DDM ANN and Metaproteomics Update

March 8, 2012

In Progress

- Neural Network Paper
 - New Figures
 - Status of ANN Interface

- Metaproteomics Paper
 - Analysis of raw reads

Phage Major Capsid Protein (MCP) and Structural Network Predictions of Capsids from Eukaryotic and Archaeal Viruses

Genome Type						
(Number of Genomes)	MCP 1:1	MCP 2:1	MCP 3:1	MCP 4:1	MCP 7:1	Structural
dsDNA (123)	15.4%	11.4%	11.4%	10.6%	11.4%	85.9%
dsRNA (44)	4.5%	4.5%	0.0%	2.3%	0.0%	77.3%
ssDNA (325)	0.9%	0.0%	0.0%	0.0%	0.0%	95.1%
ssRNA (338)	16.9%	12.1%	10.9%	6.2%	4.1%	91.4%
Archaea (28)	11.1%	5.6%	5.6%	5.6%	5.6%	71.4%

VCID 5610 Α B 0.8 0.6 0.4 0.2 0 Forward Gene -0.2 Reverse Gene -0.4 ANN Predicted Structural Protein -0.6 Hypothetical Protein -0.8 фВсерС6В -1 ~5610 ANN+ hyp prot (g15) MCP ANNs Tail ANNs SLT domain-containing tail structural pr D putative tail fiber protein; similar to Bordetella... C E

Mike's Phage ANN Interactive Experience (Ph-ANNIE)

We have developed software which trains Artificial Neural Networks, to recognize proteins according to their Amino Acid Percent Compositions, and Isoelectric Values.

Software must be available to the public, to train new ANNs and to predict unknown proteins.

Currently, a GUI is in development, to predict unknown proteins as phage Major Capsid Proteins, or Tail Proteins

If provided with filepaths for the fasta file and the matlab program on the user's machine, the proteins are converted into AA-comp and pl data...

	u	ata				
• • •	ANNIE – Artificial Neural Network Interactive Experience					
+ Shttp://localhost/annie6	5.php					
←	Using MAMP	http://segalype_arrays/	CSRC PhD Pr YouTube	References	Bla	
ANNIE - the Artificial Neural	Network I	nteractive Experienc	e			
Suppose you have some proteins And suppose you'd like to know:						
Tild suppose you'd like to know.						
Are these phage major capsid proteins?	Could they b	e tail proteins?				
Well, thanks to the <i>magic</i> of Artificial l	Neural Netwo	rks we can take a quess!				
Won, analist to the magic of Piranolar	routal round	iks, we can take a guess.				
Just input the file-paths for your fasta fi	ile and Matlab	into the following text bo	xes.			
Fasta File Path:						
Matlab File Path:						
Submit						

PCT+PI data:

 $0.0821\ 0.0000\ 0.0075\ 0.0299\ 0.0448\ 0.0896\ 0.0075\ 0.0597\ 0.0448\ 0.0522\ 0.0149\ 0.0896\ 0.0522\ 0.0448\ 0.0373\ 0.1194\ 0.0896\ 0.0746\ 0.075\ 0.0522\ 10.18$ $0.1073\ 0.0000\ 0.0429\ 0.0987\ 0.0365\ 0.0665\ 0.0665\ 0.0644\ 0.0644\ 0.0687\ 0.1030\ 0.0236\ 0.0601\ 0.0408\ 0.0408\ 0.0429\ 0.0558\ 0.0579\ 0.0579\ 0.0579\ 0.0086\ 0.0172\ 4.75$ $0.0755\ 0.0000\ 0.0566\ 0.0943\ 0.0404\ 0.0512\ 0.0027\ 0.0620\ 0.0728\ 0.0916\ 0.0189\ 0.0593\ 0.0296\ 0.0647\ 0.0566\ 0.0458\ 0.0647\ 0.0916\ 0.0081\ 0.0135\ 4.88$ $0.0769\ 0.0051\ 0.0513\ 0.0769\ 0.0462\ 0.0872\ 0.0103\ 0.0564\ 0.0410\ 0.0718\ 0.0256\ 0.0769\ 0.0615\ 0.0256\ 0.0359\ 0.0410\ 0.0974\ 0.0667\ 0.0103\ 0.0359\ 4.36$ 0.0727 0.0038 0.0688 0.0650 0.0229 0.0860 0.0096 0.0650 0.0402 0.0593 0.0153 0.0650 0.0229 0.0593 0.0306 0.0956 0.0975 0.0554 0.0076 0.0574 4.18 $0.0655\ 0.0106\ 0.0673\ 0.0549\ 0.0336\ 0.0726\ 0.0177\ 0.0496\ 0.0531\ 0.0779\ 0.0283\ 0.0832\ 0.0584\ 0.0283\ 0.0389\ 0.0655\ 0.0655\ 0.0442\ 0.0283\ 0.0566\ 4.93$ $0.0771\ 0.0021\ 0.0899\ 0.1199\ 0.0407\ 0.0857\ 0.0278\ 0.0664\ 0.0343\ 0.0685\ 0.0107\ 0.0428\ 0.0471\ 0.0428\ 0.0471\ 0.0343\ 0.0578\ 0.0642\ 0.0128\ 0.0278\ 4.05$ $0.0825\ 0.0063\ 0.1048\ 0.1460\ 0.0222\ 0.0762\ 0.0317\ 0.0603\ 0.0127\ 0.0857\ 0.0032\ 0.0159\ 0.0254\ 0.0444\ 0.0571\ 0.0825\ 0.0540\ 0.0635\ 0.0127\ 0.0127\ 3.86$ 0.0885 0.0066 0.1311 0.1344 0.0426 0.0623 0.0328 0.0361 0.0393 0.0525 0.0197 0.0230 0.0492 0.0262 0.0361 0.0492 0.0492 0.0754 0.0164 0.0295 3.84 $0.1043\ 0.0000\ 0.1257\ 0.1203\ 0.0321\ 0.0722\ 0.0080\ 0.0374\ 0.0455\ 0.0348\ 0.0160\ 0.0267\ 0.0294\ 0.0561\ 0.0455\ 0.0882\ 0.0802\ 0.0401\ 0.0241\ 0.0134\ 3.83$ $0.0841\ 0.0000\ 0.1340\ 0.1028\ 0.0249\ 0.0561\ 0.0125\ 0.0654\ 0.0218\ 0.0966\ 0.0218\ 0.0530\ 0.0436\ 0.0156\ 0.0530\ 0.0467\ 0.0779\ 0.0530\ 0.0187\ 0.0187\ 3.76$ $0.0892\ 0.0000\ 0.1385\ 0.1127\ 0.0329\ 0.0751\ 0.0117\ 0.0423\ 0.0164\ 0.0563\ 0.0258\ 0.0376\ 0.0399\ 0.0258\ 0.0258\ 0.0681\ 0.0634\ 0.0986\ 0.0164\ 0.0235\ 3.43$ $0.0231\ 0.0000\ 0.1769\ 0.0923\ 0.0385\ 0.0692\ 0.0231\ 0.0462\ 0.0000\ 0.0615\ 0.0154\ 0.0000\ 0.0462\ 0.0385\ 0.0462\ 0.1154\ 0.1000\ 0.0692\ 0.0000\ 0.0385\ 3.54$ $0.0791\ 0.0000\ 0.0237\ 0.0158\ 0.0356\ 0.0672\ 0.0119\ 0.0632\ 0.0395\ 0.0988\ 0.0277\ 0.0395\ 0.0553\ 0.0277\ 0.0198\ 0.0830\ 0.1107\ 0.1423\ 0.0079\ 0.0514\ 9.65$ $0.1992\ 0.0000\ 0.0081\ 0.0407\ 0.0407\ 0.0894\ 0.0041\ 0.0772\ 0.0163\ 0.1748\ 0.0325\ 0.0203\ 0.0488\ 0.0122\ 0.0325\ 0.0407\ 0.0325\ 0.0976\ 0.0122\ 0.0203\ 7.52$ 0.0957 0.0000 0.0319 0.0406 0.0261 0.0638 0.0058 0.0841 0.0348 0.0812 0.0145 0.0551 0.0667 0.0609 0.0348 0.0783 0.0725 0.0754 0.0087 0.0696 6.55 $0.1667\ 0.0000\ 0.0694\ 0.0278\ 0.0694\ 0.0139\ 0.0347\ 0.0833\ 0.0764\ 0.0278\ 0.0556\ 0.0764\ 0.0486\ 0.0347\ 0.0486\ 0.0417\ 0.0556\ 0.0069\ 0.0556\ 9.98$ 0.0708 0.0354 0.0708 0.0708 0.0088 0.0531 0.0177 0.1416 0.0885 0.0619 0.0265 0.0354 0.0265 0.0265 0.0885 0.0531 0.0619 0.0177 0.0000 0.0442 8.92 $0.0216\ 0.0000\ 0.0791\ 0.0791\ 0.0432\ 0.0647\ 0.0000\ 0.1295\ 0.0360\ 0.1007\ 0.0360\ 0.0072\ 0.0576\ 0.0360\ 0.0935\ 0.0360\ 0.0360\ 0.0791\ 0.0144\ 0.0504\ 4.67$ $0.1062\ 0.0000\ 0.0375\ 0.0437\ 0.0625\ 0.0437\ 0.0000\ 0.0625\ 0.0625\ 0.1062\ 0.0312\ 0.0500\ 0.0375\ 0.0250\ 0.0250\ 0.0500\ 0.0813\ 0.0813\ 0.0125\ 0.0813\ 8.63$ 0.0364 0.0364 0.0409 0.0318 0.0409 0.0909 0.0136 0.0682 0.0273 0.0773 0.0136 0.0818 0.0545 0.0364 0.0091 0.0955 0.0818 0.0409 0.0091 0.1136 4.35

< M A T L A B (R) > Copyright 1984-2010 The MathWorks, Inc. Version 7.11.0.584 (R2010b) 64-bit (maci64) August 16, 2010 To get started, type one of these: helpwin,

The AA-comp and pI data are provided to a matlab script, which uses pre-trained ANNs, to generate predictions as to protein function.

