MultiBiplot

Jimena Medina

2022-05-12

Instalación de Paquetes

```
install.packages("MultBiplotR")
library("MultBiplotR")
```

Reconocimiento de la matriz de datos

```
load("/cloud/project/Vinos.rda")
BD<-Vinos</pre>
```

Exploración de Matriz

```
dim(BD)
```

```
## [1] 45 21
str(BD)
```

```
45 obs. of 21 variables:
## data.frame:
              : Factor w/ 2 levels "1986", "1987": 1 1 1 1 1 1 1 1 1 1 ...
## $ denomina: Factor w/ 2 levels "RIBERA", "TORO": 1 1 1 1 1 1 1 1 1 1 ...
              : Factor w/ 4 levels "RD86", "RD87", ...: 1 1 1 1 1 1 1 1 1 1 ...
## $ grado
              : num 12.8 12.8 12.5 11.9 12.5 12.1 12.2 12.6 13 12.4 ...
## $ avol
                     1. 2 0. 75 1 0. 7 0. 95 0. 5 0. 8 0. 4 0. 4 0. 35 . . .
## $ atot
                      6.76.97.27.77.75.85.95.44.65.5...
              : num
##
   $ acfi
              : num
                      5. 2 6 6 6. 8 6. 3 5. 2 4. 9 4. 9 4. 1 5 . . .
## $ ph
                     3. 7 3. 5 3. 6 3. 3 3. 6 3. 2 3. 4 3. 3 3. 6 3. 3 . . .
              : num
## $ folin
                     2827 1818 1459 2054 2930 ...
              : num
## $ somers : num
                      50. 8 37. 8 35. 1 32. 1 49. 6 30. 6 35. 6 30. 6 41. 7 30 ...
##
                     811 968 866 978 1128 ...
              : num
## $ procian : num
                     3794 1736 2306 3420 3158 ...
## $ acrg
                      386 144 225 204 214 167 252 315 293 152 ...
              : num
##
                      287 141 132 110 148 95 160 124 170 67 ...
    $ acse
              : num
##
                     181 69 78 84 75 74 101 101 137 56 ...
    $ achplc : num
## $ ic
                     7. 81 4. 88 5. 52 4. 64 6. 99 3. 98 7. 6 6. 15 6. 6 5. 49 ...
              : num
## $ ic2
              : num 8.95 5.55 6.35 5.15 7.87 4.36 8.84 7.11 7.85 6.23 ...
##
   $ tono
                      0.72 \ 0.755 \ 0.456 \ 0.675 \ 0.672 \ 0.716 \ 0.716 \ 0.74 \ 0.93 \ 0.75 \ \dots
              : num
##
                     18. 4 23. 6 36. 8 36. 4 34. 2 38. 1 28. 5 27. 7 21. 6 30. 3 . . .
   $ iim
              : num
## $ eq1
                     0.489 0.48 0.598 0.42 0.45 0.434 0.501 0.566 0.557 0.689 ...
              : num
              : num 0.21 0.56 0.38 0.29 0.36 0.3 0.24 0.4 0.28 0.26 ...
## $ vla
## - attr(*, "variable.labels") = Named chr [1:21] "A\x840" "DENOMINACION"
    ..- attr(*, "names")= chr [1:21] "a_o" "denomina" "grupo" "grado" ...
## - attr(*, "codepage") = int 28605
```

colnames(BD)

Graficos de Exploracion

BX1<-BoxPlotPanel(BD[,4:9], nrows=2, groups=BD\$denomina)

[1] 2

BX1

\$mfrow

[1] 2 3

\$mfrow ## [1] 2 3

Filtrado de Variables

1.- Selección de variables numéricas

X<-BD[, 4:21]

2.- Generacion Plot

PL1<-plot(X[,1:9])

PL2<-plot(X[, 10:18])

