

HEAT-SHRINKABLE POLYESTER FILM

Publication number: JP2001200072 (A)

Publication date: 2001-07-24

Inventor(s): HAYAKAWA SATOSHI; SATO KAZUNORI; GYOBU SHOICHI; MORISHIGE CHIKAO; TAHODA TADASHI +

Applicant(s): TOYO BOSEKI +

Classification:

- International: C08J5/18; B29C61/06; C08J5/18; B29C61/06; (IPC1-7): B29C61/06; C08J5/18; B29K67/00; B29K105/02; B29L7/00; C08L67/00

- European:

Application number: JP20000006663 20000114

Priority number(s): JP20000006663 20000114

Abstract of JP 2001200072 (A)

PROBLEM TO BE SOLVED: To prepare a heat-shrinkable polyester film which is almost free from defects, such as uneven shrinkage, wrinkles, distortion, and creases, after its heat shrinkage by hot air at the step of shrinking, can have a beautiful shrunk appearance, and is suitably used in full label applications or cap seal applications where a film label requires a high shrinkage depending on the shape of a container. **SOLUTION:** The heat shrinkage of this film in the main shrinkage direction after treated for 10 sec in 80 deg.C water is 40% or higher, and there are two endotherm peaks obtained by the irreversible heat flux curve at near the glass transition point of the film.

Data supplied from the **espacenet** database — Worldwide

(19) 日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11) 特許出願公開番号
特開2001-200072
(P2001-200072A)

(43) 公開日 平成13年7月24日 (2001.7.24)

(51) Int.Cl.
C 0 8 J 5/18
// B 2 9 C 61/06
B 2 9 K 67:00
105:02
B 2 9 L 7:00

識別記号
CFD

F I
C 0 8 J 5/18
B 2 9 C 61/06
B 2 9 K 67:00
105:02
B 2 9 L 7:00

テマコード*(参考)
4 F 0 7 1
4 F 2 1 0

審査請求 未請求 請求項の数 3 ○ L (全 7 頁) 最終頁に続く

(21) 出願番号 特願2000-6663(P2000-6663)

(22) 出願日 平成12年1月14日 (2000.1.14)

(71) 出願人 000003160

東洋紡績株式会社

大阪府大阪市北区堂島浜2丁目2番8号

(72) 発明者 早川 聰

滋賀県大津市堅田二丁目1番1号 東洋紡
績株式会社総合研究所内

(72) 発明者 佐藤 万紀

滋賀県大津市堅田二丁目1番1号 東洋紡
績株式会社総合研究所内

(72) 発明者 行舞 祥一

滋賀県大津市堅田二丁目1番1号 東洋紡
績株式会社総合研究所内

最終頁に続く

(54) 【発明の名称】 熱収縮性ポリエステル系フィルム

(57) 【要約】

【課題】 热風による収縮工程において、フィルムの熱収縮後の収縮斑、シワ、歪み、折れ込み等の欠点の発生が極めて少なく、美麗な収縮仕上がり外観を得ることができ、特に容器形状によりフィルムラベルが高い収縮率を必要とするフルラベル用途やキャップシール用途に好適に用いられる熱収縮性ポリエステル系フィルムを提供すること。

【解決手段】 フィルムの80°C温水中での10秒処理後の主収縮方向の熱収縮率が40%以上で、非可逆熱流束曲線より得られる、フィルムのガラス転移付近の吸熱ピークが2つ以上ある。

【特許請求の範囲】

【請求項1】 フィルムの80℃温水中での10秒処理後の主収縮方向の熱収縮率が40%以上で、非可逆熱流束曲線より得られる、フィルムのガラス転移付近の吸熱ピークが2つ以上あることを特徴とする熱収縮性ポリエステル系フィルム。

【請求項2】 請求項1記載の熱収縮性ポリエステル系フィルムで、非可逆熱流束曲線より得られる、フィルムのガラス転移付近の吸熱ピーク温度が全て40℃以上90℃以下の温度範囲内にあることを特徴とする熱収縮性ポリエステル系フィルム。

