

WO04113285

Publication Title:

No title available

Abstract:

Abstract not available for WO04113285 Data supplied from the esp@cenet database - Worldwide

Courtesy of <http://v3.espacenet.com>

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
29 December 2004 (29.12.2004)

PCT

(10) International Publication Number
WO 2004/113285 A1

(51) International Patent Classification⁷: **C07C 323/56, A61K 31/192** [SE/SE]; AstraZeneca R & D Molndal, S-SE-431 83 Molndal (SE).

(21) International Application Number: **PCT/GB2004/002599** (74) Agent: **ASTRAZENECA**; Global Intellectual Property, S-SE-151 85 Sodertalje (SE).

(22) International Filing Date: 16 June 2004 (16.06.2004)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
0314260.1 19 June 2003 (19.06.2003) GB

(81) Designated States (*unless otherwise indicated, for every kind of national protection available*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, SZ, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW only): **ASTRAZENECA AB** [SE/SE]; Sodertalje, S-SE-151 85 (SE).

(71) Applicant (*for AE, AG, AL, AM, AT, AU, AZ, BA, BB, BE, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CY, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, SZ, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW only*): **ASTRAZENECA AB** [SE/SE]; Sodertalje, S-SE-151 85 (SE).

(71) Applicant (*for MG only*): **ASTRAZENECA UK LIMITED** [GB/GB]; 15 Stanhope Gate, London, Greater London W1K 1LN (GB).

(72) Inventors; and

(75) Inventors/Applicants (*for US only*): **ANDERSSON, Kjell** [SE/SE]; AstraZeneca R & D Molndal, S-SE-431 83 Molndal (SE). **LINDSTEDT-ALSTERMARK, Eva-Lotte** [SE/SE]; AstraZeneca R & D Molndal, S-SE-431 83 Molndal (SE). **SORENSEN, Henrik**

(84) Designated States (*unless otherwise indicated, for every kind of regional protection available*): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: PROCESS FOR THE PREPARATION OF RACEMIC 2-[(2-(4-HYDROXYPHENYL)ETHYL)THIO]-3-[4-(2-{(METHYLSULFONYL)OXY}PHENOXY)ETHYL]PHENYL]PROPAANOIC ACID

(57) Abstract: The present invention provides a process for the preparation of substantially racemic 2-[(2-(4-hydroxyphenyl)ethyl)thio]-3-[4-(2-{(methylsulfonyl)oxy}phenoxy)ethyl]phenyl]propanoic acid which comprises reacting 2-[(2-(4-hydroxyphenyl)ethyl)thio]-3-[4-(2-{(methylsulfonyl)oxy}phenoxy)ethyl]phenyl]propanoic acid enriched in one enantiomer with a base in an inert solvent.

WO 2004/113285 A1

PROCESS FOR THE PREPARATION OF RACEMIC 2-{[2-(4-HYDROXYPHENYL)ETHYL]THIO}-3-[4-(2-{(METHYLSULFONYL)OXY}PHENOXY]ETHYL)PHENYL! PROPAANOIC ACID

Field of the invention

The present invention relates to a process for the preparation of certain of 3-phenyl-2-arylalkylthiopropionic acid derivatives which have utility in treating clinical conditions including lipid disorders (dyslipidemias) whether or not associated with insulin resistance and other manifestations of the metabolic syndrome.

Background of the invention

Co-pending PCT application No. PCT/GB02/05743 discloses compounds of formula A

wherein R¹ represents chloro, fluoro or hydroxy as well as optical isomers and racemates thereof as well as pharmaceutically acceptable salts, prodrugs, solvates and crystalline forms thereof which are selective PPAR α modulators. These compounds are useful in treating clinical conditions including lipid disorders (dyslipidemias) whether or not associated with insulin resistance and other manifestations of the metabolic syndrome. The above compounds contain a chiral centre. Often one enantiomer is much more active than the other and the preferred enantiomer is obtained by a resolution process or by chiral chromatography. By its nature a resolution process of a racemic mixture leads to 50% of the undesired material being discarded. The situation can be improved if the undesired enantiomer can be converted back into a racemic mixture by a racemisation process. Therefore there is a need for an efficient and cost effective process for racemising the undesired isomer so that the resolution step can be repeated and reduce the material wastage in the process.

