Modelli di Sistemi Sequenziali e Concorrenti

esercizi

Stefano Martina

stefano.martina@stud.unifi.it Università degli Studi di Firenze Scuola di Scienze Matematiche, Fisiche e Naturali Corso magistrale di Informatica

21 febbraio 2016

Indice

Esercizio	3.15																2
Esercizio	4.11																3
Esercizio	5.5 .																5
${\bf Esercizio}$																	
${\bf Esercizio}$	7.6 .																7
${\bf Esercizio}$	8.11																8
${\bf Esercizio}$	9.7 .																10
${\bf Esercizio}$	11.10)															11
${\bf Esercizio}$	12.1																12
Esercizio	12.2																18

Esercizio 3.15

Testo:

Dimostrare che, per ogni espressione aritmetica E descritta nella Sezione 3.3,

$$E \rightarrow E_1, E \rightarrow E_2$$
 implica $E_1 \rightarrow n, E_2 \rightarrow n$

Soluzione:

Premessa: Si noti che se vale la tesi, allora vale anche che $E \rightarrow n$, infatti per l'equivalenza tra semantica di computazione e semantica di valutazione:

$$E \rightarrow E_1 \rightarrow n$$

$$E \rightarrow E_1 \stackrel{*}{\rightarrow} n$$

$$E \stackrel{*}{\rightarrow} n$$

$$E \rightarrow n$$

Oppure in modo analogo passando da E_2 .

La dimostrazione procede per induzione sulla lunghezza dell'espressione E, o in modo equivalente sul numero di operatori in E.

Caso base: Per il caso base si considera un'espressione E con un operatore (non possono esserci zero operatori altrimenti non si potrebbe applicare l'ipotesi), l'unica regola applicabile è la (op) della semantica di computazione, e quindi se $E \to E_1$ e $E \to E_2$ allora $E_1 = E_2 = n$ e vale la tesi.

Passo induttivo: Per una generica espressione E tale che $E \to E_1$ e $E \to E_2$, si può osservare che se è stata usata (op) nel passo $E \to E_1$ significa che $E = m_1$ op m_2 e quindi ha un solo operatore e siamo nel caso base.

Se è stata usata (redl) nel passo $E \to E_1$ significa che E non è in una forma in cui è possibile applicare (op) quindi nel passo $E \to E_2$ è possibile solo applicare (redl) o (redr). Nel Primo caso significa che $E_1 = E_2$ e non è rilevante per la dimostrazione, quindi assumiamo che sia stata usata (redr). Chiamando $E \equiv E_a$ op E_b , $E_1 \equiv E_a'$ op E_b , $E_2 \equiv E_a$ op E_b' si hanno:

$$\frac{E_a \rightarrow E'_a}{E_a \ op \ E_b \rightarrow E'_a \ op \ E_b} \ (redl)$$

$$\frac{E_b \rightarrow E'_b}{E_a \ op \ E_b \rightarrow E_a \ op \ E'_b} \ (redr)$$

Si noti che è stato possibile escludere che $E_1 = k_1$ o $E_2 = k_2$ in quanto in questi casi si esclude che sia possibile applicare (redl) e (redr) contemporaneamente e si riduce ad un caso banale.

 E_a e E_b sono più corte di E quindi si può applicare l'ipotesi induttiva, in modo che per qualunque coppia di cammini intrapresi $E_a \rightarrow E_{a1}, E_a \rightarrow E_{a2},$ $E_b \rightarrow E_{b1}, E_b \rightarrow E_{b2}$, si ha che E_{a1} \twoheadrightarrow m_a, E_{a2} \twoheadrightarrow m_a, E_{b1} \twoheadrightarrow m_b ,

 $E_{b2} \twoheadrightarrow m_b$ e, per quanto detto nella premessa, anche $E_a \twoheadrightarrow m_a$ e $E_b \twoheadrightarrow m_b$. Di conseguenza valgono:

$$E_a \rightarrow m_a$$

$$E_b \rightarrow m_b$$

$$E'_a \rightarrow m_a$$

$$E'_b \rightarrow m_b$$

e si può applicare:

$$\frac{E_a' \twoheadrightarrow m_a \qquad E_b \twoheadrightarrow m_b}{E_a' \ op \ E_b \ \twoheadrightarrow \ n} \ (m_a \ op \ m_b = n)$$

$$\frac{E_a \twoheadrightarrow m_a \qquad E_b' \twoheadrightarrow m_b}{E_a \ op \ E_b' \twoheadrightarrow n} \ (m_a \ op \ m_b = n)$$

Dimostrando che $E_1 \ \twoheadrightarrow \ n$ e $E_2 \ \twoheadrightarrow \ n$, e quindi la tesi.

Esercizio 4.11

Testo:

Relativamente all'Esempio 4.10, si dimostri che se s è una traccia di F (ossia $F \Rightarrow 1$) allora s è una traccia anche di E.

Soluzione:

È necessario dimostrare che se $F \stackrel{s}{\Rightarrow} 1$ allora $E \stackrel{s}{\Rightarrow} 1$. La dimostrazione procede per induzione sulla lunghezza della traccia s.

Caso base |s| = 0 se la traccia è di lunghezza zero, allora essa è necessariamente $s = \varepsilon$, e quindi la tesi è dimostrata perché vale $E \stackrel{s}{\Rightarrow} 1$ per l'assioma $(Star_1)$.

Passo induttivo |s| > 1 si ha che la traccia può essere s = as' oppure s = bs', e senza perdere di generalità si assume il primo caso. Inoltre vale l'ipotesi induttiva che se $F \stackrel{s'}{\Rightarrow} 1$ allora $E \stackrel{s'}{\Rightarrow} 1$.

