Описание алгоритма первого практического задания.

Дмитрий Мурзин, 595

Даны α и слово $word \in \{a, b, c\}^*$. Требуется найти длину самого длинного префикса word, принадлежащего L

Пусть α — регулярное выражение. Сопоставим каждому символу α_j регулярное выражение $\alpha[i..j]$ (то есть для каждого j мы находим индекс i, то есть имеем функцию $I: j \mapsto i$) по следующему правилу:

- ullet если $lpha_i$ буква, то I(j) := j
- ullet если $lpha_j$ символ звездочки, то I(j) := I(j-1)
- ullet если $lpha_j$ символ умножения или сложения, то I(j) := I(I(j-1)-1)

Будем решать задачу динамическим программированием. Пусть $m = |\alpha|, n = |word|$. Заведём трёхмерный массив dp[0..m)[0..n][0..n] (то есть он будет размерности $m \cdot (n+1) \cdot (n+1)$) со следующим смыслом: dp[k][i][j] := можно ли получить подслово word[i..j) из регулярного выражения, соответствующего символу rpn_k . Считать его мы будем следующим образом:

- ullet если rpn_k буква, то для всех индексов i таких что $word_i == rpn_k$ присваиваем dp[k][i][i+1] = true
- если rpn_k символ сложения, то найдём индексы k_1 и k_2 , которые являются операндами для rpn_k . Более конкретно $k_2 := k-1$, $k_1 := I(k-1)-1$. Тогда присвоим $dp[k][i][j] = dp[k_1][i][j] \mid dp[k_2][i][j]$.
 - Здесь мы говорим, что подслово word[i..j) может быть получено из регулярного выражения, соответствующего rpn_k , если оно может быть получено из первого операнда для rpn_k или из второго.
- если rpn_k символ умножения, то аналогично предыдущему пункту найдём индексы k_1 и k_2 . Далее переберём все d такие что $i \leq d \leq j$ и если хотя бы для одного d верно $dp[k_1][i][d]$ && $dp[k_2][d][j]$, то присвоим dp[k][i][j] = true.
 - Здесь мы говорим, что подслово word[i..j) может быть получено из регулярного выражения, соответствующего rpn_k , если существует разбиение этого слова на два слова: word[i..j) = word[i..d)word[d..j) и каждое из этих двух слов может быть получено из соответствующих операндов для rpn_k .
- если rpn_k символ звёздочки, то найдём индекс k_0 , который является операндом для rpn_k . Более конкретно $k_0 := k-1$. Далее переберём все d такие что $i \le d \le j$ и если хотя бы для одного d верно dp[k][i][d] && $dp[k_0][d][j]$, то присвоим dp[k][i][j] = true.

Здесь мы говорим, что подслово word[i..j) может быть получено из PB для rpn_k , если существует разбиение этого слова на несколько слов: $word[i..j) = word[i..i_1)word[i_1..i_2)\dots word[i_l..j)$ и каждое из этих слов может быть получено из PB для rpn_{k_0} . Это в свою очередь эквивалентно тому, что существует разбиение слова word[i..j) на два слова: $word[i..j) = word[i..i_l)word[i_l..j)$ и первое слово может быть получено из PB для rpn_{k_0} .