Techniques for automated and interactive note sequence morphing of mainstream electronic music

Ву

René Wooller

Bachelor of Music at Queensland University of Technology, 2001

Master of Music at Queensland University of Technology, 2003

Supervisor: Associate Professor Andrew Brown, Music and Sound.

Co-supervisor: Doctor Frederic Maire, Software Engineering and Data Communications.

Submitted to:

Music and Sound Discipline, Creative Industries Faculty, Queensland University of Technology

In partial fulfillment of the requirements of the degree of:

Doctor of Philosophy

2007

Key words

Morph, morphing, interpolation, morphology, mutation, computer music, algorithmic composition, algorithmic music, interactive music, adaptive music, adaptive audio, game music, live electronic music, sound installation, compositional, key modulation, temporal modulation, metric modulation, modulation, topology, note-level, note sequence, MIDI, medley, transition, mash-up, mix, remix, DJ, evolutionary art, evolutionary computing, Markov, conditional probability, generative music, transformational, jMusic, Java, Midishare, realtime, reacTIVision, morph table.

Abstract

Note sequence morphing is the combination of two note sequences to create a 'hybrid transition', or 'morph'. The morph is a 'hybrid' in the sense that it exhibits properties of both sequences. The morph is also a 'transition', in that it can segue between them. An automated and interactive approach allows manipulation in realtime by users who may control the relative influence of source or target and the transition length. The techniques that were developed through this research were designed particularly for popular genres of predominantly instrumental electronic music which I will refer to collectively as Mainstream Electronic Music (MEM). The research has potential for application within contexts such as computer games, multimedia, live electronic music, interactive installations and accessible music or "music therapy". Musical themes in computer games and multimedia can morph adaptively in response to parameters in realtime. Morphing can be used by electronic music producers as an alternative to mixing in live performance. Interactive installations and accessible music devices can utilise morphing algorithms to enable expressive control over the music through simple interface components.

I have developed a software application called *LEMorpheus* which consists of software infrastructure for morphing and three alternative note sequence morphing algorithms: parametric morphing, probabilistic morphing and evolutionary morphing. Parametric morphing involves converting the source and target into continuous envelopes, interpolation, and converting the interpolated envelopes back into note sequences. Probabilistic morphing involves converting the source and target into probability matrices and seeding them on recent output to generate the next note. Evolutionary morphing involves iteratively mutating the source into multiple possible candidates and selecting those which are judged as more similar to the target, until the target is reached.

I formally evaluated the probabilistic morphing algorithm by extracting qualitative feedback from participants in a live electronic music situation, benchmarked against a live, professional DJ. The probabilistic algorithm was competitive, being favoured particularly for long morphs. The evolutionary morphing algorithm was formally evaluated using an online questionnaire, benchmarked against a human composer/producer. For particular samples, the morphing algorithm was competitive and occasionally seen as innovative; however, the morphs created by the human composer typically received more positive feedback, due to coherent, large scale structural changes, as opposed to the forced continuity of the morphing software.

Table of Contents

1	Introduction	1
	1.1 Background motivations	1
	1.1.1 Live MEM	1
	1.1.2 Computer games and multimedia	2
	1.1.3 Interactive installations	
	1.1.4 Additional motivating contexts	
	1.2 What is note sequence morphing?	
	1.3 Compositional and philosophical issues related to morphing	5
	1.4 Details of the research goal	
	1.5 Personal background	
	1.6 Design of research	
	1.6.1 Research design context	
	1.6.2 Research through iterative software development	
	1.6.3 Evaluation techniques	
	1.7 Knowledge outcomes	
	1.7.1 Algorithms	
	1.7.2 Data gathering techniques	
	1.7.3 Contextual Review	
	1.7.4 Software	
	1.8 Thesis structure	
2	Music and morphing	
_	2.1 MEM: context of choice	
	2.1.1 Musicology of MEM	
	2.1.2 Morphing in mainstream electronic music	
	2.2 Morphing in other musical contexts	
	2.2.1 Transitions	
	2.2.2 Morphs	
	2.2.3 Hybrids	
2	2.3 Summary of music and morphing	
3	Algorithmic music and morphing	. 04
	3.1.1 Previous approaches	
	3.1.2 Another approach	
	3.1.3 Compositional approaches of algorithmic music systems	
	3.1.4 Attributes of simple musical algorithms	
	3.1.5 Summary of the framework	
	3.2 Review of algorithmic composition	
	3.2.1 Composer agents	
	3.2.2 Computer Assisted Algorithmic Composition tools and toolkits	
	3.2.3 Sonifications	
	3.2.4 DJ agents	
	3.2.5 Summary of algorithmic composition review	
	3.3 Review of interactive music	
	3.3.1 Meta-instruments	. 88

3.3.2 Jamming agents	89
3.3.3 Adaptive music	
3.3.4 Interactive installations	95
3.3.5 Summary of interactive music	96
3.4 Review of note-level morphing	
3.4.1 GRIN	
3.4.2 HMSL	
3.4.3 Horner and Goldberg	
3.4.4 DMorph	
3.4.5 The Musifier	
3.4.6 Others	
3.4.7 Summary of opportunities for note-level morphing research	
4 LEMorpheus software infrastructure	
4.1 LEMorpheus overview	
4.2 High level morphing controls	
4.3 Loop editor	
4.4 Morphing parameters	
4.4.1 Parameters affecting the morph as a whole	
4.4.2 Parameters affecting each layer individually	
4.5 Note sequence morphing algorithm infrastructure	
4.5.1 Tonal Representation	
4.5.2 Rhythmic representation	120
4.5.3 Extensible design	
4.6 Rendering MIDI Output	
4.7 Summary or morphing infrastructure	
5 Parametric morphing algorithm	
5.1 Overview	
5.2 Description	
5.2.1 Envelope representation	
5.2.2 Envelope combination	130
5.2.3 Envelope playback	130
5.3 Informal Evaluation	135
5.3.1 Phase offset	135
5.3.2 Inverse melodic contours	136
5.3.3 Pitch and duration interpolation	136
5.3.4 Music of different styles	
5.4 Extensions	139
5.4.1 Self-synchronising inter-onset function	139
5.4.2 Higher-level musical constructs	140
5.4.3 Phase offset detection	141
5.5 Summary of parametric morphing algorithm	
6 Probabilistic morphing algorithm	
6.1 Description	
6.1.1 Weighted Selection	
6.1.2 Markov Morph overview	148
6.1.3 Markov Morph details	
6.2 Informal analysis	159