Description of the invention

The present invention provides a process for the preparation of substantially racemic 2-{[2-(4-hydroxyphenyl)ethyl]thio}-3-[4-(2-{(methylsulfonyl)oxy}phenoxy]ethyl)phenyl! propanoic acid which comprises reacting 2-{[2-(4-hydroxyphenyl)ethyl]thio}-3-[4-(2-{(methylsulfonyl)oxy}phenoxy)ethyl]propanoic acid enriched in one

enantiomer with a base in an inert solvent. Optionally the acid may be converted into an ester prior to racemisation or may be converted into an ester during the racemisation. Suitable esters include C₁₋₆ alkyl esters for example the methyl and ethyl ester. Suitable bases include potassium hydroxide or sodium hydroxide. Suitably the racemised ester is then hydrolysed to give the racemic acid for example by base hydrolysis or by acid hydrolysis.

In one aspect the process comprises reacting 2-{[2-(4-hydroxyphenyl)ethyl]thio}-3-[4-(2-{4-[(methylsulfonyl)oxy]phenoxy}ethyl)phenyl]propanoic acid enriched in one enantiomer with a halosilane in the presence of a nitrogenous base in the presence of an inert solvent at a temperature in the range of 0 to 150°C.

10 The term enriched means that one enantiomer comprises >50 %, preferably between 60 and 80% and most preferably between 80 and 100% of the 2-{[2-(4-hydroxyphenyl)-ethyl]thio}-3-[4-(2-{4-[(methylsulfonyl)oxy]phenoxy}ethyl)phenyl]propanoic acid in a mixture of the enantiomers of this acid.

In another aspect the present invention comprises reacting a compound of formula I

15

enriched in one enantiomer with a chlorosilane of formula ClSiR¹R²R³ in which R¹, R², and R³ independently represent a C₁₋₆ alkyl group or aryl in the presence of a nitrogenous base in the presence of an inert solvent at a temperature in the range of 0 to 150°C to give a compound of formula II

20

in which R¹, R², and R³ are previously defined which is hydrolysed to give a racemic compound of formula III

Suitable nitrogenous bases include 1,8 diazabicyclo[5.4.0] undec-7-ene, trialkylamines for example triethylamine, optionally substituted pyridines and optionally substituted imidazoles. Particularly the base is 1,8 diazabicyclo[5.4.0] undec-7-ene.

5 Suitable halosilanes include chlorotrialkyl silanes, for example chlorotriethylsilane and chlorodimethyl*tert*butylsilane and chlorotriarylsilanes for example chlorotriphenylsilane and mixed chloroarylalkyl silanes for example chlorodimethylphenyl silane. Particularly the chlorosilane is chlorotrimethylsilane.

In yet another aspect the present invention comprises reacting a compound of formula
10 I

enriched in one enantiomer with chlorotrimethylsilane in the presence of 1,8 diazabicyclo[5.4.0] undec-7-ene in the presence of an inert solvent at a temperature in the range of 0 to 150°C to give a compound of formula IV

15

which is hydrolysed to give a racemic compound of formula III

The compounds of the invention may be isolated from their reaction mixtures using conventional techniques. Hydrolysis is preferably carried out in the presence of an acid for example hydrochloric acid but basic hydrolysis may also be used.

5 The expression "inert solvent" refers to a solvent that does not react with the starting materials, reagents, intermediates or products in a manner that adversely affects the yield of the desired product. Suitable solvents include ethers, for example dialkyl ethers, especially diC₁₋₆ alkyl ethers, or cyclic ethers for example tetrahydrofuran or hydrocarbons for example toluene.

