UNCLASSIFIED

AD

403 491

Reproduced by the

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA, VIRGINIA

UNCLASSIFIED

MOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U.S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

403 491

Technical Report No. 43

to the

Office of Naval Research

ARPA Order No. 26-60, Task 2, Item 3

Contract No.: Nonr - 477(16)

REACTIONS OF XENON WITH

CERTAIN STRONG OXIDIZING

AGENTS

By Gary Gard, Francis B. Dudley and George E. Cady

Department of Chemistry

University of Washington

Seattle 5, Washington

1963

Reproduction in whole or in part is permitted for any purpose of the United States Government

MAY 14 1968

LINE TISIA A

NO OTS

Contribution from the Department of Chemistry, University of Washington. Seattle, Washington.

REACTIONS OF XENON WITH CERTAIN STRONG OXIDIZENG AGENTS
By Gary L. Gard, Francis B. Dudley and George H. Cady

The syntheses of the xenon fluorides^{1,2,3} and xenon hexafluoro(platinate⁴, rhodate⁵, and ruthenate⁶) suggested that other strong
oxidizing agents could possibly react with xenon. Therefore, the
reactions of xenon with trifluoromethyl hypofluorite (CF₃OF), oxygen
difluoride (OF₂), fluorine fluorosulfate (FOSF) and peroxydisulfury:
difluoride (FSOOSF) were studied. One set of reactions was carried
out in a prefluorinated 1.5 liter nickel vessel. The experimental
conditions and results are tabulated below:

Reactants y + Xe	Molar Ratio	Minamum Temp. (°K) for Reaction	Maximum Temp. (°K) Attained	Products	
FGOOSF + Xe	3:1	etta alle ente	750	Xe+0 ₂ +S0 ₂ F ₂	
OF ₂ + Xe	1:1	560	660	?	

C.L. Chernick et al, Science, <u>138</u>, 136 (1962).
 Classen, Selig, and Malm, J.A.C.S., <u>84</u>, 3593 (1962).

^{2.} Weeks, Chernick, and Matheson, J.A.C.S., 84, 4612 (1962).

^{3.} Malm, Sheft, and Chernick, J.A.C.S., 85, 110 (1963). Weaver, Weinstock, and Knop, J.A.C.S., 85, 111 (1963). Slivnik et al, Croatica Chemica Acta, 34, 253 (1962). Dudley, Gard, and Cady, Inorganic Chem., 2, 228 (1963).

^{4.} Bartlett, Eroc. Chem. Soc., 218, (1962).

^{5.} Bartlett, N, and Jha, N.K., Unpublished results.

^{6.} Bartlett, American Scientist, 51, 114, 1963.

 $S_2O_6F_2 + Xe$

The wixture of $S_2O_6F_2$ and Xe had a total pressure of 160 mm at 300° K. As the mixture was heated the pressure increased ideally in proportion to the absolute temperature up to about 500° K. Above this temperature the rate of increase in pressure was abnormally great because of the dissociation of $S_2O_6F_2$ into free radicals according to

7. F.B. Dudley and G.H. Cady - in press.

the equation:

The observed abnormality was that expected for this equilibrium. If xenon fluorosulfate had been formed, the total pressure would have been smaller than that observed. There was no evidence for a reaction involving xenon.

$OF_2 + Xe$

When the temperature of an equimolar mixture of oxygen difluoride and xenon having a total pressure of 104.5 mm at 452°K was slowly raised, the pressure increased ideally with the absolute temperature up to about 560°K. Above this temperature the pressure decreased, indicating that chemical combination was in progress. The product of the reaction was not studied. It is probably significant that decomposition of oxygen difluoride by the reaction

occurs at temperatures above about 530°K. A pressure vs. rising temperature curve for a sample of oxygen difluoride shows an abnormal increase in pressure above 530°K because of this dissociation. When

xenon was present the reaction of F_2 with Xe probably balanced the dissociation of OF_2 to permit the number of molecules in the gas to remain about constant from 530° to 560° K. Above this temperature a decrease in the number of molecules occurred. It appears likely that xenon did not react directly with OF_2 but did react with F_2 formed from oxygen difluoride, as the pressure vs. temperature curves for mixtures of xenon and fluorine showed that chemical combination occurred at temperatures as low as 390° K.

Another set of reactions was carried out in prefluorinated monel pressure tubes equipped with Hoke needle values and brass ¹⁰/30 connections. The experimental conditions and results are tabulated below:

Reactants y + xe	Molar Ratio	Pressure and Temp . (_	Products
		P	T	
CF ₃ OF + Xe	2.2:1	about 250	500	XeF ₂ and CF ₃ OOCF ₃
FSO ₅ F + Xe	2.2:1	about 150	450	MeF ₂ and S ₂ 0 ₆ F ₂

The above pressures were estimated from the amounts of materials present and from the temperature and volume of the system.

$$Xe + 2CF_3OF = XeF_2 + CF_3OOCF_3$$

0.0280 mole of CF₃OF was distilled into a prefluorinated Monel tube (volume 6 cc). To this was added 0.0125 mole of xenon. The tube was put into a heated oven and kept at a temperature between 220 and 250°C for seven days. (CF₃OF decomposes reversibly into COF₂ and fluorine at temperatures greater than about 275°C.) The tube was then withdrawn from the oven and cooled quickly in a water bath. The tube was further cooled to -78°C and the volatile product was pumped away

through a trap held at liquid nitrogen temperature. The volatile materials other than Xe were shown to be CF₅OF and CF₅OOCF₅ by infra-red identification. The material remaining in the tube was shown by chemical analysis to be xenon diffuoride. Analyses gave the following results:

	Expt'1	Theor.
Xenon \$	76.3 76.5	77.6
F %	21.98	22.4

The mechanism of this reaction may have involved the dissociation of a molecule of CF₂OF into a fluorine atom and a CF₂O· free radical. The fluorine would have been available to combine with xenon and free radicals could have combined to form CF₂OOCF₃.

$x_0 + 2FSO_3F - x_0F_2 + S_2O_6F_2$

0.0079 mole of FSO₃F was distilled into a prefluorinated Monel tube (vol. 5 cc) 0.0037 mole of xenon was added to this. The tube was placed in a heated oven and kept for four days at a temperature between 170 and 180°C. (FSO₃F decomposes at temperatures greater than 200°C.) The tube was then withdrawn from the oven and cooled quickly in a water bath. The tube was cooled to -14°C and the volatile product was pumped away through a trap held at liquid-0₂ temperature. The volatile material was shown to be S₂O₆F₂ by infra-red identification. The material remaining in the tube was shown to be mainly XeF₂ with small amounts of XeF₄. Analyses gave the following results:

	Expt'1	Theor.	(XeF_2)
Xenon %	74.4	77.6	
P %	24.05	22.4	

This reaction may have involved dissociation of SO_5F_2 into F atoms and SO_5F radicals. The latter could have combined to form $S_2O_6F_2$ while the former yielded xenon fluorides.

In an attempt to prepare a xenon fluorosulfate, 0.0034 mole of XeF_2 was allowed to react with 0.0117 mole of SO_3 at $120^{\circ}C$. After 5 days the reactor was removed from the oven and quenched in water. The tube was further cooled to $-78^{\circ}C$ and then pumped on through a trap held at liquid nitrogen temperatures. The volatile materials were shown to be xenon and oxygen. The remaining material in the tube was found to be $S_2O_5F_2$ by infra-red identification. Apparently the reaction was $XeF_2 + SO_3 = Xe + S_2O_5F_2 + \frac{1}{2}O_2$.