Reprezentace čísel v počítači

Tomáš Faltejsek, Luboš Zápotočný, Michal Havelka

2022

Obsah

- Bit vs. Byte
- 2 Binární a hexadecimální soustava
- Reprezentace čísel v počítači
- 4 Datové typy
- Modulární aritmetika
- 6 Logické, bitové operace

Adresa	0	1	2	3
Data	137	0 b 10001001	0 x 89	'a'

Adresa	0	1	2	3	
Data	137	0 b 10001001	0 x 89	'a'	

• 1 bit je základní a nejmenší jednotkou informace v počítači

Adresa	0	1	2	3
Data	137	0 b 10001001	0 x 89	'a'

- 1 bit je základní a nejmenší jednotkou informace v počítači
 - Nabývá pouze hodnot 0 či 1

Adresa	0	1	2	3	
Data	137	0 b 10001001	0 x 89	'a'	

- 1 bit je základní a nejmenší jednotkou informace v počítači
 - Nabývá pouze hodnot 0 či 1
- ullet 1 byte = 8 bitů

Adresa	0	1	2	3	
Data	137	0 b 10001001	0 x 89	'a'	

- 1 bit je základní a nejmenší jednotkou informace v počítači
 - Nabývá pouze hodnot 0 či 1
- 1 byte = 8 bitů
 - Nejmenší adresovatelná jednotka v paměti počítače

Adresa	0	1	2	3
Data	137	0 b 10001001	0 x 89	'a'

- 1 bit je základní a nejmenší jednotkou informace v počítači
 - Nabývá pouze hodnot 0 či 1
- 1 byte = 8 bitů
 - Nejmenší adresovatelná jednotka v paměti počítače
 - Nelze tedy od paměti požadovat například 11. bit v pořadí

Adresa	0	1	2	3
Data	137	0 b 10001001	0 x 89	'a'

- 1 bit je základní a nejmenší jednotkou informace v počítači
 - Nabývá pouze hodnot 0 či 1
- 1 byte = 8 bitů
 - Nejmenší adresovatelná jednotka v paměti počítače
 - Nelze tedy od paměti požadovat například 11. bit v pořadí
 - Musíme si nechat nahrát celý byte (bity 8-16) a z něho poté v programu vybrat 3. bit

Adresa	0	1	2	3
Data	137	0 b 10001001	0 x 89	'a'

- 1 bit je základní a nejmenší jednotkou informace v počítači
 - Nabývá pouze hodnot 0 či 1
- 1 byte = 8 bitů
 - Nejmenší adresovatelná jednotka v paměti počítače
 - Nelze tedy od paměti požadovat například 11. bit v pořadí
 - Musíme si nechat nahrát celý byte (bity 8-16) a z něho poté v programu vybrat 3. bit
- Adresa do paměti

Adresa	0	1	2	3
Data	137	0 b 10001001	0 x 89	'a'

- 1 bit je základní a nejmenší jednotkou informace v počítači
 - Nabývá pouze hodnot 0 či 1
- 1 byte = 8 bitů
 - Nejmenší adresovatelná jednotka v paměti počítače
 - Nelze tedy od paměti požadovat například 11. bit v pořadí
 - Musíme si nechat nahrát celý byte (bity 8-16) a z něho poté v programu vybrat 3. bit
- Adresa do paměti
 - ► Kladné celé číslo (N⁺)

Adresa	0	1	2	3
Data	137	0 b 10001001	0 x 89	'a'

- 1 bit je základní a nejmenší jednotkou informace v počítači
 - Nabývá pouze hodnot 0 či 1
- 1 byte = 8 bitů
 - Nejmenší adresovatelná jednotka v paměti počítače
 - Nelze tedy od paměti požadovat například 11. bit v pořadí
 - Musíme si nechat nahrát celý byte (bity 8-16) a z něho poté v programu vybrat 3. bit
- Adresa do paměti
 - Kladné celé číslo (N⁺)
 - Index buňky v paměti

Adresa	0	1	2	3
Data	137	0 b 10001001	0 x 89	'a'

- 1 bit je základní a nejmenší jednotkou informace v počítači
 - Nabývá pouze hodnot 0 či 1
- 1 byte = 8 bitů
 - Nejmenší adresovatelná jednotka v paměti počítače
 - Nelze tedy od paměti požadovat například 11. bit v pořadí
 - Musíme si nechat nahrát celý byte (bity 8-16) a z něho poté v programu vybrat 3. bit
- Adresa do paměti
 - ► Kladné celé číslo (N⁺)
 - Index buňky v paměti
 - Operační systém dává programu virtuální adresy místo fyzických

Binární soustava

Převod binárního čísla 10001001 do desítkové soustavy

Binární soustava

Převod binárního čísla 10001001 do desítkové soustavy

1	0	0	0	1	0	0	1
2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
128	64	32	16	8	4	2	1

