Math 142 – Mathematical Modeling

University of California, Los Angeles

Duc Vu

Fall 2021

This is math 142 – Mathematical Modeling taught by Professor Huang. We meet weekly on MWF from 9:00am – 9:50am for lecture. There is one textbook used for the class, which is *Mathematical Models* by *Haberman*. You can find other lecture notes at my blog site. Please let me know through my email if you spot any mathematical errors/typos.

Contents

1	Lec 1: Sep 24, 2021 1.1 Intro to Mathematical Modeling	2
2	Lec 2: Sep 27, 2021 2.1 An Example of Modeling a Mass-Spring System	4
3	Lec 3: Sep 29, 2021 3.1 An Example (Cont'd)	6
4	Lec 4: Oct 1, 20214.1 Population Dynamics (Cont'd)	8
\mathbf{L}	ist of Theorems	
${f L}$	ist of Definitions	
	1.2 Mathematical Model	2

$\S1$ Lec 1: Sep 24, 2021

§1.1 Intro to Mathematical Modeling

First, let's examine the following question

Question 1.1. Why do we learn mathematical modeling?

There are lots of question that math may provide some explanation so that we could understand the question deeply.

Example 1.1 1. How is Covid-19 spread? How can we control the spread of Covid-19?

- 2. How to control the spreading of the forest fire and how to reduce the loss?
- 3. How does the population of human evolve over time?

So,

Question 1.2. What is a mathematical model and how can we create the model?

Definition 1.2 (Mathematical Model) — A mathematical model is a description of a system using mathematical concepts and language. The process of developing a mathematical model is called mathematical modeling.

To create a mathematical model, we

- 1. formulate the problem: approximations and assumptions based on experiments and observations
- 2. solve the problem that is formulated above
- 3. interpret the mathematical results in the context of the problem

Let's now explain the three steps above in more details.

- 1. Formulation
 - a) State the question: If the question is vague, then make it to be precise. If the question is too "big", then subdivide it into several simple and manageable parts.
 - b) Identify factors: Decide important quantities and assign some notation to the corresponding quantity. Then, we need to determine the relationship between the quantities and represent each relationship with an equation.
- 2. Solve the problem above: This may entail calculations that involve algebraic equations, some ODE, PDE, etc; provide some theorems or doing some simulations, etc.
- 3. Interpretation/Evaluation: We need to translate the mathematical result in step 2 back to the real world situations and evaluate whether the model is good or not by asking the following questions:
 - a) Has the model explained the real-world observations?
 - b) Are the answers we found accurate enough?
 - c) Were our assumptions good?

- d) What are the strengths and weaknesses of our model?
- e) Did we make any mistake in step 2?

If the answer to any of the above question is not favorable, we need to go back to step 1 and go through all the steps again until we get some satisfying results.

$\S{2} \mid \text{Lec 2: Sep 27, 2021}$

§2.1 An Example of Modeling a Mass-Spring System

Consider the following question

Question 2.1. How does the spring-mass system move/work?

Formulation:

- a) State the question: What formula can describe how the spring-mass system work?
- b) Identify factors:
 - (a) initial position x_0 (called natural length)
 - (b) the spring constant k
 - (c) friction f_c
 - (d) mass of the object m
 - (e) position x
 - (f) velocity v
 - (g) acceleration a
 - (h) force F

Now, we try to find some relations between factors we listed above. First, let's describe our observations. If we contract the spring (x < 0), there is some force to push the spring outward (F > 0). If we stretch the spring (x > 0), there is some force that restores the initial shape of the spring (F < 0). So, we can observe that

$$F \cdot x < 0$$

The relation between F and x can be summarized by the Hooke's Law

$$F = -kx \tag{*}$$

Next, let's find the relation between the force and the movement of the object (F, m, v, a) by assuming that the movement of the object only depends on the force of the spring (not on other factors). This can be summarized by Newton's second law of motion.

$$\vec{F} = m\vec{a} = m\frac{d\vec{v}}{dt} = m\frac{d}{dt}\left(\frac{d\vec{x}}{dt}\right) = m\frac{d^2\vec{x}}{dt^2} \tag{**}$$