10 Aryl means phenyl or naphthyl, preferably phenyl, each of which is optionally substituted by one or more C₁₋₆ alkyl, C₁₋₆ alkoxy or halo.

Preferably the enriched acid contains more of the (+)enantiomer (as measured in the conditions described below).

Examples

15 ¹H NMR and ¹³C NMR measurements were performed on a Varian Mercury 300 or Varian UNITY plus 400, 500 or 600 spectrometers, operating at ¹H frequencies of 300, 400, 500 and 600 MHz, respectively, and at ¹³C frequencies of 75, 100, 125 and 150 MHz, respectively. Measurements were made on the delta scale (δ).

Unless otherwise stated, chemical shifts are given in ppm with the solvent as internal 20 standard.

Abbreviations

DMSO	dimethyl sulfoxide
EtOAc	ethyl acetate
DMF	N,N-dimethylformamide
25 THF	tetrahydrofuran
MeCN	acetonitrile
MeOH	methanol
TFA	trifluoroacetic acid

NH ₄ OAc	ammonium acetate
t	triplet
s	singlet
d	doublet
5 q	quartet
m	multiplet
bs	broad singlet

Preparation of Starting Material

2-[{2-(4-Hydroxyphenyl)ethyl]thio}-3-[4-(2-{4-[(methylsulfonyl)oxy]phenoxy}-ethyl)phenyl]propanoic acid

(i) Methyl 2-chloro-3-[4-(2-hydroxyethyl)phenyl]propanoate
2-(4-Aminophenyl)ethanol (11g, 81mmol) and 32ml conc HCl was dissolved in acetone and cooled to 0°C. Sodium nitrite (5.6g, 81mmol) in 20ml water was added dropwise. The temperature was kept under 0°C. After one hour, methyl acrylate (70g, 808mmol) and CuI (1.6g, 8mmol) were added (<0°C). The reaction mixture was stirred at room temperature overnight. The solvent was evaporated and water was added. The water phase was extracted three times with EtOAc, the organic phases were pooled and washed with water, dried (MgSO₄) and evaporated under reduced pressure. The crude product was purified by flash chromatography using a 65:35 mixture of EtOAc and heptane as eluent. Further purification by preparative HPLC (using a gradient of CH₃CN/ 5%CH₃CN-waterphase containing 0.1M NH₄OAc as eluent) gave 9.7g product (yield 49%) as an oil.

¹HNMR (400MHz, CDCl₃): 2.84 (t, 3H), 3.15 (dd, 1H), 3.35 (dd, 1H), 3.75 (s, 3H), 3.84 (t, 3H), 4.43 (t, 1H), 7.17 (d, 4H)

(ii) Methyl 3-(4-{2-[4-(benzyloxy)phenoxy]ethyl}phenyl)-2-chloropropanoate

25 Triphenylphosphine (2.4g, 9mmol) was added to a solution of methyl 2-chloro-3-[4-(2-hydroxyethyl)phenyl]propanoate (2.1g, 8.5mmol) and 4-(benzyloxy)phenol (1.7g, 8mmol) in 20ml toluene under nitrogen atmosphere. The solution was warmed to 55°C and diisopropyl azodicarboxylate (1.8g, 9mmol) was added. The reaction mixture was stirred at 55°C overnight. The mixture was allowed to cool and the solvent was evaporated under reduced pressure. The crude product was purified by flash chromatography using a 80:20 mixture of heptane and EtOAc as eluent to yield 2.28g of the desired product (yield 61%) as colourless crystals.

¹HNMR (400MHz, CDCl₃): 3.05 (t, 2H), 3.16 (dd, 1H), 3.36 (dd, 1H), 3.75 (s, 3H), 4.12 (t, 2H), 4.45 (t, 1H), 5.01 (s, 2H), 6.82 (m, 2H), 6.90 (m, 2H), 7.13-7.27 (m, 4H), 7.29- 7.47 (m, 5H).

