Лабораторная работа №7

Математические основы защиты информации и информационной безопасности

Николаев Дмитрий Иванович, НПМмд-02-24

Содержание

1	 Цель работы Теоретическое введение 2.1 Дискретное логарифмирование в конечном поле				
2					
	го логарифмирования	8 9			
3	Выполнение лабораторной работы				
4	Выводы	15			
Сп	исок литературы	16			

Список иллюстраций

3.1	Код вспомогательных функций на Julia	12
3.2	Код алгоритма $ ho$ -Метода Полларда для дискретного логарифми-	
	рования на Julia	13
3.3	Начальные данные для нахождения дискретного логарифма на Julia	13
3.4	Результат выполнения кода по решению задачи дискретного ло-	
	гарифмирования на Julia	14

Список таблиц

2.1	Таблица шагов $ ho$ -метода Полларда для дискретного логарифмиро-	
	вания	10

1 Цель работы

Изучить работу алгоритмов дискретного логарифмирования в конечном поле — ρ -метод Полларда для дискретного логарифмирования, а также реализовать его программно.

2 Теоретическое введение

2.1 Дискретное логарифмирование в конечном поле

Задача дискретного логарифмирования, как и задача разложения на множители, применяется во многих алгоритмах криптографии с открытым ключом. Предложенная в 1976 году У. Диффи и М. Хеллманом для установления сеансового ключа, эта задача послужила основой для создания протоколов шифрования и цифровой подписи, доказательств с нулевым разглашением и других криптографических протоколов.

Пусть над некоторым множеством Ω произвольной природы определены операции сложения «+» и умножения «·». Множество Ω называется *кольцом*, если выполняются следующие условия:

- 1. Сложение коммутативно: a+b=b+a для любых $a,b\in\Omega$;
- 2. Сложение ассоциативно: (a+b)+c=a+(b+c) для любых $a,b,c\in\Omega$;
- 3. Существует нулевой элемент $0 \in \Omega$, такой, что a+0 = a для любого $a \in \Omega$;
- 4. Для каждого элемента $a\in\Omega$ существует противоположный элемент $-a\in\Omega$, такой, что (-a)+a=0;
- 5. Умножение дистрибутивно относительно сложения:

$$a \cdot (b+c) = a \cdot b + a \cdot c, \quad (a+b) \cdot c = a \cdot c + b \cdot c,$$

для любых $a, b, c \in \Omega$.

Если в кольце Ω умножение коммутативно: $a\cdot b=b\cdot a$ для любых $a,b\in\Omega$, то кольцо называется коммутативным.

Если в кольце Ω умножение ассоциативно: $(a\cdot b)\cdot c=a\cdot (b\cdot c)$ для любых $a,b,c\in \Omega$, то кольцо называется ассоциативным.

Если в кольце Ω существует единичный элемент e такой, что $a \cdot e = e \cdot a = a$ для любого $a \in \Omega$, то кольцо называется кольцом с единицей (или *унитарным*).

Если в ассоциативном, коммутативном кольце Ω с единицей (АКУ-кольце) для каждого ненулевого элемента a существует обратный элемент $a^{-1} \in \Omega$, такой, что $a^{-1} \cdot a = a \cdot a^{-1} = e$, то кольцо называется *полем*.

Пусть $m\in\mathbb{N},$ m>1. Целые числа a и b называются cpaвнимыми по модулю m (обозначается $a\equiv b\mod m$), если разность a-b делится на m. Некоторые свойства отношения сравнимости:

- 1. Рефлексивность: $a \equiv a \mod m$.
- 2. Симметричность: если $a \equiv b \mod m$, то $b = a \mod m$.
- 3. Транзитивность: если $a \equiv b \mod m$ и $b = c \mod m$, то $a = c \mod m$.

Отношение, обладающее свойством рефлексивности, симметричности и транзитивности, называется отношением эквивалентности. Отношение сравнимости является отношением эквивалентности на множестве $\mathbb Z$ целых чисел.

Отношение эквивалентности разбивает множество, на котором оно определено, на *классы эквивалентности*. Любые два класса эквивалентности либо не пересекаются, либо совпадают.

