Théorie des langages : THL CM 9

Uli Fahrenberg

EPITA Rennes

S5 2023

Aperçu

Programme du cours

- Langages rationnels, automates finis
- 3 Langages algébriques, grammaires hors-contexte, automates à pile
 - TP 1 : flex
 - QCM 1 : langages rationnels
- Parsage LL
- Parsage LR, parties 1–3
- Parsage LR, partie 3,5
- Introduction flex & bison
- TP 3, 4 : flex & bison

Re : approches parsage

Re : parsage LL(1)

- **o** entrée : une grammaire hors contexte $G = (N, \Sigma, P, S)$
 - si-dessous, $V = N \cup \Sigma$
 - éliminer récursion à gauche dans G; factoriser G à gauche
- calculer NULL
 - NULL = $\{A \in N \mid A \Rightarrow^* \varepsilon\}$
- construire la table FIRST
 - FIRST(A) = { $a \in \Sigma \mid \exists w \in V^* : A \Rightarrow^* aw$ }
- construire la table FOLLOW
 - FOLLOW(A) = $\{a \in \Sigma \mid \exists B \in N, \alpha, \beta \in V^* : B \Rightarrow^* \alpha A a \beta\}$
- construire la TABLE de parsage :
 - pour chaque production $X \to w$ (n):
 - pour chaque $a \in FIRST(w)$: TABLE $(X, a) += \{n\}$
 - $oldsymbol{0}$ si $w \in \mathsf{NULL}$ ou $w = \varepsilon$:
 - pour chaque a ∈ FOLLOW(X) : TABLE(X, a) += {n}

Uli Fahrenberg

Re: parsage ascendant: the basics

```
function \operatorname{BULRP}(\alpha)

if \alpha = S then

return True

for i \leftarrow 1 to |\alpha| do

for j \leftarrow i to |\alpha| do

for A \in \mathbb{N} do

if A \rightarrow \alpha_i \dots \alpha_j then

return \operatorname{BULRP}(\alpha_1 \dots \alpha_{i-1} A \alpha_{j+1} \dots \alpha_n)

return False
```

Définition (8.8)

Soit G une grammaire hors-contexte. Une production pointée de G est une paire $(A, \alpha \bullet \beta)$ telle que $A \to \alpha \beta$ est une production de G.

Re : automate de parsage LR(0)

Définition (8.10)

Soit G une grammaire hc et \mathcal{I} un ensemble de productions pointées de G. La clôture de \mathcal{I} est le plus petit ensemble cl (\mathcal{I}) t.g. $\mathcal{I} \subseteq \text{cl}(\mathcal{I})$ et

• si $(A, \alpha \bullet B\beta) \in cl(\mathcal{I})$ et $B \to \gamma$ est une production de G, alors $(B, \bullet \gamma) \in \mathcal{I}$.

Définition

L'automate de parsage LR(0) d'une grammaire hors-contexte G est l'automate fini déterministe (Q, q_0, F, δ) avec

- $Q = \{ \operatorname{cl}(\mathcal{I}) \mid \mathcal{I} \text{ ensemble de productions pointées de } G \}$;
- $q_0 = cl(\{(Z, \bullet S\})\});$
- $F = \{ q \in Q \mid \exists \text{ production } X \to w \text{ de } G \text{ t.q. } (X, w \bullet) \in q \}$
- ullet et $\delta: Q imes V o Q$ donnée par

$$\delta(q,\beta) = \operatorname{cl}(\{(X,\alpha\beta\bullet\gamma) \mid (X,\alpha\bullet\beta\gamma) \in q\}).$$

$$X \rightarrow aYc$$
 (1)

$$Y \rightarrow b$$
 (2)

Apercu

Re : algorithme de parsage

- empiler q_0
- repeat
 - $oldsymbol{g} q \leftarrow$ état en haut de la pile
 - 2 si $q = \text{\'etat final } X \to w \bullet$:

REDUCE

- dépiler |w| états
- $a' \leftarrow \text{état en haut de la pile}$
- \circ empiler $\delta(q', X)$

← possible X

sinon:

SHIFT

 \bullet a \leftarrow next(input)

← possible X

 \circ empiler $\delta(q, a)$

← possible X

until $q = \text{\'etat final } Z \to S \bullet (\checkmark) \text{ ou \'echec } (\checkmark)$

Re : exemple : automate de parsage

$$Z \rightarrow S$$
\$ (0)

Aperçu 00000000●0000

$$S \rightarrow (S)$$
 (1)

$$| n$$
 (2)

$$\longrightarrow$$
 $Z \rightarrow \bullet S$

Re : exemple : automate de parsage

$$Z \rightarrow S$$
\$ (0)
 $S \rightarrow (S)$ (1)
 $\mid n$ (2)

$$\longrightarrow \begin{array}{c} Z \to \bullet S\$ \\ S \to \bullet (S) \\ S \to \bullet n \end{array}$$

Uli Fahrenberg

$$Z \rightarrow S$$
\$ (0)
 $S \rightarrow (S)$ (1)
 $\mid n$ (2)