Vale che

$$F \xrightarrow{a} 1; a^*; F \xrightarrow{\varepsilon} a; F \xrightarrow{\varepsilon} F \xrightarrow{\varepsilon} 1; F \xrightarrow{\varepsilon} F \xrightarrow{\varepsilon} 1$$

o in altri termini valgono:

$$F \stackrel{a}{\Rightarrow} 1; a^*; F \stackrel{\varepsilon}{\Rightarrow} F$$

$$F \stackrel{a}{\Rightarrow} a; F \stackrel{\varepsilon}{\Rightarrow} F$$

$$F \stackrel{a}{\Rightarrow} F \stackrel{\varepsilon}{\Rightarrow} F$$

$$F \stackrel{a}{\Rightarrow} 1; F \stackrel{\varepsilon}{\Rightarrow} F$$

$$F \stackrel{a}{\Rightarrow} 1$$

Che sono anche le uniche transizioni che ${\cal F}$ può eseguire tramite a, giustificate dalle:

$$\frac{\overline{a} \xrightarrow{a} 1}{(Atom)} \xrightarrow{a^* \xrightarrow{a} 1; a^*} (Star_2)$$

$$\frac{\overline{a^* + b^*} \xrightarrow{a} 1; a^*}{(a^* + b^*)^* \xrightarrow{a} 1; a^*} (Sum_1)$$

$$\frac{\overline{a^* + b^*} \xrightarrow{a} 1; a^*; (a^* + b^*)^*}{(a^* + b^*)^* \xrightarrow{\varepsilon} a^*; (a^* + b^*)^*} (Seq_2)$$

$$\frac{\overline{a^* \xrightarrow{\varepsilon} 1}}{a^*; (a^* + b^*)^* \xrightarrow{\varepsilon} (a^* + b^*)^*} (Seq_2)$$

$$\frac{\overline{a^* \xrightarrow{\varepsilon} 1} (Star_1)}{a^*; (a^* + b^*)^* \xrightarrow{\varepsilon} (a^* + b^*)^*} (Seq_2)$$

$$\frac{\overline{a^* \xrightarrow{\varepsilon} 1} (Star_1)}{(a^* + b^*)^* \xrightarrow{\varepsilon} 1; (a^* + b^*)^*} (Seq_2)$$

$$\frac{\overline{a^* \xrightarrow{\varepsilon} 1} (Star_1)}{(a^* + b^*)^* \xrightarrow{\varepsilon} 1; (a^* + b^*)^*} (Seq_2)$$

$$\frac{\overline{a^* \xrightarrow{\varepsilon} 1} (Tic)}{1; (a^* + b^*)^* \xrightarrow{\varepsilon} (a^* + b^*)^*} (Seq_2)$$

Per ipotesi: $F \stackrel{as'}{\Longrightarrow} 1$, e per quanto detto prima, dopo aver fatto una $\stackrel{a}{\Rightarrow}$ si ha che vale $X \stackrel{s'}{\Rightarrow} 1$ con X che può essere uno dei:

$$1; a^*; F$$

 $a; F$
 F
 $1; F$

 $\frac{1}{(a^* + b^*)^*} \xrightarrow{\varepsilon} 1 (Star_1)$

Nell'ultimo caso si ha che necessariamente $s'=\varepsilon$ e s=a, la tesi vale perché esiste la computazione $E\stackrel{a}{\to} 1; (a+b)^*\stackrel{\varepsilon}{\to} E\stackrel{\varepsilon}{\to} 1$ e quindi $E\stackrel{a}{\to} 1$. Tale

computazione è giustificata dalle regole:

$$\frac{\overline{a \xrightarrow{a} 1} (Atom)}{a+b \xrightarrow{a} 1} (Sum_1)$$

$$\frac{a+b \xrightarrow{a} 1}{(a+b)^* \xrightarrow{a} 1; (a+b)^*} (Star_2)$$

$$\frac{1 \xrightarrow{\varepsilon} 1}{1; (a+b)^* \xrightarrow{\varepsilon} (a+b)^*} (Seq_2)$$

$$\frac{1}{(a+b)^*} \xrightarrow{\varepsilon} 1 (Star_1)$$

Per gli altri casi si ha che $X \stackrel{\varepsilon}{\Rightarrow} F$ è l'unica computazione possibile, quindi $F \stackrel{a}{\Rightarrow} X \stackrel{\varepsilon}{\Rightarrow} F \stackrel{s'}{\Rightarrow} 1$ e usando l'ipotesi induttiva vale che $E \stackrel{s'}{\Rightarrow} 1$. La tesi si ottiene giustificando che esiste $E \stackrel{a}{\Rightarrow} E$ e quindi $E \stackrel{as'=s}{\Longrightarrow} 1$. Per fare ciò si noti che esistono i passi $E \stackrel{a}{\Rightarrow} 1$; $E \stackrel{\varepsilon}{\Rightarrow} E$ già giustificati con regole viste prima.

Esercizio 5.5

Testo:

Dati:

$$\mathbf{S} \equiv \lambda xyz.xz(yz)$$

$$\mathbf{K} \equiv \lambda xy.x$$

$$\mathbf{I} \equiv \lambda x.x$$

mostrare che SK = KI.

Soluzione:

Valgono i passaggi:

$$\mathbf{SK} = (\lambda xyz.xz(yz))(\lambda xy.x)$$

$$\longrightarrow_{\beta} \lambda yz.(\lambda xy.x)z(yz)$$

$$\longrightarrow_{\beta} \lambda yz.(\lambda y.z)(yz)$$

$$\longrightarrow_{\beta} \lambda yz.z$$

$$\equiv \lambda xy.y$$

e anche:

$$\mathbf{KI} = (\lambda xy.x)(\lambda x.x)$$

$$\longrightarrow_{\beta} \lambda y.(\lambda x.x)$$

$$\equiv \lambda yx.x$$

$$\equiv \lambda xy.y$$

quindi la tesi è dimostrata perchè i due termini riducono alla stessa forma.

Esercizio 6.10

Testo:

Sia D un cpo. Una funzione $r: D \to D$ si dice idempotente se r(r(x)) = r(x), per ogni $x \in D$. Dimostrare che l'insieme di tutte le funzioni continue idempotenti da D in D è un cpo.

Soluzione:

Poiché D è un cpo, lo spazio delle funzioni continue da D a D denotato da $[D \to D] = (D \to D, \sqsubseteq)$, così come in definizione 6.33, è un cpo. L'insieme delle funzioni continue e idempotenti G è un sottoinsieme dell'insieme delle funzioni continue $D \to D$, quindi considerando \sqsubseteq_G la restrizione di \sqsubseteq a G, si ha che $\mathbb{G} = (G, \sqsubseteq_G)$ è un poset. Per dimostrare che \mathbb{G} è anche un cpo è necessario mostrare che con la restrizione da $[D \to D]$ a \mathbb{G} vengono mantenuti il minimo (punto 1) e i sup di ogni catena in \mathbb{G} (punto 2).

