Partie 8 Évaluation des performances

Vincent Labatut

Laboratoire Informatique d'Avignon – LIA EA 4128 vincent.labatut@univ-avignon.fr

2019/20

M2 ILSEN

UE Ingénierie du document et de l'information **UCE3** Indexation & Recherche d'information

Plan de la séance

- 1 Ressources et notion de pertinence
- Évaluation de résultats non-ordonnés Mesures basiques Précision et rappel F-mesure
- 3 Évaluation de résultats ordonnés Courbe précision rappel Mesures dérivées

Section 1 Ressources et notion de pertinence

Évaluation en recherche d'information Ressources

- Ressources nécessaires
 - Collection de documents
 - Besoins informationnels
 - À convertir en requêtes
 - Ex.: Information sur l'hypothèse que boire du vin rouge réduit plus le risque d'attaque cardiaque que boire du vin blanc.
 - $\rightarrow \ {\rm vin} \wedge {\rm rouge} \wedge {\rm blanc} \wedge {\rm cœur} \wedge {\rm attaque} \wedge {\rm efficace}$
 - On note $\mathcal{Q} = \{q_1,...,q_Q\}$ l'ensemble des Q requêtes d'évaluation
 - Pertinence de chaque document
 - = vérité terrain (eng : Golden standard, ground-truth)
- Taille des données
 - Taille D du corpus de documents
 - Nombre Q de besoins informationnels considérés
 - → Les deux affectent la fiabilité des résultats

Évaluation en recherche d'information Notion de pertinence

- Pertinence
 - Évaluée par rapport aux besoins, et non pas aux requêtes
 - But = satisfaction de l'utilisateur final
 - Ex. python = animal ou langage de programmation?
- Besoins partagés en plusieurs ensembles
 - Ensemble de développement
 - Utilisé seulement pour affiner les réglages du système
 - Ensemble de test
 - Utilisé pour obtenir la performance générale du système
 - Ne pas développer et tester un système sur les mêmes données
- Exemples de données de test :
 - TREC, CLEF, etc. (cf. [MRS08] Section 8.2)

Section 2

Évaluation de résultats non-ordonnés

Évaluation de résultats non-ordonnés Types de résultats

Vrais positifs (eng: True Positives)

Nombre TP de documents pertinents **correctement renvoyés** par le moteur de recherche.

Vrais négatifs (eng: True Negatives)

Nombre TN de documents non-pertinents **correctement ignorés** par le moteur de recherche.

Faux positifs (eng: False Positives)

Nombre FP de documents non-pertinents **incorrectement renvoyés** par le moteur de recherche.

Faux négatifs (eng: False Negatives)

Nombre FN de documents pertinents **incorrectement ignorés** par le moteur de recherche

Évaluation de résultats non-ordonnés Taux de succès

Matrice de confusion:

	Pertinent	Non-pertinent
Renvoyé	TP	\overline{FP}
Ignoré	FN	TN

Taux de succès (eng: Accuracy)

Proportion de documents correctement classifiés :

$$Acc = \frac{TP + TN}{TP + TN + FP + FN} = \frac{TP + TN}{D}$$

- Utilisé en classification (générale)
- Pas adapté à RI en raison du nombre élevé de négatifs
- Ex. : rejet systématique de tous les documents

Évaluation de résultats non-ordonnés Précision et rappel

Matrice de confusion:

	Pertinent	Non-pertinent
Renvoyé	TP	FP
Ignoré	FN	TN

Précision (eng: Precision)

Proportion de documents **pertinents** parmi les documents **renvoyés** par le moteur de recherche (erreur de type I) :

$$Pre = \frac{TP}{TP + FP}$$

Rappel (eng: Recall)

Proportion de documents **renvoyés** par le moteur de recherche parmi les documents **pertinents** du corpus (erreur de type $\rm II$):

$$Rec = \frac{TP}{TP + FN}$$

• Ces trois mesures sont définies sur [0;1]

Évaluation de résultats non-ordonnés Exemple pour Précision et Rappel

On considère un corpus de D=100 documents, dont on sait que 20 sont pertinents pour une requête donnée.

