TP: Finite difference method for HJB equations

M2 Modélisation aléatoire - Université Denis-Diderot EDP en Finance et Méthodes Numériques

The aim is to test different schemes for HJB equations. A first part concerns first order HJB equations, related to deterministic control, where it is more easy to study the numerical schemes, the stability and monotonicity of the schemes. A second part concerns the approximantion of a second order HJB equation (uncertain volatility model).

1 An eikonal equation

We look for a numerical approximation of v = v(t, x) solution of the following equation, for $t \in (0, T), x \in \Omega := (S_{min}, S_{max})$:

$$\begin{cases}
v_{t}(t,x) + c|v_{x}(t,x)| = 0, & t \in (0,T), \ x \in (S_{min}, S_{max}) \\
v(t, S_{min}) = v_{\ell}(t) & t \in (0,T) \\
v(t, S_{max}) = v_{r}(t) & t \in (0,T) \\
v(0,x) = v_{0}(x) & x \in (S_{min}, S_{max}).
\end{cases}$$
(1)

This PDE is called an "eikonal equation". It is a particular case of Hamilton-Jacobi-Bellman (HJB) equations.

We will consider the following parameters:

$$c = 1, T = 1,$$

and the following initial data

$$v_0(x) = -(\max(1 - x^2, 0))^2$$
(2)

and the following boundary

$$(S_{min}, S_{max}) := (-3, 3)$$

with zero Dirichlet boundary conditions: $v_r(t) = v_\ell(t) = 0$ (other boundary conditions could be used for different data).

In particular, we aim at computing v(t,x) at final time t=T.

We introduce a discrete mesh as usual: $h := \frac{S_{max} - S_{min}}{I+1}$, $\Delta t := \frac{T}{N}$ and

$$x_j := S_{min} + jh, \quad j = 0, \dots, I + 1 \text{ (mesh points)}$$

 $t_n = n\Delta t, \quad n = 0, \dots, N \text{ (time mesh)}$

We are looking for U_j^n , an approximation of $v(t_n, x_j)$.

1.1 EE scheme

We remark that $c|v_x| = max(cv_x, -cv_x)$. We assume $c \ge 0$. Hence A first possible "Euler Forward scheme" (or Explicit Euler scheme), using the upwind and downwind approximations, for stability reasons, is as follows:

$$\frac{U_j^{n+1} - U_j^n}{\Delta t} + \max\left(c\frac{U_j^n - U_{j-1}^n}{h}, -c\frac{U_{j+1}^n - U_j^n}{h}\right) = 0$$

$$n = 0, \dots, N - 1,$$

$$j = 1, \dots, I$$

$$U_0^n = v_\ell(t) \equiv 0, \quad U_{I+1}^n = v_r(t) \equiv 0 \quad n = 0, \dots, N$$

$$U_i^0 = v_0(x_i) \quad j = 1, \dots, I$$
(3)

- 1/ Compute the consistency error of the scheme.¹
- 2/ Program the scheme. We advise to program matrix D^- and vector function $q^-(t)$ such that

$$(D^{-}U^{n} + q^{-}(t))_{1 \le i \le I} = \left(c \frac{U_{i}^{n} - U_{i-1}^{n}}{h}\right)_{1 \le i \le I}.$$

and $D^+, q^+(t)$ in the same way:

$$(D^+U^n + q^+(t))_{1 \le i \le I} = \left(c \frac{U_{i+1}^n - U_i^n}{h}\right)_{1 \le i \le I}.$$

One can furthermore use the command np.maximum(v1,v2) (resp. np.minimum(v1,v2)) to maximize (resp. minimize) componentwise two vectors of type numpy.array

Remarque. 1 In order to improve the efficiency of the code, it is possible to precompute D^- and D^+ as sparse matrices.²

$$\mathcal{H}(\varphi)(t,x) := \varphi_t(t,x) + c|\varphi_x(t,x)|$$

so that the PDE for φ reads $\mathcal{H}(\varphi)(t,x)=0$. Then a consistency error can be defined as ϵ_i^n such that

$$\mathcal{S}(t_{n+1}, x_j, V_i^{n+1}) = \mathcal{H}(\varphi)(t_{n+1}, x_j) + \epsilon_i^n.$$

Then show that the consistency error satisfies

$$|\epsilon_i^n| \le C(\Delta t + h).$$

This means that the consistency error is of order one in time and of order one in space.