- 1. Il minimo di $[D \to D]$ è $\Omega \equiv \lambda x$. \perp_D con \perp_D il minimo di D. Tale funzione è anche idempotente perché $\Omega(x) = \Omega(\Omega(x)) = \perp_D$ per qualunque x, quindi appartiene anche a G.
- 2. Data una generica catena di funzioni continue e idempotenti $\{f_i|i\in I\}$, è necessario dimostrare che il sup di tale catena, che sappiamo dalla dimostrazione del teorema 6.34 essere:

$$g \equiv \lambda x. \sup\{f_i x | i \in I\}$$

sia
 $\in G$ e quindi idempotente, e quindi che g(gx)=g(x) per ogn
ix.

La dimostrazione procede nel seguente modo:

$$g(gx) = (\lambda x'. \sup\{f_i x' | i \in I\})((\lambda x''. \sup\{f_i x'' | i \in I\})x)$$

$$= (\lambda x'. \sup\{f_i x' | i \in I\}) \sup\{f_i x | i \in I\}$$

$$= \sup\{f_i (\sup\{f_j x | j \in I\}) | i \in I\}$$

e per la continuità delle f_i

$$= \sup \{ \sup \{ f_i(f_j x) | j \in I \} | i \in I \}$$

a questo punto disponendo in forma matriciale ordinata gli f_i e gli f_j è possibile applicare la proposizione 6.27(2) e si ottiene

$$= \sup\{f_i(f_ix)|i\in I\}$$

e poiché tutte le f_i sono idempotenti

$$= \sup\{f_i x | i \in I\}$$
$$= qx$$

Esercizio 7.6

Testo:

Fornire semantica operazionale e denotazionale del programma

$$\mathbf{letrec}f(x) \Leftarrow f(x)\mathbf{in}f(5)$$

Soluzione:

Cominciando con la semantica operazionale con chiamata per nome si ha:

$$f(5) \xrightarrow{(FUN)}_D f(5) \xrightarrow{(FUN)}_D \dots$$

e in modo simile per quella con chiamata per valore usando $(FUN^\prime).$ Quindi divergono.

Per la semantica denotazionale, usando un approccio bottom up, si ha:

$$\mathcal{T}[[5]] = \lambda f.\lambda x.5$$

$$\mathcal{T}[[x]] = \lambda f.\lambda x.x$$

$$\mathcal{T}[[f(5)]] = \lambda f.\lambda x.f(\mathcal{T}[[5]]fx)$$

$$= \lambda f.\lambda x.f(5)$$

$$\mathcal{T}[[f(x)]] = \lambda f.\lambda x.f(\mathcal{T}[[x]]fx)$$

$$= \lambda f.\lambda x.f((\lambda f.\lambda x'.x')fx)$$

$$= \lambda f.\lambda x.f(x)$$

$$\mathcal{D}[[f(x) \Leftarrow f(x)]] = fix(\lambda f.\mathcal{T}[[f(x)]]f)$$

$$= fix(\lambda f.(\lambda f'.\lambda x.f'(x))f)$$

$$= fix(\lambda f.\lambda x.f(x))$$

$$= \sup\{(\lambda f.\lambda x.f(x))^i \lambda x. \perp | i \in \mathbb{N}\}$$

$$= \lambda x. \perp$$

$$= \Omega$$

$$\mathcal{P}[[\mathbf{letrec}f(x) \Leftarrow f(x)\mathbf{in}f(5)]] = \mathcal{T}[[f(5)]]\mathcal{D}[[f(x) \Leftarrow f(x)]]0$$

$$= (\lambda f.\lambda x.f(5))\Omega 0$$

$$= \Omega 5$$

$$= \perp$$

Dalla valutazione della semantica operazionale si nota che il programma diverge, e infatti la valutazione della semantica denotazionale lo conferma restituendo, come prevedibile, un risultato non definito.

Esercizio 8.11

Testo:

Si aggiunga al linguaggio TINY un comando **stop** con la semantica informale di far terminare il programma. Se ne dia la semantica e si dimostri che c1; **stop** e c1; **stop**; c2 sono semanticamente equivalenti.

Soluzione:

È possibile estendere la semantica operazionale in modo da gestire lo ${\bf stop}$ modificando leggermente (Seq₂) in:

$$\frac{\langle c_1, \sigma \rangle \longrightarrow \langle c'_1, \sigma' \rangle}{\langle c_1; c_2, \sigma \rangle \longrightarrow \langle c'_1; c_2, \sigma' \rangle} (c'_1 \neq \mathbf{stop}) \qquad (\mathrm{Seq}_2')$$

e aggiungendo le due regole

$$< \mathbf{stop}, \sigma > \longrightarrow < \mathbf{noaction}, \sigma >$$
 (Stop₁)
 $< \mathbf{stop}; c, \sigma > \longrightarrow < \mathbf{stop}, \sigma >$ (Stop₂)

Per quanto riguarda la semantica denotazionale è più difficile ottenere lo stesso risultato. È necessario cambiare anche il dominio delle funzioni di interpretazione semantica dei comandi in:

$$\mathcal{C}: Com \longrightarrow \mathbb{STATO} \longrightarrow (\mathbb{STATO} + (\mathbb{STATO} \times \{stop\}) + \{error\})$$

per aggiungere la possibilità che la computazione ritorni una coppia $\langle \sigma, stop \rangle$ che va letta come lo stato σ con l'aggiunta dell'informazione che la computazione è terminata a causa di un comando **stop**. Va quindi modificata la denotazione corrispondente alla sequenzializzazione di comandi in:

$$\mathcal{C}[\![c_1; c_2]\!] = \lambda \sigma. cases(\mathcal{C}[\![c_1]\!] \sigma) of$$

$$\sigma' : \mathcal{C}[\![c_2]\!] \sigma';$$

$$< \sigma', stop > : < \sigma', stop >;$$

$$error : error$$

$$endcases$$

e aggiunta la denotazione per lo stop:

$$\mathcal{C}[stop] = \lambda \sigma. < \sigma, stop >$$

Con queste aggiunte andrebbero anche riviste e modificate la dimostrazione di equivalenza tra le due semantiche e la formalizzazione in punto fisso della

denotazione del **while** che fa uso della sequenzializzazione. Queste ultime modifiche vengono tralasciate perché non inerenti all'esercizio.