By (*) and (**), we deduce

$$F = -kx = m\frac{d^2x}{dt^2}$$

Mathematical analysis: we need to find the solution of the ODE:

$$mx'' + kx = 0$$

To solve the ODE, we want to find the solution to the characteristic equation

$$m\lambda^2 + k = 0 \implies x = \pm \sqrt{\frac{k}{m}}i$$

Thus,

$$x(t) = c_1 e^{t\sqrt{\frac{k}{m}}i} + c_2 e^{-t\sqrt{\frac{k}{m}}i}$$

$$= (c_1 + c_2)\cos\left(\sqrt{\frac{k}{m}}t\right) + (c_1 - c_2)i\sin\left(\sqrt{\frac{k}{m}}t\right)$$

$$= c_3\cos\left(\sqrt{\frac{k}{m}}t\right) + c_4\sin\left(\sqrt{\frac{k}{m}}t\right)$$

$\S{3}$ Lec 3: Sep 29, 2021

§3.1 An Example (Cont'd)

Recall that we have

$$x(t) = c_3 \cos\left(\sqrt{\frac{k}{m}}t\right) + c_4 \sin\left(\sqrt{\frac{k}{m}}t\right)$$

Let $\theta_2 = \sqrt{\frac{k}{m}}t$. Then,

$$x(t) = \sqrt{c_3^2 + c_4^2} \left(\frac{c_3}{\sqrt{c_3^2 + c_4^2}} \cos(\theta_2) + \frac{c_4}{\sqrt{c_3^2 + c_4^2}} \sin(\theta_2) \right)$$

Let $\sin \theta_1 = \frac{c_3}{\sqrt{c_3^2 + c_4^2}}$ and $\cos \theta_1 = \frac{c_4}{\sqrt{c_3^2 + c_4^2}}$ with $\tan \theta_1 = \frac{c_3}{c_4}$ or $\theta_1 = \arctan\left(\frac{c_3}{c_4}\right)$. So,

$$x(t) = \sqrt{c_3^2 + c_4^2} \sin(\theta_1 + \theta_2)$$
$$= \sqrt{c_3^2 + c_4^2} \left(\sqrt{\frac{k}{m}} + \theta_1 \right)$$

Evaluation of $x(t) = A \sin(\omega t + \theta)$

From the figure above, we know x(t) is periodic with period $T = \frac{2\lambda}{\omega} = 2\lambda\sqrt{\frac{m}{k}}$

$$\max_{t} x(t) = A, \qquad \min_{t} x(t) = -A$$

where A is the amplitude and $\omega t + TBA$

Since x(t) is a periodic function, this means the spring will oscillate forever. However, in practice, it is impossible. Thus, we need to modify our model by removing or adding some assumption.

Now, we may consider the case that there is friction when spring oscillates.

$$F_f = -c \frac{dx}{dt}$$

Then,

$$m\frac{d^2x}{dt^2} = -kx - c \cdot \frac{dx}{dt}$$

§3.2 Population Dynamics

Consider the following question

Question 3.1. Can we predict whether a species or its population will thrive or go extinct?

In order to answer it, let's first investigate an example.

Example 3.1

How many people will there be in the U.S. in the next 4 years? First let's reformulate the question in the example to be more specific:

Question 3.2. Can we build a math model to predict the number of people in the U.S. in 1, 2, 3, 4 year?

Assumption	Factor
the death and birth rate are constant	birth rate: b
the counting period (of the population) is fixed	death rate: d
the growth of the population only depends on	the period
the death and birth rate	initial population: N_0
	the distribution of the population: $N^{(a)}$
	migration rate
	the $\#$ of years from the current time: t
	the # of population at time t : $N(t)$
	the growth rate: R

To study N(t) we need to consider the relation between N(t) and $N(t + \Delta t)$

$$N(t + \Delta t) = N(t) + \#$$
 of new birth at $[t, t + \Delta t] - \#$ of death at $[t, t + \Delta t]$
= $N(t) + (b - d)\Delta t \cdot N(t)$
= $(1 + (b - d)\Delta t) \cdot N(t)$

Thus,

$$N(t + \Delta t) = (1 + R\Delta t) N(t)$$

$$N(1) = (1 + R)N_0$$

$$N(2) = (1 + R)N(1) = (1 + R)^2 N_0$$

$$N(3) = (1 + R)N(2) = (1 + R)^3 N_0$$

$$N(4) = (1 + R)N(3) = (1 + R)^4 N_0$$

$\S4$ Lec 4: Oct 1, 2021

§4.1 Population Dynamics (Cont'd)

