Deep Learning with a Rethinking Structure for Multi-label Classification

Yao-Yuan Yang and Yi-An Lin and Hong-Min Chu and Hsuan-Tien Lin

Department of Computer Science & Information Engineering National Taiwan University

November 19, 2019

Which animal?

Which animals?

Multi-label Classification (MLC)

Problem definition

- train set $\mathcal{D} = \{(\mathbf{x}^{(n)}, \mathbf{y}^{(n)})\}_{n=1}^N$
- label vector $\mathbf{y} \in \{0, 1\}^K$
 - $\mathbf{y}[k] = 1$ if and only if the k-th label is relevant to \mathbf{x}
- learn a f that maps x to y
- test data (\mathbf{x}, \mathbf{y}) , prediction $\hat{\mathbf{y}} = f(\mathbf{x})$
- ullet goal is to make $\hat{\mathbf{y}}$ close to ground truth \mathbf{y}

Evaluation

- cost function $C(\mathbf{y}, \hat{\mathbf{y}}) \in \mathcal{R}$: the cost of predicting \mathbf{y} as $\hat{\mathbf{y}}$
- F1 score, Accuracy score, Hamming loss, Rank loss

Baseline 1: Binary Relevance (BR)

Binary Relevance (BR)

train a dog, rabbit, cat, guinea pig, shark classifier independently

Label correlation

- If we predict guinea pig as 1, we have the information about the shark is not likely predicted as 1
- BR ignores the label correlation information

Baseline 2: Classifier Chain (CC)

Classifier Chain (CC)

Learn each classifiers dependently (sequentially)

	BR	CC
dog	$f_1(\mathbf{x})$	$\hat{y}[1] = f_1(\mathbf{x})$
rabbit	$f_2(\mathbf{x})$	$\hat{y}[2] = f_2([\mathbf{x}; \hat{y}[1]])$
cat	$f_3(\mathbf{x})$	$\hat{y}[3] = f_3([\mathbf{x}; \hat{y}[1]; \hat{y}[2]])$
guinea pig	$f_4(\mathbf{x})$	$\hat{y}[4] = f_4([\mathbf{x}; \hat{y}[1]; \hat{y}[2]; \hat{y}[3]])$
shark	$f_5(\mathbf{x})$	$\hat{y}[5] = f_5([\mathbf{x}; \hat{y}[1]; \hat{y}[2]; \hat{y}[3]; \hat{y}[4]])$

Extension with neural network (for feature extraction)

- Ability to attach other deep learning architecture for specific data feature extraction [WYM+16, CCYW17]
- CC can be seen as remembering previous prediction recurrent neural network - to model this prediction sequence

Baseline 3: Recurrent Neural Network (RNN)

CC liked Recurrent Neural Network (RNN) [WYM+16]

- Solves sequence prediction problem
- Feature transformation U, Memory transformation W

Revisit

- Problem with predicting label sequentially: label ordering
 - Searching for optimal ordering [LT15]
- Imbalance information received for each label in the sequence

Instead of treating the prediction of labels as a sequence, treat the prediction of **label vectors** as a sequence

List of labels:

- person
- dog
- cat
- spoon
- cup
- ...

RethinkNet

- Modify from Baseline 3
- ullet Output $\hat{oldsymbol{y}}_i \in \{0,1\}^K$ instead of $\hat{oldsymbol{y}}[i] \in \{0,1\}$

- 1 person, cup, fork, bowl, chair, table
- 2 person, bottle, cup, fork, knife, spoon, bowl, chair, table
- 3 person, cup, fork, knife, spoon, bowl, chair, table

RethinkNet

- Modify from Baseline 3
- ullet Output $\hat{oldsymbol{y}}_i \in \{0,1\}^K$ instead of $\hat{oldsymbol{y}}[i] \in \{0,1\}$

