Japanese Patent Laid-Open No. Sho 63-133521

Specification

1. Title of the Invention

Heat Treatment Apparatus for Semiconductor
Substrate

2. What is claimed is

A heat treatment apparatus for a semiconductor substrate in which a chamber is constituted by a load lock chamber 4 having an opening/closing door 4a opened when a wafer 11 is loaded/unloaded, a heat treatment chamber 12 for subjecting the wafer 11 to a heat treatment, and a wafer transferring chamber 3 in communication with both chambers 4, 12; a gate valve 7 for opening or closing a wafer loading/unloading port for both chambers 3, 4 is provided between the load lock chamber 4 and the wafer transferring chamber 3; a wafer holder 28 for moving the wafer 11 between the chambers 3, 4 is provided on the gate valve 7; the gate valve 7 is provided with the wafer holder 28 for transferring the wafer 11 between both chambers 3, 4, a gate valve 9 for opening or closing the wafer loading/unloading port for the chambers 3, 12 is provided between the wafer transferring chamber 3 and the heat

treatment chamber 12; a wafer holder 10 for moving the wafer 11 between the chambers 3, 12 and rotating the wafer 11 is provided on the gate valve 9; a wafer transferring mechanism 5 for loading which transfers the wafer 11 received from the wafer holder 28 and delivering the same to the wafer holder 10 and a wafer transferring mechanism 6 for unloading which performs an operation opposite to that of the wafer transferring mechanism 5 are provided in the wafer transferring chamber 3; a wafer cooling portion 8 is provided for cooling the wafer 11 being transferred by the wafer transferring mechanism 6; an exhausting device 18 and a gas supplying portion 17 are connected to the load lock chamber 4, the wafer transferring chamber 3, and the heat treatment chamber 12; and an upper surface heating source 13a for the wafer 11 and a side surface heating source 13b for the wafer 11 are provided on the upper part and the side part of the heat treatment chamber 12, respectively.

3. Detailed Description of the Invention [Field of the Invention]

This invention relates to a heat treatment apparatus for a semiconductor substrate used in a manufacturing step of a semiconductor device.

[Prior Art]

Although a heat treatment is an essential process in

a manufacturing step for a semiconductor device, the prior art heat treatment performed through an electric furnace has shown a certain limitation as the size of the element has been made fine. For example, it is possible to apply a heat treatment for use in forming a shallow connecting portion after ion implantation. It has been found that as means for overcoming this problem, a method for directly heating a wafer for a short period of time with a halogen lamp is effective. Further, the aforesaid method has been made apparent to provide some merits which could not be attained by the prior art in many applications related to the heat treatment such as forming of silicide or re-flow of an insulation film, forming of alloy, sintering of electrode wiring, and forming of a thin oxidization film or nitrization film in addition to a heat treatment after ion implantation.

Fig. 9 is a perspective view for showing a schematic configuration of a heat treatment apparatus with a rod-like halogen lamp widely used in the prior art.

In Fig. 9, reference numeral 51 denotes a loading wafer cassette for use in storing non-processed wafers. In the case of diameter of 6" or less, the wafers are normally stored in an equal spacing with a pitch of 3/16" (4.76mm). When transferring the wafer, the cassette 51 is lowered by a drive mechanism (not shown) by one pitch and it is

stopped when the wafer 11 at the lowest position in the cassette is contacted with the upper surface of the loading wafer transferring belt 53. After this operation, the belt 53 is rotated in the arrow direction, whereby the wafer in the cassette 51 is transferred from the storing position A to the unloading position (B).

The wafer 11 transferred to the unloading position B is mounted on an extremity end fork mounting portion of the wafer transfer arm 56 and transferred to a predetermined position C within the chamber 62 by the wafer transferring arm 56 through a wafer loading/unloading port 58 (the gate valve 57 is kept open) of the chamber 62 made of quartz and having a rectangular sectional surface.

The transferred wafer 11 is placed at the predetermined position C, and the vacant wafer transferring arm 56 is moved out of the chamber 62. After this operation, the gate valve 57 is closed and the wafer is heated by many rod-like halogen lamps 13a, 13c for the upper surface and lower surface heating sources installed at the upper and lower surfaces of the chamber 62. Reference numeral 35 denotes a reflection plate for improving a heating efficiency.

Although heating of wafer is normally performed in inert gas atmosphere including N_2 gas or Ar gas, it is desirable that impurity gas other than the specified gas

atmosphere is avoided as much as possible. Accordingly, in a case where the wafer is subjected to a heat treatment in N_2 gas atmosphere, for example, it is necessary that the gate valve 57 is opened and the wafer is loaded and unloaded while the gas is flowing from the gas inlet portion 63 to prevent air from entering the chamber 62. This is due to the fact that the wafer heated up to high temperature is quite active, and either oxygen or impurity gas contained in air reacts with the interface plane of the wafer within a short period of time, or dispersion of the impurities proceeds into the wafer.

Heating of the wafer is normally performed such that the wafer is placed in the chamber made of quartz and having a rectangular sectional surface and heated by the rod-like halogen lamps 13a, 13c placed at the upper surface and the lower surface of the chamber 62 while the inside part of the chamber 62 is kept in the specified gas atmosphere.

Heating time is about 1 to 60 seconds and heat treatment can be performed while the wafer is being held for a specified period of time at the specified temperature (for example, it is held for 5 seconds at 1000° C).

Upon completion of heat treatment, the gate valve 57 is opened, the wafer-transferring arm 56 is inserted again into the chamber 62, the wafer is mounted on the extremity

end fork mounting portion and the wafer is transferred from the predetermined position C to the unloading position B. After this operation, the processed wafer at the unloading position B is stored in the unloading wafer cassette 52 by the unloading wafer transferring belt 54.

In addition, the heated wafer is needed to be cooled, and a method is employed in which after unloading the wafer out of the chamber, the wafer is cooled at the unloading position B or a cooling portion is provided between the unloading position B and the storing position D of the cassette 52 to cool the wafer.

Subsequently, the aforesaid series of works are performed. The non-processed wafers stored in the loading wafer cassette 51 are transferred in sequence automatically, subjecting to processing in the chamber 62, and then the processed wafers are stored in the unloading wafer cassette 52.

[Problems to be Solved by the Invention]

However, the aforesaid prior art device has the following problems.

① In a case where the inside gas in the chamber 62 is replaced with inert gas, the inside area in the chamber is evacuated to cause the chamber to be broken in view of its structure, so that the inside part of the chamber 62 cannot be evacuated and a rapid and positive gas

replacement cannot be performed.

- ② Since the lamps 13a, 13c are provided at the upper surface and the lower surface of the chamber 62, it is difficult to cope with radiated heat released around the wafer. To be more concrete, much amount of thermal radiation is found in particular at the gas feeding portion 63 and the wafer loading/unloading port 58, the wafer surface shows much dispersion in temperature distribution, and a slip line may easily be produced.
- ③ Although rotating the wafer is a superior means to improve a temperature distribution in a circumferential direction of the wafer, the lamps 13a, 13c are provided at both upper and lower surfaces of the chamber 62. Therefore it is quite difficult to use a wafer rotating means.
- ④ Although it is desirable to cool the wafer down to a certain specified temperature (for example, about 200℃) within the specified atmosphere, the cooling portion is provided outside the chamber 62 in the prior art device, which means that the wafer is cooled in the air, and even if the wafer processing is performed in the gas atmosphere of specified high purity, oxidation and dispersion at the wafer surface are promoted at the cooling stage. Therefore this means that a superior heat treatment was not performed.

In order to avoid the above-mentioned problem, although it may also be applicable that the cooling portion

is placed in the chamber 62, this method is not a profitable one in view of the transferring method by the wafer transferring arm 56 and shortening of the wafer processing time (improvement in throughput), and so its execution is quite difficult.

The object of the present invention is attained in view of the aforesaid problems and consists in providing a heat treatment apparatus satisfying some conditions such as:

- \bigcirc that a high speed heating and a high speed cooling of the wafer can be performed within the specified high purity gas atmosphere (high purity N₂ gas atmosphere, for example);
- 2 that after the entire inner part of the container is once evacuated by an evacuating device as means for making high purity gas atmosphere, the specified atmosphere can be made within a short period of time to feed the specified gas and replace it;
- 3 that although the wafer is processed one by one, a small load lock chamber is provided at a place where the wafer is loaded into or unloaded out of the container, this load lock chamber is evacuated, thereafter gas replacement is performed to keep the inner atmosphere and to enable both loading and unloading of the wafer to be performed; and

4 that arrangement of lamps at the upper surface and the lower surface of the chamber enables the wafer to be rotated by a wafer rotating mechanism from below the wafer and a wafer temperature measurement to be performed, so that improvement of temperature distribution of the wafer and its temperature control can easily be performed.

