Intergenerational Persistence in Welfare Program Participation

Javier López Segovia (Joint Research Center)

Borja Petit (CUNEF Universidad)

SAEe 2024 Universitat de les Illes Balears

December 16, 2024

- Fact 1. Incomplete take-up in US' welfare programs: TANF 34%, SNAP 83% (Ribar, 2014).
 Spain's IMV: 43% (AIReF, 2022); Germany 44%, France 66%, UK 73% (Marc et al, 2022)
 - → Why? Lack of information, transaction costs, social stigma, . . .
- Fact 2. Strong intergenerational correlation on welfare participation.
 - A. Persistence in income, education, skills.
 - B. Welfare culture: persistence in the underlying factors behind incomplete take-up.

Available empirical evidence suggests that (B) plays an important role.

Dahl, Kostol and Mogstad (2014; QJE); Dahl and Gielen (2021, AEJ); Hartley, et al (2021, JPE)

• Fact 3. For a given level of income, those who participate in welfare programs invest less time and money on their children's human capital...lowering their children's test scores.

• Persistence in income is important, but cannot explain everything.

Dep. var: Participation $_t = \{0, 1\}$	(1)	(2)	(3)	(4)
Participating parents (ever)	0.205*** (0.003)	0.112*** (0.003)	0.072*** (0.005)	0.067*** (0.005)
(Log) Income		-0.098*** (0.002)	-0.077*** (0.003)	-0.077*** (0.003)
HH characterstics Wealth			√	√ ✓
Observations	40,762	33,681	13,470	13,470
R-squared	0.094	0.181	0.155	0.183
Mean dep. variable	0.139	0.104	0.073	0.073

	Parental in	Parental investments		
	Money	Time	Test scores	
(Log) Income	0.765***	0.0622	0.0463***	
	(0.0744)	(0.225)	(0.00791)	
Participating parents	-0.975***	-1.663***	-0.160***	
	(0.159)	(0.473)	(0.0170)	
Observations	5,889	4,485	4,142	
R-squared	0.109	0.197	0.618	
Mean dep. variable	2.093	19.367	-0.571	

Notes: all regressions include FE for years, child's age, number of children, and marital status.

This paper

What we do and what we find

- Research questions:
 - (A) How does welfare culture affect persistence in welfare participation?
 - → Welfare culture explains around 35% of the differential participation rate.
 - (B) How does welfare culture affect persistence in skills?
 - → Welfare culture accounts for around 10% of the persistence in skills.
- Welfare culture is unobserved → OG model with heterogeneus agentes and:
 - Endogenous persistence in income (child's skill formation).
 - Persistence in preferences for welfare participation (welfare culture)
 - Paternalistic preferences: value children's choices according to their own preferences.

Main features

• Life-cycle OG model with heterogeneous agents and uninsurable income risk:

More

 \circ Wage heterogeneity: age profile + skills (fe) + persistent shock.

- Endogenous skill formation during childhood, as in Lee and Seshadri (2019, JPE)
- More

- Welfare programs: heterogeneous utility cost from participation (ν).
 - Fact 1. Incomplete take-up of welfare programs.
- Welfare culture: utility cost from participation is correlated across generations.
 - Fact 2. For a given income, children of participating parents are more likely to participate.
- Paternalistic preferences: parents' value their children utility with their own preferentes.
 - Fact 3. For a given income, non-participating parents invest more in their children's skills.

Welfare programs

- Participation choice subjet to no undertainty: transfer income $\mathbb{P} \cdot TR(y, n)$, with $\mathbb{P} = \{0, 1\}$. Estimate TR(y, n) with realized welfare income using data from SIPP, 2001-2012.
- Households suffer utility cost in case of welfare participation, $\nu \in \{\nu_L, \nu_H\}$, with $\nu_L > \nu_H$.
 - Value of ν_H such that participating is never optimal.
 - Fact 1. Incomplete take-up of welfare programs.
- Welafare culture. Participation cost drawn when moving out depending on parents' cost (ν_p):

$$P(\nu = \nu_L | \nu_p = \nu_L) = p_{L|L} > p_{L|H} = P(\nu = \nu_L | \nu_p = \nu_H)$$

- Children of low-cost parents are more likely to draw a low participation cost.
 - Fact 2. For given income, children of participating parents are more like to participate.

Value function

Households with kids solve:

$$V_{j}(z,\tilde{\theta};\theta,\nu) \ = \ \max_{c,\ell,\mathbb{P},m,t} \ u(c,\ell) - \mathbb{P}\nu - \phi t + \beta \mathbb{E}_{j} \left[V_{j+1}(z',\tilde{\theta}';\theta,\nu) \right]$$
 s.t.
$$c + m = y - T(y,n=0) + \mathbb{P} \cdot TR(y,n=0)$$
 Taxes Transfers
$$y = (1 - \tau_{ss})w(j,\theta,z)\ell$$
 Income process
$$\tilde{\theta}' = f_{j}(\tilde{\theta},m,t)$$

$$V_{j}(z,\tilde{\theta};\theta,\nu) \ = \ \max_{c,\ell,\mathbb{P},m,t} \ u(c,\ell) - \mathbb{P}\nu - \phi t + \beta \mathbb{E}_{j} \left[V_{j+1}(z'\tilde{\theta}';\theta,\nu) \right]$$
 s.t.
$$c + m = y - T(y,n=1) + \mathbb{P} \cdot TR(y,n=1)$$
 Taxes Transfers
$$y = (1 - \tau_{ss})w(j,\theta,z)\ell$$
 Income process

Paternalistic preferences

Paternalistic preferences: children's choices evaluated according to parents' preferences.