Per dimostrare che c_1 ; **stop** e c_1 ; **stop**; c_2 sono semanticamente equivalenti, si può usare la semantica operazionale per mostrare che le computazioni dei due programmi portano a configurazioni finali con stati identici, dato un qualsiasi stato iniziale σ . Per c_1 ; **stop** vale che:

$$< c_1; stop, \sigma >$$
 $\downarrow_{(Seq'_2)}$
 $< stop, \sigma' >$
 $\downarrow_{(Stop_1)}$
 $< noaction, \sigma' >$

dove è stata usata l'istanza di (Seq_2') :

$$\frac{\langle c_1, \sigma \rangle \longrightarrow \langle c'_1, \sigma' \rangle}{\langle c_1; \mathbf{stop}, \sigma \rangle \longrightarrow \langle \mathbf{stop}, \sigma' \rangle}$$

Per c_1 ; **stop**; c_2 vale che:

$$< c_1; stop; c_2, \sigma >$$
 $\downarrow_{(Seq'_2)}$
 $< stop; c_2, \sigma' >$
 $\downarrow_{(Stop_2)}$
 $< stop, \sigma' >$
 $\downarrow_{(Stop_1)}$
 $< noaction, \sigma' >$

dove è stata usata l'istanza di (Seq_2') :

$$\frac{< c_1, \sigma > \longrightarrow < c_1', \sigma' >}{< c_1; \mathbf{stop}; c_2, \sigma > \longrightarrow < \mathbf{stop}; c_2, \sigma' >}$$

con c_1' e σ' gli stessi di prima in quanto la premessa è la stessa. Quindi poiché entrambe le computazioni hanno lo stesso stato finale < **noaction**, σ' >, la tesi è vera.

È possibile anche dimostrare l'equivalenza usando la semantica denotazionale, osservando che sia nella denotazione di $\mathcal{C}[\![c_1;\mathbf{stop}]\!]$ che in quella di $\mathcal{C}[\![c_1;\mathbf{stop};c_2]\!]$ viene prima valutato $\mathcal{C}[\![c_1]\!]$ e poi applicato σ' a $\mathcal{C}[\![\mathbf{stop}]\!]$ in un caso e $\mathcal{C}[\![\mathbf{stop};c_2]\!]$ nell'altro. In seguito l'unica differenza è che nel primo caso vale subito che $\mathcal{C}[\![\mathbf{stop}]\!]\sigma'$ è $<\sigma'$, stop>, nel secondo caso c'è un ulteriore passaggio in cui viene usato il secondo case della denotazione della sequenzializzazione e che però non cambia il risultato.

Esercizio 9.7

Testo:

Estendere il linguaggio SMALL introducendo i comandi **restart** ed **exit**, il cui significato è di saltare rispettivamente all'inizio ed alla fine del blocco più interno.

Soluzione:

Per gestire i due comandi richiesti è necessario modificare il dominio:

```
\mathcal{C}: Com \longrightarrow \mathbb{AMB} \longrightarrow \mathbb{MEM} \longrightarrow \\ ((\mathbb{MEM} \times \{restart, stop, normal\}) + \{error\})
```

che aggiunge la possibilità per i comandi di indicare il tipo di ritorno in abbinamento al valore di ritorno della memoria. Informalmente *normal* indica che la valutazione del comando che li ha ritornati non ha portato a nessun comando di **stop** o **restart**; *stop* e *restart* indicano che la valutazione del comando ha portato rispettivamente ad uno **stop** e ad un **restart**.

Per gestire il cambio di flusso del programma vengono modificate le regole di interpretazione semantica di programmi, di blocchi, e della sequenzializzazione nel seguente modo:

```
\mathcal{P}[\![\mathbf{program}\ c]\!] in = fix(\lambda\Theta.cases(\mathcal{C}[\![c]\!]\rho_0(\lambda x.unused)[in/lin][nil/lout]) of \\ < \sigma, normal >: \sigma(lout); \\ < \sigma, stop >: \sigma(lout); \\ < \sigma, restart >: \Theta \\ endcases)
\mathcal{C}[\![\mathbf{begin}\ d;\ c\ \mathbf{end}]\!]\rho = fix(\lambda\Theta.\mathcal{D}[\![d]\!]\rho \,\star\, \lambda\rho'.\mathcal{C}[\![c]\!]\rho[\rho'] \,\star\, \lambda\sigma s.\ cases\ s\ in: \\ normal: < \sigma, normal >; \\ stop: < \sigma, normal >; \\ restart: \Theta \\ endcases)
\mathcal{C}[\![c_1; c_2]\!]\rho = \mathcal{C}[\![c_1]\!]\rho \,\star\, \lambda\sigma s.\ cases\ s\ in: \\ normal: \mathcal{C}[\![c_2]\!]\rho; \\ stop: < \sigma,\ stop >; \\ restart: < \sigma,\ restart >; \\ endcases
```

Oltre a queste regole è necessario modificare leggermente le altre regole di interpretazione dei comandi per dare in output la coppia $<\sigma,\ normal>$ invece della sola memoria:

$$\mathcal{C}[\![e := e']\!] \rho = \mathcal{E}[\![e]\!] \rho \star checkLOC \star \lambda l. \mathcal{R}[\![e']\!] \rho \star \lambda v\sigma. < \sigma[\![v/l]\!], \ normal >$$

$$\mathcal{C}[\![\mathbf{while}\ e\ \mathbf{do}\ c]\!]\rho = fix(\lambda\Theta.\mathcal{R}[\![e]\!]\rho \ \star \ checkBOOL$$

$$\star \ \lambda b.b \to \mathcal{C}[\![c]\!]\rho \ \star \ \Theta, \ \lambda \sigma. < \sigma, \ normal >)$$

$$\mathcal{C}[[\mathbf{output}\ e]] \rho = \mathcal{R}[[e]] \rho \star \lambda b\sigma. < \sigma[b :: \sigma(lout)/lout], \ normal > 0$$

Non è invece necessario modificare le regole per l'**if** e per l'applicazione di procedure, in quanto la coppia viene generata a livello superiore.

Infine è necessario specificare le regole di interpretazione semantica per i due nuovi comandi **stop** e **restart**:

$$\mathcal{C}[\![\mathbf{stop}]\!]\rho = \lambda \sigma. < \sigma, \ stop >$$

$$\mathcal{C}[[\mathbf{restart}]]\rho = \lambda \sigma. < \sigma, \ restart >$$

Esercizio 11.10

Testo:

Si dimostri la Proposizione 11.34 che fornisce una definizione alternativa di bisimulazione.

 $(Sia < Q, A, \rightarrow)$ un LTS. Una relazione $R \subseteq Q \times Q$ è una bisimulazione se e solo se R e R^{-1} sono simulazioni.)

Soluzione:

Si dimostrano i due lati della doppia implicazione. Nel testo di questo esercizio " \Longrightarrow " è da intendersi come "implica", e non come sinonimo di " $\stackrel{\varepsilon}{\Longrightarrow}$ ".