[Means for Solving the Problems]

In order to overcome the aforesaid problems and accomplish the aforesaid objects, the present invention provides a heat treatment apparatus for a semiconductor substrate in which a chamber is constituted by a load lock chamber 4 having an opening/closing door 4a opened when a wafer 11 is loaded/unloaded, a heat treatment chamber 12 for subjecting the wafer 11 to a heat treatment, and a wafer transferring chamber 3 in communication with both chambers 4, 12; a gate valve 7 for opening or closing a wafer loading/unloading port for both chambers 3, 4 is provided between the load lock chamber 4 and the wafer transferring chamber 3; a wafer holder 28 for moving the wafer 11 between the chambers 3, 4 is provided on the gate valve 7; the gate valve 7 is provided with the wafer holder 28 for transferring the wafer 11 between both chambers 3, 4, a gate valve 9 for opening or closing the wafer loading/unloading port for the chambers 3, 12 is provided between the wafer transferring chamber 3 and the heat

treatment chamber 12; a wafer holder 10 for moving the wafer 11 between the chambers 3, 12 and rotating the wafer 11 is provided on the gate valve 9; a wafer transferring mechanism 5 for loading which transfers the wafer 11 received from the wafer holder 28 and delivering the same to the wafer holder 10 and a wafer transferring mechanism 6 for unloading which performs an operation opposite to that of the wafer transferring mechanism 5 are provided in the wafer transferring chamber 3; a wafer cooling portion 8 is provided for cooling the wafer 11 being transferred by the wafer transferring mechanism 6; an exhausting device 18 and a gas supplying portion 17 are connected to the load lock chamber 4, the wafer transferring chamber 3, and the heat treatment chamber 12; and an upper surface heating source 13a for the wafer 11 and a side surface heating source 13b for the wafer 11 are provided on the upper part and the side part of the heat treatment chamber 12, respectively. [Operation]

The opening/closing door 4a is opened, the gate valve 7 is closed, the wafer holder 28 is moved to the load lock chamber 4, and the wafer 11 loaded into the chamber 4 is mounted on the wafer holder 28. After this operation, the opening/closing door 4a and the gate valve 9 are closed, the load lock chamber 4, the wafer transferring chamber 3, and the heat treatment chamber 12 are evacuated by the

exhausting device 18, and then specified high purity gas is fed by the gas supplying portion 17 to replace the atmosphere in the chambers 4, 3 and 12 with the specified high purity gas atmosphere.

Under this state, the gate valve 7 is opened, the wafer holder 28 is moved to the wafer transferring chamber 3, the wafer 11 on the wafer holder 28 is transferred to the loading wafer transferring mechanism 5, and the wafer 11 is transferred into the wafer transferring chamber 3 by the transferring mechanism 5. This transferring mechanism 5 is stopped just before the heat treatment chamber 12, the gate valve 9 is opened, the wafer holder 10 is moved to the wafer transferring chamber 3, the loading transferring mechanism 5 is moved to the lower position of the heat treatment chamber 12, the wafer holder 10 is moved toward the heat treatment chamber 12, and the wafer 11 is transferred by the transferring mechanism 5 onto the wafer holder 10.

After this operation, the loading transferring mechanism 5 is returned from the lower position of the heat treatment chamber 12 to the side position, the wafer holder 10 is moved to the heat treatment chamber 12, the wafer 11 is loaded into the heat treatment chamber 12, and at the same time the gate 9 is closed. Under this state, the specified high purity gas is supplied to the heat treatment

3

chamber 12 by the gas supplying portion 17 and in turn, the chamber is evacuated by the exhausting device 18, the wafer holder 10 is rotated, the wafer 11 is uniformly heated by the upper surface heating source 13a and the side surface heating source 13b with the wafer being rotated, to subject the wafer to a heat treatment.

After this operation, the gate valve 9 is opened, the wafer holder 10 is moved to the wafer transferring chamber 3, and the wafer 11 is transferred from the heat treatment chamber 12 to the wafer transferring portion 3. Then, then unloading transferring mechanism 6 is moved to the lower position of the heat treatment chamber 12, the wafer 11 is transferred to the unloading transferring mechanism 6 during operation opposite to the foregoing, and is transferred to the wafer transferring portion 3.

During the transferring operation, the transferring mechanism 6 is once stopped at the position of the cooling portion 8 and after the wafer 11 is cooled with the cooling portion 8, the wafer is transferred by the unloading transferring mechanism 6 to the lower position of the load lock chamber 4. Then, the wafer 11 is loaded into the load lock chamber 4 during the operation opposite to the aforesaid operation and at the same time the gate valve 7 is closed, and the opening/closing door 4a is opened to unload the wafer 11.

[Examples]

Referring now to the drawings, some preferred embodiments of the present invention will be described as follows.

Fig. 1 is an illustrative view for showing a summary of a first preferred embodiment of the apparatus of the present invention; Fig. 2 is an illustrative perspective view for showing both constitution and operation of a wafer transferring mechanism for transferring a wafer between a wafer storing cassette and a load lock chamber in the present invention; Figs. 3(a) to (d) are illustrative sectional views for showing both constitution and operation around a gate valve between a load lock chamber and a wafer transferring chamber in the present invention; Figs. 4(a) to (c) are illustrative sectional views for showing an operation of a loading transferring mechanism of the wafer transferring chamber in the present invention; Fig. 5 is a perspective view for showing a constitution of a loading and unloading transferring mechanism of the wafer transferring chamber in the present invention; Figs. 6(a) to (f) are illustrative sectional views for showing both constitution and operation around the gate valve between the wafer transferring chamber and the heat treatment chamber in the present invention; Fig. 7 is similarly a simplified sectional view for showing a detailed

constitution around the gate valve; and Figs. 8(a), (b) are illustrative sectional views for showing both constitution and operation of a wafer cooling portion of the wafer transferring chamber in the present invention.

In Fig. 1, reference numeral 1 denotes a wafer storing cassette for storing a total number of 25 pieces of not-yet processed wafers and processed wafers in usual. One or a plurality of the cassettes 1 can be provided and operated. Reference numeral 2 denotes a wafer transferring mechanism for unloading a wafer 11 one by one from the cassette 1, loading the wafer into a load lock chamber 4 or performing an operation opposite to the foregoing. wafer transferring mechanism 2 is, as shown in Fig. 2, for example, comprised of a first arm 26 supporting a shaft 26a at the supporting portion in a case 25 in such a way that it can be moved in a vertical direction and rotated; a second arm 27 provided on the first arm 26 in such a way that it can be moved forward or rearward and having a vacuum attraction portion (hole) 27a at the upper surface of thin-walled portion at the extremity end; a rotating mechanism and an ascending/descending mechanism (both of them not shown) for the first arm 26; and an exhausting device for the forward or rearward moving mechanism for the second arm 27 and the vacuum attraction portion (both of them not shown).

Reference numeral 4 denotes a load lock chamber having an opening/closing door 4a opened when the wafer 11 is loaded/unloaded; reference numeral 12 denotes a heat treatment chamber for subjecting the wafer 11 to a heat treatment; and reference numeral 3 denotes a wafer transferring chamber for communicating the lower portions of both chambers 4, 12. These chambers may constitute a chamber (air-sealed container). The heat treatment chamber 12 is made of transparent quartz, wherein its structure is constituted such that its shape is cylindrical to evacuate its inside portion and its ceiling part forms a spherical shape, and even if an external pressure is applied to it, it is not damaged.

Reference numeral 7 denotes a gate valve (refer to Fig. 3) provided between the load lock chamber 4 and the wafer transferring chamber 3 so as to perform opening/closing of the wafer loading/unloading port between both chambers 4 and 3. A valve shaft 7a of the gate valve 7 passes through the lower chamber wall of the wafer—transferring chamber 3 and is supported by a bearing 61 in such a way that it can be moved up and down. Reference numeral 28 denotes a wafer holder having a shaft 28a inserted into the through—pass hole of the valve shaft 7a of the gate valve 7 so as to move the wafer 11 between both chambers 4, 3. The valve shaft 7a of the gate valve 7 and

the shaft 28a of the wafer holder 28 are connected to the ascending/descending mechanism (not shown). Reference numeral 29a denotes a gas feeding pipe connected to the opening/closing door 4a; and reference numeral 15a denotes a gas feeding valve for use in feeding gas into the load lock chamber 4. Reference numeral 30 denotes an exhausting passage passed through the shaft 28a of the wafer holder 28 and opened at the upper side of the shaft 28a; reference numeral 31a denotes an exhausting pipe connected to the exhausting passage 30; and reference numeral 16a denotes an exhausting valve for use in exhausting the load lock chamber 4.

Reference numeral 5 denotes a wafer transferring mechanism for loading provided in the wafer transferring chamber 3 so as to transfer the wafer 11 received from the wafer holder 28 from the lower position of the load lock chamber 4 down to the lower position of the heat treatment chamber 12; reference numeral 6 denotes a wafer transferring mechanism for unloading provided just below the loading wafer transferring mechanism 5 so as to transfer the wafer 11 received from the wafer holder 10 from the lower position of the heat treatment chamber 12 to the lower position of the load lock chamber 4.

These transferring mechanisms 5, 6 are, as shown in Fig. 5, for example, comprised of a moving member 33 moved

along a guide shaft 32 through moving means (not shown) such as a screw feeder and a wire drive; and a fork arm 34 of which an arm base is fixed to the moving member 33 and for mounting the wafer 11 thereon.

Reference numeral 29b denotes a gas-feeding pipe communicated with the wafer-transferring chamber 3; and reference numeral 15b denotes a gas-feeding valve for feeding gas into the wafer-transferring chamber 3.

