Appendix

May 7, 2016

1 Model structure

We developed a susceptible-infective-treated coinfection model with heterogeneous mixing. Model consists of 18 states which are classified by syphilis and HIV infection status, and risk group: SS_i , IS_i , TS_i , SI_i , II_i , TI_i , ST_i , IT_i , and TT_i . Given a state XY_i , X represents the HIV infection status; Y represents the syphilis infection status; and i represents the risk group. For simplicity, we do not consider progression through different stages of the disease, and assume that there are only two risk groups: i=1,2.

We assume that all individuals leave at-risk population at a rate μ , and individuals enter at-risk population as SS (susceptible to both diseas) at a constant rate that is proportional to the proportion of each risk group at a disease-free equilibrium: μN_0 . Individuals infected syphilis receive treatment (acquiring partial immunity) at a rate γ and lose immunity (becoming susceptible) at a rate δ . Individuals infected with HIV

References

- Champredon, D., S. Bellan, and J. Dushoff (2013). Hiv sexual transmission is predominantly driven by single individuals rather than discordant couples: a model-based approach. *PloS one* 8(12), e82906.
- Cohen, M. S., Y. Q. Chen, M. McCauley, T. Gamble, M. C. Hosseinipour, N. Kumarasamy, J. G. Hakim, J. Kumwenda, B. Grinsztejn, J. H. Pilotto, et al. (2011). Prevention of hiv-1 infection with early antiretroviral therapy. *New England journal of medicine* 365(6), 493–505.
- Collaboration, H.-C. et al. (2010). The effect of combined antiretroviral therapy on the overall mortality of hiv-infected individuals. *AIDS* (*London*, *England*) 24(1), 123.
- Deschamps, M.-M., J. W. Pape, A. Hafner, and W. D. Johnson (1996). Heterosexual transmission of hiv in haiti. *Annals of internal medicine* 125(4), 324–330.

Table 1: Parameter values

Notation	Description	Value(s)	Source
\overline{c}	Partnership change rate	40 and 5	Garnett et al. (1997)
N_0	Proportion of risk group	0.05 and 0.95	Assumption
ho	Proportion of non-random con-	0.3	Assumption
	tact		
μ	Rate of entry/exit from at risk	0.05	Garnett et al. (1997)
	population		
β_{HIV}	HIV transmission probability	0.097	Grant et al. (1987)
	per partnership		
ϵ_eta	Relative HIV transmission ratio	0.04	Cohen et al. (2011)
	of people on ART		
α	HIV induced mortality	0.125	Champredon et al. (2013)
ϵ_{lpha}	Relative mortality ratio of people	0.5	Collaboration et al. (2010)
	on ART		
au	ART treatment rate	1	Granich et al. (2009)
σ	ART failure/loss rate	0.015	Granich et al. (2009)
β_{syph}	Syphilis transmission probabil-	0.6	Garnett et al. (1997)
	ity per partnership		
$rac{\gamma}{\delta}$	Syphilis treatment rate	6	Grassly et al. (2005)
δ	Rate at which syphilis immunity	0.05	Grassly et al. (2005)
	is lost		
$ u_t$	Relative HIV transmission ratio	2	Deschamps et al. (1996)
	of people who are infected with		
	syphilis		
$ u_r$	Relative HIV acquisition ratio of	3	Røttingen et al. (2001)
	people who are infected with		
	syphilis		
$ u_{is}$	Relative syphilis acquiring ratio	3	Assumption
	due to ARV immunosuppression		

- Garnett, G. P., S. O. Aral, D. V. Hoyle, W. Cates Jr, and R. M. Anderson (1997). The natural history of syphilis: implications for the transmission dynamics and control of infection. *Sexually transmitted diseases* 24(4), 185–200.
- Granich, R. M., C. F. Gilks, C. Dye, K. M. De Cock, and B. G. Williams (2009). Universal voluntary hiv testing with immediate antiretroviral therapy as a strategy for elimination of hiv transmission: a mathematical model. *The Lancet* 373(9657), 48–57.
- Grant, R. M., J. A. Wiley, and W. Winkelstein (1987). Infectivity of the human immunodeficiency virus: estimates from a prospective study of homosexual men. *The Journal of infectious diseases* 156(1), 189–193.
- Grassly, N. C., C. Fraser, and G. P. Garnett (2005). Host immunity and syn-

chronized epidemics of syphilis across the united states. $Nature\ 433(7024)$, 417-421.

Røttingen, J.-A., D. W. Cameron, and G. P. Garnett (2001). A systematic review of the epidemiologic interactions between classic sexually transmitted diseases and hiv: how much really is known? *Sexually transmitted diseases* 28(10), 579–597.