Mật mã & Ứng dụng

Trần Đức Khánh Bộ môn HTTT – Viện CNTT&TT ĐH BKHN

Mật mã học

- Mật mã học (Cryptology)
 - Mật mã (Cryptography)
 - Mã thám (Cryptanalysis)
- Mật mã
 - Tăng cường các tính chất Bí mật và Toàn vẹn thông tin: các phép mã hóa
 - Xây dựng các kỹ thuật trao đổi thông tin bí mật: các giao thức mật mã
- Mã thám
 - Phá mã

Lịch sử ngành Mật mã

- ☐ Giai đoạn "Tiền sử" (~ 2000, TCN)
 - Những dấu hiệu đầu tiên của Mật mã xuất hiện ở bên bờ sông Nile, Ai Cập
- ☐ Giai đoạn "Mật mã thủ công" (~ 50, TCN)
 - Phép mã hóa Ceasar
- Giai đoạn "Mật mã cơ học" (cho đến Thế chiến 2)
 - Máy Enigma ở Đức
 - Các nghiên cứu về Mã thám ở Anh
- ☐ Giai đoan "Mât mã điên tử"
 - Dựa vào Toán học và Tin học
 - Được đặt nền móng bởi Shanon, Diffie và Hellman
 - Khóa bí mật (DES, AES,...), Khóa công khai (RSA, ElGamal, ...)

Trao đổi thông tin bí mật

- Alice và Bob trao đổi thông tin bí mật, được mã hóa
- Eve và Charlie tấn công bằng giải mã

Mục tiêu An toàn

- Bí mật (Confidentiality)
- □ Toàn ven (Integrity)
- ☐ Xác thực (Authentication)
- Chống phủ nhận (Non-repudiation)
- □ ...

Chủ đề

- □ Hệ mật mã cổ điển
- Hệ mật mã khóa bí mật (đối xứng)
- Hệ mật mã khóa công khai (bất đối xứng)
- □ Hàm băm, chữ ký số
- Quản lý khóa, giao thức mật mã,...

Hệ mật mã

- Hệ Mật mã = Bộ 5 (K,M,C,E,D)
- □ Không gian Khóa (Key): K
- □ Không gian Tin (Message/Plaintext): *M*
- ☐ Không gian Mã (Cipher): *C*
- □ Hàm mã hóa (Encryption)
 - E: K x M -> C
- □ Hàm giải mã (Decryption)
 - D: K x C -> M

Chủ đề

- □ Hệ mật mã cổ điển
- ☐ Hệ mật mã khóa bí mật (đối xứng)
- Hệ mật mã khóa công khai (bất đối xứng)
- □ Hàm băm, chữ ký số
- Quản lý khóa, giao thức mật mã,...

Hệ mật mã cổ điển

Hệ mật mã cổ điển

- Mã hoán vị
- Mã đơn thể

Mã hoán vị

Các ký tự trong Tin được hoán vị cho nhau

Mã hoán vị

Hoán vị cột

chuyển thành

Hoán vị cột

Tin

```
THISISAMES
SAMES
SAGET
OSHOW
HOWAC
OLUMN
ARTRA
NSPOS
ITION
WORKS
```

Hoán vị cột

Tin

THISISAMESSSAGETOWHOWACOUMNNARTRAANSPOSIUMNWORKS

Mã

tssohoaniwhaasolrstoimghwutpirseeoamrookistwcnasns

Mã đơn thể

Mỗi ký tự được thay thế bằng một ký tự khác

Mã đơn thể

- Mã Ceasar: c = m + n
- ☐ m: ký tự trong Tin
- □ c: ký tự tương ứng trong Mã
- □ n: độ dịch chuyển
- □ +: phép cộng modulo 26
- Ví dụ: n = 3
- Tin: ABCDEFGHIJKLMNOPQRSTUVWXYZ
- Mã: defghijklmnopqrstuvwxyzabc

Mã Ceasar

Tin

TREATY IMPOSSIBLE

Mã Ceasar

Tin Mã

TREATY IMPOSSIBLE

W U H D W B L P S R V V L E O H

Chủ đề

- ☐ Hệ mật mã cổ điển
- Hệ mật mã khóa bí mật (đối xứng)
- Hệ mật mã khóa công khai (bất đối xứng)
- □ Hàm băm, chữ ký số
- □ Quản lý khóa, giao thức mật mã,...

