TWISTED RESTRICTED CONFORMAL BLOCKS OF VERTEX OPERATOR ALGEBRAS

MATH-PHYSICS JOINT SEMINAR

Xu Gao Oct. 31st, 2024

Tongji University

- 1 Conformal blocks
- 2 Twisted conformal blocks

- 3 Twisted fusion rules
- 4 Restricted conformal blocks

5 Twisted Zhu's algebra and coherence

CONFORMAL BLOCKS

Idea: One have various sectors attached to a pointed curve (which gives rise to a structure named *conformal blocks*), and study how they interact as the pointed curve varies (via the *correlators*).

Idea: One have various sectors attached to a pointed curve (which gives rise to a structure named *conformal blocks*), and study how they interact as the pointed curve varies (via the *correlators*).

Representation theoretical interpretation:

Vertex operator algebra → Conformal field theory

Idea: One have various sectors attached to a pointed curve (which gives rise to a structure named *conformal blocks*), and study how they interact as the pointed curve varies (via the *correlators*).

Representation theoretical interpretation:

Vertex operator algebra → Conformal field theory

modules of the vertex operator algebra → sectors;

Idea: One have various sectors attached to a pointed curve (which gives rise to a structure named *conformal blocks*), and study how they interact as the pointed curve varies (via the *correlators*).

Representation theoretical interpretation:

Vertex operator algebra → Conformal field theory

- modules of the vertex operator algebra → sectors;
- vertex/intertwining operators → correlators.

Idea: One have various *sectors* attached to a *pointed curve* (which gives rise to a structure named *conformal blocks*), and study how they interact as the pointed curve varies (via the *correlators*).

Representation theoretical interpretation:

Vertex operator algebra → Conformal field theory

- modules of the vertex operator algebra → sectors;
- vertex/intertwining operators → correlators.

Borcherds 1986; Frenkel, Lepowsky, and Meurman 1988; Beilinson, Feigin, and Mazur 1991; Dong and Lepowsky 1993; Frenkel, Huang, and Lepowsky 1993; Lepowsky and Li 2004; Zhu 1994, 1996; Frenkel and Ben-Zvi 2004; Nagatomo and Tsuchiya 2005

VERTEX OPERATOR ALGEBRAS AND THEIR MODULES

DEFINITION: A vertex operator algebra (VOA) is a graded vector space $V = \bigoplus_{k=0}^{\infty} V_k$ with a vacuum vector $\mathbf{1} \in V_0$, a Virasoro element $\mathbf{w} \in V_2$, and a vertex operator

$$Y(-,z) \colon V \longrightarrow \operatorname{End}(V)[\![z^{\pm 1}]\!],$$

satisfying certain axioms.

VERTEX OPERATOR ALGEBRAS AND THEIR MODULES

DEFINITION: A vertex operator algebra (VOA) is a graded vector space $V = \bigoplus_{k=0}^{\infty} V_k$ with a vacuum vector $\mathbf{1} \in V_0$, a Virasoro element $\omega \in V_2$, and a vertex operator

$$Y(-,z) \colon V \longrightarrow \operatorname{End}(V)[\![z^{\pm 1}]\!],$$

satisfying certain axioms.

DEFINITION: An (admissible) module of a vertex operator algebra V is a graded vector space $M = \bigoplus_{k=0}^{\infty} M(k)$ with a vertex operator

$$Y_M(-,z)\colon V\longrightarrow \operatorname{End}(M)[\![z^{\pm 1}]\!]$$

satisfying certain axioms.

DEFINITION: An (admissible) module of a vertex operator algebra V is a graded vector space $M = \bigoplus_{k=0}^{\infty} M(k)$ with a vertex operator

$$Y_M(-,z)\colon V\longrightarrow \operatorname{End}(M)[\![z^{\pm 1}]\!]$$

satisfying certain axioms.

DEFINITION: An intertwining operator among V-modules M^1 , M^2 , and M^3 is a linear map

$$I(-,z) \colon M^1 \longrightarrow \operatorname{Hom}(M^2,M^3)[\![z^{\pm 1}]\!]z^{-h}$$

that is compatible with the V-module structures.

CONFORMAL BLOCKS

Algebro-geometric interpretation:

Given an n-tuple of V-modules, one constructs (and studies) a vector bundle $\mathbb V$ with a projectively flat connection ∇ on the moduli space $\overline{\mathcal M}_{g,n}$ of stable pointed curves.

Algebro-geometric interpretation:

Given an n-tuple of V-modules, one constructs (and studies) a vector bundle \mathbb{V} with a projectively flat connection ∇ on the moduli space $\overline{\mathcal{M}}_{g,n}$ of stable pointed curves.

DEFINITION: Given a stable n-pointed curve $(C, \mathsf{p}_{\bullet})$ and an n-tuple of V-modules M^1, \cdots, M^n , a *conformal block* associated to these data is a linear functional

$$M^1 \otimes \cdots \otimes M^n \longrightarrow \mathbb{C}$$

invariant under the action of the *chiral Lie algebra* $\mathcal{L}_{(C,p_{ullet})}(V)$.

DEFINITION: Given a stable n-pointed curve (C, p_{\bullet}) and an n-tuple of V-modules M^1, \cdots, M^n , a *conformal block* associated to these data is a linear functional

$$M^1 \otimes \cdots \otimes M^n \longrightarrow \mathbb{C}$$

invariant under the action of the *chiral Lie algebra* $\mathcal{L}_{(C,\mathbf{p}_{\bullet})}(V)$.

THEOREM (Frenkel & Ben-Zvi 04', Nagatomo & Tsuchiya 05'): The vector space of conformal blocks associated to

$$(\mathbb{P}^1, \infty, 1, 0, (M^3)', M^1, M^2)$$

is isomorphic to the space of intertwining operators among ${\cal M}^1$, ${\cal M}^2$, and ${\cal M}^3$.

THEOREM (Damiolini, Gibney, and Tarasca 21'-24'): Given:

- V a rational, C_2 -cofinite VOA with $V_0=\mathbb{C}\mathbf{1}$, and
- M^{\bullet} an n-tuple of f.g. admissible V-modules,
- \leadsto a vector bundle $[M^{\bullet}]$ of finite rank with a projectively flat connection ∇ on $\overline{\mathcal{M}}_{g,n}$, whose dual bundle classifies the conformal blocks.

