Recurrence Relation Example

Given the recurrence relation

$$a(n) = a(n-1) + 4$$

where

$$a(1) = 0$$

write down the relation in closed form.

Step 1 - Write down a2 given that a(1) = 0

a1 = 0

$$a2 = 4$$
 given by $a(n) = a1 + 4 = 4$

$$a3 = 8$$
 given by $a(n) = a2 + 4 = 8$

$$a4 = 12$$
 given by $a(n) = a3 + 4 = 12$

$$a5 = 16$$
 given by $a(n) = a4 + 4 = 16$

$$a6 = 20$$
 given by $a(n) = a5 + 4 = 20$

we could do more but we should be able to spot a pattern by now, progression is +4

Step 2 - Write down the closed form

To do this we can write out a table as follows:

a(n)=	0	4	8	12	16	20
n=	1	2	usn 3	4	5	6

So when n = 1 a(n) = 0

when
$$n = 2 a(n) = 4$$

So for example when n = 4

$$a(n) = 4(n-1)$$

$$=4(4-1)$$

$$= 4(3)$$

Therefore, closed form is equal to

$$a(n) = 4(n-1)$$