第9回レポート問題

習近平

2022年5月18日

目 次

目次		1
9.1	問題 9.1	2
9.2	問題 9.2	2
	9.2.1 (1)	2
	9.2.2 (2)	2
	9.2.3 (3)	3
	9.2.4 (4)	3
9.3	# 雑談	4

9.1 問題 9.1

- 1. 一様連続である.
- 2. 一様連続でない.
- 3. 一様連続である.
- 4. 一様連続でない.
- 5. 一様連続である.
- 6. 一様連続でない.

9.2 問題 9.2

9.2.1 (1)

 $\exists \varepsilon \in \mathbb{R}_{>0}; \forall \delta \in \mathbb{R}_{>0}; \exists x, y \in [a, b]; (|x - y| < \delta) \land (|f(x) - f(y)| > \varepsilon)$

9.2.2(2)

(1) を満たす $\varepsilon_0\in\mathbb{R}_{>0}$ を一つ取って固定する. 数列 $(\delta_n)_{n\in\mathbb{N}}$ を次のように定める:

$$\delta_n = \frac{1}{n+1}$$

この時,(1) より, 各 $n \in \mathbb{N}$ に対し,

 $\exists x, y \in [a, b]; (|x - y| < \delta_n) \land (|f(x) - f(y)| > \varepsilon_0)$

このような $x, y \in [a, b]$ を任意に取る.

$$\begin{cases} x_n = \min\{x, y\} \\ y_n = \max\{x, y\} \end{cases}$$

$$(9.1)$$

実は選択公理を暗黙に使っていることがわかる,こんなことどうでもいいが, 念の為宣言しておく.

このように構成した数列 $(x_n)_{n\in\mathbb{N}}, (y_n)_{n\in\mathbb{N}}$ が求められるものであることが自明である. ここで確認の作業を採点者に任せる.

9.2.3(3)

前問で構成した数列 $(x_n)_{n\in\mathbb{N}}$ が空でない有界閉区間 [a,b] 上に定義されて いる数列であるため:

Bolzano-Weierstrass の定理より数列 $(x_n)_{n\in\mathbb{N}}$ のある部分列 $(x_{n(k)})_{k\in\mathbb{N}}$ が存 在し,

$$\exists c \in [a, b]; \lim_{k \to \infty} x_{n(k)} = c$$

次に数列 $(y_n)_{n\in\mathbb{N}}$ の部分列 $(y_{n(k)})_{k\in\mathbb{N}}$ に対し、考察を行う:

(2) の条件より数列 $(|x_n-y_n|)_{n\in\mathbb{N}}$ が収束列で $\lim_{n\to\infty}|x_n-y_n|=0$ となる. 第一回のレポートの Lemma5 より、収束数列の部分列が同じ極限に収束する ことより,

数列 $(|x_{n(k)} - y_{n(k)}|)_{k \in \mathbb{N}}$ に対し,

 $|\lim |x_{n(k)} - y_{n(k)}| = 0$ が成り立つ.

数列 $(x_n)_{n\in\mathbb{N}}, (y_n)_{n\in\mathbb{N}}$ における順序関係を考慮すれば,

 $\lim_{k \to \infty} -x_{n(k)} + y_{n(k)} = 0$ が成り立つ.

収束数列における四則演算の性質より,

 $\lim_{k o\infty}y_{n(k)}=c$ であることが直ちにわかる.

9.2.4 (4)

f が閉区間 [a,b] 上の連続函数であるため、第八回のレポート問題 8.1 より、

 $\lim_{k \to \infty} x_{n(k)} = \lim_{k \to \infty} y_{n(k)} = c \, \mathfrak{O}$ もとで、 $\lim_{k \to \infty} f(x_{n(k)}) = \lim_{k \to \infty} f(y_{n(k)}) = f(c) \,$ となる.

しかし、(2) の構成より、 $\lim_{k\to\infty}f(x_{n(k)})\neq\lim_{k\to\infty}f(y_{n(k)})$ が成り立つ.

したがって、矛盾が生じ、示すべき問題を証明できた.

9.3 # 雑談

今週の雑談は特にないんだけど、三角函数がまだ定義していないのに三角 函数を出した今回は出題ミスだと言えるだろうw