CONFORMAL BLOCKS

THEOREM (Damiolini, Gibney, and Tarasca 21'–24'): Those vector bundles ($[M^{\bullet}], \nabla$) are compatible with various moduli spaces in the sense that:

1. Propagation of vacua $[M^{\bullet}]_{(C,p_{\bullet})} \cong [M^{\bullet} \otimes V]_{(C,p_{\bullet} \sqcup q)};$

- 1. Propagation of vacua $[M^{\bullet}]_{(C,p_{\bullet})} \cong [M^{\bullet} \otimes V]_{(C,p_{\bullet} \sqcup q)};$
- 2. Decomposition $[M^{\bullet} \otimes N^{\bullet}]_{(C \sqcup C', \mathsf{p}_{\bullet} \sqcup \mathsf{p}'_{\bullet})} \cong [M^{\bullet}]_{(C, \mathsf{p}_{\bullet})} \otimes [N^{\bullet}]_{(C', \mathsf{p}'_{\bullet})};$

- 1. Propagation of vacua $[M^{\bullet}]_{(C,p_{\bullet})} \cong [M^{\bullet} \otimes V]_{(C,p_{\bullet} \sqcup q)};$
- $2. \ \ \textit{Decomposition} \ [M^{\bullet} \otimes N^{\bullet}]_{(C \sqcup C', \mathsf{p}_{\bullet} \sqcup \mathsf{p}'_{\bullet})} \cong [M^{\bullet}]_{(C, \mathsf{p}_{\bullet})} \otimes [N^{\bullet}]_{(C', \mathsf{p}'_{\bullet})};$
- 3. Factorization $[M^{ullet}]_{(C,\mathbf{p}_{ullet})}\cong \bigoplus_W [M^{ullet}\otimes W\otimes W']_{(\widetilde{C},\mathbf{p}_{ullet}\sqcup\mathbf{q}_{\pm})}$

CONFORMAL BLOCKS

- 1. Propagation of vacua $[M^{\bullet}]_{(C,p_{\bullet})} \cong [M^{\bullet} \otimes V]_{(C,p_{\bullet} \sqcup q)};$
- $2. \ \ \textit{Decomposition} \ [M^{\bullet} \otimes N^{\bullet}]_{(C \sqcup C', \mathsf{p}_{\bullet} \sqcup \mathsf{p}'_{\bullet})} \cong [M^{\bullet}]_{(C, \mathsf{p}_{\bullet})} \otimes [N^{\bullet}]_{(C', \mathsf{p}'_{\bullet})};$
- 3. Factorization $[M^{\bullet}]_{(C,p_{\bullet})} \cong \bigoplus_{W} [M^{\bullet} \otimes W \otimes W']_{(\widetilde{C},p_{\bullet} \sqcup q_{\pm})}$
- 4. Formal smoothing $[M^{\bullet}[q]]_{(C,p_{\bullet})} \cong [M^{\bullet}]_{(C_0,p_{\bullet}(0))}[q]$

TWISTED CONFORMAL BLOCKS

Idea: One can also have twisted sectors attached to a pointed orbifold (which gives rise to twisted conformal blocks), and study how they interact as the orbifold varies (via the twisted correlators).

Idea: One can also have twisted sectors attached to a pointed orbifold (which gives rise to twisted conformal blocks), and study how they interact as the orbifold varies (via the twisted correlators).

Representation theoretical interpretation:

Idea: One can also have twisted sectors attached to a pointed orbifold (which gives rise to twisted conformal blocks), and study how they interact as the orbifold varies (via the twisted correlators).

Representation theoretical interpretation:

twisted modules → twisted sectors;

Idea: One can also have **twisted** sectors attached to a pointed **orbifold** (which gives rise to **twisted** conformal blocks), and study how they interact as the orbifold varies (via the **twisted** correlators).

Representation theoretical interpretation:

- twisted vertex/intertwining operators → twisted correlators.

Idea: One can also have twisted sectors attached to a pointed orbifold (which gives rise to twisted conformal blocks), and study how they interact as the orbifold varies (via the twisted correlators).

Representation theoretical interpretation:

- twisted vertex/intertwining operators → twisted correlators.

Frenkel, Lepowsky, and Meurman 1988; Dong 1994; Xu 1995; Dong, Li, and Mason 1998; Barron, Dong, and Mason 2002; Dong and Xu 2006; Huang 2010; Dong, Ren, and Xu 2017; Huang 2018; Huang and Yang 2019...

TWISTED MODULES AND TWISTED INTERTWINING OPERATORS

DEFINITION: Let g be an automorphism of V having order T. An (admissible) g-twisted module of a vertex operator algebra V is a graded vector space $M = \bigoplus_{k \in \frac{1}{T}\mathbb{Z}} M(k)$ with a vertex operator

$$Y_M(-,z)\colon V\longrightarrow \operatorname{End}(M)[\![z^{\pm 1/T}]\!]$$

satisfying certain axioms.

DEFINITION: Let g be an automorphism of V having order T. An (admissible) g-twisted module of a vertex operator algebra V is a graded vector space $M = \bigoplus_{k \in \frac{1}{T}\mathbb{Z}} M(k)$ with a vertex operator

$$Y_M(-,z)\colon V\longrightarrow \operatorname{End}(M)[\![z^{\pm 1/T}]\!]$$

satisfying certain axioms.

DEFINITION: An twisted intertwining operator among twisted V-modules M^1 , M^2 , and M^3 is a linear map

$$I(-,z)\colon M^1 \longrightarrow \operatorname{Hom}(M^2,M^3)\{z\}$$

that is compatible with the twisted V-module structures.

TWISTED CONFORMAL BLOCKS

Algebro-geometric interpretation:

Given an n-tuple of twisted V-modules, one constructs (and studies) a vector bundle $\mathbb V$ with a projectively flat connection ∇ on the moduli space $\overline{\mathcal M}_{q,n}^G$ of stable G-covers.

Algebro-geometric interpretation:

Given an n-tuple of twisted V-modules, one constructs (and studies) a vector bundle $\mathbb V$ with a projectively flat connection ∇ on the moduli space $\overline{\mathcal M}_{a,n}^G$ of stable G-covers.

DEFINITION: Given a stable G-cover $(\mathfrak{X}, \mathsf{p}_{\bullet})$ and an n-tuple of twisted V-modules M^1, \cdots, M^n , a twisted conformal block associated to these data is a linear functional

$$M^1 \otimes \cdots \otimes M^n \longrightarrow \mathbb{C}$$

invariant under the action of the *chiral Lie algebra* $\mathcal{L}_{(\mathfrak{X},p_{\bullet})}(V)$.

DEFINITION: Given a stable G-cover $(\mathfrak{X}, \mathsf{p}_{\bullet})$ and an n-tuple of twisted V-modules M^1, \cdots, M^n , a twisted conformal block associated to these data is a linear functional

$$M^1 \otimes \cdots \otimes M^n \longrightarrow \mathbb{C}$$

invariant under the action of the *chiral Lie algebra* $\mathcal{L}_{(\mathfrak{X},\mathbf{p}_{ullet})}(V)$.

