MATA31

Calculus 1, for Mathematical Sciences, Fall 2018

Various Core Proofs/Identities

Current Instructor: Natalia Breuss

Instructor(s):

Dr. Natalia Breuss

 ${\bf Email:} \qquad \qquad {\rm n.breuss@utoronto.ca}$

Office: IC484

Office Hours: Wednesday 11:00 - 13:00

1 Identities

Basic Trigonometric Identiteis

Reciprocal Identities
$$(\sin x)^{-1} = \csc x$$

 $(\cos x)^{-1} = \sec x$
 $(\tan x)^{-1} = \cot x$

Pythagorean Identities

$$\sin^2 x + \cos^x = 1$$

$$\tan^2 x + 1 = \sec^2 x$$

$$1 + \cot^x = \csc^2 x$$

Angle Addition Identities
$$\sin(x \pm y) = \sin x \cdot \cos y \pm \cos x \cdot \sin y$$
$$\cos(x + y) = \cos x \cdot \cos y - \sin x \cdot \sin y$$
$$\cos(x - y) = \cos x \cdot \cos y + \sin x \cdot \sin y$$
$$\tan(x + y) = \frac{\tan x + \tan y}{1 - \tan x \cdot \tan y}$$
$$\tan(x - y) = \frac{\tan x - \tan y}{1 + \tan x \cdot \tan y}$$

Hyperbolic Trigonometric Identities

$$\sin h = \frac{e^x + e^{-x}}{2}$$
 $\cos h = \frac{e^x - e^{-x}}{2}$

Derivatives of Trigonometric Functions

Derivative of Trigonometric Functions
$$(\sin x)' = \cos x$$
 $(\csc x)' = -\csc x \cot x$ $(\cos x)' = -\sin x$ $(\sec x)' = \sec x \tan x$ $(\tan x)' = \sec^2 x$ $(\cot x)' = -\csc^2 x$

Derivative of Hyperbolic Trigonometric Functions
$$(\sinh x)' = \cosh x$$
 $(\operatorname{csch} x)' = -\operatorname{csch} x \cdot \coth x$ $(\operatorname{cosh} x)' = \sinh x$ $(\operatorname{sech} x)' = -\operatorname{sech} x \cdot \tanh x$ $(\tanh x)' = \operatorname{sech}^2 x$ $(\coth x)' = -\operatorname{csch}^2 x$

Derivative of Inverse Trigonometric Functions

$$(\sin^{-1} x)' = \frac{1}{\sqrt{1 - x^2}} \qquad (\csc^{-1} x)' = -\frac{1}{|x|\sqrt{x^2 - 1}}$$

$$(\cos^{-1} x)' = -\frac{1}{\sqrt{1 - x^2}} \qquad (\sec^{-1} x)' = -\frac{1}{|x|\sqrt{x^2 - 1}}$$

$$(\tan^{-1} x)' = \frac{1}{1 + x^2} \qquad (\cot^{-1} x)' = -\frac{1}{1 + x^2}$$

2 Uniqueness of Limits

$$\lim_{x\to c} f(x) = L \wedge \lim_{x\to c} f(x) = M \Longrightarrow L = M$$

Proof

Suppose the contrary that:

$$\lim_{x \to c} f(x) = L \wedge \lim_{x \to c} f(x) = M, L \neq M$$

Assume that L > M, L = M + K, WLOG

Let's choose $\epsilon = \frac{k}{2}$, this way the intervals do not overlap.

$$\lim_{x \to c} f(x) = L : \exists \delta_1 > 0, \exists c : 0 < |x - c| < \delta_1 \to |f(x) - L| < \epsilon$$

$$\lim_{x \to c} f(x) = M : \exists \delta_2 > 0, \ni : 0 < |x - c| < \delta_2 \to |f(x) - M| < \epsilon$$

Let $\delta = min(\delta_1, \delta_2)$ so that for any $\delta > 0$, $f(x) \in (M - \epsilon, M + \epsilon)$ and $f(x) \in (L - \epsilon, L + \epsilon)$.

Contradiction: This is impossible since we set $\epsilon = \frac{k}{2}$ to guarantee intervals do not overlap.

Therefore, $\lim_{x\to c} f(x) = L \wedge \lim_{x\to c} f(x) = M \Longrightarrow L = \tilde{M}$ by contradiction.