Binární soustava

Převod binárního čísla 10001001 do desítkové soustavy

1	0	0	0	1	0	0	1
2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
128	64	32	16	8	4	2	1

$$10001001 = 1 * 128$$

$$+ 0 * 64 + 0 * 32 + 0 * 16$$

$$+ 1 * 8$$

$$+ 0 * 4 + 0 * 2$$

$$+ 1 * 1$$

$$= 137$$
(1)

Hexadecimání soustava

Hexadecimální kódování číslic

0	1	2	3	4	5	6	7
0000	0001	0010	0011	0100	0101	0110	0111

8	9	A (10)	B (11)	C (12)	D (13)	E (14)	F (15)
1000	1001	1010	1011	1100	1101	1110	1111

Příklad čísla zapsaného v hexadecimální soustavě: 5FE9

Převod binárního čísla 5FE9 do binární soustavy

Převod binárního čísla 5FE9 do binární soustavy

5	F	Е	9	
0101	1111	1110	1001	

Převod binárního čísla 5FE9 do binární soustavy

5	F	Е	9
0101	1111	1110	1001

0x5FE9 = 0b01011111111101001

Převod binárního čísla 5FE9 do binární soustavy

5	F	Е	9
0101	1111	1110	1001

0x5FE9 = 0b010111111111101001

Což lze také (ekvivalentně) vyjádřit pouze použitím 15 bitů místo 16 vynecháním první nuly, která hodnotu binárního čísla nezmění

 $0 \times 5 FE9 = 0b1011111111101001$

Reprezentace čísel v počítači

Celočíselné datové typy

- Reprezentace diskrétních jevů
- "Přesné" výpočty

Reprezentace reálných čísel

- Reprezentace "spojitých" jevů
- Výpočty jsou nepřesné obsahují zaokrouhlovací chybu

Vyjádření čísla x v soustavě z:

$$(x)_z = \pm \sum_{i=0}^n b_i z^i, \ b_i \in <0, z-1>$$

Vyjádření

$$(x)_z = \pm \sum_{i=0}^n b_i z^i, \ b_i \in <0, z-1>$$

• Decimální (z = 10): $(x)_{10} = 200$

Vyjádření

$$(x)_z = \pm \sum_{i=0}^n b_i z^i, \ b_i \in <0, z-1>$$

- Decimální (z = 10): $(x)_{10} = 200$
- Binární (z = 2): $(x)_2 = 11001000$

Vyjádření

$$(x)_z = \pm \sum_{i=0}^n b_i z^i, \ b_i \in <0, z-1>$$

- Decimální (z = 10): $(x)_{10} = 200$
- Binární (z = 2): $(x)_2 = 11001000$
- Hexadecimální (z = 16): $(x)_{16} = C8$

Vyjádření

$$(x)_z = \pm \sum_{i=0}^n b_i z^i, \ b_i \in <0, z-1>$$

- Decimální (z = 10): $(x)_{10} = 200$
- Binární (z = 2): $(x)_2 = 11001000$
- Hexadecimální (z = 16): $(x)_{16} = C8$

Otázka

Proč jsou součástí hexadecimální soustavy charaktery?

Celočíselné datové typy

Jaké znáte celočíselné datové typy?

Celočíselné datové typy

Jaké znáte celočíselné datové typy?

```
int main() {
   char c;
                            // 1 byte
   unsigned char uc;
                            // 1 byte
   short s;
                            // 2 bytes
                            // 2 bytes
   unsigned short us;
   int i;
                            // 4 bytes
   unsigned int ui;
                            // 4 bytes
   long 1;
                            // 8 bytes
                      // 8 bytes
   unsigned long ul;
   long long 11;
                        // 8 bytes
   unsigned long long ull; // 8 bytes
   return 0;
```

Celočíselné datové typy

Reprezentaci celočíselných datových lze rozdělit dle:

- Přesnosti
 - short nižší přesnost
 - long vyšší přesnost
- Znaménka (sign)
 - unsigned bez znaménka (\mathbb{Z}^+)
 - ightharpoonup signed se znaménkem (\mathbb{Z})

Rozsahy celočíselných datových typů

Тур	Paměť	Rozsah	Znaménko	Formátovací řetěžec
short (int)	2 byte	< -32,768;32,767 >	ano	%hd
unsigned short (int)	2 byte	< 0; 65, 535 >	ne	%hu
int	4 byte	<-2,147,483,648;2,147,483,647>	ano	%d
unsigned int	4 byte	< 0; 4, 294, 967, 295 >	ne	%u
long int	≥ 4 byte	<-2,147,483,648;2,147,483,647>	ano	%ld
unsigned long int	≥ 4 byte	< 0; 4, 294, 967, 295 >	ne	%lu
long long (int)	≥ 8 byte	$<-(2^{63});(2^{63})-1>$	ano	%lld
unsigned long long (int)	\geq 8 byte	$< 0; \approx 2^{64} - 1 >$	ne	%llu

