Expanding Vitis Vinifera flavonoid network using Feature Selection Methods

Aliaksandr Siarohin

University of Trento

January 13, 2016

Overview

- Introduction
- 2 Preprocesing
- Method Description
 - Lasso
 - Randomized lasso
 - RFE with Random forest
 - Method Comparison
- Final Result
- 6 References

Project Settings

Data

In this project we had been given expression data of vitus vinifera genes, and part of flavonoid pathway.

Task

The task is to expand the pathway.

Method

Method Description

I tried to apply feature selection methods for this project. I tried 3 methods:

- lasso [1]
- 2 randomized lasso [2]
- orecursive feature elimination [3] with random forest [4]

Procesing NaN

Observation

Expression data contains a lot of NaN values, and in order to apply feature selection methods we first need to deal with this NaNs.

Solution

I decided to remove all the experiments with amount of NaNs > 5000. And replace NaNs that left with mean computed across all genes in given experiment (e.g column mean).

Procesing NaN

Table: Removed after preprocesing data

Removed Experiments	Removed Genes	Replaced With Mean Cells
863	0	613890

Problem Statement

Definitions

 ${\cal G}$ - be set of genes, ${\cal E}$ - set of experiments, ${\cal M}$ - gene expression matrix. For now let's assume that we want to predict genes expression of gene g, based on all the other genes.

Problem

We can construct following regression problem $X = M_{E,G/\{g\}}^T$, $Y = M_{E,g}^T$, so the regression problem is to predict Y given X.

Feature Selection

Now using feature selection methods we can obtain genes that predict g, and ranking of this genes.

Lasso

Regularization Parameter

Lasso method as described in [1] has regularization parameter α which controls amount of regularization, I start from 0.1 and try to decrease this parameter until method select 100 genes (The lower α increase computational time, so 100 genes is a trade-of between efficiency and accuracy)

Ranking

The ranking of genes can be obtaining using absolute value of weight assigned to every selected gene.

Randomized lasso

Settings

Randomized lasso as described in [2] run lasso on random subsets of training set (I use 30 runs, and 75 % of training set for every run).

Regularization Parameter

I use the same setting for estimating alpha (start from 0.1 and decrease until method select 100 genes)

Ranking

The ranking can be obtained from the number of times that method select particular gene.

RFE with Random forest

Description

Recursive feature elimination as described in [3] fit regression method on all dataset, than discard feature with the most lowest rating, fit regression on reduced dataset, discard feature with lowest rating and so on, until one feature is left. Random forest on the other hand can produce features ranking, base on the number of times the feature selected when random forest was build.

Settings

The problem of this method is that it take long time to run for all the genes. So I decided to take genes selected by Lasso method. So this method just assign new ranks. I use random forest with 100 trees in it.

RFE with Random forest

Ranking

I assigned rank using formula:

1

n_features — step_at_which_feature_was_discarded

Method Comparison

Comparison

To compare methods I select 100 top rated genes and use 2 metrics average: number of genes from pathway selected by method and average DCG^a (gene from pathway get relevance equal to 1, and not from pathway get relevance equal to zero).

ahttps://en.wikipedia.org/wiki/Discounted_cumulative_gain

Method Comparison

Table: Features selection method comparison.

Method	Average number of pathway genes	Average DCG
Lasso	3,233	1,105
RFE	3,233	1,032
Randomized Lasso	2,977	0,874

Final Result

Result Aggregation

To obtaining final result I use rank aggregation described in [5]. I aggregate list for all methods and for all genes, and select best 25; highest rated get highest rank.

Final Result

Table: Top10 final genes.

Rank	Gene	Is in pathway
24	VIT_14s0068g00920	True
23	VIT_06s0004g02620	False
22	VIT_18s0001g09400	False
21	VIT_04s0023g03370	True
20	VIT_03s0088g00260	False
19	VIT_15s0046g00170	True
18	VIT_18s0001g14310	True
17	VIT_00s0361g00040	True
16	VIT_06s0009g03040jbr¿VIT_06s	True
15	VIT_01s0010g03510	True

Final Result

Table: Top10 from final genes, that are not in pathway.

Rank	Gene	
23	VIT_06s0004g02620	
22	VIT_18s0001g09400	
20	VIT_03s0088g00260	
8	VIT_14s0060g00900	
6	VIT_13s0064g01480	
5	VIT_02s0012g01570	
4	VIT_16s0100g00270	
2	VIT_12s0028g01150	
1	VIT_03s0091g01290	
0	VIT_07s0005g06460	

References

- R. Tibshirani, "Regression shrinkage and selection via the lasso," Journal of the Royal Statistical Society. Series B (Methodological), pp. 267-288, 1996,
- N. Meinshausen and P. Bühlmann, "Stability selection," Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol. 72, no. 4, pp. 417–473, 2010.
- I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, "Gene selection for cancer classification using support vector machines," Machine learning, vol. 46, no. 1-3, pp. 389-422, 2002.
- L. Breiman, "Random forests," Machine learning, vol. 45, no. 1, pp. 5-32, 2001.
- V. Pihur, S. Datta, and S. Datta, "Weighted rank aggregation of cluster validation measures: a monte carlo cross-entropy approach," Bioinformatics, vol. 23, no. 13, pp. 1607–1615, 2007.

The End