

WIRELESS NETWORKS

Gentian Jakllari - Toulouse INP-ENSEEIHT Département Sciences du Numérique gentian.jakllari@toulouse-inp.fr

Main Topics

- Architectures for wireless and/or mobile networks
- Research & Engineering challenges
- State of the art and IEEE Standards
- Practice in an open-source simulator: ns-2

Goals

- Familiarize with the state of the art in wireless and mobile networks
- Get to know the main technologies, standards and bodies that dominate the wireless industry
- Get to know the fundamental engineering challenges
- Get to know the solutions and their limitations
- Practice key concept on an open-source simulator

A quick poll -- live.voxvote.com PIN: 91758

- Does RTS/CTS solve the hidden terminal problem?
- Does RTS/CTS solve the exposed terminal problem?

Why Wi-Fi?

- Freedom from wires at home, campus, work, airport, café, etc. while being connected to the Internet at speeds up to 54 Mbps
- Wi-Fi is used by over 700 million people
- Over 4 million and counting Wi-Fi hotspots around the world

What is Wi-Fi?

- Wi-Fi is the brand name for products using the IEEE 802.11 family of standards
- Supports two architectures:

WLAN Architecture

Ad-hoc (Peer-to-Peer)
Architecture

WLAN Architecture

- A special station Access Point is static and connected to the internet through wires
- The other stations the Clients are free to move and connect to the Internet by giving their data to the Access Point
- All the clients communicate with the AP wirelessly on the same frequency/channel multiple access channel

The Main Engineering Challenge in WLANs

- How can <u>multiple</u> stations communicate efficiently with a <u>single</u> Access Point while using the <u>same</u> channel?
 - Formally defined as the problem of Medium Access Control
- Why is it challenging?
 - 1. The Access Point can only hear from one station at a time
 - If two stations transmit to the AP at the same time, the respective transmissions will collide and get destroyed

MAC for Wireless LANs

They seem like LANs (except the medium is wireless), why not adopt the tried and proven Ethernet?

Sharing a common medium

Ethernet ⇒ CSMA/CD

congestion at the receiver = congestion at the transmitter (Just have to wait a little)

Sharing a wired medium

- Signal power levels: everywhere almost the same
- Avoid/detect collisions: relying on what it is receiving (CSMA/CD)

Sharing a wireless medium

Hidden terminal scenario

- Signal power levels not everywhere the same due to pathloss
- If A (D) does carrier sensing while D (A) is transmitting it will sense nothing and it will transmit the wrong decision!

Exposed terminal scenario

- · There is no collision at the receivers, A and E
- If C (D) does carrier sensing while D (C) is transmitting it will decide to defer --- the wrong decision (C&D are exposed terminals)

A Quick Conclusion

- CSMA in wireless networks:
 - Sometime it tells you to transmit when you should not (hidden terminal)
 - Sometime it tells you to not transmit when you should (exposed terminal)
- CD
 - Physically impossible

The Emergence of MACA, MACAW, & IEEE 802.11

- Wireless MAC proved to be non-trivial
- 1992 research by Karn (MACA)
- 1994 research by Bhargavan (MACAW)
- Led to IEEE 802.11 committee
 - The standard was ratified in 1999

RTS/CTS: Addressing the Hidden Node

- MACA: Multiple Access with Collision Avoidance
- If node C has data to transmit, it first transmits a Request-to-Send (RTS) to the AP. The RTS includes the duration of the pending data packet.
- The *AP* greenlights *C* by replying with a Clear-to-Send (CTS).
- A receives the CTS causing it to defer for the duration of the packet

RTS/CTS: Addressing the Hidden Node

- MACA: Multiple Access with Collision Avoidance
- If node C has data to transmit, it first transmits a Request-to-Send (RTS) to the AP. The RTS includes the duration of the pending data packet.
- The *AP* greenlights *C* by replying with a Clear-to-Send (CTS).
- A receives the CTS causing it to defer for the duration of the packet
- C transmits the data safely to the access point (AP)

RTS/CTS: Addressing the Exposed Node

- If the AP1 has data to transmit, it first sends a Request-to-Send (RTS) to A.
- AP2 receiving an RTS not addressed at him, defers from transmitting enough for the recipient to send a CTS.
- Node A transmits a Clear-to-Send (CTS). The CTS echoes the data packet duration B intends to transmit

RTS/CTS: Addressing the Exposed Node (?)