	6.2.1	Weighted selection	159
	6.2.2	Demonstrating Markov Morph through variation	160
		When Johnny comes morphing home	
		mal evaluation	
	6.3.1	Focus group	172
		Focus concert	
	6.4 Imp	rovements to probabilistic morphing	183
	6.5 Sun	nmary of the probabilistic morphing algorithm	.185
7	Evoluti	onary morphing algorithm	187
		erview	
	7.2 Trai	nsforming and selecting	190
		Selection through dissimilarity measures	
		Speeding through the scenic route	
		Putting it together	
		Summary of transforming and selecting	
		ecific compositional transformations: their process, parameters	
		I dissimilarity measures	
		Divide/merge	
		Rate	
		Phase	
		Harmonise	
		Scale pitch	
		Inversion	
	7.3.7	Octave	
		Add/remove	
		Key/scale morph	
		rmal evaluation: listening and analysis Tuning TraSe parameters	
		Morphing Backwards and Forwards	
		Key/Scale morphing with TraSe	
		When Johnny comes morphing home	
		omated evaluation	
		Computation time for a single frame	
		Number of notes and number of frames generated	
		Future improvements to automatic testing	
		mal qualitative evaluation: web questionnaire	
		Method: music creation	
		Method: questionnaire	
		Results and analysis	
		Discussion: musical controversy	
	7.6.5	Conclusion of formal qualitative evaluation	
		ensions	
	7.7.1	Note thinning	252
		Note clustering	
		Transformation chain	
	7.7.4	Structural morphing	254
	7.7.5	Automatic adjustment of parameters	254

-	7.7.6 Optimisation	255
	S Summary of evolutionary morphing	
8	Conclusion	264
8.1	Summary	264
	2 Demonstrations of potential applications	
	8.2.1 Concerts	
	8.2.2 Interactive Table Installation	
	8.2.3 Computer Game	
8.3	Future research	273
8.4	Concluding remarks	276
•	endices	070
Α	Glossary of terms	
В	Pseudocode of methods for combining envelopes and gen	
_	notes	
С	Printed output from the Markov Morph algorithm	
D	TraSe algorithm	
Е	Results from the online morphing questionnaire	296
Biblio	ography	305

List of figures

Chapter Two

Figure 1	Five different layers of loops in the <i>Fruity Loops</i> sequencer	24
Figure 2	Diagram showing the positions of the downbeat, backbeat, upbeat, onbeat and offbeat in the 4/4 bar	32
Figure 3	The portions of the bar that can fulfill the various beat roles for the kick drum: primary (P), primary-complementary (PC), primary-leading (PL), secondary (S), secondary-complementary (SC) and secondary-leading (SL). An example of one possible configuration is shown by the red squares.	35
Figure 4	Screenshot of a macroscopic track layout from the Fruity Loops sequencer.	43
Figure 5	The CF combined with the CC and linear pitch space	57
Chapte	er Three	
Figure 1	Self-synchronising function for inter-onsets (reprinted with permission).	87
Figure 2	Summary of research opportunities and the four major note-level morphing systems. "Y" indicates that the opportunity was investigated to a significant extent by the system, while "P" indicates that the opportunity was investigated partially. Blank indicates that no investigation has occurred. H&G stands for "Horner and Goldberg"	106
Chapte	er Four	
Figure 1	Overview of the infrastructure for morphing in <i>LEMorpheus</i>	109
Figure 2	High-level user interface for LEMorpheus.	110
Figure 3	Layout of the loop editor interface.	111
Figure 4	Parts that appear on the same vertical slot in source and target will be morphed together into the same layer. They may have different MIDI channels and instruments	112
Figure 5	Volume cross-fade functions. Solid lines for source MIDI channel volume, dashed for target MIDI channel volume. Blue shows the linear cross-fade, red shows a change in gradient, green shows a change in offset.	114
Figure 6	Example of the morph index being quantized into four discrete values. The dashed line is the original morph index, while the solid line is the quantized morph index	115
Figure 7	Example interpolation curves applied in parallel for different values of meta-data parameters: cross-over point of 1 and gradient 1 (orange), crossover point 0.5 and gradient 2 (blue), crossover point 0.5 and gradient 1 (green), exponential curve for note morph index (red)	116
Figure 8	Representing MIDI pitch 65 (E#) as the 3rd of C# Major.	117
Figure 9	<i>DePa</i> enables accurate representation of passing notes. Counting from one, scale degrees that are odd are in the scale, while those that are even are passing note pitches. Starting with a passing note in the major scale, between the Major 2 nd and the Major 3 rd , it will be represented as the 4 th degree of a diatonic DePa scale. In a minor scale, there is no passing note between the Major 2 nd and Minor 3 rd , leaving four options available to interpretation: keep the note as a passing note and raise or lower it to the closest existing	

	(in this case, "higher" has the equivalent MIDI pitch).	119
Figure 10	Overview of system for rendering MIDI data.	121
Chapte	er Five	
Figure 1	Example envelope representation	125
Figure 2	Example of an inter-onset envelope representing a crotchet (quarter-notes) followed by four quavers (eighth-notes) spanning a three beat loop. The nodes representing the latter three quavers are redundant, as the zero gradient line continues regardless	126
Figure 3	Pseudocode for the algorithm that converts notes into envelopes	129
Figure 4	An example of weighted combination of a source (round dots) and target (solid line) envelope, to produce a morph envelope (dash-dot). The morph index is 0.5, which is why the morph envelope is always exactly half way between the source and target	130
Figure 5	Top: an inter-onset envelope (dotted line) with the notes (red) that were used to create it. Bottom: Generating a note from the inter-onset envelope – on the fourth play cycle, the area under the inter-onset envelope since the last note was generated (shown by the grey) will be equal to the distance from the previous note to the current position squared, thereby generating a note (shown by the red arrow). That is, combining Equation 4 and 5, $v^2 = \int_{t-v}^t M_o(t) \ dt.$	133
Figure 6	Phase shift interpolation, made obvious by morphing from a pattern starting on the first beat to the same pattern starting on the second beat	135
Figure 7	No phase shift detected - pitch interpolation is used.	136
Figure 8	Interpolating between inverse melodic contours creates a mostly flat 'unmelodic' contour	136
Figure 9	Pitch and duration interpolation. In the source pattern (bar one), the notes start with a long duration and become shorter, while in the target (bar 6), the notes start short and get longer. The pitches of the target are the same as the source, but transposed up a perfect fifth	137
Figure 10	Constraining the pitch to values that occur in source and target, favouring the more commonly occurring values.	137
Figure 11	Morphing between a two bar loop from <i>Frere Jacque</i> to a two bar loop from <i>Chameleon</i> (Herbie Hancock).	138
Figure 12	Interpolation between different styles is harder when they are also in different keys, in this case, C Major and F# Pentatonic Minor. Source and target are two bars long, as in the previous example	138
Figure 13	Mathews and Rosler's "self-synchronising function" (reprinted with permission)	140
Figure 14	Diagram showing one possible example of the line h that goes through the exact centre of the inter-onset function $O(t)$. The loop length, l , is the period of the function	142
Figure 15	Example of note onsets generated from a note onset envelope (white squares) compared to the note onsets generated by the same envelope that has been transformed into a flat line with no variation (grey squares).	143
Figure 16	With the objective of phase shifting the modified note onsets in such a way that results in the original note onsets, this diagram shows all of the potential points at which a new phase offset envelope node should be considered for the example note onsets given	144

