GSERM 2020Regression for Publishing

June 18, 2020 (first session)

Ordinal Data

Ordinal data are:

- Discrete: $Y \in \{1, 2, ...\}$
- Grouped Continuous Data
- Assessed Ordered Data

In general:

- Some things can be ordered, but shouldn't be
- Some things are ordered in some circumstances but not others
- Orderings can differ across applications

A Fake-Data Example

$$Y_i^* = 0 + 1.0X_i + u_i,$$
 $X_i \sim U[0, 10]$
 $u_i \sim N(0, 1)$
 $Y_{1i} = 1 \text{ if } Y_i^* < 2.5$
 $= 2 \text{ if } 2.5 \leq Y_i^* < 5$
 $= 3 \text{ if } 5 \leq Y_i^* < 7.5$
 $= 4 \text{ if } Y_i^* > 7.5$
 $Y_{2i} = 1 \text{ if } Y_i^* < 2$
 $= 2 \text{ if } 2 \leq Y_i^* < 8$
 $= 3 \text{ if } 8 \leq Y_i^* < 9$
 $= 4 \text{ if } Y_i^* > 9$

World's Best Regression

```
> summary(lm(Ystar~X))
Call:
lm(formula = Ystar ~ X)
Residuals:
  Min 10 Median
                     30 Max
-3.006 - 0.654 - 0.049 0.643 3.298
Coefficients:
          Estimate Std. Error t value
                                           Pr(>|t|)
(Intercept) -0.0830 0.0609 -1.36
                                               0.17
X
         Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.988 on 998 degrees of freedom
Multiple R-squared: 0.901, Adjusted R-squared: 0.901
F-statistic: 9.12e+03 on 1 and 998 DF, p-value: <0.0000000000000000
```

Also A Pretty Good Regression

```
> summary(lm(Y1~X))
Call:
lm(formula = Y1 ~ X)
Residuals:
   Min
          10 Median 30
                              Max
-1.2889 -0.2439 0.0158 0.2592 1.3968
Coefficients:
          Estimate Std. Error t value
                                           Pr(>|t|)
(Intercept) 0.69979 0.02639 26.5 < 0.0000000000000000 ***
Х
       Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.428 on 998 degrees of freedom
Multiple R-squared: 0.859, Adjusted R-squared: 0.859
F-statistic: 6.09e+03 on 1 and 998 DF, p-value: <0.00000000000000002
```

What That Looks Like

A Not-So-Good Regression

```
> summarv(lm(Y2~X))
Call:
lm(formula = Y2 ~ X)
Residuals:
   Min 10 Median 30
                             Max
-1.3115 -0.3205 -0.0405 0.2914 1.4876
Coefficients:
          Estimate Std. Error t value
                                          Pr(>|t|)
Х
       0.24383 0.00534 45.7 < 0.0000000000000000 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.498 on 998 degrees of freedom
Multiple R-squared: 0.676, Adjusted R-squared: 0.676
F-statistic: 2.09e+03 on 1 and 998 DF, p-value: <0.00000000000000002
```

What That Looks Like

Models for Ordinal Responses

$$Y_{i}^{*} = \mu + u_{i}$$

$$Y_{i} = j \text{ if } \tau_{j-1} \leq Y_{i}^{*} < \tau_{j}, \ j \in \{1, ...J\}$$

$$Y_{i} = 1 \text{ if } -\infty \leq Y_{i}^{*} < \tau_{1}$$

$$= 2 \text{ if } \tau_{1} \leq Y_{i}^{*} < \tau_{2}$$

$$= 3 \text{ if } \tau_{2} \leq Y_{i}^{*} < \tau_{3}$$

$$= 4 \text{ if } \tau_{3} \leq Y_{i}^{*} < \infty$$

Ordinal Response Models: Probabilities

$$Pr(Y_i = j) = Pr(\tau_{j-1} \le Y^* < \tau_j)$$

$$= Pr(\tau_{j-1} \le \mu_i + u_i < \tau_j)$$

$$\mu_i = \mathbf{X}_i \boldsymbol{\beta}$$
(1)

$$Pr(Y_{i} = j | \mathbf{X}, \boldsymbol{\beta}) = Pr(\tau_{j-1} \leq Y_{i}^{*} < \tau_{j} | \mathbf{X})$$

$$= Pr(\tau_{j-1} \leq \mathbf{X}_{i} \boldsymbol{\beta} + u_{i} < \tau_{j})$$

$$= Pr(\tau_{j-1} - \mathbf{X}_{i} \boldsymbol{\beta} \leq u_{i} < \tau_{j} - \mathbf{X}_{i} \boldsymbol{\beta})$$

$$= \int_{-\infty}^{\tau_{j} - \mathbf{X}_{i} \boldsymbol{\beta}} f(u_{i}) du - \int_{-\infty}^{\tau_{j-1} - \mathbf{X}_{i} \boldsymbol{\beta}} f(u_{i}) du$$

$$= F(\tau_{j} - \mathbf{X}_{i} \boldsymbol{\beta}) - F(\tau_{j-1} - \mathbf{X}_{i} \boldsymbol{\beta})$$

What That Looks Like

Probabilities (here, probit)

$$Pr(Y_i = 1) = \Phi(\tau_1 - \mathbf{X}_i\beta) - 0$$

$$Pr(Y_i = 2) = \Phi(\tau_2 - \mathbf{X}_i\beta) - \Phi(\tau_1 - \mathbf{X}_i\beta)$$

$$Pr(Y_i = 3) = \Phi(\tau_3 - \mathbf{X}_i\beta) - \Phi(\tau_2 - \mathbf{X}_i\beta)$$

$$Pr(Y_i = 4) = 1 - \Phi(\tau_3 - \mathbf{X}_i\beta)$$

Define:

$$\delta_{ij} = 1 \text{ if } Y_i = j$$
= 0 otherwise.

