Fundamentos de análisis y diseño de algoritmos

Algoritmos en la computación

Un algoritmo es un procedimiento computacional que toma un valor o conjunto de valores como entrada y <u>produce</u> un valor o conjunto de valores como salida

"Un algoritmo se puede ver como una herramienta para resolver un problema computacional bien especificado"

Un algoritmo es un procedimiento computacional que toma un valor o conjunto de valores como entrada y <u>produce</u> un valor o conjunto de valores como salida

"Un algoritmo se puede ver como una herramienta para resolver un problema computacional bien especificado"

Problema 2: ???
$$= 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11$$

Entrada: $n \in \mathbb{Z}^+ S = 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0$

Salida: 1, si n=1

1, si n=2
1, si n>2 y n mod i
$$\neq 0 \forall i \in \{2,, n-1\}$$

0, si n>2 y
$$\exists x \mid n \mod x=0 \land x \in \{2, ..., n-1\}$$

Entrada:
$$S=\langle a_1, a_2, ..., a_n \rangle$$

Salida: una permutación de S, S'= $\langle a_1', a_2', ..., a_n' \rangle$ tal que $a_1' \langle a_2' \langle ..., \langle a_n' \rangle$

Instancia de un problema

Una instancia es una entrada válida para el algoritmo

Correctitud

Se dice que un algoritmo es correcto, si para cada instancia, el algoritmo termina con la salida correcta


```
primo(int n){
    if (n==1)
     return 1;
   if (n%2==0)
     return 0;
    else
     return 1:
```

Para cada instancia, el algoritmo termina con la salida correcta

¿Es el algoritmo <u>primo</u> correcto?

```
Para cada instancia, el algoritmo termina con la salida correcta
primo(int n){
if (n==1)
                                                algoritmo termina con la
 return 1;
else{
                             ? Es el algoritmo primo correcto?
 int c=0;
 for (int i=2; i<n) i++)
                                      3 nod 2 == 0
  if (n%i==0) c++;
                                     4mod 3 == 0/ C=1
4mod 3 == 0/
 if (c==0)
  return 1;
 else return 0:
```

$$\begin{array}{c}
N \mod 2 \\
N \mod 3
\end{array}$$

$$\begin{array}{c}
S = 1 \\
N \mod (N-1)
\end{array}$$

```
primo(int n){
if (n==1)
 return 1:
else{
 int c=0;
 for (int i=3; i<n; i++)
  if (n%i==0) c++;
 if (c==0)
  return 1;
 else return 0:
```

Para cada instancia, el algoritmo termina con la salida correcta

¿Es el algoritmo primo correcto?

Tipos de problemas solucionados utilizando algoritmos:

- 'Genoma humano: Identificar genes en secuencias de ADN que llegan hasta los 3200 millones de pares de bases nitrogenadas (A,T,C,G). ¿Que pasaría si lo hacemos manualmente?
- ·Búsquedas en Internet: Dada la cantidad de información indexada, responder de forma correcta la solicitud de una búsqueda en Internet. ¿Que pasaría si buscamos manualmente en cada página?

Tipos de problemas solucionados utilizando algoritmos:

 Tratamiento de colisiones de objetos: Detectar una colisión entre dos cuerpos en un espacio 3D

·Búsquedas sobre videos: En un biblioteca, un usuario desea encontrar todos los videos donde aparezca la mascota de Univalle (La ardilla extraña)

Análisis de algoritmos

Meta: Comparar algoritmos que resuelven un mismo problema

- · Correctitud
- ·Eficiencia
 - · Tiempo
 - ·Espacio
- ·Estructuras de datos utilizadas
- Modelo computacional
- ·El tipo y número de datos con los cuales trabaja (escalabilidad)

¿Cómo hacer análisis de algoritmos?

- · Calcular tiempo de computación Complejidad computacional
- ·Espacio (memoria) Complejidad especial
- ·Analizar las estructuras de datos utilizadas
- ·Identificar el tipo y número de datos de entrada al algoritmo
- + medidas de análisis (tiempo de ejecución) medidas experimentales

¿Cómo hacer análisis de algoritmos?

- ·Calcular tiempo de computación*
- ·Espacio (memoria)
- ·Analizar las estructuras de datos utilizadas
- ·Identificar el tipo y número de datos de entrada al algoritmo
- + medidas de análisis (tiempo de ejecución) medidas experimentales

```
primo(int n){
if (n==1)
 return 1:
else{
 int c=0:
 for (int i=2; i<n; i++)
  if (n%i==0) c++;
 if (c==0)
  return 1;
 else return 0:
```

¿De qué depende la cantidad de operaciones básicas que realizará el algoritmo para un llamado específico?

