Module 2 Lab Exercise: Tools Used in Machine Learning

Learning Objectives

By the end of this lab, you will be able to:

- Set up and navigate Jupyter Notebook, Google Colab, and VS Code environments
- Install and import essential Python libraries for machine learning
- Create and format professional documentation using Markdown
- Initialize a GitHub repository for your ML projects
- Understand the basic workflow of data science tools

Prerequisites

- Basic understanding of what machine learning is (Module 1)
- Access to internet for downloading tools and datasets
- A Google account (for Colab) or local Python installation

Part 1: Environment Setup and Tool Overview

What are the main tools we'll use in this course?

Jupyter Notebook/Google Colab: Interactive computing environments where you can write code, see results immediately, and document your work with text and visualizations.

Python Libraries: Pre-written code packages that make machine learning tasks easier:

- Pandas: For working with data (like Excel, but more powerful)
- NumPy: For mathematical operations on arrays of numbers

- Matplotlib: For creating charts and graphs
- Scikit-learn: The main library for machine learning algorithms

GitHub: A platform to store, share, and collaborate on code projects

VS Code: A powerful text editor for writing and debugging code

Let's start by setting up our environment!

Environment Setup Instructions

Option 1: Google Colab (Recommended for Beginners)

- 1. Go to colab.research.google.com
- 2. Sign in with your Google account
- 3. Click "New Notebook"
- 4. You're ready to go! Libraries are pre-installed.

Option 2: Local Jupyter Notebook

- 1. Install Python from python.org
- 2. Open terminal/command prompt
- 3. Run: pip install jupyter pandas numpy matplotlib scikit-learn
- 4. Run: jupyter notebook
- 5. Create a new notebook

Option 3: VS Code

- 1. Download VS Code from code.visualstudio.com
- 2. Install Python extension
- 3. Install Jupyter extension
- 4. Create a new .ipynb file

For this lab, we recommend starting with Google Colab as it requires no installation.

```
# Install required libraries (uncomment if needed)
# !pip install pandas numpy matplotlib scikit-learn

# Import libraries with standard aliases
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
import warnings
warnings.filterwarnings('ignore') # Hide warning messages for cleaner output

print(" All libraries imported successfully!")
print(f"Pandas version: {pd.__version__}")
print(f"NumPy version: {np.__version__}")

All libraries imported successfully!
Pandas version: 2.2.2
NumPy version: 2.0.2
```

Part 2: Loading and Exploring Your First Dataset

We'll use the famous Iris dataset - a classic dataset for beginners. It contains measurements of iris flowers from three different species.

```
# Load a simple dataset (Iris flowers - a classic beginner dataset)
from sklearn.datasets import load_iris

# Load the data
iris = load_iris()
print("Dataset loaded successfully!")
print(f"Dataset shape: {iris.data.shape}")
```

```
print(f"Features: {iris.feature_names}")
print(f"Target classes: {iris.target_names}")

Dataset loaded successfully!
Dataset shape: (150, 4)
Features: ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']
Target classes: ['setosa' 'versicolor' 'virginica']
```

```
# Convert to pandas DataFrame for easier handling
df = pd.DataFrame(iris.data, columns=iris.feature_names)
df['species'] = iris.target_names[iris.target]

# Display first few rows
print("First 5 rows of our dataset:")
print(df.head())

print("\nDataset info:")
print(df.info())
```

Part 3: Creating Your First Visualization

Data visualization is crucial in machine learning. Let's create a simple plot to understand our data.

```
# Create a simple scatter plot
plt.figure(figsize=(10, 6))

# Convert to pandas DataFrame for easier handling
df = pd.DataFrame(iris.data, columns=iris.feature_names)
df['species'] = iris.target_names[iris.target]

# Plot sepal length vs sepal width, colored by species
species_colors = {'setosa': 'red', 'versicolor': 'blue', 'virginica': 'green'}

for species in df['species'].unique():
```