Likelihood:

$$L(Y|\mathbf{X},oldsymbol{eta}, au) = \prod_{i=1}^N \prod_{j=1}^J [F(au_j - \mathbf{X}_ioldsymbol{eta}) - F(au_{j-1} - \mathbf{X}_ioldsymbol{eta})]^{\delta_{ij}}$$

Log-Likelihood, probit:

$$\ln L(Y|\mathbf{X},\boldsymbol{\beta},\tau) = \sum_{i=1}^{N} \sum_{j=1}^{J} \delta_{ij} \ln[\Phi(\tau_{j} - \mathbf{X}_{i}\boldsymbol{\beta}) - \Phi(\tau_{j-1} - \mathbf{X}_{i}\boldsymbol{\beta})]$$

Log-Likelihood, logit:

$$\ln L(Y|\mathbf{X},\boldsymbol{\beta},\tau) = \sum_{i=1}^{N} \sum_{j=1}^{J} \delta_{ij} \ln[\Lambda(\tau_{j} - \mathbf{X}_{i}\boldsymbol{\beta}) - \Lambda(\tau_{j-1} - \mathbf{X}_{i}\boldsymbol{\beta})]$$

The Intuition

Identification

- (Usual) Assumption about $\sigma_{Y^*}^2$
- β_0 vs. the τ s...
- Must either omit $eta_{ extsf{0}}$ or drop one of the J-1 $au{ extsf{s}}$
- In practice: Stata & R omit β_0

Parallel Regressions

$$\frac{\partial \Pr(Y_i \ge j)}{\partial X} = \frac{\partial \Pr(Y_i \ge j')}{\partial X} \ \forall \ j \ne j'$$

(aka "proportional odds" ...)

Parallel Regressions Envisioned

Relaxing Parallel Regressions

$$\frac{\partial \Pr(Y_i \ge j)}{\partial X} \ne \frac{\partial \Pr(Y_i \ge j')}{\partial X} \ \forall \ j \ne j'$$

Nonparallel Regressions Envisioned

Estimation

- R:
 - polr (in MASS)
 - ologit/oprobit (in Zelig; calls polr)
 - vglm (in VGAM)
- Stata: ologit, oprobit

Best Example Ever

> summary(beer)

name	contqual	quality	price	calories
Length:69	Min. :24.00	Min. :1.000	Min. :2.360	Min. : 58.0
Class : character	1st Qu.:49.00	1st Qu.:2.000	1st Qu.:3.900	1st Qu.:142.0
Mode :character	Median :70.00	Median :3.000	Median :4.790	Median :148.0
	Mean :64.78	Mean :2.536	Mean :4.963	Mean :142.3
	3rd Qu.:80.00	3rd Qu.:4.000	3rd Qu.:6.240	3rd Qu.:160.0
	Max. :98.00	Max. :4.000	Max. :7.800	Max. :201.0

alcohol	craftbeer	bitter	malty	class
Min. :0.500	Min. :0.0000	Min. : 8.00	Min. : 5.00	Craft Lager :13
1st Qu.:4.400	1st Qu.:0.0000	1st Qu.:21.00	1st Qu.:12.00	Craft Ale :17
Median :4.900	Median :0.0000	Median :31.00	Median :23.00	Imported Lager :10
Mean :4.471	Mean :0.4348	Mean :35.44	Mean :33.13	Regular or Ice Beer:16
3rd Qu.:5.100	3rd Qu.:1.0000	3rd Qu.:52.50	3rd Qu.:50.50	Light Beer : 6
Max. :6.000	Max. :1.0000	Max. :80.50	Max. :86.00	Nonalcoholic : 7

Ordered Logit

```
> library(MASS)
> beer.logit<-polr(as.factor(quality)~price+calories+craftbeer+bitter
 +malty,data=beer)
> summary(beer.logit)
Call:
polr(formula = as.factor(quality) ~ price + calories + craftbeer +
   bitter + malty)
Coefficients:
         Value Std. Error t value
price
       -0.451 0.293 -1.5
calories 0.047 0.012 3.8
craftbeer -1.705 0.942 -1.8
bitter -0.030 0.042 -0.7
malty
         0.051
                   0.025
                            2.1
Intercepts:
   Value Std. Error t value
1|2 2.771 1.674 1.655
2|3 4.270 1.725 2.475
3|4 5.578 1.760
                    3.170
```

