What's the similarity and difference of DP and Greedy?

what's the similarity and difference of DP and Greedy?	
DP	Greedy
Used to solve optimization	Used to solve optimization
Have optimal substructure	Have optimal substructure
Make an 'informed choice' after get-	Make a 'greedy choice' before solving
ting optimal solutions to subprob-	the subproblem
lems	
Bottom-up	Top-down
Dependent or overlapping subprob-	Each round selects only one subpor-
lems	blem
	The subproblem size decreases
	No overlapping subproblem
Big Problem	
sub-problem sub-problem	
sub problem	
sub-problem sub-problem sub-problem sub-problem sub-problem	
Big Problem	
sub-problem	
sub-problem	

Greedy Choice Property

Show that it exists an optimal solution that 'contains' the greedy choice using the 'exchange argument'

For any optimal solution OPT, the greedy choice g has two cases:

- 1. g is in OPT
- 2. g is not in OPT: modify OPT into OPT' s.t. OPT' contains g and is at least as good as OPT

Knapsack Substructure

$$c[i, w] = \begin{cases} 0 & \text{if } i = 0 \text{ or } w = 0, \\ c[i - 1, w] & \text{if } w_i > w, \\ \max(v_i + c[i - 1, w - w_i], c[i - 1, w]) & \text{if } i > 0 \text{ and } w \ge w_i \end{cases}$$