Logique, symboles, raisonnement mathématique

Exercice 1 (Traduction)

- 1. $\exists x \in \mathbb{R}_+, f(x) > -5x + 2$. Négation : $\forall x \in \mathbb{R}_+, f(x) \leqslant -5x + 2$.
- 2. $\exists x \in [0, 1], f(x) = 0.$ Négation : $\forall x \in [0, 1], f(x) \neq 0.$
- 3. $\exists C \in \mathbb{R}, \forall x \in [0,1], f(x) = C.$ Négation : $\forall C \in \mathbb{R}, \exists x \in [0,1], f(x) \neq C.$
- 4. $\forall n \in \mathbb{N}, u_{n+1} \geqslant u_n$. Négation : $\exists n \in \mathbb{N}, u_{n+1} < u_n$.
- 5. $\forall n \in \mathbb{N}, v_n \leq 4$. Négation : $\exists n \in \mathbb{N}, v_n > 4$.
- 6. $\exists C \in \mathbb{R}, \forall n \in \mathbb{N}, v_n \leq C$. Négation : $\forall C \in \mathbb{R}, \exists n \in \mathbb{N}, v_n > C$.

Exercice 2 ("Inversion" de quantificateurs)

- 1. $\forall y \in \mathbb{R}, \exists x \in \mathbb{R}, y = f(x)$: Vrai pour certaines fonctions (les fonctions surjectives de \mathbb{R} dans \mathbb{R} ...)
- $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, y = f(x) : \text{Jamais vrai.}$
- $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, y = f(x) : \text{Toujours vrai.}$
- $\exists y \in \mathbb{R}, \forall x \in \mathbb{R}, y = f(x)$: Signifie que f est constante.
- 2. La première affirmation $(\exists k \in \mathbb{R}, \forall x \in \mathbb{R}, e^x \leq k)$ est fausse.

Il n'existe pas de réel $k \in \mathbb{R}$ fixé tel que, pour n'importe quel $x \in \mathbb{R}$, $e^x \leq k$: en effet, $\lim_{x \to +\infty} e^x = +\infty$, donc on aura nécessairement $e^x > k$ pour un x "assez grand".

La seconde affirmation $(\forall x \in \mathbb{R}, \exists k \in \mathbb{R}, e^x \leq k)$ est vraie.

Quel que soit $x \in \mathbb{R}$, on peut trouver un réel k tel que $e^x \leq k$: il suffit de choisir par exemple $k = e^x + 1$.

Exercice 3 (Implications)

- 1. $\mathcal{A} \longleftarrow \mathcal{B}$
- 2. La proposition \mathcal{A} n'a de sens que si x > 0. En supposant que x > 0: $\mathcal{A} \iff \mathcal{B}$.
- $3. \mathcal{A} \Longrightarrow \mathcal{B}.$
- $4. \mathcal{A} \iff \mathcal{B}.$
- $5. \mathcal{A} \Longrightarrow \mathcal{B}.$
- 6. $\mathcal{A} \Longrightarrow \mathcal{B}$.
- 7. $\mathcal{A} \iff \mathcal{B}$.

Exercice 4 (Quelques équivalences)

1. On a les équivalences suivantes :

$$(x+y)^2 = (x-y)^2 \Longleftrightarrow x^2 + y^2 + 2xy = x^2 + y^2 - 2xy \Longleftrightarrow 4xy = 0 \Longleftrightarrow xy = 0 \Longleftrightarrow (x=0 \text{ ou } y=0).$$

- 2.(a) On suppose que $\forall x \in \mathbb{R}, P(x+1) P(x-1) = x$.
- En particulier, pour x = 0, on obtient P(1) P(-1) = 0, c'est à dire a + b (a b) = 0.

Ainsi 2b = 0, donc $\underline{b} = 0$.

• En particulier, pour x = 1, on obtient P(2) - P(0) = 1, c'est à dire 4a + 2b = 1.

Ainsi 4a = 1, donc $\underline{a = \frac{1}{4}}$.

