Algebra Summer

Algebra

Aluffi

Authors: Shaleen Baral

Contents

l. Preliminaries	
1.1. Naive Set Theory	
1.2. Functions Between Sets	
1.3. Categories	
1.4. Morphisms	
1.5. Universal Properties	

1. Preliminaries

1.1. Naive Set Theory

Definition 1.1.1: The *ordered pair* (s,t) can be defined as the set $\{s,\{s,t\}\}$. This retains both the elements of the tuple but also conveys an ordering.

Definition 1.1.2: The *disjoint union* of two sets S, T is the set $S \sqcup T$ obtained by first producing 'copies' S' and T' and then taking the union.

Definition 1.1.3: The *product* of two sets S, T is the set $S \times T$ defined as

$$S \times T = \{(s, t) \text{ such that } s \in S, t \in T\}.$$

Definition 1.1.4: A *relation* on a set S is a subset R of the product $S \times S$. If $(a, b) \in R$, we write aRb.

Definition 1.1.5: An *equivalence relation* on a set S is any relation \sim satisfying the following properties

- a. reflexivity: $\forall a \in S. \ a \sim a$
- b. symmetry: $\forall a \in S. \forall b \in S. \ a \sim b \iff b \sim a$
- c. transitivity: $\forall a \in S. \forall b \in S. \forall c \in S. \ a \sim b, b \sim c \Longrightarrow a \sim c.$

Definition 1.1.6: A partition of S is a family of disjoint nonempty subsets of S whose union is S.

Definition 1.1.7: Let \sim be an equivalence relation on S. Then for every $a \in S$, the *equivalence class* of a is the subset S defined by

$$[a]_{\square} = \{b \in S \mid b \sim a\}.$$

Further, the equivalence classes form a partition \mathcal{P}_{\sim} of S.

Lemma 1.1.1: Every partition of S corresponds to an equivalence relation.

Definition 1.1.8: The *quotient* of the set S with respect to the equivalence relation \sim is the set

$$S \sim = \mathcal{P}_{\alpha}$$

of equivalence classes of elements of S with respect to \sim .

1.2. Functions Between Sets

Definition 1.2.1: The graph of f is the set

$$\Gamma_f = \{(a, b) \in A \times B \mid b = f(a)\} \subseteq A \times B.$$

Officially, a function is its graph together with information of the source A and the target B of f.

Definition 1.2.2: A function is a relation $\Gamma \subseteq A \times B$ such that $\forall a \in A, \exists ! b \in B$ with $(a, b) \in \Gamma$. To denote f is a function from A to B we write $f : A \longrightarrow B$.

Definition 1.2.3: The collection of all functions from a set A to a set B is denoted B^A .

Example: Every set A comes equipped with the *identity function*, $id_A : A \longrightarrow A$, whose graph is the diagonal in $A \times A$. It is defined by $\forall a \in A$. $id_A(a) = a$.

Definition 1.2.4: If $S \subseteq A$, for $f: A \longrightarrow B$, we define $f(S) \subseteq B$ as

$$f(S) = \{ b \in B \mid \exists a \in S.b = f(a) \}$$

Definition 1.2.5: The *restriction* of $f:A\longrightarrow B$ to $S\subseteq A$, denoted $f\mid_S$ is the function $S\longrightarrow B$ defined by

$$\forall s \in S. \quad f \mid_S (s) = f(s).$$

Remark: The restriction can be equivalently described as $f \circ i$ where $i: S \longrightarrow A$ is the inclusion. Further, $f(S) = \operatorname{im}(f|_S)$.

Example (Multisets): A multiset is like a set but allows for multiple instances of each element. A multiset may be defined by giving a function $m:A\longrightarrow \mathbb{N}^*$, where N^* is the set of positive integers. The corresponding multiset consists of the elements $a\in A$, each taken m(a) times.

Example (Indexed Sets): One may think of an indexed set $\{a_i\}_{i\in I}$ as set whose elements are denoted by a_i for i ranging over some 'set of indices' I. Instead, it is more proper to think of an indexed set as a function $a:I\longrightarrow A$, with the understanding that a_i is a shorthand for a(i). One benefit is that this allows us to consider a_0,a_1 as distinct elements of $\{a_i\}_{i\in \mathbb{N}}$ even if $a_0=a_1$ as elements of A.

