Topic 15 Memory and PLD

Big Picture – Simplified Computer

Memory Components

MxN memory

- M words (row)
- N bits (column) wide each
- Types of memory
 - RAM
 - ROM

Random Access Memory (RAM)

- RAM readable and writable memory
 - Logically same as register file
 - Memory with address inputs, data inputs/outputs, and control
 - RAM vs. register file
 - RAM is typically larger
 - RAM typically stores bits more efficiently than flip flops
 - RAM typically implemented on a chip in a square rather than rectangular shape – keeps longest wires (hence delay) short

Register file

RAM block symbol

RAM Internal Structure

- Similar internal structure as register file
 - Decoder enables appropriate word based on address inputs
 - rw controls whether cell is written or read

Static RAM (SRAM)

- "Static" RAM cell
 - 6 transistors (recall inverter is 2 transistors)
 - Writing this cell
 - word enable input comes from decoder
 - When 0, value *d* loops around inverters
 - That loop is where a bit stays stored
 - When 1, the data bit value enters the loop
 - data is the bit to be stored in this cell
 - data' enters on other side
 - Example shows a "1" being written into cell

SRAM cell

Static RAM (SRAM)

- "Static" RAM cell
 - Reading this cell
 - Somewhat trickier
 - When rw set to read, the RAM logic sets both data and data' to 1
 - The stored bit d will pull either the left line or the right line down slightly below 1
 - "Sense amplifiers" detect which side is slightly pulled down

SRAM cell

Static RAM (SRAM)

Implementation with 6 transistors

Implementation with 4 transistors

Source: wikipedia

Dynamic RAM (DRAM)

- "Dynamic" RAM cell
 - 1 transistor (rather than 6)
 - Relies on large capacitor to store bit
 - Write: Transistor conducts, data voltage level gets stored on top plate of capacitor
 - Read: sense amplifier on the data line
 - Problem: Capacitor discharges over time
 - Must "refresh" regularly, by reading d and then writing it right back

Comparing Memory Types

- Register file
 - Fastest
 - But small capacity and biggest size
- SRAM
 - Fast
 - More compact than register file
- DRAM
 - Slowest
 - And refreshing takes time
 - But very compact
- Use register file for small items, SRAM for large items, and DRAM for huge items
 - Note: DRAM's big capacitor requires a special chip design process, so DRAM is often a separate chip

Read-Only Memory – ROM

- Memory that can only be read from, not written to
 - Data lines are output only
 - No need for rw input
- Advantages over RAM
 - Compact: May be smaller
 - Nonvolatile: Saves bits even if power supply is turned off
 - Faster Speed: especially than DRAM
 - Low power: Doesn't need power supply to save bits, so can extend battery life
- Choose ROM over RAM if stored data won't change (or won't change often)

Read-Only Memory – ROM

Internal logical structure similar to RAM, without the data input lines

Read-Only Memory – ROM

- How are bits stored in ROM?
 - Storing bits in a ROM known as programming
 - Fuse-Based Programmable ROM (one time programming)
 - Erasable Programmable ROM (EPROM)
 - Electronically-Erasable Programmable ROM (EEPROM)
 - Flash memory

Programmable Logic Devices

PLD

- First introduced in 1970s
- Can be viewed as a "black box" containing logic gates and programmable switches
 - The logic gates and programmable switches can be customized to implement specific logic circuit
- Simple programmable logic devices (SPLD)
 - Programmable logic array (PLA)
 - Programmable array logic (PAL)
- Complex programmable logic array (CPLD)
- Field-programmable gate array (FPGA)

Programmable Logic Array (PLA)

- Comprises a collection of buffers, inverters, AND gates, OR gates
- Can be used to realize logic circuit in sum-of-products (SOP) form,
- Example:
 f = x'yz + xy'z'

Programmable Logic Array (PLA)

- Buffers and inverters provide both true value and complement of each input
- AND plane provides the product terms
- OR plane provides the sum of the product terms
- Example:

$$- P1 = x1x2$$

$$- P2 = x1x3'$$

$$-$$
 P3 = x1'x2'x3

$$- P4 = x1x3$$

$$-$$
 F1 = P1 + P2 + P3

$$-$$
 F2 = P1 + P3 + P4

Programmable Logic Array (PLA)