Reduccion de la Dimensionalidad

1.- ACP Scaling= 1: datos orginales, 2: Resta la media global del conjunto de los datos, 3: Doble centrado (agricultura / interaccion de resuduales) 4: Centrado por columnas (variables con misma escala) 5: Estandarizado por columnas

```
acpvino<-PCA. Analysis (X, Scaling = 5)
summary(acpvino)
    ###### Principal Components Analysis #######
##
## Transformation of the raw data:
## [1] "Standardize columns"
##
   Eigenvalues & Explained Variance (Inertia)
##
        Eigenvalue Exp. Var Cummulative
                     34.991
## [1,]
         277. 12688
                                  34.991
## [2,]
         199.36534
                     25.172
                                  60.163
## [3,]
          85. 42317
                     10.786
                                  70.949
##
##
    STRUCTURE OF THE PRINCIPAL COMPONENTS
##
##
            Dim 1 Dim 2 Dim 3
           -0.676 -0.142 0.188
## grado
## avol
           -0.450 0.204 -0.519
           -0. 225   0. 738   -0. 526
## atot
## acfi
           -0.063 0.797 -0.397
## ph
            0. 191 -0. 593 -0. 193
           -0.910 -0.094 -0.072
## folin
## somers
           -0.920 -0.154 -0.090
## srv
           -0.798 -0.088 0.277
## procian -0.873 -0.102 0.036
## acrg
           -0.301 -0.726 -0.441
           -0.213 -0.856 -0.372
## acse
            0.119 -0.830 -0.355
## achplc
           -0.926 0.117 -0.074
## ic
## ic2
           -0.932 0.095 -0.048
           -0.351 -0.290 0.612
## tono
            0.021 0.810 -0.179
## iim
           -0.688 0.416 0.255
## eq1
            0.006 0.071 0.368
## vla
```

Presentacion de tablas (markdown)

\centering

summary(acpvino, latex=TRUE) ###### Principal Components Analysis ####### ## ## Transformation of the raw data: ## [1] "Standardize columns" ## Eigenvalues & Explained Variance (Inertia) ## Eigenvalue Exp. Var Cummulative ## [1,] 277. 12688 34.991 34.991 ## [2,] 199. 36534 25. 172 60.163 ## [3,] 85. 42317 10.786 70.949 ## ## ## STRUCTURE OF THE PRINCIPAL COMPONENTS ## Dim 1 Dim 2 Dim 3 -0.676 -0.142 0.188 ## grado -0.450 0.204 -0.519## avol ## atot -0.225 0.738 -0.526## acfi -0.063 0.797 -0.397## ph 0. 191 -0. 593 -0. 193 ## folin -0.910 -0.094 -0.072-0.920 -0.154 -0.090 ## somers ## srv -0.798 -0.088 0.277## procian -0.873 -0.102 0.036 ## acrg -0.301 -0.726 -0.441## acse -0.213 -0.856 -0.372## achplc 0.119 -0.830 -0.355 -0.926 0.117 -0.074## ic ## ic2 -0.932 0.095 -0.048-0.351 -0.290 0.612 ## tono 0.021 0.810 -0.179## iim ## eq1 -0.688 0.416 0.255 0.006 0.071 0.368 ## vla ## % latex table generated in R 4.2.0 by xtable 1.8-4 package ## % Thu May 12 05:35:29 2022 ## \begin{table} [ht] ## \centering ## \begin{tabular} {rrrr} ## ## & Eigenvalue & Exp. Var & Cummulative \\ ## \hline ## 1 & 277.13 & 34.99 & 34.99 \\ 2 & 199.37 & 25.17 & 60.16 \\ ## 3 & 85.42 & 10.79 & 70.95 \\ \hline ## ## \end{tabular} ## \caption {Explained Variance} ## \end{table} ## % latex table generated in R 4.2.0 by xtable 1.8-4 package ## % Thu May 12 05:35:29 2022 ## \begin{table} [ht]

```
## \begin{tabular} {rrrr}
##
     \hline
##
    & Dim 1 & Dim 2 & Dim 3 \\
##
     \hline
## grado & -0.68 & -0.14 & 0.19 \\
     avol & -0.45 & 0.20 & -0.52 \\
     atot & -0.23 & 0.74 & -0.53 \\
##
     acfi & -0.06 & 0.80 & -0.40 \\
##
     ph & 0.19 & -0.59 & -0.19 \\
##
     folin & -0.91 & -0.09 & -0.07 \\
##
     somers & -0.92 & -0.15 & -0.09 \\
##
     srv & -0.80 & -0.09 & 0.28 \\
##
     procian & -0.87 & -0.10 & 0.04 \\
     acrg & -0.30 & -0.73 & -0.44 \\
##
     acse & -0.21 & -0.86 & -0.37 \\
##
     achplc & 0.12 & -0.83 & -0.35 \\
##
     ic & -0.93 & 0.12 & -0.07 \\
##
     ic2 & -0.93 & 0.10 & -0.05 \\
##
     tono & -0.35 & -0.29 & 0.61 \\
     iim & 0.02 & 0.81 & -0.18 \\
##
##
     eq1 & -0.69 & 0.42 & 0.26 \\
##
     vla & 0.01 & 0.07 & 0.37 \\
##
      \hline
## \end{tabular}
## \caption {Correlations with the Principal Components}
## \end{table}
```

