Метод замороженного спина для поиска электрического дипольного момента дейтрона в накопительном кольце

Соискатель: А. Е. Аксентьев

Руководитель: д-р. физ.-мат. наук, проф. Ю. В. Сеничев Консультант: канд. физ-мат. наук, доц. С. М. Полозов

Национальный Исследовательский Ядерный Университет "МИФИ" (НИЯУ МИФИ)

Москва, 2020

Актуальность

Цель исследования

Разработка метода поиска электрического дипольного момента частицы в накопительном кольце, позволяющего достичь точность $10^{-29}e\cdot$ см.

Задачи исследования

- Разработать метод измерения ЭДМ дейтрона на основе измерений частоты прецессии спина в накопительном кольце.
- Проанализировать требования к магнитооптической структуре кольца-накопителя для поиска ЭДМ.
- Исследовать спин-декогеренцию пучка дейтронов в окрестности состояния "замороженного спина."

- Исследовать влияние несовершенств оптической структуры кольца на спин-орбитальную динамику.
- Промоделировать процедуру калибровки нормализованной частоты прецессии спина (спин-тюна) при смене полярности ведущего поля.
- Изучить статистические свойства метода измерения электрического дипольного момента.

Научная новизна

- Предложен метод измерения ЭДМ дейтрона, основанный исключительно на измерении частоты прецессии спина в накопительном кольце с ограничением по точности, оцениваемым на уровне 10⁻²⁹ е⋅см.
- Изучена спин-орбитальная динамика дейтронного пучка в окрестности состояния "замороженного спина."

- Предложен метод калибровки среднего по пучку спин-тюна, позволяющий уменьшить вклад систематических ошибок.
- Введено определение эффективного значения фактора Лоренца, необходимое для определения зависимости спин-тюна частицы от её координат в фазовом пространстве.
- Оделаны статистические оценки предельной чувствительности измерения ЭДМ предложенным методом.

Практическая значимость

Разработанный метод представляет интерес с точки зрения планирования экспериментов по поиску ЭДМ на различных ускорителях, в том числе на ускорительном комплексе NICA ОИЯИ (Дубна).

Апробация

- Во время исследований по оптимизации времени когерентности спина при помощи секступольных полей на ускорительном комплексе COSY (Исследовательский центр "Юлих").
- Результаты работы вошли в подготавливаемый коллаборацией СРЕDM для CERN отчёта, под названием "Feasibility study for an EDM Storage Ring."
- Основные результаты работы докладывались на международных концеренциях IPAC'17, IPAC'19, LaPlas III–V, а также конференциях коллаборации JEDI, и семинарах IKP-2 Forschungszentrum Jülich.

- Чисто магнитное кольцо
- + Источник поляризованных H^-/D^-
- + Циклотрон JULIC
- + Кольцо COSY 184 м
- + Внутренняя/внешняя мишени
- + Два вида охлаждения

Код COSY Infinity

- Разработка М. Берца и К. Макино (Michigan State University).
- Основан на дифференциальной алгебре; позволяет вычислять трансфер-матрицы элементов до (потенциально) любого порядка разложения ряда Тэйлора.
- Трекинговый код, учитывающий спиновую динамику.

Спин-трекинг в COSY Infinity

$$\begin{cases} \boldsymbol{z}_n &= \mathcal{M}(\boldsymbol{z}_{n-1}), \\ \boldsymbol{S}_n &= \hat{A}(\boldsymbol{z}_{n-1}) \cdot \boldsymbol{S}_{n-1} \end{cases}$$

Принцип измерения ЭДМ методом "замороженного спина"

Уравнение Томаса-БМТ

$$\frac{\mathrm{d} s}{\mathrm{d} t} = s imes \left(\underbrace{a_0 \cdot B + a_1 \cdot E imes eta}_{oldsymbol{\Omega}^{mdm}} + \underbrace{b_0 \cdot E + b_1 \cdot eta imes B}_{oldsymbol{\Omega}^{edm}}
ight)$$

Замороженный спин

$$\Omega_{(y)}^{mdm} = 0$$

Схема ускорителя

Схема ускорителя

Общие проблемы поиска ЭДМ в накопительном кольце

- Возмущения спиновой динамики, связанные с бетатронными колебаниями частиц.
- Спин-декогеренция частиц пучка в окрестности состояния "замороженного спина."
- МДМ-компонента спин-прецессии, связанная с неидеальностями оптической структуры ускорителя.
- Смена полярности ведущего поля, требуемая для сокращения в конечном выражении оценки ЭДМ МДМ-компоненты частоты спин-прецессии.