Remark. $\mathfrak X$ is a stack, points of it are equipped with cyclic stabilizers. For each point $\mathbf p$, the sector is given by a g-twisted V-module, where g generates its stabilizer.

STABLE G-covers

DEFINITION: A stable G-cover $(\mathfrak{X}, p_{\bullet})$ is

- \cdot a stacky curve \mathfrak{X} ,
- a principal G-bundle $\pi\colon P\to\mathfrak{X}$, and
- $oldsymbol{\cdot}$ an n-tuple of points $\mathbf{p}_{ullet}=(\mathbf{p}_1,\cdots,\mathbf{p}_n)$ on \mathfrak{X} ,

satisfying certain stability conditions.

Stable G-covers

DEFINITION: A stable G-cover $(\mathfrak{X}, p_{\bullet})$ is

- · a stacky curve \mathfrak{X} ,
- a principal G-bundle $\pi\colon P\to\mathfrak{X}$, and
- \cdot an n-tuple of points $\mathsf{p}_{ullet} = (\mathsf{p}_1, \cdots, \mathsf{p}_n)$ on \mathfrak{X} ,

satisfying certain stability conditions.

THE CHIRAL LIE ALGEBRA

Q: How to obtain the *chiral Lie algebra* $\mathcal{L}_{(\mathfrak{X},\mathbf{p_o})}(V)$? Recall that (Damiolini, Gibney, and Tarasca 21'–24'): a VOA \red{V}

THE CHIRAL LIE ALGEBRA

Q: How to obtain the *chiral Lie algebra* $\mathcal{L}_{(\mathfrak{X},\mathsf{p}_{\bullet})}(V)$?

Recall that (Damiolini, Gibney, and Tarasca 21'–24'):

a VOA $V\leadsto$ an ind-bundle ${\cal V}$ with flat connection on a nodal curve C

THE CHIRAL LIE ALGEBRA

Q: How to obtain the *chiral Lie algebra* $\mathcal{L}_{(\mathfrak{X},p_{\bullet})}(V)$?

• a VOA $V \leadsto (\mathcal{V}, \nabla)$ on P.

Q: How to obtain the *chiral Lie algebra* $\mathcal{L}_{(\mathfrak{X},p_{\bullet})}(V)$?

- a VOA $V \leadsto (\mathcal{V}, \nabla)$ on P.
- a morphism $G \to \operatorname{Aut}(V) \implies (\mathcal{V}, \nabla)$ is G-equivariant.

Q: How to obtain the *chiral Lie algebra* $\mathcal{L}_{(\mathfrak{X},p_{\bullet})}(V)$?

- a VOA $V \leadsto (\mathcal{V}, \nabla)$ on P.
- a morphism $G \to \operatorname{Aut}(V) \implies (\mathcal{V}, \nabla)$ is G-equivariant.
- $\cdot \ (\mathcal{V}, \nabla)$ descends to (\mathcal{V}^G, ∇) on $\mathfrak{X}.$

Q: How to obtain the *chiral Lie algebra* $\mathcal{L}_{(\mathfrak{X},p_{\bullet})}(V)$?

- a VOA $V \leadsto (\mathcal{V}, \nabla)$ on P.
- a morphism $G \to \operatorname{Aut}(V) \implies (\mathcal{V}, \nabla)$ is G-equivariant.
- (\mathcal{V}, ∇) descends to (\mathcal{V}^G, ∇) on \mathfrak{X} .
- $\cdot \ \mathcal{L}_{(\mathfrak{X},\mathsf{p}_{\bullet})}(V) := \mathsf{h}_{\mathrm{dR}}\big(\mathcal{V}^G,\nabla\big)(\mathfrak{X}\setminus\mathsf{p}_{\bullet}) = \mathsf{H}^0\big(\mathfrak{X}\setminus\mathsf{p}_{\bullet},\mathcal{V}^G\otimes\omega_{\mathfrak{X}}/\mathrm{Im}\,\nabla\big).$

Q: How to obtain the *chiral Lie algebra* $\mathcal{L}_{(\mathfrak{X},p_{\bullet})}(V)$?

- a VOA $V \leadsto (\mathcal{V}, \nabla)$ on P.
- a morphism $G \to \operatorname{Aut}(V) \implies (\mathcal{V}, \nabla)$ is G-equivariant.
- \cdot (\mathcal{V}, ∇) descends to (\mathcal{V}^G, ∇) on \mathfrak{X} .
- $\cdot \ \mathcal{L}_{(\mathfrak{X},\mathsf{p}_{\bullet})}(V) := \mathsf{h}_{\mathrm{dR}}\big(\mathcal{V}^G,\nabla\big)(\mathfrak{X}\setminus\mathsf{p}_{\bullet}) = \mathsf{H}^0\big(\mathfrak{X}\setminus\mathsf{p}_{\bullet},\mathcal{V}^G\otimes\omega_{\mathfrak{X}}/\mathrm{Im}\,\nabla\big).$

Q: How does $\mathcal{L}_{(\mathfrak{X},p_{\bullet})}(V)$ act on (twisted) V-modules?

Q: How to obtain the *chiral Lie algebra* $\mathcal{L}_{(\mathfrak{X},p_{\bullet})}(V)$?

- a VOA $V \leadsto (\mathcal{V}, \nabla)$ on P.
- a morphism $G \to \operatorname{Aut}(V) \implies (\mathcal{V}, \nabla)$ is G-equivariant.
- \cdot (\mathcal{V}, ∇) descends to (\mathcal{V}^G, ∇) on \mathfrak{X} .

$$\cdot \ \mathcal{L}_{(\mathfrak{X},\mathsf{p}_{\bullet})}(V) := \mathsf{h}_{\mathrm{dR}}\big(\mathcal{V}^G,\nabla\big)(\mathfrak{X}\setminus\mathsf{p}_{\bullet}) = \mathsf{H}^0\big(\mathfrak{X}\setminus\mathsf{p}_{\bullet},\mathcal{V}^G\otimes\omega_{\mathfrak{X}}/\mathrm{Im}\,\nabla\big).$$

Q: How does $\mathcal{L}_{(\mathfrak{X},p_{\bullet})}(V)$ act on (twisted) V-modules?

$$\mathcal{L}_{(\mathfrak{X},\mathsf{p}_{\bullet})}(V) \overset{\mathrm{res}}{\longrightarrow} \mathcal{L}_{\mathsf{p}}(V) (:= \mathsf{h}_{\mathrm{dR}}\big(\mathcal{V}^G,\nabla\big)(D_{\mathsf{p}}^{\times})).$$

Q: How to obtain the *chiral Lie algebra* $\mathcal{L}_{(\mathfrak{X},p_{\bullet})}(V)$?