Ordered Probit

```
> beer.probit<-polr(as.factor(quality)~price+calories+craftbeer+bitter+malty,
+ data=beer,method="probit")
> summary(beer.probit)
Call:
polr(formula = as.factor(quality) ~ price + calories + craftbeer +
    bitter + malty, method = "probit")
Coefficients:
            Value Std. Error t value
price
        -0.27914 0.172012 -1.6228
calories 0.02800 0.007184 3.8979
craftbeer -0.98427 0.559020 -1.7607
bitter -0.01737 0.024719 -0.7025
malty 0.02855
                    0.014321 1.9937
Intercepts:
    Value Std. Error t value
1 2 1.647 1.018 1.619
213 2.508 1.034 2.426
314 3.290 1.049
                     3.136
```

Confidence Intervals Around $\hat{\beta}$

```
> # Profile-likelihood-based CIs:
> CIs.logit <- confint(beer.logit)
> # Compare to normal CIs:
>
> CIs.alt <- cbind(beer.logit$coefficients-1.96*sqrt(diag(vcov(beer.logit)))[1:5],
                   beer.logit$coefficients+1.96*sqrt(diag(vcov(beer.logit)))[1:5])
> CIs.logit
             2.5 % 97.5 %
price
          -1.04459 0.1131
calories 0.02407 0.0724
craftbeer -3.58749 0.1367
hitter
         -0.11511 0.0528
maltv
         0.00295 0.1005
> CIs.alt
                     [,2]
              [,1]
          -1.02561 0.1246
price
calories
         0.02282 0.0707
craftbeer -3.55086 0.1415
hitter
         -0.11285 0.0535
malty
         0.00231 0.0987
```

Interpretation: Marginal Effects

$$\frac{\partial \Pr(Y=j)}{\partial X_k} = \frac{\partial F(\hat{\tau}_{j-1} - \bar{\mathbf{X}}\hat{\beta})}{\partial X_k} - \frac{\partial F(\hat{\tau}_j - \bar{\mathbf{X}}\hat{\beta})}{\partial X_k}$$
$$= \hat{\beta}_k [f(\hat{\tau}_{j-1} - \bar{\mathbf{X}}\hat{\beta}) - f(\hat{\tau}_j - \bar{\mathbf{X}}\hat{\beta})]$$

So:

$$\bullet \ \operatorname{sign} \Bigl(\tfrac{\partial \Pr(Y=1)}{\partial X_k} \Bigr) = -\operatorname{sign} \bigl(\hat{\beta}_k \bigr)$$

•
$$\operatorname{sign}\left(\frac{\partial \Pr(Y=J)}{\partial X_k}\right) = \operatorname{sign}(\hat{\beta}_k)$$

$$ullet$$
 $rac{\partial \Pr(Y=\ell)}{\partial X_k}, \; \ell \in \{2,3,...J-1\}$ are non-monotonic

Marginal Effects, Illustrated

Interpretation: Odds Ratios

For a δ -unit change in X_k :

$$\mathsf{OR}_{X_k} = \frac{\frac{\mathsf{Pr}(Y > j | \mathbf{X}, X_k + \delta)}{\mathsf{Pr}(Y \le j | \mathbf{X}, X_k + \delta)}}{\frac{\mathsf{Pr}(Y > j | \mathbf{X}, X_k)}{\mathsf{Pr}(Y \le j | \mathbf{X}, X_k)}}$$

$$= \mathsf{exp}(\delta \hat{\beta}_k)$$

Calculating Odds Ratios

```
> olreg.or <- function(model)
+ coeffs <- coef(summary(model))
+ lci <- exp(coeffs[ ,1] - 1.96 * coeffs[ ,2])
+ or <- exp(coeffs[ ,1])
+ uci <- exp(coeffs[ ,1] + 1.96 * coeffs[ ,2])
+ lreg.or <- cbind(lci, or, uci)
+ lreg.or
+ }
> olreg.or(beer.logit)
            lci
                     or
                            uci
price
         0.3586 0.6373 1.133
calories 1.0231 1.0479 1.073
craftbeer 0.0287 0.1818 1.152
bitter
         0.8933 0.9707 1.055
malty 1.0023 1.0518 1.104
1|2
        0.6003 15.9748 425.133
213
        2.4319 71.4963 2101.961
314
         8.4053 264.4357 8319.319
```

Odds Ratios: Explication

• craftbeer:

- $\exp(-1.705) = 0.18$
- "The odds of being rated "Good" or better (versus "Fair") are more than 80 percent lower for a craft beer than for a regular beer."
- "The odds of being rated "Very Good" or better (versus "Fair" or "Good") are more than 80 percent lower for a craft beer than for a regular beer."

• calories:

- exp(0.047) = 1.05
- "A one-calorie increase raises the odds of being in a higher set of categories (versus all lower ones) by about five percent."
- etc.

