APM462 Lecture Notes

Yuchen Wang

September 19, 2019

Contents

1	Lecture 1 - September 6th	2
2	Lecture 2 - September 9th	3
3	Lecture 3 - September 13rd	6
4	Lecture 4 - September 16th 4.1 Minimization and Maximization of Convex Functions	8
5	Lecture 5 - September 18th 5.1 Basics of Unconstrained Optimization	10 11

Lecture 1 - September 6th 1

functions $\mathbb{R} \to \mathbb{R}$

Mean Value Theorem in 1 Dimension $g \in C^1$ on \mathbb{R}

$$\frac{g(x+h) - g(x)}{h} = g'(x + \theta h)$$

where $\theta \in (0,1)$

Or equivalently,

$$g(x+h) = g(x) + hg'(x+\theta h)$$

1st Order Taylor Approximation $g \in C^1$ on \mathbb{R}

$$g(x+h) = g(x) + hg'(x) + o(h)$$

where o(h) is "little o" of h, the error term.

Say a function f(h) = o(h), this means $\lim_{h\to 0} \frac{f(h)}{h} = 0$

For example, for $f(h) = h^2$, we can say f(h) = o(h), since $\lim_{h\to 0} \frac{f(h)}{h} = \lim_{h\to 0} \frac{h^2}{h} = \lim_{h\to 0} h = 0$ \underline{proof} : (Use MVT):

since
$$\lim_{h \to 0} \frac{f(h)}{h} = \lim_{h \to 0} \frac{h^2}{h} = \lim_{h \to 0} h = 0$$

 $\overline{\text{WTS}}: g(x+h) - g(x) - hg'(x) = o(h)$

$$\lim_{h \to 0} \frac{[g(x+h) - g(x)] - hg'(x)}{h} = \lim_{h \to 0} \frac{[hg'(x+\theta h)] - hg'(x)}{h}$$

$$= \lim_{h \to 0} g'(x+\theta h) - g'(x)$$

$$= \lim_{h \to 0} g'(x) - g'(x)$$

$$= 0$$

2nd Order Mean Value Theorem $g \in C^2$ on \mathbb{R}

$$g(x+h) = g(x) + hg'(x) + \frac{h^2}{2}g'(x+\theta h)$$

for some $\theta \in (0,1)$

$$\frac{proof:}{\text{WTS: }} g(x+h) - g(x) - hg'(x) - \frac{h^2}{2}g''(x) = o(h^2)$$

$$\lim_{h \to 0} \frac{g(x+h) - g(x) - hg'(x) - \frac{h^2}{2}g''(x)}{h^2} = \lim_{h \to 0} \frac{\left[\frac{h^2}{2}g'(x+\theta h)\right] - \frac{h^2}{2}g''(x)}{h^2}$$

$$= \lim_{h \to 0} \frac{1}{2}(g''(x+\theta h) - g''(x))$$

$$= \lim_{h \to 0} \frac{1}{2}(g''(x) - g''(x))$$

2 Lecture 2 - September 9th

multivariate functions: $\mathbb{R}^n \to \mathbb{R}$

Recall: Definition of gradient Gradient of $f : \mathbb{R}^n \to \mathbb{R}$ at $x \in \mathbb{R}^n$ (denoted $\nabla f(x)$) if exists is a vector characterized by the property:

$$\lim_{\mathbf{v}\to\mathbf{0}} \frac{f(\mathbf{x}+\mathbf{v}) - f(\mathbf{x}) - \nabla f(\mathbf{x}) \cdot \mathbf{v}}{||\mathbf{v}||} = 0$$

In Cartesian coordinates, $\nabla f(\mathbf{x}) = (\frac{\partial f}{\partial \mathbf{x}_1}(\mathbf{x}), \dots, \frac{\partial f}{\partial \mathbf{x}_n}(\mathbf{x}))$

