Summation Notation Worksheet

Find the sum of the arithmetic series using a formula.

A)
$$S_{993} = 986,049$$

B)
$$S_{993} = 493,521$$

C)
$$S_{993} = 987,042$$

D)
$$S_{993} = 492,528$$

A)
$$S_{960} = 922,560$$

B)
$$S_{960} = 920,640$$

C)
$$S_{960} = 921,600$$

D)
$$S_{960} = 923,521$$

3) The first 50 terms of the series whose terms are
$$a_n = 5n$$

A)
$$S_{50} = 6375$$

B)
$$S_{50} = 6432$$

C)
$$S_{50} = 6360$$

D)
$$S_{50} = 12,750$$

Find the sum of the finite geometric series.

4) The first 10 terms of the series whose terms are
$$a_n = 2\left(\frac{1}{2}\right)^n$$

A)
$$S_{10} = 3.99609375$$

B)
$$S_{10} = 1.99804688$$

C)
$$S_{10} = 1.33203125$$

D)
$$S_{10} = 58.9980469$$

5) The first 10 terms of the series whose terms are
$$a_n = 3(3)^{n-1}$$

A)
$$S_{10} = 88,472$$

B)
$$S_{10} = 29,524$$

C)
$$S_{10} = 88,572$$

D)
$$S_{10} = 88,712$$

Find the sum of the infinite geometric series.

6)
$$4 + 16 + 64 + 256 + 1024 + ...$$

7)
$$\frac{2}{3} + \frac{2}{9} + \frac{2}{27} + \frac{2}{81} + \dots$$

- A) Does not exist
- B) S = 2

C) S = 1

D) $S = \frac{2}{3}$

Write out the terms of the series.

8)
$$\sum_{k=1}^{5} \frac{k+1}{k+2}$$

A) $\frac{6}{7}$

- B) $\frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \frac{4}{5} + \frac{5}{6}$ C) $\frac{1}{3} + \frac{2}{4} + \frac{3}{5} + \frac{4}{6}$ D) $\frac{2}{3} + \frac{3}{4} + \frac{4}{5} + \frac{5}{6} + \frac{6}{7}$

Write the series using summation notation.

9)
$$1 + \frac{1}{4} + \frac{1}{16} + \frac{1}{64} + \frac{1}{256} + \dots$$

- A) $\sum_{k=1}^{5} \left(\frac{1}{4^{k}}\right)$ B) $\sum_{k=0}^{\infty} \left(\frac{1}{4^{k}}\right)$
- C) $\sum_{k=0}^{\infty} 4^k$
- D) $\sum_{k=0}^{\infty} (\frac{1}{k^4})$

Use the properties of summation notation to find the sum.

10)
$$\sum_{i=1}^{6} (i + i^2)$$

A) 441

B) 462

C) 1764

D) 112

Answer Key Testname: SUMMATIONREVIEW

- 1) B 2) A 3) A 4) B 5) C 6) B 7) C 8) D 9) B 10) D