(iii) Methyl 2-chloro-3-[4-[2-(4-hydroxyphenoxy)ethyl]phenyl]propanoate

5 Methyl 3-(4-{2-[4-(benzyloxy)phenoxy]ethyl}phenyl)-2-chloropropanoate (1.0g, 2.4mmol) and dimethyl sulfide (0.9g, 14mmol) was dissolved in 60ml CH₂Cl₂. Boron trifluoride etherate (2.0g, 14mmol) was added dropwise to the stirred solution. The reaction mixture was stirred for two days at room temperature. Another equivalent (0.4g, 2.87mmol) boron trifluoride etherate was added and the stirring was continued overnight.

10 Water was added. The phases were separated and the aqueous phase was extracted twice with CH₂Cl₂. The organic phases were pooled, washed (water, brine), dried (Na₂SO₄) and evaporated under reduced pressure. Futher purification by preparative HPLC using a gradient of CH₃CN/ 5% CH₃CN-waterphase containing 0.1M NH₄OAc gave 0.55g of the desired product (yield 52%) as an oil.

15 ¹HNMR (400MHz, CDCl₃): 3.04 (t, 2H), 3.16 (dd, 1H), 3.35 (dd, 1H), 3.75 (s, 3H), 4.10 (t, 2H), 4.40 (t, 1H), 6.75 (m, 4H), 7.12-7.29 (m, 4H).

(iv) Methyl 2-chloro-3-[4-(2-{4-[(methylsulfonyl)oxy]phenoxy}ethyl)phenyl]propanoate

Methyl 2-chloro-3-[4-[2-(4-hydroxyphenoxy)ethyl]phenyl]propanoate (334mg, 1.0mmol) and triethylamine (303mg, 3.0mmol) was dissolved in 20ml dichlormethane and cooled to

20 -20°C under nitrogen atmosphere. Methanesulfonyl chloride (114mg, 1.0mmol) was added dropwise. The mixture was allowed to reach room temperature. After 2 hours dichlormethane was added, the mixture was washed (water, brine), dried (Na₂SO₄) and evaporated under reduced pressure to yield 394mg pure product (yield 96%).

¹HNMR (400MHz, CDCl₃): 3.02-3.11 (m, 5H), 3.15 (dd, 1H), 3.35 (dd, 1H), 3.74 (s, 3H), 4.14

25 (t, 2H), 4.44 (t, 1H), 5.29 (s, 2H), 6.88 (d, 2H), 7.14-7.25 (m, 6H).

(v) Methyl 2-(2-[4-(benzyloxy)phenyl]ethyl)thio)-3-[4-(2-{4-[(methylsulfonyl)oxy]phenoxy}ethyl)phenyl]propanoate

2-[4-(Benzyl)oxy]phenyl]ethanethiol (334mg, 1.4mmol), methyl 2-chloro-3-[4-(2-{4-

[(methylsulfonyl)oxy]phenoxy}ethyl)phenyl]propanoate (394mg, 0.95mmol) and potassium

30 carbonate (189mg, 1.4mmol) were dissolved in 14ml dry DMF and stirred under nitrogen atmosphere at room temperature overnight. The solvent was evaporated under reduced pressure and the residue was dissolved in toluene. The organic phase was washed (water, brine), dried (MgSO₄) and evaporated. Futher purification by preparative HPLC using a

gradient of CH₃CN/5% CH₃CN-waterphase containing 0.1M NH₄OAc gave 477mg of the desired product (yield 75%).

¹HNMR (400MHz, CDCl₃): 2.76-2.89 (m, 4H), 2.95 (dd, 1H), 3.09 (m, 5H), 3.20 (dd, 1H), 3.53 (m, 1H), 3.70 (s, 3H), 4.15 (t, 2H), 5.06 (s, 2H), 6.91 (m, 4H), 7.07-7.24 (m, 8H), 7.31-
5 7.48 (m, 5H).

