Anhang

1.1 Formelsammlung

		Zehnerpotenz	Symbol	Präfix
10^{-12}	=	0,000 000 000 001	p	Piko
10^{-9}	=	0,000 000 001	n	Nano
10^{-6}	=	0,000 001	μ	Mikro
10^{-3}	=	0,001	m	Milli
10^{-2}	=	0,01	С	Zenti
10^{-1}	=	0,1	d	Dezi
10 ⁰	=	1	-	-
10 ¹	=	10	da	Deka
10 ²	=	100	h	Hekto
10 ³	=	1000	k	Kilo
10 ⁶	=	1 000 000	M	Mega
10 ⁹	=	1 000 000 000	G	Giga
10 ¹²	=	1 000 000 000 000	T	Tera

Zweierpotenzen Bit							
2^0	=	1	0				
2^1	=	2	1				
2^2	=	4	2				
2^3	=	8	3				
2^4	=	16	4				
2^5	=	32	5				
2^6	=	64	6				
2^7	=	128	7				
28	=	256	8				
2^9	=	512	9				
2^{10}	=	1024	10				
2^{11}	=	2048	11				
2^{12}	=	4096	12				

Widerstände

Ohmsches Gesetz

$$U = R \cdot I$$
 $R = \frac{U}{I}$ $I = \frac{U}{R}$

Innenwiderstand

$$R_{\rm i} = \frac{\Delta U}{\Delta I}$$

Widerstand von Drähten

$$R = \frac{\rho \cdot l}{A_{\rm Dr}} \qquad \qquad A_{\rm Dr} = \frac{d^2 \cdot \pi}{4} = r^2 \cdot \pi$$

l: Drahtlänge $A_{\rm Dr}$: Drahtquerschnitt ρ : Spezifischer Widerstand in Ω mm²/m (Tabelle am Ende der Formelsammlung)

Farbe	Wert	M	ul	tiplikator	
Silber	-	10^{-2}	=	0,0	1 ±10%
Gold	-	10^{-1}	=	0,1	±5 %
Schwarz	0	10 ⁰	=	1	-
Braun	1	10^1	=	10	±1%
Rot	2	10 ²	=	100	±2 %
Orange	3	10^3	=	1000	-
Gelb	4	10^4	=	10 000	-
Grün	5	10 ⁵	=	100 000	±0,5 %
Blau	6	10^{6}	=	1 000 000	±0,25 %
Violett	7	10 ⁷	=	10 000 000	±0,1 %
Grau	8	10 ⁸	=	100 000 000	-
Weiß	9	10 ⁹	=	1 000 000 000	-
Keine	-			-	±20 %

Widerstände in Reihenschaltung

$$R_{\rm G} = R_1 + R_2 + R_3 + \dots + R_{\rm N}$$

Bei 2 Widerständen gilt

$$R_{\rm G} = R_1 + R_2$$

Widerstände in Parallelschaltung

$$\frac{1}{R_G} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_N}$$

Bei 2 Widerständen gilt

$$R_{\rm G} = \frac{R_1 \cdot R_2}{R_1 + R_2}$$

Spannungsteiler (unbelastet)

$$U_{\rm G} = U_1 + U_2$$

$$\frac{U_1}{U_2} = \frac{R_1}{R_2}$$

$$U_{\rm G} = U_1 + U_2$$
 $\frac{U_1}{U_2} = \frac{R_1}{R_2}$ $\frac{U_2}{U_{\rm G}} = \frac{R_2}{R_1 + R_2}$

Stromteiler

$$I_C = I_1 + I_2$$

$$I_{\rm G} = I_1 + I_2$$

$$\frac{I_2}{I_1} = \frac{R_1}{R_2}$$

Vorzugsreihen für die Nennwerte von Widerständen und Kondensatoren

Reihe Toleranz

Werte

E6	20%			1			1	,5			2	,2			3	,3			4	,7			6,	8	
E12	10%		1	1	,2	1	,5	1	,8	2	,2	2	,7	3	,3	3	,9	4	,7	5	,6	6	,8	8,	,2
E24	5%	1	1,1	1,2	1,3	1,5	1,6	1,8	2	2,2	2,4	2,7	3	3,3	3,6	3,9	4,3	4,7	5,1	5,6	6,2	6,8	7,5	8,2	9,1

