Álgebra Lineal I

Usando Beamer (nunca ppt)

William Carlos Echegaray Castillo

Universidad Nacional de Ingeniería Facultad de Ciencias Escuela Profesional de Matemática

11 de enero del 2021

Cáculo de Valores y Vectores Propios de una Matriz $A \in \mathbb{K}(n,n)$

Definición

Sea $A \in \mathbb{K}(n,n)$ una matriz, decimos que A es **diagonalizable** si existen matrices $P,D \in \mathbb{K}(n,n)$ con P no singular y D diagonal tal que

$$D = P^{-1}AP$$

Ejemplo

Consideremos la matriz $A = \begin{bmatrix} 3 & 1 \\ 9 & -5 \end{bmatrix}$, en este se tiene que

$$P = \begin{bmatrix} 1 & 1 \\ 1 & -9 \end{bmatrix} \quad y \quad D = \begin{bmatrix} 4 & 0 \\ 0 & -6 \end{bmatrix},$$

donde

$$P^{-1}AP = \left[\begin{array}{cc} 4 & 0 \\ 0 & -6 \end{array} \right].$$

Proposición

Sea V un espacio vectorial, entonces para cualquier transformación $T:V\longrightarrow V$ los polinomios p_{τ} y φ_{τ} tienen las mismas raíces.

Prueba:

Sea λ una raíz de p_A , entonces λ es un valor propio de T, por tanto existe un vector $v \in V$ no nulo tal que $Av = \lambda v$, de donde se tiene $A^2v = \lambda Av = \lambda^2 v$, también $A^3v = \lambda^3 v$ y así en forma sucesiva se tiene $A^mv = \lambda^m v$, entonces para un polinomio $p(x) = a_0 + a_1x + \cdots + a_kx^k$, tenemos

$$p(T)(v) = (a_0 I + a_1 T + \dots + a_k T^k)(v)$$

$$= (a_0 v + a_1 T(v) + \dots + a_k T^k(v))$$

$$= a_0 v + a_1 \lambda v + \dots + a_k \lambda^k v$$

$$= (a_0 + a_1 \lambda + \dots + a_k \lambda^k) v = p(\lambda) v.$$

en particular si $\mathbf{p}=\varphi_{\tau}$, entonces tenemos

$$0 = \varphi_{\tau}(T)(v) = \varphi_{\tau}(\lambda)v,$$

y como $v \neq \mathbf{0}$, entonces $\varphi_{\tau}(\lambda) = 0$. Por tanto p_{τ} y φ_{τ} poseen las mismas raíces.

Ejemplo

Sea la matriz $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, entonces su polinomio característico es

$$p_{A}(\lambda) = det(A - \lambda I) = \lambda^{2} - 2\lambda + 1$$

= $(\lambda - 1)^{2}$,

de donde $p_{A}(A) = (A - I)^{2} = 0$.

Nota

el polinomio mínimal de A, tiene la propiedad que grad $\left(\varphi_{A}\right) \leq n$. En ejemplo anterior el grado de polinomio mínimal es 2, dado que $A-I \neq 0$.

Ejemplo

Sea la matriz
$$A = \begin{bmatrix} 48 & -10 & -10 \\ 90 & -17 & -20 \\ 135 & -30 & -27 \end{bmatrix}$$
.

Compruebe que grad $(\varphi_{*}) = 2$

Definición

Diremos que una matriz $A \in \mathbb{K}(n,n)$ es **triangulable** si es semejante a una matriz triangular. Una transformación lineal $T: V \longrightarrow V$ es **triangulable** si existe una base de V en la matriz asociada a T sea triangular.

Proposición

Sea V un espacio vectorial de dimensión finita, $\mathbb{K} = \mathbb{C}$, entonces toda transformación lineal $T: V \longrightarrow V$ es triangulable.

Prueba:

Usaremos inducción matemática sobre n:

- n=1 es válido.
- (**H I**) Supongamos que hasta n-1 el enunciado es válido.

tal que

• Veamos que para n también es válido: Consideremos la transformación lineal $T^{\nabla}: V^* \longrightarrow V^*$ definida por $T^{\nabla}(f) = f \circ T$.

Sea $\lambda\in\mathbb{C}$ un valor propio de T^{∇} y $g\in V^*$ su correspondiente vector propio, es decir,

$$T^{\nabla}(g) = \lambda g$$
.

Definamos $S = \{v \in V/g(v) = 0\}$, note que S es un subespacio de V, con dim(S) = n - 1 y también $T(S) \subset S$. Por hipótesis de inducción S posee una base, digamos, $\{v^1, \dots, v^{n-1}\}$

4 D > 4 B > 4 B > 4 B > 990

$$T(v^{1}) = \lambda_{1}v^{1}$$
 $T(v^{2}) = a_{12}v^{1} + \lambda_{2}v^{2}$
 \vdots
 $T(v^{n-1}) = a_{1,n-1}v^{1} + \cdots + \lambda_{n-1}v^{n-1}$

ahora agramos el vector v^n a fin de completar la base de V, con

$$T(v^n) = a_{1n}v^1 + \cdots + \lambda v^n,$$

por tanto la matriz asociada a T, en la base $\{v^1, \dots, v^n\}$, es

$$A_{\tau} = \begin{bmatrix} \lambda_{1} & a_{12} & \cdots & a_{1,n-1} & a_{1n} \\ 0 & \lambda_{2} & \cdots & a_{2,n-1} & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & \cdots & \lambda_{n-1} & a_{n-1,n} \\ 0 & \cdots & \cdots & 0 & \lambda \end{bmatrix}$$