Definition 1.2.6: If $f:A \longrightarrow B$ and $g:B \longrightarrow C$ are functions then so is the operation $g \circ f$ defined by

$$\forall a \in A. \ (g \circ f)(a) = g(f(a)).$$

Pictorially, the following diagram commutes

Remark: A diagram *commutes* when the result of following a path of arrows from any point of the diagram to any other point only depends on the starting and ending points and not on the particular path chosen.

Lemma 1.2.1: Composition of functions is associative. That is to say, if $f:A\longrightarrow B, g:B\longrightarrow C$ and $h:C\longrightarrow D$ then

$$h\circ (g\circ f)=(h\circ g)\circ f.$$

Graphically, the following diagram commutes

Example: If $f:A\longrightarrow B$ then $\mathrm{id}_B\circ f=f$ and $f\circ \mathrm{id}_A=f$. Graphically, the following diagrams commute

$$A \xrightarrow{\operatorname{id}_{B} \circ f} B \xrightarrow{\operatorname{id}_{B}} B \qquad A \xrightarrow{\operatorname{id}_{A}} A \xrightarrow{f} B$$

Definition 1.2.7: A function $f: A \longrightarrow B$ is injective if $\forall a', a'' \in A, a' \neq a'' \Longrightarrow f(a') \neq f(a'')$.

Definition 1.2.8: A function $f: A \longrightarrow B$ is *surjective* if $\forall b \in B, \exists a \in A$ such that b = f(a). That is to say f covers B and equivalently, $\operatorname{im}(f) = B$.

Definition 1.2.9: If $f:A\longrightarrow B$ is both injective and surjective then it is a *bijection*. Then we often write $f:A\stackrel{\sim}{\longrightarrow} B$. We also say that A and B are *isomorphic* and denote this by $A\cong B$.

Definition 1.2.10: A function $g: B \longrightarrow A$ is a *left inverse* of $f: A \longrightarrow B$ if $g \circ f = \mathrm{id}_A$. Graphically, the following diagram commutes

$$A \xrightarrow{\text{id}_A} B \xrightarrow{g} A$$

Definition 1.2.11: A function $f:A\longrightarrow B$ is a right inverse of $g:B\longrightarrow A$ if $f\circ g=\mathrm{id}_A$. Graphically, the following diagram commutes

$$B \xrightarrow{\operatorname{id}_B} A \xrightarrow{f} B$$

Definition 1.2.12: We call $g: B \longrightarrow A$ an inverse of $f: A \longrightarrow B$ if g is both a left and right inverse of f. Then g may also be denoted f^{-1} . **Proposition 1.2.1**: Assume $A \neq \emptyset$ and let $f: A \longrightarrow B$ be a function. Then

- a. *f* has a left inverse iff it is injective.
- b. f has a right inverse iff it is surjective.

Corollary 1.2.1.1: A function $f: A \longrightarrow B$ is a bijection if and only if it has a (two-sided) inverse.

Remark: An injective but not surjective function has no right inverse. If the source has more than two elements, there will be more than one left inverse.

Remark: A surjective function but not injective function will have multiple inverses. These are called sections.

Definition 1.2.13: Let $f:A\longrightarrow B$ be any function and $S\subseteq B$ be a subset. Then $f^{-1}(S)$ is defined by

$$f^{-1}(S)=\{a\in A\mid f(a)\in S\}.$$

If $S=\{q\}$ is a singleton then $f^{-1}(T)=f^{-1}(q)$ is denoted the fiber of f over q.

Remark: In this language: f is a bijection iff it has nonempty fiber over all elements of B and every fiber is a singleton.

Definition 1.2.14: A function $f:A\longrightarrow B$ is a *monomorphism* (or *monic*) if for all sets Z and all functions $\alpha', \alpha'': Z \longrightarrow A$

$$f \circ \alpha' = f \circ \alpha'' \Longrightarrow \alpha' = \alpha''.$$

Proposition 1.2.2: A function is injective iff it is a monomorphism.

Example (Projection): Let A, B be sets. Then there are natural projections π_A, π_B

defined by

$$\forall (a,b) \in A \times B. \quad \pi_A((a,b)) = a, \quad \ \pi_B((a,b)) = b.$$

These maps are clearly surjective.

Example (Direct Sum Injection): There are natural injections from A, B to their disjoint union $A \sqcup B$

obtained by sending $a \in A$ (resp. $b \in B$) to the corresponding element in the isomorphic copy A' of A (resp. B' of B) in $A \sqcup B$.