Part 4: Practice with Basic Data Operations

Let's practice some basic data analysis operations that you'll use throughout the course.

```
# Basic statistical analysis
print("Basic Statistics for Iris Dataset:")
print("=" * 40)
# Calculate mean values for each species
species means = df.groupby('species').mean()
print("\nMean values by species:")
print(species means)
# Count samples per species
species counts = df['species'].value counts()
print("\nSamples per species:")
print(species_counts)
Basic Statistics for Iris Dataset:
_____
Mean values by species:
           sepal length (cm) sepal width (cm) petal length (cm) \
species
setosa
                       5.006
                                        3.428
                                                          1.462
versicolor
                       5.936
                                        2.770
                                                          4.260
virginica
                       6.588
                                        2.974
                                                          5.552
           petal width (cm)
species
setosa
                      0.246
versicolor
                      1.326
virginica
                      2.026
Samples per species:
species
setosa
             50
versicolor
             50
virginica
             50
Name: count, dtype: int64
```

Part 5: GitHub and Documentation Best Practices

Why GitHub for Machine Learning?

- Version Control: Track changes to your code and data
- Collaboration: Work with others on projects
- Portfolio: Showcase your work to potential employers
- Backup: Never lose your work

Basic GitHub Workflow:

- 1. Create Repository: A folder for your project
- 2. Clone/Download: Get the project on your computer
- 3. Add Files: Put your notebooks and data
- 4. Commit: Save a snapshot of your changes
- 5. Push: Upload changes to GitHub

For This Course:

- Create a repository named "ITAI-1371-ML-Labs"
- Upload each lab notebook as you complete it
- Include a README.md file describing your projects

Action Item: After this lab, create your GitHub account and repository.

Assessment: Tool Familiarity Check

Complete the following tasks to demonstrate your understanding of the tools:

```
# Task 1: Create a simple calculation using NumPy

# Calculate the mean and standard deviation of sepal length

sepal_lengths = df['sepal length (cm)']

# Your code here:
mean_sepal_length = np.mean(sepal_lengths)

std_sepal_length = np.std(sepal_lengths)

print(f"Mean sepal length: {mean_sepal_length:.2f} cm")

print(f"Standard deviation: {std_sepal_length:.2f} cm")

# Verification (don't modify)

assert isinstance(mean_sepal_length, (float, np.floating)), "Mean should be a number"

assert isinstance(std_sepal_length, (float, np.floating)), "Std should be a number"

print(" ▼ Task 1 completed successfully!")

Mean sepal length: 5.84 cm

Standard deviation: 0.83 cm

▼ Task 1 completed successfully!
```

```
# Task 2: Create a simple bar chart showing species counts

species_counts = df['species'].value_counts()

plt.figure(figsize=(8, 5))

plt.bar(species_counts.index, species_counts.values, color=['red', 'blue', 'green'])

plt.title('Number of Samples per Species')

plt.xlabel('Species')

plt.ylabel('Count')

plt.show()

print(f"Species distribution: {dict(species_counts)}")

print(" ▼ Task 2 completed successfully!")
```


Your Analysis and Reflection

Instructions: Complete the analysis below by editing this markdown cell.

My Observations About the Iris Dataset

Dataset Overview:

- Number of samples: [FILL IN]
- Number of features: [FILL IN]
- Number of classes: [FILL IN]

Key Findings from the Visualization:

- 1. [Write your observation about the scatter plot]
- 2. [Write another observation]
- 3. [Write a third observation]

Questions for Further Investigation:

- [Write a question you'd like to explore]
- [Write another question]

Reflection: In 2-3 sentences, describe what you learned about using these tools.

Note: This is practice for documenting your machine learning projects professionally.

Lab Summary and Next Steps

What You've Accomplished:

- Set up your machine learning development environment
- Imported and used essential Python libraries
- Loaded and explored your first dataset
- Created your first data visualization
- ✓ Practiced professional documentation with Markdown
- Learned about GitHub for project management

Preparation for Module 3:

In the next lab, you'll:

- Learn about different types of machine learning
- Build your first simple classifier
- Understand the complete ML workflow
- Work with more complex datasets

Action Items:

- 1. Create your GitHub account and repository
- 2. Upload this completed notebook to your repository
- 3. Experiment with different visualizations using the Iris dataset