Unit 9: Congruence transformations 6 March 2020

Name: Solutions

## 9.9 Exam: Congruence and similarity transformations, compositions

1. State the translation that would map M(-2,9) onto M'(-1,8).

T+1,-1

2. On the set of axes below,  $\triangle ABC \cong \triangle STU$ .

Describe the rigid motion that maps  $\triangle ABC$  onto  $\triangle STU$ .

Rotate clockwise 900 around origin



3. Rotate  $\triangle JKL$  90° clockwise around the origin on the axes below, labeling the image  $\triangle J'K'L'$ .



4. Determine and state the transformation mapping  $\triangle BOW$  onto  $\triangle TIE$ .

Rotate
180° elockwise
(contactichiise)
around
(0,-3)



5. Describe a rigid motion that maps  $\triangle TIC$  onto  $\triangle TOK$ .

Reflection across
X-axis



6. Find the coordinates of the image of the point D(3,5) after a reflection across the x-axis.

(3,-5)

, (3,-5)

7. The quadrilateral MATH is mapped to M'A'T'H' by a rigid motion. What transformation a been applied?





- (c) Rotation
- (d) Translation



8. Determine and state the sequence of transfromations applied to map BECA to B''E''C''A''.

Reflect over y-a-xis Translate down 6

(Reverse order Ox)



9. Which of the following would map  $\triangle DOG \rightarrow \triangle D'O'G'$ ?



$$(x,y) \rightarrow (x-6,y+0)$$

- T
- Rotated  $90^{\circ}$  clockwise around (2,0)
- Reflected across the y-axis
- Translated six to the left, down zero



Slid to the left four, then reflected across the y-axis



Reflected across the line x = 2



10. The quadrilateral KITE undergoes rigid motions, shown below. Describe the sequence of transformations applied.

Reflect over x=2Translate  $x \to x-1$   $y \to y+4$ 



11. Reflect the rhombus BECA across the x-axis, then translated  $(x,y) \to (x+4,y+2)$ . Label the images B'E'C'A' and B''E''C''A''.



- 12. Two triangles are shown with P the intersection of  $\overline{AJ}$  and  $\overline{BK}$ .
  - (a) Justify  $\angle APB \cong \angle JPK$ .

Vertical angles

(b) What angle must be congruent to  $\angle K$ to prove  $\triangle ABP \sim \triangle JKP$  by angleangle similarity?

LB



13. Given  $\triangle PQR \sim \triangle STU$ ,  $m \angle P = 37^{\circ}$ , and  $m \angle T = 46^{\circ}$ . Find  $m \angle R$ .



37+46+MLR=180 MLR=97°

- 14. The diagram below shows  $\triangle ABC$ , with  $\overline{AEB}$  and  $\overline{ADC}$ .
  - (a) Justify  $\angle BAC \cong \angle DAE$ .

Reflexive property

(b) What angle must be congruent to  $\angle ABC$  to prove  $\triangle ABC \sim \triangle ADE$ by angle-angle similarity?

1 ADE



- 15. A dilation centered at the origin with scale factor  $k = \frac{1}{2}$  maps  $\overline{AB} \to \overline{A'B'}$ .
  - (a) Draw and label the image.
  - (b) What is the ratio of the length of  $\overline{A'B'}$  to  $\overline{AB}$ ? 2:1







16. Given  $\triangle ABC$ , D is the midpoint of  $\overline{BA}$ , E is a point on  $\overline{BC}$ , and  $\overline{DE}$  is drawn. If BA = 8 and BE = 6, what is the length of  $\overline{BC}$  so that  $\overline{AC} \parallel \overline{DE}$ ?



