Exercices.

1 1 1

1

Question 1

Question 2

qu'il est équivalent à la loi du moment cinétique scalaire. **Solution:**

TEC: $\frac{d\mathcal{E}_c}{dt} = \sum_i \mathcal{P}_i$ et $\mathcal{E}_c = \frac{1}{2}J_z\omega^2$ et $\mathcal{P}_i = \vec{M}_i\dot{\theta}$. TMCS: $\frac{dL_z}{dt} = \sum_i \vec{M}_i$ et $L_z = J_z \omega$ et $J\dot{\omega} = \sum_i \vec{M}_i$.

Enoncer le théorème de l'énergie cinétique pour un solide en rotation autour d'un axe fixe et montrer

Question 3

Établir l'équation du mouvement du pendule pesant avec le TEC.

Système : {Pendule de masse m}. Référentiel terrestre supposé galiléen.

Solution:

Bilan des forces : $\vec{p} = m\vec{g}$, $M_z(\vec{p}) = -d\sin\theta mg$ donc $\mathcal{P}(\vec{p}) = M_z(\vec{p})$. $\dot{\theta} = -lmg\dot{\theta}\sin\theta$. \vec{R} la réaction du pivot, qui est idéal : $M_z(\vec{R}) = 0$ donc $\mathcal{P}(\vec{R}) = 0$.

TEC: $\frac{d\mathcal{E}_c}{dt} = \mathcal{P}(\vec{p}) + \mathcal{P}(\vec{R}) \Longrightarrow J\ddot{\theta}\dot{\theta} = -lmg\dot{\theta}\sin\theta \Longrightarrow J\ddot{\theta} + lmg\sin\theta = 0.$

Établir l'équation du mouvement du pendule pesant avec le TMC.

Bilan des forces : $\vec{p} = m\vec{q}$, $M_z(\vec{p}) = -d\sin\theta mg$ Et $M_z(\vec{R}) = 0$ car c'est une liaison pivot idéale.

Etude cinématique : $\vec{OM} = l\vec{e_r}, \ \vec{v} = l\dot{\theta}\vec{e_{\theta}}$ Ainsi, $L_z = O\vec{M} \wedge m\vec{v} = l\vec{e_r} \wedge ml\dot{\theta}\vec{e_{\theta}} = ml^2\dot{\theta}\vec{e_z}$ et $\frac{dL_z}{dt} = ml^2\ddot{\theta}\vec{e_z}$.

TMC: $\frac{dL_z}{dt} = \sum_i \vec{M_i} \Longrightarrow ml^2 \ddot{\theta} = -lmg \sin \theta \Longrightarrow \ddot{\theta} + \frac{g}{l} \sin \theta = 0.$

T3 — Deuxième Principe Question 5

Enoncer complètement le second principe: propriétés de l'entropie, bilan d'entropie et expliciter les différents termes.

Deuxième principe:

Où est $S_{\text{créée}}$ est l'entropie créée par le système et $S_{\text{éch}}$ est l'entropie échangée avec l'extérieur.

On a $S_{\text{\'ech}} = \sum_{i} \frac{Q_i}{T_i}$ au contact des thermostats de températures T_i . Si $S_{\text{créée}} = 0$, la transformation est réversible, sinon elle est irréversible.

 $\Delta S = S_{\text{créée}} + S_{\text{éch}}$

Citer et établir la loi de Laplace pour un gaz parfait et ses conditions d'application. On rappelle l'entropie d'un gaz parfait :

 $S(P, V) = \frac{nR}{\gamma - 1} \ln \frac{P}{P_0} + \frac{nR\gamma}{\gamma - 1} \ln \frac{V}{V_0} + S_0.$

Conditions: on considère un gaz parfait, subissant une transformation adiabatique réversible. Loi de Laplace: $PV^{\gamma} = cste$. Les conditions adiabatique et réversible assurent que $\Delta S=0.$ De plus, $\Delta S = S(P_2, V_2) - S(P_1, V_1) = \dots = \frac{nR}{\gamma - 1} \ln \frac{P_2 V_2^{\gamma}}{P_1 V_1^{\gamma}} \text{ donc } P_1 V_1^{\gamma} = P_2 V_2^{\gamma}.$

Solution:

« L'appareil à deux globes » est constitué de deux ballons en verre de même volume $V_0 \approx 14 \, \mathrm{L}$, reliés entre eux par une tubulure de laiton munie d'un robinet. L'un des ballons peut être

relié à une machine pneumatique permettant d'y faire le vide, ou à une réserve de gaz. robinet

vide

de gauche à la température T_0 . Lorsque l'on ouvre le robinet, le gaz se répand très rapide-

On suppose la demi-enceinte de droite initialement vide et le gaz dans la demi-enceinte

gaz

ment dans le vide. 1. Justifier que l'on peut approximer la transformation du gaz comme étant adiabatique

