Маthеmatics Department

Course Methods Year 12 test one 2022

ormula sheet provio	səy :bək	
ssk weighting:	% 0l ⁻	
Marks available:	40 marks	
pecial items:	Drawing inst	ruments, templates, NO notes .
endard items:		« preferred), pencils (including coloured), ection fluid/tape, eraser, ruler, highlighters ———————————————————————————————————
Materials required:	No calculat	ors nor classpads allowed
Mumber of questions	8 ::	_
ime allowed for this	task:40	snim
esk type:	Кеsbonse	
emen insbut		Теасһег пате:

Note: All part questions worth more than 2 marks require working to obtain full marks.

1 | P a g e

Q1 (3, 4 & 3 = 10 marks) Differentiate the following:

- a) $(3x-1)^5$
- b) $(5x^2 1)^7 3x^2$ and simplify
- c) $\frac{3x+1}{\sqrt{7-2x}}$ do **not** simplify

Q2 (4 marks)

Determine the equation of the tangent to $y = (5x - 1)(2x^3)$ at (1,8)

Mathematics Department

Ó3 (2 marks)

Determine the coordinates of the stationary points and their nature for $y=x^3+2x^2+x+2$. Justify.

 \mathbb{Q}^4 (3 marks) The displacement of a body from an origin O, at time $^{\mathfrak{f}}$ seconds, is $^{\chi}$ metres where

$$x = t^3 - 3t^2 + 5t + 1$$
, $t \ge 0$

Determine the velocity and the displacement of the body when the acceleration is zero.

Mathematics Department Perth Modern

Q7 (4 marks) Let A equal the number of hectares that a farmer will use to grow corn one season. The amount of (800 - 20A) Let A <00 Let A <00

corn to be harvested per hectare is given by (800 - 20.A) kg for $A \leq 40$. Using calculus determine the number of hectares that should be used to maximise the amount of corn produced.

Q8 (5 marks) Let the cost, ${}^{+}$ C, to make ${}^{-}$ X items in a factory be given by ${}^{-}$ C =3 x^3 - $12x^2$ + 40x dollars. Using calculus show that the minimum **average cost** per item is equal to the marginal cost at this number of items.

9| b a g e

Mathematics Department

Perth Modern

Q5 (4 marks)

Consider the function f(x) which is graphed below.

On the **axes below**, sketch the gradient function f'(x) indicating on your sketch the location of any stationary points and any inflection points for f(x). (labelled)

4 | P a g e

Mathematics Department Perth Modern

Q6 (2 & 3 = 5 marks)

5 | Page

Consider the function y = g(x) where g(2) = 10, g'(2) = 5

a) Using the increments formula (small change) determine an approximate value for g (2.1).

b) The volume of a sphere of radius r metres is given by formula determine the approximate percentage change in volume for a 3% change in the radius.