Aperçu

0000000000000000

$$\begin{array}{c}
Z \to \bullet S \\
S \to \bullet (S) \\
S \to \bullet n
\end{array}$$

$$(S \to (\bullet S))$$

Uli Fahrenberg

$$Z \rightarrow S$$
\$ (0)
 $S \rightarrow (S)$ (1)
 $\mid n$ (2)

Aperçu

0000000000000

Uli Fahrenberg

Re : exemple : automate de parsage

$$Z \rightarrow S$$
\$ (0)
 $S \rightarrow (S)$ (1)
 $\mid n$ (2)

Aperçu

0000000000000

Aperçu

Re : exemple : automate de parsage

$$Z \rightarrow S$$
\$ (0)
 $S \rightarrow (S)$ (1)
 $\mid n$ (2)

Uli Fahrenberg

$$Z \rightarrow S$$
\$ (0)
 $S \rightarrow (S)$ (1)
 $| n$ (2)

Aperçu

0000000000000

$$Z \rightarrow S$$
\$ (0)
 $S \rightarrow (S)$ (1)
 $| n$ (2)

Apercu 00000000●0000

$$Z \rightarrow S\$ \qquad (0)$$

$$S \rightarrow (S) \qquad (1)$$

$$\mid n \qquad (2)$$

Aperçu

Re : exemple : automate de parsage

$$Z \rightarrow S$$
\$ (0)
 $S \rightarrow (S)$ (1)
 $\mid n$ (2)

Re : exemple : table de parsage

Re : parsage LR(0)

- lire l'entrée de gauche à droite (L)
- approche ascendant
- construire une dérivation droite (R)
- pas de regard avant (0)

Uli Fahrenberg

Re: parsage SLR(1): exemple

$$Z \rightarrow S\$ \qquad (0)$$

$$S \rightarrow n-S \qquad (1)$$

$$\mid n \qquad (2)$$

état	action	n	_	\$	S
0	décaler	2			1
1	décaler			4	
2	réduire 2, décaler		3		conflit SHIFT/REDUCE
3	décaler	2			5
4	accepter				
5	réduire 1				

Re : Simple LR(1)

- calculer la table LR(0)
- si conflits : conditionner l'action par le FOLLOW
- ullet passer du type état o action o entrée au type état o entrée o action

Exemple:
$$Z \rightarrow S$$
 (0)
 $S \rightarrow n-S$ (1)

$$S \rightarrow n$$
 (2)

état	action	n	_	\$	S		état	n	_	\$	S
0	décaler	2			1	-	0	d.2			d.1
1	décaler			4			1			d.4	
2	réd. 2, déc.		3			\Longrightarrow	2		d.3	r.2	
3	décaler	2			5		3	d.2			d.5
4	accepter						4	_	- acce	pter -	_
5	réduire 1						5			r.1	

Uli Fahrenberg

Parsage LR(1)

Exemple

$$Z \rightarrow S$$
 (0)

$$S \rightarrow L=E$$
 (1)

$$L \rightarrow x$$
 (3)

$$|*E$$
 (4)

$$E \rightarrow L$$
 (5)

manipulation des pointeurs

Exemple

$$Z \rightarrow S$$
\$ (0) 0
 $S \rightarrow L = E$ (1) 1
 $|E|$ (2) 2
 $L \rightarrow x$ (3) 3
 $|*E|$ (4) 4
 $E \rightarrow L$ (5) 5
6
7
8
9

état	X	*	=	\$	S	L	Ε
0	d.4	d.5			d.1	d.2	d.3
1				d.6			
2			d.7				
			r.5	r.5			
3				r.2			
4			r.3	r.3			
5	d.4	d.5				d.9	d.8
6			— a	accept	er —		
7	d.4	d.5				d.9	d.10
8			r.4	r.4			
9			r.5	r.5			
10			r.1	r.1			

Exemple

$$Z \rightarrow S$$
 (0)

$$S \rightarrow L=E$$
 (1)

$$L \rightarrow x$$
 (3)

$$|*E$$
 (4)

$$E \rightarrow L$$
 (5)

état	productions pointées
0	$Z \rightarrow \bullet S$ \$

$$Z \rightarrow S$$
 (0)

$$S \rightarrow L=E$$
 (1)

$$L \rightarrow x$$
 (3)

$$E \rightarrow L$$
 (5)

état	productions pointées
0	$Z \rightarrow \bullet S$, $S \rightarrow \bullet L = E$, $S \rightarrow \bullet E$

$$Z \rightarrow S$$
 (0)

$$S \rightarrow L=E$$
 (1)

$$L \to \mathbf{x}$$
 (3)

$$E \rightarrow L$$
 (5)

	productions pointées
0	$Z \rightarrow \bullet S$, $S \rightarrow \bullet L = E$, $S \rightarrow \bullet E$
	$Z \rightarrow \bullet S$, $S \rightarrow \bullet L = E$, $S \rightarrow \bullet E$ $L \rightarrow \bullet x$, $L \rightarrow \bullet *E$, $E \rightarrow \bullet L$
	•

$$Z \rightarrow S$$
 (0)

$$S \rightarrow L=E$$
 (1)

$$L \rightarrow x$$
 (3)

$$E \rightarrow L$$
 (5)

	productions pointées
0	$Z \rightarrow \bullet S$, $S \rightarrow \bullet L = E$, $S \rightarrow \bullet E$
	$Z \rightarrow \bullet S\$$, $S \rightarrow \bullet L = E$, $S \rightarrow \bullet E$ $L \rightarrow \bullet x$, $L \rightarrow \bullet *E$, $E \rightarrow \bullet L$ $Z \rightarrow S \bullet \$$ $S \rightarrow L \bullet = E$, $E \rightarrow L \bullet \checkmark$
1	$Z \rightarrow S \bullet \$$
2	$S \rightarrow L \bullet = E, E \rightarrow L \bullet \checkmark$
	'

