On the linear growth of the mixing zone in a semidiscrete model of Incompressible Porous Medium eq.

Yulia Petrova

Alma mater: St Petersburg State University, Russia

PUC-Rio, Pontifical Catholic University of Rio de Janeiro Department of Mathematics

https://yulia-petrova.github.io/

26 February – 1 March 2024

Joint work with

Sergey Tikhomirov (PUC-Rio, Brazil)

Yalchin Efendiev (Texas A&M, USA)

The talk is based on:

- Y. Petrova, S. Tikhomirov, Ya. Efendiev "Propagating terrace in a two-tubes model of gravitational fingering", 2024, arXiv: 2401.05981.
- Y. Efendiev, Y. Petrova, S. Tikhomirov "Transversally Reduced Fingering Model".
 Work in progress.

000000

Multiphase flow in porous media

1-dim in spatial variable

Stable displacement

- main question: find an exact solution to a Riemann problem
- system of non-strictly hyperbolic CL

$$s_t + f(s,c)_x = 0,$$

$$(cs)_t + (cf(s,c))_x = 0.$$

Polymer model

2-dim (or 3-dim) in spatial variable

Unstable displacement

- source of instability: water and oil/polymer have different viscosities
- viscous fingering phenomenon

$$c_t + u \cdot \nabla c = \varepsilon \Delta c,$$

 $\operatorname{div}(u) = 0, \quad u = -k \cdot m(c) \nabla p.$

Incompressible porous media eq

2-dim miscible flow in porous media

1. Transport of species ($\varepsilon = \frac{1}{\text{Pe}} \ge 0$)

$$c_t + u \cdot \nabla c = \varepsilon \Delta c$$

2. Incompressibility condition

$$\mathsf{div}(u) = 0$$

3a. Darcy's law (viscosity-driven)

$$u = -k \cdot m(c) \cdot \nabla p$$

3b. Darcy's law (gravity-driven)

$$u = -\nabla p - (0, c)$$

Initial data: unstable stratification (gravity)

$$c\big|_{t=0} = c_0(t, y) = \begin{cases} +1, & y \ge 0, \\ -1, & y \le 0. \end{cases}$$

NB: 1 + 2 + 3b for $\varepsilon = 0$ is known as IPM (incompressible porous media equation)

Active scalar, e.g. for gravity-driven:

$$c_t + u \cdot \nabla c = 0,$$

 $u = \nabla^{\perp} (-\Delta)^{-1} \partial_1 c$

(transport eq)

(Biot-Savart law)

Active scalar, e.g. for gravity-driven:

$$c_t + u \cdot \nabla c = 0,$$
 (transport eq) $u = \nabla^{\perp} (-\Delta)^{-1} \partial_1 c$ (Biot-Savart law)

• local well-posedness for smooth initial data (H^s) : yes 2007 — D. Cordoba, F. Gancedo, R. Orive (JMP): in \mathbb{R}^2

Active scalar, e.g. for gravity-driven:

$$c_t + u \cdot \nabla c = 0,$$
 (transport eq)
$$u = \nabla^{\perp} (-\Delta)^{-1} \partial_1 c$$
 (Biot-Savart law)

- local well-posedness for smooth initial data (H^s) : yes 2007 D. Cordoba, F. Gancedo, R. Orive (JMP): in \mathbb{R}^2
- global regularity vs finite-time blow up: open question 2023 A. Kiselev, Y. Yao (ARMA): for some initial data it is shown that if there exists a smooth global solution exists, then Sobolev norms blow up at ∞

Active scalar, e.g. for gravity-driven:

$$c_t + u \cdot \nabla c = 0,$$
 (transport eq) $u = \nabla^{\perp} (-\Delta)^{-1} \partial_1 c$ (Biot-Savart law)

- local well-posedness for smooth initial data (H^s) : yes 2007 D. Cordoba, F. Gancedo, R. Orive (JMP): in \mathbb{R}^2
- global regularity vs finite-time blow up: open question 2023 A. Kiselev, Y. Yao (ARMA): for some initial data it is shown that if there exists a smooth global solution exists, then Sobolev norms blow up at ∞
- non-uniqueness of weak solutions:
 2011 D. Córdoba, D. Faraco, F. Gancedo (ARMA): convex integration
 2012 L. Szekelyhidi Jr.

