1 Buildings

Definition 1 A Polyhedral complex is a certain finite dimensional CW-complex. Each n-cell of the polyhedral complex is

Definition 2 Suppose P is a simple convex polytope in X^n . Let F_i be the codimension-one faces of P. Suppose that, for any two faces F_i and F_j , if their intersection is non-empty, then the dihedral angle between the faces is p_i/m_i , for some m_i in 2, 3, 4, ... Now set $m_i = 1, m_i$ j = inf if F_i , F_j empty intersection. Let s_i be the reflection of X^n across F_i , and let W be the group generated by the set of S_i . Then S_i is the Coxeter group with generators S_i , and Coxeter matrix S_i . Furthermore, S_i is a discrete subgroup of S_i S_i is a strict fundamental domain for the S_i and S_i S_i is a strict fundamental domain for the S_i S_i S_i is a strict fundamental domain for the S_i S_i

Definition 3 Let (W, S) be a Coxeter group generated by a simple convex polytope P. A building of type (W, S) is a polyhedral complex, which is a union of subcomplexs, called apartments. An apartment is isometric to the tiling of X^n derived from P, and each copy of P in the tiling is called a chamber. Now the apartments and chambers must satisfy

- 1. Given any two chambers, there exists an aprelment containing both of them.
- 2. Given any two apartments A and B, there exists an isometry from A to B which fixes $A \cap B$ pointwise.

Example 1 Let us consider a single copy of X^n . We can tile this copy by P, and we get a thin building. This means that we only have one apartment. Clearly this satisfies the first condition - any two chambers immediately lie in the only apartment.

Now let us look at the second condition. If the two chambers have no intersection, then, as each chamber is a copy of P, they are clearly isometric, and we are done. Now if the two chambers have a non-empty intersection, we have two cases:

- 1. If they share a common edge, then reflection along this edge gives us our isometry.
- 2. If they only share a common point

Example 2 Now we can consider a spherical building. Take the Coxeter group

$$W = \langle s_1, s_2 | s_i^2 = 1, (s_1 s_2)^2 = 1 \rangle.$$

This Coxeter group is isomorphic to D_4 .

2 Reflection systems

Definition 4 Let G be a group. A pre-reflection system for G is a pair (X,R). X is a connected simplicial graph which is acted upon by G, and R is a subset of G. This must satisfy

- 1. every element of R is an involution;
- 2. R is closed under conjugation;
- 3. R generates G;
- 4. given an edge of X, there is a unique element of R which flips the edge; and
- 5. for every element r of R, there is at least one edge of X which is flipped by r.

Example 3 Let (W, S) be any Coxeter system. Let X be the Cayley graph of (W, S), and let

$$R=\{wsw^{-1}|w\in W,s\in S\}.$$

Then (X, R) is a pre-reflection system.