Leistung

$$P = U \cdot I = \frac{U^2}{R} = I^2 \cdot R$$

$$U = \frac{P}{I} = \sqrt{P \cdot R}$$

$$I = \frac{P}{U} = \sqrt{\frac{P}{R}}$$

Arbeit/Energie

$$W = P \cdot t$$

Wirkungsgrad

$$\eta = \frac{P_{\rm ab}}{P_{\rm zu}} = \frac{P_{\rm ab}}{P_{\rm zu}} \cdot 100\,\% \qquad \qquad P_{\rm ab} = P_{\rm zu} - P_{\rm V}$$

$$P_{\rm ab} = P_{\rm zu} - P_{\rm V}$$

Wechselspannung

Effektiv- und Spitzenwerte bei Sinusförmiger Wechselspannung

$$\hat{U} = U_{\text{eff}} \cdot \sqrt{2}$$
 $U_{\text{SS}} = 2 \cdot \hat{U}$

$$II_{22} = 2 \cdot \hat{II}$$

Kreisfrequenz

$$\omega = 2 \cdot \pi \cdot f$$

Periodendauer

$$T = \frac{1}{f} \qquad f = \frac{1}{T}$$

Scheinwiderstand

$$Z = \sqrt{R^2 + X^2}$$

- Z: Scheinwiderstand
- X: Blindwiderstand

Induktivität/Spule

Induktiver Blindwiderstand

$$X_{\rm L} = \omega \cdot L$$

Induktivitäten in Reihenschaltung

$$L_G = L_1 + L_2 + L_3 + ... + L_N$$

Induktivitäten in Parallelschaltung

$$\frac{1}{L_{\rm G}} = \frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_3} + \dots + \frac{1}{L_{\rm N}}$$

Induktivität der Ringspule

$$L = \frac{\mu_0 \cdot \mu_{\rm r} \cdot N^2 \cdot A_{\rm S}}{l_{\rm m}}$$

Induktivität einer langen Zylinderspule

$$L = \frac{\mu_0 \cdot \mu_r \cdot N^2 \cdot A_S}{I}$$

Induktivität von Ringkernspulen

Auch für mehrlagige Spulen

$$L = N^2 \cdot A_{L}$$

Magnetische Feldstärke in einer Ringspule

$$H = \frac{I \cdot N}{l_{\rm m}}$$

Magnetische Flussdichte

$$B_{\rm m}=\mu_r\cdot\mu_0\cdot H$$

Transformator/ Übertrager

Übersetzungsverhältnis

$$\ddot{u} = \frac{N_{\rm P}}{N_{\rm S}} = \frac{U_{\rm P}}{U_{\rm S}} = \frac{I_{\rm S}}{I_{\rm P}} = \sqrt{\frac{Z_{\rm P}}{Z_{\rm S}}}$$

Belastbarkeit von Wicklungen

$$I = S \cdot A_{\mathrm{Dr}} \text{ mit } S \approx 2,5 \, \frac{\mathrm{A}}{\mathrm{mm}^2}$$

Kapazität/Kondensator

Kapazitiver Blindwiderstand

$$X_{\rm C} = \frac{1}{\omega \cdot C}$$

Kondensatoren in Reihenschaltung

$$\frac{1}{C_{\rm G}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots + \frac{1}{C_{\rm N}}$$

Kondensatoren in Parallelschaltung

$$C_G = C_1 + C_2 + C_3 + ... + C_N$$

Elektrische Feldstärke im homogenen Feld

$$E = \frac{U}{d}$$

Kapazität eines Kondensators

$$C = \epsilon_0 \cdot \epsilon_r \cdot \frac{A}{d}$$

A: Kondensatorplattenfläche

d: Plattenabstand

 ϵ_{r} : Relative Dielektrizitätszahl

(Tabelle am Ende der Formelsammlung)

