AoPS Community

1991 AMC 12/AHSME

AMC 12/AHSME 1991

www.artofproblemsolving.com/community/c4855 by jeffq, rrusczyk

1 If for any three distinct numbers a, b and c we define

$$\boxed{a,b,c} = \frac{c+a}{c-b}$$

$$\text{then} \boxed{1,-2,-3} =$$

(A)
$$-2$$
 (B) $-\frac{2}{5}$ (C) $-\frac{1}{4}$ (D) $\frac{2}{5}$

(B)
$$-\frac{2}{5}$$

(C)
$$-\frac{1}{4}$$

(D)
$$\frac{2}{5}$$

2
$$|3 - \pi| =$$

(A)
$$\frac{1}{7}$$

(B)
$$0.14$$
 (C) $3 - \pi$ **(D)** $3 + \pi$

(D)
$$3 + \pi$$

(E)
$$\pi - 3$$

3
$$(4^{-1} - 3^{-1})^{-1} =$$

(A)
$$-12$$
 (B) -1

(C)
$$\frac{1}{12}$$

- 4 Which of the following triangles cannot exist?
 - (A) An acute isosceles triangle (B) An isosceles right triangle (C) An obtuse right triangle (D) A scalene right (E) A scalene obtuse triangle
- 5 In the arrow-shaped polygon [see figure], the angles at vertices A, C, D, E and F are right angles, BC = FG = 5, CD = FE = 20, DE = 10, and AB = AG. The area of the polygon is closest to

- **(A)** 288
- **(B)** 291
- **(C)** 294
- **(D)** 297
- **(E)** 300

If $x \ge 0$, then $\sqrt{x\sqrt{x\sqrt{x}}} =$ 6

- (A) $x\sqrt{x}$ (B) $x\sqrt[4]{x}$ (C) $\sqrt[8]{x}$ (D) $\sqrt[8]{x^3}$ (E) $\sqrt[8]{x^7}$

If $x = \frac{a}{b}$, $a \neq b$ and $b \neq 0$, then $\frac{a+b}{a-b} =$ 7

- (A) $\frac{x}{x+1}$ (B) $\frac{x+1}{x-1}$ (C) 1 (D) $x \frac{1}{x}$ (E) $x + \frac{1}{x}$

Liquid X does not mix with water. Unless obstructed, it spreads out on the surface of water to 8 form a circular film $0.1~\mathrm{cm}$ thick. A rectangular box measuring $6~\mathrm{cm}$ by $3~\mathrm{cm}$ by $12~\mathrm{cm}$ is filled with liquid X. Its contents are poured onto a large body of water. What will be the radius, in centimeters, of the resulting circular film?

- (A) $\frac{\sqrt{216}}{\pi}$ (B) $\sqrt{\frac{216}{\pi}}$ (C) $\sqrt{\frac{2160}{\pi}}$ (D) $\frac{216}{\pi}$ (E) $\frac{2160}{\pi}$

9 From time t=0 to time t=1 a population increased by i%, and from time t=1 to time t=2 the population increased by j%. Therefore, from time t=0 to time t=2 the population increased by

- **(A)** (i+j)%

- **(B)** ij% **(C)** (i+ij)% **(D)** $\left(i+j+\frac{ij}{100}\right)\%$ **(E)** $\left(i+j+\frac{i+j}{100}\right)\%$

10 Point P is 9 units from the center of a circle of radius 15. How many different chords of the circle contain P and have integer lengths?

- **(A)** 11
- **(B)** 12
- **(C)** 13
- **(D)** 14
- **(E)** 29

11 Jack and Jill run 10 kilometers. They start at the same point, run 5 kilometers up a hill, and return to the starting point by the same route. Jack has a 10 minute head start and runs at the rate of 15 km/hr uphill and 20 km/hr downhill. Jill runs 16 km/hr uphill and 22 km/hr downhill. How far from the top of the hill are they when they pass going in opposite directions?

- (A) $\frac{5}{4} km$ (B) $\frac{35}{27} km$ (C) $\frac{27}{20} km$ (D) $\frac{7}{3} km$ (E) $\frac{28}{9} km$

12 The measures (in degrees) of the interior angles of a convex hexagon form an arithmetic sequence of positive integers. Let m° be the measure of the largest interior angle of the hexagon. The largest possible value of m° is

- (A) 165°
- **(B)** 167°
- (C) 170°
- **(D)** 175°
- **(E)** 179°

13 Horses X, Y and Z are entered in a three-horse race in which ties are not possible. If the odds against X winning are 3-to-1 and the odds against Y winning are 2-to-3, what are the odds against Z winning? (By "odds against H winning are p-to-q" we mean that probability of H winning the race is $\frac{q}{n+q}$.)

(A) 3 - to - 20

(B) 5 - to - 6

(C) 8 - to - 5

(D) 17 - to - 3

(E) 20 - to - 3

14 If x is the cube of a positive integer and d is the number of positive integers that are divisors of x, then d could be

(A) 200

(B) 201

(C) 202

(D) 203

(E) 204

A circular table has exactly 60 chairs around it. There are N people seated at this table in such a way that the next person to be seated must sit next to someone. The smallest possible value of N is

(A) 15

(B) 20

(C) 30

(D) 40

(E) 58

One hundred students at Century High School participated in the AHSME last year, and their mean score was 100. The number of non-seniors taking the AHSME was 50% more than the number of seniors, and the mean score of the seniors was 50% higher than that of the non-seniors. What was the mean score of the seniors?

(A) 100

(B) 112.5

(C) 120

(D) 125

(E) 150

A positive integer N is a *palindrome* if the integer obtained by reversing the sequence of digits of N is equal to N. The year 1991 is the only year in the current century with the following two properties:

(a) It is a palindrome

(b) It factors as a product of a 2-digit prime palindrome and a 3-digit prime palindrome. How many years in the millennium between 1000 and 2000 (including the year 1991) have properties (a) and (b)?

