

交流耦合 (HPF) 同相放大器电路

设计目标

输入		输出		电源		
V _{iMin}	V _{iMax}	V _{oMin}	V _{oMax}	V _{cc}	V _{ee}	V _{ref}
-240mV	240mV	0.1V	4.9V	5V	0V	5V

截止频率下限(f _L)	截止频率上限(f _H)	交流增益 (G _{ac})
16Hz	≥ 1MHz	10V/V

设计 说明

此电路可放大交流信号,并可对输出信号进行相移以使其集中于电源电压信号的二分之一处。注意,输入信号具有零直流偏移,因此它在地电位上下摆动。此电路的主要优点在于其支持摆动到地电位以下的信号 - 即使放大器没有负电源。

设计说明

- 1. V_{inp} 处的电压决定输入共模电压。
- 2. R₂和 R₃负载交流频率的输入信号。
- 3. 通过使用低反馈电阻实现低噪声。
- 4. 根据线性输出摆幅设置输出范围(请参阅运算放大器的 A_{ol} 规格)。
- 5. 该电路具有两个真实的电极,它们决定高通滤波器的 -3dB 频率。将它们都设置为 $f_L/1.557$,从而在截止 频率下限 (f_L) 上得到 -3dB。

设计步骤

1. 选择 R₁ 和 R₄ 来设置交流电压增益。

$$R_1 = 1 k\Omega$$
 (Standard Value)

$$R_4 = R_1 \times (G_{ac} - 1) = 1 \quad k\Omega \times (10\frac{V}{V} - 1) = 9k\Omega$$
 (Standard Value)

2. 选择 R_2 和 R_3 来将直流输出电压 (V_{DC}) 设置为 2.5V 或电源电压的一半。

$$R_3 = 4$$
 . $99k\Omega$ (Standard Value)

$$R_2\!=\!\frac{R_3\!\times\!V_{ref}}{V_{DC}}\!-R_3\!=\!\frac{4.99k\Omega\!\times\!5V}{2.5V}\!-4$$
 . $99k\Omega\!=4$. $99k\Omega$

3. 基于 f_L 和 R₁ 选择 C₁。

$$f_L = 16Hz$$

$$C_1 = \tfrac{1}{2^\times \pi^\times R_1 \times (\tfrac{f_1}{1.557})} = \tfrac{1}{2^\times \pi^\times 1 \ k\Omega^\times 10.3 Hz} = 15 \ . \ 5\mu\text{F} \approx 15\mu\text{F}(\text{Standard Value})$$

4. 基于
$$f_L$$
、 R_2 和 R_3 选择 C_2 。
$$R_{div} = \frac{R_2 \times R_3}{R_2 + R_3} = \frac{4.99 k \Omega \times 4.99 k \Omega}{4.99 k \Omega + 4.99 k \Omega} = 2.495 k \Omega$$

$$C_2 = \frac{1}{2^\times \pi^\times R_{\text{div}} \times (\frac{f_L}{1.557})} = \frac{1}{2^\times \pi^\times 2.495 \text{k}\Omega \times 10.3 \text{Hz}} = 6 \text{ . } 4 \mu F \rightarrow 6 \text{ . } 8 \mu F (StandardValue)$$

5. 截止频率上限 (f_H) 取决于此电路的同相增益和器件 (TLV9062) 的增益带宽 (GBW)。

$$f_{H} = \frac{\text{TLV9062} \square \text{GBW}}{G_{ac}} = \frac{10\text{MHz}}{10\frac{\text{V}}{\text{V}}} = 1 \text{ MHz}$$

www.ti.com.cn

设计仿真

交流仿真结果

瞬态仿真结果

设计参考资料

请参阅《模拟工程师电路说明书》,了解有关TI综合电路库的信息。

请参阅电路 SPICE 仿真文件 SBOC505。

请参阅 TIPD185, www.ti.com.cn/tool/cn/tipd185。

设计采用的运算放大器

TLV9062		
V _{cc}	1.8V 至 5.5V	
V _{inCM}	轨至轨	
V _{out}	轨至轨	
V _{os}	300μV	
I _q	538µA	
I _b	0.5pA	
UGBW	10MHz	
SR	6.5V/µs	
通道数	1、2、4	
www.ti.com.cn/p	roduct/cn/tlv9062	

设计备选运算放大器

OPA192		
V _{cc}	4.5V 至 36V	
V _{inCM}	轨至轨	
V _{out}	轨至轨	
V _{os}	5µV	
I _q	1mA/通道	
I _b	5pA	
UGBW	10MHz	
SR	20V/µs	
通道数	1、2、4	
www.ti.com.cn/product/cn/opa192		

修订历史记录

修订版本	日期	更改	
Α	A 2019 年 1 月 缩减标题字数,将标题角色改为"放大器"。 向电路指导手册登录页面添加链接。		

重要声明和免责声明

TI 均以"原样"提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示担保。

所述资源可供专业开发人员应用TI产品进行设计使用。您将对以下行为独自承担全部责任:(1)针对您的应用选择合适的TI产品;(2)设计、验证并测试您的应用;(3)确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI对您使用所述资源的授权仅限于开发资源所涉及TI产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI及其代表造成的损害。

TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn/上或随附TI产品提供的其他可适用条款的约束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。

邮寄地址: 上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码: 200122 Copyright © 2019 德州仪器半导体技术(上海)有限公司

重要声明和免责声明

TI 均以"原样"提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示担保。

所述资源可供专业开发人员应用TI产品进行设计使用。您将对以下行为独自承担全部责任: (1)针对您的应用选择合适的TI产品; (2)设计、验证并测试您的应用; (3)确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI对您使用所述资源的授权仅限于开发资源所涉及TI产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI及其代表造成的损害。

TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。

邮寄地址: 上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码: 200122 Copyright © 2019 德州仪器半导体技术(上海)有限公司