Example (Equivalence Relation Projection): Let \sim be an equivalence relation on A. Then there is a surjective canonical projection

$$A \longrightarrow A/\sim$$

obtained by sending every $a \in A$ to its equivalence class $[a] \in A/\sim$.

Lemma 1.2.2: Every function $f:A\longrightarrow B$ defines an equivalence relation \sim on A as follows: for every $a',a''\in A$,

$$a' \sim a'' \Longleftrightarrow f(a') = f(a'').$$

Proposition 1.2.3 (Canonical Decomposition): Let $f:A\longrightarrow B$ be any function and define \sim as above. Then f decomposes as follows:

$$A \xrightarrow{\hspace*{1cm}} (A/\sim) \xrightarrow{\hspace*{1cm}} \widetilde{\widetilde{f}} \hspace*{1cm} \operatorname{im}(f) \overset{}{\longleftrightarrow} B$$

The first function is the canonical projection $A \longrightarrow A/\sim$. The third function is the inclusion im $f \subseteq B$. The bijection \tilde{f} in the middle is defined by

$$\tilde{f}\!\left(\left[a\right]_{\sim}\right) = f(a)$$

for all $a \in A$.

1.3. Categories

Definition 1.3.1: A category C consists of

- a class Obj(*C*) of *objects* the category.
- for every two objects A, B of C, a set $\operatorname{Hom}_{C}(A, B)$ of morphisms with the following properties
 - ▶ for every object A of C, there exists (at least) one morphism $1_A \in \text{Hom}_C(A, A)$, the 'identity' on A.
 - ▶ two morphisms $f \in \operatorname{Hom}_{\mathcal{C}}(A, B)$ and $g \in \operatorname{Hom}_{\mathcal{C}}(B, C)$ determine a morphism $fg \in \operatorname{Hom}_{\mathcal{C}}(A, C)$. That is for every triple of objects A, B, C of C there is a function (of sets)

$$\operatorname{Hom}_{\mathcal{C}}(A,B) \times \operatorname{Hom}_{\mathcal{C}}(B,C) \longrightarrow \operatorname{Hom}_{\mathcal{C}}(A,C)$$

and the image of the pair (f,g) is denoted fg.

- this composition law is associative: if $f \in \operatorname{Hom}_{\mathcal{C}}(A,B)$, $g \in \operatorname{Hom}_{\mathcal{C}}(B,C)$ and $h \in \operatorname{Hom}(\mathcal{C})(C,D)$ then (hg)f = h(gf).
- the identity morphisms are identities with respect to composition: that is for all $f \in \operatorname{Hom}_{\mathcal{C}}(A,B)$ we have

$$f \cdot 1_A = f$$
, $1_B \cdot f = f$.

• the sets $\operatorname{Hom}_{\mathcal{C}}(A,B)$ and $\operatorname{Hom}_{\mathcal{C}}(C,D)$ are disjoint unless A=C and B=D.

Definition 1.3.2: A morphism of an object A of a category C to itself is called an *endomorphism*. Furthermore, $\operatorname{Hom}_C(A,A)$ is also denoted $\operatorname{End}_{C(A)}$.

Definition 1.3.3: A *diagram commutes* if all ways to traverse it lead to the same results of composing morphisms along the way.

Example (Set): By Set we denote the category of sets, where

- *objects*: Obj(Set) = the class of all sets;
- morphisms: For A, B in Obj(Set), $Hom_{Set}(A, B) = B^A$;
- composition: Composition of morphisms is defined to be the same as the composition of functions;
- identity: For any object A of Set, the dentity is defined to be the identity function on A.

Example (Relations): Suppose \sim is a reflexive and transitive relation on some set S. Then, we can encode this data into a category, C.

- *objects*: The elements of *S*;
- *morphisms*: If a, b are objects, then let $\operatorname{Hom}(a, b)$ be the set consisting of the element $(a, b) \in S \times S$ if $a \sim b$ and let $\operatorname{Hom}(a, b) = \emptyset$ otherwise;
- composition: For composition, let a,b,c be objects and $f\in \mathrm{Hom}(a,b)$ and $g\in \mathrm{Hom}(b,c)$ Then, $gf\in \mathrm{Hom}(a,c)$ is defined to be

$$gf = (a, c).$$

• identity: By reflexivity, we are guaranteed that $(a,a) \in \operatorname{Hom}_{\mathcal{C}}(A,A)$. Then, for any object A of \mathcal{C} , we define the identity to be $1_A = (a,a)$.