Filter

RC-Tiefpass / RC-Hochpass

RL-Tiefpass / RL-Hochpass

$$f_{g} = \frac{1}{2 \cdot \pi \cdot R \cdot C}$$

$$f_{\rm g} = \frac{R}{2 \cdot \pi \cdot L}$$

fg: Grenzfrequenz (Frequenz am −3 dB-Punkt)

Schwingkreis

Es gilt

Reihenschwingkreis

Parallelschwingkreis

$$f_0 = \frac{1}{2 \cdot \pi \cdot \sqrt{L \cdot C}}$$

$$B = \frac{R_{\rm s}}{2 \cdot \pi \cdot L}$$

$$B = \frac{1}{2 \cdot \pi \cdot R_{\rm p} \cdot C}$$

Im Resonanzfall
$$X_C = X_L$$
 gilt

$$Q = \frac{f_0}{B} = \frac{X_{\rm L}}{R_{\rm s}}$$

$$Q = \frac{f_0}{B} = \frac{R_p}{X_I}$$

Transistor

Für Gleichstrom gilt

$$B = \frac{I_{\rm C}}{I_{\rm B}}$$

$$B = \frac{I_{\rm C}}{I_{\rm B}} \qquad I_{\rm E} = I_{\rm C} + I_{\rm B}$$

Für Wechselstrom gilt

$$v_{\rm I} = \beta = \frac{\Delta I_{\rm C}}{\Delta I_{\rm B}}$$
 $v_{\rm U} = \beta = \frac{\Delta U_{\rm CE}}{\Delta U_{\rm BE}}$ $v_{\rm P} = \beta^2 = v_{\rm U} \cdot v_{\rm I}$

$$v_{\rm P} = \beta^2 = v_{\rm U} \cdot v_{\rm I}$$

B: Gleichsstromverstärkung

 β : Wechselstromverstärkung

ZF und Spiegelfrequenzen

Um die Darstellung übersichtlich zu halten, wird der Fall $f_{ZF} = f_E + f_{OSZ}$ nicht betrachtet.

Zwischenfrequenz

$$f_{\rm ZF} = |f_{\rm E} - f_{\rm OSZ}| = \begin{cases} f_{\rm OSZ} - f_{\rm E} & \text{wenn } f_{\rm E} < f_{\rm OSZ} \\ f_{\rm E} - f_{\rm OSZ} & \text{wenn } f_{\rm E} > f_{\rm OSZ} \end{cases}$$

$$f_{\rm ZF} : \text{Zwischenfrequenz}$$

$$f_{\rm E} : \text{Eingangsfrequenz}$$

$$f_{\rm OSZ} : \text{Oszillatorfrequenz}$$

Spiegelfrequenz

$$f_{S} = 2 \cdot f_{OSZ} - f_{E} = \begin{cases} f_{OSZ} + f_{ZF} = f_{E} + 2 \cdot f_{ZF} & \text{wenn } f_{E} < f_{OSZ} \\ f_{OSZ} - f_{ZF} = f_{E} - 2 \cdot f_{ZF} & \text{wenn } f_{E} > f_{OSZ} \end{cases}$$

Pegel

Leistungs und Spannungspegel

$$p = 10 \cdot \log_{10} \left(\frac{P}{1 \text{ mW}}\right) \text{dBm}$$
$$p = 10 \cdot \log_{10} \left(\frac{P}{1 \text{ W}}\right) \text{dBW}$$
$$u = 20 \cdot \log_{10} \left(\frac{P}{0.775 \text{ V}}\right) \text{dBu}$$

Verstärkung/Gewinn

$$g = 10 \cdot \log_{10} \left(\frac{P_2}{P_1}\right) dB$$
 $g = 20 \cdot \log_{10} \left(\frac{U_2}{U_1}\right) dB$

Dämpfung/Verluste

$$a = 10 \cdot \log_{10} \left(\frac{P_1}{P_2} \right) \mathrm{dB} \qquad \qquad a = 20 \cdot \log_{10} \left(\frac{U_1}{U_2} \right) \mathrm{dB}$$

