

Grundlagen der Technischen Informatik 2 Sommersemester 25

Übungsblatt 1

Aufgabe 1: COMS

Konstruieren Sie die folgenden Logikschaltungen in CMOS Logik.

- 1. $a \overline{\wedge} b$
- 2. $a \wedge b \wedge c$

Aufgabe 2: Logikgatter

Gegeben sei die folgende Wahrheitswertetabelle.

Α	В	С	X	
0	0	0	1	= ĀŘČ
0	0	1	. 1	=ĀĒ(
0	1	0	0	_
0	1	1	0	
1	0	0	0	
1	0	1	1	= ABC
1	1	0	0	
1	1	1	0	

- 1. Formulieren Sie eine Logikformel, die X in Abhängigkeit zu A, B und C beschreibt.
- 2. Konstruieren Sie aus Ihrer Logikformel eine Logikschaltung. (Verwenden Sie die logischen Gatter: { AND, OR, NOT })

Aufgabe 3: Analoge Filter

1. Zeichnen Sie den Schaltplan eines Tiefpassfilters. Markieren Sie die Messpunkte für die Eintagsund Ausgangsspannung und beschreiben Sie kurz die Funktionsweise.

Aufgabe 4: Normalformen

Wahrheitswertetabelle zur Funktion $f_3(x_2, x_1, x_0)$:

DNF	x_2	$\frac{x_1}{0}$	x_0	$ \begin{array}{c c} f_3 & & \\ \hline 0 = \times_2 \vee \times_4 \vee \times_6 \\ \hline 0 & & \\ \hline \end{array} $; (x2VX1VX)/ (X	GuY.vv lak		(- -	$(x_0)\sqrt{x_0}\sqrt{x_0}\sqrt{x_0}$
$\frac{1}{2}$ $\sqrt{\chi_1}$ $\chi_6 =$	0	0	1	(1) - x ₂ vx ₁ v _x ,	<i>)</i> ~ (C 1 1 10)//(,50 X ¹ 1 X ⁹	MX2 VXnV	$(x_0)\sqrt{x_1}\sqrt{x_2}\sqrt{x_1}\sqrt{x_2}$
	U	1	U	Q = YZNX, VX					/
42×1×0=	1	0	0	1 2 V V, V V,					
×2×1×0=	1	0 1	1	$ \begin{array}{c} (\underline{0}) = \chi_{2} \sqrt{\chi_{1}} \sqrt{\chi_{0}} \\ (\underline{0}) = \overline{\chi_{2}} \sqrt{\chi_{1}} \sqrt{\chi_{0}} \\ (\underline{0}) = \overline{\chi_{1}} \sqrt{\chi_{1}} \sqrt{\chi_{0}} \\ (\underline{0}) = \overline{\chi_{1}} \sqrt{\chi_{1}} \sqrt{\chi_{0}} \end{array} $					
X, AX, X, Z, Z, LX	1	1	1						
J. (12 14 10 V	Stelle	n Sie	zu d	ler Funktion f_3 die D	NF (disjunktive N	lormalform) เ	und die K	NF (konjun	ktiven
1	Norm	alfori	m) aı	ıf.			(ĺ	
				ÆB∕(V A'^B'^('		A . B	(1 A'	'B'C'
									-