Active scalar, e.g. for gravity-driven:

$$c_t + u \cdot \nabla c = 0,$$
 (transport eq)
$$u = \nabla^{\perp} (-\Delta)^{-1} \partial_1 c$$
 (Biot-Savart law)

- local well-posedness for smooth initial data (H^s) : yes 2007 D. Cordoba, F. Gancedo, R. Orive (JMP): in \mathbb{R}^2
- global regularity vs finite-time blow up: open question 2023 A. Kiselev, Y. Yao (ARMA): for some initial data it is shown that if there exists a smooth global solution exists, then Sobolev norms blow up at ∞
- non-uniqueness of weak solutions:
 2011 D. Córdoba, D. Faraco, F. Gancedo (ARMA): convex integration
 2012 L. Szekelyhidi Jr.
- stability of the stratified steady states: 2017 T. Elgindi (ARMA): small perturbations (in H^s , s>20) are stable 2019 A. Castro, D. Cordoba, D. Lear (ARMA) 2024 R. Bianchini, T. Crin-Barat, M. Paicu (ARMA)

Growth of the mixing zone ($\varepsilon > 0$)

Length of the mixing zone:

$$a(t) = x \Big|_{c=0.99} - x \Big|_{c=-0.99}$$

Three regimes:

- an early-time, linearly unstable regime: mixing zone grows diffusively
- 2 an intermediate-time nonlinear regime: mixing zone grows linearly (independent of $\varepsilon=\frac{1}{Pe}$)
- 3 a late time, single-finger exchange-flow regime

The dynamics of miscible viscous fingering from onset to shutdown

Nijjer J., Hewitt D., Neufeld J. The dynamics of miscible viscous fingering from onset to shutdown. JFM.

Growth of the mixing zone ($\varepsilon > 0$)

Length of the mixing zone:

$$a(t) = x \Big|_{c=0.99} - x \Big|_{c=-0.99}$$

Three regimes:

- an early-time, linearly unstable regime: mixing zone grows diffusively
- 2 an intermediate-time nonlinear regime: mixing zone grows linearly (independent of $\varepsilon=\frac{1}{Pe}$)
- 3 a late time, single-finger exchange-flow regime

The dynamics of miscible viscous fingering from onset to shutdown

Nijjer J., Hewitt D., Neufeld J. The dynamics of miscible viscous fingering from onset to shutdown. JEM

Aim

Find exact speed of propagation: $a(t) \sim \mathrm{const} \cdot t$

Growth of the mixing zone ($\varepsilon > 0$)

Length of the mixing zone:

$$a(t) = x \Big|_{c=0.99} - x \Big|_{c=-0.99}$$

Three regimes:

- an early-time, linearly unstable regime: mixing zone grows diffusively
- ② an intermediate-time nonlinear regime: mixing zone grows linearly (independent of $\varepsilon=\frac{1}{Pe}$)
- 3 a late time, single-finger exchange-flow regime

The dynamics of miscible viscous fingering from onset to shutdown

Nijjer J., Hewitt D., Neufeld J. The dynamics of miscible viscous fingering from onset to shutdown. JFM.

Aim

Find exact speed of propagation: $a(t) \sim \mathrm{const} \cdot t$

Applications: F. Bakharev, A. Enin, K. Kalinin, Y. Petrova, N. Rastegaev, S. Tikhomirov, "Optimal polymer slugs injection profiles", 2023, JCAM & Patent "Method for chemical flooding of enhanced oil recovery" (optimization of graded viscosity banks technology), 2022.

2006 — F. Otto, G. Menon "Dynamic scaling in miscible viscous fingering", CMP

2006 — F. Otto, G. Menon "Dynamic scaling in miscible viscous fingering", CMP

• Energy estimates for IPM:

