1. Borel-mérhető leképezések

Emlékezzünk arra, hogy egy $A \subseteq \mathbb{R}$ halmazt **Borel-halmaznak** nevezünk, ha

$$A \in \Omega_1 := \Omega(\mathcal{I}) = \Omega(\mathbf{I}).$$

Az itt szereplő I halmazrendszer az üres halmazt, valamint az $\mathbb R$ balról zárt, jobbról nyílt intervallumait tartalmazza, tehát

$$\mathbf{I} \coloneqq \Big\{\, \emptyset, [a,b) \subseteq \mathbb{R} \,\, \Big| \,\, a,b \in \mathbb{R}, \,\, a < b \,\, \Big\}.$$

Továbbá $\mathcal I$ pedig az I félgyűrű által generált gyűrű, vagyis

$$\mathcal{I} \coloneqq \mathcal{G}(\mathbf{I}) = \left\{ \left. \bigcup_{k=0}^{n} I_{k} \right| I_{0}, \dots, I_{n} \in \mathbf{I} \text{ páronként diszjunktak } (n \in \mathbb{N}) \right\}.$$

Vezessük be a kibővített valós számok halmazát

$$\overline{\mathbb{R}} := \mathbb{R} \cup \{-\infty, +\infty\}.$$

1.1. Definíció: Borel-mérhető halmaz

Egy $A \subseteq \overline{\mathbb{R}}$ halmaz kibővített értelemben **Borel–mérhető**, ha

$$A \cap \mathbb{R} \in \Omega_1$$
.

Legyen az ilyen tulajdonságú halmazoknak a rendszere $\overline{\Omega}_1$.

Megjegyzés. Világos, hogy minden $A\subseteq\mathbb{R}$ Borel-mérhető halmaz egyben kibővített értelemben is Borel-mérhető. Továbbá valóban az említett fogalom kibővítéséről beszélhetünk, ugyanis az

$$\{-\infty\}, \{+\infty\}, \{-\infty, +\infty\} \subseteq \overline{\mathbb{R}}$$

halmazok minden . Egy $A\subseteq\overline{\mathbb{R}}$ halmaz pontosan akkor Borel-mérhető, ha

$$A = B \cup C$$

módon bontható fel, ahol $B \in \Omega_1$ és $C \in \{\emptyset, \{-\infty\}, \{+\infty\}, \{-\infty, +\infty\}\}\$.

1.2. Definíció: Borel-mérhető függvény

Legyen (X,Ω) mérhető tér, valamint $f:X\to\overline{\mathbb{R}}$ egy függvény.

Azt mondjuk, hogy az f függvény **mérhető** (vagy **Borel–mérhető**), ha

$$f^{-1}[A] := \{ x \in X \mid f(x) \in A \} \in \Omega \qquad (A \in \overline{\Omega}_1).$$

Példa. Legyen (X,Ω) mérhető tér, $A\subseteq X$ egy halmaz. Ekkor

$$\chi_A: X \to \mathbb{R}, \qquad \chi_A(x) \coloneqq \begin{cases} 1, & \text{ha } x \in A, \\ 0, & \text{ha } x \notin A, \end{cases}$$

az A halmaz karakterisztikus függvénye. Ekkor χ_A mérhető $\iff A \in \Omega$.

1.3. Tétel: Mérhető függvények tulajdonságai

Legyen (X,Ω) egy mérhető tér, valamint $f, f_n, g: X \to \overline{\mathbb{R}}$ $(n \in \mathbb{N})$.

- 1. Ha $*\in\{\geq,>,\leq,<\},$ akkor f mérhető $\iff \forall \alpha\in\mathbb{R}\colon\{f*\alpha\}\in\Omega.$
- 2. Haf,gmérhető és $*\in\{\geq,>,\leq,<,=,\neq\},$ akkor $\{f*g\}\in\Omega.$
- 3. Haf,gmérhető, akkor $(f\cdot g)$ és |f| is mérhető függvény.
- 4. Haf,gmérhető és létezik az $(f\pm g)$ függvény, akkor az is mérhető.
- 5. Ha (f_n) mérhető függvényeknek a sorozata, akkor a

$$\sup_{n\in\mathbb{N}}(f_n), \quad \inf_{n\in\mathbb{N}}(f_n), \quad \limsup(f_n), \quad \liminf(f_n)$$

függvények is mérhetőek.