Predicted Probabilities: Basics

$$\Pr(\widehat{Y_i = j} | \mathbf{X}) = F(\hat{\tau}_j - \bar{\mathbf{X}}_i \hat{\beta}) - F(\hat{\tau}_{j-1} - \bar{\mathbf{X}}_i \hat{\beta})$$

Means:

- price = 4.96, calories = 142, craftbeer = 0, bitter = 35.4, malty = 33.1.
- Yields:

$$\sum_{k=1}^{K} \bar{\mathbf{X}}_{k} \hat{\beta}_{k} = -0.45 \times 4.96 + 0.047 \times 142 - 1.70 \times 0 - 0.03 \times 35.4 + 0.05 \times 33.1$$

$$= -2.23 + 6.67 - 0 - 1.06 + 1.66$$

$$= 5.04.$$

Predicted Probabilities: "By Hand"

$$\begin{array}{rcl} \Pr(Y=1) & = & \Lambda(2.77-5.04) - 0 \\ & = & \frac{\exp(-2.27)}{1+\exp(-2.27)} \\ & = & 0.09. \end{array}$$

$$\begin{array}{rcl} \Pr(Y=2) & = & \Lambda(4.27-5.04) - \Lambda(2.77-5.04) \\ & = & \Lambda(-0.77) - \Lambda(-2.27) \\ & = & 0.32 - 0.09 \\ & = & 0.23. \end{array}$$

$$\Pr(Y=3) & = & \Lambda(5.58-5.04) - \Lambda(4.27-5.04) \\ & = & \Lambda(0.54) - \Lambda(-0.77) \\ & = & 0.63 - 0.32 \\ & = & 0.31. \end{array}$$

$$\Pr(Y=4) & = & 1 - \Lambda(5.58-5.04) \\ & = & 1 - \Lambda(0.54) \\ & = & 1 - 0.63 \end{array}$$

0.37.

Changes in Predicted Probabilities

For craftbeer=1:

- $Pr(Y = 1) = \Lambda(2.77 3.34) 0 = 0.36$.
- $Pr(Y = 2) = \Lambda(4.27 3.34) \Lambda(2.77 3.34) = 0.72 0.36 = 0.36$.
- $Pr(Y = 3) = \Lambda(5.58 3.34) \Lambda(4.27 3.34) = 0.90 0.72 = 0.18$.
- Pr(Y = 4) = 1 0.90 = 0.10.

7		
1		
3		
-0.13		
-0.27		

Predicted Probability Plots

- Can be category-specific or "cumulative"
- polr:
 - · In-sample in \$fitted.values
 - polr class supports predict, confint, etc.
- ologit / oprobit: using predict

Plot by Outcome

(How'd He Do That?)

```
> calories<-seq(60,200,1)
> price<-mean(beer$price)
> craftbeer<-median(beer$craftbeer)
> bitter<-mean(beer$bitter)
> malty<-mean(beer$malty)
> beersim<-cbind(calories,price,craftbeer,bitter,malty)
> beer.hat<-predict(beer.logit,beersim,type='probs')
> plot(c(60,200), c(0,1), type='n', xlab="Calories", ylab='Fitted Probability')
> lines(60:200, beer.hat[1:141, 1], lty=1, lwd=3)
> lines(60:200, beer.hat[1:141, 2], lty=2, lwd=3)
> lines(60:200, beer.hat[1:141, 3], lty=3, lwd=3)
> lines(60:200, beer.hat[1:141, 4], lty=4, lwd=3)
```

Cumulative Predicted Probabilities


```
(code...)
```

```
> xaxis<-c(60,60:200,200)
> yaxis1<-c(0,beer.hat[,1],0)
> yaxis2<-c(0,beer.hat[,2]+beer.hat[,1],0)
> yaxis3<-c(0,beer.hat[,3]+beer.hat[,2]+beer.hat[,1],0)
> yaxis4<-c(0,beer.hat[,4]+beer.hat[,3]+beer.hat[,2]+beer.hat[,1],0)
>
> plot(c(60,200), c(0,1), type='n', xlab="Calories", ylab="Cumulative Probability")
> polygon(xaxis,yaxis4,col="white")
> polygon(xaxis,yaxis3,col="grey80")
> polygon(xaxis,yaxis2,col="grey50")
> polygon(xaxis,yaxis1,col="grey10")
```

Variants

- Generalized (relaxes parallel regressions; Brant (1990))
- Heteroscedastic
- Varying τ s (Maddala, Terza, Sanders)
- Models for "balanced" scales (Jones & Sobel)
- Compound Ordered Hierarchical Probit ("chopit") (Wand & King)
- "Zero-Inflated" Ordered Models (Hill, Bagozzi, Moore & Mukherjee)
- Latent class/mixture models (Winkelmann, etc.)

Nominal / Unordered Outcomes

$$Y_i = j, j \in \{1, 2, ...J\}$$

$$\Pr(Y_i = j) = P_{ij}$$

$$\sum_{j=1}^J P_{ij} = 1$$

$$P_{ij} = \exp(\mathbf{X}_i \boldsymbol{\beta}_j)$$

Motivation, continued

Rescale:

$$\Pr(Y_i = j) \equiv P_{ij} = \frac{\exp(\mathbf{X}_i \beta_j)}{\sum_{j=1}^{J} \exp(\mathbf{X}_i \beta_j)}$$

Ensures

- $\Pr(Y_i = j) \in (0,1)$
- $\sum_{j=1}^{J} \Pr(Y_i = j) = 1.0$

Identification

Constrain $\beta_1 = \mathbf{0}$; then:

$$\mathsf{Pr}(Y_i = 1) = rac{1}{1 + \sum_{j=2}^{J} \mathsf{exp}(\mathbf{X}_i oldsymbol{eta}_j')}$$

$$\Pr(Y_i = j) = \frac{\exp(\mathbf{X}_i \beta_j')}{1 + \sum_{j=2}^{J} \exp(\mathbf{X}_i \beta_j')}$$

where $oldsymbol{eta}_j' = oldsymbol{eta}_j - oldsymbol{eta}_1$.