Mean Value Theorem in n dimension $f \in C^1$ on \mathbb{R}^n , then for any $\mathbf{x}, \mathbf{v} \in \mathbb{R}^n$,

$$f(\mathbf{x} + \mathbf{v}) = f(\mathbf{x}) + \nabla f(\mathbf{x} + \theta \mathbf{v}) \cdot \mathbf{v}$$

for some $\theta \in (0,1)$

<u>proof:</u> Reduce to 1-dimension case $g(t) := f(\mathbf{x} + t\mathbf{v}), t \in \mathbb{R}$

$$g'(t) = \frac{d}{dt} f(\mathbf{x} + t\mathbf{v})$$

$$= \sum_{i=1}^{n} \frac{\partial f}{\partial \mathbf{x}_{i}} (\mathbf{x} + t\mathbf{v}) \cdot \frac{d(\mathbf{x} + t\mathbf{v})_{i}}{dt}$$
 (by Chain Rule)
$$= \sum_{i=1}^{n} \frac{\partial f}{\partial \mathbf{x}_{i}} (\mathbf{x} + t\mathbf{v}) \cdot \frac{d(\mathbf{x}_{i} + t\mathbf{v}_{i})}{dt}$$

$$= \sum_{i=1}^{n} \frac{\partial f}{\partial \mathbf{x}_{i}} (\mathbf{x} + t\mathbf{v}) \cdot \mathbf{v}_{i}$$

$$= \nabla f(\mathbf{x} + t\mathbf{v}) \cdot \mathbf{v}$$
 (*)

 $g \in C^1$ on \mathbb{R} Using MVT in \mathbb{R} :

$$f(\mathbf{x} + \mathbf{v}) = g(1)$$

$$= g(0 + 1)$$

$$= g(0) + 1g'(0 + \theta 1) \qquad (\theta \in (0, 1))$$

$$= g(0) + g'(\theta)$$

$$= f(\mathbf{x}) + \nabla f(\mathbf{x} + \theta \mathbf{v}) \cdot \mathbf{v} \qquad (by (*))$$

1st Order Taylor Approximation in \mathbb{R}^n $f \in C^1$ on \mathbb{R}^n

$$f(\mathbf{x} + \mathbf{v}) = f(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot \mathbf{v} + o(||\mathbf{v}||)$$

proof:

$$\lim_{||\mathbf{v}|| \to 0} \frac{[f(\mathbf{x} + \mathbf{v}) - f(\mathbf{x})] - \nabla f(\mathbf{x}) \cdot \mathbf{v}}{||\mathbf{v}||} = \lim_{||\mathbf{v}|| \to 0} \frac{[\nabla f(\mathbf{x} + \theta \mathbf{v}) \cdot \mathbf{v}] - \nabla f(\mathbf{x}) \cdot \mathbf{v}}{||\mathbf{v}||}$$

$$= \lim_{||\mathbf{v}|| \to 0} [\nabla f(\mathbf{x} + \theta \mathbf{v}) - \nabla f(\mathbf{x})] \cdot \frac{\mathbf{v}}{||\mathbf{v}||}$$

$$= 0 \quad (\frac{\mathbf{v}}{||\mathbf{v}||} \text{ is a unit vector, remains 1})$$

2nd Order Mean Value Theorem in \mathbb{R}^n $f \in \mathbb{C}^2$ on \mathbb{R}^n

$$f(\mathbf{x} - \mathbf{v}) = f(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot \mathbf{v} + \frac{1}{2} \mathbf{v}^T \nabla^2 f(\mathbf{x} + \theta \mathbf{v}) \cdot \mathbf{v}$$

Remarks In this course, ∇^2 means Hessian, not Laplacian.

$$\nabla^2 f(\mathbf{x}) = \left(\frac{\partial^2 f}{\partial \mathbf{x}_i \partial \mathbf{x}_j}\right)_{1 \le i, j \le n} (\mathbf{x}) = \begin{pmatrix} \frac{\partial f}{\partial_1^2} & \frac{\partial f}{\partial_1 \partial_2} & \cdots \\ \frac{\partial f}{\partial_2 \partial_1} & \cdots & \\ \vdots & & \end{pmatrix}$$

