Water Composite Curves

- Mass load vs flowrate graph
- Demand composite curve on top of source composite curve

Water Cascade Analysis

- Obtains water utility target using algebraic approach
- Arrange according to ascending concentration

k	Ck (ppm)	∆Ck	Fj (kg/s)	Fi (kg/s)	Fi - Fj (kg/s)	
		Second Ca				

	First Cascade	Second Cascade				
Fcascade	Δ m	Δ m cascade	Δ m cascade / Ck	Fcascade	Δ m	Δ m cascade

CHAPTER 7

process Integration

Water Pinch Analysis

A systematic technique to analyse water networks and identify opportunities to increase efficient use of water in industrial processes.

Water Network Design

- Feed the cleanest demand with the cleanest water source
- Must obtain freshwater and waster water flowrate from water targeting
- Arrange streams in ascending concentration values
- Must satisfy overall material balance

Water Utility Targeting Techniques

- Water composite curves
- Water cascade analysis (WCA)

Mass Load Concepts

- Water starts clean and contamination increases due to mass transfer
- Mass load depends on flowrate and concentration of water $\Delta M = F \Delta C$

