Лабораторная работа №4. Создание рекомендательной модели

Студент: Кривцов Н.А. **Группа**: ИУ5-22М

Импорт библиотек

```
In [389]:
```

```
import pandas as pd
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity, euclidean_distances, manhattan_distances
```

Загрузка и просмотр датасетов

```
In [30]:
```

```
artists_df = pd.read_csv('/content/drive/MyDrive/MMO/JIP4/artists.dat', sep='\t')
artists_df = artists_df[['id', 'name']]
artists_df.index = artists_df.id
```

In [75]:

```
artists_df
```

Out[75]:

	id	name
id		
1	1	MALICE MIZER
2	2	Diary of Dreams
3	3	Carpathian Forest
4	4	Moi dix Mois
5	5	Bella Morte
18741	18741	Diamanda Galás
18742	18742	Aya RL
18743	18743	Coptic Rain
18744	18744	Oz Alchemist
18745	18745	Grzegorz Tomczak

17632 rows × 2 columns

In [4]:

```
users_df = pd.read_csv('/content/drive/MyDrive/MMO/JIP4/user_artists.dat', sep='\t')
```

In [5]:

```
users_df
```

Out[5]:

	userID	artistID	weight
0	2	51	13883
1	2	52	11690
2	2	53	11351
3	2	54	10300
4	2	55	8983
92829	2100	18726	337
92830	2100	18727	297
92831	2100	18728	281
92832	2100	18729	280
92833	2100	18730	263

92834 rows × 3 columns

In [16]:

```
tags_df = pd.read_csv('/content/drive/MyDrive/MMO/JIP4/tags.dat', sep='\t')
tags_df.index = tags_df.tagID
```

In [17]:

tags_df

Out[17]:

	tagID	tagValue
taglD		
1	1	metal
2	2	alternative metal
3	3	goth rock
4	4	black metal
5	5	death metal
12644	12644	suomi
12645	12645	symbiosis
12646	12646	sverige
12647	12647	eire
12648	12648	electro latino

11946 rows × 2 columns

In [63]:

```
artists_tags_df = pd.read_csv('/content/drive/MyDrive/MMO/JP4/user_taggedartists.dat', sep='\t')
artists_tags_df = artists_tags_df[['artistID', 'tagID']]
artists_tags_df = artists_tags_df.join(tags_df, on='tagID', lsuffix='_l', rsuffix='_r')
artists_tags_df = artists_tags_df[['artistID', 'tagValue']]
# artists_tags_df = artists_tags_df.join(artists_df, on='artistID', lsuffix='_l', rsuffix='_ir')
# artists_tags_df = artists_tags_df[['id', 'name', 'tagValue']]
```

In [64]:

```
artists_tags_df
```

Out[64]:

	artistID	tagValue
0	52	chillout
1	52	downtempo
2	52	electronic
3	52	trip-hop
4	52	female vovalists
186474	16437	black metal
186475	16437	folk
186476	16437	depressive black metal
186477	16437	dark folk
186478	16437	atmospheric black metal

186479 rows × 2 columns

Collaborative

In [16]:

```
users_df_scaled = users_df.assign(weight=users_df.groupby('userID')['weight'].transform(lambda x: (x -
x.min()) / (x.max()- x.min())))
users_df_scaled
```

Out[16]:

	userID	artistID	weight
0	2	51	1.000000
1	2	52	0.825509
2	2	53	0.798536
3	2	54	0.714911
4	2	55	0.610121
92829	2100	18726	0.060623
92830	2100	18727	0.038376
92831	2100	18728	0.029477
92832	2100	18729	0.028921
92833	2100	18730	0.019466

