Reaction-diffusion spatial modeling of COVID-19 in Chicago

Trent Gerew

12/10/2021

Motivation

COVID-19 has now become a part of daily life.

Many mathematical models exist to describe
 COVID-19, but few take into account spatial spreading.

 Models that account for diverse populations or demographics rapidly become complicated and computationally infeasible.

Goals

Objective

Build and verify a simple model with spatial dependence that recreates the known spreading patterns in Chicago.

A working model can...

- test alternate lockdown strategies or travel restrictions.
- estimate a vaccination threshold.
- identify high risk or vulnerable locations.
- be applied to other locations and diseases.

Model Assumptions

Four populations: Susceptibles (S), Asymptomatic infected (A), symptomatic Infected (I), and Removed (R).

- Individuals in S can be infected by both members of A and I.
- Individuals in A and I have different contact rates and different recovery rates.
- Individuals in A may be detected and move to I.
- Only members of S and I are mobile.
- The total population remains constant.

Model Schematic

Reaction-Diffusion Equations

The dynamics is governed by three partial differential equations, for $(x,y) \in \Omega \subset \mathbb{R}^2$, t > 0.

Equation

$$S_t - D(t) \Delta S = -\omega(t) (\beta_A A + \beta_I I) S$$

$$A_t - D(t) \Delta A = \omega(t) (\beta_A A + \beta_I I) S - (\gamma_A - \delta) A$$

$$I_t = -\gamma_I I + \delta_A A$$

Conservation Law: S + A + I + R = 1

Lockdown Model

A lockdown reduces the contact rate and the traveling (diffusion) rate.

Equation $\omega(t) = \omega_0 \left[\eta + (1 - \eta)(1 - \tanh[2(t - t_q)]) / 2 \right]$

Equation

$$D(t) = D_0 - \eta \ \theta(t - t_q)$$

Define $t_q = (t_{bol} + t_{eol}) / 5$ where bol and eol denote the beginning and end of the lockdown, respectively.

Existence of Solutions

Let $\mathbf{x} = (S, A, I, R)$ and $\mathbf{x_0} = (S_0, A_0, I_0, R_0)$.

Theorem

Let $0 \le x_0 \le 1$ be the initial datum. Then there exists a unique in time solution x of the initial value problem without diffusion over $C \subset \mathbb{R}^4 \times \mathbb{R}^1$ where C is a compact set that contains (x_0, t_0) . Moreover, the solution is \mathbb{C}^1 .

Conjecture

Let $0 \le x_0 \le 1$ be the initial datum. Then there exists a unique in time solution x of the initial boundary value problem.

Basic Reproduction Number

 R_0 can be computed using the next generation matrix of the model without diffusion.

Definition

$$R_0 = \omega_0 \, S_0 \, (\beta_A + \beta_I \, \delta \, / \, \gamma_I) \, / \, (\gamma_A + \delta)$$

The first term represents the transmission by asymptomatics, and the second represents transmission by symptomatics.

Theorem

Let $(S_0, A_0, I_0, 0)$ be a nonnegative initial datum. If $R_0 > 1$, then (A, I) exponentially grows.

Parameter Estimation

Parameters are estimated according to the homogeneous (no diffusion) case.

 ω_0 , β_A , β_I are not independently identifiable. The problem reduces to optimizing six parameters: $\theta = (\omega_0 \beta_A, \omega_0 \beta_I, \eta, \gamma_A, \gamma_I, \delta)$.

For *n* days $(1 \le i \le n)$, the cost function is the least squares function.

Equation
$$N = \sum [C_{\text{num}}(t_i) - C_{\text{obs}}(t_i)]^2$$

Let $C_{\text{num}}(t_i) = I(t_i)$ and $C_{\text{obs}}(t_i) = \text{Cases}(t_i)$ / Population.

Optimization Details

Model is seeded with data from March 18, 2020.

n	total population	2695598	
c_0	initial cases	160	
h_0	initial hospitalized	38	
d ₀	initial deceased	3	

i_0	initial infected	$(c_0 + h_0) / n$
\boldsymbol{a}_0	initial asymptomatic	3 i ₀
r_0	initial removed	(d ₀ + 8) / n
s ₀	initial susceptible	$1 - (a_0 + i_0 + r_0)$

Parameters sampled from uniform distribution [0,1] over 1000 optimization iterations. Median values are selected to parameterize the spatial model.

Spatial Discretization

Computational domain $\boldsymbol{\Omega}$

Point	ZIP	ZIP Population	ZIP Cases
(1,7)	60666	0	0
(3,3)	60638	58797	8
(6,4)	60616	54464	11
(7,2)	60617	82534	22

Initial case distribution

The SoReMo Initiative

Parameter Results

ωβ _A	transmission rate due to A	0.1969	days ⁻¹
ωβ,	transmission rate due to I	0.3061	days ⁻¹
η	lockdown scale factor	0.5514	1
δ	symptom onset rate	0.0939	days ⁻¹
Y _A	removal rate of A	0.3632	days ⁻¹
Υ,	removal rate of I	0.1385	days ⁻¹

Diffusion Results

Day 11 (t_q) : March 29, 2020

Confirmed COVID Cases by ZIP code

Model Infected

Diffusion Results

Day 35: April 22, 2020

Confirmed COVID Cases by ZIP code

Model Infected

Diffusion Results

Day 99: June 24, 2020

Confirmed COVID Cases by ZIP code

Model Infected

Discussion

Observation

The homogenous model does not reproduce the city-wide data accurately.

- The initial ratio of symptomatic to asymptomatic is fixed.
- No compartment for a latent period.

Observation

Diffusion alone does not seem to properly account for the spread of the virus.

- The boundaries of the computational domain are not entirely representative.
- No account is made of any mass gatherings that occurred.
- The data isn't correct?!

Future Work

Opportunities to improve the model include...

- changing the compartment structure of the model.
- restructuring the cost function to fit directly to the spatial model.
- adding a forcing function to the diffusion.

Interesting applications for future study include...

- modeling over a different set of dates.
- incorporating vaccinations.
- applying the model to a different city.

Questions?

