Corso di Algebra per Informatica

Lezione 25: Esercizi

- (1) Sia * l'operazione binaria di \mathbb{Z} definita da $(\forall a, b \in \mathbb{Z})(a * b = 2ab)$. Dimostrare che \equiv_2 è una congruenza rispetto a *.
- (2) Sia * l'operazione binaria di $\mathbb{Z} \times \mathbb{Z}$ definita da $(\forall a,b,c,d \in \mathbb{Z})((a,b)*(c,d) = (a+b,c+d))$ e sia \sim una relazione di equivalenza su $\mathbb{Z} \times \mathbb{Z}$ definita da $(\forall a,b,c,d \in \mathbb{Z})((a,b) \sim (c,d) \leftrightarrow (2|ab-cd))$. Dimostrare che \sim è una relazione di equivalenza che non è una congruenza rispetto a *.
- (3) Elencare tutti gli elementi dell'insieme $[41]_5 \cap \{n \in \mathbb{Z} \mid n^2 \le 20\}$.
- (4) Definire un'operazione binaria interna $\overline{+}$ a \mathbb{Z}_0 tale che sia possibile costruire un'isomorfismo tra $(\mathbb{Z}_0, \overline{+})$ e $(\mathbb{Z}, +)$.
- (5) Calcolare $101 \mod 10$, 101%(-1) e $30093 \mod 3$.
- (6) Verificare se $\mathbb{Z}_3 = \{[30]_3, [2]_3, [11]_3, [-8]_3\}.$
- (7) Verificare se $\mathbb{Z}_5 = \{[30]_5, [2]_5, [11]_5, [-8]_5, [3]_5\}.$
- (8) Calcolare 484289374098279340! mod 3879374.
- (9) Elencare i divisori dello zero e gli invertibili dei seguenti anelli: $(\mathbb{Z}_4, +, \cdot), (\mathbb{Z}_8, +, \cdot)$ e $(\mathbb{Z}_9, +, \cdot)$.