92834 rows × 3 columns

In [17]:

```
def create_utility_matrix(data):
    itemField = 'artistID'
    userField = 'userID'
    valueField = 'weight'

    userList = data[userField].tolist()
    itemList = data[itemField].tolist()
    valueList = data[valueField].tolist()

    users = list(set(userList))
    items = list(set(itemList))
```

```
users_index = {users[i]: i for i in range(len(users))}
    pd dict = {item: [0.0 for i in range(len(users))] for item in items}
    for i in range(0,data.shape[0]):
        item = itemList[i]
         user = userList[i]
         value = valueList[i]
         pd dict[item][users index[user]] = value
    X = pd.DataFrame(pd dict)
    X.index = users
    itemcols = list(X.columns)
    items index = {itemcols[i]: i for i in range(len(itemcols))}
    return X, users_index, items index
In [18]:
%%time
user item matrix, users index, items index = create utility matrix(users df scaled)
CPU times: user 7.74 s, sys: 906 ms, total: 8.65 s
Wall time: 8.44 s
In [37]:
user item matrix.dropna(inplace=True)
user item matrix
Out[37]:
                                         7
                                             8 9 10 ... 18736 18737 18738 18739 18740 18741 18742 18743 1874
       1 2
                                      6
   2 0.0 0.0 0.000000 0.0 0.0 0.000000 0.0 0.0 0.0 0.0 ...
                                                                            0.0
                                                                                   0.0
                                                                                          0.0
                                                                                                 0.0
                                                                                                       0.0
                                                                                                              0.0
                                                                                                                     0.0
   3 0.0 0.0 0.000000 0.0 0.0 0.000000 0.0 0.0 0.0 0.0 ...
                                                               0.0
                                                                      0.0
                                                                            0.0
                                                                                   0.0
                                                                                          0.0
                                                                                                 0.0
                                                                                                       0.0
                                                                                                              0.0
                                                                                                                     0.0
                                                                                   0.0
   4 0.0 0.0 0.000000 0.0 0.0 0.000000 0.0 0.0 0.0 0.0 ...
                                                               0.0
                                                                      0.0
                                                                            0.0
                                                                                          0.0
                                                                                                 0.0
                                                                                                       0.0
                                                                                                              0.0
                                                                                                                     0.0
   5 0.0 0.0 0.000000 0.0 0.0 0.000000 0.0 0.0 0.0 0.0 ...
                                                               0.0
                                                                      0.0
                                                                                          0.0
                                                                                                 0.0
                                                                                                       0.0
                                                                            0.0
                                                                                   0.0
                                                                                                              0.0
                                                                                                                     0.0
   6 0.0 0.0 0.000000 0.0 0.0 0.000000 0.0 0.0 0.0 0.0 ...
                                                               0.0
                                                                      0.0
                                                                            0.0
                                                                                   0.0
                                                                                          0.0
                                                                                                 0.0
                                                                                                       0.0
                                                                                                              0.0
                                                                                                                     0.0
      ...
                                                                ...
                                                                       ...
                                                                             ...
                                                                                    ...
                                                                                           ...
                                                                                                 ...
                                                                                                        ...
                                                                                                               ...
2095 0.0 0.0 0.000000 0.0 0.0 0.000000 0.0 0.0 0.0 0.0 ...
                                                                      0.0
                                                                                   0.0
                                                                                                 0.0
                                                                                                       0.0
                                                               0.0
                                                                            0.0
                                                                                          0.0
                                                                                                              0.0
                                                                                                                     0.0
2096 0.0 0.0 0.000000 0.0 0.0 0.000000 0.0 0.0 0.0 0.0 ...
                                                                      0.0
                                                                                          0.0
                                                                                                 0.0
                                                                                                       0.0
                                                               0.0
                                                                            0.0
                                                                                   0.0
                                                                                                              0.0
                                                                                                                     0.0
2097 0.0 0.0 0.000000 0.0 0.0 0.000000 0.0 0.0 0.0 0.0 ...
                                                               0.0
                                                                      0.0
                                                                                          0.0
                                                                                                 0.0
                                                                                                       0.0
                                                                                                              0.0
                                                                            0.0