- If the API has data to transmit, it first sends a Request-to-Send (RTS) to A.
- AP2 receiving an RTS not addressed at him, defers from transmitting enough for the recipient to send a CTS.
- Node A transmits a Clear-to-Send (CTS). The CTS echoes the data packet duration B intends to transmit
- AP2 receives the RTS but did not receive the CTS- it cannot cause a collision - and therefore it's free to transmit to node B

IEEE 802.11 MAC: CSMA/CA

- Combination of carrier sensing with collision avoidance
 - CSMA before transmitting an RTS (or data if no RTS/CTs)
- ARQ: Automatic Request Acknowledgment
 - The recipient of data packet sends an ACK to the sender
 - Unlike Ethernet
- Truncated binary exponential backoff for handling congestion
 - Just like Ethernet

Answer on live.voxvote.com PIN: 91758

- ARQ in IEEE 802.11 is unnecessary -- Etherenet does no include one
 - Agree
 - Strongly agree
 - Disagree
 - Strongly disagree

Answer on live.voxvote.com PIN: 91758

- ARQ in IEEE 802.11 is unnecessary TCP can take care of reliability
 - Agree
 - Strongly agree
 - Disagree
 - Strongly disagree

IEEE 802.11 MAC

- Before transmitting an RTS, a node invokes the CS mechanism to determine the busy/idle state of the medium
- A node will defer until the channel is sensed free period of time equal to DIFS
- After DIFS idle time, the node generates a random backoff counter
- For every time slot for which the channel is free the backoff counter is reduced by 1, otherwise it stays unchanged
- Once the backoff counter reaches 0 the node is free to transmit

Answer on live.voxvote.com PIN: 91758

- Is RTS/CTS Always Beneficiary?
 - Yes
 - No

Frame Spacing in IEEE 802.11

SIFS (Short Interframe Space)= RxRFDelay + RxPLCPDelay + MACProcessingDelay +

RxTxTurnaroundTime

- SlotTime = aCCATime + aRxTxTurnaroundTime + aAirPropagationTime + aMACProcessingDelay
- DIFS(DCF Interframe Space) = SIFS + 2 x SlotTime

IEEE 802.11 MAC

- The Carrier Sensing mechanism is not invoked for the the following packets:
 - CTS
 - DATA-ACK
 - DATA packet when RTS/CTS is enabled
- All these packets are sent as soon as physically possible (SIFS time from receiving a respective packet)

Packet Exchange In Detail

- A node wanting to transmit a data, invokes the CS mechanism and transmits an RTS
- 2. If it receives a CTS it sends the Data packet
- Otherwise it backs off and goes back to step 1. up to a limited number of times
- 4. Upon receiving a CTS a node sends a Data
- 5. If the data is acknowledged > success!
- Otherwise it goes back to step 1. for up to a limited number of times
- If the limit on the RTS or DATA retries is reached the MAC gives up and drops the packet
- After the successful transmission of a data packet the node has to backoff before transmitting another packet

What about Multicast/broadcast?

Backoff in IEEE 802.11

- Backoff Time = Random() x SlotTime
- Random() = Pseudo-random integer drawn from [0,CW], where CWmin ≤ CW < Cwmax
- The CW is initialized at CWMin and is doubled every time there is no CTS for an RTS or there is no ACK for a DATA -> Why?
- Once it reaches CWmax the CW does not increase anymore
- The CW is reset to CWmin after receiving a CTS or ACK or a packet is dropped.

Example of a Backoff Race

 The node drawing the smallest Contention Window wins the race and gets to transmit first

What about Multicast/broadcast?

QOS IN IEEE 802.11 (WI-FI)

What is QoS?