Le problème :

$$Z \rightarrow S$$
 (0)

$$S \rightarrow L=E$$
 (1)

$$L \rightarrow x$$
 (3)

$$E \rightarrow L$$
 (5)

	productions pointées
0	$Z \rightarrow \bullet S$, $S \rightarrow \bullet L = E$, $S \rightarrow \bullet E$
	$L \rightarrow \bullet x$, $L \rightarrow \bullet *E$, $E \rightarrow \bullet L$
1	$Z \rightarrow S \bullet \$$
2	$Z \rightarrow \bullet S\$$, $S \rightarrow \bullet L = E$, $S \rightarrow \bullet E$ $L \rightarrow \bullet x$, $L \rightarrow \bullet *E$, $E \rightarrow \bullet L$ $Z \rightarrow S \bullet \$$ $S \rightarrow L \bullet = E$, $E \rightarrow L \bullet \checkmark$

• l'état 2 ne doit accepter que si le *L* est suivi d'un \$

Regard en avant

Définition

Soit G une grammaire hors-contexte. Une production pointée élargie de G est un triplet $(A, \alpha \bullet \beta, a)$ telle que $A \to \alpha \beta$ est une production de G et $a \in \Sigma \cup \{\varepsilon\}$.

- noté $A \to \alpha \bullet \beta$ [a]
- on a achevé α dans la production $A \to \alpha \beta$;
- il nous reste à trouver β ;
- la production n'est valable que si A est suivi par a dans l'entrée
- donc $a = \varepsilon$ (pas de contraint) ou $a \in FOLLOW(A)$

Uli Fahrenberg

Clôture

Définition

Soit G une grammaire hors-contexte et $\mathcal I$ un ensemble de productions pointées élargies de G. La clôture de $\mathcal I$ est le plus petit ensemble $\operatorname{cl}(\mathcal I)$ tel que $\mathcal I\subseteq\operatorname{cl}(\mathcal I)$ et

- si $(A, \alpha \bullet B\beta, a) \in cl(\mathcal{I}), B \to \gamma$ est une production de G et $b \in FIRST(\beta)$, alors $(B, \bullet \gamma, b) \in cl(\mathcal{I})$;
- si $(A, \alpha \bullet B, a) \in cl(\mathcal{I})$ et $B \to \gamma$ est une production de G, alors $(B, \bullet \gamma, a) \in cl(\mathcal{I})$.

Apercu

Automate LR(1)

Définition

L'automate de parsage LR(1) d'une grammaire hors-contexte G est l'automate fini déterministe (Q, q_0, F, δ) avec

- $Q = \{ \operatorname{cl}(\mathcal{I}) \mid \mathcal{I} \text{ ensemble de prod. pointées élargies de } G \}$;
- $q_0 = cl(\{(Z, \bullet S\$, \varepsilon)\});$
- $F = \{ q \in Q \mid \exists \text{ production } X \to w \text{ de } G \text{ et } a \in \Sigma \cup \{\varepsilon\} \text{ tels que } (X, w \bullet, a) \in q \}$
- et $\delta: Q \times V \to Q$ donnée par $\delta(q,\beta) = \operatorname{cl}(\{(X,\alpha\beta \bullet \gamma,a) \mid (X,\alpha \bullet \beta \gamma,a) \in q\}).$

$$Z \rightarrow S$$
 (0)

$$S \rightarrow L = E$$
 (1)

$$L \rightarrow x$$
 (3)

$$E \rightarrow L$$
 (5)

état	productions pointées élargies
0	$Z \to \bullet S$ [ε]

$$Z \rightarrow S$$
 (0)

$$S \rightarrow L = E$$
 (1)

$$\mid E \mid (2)$$

$$L \rightarrow x$$
 (3)

$$E \rightarrow L$$
 (5)

	productions pointées élargies
0	$Z \rightarrow \bullet S$ [ε]
	$Z \rightarrow \bullet S$ [ε] $S \rightarrow \bullet L = E$ [\$], $S \rightarrow \bullet E$ [\$]

$$Z \rightarrow S$$
 (0)

$$S \rightarrow L = E$$
 (1)

$$L \rightarrow x$$
 (3)

$$E \rightarrow L$$
 (5)

état	
0	$Z \rightarrow \bullet S_{\bullet}^{\bullet} [\varepsilon]$
•	
	$S \rightarrow \bullet L = E \ [\begin{cases} \begin{cases} \begin{cases}$
	$Z \to \bullet S $ [ε] $S \to \bullet L = E $ [\$], $S \to \bullet E $ [\$] $L \to \bullet x $ [=], $L \to \bullet * E $ [=]

$$Z \rightarrow S$$
 (0)

$$S \rightarrow L = E$$
 (1)

$$L \rightarrow x$$
 (3)

$$|*E$$
 (4)

$$E \rightarrow L$$
 (5)

