MATH 416/516 ASSIGNMENT 2 SOLUTIONS

Note: assume all Us are RVs from Uni(0,1) and the page references are to the textbook.

• Problem 4.1: Matlab

• Problem 4.2: Matlab

```
function X = myrand( p, n )
% Input p is pmf vector of length n
% Output is random integer 1, ..., n with pmf p.
js = [1:n]; F = cumsum(p); X = min( js( rand < F ) );
% end myrand</pre>
```

• Problem 4.4*: Matlab

Mean and standard deviation should both be 1.

• Problem 4.7: Matlab code uses vector v with v_i as a T/F flag for dice sum = j:

Expected number of dice rolls is approximately 61.

- Problem 4.10
 - a) A negative binomial RV $X = \sum_{i=1}^r X_i$, if each X_i is a geometric RV with parameter p (see p.23), so $X_i = 1 + \lfloor \frac{\ln(U_i)}{\ln(1-p)} \rfloor$ (p.54), and therefore $X = r + \sum_{i=1}^r \lfloor \frac{\ln(U_i)}{\ln(1-p)} \rfloor$.
 - b) Just check the algebra.
 - c) Given r and p, generate $U \sim Uni(0,1)$, initialize $pj = p^r$, F = pj, j = r, and then (p.50) use while U > F, j = j + 1; pj = (j 1)(1 p)pj/(j r); F = F + pj; end, X = j.
 - d) Initialize i = 0, j = 0, then, following the suggestion, use while i < r, j = j + 1, if Uni(0, 1) > p, i = i + 1 end, end, X = i.
- Problem 4.11; use a modified version of the permutation algorithm to generate random subsets of size r, until one of $1, \ldots, k$ is present.

Algorithm (assuming each U is a new Uniform (0,1) RV):

Do: initialize $P_i = i, i = 1, 2 ..., n$

for m = n : -1 : n-r+1, set $j = \lceil mU \rceil$ and swap P_j , P_m values; end Until $\min(P_{n-r+1}, P_{n-r+2}, \dots, P_n) \leq k$:

Note: for small r, k this might not be very efficient. Modified algorithm:

Initialize $P_i = i, i = 1, 2 \dots, n$; set $j = \lceil kU \rceil$ and swap P_j, P_n values;

for m = n-1 : -1 : n-r+1, set $j = \lceil mU \rceil$ and swap P_j , P_m values; end Output $\{P_{n-r+1}, P_{n-r+2}, \dots, P_n\}$.

• Problem 4.12*

$$E(|Z|) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} |x| e^{-x^2/2} dx = \frac{2}{\sqrt{2\pi}} \int_{0}^{\infty} x e^{-x^2/2} dx = -\frac{2}{\sqrt{2\pi}} e^{-x^2/2} \Big|_{0}^{\infty} = \frac{2}{\sqrt{2\pi}} \approx 0.798.$$

• Problem 4.16: for composition there are 4 cases: 5x.06 = .3, 2x.15 = .3, 2x.13 = .26, and 1x.14, corresponding to respective X values (1, 2, 3, 4, 5), (6, 9), (7, 10), and (8).

Algorithm:

Generate U_1, U_2 ;

If $U_1 < .3$ then $X = \lceil 5U_2 \rceil$; Elseif $U_1 < .6$ then if $U_2 < .5$, X = 6, else X = 9; Elseif $U_1 < .86$ then if $U_2 < .5$, X = 7, else X = 10; Else X = 8.