The Hessian matrix is symmetric. This is sometimes called <u>Clairaut's Theorem</u>. <u>note</u>: $\mathbf{v}^T \nabla^2 f(\mathbf{x}) \mathbf{v} = \sum_{1 \leq i, j \leq n} \frac{\partial^2 f}{\partial \mathbf{x}_i \partial \mathbf{x}_j} f(\mathbf{x}) \mathbf{v}_i \mathbf{v}_j$

2nd Order Taylor Approximation in \mathbb{R}^n $f \in \mathbb{C}^2$ on \mathbb{R}^n

$$f(\mathbf{x} + \mathbf{v}) = f(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot \mathbf{v} + \frac{1}{2} \mathbf{v}^T \nabla^2 f(\mathbf{x}) \mathbf{v} + o(||\mathbf{v}||^2)$$

proof:

$$\lim_{||\mathbf{v}|| \to 0} \frac{[f(\mathbf{x} + \mathbf{v}) - f(\mathbf{x})] - \nabla f(\mathbf{x}) \cdot \mathbf{v} - \frac{1}{2}\mathbf{v}^T \nabla^2 f(\mathbf{x}) \mathbf{v}}{||\mathbf{v}||^2} = \lim_{||\mathbf{v}|| \to 0} \frac{[\frac{1}{2}\mathbf{v}^T \nabla^2 f(\mathbf{x} + \theta \mathbf{v}) \cdot \mathbf{v}] - \frac{1}{2}\mathbf{v}^T \nabla^2 f(\mathbf{x}) \cdot \mathbf{v}}{||\mathbf{v}||^2}$$

$$(\text{By 2nd MVT})$$

$$= \lim_{||\mathbf{v}|| \to 0} \frac{1}{2} (\frac{\mathbf{v}}{||\mathbf{v}||})^T [\nabla^2 f(\mathbf{x} + \theta \mathbf{v}) - \nabla^2 f(\mathbf{x})] (\frac{\mathbf{v}}{||\mathbf{v}||})$$

$$= 0$$

Geometric Meaning of Gradient $f: \mathbb{R}^n \to \mathbb{R}$

Rate of change of f at \mathbf{x} in direction $\mathbf{v}(||\mathbf{v}||=1) = \frac{d}{dt}|_{t=0}f(\mathbf{x}+t\mathbf{v})$

$$\frac{d}{dt}|_{t=0}f(\mathbf{x} + t\mathbf{v}) = \nabla f(\mathbf{x} + t\mathbf{v}) \cdot \mathbf{v}|_{t=0}$$

$$= \nabla f(\mathbf{x}) \cdot \mathbf{v}$$

$$= |\nabla f(\mathbf{x})||\mathbf{v}| \cos \theta$$

$$= |\nabla f(\mathbf{x})| \cos \theta \qquad (||\mathbf{v}|| = 1)$$

maximized at $\theta = 0$

So $\nabla f(\mathbf{x})$ points in the direction of steepest ascent.

Implicit Function Theorem $f: \mathbb{R}^{n+1} \to \mathbb{R} \in C^1$ Fix $(\mathbf{a}, b) \in \mathbb{R}^n \times \mathbb{R}$ s.t. $f(\mathbf{a}, b) = 0$. If $\nabla f(\mathbf{a}, b) \neq 0$, then $\{(\mathbf{x}, y) \in (\mathbb{R}^n \times \mathbb{R}) | f(\mathbf{x}, \mathbf{y}) = 0\}$ is locally (near (\mathbf{a}, b)) the graph of a function. **Level Sets of** f c-level set of $f := \{ \mathbf{x} \in \mathbb{R}^n | f(\mathbf{x}) = c \}$

Fact gradient $\nabla f(\mathbf{x}_0) \perp$ level curve (through \mathbf{x}_0)

Definition of Convex Set $\Omega \subseteq \mathbb{R}^n$ is a <u>convex set</u> if $\mathbf{x}_1, \mathbf{x}_2 \in \Omega \Rightarrow s\mathbf{x}_1 + (1-s)\mathbf{x}_2 \in \Omega$ where $s \in [0,1]$

Definition of Convex Function A function f: convex $\Omega \subseteq \mathbb{R}^n$ is <u>convex</u> if

$$f(s\mathbf{x}_1 + (1-s)\mathbf{x}_2) \le sf(\mathbf{x}_1) + (1-s)f(\mathbf{x}_2)$$

for all $\mathbf{x}_1, \mathbf{x}_2 \in \Omega$ and all $s \in [0, 1]$

Remarks Second line above (or equal to) the graph

Definition of Concave Function A function f is <u>concave</u> if -f is convex.

