27. Связь задачи разложения правильной дроби в сумму простейших с интерполяцией. Критерий отсутствия кратных корней.

Мини напоминание что такое простейшая дробь.

Определение

Дробь $\frac{f}{g} \in K(t)$ — простейшая, если $g = p^k$, где $p \in K[t]$ — неприводимый многочлен и $\deg(f) < \deg(p)$.

- ullet Пусть K поле. Покажем простой способ разложения на простейшие правильной дроби $rac{f(x)}{g(x)} \in K(x)$, где $g(x) = (x a_1) \dots (x a_n)$, и a_1, \dots, a_n различны.
- Рассмотрим интерполяционную задачу с точками a_1 , ..., a_n и значениями $f(a_1)$, ..., $f(a_n)$ в них соответственно.
- Так как $\deg(f) < n$, многочлен f и есть единственный интерполяционный многочлен для рассматриваемой задачи. Запишем формулу Лагранжа:

$$f(x) = \sum_{i=1}^{n} \frac{f(a_i)}{g'(a_i)} \frac{g(x)}{x - a_i} \quad \Rightarrow \quad \frac{f(x)}{g(x)} = \sum_{i=1}^{n} \frac{f(a_i)}{g'(a_i)} \frac{1}{x - a_i}.$$

ullet Мы получили разложение $\frac{f(x)}{g(x)}$ на простейшие.

Рассмотрим пример.

$$f(x) = x^2 + 3$$

$$g(x) = (x-3)(x-4)(x-5) = x^3 - 12x^2 + 47x - 60$$

$$g'(x) = 3x^2 - 24x + 47$$

$$\frac{f(x)}{g(x)} = \frac{f(3)}{g'(3)} \frac{1}{x - 3} + \frac{f(4)}{g'(4)} \frac{1}{x - 4} + \frac{f(5)}{g'(5)} \frac{1}{x - 5} =$$

$$= \frac{6}{x-3} + \frac{-19}{x-4} + \frac{14}{x-5} = \frac{x^2+3}{x^3-12x^2+47x-60}$$

• А как понять, что многочлен не имеет кратных корней?

Лемма 12

- 1) Если K поле и многочлен $g \in K[t]$ таков $(g,g') \sim 1$, то g не имеет кратных корней (то есть, корней кратности более 1).
- $g\in\mathbb{C}[t]$ не имеет кратных корней, то $(g,g')\sim 1.$

Доказательство. 1) Если g имеет корень α кратности не менее 2, то α — корень g' по Теореме 8. Тогда $(g,g') \vdots (t-\alpha)$, противоречие.

- 2) Так как g не имеет кратных корней, по Теореме 8 ни один из корней g не является корнем g'.
- Если при этом $(g, g') \sim h$, $\deg(h) \geq 1$, то h по основной теореме алгебры, имеет корень, который является общим корнем g и g', противоречие.

Теорема 9

 $ec{\mathcal{L}}$ Любой многочлен из $\mathbb{C}[t]$ имеет корень из \mathbb{C}

28. Поле C, как факторкольцо R[x]. Впереди самые жуткие штуки. Напомним что такое фактор кольцо.

Факторкольцо

- \bullet Для $a \in K$ вычет, состоящий из элементов кольца, сравнимых с a, как правило, будем обозначать через \overline{a} .
- ullet Из определения следует, что $\overline{a} = a + I = \{a + x : x \in I\}.$

Определение

• Пусть K — коммутативное кольцо, I — идеал в K. Φ акторкольцо $K/I:=\{\overline{a}: a\in K\}.$

$$\overline{a} + \overline{b} := \overline{a+b}; \qquad \overline{a} \cdot \overline{b} := \overline{ab}.$$

Теорема 14

рема 14 $\mathbb{C} \simeq \mathbb{R}[t]/(t^2+1)\mathbb{R}[t]$.
Нам нужно доказать, что фактор-кольцо кольца многочленов над полем R по идеалу многочленов, делящихся на $x^2 - 1$, изоморфно полю комплексных чисел.

 $\overline{\mathsf{Д}\mathsf{оказательство}}.$ ullet Определим отображение $arphi:\mathbb{R}[t] o\mathbb{C}$ формулой $\varphi(f) := f(i)$.