17. In diagram below, each centimeter represents six inches. Find the value of each item below in feet.

(a) 
$$AC = 4 \times 6$$
 =  $24$  =  $24$  =  $24$ 

(b) 
$$BC = 5 \times 6 = 30 = 30 = 2 = 4$$



(c) Find the perimeter of  $\triangle ABC$ 

(d) Find the area of  $\triangle ABC$ 

$$A = \frac{1}{2} (2 f' + x l = f) f + f$$
  
=  $\frac{3}{2} S_9 f_7 (1.5 s_9 f + f)$ 

18. Given  $\triangle ABP \sim \triangle JKP$  as shown below. AB = 9.0, AP = 10.0, BP = 5.5, and AJ = 25.0. Find JK.

AP = JP10 = 15  $K = \frac{15}{10} = \frac{3}{2}$  AB = JK  $JK = \frac{3}{2} \times (9.0) = 13.5$ 



19. The vertices of  $\triangle JKL$  have the coordinates  $J(-4,-2),\ K(3,3),\ {\rm and}\ L(-3,5),\ {\rm as}$  shown.

Apply a dilation to  $\triangle JKL \to \triangle J'K'L'$ , centered at P(-1,3) and with a scale factor k=2. Draw the image  $\triangle J'K'L'$  on the set of axes below, labeling the vertices, and make a table showing the correspondence of both triangles' coordinate pairs.

 $J(-4,-2) \rightarrow J'(7,-7)$   $k(3,3) \rightarrow k'(7,3)$   $L(-3,5) \rightarrow L'(-5,7)$ 



What is the ratio of the area of  $\triangle JKL$  to  $\triangle J'K'L'$ ?

20. In  $\triangle ABC$  shown below,  $\angle ACB$  is a right angle, E is a point on  $\overline{AC}$ , and  $\overline{ED}$  is drawn perpendicular to hypontenuse  $\overline{AB}$ .



If AB = 9, BC = 6, and DE = 4, what is the length of  $\overline{AE}$ ?

Be > DE
$$6 \Rightarrow 4$$

$$k = \frac{4}{6} = \frac{2}{3}$$

21. In the diagram below,  $\angle ABC \cong \angle ADE$ , AB = 9, AC = 6, BD = 13.5, and DE = 16. Find AD and the scale factor k. Then find AE and BC.

(a) 
$$AD = 9 + 13.5 = 22.5$$

(b) 
$$k = \frac{22.5}{9} = 2\frac{1}{2}$$

(c) 
$$AE = \sum_{i=1}^{n} \lambda_i \zeta_i = 15$$

(d) 
$$BC = \frac{15.6 - 9}{2.5} = 6.4$$



22. The line  $\overrightarrow{AB}$  has the equation  $y = \frac{2}{3}x - 2$ . Apply a dilation mapping  $\overrightarrow{AB} \to \overrightarrow{A'B'}$  with a factor of k = 3 centered at the origin. Draw and label the image on the grid. Write the equation of the line  $\overrightarrow{A'B'}$ .



23. The diagram below shows  $\triangle ABC$ . E bisects  $\overline{AB}$ , and  $\angle ACB \cong \angle AED$ . AB = 18, AC = 12, and DE = 7. Find the scale factor k, BC, and AD.

(a) 
$$k = \frac{12}{9} = \frac{4}{3}$$
  $AE \rightarrow AC$ 

(b) 
$$BC = \frac{4}{3} \times 7 = \frac{27}{3} = 9\frac{1}{3}$$

(c) 
$$AD = \frac{3}{4} \times 18 = \frac{27}{2} = 13\frac{2}{2}$$
  
 $AD \rightarrow A3$ 



m shoked

24. In the diagram below, the chords  $\overline{AE}$  and  $\overline{BD}$  intersect at C. Given  $\triangle ABC \sim \triangle DEC$ , BC = 6, CD = 12, and CE = 10. Determine the length of  $\overline{CA}$ .

$$CE \rightarrow BC$$
 $10 \rightarrow 6$ 
 $10 \rightarrow 6$ 
 $10 = \frac{3}{5}$ 
 $10 = \frac{3}{5}$ 
 $10 \rightarrow 6$ 
 $10 \rightarrow 6$ 



25. Determine and state the sequence of transformations applied to map  $\triangle ABC \rightarrow \triangle DEF$ .



26. What sequence of transformations would map  $\triangle ABC$  onto  $\triangle DEF$ ?

Robete 180°
(counter) clockurse
around origin

Dilate K=2

Contered

at origin

