Vetores e Geometria Analítica

Pedro H A Konzen

3 de abril de 2019

Licença

Este trabalho está licenciado sob a Licença Atribuição-Compartilha Igual 4.0 Internacional Creative Commons. Para visualizar uma cópia desta licença, visite http://creativecommons.org/licenses/by-sa/4.0/deed.pt_BR ou mande uma carta para Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Prefácio

Nestas notas de aula são abordados tópicos sobre vetores e geometria analítica.

Agradeço aos(às) estudantes e colegas que assiduamente ou esporadicamente contribuem com correções, sugestões e críticas em prol do desenvolvimento deste material didático.

Pedro H A Konzen

Sumário

Capa Licença						
						Prefácio
Sı	ımár	io		\mathbf{v}		
1	Vetores					
	1.1	Segme	entos orientados	1		
		1.1.1	Exercícios	5		
	1.2	Vetore	es	5		
		1.2.1	Adição de vetores	6		
		1.2.2	Vetor oposto	7		
		1.2.3	Subtração de vetores	7		
		1.2.4	Multiplicação de vetor por um escalar	7		
		1.2.5	Propriedades das operações com vetores	8		
2	Bas	es e co	pordenadas	11		
	2.1	Depen	idência linear	11		
		2.1.1	Combinação linear	11		
		2.1.2	Dependência linear	11		
		2.1.3	Observações	12		
	2.2	Bases	e coordenadas	15		
		2.2.1	Operações de vetores com coordenadas	17		
		2.2.2	Dependência linear	19		
	2.3	Muda	nça de base	20		
	2.4		ortonormais	22		

3	Produto escalar					
	3.1	Produto escalar	24			
		3.1.1 Propriedades do produto escalar	24			
	3.2	Ângulo entre dois vetores	26			
	3.3	Projeção ortogonal	28			
Respostas dos Exercícios						
Referências Bibliográficas						
Índice Remissivo						

Capítulo 1

Vetores

1.1 Segmentos orientados

Sejam dois pontos A e B sobre uma reta r. O conjunto de todos os pontos de r entre A e B é chamado de **segmento** AB.

Figura 1.1: Esboço de um segmento AB.

Associado a um segmento AB, temos seu **comprimento** (ou tamanho), o qual é definido como sendo a **distância** entre os pontos $A \in B$. A distância entre os ponto $A \in B$ é denotada por |AB| ou |BA|.

A direção de um segmento AB é a direção da reta que fica determinada pelos pontos A e B.

Exemplo 1.1.1. Consideremos os segmentos esboçados na Figura 1.2. Os segmentos AB e CD têm as mesmas direções, mas comprimentos diferentes. Já, o segmento EF tem direção diferente dos segmentos AB e CD.

Figura 1.2: Esboço referente ao Exemplo 1.1.1.

Se A e B são o mesmo ponto, então chamamos AB de **segmento nulo** e temos |AB| = 0. Um segmento nulo não tem direção.

Observemos que um dado segmento AB é igual ao segmento BA. Agora, podemos associar a noção de **sentido** a um segmento, escolhendo um dos pontos como sua **origem** e o outro como sua **extremidade**. Ao fazermos isso, definimos um **segmento orientado**. Mais precisamente, um segmento orientado AB é o segmento definido pelos pontos A e B, sendo A a origem e B a extremidade. Veja a Figura 1.3.

Dizemos que dois dados segmentos orientados não nulos $AB \in CD$ têm a **mesma direção** quando as retas $AB \in CD$ forem paralelas ou coincidentes.

Exemplo 1.1.2. Consideremos os segmentos orientados esboçados na Figura 1.4. Observemos que os segmentos orientados $AB \in CD$ têm a mesma direção. Já o segmento orientado EF tem direção diferente dos segmentos $AB \in CD$.

Sejam dados dois segmentos orientados AB e CD de mesma direção, cujas retas AB e CD não sejam coincidentes. Então, as retas AB e CD determinam um único plano e a reta AC determina dois semiplanos (veja a Figura

Figura 1.3: Esboço de um segmento orientado AB.

Figura 1.4: Esboço referente ao Exemplo 1.1.2.

1.5). Assim sendo, dizemos que os segmentos AB e CD têm **mesmo sentido** quando os pontos B e D estão ambos sobre o mesmo semiplano.

Para analisar o sentido de dois segmentos orientados e colineares, escolhemos um deles e construímos um segmento orientado de mesmo sentido a este, mas não colinear. Então, analisamos o sentido dos segmentos orientados originais

Figura 1.5: Esboço de dois segmentos orientados AB e CD de mesmo sentido.

com respeito ao introduzido.

Dois segmentos orientados não nulos são **equipolentes** quando eles têm o mesmo comprimento, mesma direção e mesmo sentido. Veja o exemplo dado na Figura 1.6.

Figura 1.6: Esboço de dois segmentos orientados AB e CD equipolentes.

1.1.1 Exercícios

E 1.1.1. Mostre que dois segmentos orientados AB e CD são equipolentes se, e somente se, os pontos médios de AD e BC são coincidentes.

1.2 Vetores

Dado um segmento orientado AB, chama-se **vetor** AB e denota-se \overrightarrow{AB} , qualquer segmento orientado equipolente a AB. Cada segmento orientado equipolente a AB é um representado de \overrightarrow{AB} . A Figura 1.7 mostra duas representações de um dado vetor \overrightarrow{AB} .

Figura 1.7: Esboço de duas representações de um mesmo vetor.

O **módulo** (ou **norma**) de um vetor \overrightarrow{AB} é o valor de seu comprimento e é denotado por $|\overrightarrow{AB}|$.

Dois **vetores** são ditos **paralelos** quando qualquer de suas representações têm a mesma direção. De forma análoga, definem-se **vetores coplanares**, **vetores não coplanares**, **vetores ortogonais**, além de conceitos como **ângulo entre dois vetores**, etc. Veja a Figura 1.8.

Observemos que na Figura 1.8(direita) os vetores foram denotados por \vec{a} , \vec{b} e \vec{c} , sem alusão aos pontos que definem suas representações como segmentos orientados. Isto é costumeiro, devido a definição de vetor.

Figura 1.8: Esquerda: esboços de vetores paralelos e de vetores ortogonais. Direita: esboços de vetores coplanares.

1.2.1 Adição de vetores

Sejam dados dois vetores \vec{u} e \vec{v} . Sejam, ainda, uma representação \overrightarrow{AB} qualquer de u e a representação \overrightarrow{BC} do vetor \vec{v} . Então, define-se o vetor soma $\vec{u} + \vec{v}$ como o vetor dado por \overrightarrow{AC} . Veja a Figura 1.9.

Figura 1.9: Representação geométrica da adição de dois vetores.