- lacksquare Докажем, что arphi гомоморфизм. Пусть $f,g\in K[t]$.
- $\varphi(f+g)=(f+g)(i)=f(i)+g(i)=\varphi(f)+\varphi(g);$
- $\varphi(fg) = (fg)(i) = f(i) \cdot g(i) = \varphi(f) \cdot \varphi(g).$
- lacksquare Докажем, что arphi сюръекция. Пусть $z=a+bi\in\mathbb{C}$, где $a,b\in\mathbb{R}$. Тогда $bt+a\in\mathbb{R}[t]$ и arphi(bt+a)=a+bi.
- \bullet Пусть $f \in \mathrm{Ker}(\varphi)$, разделим f с остатком на $t^2 + 1$: $f(t) = (t^2 + 1)g(t) + bt + a$ (степень остатка по определению не превосходит 1, значит, он представляется в виде bt + a).
- ullet Тогда $0=arphi(f)=f(i)=(i^2+1)g(i)+bi+a=bi+a$ $a = b = 0 \iff f : t^2 + 1$
- ullet Таким образом, $\mathrm{Im}(arphi)=\mathbb{C}$, $\mathrm{Ker}(arphi)=(t^2+1)\mathbb{R}[t]$ и по теореме о гомоморфизме колец имеем

$$\mathbb{C} = \operatorname{Im}(\varphi) \simeq \mathbb{R}[t]/\operatorname{Ker}(\varphi) = \mathbb{R}[t]/(t^2+1)\mathbb{R}[t].$$

Во время поисков в интернете я нашла это:

Два многочлена лежат в одном классе эквивалентности тогда и только тогда, когда они имеют одинаковые остатки при делении на $x^2 + 1$, поэтому факторкольцо можно представить как множество многочленов вида ax+b со стандартным сложением и умножением по правилу: (ax+b)(cx+d)=(ad+bc)x+(bd-ac).

Точно так же перемножаются соответствующие комплексные числа:(b+ai) (d+ci)=(bd-ac)+(ad+bc)i.

Поэтому изоморфизм устанавливается правилом: ax+b → b+ai

На мой взгляд это неконструктивное доказательство, но оно помогает понять что мы вообще хотим (закрыть сессию).

29. Многочлен деления круга. Представление t^n-1 в виде произведение многочленов деления круга

Ух, ну что ж поехали.

Немного вспомним:

Определение

Пусть $n \in \mathbb{N}$. Число $\varepsilon \in \mathbb{C}$ такое, что $\varepsilon^n = 1$, но $\varepsilon^k \neq 1$ при натуральных k < n называется первообразным корнем из 1 степени n.

• По Теореме 2.25 существует ровно $\varphi(n)$ первообразных корней из 1 степени n, и они имеют вид $\varepsilon_k = (\cos(\frac{2\pi k}{n}), \sin(\frac{2\pi k}{n}))$, где $k \in \{1, \ldots, n-1\}$, (k, n) = 1.

Определение

Многочлен деления круга
$$\Phi_n(t):=\prod_{1\leq k\leq n,\;(k,n)=1}(t-arepsilon_k).$$

То есть как он выглядит: пусть n = 9
$$\Phi_9(t) = (t - \epsilon_1) \cdot (t - \epsilon_2) \cdot (t - \epsilon_4) \cdot (t - \epsilon_5) \cdot (t - \epsilon_7) \cdot (t - \epsilon_8) = t^6 + t^3 + 1$$

ullet Из определения следует, что $\Phi_n \in \mathbb{C}[t]$. Мы докажем, что все коэффициенты этого многочлена целые.

Т.е. на нашем примере:

$$t^{9} - 1 = \Phi_{1}(t) \cdot \Phi_{3}(t) \cdot \Phi_{9}(t) =$$

$$= [(t - \epsilon_{1})] \cdot [(t - \epsilon_{1}) \cdot (t - \epsilon_{2})] \cdot [(t - \epsilon_{1}) \cdot (t - \epsilon_{2}) \cdot (t - \epsilon_{4}) \cdot (t - \epsilon_{5}) \cdot (t - \epsilon_{7}) \cdot (t - \epsilon_{8})] =$$

$$= (t - 1) \cdot (t^{2} + t + 1) \cdot (t^{6} + t^{3} + 1) = t^{9} - 1$$

Доказательство. • Если $d \mid n$, то первообразный корень из 1 степени d, очевидно, является корнем из 1 степени n Они помечены синим на том кружочке из примера

