Jordan Stout

 ♦ Boston, MA
 □ jdstout@gmail.com
 • 310-847-9404
 • obelisk2u

Education

Boston University M.S. in Statistical Practice, GPA 3.85

Sept 2024-December 2025

o Coursework: Statistical Machine Learning, Advanced Statistical Modeling, Data Science in R

Wheaton College Massachusetts B.S. Physics and Computer Science, GPA 3.70

Sept 2017-May 2021

o Coursework: Methods of Scientific Computing, Parallel and Distributed Systems, Operating Systems

Experience

Data Science Intern, Fidelity Investments

September 2024-May 2025 — Boston, MA

- Led a team of 10 interns in developing a multi-query RAG pipeline in Python and SQL, processing 10,000+ internal Fidelity technical documents
- Developed a Random Forest model to extract features of documents that optimize RAG performance allowing Fidelity to refine their knowledge base saving money in data storage and retrieval costs

Software Engineer, True Engineering

January 2024-September 2024 — Cambridge, MA

- Developed Python scripts to automate translation of live-streamed naval data into JSON and proprietary formats, saving 100+ hours weekly.
- Collaborated with senior naval personnel at Point Loma Naval Base to debug and integrate TrueNumbers into operational data pipelines, while supporting and educating non-technical stakeholders on its UI and data model.

Software Engineer, Raytheon (DoD Secret Clearance)

June 2022-June 2023 — Cambridge, MA

- Redesigned a multithreaded C2 architecture in C++ for a classified DARPA project, enhancing code robustness, maintainability, and clarity.
- Implemented real-time acoustic signal processing algorithms in C++, leveraging Fast Fourier Transform (FFT) techniques to extract and analyze frequency-domain features from raw sensor data.
- Maintained classified technical documentation in compliance with security protocols and procedural standards for government-contracted projects.

Projects

Conversational Audio Analysis

- Echos is a platform that transcribes, summarizes, and analyzes live audio feed, featuring a RAG system that enables users to chat with their transcripts and receive context-aware answers.
- o Tools Used: Python, FastAPI, LangChain, React, TypeScript, AWS

PINN - Poisson

- Implemented a Physics-Informed Neural Network (PINN) in PyTorch to solve the 2D Poisson equation with zero-Dirichlet boundary conditions, training purely from PDE and boundary constraints.
- o Tools Used: Python, PyTorch, NumPy, Matplotlib

Dynamic Rhythms Machine Learning Challenge

- Engineered robust features and trained XGBoost and deep learning models to predict power outage occurrence, severity, lead time, and number of affected customers.
- o Tools Used: Python, Jupyter, PyTorch, Scikit-learn, XGBoost

Physics Constrained CNN

- PoissoNet is a physics-constrained U-Net that replaces the pressure Poisson solve in projection-based CFD, cutting
 inference time from minutes to milliseconds.
- o Tools Used: CUDA, PyTorch, NumPy, SciPy, Matplotlib

Technologies

Languages: R, Python, C++, C, MATLAB, TypeScript, JavaScript, CSS, SQL

Technologies: React, Atlassian, Pinecone, AWS, PyTorch, Docker, Scikit-Learn, LaTeX, Linux