- Problem 4.17: using a little algebra, rewrite the pmf as $P\{X=j\} = \frac{1}{2}[(\frac{1}{2})(\frac{1}{2})^{j-1}] + \frac{1}{2}[(\frac{1}{3})(\frac{2}{3})^{j-1}],$ a composition of two equally weighted geometric distributions (see p.53 with p=1/2,1/3). Algorithm for X: if $U_1 < 1/2$, set $X = 1 + \lfloor \frac{\ln(U_2)}{\ln(1/2)} \rfloor$, otherwise set $X = 1 + \lfloor \frac{\ln(U_2)}{\ln(2/3)} \rfloor$. The first two Us from p.48 are $U_1 = .23$ and $U_2 = .66$, so $X = 1 + \lfloor \frac{\ln(.66)}{\ln(1/2)} \rfloor = 1 + \lfloor .59946 \rfloor = 1$.
- Problem 4.18*:
 - a) we have $p_1 = \lambda_1 (1 \sum_{j=1}^0 p_j) = \lambda_1$, $p_2 = \lambda_2 (1 \sum_{j=1}^1 p_j) = \lambda_2 (1 p_1) = \lambda_2 (1 \lambda_1)$; Using induction, assume $p_i = \lambda_i (1 - \sum_{j=1}^{i-1} p_j) = \lambda_i (1 - \lambda_1) \cdots (1 - \lambda_{i-1})$, for $i = 1, \dots, k$; then $p_{k+1} = \lambda_{k+1} (1 - \sum_{j=1}^k p_j) = \lambda_{k+1} ((1 - \lambda_1) \cdots (1 - \lambda_{k-1}) - p_k)$ $= \lambda_{k+1} (((1 - \lambda_1) \cdots (1 - \lambda_{k-1}))(1 - \lambda_k))$, so induction hypothesis is satisfied.
 - b) The algorithm generates Us, rejecting each j with probability $(1 \lambda_j)$, for $j = 1, \ldots, n 1$, until accepting j = n with probability λ_n , so probability of accepting n is $\prod_{j=1}^{n-1} (1 \lambda_j) \lambda_n = p_n$.
 - c) If X is geometric then $p_j = pq^{j-1}$, with q = 1 p so $\sum_{j=1}^{n-1} p_j = p(1 + q + \dots + q^{n-2}) = p(1 q^{n-1})/(1 (1 p)) = (1 q^{n-1}),$ and therefore $\lambda_n = p_n/(1 \sum_{j=1}^{n-1} p_j) = pq^{n-1}/q^{n-1} = p$.

The algorithm rejects with probability q until n is accepted with correct probability $p_n = pq^{n-1}$.

- Problem 5.1: after integration $F(X) = (e^X 1)/(e 1) = U$; solving for $X, X = \ln(1 + (e 1)U)$.
- Problem 5.2: after integration of the first part $F(x) = (x-2)^2/4$ for $2 \le x < 3$, with F(3) = 1/4; the integral of second part is $3/4 3(2 x/3)^2/4$, so $F(x) = 1/4 + 3/4 3(2 x/3)^2/4 = 1 3(2 x/3)^2/4$, for $3 \le x \le 6$. If U < 1/4, invert first part, solving $U = (X 2)^2/4$, with $X 2 = \sqrt{4U}$, so $X = 2 + 2\sqrt{U}$; otherwise solve $U = 1 3(2 X/3)^2/4$, with $2 X/3 = \sqrt{4(1 U)/3}$, so $X = 6 6\sqrt{(1 U)/3}$.
- Problem 5.3: inverting $U = (X^2 + X)/2$, $X = (\sqrt{1 + 8U} 1)/2$.
- Problem 5.5*: $F(x) = e^{2x}/2$, if x < 0, otherwise $F(x) = 1 e^{-2x}/2$ with both parts easily inverted: if $U_1 < .5$, $X = \ln(2U_2)/2$, otherwise $X = -\ln(2(1 U_2))/2$.
- Problem 5.7: the method is similar to the discrete composition method (p. 61): first generate a discrete RV J using the pmf $P\{J=j\}=p_j$; then generate an $X \sim F_J(x)$.
- Problem 5.8:
 - a) This has $p_1 = p_2 = p_3 = 1/3$, with $F_1 = x$, $F_2 = x^3$, $F_3 = x^5$, so if $U_1 < 1/3$, set $X = U_2$; if $U_1 \ge 2/3$, set $X = U_2^{1/5}$; otherwise set $X = U_2^{1/3}$.
 - c) First use U_1 to generate a discrete RV I using the pmf $P\{I=i\}=\alpha_i$; then generate $X=U_2^{1/I}$.
- Problem 5.9*: F(x) is a continuous composition of x^y cdfs, with exponential weight function e^{-y} . So first set $Y = -\ln(U_1)$ to get a random $F_Y(x) = x^Y$, then invert this to get $X = U_2^{1/Y}$.
- Problem 5.10: The simulation should use binomial (1000,.05) RVs to determine the number N of claims each month, then use Exp(1/800) RVs to determine the amount of each claim. For each set of claims, determine if the total exceeds \$50000. Some Matlab for a simulation using K = 1000 months (with the binomial RV method from class lecture):

K = 1000; n = 1000; p = .05; q = 1-p; r(1) = q^n; js = [1:n+1]; % binomial RV setup
for j = 1 : n, r(j+1) = r(j)*p*(n-j+1)/(j*q); end, F = cumsum(r); % binomial RV setup
for i = 1 : K % determine claim total for each month
 N = min(js(F>=rand)) - 1; % binomial(1000, .05) RV

X(i) = sum(-800*log(rand(1,N))); % total claims

end, disp(sum($\rm X > 50000$)/K) % display proportion > 50000 0.109

Approximately 11% of the months had total claims exceeding \$50000.