3 Lecture 3 - September 13rd

Basic Properties of convex functions Let $\Omega \subseteq \mathbb{R}^n$ be a convex set.

- 1. f_1, f_2 are convex functions on $\Omega \Rightarrow f_1 + f_2$ is a convex function on Ω .
- 2. f is a convex function, $a \ge 0 \Rightarrow af$ is a convex function.
- 3. f is a convex on $\Omega \Rightarrow$ The sublevel sets of f, $SL_c := \{ \mathbf{x} \in \mathbb{R}^n | f(\mathbf{x}) \leq c \}$ is convex.

proof of (3):

Let $x_1, x_2 \in SL_C$, so that $f(x_1) \leq c$ and $f(x_2) \leq c$. WTS: $sx_1 + (1-s)x_2 \in SL_c$ for any $s \in [0,1]$

$$f(sx_1 + (1-s)x_2) \le sf(x_1) + (1-s)f(x_2) \qquad (f \text{ is convex})$$

$$\le sc + (1-s)c$$

$$= c$$

$$\Rightarrow sx_1 + (1-s)x_2 \in SL_c$$

Example of a convex function Let $f : \mathbb{R} \to \mathbb{R}$, f(x) = |x| Let $x_1, x_2 \in \mathbb{R}$, $s \in [0, 1]$

Then

$$f(sx_1 + (1-s)x_2) = |sx_1 + (1-s)x_2|$$

$$\leq |sx_1| + |(1-s)x_2|$$
 (by Triangle Inequality)
$$= s|x_1| + (1-s)|x_2|$$

$$= sf(x_1) + (1-s)f(x_2)$$

Then f is a convex function.

Theorem - Characterization of C^1 **convex functions** Let f: convex subset of \mathbb{R}^n $\Omega \to \mathbb{R}$ be a C^1 function.

Then,

$$f$$
 is convex $\iff f(y) \ge f(x) + \nabla f(x) \cdot (y - x)$ for all $x, y \in \Omega$

Remarks Tangent line below the graph.

 $\frac{proof:}{(\Rightarrow)}$

f is convex, then by definition,

$$f(s\mathbf{x}_1 + (1-s)\mathbf{x}_2) \leq sf(\mathbf{x}_1) + (1-s)f(\mathbf{x}_2)$$

$$f(s\mathbf{x}_1 + (1-s)\mathbf{x}_2) - f(\mathbf{x}_2) \leq s(f(\mathbf{x}_1) - f(\mathbf{x}_2))$$

$$\frac{f(s\mathbf{x}_1 + (1-s)\mathbf{x}_2) - f(\mathbf{x}_2)}{s} \leq f(\mathbf{x}_1) - f(\mathbf{x}_2)$$

$$\lim_{s \to 0} \frac{f(\mathbf{x}_2 + s(\mathbf{x}_1 - \mathbf{x}_2)) - f(\mathbf{x}_2)}{s} \leq f(\mathbf{x}_1) - f(\mathbf{x}_2)$$

$$\nabla f(\mathbf{x}_2) \cdot (\mathbf{x}_1 - \mathbf{x}_2) \leq f(\mathbf{x}_1) - f(\mathbf{x}_2)$$

$$(\text{since } \frac{d}{ds}|_{s=0} f(\mathbf{x}_2 + s(\mathbf{x}_1 - \mathbf{x}_2)) = \nabla f(\mathbf{x}_2) \cdot (\mathbf{x}_1 - \mathbf{x}_2)$$

$$f(\mathbf{x}_2) + \nabla f(\mathbf{x}_2) \cdot (\mathbf{x}_1 - \mathbf{x}_2) \leq f(\mathbf{x}_1)$$

