

. BAND- PASS SYSTEMS

BAND-PASS SYSTEMS

* Studied the complex low-pass representation of BP signals

- * Logical to develop a corresponding procedure for handling the analysis of BP systems
- * The analysis of BP systems can be greatly simplified by establishing an analogy between LP and BP systems

. x(t): BP signal with x(f)zero for $|f \pm f_c| > W$

- . BP system: passband is the interval: |ftf| B where B < W
 - . Study the effect of a BP system on a BP input

BAND-PASS SIGNALS

BP:
$$\chi(t) \longleftrightarrow \chi(f)$$

$$x_{+}(t) = x(t) + j x_{h}(t)$$

$$\mathcal{X}(t) = \mathcal{X}(t) + J \mathcal{X}_{h}(t)$$

$$\mathcal{X}(t) = \mathcal{X}_{+}(t) e_{\mathcal{X}_{h}}(t) - J 2\pi f_{e}t$$

$$x(t) = Re \left[\tilde{x}(t) exp(j2\pi f_c t) \right]$$

$$\widetilde{\chi}(t) \equiv \text{complex envelope of } \chi(t)$$

$$\equiv \chi_{ep}(t)$$

1 X (f)

$$\chi(t) = \chi_{I}(t) \cos 2\pi f_{c}t - \chi_{Q}(t) \sin 2\pi f_{c}t$$

$$\tilde{\chi}(t) = \chi_{I}(t) + j \chi_{Q}(t) \equiv \chi_{Lp}(t)$$

$$\chi(t) = \Re \left\{ \tilde{\chi}(t) e^{j2\pi f_{c}t} \right\}$$

$$\chi(t) = \frac{1}{2} \left[\tilde{\chi}(t) + \tilde{\chi}(-(t+f_{c})) \right]$$

$$|||_{1} | \text{let}$$

$$\tilde{\chi}(t) = h_{I}(t) + j h_{Q}(t) \equiv h_{Lp}(t)$$

$$h(t) = h_{I}(t) \cos 2\pi f_{c}t - h_{Q}(t) \sin 2\pi f_{c}t$$

$$h(t) = Re \left[\widetilde{h}(t) exp(j2\pi f_c t) \right]$$

$$2h(t) = \widetilde{h}(t) e^{j2\pi f_c t} + \widetilde{h}(t) e^{-j2\pi f_c t}$$

$$H(f) = \widetilde{H}(f) + \widetilde{h}(f) + \widetilde{h}(f) + \widetilde{h}(f) + \widetilde{h}(f) + \widetilde{h}(f)$$

$$2$$

$$x(t) \xrightarrow{\text{SP}} ystem$$

$$h(t) = Re \left[\widetilde{y}(t) exp(j2\pi f_c t) \right]$$

$$y(f) = H(f) \times (f)$$

$$\chi(+) + \chi(+) = \frac{1}{4} \left[\left[\chi(+-t^c) + \chi_{*} \left[-(t+t^c) \right] \right] \right] \times \left[\chi(+) + \chi_{*} \left[-(t+t^c) \right] \right]$$

Consider the term

$$\widetilde{H}(f-f_c)\widetilde{X}^*[-(f+f_c)]$$

 $\widetilde{H}(f-f_c)$ has spectrum confined to the range (f_c-B, f_c+B)

 $\tilde{\chi}^*[-(f+f_c)]$ has non-zero spectral components in the range $\{-(f_c+w), -(f_c-w)\}$

$$|||, \tilde{H}^{*}[-(f+f_{c})] \times \tilde{X}(f-f_{c}) = 0$$

$$|||, H(f) = Y(f)$$

$$= \tilde{Y}(f-f_{c}) + \tilde{Y}[-(f+f_{c})]$$

$$= \tilde{U}(f,f_{c}) \times \tilde{X}(f,f_{c})$$

=
$$\frac{1}{4} \tilde{H} (f-f_e) \tilde{X} (f-f_e)$$

+ $\frac{1}{4} \tilde{H}^* [-(f+f_e)] \tilde{X}^* [-(f+f_e)]$

 $\tilde{\gamma}(f-f_c)$: non-zero spectral components in the range (f_c-B, f_c+B)

$$\frac{1}{2} \mathring{\gamma} (f-f_c) = \frac{1}{4} \left[\mathring{H} (f-f_c) \mathring{\chi} (f-f_c) \right]$$

IIT Bombay

and
$$\frac{1}{2} \tilde{\chi}^* \left[- (f + f_c) \right] = \frac{1}{4} \left[\tilde{H}^* \left(- (f + f_c) \right) \tilde{\chi}^* \left(- (f + f_c) \right) \right]$$
EE 308 L 19 / Slide 10

$$\tilde{y}(t) = \frac{1}{2} \overset{\sim}{\chi}(t) \tilde{H}(t)$$

$$\tilde{y}(t) = \frac{1}{2} \left[\overset{\sim}{\chi}(t) * \tilde{h}(t) \right]$$

$$= \frac{1}{2} \left[\overset{\sim}{\chi}(t) * \tilde{h}(t) \right]$$

$$\ddot{y}(t) = \frac{1}{2} \left[\chi_{\mathbf{I}}(t) + \chi_{\mathbf{Q}}(t) \right] + \left[h_{\mathbf{I}}(t) + j h_{\mathbf{Q}}(t) \right]$$

$$= \frac{1}{2} \left[\chi_{\mathbf{I}}(t) + j \chi_{\mathbf{Q}}(t) \right] + \left[h_{\mathbf{I}}(t) + j h_{\mathbf{Q}}(t) \right]$$

$$= y_{\mathbf{I}}(t) + j y_{\mathbf{Q}}(t)$$

$$= y_{\mathbf{I}}(t) + j y_{\mathbf{Q}}(t)$$

$$y_{\mathbf{I}}(t) = \frac{1}{2} \left\{ \chi_{\mathbf{I}}(t) + h_{\mathbf{I}}(t) - \chi_{\mathbf{Q}}(t) + h_{\mathbf{Q}}(t) \right\}$$

$$y_{\mathbf{Q}}(t) = \frac{1}{2} \left\{ \chi_{\mathbf{I}}(t) + h_{\mathbf{Q}}(t) + \chi_{\mathbf{Q}}(t) + h_{\mathbf{I}}(t) \right\}$$

$$y_{\mathbf{Q}}(t) = \frac{1}{2} \left\{ \chi_{\mathbf{I}}(t) + h_{\mathbf{Q}}(t) + \chi_{\mathbf{Q}}(t) + h_{\mathbf{I}}(t) \right\}$$

Block Diagram illustrating the relationships between the I-phase to Q-components of Y(t) to X(t)

Summary of the procedure for evaluating the response of a BP system (with mid-band fc) to an i/P BP signal (of carrier freq.fc):

EE 308 L 19 / Slide 13

(1) BP: x(t) is replaced by x(t) (= x2(t)), which is related to x(t) by

$$x(t) = Re \left[\hat{x}(t) exp(j2\pi f_c t) \right]$$

(2) BP:
$$h(t) \longrightarrow \tilde{h}(t) (\equiv h_{2p}(t))$$

 $h(t) = Re [\tilde{h}(t) e \times p(j2\pi f_c t)]$

(3)
$$\widetilde{Y}(t) (\equiv Y_{\ell p}(t)) = \frac{1}{2} \left[\widetilde{h}(t) * \widetilde{\chi}(t) \right]$$

(4)
$$y(t) = Re \left[\hat{y}(t) e \propto p(j2\pi f_c t) \right]$$

MODULE ENDS