The utility that a ν_p -parent derives from children is $W(\theta, \nu_p)$ which is given by:

$$W(\theta, \nu_{p}) = P(\nu_{L}|\nu_{p}) \cdot \underbrace{E_{z} \left[\widetilde{V}(z, \theta, \nu_{L}|\nu_{p}) \right]}_{\text{Value of low } \nu \text{ child}} + P(\nu_{H}|\nu_{p}) \cdot \underbrace{E_{z} \left[\widetilde{V}(z, \theta, \nu_{H}|\nu_{p}) \right]}_{\text{Value high } \nu \text{ child}}$$

where...

$$\widetilde{V}(z,\theta,\nu|\nu_p) = V_{20}(z,\theta,\nu_p)$$
 with $x = x(z,\theta,\nu), x \in \{\mathbb{P},\ell,m,t\}$

• High- ν parents suffer a welfare loss if their low- ν child participates.

More

• Low- ν parents suffer a welfare loss if their high- ν child refuses to participate.

More

Calibration

Data sources

- We calibrate the model to the US in the 2000's for households aged 20-80.
- Exagenous parameters: $\sigma = 1$ (log utility), $\gamma = 0.5$ (Frish elasticity), $\beta = 0.97$.
- Data sources:
 - PSID: age, labor, income, welfare participation.
 - PSID's CDS: parental investments investments.
 - Estimate tax function using CPS, 2000-2010.
 - Estimate transfers function using SIPP, 2001-2012.

Calibration

Calibrated parameters

Paran	neter	Value	Moment	Model	Data
φ	Level disutility work	41.1	Average hours	31.7	31.7
$p_{L L}$	$P(u= u_{ extsf{L}} u_{ extsf{p}}= u_{ extsf{L}})$	0.34	Participation rate	9.5	12.6
$p_{L H}$	$P(u= u_{ extsf{L}} u_{ extsf{p}}= u_{ extsf{H}})$	0.20	Differential participation rate	18	20
$ u_{L}$	Low part. cost	0.05	Participation elasticity, income	-0.09	-0.10
$ u_{H}$	High parti. rate	3.85	DIff. income P vs NP parents	-0.33	-0.44
μ_{0}	Share invest. in $ ilde{ heta}'$, scale	0.39	IGC of skills	0.39	0.37
μ_{j}	Share invest. in $ ilde{ heta}'$, shape	0.32	Age elasticity of skills	0.05	0.15
γ_0	Share time in Λ_j , scale	0.97	Ave. money invest.	4.70	3.96
γ_{j}	Share time in Λ_j , shape	0.01	Ave. time investment, mid-age child	18.1	21.0
ϕ	Disutility time invest	3.01	Ave. time investment	24.1	20.1
ξ	Anchor of skills	-2.80	Ave. skills	1.00	1.00
σ_k	Std of shocks to child's skills	0.07	Std of skills	0.40	0.68

Results

How does welfare culture affect...

- 1. ... intergenerational persistence in welfare participation?
- 2. ... intergenerational persistence in skills?

To answer these questions we compare the bechmark economy with one in which everyone has the same probability of drawing a low participation cost ($p_{L|L} = p_{L|H} = \bar{p} = 0.23$)

We set the value of \bar{p} such that the aggregate participation rate does not change

- Any remaining persistence in welfare participation only due to persistence in income.
- Paternalistic preferences still play a role: parents with high participation costs continue to have more incentives to invest on their children to prevent them from participating.

Results

How does welfare culture affect intergenerational persistence in welfare participation?

	Benchmark	Counterfactual	Diff.
Participation rate, P parent	24.7 pp	19.4 pp	−5 pp
Difference, P vs NP	18.0 pp	11.8 pp	-6.2 pp
Difference if $y < 0.5$	16 pp	7 pp	−9 pp

- Children of participating parents are now 11 pp more likely to participate, 7 pp lower differential, with a larger reduction among lower income households.
- Welfare culture acounts for 35% of the persistence in participation.
 It explains more than 50% of the differential participation among low(er)-income households

Results

How does welfare culture affect intergenerational persistence in skills?