【請求項3】 請求項1または2記載の熱収縮性ポリエステル系フィルムで、可逆熱流束曲線より得られる、フィルムのガラス転移温度が75℃未満であることを特徴とする請求項1又は2記載の熱収縮性ポリエステル系フィルム。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】 本発明は主にラベル、キャップシール用途に好適な熱収縮性ポリエステル系フィルムに関し、特に、熱風による収縮工程において、フィルムの熱収縮後の収縮斑、シワ、歪み、折れ込み等の発生が極めて少なく、かつ、高い収縮率を必要とする収縮性ポリエステル系フィルムに関するものである。

【0002】

【従来の技術】 従来、熱収縮性フィルムは加熱により収縮する性質を利用して、収縮包装、収縮ラベル、キャップシール等の用途に広く用いられている。なかでも、塩化ビニル系樹脂やポリスチレン系樹脂、ポリエステル系樹脂等からなる延伸フィルムがポリエチレンテレフタート(PET)容器やポリエチレン容器、ガラス容器などの各種容器にラベル用として用いられている。

【0003】 しかしながら、塩化ビニル系樹脂は、焼却時に塩化水素ガス等の有害ガスを発生するなどの問題を抱えている。また、熱収縮性塩化ビニル系樹脂フィルムをPET容器などの収縮ラベルとして用いると、容器のリサイクル利用に際してラベルと容器を分離してラベルを廃棄する必要がある。さらに、容器の形状により収縮ラベルが高い熱収縮率を必要とするフルラベル等の用途においては、熱収縮性塩化ビニル系樹脂フィルムは熱収縮率が低く収縮不足となる為に使用できない問題がある。

【0004】 これに対して、ポリスチレン系樹脂やポリエステル系樹脂のフィルムは焼却時に塩化水素ガス等の有害物質を発生しないため、塩化ビニル系樹脂フィルムに代わる容器用収縮ラベルとして期待されている。

【0005】 しかし、ポリスチレン系樹脂フィルムは、収縮後の仕上がり外観性は良好であるものの、耐溶剤性が悪い為に印刷の際には特殊インキを使用しなければならない。また、高温での焼却を必要とし、焼却時に多量

の黒煙と異臭を発生するなど、その廃棄にも問題があった。さらに、塩化ビニル系樹脂フィルムと同様に収縮ラベルが高い熱収縮率を必要とする用途においては収縮不足となる為に使用できない問題がある。これらの問題を解決できる素材としてポリエステル系樹脂フィルムは非常に期待され、その使用量も増加してきている。

【0006】 しかし、上記従来の熱収縮性ポリエステル系フィルムも、その熱収縮特性においては充分満足できるものではなかった。特に、収縮時に収縮斑やシワ、歪みや折れ込みが発生しやすく、さらに、PETボトル、ポリエチレンボトル、ガラス瓶などの容器に被覆収縮する際に、あらかじめ収縮前のフィルムに印刷した文字、図柄が収縮後に歪んだり、容器へのフィルムの密着が充分でなかったりするなどの問題を有していた。

【0007】

【発明が解決しようとする課題】 本発明は、上記従来の熱収縮性ポリエステル系フィルムの有する問題点を解決し、熱風による収縮工程において、フィルムの熱収縮後の収縮斑、シワ、歪み、折れ込み等の発生が極めて少なく、美麗な収縮仕上がり外観を得ることができ。特に容器形状によりフィルムラベルが高い収縮率を必要とするフルラベル用途やキャップシール用途に好適に用いられる熱収縮性ポリエステル系フィルムを提供することを目的とする。

【0008】

【課題を解決するための手段】 上記目的を達成するため、本発明の熱収縮性ポリエステル系フィルムは主収縮方向の80℃温水中での10秒処理後の該主収縮方向の熱収縮率が40%以上であり、非可逆熱流束曲線により得られる、フィルムのガラス転移付近の吸熱ピーク(エンタルピー緩和によるピーク)が2つ以上あることを特徴とするものである。

【0009】 上記の特性を有する低温から高温までの幅広い温度域において、優れた収縮仕上がり性を有し、特に容器形状によりフィルムラベルが高い収縮率を必要とするフルラベル用途やキャップシール用途に好適に用いられ、収縮斑、シワ、歪み、折れ込みが極めて少ない美しい収縮仕上がり外観を得ることができる。