(\Longrightarrow) Si dimostra che se R è una bisimulazione, allora R e R^{-1} sono simulazioni.

Per il punto 1 della definizione 11.8 si ha che

$$\forall < p, q > \in R$$
, vale:
 $\forall a \in A, \ \forall p' \in Q$:

$$(p \xrightarrow{a} p') \implies \exists q' \in Q : (q \xrightarrow{a} q' \land \langle p', q' \rangle \in R),$$
ma se vale questo vale anche che R è una simulazione per la definizione 11.31.

Per il punto 2 della definizione 11.8 si ha che

$$\forall < p, q > \in R$$
, vale:
 $\forall a \in A, \ \forall q' \in Q:$
 $(q \xrightarrow{a} q') \implies \exists p' \in Q: (p \xrightarrow{a} p' \land < p', q' > \in R),$

per la definizione di relazione inversa si ha < q, p >< $R^{-1} \iff$ < p, q >< R, quindi

$$\forall < q, p > \in R^{-1}$$
, vale:
 $\forall a \in A, \ \forall q' \in Q:$
 $(q \xrightarrow{a} q') \implies \exists p' \in Q: (p \xrightarrow{a} p' \land < q', p' > \in R^{-1}).$

Ridenominando p in q, p' in q', q in p e q' in p', tutte quantificate, si ottiene che R^{-1} è una simulazione dalla definizione 11.31.

Applicando la definizione 11.31 ad R ed R^{-1} , ridenominando nella seconda p in q, p' in q', q in p e q' in p' si ha

$$\forall < p, q > \in R, \text{ vale:}$$

$$\forall a \in A, \forall p' \in Q:$$

$$(p \xrightarrow{a} p') \implies \exists q' \in Q: (q \xrightarrow{a} q' \land < p', q' > \in R),$$

$$\forall < q, p > \in R^{-1}, \text{ vale:}$$

$$\forall a \in A, \forall q' \in Q:$$

$$(q \xrightarrow{a} q') \implies \exists p' \in Q: (p \xrightarrow{a} p' \land < q', p' > \in R^{-1}),$$

per la definizione di relazione inversa si ha < q, p >< $R^{-1} \iff$ < p, q >< R, quindi

$$\forall < p, q > \in R, \text{ vale:}$$

$$\forall a \in A, \forall p' \in Q:$$

$$(p \xrightarrow{a} p') \implies \exists q' \in Q: (q \xrightarrow{a} q' \land < p', q' > \in R),$$

$$\forall < p, q > \in R, \text{ vale:}$$

$$\forall a \in A, \forall q' \in Q:$$

$$(q \xrightarrow{a} q') \implies \exists p' \in Q: (p \xrightarrow{a} p' \land < p', q' > \in R),$$

o in modo alternativo

$$\forall < p, q > \in R, \text{ valgono:}$$

$$\forall a \in A, \forall p' \in Q :$$

$$(p \xrightarrow{a} p') \implies \exists q' \in Q : (q \xrightarrow{a} q' \land < p', q' > \in R),$$

$$\forall a \in A, \forall q' \in Q :$$

$$(q \xrightarrow{a} q') \implies \exists p' \in Q : (p \xrightarrow{a} p' \land < p', q' > \in R),$$

e, per la definizione 11.8, ${\cal R}$ è una bisimulazione.

Esercizio 12.1

Testo:

Dimostrare la proposizione seguente che introduce alcune leggi per gli operatori statici derivabili a partire da quelle nelle Tabelle $12.6,\,12.7$ e 12.8.

Proposizione 12.64 (Leggi derivabili). Le seguenti leggi

$$1. p|q = q|p$$

2.
$$p|(q|r) = (p|q)|r$$

3.
$$p|nil = p$$

4.
$$p \setminus L = p$$
 se $\mathcal{L}(p) \cap (L \cup \overline{L}) = \emptyset$

5.
$$p \backslash K \backslash L = p \backslash (K \cup L)$$

6.
$$p[f] \backslash L = p \backslash f^{-1}(L)[f]$$

7.
$$(p|q)\backslash L = p\backslash L|q\backslash L$$
 se $\mathcal{L}(p)\cap \overline{\mathcal{L}(q)}\cap (L\cup L) = \emptyset$

8.
$$p[Id] = p$$

9.
$$p[f] = p[f']$$
 se $f \upharpoonright_{\mathcal{L}(p)} = f' \upharpoonright_{\mathcal{L}(p)}$

10.
$$p[f][f'] = p[f \circ f']$$

11.
$$(p|q)[f] = p[f]|q[f]$$
 se $f \upharpoonright_{(L \cup \overline{L})}$ è biunivoca, dove $L = \mathcal{L}(p) \cup \mathcal{L}(q)$

sono corrette rispetto a \sim .

Soluzione:

Per ognuna delle regole $t_1 = t_2$ è necessario verificare che esiste una bisimulazione forte R tale che $< t_1, t_2 > \in R$. La struttura della dimostrazione è simile per tutti i punti: si definisce

$$R \triangleq \{\langle t_1, t_2 \rangle : t_1, t_2 \in \mathcal{P}_{CCS}\} \cup Id$$

e si procede quindi a dimostrare che R è chiusa rispetto alle transizioni. Alternativamente è possibile dimostrare che $\forall \mu \in \mathcal{A}_{CCS}: t_1 \xrightarrow{\mu} t \iff t_2 \xrightarrow{\mu} t$.

- 1. p|q=q|p: Se $p|q \xrightarrow{\mu} t$ significa che è stata usata una tra (PAR1), (PAR2) e (PAR3), quindi si ha che
 - $p \xrightarrow{\mu} p'$ e quindi t = p'|q oppure
 - $q \xrightarrow{\mu} q'$ e quindi t = p|q' oppure
 - se $\mu=\tau\colon p\xrightarrow{\alpha}p''$ e $q\xrightarrow{\overline{\alpha}}q''$ per qualche α e quindi t=p''|q''.

Quindi per le stesse regole vale che $q|p \xrightarrow{\mu} t'$ e

- $p \xrightarrow{\mu} p'$ e quindi t' = q|p' oppure
- $q \xrightarrow{\mu} q'$ e quindi t' = q'|p oppure
- se $\mu = \tau$: $p \xrightarrow{\alpha} p''$ e $q \xrightarrow{\overline{\alpha}} q''$ per qualche α e quindi t' = q''|p''.

