Music Recommender and Genre Classification System

(CSCI 5502)

Team Overview

- Suresh Kumar (suku3476)
- Sunil Baliganahalli Narayana Murthy (suba5417)
- Praveen Kumar Devaraj (prde1873)

Problem

How to recommend music to Users?

Given

- Set of Songs
- Set Users
- User profile

Previous Works

 Recommendation Systems produce recommendation in two ways through collaborative or content-based filtering.

Collaborative filtering

- Depends on Community of Users
- Based on User Similarity
- "Cold Start" Problem

Content Based filtering

- Based on Song Similarity
- Depends on Song Features

Proposed Work

- Combine the advantages of collaborative filter and content-based filter to form a hybrid recommendation system
- Genre Classification to categorize music
- Recommendation based on time of the day and User mood

Hybrid Model for Recommendation

Libraries / Frameworks Used

- Python
- Apache Spark
- Sklearn
- Theano
- Tensorflow google
- Numpy
- Pandas

Datasets

- Million Song dataset (http://labrosa.ee.columbia.edu/millionsong/) Open Source
- Available Datasets
 - SecondHandSongs dataset -> cover songs
 - musiXmatch dataset -> lyrics
 - Last.fm dataset -> song-level tags and similarity
 - Taste Profile subset -> user data
 - thisismyjam-to-MSD mapping -> more user data
 - tagtraum genre annotations -> genre labels
 - Top MAGD dataset -> more genre labels
- The raw data consists of listening history of a million users in HD5 format.
- Only a subset (1 million entries) of the data is used for testing.
- Full dataset (46 million entries) AWS (~4hr) Collaborative Filtering
- K-Fold Cross-Validation (4:1)

Collaborative Filter(CF)

- Memory based CF:
 - Based on user rating to compute the similarity between the users
 - Performance decreases as the data gets sparse
- Model Based CF:
 - Based on machine learning algorithms to find patterns on training data
 - The users and items are a small set of latent factors used to predict missing entries
 - Performance is better in case of sparse data and is scalable
 - Used Alternating Least square algorithm to learn the latent factors
 - Play count of a song is used as rating

Collaborative Filter(CF)

• Used Apache Spark's Mlib - Model based collaborative — Uses Alternating Least square Algorithm.

Algorithm 1 ALS Algorithm

- 1: Set up vectors yUsers, yItems, xq, and xp
- 2: Initialize μ , a_i , b_u , y_{ui}
- 3: while MSE not converged and iteration \neq max limit do
- 4: Create q_i vectors
- 5: Solve for p_u vectors
- 6: Create p_u vectors
- 7: Solve for q_i vectors
- 8: Rescale each p_u and q_i vector
- 9: Update μ , a_i , b_u , y_{ui}
- 10: Find MSE
- 11: end while

Low Rank Matrix Factorization

Proposed Work – Content-Based Filtering

- Depends on the attributes and features of the songs
- Song attributes considered include danceability, tempo, energy, timbre, key, loudness
- User profile is based on a weighted vector of songs This weights denote importance of each feature.
- Machine learning algorithms like Bayesian Classifiers, cluster analysis, decision trees, artificial neural networks, etc., were used

Hybrid Model = Collaborative Filter + Content-based Filter

Two approaches are pipelined – Output of Collaborative Filtering is fed as input for Content based Filtering

Feed latest songs for content based filtering to recommend the latest songs also – to overcome the disadvantage of Collaborative Filtering.

Genre Classifier

- Automatic Genre Classification Categorize music based on genre
- Data mining techniques and Machine learning algorithms on existing data.
- Feature vector include
 - Loudness,
 - Tempo
 - Danceability
 - Key
 - Energy
 - Duration
 - Artist Name etc
- Model is constructed using above feature vector to predict genre.
- Modelling techniques
 - Support Vector Machines (SVM), Nearest-Neighbor (NN) classifiers
 - Gaussian Mixture Models, Linear Discriminant Analysis (LDA), Random Forest

Completed Tasks

Collaborative Filtering

 Apache Spark model-based collaborative filter using Alternating Least Squares (ALS) algorithm.