2

.- Contenido del objeto acpvino

names(acpvino)

## [1] "Title"	"Type"	"call"
## [4] "Non_Scaled_Data"	"alpha"	"Dimension"
## [7] "Means"	"Medians"	"Deviations"
## [10] "Minima"	"Maxima"	"P25"
## [13] "P75"	"GMean"	"Initial_Transformation"
## [16] "Scaled_Data"	"nrows"	"ncols"
## [19] "nrowsSup"	"ncolsSup"	"dim"
## [22] "EigenValues"	"Inertia"	"CumInertia"
## [25] "EV"	"Structure"	"RowCoordinates"
## [28] "ColCoordinates"	"RowContributions"	"ColContributions"
## [31] "Scale_Factor"	"ClusterType"	"Clusters"
## [34] "ClusterColors"	"ClusterNames"	

3.- Generacion del Grafico

acp1<-plot(acpvino, ShowBox=FALSE)</pre>

Principal Components Analysis (Dim 1 (35 %)- 2 (25.2 %))

Screeplot con barras

acp2<-princomp(X, cor=TRUE, score=TRUE)
plot(acp2)</pre>

Princip

Principal Components Analysis (Dim 1 (35 %)- 2 (25.2 %))

Agregar grupos al biplot definido por usuario

```
acpvino1<-AddCluster2Biplot(acpvino, ClusterType="us",
Groups = BD$grupo)
```

Grafico con poligonos # CexInd= tamaño de los argumentos

Principal Components Analysis (Dim 1 (35 %)-2 (25.2 %))

Grafico con Elipses

```
acp5<-plot(acpvino1, PlotClus=TRUE, ClustCenters=TRUE,
    margin=0.05, CexInd=0.7, TypeClus="el",
    ShowBox=F)</pre>
```

Principal Components Analysis (Dim 1 (35 %)-2 (25.2 %))

Grafico con Estrellas

```
acp6<-plot(acpvino1, PlotClus=TRUE, ClustCenters=TRUE,
    margin=0.05, CexInd=0.7, TypeClus="st",
    ShowBox=TRUE)</pre>
```

Principal Components Analysis (Dim 1 (35 %)- 2 (25.2 %))

