PIRO – Projekt 1

Bartosz Sobkowiak 125342 Joanna Świda 138675 14.04.2020

1. Metoda

Zgodnie z zasugerowanym możliwym podejściem, nasza metoda polegała na porównywaniu różnic odległości od podstawy figury do jej wierchołków. Na tej podstawie generowana była krawędź drugiego brakującego kawałka kolejno porównywana do pozostałych figur.

2. Generowanie statystyk

Obraz przetwarzany był w następujących krokach:

- Znalezienie konturów przy użyciu funkcji findContours z openCV (dalej cv2)
- Wyznaczenie prostokąta w który wpisany jest kontur (cv2.minAreaReact) i kąta o który jest on obrócony względem podstawy obrazu

- Obrót/rotacja konturu o dany kat tak by był równoległy do podstawy obrazu
- Sprawdzenie czy należy obrócić kontur jeszcze o 90 stopni (jeśli jego wysokość jest większa niż szerokość) i ewentualny obrót
- Wygenerowanie drugiego konturu (na obróconym obrazie), który będzie służył za bazę do współprzędnych
- Przemonożenie obrazu przez zero by pozbyć się odcieni szarości na stykach i uwidocznić kontur

- Wyznaczenie współrzędnych wierzchołków i podstawy: Iterując po pionowych kolumnach pikseli program wybierał białe piksele z maksymalną (górna krawędź) i minimalną (dolna) współrzędną wysokości. Wyznaczane były tylko dwie wartości, żeby nie zaburzać danych ewentualnymi pionowymi bokami figury, które nie są istotne przy dopasowywaniu. W ten sposób powstawała lista *top i* lista *bottom* zawierające współrzędne punktów konturu.
- Wyznaczenie podstawy i górnej części figury: dla list *top* i *bottom* (przedstawione na wykresach poniżej) wyliczane było odchylenie standardowe im mniejsze tym bardziej prawdopodobne, że punkty ułożone są w jednej linii i stanowią podstawę figury. Dalej pod uwagę brana była już tylko lista zawierająca "poszarpany" bok figury

 W sposób analogiczny wyznaczane było dopełnienie figury, czyli odległości od przeciwległej podstawy obrazka. W ten sposób dla każdej figury generowana była lista punktów zawierająca prawdopodobny wygląd jej drugiej części. Dla przedstawianej powyżej figury jej dopełnienie wygląda następująco:

 Wygenerowana lista punktów krawędzi figury oraz lista punktów krawędzi jej dopełnienia były następnie uśredniane i sprowadzane do list równej długości, z uwagi na to, że obrazy

wejściowe były w różnej rozdzielczości i w różnej odległości od krawędzi bocznych:

3. Porównywanie

Każdy obraz (a dokładnie uśredniona lista punktów jego krawędzi) była następnie porównywana z każdym wygenerowanym dopełnieniem pozostałych figur.

- Dla każdej pary liczone było odchylenie standardowe ich różnicy, czyli szukana była para figura-dopełnienie których uśrednione wykresy krawędzi są jak najbardziej zbliżone
- Uśrednienie mogło niekiedy "przesuwać wykres" w lewo lub prawo, więc dla każdej pary liczone były dopasowania przy przesunięciu o kilka pozycji w jedna i drugą stronę
- Ostatecznie brane pod uwagę było więc minimalne odchylenie standardowe ze wszystkich policzonych dla pary
- Lista wyjściowa była sortowana właśnie po tej wielkości

Poniżej przedstawiona jest krawędź figury i znalezione dla niej dopełnienie.

4. Wnioski

- Metody zastosowane przy generowaniu statystyk możemy uznać za całkiem dobre, gdyż poprawnie obracają i wyszukują podstawy dla każdego obrazu; z uwagi na to, że nie operują na kątach to zastosowanie perspektywy w żaden sposób nie przeszkadza; jest to dobra baza do porównywania obrazów również inną metodą (np. licząc kąty wierzchołków)
- Porównywanie obrazów działa tym lepiej im więcej elementów charakterystycznych ma dany obraz (np. duży "uskok", długie wypłaszczenie), traci jakość przy grupie obrazów o zbliżonych cięciach
- Największym problemem porównywania metodą liczenia różnic jest konieczność uśredniania list, która niestety łatwo może usunąć istotne punkty, zbyt mocno wygladzić powierzchnie lub, jak wspominaliśmy, "przesunąć wykres"; figury znajdują się w różnych miejsach obrazów więc nie można ich sprowadzać do tej samej wielkości w początkowym etapie; liczenie odchylenia dla różnic dla list "przesuniętych" w lewo i prawo względem siebie znacząco poprawiło wyniki, lecz wciąż nikiedy przesunięcie spowodowane uśrednianiem jest na tyle duże, że nie udaje się go w ten sposób wyłapać