$$f(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot (\mathbf{y} - \mathbf{x}) \leq f(\mathbf{y})$$

where $0 \le s \le 1$ (\Leftarrow) Fix $\mathbf{x}_0, \mathbf{x}_1 \in \Omega$ and $s \in (0, 1)$ Let $x = s\mathbf{x}_0 + (1 - s)\mathbf{x}_1$

$$\begin{cases} f(\mathbf{x}_0) & \geq f(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot (\mathbf{x}_0 - \mathbf{x}) \\ & = f(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot (1 - s)(\mathbf{x}_0 - \mathbf{x}_1) \\ f(\mathbf{x}_1) & \geq f(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot (\mathbf{x}_1 - \mathbf{x}) \\ & = f(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot s(\mathbf{x}_1 - \mathbf{x}_0) \end{cases}$$
$$\begin{cases} sf(x_0) & \geq sf(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot (1 - s) \cdot s(\mathbf{x}_0 - \mathbf{x}_1) \\ (1 - s)f(\mathbf{x}_1) & \geq (1 - s)f(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot (1 - s) \cdot s(\mathbf{x}_1 - \mathbf{x}_0) \end{cases}$$

Then

$$sf(\mathbf{x}_0) + (1-s)f(\mathbf{x}_1) \ge f(x) + 0$$

Then f is convex.

4 Lecture 4 - September 16th

 C^1 criterion for convexity

$$f: \Omega \to \mathbb{R}$$
 is convex $\iff f(y) \ge f(x) + \nabla f(x) \cdot (y - x)$

for all $x, y \in \Omega$

Theorem: C^2 criterion for convexity Let $f \in C^2$ on $\Omega \subseteq \mathbb{R}^n$ (here we assume $\Omega \subseteq \mathbb{R}^n$ is a convex set containing an interior point)

$$f$$
 is convex on $\Omega \iff \nabla^2 f(x) \ge 0$

for all $x \in \Omega$

Remark 1 Let A be an $n \times n$ matrix. " $A \ge 0$ " means A is positive semi-definite:

$$v^T A v \ge 0$$

for all $v \in \mathbb{R}^n$

Remark 2 In \mathbb{R} ,

$$f$$
 is convex $\iff f'(x) \ge 0$

for all $x \in \Omega$

("concave up" in first year calculus)

 $proof\ for\ Theorem:$

Recall 2nd order MVT:

$$f(y) = f(x) + \nabla f(x) \cdot (y - x) + \frac{1}{2}(y - x)^{T} \nabla^{2} f(x + s(y - x)) \cdot (y - x)$$

for some $s \in [0, 1]$

 (\Leftarrow)

Since $\nabla^2 f(x) \geq 0$, then

$$\frac{1}{2}(y-x)^T \nabla^2 f(x+s(y-x)) \cdot (y-x) \ge 0$$

Then

$$f(y) \ge f(x) + \nabla f(x) \cdot (y - x)$$

for all $x, y \in \Omega$.

Then by C^1 criterion, f is convex.

 (\Rightarrow)

Assume f is convex on Ω .

Suppose for contradiction that $\nabla^2 f(x)$ is not positive semi-definite at some $x \in \Omega$.

Then $\exists v \neq 0$ s.t. $v^T \nabla^2 f(x) v < 0$ v could be arbitrarily small and > 0 Let y = x + v, then

$$(y-x)^T \nabla^2 f(x+s(y-x)) \cdot (y-x) < 0$$

for all $s \in [0, 1]$

Then by MVT,

$$f(y) < f(x) + \nabla f(x) \cdot (y - x)$$

for some $x, y \in \Omega$, and this contradicts the C^1 criterion.

4.1 Minimization and Maximization of Convex Functions

Theorem $f: \text{convex } \Omega \subseteq \mathbb{R}^n \to \mathbb{R} \text{ is a convex function.}$

Suppose
$$\Gamma := \{x \in \Omega | f(x) = \min_{\Omega} f(x)\} \neq \emptyset$$

(i.e. minimizer exists)

Then Γ is a convex set, and any local minimum of f is a global minimum of f.

proof:

Let
$$m = \min_{\Omega} f(x)$$
.

$$\Gamma = \{x \in \Omega | f(x) = m\} = \{x \in \Omega | f(x) \le m\}$$

(sublevel set)

Then by Basic Properties of Convex Sets, Γ is convex.

