GVPT728 Project Final Code

Yael Beshaw

2025-01-23

Download Potentially Necessary Packages

```
library(tidyverse)
library(tidycensus)
library(dplyr)
library(readr)
library(readxl)
library(haven)
library(ggfortify)
library(car)
library(huxtable)
library(lmtest)
library(ggdist)
library(fixest)
library(sandwich)
library(lmtest)
library(lme4)
library(modelsummary)
library(tableone)
library(knitr)
```

Import Original Dataset

hints6 <- read_sav("/Users/yaelbeshaw/R Scripts and Projects/NYU-APSTA-GE-2011/HINTS6_SPSS/hints6_publi

Variables of Interest for this Study

Dependent Variable

 $Health\ Information\mbox{-}Seeking\ Behaviors\mbox{:}$

Electronic2_HealthInfo: "In the past 12 months, have you used the Internet to look for health or medical information?" (Binary)

Independent Variable

Frequency of Internet Usage:

SocMed_Visited: Frequency of visiting social media sites in the past 12 months (ordinal or categorical).

Controls

Internet Access

Type of internet access

- 1. Internet_DialUp
- 2. Internet_HighSpeed
- 3. Internet Cell

Device ownership or access

HAVEDEVICE CAT

Access Satisfaction

InternetConnection: Satisfaction with internet connection for health-related needs (ordinal scale).

Health Literacy:

ConfidentInternetHealth: "How confident are you that you can find helpful health resources on the Internet?" (Ordinal scale)

Trust in Information:

MisleadingHealthInfo: "How much of the health information that you see on social media do you think is false or misleading?" (Ordinal scale)

Health Status:

EverHadCancer

MedConditions_Diabetes, MedConditions_HighBP, MedConditions_HeartCondition, MedConditions LungDisease, MedConditions Depression

Demographics:

Age; Age and AgeGrpB

Gender; BirthGender

Race; RaceEthn5

Educational attainment; EducA

Geographic: CENSDIV

Urban vs Rural; PR_RUCA_2010: USDA 2010 Primary Rural-Urban Community Area Code

Economic Factors:

Income: HHInc

Employment: WorkFullTime(R4) How many children: ChildrenInHH

Stratum Classification

STRATUM

HR High minority rural area HU High minority urban area LR Low minority rural area LU Low minority urban area

Household ID

HHID

Select Variables

```
select_data <- hints6 |>
  select(Electronic2_HealthInfo, #binary 1 or 2 *done
         UseInternet, #binary 1 or 2 *done
         SocMed_Visited, # 1 to 5 (every day to never) --flip *done
         Internet_DialUp, # binary 1 or 2 *done
         Internet_HighSpeed, # binary 1 or 2 *done
         Internet_Cell, # binary 1 or 2 *done
         HAVEDEVICE_CAT, #recode 4 as 0 *done
         InternetConnection, # 1 to 5 (extremely satisfied to not at all) -flip *done
         ConfidentInternetHealth, #1 to 5 (completely confident to not at all) -flip *done
         MisleadingHealthInfo, #1 to 5 (a lot to none (4), I dont use social (5)) -flip with 1 =0 *done
         EverHadCancer, #dummy- healthstatus *done
         MedConditions_Diabetes, #dummy - healthstatus *done
         MedConditions_HighBP, #dummy- healthstatus *done
         MedConditions_HeartCondition, #dummy - healthstatus *done
         MedConditions_LungDisease, #dummy- healthstatus *done
         MedConditions_Depression, #dummy- healthstatus *done
         Age, #continuous (18 to 99) use AgeGrpB for visualization *done
         BirthGender, # 0 == Male, 1 == Female *done
         RaceEthn5, # NHWhite, NHBlack, Hispanic, NHAsian, NHOther *done
         EducA, # Less than HS, HS, Some College, Collge and Beyond *done
         CENSDIV, # New England, Middle Atlantic, E/W North Central, South Atlantic, E/W South Central,
         PR_RUCA_2010, # Metropolitan, Micropolitian, Small Town, Rural (code 0 or 1) *done
         HHInc, # 1 to 5, increasing *done
         WorkFullTime, # 1 or 2 0,1 *done
         ChildrenInHH, # 0 to 9 *done
         AgeGrpB,
         HHID)
```

Data Preprocessing

Remove any missing data

```
clean_data <- select_data %>%
  mutate(across(everything(), ~ na_if(., -9))) %>%
  mutate(across(everything(), ~ na_if(., -7))) %>%
  mutate(across(everything(), ~ na_if(., -6))) %>%
  mutate(across(everything(), ~ na_if(., -5))) %>%
  mutate(across(everything(), ~ na_if(., -4))) %>%
  mutate(across(everything(), ~ na_if(., -2)))
data <- na.omit(clean_data)
```

