

For each time-point *s* in trial photometry traces:

Collect photometry signal values, Y_{i,j}(s), at trial time-point s, of each trial j, for all animals i = 1, 2, ..., n and concatenate into a single common vector: Y(s)

- Determine covariates to include for:
 - *i.* X fixed-effects (common across animals)
 - ii. \mathbb{Z} random-effects (can vary b/w animals)
- Regress photometry signal Y(s) onto covariates X in a LMM. Covariates take one value per trial but are free to affect the photometry signal at each time-point, s, differently

• Save regression coefficient estimates associated with each covariate k at time-point s: $\hat{\beta}_k(s)$

 Estimate covariance function and construct pointwise 95% confidence intervals (CIs) for coefficients at point s

This yields one vector (length S) of estimated $\widehat{\pmb{\beta}}_k$ for each covariate \emph{k}

- Smooth estimates $\widehat{\beta}$ (s) and their estimated covariance functions across time-points, s, and construct smoothed pointwise 95% CIs (dark gray)
 - Points where pointwise CI does not contain 0 are pointwise significant
- Calculate joint 95% CIs for the entire curve.

 Intervals for which joint 95% CI
 (light gray) does not contain 0 anywhere are jointly statistically significant.

В

Example: DA-Latency Association

Example time-point: 1.7 sec

Model includes fixed- and random-effects for *Latency* ($X_{i,j} = Z_{i,j} = \text{Lat}_{i,j}$):

$$Y_{i,j}(s) = \beta_0(s) + \gamma_{i,0}(s) + \operatorname{Lat}_{i,j} \left[\frac{\beta_1(s)}{s} + \gamma_{i,1}(s) \right] + \varepsilon_{i,j}(s)$$

