Soft Q-learning with Mutual Information Regularization

Accepted in ICLR 2019

Kyeong Ryeol, Go M.S. Candidate of OSI Lab

Motivation

Entropy-regularization RL

$$\max_{\pi} E\left[\sum_{t} \gamma^{t} \left(r(s_{t}, a_{t}) - \frac{1}{\beta} \log \pi(a_{t}|s_{t})\right)\right]$$

KL-regularized RL

$$\max_{\pi} E\left[\sum_{t} \gamma^{t} \left(r(s_{t}, a_{t}) - \frac{1}{\beta} \log \pi(a_{t}|s_{t})/\rho(a_{t})\right)\right]$$

- * When some actions are simply non-useful or not frequently used
- * When actions have significantly different importance depending on the task

Paper list

- When some actions are simply non-useful or not frequently used
 - Soft q-learning with mutual information regularization (ICLR 2019)
- When actions have significantly different importance
 - Information asymmetry in KL-regularized RL (ICLR 2019)
 - Exploiting hierarchy for learning and transfer in KL-regularized RL (Arxiv)

One-step decision-making...

$$\max_{\pi,\rho} E\left[r(s,a) - \frac{1}{\beta}\log\pi(a|s)/\rho(a)\right]$$

$$= \max_{\pi} \sum_{s,a} p(s)\pi(a|s)r(s,a) - \frac{1}{\beta}\min_{\rho} \sum_{s} p(s)KL(\pi(\cdot|s) \parallel \rho(\cdot))$$

$$= \max_{\pi} \sum_{s,a} p(s)\pi(a|s)r(s,a) - \frac{1}{\beta}I(\mathcal{S},\mathcal{A}) \quad \left(\because \rho^*(a) = \sum_{s} p(s)\pi(a|s)\right)$$

mutual-information regularization

Also hold in *Multi-step decision-making*(=RL) when $\gamma \rightarrow 1$ (See Appendix)

- 1. What is an optimal policy for a fixed action prior?
- 2. What is an optimal action prior for a fixed policy?
- Definitions
 - Transition probability

•
$$P_{\pi}^{t}(s'|s) = \sum_{a} P(s'|a,s)\pi(a|s)$$
 s.t. $P_{\pi} \in \mathbb{R}^{|\mathcal{S}|} \times \mathbb{R}^{|\mathcal{S}|}$

• Stationary distribution over states (assumed to exist)

•
$$\mu_{\pi}^{T} := \lim_{t \to \infty} \nu_{0}^{T} P_{\pi}^{t}$$
 s.t. $\mu_{\pi}(s') = \sum_{s} P_{\pi}(s'|s) \mu_{\pi}(s)$, $\mu_{\pi}^{T} = \mu_{\pi}^{T} P_{\pi}$

Stationary distribution over actions

•
$$\rho_{\pi}(a) \coloneqq \sum_{s} \mu_{\pi}(s) \pi(a|s)$$

1. What is an optimal policy for a fixed action prior?

2. What is an optimal action prior for a fixed policy?

$$\max_{\pi} E\left[\sum_{t} r(s_t, a_t) - \frac{1}{\beta} \log \frac{\pi(a_t|s_t)}{\rho(a_t)}\right]$$

•
$$V_{\pi,\rho}(s) \coloneqq E\left[\sum_t \gamma^t \left(r(s_t, a_t) - \frac{1}{\beta} \log \pi(a_t|s_t)/\rho(a_t)\right) | s_0 = s\right]$$

•
$$Q_{\pi,\rho}(s,a) \coloneqq r(s,a) + \gamma E_{s'}[V_{\pi,\rho}(s')]$$

By standard variational calculus,

$$\pi^*(a|s) \propto \rho(a) \exp\left(\beta Q_{\pi^*,\rho}(s,a)\right)$$

$$\to \pi^*(a|s) \propto \exp\left(\beta Q_{\pi^*,\rho}(s,a)\right) \text{ if } \rho(a) = 1/|\mathcal{A}|$$

$$\to \pi^*(a|s) = 1 \text{ if } a = \arg\max_{a} Q^*(s,a) \text{ if } \beta \to \infty$$