【0010】 この場合において、前記熱収縮性ポリエステル系フィルムは、非可逆熱流束曲線より得られる、フィルムのガラス転移付近の吸熱ピーク温度が全て40℃以上90℃以下の温度範囲内であることが好適である。

【0011】 可逆熱流束曲線より得られる、フィルムのガラス転移温度が75℃未満であることができる。

【0012】

【発明の実施の形態】 以下、本発明の実施の形態を説明する。本発明の熱収縮性ポリエステル系フィルムは、主収縮方向の80℃温水中での10秒処理後の熱収縮率が40%以上であることが必要である。熱収縮率が40%未満であると、容器形状によりフィルムラベルが高い收

寸法安定性の面からは50℃以上であることが好ましい。

【0016】また、本発明の熱収縮性ポリエステル系フィルムの厚みは特に限定するものではないが、例えばラベル用収縮フィルムとして10～200μmが好ましく、20～100μmがさらに好ましい。

【0017】本発明の熱収縮性ポリエステル系フィルムに使用するポリエステル樹脂は、ジカルボン酸成分として、芳香族ジカルボン酸又はそれらのエステル形成誘導体、又は脂肪族ジカルボン酸と、多価アルコール成分を主成分とするものである。芳香族ジカルボン酸として、例えばテレフタル酸、イソフタル酸、ナフタレン-1,

4-もしくは-2, 6-ジカルボン酸、5-ナトリウムスルホイソフタル酸等が挙げられる。またこれらのエステル誘導体としてはジアルキルエステル、ジアリールエステル等の誘導体が挙げられる。また脂肪族ジカルボン酸としては、ダイマー酸、グルタル酸、アジピン酸、セバシン酸、アゼライン酸、シュウ酸、コハク酸等が挙げられる。また、p-オキシ安息香酸などのオキシカルボン酸、無水トリメリット酸、無水ピロメリット酸等の多価のカルボン酸を、必要に応じて併用してもよい。

【0018】本発明の熱収縮性ポリエステル系フィルムに使用するポリエステル樹脂の多価アルコール成分としては、エチレングリコール、ジエチレングリコール、ダイマージオール、プロピレングリコール、トリエチレングリコール、1, 4-ブタンジオール、ネオペンチルグリコール、1, 3-シクロヘキサンジメタノール、1, 4-シクロヘキサンジメタノール、1, 6-ヘキサンジオール、3-メチル1, 5-ペンタンジオール、2-メチル-1, 5-ペンタンジオール、2, 2-ジエチル-1, 3-プロパンジオール、1, 9-ノナンジオール、1, 10-デカンジオールなどのアルキレングリコール、ビスフェノール化合物又はその誘導体のエチレンオキサイド付加物、トリメチロールプロパン、グリセリン、ペンタエリスリトール、ポリオキシテトラメチレングリコール、ポリエチレングリコール等が挙げられる。また、多価アルコールではないが、イプシロンカプロラクトンも同様に使用可能である。

【0019】本発明の熱収縮性ポリエステル系フィルムは、上記例示したジカルボン酸成分と多価アルコール成分を通常それぞれ1種類以上組み合わせて用いることが好ましい。組みあわせて用いられるモノマーの成分の種類及び含有量は所望のフィルム特性、経済性なども考慮して適宜決定され得るが、少なくとも1種のポリエステルを含有する組成物よりなり、含有されるポリエステル全体の10～75モル%がエチレンテレフタレートユニットであることが好ましい。より好ましくは15～70モル%である。エチレンテレフタレートユニットが10モル%より少ないとフィルムの耐破断性や耐溶剤性が悪化してしまい、75モル%を越えると熱収縮率が低下

縮率を必要とするフルラベル用途やキャップシール用途では、収縮不足のために収縮仕上がり性が不良となる。より安定した収縮仕上がり外観性を得る為には、主収縮方向の80℃温水中での10秒処理後の熱収縮率が50%以上であることが好ましく、60%以上であることが特に好ましい。また、主収縮方向と直交方向の熱収縮率に関しては特に制限するものではないが、熱収縮率が大きいとラベルのタテ方向の収縮によるタテヒケや図柄の歪みが発生するので80℃温水中での10秒処理後の熱収縮率が15%以下であることが好ましい。

