Information Theory - introduction

What is information?

- Provides answers to a question
- Reduces uncertainty
- Related to data and knowledge

Measure of surprise or unexpectedness or uncertainty

More and less information

Statements	Does it contain information?
ITA class is boring	Known fact – No info
Students are sleeping when RS is taking class	Known fact - No info
RS is sleeping while taking class	Some info
One student in ITA class shouted @ RS for the boring lecture	Can happen – still some info
One student in ITA class was admitted in Kilpak mental hospital after attending ITA course	May happen – compared to previous cases more info

Measure the Information

- Defined as: log₂(1/p) or -log₂(p)
- Sometimes called **self information**

Information versus probability

More entropy more disorder

Entropy maps the degree of order and disorder:

Higher entropy indicates more disorder

We are born organized, age with increasing disorder, and die in maximum disorder

Entropy increases and then decreases

High and Low entropy

Higher Entropy	Lower Entropy	
Random	Non-random	
Disorganized	Organized	
Disordered	Ordered	
Configurational Variety	Restricted Arrangements	
Freedom of Choice	Constraint	
Uncertainty	Reliability	
Higher Error Probability	Fidelity	

How to measure uncertainty?

Hartley's measure

$$I = log_b r$$

r - number of all possible outcomes of a random message U

<u>E.g.</u>

- Coin flip experiment
- Two possible outcomes

$$I = log_2 2 = 1 bit$$

Motivating e.g. for a better measure

- From A&B we choose a random ball, and we got black balls from both
- Getting a black ball from B is somewhat expected i.e. we already anticipated the result of B i.e. the information content is low for B

Lesson

 Measure needs to consider the possible probabilities of the various events

Shannon's measure

$$I = log_2(1/p_i) = -log_2(p_i)$$

p_i denotes the probability of the ith possible outcome

Motivating e.g. for a better measure

 From A&B we choose a random ball, and we got black balls from both

Possible outcomes = 2 {Black, White} $p(black) = p(white) = \frac{1}{2}$ $I = -log_2 = 1$ bit Possible outcomes = 2 {Black, White} p(black) = $\frac{3}{4}$; p(white) = $\frac{1}{4}$ I = $-\log_2(\frac{3}{4})$ = 0.415 bit

Shannon's measure - average

$$H(U) \triangleq -\sum_{i=1}^{r} p_i \log_b p_i$$

Assumption: Exclude all indices i with $p_i = 0$

$$\sum_{i=1}^{r} p_i \log_2 \frac{1}{p_i} = -\sum_{i=1}^{r} p_i \log_2 p_i$$

Entropy is positive

 P_i is 0 to 1 \Rightarrow (1/ P_i) is greater than 1 \Rightarrow log(1/ P_i) is greater than or equal to 0

Example

$$X = \begin{cases} a & \text{with probability } \frac{1}{2}, \\ b & \text{with probability } \frac{1}{4}, \\ c & \text{with probability } \frac{1}{8}, \\ d & \text{with probability } \frac{1}{8}. \end{cases}$$

The entropy of X is

$$H(X) = -\frac{1}{2}\log\frac{1}{2} - \frac{1}{4}\log\frac{1}{4} - \frac{1}{8}\log\frac{1}{8} - \frac{1}{8}\log\frac{1}{8} = \frac{7}{4}$$
 bits.

Binary entropy function (e.g. coin flipping)

$$H_{b}(p) \triangleq -p \log_{2} p - (1-p) \log_{2} (1-p), \qquad p \in [0,1]$$

i	a_i	p_i	$h(p_i)$
1	a	.0575	4.1
2	b	.0128	6.3
3	C	.0263	5.2
4	d	.0285	5.1
5	e	.0913	3.5
6	f	.0173	5.9
7	g	.0133	6.2
8	\mathbf{h}	.0313	5.0
9	i	.0599	4.1
10	j	.0006	10.7
11	\mathbf{k}	.0084	6.9
12	1	.0335	4.9
13	m	.0235	5.4
14	\mathbf{n}	.0596	4.1
15	0	.0689	3.9
16	\mathbf{p}	.0192	5.7
17	\mathbf{q}	.0008	10.3
18	\mathbf{r}	.0508	4.3
19	s	.0567	4.1
20	t	.0706	3.8
21	\mathbf{u}	.0334	4.9
22	v	.0069	7.2
23	W	.0119	6.4
24	\mathbf{x}	.0073	7.1
25	У	.0164	5.9
26	Z	.0007	10.4
27	_	.1928	2.4
>	$\sum p_i$	$\log_2 \frac{1}{p_i}$	4.1

Entropy - a to z

- A random character is picked from an English document.
 Denote the output by x.
- Outcome x = z has a
 Shannon information content of 10.4 bits

