www.mecatronicadegaragem.blogspot.com

Aula 14 Interrupções

Microcontroladores PIC18 – Programação em C

Prof. Ítalo Jáder Loiola Batista

Universidade de Fortaleza - UNIFOR Centro de Ciências Tecnológicas - CCT

E-mail: <u>italoloiola@unifor.br</u>

Jan/2011

Roteiro

- □Interrupções
 - □Introdução;
 - Registradores;
 - □Fontes de interrupções;
 - □Interrupção Externa;
 - Código-fonte

- A interrupção é um evento de hardware que provoca uma interrupção no programa;
- Desvia o programa para uma localidade específica da memória de programa para que o evento seja tratado;
- Em seguida, o programa retorna a execução do ponto em que foi interrompido;
- O PIC18F4520 possui 20 fontes de interrupção, sendo 18 diferentes;

- O PIC18F4520 trabalha com dois níveis de prioridade no serviço de tratamento de interrupção (ISR):
 - High-priority (alta prioridade);
 - O programa é desviado para o endereço 0008h da memória de programa quando ocorrer o evento responsável pela interrupção.
 - Low-priority (baixa prioridade);
 - O programa é desviado para o endereço 0018h da memória de programa quando ocorrer o evento responsável pela interrupção.

- □De uma forma geral, três bits estão envolvidos com o recurso de interrupção.
 - □Flag bit
 - Bit de Sinalização;
 - □ Cada interrupção possui um bit de sinalização que é setado quando o evento associado ocorre;
 - □ O bit de sinalização deve ser apagado por software dentro da função de interrupção para que o programa não retorne à rotina de interrupção após ela ter sido tratada;
 - □Enable bit
 - Bit de habilitação da interrupção;
 - □ Priority bit
 - Bit que define a prioridade no tratamento da interrupção;

Estrutura de habilitação das interrupções

Registradores FSR de Interrupção

- Existem dez registradores no PIC18F4520 envolvidos com o recurso da interrupção:
 - RCON
 - INTCON
 - □ INTCON2
 - □ INTCON2
 - □ PIR1, PIR2
 - □ PIE1, PIE2
 - □ IPR1, IPR2

Registradores FSR de Interrupção

- A seguir as informações e suas respectivas descrições, encontradas na descrição dos registradores que são utilizados pela interrupção:
 - R: bit de leitura
 - W: bit de escrita
 - S: só pode ser setado
 - U: não implementado, lido como 0
 - -n: nível lógico assumido no POR
 - -x: valor desconhecido no (POR)
 - -q: depende da condição

Registradores - INTCON

 Os registros do INTCON podem ser lidos e escritos e que contêm vários bits de habilitação, prioridade e sinalização;

Registradores - INTCON

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF ⁽¹⁾
bit 7	•						bit 0

bit 7

bit 6

bit 5

bit 4

bit 3

bit 2

Ouando IPEN(RCON<7>) habilitado:

GIEH: habilita as interrupções de alta prioridade.

GIEL: habilita as interrupções de baixa prioridade.

Quando IPEN(RCON<7>) apagado:

GIE: liga a chave geral de interrupção.

PEIE: liga a chave que habilita a interrupção dos perifféricos.

GIE/GIEH: Global Interrupt Enable bit When IPEN = 0: 1 = Enables all unmasked interrupts 0 = Disables all interrupts When IPEN = 1: 1 = Enables all high-priority interrupts 0 = Disables all interrupts PEIE/GIEL: Peripheral Interrupt Enable bit When IPEN = 0: 0 = Disables all peripheral interrupts

- 1 = Enables all unmasked peripheral interrupts

When IPEN = 1:

- 1 = Enables all low-priority peripheral interrupts
- 0 = Disables all low-priority peripheral interrupts