【0013】本発明においてはさらに、温度変調示査走査熱量測定における非可逆熱流束曲線より得られるフィルムのガラス転移付近の吸熱ピーク（エンタルピー緩和によるピーク）が2つ以上あることが必要である。フィルムのエンタルピー緩和によるピークが1つであると、例えばフルラベル用途やキャップシール用途等において、被包装物の高い収縮率を必要とする部分では美麗な収縮仕上がりを安定して得ることができなくなり、折れ込みやシワ等の欠点が生じる。安定した収縮仕上がり性を得る為には、非可逆熱流束曲線より得られるフィルムのエンタルピー緩和によるピークが2つ以上あることが必要である。ピーク数の上限については特に制限するものではなく、さらに安定した収縮仕上がり性を得る為にはピーク数は多いほど好ましいが、ピーク数が必要以上に多すぎると、ピーク温度を後述する適正な温度範囲に制御することが困難となるのでピーク数は2または3であることが好ましい。

【0014】本発明においてはさらに、温度変調示査走査熱量測定における非可逆熱流束曲線より得られるフィルムのガラス転移付近のエンタルピー緩和によるピーク温度が全て40℃以上90℃以下の温度範囲内にあることが必要である。ピーク温度が40℃未満の温度域にあるものは経時による収縮特性の変化を招き、特に低温域での収縮率の低下に起因する、収縮仕上がり性が悪くなる問題が起こる。また、ピーク温度が90℃を越える温度域にあるものは、熱収縮工程での加工温度をより高温にしなければならなくななり、適正な加工温度条件幅が狭くなる為に工程での不良率が増加し、また、高速で加工することが困難となるので工業生産上問題となる。

【0015】また本発明においてはさらに、温度変調示査走査熱量測定における可逆熱流束曲線より得られるフィルムのガラス転移温度が75℃未満であることが必要である。ガラス転移温度が75℃以上であると、必要とする収縮量を得る為には高温まで加熱しなければならなくなる。しかし被包装物の耐熱性についての制限もあり、自ずから適用範囲が狭められてしまう。例えば熱可塑性プラスチックボトル用途の場合には加熱によるボトルの変形、変質を招くことになる。また、可逆熱流束曲線により得られるフィルムのガラス転移温度の下限値に関しては特に制限するものではないが、フィルムの経時

し、充分な収縮性能が得られないで好ましくない。

【0020】本発明の熱収縮性ポリエステル系フィルムにおける前記のガラス転移温度付近の吸熱ピーク数（エンタルピー緩和によるピーク数）、吸熱ピーク温度の範囲、ガラス転移温度を満足する為には前述のポリエステル樹脂の構成成分等を用いることと、フィルムの製膜条件を組み合わせることにより、本発明の目的とする範囲内に制御することが可能である。該ポリエステルは、単独でもよいし、2種以上を混合して用いてもよい。2種以上を併用する場合は、ポリエチレンテレフタレートと共に重合ポリエステルの混合系であってもよく、又、共重合ポリエステル同士の組み合わせでもかまわない。また、ポリブチレンテレフタレート、ポリシクロヘキシンジメチルテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレートなどのホモポリエステルとの組み合わせであってもよい。

【0021】該ポリエステルには、着色度及びゲル発生度などの耐熱性改善の目的で、酸化アンチモン、酸化ガルモニウム、チタン化合物等の重合触媒以外に、酢酸マグネシウム、塩化マグネシウム等のMg塩、酢酸カルシウム、塩化カルシウム等のCa塩、酢酸マンガン、塩化マンガン等のMn塩、塩化亜鉛、酢酸亜鉛等のZn塩、塩化コバルト、酢酸コバルト等のCo塩を、生成ポリエステルに対し各々金属イオンとして300 ppm以下、リン酸またはリン酸トリメチルエステル、リン酸トリエチルエステル等のリン酸エステル誘導体を燐（P）換算で200 ppm以下添加することも可能である。

【0022】上記重合触媒以外の金属イオンの総量が生成ポリエステルに対し300 ppm、またP量が200 ppmを越えるとポリマーの着色が顕著になるのみならず、ポリマーの耐熱性及び耐加水分解性も著しく低下する。

