PLANE AND SPHERICAL TRIGONOMETRY

THE MACMILLAN COMPANY
NEW YORK • BOSTON • CHICAGO • DALLAS
ATLANTA • SAN FRANCISCO

MACMILLAN AND CO., Limited LONDON · BOMBAY · CALCUTTA · MADRAS MELBOURNE

THE MACMILLAN COMPANY OF CANADA, LIMITED TORONTO

PLANE AND SPHERICAL TRIGONOMETRY

WITH TABLES

By PAUL R. RIDER, Ph.D.
PROFESSOR OF MATHEMATICS
WASHINGTON UNIVERSITY

THE MACMILLAN COMPANY

NEW YORK

COPYRIGHT, 1942, BY THE MACMILLAN COMPANY

ALL RIGHTS RESERVED—NO PART OF THIS BOOK MAY BE REPRODUCED IN ANY FORM WITHOUT PERMISSION IN WRITING FROM THE PUBLISHER, EXCEPT BY A REVIEWER WHO WISHES TO QUOTE BRIEF PASSAGES IN CONNECTION WITH A REVIEW WRITTEN FOR INCLUSION IN MAGAZINE OR NEWSPAPER

PRINTED IN THE UNITED STATES OF AMERICA

Published February, 1942. Reprinted April, 1942; February, June (twice), November, 1943.

Preface

The primary purpose of this book is to present in a sound pedagogical manner the usual course in trigonometry as offered in colleges and technical schools. Only those methods are employed which have withstood the test of many years of actual classroom use. The arrangement of topics is such as has been found desirable as a result of long experience. Even logical order has at times been sacrificed to make the material more teachable. For example, the special definitions of the trigonometric functions for acute angles are given before the more general definitions. Applications are introduced early, as it has been found that the student's interest in a subject is considerably stimulated if he can see the utility of it. Moreover, the first problems have been made simple from a numerical standpoint in order to enable him to grasp principles and to learn methods without becoming lost in a maze of computations. Formulas are developed as needed, so that there is a certain amount of purposeful alternation between theoretical and practical aspects. On the other hand, the discussion of the more difficult of the theoretical topics is postponed to the latter part of the book. Many students find it easier to solve triangles than to handle some of the analytic phases of trigonometry such as proving identities and solving equations. By solving triangles they acquire confidence, as well as a certain amount of familiarity with the relations among the functions, so that they have a greater chance of success when they tackle the more difficult portions of the subject. Too much analytic work in

the early part of the course has been found to discourage many students and to kill their interest.

A few other features of the book seem worthy of note. An effort has been made to introduce simplifications into the treatment of certain topics, notably logarithms. The use of approximate numbers in computation and the question of significant figures have been stressed. Emphasis has been placed on the orderly arrangement of computations. Sets of carefully chosen and carefully graded exercises are to be found throughout the book. Answers to the odd-numbered exercises are printed at the back, answers to the even-numbered exercises are available in pamphlet form.

The book contains a complete course in plane and spherical trigonometry as these subjects are ordinarily taught. The part on spherical trigonometry has been made rather comprehensive in view of the present interest in subjects requiring a knowledge of this branch of mathematics. The student who has mastered this part will be well equipped to pursue courses in navigation and avigation, astronomy, and other applications. If a shorter course in plane trigonometry is desired, those topics marked with a * may be omitted. A thorough course in computational trigonometry is provided by the first seven chapters. Although, as stated above, the arrangement of material is that which seemed most desirable, the separate chapters are to a large extent independent, so that the instructor who prefers a different order of presentation should have no difficulty in outlining a course to his taste.

Advice concerning some of the figures and assistance with them were kindly given by my colleagues, Professors W. H. Roever and R. W. Bockhorst, to whom I am very grateful.

My thanks are due to The Macmillan Company for making every effort to give the book a pleasing format, and for the very valuable editorial assistance which they rendered during its preparation. The manuscript was critically read by five different advisers, and the suggestions of these advisers were given thoughtful consideration during the process of revision. The revised manuscript was then read in great detail by one of these advisers, who even worked all of the exercises. It is hoped that because of its careful preparation the book will be found both clear and teachable, as well as mathematically sound.

P. R. R.

Washington University St. Louis, Missouri January, 1942

Contents

PLANE TRIGONOMETRY

Chapter 1. 1	RIGONOMETRIC FUNCTIONS OF ACUTE	
ANGLE	S	3
1. T	Prigonometry	3
2. T	Prigonometric functions of an acute angle	3
3. F	unctions of complementary angles	6
4. F	inding the other functions of an acute angle	
	when one function is given	7
	'unctions of 45°, 60°, and 30°	9
6. T	Cables of functions	11
Chapter II. S	SOLUTION OF TRIANGLES	16
7. S	olution of right triangles	16
. 8. I	nterpolation	21
★ 9. C	Components	25
★10. I	sosceles triangles and regular polygons	29
*11. S	solution of oblique triangles by means of right	
	triangles	32
Chapter III.	APPROXIMATE NUMBERS AND	
COMPU	TATION	36
12. A	approximate numbers	36
13. F	Rounding off numbers	36
★14. E		37
	Significant figures	37
	scientific notation	38
*17. A	Addition and subtraction of approximate num-	•
	bers	39
	Multiplication of approximate numbers	40
	Division of approximate numbers	41
	Square root	42
*21. (Use of calculating machines	43
	*These topics may be omitted.	

CONTENTS

Chapter IV. LOGARITHMS	48
22. Logarithms	45
23. Mantissa	46
24. Characteristic	47
25. Finding the mantissa	49
26. Finding the antilogarithm	50
27. Laws of logarithms	51
28. Logarithmic computation of products and quotients	52
29. Cologarithm	54
30. Logarithmic computation of powers and roots	55
31. Logarithms of the trigonometric functions	55 57
51. Dogarimms of the digonometric ranguous	97
Chapter V. LOGARITHMIC SOLUTION OF RIGHT	
TRIANGLES	61
32. Logarithmic solution of right triangles	61
Chapter VI. TRIGONOMETRIC FUNCTIONS OF ANY	
ANGLE	64
33. Generation of an angle	64
34. Positive and negative angles	64
35. Rectangular coordinates	65
36. Quadrants	66
37. Trigonometric functions of any angle	67
38. Functions of 0°, 90°, 180°, 270°	68
39. Functions of $-\theta$	71
40. Functions of $180^{\circ} - \theta$	72
41. Functions of $180^{\circ} + \theta$	73
42. Functions of $360^{\circ} - \theta$	73
43. Functions of $360^{\circ} + \theta$	73
44. Functions of $90^{\circ} - \theta$	74
45. Functions of $90^{\circ} + \theta$	75
46. Functions of $270^{\circ} - \theta$	75
47. Functions of $270^{\circ} + \theta$	76
48. Summary	76
49. Reduction of functions of any angle to functions	
of an acute angle	フワ

Chapter VI	I. SOLUTION OF OBLIQUE TRIANGLES	80
50.	The four cases	80
51.	Law of sines	80
52.	Solution of Case I	83
53.	Solution of Case II	84
54.	Law of cosines	88
	Solution of Case III	89
56.	Solution of Case IV	91
	Application of law of cosines to Case II	92
	Logarithmic solution of Case I	93
	Logarithmic solution of Case II	94
	Law of tangents	96
	Mollweide's equations	97
	Logarithmic solution of Case III	98
	Heron's formula	100
	Half-angle formulas	101
	Logarithmic solution of Case IV	102
	Summary of methods	104
★ 67.	Vectors	109
Chapter VI	II. TRIGONOMETRIC FORMULAS AND	
IDEN'	TITIES	114
68.	Fundamental relations among the functions	114
69.	Finding the other functions of an angle when	
	one function is given	115
70.	Identities	118
71.	Directed line segments	122
72.	Functions of the sum and the difference of two	
	angles	123
	Functions of twice an angle	127
	Functions of half an angle	128
	Sums and differences of functions	131
* 76.	Reduction of $a \cos \theta \pm b \sin \theta$	137
Chapter IX		
77.	. RADIAN MEASURE	139
	RADIAN MEASURE . Radian	139 139
78.		

