(e) Repeat (a) for the irreducible error.

Suppose that n=2, p=2, $x_{11}=x_{12}$, $x_{21}=x_{22}$. Furthermore, suppose that $y_1+y_2=0$ and $x_{11}+x_{21}=0$ and $x_{12}+x_{22}=0$, so that the estimate for the intercept in a least squares, ridge regression, or lasso model is zero: $\hat{\beta}_0=0$.

- (a) Write out the ridge regression optimization problem in this setting.
- (b) Argue that in this setting, the ridge coefficient estimates satisfy $\hat{\beta}_1 = \hat{\beta}_2$.
- (c) Write out the lasso optimization problem in this setting.
- (d) Argue that in this setting, the lasso coefficients $\hat{\beta}_1$ and $\hat{\beta}_2$ are not unique—in other words, there are many possible solutions to the optimization problem in (c). Describe these solutions.

Answer

$$n = 2, \rho = 2$$

$$x_{11} = x_{12} \qquad , \qquad x_{21} = x_{22}$$

$$y_1 + y_2 = 0$$
, $x_{11} + x_{21} = 0$, $x_{12} + x_{22} = 0$

a) Ridge Regression Optimisation Problem

Minimize
$$\mathcal{E}_{i=1}^{n} (y_{i}^{n} - \beta_{0}^{n} - \mathcal{E}_{i}^{n} \beta_{i}^{n} x_{j}^{n})^{2} + \lambda \mathcal{E}_{i}^{n} \beta_{i}^{n}$$
 $\beta_{0}=0$; $n=p=2$

: Objective Function is

Minimize
$$\{(y, -\hat{\beta}, \alpha_{11} - \hat{\beta}_{1} \alpha_{12})^{2}$$

 $+(y_{2} - \hat{\beta}, \alpha_{21} - \hat{\beta}_{2} \alpha_{22})^{2}$
 $+\mathcal{R}(\hat{\beta},^{2} + \hat{\beta}_{2}^{2})\}$

b) Given that $x_{11} = x_{12} = x_1$; $x_{21} = x_{22} = x_2$ Let objective function be M

$$M^{2}(y, -\hat{\beta}, x, -\hat{\beta}_{2}x,)^{2} + (y_{2} - \hat{\beta}, x_{2} - \hat{\beta}_{2}x_{2})^{2} + \mathcal{R}(\hat{\beta}, x_{1} + \hat{\beta}_{2}x_{2})^{2}$$

Differentiating M w.r.t B, and Be, and

setting it to 0, we get

 $\frac{dA}{d\hat{\beta}} = \mathcal{Z}(y, -\hat{\beta}, \alpha, -\hat{\beta}_{2}\alpha_{1})\alpha_{1}$

-2 (y, - B, x2-B, x2) x2

+ ZRB, =0

 $\therefore -y_1 x_1 + \hat{\beta}_1 x_1^2 + \hat{\beta}_2 x_1^2$

- y292 + B, 222 + B222

+ 2B, = 0

: β, (+x, 2 + 222 + 2)= +y, x, -β, 2, +y2x2 - β222

 $\therefore \hat{\beta}, = \underbrace{y, x, + y_2 x_2 - \hat{\beta}_2 x,^2 - \hat{\beta}_2 x_1^2}_{x_1^2 + x_2^2 + \lambda}$

$$\frac{dN}{d\beta_{2}} = 0 = -\chi(y_{1} - \hat{\beta}_{1}x_{1} - \hat{\beta}_{2}x_{1})x_{1}$$

$$-\chi(y_{2} - \hat{\beta}_{1}x_{2} - \hat{\beta}_{2}x_{1})x_{2}$$

$$+\chi \lambda \hat{\beta}_{2}$$

$$-y_{1}x_{1} + \hat{\beta}_{1}x_{1}^{T} + \hat{\beta}_{2}x_{1}^{2}$$

$$-y_{1}x_{1} + \hat{\beta}_{1}x_{2}^{T} + \hat{\beta}_{2}x_{1}^{2}$$

$$+\lambda \hat{\beta}_{2} = 0$$

$$\therefore \hat{\beta}_{2} = y_{1}x_{1} + y_{2}x_{2} - \hat{\beta}_{1}x_{1}^{2} - \hat{\beta}_{1}x_{2}^{2}$$

$$x_{1}^{2} + x_{2}^{2} + \lambda$$

The symmetry in equations (D and 2) suggest that
$$\beta_1 = \beta_2$$
.

Minimize
$$\{C_{y}, -\beta_{1}x_{1}, -\beta_{2}x_{12}\}^{2}$$

 $+(y_{2}-\beta_{1}x_{2})-\beta_{2}x_{22}\}^{2}$
 $+\mathcal{A}(|\beta, l+|\beta_{2}l)\}$

d) Given that
$$\alpha_{12} = \alpha_{11} = \alpha_1 + \alpha_{21} = \alpha_{21} = \alpha_2$$

$$M = (y_1 - \hat{\beta}_1 x_1 - \hat{\beta}_2 x_1)^2 + (y_2 - \hat{\beta}_1 x_2 - \hat{\beta}_2 x_2)^2$$

subject to
$$(|\hat{P}_1| + |\hat{P}_2| \leq s)$$

:
$$M = (y_1 - x_1 (B_1 + B_2))^2 + (y_2 - x_2 (B_1 + B_2))^2$$

:. M= y,2+ x,2 (B,+B2)2-2x,y,(0,+P2) +y22 +x22 (B,+B,)2-2 x242 (B,+B) But 9, +y2=0 => y,=-y2 => y,2=y22 $x_1 + x_2 = 0 \Rightarrow x_1^2 = x_2^2$ $\int_{-\infty}^{\infty} M = 2g_1^2 + 2g_1^2 (\vec{D}_1 + \vec{B}_2)^2$ -4 x, y, (B, + B2) = M= 2 (y,2+x,2 (B,+BL)2 - 2 x1y, (D, +B2)) $= \mathcal{N} = 2 \left(y_1 + \alpha_1 \left(\beta_1 + \beta_2 \right) \right)^2$ Subject to 18,1+1821 Es

Since a squared term is involved in the optimization term, we can see that if both B, and B, are negative and

positive at the same time, then the optimization problem is still satisfied since $ B_1 + B_2 \leq s$.
Since more than I solution exists, the lasso coefficients do not have a unique solution.
The entire edge $\vec{\beta}_1 + \vec{\beta}_2 = S$ is a solution at different points in the cartesian 3d graph.
Similarly, B,+B2 =-5 es also a solution.