# מבוא לראייה ממוחשבת – 22928 2016

מנחה: אמיר אגוזי

egozi5@gmail.com

מפגש מס' 4

## בפעם שעברה

- PCA •
- עקרונות לימוד מכונה
- Feature extraction -
  - Training -
  - Validation -
    - Test -
- Performance evaluation -

### היום

- BOW + SVM חזרה על סיווג
  - זיהוי ע"י סיווג •
  - Viola-jones זיהוי פנים בשיטת
    - Boosting •
    - Cascade classifier •

#### **Detection via classification: Main idea**

- Consider all subwindows in an image
  - Sample at multiple scales and positions
- Make a decision per window:
  - "Does this contain object category X or not?"
- In this section, we'll focus specifically on methods using a global representation (i.e., not part-based, not local features).











איתור פנים בשיטה של ויאולה וג'ונס

# Three Main Contributions

- Integral image, rectangle features can be computed efficiently
- 2. Boosting constructing a classifier using AdaBoost - learning algorithm developed by Fruend and Schapire, selects a small set of features and build a classifier based on them
- Combining successively more complex classifiers in a "cascade" focus attention on promising regions of the picture

# בראשי פרקים

- Rectangle features
- Integral image
- Weak learner
- Strong learner
- The boosting algorithm
- The cascade

# Rectangle Features



# Rectangle Features

For a 24x24 sub-window, the number of possible rectangle features is ~180,000! Select using AdaBoost...



# Integral Image Representation

Each pixel contains the sum of the pixels above and to the left of it:



image

Example:



## **Boosting**

- Build a strong classifier by combining number of "weak classifiers", which need only be better than chance
- Sequential learning process: at each iteration, add a weak classifier
- Flexible to choice of weak learner
  - including fast simple classifiers that alone may be inaccurate
- We'll look at Freund & Schapire's AdaBoost algorithm
  - Easy to implement
  - Base learning algorithm for Viola-Jones face detector

# A Formal View of Boosting

- given training set  $(x_1, y_1), \ldots, (x_m, y_m)$
- $y_i \in \{-1, +1\}$  correct label of instance  $x_i \in X$
- for t = 1, ..., T:
  - construct distribution  $D_t$  on  $\{1, \ldots, m\}$
  - find weak hypothesis ("rule of thumb")

$$h_t: X \to \{-1, +1\}$$

with small error  $\epsilon_t$  on  $D_t$ :

$$\epsilon_t = \Pr_{D_t}[h_t(x_i) \neq y_i]$$

• output final hypothesis  $H_{\text{final}}$ 

#### **AdaBoost**

[Freund & Schapire]

- constructing **D**<sub>t</sub>:
  - $D_1(i) = 1/m$
  - given  $D_t$  and  $h_t$ :

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \cdot \begin{cases} e^{-\alpha_t} & \text{if } y_i = h_t(x_i) \\ e^{\alpha_t} & \text{if } y_i \neq h_t(x_i) \end{cases}$$
$$= \frac{D_t(i)}{Z_t} \cdot \exp(-\alpha_t y_i h_t(x_i))$$

where  $Z_t = normalization constant$ 

$$\alpha_t = \frac{1}{2} \ln \left( \frac{1 - \epsilon_t}{\epsilon_t} \right) > 0$$

- <u>final hypothesis</u>:
  - $H_{\text{final}}(x) = \operatorname{sign}\left(\sum_{t} \alpha_{t} h_{t}(x)\right)$

# **Toy Example**



## Round 1



$$\epsilon_1 = 0.30$$
  
 $\alpha_1 = 0.42$ 

# Round 2





$$\epsilon_2 = 0.21$$
  
 $\alpha_2 = 0.65$ 





## Final Hypothesis

 $\mathop{\rm final}_{}$ 





- Given example images  $(x_1, y_1), \ldots, (x_n, y_n)$  where  $y_i = 0, 1$  for negative and positive examples respectively.
- Initialize weights  $w_{1,i} = \frac{1}{2m}, \frac{1}{2l}$  for  $y_i = 0, 1$  respectively, where m and l are the number of negatives and positives respectively.
- For t = 1, ..., T:
  - 1. Normalize the weights,

$$w_{t,i} \leftarrow \frac{w_{t,i}}{\sum_{j=1}^{n} w_{t,j}}$$

so that  $w_t$  is a probability distribution.

