

Modellalapú szoftverfejlesztés

XII. előadás

Modellalapú tesztelés

Dr. Micskei Zoltán,

Dr. Majzik István,

Dr. Semeráth Oszkár

Mit jelent a modellalapú tesztelés?

Modellalapú tesztelés = Model-Based Testing, MBT

"Testing based on or involving models" [ISTQB]

"Olyan tesztelési folyamat, ami modelleket használ"

Source of definition: ISTQB. "Foundation Level Certified Model-Based Tester Syllabus", Version 2015

- Nem csak tesztgenerálás
- Nem feltétlen automatizált
- Nem csak modellalapú fejlesztésben

Miket fed a modellalapú tesztelés

Megosztott tudás

Specifikáció ellenőrzés

Szimuláció

Tesztadat generálás

Végrehajtható tesztek

Inkább informális

Inkább formális

Modellek használata tesztelés során

Behavior of SUT

```
timer t;
t.start(5.0);
alt {
  [] i.receive("coffee") {
   Count := Count+1; }
  [] t.timeout { }
}
```

Test sequences

Test configuration

Test sequences

Modellek előnyei

- Kommunikáció a felek között
 - > A teszteseteket és az elvárt viselkedést a szakterület nyelvkészletével írjuk fel

■ Korai tesztelés: modellezés → szimuláció → tesztelés

Magasabb absztrakciós szint (komplexitás kezelése)

Automatizálás (generálás / végrehajtás / optimalizálás / fedettségmérés / ...)

Tesztgenerálás

"A Modellalapú tesztelés magába foglalja azokat a folyamatokat és technikákat,

- Amelyek képesek absztrakt teszteseteket származtatni absztrakt modellekből,
- Amelyek képesek konkrét teszteseteket származtatni absztrakt tesztesetekből,
- Amelyek képesek manuálisan vagy automatizáltan végrehajtani a konkrét teszteseteket.

Source: M. Utting, A. Pretschner, B. Legeard. "A taxonomy of model-based testing approaches", STVR 2012; 22:297–312

Tipikus tesztelési folyamat

Tipikus tesztelési folyamat

Kérdések a modellezéssel kapcsolatban

- Mit modellezzünk?
 - > Mi a teszt célja?
 - > Funkcionalitás / teljesítmény / ...
- Milyen absztrakciós szinten dolgozzunk
 - > Túl sok vagy túl kevés részlet
 - > Különböző modellek különböző célokhoz

- Mit tartalmazzanak a modellek?
 - > Struktúra / viselkedés

Modellek újrahasználata

Használhatjuk-e a tervezéshez használt modelleket?

Probléma: Mit tesztelünk itt?

Megközelítés: Külön tervezési és tesztelési modell

A. Pretschner, J. Philipps. "Methodological Issues in Model-Based Testing", Model-Based Testing of Reactive Systems, 2005.

Tipikus tesztelési folyamat

Tipikus tesztkiválasztási kritériák

- Fedettség-alapú
 - > Modellhez csatolt követelmények
 - Modellalapú tesztelés elemei (állapot, tranzíció, döntés)
 - > Adat-alapú
 - > Viselkedés-alapú
- Mintavételezés: random / sztochasztikus
- Szcenárió vagy minta alapú
- Projekt-vezérelt (rizikók, erőforrás…)

Példa: teszt szelekció

Válasszunk tesztkészletet

- > Követelmények
- > Állapotok
- > Tranzíciók

lefedésére

Tipikus tesztelési folyamat

Tesztgenerálási módszerek (kategóriák)

- Gráfalapú algoritmusok
 - > Tranzíció fedettség → "New York Street Sweeper problem"
- Állapotgép tesztelő technikák
 - > Homing and synchronizing sequences, (https://web.cecs.pdx.edu/~mperkows/CLASS_573/Kumar_2007/presentation.pdf)
 - > Állapot identifikáció és verifikáció,
 - > Konformancia tesztelés
- Labeled Transition System (LTS) alapú tesztelés
 - > Ekvivalencia ellenőrzés, preorder bejárás
- Modellellenőrző: visszaadja a trajektóriát tetszőleges elérhető állapothoz

Tipikus tesztelési folyamat

Absztrakt és Konkrét tesztek

Absztrakt teszteset

- Logikai állítások konkrét értékek helyett (pl.: SLOW/FAST vs 122.35 km/h)
- > Magasszintű események / akciók

Konkrét teszteset

- > Olyan adat, ami elég precíz ahhoz, hogy kipróbálható legyen vele a rendszer
- > Tesztvégrehajtás (kézi vagy automatikus)

Végrehajtás:

- > olyan környezet, amelyben a konkrét teszt végrehajtható
- > SUT körül helyezkedik el

Taxonómia

Eszközök

Nézzünk pár példát!

- Fast & easy: egyszerű, open-source eszközök
- Full fledged: ipari eszközök, életciklus kezelés
- Advanced: saját modellezőkészlet

GraphWalker

- FSM model + simple guards
- Fedettség:
 - > state,
 - > transition,
 - > time limit (random walk)
- Gráfbejárás:
 - > random,
 - > A*,
 - > shortest path
- Generating JUnit test stubs (adapter)

Source: GraphWalker

Online futtatás

MODELLALAPÚ SZOFTVERFEJLES

21

Case study: Spotify

Model + GraphWalker

Case Study: web testing

https://www.youtube.com/watch?v=y251HEaTnus

Példa: Gamma keretrendszer

- UML/SysML-based statecharts (GSL) + topology (SysML ibd) descriptions (GCL)
- Fedettség kritéria
 - > State, transition, transition-pair
 - > Interaction
 - > Dataflow
- Bejárás: modellellenőrzőkkel
 - > UPPAAL
 - > Theta
- Absztract test cases (GTL) és konkrét JUnit tesztek
 - > Reflective Java API

https://github.com/ftsrg/gamma

Case study: AV testing

Map Import OpenStreetMap Krisztina téri irodaház Krisztina tér 65-67 ₩**•** Mákos Guba Kisvendégl

Map Import OpenStreetMap OpenDrive^{'ll}'

Road topology import

Map Import
OpenStreetMap

Road topology import

OpenDrive 1111

Adding buildings, signsGoogle Maps, Roadrunner

Map Import
OpenStreetMap

Krisztina téri irodaház Road topology import

OpenDrive **

OpenDriv

Structurally different situations ⇒ Semantically different scenes

• Solution: graph generation with VIATRA Solver / Refinery

• Goal: allocate the situation on the map

• Solution: Scenic probabilistic scenario specification language

• Goal: assign tasks to

He, Kaiming, et al. "Mask r-cnn." Proceedings of the IEEE international conference on computer vision. 2017.

Ipari példák

Smartesting Yest: workflow

Conformiq: állapotgépek

Conformiq Designer IDE for automatic test case generation

List of tools:

http://mit.bme.hu/~micskeiz/pages/modelbased_testing.html

Könyv

Answer Options	2019
Acceptance testing	51,7%
System testing	79,3%
Integration testing	51,7%
Component (or unit) testing	10,3%

Answer Options	2019
Test cases (for manual test execution)	66,7%
Test scripts (for automated test execution)	70,8%
Test data	12,5%
Other artifacts (documentation, test suites,)	20,8%

- "approx. 80h needed to become proficient"
- MBT is effective
- Lots of other details!

Source: https://www.cftl.fr/wp-content/uploads/2020/02/2019-MBT-User-Survey-Results.pdf

Köszönöm a figyelmet!