                                                                                   0.0
                                                                                                                     0.0
2099 0.0 0.0 0.000000 0.0 0.0 0.000000 0.0 0.0 0.0 0.0 ...
                                                               0.0
                                                                      0.0
                                                                            0.0
                                                                                          0.0
                                                                                                 0.0
                                                                                                              0.0
                                                                                                                     0.0
2100 0.0 0.0 0.100111 0.0 0.0 0.097887 0.0 0.0 0.0 0.0 ...
                                                               0.0
                                                                      0.0
                                                                            0.0
                                                                                   0.0
                                                                                          0.0
                                                                                                 0.0
                                                                                                       0.0
                                                                                                              0.0
                                                                                                                     0.0
1881 rows × 17632 columns
                                                                                                                    ١
In [38]:
user_item_matrix__test = user_item_matrix.iloc[[-1]]
user item matrix test
Out[38]:
       1
                                      6
                                         7
                                             8 9 10 ... 18736 18737 18738 18739 18740 18741 18742 18743 1874
2100 0.0 0.0 0.100111 0.0 0.0 0.097887 0.0 0.0 0.0 0.0 ...
                                                                      0.0
                                                                            0.0
                                                                                   0.0
                                                                                          0.0
                                                                                                 0.0
                                                                                                       0.0
                                                                                                              0.0
                                                                                                                     0.0
1 rows × 17632 columns
```

```
In [39]:
# Оставшаяся часть матрицы для обучения
user item matrix train = user item matrix.iloc[:-1]
user item matrix train
Out[39]:
      1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \ \dots \ 18736 \quad 18737 \quad 18738 \quad 18739 \quad 18740 \quad 18741 \quad 18742 \quad 18743 \quad 18744 \quad 18745
   0.0
                                                      0.0
                                                            0.0
                                                                 0.0
                                                                      0.0
                                                                            0.0
                                                                                 0.0
                                                                                       0.0
                                                                                            0.0
   0.0
                                                0.0
                                                      0.0
                                                           0.0
                                                                 0.0
                                                                      0.0
                                                                            0.0
                                                                                 0.0
                                                                                       0.0
                                                                                            0.0
   0.0
                                                           0.0
                                                                 0.0
                                                                            0.0
                                                                                 0.0
                                                                                            0.0
   0.0
                                                0.0
                                                      0.0
                                                           0.0
                                                                 0.0
                                                                      0.0
                                                                            0.0
                                                                                 0.0
                                                                                       0.0
                                                                                            0.0
   0.0
                                                0.0
                                                      0.0
                                                           0.0
                                                                 0.0
                                                                      0.0
                                                                            0.0
                                                                                 0.0
                                                                                       0.0
                                                                                            0.0
0.0
                                                      0.0
                                                           0.0
                                                                 0.0
                                                                      0.0
                                                                            0.0
                                                                                 0.0
                                                                                       0.0
                                                                                            0.0
2095 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ...
                                                 0.0
                                                      0.0
                                                            0.0
                                                                 0.0
                                                                      0.0
                                                                            0.0
                                                                                 0.0
                                                                                       0.0
                                                                                            0.0
0.0
                                                0.0
                                                      0.0
                                                           0.0
                                                                 0.0
                                                                      0.0
                                                                            0.0
                                                                                 0.0
                                                                                       0.0
                                                                                            0.0
0.0
                                           0.0
                                                0.0
                                                           0.0
                                                                 0.0
                                                                      0.0
                                                                            0.0
