ГУАП

КАФЕДРА № 43

ОТЧЕТ ЗАЩИЩЕН С ОЦІ	ЕНКОЙ		
ПРЕПОДАВАТЕЛ			
Профессо			С.И. Колесникова
должность, уч. степо	ень, звание	подпись, дата	инициалы, фамилия
\mathbf{O}^{r}	ГЧЕТ О ЛА	БОРАТОРНОЙ РА	БОТЕ №1
Н	елинейное прогр	аммирование. Вариационн	ный принцип.
		T.0	
по д	исциплине:	Компьютерное мод	целирование
РАБОТУ ВЫПОЛІ	НИЛ		
СТУДЕНТ ГР.	4134к		Костяков Н.А.

подпись, дата

инициалы, фамилия

Цель работы.

Цель настоящей работы — освоить средства моделирования задач линейного программирования. Решение простейшей вариационной задачи

Постановка задачи

Вариант 4

На складах w1, w2, w3 хранятся соответственно 15, 25, 20 кроватей, должны быть распределены по четырем магазинам m1, m2, m3, m4, где требуется 20, 12, 5 и 9 кроватей. Пусть стоимость перевозки одной кровати со склада в магазин залается следующей таблицей в условных единицах:

Склад	Магазин	Магазин						
	M1	M2	M3	M4				
W1	2	2	2	4				
W2	3	1	1	3				
W3	3	6	3	4				

Как следует планировать перевозку для минимизации стоимости?

Формализованная постановка задачи

Обозначим переменные ($x\{ij\}$) как количество кроватей, которые нужно перевезти с склада (Wi) в магазин (Mj).

- 1. $(x\{11\})$: количество кроватей из склада (W1) в магазин (М1).
- 2. $(x\{12\})$: количество кроватей из склада (W1) в магазин (M2).
- 3. И так далее для всех комбинаций (i) и (j) (где (i $\{1, 2, 3\}$) и (j $\{1, 2, 3, 4\}$)).

Целевая функция

Цель — минимизировать общую стоимость транспортировки, которая выражается как сумма произведений количества кроватей и стоимости транспортировки для каждой пары склад-магазин:

[\text{Minimize}
$$Z = 2x_{11} + 2x_{12} + 2x_{13} + 4x_{14} + 3x_{21} + 1x_{22} + 1x_{23} + 3x_{24} + 3x_{31} + 6x_{32} + 3x_{33} + 4x_{34}]$$

Ограничения

- 1. Ограничения на потребности магазинов:
- 2. $(x \{11\} + x \{21\} + x \{31\} = 20)$ (для (M1))
- 3. $(x \{12\} + x \{22\} + x \{32\} = 12)$ (для (M2))
- 4. $(x \{13\} + x \{23\} + x \{33\} = 5)$ (для (M3))
- 5. $(x_{14} + x_{24} + x_{34} = 9) (для (M4))$

6. Ограничения на запасы складов:

7.
$$(x\{11\} + x_{12}) + x_{13} + x_{14} \le 15)$$
 (для (W1))

8.
$$(x \{21\} + x \{22\} + x \{23\} + x \{24\} \le 25)$$
 (для $(W2)$)

9.
$$(x_{31} + x_{32} + x_{33} + x_{34} \le 20)$$
 (для $(W3)$)

10. Ограничения на неотрицательность:

11. (
$$x \{ij\} \ge 0$$
) для всех (i) и (j).

Итоговая формулировка задачи

Мы должны минимизировать функцию стоимости (Z), удовлетворяя ограничениям по потребностям магазинов и доступным запасам на складах.

Скриншоты решения Excell

Я использовал LibreOffice Calc так как писал работу из под дистрибутива на linux

	1	0	0	4				0440400	.10 . 4 . 10 . 0 . 0	4	.04.004.00	0.0.00.4.0
_	m1	m2	m3	m4	на складе		целевая н(х)	2x11+2x12+2	(13+4x13+3x2	1+x22+x23+3	(24+3x31+6x3	2+3x33+4x3
w1	2	2	2	2 4	15							
w2	3	1	. 1	. 3	25							
w3	3	6	3	3 4	20)						
требуется	20	12	5	9)							
	m1	m2	m3	m4	всего	ограничение	предел					
w1	15	0		0		<=	15					
w2	0	12	5	8	25	<=	25					
w3	5	0	(1	. 6	<=	20					
всего	20	12		9								
ограничение			>=	>=								
Предел	20	12	E	9								
родол												
Затраты	90											
Jaipaibl	90	1										

