Could not connect to the reCAPTCHA service. Please check your internet connection and reload to get a reCAPTCHA challenge.

Double-click (or enter) to edit

#Registration No.:1042

#Name:R.Saathvik
#Date:11-10-2022
import numpy as np
import pandas as pd

df=pd.read_csv("/content/Enrollments_28092022.csv")
df

	StudentNo	DEGREE	INTERMEDIATE	SSC	INTERNSHIP
0	1001	8.10	76.0	92.0	Data Science
1	1002	8.10	76.0	92.0	MEAN Stack Web Development
2	1003	7.80	94.6	92.0	MEAN Stack Web Development
3	1004	9.03	89.5	89.0	Data Science
4	1005	8.38	87.0	90.0	MEAN Stack Web Development
292	2188	8.70	94.1	93.0	Data Science
293	2189	8.45	90.0	93.0	Data Science
294	2190	8.40	94.9	98.0	Data Science
295	2191	7.06	90.6	88.0	Cloud Computing Services (AWS)
296	2192	7.50	95.5	95.0	Cloud Computing Services (AWS)

297 rows × 5 columns

#1)IDENTIFY VARIABLES AND THEIR TYPES(QUANTITATIVE (OR)QUALITATIVE)
df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 297 entries, 0 to 296
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	StudentNo	297 non-null	int64
1	DEGREE	297 non-null	float64
2	INTERMEDIATE	297 non-null	float64
3	SSC	297 non-null	float64
4	INTERNSHIP	297 non-null	object

dtypes: float64(3), int64(1), object(1)

memory usage: 11.7+ KB

import matplotlib.pyplot as plt
import statistics as stat

#3)Prepare Histogram for Degree, Inter and 10th Class
plt.hist(df['DEGREE'])
plt.show

plt.hist(df['SSC'])
plt.show

plt.hist(df['INTERMEDIATE'])
plt.show

<function matplotlib.pyplot.show(*args, **kw)>

#5)Find No. of Enrollments for each Internship Program
df['INTERNSHIP'].value_counts()

Data Science	156				
Cloud Computing Services (AWS)	90				
MEAN Stack Web Development					
Name: INTERNSHIP, dtype: int64					

#4)Create Pie-Chart to represent the Enrollments for each Internship Program interncourses=['Data science','web development','aws'] enrollments=[156,51,90] plt.pie(enrollments,labels=interncourses) plt.show