2006 — F. Otto, G. Menon "Dynamic scaling in miscible viscous fingering", CMP

 Energy estimates for IPM: average in transverse direction

$$\bar{c}(t,y) = \int c(t,x,y) dx$$

2006 — F. Otto, G. Menon "Dynamic scaling in miscible viscous fingering", CMP

 Energy estimates for IPM: average in transverse direction

$$\bar{c}(t,y) = \int c(t,x,y) dx$$

gravitational potential energy

$$E(t) = \int_{\mathbb{T}} y \cdot (c_0 - \bar{c})(t, y) \, dy$$
 satisfies

$$\limsup_{t \to \infty} \frac{E(t)}{t^2} \le \frac{1}{6}.$$

2006 — F. Otto, G. Menon "Dynamic scaling in miscible viscous fingering", CMP

Energy estimates for IPM: average in transverse direction

$$\bar{c}(t,y) = \int c(t,x,y) dx$$

gravitational potential energy

$$E(t) = \int_{\mathbb{D}} y \cdot (c_0 - \bar{c})(t, y) \, dy \qquad \text{satisfies} \qquad \limsup_{t \to \infty} \frac{E(t)}{t^2} \le \frac{1}{6}.$$

$$\limsup_{t \to \infty} \frac{E(t)}{t^2} \le \frac{1}{6}.$$

Pointwise estimates for simplified model of Darcy's law (TFE: Wooding, 1969)

Transverse flow equilibrium (TFE)

$$\partial_t c + u \cdot \nabla c = \Delta c$$
$$\operatorname{div}(u) = 0$$
$$u = \bar{c} - c$$

- 2006 F. Otto, G. Menon "Dynamic scaling in miscible viscous fingering", CMP

 Energy estimates for IPM: average in transverse direction

$$\bar{c}(t,y) = \oint c(t,x,y) dx$$

gravitational potential energy

$$E(t) = \int_{\mathbb{D}} y \cdot (c_0 - \bar{c})(t, y) \, dy \qquad \text{ satisfies} \qquad \limsup_{t \to \infty} \frac{E(t)}{t^2} \le \frac{1}{6}.$$

• Pointwise estimates for simplified model of Darcy's law (TFE: Wooding, 1969)

Transverse flow equilibrium (TFE)

$$\partial_t c + u \cdot \nabla c = \Delta c$$

$$\operatorname{div}(u) = 0$$

$$u = \bar{c} - c$$

Comparison with 1-dim Burgers: $c^{\max}(t,y)$

$$\partial_t c^{\max} + (1-c^{\max})\partial_y c^{\max} = \partial_{yy} c^{\max}$$
 If
$$c(0,x,y) \leq c^{\max}(0,y),$$
 then
$$c(t,x,y) \leq c^{\max}(t,y), \quad t>0.$$

• Discretize in transversal direction (horizontal) — "multitubes" model

- Discretize in transversal direction (horizontal) "multitubes" model
- Include explicitly the interflow between the tubes.
 Does it affect the speed of fingers?

- Discretize in transversal direction (horizontal) "multitubes" model
- Include explicitly the interflow between the tubes. Does it affect the speed of fingers?

Multilayer / multilane models:

- 2006 J.C. Da Mota, S. Schecter "Combustion fronts in a porous medium with two layers", JDDE
- 2019 H. Holden, N. Risebro "Models for dense multilane vehicular traffic", SIMA

- Discretize in transversal direction (horizontal) "multitubes" model
- Include explicitly the interflow between the tubes. Does it affect the speed of fingers?

Multilayer / multilane models:

- 2006 J.C. Da Mota, S. Schecter "Combustion fronts in a porous medium with two layers", JDDE
- 2019 H. Holden, N. Risebro "Models for dense multilane vehicular traffic", SIMA

Take $n \geq 2$ tubes (\mathbb{R}), connected cyclically. As a limit of finite-volume scheme, we get:

Take $n \geq 2$ tubes (\mathbb{R}), connected cyclically. As a limit of finite-volume scheme, we get:

• Transport equation in k-th tube, $k = 1, \ldots, n$:

$$\partial_t c_k + \partial_y (u_k c_k) = f_{k-1/2} - f_{k+1/2}$$

Take $n \geq 2$ tubes (\mathbb{R}), connected cyclically. As a limit of finite-volume scheme, we get:

• Transport equation in k-th tube, $k = 1, \ldots, n$:

$$\partial_t c_k + \partial_y (u_k c_k) = f_{k-1/2} - f_{k+1/2}$$

Incompressibility condition:

$$l \cdot \partial_y u_k - w_{k-1/2} + w_{k+1/2} = 0$$

Take $n \geq 2$ tubes (\mathbb{R}), connected cyclically. As a limit of finite-volume scheme, we get:

• Transport equation in k-th tube, $k=1,\ldots,n$:

$$\partial_t c_k + \partial_y (u_k c_k) = f_{k-1/2} - f_{k+1/2}$$

Incompressibility condition:

$$l \cdot \partial_{y} u_{k} - w_{k-1/2} + w_{k+1/2} = 0$$

3 Darcy's law in k-th tube and between tubes:

$$u_k = -\partial_y p_k - c_k,$$

$$w_{k+1/2} = (p_{k+1} - p_k)/l.$$

Take $n \geq 2$ tubes (\mathbb{R}), connected cyclically. As a limit of finite-volume scheme, we get:

• Transport equation in k-th tube, $k = 1, \ldots, n$:

$$\partial_t c_k + \partial_y (u_k c_k) = f_{k-1/2} - f_{k+1/2}$$

Incompressibility condition:

$$l \cdot \partial_{y} u_{k} - w_{k-1/2} + w_{k+1/2} = 0$$

3 Darcy's law in k-th tube and between tubes:

$$u_k = -\partial_y p_k - c_k,$$

 $w_{k+1/2} = (p_{k+1} - p_k)/l.$

Interflow between tubes

$$f_{k+1/2} = \begin{cases} c_k \cdot \frac{w_{k+1/2}}{l}, & w_{k+1/2} \ge 0, \\ c_{k+1} \cdot \frac{w_{k+1/2}}{l}, & w_{k+1/2} \le 0. \end{cases}$$

Take $n \geq 2$ tubes (\mathbb{R}), connected cyclically. As a limit of finite-volume scheme, we get:

- Transport equation in k-th tube, $k = 1, \ldots, n$:
- $\partial_t c_k + \partial_y (u_k c_k) = f_{k-1/2} f_{k+1/2}$

Incompressibility condition:
$$l \cdot \partial_u u_k - w_{k-1/2} + w_{k+1/2} = 0$$

 \bullet Darcy's law in k-th tube and between tubes:

$$u_k = -\partial_y p_k - c_k,$$

 $w_{k+1/2} = (p_{k+1} - p_k)/l.$

Interflow between tubes

$$f_{k+1/2} = \begin{cases} c_k \cdot \frac{w_{k+1/2}}{l}, & w_{k+1/2} \ge 0, \\ c_{k+1} \cdot \frac{w_{k+1/2}}{l}, & w_{k+1/2} \le 0. \end{cases}$$

Initial condition:
$$c_k\big|_{t=0} = \begin{cases} +1, & y \ge 0, \\ -1, & y \le 0. \end{cases}$$

$$w_{k+1/2}\big|_{y=\pm\infty} = u_k\big|_{y=\pm\infty} = 0,$$

 $c_k\big|_{y=\pm\infty} = \pm 1$

Consider $n \ge 2$, tubes, connected cyclically. As a limit of finite-volume scheme, we get:

• Transport equation in k-th tube, $k = 1, \ldots, n$:

$$\partial_t c_k + \partial_u (u_k c_k) = f_{k-1/2} - f_{k+1/2}$$

2 Incompressibility condition:

$$\partial_{y}u_{k} - \tilde{w}_{k-1/2} + \tilde{w}_{k+1/2} = 0$$

 \bullet Darcy's law in k-th tube and between tubes:

$$u_k = -\partial_y p_k - c_k,$$

$$\tilde{w}_{k+1/2} = (p_{k+1} - p_k)/l^2.$$

Interflow between tubes

$$f_{k+1/2} = \begin{cases} c_k \cdot \tilde{w}_{k+1/2}, & \tilde{w}_{k+1/2} \ge 0, \\ c_{k+1} \cdot \tilde{w}_{k+1/2}, & \tilde{w}_{k+1/2} \le 0. \end{cases}$$

Initial condition: c_k

$$c_k\big|_{t=0} = \begin{cases} +1, & y \ge 0, \\ -1, & y \le 0. \end{cases}$$

$$\tilde{w}_{k+1/2}\big|_{y=\pm\infty} = u_k\big|_{y=\pm\infty} = 0$$

$$c_k\big|_{y=\pm\infty} = \pm 1$$

Semi-discrete model of IPM: numerical experiments

$$n=2$$
 tubes $n=3$ tubes $n=4$ tubes

- Aims: (1) explain the structure of "asymptotic solutions" for n tubes
 - (2) find speed of growth of the mixing zone
 - (3) understand the behavior as $n \to \infty$. Do we approximate 2-dim IPM?