(vi) Methyl 2-{[2-(4-hydroxyphenyl)ethyl]thio}-3-[4-(2-{4-[(methylsulfonyl)oxy]-phenoxy}ethyl)phenyl]propanoate

To a solution of methyl 2-({2-[4-(benzyloxy)phenyl]ethyl}thio)-3-[4-(2-{4-[(methylsulfonyl)oxy]phenoxy}ethyl)phenyl]propanoate (477mg, 0.8mmol) and 15ml dichlormethane, dimethyl sulfide (239mg, 3.8mol) and boron trifluoride etherate (545mg, 3.8mmol) were added. After 18 hours of stirring water was added to the reaction. The phases were separated and the aqueous phase was extracted twice with dichlormethane. The organic phases were pooled, dried (MgSO₄) and evaporated under reduced pressure.

274mg of the desired product (yield 67%) was obtained as an oil.

¹HNMR (400MHz, CDCl₃): 2.70-2.85 (m, 4H), 2.91 (dd, 1H), 3.05 (t, 2H), 3.10 (s, 3H), 3.17 (dd, 1H), 3.49 (m, 1H), 3.68 (s, 3H), 4.13 (t, 2H), 6.72 (d, 2H), 6.87 (d, 2H), 6.99 (d, 2H), 7.10-7.22 (m, 6H)

(vii) 2-{[2-(4-Hydroxyphenyl)ethyl]thio}-3-[4-(2-{4-[(methylsulfonyl)oxy]-phenoxy}ethyl)phenyl]propanoic acid

Methyl 2-{[2-(4-hydroxyphenyl)ethyl]thio}-3-[4-(2-{4-[(methylsulfonyl)oxy]phenoxy}-ethyl)phenyl]propanoate (105mg, 0.2mmol) was dissolved in 6.5ml of a 7:1 mixture of THF and water and cooled on an ice-bath. Lithium hydroxide (9.4mg, 0.4mmol) was added. Water was added to the reaction mixture after 24 hours of stirring at room temperature. The THF was evaporated under reduced pressure and the residue was acidified with 1M hydrochloric acid. The water phase was extracted with EtOAc (x3), the organic phases were pooled, washed (water, brine), dried (MgSO₄) and evaporated. The crude product was purified using preparative HPLC (eluent: CH₃CN / 5% CH₃CN-waterphase containing 0.1M NH₄OAc) to give 74mg of the desired product (yield 97%) as an oil.

¹HNMR (400MHz, CDCl₃): 2.68-2.95 (m, 5H), 3.05 (t, 2H), 3.10 (s, 3H), 3.17 (dd, 1H), 3.47 (m, 1H), 4.12 (t, 2H), 6.70 (d, 2H), 6.86 (d, 2H), 6.97 (d, 2H), 7.12-7.21 (m, 6H).

¹³CNMR (100MHz, CDCl₃): 33.8, 35.1, 35.5, 37.2, 37.3, 48.1, 69.3, 115.6, 115.8, 123.3, 129.3, 129.4, 129.9, 132.3, 136.2, 136.9, 142.8, 154.4, 158.0, 177.2.

(viii) (-)2-{[2-(4-hydroxyphenyl)ethyl]thio}-3-[4-(2-{4-[(methylsulfonyl)oxy]phenoxy}-ethyl)phenyl]propanoic acid

The racemate of 2-{[2-(4-hydroxyphenyl)ethyl]thio}-3-[4-(2-{4-[(methylsulfonyl)oxy]phenoxy}ethyl)phenyl]propanoic acid was separated into its enantiomers using chiral chromatography. A Chiralpak AD JDB01+ AS003 (336 x 100 mm i.d.) and ethanol/formic acid 100/0.01% was used as mobile phase. The racemate (9 g) was dissolved in ethanol and injected onto the column. The first eluting peak was collected and UV-detected. The product (4.1 g) was obtained with an enantiomeric purity >99%. The optical rotation was found to be [α]²⁰_D = -33° by dissolving the enantiomer in methanol to give a concentration of 0.64 g/100ml. The optical rotation was measured at 20 °C using the sodium line at 589 nm. The (+) enantiomer is isolated subsequently from the column and is used as a starting material for the racemisation reaction.