état	
0	$Z \rightarrow \bullet S$ [ε]
	$S \rightarrow \bullet L = E$ [\$], $S \rightarrow \bullet E$ [\$]
	$L \rightarrow \bullet \times [=], L \rightarrow \bullet *E [=]$
	$Z \rightarrow \bullet S$ [ε] $S \rightarrow \bullet L = E$ [\$], $S \rightarrow \bullet E$ [\$] $L \rightarrow \bullet x$ [=], $L \rightarrow \bullet *E$ [=] $E \rightarrow \bullet L$ [\$]

$$Z \rightarrow S$$
 (0)

$$S \rightarrow L = E$$
 (1)

$$L \rightarrow x$$
 (3)

$$E \rightarrow L$$
 (5)

état	productions pointées élargies
0	$Z o ullet S_{ullet}^{ullet} [arepsilon]$
	$Z \to \bullet S \ [\varepsilon]$ $S \to \bullet L = E \ [\$], S \to \bullet E \ [\$]$ $L \to \bullet x \ [=], L \to \bullet *E \ [=]$ $E \to \bullet L \ [\$]$ $L \to \bullet x \ [\$], L \to \bullet *E \ [\$]$
	$L \rightarrow \bullet \mathbf{x} [=], L \rightarrow \bullet *E [=]$
	$E \rightarrow \bullet L$ [\$]
	$L \rightarrow \bullet x$ [\$], $L \rightarrow \bullet *E$ [\$]

$$Z \to S$$
\$ (0)
 $S \to L = E$ (1)
 $\mid E$ (2)
 $L \to x$ (3)
 $\mid *E$ (4)

 $E \rightarrow L$

état	productions pointées élargies
0	$Z \rightarrow \bullet S$ [ε]
	$Z \to \bullet S\$ [\varepsilon]$ $S \to \bullet L = E [\$], S \to \bullet E [\$]$ $L \to \bullet x [=], L \to \bullet *E [=]$ $E \to \bullet L [\$]$ $L \to \bullet x [\$], L \to \bullet *E [\$]$ $Z \to S \bullet \$ [\varepsilon]$
	$L \rightarrow \bullet \times [=], L \rightarrow \bullet *E [=]$
	$\mid E \rightarrow \bullet L $ [\$]
	$L \rightarrow \bullet \times [\$], L \rightarrow \bullet *E [\$]$
1	Z o S ullet [arepsilon]
2	$S \rightarrow L \bullet = E $ [\$], $E \rightarrow L \bullet $ [\$]

• l'état 2 n'accepte que dans un contexte \$

(5)

te LR(1) 0000

état

0 productions pointées élargies

Exemple, complet

$$Z \rightarrow S$$
 (0) $L \rightarrow x$ (3)

$$S \rightarrow L=E$$
 (1) $|*E|$ (4)

$$\mid E \qquad (2) \qquad E \rightarrow L \qquad (5)$$

 $Z \rightarrow \bullet S$ [ε], $S \rightarrow \bullet L = E$ [\$] $S \rightarrow \bullet E$ [\$], $L \rightarrow \bullet \times$ [=] $L \rightarrow \bullet * E$ [=], $E \rightarrow \bullet L$ [\$] $L \rightarrow \bullet \times$ [\$], $L \rightarrow \bullet * E$ [\$]

:u	Parsage LR(1)
000000000	ooooooo●

état productions pointées élargies

$$Z \to \bullet S\$ [\varepsilon], S \to \bullet L = E [\$]$$

$$S \to \bullet E [\$], L \to \bullet x [=]$$

$$L \to \bullet *E [=], E \to \bullet L [\$]$$

$$L \to \bullet x [\$], L \to \bullet *E [\$]$$

$$Z \to S \bullet \$ [\varepsilon]$$

$$Z \rightarrow S$$
 (0) $L \rightarrow x$ (3)

$$S \rightarrow L = E \quad (1)$$
 $|*E \quad (4)$

$$F \rightarrow I$$
 (5)

$$\begin{array}{c|c} 1 & Z \to S \bullet \$ \ [\varepsilon] \\ 2 & S \to L \bullet = E \ [\$], \ E \to L \bullet \ [\$\checkmark] \end{array}$$

Aperçu 000000000000	Parsage LR(1)	état	productions pointées élargies
		0	$Z \to \bullet S$ [ε]. $S \to \bullet L = E$ [\$]

$$Z \rightarrow S$$
\$ (0) $L \rightarrow x$ (3)
 $S \rightarrow L = E$ (1) $|*E|$ (4)

$$\begin{array}{|c|c|c|}\hline \text{ \'etat} & \text{productions point\'es \'elargies}\\ \hline 0 & Z \to \bullet \$\$ \left[\varepsilon \right], \ S \to \bullet L = E \left[\$ \right]\\ & S \to \bullet E \left[\$ \right], \ L \to \bullet \times \left[= \right]\\ & L \to \bullet *E \left[= \right], \ E \to \bullet L \left[\$ \right]\\ & L \to \bullet \times \left[\$ \right], \ L \to \bullet *E \left[\$ \right]\\ & 1 & Z \to S \bullet \$ \left[\varepsilon \right]\\ & 2 & S \to L \bullet = E \left[\$ \right], \ E \to L \bullet \left[\$ \checkmark \right]\\ & 3 & S \to E \bullet \left[\$ \checkmark \right]\\ & L \to \times \bullet \left[= \checkmark \right], \ L \to \times \bullet \left[\$ \checkmark \right] \\ \hline \hline \end{array}$$