Semi-discrete model of IPM: numerical experiments

Aims: (1) explain the structure of "asymptotic solutions" for n tubes

- (2) find speed of growth of the mixing zone
- (3) understand the behavior as $n \to \infty$. Do we approximate 2-dim IPM?

$$(*) \begin{cases} \partial_t c_1 + \partial_y (u_1 c_1) - \partial_{yy} c_1 = -f \\ \partial_t c_2 + \partial_y (u_2 c_2) - \partial_{yy} c_2 = f \end{cases}$$

$$u_1 = \partial_y p_1 - c_1$$

$$u_2 = \partial_y p_2 - c_2$$

$$\partial_y u_1 = -\partial_y u_2 = \frac{p_2 - p_1}{l^2} =: \frac{q}{l^2}$$

$$f = \begin{cases} -\partial_y u_1 \cdot c_1, & \partial_y u_1 \le 0, \\ +\partial_y u_1 \cdot c_2, & \partial_y u_1 \ge 0. \end{cases} \qquad u_1 \qquad u_2$$

$$(*) \begin{cases} \partial_{t}c_{1} + \partial_{y}(u_{1}c_{1}) - \partial_{yy}c_{1} = -f \\ \partial_{t}c_{2} + \partial_{y}(u_{2}c_{2}) - \partial_{yy}c_{2} = f \\ u_{1} = \partial_{y}p_{1} - c_{1} \end{cases} \qquad f = \begin{cases} -\partial_{y}u_{1} \cdot c_{1}, & \partial_{y}u_{1} \leq 0, \\ +\partial_{y}u_{1} \cdot c_{2}, & \partial_{y}u_{1} \geq 0. \end{cases} \qquad u_{1} \end{cases}$$

Definition

A propagating terrace connecting $\alpha \in \mathbb{R}^5$ to $\beta \in \mathbb{R}^5$ is a pair of finite sequences $(\sigma_j)_{0 \le j \le N}$ and $(g_j)_{1 \le j \le N}$ such that:

$$\begin{cases}
 \partial_{t}c_{1} + \partial_{y}(u_{1}c_{1}) - \frac{\partial_{yy}c_{1}}{\partial_{y}c_{2}} = -f \\
 \partial_{t}c_{2} + \partial_{y}(u_{2}c_{2}) - \frac{\partial_{yy}c_{2}}{\partial_{y}c_{2}} = f \\
 u_{1} = \partial_{y}p_{1} - c_{1} \\
 u_{2} = \partial_{y}p_{2} - c_{2} \\
 \partial_{y}u_{1} = -\partial_{y}u_{2} = \frac{p_{2} - p_{1}}{l^{2}} = : \frac{q}{l^{2}}
\end{cases}$$

$$f = \begin{cases}
 -\partial_{y}u_{1} \cdot c_{1}, & \partial_{y}u_{1} \leq 0, \\
 +\partial_{y}u_{1} \cdot c_{2}, & \partial_{y}u_{1} \geq 0.
\end{cases}$$

Definition

A propagating terrace connecting $\alpha \in \mathbb{R}^5$ to $\beta \in \mathbb{R}^5$ is a pair of finite sequences $(\sigma_j)_{0 \le j \le N}$ and $(g_j)_{1 \le j \le N}$ such that:

• Each $\sigma_j = (c_{1j}, c_{2j}, u_{1j}, u_{2j}, q_j)$ is a stationary solution of (*) and $\sigma_0 = \alpha$, $\sigma_N = \beta$.

$$(*) \begin{cases} \partial_t c_1 + \partial_y (u_1 c_1) - \frac{\partial_{yy} c_1}{\partial_y c_1} = -f \\ \partial_t c_2 + \partial_y (u_2 c_2) - \frac{\partial_{yy} c_2}{\partial_y c_2} = f \\ u_1 = \partial_y p_1 - c_1 \\ u_2 = \partial_y p_2 - c_2 \\ \partial_y u_1 = -\partial_y u_2 = \frac{p_2 - p_1}{l^2} = : \frac{q}{l^2} \end{cases} f = \begin{cases} -\partial_y u_1 \cdot c_1, & \partial_y u_1 \leq 0, \\ +\partial_y u_1 \cdot c_2, & \partial_y u_1 \geq 0. \end{cases}$$