*These topics may be omitted.

* 80.	Angular velocity	142
* 81.	Area of sector and of segment	145
* 82.	Angles near 0° or 90°	146
	Mil	151
Chapter X.	GRAPHIC REPRESENTATIONS OF THE	
TRIG	ONOMETRIC FUNCTIONS	154
★ 84.	Line representations of the trigonometric functions	154
85.	Graph of the sine	156
	Graph of the cosine	158
	Graphs of the tangent and the cotangent	158
	Graphs of the secant and the cosecant	161
	Use of radian measure in graphing	162
	Geometric construction of the sine and cosine	
	graphs	163
*Chapter X	II. INVERSE TRIGONOMETRIC FUNCTIONS	165
91.	Inverse trigonometric functions	165
	Principal values	166
93.	Graphs of the inverse trigonometric functions	167
Chapter XI	I. TRIGONOMETRIC EQUATIONS	177
94.	Trigonometric equations	177
Chapter XI	II. COMPLEX NUMBERS	185
95.	Imaginary and complex numbers	185
96.	Operations with complex numbers	185
97.	Geometric representation of complex numbers	186
98.	Geometric addition and subtraction of complex numbers	
99		187
100.	Trigonometric form of complex numbers Multiplication and division of complex numbers	188
101	in trigonometric form	190
101.	Powers of complex numbers	191
102.	Roots of complex numbers	191
	*These topics may be omitted.	

SPHERICAL TRIGONOMETRY

Chapter XIV. INTRODUCTION TO SPHERICAL TRIGONOMETRY	197
103. Definitions and propositions from solid geometry	197
104. Spherical triangles	197
105. Spherical polygons	199
106. Polar triangles	199
107. Areas	200
Chapter XV. SOLUTION OF RIGHT SPHERICAL	
TRIANGLES	201
108. Formulas for solving right spherical triangles	201
109. Napier's rules	203
110. Solution of right spherical triangles	204
111. Quadrantal triangles	207
112. Isosceles spherical triangles	208
Chapter XVI. SOLUTION OF OBLIQUE SPHERICAL	
TRIANGLES	211
113. Oblique spherical triangles	211
114. Law of sines	211
115. Law of cosines for sides	212
116. Law of cosines for angles	213
117. Law of tangents	214
118. Half-angle formulas	215
119. Half-side formulas	216
120. Napier's analogies	217
121. The six cases	218
122. Clearing up certain ambiguities	219
123. Delambre's or Gauss's formulas	221
124. Solution of Case I	221
125. Solution of Case II	223
126. Solution of Case III	223
127. Solution of Case IV	225
128. Solution of Case V	228
129. Solution of Case VI	230
130. Summary of methods	233

CONTENTS

Chapter XVII. APPLICATIONS OF SPHERICAL	
TRIGONOMETRY	235
131. Terrestrial sphere	235
132. Terrestrial triangles	236
133. Celestial sphere	2 39
134. Astronomical triangle	241
IMPORTANT FORMULAS	249
INDEX	253
ANSWERS TO ODD-NUMBERED EXERCISES	250

CHAPTER I

Trigonometric Functions of Acute Angles

1. Trigonometry.

The word trigonometry is derived from the Greek and means "measurement of triangles." The subject is principally concerned with the measurement of triangles (i.e., their sides and angles), or, more specifically, with the indirect measurement of line segments and angles. For example, it is possible, by trigonometry, to measure the width of a river without crossing it, or the height of a pole or cliff without climbing to the top.

The uses of trigonometry are many. The sciences of physics, mechanics, and astronomy could hardly have developed without it; practical arts, such as engineering, find it indispensable. It is a valuable aid in the study of periodic phenomena such as the tides, or even economic data which seem to be cyclic in their nature. Various specific uses will be illustrated throughout the book, particularly in the examples and exercises.

2. Trigonometric functions of an acute angle.

Let us consider the right triangle ABC, with the right

angle at C (Fig. 1). The sides opposite the angles A, B, C will be denoted by the corresponding small letters, a, b, c, respectively. Then, by taking ratios of the sides of the triangle, we define three trigonometric functions of the acute angle A as follows:

sine of A (abbreviated $\sin A$)

$$= \frac{\text{side opposite } A}{\text{hypotenuse}} = \frac{a}{c}, \quad (1)$$

cosine of A (abbreviated $\cos A$)

$$= \frac{\text{side adjacent to } A}{\text{hypotenuse}} = \frac{b}{c}, \quad (2)$$

tangent of A (abbreviated tan A)

$$= \frac{\text{side opposite } A}{\text{side adjacent to } A} = \frac{a}{b}. \quad (3)$$

Thus, for example, in a right triangle in which a = 3, b = 4, c = 5 (see Fig. 2), we have

$$\sin A = \frac{3}{5}, \qquad \cos A = \frac{\pi}{5}, \qquad \tan A = \frac{3}{4}.$$

The values of these functions are completely determined

A b=4
Fig. 2

by the angle A. Thus, if we had another right triangle with the same acute angle A, it would be similar to the above triangle and its sides would be in the same proportion. For example, they might all be twice as long, namely, a = 6, b = 8, c = 10. Then we should

have $\sin A = 6/10 = 3/5$, as before, and similarly for the other functions. On the other hand, if the size of angle A were changed, the values of these functions would be changed.

Three, and only three, other ratios may also be formed from the sides of the triangle ABC. They are

cosecant of A (abbreviated csc A)

$$= \frac{\text{hypotenuse}}{\text{side opposite } A} = \frac{c}{a}, \quad (4)$$

secant of A (abbreviated **sec** A)

$$= \frac{\text{hypotenuse}}{\text{side adjacent to } A} = \frac{b}{b}.$$
 (5)

EXERCISES

cotangent of A (abbreviated cot A)

$$= \frac{\text{side adjacent to } A}{\text{side opposite } A} = \frac{b}{a}$$
 (6)

It will be noted that these three functions are the reciprocals * of the other three, and we may write

$$csc A = \frac{1}{\sin A}, \qquad sin A = \frac{1}{\csc A},
sec A = \frac{1}{\cos A}, \qquad cos A = \frac{1}{\sec A}, \qquad (7)
cot A = \frac{1}{\tan A}, \qquad tan A = \frac{1}{\cot A}$$

Note. Three other functions are:

versed sine of A (abbreviated vers A) = $1 - \cos A$, coversed sine of A (abbreviated covers A) = $1 - \sin A$, haversine of A (abbreviated hav A) = $\frac{1}{2}(1 - \cos A)$.

They will not be used in this book.

EXERCISES I. A

Draw the right triangles whose sides have the following values, and find the six trigonometric functions of the angle A:

1.
$$a = 4, b = 3, c = 5.$$
2. $a = 5, b = 12, c = 13.$ 3. $a = 2, b = 3, c = \sqrt{13}.$ 4. $a = 1, b = 1, c = \sqrt{2}.$ 5. $a = 2, b = \sqrt{5}, c = 3.$ 6. $a = \sqrt{2}, b = \sqrt{3}, c = \sqrt{5}.$ 7. $a = 8, b = 15.$ 8. $b = 21, c = 29.$ 9. $a = 7, c = 25.$ 10. $a = 5, b = 3.$ 11. $a = 1, b = \sqrt{3}.$ 12. $a = 1, b = 3.$ 13. $a = 1, b = \frac{1}{3}.$ 14. $a = \frac{1}{2}, b = \frac{1}{3}.$

15. A guy wire 15 feet long is fastened to a point 13 feet above the foot of a vertical pole, which stands on level ground. Find the sine of the angle that the wire makes with the horizontal.

^{*}The reciprocal of a number is 1 divided by the number.

