Отчёт по лабораторной работе №6.11.2 Исследование фотопроводимости полупроводников

Плюскова Н.А. Б04-004

17 сентября 2023 г.

1. Аннотация

В работе были исследованы собственная и примесная фотопроводимости. По полученной спектральной зависимости фототока была определена ширина запрещенной зоны и энергия ионизации примеси полупроводника.

2. Экспериментальная установка

Схема экспериментальной установки изображена на рис. 1.

Рис. 1: Схема экспериментальной установки

Свет от источника И с помощью линзы Л фокусируется на вход щели монохроматора УМ-2. Эта щель находится в фокусе линзы Л1.

Рис. 2: Схема установки для исследования спектральной зависимости фототока

Параллельный пучок лучей, выходящий из линзы Л1, разлагается призмой П. Выходная щель находится в фокальной плоскости окулярной линзы 2 и вырезает из спектра нужную область. Прошедший сквозь выходную щель свет падает на ячейку с исследуемым образцом, обозначенную на рисунке буквой Я. Последовательно с образцом включены стабилизированный выпрямитель, служащий источником ЭДС. Вольтметр В7-34А служит для измерения тока, протекающего через образец.

Спектральное распределение потока фотонов на выходе монохроматора и градуировочная кривая монохроматора приведены на графиках, приложенных к работе.

3. Результаты эксперимента и обработка данных

3.1 Градуировка монохроматора

Проверив градуировку монохроматора с помощью желтой линии неоновой лампы, сдвинем градуировочный график вправо на 16 делений:

Рис. 3: Градуировочная кривая $\lambda(\theta)$

Получаем нелинейную градуировку, которую аппроксимируем полиномом 5 степени:

$$y = A + Bx + Cx^2 + Dx^3 + Ex^4$$

$$A = -17996; \ B = 35.6; \ C = -20.6*10^{-3}; \ D = 51.8*10^{-7}; \ E = -4.39*10^{-10}$$

3.2 Нахождение ширины запрещенной зоны полупроводников

Настроив монохроматор на измерение зависимости фототока от длины волны возбуждающего света, измерим темновой ток исследуемых образцов: CdS и CdSe.

$$I_{CdS_{\text{темн}}} = (5 \pm 0.3) \text{ MKA}$$

$$I_{CdS_{\text{темн}}} = (3 \pm 0.3) \text{ MKA}$$

Снимем зависимость $I(\lambda)$, предварительно не забыв вычесть темновой ток из показаний вольтметра и пересчитав фототок к постоянному потоку фотонов:

λ, A^o	σ_{λ}, A^{o}	I , $_{ m HA}$	$\sigma_I,$ HA
4856	2	2,5	0,4
5163	2	5,8	3,5
5310	2	10,5	0,4
5354	2	11,8	0,4
5389	2	13,0	0,4
5473	2	16,3	0,4
5519	3	17,5	0,4
5599	3	20,3	0,7
5685	3	23,8	0,4
5780	3	27,3	0,7
5882	3	31,5	0,7
5993	3	35,5	0,7
6113	3	40,0	3,5
6243	4	45,0	3,5
6384	4	50,0	3,5
6513	4	55,0	3,5
6696	4	60,0	3,5
6869	5	62,5	3,5
6884	5	61,5	1,1

λ, A^o	4.0		
Λ, Λ	σ_{λ}, A^{o}	I , $_{ m HA}$	σ_I ,н ${ m A}$
6905	5	63,0	1,8
6942	5	61,0	1,4
7054	5	60,0	3,5
7249	5	55,8	1,8
7456	6	50,8	1,4
7674	6	43,8	1,8
7970	7	30,0	3,5
8144	7	26,8	1,8
8396	7	10,3	0,7
8500	7	10,5	0,7
8605	8	7,8	0,7
8658	8	7,0	0,7
8766	8	6,3	0,7
9098	9	4,3	0,4
9212	9	2,3	0,4
9328	9	1,8	0,7
9504	9	1,3	0,4
9804	10	1,0	0,4

Таблица 1: Зависимость $I(\lambda)$ для CdS

λ, A^o	σ_{λ}, A^{o}	I,H A	$\sigma_I,$ н ${ m A}$
5519	2	1,0	0,4
5685	3	1,5	0,4
5882	3	2,5	0,4
6113	3	4,3	0,4
6243	3	5,5	0,4
6384	3	7,0	0,4
6535	3	9,0	0,7
6696	4	9,5	0,7
6869	4	9,8	1,4
6942	4	11,8	0,7
6979	5	12,5	0,7
7016	5	13,3	0,7
7054	5	13,0	0,4
7092	5	15,5	0,7
7169	6	17,0	0,7
7209	6	20,3	0,4
7249	6	32,3	0,7

λ, A^o	σ_{λ}, A^{o}	I , $_{ m HA}$	$\sigma_I,$ н ${ m A}$
7330	6	70,0	1,8
7372	7	100,8	1,8
7456	7	170,5	1,4
7499	7	190,5	1,8
7542	8	194,5	3,5
7586	8	192,0	3,5
7630	9	187,3	1,8
7674	9	184,5	3,5
7719	10	181,3	1,8
7765	10	175,3	1,8
7904	10	159,5	1,8
7904	10	170,3	1,8
8144	11	136,0	1,8
8396	11	102,0	3,5
8658	11	80,5	1,8
8930	12	64,0	0,7
9212	13	50,5	0,7

Таблица 2: Зависимость $I(\lambda)$ для CdSe

Построим соответствующие графики:

Рис. 4: Зависимость $I(\lambda)$ для CdS

Рис. 5: Зависимость $I(\lambda)$ для CdSe

Из графика найдем красные границы фотоэффекта:

$$\lambda_{CdS_{\rm Kp}} = (6010 \pm 13)A^o$$

$$\lambda_{CdSe_{\rm kp}} = (7414 \pm 13)A^o$$

По найденным длинам волн оценим ширину запрещенной зоны полупроводников:

$$\Delta_{CdS} = (2.04 \pm 0.01) \text{ 3B}$$

$$\Delta_{CdSe} = (1{,}67\pm0{,}01)$$
эВ

Отметим, что значение $\Delta_{CdSe}=(1.67\pm0.01)$ эВ в пределах 2% совпадает с теоретическим ($\Delta_{CdSe_{\text{теор}}}=1.7$ эВ)

4. Вывод

В работе была исследована собственная фотопроводимость полупроводников и построены графики зависимости фототока для образцов CdS и CdSe; по графикам были определены ширина запрещенной зоны.

Для образцов не наблюдаются примесные пики фотопроводимости. Возможно, для CdSe они находятся в области $\lambda \sim 7300A^o$, которая была плохо промерена. Также данную картину можно наблюдать, если примесей в полупроводнике мало.

Также следует отметить, что найденные нами погрешности не совпадают с реальными вследствие следующих причин:

- Мы не учитываем погрешность данного нам градуировочного графика, а также погрешность глаза.
- Возможно, нельзя по одной линии из всего спектра судить, в какую сторону нужно сдвигать график. По моему мнению, зависимость более сложная и индивидуальна для каждой установки.
- Желтая линия спектра неона могла быть определена неверно, т.к. засветка от лампы накаливания и ламп, освещающих кабинет, в котором происходили измерения, вносила дополнительные линии, которые не имели отношения к спектру неона.