Definition

A propagating terrace connecting $\alpha \in \mathbb{R}^5$ to $\beta \in \mathbb{R}^5$ is a pair of finite sequences $(\sigma_i)_{0 \le j \le N}$ and $(g_i)_{1 \le j \le N}$ such that:

- Each $\sigma_j = (c_{1j}, c_{2j}, u_{1j}, u_{2j}, q_j)$ is a stationary solution of (*) and $\sigma_0 = \alpha$, $\sigma_N = \beta$.
- g_j is a traveling wave solution of connecting σ_{j-1} to σ_i , $1 \le j \le N$, that is $q_i = q_i(y v_i t)$.

$$(*) \begin{cases} \partial_t c_1 + \partial_y (u_1 c_1) - \frac{\partial_{yy} c_1}{\partial_y c_2} = -f \\ \partial_t c_2 + \partial_y (u_2 c_2) - \frac{\partial_{yy} c_2}{\partial_y u_1} = f \\ u_1 = \partial_y p_1 - c_1 \\ u_2 = \partial_y p_2 - c_2 \\ \partial_y u_1 = -\partial_y u_2 = \frac{p_2 - p_1}{l^2} =: \frac{q}{l^2} \end{cases} f = \begin{cases} -\partial_y u_1 \cdot c_1, & \partial_y u_1 \leq 0, \\ +\partial_y u_1 \cdot c_2, & \partial_y u_1 \geq 0. \end{cases}$$

Definition

A propagating terrace connecting $\alpha \in \mathbb{R}^5$ to $\beta \in \mathbb{R}^5$ is a pair of finite sequences $(\sigma_j)_{0 \leq j \leq N}$ and $(g_j)_{1 \leq j \leq N}$ such that:

- Each σ_j = (c_{1j}, c_{2j}, u_{1j}, u_{2j}, q_j) is a stationary solution of (*) and σ₀ = α, σ_N = β.
 g_i is a traveling wave solution of connecting σ_{i-1} to
- $\sigma_j, \ 1 \leq j \leq N$, that is $g_j = g_j(y v_j t)$.

 The speed $v_j \in \mathbb{R}$ of each traveling wave g_j satisfies $v_1 \leq v_2 \leq \ldots \leq v_N$.

Two-tubes IPM: theorem

$$(*) \begin{cases} \partial_{t}c_{1} + \partial_{y}(u_{1}c_{1}) - \frac{\partial_{yy}c_{1}}{\partial_{y}c_{2}} = f \\ \partial_{t}c_{2} + \partial_{y}(u_{2}c_{2}) - \frac{\partial_{yy}c_{2}}{\partial_{y}y} = f \\ u_{1} = \partial_{y}p_{1} - c_{1} \\ u_{2} = \partial_{y}p_{2} - c_{2} \\ \partial_{y}u_{1} = -\partial_{y}u_{2} = \frac{p_{2} - p_{1}}{l^{2}} = : \frac{q}{l^{2}} \end{cases} f = \begin{cases} -\partial_{y}u_{1} \cdot c_{1}, & \partial_{y}u_{1} \leq 0, \\ +\partial_{y}u_{1} \cdot c_{2}, & \partial_{y}u_{1} \geq 0. \end{cases}$$

Theorem (arXiv:2401.05981, P., Tikhomirov, Efendiev)

There exists sufficiently small $l_0 > 0$ such that for all $l \in (0, l_0)$ there exist a propagating terrace of two traveling waves with speeds $v_1^*(l)$, $v_2^*(l)$ connecting the states

$$\sigma_0 = (-1, -1, 0, 0, 0),
\sigma_1 = (c_1^*(l), c_2^*(l), u_1^*(l), u_2^*(l), 0),
\sigma_2 = (1, 1, 0, 0, 0).$$

Moreover, as $l \to 0$ we obtain:

$$\lim_{t \to 0} c_1^*(l) = -\lim_{t \to 0} c_2^*(l) = 1/2, \quad \lim_{t \to 0} v_2^*(l) = -\lim_{t \to 0} v_1^*(l) = 1/4.$$

Main ingredient in proof: comparison with TFE equations

• traveling wave ansatz: $\xi = y - vt \Rightarrow$ traveling wave dynamical system (TWDS)

l = 0

heteroclinic orbits can be found explicitly!