1.2.2 Vetor oposto

Um **vetor** \vec{v} é dito ser **oposto** a um dado vetor \vec{u} , quando quaisquer representações de \vec{u} e \vec{v} são segmentos orientados de mesmo comprimento e mesma direção, mas com sentidos opostos. Neste caso, denota-se por $-\vec{u}$ o vetor oposto a \vec{u} . Veja a Figura 1.10.

Figura 1.10: Representação geométrica de vetores opostos.

1.2.3 Subtração de vetores

Sejam dados dois vetores \vec{u} e \vec{v} . A subtração de \vec{u} com \vec{v} é denotada por $\vec{u} - \vec{v}$ e é definida pela adição de \vec{u} com $-\vec{v}$, i.e. $\vec{u} - \vec{v} = \vec{u} + (-\vec{v})$. Veja a Figura 1.11.

1.2.4 Multiplicação de vetor por um escalar

A multiplicação de um número real $\alpha > 0$ (escalar) por um vetor \vec{u} é denotado por $\alpha \vec{u}$ e é definido pelo vetor de mesma direção e mesmo sentido de \vec{u} com norma $\alpha |\vec{u}|$. Quando $\alpha = 0$, define-se $\alpha \vec{u} = \vec{0}$, i.e. o vetor nulo (geometricamente, representado por qualquer ponto).

Observação 1.2.1. • Para $\alpha < 0$, temos $\alpha \vec{u} = -(-\alpha \vec{u})$.

• $|\alpha \vec{u}| = |\alpha| |\vec{u}|$.

Figura 1.11: Representação geométrica da subtração de \vec{u} com \vec{v} , i.e. $\vec{u} - \vec{v}$.

Figura 1.12: Representações geométricas de multiplicações de um vetor por diferentes escalares.

1.2.5 Propriedades das operações com vetores

As operações de adição e multiplicação por escalar de vetores têm propriedades importantes. Para quaisquer vetores $\vec{u},\,\vec{v}$ e \vec{w} e quaisquer escalares α e β temos:

• comutatividade da adição: $\vec{u} + \vec{v} = \vec{v} + \vec{u}$;

- associatividade da adição: $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w});$
- elemento neutro da adição: $\vec{u} + \vec{0} = \vec{u}$;
- existência do oposto: $\vec{u} + (-\vec{u}) = \vec{0}$;
- associatividade da multiplicação por escalar: $\alpha(\beta \vec{u}) = (\alpha \beta) \vec{u}$;
- distributividade da multiplicação por escalar:

$$\alpha(\vec{u} + \vec{v}) = \alpha \vec{u} + \alpha \vec{v},\tag{1.1}$$

$$(\alpha + \beta)\vec{u} = \alpha \vec{u} + \beta \vec{u}; \tag{1.2}$$

• existência do elemento neutro da multiplicação por escalar: $1\vec{u} = \vec{u}$.

Exercícios

E 1.2.1. Na figura abaixo, temos $\vec{u} = \overrightarrow{GJ}$ e $\vec{v} = \overrightarrow{AK}$. Assim sendo, escreva os vetores \overrightarrow{RS} , \overrightarrow{NI} , \overrightarrow{AG} , \overrightarrow{NQ} , \overrightarrow{AT} e \overrightarrow{PE} em função de \vec{u} e \vec{v} .

E 1.2.2. Sejam \overrightarrow{CA} , \overrightarrow{CM} e \overrightarrow{CB} os vetores indicados na figura abaixo. Mostre que $\overrightarrow{CM} = \frac{1}{2}\overrightarrow{CA} + \frac{1}{2}\overrightarrow{CB}$.

E 1.2.3. Sejam \overrightarrow{A} , B, C, D, E e G os pontos dados na figura abaixo. Escreva o vetor \overrightarrow{DG} em função dos vetores \overrightarrow{AB} e \overrightarrow{AD} .

E 1.2.4. Seja dado um vetor $\vec{u} \neq 0$. Calcule a norma do vetor $\vec{v} = \vec{u}/|\vec{u}|^1$.

 $^{^1\}vec{u}/|\vec{u}|$ é chamado de vetor \vec{u} normalizado, ou a normalização do vetor $\vec{u}.$

Capítulo 2

Bases e coordenadas

2.1 Dependência linear

2.1.1 Combinação linear

Dados vetores $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_n$ e números reais c_1, c_2, \ldots, c_n , com n inteiro positivo, chamamos de

$$\vec{u} = c_1 \vec{u}_1 + c_2 \vec{u}_2 + \dots + c_n \vec{u}_n \tag{2.1}$$

uma **combinação linear** de $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_n$. Neste caso, também dizemos que \vec{u} é **gerado** pelos vetores $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_n$ ou, equivalentemente, que estes vetores **geram** o vetor \vec{u} .

Exemplo 2.1.1. Sejam dados os vetores \vec{v} , \vec{w} e \vec{z} . Então, temos:

- $\vec{u}_1 = \frac{1}{2}\vec{u} + \sqrt{2}\vec{z}$ é uma combinação linear dos vetores \vec{v} e \vec{z} .
- $\vec{u_2} = \vec{u} 2\vec{z}$ é uma outra combinação linear dos vetores \vec{v} e \vec{z} .
- $\vec{u_3} = 2\vec{u} \vec{w} + \pi \vec{z}$ é uma combinação linear dos vetores \vec{u}, \vec{w} e \vec{z} .
- $\vec{u_4} = \frac{3}{2}\vec{z}$ é uma combinação linear do vetor \vec{z} .

2.1.2 Dependência linear

Dois ou mais vetores dados são **linearmente dependentes** (abreviação, l.d.) quando um deles for combinação linear dos demais.

Exemplo 2.1.2. No exemplo anterior (Exemplo 2.1.1), temos:

- $\vec{u_1}$ e $\vec{u_2}$ dependem linearmente dos vetores \vec{u} e \vec{z} .
- $\vec{u_3}$ depende linearmente dos vetores \vec{u} , \vec{v} e \vec{z} .
- Os vetores $\vec{u_4}$ e \vec{z} são linearmente dependentes.

Dois ou mais vetores dados são **linearmente independentes** (abreviação, l.i.)quando eles não são linearmente dependentes.

2.1.3 Observações

Dois vetores

Dois vetores quaisquer $\vec{u} \neq \vec{0}$ e $\vec{v} \neq \vec{0}$ são l.d. se, e somente se, qualquer uma das seguinte condições é satisfeita:

• um deles é combinação linear do outro, i.e.

$$\vec{u} = \alpha \vec{v}$$
 ou $\vec{v} = \beta \vec{u}$; (2.2)

- \vec{u} e \vec{v} têm a mesma direção;
- \vec{u} e \vec{v} são paralelos.