(A) 1

(B) 2

(C) 3

(D) 4

(E) 5

18 If S is the set of points z in the complex plane such that (3+4i)z is a real number, then S is a

(A) right triangle

(B) circle

(C) hyperbola

(D) line

(E) parabola

Triangle ABC has a right angle at C, AC=3 and BC=4. Triangle ABD has a right angle at A and AD=12. Points C and D are on opposite sides of \overline{AB} . The line through D parallel to \overline{AC} meets \overline{CB} extended at E. If $\frac{DE}{DB}=\frac{m}{n}$, where m and n are relatively prime positive integers, then m+n=1

- **(A)** 25
- **(B)** 128
- **(C)** 153
- **(D)** 243
- **(E)** 256
- **20** The sum of all real x such that $(2^x 4)^3 + (4^x 2)^3 = (4^x + 2^x 6)^3$ is
 - **(A)** 3/2
- **(B)** 2
- **(C)** 5/2
- **(D)** 3
- **(E)** 7/2
- 21 If $f\left(\frac{x}{x-1}\right) = \frac{1}{x}$ for all $x \neq 0, 1$ and $0 < \theta < \frac{\pi}{2}$, then $f(\sec^2 \theta) = \frac{\pi}{2}$
 - (A) $\sin^2 \theta$
- **(B)** $\cos^2 \theta$
- (C) $\tan^2 \theta$
- **(D)** $\cot^2 \theta$
- **(E)** $\csc^2 \theta$
- Two circles are externally tangent. Lines \overline{PAB} and $\overline{PA'B'}$ are common tangents with A and A' on the smaller circle and B and B' on the larger circle. If PA = AB = 4, then the area of the smaller circle is

- **(A)** 1.44π
- **(Β)** 2π
- **(C)** 2.56π
- (D) $\sqrt{8}\pi$
- (E) 4π

23 If ABCD is a 2×2 square, E is the midpoint of \overline{AB} , F is the midpoint of \overline{BC} , \overline{AF} and \overline{DE} intersect at I, and \overline{BD} and \overline{AF} intersect at H, then the area of quadrilateral BEIH is

(A) $\frac{1}{3}$

(B) $\frac{2}{5}$ **(C)** $\frac{7}{15}$ **(D)** $\frac{8}{15}$

(E) $\frac{3}{5}$

The graph, G of $y = \log_{10} x$ is rotated 90° counter-clockwise about the origin to obtain a new 24 graph G'. Which of the following is an equation for G'?

(A) $y = \log_{10}\left(\frac{x+90}{9}\right)$ **(B)** $y = \log_x 10$ **(C)** $y = \frac{1}{x+1}$ **(D)** $y = 10^{-x}$

(E) $y = 10^x$

25 If $T_n = 1 + 2 + 3 + \ldots + n$ and

 $P_n = \frac{T_2}{T_2 - 1} \cdot \frac{T_3}{T_3 - 1} \cdot \frac{T_4}{T_4 - 1} \cdot \dots \cdot \frac{T_n}{T_n - 1} \quad \text{for } n = 2, 3, 4, \dots,$

then P_{1991} is closest to which of the following numbers?

(A) 2.0

(B) 2.3

(C) 2.6

(D) 2.9

(E) 3.2

26 An *n*-digit positive integer is *cute* if its *n* digits are an arrangement of the set $\{1, 2, \dots, n\}$ and its first k digits form an integer that is divisible by k, for $k = 1, 2, \dots, n$. For example 321 is a cute 3-digit integer because 1 divides 3, 2 divides 32, and 3 divides 321. How many cute 6-digit integers are there?

(A) 0

(B) 1

(C) 2

(D) 3

(E) 4

If $x + \sqrt{x^2 - 1} + \frac{1}{x - \sqrt{x^2 - 1}} = 20$ then $x^2 + \sqrt{x^4 - 1} + \frac{1}{x^2 + \sqrt{x^4 - 1}} = 20$ 27

(A) 5.05

(B) 20

(C) 51.005

(D) 61.25

28 Initially an urn contains 100 black marbles and 100 white marbles. Repeatedly, three marbles are removed from the urn and replaced from a pile outside the urn as follows:

> **MARBLES REMOVED** REPLACED WITH 1 black 3 black 2 black, 1 white 1 black, 1 white 1 black, 2 white 2 white 3 white 1 black, 1 white

Which of the following sets of marbles could be the contents of the urn after repeated applications of this procedure?

(A) 2 black marbles (B) 2 white marbles (C) 1 black marble (D) 1 black and 1 white marble (E) 1 white marble

Equilateral triangle ABC has been creased and folded so that vertex A now rests at A' on \overline{BC} 29 as shown. If BA'=1 and A'C=2 then the length of crease \overline{PQ} is

- (A) $\frac{8}{5}$
- **(B)** $\frac{7}{20}\sqrt{21}$ **(C)** $\frac{1+\sqrt{5}}{2}$
- **(D)** $\frac{13}{8}$
- **(E)** $\sqrt{3}$
- 30 For any set S, let |S| denote the number of elements in S, and let n(S) be the number of subsets of S, including the empty set and the set S itself. If A, B and C are sets for which

$$n(A) + n(B) + n(C) = n(A \cup B \cup C)$$
 and $|A| = |B| = 100$,

then what is the minimum possible value of $|A \cap B \cap C|$?

- **(A)** 96
- **(B)** 97
- **(C)** 98
- **(D)** 99
- **(E)** 100

These problems are copyright © Mathematical Association of America (http://maa.org).