Citrus Plant Disease Identification using Deep Learning with Multiple Transfer Learning Approaches

Talha Anwar

Introduction

- Agricultural sector holds a vital role in the Pakistan economy by contributing 19.8% in Pakistan's total GDP. [1]
- Citrus plants covers 33% total fruit production of Pakistan.
- These production can be affected by different diseases.
- Misidentification of leaf disease in the agricultural crop can lead to improper or misuse of insecticides and pesticides, causing loss of the crop, increase in pathogen resistance and environmental effect.
- Machine learning technique has been used to tackle this problem.

Literature Review

Author	No of Classes	Classifier	Accuracy
Deng, 2016	2	SVM	91.93%
Sharif, 2018	5	SVM	90.4 %
Vladimir, 2019	3	Voting	93.33%
Doh, 2019	5	SVM	93.12 %
Singh, 2020	4	LDA	84.3 %

Process followed in above literature papers.

- pre-processing,
- segmentation,
- feature extraction such as color histogram, texture, geometric, statistical features
- feature selection
- and then classification

Motivation

- The previous studies use machine learning which require manual feature extraction and selection to achieve better result.
- Machine learning require less data as compared to deep learning.
- The proposed approach used deep learning convolution neural network for classification of diseases in citrus leaves.

Methodology

Dataset

Disease	Number of images
Black Spot	171
Canker	163
Greening	204
Melanose	13
Healthy	58
Total Images	609

Healthy

• Different images of pepper, potato, tomato leaves diseases

Canker

Melanose

Black Spot

Methodology

Architecture : DenseNet 121

• Image size: 224x224

Augmentation:

- Flipping Images are flipped vertically and horizontally.
- Rotation Images are rotated randomly from 0 to 360 degree.
- Shifting Image pixels are shifted 20% width wise and height wise.
- Brightness Images are brightened 50% and darkened 50%.
- **Zoom** Images are zoomed 10%.

Methodology

- Models
 - Randomly initialized weights base model (BM)
 - ImageNet pretrained weights (IMP)
 - External data pretrained weights model (EPM)
 - ImageNet + external data pretrained weights (IEPM)

Results

Model Performance

Models	Precision	Recall	F1-score	Accuracy
ВМ	0.02	0.20	0.03	0.09
EPM	0.94	0.95	0.95	0.92
IEPM	0.92	0.85	0.88	0.88
IPM	0.89	0.86	0.87	0.82

Conclusion

 Using pretrained weights, better result can be achieved. Though the pretrained models are not exactly trained on same classes dataset under study.

Thank You

Reference

- X. Deng, Y. Lan, T. Hong, J. Chen (2016). Citrus greening detection using visible spectrum imaging and C-SVC. Computers and Electronics in Agriculture, 130, 177-183.
- M. Sharif, MA Khan, Z. Iqbal, M.I. Lali, M.Y. Javed Detection and classification of citrus diseases in agriculture based on optimized weighted segmentation and feature selection, (2018). Computers and electronics in agriculture
- P. Vladimir, M.A. Khan, H. Luo Automatic Orange Fruit Disease Identification Using Visible Range Images (2019). International Symposium on Intelligence Computation and Applications. Springer, Singapore
- B. Doh, D. Zhang, Y. Shen, F. Hussain, R.F. Doh, & K. Ayepah. (2019). Automatic Citrus Fruit Disease Detection by Phenotyping Using Machine Learning. 2019 25th International Conference on Automation and Computing (ICAC).
- H. Singh, R. Rani, S. Mahajan (2020). "Detection and Classification of Citrus Leaf Disease Using Hybrid Features." Soft Computing: Theories and Applications. Springer, Singapore