Join the new dataset with the stratum assignment using HHID, use later

```
stratum <- hints6 |>
select(HHID,
STRATUM)
```

```
data <- inner_join(data, stratum, by = "HHID")</pre>
```

Recodes

```
#For Binary Variables- Code 1's and 2's to 0 and 1
#DV
data$Electronic2_HealthInfo <- ifelse(data$Electronic2_HealthInfo == 1,</pre>
# Type of Internet
data$Internet_DialUp <- ifelse(data$Internet_DialUp == 1,</pre>
data$Internet_HighSpeed <- ifelse(data$Internet_HighSpeed == 1,</pre>
                                         1, 0)
data$Internet_Cell <- ifelse(data$Internet_Cell == 1,</pre>
#Gender
data$BirthGender <- ifelse(data$BirthGender == 1,</pre>
                                         1, 0)
#Employment
data$WorkFullTime<- ifelse(data$WorkFullTime == 1,</pre>
                                         1, 0)
# Flip the ordinal variables from least to greatest
\#Fr(SM)
data$SocMed_Visited <- factor(data$SocMed_Visited,</pre>
                                   levels = c(5, 4, 3, 2, 1)
levels(data$SocMed_Visited) <- c("1", "2", "3", "4", "5")</pre>
# Internet Connection Satisfaction
data$InternetConnection <- factor(data$InternetConnection,</pre>
                                   levels = c(5, 4, 3, 2, 1)
levels(data$InternetConnection) <- c("1", "2", "3", "4", "5")</pre>
# Confidence in Getting Health Info (Literacy)
data$ConfidentInternetHealth <- factor(data$ConfidentInternetHealth,</pre>
                                   levels = c(5, 4, 3, 2, 1)
levels(data$ConfidentInternetHealth) <- c("1", "2", "3", "4", "5")</pre>
# Trust in Health Info on SM
data$MisleadingHealthInfo <- factor(data$MisleadingHealthInfo,</pre>
                                   levels = c(5, 4, 3, 2, 1)
levels(data$MisleadingHealthInfo) <- c("1", "2", "3", "4", "5")</pre>
```

```
#Recode Variables
# Rural vs Not
data$PR_RUCA_2010 <- ifelse(data$PR_RUCA_2010== 1 |</pre>
                               data$PR RUCA 2010== 4
                               data$PR_RUCA_2010== 7,
                             0,
                             1)
# Any chronic conditions + cancer as a 1 or 0
data$HealthStatus <- ifelse(data$EverHadCancer == 1 |</pre>
                                 data$MedConditions_Diabetes == 1 |
                                 data$MedConditions_HighBP == 1 |
                                 data$MedConditions_HeartCondition == 1 |
                                 data$MedConditions_LungDisease == 1 |
                                 data$MedConditions_Depression == 1,
                                 1,
                                 0)
# Devices, none is 0 and multiple is 4 instead
data$HAVEDEVICE_CAT <- ifelse(data$HAVEDEVICE_CAT == 4, 0,</pre>
                                   ifelse(data$HAVEDEVICE_CAT == 5, 4,
                                           data$HAVEDEVICE_CAT))
# Turn internet type into one variable
data$InternetAccessType <- NA</pre>
# Assign any combinations as 4 = Multiple
data$InternetAccessType[data$Internet_DialUp == 1 &
                          data$Internet_HighSpeed == 1] <- 4</pre>
data$InternetAccessType[data$Internet_DialUp == 1 &
                          data$Internet_Cell == 1] <- 4</pre>
data$InternetAccessType[data$Internet_HighSpeed == 1 &
                          data$Internet_Cell == 1] <- 4</pre>
# Assign individual categories as their own
data$InternetAccessType[data$Internet_DialUp == 1 &
                          is.na(data$InternetAccessType)] <- 1</pre>
data$InternetAccessType[data$Internet_HighSpeed == 1 &
                          is.na(data$InternetAccessType)] <- 2</pre>
data$InternetAccessType[data$Internet_Cell == 1 &
                          is.na(data$InternetAccessType)] <- 3</pre>
# Recode the number of children, O = None up to 3+
data$ChildrenInHH_recode <- ifelse(data$ChildrenInHH >= 3, 3, as.character(data$ChildrenInHH))
```

Descriptive Statisitics Visualizations

Dependent VAR

```
#DEPENDENT VARIABLE

freq_table <- table(data$Electronic2_HealthInfo)

pie(freq_table,
    main = "In the Past 12 months, \n have you used the Internet to look for \n health or medical information col = c("lightblue", "lightgreen"),
    labels = paste(names(freq_table), "\n", freq_table))</pre>
```

In the Past 12 months, have you used the Internet to look for health or medical information?

