Problema Análisis Matemático II

Patricia Córdoba Hidalgo

20 de febrero de 2018

Estudiad la convergencia puntual y uniforme de la sucesión de funciones f_n definidas en [0,1] mediante

$$f_n(x) = x - x^n$$

para todo $x \in [0, 1]$.

Convergencia puntual:

Sea $f_n(x) = x - x^n \ \forall x \in [0,1]$, la función f a la que converge puntualmente f_n es:

$$f = \begin{cases} & \text{x si } x \in [0, 1) \\ & 0 \text{ si } x = 1 \end{cases}$$

Demostración:

$$x = 0 \Rightarrow 0 - 0^n = 1 \ \forall n \in \mathbb{N}$$

$$x = 1 \Rightarrow 1 - 1^n = 1 \ \forall n \in \mathbb{N}$$

$$x \in (0,1) \Rightarrow \lim_{n \to \infty} x - x^n = \lim_{n \to \infty} x - \lim_{n \to \infty} x^n$$

Como
$$x \in (0,1)$$
, $\lim_{n \to \infty} x = x$ y $\lim_{n \to \infty} x^n = 0$, luego $\lim_{n \to \infty} x - x^n = x \ \forall x \in (0,1)$

Convergencia uniforme:

Como converge puntualmente, y que converja uniformente implica que converja puntualmente, el único candidato a límite de f_n es f. Sin embargo, por un teorema, sabemos que f_n converge uniformemente y f_n es continua $\Rightarrow f$ es continua. Como f no es continua y f_n es continua, entonces f_n no puede converger uniformemente.