TMR0IE: TMR0 Overflow Interrupt Enable bit

- 1 = Enables the TMR0 overflow interrupt
- 0 = Disables the TMR0 overflow interrupt
- INTOIE: INTO External Interrupt Enable bit
- 1 = Enables the INT0 external interrupt 0 = Disables the INT0 external interrupt
- RBIE: RB Port Change Interrupt Enable bit
- 1 = Enables the RB port change interrupt
- 0 = Disables the RB port change interrupt
- TMR0IF: TMR0 Overflow Interrupt Flag bit 1 = TMR0 register has overflowed (must be cleared in software)
- 0 = TMR0 register did not overflow
- INTOIF: INTO External Interrupt Flag bit bit 1
 - 1 = The INTO external interrupt occurred (must be cleared in software)
 - 0 = The INTO external interrupt did not occur,
- RBIF: RB Port Change Interrupt Flag bit(1) bit 0
 - 1 = At least one of the RB<7:4> pins changed state (must be cleared in software)

Bits de habilitação

Bits de sinalização

0 = None of the RB<7:4> pins have changed state

Registradores - INTCON

- Se os dois níveis de prioridade de interrupção estiverem habilitados na ocorrência de um evento que pode dar origem a uma interrupção, um dos bits GIEH e GIEL será apagado para evitar futuras interrupções;
- No entanto se uma interrupção de baixa prioridade estiver sendo tratada e ocorrer uma interrupção de alta prioridade, o tratamento da 1ª será interrompido para que a 2ª seja tratada;
- Quando a interrupção de alta prioridade terminar de ser tratada, a interrupção de baixa prioridade volta a ser tratada;

Registradores – INTCON2

R/W-1	R/W-1	R/W-1	R/W-1	U-0	R/W-1	U-0	R/W-1
RBPU	INTEDG0	INTEDG1	INTEDG2	_	TMR0IP	_	RBIP
bit 7	•						bit 0

bit 7 RBPU: PORTB Pull-up Enable bit 1 = All PORTB pull-ups are disabled 0 = PORTB pull-ups are enabled by individual port latch values INTEDG0: External Interrupt 0 Edge Select bit bit 6 1 = Interrupt on rising edge 0 = Interrupt on falling edge bit 5 INTEDG1: External Interrupt 1 Edge Select bit 1 = Interrupt on rising edge 0 = Interrupt on falling edge bit 4 INTEDG2: External Interrupt 2 Edge Select bit 1 = Interrupt on rising edge 0 = Interrupt on falling edge bit 3 Unimplemented: Read as '0' bit 2 TMR0IP: TMR0 Overflow Interrupt Priority bit 1 = High priority 0 = Low priority bit 1 Unimplemented: Read as '0' **RBIP:** RB Port Change Interrupt Priority bit bit 0 1 = High priority 0 = Low priority

Registradores – INTCON3

R/W-1	R/W-1	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
INT2IP	INT1IP	_	INT2IE	INT1IE	_	INT2IF	INT1IF
bit 7	•						bit 0

bit 7	INT2IP: INT2 External Interrupt Priority bit
	1 = High priority
	0 = Low priority
bit 6	INT1IP: INT1 External Interrupt Priority bit
	1 = High priority
	0 = Low priority
bit 5	Unimplemented: Read as '0'
bit 4	INT2IE: INT2 External Interrupt Enable bit
	1 = Enables the INT2 external interrupt
	0 = Disables the INT2 external interrupt
bit 3	INT1IE: INT1 External Interrupt Enable bit
	1 = Enables the INT1 external interrupt
	0 = Disables the INT1 external interrupt
bit 2	Unimplemented: Read as '0'
bit 1	INT2IF: INT2 External Interrupt Flag bit
	1 = The INT2 external interrupt occurred (must be cleared in software)
	0 = The INT2 external interrupt did not occur
bit 0	INT1IF: INT1 External Interrupt Flag bit
	1 = The INT1 external interrupt occurred (must be cleared in software)
	0 = The INT1 external interrupt did not occur

Registradores - PIR

- Os registradores PIR possuem os flag bits (bits de sinalização) individuais das interrupções dos periféricos;
- Registradores PIR:
 - PIR1;
 - PIR2;

