$1.\ \ {\rm D\acute{e}terminer}\ {\rm le}\ {\rm terme}\ {\rm g\acute{e}n\acute{e}ral}\ {\rm de}\ {\rm la}\ {\rm suite}\ {\rm de}\ {\rm premier}\ {\rm terme}\ u_0=3\ {\rm et}\ {\rm telle}\ {\rm que}\ u_{n+1}=u_n^2\ {\rm pour}\ {\rm tout}\ n\in\mathbb{N}.$ 

2. Soit  $n \in \mathbb{N}^*$ . Calculer  $S = 2 + 4 + 6 + \dots + 2n$ .

3. Soit  $n \in \mathbb{N}^*$ . Calculer  $S = 2 + 4 + 8 + 16 \cdots + 2^n$ .

4. Mettre sous forme algébrique le complexe  $\overline{\left(\frac{5-3\mathfrak{i}}{-2+\mathfrak{i}}\right)}$ .

5. Mettre sous forme trigonométrique le complexe  $-\sqrt{6}+\mathrm{i}\sqrt{2}.$ 

6. Résoudre sur  $[-\pi,\pi]$  l'équation  $\sin(x)\cos(x) = \frac{1}{4}$ .



8. Déterminer les variations de la fonction f telle que 
$$f(x)=(2x^2+2x-31)e^{2x}$$
 pour tout  $x\in\mathbb{R}.$ 

9. A l'aide d'une formule de trigonométrie, déterminer les valeurs exactes de 
$$\cos \frac{\pi}{12}$$
 et  $\sin \frac{\pi}{12}$ .