【0023】このとき、耐熱性、耐加水分解性等の点で、総P量（P）と総金属イオン量（M）とのモル原子比（P/M）は、0.4～1.0であることが好ましい。モル原子比（P/M）が0.4未満または1.0を越える場合には、本発明の組成物の着色、粗大粒子の発生が顕著となり、好ましくない。

【0024】該ポリエステルの製造法は特に限定しないが、ジカルボン酸類とグリコール類とを直接反応させ得られたオリゴマーを重縮合する、いわゆる直接重合法、ジカルボン酸のジメチルエステル体とグリコールとをエステル交換反応させたのちに重縮合する、いわゆるエスケル交換法などが挙げられ、任意の製造法を適用することができます。

【0025】上記金属イオン及びリン酸及びその誘導体の添加時期は特に限定しないが、一般的には金属イオン類は原料仕込み時、すなわちエステル交換前またはエスケル化前に、リン酸類は重縮合反応前に添加するのが好ましい。

【0026】また、必要に応じて、シリカ、2酸化チタン、カオリン、炭酸カルシウム等の微粒子を添加してもよく、更に酸化防止剤、紫外線吸収剤、帶電防止剤、着色剤、抗菌剤等を添加することもできる。なおフィルムを形成する為の好ましい固有粘度は限定されるものではないが通常0.40～1.30 dL/gである。

【0027】本発明に用いるポリエステル原料をホッパードライヤー、パドルドライヤー等の乾燥機、又は真空乾燥機を用いて乾燥し、200～300℃の温度でフィルム状に押し出す。あるいは、未乾燥のポリエステル原料をペント式押し出し機内で水分を除去しながら同様にフィルム状に押し出す。押し出しに際してはTダイ法、チューブラ法等、既存のどの方法を採用しても構わない。押し出し後急冷して未延伸フィルムを得る。該未延伸フィルムに対して延伸処理を行うが、本発明の目的を達成するには主収縮方向としては横方向が実用的である以下の主収縮方向が横方向である場合の製膜法の例を示すが、主収縮方向を縦方向とする場合も下記方法における延伸方向を90度変えるほか通常の操作に準じて製膜することができる。

【0028】また、目的とする熱収縮性ポリエステル系フィルムの厚み分布を均一化されることに着目すれば、テンターを用いて横方向に延伸する際、延伸工程に先立って実施される予備加熱工程では熱伝導係数を0.0013カロリー/cm²・sec・℃以下の低風速でTg+0℃～Tg+60℃までのフィルム温度になるまで加熱を行うことが好ましい。横方向の延伸はTg-20℃～Tg+40℃の温度で、2.3～7.3倍、好ましくは2.5～6.0倍延伸する。このとき、横延伸を2段あるいは3段で行うのが好ましい。しかる後、50℃～110℃の温度で、0～15%の伸張あるいは0～15%の緩和をさせながら熱処理し、必要に応じて40℃～100℃の温度でさらに熱処理をして熱収縮性ポリエステル系フィルムを得る。

【0029】延伸の方法としては、テンターでの横1軸延伸ばかりでなく、縦方向に1.0倍～2.3倍以下、好ましくは1.1倍～1.8倍の延伸を施すことができる。しかしながら2.3倍を超えて延伸すると、主収縮方向と直交方向の80℃温水中での10秒処理後の熱収縮率が大きくなり、15%を超えるので本発明には好ましくない。該2軸延伸では、逐次2軸延伸、同時2軸延伸のいずれでもよく、必要に応じて再延伸を行ってよい。また、逐次2軸延伸においては延伸の順序として、縦横、横縦、縦横縦、横縦横等のいずれの方式でもよい。延伸に伴うフィルムの内部発熱を抑制し、巾方向のフィルム温度斑を小さくする点に着目すれば、延伸工程の熱伝達係数は0.0009カロリー/cm²・sec・℃以上、好ましくは0.0013～0.0020カロリー/cm²・sec・℃の条件がよい。以上に説明したように本発明はフィルム原料のポリエステル組成と延