- Quality of service is the ability to:
 - Provide different priorities to different applications, users, or data flows or
 - 2. To *guarantee* a certain level of performance to a data flow

Answer on live.voxvote.com PIN: 91758

Can IEEE 802.11:

- 1. Provide different priorities to different applications, users, or data flows?
- 2. Guarantee a certain level of performance to a data flow?

IEEE 802.11e: QoS Amendment

- An approved amendment that defines QoS enhancements through modifications to the MAC layer
- DCF -> Enhanced distributed channel access (EDCA)
 - Use shorter CW counter for higher priority traffic
 - Transmit opportunity (TXOP): a node winning the backoff race is free to transmit frames continuously for a up to a TXOP period
 - No need for a backoff between packet transmissions

IEEE 802.11e Parameters

AC	CWmin	CWmax	AIFSN	Max TXOP
Background (AC_BK)	31	1023	7	0
Best Effort (AC_BE)	31	1023	3	0
Video (AC_VI)	15	31	2	3.008ms
Voice (AC_VO)	7	15	2	1.504ms
Legacy DCF	15	1023	2	0

IEEE 802.11 RATE CONTROL

Wi-Fi PHY

802.11 protocol	Release ^[1]	Freq. (GHz)	Bandwidth (MHz)	Data rate per stream (Mbit/s) ^[2]	Allowable MIMO streams	Modulation						
_	Jun 1997	2.4	20	1, 2	1	DSSS, FHSS						
a	Sep 1999	5 3.7 ^[A]	20	6, 9, 12, 18, 24, 36, 48, 54	1	OFDM						
b	Sep 1999	2.4	20	1, 2, 5.5, 11	1	DSSS						
g	Jun 2003	2.4	20	6, 9, 12, 18, 24, 36, 48, 54	1	OFDM, DSSS						
		2.4/5	20	7.2, 14.4, 21.7, 28.9, 43.3, 57.8, 65, 72.2 ^[B]	4							
n Oct 2009	Oct 2009		2.4/3	2.470	2.470	2.4/5	2.4/5	2.4/5	2.4/3	40	15, 30, 45, 60, 90, 120, 135, 150 ^[B]	_
	Dec 2012			20	up to 87.6 ^[4]		OFDM					
		5	40	up to 200 ^[4]	8							
ac			80	up to 433.3 ^[4]								
			160	up to 866.7 ^[4]								
ad	~Feb 2014	2.4/5/60		up to 6912 (6.75Gb/s)								

Questions on the PHY

- 1. Why so many rates?
- 2. Which rate do the stations use?

Radio Channel

- The radio channel is different
 - Extremely harsh environment compared to "wired" or guided media
 - Channel is time variant because of
 - Movement of people changes reflection
 - Switching off and on of interference
 - Movement of mobile terminals changes the distance
 - Sensitivity to a variety of other factors like "Fading" and "Multipath"

Radio Channel

- Path loss
- Interference
- Shadowing
- Multipath receiving multiple reflections of the original signal that will interfere with each other
- Interference from other operators on the same frequency (microwaves use the same frequency as wi-fi)
- All of these can change fast when the nodes are mobile!

Why so many rates in Wi-Fi

- The quality of the signal between any pair of Wi-Fi stations can vary greatly
 - Distance
 - Environment (shadowing, multipath)
- The better the signal the higher a rate can be used

Rate Control

- Problem: The access point wants to transmit to A and B.
 - What rate should it use with A?
 - What rate should it use with B?
- Why is it challenging
 - The AP does not know the conditions of the links to A and B
 - A and B may be moving, which would change the channel conditions and therefore the right bit-rate to use

Auto Rate Fallback (ARF)

- When the ARF algorithm starts for a new destination, it selects the initial bit-rate to be the highest possible bit-rate.
- ARF adjusts the bit-rate for the destination based on the following criteria:
 - Move to the next lowest bit-rate if a packet was dropped (i.e., never ACKed)
 - Move to the next highest bit-rate if 10 successive transmissions have occurred without any retransmissions.
 - Otherwise, continue at the current bit-rate.
- Weakness: only reacts to packet drops not retries!