Compare the results against how many people use the internet in general

```
freq_table <- table(data$ UseInternet)

pie(freq_table,
    main = "Do you ever go on-line to access the Internet \n or World Wide Web,\n or to send and receiv
    col = c("lightblue", "lightgreen"),
    labels = paste(names(freq_table), "\n", freq_table))</pre>
```

Do you ever go on-line to access the Internet or World Wide Web, or to send and receive e-mail?

Independent VAR

```
freq_table <- table(data$SocMed_Visited)

x_labels <- c("Never \n n=822", "Rarely \n n=279", "Occasionally \n n=366", "Frequently \n n= 589", "Ev

# Create the barplot
barplot(freq_table,
    main = "In the last 12 months, \n how often did you visit a \n social media site?",
    xlab = "Social Media Usage Frequency",
    ylab = "Count",
    col = "lightblue",
    border = "white",
    las = 1,
    ylim = c(0, max(freq_table) + 5),
    names.arg = x_labels)</pre>
```

In the last 12 months, how often did you visit a social media site?

Social Media Usage Frequency

Health Information Related Controls

Table 1: Access Type

Category	Count
Dial-Up	24
High-Speed	706
Cellular	260
Multiple	3215

Table 2: Device Type

Count
85
157
1452
256
2841

How confident are you that you can find helpful health resources on the Internet?

How much of the health information that you see on social media do you think is false or misleading?

Trust in Health Information

Demographic Controls

```
#DEMOGRAPHIC CONTROLS

# Health Status
freq_table <- table(data$HealthStatus)

pie(freq_table,
    main = "Have you ever had Cancer or another Chronic Condition? \n (i.e., Diabetes, High BP, Heart C col = c("lightblue", "lightgreen"),
    labels = paste(names(freq_table), "\n", freq_table))</pre>
```

Have you ever had Cancer or another Chronic Condition? (i.e., Diabetes, High BP, Heart Condition, Lung Disease, Depression

Age Groups of Respondents


```
# SEX at BIRTH
freq_table <- table(data$BirthGender)

pie(freq_table,
    main = "Sex/Gender Assigned at Birth",
    col = c("lightblue", "lightpink"),
    labels = paste(names(freq_table), "\n", freq_table),
    radius = 1,
    cex = 1.2,
    clockwise = TRUE,
    border = "black",
    init.angle = 90
)</pre>
```

Sex/Gender Assigned at Birth

Table 3: Race

Category	Count
NHWHite	2800
NHBlack	755
Hispanic	814
NHAsian	255
NHOthers	167

```
# Education
freq_table <- table(data$EducA)</pre>
```

Table 4: Education

Category	Count
< High School	240
High School Grad	798
Some College	1362
${\rm College\ Grad\ +}$	2391

```
# Rural vs Not
freq_table <- table(data$PR_RUCA_2010)

pie(freq_table,
    main = "Rural vs Not",
    col = c("lightblue", "lightgreen"),
    labels = paste(names(freq_table), "\n", freq_table),
    radius = 1,
    cex = 1.2,
    clockwise = TRUE,
    border = "black",
    init.angle = 180
)</pre>
```

Rural vs Not

of Children Under 18

Economic Controls

Combined Houshold Income Ranges


```
#Full Time Work
freq_table <- table(data$WorkFullTime)

pie(freq_table,
    main = "Do you work full time?",
    col = c("lightblue", "lightgreen"),
    labels = paste(names(freq_table), "\n", freq_table),
    radius = 1,
    cex = 1.2,
    clockwise = TRUE,
    border = "black",
    init.angle = 90
)</pre>
```

Do you work full time?

Stratification Assignment

```
#Stratum Classification

freq_table <- table(data$STRATUM)

pie(freq_table,
    main = "STRATUM ASSIGNMENT",
    col = c("lightblue", "lightgreen", "lightpink", "lightyellow"),
    labels = paste(names(freq_table), "\n", freq_table),
    radius = 1,
    cex = 0.75,
    clockwise = TRUE,
    border = "black",
    init.angle = 270
)</pre>
```

STRATUM ASSIGNMENT