                                                                                 0.0
                                                                                       0.0
                                                                                            0.0
2099 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ...
                                           0.0
                                                0.0
                                                      0.0
                                                           0.0
                                                                 0.0
                                                                      0.0
                                                                            0.0
                                                                                 0.0
                                                                                       0.0
                                                                                            0.0
1880 rows × 17632 columns
In [40]:
%%time
U, S, VT = np.linalg.svd(user item matrix train.T)
V = VT.T
CPU times: user 4min 9s, sys: 11.6 s, total: 4min 21s
Wall time: 2min 27s
In [41]:
# Матрица соотношения между пользователями и латентными факторами
U.shape
Out[41]:
(17632, 17632)
In [42]:
# Матрица соотношения между объектами и латентными факторами
V.shape
Out[42]:
(1880, 1880)
In [43]:
S.shape
Out[43]:
(1880,)
```

```
Sigma = np.diag(S)
Sigma.shape
Out[44]:
(1880, 1880)
In [45]:
# Диагональная матрица сингулярных значений
Sigma
Out [45]:
array([[1.56473318e+01, 0.00000000e+00, 0.00000000e+00, ...,
       0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [0.00000000e+00, 1.23922786e+01, 0.00000000e+00, ...,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
       [0.00000000e+00, 0.00000000e+00, 9.95488403e+00, ...,
        0.00000000e+00, 0.00000000e+00, 0.0000000e+00],
       [0.00000000e+00, 0.0000000e+00, 0.0000000e+00, ...,
        3.93997751e-03, 0.00000000e+00, 0.00000000e+00],
       [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
       0.00000000e+00, 3.43405207e-03, 0.00000000e+00],
       [0.00000000e+00, 0.0000000e+00, 0.0000000e+00, ...,
        0.00000000e+00, 0.00000000e+00, 2.22978369e-03]])
In [46]:
# Используем 3 первых сингулярных значения
r=3
Ur = U[:, :r]
Sr = Sigma[:r, :r]
Vr = V[:, :r]
In [47]:
# Матрица соотношения между новым пользователем и латентными факторами
test user = np.mat(user item matrix test.values)
test user.shape, test user
Out[47]:
((1, 17632),
                           , 0.10011123, ..., 0. , 0.
matrix([[0.
                    , 0.
                   11))
In [48]:
tmp = test user * Ur * np.linalg.inv(Sr)
tmp
Out[48]:
matrix([[-0.00025344, 0.00224003, 0.0007716]])
In [49]:
test user result = np.array([tmp[0,0], tmp[0,1], tmp[0,2]])
test user result
Out[49]:
array([-0.00025344, 0.00224003, 0.0007716])
THE FEOT.
```

```
ın [53]:
# Вычисляем косинусную близость между текущим пользователем
# и остальными пользователями
cos sim = cosine similarity(Vr, test user result.reshape(1, -1))
\cos_{\sin}[:10]
Out [53]:
array([[ 0.10311833],
       [ 0.9946266 ],
       [-0.00734549],
       [ 0.99792168],
       [ 0.58052523],
       [-0.13404812],
       [-0.14614659],
       [ 0.67328805],
       [ 0.99698873],
       [-0.10375559]])
In [54]:
# Преобразуем размерность массива
cos_sim_list = cos_sim.reshape(-1, cos_sim.shape[0])[0]
cos_sim_list[:10]
Out[54]:
array([ 0.10311833, 0.9946266 , -0.00734549, 0.99792168, 0.58052523,
       -0.13404812, -0.14614659, 0.67328805, 0.99698873, -0.10375559])
In [55]:
# Находим наиболее близкого пользователя
recommended user id = np.argsort(-cos sim list)[0]
recommended user id
Out[55]:
416
In [76]:
# Получение исполнителя
artistID list = list(user item matrix.columns)
def artist_name_by_artistID(ind):
    artistID = artistID_list[ind]
        # flt_links = users_df[users_df['artistID'] == artistID]
        # tmdbId = int(flt links['tmdbId'].values[0])
        # md_links = df_md[df_md['id'] == tmdbId]
        # res = artists df['name'].values[0]
        # return res
    res = artists_df[artists_df['id'] == artistID]
    return res.values[0][1]
In [77]:
artist name by artistID(6)
Out[77]:
'Marilyn Manson'
In [104]:
for idx, item in enumerate(np.ndarray.flatten(np.array(test user))):
    if item > 0:
   artist name = artist name by artistID(idx)
```

```
print('{} - {} - {}'.format(idx, artist name, item))
        # if i == 20:
        #
              break
        # else:
2 - Carpathian Forest - 0.10011123470522804
5 - Moonspell - 0.09788654060066741
11 - Behemoth - 0.5700778642936596
26 - Gorgoroth - 0.37986651835372637
41 - Emperor - 0.04282536151279199
828 - Eluveitie - 0.29699666295884314
832 - Slayer - 0.1807563959955506
1100 - Yann Tiersen - 0.6145717463848721
1102 - Tenhi - 0.4638487208008899
1125 - Agalloch - 0.5478309232480534
1251 - Marduk - 0.6846496106785317
1267 - Immortal - 0.503337041156841
1272 - Cannibal Corpse - 0.19187986651835373
2729 - Deathspell Omega - 0.16907675194660735
2745 - Vader - 0.12736373748609567
2752 - Blut aus Nord - 0.14293659621802002
2754 - Dark Funeral - 0.11568409343715239
3730 - Rotting Christ - 0.08954393770856507
4098 - ColdWorld - 0.01668520578420467
4187 - Burzum - 1.0
4517 - Alcest - 0.07341490545050056
4860 - Drudkh - 0.21468298109010012
6132 - Summoning - 0.09733036707452725
6516 - Lifelover - 0.27975528364849833
7735 - Nokturnal Mortum - 0.0339265850945495
8127 - Dominia - 0.03114571746384872
8129 - Amžius - 0.2347052280311457
8130 - Obtest - 0.12680756395995552
8131 - Nahash - 0.4671857619577308
8133 - Satanic Warmaster - 0.22135706340378197
8134 - Altorių Šešėliai - 0.21412680756395996
8139 - Luctus - 0.2374860956618465
8151 - Anubi - 0.22914349276974416
8324 - Dissimulation - 0.002224694104560623
8328 - Skepticism - 0.1117908787541713
8330 - Argharus - 0.21078976640711902
8332 - Shape of Despair - 0.27586206896551724
9548 - The Kilimanjaro Darkjazz Ensemble - 0.314238042269188
10573 - Peste Noire - 0.26529477196885426
13134 - Moëvöt - 0.027808676307007785
13136 - Celestia - 0.06562847608453838
13404 - Vilkduja - 0.1707452725250278
15609 - Les Discrets - 0.11957730812013348
17614 - Mortifera - 0.29477196885428253
17615 - Nyktalgia - 0.060622914349276975
17616 - Atsakau niekadA - 0.03837597330367074
17617 - Domantas Razauskas - 0.029477196885428252
17618 - Atalyja - 0.028921023359288096
17619 - Les Chants de Nihil - 0.01946607341490545
In [108]:
recommended user item matrix = user item matrix.iloc[[recommended user id]]
for idx, item in enumerate(np.ndarray.flatten(np.array(recommended user item matrix))):
    if item > 0:
        artist_name = artist_name_by_artistID(idx)
        print('{} - {} - {}'.format(idx, artist name, item))
        # if i==20:
        #
              break
        # else:
             i += 1
107 - Dustin O'Halloran - 0.03896103896103896
114 - Deru - 0.170995670995671
132 - Library Tapes - 0.14155844155844155
142 - The Boats - 0.007792207792207792
```

```
148 - Kaaloneaa - U.U3333333333333333
    - The Tiger Lillies - 0.06796536796536796
232 - Massive Attack - 0.01774891774891775
412 - Sigur Rós - 0.08008658008658008
738 - Carbon Based Lifeforms - 0.0735930735930736
773 - Solar Fields - 0.25627705627705627
1727 - Balmorhea - 0.10476190476190476
1928 - Flying Lotus - 0.015151515151515152
2585 - Bonobo - 0.2354978354978355
3477 - Biosphere - 0.09783549783549783
3480 - Zoviet France - 0.15670995670995672
3491 - Alva Noto - 0.06147186147186147
3786 - Nino Katamadze & Insight - 0.06233766233766234
4932 - Lusine - 0.00735930735930736
6440 - Ulrich Schnauss - 0.16536796536796536
6617 - Helios - 0.35064935064935066
6835 - Between Interval - 0.003463203463203463
6858 - Magnitarus - 1.0
6859 - Blind Divine - 0.8588744588744589
6860 - Ab Ovo - 0.43982683982683984
6861 - Lusine ICL - 0.42597402597402595
6862 - Phaeleh - 0.26969696969697
6863 - All India Radio - 0.2623376623376623
6864 - Bad Sector - 0.19090909090909092
6865 - H.U.V.A. Network - 0.16406926406926406
6866 - Hol Baumann - 0.15844155844155844
6867 - Silencide - 0.12164502164502164
6868 - ksandr and I.M.M.U.R.E. - 0.11471861471861472
6869 - Aes Dana - 0.10476190476190476
6870 - Noto - 0.09567099567099567
6871 - Oval - 0.08311688311688312
6872 - Jagjit Singh - 0.04588744588744589
6873 - Anúna - 0.02813852813852814
6874 - Nino Katamadze - 0.026406926406926406
6875 - Spiraal Aurel - 0.022943722943722943
6876 - R.D.Burman - 0.01948051948051948
6877 - Asura - 0.018614718614718615
6878 - Si - 0.015584415584415584
6879 - ksandr - 0.014285714285714285
6880 - Nina Karlsson - 0.011688311688311689
6881 - EugeneKha - 0.008658008658008658
6882 - Alva Noto + Ryuichi Sakamoto with Ensemble Modern - 0.008658008658008658
6883 - Orsten - 0.007792207792207792
6884 - Arbre Noir - 0.00735930735930736
6885 - Komet - 0.0004329004329004329
```