Reference numeral 31b denotes an exhausting pipe communicated with the wafer-transferring chamber 3; and reference numeral 16b denotes an exhausting valve for exhausting the chamber 3.

Each of reference numerals 13a, 13b denotes many rod-like halogen lamps constituting an upper surface heating source and a side surface heating source provided at the upper part and the side part of the heat treatment chamber 12. The upper surface heating source has many rod-like halogen lamps 13a crossed to each other. The side surface heating source has many rod-like halogen lamps 13b provided at four sides in forward, rearward, rightward and leftward directions. Reference numeral 35 denotes a reflection plate coated with gold plating or the like at its surface for performing an efficient reflection of light of the lamps 13a, 13b; reference numeral 36 denotes a water passage provided for cooling the reflection plate 35; and

reference numeral 14 denotes a frame for supporting the lamps 13a, 13b. The heat treatment chamber 12 and the halogen lamps 13a, 13b may also perform cooling by forced air cooling (not shown).

Reference numeral 24 denotes a gas guide cylinder provided along the inner surface of the sidewall of the heat treatment chamber 12; reference numeral 29c denotes a gas-feeding pipe for communicating with the heat treatment chamber 12; reference numeral 37 denotes many gas injection holes provided at the base 23 of the heat treatment chamber 12 in its circumferential direction; and reference numeral 15c denotes a gas feeding valve for feeding gas between the side wall of the heat treatment chamber 12 and the gas guide cylinder 24 through a gas feeding pipe 29c, the gas feeding valve 15c and many gas injection holes 37.

Reference numeral 31c denotes an exhausting pipe communicated with the heat treatment chamber 12; reference numeral 16c denotes an exhausting valve for exhausting the chamber 12.

Reference numeral 9 denotes a gate valve provided between the wafer-transferring chamber 3 and the heat treatment chamber 12 so as to open or close the wafer loading/unloading port between both chambers 3, 12.

Reference numeral 38 denotes a water passage for cooling the gate valve. A reflection layer such as a gold plating

for performing an efficient reflection of light of the halogen lamps 13a, 13b is applied to the upper surface of the gate valve 9. Reference numeral 39 denotes a quartz plate on the reflection layer.

A valve shaft 9a of the gate valve 9 passes through the wall of the lower chamber of the wafer transferring chamber 3, is supported by a bearing 40 in such a way that it can be moved up and down and air-tightly kept by an air-tight seal 41. Reference numeral 42 denotes an ascending/descending device connected to the valve shaft 9a of the gate valve 9, for example, an ascending/descending cylinder.

Reference numeral 10 denotes a wafer holder for use in moving the wafer 11 between the wafer transferring chamber 3 and the heat treatment chamber 12 and for rotating the wafer 11. A shaft 10a of the wafer holder 10 passes through the valve shaft 9a of the gate valve 9, is supported by a bearing 43 in such a way that it can be moved up and down and is sealingly kept by an air-tight seal 44. Reference numeral 45 denotes an ascending/descending device connected to the shaft 10a of the wafer holder 10, for example, the ascending/descending cylinder; reference numeral 46 similarly denotes a rotary driving device connected to the shaft 10a, and this is comprised of a rotation transmittance mechanism 46a of gear

and a rotary motor 46b, for example.

Reference numeral 21 denotes a radiation temperature measuring unit provided in slant lower side of the base 23 of the heat treatment chamber 12 so as to measure a temperature of the wafer 11 mounted on the wafer holder 10. Reference numeral 22 denotes a temperature control device for use in controlling an electrical amount applied of the lamps 13a, 13b in response to the temperature measured by the temperature-measuring unit 21.

Reference numeral 17 denotes a gas—supplying portion communicated with the gas feeding pipe 29a of the load lock chamber 4, the gas feeding pipe 29b of the wafer transferring chamber 3 and the gas feeding pipe 29c of the heat treatment chamber 12. Reference numeral 18 denotes a gas—exhausting device communicated with the gas exhausting pipe 31a of the load lock chamber 4, the gas exhausting pipe 31b of the wafer transferring chamber 3 and the gas exhausting pipe 31c of the heat treatment chamber 12. Reference numeral 19 denotes a pressure control device for keeping pressures of the gas—supplying portion 17 and of the gas—exhausting device 18 constant. Reference numeral 20 denotes a wafer transferring control device for the wafer transferring mechanisms 2, 5, 6.

Reference numeral 8 denotes a wafer cooling portion installed in the wafer transferring chamber 3 for use in

cooling the wafer 11 during its transferring operation performed by the unloading wafer transferring mechanism 6. As shown in Fig. 8, for example, the wafer-cooling portion 8 is constructed such that a shaft 47a of a wafer cooling disk 47 is passed through the lower chamber wall of the wafer transferring chamber 3 so that the wafer-cooling portion is supported by a bearing 48 in such a way that it can be moved up and down while it is air-tightly held by an air-tight seal 49. The shaft 47a of the cooling disk 47 is provided with a water passage 50 for cooling the disk 47 so that a cooling water pipe 55 is communicated with the water passage 50. And then the ascending/descending device, for example, an ascending/descending cylinder 59 is connected to the shaft 47a of the cooling disk 47. Reference numeral 60 denotes a quartz plate provided at the upper surface of the cooling disk 47 so as to prevent the wafer from being directly contacted with the metallic cooling disk 47.

In the present invention, since the load lock chamber 4, the wafer transferring chamber 3 and the heat treatment chamber 12 are provided in series, the wafer transferring mechanisms 5, 6 of the wafer transferring chamber 3 are constituted such that the fork arm 34 is reciprocated in linear manner. It is also applicable that the wafer transferring chamber 3 and the load lock chamber 4 are provided on the same arcuate line around the heat

treatment chamber 12 and in this case, the wafer transferring mechanisms 5, 6 are constituted such that the fork arm 34 is rotatably reciprocated around the center of arc.

All the operations of the preferred embodiment of the present invention are operated automatically such that the not-yet-processed wafer 11 is unloaded from the wafer-storing cassette 1, this unloaded not-yet-processed wafer 11 is transferred into the heat treatment chamber 12 through the load lock chamber 4 and the wafer transferring chamber 3, and subjected to the heat treatment, the processed wafer 11 is unloaded in an opposite step and stored again in the wafer storing cassette 1, and its action will be described as follows.

In a case where the upper-most stage wafer 11 placed in the wafer-storing cassette 1 is unloaded, at first, the first arm 26 is lifted up to such a position as one (indicated by an imaginary line in Fig. 1) where the extremity end vacuum attraction portion 27a of the second arm 27 can be inserted into a clearance between the upper-most wafer in the cassette 1 and the wafer just below the upper-most wafer. At this time, the second arm 27 is kept at its retracted state where it is pulled into the most-rear end position of the first arm 26. In concurrent with this ascending or subsequent to this operation, the first

where it is coincided with the center line of the cassette 1. Then, the second arm 27 is advanced forward and stops when the wafer 11 can be attracted at the vacuum attraction portion 27a at its extremity end. The first arm 26 is slightly lifted up to cause the extremity end vacuum attraction portion portion 27a to be oppositely contacted with the upper-most stage wafer 11 in the cassette 1 and then the wafer 11 is attracted to the vacuum attraction portion 27a. At the time of attracting the wafer, its lifting is stopped, the second arm 27 is retracted and upon completion of its retraction, the first arm 26 is rotated up to a position θ_2 where the wafer can be loaded into the load lock chamber 4.

In a case where the wafer is loaded into the load lock chamber 4, as shown in Fig. 3(a), the opening/closing door 4a is lifted up and opened, the gate valve 7 and the wafer holder 28 are lifted up to keep the gate valve 7 in its closed state. Under this state, the atmosphere in the wafer-transferring chamber 3 is completely shielded against the surrounding atmosphere, resulting in that the wafer loading operation for the load lock chamber 4 can be performed.

Then, after the second arm 27 is advanced forward as shown in Fig. 2 and stopped at the most-forward position, the first arm 26 is descended again. When the wafer 11 is

contacted with the upper surface of the wafer holder 28, the first arm 26 is stopped descending and the attracted state of the wafer is released. After this operation, the first arm 26 is slightly lowered and it is returned back to its original position through retraction of the second arm 27, and ascending operation of the first arm 26.

This operation results in that the wafer 11 is transferred from the cassette 1 to the load lock chamber 4. In a case where the wafer 11 is stored in the cassette 1, it is satisfactory to perform operation opposite to the aforesaid operation. Since unloading of the wafer from the cassette 1 and storing of the wafer into the cassette 1 are alternatively repeated in sequence, the wafer can be processed continuously. In the examples shown in Figs. 1 and 2, they show the case that one cassette 1 is stored. However, if a plurality of (the maximum number of 5 in this example) wafers are installed in a radial manner around the position of the wafer transferring mechanism 2, it is possible to perform a continuous work even after one cassette is finished for operation.