Registradores – PIR1

R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0			
PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF			
bit 7	•		•	•	•		bit 0			
			bit 7	PSPIF: Parallel Slave I 1 = A read or a write o 0 = No read or write h	peration has taken p		d in software)			
			bit 6	ADIF: A/D Converter In 1 = An A/D conversion 0 = The A/D conversion	n completed (must be	cleared in software)				
			bit 5	RCIF: EUSART Receive Interrupt Flag bit 1 = The EUSART receive buffer, RCREG, is full (cleared when RCREG is read) 0 = The EUSART receive buffer is empty						
			bit 4	TXIF: EUSART Transn 1 = The EUSART tran 0 = The EUSART tran	nit Interrupt Flag bit smit buffer, TXREG, i	is empty (cleared wh	en TXREG is written)			
			bit 3	SSPIF: Master Synchron 1 = The transmission/o = Waiting to transmi	reception is complete		software)			
			bit 2	CCP1IF: CCP1 Interru Capture mode: 1 = A TMR1 register c 0 = No TMR1 register	apture occurred (mus	st be cleared in softw	are)			
				Compare mode: 1 = A TMR1 register c 0 = No TMR1 register PWM mode: Unused in this mode.	ompare match occur	•	in software)			
			bit 1	TMR2IF: TMR2 to PR2 1 = TMR2 to PR2 mat 0 = No TMR2 to PR2 I	ch occurred (must be					
			bit 0	TMR1IF: TMR1 Overflo	ow Interrupt Flag bit					

1 = TMR1 register overflowed (must be cleared in software)

0 = TMR1 register did not overflow

Registradores – PIR2

R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
OSCFIF	CMIF	_	EEIF	BCLIF	HLVDIF	TMR3IF	CCP2IF
bit 7							bit 0

bit 7	OSCFIF: Oscillator Fail Interrupt Flag bit
	 1 = Device oscillator failed, clock input has changed to INTOSC (must be cleared in software) 0 = Device clock operating
bit 6	CMIF: Comparator Interrupt Flag bit
	1 = Comparator input has changed (must be cleared in software)0 = Comparator input has not changed
bit 5	Unimplemented: Read as '0'
bit 4	EEIF: Data EEPROM/Flash Write Operation Interrupt Flag bit
	1 = The write operation is complete (must be cleared in software)0 = The write operation is not complete or has not been started
bit 3	BCLIF: Bus Collision Interrupt Flag bit
	1 = A bus collision occurred (must be cleared in software)0 = No bus collision occurred
bit 2	HLVDIF: High/Low-Voltage Detect Interrupt Flag bit
	 1 = A high/low-voltage condition occurred (direction determined by VDIRMAG bit, HLVDCON<7>) 0 = A high/low-voltage condition has not occurred
bit 1	TMR3IF: TMR3 Overflow Interrupt Flag bit
	1 = TMR3 register overflowed (must be cleared in software)0 = TMR3 register did not overflow
bit 0	CCP2IF: CCP2 Interrupt Flag bit
	Capture mode:
	1 = A TMR1 register capture occurred (must be cleared in software)0 = No TMR1 register capture occurred
	Compare mode: 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred
	<u>PWM mode:</u> Unused in this mode.

Registradores - PIE

- Os registradores PIR possuem os priority bits (bits de prioridade) individuais das interrupções dos periféricos;
- Registradores PIR:
 - PIE1;
 - PIE2;

Registradores – PIE1

R/	W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PSF	PIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE
bit 7					•			bit 0

