

planetmath.org

Math for the people, by the people.

regular open algebra

Canonical name Regular Open Algebra
Date of creation 2013-03-22 17:56:21
Last modified on 2013-03-22 17:56:21

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 16

Author CWoo (3771) Entry type Definition Classification msc 06E99 A regular open algebra is an algebraic system \mathcal{A} whose universe is the set of all regular open sets in a topological space X, and whose operations are given by

- 1. a constant 1 such that 1 := X,
- 2. a unary operation ' such that for any U, $U' := U^{\perp}$, where U^{\perp} is the complement of the closure of U in X,
- 3. a binary operation \wedge such that for any $U, V \in \mathcal{A}, U \wedge V := U \cap V$, and
- 4. a binary operation \vee such that for any $U, V \in \mathcal{A}, U \vee V := (U \cup V)^{\perp \perp}$.

From the parent entry, all of the operations above are well-defined (that the result sets are regular open). Also, we have the following:

Theorem 1. A is a Boolean algebra

Proof. We break down the proof into steps:

- 1. \mathcal{A} is a lattice. This amounts to verifying various laws on the operations:
 - (idempotency of \vee and \wedge): Clearly, $U \wedge U = U$. Also, $U \vee U = (U \cup U)^{\perp \perp} = U^{\perp \perp} = U$, since U is regular open.
 - Commutativity of the binary operations are obvious.
 - The associativity of \wedge is also obvious. The associativity of \vee goes as follows: $U \vee (V \vee W) = (U \cup (V \cup W)^{\perp \perp})^{\perp \perp} = U^{\perp} \cap (V \cup W)^{\perp \perp} = U^{\perp} \cap (V \cup W)^{\perp \perp}$, since $V \cup W$ is open (which implies that $(V \cup W)^{\perp}$ is regular open). The last expression is equal to $U^{\perp} \cap (V^{\perp} \cap W^{\perp})$. Interchanging the roles of U and W, we obtain the equation $W \vee (V \vee U) = W^{\perp} \cap (V^{\perp} \cap U^{\perp})$, which is just $U^{\perp} \cap (V^{\perp} \cap W^{\perp})$, or $U \vee (V \vee W)$. The commutativity of \vee completes the proof of the associativity of \vee .
 - Finally, we verify the absorption laws. First, $U \wedge (U \vee V) = U \cap (U \cup V)^{\perp \perp} = U^{\perp \perp} \cap (U \cup V)^{\perp \perp} = (U^{\perp} \cup (U \cup V)^{\perp})^{\perp} = (U^{\perp} \cup (U \cap V^{\perp})^{\perp}) = (U^{\perp})^{\perp} = U$. Second, $U \vee (U \wedge V) = (U \cup (U \vee W)^{\perp \perp}) = U$.
- 2. \mathcal{A} is complemented. First, it is easy to see that \varnothing and X are the bottom and top elements of \mathcal{A} . Furthermore, for any $U \in \mathcal{A}$, $U \wedge U' = U \cap U^{\perp} = U \cap (X \setminus \overline{U}) \subseteq \overline{U} \cap (X \setminus \overline{U}) = \varnothing$. Finally, $U \vee U' = (U \cup U^{\perp})^{\perp \perp} = (U^{\perp} \cap U^{\perp \perp})^{\perp} = (U^{\perp} \cap U)^{\perp} = \varnothing^{\perp} = X$.

3. \mathcal{A} is distributive. This can be easily proved once we show the following: for any open sets U, V:

$$(*) U^{\perp \perp} \cap V^{\perp \perp} = (U \cap V)^{\perp \perp}.$$

To begin, note that since $U \cap V \subseteq U$, and $^{\perp}$ is order reversing, $(U \cap V)^{\perp \perp} \subseteq U^{\perp \perp}$ by applying $^{\perp}$ twice. Do the same with V and take the intersection, we get one of the inclusions: $(U \cap V)^{\perp \perp} \subseteq U^{\perp \perp} \cap V^{\perp \perp}$. For the other inclusion, we first observe that

$$U \cap \overline{V} \subset \overline{U \cap V}$$
.

