1. Find the eigen value and eigen vector from the given data point.

n	2.5	0.5	2.2	19	3.1	2.3	2	1	1.5	1.1
V	2.4	0.7	2.9	2.2	3-0	2.7	1.6	1.1	1.6	0.9

> Solution,

x	y	$a = x - \overline{x}$	b=y-y	a^2	b ²	ab	
2.5	2.4	0.69	0.49	0.476	0.24	0.338	
0.5	0.7	-1.31	-1.21	1.716	1-464	1.585	
2.2	2-9	0.39	0.99	0.152	0.98	0.386	
1.9	2.2	0.09	0.29	0-008	0.084	0.026	
3.1	3.0	1.29	1.09	1.664	1.188	1.406	
2.3	2-7	0.49	0.79	0.24	0.624	0.387	
2	1.6	0.19	-0.31	0.036	0.096	-0.058	
1	1-1	- 0-81	-0.81	0.656	0.656	0.656	
1.5	1.6	-0.31	0.31	0.096	0.096	-0.0361	
1.1	0.9	-0.71	-1.01	0-504	1.02	0.717	
				£a ² = 5.548	Eb2 = 6.448	Eab = 5.346	

From table,

$$5x = 18.1$$
 $5y = 19.1$

Now,

$$X = \sum x = 18.1 - 1.81$$

$$\overline{Y} = \underline{\xi} \underline{Y} = \underline{19.1} = \underline{1.91}$$

Now, the next step is to compute the covariance matrix of given dataset (sometimes also called as the variance covariance matrix).

So, we can compute the covariance of two variables x and y using the following formula.

$$Cov(x,y) = 1 \stackrel{\sim}{=} (x_1 - \overline{x})(y - \overline{y})$$

$$Cov(y,x) = \frac{1}{n-1} \stackrel{\text{N}}{=} (y_1 - \overline{y})(x_1 - \overline{x})$$

$$Cov(x,x) = \frac{1}{n-1} \stackrel{N}{\leq} (xi - \overline{x})(xi - \overline{x})$$

$$=\frac{1}{n-1}$$
 $=\frac{n}{i=1}$ a^2

$$Cov(y,y) = \frac{1}{n-1} \stackrel{\stackrel{\sim}{\underset{i=1}}}{\stackrel{\sim}{\underset{i=1}}} (y_i - \overline{y})(y_i - \overline{y})$$

1 Eb2

= 6.448

= 0.716

Using the above, we can find the covarience matrix of our dataset. Also, the results would be a square matrix of d x d dimensions.

let A be the convarience matrix of our dataset

$$A = \begin{bmatrix} cov(x,x) & cov(x,y) \end{bmatrix} \Rightarrow For 2x2 motrix.$$
 $\begin{bmatrix} cov(y,x) & cov(y,y) \end{bmatrix} \Rightarrow For 2x2 motrix.$

For 3x3 convariance, cov(x,x) cov(x,y) cov(y,z) A = cov(y,x) cov(y,y) cov(x,z) cov(z,x) cov(z,y) cov(z,z)

Next step is to compare the eigenvalue and eigenvector.

We know,

```
1A-AI) = 0
      where, I is the eigenvalue of A.
     0.616 - 7 0.594
      0.594 0.716 - A
\lambda^2 - (sum of diagonal element) \lambda + |A| = 0
or, \lambda^2 - 1.332 \lambda + 0.088 = 0
   Solving ean we get,
      \lambda = 1.262, 0.0697
    Eigenvector associated with eigenvalue (1) = 1.262
     Ax = \lambda x.
  0.616 0.594 \times 1 = 1.262 \times 1 0.594 0.716 \times 2 \times 2
 Solving we get,
   0.616 \times 1 + 0.594 \times 2 = 1.262 \times 1
   0.594 \times 1 + 0.716 \times 2 = 1.262 \times 2
So, 0646 x1 = 0.594x2
   0.668 \times 1 = 0.716 \times 2
   \therefore \chi_1 = 0.9969 \chi_2
```

:. x1 = -1.222 x2

We know,

$$\begin{bmatrix} -1.222 \\ 1 \end{bmatrix} = \sqrt{(-1.222)^2 + 1^2} = 1.579$$

$$\begin{bmatrix} -1.222/1.579 \\ 1/1.579 \end{bmatrix} = \begin{bmatrix} -0.7739 \\ 0.6333 \end{bmatrix}$$