¹H NMR (500 MHz, CD₃OD): 7.17-7.22 (6H, m), 6.99 (2H, d), 6.94 (2H, d), 6.69 (2H, d), 4.17 (2H, t), 3.46 (1H, t), 3.16 (3H, s), 3.13 (1H, dd), 3.05 (2H, t), 2.69-2.88 (5H, m).

15

Example 1

1,8 Diazabicyclo[5.4.0]undec-7-ene (DBU) (4.11g) was added by syringe over 5 minutes to a stirred mixture of (+)-2-{[2-(4-hydroxyphenyl)ethyl]thio}-3-[4-(2-{4-[(methylsulfonyl)oxy]phenoxy}ethyl)-phenyl]propanoic acid (3.83g) , toluene (8.65g) and tetrahydrofuran (44g) followed by the addition of chlorotrimethylsilane (2.24g) by syringe over 5 minutes. The resultant slurry was stirred at room temperature until the reaction was complete (3 hours). 2N Hydrochloric acid (31.2g) was added to the reaction mixture to hydrolyse the TMS ester, followed by brine. After separation of the aqueous layer, further brine was added, and the pH was adjusted to pH 2.5-3.5 by the addition of 1M sodium bicarbonate solution. The aqueous layer was separated and the organic layer was distilled at atmospheric pressure to remove water. Ethanol was added and a vacuum distillation carried out to remove THF and give a solution of racemic 2-{[2-(4-hydroxyphenyl)ethyl]thio}-3-[4-(2-{4-[(methylsulfonyl)oxy]phenoxy}ethyl)-phenyl]-propanoic acid in ethanol.

30

Claims:

1. A process for the preparation of substantially racemic 2-{[2-(4-hydroxyphenyl)ethyl]thio}-3-[4-(2-{4-[(methylsulfonyl)oxy]phenoxy}ethyl)-phenyl]propanoic acid which comprises reacting 2-{[2-(4-hydroxyphenyl)ethyl]thio}-3-[4-(2-{4-[(methylsulfonyl)oxy]phenoxy}ethyl)phenyl]propanoic acid enriched in one enantiomer with a base in an inert solvent.
2. A process according to claim 1 wherein the acid is converted into an ester prior to 10 racemisation or during the racemisation.
3. A process according to claim 2 wherein the racemised ester is then hydrolysed to give the racemic acid.
- 15 4. A process according to claim 1 comprising reacting 2-{[2-(4-hydroxyphenyl)ethyl]thio}-3-[4-(2-{4-[(methylsulfonyl)oxy]phenoxy}ethyl)phenyl]propanoic acid enriched in one enantiomer with a halosilane in the presence of a nitrogenous base in the presence of an inert solvent at a temperature in the range of 0 to 150°C.
- 20 5. A process for the preparation of substantially racemic 2-{[2-(4-hydroxyphenyl)ethyl]thio}-3-[4-(2-{4-[(methylsulfonyl)oxy]phenoxy}ethyl)-phenyl]propanoic acid which comprises reacting 2-{[2-(4-hydroxyphenyl)ethyl]thio}-3-[4-(2-{4-[(methylsulfonyl)oxy]phenoxy}ethyl)phenyl]propanoic acid enriched in one enantiomer with chlorotrimethylsilane in the presence of 1,8 diazabicyclo[5.4.0] undec-7-ene in the presence of an inert solvent at a 25 temperature in the range of 0 to 150°C.
6. A process according to claim 4 comprising reacting a compound of formula I

enriched in one enantiomer with a chlorosilane of formula $\text{ClSiR}^1\text{R}^2\text{R}^3$ in which R^1 , R^2 , and R^3 independently represent a C₁₋₆ alkyl group or aryl in the presence of a nitrogenous base in the presence of an inert solvent at a temperature in the range of 0 to 150°C to give a compound of formula II