Leistungsverhältnis Spannungsverhältnis

-20 dB	0,01	0,1
-10 dB	0,1	0,32
-6 dB	0,25	0,5
-3 dB	0,5	0,71
-1 dB	0,79	0,89
0 dB	1	1
1 dB	1,26	1,12
3 dB	2	1,41
6 dB	4	2
10 dB	10	3,16
20 dB	100	10

P₁: Eingangsleistung
P₂: Ausgangsleistung
U₁: Eingangsspannung
U₂: Ausgangsspannung

Strahlungsleistung und Gewinn von Antennen

ERP

$$p_{\text{ERP}} = p_{\text{S}} - a + g_{\text{d}}$$
$$P_{\text{ERP}} = P_{\text{S}} \cdot 10^{\frac{g_{\text{d}} - a}{10 \text{dB}}}$$

Feldstärke im Fernfeld einer Antenne

$$E = \frac{\sqrt{30\,\Omega \cdot P_{\rm A} \cdot G_{\rm i}}}{d} = \frac{\sqrt{30\,\Omega \cdot P_{\rm EIRP}}}{d}$$

Gilt für Freiraumausbreitung ab $d > \frac{\lambda}{2 \cdot \pi}$ $P_{\rm A}$: Leistung an der Antenne

Gewinn von Antennen

$$G_{
m i} = G_{
m d} \cdot 1{,}64 \qquad g_{
m i} = g_{
m d} + 2{,}15\,{
m dB} \qquad G = 10^{rac{g}{10{
m dB}}}$$

EIRP

$$p_{\rm EIRP} = p_{\rm ERP} + 2.15 \, {\rm dB}$$

 $P_{\rm EIRP} = P_{\rm ERP} \cdot 1.64 = P_{\rm S} \cdot 10^{\frac{g_{\rm d} - a + 2.15 \, {\rm dB}}{10 \, {\rm dB}}}$

Halbwellendipol

$$G_{\rm i} = 1,64$$
 $g_{\rm i} = 2,15\,{\rm dB}$

 $\lambda/4$ -Vertikalantenne mit Bodenreflektion

$$G_{\rm i} = 3,28$$
 $g_{\rm i} = 5,15\,{\rm dB}$

Parabolspiegelantenne

$$g_i = 10 \cdot \log_{10} \left(\frac{\pi \cdot d}{\lambda} \right)^2 \cdot \eta \, dB$$

Rauschen

Thermisches Rauschen

$$\begin{split} P_{\mathrm{R}} &= k \cdot T_{\mathrm{K}} \cdot B \\ \Delta p_{\mathrm{R}} &= 10 \cdot \log_{10} \left(\frac{B_1}{B_2} \right) \mathrm{dB} \\ U_{\mathrm{R}} &= 2 \cdot \sqrt{P_{\mathrm{R}} \cdot R} \end{split}$$

P_R: Rauschleistung

 $\Delta p_{\rm R}$: Pegelunterschied der Rauschleistungen in B_1 und

 B_2 z. B. in dB

Signal-Rauschverhältnis (SNR)

$$\mathsf{SNR} = 10 \cdot \log_{10} \left(\frac{P_\mathsf{S}}{P_\mathsf{N}} \right) \mathsf{dB} = 20 \cdot \log_{10} \left(\frac{U_\mathsf{S}}{U_\mathsf{N}} \right) \mathsf{dB}$$

Shannon-Hartley-Gesetz für AWGN-Kanal

$$C = \frac{B}{1 \text{ Hz}} \cdot \log_2 \left(1 + \frac{P_{\text{S}}}{P_{\text{N}}} \right) \frac{\text{bit}}{\text{s}}$$

Rauschzahl

$$F = \frac{\left(\frac{P_{S}}{P_{N}}\right)_{\text{Eingang}}}{\left(\frac{P_{S}}{P_{N}}\right)_{\text{Ausgang}}}$$

$$a_{F} = 10 \cdot \log_{10} (F)$$

$$a_{F} = \text{SNR}_{\text{Eingang}} - \text{SNR}_{\text{Ausgang}}$$

 $P_{\rm S}$: Signalleistung $U_{\rm N}$: Rauschspannung $P_{\rm N}$: Rauschleistung $U_{\rm S}$: Signalspannung