- 1. What is an optimal policy for a fixed action prior?
- 2. What is an optimal action prior for a fixed policy?

$$\arg \max_{\rho} E\left[\sum_{t} \gamma^{t} \left(r(s_{t}, a_{t}) - \frac{1}{\beta} \log \pi(a_{t}|s_{t}) / \rho(a_{t})\right)\right]$$

$$= \arg \max_{\rho} \sum_{t} \sum_{s} \gamma^{t} \nu_{t}(s) \sum_{a} \pi(a|s) \left(r(s, a) - \frac{1}{\beta} \log \pi(a|s) / \rho(a)\right)$$

$$= \arg \max_{\rho} -\frac{1}{\beta} \sum_{t} \sum_{s} \gamma^{t} \nu_{t}(s) KL(\pi(\cdot|s) \| \rho(\cdot))$$

•
$$v_t(s) := \sum_{s_0, a_0, \dots, s_{t-1}, a_{t-1}} p(s_0) \left(\prod_{t'=0}^{t-2} \pi(a_{t'}|s_{t'}) P(s_{t'+1}|s_{t'}, a_{t'}) \right) \pi(a_{t-1}|s_{t-1}) P(s|s_{t-1}, a_{t-1})$$

$$\rho^*(a) \propto \sum_s \sum_T \gamma^t \nu_t(s) \pi(a|s)$$
 actions $\mu_\pi(s)$: stationary distribution over states

stationary distribution over actions

MIRL: Mutual Information RL

Tabular setting

Q-functions update

$$Q(s,a) \leftarrow (1 - \alpha_Q)Q(s,a) + \alpha_Q \left(T_{soft}^{\rho}Q\right)(s,a,s')$$

$$where \left(T_{soft}^{\rho}Q\right)(s,a,s') \coloneqq r(s,a) + \gamma \frac{1}{\beta} \log \sum_{a'} \rho(a') \exp(\beta Q(s',a'))$$

Why?

$$\begin{split} -\mathit{V}_{\pi,\rho}(s) &= E_a[r(s,a) - \frac{1}{\beta}\log\pi(a|s)/\rho(a) + \gamma E_{s'}[\mathit{V}_{\pi,\rho}(s')]] \\ -\mathit{Q}_{\pi,\rho}(s,a) &= r(s,a) + \gamma E_{s',a'}\left[\mathit{Q}_{\pi,\rho}(s',a') - \frac{1}{\beta}\log\pi(a'|s')/\rho(a')\right] \\ \text{Substitute } \pi(a|s) \text{ to } \pi^{upd}(a|s) \propto \rho(a) \exp\left(\beta \mathit{Q}_{\pi,\rho}(s,a)\right) \end{split}$$

MIRL: Mutual Information RL

- 1. Tabular setting
- Prior update

$$\rho_{i+1}(a) = (1 - \alpha_{\rho})\rho_i(a) + \alpha_{\rho}\pi_i(a|s_i)$$
where $s_i \sim v_i(s)$ and $\pi_i(a|s_i) \propto \rho_i(a) \exp(\beta Q_i(s_i, a))$

Converge to...

in actor-critic

$$\rho_{\pi_i}(a) = \sum_{s} \nu_i(s) \pi_i(a|s) \left(= \sum_{s} \mu_{\pi_i}(s) \pi_i(a|s) \quad with \quad \gamma = 1 \right)$$
Common practice

• β update

$$\beta_i = c \cdot i$$

MIRL: Mutual Information RL

- 2. High-dimensional state space
- Q-functions update

$$L(\theta, \rho) \coloneqq E_{s, a, r, s' \sim \mathcal{M}} \left[\left(\left(T_{soft}^{\rho} Q_{\overline{\theta}} \right) (s, a, s') - Q_{\theta}(s, a) \right)^{2} \right]$$