Content Based Filtering

- Logistic Regression from Apache Spark
- SVM

Hybrid Model

Genre classifier:

- Constructed feature vector using attributes like "Loudness", "Tempo", "Time-Signature", "Mode", "Key", "Average Timbre", "Duration" and "Variable Timbre".
- Logistic Regression
- Naïve Bayes
- Random Forest
- Decision Tree

Evaluation Metrics

Performance Evaluation

- Mean Squared Error and Root Mean Squared Error.
- Precision and recall or DCG to assess the quality of the recommendation system.
- K Fold Cross Validation in the ratio of 4:1 (Split the input data into training set and test set)
- RMSE formula:

$$RMSE = \sqrt{\frac{1}{n} \sum_{p,q} |P_{u,v} - R_{u,v}|^2}$$

• Evaluation of Genre Classifier – Predicted genre for songs of known genre and compare the predicted genre with the actual genre of the song.

Collaborative Filtering Results

Rank = 8 Number of Iterations = 10

Lambda – Regularization Parameter	Mean Squared Error
1	15.23
3	11.80
5	12.16
7	13.76
9	15.56
11	16.62
13	16.64
:	:
20	16.64

• Content Based Filtering Results

• Genre Classifier

Classifier	Accuracy			
Logistic Regression	53.76			
Decision Tree	47.58			
Naïve Bayes	24.52			
Random Forest	58.37			
SVM	41.73			
SVM + Boosting	49.64			

Classifier Vs Accuracy

Distribution of Genre

Genre Classifier

Random Forest – Highest Accuracy
 Ensemble method

Showing Top 20 rows in Genre Classification using Random Forest

genre	-+	t features	indexedLabel	rawPrediction	probability pred	+- diction	predictedLabel
classic pop and rock classic pop and rock	C TRAAAGR128F425B14B C TRAACPE128F421C1B9 C TRAACQW128F428854F C TRAAGJV128F1464090 C TRAAGNL128F4299BF1 C TRAAIAN12903CFF16D C TRAAMUY128F4283222 C TRAAOAU12903D0154B C TRAAUSW128F426646E C TRAAXRS128F932F05D C TRABEKP128E078C123	features +	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	rawPrediction	[0.15168539325842 [0.43927724537989 [0.49473434535104 [0.45348675034867 [0.54656739811912 [0.48461155398813 [0.28610171026665 [0.44331872946330 [0.42402587633518 [0.69104354465297 [0.32231722765110 [0.64477773868167	2.0 c 0.0 c 0.0 c 0.0 c 0.0 c 0.0 c 1.0 0.0 c 0.0 c	predictedLabel dance and electro classic pop and rock folk classic pop and rock folk classic pop and rock folk classic pop and rock
classic pop and rock classic pop and rock	TRABMTM12903D083D2 TRABTFI128F14905F6 TRABTYR128F9304934 TRABWPT128F42B06CC TRABXHU128F147EDE9 TRACRBQ128F4263964	[-4.942,92.014,1 [-18.264,151.477, [-16.172,127.207, [-10.548,89.966,4 [-14.369,157.219, [-14.293,111.492, [-8.45,130.031,4	0.0 0.0 0.0 0.0 0.0	[1.15726233421274] [1.00660429279031] [0.93363338820870] [0.57273482959268] [0.93995765275257] [0.96624803767660] [1.18783945428682]	[0.57863116710637 [0.50330214639515 [0.46681669410435 [0.28636741479634 [0.46997882637628 [0.48312401883830	0.0 c 0.0 c 0.0 c 1.0 0.0 c	classic pop and rock classic pop and rock classic pop and rock folk classic pop and rock classic pop and rock

Future Scope

- Use Deep learning techniques.
- Use Probabilistic Topic Modelling with Collaborative Filtering
- Recommend songs based on time of the day (Morning, Noon, Evening).
- Recommendation based on mood tags sad, happy, joyful, romantic, etc.
- Integration with Spotify/I-tunes etc