Estimation

Define:
$$\delta_{ij} = 1 \text{ if } Y_i = j,$$
 $= 0 \text{ otherwise.}$

Then:

$$L_{i} = \prod_{j=1}^{J} [\Pr(Y_{i} = j)]^{\delta_{ij}}$$

$$= \prod_{j=1}^{J} \left[\frac{\exp(\mathbf{X}_{i}\beta_{j})}{\sum_{j=1}^{J} \exp(\mathbf{X}_{i}\beta_{j})} \right]^{\delta_{ij}}$$

More Estimation

So:
$$L = \prod_{i=1}^{N} \prod_{j=1}^{J} \left[\frac{\exp(\mathbf{X}_{i}\beta_{j})}{\sum_{j=1}^{J} \exp(\mathbf{X}_{i}\beta_{j})} \right]^{\delta_{ij}}$$

and (of course):

$$\ln L = \sum_{i=1}^{N} \sum_{j=1}^{J} \delta_{ij} \ln \left[\frac{\exp(\mathbf{X}_{i}\beta_{j})}{\sum_{j=1}^{J} \exp(\mathbf{X}_{i}\beta_{j})} \right]$$

A (Descriptive) Example: 1992 Election

- 1992 National Election Study
- $Y \in \{Bush = 1, Clinton = 2, Perot = 3\}$
- N = 1473.
- \bullet X = Party ID:
 { "Strong Democrats" = 1 ightarrow "Strong Republicans" = 7}

MNL: 1992 Election ("Baseline" = Perot)

```
> nes92.mlogit<-vglm(presvote~partyid, multinomial, nes92)</pre>
> summary(nes92.mlogit)
Call:
vglm(formula = presvote ~ partyid, family = multinomial, data = nes92)
Coefficients:
            Estimate Std. Error z value
                                               Pr(>|z|)
(Intercept):2 3.0273 0.1783 16.98 < 0.0000000000000000 ***
partyid:1 0.4827 0.0476 10.15 < 0.0000000000000000 ***
partyid:2 -0.6805 0.0478 -14.25 < 0.0000000000000000 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Number of linear predictors: 2
Names of linear predictors: log(mu[,1]/mu[,3]), log(mu[,2]/mu[,3])
Dispersion Parameter for multinomial family: 1
Residual deviance: 2167 on 2942 degrees of freedom
Log-likelihood: -1083 on 2942 degrees of freedom
Number of iterations: 5
```

MNL: 1992 Election ("Baseline" = Bush)

```
> Bush.nes92.mlogit<-vglm(formula = presvote~partyid,
         family=multinomial(refLevel=1),data=nes92)
> summary(Bush.nes92.mlogit)
Coefficients:
             Estimate Std. Error z value
                                                   Pr(>|z|)
(Intercept):1 4.8425
                         0.2373 20.41 < 0.0000000000000000 ***
(Intercept):2 1.8152 0.2456 7.39
                                           0.0000000000014 ***
partyid:1 -1.1632 0.0546 -21.32 < 0.00000000000000000 ***
partyid:2 -0.4827 0.0476 -10.15 < 0.0000000000000000 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Number of linear predictors: 2
Names of linear predictors: log(mu[,2]/mu[,1]), log(mu[,3]/mu[,1])
Dispersion Parameter for multinomial family:
Residual deviance: 2167 on 2942 degrees of freedom
Log-likelihood: -1083 on 2942 degrees of freedom
Number of iterations: 5
```

MNL: 1992 Election ("Baseline" = Clinton)

```
> Clinton.nes92.mlogit<-vglm(formula=presvote~partyid,
                  family=multinomial(refLevel=2),data=nes92)
> summary(Clinton.nes92.mlogit)
Coefficients:
             Estimate Std. Error z value
                                                  Pr(>|z|)
(Intercept):1 -4.8425 0.2373 -20.4 <0.00000000000000000 ***
(Intercept):2 -3.0273 0.1783 -17.0 <0.00000000000000000 ***
partyid:1 1.1632 0.0546 21.3 <0.00000000000000000 ***
partyid:2 0.6805 0.0478 14.2 <0.0000000000000000 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Number of linear predictors: 2
Names of linear predictors: log(mu[,1]/mu[,2]), log(mu[,3]/mu[,2])
Dispersion Parameter for multinomial family:
Residual deviance: 2167 on 2942 degrees of freedom
Log-likelihood: -1083 on 2942 degrees of freedom
Number of iterations: 5
```

Coefficient Estimates and "Baselines"

		"Baseline" category					
		Clinton	Perot	Bush			
Comparison	Clinton	_	-0.68	-1.16			
Category	Perot	0.68	_	-0.48			
	Bush	1.16	0.48	_			