- a VOA $V \leadsto (\mathcal{V}, \nabla)$ on P.
- a morphism $G \to \operatorname{Aut}(V) \implies (\mathcal{V}, \nabla)$ is G-equivariant.
- (\mathcal{V}, ∇) descends to (\mathcal{V}^G, ∇) on \mathfrak{X} .
- $\cdot \ \mathcal{L}_{(\mathfrak{X},\mathsf{p}_{\bullet})}(V) := \mathsf{h}_{\mathrm{dR}}\big(\mathcal{V}^G,\nabla\big)(\mathfrak{X}\setminus\mathsf{p}_{\bullet}) = \mathsf{H}^0\big(\mathfrak{X}\setminus\mathsf{p}_{\bullet},\mathcal{V}^G\otimes\omega_{\mathfrak{X}}/\mathrm{Im}\,\nabla\big).$

Q: How does $\mathcal{L}_{(\mathfrak{X},p_{\bullet})}(V)$ act on (twisted) V-modules?

$$\mathcal{L}_{(\mathfrak{X},\mathsf{p}_{\bullet})}(V) \xrightarrow{\mathrm{res}} \mathcal{L}_{\mathsf{p}}(V) (:= \mathsf{h}_{\mathrm{dR}} \big(\mathcal{V}^G,\nabla\big)(D_{\mathsf{p}}^{\times})).$$

The latter is \cong to the Lie algebra $L_g(V)$ of g-twisted vertex modes, where g is a generator of the stabilizer of p.

TWISTED FUSION RULES

TWISTED FUSION RULES

DEFINITION: The *(twisted) fusion rule* is the dimension of the vector space of (twisted) intertwining operators.

DEFINITION: The *(twisted) fusion rule* is the dimension of the vector space of (twisted) intertwining operators.

THEOREM (G., Liu & Zhu 24'): The vector space of twisted conformal blocks associated to

$$([C_w/\mu_T], \infty, w, 0, (M^3)', M^1, M^2)$$

is isomorphic to the space of twisted intertwining operators among the untwisted module M^1 and g-twisted modules M^2 and M^3 .

DEFINITION: The *(twisted) fusion rule* is the dimension of the vector space of (twisted) intertwining operators.

THEOREM (G., Liu & Zhu 24'): The vector space of twisted conformal blocks associated to

$$([C_w/\mu_T], \infty, w, 0, (M^3)', M^1, M^2)$$

is isomorphic to the space of twisted intertwining operators among the untwisted module M^1 and g-twisted modules M^2 and M^3 . Note: $[C_w/\mu_T]$ is totally ramified.

DEFINITION: The *(twisted) fusion rule* is the dimension of the vector space of (twisted) intertwining operators.

PROPOSAL: The vector space of twisted intertwining operators among M^1 , M^2 , and M^3 is given by the space of twisted conformal blocks associated to the data

$$(\mathbb{P}^1_{g_3^{-1},g_1,g_2},\infty,1,0,(M^3)',M^1,M^2),$$

where $g_1g_2=g_3$

TWISTED FUSION RULES

DEFINITION: The *(twisted) fusion rule* is the dimension of the vector space of (twisted) intertwining operators.

Q: How to compute the twisted fusion rules?

TWISTED FUSION RULES

DEFINITION: The *(twisted) fusion rule* is the dimension of the vector space of (twisted) intertwining operators.

Q: How to compute the twisted fusion rules? More generally, how to compute the dimension of a space of twisted conformal blocks?

RESTRICTED CONFORMAL BLOCKS

CONSTRAINTS OF THE CHIRAL LIE ALGEBRA

$$\text{Recall: } \mathcal{L}_{(\mathfrak{X}, \mathsf{p}_{\bullet})}(V) = \mathsf{h}_{\mathrm{dR}}\big(\mathcal{V}^G, \nabla\big)(\mathfrak{X} \setminus \mathsf{p}_{\bullet}).$$

CONSTRAINTS OF THE CHIRAL LIE ALGEBRA

Recall:
$$\mathcal{L}_{(\mathfrak{X},p_{\bullet})}(V) = \mathsf{h}_{\mathrm{dR}}(\mathcal{V}^G,\nabla)(\mathfrak{X}\setminus\mathsf{p}_{\bullet}).$$

We can constrain it by twisting the \mathfrak{D} -module (\mathcal{V}^G, ∇) by a divisor Δ .

$$\Delta_{m_{\bullet}} := -\sum_{i=1}^{n} (L_{(0)} - m_i - 1)[p_i].$$

Recall: $\mathcal{L}_{(\mathfrak{X},p_{\bullet})}(V) = h_{dR}(\mathcal{V}^G,\nabla)(\mathfrak{X}\setminus p_{\bullet}).$

We can constrain it by twisting the \mathcal{D} -module (\mathcal{V}^G, ∇) by a divisor Δ .

$$\Delta_{m_{\bullet}} := -\sum_{i=1}^{n} (L_{(0)} - m_i - 1)[p_i].$$

NOTATION: For any
$$m_{ullet}\in (\mathbb{Z}\cup\{\infty\})^n$$
, denote
$$\mathcal{L}_{(\mathfrak{X},\mathbf{p}_{ullet})}(V)_{\leqslant m_{ullet}}:=\mathsf{h}_{\mathrm{dR}}\big(\mathcal{V}^G\big(\Delta_{m_{ullet}}\big),\nabla\big)(\mathfrak{X}),$$

Recall: $\mathcal{L}_{(\mathfrak{X},p_{\bullet})}(V) = \mathsf{h}_{\mathrm{dR}}(\mathcal{V}^G,\nabla)(\mathfrak{X}\setminus\mathsf{p}_{\bullet}).$

We can constrain it by twisting the \mathcal{D} -module (\mathcal{V}^G, ∇) by a divisor Δ .

$$\Delta_{m_{\bullet}} := -\sum_{i=1}^{n} (L_{(0)} - m_i - 1)[\mathsf{p}_i].$$

NOTATION: For any
$$m_{ullet}\in (\mathbb{Z}\cup\{\infty\})^n$$
, denote
$$\mathcal{L}_{(\mathfrak{X},\mathsf{p}_{ullet})}(V)_{\leqslant m_{ullet}}:=\mathsf{h}_{\mathrm{dR}}\big(\mathcal{V}^G(\Delta_{m_{ullet}}),\nabla\big)(\mathfrak{X}),$$

Remark. $(\mathcal{V}^G(\Delta_{m_{\bullet}}), \nabla) = (\mathcal{V}(\pi^*\Delta_{m_{\bullet}} - \mathfrak{R}), \nabla)^G$.