Классы эквивалентности, определяемые отношением сравнимости, называются классами вычетов по модулю m. Класс вычетов, содержащий число a, обозначается $a \mod m$ или \overline{a} и представляет собой множество чисел вида a+km, где $k \in \mathbb{Z}$; число a называется представителем этого класса вычетов.

Множество классов вычетов по модулю m обозначается $\mathbb{Z}/m\mathbb{Z}$, состоит ровно из m элементов и относительно операций сложения и умножения является кольцом классов вычетов по модулю m.

Пример. Если m=2, то $\mathbb{Z}/2\mathbb{Z}=\{0\mod 2, 1\mod 2\}$, где $0\mod 2=2\mathbb{Z}$ - множество всех четных чисел, $1\mod 2=2\mathbb{Z}+1$ - множество всех нечетных чисел.

Обозначим $F_p=\mathbb{Z}/p\mathbb{Z}$, где p - простое целое число, и назовем конечным полем из p элементов. Задача дискретного логарифмирования в конечном поле F_p формулируется так: для данных целых чисел a и b,a>1,b< p, найти логарифм - такое целое число x, что $a^x\equiv b\mod p$ (если такое число существует). По аналогии с вещественными числами используется обозначение $x=\log_a b$.

Безопасность соответствующих криптосистем основана на том, что, зная числа a,x,p, вычислить $a^x \mod p$ легко, а решить задачу дискретного логарифмирования трудно. Рассмотрим ρ -Метод Полларда, который можно применить и для задач дискретного логарифмирования. При этом случайное отображение f должно обладать не только сжимающими свойствами, но и вычислимостью логарифма (логарифм числа f(c) можно выразить через неизвестный логарифм x и $\log_a f(c)$). Для дискретного логарифмирования в качестве случайного отображения f чаще всего используются ветвящиеся отображения, например:

$$f(c) = \begin{cases} ac, & \text{при } c < \frac{p}{2}, \\ bc, & \text{при } c \geq \frac{p}{2}. \end{cases}$$

При $c<\frac{p}{2}$ имеем $\log_a f(c)=\log_a c+1$, а при $c\geq\frac{p}{2}$ имеем $\log_a f(c)=\log_a c+x$

2.2 Алгоритм, реализующий ho-Метод Полларда для задач дискретного логарифмирования

Вход. Простое число p, число a порядка r по модулю p, целое число b, 1 < b < p; отображение f, обладающее сжимающими свойствами и сохраняющее вычислимость логарифма.

Выход. Показатель x, для которого $a^x = b \mod p$, если такой показатель существует.

- 1. Выбрать произвольные целые числа u,v и положить $c \leftarrow a^u b^v \mod p$, $d \leftarrow c$.
- 2. Выполнять $c \leftarrow f(c) \mod p, d \leftarrow f(f(d)) \mod p$, вычисляя при этом логарифмы для c и d как линейные функции от x по модулю r, до получения равенства $c \equiv d \mod p$.
- 3. Приравняв логарифмы для c и d, вычислить логарифм x решением сравнения по модулю r. Результат: x или "Решений нет".

2.2.1 Пример

Решим задачу дискретного логарифмирования $10^x=64 \mod 107$, используя ρ -Метод Полларда. Порядок числа 10 по модулю 107 равен 53.

Выберем отображение $f(c)\equiv 10^c\mod 107$ при c<53, $f(c)\equiv 64^c\mod 107$ при $c\geq 53.$ Пусть u=2, v=2. Результаты вычислений запишем в таблицу:

Номер шага	c	$\log_a c$	d	$\log_a d$
0	4	2+2x	4	2+2x
1	40	3+2x	76	4+2x
2	79	4+2x	56	5+3x
3	27	4+3x	75	5+5x
4	56	$\int 5+3x$	3	5+7x
5	53	$\int 5+4x$	86	7+7x
6	75	$\int 5+5x$	42	8+8x
7	92	$\int 5+6x$	23	9+9x
8	3	$\int 5 + 7x$	53	11+9x
9	30	6+7x	92	11+11x
10	86	7+7x	30	12 + 12x
11	47	7 + 8x	47	13 + 13x

Таблица 2.1: Таблица шагов ho-метода Полларда для дискретного логарифмирования

Приравниваем логарифмы, полученные на 11-м шаге: 7+8x=13+13x mod 53. Решая сравнение первой степени, получаем: $x=20 \mod 53$.

