Case Study: BigMart Sales Prediction Project

Objective

The goal of this project is to develop a predictive model to estimate product sales across different stores for BigMart. The insights derived will help identify key features impacting sales, enabling data-driven decisions to optimize performance.

Dataset Details

The dataset contains sales data for 1,559 products across 10 stores in different cities, with various product and store attributes, including:

- ✓ **Item_Identifier**: Unique identifier for each product.
- ✓ Item_Weight: Weight of the product.
- ✓ **Item_Fat_Content**: Fat content level of the product.
- ✓ **Item_Visibility**: Percentage of total visibility across stores.
- ✓ Item_Type: Category of the product.
- ✓ **Item MRP**: Maximum retail price of the product.
- ✓ **Outlet_Identifier**: Unique identifier for each store.
- ✓ Outlet_Establishment_Year: Year the store was established.
- ✓ **Outlet_Size**: Size of the store (e.g., Small, Medium, High).
- ✓ **Outlet_Location_Type**: Location type of the store (e.g., Tier 1, Tier 2, Tier 3).
- ✓ **Outlet_Type**: Type of the outlet (e.g., Grocery Store, Supermarket Type1).
- ✓ Item_Outlet_Sales: Target variable, sales of the product in a specific outlet.

Data Exploration and Preprocessing

Exploratory Data Analysis (EDA)

Data Overview:

- ✓ Checked dataset shape and null values.
- ✓ Investigated numerical features like Item_Weight, Item_Visibility, and Item_MRP.
- ✓ Analyzed categorical features, including frequency distribution for Item_Type, Outlet Type, etc.

> Data Cleaning:

- ✓ Handled missing values for Item_Weight and Outlet_Size using logic-based imputation.
- √ Standardized categories in Item_Fat_Content.

> Feature Engineering:

- ✓ Created a high-level categorization (Food, Drink, Non_Consumables) from Item_Identifier.
- ✓ Adjusted Item_Fat_Content to include a Non_Edible category for nonconsumables.
- ✓ Converted Outlet_Establishment_Year into Outlet_Age.

> Feature Visualization:

- ✓ Used histograms and boxplots to understand the distribution and outliers in numerical features.
- ✓ Count plots to analyze categorical data distributions.

Data Preprocessing

> Imputation:

- ✓ Filled missing Item_Weight values using mappings based on Item_Identifier and Item_Type.
- ✓ Imputed Outlet Size using the mode of Outlet Type.

> Encoding:

- ✓ One-hot encoding for categorical features.
- ✓ Feature hashing for Item Identifier.

> Standardization:

✓ Standardized numerical features to ensure consistency.

Dataset Splits:

✓ Split data into training (70%) and testing (30%) sets.

Modeling

Models Evaluated

- 1. Random Forest Regressor
- 2. Gradient Boosting Regressor
- 3. HistGradientBoosting Regressor
- 4. XGBoost Regressor
- 5. **LightGBM Regressor**

Key Evaluation Metrics

- ✓ R² (Coefficient of Determination): Indicates the proportion of variance explained by the model.
- ✓ **RMSE (Root Mean Square Error)**: Measures the model's prediction error.

Results

Model	R ² Mean ± Std Dev	RMSE Mean ± Std Dev
Random Forest Regressor	0.61 ± 0.02	1,156 ± 37
Gradient Boosting Regressor	0.63 ± 0.03	1,132 ± 29
HistGradientBoosting Regressor	0.66 ± 0.02	1,095 ± 25
XGBoost Regressor	0.65 ± 0.03	1,102 ± 32
LightGBM Regressor	0.67 ± 0.02	1,084 ± 22

Conclusion

The **LightGBM Regressor** achieved the best performance, with the highest R² score and lowest RMSE. Key takeaways include:

- 1. Features like Item_MRP, Item_Type, and Outlet_Type significantly impact sales.
- 2. Non-consumables have distinct sales patterns due to Item_Fat_Content.