Fig. 3(b) illustrates a state in which the wafer 11 is loaded into the load lock chamber 4 by the wafer transferring mechanism 2 as described above, and the wafer is placed on the wafer holder 28. Under this state, the opening/closing door 4a is lowered as shown in Fig. 3(c)

and closed. After this operation, the exhausting valves 16a to 16c (refer to Fig. 1) are opened and the exhausting device 18 is operated to evacuate the load lock chamber 4, the wafer transferring chamber 3 and the heat treatment chamber 12. At this time, the gate valve 9 is closed. Atmosphere in each of the chambers 4, 3, 12 becomes a predetermined vacuum state by the vacuum evacuation. After this operation, the gas feeding valves 15a to 15c are opened and the specified high purity gas is fed into each of the chambers 4, 3, 12 through the gas supplying portion Thus the atmosphere in the chamber is replaced with the specified high purity gas atmosphere rapidly and positively. The wafer 11 on the wafer holder 28 is loaded into the wafer transferring chamber 3 in concurrent with the descending of the gate valve 7 and the wafer holder 28 and opening of the gate valve 7 as shown in Fig. 3(d) under a state in which the load lock chamber 4 is replaced with high purity gas.

The fork arm 34 (refer to Fig. 5) of the loading wafer transferring mechanism 5 is moved in a horizontal direction under this loaded state until it is positioned between the wafer 11 and the gate valve 7 as shown in Fig. 4(a). Then the gate valve 7 and the wafer holder 28 are lowered as shown in Fig. 4(b), and the wafer 11 on the wafer holder 28 is transferred onto the loading fork arm 34.

After this operation, the loading fork arm 34 is moved in a horizontal direction toward the heat treatment chamber 12 as shown in Fig. 4(c) and it is stopped just below and just before the heat treatment chamber 12 as shown in Fig. 6(a).

In a case where the wafer 11 is loaded into the heat treatment chamber 12 from this state, the gate valve 9 and the wafer holder 10 are lowered as shown in Fig. 6(a) to enable the wafer to be loaded by the fork arm 34 of the loading wafer transferring mechanism 5. Then, the fork arm 34 of the loading wafer transferring mechanism 5 is moved to the lower position of the heat treatment chamber 12. After this operation, as shown in Fig. 6(b), the wafer holder 10 is lifted up and the wafer 11 on the fork arm 34 is transferred onto the wafer holder 10. After this operation, the fork arm 34 of the loading wafer transferring mechanism 5 is returned back to the position shown in Fig. 6(a). At this time, the fork arm 34 can be passed and returned back to the original position without being struck against the wafer holder 10 at a space part of the forks.

After this operation as shown in Fig. 6(c), the gate valve 9 and the wafer holder 10 are lifted, the wafer 11 is loaded into the heat treatment chamber 12 and the gate valve 9 is closed. The heat treatment for the wafer is performed under this state (refer to Fig. 7). That is,

under the state shown in Fig. 6(c) and Fig. 7, the atmosphere in the heat treatment chamber 12 has become the high purity gas atmosphere already specified, so that the gas feeding valve 15c is opened and the exhausting valve 16c is opened. The specified high purity gas is injected out by the gas supplying portion 17 from the gas injection hole 37 through the gas feeding pipe 29c. The gas passes between a chamber wall of the heat treatment chamber 12 and the gas guide cylinder 24, passes in the heat treatment chamber 12 and is discharged out of the exhausting pipe 31c.

The wafer 11 on the wafer holder 10 is heated by the lamp 13a of the upper surface heating source and the lamp 13b of the side surface heating source while such a gas flowing state is being kept and the wafer holder 10 is being rotated. Temperature of the wafer 11 is measured by a radiation temperature-measuring unit 21. An amount of aeration for the lamps 13a, 13b is controlled by the temperature control device 22 in response to the measured temperature and rotation of the wafer holder 10 is controlled. Thus a uniform heating can be performed against the entire surface of the wafer 11.

Upon completion of the heat treatment of the wafer, as shown in Fig. 6(d), the gate valve 9 and the wafer holder 10 are lowered, the gate valve 9 is opened and at the same time the wafer 11 is transferred from the heat

treatment chamber 12 to the wafer transferring chamber 3. After this operation, as shown in Fig. 6 (e), the fork arm 34 of the unloading wafer transferring mechanism 6 is moved to the lower position of the heat treatment chamber 12. Then the wafer holder 10 is lowered and the wafer 11 is transferred onto the fork arm 34 of the unloading wafer transferring mechanism 6. After this operation, the fork arm 34 is returned back to its original position shown in Fig. 6(f).

In a case where the wafer 11 is transferred by the unloading transferring mechanism 6 from the state shown in Fig. 6(f) to the lower position of the load lock chamber 4, it is transferred in the operation step opposite to the wafer transferring operation performed by the loading transferring mechanism 5. When it comes to the position just above the wafer cooling portion 8 during its transferring operation, its transferring is once stopped as shown in Fig. 8(a). After this operation, as shown in Fig. 8(b), the cooling disk 47 of the wafer cooling portion 8 is lifted up and the wafer 11 is transferred onto the cooling disk 47. Upon transferring of the wafer 11, its lifting is stopped and cooling water is fed by a cooling water pipe 55 to cool the wafer 11. This cooling operation is required to prevent exidation or the like by cooling the wafer 11 before the wafer heated by the heat treatment chamber 12 is

unloaded to the surrounding atmosphere.

Upon completion of the cooling operation, as shown in Fig. 8(a), the cooling disk 47 is lowered so that the wafer 11 is transferred again onto the fork arm 34 of the unloading transferring mechanism 6 and it is transferred to the lower position of the load lock chamber 4. Wafer transferring operation from the wafer-transferring chamber 3 to the load lock chamber 4 and from the load lock chamber 4 to the wafer-storing cassette 1 are sufficiently performed in the operation step opposite to the aforesaid operation step.

[Effects of the Invention]

As apparent from the foregoing description, in accordance with the present invention, the present invention provides a heat treatment apparatus for a semiconductor substrate in which a chamber is constituted by a load lock chamber 4 having an opening/closing door 4a opened when a wafer 11 is loaded/unloaded, a heat treatment chamber 12 for subjecting the wafer 11 to a heat treatment, and a wafer transferring chamber 3 in communication with both chambers 4, 12; a gate valve 7 for opening or closing a wafer loading/unloading port for both chambers 3, 4 is provided between the load lock chamber 4 and the wafer transferring chamber 3; a wafer holder 28 for moving the wafer 11 between the chambers 3, 4 is provided on the gate

valve 7; the gate valve 7 is provided with the wafer holder 28 for transferring the wafer 11 between both chambers 3, 4, a gate valve 9 for opening or closing the wafer loading/unloading port for the chambers 3, 12 is provided between the wafer transferring chamber 3 and the heat treatment chamber 12; a wafer holder 10 for moving the wafer 11 between the chambers 3, 12 and rotating the wafer 11 is provided on the gate valve 9; a wafer transferring mechanism 5 for loading which transfers the wafer 11 received from the wafer holder 28 and delivering the same to the wafer holder 10 and a wafer transferring mechanism 6 for unloading which performs an operation opposite to that of the wafer transferring mechanism 5 are provided in the wafer transferring chamber 3; a wafer cooling portion 8 is provided for cooling the wafer 11 being transferred by the wafer transferring mechanism 6; an exhausting device 18 and a gas supplying portion 17 are connected to the load lock chamber 4, the wafer transferring chamber 3, and the heat treatment chamber 12; and an upper surface heating source 13a for the wafer 11 and a side surface heating source 13b for the wafer 11 are provided on the upper part and the side part of the heat treatment chamber 12, respectively. Thus the opening/closing door 4a and the gate valves 7, 9 are closed after the wafer 11 is loaded from the surrounding atmosphere into the load lock chamber 4, the

load lock chamber 4, the wafer transferring chamber 3, and the heat treatment chamber 12 are replaced with the specified high purity gas atmosphere by the exhausting device 18 and the gas supplying portion 17, the wafer 11 is supplied to the heat treatment chamber 12 and is subjected to a heat treatment through opening of the gate valves 7, 9, operation of the wafer holders 28, 10 and operation of the loading and unloading transferring mechanisms 5, 6 while the gas atmosphere is being kept, and the wafer 11 after its heat treatment can be returned back to the load lock chamber 4.

Within the heat treatment chamber 12, the wafer 11 can be heated by the upper surface heating source 13a and the side surface heating source 13b while the wafer holder 10 is rotated in the high purity gas atmosphere specified and the wafer 11 is rotated. Therefore an entire surface of the wafer 11 can be uniformly heated and subjected to a heat treatment.

Since the radiation temperature measuring unit 21 can be installed at the lower side part of the heat treatment chamber 12, a temperature of the wafer 11 can be measured by the measuring unit 21, an amount of applied electricity of the upper surface heating source 13a and the side surface heating source 13b is controlled by the temperature control device 22 in response to the measured

temperature to cause the temperature distribution in the wafer surface to be further uniform, whereby the heat treatment of the wafer can be performed more satisfactorily.

In addition, the wafer 11 after its heat treatment can be cooled by the wafer cooling unit 8 provided in the wafer transferring chamber 3 during the transferring operation by the unloading wafer transferring mechanism 6 and further the wafer 11 after cooling operation can be unloaded into the surrounding atmosphere from the load lock chamber 4. Therefore oxidation or the like can be prevented.