La tesi viene dal fatto che qualunque percorso viene scelto t e t' rimangono in forma p|q e q|p e quindi $< t, \ t' > \in R$.

2. |p|(q|r) = (p|q)|r|: La dimostrazione avviene mostrando che R è chiusa rispetto alle transizioni.

In maniera schematica è possibile vedere che se per un generico μ si ha $p|(q|r) \xrightarrow{\mu} t$ allora a seconda di che regole vengono usate, t può essere in una delle forme riassunte nello schema seguente (dove \implies è l'implicazione):

$$\bullet \ (PAR1): \quad p \xrightarrow{\mu} p' \quad \implies \quad t = p'(q|r) \ \widehat{(P_1)}$$

•
$$(PAR2): (q|r) \xrightarrow{\mu} t' \implies \text{uno tra:}$$

$$-(PAR2): r \xrightarrow{\mu} r' \implies t' = q|r' \implies t = p|(q|r')(\widehat{R_1})$$

$$- (SINC): \quad \mu = \tau, \ q \xrightarrow{\alpha} q_1'', \ r \xrightarrow{\overline{\alpha}} r_1'' \quad \Longrightarrow \quad$$

$$t' = q_1''|r_1'' \implies t = p|(q_1''|r_1'') \left(QR_1\right)$$

• (SINC):
$$\mu = \tau$$
, $p \xrightarrow{\beta} p_1''$, $(q|r) \xrightarrow{\overline{\beta}} t_1'' \implies$ uno tra:

$$- \ (PAR1): \quad q \xrightarrow{\overline{\beta}} q_1''' \implies t_1'' = q_1''' | r \quad \implies \quad t = p_1'' | (q_1''' | r) (PQ_1 | q_1''' | r) (PQ_1 | q_1'' | r) (PQ_1 | q_1''' | r) (PQ_1 | q_1'' | r) (PQ_1 | q_1''$$

$$- (PAR2): \quad r \xrightarrow{\overline{\beta}} r_1''' \implies t_1'' = q|r_1''' \implies \quad t = p_1''|(q|r_1''')) PR_1$$

$$(SINC)$$
: non possibile perché $\overline{\beta}\neq\tau$

In modo analogo è possibile vedere che se per lo stesso μ si ha $(p|q)|r \xrightarrow{\mu} t$ allora a seconda di che regole vengono usate, t può essere in una delle forme riassunte nello schema seguente:

•
$$(PAR1): (p|q) \xrightarrow{\mu} t' \implies \text{uno tra:}$$

$$- (PAR1): \quad p \xrightarrow{\mu} p' \quad \Longrightarrow \quad t' = p'|q \quad \Longrightarrow \quad t = (p'|q)|r (P_2)$$

$$- \ (PAR2): \quad q \xrightarrow{\mu} q' \implies t' = p|q' \quad \implies \quad t = (p|q')|r\left(\widehat{Q_2} \right)$$

$$- \ (SINC): \quad \mu = \tau, \ p \xrightarrow{\gamma} p_2'', \ q \xrightarrow{\overline{\gamma}} q_2'' \quad \Longrightarrow \quad$$

$$t' = p_2''|q_2'' \implies t = (p_2''|q_2'')|r(PQ_2)$$

$$\bullet \ (PAR2): \quad r \xrightarrow{\mu} r' \quad \Longrightarrow \quad t = (p|q)|r'\left(\widehat{R_2} \right)$$

•
$$(SINC): \quad \mu = \tau, \ (p|q) \xrightarrow{\delta} t_2'', \ r \xrightarrow{\overline{\delta}} r_2'' \implies \text{uno tra:}$$

$$- \ (PAR1): \quad p \xrightarrow{\delta} p_2^{\prime\prime\prime} \implies \ t_2^{\prime\prime} = p_2^{\prime\prime\prime}|q \quad \implies \quad t = (p_2^{\prime\prime\prime}|q)|r_2^{\prime\prime} (PR_2)|r_2^{\prime\prime\prime}|q = r_2^{\prime\prime\prime}|q = r_2^{\prime\prime}|q = r_2^{\prime\prime\prime}|q = r_2^{\prime\prime}|q = r_2^{\prime\prime\prime}|q = r_2^{\prime\prime\prime}|q = r_2^{\prime\prime}|q = r_2^{\prime\prime\prime}|q = r_2^{\prime\prime}|q = r_2^{\prime\prime}|$$

$$- \ (PAR2): \quad q \xrightarrow{\delta} q_2^{\prime\prime\prime} \implies t_2^{\prime\prime} = p|q_2^{\prime\prime\prime} \quad \implies \quad t = (p|q_2^{\prime\prime\prime})|r_2^{\prime\prime} \stackrel{\bigcirc}{QR_2}$$

$$-$$
 (SINC) : non possibile perché $\delta \neq \tau$.

Non è difficile vedere che ad esempio per il caso (P_1) vale che $p \xrightarrow{\mu} p'$ e $p|(q|r) \xrightarrow{\mu} p'(q|r)$ e per il caso (P_2) $p \xrightarrow{\mu} p'$ con stesso μ e quindi anche stesso $p' \in (p|q)|r \xrightarrow{\mu} (p'|q)|r. < p'|(q|r), (p'|q)|r> \in R$ perché R contiene tutte le

coppie nella forma $< p|(q|r), \ (p|q)|r>$, quindi per questo caso R è chiusa per le transizioni. In modo analogo si può dimostrare i casi (Q_1) - (Q_2) e quelli (R_1) - (R_2) . Per gli altri casi è necessario notare che ad esempio per il caso (QR_1) si ha una sincronizzazione tra q ed r, così come per il caso (QR_2) , questo significa che α e γ coincidono, e quindi $q_1'' = q_2'''$ e $r_1'' = r_2''$. In modo analogo si dimostra che: $r_1'' = r_2'' = r_1'''$, $p_1'' = p_2'' = p_2'''$, $q_1''' = q_2''$. Quindi anche per i casi (QR_1) - (QR_2) , (PQ_1) - (PQ_2) e (PR_1) - (PR_2) vale che R è chiusa per le transizioni.