bit 7	PSPIE: Parallel Slave Port Read/Write Interrupt Enable bit (1)
	1 = Enables the PSP read/write interrupt 0 = Disables the PSP read/write interrupt
bit 6	ADIE: A/D Converter Interrupt Enable bit
	1 = Enables the A/D interrupt 0 = Disables the A/D interrupt
bit 5	RCIE: EUSART Receive Interrupt Enable bit
	1 = Enables the EUSART receive interrupt0 = Disables the EUSART receive interrupt
bit 4	TXIE: EUSART Transmit Interrupt Enable bit
	1 = Enables the EUSART transmit interrupt0 = Disables the EUSART transmit interrupt
bit 3	SSPIE: Master Synchronous Serial Port Interrupt Enable bit
	1 = Enables the MSSP interrupt 0 = Disables the MSSP interrupt
bit 2	CCP1IE: CCP1 Interrupt Enable bit
	1 = Enables the CCP1 interrupt 0 = Disables the CCP1 interrupt
bit 1	TMR2IE: TMR2 to PR2 Match Interrupt Enable bit
	1 = Enables the TMR2 to PR2 match interrupt0 = Disables the TMR2 to PR2 match interrupt
bit 0	TMR1IE: TMR1 Overflow Interrupt Enable bit
	1 = Enables the TMR1 overflow interrupt0 = Disables the TMR1 overflow interrupt

Registradores – PIE2

R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
OSCFIE	CMIE	_	EEIE	BCLIE	HLVDIE	TMR3IE	CCP2IE
bit 7				•			bit 0

bit 7 OSCFIE: Oscillator Fail Interrupt Enable bit 1 = Enabled 0 = Disabled bit 6 CMIE: Comparator Interrupt Enable bit 1 = Enabled 0 = Disabled bit 5 Unimplemented: Read as '0' bit 4 EEIE: Data EEPROM/Flash Write Operation Interrupt Enable bit 1 = Enabled 0 = Disabled bit 3 BCLIE: Bus Collision Interrupt Enable bit 1 = Enabled 0 = Disabled bit 2 **HLVDIE**: High/Low-Voltage Detect Interrupt Enable bit 1 = Enabled 0 = Disabled bit 1 TMR3IE: TMR3 Overflow Interrupt Enable bit 1 = Enabled 0 = Disabled bit 0 CCP2IE: CCP2 Interrupt Enable bit 1 = Enabled 0 = Disabled

Registradores – IPR

- Os registradores PIR possuem os Enable bit (bits de habilitação) individuais das interrupções dos periféricos;
- Registradores PIR:
 - PIE1;
 - PIE2;

Registradores – IPR1

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP
bit 7							bit 0

PSPIP: Parallel Slave Port Read/Write Interrupt Priority bit(1) bit 7 1 = High priority 0 = Low priority bit 6 ADIP: A/D Converter Interrupt Priority bit 1 = High priority 0 = Low priority RCIP: EUSART Receive Interrupt Priority bit bit 5 1 = High priority 0 = Low priority TXIP: EUSART Transmit Interrupt Priority bit bit 4 1 = High priority 0 = Low priority SSPIP: Master Synchronous Serial Port Interrupt Priority bit bit 3 1 = High priority 0 = Low priority bit 2 CCP1IP: CCP1 Interrupt Priority bit 1 = High priority 0 = Low priority TMR2IP: TMR2 to PR2 Match Interrupt Priority bit bit 1 1 = High priority 0 = Low priority bit 0 TMR1IP: TMR1 Overflow Interrupt Priority bit 1 = High priority 0 = Low priority

Registradores – IPR2

R/W-1	R/W-1	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
OSCFIP	CMIP	_	EEIP	BCLIP	HLVDIP	TMR3IP	CCP2IP
bit 7							bit 0

OSCFIP: Oscillator Fail Interrupt Priority bit bit 7 1 = High priority 0 = Low priority CMIP: Comparator Interrupt Priority bit bit 6 1 = High priority 0 = Low priority bit 5 Unimplemented: Read as '0' bit 4 **EEIP:** Data EEPROM/Flash Write Operation Interrupt Priority bit 1 = High priority 0 = Low priority bit 3 **BCLIP:** Bus Collision Interrupt Priority bit 1 = High priority 0 = Low priority bit 2 **HLVDIP:** High/Low-Voltage Detect Interrupt Priority bit 1 = High priority 0 = Low priority TMR3IP: TMR3 Overflow Interrupt Priority bit bit 1 1 = High priority 0 = Low priority bit 0 CCP2IP: CCP2 Interrupt Priority bit 1 = High priority 0 = Low priority

