

Module 3 - Genome Assembly

28-05-2024

Virtual, Across Africa and Asia **Dr Patrick Musicha**

Lecturer and Associated Group Head Malawi Liverpool Wellcome Programme & LSTM

Genome Assembly

WCS ACORN - Bioinformatics for Antimicrobial Resistance - Virtual Course

Streptococcus Pyogenes
Photo by National Institute of Allergy and Infectious Diseases on Unsplash

What is genome assembly

- Sequence reads-small fragments of DNA sequence output from a sequencing machine.
- Could be
 - -Short reads (Next generation sequencing-Illumina)
- -Long reads (PacBio SMRT or Oxford Nanopore sequencing)

Genome assembly

- •Piecing these sequence fragments into a genome (chromosome + any plasmids) sequence is a challenge
- •Reads are somewhat random relative to the genome sequence

MLW

•Repeat sequences and MGE e.g. IS elements and plasmids

How to assemble raw reads

- Can be achieved by
 - Mapping to a reference genome
 - de novo assembly (without a reference).

Genome Assembly

SHORT READS

Missing sequence data leads to gaps in genome coverage and limits variant detection

Reference genome

HiFi READS

Long reads map uniquely and span large variants, providing comprehensive variant detection

De novo assembly

- Several tools available to perform de novo assembly
 - -Velvet (NGS short reads)
- Spades (NGS short reads but can also support hybrid mode)+
 - Unicycler
 - Shovill
 - -Flye (long reads)

De novo Assembly

>EP38001 (+) Ce hist. H1 his-24; range -299 to 100.
GAGAGTCAGGTCGTGAAAACCAATGCGTCGACTTCAGGGCCCAATTACTCGGTCATTT
ATAATCGTTTTCTCTCGAATTTTGAGCACAATGTAGATAATGTCTTCAGCTATCAGATGT
TATCAGGAAATTTCATAAAAATTGATCCGGAGTATCCAAATTGTCAGCGCCCGACACCTC
CTCCTTTCGAGACCTGCTATCTTATTCGGTGCAGTAAGGGAGAGGCGGGATGTGTCCCCG
CAGGGTGGTAGAAATTGGGTATATAAGAGAAACGAGAGGACTCGCACAGTCATCACTTTTC
AAGTGTCACCCAACCAACCAAACCGCCGTCGAACGATGTCTGATTCCGCTGTTGTTGCCG

Assessing Assembly quality

- Assemblies need to be evaluated for quality using some assembly stats
- Assembly stats can be generated with tools such as
 Quast

Example assembly stats

В	С	D	E	F	G	Н	1	J	K	L	М	N
total_length	number	mean_length	longest	shortest	N_count	Gaps	N50	N50n	N70	N70n	N90	N90n
4,991,645.0	0 60	83,194.08	610,445.00	524	1	1	232,462.00	8	131421	14	43876	2
4,589,899.0	0 86	53,370.92	357,165.00	308	250	5	119,264.00	12	80380	22	42122	3
4,655,125.0	0 103	45,195.39	328,684.00	311	347	4	141,947.00	12	97965	20	31187	3
4,708,681.0	54	87,197.80	804,746.00	502	406	2	341,170.00	5	223220	8	74907	16
4,736,275.0	72	65,781.60	473,243.00	381	365	3	155,594.00	9	95828	16	42687	29
4,847,918.0	50	96,958.36	724,413.00	313	433	4	267,536.00	6	185247	11	55448	18
4,895,618.0	0 42	116,562.33	903,697.00	429	237	2	313,077.00	5	214654	8	72117	17
4,822,679.0	0 83	58,104.57	322,552.00	388	422	3	128,833.00	13	82743	22	32215	39
4,981,853.0	0 37	134,644.68	537,027.00	450	119	2	482,573.00	5	365130	8	120866	13
4,598,065.0	0 118	38,966.65	250,513.00	373	818	4	86,000.00	17	57543	30	20651	5
5,028,650.0	94	53,496.28	393,261.00	363	220	5	136,834.00	11	73943	21	32883	40
4,873,756.0	50	97,475.12	919,335.00	330	1022	6	515,053.00	4	229640	7	87020	1:
5,832,872.0	1666	3,501.12	116,024.00	126	64024	165	19,520.00	79	8734	160	915	632
4,565,615.0	0 120	38,046.79	161,592.00	415	383	2	76,534.00	21	51590	35	19559	63
4,849,614.0	0 80	60,620.18	254,757.00	308	417	2	125,968.00	13	85633	23	37842	40
4,682,411.0	0 83	56,414.59	505,722.00	354	635	3	138,005.00	9	79629	17	33506	35
4,713,616.0	0 120	39,280.13	328,731.00	461	1	1	95,601.00	15	48747	28	22081	5
4,674,998.0	0 64	73,046.84	623,293.00	308	548	3	185,601.00	7	106685	14	40445	2
4,821,497.0	0 34	141,808.74	659,473.00	360	407	1	294,404.00	6	163583	10	88712	1
4,766,021.0	0 87	54,781.85	609,140.00	307	483	7	111,295.00	13	63582	23	32122	4:
4,814,643.0	0 40	120,366.07	772,555.00	359	1	1	280,338.00	5	163175	10	75168	1
5,144,517.0	0 65	79,146.42	437,938.00	419	979	5	210,154.00	9	173826	14	54012	2
4,902,416.0	58	84,524.41	523,264.00	395	539	3	224,746.00	7	145254	13	48816	23

Using Assembly stats-summary

Metrics	Description					
N50	N50 means, half of the genome sequence is larger than or equal the N50 contig size (\uparrow) .					
NG50	The length of the scaffold at which 50% of the genome length is covered (\uparrow).					
Coverage	If 90% of the bases have at least 5X read coverage, the genome is considered accurate (†).					
N90	An assembly is considered to have continuity provided its N 90 > 5 Kb (\uparrow).					
Average contig length	The average contig length should be longer than 5000 bases (5 Kb) (↑).					
Number of genes	If an assembly that identifies most of the known genes is considered the better assembly (\uparrow) .					
Number of gaps	The gaps in an assembly decreases the quality (\downarrow) .					
Validity	An assembly can be validated by the reference sequence (†).					

Adapted from https://www.cd-genomics.com/an-overview-of-genome-assembly.html

Post-Assembly analyses

Adapted from https://www.cd-genomics.com/an-overview-of-genome-assembly.html

questions?