El tiempo de computo depende del tamaño de la entrada, los tiempos serán diferentes si se ordenan 10 números que si se ordenan 10000.

Además, es posible que para dos entradas de igual tamaño, el tiempo sea diferente. Esto depende, de qué tan ordenado ya se encontraba la secuencia de entrada

Mejor caso

Caso promedio

Peor caso

El tiempo de computo T de un algoritmo depende del tamaño de la entrada,

T(n)=f(n), donde n es el tamaño de la entrada

n es el tamaño de la entrada ----> valor númerico

El tiempo de computo T de un algoritmo depende del tamaño de la entrada:

T(n)=f(n), donde n es el tamaño de la entrada

$$T_1(n)=3n^2$$

$$-$$
 T₂(n)=6n³

por ejemplo, para n=100, se tiene:

$$T_1(n)=3*100^2=30.000$$

$$T_2(n)=6*100^3=6.000.000$$

El tiempo de computo T de un algoritmo depende del tamaño de la entrada,

T(n)=f(n), donde n es el tamaño de la entrada

$$T_1(n)=3n^2$$

$$T_2(n)=6n^3$$

por ejemplo, para n=100, se tiene:

$$T_1(n)=3*100^2=30.000$$

$$T_2(n)=6*100^3=6.000.000$$

Operaciones primitivas
Pasos

Instrucciones

Note que los pasos ejecutados se calculan independientemente de la máquina y de la implementación

Analicemos un ejemplo (Algoritmo de ordenamiento insertion-sort)

Instrucción	Costo Veces que se repite
1 for j ← 2 to length[A]	5379
2 do key ← A[j] *\RY=5	
3 i - j-1 i = 1 1 1 1 1 3	
4 while i >0 and A[i] > key A[1]>, k	ey 3)5
5 do A[i+1]—A[i]	
6 i ← i - 1	
7	

iSin temor!, vamos a explorar este algoritmo.

Este algoritmo recibe un arreglo de tamaño n y retorna el mismo arreglo ordenado de menor a mayor.

Ejemplo

Salida =
$$\{2,3,6,9,10\}$$

Se recorre de derecha a izquierda buscando <u>el lugar que</u> <u>debe ocupar</u>

Insertion sort

A: 10 3 2 6 9

Insertion sort

Desarrolle el algoritmo INSERTION-SORT(A)

A:

5 4 3 2 1

	Instrucción	Costo	Veces que se repite
1 f	or j←2 to length[A]	c ₁	
2	do key←A[j]	c ₂	
3	$i \leftarrow j-1$	c ₃	
4	while i >0 and A[i] > key	c ₄	
5	do A[i+1]← A[i]	c ₅	
6	i ← i-1	c ₆	
7	A[i+1]←key	c ₇	

Instrucción	Costo	Veces que se repite
1 for j ← 1 to length[A]	c ₁	111
2 print A[j]	c ₂	

for
$$j \leftarrow 1$$
 to 3 for (int $j=1$; $j <= 3$; $j++$)
$$j=1 \checkmark$$

$$j=2 \checkmark$$

$$j=3 \checkmark$$

$$j=4 ×$$

La cantidad de comparaciones en un for es:

cantidad de números válidos + 1

for
$$j \leftarrow 1$$
 to 3 for (int $j=1$; $j <= 3$; $j++$)

Cantidad de comparaciones:

3 + 1

La cantidad de comparaciones en un for es:

cantidad de números válidos + 1

for $j \leftarrow 1$ to n

¿Cuántas veces se repite?

Instrucción	Costo	Veces que se repite
1 for j ← 1 to length[A]	c ₁	n+1
2 print A[j]	c ₂	n

Instrucción	Costo	Veces que se repite
1 for j ← 2 to length[A]	c ₁	?
2 print A[j]	C ₂	

for
$$j \leftarrow 2$$
 to 4 for (int $j=2$; $j<=4$; $j++$)
$$j=2 \checkmark$$

$$j=3 \checkmark$$

$$j=4 \checkmark$$

$$j=5 ×$$

La cantidad de comparaciones en un for es:

cantidad de números válidos + 1

for
$$j \leftarrow 2$$
 to 4 ———— for (int $j=2$; $j \leftarrow 4$; $j \leftarrow 4$)

