CloudSim实验展示

小组成员: 柳建国、卞景亮

目录

- 1、实验原理
- 2、模型简化
- 3、算法建模
- 4、参数配置
- 5、实验结果

实验原理

云计算的任务调度主要包括两个方面:

- 一是数据中心为任务分配合理的虚拟资源,是任务和虚拟资源的映射;
- 二是数据中心为虚拟机的建立调用合适的物理资源,是<mark>虚拟机和物理资源的</mark>映射;

本次实验关注前者。 本次实验关注点

CloudSim工作方式

模型简化

任务i在虚拟机i上执行完毕所需时间为:

$$T_{run}(i,j) = \frac{T_i(mips)}{V_j(mips)}$$

 虚拟机j执行速度

任务i传输到虚拟资源节点i所需要时间为:

$$T_{tran}(i,j) = \frac{T_i(filesize)}{V_j(bw)}$$
 任务i数据量大小 虚拟机j带宽

虚拟机i完成任务i所需全部时间为:

$$T_{sum}(i,j) = T_{run}(i,j) + T_{tran}(i,j)$$

系统处理完所有子任务所需时间为:

$$T_{cost} = max(\sum_{i=1}^{m} T_{sum}(i,j))$$
 目标函数

算法建模-遗传算法

遗传算法建模:

编码:

假设总共有n个子任务和m个虚拟机;

染色体总长度即为子任务个数n;

染色体每一位取值范围为[0, m-1];

适应度函数: 系统处理完所有子任务

所需时间。

选择操作: 轮盘赌法选择可以遗传的

下一代染色体。

交叉操作:两点交叉方式

变异操作: 变异概率5%

停止准则: 迭代次数500次

算法建模-贪心算法

Min-Min算法

传统的 Min-Min 启发式云计算任务调度算法采用先易后难的 策略,先执行完成时间短的 任务,然后执行完成时间长的任 务,并采取贪心策略把每个任务优先指派给执行它最早完成 的计算资源。

Max-Min算法

传统的 Max-Min 启发式云计算任务调度算法则恰恰相反,采用先难后易和贪心策略, 每次选取完成时间最长的任务,再执行完成时间短的任务,并采取贪心策略把每个任务优先 指派给执行它最早完成的计算资源。

参数配置

虚拟机参数信息

序号	MIPS	带宽
0	278	1000
1	289	1200
2	132	1100
3	209	1200
4	286	900

云任务参数信息

任务数量	任务指令长度	任务文件长度
40	19365, 49809, 30218, 44157, 16754, 26785, 12348, 28894, 33889, 58967, 35045, 12236, 20085, 31123, 32227, 41727, 51017, 44787, 65854, 39836, 18336, 20047, 31493, 30727, 31017, 30218, 44157, 16754, 26785, 12348, 49809, 30218, 44157, 16754, 26785, 44157, 16754, 26785, 12348, 28894	30000, 50000, 10000, 40000, 20000, 41000, 27000, 43000, 36000, 33000, 23000, 22000, 41000, 42000, 24000, 23000, 36000, 42000, 46000, 33000, 23000, 22000, 41000, 42000, 50000, 10000, 40000, 20000, 41000, 10000, 40000, 20000, 41000, 27000, 30000, 50000, 10000, 40000, 20000, 20000, 17000
100/150/ 200/300/ 400/500	随机分布在 1000~5000 ,设置随机种子,让每一次产生相同的随机数。	随机分布在 10000~30000 ,设置随机种子,让每一次产生相同的随机数。

实验结果

任务执行时间

虚拟机任务均衡度

Thank You

中国科学院深圳先进技术研究院 SHENZHEN INSTITUTE OF ADVANCED TECHNOLOGY

HENZHEN INSTITUTE OF ADVANCED TECHNOLOGY CHINESE ACADEMY OF SCIENCES