TRIGONOMETRIC FUNCTIONS OF A CUTE ANGLES [Ch. I

- 16. A yardstick, held vertically on a level surface, casts a shadow 1 foot 8 inches long. Find the tangent of the angle that the rays of the sun make with the horizontal.
- 17. A roadway rises 55 feet in a horizontal distance of ½ mile. Find the tangent of the angle that it makes with the horizontal.
- 18. An airplane is descending 225 feet per 1000 feet of horizontal distance covered. What is the cosine of the angle that its path of descent makes with the horizontal?
- 19. One end of a foot ruler is placed against a vertical wall; the other end of the ruler reaches a point on the floor 9 inches from the base of the wall. Find the sine, cosine, and tangent of the angle that the ruler makes (a) with the wall, (b) with the floor.
- 20. A box is 3 inches by 4 inches by 1 foot. Find the sine of the angle that a diagonal of the box makes with its longest edge.

3. Functions of complementary angles.

By referring to the definitions of the trigonometric functions (section 2) and to Fig. 1, we see that, for the acute angle B,

$$\sin B = \frac{c}{c}, \qquad \csc B = \frac{c}{b},$$

$$\cos B = \frac{a}{c}, \qquad \sec B = \frac{c}{a}, \qquad (1)$$

$$\tan B = \frac{b}{a}, \qquad \cot B = \frac{a}{c}.$$

Comparing these formulas with formulas (1)-(6) of section 2, and making use of the fact that A and B are complementary angles (i.e., $A + B = 90^{\circ}$), we have

$$\sin B = \sin(90^{\circ} - A) = \cos A,$$
 $\cos B = \cos(90^{\circ} - A) = \sin A,$
 $\tan B = \tan(90^{\circ} - A) = \cot A,$
 $\csc B = \csc(90^{\circ} - A) = \sec A,$
 $\sec B = \sec(90^{\circ} - A) = \csc A,$
 $\cot B = \cot(90^{\circ} - A) = \tan A.$
(2)

It is convenient to arrange the functions in pairs as follows: sine and cosine, tangent and cotangent, secant and cosecant. In any pair, either function may be called the cofunction of the other. Relations (2) may then be expressed by the single statement: Any function of the complement of an angle is equal to the cofunction of the angle.

EXERCISES I. B

Find the functions of angle B in exercises I. A, 1–14.

4. Finding the other functions of an acute angle when one function is given.

The following examples will illustrate how the remaining functions of an acute angle can be found if the value of one function is given.

Example 1.

Given $\sin A = \frac{5}{13}$, A acute; find the other functions of A.

Solution. Since $\sin A = \frac{a}{c}$, we have $\frac{a}{c} = \frac{5}{13}$. Construct a right triangle with a = 5 and c = 13 (Fig. 3). (Note that it is not necessary to take a = 5 and c = 13; we could take a = 10 and c = 26, for example, or any other numbers in the ratio of 5 to 13.)

Making use of the theorem of Pythagoras, that the square of the hypotenuse is equal to the sum of the squares of the sides, we have

$$b^2 = c^2 - a^2 = 169 - 25 = 144, \quad b = 12.$$

The remaining functions of A can be read from the figure. Thus,

$$\cos A = \frac{12}{13}$$
, $\tan A = \frac{5}{12}$, $\csc A = \frac{13}{5}$, $\sec A = \frac{13}{12}$, $\cot A = \frac{12}{5}$.

Example 2.

If $\tan A = 3$, what are the other functions of A, it being understood that A is acute?

Solution.
$$\tan A = 3 = \frac{a}{b}$$

Take a = 3, b = 1, and construct a right triangle (Fig. 4). Then,

$$c^2 = a^2 + b^2 = 9 + 1 = 10, \qquad c = \sqrt{10}.$$

$$\sin A = \frac{3\sqrt{10}}{\sqrt{10}} = 0.9487,$$

$$\cos A = \frac{\sqrt{10}}{10} = 0.3162,$$

$$\csc A = \frac{\sqrt{10}}{3} = 1.054,$$

$$\sec A = \frac{\sqrt{10}}{3} = \sqrt{10} = 3.162$$

$$\cot A = \frac{1}{3} = 0.3333.$$

EXERCISES I. C

Find the other five functions of the acute angle A, given that

1. $\cos A = \frac{4}{5}$.	2. $\tan A = \frac{2}{3}$.	3. $\cot A = \frac{1}{5}$.
4. $\sin A = \frac{2}{5}$.	5. $\sec A = \sqrt{2}$.	6. $\csc A = 4.1$
7. $\sin A = \frac{1}{2}$.	8. $\cos A = \frac{2}{3}$.	9. $\tan A = \frac{2}{5}$.
10. $\csc A = \frac{4}{3}$.	11. $\cot A = \frac{5}{2}$.	12. sec $A = \frac{\pi}{4}$.
13. $\sec A = 2$.	14. $\cos A = \frac{1}{4}$.	15. $\tan A = 0.5$.
16. $\sin A = 0.8$.	17. $\sin A = \frac{\sqrt{3}}{2}$	18. $\cos A = \frac{\sqrt{2}}{2}$.
19. $\tan A = \frac{\sqrt{3}}{3}$.	20. $\csc A = \sqrt{2}$.	21. $\sin A = \frac{2}{7}$.

22.
$$\tan A = \frac{u}{v}$$
 23. $\sin A = \frac{2mn}{m^2 + n^2}$

24. Show that if A is an acute angle,

$$\sin^2 A + \cos^2 A = 1.$$

(The notation $\sin^2 A$ means the square of the sine of A. For example, if $\sin A = \frac{2}{3}$, then $\sin^2 A = (\frac{2}{3})^2 = \frac{4}{9}$.)

Solution.
$$\sin^2 A + \cos^2 A = \left(\frac{a}{c}\right)^2 + \left(\frac{b}{c}\right)^2 = \frac{a^2}{c^2} + \frac{b^2}{c^2} = \frac{a^2 + b^2}{c^2} = \frac{c^2}{c^2} = 1$$
,

since (see Fig. 5), by the Pythagorean theorem, $a^2 + b^2 = c^2$.

Show that if A is an acute angle, then

25.
$$\sec^2 A = 1 + \tan^2 A$$
.

26.
$$\csc^2 A = 1 + \cot^2 A$$
.

27.
$$\cos A \tan A = \sin A$$
.

28.
$$\cot A \cos A = \csc A - \sin A$$
.

29.
$$\frac{1+\sin A}{\cos A} = \frac{\cos A}{1-\sin A}$$
 30. $\frac{\cos^2 A}{1-\sin A} = 1+\sin A$

31.
$$\frac{\sin A + \tan A}{\cot A + \csc A} = \sin A \tan A.$$

32.
$$\frac{1-2\cos^2 A}{\sin A \cos A} = \tan A - \cot A$$
.

5. Functions of 45° , 60° , and 30° .

To find the functions of 45° we construct an isosceles right triangle (Fig. 6). It is convenient to make each leg equal to 1, that is, a = 1, b = 1. Then,

Fig. 5

$$c^2 = a^2 + b^2 = 1 + 1 = 2,$$
 $= \sqrt{2}.$

From the figure we read

$$\sin 45^\circ = \frac{\sqrt{2}}{\sqrt{2}} = 0.7071, \quad \csc 45^\circ = \sqrt{2} = 1.414,$$

$$\cos 45^{\circ} - \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} = 0.7071, \quad \sec 45^{\circ} = \sqrt{2} = 1.414,$$

 $\tan 45^{\circ} = 1, \quad \cot 45^{\circ} = 1.$

The decimal values are, of course, merely approximate.