2.(b) • Supposons que $\forall x \in \mathbb{R}, P(x+1) - P(x-1) = x$. Montrons que $\forall x \in \mathbb{R}, P(x) = \frac{x^2}{4}$.

D'après le 2.(a), l'hypothèse $\forall x \in \mathbb{R}, P(x+1) - P(x-1) = x$ entraine : $a = \frac{1}{4}$ et b = 0.

Puisque $\forall x \in \mathbb{R}, P(x) = ax^2 + bx$, on obtient bien $\forall x \in \mathbb{R}, P(x) = \frac{x^2}{4}$.

• Supposons que $\forall x \in \mathbb{R}, \ P(x) = \frac{x^2}{4}$. Montrons que $\forall x \in \mathbb{R}, \ P(x+1) - P(x-1) = x$.

Pour tout $x \in \mathbb{R}$, on a $P(x+1) = \frac{(x+1)^2}{4}$ et $P(x-1) = \frac{(x-1)^2}{4}$, donc :

$$P(x+1) - P(x-1) = \frac{(x+1)^2}{4} - \frac{(x-1)^2}{4} = \frac{x^2 + 2x + 1}{4} - \frac{x^2 - 2x + 1}{4} = \frac{4x}{4} = x.$$

On a bien montré l'équivalence : $\left(\forall x \in \mathbb{R}, \, P(x+1) - P(x-1) = x\right) \iff \left(\forall x \in \mathbb{R}, \, P(x) = \frac{x^2}{4}\right)$.

Exercice 5 (Une suite récurrente)

Pour tout $n \ge 1$, posons $\mathcal{P}(n)$: " v_n est bien défini et $v_n > 0$ ".

Montrons par récurrence que $\mathcal{P}(n)$ est vraie pour tout $n \geq 1$.

- Initialisation : On a $v_1 = 1 > 0$, d'où $\mathcal{P}(1)$.
- <u>Hérédité</u>: Soit $n \ge 1$. Supposons $\mathcal{P}(n)$ et montrons $\mathcal{P}(n+1)$.

On a v_n bien défini et $v_n > 0$. En particulier $v_n \neq 0$, donc $v_{n+1} = 2v_n + \frac{1}{v_n}$ est bien défini.

De plus $v_n > 0$ donc $2v_n > 0$ et $\frac{1}{v_n} > 0$, et donc $v_{n+1} = 2v_n + \frac{1}{v_n} > 0$. On a bien montré $\mathcal{P}(n+1)$. Ceci achève la récurrence.

Exercice 6 (Une décomposition)

Pour tout $n \in \mathbb{N}$, posons $\mathcal{P}(n)$: " $\exists (a_n, b_n) \in \mathbb{Z}^2$, $(3 + \sqrt{2})^n = a_n + b_n \sqrt{2}$ ". Montrons par récurrence que $\mathcal{P}(n)$ est vraie pour tout $n \in \mathbb{N}$.

- Initialisation: On peut écrire $(3+\sqrt{2})^0 = a_0 + b_0\sqrt{2}$ avec $a_0 = 1 \in \mathbb{Z}$ et $b_0 = 0 \in \mathbb{Z}$. Ceci montre $\mathcal{P}(0)$.
- <u>Hérédité</u>: Soit $n \in \mathbb{N}$. Supposons $\mathcal{P}(n)$ et montrons $\mathcal{P}(n+1)$.

D'après $\mathcal{P}(n)$, on dispose de $a_n, b_n \in \mathbb{Z}$ tels que $(3+\sqrt{2})^n = a_n + b_n\sqrt{2}$. Il en résulte que :

$$(3+\sqrt{2})^{n+1} = (3+\sqrt{2})(3+\sqrt{2})^n = (3+\sqrt{2})(a_n+b_n\sqrt{2}) = 3a_n+3b_n\sqrt{2}+a_n\sqrt{2}+2b_n = (3a_n+2b_n)+(a_n+3b_n)\sqrt{2}.$$

Ainsi, en posant $a_{n+1} = 3a_n + 2b_n \in \mathbb{Z}$ et $b_{n+1} = a_n + 3b_n \in \mathbb{Z}$, on a $(3 + \sqrt{2})^{n+1} = a_{n+1} + b_{n+1}\sqrt{2}$. On a bien montré $\mathcal{P}(n+1)$, ce qui achève la récurrence.

