Axiomas de los número reales

1 Axiomas de cuerpo

Asumimos la existencia de dos operaciones, llamadas suma y producto, tales que a cada par de números reales x e y la suma x + y y el producto xy son números reales unívocamente determinados por x e y y satisfacen los siguientes axiomas:

1.1 Axiomas de la suma

- S1. (x+y)+z=x+(y+z) para todo $x,y,z\in\mathbb{R}$.
- S2. x + y = y + x para todo $x, y \in \mathbb{R}$.
- S3. Existe un elemento de \mathbb{R} , denotado por $\mathbf{0}$ tal que x+0=x para todo $x\in\mathbb{R}$.
- S4. Para cada $x \in \mathbb{R}$ existe un $y \in \mathbb{R}$ tal que x + y = 0.

1.2 Axiomas del producto

- P1. (xy)z = x(yz) para todo $x, y, z \in \mathbb{R}$.
- P2. xy = yx para todo $x, y \in \mathbb{R}$.
- P3. Existe un elemento de \mathbb{R} , distinto de 0, que denotaremos por 1 tal que 1x = x1 = x para todo $x \in \mathbb{R}$.
- P4. Para cada $x \in \mathbb{R}$ tal que no sea cero, existe un $y \in \mathbb{R}$ tal que xy = 1.

1.3 Axioma de distributividad

D. Para todo $x, y, z \in \mathbb{R}$, (x + y)z = xz + yz.

2 Axiomas de orden

Asumimos la existencia de una relación \leq que establece un orden entre los números reales y satisface los siguientes axiomas:

- O1. Si $x \le y$ e $y \le x$ entonces x = y.
- O2. Si $x \le y$ e $y \le z$ entonces $x \le z$.
- O3. Para todo $x, y \in \mathbb{R}$, x < y ó y < x.
- SO. Si $x \leq y$, entonces $x + z \leq y + z$ para todo $z \in \mathbb{R}$.

PO. Si $0 \le x$ y $0 \le y$, entonces $0 \le xy$.

Definición: x < y si $x \neq y$ y $x \leq y$.

3 Axioma de completitud

C. Si $A \subset \mathbb{R}$, $A \neq \emptyset$, es acotado superiormente, entonces tiene supremo en \mathbb{R} .

Teorema: (Arquimedianidad) Para todo x>0 e $y\in\mathbb{R}$ existe $n\in\mathbb{N}$ tal que nx>y.