Aperçu 00000000000	Parsage LR(1)	état	productions pointées élargies
		0	$Z \rightarrow \bullet S$ [ε], $S \rightarrow \bullet L = E$ [\$]

d.4

0

d.5

$$Z \rightarrow S$$
\$ (0) $L \rightarrow x$ (3) $S \rightarrow L = E$ (1) $|*E|$ (4) $|E|$ (2) $E \rightarrow L$ (5) état $|X|$ * $|E|$ \$ $|E|$

Exemple, complet

$$Z o S$$
\$ (0) $L o x$ (3)
 $S o L = E$ (1) $|*E|$ (4)
 $|E|$ (2) $E o L$ (5)

 $|E|$ (2) $|E|$ (5)
 $|E|$ (4)
 $|E|$ (5)
 $|E|$ (6)
 $|E|$ (7)
 $|E|$ (8)
 $|E|$ (9)
 $|E|$ (9)
 $|E|$ (9)
 $|E|$ (1)

etat productions pointees elargies
$$0 \quad Z \to \bullet \$\$ \ [\varepsilon], \ S \to \bullet L = E \ [\$]$$

$$S \to \bullet E \ [\$], \ L \to \bullet \times \ [=]$$

$$L \to \bullet \times E \ [=], \ E \to \bullet L \ [\$]$$

$$1 \quad Z \to \$\$ \ [\varepsilon]$$

$$2 \quad S \to L \bullet = E \ [\$], \ E \to L \bullet \ [\$\checkmark]$$

$$3 \quad S \to E \bullet \ [\$\checkmark]$$

$$L \to \star \bullet E \ [=], \ L \to \star \bullet E \ [\$]$$

$$E \to \bullet L \ [=], \ L \to \bullet \times E \ [\$]$$

$$E \to \bullet L \ [=], \ L \to \bullet \times E \ [\$]$$

$$L \to \bullet \times E \ [=], \ E \to \bullet L \ [\$]$$

$$L \to \bullet \times E \ [=], \ E \to \bullet L \ [\$]$$

occoccoccocc	Parsage LR(1) ooooooo•

1

$$Z o S$$
\$ (0) $L o x$ (3) $S o L = E$ (1) $|*E|$ (4) $|E|$ (2) $E o L$ (5) état $|X|$ * $|E|$ 4.5 $|E|$ 6.1 d.2

d.6

 $\begin{array}{|c|c|c|}\hline \text{ \'etat} & \text{productions point\'es \'elargies}\\\hline 0 & Z \to \bullet S\$ \, [\varepsilon], \, S \to \bullet L = E \, [\$]\\ & S \to \bullet E \, [\$], \, L \to \bullet \times \, [=]\\ & L \to \bullet \times E \, [=], \, E \to \bullet L \, [\$]\\ & L \to \bullet \times \, [\$], \, L \to \bullet \times E \, [\$]\\ & 1 & Z \to S \bullet \$ \, [\varepsilon]\\ & 2 & S \to L \bullet = E \, [\$], \, E \to L \bullet \, [\$\checkmark]\\ & 3 & S \to E \bullet \, [\$\checkmark]\\ & E & 4 & L \to \times \bullet \, [=\checkmark], \, L \to \times \bullet \, E \, [\$]\\ & E \to \bullet L \, [=], \, L \to \bullet \times E \, [\$]\\ & E \to \bullet L \, [=], \, L \to \bullet \times \, [=]\\ & L \to \bullet \times E \, [=], \, E \to \bullet L \, [\$]\\ \hline \end{array}$

 $L \to \bullet x$ [\$], $L \to \bullet *E$ [\$]

 $Z \to S$ [$\varepsilon \checkmark$]

d.5

d.4

0

d.1

productions pointées élargies

Exemple, complet

$$Z o S$$
\$ (0) $L o x$ (3)

 $S o L = E$ (1) $|*E|$ (4)

 $|E|$ (2) $E o L$ (5)

état $|x|$ * = \$ | S | L | E

d.6

r.5

d.7

0
$$Z \rightarrow \bullet S$$
 [ε], $S \rightarrow \bullet L = E$ [$\$$]
 $S \rightarrow \bullet E$ [$\$$], $L \rightarrow \bullet \times$ [$=$]
 $L \rightarrow \bullet \times E$ [$=$], $E \rightarrow \bullet L$ [$\$$]
1 $Z \rightarrow S \bullet \$$ [ε]
2 $S \rightarrow L \bullet = E$ [$\$$], $E \rightarrow L \bullet$ [$\$ \checkmark$]
3 $S \rightarrow E \bullet$ [$\$ \checkmark$]
4 $L \rightarrow \times \bullet$ [$= \checkmark$], $L \rightarrow \times \bullet$ [$\$ \checkmark$]
5 $L \rightarrow \bullet \times E$ [$=$], $L \rightarrow \bullet \times E$ [$\$$]
 $E \rightarrow \bullet L$ [$=$], $L \rightarrow \bullet \times E$ [$\$$]
 $E \rightarrow \bullet X$ [$=$], $E \rightarrow \bullet L$ [$\$$]
 $E \rightarrow X$ [$=$], $E \rightarrow X$ [$=$]
 $E \rightarrow X$ [$=$], $E \rightarrow X$ [$=$]
 $E \rightarrow X$ [$=$], $E \rightarrow X$ [$=$]
 $E \rightarrow X$ [$=$], $E \rightarrow X$ [$=$]
6 $E \rightarrow X$ [$=$], $E \rightarrow X$ [$=$]
7 $E \rightarrow X$ [$=$]