Exercice 7 (Divisibilité par 3)

Montrons par récurrence que pour tout $n \in \mathbb{N}$, $4^n - 1$ est divisible par 3.

- Initialisation : $4^0 1 = 0$ est bien divisible par 3.
- <u>Hérédité</u>: Soit $n \in \mathbb{N}$. Supposons que $4^n 1$ est divisible par 3, montrons que $4^{n+1} 1$ est divisible par 3. Par hypothèse, il existe $k \in \mathbb{Z}$ (et même $k \in \mathbb{N}$) tel que $4^n 1 = 3k$.

On en déduit que $4^{n+1} - 4 = 4 \times 3k = 12k$, puis $4^{n+1} - 1 = 12k + 3$, c'est à dire $4^{n+1} - 1 = 3(4k + 1)$.

On a ainsi écrit $4^{n+1} - 1 = 3k'$ avec $k' = 4k + 1 \in \mathbb{Z}$.

Ceci montre que $4^{n+1} - 1$ est divisible par 3, ce qui achève la récurrence.

Exercice 8 (Une suite à récurrence linéaire double)

- 1. Après calcul, on voit que $u_0 = 1$, $u_1 = 2$, $u_2 = 4$, $u_3 = 8$... On peut donc conjecturer que : $\forall n \in \mathbb{N}, u_n = 2^n$.
- 2. Pour tout $n \in \mathbb{N}$, posons $\mathcal{P}(n)$: " $u_n = 2^n$ ".

Montrons par récurrence (double) que $\mathcal{P}(n)$ est vraie pour tout $n \in \mathbb{N}$.

- Initialisation: On a $u_0 = 1 = 2^0$ et $u_1 = 2 = 2^1$, d'où $\mathcal{P}(0)$ et $\mathcal{P}(1)$.
- Hérédité : Soit $n \ge 1$ fixé. Supposons $\mathcal{P}(n-1)$ et $\mathcal{P}(n)$, montrons $\mathcal{P}(n+1)$.

On suppose donc que $u_{n-1} = 2^{n-1}$ et $u_n = 2^n$.

Or, d'après l'énoncé, on sait que $\forall k \geq 2, u_k = 3u_{k-1} - 2u_{k-2}$.

En particulier, on a $u_{n+1} = 3u_n - 2u_{n-1}$. Ainsi :

$$u_{n+1} = 3u_n - 2u_{n-1} = 3 \times 2^n - 2 \times 2^{n-1} = 3 \times 2^n - 2^n = (3-1) \times 2^n = 2 \times 2^n = 2^{n+1}$$
.

Ceci montre $\mathcal{P}(n+1)$ est achève la récurrence.

Exercice 9 (Une suite particulière)

On a d'après l'énoncé $w_1 = 1$.

On calcule ensuite:
$$w_2 = \frac{(w_1)^2}{1} = \frac{1}{1} = 1$$
, $w_3 = \frac{(w_1)^2 + (w_2)^2}{2} = \frac{1+1}{2} = 1$, etc.

On conjecture donc naturellement que : $\forall n \in \mathbb{N}^*, \ w_n = 1$. Démontrons cette conjecture par récurrence <u>forte</u>. Pour tout $n \in \mathbb{N}^*$, notons $\mathcal{P}(n)$: " $w_n = 1$ ".

- Initialisation : On a bien $w_1 = 1$, c'est à dire que $\mathcal{P}(1)$ est vérifiée.
- Hérédité : Soit $n \in \mathbb{N}^*$ fixé.