5

in which R^1 , R^2 , and R^3 are previously defined which is hydrolysed to give a racemic compound of formula III

10 7. A compound of formula II

wherein R^1 , R^2 , and R^3 independently represent a C₁₋₆ alkyl group or aryl.

8. A compound of formula IV

INTERNATIONAL SEARCH REPORT

In National Application No
PCT/GB2004/002599

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C07C323/56 A61K31/192

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 C07C A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, BEILSTEIN Data, CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P, X	WO 03/051826 A (ASTRAZENECA UK LTD ; BOIJE ANNA MARIA PERSDOTTER (SE); HOLM PATRIK (SE) 26 June 2003 (2003-06-26) cited in the application *the whole document; in particular, example 2 and the claims*	1-8
A	WO 99/62872 A (ANDERSSON KJELL ; ASTRA AB (SE)) 9 December 1999 (1999-12-09) *page 4, claims 1 and 5-11*	1-8
A	WO 99/62871 A (BOIJE MARIA ; INGHARDT TORD (SE); ANDERSSON KJELL (SE); ASTRA AB (SE)); 9 December 1999 (1999-12-09) *examples 1, 43 and 44*	1-8
	-/-	

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

& document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

23 August 2004

15/11/2004

Name and mailing address of the ISA

Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Lorenzo Varela, M.J.

INTERNATIONAL SEARCH REPORT

Inventor Application No
PCT/GB2004/002599

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 95/21162 A (MERCK & CO INC) 10 August 1995 (1995-08-10) the whole document -----	1-8
X	DATABASE WPI Section Ch, Week 198641 Derwent Publications Ltd., London, GB; Class B05, AN 1986-233725 XP002293308 & JP 61 197530 A (MITSUBISHI GAS CHEM CO INC) 1 September 1986 (1986-09-01) abstract -----	1-8

INTERNATIONAL SEARCH REPORT

In **International Application No**
F11, GB2004/002599

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
WO 03051826	A	26-06-2003	WO	03051826 A1		26-06-2003
WO 9962872	A	09-12-1999	AT	246674 T		15-08-2003
			AT	251130 T		15-10-2003
			AU	752261 B2		12-09-2002
			AU	4667199 A		20-12-1999
			AU	752262 B2		12-09-2002
			AU	4667299 A		20-12-1999
			BR	9910921 A		06-03-2001
			BR	9910928 A		13-02-2001
			CA	2333938 A1		09-12-1999
			CA	2334374 A1		09-12-1999
			CN	1311772 T		05-09-2001
			CN	1312795 T		12-09-2001
			DE	69910203 D1		11-09-2003
			DE	69910203 T2		17-06-2004
			DE	69911770 D1		06-11-2003
			DE	69911770 T2		19-08-2004
			DK	1084103 T3		17-11-2003
			DK	1084102 T3		02-02-2004
			EE	200000720 A		15-04-2002
			EE	200000725 A		17-06-2002
			EP	1084103 A1		21-03-2001
			EP	1084102 A1		21-03-2001
			ES	2205844 T3		01-05-2004
			ES	2209457 T3		16-06-2004
			HK	1035711 A1		02-01-2004
			HR	20000782 A1		30-06-2001
			HU	0103226 A2		28-01-2002
			HU	0103376 A2		29-05-2002
			ID	28833 A		05-07-2001
			ID	29457 A		30-08-2001
			JP	2002516899 T		11-06-2002
			JP	2002516900 T		11-06-2002
			JP	2004043480 A		12-02-2004
			NO	20006115 A		07-02-2001
			NO	20006116 A		02-02-2001
			NZ	508452 A		30-05-2003
			NZ	508453 A		30-06-2003
			PL	344681 A1		19-11-2001
			PL	345205 A1		03-12-2001
			PT	1084103 T		31-12-2003
			PT	1084102 T		27-02-2004
			RU	2214999 C2		27-10-2003
			WO	9962872 A1		09-12-1999
			WO	9962871 A1		09-12-1999
			SI	1084103 T1		31-12-2003
			SI	1084102 T1		29-02-2004
			SK	17682000 A3		06-08-2001
WO 9962871	A	09-12-1999	AT	261429 T		15-03-2004
			AT	251130 T		15-10-2003
			AU	4667099 A		20-12-1999
			AU	752262 B2		12-09-2002
			AU	4667299 A		20-12-1999
			BR	9910913 A		06-03-2001
			BR	9910921 A		06-03-2001
			CA	2334107 A1		09-12-1999