 ${\cal C}\;$: Maximale Datenübertragungsrate

B: Bandbreite in Hz

Logarithmus zur Basis 2

$$\log_2(x) = \frac{\log_{10}(x)}{\log_{10}(2)}$$

Amplitudenmodulation

Modulationsgrad

$$m = \frac{\hat{U}_{\text{mod}}}{\hat{U}_{\text{T}}}$$

Bandbreite

$$B = 2 \cdot f_{\text{mod max}}$$

Frequenzmodulation

Modulationsindex

$$m = \frac{\Delta f_{\rm T}}{f_{\rm mod}}$$

 $\Delta f_{\rm T}$: Frequenzhub

Carson-Bandbreite

$$B \approx 2 \cdot (\Delta f_{\rm T} + f_{\rm mod \ max})$$

Ungefähre FM-Bandbreite B enthält etwa 99 % der Gesamtleistung des Signals

Wellenlänge und Frequenz

Lichtgeschwindigkeit

$$c = f \cdot \lambda$$
 $f = \frac{c}{\lambda}$ $\lambda = \frac{c}{f}$

Im Freiraum gilt

$$c = c_0 \approx 3 \cdot 10^8 \, \frac{\text{m}}{\text{s}} \approx 300\,000\,000 \, \frac{\text{m}}{\text{s}}$$

$$f[{\rm MHz}] pprox rac{300}{\lambda \, [{
m m}]} \qquad \quad \lambda \, [{
m m}] pprox rac{300}{f[{
m MHz}]}$$

Verkürzungsfaktor von HF-Leitungen

$$k_{\rm V} = \frac{l_{\rm G}}{l_{\rm E}} = \frac{1}{\sqrt{\epsilon_{\rm r}}} = \frac{c}{c_0}$$

 $l_{\rm G}$: mechanische Länge $l_{\rm E}$: elektrische Länge

Reflektio

Stehwellenverhältnis (SWR, SWV, VSWR)

$$s = \frac{U_{max}}{U_{min}} = \frac{U_v + U_r}{U_v - U_r} = \frac{\sqrt{P_v} + \sqrt{P_r}}{\sqrt{P_v} - \sqrt{P_v}} = \frac{1 + |r|}{1 - |r|}$$

$$s = \frac{R_2}{Z}$$
 wenn $R_2 > Z$ und $s = \frac{Z}{R_2}$ wenn $R_2 < Z$

Reflektionsfakto

$$|r| = \frac{s-1}{s+1} = \left| \frac{R_2 - Z}{R_2 + Z} \right| = \frac{|U_{\rm r}|}{|U_{\rm v}|} = \sqrt{\frac{P_{\rm r}}{P_{\rm v}}}$$

Rücklaufende Leistung

$$P_{\mathbf{r}} = P_{\mathbf{v}} \cdot |\mathbf{r}|^2$$

An R₂ abgegebene Leistung

$$P_{\rm ab} = P_{\rm v} \cdot \left(1 - |\mathbf{r}|^2\right)$$

 $U_{\rm V}$: Spannung der hinlaufenden Welle $U_{\rm r}$: Spannung der rücklaufenden Welle Z: Wellenwiderstand der HF-Leitung

 R_2 : reeller Abschlusswiderstand der HF-Leitung

 $P_{\rm v}$: vorlaufende Leistung

 $P_{\rm r}$: rücklaufende (reflektierte) Leistung

 $P_{\rm ab}$: Leistung an R_2

Wellenwiderstand

HF-Leitungen

$$Z = \sqrt{\frac{L'}{C'}}$$

Koaxiale Leitungen

$$Z = \frac{60 \,\Omega}{\sqrt{\epsilon_{\rm r}}} \cdot \ln \left(\frac{D}{d} \right)$$