If $x \in \text{LHS}$, then $x \in U$ and for any open set W with $x \in W$, we have that $W \cap V \neq \varnothing$. In particular, $U \cap W$ is such an open set (for $x \in U \cap W$), so that $(U \cap W) \cap V \neq \varnothing$, or $W \cap (U \cap V) \neq \varnothing$. Since W is arbitrary, $x \in \text{RHS}$. Now, apply the set complement, we have $(U \cap V)^{\perp} \subseteq U^{\complement} \cup V^{\perp}$. Applying $^{\perp}$ next we get $(U \cap V)^{\perp \perp}$ for the LHS, and $(U^{\complement} \cup V^{\perp})^{\perp} = U^{\complement - \complement} \cap V^{\perp \perp} = U^{\complement \complement} \cap V^{\perp \perp} = U \cap V^{\perp \perp}$ for RHS, since U^{\complement} is closed. As $^{\perp}$ reverses order, the new inclusion is

$$(**) U \cap V^{\perp \perp} \subseteq (U \cap V)^{\perp \perp}.$$

From this, a direct calculation shows $U^{\perp\perp} \cap V^{\perp\perp} \subseteq (U^{\perp\perp} \cap V)^{\perp\perp} \subseteq (U \cap V)^{\perp\perp\perp} = (U \cap V)^{\perp\perp}$, noticing that the first and second inclusions use (**) above (and the fact that $^{\perp\perp}$ preserves order), and the last equation uses the fact that for any open set W, W^{\perp} is regular open. This proves the (*).

Finally, to finish the proof, we only need to show one of two distributive laws, say, $U \wedge (V \vee W) = (U \wedge V) \vee (U \wedge W)$, for the other one follows from the use of the distributive inequalities. This we do be direct computation: $U \wedge (V \vee W) = U \cap (V \cup W)^{\perp \perp} = U^{\perp \perp} \cap (V \cup W)^{\perp \perp} = (U \cap (V \cup W))^{\perp \perp} = ((U \cap V) \cup (U \cap W))^{\perp \perp} = ((U \wedge V) \vee (U \wedge W))^{\perp \perp} = (U \wedge V) \vee (U \wedge W)$.

Since a complemented distributive lattice is Boolean, the proof is complete.

Theorem 2. The subset \mathcal{B} of all clopen sets in X forms a Boolean subalgebra of \mathcal{A} .

Proof. Clearly, every clopen set is regular open. In addition, $1 \in \mathcal{B}$. If U is clopen, so is the complement of its closure, and hence $U' \in \mathcal{B}$. If U, V are clopen, so is their intersection $U \wedge V$. Similarly, $U \cup V$ is clopen, so that $U \vee V = U \cup V$ is clopen also.

Theorem 3. In fact, \mathcal{A} is a complete Boolean algebra. For an arbitrary subset \mathcal{K} of A, the meet and join of \mathcal{K} are $(\bigcap \{U \mid U \in \mathcal{K}\})^{\perp \perp}$ and $(\bigcup \{U \mid U \in \mathcal{K}\})^{\perp \perp}$ respectively.

Proof. Let $V = (\bigcup \{U \mid U \in \mathcal{K}\})^{\perp \perp}$. For any $U \in \mathcal{K}$, $U \subseteq \bigcup \{U \mid U \in \mathcal{K}\}$ so that $U = U^{\perp \perp} = (\bigcup \{U \mid U \in \mathcal{K}\})^{\perp \perp} = V$. This shows that V is an upper bound of elements of \mathcal{K} . If W is another such upper bound, then $U \subseteq W$, so that $\bigcup \{U \mid U \in \mathcal{K}\} \subseteq W$, whence $V = (\bigcup \{U \mid U \in \mathcal{K}\})^{\perp \perp} \subseteq W^{\perp \perp} = W$. The infimum is proved similarly.

Theorem 4. A is the smallest complete Boolean subalgebra of P(X) extending \mathcal{B} .

More to come...