Decision trees

Victor Kitov

Table of Contents

- Definition of decision tree
- 2 Splitting rules
- Splitting rule selection
- Prediction assignment to leaves
- **5** Termination criterion
- 6 Concluding remarks

Example of decision tree

Definition of decision tree

- Prediction is performed by tree *T*:
 - directed graph
 - without loops
 - with single root node

Definition of decision tree

- for each internal node t a check-function $Q_t(x)$ is associated
- for each edge $r_1(t),...r_{K(t)}(t)$ a set of values of check-function $Q_t(x)$ is associated: $S_1(t),...S_{K(t)}(t)$ such that:
 - $\bigcup_k S_t(k) = range[Q_t]$
 - $S_t(i) \cap S_t(j) = \emptyset \ \forall i \neq j$

Prediction process

- a set of nodes is divided into:
 - internal nodes int(T), each having ≥ 2 child nodes
 - terminal nodes terminal(T), which do not have child nodes but have associated prediction values.

Prediction process

- a set of nodes is divided into:
 - internal nodes int(T), each having ≥ 2 child nodes
 - terminal nodes terminal(T), which do not have child nodes but have associated prediction values.
- Prediction process for tree T:
 - t = root(T)
 - while t is not a leaf node:
 - calculate $Q_t(x)$
 - determine S_i out of $S_1(t),...S_{K(t)}(t)$, where $Q_t(x)$ belongs: $Q_t(x) \in S_i(t)$
 - follow edge $r_j(t)$ to child node \tilde{t}_j : $t = \tilde{t}_j$
 - return prediction, associated with leaf t.

Specification of decision tree

- To define a decision tree one needs to specify:
 - the check-function: $Q_t(x)$
 - the splitting criterion: K(t) and $S_t(1),...S_t(K(t))$
 - the termination criteria (when node is defined as a terminal node)
 - the predicted value for each leaf node.

Table of Contents

- Definition of decision tree
- Splitting rules
- Splitting rule selection
- Prediction assignment to leaves
- **5** Termination criterion
- 6 Concluding remarks

CART version of splitting rule

single feature value is considered:

$$Q_t(x) = x^{i(t)}$$

binary splits:

$$K(t) = 2$$

split based on threshold:

$$S_1 = \{x^{j(t)} \le threshold(t)\}, S_2 = \{x^{j(t)} > threshold(t)\}$$

- $threshold(t) \in \{x_1^{i(t)}, x_2^{i(t)}, ... x_N^{i(t)}\}$
 - applicable only for real, ordinal and binary features
 - discrete unordered features:

CART version of splitting rule

single feature value is considered:

$$Q_t(x) = x^{i(t)}$$

binary splits:

$$K(t) = 2$$

split based on threshold:

$$S_1 = \{x^{j(t)} \le threshold(t)\}, S_2 = \{x^{j(t)} > threshold(t)\}$$

- $threshold(t) \in \{x_1^{i(t)}, x_2^{i(t)}, ... x_N^{i(t)}\}$
 - applicable only for real, ordinal and binary features
 - discrete unordered features:may use one-hot encoding.

Analysis of CART splitting rule

- Advantages:
 - simplicity
 - interpretability
- Drawbacks:
 - many nodes may be needed to describe boundaries not parallel to axes:

Alternative definitions of splitting rules

- $S_t(i) = \{h_i < x^{k(t)} \le h_{i+1}\}$ for set of partitioning thresholds $h_1, h_2, ...h_{K+1}$.
- $S_t(1) = \{x : \langle x, v \rangle \leq 0\}, \quad S_t(2) = \{x : \langle x, v \rangle > 0\}$
- $S_t(1) = \{x : ||x|| \le h\}, \quad S_t(2) = \{x : ||x|| > h\}$
- $Q_t(x) = x^{i(t)}$, where $S_t(j) = v_j$, where $v_1, ... v_K$ are unique values of feature $x^{i(t)}$.