In order to find the functions of 60° we take an equilateral

triangle and draw the bisector of one of the angles. (See Fig. 7.) This bisector divides the equilateral triangle into two congruent right triangles whose angles are 60° and 30° . Let us consider one of these, namely ABC. If each side of the original equilateral triangle is 2 units in length, it follows that in ABC, c=2 and

b=1, since AC is half the base of the equilateral triangle. Then

$$a^2 = c^2 - b^2 = 4 - 1 = 3, \qquad a = \sqrt{3}.$$

From Fig. 7 we read

$$\sin 60^{\circ} = \frac{\sqrt{3}}{2} = 0.8660, \quad \csc 60^{\circ} = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3} = 1.155,$$
 $\cos 60^{\circ} = \frac{1}{2} = 0.5, \quad \sec 60^{\circ} = 2,$
 $\tan 60^{\circ} = \sqrt{3} = 1.732, \quad \cot 60^{\circ} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3} = 0.5774.$

From the same figure, or from the relations between the functions of complementary angles, we find

$$\sin 30^{\circ} = \frac{1}{2} = 0.5,$$

 $\cos 30^{\circ} = \frac{\sqrt{3}}{2} = 0.8660,$

15° 40′.

$$\tan 30^{\circ} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3} = 0.5774,$$

$$\csc 30^{\circ} = 2,$$

$$\sec 30^{\circ} = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3} = 1.155,$$

$$\cot 30^{\circ} = \sqrt{3} = 1.732.$$

6. Tables of functions.

There are very few angles whose functions can be found by the foregoing methods of elementary geometry. It is possible, however, by other means to calculate the functions of any angle. Values of the functions have been calculated and tabulated, as for example in the table on pages 12–14, which gives the values of the sine, cosine, tangent, and cotangent of all angles from 0° to 90° for intervals of ten minutes.

To find a function of an angle less than 45° we locate the angle at the left-hand side of the table and the name of the function at the top of the column. Angles greater than 45° are located at the right-hand side of the table, and the names of their functions are located at the bottom. Opposite the angle, in the appropriate column, is found the value of the function.

For example, we find the sine of 32° 40′ to be 0.5398. Note that this is also the cosine of 57° 20′, the complement of 32° 40′. Because of the relations between the functions of an angle and the functions of its complement, the table does double duty.

EXERCISES 1. D

Find, in the table on pages 12-14, the values of the following:

•		
1. cos 28° 20′.	2. sin 67° 30′.	3. tan

TRIGONOMETRIC FUNCTIONS

angle	sin	tan	cot	cos		11	ang	gle	sin	tan	cot	cos	-
0 ° 00	.0000	.0000		1.0000	90° 00	11	9°	00′	.1564	1.158	4 6.313	8.987	7 81° 00
10	.0029		343.77					10	.1593		$\frac{4}{6}.197$		_ ! .
20 30	0058		$ 171.89 \\ 114.59$					$\frac{20}{30}$			$\frac{4}{6.084}$		
40	.0116	.0116	85.940	.9999	20	Π		40	.1679	.170	3 5.870	8].985	8 20
50	.0145	.0145	68.750	1	1			50	ì		3 5.769	ì	1
1° 00′	1	.0175	1	.9998]]1	LO°			1	3 5.671		8 80° 00
10 20			$49.104 \\ 42.964$.9998 .9997	50 40	Н		$\frac{10}{20}$			$\begin{array}{c c} 3 & 5.576 \\ 3 & 5.484 \end{array}$		
30	.0262	.0262	38.188	.9997	30	П		30	.1822	.185	3 5.395	5 .983	3 30
40 50			$34.368 \\ 31.242$.9996 .9995	20 10	П					$\begin{array}{c c} 3 & 5.309 \\ 1 & 5.225 \end{array}$		
2° 00′	1	l	28.636	.9994	1	4	.1° ()		1	15.144	1	
10			26.432	.9993	50	*		10		4	1 5.065	1	
20	.0407	.0407	24.542	.9992	40	П	2	20	.1965	.2004	1 4.9894	4 .9808	5 40
30			$22.904 \\ 21.470$.9990	$\frac{30}{20}$	П					$\frac{4.915}{4.843}$		
			20.206	.9988	10	Н					$\frac{4.343}{5.7729}$		
3° 00′	.0523	.0524	19.081	.9986	87° 00′	1	2 ° (001	.2079	.2120	4.704	3.978	78° 00
10			18.075	.9985	50			10	.2108	.2156	4.638:	2 .977!	50
20 30			17.169 16.350	.9983	40 30	П					4.5736 $ 4.5107$		
			15.605	.9981	20						4.449		
1 1	.0669	.0670	14.924	.9978	10		Ē	50	.2221	.2278	4.3897	.9750) īŏ
4° 00′	.0698	.0699	14.301	.9976	86° 00′	1	3° (4.3318	[.9744]	77° 00
10 20			13.727	.9974	50						1.2747		50
			13.197 12.706	.9971	40 30			20 : 30 :	.2306 .2334	12370 12401	$\{4.219\}$	51.9730 81.9723	10
40	.0814	.0816	12.251	.9967	20		4	10	.2363	.2432	4.1126	[.9717]	20
1 1	- 1		11.826	.9964	10	١.		- 1			4.0611		1
			11.430 11.059	1	85° 00′	1	4° 0	- 1		ł	1	1	76° ()()
			10.712	.9959	50 40				$.2447 \\ .2476$		3.9617 3.9130		50 40
30	.0958].	.0963	10.385	.9954	30		3	30	.2504	.2580	3.8667	1.9681	30
			10.078 9.7882	.9951 $.9948$	$\frac{20}{10}$			0	2532	$\frac{.2617}{2648}$	$\begin{vmatrix} 3.8208 \\ 3.7760 \end{vmatrix}$	0.9674	20 10
1	1	- }	9.5144	.9945		1	5° 0	- 1			3.7321	1	1
			9.2553	.9942	50	1		1	1		3.6891	1	50
20	.1103.	1110	9.0098	.9939	40	ı	2	0 .	2644	.2742	3.6470	.9644	40
			8.7769 8.5555	.9936 $.9932$	30 20			0	2672	.2773	3.6059 3.5656	1.9636	30 20
50	1190	1198	8.3450	.9929	ĩŏ		5	ŏ .	2728	.2836	3.5261	.9621	10
			8.1443	.9925	83° 00′	10	6° 0	o/ .	2756	.2867	3.4874	.9613	74° 00′
			7.9530	.9922	50				2784	.2899	3.4495	.9605	50
30	1276 . 1305 .		7.7704 7.5958	.9918	40 30	1					$\frac{3.4124}{3.3759}$		40 30
40	1334	1346	7.4287	.9911	20	1	4	0 .	2868	.2994	3.3402	.9580	20
			7.2687	.9907	10			0	2896	.3026	3.3052	.9572	10
			7.1154 6.9682	.9903		1	7° 0	7 1			3.2709	1	• •
20 .	1449	1465	6.8269	.9899	50 40	1	$\frac{1}{2}$				$3.2371 \\ 3.2041$.9555	50 40
30	1478 .	1495	6.6912	.9890	30	1	3	0 .	3007	.3153	3.1716	.9537	30
50	1536.	1554	6.5606 6.4348	.9886	20 10	1	4 5		3035	.3185	3.1397	.9528	20
	- 1	- 1	6.3138	.9877		18	3° 0	3	1		3.1084 3.0777	1	10 72° 00′
	cos	cot	tan	sin	angle	-		-	cos	cot	tan	sin	angle

