CHULETAS PYTHONERAS

CREACIÓN Y MANIPULACIÓN ARRAYS NUMPY	
import numpy as np	Importar numpy
v1 = np.asarray([0, 1, 2, 3, 4]) v1 = np.array([0, 1, 2, 3, 4]) v1 = np.asanarray(lista1)	Conversión de una lista en array.
v1 = np.arange(0, 10, 0.1)	Array de valores comprendidos entre 0 y 10, con un intervalo de 0.0 a 9.9. 100 valores.
v1.ndim	Dimensiones del array.
v1.shape	Forma (filas, columnas).
v1.size	Número elementos totales.
v1.dtype	Tipo de elementos.
v2= v1.reshape((1, 8))	Crea un nuevo array con una forma distinta (1, 8) con los elementos de v1.
v2= np.reshape(v1, [1, 8])	*Igual que el anterior.
np.ones(10)	Array de unos de dimensión (1, 10)
np.zeros([2, 2])	Array de ceros de dimensión (2, 2)
np.eyes(10)	Array identidad.
np.empty([2,2])	Array aleatorio.
np.concatenate(v1, v2)	Concatenar dos arrays. Ojo con las shapes!
np.split(v1, ndiv)	Divide el array v1 en ndiv trozos. Ojo con la división!
np.append(v1, [1, 3])	Añade los elementos [1, 3] al final del array.
np.max(v1)	Máximo y mínimo de v1.
np.min(v1)	

SLICING ARRAYS NUMPY	
v1[0]	Primer elemento de v1
v1[-1]	Último elemento de v1.
v1[:]	Todos los elementos de v1.
v2[0][3]	Cuarto elemento de la primera fila.
v2[0][1:3]	Elementos en el intervalo [1, 3) de la
	primera fila.

FUNCIONES UNIVERSALES		
np.mean(v1)	Media de los elemer	ntos de v1.
np.mean(v1, axis = 0)	Media de los elemer	ntos de v1,
np.mean(v1, axis = 1)	considerando las co	olumnas.
	Media de los elemer	ntos de v1,
	considerando las fi	las.
np.std(v1), np.sqrt(v1),	Desviación típica, r	aíz cuadrada,
np.cos(v1), np.sin(v1)	coseno y seno de v	1.
np.vectorize(func)	"Vectorización" de l	la función func.
DATOS DESDE UN ARCHIVO		
Datos = np.loadtxt("archivo.txt", delimiter = ',')		Obtener los
		datos del
archivo.		archivo.
np.savetxt("resultados.txt", datos, delimiter= ',')		Guardar un
		array en un
		archivo.

Realizado por Daniel Gutiérrez <u>d.gutierrez.reina@gmail.com</u>

CHULETAS PYTHONERAS

MATPLOTLIB	
Import matplotlib.pyplot as plt	Importar submódulo pyplot.
plt.figure(figsize= (10,10))	Crear figura y dimensiones.
plt.plot(x,y, color= 'r', marker = '*', linestyle = '')	Y Vs X, definimos el color, el
	marcador y el estilo de línea. Sólo son
	obligatorios × e y.
plt.xlabel("Valores X")	Etiqueta eje X.
plt.ylabel("Valores Y")	Etiqueta eje Y.
plt.xlim([0, 10])	Límites eje X.
plt.ylim([0, 20]))	Límites eje Y
plt.title(u"Mi gráfica")	Título.
plt.legend([serie1, serie2], loc = "upper center")	Legenda, lista de legenda y
	posición.
plt.grid(True)	Activar rejilla.
plt.save("mi_figura.jpg")	Guardar figura con formato en el
	nombre.
plt.hist(y)	Histograma.
plt.scatter(x,y)	Dispersión.
plt.bar(pos, valores)	Diagrama de barras
plt.xticks(pos, valores)	Redefinir los valores de los ejes.
plt.yticks(pos, valores)	Pos y valores son secuencias.
plt.subplot(221)	Subplot (2x2)
# definir figura 1 [0][0]	
plt.subplot(222)	
# definir figura 2 [0][1]	
plt.subplot(223)	
# definir figura 3 [1][0]	
plt.subplot(224)	
# definir figura 4 [1][1]	