EXAMPLE

EXAMPLE:
$$\mathfrak{X}=[\mathbb{P}^1/\mu_T]$$
 and $\mathbf{p}_{ullet}=(1,0,\infty)$

$$\begin{cases} \text{EXAMPLE: } \mathfrak{X} = [\mathbb{P}^1/\mu_T] \text{ and } \mathsf{p}_{\bullet} = (1,0,\infty) \leadsto \pi^*\Delta_{m_{\bullet}} - \mathfrak{R} \text{ reads} \\ \\ -(T(L_{(0)}-m_0)-1)\pi^*[0] - (L_{(0)}-m_1-1)\pi^*[1] - (T(L_{(0)}-m_\infty)-1)\pi^*[\infty]. \end{cases}$$
 On the other hand, $\mathcal{L}_{(\mathfrak{X},\mathsf{p}_{\bullet})}(V) = V \otimes \mathbb{C}[z^{\pm 1/T},(z-1)^{-1}]\,\mathrm{d}z/\mathrm{Im}\,\nabla.$

$$\begin{array}{l} \text{EXAMPLE: } \mathfrak{X} = [\mathbb{P}^1/\mu_T] \text{ and } \mathsf{p}_{\bullet} = (1,0,\infty) \leadsto \pi^*\Delta_{m_{\bullet}} - \mathfrak{R} \text{ reads} \\ \\ -(T(L_{(0)}-m_0)-1)\pi^*[0] - (L_{(0)}-m_1-1)\pi^*[1] - (T(L_{(0)}-m_{\infty})-1)\pi^*[\infty]. \\ \\ \text{On the other hand, } \mathcal{L}_{(\mathfrak{X},\mathsf{p}_{\bullet})}(V) = V \otimes \mathbb{C}[z^{\pm 1/T},(z-1)^{-1}] \,\mathrm{d}z/\mathrm{Im}\,\nabla. \end{array}$$

Hence, $\mathcal{L}_{(\mathfrak{X},\mathbf{p}_{\bullet})}(V)_{\leqslant m_{\bullet}}$ is spanned by

$$\left\{ \begin{bmatrix} u \otimes z^{\frac{r}{T} + a} (z - 1)^b \, \mathrm{d}z \end{bmatrix} \middle| \begin{array}{c} u \in V_k \cap V^r \\ a \geqslant k - 1 - \frac{r}{T} - m_0 \\ b \geqslant k - 1 - \frac{r}{T} - m_1 \\ a + b \leqslant k - 1 - \frac{r}{T} + m_\infty \end{array} \right\}$$

RESTRICTED DATA

We consider $(\mathfrak{X}, \mathsf{p}_{\bullet} \sqcup \mathsf{q}_{\diamond})$ and the multi-index $\infty \sqcup m$ asserting ∞ to each p_i and m to each q_j .

RESTRICTED DATA

We consider $(\mathfrak{X}, \mathsf{p}_{\bullet} \sqcup \mathsf{q}_{\diamond})$ and the multi-index $\infty \sqcup m$ asserting ∞ to each p_i and m to each q_j .

$$\text{NOTATION: } \mathcal{L}_{(\mathfrak{X}, \mathsf{p}_{\bullet} \sqcup \mathsf{q}_{\diamond})}(V)_{\leqslant m} := \mathcal{L}_{(\mathfrak{X}, \mathsf{p}_{\bullet} \sqcup \mathsf{q}_{\diamond})}(V)_{\leqslant \infty \sqcup m}$$

We consider $(\mathfrak{X}, \mathsf{p}_{\bullet} \sqcup \mathsf{q}_{\diamond})$ and the multi-index $\infty \sqcup m$ asserting ∞ to each p_i and m to each q_i .

$$\text{NOTATION: } \mathcal{L}_{(\mathfrak{X}, \mathbf{p}_{\bullet} \sqcup \mathbf{q}_{\diamond})}(V)_{\leqslant m} := \mathcal{L}_{(\mathfrak{X}, \mathbf{p}_{\bullet} \sqcup \mathbf{q}_{\diamond})}(V)_{\leqslant \infty \sqcup m}$$

LEMMA: Suppose M is a (twisted) V-module attached to some \mathbf{q}_j . Then, $\mathcal{L}_{(\mathfrak{X},\mathbf{p}_\bullet\sqcup\mathbf{q}_\diamond)}(V)_{<0}(:=\bigcup_{m<0}\mathcal{L}_{(\mathfrak{X},\mathbf{p}_\bullet\sqcup\mathbf{q}_\diamond)}(V)_{\leqslant m})$ acts trivially on its bottom level M(0). Hence, M(0) is an $\mathcal{L}_{(\mathfrak{X},\mathbf{p}_\bullet\sqcup\mathbf{q}_\diamond)}(V)_0$ -module.

We consider $(\mathfrak{X}, \mathsf{p}_{\bullet} \sqcup \mathsf{q}_{\diamond})$ and the multi-index $\infty \sqcup m$ asserting ∞ to each p_i and m to each q_j .

$$\text{NOTATION: } \mathcal{L}_{(\mathfrak{X}, \mathbf{p_{\bullet}} \sqcup \mathbf{q_{\diamond}})}(V)_{\leqslant m} := \mathcal{L}_{(\mathfrak{X}, \mathbf{p_{\bullet}} \sqcup \mathbf{q_{\diamond}})}(V)_{\leqslant \infty \sqcup m}$$

LEMMA: Suppose M is a (twisted) V-module attached to some \mathbf{q}_j . Then, $\mathcal{L}_{(\mathfrak{X},\mathbf{p}_\bullet\sqcup\mathbf{q}_\circ)}(V)_{<0}(:=\bigcup_{m<0}\mathcal{L}_{(\mathfrak{X},\mathbf{p}_\bullet\sqcup\mathbf{q}_\circ)}(V)_{\leqslant m})$ acts trivially on its bottom level M(0). Hence, M(0) is an $\mathcal{L}_{(\mathfrak{X},\mathbf{p}_\bullet\sqcup\mathbf{q}_\circ)}(V)_0$ -module. Conversely, any $\mathcal{L}_{(\mathfrak{X},\mathbf{p}_\bullet\sqcup\mathbf{q}_\circ)}(V)_0$ -module (and any $A_g(V)$ -module) can be viewed as an $\mathcal{L}_{(\mathfrak{X},\mathbf{p}_\bullet\sqcup\mathbf{q}_\circ)}(V)_{\leqslant 0}$ -module.