Observação 2.1.1. O vetor nulo $\vec{0}$ é l.d. a qualquer vetor \vec{u} . De fato, temos

$$\vec{0} = 0 \cdot \vec{u},\tag{2.3}$$

i.e. o vetor nulo é combinação linear do vetor \vec{u} .

Observação 2.1.2. Dois vetores não nulos \vec{u} e \vec{v} são l.i. se, e somente se,

$$\alpha \vec{u} + \beta \vec{v} = 0 \Rightarrow \alpha = \beta = 0. \tag{2.4}$$

De fato, se $\alpha \neq 0$, então podemos escrever

$$\vec{u} = -\frac{\beta}{\alpha}\vec{v},\tag{2.5}$$

i.e. o vetor \vec{u} é combinação linear do vetor \vec{v} e, portanto, estes vetores são l.d.. Isto contradiz a hipótese de eles serem l.i.. Analogamente, se $\beta \neq 0$, então podemos escrever

$$\vec{v} = -\frac{\alpha}{\beta}\vec{u} \tag{2.6}$$

e, então, teríamos \vec{u} e \vec{v} l.d..

Três vetores

Três vetores quaisquer \vec{u} , \vec{v} e \vec{w} são l.d. quando um deles pode ser escrito como combinação linear dois outros dois. Sem perda de generalidade, isto significa que existem constantes α e β tais que

$$\vec{u} = \alpha \vec{v} + \beta \vec{w}. \tag{2.7}$$

Afirmamos que se \vec{u} , \vec{v} e \vec{w} são l.d., então \vec{u} , \vec{v} e \vec{w} são coplanares. Do fato de que dois vetores quaisquer são sempre coplanares, temos que \vec{u} , \vec{v} e \vec{w} são coplanares caso qualquer um deles seja o vetor nulo. Suponhamos, agora, que \vec{u} , \vec{v} e \vec{w} são não nulos e seja π o plano determinado pelos vetores \vec{v} e \vec{w} . Se $\alpha=0$, então $\vec{u}=\beta\vec{w}$ e teríamos uma representação de \vec{u} no plano π . Analogamente, se $\beta=0$, então $\vec{u}=\alpha\vec{v}$ e teríamos uma representação de \vec{u} no plano π . Por fim, observemos que se $\alpha,\beta\neq0$, então $\alpha\vec{v}$ tem a mesma direção de \vec{v} e $\beta\vec{w}$ tem a mesma direção de \vec{w} . Isto é, $\alpha\vec{v}$ e $\beta\vec{w}$ admitem representações no plano π . Sejam \overrightarrow{AB} e \overrightarrow{BC} representações dos vetores $\alpha\vec{v}$ e $\beta\vec{w}$, respectivamente. Os pontos A, B e C pertencem a π , assim como o segmento AC. Como $\overrightarrow{AC}=\vec{u}=\alpha\vec{v}+\beta\vec{w}$, concluímos que \vec{u} , \vec{v} e \vec{w} são coplanares.

Reciprocamente, se \vec{u} , \vec{v} e \vec{w} são coplanares, então \vec{u} , \vec{v} e \vec{w} são l.d.. De fato, se um deles for nulo, por exemplo, $\vec{u} = \vec{0}$, então \vec{u} pode ser escrito como a seguinte combinação linear dos vetores \vec{v} e \vec{w}

$$\vec{u} = 0\vec{v} + 0\vec{w}.\tag{2.8}$$

Neste caso, \vec{u} , \vec{v} e \vec{w} são l.d.. Também, se dois dos vetores forem paralelos, por exemplo, $\vec{u} \parallel \vec{v}$, então temos a combinação linear

$$\vec{u} = \alpha \vec{v} + 0 \vec{w}. \tag{2.9}$$

E, então, \vec{u} , \vec{v} e \vec{w} são l.d.. Agora, suponhamos que \vec{u} , \vec{v} e \vec{w} são não nulos e dois a dois concorrentes. Sejam, então $\overrightarrow{PA} = \vec{u}$, $\overrightarrow{PB} = \vec{v}$ e $\overrightarrow{PC} = \vec{w}$ representações sobre um plano π . Sejam r e s as retas determinadas por PA e PC, respectivamente. Seja, então, D o ponto de interseção da reta s com a reta paralela a r que passa pelo ponto B. Seja, também, E o ponto de interseção da reta r com a reta paralela a s que passa pelo ponto B. Sejam, então, α e β tais que $\alpha \vec{u} = \overrightarrow{PE}$ e $\beta \vec{w} = \overrightarrow{PD}$. Como $\vec{v} = \overrightarrow{PB} = \overrightarrow{PE} + \overrightarrow{PD} = \alpha \vec{u} + \beta \vec{w}$, temos que \vec{v} é combinação linear de \vec{u} e \vec{w} , i.e. \vec{u} , \vec{v} e \vec{w} são l.d..

Observação 2.1.3. Três vetores dados \vec{u} , \vec{v} e \vec{w} são l.i. se, e somente se,

$$\alpha \vec{u} + \beta \vec{v} + \gamma \vec{w} = 0 \Rightarrow \alpha = \beta = \gamma = 0. \tag{2.10}$$

De fator, sem perda de generalidade, se $\alpha \neq 0$, podemos escrever

$$\vec{u} = -\frac{\beta}{\alpha}\vec{v} - \frac{\gamma}{\alpha}\vec{w},\tag{2.11}$$

e teríamos \vec{u} , \vec{v} e \vec{w} vetores l.d..

Quatro ou mais vetores

Quatro ou mais vetores são sempre l.d.. De fato, sejam dados quatro vetores \vec{a} , \vec{b} , \vec{c} e \vec{d} . Se dois ou três destes forem l.d. entre si, então, por definição, os quatro são l.d.. Assim sendo, suponhamos que três dos vetores sejam l.i. e provaremos que, então, o outro vetor é combinação linear desses três.

Sem perda de generalidade, suponhamos que \vec{a} , \vec{b} e \vec{c} são l.i.. Logo, eles não são coplanares. Seja, ainda, π o plano determinado pelos vetores \vec{a} , \vec{b} e as representações $\vec{a} = \overrightarrow{PA}$, $\vec{b} = \overrightarrow{PB}$, $\vec{c} = \overrightarrow{PC}$ e $\vec{d} = \overrightarrow{PD}$.

Figura 2.1: Quatro vetores são l.d..

