Information Centric Networking

André Diegues - 201206858 Fábio Teixeira - 201305725 Tópicos Avançados em Redes - CC4037 Departamento de Ciencia de Computadores Faculdade de Ciencias da Universidade do Porto

Abstract—Hoje em dia, o enorme aumento de tráfego de conteúdo e dados entre utilizadores na Internet motivou o desenvolvimento de novas ideias de arquitetura de Internet que resolvam eficazmente este problema. Uma delas é a que vamos abordar neste artigo, a Information Centric Networking (ICN), que através de uma abordagem de pesquisa de informação nas redes permite fornecer à rede um serviço mais resiliente a falhas que cumpre as exigências atuais de distribuição de conteúdo [1]. Vamos abordar o seu funcionamento, as arquiteturas que nasceram desta ideia e estudar se a mudança de arquitetura de Internet é ou não viável.

I. Introdução

O paradigma ICN foi baseado numa primeira abordagem de arquitetura *Internet* denominada de TRIAD [2], cujo principal objectivo seria facilitar e aliviar cerca de 80% do tráfego de *Internet* que servia apenas para entrega de conteúdo através de uma arquitetura *data-centric*, isto é, um utilizador pede o conteúdo ao servidor em vez de pedir ao *host* que detém esse mesmo conteúdo [1]. A TRIAD define uma nova camada de conteúdo que está implementada por *content routers* que encaminham os pedidos aos *content servers* que, de seguida, fornecem o conteúdo .

O ICN procura substituir a arquitetura atual, que é um modelo de comunicação *host-to-host*, por uma arquitetura baseada num modelo *data-centric*, tratando o conteúdo como entidade principal na arquitetura das redes. Uma rede com este tipo de arquitetura ganha inúmeras vantagens em relação ao modelo *host-to-host*, nomeadamente, na distribuição de conteúdo, segurança e desenvolvimento de aplicações [3].

Existem várias arquiteturas baseadas neste paradigma. Neste artigo vamos abordar algumas destas arquiteturas, nomeadamente as que ganharam mais apoio ao longo do tempo:

- Data-Object Network Architecture (DONA)
- Publish-Subscribe Internet Technology (PURSUIT)
- Named Data Networking (NDN) baseada em Content-Centric Networking (CCN)

II. COMO FUNCIONA O ICN?

O ICN utiliza o modelo de comunicação *Publish/Subscribe*. Neste modelo, os emissores, chamados *Publishers*, em vez de enviarem as mensagens diretamente aos recetores específicos, caracterizam as mensagens publicadas em classes sem

conhecimento de quem vão ser os subscritores. Por outro lado, os subscritores, chamados de *Subscribers*, demonstram interesse numa ou mais classes e apenas recebem mensagens da(s) classe(s) que subscreveram, também sem conhecimento de quem as enviou.

Neste novo paradigma, os dados tornam-se independentes de localização, memória e meio de transporte, permitindo o armazenamento e replicação em *cache*. Algo que impulsiona uma melhoria na eficiência, na escalabilidade e na robustez de comunicação em cenários difíceis. Existem várias abordagens do ICN, todas focadas num novo desenho da arquitetura da Internet atual, com o objetivo de substituir o atual modelo centrado nos *hosts*, para implementar um modelo mais orientado a dados e centrado nos conteúdos [4]. A saber:

A. DONA

A resolução de nomes no DONA [5] é da responsabilidade de uns servidores especializados chamados *Resolution Handlers* (RHs). Existe pelo menos um RH em cada sistema autónomo. Estes *Handlers* estão interconectados, formando um serviço hierárquico de resolução de nomes por cima das relações interdomínio de *routing* existentes, para que seja possível conciliar resolução de nomes com *routing* de informação no mesmo sistema. O *Publisher* envia uma mensagem *REGISTER* com o nome do objeto para o seu RH local, que guarda um apontador para o *Publisher*. O RH depois propaga o *REGISTER* para os RHs que tem ligação, seguindo as rotas estabelecidas, guardando estes RHs o mapeamento entre o nome do objeto e o endereço do RH que encaminhou o registo.

Com isto, os *REGISTERs* são replicados nos RHs até aos *tier-1*, e já que estes estão conectados com os outros todos, o RH que está localizado nesse *tier* está ciente do que se passa em toda a rede.Para localizar um item, o *Subscriber* envia uma mensagem *FIND* para o RH local, que também propaga esta mensagem aos RHs parentes, até que é feito um *match* com o *tier-1*. Depois seguem-se os apontadores para encontrar o *Publisher*, já que o *tier-1* é conhecedor de toda a estrutura da rede.