Let x be a local minimum of f.

Suppose for contradiction that $\exists y \text{ s.t. } f(y) < f(x)$

(i.e. x is not a global minimum)

$$f(sy + (1 - s)x) \le sf(y) + (1 - s)f(x)$$

$$< sf(x) + (1 - s)f(x) \qquad (f(y) < f(x))$$

$$= f(x)$$

for all $s \in (0,1)$

As s approaches 0, s approaches x.

Then we have $\lim_{s \to 0} f(sy + (1-s)x) = f(x) < f(x)$.

which is a contradiction.

5 Lecture 5 - September 18th

Theorem If $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$ is a convex function, and Ω is convex and compact, then

$$\max_{\Omega} f = \max_{\partial \Omega} f$$

Remarks Maximum value of f is attained (also) on the boundary of Ω proof:

Since Ω is closed, $\partial \Omega \subseteq \Omega$, so $\max_{\Omega} f \ge \max_{\partial \Omega} f$. Suppose $f(x_0) = \max_{\Omega} f$ for some $x_0 \notin \partial \Omega$. Let L be an arbitrary line through x_0 .

By convexity and compactness of Ω , L meets $\partial \Omega$ at two points x_1, x_2 . Let $x_0 + sx_1 + (1 - s)x_2$ for $s \in (0, 1)$

$$f(x_0) = f(sx_1 + (1 - s)x_2) \qquad \leq sf(x_1) + (1 - s)f(x_2) \qquad (f \text{ convex})$$

$$\leq \max\{f(x_1), f(x_2)\}$$

$$\leq \max_{\partial \Omega} f$$

$$= f(x_0) = \max_{\Omega} f$$

This implies that

$$\max_{\Omega} f = \max_{\partial \Omega} f$$

as wanted.

Example

$$|ab| \le \frac{1}{p}|a|^p + \frac{1}{q}|b|^q$$

where p, q > 1 s.t. $\frac{1}{p} + \frac{1}{q} = 1$. Special cases:

1.

$$p = q = 2, |ab| \le \frac{|a|^2 + |b|^2}{2}$$

2.

$$p=3, q=\frac{3}{2}, |ab| \leq \frac{1}{3}|a|^3 + \frac{2}{3}|b|^{\frac{3}{2}}$$

<u>proof:</u> Since function $f(x) = -\log(x)$ is convex, then

$$(-\log)|ab| = (-\log)|a| + (-\log)|b|$$

$$= \frac{1}{p}(-\log)|a|^p + \frac{1}{q}(-\log)|b|^q$$

$$\geq (-\log)(\frac{1}{p}|a|^p + \frac{1}{q}|b|^q)$$

$$(-\log)|ab| \geq (-\log)(\frac{1}{p}|a|^p + \frac{1}{q}|b|^q)$$

$$\log|ab| \leq \log(\frac{1}{p}|a|^p + \frac{1}{q}|b|^q)$$

$$|ab| \leq \frac{1}{p}|a|^p + \frac{1}{q}|b|^q \qquad \text{(exponential function is increasing)}$$

5.1**Basics of Unconstrained Optimization**

Extreme Value Theorem Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is continues, and compact set $K \subseteq \mathbb{R}^n$ Then the problem

$$\min_{x \in K} f(x)$$

has a solution.

Recall

1.

 $K \subseteq \mathbb{R}^n$ compact $\iff K$ closed and bounded

2. If h_1, \ldots, h_k and g_1, \ldots, g_m are continuous functions on \mathbb{R}^n , then the set of all points $x \in \mathbb{R}^n$ s.t.

$$\begin{cases} h_i(x) = 0 & \text{for all } i \\ g_j(x) \le 0 & \text{for all } j \end{cases}$$

is a closed set.

3. If such a set is also bounded