21-11-2022

Esempio di modello E-R:

In questo caso:

- un progetto può essere sviluppato da 0 o più dipendenti.
- un dipendente più sviluppare uno o più progetti.

Esempi incrementali

Questi esempi diventeranno sempre più completi. In particolare alcune entità/associazioni vengono modellate in maniera diversa per ottenere risultati migliori a livello semantico:

- il modello nell'immagine soprastante non consente a un fornitore di fornire più volte lo stesso prodotto a seguito di ordini diversi perché si avrebbe una violazione dell'unicità delle chiave
- Non posso acquistare lo stesso prodotto dallo stesso fornitore perchè la chiave di fornitura è cod p e `cod_f

In questo caso fornitura va modellata come entità per evitare di perdere informazioni:

Altro esempio:

• Attenzione all'interpretazione:

questo è il programma giornaliero, in cui ogni guidatore è assegnato a un solo bus e fa un solo turno non rappresenta l'archivio dei turni svolti da un guidatore!

Se volessi rappresentare anche i turni svolti da un guidatore dovrei fare:

Archivio assegnamenti:

ci possono essere più turni nella stessa data e fascia oraria, svolti da guidatori diversi su bus diversi

AUTO-ASSOCIAZIONI

Associazioni aventi come partecipanti istanze provenienti dalla stessa entità (chiamate anche unarie o ad anello):

Le auto-associazioni usano per rappresentare gerarchie o associazioni ricorsive.

Auto-associazioni 1:1

Sul ogni ramo può essere riportato il "ruolo" del partecipante all'associazione

Auto-associazioni n:m

Auto-associazioni ricorsive

esempio: gerarchia (1:n)

grafo diretto aciclico (albero)

Chi ha cardinalità (1,1) può contenere chi ha cardinalità (0,n)

IDENTIFICAZIONE ESTERNA

Le identificazioni esterne avvengono sempre tramite associazioni binarie in cui l'entità da identificare partecipa con cardinalità (1,1)

- Se avessimo una cardinalità (1:N) allora avremmo più associazioni fra dipartimenti diversi e corsi di studio: lo stesso corso di studio dovrebbe avere chiavi primarie diverse, che è impossibile.
- una identificazione esterna può coinvolgere una entità che a sua volta è identificata esternamente a patto che non si creino cicli di identificazione

Esempio:

entità con chiavi alternative: interno ed esterna

L'identificatore esterno è una delle possibili chiavi. Chiavi delle varie entità:

- 1. magazzino -> n_mag
- 2. scaffale -> n_s + n_mag
- 3. ripiano -> n_r + n_s + n_mag

Ci possono essere anche chiavi alternative e si sceglie come primaria quella più "**utile**", per esempio c_inv

Esempio: composizione treni

- i treni sono identificati da un codice e da una data, sono composti da vetture che contengono i posti da prenotare
- le vetture sono numerate, i posti sono numerati nello stesso modo all'interno di ogni vettura
- (potremmo tenere conto anche degli scompartimenti interni alle vetture)

GERARCHIE DI CONCETTI

Ci possono essere entità che tra di loro sono collegate.

Esempio:

Spesso nella analisi di un settore aziendale può risultare che **più entità risultino simili** o casi particolari l'una dell'altra, derivanti da "**viste**" diverse da parte dell'utenza emerge quindi la necessità di **evidenziare sottoclassi di alcune classi**.

Come la programmazione oggetti Impiegato -> direttore

Si definisce pertanto gerarchia di specializzazione il **legame logico** che esiste **tra classi e sottoclassi**

- Definizione: la gerarchia concettuale è il legame logico tra un'entità padre E ed alcune entità figlie E₁ E₂ .. E_n dove:
 - ~ E è la generalizzazione di $E_1 E_2 ... E_n$
 - ~ E₁ E₂ .. E_n sono **specializzazioni** di E
 - una istanza di E_k \hat{e} anche istanza di E (e di tutte la sue generalizzazioni)
 - una istanza di E **può** essere una istanza di E_k
 - NOTA: nel caso in cui n=1 allora E₁ e' un sottoinsieme di E

E = superclasse = *generalizzazione* E1, E2 = sottoclassi = *specializzazioni*

Tipi di gerarchia

In base alle entità ci sono diversi tipi di gerarchie,

Esempio 1:

un'azienda si avvale dell'opera di professionisti esterni, quindi il suo personale si suddivide in esterni e dipendenti:

Non posso avere istanze di PERSONALE che non siano istanze di DIPENDENTE O ESTERNO Questa è una **gerarchia TOTALE** perchè tutto il personale si divide in "dipendente" oppure "esterno".