Example 4.1

 $N_0=300$ millions, R=0.6%, $\Delta t=1$ $N(1)=(1+r)N_0=(1+0.6\%)\cdot 300$ =300+1.8=301.8 millions $N(2)=(1+r)^2N_0=(1+0.6\%)\cdot 300$ $=301.8\cdot 100.6\%$

$$N(3) = (1+R)^3 N_0 = (1+0.6\%)^3 \cdot 300$$

$$N(4) = (1+R)^4 \cdot N_0 = (1+0.6\%)^4 \cdot 300$$

Consider:

$$N(t+\Delta t) = (1+R\cdot \Delta t)\cdot N(t)$$

where $t_0 = 0$, $t_1 = \Delta t$, $t_2 = 2\Delta t$,..., $t_n = n\Delta t$

$$\implies N(n \cdot \Delta t) = (1 + R \cdot \Delta t)N((nt)\Delta t) = \dots = (1 + R\Delta t)^n N_0$$

We have

$$(1 + R\Delta t)^{\frac{1}{\Delta tR} \cdot Rn\Delta t} \cdot N_0 = (1 + R\Delta t)^{\frac{1}{R\Delta t}Rt} N_0$$

Set $\Delta t \to 0$, we obtain $(1 + R\Delta t)^{\frac{1}{R\Delta t}} \to e$. Then,

$$N(t) = e^{Rt} N_0 \text{ as } \Delta t \to 0$$

Next, let's analyze the property of the model above:

$$N\left(n\Delta t\right) = \left(1 + R\Delta t\right)^n N_0$$

- 1. $1 + R\Delta t > 1$, then $N(n\Delta t) \to +\infty$, as $n \to +\infty$
- 2. $0 < 1 + R\Delta t < 1$, then $N(n\Delta t) \to 0$ as $n \to +\infty$

<u>Conclusion</u>: When $0 < 1 + R\Delta t < 1$, the model is acceptable; however, when $1 + R\Delta t > 1(R > 0)$, the model should be modified. Thus, we may change our assumption: the growth rate is constant (e.g., the growth rate depends on the population itself)

§4.2 Continuous Population Model

Have:

$$N(t) = e^{Rt} N_0$$

Let's start from the previous lecture

$$N(t + \Delta t) = N(t) + R\Delta t \cdot N(t)$$

So

$$\frac{N(t + \Delta t) - N(t)}{\Delta t} = R \cdot N(t)$$

$$\lim_{\Delta t \to 0} \frac{N(t + \Delta t) - N(t)}{\Delta t} = \lim_{\Delta t \to 0} R \cdot N(t) = R \cdot N(t)$$

$$\frac{dN(t)}{dt} = R \cdot N(t)$$

$$\int \frac{dN(t)}{N(t)} = \int Rdt$$

$$\ln(N(t)) = Rt + C$$

$$N(t) = e^{C}e^{Rt} = N_{0}e^{Rt}$$

Evaluate the continuous model $N(t) = e^{Rt} N_0$

- 1. 0 < R < 1: $N(t) \to \infty$ as $t \to \infty$ and $N(t) \uparrow$ as $t \uparrow$
- 2. -1 < R < 0: $N(t) \to 0$ as $t \to \infty$ and $N(t) \downarrow$ as $t \uparrow$

<u>Conclusion</u>: When R < 0, the model is acceptable; however, when the growth rate R > 0, the individuals (of a species) will compete each other as the resource is limited, $N(t) \to \infty$ as $t \to \infty$. Now, let's consider the density-dependent growth. Assumption:

- The growth rate is density dependent, i.e., R(t) = R(N(t))
- If the population is small, then the influence of the environment is small, then we hope that the population has exponential growth.
- As N(t) gets large enough, we don't expect the growth of N(t). In other word, the growth rate $R(N(t)) \leq 0$ when N(t) is large enough (since R(t) is usually assume to be smooth, R(N(t)) = 0 when N(t) is large enough)

$$\frac{dN}{dt} = R(N(t)) \cdot N(t)$$

From our assumption, R(N(t)) should be a constant when N(t) is small and R(N(t)) = 0 as N(t) is large enough. So we can consider R(N(t)) of the form

$$R\left(N(t)\right) = a - bN(t)$$

Thus, the model becomes

$$\frac{dN}{dt} = (a - bN)N$$

This is known as the logistic model.

Remark 4.2. The discrete-time population model is called Beverton-Holt model.

$$\begin{cases} N(t \cdot \Delta t) = \frac{R_0(N(t-1) \cdot \Delta t)}{1 + N((t-1)\Delta t)/M} \\ R(N) = \frac{R_0}{1 + N((t-1) \cdot \Delta t)/M} \end{cases}$$