Возмущения спин-динамики

Проблема

Вариация амплитуды фитируемого сигнала

Выводы

Возмущения амплитуды сигнала

- на два порядка меньше случайной ошибки поляриметрии;
- влияют на оценку частоты с коэффициентом аттеньюации 10;
- поддаются контролю при использовании частотного подхода к измерениям.

Проблема

Ограничение на длительность измерительного цикла

МДМ-компонента спин-прецессии

Проблема

Основная систематическая ошибка Ω^{mdm}

$$\Omega^{mdm} = L(\langle heta_{tilt}
angle)$$

$$\Omega_{CW}^{mdm}pprox\Omega_{CCW}^{mdm}$$

Смена полярности ведущего поля

Проблема

Сменить полярность поля таким образом, чтобы воспроизвести величину Ω_x^{mdm} во всех измерительных циклах с точностью не хуже 10^{-7} рад/сек

Статистическое моделирование

Выводы

Инфо. (%FI _{tot})	Длительность $(imes au_d)$	Сигнал/шум
95	3.0	0.4
90	2.3	1.1
70	1.2	5.5
50	0.7	11.7

- Полезная длительность измерительного цикла не превосходит $3 \cdot \tau_d$.
- ② За один измерительный цикл в 1 000 сек можно достичь $\sigma_{\hat{\omega}} \approx 10^{-7}$ рад/сек, что за год измерений позволяет оценить ЭДМ с точностью $10^{-29}e\cdot$ см.

Успехи

- Высокоточное измерение нормализованной частоты прецессии спина: $\sigma_{\nu_s} \approx 10^{-10}$, $\sigma_{edm} \approx 10^{-24} e \cdot \text{см}$.
- Юстировка квадруполей с помощью пучка: точность определения положения квадруполей до 0.2 мм.
- **3** Оптимизация времени когерентности спина: время жизни поляризации свыше 1 000 сек.

Спин-декогеренция

Спин-декогеренция

Спин-декогеренция

Результаты работы

- Разработан метод измерения ЭДМ дейтрона, основанный исключительно на измерении частоты прецессии спина частицы при движении в накопительном кольце.
- Предложен принцип построения магнитооптической структуры кольца-накопителя для поиска ЭДМ дейтрона.
- Получены результаты исследования спин-декогеренции пучка дейтронов в окрестности состояния "замороженного спина."

- Исследовано влияние различного рода несовершенств элементов накопительного кольца на спин-орбитальную динамику пучка.
- Проведено численное моделирование процедуры калибровки нормализованной частоты прецессии спина.
- Проведена оценка статистических свойств разработанного метода измерения ЭДМ.

Положения выносимые на защиту

- Метод измерения электрического дипольного момента дейтрона.
- Принцип построения магнитооптической структуры накопительного кольца.
- Результаты исследования спин-декогеренции пучка дейтронов в окрестности состояния "замороженного" спина.
- Результаты исследования влияния различного рода несовершенств элементов накопительного кольца на спин-орбитальную динамику пучка.

- Метод калибровки нормализованной частоты прецессии спина.
- Результаты исследования систематических ошибок в различных методах поиска ЭДМ.
- Результаты исследования статистических свойств разработанного метода.

Спасибо за внимание!

Возмущения спин-динамики

Возмущения спин-динамики

Идеальная структура

Идеальная структура

Идеальная структура

Неидеальная структура: без секступолей

Неидеальная структура: без секступолей

Неидеальная структура: с секступолями

Неидеальная структура: с секступолями

Выравнивание осей стабильного спина частиц

МДМ-компонента спин-прецессии

МДМ-компонента спин-прецессии

Калибровка МДМ-сигнала

Почему это важно?

ЭДМ-статистика

$$\hat{\omega}_{edm} = \frac{1}{2} (\hat{\omega}_{x}^{+} + \hat{\omega}_{x}^{-})$$

$$= \omega_{edm} + \underbrace{\frac{1}{\sqrt{2}} \sigma_{\hat{\omega}}}_{stat} + \underbrace{(\omega_{mdm}^{+} - \omega_{mdm}^{-})}_{syst}$$

Утверждение

$$\left[\omega_y^{mdm+} - \omega_y^{mdm-} \to 0\right] \Rightarrow \left[\omega_x^{mdm+} - \omega_x^{mdm-} \to 0\right]$$

Калибровка МДМ-сигнала

Калибровочный график

Статистическое моделирование

Модулированная схема выборки

