データベース第8回

第8章 正規化理論 一高次の正規化一

第2正規形

リレーションスキーマRが第2正規形であるとは次の2つの条件を満たすときをいう

- 1.Rは第1正規形である
- 2.Rの全ての非キー属性はRの各候補キーに完 全関数従属している

注: 非キー属性とは、いかなる候補キーにも属していない属性

高次の正規化:更新時異状解消のため

- リレーションスキーマ中の属性に関する性質
 - 候補キー
 - 多値従属性
 - 関数従属性, 完全関数従属 など
- ・ 正規形の定義
 - 上の性質を利用
 - 正規形を満たさないリレーションスキーマがあれば、満たすように情報無損失に分解する=更新時異状解消

完全関数従属性

- 関数従属性X→Yで、Xの任意の真部分集合 X'(X'⊂X)についてX'→Yは成立しないとき、Y は X に完全関数従属(fully functionally dependent)しているという
- 第2正規形における二つ目の条件は重要! 例えば、すべての候補キーがシングル属性 の場合は、二つ目の条件は必ず成り立つ

4

第2正規形でないリレーション

注文

顧客名	商品名	数量	単価	金額
A商店	テレビ	3	198,000	594,000
Bマート	テレビ	10	198,000	1,980,000
Bマート	洗濯機	5	59,800	299,000
C社	餅つき機	1	29,800	29,800

F={f₁:{顧客名, 商品名}→数量,

f₂:商品名→単価, f₃:{商品名, 数量}→金額,

f_a:{数量, 単価}→金額, f₅:{数量, 金額}→単価,

f_c:{単価, 金額}→数量}

主キー(候補キー)は{顧客名, 商品名} 非キー属性は, 数量, 単価, 金額 単価は, f₂より, 商品名(⊂候補キー)に関数従属 ∴第2正規形ではない 更新時異状 (update anomaly, 更新不整合)

÷÷∀

顧客名	商品名	数量	単価	金額
A商店	テレビ	3	198,000	594,000
Bマート	テレビ	10	198,000	1,980,000
Bマート	洗濯機	5	59,800	299,000
C社	餅つき機	1	29,800	29,800

•タップル挿入時異状

•(-, 電子レンジ, -, 74,800, -)を挿入←キー制約から, 無理!

・タップル削除時異状

•(C社, 餅つき機, 1, 29,800, 29,800) ←重要なデータの喪失!

•タップル修正時異状

•テレビの単価を198,000 から 148,000 に変更←修正大変!

•C社からの注文を、餅つき機から洗濯機に変更←重要なデータの喪失!

第2正規形でないリレーション

注文

顧客名	商品名	数量	単価	金額
A商店	テレビ	3	198,000	594,000
Bマート	テレビ	10	198,000	1,980,000
Bマート	洗濯機	5	59,800	299,000
C社	餅つき機	1	29,800	29,800

F={f₁:{顧客名, 商品名}→数量,

f₂:商品名→単価, f₃:{商品名, 数量}→金額,

f₄:{数量, 単価}→金額, f₅:{数量, 金額}→単価,

f₆:{単価, 金額}→数量}

fっを使って、

注文[顧客名, 商品名, 数量, 金額]と注文[商品名, 単価] に情報無損失分解すると、第2正規形となる.

更新時異状は解消される!

- ・タップル挿入時異状
- •(-, 電子レンジ, -, 74,800, -)を挿入←キー制約から, 無理!
- •タップル削除時異状

•(C社. 餅つき機. 1. 29.800. 29.800) ←重要なデータの喪失!

- •タップル修正時異状
 - •テレビの単価を198.000 から148.000 に変更←修正大変!
 - •C社からの注文を, 餅つき機から洗濯機に変更←重要なデータの喪失!

注文(=注文[顧客名, 商品名, 数量, 金額])

顧客名	商品名	数量	金額
A商店	テレビ	3	594,000
Bマート	テレビ	10	1,980,000
Bマート	洗濯機	5	299,000
C社	餅つき機	1	29,800

商品(=注文[商品名, 単価])

商品名	単価
テレビ	198,000
洗濯機	59,800
餅つき機	29,800

注文=注文[顧客名, 商品名, 数量, 金額]*注文[商品名, 単価]

これらの異状はなぜ?

- リレーション社員では、非キー属性の勤務地 が主キーの社員番号に直接に関数従属して おらず、社員番号に推移的に関数従属してい るから
- 1.社員番号→所属
- 2.所属→勤務地
- 3.社員番号→勤務地

第2正規形だが第3正規形でない

社員番号	社員名	給与	所属	勤務地
0650	山田太郎	50	K55	神奈川
1508	鈴木花子	40	K41	東京
0231	田中桃子	60	K41	東京
2034	佐藤一郎	40	K55	神奈川
2100	高橋次郎	40	K58	静岡

社員番号→社員名 社員番号→給与 社員番号→所属 所属→勤務地

主キーは社員番号

- •タップル挿入時異状
 - •(-, -, -, K45, 千葉) ←無理!
- •タップル削除時異状
 - ・(2100, 高橋次郎, 40, K58, 静岡) ←重要なデータの喪失!
- •タップル修正時異状
 - •K41の部門の所在地を東京から千葉へ←修正大変!
 - •高橋次郎さんの部門をK58からK55へ←重要なデータの喪失。