Le moteur évalué renvoie les 10 documents suivants pour cette même requête :

Docld	105	695	23	8	87	147	694	3691	68	9999
Pertinent		1	1	1			1	✓		✓

Mesures obtenues:

- \bullet TP=6
- FP = 4
- FN = 14
- TN = 76
- Acc = (TP + TN)/D = (6 + 76)/100 = 82/100 = 0.82
- Pre = TP/(TP+FP) = 6/(6+4) = 6/10 = 0.6
- $Rec = \frac{TP}{TP + FN} = \frac{6}{6 + 14} = \frac{6}{20} = 0.3$

Évaluation de résultats non-ordonnés Précision vs. Rappel

- Ces mesures sont complémentaires
- Perspective utilisateur : l'une est généralement prioritaire
 - Ex.: Utilisateur Web → préfère une précision élevée
 - Ex.: Expert légal → préfère un rappel élevé
- Ces mesures sont liées :
 - Sélectionner tous les documents :
 - $\rightarrow Pre \approx 0, Rec = 1$
 - Rejeter tous les document sauf un (vrai) positif
 - \rightarrow Pre = 1, Rec ≈ 0
- Si augmentation du nombre de documents retournés :
 - Rappel ne peut pas décroître
 - Nombre de TN ne peut pas augmenter
 - Précision décroît généralement
 - Si augmentation du nombre de FP

Évaluation de résultats non-ordonnés Définition de la F-mesure

Moyenne harmonique

La moyenne harmonique M_H est l'**inverse** de la moyenne **arithmétique** M_A

des **inverses** des valeurs
$$x_1, ...x_n$$
 moyennées :
$$M_H(x_1, ..., x_n) = \frac{1}{M_A(x_1, ..., x_n)} = \frac{1}{\frac{1}{n} \times (\frac{1}{x_1} + ... + \frac{1}{x_n})} = \frac{n}{\frac{1}{x_1} + ... + \frac{1}{x_n}}.$$

- Propriétés:
 - Toujours < à moyennes géométrique et arithmétique
 - Plus proche de min que de moyenne arithmétique

F-mesure (eng : F-measure)

Il s'agit de la **moyenne harmonique** de la précision Pre et du rappel Rec :

$$F = \frac{2}{\frac{1}{Pre} + \frac{1}{Rec}} = 2\frac{Pre \cdot Rec}{Pre + Rec}$$

- Pourquoi moyenne harmonique :
 - \rightarrow Faire ressortir une Pre ou un Rec exagérément bas
 - Ex. : Pre = 1 et $Rec = 0 \rightarrow \text{moy.}$ arithm. de 0,5 mais $F \approx 0$.

Évaluation de résultats non-ordonnés Généralisation de la *F*-mesure

F-mesure généralisée

Version **pondérée** utilisant un **paramètre** β pour contrôler l'**importance relative** de la précision Pre et du rappel Rec:

$$F_{\beta} = \frac{1}{\frac{\alpha}{P} + \frac{1-\alpha}{R}} = \frac{(\beta^2 + 1) \cdot Pre \cdot Rec}{\beta^2 \cdot Pre + Rec},$$
 et $\beta^2 = (1-\alpha)/\alpha$.

où $\alpha \in [0;1]$ et $\beta^2 = (1-\alpha)/\alpha$.

- Comportement:
 - $\beta = 1 \rightarrow$ équilibre entre Pre et Rec
 - $\beta < 1 \rightarrow Pre$ a plus d'importance
 - $\beta > 1 \rightarrow Rec$ a plus d'importance
- Utilisée quand on veut favoriser l'une des deux mesures (ex. cas d'utilisation p.11)

Évaluation de résultats non-ordonnés Exemple de F-mesure

Même exemple que précédemment (p.10) : on considère un corpus de 100 documents, dont on sait que 15 sont pertinents pour une requête donnée.

Le moteur évalué renvoie les 10 documents suivants pour cette même requête :

Docld	105	695	23	8	87	147	694	3691	68	9999
Pertinent		1	✓	✓			1	✓		✓

Mesures obtenues:

•
$$TP = 6$$
; $FP = 4$; $FN = 9$; $TN = 81$

•
$$Pre = 0.6$$
; $Rec = 0.3$; $Acc = 0.82$

•
$$F = 2 \frac{Pre \cdot Rec}{Pre + Rec} = 2 \frac{0.6 \cdot 0.3}{0.6 + 0.3} = 2 \frac{0.18}{0.9} = 0.4$$

Section 3 Évaluation de résultats ordonnés

Évaluation de résultats ordonnés Définition de la courbe Précision-Rappel

• Notations:

- Pre(k): précision obtenue en considérant les k premiers documents
- Rec(k): pareil pour le rappel
- Courbe Précision-Rappel : méthode de construction
 - 1 Ordonner les documents par score décroissant
 - ② Pour k = 1, ..., D, calculer Pre(k) et Rec(k)
 - Représenter la performance obtenue pour chaque valeur de k par un point dans le repère Pre-Rec.

