Quenched topological susceptibility.

Jaime Fabián Nieto Castellanos

July 1, 2021

We show results of χ_T^{que} obtained by using the HMC algorithm for pure gauge theory. We used square lattices of dimensions $L \times L$. We also compare the values with χ_T^{que} computed in ref. [1] and with the analytic result by Seiler [2], which states that in infinite volume

$$\chi_T^{\text{que}} = \frac{g^2}{4\pi^2} = \frac{1}{4\beta\pi^2}.$$
 (1)

Figure 1: Quenched topological susceptibility. For $\beta=2$ and 3 we performed 10^4 measurements separated by 10 sweeps. For $\beta=4$ we performed 10^4 measurements separated by 10^2 sweeps. For $\beta=5,5.5,6,6.5,7,7.5$ and $8, 10^4$ measurements separated by 10^3 sweeps were performed.

β	$\chi_T^{ m que}eta$
2	0.0389(2)
3	0.0335(3)
4	0.0304(2)
5	0.0286(2)
5.5	0.0281(2)
6	0.0279(1)
6.5	0.0277(1)
7	0.02789(1)
7.5	0.0273(3)
8	0.0274(4)

Table 1: Results of $\chi_T^{\text{que}}\beta$ for different β values obtained with pure gauge theory simulations. The values of $\chi_T^{\text{que}}\beta$ are an average of the results shown in fig. 1.

We fitted three different functions to the data set of Table 1 to extrapolate to $\beta \to \infty$, see fig. 2. A fit of the form $\chi_T^{\text{que}}\beta = a + b/\beta$, restricted to $\beta \geq 5$, yields $\chi_T^{\text{que}}\beta = 0.0263(6)$, a fit of the form $\chi_T^{\text{que}}\beta = a + b/\beta^c$ yields $\chi_T^{\text{que}}\beta = 0.0261(6)$ and a fit of the form $\chi_T^{\text{que}}\beta = a + b/\beta + c/\beta^2$ yields $\chi_T^{\text{que}}\beta = 0.0257(9)$. In fig. 3 we show the autocorrelation time of the topological charge, for different β values and L = 64.

Figure 2: $\chi_T^{\text{que}}\beta$ vs. $1/\beta$. We used the data from Table 1 to perform three fits of the form $\chi_T^{\text{que}}\beta=a+b/\beta$, $\chi_T^{\text{que}}\beta=a+b/\beta^c$ and $\chi_T^{\text{que}}\beta=a+b/\beta+c/\beta^2$. The fit parameters of the former fit are a=0.0263(6), b=0.0107(37), of the second fit are a=0.0261(6), b=0.0413(60), c=1.67(25) and the parameters of the second degree polynomial are a=0.0257(9), b=0.0088(76), c=0.036(12).

Figure 3: Exponential and integrated autocorrelation times of the topological charge for different β values and L = 64.

References

- [1] I. Bautista, W. Bietenholz, A. Dromard, U. Gerber, L. Gonglach, C. P. Hofmann, H. Mejía, and M. Wagner, *Phys. Rev. D* **92** (2015)
- [2] E. Seiler, Phys. Lett. B **525** (2002).
- [3] S. Dürr and C. Hoelbling. *Phys. Rev. D* **71** (2005).