Поиск светлых пятен

Задача: Рассматриваем задачу обработки изображений. Требуется на монохромном изображении выделить светлые пятна - однородные яркие участки с резким изменением градиента яркости на границе. Ключевые слова для подобных алгоритмов - blob detection.

В данной задаче под изображением понимаем матрицу $Z = \{z_{ij}\}, i = 1, \ldots, m, j = 1, \ldots, n$ где $z_{ij} \in B$ - яркость пиксела. Здесь $B \in \mathbb{R}_+$ - возможные значения яркости. В компьютерной графике обычно $B = \{1, \ldots, 256\}$. Светлые пятна описываются эллипсами.

Интерфейс: таким образом на вход алгоритм получает изображение Z, а на выход выдает множество эллипсов $\{\varepsilon_1, \ldots, \varepsilon_k\}$ - светлых пятен изображения.

Алгоритм:Для нахождения светлых пятен воспользуемся одним из самых известных алгоритмов в данной области LoG-детектор [1] (Laplacian-of-Gaussian). Производится свертка изображения с лаплассианой гауссианы для нахождения светлых пятен. Затем перебором параметра гауссианы ищется характерный размер пятна.

Тестовые данные: Для начальной проверки алгоритма (и юнит-тестов) предлагается сгенерировать ряд тестовых изображений. На черный фон добавляются несколько гауссовых пиков и полученное изображение зашумляется (опционально). Так же можно проверить работу алгоритма на различных формах сгенерированных пятен, например параллелограммах (что соответствует крышам на спутниковых изображениях).

Список литературы

- [1] D. Marr and E.C. Hildreth. Theory of edge detection. Proc. Roy. Soc. London., B-207:187–217, 1980.
- [2] Krystian Mikolajczyk and Cordelia Schmid, Scale and affine invariant interest point detectors, International Journal of Computer Vision, pp. 63–86, 2004