D: Innendurchmesser Außenleiter *d*: Durchmesser des Innenleiters

Symmetrische Zweidrahtleitungen (a/d > 2.5)

$$Z = \frac{120\,\Omega}{\sqrt{\epsilon_{\rm r}}} \cdot \ln\left(\frac{2 \cdot a}{d}\right)$$

a: Mittenabstand der Leiterd: Durchmesser der Leiter

Viertelwellentransformator

$$Z = \sqrt{Z_{\rm E} \cdot Z_{\rm A}}$$

Z: erforderlicher Wellenwiderstand einer $\lambda/4$ -Transformationsleitung

Weitere Formeln

Höchste brauchbare Frequenz

$$MUF \approx \frac{f_c}{\sin(\alpha)}$$
 $f_{opt} = MUF \cdot 0.85$

 $f_{
m opt}$: Optimale Arbeitsfrequenz

Empfindlich eit von Messsystemen

$$E_{\rm MESS} = \frac{R_{\rm i}}{U_{\rm i}} = \frac{1}{I_{\rm i}}$$

 $E_{
m MESS}$: Empfindlichkeit in $rac{\Omega}{
m V}$ $U_{
m i}$: Spannung am System bei Vollausschlag : Strom durch das System bei Vollausschlag

Relativer maximaler Fehler

$$F_{\rm W} = \pm \frac{G}{100} \cdot \frac{W_{\rm E}}{W_{\rm M}}$$

: relativer maximaler Fehler (in %)

: Genauigkeitsklasse des Messinstruments $W_{\rm E}$: Endwert des Messbereichs W_M : abgelesener Wert (Ist-Wert)

Abtasttheorem

$$f_{\text{abtast}} > 2 \cdot f_{\text{max}}$$

 $f_{
m abtast}$: Abtastrate

 f_{\min} : Minimale Frequenz $f_{
m max}$: Maximale Frequenz

für Nicht-Basisband-Signale

$$f_{\mathrm{abtast}} > 2 \cdot (f_{\mathrm{max}} - f_{\mathrm{min}}) \text{ wenn } f_{\mathrm{abtast}} < f_{\mathrm{min}} \text{ oder } f_{\mathrm{abtast}} > f_{\mathrm{max}}$$

Datenübertragungs-/Symbolrate

$$C = R_{\rm S} \cdot n$$

: Datenübertragungsrate in Bit/s

 R_{S} : Symbolrate in Baud

: Symbolgröße in Bit/Symbol

1.2 Formelzeichen, Konstanten und Tabellen

Sofern bei der jeweiligen Formel nicht anders angegeben, gilt:

A	Querschnitt, Fläche	σ	Verstärkungsmaß/Gewinn (z. B. in dB)
A_{Dr}	Drahtquerschnitt	g g,	Gewinn bezogen auf den Halbwellendipol
A_{Fe}	Eisenkernquerschnitt	<i>g</i> d	(z. B. in dB)
$A_{ m L}$	Induktivitätskonstante (z. B. in nH)	gi	Gewinn bezogen auf den isotropen Strahler (z. B. in dB)
$A_{ m S}$	Querschnittsfläche der Spule	GPSDO	GPS Disciplined Oscillator
a	Dämpfungsmaß (z.B. in dB)		(GPS-synchronisierter Oszillator)
$a_{ m F}$	Rauschzahl gemessen mit	Н	magnetische Feldstärke
	Eingangsabschluss bei 290 K (z. B. in dB)	I	Stromstärke
AWGN	Additive White Gaussian Noise (Additives weißes gaußsches Rauschen)	$I_{ m B}$	Basisgleichstrom
B, B_1, B_2	Bandbreiten	$I_{\rm C}$	Kollektorgleichstrom
$B_{ m m}$	magnetische Flussdichte	$I_{ m E}$	Emittergleichstrom
C	Kapazität	I_{G}	Gesamtstrom
C'	Kapazitätsbelag (Kapazität pro Meter)	$I_{ m P}$	Primärstromstärke
$C_{ m G}$	Gesamtkapazität	$I_{\rm S}$	Sekundärstromstärke
C_1 , C_2 , C_3 ,	Teilkapazitäten	I_1 , I_2	Teilströme
$C_1, C_2, C_3,$ C_n	Tenkapazitaten	k	Boltzmann-Konstante, $k = 1,38 \cdot 10^{-23} \frac{Ws}{K}$
c	Phasengeschwindigkeit	$k_{ m v}$	Verkürzungsfaktor
c_0	Vakuumlichtgeschwindigkeit, $c_0 = 3 \cdot 10^8 \frac{\text{m}}{\text{s}}$	L	Induktivität
d	Abstand, Entfernung	L'	Induktivitätsbelag (Induktivität pro Meter)
E	elektrische Feldstärke	$L_{\rm G}$	Gesamtinduktivität
EIRP	äquivalente isotrope Strahlungsleistung	$L_1, L_2, L_3,$	Teilinduktivitäten
ERP	äquivalente (effektive) Strahlungsleistung	L_n	1 =
e	Eulersche Zahl, e = 2,718	l	Länge
F	Rauschzahl (Eingangsabschluss bei 290 K)	l _m	mittlere Feldlinienlänge
f	Frequenz	MUF	Höchste brauchbare Frequenz bei der Ausbreitung elektromagnetischer Wellen
$f_{\rm c}$, $f_{\rm k}$, $f_{\rm krit}$,	Höchste Frequenz, bei der senkrecht in die		infolge ionosphärischer Brechung
$f_{ m oF2}$	Ionosphäre eintretende Strahlung von der gegebenen Region noch gebrochen wird	m	Modulationsindex
$f_{ m E}$	eingestellte Empfangsfrequenz	N	Windungszahl
$f_{ m g}$	Grenzfrequenz	$N_{ m P}$	Primärwindungszahl
$f_{ m mod}$	Modulationsfrequenz	$N_{ m S}$	Sekundärwindungszahl
$f_{ m modmax}$	höchste Modulationsfrequenz	$N_{ m V}$	Windungszahl pro Volt
$f_{ m opt}$	optimale Frequenz	OCXO	Oven-Controlled Crystal Oscillator (Quarzoszillator mit Quarzofen)
f_{OSZ}	Oszillatorfrequenz	P	Leistung
f_{S}	Spiegelfrequenz	P_{R}	Rauschleistung
$f_{ m ZF}$	Zwischenfrequenz	$P_{\rm S}$	Senderleistung
f_0	Resonanzfrequenz	$P_{\rm ERP}$	ERP Strahlungsleistung
G	Gewinnfaktor	P_{EIRP}	EIRP Strahlungsleistung
G_{d}	Gewinnfaktor bezogen auf den	$P_{ m V}$	Verlustleistung
	Halbwellendipol	$P_{ m ab}$	abgegebene Leistung
$G_{\mathbf{i}}$	Gewinnfaktor bezogen auf den isotropen Strahler	$P_{ m zu}$	zugeführte Leistung