état

d.5

d.4

0

Parsage	LR(1)
000000	000 (

d.1

état productions pointées élargies $Z \rightarrow \bullet S$ [ε], $S \rightarrow \bullet L = E$ [\$]

Exemple, complet

$$Z \rightarrow S$$
\$ (0) $L \rightarrow x$ (3)

 $S \rightarrow L = E$ (1) $|*E|$ (4)

 $|E|$ (2) $E \rightarrow L$ (5)

état $|x|$ * $|E|$ \$ | $|E|$ \$ | $|E|$

d.6

r.5

d.7

$$S \rightarrow \bullet E \text{ [\$]}, L \rightarrow \bullet \times \text{ [=]}$$

$$L \rightarrow \bullet * E \text{ [=]}, E \rightarrow \bullet L \text{ [\$]}$$

$$L \rightarrow \bullet \times \text{ [\$]}, L \rightarrow \bullet * E \text{ [\$]}$$

$$1 \quad Z \rightarrow S \bullet \text{ [ε]}$$

$$2 \quad S \rightarrow L \bullet = E \text{ [\$]}, E \rightarrow L \bullet \text{ [\checkmark]}$$

$$3 \quad S \rightarrow E \bullet \text{ [$\$\checkmark$]}$$

$$-4 \quad L \rightarrow \times \bullet \text{ [=\checkmark]}, L \rightarrow \times \bullet \text{ [$\$\checkmark$]}$$

$$5 \quad L \rightarrow * \bullet E \text{ [=]}, L \rightarrow \bullet \times \text{ [=]}$$

$$L \rightarrow \bullet * E \text{ [=]}, L \rightarrow \bullet L \text{ [\$]}$$

7
$$S \rightarrow L = \bullet E$$
[\$], $E \rightarrow \bullet L$ [\$]
 $L \rightarrow \bullet \times [\$], L \rightarrow \bullet *E$ [\$]

Parsage LR(1)
0000000

état productions pointées élargies $Z \rightarrow \bullet S$ [ε], $S \rightarrow \bullet L = E$ [\$]

3

$$Z \rightarrow S$$
 (0) $L \rightarrow x$ (3)

$$S \rightarrow L = E \quad (1) \qquad |*E \quad (4)$$

r.3

$$(2) E \rightarrow L (5)$$

r.2

r.3

$$L \to \bullet *E [=], E \to \bullet L [\$]$$

$$L \to \bullet \times [\$], L \to \bullet *E [\$]$$

$$Z \to S \bullet \$ [\varepsilon]$$

$$S \to L \bullet = E [\$], E \to L \bullet [\$\checkmark]$$

 $S \rightarrow \bullet E$ [\$], $L \rightarrow \bullet x$ [=]

$$\begin{bmatrix} 3 & S \to E \bullet [\$\checkmark] \\ L \to x \bullet [=\checkmark], L \to x \bullet [\$\checkmark] \end{bmatrix}$$

5
$$L \to * \bullet E [=], L \to * \bullet E [\$]$$

 $E \to \bullet L [=], L \to \bullet x [=]$

$$\begin{array}{c|c} L \rightarrow \bullet *E & [=], E \rightarrow \bullet L & [\$] \\ L \rightarrow \bullet x & [\$], L \rightarrow \bullet *E & [\$] \\ C \rightarrow S & [\varepsilon \checkmark] \end{array}$$

7
$$S \rightarrow L = \bullet E$$
 [\$], $E \rightarrow \bullet L$ [\$] $L \rightarrow \bullet \times [\$]$, $L \rightarrow \bullet \times E$ [\$]

d.9

0

Exemple, complet

$$Z \rightarrow S$$
\$ (0)

d.4

d.5

$$L \rightarrow x$$
 (3)

$$S \rightarrow L = E$$
 (1)

$$L \neq K$$
 (9)

$$S \to \bullet E \ [\bullet], L \to \bullet \times [=]$$

$$L \to \bullet *E \ [=], E \to \bullet L \ [\$]$$

$$L \to \bullet \times [\$], L \to \bullet *E \ [\$]$$

$$Z \to S \bullet \$ \ [\varepsilon]$$

$$S \to L \bullet = E \ [\$], E \to L \bullet \ [\$\checkmark]$$

$$S \to E \bullet \ [\$\checkmark]$$

$$L \to \times \bullet \ [=\checkmark], L \to \times \bullet \ [\$\checkmark]$$

$$L \to \times \bullet [=\checkmark], L \to \times \bullet [\$\checkmark]$$

$$L \to * \bullet E [=], L \to * \bullet E [\$]$$

$$E \rightarrow \bullet L [=], L \rightarrow \bullet x [=]$$

 $L \rightarrow \bullet *E [=], E \rightarrow \bullet L [\$]$
 $L \rightarrow \bullet x [\$], L \rightarrow \bullet *E [\$]$

$$S \rightarrow L = \bullet E$$
 [\$], $E \rightarrow \bullet L$ [\$]
 $L \rightarrow \bullet \times$ [\$], $L \rightarrow \bullet * E$ [\$]