^{*}Na 32-bitové architektuře kompilováno skrze gcc

Rozsahy celočíselných datových typů

Тур	Paměť	Rozsah	Znaménko	Formátovací řetěžec
short (int)	2 byte	< -32,768;32,767 >	ano	%hd
unsigned short (int)	2 byte	< 0; 65, 535 >	ne	%hu
int	4 byte	<-2,147,483,648;2,147,483,647>	ano	%d
unsigned int	4 byte	< 0; 4, 294, 967, 295 >	ne	%u
long int	≥ 4 byte	<-2,147,483,648;2,147,483,647>	ano	%ld
unsigned long int	≥ 4 byte	< 0; 4, 294, 967, 295 >	ne	%lu
long long (int)	≥ 8 byte	$<-(2^{63});(2^{63})-1>$	ano	%lld
unsigned long long (int)	\geq 8 byte	$< 0; \approx 2^{64} - 1 >$	ne	%llu

^{*}Na 32-bitové architektuře kompilováno skrze gcc

Otázka

Co se stane při výpisu unsigned int pomocí formátovacího řetěžce %d?

Datové typy s plovoucí desetinnou čárkou

Jaké znáte datové typy s plovoucí desetinnou čárkou?

Datové typy s plovoucí desetinnou čárkou

Jaké znáte datové typy s plovoucí desetinnou čárkou?

Přímý kód

Číslo je v počítači uloženo v binárním tvaru

$$(x)_2 = \pm \sum_{i=0}^n b_i 2^i, \ b_i \in <0, 1>$$

- bit na první pozici (MSB) vymezen pro znaménko
 - $lackbox{0} = +$ (kladné číslo), $oldsymbol{1} = -$ (záporné číslo)
- Problémy:
 - ① Dvojí reprezentace nuly: $P(0)_{10} = 00000000, P(-0)_{10} = 10000000$
 - Není zachována (ne)rovnost: $P(100)_{10} = (01100100) < P(-100)_{10} = (11100100)$

Otázka

Jakého rozsahu nabývá 8-bitové číslo reprezentované přímým kódem?

Přímý kód

Číslo je v počítači uloženo v binárním tvaru

$$(x)_2 = \pm \sum_{i=0}^n b_i 2^i, \ b_i \in <0, 1>$$

- bit na první pozici (MSB) vymezen pro znaménko
 - $lackbox{0} = +$ (kladné číslo), $oldsymbol{1} = -$ (záporné číslo)
- Problémy:
 - ① Dvojí reprezentace nuly: $P(0)_{10} = 00000000, P(-0)_{10} = 10000000$
 - Není zachována (ne)rovnost: $P(100)_{10} = (01100100) < P(-100)_{10} = (11100100)$

Otázka

Jakého rozsahu nabývá 8-bitové číslo reprezentované přímým kódem?

$$x \in \langle -2^m - 1; 2^m - 1 \rangle$$
, $m = n - 1$, $n = 8$

Inverzní kód

Rozsah

$$x \in \langle -2^m - 1; 2^m - 1 \rangle$$
, $m = n - 1$

- Záporné číslo je negací (jedničkovým doplňkem) kladného čísla
- Výhody:
 - - Nyní platí (ne)rovnost, odpadá problém se zachováním relace
- Problémy:
 - Dvojí reprezentace nuly:

$$I(0)_{10} = 00000000, I(-0)_{10} = !00000000 = 111111111$$

Doplňkový kód

- Připočtením 1 k jedničkovému doplňku získáváme dvojkový doplněk
- $D(-100)_{10} = !(01100100)_2 + 1 = (10011100)_2$
- Výhody:
 - **1** Jediná reprezentace 0: $D(0)_{10} = 00000000 = D(-0) = 11111111 + 1 = 00000000$
 - 2 Zachovává relace: $D(100)_{10} = {}^{0}1100100 > D(-105)_{10} = I(-105)_{10} + 1 = ({}^{1}0011100)_{2}$
- Problémy:
 - Nesymetrický interval (nelze vyjádřit absolutní hodnotu nejzápornějšího čísla apod.)