Onoe

- The first open source bit-rate selection algorithm designed to work with 802.11b, 802.11g, and 802.11a devices
- Tries to find the highest bit-rate that has less than 50% loss rate
- For each individual destination, the Onoe algorithm keeps track of the current bit-rate for the link and the number of credits that bit-rate has accumulated
 - It only keeps track of these credits for the current bit-rate and increments the credit if it is performing with very little packet loss
- Once a bit-rate has accumulated a threshold value of credits, Once will increase the bit-rate
- If a few error conditions occur, the credits will be reset and the bit-rate will decrease

Onoe

- Initially, set the rate to a destination to the highest. It also sets the number of credits for that bit-rate to 0.
- Periodically (1/sec by defaul) perform the following for every destination
 - Move to the next lower rate if:
 - No packets have succeeded
 - If 10 or more packets have been sent and the average number of retries per packet was greater than one
 - If the current bit-rate has 10 or more credits, increase the bit-rate
 - If more than 10% of the packets needed a retry, decrement the number of credits (minimum 0)
 - If less than 10% of the packets needed a retry, increment the number of credits
 - Otherwise continue at the current rate.

Once Performance

 Customized for 802.11b where the throughput of the next lowest bit-rate is usually half the current bit-rate

Once Performance

It won't work well for 802.11a: perfect 24 Mbps is better than 70% 36 Mbps

Once Performance

- Onoe is conservative: once it decides a bitrate will not work, it will not attempt to step up again until at least 10 seconds have gone by
- It can take time to stabilize: It will only step down one bit-rate during each period
 - It can take a few seconds before the Onoe algorithm can send packets if it starts at a bitrate that is too high for a given link.

Receiver Based Auto-Rate (RBAR)

- Chooses the bit-rate based on SNR measurements at the receiver
- When a receiver gets an RTS packet, it calculates the highest bit-rate that would achieve a BER less than 10⁻⁵ based on the SNR of the RTS packet
- The receiver piggybacks on the CTS packet the rate the sender should use to send the data packet
- Weakness: It may not be possible to compute the best rate based on the SNR

Opportunistic Auto-Rate (OAR) Answer on live.voxvote.com PIN: 91758

Approximately, how many Mbps is the AP receiving, on average?

Conditions:

- All stations are using IEEE 802.11 (no QoS)
- A and B transmit as possible as the MAC allows packets of equal size
- AP, A and B are all in each other's range (no hidden terminals)
- Ignore overhead due to bakcoff, RTS/CTS, ACK

Opportunistic Auto-Rate (OAR)

- The intuition behind OAR is that channel coherence times typically exceed multiple packet transmission times
 - By taking advantage of high link qualities when they appear, channel throughput can be increased
- OAR uses the RTS/CTS exchange for rate control purposes (like RBAR)
- Grant each sender the same amount of time in the CTS as the transmission time of a packet at the base rate
 - The sender can send multiple packets at a high bitrate in the same time that one transmission would take at a lower bit-rate.

SAMPLERATE

Design Principles

- A bit-rate selection algorithm cannot conclude that higher bit-rates will perform poorly just because lower bit-rates perform poorly
- The bit-rate that achieves the most throughput may suffer from a significant amount of loss. Algorithms that only use bit-rates with high delivery probability may not find the bit-rate that achieves the highest throughput
- Link conditions may change. Failing to react to changes in link conditions could result in needlessly low throughput
- A bit-rate selection algorithm that constantly measured the throughput of every bit-rate would likely achieve low throughput.

General Approach

- SampleRate sends data at the bit-rate that has the smallest predicted average packet transmission time, including time required to recover from losses
 - Predicts the estimated packet transmission time by averaging the transmission times of previous packet transmissions at a particular bit-rate
- Periodically send packets at a bit-rate other than the current bit-rate to gather information about other bit-rates
- Reduce the number of bit-rates to sample by eliminating bit-rates that could never send at higher rates than the current bit-rate that is being used.