TRIGONOMETRIC FUNCTIONS

angle	sin	tan	cot	cos		1	an	gle	sin	tan	cot	cos	
18° 00	3090	.3249	3.0777	.9511	72° 00	7	27	00′	.4540	.5095	1.9626	.8910	63° 00
10	.3118	.3281	3.0475	.9502				10			1.9486		
30	0.3145	1.3314 1.3346	$3.0178 \\ 2.9887$.9492 $.9483$	40 30			20 30			1.9347 1.9210		
40	.3201	.3378	2.9600	.9474	20			40	.4643	.5243	1.9074	.8857	20
19° 00		1	2.9319 2.9042	l	ì		28°	50 '00'	l	ł	1.8940 1.8807		ł
10	1.0_0	1	2.8770	1		1	20	10		ı	1.8676	1	-
20	.3311	.3508	2.8502	.9436	40			20	.4746	.5392	1.8546	.8802	40
30 40			2.8239 2.7980		30 20			30 40			1.8418 1.8291		
50	1	1	2.7725	i	10			50	1	!	1.8165	į.	ı
20° 00	1	l .	2.7475	1	70° 00′		29°			ļ.	1.8040		
$\begin{vmatrix} 10 \\ 20 \end{vmatrix}$			$2.7228 \\ 2.6985$		50 40		İ	10 20			1.7917 1.7796		
30	.3502	.3739	2.6746	.9367	30	П		30	.4924	.5658	1.7675	.8704	30
40 50			$2.6511 \\ 2.6279$		20 10			40 50			$1.7556 \\ 1.7437$		20 10
21° 00	.3584			.9336	69° 00′		30°	00'	.5000	.5774	1.7321	.8660	
10 20				.9325 .9315	50			10 20			1.7205		50 40
$\frac{20}{30}$			2.5386		40 30						$1.7090 \\ 1.6977$		30
40			2.5172		20			40	.5100	.5930	1.6864	.8601	
50 22° 00			2.4960		10		040	- 1			1.6753		10 59° 00′
10	1	1)	2.4751 2.4545	.9272	50		31°	10	.5175		1.6643 1.6534		50
20	.3800	.4108	2.4342	.9250	40			20	.5200	.6088	1.6426	.8542	40
30 40			$2.4142 \\ 2.3945$	0.9239	30 20						1.6319 1.6212		30 20
50			2.3750		10						1.6107		10
23° 00	1			.9205	67° 00′		3 2 °	00'			1.6003		
$\frac{10}{20}$.3934	.4279	$2.3369 \\ 2.3183$.9194 $.9182$	50 40			10 20			1.5900		50 40
30	.3987	.4348	2.2998	.9171	30			30	.5373	.6371	1.5798 1.5697	.8434	30
40 50			$2.2817 \ 2.2637$.9159	20 10						1.5597 1.5497		20 10
24° 00	1		2.2460	-			33°	- 1	- 1		1.5399		
10	1		2.2286		50		33	10		1	1.5301		50
20 30	.4120	.4522	2.2113	.9112	40			20	.5495	.6577	1.5204	.8355	40
40	.4147 $.4173$	$.4597 \\ .4592$	$2.1943 \\ 2.1775$.9088	$\frac{30}{20}$			30 40	.5544	.6661	$1.5108 \\ 1.5013$.8323	$\frac{30}{20}$
50		.4628	2.1609	.9075	10			50			1.4919	.8307	10
25° 00				.9063			34°	.)	,		1.4826		
$\frac{10}{20}$			$2.1283 \\ 2.1123$		$\frac{50}{40}$			$\frac{10}{20}$			$1.4733 \\ 1.4641$		50 40
30	.4305	.4770	2.0965	.9026	30			30	.5664	.6873	1.4550	.8241	30
40 50	.4331	.4806 $.4841$	$2.0809 \\ 2.0655$.9013	$\frac{20}{10}$						$1.4460 \\ 1.4370$		20 10
26° 00		i		.8988			35°				1.4281		
10	.4410	.4913	2.0353	.8975	50	П	-	10	.5760	.7046	1.4193	.8175	50
20 30	1.4436	4950	$2.0204 \\ 2.0057$.8962 .8949	$\frac{40}{30}$	1		20 30			1.4106 1.4019		40 30
40	.4488	.5022	1.9912	.8936	20	IJ		40	.5831	.7177	1.3934	.8124	20
50	1	1 1	1.9768		10			- 1			1.3848		10
27° 00	-				63° 00′	П	36°	00′					54° 00′
	cos	cot	tan	sin	angle				cos	cot	tan	sin	angle

TRIGONOMETRIC FUNCTIONS

```
angle | sin | tan | cot | cos
                      .7265 1.3764 .8090 54° 00
36° 00 .5878
       10 .5901
                      .7310 1.3680 .8073
                      .7355 1.3597 .8056
       20 .5925
                      .7400 1.3514 .8039
      30 .5948
                      .7445 | 1.3432 .8021 
.7490 1.3351 .8004
      40 5972
      50 5995
                     .7536 1.3270 7986 53° 00
37° 00 .6018
                     .7581 1.3190 | 7969
.7627 1.3111 7951
.7673 1.3032 7934
.7720 1.2954 7916
.7766 1.2876 | .7898
            6041
      10
      20
           6065
      30
            6088
      40
            6111
      50
            6134
   :° 00
                      .7813 1.2799 .7880 52° 00'i
           6157
                      .7860 | 1.2723.7862 
.7907 | 1.2647.7844
      10
            6180
      20
            6202
      30
            6225
                      .7954 \mid 1.2572 \mid .7826
            6248
                      .8002 1.2497 .7808
.8050 1.2423 7790
      40
      50
            6271
   ° 00' .6293
                      .8098 1.2349, 7771 51°
                     \begin{array}{c} .8146 \ 1.2276 \\ .8195 \ 1.2203 \ 7735 \\ .8243 \ 1.2131 \ 7716 \end{array}
      10
            6316
      20
           .6338
      30
            6361
                     .8292 1.2059, 7698
.8342,1.1988 7679
      40
            6383
      50
           .6406
                     .8391 1.1918 7660 50° 00°
40° 00
           6428
      10 .6450
                     .8441 1.1847 764:
.8491 1.1778 7623
      20.6472
      30 .6494
                      .8541
                               .1708 7604
                     .8591 .1640 758
.8642 .1571 7566
      40 .6517
      50 .6539
41° 00' .6561
                               .1504 7547 49° 00
                      .8693.
                     .8744 1.1436 7528
.8796 1.1369 .7509
.8847 1.1303 .7490
.1237 .7470
      10 .6583
      20 .6604
      30 .6626
      40
      50 .6670
                     .8952 .1171 .7451
42° 00' .6691
                     .9004 .1106 .7431 48°
                     \begin{array}{c} .9057 | 1 & 1041 & .7412 \\ .9110 & 0977 & 7392 \\ .9163 & 0913 & 7373 \\ .9217 | 1 & 0850 | .7353 \\ .2217 | 1 & 0850 | .7353 \\ \end{array}
      10 .6713
      20 .6734
      30 .6756
      40 .6777
      50 .6799
                     .9271 1.0786 .7333
43° 00 .6820
                     .9325 1.0724 .7314 47° 00
                    .9380 1.0661 .7294
.9435 1.0599 .7274
.9490 1.0538 .7254
.9545 1.0477 .7234
      10 .6841
      20 .6862.
      30 .6884
      40 .6905
            6926
                     .9601 1.0416 .7214
44° 00′ 6947
                     .9657 1.0355 .7193 46
                     \begin{array}{c} .9713 \ 1.0295 \ .7173 \\ .0770 \ 1.0235 \ .7153 \\ .0827 \ 1.0176 \ .7133 \end{array}
      10
           .6967
      20
      30
            7009
                    .9884 1.0117 .7112
      40
            7030
            7050 .9942 1.0058 .7092
45° 00′ 7071 1.0000 1.0000 .7071 45° 00
             cos
                      cot tan sin angle
```

Find the value of the acute angle A, given that

- **10.** $\sin A = 0.0727$. **11.** $\cos A = 0.8021$. **12.** $\tan A = 2.3183$.
- **13.** $\cot A = 3.2709$. **14.** $\sin A = 0.6202$. **15.** $\cos A = 0.3665$.
- **16.** $\tan A = 0.9601$. **17.** $\cot A = 6.8269$. **18.** $\sin 2A = 0.1994$.
- **19.** $2 \sin A = 1.9500$. **20.** $\sin(A + 30^\circ) = 0.6180$.
- **21.** $\tan(2A 30^{\circ}) = 0.3249$. **22.** $2\cos(\frac{1}{2}A + 10^{\circ}) = 0.6786$.
- 23. Find the value of $\sin 20^{\circ} + \sin 30^{\circ}$. Is this equal to $\sin 50^{\circ}$?

