3. Derivacije i primjene, 3. dio - Rješenja

- 1. (a) f je rastuća na intervalima $(-\infty, -2)$ i $(1, +\infty)$ i padajuća na (-2, 1); u x = -2 je lokalni maksimum, a u x = 1 je lokalni minimum; f je konkavna na intervalu $(-\infty, -\frac{1}{2})$ i konveksna na intervalu $(-\frac{1}{2}, \infty)$; u $x = -\frac{1}{2}$ je infleksija.
 - (b) f je padajuća na intervalima $(-\infty,0)$ i $(2,+\infty)$ i rastuća na (0,2); u x=2 je lokalni maksimum, a u x=0 je lokalni minimum; f je konveksna na intervalima $(-\infty,2-\sqrt{2})$ i $(2+\sqrt{2},\infty)$, a konkavna na intervalu $(2-\sqrt{2},2+\sqrt{2})$; u $x=2-\sqrt{2}$ i $x=2+\sqrt{2}$ je infleksija.
- 2. f ima lokalne minimume u $x=\frac{5\pi}{3}+2k\pi, \ \forall k\in\mathbb{Z}$, lokalne maksimume u $x=\frac{\pi}{3}+2k\pi, \ \forall k\in\mathbb{Z}$, i infleksije u $x=k\pi,$ $x=\pi-\arccos\frac{1}{4}+2k\pi$ i $x=\pi+\arccos\frac{1}{4}+2k\pi, \ \forall k\in\mathbb{Z}$.
- 3. (a) f u $x = \frac{1}{e}$ ima lokalni minimum, a u $x = \sqrt{e}$ lokalni maksimum;
 - (b) f u $x = \frac{1}{2}$ ima lokalni maksimum.
- 4. a=1; f ima infleksije u $x=1,\,x=-2-\sqrt{3}$ i $x=-2+\sqrt{3}$.
- 5. $V_{\text{max}} = \frac{2s^2\pi\sqrt{3}}{27}$
- 6. $a_1 = a \frac{1}{2d}(ad bc + dc), b_1 = b \frac{1}{2c}(bc ad + cd)$
- $7. \ r = \sqrt{\frac{2P}{\pi + 4}}$
- 8. $V_{\text{max}} = \frac{2a^3}{27}$
- 9. Tetiva je udaljena $\frac{3r}{2}$ od točke A.
- 10. a = 1, b = 3

- 11. (a) Greda će imati kvadratni presjek sa stranicom $\sqrt{2}$;
 - (b) Širina poprečnog presjeka grede je $2r\sqrt{\frac{2}{3}}$, a dužina $\frac{2r}{\sqrt{3}}$.
- 12. Čovjek se treba iskrcati 12 km od točke ${\cal A}.$

13.
$$V_{\text{max}} = \frac{4\pi R^3}{3\sqrt{3}}$$

14.
$$T(1, e^{-1})$$

$$15. \ y = -x + \sqrt{2}R$$