Assignment 3

DBMS lab

Q1. Create the tables Employees and Departments having the following structures:

Sample table: Employees

EMPLOYEE_ID	FIRST_NAME	LAST_NAME	SALARY	DEPARTMENT_I
				D
111	Steven	King	24000	20
112	John	Hopkings	12000	30
113	Alexander	Roy	10000	20
114	Carlie	Nayer	23000	20
115	Julies	Ceaser	8000	40
116	James	Mathew	9000	30
117	Andrew	Matt	5500	30
118	Sunil	Pal	25000	20
119	Roshan	Kumar	15000	40
120	Rahul	Kapoor	16000	40

Sample table: Departments

DEPARTMENT_ID	DEPARTMENT_NAME
20	Accounting
30	IT
40	Marketting

Perform the following operations using nested queries/sub-queries:

- a) Find the names (first name as well as last name) and salaries of the employees who have higher salary than the employee whose last name is Hopkings.
- b) Find the names (first and last name both) of all the employees who work in the IT department.

- c) Find the names (first_name, last_name), salary of the employees whose salary is greater than the average salary.
- d) Find the names (first_name, last_name), salary of the employees who earn more than the average salary and who works in any of the IT departments.
- e) Find the details of the employees who earn the same salary as the minimum salary for all departments.
- f) Find the details of the employees whose salary is greater than average salary of all department.
- Q2. Create the "Customers" table having the following structure:

ID (as a primary key), NAME, AGE, ADDRESS and SALARY

Populate the table with the following records:

<u>ID</u>	<u>NAME</u>	<u>AGE</u>	ADDRESS SALARY	<u>Y</u>
001	Ramesh	32	Ahmedabad	2000.00
002	Khalid	25	Delhi	1500.00
003	kaushik	23	Kota	2000.00
004	Chaitali	25	Mumbai	6500.00
005	Hardik	27	Bhopal	8500.00
006	Komal	22	MP	4500.00
007	Muffy	24	Indore	10000.00

Perform the following operations on the above table:

- a) Create a view called view1 on Customers table that should include ID, NAME and AGE from Customers.
- b) Create a view called view2 on Customers table that should include the records of Customers whose salaries are greater than 5000.

c) Insert the following records of customers in the view1:

ID	NAME	AGE
010	Fazil	27
014	Shoaib	31
016	John	NULL

Show the results of View1 as well as the base table Customers after insertion operation.

- d) Change the name of customer Komal to ABC by using view1. Display the results of view1 as well as the base table Customers.
 - Update view1 set name ='ABC' where name ='komal';
- e) Modify the salary and age of Muffy in view2 to 15000 and 26 respectively.
- f) Delete a record from view1 whose ID is 004. Display the results of view1, view2 and the base table Customers.
- g) Destroy the structure of view2.
- h) Create a view called view3 on Customers table with name and age. Add check option on age to be not null.
- i) Insert a record in view3 ('Rohan', NULL) and ('Joe', 42). Display the results of view3 and Customers table.