• x = e has an information content of 3.5 bits

Property # 1

 Addition of an impossible event does not change the entropy

$$H_{N+1}(p_1, p_2, p_3,...p_N, 0)=H_N(p_1, p_2, p_3,...p_N)$$

Property#2

Entropy vanishes when one outcome is certain to happen

$$H_N(p_1, p_2, p_3,...p_N) = 0$$

if $p_i=1$, $p_j=0$ with $i\neq j$

Property#3

•Two independent probability distributions $P_X = \{p_1, \ldots, p_N\}$ & $Q_Y = \{q_1, \ldots, q_M\}$

$$H = -\sum_{i=1}^{N} \sum_{j=1}^{M} p(i, j) \log (p(i, j))$$

$$p(i, j) = p(i)q(j)$$

$$H = -\sum_{i=1}^{N} \sum_{j=1}^{M} p(i)q(j) \log (p(i)q(j))$$

$$= -\sum_{i=1}^{N} \sum_{j=1}^{M} p(i)q(j) [\log p(i) + \log q(j)]$$

$$= -\sum_{i=1}^{N} \sum_{j=1}^{M} p(i)q(j) \log p(i) + -\sum_{i=1}^{N} \sum_{j=1}^{M} p(i)q(j) \log q(j)$$

$$= -\sum_{i=1}^{N} p(i) \log p(i) \{q_1 + \dots + q_M\} + -\sum_{j=1}^{M} q(j) \log q(j) \{p_1 + \dots + p_N\}$$

$$\{q_1 + \dots + q_M\} = \{p_1 + \dots + p_N\} = 1$$

$$H = -\sum_{i=1}^{N} p(i) \log p(i) + -\sum_{j=1}^{M} q(j) \log q(j)$$

$$= H_{p_X} + H_{Q_Y}$$

Discrete versus Continuous pdf

Discrete case

- Pdf values @ a point < 1
- $\sum_i p_i = 1$

Continuous case

- Pdf values @ a point can be >1
- $\int p(x) dx = 1$

Find entropy-discrete pdf - example

•
$$p(1) = 0.12$$
; $p(2)=0.22$; $p(3)=0.32$; $p(4)=0.22$; $p(5)=0.12$

•H=0.12*log2(1/0.12) + 0.22*log2(1/0.22) + 0.32*log2(1/0.32) + 0.22*log2(1/0.22) + 0.12*log2(1/0.12) = 2.22 bits

Find entropy-continuous pdf - example

$$f(x) = \frac{2h}{b-a}(x-a) \quad \text{for } a \le x \le \frac{a+b}{2}$$

$$f(x) = \frac{2h}{b-a}(b-x) \quad \text{for } \frac{a+b}{2} \le x \le b$$

$$H(X) = -\int_{a}^{(a+b)/2} \frac{2h}{b-a} (x-a) \ln \frac{2h}{b-a} (x-a) dx$$
$$-\int_{(a+b)/2}^{b} \frac{2h}{b-a} (b-x) \ln \frac{2h}{b-a} (b-x) dx$$

$$\int x \ln \lambda x \, dx = \frac{x^2}{2} \ln \lambda x - \frac{x^2}{4}$$

$$= \frac{-h}{b-a} \left[(x-a)^2 \ln \frac{2h}{b-a} (x-a) - \frac{(x-a)^2}{2} \right]_a^{(a+b)/2}$$

$$+ \frac{h}{b-a} \left[(b-x)^2 \ln \frac{2h}{b-a} (b-x) - \frac{(b-x)^2}{2} \right]_{(a+b)/2}^b$$

$$= \frac{-h}{b-a} \left\{ \left[\frac{(b-a)^2}{4} \ln h - \frac{(b-a)^2}{8} \right] + \left[\frac{(b-a)^2}{4} \ln h - \frac{(b-a)^2}{8} \right] \right\}$$

$$= \frac{h(b-a)}{2} \left(-\ln h + \frac{1}{2}\right)$$

$$\frac{h(b-a)}{2} = \int_{-\infty}^{\infty} f(x) dx = 1$$

$$H(X) = -\ln h + \frac{1}{2}$$

Entropy becomes negative

$$H(X) > 0$$
 for $h < \sqrt{e}$
 $H(X) = 0$ for $h = \sqrt{e}$
 $H(X) < 0$ for $h > \sqrt{e}$

Entropy - example

- A fair coin is flipped until the first head occurs. Let X denote the number of flips required. Find entropy H(X).
- Let p and q denote head and tail probability = 0.5
- Getting head in 1^{st} toss = 0.5
- Getting head in 2nd toss = q . p
- Getting head in 3^{rd} toss = q.q. p
- Getting head in nth toss = q⁽ⁿ⁻¹⁾.p

$$H(X) = -\sum_{n=1}^{\infty} pq^{(n-1)} \log \left(pq^{(n-1)}\right)$$

$$= -\left[\sum_{n=1}^{\infty} pq^{(n-1)} \log \left(p\right) + \sum_{n=1}^{\infty} pq^{(n-1)} \log \left(q^{(n-1)}\right)\right]$$