- 2. For each feature, j, train a classifier  $h_j$  which is restricted to using a single feature. The error is evaluated with respect to  $w_t$ ,  $\epsilon_j = \sum_i w_i |h_j(x_i) y_i|$ .
- 3. Choose the classifier,  $h_t$ , with the lowest error  $\epsilon_t$ .
- 4. Update the weights:

$$w_{t+1,i} = w_{t,i}\beta_t^{1-e_i}$$

where  $e_i = 0$  if example  $x_i$  is classified correctly,  $e_i = 1$  otherwise, and  $\beta_t = \frac{\epsilon_t}{1 - \epsilon_t}$ .

• The final strong classifier is:

$$h(x) = \begin{cases} 1 & \sum_{t=1}^{T} \alpha_t h_t(x) \ge \frac{1}{2} \sum_{t=1}^{T} \alpha_t \\ 0 & \text{otherwise} \end{cases}$$

where 
$$\alpha_t = \log \frac{1}{\beta_t}$$

#### **AdaBoost Algorithm**

Start with

uniform weights on training examples



{x1,...xn}

For T rounds

Evaluate weighted error for each feature, pick best.

Re-weight the examples:

Incorrectly classified -> more weight Correctly classified -> less weight

Final classifier is combination of the weak ◆ ones, weighted according to error they had.

Freund & Schapire 1995

# Learning to Detect

- Image Features + thresholds = Weak Classifiers
- For each round of Boosting
  - Evaluate each rectangle filter on each example
  - Sort examples by filter values
  - Select best threshold for each filter (min. err.)
    - Sorted list can be quickly scanned for optimal threshold
  - Select best filter / threshold combo.
  - Weight on this feature is a simple function of err. rate.
  - Rewight examples
- Output: selected features and their weights

## Cascading classifiers for detection

For efficiency, apply less accurate but faster classifiers first to immediately discard windows that clearly appear to be negative; e.g.,

- Filter for promising regions with an initial inexpensive classifier
- Build a chain of classifiers, choosing cheap ones with low false negative rates early in the chain



Fleuret & Geman, IJCV 2001 Rowley et al., PAMI 1998 Viola & Jones, CVPR 2001 K. Grauman, B. Leibe

#### 9.8 % patches remaining



#### 0.74 % patches remaining



#### 0.06 % patches remaining



#### 0.01 % patches remaining



#### 0.007 % patches remaining



## **Highlights**

- Sliding window detection and global appearance descriptors:
  - Simple detection protocol to implement
  - Good feature choices critical
  - Past successes for certain classes

#### **Limitations**

- High computational complexity
  - For example: 250,000 locations x 30 orientations x 4 scales = 30,000,000 evaluations!
  - If training binary detectors independently, means cost increases linearly with number of classes
- With so many windows, false positive rate better be low

Not all objects are "box" shaped





- Non-rigid, deformable objects not captured well with representations assuming a fixed 2d structure; or must assume fixed viewpoint
- Objects with less-regular textures not captured well with holistic appearance-based descriptions

Dogs - all images contain at least one dog.



If considering windows in isolation, context is lost



**Sliding window** 



**Detector's view** 

- In practice, often entails large, cropped training set (expensive)
- Requiring good match to a global appearance description can lead to sensitivity to partial occlusions





# **Gradient-based representations: Histograms of oriented gradients (HoG)**





Map each grid cell in the input window to a histogram counting the gradients per orientation.

Code available: http://pascal.inrialpes.fr/soft/olt/

Dalal & Triggs, CVPR 2005

K. Grauman, B. Leibe

#### **Pedestrian detection**

 Detecting upright, walking humans also possible using sliding window's appearance/texture; e.g.,



SVM with Haar wavelets [Papageorgiou & Poggio, IJCV 2000]



Space-time rectangle features [Viola, Jones & Snow, ICCV 2003]



SVM with HoGs [Dalal & Triggs, CVPR 2005]

# Edges and chamfer distance









# Edge fragments

Opelt, Pinz, Zisserman, ECCV 2006



Weak detector = k edge fragments and threshold. Chamfer distance uses 8 orientation planes



# Weak detectors

Part based: similar to part-based generative models. We create weak detectors by using parts and voting for the object center location



These features are used for the detector on the course web site.

## סיכום

- זיהוי ע"י סיווג
  - Boosting •
- Viola & Jones •

## בפעם הבאה

- סינטוז טקסטורה
- גאומטריה של תמונות