The Matlab script generates a csv file, in which each predicted protein is represented by row, and each type of ANN is represented by column...

	Α	В	C	D	E	F
1	-0.93683	-0.98231	-0.96846	-0.97849	-0.96517	-0.99705
2	-0.99624	-0.99761	-0.99225	-0.99853	-0.99012	-0.99942
3	0.77531	0.7701	0.51864	0.42647	0.46029	-0.081085
4	-0.15756	0.0045422	-0.38005	-0.3447	-0.29112	-0.74178
5	0.71443	0.32266	0.23753	0.25164	-0.032866	-0.25807
6	-0.75167	-0.85966	-0.88113	-0.90151	-0.90575	-0.96731
7	-0.37702	-0.70048	-0.72004	-0.85689	-0.78607	-0.97668
8	0.64417	0.045028	0.1869	-0.16083	-0.34331	-0.64696
9	-0.83235	-0.95784	-0.89619	-0.9012	-0.88052	-0.97162
10	-0.026821	-0.42073	-0.56978	-0.65562	-0.73061	-0.94066
11	-0.92887	-0.97564	-0.97294	-0.97049	-0.98446	-0.9973
12	-0.82382	-0.88519	-0.94914	-0.96145	-0.94392	-0.99408

The scripts still require some changes, which will allow the fasta annotations and ANN type names to be included, in the output file.

4	A	В	C	D	E
1	ANN_PREDICTIONS	MCP_ONE	MCP_TWO	MCP_THREE	MCP_FOUR
2	>gi 9634678 ref NP_038458.1 capsid protein (p38) [Japanese iris necrotic ring virus]	-0.93683	-0.98231	-0.96846	-0.97849
3	>gi 66090971 ref YP_233104.1 coat protein [Cassia yellow blotch virus]	-0.99624	-0.99761	-0.99225	-0.99853
4	>gi 115350055 ref YP_762620.1 coat protein [Streptocarpus flower break virus]	0.77531	0.7701	0.51864	0.42647
5	>gi 119964533 ref YP_950424.1 18 kDa coat protein [Maracuja mosaic virus]	-0.15756	0.0045422	-0.38005	-0.3447
6	>gi 145651768 ref YP_001165305.1 coat protein [Phlox virus S]	0.71443	0.32266	0.23753	0.25164
7	>gi 70980517 ref YP_263307.1 coat protein [Lily virus X]	-0.75167	-0.85966	-0.88113	-0.90151
8	>gi 62326909 ref YP_224088.1 coat protein [Hydrangea ringspot virus]	-0.37702	-0.70048	-0.72004	-0.85689
9	>gi 94971814 ref YP_595731.1 coat protein [Daphne virus S]	0.64417	0.045028	0.1869	-0.16083
10	>gi 56692635 ref YP_164805.1 coat protein [Fragaria chiloensis latent virus]	-0.83235	-0.95784	-0.89619	-0.9012
11	>gi 75750464 ref YP_319831.1 coat protein [Alstroemeria virus x]	-0.026821	-0.42073	-0.56978	-0.65562
12	>gi 83999993 ref YP_446996.1 coat protein [Nerine virus X]	-0.92887	-0.97564	-0.97294	-0.97049

Metaproteomics Update

Analysis of raw reads (MGRAST)

ANALYSIS STATISTICS

Upload: Size	266,906,705 bp
Upload: Sequences Count	591,600
Upload: Mean Sequence Length	451 ± 159 bp
Upload: Mean GC percent	45 ± 7 %
Technical Duplicates: Sequence Count	190,428
Post QC: Size	163,602,764 bp
Post QC: Sequences Count	360,246
Post QC: Mean Sequence Length	454 ± 172 bp
Post QC: Mean GC percent	46 ± 7 %
Processed: Predicted Protein Features	217,700
Processed: Predicted rRNA Features	37,836
Alignment: Identified Protein Features	9,117
Alignment: Identified rRNA Features	23
Annotation: Identified Functional Categorie	es 4,953

CAR9 (MGRAST)

97.5% Unknown

ANALYSIS STATISTICS

Upload: Size	371,341,354 bp
Upload: Sequences Count	939,311
Upload: Mean Sequence Length	395 ± 131 bp
Upload: Mean GC percent	44 ± 7 %
Technical Duplicates: Sequence Count	359,603
Post QC: Size	222,542,394 bp
Post QC: Sequences Count	579,664
Post QC: Mean Sequence Length	383 ± 147 bp
Post QC: Mean GC percent	42 ± 8 %
Processed: Predicted Protein Features	340,045
Processed: Predicted rRNA Features	57,515
Alignment: Identified Protein Features	42,218
Alignment: Identified rRNA Features	8
Annotation: Identified Functional Categori	es 18,419

STAR7 (MGRAST)

93% Unknown

CAR9 Tax Distribution by Genus

STAR7 Tax Distribution by Genus

To Do (Soon)

- ANN Paper
 - Resubmit next week

- Metaproteomics Paper
 - Add MGRAST results
 - Check accuracy of figures and tables
 - Format manuscript and figures for submission (PLoS Biology???)