 $Z \to S^{\bullet} [\varepsilon \checkmark]$

$$L \to *E \bullet [= \checkmark], L \to *E \bullet [\$\checkmark]$$

$$E \to L \bullet [= \checkmark], E \to L \bullet [\$\checkmark]$$

d.11

d.13

r.5

r.3

r.4

11

12

13

14

d.12

d.14

12

13

 $L \rightarrow x \bullet [\$ \checkmark]$

 $L \rightarrow * \bullet E$ [\$], $E \rightarrow \bullet L$ [\$]

 $L \to \bullet \times [\$], L \to \bullet *E [\$]$

Parsage LALR(1) et GLR

Exemple, bis

	état	productions pointées élargies
	0	$Z \rightarrow \bullet S$ [ε], $S \rightarrow \bullet L = E$ [$\$$], $S \rightarrow \bullet E$ [$\$$], $L \rightarrow \bullet x$ [$=$]
		$L \rightarrow \bullet *E [=], E \rightarrow \bullet L [\$], L \rightarrow \bullet \times [\$], L \rightarrow \bullet *E [\$]$
	1	$Z o S ullet \{ [arepsilon] \}$
	2	$S \rightarrow L \bullet = E $ [\$], $E \rightarrow L \bullet $ [\$]
7 Cf (0)	3	$S \to E \bullet [\$ \checkmark]$
$Z \rightarrow S$ (0)	4	$L \to x \bullet [=\checkmark], L \to x \bullet [\$\checkmark]$
$S \rightarrow L=E$ (1)	5	$L \to * \bullet E [=], L \to * \bullet E [\$], E \to \bullet L [=], L \to \bullet x [=]$
E (2)		$L \rightarrow \bullet *E [=], E \rightarrow \bullet L [\$], L \rightarrow \bullet x [\$], L \rightarrow \bullet *E [\$]$
, ,	6	$Z \to S$ • $[\varepsilon \checkmark]$
$L \to x$ (3)	7	$S \rightarrow L = \bullet E$ [\$], $E \rightarrow \bullet L$ [\$], $L \rightarrow \bullet x$ [\$], $L \rightarrow \bullet *E$ [\$]
* <i>E</i> (4)	8	$L \to *E \bullet [= \checkmark], L \to *E \bullet [\$ \checkmark]$
, ,	9	$E o L ullet [= \checkmark], E o L ullet [\$ \checkmark]$
$E \to L$ (5)	10	$S \rightarrow L = E \bullet [\$ \checkmark]$
	11	$E o L ullet [\$ \checkmark]$
	12	$L \to x \bullet [\$\checkmark]$
	13	$L \to * \bullet E$ [\$], $E \to \bullet L$ [\$], $L \to \bullet x$ [\$], $L \to \bullet *E$ [\$]
	14	$L \to *E \bullet [\$\checkmark]$

Uli Fahrenberg 55/64

	état	productions pointées élargies
	0	$Z \rightarrow \bullet S$ [ε], $S \rightarrow \bullet L = E$ [\$], $S \rightarrow \bullet E$ [\$], $L \rightarrow \bullet x$ [=]
		$L \rightarrow \bullet *E [=], E \rightarrow \bullet L [\$], L \rightarrow \bullet x [\$], L \rightarrow \bullet *E [\$]$
	1	$Z o S ullet \{ [arepsilon] \}$
	2	$S \rightarrow L \bullet = E $ [\$], $E \rightarrow L \bullet $ [\$]
7 (0)	3	$S \to E \bullet [\$ \checkmark]$
$Z \rightarrow S$ (0)	4	$L \to x \bullet [=\checkmark], L \to x \bullet [\$\checkmark]$
$S \rightarrow L=E$ (1)	5	$L \to * \bullet E [=], L \to * \bullet E [\$], E \to \bullet L [=], L \to \bullet x [=]$
E (2)		$L \rightarrow \bullet *E [=], E \rightarrow \bullet L [\$], L \rightarrow \bullet x [\$], L \rightarrow \bullet *E [\$]$
, ,	6	$Z o S$ \bullet $[\varepsilon \checkmark]$
$L \to x$ (3)	7	$S \rightarrow L = \bullet E$ [\$], $E \rightarrow \bullet L$ [\$], $L \rightarrow \bullet x$ [\$], $L \rightarrow \bullet *E$ [\$]
* <i>E</i> (4)	8	$L \to *E \bullet [= \checkmark], L \to *E \bullet [\$ \checkmark]$
, ,	9	$E o L ullet [= \hspace{-1mm}\checkmark], \ E o L ullet [\$ \hspace{-1mm}\checkmark]$
$E \to L$ (5)	10	$S \rightarrow L = E \bullet [\$ \checkmark]$
	11	$E o L ullet [\$ \checkmark]$
	12	$L \to x \bullet [\$ \checkmark]$
	13	$L \rightarrow * \bullet E$ [\$], $E \rightarrow \bullet L$ [\$], $L \rightarrow \bullet \times$ [\$], $L \rightarrow \bullet * E$ [\$]
	14	$L \rightarrow *E \bullet [\$\checkmark]$

Uli Fahrenberg Théorie des langages : THL 56/64

Apercu

Parsage LALR(1)

Définition

Deux productions pointées élargies $A \to \alpha \bullet \beta$ [a] et $A \to \alpha' \bullet \beta'$ [b] sont équivalent LALR(1) si $\alpha = \alpha'$ et $\beta = \beta'$.

