Homework 1

Jason Jiang CS 577

February 1, 2019

Question 1. Explain for each procedure why it works or does not work. If the procedure does not work, provide an example input on which it fails; otherwise, give a correctness proof.

• Algorithm 0

Claim: This algorithm is correct.

Loop invariant: For all n > 2 we have $F_0(n-m) = i$; $F_0(n-m+1) = j$; $F_0(n-m+2) = k$

Base case: For inputs of 0, 1, 2, the outputs are 0, 1 and 1, respectively. So this is correct.

Induction Hypothesis: $F_0(l)$ is correct for all values of $l \le n$, where $n, l \in \mathbb{N}$ Inductive Step:

let $F_0(3l)$ is correct for all values until n, where l is the number of iterations.

So
$$i_l = F_0(3l), j_l = F_0(3l+1), k_l = F_0(3l+2)$$

then, for $F_0(3(l+1))$, we have:

$$i_{l+1} = j_l + k_l = F(3(l+1))$$
,

$$j_{l+1} = i_{l+1} + k_l = F(3(l+1) + 1)$$
 and

$$k_{l+1} = i_{l+1} + j_{l+1} = F(3(l+1) + 2).$$

It holds true for the Fibonacci formula.

Also, if the actual input n is $n \mod 3 = 0$, the m will be 0 eventually and will return i_l , then n+1 will return $i_{l+1} = j_l$, which satisfies the Fibonacci formula. Likewise we could have correct answer on the situations that equals 1 and 2.

Soundness: for each valid input, the program will return correct value.

Termination: the program will terminate after m;3, and with every valid input n;0, it will definitely terminate because the m is deducted by 3 every loop. It will not cause an infinte loop.

• Algorithm 1

Claim: This algorithm is incorrect.

Counterexample: When n = 3, the output is 3.

However, the result should be 2.

Hence, the algorithm is not correct.

• Algorithm 2

Claim: This algorithm is incorrect.

Counterexample: When n = 3, the output is 1.

However, the result should be 2. Hence, the algorithm is not correct.

• Algorithm 3

Claim: This algorithm is incorrect.

Counterexample: When n = 3, the output is 1.

However, the result should be 2. Hence, the algorithm is not correct.