1 случайный процесс

 \aleph случайный процесс $\xi(t), t \in \Theta$ — семейство случайных величин, индексированных параметром t. зачастую t это время или координаты. случайный процесс — некоторый процесс или явление, поведение в течение времени и результат которого предсказать заранее невозможно. например, курс валют или стоимость акций, прибыль организации с течением времени.

ограничения для $\xi(t)$:

потребуем, чтобы для $\forall \ t \ \xi(t)$ было случайной величиной. тогда исходная величина будет случайным процессом. если для $\forall \ t \ \xi(t)$ не случайная величина, то процесс детерминированный.

пусть задано вероятностное пространство $(\Omega, \mathfrak{A}, \mathbb{P})$ $\xi(t, \omega)$ $t \in \Theta, \omega \in \Omega$ (зависит от двух переменных) если $\Theta = \{t_0\}$, тогда $\xi(t)$ — одномерная случайная величина. если $\Theta = \{t_1, t_2, \ldots, t_n\}$, тогда $\xi(t_1), \ldots, \xi(t_n)$ — многомерная случайная величина (случайный вектор).

зададим $t_0 \leadsto \xi(\omega, t_0)$ — сечение случайного процесса. при фиксированном $\omega \leadsto \xi(\omega, t)$ — траектория случайного процесса. каждое сечение может быть случайной величиной.

 $F_{\xi}(t,\ x) = P(\xi(x) < x)$ — одномерная функция распределения. разные случайные процессы могут иметь одинаковые функции распределения.

\star случайный процесс не всегда задается одномерной функцией распределения.

$$F_{\xi}(t_1,\ t_2,\ x_1,\ x_2) = \mathbb{P}(\xi(t_1) < x,\ \xi(t_2) < x_2)$$

случайный процесс задан, если для $\forall \ n$ и $\forall \ t_1, \ \dots, \ t_n \ x_1, \ \dots, \ x_n$ определена функция $F_\xi(t_1, \ \dots, \ t_n, \ x_1, \ \dots, \ x_n) = \mathbb{P}(\xi(t_1) < x, \ \dots, \ \xi(t_n) < x_n)$

частный случай

случайный процесс называется процессом с независимыми значениями, если $\forall \ t_1, \ \dots, \ t_n \ \xi(t_1), \ \dots, \ \xi(t_n)$ являются независимыми. тогда

$$F_{\xi}(t_1, \ \ldots, \ t_n, \ x_1, \ \ldots, \ x_n) = F_{\xi}(t_1, \ x_1) \cdot \ \ldots \ \cdot F_{\xi}(t_n, \ x_n)$$

 $x = \{\xi(t), \; t \in \Theta\}$ — множество значений (состояний) случайного процесса.

характеристики

матожидание

$$M_{\xi}(t) = M[\xi(t)] \ orall \
m{фикс.} \ t$$

дисперсия

$$D_{\xi}(t) = D[\xi(t)] \ orall \ {
m фикс.} \ t$$