Math 321 Final Exam

December 15, 1993

Your Name	
Student Number	
Section Number	

- 1. Books, notes, and calculators are not allowed.
- 2. For more space, write on the opposite side. Cross off (instead of erase) the undesired part.
- 3. Show all your work. Your reason counts most of the points.

Number	Score
1	
2	
3	
4	
5	
6	
Total	

- (1) (10 point) Let $c \neq 0$ be a constant.
 - 1. If k and τ are the curvature and the torsion of a curve α , what is the the curvature and the torsion of the similar curve $c\alpha$?
 - 2. If K and H are the Gauss and mean curvatures of a surface ξ , what is the Gauss and mean curvatures of the similar surface $c\xi$?

(2) (15 point) Show there is a parametrized surface with $E=G=\mathrm{e}^u$ (not e in the second fundamental form), F=f=0.

(3) (20 point) The curvature of the hyperbola $u^2/a^2 - v^2/b^2 = 1$ is a/b^2 at the tip P. Find the geodesic curvature at the tip P of the hyperbola on the cone of angle θ obtained by intesecting with a plane parallel to and of distance 1 from the axis of the cone.

(4) (20 point) Consider the torus. α and γ are the top and bottom circles, β and δ are the meridians in the opposite position, and A, B, C, D are the four intersection points. If we start with the tangent vector w of δ at A, and then take parallel transportations along α to B, along β to C, along γ to D, and then along δ back to A, what vector do we get? Please explain your answer.

(5) (15 point) Consider parametrized surface

$$x = \frac{a}{2}(u+v), \quad y = \frac{b}{2}(u-v), \quad z = \frac{1}{2}uv.$$

Show that the parametric curves are geodesics.

(6) (20 point) Suppose the sum of interior angles of any geodesic triangle (i.e., the edges are geodesics) on a surface is π . Show that the Gauss curvature K=0.