La cantidad de comparaciones en un for es:

$$(4-2+1) + 1$$

Comparación inicial

Comparación de salida

for
$$j \leftarrow 2$$
 to n $1 \leftarrow 2 + 1$ $\sqrt{9} \mid 100_5 + 1$ $\sqrt{9} \mid 100_5 + 1$

La cantidad de comparaciones en el for es:

La cantidad de comparaciones en el for es:

$$(n-2+1) + \overline{1} = n$$

For
$$(i=x, i \le n, i+1)$$

 $x, x+1, x+2, ..., n, n+1$

	Instrucción	Costo	Veces que se repite
1	for j ← 2 to length[A]	c ₁	n-2+1+1-n
2	do key←A[j]	c ₂	
3	i ← j-1	c ₃	
4	while i >0 and A[i] > key	C ₄	
5	do A[i+1]← A[i]	c ₅	
6	i ← i	c ₆	
7	A[i+1]←key	c ₇	

	Instrucción	Costo	Veces que se repite
1 fc	or j←2 to length[A]	c ₁	n
2	do key←A[j]	c ₂	√ √ 1
3	$i \leftarrow j-1$	c ₃	
4	while i >0 and A[i] > key	C ₄	
5	do A[i+1]← A[i]	c ₅	
6	i ← i-1	c ₆	
7	A[i+1]←key	c ₇	

	Instrucción	Costo	Veces que se repite
1 fo	or j←2 to length[A]	c ₁	n
2	do key←A[j]	c ₂	???
3	i ← j-1	c ₃	
4	while $i > 0$ and $A[i] > key$	c ₄	
5	do A[i+1]←A[i]	c ₅	
6	i ← i-1	c ₆	
7	A[i+1]←key	c ₇	

	Instrucción	Costo	Veces que se repite
1 fo	or j←2 to length[A]	c ₁	n
2	do key←A[j]	c ₂	n-1
3	$i \leftarrow j-1$	c ₃	
4	while i >0 and A[i] > key	C ₄	
5	do A[i+1]← A[i]	c ₅	
6	i ← i-1	c ₆	
7	A[i+1]←key	c ₇	

	Instrucción	Costo	Veces que se repite
1 fc	or j←2 to length[A]	c ₁	n
2	do key←A[j]	c ₂	n-1
3	i ← j-1	c ₃	n-1
4	while i >0 and A[i] > key	C ₄	
5	do A[i+1]← A[i]	c ₅	
6	i ← i-1	c ₆	
7	A[i+1]←key	c ₇	

Instr	rucción	Costo	Veces que se repite
1 for j ← 2 to length[A	Ţ.	c ₁	n
2 do key ← A[j]		c ₂	n-1
3 i ← j-1		c ₃	n-1
4 while i >0 and A	[i] key	C ₄	
5 do A[i+1]← A[i		c ₅	
6 (i ← i-1)		c ₆	
7		c ₇	

Depende de qué tan ordenados se encuentran los datos en A

	Instrucción	Costo	Veces que se repite
1	for j←2 to length[A]	c ₁	n
2	do key←A[j]	c ₂	n-1
3	$i \leftarrow j-1$	c ₃	n-1
4	while i >0 and A[i] > key	c ₄	
5	do A[i+1]← A[i]	c ₅	
6	i ← i-1	c ₆	
7	A[i+1]←key	c ₇	

Para cada j, se puede repetir una cantidad diferente de veces

Instrucción	Costo	Veces que se repite
1 for $j \leftarrow 2$ to length[A]	c ₁	n
2 do key ← A[j]	c ₂	n-1
3 i ← j-1	c ₃	n-1
4 while i >0 and A[i] > kex	C ₄	
5 (do A[i+1]← A[i]	c ₅	
6 i ← i-1	c ₆	
7	c ₇	

Sea t_j , la cantidad de comparaciones que se hacen en el while para cada valor de j

Por ejemplo, t₂,es un número que indica cuántas veces se cumple la condición cuando j=2

	Instrucción	Costo	Veces que se repite
1 for j ← 2 to length[A]		c ₁	n
2 do	key - A[j]	c ₂	n-1
3	i ← j-1	c ₃	n-1
4	while i >0 and A[i] > key	C ₄	† ₂ + † ₃ + † ₄ + + † _n
5	do A[i+1]← A[i]	c ₅	
6	i ← i-1	c ₆	
7	A[i+1]←key	c ₇	

Sea $\mathbf{t}_{\mathbf{j}}$, la cantidad de comparaciones que se hacen en el while para cada valor de j

Por ejemplo, t_2 , es un número que indica cuántas veces se cumple la condición cuando j=2