Consideremos a reta r paralela a \overrightarrow{PC} que passa pelo ponto D. Então, seja E o ponto de interseção de r com o plano π . Vejamos a Figura 2.1. Observamos

que o vetor \overrightarrow{PE} é coplanar aos vetores \overrightarrow{PA} e \overrightarrow{PB} e, portanto, exitem números reais α e β tal que

$$\overrightarrow{PE} = \alpha \overrightarrow{PA} + \beta \overrightarrow{PB}. \tag{2.12}$$

Além disso, como \overrightarrow{ED} tem a mesma direção e sentido de $\overrightarrow{PC} = \overrightarrow{c}$, temos que

$$\overrightarrow{ED} = \gamma \overrightarrow{PC} \tag{2.13}$$

para algum número real γ . Por fim, observamos que

$$\overrightarrow{PD} = \overrightarrow{PE} + \overrightarrow{ED}$$

$$= \alpha \overrightarrow{PA} + \beta \overrightarrow{PB} + \gamma \overrightarrow{PC}$$

$$= \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c}.$$

Exercícios

E 2.1.1. Sendo $\overrightarrow{AB} + 2\overrightarrow{BC} = \overrightarrow{0}$, mostre que \overrightarrow{PA} , \overrightarrow{PB} e \overrightarrow{PC} são l.d. para qualquer ponto P.

E 2.1.2. Sejam dados três vetores quaisquer \vec{a} , \vec{b} e \vec{c} . Mostre que os vetores $\vec{u} = 2\vec{a} - \vec{b}$, $\vec{v} = -\vec{a} - 2\vec{c}$ e $\vec{w} = \vec{b} + 4\vec{c}$ são l.d..

Em construção ...

2.2 Bases e coordenadas

Seja V o conjunto de todos os vetores no espaço tridimensional. Conforme discutido na Subseção 2.1.2, se \vec{a} , \vec{b} e \vec{c} são l.i., então qualquer vetor $\vec{u} \in V$ pode ser escrito como uma combinação linear destes vetores, i.e. existem números reais α , β e γ tal que

$$\vec{u} = \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c}. \tag{2.14}$$

A observação acima motiva a seguinte definição: uma base de V é uma sequência de três vetores l.i. de V.

Seja $B=(\vec{a},\vec{b},\vec{c})$ uma dada base de V. Então, dado qualquer $\vec{v}\in V$, existe um único terno de números reais $\alpha,\ \beta$ e γ tais que

$$\vec{v} = \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c}. \tag{2.15}$$

De fato, a existência de alpha, β e γ segue imediatamente do fato de que \vec{a} , \vec{b} e \vec{c} são l.i. e, portanto, \vec{v} pode ser escrito como uma combinação linear destes vetores. Agora, para verificar a unicidade de alpha, β e γ , tomamos α' , β' e γ' tais que

$$\vec{v} = \alpha' \vec{a} + \beta' \vec{b} + \gamma' \vec{c}. \tag{2.16}$$

Subtraindo (2.16) de (2.15), obtemos

$$\vec{0} = (\alpha - \alpha')\vec{a} + (\beta - \beta')\vec{b} + (\gamma - \gamma')\vec{c}. \tag{2.17}$$

Como $\vec{a},\,\vec{b}$ e \vec{c} são l.i., segue que 1

$$\alpha - \alpha' = 0, \ \beta - \beta' = 0, \ \gamma - \gamma' = 0,$$
 (2.18)

i.e. $\alpha = \alpha'$, $\beta = \beta'$ e $\gamma = \gamma'$.

Figura 2.2: Representação de um vetor $\vec{u}=(u_1,u_2,u_3)_B$ em uma dada base $B=(\vec{a},\vec{b},\vec{c}).$

¹Lembre-se da Observação 2.1.3.

Com isso, fixada uma base $B = (\vec{a}, \vec{b}, \vec{c})$, cada vetor \vec{u} é representado de forma única como combinação linear dos vetores da base, digamos

$$\vec{u} = u_1 \vec{a} + u_2 \vec{b} + u_3 \vec{c}, \tag{2.19}$$

onde u_1 , u_2 e u_3 são números reais fixos, chamados de **coordenadas** do \vec{u} na base B. Ainda, usamos a notação

$$\vec{u} = (u_1, u_2, u_3)_B, \tag{2.20}$$

para expressar o vetor \vec{u} nas suas coordenadas na base B. Vejamos a Figura 2.2.

Exemplo 2.2.1. Fixada uma base $B = (\vec{a}, \vec{b}, \vec{c})$, o vetor \vec{u} de coordenadas $\vec{u} = (-2, \sqrt{2}, -3)$ é o vetor $\vec{u} = -2\vec{a} + \sqrt{2}\vec{b} - 3\vec{c}$.

2.2.1 Operações de vetores com coordenadas

Na Seção 1.2, definimos as operações de adição, subtração e multiplicação por escalar do ponto de vista geométrico. Aqui, veremos como estas operação são definidas a partir das coordenadas de vetores.

Sejam $B=(\vec{a},\vec{b},\vec{c})$ uma base de V e os vetores $\vec{u}=(u_1,u_2,u_3)_B$ e $\vec{v}=(v_1,v_2,v_3)_B$. Isto é, temos

$$\vec{u} = u_1 \vec{a} + u_2 \vec{b} + u_3 \vec{c}, \tag{2.21}$$

$$\vec{v} = v_1 \vec{a} + v_2 \vec{b} + v_3 \vec{c}. \tag{2.22}$$

Então, a adição de \vec{u} com \vec{v} é a soma

$$\vec{u} + \vec{v} = \underbrace{u_1 \vec{a} + u_2 \vec{b} + u_3 \vec{c}}_{\vec{u}} + \underbrace{v_1 \vec{a} + v_2 \vec{b} + v_3 \vec{c}}_{\vec{v}}$$
(2.23)

$$= (u_1 + v_1)\vec{a} + (u_2 + v_2)\vec{b} + (u_3 + v_3)\vec{c}, \qquad (2.24)$$

ou seja

$$\vec{u} + \vec{v} = (u_1 + v_1, u_2 + v_2, u_3 + v_3)_B. \tag{2.25}$$

Exemplo 2.2.2. Fixada uma base qualquer B e dados os vetores $\vec{u} = (2, -1, -3)_B$ e $\vec{v} = (-1, 4, -5)_B$, temos

$$\vec{u} + \vec{v} = (2 + (-1), -1 + 4, -3 + (-5))_B = (1, 3, -8)_B.$$
 (2.26)