Remark: This is a small category;

Example (Partial Ordering of Sets): Let S be a set. Define another (small) category \hat{S} by

- objects: $\mathrm{Obj}(\hat{S}) = \mathcal{P}(S);$
- morphisms: For A,B objects of \hat{S} , let $\operatorname{Hom}_{\hat{S}}(A,B)$ be the pair (A,B) if $A\subseteq B$ and let $\operatorname{Hom}_{\hat{S}}(A,B)=\emptyset$ otherwise.
- composition: Let A,B,C be objects and $f\in \operatorname{Hom}_{\hat{S}}(A,B)$ and $g\in \operatorname{Hom}_{\hat{S}}(B,C)$. Then, $gf\in \operatorname{Hom}_{\hat{S}}(A,C)$ is definted to be

$$gf = (A, C).$$

• identity: For any set $A, A \subseteq A$ and so, $(A, A) \in \operatorname{Hom}_{\widehat{S}}(A, A)$. The, for every object A of C, we define the identity to be $1_A = (A, A)$.

Example (C_A) : Let C be a category and let A be an object of C. We will define a category C_A whose objects are certain *morphisms* in C and whose morphisms are certain *diagrams* of C.

• objects: $\mathrm{Obj}(\mathcal{C}_A)=$ all morphisms from any object of \mathcal{C} to A; that is, an object of \mathcal{C} is an element $f\in \mathrm{Hom}_{\mathcal{C}}(Z,A)$ for some object Z of \mathcal{C} . Pictorally, an object of \mathcal{C}_A is an arrow $Z\stackrel{f}{\to} A$ in \mathcal{C} ;

• morphisms: For objects f_1, f_2 of C_A , that is two arrows

in C. Morphisms $f_1 \to f_2$ are defined to be commutative diagrams

in the ambient category C. Alternatively, morphisms $f_1 \to f_2$ corresponds to those morphisms $\sigma: Z_1 \to Z_2$ in C such that $f_1 = f_2 \sigma$.

- composition:
- identity:

Categories constructed in these manners are known as *slice categories*, which are particular cases of *comma categories*.

Example (C_A II): Suppose C is the category with $S=\mathbb{Z}$ and using the relation \leq . Choose an object A=3 of C. Then the objects of C_A are morphisms in C with target 3, that is, pairs $(n,3)\in\mathbb{Z}\times\mathbb{Z}$ with $n\leq 3$. There is a morphism

$$(m,3) \longrightarrow (n,3)$$

if and only if $m \le n$. In this example, C_A may be harmlessly identified with the *subcategory* of integers ≤ 3 with the *same* morphisms as in C.

Example (C^A): We can consider a construction similar to slice categories but one where we take objects to be morphisms in a category C from a fixed object A to all objects in C. Morphisms are again defined to be suitable commutative diagrams. This construction is known as *the coslice category*.

Example (C^A II): Let $C = \mathsf{Set}$ and $A = \mathsf{fixed}$ singleton = $\{\star\}$. Call the constructed co-slice category Set^{\star}

An object in Set* is then a morphism $f: \{\star\} \to S$ in Set where S is any set. The information of an object in Set* consists of a nonempty set S and an element $s \in S$ – that is, the element $f(\star)$. This element determines and is determined by, f. So, we can denote objects of Set* as pairs (S,s) where S is any set and $s \in S$ is any element of S.

A morphism between two such objects, $(S,s) \to (T,t)$ corresponds to a set function $\sigma: S \to T$ such that $\sigma(s) = t$.

Objects of Set* are called *pointed sets*.

Example ($C_{A,B}$): Start from a category C and two objects A,B of C. We then define a new category $C_{A,B}$ by a similar procedure with which we defined C_A .

- $\mathit{objects}$: $\mathit{Obj} \left(\mathit{C}_{A,B} \right) = \mathit{diagrams}$

in C;

• morphisms:

are commutative diagrams

Alternatively, morphisms in $C_{A,B}$ corresponds to those morphisms $\sigma:Z_1\to Z_2$ in C such that $f_1=f_2\sigma$ and $g_1=g_2\sigma$.