	Instrucción	Costo	Veces que se repite
1	for j←2 to length[A]	c ₁	n
2	do key←A[j]	c ₂	n-1
3	i ← j-1	c ₃	n-1
4	while i >0 and A[i] > key	C ₄	† ₂ +† ₃ +† ₄ ++† _n
5	do A[i+1] ← A[i]	c ₅	$(t_2-1)+(t_3-1)+(t_4-1)+ + (t_n-1)$
6	i ← i-1	c ₆	
7	A[i+1]←key	c ₇	

	Instrucción	Costo	Veces que se repite
1 for j ← 2 to length[A]		c ₁	n
2	do key←A[j]	c ₂	n-1
3	i ← j-1	c ₃	n-1
4	while i >0 and A[i] > key	C ₄	† ₂ + † ₃ + † ₄ + + † _n
5	do A[i+1]← A[i]	c ₅	$(t_2-1)+(t_3-1)+(t_4-1)+ + (t_n-1)$
6	i ← i-1	c ₆	$(t_2-1)+(t_3-1)+(t_4-1)+ + (t_n-1)$
7	A[i+1]← key	c ₇	

			<u>ے ح</u>	
	Instrucción	Costo	\	leces que se repite
1	for $j \leftarrow 2$ to length[A]	c ₁		n
2	do key←A[j]	c ₂		n-1
3	√j-1	c ₃		n-1
4	while i >0 and A[i] > key	C ₄		† ₂ + † ₃ + † ₄ + + † _n
5	do A[i+1]← A[i]	c ₅	(† ₂ -1)+(† ₃ -1)+(† ₄ -1)+ + († _n -1)
6	i ← i-1	c ₆	(† ₂ -1)+(† ₃ -1)+(† ₄ -1)+ + († _n -1)
7	A[i+1]←key	c ₇		n-1

	Instrucción	Costo	Veces que se repite
1 1	for j←2 to length[A]	c ₁	n
2	do key←A[j]	c ₂	n-1
3	$i \leftarrow j-1$	c ₃	n-1
4	while i >0 and A[i] > key	C ₄	$\sum_{i=2}^{n} t_{j}$
5	do A[i+1]← A[i]	c ₅	$\sum_{j=2}^{h} (t_j - 1)$
6	i ← i-1	c ₆	$\sum_{i=2}^{j+2} (t_i - 1)$
7	A[i+1]←key	c ₇	n-1

Los algoritmos debemos analizarlos, con respecto a:

- Mejor caso: Configuración de instancia(s) para las cuales el algoritmo realiza el menor número de pasos para dar la solución.
- Peor caso: Configuración de instancia(s) para las cuales el algoritmo realiza el mayor número de pasos para dar la solución.
- Caso promedio: Configuración típica o más frecuente de las instancias, este caso se puede analizar
 - Suponer configuraciones de instancias entre el mejor y peor caso, por ejemplo, si en el peor caso se hacen x comprobaciones y en el mejor 1 comprobación, suponer x/2 comprobaciones.
 - ·Con métodos estadísticos, para determinar la configuración esperada de las instancias

	Instrucción	Costo	Veces que se repite
1 f	or j←2 to length[A]	c ₁	n
2	do key←A[j]	c ₂	n-1
3	i ← j-1	c ₃	n-1
4	while i >0 and A[i] > key	c ₄	$\sum_{i=2}^{n} t_i$
5	do A[i+1]← A[i]	c ₅	$\sum_{i=1}^{h-2} (t_i - 1)$
6	i ← i-1	c ₆	$\sum_{i=2}^{j+2} (t_j - 1)$
7	A[i+1]←key	c ₇	n-1

En el mejor de los casos, cuánto vale t;?


```
INSERTION-SORT(A)

1 for j \leftarrow 2 to length[A]

2 do key \leftarrow A[j]

3 i \leftarrow j-1

4 while i > 0 and A[i] > key

5 do A[i+1] \leftarrow A[i]

6 i \leftarrow i-1

7 A[i+1] \leftarrow key
```



```
INSERTION-SORT(A)

1 for j \leftarrow 2 to length[A]

2 do key \leftarrow A[j]

3 i \leftarrow j-1

4 while i > 0 and A[i] > key

5 do A[i+1] \leftarrow A[i]

6 i \leftarrow i-1

7 A[i+1] \leftarrow key
```

Instrucción	Costo	Veces que se repite
1 for j ← 2 to length[A]	c ₁	n
2 do key ← A[j]	c ₂	n-1
3 i ← j-1	c ₃	n-1
4 while i >0 and A[i] key	C ₄	$\sum_{i=2}^{n} t_{j}$
5 do A[i+1] ← A[i]	c ₅	$\sum_{j=1}^{h} (t_j - 1)$
6 i ← i-1	c ₆	$\sum_{i=2}^{j+2} (t_j - 1)$
7	c ₇	n-1

En el mejor de los casos, $t_i=1$.

