CLASSIFICAÇÃO DOS PONTOS CRÍTICOS DE UMA FUNÇÃO DE \mathbb{R}^2 EM \mathbb{R}

MAT-2454 - CÁLCULO DIFERENCIAL E INTEGRAL II - 2015

RESUMO. Estas notas têm por objetivo fornecer uma demonstração para o critério de classificação de pontos críticos de funções de classe \mathscr{C}^2 , $f:A\to\mathbb{R}$, onde A é um conjunto aberto de \mathbb{R}^2 . A ideia é estabelecer uma conexão entre este resultado com os conteúdos vistos em MAT-2458 – Álgebra Linear II.

1. INTRODUÇÃO

Recordemos que se $f:A\to\mathbb{R}$ é de classe \mathscr{C}^2 , com A aberto de \mathbb{R}^2 , então para cada $(x_0,y_0)\in A$ podemos escrever

(1.1)
$$f(x,y) = P_1(x,y) + E(x,y),$$

onde $P_1(x,y)$ é o polinômio de Taylor de f em torno de (x_0,y_0) e E(x,y) é o erro cometido na aproximação de f(x,y) por $P_1(x,y)$. Sabemos que $P_1(x,y)$ e E(x,y) são dados por

$$(1.2) \quad P_1(x,y) = f(x_0,y_0) + f_x(x_0,y_0)(x-x_0) + f_y(x_0,y_0)(y-y_0)$$

$$(1.3) \quad E(x,y) = \frac{1}{2} \left(f_{xx}(\overline{x},\overline{y})(x-x_0)^2 + 2f_{xy}(\overline{x},\overline{y})(x-x_0)(y-y_0) + f_{yy}(\overline{x},\overline{y})(y-y_0)^2 \right),$$

onde $(\overline{x}, \overline{y})$ está no interior do segmento ligando (x_0, y_0) a (x, y).

Se (x_0, y_0) é um ponto crítico de f, então $\nabla f(x_0, y_0) = (0, 0)$. Usando este fato e substituindo a expressão (1.2) em (1.1) temos que

$$f(x,y) = f(x_0,y_0) + E(x,y).$$

Com isto observamos que se existe uma bola $B_{\epsilon}(x_0, y_0)$, de raio $\epsilon > 0$ e centrada em (x_0, y_0) , tal que $E(x, y) \ge 0$ para todo $(x, y) \in B_{\epsilon}(x_0, y_0)$ então $f(x, y) \ge f(x_0, y_0)$, ou seja, (x_0, y_0) é ponto de mínimo local de f. De modo análogo, se $E(x, y) \le 0$ para todo $(x, y) \in B_{\epsilon}(x_0, y_0)$ então $f(x, y) \le f(x_0, y_0)$, e portanto (x_0, y_0) é ponto de máximo local de f.

Isto nos mostra que o sinal de E(x,y) é quem carateriza a natureza do ponto crítico (x_0,y_0) .

Além disso, podemos escrever a expressão (1.2) na forma matricial da seguinte maneira

$$(1.5) E(x,y) = \frac{1}{2} \begin{bmatrix} x - x_0 & y - y_0 \end{bmatrix} \begin{bmatrix} f_{xx}(\overline{x}, \overline{y}) & f_{xy}(\overline{x}, \overline{y}) \\ f_{xy}(\overline{x}, \overline{y}) & f_{yy}(\overline{x}, \overline{y}) \end{bmatrix} \begin{bmatrix} x - x_0 \\ y - y_0 \end{bmatrix}.$$

Observe que a matriz quadrada na expressão (1.5) acima é simétrica e portanto diagonalizável, com uma base ortonormal de autovetores.

Na seção seguinte estabelecemos alguns resultados da Álgebra Linear utilizando este fato.

Preparado e redigido pelo prof. Alexandre Lymberopoulos – MAT – IME-USP.

2. UM POUCO DE ÁLGEBRA LINEAR

Lema 2.1. Sejam $A = \begin{bmatrix} a & b \\ b & d \end{bmatrix}$ e $D = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$ matrizes semelhantes, ou seja, $A = PDP^{-1}$, onde P é a matriz (ortogonal) de mudança de base entre a base canônica e a base de autovetores de A. Denotando Q(x,y) por

(2.1)
$$Q(x,y) = \begin{bmatrix} x & y \end{bmatrix} A \begin{bmatrix} x \\ y \end{bmatrix}$$

temos que

- (i) se $\lambda_1 \geq 0$ e $\lambda_2 \geq 0$ então $Q(x,y) \geq 0$ para todos $(x,y) \in \mathbb{R}^2$.
- (ii) se $\lambda_1 \leq 0$ e $\lambda_2 \leq 0$ então $Q(x,y) \leq 0$ para todos $(x,y) \in \mathbb{R}^2$.
- (iii) se $\lambda_1 \lambda_2 < 0$ então existem (x,y) e (u,v) em \mathbb{R}^2 tais que Q(x,y) < 0 e Q(u,v) > 0.