Biplot

alpha=

o:GH

1:JK

2:HJ

Predeterminado JK

```
bipvino<-PCA. Biplot(X, Scaling = 5)
summary(bipvino)
   ###### Biplot for Principal Components Analysis #######
##
## Call
## PCA. Biplot (X = X, Scaling = 5)
## Type of coordinates:
## Transformation of the raw data:
## [1] "Standardize columns"
## Type of Biplot
## [1] "PCA"
##
## Eigenvalues & Explained Variance (Inertia)
        Eigenvalue Exp. Var Cummulative
## [1,]
        277. 12688
                     34.991
                                  34.991
## [2,] 199.36534
                     25.172
                                  60.163
## [3,]
                     10.786
                                  70.949
         85. 42317
##
##
  RELATIVE CONTRIBUTIONS OF THE FACTOR TO THE ELEMENT
##
##
   Row Contributions
##
       Dim 1 Dim 2 Dim 3
## I1
      42. 04 6. 63 44. 06
## I2
       0.03 32.75 2.51
## I3
        0.07 57.27 18.53
## I4
       0.28 70.89 8.84
## I5 29.69 38.53 12.87
       2.64 67.95 1.86
## 16
## I7
       23.63 27.17 9.95
## I8 15.06 20.09 8.55
## I9
       60. 32 7. 05 10. 79
## I10 1.55 61.24 11.60
## I11
       0. 12 74. 78 12. 48
## I12 0.09 35.48 28.14
## I13
       1. 68 57. 21 29. 79
## I14 2.95 15.65 39.81
## I15 64.41 9.27 3.81
## I16 35.26 17.46 4.85
```

```
## I17 63.73 0.99 14.28
## I18 51.05 25.08
                   0.12
## I19 75.88
             7.45
                    9.01
## I20 77.10 5.13
                    0.77
## I21 24.48
             9. 79 18. 31
## 122 30.80 25.95
                    0.05
## I23 2.08 2.45
                    0.20
## I24 71.22 15.56
                    0.82
## I25 72.83 12.08
                    2. 23
## I26 32.34 43.51
                   1.52
## 127 35.29 35.58 11.66
## I28 63.06 11.10
                   3.65
## I29 16.99 16.98 27.32
## I30 17.97 32.85 0.25
## I31 9.13
             1.41 35.53
## 132 55.95
             4.40
                   3.60
## I33 28.58
             7.60 26.59
## I34 67.06 0.00 4.97
## I35
       7. 12 13. 24
                    1.64
## I36 41.97 12.56 27.66
## I37
       4.81
             4. 11 20. 46
## 138 83.21
             0.21
                    0.95
## 139 88.41
             3.71
                    2.38
## I40 0.08 13.31
                    0.69
## I41 42.39 34.59
                    1.36
## I42 9.24
             2.75 29.92
## I43 23.86 2.26
                    7.75
## 144 29.74 44.90
## I45 56.52 23.65
                   1.05
##
##
   Column Contributions
##
           Dim 1 Dim 2 Dim 3
## grado
           45.71 2.02 3.54
## avol
           20. 23 4. 14 26. 96
## atot
            5.06 54.44 27.69
## acfi
            0.40 63.45 15.73
## ph
            3.63 35.20
                        3. 72
## folin
           82.89
                  0.89
                        0.52
                  2.36
## somers
           84. 58
                        0.81
           63.74
                  0.78
## srv
                        7.65
## procian 76.19
                  1.04
                        0.13
            9.08 52.64 19.41
## acrg
            4. 54 73. 25 13. 87
## acse
            1.41 68.84 12.61
## achplc
           85.75
                  1.37
                        0.54
## ic
## ic2
                  0.91
           86.89
                        0.23
           12.30
                  8, 43 37, 44
## tono
## iim
            0.04 65.55
                        3.20
           47. 38 17. 28
## eq1
                        6.51
## vla
            0.00 0.51 13.58
##
##
##
   Qualities of representation of the rows (Cummulative contributions)
```

```
##
       Dim 1 Dim 2 Dim 3
      42.04 48.67 92.73
## I1
## I2
        0.03 32.78 35.29
        0.07 57.34 75.87
## I3
## I4
       0. 28 71. 17 80. 01
## I5
       29.69 68.22 81.09
## 16
        2, 64 70, 59 72, 45
## I7
       23.63 50.80 60.75
## I8
      15, 06 35, 15 43, 70
## I9 60.32 67.37 78.16
## I10 1.55 62.79 74.39
## I11 0.12 74.90 87.38
## I12 0.09 35.57 63.71
## I13 1.68 58.89 88.68
## I14 2.95 18.60 58.41
## 115 64.41 73.68 77.49
## I16 35.26 52.72 57.57
## I17 63.73 64.72 79.00
## I18 51.05 76.13 76.25
## I19 75.88 83.33 92.34
## I20 77.10 82.23 83.00
## I21 24.48 34.27 52.58
## 122 30.80 56.75 56.80
## I23 2.08 4.53 4.73
## 124 71.22 86.78 87.60
## 125 72.83 84.91 87.14
## 126 32.34 75.85 77.37
## 127 35.29 70.87 82.53
## I28 63.06 74.16 77.81
## I29 16.99 33.97 61.29
## 130 17.97 50.82 51.07
## I31 9.13 10.54 46.07
## 132 55.95 60.35 63.95
## 133 28.58 36.18 62.77
## 134 67.06 67.06 72.03
## I35 7.12 20.36 22.00
## I36 41.97 54.53 82.19
## I37 4.81 8.92 29.38
## I38 83.21 83.42 84.37
## 139 88.41 92.12 94.50
## I40 0.08 13.39 14.08
## 141 42.39 76.98 78.34
## I42 9.24 11.99 41.91
## 143 23.86 26.12 33.87
## 144 29.74 74.64 80.67
## 145 56.52 80.17 81.22
##
##
##
   Qualities of representation of the columns (Cummulative contributions)
##
           Dim 1 Dim 2 Dim 3
           45.71 47.73 51.27
## grado
## avol
           20. 23 24. 37 51. 33
           5.06 59.50 87.19
## atot
```

```
0.40 63.85 79.58
## acfi
## ph
            3.63 38.83 42.55
## folin
           82.89 83.78 84.30
           84. 58 86. 94 87. 75
## somers
           63. 74 64. 52 72. 17
## srv
## procian 76.19 77.23 77.36
## acrg
            9.08 61.72 81.13
## acse
            4.54 77.79 91.66
## achplc
            1.41 70.25 82.86
           85.75 87.12 87.66
## ic
## ic2
           86.89 87.80 88.03
## tono
           12.30 20.73 58.17
            0.04 65.59 68.79
## iim
## eq1
           47. 38 64. 66 71. 17
## vla
            0.00 0.51 14.09
```