Reálné datové typy

Pevná řádová čárka

 Reprezentace složením: n bitů pro celou část, m bitů pro desetinnou část a 1 bit pro znaménko (sign)

Obecný zápis

$$(x)_2 = (x_c + x_d), \quad x_c = \sum_{i=0}^n b_i 2^i, \quad \sum_{i=-1}^m b_i 2^i$$

$$10.01_{2} = 1 * 2^{1} + 0 * 2^{0} + 0 * 2^{-1} + 1 * 2^{-2}$$

$$= 1 * 2 + 0 * 1 + 0 * \frac{1}{2} + 1 * \frac{1}{4}$$

$$= 2 + 0.25$$

$$= 2.25_{10}$$
(2)

Plovoucí řádová čárka

Semilogaritmický tvar čísla

$$x = m \cdot z^e$$

Pokud číslo splňuje normalizační podmínku, nazýváme ho normalizované:

$$1 \le m < z$$

Tedy:

- Mantisa vždy začíná binární číslicí 1
- Mantisa leží v intervalu < 1, z)

	exponent e						mantisa <i>m</i>						
土	2^{n-1}		2 ²	2 ¹	2 ⁰		2^{-1}	2^{-2}	2^{-3}	2^{-4}	2^{-5}		2 ^{-m}

Přenost binárně uloženého reálného čísla

Čím více bitů má mantisa, tím vyšši přesnost čísla Pro uložení exponentů stačí menší počet bitů

Semilogaritmický tvar: dekadické a binární číslo

Dekadické číslo:

$$-123,000,000,000,000 = -1.23 \times 10^{14}$$

0.000 000 000 000 000 123 = 1.23×10^{-16}

Binární číslo:

110 1100 0000 0000 = 1.1011×2^{14}

Přesnost desetinných čísel v počítači

```
#include <stdio.h>
// Co se vytiskne na stdout?
int main() {
        float a = 0.1;
        printf("%f", a);
    return 0;
```

Přesnost desetinných čísel v počítači

```
#include <stdio.h>
// Co se vytiskne na stdout?
int main() {
        float a = 0.1;
        printf("%f", a);
    return 0;
```

Odpověď

0.100000

Číslo 0.1 v binární soustavě

 Konečné číslo v dekadické soustavě \to nekonečné číslo v binární soustavě

```
0.1_{10} = 0.00011\ 0011\ 0011\ 0011\ 0011\ 0011\ 0011\ 0011\ 0011\ 0011
0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011
0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011
0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011
0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011
0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011
0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011
0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011
```

. .

Nepřesné zobrazení realných čísel

$$\begin{split} \frac{1}{3} &\approx 0.0101\ 0101\ 0101\ \dots\ 01_2 \\ \\ \frac{1}{5} &\approx 0.0011\ 0011\ 0011\ \dots\ 0011_2 \\ \\ \frac{1}{10} &\approx 00011\ 0011\ 0011\ \dots\ 0011_2 \end{split}$$

Omezení

Přesně lze vyjádřit pouze čísla ve tvaru $\frac{x}{2^k}$ Všechna ostatní čísla se ukládají jako **nepřesná**

Uložení čísla dle normy IEEE754

- Jednoduchá přesnost (32 bitů) v jazyce C: float
- Dvojnásobná přesnost (64 bitů) v jazyce C: double

Poznámka

Ve verzi IEEE 754-2008 představena plovoucí přesnost

- 16 bitová přesnost (využíváno při grafice)
- 128 a 256 bitová přesnost (vědecké výpočty)
- Definuje rozložení bitů mezi mantisou a exponentem

Aritmetika čísel s desetinou čárkou

```
#include <stdio.h>
// Co se vytiskne na stdout?
int main() {
    if (0.1 + 0.2 == 0.3) {
        printf("Rovna se \n");
    } else {
        printf("Nerovna se \n");
    }
    return 0;
```

Odpověď

Nerovna se

Aritmetika čísel s desetinou čárkou - epsilon

```
#include <stdio.h>
#include <float.h>
#include <stdlib.h>
// Co se vytiskne na stdout?
int main(void) {
        if (abs(0.1 + 0.2 - 0.3) < DBL_EPSILON) {
            printf("Je mensi \n");
        } else {
            printf("Neni mensi \n");
        }
        return 0;
```

Modulární aritmetika

Operace modulo - zbytek po dělení

modulo (%) je binární operátor, který dává zbytek po celočíselném dělení

Modulární aritmetika

Operace modulo - zbytek po dělení

modulo (%) je binární operátor, který dává zbytek po celočíselném dělení

Příklady

```
5 \% 3 = ?
```

$$1024 \% 2 = ?$$

Modulární aritmetika

Operace modulo - zbytek po dělení

modulo (%) je binární operátor, který dává zbytek po celočíselném dělení

Příklady

```
5 \% 3 = ?
```

$$1024 \% 2 = ?$$

Výsledky

$$5 \% 3 = 2$$

$$9 \% 4 = 1$$

$$1024 \% 2 = 0$$

Posun bitů

Posun doleva

Posun bitů o jednu pozici vlevo je stejná operace jako násobení 2

Posun doprava

Posun bitů o jednu pozici **vpravo** je stejná operace jako **dělení 2 a následné zaokrouhlení dolů**