- 3. p|nil = p: Si dimostra con il fatto che R è chiusa per transizioni. L'unica regola della semantica applicabile a p|nil è (PAR1) quindi $p|nil \xrightarrow{\mu} p'|nil$ e $p \xrightarrow{\mu} p'$ e < p'|nil, $p' > \in R$.
- 4. $p \setminus L = p$ se $\mathcal{L}(p) \cap (L \cup \overline{L}) = \emptyset$: Se $p \xrightarrow{\mu} p'$ allora per la regola (RES) della semantica $p \setminus L \xrightarrow{\mu} p' \setminus L$ solo se $\mu, \overline{\mu} \notin L$ equivalentemente se $\mu \notin (L \cup \overline{L})$. Applicando la definizione 12.18 di sorta si evince che se $\mathcal{L}(p) \cap (L \cup \overline{L}) = \emptyset$ significa che il processo p non potrà mai fare un'azione di L o una sua negata, quindi vale sempre che $p \setminus L \xrightarrow{\mu} p' \setminus L$, e la tesi vale perché $\langle p' \setminus L, p' \rangle \in R$ e dalla definizione di sorta se $\mathcal{L}(p) \cap (L \cup \overline{L}) = \emptyset$ allora $\mathcal{L}(p') \cap (L \cup \overline{L}) = \emptyset$.
- 5. $p\backslash K\backslash L = p\backslash (K\cup L)$: Se $p\backslash K\backslash L \xrightarrow{\mu} p'$ l'unica regola della semantica applicabile è (RES) nel seguente modo:

$$\frac{p\xrightarrow{\mu}p'}{\frac{p\backslash K\xrightarrow{\mu}p'\backslash K}{p\backslash K\backslash L\xrightarrow{\mu}p'\backslash K}}(\mu,\overline{\mu}\not\in K)}{p\backslash K\backslash L\xrightarrow{\mu}p'\backslash K\backslash L}(\mu,\overline{\mu}\not\in L)$$

Quindi $\mu, \overline{\mu} \notin L$ e $\mu, \overline{\mu} \notin K$. Equivalentemente $\mu, \overline{\mu} \notin (K \cup L)$. Allo stesso modo per i termini $p \setminus (K \cup L)$ si può applicare

$$\frac{p\xrightarrow{\mu}p'}{p\backslash(K\cup L)\xrightarrow{\mu}p'\backslash(K\cup L)}\ (\mu,\overline{\mu}\not\in(K\cup L))$$

e i μ per cui valgono sono gli stessi, inoltre R è chiuso per le transizioni perché $< p'\backslash K\backslash L,\ p'\backslash (K\cup L)>\in R.$

6. $p[f] \setminus L = p \setminus f^{-1}(L)[f]$: Sul membro sinistro è possibile applicare solo:

$$\frac{\frac{p\xrightarrow{\mu}p'}{p[f]\xrightarrow{\widehat{f}(\mu)}p'[f]}}{p[f]\backslash L\xrightarrow{\widehat{f}(\mu)}p'[f]\backslash L}\;(\widehat{f}(\mu),\;\overline{\widehat{f}(\mu)}\not\in L)$$

su quello destro solo

$$\frac{p \xrightarrow{\mu} p'}{\frac{p \backslash f^{-1}(L) \xrightarrow{\mu} p' \backslash f^{-1}(L)}{p \backslash f^{-1}(L)[f] \xrightarrow{\widehat{f}(\mu)} p' \backslash f^{-1}(L)[f]}}$$

Si nota che poiché $L\subseteq \Lambda$ e $f:\Lambda \to \Lambda$ e per la definizione di \widehat{f} vale che

$$\begin{array}{ccc} (\mu,\; \overline{\mu}\; \not\in f^{-1}(L)) \; \Longrightarrow \; (\widehat{f}(\mu),\; \widehat{f}(\overline{\mu})\; \not\in L) \\ \; \Longrightarrow \; (\widehat{f}(\mu),\; \overline{\widehat{f}(\mu)}\; \not\in L) \end{array}$$

e quindi le condizioni dei due membri si equivalgono e $p[f] \setminus L \xrightarrow{\widehat{f}(\mu)} p'[f] \setminus L$ se e solo se $p \setminus f^{-1}(L)[f] \xrightarrow{\widehat{f}(\mu)} p' \setminus f^{-1}(L)[f]$. La tesi viene dal fatto che R è chiusa per transizioni perché $< p'[f] \setminus L$, $p' \setminus f^{-1}(L)[f] > \in R$.

7. $(p|q)\backslash L = p\backslash L|q\backslash L$ se $\mathcal{L}(p)\cap \overline{\mathcal{L}(q)}\cap (L\cup \overline{L})=\emptyset$: Per il membro sinistro si può applicare

$$\frac{p|q \xrightarrow{\mu} t'}{(p|q)\backslash L \xrightarrow{\mu} t} \ (\mu, \overline{\mu} \not\in L)$$

e quindi si può applicare una delle regole del parallelismo per ottenere i possibili valori di t^\prime e t

$$\bullet \ (PAR1): \quad p \xrightarrow{\mu} p' \quad \implies \quad t' = p'|q \quad \implies \quad t = (p'|q) \backslash L$$

•
$$(PAR2): q \xrightarrow{\mu} q' \implies t' = p|q' \implies t = (p|q') \setminus L$$

$$\bullet \ (SINC): \quad p \xrightarrow{\alpha} p'', \ q \xrightarrow{\overline{\alpha}} q'' \implies t' = p''|q'' \implies t = (p''|q'') \backslash L$$

Per il membro destro si applica subito una delle regole del parallelismo e se $p\backslash L|q\backslash L\xrightarrow{\mu} t$ allora

•
$$(PAR1): \frac{p \xrightarrow{\mu} p'}{p \setminus L \xrightarrow{\mu} p' \setminus L} (\mu, \overline{\mu} \notin L) \implies t = p' \setminus L | q \setminus L$$

•
$$(PAR2): \frac{q \xrightarrow{\mu} q'}{q \setminus L \xrightarrow{\mu} q' \setminus L} (\mu, \overline{\mu} \notin L) \implies t = p \setminus L | q' \setminus L$$

•
$$(SINC): \frac{p \xrightarrow{\alpha} p''}{p \setminus L \xrightarrow{\alpha} p'' \setminus L} (\alpha, \overline{\alpha} \notin L), \frac{q \xrightarrow{\alpha} q''}{q \setminus L \xrightarrow{\alpha} q'' \setminus L} (\overline{\alpha}, \alpha \notin L) \Longrightarrow t = p'' \setminus L |q'' \setminus L|$$

La regola è quasi verificata perché R sarebbe chiusa per tutte le transizioni se non fosse per le condizioni aggiuntive imposte sul membro destro nella sincronizzazione. Tali condizioni impediscono a p e q di sincronizzarsi su α quando questi o il suo complementare appartengono ad L, ma questa condizione è coperta da quella più forte imposta nella regola: $\mathcal{L}(p) \cap \overline{\mathcal{L}(q)} \cap (L \cup \overline{L}) = \emptyset$. Infatti per la definizione di sorta, questa impone che nei processi p e q non compaiano mai coppie di processi complementari contenuti in L.