<function matplotlib.pyplot.show(*args, **kw)>

median= 8.0
mode= 7.0

```
#6)Find Measure of Central Tendency: MEAN, MEDIAN, MODE for Degree, Inter and 10th
print("DEGREE")
print("mean=",np.mean(df['DEGREE']))
print("median=",np.median(df['DEGREE']))
print("mode=",stat.mode(df['DEGREE']))

DEGREE
mean= 7.928080808080809
```

```
print("INTERMEDIATE")
print("mean=",np.mean(df['INTERMEDIATE']))
print("median=",np.median(df['INTERMEDIATE']))
print("mode=",stat.mode(df['INTERMEDIATE']))
     INTERMEDIATE
     mean= 88.66262626262626
     median= 90.8
     mode= 95.0
print("SSC")
print("mean=",np.mean(df['SSC']))
print("median=",np.median(df['SSC']))
print("mode=",stat.mode(df['SSC']))
     SSC
     mean= 88.10673400673402
     median= 90.0
     mode= 95.0
#7) Find Measure of Variance: Minimum, Maximum, Range, Mean Deviation, Standard Deviation,
#Variation for Degree, Inter and 10th
cv= lambda x: np.std(x, ddof=1)/np.mean(x)*100
print("DEGREE")
print("Range=",max(df['DEGREE'])-min(df['DEGREE']))
print("Co-efficient of variation=",cv(df['DEGREE']))
df['DEGREE'].describe()
     DEGREE
     Range= 3.72999999999995
     Co-efficient of variation= 9.90881225818308
     count 297.000000
               7.928081
     mean
     std
                0.785579
               5.800000
     min
     25%
               7.400000
     50%
                8.000000
     75%
                8.560000
                9.530000
     max
     Name: DEGREE, dtype: float64
print("INTERMEDIATE")
print("Range=",max(df['DEGREE'])-min(df['INTERMEDIATE']))
print("Co-efficient of variation=",cv(df['INTERMEDIATE']))
df['INTERMEDIATE'].describe()
     INTERMEDIATE
     Range= -55.47
     Co-efficient of variation= 8.29631726338337
              297.000000
     count
     mean
               88.662626
               7.355733
     std
     min
               65.000000
     25%
               83.000000
```

```
50%
               90.800000
     75%
               94.600000
               99.400000
     max
     Name: INTERMEDIATE, dtype: float64
print("SSC")
print("Range=",max(df['DEGREE'])-min(df['SSC']))
print("Co-efficient of variation=",cv(df['SSC']))
df['SSC'].describe()
     SSC
     Range= -28.86999999999997
     Co-efficient of variation= 10.24664491920062
              297.000000
     count
              88.106734
     mean
     std
                9.027984
     min
               38.400000
     25%
              85.000000
     50%
               90.000000
     75%
               95.000000
               99.000000
     max
     Name: SSC, dtype: float64
#8) Measures of Position: Standard Scores, Inter-quartile Range for Degree, Inter and 10th
import scipy.stats as stats
print("Standard scores of Degree")
print(stats.zscore(df['DEGREE']))
     Standard scores of Degree
            0.219213
     1
            0.219213
     2
           -0.163315
     3
            1.405052
            0.576240
              . . .
     292
            0.984271
     293
            0.665497
     294
            0.601742
     295
           -1.106886
           -0.545844
     296
     Name: DEGREE, Length: 297, dtype: float64
print("Standard scores of Intermediate")
print(stats.zscore(df['INTERMEDIATE']))
     Standard scores of Intermediate
     0
           -1.724369
     1
           -1.724369
     2
            0.808539
     3
            0.114032
           -0.226413
              . . .
     292
            0.740450
     293
            0.182121
     294
            0.849392
     295
            0.263827
```

```
296
            0.931099
     Name: INTERMEDIATE, Length: 297, dtype: float64
print("Standard scores of Ssc")
print(stats.zscore(df['SSC']))
     Standard scores of Ssc
            0.431972
     1
            0.431972
     2
            0.431972
            0.099111
     3
            0.210065
              . . .
     292
            0.542926
     293 0.542926
     294
           1.097694
     295
         -0.011843
     296
            0.764833
     Name: SSC, Length: 297, dtype: float64
def outlier(b):
   q1 = np.quantile(b, 0.25)
   q2 = np.quantile(b, 0.75)
   m = np.median(b)
   iqr = q2-q1
   u_bound = q2+(1.5*iqr)
   l_bound = q1-(1.5*iqr)
   print(iqr,u_bound,l_bound)
   print("Inter Quartile Range:",iqr)
   outliers = b[(b <= 1\_bound) | (b >= u\_bound)]
   print("outliers in boxplot:\n{}".format(outliers))
outlier(df['DEGREE'])
     1.1600000000000001 10.3 5.66
     Inter Ouartile Range: 1.16000000000000001
     outliers in boxplot:
     Series([], Name: DEGREE, dtype: float64)
outlier(df['INTERMEDIATE'])
     11.599999999999 111.99999999999 65.60000000000001
     Inter Quartile Range: 11.59999999999994
     outliers in boxplot:
     271
            65.0
     Name: INTERMEDIATE, dtype: float64
```

10.0 110.0 70.0 Inter Quartile Range: 10.0

outlier(df['SSC'])

```
outliers in boxplot:
5
       64.0
7
       70.0
31
       60.0
51
       68.0
69
       60.0
82
       65.6
86
       50.0
107
       64.0
236
       38.4
237
       67.0
243
       40.2
270
       65.0
288
       65.0
```

Name: SSC, dtype: float64

```
#9)Create Box Plot and Identify Outliers for Degree, Inter and 10th
plt.boxplot(df['DEGREE'])
plt.show
```



```
plt.boxplot(df['INTERMEDIATE'])
plt.show
```


plt.boxplot(df['SSC'])

plt.show


```
#10)Identify No. of Students with 90% percentile for Degree, Inter and 10th Class
def func(c):
    quantile = np.quantile(c, 0.9)
    Data=c[c==quantile]
    print("Students with 90% percentile:",Data.count())

func(df['DEGREE'])
        Students with 90% percentile: 3

func(df['INTERMEDIATE'])
        Students with 90% percentile: 3

func(df['SSC'])
        Students with 90% percentile: 19
```

Colab paid products - Cancel contracts here

Could not connect to the reCAPTCHA service. Please check your internet connection and reload to get a reCAPTCHA challenge.