In [101]:

recommended_user_item_matrix

Out[101]:

	1	2	3	4	5	6	7	8	9	10	•••	18736	18737	18738	18739	18740	18741	18742	18743	18744	18745
447	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

1 rows × 17632 columns

Content-based

In [65]:

artists_tags_df.head()

Out[65]:

	artistID	tagValue
0	52	chillout
1	52	downtempo

```
2 artistic tacValue electronic 
3 52 trip-hop 
4 52 female vovalists
```

In [67]:

```
%%time
artists_tags_grouped = artists_tags_df.groupby(by='artistID')
```

CPU times: user 347 $\mu s,$ sys: 10 $\mu s,$ total: 357 μs

Wall time: 365 µs

In [68]:

```
artists_tags_grouped
```

Out[68]:

<pandas.core.groupby.generic.DataFrameGroupBy object at 0x7f677fc3ec50>

In [69]:

```
%%time
artists_tag_sets = artists_tags_grouped['tagValue'].apply(set)
```

CPU times: user 216 ms, sys: 3.71 ms, total: 220 ms

Wall time: 225 ms

In [86]:

```
def tag_set_to_str(tags):
    return ", ".join([tag for tag in tags])
```

In [77]:

```
tag_sets_df = pd.DataFrame(artists_tag_sets)
tag_sets_df = tag_sets_df.join(artists_df)
tag_sets_df
```

Out[77]:

	tagValue	id	name
artistID			
1	{japanese, gothic, better than lady gaga, weea	1.0	MALICE MIZER
2	{ambient, true goth emo, dark, vocal, seen liv	2.0	Diary of Dreams
3	$\{ norskaryskmetal,sax ophones,truenorwegian$	3.0	Carpathian Forest
4	{japanese, bazarov, gothic metal, gothic, visu	4.0	Moi dix Mois
5	{covers, gothic, deathrock, gothic rock, darkw	5.0	Bella Morte
18737	{trip beat, electronica, alternative, 80s, noise}	18737.0	Ciccone Youth
18739	{favorite, electronica, uk, alternative, rock,	18739.0	Apollo 440
18740	{ebm, industrial}	18740.0	Die Krupps
18741	{experimental, dead music}	18741.0	Diamanda Galás
18744	{ambient, aphextwin, downtempo, chillout, dar	18744.0	Oz Alchemist

```
In [94]:
```

```
%time
tag_sets_df['tags'] = tag_sets_df['tagValue'].apply(lambda x: tag_set_to_str(x))

CPU times: user 3 µs, sys: 0 ns, total: 3 µs
Wall time: 7.15 µs

In [97]:

tag_sets_df = tag_sets_df[['name', 'tags']]
```