 $\mathsf{orbit} \subset \{W^s \pitchfork W^u\}$

+ geometric singular perturbation theory

$\overline{l>0}$

heteroclinic orbits persist under small perturbations

Main ingredient in proof: comparison with TFE equations

• traveling wave ansatz: $\xi = y - vt \Rightarrow$ traveling wave dynamical system (TWDS)

l = 0

heteroclinic orbits can be found explicitly!

orbit $\subset \{W^s \pitchfork W^u\}$ + geometric singular perturbation theory

$\overline{l>0}$

heteroclinic orbits persist under small perturbations

Two-tubes TFE equations:

$$\begin{aligned}
\partial_t c_1 + \partial_y (u_1 c_1) &= -f \\
\partial_t c_2 + \partial_y (u_2 c_2) &= f \\
u_1 &= \bar{c} - c_1 = (c_2 - c_1)/2 \\
u_2 &= \bar{c} - c_2 = (c_1 - c_2)/2 \\
f &= \begin{cases}
-\partial_y u_1 \cdot c_1, & \partial_y u_1 \leq 0, \\
+\partial_y u_1 \cdot c_2, & \partial_y u_1 \geq 0.
\end{aligned}$$

Main ingredient in proof: comparison with TFE equations

• traveling wave ansatz: $\xi = y - vt \Rightarrow$ traveling wave dynamical system (TWDS)

l = 0

heteroclinic orbits can be found explicitly!

orbit $\subset \{W^s \cap W^u\}$ + geometric singular perturbation theory

l > 0

heteroclinic orbits persist under small perturbations

Two-tubes TFE equations:

$$\begin{split} \partial_t c_1 + \partial_y (u_1 c_1) &= -f \\ \partial_t c_2 + \partial_y (u_2 c_2) &= f \\ u_1 &= \bar{c} - c_1 = (c_2 - c_1)/2 \\ u_2 &= \bar{c} - c_2 = (c_1 - c_2)/2 \\ f &= \begin{cases} -\partial_y u_1 \cdot c_1, & \partial_y u_1 \leq 0, \\ +\partial_y u_1 \cdot c_2, & \partial_y u_1 \geq 0. \end{cases} \end{split}$$

This system can be seen a hyperbolic system in non-conservative form (for fixed choice of f):

$$S_t + A(S)S_y = 0$$

We solve the Riemann problem:

$$S = (c_1, c_2)\big|_{t=0} = \begin{cases} (+1, +1), & y \ge 0\\ (-1, -1), & y \le 0 \end{cases}$$

Selection criteria for discontinuous solutions: vanishing viscosity

Two-tubes TFE

Shock curves for $(c_1, c_2) = (1, 1)$ and (-1, -1):

- "Temple-like" system (rarefaction and shock curves coincide and are linear)
- Similar explicit linear structure for n=3 tubes (in progress)
- Starting from $n \ge 4$ appear also non-linear families and complex eigenvalues in some subdomains of (c_1, \ldots, c_n) (numerical evidence)...

1. Two-tubes IPM (with diffusion): prove stability of the propagation terrace

- 1. Two-tubes IPM (with diffusion): prove stability of the propagation terrace
- 2. Multi-tubes IPM & TFE (hyperbolic) for $n \geq 2$:
 - well-posedness
 - ullet structure of solution of a Riemann problem $(-1,\ldots,-1)$ to $(1,\ldots,1)$

- 1. Two-tubes IPM (with diffusion): prove stability of the propagation terrace
- 2. Multi-tubes IPM & TFE (hyperbolic) for $n \geq 2$:
 - well-posedness
 - structure of solution of a Riemann problem $(-1,\ldots,-1)$ to $(1,\ldots,1)$

Observation (for $n \ge 4$): starting from random initial data, we come to different asymptotic states, and their number grows with n.

- 1. Two-tubes IPM (with diffusion): prove stability of the propagation terrace
- 2. Multi-tubes IPM & TFE (hyperbolic) for $n \geq 2$:
 - well-posedness
 - structure of solution of a Riemann problem $(-1,\ldots,-1)$ to $(1,\ldots,1)$

Observation (for $n \ge 4$): starting from random initial data, we come to different asymptotic states, and their number grows with n.

3. Limit $n \to \infty$. Convergence of *n*-tubes IPM to 2-dim IPM?

Thank you for your attention!

yu.pe.petrova@gmail.com

https://yulia-petrova.github.io/

For more details see arXiv: 2401.05981

Any questions, comments and ideas are very welcome!