- \bullet Следовательно, $t^n 1 \cdot \Phi_d(t)$.
- Так как каждый корень из 1 является первообразным корнем ровно одной степени, $t^n-1 \ dash \ \prod \ \Phi_d(t).$
- ullet Пусть $arepsilon_0,\ldots,arepsilon_{n-1}$ все корни степени n из 1, $\varepsilon_k = (\cos(\frac{2\pi k}{n}), \sin(\frac{2\pi k}{n})).$
- ullet Пусть (k,n)=d, k=k'd, n=n'd. Тогда $egin{bmatrix} { ext{Теорема 25}} \\ { ext{1)}} \ { ext{Существует в точности }} arphi(n)\ { ext{первообразных корней степени}} \end{matrix}$ $\varepsilon_k = (\cos(\frac{2\pi k'}{n'}), \sin(\frac{2\pi k'}{n'})).$

- п из 1, это в точности такие корни $arepsilon_j$, что $(j, \mathsf{n}) = 1$. 2) Если ε_j — первообразный корень степени n из 1, то ε_j , ε_j^2 , . . . , ε_i^n — все корни степени n из 1.
- \bullet Так как дробь (k', n') = 1, по Теореме $2.\overline{25} \varepsilon_k$ первообразный корень степени n' из 1, причем $n' \mid n$.
- Следовательно, все корни из 1 степени п являются первообразными корнями степеней-делителей п.
- ullet Следовательно, $t^n-1 \mid \prod\limits_{d \mid n} \Phi_d(t).$

30. Многочлен деления круга: формула, целые коэффициенты.

Теорема 15

1)
$$\Phi_n(t) = \prod_{d \mid n} (t^d - 1)^{\mu(\frac{n}{d})}.$$
 (*)

2) $\Phi_n \in \mathbb{Z}[t]$ — унитарный многочлен (то есть, старший коэффициент Φ_n равен 1).

Например,

$$egin{aligned} \Phi_{12}(x) &= \left(x^{12}-1
ight) \left(x^6-1
ight)^{-1} \left(x^4-1
ight)^{-1} \left(x^3-1
ight)^0 \left(x^2-1
ight) (x-1)^0 \ &= rac{x^6+1}{x^2+1} = x^4-x^2+1. \end{aligned}$$

например

Функция Мёбиуса
$$\mu(n) := \begin{cases} 1, & \text{если } n=1, \\ (-1)^k, & \text{если } n=p_1\dots p_k - \text{произведение различных простых чисел,} \\ 0, & \text{если } n \text{ делится на квадрат простого числа.} \end{cases}$$

Теорема 22
Пусть
$$K-$$
 поле, $f,g:\mathbb{N}\to K\setminus\{0\}$, причем $f(m)=\prod\limits_{d\mid m}g(d)$.
Тогда $g(m)=\prod\limits_{n\mid m}f(n)^{\mu(\frac{m}{n})}.$

Доказательство. 1) ullet По Лемме 13 имеем $t^n-1=\prod\limits_{d\mid n}\Phi_d(t).$

• Теперь (*) непосредственно следует из мультипликативной формулы обращения Мёбиуса (Теоремы 2.22).

$$t^n - 1 = \prod_{d|n} \Phi_d(t) \Rightarrow \Phi_n(t) = \prod_{d|n} (t^d - 1)^{\mu(\frac{n}{d})}$$

- 2) Формулу (*) можно переписать в виде $\Phi_n(t) = \frac{f(t)}{g(t)}$, где $f,g \in \mathbb{Z}[t]$ унитарные многочлены (каждый из f и g представляется в виде произведения нескольких многочленов вида x^d-1).
- При делении в столбик унитарного многочлена f с целыми коэффициентами на унитарный многочлен g с целыми коэффициентами нетрудно убедиться, что неполное частное будет унитарным многочленом с целыми коэффициентами.
- При этом, f разделится на g без остатка и частное получится равным $\Phi_n(t)$.

А теперь пара интересных штучек. Во-первых, дети в советском союзе это правда проходили в школе. Доказательства.