伸方法との組み合わせによって達成される。

【0030】

【実施例】次に、実施例及び比較例を用いて本発明を更に詳細に説明するが、以下の実施例に限定されるものではなく、前・後記の趣旨を逸脱しない範囲で変更実施することは全て本発明の技術範囲に包含される。また、実施例及び比較例で得られたフィルムの物性の測定・評価方法を下記に示す。

【0031】(1) 熱収縮率

試料フィルムを10cm×10cmの正方形に裁断し、所定温度±0.5℃の温水中に無荷重状態で10秒間処理して熱収縮させた後、フィルムの縦及び横方向の寸法を測定し、下記(1)式に従い熱収縮率を求めた。該熱収縮率の大きい方向を主収縮方向とした。

$$\text{熱収縮率} = (\text{収縮前の長さ} - \text{収縮後の長さ}) \div \text{収縮前の長さ} \times 100\% \quad (1)$$

【0032】(2) 吸熱ピーク数及び温度(エンタルピー緩和によるピーク数及び温度)

試料フィルムをティーエーインストロメント社製DSC2920のModulatedモードにて測定し、昇温速度5℃/分、温度振幅±1℃、周期60秒にて測定した。得られた非可逆熱流束曲線よりガラス転移温度付近の吸熱ピーク数及びピーク温度をエンタルピー緩和によるピーク数及びピーク温度とした。

【0033】(3) ガラス転移温度

上記(2)の測定により得られた可逆熱流束曲線より、試料フィルムのガラス転移温度を定量した。ここで言うガラス転移点は、ステップ状曲線の解析におけるInflection温度を算出した。

【0034】(4) 収縮仕上がり性

Fuji Astec Inc製のスチームトンネル(型式: SH-1500-L)を使用し、334mlガラスピン(市販のアサヒビール(株)製のアサヒ生ビールビアウォーターに使用されているリターナブルピン)を用い、あらかじめ東洋インキ製(株)製の草色、金色、白色のインキで3色印刷した熱収縮フィルムラベル*

ポリエス テル	ジカルボン酸成分 (モル%)		ジオール成分 (モル%)			
	DMT	DMN	EG	BD	NPG	DIDO
A	100		72		28	
B	100		100			
C	100			100		
D	8	92	100			

【0038】(実施例1)表1に示すポリエスルAを7.7wt%、Bを1.3wt%、Cを1.0wt%をそれぞれレジンの状態で混合し、280℃で溶融押出し後急冷して、厚さ225μmの未延伸フィルムを得た。該未延伸フィルムを105℃で12秒間予熱後、横方向に85℃で1.4倍さらに80℃で1.7倍、さらに75℃で2.0倍延伸し、ついで55℃に冷却後、70℃で3%伸張しながら10秒間熱処理を行い厚さ46μmの熱收

*を装着後、トンネル通過時間10秒、1ゾーン温度/2ゾーン温度=80℃/90℃の条件で通過させてテストし収縮仕上がり性を目視にて判定した。なお、収縮仕上がり性のランクについては5段階評価を行い、

5:仕上がり性最良

4:仕上がり性良

3:欠点少し有り(2ヶ所以内)

2:欠点有り(3~6ヶ所)

1:欠点多い(6ヶ所以上)

10として、4以上を合格レベルとした(試料数n=10)。なお、ここで欠点とは、シワ、ラベル端部折れ込み、色斑、収縮不足を総称したものをさす。

【0035】(ポリエスルの合成)攪拌機、温度計及び部分環流式冷却器を備えたステンレススチール製オートクレーブにニ塩基酸成分としてジメチルテレフタレート(DMT)100モル%、グリコール成分としてエチレンギリコール(EG)72モル%とネオペンチルグリコール(NPG)28モル%の組成で、グリコールがモル比でメチルエスルの2.2倍になるように仕込み、20エスル交換触媒として酢酸亜鉛を0.05モル(酸成分に対して)、重縮合触媒として三酸化アンチモン0.025モル%(酸成分に対して)添加し、生成するメタノールを系外へ留去しながらエスル交換反応を行った。その後、280℃で0.2トールの減圧条件のもとで重縮合反応を行い固有粘度0.68d1/gのポリエスル(A)を得た。