Registradores - RCON

- O Registrador RCON possuem os flag bits (bits de sinalização) que são usados para determinar as causas de Reset ou Wake-up (Modo Sleep);
- O RCON possui também o bit que habilita as prioridades das interrupções;

Registradores - RCON

R/W-0	R/W-1 ⁽¹⁾	U-0	R/W-1	R-1	R-1	R/W-0 ⁽¹⁾	R/W-0
IPEN	SBOREN	_	RI	TO	PD	POR	BOR
bit 7 bit 0							

Funções de tratamento de interrupção

- Duas diretivas são responsáveis pelas funções de tratamento de interrupções:
 - **#pragma** interrupt
 - Destinada á rotina de tratamento da interrupção de alta prioridade;
 - #pragma interruptlow
 - Destinada á rotina de tratamento da interrupção de baixa prioridade;

Interrupção Externa

- Para mostrar na prática como o recurso de interrupção pode ser utilizado em uma determinada aplicação, vamos ver como funciona a interrupção externa;
- O PIC184520 possui 3 interrupções externas:
 - RB2/INT2, RB1/INT1 e RB0/INT0;
 - A INTO sempre possui alta prioridade;
 - Enquanto as outras podem ser configuras como de alta ou baixa prioridade;

Interrupção Externa

- Prioridade
 - Os bits responsáveis pelas prioridades são INT2IP (INTCON3<7>) e INT1IP (INTCON3<6>);
- Borda
 - Os bits INTEDGx (INTCON2<6:4>) configuram a borda do sinal aplicado nos pinos que vai gerar a interrupção;
 - Se a borda de subida ou descida;

Interrupção Externa

- Habilitação
 - Cada uma das interrupções externas, assim como as demais pode ser habilitada individualmente por meio das chaves individuais:
 - INT2IE (INTCON3<4>), INT1IE (INTCON3<3>) e INT0IE (INTCON<4>);
 - Para habilitar a chave individual, deve-se também setar o bit associado àquela interrupção;
 - A chave geral (o bit GIE) também precisa estar setado para que o uC possa tratar a interrupção externa;

Display de Sete Segmentos

Displays Multiplexados;

Interrupção Externa / Código-fonte

DSP_7Seg_x4.h

Arquivo cabeçalho com as definições dos pinos nos quais serão conectados os pinos do display.

DSP_7Seg_x4.c

Arquivo que compõe a biblioteca que contém a função que fará a atualização do display;

Main_33.c

Arquivo principal responsável por realizar a aplicação de um contador de 0 a 9.999 utilizando uma interface de vídeo com quatro displays multiplexados que é incrementado por um pulso no pino RB0/INT0;

DSP_7Seg_x4.h

Interrupção Externa / Código-fonte

Esse identificador impede que a definição a seguir seja duplicada se o arquivo cabeçalho foi incluído em outro arquivo-fonte associado ao projeto.

```
#ifndef DSP 7SEGx4 H
     #define DSP 7SEGx4 H
10
11
     #include <p18cxxx.h> //diretiva de compilação
12
13
     //definições
14
     #define DSP_1 PORTAbits.RA5
15
     #define DSP 2 PORTAbits.RA2
16
     #define DSP 3 PORTEbits.RE0
17
     #define DSP 4 PORTEbits.RE2
     #define L DADOS TRISD
19
     #define DIR A1 TRISAbits.TRISA5
20
     #define DIR A2 TRISAbits.TRISA2
     #define DIR A3 TRISEbits.TRISE0
21
     #define DIR_A4 TRISEbits.TRISE2
22
23
24
     void Aciona DPS 7 seg (unsigned char Dsp4, unsigned char Dsp3, unsigned char Dsp2, unsigned char Dsp1);
25
     #endif
```