• les items sont identiques, mais les contextes peuvent être différents

Définition

L'automate LALR(1) d'une grammaire hors-contexte G est le quotient de l'automate LR(1) de G sous équivalence LALR(1).

Uli Fahrenberg

		état	X	*	=	\$	S	L	Ε
		0	d.4	d.5			d.1	d.2	d.3
Z o S\$	(0)	1				d.6			
$S \rightarrow L=E$	(1)	2			d.7	r.5			
	` '	3				r.2			
<i>E</i>	(2)	_* 4			r.3	r.3			
$L \rightarrow x$	(3)	/ _* 5	d.4	d.5				d.9	d.8
* <i>E</i>	(4)	// 6			— а	ccepte	er —		
E o L	(5)	/ 7	d.12	d.13				d.11	d.10
	()	, 8			r.4				
		9			r.5				
		\\ (10				r.1			
		\\`11				r.5			
		12				r.3			
		13	d.12	d.13				d.11	d.14
		14				r.4			

	état	X	*	=	\$	<i>S</i>	L	Ε
	0	d.4	d.5			d.1	d.2	d.3
$Z \rightarrow S$ \$ (0)	1				d.6			
$S \rightarrow L=E$ (1)	2			d.7	r.5			
` ,	3				r.2			
E (2)	4			r.3	r.3			
$L \to \mathbf{x}$ (3)	5	d.4	d.5				d.9	d.8
* <i>E</i> (4)	6			— а	ccepte	er —		
$E \rightarrow L$ (5)	7	d.12	d.13				d.11	d.10
()	8			r.4	r.4			
	9			r.5	r.5			

10

r.1

Résolution de conflits

Exemple:

$$Z \rightarrow E$$
\$ (0)

$$E \rightarrow E + E$$
 (1)
| $E * E$ (2)

état	+	*	n	\$	Ε
0			d.2		g.1
1	d.4	d.5		d.3	
2	r.3	r.3		r.3	
3 4		_	- acce	pter -	_
4			d.2		g.6
5			d.2		g.6 g.7
6	d.4	d.5			
	r.1	r.1		r.1	
7	d.4	d.5			
	r.2	r.2		r.2	

- une grammaire ambiguë
- donc pas LR(k) pour n'importe quel k

Résolution de conflits

Exemple:

$$Z \to E$$
\$ (0)
 $E \to E + E$ (1)
 $|E*E|$ (2)
 $|n|$ (3)

état	+	*	n	\$	Е
0			d.2		g.1
1	d.4	d.5		d.3	
2	r.3	r.3		r.3	
3		_	- acce	pter -	_
4			d.2		g.6
5			d.2		g.6 g.7
6	d.4	d.5			
	r.1	r.1		r.1	
7	d.4	d.5			
	r.2	r.2		r.2	

- une grammaire ambiguë
- donc pas LR(k) pour n'importe quel k
- associativité : d.4 \Rightarrow n + (n + n); $r.1 \Rightarrow (n + n) + n$
- priorité : d.5 \Rightarrow n * (n + n); r.1 \Rightarrow (n * n) + n

Résolution de conflits

Exemple:

$$Z \rightarrow E$$
\$ (0)
 $E \rightarrow E + E$ (1)
 $\mid E * E$ (2)
 $\mid n$ (3)

état	+	*	n	\$	Е
0			d.2		g.1
1	d.4	d.5		d.3	
2	r.3	r.3		r.3	
3		_	- acce	pter -	<u>. </u>
4			d.2		g.6
5			d.2		g.6 g.7
6	d.4	d.5			
	r.1	r.1		r.1	
7	d.4	d.5			
	r.2	r.2		r.2	

- une grammaire ambiguë
- donc pas LR(k) pour n'importe quel k
- associativité : d.4 \Rightarrow n + (n + n); $r.1 \Rightarrow (n + n) + n$
- priorité : d.5 \Rightarrow n*(n+n); r.1 \Rightarrow (n*n)+n
- solution : règles de priorité
- ici : r.1 > d.4, r.2 > d.5, r.2 > d.4, $d.5 > r.1 \Leftarrow !$

Parsage LR généralisé

- embrace non-determinism!
- parsage GLR : en cas de conflit, suivre tous les chemins en parallel
- « parsage parallel », « parsage Tomita »
- implémenter l'automate (non-déterministe) de parsage sans déterminisation
- états : productions pointées, pas de clôture
- algorithme en temps exponentiel, pas linéaire
- optimisation : partager préfixes et suffixes de piles