rigure 17	this example		
Chapte	Chapter Six		
Figure 1	An example of how similarity measurements between segments of the selected source or target sequence and the seed are created. In this simplified case, only monophonic pitches are being compared and the order (length of seed) is only two. It is clear that the first two note pitches are the same as the seed, 60 and 62 , so the similarity measure relating to the tail of the segment (index 2) is 1.0. None of the other two-note segments in W match the seed and so the other similarity ratings are less than 1.0. Note that the sequence wraps around – the segment W_5 to W_1 , 60 and 60 , is fairly close to P , 60 and 62 , which is apparent in the relatively high similarity rating for index 1 of 0.8		
Figure 3	Morphing, through weighted selection, between two different drum rhythms of the same length. The audible notes are in red, while the semi-transparent black and white notes underneath are provided as a reference to the source and target respectively. The first bar is the source and the last bar is the target.		
Figure 4	Swing can be dealt with easily, but different dynamic levels make the random nature of the weighted selection more obvious		
Figure 5	Example of a variation of a two bar bassline of cheesy nineties dance (first two bars). The top piano roll contains bars one through sixteen and the bottom piano roll continues with bars seventeen to thirty-two. The contrast is decreased from bars three to seven and it remains low until it is increased again over bars twenty-four to twenty-eight		
Figure 6	Transcripts of two different variations on a simple major scale run, up and down. "A" uses only the CC for the similarity measure and "B" uses only the CF. The depth for both is 5. For "B", the contrast was increased so that the two could have a comparable rate of variation, as the pitches of diatonic scales are more closely related in the CF than the pitches of chromatic scales.		
Figure 7	Variation of a four bar loop from <i>Take On Me</i> by <i>a-ha</i> , from bar five and onwards. Due to using only modulus eight beat space as the similarity measure, the notes from bars three and four of the original loop are measured as a perfect match to the notes in bars one and two. The notes highlighted in green are the actual notes played. For reference, the notes in black are the notes of the second two bars and the notes in white are the notes of the first two bars of the loop.		
Figure 8	Top is a numbered transcript of the <i>Take On Me</i> loop that can be used as a reference for the occurrence of the original notes in the generated material. In the two panels beneath this is a variation generated from the <i>Take On Me</i> loop of the previous example, using modulus three and four beat space for onset similarity. The actual notes played are highlighted in green. For reference, the notes from the first two bars of the original are overlaid in black while the notes from the second two bars of the original are overlaid in white. New notes that do not appear in either are red. Numbers are written in above or below notes refer to the position in the note-list (counting from zero) of the original sequence. "L" indicates a note generated through stream loss. The blue band at the top can be used as a reference to modulus three beat space		
Figure 9	Example of variation of <i>Take On Me</i> by <i>a-ha</i> where linear pitch similarity is weighted maximally, Markov order is one and contrast is maximum. To assist analysis, the number of the original note, from which the generated note is copied, is notated in red above each note. If a note is generated through weighted selection due to stream loss, an "L" is used instead. For reference, the numbers of each original note is included above		
Figure 10	The <i>Take On Me</i> variation using pitch similarity at 1.0; onset similarity at 0.66; Markov order 1; moderate contrast; inter-onset space of modulus 1, 2, 3 and 4; and CF pitch space.		

	The cycle of 3 is included in blue numbering along the top for reference, as is the original pattern (red notes, top). The numbers indicate the original note. The L indicates stream loss.	169
Figure 11	Transcript of a <i>Markov Morph</i> between <i>The British Grenadiers</i> and <i>When Johnny Comes Marching Home</i> . The source and target occupy the first four and the last four bars respectively.	171
Chapte	er Seven	
Figure 1	Pseudocode overview of <i>TraSe</i> .	190
Figure 2	Each of the seven note sequences that would be in a selection pool for <i>rate</i> (j=1), given the original (top-left)	191
Figure 3	Pseudo-code description of the Transform-Select function that is used in the <i>TraSe</i> algorithm.	196
Figure 4	Pseudocode of the Merge-Forward algorithm	199
Figure 5	A bi-directional NN comparison. The red box holds two notes (red 1 and 2) from the input sequence. The blue box holds two notes (blue 1 and 2) from the target sequence. The blue arrows show the NNs from the <i>backward</i> computation and the red arrows show the NNs from the <i>forward</i> computation. The distances between NNs are adjacent to the arrows.	200
Figure 6	Pseudocode of Nearest Neighbour dissimilarity measure	201
Figure 7	Two pitch envelopes (red and blue) and the difference in area between them (in pink). The difference in area between the onset and pitch envelopes are used as the dissimilarity measure for rate.	202
Figure 8	Pseudocode for the algorithm to find the tonic of the central octave	204
Figure 9	Pseudocode for the <i>scale pitch</i> compositional transformation.	205
Figure 10	Pseudocode of the inversion transformation.	207
Figure 11	Close up of Source (A) and Target (B) .	211
Figure 12	<i>TraSe</i> morph with all weights equal. <i>Add/remove</i> has two cycles, the transform speed of <i>add/remove</i> is 0.26 and the threshold of similarity to target is 0.04	211
	<i>TraSe</i> morph that demonstrates the use of weights that favourably bias the compositional transformation of "merging" notes over that of "splitting" notes, thus creating a less chaotic morph compared to the previous example. <i>Add/remove</i> transform speed is 0.46 and dissimilarity cut-off is 0.03.	213
Figure 14	Example of a slower transform-speed yielding faster convergence. Settings are the same as previous example, except for the transform speed on <i>add/remove</i> which was reduced to 0.28.	215
Figure 15	The number of transformations per frame has been limited to two. Merge is biased over split. <i>Add/remove</i> transform speed is 1.0	217
Figure 16	Morphing from target to source. The $add/remove$ transform speed is set to 0.32 and merge is bias over divide. The dissimilarity cut-off is zero.	219
Figure 17	The same morph of the previous example, played in reverse order of frames	220
Figure 18	Comparing the pitches in C Major with the pitches in F# Major	222
Figure 19	Key/scale morphing between C Major (Root = 0, scale = Ionian) and F# Major (root = 6, scale = Ionian), using CC, key-root distance and scale dissimilarity.	222