T(n)=???

$$j=2$$
 $j=3$ $j=4$ $j=1$

	Instrucción	Costo	Veces que se repite
1 f	or j←2 to length[A]	c ₁	n
2	do key←A[j]	c ₂	n-1
3	i ← j-1	c ₃	n-1
4	while i >0 and A[i] > key	C ₄	$\sum_{i=2}^{n} 1$
5	do A[i+1]←A[i]	c ₅	Ō
6	i ← i-1	c ₆	Q
7	A[i+1]←key	c ₇	n-1

En el mejor de los casos, $t_i=1$.

T(n)=???

Para solucionar este caso, recordemos la forma cerrada de la sumatoria:

$$\sum_{i=1}^{n} C = C * n$$

Debido a que no la tenemos en la forma cerrada, debemos convertirla:

	Instrucción	Costo	Veces que se repite
1	for j←2 to length[A]	c ₁	n
2	do key←A[j]	c ₂	n-1
3	i ← j-1	c ₃	n-1
4	while i >0 and A[i] > key	C ₄	n-1
5	do A[i+1]← A[i]	c ₅	0
6	i ← i-1	c ₆	0
7	A[i+1]←key	c ₇	n-1

En el mejor de los casos, t_i =1.

$$T(n) = n + 4(n - 1) = 5n - 4$$

	Instrucción	Costo	Veces que se repite
1	for j←2 to length[A]	c ₁	n
2	do key←A[j]	c ₂	n-1
3	i ← j-1	c ₃	n-1
4	while i >0 and A[i] > key	C ₄	$\sum_{i=2}^{n} t_i$
5	do A[i+1]← A[i]	c ₅	$\sum_{j=2}^{k-2} (t_j - 1)$
6	i ← i-1	c ₆	$\sum_{i=2}^{j+2} (t_j - 1)$
7	A[i+1]←key	c ₇	n-1

En el peor de los casos, cuánto vale t_i?


```
INSERTION-SORT(A)

1 for j \leftarrow 2 to length[A]

2 do key \leftarrow A[j]

3 i \leftarrow j-1

4 while i > 0 and A[i] > key

5 do A[i+1] \leftarrow A[i]

6 i \leftarrow i-1

7 A[i+1] \leftarrow key
```



```
INSERTION-SORT(A)

1 for j \leftarrow 2 to length[A]

2 do key \leftarrow A[j]

3 i \leftarrow j-1

4 while i > 0 and A[i] > key

5 do A[i+1] \leftarrow A[i]

6 i \leftarrow i-1

7 A[i+1] \leftarrow key
```



```
INSERTION-SORT(A)

1 for j \leftarrow 2 to length[A]

2 do key \leftarrow A[j]

3 i \leftarrow j-1

4 while i > 0 and A[i] > key

5 do A[i+1] \leftarrow A[i]

6 i \leftarrow i-1

7 A[i+1] \leftarrow key
```



```
INSERTION-SORT(A)

1 for j \leftarrow 2 to length[A]

2 do key \leftarrow A[j]

3 i \leftarrow j-1

4 while i > 0 and A[i] > key

5 do A[i+1] \leftarrow A[i]

6 i \leftarrow i-1

7 A[i+1] \leftarrow key
```

	Instrucción	Costo	Veces que se repite
1 1	for j←2 to length[A]	c ₁	n
2	do key←A[j]	c ₂	n-1
3	i ← j-1	c ₃	n-1
4	while i >0 and A[i] > key	C ₄	$\sum_{i=2}^{n} j$
5	do A[i+1]← A[i]	c ₅	$\sum_{j=1}^{n} (j-1)$
6	i ← i-1	c ₆	$\sum_{i=2}^{j+2} (j-1)$
7	A[i+1]←key	c ₇	n-1

En el peor de los casos, t_i =j.

