Apuntes de clase

José Antonio de la Rosa Cubero

Proposición 1. 1. $x^m = 1$ si y solo si n|m.

- 2. $\operatorname{ord}(x^k) = n/\gcd(n,k)$
- 3. x^k es un generador de C_n si y solo si gcd(n,k) = 1.
- 4. El número de generadores distintos de C_n es exactamente $\varphi(n)$, la función totiente de Euler.

Proposición 2. Sean $a, b \in G$ dos elementos de un grupo que conmutan entre sí, esto es, para los que ab = ba, y de manera que sus órdenes son primos relativos, esto es gcd(ord(a), ord(b)) = 1. Se tiene:

- 1. $\langle a \rangle \cap \langle b \rangle = 1$.
- 2. Demostrar que ord(ab) = ord(a) ord(b).

Teorema 1. Sea $n \geq 2$ y $\alpha, \beta \in S_n$ dos permutaciones disjuntas. Entonces:

$$\operatorname{ord}(\alpha\beta) = \operatorname{mcm}(\operatorname{ord}(\alpha), \operatorname{ord}(\beta))$$

Corolario 1. Como consecuencia, si $\alpha \in S_n \setminus \{id\}$, entonces el orden es el mínimo común múltiplo de las longitudes de los ciclos disjuntos en que descompone.

Demostración. Teomemos $\alpha, \beta \in S_n$ permutaciones disjuntas. Veamos que sus potencias también son disjuntas.

Supongamos que $\alpha^k(x) \neq x$. Entonces $\alpha(x) \neq x$ y $\beta(x) = x$ y finalmente $\beta^k(x) = x$.

Sean $r = \operatorname{ord}(\alpha)$, $s = \operatorname{ord}(\beta)$ y $m = \operatorname{mcm}(r, s)$ y

$$(\alpha\beta)^m = \alpha^m \beta^m = \mathrm{id}$$

Sea k tal que id = $(\alpha \beta)^k = \alpha^k \beta^k$. Como α^k y β^k son disjuntas, entonces $\alpha^k = \text{id} = \beta^k$.

Finalmente eso implica que tanto r como s dividen a k y por tanto m = mcm(r, s) | k

Proposición 3. G generado por $a \neq b$ tal que el orden de ambos elementos es 2 y conmutan.

Entonces $G = \{1, a, b, ab\}$ y G es isomorfo al grupo de Klein.

Proposición 4 (Clasificación de los grupos de orden 4 y 6). Si G es un grupo de orden 4, entonces es isomorfo a K o a C_4 . Si G es un grupo de orden 6 entonces es isomorfo a C_6 o a D_3 .

Demostración. Si hay un elemento de orden 4, entonces $\langle a \rangle = G$ y por tanto es isomorfo al grupo cíclico.

El siguiente caso es que no se verifique lo anterior. Todos los elementos tienen orden 2. Entonces G es abeliano. Elegimos dos elementos a, b distintos entre sí y del 1. Sea $H = \langle a, b \rangle$. Entonces H es el grupo de Klein por la proposición anterior. Como tiene orden 4, G = H.

$$a \in G \text{ con } |G| = 6. \text{ Y ord}(a) \in \{2, 3, 6\}.$$

Primer caso, G es abeliano. No todos los elementos de G tienen orden 2, porque si no $H=\langle a,b\rangle\leq G$ sería isomorfo al propio G pues $a^2=b^2=1$ y ab=ba, pero el orden de H es 4.

Así $\operatorname{ord}(a) = 6$ o $\operatorname{ord}(a) = 3$. En el primer caso, $\langle a \rangle = G$ y por tanto es cíclico.

Supongamos a de orden 3. Sea $H = \{1, a, a^2\} \leq G$.

$$[G:H] = \frac{|G|}{|H|} = \frac{6}{3} = 2$$

entonces:

$$H/G = \{H, Hb\}$$

con $b \in G$ tal que $b \notin H$. $G = H \cup Hb = \{1, a, a^2, b, ab, a^2b\}$. Han llamao a la puerta y me he perdido.

Descripción de los subgrupos de G, para algunos grupos de orden finito.

Teorema 2. 1. Para cada divisior positivo d de n, $\langle x^{n/d} \rangle$ tiene orden d. Por tanto $\langle x^{n/d} \rangle = C_d$.

- 2. Sea H un subgrupo propio de C_n . Sea $s = \min\{r \geq 1 : x^r \in H\}$ Entonces $s|n \ y \ H = \langle a^s \rangle$.
- 3. Hay una biyección entre los divisores de n y los subgrupos de C_n .
- 4. $d_1|d_2$ si y solo si $\langle x^{n/d_1}\rangle \leq \langle x^{n/d_2}\rangle$