煤矿井下钻进过程煤岩强度感知与 操作参数优化

汇报人: 曾康慧

指导老师: 吴 敏 教 授

陆承达 教 授

目录

第一部分

研究内容及任务

- 基于钻柱动力学的煤岩强度感知模型
 - □ 煤矿井下钻进过程与工艺分析
 - □ 钻柱扭向-轴向耦合动力学模型
 - □ 基于固有比能的煤岩强度感知算法
- > 基于模糊推理的操作参数优化方法
 - 模糊推理系统设计
 - 模糊推理系统实现与仿真
- > 煤矿作业现场应用
 - □ 操作参数优化系统
 - □ 地面实验情况

图1 煤矿井下钻进过程的示意图

第二部分

研究方案和主要措施

> 研究方案

研究方案

- 基于钻柱动力学的煤岩强度感知模型
 - □ 煤矿井下钻进过程与工艺分析
 - ✓ 扭转动力学
 - ✓ 轴向动力学
 - ✓ 钻头-岩石相互作用
 - □ 钻柱扭向-轴向耦合动力学模型
 - ✓ 集总参数方法
 - ✓ 有限元思想
 - □ 基于固有比能的煤岩强度感知算法
 - ✓ 固有比能值越大表示煤岩强度越高
 - ✓ 固有比能值越小则表示煤岩强度越低

研究方案

- 基于模糊推理的操作参数优化方法
 - □ 钻进过程煤岩强度评价指标设计
 - ✓ 基于固有比能
 - □ 模糊推理系统
 - ✓ 模糊推理隶属度函数
 - ✓ 模糊推理规则
- > 煤矿现场应用实验
 - □ 操作参数优化系统
 - □ 现场实验方案设计
 - □ 现场实验及结果分析

第三部分

- > 基于钻柱动力学的煤岩强度感知模型
 - □ 钻柱扭向-轴向耦合动力学模型

$$M\dot{v} = F_a - F_m - W - f,$$

- ✓ ν为孔口的给进速度
- ✓ *M* 为钻柱的总重量,可表示为:

$$M = \sum_{i=1}^n M_i,$$

- ✓ Mi 为每一个钻柱单元的质量
- ✓ n 为钻柱单元的总数量
- ✓ F_a 为液压系统输出的轴向给进压力 $F_a = P_{in}S$,
- ✓ Pin为给进液压油缸的给进压力
- ✓ S为液压油缸的有效面积

图2 钻机给进系统结构图

- 基于钻柱动力学的煤岩强度感知模型
 - □ 基于固有比能的煤岩强度感知算法

$$M\dot{v} = F_a - F_m - W - f$$
,

- ✓ F_m 为弯曲的钻柱在竖直方向上的重力分量 $F_m = \sum_{i=1}^{n} M_i g \cos \theta_i$,
- ✔ θ_i是每一个钻柱单元的弯曲倾角
- ✓ f为钻柱受到的摩擦力 $f = f_v + f_c$,
- ✓ f_v 是粘性摩擦力 $f_v = k_f v$,
- ✓ f_c 是库伦摩擦力 $f_c = \sum_{i=1}^n M_i g(\sin \theta_i \mu B_f Sign(v))$,
- \checkmark W是孔底作用于钻头的给进阻力 $W = 2r\varepsilon(\frac{\pi\zeta v}{2} + \ell)$

图3 钻柱受力示意图

$$\varphi$$
 \checkmark ε 为固有比能,用于描述钻头所破碎煤岩的强度
$$\varepsilon = \frac{(F_a - M\dot{v} - f - F_m)}{2r(\frac{\pi\zeta v}{\dot{\varphi}} + \ell)},$$

12

- ▶ 基于钻柱动力学的煤岩强度感知模型
 - □ 基于固有比能的煤岩强度感知算法验证
 - ✓ 验证数据集:安徽淮北许图疃矿场2025年3月6日钻进数据
 - ✓ 钻进深度: 60-70m
 - ✓ 钻进参数: 动力头给进压力、动力头给进速度、动力头转速、煤岩类型等
 - ✓ 数据量: 165985条
 - ✓ 钻进现场的岩屑进行煤岩强度分析:砂岩>煤矸石>煤

- > 基于钻柱动力学的煤岩强度感知模型
 - □ 基于固有比能的煤岩强度感知算法验证
 - ✓ 当固有比能下降时,此时的地层有极大可能为煤层

图4 煤岩强度感知验证

- 基于模糊推理的操作参数优化方法
 - □ 模糊推理系统

✓ 输入: 煤岩强度、给进压力, 扭矩

✓ 输出: 动力头转速、给进速度

✓ 算法:模糊推理系统

图7 煤岩强度隶属度函数

图6 操作参数优化系统

图8 给进压力模糊隶属度函数

- 基于模糊推理的操作参数优化方法
 - □ 模糊推理规则

表1 给进速度变化量的模糊推理规则

当前煤岩强 度	机身抖动程度	给进速度变化 量
非常低	非轻微	减小
低	严重	减小
中等	轻微	增大
中等	中等	不变
中等	严重	减小
高	轻微	增大
高	中等	不变
高	严重	减小
非常高	非轻微	减小

表2 转速变化量的模糊推理规则

当前煤岩强度	钻孔清洁程度	动力头转速变 化量
非常低	非高	增大
低	非高	增大
中等	高	减小
中等	中等	不变
中等	低	增大
高	低	增大
非常高	低	增大

- 煤矿作业现场应用
 - □ 操作参数优化系统
 - ✓ 以Qt上位机的形式与全液 压坑道钻机进行数据交互
 - ✓ 基础通讯层
 - ✓ 智能钻探层
 - ✓ 人机交互层

图9 操作参数优化系统的程序架构

第四部分

下一步研究计划

▶ 研究进度安排

- □ 2025.04.02~2025.04.30 模糊推理系统实现与仿真
- □ 2025.05.01~2025.05.10 完成仿真实验和现场实验验证
- □ 2025.05.11~2025.05.25 撰写毕业论文,完成毕业设计验收
- □ 2025.05.26~2025.06.06 完善毕业论文研究工作,制作毕业论文、汇报PPT并答辩

谢谢 恳请老师批评指正!