Рисунок 1 – Результаты решения

Рисунок 2 – настройка для решения задачи

Скриншоты работы программы на python

```
Оптимальное распределение кроватей:
    Склад W1 -> Магазин M1: 15.0 кроватей
    Склад W1 -> Магазин M2: 0.0 кроватей
    Склад W1 -> Магазин M3: 0.0 кроватей
    Склад W1 -> Магазин M4: 0.0 кроватей
    Склад W2 -> Магазин M1: 0.0 кроватей
    Склад W2 -> Магазин M2: 12.0 кроватей
    Склад W2 -> Магазин M3: 5.0 кроватей
    Склад W2 -> Магазин M3: 5.0 кроватей
    Склад W2 -> Магазин M4: 8.0 кроватей
    Склад W3 -> Магазин M1: 5.0 кроватей
    Склад W3 -> Магазин M2: 0.0 кроватей
    Склад W3 -> Магазин M3: 0.0 кроватей
    Склад W3 -> Магазин M3: 0.0 кроватей
    Склад W3 -> Магазин M4: 1.0 кроватей
    Минимальная стоимость перевозки: 90.0

    О(.venv) kasi@kasi-kubu:~/Documents/GitHub/Vyzovskoe3-4/7 сем/Комп моделирование/лр1$
```

Листинг программы

```
import pulp

supply = [15, 25, 20] # w1, w2, w3

warehouses = ['W1', 'W2', 'W3']

demand = [20, 12, 5, 9] # m1, m2, m3, m4

stores = ['M1', 'M2', 'M3', 'M4']
```

```
cost = {
   ('W1', 'M1'): 2, ('W1', 'M2'): 2, ('W1', 'M3'): 2, ('W1', 'M4'): 4,
   ('W2', 'M1'): 3, ('W2', 'M2'): 1, ('W2', 'M3'): 1, ('W2', 'M4'): 3,
   ('W3', 'M1'): 3, ('W3', 'M2'): 6, ('W3', 'M3'): 3, ('W3', 'M4'): 4,
problem = pulp.LpProblem("Transportation_Problem", pulp.LpMinimize)
x = pulp.LpVariable.dicts("x", [(w, s) for w in warehouses for s in stores],
lowBound=0, cat='Continuous')
problem += pulp.lpSum(cost[(w, s)] * x[(w, s)] for w in warehouses for s in
stores), "Total_Cost"
for i, w in enumerate(warehouses):
   problem += pulp.lpSum(x[(w, s)] for s in stores) <= supply[i],</pre>
f"Supply_Constraint_{w}"
for j, s in enumerate(stores):
   problem += pulp.lpSum(x[(w, s)] for w in warehouses) >= demand[j],
f"Demand_Constraint_{s}"
problem.solve()
print("Оптимальное распределение кроватей:")
for w in warehouses:
   for s in stores:
        print(f"Склад {w} -> Maгaзин {s}: {x[(w, s)].varValue} кроватей")
   print()
print("Минимальная стоимость перевозки:", pulp.value(problem.objective))
```

Часть 2 – решение вариационной задачи

Вариант 4

```
4 V[y(x)] = \int_{0}^{\pi} ((y'(x) + y(x))^{2} + 2y(x)\sin x)dx, \quad y(0) = 0, \quad y(\pi) = 1;
```

Скриншот решения на python

```
PS L:\Vyzovskoe3-4\7 сем\КомпМод\лр1> python .\lag.py
y(x)**2 + 2*y(x)*sin(x) + Derivative(y(x), x)
Eq(y(x), -sin(x))
PS L:\Vyzovskoe3-4\7 сем\КомпМод\лр1>
```

Листинг программы

```
this code requires SymPy v1.4
# следующие две строки не нужны при запуске кода на live.sympy.org
from sympy import init_printing, sin
import numpy as np
init_printing()
from sympy import Symbol, Function, Derivative, dsolve, solve
x = Symbol('x')
y = Function('y')(x)
dy = Derivative(y)
F = (y-(1/2)*y**2)*sin(x)
F.doit() # выводиим выражение в человекочитаемом формате ...
print(F) # ... и в машиночитаемом виде
dFdy = Derivative(F, y)
dFd1y = Derivative(F, dy)
dFdy.doit()
dFd1y.doit()
L = dFdy - Derivative(dFd1y, x)
sol = dsolve(L)
eq1 = sol.subs({x:np.pi/4, y:-np.log(np.sqrt(2))})
eq2 = sol.subs({x:np.pi/2, y:0})
coeffs = solve([eq1, eq2])
res = sol.subs(coeffs)
print(res.doit())
```

```
■ untitled.m × +
 /MATLAB Drive/untitled.m
          F = (d1y + y)^2 + 2y * sin(x);
           % Находим частные производные
           dFdy = diff(F, y);
           dFd1y = diff(F, d1y);
           disp(dFdy)
           disp(dFd1y)
           % Задаем у как функцию от х для дальнейших символьных расчетов
           syms y(x)
           dy = diff(y, x);
           dFd1y_p = subs(dFd1y, {y, d1y}, {y(x), dy});
           % Находим производную dFd1y по х
           d_dFd1y_dx = diff(dFd1y_p, x);
           disp(d_dFd1y_dx)
           % Находим и решаем уравнение Эйлера-Лагранжа
           L = dFdy - d_dFd1y_dx == 0;
           disp(L)
           % Решение уравнения Эйлера-Лагранжа
           sol = dsolve(L);
           disp(sol)
Command Window
2*sin(x) + 2
Eq(y(x), 0.0433008012740166exp(x) - sin(x)/2 - 0.0433008012740181exp(-x))
```

Результат на матлабе, сошлось