De forma, análoga, o **vetor oposto** ao vetor \vec{u} é

$$-\vec{u} = -(\underbrace{u_1\vec{a} + u_2\vec{b} + u_3\vec{c}}_{\vec{a}}) \tag{2.27}$$

$$= (-u_1)\vec{a} + (-u_2)\vec{b} + (-u_3)\vec{c}, \qquad (2.28)$$

ou seja,

$$-\vec{u} = (-u_1, -u_2, -u_3)_B. \tag{2.29}$$

Exemplo 2.2.3. Fixada uma base qualquer B e dado o vetor $\vec{v} = (2, -1, -3)_B$, temos

$$-\vec{v} = (-2, 1, 3)_B. \tag{2.30}$$

Lembrando que **subtração** de \vec{u} com \vec{v} é $\vec{u} - \vec{v} := \vec{u} + (-\vec{v})$, segue

$$\vec{u} - \vec{v} = (u_1 - v_1, u_2 - v_2, u_3 - v_3)_B. \tag{2.31}$$

Exemplo 2.2.4. Fixada uma base qualquer B e dados os vetores $\vec{u} = (2, -1, -3)_B$ e $\vec{v} = (-1, 4, -5)_B$, temos

$$\vec{u} - \vec{v} = (2 - (-1), -1 - 4, -3 - (-5))_B = (3, -5, 2)_B.$$
 (2.32)

Com o mesmo raciocínio, fazemos a multiplicação de um dado número α pelo vetor \vec{u} . Vejamos, por definição,

$$\alpha \vec{u} = \alpha \underbrace{(u_1 \vec{a} + u_2 \vec{b} + u_3 \vec{c})}_{\vec{u}} \tag{2.33}$$

$$= (\alpha u_1)\vec{a} + (\alpha u_2)\vec{b} + (\alpha u_3)\vec{c}, \qquad (2.34)$$

ou seja,

$$\alpha \vec{u} = (\alpha u_1, \alpha u_2, \alpha u_3). \tag{2.35}$$

Exemplo 2.2.5. Fixada uma base qualquer B e dado o vetor $\vec{v} = (2, -1, -3)_B$, temos

$$\frac{1}{3}\vec{v} = \left(-\frac{2}{3}, \frac{1}{3}, 1\right)_B. \tag{2.36}$$

2.2.2 Dependência linear

Dois vetores

Na Subseção 2.1.3, discutimos que dois vetores \vec{u} , \vec{v} são l.d. se, e somente se, um for múltiplo do outro, i.e. existe um número real α tal que

$$\vec{u} = \alpha \vec{v},\tag{2.37}$$

sem perda de generalidade².

Fixada uma base $B = (\vec{a}, \vec{b}, \vec{c})$, temos $\vec{u} = (u_1, u_2, u_3)_B$ e $\vec{v} = (v_1, v_2, v_3)_B$. Com isso, a equação (2.37) pode ser reescrita como

$$(u_1, u_2, u_3)_B = \alpha(v_1, v_2, v_3)_B = (\alpha v_1, \alpha v_2, \alpha v_3)_B, \tag{2.38}$$

donde

$$u_1 = \alpha v_1, u_2 = \alpha v_2, u_3 = \alpha v_3.$$
 (2.39)

Ou seja, dois vetores são linearmente dependentes se, e somente se, as coordenadas de um deles forem, respectivamente, múltiplas (de mesmo fator) das coordenadas do outro.

Exemplo 2.2.6. Vejamos os seguintes casos:

a)
$$\vec{u} = (2, -1, -3)$$
 e $\vec{v} = \left(1, -\frac{1}{2}, -\frac{3}{2}\right)$ são l.d., pois
$$2 = 2 \cdot \frac{1}{2}, -1 = 2 \cdot \left(-\frac{1}{2}\right), -3 = 2 \cdot \left(-\frac{3}{2}\right). \tag{2.40}$$

b)
$$\vec{u} = (2, -1, -3)$$
 e $\vec{v} = \left(2, -\frac{1}{2}, -\frac{3}{2}\right)$ são l.i., pois $u_1 = 1 \cdot v_1$, enquanto $u_2 = 2v_2$.

Três vetores

Na Subseção 2.1.3, discutimos que três vetores \vec{u}, \vec{v} e \vec{w} são l.i. se, e somente se,

$$\alpha \vec{u} + \beta \vec{v} + \gamma \vec{w} = \vec{0} \Rightarrow \alpha = \beta = \gamma. \tag{2.41}$$

Seja, então, $B=(\vec{a},\vec{b},\vec{c})$ uma base de V. Então, temos que a equação

$$\alpha \vec{u} + \beta \vec{v} + \gamma \vec{w} = \vec{0} \tag{2.42}$$

²Formalmente, pode ocorrer $\vec{v} = \beta \vec{u}$.

é equivalente a

$$\alpha(u_1, u_2, u_3)_B + \beta(v_1, v_2, v_3)_B + \gamma(w_1, w_2, w_3)_B = (0, 0, 0)_B. \tag{2.43}$$

Esta por sua vez, nos leva ao seguinte sistema linear

$$\begin{cases} u_{1}\alpha + v_{1}\beta + w_{1}\gamma = 0 \\ u_{2}\alpha + v_{2}\beta + w_{2}\gamma = 0 \\ u_{3}\alpha + v_{3}\beta + w_{3}\gamma = 0 \end{cases}$$
 (2.44)

Lembremos que um tal sistema tem solução única (trivial) se, e somente se, o determinante de sua matriz dos coeficientes é nulo, i.e.

$$\begin{vmatrix} u_1 & v_1 & w_1 \\ u_2 & v_2 & w_2 \\ u_3 & v_3 & w_3 \end{vmatrix} \neq 0. \tag{2.45}$$

Exemplo 2.2.7. Fixada uma base B de V, sejam os vetores $\vec{u} = (2,1,-3)_B$, $\vec{v} = (1,-1,2)_B$ e $\vec{w} = (-2,1,1)_B$. Como

$$\begin{vmatrix} u_1 & v_1 & w_1 \\ u_2 & v_2 & w_2 \\ u_3 & v_3 & w_3 \end{vmatrix} = \begin{vmatrix} 2 & 1 & -2 \\ 1 & -1 & 1 \\ -3 & 2 & 1 \end{vmatrix}$$
 (2.46)

$$= -2 - 4 - 3 + 6 - 4 - 1 = -8 \neq 0. \tag{2.47}$$

Exercícios

Em construção ...