Interpretation: Example Data Redux

- 1992 ANES (N = 1473)
- Variables:
 - presvote: 1=Bush, 2=Clinton, 3=Perot
 - partyid: (seven-point scale, 7=GOP)
 - age (in years)
 - white (naturally coded)
 - female (ditto)

Baseline MNL Results: 1992 Election

```
> NES.MNL<-vglm(presvote~partyid+age+white+female,data=BigNES92,
          multinomial(refLevel=1))
> summaryvglm(NES.MNL)
Call.
vglm(formula = presvote ~ partvid + age + white + female, family = multinomial(refLevel = 1).
   data = BigNES92)
Coefficients:
            Estimate Std Error z value
                                               Pr(>|z|)
(Intercept):1 5.80665 0.44301 13.11 < 0.00000000000000000 ***
(Intercept):2 1.98008 0.52454 3.77
                                                 0.00016 ***
partvid:1 -1.13561 0.05486 -20.70 < 0.0000000000000000 ***
partyid:2 -0.50132 0.04870 -10.29 < 0.00000000000000000 ***
age:1 -0.00260 0.00514 -0.51
                                                0.61276
age:2 -0.01556 0.00504 -3.09
                                                0 00203 **
whiteWhite:1 -0.98908 0.31346 -3.16
                                                0.00160 **
whiteWhite: 2 0.87918 0.43605 2.02
                                                0.04377 *
female:1 -0.12500 0.16895 -0.74
                                                0.45936
female:2 -0.50928 0.16266 -3.13
                                                0 00174 **
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Number of linear predictors: 2
Names of linear predictors: log(mu[,2]/mu[,1]), log(mu[,3]/mu[,1])
Dispersion Parameter for multinomial family:
Residual deviance: 2107 on 2936 degrees of freedom
Log-likelihood: -1054 on 2936 degrees of freedom
Number of iterations: 5
```

MNL/CL: Model Fit

Global In LR statistic Q tests:

$$\hat{\boldsymbol{\beta}} = \mathbf{0} \, \forall j, k$$

$$Q \sim \chi^2_{(J-1)(k-1)}$$

Hypothesis Testing

Test H: No Effect of age

```
> library(aod)
> wald.test(b=c(t(coef(NES.MNL))),Sigma=vcov(NES.MNL),Terms=c(5,6))
Wald test:
_____
Chi-squared test:
X2 = 11.0, df = 2, P(> X2) = 0.0042
Test H: No Difference - Clinton vs. Bush
> wald.test(b=c(t(coef(NES.MNL))),Sigma=vcov(NES.MNL),Terms=c(1,3,5,7,9))
Wald test:
Chi-squared test:
X2 = 444.6, df = 5, P(> X2) = 0.0
```

Predicted <u>Outcomes</u>

OutHat

```
1 2 3
1 415 77 8
2 56 619 16
3 135 133 14
```

> table(BigNES92\$presvote,OutHat)

Predicted Outcomes

- "Null" Model: $\left(\frac{691}{1473}\right) = 46.9\%$ correct.
- Estimated model: $\frac{(415+619+14)}{1473} = \frac{1048}{1473} = 71.2\%$ correct.
- PRE = $\frac{1048-691}{1473-691} = \frac{357}{782} = 45.7\%$.
- Correct predictions: 90% Clinton, 83% Bush,
 5% Perot.

Odds ("Relative Risk") Ratios

$$\ln\left[\frac{\Pr(Y_i=j|\mathbf{X})}{\Pr(Y_i=j'|\mathbf{X})}\right] = \mathbf{X}(\hat{\beta}_j - \hat{\beta}_{j'})$$

Setting $\hat{\boldsymbol{\beta}}_{i'} = \mathbf{0}$:

$$\ln\left[\frac{\Pr(Y_i=j|\mathbf{X})}{\Pr(Y_i=j'|\mathbf{X})}\right] = \mathbf{X}\hat{\beta}_j$$

One-Unit Change in X_k :

$$RRR_{jk} = \exp(\beta_{jk})$$

 δ -Unit Change in X_k :

$$RRR_{jk} = \exp(\beta_{jk} \times \delta)$$

Odds ("Relative Risk") Ratios

```
> mnl.or <- function(model) {
   coeffs <- c(t(coef(model)))</pre>
   lci <- exp(coeffs - 1.96 * diag(vcov(NES.MNL))^0.5)</pre>
   or <- exp(coeffs)
   uci <- exp(coeffs + 1.96* diag(vcov(NES.MNL))^0.5)</pre>
   lreg.or <- cbind(lci, or, uci)</pre>
   lreg.or
> mnl.or(NES.MNL)
                  lci
                           or
                                   uci
(Intercept):1 139.5398 332.5036 792.3088
(Intercept):2 2.5909 7.2433 20.2504
partyid:1
          0.2885 0.3212 0.3577
partyid:2 0.5506 0.6057 0.6664
age:1
            0.9874 0.9974 1.0075
age:2
           0.9749 0.9846 0.9943
whiteWhite:1 0.2012 0.3719 0.6875
whiteWhite:2 1.0248 2.4089 5.6623
female:1
             0.6337 0.8825 1.2289
female:2
             0.4369
                        0.6009
                                0.8266
```