DSP_7Seg_x4.c

Display Multiplexado / Código-fonte

```
#include <p18cxxx.h>
                               //diretiva de compilação
     #include "DSP_7Seg_x4.h" //diretiva de compilação
10
11
    🗏 void Aciona DPS 7 seg (unsigned char Dsp4, unsigned char Dsp3, unsigned char Dsp2, unsigned c
12
13
     static unsigned char Atual Dsp = 1; //declaração de variável local static inicializa
14
     const char tabela[] = {
15
                      0x3F,
                             // número 0
16
                      0x06, // número 1
17
                             // número 2
                      0x5B,
18
                      0x4F, // número 3
19
                      0x66, // número 4
20
                      0x6D,
                             // número 5
21
                      0x7C, // número 6
22
                             // número 7
                      0x07,
23
                      0x7F, // número 8
24
                      0x67. // número 9
25
                      0x00
                            //apaga display
26
27
     //*******
28
     //configuração dos pinos
29
        L DADOS = 0x00;
                        //configura pinos das linhas de dados como saída
        ADCON1 = 0x0F; //configura Port A e Port E como pinos digitais
30
31
                           //configura linha de endereço A1 como saída
        DIR A1 = 0;
        DIR_A2 = 0; //configura linha de endereço A2 como saída
32
                            //configura linha de endereço A3 como saída
33
        DIR A3 = 0;
        DIR A4 = 0;
34
                             //configura linha de endereço A4 como saída
```

Embora a função Aciona_DSP_7_seg() receba os valores de cada display, apenas um display é atualizado em cada chamada.

DSP_7Seg_x4.c

Display Multiplexado / Código-fonte

```
//atualiza display
37
     if (Atual Dsp==1)
                               //atualizar display 1
38
39
             PORTD = tabela[Dsp1]; //atualiza display 1
40
             DSP 1 = 1
                              //ativa linha A1
             DSP 2 = 0;
                              //desativa linha A2
41
42
             DSP 3 = 0;
                             //desativa linha A3
43
             DSP 4 = 0;
                                //desativa linha A4
44
           Atual Dsp = 2; //aponta endereço para o próximo display
45
46
               if (Atual Dsp==2)
                                 //atualizar display 2
        else
47
48
             PORTD = tabela[Dsp2]; //atualiza display 2
49
             DSP 1 = 0;
                        //desativa linha A1
50
           \bigcircDSP 2 = \bigcirc
                             //ativa linha A2
                            //desativa linha A3
51
            DSP 3 = 0;
52
            DSP 4 = 0;
                                //desativa linha A4
53
           Atual Dsp = 3;
                                //aponta endereço para o próximo display
54
```

Main 31.c

Display Multiplexado / Código-fonte

```
if Atual Dsp==3)
                                    //atualizar display 3
          else
56
57
            PORTD = tabela[Dsp3]; //atualiza display 3
58
            DSP 1 = 0;
                                  //desativa linha A1
59
            DSP 2 = 0;
                                  //desativa linha A2
60
           OSP 3 = 1
                                  //ativa linha A3
61
                                  //desativa linha A4
62
            Atual Dsp = 4;
                                   //aponta endereço para o próximo display
63
64
                 if Atual Dsp==4)
                                    //atualizar display 4
65
66
            PORTD = tabela[Dsp4]; //atualiza display 4
                                 //desativa linha A1
67
            DSP 1 = 0;
68
            DSP 2 = 0:
                                 //desativa linha A2
69
                                  //desativa linha A3
70
                                  //ativa linha A4
71
            Atual Dsp = 1;
                                  //aponta endereço para o próximo display
72
73
74
```

Main_33.c

Display Multiplexado / Código-fonte

```
#include <p18f4520.h>
                                           //diretiva de compilação
                                                  //diretiva de compilação
      #include <delays.h>
      #include "DSP_7Seg_x4.h"
                                                  //diretiva de compilação
10
11
12
      //protótipos de funções
13
     void Inic Regs (void);
14
     void high isr (void);
15
16
      //variáveis globais
                                           //declaração de variável local ir
//declaração de variável local ir
//declaração de variável local ir
17
      volatile unsigned char Dsp1=0;
18
     volatile unsigned char Dsp2=0;
19
     volatile unsigned char Dsp3=0;
                                                   //declaração de variável local ir
     volatile unsigned char Dsp4=0; //declaração de variáv
20
21
22
      #pragma code high vector=0x08
                                                    //vetor de interrupção de alta pric
    void interrupt at high vector(void)
23
24
25
         asm GOTO high isr endasm
                                                     //desvia programa para rotina de tr
26
      #pragma code
```

Observe que as variáveis Dsp1, Dsp2, Dsp3, Dsp4 foram declaradas como volatile.