Further, it has also an effect that the entire device can be made compact in size.

4. Brief Description of the Drawings

Fig. 1 is an illustrative view for showing an outline of an embodiment of the apparatus of the present invention;

Fig. 2 is an illustrative perspective view for showing the constitution and operation of a wafer transferring mechanism for transferring a wafer between a wafer storing cassette and a load lock chamber in the present invention;

Figs. 3(a) to (d) are illustrative sectional views for showing the constitution and operation around a gate

valve between a load lock chamber and a wafer transferring chamber in the present invention;

Figs. 4(a) to (c) are illustrative sectional views for showing an operation of a loading transferring mechanism of the wafer transferring chamber in the present invention;

Fig. 5 is a perspective view for showing a constitution of loading and unloading transferring mechanisms of the wafer transferring chamber in the present invention;

Figs. 6(a) to (f) are illustrative sectional views for showing the constitution and operation around a gate valve between the wafer transferring chamber and the heat treatment chamber in the present invention;

Fig. 7 is similarly a simplified sectional view for showing a detailed constitution of Fig. 6;

Figs. 8(a), (b) are illustrative sectional views for showing the constitution and operation of the wafer cooling portion of the wafer transferring chamber in the present invention; and

Fig. 9 is a perspective view for showing a schematic constitution of a heat treatment device using a rod-like halogen lamp widely used in the prior art.

1: wafer storing cassette 2: wafer transferring mechanism

3: wafer transferring chamber 4: load lock chamber 4a:

opening/closing door 5: wafer transferring mechanism for loading 6: wafer transferring mechanism for unloading 7: gate valve 7a: valve shaft 8: wafer cooling portion gate valve 9a: valve shaft 10: wafer holder 10a: shaft 11: wafer 12: heat treatment chamber 13a: upper surface heating source (rod-like halogen lamp) 13b: side surface heating source (rod-like halogen lamp) 13c: lower surface heating source (rod-like halogen lamp) 15a to 15c: gas feeding valve 16a to 16c: exhausting valve 17: gas supplying portion 18: exhausting device transferring control device 21: radiation temperature measuring unit 22: temperature control device 26: first arm 26a: shaft 27: second arm 27a: vacuum attraction portion 28: wafer holder shaft 29a to 29c: gas feeding pipe 30: exhausting 31a to 31c: exhausting pipe 32: guide shaft passage

33: moving member 34: fork arm 42, 45, 59:
ascending/descending device (ascending/descending cylinder)
46: rotation driving device 47: wafer cooling disk 47a:
shaft 58: wafer loading/unloading port

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 63133521 A

(43) Date of publication of application: 06 . 06 . 88

(51) Int. CI

H01L 21/22 H01L 21/26 H01L 21/68

(21) Application number: 61281533

(22) Date of filing: 25 . 11 . 86

(71) Applicant:

KOKUSAI ELECTRIC CO LTD

(72) Inventor:

TSUNODA RYOJI HIURA KAZUO

device 21 so that the electric conduction of heating

(54) HEAT TREATMENT EQUIPMENT FOR SEMICONDUCTOR SUBSTRATE

(57) Abstract:

PURPOSE: To enable heat treatment to be performed meeting the requirements for wafers in the specified high purity gas atmosphere by a method wherein an exhaust system and gas feeder are connected to a load lock chamber, a wafer carrier chamber and a heat treatment chamber while upper surface and side heating sources of respective wafers are arranged in the heat treatment chamber.

CONSTITUTION: After carrying wafers 11 from atmosphere to a load lock chamber 4, opening and closing door 4a and gate valves 7, 9 are closed and then the atmosphere in the load lock chamber 4 is substituted with high purity gaseous atmosphere specified by the load lock chamber 4, a wafer carrier chamber 3, a heat treatment chamber 12, an exhaust system 18 and a gas feeder 17. Then, the gate valves 7, 9 are opened to actuate wafer holders 28, 10, carrier mechanisms 5, 6 for feeding wafers 11 to heat treatment chamber 12 to be heat treated and returned to the load lock chamber 4 after heat treatment. Besides, within the heat treatment chamber 12, wafers 11 are turned to be evenly heated by an upper surface heating source 13a and a side heating source 13b. Furthermore, the temperature of wafers 11 can be measured by a radiation temperature measuring

sources 13a, 13b may be controlled by a temperature controller 22 to promote the heat treatment of wafers 11.

COPYRIGHT: (C)1988,JPO&Japio

19日本国特許庁(JP)

⑩ 公 開 特 許 公 報 (A) 昭63-133521

Mint Cl.⁴

識別記号

庁内整理番号

匈公開 昭和63年(1988)6月6日

H 01 L 21/22 21/26

L-7738-5F L-7738-5F

A-7168-5F

審査請求 未請求 発明の数 1 (全14頁)

半導体基板の熱処理装置 図発明の名称

> 昭61-281533 ②特 頣

願 昭61(1986)11月25日 突出

⑫発 明 者 角 田

21/68

良

東京都西多摩郡羽村町神明台2-1-1 国際電気株式会

社羽村工場内

73発 明 者 Θ 浦 和 夫 東京都西多摩郡羽村町神明台2-1-1 国際電気株式会

社羽村工場内

国際電気株式会社 ①出 願 人

東京都港区虎ノ門2丁目3番13号

弁理士 石 戸 砂代 理 人

1. 発明の名称

半導体基板の熱処理装置

2. 特許請求の範囲

ウェーハ11の搬入出時に開かれる開閉ドア4aを 有するロードロック室4と、ウェーハ11を熱処理 する熱処理室12とこの両室4,12を連通するウェ ーハ搬送室3とでチャンパを構成し、ロードロッ ク室 4 とウェーハ搬送室 3 との間に、この両室 4 , 3 間のウェーハ撥入出口の開閉を行うゲート弁 7を設け、このゲート弁7に当該両室4.3間の ウェーハ11の移動を行うウェーハホルダ28を併設 せしめ、ウェーハ搬送室3と熱処理室12との間に は、この両室3.12間のウェーハ搬入出口の開閉 を行うゲート弁9を設け、このゲート弁9に当該 両室3,12間のウェーハ11の移動とウェーハの回 転を行うウェーハホルダ10を併設し、ウェーハ漿 送室3内にはウェーハホルダ28から受け取ったウ ェーハ11を撥送してウェーハホルダ10に受渡すロ ーダ用ウェーハ搬送機構5とその逆の動作を行う

アンローダ用ウェーハ搬送機構もを併設すると共 にこのアンローダ用ウェーハ機送機構6による搬 送途中のウェーハ11を冷却するウェーハ冷却部8 を設け、ロードロック室4,ウェーハ鍛送室3及 び熱処理室12に、排気装置18及びガス供給部17を 連結し、熱処理室12の上部及び側部にそれぞれウ ェーハ11の上面加熱源13a 及び側面加熱源13b を 配置せしめてなる半導体基板の熱処理装置。

3. 発明の詳細な説明

(産業上の利用分野)

本発明は半導体デバイスの製造過程において使 用される半導体基板の熱処理装置に関する。

〔従来の技術〕

半導体デバイスの製造過程において、熱処理は 不可欠な工程であるが、素子の微細化が進むにつ れ、従来の電気炉による熱処理に限界がみえ始め てきた。例えば、イオン打込み後の残い接合形成 のための熱処理等をあげることができる。この間 題を解決するための手段として、ハロゲンランプ によって、ウェーハを直接、短時間加熱する方法 が有効であることがわかっている。 更に、上記方法は、イオン打込み後の熱処理の他、シリサイドの形成や絶縁膜のリフロー、アロイの形成。 電極配線のシンタリング、 弾い酸化膜や窒化膜の形成等、 熱処理にからむ多くの用途に、 従来得られなかったメリットを生ずることもわかってきた。

第9図は従来広く用いられている棒状ハロゲン ランプによる然処理装置の概略構成を示す斜視図 である。

第9図において51は未処理ウェーハを収納するローダ用ウェーハカセットである。直径 6 * 以下の場合ウェーハは通常3/16 * (4.76 ***) のピッチで等間隔に収納されている。ウェーハを機出する場合はこのカセット51を1ピッチずつ駆動機構

(図示せず)により下降させ、カセット内展下位 置のウェーハ11がローダ用ウェーハ撥送ベルト53 の上面に接触した時点で停止させる。その後ベルト53を矢印方向に回転させることによりカセット 51内のウェーハは収納位置Aから取出し位置Bへ 鍛送される。

ウェーハの搬入及び搬出を行う必要がある。これは、高温に加熱されたウェーハは非常に活性であり、空気中に含まれている酸素や不純物ガスがわずかな時間にウェーハの界面と反応したり、不純物の拡散がウェーハ内へ進んでしまったりするためである。

ウェーハの加熱は、通常、長方形断面を有する 石英製のチャンパ62内にウェーハを置き、チャン パ62内を指定されたガス雰囲気に保持した状態で チャンパ62の上面及び下面に配置された棒状ハロ ゲンランプ 13a、13c により行われる。