CHAPTER II

Solution of Triangles

7. Solution of right triangles.

The use of tables of the trigonometric functions will be illustrated by some examples.

Example 1.

A vertical pole 8 feet tall casts a shadow 5 feet long on level ground. Find the angle which the rays of the sun make with the horizontal.

Solution. In Fig. 8, a represents the height of the pole, b represents the length of the shadow, A is the angle to be found. We have

$$\tan A = \frac{a}{h} = \frac{8}{5} = 1.6.$$

From the table on pages 12–14 we find $A = 58^{\circ}$ (to the nearest 10').

Example 2.

A surveyor wishes to measure the distance across a stream. He sets up his transit at a point C on the bank of the stream, and sights on a point B on the other bank directly opposite him. Then he turns the transit through a right angle, and measures off a distance of 100 feet to a point A. He moves the transit to A, and measures the angle CAB, which he finds to be 50° . How wide is the stream?

Solution. The conditions of the problem are illustrated in Fig. 9. To find a, the distance across the stream, we proceed as follows:

$$\frac{a}{b} = \tan A, \qquad a = b \tan A = 100 \tan 50^{\circ}.$$

From the table on pages 12-14 we find $\tan 50^{\circ} = 1.1918$. Thus,

$$a = 100 \times 1.1918 = 119.2 \text{ ft.}$$

A triangle is composed of six parts, the three sides and

the three angles. To solve a triangle is to find the unknown parts from the parts that are given. In the case of a right triangle this can always be done if we have given (besides the right angle) two parts, at least one of which is a side.

a

A

50°

b = 100 ft

Fig. 9

In problems involving a right triangle ABC, it will or-

dinarily be understood that the right angle is at C.

In solving right triangles we make use of four of the definitions, namely,

$$\sin A = \frac{a}{c}$$
 $\cos A = \frac{b}{c}$ $\tan A = \frac{a}{c}$ $\cot A = \frac{b}{a}$

and of the Pythagorean relation,

$$a^2 + b^2 = c^2.$$

(We seldom use the secant or cosecant, since tables of these functions are not so generally available.) Of course we sometimes find it convenient to use the relation

$$A + B = 90^{\circ}$$

and the fact that the functions of B are equal respectively to the corresponding cofunctions of A.

From the foregoing relations we select one which contains the two given, or known, parts and the part which we wish to find.

Example 3.

Solve the right triangle ABC in which c = 25, $A = 32^{\circ} 10'$.

Solution. To find a we use the definition $a/c = \sin A$, which contains the known parts c and A. We get

$$a = c \sin A = 25 \sin 32^{\circ} 10'$$

= $25 \times 0.5324 = 13.3$.

To find b we use $b/c = \cos A$, from which we get

$$C \ b = c \cos A = 25 \cos 32^{\circ} \ 10'$$

= $25 \times 0.8465 = 21.2$.

$$90^{\circ} = 89^{\circ} 60'$$

 $A = 32^{\circ} 10'$
 $B = 57^{\circ} 50'$

Example 4.

Given a = 27.2, b = 10.6; find A, B, c.

SOLUTION.

$$\tan A = \frac{a}{b} = \frac{27.2}{10.6} = 2.5660, \qquad A = 68^{\circ} 40'.$$

The value 2.5660 is not to be found in the table on pages 12–14. The value closest to this is 2.5605, which is the tangent of 68° 40′. Consequently, as an approximation, we take

$$A = 68^{\circ} 40'$$
.

In a later section we shall learn how to find a more accurate value for an angle when the given function is between two consecutive values in the table.

$$B = 90^{\circ} - A = 21^{\circ} 20'.$$

$$\frac{a}{c} = \sin A, \quad c \sin A = a,$$

$$c = \frac{27.2}{\sin A} = \frac{27.2}{\sin 68^{\circ} 40'} = \frac{27.2}{0.9315} = 29.2.$$

We could also find c by using the relation $c^2 = a^2 + b^2$, obtaining values from a table of squares, such as is to be found in Table VI of the Macmillan Logarithmic and Trigonometric Tables. Thus,

$$c^2 = (27.2)^2 + (10.6)^2 = 739.84 + 112.36 = 852.20$$
.

From Table VI, just referred to, we find

$$c = 29.2.$$

It is recommended that all answers be checked by obtaining the solutions in two different ways.

It is also recommended that a drawing be made to scale. From such a drawing it is possible to make at least a rough check of the results.

EXERCISES II. A

In solving the following exercises, use the nearest values that are to be found in the tables.

Solve the following triangles, in which $C = 90^{\circ}$.

1.
$$A = 35^{\circ}, c = 5.$$

2.
$$a = 6, c = 14$$
.

3.
$$A = 37^{\circ}, b = 53$$
.

4.
$$B = 56^{\circ}, c = 84.$$

5.
$$a = 23, b = 17.$$

6.
$$a = 18.5, c = 37.2.$$

8. $A = 57^{\circ} 20', c = 0.0286.$

7.
$$B = 17^{\circ} 30', b = 92.4.$$

9. $a = 0.257, b = 0.856.$

10.
$$b = 189$$
, $A = 13^{\circ} 50'$.

- 11. A wire is stretched from the top of a vertical pole standing on level ground. The wire reaches to a point on the ground 10 feet from the foot of the pole, and makes an angle of 75° with the horizontal. Find the height of the pole and the length of the wire.
- 12. A flagpole broken over by the wind forms a right triangle with the ground. If the angle which the broken part makes with the ground is 50°, and the distance from the tip of the pole to the foot is 55 feet, how tall was the pole?
- 13. A ladder 36 feet long rests against a wall, its foot being at a horizontal distance of 25 feet from the base of the wall. What angle does the ladder make with the ground?
- 14. If a ladder 40 feet long is placed so as to reach a window

`****B

30 feet high, what angle does it make with the level ground, and how far is its foot from the base of the building?

15. A ladder 42 feet long is placed so that it will reach a window 30 feet high on one side of a street; if it is turned over, its foot

being held in position, it will reach a window 25 feet high on the other side of the street. How wide is the street from building to building?

16. A person on a ship sailing due south at the rate of 15 miles an hour observes a lighthouse due west at 3

p.m. At 5 p.m. the lighthouse is 52° west of north. How far from the lighthouse was the ship at (a) 3 p.m.? (b) 5 p.m.? (c) 4 p.m.?

The angle of elevation of an object which is above the eye of an observer is the angle which the line of sight to the object makes with the horizontal. If the object is below the eye of the observer, the angle which the line of sight makes

with the horizontal is called the **angle of depression** of the object.

17. From the top of a cliff 250 feet high the angle of depression of a boat is 10°. How far out is the boat from the foot of the cliff?

18. From a window 30 feet Fig. 13
above the level ground, a building 100 feet high, and at a distance of 200 feet, is observed. Find the angle of elevation of the top of the building and the angle of depression of its base.

19. At a point 160 feet from a building, and in a horizontal line with its base, the angle of elevation of the top of the building is 37°. How high is the building?

8. Interpolation.

When an angle such as 18° 47′ cannot be found in the margin of the table on pages 12–14, we can approximate more closely the values of its functions by a process known as interpolation by proportional parts. This will be illustrated by means of examples.

Example 1.

Find sin 18° 47'.

Solution. The angle 18° 47′ is between 18° 40′ and 18° 50′. Its sine is between the sines of these two angles. We write the problem in the following form, in which the differences in the angles are shown at the left, and the differences in the values of the function are shown at the right.

$$\begin{array}{cccc}
\sin 18^{\circ} & 50' &=& .3228 \\
10' & & \sin 18^{\circ} & 47' &=& ? \\
\sin 18^{\circ} & 40' &=& .3201
\end{array}$$
.0027

Although it is only approximately true, we assume that changes in the function are proportional to changes in the angle. With this assumption, we have

$$\frac{x}{0.0027} = \frac{7}{10} = 0.7, \quad x = 0.7 \times 0.0027 = 0.00189.$$

We cut this down to four places, since we are dealing with a fourplace table, and write x = 0.0019. Then,

$$\sin 18^{\circ} 47' = 0.3201 + 0.0019 = 0.3220.$$

This value is correct to four places, as may be verified by consulting more extensive tables.