Supposons $\mathcal{P}(k)$ pour tout $k \in [1, n]$ (c'est à dire qu'on suppose $\mathcal{P}(1), \mathcal{P}(2), \ldots, \mathcal{P}(n)$) et montrons $\mathcal{P}(n+1)$.

On a ainsi supposé que $\forall k \in [1, n], w_k = 1$. On calcule alors :

$$w_{n+1} = \frac{(w_1)^2 + (w_2)^2 + \dots + (w_n)^2}{n} = \underbrace{\frac{n \text{ termes}}{1 + 1 + \dots + 1}}_{n} = \frac{n}{n} = 1.$$

On a bien montré que $w_{n+1} = 1$, c'est à dire $\mathcal{P}(n+1)$, ce qui achève la récurrence forte.

Exercice 10 (Valide ou non?)

- 1. Non, il faut écrire $a \in E$.
- 2. Oui : $\{a\}$ est une partie de E, donc un élément de $\mathcal{P}(E)$.
- 3. Non, il faut écrire $E \cap F = \{c\}$.
- 4. Non, il faut écrire $E \cap G = \emptyset$.

Exercice 11 (Traduction)

- 1. Implicite : $\{n \in \mathbb{Z} \mid \exists k \in \mathbb{Z}, n = 3k\}$. Explicite : $\{3k, k \in \mathbb{Z}\}$.
- 2. Implicite: $\{x \in \mathbb{R}_+ \mid x^2 \in \mathbb{N}\}$. Explicite: $\{\sqrt{k}, k \in \mathbb{N}\}$.
- 3. Implicite : $\{(a, b) \in \mathbb{R}^2 \mid a + b = 1\}$. Explicite : $\{(a, 1 a), a \in \mathbb{R}\}$ ou bien $\{(1 b, b), b \in \mathbb{R}\}$.

Exercice 12 (Ensembles et logique)

- a) $(x \le 2 \text{ et } x \ge -1) \text{ ou } x > 3 \iff x \in [-1, 2] \text{ ou } x \in [3, +\infty[\iff x \in [-1, 2] \cup [3, +\infty[$
- b) x > 4 et $(x \le 6$ ou $x \ge 2) \iff x \in]4, +\infty[$ et $x \in]-\infty, 6] \cup [2, +\infty[$ $\iff x \in]4, +\infty[$ et $x \in \mathbb{R} \iff x \in]4, +\infty[$.

Exercice 13 (Réunion de n ensembles)

- a) $\bigcup_{i=1}^{n} [0,i] = [0,n]$, $\bigcap_{i=1}^{n} [0,i] = [0,1]$. b) $\bigcup_{i=1}^{n} [i,i+1] = [1,n+1]$, $\bigcap_{i=1}^{n} [i,i+1] = \emptyset$.
- c) $\bigcup_{i=1}^{n} \left[\frac{1}{i}, i \right] = \left[\frac{1}{n}, n \right], \quad \bigcap_{i=1}^{n} \left[\frac{1}{i}, i \right] = \emptyset.$

Exercice 14 (Différence symétrique)

- 1. $A\Delta B$ correspond à "ce qui est dans A ou dans B, mais pas les deux".
- 2. $A\Delta A = (A \cup A) \setminus (A \cap A) = A \setminus A = \emptyset$.

$$A\Delta E = (A \cup E) \setminus (A \cap E) = E \setminus A = \overline{A}.$$

$$A\Delta\emptyset = (A \cup \emptyset) \setminus (A \cap \emptyset) = A \setminus \emptyset = A.$$

3. (a) En notant que $A \setminus B = A \cap \overline{B}$, on a ici :

$$A\Delta B = (A \cup B) \setminus (A \cap B) = (A \cup B) \cap (\overline{A \cap B}) = (A \cup B) \cap (\overline{A} \cup \overline{B})$$
$$= (A \cap \overline{A}) \cup (A \cap \overline{B}) \cup (B \cap \overline{A}) \cup (B \cap \overline{B})$$
$$= \emptyset \cup (A \cap \overline{B}) \cup (\overline{A} \cap B) \cup \emptyset = (A \cap \overline{B}) \cup (\overline{A} \cap B).$$