- 1 person, cup, fork, bowl, chair, table
- 2 person, bottle, cup, fork, knife, spoon, bowl, chair, table
- g person, cup, fork, knife, spoon, bowl, chair, table

RethinkNet (modeling label correlation)

Considering a linear case

- $\mathbf{U} \in R^{K \times d}$ and $\mathbf{W} \in R^{K \times K}$
- $\hat{\mathbf{y}}_t = \sigma(\mathbf{U}\mathbf{x} + \mathbf{W}\hat{\mathbf{y}}_{t-1})$ (feature: $\mathbf{U}\mathbf{x}$, memory: $\mathbf{W}\hat{\mathbf{y}}_{t-1}$)
- $\hat{\mathbf{y}}_{t}[j] = \sigma(\mathbf{U}\mathbf{x} + \sum_{i=1}^{K} \hat{\mathbf{y}}_{t-1}[i] * \mathbf{W}[i,j])$
- ullet $\mathbf{W}[i,j]$ matches the correlation between i-th and j-th label

RethinkNet (modeling label correlation)

Considering a linear case

- $\mathbf{U} \in R^{K \times d}$ and $\mathbf{W} \in R^{K \times K}$
- $\hat{\mathbf{y}}_t = \sigma(\mathbf{U}\mathbf{x} + \mathbf{W}\hat{\mathbf{y}}_{t-1})$ (feature: $\mathbf{U}\mathbf{x}$, memory: $\mathbf{W}\hat{\mathbf{y}}_{t-1}$)
- $\hat{\mathbf{y}}_{t}[j] = \sigma(\mathbf{U}\mathbf{x}[j] + \sum_{i=1}^{K} \hat{\mathbf{y}}_{t-1}[i] * \mathbf{W}[i,j])$
- ullet $\mathbf{W}[i,j]$ matches the correlation between i-th and j-th label

RethinkNet (modeling label correlation)

To verify we plot the memory transform **W** and the correlation coefficient of the yeast data set.

memory transform

correlation coefficient

RethinkNet (Fine-tune)

Fine-tuning towards different evaluation criteria

- ullet Different measures for the closeness between y and \hat{y}
- Improve through iteration on specific criterion
- Adjust the weights to the labels by comparing temporary predictions between time steps

Experiments

Experiment (11 MLC data sets)

 RethinkNet versus the other algorithms based on t-test at 95% confidence level (#win/#tie/#loss)

	PCC	CFT	CC-DP	CC	CC-RNN	BR
hamming (\downarrow) rank loss (\downarrow)	6/1/4 5/1/5	3/4/4 5/2/4	5/2/1 7/1/0	6/1/4 10/1/0	8/3/0 10/1/0	3/6/2 10/1/0
f1 (†)	6/2/3	5/4/2	5/2/1	8/3/0	10/1/0	9/2/0
acc (†)	7/1/3	5/4/2	5/1/2	7/4/0	9/2/0	9/2/0
total	24 /5/15	18 /14/12	22 /6/4	31 /9/4	37 /7/0	31 /11/2

Conclusion

- Taken a memory view and developed a novel MLC algorithm RethinkNet
 - Instead of treating labels as a sequence, treat label vectors as a sequence
 - Models the of label correlation without label ordering problem
 - Fine-tune towards different evaluation criteria
- Empirical study demonstrates that RethinkNet is able to outperform existing algorithms

Thank you for listening. Any question?

References

- Shang-Fu Chen, Yi-Chen Chen, Chih-Kuan Yeh, and Yu-Chiang Frank Wang, *Order-free RNN with visual attention for multi-label classification*, arXiv preprint arXiv:1707.05495 (2017).
- Weiwei Liu and Ivor Tsang, On the optimality of classifier chain for multi-label classification, NIPS, 2015.
- Jiang Wang, Yi Yang, Junhua Mao, Zhiheng Huang, Chang Huang, and Wei Xu, *Cnn-rnn: A unified framework for multi-label image classification*, CVPR, 2016.