Example 2.

Find cos 18° 47'.

Solution. The same form of arrangement is used as in example 1. However, it will be noted that the smaller angle has the larger cosine, and to facilitate the subtraction of the functions we

write it above. The quantity x is used, as in example 1, to represent the unknown difference between the function of the smaller angle (not the smaller function) and the function to be found.

$$10' \begin{cases} 7' \langle \cos 18^{\circ} 40' = .9474 \\ \cos 18^{\circ} 47' = ? \\ \cos 18^{\circ} 50' = .9465 \end{cases} .0009$$

$$\frac{x}{0.0009} = \frac{7}{10} = 0.7, \qquad x = 0.7 \times 0.0009 = 0.00063.$$

Noting that the function decreases as the angle increases, we have

$$\cos 18^{\circ} 47' = 0.9474 - 0.0006 = 0.9468.$$

If more extensive tables are used, it will be found that the value correct to four places is actually 0.9467.

Likewise, when a function cannot be found exactly in the table, we use inverse interpolation to find the corresponding angle more accurately.

Example 3.

Given $\tan A = 1.1948$; find A.

Solution. The function lies between 1.1918 (corresponding to 50° 00′) and 1.1988 (corresponding to 50° 10′).

$$10' \begin{cases} \tan 50^{\circ} 10' = 1.1988 \\ x \begin{cases} \tan A = 1.1948 \\ \tan 50^{\circ} 00' = 1.1918 \end{cases} .0030 \end{cases} .0070$$

$$\frac{x}{10'} = \frac{0.0030}{0.0070} = 0.4, \quad x = 4'.$$

$$A = 50^{\circ} 4'.$$

Example 4.

Given $\cos A = 0.7034$; find A.

SOLUTION. The function lies between 0.7030 (corresponding to 45° 20′) and 0.7050 (corresponding to 45° 10′). We write the functions with the largest at the top to facilitate the subtraction.

The quantity x is used to represent the difference between the smaller of the two angles taken from the table and the angle to be found; x will then be the amount to be added to the smaller angle.

The process of interpolation can be used on any table provided the values are sufficiently close together. For example, it can be used on a table of squares or a table of square roots.

EXERCISES II. B

Find, by interpolation in the table on pages 12–14, the following functions:

1. sin 31° 14′.	2. $\tan 18^{\circ} 6'$.	3. $\cos 27^{\circ} 18'$.
4. cos 39° 42′.	5. $\sin 55^{\circ} 5'$.	6. cot 43° 18′.
7. tan 19° 26′.	8. sin 27° 24′.	9. $\cos 45^{\circ} 34'$.
10. $\sin 0^{\circ} 3'$.	11. cot 89° 51′.	12. sin 88° 22′.
13. tan 88° 51′.	14. cos 74° 32′.	15. $\cot 65^{\circ} 17'$.

Find angle A by interpolation in the table on pages 12–14, given that

- **16.** $\sin A = 0.4827$. **17.** $\tan A = 0.3899$. **18.** $\cos A = 0.8643$.
- **19.** $\cot A = 2.5626$. **20.** $\tan A = 1.3900$. **21.** $\sin A = 0.3290$.
- **22.** $\sin A = 0.8026$. **23.** $\cos A = 0.3785$. **24.** $\cot A = 0.3785$.
- **25.** $\sin A = 0.0130$. **26.** $\tan A = 0.0130$. **27.** $\sin A = 0.1060$.
- **28.** $\tan A = 0.1060$. **29.** $\cos A = 0.9800$. **30.** $\cot A = 2.0000$.

Solve the following triangles, in which $C = 90^{\circ}$:

31.
$$a = 6.84, c = 20.$$
 32. $a = 23, b = 17.$ **33.** $A = 57^{\circ} 12', c = 0.0286.$ **34.** $B = 17^{\circ} 26', b = 92.37.$ **35.** $a = 18.5, c = 37.2.$ **36.** $A = 32^{\circ} 24', b = 9.46.$ **37.** $A = 19^{\circ} 44', a = 22.8.$ **38.** $b = 15.4, c = 20.2.$

39.
$$A = 45^{\circ} 2', b = 8.22.$$
 40

41.
$$a = 0.236, c = 1.84.$$

43.
$$A = 11^{\circ} 1', c = 101.6.$$

45.
$$a = 12.34$$
 $c = 100.3$

45.
$$a = 12.34, c = 100.3.$$

40.
$$B = 15^{\circ} 53', a = 189.$$

42.
$$a = 17.6, b = 16.7.$$

44.
$$A = 78^{\circ} 15', b = 32.22.$$

46.
$$a = 12.34$$
, $b = 100.3$.

- 47. A rectangle is 87 feet by 136 feet. Find the length of the diagonal and the angles that it makes with the sides.
- 48. A surveyor wishes to find the width of a stream without crossing it. He measures a line CB along the bank, C being directly opposite a point A on the farther bank (i.e., angle $ACB = 90^{\circ}$). The line CB is measured to be 98.25 feet, and the angle ABC to be 55° 56′. How wide is the stream?
- 49. Find the height of a vertical pole which casts a shadow 67 feet long on the level ground when the altitude of the sun is 50° 22′ (i.e., the rays of the sun make an angle of 50° 22′ with the horizontal).
- 50. Find the inclination, or angle of ascent, of a road having a 24 per cent grade (i.e., there is a vertical rise of 2½ feet in a horizontal distance of 100 feet).
- 51. To measure the height of a building, a surveyor sets up his transit at a distance of 112.2 feet from the building. He finds the angle of elevation of the top of the building to be 48° 17'. If the telescope of the transit is 5 feet above the base of the building, how high is the building?
- **52.** From the top of a tower 63.2 feet high, the angles of depression of two objects situated in the same horizontal line with the

Fig. 14

base of the tower, and on the same side of the tower. are 31° 16' and 46° 28' respectively. Find the distance between the two objects.

53. A wheel, 3 feet in diameter, rolls up an incline of 15°. When the point of contact of the wheel with

the incline is 4 feet from the base of the incline, what is the height of the center of the wheel above the base of the incline?

54. A roof 20 by 30 feet, the latter being the horizontal dimension,

- is inclined at an angle of 30° to the horizontal. Find the angle that a diagonal of the roof makes with the horizontal.
- **55.** A wall extending east and west is 6 feet high. The sun has an altitude of 49° 32′ (see exercise 49) and is 47° 20′ east of south. Find the width of the shadow of the wall on level ground.
- **56.** A 30-foot flagstaff is fixed in the center of a circular tower 40 feet in diameter. From a point in the same horizontal plane as the foot of the tower the angles of elevation of the top of

the flagstaff and the top of the tower are found to be 36° and 30° respectively. Find the height of the tower.

- 57. If, in the preceding exercise, the flagstaff is fixed on the edge of the tower, what is the height of the tower?
- **58.** It is required to measure the height of a tower, CB (Fig. 15), which is inaccessible. From a point A, in the same

horizontal plane with the base C, a right angle CAD is turned, and a horizontal line AD, 150 feet in length, is measured. At A the angle of elevation of the top of the tower is 32°, at D the angle of elevation is 28°. Find the height of the tower.

- **59.** A football player stands at a distance c behind the middle of the goal. He sees the angle of elevation of the nearer crossbar to be u and that of the farther one to be v. Show that the distance between the goals is $c(\tan u \cot v 1)$.
- 60. Two points in line with a tower, and in the same horizontal plane with its base, are 160 feet apart. From the point nearer the tower the angle of elevation of the top of the tower is A, from the other point the angle of elevation is B. If $\sin A = 3/5$ and $\cos B = 12/13$, what is the height of the tower?