2.3 Mudança de base

Sejam $B = (\vec{u}, \vec{v}, \vec{z})$ e $C = (\vec{r}, \vec{s}, \vec{t})$ bases do espaço V. Conhecendo as coordenadas de um vetor na base C, queremos determinar suas coordenadas na base B. Mais especificamente, seja

$$\vec{z} = (z_1, z_2, z_3)_C = z_1 \vec{r} + z_2 \vec{s} + z_3 \vec{t}.$$
 (2.48)

Agora, tendo $\vec{r} = (r_1, r_2, r_3)_B$, $\vec{s} = (s_1, s_2, s_3)_B$ e $\vec{t} = (t_1, t_2, t_3)_B$, então

$$(z_1, z_2, z_3)_C = z_1(r_1, r_2, r_3)_B + z_2(s_1, s_2, s_3)_B + z_3(t_1, t_2, t_3)_B$$
(2.49)

$$= \underbrace{(r_1 z_1 + s_1 z_2 + t_1 z_3)}_{z'} \vec{u}$$
 (2.50)

$$+\underbrace{(r_2z_1 + s_2z_2 + t_2z_3)}_{z_0}\vec{v}$$
 (2.51)

$$+\underbrace{(r_3z_1+s_3z_2+t_3z_3)}_{z_2'}\vec{w} \tag{2.52}$$

o que é equivalente a

$$\begin{bmatrix} z_1' \\ z_2' \\ z_3' \end{bmatrix} = \underbrace{\begin{bmatrix} r_1 & s_1 & t_1 \\ r_2 & s_2 & t_2 \\ r_3 & s_3 & t_3 \end{bmatrix}}_{MCR} \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix}, \tag{2.53}$$

onde $\vec{z} = (z'_1, z'_2, z'_3)_B$.

A matriz M_{CB} é chamada de matriz de mudança de base de C para B. Como os vetores \vec{r} , \vec{s} e \vec{t} são l.i., temos que a matriz de mudança de base M_{BC} tem determinante não nulo e, portanto é invertível. Além disso, observamos que

$$M_{BC} = (M_{CB})^{-1}. (2.54)$$

Exemplo 2.3.1. Sejam dadas as bases $B = (\vec{a}, \vec{b}, \vec{c})$ e $C = (\vec{u}, \vec{v}, \vec{w})$, com $\vec{u} = (1,2,0)_B$, $\vec{v} = (2,0,-1)_B$ e $\vec{w} = (-1,-3,1)_B$. Seja, ainda, o vetor $\vec{z} = (1,-2,1)_B$. Vamos encontrar as coordenadas de \vec{z} na base C.

Há duas formas de proceder. A primeira consiste em resolver, de forma direta, a seguinte equação

$$\vec{z} = (-1, -3, 1)_B = (x, y, z)_C.$$
 (2.55)

Esta é equivalente a

$$-\vec{a} - 3\vec{b} + \vec{c} = x\vec{u} + y\vec{v} + z\vec{w} \tag{2.56}$$

$$= x(\vec{a} + 2\vec{b}) + y(2\vec{a} - \vec{c}) + z(-\vec{a} - 3\vec{b} + \vec{c})$$
 (2.57)

$$= (x + 2y - z)\vec{a} + (2x - 3z)\vec{b} + (-y + z)\vec{c}.$$
 (2.58)

21

Isto nos leva ao seguinte sistema linear

$$\begin{cases} x + 2y - z = -1 \\ 2x - 3z = -3 \\ -y + z = 1 \end{cases}$$
 (2.59)

Resolvendo este sistema, obtemos $x=6/5,\,y=4/5$ e z=9/5, i.e.

$$\vec{z} = \left(\frac{6}{5}, \frac{4}{5}, \frac{9}{5}\right)_C. \tag{2.60}$$

Outra maneira de se obter as coordenadas de \vec{z} na base C é usando a matriz de mudança de base. A matriz de mudança da base C para a base B é

$$M = \begin{bmatrix} 1 & 2-1 \\ 2 & 0 & -3 \\ 0 & -1 & 1 \end{bmatrix}. \tag{2.61}$$

Então, a matriz de mudança da base B para a base C é $M_{BC}=M^{-1}$. Logo, $(x,y,z)_C=M_{BC}(-1,-3,1)_B$.

Exercícios

Em construção ...

2.4 Bases ortonormais

Uma base $B = (\vec{a}, \vec{b}, \vec{c})$ é dita ser ortonormal se, e somente se,

- \vec{a} , \vec{b} e \vec{c} são dois a dois ortogonais;
- $|\vec{a}| = |\vec{b}| = |\vec{c}| = 1.$

Observação 2.4.1. (Teorema de Pitágoras) Se $\vec{u} \perp \vec{v}$, então $|\vec{u} + \vec{v}|^2 = |\vec{u}|^2 + |\vec{v}|^2$.

Proposição 2.4.1. Seja $B = (\vec{i}, \vec{j}, \vec{k})$ uma base ortonormal $e \ \vec{u} = (u_1, u_2, u_3)_B$. $Ent\tilde{a}o, \ |\vec{u}| = \sqrt{u_1^2 + u_2^2 + u_3^2}$.

Demonstração. Temos $|\vec{u}|^2 = |u_1\vec{i} + u_2\vec{j} + u_3\vec{k}|^2$. Seja π um plano determinado por dadas representações de \vec{i} e \vec{j} . Como \vec{i} , \vec{j} e \vec{k} são ortogonais, temos que \vec{k} é ortogonal ao plano π . Além disso, o vetor $u_1\vec{i} + u_2\vec{j}$ também admite uma representação em π , logo $u_1\vec{i} + u_2\vec{j}$ é ortogonal a \vec{k} . Do Teorema de Pitágoras (Observação 2.4.1), temos

$$|\vec{u}|^2 = |u_1\vec{i} + u_2\vec{j}|^2 + |u_3\vec{k}|^2. \tag{2.62}$$

Analogamente, como $\vec{i} \perp \vec{j}$, do Teorema de Pitágoras segue

$$|\vec{u}|^2 = |u_1\vec{i}|^2 + |u_2\vec{j}|^2 + |u_3\vec{k}|^2 \tag{2.63}$$

$$= |u_1|^2 |\vec{i}| + |u_2|^2 |\vec{j}| + |u_3| |\vec{k}|^2$$
 (2.64)

$$= u_1^2 + u_2^2 + u_3^2. (2.65)$$

Extraindo a raiz quadrada de ambos os lados da última equação, obtemos o resultado desejado. \Box

Exemplo 2.4.1. Se $\vec{u} = (-1, 2, -\sqrt{2})_B$ e B é uma base ortonormal, então

$$|\vec{u}| = \sqrt{(-1)^2 + 2^2 + (-\sqrt{2})^2} = \sqrt{7}.$$
 (2.66)

Exercícios

E 2.4.1. Seja $B = (\vec{a}, \vec{b}, \vec{c})$ uma base ortogonal, i.e. \vec{a}, \vec{b} e \vec{c} são l.i. e dois a dois ortogonais. Mostre que $C = (\vec{a}/|\vec{a}|, \vec{b}/|\vec{b}|, \vec{c}/|\vec{c}|)$ é uma base ortonormal.

Em construção ...