【0036】上記と同様な方法により、表1に示すポリエスルを得た。なお、2,6-ジメチルナフタレンジカルボン酸(DMN)、ブタンジオール(BD)、ダイマージオール(DIDO)もそれぞれ用いた。それぞれのポリエスルの固有粘度は、(B):0.70d1/g、(C):1.25d1/g、(D):0.60であった。

【0037】

【表1】

縮性ポリエスル系フィルムを得た。得られたフィルムの物性値を表2に示す。

【0039】(実施例2)表1に示すポリエスルAを7.4wt%、Bを1.2wt%、Cを1.4wt%をそれぞれレジンの状態で混合し、280℃で溶融押出し後急冷して、厚さ225μmの未延伸フィルムを得た。該未延伸フィルムを105℃で12秒間予熱後、横方向に85℃で1.4倍さらに80℃で1.7倍、さらに75℃で

2. 0倍延伸し、ついで55℃に冷却後、70℃で3%伸張しながら10秒間熱処理を行い厚さ46μmの熱収縮性ポリエステル系フィルムを得た。得られたフィルムの物性値を表2に示す。

【0040】(比較例1) 表1に示すポリエステルAを6.8wt%、Bを8wt%、Cを2.4wt%それぞれレジンの状態で混合し、275℃で溶融押出し後急冷して、厚さ175μmの未延伸フィルムを得た。該未延伸フィルムを103℃で15秒間予熱後、横方向に78℃で3.9倍延伸し、ついで73℃で固定しながら10秒間熱処理を行い厚さ45μmの熱収縮性ポリエステル系フィルムを得た。得られたフィルムの物性値を表2に示す。

【0041】(比較例2) 表1に示すポリエステルAを5.2wt%、Bを2.5wt%、Cを2.3wt%それぞれレジンの状態で混合し、275℃で溶融押出し後急冷して、厚さ185μmの未延伸フィルムを得た。該未延伸*

* フィルムを105℃で12秒間予熱後、横方向80℃で4.1倍に延伸し、ついで70℃で固定しながら10秒間熱処理をして厚さ45μmの熱収縮性ポリエステル系フィルムを得た。得られたフィルムの物性値を表2に示す。

【0042】(比較例3) 表1に示すポリエステルAを3.2wt%、Bを5.0wt%、Cを1.0wt%、Eを8wt%それぞれレジンの状態で混合し、280℃で溶融押出し後急冷して、厚さ180μmの未延伸フィルムを得た。該未延伸フィルムを105℃で12秒間予熱後、横方向85℃で4.0倍延伸し、ついで75℃で10秒間熱処理をして厚さ45μmの熱収縮性ポリエステル系フィルムを得た。得られたフィルムの物性値を表2に示す。

【0043】

【表2】

	80℃ 熱収縮率 (%)	吸熱ピーク		ガラス転移温度 (℃)	収縮仕上り性
		ピーク数 (個)	ピーク温度 (℃)		
実施例1	7.0	2	68, 77	63	5
実施例2	6.7	2	66, 75	62	5
比較例1	6.1	1	64	62	3
比較例2	5.5	1	67	66	3
比較例3	4.7	1	69	75	2

【0044】

【発明の効果】 本発明の熱収縮性ポリエステル系フィルムは、収縮時に収縮斑やシワ、歪み、折れ込み等の欠点の発生が極めて少なく美麗な収縮仕上がり外観を得ることができる、特に高い熱収縮率を必要とする、収縮ラベル

※ル、キャップシール、収縮包装等の用途に好適に用いられるものである。

【図面の簡単な説明】

【図1】 吸熱ピーク熱量ΔH1の測定例である。

【図1】

フロントページの続き

(51) Int.C1.⁷ 識別記号 F I テーマコード[®] (参考)
C 0 8 L 67:00 C 0 8 L 67:00 AF61 AH04 AH19 BA01 BB06
BB07 BB08 BC01
F ターム(参考) 4F071 AA43 AA44 AA45 AA46 AA86
滋賀県大津市堅田二丁目1番1号 東洋紡
績株式会社総合研究所内
4F210 AA24 AE01 AG01 RA03 RC02
(72) 発明者 森重 地加男
愛知県犬山市大字木津前畠344番地 東洋
紡績株式 会社 犬山工場内 RG02 RG04 RG43