INTERNATIONAL SEARCH REPORT

In	International Application No
PCT/GB2004/002599	

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9962871	A	CA 2334374 A1 CN 1312795 T CN 1311769 T DE 69911770 D1 DE 69911770 T2 DE 69915470 D1 DK 1084101 T3 DK 1084102 T3 EE 200000717 A EE 200000725 A EP 1084101 A1 EP 1084102 A1 ES 2209457 T3 HU 0103226 A2 ID 28164 A ID 29457 A JP 2002516898 T JP 2002516899 T NO 20006114 A NO 20006116 A NZ 508453 A PL 344681 A1 PL 344682 A1 PT 1084102 T WO 9962870 A1 WO 9962871 A1 SI 1084102 T1 SK 17672000 A3 SK 17692000 A3 TR 200003543 T2 TR 200003583 T2 TW 446694 B TW 548263 B US 6630600 B1 US 6362360 B1 ZA 200006771 A ZA 200006773 A AT 246674 T	09-12-1999 12-09-2001 05-09-2001 06-11-2003 19-08-2004 15-04-2004 14-06-2004 02-02-2004 15-08-2001 17-06-2002 21-03-2001 21-03-2001 16-06-2004 28-01-2002 10-05-2001 30-08-2001 11-06-2002 11-06-2002 02-02-2001 02-02-2001 30-06-2003 19-11-2001 19-11-2001 27-02-2004 09-12-1999 09-12-1999 29-02-2004 06-08-2001 10-05-2001 20-04-2001 21-05-2001 21-07-2001 21-08-2003 07-10-2003 26-03-2002 20-05-2002 20-02-2002 15-08-2003
WO 9521162	A 10-08-1995	AT 206407 T AU 691878 B2 AU 1696795 A BR 9506727 A CA 2180947 A1 CZ 9602272 A3 DE 69523038 D1 DE 69523038 T2 EP 0741712 A1 ES 2161863 T3 FI 963054 A HU 76303 A2 JP 9508628 T NZ 279734 A RO 118292 B1 RU 2135482 C1 SK 100696 A3 TW 472047 B WO 9521162 A1	15-10-2001 28-05-1998 21-08-1995 23-09-1997 10-08-1995 15-01-1997 08-11-2001 06-06-2002 13-11-1996 16-12-2001 01-08-1996 28-07-1997 02-09-1997 27-05-1998 30-04-2003 27-08-1999 05-03-1997 11-01-2002 10-08-1995

INTERNATIONAL SEARCH REPORTI onal Application No
PCT/GB2004/002599

Patent document cited in search report	Publication date		Patent family member(s)	Publication date
WO 9521162	A	US	5663341 A	02-09-1997
JP 61197530	A	01-09-1986	DE 3683512 D1	05-03-1992
			EP 0193113 A1	03-09-1986
			US 4918196 A	17-04-1990