In [314]:

```
tag_sets_df.index = range(0, tag_sets_df.shape[0])
```

In [371]:

```
tag_sets_df.loc[250:270]
```

Out[371]:

	name	tags
250	Rihanna	dance-pop, diva, 2000s diva, hit, american, su
251	Britney Spears	dance-pop, songs to make florchuchizz cry, blo
252	Jordin Sparks	eletropop, crazy, perfect, lembra alguem, amer
253	Kelly Clarkson	fatty, diva, american, idols, break up, romant
254	Christina Aguilera	crazy, dance-pop, diva, i love girls, beautifu
255	Ashlee Simpson	best of 2005, beautiful voice, porcaria vician
256	Leona Lewis	weekly top artists, hot, diva, vocally perfect
257	Beyoncé	dance-pop, diva, american, girl shit, mb, bea
258	Sugababes	weekly top artists, 2007, siobhan, british, mu
259	David Cook	male vocalists, 4m4zinq, excelent, american id
260	LilyAlen	hot, 4m4zinq, british, tyler adam, cool, elect
261	Jennifer Lopez	weekly top artists, dance-pop, beauty, perfect
262	Katy Perry	eletropop, dance-pop, diva, the vampire diarie
263	Alicia Keys	diva, charmed, r and b, cool, american, neo-so
264	P!nk	weekly top artists, hot, 4m4zinq, fuck bush, t
265	Panic at the Disco	male vocalist, pop, pop rock, alternative, rock
266	David Archuleta	american, addictive, mb, american idol 7, dan
267	Katharine McPhee	drive, american idol 5, american, idols, summe
268	Black Eyed Peas	eletropop, crazy, dance-pop, jesse, american,
269	Kate Voegele	american, addictive, female vocalist, singer-s
270	Kat DeLuna	female vocalists, female, dance, urban, sexy,

In [316]:

```
from sklearn.feature_extraction.text import TfidfVectorizer
```

In [317]:

```
tags_raw = tag_sets_df['tags'].values
tags_raw[:5]
```

Out[317]:

array(['japanese, gothic, better than lady gaga, weeabo, visual kei, jrock, j-rock',

'ambient, true goth emo, dark, vocal, seen live, gothic, gothic rock, industrial, darkwave, electronic, german',

'norsk arysk metal, saxophones, true norwegian black metal, black metal, norwegian black metal, very kvlt',

'japanese, bazarov, gothic metal, gothic, visual kei, rock, gothic japanese, metal, j-rock', 'covers, gothic, deathrock, gothic rock, darkwave'], dtype=object)

In [318]:

tags_raw [294:300]

Out[318]:

array(["diva, songs to make florchuchizz cry, omg this is so good, american, summer song, romantic, avr il, beautiful, music lembra quando eu thava 7 serie lol, rnb, fail, indie rock, covers, acoustic, dance , death song, pop-rock, let's dance, 2010, emo, hip hop, melancholy, female vocalists, piano, love song s, nelly furtado, pop punk, mellow, acoustic rock, teen pop, 00s, memories, piano rock, female vocals, power pop, never gets old, awesome, happy, alternative, male version, rainy day, good mood songs, smile , none, metal, i love dancing about to this like a complete and utter idiot, <3, singer-songwriter, the best, favourite, fav female singers, vocal, balada, album favourite, under 2000 listeners, seen in conc ert, fun, alice in wonderland, hyper, horrible, female, soon to be classic, holiday soundtrack, soundtr ack, jet set radio future, hard rock, albums i own, punk rock, girl power, dream pop, electronic, love at first listen, female voices, pop, female vocal, alternative rock, emotional, because sometimes i fee 1 like a 13-year-old teenie bopper, hot, satanic black metal from hell, blonde, canada, b-side, good mo od music, ballad, love song, singalong, legend, we should be together, sexy, canadian, sad, punk, rock, garage rock, catchy, all time favorite, cute, rock female, anime, these songs are just amazing, nice, b est, favourites, excellent reason for crying, brazilian, guilty pleasure, loved, electropop, wth, pop r ock, bouncy, avril lavigne, amazing, female artists, songs diana sang on x factor, i am in love with th is song, love, magic, indie pop, infatuation, pop rock female vocalists canadian punk alternative pop r ock female, tyler adam, charmed, ballads, female vocalist, poprock, best songs of the OOs, guilty pleas ures, beautiful lyrics, favorites, vocalists, officially shit, indie, cover, furnoo lovers, remix, amer ican idol, english, great lyrics, powerpop, good mood, great voice, dance punk, teen punk, fucking awes ome, pure, seen live, soul, amazing cover, soft rock",