8. p[Id] = p: È possibile applicare

$$\frac{p \xrightarrow{\mu} p'}{p[Id] \xrightarrow{\widehat{Id}(\mu)} p'[Id]}$$

e per la definizione di \widehat{f} e Id, si ha che $\widehat{Id}(\mu) = Id(\mu) = \mu$ quindi $p[Id] \xrightarrow{\mu} p'[Id]$ se e solo se $p \xrightarrow{\mu} p'$. R è chiusa per transizioni perché $\langle p'[Id], p' \rangle \in R$.

9. p[f] = p[f'] se $f \upharpoonright_{\mathcal{L}(p)} = f' \upharpoonright_{\mathcal{L}(p)}$: Si può applicare (REL) al membro sinistro e a quello destro:

$$\frac{p\xrightarrow{\mu}p'}{p[f]\xrightarrow{\widehat{f}(\mu)}p'[f]}$$

$$\frac{p \xrightarrow{\mu} p'}{p[f'] \xrightarrow{\widehat{f'}(\mu)} p'[f']}$$

Si nota facilmente che se $\hat{f} = \hat{f}'$ allora p[f] e p[f'] hanno le stesse μ -derivate. La condizione imposta nella regola indica che la restrizione di f su tutte le possibili azioni di p deve essere uguale alla restrizione di f' su tutte le possibili azioni di p, e quindi per ogni possibile μ vale che $f(\mu) = f'(\mu)$ e quindi $\hat{f}(\mu) = \hat{f}'(\mu)$.

10. $p[f][f'] = p[f' \circ f]$: Per il membro sinistro si può applicare (REL) due volte:

$$\frac{ p \xrightarrow{\mu} p'}{p[f] \xrightarrow{\widehat{f}(\mu)} p'[f]} \\ \frac{p[f][f'] \xrightarrow{\widehat{f}'(\widehat{f}(\mu))} p'[f][f']}$$

Per il membro destro si può applicare (REL) una volta

$$\frac{p\xrightarrow{\mu}p'}{p[f'\circ f]\xrightarrow{\widehat{(f'\circ f)}(\mu)}p'[f'\circ f]}$$

Dalla definizione di \widehat{f} e di funzione composta si verifica facilmente che $\widehat{(f'\circ f)}(\mu)=\widehat{f'}(\widehat{f}(\mu))$. Quindi R è chiusa per transizioni.

11. [(p|q)[f] = p[f]|q[f] se $f \upharpoonright_{(L \cup \overline{L})}$ è biunivoca, dove $L = \mathcal{L}(p) \cup \mathcal{L}(q)$: Per il membro sinistro si può applicare (REL):

$$\frac{p|q \xrightarrow{\mu} t'}{(p|q)[f] \xrightarrow{\widehat{f}(\mu)} t}$$

e per valutare i valori di t^\prime e t è necessario vedere quale regole del parallelismo sono usate:

- $\bullet \ (PAR1): \quad p \xrightarrow{\mu} p' \quad \implies \quad t' = p'|q \quad \implies \quad t = (p'|q)[f]$
- $\bullet \ (PAR2): \quad q \xrightarrow{\mu} q' \quad \Longrightarrow \quad t' = p|q' \quad \Longrightarrow \quad t = (p|q')[f]$
- $\bullet \ (PAR1): \quad \mu = \tau, \ p \xrightarrow{\alpha} p'', \ q \xrightarrow{\overline{\alpha}} q'' \Longrightarrow \\ t' = p''|q'' \quad \Longrightarrow \quad t = (p''|q'')[f]$

Per il membro destro si possono applicare subito le regole per il parallelo:

$$\frac{p\xrightarrow{\mu}p'}{p[f]\xrightarrow{\widehat{f}(\mu)}p'[f]}$$

$$(PAR1): \qquad p[f]|q[f]\xrightarrow{\widehat{f}(\mu)}p'[f]|q[f]$$

$$\frac{q \xrightarrow{\mu} q'}{q[f] \xrightarrow{\widehat{f}(\mu)} q'[f]}$$

$$(PAR2): \qquad p[f]|q[f] \xrightarrow{\widehat{f}(\mu)} p[f]|q'[f]$$

$$(SINC): \begin{array}{ccc} & \frac{p \xrightarrow{\beta} p'''}{p[f] & \widehat{f}(\beta)} & \frac{q \xrightarrow{\gamma} q'''}{q[f] & \widehat{f}(\gamma)} & q'''[f] \\ & & p[f]|q[f] & q[f] & \widehat{f}(\gamma) & q'''[f] \\ & & p[f]|q[f] & \underline{\tau = \widehat{f}(\tau)} & p'''[f]|q'''[f] \end{array}$$

la condizione di biunivocità (limitatamente a tutte le possibili azioni che possono fare p e q) imposta ad f garantisce che se $\widehat{f}(\beta) = \overline{\widehat{f}(\gamma)} = \widehat{f}(\overline{\gamma})$ allora $\beta = \overline{\gamma}$ e quindi p e q si possono sincronizzare solo sugli stessi α e $\overline{\alpha}$ visti per il membro sinistro, e quindi p'' = p''' e q'' = q'''.

Detto questo allora R è chiusa per le transizioni e quindi la legge vale.

Esercizio 12.2

Testo:

Mostrare che la legge seguente

$$(\tau 4) \qquad p + \tau \cdot (p+q) = \tau \cdot (p+q)$$

è derivabile dall'insieme E_4 definito in Tabella 12.9.

Soluzione:

Si ha che:

$$p + \tau \cdot (p+q) = p + ((p+q) + \tau \cdot (p+q)) \qquad \text{da } (\tau 2)$$

$$= (p + (p+q)) + \tau \cdot (p+q) \qquad \text{da } (A2)$$

$$= ((p+p) + q) + \tau \cdot (p+q) \qquad \text{da } (A2)$$

$$= (p+q) + \tau \cdot (p+q) \qquad \text{da } (A4)$$

$$= \tau \cdot (p+q) \qquad \text{da } (\tau 2)$$

quindi vale che $E_4 \vdash p + \tau \cdot (p+q) = \tau \cdot (p+q)$.