DEFINITION: Given a stable G-cover $(\mathfrak{X}, \mathsf{p}_{\bullet} \sqcup \mathsf{q}_{\diamond})$ and a pair of families of (twisted) V-modules M^{\bullet} and $A_{g_{\diamond}}(V)$ -modules U^{\diamond} , a twisted restricted conformal block associated to these data is a linear functional

$$M^1 \otimes \cdots \otimes M^m \otimes U^1 \otimes \cdots \otimes U^n \longrightarrow \mathbb{C}$$

invariant under the action of the Lie subalgebra $\mathcal{L}_{(\mathfrak{X},\mathbf{p}_{ullet})}(V)_{\leqslant 0}.$

DEFINITION: Given a stable G-cover $(\mathfrak{X}, \mathsf{p}_{\bullet} \sqcup \mathsf{q}_{\diamond})$ and a pair of families of (twisted) V-modules M^{\bullet} and $A_{g_{\diamond}}(V)$ -modules U^{\diamond} , a twisted restricted conformal block associated to these data is a linear functional

$$M^1 \otimes \cdots \otimes M^m \otimes U^1 \otimes \cdots \otimes U^n \longrightarrow \mathbb{C}$$

invariant under the action of the Lie subalgebra $\mathcal{L}_{(\mathfrak{X},\mathbf{p}_{\bullet})}(V)_{\leqslant 0}.$

EXAMPLE: Given an (m+n)-tuple of (twisted) V-module $M^{\bullet} \sqcup N^{\diamond}$, $\operatorname{Conf}(\mathfrak{X},\mathsf{p}_{\bullet} \sqcup \mathsf{q}_{\diamond},M^{\bullet} \sqcup N^{\diamond}) \qquad \operatorname{ResConf}(\mathfrak{X},\mathsf{p}_{\bullet} \sqcup \mathsf{q}_{\diamond},M^{\bullet} \sqcup N^{\diamond}(0)).$

RESTRICTED CONFORMAL BLOCKS

EXAMPLE: Given an (m+n)-tuple of (twisted) V-module $M^{\bullet} \sqcup N^{\diamond}$, $\operatorname{Conf}(\mathfrak{X}, \mathsf{p}_{\bullet} \sqcup \mathsf{q}_{\diamond}, M^{\bullet} \sqcup N^{\diamond}) \xrightarrow{\pi} \operatorname{ResConf}(\mathfrak{X}, \mathsf{p}_{\bullet} \sqcup \mathsf{q}_{\diamond}, M^{\bullet} \sqcup N^{\diamond}(0)).$

RESTRICTED CONFORMAL BLOCKS

EXAMPLE: Given an (m+n)-tuple of (twisted) V-module $M^{\bullet} \sqcup N^{\diamond}$, $\operatorname{Conf}(\mathfrak{X}, \mathsf{p}_{\bullet} \sqcup \mathsf{q}_{\diamond}, M^{\bullet} \sqcup N^{\diamond}) \xrightarrow{\pi} \operatorname{ResConf}(\mathfrak{X}, \mathsf{p}_{\bullet} \sqcup \mathsf{q}_{\diamond}, M^{\bullet} \sqcup N^{\diamond}(0)).$

Theorem (G., Liu, Zhu 24'): If N^{\diamond} are lowest-weight modules, then π is injective. If N^{\diamond} are further the generalized Verma modules of their bottom levels, then π is an isomorphism.

EXAMPLE (G., Liiu, and Zhu 23'): Let g be a VOA-automorphism of V of order T and consider the data:

- $\mathfrak{X}=[\mathbb{P}^1/\mu_T]$, $\mathsf{p}_{\bullet}=(1)$, and $\mathsf{q}_{\diamond}=(0,\infty)$;
- attach a untwisted V-module M^1 at 1;
- attach a left $A_g(V)$ -module U^2 at 0;
- · attach a left $A_{g^{-1}}(V)$ -module U^3 at ∞ ;

EXAMPLE (G., Liiu, and Zhu 23'): Let g be a VOA-automorphism of V of order T and consider the data:

- $\mathfrak{X}=[\mathbb{P}^1/\mu_T]$, $\mathsf{p}_{ullet}=(1)$, and $\mathsf{q}_{\Diamond}=(0,\infty)$;
- attach a untwisted V-module M^1 at 1;
- · attach a left $A_g(V)$ -module U^2 at 0;
- · attach a left $A_{g^{-1}}(V)$ -module U^3 at ∞ ;

Then, the space of twisted restricted conformal block is the dual of $U^2 \otimes M^1 \otimes U^3/J$, where J has an explicit description.

EXAMPLE (G., Liiu, and Zhu 23'): Let g be a VOA-automorphism of V of order T and consider the data:

- $\mathfrak{X}=[\mathbb{P}^1/\mu_T]$, $\mathbf{p}_{ullet}=(1)$, and $\mathbf{q}_{\diamond}=(0,\infty)$;
- attach a untwisted V-module M^1 at 1;
- attach a left $A_g(V)$ -module U^2 at 0;
- · attach a left $A_{g^{-1}}(V)$ -module U^3 at ∞ ;

Then, the space of twisted restricted conformal block is the dual of $U^2\otimes M^1\otimes U^3/J$, where J has an explicit description. From which, the space is the dual of

$$U^3 \otimes_{A_g(V)} A_g(M^1) \otimes_{A_g(V)} U^2$$
.

TWISTED ZHU'S ALGEBRA AND

COHERENCE

TWISTED UNIVERSAL ENVELOPING ALGEBRA

Basic set-up: $(\mathfrak{X}, p_{\bullet} \sqcup q_{\diamond})$.

TWISTED UNIVERSAL ENVELOPING ALGEBRA

Basic set-up: $(\mathfrak{X}, p_{\bullet} \sqcup q_{\diamond})$.

LEMMA: $\mathcal{L}_{(\mathfrak{X},\mathsf{p}_{\bullet}\sqcup\mathsf{q}_{\diamond})}(V)_{\leqslant_{\star}}$ form an exhaustive, separated, and split filtration on $\mathcal{L}_{(\mathfrak{X},\mathsf{p}_{\bullet}\sqcup\mathsf{q}_{\diamond})}(V)$.

TWISTED UNIVERSAL ENVELOPING ALGEBRA

Basic set-up: $(\mathfrak{X}, p_{\bullet} \sqcup q_{\diamond})$.

LEMMA: $\mathcal{L}_{(\mathfrak{X},p_{\bullet}\sqcup q_{\diamond})}(V)_{\leqslant_{\star}}$ form an exhaustive, separated, and split filtration on $\mathcal{L}_{(\mathfrak{X},p_{\bullet}\sqcup q_{\diamond})}(V)$.