SampleRate

- Start at the highest possible rate
- Stop using a bit-rate after four successive drops
- Every tenth data packet pick a random bit-rate from the set of bit-rates that may do better than the current one and sends the packet using that bit-rate instead of the current one
- A bit-rate is not eligible to be sampled if
 - Four recent successive packets at that bit-rate have been unacknowledged or
 - Its lossless transmission time (without any retries) is greater than the average transmission time of the current bit-rate
 - Calculate the average transmission time over packets that were sent within the last 10 seconds

SampleRate: Example in Practice

	Destination	Bit- rate	Tries	Packets Ack'ed	Succ. Fails	Total TX Time	Avg TX Time	Lossless TX Time
	00:05:4e:46:97:28	11	16	0	4	250404	∞	1873
(00:05:4e:46:97:28	5.5	100	100	0	297600	2976	2976
/	00:05:4e:46:97:28	2	0	0	0	0	-	6834
	00:05:4e:46:97:26	1	0	0	0	0	-	12995
	00:0e:84:97:07:50	11	28	14	0	52654	3761	1873
	00:0e:84:97:07:50	5.5	50	46	0	148814	3235	2976
	00:0e:84:97:07:50	2	0	0	0	0	-	6834
	00:0e:84:97:07:50	1	0	0	0	0	-	12995

- Destination 00:05:4e:46:97:28 has the properties that 11 megabits delivers no packets and all packets sent at 5.5 megabits are acknowledged successfully without retries
- The first few packets sent on this link at 11 megabits failed, and once the Successive-Failures column reached 4 it stopped sending packets at 11 megabits. It then proceeded to send 100 packets at 5.5 megabits
- Packets were never sent at 1 or 2 megabits because their lossless transmission time is higher than the average transmission time for 5.5 megabits

SampleRate: Example in Practice

	Destination	Bit- rate	Tries	Packets Ack'ed	Succ. Fails	Total TX Time	Avg TX Time	Lossless TX Time
	00:05:4e:46:97:28	11	16	0	4	250404	∞	1873
	00:05:4e:46:97:28	5.5	100	100	0	297600	2976	2976
	00:05:4e:46:97:28	2	0	0	0	0	-	6834
	00:05:4e:46:97:28	1	0	0	0	0	-	12995
	00:0e:84:97:07:50	11	28	14	0	52654	3761	1873
(00:0e:84:97:07:50	5.5	50	46	0	148814	3235	2976
\	00:0e:84:97:07:50	2	0	0	0	0	-	6834
	00:0e:84:97:07:50	1	0	0	0	0	-	12995

- Destination 00:0e:84:97:07:50 has the properties that packets sent at 11 megabits require a retry before being acknowledged, and packets sent at 5.5 megabits require no retries 90% of the time and one retry otherwise.
- SampleRate starts at 11 megabits and then sends the 10th packet at 5.5 megabits
- After the first 5.5 megabit packet required no retries, SampleRate determined that
 5.5 megabits is the better rate
- It still sent at 11 megabits once every 10 packets to see if performance has improved at that bit-rate.

Computing the Transmission Time

Attempt	Average Back-off
1	155
2	315
3	635
4	1275
5	2555
6	5115
7	5115
8	5115

$$tx_time(b,r,n) = difs + backoff(r) + (r+1) * (sifs + ack + header + (n*8/b)) + (sifs + ack + header + (n*8$$

b: bit-rate, r: number of retries, n: packet size

Evaluation - RoofNet Project

- 38 nodes distributed over 6 km²
- Each node consists of a PC with an 802.11b card connected to an omni antenna mounted on the roof
 Intersil Prism 2.5 chip-set
- The cards use 802.11b channel 3 with transmission power +23dBm(200mV)
- The antenna provides 8dBi of gain with 20-degree -3dB vertical beam-width

Evaluation - RoofNet Project

- Each bit-rate selection algorithm runs for 30 sec on every link on the testbed
- During the 30 sec the transmitters sends 1500byte unicast packets as fast as it could
- To have a basis of comparison, the unicast throughput for each bit-rate was measured over every link
- The maximum throughput achieved for all the bit-rates on a link is referred to as best-static throughput

Evaluation - RoofNet Project

Rate Control

- All the rates control algorithms are for unicast traffic
 - They all require feedback from the receiver
- What about the broadcast traffic?