms	$R_{eq} = 1.6k\Omega$		
		Tensión	Corriente	Potencia
R_1	1000	5.625V	$5.625 \mathrm{mA}$	$31.64 \mathrm{mW}$
R_2	1000	3.375V	$3.375 \mathrm{mA}$	$11.39 \mathrm{mW}$
R_3	1000	2.25V	$2.25 \mathrm{mA}$	$5.0625 \mathrm{mW}$
R_4	1000	1.125V	$1.125 \mathrm{mA}$	$1.26 \mathrm{mW}$
R_5	1000	1.125V	$1.125 \mathrm{mA}$	$1.26 \mathrm{mW}$

Figura 7: Firma del profe.

1. Tablas

1.0.1. Primera parte. Cálculos teóricos

		Teoria		
	Valor de resistores en ohms	$R_{eq} = 1.6k\Omega$		
		Tensión	Corriente	Potencia
R_1	1000	5.625V	$5.625 \mathrm{mA}$	$31.64 \mathrm{mW}$
R_2	1000	3.375 V	$3.375 \mathrm{mA}$	$11.39 \mathrm{mW}$
R_3	1000	2.25V	$2.25 \mathrm{mA}$	$5.0625 \mathrm{mW}$
R_4	1000	1.125V	$1.125 \mathrm{mA}$	$1.26 \mathrm{mW}$
R_5	1000	1.125V	$1.125 \mathrm{mA}$	$1.26 \mathrm{mW}$

1.0.2. Segunda parte. Simulación

		Simulación		
	Valor de resistores en ohms	$R_{eq} = 1.6k\Omega$		
		Tensión	Corriente	Potencia
R_1	1000	5.625V	$5.625 \mathrm{mA}$	$31.64 \mathrm{mW}$
R_2	1000	3.375V	$3.375 \mathrm{mA}$	$11.39 \mathrm{mW}$
R_3	1000	2.25V	$2.25 \mathrm{mA}$	$5.06 \mathrm{mW}$
R_4	1000	1.125V	$1.125 \mathrm{mA}$	$1.40 \mathrm{mW}$
R_5	1000	1.125V	$1.125 \mathrm{mA}$	$1.40 \mathrm{mW}$