Istoé feito por recomendação do fabricante do MPLAB C18 porque elas são manipuladas dentro e fora da rotina de tratamento de interrupção ;

Main_33.c

Display Multiplexado / Código-fonte

```
Verificação efetuada por um teste no bit de
29
      //Rotina de tratamento de interrupção
30
      #pragma interrupt high isr
                                                  sinalização da interrupção externa, o bitINT0IF
    □ void high isr (void)
                                                  (INTCON<1>)
32
33
         if(!INTCONbits.INTOIF)
                                                         //interrupção externa?
34
         else
35
36
            INTCONbits.INTOIF = 0;
                                                        //sim, limpa bit de sinalização
37
             Dsp1+=1;
                                                    /incrementa unidade
38
             if (Dsp1==10)
                                                    //unidade estourou?
                                                                              Confirmada a origem
39
                                                                              da interrupção, o
40
                                                     //sim, zera unidade
                Dsp1=0;
                                                                              bitINTOIF é então
41
                Dsp2+=1;
                                                   //incrementa dezena
42
                                                                              apagado
43
             if (Dsp2==10)
                                                    //dezena estourou?
44
45
                Dsp2=0;
                                                     //sim,zera dezena
46
                Dsp3+=1;
                                                   //incrementa centena
47
48
             if (Dsp3==10)
                                                    //centena estourou?
49
50
                Dsp3=0;
                                                     //sim, zera centena
51
                Dsp4+=1;
                                                   //incrementa unidade de milhar
52
53
             if (Dsp4==10)
                                                    //unidade de milhar estourou?
54
55
                Dsp4=Dsp3=Dsp2=Dsp1=0;
                                                        //sim, zera contador
56
57
```

Main_33.c

Display Multiplexado / Código-fonte

```
□ void main(void)
                                                    //função main
61
62
63
                                                 //configurar SFRs
         Inic Regs ();
64
         while(1)
                                                //loop infinito
65
66
            Aciona DPS 7 seg (Dsp4, Dsp3, Dsp2, Dsp1); //chamada à função: atualizar d
67
            Delay1KTCYx(8);
                                                    //delay de 4ms
68
69
70
      Esta funcao inicializa os registradores SFRs.*/
       void Inic Regs (void)
73
74
                                                  //PORTA saida
         TRISA = 0x00:
75
         TRISB = 0x01;
                                                  //RBO como entrada e demais pinnos do
76
         TRISC = 0x00;
                                                  //PORTC saida
                                                  //PORTD saida
         TRISD = 0x00;
78
         TRISE = 0x00;
                                                  //PORTE saida
                         Configurações para
79
                                                   //configura pinos dos PORTA e PORTE c
         ADCON1 = 0x0F;
                         Interrupção Externa
         PORTA = 0:
                                                  //limpa PORTA
         PORTB = 0;
                                                  //limpa PORTB
82
         PORTC = 0;
                                                  //limpa PORTC
83
         PORTD = 0x00;
                                                  //apaga displays
84
         PORTE = 0;
                                                  //limpa PORTE
85
86
      //habilita interrupção externa
87
         INTCONbits.GIE = 1;
                                                    //liga chave geral de interrupção
88
         INTCONbits.INTOIE = 1;
                                                    //liga chave individual de interrup
89
                                                    //interrupção externa 0 ocorrerá na
         INTCON2bits.INTEDG0 = 0;
90
```

Próxima Aula

Aula 15 Timers