Prior update

$$\rho_{i+1}(a) = (1 - \alpha_{\rho})\rho_i(a) + \alpha_{\rho}\pi_i(a|s_i)$$

• β update

$$\beta_{i+1} = (1 - \alpha_{\beta})\beta_i + \alpha_{\beta} \frac{1}{L(\theta_i, \rho_{i+1})}$$

Algorithm 1 MIRL

- 1: **Input:** the learning rates α_{ρ} , α_{Q} and α_{β} , a Q-network $Q_{\theta}(s, a)$, a target network $Q_{\bar{\theta}}(s, a)$, a behavioural policy π_{b} , an initial prior ρ_{0} and parameters θ_{0} at t = 0.
- 2: for i = 1 to N iterations do
- 3: Get environment state s_i and apply action $a_i \sim \pi_b(\cdot|s_i)$
- 4: Get r_i, s_{i+1} and store (s_i, a_i, r_i, s_{i+1}) in replay memory \mathcal{M}
- 5: Update prior $\rho_{i+1}(\cdot) = \rho_i(\cdot)(1 \alpha_\rho) + \alpha_\rho \pi_i(\cdot|s_i)$
- 6: if $i \mod update frequency == 0$ then
- 7: Update Q-function $\theta_{i+1} = \theta_i \alpha_Q \nabla_{\theta} L(\theta, \rho_{i+1})|_{\theta_i}$ according to Equation (13)
- 8: Update parameter $\beta_{i+1} = (1 \alpha_{\beta})\beta_i + \alpha_{\beta} \left(\frac{1}{L(\theta_i, \rho_{i+1})}\right)$
- 9: end if
- 10: end for
 - Behavior policy $\pi_b(a|s_i)$

$$a_i = \begin{cases} \arg\max_a \pi_i(a|s_i) & \text{if } u \ge \epsilon \\ a \sim \rho_i(a) & \text{if } u \le \epsilon \end{cases}$$
 Exploitation

Grid-world

Corridor

Settings

- Reaching a goal: reward 9
- Else: reward -1
- Restarted in a random location

Baseline

- > Q-learning (QL)
- > Soft Q-learning (SQL)
- Soft Q-learning+ behavior policy (SQL_m)
- > MIRL

ATARI

- Baselines
 - > Deep Q-Network (DQN)
 - > Soft Q-learning (SQL)
 - > MIRL

$$Z_{normalized} = \frac{z - z_{random}}{z_{human} - z_{random}} \times 100\%$$

Game	DQN (%)	SQL (%)	MIRL (%)
Alien	101.58	51.02	40.23
Assault	250.61	283.62	357.40
Asterix	166.32	242.73	330.19
Asteroids	9.74	8.57	7.80
BankHeist	97.12	94.62	166.26
BeamRider	99.16	113.64	117.21
Boxing	2178.57	2283.33	2338.89
ChopperCommand	72.71	26.37	65.03
DemonAttack	350.95	451.78	469.30
Gopher	474.18	538.87	429.44
Kangaroo	351.48	393.16	405.9
Krull	843.16	886.68	1036.04
KungFuMaster	122.14	142.04	121.41
Riverraid	77.21	109.37	76.02
RoadRunner	548.90	613.62	695.88
Seaquest	21.95	36.00	64.86
SpaceInvaders	166.62	200.38	164.79
StarGunner	653.44	681.12	574.89
UpNDown	183.19	230.82	394.21
Mean	356.26	388.83	413.46

Table 1: Mean Normalized score in 19 Atari games for DQN, SQL and our approach MIRL.

Ablation study

- Baselines
 - > Soft Q-learning (SQL)
 - > Soft Q-learning
 - + behavior policy (SQL_m)
 - > MIRL