加熱時間は1~60秒程度で、指定された温度に 一定時間保持(例えば 1000 でに5秒保持)する ことにより熱処理を行うことができる。

然処理が完了するとゲートバルブ57を開き、ウェーハ機送アーム56を再びチャンバ62内に挿入してその先端双叉破置部にウェーハを観せ、ウェーハを所定位置Cから取出し位置Bへ搬送する。その後、取出し位置Bの処理済ウェーハをアンローダ用ウェーハ機送ベルト54によりアンローダ用ウ

収出し位置 B へ 厳送されたウェーハ11はウェーハ機送アーム56の先端双叉戦置部へ敢せられ、ウェーハ機送アーム56により更に長方形断面を有する石英製のチャンパ62のウェーハ出入口58(ゲートバルブ57は開いている)よりチャンパ62内の所定位置 C へと 厳送される。

搬送されたウェーハ11を当該所定位置 C に置き、空になったウェーハ(W 送アーム56を移動してチャンパ62外へ出す。しかる後ゲートパルプ57を閉じ、チャンパ62の上、下面に多数配置した上面、下面加熱源の棒状ハロゲンランプ 13a・13c によりウェーハの加熱が行われる。35は加熱効率を向上させるための反射板である。

ウェーハの加熱は通常NェガスまたはArガスなどの不活性ガス雰囲気中で行われるが、指定されたガス雰囲気以外の不純物ガスは極力排除されていることが望ましい。したがって例えばNュ雰囲気中でウェーハを熱処理する場合は、チャンバ62内に空気などが入ることを防止するため、ガス導入部63よりガスを流したまま、ゲートバルプ57を開き、

ェーハカセット52内へ収納する。

また加熱されたウェーハは冷却する必要があるが、チャンパ外へ搬出後、取出し位置Bで冷却するか、または取出し位置Bとカセット52の収納位置Dとの間に冷却部を設け、そこで冷却するなどの方法がとられている。

以下上述の一連の作業を繰り返し行い、ローダ 用ウェーハカセット51に収納された未処理ウェー ハは順次自動的に収出されてチャンパ62内で処理 され、この処理済ウェーハはアンローダ用ウェー ハカセット52に収納されるものである。

[発明が解決しようとする問題点]

しかしながら上記のような従来装置においては、 次のような問題点があった。即ち、

- ① チャンバ62内を不活性ガスなどに置換する場合、チャンバ内を真空排気をするとその構造上チャンバが破壊してしまうので、チャンバ62内を真空排気できないため迅速かつ確実にガス置換をすることができない。
- ② チャンパ62の上面及び下面にランプ 13a, 13c

が配置されているため、ウェーハ周辺からの熱 放散に対し、これを補うことが困難であり、が ス導入部63及びウェーハ出入口58に対する部分 は特に熱放散が多く、ウェーハ面での温度分布 にバラツキが多くなり、スリップラインの発生 が起こりやすい。

- ③ ウェーハの周方向の温度分布を改善するためにはウェーハを回転させることが良好な手段であるが、チャンバ62の上下両面にランプ13a,13cが配置されているためウェーハ回転の手段を講することが非常に困難である。
- ④ ウェーハの冷却は指定された雰囲気内である一定温度(例えば 200で前後)まで行うことが望ましいが、従来装置においては冷却部がハと登ましいが、だれないるため、ウェールはからない。これならない。

 ・ で冷却されることになり、これはたっち、中で行われたとしても冷却過程において、中で行われたとしても冷却過程において、中で行われたとしても冷却過程において、良好な熱処理を行ったことにはならない。

うことができること、

④ ランプの配置を上面及び側面に配置することによりウェーハの下側よりウェーハの回転機構による回転とウェーハの温度測定ができるためウェーハの温度分布の改善及び温度制御が容易にできること

等の条件を満足する熱処理装置を提供することに まる。

(問題点を解決するための手段)

本発明装置は上記の間題点を解決し、上記の目的を達成するため、第1図示のようにウェーロ11の嵌入出時に開かれる開閉ドア4aを独立する熱処理する熱処理室3とでチャンパを構成し、この再室4・3間のけった一へ搬送との間でですが、この時で12との間でです。この時で12との間では、この時を行うウェーハルグ28を併設せし、この時送室3と熱処理室12との間には、この両室

またこれを防止するためにチャンバ62内に冷却部を設ける方法も考えられるが、ウェーハ蝦送アーム56による搬送方法及びウェーハの処理時間の短縮化(スループット向上)などを考えると、得策ではなく、その実施が非常に困難である。

本発明の目的は上記の問題点に鑑みてなされた もので、

- ① 指定された商純度ガス雰囲気(例えば高純度 N*ガス雰囲気)中でウェーハの急速加熱及び冷 却を行うことができること、
- ② 高純度ガス雰囲気を作成する手段として全容 器内を真空排気装置で一旦排気した後、指定されたガスを導入し置換するため短時間で指定された雰囲気を作ることができること、
- ③ ウェーハは一枚ずつ処理するが、ウェーハを容器内へ出し入れする部分には小さなロードロック室を設け、このロードロック室を真空排気した後、ガス置換をすることにより内部の雰囲気を保持したまま、ウェーハの搬入・搬出を行

(作用)

開閉ドア4aを開き、ゲート弁7を閉じると共に ウェーハホルダ28をロードロック室4に移動させ、 このウェーハホルダ28に、室4に搬入したウェー ハ11を載せる。しかる後、開閉ドア4a及びゲート 弁9を閉じ、ロードロック室4、ウェーハ機送室3及び熱処理室12を排気装置18により排気し、次いでガス供給部17により指定の高純度ガスを導入して室4、3、12内の雰囲気を指定の高純度ガス雰囲気に置換する。

この状態で、ゲート弁7を開くと共にウェーハホルダ28をウェーハ機送室3に移動させて当該コーハホルダ28上のウェーハ11をローダ用ウェーハ機送機構5に移し、この機送機構5によりウェーハ機送では、ゲート弁9を開くと共にウェーハホルダ10をウェーハホルダ10を熱処理室12の下方位置に移動させてウェーハ11を機送機構5よりウェーハホルダ10上に移す。

その後、ローダ用機送機構 5 を熱処理室12の下方位置より熱処理室12の下方位置より側方位置に 戻してから、ウェーハホルダ10を熱処理室12に移動させてウェーハ11を熱処理室12に接入すると共

(実施例)

以下図面により本発明の実施例を説明する。

第1図は本発明装置の1実施例の概要を示す説 明図、第2図は木発明におけるウェーハ収納カセ ットとロードロック室との間でウェーハの搬送を 行うウェーハ遊送機構の構成と動作の説明用斜視 図、第3図四~回は本発明におけるロードロック 室とウェーハ機送室との間のゲート弁周りの構成 と動作の説明用断面図、第4図(の)~(の)は本発明に おけるウェーハ搬送室のローダ用機送機構の動作 説明用断面図、第5図は木発明におけるウェーハ 搬送室のローダ用、アンローダ用搬送機構の構成 を示す斜視図、第6図(4)~(1)は本発明におけるウ エーハ殿送室と熱処理室との間のゲート弁周りの 構成と動作の説明用断面図、第7図は同じくその 詳和構成を示す簡略断面図、第8図(a),(b)は本発 明におけるウェーハ機送室のウェーハ冷却部の構 成と動作の説明用断面図である。

第1 図において l は未処理, 処理済ウェーハ11を全部で通常25枚収納するウェーハ収納カセット

にゲート9を閉じる。この状態でガス供給部17により指定された高純度ガスを熱処理室12に供給する一方、排気装置18により排気し、ウェーハホルダ10を回転させることによりウェーハ11を回転させながら上面加熱源13a と側面加熱源13b により均一に加熱してウェーハの熱処理を行う。

しかる後、ゲート弁9を開くと共にウェーハホルグ10をウェーハ歳送室3に移動させてウェーハ11を熱処理室12からウェーハ搬送部3に機出する。次いでアンローグ用搬送機構6を熱処理室12の下方位置に移動させ、上記の逆の動作過程でウェーハ11をアンローグ用搬送機構6に移してウェーハ騰送部3を搬送する。

その搬送途中で機送機構6を冷却部8の位置に一旦停止させ、ウェーハ11を冷却部8により冷却した後、アンローダ用機送機構6によりロードロック室4の下方位置まで機送する。次いで上記の逆の動作過程でウェーハ11をロードロック室4に 機入すると共にゲート弁7を閉じ、開閉ドア4aを 聞いてウェーハ11の取り出しを行う。

である。このカセット1を1個または複数個配置し作用することができる。2はカセット1からウェーハ11を1枚ずつ取り出してロードロック室4に搬入し、またはその逆の動作を行うウェーハ般送機構である。このウェーハ機送機構2は、例えば第2図示のようにケース25内の支承部に上下動自在に軸26aを支持した第1アーム26と、第1アーム26上に前後動自在に設けられ、先端内部出上面に真空吸着部(孔)27aを有する第2アーム27と、第1アーム26の回転機構及び上下動機構(いずれも図示せず)と、第2アーム27の前後動機構及び真空吸着部の排気装置(いずれも図示せず)とよりなる。

4はウェーハ11の搬入出時に開かれる開閉ドア4aを有するロードロック室、12はウェーハ11を熱処理す熱処理室、3はこの両室4,12の下部を連通するウェーハ機送室で、これらの室はチャンバ(気密容器)を構成する。熱処理室12は透明石英製であり、内部を真空排気するため円筒状で天井郎は球状をなしていて外部圧力が加わっても破損