In order to obtain the consistency error, denote $V_j^n = \varphi(t_n, x_j)$ where φ is a sufficiently regular function, write the scheme in abstract form as follows: $S(t_{n+1}, x_j, U_j^{n+1}, [U]) = 0$, (where $[U] = (U_\ell^k)$). Let \mathcal{H} corresponds to the PDE equation:

²Once a numpy array/matrix D has been defined, it possible to use simply D=sparse(D) with the sparse module loaded as described in TP1, Exercise 1.

Figure 1: Eikonal equation, with N = I = 80.

- 3/ Intuitively guess the exact solution of the problem (the formula may change depending on the initial condition). ³
- 4/ Show that the scheme is stable and monotone⁴ for an appropriate (sufficient) CFL condition on the mesh steps to be found. Test in particular with (I, N) = (80, 80), and (I, N) = (80, 8). Are the results coherent with the CFL condition?
- 5/ (Program) Estimate the error at the point $S_{val} = 1.5$ and T = 1, and the order of convergence. Draw an error table (for instance in the same way as in TP1). ⁵ It is possible to use for instance N = I in a list of the form 10×2^k , $k = 0, 1, \ldots$ (Other couples (N, I) can be used in order to test the approximation in time or in space).
 - 6/ (Program) Test also the scheme on the following initial data

$$v_0(x) = (\max(1 - x^2, 0))^2$$
 and with $T = 0.4$. (4)

Typical results are shown in Figure 1.

1.2 Improving the order of consistency

1/ (Program) Show that the basic attempt to improve the accuracy with the following scheme

³ Note that for the equation $v_t + cv_x = 0$ (with $v(0,x) = v_0(x)$, $x \in \mathbb{R}$), the exact solution would be $v(t,x) = v_0(x-ct)$. In the same way, for the equation $v_t - cv_x = 0$ (with $v(0,x) = v_0(x)$, $x \in \mathbb{R}$), the exact solution would be $v(t,x) = v_0(x+ct)$. For the eikonal equation, with $c \ge 0$, the general formula is $v(t,x) = \min_{y \in [x-ct,x+ct]} v_0(y)$. If $v_0 \downarrow$ on $(-\infty,0]$ and \uparrow on $[0,\infty)$, then $v(t,x) = v_0(x+ct)$ for $x \le -ct$, $v_0(0)$ for $x \in [-ct,ct]$ and $v_0(x-ct)$ for $x \ge ct$.

⁴An explicit scheme of the form $U_j^{n+1} = F(U_{j-1}^n, U_j^n, U_{j+1}^n)$ is called "monotone" if F is an increasing function of all its arguments, i.e. $a \to F(a, b, c) \uparrow$, $b \to F(a, b, c) \uparrow$, and $c \to F(a, b, c) \uparrow$.

⁵For this point $S_{val} = 1.5$, T = 1, and for the present problem, it can be shown that the exact value at time T is also given by $v_0(x - ct)$ with $x = S_{val}$ and t = T.

$$\frac{U_j^{n+1} - U_j^n}{\Delta t} + c \left| \frac{U_{j+1}^n - U_{j-1}^n}{2h} \right| = 0$$

$$n = 0, \dots, N - 1,$$

$$j = 1, \dots, I$$

$$U_0^n = v_\ell(t_n) \equiv 0, \quad U_{I+1}^n = v_r(t_n) \equiv 0 \quad n = 0, \dots, N$$

$$U_j^0 = v_0(x_j) \quad j = 1, \dots, I$$
(5)

is not working (take for instance $N = I = 400, N = I = 800 \dots$).

2/ Look for a, b, c such that

$$\phi_x(x_j) = \frac{a\phi(x_j) + b\phi(x_{j-1}) + c\phi(x_{j-2})}{h} + O(h^2)$$

(where $x_i = S_{min} + ih$).

