

**Enseignant**: H. El-Otmany

## L1-MIASH - ALGÈBRE LINÉAIRE I

## FEUILLE DE TRAVAUX DIRIGÉS N° 4



Applications linéaires - Matrices

**A.U.**: 2013-2014

Exercice n°1 En utilisant la définition de l'application linéaire, étudier le caractère linéaire ou non des applications suivantes,  $\mathcal{A}(\mathbb{R})$  désigne l'ensemble des applications de  $\mathbb{R}$  dans  $\mathbb{R}$ .

(a)  $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$  et  $g: \mathbb{R}^3 \longleftrightarrow \mathbb{R}$  définies par :

$$1. f(x, y) = xy$$

$$4. g(x, y, z) = x + 3y - z$$

$$2. f(x,y) = x - 2y$$

$$5. g(x, y, z) = x + 3y - z$$

3. 
$$f(x,y) = x + y - 2$$

6. 
$$g(x, y, z) = 2x - z - \sqrt{2}$$

(b)  $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$  définie par :

$$1. f(x, y) = (2x + y, 0)$$

$$4. f(x,y) = (x - 3, 2x - y)$$

$$2. f(x,y) = (1, x^2 + y^2)$$

5. 
$$f(x, y) = (\max(x, y), \min(x, y))$$

3. 
$$f(x,y) = (2x^3, x^2 + y^2)$$

6. 
$$f(x,y) = (x - y, x + 2yy)$$

(c)  $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$  définie par :

1. 
$$f(x, y, z) = (3x, 2y, 3z - 2x)$$

4. 
$$f(x, y, z) = (3x, y - 2, 0)$$

$$2. f(x, y, z) = (2x + 3, y, z - x)$$

5. 
$$f(x, y, z) = (x^2 + y, z - y, x - z)$$

3. 
$$f(x, y, z) = (x + 2z, y - x, z + 2x - y)$$

6. 
$$f(x, y, z) = (x + y, 0, x + y + 2z)$$

(d)  $\phi: \mathbb{C}^2 \longrightarrow \mathbb{C}, \Phi: \mathcal{A}(\mathbb{R}) \longrightarrow \mathbb{R} \text{ et } \tau: \mathcal{A}(\mathbb{R}) \longrightarrow \mathbb{R} \text{ définies par :}$ 

$$\phi(x,y) = x + iy$$

$$\Phi(f) = f(0)$$

$$\tau(f) = \int_{-1}^{1} f(s)ds$$

Dans cet exercice, on ne considère que les applications qui sont linéaires de l'exercice Exercice n°2 précédent.

1. Déterminer le noyau et l'image de chaque application linéaire. Ces applications linéaires sont-elle injectives? surjectives? bijectives?

Exercice n°3 Soit  $\mathbb{K}[X]$  l'espace vectoriel des polynômes à coefficients réels ou complexes et d'inconnue X. Pour  $n \in \mathbb{N}$ , on considère le sous-espace vectoriel  $\mathbb{K}^n[X] = \{P \in \mathbb{K}[X] | \deg p?n\}$ .

- 1. Est-ce que les applications ci-dessous sont-elles linéaires?
  - (a)  $f_1: \mathbb{R}[X] \longrightarrow \mathbb{R}[X]$  telle que  $f_1(P) = P'$ .
  - (b)  $f_2: \mathbb{R}[X] \longrightarrow \mathbb{R}[X]$  telle que  $f_2(P) = P (X 2)P'$ .
  - (c)  $f_3 : \mathbb{R}[X] \longrightarrow \mathbb{R}^3$  telle que  $f_3(P) = (P(-1), P(0), P(1))$ .
  - (d)  $f_4: \mathbb{R}_3[X] \longrightarrow \mathbb{R}_3[X]$  telle que  $f_4(P) = P'$ .
  - (e)  $f_5: \mathbb{R}[X] \longrightarrow \mathbb{R}[X]$  telle que  $f_5(P) = P XP$ .
  - (f)  $f_6: \mathbb{R}[X] \longrightarrow \mathbb{R}^2$  telle que  $f_6(P) = (P(0), P'(1))$ .
  - (g)  $f_7: \mathbb{C}[X] \longrightarrow \mathbb{C}[X]$  telle que  $f_7(P) = (1 pX)P + X^2P', p \ge 0$ .

2. Déterminer le noyau et l'image des applications linéaires  $f_i$ . Lesquelles des applications  $f_i$  qui sont injectives, surjectives et bijectives?

**Exercice n°4** On pose  $F = \{(x,y,z) \in \mathbb{R}^3 : x+2y-z=0\}$ ;  $G = \{(x,y,z) \in \mathbb{R}^3 : x+y=0 \text{ et } y-z=0\}$ ;  $H = \{(x+y,2x-y,x-3y), x,y \in \mathbb{R}\}.$ 

- 1. Exprimer
  - F comme le noyau d'une application linéaire de  $\mathbb{R}^3$  vers  $\mathbb{R}$ .
  - G comme le noyau d'une application linéaire de  $\mathbb{R}^3$  vers  $\mathbb{R}^2$ .
  - H comme l'image d'une application linéaire de  $\mathbb{R}^2$  vers  $\mathbb{R}^3$ .
- 2. En déduire que F, G et H sont des sous-espaces vectoriels de  $\mathbb{R}^3$ . Déterminer une base de chacun d'eux.

