Subjecte examen - Fenomene ondulatorii in mecanica, FMI UB

Semestrul I, 2023-2024

IAa.* Doua oscilatii armonice paralele au perioade apropiate T_1 , T_2 , frecventele corespunzatoare ν_1 , ν_2 si

freeventele unghiulare ω_1 , ω_2 . Perioada batailor rezultate in urma compunerii celor doua oscilatii este: a) $T_b = \frac{2\pi}{|\omega_2 - \omega_1|}$; b) $T_b = \frac{2\pi}{|\nu_2 - \nu_1|}$; c) $T_b = \frac{1}{2|\nu_2 - \nu_1|}$; d) $T_b = \left|\frac{2T_1T_2}{T_2 - T_1}\right|$; e) $T_b = \frac{2\pi}{|\nu_2 + \nu_1|}$; f) $T_b = \frac{1}{|\nu_2 - \nu_1|}$.

IAb.* Doua oscilatii armonice paralele au perioade apropiate T_1 , T_2 si frecventele corespunzatoare ν_1 , ν_2 .

Numarul de oscilatii care au loc in perioada batailor rezulte in urma compunerii celor doua oscilatii este: a) $N = \frac{T_1 + T_2}{2|T_1 - T_2|}$; b) $N = \frac{v_1 - v_2}{2|v_1 + v_2|}$; c) $N = \frac{v_1 + v_2}{|v_1 - v_2|}$; d) $N = \frac{v_1 + v_2}{2|v_1 - v_2|}$; e) $N = \frac{2(v_1 + v_2)}{|v_1 - v_2|}$ f) $N = \frac{v_1 - v_2}{|v_1 + v_2|}$.

1Ac.* Doua oscilatii armonice paralele au perioade apropiate T_1 , T_2 , frecventele corespunzatoare ν_1 , ν_2 si frecventele unghiulare $\omega_1,\,\omega_2$. Perioada semnalului purtator in urma compunerii celor doua oscilatii este:

a) $T_p = \frac{4\pi}{\omega_2 + \omega_1}$; b) $T_p = \frac{4\pi}{\nu_2 + \nu_1}$; c) $T_p = \frac{2T_1T_2}{T_2 + T_1}$; d) $T_p = \frac{2}{\nu_2 + \nu_1}$; e) $T_p = \frac{2\pi}{\nu_2 + \nu_1}$; f) $T_p = \frac{4\pi(\nu_2 + \nu_1)}{\nu_2 \nu_1}$

2Aa.*Doua resorturi ideale cu constante elastice k si inca unul cu constanta elastica k_c sunt cuplate cu doua corpuri de mase egale m ca in problema oscilatiilor paralele cuplate prezentate la curs. Perioada batailor rezultate in urma compunerii celor doua oscilatii este:

a) $T_b = \frac{4\pi\sqrt{m}}{\sqrt{k + k_c} - \sqrt{k}}$; b) $T_b = \frac{4\pi\sqrt{m}}{\sqrt{k + 2k_c} - \sqrt{k}}$; c) $T_b = \frac{2\pi\sqrt{m}}{\sqrt{k + 2k_c} - \sqrt{k}}$; d) $T_b = \frac{2\pi m}{\left(\sqrt{k + 2k_c} - \sqrt{k}\right)^2}$;

e) $T_b = \frac{2\pi\sqrt{m}}{\sqrt{k+2k} + \sqrt{k}}$; f) $T_b = \frac{2\pi\sqrt{m}}{\sqrt{2k+k} - \sqrt{k}}$

2Ab. Doua resorturi ideale cu constante elastice k si inca unul cu constanta elastica k_c sunt cuplate cu doua corpuri de mase egale m ca in problema oscilatiilor paralele cuplate prezentate la curs. Numarul de oscilatii care au loc in perioada batailor rezulte in urma compunerii celor doua oscilatii este:

 $a) T_b = \frac{4\pi \sqrt{m}}{\sqrt{k + k_c} - \sqrt{k}}; b) T_b = \frac{4\pi \sqrt{m}}{\sqrt{k + 2k_c} - \sqrt{k}}; c) T_b = \frac{2\pi \sqrt{m}}{\sqrt{k + 2k_c} - \sqrt{k}}; d) T_b = \frac{2\pi m}{\left(\sqrt{k + 2k_c} - \sqrt{k}\right)^2};$ e) $T_b = \frac{2\pi\sqrt{m}}{\sqrt{k+2k_a} + \sqrt{k}}$; f) $T_b = \frac{2\pi\sqrt{m}}{\sqrt{2k+k_a} - \sqrt{k}}$

2Ac.*Doua resorturi ideale cu constante elastice k si inca unul cu constanta elastica k_c sunt cuplate cu doua corpuri de mase egale m ca in problema oscilatiilor paralele cuplate prezentate la curs. Perioada semnalului

a) $N = \frac{\sqrt{k + 2k_c} + \sqrt{k}}{2\left(\sqrt{k + 2k_c} - \sqrt{k}\right)}$; b) $N = \frac{\sqrt{k + 2k_c} + \sqrt{k}}{\sqrt{k + 2k_c} - \sqrt{k}}$; c) $N = \frac{\sqrt{k + k_c} + \sqrt{2k}}{2\left(\sqrt{k + 2k_c} - \sqrt{k}\right)}$; d) $N = \frac{\sqrt{k + 2k_c} + \sqrt{k}}{2\left(\sqrt{k + k_c} - \sqrt{k}\right)}$; e) $N = \frac{\sqrt{2k + k_c} + \sqrt{k}}{2(\sqrt{2k + k_c} - \sqrt{k})}$; f) $N = \frac{\sqrt{k + 2k_c} + \sqrt{2k}}{2(\sqrt{k + 2k_c} - \sqrt{2k})}$.

