Lecture 2 – Modeling Piecewise Linear Functions

Module 5 – Special Cases of Linear Programs CS/ISyE/ECE 524

Piecewise Linear Functions

- Some problems don't look like LPs, but can easily be transformed into an LP
- An important example is minimizing convex piecewise linear functions
 - If we are maximizing, we want the function to be concave

Example

$$\min_{\substack{x \in \mathbb{R} \\ \text{s.t.}}} f(x)$$
 Where
$$\int_{x \in \mathbb{R}} f(x) = \begin{cases} -x - 2 & \text{if } -\infty < x \le -1 \\ -1 & \text{if } -1 < x \le 1 \\ x - 2 & \text{if } 1 < x < \infty \end{cases}$$

Converting to Epigraph Form

 Convert the problem to epigraph form by adding a new variable t and turning the cost function into a constraint

$$\min_{\substack{x \in \mathbb{R} \\ \text{s.t. } Ax \ge b \\ x \ge 0}} f(x)$$

$$\sup_{\substack{x,t \\ \text{s.t. } Ax \ge b \\ t \ge f(x) \\ x \ge 0}$$

The new feasible set is still a polyhedron!

$$\min_{x,t} \{t \mid Ax \ge b;$$

$$t \ge -x - 2; t \ge -1; t \ge x - 2;$$

$$x \ge 0\}$$

The **epigraph** of a function f(x) is the set of points that lie on or above its graph: $epi \ f = \{(x, t) \in \mathbb{R}^n \times \mathbb{R} \mid t \geq f(x)\}$

IMPORTANT: The epigraph trick only works if the epigraph is a polyhedron

•The epigraph in this image is **not a polyhedron** (which means it cannot be a feasible region of any LP)

A special case: minimax problems

- Fact: The maximum of a set of linear functions is always convex!
 - Implies that the max of a set of linear functions is a convex piecewise lineαr function
 - If we are minimizing the function, we can use the epigraph trick!

$$\min_{x} \max_{i=1,\dots,k} \{a_i^T x \ b_i\}$$

$$\min_{x,t} t$$
s.t. $t \ge a_i^T x + b_i \ \forall i = 1, ..., k$

Another special case: maximin problems

- Fact: The minimum of a set of linear functions is always concave!
 - Implies that the min of a set of linear functions is a *concave piecewise linear function*
 - If we are maximizing the function, we can use the epigraph trick!

$$\max_{x} \min_{i=1,\dots,k} \{a_i^T x \ b_i\}$$

$$f(x) = \min_{i=1,...,k} \{a_i^T x + b_i\}$$

$$\max_{x,t} t$$
s.t. $t \le a_i^T x + b_i \ \forall i = 1, ..., k$

One more special case: absolute value problems

• The function f(x) = |x| can be rewritten as:

$$f(x) = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$$

- This is a convex piecewise linear function!
- If we minimize f(x) we can use the epigraph trick:

$$\min_{\substack{x \in \mathbb{R} \\ \text{s.t.}}} |x|$$
s.t. $Ax \ge b$

$$t \ge x$$

$$t \ge -x$$

This even works for sums of absolute values:

$$\min_{\substack{x,y \in \mathbb{R} \\ \text{s.t. } Ax \ge b}} |x| + |y|$$

$$\text{s.t. } Ax \ge b$$

$$t \ge x; t \ge -x$$

$$s \ge y; s \ge -y$$

Back to ShoeCo....

Recall the function for inventory costs with backlogging is:

$$F(I_t) = \begin{cases} 3I_t & \text{if } I_t \ge 0\\ -20I_t & \text{if } I_t < 0 \end{cases}$$

- This is a piecewise linear function of inventory and we are minimizing costs
 - Question: do we want the function to be <u>convex</u> or <u>concave</u>? (And which is it?)
- Since this is a convex piecewise linear function and we are minimizing, we can use the epigraph trick!

Reformulate as:
$$\min_{I,\tau,\dots} \sum_{t\in T} \tau_t + \text{other costs}$$
 s.t. $\tau_t \geq 3I_t \ \forall t=1,2,3,4$
$$\tau_t \geq -20I_t \ \forall t=1,2,3,4$$
 other constraints

An equivalent formulation

In Julia:

ShoeCo with backlogging

Another way to reformulate $F(I_t)$:

- 1.Introduce new variables L_t and S_t (think of these as "leftover" and "shortage" variables)
- 2.Both variables nonnegative: $L_t \ge 0$, $S_t \ge 0$
- 3. Define inventory level as (Leftover Shortage): $I_t = L_t S_t$
- 4. The cost function can be written as: $\sum_{t \in T} (3L_t + 20S_t)$

Why does this work?

• If we're minimizing costs, only one of L_t and S_t will ever be positive in an optimal solution

Some notes:

- This trick works for any convex piecewise linear function (of x) we are minimizing
- We can even use this trick for constraints of the form $|x| \leq b$
 - I.e., model $|x| \le b$ as x = w v; $w, v \ge 0$; $w + v \le b$

c

A minimax example

Han Solo is flying the *Millennium Falcon* through an asteroid field. His passengers' stress levels are functions of the speed Han flies (we'll call the speed x):

- Leia: -2x + 20
- Chewbacca: $-\frac{1}{10}x + 10$
- C-3Po: x + 1.75

To make his life easier, Han wants to minimize the maximum stress level of his passengers. The *Falcon* has a maximum speed of 12 parsecs/min. He must go at least 6 parsecs/min to outrun the Empire. How fast should Han fly?

In Julia: <u>Han's Stressful Flight</u>