情報無損失分解

社員番号 社員名 給与 所属 勤務地 山田太郎 50 K55 神奈川 1508 鈴木花子 40 K41 東 京 0231 田中桃子 60 K41 東 京 2034 佐藤一郎 40 K55 神奈川 2100 高橋次郎 40 K58 静 岡 属性名のアンダーラインは主キーを表す

社員番号→社員名 社員番号→給与 社員番号→所属 所属→勤務地 (社員番号→勤務地)

社員[社員番号, 社員名, 給与, 所属] 社員[所属, 勤務地] 社員名 給与 所属 鈴木花子 40 K41 田中桃子 60 K41 2034 佐藤一郎 40 K55 2100 高橋次郎 40 K58

K55 神奈川 K41 東 京 K58 静 岡

(b) 関数従属性 所属 → 勤務地によるリレーション 社員 の情報無損失分解

情報無損失分解

社員番号	社員名	給与	所属
0650	山田太郎	50	K55
1508	鈴木花子	40	K41
0231	田中桃子	60	K41
2034	佐藤一郎	40	K55
2100	高橋次郎	40	K58

社員[所属, 勤務地 所属 勤務地 K55 神奈川 K41 東 京 K58 静 岡

- •タップル挿入時異状
 - •(-, -, -, K45, 千葉) ←無理!
- •タップル削除時異状
 - •(2100, 高橋次郎, 40, K58, 静岡) ←重要なデータの喪失!
- •タップル修正時異状
 - •K41の部門の所在地を東京から千葉へ←修正大変!
 - •高橋次郎さんの部門をK58からK55へ←重要なデータの喪失。!

第3正規形

リレーションスキーマRが第3正規形であるとは次の二つの条件を満たすときをいう

- 1.Rは第2正規形である
- 2.Rの全ての非キー属性はRのいかなる候補 キーにも推移的に関数従属しない

14

第3正規形

- 推移的関数従属性が多段に及ぶ場合、たとえば、R(A,B,C,D)でA→B, B→C, C→Dとあった場合、R[A,B,C]とR[C,D]の後に、R[A,B], R[B,C]の分解が必要
- データベース設計では、第3正規形にまで正 規化するのが普通

第2正規形と第3正規形

- 両方とも, 関数従属性を見つけて分解することが重要
- 違いは
 - 第2正規形:候補キーの真部分集合に注目して 関数従属性を見つけて、そこで分解
 - 第3正規形: キー以外の部分に注目して関数従属性を見つけて、そこで分解

17

3NFだがBCNFでない時の更新時異状

- ・タップル挿入時異状
 - •(-, コンピュータグラフィックス, 佐藤祐子) ←無理!
- ・タップル削除時異状
 - ・(伊藤三郎、ソフトウェア、西川博之) ←重要なデータの喪失!
- •タップル修正時異状
 - •ソフトウェアの担当を西川博之から青木康に変更←修正大変!
 - •(伊藤三郎, ソフトウェア, 西川博之)を
 - (伊藤三郎, ハードウェア, 喜多川優)に修正←重要なデータの喪失! 19

3NFだがBCNFでない

- •1人の学生が同一科目をそれを教授している 複数の教員から受けることはない
- •ある一つの科目を教えている教員は複数いることはある
- •その中の誰か1人の先生を選んで学生は履修する
- •1教員が複数の科目を教えることはできない

非キー属性がないため、これは第3正規形を満たす

候補キー: {学生名, 科目名} {学生名, 教員名}

18

ボイスコッド正規形

リレーションスキーマRがボイス-コッド正規形であるとは次の条件が成立するときをいう:

X→YをRの関数従属性とするとき

- 1. X→Yは自明な関数従属性であるか、または
- 2.XはRのスーパキーである

注:自明な関数従属性とは、X→Yを関数従属性と するとき、Y=のかY⊆Xのときをいう

第4正規形

リレーションスキーマRが第4正規形であるとは次の条件を満たしているときをいう:

X→YをRの多値従属性とするとき

- 1. X→Yは自明な多値従属性であるか、または
- 2.XはRのスーパキーである

注:自明な多値従属性とは, X→Y|Zを多値従属性としたとき, Z=ΦかY⊆Xのときをいう

第4正規形

フライト

フライト番号	クル一名	乗客名
55	Р	Α
55	S	Α
55	Р	В
55	S	В
55	Р	С
55	S	С
505	P'	A'
505	S'	A'

•タップル挿入時異状

- •61便のクルーP"のデータ挿入<u>無理</u> •55便のクルーS"のデータ挿入大変
- ・タップル削除時異状
 - 505便のA'の予約のキャンセル大変505便のクルーのデータがなくなり困る
- ・タップル修正時異状
 - •55便のクルーPがP""に変更大変
 - •505便の乗客A'が55便に変更困る

これらの解消には、多値従属性 フライト番号→ウルー名|乗客名を使用して フライト[フライト番号、クルー名]と フライト[フライト番号、乗客名]に分解 すればよい

第5正規形

- 結合従属性
 - 2分解可能ではないが、3分解可能
 - 一般に、n分解可能なものあり
 - 自然結合をとると元に戻る従属性
 - 2分解の場合, 多値従属性
- ・ 自明でない結合従属性をなくすと第5正規形