Hệ mật mã khóa đối xứng

- Duy nhất một khóa cho quá trình mã hóa và giải mã
 - C = E(K,M)
 - M = D(K,C)
- Khóa phải được giữ bí mật

Hệ mật mã khóa đối xứng

Các Hệ mật mã khóa đối xứng

- Mã luồng
 - Mã Vigenère
 - Mã Vernam
- Mã khối
 - DES
 - AES

Mã luồng

- Dơn vị mã hóa cơ bản là các ký tự
 - Các ký tự trong Tin được mã hóa tách biêt

Mã Vigenère

Tin

Khóa

MNO PQR S P-1 N 0 M N N 0 Р P S 0 0 R s R s т o 5 т т R S U $v \sim w$ v w w × т U Z × w Y в zв Y А A B z D В Е Д C в D Е D в E M N PO R S G 0

Mã Vigenère

- □ Khóa
 - BENCH
- Tin
 - A LIMERICK PACKS LAUGHS ANATOMICAL
- Nối dài Khóa
 - B ENCHBENC HBENC HBENCH BENCHBENCH
- Mã hóa
 - Khóa: в емснвемс нвемс нвемсн вемснвемсн
 - Tin: A LIMERICK PACKS LAUGHS ANATOMICAL
 - Mã: B PVOLSMPM WBGXU SBYTJZ BRNVVNMPCS

Mã Vernam

- ☐ Ký tự là các bit
- □ Khóa
 - K = K1K2K3...Kn
 - Số ngẫu nhiên
- □ Tin
 - M = M1M2M3...Mn
- Mã
 - C = C1C2C3...Cn trong đó $Ci = Ki \times Mi$

Ki	Mi	Ci = Ki xor Mi
0	0	0
0	1	1
1	0	1
1	1	0

Mã khối

- Đơn vị mã hóa cơ bản là các khối ký tự
- Các tham số bao gồm kích thước khối và chiều dài khóa
 - Kích thước khối lớn để chống tấn công bằng thống kê
 - Chiều dài khóa lớn để chống tấn công vét cạn

Data Encryption Standard (DES)

- □ Lịch sử
 - ~ 1970, NIST kêu gọi xây dựng hệ mật mã dành cho công chúng
 - 1974, IBM xây dựng DES trên nền tảng của hệ Lucifer
 - 1979, chuẩn hóa
- ☐ Muc tiêu
 - Mục đích sử dụng rộng rãi
 - Độ an toàn cao
 - Không phụ thuộc vào tính bí mật của thuật toán
- Úng dụng
 - ATM
 - Truy nhập từ xa
 - ...

Data Encryption Standard (DES)

- DES
 - Khối 64 bit
 - Khóa 56 bit
 - 16 vòng lặp mã hóa
 - Mỗi vòng kết hợp Hoán vị + Đơn thế

Mã hóa DES

IP, FP

	IP													
58	50	42	34	26	18	10	2							
60	52	44	36	28	20	12	4							
62	54	46	38	30	22	14	6							
64	56	48	40	32	24	16	8							
57	49	41	33	25	17	9	1							
59	51	43	35	27	19	11	3							
61	53	45	37	29	21	13	5							
63	55	47	39	31	23	15	7							

	FP														
	''														
40	8	48	16	56	24	64	32								
39	7	47	15	55	23	63	31								
38	6	46	14	54	22	62	30								
37	5	45	13	53	21	61	29								
36	4	44	12	52	20	60	28								
35	3	43	11	51	19	59	27								
34	2	42	10	50	18	58	26								
33	1	41	9	49	17	57	25								

- \square IP(b1b2...b64) = b58b50...b7
- \square FP(b1b2...b64) = b40b8...b25

KS

	KS1														
57	49	41	33	25	17	9									
1	58	50	42	34	26	18									
10	2	59	51	43	35	27									
19	11	3	60	52	44	36									
63	55	47	39	31	23	15									
7	62	54	46	38	30	22									
14	6	61	53	45	37	29									
21	13	5	28	20	12	4									