Capítulo 3

Produto escalar

3.1 Produto escalar

Ao longo desta seção, assumiremos $B=(\vec{i},\vec{j},\vec{k})$ uma base ortonormal no espaço. O **produto escalar** dos vetores $\vec{u}=(u_1,u_2,u_3)$ e $\vec{v}=(v_1,v_2,v_3)$ é o número real

$$\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + u_3 v_3. \tag{3.1}$$

Exemplo 3.1.1. Se $\vec{u} = (2, -1,3)$ e $\vec{v} = (-3, -4,2)$, então

$$\vec{u} \cdot \vec{v} = 2 \cdot (-3) + (-1) \cdot (-4) + 3 \cdot 2 = 4. \tag{3.2}$$

3.1.1 Propriedades do produto escalar

Quaisquer que sejam \vec{u} , \vec{v} , \vec{w} e qualquer número real α , temos:

• Comutatividade: $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$. Dem.:

$$\vec{u} \cdot \vec{v} = (u_1, u_2, u_3) \cdot (v_1, v_2, v_3) \tag{3.3}$$

$$= u_1 v_1 + u_2 v_2 + u_3 v_3 \tag{3.4}$$

$$= v_1 u_1 + v_2 u_2 + v_3 u_3 \tag{3.5}$$

$$= \vec{v} \cdot \vec{u}. \tag{3.6}$$

• Distributividade com multiplicação por escalar:

$$(\alpha \vec{u}) \cdot \vec{v} = \vec{u} \cdot (\alpha \vec{v}) = \alpha (\vec{u} \cdot \vec{v}). \tag{3.7}$$

Dem.:

$$(\alpha \vec{u}) \cdot \vec{v} = (\alpha u_1, \alpha u_2, \alpha u_3) \cdot (v_1, v_2, v_3)$$

$$= (\alpha u_1)v_1 + (\alpha u_2)v_2 + (\alpha u_3)v_3$$
(3.8)
$$(3.9)$$

$$= \alpha(u_1v_1) + \alpha(u_2v_2) + \alpha(u_3v_3)$$
 (3.10)

$$= \alpha(u_1v_1 + u_2v_2 + u_3v_3) = \alpha(\vec{u} \cdot \vec{v})$$
 (3.11)

$$= u_1(\alpha v_1) + u_2(\alpha v_2) + u_3(\alpha v_3) \tag{3.12}$$

$$= (u_1, u_2, u_3) \cdot (\alpha v_1, \alpha v_2, \alpha v_3) \tag{3.13}$$

$$= \vec{u} \cdot (\alpha \vec{v}). \tag{3.14}$$

• Distributividade com a adição: $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$.

Dem.:

$$\vec{u} \cdot (\vec{v} + \vec{w}) = (u_1, u_2, u_3) \cdot ((v_1, v_2, v_3) + (w_1, w_2, w_3))$$

$$= (u_1, u_2, u_3) \cdot [(v_1 + w_1, v_2 + w_2, v_3 + w_3)]$$

$$= u_1(v_1 + w_1) + u_2(v_2 + w_2) + u_2(v_2 + w_2)$$

$$= u_1v_1 + u_1w_1 + u_2v_2 + u_2w_2 + u_3v_3 + u_3w_3$$
(3.18)

$$= u_1v_1 + u_2v_2 + u_3v_3 + u_1w_1 + u_2w_2 + u_3w_3$$
 (3.19)

$$= \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}. \tag{3.20}$$

• Sinal: $\vec{u} \cdot \vec{u} \ge 0$ e $\vec{u} \cdot \vec{u} = 0 \Leftrightarrow \vec{u} = \vec{0}$.

Dem.:

$$\vec{u} \cdot \vec{u} = u_1^2 + u_2^2 + u_3^2 \ge 0. \tag{3.21}$$

Além disso, observamos que a soma de números não negativos é nula se, e somente se, os números forem zeros.

• Norma: $|u|^2 = \vec{u}\vec{u}$.

Dem.: Como fixamos uma base ortonormal B, a Proposição 2.4.1 nos garante que

$$|u|^2 = u_1^2 + u_2^2 + u_3^2 = \vec{u} \cdot \vec{u}. \tag{3.22}$$

Exemplo 3.1.2. Sejam $\vec{u} = (-1,2,1), \ \vec{v} = (2,-1,3) \ e \ \vec{w} = (1,0,-1).$ Vejamos os seguintes casos:

• Comutatividade:

$$\vec{u} \cdot \vec{v} = -1 \cdot 2 + 2 \cdot (-1) + 1 \cdot 3 = -1, \tag{3.23}$$

$$\vec{v} \cdot \vec{u} = 2 \cdot (-1) + (-1) \cdot 2 + 3 \cdot 1 = -1. \tag{3.24}$$

• Distributividade com a multiplicação por escalar:

$$(2\vec{u}) \cdot \vec{v} = (-2,4,2) \cdot (2,-1,3) = -4 - 4 + 6 = -2,$$
 (3.25)

$$2(\vec{u}\vec{v}) = 2(-2 - 2 + 3) = -2, (3.26)$$

$$\vec{u} \cdot (2\vec{v}) = (-1,2,1) \cdot (4,-2,6) = -2.$$
 (3.27)

• Distributividade com a adição:

$$\vec{u} \cdot (\vec{v} + \vec{w}) = (-1,2,1) \cdot (3,-1,2) = -3 - 2 + 2 = -3,$$
 (3.28)

$$\vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w} = (-2 - 2 + 3) + (-1 + 0 - 1) = -3. \tag{3.29}$$

• Sinal:

$$\vec{w}\vec{w} = 1 + 0 + 1 = 2 \ge 0. \tag{3.30}$$

• Norma:

$$|u|^2 = (-1)^2 + 2^2 + 1^2 = 6, (3.31)$$

$$\vec{u} \cdot \vec{u} = (-1) \cdot (-1) + 2 \cdot 2 + 1 \cdot 1 = 6. \tag{3.32}$$

Exercícios

Em construção ...

3.2 Ângulo entre dois vetores

O ângulo formado entre dois vetores \vec{u} e \vec{v} não nulos, é definido como o menor ângulo determinado entre quaisquer representações $\vec{u} = \overrightarrow{OA}$ e $\vec{v} = \overrightarrow{OB}$.

Proposição 3.2.1. Dados \vec{u} e \vec{v} , temos

$$\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos \alpha, \tag{3.33}$$

onde α é o ângulo entre os vetores \vec{u} e \vec{v} .