Figure 20	Output from morphing between C Major (Root = 0, scale = Ionian) and F# Major (root = 6, scale = Ionian), using <i>CF</i> , <i>key-root distance</i> and <i>scale dissimilarity</i>	. 222
Figure 21	Output from morphing between C Major (Root = 0, scale = Ionian) and F# Major (root = 6, scale = Ionian), using <i>key-scale dissimilarity</i> as the only measure	. 223
Figure 22	The pitch-classes (rows) present in each key/scale frame (columns) during a morph from C Ionian to F# Ionian, unexpectedly finishing on D# Aeolian. The "X" marks where there is a difference between the previous scale and the scale with the X , in terms of the pitch-class that the X is on	. 223
Figure 23	Output from morphing between C Major (Root = 0, scale = Ionian) and F# Major (root = 6, scale = Ionian), using absolute pitch-class similarity combined with a small (0.01) weighting of key-root distance.	. 224
Figure 24	The pitch-classes (rows) present in each key/scale during a morph from C Ionian to F# Ionian using absolute pitch-class similarity combined with a small (0.01) weighting of key-root distance. The "X" marks where there is a difference between the previous scale and the scale with the X, in terms of the pitch-class that the X is on	. 224
Figure 25	Modulating from C Ionian to B ^b Ionian. <i>Key-scale dissimilarity</i> is 1.0, <i>key-root distance</i> 0.5, <i>CF</i> 1.0, <i>CC</i> 0.0, <i>scale distance</i> 0.0, track VS consistency 0.37 and transform speed 0.25.	. 225
Figure 26	Modulating from C Ionian to B ^b Ionian. <i>Key-scale dissimilarity</i> is 1.0, <i>key-root distance</i> 0.66, <i>CF</i> 1.0, <i>CC</i> 0.66, <i>scale distance</i> 0.0, tracking VS consistency 0.0 and transform speed 0.25.	. 225
Figure 27	Modulating from C Ionian to B ^b Ionian. <i>Key-scale dissimilarity</i> is 1.0, <i>key-root distance</i> 0.66, <i>CF</i> 1.0, <i>CC</i> 0.66, <i>scale distance</i> 0.0, tracking VS consistency 0.77 and transform speed 0.25.	. 226
Figure 28	Modulating from C Ionian to B ^b Ionian. <i>Key-scale similarity</i> is 1.0, <i>key-root distance</i> 0.66, <i>CF</i> 1.0, <i>CC</i> 0.66, <i>scale distance</i> 0.0, tracking VS consistency 0.0 and transform speed 0.08.	. 226
Figure 29	The computation time (y) for a single cycle of un-biased <i>Add/remove</i> , applied to various numbers of notes (x), which were randomly generated and evenly distributed between source and target	. 228
Figure 30	The computation time (y) for a single cycle of the un-biased transform-chain, applied to various numbers of notes (x), which were randomly generated and evenly distributed between source and target.	. 229
Figure 31	Number of frames generated with two cycles of <i>add/remove</i> only, monophonic, quantised to 0.25, source constrained to C4 octave and target constrained to C5. For each number of notes there were 50 samples.	. 230
Figure 32	Number of frames generated using the entire transform-chain, versus the total number of notes in the source and target patterns. Both source and target are monophonic and quantised to 0.25. Source is constrained to C4 octave and target constrained to C5. MAD is 'Median Absolute Deviation'. AR is 'Add/Remove'.	. 232
Figure 33	With source and target being generated on separate octaves, comparing the minimum number of frames produced at each number of notes when using "add/remove only" VS "all transformations". The yellow highlighted columns refer to occurrences where the minimum "all transformations" was smaller than the minimum of "add/remove only"	. 233
Figure 34	List of stimuli for subjective response.	
_	List of musical elements to assist musicological analysis.	
	Summary of participants' backgrounds	

Figure 37	Summary of perceptions of the source and target material.	242
Figure 38	Summary of overall approaches used by participants.	243
Figure 39	Judgements of whether the morphs are applicable to the real-world contexts of computer games or dance music. Responses were originally in natural language, but have been condensed for display within this table. They are in the form: computer game/dance and can be y-yes, n-no or m-maybe.	. 247
Figure 40	A table for NN distance between I , which has 5 notes, and T , which has 4 . The $O(n^2)$ iteration for the forward (left) and backward (right) calculations are shown by the red arrows. Example NNs are highlighted in yellow	. 255
Figure 41	Finding the NN distance between T and I with a note added from T (the 2^{nd} note in this example) requires one operation for forward (left), and $O(n)$ for backward (right). A_2 is an abbreviation for " I with the 2^{nd} note from T added". Grey squares are distances that are subtracted, while squares with a red outline are distances that are added. The number of squares with red arrows going through them indicates the number of operations required.	. 256
Figure 42	Recalculating the NN distance for I with a note removed (the 2^{nd} note in this example), forward (left) and backward(right). R_2 is an abbreviation for ' I with the 2^{nd} note removed'. The row that is crossed out is the row in D that has been removed to make D^{-2} . The number of squares with red arrows through them indicate the number of operations needed. Yellow squares are examples of new NNs, and the grey squares are the previous NNs (continuing the example from Figure 40) that must be subtracted	. 258
Figure 43	Pseudocode for the backward NN distance, optimised for a remove operation	259
Figure 44	Reducing the search-space when finding the NN of the blue note amongst the red notes. In this example, the blue note is the first note in the input, I , and the red notes are from the target, T . This shows the two steps (labelled 1 and 2) needed to find the NN. The note with a grey outline is the note currently being considered. Notes that are shaded out have been pruned because we know that the distance of their onsets alone will be larger than the Euclidean distance (r) to the current NN (highlighted), because T is sorted. The dashed circle shows the area, within which notes will be closer than the currently considered note.	. 260
Figure 45	Worst-case scenarios: A. If sorting by start-time, there would be no pruning in 'vertical' music. B. If sorting by pitch is also considered, the worst case scenario is a sequence of diagonal notes.	. 261
Chapte	er Eight	
-	Pictures from the Morphing table installation	270
1.15016-1	FICHIES HOREING MORDHING INDICTIONAL TOTAL CONTROL OF THE CONTROL	