- Problem 5.16: you need the pdf $f(x) = e^{-x}(1 + 2e^{-x} 3e^{-2x})$.
 - a) the easiest algorithm uses AR with $g(x) = e^{-x}$, so $h(x) = f/g = (1 + 2e^{-x} 3e^{-2x})$. Then $h' = e^{-x}(-2 + 6e^{-x}) = 0$ when $x^* = \ln(3)$, so rejection constant is $h(x^*) = 4/3 = c$.

AR Algorithm:

- 1) Generate $U_1, U_2, \text{ set } X = -\ln(U_2);$
- 2) If $U_1 > \frac{f(X)}{cg(X)}$ goto 1), otherwise accept X.
- b) another algorithm could use AR with $g(x) = e^{-x/2}/2$, so $h(x) = f/g = 2e^{-x/2}(1+2e^{-x}-3e^{-2x})$. A graphical solution shows maximum $c \approx 1.77$ at $x^* \approx .64$, not as efficient as a).

AR Algorithm:

- 1) Generate U_1, U_2 , set $X = -2 \ln(U_2)$;
- 2) If $U_1 > \frac{f(X)}{cg(X)}$ goto 1), otherwise accept X.

Note: $F(r) = 1 - r - r^2 + r^3$, with $r = e^{-x}$, so an inversion algorithm could solve the cubic F(r) = U for r and then use $X = -\ln(r)$.

- Problem 5.17:
 - a) this is composition of $\frac{1}{4}(1)$, $\frac{1}{2}4x^3$ and $\frac{1}{4}5x^4$ with cdf's x, x^4, x^5 . Algorithm:

Generate U_1, U_2

If $U_1 < .25$ then $X = U_2$;

Elseif $U_1 < .75$ then $X = U_2^{\frac{1}{4}}$;

Else $X = U_2^{\frac{1}{5}}$.

- b) simplest algorithm is AR with g(x) = 1, but $\max(f/g) = f(1) = 7/2$; not very efficient.
- Problem 5.19: a) use problem 5.4 $X = (\sqrt{1+8U} 1)/2$;
 - b) could use AR g(x) = 1, $f(x) = \frac{1}{2} + x$, with $c = \max(f/g) = f(1) = 3/2$;
 - c) this is a composition of $\frac{1}{2}(x)$ and $\frac{1}{2}(x^2)$.

Algorithm: Generate U_1, U_2 ; if $U_1 < .5$, $X = U_2$, otherwise $X = U_2^{\frac{1}{2}}$.

- b) might be fastest; on average all you need are 3 U's, and no sqrt's.
- Problem 5.20: for AR you need a g(x) with a thicker tail, try $g(x) = e^{-x/2}/2$. Then $h(x) = f(x)/q(x) = e^{-x/2}(1+x)$; $h'(x) = e^{-x/2}(1-x)/2$, so maximum at x = 1, with $c = 2/\sqrt{e} \approx 1.21$, fairly efficient.

AR Algorithm:

- 1) Generate U_1, U_2 , set $X = -2\ln(U_2)$;
- 2) If $U_1 > \frac{f(X)}{cq(X)}$ goto 1), otherwise accept X.
- Problem 5.21*: a $[c, \infty)$ truncated Gamma has pdf $f(x) = Ax^{\alpha-1}e^{-x}$ for some constant A. A $[c, \infty)$ truncated Exp pdf is $g(x) = \lambda e^{-\lambda(x-c)}$, with $0 < \lambda \le 1$ so that g decays less rapidily. Now consider $h(x) = \frac{f}{g} = Ax^{\alpha-1}e^{-c\lambda}e^{-x(1-\lambda)}/\lambda$. This is a decreasing function for x > c, because $0 < \alpha < 1$ and $1 - \lambda \ge 0$, so the maximum is at $x^* = c$.

Given $x^* = c$ you need to minimize h(c) as function of λ . But $h(c) = B/\lambda$ for constant B, with minimum at $\lambda = 1$. So rejection constant $C = h(c) = Ac^{\alpha-1}e^{-c\lambda}$, and rejection function is just $h(x)/C = (x/c)^{\alpha-1}$.

This q(x) does not usually have mean α .

- Problem 5.22: following the example 5d use AR with g(x) = 1, $h(x) = f(x)/g(x) = 30x^2(1-x)^2$. with h'(x) = 30x(1-x)(2-4x) = 0 when $x^* = 1/2$; rejection constant $c = h(x^*) = 15/8 = 1.875$. This method, with ≈ 2 steps for each accept, is moderately efficient.
- Problem 5.23*: if you use AR with truncated uniform g(x) = 5, $h(x) = \frac{f}{g} = \frac{x(1-x)^3}{.00168}$, with max ≈ 19 at x = .8, so not efficient.