**Exercice n°5** Soient E et F deux K-espaces vectoriels et f et g deux applications K-linéaires de E vers F. On note  $H = \{x \in E : f(x) = g(x)\}$ .

- 1. Exprimer H comme le noyau d'une application linéaire.
- 2. Déduire que H est un sous-espace vectoriel de E.

**Exercice n°6** Soient  $f, g: E \longrightarrow F$  deux applications linéaires. Montrer que  $\operatorname{Ker} f \cap \operatorname{Ker} g \subset \operatorname{Ker}(f+g)$  et que l'inclusion peut être stricte.

On suppose maintenant que F est de dimension finie. Montrer que  $rang(f+g) \leqslant rang(f) + rang(g)$ . Montrer sur un exemple que l'inégalité peut être stricte.

**Exercice n°7** On considère l'application  $f: \mathbb{R}^4 \longrightarrow \mathbb{R}^2$  telle que f(x, y, z, t) = (x - t, y - z - t)

- 1. Justifiez que f est linéaire. Peut-elle être bijective?
- 2. Déterminer une base du noyau.
- 3. Quel est le rang de f et en déduire Im(f).

## Exercice n°8

- 1. Déterminer les noyaux des endomorphismes suivants de  $\mathbb{R}^3$ :  $f:(x,y,z)\longmapsto (x,-y,2z)$  et  $g:(x,y,z)\longmapsto (y,-x,-z)$ .
- 2. Parmi les endomorphismes f, g, f + g, certains sont-ils des automorphismes?

**Exercice n°9** Soit E un espace vectoriel et I l'endomorphisme identique de E. On appelle projecteur de E tout endomorphisme p de E tel que  $p^2 = p$ .

- 1. Démontrer l'équivalence des propositions suivantes où p est un endomorphisme de E :
  - (i) p est un projecteur.
  - (ii) I p est un projecteur.
  - (iii) p(I p) = (I p)p = 0.
- 2. Montrer que si p est un projecteur,  $E = \operatorname{Im} p \oplus \operatorname{Ker} p$ . Bien choisir une base de E et écrire la matrice de p dans cette base.
- 3. On considère l'endomorphisme f de  $E = \mathbb{R}^2$  défini par :

$$f((x,y)) = (x - y, y - x), \quad ((x,y) \in \mathbb{R}^2).$$

Déterminer l'image et le noyau de f. f est-il un projecteur?

**Exercice n°10** On note  $E = \mathbb{R}^2[X]$ , étant donné  $P \in E$ , on pose  $\Phi(P) = XP' - 3P$ .

- 1. Montrer que Phi définit un endomorphisme de E.
- 2. Soit  $aX^2 + bX + c = P \in E$ ; déterminer les coordonnées de P dans la base canonique  $(1, X, X^2)$  de E.
- 3. Déterminer le noyau et l'image de  $\Phi$  et donner une base de chacun de ces sous-espaces. Quel est le rang de  $\Phi$ ?
- 4. Donner la matrice de  $\Phi$  dans la base canonique de E.

## Exercice n°11 Soit

$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \longmapsto \begin{pmatrix} y+z \\ -\frac{1}{2}x + \frac{3}{2}y - \frac{1}{2}z \\ \frac{3}{2}x - \frac{3}{2}y + \frac{1}{2}z \end{pmatrix}$$

- 1. Déterminer la matrice A de f dans la base canonique B de  $\mathbb{R}^3$ .
- 2. On pose  $u_1 = (-1, 0, 1)$ ,  $u_2 = (1, 1, 0)$  et  $u_3 = (1, 0, 0)$ . Montrer que  $B' = (u_1, u_2, u_3)$  est une base de  $\mathbb{R}^3$ .
- 3. Déterminer  $f(u_1)$ ,  $f(u_2)$  et  $f(u_3)$ . En déduire sans plus de calcul la matrice de f dans la base B'.
- 4. Déterminer la matrice de passage de B à B' ainsi que son inverse.

**Exercice n°12** Soit f l'endomorphisme de  $\mathbb{R}^3$  qui admet dans la base canonique la matrice :

$$A = \begin{pmatrix} -1 & 1 & 2 \\ 3 & 3 & 3 \\ -2 & -2 & -2 \end{pmatrix}$$

- 1. Déterminer une base de noyau de f.
- 2. Déterminer une base de l'image de f. Quel est le rang de A.
- 3. Trouver une base où la matrice de f soit :

$$B = \left(\begin{array}{ccc} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{array}\right).$$

4. Calculer  $B^n$  et en déduire  $A^n$ .

Exercice n°13 Déterminer le rang de la matrice A définie par

$$A = \left(\begin{array}{ccccc} 1 & 1 & 2 & 1 & 1 \\ 2 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 2 & 1 \\ 2 & 1 & 1 & 1 & 1 \end{array}\right).$$