

Departamento de Ciencias Básicas Probabilidad y Estadística Apuntes de Clase Semana 04

Facultad de Ingeniería

APUNTES DE CLASE

14 - 18 de noviembre de 2022

- Estas notas de clase son las realizadas en los encuentros sincrónicos.
- Cada vez que se realice un nuevo encuentro el documento se irá retroalimentando.
- Si encuentran algún error por favor háganmelo saber para ir mejorando el documento
- En algunos casos el documento tendrá información extra que sirva como complemento.

Profesor: Erik Petrovish Navarro Barón

- >> EJEMPLOS PROBABILIDAD CONJUNTA BAJO INDEPENDENCIA
 - >>> Supongamos una moneda cargada de tal forma que la probabilidad de que caiga cara es de 0,8, y de que caiga sello es 0,2 c'Cuál es la probabilidad de obtener 3 caras en 3 lanzamientos consecutivos?

$$P(AB) = P(A) \cdot P(B)$$

 $P(C_1C_2C_3) = P(C_1) \cdot P(C_2) \cdot P(C_3)$
 $= 0.8 + 0.8 + 0.8 = 0.512$

d'Cuál es la probabilidad de obtener 3 sellos?

$$P(s_1 s_2 s_3) = P(s_1) \cdot P(s_2) \cdot P(s_3)$$

$$= 0.2 * 0.2 * 0.2 = 0.008$$

dPor qué no el 100%? P(C1C2C3) + P(S1S2S3) = 52,0%.

Los eventos C1C2C3 y S1S2S3 no corresponden al total de todos los eventos posibles por eso sus probabilidades no suman 1 (100%).

¿Cuál es el espacio muestral?

No ontran tolos los elementos

Si importa el orden

Si hay repetición

Variation
$$\sqrt{R_2} = 2^3 = 8$$
 repetition

Miremos cuales son esas 8 possibilidades con un diagrama de arbol.

CC CCS

CS CSC

SSC SSC

SSC SSC

P(515253) = 0,008

>>> En una moneda no carquela. ¿Cuál es la probabilidad de sacar al menos 1 cara al realizar 3 lanzamientos?

Evento A -> SSS -> que no caiga ninguna cara

Evento Ac - Que caiga al menos una cara.

$$P(s) = \frac{1}{2}$$
 $P(A) = P(s_1 s_2 s_3) = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{8} = 0,125$
 $P(A^c) = 1 - P(A) = 1 - \frac{1}{8} = \frac{7}{8} = 0,875$

> PROBABILIDAD CONDICIONAL

La probabilidad CONDICIONAL have reperencia a la probabilidad de que un segundo evento (B) se presente, dado que un primer evento (A) haya ocurrido.

P(B/A): Probabilidad de que se presente B dado que el evento A se haya presentado

· bojo independencia Estadística:

5; los eventos son independientes, la probabilidad de que se presente B, dado que se da A es simplemente P(B).

- Probabilidad Condicional Bajo independencia estadística.

Ejemplo: ¿Cuál es la probabilidad de sacar cara en un lanzamiento de moneda habiendo sacado sello ayer?

$$P(B|A) = P(B) \rightarrow P(B) = \frac{1}{2}$$

 $P(B|A) = \frac{1}{2}$

· Bajo dependencia estadística.

Cuando los eventos son dependientes se tiene:

P(A1B) = P(AB)

- · P(BIA): probabilidad que pase B, dado que pasó A.
- · P(AB): probabilidad que o corra AyB
- . P(A): probabilidad que ocurra

Ejemplo: Supongamos que tenemos 10 balotas distribuídas de

la siguiente manera:

· 3 son de color rojo y tienen puntos

· 1 es de color rojo y tiene franjas

. 2 son grises y tienen puntos

· 4 son grises y tienen franjas

Una persona saca una balota roja. ¿Cuál es la probabilidad de que tenga puntos? ¿Cuál es la probabilidad de que tenga franjas?

→ D: Balota con puntos

$$P(DIR) = \frac{P(DR)}{P(R)}$$

$$P(DR) = 3/10$$

 $P(R) = 4/10$

$$P(D|R) = \frac{3}{10} =$$

$$= \frac{3.10}{4.10} = \frac{3}{4} = 0.75$$

-> F: Balota con franjas

$$P(FIR) = \frac{1}{10} = \frac{1.10}{4.10} = \frac{1}{4} = 0,25$$

Pregunta tarea: ¿Cuál es la probabilidad de sacar una balota gris dado que se sacó con puntos?

>>> PROBABILIDAD CONJUNTA bajo dependencia estadística.

Despejando de la probabilidad condicional, se tiene

$$P(B|A) = P(AB)$$

$$\sqrt{P(A)}$$

P(BIA). P(A) = P(AB)

La probabilidad conjunta de AyB sera entonces

Ejemplo: Usando las balotas del ejemplo anterior. Hallar la probabilidad de sacar una balota roja y con puntos:

$$P(DR) = P(DIR) \cdot P(R) = \frac{3}{4} \cdot \frac{4}{10}$$

 $P(DR) = \frac{3}{10}$

Tabla de probabilidades bajo condiciones de independencia y dependencia estadística.

Tipos de	Simbolo	Formulas.		
Tipos de Probabilidad	31110010	Independencia Estadística	Dependencia Estadística.	
Marginal	P(A)	P(A)	Suma de las prob. de los eventos en los que ocurve A	
Conjunta	P (AB)	P(AB) = P(A) . P(B)	P(AB)= P(BIA) P(A) P(AB)= P(AIB) P(B)	
Condicional	P(BIA)	P(BIA)= P(B)	P(B1A) = P(AB) P(A)	

Ejemplo: Una fienda ha sido objeto de muchos robos durante el último mes; pero debido al aumento de segunidad, se ha detenida a 250 ladrones. Se registró el sexo de cada ladrón y si era su primer delito o rei nadente. Los datos se resumen en la siguiente tabla.

Sexo	Primer Robo	Reinadente	Total
Hombre	60	70	130
Hujer	44	76	120
Total	104	146	250

Se elige un al azar un ladrón defenido, calcule:

- a) Probabilidad de que sea hombre.
- b) Probabilidad de que sea primer robo dado que es hombre.
- c) Probabilidad de que sen mujer dado que es reincidente
- d) Probabilidad de que sea reincidente dado que es mujer.
- e) Probabilidad de que sea mujer y robo por primera vez.

Soluciones:

a)
$$P(H) = \frac{130}{250} = \frac{13}{25} = 0.152$$

b)
$$P(P|H) = \frac{P(PH)}{P(H)} = \frac{6\%250}{13/25} = \frac{6}{13} = 0.461$$

c)
$$P(MIR) = \frac{P(MR)}{P(R)} = \frac{76/250}{146/250} = \frac{76}{146} = \frac{38}{73} \approx 0.521$$

d)
$$P(RIM) = \frac{P(MR)}{P(M)} = \frac{76/250}{120/250} = \frac{76}{120} = \frac{38}{60} = \frac{19}{30} \approx 0.63$$

$$P(MP) = \frac{44}{250} = \frac{22}{125} = 0.176$$