p	Pegel der Leistung (z.B. in dBm oder dBW)	$v_{ m I}$	Wechselstromverstärkung
<i>p</i> s	Pegel der Senderleistung (z.B. in dBm)	v_{U}	Wechselspannungsverstärkung
p_{ERP}	Pegel der ERP Strahlungsleistung (z. B. in	$v_{ m P}$	Leistungsverstärkung für Wechselstrom
<i>P</i> EIRP	dBm) Pegel der EIRP Strahlungsleistungen (z. B. in dBm)	VCO	Voltage-Controlled Oscillator (Spannungsgesteuerter Oszillator)
PEP	Peak Envelope Power	W	Arbeit/Energie
1 11	(Hüllkurvenspitzenleistung)	X	Blindwiderstand
Q	Güte	$X_{\mathbb{C}}$	kapazitiver Blindwiderstand
R	Widerstand	$X_{ m L}$	induktiver Blindwiderstand
$R_{\rm G}$	Gesamtwiderstand	XO	Crystal Oscillator (Quarzoszillator)
R_i	Innenwiderstand	Z	Wellenwiderstand
$R_1, R_2, R_3,$	Teilwiderstände	$Z_{ m A}$	Ausgangsscheinwiderstand
R_n		$Z_{ m E}$	Eingangsscheinwiderstand
$R_{\rm p}$	paralleler Verlustwiderstand	$Z_{ m F0}$	Feldwellenwiderstand des freien Raumes,
$R_{\rm S}$	serieller Verlustwiderstand		$\sqrt{\mu_0}$ 100 C
r	Reflektionsfaktor		$Z_{ ext{F0}} = \sqrt{rac{\mu_0}{\epsilon_0}} = 120\pi\Omega$
S	Stromdichte	$Z_{ m P}$	Primärer Scheinwiderstand
SNR	Signal-Rauschverhältnis (z. B. in dB)	$Z_{ m S}$	Sekundärer Scheinwiderstand
s, SWR, SWV,	Stehwellenverhältnis oder Welligkeit	ΔI	Stromänderung
VSWR		$\Delta I_{ m B}$	Basisstromänderung
T	Periodendauer	$\Delta I_{ m C}$	Kollektorstromänderung
$T_{ m K}$	Temperatur in Kelvin bezogen auf den absoluten Nullpunkt T_0	ΔU	Spannungsänderung
	$(T_0 = 0 \text{ K} = -273,15 ^{\circ}\text{C}; \text{d. h. } 20 ^{\circ}\text{C} \approx 293 \text{ K})$		Kollektor-Emitter-Spannungsänderung
t	Zeit	$\Delta U_{ m CE}$	
TCXO	Temperature Compensated Crystal	$\Delta U_{ m BE}$	Basis-Emitter-Spannungsänderung
	Oscillator (Temperaturkompensierter Quarzoszillator)	α	Abstrahlwinkel der Antenne (Höhenwinkel)
U	Spannung	β	Wechselstromverstärkung
$U_{ m eff}$	Effektivspannung	ϵ_0	elektrische Feldkonstante,
$U_{ m G}$	Gesamtspannung		$\epsilon_0 = \frac{1}{\mu_0 \cdot c_0^2} = 0.885 \cdot 10^{-11} \frac{\text{A s}}{\text{V m}}$
$U_{ m P}$	Primärspannung		$\mu_0 \cdot c_0^2$ V m
$U_{ m R}$	effektive Rauschspannung an R	$\epsilon_{ m r}$	relative Dielektrizitätszahl
$U_{\rm S}$	Sekundärspannung	η	Wirkungsgrad
$U_{ m SS}$	Spannung von Spitze zu Spitze	λ	Wellenlänge
U_1, U_2	Teilspannungen	μ_0	magnetische Feldkonstante,
\hat{U}	Spitzenspannung		$\mu_0 = \frac{4\pi}{10^7} \frac{\text{V s}}{\text{A m}} = 1,2566 \cdot 10^{-6} \frac{\text{H}}{\text{m}}$
$\hat{U}_{ ext{mod}}$	Amplitude der Modulationsspannung		$\mu_0 = \frac{10^7}{10^7} \frac{Am}{Am} = 1,2300 \cdot 10 = \frac{1}{m}$
$\hat{U}_{ m T}$	Amplitude der HF-Trägerspannung	$\mu_{ m r}$	relative Permeabilität (Luft ≈ 1)
u	Pegel der Spannung (z. B. in dBu)	ρ	spezifischer elektrischer Widerstand
ü	Übersetzungsverhältnis	ω	Kreisfrequenz
	•		

Spezifische Widerstand in $\Omega mm^2/m$

Material	Wert
Kupfer	0,018
Aluminium	0,028
Gold	0,022
Silber	0,016
Zink	0,11
Eisen	0,1
Messing	0,07

Relative Dielektrizitätszahl

Material	Wert
Luft (trocken)	1,00059
Voll-PE (Polyäthylen)	2,29
Schaum-PE	1,5
PTFE (Teflon)	2,0

1.3 Kabeldämpfungsdiagramm Koaxialkabel

Dämpfung gebräuchlicher Koaxleitungen in Abhängigkeit von der Betriebsfrequenz für eine Länge von 100 m