Alternative definitions of splitting rules

- $S_t(i) = \{h_i < x^{k(t)} \le h_{i+1}\}$ for set of partitioning thresholds $h_1, h_2, ...h_{K+1}$.
- $S_t(1) = \{x : \langle x, v \rangle \leq 0\}, \quad S_t(2) = \{x : \langle x, v \rangle > 0\}$
- $S_t(1) = \{x : ||x|| \le h\}, \quad S_t(2) = \{x : ||x|| > h\}$
- $Q_t(x) = x^{i(t)}$, where $S_t(j) = v_j$, where $v_1, ...v_K$ are unique values of feature $x^{i(t)}$.
- Properties:
 - may need much fewer nodes than binary splits by threshold
 - less interpretable

Piecewise constant predictions of decision trees

Sample dataset

Example: Regression tree

Example: Regression tree

Table of Contents

- Definition of decision tree
- Splitting rules
- Splitting rule selection
- Prediction assignment to leaves
- **5** Termination criterion
- 6 Concluding remarks

Impurity function

- Let t be any node and u(t) associated objects with node t,
- N(t) total number of objects and $N_j(t)$ number of objects of class j in t
- Probabilities of classes within node t:

$$\rho(\omega_j|x\in u(t)) = \rho(\omega_j|t) \approx \frac{N_j(t)}{N(t)}$$

- Impurity function $I(t) = \phi(p(\omega_1|t),...p(\omega_C|t))$ has the following properties:
 - $\phi(q_1, q_2, ...q_C)$ is defined for $q_j \geq 0$ and $\sum_i q_j = 1$.
 - ϕ attains maximum for $q_i = 1/C$, k = 1, 2, ...C.
 - ϕ attains minimum when $\exists j : q_j = 1, q_i = 0 \ \forall i \neq j$.
 - ϕ is symmetric function of $q_1, q_2, ...q_C$.

Typical impurity functions

Gini criterion

• interpretation: probability to make mistake when classifying object randomly with class probabilities $[p(\omega_1|t),...p(\omega_C|t)]$:

$$I(t) = \sum_{i} \rho(\omega_i|t)(1-\rho(\omega_i|t)) = 1-\sum_{i} [\rho(\omega_i|t)]^2$$

Entropy

interpretation: measure of uncertainty of random variable

$$I(t) = -\sum_i
ho(\omega_i|t) \ln
ho(\omega_i|t)$$

Classification error

 interpretation: frequency of errors when classifying with the most common class

$$I(t) = 1 - \max_{i} p(\omega_{i}|t)$$

Typical impurity functions

Impurity functions for binary classification with class probabilities $\rho = \rho(\omega_1|t)$ and $1 - \rho = \rho(\omega_2|t)$.

Splitting criterion selection

$$\Delta I(t) = I(t) - \sum_{i=1}^{S} I(t_i) \frac{N(t_i)}{N(t)}$$

- $\Delta I(t)$ is the quality of the split of node t into child nodes $t_1, ... t_S$.
- If I(t) is entropy, then $\Delta I(t)$ is called *information gain*.

Splitting criterion selection

$$\Delta I(t) = I(t) - \sum_{i=1}^{S} I(t_i) \frac{N(t_i)}{N(t)}$$

- $\Delta I(t)$ is the quality of the split of node t into child nodes $t_1, ... t_S$.
- If I(t) is entropy, then $\Delta I(t)$ is called *information gain*.
- CART selection: select feature k(t) and threshold h(t), which maximize $\Delta I(t)$:

$$k(t), h(t) = \arg \max_{k,h} \Delta I(t)$$

• CART decision making: from node t follow: $\begin{cases} \text{child } t_1, & \text{if } x^{k(t)} \geq h(t) \\ \text{child } t_2, & \text{if } x^{k(t)} < h(t) \end{cases}$

Table of Contents

- 1 Definition of decision tree
- Splitting rules
- Splitting rule selection
- Prediction assignment to leaves
- Termination criterion
- Concluding remarks

Regression: prediction assignment for leaf nodes

- Define $I_t = \{i : x_i \in u(t)\}, N_t$ number of elements in I_t .
- For quadratic loss $(\hat{y} y)^2$:

$$\widehat{y} = \arg\min_{\mu} \sum_{i \in I} (y_i - \mu)^2 = \frac{1}{N_t} \sum_{i \in I} y_i,$$

ullet For abs. deviation loss $|\widehat{y}-y|$:

$$\widehat{y} = \arg\min_{\mu} \sum_{i \in I} |y - \mu| = median\{y_i : i \in I\}.$$