"Il padre della gerarchia si deve necessariamente dividere fra le entità figlie"

 gerarchia ESCLUSIVA: se l'istanza di personale parte di dipendente non può essere esterno e viceversa.

Notazione: t,e = totale, esclusiva

Esempio 2:

un comune gestisce l'anagrafe ed i servizi per i suoi cittadini alcuni di questi richiedono I dati relativi alla licenza di pesca e/o di caccia:

In questo caso:

- nt, non totale = Posso avere cittadini che possono essere non cacciatori o non pescatori (quindi anche di diversi tipi rispetto alle specializzazioni "cacciatore " e "pescatore")
- ne , non esclusiva = Posso avere un cacciatore che può essere pescatore.

- t sta per totale: ogni istanza dell'entità padre deve far parte di una delle entità figlie
 - nell'esempio il personale si divide (completamente) in esterni e dipendenti
- nt sta per non totale: le istanze dell'entità padre possono far parte di una delle entità figlie
 - nell'esempio i pescatori sono un sottoinsieme dei cittadini
- e sta per esclusiva: ogni istanza dell'entità padre deve far parte di una sola delle entità figlie
 - esempio: una istanza di personale non può sia essere sia dipendente che esterno
- ne sta per non esclusiva: ogni istanza dell'entità padre può far parte di una o più entità figlie
 - esempio: un cittadino può essere sia pescatore che cacciatore

Logicamente, i figli hanno tutti gli attributi ereditati dal padre.

nt: possono esistere esterni generici che non sono né legali, né ingegneri, né economisti ma non interessa stabilire una sottoclasse ad hoc

Ereditarietà delle proprietà

- le proprietà dell'entità padre non devono essere replicate sull'entità figlia in quanto questa le eredita cioè:
- le proprietà dell'entità padre fanno parte del tipo dell'entità figlia
- non è vero il viceversa
 - il tipo di personale è: (matricola, cognome, nome, indirizzo, data nascita)
- il tipo di dipendente è: (matricola, cognome, nome, indirizzo, data_nascita, parametro)
- il tipo di esterno è: (matricola, cognome, nome, indirizzo, data_nascita, ore)
- dipendente ed esterno hanno lo stesso tipo se considerati come personale

Le gerarchie concettuali sono anche denominate gerarchie ISA cioè "is a"

- dipendente è un (is a) personale
- esterno è un (is a) personale

DOCUMENTAZIONE DI SCHERMI E-R

- Bisogna schematizzare i requisiti forniti dal cliente.
- Inoltre serve anche corredare lo schema E-R con una documentazione di supporto, per facilitare l'interpretazione dello schema e descrive proprietà dei dati non espresse nello schema:

es: lo stipendio del dipendente non può essere maggiore di quello del direttore

Definiamo le bussiness rules:

- Descrizione di un concetto che si esprime con il linguaggio naturale;
- Vincolo di integrità, cioè concetto deve/non deve espressione sui concetti (il direttore deve afferire a quel dipartimento)
- Derivazione (un concetto che può essere ottenuto tramite calcoli su altri concetti)
 - Concetto si ottiene operazione su concetti (il numero degli impiegati di un dipartimento si ottiene contando gli impiegati che vi afferiscono)

In particolare si devono produrre 4 tabelle:

- Il dizionario:
 - Una tabella per la **specifica dei termini** (entita', descrizione, attributi, identificatore)
 - Una tabella per la **specifica delle relazioni** (relazione, descrizione, entita' coinvolte e le rispettive cardinalita', attributi)
- Regole di Vincolo
- Regole di Derivazione

Cose da fare per avere una specifica dei requisiti piu' precisa e senza ambiguita'

- Scegliere il corretto livello di astrazione
 - Evitare termini troppo generici o troppo specifici
- Standardizzare la struttura delle frasi
 - Per dato rappresentiamo insieme di proprietà
- Evitare frasi contorte (lavoratori dipendenti)
- Individuare sinonimi/omonimi e unificare i termini
- Rendere esplicito il riferimento tra termini
 - Alcune proprietà possono essere di alcuni dipendenti e non di tutti i tipi di dipendenti
- Costruire il glossario dei termini e l'elenco delle operazioni da effettuare
 - Tabella (termine, descrizione, sinonimi. collegamenti)
 - Lista operazione 1:.., operazione : .., etc..