Using CNNs and Transfer Learning to Detect Pneumonia in Chest X-rays

Jack Brosgol, Alex Fischmann

Agenda

Background

Normal Bacterial Viral

- Responsible for 14% of all deaths of children under 5 years old in 2019 (World Health Organization)
- Two different kinds, treatment can differ
- Doctors look for white spots in lung, called infiltrates

Methods: Convolutional Neural Networks (CNNs)

- Deep learning architecture designed for images
- Characteristics
 - Convolutional layer → feature maps
 - Pooling layer → downsampling
 - Fully connected layer for classification

[(None, 256, 256, 3)] input 4 InputLayer output: [(None, 256, 256, 3)] tf.math.truediv 1 input: (None, 256, 256, 3) TFOpLambda (None, 256, 256, 3) output: tf.math.subtract 1 (None, 256, 256, 3) TFOpLambda (None, 256, 256, 3) output: mobilenetv2 1.00 224 (None, 256, 256, 3) Functional (None, 8, 8, 1280) output: global_average_pooling2d_1 (None, 8, 8, 1280) input: GlobalAveragePooling2D (None, 1280) output: (None, 1280) dropout input: Dropout output: (None, 1280) (None, 1280) dense 1 output: (None, 1) Dense tf.math.sigmoid (None, 1) TFOpLambda (None, 1)

Methods: Transfer Learning

- Add new layers
- Freeze bottom layers -> Train
- Similar Low Level Patterns
- Disadvantages: Less Freedom over Architecture
- Advantages: Small data sets, Computational

Transfer learning: idea

Models

- 5,836 images
- 72% infected | 28% not infected
- Raw data split (89/1/10)
- One to five years old

Data

Results

01 Shuffled vs Unshuffled

02 Impact of Different Dropouts

03 Impact of Different Base Models

Results: Shuffled vs Unshuffled

- Unshuffled 89/1/10 vs. Shuffled 70/10/20
- Unshuffled → threshold and overfitting
- Plausible explanations:
 - Different sensors → brightness
 - Differences in train/test
 - Impact of train/val/test split
 - Not class imbalance
- Precision and Recall at threshold = 0.5
 - Shuffled: ~97% for both
 - Unshuffled: 75% vs 99%

Xception

- Accuracy: 0.2, 0.5, 0.7
- Recall: 0.2
 - Precision trade-off justified
- \bullet $\rightarrow 0.2$

Inception

- Accuracy: 0.5 has highest (statistically)
- 0.2 has higher recall (by ~1%), but much lower precision (by ~4%)
- \bullet $\rightarrow 0.5$

MobilenetV2

- Accuracy: 0.2, 0.5, 0.7 vs 0.0
- Is the trade-off too big for 0.7?
- \bullet \rightarrow 0.2 and 0.5

Results: Impact of Different Base Models

Table 1. Comparison of Base Models with Dropout = 0.2 and Threshold = 0.5

	MobileNet	Inception	Xception
Accuracy	0.9667	0.9581	0.9681
Precision	0.9785	0.9553	0.9713
Recall	0.9780	0.9891	0.9856

Table 2. Comparison of Base Models with Dropout = 0.5 and Threshold = 0.5

	MobileNet	Inception	Xception
Accuracy	0.9638	0.9658	0.9678
Precision	0.9823	0.9743	0.9884
Recall	0.9680	0.9789	0.9672

Results: Impact of Different Base Models

Ethical Implications

- False Positives, False Negatives -> Precision Recall Tradeoff
- Scope of our data
- Additional method for diagnosis, not replacement
- Advantages:
 - (1) Patients diagnosed faster
 - (2) Doctors can spend time more efficiently
- Potential Harmful Effects:
 - (1) Lack of Personalized Care
 - (2) Corporate Structure

Future Work

- Experiment with more dropout values between 0.2 and 0.5
- K-fold Validation
- Different base models

Thank you!

Sources

https://www.who.int/news-room/fact-sheets/detail/pneumonia

https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia

https://www.radiologyinfo.org/en/info/pneumonia

https://developersbreach.com/convolution-neural-network-deep-learning/

https://towardsdatascience.com/transfer-learning-with-convolutional-neural-networks-in-pytorch-dd09190245ce