LEMMA (Damiolini, Gibney, and Krashen 23'): From a split-filtered associative algebra $(U_{\leqslant\star},U_{\star})$, one ends up with a complete semi-normed split-filtered associative algebra $(\widehat{U}_{\leqslant\star}^{\rm f},\widehat{U}_{\star}^{\rm g})$. In such a pair, any homogeneous ideal $I \lhd \widehat{U}_{\star}^{\rm g}$ induces a pair of closed ideals $(\overline{I}^{\rm f},\overline{I}^{\rm g})$, and we obtain another pair of semi-normed split-filtered associative algebra $(\widehat{U}_{\leqslant\star}^{\rm f}/\overline{I}^{\rm f},\widehat{U}_{\star}^{\rm g}/\overline{I}^{\rm g})$.

LEMMA (Damiolini, Gibney, and Krashen 23'): From a split-filtered associative algebra $(U_{\leqslant\star},U_{\star})$, one ends up with a complete semi-normed split-filtered associative algebra $(\widehat{U}_{\leqslant\star}^{\rm f},\widehat{U}_{\star}^{\rm g})$. In such a pair, any homogeneous ideal $I \triangleleft \widehat{U}_{\star}^{\rm g}$ induces a pair of closed ideals $(\overline{I}^{\rm f},\overline{I}^{\rm g})$, and we obtain another pair of semi-normed split-filtered associative algebra $(\widehat{U}_{\leqslant\star}^{\rm f}/\overline{I}^{\rm f},\widehat{U}_{\star}^{\rm g}/\overline{I}^{\rm g})$.

DEFINITION: Take $U_{\leqslant\star} = \mathsf{U}\Big(\mathcal{L}_{(\mathfrak{X},\mathsf{p}_{\bullet}\sqcup\mathsf{q}_{\diamond})}(V)_{\leqslant\star}\Big)$ and I to be generated by the Jacobi relations. The resulted semi-normed split-filtered associative algebra $\mathfrak{U}_{(\mathfrak{X},\mathsf{p}_{\bullet}\sqcup\mathsf{q}_{\diamond})}(V)$ is called the (twisted) universal enveloping algebra of V w.r.t. the data $(\mathfrak{X},\mathsf{p}_{\bullet}\sqcup\mathsf{q}_{\diamond})$.

DEFINITION: The (twisted) Zhu's algebra of V w.r.t. the data $(\mathfrak{X},\mathsf{p}_{\bullet}\sqcup\mathsf{q}_{\diamond}).$ is $\mathcal{A}_{(\mathfrak{X},\mathsf{p}_{\bullet}\sqcup\mathsf{q}_{\diamond})}(V):=\mathfrak{U}_{(\mathfrak{X},\mathsf{p}_{\bullet}\sqcup\mathsf{q}_{\diamond})}(V)_{0}/\mathbf{N}^{1}.$

$$\mathcal{A}_{(\mathfrak{X},\mathsf{p}_{\bullet}\sqcup\mathsf{q}_{\diamond})}(V):=\mathfrak{U}_{(\mathfrak{X},\mathsf{p}_{\bullet}\sqcup\mathsf{q}_{\diamond})}(V)_{0}/\mathbf{N}^{1}$$

DEFINITION: The (twisted) Zhu's algebra of V w.r.t. the data $(\mathfrak{X},\mathsf{p}_{\bullet}\sqcup\mathsf{q}_{\diamond}).$ is $\mathcal{A}_{(\mathfrak{X},\mathsf{p}_{\bullet}\sqcup\mathsf{q}_{\diamond})}(V):=\mathfrak{U}_{(\mathfrak{X},\mathsf{p}_{\bullet}\sqcup\mathsf{q}_{\diamond})}(V)_{0}/\mathbf{N}^{1}.$

$$\mathcal{A}_{(\mathfrak{X},\mathsf{p}_{\bullet}\sqcup\mathsf{q}_{\diamond})}(V):=\mathfrak{U}_{(\mathfrak{X},\mathsf{p}_{\bullet}\sqcup\mathsf{q}_{\diamond})}(V)_{0}/\mathbf{N}^{1}.$$

LEMMA: Suppose $\mathfrak X$ is smooth and $\mathsf q_\diamond$ contains all the stacky points. Then $\mathcal A_{(\mathfrak X,\mathsf p_\bullet\sqcup\mathsf q_\diamond)}(V)\cong\bigotimes_{j\in\diamond}\mathcal A_{\mathsf q_j}(V)\cong\bigotimes_{j\in\diamond}A_{g_j}(V).$

$$\mathcal{A}_{(\mathfrak{X},\mathsf{p}_{\bullet}\sqcup\mathsf{q}_{\diamond})}(V)\cong\bigotimes_{j\in\diamond}\mathcal{A}_{\mathsf{q}_{j}}(V)\cong\bigotimes_{j\in\diamond}A_{g_{j}}(V)$$

EXAMPLE

 $\qquad \qquad \mathsf{EXAMPLE:} \ \ \mathcal{A}_{([\mathbb{P}^1/\mu_T],(1)\sqcup(0,\infty))}(V) \cong A_g(V) \otimes A_{g^{-1}}(V).$

 $\begin{array}{|c|} \hline \text{EXAMPLE: } \mathcal{A}_{([\mathbb{P}^1/\mu_T],(1)\sqcup(0,\infty))}(V) \cong A_g(V) \otimes A_{g^{-1}}(V). \text{ Hence, the space of coinvariants is} \\ & (M^1)_{\mathcal{L}_{([\mathbb{P}^1/\mu_T],(1)\sqcup(0,\infty))}(V)_{<0}} \otimes_{\mathcal{A}_{([\mathbb{P}^1/\mu_T],(1)\sqcup(0,\infty))}(V)} (U^2 \otimes U^3) \\ \hline \end{array}$

$$(M^1)_{\mathcal{L}_{([\mathbb{P}^1/\mu_T],(1)\sqcup(0,\infty))}(V)_{<0}} \otimes_{\mathcal{A}_{([\mathbb{P}^1/\mu_T],(1)\sqcup(0,\infty))}(V)} (U^2 \otimes U^3)$$

EXAMPLE: $\mathcal{A}_{([\mathbb{P}^1/\mu_T],(1)\sqcup(0,\infty))}(V)\cong A_g(V)\otimes A_{g^{-1}}(V).$ Hence, the space of coinvariants is

$$(M^{1})_{\mathcal{L}_{([\mathbb{P}^{1}/\mu_{T}],(1)\sqcup(0,\infty))}(V)_{<0}} \otimes_{\mathcal{A}_{([\mathbb{P}^{1}/\mu_{T}],(1)\sqcup(0,\infty))}(V)} (U^{2} \otimes U^{3})$$

$$\cong A^{\operatorname{op}}(M^{1}) \otimes_{A_{g}(V)\otimes A_{g^{-1}}(V)} (U^{2} \otimes U^{3})$$

