

ROBT206 - Microcontrollers with Lab

Lecture 9 – Additional Gates and Circuits

6 February, 2018

Topics

Today's Topics

Other Gate Types, NAND and NOR

Exclusive-OR Operator and Gates

High-Impedance Outputs

Other Gate Types

- ▶ Basic gates are AND, OR, NOT.
- Why do we need other gates?
 - Implementation feasibility and low cost
 - Power in implementing Boolean functions
 - Convenient conceptual representation
- Gate classifications
 - Primitive gate a gate that can be described using a single primitive operation type (AND or OR) plus an optional inversion(s).
 - Complex gate a gate that requires more than one primitive operation type for its description
- Primitive gates will be covered first

Buffer

 \blacktriangleright A buffer is a gate with the function F = X:

- In terms of Boolean function, a buffer is the same as a connection!
- So why use it?
 - A buffer is an electronic amplifier used to improve circuit voltage levels and increase the speed of circuit operation.

NAND Gate

- The basic NAND gate has the following symbol, illustrated for three inputs:
 - ► AND-Invert (NAND)

NAND represents <u>NOT AND</u>, i. e., the AND function with a NOT applied. The symbol shown is an AND-Invert. The small circle ("bubble") represents the invert function.

NAND Gates

Applying DeMorgan's Law gives Invert-OR (NAND)

- This NAND symbol is called **Invert-OR**, since inputs are inverted and then **ORed** together.
- ▶ AND-Invert and Invert-OR both represent the NAND gate. Having both makes visualization of circuit function easier.
- A NAND gate with one input degenerates to an inverter.

NAND Gates

- The NAND gate is the natural implementation for CMOS (Complementary metal-oxide-semiconductor) technology in terms of chip area and speed.
- Universal gate a gate type that can implement any Boolean function.
- NAND usually does not have a operation symbol defined since
 - the NAND operation is not associative, and
 - we have difficulty dealing with non-associative mathematics!

NOR Gate

- ▶ The basic NOR gate has the following symbol, illustrated for three inputs:
 - OR-Invert (NOR)

- NOR represents NOT OR, i. e., the OR function with a NOT applied. The symbol shown is an OR-Invert.
- The small circle ("bubble") represents the invert function.

NOR Gate

Applying DeMorgan's Law gives Invert-AND (NOR)

- This NOR symbol is called Invert-AND, since inputs are inverted and then ANDed together.
- OR-Invert and Invert-AND both represent the NOR gate. Having both makes visualization of circuit function easier.
- A NOR gate with one input degenerates to an inverter.

NOR Gate

- The NOR gate is a natural implementation for some technologies other than CMOS in terms of chip area and speed.
- The NOR gate is a universal gate
- NOR usually does not have a defined operation symbol since
 - the NOR operation is not associative, and
 - we have difficulty dealing with non-associative mathematics!

Exclusive OR/ Exclusive NOR

- The eXclusive OR (XOR) function is an important Boolean function used extensively in logic circuits.
- The eXclusive NOR function is the complement of the XOR function

Exclusive OR/ Exclusive NOR

- Uses for the XOR and XNORs gate include:
 - Adders/subtractors/multipliers
 - Counters/incrementers/decrementers
 - Parity generators/checkers
- Definitions
 - The XOR function is: $X \oplus Y = X\overline{Y} + \overline{X}Y$
 - The eXclusive NOR (XNOR) function, otherwise known as equivalence is: $\overline{\mathbf{X} \oplus \mathbf{Y}} = \mathbf{X} \mathbf{Y} + \overline{\mathbf{X}} \overline{\mathbf{Y}}$
- Strictly speaking, XOR and XNOR gates do no exist for more than two inputs. Instead, they are replaced by odd and even functions.

Truth Tables for XOR/XNOR

Operator Rules: XOR

X	Y	X⊕Y
0	0	0
0	I	
	0	I
		0

XNOR

X	Y	(X⊕Y) or X≡Y
0	0	I
0		0
	0	0

▶ The XOR function means:

X OR Y, but NOT BOTH

XOR/XNOR

The XOR function can be extended to 3 or more variables. For more than 2 variables, it is called an *odd function* or modulo 2 sum (Mod 2 sum), not an XOR:

$$X \oplus Y \oplus Z = \overline{X}\overline{Y}Z + \overline{X}Y\overline{Z} + X\overline{Y}\overline{Z} + XYZ$$

- The complement of the odd function is the even function.
- The XOR identities:

$$X \oplus 0 = X$$
 $X \oplus I = \overline{X}$
 $X \oplus X = 0$ $X \oplus \overline{X} = I$
 $X \oplus Y = Y \oplus X$
 $(X \oplus Y) \oplus Z = X \oplus (Y \oplus Z) = X \oplus Y \oplus Z$

Symbols For XOR and XNOR

XOR symbol:

XNOR symbol:

Shaped symbols exist only for two inputs

XOR Implementations

The simple SOP implementation uses the following structure:

A NAND only implementation is:

Hi-Impedance Outputs

- Logic gates introduced thus far
 - have I and 0 output values,
 - <u>cannot</u> have their outputs connected together, and
 - transmit signals on connections in only one direction.
- Three-state logic adds a third logic value, Hi-Impedance (Hi-Z), giving three states: 0, I, and Hi-Z on the outputs.

Hi-Impedance Outputs

- What is a Hi-Z value?
 - The Hi-Z value behaves as an open circuit
 - This means that, looking back into the circuit, the output appears to be disconnected.
 - It is as if a switch between the internal circuitry and the output has been opened.
- Hi-Z may appear on the output of any gate, but we restrict gates to:
 - a 3-state buffer, or
 - Optional: a transmission gate

each of which has one data input and one control input.

The 3-State Buffer

- For the symbol and truth table, IN is the <u>data input</u>, and EN, the <u>control input</u>.
- For EN = 0, regardless of the value on IN (denoted by X), the output value is Hi-Z.
- For EN = 1, the output value follows the input value.
- Variations:
 - Data input, IN, can be inverted
 - by addition of "bubbles" to signals.

Truth Table

EN	IN	OUT
0	X	Hi-Z
	0	0
I	I	I

Any Questions?