	KS2														
14	17	11	24	1	5										
3	28	15	6	21	10										
23	19	12	4	26	8										
16	7	27	20	13	2										
41	52	31	37	47	55										
30	40	51	45	33	48										
44	49	39	56	34	53										
46	42	50	36	29	32										

- □ KS1 chuyển khối 64 bit thành khối 2 khối 28 bit
 - KS1(b1b2...b64) = b57b49...b36 b63b55...b4
- □ KS2 chuyển 2 khối 28 bit thành khối 48 bit
 - KS2 (b1b2...b56) = b14b17...b32

KS

- ☐ Khóa ban đầu K
- $\square (C0,D0) = KS1(K)$
- \square Ki = KS2 (Ci,Di)
 - Ci
 - □ Dịch chuyển vòng tròn sang trái 1 bit *Ci-1* nếu i = 1,2,9,16
 - □ Dịch chuyển vòng tròn sang trái 2 bit Ci-1 trong các trường hợp khác
 - Tương tự cho Di

Vòng lặp DES

E, P

		I					l	ס	
32	1	2	3	4	5	16	7	20	21
4	5	6	7	8	9	29	12	28	17
8	9	10	11	12	13	1	15	23	26
12	13	14	15	16	17	5	18	31	10
16	17	18	19	20	21	2	8	24	14
20	21	22	23	24	25	32	27	3	9
24	25	26	27	28	29	19	13	30	6
28	29	30	31	32	1	22	11	4	25

- \Box E(b1b2...b32) = b32b1...b1
- \square P(b1b2...b32) = b16b7...b25

S-Boxes

- ☐ Chuyển khối 48 bit thành khối 32 bit
 - 8 khối 6 bit: S1, S2,...,S8 (b1b2b3b4b5b6)
 - Chuyển S1 thành khối 4 bit
 - □ b1b6 cho giá trị thập phân i
 - □ b2b3b4b5 cho giá trị thập phân j
 - □ kết quả tại dòng i cột j của bảng S1

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
1	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
2	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
3	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13

Tương tự đối với S2,S3,...,S8 (có bảng riêng)

S-Boxes

- □ Chuyển S1 (110001) thành khối 4 bit
 - b1b6 (11) cho giá trị thập phân i (3)
 - b2b3b4b5 (1000) cho giá trị thập phân j (8):
 - kết quả (5) tại dòng i (3) cột j (8) của bảng S1

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
1	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
2	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
3	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13

5 (Thập phân) = 0101 (Nhị phân)

Giải mã DES

- Sử dụng cùng một dãy khóa
- Thứ tự các khóa đảo ngược
- □ Hoán đổi 2 nửa trái, phải
- Thực hiện cùng số vòng lặp

Điểm yếu DES

- □ Tìm khóa bằng vét cạn
 - 2⁵⁶ khả năng
- Sử dụng tính bù để loại trừ số khả năng khóa

$$c = DES(k, m) \Rightarrow \overline{c} = DES(\overline{k}, \overline{m})$$

$$\overline{1011} = 0100$$

☐ Khóa yếu

Ví du

- c = DES(k, m) và m = DES(k, c)
- c = DES(k1,m) và c = DES(k2,m)
- Mã thám
 - Vi sai
 - Tuyến tính
 - Davies

3DES

- Mã hóa
 - c = E(k3,(D(k2,E(k1,m)))
- ☐ Giải mã
 - = m = D(k1,(E(k2,D(k3,c)))
- Lựa chọn khóa
 - k1,k2,k3 độc lập
 - k1,k2 độc lập và k3 = k1
 - k1 = k2 = k3

Advanced Encryption Standard (AES)

- 1997, NIST kêu gọi xây dựng một hệ mật mã mới để thay thế DES
- Hệ Rijndael của Daemen và Rijmen được lựa chọn
- 2001, hệ Rijndael được chuẩn hóa thành AES
 - Dựa trên lý thuyết "Trường Galois"
 - Khối 128 bit
 - Khóa 128, 192, 256 bit
 - n vòng lặp mã hóa, phụ thuộc vào chiều dài khóa
 - Khóa 128 bit, n = 10
 - ☐ Khóa 192 bit, n = 12
 - ☐ Khóa 256 bit, n = 14
 - Mỗi vòng kết hợp Hoán vị + Đơn thế