Odds Ratios: Interpretation

- A one unit increase in partyid corresponds to:
 - A decrease in the odds of a Clinton vote, versus a vote for Bush, of $\exp(-1.136) = 0.321$ (or about 68 percent), and
 - A decrease in the odds of a Perot vote, versus a vote for Bush, of $\exp(-0.501) = 0.606$ (or about 40 percent).
 - These are *large* decreases in the odds not surprisingly, more Republican voters are *much* more likely to vote for Bush than for Perot or Clinton.
- Similarly, **female** voters are:
 - No more or less likely to vote for Clinton vs. Bush (OR=0.88), but
 - Roughly 40 percent less likely to have voted for Perot (OR=0.60).

Predicted Probabilities

$$\begin{array}{ll} \mathsf{Pr}(\widehat{\mathtt{presvote}_i} = \mathsf{Bush}) & = & \frac{\exp(\mathbf{X}_i \hat{\boldsymbol{\beta}}_{\mathsf{Bush}})}{\sum_{j=1}^J \exp(\mathbf{X}_i \hat{\boldsymbol{\beta}}_j)} \\ & = & \frac{1}{1 + \sum_{j=2}^J \exp(\mathbf{X}_i \hat{\boldsymbol{\beta}}_j)} \end{array}$$

In-Sample Predicted Probabilities

```
> hats<-as.data.frame(fitted.values(NES.MNL))
> names(hats)[3]<-"Perot" # nice names...
> names(hats)[2]<-"Clinton"
> names(hats)[i]<-"Bush"
> attach(hats)
> library(car)
> scatterplot.matrix("Bush+Clinton+Perot, diagonal="histogram",col=c("black","grey"))
```

In-Sample $\widehat{\mathsf{Prs}}$

In-Sample $\widehat{\mathsf{Prs}}$ vs. partyid

Unordered Choice Models: Variants

- Conditional logit (MNL with choice-specific covariates)
- "Independence of Irrelevant Alternatives"
- → Multinomial Probit
- ullet o Heteroscedastic Extreme Value model
- "Mixed" Logit
- Nested Logit

Stata things...

MNL in Stata

. mlogit presvote partyid, baseoutcome(3)

Multinomial logistic regression Log likelihood = -1083.4749					LR ch	> chi2 =	051.50
	presvote	Coef.	Std. Err.	z	P> z	[95% Conf	. Interval]
1	 I						
	partyid	.4826514	.0475563	10.15	0.000	.3894427	.57586
	_cons	-1.815236	. 245572	-7.39	0.000	-2.296548	-1.333923
2	+ ا						
	partyid	6805163	.04777	-14.25	0.000	7741438	5868889
	_cons	3.027259	.1782539	16.98	0.000	2.677888	3.37663

(presvote==3 is the base outcome)

CL vs. Binary Logit

. clogit vote FT Conditional (fix	regression	Number LR chi:		; = =	4419 1600.58		
				Prob >	chi2	=	0.0000
Log likelihood =	-817.96837			Pseudo	R2	=	0.4945
vote	Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval]
FT	.0766544	.0031035	24.70	0.000	. 0705	716	.0827372

. logit vote FT							
Logistic regress	sion			Number	of obs	=	4419
				LR chi	2(1)	=	1777.33
				Prob >	chi2	=	0.0000
Log likelihood =	= -1924.0926	6		Pseudo	R2	=	0.3159
vote	Coef.	Std. Err.	z	P> z	[95%	Conf.	<pre>Interval]</pre>
FT I	.0744263	.0024393	30.51	0.000	.0696	453 	.0792073
cons	-5.00402	.1566234	-31.95	0.000	-5.310		-4.697044

Example Redux: MNL

. mlogit presvote partyid if candid==1, baseoutcome(1)

Multinomial logistic regression Log likelihood = -1083.4749					LR ch	> chi2	= = = =	1473 891.93 0.0000 0.2916
	presvote	Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval]
2	partyid _cons		.0545618 .2373171	-21.32 20.41	0.000	-1.270 4.377		-1.056229 5.307628
3	partyid _cons		.0475563 .245572	-10.15 7.39	0.000	57 1.333		3894427 2.296548

(presvote==1 is the base outcome)

Example Redux: CL

. clogit vote FT, group(caseid)

Conditional	(fixed-effects)	logistic	regression	Number LR chi: Prob >	2(1) chi2	= =	4419 1600.58 0.0000
Log likeliho	ood = -817.96837	7		Pseudo	R2	=	0.4945
vote		Std. Err	. z	P> z	[95%	Conf.	Interval]
	.0766544	.0031035	24.70	0.000	. 0705	716	.0827372

Example Redux: CL

- . gen clintondummy=(candid==2)
- . gen perotdummy=(candid==3)
- . gen PIDxClinton = partyid * clintondummy
- . gen PIDxPerot = partyid * perotdummy
- . clogit vote clintondummy perotdummy PIDxClinton PIDxPerot, group(caseid)