List of Equations

Chapter Five

Equation 1	Phase shift	127
Equation 2	The length of the loop for the morphed envelopes, derived through weighted combination of source and target loop lengths	131
Equation 3	The current time, phase shifted and bounded within the loop length	131
Equation 4	Condition for playing a note during any given play cycle. a is the average value in the inter-onset envelope since the most recent note played. v is the actual interval between the most recent note played and the current position.	132
Equation 5	Determining a , the average value in the inter-onset envelope since the last note. $M_o(t)$ is a function that returns the value in the inter-onset envelope at particular points in time. t is the current time, bounded within the loop length. v is the time interval between the current position and the most recent note that has been played. This is only for when $0 \le t - v$.	132
Equation 6	Determining a , as per the previous equation, but in situations where $0 > t - v$. l is the length of the loop.	133
Equation 7	The line that goes through the exact centre of the inter-onset envelope	142
Equation 8	A function that reduces or expands the variation in the inter-onset envelope. $v=1$ recovers $O(t)$. $v=0$, h .	142
Chapter	Six	
Equation 1	Function to calculate the similarity matrix X . W_{i-d} is the head of the segment of length d in W that ends on W_i , which is to be compared to P . The mod m is to allow for wrap around. α is a normalisation constant	151
Equation 2	The similarity between notes as the combined similarity of pitch, duration and onset, weighted by the user-defined weights	152
Equation 3	The contrast function. As k increases, the difference between low and high similarity ratings are compounded.	152
Equation 4	The similarity between two note pitches, a and b , as the combination of similarity in linear, CF and CC pitch spaces, each weighted by user-defined weights	153
Equation 5	Generalized similarity in linear space is the inverse of the difference, normalised by the range of possible values, r , and taken to the m^{th} power, in order to exaggerate the smaller differences. For MIDI pitch space, $r=128$. I settled on the magnification $m=6$ after experimentation.	153
Equation 6	Similarity measure as shortest distance between pitches in the CC.	154
Equation 7	Similarity in CF space. The $chroSim$ function measures the shortest distance between the inputs in chromatic circle space and is explained in the previous equation	154
Equation 8	Function that finds the relative distance between two durations, without any upper limit	155

Equation 9	A measure of the common factor difference between two durations
Equation 10	Duration similarity is the inverse combination two separate distance measures: relative distance and factor distance (described in previous two equations). The latter is weighted less due to it being a less important measure of similarity
Equation 11	Circle distance function. a and b are two values being compared, and s is the length of the circle space they are being compared within
Equation 12	The onset similarity function is the inverse of a weighted combination of distance in five loop spaces of different lengths
Equation 13	The similarity measure $s()$ for two polyphonic note-groups A and B . $s_n()$ is the similarity measure for individual notes within the note groups
Chapter	Seven
Equation 1	Defining the target value of dissimilarity t_j . s_j is the user-defined 'speed' (0 is slowest). $\overrightarrow{R}_{j,0}$ is the lowest dissimilarity rating. $R_{j,0}$ is the dissimilarity rating of the unmodified input, that is, the previous frame
Equation 2	The index to the selected note sequence, k^* , is determined by minimising the difference of the dissimilarity of that note sequence with the target dissimilarity (first term above), while minimising the dissimilarity between that note sequence and the source (second term). The user can control the influence of each of these terms using v_j - the 'tracking VS consistency' variable.
Equation 3	The average distance between each note in A and its NNs in B
Equation 4	The NN dissimilarity measure. 200
Equation 5	The average interval from the central tonic. I is the sequence of note pitches, n is the number of note pitches in I (the cardinal). i is an index to I and c is the central tonic 205
Equation 6	Forward term simplified for addition of a single note, T_x , from T
Equation 7	Backward term simplified for addition of a single note from T
Equation 8	Forward term simplified for removal of I_y from I

List of supplementary media

Chapter one

- 1.1 EX2F slowLove.wav
- 1.2 EX2M_loveFunk.wav
- 1.3 EX2T_FunkYou.wav

Chapter two

- 2.1 GrooveRider_05_2-34.wav
- 2.2 MassiveAttack_Mezzanine_03 Teardrop_0-37.wav
- 2.3 CD2 Ministry Of Sound Ibiza Annual 2005 36-03.wav
- 2.4 Ministry Of Sound Chillout Session Groove Armada At The River _0-38.wav
- 2.5 Portishead_05 Over_1-18.wav
- 2.6 Ministry Of Sound Afterhours 3 CD2_1-02-27.wav
- 2.7 Anon_Minimal_House_Mix_0-33.wav
- 2.8 Bjork_Homogenic_5 Years_4-09.wav
- 2.9 Ministry Of Sound CD2 Ibiza Annual 2005_6-26.wav
- 2.10 Nick warren-Live @ Space Miami(26-03-2006)WMC_11-05.wav
- 2.11 GU Halloween Chriss Scott live at club korona 2006-part05 12-43.wav
- 2.12 Postishead Portishead 02 All Mine_0-0.wav
- 2.13 Grooverider CD2 Track No08_0-42.wav
- 2.14 Grooverider CD2 Track No15_0-21.wav
- 2.15 MOS Clubbers Guide Summer 2006 [CD1]_Love Sensation_5-30.wav
- 2.16 Ministry Of Sound Ibiza Annual 2005 CD2_9-02.wav
- 2.18 Tiefschwarz_Ghosttrack black strobe remix_4-21.wav
- 2.19 Carl Cox_Thats the bass (tim_deluxe_remix)_6-40.wav
- 2.20 Nick warren_Live @ Space Miami(26-03-2006)WMC_56-51.wav
- 2.21 Paul Oakenfold_Global underground New York CD1_9-06.wav
- 2.22 LTJ Bukem Logical Progression At Ministry Of Sound (2000)_2-00.wav
- 2.23 Board of Canada 12 Aquarius_0-0.wav
- 2.24 Nick warren-Live @ Space Miami(26-03-2006)WMC_17-11.wav
- 2.25 Nick warren-Live @ Space Miami(26-03-2006)WMC_58-13.wav
- 2.26 Paul van Dyke_Ministry of Sound Radio_37-47.wav
- 2.27 Tiefschwarz_Ghosttrack (Black Strobe Remix)_1-24.wav
- 2.28 Global Underground_Halloween Chriss Scott_1-02.wav
- 2.29 Boards of Canada_ 15 Smokes Quantity_2-19.wav