Observação 2.1. Q(x,y) é a *forma quadrática* associada à matriz simétrica A. Como P é uma matriz ortogonal, então $P^{-1} = P^t$.

Demonstração: Denotando por $\begin{bmatrix} \tilde{x} & \tilde{y} \end{bmatrix}$ as coordenadas (na base de autovetores de A) do vetor $\begin{bmatrix} x & y \end{bmatrix} P$ temos que

$$Q(x,y) = \begin{bmatrix} x & y \end{bmatrix} A \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x & y \end{bmatrix} PDP^{-1} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \tilde{x} & \tilde{y} \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \begin{bmatrix} \tilde{x} \\ \tilde{y} \end{bmatrix} = \lambda_1 \tilde{x}^2 + \lambda_2 \tilde{y}^2.$$

Com isso é claro que

- (i) se $\lambda_1 \ge 0$ e $\lambda_2 \ge 0$ então $Q(x,y) \ge 0$ para todos $(x,y) \in \mathbb{R}^2$.
- (ii) se $\lambda_1 \leq 0$ e $\lambda_2 \leq 0$ então $Q(x,y) \leq 0$ para todos $(x,y) \in \mathbb{R}^2$.
- (iii) se $\lambda_1\lambda_2<0$, vamos supor $\lambda_1>0$ e $\lambda_2<0$. Basta tomar (x,y) como um autovetor associado a λ_1 (que terá segunda coordenada nula na base de autovetores de A) e então $Q(x,y)=\lambda_1\tilde{x}^2>0$. Analogamente, tomando (u,v) como um autovetor associado a λ_2 e então $Q(u,v)=\lambda_2\tilde{v}^2\leq0$.

O seguinte lema será útil para simplificar a demonstração do resultado que o sucede.

Lema 2.2. Sejam A, B matrizes quadradas. Então $\operatorname{Tr}(AB) = \operatorname{Tr}(BA)$, onde $\operatorname{Tr}(M)$ é o traço de M, ou seja, a soma dos elementos da diagonal principal de M.

Demonstração: Denotando $A=(a_{ij})$ e $B=(b_{i,j})$, com $1 \le i,j \le n$ temos que os elementos c_{ii} , da diagonal principal de AB são dados por

$$c_{ii} = \sum_{j=1}^n a_{ij} b_{ji},$$

e os elementos d_{ii} , da diagonal principal de BA são dados por

$$d_{jj} = \sum_{i=1}^{n} b_{ji} a_{ij}.$$

Claramente Tr $(AB) = \sum_{i=1}^{n} c_{ii} = \sum_{j=1}^{n} d_{jj} = \text{Tr } (BA).$

O resultado a seguir faz uso da tradicional fórmula para o determinante do produto de matrizes, det(AB) = det(A) det(B). Uma demonstração para este fato pode ser encontrada em [Cal, pp.218].

Lema 2.3. Sejam A e B matrizes semelhantes, ou seja, existe P invertível tal que $A = PBP^{-1}$. Então

- (i) det(A) = det(B);
- (ii) $\operatorname{Tr}(A) = \operatorname{Tr}(B)$.

Demonstração:

(i) $\det(A) = \det(PBP^{-1}) = \det(P) \det(B) \det(P^{-1}) = \det(P) \det(B) \det(P)^{-1} = \det(B)$.

(ii)
$$\text{Tr}(A) = \text{Tr}(PBP^{-1}) = \text{Tr}(P^{-1}PB) = \text{Tr}(IB) = \text{Tr}(B)$$
.

Procure entender o significado geométrico da invariância do determinante e do traço mediante mudança de base.

Agora estamos em condições de demonstrar um critério para determinar o sinal de Q(x,y), definido em (2.1), em termos de cálculos simples com os elementos da matriz A. Claramente Q(0,0)=0.

Teorema 2.4 (Critério de Sylvester). *Sejam A* = $\begin{bmatrix} a & b \\ b & d \end{bmatrix}$ *e D* = $\begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$ *semelhantes e Q(x,y) como em (2.1). Então*

- (i) se a > 0 e det $A \ge 0$ então Q(x,y) > 0 para todo $(x,y) \in \mathbb{R}^2$, $(x,y) \ne (0,0)$.
- (ii) se a < 0 e $\det A \ge 0$ então Q(x,y) < 0 para todo $(x,y) \in \mathbb{R}^2$, $(x,y) \ne (0,0)$.
- (iii) se det(A) < 0 existem (x,y) e (u,v) em \mathbb{R}^2 tais que Q(x,y) > 0 e Q(u,v) < 0.