6. Ha $\left(f_{n}\right)$ mérhető függvényeknek a sorozata pontonként konvergál az

$$f(x) := \lim_{n \to \infty} f_n(x) \qquad (x \in X)$$

határfüggvényhez, akkor az f is mérhető.

Innentől: $0 \cdot (\pm \infty) := (\pm \infty) \cdot 0 := 0$.

Például, ha f,g véges, akkor ez teljesül.

Az itt szereplő függvények:

$$\lim\sup(f_n)\coloneqq\lim_{n\to\infty}\bigg(\sup_{k\geq n}f_k\bigg),$$

$$\lim\inf(f_n)\coloneqq\lim_{n\to\infty}\biggl(\inf_{k\geq n}f_k\biggr).$$

1.4. Tétel: Jegorov-tétel

Legyen (X, Ω, μ) egy mértéktér, ahol μ véges mérték, $f_n : X \to \mathbb{R}$ $(n \in \mathbb{N})$.

Ha az (f_n) mérhető függvényeknek a sorozata pontonként konvergál az

$$f(x) := \lim_{n \to \infty} f_n(x) \in \mathbb{R}$$
 $(x \in X)$

határfüggvényhez, akkor tetszőleges $\varepsilon>0$ számhoz van olyan $X_{\varepsilon}\in\Omega,$ hogy

- a) az (f_n) sorozat az X_{ε} halmazon egyenletesen konvergál az f-hez;
- b) $\mu(X \setminus X_{\varepsilon}) < \varepsilon$.

Bizonyítás. Tekintsük egy $1 \le k \in \mathbb{N}$ index esetén az

$$X_{n,k} := \bigcup_{i=n}^{\infty} \left\{ \left| f_i - f \right| \ge 1/k \right\} \implies X_{n,k} \in \Omega \quad (n \in \mathbb{N})$$

halmazsorozatot. Mivel az (f_n) függvénysorozat f-hez tart, ezért az említett halmazok monoton szűkülő módon tartanak az üres halmazhoz, azaz

$$X_{n+1,k} \subseteq X_{n,k} \quad (n \in \mathbb{N}) \quad \text{és} \quad \emptyset = \bigcap_{n=0}^{\infty} X_{n,k}.$$

Mivel feltettük, hogy μ véges mérték, ezért $\mu(X_{n,k}) \longrightarrow 0 \ (n \to \infty)$. Vagyis

$$\exists n_k \in \mathbb{N}: \quad \mu(X_{n,k}) < \frac{\varepsilon}{2^k}.$$

Ez alapján tekintsük a következő halmazat:

$$X_{\varepsilon} \coloneqq X \setminus \left(\bigcup_{k=1}^{\infty} X_{n_k,k}\right).$$

Mivel Ω szigma-algebra, ezért $X_\varepsilon \in \Omega$. Továbbá minden $x \in X_\varepsilon$ helyen

$$|f_i(x) - f(x)| < \frac{1}{k}$$
 $(n_k \le i \in \mathbb{N}).$

Tehát az (f_n) sorozat egyenletesen konvergens X_{ε} -on. Végül

$$\mu(X \setminus X_{\varepsilon}) \le \sum_{k=1}^{\infty} \mu(X_{n_k,k}) < \varepsilon \cdot \sum_{k=1}^{\infty} \frac{1}{2^k} = \varepsilon.$$

Ugyanis, indirekt tegyük fel, hogy

$$\exists x \in X : \quad x \in \bigcap_{n=0}^{\infty} X_{n,k}.$$

Ez csak akkor lehetséges, ha

$$\left| f_i(x) - f(x) \right| \ge \frac{1}{k}$$

végtelen sok $i \in \mathbb{N}$ indexre igaz, tehát

$$|f_i(x) - f(x)| \rightarrow 0.$$

Hiszen az itt szereplő mértani sorösszeg

$$\sum_{k=1}^{\infty} \frac{1}{2^k} = \frac{1/2}{1 - 1/2} = 1.$$