3/ (Program) Let

$$\tilde{D}^{-}U_{j}^{n} = \frac{3U_{j}^{n} - 4U_{j-1}^{n} + U_{j-2}^{n}}{2h}, \quad \text{and} \quad \tilde{D}^{+}U_{j}^{n} = -\frac{3U_{j}^{n} - 4U_{j+1}^{n} + U_{j+2}^{n}}{2h}$$

Program the following modified scheme:

$$\frac{U_j^{n+1} - U_j^n}{\Delta t} + \max \left(c\tilde{D}^- U_j^n, -c\tilde{D}^+ U_j^n \right) = 0
n = 0, ..., N - 1,
j = 1, ..., I$$

$$U_0^n = v_\ell(t_n) \equiv 0, \quad U_{I+1}^n = v_r(t_n) \equiv 0 \quad n = 0, ..., N$$

$$U_j^0 = v_0(x_j) \quad j = 1, ..., I$$
(6)

- 4/ (Program) Is the error improved with this scheme? Draw error tables for the scheme. Show that the scheme is not monotone. Observe that the scheme still converges numerically towards the correct solution.
- 5/ (Program) RK2 variant. Let us denote $U^{n+1} = S^1(U^n)$ the scheme (6). Consider now the following scheme (RK2):

$$U^{n+1} = \frac{1}{2}(U^n + S^1(S^1(U^n))).$$

Show that the scheme corresponds to an RK2 scheme. Observe that the scheme is numerically of order (2,2), and is subject to some CFL condition for stability.

In conclusion: non-monotone schemes may be used, although convergence proof may not be established, or may be more demanding!

Gamma Show that $a = \frac{3}{2}$, $b = \frac{-4}{2}$, $c = \frac{1}{2}$ is the only solution.

The solution of $u_t = L(u)$, the RK2 scheme is $u^{n,1} = u^n n + \Delta t L(t_n, u^n)$ and $u^{n+1} = u^n + \frac{\Delta t}{2}(L(t_n, u^n) + L(t_{n+1}, u^{n,1}))$. It is consistent of order 2 in time.

1.3 IE scheme

The following implicit schemes are not to be programmed in this session. They are presented as examples of implicit non-linear schemes. They will be studied in the next programming session.

In order to get rid of the CFL condition, a natural implicit scheme is the following:

$$\frac{U_j^{n+1} - U_j^n}{\Delta t} + c \max\left(\frac{U_j^{n+1} - U_{j-1}^{n+1}}{h}, -\frac{U_{j+1}^{n+1} - U_j^{n+1}}{h}\right) = 0$$

$$n = 0, \dots, N - 1,$$

$$j = 1, \dots, I$$
(7)

$$U_0^n = v_\ell, \ U_{I+1}^n = v_r \quad n = 0, \dots, N$$
 (8)

$$U_j^0 = v_0(x_j) \quad j = 1, \dots, I$$
 (9)

- What is the consistency error of the scheme?
- In order to program the scheme, use an equivalent matrix formulation of the scheme in the following form:

Let $A^- := \frac{1}{h} tridiag(-1, 1, 0)$ and $A^+ := \frac{1}{h} tridiag(0, 1, -1)$ (where $T = tridiag(a_i, b_i, c_i)$ denotes the tridiagonal matrix with $T_{i,i-1} = a_i$, $T_{i,i} = b_i$ and $T_{i,i+1} = c_i$). The scheme can be written in vector form as follows:

$$\max_{\pm} \left(\frac{U^{n+1} - U^n}{\Delta t} + A^{\pm} U^{n+1} + q^{\pm} (t_{n+1}) \right) = 0, \quad \text{in } \mathbb{R}^I$$

where q^{\pm} are vectors taking into account the boundary conditions (here for the chosen boundary conditions we have $q^{\pm} \equiv 0$). Denoting

$$B^{\pm} := I + \Delta t A^{\pm}, \quad b^{\pm} := U^n - \Delta t q^{\pm},$$

notice that the scheme is also equivalent to find $x = U^{n+1} \in \mathbb{R}^I$ solution of

$$\max_{\pm} \left(B^{\pm} x - b^{\pm} \right) = 0, \quad \text{in } \mathbb{R}^{I}$$

1/ Implement⁸ a ("semi-smooth") Newton's method for finding $x \in \mathbb{R}^I$ solution of

$$F(x) := \max(Bx - b, Cx - c) \equiv 0$$
 for x in \mathbb{R}^I ,

for given vectors $b, c \in \mathbb{R}^I$ and matrices $B, C \in \mathbb{R}^{I \times I}$. It will be shown that Newton's method converges always if for instance B and C are diagonally dominant M-matrices.