Application 9 - Chauffage par effet Joule On considère une masse m d'eau de capacité thermique massique c, initialement à la température $T_i = 20$ °C, dans un calorimètre dont on néglige la valeur en eau. On plonge une

1. Établir l'expression de la température finale T_f . Faire l'application numérique.

résistance $R=5\,\Omega$ (de capacité thermique négligeable), parcourue par un courant d'intensité

3. Que devient cette expression en supposant $T_f \approx T_i$, c'est-à-dire si $RI^2\tau \ll mcT_i$? Faire l'application numérique. Donnée : on rappelle que l'entropie massique d'une phase condensée est donnée par

Adiabatique : $S_{\text{\'ech}}=0$ donc $S_{\text{cr\'e\'e}}=mc\ln\frac{T_f}{T_i}$ donc irr\'eversible.

I = 1 A pendant $\tau = 1$ min dans l'eau.

 $s(t) = c \ln \left(\frac{T}{T_0}\right) + s_0,$

2. Exprimer l'entropie créée. Conclure.

Solution: Système : $\{Eau + Résistance + Calorimètre\}$ 1. Travail électrique : $W = RI^2\tau$. On a $\Delta H = W + \mathcal{Q} = mc(T_f - T_i)$ donc $T_f = T_i + \frac{RI^2\tau}{mc}$.

où s_0 est l'entropie massique à la température T_0 et c la capacité thermique massique.

Diagramme de phase (P, T) quelconque avec point triple et critique.

liquide

250

Courbe d'ébullition à gauche du point critique C, de rosée à droite.

fluide

supercritique

350

400

Gaz

point critique

gaz

300

Température T (K)

Tracer l'allure générale d'un diagramme de Clapeyron (P, v) pour un équilibre liquide-vapeur et y placer les phases. Nommer les lignes et les points particuliers. Tracer l'allure de quelques isothermes.

- 3. $S_{\text{créée}} = mc \ln(1 + \frac{RI^2 \tau}{mcT_i}) \sim \frac{RI^2 \tau}{T_i} > 0.$
- T4 Transition de Phase Question 9

 $\boxed{2.} \Delta S = \Delta S_{eau} + \Delta S_{calo} + \Delta S_R = mc \ln \frac{T_f}{T_i}.$

10000 solide

1 000

Pressio P (bar)

10

point triple 200

Question 10

Solution:

Fluide surcritique C Pression Liquide + Gazv v_{ℓ} v_v Volume massique Question 11 Théorème des moments, quelle interprétation graphique dans le diagramme de Clapeyron? **Solution:** On a: $w_v = \frac{v - v_l}{v_v - v_l}$ et $w_l = \frac{v - v_v}{v_l - v_v}$

Comment s'en rappeler? On regarde les cas limites: si $v = v_v$ alors $w_l = 0$, et si $v = v_l$ alors $w_v = 0$.

Définir le rendement ou l'efficacité d'une machine thermique en fonction des énergies échangées au

Question 12 Donner le sens réel des échanges d'énergies dans un moteur, un réfrigérateur et une pompe à chaleur.

Solution:

Question 13

C'est la position de v par rapport à v_l et v_v .

T5 — Machine Thermique

• Moteur: $W < 0, Q_c > 0 \text{ et } Q_f < 0.$

• Pompe à chaleur: $e \sim 4$.

• Réfrigérateur: W > 0, $Q_c < 0$ et $Q_f > 0$. • Pompe à chaleur: W > 0, $Q_c < 0$ et $Q_f > 0$.

Solution: • Moteur: $\eta \sim 40\%$. • Réfrigérateur: ~ 2 (frigo) et ~ 8 (congélateur).

cours du cycle et établir la formulation associée au théorème de Carnot.

Citer quelques ordres de grandeurs de machines thermiques actuelles.

Ils sont définis par $\left| \frac{\mathcal{E}_{\text{utile}}}{\mathcal{E}_{\text{coûteuse}}} \right|$ Rendement de Carnot: On a $\eta = \left| \frac{W}{Q_c} \right| = -\frac{W}{Q_c}$.

Solution:

Premier principe: $-W = Q_c + Q_f \Longrightarrow \eta = 1 + \frac{Q_f}{Q_c}$ Deuxième principe : $\frac{Q_c}{T_c} + \frac{Q_f}{T_f} \le 0 \Longrightarrow \frac{Q_f}{Q_c} \le -\frac{T_f}{T_c}$. Alors $\eta \leq 1 - \frac{T_f}{T_c} = \eta_C$. Efficacité de Carnot (réfrigérateur):

Premier principe : $W = -Q_c - Q_f \Longrightarrow e = \frac{Q_f}{-Q_c - Q_f}$.