ARGUMENTOS

Keyword argument	Description
color or c	Sets the color of the line; accepts any Matplotlib color format.
linestyle	Sets the line style; accepts the line styles seen previously.
linewidth	Sets the line width; accepts a float value in points.
marker	Sets the line marker style.
markeredgecolor	Sets the marker edge color; accepts any Matplotlib color format.
markeredgewidth	Sets the marker edge width; accepts float value in points.
markerfacecolor	Sets the marker face color; accepts any Matplotlib color format.
markersize	Sets the marker size in points; accepts float values.

COLORES

Color abbreviation	Color Name
b	blue
С	cyan
g	green
k	black
m	magenta
r	red
w	white
У	yellow

ESTILO DE LÍNEAS

Style abbreviation	Style
-	solid line
	dashed line
	dash-dot line
:	dotted line

Realizado por Daniel Gutiérrez <u>d.gutierrez.reina@gmail.com</u>

CHULETAS PYTHONERAS

FILTRADO Y SLICING EN PANDAS		
S1[S1 > 10]	Elementos de la Serie S1 que sean	
	mayor que 10.	
S1[0]	Primer elemento de la Serie.	
S1['a']	Elemento de la Serie que tiene un	
	índice 'a'.	
Sensores['S1']	Acceso a la columna S1 del	
	DataFrame sensores.	
Sensores['S1'][2]	Tercer elemento de la columna	
	51.	
Sensores['S1'][-1]	Último elemento de la columna 51.	
Sensores ['S1'][1:3]	Elementos [1, 3) de la columna	
	51.	
Sensores[Sensores['S1'] > 10]	Devuelve DataFrame incluyendo	
	los valores que cumplen la	
	condición.	
Sensores['S1'][Sensores['S1'] > 10]	*Igual que la primera fila.	
Sensores.filter(['S1', 'S2'])	Devuelve DataFrame incluyendo	
	las columnas seleccionadas.	
Sensores.iloc(0:1, 0:3)	Funciona como el slicing de numpy	
	(filas, columnas). Intervalos ([0,	
	1), [0, 3))	
Sensores.loc(index)	Seleccionar filas por índice .	
	Colocolonal filas por maios.	

Realizado por Daniel Gutiérrez <u>d.gutierrez.reina@gmail.com</u>

PANDAS	
import pandas as pd	Importa librería
S1= pd.Series(["Pacho", "Miguel",	Crear un objeto Serie.
"Jorge"])	
S1= pd.Series(np.arange(0,10))	
S1.value	Devuelve los valores de la Serie
	como
	un array numpy.
51.index	Devuelve los índices utilizados.
S1.append([u"Peña", "Navegante"])	Concatenar Series.
S2= S1.apply(lambda x: x.count('a'))	Devuelve una Serie resultado de
	aplicar una función sobre los
	valores.
Sensores = pd.read_csv("medidas.csv",	Crea un Dataframe desde archivo
sep =";", names = ["S1", "S2", "S3"])	CSV
	*buscar el tipo de archivo que se
	quiere leer.
Sensores.shape	Dimensiones DataFrame.
Sensores.columns	Etiquetas de las columnas
Sensores.info()	Información sobre las Series que
	componen el DataFrame.
Sensores.heap(x)	Devuelve las primeras × filas del
	DataFrame
Sensores.tail(y)	Devuelve las últimas y filas del
	DataFrame.
Sensores.describe()	Estadísticas
Sensores["S4"] = Sensores["S1"] +	Crea una nueva columna como
Sensores["S2"]	resultado
Sensores.to_csv("resultados.csv")	Escribe el DataFrame en el archivo
	csv.
	*buscar el tipo de archivo que se
	quiere escribir.