Conditional (fi	xed-effects)	logistic	regression	Number	of obs	=	4419
				LR chi	2(4)	=	1069.56
				Prob >	chi2	=	0.0000
Log likelihood	= -1083.4749			Pseudo	R2	=	0.3305
vote	Coef.	Std. Err.		P> z		Conf.	Interval]
clintondummy	4.842495	.2373171	20.41	0.000	4.377	362	5.307628
perotdummy	1.815236	. 245572	7.39	0.000	1.333	923	2.296548
PIDxClinton	-1.163168	.0545618	-21.32	0.000	-1.270	107	-1.056229
PIDxPerot	4826514	.0475563	-10.15	0.000	57	586	3894427

Combining X and Z

. clogit vote FT clintondummy perotdummy PIDxClinton PIDxPerot, group(caseid)

ixed-effects)	logistic	regression			=	4419
			LR chi2	2(5)	=	1764.49
			Prob >	chi2	=	0.0000
= -736.0092			Pseudo	R2	=	0.5452
Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval]
.0629875	.0032175	19.58	0.000	. 0566	813	.0692937
2.812737	.2687999	10.46	0.000	2.285	899	3.339576
.9435437	.2856252	3.30	0.001	.3837	286	1.503359
6318723	.062255	-10.15	0.000	7538	899	5098548
1921175	.057032	-3.37	0.001	3038	981	0803369
	Coef. .0629875 2.812737 .9435437 6318723	Coef. Std. Err. .0629875 .0032175 2.812737 .2687999 .9435437 .28562526318723 .062255	Coef. Std. Err. z .0629875 .0032175 19.58 2.812737 .2687999 10.46 .9435437 .2856252 3.306318723 .062255 -10.15	LR chi2 Prob > Pseudo	LR chi2(5) Prob > chi2 Pseudo R2 P	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

MNL (Stata version)

```
. mlogit presvote partyid age white female, baseoutcome(1)
Multinomial logistic regression
                                          Number of obs =
                                                          1473
                                          LR chi2(8)
                                                          951.58
                                          Prob > chi2
                                                          0.0000
Log likelihood = -1053.6506
                                          Pseudo R2
                                                            0.3111
   presvote |
                 Coef.
                       Std. Err.
                                        P>|z|
                                                 [95% Conf. Interval]
______
                       .0548618 -20.70 0.000
                                              -1.243142 -1.028088
    partyid |
             -1.135615
       age |
             -.0026013
                       .0051396
                                -0.51 0.613 -.0126746 .007472
     white |
             -.98908
                       .3134669 -3.16 0.002 -1.603464
                                                          -.3746961
     female |
            -.125005
                       .1689499 -0.74
                                        0.459
                                              -.4561406 .2061307
                       .4430144
                                        0.000
                                              4.938358
                                                           6.674943
     _cons
              5.806651
                                 13.11
3
                       .0486977
                                        0.000
                                                -.5967675
                                                          -.4058761
    partyid |
             -.5013218
                                 -10.29
       age |
             -.015565
                       .0050436
                                -3.09
                                        0.002
                                              -.0254503 -.0056796
             .8791807
                       .4360556
                                 2.02
                                        0.044
                                               .0245275
                                                         1.733834
     white |
     female |
            -.509278
                       .1626614
                                -3.13
                                        0.002
                                                -.8280884 -.1904676
                                  3.77
                                        0.000
      _cons
              1.980081
                       .5245439
                                                 .9519936
                                                           3.008168
```

"Relative Risk Ratios" (Stata Remix)

. mlogit, rrr

Multinomial logistic regression Log likelihood = -1053.6506					LR ch	er of obs ii2(8) > chi2 lo R2	= =	1473 951.58 0.0000 0.3111
	presvote	RRR	Std. Err.	z	P> z	[95% (Conf.	Interval]
2								
	partyid	.3212245	.017623	-20.70	0.000	. 28847	764	.3576903
	age	.9974021	.0051262	-0.51	0.613	.98740)54	1.0075
	white	.3719187	.1165842	-3.16	0.002	.20119	984	.6874982
	female	.8824925	.149097	-0.74	0.459	.63372	247	1.228914
3	+ 							
	partyid	.6057295	.0294976	-10.29	0.000	.55058	386	.6663927
	age	. 9845555	.0049657	-3.09	0.002	.97487	708	.9943365
	white	2.408925	1.050425	2.02	0.044	1.0248	331	5.662322
	female	.6009293	.097748	-3.13	0.002	.43688	336	.8265726

Conditional Logit: Odds Ratios (Stata)

. clogit, or

Conditional (f	ixed-effects)	logistic	regression	Number LR chi:	2(5)	; = = =	4419 1764.49 0.0000
Log likelihood	= -736.0092			Pseudo	R2	=	0.5452
vote	Odds Ratio	Std. Err.		P> z		Conf.	Interval]
+							
FT	1.065014	.0034267	19.58	0.000	1.058	318	1.071751
clintondummy	16.65545	4.476983	10.46	0.000	9.834	527	28.20715
perotdummy	2.569069	.7337909	3.30	0.001	1.467	747	4.496767
PIDxClinton	.5315956	.0330945	-10.15	0.000	.4705	327	.6005828
PIDxPerot	.8252099	.0470633	-3.37	0.001	.7379	361	.9228054