• Propriétés :

- Rec(k) est une fonction non-décroissante : augmenter le nombre de documents considérés ne peut pas diminuer le rappel
- → courbe en dents-de-scie (Pre diminuant à chaque document incorrect)

Évaluation de résultats ordonnés Exemple de courbe Précision-Rappel

Rang	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Pertinent	/	/		/	/	/		/		/			/		/					
k	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
TP	1	2	2	3	4	5	5	6	6	7	7	7	8	8	9	9	9	9	9	9
FP	0	0	1	1	1	1	2	2	3	3	4	5	5	6	6	7	8	9	10	11
FN	8	7	7	6	5	4	4	3	3	2	2	2	1	1	0	0	0	0	0	0
Pre(k)	1/1	2/2	2/3	3/4	4/5	5/6	5/7	6/8	6/9	7/10	7/11	7/12	8/13	8/14	9/15	9/16	9/17	9/18	9/19	9/20
	1,00	1,00	0,67	0,75	0,80	0,83	0,71	0,75	0,67	0,70	0,64	0,58	0,62	0,57	0,60	0,56	0,53	0,50	0,47	0,45
Rec(k)	1/9	2/9	2/9	3/9	4/9	5/9	5/9	6/9	6/9	7/9	7/9	7/9	8/9	8/9	9/9	9/9	9/9	9/9	9/9	9/9
	0,11	0,22	0,22	0,33	0,44	0,56	0,56	0,67	0,67	0,78	0,78	0,78	0,89	0,89	1,00	1,00	1,00	1,00	1,00	1,00

Évaluation de résultats ordonnés Exemple de courbe Précision-Rappel

Rang	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Pertinent												/	/	/	/	/	/	/	/	/
k	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
TP	0	0	0	0	0	0	0	0	0	0	0	1	2	3	4	5	6	7	8	9
FP	1	2	3	4	5	6	7	8	9	10	11	11	11	11	11	11	11	11	11	11
FN	9	9	9	9	9	9	9	9	9	9	9	8	7	6	5	4	3	2	1	0
Pre(k)	0/1	0/2	0/3	0/4	0/5	0/6	0/7	0/8	0/9	0/10	0/11	1/12	2/13	3/14	4/15	5/16	6/17	7/18	8/19	9/20
	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,08	0,15	0,21	0,27	0,31	0,35	0,39	0,42	0,45
Rec(k)	0/9	0/9	0/9	0/9	0/9	0/9	0/9	0/9	0/9	0/9	0/9	1/9	2/9	3/9	4/9	5/9	6/9	7/9	8/9	9/9
	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,11	0,22	0,33	0,44	0,56	0,67	0,78	0,89	1,00

Évaluation de résultats ordonnés Exemple de courbe Précision-Rappel

Rang	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Pertinent	/	1	/	/	1	1	/	/	/											
k	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
TP	1	2	3	4	5	6	7	8	9	9	9	9	9	9	9	9	9	9	9	9
FP	0	0	0	0	0	0	0	0	0	1	2	3	4	5	6	7	8	9	10	11
FN	8	7	6	5	4	3	2	1	0	0	0	0	0	0	0	0	0	0	0	0
Pre(k)	1/1	2/2	3/3	4/4	5/5	6/6	7/7	8/8	9/9	9/10	9/11	9/12	9/13	9/14	9/15	9/16	9/17	9/18	9/19	9/20
	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,90	0,82	0,75	0,69	0,64	0,60	0,56	0,53	0,50	0,47	0,45
Rec(k)	1/9	2/9	3/9	4/9	5/9	6/9	7/9	8/9	9/9	9/9	9/9	9/9	9/9	9/9	9/9	9/9	9/9	9/9	9/9	9/9
	0,11	0,22	0,33	0,44	0,56	0,67	0,78	0,89	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00

Évaluation de résultats ordonnés Principe de l'interpolation

Précision interpolée

La précision interpolée $\tilde{P}re(k)$ est la précision **maximale** obtenue en renvoyant k **documents ou plus**. Formellement :

$$\tilde{P}re(k) = \max_{k \le k' \le D} Pre(k').$$

- Courbe Précision-Rappel interpolée
 - Construction : on utilise $\tilde{P}re$ à la place de Pre
 - Interêt:
 - En jouant sur k, on peut parfois augmenter Rec sans diminuer Pre
 - La courbe Précision-Rappel interpolée permet de détecter ces situations