- 2.30 Boards of Canada_ 15 Smokes Quantity_2-30.wav
- 2.31 Ministry Of Sound Chillout Session Groove Armada At The River 1-23.wav
- 2.32 Global Underground_Halloween Chriss Scott_6-47.wav
- 2.33 Paul Oakenfold_Global underground New York CD1_3-33.wav
- 2.34 Global Underground_Afterhours 3_CD1_21-20.wav
- 2.35 Global Underground_Afterhours 3_CD1_28-00.wav
- 2.36 Global Underground_Afterhours 3_CD2_21-16.wav
- 2.37 Nick warren-Live @ Space Miami(26-03-2006)WMC_6-00.wav
- 2.38 Nick warren-Live @ Space Miami(26-03-2006)WMC_7-58.wav
- 2.39 Nick warren-Live @ Space Miami(26-03-2006)WMC_11-10.wav
- 2.40 Global Underground_Halloween Chriss Scott_10-11.wav
- 2.41 Global Underground Halloween Chriss Scott 10-31.wav
- 2.42 Carl Cox_ Global Sessions_(radio_fg)-01-23-2006-nyd_2-50.wav
- 2.42.1 Carl Cox_ Global Sessions_(radio_fg)-01-23-2006-nyd_2-43.wav
- 2.42.2 Carl Cox_ Global Sessions_(radio_fg)-01-23-2006-nyd_3-26.wav
- 2.42.3 Carl Cox_ Global Sessions_(radio_fg)-01-23-2006-nyd_3-41.wav
- 2.43 Carl Cox_ Global Sessions_(radio_fg)-01-23-2006-nyd_4-54.wav
- 2.44.1 Paul van Dyke-Ministry of Sound_11-06.wav
- 2.44.2 Paul van Dyke-Ministry of Sound 11-26.wav
- 2.45 Global Underground_Halloween Chriss Scott_50-12.wav
- 2.46 Paul van Dyke-Ministry of Sound 44-44.wav
- 2.47 DJ Shadow Endtroducing Track No02 2-56.wav
- 2.48 Global Underground Halloween Chriss Scott 4-51.wav
- 2.49 Grooverider Live Radio.wav
- 2.50 Mancini Mix_57-15.wav
- 2.51 Carl Cox Global Sessions (radio fg)-01-23-2006-nyd 4-30.wav
- 2.52 Nick warren-Live @ Space Miami(26-03-2006)WMC_57-28.wav
- 2.53 Mancini Mix 1-01-20.wav
- 2.54 Dissidenten-Instinctive Traveler 2-50.wav
- 2.55 Deep dish album Ministry of Sound Chill Out Session_2-05.wav
- 2.56 Mancini Mix_1-01-08 .wav
- 2.57 Calypso Rose & Shurwayne Winchester_Tempo (soca gold 2006)_0-32.wav
- 2.58 Soca Gold 2006 14 Outta Hand 0-08.wav
- 2.59 Amen Break.wav
- 2.60 Funky Drummer.wav
- 2.61 The Fugees Family Business 0-04.way
- 2.62 Kino Oko_Koz Ajm Bed_6-13.wav

- 2.63 Drum N Bass Arena_track 2_0-05.wav
- 2.64 Grooverider Pure Drum&Bass CD 2 12 (Q Project) Champion _4-10 .wav
- 2.65 Stakka and Skynet_ Track No01 Decoy.wav
- 2.66 Groove Armada Superstylin 1-24.wav
- 2.67 Drum N Bass Arena Track 07 0-35.wav
- 2.68 Soca Gold 06 Take You with Me 0-09.wav
- 2.69 Salmonella Dub -10- Tui Dub_1-30.wav
- 2.70 Massive Attack_ 06 Unfinished Sympathy_0-08.wav
- 2.71 Rene Wooller_ LEMu1_GenDrums demo.wav
- 2.72 Roni Size Formulate w DJ Krust_0-36.wav
- 2.73 Grooverider track02 0-18.wav
- 2.74 Grooverider track04 1-39.wav
- 2.75 Grooverider_track05_1-04.wav
- 2.76 Grooverider live maximum overload 33-52.wav
- 2.77 Grooverider_track15_1-42.wav
- 2.78 Scratch Yer Hed Square Pusher Mix_0-17.wav
- 2.79 Grooverider_Harder they come_Track 6 __.wav
- 2.80 Blu Mar Ten vs. Erykah Badu You Got Me (Remix)_0-20.wav
- 2.81 Salmonella Dub Tha Bromley East Roller (DJ Digital & Spirit Remix) 2-10.wav
- 2.82 Drum n bass Assasins_.wav
- 2.82 Nick warren-Live @ Space Miami(26-03-2006)WMC 56-29.wav
- 2.83 Grooverider_Live_36-27.wav
- 2.84 Grooverider live maximum overload 13-10.wav
- 2.85 Boards of Canada 11 Rue The Whirl_2-30.wav
- 2.86 Aim Downstate 0-34.wav
- 2.87 Nick warren-Live @ Space Miami(26-03-2006)WMC 42-22.wav
- 2.88 Mancini Mix Electro house minimal techno_1-04-56.wav
- 2.89 Mancini Mix Electro house minimal techno 27-48.wav
- 2.90 Boards of Canada_10 Roygbiv_0-0.wav
- 2.91 Ministry Of Sound Clubbers Guide Summer 2006_CD1_20-11.wav
- 2.92 Ministry Of Sound Clubbers Guide Summer 2006_CD1_16-18.wav
- 2.93 Ministry Of Sound Clubbers Guide Summer 2006_CD1_41-52.wav
- 2.94 Boards of Canada_07 Turquoise Hexagon Sun_2-28.wav
- 2.95 Portishead_Portishead_09 Only You_3-58.wav
- 2.96 DJ Sasha & John Digweed Ibiza CD 1 Global Underground_21-27.wav
- 2.97 DJ Sasha & John Digweed Ibiza CD 1 Global Underground 28-45.wav
- 2.99 Ministry Of Sound_Ibiza Annual 2005_CD2_1-12-54.wav