- 2/ Program the EI scheme
- 3/ Check the stability of the scheme inconditionnally with respect to the mesh steps

$$F'(x^n)_{ij} := B_{ij}$$
 if $(Bx^n - b)_i \ge (Cx^n - c)_i$,
:= C_{ij} otherwise

Typical scheme: start from a given x^0 . Compute $x^{n+1} = x^n - F'(x^n)^{-1}F(x^n)$ until convergence. In this iteration, $F(x^n) = max(Bx^n - b, Cx^n - c)$ and $F'(x^n)$ is a square matrix that can be defined as follows:

1.4 Implicit second order variant

Program the following scheme. Observe a numerical order (2,2) inconditionnally on the mesh steps. For instance, one can compute the error tables with N=I and N=I/10.

$$\frac{3U_j^{n+1} - 4U_j^n + U_j^{n-1}}{2\Delta t} + \max\left(c\tilde{D}^- U_j^{n+1}, -c\tilde{D}^+ U_j^{n+1}\right) = 0,$$

$$\frac{n = 1, \dots, N - 1,}{j = 2, \dots, I}$$

$$U_0^n = v_\ell(t_n) \equiv 0, \quad U_{I+1}^n = v_r(t_n) \equiv 0 \quad n = 0, \dots, N$$

$$U_j^0 = v_0(x_j) \quad j = 1, \dots, I$$
(10)

Note: in order to compute the first step U^1 , an implicit IE step can be used.

2 A simple uncertain volatility model

We consider an academic uncertain volatility model where the volatility of some asset can be controlled and can take any value $\sigma \in [0,1]$ (i.e. $dS_{\tau} = \sigma_{\tau} dW_{\tau}$ with control $\sigma_{\tau} \in [0,1]$). The maximisation of the terminal price (with payoff $v_0(.)$) under such controlled asset leads to an HJB equation of the form

$$v_t(t,x) + \min_{\sigma \in [0,1]} \left(-\frac{1}{2} \sigma^2 v_{xx}(t,x) \right) = 0, \quad t \in (0,T), \ x \in \mathbb{R}$$
$$v(T,x) = v_0(x)$$

After a time reversal, and imposing boundary conditions, we are led to the following second order HJB equation:

$$-v_t(t,x) + \min(0, -\frac{1}{2}v_{xx}(t,x)) = 0, \quad t \in (0,T), \ x \in (S_{min}, S_{max})$$
 (11a)

$$v(0,x) = v_0(x) \quad x \in (S_{min}, S_{max})$$

$$\tag{11b}$$

with the following boundary conditions:

$$v(t, S_{min}) = v_{\ell} \quad t \in (0, T)$$
(12a)

$$v(t, S_{max}) = v_r \quad t \in (0, T) \tag{12b}$$

We will consider the following parameters:

$$S_{min} = -3$$
, $S_{max} = 3$, and $T = 0.5$,

with smooth initial data

$$v_0(x) := \frac{1}{2} sign(x) ((max(1-|x|,0))^4 - 1);$$

Figure 2: uncertain volatility test T = 0.5, N = I = 50.

and boundary conditions compatible the initial data: $v_{\ell} = 1$ and $v_r = -1$. We introduce the second order approximation of $-u_{xx}$:

$$D^2U_i := \frac{U_{i-1} - 2U_i + U_{i+1}}{h^2}.$$

1) Euler Explicit scheme.

A possible EE scheme for (11)-(12) is therefore:

$$\frac{U_j^{n+1} - U_j^n}{\Delta t} + \min\left(0, -\frac{1}{2}\sigma^2 D^2 U_i^n\right) = 0
n = 0, ..., N - 1,
j = 1, ..., I$$

$$U_0^n = v_\ell, \ U_{I+1}^n = v_r \quad n = 0, ..., N$$

$$U_j^0 = v_0(x_j) \quad j = 1, ..., I$$
(13)

- What is the consistency error of the scheme?
- Program and test the scheme

2) Euler Implicit scheme

- Propose a corresponding implicit Euler scheme (EI)
- Program the EI scheme and check its unconditional stability with respect to the mesh parameters.
- 3) Second order scheme Developpement: program the uncertain volatility Example 4.2, Section 4 of [1] (implement a second order scheme, such as BDF2, and compare with a first order scheme).

References

[1] O. Bokanowski, A. Picarelli, and C. Reisinger. High-order filtered schemes for time-dependent second order HJB equations. *ESAIM Math. Model. Numer. Anal.*, 52(1):69–97, 2018.