Проверка: $10^{20} = 64 \mod 107$.

3 Выполнение лабораторной работы

Действуя согласно [1], реализуем все описанные алгоритмы на языке Julia.

Сначала реализуем несколько функций (Рис.[3.1]): функцию, обладающую сжимающими свойствами; функцию по нахождению порядка числа в конечном поле, и функцию модульного экспоненциирования. Далее реализуем функцию ρ -метода Полларда для нахождения дискретного логарифма (Рис.[3.2]). После чего найдём дискретный логарифм для двух случаев: $10^{64} = x \mod 107$, $2^{22} = x \mod 29$ (Рис.[3.3]); в результате чего получим следующий вывод, представленный на Рис.[3.4].

```
OSEL > DOCUMENTS > MOLK > STRONG > 5054-5052 > Matematikae
using LinearAlgebra  ✓
function f_c(a::Int, b::Int, c::Int, p::Int)
    if c < div(p, 2)
        return (a * c) % p, [1, 0]
        return (b * c) % p, [0, 1]
    end
end
function Find Order(n::Int, p::Int)
    if n % p == 1
        return 1
    t = n \% p
    for i in 2:p
        if (t * n) % p == 1
            return i
        end
        t = (t * n) \% p
    end
    return nothing
function Power_Mod(a::Int, b::Int, p::Int)::Int
    res = 1
    a = a \% p
    while b > 0
        if b % 2 == 1
            res = (res * a) % p
        end
        b = div(b, 2)
        a = (a * a) \% p
    end
    return res
end
```

Рис. 3.1: Код вспомогательных функций на Julia

```
function Polland_Rho Method(p::Int, a::Int, b::Int, u = 2, v = 2)

c = (avu *bvv) % p
c
```

Рис. 3.2: Код алгоритма ho-Метода Полларда для дискретного логарифмирования на Julia

```
# Исходные данные а^b = x (mod p)

al = 10 # Основание логарифма
bl = 64 # Число, для которого ищем логарифм
pl = 107 # Модуль конечного поля
println("Начальные данные: a = $al, b = $bl, p = $pl, r = $(Find_Order(al, pl))")

# Вызов функции p-метода Полларда для дискретного логарифмирования
xl = Pollard_Rho_Method(pl, al, bl)

println("Дискретный логарифм 10^64 = x (mod 107) равняется: x = $x1")

# Проверка результата
if Power Mod(al, xl, pl) == bl
println("Дискретный логарифм: x = $x1")
else
println("Peшение не найдено")
end
println("N")

# Исходные данные a^b = x (mod p)
a2 = 2 # Основание логарифма
b2 = 22 # Число, для которого ищем логарифм
p2 = 29 # Модуль конечного поля
println("Начальные данные: a = $a2, b = $b2, p = $p2, r = $(Find_Order(a2, p2))")

# Вызов функции p-метода Полларда для дискретного логарифмирования
x2 = Pollard_Rho_Method(p2, a2, b2)

# Проверка результата
if Power_Mod(a2, x2, p2) == b2
println("Дискретный логарифм: x = $x2")
else
println("Решение не найдено")
end
```

Рис. 3.3: Начальные данные для нахождения дискретного логарифма на Julia

Рис. 3.4: Результат выполнения кода по решению задачи дискретного логарифмирования на Julia

4 Выводы

В ходе выполнения лабораторной работы я изучил работу алгоритмов дискретного логарифмирования в конечном поле — ρ -метода Полларда для дискретного логарифмирования, а также реализовал его программно.

Список литературы

1. Лабораторная работа № 7. Дискретное логарифмирование в конечном поле [Электронный ресурс]. Саратовский государственный университет имени Н.Г. Чернышевского, 2024.