3.(b) En utilisant la formule du 3.(a),

$$\overline{A}\Delta\overline{B}=(\overline{A}\ \cap \overline{\overline{B}})\cup (\overline{\overline{A}}\cap \overline{B})=(\overline{A}\cap B)\cup (A\cap \overline{B})=(A\cap \overline{B})\cup (\overline{A}\cap B)=A\Delta B.$$

3.(c) En utilisant la formule du 3.(b),

$$\overline{A\Delta B} = \overline{(A \cap \overline{B}) \cup (\overline{A} \cap B)} = \overline{(A \cap \overline{B})} \cap \overline{(\overline{A} \cap B)} = (\overline{A} \cup B) \cap (A \cup \overline{B})$$
$$= (\overline{A} \cap A) \cup (\overline{A} \cap \overline{B}) \cup (B \cap A) \cup (B \cap \overline{B})$$
$$= \emptyset \cup (\overline{A} \cap \overline{B}) \cup (A \cap B) \cup \emptyset = (\overline{A} \cap B) \cup (A \cap B).$$

Par ailleurs, $\overline{A}\Delta B = (\overline{A} \cap \overline{B}) \cup (\overline{\overline{A}} \cap B) = (\overline{A} \cap \overline{B}) \cup (A \cap B)$. On a donc bien $\overline{A}\Delta B = \overline{A}\Delta B$.

4. Montrons l'équivalence $A\Delta B = \emptyset \iff A = B$.

• Supposons $A\Delta B = \emptyset$ et montrons que A = B.

On a $A\Delta B = \emptyset$, c'est à dire $(A \cup B) \setminus (A \cap B) = \emptyset$. Ceci signifie que $(A \cup B) \subset (A \cap B)$. Ainsi :

$$A \subset (A \cup B) \subset (A \cap B) \subset B$$
 et $B \subset (A \cup B) \subset (A \cap B) \subset A$.

Ainsi $A \subset B$ et $B \subset A$, d'où A = B.

• Inversement, supposons A = B et montrons que $A\Delta B = \emptyset$.

D'après la question 2., $A\Delta B = A\Delta A = \emptyset$, d'où le résultat.

On a bien montré l'équivalence voulue!

Exercice 15 (Une partie de \mathbb{N}^2)

1.
$$E_0 = \{(p,q) \in \mathbb{N}^2 \mid p+q=0\} = \{(0,0)\}.$$

$$E_1 = \{(p,q) \in \mathbb{N}^2 \mid p+q=1\} = \{(0,1), (1,0)\}.$$

$$E_2 = \{(p,q) \in \mathbb{N}^2 \mid p+q=2\} = \{(0,2), (1,1), (2,0)\}.$$

$$E_3 = \{(p,q) \in \mathbb{N}^2 \mid p+q=3\} = \{(0,3), (1,2), (2,1), (3,0)\}.$$

- 2. Cela correspond à des points alignés en "diagonales" sur le plan.
- 3. Pour deux réels $r \neq r'$, on a $E_r \cap E_{r'} = \emptyset$.

En effet, s'il existait un couple $(p,q) \in E_r \cap E_{r'}$, on aurait p+q=r et p+q=r': absurde!

4. Soit $(p,q) \in \mathbb{N}^2$ fixé. Montrons qu'il existe un unique $r \in \mathbb{N}$ tel que $(p,q) \in E_r$.

Autrement dit, on veut montrer qu'il existe un unique $r \in \mathbb{N}$ tel que p + q = r.

Or c'est évident : l'unique entier en question est tout simplement r = p + q!

Pour le dire autrement :

Si p et q sont deux entiers fixés, alors en posant r = p + q, on a bien p + q = r, c'est à dire par définition que le couple (p,q) appartient à l'ensemble E_r .