Fig. 1. DONA implementation.

B. PURSUIT

Esta arquitetura substitui completamente a *stack* do protocolo IP por uma *stack* do protocolo *publish-subscribe*. Consiste em três funções distintas: *rendezvous*, *topology management* e *forwarding*. Quando o *rendezvous* encontra a subscrição de uma publicação, direciona a função de gestão da topologia para criar uma rota entre o *Publisher* e o *Subscriber*. Esta rota é usada pela função de encaminhamento para realizar a transferência de dados.

A resolução de nomes no *PURSUIT* é tratada pela função *rendezvous*, a qual é implementada por uma coleção de *Rendezvous Nodes* (RNs), pertencentes à *Rendezvous Network* (RENE). Quando um *Publisher* quer anunciar um objeto de informação, emite uma mensagem *PUBLISH* para o RN local, o qual é encaminhado por tabelas de *hash* distribuídas para o RN atribuído com o ID do *scope* correspondente. Quando o *Subscriber* emite um *SUBSCRIBE* para o mesmo objeto de informação ao seu RN local, é encaminhado pela tabela de *hash* para o mesmo RN. Depois, o RN informa um nó da *Topology Management* (TM) para criar uma rota ligando o *Publisher* ao *Subscriber* para entrega de dados. A gestão da topologia envia a rota ao *Publisher* numa mensagem *START PUBLISH*, que já utiliza a rota para enviar o objeto de informação via *Forwarding Nodes* (FNs).

Fig. 2. PURSUIT implementation.

C. NDN

Os *Subscribers* emitem mensagens *INTEREST* para pedir informação sobre objetos que chegam na forma de dados. As mensagens são encaminhadas por *Content Routers* (CRs), e cada um dos CRs mantém três estruturas de dados: *Forwarding Information Base* (FIB), *Pending Interest Table* (PIT) e *Content Store* (CS).

O FIB mapeia informação para as interfaces de saída que devem ser usadas para encaminhar as mensagens *INTEREST*. O PIT segue as interfaces de entrada nas quais as mensagens de *INTEREST* chegou. Já o CS funciona como *cache* local para objetos de informação que passaram pelo CR.Quando um *INTEREST* chega, o CR extrai a informação do nome e procurar por um objeto nesse CS cujo nome coincida com o prefixo pretendido. Se for bem-sucedido, é imediatamente enviado através da interface de entrada numa mensagem *DATA* e o *INTEREST* é descartado. Senão, o *router* executa uma procura do prefixo mais longo no seu FIB, para decidir a direção do encaminhamento. Se a entrada for encontrada no FIB, o router regista a interface de entrada do *INTEREST* no PIT e empurra o *INTEREST* para o CR indicado pelo FIB.

Fig. 3. NDN implementation.

III. Quais os obstáculos e custos de implementação o ICN?

A. Requisitos

O ICN ainda está longe de estar pronto a ser implementado. Os *researchers* têm lidado com vários desafios para tornarem este novo modelo disponível para poder ser colocado ao serviço dos utilizadores. Entre os desafios que têm encontrado destacam-se:

1) Naming dos dados

Dar nomes aos dados é tão importante para o ICN como dar nomes aos *hosts* é para a Internet de hoje. Sendo assim, o ICN requer nomes únicos para os *Named Data Objects* (NDOs), já que os nomes são

utilizados para identificar objetos independentemente da sua localização ou conteúdo. Usar tabelas de *hash* é uma forma possível de resolver este imbróglio, já que permite depois que se possa comparar isso com o próprio nome do componente.

2) Proteção da privacidade

Como a rede pode ver quem faz o pedido pela informação e já que a tendência do ICN é guardar a história dos utilizadores, torna-se um problema para o utilizador não ter garantias de privacidade, já que como os nomes devem ter um longo tempo de uso, seria uma limitação desperdiçar nomes.

3) Atualizações

Se um NDO pode ser replicado e guardado na rede para futuros tratamentos, os nomes têm de ter um prazo de validade longa e o conteúdo do nome não deve ser alterado, o que impossibilita a atualização de objetos.

4) Integridade dos dados

A verificação da integridade dos dados é um passo importante para a consolidação do ICN. O facto de os NDOs não só serem recuperados a partir da copa original como também a partir de qualquer ponto da rede em que estejam guardados em cache e de poderem ser modificados faz com que não se possa confiar a 100% na integridade dos dados. Utilizar uma *hash* como parte do nome de objeto é também uma possível solução deste problema, embora a utilização de chaves criptográficas seja melhor aplicada nestes casos.