Demonstração: Como A e D são semelhantes, segue-se do lema 2.3 que

$$det(A) = ad - b^2 = \lambda_1 \lambda_2$$
$$Tr(A) = a + d = \lambda_1 + \lambda_2.$$

- (i) se $\det(A) \geq 0$ então $ad b^2 \geq 0$, ou seja $ad \geq b^2 \geq 0$. Como a > 0, temos $d \geq 0$ e portando a + d > 0. Assim $\lambda_1 \lambda_2 = \det(A) \geq 0$ e $\lambda_1 + \lambda_2 = \operatorname{Tr}(A) > 0$, o que só é possível quando $\lambda_1 \geq 0$ e $\lambda_2 \geq 0$, não se anulando simultaneamente.
 - Pela parte (i) do lema 2.1, temos que Q(x,y)>0 para todo $(x,y)\in\mathbb{R}^2$, $(x,y)\neq(0,0)$.
- (ii) se $\det(A) \geq 0$ e a < 0, obtemos de maneira análoga que $d \leq 0$ e portando a + d < 0. Assim $\lambda_1 \lambda_2 = \det(A) \geq 0$ e $\lambda_1 + \lambda_2 = \operatorname{Tr}(A) < 0$, o que só é possível quando $\lambda_1 \leq 0$ e $\lambda_2 \leq 0$, não se anulando simultaneamente.
 - Pela parte (ii) do lema 2.1, temos que Q(x,y) < 0 para todo $(x,y) \in \mathbb{R}^2$, $(x,y) \neq (0,0)$.
- (iii) se det(A) < 0 então $\lambda_1 \lambda_2 < 0$ e segue-se a afirmação da parte (iii) do lema 2.1.

3. DA ÁLGEBRA LINEAR DE VOLTA PARA O CÁLCULO

Agora podemos usar o teorema 2.4 para determinar o sinal de E(x,y), definido em (1.3), em termos de cálculos simples com as segundas derivadas de f, calculadas apenas no ponto crítico (x_0,y_0) . Observe que E(x,y) depende de $(\overline{x},\overline{y})$, que não é obtido explicitamente.

Definição 3.1. Se $f:A\subset\mathbb{R}^2\to\mathbb{R}$ é de classe \mathscr{C}^2 no aberto A então

$$H(x_0, y_0) = \begin{bmatrix} f_{xx}(x_0, y_0) & f_{xy}(x_0, y_0) \\ f_{xy}(x_0, y_0) & f_{yy}(x_0, y_0) \end{bmatrix}$$

é o *hessiano* de f em (x_0, y_0) .

Teorema 3.1 (Classificação dos pontos críticos). *Sejam A* $\subset \mathbb{R}^2$ *um aberto, f* : $A \to \mathbb{R}$ *uma função de classe* \mathscr{C}^2 *e* (x_0, y_0) *um ponto crítico de f. Então,*

- (i) se $f_{xx}(x_0, y_0) > 0$ e det $H(x_0, y_0) > 0$ então (x_0, y_0) é mínimo local de f;
- (ii) se $f_{xx}(x_0, y_0) < 0$ e det $H(x_0, y_0) > 0$ então (x_0, y_0) é máximo local de f;
- (iii) se $\det H(x_0, y_0) < 0$ então (x_0, y_0) é um ponto de sela de f;

Demonstração: Como f é de classe \mathscr{C}^2 então $f_{xx}(x,y)$ e det H(x,y) são funções contínuas. Portanto se estas funções não se anulam em (x_0,y_0) , existe $\epsilon>0$ tal que o sinal de det H(x,y) é o mesmo de det $H(x_0,y_0)$ assim como o sinal de $f_{xx}(x,y)$ é o mesmo de $f_{xx}(x_0,y_0)$, para todo $(x,y) \in B_{\epsilon}(x_0,y_0)$.

Se $(x,y) \in B_{\epsilon}(x_0,y_0)$ então o sinal de E(x,y), determinado por $f_{xx}(\overline{x},\overline{y})$ e det $H(\overline{x},\overline{y})$ é o mesmo da forma quadrática dada pela matriz $H(x_0,y_0)$. Em vista da expressão (1.4), segue-se o resultado.

Observação 3.1. O critério acima não prevê o caso em que det $H(x_0, y_0) = 0$ pois o teorema da conservação do sinal não se aplica neste caso. Mas algo ainda pode ser dito neste caso se sabemos o comportamento de det H e Tr H numa vizinhança do ponto (x_0, y_0) .

Por exemplo, se $\det H(x,y)=0$ e $\operatorname{Tr} H(x,y)>0$ numa vizinhança do ponto (x_0,y_0) então podemos dizer, usando o teorema 2.4 que $E(x,y)\geq 0$ e portanto (x_0,y_0) é ponto de mínimo local de f.

Exercício 1. Tente estabelecer critério semelhante para funções de classe \mathscr{C}^2 definidas em abertos do \mathbb{R}^3 .

REFERÊNCIAS

[Cal] Callioli C.A., Domingues H.H., Costa, R.C.F., Álgebra Linear e Aplicações, 6a. edição, Ed. Atual, 1990.