Évaluation de résultats ordonnés Exemple de courbe Précision-Rappel interpolée

Rang	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Pertinent	/	/		/	/	/		/		/			/		/					
k	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
TP	1	2	2	3	4	5	5	6	6	7	7	7	8	8	9	9	9	9	9	9
FP	0	0	1	1	1	1	2	2	3	3	4	5	5	6	6	7	8	9	10	11
FN	8	7	7	6	5	4	4	3	3	2	2	2	1	1	0	0	0	0	0	0
Pre(k)	1/1	2/2	2/3	3/4	4/5	5/6	5/7	6/8	6/9	7/10	7/11	7/12	8/13	8/14	9/15	9/16	9/17	9/18	9/19	9/20
	1,00	1,00	0,67	0,75	0,80	0,83	0,71	0,75	0,67	0,70	0,64	0,58	0,62	0,57	0,60	0,56	0,53	0,50	0,47	0,45
Rec(k)	1/9	2/9	2/9	3/9	4/9	5/9	5/9	6/9	6/9	7/9	7/9	7/9	8/9	8/9	9/9	9/9	9/9	9/9	9/9	9/9
	0,11	0,22	0,22	0,33	0,44	0,56	0,56	0,67	0,67	0,78	0,78	0,78	0,89	0,89	1,00	1,00	1,00	1,00	1,00	1,00

Évaluation de résultats ordonnés Précision interpolée moyenne

Notation : $Rec_j(k)$, $Pre_j(k)$ et $\tilde{P}re_j(k)$ dénotent respectivement le rappel, la précision et la précision interpolée obtenus sur les k premiers documents renvoyés pour la requête q_j

Points d'interpolation

Pour une requête q_j , c'est l'**ensemble** $\{k_{ij}\}_{i\in\{0,...,10\}}$ des 11 **valeurs** de k telles que :

$$Rec_{j}(k_{ij}) = i/10$$
, où $i \in \{0, ..., 10\}$.

Précision interpolée moyenne

Moyenne arithmétique des précisions interpolées obtenues pour l'ensemble $\mathcal Q$ des **requêtes** testées, en considérant leur ième point d'interpolation :

$$IAP_i = \frac{1}{Q} \sum_{i=1}^{Q} \tilde{P}re_j(k_{ij}).$$

Évaluation de résultats ordonnés Courbe de précision interpolée moyenne

Exemple: on utilise 5 requêtes pour l'évaluation

Rang	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Pert. q1	/					/							/		/					
$Rec_1(k)$	0,11	0,22	0,22	0,33	0,44	0,56	0,56	0,67	0,67	0,78	0,78	0,78	0,89	0,89	1,00	1,00	1,00	1,00	1,00	1,00
$\tilde{P}re_1(k)$	1,00	1,00	0,83	0,83	0,83	0,83	0,75	0,75	0,70	0,70	0,64	0,62	0,62	0,60	0,60	0,56	0,53	0,50	0,47	0,45
Pert. q2	1	1	1				/	/	1	1		1	1			/				
$Rec_2(k)$	0,10	0,20	0,30	0,30	0,30	0,30	0,40	0,50	0,60	0,70	0,70	0,80	0,90	0,90	0,90	1,00	1,00	1,00	1,00	1,00
$Pre_2(k)$	1,00	1,00	1,00	0,75	0,70	0,70	0,70	0,70	0,70	0,70	0,69	0,69	0,69	0,64	0,63	0,63	0,59	0,56	0,53	0,50
Pert. q ₃													/	/	/					
$Rec_3(k)$	0,00	0,10	0,10	0,20	0,20	0,30	0,40	0,50	0,60	0,60	0,70	0,70	0,80	0,90	1,00	1,00	1,00	1,00	1,00	1,00
$Pre_3(k)$	0,67	0,67	0,67	0,67	0,67	0,67	0,67	0,67	0,67	0,67	0,67	0,67	0,67	0,67	0,67	0,63	0,59	0,56	0,53	0,50
Pert. q_4	1	1				1	/	/			1	1	/							
$Rec_4(k)$	0,13	0,25	0,25	0,25	0,25	0,38	0,50	0,63	0,63	0,63	0,75	0,88	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
$Pre_4(k)$	1,00	1,00	0,67	0,63	0,63	0,63	0,63	0,63	0,62	0,62	0,62	0,62	0,62	0,57	0,53	0,50	0,47	0,44	0,42	0,40
Pert. q ₅	/	/			/	/	/	/												
$Rec_5(k)$	0,17	0,33	0,33	0,33	0,50	0,67	0,83	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
$Pre_5(k)$	1,00	1,00	0,75	0,75	0,75	0,75	0,75	0,75	0,67	0,60	0,55	0,50	0,46	0,43	0,40	0,38	0,35	0,33	0,32	0,30

