Classify Me Correctly if You Can: Evaluating Adversarial Machine Learning Threats in NIDS

Neea Rusch

Augusta University, United States

SecureComm 2023 • 20 October 2023

j.w.w. Asma Jodeiri Akbarfam, Hoda Maleki, Gagan Agrawal and Gokila Dorai

Network Intrusion Detection Systems (NIDS) detect and protect against network attacks.

- Defend against different network attacks
- Deployed in various kinds of networks

Modern NIDS use machine learning.

Problem: machine learning models are susceptible to adversarial attacks.

Adversarial Strategies

Training-phase attacks

- Contaminate or alter data
- Cause learning bias

Defenses

- Numerous mechanisms
- Applied at different model deployment stages

Exploits on trained models

- Alter inputs to avoid detection
- Attempt to recover the model

Evaluating AML Threats in NIDS

Adversarial machine learning techniques have been studied primarily in **unconstrained** domains.

Network intrusion detection models are trained on network data, with correlation and **constraints** between attributes.

A constrained domain adds many new considerations

Acceptable perturbations are restricted.

Traditional evaluation metrics are inapplicable.

Misclassification is class sensitive.

Model invocations must be limited.

High-level Motivation

Take the state-of-the-art unconstrained AML attacks and defenses

 \downarrow

Adapt to constrained domains

Measure impact of attacks and defenses in NIDS

Concrete approach

- Design an evaluation system includes choice input data, classifier, defense, and attack.
- 2) Capture domain constraints as **rules** adversarially generated record must satisfy all applicable rules.
- 3) Add to the evaluation system a post-hoc packet **validator** identifies adversarial examples that satisfy domain constraints.

Experimental evaluation

The implementation enabled to evaluate classifiers, attacks, and defenses. By varying different parameters, we can study their impact on NIDS security.

Data sets	2×	IoT-23 and UNSW-NB15
Classifiers	2×	XGBoost, Deep Neural Network
Defenses	2×	Robust Trees, Adversarial Training
Attacks	2×	HopSkipJump Attack, Zeroth Order Optimization
Validator	1×	Validates TCP, UDP and other traffic flows

github.com/aucad/aml-networks

Limited model queries

Model/		HopSkipJumpAttack						Zeroth Order Optimization					
		Evasions			Valid		Evasions			Valid			
Iterations	2	5	10	2	5	10	2	5	80	2	5	80	
loT-23													
DNN	.34	.27	.31	О	0	.01	О	0	0	0	0	0	
DNN- 	0	0	0	О	0	0	0	0	0	0	0	0	
XGB	.43	.39	.41	.06	.07	.18	.47	.49	.49	.05	.05	.04	
XGB- 	.38	.38	.38	.01	.01	.03	.03	.07	.07	.03	.06	.07	
UNSW-NB1	15												
DNN	.79	.68	.81	.41	.39	.42	.28	.36	.29	.25	.30	.24	
DNN- 	.02	.11	.07	.02	.11	.07	0	0	0	0	0	0	
XGB	.93	.92	.91	.47	.46	.47	.50	.69	.78	.49	.65	.69	
XGB- 	.64	.65	.65	.38	.38	.38	.09	.31	.32	.09	.30	.31	

Adversarial attack success rate for 48 attack configurations, represented as *fractions*. "Valid" represents the fraction of evasive records that also pass validation.

Limited model queries

Adversarial success rate by transmission protocol on UNSW-NB15 data.

Benign—Malicious column shows class-label distribution of evasive and valid records.

Model/	Evasions				Benign-					
Protocol	TCP	UDP	other	TCP	UDP	other	Malicious			
HopSkipJumpAttack										
DNN	.79	.85	.81	.78	.02	.03	27-73			
DNN- 	.14	0	0	.14	0	0	0-100			
XGB	.91	.94	.88	.89	.02	.01	30-70			
XGB- 	.75	.43	.78	.73	0	0	17-83			
Zeroth Order Optimization										
DNN	.35	.23	.22	.34	.13	.14	52-48			
DNN- 	0	0	0	О	0	0	-			
XGB	.89	.70	.55	.88	.50	.43	34-66			
XGB- ©	.54	.11	.01	.53	.11	.01	24-76			

Summary

An evaluation system with a post-hoc constraint validator — added constrains to unconstrained state-of-the-art attacks.

Experimentally measured attacks and defenses — despite constraints, AML attacks pose challenges to NIDS.

Many possible future directions — e.g., performing validation during an adversarial search and using the validator feedback to improve attack success.