El polinomio característico de T es

$$\begin{aligned} p_{\tau}(\lambda) &= det(A_{\tau} - \lambda I) \\ &= (\lambda - \lambda_1) \cdots (\lambda - \lambda_n) \\ &= \lambda^n - \Big(\sum_{j=1}^n \lambda_j\Big) \lambda^{n-1} + \cdots + (-1)^n \prod_{j=1}^n \lambda_j \\ &= \lambda^n - traza(T) \lambda^{n-1} + \cdots + (-1)^n det(T). \end{aligned}$$

Ahora justificamos estos pasos en la siguiente

Proposición

Dada la matriz $A \in \mathbb{C}(n, n)$, entonces existe una matriz no singular $P \in \mathbb{C}(n, n)$ tal que

$$P^{-1}AP = \begin{bmatrix} \lambda_1 & * & \cdots & * & * \\ 0 & \lambda_2 & \cdots & * & * \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & \cdots & \lambda_{n-1} & * \\ 0 & \cdots & \cdots & 0 & \lambda_n \end{bmatrix}$$

Prueba: Ejercicio. (sug, La transformación lineal $L_A : \mathbb{C} \longrightarrow \mathbb{C}$ tiene por matriz asociada en la base canónica de $\mathbb{C}(n,1)$ precisamente a A)

Ejemplo

Sea la matriz $A = \begin{bmatrix} 4 & 3 \\ -3 & -2 \end{bmatrix}$, entonces su polinomio característico está dado por $p_A(\lambda) = \det(A - \lambda I) = \lambda^2 - 2\lambda + 1 = (\lambda - 1)^2$. Notamos que A posee un único valor propio $\lambda = 1$ (multiplicidad dos). De la ecuación Av = v tenemos

$$Av = A(v_1, v_2)^t = \begin{bmatrix} 4 & 3 \\ -3 & -2 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 4v_1 + 3v_2 \\ -3v_1 - 2v_2 \end{bmatrix} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix},$$

de donde obtenemos $v_1+v_2=0$, entonces $v=(v_1,v_2)^t=(1,-1)^t$, ahora agregamos el vector $v^2=(0,1)^t$ tal que v^1,v^2 sea una base para \mathbb{R}^2

Por tanto

$$L_A(v^1) = v^1$$

 $L_A(v^2) = 3v^1 + v^2$,

de donde la matriz triangular de A es

$$P = \begin{bmatrix} v^1 & v^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -1 & -1 \end{bmatrix}$$

y por tanto

$$P^{-1}AP = \left[\begin{array}{cc} 1 & 3 \\ 0 & 1 \end{array} \right]$$

Proposición (Cayley-Hamilton)

Sean V un espacio vectorial, con dim(V) = n, $y \ T : V \longrightarrow V$ una transformación lineal. entonces $p_{\tau}(T) = 0$

Prueba: Ejercicio.

Observación

1. El polinomio $\varphi_{\tau}(x)$ divide a $p_{\tau}(x)$. En efecto por el algoritmo de la división de Euclides, existen polinomios g y h tales que

$$p_{\tau}(x) = g(x)\varphi_{\tau}(x) + h(x)$$

donde h(x) = 0 ó $grad(h) < grad(\varphi_{\tau})$. Por el teorema de Cayley-Hamilton, se tiene

$$0 = p_{\tau}(T) = g(T)\varphi_{\tau}(T) + h(T) = 0 + h(T) = h(T),$$

de donde h(T) = 0. Entonces por la minimalidad del grado φ_T se tiene que h(x) = 0. Por tanto

$$p_{\tau}(x) = g(x)\varphi_{\tau}(x).$$

2. Si $\lambda_1, \cdots, \lambda_r$ son valores propios de T diferentes (raales o complejos) y debido a que p_{τ} y φ_{τ} tienen las mismas raíces, y de acuerdo a la observación anterior, tenemos

$$p_{\tau}(\lambda) = (\lambda - \lambda_1)^{m_1} \cdots (\lambda - \lambda_r)^{m_r}$$

$$\varphi_{\tau}(\lambda) = (\lambda - \lambda_1)^{d_1} \cdots (\lambda - \lambda_r)^{d_r}.$$

Además,

$$m_1+\cdots+m_r=n, \quad d_1+\cdots+d_r=grad(\varphi_{\tau}) \ 1\leq d_j\leq m_j, \quad j=1,2,\cdots,r.$$

El número m_j se llama **multiplicidad algebraíca** de λ_j . Por otro lado, asociado a cada raíz λ_j , existe un subespacio

$$V_i = \{ v \in V / T(v) = \lambda_i v \}$$

cuya dimensión es la **multiplicidad geométrica** de λ_i .

Proposición

Sea λ un valor propio de una transformación lineal $T:V\longrightarrow V$. Si denotamos por e y m a su multiplicidad geométrica y multiplicidad algebraíca respectivamente, entonces

$$e \leq m$$
.

Prueba: Ejercicio.

Recordar que una matriz es diagonalizable si es semejante a una matriz diagonal. Una transformación lineal $T:V\longrightarrow V$ es diagonalizable si existe una base de V en donde su matriz asociada es diagonal, es decir, V posee una base formada por vectores propios correspondientes a la transformación lineal.

Sean V un espacio vectorial, con dim(V) = n, y una transformación lineal $T: V \longrightarrow V$. Si $\lambda_1, \cdots, \lambda_r$ son los valores propios diferentes de T, entonces los subespacios

$$V_j = \{v \in V/T(v) = \lambda_j v\}, \quad j = 1, 2, \cdots, r,$$

tienen la propiedad

$$V_j \cap [V_1 + \cdots + V_{j-1} + V_{j+1} + \cdots + V_r] = \{\mathbf{0}\}, \ j+1,\cdots,r$$

por tanto $V_1+\cdots+V_r$ es suma directa, y se denota

$$V_0 = V_1 \oplus \cdots \oplus V_r$$