- Each AND gate has 2xN inputs
 - N, number of primary inputs
- Each OR gate has M inputs
 - M, number of and gates
- **Problem**: size of the inputs
- Commercially available PLAs typically have:
 - 16 inputs
 - 32 AND gates
 - 8 OR gates
- Connections replaced by single lines, "x" indicates a connected input to the gate

Programmable Array Logic (PAL)

- Drawbacks of PLA
 - Hard to fabricate correctly due to the programmable connections
 - Special implementation of the programmable connections reduce the speed of circuits in PLA
- Solution: fix the OR plane PAL
 - Less expensive
 - Better performance
 - Became popular in practical applications

Programmable Array Logic (PAL)

Programmable Array Logic (PAL)

 In order to provide additional flexibility, an extra circuit is inserted between the OR output and the chip pin - Macrocell

PAL Example

- Compensate for the reduced flexibility
 - Various numbers of inputs to the OR gates

Complex Programmable Logic Devices (CPLD)

- Composed of multiple PAL/PLA-like circuit blocks
 - Blocks are connected through a set of interconnection wires
 - Blocks are connected to the IC chip pins through a set of I/O blocks
 - Number of blocks may vary from 2 to over 100
- Provides more inputs and outputs
- Provides more flexibility
- May accommodate bigger size circuit

CPLD

Field Programmable Gate Array (FPGA)

- First introduced by Xilinx in 1985
- Most FPGA providers are "fabless", allows
 - focus on device capability
 - improvement of design software
 - offering IP cores

Types of FPGA

- Reprogrammable
 - SRAM-based FPGA
 - Volatile, often the best choice for prototyping and development
 - Supports in-system-programming (ISP)
 - What we used in the labs
 - EEPROM-based (Flash-based) FPGA
- One-Time Programmable (OTP)
 - Anti-Fuse-based FPGA
 - EPROM-based FPGA

Internal Structure

- Composed of logic blocks and wires
 - Configurable Logic blocks (CLB)
 - I/O blocks (IOB)
 - Interconnection wires and switches

FPGA Architecture

Typical FPGA architecture

Programmable (Configurable) Logic Block

 PLB (or CLB), like in SPLD and CPLD, macrocell is added to provide more flexibility

29

Look Up Table (LUT)

- A typical PLB has a LUT
- Each LUT contains 2^N storage cells, N is the number of inputs to the LUT
 - SRAM for storage cell
 - Each storage cell can hold a value, either "1" or "0"
 - The cells are programmed to implement particular logic functions
 - The cells may be reconfigured to implement a different logic function in the same LUT
- N input LUT can implement any N variable logic function

LUT Example

 Implement the logic function specified by the truth table using a 2-input LUT

3-input LUT

 The number of inputs to LUT is small • 4 - 6 inputs in the 0/1commercially available **FPGAs** 0/10/1 0/1 **SRAM** X_3

32

FPGA Internals: Lookup Tables (LUTs)

- Implement bigger circuit with smaller LUTs
 - Example: 9-input circuit

Original 9-input circuit

Implemented with 3x1 LUTs

FPGA Configuration Example

- Blue x indicates a connection
- $f1 = x_1x_2$
- $f2 = x_2'x_3$
- f = f1 + f2

Programmable Switch

Xilinx FPGA PSM

Programmable Switch Matrix (PSM)

Xilinx FPGA Switches and Wires

Basic I/O Block Structure

Advanced FPGA Features

- Dozens of millions of equivalent logic gates
- Enhanced clock features
- Flexible embedded memory blocks
- Intellectual property (IP) cores
- Embedded processors (hard and soft)
- Digital signal processing (DSP) blocks, tools, design flows (specific FPGA vendors)
- Dedicated hardware multipliers
- high-speed communication capabilities
- Advanced I/O standards and protocol support

FPGA Example – Spartan 3

Courtesy of Xilinx Inc.

Example of FPGA Implementation

Pros and Cons of FPGA

- Pros
 - Fast turnaround.
 - Low NRE (non-recurring engineering) cost.
 - Low risk.
 - Effective design verification.
 - Low testing cost.
- Cons (compare to regular IC chip implementation, and are improving)
 - Bigger chip size
 - Higher cost
 - Higher power consumption
 - Slower speed
- Technology is still advancing