Valores propios

bipvino\$EigenValues

```
[1] 277. 12687550 199. 36534193 85. 42316719 61. 02361652
                                                               54. 61472549
## [6] 33.21950770 23.10087611
                                   18. 20271969
                                                12. 93567822
                                                                8.99721387
## [11]
          7. 17039349
                       5. 14634483
                                     2. 46693118
                                                  1.76863760
                                                                1.12884586
## [16]
          0. 26153511
                       0.02966717
                                     0.01792254
```

Screeplot

SC<-barplot(bipvino\$EigenValues)</pre>

Vectores propios

bipvino\$EV

```
[,1]
                             [, 2]
                                         [, 3]
##
   [1, ] -0. 269400471 -0. 06678758 0. 13502664
   [2, ] -0.179235894 0.09563188 -0.37266607
   [3, ] -0.089642289 0.34663991 -0.37767939
   [4,] -0.025075364 0.37420670 -0.28461188
##
   [5,] 0.075921760 -0.27872944 -0.13842752
   [6, ] -0. 362771201 -0. 04421297 -0. 05176113
   [7, ] -0. 366464498 -0. 07220257 -0. 06472232
   [8, ] -0.318130606 -0.04157401 0.19854164
  [9, ] -0. 347804576 -0. 04785685 0. 02584725
## [10, ] -0.120049408 -0.34086254 -0.31617278
## [11, ] -0.084888000 -0.40207820 -0.26728099
## [12,] 0.047378644 -0.38977456 -0.25488092
## [13, ] -0.368971746 0.05491570 -0.05287232
## [14, ] -0. 371435455 0. 04476039 -0. 03421019
## [15, ] -0.139772430 -0.13640832 0.43913353
## [16, ] 0. 008178563 0. 38035721 -0. 12838425
## [17, ] -0. 274261123 0. 19527349 0. 18313281
## [18,] 0.002361018 0.03345360 0.26444673
```