Demonstração. Tomamos as representações $\vec{u} = \overrightarrow{OA}$ e $\vec{v} = \overrightarrow{OB}$. Observamos que $\vec{u} - \vec{v} = \overrightarrow{BA}$. Então, aplicando a lei dos cossenos no triângulo $\triangle OAB$, obtemos

$$|\overrightarrow{BA}|^2 = |\overrightarrow{OA}|^2 + |\overrightarrow{OB}|^2 - 2|\overrightarrow{OA}||\overrightarrow{OB}|\cos\alpha, \tag{3.34}$$

ou, equivalentemente,

$$|\vec{u} - \vec{v}|^2 = |\vec{u}|^2 + |\vec{v}|^2 - 2|\vec{u}||\vec{v}|\cos\alpha \tag{3.35}$$

$$(\vec{u} - \vec{v}) \cdot (\vec{u} - \vec{v}) = |\vec{u}|^2 + |\vec{v}|^2 - 2|\vec{u}||\vec{v}|\cos\alpha \tag{3.36}$$

$$\vec{u} \cdot \vec{u} - 2\vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{v} = |\vec{u}|^2 + |\vec{v}|^2 - 2|\vec{u}||\vec{v}|\cos\alpha$$
 (3.37)

$$|\vec{u}|^2 + |\vec{v}|^2 - 2\vec{u} \cdot \vec{v} = |\vec{u}|^2 + |\vec{v}|^2 - 2|\vec{u}||\vec{v}|\cos\alpha$$
 (3.38)

donde

$$\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos \alpha. \tag{3.39}$$

Exemplo 3.2.1. Vamos determinar ângulo entre os vetores $\vec{u} = \left(\frac{\sqrt{3}}{2}, \frac{1}{2}, 0\right)$ e $\vec{u} = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}, 0\right)$. Da Proposição 3.2.1, temos

$$\cos \alpha = \frac{\vec{u} \cdot \vec{v}}{|u| \cdot |v|} \tag{3.40}$$

$$=\frac{\frac{\sqrt{3}}{2}}{1\cdot 1} = \frac{\sqrt{3}}{2}.\tag{3.41}$$

Portanto, temos $\alpha = \pi/6$.

Observação 3.2.1. O ângulo entre dois vetores \vec{u} e \vec{v} é:

- agudo se, e somente se, $\vec{u} \cdot \vec{v} > 0$;
- obtuso se, e somente se, $\vec{u} \cdot \vec{v} < 0$.

Se $\vec{u}, \vec{v} \neq \vec{0}$, então:

• $\vec{u} \perp \vec{v}$ se, e somente se, $\vec{u} \cdot \vec{v} = 0$.

Observação 3.2.2. De forma mais geral, sendo $C = (\vec{a}, \vec{b}, \vec{c})$ é uma base qualquer, o produto interno de $\vec{u} = (u_1, u_2, u_3)_C$ com $\vec{v} = (v_1, v_2, v_3)_C$ é definido por

$$\vec{u} \cdot \vec{v} := (u_1 \vec{a} + u_2 \vec{b} + u_3 \vec{c})(v_1 \vec{a} + v_2 \vec{b} + v_3 \vec{c}). \tag{3.42}$$

Com isso, o produto escalar acaba demandando o cálculo de nove termos, seis a mais do que no caso de trabalharmos em uma base ortonormal. Verifique que (3.42) é igual a (3.1) quando C é uma base ortonormal (Exercício 3.2.1).

Exercícios

 \mathbf{E} 3.2.1. Verifique que (3.42) é equivalente a (3.1) no caso de bases ortonormais.

Em construção ...

3.3 Projeção ortogonal

Sejam dados os vetores $\vec{u} = \overrightarrow{OA}$, $\vec{v} = \overrightarrow{OB} \neq \vec{0}$. Seja, ainda, P a interseção da reta perpendicular a OB que passa pelo ponto A. Observemos a Figura 3.1. Com isso, definimos a **projeção ortogonal de** \vec{u} **na direção de** \vec{v} por \overrightarrow{OP} . Denotamos

$$\overrightarrow{OP} = \operatorname{proj}_{\vec{v}} \vec{u}. \tag{3.43}$$

Figura 3.1: Ilustração da definição da projeção ortogonal.

Da definição, temos que

$$\operatorname{proj}_{\vec{v}} \vec{u} = \alpha \vec{v} \tag{3.44}$$

para algum número real α . Além disso, temos

$$\operatorname{proj}_{\vec{v}} \vec{u} = \vec{u} + \overrightarrow{AP}. \tag{3.45}$$

Portanto

$$\alpha \vec{v} = \vec{u} + \overrightarrow{AP}. \tag{3.46}$$

Tomando o produto escalar com \vec{v} em ambos os lados desta equação, obtemos

$$\alpha \vec{v} \cdot \vec{v} = \vec{u} \cdot \vec{v},\tag{3.47}$$

pois $\overrightarrow{AP}\cdot \overrightarrow{v}=0$, uma vez que $\overrightarrow{AP}\perp \overrightarrow{v}$. Daí, lembrando que $\overrightarrow{v}\cdot \overrightarrow{v}=|v|^2$, temos

$$\alpha = \frac{\vec{u} \cdot \vec{v}}{|\vec{v}|^2} \tag{3.48}$$

e concluímos que

$$\operatorname{proj}_{\vec{v}} \vec{u} = \frac{\vec{u} \cdot \vec{v}}{|\vec{v}|^2} \vec{v}. \tag{3.49}$$

Exemplo 3.3.1. Sejam $\vec{u} = (-1,1,-1)$ e $\vec{v} = (2,1,-2)$. Usando a equação (3.49), obtemos

$$\operatorname{proj}_{\vec{v}} \vec{u} = \frac{(-1,1,-1) \cdot (2,1,-2)}{|(2,1,-2)|^2} (2,1,-2)$$
(3.50)

$$= \frac{-2+1+2}{4+1+4}(2,1,-2) \tag{3.51}$$

$$= \left(\frac{2}{9}, \frac{1}{9}, \frac{-2}{9}\right). \tag{3.52}$$

Em construção ...

Exercícios

Em construção ...

Resposta dos Exercícios

E 1.1.1. Propriedades de congruência entre ângulos determinados por retas paralelas cortadas por uma transversal e congruência entre triângulos provam o enunciado.

E 1.2.4. $|\vec{v}| = 1$.

E 2.1.1. Dica: os vetores \overrightarrow{AB} e \overrightarrow{BC} são l.d..

E 2.1.2. Dica: Escreva um dos vetores como combinação linear dos outros.

Referências Bibliográficas

[1] D.A. de Mello and R.G. Watanabe. Vetores e uma iniciação à geometria analítica. Livraria da Física, 2. edition, 2011.

Índice Remissivo

```
ângulo
                                          não coplanares, 5
    entre vetores, 5
                                          ortogonais, 5
                                          paralelos, 5
base, 15
combinação linear, 11
comprimento, 1
coordenadas, 17
distância, 1
equipolentes, 4
extremidade, 2
linearmente
    dependente, 11
    independentes, 12
módulo, 5
mesmo sentido, 3
norma, 5
origem, 2
segmento, 1
segmento nulo, 2
segmento orientado, 2
vetor
    oposto, 7
vetores
    coplanares, 5
```