Pt. interp.	k_{1j}	k_2	k_3	k_4	k_5	k_6	k_7	k_8	k_9	k_{10}	k_{11}
$Rec(k_{ij})$	0,00	0,10	0,20	0,30	0,40	0,50	0,60	0,70	0,80	0,90	1,00
$Pre_1(k_{i1})$	1,00	1,00	1,00	0,83	0,83	0,83	0,83	0,75	0,70	0,62	0,60
$Pre_2(k_{l2})$	1,00	1,00	1,00	1,00	0,70	0,70	0,70	0,70	0,69	0,69	0,63
$Pre_3(k_{i3})$	0,67	0,67	0,67	0,67	0,67	0,67	0,67	0,67	0,67	0,67	0,67
$Pre_4(k_{i4})$	1,00	1,00	1,00	1,00	0,63	0,63	0,63	0,62	0,62	0,62	0,62
$Pre_5(k_{i5})$	1,00	1,00	1,00	1,00	1,00	0,75	0,75	0,75	0,75	0,75	0,75
IAP_i	0,93	0,93	0,93	0,90	0,77	0,72	0,72	0,70	0,68	0,67	0,65

Construction de la courbe : calcul des valeurs IAP_i pour les 11 points d'interpolation

(i.e. Précisions associées aux valeurs de rappel $Rec=0\;;\;0,1\;;\;0,2\;;\;\dots\;;\;1)$

Évaluation de résultats ordonnés Définition de la moyenne des précisions moyennes

La moyenne des précisions moyennes (MAP) repose sur deux niveaux de moyennage

Points de moyennage

Pour une requête q_j , c'est l'**ensemble** $\{k_{ij}\}_{1 \leq i \leq m_j}$ des m_j valeurs de k telles que le k_{ij} ème document soit **pertinent**.

Précision moyenne (eng: Average precision)

Pour une requête q_j , c'est la **moyenne** arithmétique des précisions obtenues pour l'ensemble des points de moyennage :

$$AP_j = \frac{1}{m_j} \sum_{i=1}^{m_j} Pre_j(k_{ij}).$$

Évaluation de résultats ordonnés Propriétés de la moyenne des précisions moyennes

Moyenne des précisions moyennes

La MAP (eng : Mean Average Precision) est la **moyenne** arithmétique des **précisions moyennes** AP_j obtenues pour l'ensemble $\mathcal Q$ des **requêtes** testées :

$$MAP = \frac{1}{Q} \sum_{j=1}^{Q} AP_j.$$

- Intérêt : permet de se ramener à une seule valeur
- Approximation de l'aire (moyenne) sous la précision interpolée
- Note: de nombreuses autres mesures existent, cf. bibliographie

Concepts abordés dans cette partie

- Courbe Précision-Rappel
- Courbe PR Interpolée
- Points d'interpolation
- Précision interpolée moyenne

- Précision
- Rappel
- F-mesure
- MAP

Lectures recommandées

- [MRS08] Introduction to Information Retrieval, chapitres 6 & 8.
- [BCC10] Information Retrieval: Implementing and Evaluating Search Engines, chapitre 12.
 - [BR11] Modern Information Retrieval: The Concepts and Technology behind Search, chapitre 4.
 - [AG13] Recherche d'information Applications, modèles et algorithmes, chapitres 2 & 3.
- [CMS15] Search Engines : Information Retrieval in Practice, chapitres 8.

Références bibliographiques I

- [AG13] M.-R. Amini et É. Gaussier. Recherche d'information -Applications, modèles et algorithmes. Paris, FR : Eyrolles, 2013. url :
 - https://www.eyrolles.com/Informatique/Livre/recherched-information-9782212673760/.
- [BR11] R. Baeza-Yates et B. Ribeiro-Neto. Modern Information
 Retrieval: The Concepts and Technology behind Search. 2nd
 Edition. Boston, USA: Addison Wesley Longman, 2011. url:
 http://people.ischool.berkeley.edu/~hearst/irbook/.
- [BCC10] S. Büttcher, C. L. A. Clarke et G. V. Cormack. Information Retrieval: Implementing and Evaluating Search Engines.

 Cambridge, USA: MIT Press, 2010. url:

 http://www.ir.uwaterloo.ca/book/.
- [CMS15] W. B. Croft, D. Metzler et T. Strohman. Search Engines:
 Information Retrieval in Practice. Pearson, 2015. url:
 http://www.search-engines-book.com/.

Références bibliographiques II

[MRS08] C. D. Manning, P. Raghavan et H. Schütze. *Introduction to Information Retrieval*. New York, USA: Cambridge University Press, 2008. url: http://www-nlp.stanford.edu/IR-book/.