しない構造になっている。

7はロードロック室1とウェーハ設送室3との 間に設けたゲート弁(第3図参照)で、両室4. 3間のウェーハ搬入出口の開閉を行うものである。 ゲート弁1の弁軸7aはウェーハ撥送室3の下部室 壁に貫通して上下動自在に軸受61により支承され ている。28はゲート弁7の弁軸7aの貫通孔に軸 部28a を挿入したウェーハホルダで、両室4.3 間のウェーハ11の移動を行うものである。ゲート 弁7の弁軸7aとウェーハホルダ28の軸部28a は上 下動機構 (図示せず) に連結されている。29a は 開閉ドア4aに連結したガス導入パイプで、15g は ガス導入弁であり、ガスをロードロック室4に導 入するためのものである。30はウェーハホルダ28. の軸部28a を貫通して当該軸部28a の上部側方に 開口させた排気通路、31a は排気通路30に連結し た俳気パイプで、16a は俳気弁であり、ロードロ ック室 4 を排気するためのものである。

5 はウェーハ機送室 3 内に設けられたローダ用 ウェーハ機送機構で、ウェーハホルダ28から受け

多数本の様状ハロゲンランプである。上面加熱源は多数本の棒状ハロゲンランプ13aを直交して併設されており、側面加熱源は多数本の棒状ハロゲンランプ13bを前後左右の4面に併設されている。35はランプ 13a・13b の光を効率よく反射するために表面に金メッキ等を施した反射板、36はこの反射板35を冷却するために設けられている水路、14はランプ 13a・13b を支えるフレームである。
然処理室12及び棒状ハロゲンランプ 13a・13b は強制空冷による冷却も併用している(図示せず)

24は熱処理室12の側壁内面に沿って設けたガス 案内筒、29c は熱処理室12に速通するガス導入パイプ、37は熱処理室12のベース23に周方向に設けられた多数のガス噴出孔、15c はガス導入弁であり、これらはガスをガス導入パイプ29c ・ガス導入弁15c,多数のガス噴出孔37を経て熱処理室12の側壁とガス案内筒24との間に導入するためのものである。31c は熱処理室12に連通する排気パイプで、16c は排気弁であり、当該室12を排気するた 取ったウェーハ11をロードロック室4の下方位置から熱処理室12の下方位置まで搬送するものであり、6はこのローダ用ウェーハ搬送機構5の真下に併設されたアンローダ用ウェーハ搬送機構で、ウェーハホルダ10から受け取ったウェーハ11を熱処理室12の下方位置からロードロック室4の下方位置まで搬送するものである。

これらの撥送機構5,6は例えば第5図示のように案内軸32に沿ってねじ送り、ワイヤー駆動等の移動手段(図示せず)により移動せしめられる移動体33と、この移動体33にアーム基部が固定されウェーハ11を報置する双叉アーム34とよりなる。

29b はウェーハ撥送室3に連通するガス導入パイプで、15b はガス導入弁であり、ガスをウェーハ撥送室3に導入するためのものである。31b はウェーハ撥送室3に連通する排気パイプで、16b は排気弁であり、当該室3を排気するためのものである。

13a,13b はそれぞれ熱処理室12の上部及び側 部に設けた上面加熱源及び側面加熱源を構成する

めのものである。

9 はウェーハ機送室 3 と熱処理室12との間に設けたゲート弁で、両室 3 、12間のウェーハ鍛入出口を開閉するためのものである。38はこのゲート弁を冷却するための水路である。ゲート弁9 の上面にはランプ 13a、13b の光を効率よく反射させるために金メッキなどの反射層が施されており、39はこの反射層上の石英板である。

ゲート弁9の弁軸9aはウェーハ搬送室3の下部 室壁に貫通して上下動自在に軸受40により支承され、かつ気密シール41により気密に保たれている。 42はゲート弁9の弁軸9aに連結した上下動装置、 例えば上下動シリングである。

10はウェーハ搬送室3と熱処理室12間のウェーハ11の移動とウェーハ11の回転を行うウェーハホルダで、このウェーハホルグ10の軸部10a は、ゲート弁9の弁軸9aに貫通して上下動自在に軸受43により支承され、かつ気密シール44により気密に保たれている。45はウェーハホルグ10の軸部10aに連結した上下動装置、例えば上下動用シリンダ、

46は同じく軸部10a に連結した回転駆動装置、例えばギャによる回転伝達機構46a と回転用モータ46b よりなる。

21は無処理室12のベース23に斜め下方に設けた 幅射温度測定器で、ウェーハホルダ10に報置され たウェーハ11の温度を測定するものである。22は この温度測定器21により測定した温度に応じてラ ンプ 13a,13b の道電量を制御するための温度制 御装置である。

17はロードロック室4のガス導入パイプ29a.ウェーハ機送室3のガス導入パイプ29b 及び熱処理室12のガス導入パイプ29c に連通したガス供給部、18はロードロック室4の排気パイプ31a,ウェーハ機送室3の排気パイプ31b 及び熱処理室12の排気パイプ31c に連通した排気装置、19はガス供給部17と排気装置18の圧力を一定に保つための圧力制御装置である。また、20はウェーハ機送機構2,5、6のウェーハ機送制御装置である。

8 はウェーハ機送室 3 内に設けられアンローダ 用ウェーハ機送機構 6 による機送途中のウェーハ 11を冷却するウェーハ冷却部である。このウェーハ冷却部 8 は、例えば第 8 図示のようにウェーハ冷却ディスク47の軸部 47a をウェーハ殴送室 3 の下部室壁に貫通して上下動自在に軸受48により支承し、かつ気密シール49により気密に保持し、冷却ディスク47の軸部 47a に当協ディスク47の軸部 47a に上下動装置、例えば上下動用シリング59を連結せしめてなる。60は冷却ディスク47の上面に設けた石英板で、ウェーハが金属製の冷却ディスク47に直接接触するのを回避するためのものである。

本実施例ではロードロック室4,ウェーハ酸送室3及び熱処理室12が直線上に配置してあるため、ウェーハ搬送室3のウェーハ搬送機構5,6としては双叉アーム34を直線往復移動する構成としたが、熱処理室12を中心にウェーハ搬送室3及びロードロック室4を同一円弧上に配置してもよく、この場合、ウェーハ搬送機構5,6としては双叉アーム34を円弧の中心を軸として回転往復移動す

る構成とすればよい。

本実施例はウェーハ収納カセット 1 より未処理ウェーハ11を取り出し、この取り出された未処理ウェーハ11をロードロック室 4. ウェーハ機送室3を経て然処理室12に購入して然処理し、この処理済ウェーハ11を逆の過程で取り出し、再びウェーハ収納カセット 1 に収納するという動作を全て自動で行うもので、以下その作用を説明する。

ウェーハ収納カセット1内にある最上段のウェーハ11を機出する場合は、まず、第1アーム26をカセット1内の最上段ウェーハとその真下の段立のウェーハとの間の隙間に第2アーム27の仮題空で、第1アーム26の最後に置まで引込んだ状態にある。この上昇と同時またはその後に第1アーム26をカセット1の中心線に一致する位置の1(第2図参照)まで回転させる。次いで第2アーム27を前進させ、その先端の真空吸着部27aにウェーハ11が吸着できる状態になったところで停止させる。

ロードロック室(へのウェーハ撥入に際し、第3回(の示のように開閉ドア4aを上昇させて開き、ゲート弁7及びウェーハホルダ28を上昇させてゲート弁7を閉じた状態にする。この状態でウェーハ殴送室3内の雰囲気は外気と完全に遮断され、ロードロック室4へのウェーハ撥入作業を行うことができる。

そこで第2アーム27を第2図示のように前進させ最前位置で停止した後、第1アーム26を再び下降させ、ウェーハ11がウェーハホルダ28の上面に接触したところで一旦停止させウェーハ吸者を解除する。その後、第1アーム26をわずかに下降させ、第2アーム27の後退、第1アーム26の上昇の

動作過程を経て元の位置に戻る。

これでウェーハ11はカセット 1 からロードロック室4 へ移されたことになる。ウェーハ11をカセット 1 へ収納する場合はこの逆の動作を行えばいい。以下、ウェーハのカセット 1 からの殴出ひびカセット 1 への収納の動作を交互に繰り返すことにより連続して処理することができる。第1 ・ 第2 図例ではカセット 1 が 1 個の場合を示してなりが、ウェーハ嬢送機構 2 の位置を中心としておりば、1 個のカセットが終了しても連続して作業を行うことができる。

第3図的は上記のようにウェーハ機送機構2によりロードロック室4内にウェーハ11が搬入され、ウェーハホルダ28上に置かれた状態を示してある。この状態で、開閉ドア4aを第3図的示のように下降して閉じる。しかる後、排気弁16a~16c(第1図参照)を開き、排気装置18を作動してロードロック室4.ウェーハ機送室3及び熱処理室12を真空排気する。このとき、ゲート弁9は閉じてい