$$= -\left[\sum_{n=0}^{\infty} pq^{(n)} \log \left(p\right) + \sum_{n=0}^{\infty} pq^{(n)} \log \left(q^{(n)}\right)\right]$$

$$= -\left[\sum_{n=0}^{\infty} pq^{(n)} \log \left(p\right) + \sum_{n=0}^{\infty} npq^{(n)} \log \left(q\right)\right]$$

$$we \quad know , \sum_{n=0}^{\infty} r^{n} = \frac{1}{1-r} \quad and \quad \sum_{n=0}^{\infty} nr^{n} = \frac{r}{(1-r)^{2}}$$

$$= -p \log \left(p\right) \cdot \frac{1}{1-q} - p \log \left(q\right) \cdot \frac{q}{(1-q)^{2}}$$

$$= -\frac{p \log \left(p\right)}{p} - \frac{pq \log \left(q\right)}{p^{2}} = \frac{-\left(p \log \left(p\right) + q \log \left(q\right)\right)}{p}$$

$$= 2 \quad bits$$

Entropy decomposition

- A random variable x ∈ {0, 1, 2} is created by
 - first flipping a fair coin to determine whether x=0
 - if $x \neq 0$, flipping a fair coin a second time to determine whether x is 1 or 2
- $P(x=0) = \frac{1}{2}$; $P(x=1) = \frac{1}{4}$; $P(x=2) = \frac{1}{4}$

Entropy decomposition

1st time toss (getting head implies x=0)	2^{nd} time toss(only when we didn't get head 1^{st} time) $H{\rightarrow}1$ $T{\rightarrow}2$	P(x=0)= get head 1 st time	P(x=1)= get tail 1st time x get head 2nd time = 1/2 x 1/2	P(x=2)= get tail 1st time x get tail 2nd time = 1/2 x 1/2
Н		1/2	1/4	1/4
Т	Н			
	Т			

•P(x=0) =
$$\frac{1}{2}$$
; P(x=1) = $\frac{1}{4}$; P(x=2) = $\frac{1}{4}$

1st method

 $H(X)=\frac{1}{2} \cdot \log 2 + \frac{1}{4} \cdot \log 4 + \frac{1}{4} \cdot \log 4 = 1.5 \text{ bits}$

2nd method

1st toss: $H(\frac{1}{2}, \frac{1}{2}) = \frac{1}{2} \cdot \log 2 + \frac{1}{2} \cdot \log 2 = 1$ bit

2nd toss: $H(\frac{1}{2}, \frac{1}{2}) = \frac{1}{2}$. log 2 + $\frac{1}{2}$. log 2 = 1 bit But the 2nd toss happens only half of the time H = H (1st toss) + $\frac{1}{2}$. H(2nd toss) = 1 + $\frac{1}{2}$. $\frac{1}{2}$ = 1.5 bits

Example

- A source produces a character x from the alphabet A = {0, 1,...., 9; a, b,...., z}
 - With probability 1/3, x is a numeral (0, 1, 2, ..., 9)
 - with probability 1/3, x is a vowel (a, e, i, o, u)
 - with probability 1/3 it's one of the 21 consonants
- All numerals are equiprobable, and the same goes for vowels and consonants. Estimate the entropy of X

Two successive events

- 1st event: Getting numerals or vowels or consonants
- **2nd event:** Distribution with in them but this will happen 1/3 of time only

$$H(1^{st} \text{ event}) = 1/3 \cdot \text{Log } 1/3 + 1/3 \cdot \text{Log } 1/3 + 1/3$$

 $\cdot \text{Log } 1/3 = \log 3$

 $H(2^{nd} \text{ event:numerals}) = log 10$

 $H(2^{nd} \text{ event:vowels}) = \log 5$

 $H(2^{nd} \text{ event:consonants}) = \log 21$

$$H = \log 3 + \frac{1}{3} (\log 10 + \log 5 + \log 21)$$

$$= 1.585 + \frac{1}{3} (3.322 + 2.322 + 4.392)$$

$$= 4.93 \ bits$$

Broader the distribution higher the entropy Gaussian becomes broader with increasing σ (std dev.) Higher the σ , more the entropy and viceversa In the limit, $\sigma \to \infty$, Gaussian \to uniform distribution In the limit, $\sigma \to 0$, Gaussian \to delta distribution

Expectation

- Consider a random variable
- Probability function

$$[x_1, x_2,, x_n]$$

$$[p_1, p_2,, p_n]$$

Average of X

$$\overline{X} = \sum_{k=1}^{n} p_k x_k$$

$$\overline{X} = \sum_{k=1}^{n} p_k x_k$$

$$More \quad generic \quad form,$$

$$\overline{\psi(X)} = \sum_{k=1}^{n} p_k . \psi(x_k)$$

Entropy as expectation

What is entropy?

$$H=-\{p_1.log(p_1)+p_2.log(p_2)+...+p_n.log(p_n)\}$$

- What we are summing?
 - Log of probabilities
- What are their weighing factor?
 - Their probability values
- Entropy = -E(log(P))