- composition:
- identity:

Example (Fibered $C_{A,B}$): Start with a given category C and choose two fixed morphisms $\alpha:A\to C,\beta:B\to C$ in C with the same target C. We can then consider a category $C_{\alpha,\beta}$ as follows

• *objects*: $Obj(C_{\alpha,\beta})$ = commutative diagrams

in C;

• *morphisms*: morphisms correspond to commutative diagrams

- composition:
- identity:

1.4. Morphisms

Throughout this section let C be a category.

Definition 1.4.1 (Isomorphism): A morphism $f \in \operatorname{Hom}_{\mathcal{C}}(A,B)$ is an *isomorphism* if it has a (two-sided) inverse: that is $\exists g \in \operatorname{Hom}_{\mathcal{C}}(B,A)$ such that

$$gf = 1_A$$
 $fg = 1_B$.

Proposition 1.4.1: The inverse of an isomorphism is unique.

Remark: Due to uniqueness, we may unambiguously refer to the inverse of an isomorphism f as f^{-1} .

Proposition 1.4.2:

- a. Each identity $\mathbf{1}_A$ is an isomorphism and is its own inverse,
- b. If f is an isomorphism the f^{-1} is an isomorphism and further $(f^{-1})^{-1} = f$,
- c. If $f \in \operatorname{Hom}_{\mathcal{C}}(A,B)$ and $g \in \operatorname{Hom}_{\mathcal{C}}(B,C)$ are isomorphisms, then the composition gf is an isomorphism and $(gf)^{-1} = f^{-1}g^{-1}$.

Definition 1.4.2: Two objects A, B of a category C are *isomorphic* if there is an isomorphism $f: A \to B$.

Corollary 1.4.2.1: Isomorphism is an equivalence relation on the objects of a category.

Example: Isomorphisms in Set are precisely bijective functions.

Example: In the category C obtained from the relation \leq on \mathbb{Z} there is a morphism $a \to b$ and $b \to a$ only if $a \leq b$ and $b \leq a$ — that is, if a = b. So an isomorphism must act from an object to itself and in C there is only one such object 1_a .

Example: There are categories in which every morphism is an isomorphism. These are known as *groupoids*.

Definition 1.4.3: An *automorphism* of an object A of a category C is an isomorphism from A to itself. The set of automorphisms is denoted $\operatorname{Aut}_C(A)$ and is a subset of $\operatorname{End}_C(A)$.

Remark: Equipped with composition, $\operatorname{Aut}_{\mathcal{C}}(A)$ is a group!

Definition 1.4.4: Let C be a category. A morphism $f \in \operatorname{Hom}_{C}(A, B)$ is a *monomorphism* if for all objects Z of C and all morphisms $\alpha', \alpha'' \in \operatorname{Hom}_{C}(Z, A)$,

$$f \circ \alpha' = f \circ \alpha'' \Longrightarrow \alpha' = \alpha''.$$

Definition 1.4.5: Let C be a category. A morphism $f \in \operatorname{Hom}_{C}(A, B)$ is an *epimorphism* if the following holds if for all objects Z of C and all morphisms $\beta', \beta'' \in \operatorname{Hom}_{C}(B, Z)$,

$$\beta' \circ f = \beta'' \circ f \Longrightarrow \beta' = \beta''.$$

Example: In C, injective functions are monomorphisms whereas surjective functions are epimorphisms.

Example: In the category C obtained from the relation \leq on \mathbb{Z} , every morphism is both a monomorphism and an epimorphism. However, there is at most one isomorphism between any two pair of objects in C.

Remark: The previous example shows how the property of Set, wherin a function is an isomorphism iff it is a monomorphism and epimorphism, doesn't generalize to all categories. It can be shown that this is true in *abelian categories* (but Set isn't an example of one!)

Remark: The property of Set that a function is an epimorphism iff it has a right inverse doesn't generalize to all categories either.

1.5. Universal Properties

Definition 1.5.1: We say that an object I of category C is *initial* in C if for every object A of C there exists exactly one isomorphism $I \to A$ in C— that is, for every object A of C, $\operatorname{Hom}_C(I,A)$ is a singleton.

Definition 1.5.2: We say that an object F of category C is *final* in C if for every object A of C there exists exactly one isomorphism $A \to F$ in C— that is, for every object A of C, $\operatorname{Hom}_{C}(A, F)$ is a singleton.

Definition 1.5.3: An object *F* of category *C* is *terminal* in *C* if it is either initial or final.