Lecture 6. Perceptron

COMP90051 Statistical Machine Learning

Semester 2, 2019 Lecturer: Ben Rubinstein

This lecture

- Perceptron
 - * Introduction to Artificial Neural Networks
 - * The perceptron model
 - * Stochastic gradient descent

The Perceptron Model

A building block for artificial neural networks, yet another linear classifier

Biological inspiration

- Humans perform well at many tasks that matter
- Originally neural networks were an attempt to mimic the human brain

Artificial neural network

- As a crude approximation, the human brain can be thought as a mesh of interconnected processing nodes (neurons) that relay electrical signals
- Artificial neural network is a network of processing elements
- Each element converts inputs to output
- The output is a function (called activation function) of a weighted sum of inputs

Outline

- In order to use an ANN we need (a) to design network topology and (b) adjust weights to given data
 - * In this subject, we will exclusively focus on task (b) for a particular class of networks called feed forward networks
- Training an ANN means adjusting weights for training data given a pre-defined network topology
- We will come back to ANNs and discuss ANN training in the next lecture
- Right now we will turn our attention to an individual network element because it is an interesting model in itself

Perceptron model

Compare this model to logistic regression

- x_1 , x_2 inputs
- w_1 , w_2 synaptic weights
- w_0 bias weight
- f activation function

Perceptron is a linear binary classifier

Perceptron is a binary classifier:

Predict class A if $s \ge 0$ Predict class B if s < 0where $s = \sum_{i=0}^{m} x_i w_i$

Perceptron is a <u>linear classifier</u>: *s* is a linear function of inputs, and the decision boundary is linear

Exercise: find weights of a perceptron capable of perfect classification of the following dataset

x_1	x_2	у	
0	0	Class B	Q
0	1	Class B	
1	0	Class B	
1	1	Class A	2

Wo = -1.5

art: OpenClipartVectors at pixabay.com (CC0)

Loss function for perceptron

- "Training": finds weights to minimise some loss. Which?
- Our task is binary classification. Let's arbitrarily encode one class as +1 and the other as -1. So each training example is now $\{x,y\}$, where y is either +1 or -1
- Recall that, in a perceptron, $s=\sum_{i=0}^m x_iw_i$, and the sign of s determines the predicted class: +1 if s>0, and -1 if s<0
- Consider a single training example. If y and s have same sign then the example is classified correctly. If y and s have different signs, the example is misclassified

Loss function for perceptron

- Consider a single training example. If y and s have the same sign then the example is classified correctly. If y and s have different signs, the example is misclassified
- The perceptron uses a loss function in which there is no penalty for correctly classified examples, while the penalty (loss) is equal to s for misclassified examples*
- Formally:
 - * L(s, y) = 0 if both s, y have the same sign
 - * L(s, y) = |s| if both s, y have different signs

• This can be re-written as $L(s, y) = \max(0, -sy)$

^{*} This is similar, but not identical to another widely used loss function called *hinge loss*

Stochastic gradient descent

Randomly shuffle/split all training examples in B batches

- For j from 1 to B
- Do gradient descent update <u>using data from batch j</u>

 Advantage of such an approach: computational feasibility for large datasets

Perceptron training algorithm

Choose initial guess $\mathbf{w}^{(0)}$, k=0

For i from 1 to T (epochs)

For j from 1 to N (training examples)

Consider example $\{x_j, y_j\}$

$$\underline{\mathsf{Update}}^*: \boldsymbol{w}^{(k++)} = \boldsymbol{w}^{(k)} - \eta \nabla L(\boldsymbol{w}^{(k)})$$

$$L(\mathbf{w}) = \max(0, -sy)$$

$$s = \sum_{i=0}^{m} x_i w_i$$

$$\eta \text{ is learning rate}$$

*There is no derivative when s = 0, but this case is handled explicitly in the algorithm, see next slides

Perceptron training rule

- We have $\frac{\partial L}{\partial w_i} = 0$ when sy > 0
 - We don't need to do update when an example is correctly classified
- We have $\frac{\partial L}{\partial w_i} = -x_i$ when y = 1 and s < 0
- We have $\frac{\partial L}{\partial w_i} = x_i$ when y = -1 and s > 0

• $s = \sum_{i=0}^{m} x_i w_i$

Perceptron training algorithm

When classified correctly, weights are unchanged

When misclassified:
$$\mathbf{w}^{(k+1)} = -\eta(\pm \mathbf{x})$$

($\eta > 0$ is called *learning rate*)

$$\begin{array}{ll} \underline{\text{If } y = 1, \, \text{but } s < 0} & \underline{\text{If } y = -1, \, \text{but } s \geq 0} \\ w_i \leftarrow w_i + \eta x_i & w_i \leftarrow w_i - \eta x_i \\ w_0 \leftarrow w_0 + \eta & w_0 \leftarrow w_0 - \eta \end{array}$$

Convergence Theorem: if the training data is linearly separable, the algorithm is guaranteed to converge to a solution. That is, there exist a finite K such that $L(\mathbf{w}^K) = 0$

Perceptron convergence theorem

Assumptions

- * Linear separability: There exists \mathbf{w}^* so that $y_i(\mathbf{w}^*)'\mathbf{x}_i \geq \gamma$ for all training data $i=1,\ldots,N$ and some positive γ .
- * Bounded data: $||x_i|| \le R$ for i = 1, ..., N and some finite R.

Proof sketch

- * Establish that $(w^*)'w^{(k)} \ge (w^*)'w^{(k-1)} + \gamma$
- * It then follows that $(w^*)'w^{(k)} \ge k\gamma$
- * Establish that $\|\mathbf{w}^{(k)}\|^2 \le kR^2$
- * Note that $\cos(w^*, w^{(k)}) = \frac{(w^*)'w^{(k)}}{\|w^*\|\|w^{(k)}\|}$
- * Use the fact that $cos(...) \le 1$
- * Arrive at $k \leq \frac{R^2 ||w^*||^2}{\gamma}$

Pros and cons of perceptron learning

- If the data is linearly separable, the perceptron training algorithm will converge to a correct solution
 - * There is a formal proof ← good!
 - * It will converge to some solution (separating boundary), one of infinitely many possible ← bad!
- However, if the data is not linearly separable, the training will fail completely rather than give some approximate solution
 - * Ugly 🕾

Basic setup

Start with random weights

Consider training example 1

Update weights

Consider training example 2

Update weights

Further examples

Further examples

Summary

- Perceptron
 - Introduction to Artificial Neural Networks
 - * The perceptron model
 - Training algorithm

Next lecture: Multiple layers, Backprop training