On a $e = \left| \frac{Q_c}{W} \right| = -\frac{Q_c}{W}$. Premier principe: $W = -Q_c - Q_f \Longrightarrow e = \frac{Q_c}{Q_c + Q_f}$.

Deuxième principe : $\frac{Q_f}{T_f} + \frac{Q_c}{T_c} \le 0 \Longrightarrow \frac{Q_f}{Q_c} \le -\frac{T_f}{T_c}$. Alors $e = \frac{Q_c}{Q_c + Q_f} = \frac{1}{1 + \frac{Q_f}{Q_c}} \le \frac{1}{1 - \frac{T_f}{T_c}} = \frac{T_c}{T_c - T_f} = e_C$. Interprétation physique: Pour 1 joule fournies par W, on peut extraire e joules de chaleur.

De la même manière : On a $e = \left| \frac{Q_f}{W} \right| = \frac{Q_f}{W}.$

Deuxième principe : $\frac{Q_f}{T_f} + \frac{Q_c}{T_c} \le 0 \Longrightarrow \frac{Q_c}{Q_f} \le -\frac{T_c}{T_f}$. Alors $e = \frac{Q_f}{-Q_c - Q_f} = \frac{1}{-\frac{Q_c}{Q_f} - 1} \le \frac{1}{\frac{T_c}{T_f} - 1} = \frac{T_f}{T_c - T_f} = e_C$. Efficacité de Carnot (pompe à chaleur): De la même manière :

M7 — Mécanique du solide Enoncer le théorème du moment cinétique par rapport à un axe fixe pour un solide en rotation. **Solution:** Dans un référentiel galiléen, la dérivée temporelle du moment cinétique par rapport à son axe (O_z) est égale à la somme des moments des forces extérieures par rapport à cet axe : $\frac{dL_z}{dt} = \sum_i \vec{M}_i \text{ soit } J_z \dot{\omega} = \sum_i M_i$

Étude cinématique : $\mathcal{E}_c = \frac{1}{2}J\dot{\theta}^2$.

Question 4

Solution: Système : {Pendule de masse m}. Référentiel terrestre supposé galiléen.

Solution: L'entropie S est une fonction d'état extensive et additive.

Question 6

Question 7 Application 8 – Détente de Joule – Gay-Lussac

Solution: Question 8

Solution: C'est:

Question 14

1

I1 — Champ Magnétique

Question 15

Représenter les lignes de champ au voisinage d'une spire, d'une bobine longue et d'un aimant.

Solution:

On a:

En s'appuyant sur un schéma, donner l'expression de la force de Laplace qui s'exerce sur un élément

Un élément de fil de longueur $\mathrm{d}\ell$, parcouru par un courant d'intensité I, subit de la part d'un champ magnétique **extérieur** \overrightarrow{B} la **force de Laplace** élémentaire $\overrightarrow{\mathrm{d}F}_{\mathrm{Lap}}$:

de fil conducteur de longueur dl. **Solution:**

où $\overrightarrow{\mathrm{d}\ell}$ est tangent au fil, de **même sens que** I et de norme $\mathrm{d}\ell.$

m, libre de glisser sans frottement le long de deux rails parallèles séparés d'une distance

$\overrightarrow{\mathrm{d}F}_{\mathrm{Lap}} = I \overrightarrow{\mathrm{d}\ell} \wedge \overrightarrow{B},$

Question 18

Question 16

Solution:

Question 17

Cours:

Application 4 – Rail de Laplace On considère le circuit représenté ci-contre, constitué d'un barreau métallique de masse

 $\boldsymbol{a}.$ Le circuit est fermé par une source idéale de courant qui impose un courant d'intensité I > 0. L'ensemble est plongé dans un champ magnétique uniforme et stationnaire $\vec{B} = \vec{B}\vec{e_z}$, où B > 0. https://youtu.be/58 Mm Op Sm 4LY1. Exprimer la force de Laplace $\vec{F}_{\rm Lap}$ qui s'exerce sur le barreau métallique. Reproduire le schéma et représenter $\vec{F}_{\rm Lap}$. 2. Établir l'équation différentielle du mouvement. Quel type de mouvemen 3. Exprimer la puissance de la force de Laplace $\mathcal{P}_{\mathrm{Lap}}.$ Commenter. Solution: 1. $\vec{F_{Lap}} = Ia\vec{e_y} \wedge B\vec{e_z} = aIB\vec{e_x}$. 3. $\mathcal{P}_{Lap} = \vec{F_{Lap}} \cdot \vec{v} = aIB\vec{e_x} \cdot \dot{x}\vec{e_x} = aIB\dot{x} > 0$, c'est donc une force motrice.

Question 19

Solution:

À voir en cours lundi 13 mai.

Établir l'expression du moment du couple subit par une spire rectangulaire.

2 sur 2