HW2 of Introduction to Information Security 2018

Deadline: 10/18 23:55

A10615003 張家成 二資工三

1. Please completely describe the encryption procedure of 3DES with three different keys and explain why security of 3DES only reaches 112 bits (not 56x3 bits)?

答:

(-)

3DES 即 將 DES 演算法執行三次

P = plaintext

C = cipher text

 $k_1 = \text{key}1$

 $k_2 = \text{key}2$

 $k_3 = \text{key}3$

E = encrypt

D = decrypt

3DES 加密:

將明文 P 使用 DES 的 k1 加密得到的中間結果再通過 DES 的 k2 進行解密,最後再使用 DES 的 k3 加密得到最終密文。即:

$$C = E k_3((D k_2((E k_1(P)))))$$

3DES 解密(於加密相反):

將密文 C 使用 DES 的 k3 解密得到的中間結果再通過 DES 的 k2 進行加密,最後再使用 DES 的 k1 解密得到最終明文。即:

$$P = D_k_1((E_k_2((D_k_3(C)))))$$

若

- k₁ ≠ k₂ ≠ k₃
 則擁有 3*56 = 168 bits 長度的密鑰
 即:
 C = E k₃((D k₂((E k₁(P)))))
- k₁ = k₃ ≠ k₂
 則擁有 2*56 = 112 bits 長度的密鑰
 即:
 C = E k₁((D k₂((E k₁(P)))))
- k₁=k₂=k₃
 此時 3DES = DES,擁有 56 bits 長度的密鑰
 即:
 C=E k((D k((E k(P))))) = E k(P)

$(\underline{})$

當我們選擇

 $k_1 \neq k_2 \neq k_3$ 方式來進行 3DES 加密時,可以得到 $C = E_k_3((D_k_2((E_k_1(P)))))$ $P = D_k_1((E_k_2((D_k_3(C)))))$

由此可知:

如果已經知道了一對明文和密文(P&C),則可以利用中途相遇攻擊(Meet in the middle attack),枚舉所有的 $k_1(2^56)$ 個 的 $k_1(2^56)$ 個 $k_1(2^56)$ 图 $k_$

中途相遇攻擊(Meet in the middle attack) 流程圖