EXAMPLE: $\mathcal{A}_{([\mathbb{P}^1/\mu_T],(1)\sqcup(0,\infty))}(V)\cong A_g(V)\otimes A_{g^{-1}}(V)$. Hence, the space of coinvariants is

$$(M^{1})_{\mathcal{L}_{([\mathbb{P}^{1}/\mu_{T}],(1)\sqcup(0,\infty))}(V)_{<0}} \otimes_{\mathcal{A}_{([\mathbb{P}^{1}/\mu_{T}],(1)\sqcup(0,\infty))}(V)} (U^{2} \otimes U^{3})$$

$$\cong A^{\mathrm{op}}(M^{1}) \otimes_{A_{g}(V)\otimes A_{g^{-1}}(V)} (U^{2} \otimes U^{3})$$

$$= U^{3} \otimes_{A_{g}(V)} A(M^{1}) \otimes_{A_{g}(V)} U^{2}.$$

COHERENCE OF COINVARIANTS

THEOREM (G., Liu, Zhu 24'): Suppose $M^{\bullet} \sqcup N^{\diamond}$ is an (m+n)-tuple of (twisted) V-module generated by their finite-dimensional bottom levels. Suppose \mathfrak{q}_{\diamond} contains all the stacky points. Then, the space of coinvariants $(M^{\bullet} \otimes N^{\diamond})_{\mathcal{L}_{(\mathfrak{X},\mathfrak{p}_{\bullet} \sqcup \mathfrak{q}_{\diamond})}(V)}$ is finite-dimensional.

THEOREM (G., Liu, Zhu 24'): Suppose $M^{\bullet} \sqcup N^{\diamond}$ is an (m+n)-tuple of (twisted) V-module generated by their finite-dimensional bottom levels. Suppose \mathbf{q}_{\diamond} contains all the stacky points. Then, the space of coinvariants $(M^{\bullet} \otimes N^{\diamond})_{\mathcal{L}_{(\mathfrak{X},\mathbf{p}_{\bullet}\sqcup\mathbf{q}_{\diamond})}(V)}$ is finite-dimensional.

Proof. We have sujective map

$$(M^{\bullet} \otimes N^{\diamond}(0))_{\mathcal{L}_{(\mathfrak{X}, \mathsf{p}_{\bullet} \sqcup \mathsf{q}_{\diamond})}(V)_{\leqslant 0}} \longrightarrow (M^{\bullet} \otimes N^{\diamond})_{\mathcal{L}_{(\mathfrak{X}, \mathsf{p}_{\bullet} \sqcup \mathsf{q}_{\diamond})}(V)}.$$

20/21

THEOREM (G., Liu, Zhu 24'): Suppose $M^{ullet} \sqcup N^{\diamond}$ is an (m+n)-tuple of (twisted) V-module generated by their finite-dimensional bottom levels. Suppose \mathbf{q}_{\diamond} contains all the stacky points. Then, the space of coinvariants $(M^{ullet} \otimes N^{\diamond})_{\mathcal{L}_{(\mathfrak{X}, \mathbf{p}_{\bullet} \sqcup \mathbf{q}_{\diamond})}(V)}$ is finite-dimensional.

Proof. We have sujective map

We also have

$$L.H.S. \cong (M^{\bullet})_{\mathcal{L}_{(\mathfrak{X}, \mathsf{p}_{\bullet} \sqcup \mathsf{q}_{\diamond})}(V)_{<0}} \otimes_{\mathcal{A}_{(\mathfrak{X}, \mathsf{p}_{\bullet} \sqcup \mathsf{q}_{\diamond})}(V)} N^{\diamond}(0).$$

Proof. We have sujective map

$$(M^{\bullet} \otimes N^{\diamond}(0))_{\mathcal{L}_{(\mathfrak{X},\mathsf{p}_{\bullet} \sqcup \mathsf{q}_{\diamond})}(V)_{\leqslant 0}} \longrightarrow (M^{\bullet} \otimes N^{\diamond})_{\mathcal{L}_{(\mathfrak{X},\mathsf{p}_{\bullet} \sqcup \mathsf{q}_{\diamond})}(V)}.$$

We also have

$$L.H.S. \cong (M^{\bullet})_{\mathcal{L}_{(\mathfrak{X},\mathsf{p}_{\bullet}\sqcup\mathsf{q}_{\diamond})}(V)_{<0}} \otimes_{\mathcal{A}_{(\mathfrak{X},\mathsf{p}_{\bullet}\sqcup\mathsf{q}_{\diamond})}(V)} N^{\diamond}(0).$$

Note that

$$(M^{\bullet})_{\mathcal{L}_{(\mathfrak{X},\mathsf{p}_{\bullet}\sqcup\mathsf{q}_{\diamond})}(V)_{<0}}=(M^{\bullet})_{\mathcal{L}_{(\mathfrak{X},\mathsf{p}_{\bullet})}(V)}=(M^{\bullet})_{\mathcal{L}_{(P,\widetilde{\mathsf{p}}_{\bullet})}(V)}.$$

Proof. We have sujective map

$$(M^{\bullet} \otimes N^{\diamond}(0))_{\mathcal{L}_{(\mathfrak{X},\mathsf{p}_{\bullet} \sqcup \mathsf{q}_{\diamond})}(V)_{\leqslant 0}} \longrightarrow (M^{\bullet} \otimes N^{\diamond})_{\mathcal{L}_{(\mathfrak{X},\mathsf{p}_{\bullet} \sqcup \mathsf{q}_{\diamond})}(V)}.$$

We also have

$$L.H.S. \cong (M^{\bullet})_{\mathcal{L}_{(\mathfrak{X},\mathsf{p}_{\bullet}\sqcup\mathsf{q}_{\diamond})}(V)_{<0}} \otimes_{\mathcal{A}_{(\mathfrak{X},\mathsf{p}_{\bullet}\sqcup\mathsf{q}_{\diamond})}(V)} N^{\diamond}(0).$$

Note that

$$(M^{\bullet})_{\mathcal{L}_{(\mathfrak{X},\mathsf{p}_{\bullet}\sqcup\mathsf{q}_{\Diamond})}(V)_{<0}}=(M^{\bullet})_{\mathcal{L}_{(\mathfrak{X},\mathsf{p}_{\bullet})}(V)}=(M^{\bullet})_{\mathcal{L}_{(P,\widetilde{\mathsf{p}}_{\bullet})}(V)}.$$

The coherence of $(M^{\bullet})_{\mathcal{L}_{(P,\tilde{p}_{\bullet})}(V)}$ has been proven by (Damiolini, Gibney, and Tarasca 21'–24').

Thank you!