Diplomvorprüfung

Mathematik 2 für Physik

- **1. Aufgabe.** Gegeben seien die Polynome $P_1(X)$, $P_2(X)$, $P_3(X)$, $Q(X) \in \mathbb{C}[X]$. Der Grad von P_1 soll größer sein als der von P_2 . Es gelte $P_2(X) = X^3 + 2X^2 + X + 2$, $P_3(X) = X^2 + 1$ und $P_1(X) = P_2(X) \cdot Q(X) + 20P_3(X)$. Das Polynom Q(X) ist zunächst noch nicht genauer bestimmt.
 - 1. Man zeige, dass P_3 ein größter gemeinsamer Teiler von P_1 und P_2 ist. (Hinweis: euklidischer Algorithmus).
 - 2. Man faktorisiere $P_2(X)$ in $\mathbb{C}[X]$.
 - 3. Man bestätige, dass $P_1(-2) = 100$ gilt.
 - 4. Man bestimme $P_1(X)$, wenn P_1 den Grad 4 hat und $P_1(2) = P_1(3) = 0$ gilt. Warum ist der Leitkoeffizient (Koeffizient von X^4) von P_1 gleich 1? (Hinweis: Nr. 3).

[12 Punkte]

2. Aufgabe. Seien $a, b \in \mathbb{C} \setminus \{0\}$ mit $b^2 = a$. Man bestimme die Lösungen $z \in \mathbb{C}$ für jede der drei folgenden Gleichungen in der Form cb mit geeigneten Zahlen $c \in \mathbb{C}$.

(1)
$$z^2 = -a$$
, (2) $z^2 = ia$, (3) $z^2 = -ia$.

[5 Punkte]

3. Aufgabe. Für jedes $n \in \mathbb{N}$ sei die Treppenfunktion $\varphi_n : [-1,1] \longrightarrow \mathbb{R}$ durch

$$\varphi_n \left| \left(\left[-1, -\frac{1}{n} \right] \cup \left[\frac{1}{n}, 1 \right] \right) \right| := 1 \quad \text{und} \quad \varphi_n \left| \left[-\frac{1}{n}, \frac{1}{n} \right] \right| := \frac{1}{n}$$

definiert.

1. Warum existiert

$$f(x) := \lim_{n \to \infty} \varphi_n(x)$$
 für jedes $x \in [-1, 1]$?

Man unterscheide die Fälle x=0 und $x\neq 0$. Man berechne die Grenzwerte. Wie lautet die Funktion $f:[-1,1]\longrightarrow \mathbb{R}$?

- 2. Man finde $\|\varphi_n f\|_s$ für $n \in \mathbb{N}$. Konvergiert die Folge (φ_n) gleichmäßig gegen f?
- 3. Ist f eine Treppenfunktion?
- 4. Ist f eine Regelfunktion?

[9 Punkte]

4. Aufgabe. Sei $f:]-\rho, \rho[\longrightarrow \mathbb{R},$

$$f(x) := \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{2k+1}$$

wobei $\rho > 0$ der Konvergenzradius der Potenzreihe ist.

- 1. Man bestimme ρ .
- 2. Man finde die Potenzreihenentwicklung um x = 0 der Funktion f'(x), ermittle deren Grenzwert und bestätige damit $f(x) = \arctan x$.
- 3. Man berechne

$$\lim_{x\to 0} \frac{3\arctan x - 3x + x^3}{x^5} \ .$$

4. Sei $g:\mathbb{R}\longrightarrow\mathbb{R}$ die in x=0 nach Nr.3 stetig ergänzte Funktion

$$g\left(x\right) = \frac{3\arctan x - 3x + x^3}{x^5} \ .$$

- (a) Man ermittle die Taylorreihe $T_{g,0}$ von g mit Entwicklungspunkt x=0.
- (b) Wie lauten die n-ten Ableitungen $g^{(n)}(0)$ für n = 0, 1, 2, ...?
- 5. Sei F die Stammfunktion von $x \longmapsto \arctan x$, die F(0) = 0 genügt.
 - (a) Man berechne F(x) durch partielle Integration..
 - (b) Man ermittle die Taylorreihe $T_{F,0}$.

[18 Punkte]

Hinweis: Für das Bestehen der Prüfung sind 17 der 44 erreichbaren Punkte erforderlich. Ab 37 Punkten wird mit Note 1,0 bewertet.