5) Cifragem

possível cifrar NDOs no ICN e apenas os consumidores que tiverem as chaves podem aceder a esse conteúdo privado. No entanto distribuir e gerir estas chaves, tal como fornecer as interfaces para os utilizadores é ainda uma matéria de estudo.

6) Agregação e filtragem de tráfego

Uma mensagem de um pedido *request* para receber um objeto de dados pode agregar vários pedidos de vários consumidores. Esta agregação reduz o tráfego na rede, mas torna a filtragem mais difícil. O desafio neste caso é fornecer um mecanismo que pretenda agregação, mas ao mesmo tempo uma pré-filtragem dos *request* dos utilizadores. Uma possível solução é indicar o conjunto de utilizadores que fizeram o *request* nesse *request* agregado, permitindo assim gerar numa resposta apenas o subconjunto dos utilizadores que fizeram *request* e têm acesso aos dados. No entanto, esta solução requer

a utilização de outros nós na rede e não permite fazer caching.

7) Roteamento pelo nome

Uma vez que o número de objetos de dados tem tendência a aumentar, o tamanho das tabelas de encaminhamento é um problema a pensar, pois pode ser proporcional ao número de objetos de dados, a menos que seja introduzido um mecanismo de agregação. Por outro lado, o *Route-By-Name Routing* (RBNR) reduz a latência e simplifica o processo de roteamento devido à omissão do processo de resolução.

- B. Vantagens vs Custo de Implementação
- C. Testes de trabalhos anteriores

IV. ICN: O FUTURO DA Internet

Os utilizadores estão cada vez mais interessados em receber conteúdos, seja qual for a sua origem, do que ter de aceder a um servidor para receber essa informação. E o facto de a *Internet* ainda ser centrada nos *hosts* implica que o utilizador tenha de especificar em cada pedido não só a informação que deseja receber, como também especificar o servidor do qual a informação pode ser retirada. Com o ICN isso já não acontece [4].

O pressuposto básico por trás do ICN é que a informação é nomeada, endereçada e encontra o conteúdo independentemente da sua localização. Uma implicação indireta da implementação do ICN é que a informação se torna orientada para o recetor, em contraste com a atual realidade da Internet em que os emissores têm controlo total sobre os dados trocados [6]. No ICN só são recebidos os dados que o recetor tenha pedido. Depois de ser enviado o pedido, a rede é responsável por localizar a melhor origem para fornecer a informação desejada ao recetor.

Quando um elemento da rede receber um pedido por conteúdo, pode ter duas ações: se estiver em *cache*, responde imediatamente com o conteúdo; se não estiver, faz um pedido aos elementos com os quais tem ligação e depois guardar em *cache* o conteúdo quando for encontrado [4].

Nesse sentido, e já que os conteúdos chegam de elementos da rede ao invés da origem, o desenho do ICN tem de garantir a segurança dos conteúdos, contrariamente à estrutura atual da Internet que se foca no caminho. Para isso, quem fornece os dados assina um modelo de segurança para que os elementos da rede e os consumidores apenas tenham de verificar essa assinatura para garantir a sua fiabilidade [7].

V. Conclusão

The conclusion goes here.

REFERENCES

- [1] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman, "A survey of information-centric networking," *IEEE Communications Magazine*, vol. 50, no. 7, pp. 26–36, July 2012.
- [2] D. Cheriton and M. Gritter, "Triad: A new next-generation internet architecture," 2000.
- [3] "Guest editorial [information centric networking]," China Communications, vol. 12, no. 7, pp. iii–iv, July 2015.
- [4] G. Xylomenos, C. N. Ververidis, V. A. Siris, N. Fotiou, C. Tsilopoulos, X. Vasilakos, K. V. Katsaros, and G. C. Polyzos, "A survey of information-centric networking research," *IEEE Communications Surveys Tutorials*, vol. 16, no. 2, pp. 1024–1049, Second 2014.
- [5] A Data-Oriented (and Beyond) Network Architecture, vol. 37. Kyoto, Japan: ACM, 08/2007 2007.
- [6] S. Arianfar, P. Nikander, and J. Ott, "On content-centric router design and implications," in *Proceedings of the Re-Architecting the Internet* Workshop. ACM, 2010, p. 5.
- [7] A. Ghodsi, S. Shenker, T. Koponen, A. Singla, B. Raghavan, and J. Wilcox, "Information-centric networking: Seeing the forest for the trees," in *Proceedings of the 10th ACM Workshop on Hot Topics in Networks*, ser. HotNets-X. New York, NY, USA: ACM, 2011, pp. 1:1– 1:6. [Online]. Available: http://doi.acm.org/10.1145/2070562.2070563