3Aa.* Ecuatia traiectoriei la compunerea a doua oscilatii armonice perpendiculare cu frecvente egale, cu si β este: amplitudini a, b si faze initiale a si p este:

3Ab. Ecuatia traiectoriei la compunerea a doua oscilatii armonice perpendiculare cu frecvente egale, cu

3Ac.* Ecuatia traiectoriei la compunerea a doua oscilatii armonice perpendiculare cu frecvente egale, cu amplitudini a, b si diferenta de form.

4a.* In calculul puterii active medii apare o integrala dependenta de timp. Scrieti si calculati valoarea acestei integrale.

4b.* In calculul puterii active medii apare o integrala independenta de timp. Scrieti si calculati valoarea acestei integrale.

4c.* În calculul puterii reactive medii apare o integrala dependenta de timp. Scrieti si calculati valoarea acestei integrale. 4d.* In calculul puterii reactive medii apare o integrala independenta de timp. Scrieti si calculati valoarea acestei integrale

acestei integrale.

5a.* Calculati derivatele partiale $\frac{\partial^2}{\partial x^2}$ si $\frac{\partial^2}{\partial t^2}$ pentru o unda plana monocromatica care se propaga de-a lungul

directiei x cu viteza c si scrieti relatia obtinuta intre aceste derivate partiale.

5b.* Calculati viteza unei particule intr-o miscare oscilatorie liniar armonica pseudo-periodica.

5c.* Obtineti si explicati diagrama fazoriala in miscarea oscilatorie liniara slab amortizata fortata in cazul in care frecventa fortei excitatoare aplicate este mai mare decat frecventa oscilatorului liniar armonic neamortizat. 5d.* Doua unde plane monocromatice care au frecventa ν si care se deplaseaza cu viteza c interfera cu maxima amplitudine intr-un punct din spatiu. Scrieti amplitudinea rezultanta si obtineti diferenta de drum intre cele doua unde.

1B*. Intr-un experiment de rezonanta mecanica cu amortizare mica se obtine o curba de rezonanta cu amplitudinea B_{max} . Cunoscand ca timpul de injumatatire al oscilatiilor amortizate este $T_{1/2}$ este 138.6s calculati largimea curbei de rezonanta la $B_{\text{max}}/\sqrt{2}$ (considerati ln2=0.693).

2B*. Un corp de masa m suspendat la capatul unui resort de constanta elastica k, efectueaza oscilatii verticale amortizate. Stiind ca dupa efectuarea a No oscilatii amplitudinea oscilatiilor scade de e (numarul lui Euler) ori, aflatt decrementul logaritmic si perioada oscilatiilor amortizate.

 $3B^*$. De capetele unui resort ideal sunt prinse doua bile de mase $m_{1,2}$. Sistemul resort-bile plasat in stare de imponderabilitate este comprimat si apoi este brusc lasat liber. Sistemul resort-bile oscileaza fara disipari de energie cu perioada T. Obtineti constanta elastica k a resortului.

Probleme C C.** Scrieti ecuatia de miscare pentru un corp punctiform de masa m suspendat vertical in camp gravitational uniform, cu intensitate g>0, de un resort ideal cu constanta de elasticitate k care executa oscilatii liniar armonice. Deduceti elongatia miscarii in functie de conditiile initiale. Scrieti expresia elongatiei pentru urmatoarele conditii initiale: viteza nula si resort intins avand o lungime L mai mare decat lungimea lui la echilibru L_0 (cand corpul este agatat de resort).

2C.** Cat este valoarea perioadei bataii T_b si a perioadei semnalului purtator T_p pentru oscilatia reultanta obtinuta prin compunerea a doua oscilatii paralele liniar armonice, $x_1(t) = \cos[(9\pi/2)t]$ si $x_2(t) = \cos[(7\pi/2)t]$? Reprezentati schematic graficul elongatiei rezultate, pentru intervalul de o perioada a bataii $t \in [0, T_b]$. Cate oscilatii cu frecventa semnalului purtator se obtin in intervalul de timp corespunzator unei batai? 3C.** Reprezentati schematic graficul obtinut prin compunerea a doua oscilatii liniar armonice perpendiculare,

4D.** Reprezentati schematic graficul elongatiei x(t) a oscilatiei liniar amortizate cunoscand pulsatia oscilatorului (resortului) in absenta amortizarii $\omega = \pi \sqrt{17/8} \text{ s}^{-1}$, coeficientul de amortizare $b = \pi/8 \text{ kg/s}$, departarea initiala fata de pozitia de echilibru $A_0 = 1 \text{ m}$, faza initiala a miscarii nula si valorile $e^{-\pi/4} = 0.46$.