- 2.100 DJ Shadow_ Endtroducing_Track 11_Organ Donor_1-29.wav
- 2.101 Mancini Mix Electro house minimal techno.wav
- 2.102 _DJ Bene_Minimal_House_Mix02_19-12.wav
- 2.103 Danny Howells Miami Global Underground 027 CD 2_0-40.wav
- 2.104 Gotan Project_Santa Maria_0-36.wav
- 2.105 ATB_Ministry of Sound_13-55.wav
- 2.106 ATB_Paul Van Dyke_Ministry of Sound_47_31.wav
- 2.107 Jeff Mills @ Sonar 2005 Barcelona_7-11.wav
- 2.108 DJ Bene_Minimal_House_Mix02_36-00.wav
- 2.109 Jeff Mills @ Sonar 2005 Barcelona 18-06-05.wav
- 2.110 DJ Bene_Minimal_House_Mix02_52-14.wav
- 2.111 psychologic dj miky 5 27.wav
- 2.112 Boards of Canada_07 Turquoise Hexagon Sun_0-10.wav
- 2.113 Danny Howells Miami Global Underground 027 CD 2_1-10-05.wav
- 2.114 06-Blue Asia-Abyssinean Dub_2-38.wav
- 2.115 DJ Shadow_Endtroducing Track No04_4-30.wav
- 2.116 DJ Bene_Minimal_House_Mix02_36-00.wav
- 2.117 Boards of Canada 12 Aquarius_1-14.wav
- 2.118 01-carl_cox_-_thats_the_bass_(tim_deluxe_remix)_4-08.wav
- 2.119 Blu Mar Ten vs. Erykah Badu You Got Me (Remix)_0-0.wav
- 2.120 Stakka and Skynet Track No01 Decoy 0-0.wav
- 2.121 Stakka and Skynet Track No01 Decoy_6-16.wav
- 2.122 Blu Mar Ten vs. Erykah Badu You Got Me (Remix) 7-18.wav
- 2.123 Jamiroquai Virtual Insanity to Blur Song 2_simple mix by Wooller.wav
- 2.124 Steve Lawler_Global Underground_Lights Out_so twisted_7-40.wav
- 2.125 DJ Bene Minimal House Mix01 14-57.wav
- 2.126 Global Underground_Chriss Scott-live at club korona_part05_10-36.wav
- 2.127 Global Underground_Chriss Scott-live at club korona_part05_3-25.wav
- 2.128 DJ Sasha & John Digweed Ibiza CD 1 Global Underground_25-14.wav
- 2.129 Global Underground_Chriss Scott-live at club korona_part05_22-59.wav
- 2.130 Nick warren-Live @ Space Miami(26-03-2006)WMC.wav
- 2.131 Ministry Of Sound Clubbers Guide Summer 2006 [CD1]_14-43.wav
- 2.132 DJ Shadow and Cut Chemist Brainfreeze 01 4-10.wav
- 2.133 DJ Tiesto Adagio For Strings _2-03.wav
- 2.134 Groove Armada super stylin remix 5-03.wav
- 2.135 Grandmaster Flash and the Furious Five The Message 0-19.way
- 2.136 Plan B feat Rolling Stones_Paint It Blacker_0-34.wav

- 2.137 Weird Al_07 Polka Power_0-48.wav
- 2.138 Weird Al_Polka Power!.mp3
- 2.139 Weird Al_07 Polka Power_Wannabe Verse to Chorus_0-16.wav
- 2.140 Weird Al 07 Polka Power Wannabe to Flagpole 0-32.wav
- 2.141 Weird Al_07 Polka Power_Ghetto to Backstreets_1-09.wav
- 2.142 Bagpiper_Michael Lancaster_Birthday to Scotland_Brave_0-04.wav
- 2.143 Drum N Bass Arena_Track No11_0-10.wav
- 2.144 Drum N Bass Assassins_pitchedsnare.wav
- 2.144 Grey Album_06 Dirt Off Your Shoulder_complete.mp3
- 2.145 Stakka and Skynet_ Clockwork_Track No05_4-26.wav
- 2.146 Aim_Cold Water Music_03 The Force_0-04.wav
- 2.147 Dangermouse Jay z Beatles Dust off yr shoulder Grey Album 0-0.wav
- 2.148 Wishart redBird 0 01.wav

Chapter three

- 3.1 mmjohnny.mp3
- 3.2 harm_morph_1r_to_Cdom7.mp3
- 3.3 b2T-Melody-mono.wav
- 3.4 b2T-Long-mono.wav
- 3.5 b2T-Rhythm-short.wav
- 3.6 LightAndLonely.mp3
- 3.7 Mighty.mp3
- 3.8 LightGoesMighty.mp3

Chapter four

lemu2run.bat

LEMu2p0.jar

msDrivers.exe

/LEMu2Manual/index.htm

/src

/workingDirectory

/externalClasses

/APIs

/bin

Chapter five

- 5.1 Interpolation_phaseWorkingDemo.mid
- 5.2 Interpolation_phase_notwork.mid
- 5.3 Interpolation_invertCancel.mid
- 5.4 Interpolation pitchDur notLocked.mid
- 5.5 Interpolation_pitchDur.mid
- 5.6 Interpolation_DifferentStyles.mid
- 5.7 Interpolation_DiffStyles_DiffKeys.mid
- 5.8 Interpolation_BritToJohn.mid

Chapter six

- 6.1 Weighted_drums.mid
- 6.2 Weighted_drums_swing.mid
- 6.3 Weighted_drums_triplet.mid
- 6.4 Weighted_johnny.mid
- 6.5 Markov_variation_amnt.mid
- 6.6 Markov_CFvsCC_Maj_CC_fuzzadj.mid
- 6.7 Markov_CFvsCC_Maj_CF_fuzzadj.mid
- 6.8 Markov_var_mod8_real.mid
- 6.9 Markov_var_mod_3_4_ovrlay_real.mid
- 6.10 Mrkv_vr_md_pi_de1_lin100_dis100.mid
- 6.11 MrkvVrPi100St66De1M234Cof100.mid
- 6.12 Markov johnny trips.mid
- 6.13 Swingy_main_section.mp3
- 6.14 Trekno_main_section.mp3
- 6.15 DarkDNB_main_section.mp3
- 6.16 Swingy.mp3
- 6.17 Trekno.mp3
- 6.18 DarkDNB.mp3
- 6.19 SwingyToTrekno.mp3
- 6.20 TreknoToDarkDNB.mp3
- 6.21 DarkSwingDarkShort.mp3
- 6.22 SwingyToDarkDNBLong.mp3
- 6.23 TreknoToSwingy.mp3
- 6.24 FocusConcert.wmv