10 класс Многочлены деления круга 5 марта 2015

Напоминание. У многочлена z^n-1 есть n различных комплексных корней, а именно числа вида $\cos\frac{2\pi k}{n}+i\sin\frac{2\pi k}{n}$ для $k=0,1,\dots,n-1$, которые называются *корнями из единицы* n-i ственени. Соответствующие точки на комплексной плоскости располагаются на единичной окружности с центром в нуле и образуют правильный n-угольник. ξ – корень из единицы n-й степени называется npumumuenыm, если $\xi^m \neq 1$ для всех натуральных m, меньших n.

- 1. а) Пусть ξ корень из единицы n-й степени, $\xi \neq 1$. Найдите сумму $1+\xi+\xi^2+\ldots+\xi^{n-1}$.
 - **б)** Чему равна сумма всех корней n-й степени из 1? А произведение?
 - в) А сколько всего примитивных корней из единицы n-й степени?
- г) Радиус окружности, описанной около правильного n-угольника, равен 1. Найдите произведение расстояний от его фиксированной вершины А до всех остальных вершин этого многоугольника.

Критерий Эйзенштейна. Пусть все коэффициенты многочлена над \mathbb{Z} (т.е. многочлена с целыми коэффициентами), кроме старшего, делятся на простое число p, и свободный член не делится на p^2 . Тогда этот многочлен неприводим над \mathbb{Z} (т.е. не представляется в виде произведения двух непостоянных многочленов с целыми коэффициентами).

2. Докажите, что для любого простого p многочлен $x^{p-1} + x^{p-2} + \ldots + x + 1$ неприводим над $\mathbb Z$ (подсказка: попробуйте сдвинуть аргумент на 1).

Определение. Многочлен деления круга — это $\Phi_n(x)=(x-\xi_1)(x-\xi_2)\dots(x-\xi_{\varphi(n)}),$ где $\xi_1,\xi_2,\dots\xi_{\varphi(n)}$ — все примитивные корни n-й степени из 1.

3. а) Докажите, что $x^n - 1 = \prod_{d|n} \Phi_d(x)$.

На Московской олимпиаде 1997 года девятиклассники решали задачу, вошедшую в «Задачник «Кванта»:

M1598. Пусть $1 + x + x^2 + ... + x^{n-1} = F(x)G(x)$, n > 1, F(x) и G(x) — многочлены с неотрицательными коэффициентами.

- а) Докажите, что все коэффициенты этих многочленов — нули и единицы.
- 6) Докажите, что один из многочленов F(x), G(x) представим в виде $(1 + x + ... + x^{k-1})T(x)$, где k > 1, а коэффициенты полинома T(x) нули и единицы.

Точнее говоря, на олимпиаде было предложено решить пункт б) для многочленов F и G, коэффициенты которых суть нули и единицы. Решил задачу только один школьник, а большинство из остальных 509 участвовавших в олимпиаде девятиклассников вообще не поняли, о чем речь. Дело в том, что M1598- лишь частичка теории разложений многочленов $f_n(x)=1+x+x^2+\ldots+x^{n-1}$ на множители. Поэтому она выглядит естественной (и красивой, и не очень трудной!) лишь для того, кто интересовался этими разложениями.

Второе фото из журнала квант и там написан один интересный фактик. Если начать рекурсивно с Φ_1 и по формуле из леммы 13:

$$t^n-1=\prod_{d\mid n}\Phi_d(t),$$
 получим

 $\Phi_1 = x - 1$, $\Phi_2 = x + 1$, $\Phi_3 = x^2 + x + 1$ и т.д. При этом давайте

рассмотрим формулы сокращенного умножения:

$$x^{2} - 1 = (x - 1)(x + 1)$$

$$x^{3} - 1 = (x - 1)(x^{2} + x + 1)$$

$$x^{4} - 1 = (x^{2} - 1)(x^{2} + 1) = (x - 1)(x + 1)(x^{2} + 1)$$

$$x^{5} - 1 = (x - 1)(x^{4} + x^{3} + x^{2} + x + 1)$$

$$x^{n} - 1 = (x - 1)(x^{n-1} + x^{n-2} + \dots + x + 1)$$

И, о Боги, получается что многочлен деления круга с целыми коэффициентами и формулы сокращенного умножения считай одно и тоже. Вы в шоке? Я да.