この状態からウェーハ11を熱処理室12内に搬発 する際に、ゲート弁9及びウェールグ10を集 6 図向示のように下降させ、ローダ用ウェ機 送機構5の双叉アーム34によるウェールの機構5 の双叉アーム34によるウェールの送機構5 の双叉アーム34を無処理室12の下方位置まで下の双叉を無処理室12の下方は大のウェールが表ませて双叉アーム34上にかウェールが10を上昇するとは、第6 図の位置はアーム34 はの双叉関の位置はアーム34 はその双叉関のない、元の位置への双叉により抜け、元の位置へといてきる。

しかる後、第6図の示のようにゲート弁9とウェーハホルダ10を上昇させ、ウェーハ11を熱処理室12に搬入すると共にゲート弁9を閉じる。この状態(第7図参照)でウェーハの熱処理を行う。即ち、この第6図の及び第7図の状態で、熱処理室12の雰囲気は既に指定された高純度ガス雰囲気

る。各室4、3、12の雰囲気はこの真空排気により所定の真空状態になる。その後、ガス再入弁15a~15c を開き、ガス供給部17により指定の高純度ガスを各室4、3、12に導入し、室内の雰囲気を迅速かつ確実に指定の高純度ガス雰囲気に置換する。ロードロック室4が高純度ガスに置換された状態で、第3図(4)示のようにゲート弁7を開くと同時にウェーハホルダ28上のウェーハ11をウェーハ機送室3に撥入させる。

この搬入状態でローダ用ウェーハ搬送機構5の 双叉アーム34(第5図参照)を第4図(4)示のよう にウェーハ11とゲート弁7との間に位置するまで 水平移動させ、次いでゲート弁7及びウェーハホ ルダ28を第4図(4)示のように下降させてウェーハ ホルダ28上のウェーハ11をローダ用双叉アーム34 上に移す。しかる後、このローダ用双叉アーム34 を第4図(4)示のように熱処理室12の方に向かって 水平移動させ、第6図(4)示のように熱処理室12の 直下直前で停止させる。

となっているから、ガス導入弁15c を開き、排気 弁16c を開いてガス供給部17より指定された高純 度ガスをガス導入パイプ29c を経てガス噴出孔37 より噴出させ、熱処理室12の室壁とガス案内筒24 との間を通り熱処理室12内を通って排気パイプ31 c より排気させる。

このようなガス流通状態を保ちながら、ウェーハホルダ10を回転させつつ上面加熱額のランプ13a と側面加熱類のランプ13b によりウェーハホルダ 10上のウェーハ11を加熱する。ウェーハ11の温度 を観射温度測定器21により測定し、この測定温度 に応じて温度制御装置22によりランプ 13a, 13b の通気量を制御し、かつウェーハホルダ10の回転 を制御することによりウェーハ11の全面に亘り均 ーな加熱を行うことができる。

ウェーハの熱処理が終了したら、第6図(0)示のようにゲート弁9及びウェーハホルグ10を下降させ、ゲート弁9を開くと共にウェーハ11を無処理 室12からウェーハ機送室3に移す。しかる後、第 6図(e)示のようにアンローダ用ウェーハ機送機構 6の双叉アーム34を無処理室12の下方位置まで移動させ、次いでウェーハホルダ10を下降させてウェーハ11をアンローダ用ウェーハ搬送機構6の双叉アーム34上に移す。その後、当該双叉アーム34を第6図(1)示のように元の位置に戻す。

, t .

冷却が終了したら、第8図(4)示のよう冷却ディ

行うウェーハホルグ10を併設し、ウェーハ搬送室 3内にはウェーハホルダ28から受け取ったウェー ハ11を遊送してウェーハホルダ10に受渡すローダ 用ウェーハ搬送機構5とその逆の動作を行うアン ローダ用ウェーハ搬送機構 6 を併設すると共にこ のアンローダ用ウェーハ搬送機構6による搬送途 中のウェーハ11を冷却するウェーハ冷却部8を設 け、ロードロック室 4. ウェーハ搬送室 3 及び熱 処理室12に、排気装置18及びガス供給部17を連結 し、熱処理室12の上部及び側部にそれぞれウェー ハ11の上面加熱源13a 及び側面加熱源13b を配置 せしめてなるので、ウェーハ11を大気中からロー ドロック室 4 に搬入してから開閉ドア4aとゲート 弁1.9を閉じ、ロードロック室4,ウェーハ姫 送室3及び熱処理室12を排気装置18及びガス供給 部17により指定した高純度ガス雰囲気に置換し、 このガス雰囲気を保持したまま、ゲート弁1、9 の聞とウェーハホルダ28,10の作動とローダ用。 アンローダ用搬送機構 5 、6 の作動によりウェー ハ11を熱処理室12に供給して熱処理し、熱処理後

スク47を下降させてウェーハ11を再びアンローダ 用版送機構 6 の双叉アーム34上に移し、ロードロ ック室 4 の下方位置まで搬送する。ウェーハ版送 室 3 からロードロック室 4 及びロードロック室 4 からウェーハ収納カセット 1 へのウェーハ搬送は 上記とは逆の動作過程で行えばよい。

(発明の効果)

上述の説明より明らかなように本発明によれば、ウェーハ11の機入出時に開かれる開閉ドア4aを有するロードロック室4と、ウェーハ11を然処理する熱処理室12とこの両室4、12を連通するウェーハ搬送室3とでチャンバを構成し、この両室4、3間のウェーハ機入出口の開閉を行うゲート行うウェーハルグ28を併設によっの両室3、12間のウェーハ機入出口の開閉を行うゲート弁9を設け、このゲート弁9に当該両室3、12間のウェーハ11の移動とウェーハの移動とウェーハの移動とウェーハの移動とウェーハの

のウェーハ11をロードロック室 4 に戻すことがで * 2

熱処理室12では指定された高純度ガス雰囲気中でウェーハホルグ10を回転させてウェーハ11を回転させながら、上面加熱源13a と側面加熱源13b により加熱させることができるため、ウェーハ11の全面を均一に加熱して熱処理することができる。

輻射温度測定器21は熱処理室12の下部側方に設けることができるから、当該測定器21によりウェーハ11の温度を測定でき、この測定温度に応じて温度期御装置22により上面加熱源13a と側面加熱源13b の通電量を制御してウェーハ面内の温度分布を更に均一にならしめ、ウェーハの熱処理を一層良好に行わしめることが可能である。

また、熱処理後のウェーハ11はアンローグ用ウェーハ機送機構6による機送途中で、ウェーハ機送を3に設けたウェーハ冷却部8により冷却することができ、冷却後のウェーハ11をロードロック室4より大気中に取り出すことができるので、酸化等を防止することができる。

更に、装置全体をコンパクトにできる効果もある。

4. 図面の簡単な説明

第1図は本発明装置の一実施例の概要を示す説 明図、第2図は本発明におけるウェーハ収納カセ ットとロードロック室との間でウェーハの鍛送を 行うウェーハ跛送機構の構成と動作の説明用斜視 図、第3図四~回は本発明におけるロードロック 室とウェーハ搬送室との間のゲート弁周りの構成 と動作の説明用断面図、第4図(a)~(c)は本発明に おけるウェーハ魔送室のローダ用魔送機構の動作 説明用断面図、第5図は本発明におけるウェーハ 搬送室のローダ用。アンローダ用搬送機構の構成 を示す斜視図、第6図(0)~(1)は本発明におけるウ ェーハ搬送室と熱処理室との間のゲート弁周りの 構成と動作の説明用断面図、第7図は同じくその 詳細構成を示す簡略断面図、第8図(4),(6)は本発 明におけるウェーハ微送室のウェーハ冷却部の構 成と動作の説明用断面図、第9図は従来広く用い られている棒状ハロゲンランプによる熱処理装置

59……上下動装置(上下動用シリンダ)、46…… 回転駆動装置、47……ウェーハ冷却ディスク、47a ……軸部、58……ウェーハ出入口。

代理人弁理士 石 戸

の概略構成を示す斜視図である。

1 ……ウェーハ収納カセット、2 ……ウェーハ 遊送機構、3……ウェーハ巖送室、4……ロード ロック室、4a……間閉ドア、5……ローダ用ウェ - ハ殿送機構、6……アンローダ用ウェーハ搬送 機構、7……ゲート弁、7a……弁軸、8……ウェ - 八冷却郎、9 ··· ·· ゲート弁、9a ··· ·· 弁軸、10 ··· …ウェーハホルグ、10a ……軸部、11……ウェー ハ、12……然処理室、13a ……上面加熱源(棒状 ハロゲンランプ) 、13b ······ 側面加熱源 (棒状ハ ロゲンランプ)、13c ……下面加熱源(棒状ハロ ゲンランプ)、 15a~15c ……ガス導入弁、 16a ~16c ……排気弁、17……ガス供給部、18……排 気装置、20……ウェーハ搬送制御装置、21……幅 射温度测定器、22……温度制御装置、26……第1 アーム、26a ……軸、27……第2アーム、27a … …真空吸着郎、28……ウェーハホルダ、28a …… 軸部、 29a~29c ……ガス導入パイプ、30……排 気通路、 31a~31c ……排気パイプ、32……案内 触、33……移動体、34……双叉アーム、42,45,

第1图