'female vocalists, popstars, girl groups, pop, german',

'brasil, sandy leah, pop, brazil, rock, german',

'female vocalists, popstars, pop, amazing, pop covers, sweet',

'deutschland sucht den superstar 5, pop covers',

'powerful voice, diva, goddess, better than britney spears, american, 70s, cher, romantic, balla d, rnb, female vocalist, girl shit, better than lady gaga, legend, glam, great songs, dance, oldies, be st music ever, sexy, tutancamon, tinosoft, rock, divas, adult contemporary, female vocalists, club, fem ale, better than madonna, country, disco, gritos ressussitadores de mortos, 90s, perfection, electronic, 60s, n 1 hot 100 billboard, power pop, mumia, urban, pop, amazing, soul, 80s, vocalista feminimo, gla mour, folk, show woman'],

dtype=object)

In [319]:

```
%%time
tfidfv = TfidfVectorizer()
overview_matrix = tfidfv.fit_transform(tags_raw)
```

CPU times: user 164 ms, sys: 0 ns, total: 164 ms

Wall time: 165 ms

In [320]:

overview_matrix

Out[320]:

<12523x7615 sparse matrix of type '<class 'numpy.float64'>' with 141185 stored elements in Compressed Sparse Row format>

In [321]:

class SimpleKNNRecommender:

```
def __init__(self, X_matrix, X_ids, X title, X overview):
        Входные параметры:
        X matrix - обучающая выборка (матрица объект-признак)
        X ids - массив идентификаторов объектов
        \overset{-}{X} title - массив названий объектов
        X overview - массив описаний объектов
        #Сохраняем параметры в переменных объекта
        self. X matrix = X matrix
        self.df = pd.DataFrame(
            { 'id': pd.Series(X ids, dtype='int'),
            'title': pd.Series(X title, dtype='str'),
            'overview': pd.Series(X overview, dtype='str'),
            'dist': pd.Series([], dtype='float')})
    def recommend for single object(self, K: int, \
                X matrix object, cos flag = True, manh flag = False):
        Метод формирования рекомендаций для одного объекта.
        Входные параметры:
        К - количество рекомендуемых соседей
        X matrix object - строка матрицы объект-признак, соответствующая объекту
        cos_flag - флаг вычисления косинусного расстояния
        manh flag - флаг вычисления манхэттэнского расстояния
        Возвращаемое значение: К найденных соседей
        scale = 1000000
        # Вычисляем косинусную близость
        if cos flag:
            print(self._X_matrix.shape)
            print(X matrix object.shape)
            dist = cosine similarity(self._X_matrix, X_matrix_object)
            print (dist.shape)
            self.df['dist'] = dist * scale
            res = self.df.sort values(by='dist', ascending=False)
            # Не учитываем рекомендации с единичным расстоянием,
            # так как это искомый объект
            res = res[res['dist'] < scale]</pre>
        else:
            if manh flag:
                dist = manhattan distances(self. X matrix, X matrix object)
            else:
                dist = euclidean_distances(self._X_matrix, X_matrix_object)
            self.df['dist'] = dist * scale
            res = self.df.sort values(by='dist', ascending=True)
            # Не учитываем рекомендации с единичным расстоянием,
            # так как это искомый объект
            res = res[res['dist'] > 0.0]
        # Оставляем К первых рекомендаций
        res = res.head(K)
        return res
In [381]:
beyonce id = 257
tag sets df.iloc[beyonce id]['name']
Out[381]:
```

'Beyoncé'

In [382]:

```
tag sets df.loc[beyonce id]
```

Out[382]:

name Bevoncé

```
dance-pop, diva, american, girl shit, rnb, bea...
tags
Name: 257, dtype: object
```

In [383]:

```
beyonce_matrix = overview_matrix[beyonce_id]
beyonce matrix
```

Out[383]:

<1x7615 sparse matrix of type '<class 'numpy.float64'>' with 160 stored elements in Compressed Sparse Row format>

In [384]:

```
artist_ids = tag_sets_df.index.values
artist ids.shape
```

Out[384]:

(12523,)

In [385]:

```
artist_names = tag_sets_df['name'].values
artist_names.shape
```

Out[385]:

(12523,)

In [386]:

```
skr1 = SimpleKNNRecommender(overview_matrix, artist_ids, artist_names, tags_raw)
skr1._X_matrix
```

Out[386]:

<12523x7615 sparse matrix of type '<class 'numpy.float64'>' with 141185 stored elements in Compressed Sparse Row format>

In [387]:

```
rec1 = skr1.recommend_for_single_object(15, beyonce_matrix)
rec1
```

(12523, 7615)

(1, 7615) (12523, 1)

Out[387]:

	id	title	overview	dist
24	7 247	Janet Jackson	dance-pop, diva, hit, american, nineties, old,	432519.634673
6	64 64	Madonna	dance-pop, ginuwine, diva, jump, house, hit, g	398468.317903
26	3 263	Alicia Keys	diva, charmed, r and b, cool, american, neo-so	393389.455545
5	5 2 52	Kylie Minogue	eletropop, dance-pop, aussie, diva, 80s dance,	375653.997156
81	817	Destiny's Child	christmas, r and b, cool, american, ballad, rn	368584.515837
25	50 250	Rihanna	dance-pop, diva, 2000s diva, hit, american, su	367303.371318
27	'3 273	Natasha Bedingfield	soulful, gorgeous, british, perfect, drive, su	367110.104215
25	54 254	Christina Aguilera	crazy, dance-pop, diva, i love girls, beautifu	365780.379993

251	25 4	Britney Spetills	dance-pop, songs to make florchuchizz�������	365613.643 dift
256	256	Leona Lewis	weekly top artists, hot, diva, vocally perfect	363698.248310
264	264	P!nk	weekly top artists, hot, 4m4zinq, fuck bush, t	362578.011069
249	249	Monica	ginuwine, american, ballad, mb, female vocali	362464.693217
244	244	Brandy	4m4zinq,ginuwine,r and b, american, neo-soul	362180.131131
224	224	Mariah Carey	diva, house, american, 1993, pharrell - our fa	358959.580708
11130	11130	Tigarah	japanese, dance, hip-hop, female voices, j-pop	357275.380136

In [390]:

rec2 = skr1.recommend_for_single_object(15, beyonce_matrix, cos_flag=False)
rec2

Out[390]:

	id	title	overview	dist
9306	9306	Prljavo Kazalište	s-r-b-i-j-a	1.000000e+06
9278	9278	Administrator	<3	1.000000e+06
11688	11688	Boban Marković Orkestar	s-r-b-i-j-a	1.000000e+06
247	247	Janet Jackson	dance-pop, diva, hit, american, nineties, old,	1.065345e+06
64	64	Madonna	dance-pop, ginuwine, diva, jump, house, hit, g	1.096842e+06
263	263	Alicia Keys	diva, charmed, r and b, cool, american, neo-so	1.101463e+06
52	52	Kylie Minogue	eletropop, dance-pop, aussie, diva, 80s dance,	1.117449e+06
817	817	Destiny's Child	christmas, r and b, cool, american, ballad, rn	1.123758e+06
250	250	Rihanna	dance-pop, diva, 2000s diva, hit, american, su	1.124897e+06
273	273	Natasha Bedingfield	soulful, gorgeous, british, perfect, drive, su	1.125069e+06
254	254	Christina Aguilera	crazy, dance-pop, diva, i love girls, beautifu	1.126250e+06
251	251	Britney Spears	dance-pop, songs to make florchuchizz cry, blo	1.126398e+06
256	256	Leona Lewis	weekly top artists, hot, diva, vocally perfect	1.128097e+06
264	264	P!nk	weekly top artists, hot, 4m4zinq, fuck bush, t	1.129090e+06
249	249	Monica	ginuwine, american, ballad, rnb, female vocali	1.129190e+06

In [392]:

rec3 = skr1.recommend_for_single_object(15, beyonce_matrix, cos_flag=False, manh_flag=True)
rec3

Out[392]:

		id	title	overview	dist
	9306	9306	Prljavo Kazalište	s-r-b-i-j-a	1.133577e+07
	9278	9278	Administrator	<3	1.133577e+07
	11688	11688	Boban Marković Orkestar	s-r-b-i-j-a	1.133577e+07
	12060	12060	NaN	dance	1.200133e+07
	12015	12015	NaN	dance	1.200133e+07
	10580	10580	Magic Box	dance	1.200133e+07
	4281	4281	Hott 22	dance	1.200133e+07
	5788	5788	CoryLee	dance	1.200133e+07
	4229	4229	Dennis Ferrer	dance	1.200133e+07
	8823	8823	Electrovamp	dance	1.200133e+07
	10676	10676	NaN	dance	1.200133e+07

7260	7290	Tiffany Ev ane	overvi ë W	1.207411e dis t
9068	9068	Xscape	mb	1.207411e+07
10793	10793	NaN	mb	1.207411e+07
10719	10719	Martin Kember	mb	1.207411e+07