Para solucionar este caso, recordemos la forma cerrada de la sumatoria:,

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$\sum_{i=1}^{"} C = C * n$$

Debido a que no la tenemos en la forma cerrada, debemos convertirla:

Entonces operator $\frac{n}{j=2}$ tenelnos:

$$\sum_{j=2}^{n} (j-1) = \sum_{j=2}^{n} j - \sum_{j=2}^{n} 1$$

$$\sum_{j=2}^{n} 1 = n-1 \qquad \sum_{j=2}^{n} j = \frac{n(n+1)}{2} - 1$$

$$\sum_{j=2}^{n} (j-1) = \frac{n(n+1)}{2} - 1 - (n-1)$$

Dividimos la sumatoria
Aprovechamos el anterior caso

Instrucción	Costo	Veces que se repite
1 for j ← 2 to length[A]	c ₁	n
2 do key ← A[j]	c ₂	n-1
3 i ← j-1	c ₃	n-1
4 while i >0 and A[i] > key	C ₄	$\frac{n(n+1)}{2}-1$
5 do A[i+1] ← A[i]	c ₅	$\frac{n(n+1)}{2}-n$
6 i ← i-1	c ₆	$\frac{n(n+1)}{2}-n$
7	c ₇	n-1

En el peor de los casos, $t_i = j$.

$$T(n)= n + 3(n-1) + 0.5*3(n(n+1)) - 2n - 1$$

$$T(n) = 1.5n^2 + 3.5n - 4$$

	Instrucción	Costo	Veces que se repite
1	for j←2 to length[A]	c ₁	n
2	do key←A[j]	c ₂	n-1
3	i ← j-1	c ₃	n-1
4	while i >0 and A[i] > key	c ₄	$\sum_{i=2}^{n} j/2$
5	do A[i+1]← A[i]	c ₅	$\sum_{j=2}^{h} (j/2-1)$
6	i ← i-1	c ₆	$\sum_{j=2}^{j+2} (j/2-1)$
7	A[i+1]←key	c ₇	n-1

En el caso promedio, se supone que se necesitan j/2 comparaciones, esto es, $t_i = j/2$.

$$T(n)=???$$

	Instrucción	Costo	Veces que se repite
1	for j←2 to length[A]	c ₁	n
2	do key←A[j]	c ₂	n-1
3	i ← j-1	c ₃	n-1
4	while i >0 and A[i] > key	C ₄	$\frac{n(n+1)}{4} - \frac{1}{2}$
5	do A[i+1]← A[i]	c ₅	$\frac{n(n+1)}{4}-n$
6	i ← i-1	c ₆	$\frac{n(n+1)}{4}-n$
7	A[i+1]←key	c ₇	n-1

En el caso promedio, se supone que se necesitan j/2 comparaciones, esto es, $t_i = j/2$.

$$T(n)= n + 3(n-1) + 0.25*3(n (n + 1)) - 0.5 - 2n$$

 $T(n) = 0.75n^2 + 2.75n - 3.5$

$$k = \frac{1}{2}$$
 $k = \frac{1}{2}$
 $k =$

$$\frac{1}{(3n-2)+(3n-2)+(3n-2)+\cdots+(3n-2)}$$

$$\frac{1}{(3n-2)+(3n-2)+(3n-2)+\cdots+(3n-2)}$$

$$\frac{1}{(3n-2)+(3n-2)+\cdots+(3n-2)}$$

$$\frac{1}{(3n-2)+(3n-2)+\cdots+(3n-2)}$$

$$\frac{1}{(3n-2)+(3n-2)+\cdots+(3n-2)}$$

 $(5u-5) + \sum_{\frac{5}{4}} (5iu-5)$

3)
$$(2n-3)(\sqrt{3})$$

 $(5n-5)(\sqrt{2}-1+1)$
 $(5n-5)(\sqrt{2}-1+1)$
 $(2n-5)(\sqrt{2}-1+1)$

Calcule el tiempo de cómputo para el algoritmo def programa1(mat1, mat2)

suponga que len(mat1)=len(mat2)=n

Instrucción	Costo
1 i=1	c ₁
2 while i<=len(mat1)	c ₂
3 j ← 1	c ₃
4 while j<=len(mat2)	c ₄
5 mat3[i][j] ← mat1[i][j]+mat2[i][j]	c ₅
6 j ← j+1	c ₆
7 i ← i+1	c ₇