	Benchmark	Counterfactual	Diff.
IGC skills	0.39	0.35	-0.04
Time investment, NP parent	25	26	1 h/week
Money investment, NP parent	5.1	5.3	$0.2\% \ \bar{y}$
$\mathbb{E}(heta u= u_{H})-\mathbb{E}(heta u= u_{L})$	7.1%	0%	-7.1 pp
$\mathbb{E}(\mathbf{y} \nu=\nu_{H})-\mathbb{E}(\mathbf{y} \nu=\nu_{L})$	7.5%	1.2%	−6.3 pp

- High- ν parents face even more incentives to invest (higher probability of children's participation)... but they are no longer richer (baseline: 7% higher level of skills).
- Welfare culture accounts for around 10% of the persistence in skills.

Conclusions

We build a quantitative macroeconomic model featuring both income persistence and welfare culture (persistence in preferences towards welfare programs) and find:

- Welfare culture explains around 35% of the differential participation rate.
 - **Takeaway 1**. Misallocation of welfare income? Potentially large welfare consequences.
- Welfare culture accounts for around 10% of the persistence in skills.
 - **Takeaway 2**. Persistence in factors behind incomplete take-up may distort parental incentives to invest in children's human capital.
 - → Parents with high-participation cost have extra incentives to invest in their kids' human capital to prevent them from participating in welfare programs: higher IGC of skills.

Measurement

- Sample selection: households aged 20 to 80, both married and singles.
- Household income (PSID): both labor income and labor supply are measured as averages across spouses.
- Welfare participation (PSID): $\mathbb{P}_t = 1$ if any of the spouses receives either TANF or Food Stamps during period t.
- Parental investmentes (PSID-CDS):
 - Time: total weekly hours that either the father, the mother or both have been actively involve in child's activity (time diary data).
 - Money: sum of the following expenses: private schools fees, tutoring programs, other lessons, sports-related activities, community groups or programs.

Income process

• Wage rate of a household with age j and state (z, θ) given by:

$$\log(w) = \omega_j + \theta + z$$
, with $z' = \rho z + \epsilon$

• Using wages $w_{i,j}$ from PSID, estimate the following regression:

$$\log(w_{i,j}) = \underbrace{a_0 + a_1 j + a_2 j^2}_{\omega_j} + \alpha_i + \alpha_t + z_{ij}, \quad \text{with} \quad \underbrace{\theta_i = \exp(\alpha_i)}_{\text{Skills}}$$

where i stands for the hoisehold, j for the houshold age, and t for the year. Then, fit an AR(1) process to z using $z_{i,j-1}$ to instrument for $z_{i,j}$ (measurement error).

$$z_{i,j} = \rho z_{i,j-1} + \epsilon$$
, with $(\rho_z, \sigma_z) = (0.953, 0.249)$

Children's skill formation

Skills formation technology as in Lee and Seshadri (JPE, 2019).

$$\log \tilde{\theta}_{j+1} = \mu_j \underbrace{\log \Lambda_j(t,m)}_{ ext{Investments}} + (1-\mu_j) \underbrace{\log \tilde{\theta}_j}_{ ext{Past skills}} + \epsilon_k, \quad \epsilon_k \sim \textit{N}(0,\sigma_k^2),$$

• Parents invest money (*m*) and time (*t*) in their children's skills:

$$\log \Lambda_j(t, m) = \gamma_j \log \left(t + \frac{\gamma_j x_j}{\bar{w}}\right) + (1 - \gamma_j) \log \left(m + (1 - \gamma_j)x_j\right)$$

where x_i is the amount of public investment in children at age j.

Technology is age-dependent:

$$\mu_j = \mu_0 \exp(-\mu_1 j), \quad \gamma_j = \gamma_0 \exp(-\gamma_1 j)$$

Tax function

	λ	au
No children	0.865	0.070
2 children	0.924	0.112

We consider a standard tax function:

$$T(y,n) = (1-t(y,n))y \longrightarrow t(y,n) = 1-\lambda(n)y^{\tau(n)}$$

• Estimate the parameters by presence of children using CPS 2000-2010 data

Transfers function

	γ	α	β_0	β_1
No children	0.026	-3.313	-0.380	0.053
2 children	0.065	-2.921	-0.351	-0.034

Transfers function:

$$TR(y, n) = \begin{cases} \gamma(n) & \text{if } y = 0 \\ \exp(\alpha(n) + \beta_0(n)y + \beta_1(n)\log y) & \text{if } y > 0 \end{cases}$$

Estimate by presence of children using SIPP data, 2001-2012
 Use data on Temporary Assistance for Needy Families and Food Stamps

Life-cycle structure

- Households ork until age J_R and can participate in welfare at any time.
- Every household has a kid at age J_F and invest in her skill until age J_I .
- Retirees receive pension income and cannot participate in welfare (simplification).

Paternalistic preferences

• High- ν parents, suffer a large utility loss if children are low- ν and low- θ . If the child has low- ν and low skills, large welfare costs from children's participation.

Paternalistic preferences

Low-ν parents, instead, suffer a (small) utility loss if children are high-ν and low-θ.
 They don't suffer distuility from their children's participation but they do from lack of insurance.

