Laboratório de Física II – Descarga de um condensador

Luís Miguel Martelo e Jaime Villate Faculdade de Engenharia da Universidade do Porto

11 de outubro de 2023

Objectivos

- Aprender a montar circuitos simples e usar um multímetro.
- Verificar a lei de descarga de um condensador.
- Determinar a resistência de um voltímetro.
- Determinar a capacidade de um condensador.

Teoria

A figura seguinte mostra o diagrama de circuito de um condensador, com capacidade C, ligado a uma fonte ideal de tensão com f.e.m. ε e a um voltímetro com resistência interna $R_{\rm v}$. A diferença de potencial indicada pelo voltímetro é a diferença de potencial na sua resistência interna $R_{\rm v}$, que neste caso é igual à diferença de potencial no condensador. Num instante designado por t=0 desliga-se a fonte, representado no circuito pela abertura de um interruptor entre a fonte e o condensador.

Em quanto a fonte está ligada ao condensador, este atinge rapidamente um *estado estacionário*, em que a diferença de potencial nele é igual ao valor da f.e.m. e não circula corrente de ou para o condensador porque a carga nele permanece constante. Como tal, em t < 0 a corrente que passa pelo voltímetro é a corrente fornecida pela fonte. Em $t \geq 0$ o condensador começa a descarregar e a corrente

que passa pelo voltímetro é fornecida pelo condensador: a diminuição da carga Q no condensador, por unidade de tempo, é igual à corrente I que passa pelo voltímetro:

$$-\frac{\mathrm{d}\,Q}{\mathrm{d}\,t} = I\tag{1}$$

e usando a relação entre a carga e a diferença de potencial no condensador ($Q=C\Delta V$),

$$\frac{\mathrm{d}\,\Delta V}{\mathrm{d}\,t} = -\frac{I}{C}\tag{2}$$

Na resistência $R_{\rm v}$, em que a diferença de potencial é a mesma ΔV do que no condensador, a lei de Ohm, $I=\Delta V/R_{\rm v}$, permite escrever a equação (2) como uma equação diferencial para a diferença de potencial ΔV em função do tempo:

$$\frac{\mathrm{d}\,\Delta V}{\mathrm{d}\,t} = -\frac{\Delta V}{R_{\mathrm{v}}C}\tag{3}$$

A equação (3) diz que ΔV é uma função que quando derivada em ordem a t, o resultado é a mesma função multiplicada pela constante $-1/(R_{\rm v}C)$. Como tal, ΔV será uma função exponencial com expoente $-t/(R_{\rm v}C)$, multiplicada por alguma constante; constante essa que deverá ser o valor de ΔV no instante t=0:

$$\Delta V = \varepsilon \, e^{-\frac{t}{R_{\rm v}C}}$$
 (4)

A constante R_vC chama-se constante de tempo do circuito, porque tem unidades de tempo. Em unidades SI, o produto de um ohm vezes um farad é um segundo:

$$1 \Omega \cdot F = 1 \left(\frac{V}{A}\right) \left(\frac{C}{V}\right) = 1 \left(\frac{V}{A}\right) \left(\frac{A \cdot s}{V}\right) = 1 s$$
 (5)

Para determinar a resistência R_v do voltímetro, ligam-se a fonte de tensão e uma resistência R em série com o voltímetro, tal como mostra a figura seguinte:

A diferença de potencial na resistência R é igual a $\varepsilon - \Delta V$, onde ΔV é a diferença de potencial no voltímetro. Como tal, a corrente que circula por R e pelo voltímetro é,

$$I = \frac{\varepsilon - \Delta V}{R} \tag{6}$$

e a resistência do voltímetro, $\Delta V/I$, é igual a:

$$R_{\rm v} = \frac{\Delta V R}{\varepsilon - \Delta V}$$
 (7)

Material

- 1. Fonte de tensão contínua.
- 2. Condensador.
- 3. Multímetro.
- 4. Resistência R.
- 5. Placa de protótipos (breadboard) e fios de ligação.
- 6. Cronómetro (poderá ser um telemóvel).

Procedimento experimental

Com um multímetro na função de voltímetro, monte o circuito da primeira figura na secção de teoria, usando a placa de protótipos e os fios de ligação. Prepare o cronómetro, desligue a fonte e comece a registar valores da diferença de potencial a cada 10 segundos; basta registar entre 10 e 12 valores. Repita o procedimento usando um intervalo de tempo diferente, até a conseguir que os valores registados mostrem bem a variação de ΔV desde um valor inicial próximo do valor da f.e.m, até se aproximar de um valor limite. Corte a ligação à fonte (não basta desligar o seu interruptor!) e não mude a escala do voltímetro, porque a resistência do voltímetro é diferente em diferentes escalas!

Calculando o logaritmo natural nos dois lados da equação (4) (observe que se t=0 é posterior ao instante em que a fonte foi desligada, ε é substituída pelo valor inicial ΔV_0), obtém-se:

$$\ln(\Delta V) = \ln(\Delta V_0) - \frac{t}{R_v C} \tag{8}$$

que é a equação de uma reta com declive $-1/(R_{\rm v}C)$. Com os valores medidos, faça uma tabela de valores de t e $\ln(\Delta V)$ e por regressão linear mostre que corresponde à reta com equação (8) e obtenha o valor da constante de tempo $R_{\rm v}C$.

Usando o multímetro na função de ohmímetro, meça o valor da resistência R. Meça a f.e.m. da fonte com o multímetro na função de voltímetro. Monte o circuito com o voltímetro em série com a resistência R e a fonte e registe a diferença de potencial ΔV no voltímetro. Use a equação (7) para determinar a resistência do voltímetro.

Com os valores obtidos da constante de tempo e da resistência do voltímetro, determine a capacidade do condensador.

Relatório

Entregue um relatório, em folhas ou num ficheiro, com os dados medidos e os resultados obtidos. O relatório deverá ser breve mas com explicações claras do que foi feito e discussão dos resultados. Mostre claramente as unidades usadas e as unidades dos resultados.