Instrucción	Costo
1 i=1	c_1
2 while i<=len(mat1)	c ₂ ← N+1
3 j ← 1	c ₃ (
4 while j<=len(mat2)	c_4
5 mat3[i][j]←mat1[i][j]+mat2[i][j]	$\begin{array}{c c} c_3 & \\ \hline c_4 & \\ \hline c_5 & \\ \hline \end{array}$
6 j-j+1	c ₆) — 77
7 (i ← i+1)	
i=1,2,3,4,,n $n-1+1$ $i=1,2,3,4,,n$ $i=1,2,3,4,,n$ $i=1,2,3,4,,n$ $i=1,2,3,4,,n$ $i=1,2,3,4,,n$ $i=1,2,3,4,,n$ $i=1,2,3,4,,n$	1 1 6 N+1 N
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\frac{1}{\sqrt{1-1}}$ $\frac{1}{\sqrt{1-1}}$ $\frac{1}{\sqrt{1-1}}$ $\frac{1}{\sqrt{1-1}}$ $\frac{1}{\sqrt{1-1}}$

Calcule el tiempo de		Instrucción	Costo	
cómputo para el algoritmo	1	1 s ← 0	c ₁	
def programa2(n)	1	2 i ← 1	c ₂	
	N+1	3 while i<=n	c ₃	
	\bigcap	4 † ← 0	C ₄	
i 1 2 3 4		5_ j ← 1	c ₅	2)~1 V
	- ti.	6 while j<=i	$c_6 \frac{1}{2}$	- 11 7.F
1 1 1 2	ti-1	7 t ← t+1	c ₇	(T+U)
722	t-1	8 j ← j+1	c ₈	2
(3) 3 1 1 1 1 1 1 1 1 1	\cap	9 s ← s+t	c ₉	
		10 i ← i+1	c ₁₀	
	L			

$$t_{i=j+1}$$

$$\sum_{i=1}^{n} i+1$$

$$\sum_{i=1}^{n} i+\sum_{i=1}^{n} 1 = \bigcap_{i=1}^{n} (\bigcap_{i=1}^{n} 1) + \bigcap_{i=1}^{n} 1$$

Calcule el tiempo de cómputo para el algoritmo def programa3(n)

(D)		1			
1	ব	2	3	\cap	
	12	123	12m/4	7 23 :- 0 1	
	\	<u></u>	~~	△ △	
	2	3	4) (\	1
_		,	+1		
				(8)

Instrucción	Costo		
_1 i <u>_1</u>	c ₁		
\sim 2 while i<=n $(1)^n$	⁺		
3 k <u>-i</u>	c ₃		
4 while k<=n	C ₄		
5 k ← k+1	c ₅		
,6 k _← 1	c ₆		
7 while k<=i	C ₇		
8 k ← k+1	c ₈		
9 i <u>i+1</u>	c ₉		
$\sum_{i=1}^{n} i+1 = n(n+1) + n$ $\sum_{i=1}^{n} i = 1$ $\sum_{i=1}^{n} i = 1$			

Calcule el tiempo de cómputo para el algoritmo	Instrucción 1 i ← 1	Costo C ₁
def programa4(n)	2 while i<=n	c ₂
Z + 1	3 k ← i	c ₃
2	4 while k<=n	C ₄
	5 k ← k+2	c ₅
	6 k ← 1	c ₆
5	7 while k<=i	c ₇
	8 k ← k+1	c ₈
13'579	9 i ← i+2	c ₉
T -3 2 4 1		

Instrucción	Costo
1 i ← 1	c ₁
2 while i<=n	c ₂
3 k _← i	c ₃
4 while k=n	C₄
5 k ← k+2	C ₅
-6 k-1	c ₆
7 while k=i	c ₇
8 k ← k+1	c ₈
9 i ← i+2	c ₉
< = 2 2	

1	ر ح ح	.3 5	e.	2
1 3 S ··· () ~ ~	35 0 12	57 1		

$$\frac{2}{D} - K + 2 = \left[\frac{5}{D}\right]\left(\frac{5}{D} - 2\right) = \left[\frac{5}{D}\left(\frac{5}{D} + 1\right)\right]$$

		(k)	. 1,	2,	.2,	4.		
Instrucción	Costo	a	1	3	ς			
1 i ← 1	c ₁))		
2 while i<=n	c ₂		4	1	1	1	1	
3 k←i	c ₃			1 +				
4 while k<=n	c ₄		2	2	5			
5 k ← k+2	c ₅			3	3	' '		
6 k←1	c ₆			14	4	\ 		
7 while k=i	c74				1 6	7	1	-
8 k ← k+1	C ₈ ,				7	· 8	J M	7
9 i ← i+2	c ₉					1		
1 2 x = 1 x = 1 x = 1	$=2\sqrt{2} x $ $=(k-1)=$		1 2 +1	- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	16 2.k	18		(1) ~ mp1 & s. 0 on

