Белорусский Государственный Университет Информатики и Радиоэлектроники

Факультет компьютерных систем и сетей

Кафедра ЭВМ

Лабораторная работа №2

Тема «Регрессионный анализ»

Выполнил: Проверил:

Студент группы 7М2432 Марченко В.В.

Канаш В.Н.

Задание:

Входные данные: п объектов, каждый из которых характеризуется двумя числовыми признаками: $\{x_i\}_{i=1}^n$ и $\{y_i\}_{i=1}^n$.

Требуется исследовать регрессионную зависимость признака у от признака х. Для каждого набора данных необходимо выполнить следующие задания:

- 1. Построить модель линейной регрессии $y = ax + b + \varepsilon$, оценив оптимальные параметры a и b из условия минимизации суммы квадратов отклонения для заданных значений признаков $\{x_i\}_{i=1}^n$ и $\{y_i\}_{i=1}^n$.
 - 2. Вычислить коэффициент детерминации для получившейся модели.
 - 3. Визуализировать на одном графике точки (x_i, y_i) и прямую y = ax + b.

Исходные данные:

Вариант	N	a	b	σ^2
3	10000	0.5	1	1

Где N – это количество точек, а и b – коэффициенты в линейной функции $y = ax + b + \varepsilon$, а σ^2 – дисперсия гауссовского белого шума ε . Сами значения х задаются в виде равномерной сетки на отрезке [0; 1].

Реальные статистические данные из заданного набора (выдаются преподавателем).

Варианты реальных наборов данных №6. Wine

Название файла: 06-wine.txt

Ссылка: http://archive.ics.uci.edu/ml/datasets/Wine

Первый признак: alcohol (столбец № 2)

Второй признак: color-intensity (столбец № 11)

Результаты:

1. Смоделированные данные:


```
Call:
lm(formula = y \sim x)
Residuals:
           1Q Median
                          3Q
                                 Max
-4.0538 -0.6733 -0.0131 0.6864 4.4301
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.01629 0.02015 50.44 <2e-16 ***
Х
           0.47271
                     0.03490 13.55
                                      <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.008 on 9998 degrees of freedom
Multiple R-squared: 0.01802, Adjusted R-squared: 0.01792
F-statistic: 183.5 on 1 and 9998 DF, p-value: < 2.2e-16
```

Коэффициент детерминации = 0.018

2. Реальные данные:


```
lm(formula = y \sim x)
Residuals:
   Min
           1Q Median
                        3Q
                                 Max
-3.0189 -1.3322 -0.4905 0.6174 6.0705
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) -15.2257 2.3483 -6.484 8.72e-10 ***
                      0.1803 8.654 3.06e-15 ***
             1.5602
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.947 on 176 degrees of freedom
Multiple R-squared: 0.2985, Adjusted R-squared: 0.2945
F-statistic: 74.9 on 1 and 176 DF, p-value: 3.056e-15
```

Листинг программы:

```
analyse regression <- function(x, y) {
  model < -lm(y \sim x)
  print(summary(model))
  dev.new()
  plot(x, y)
 abline(model)
}
dat <- read.table("wine.csv", sep=",")</pre>
analyse regression(dat$V2, dat$V11)
n < -10000
a < -0.5
b <- 1
s2 <- 1
x < - seq(0.0, 1.0, length=n)
y < -a * x + b + rnorm(n, 0, s2)
analyse regression(x, y)
```

Анализируемые данные:

14.23	5.64
13.2	4.38
13.16	5.68
14.37	7.8
13.24	4.32
14.2	6.75
14.39	5.25
14.06	5.05
14.83	5.2
13.86	7.22
14.1	5.75
14.12	5
13.75	5.6
14.75	5.4
14.38	7.5
13.63	7.3
14.3	6.2
13.83	6.6
14.19	8.7
13.64	5.1
14.06	5.65
12.93	4.5
13.71	3.8
12.85	3.93
13.5	3.52
13.05	3.58
13.39	4.8

13.3	3.95
13.87	4.5
14.02	4.7
13.73	5.7
13.58	6.9
13.68	3.84
13.76	5.4
13.51	4.2
13.48	5.1
13.28	4.6
13.05	4.25
13.07	3.7
14.22	5.1
13.56	6.13
13.41	4.28
13.88	5.43
13.24	4.36
13.05	5.04
14.21	5.24
14.38	4.9
13.9	6.1
14.1	6.2
13.94	8.90
13.05	7.2
13.83	5.6
13.82	7.05
13.77	6.3
13.74	5.85
13.56	6.25
14.22	6.38
13.29	6
13.72	6.8
12.37	1.95
12.33	3.27
12.64	5.75
13.67	3.8
12.37	4.45
12.17	2.95
12.37	4.6
13.11	5.3
12.37	4.68
13.34	3.17
12.21	2.85
12.29	3.05
13.86	3.38
13.49	3.74

12.99	3.35
11.96	3.21
11.66	3.8
13.03	4.6
11.84	2.65
12.33	3.4
12.7	2.57
12	2.5
12.72	3.9
12.08	2.2
13.05	4.8
11.84	3.05
12.67	2.62
12.16	2.45
11.65	2.6
11.64	2.8
12.08	1.74
12.08	2.4
12	3.6
12.69	3.05
12.29	2.15
11.62	3.25
12.47	2.6
11.81	2.5
12.29	2.9
12.37	4.5
12.29	2.3
12.08	3.3
12.6	2.45
12.34	2.8
11.82	2.06
12.51	2.94
12.42	2.7
12.25	3.4
12.72	3.3
12.22	2.7
11.61	2.65
11.46	2.9
12.52	2
11.76	3.8
11.41	3.08
12.08	2.9
11.03	1.9
11.82	1.95
12.42	2.06
12.77	3.4
L	I .

12	1.28
11.45	3.25
11.56	6
12.42	2.08
13.05	2.6
11.87	2.8
12.07	2.76
12.43	3.94
11.79	3
12.37	2.12
12.04	2.6
12.86	4.1
12.88	5.4
12.81	5.7
12.7	5
12.51	5.45
12.6	7.1
12.25	3.85
12.53	5
13.49	5.7
12.84	4.92
12.93	4.6
13.36	5.6
13.52	4.35
13.62	4.4
12.25	8.21
13.16	4
	4.9
13.88 12.87	
	7.65
13.32	8.42
13.08 13.5	9.40 8.60
12.79	10.8
13.11	7.1
13.23	7.6
12.58	
13.17	7.9
13.84	9.01
12.45	7.5
14.34	11.75
13.48	11.75
12.36	7.65
13.69	5.88
12.85	5.58
12.96	5.28
13.78	9.58

13.73	6.62
13.45	10.68
12.82	10.26
13.58	8.66
13.4	8.5
12.2	5.5
12.77	9.899999
14.16	9.7
13.71	7.7
13.4	7.3
13.27	10.2
13.17	9.3
14.13	9.2