So try to better match f with easily invertible $g = K(1-x)^3$; $\int_{.8}^{1} g(x)dx = 1$ gives $\frac{1}{K} = .0004$.

Now $h(x) = \frac{f}{g} = \frac{4x}{3.36}$, with maximum value $c = 4/3.36 \approx 1.19$ at x = 1, so AR is very efficient.

To set up the AR algorithm you need $G(x) = \int_{.8}^{x} \frac{(1-x)^3}{.0004} dx = 1 - \frac{(1-x)^4}{.0016} dx$, with the inversion formula $X = 1 - (.0016(1-U))^{\frac{1}{4}}$; also notice $\frac{f}{cg} = x$.

AR Algorithm:

- 1) Generate U_1, U_2 , and set $X = 1 (.0016(1 U_2))^{\frac{1}{4}}$;
- 2) If $U_1 > X$ goto 1), otherwise accept X.

- Problem 5.24: $h(x) = f/g = 2e^{-x^2/2 + \lambda x}/(\sqrt{2\pi}\lambda)$. h is maxmized when $h' = (-x + \lambda)h = 0$ at $x = \lambda$, so $c(\lambda) = 2e^{\lambda^2/2}/(\sqrt{2\pi}\lambda)$. $c' = (\lambda 1/\lambda)c = 0$ when $\lambda = \pm 1$ with minimum at $\lambda = 1$.
- Problem 5.29: interarrival times are $\sim Exp(5)$, and bus sizes are uniform 20-40; Matlab:

• Problem 6.5*: the covariance matrix Cholesky decomposition is (p.100)

$$\Sigma = \left[\begin{array}{cc} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{array} \right] = \left[\begin{array}{cc} \sigma_1 & 0 \\ \rho \sigma_2 & \sigma_2 \sqrt{1 - \rho^2} \end{array} \right] \left[\begin{array}{cc} \sigma_1 & \rho \sigma_2 \\ 0 & \sigma_2 \sqrt{1 - \rho^2} \end{array} \right] = AA'.$$

If you let $\mathbf{x} = (x_1, x_2)'$, with $\mu = (\mu_1, \mu_2)'$, the bivariate Normal cdf is

$$B(X_1, X_2) = \int_{-\infty}^{X_1} \int_{-\infty}^{X_2} \frac{e^{-(\mathbf{x} - \mu)' \Sigma^{-1} (\mathbf{x} - \mu)/2}}{2\pi \sqrt{|\Sigma|}} dx_2 dx_1.$$

Then make the change of variables $\mathbf{x} = A\mathbf{y} + \mu$, so that $y_1 = (x_1 - \mu_1)/\sigma_1$, $y_2 = (x_2 - \mu_2 - \rho\sigma_2 y_1)/(\sigma_2 \sqrt{1 - \rho^2})$, with

$$B(X_1, X_2) = \int_{-\infty}^{(X_1 - \mu_1)/\sigma_1} \frac{e^{-y_1^2/2}}{\sqrt{2\pi}} \int_{-\infty}^{(X_2 - \mu_2 - \rho\sigma_2 y_1)/(\sigma_2 \sqrt{1 - \rho^2})} \frac{e^{-y_2^2/2}}{\sqrt{2\pi}} dy_2 dy_1.$$

Scaling and shifting y_2 produces the required result.

• Problem 6.6: first find Cholesky decomposition of

$$C = \begin{bmatrix} 3 & -2 & 1 \\ -2 & 5 & 3 \\ 1 & 3 & 4 \end{bmatrix} = \begin{bmatrix} a & 0 & 0 \\ b & c & 0 \\ d & e & f \end{bmatrix} \begin{bmatrix} a & b & d \\ 0 & c & e \\ 0 & 0 & f \end{bmatrix} = AA'.$$

So
$$a = \sqrt{3}$$
, $b = \frac{-2}{\sqrt{3}}$, $d = \frac{1}{\sqrt{3}}$, $c = \sqrt{5 - b^2} = \frac{\sqrt{11}}{3}$, $e = \frac{3 - bd}{c} = \sqrt{\frac{11}{3}}$, $f = \sqrt{4 - d^2 - e^2} = 0$.
Algorithm computes $X = AZ + \mu$, with $\mu = (1, 2, 3)'$ and $Z = (Z_1, Z_2, Z_3)'$ with $Z_i \sim Normal(0, 1)$, but you only need Z_1, Z_2 for each X because $f = 0$.

• Problem 6.7: this is not very clear. If you assume the bivariate joint distribution is H(X,Y), with marginals F(X), G(Y), then $C_{X,X}$ could mean $C_{X,X}(x,x) = P(F(X) \le x, F(X) \le x) = G(F^{-1}(X), F^{-1}(X))$.