Homework 7

Ö

Suppose $B_1(t)$, $B_2(t)$ are independent Brownian processes with variance parameters σ_1^2 , σ_2^2 respectively. Define: $\forall t$, $X(t) = B_1(t) - B_2(t)$. Derive the mean and autocorrelation functions of X(t).

In Problems 8.1, 8.2, and 8.3, let $\{X(t), t \ge 0\}$ denote a Brownian motion

- process 2
 - **8.1.** Let Y(t) = tX(1/t).
 - (a) What is the distribution of Y(t)?
 - **(b)** Compute Cov(Y(s), Y(t)).
 - (c) Argue that $\{Y(t), t \ge 0\}$ is also Brownian motion.
 - (d) Let

$$T = \inf\{t > 0: X(t) = 0\}.$$

Using (c) present an argument that

$$P\{T=0\}=1.$$

3

Assignment Project Exam Help

8.2. Let $W(t) = X(a^2t)/a$ for a > 0. Verify that W(t) is also Brownian motion.

Verify that https://poxxeoderscombrownian motion unless B = {0,1}.

Add WeChat powcoder

- For each of the following processes, compute EX, and Cov(Xs, Xt).

 (Bt) is standard Brownian motion.)
 - $x_t = \int_0^t B(u) du$

b) $X_t = \int_0^t u \cdot B(u) du$

 $X_t = \int_0^t u^2 \cdot B(u) du$

Note: Since Bu is a Gaussian process, so is each of these Xts (being sum/integrals of Gaussians). Therefore they are fully determined by the means and covariances.