

Fairness in Collision-Free WLANs

Luis Sanabria-Russo, Jaume Barceló, Boris Bellalta

Universitat Pompeu Fabra, Barcelona, Spain

NeTS research group

Network Technologies and Strategies

Motivation

This section states the general problem: coordinate access to a shared medium, in a distributed manner avoiding collisions.

- What is a contention protocol for?: explain that the medium is shared.
- Highlight that it is widely used by current WiFi devices.
- What are the repercussions of a collision?

CSMA/CA and CSMA/ECA

It might be appropriate to detail the behavior of CSMA/CA and CSMA/ECA. A balls and bins figure?

STA 1	_ 6 5 4 3 2	1 7 6 5	4 3 2 1	7 6 5	5 4 3 2	1	7 6 5 4 3	2 1	7 6
STA 2	11 10 9 8 7	6 5 4 3 2	7 6 5	4 3 2	2 1 7	6 5	4 3 2 1	7 6 5	4 3
STA 3	14 13 12	11 10 9 8 7	6 5 4 3 2	1	5 14 13 12	11 10	9 8 7 6 5	4 3 2	1
STA 4	1 2 1	15 14 13 12 1	1 10 9 8 7 6	5 4 3	3 2 1	15 14	13 12 11 10 9	8 7 6	5 4
Example balls and bins figure.									

Ensuring fairness

This section introduces the hysteresis and fair share concepts.

STA 1	6_54_3_2	1 7 6 5 4 3	2 1 7 6	5 4 3 2	1 7 6 5 4 3 2 1 7 6					
STA 2	11_1 109_8_7	6 5 4 3 2 1	7 6 5 4 3	2 1	6 5 4 3 2 1 7 6 5 4 3					
STA 3	14 13 12	11 10 9 8 7 6 5	4 3 2 1	15 14 13 12	11 10 9 8 7 6 5 4 3 2 1					
STA 4	1 2 1	15 14 13 12 11 10 9	8 7 6 5 4	3 2 1	15 14 13 12 11 10 9 8 7 6 5 4					
Example balls and bins figure.										

Throughput and fairness in CSMA/CA and CSMA/ECA

CSMA/ECA: hysteresis and fair share

Explanation on how the hysteresis and fair share achieve this increase in throughput. Also to mention the resiliency to slot drift.

Future plans

Some of the future directions of the project:

- Unsaturated scenarios.
- To implement IEEE 802.11e EDCA.
- Wireless MAC Processors.
- Implementation in RFID networks.

Average system service time.

References

- [1] Alex Bikfalvi, Jaime García-Reinoso, Iván Vidal, and Francisco Valera. A peer-to-peer iptv service architecture for the ip multimedia subsystem. *International Journal of Communication Systems*, 23(6–7):780–801, June–July 2009.
- [2] T. Qiu, Z. Ge, S. Lee, J. Wang, J. Xu, and Q. Zhao. Modeling user activities in a large iptv system. In *Proceedings of the 9th ACM SIGCOMM conference on Internet measurement conference*, pages 430–441. ACM, 2009.
- [3] T. Qiu, Z. Ge, S. Lee, J. Wang, Q. Zhao, and J. Xu. Modeling channel popularity dynamics in a large iptv system. In *Proceedings of the eleventh international joint conference on Measurement and modeling of computer systems*, pages 275–286. ACM, 2009.