Calcule el tiempo de cómputo para el algoritmo

def programa5(n)

1=4,2,4,8,16	
K=0000 300	
$K = \left \begin{array}{c} 0 \\ 0 \end{array} \right _{2} \left(\begin{array}{c} 1 \\ 1 \end{array} \right)$	\ /

Instrucción	Costo
1 i←1	c ₁
2 while i<=n	c ₂
3 k←i	c ₃
4 while k<=n	C ₄
5 k ← k+2	c ₅
6 k ← 1	c ₆
7 while k<=i	c ₇
8 k ← k+1	c ₈
9 i ← 2i	c ₉ lo (

		$0=2^{K}$		
Instrucción	Costo	(1-2)		
1 i ← 1	c ₁	1 2 4 0 16 32 64		
2 while i =n	c ₂ /00	10)+1 1,34,8,16,32,64n 09(n) 2° 2° 2° 2° 2° 2° 2° 2° 2° 2° 2° 2° 2°		
3 k⊢i	c ₃	09(N) 2 2 2 2 2 2 2 2		
4 while k=n	c ₄ ()()	Gg(n) K= Gg(1)		
5 k ← k+2	c ₅ ○(n)	09(n) 0, 1, 2, 3,, \08(n),		
6 k ← 1	c ₆			
7 while k<=i	c ₇	2 2 2 0 (n)+1		
8 k ← k+1	c ₈			
9 (i ← 2i	c ₉	1 7 2 4 2 5		
		7.24		
		2+7 3 - 4 / 8 / 19 / K-jall		
		LATZ ntz ntz		
\sim	((X rsl)			
/0g(n)	<u> </u>	5 7 5 0 C 0		
(09(11)	~ -	0 47		
Γ \sim $\frac{1}{2}$	-+>-K	1) = K1. C		
3+1+2-2		2		
K=1				
	010	$\log(n) \times 2 - \log(n)(\log(n) + 1)$		
1 = + 1 + 1091				
	2	2		
	0	$(U / O^{2}(U))$		

		1
Instrucción	Costo	1
1 i ← 1	c ₁	10910)+1
2 while i<=n	c ₂	
3 k←i	c ₃	10g(N)
4 while k<=n	C ₄	$Q(J \circ J(J))$
5 k ← k+2	c ₅	$\langle (1) \rho_{O} (1) \rangle $
6 k←1	c ₆	5 U = 1 5 U + ad(U) 9 (U ad(U)) 9 (U ad(U)) 9 (U ad(U)) 1 od(U)
7 while k<=i	c ₇	50+108(11)
8 k ← k+1	c ₈	2n=1
9 i ← 2i	C ₉	100(D)
2° 2' 72 2	324	() \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
. 2° 2' 2° 2	3 16 .	
$\frac{1}{2} \frac{2}{3} \frac{1}{2} \frac{1}$	1 N M C 17	$\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$
P 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\frac{\log_2(n)}{2^{k+1}}$ $k = 0$ $\frac{1}{2}$	$1 = \frac{1}{2} + \frac{1}{3} + $

Diseño de algoritmos

Otras alternativas para el diseño de algoritmos son:

- ·Solución ingenua
- ·Dividir y conquistar
- ·Programación dinámica
- ·Técnicas voraces

Análisis de algoritmos ordenamiento

Computador de la Abuela		
109 instrucciones/seg (100MHz)		

Implementación 1	Implementación 2
2n ²	50n*lg n

Ordenar un arreglo de 10⁸ números

Tiempo 1	Tiempo 2
2(10 ⁸) ² /10 ⁹ =2×10 ⁷ segs=5555,6horas	(50*10 ⁸ lg 10 ⁸⁾ /10 ⁹ =40segs=0,66 mins

Análisis de algoritmos ordenamiento

Computador Ultima generación	
10 ¹¹ instrucciones/seg (10GHz)	

Implementación 1	Implementación 2
2n ²	50n*lg n

Ordenar un arreglo de 10⁸ números

Tiempo 1	Tiempo 2
2(10 ⁸) ² /10 ¹¹ =2×10 ⁵ segs=55,56horas	(50*10 ⁸ lg 10 ⁸⁾ /10 ¹¹ =0,4segs

Referencias

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009. Introduction to Algorithms, Third Edition (3rd ed.). The MIT Press. Pages 5-29

Gracias

Próximo tema:

Computación iterativa:

- ·Concepto de estado
- ·Transición de estados
 - ·Invariante de ciclo