Classification: prediction assignment for leaf nodes

- Define $\lambda(\omega_i, \omega_j)$ the cost of predicting object of class ω_i as belonging to class ω_i
 - Minimum loss class assignment:

$$c = rg \min_{\omega} \sum_{i: \, x_i \in u(t)} \lambda(c_i, \omega)$$

• For $\lambda(\omega_i, \omega_j) = \mathbb{I}[\omega_i \neq \omega_j]$ most common class will be associated with the leaf node:

$$c = \arg \max_{\omega} |\{i : x_i \in u(t), y_i = \omega\}|$$

Table of Contents

- Definition of decision tree
- Splitting rules
- Splitting rule selection
- Prediction assignment to leaves
- **5** Termination criterion
 - Rule based termination
 - CART pruning algorithm
- Concluding remarks

Termination criterion

- Bias-variance tradeoff:
 - very large complex trees -> overfitting
 - very short simple trees -> underfitting
- Approaches to stopping:
 - rule-based
 - based on pruning

- Termination criterion
 - Rule based termination
 - CART pruning algorithm

Rule-base termination criteria

- Rule-based: a criterion is compared with a threshold.
- Variants of criterion:
 - depth of tree
 - number of objects in a node
 - minimal number of objects in one of the child nodes
 - impurity of classes
 - change of impurity of classes after the split

Analysis of rule-based termination

Advantages:

- simplicity
- interpretability

Disadvantages:

- specification of threshold is needed
- impurity change is suboptimal: further splits may become better than current one
 - example:

Decision trees - Victor Kitov
Termination criterion
CART pruning algorithm

- **5** Termination criterion
 - Rule based termination
 - CART pruning algorithm

CART

- General idea: build tree up to pure nodes and then prune.
- Let T be some subtree of out tree, \tilde{T} be a set of leaf nodes of tree T.
- For each leaf $t \in \tilde{T}$ define R(t) the number of errors on the training set by this node.
- Also define

error-rate loss :
$$R(T) = \sum_{t \in \tilde{T}} R(t)$$
 complexity+error-rate loss: $R_{\alpha}(T) = \sum_{t \in \tilde{T}} R_{\alpha}(t) = R(T) + \alpha |\tilde{T}|$

• Condition when $R_{\alpha_t}(T_t) = R_{\alpha_t}(t)$:

$$\alpha_t = \frac{R(t) - R(T_t)}{|\tilde{T}_t| - 1}$$

Pruning algorithm

- Build tree until each node contains representatives of only single class - obtain tree T.
- 2 Build a sequence of nested trees $T = T_0 \supset T_1 \supset ... \supset T_{|T|}$ containing |T|, |T| = 1,...1 nodes, repeating the procedure:
 - replace the tree T_t with smallest α_t with its root t
 - recalculate α_t for all ancestors of t.
- **⑤** For trees $T_0, T_1, ... T_{|T|}$ calculate their validation set error-rates $R(T_0), R(T_1), ... R(T_{|T|})$.
- **Select** T_i , giving minimum error-rate:

$$i = \arg\min_{i} R(T_i)$$

Example

Example

Logs of the performance metrics of the pruning process:

step num.	$\alpha_{\mathbf{k}}$	$ \tilde{T}^k $	$R(T^k)$
1	0	11	0.185
2	0.0075	9	0.2
3	0.01	6	0.22
4	0.02	5	0.25
5	0.045	3	0.34
6	005	2	0.39
7	0.11	1	0.5

Table of Contents

- Definition of decision tree
- Splitting rules
- Splitting rule selection
- Prediction assignment to leaves
- 5 Termination criterion
- 6 Concluding remarks

Handling missing values

If checked feature is missing:

- fill missing values:
 - with feature mean
 - with new categorical value "missing" (for categorical values)
 - predict them using other known features
- CART uses prediction of unknown feature using another feature that best predicts the missing one: "surrogate split" - technique
- ID3 and C4.5 decision trees use averaging of predictions made by each child node with weights $N(t_1)/N(t)$, $N(t_2)/N(t)$, ... $N(t_S)/N(t)$.

Analysis of decision trees

Advantages:

- simplicity
- interpretability
- implicit feature selection
- naturally handles both discrete and real features
- prediction is invariant to monotone transformations of features for $Q_t(x) = x^{i(t)}$
 - in particular, to normalization of features

Disadvantages:

- non-parallel to axes class separating boundary may lead to many nodes in the tree for $Q_t(x) = x^{i(t)}$
- one step ahead lookup strategy for split selection may be insufficient (XOR example)
- not online slight modification of the training set will require full tree reconstruction.