Chapter seven

- 7.1 TraSe Var source.mid
- 7.2 TSE_mor_cal2hse_Target.mid
- 7.3 TSE_mor_cplt_cal2hse_nobias_cmixo_2b_postFix3.mid
- 7.4 TSE_mor_cplt_cal2hse_cmixo_2b_biasMerge.mid
- 7.5 TSE_mor_cplt_cal2hse_cmixo_2b_biasMerge_4fr.mid
- 7.6 TSE_mor_cplt_cal2hse_cmixo_2b_biasMerge_5fr8frWMuLim2.mid
- 7.7 TSE_mor_cplt_hse2cal_cmixo_2b_biasMerge_6fr.mid
- 7.8 TSE_mor_cplt_hse2cal_cmixo_2b_biasMerge_6fr_bkwds.mid
- 7.9 TSE_mor_Johnny.mid
- 7.10 EX1F_DarkTech.wav
- 7.11 EX1T_Safari.wav
- 7.12 EX1M_DarkSafari.wav
- 7.13 EX1M2_composer.wav
- 7.14 EX2F_slowLove.wav
- 7.15 EX2T_FunkYou.wav
- 7.16 EX2M loveFunk.wav
- 7.17 EX2M2_composer.wav
- 7.18 EX3F_BritPopBitSweet.wav
- 7.19 EX3T_DarkBeats.wav
- 7.20 EX3M DarkPeat.wav
- 7.21 EX3M2_composer.wav
- 7.22 EX4F Afrika.wav
- 7.23 EX4T_Ethno.wav
- 7.24 EX4M_Afrono.wav
- 7.25 EX4M2_composer.wav
- 7.26 questionnaire.swf

questionnaire15post.fla

savexml.php

/responses

/sounds

Chapter eight

- 8.1 QUT_Lunchtime_Concert_Audio.wav
- 8.2 QUT_Lunchtime_Concert_movie.mov
- 8.3 Morph_Table_Documentary.avi
- 8.4 Beige_ComputerGame_morph.wmv

List of abbreviations

Note: for definitions, see the Glossary in Appendix A

AMS: Algorithmic Music System HMSL: Hierarchical Music Specification

ANN: Artificial Neural Network Language

BB: Break-Beat IBM: International Business Machines

BCBT: Binary Copy Buffer Transform

IGA: Interactive Genetic Algorithm

BPM: Beats Per Minute

IPS: Independent Pitch Streams

ILLIAC: ILLinois Automated Computer

CAAC: Computer Assisted Algorithmic

Composition JMSL: Java Music Specification Language

CAC: Chick-A-Chick jMusic: Java Music

CC: Circle of Chroma
CD: Compact Disc
LED: Light Emitting Diode

CF: Circle of Fifths

LEMu: Live Electronic Music

CONCERT: CONnectionist Composer of

LEMorpheus: Live Electronic Morpheus

ERudite Tunes LFO: Low Frequency Oscillator

CPU: Central Processing Unit

CT: Central Tonic MAX/MSP: MAX (Mathews) Signal

Processing

DMP: Direct Music Producer

DePa: Degree and Passing notes MEM: Mainstream Electronic Music

DJ: Disc Jockey MIDI: Musical Instrument Digital Interface

DSP: Digital Signal Processing MUSICOMP: MUSIc Composition language

NN: Nearest Neighbour

EDM: Electronic Dance Music

EMI: Experiments in Musical Intelligence OO: Object Oriented

OS: Operating System

FF: Four on the Floor OSC: Open Sound Control

FIFO: First In First Out

PNR: Pitch to Noise Ratio

GenJam: Genetic Jammer

GRIN: GRaphical INput QUT: Queensland University of Technology

GUI: Graphical User Interface

SARA: Simple Analytic Recombinant TS: Tonal Stability

Algorithm

SMA: Simple Musical Algorithm UML: Unified Modelling Language

SPEAC: Statement, Preparation, Extension,

Antecedent, Consequent

TC: Tonal Change

TraSe: Transform-Select

The work contained in this thesis has not been previously submitted to meet requirements for an award at this or any other higher education institution. To the best of my knowledge and belief, the thesis contains no material previously published or written by another person except where due reference is made.

René Wooller

/ / 2007

Acknowledgements

Thank you to the universe, in particular,

To my loving family: Cerae Mitchell, Jan Buhmann, Roger Wooller, Ben & Chihiro Wooller, Marsha and Mishayla Buhmann, Nick & Jan Wooller, Dora Wooller, Joy Buhmann, Keith Mitchell and Maryanne Donnerly, Aran Mitchell, Jezaya Mitchell, Liz & Mellissa Wooller and extended family.

To my amazing and magical friends who I will hopefully see a lot more of now: Mat Petoe, Toby Gifford, Jason Laucher, Patrick King, Richie Allen, Amber Hansen, Caleb Trott, David Shaw, Natalie Jones, Dan Huzzer, Alicia King, Amanda Cuyler, Amy Batalibasi, Imogen Shields, Kate Thomas, Jacqui Vial & Alex Fitzgibbons, Alex Dixon, Svenja Kratz, Mellissa Bone, Matt Buckley, Sifu Gordon Shellshear and the Original Wing Chun family, the JEDAI crew, the Bachelors of Music Production '01, '02 and '03 crew, the State High '98 crew, the Stick Ball Crew.

To my wise and wonderful supervisors, colleagues and sources of inspiration: Andrew Brown, Frederic Maire, Andrew Sorensen, Tim Opie, Ross Bencina, Steven Livingstone, Anna Gerber, Greg Hooper, Steve Dillon, Greg Jenkins, Jody Kingston, Roland Adeny, Larry Polansky, Danny Oppenheim, Jonas Edlund, Peter McIllwain, questionnaire participants, ACMA and ICMA.

To the animals and inanimate objects with whom I am strongly attached: Nellie the dog. Billi the cat. Anhinga the boat. Boxy the car.

Harmony, love, peace and happiness to all.