Tabla de inercias

Eje	Valor Propio	Inercia	Inercia acumulada
Eje 1	277.1268755	34.991	34.991
Eje 2	199.3653419	25.172	60.163
Еје з	85.4231672	10.786	70.949
Eje 4	61.0236165	7.705	78.654
Eje 5	54.6147255	6.896	85.550
Eje 6	33.2195077	4.194	89.744
Eje 7	23.1008761	2.917	92.661
Eje 8	18.2027197	2.298	94.959
Eje 9	12.9356782	1.633	96.592
Eje 10	8.9972139	1.136	97.728
Eje 11	7.1703935	0.905	98.633
Eje 12	5.1463448	0.650	99.283
Eje 13	2.4669312	0.311	99.594
Eje 14	1.7686376	0.223	99.817
Eje 15	1.1288459	0.143	99.960
Eje 16	0.2615351	0.033	99.993
Eje 17	0.0296672	0.004	99.997
Eje 18	0.0179225	0.002	99.999

Tabla Contribucion de Columnas

kable(bipvino\$ColContributions)

	Dim 1	Dim 2	Dim 3
grado	45.71	2.02	3.54
avol	20.23	4.14	26.96
atot	5.06	54.44	27.69
acfi	0.40	63.45	15.73
ph	3.63	35.20	3.72
folin	82.89	0.89	0.52
somers	84.58	2.36	0.81
srv	63.74	0.78	7.65
procian	76.19	1.04	0.13
acrg	9.08	52.64	19.41
acse	4.54	73.25	13.87
achplc	1.41	68.84	12.61
ic	85.75	1.37	0.54
ic2	86.89	0.91	0.23
tono	12.30	8.43	37.44
iim	0.04	65.55	3.20
eq1	47.38	17.28	6.51
vla	0.00	0.51	13.58

Grafico

plot(bipvino, ShowBox=TRUE)

PCA Biplot (Dim 1 (35 %)- 2 (25.2 %))

Prolongacion de vectores linea recta

```
BP1<-plot(bipvino, mode="s", margin=0.1, ShowBox=TRUE)
```

PCA Biplot (Dim 1 (35 %)- 2 (25.2 %))

Prolongacion de vectores con flechas y linea punteada

BP2<-plot(bipvino, mode="ah", margin=0.05, ShowBox=TRUE)

PCA Biplot (Dim 1 (35 %)- 2 (25.2 %))

GC<-CorrelationCircle(bipvino)

PCA Biplot – Correlation Circle

Axis 1

PCA Biplot – Contribution Plot

Axis ;

Axis 1

Proyeccion individuos sobre una variable dp= selecciona la variable

```
BP3<-plot(bipvino, dp=2, mode="s",
ColorVar=c("blue", rep("grey", 17)),
ShowBox=TRUE)
```

PCA Biplot (Dim 1 (35 %)- 2 (25.2 %))

Proyeccion de ind sobre todas las variables PredPoints= individuo

```
BP4<-plot(bipvino, PredPoints=1, mode="s", ColorVar=1:18, ShowBox=TRUE)
```

PCA Biplot (Dim 1 (35 %)- 2 (25.2 %))

Agregar cluster Jerarquico con datos originales Metodo ward.D

```
bipvino=AddCluster2Biplot(bipvino, NGroups=4,
ClusterType="hi",
method="ward.D",
Original=TRUE)
```

Cluster aplicado al biplot

clusBP<-plot(bipvino, PlotClus=TRUE, ShowAxis=TRUE)</pre>

PCA Biplot (Dim 1 (35 %)- 2 (25.2 %))

