解析几何-1

例 1. (2023, 北京高考) 已知椭圆 $E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = \mathbf{1}(a > b > 0)$ 的离心率为 $\frac{\sqrt{5}}{3}$, A, C 分别是E 的上、下顶点,B, D 分别是E 的左、右顶点,|AC| = 4。(1) 求E 的方程; (2) 设P 为第一象限内E 上的动点,直线PD 与直线BC 交于点M,直线AP 与直线 y = -2 交于点N,求证: $MN/\!\!/CD$ 。

例 2. 已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$ 的左、右顶点分别为 A_1, A_2 , $D(\sqrt{6}, 1)$ 为椭圆C 上一点,P,Q 为椭圆C 上异于 A_1, A_2 的两点,且直线PQ不与坐标轴平行,点P 关于原点O 的对称点为S, $\overrightarrow{DP} \cdot \overrightarrow{DS}$ 的最大值为 4。(1)求椭圆C 的标准方程;(2)若直线 A_1S 与直线 A_2Q 相交于点T,直线OT 与直线PQ 相交于点R。求证:在椭圆C 上存在定点E,使得 $\triangle RDE$ 的面积为定值,并求出该定值。

例 3. A, B 为椭圆 $E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$ 的左、右顶点,焦距长为 $2\sqrt{3}$,点 P 在椭圆 E 上,直线 PA, PB 的斜率之积为 $-\frac{1}{4}$ 。(1)求椭圆 E 的方程;(2)已知 O 为坐标原点,

点 C(-2,2),直线 PC 交椭圆 E 于点 M (M,P 不重合),直线 BM,OC 交于点 G 。求证:直线 AP,AG 的斜率之积为定值,并求出该定值。

例 4. 已知双曲线 $\Gamma: \frac{x^2}{25} - \frac{y^2}{16} = 1$ 与 x 轴的左右交点分别为 B,C , A,P 为双曲线上不与 B,C 重合的不同两点,过 P 作双曲线 Γ 渐近线方向的平行线,分别交直线 AB,AC 于 E,F 。求证: EF 过定点。

例 5. 已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$ 的两个焦点分别为 $F_1(-\sqrt{3},0)$, $F_2(\sqrt{3},0)$, 且 椭圆与直线 $y = x + \sqrt{5}$ 相切。(1)求椭圆的方程;(2)设椭圆的左右顶点分别为 A_1, A_2 ,若直线 l: x = t(t > a) 与 x 轴交于 T 点,点 M 为直线 l 上异于 T 的任意一点,直线 MA_1, MA_2 分别与椭圆交于 P, Q 两点,连结 PA_2 的直线与 l 交于 N 点。是否存在 t ,使得直线 PQ 与以 MN 为直径的圆总相切?若存在,求出 t ;若不存在,请说明理由。

例 6. 已知椭圆 E 的中心为坐标原点,对称轴为 x 轴、 y 轴,且过 A(0,-2) , $B(\frac{3}{2},-1)$ 两点。(1)求 E 的方程;(2)设过点 P(1,-2) 的直线交 E 于 M ,M 两点,过 M 且平行于 X 轴的直线与线段 AB 交于点 T ,点 H 满足 $\overline{MT}=\overline{TH}$ 。求证:直线 \overline{MT} 过定点。

例 7. (2022, 高联 A 卷) 在平面直角坐标系中,双曲线 $\Gamma: \frac{x^2}{3} - y^2 = 1$ 。对平面内不在 Γ 上的任意一点 P ,记 Ω_P 为过点 P 且与 Γ 有两个交点的直线的全体。对任意直线 $l \in \Omega_P$,记 M ,N 为 l 与 Γ 的两个交点,定义 $f_P(l)$ $\Rightarrow PM \mid \cdot \mid PN \mid$ 。若存在一条直线 $l_0 \in \Omega_P$ 满足: l_0 与 Γ 的两个交点位于 p 轴两侧,且对任意直线 $l \in \Omega_P$, $l \neq l_0$,均有 $f_P(l) > f_P(l_0)$,则称 P 为"好点"。求所有好点所构成的区域的面积。

例 8.(2016,高联 A 卷)在平面直角坐标系 xOy 中,F 是 x 轴正半轴上的一个动点,以 F 为焦点、O 为顶点作抛物线 C 。设 P 是第一象限内 C 上的一点,Q 是 x 轴负半轴上一点,使得 PQ 为 C 的切线,且 |PQ| = 2 。圆 C_1 , C_2 均与直线 OP 相切于点 P,且均于 x 轴相切。求点 F 的坐标,使圆 C_1 , C_2 的面积之和取最小值。

例 9. 已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = \mathbb{1}(a > b > 0)$ 的右顶点和上顶点分别为 A,B, 斜率为 $\frac{b}{a}$ 的直线 l 不经过点 A,B 且与椭圆 C 交于不同的两点 P,Q。求证: P,Q,A,B 四点共圆。

例 10. 已知 $C_0: x^2+y^2=1$ 和 $C_1: \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 (a>b>0)$,试问:当且仅当 a,b 满足什的 么条件时,对 C_1 上的任意一点 A ,均存在以 A 为顶点,与 C_0 外切,且内接于 C_1 的平行四 边形?

例 11. (2022, 高联 A1 卷) 在平面直角坐标系 xOy 中,设一条动直线 l 与抛物线

 Γ : $y^2 = 4x$ 相切,且与双曲线 Ω : $x^2 - y^2 = 1$ 交于左、右两支各一点 A, B 。求 $\triangle AOB$ 的面积的最小值。

例 12. (2022, 高联 A2 卷) 已知 $\triangle ABC$ 及其边 BC 上的一点 D,满足 AB=2BD, AC=3CD,且以 A,D 为焦点可以作一个椭圆 Γ 同时经过 B,C 两点。求 Γ 的离心率。

例 13. 已知椭圆 $E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = \mathbf{1}(a > b > 0)$ 的左、右焦点分别为 F_1, F_2 , 焦距与短轴长均为

4。(1) 求E的方程;(2) 设任意过 F_2 的直线l交E于M,N,分别作E在点M,N处的

切线,且两条切线相交于点 P ,过 F_1 作平行于 l 的直线分别交 PM ,PN 于 A ,B 。 求

$$\frac{|\overrightarrow{OA} + \overrightarrow{OB}|}{|\overrightarrow{OP}|}$$
的取值范围。

例 14. 已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$ 的两焦点分别为 F_1, F_2 , C 的离心率为 $\frac{\sqrt{3}}{2}$,

C上有三点Q,R,S,直线QR,QS 分别过 F_1 , F_2 , $\triangle QRF_2$ 的周长为 8。(1) 求C 的方程; (2) 若Q(0,b),求 $\triangle QRS$ 的面积;证明:当 $\triangle QRS$ 面积最大时, $\triangle QRS$ 必定经过C 的某个顶点。