*9. Components.

The trigonometric functions have direct application in physics and mechanics. A displacement (change of posi*Topics marked with this symbol may be omitted in a short course.

tion), velocity, force, or any other quantity having both magnitude and direction, can be represented by a line

having a certain length and a certain direction.

For example, suppose that an automobile is traveling at the rate of 40 miles an hour along a straight road which makes an angle of 27° to the north of east. Its velocity can be represented

by a line OP, 40 units long, extending in the direction shown in Fig. 16. Let M be the projection of P upon an eastwest line (that is, the foot of the perpendicular from P to such a line), and let N be its projection on a north-south line. Then,

$$OM = OP \cos 27^{\circ} = 40 \times 0.8910 = 35.64,$$

 $ON = OP \sin 27^{\circ} = 40 \times 0.4540 = 18.16.$

At the end of an hour the automobile will be 35.64 miles east, and 18.16 miles north, of its position at the beginning of the hour. Thus, we may think of its velocity as being composed of an easterly velocity of 35.64 miles an hour and a northerly velocity of 18.16 miles an hour. The projections OM and ON represent the components of the velocity represented by OP. We say that OP is resolved into its components OM and ON. Conversely, we say that OP is the resultant of OM and ON.

Example 1.

A boat, which can travel at the rate of 4 miles an hour in still water, is pointed directly across a stream having a current of 3 miles an hour. What will be the actual speed of the boat, and in what direction will the boat go?

SOLUTION. In still water the boat would go out at right angles to the bank at the rate of 4 miles an hour. But the current carries

it downstream 3 units for every 4 units that it goes across. In Fig. 17, OM represents the velocity of the current, and ON represents the velocity that the boat would have if there were no current. The actual velocity of the boat will be represented by OP. The magnitude of OP is $\sqrt{3^2+4^2}=5$. If A is the angle that OP makes with the bank, then we have $\tan A = \frac{4}{3} = 1.3333$, and $A = 53^{\circ}$ approximately. That is, the boat will travel at a speed

of 5 miles an hour in a direction making an angle of about 53° with the bank.

Example 2.

How must the boat of the preceding example be pointed in order to go straight across the stream?

Solution. The boat must be pointed so that its velocity of 4 miles an hour will have a component parallel to the bank which will exactly offset the effect of the current. That is, it must have an upstream component of 3 miles an hour. From Fig. 18 we see that $\cos A = \frac{3}{4} = 0.75$, and $A = 41.5^{\circ}$ approximately. Thus, to go straight across the stream, the boat should

be pointed at an angle of 41.5° with the upstream direction.

Example 3.

Two forces of 100 pounds and 80 pounds respectively act on a weight as shown in Fig. 19. 80 lb.

What will be their horizontal effect, and what will be their vertical or lifting effect?

Solution. The horizontal component of the 100-lb. force

is $100\cos 25^\circ = 90.63$ lb. to the right. The horizontal component of the 80-lb. force is $80\cos 50^\circ = 51.42$ lb. to the left. Thus, the total horizontal force tending to move the weight to the right is

$$90.63 - 51.42 = 39.21$$
 lb.

The total lifting force is

$$100 \sin 25^{\circ} + 80 \sin 50^{\circ} = 42.26 + 61.28 = 103.54 \text{ lb.}$$

Example 4.

Find the magnitude and the direction of the resultant force (the single force that is equivalent to the two given forces) in example 3.

SOLUTION. The components of the resultant are 39.21 lb. to the right, and 103.54 lb. upward. The resultant force is

$$\sqrt{(39.21)^2 + (103.54)^2} = 110.7 \text{ lb.}$$

If A is the angle that the resultant makes with the horizontal,

$$\tan A = \frac{103.54}{39.21} = 2.641, \qquad A = 69^{\circ} 15' \text{ (to nearest 5')}.$$

That is, a single force of 110.7 lb., acting at an angle of 69° 15' with the horizontal and toward the right, will have the same effect as the two given forces.

EXERCISES II. C

- 1. The westward and southward components of the velocity of a ship are 6.7 knots and 12.5 knots respectively. (See exercise 7.) Find the speed of the ship and the direction in which it is sailing.
- 2. A force of 150 pounds is acting at an angle of 55° with the horizontal. Find its horizontal and vertical components.
- 3. A balloon is rising at the rate of 10 feet a second and is being carried horizontally by a wind which has a velocity of 15 miles an hour. Find its actual velocity and the angle that its path makes with the vertical.
- 4. A boat is being rowed north at the rate of 5 miles an hour, and the tide carries it west at the rate of 3 miles an hour. Find the actual speed of the boat and the direction of its path.
- 5. A river flows at the rate of 1.5 miles an hour. (a) In what direction must a man swim in order to go straight across, if his

rate of swimming in still water is 2.5 miles an hour? (b) How long will it take him to cross if the river is $\frac{1}{2}$ mile wide?

- 6. A barge is being towed north at the rate of 15 miles an hour. A man walks across the deck, from west to east, at the rate of 6 feet a second. Find the direction and the magnitude of his actual velocity.
- 7. A ship is traveling at a speed of 20 knots. (A knot is a nautical mile per hour, a nautical mile being approximately 1.1516 statute miles of 5280 feet each.) When directly opposite a target it fires a gun whose projectile has a velocity of 2000 feet a second. At what angle with the direction of motion of the ship must the gun be pointed in order to hit the target?
- 8. An airplane which has a speed of 120 miles an hour in calm air is headed southeast. A wind having a velocity of 15 miles an hour is blowing from the southwest. (a) Find the magnitude and the direction of the velocity of the airplane with reference to the ground. (b) How must the airplane be pointed in order to fly southeast, and what will be its actual speed?
- 9. A weight of 150 pounds is placed on a smooth plane surface which makes an angle of 35° with the horizontal, as shown in Fig. 21. The weight is held in place by a string parallel to the surface and fastened at the top

of the plane. Find the pull on the string.

string.

Suggestion. The pull will be equal to the component of the 150-pound weight parallel to the plane.

10. A block is held in position on a smooth inclined plane by means of a string as in Fig. 21. If the pull on the string is 27.3 pounds, and the inclination of the plane is 24° 50′, what is the weight of the block?

*10. Isosceles triangles and regular polygons.

Since the perpendicular from the vertex of an isosceles triangle divides it into two congruent right triangles, we can solve the isosceles triangle by solving one of these right triangles. To solve a problem involving a regular polygon of n sides, we may first divide it into n congruent isosceles triangles.

Example 1.

A garage has a gable roof whose rafters make an angle of 35° with the horizontal. What is the length of a rafter if the width of the garage is 10 feet?

Solution. In Fig. 22, AD represents the width of the garage and AB the length of the rafter.

$$\cos 35^{\circ} = \frac{3}{5}$$
, $c = \cos 35^{\circ} - 0.8192 = 6.1 \text{ ft.}$

Example 2.

Find the length of the side of a regular pentagon inscribed in a circle of radius 6 inches.

Solution. Each side of the pentagon subtends a central angle of $\frac{1}{5} \times 360^{\circ} = 72^{\circ}$. In Fig. 23, angle $ABC = \frac{1}{2} \times 72^{\circ} = 36^{\circ}$, and angle $BAC = 90^{\circ} - 36^{\circ} = 54^{\circ}$. In triangle ABC,

$$\frac{b}{6} = \cos 54^{\circ}, \quad b = 6 \cos 54^{\circ} = 6 \times 0.5878 = 3.527.$$

$$AD = 2b = 7.054 \text{ in.}$$

EXERCISES II. D

- 1. Each of the equal angles of an isosceles triangle is 40° 15′, the base is 15 inches. Find the remaining parts and the area.
- 2. Each of the equal sides of an isosceles triangle is 11.52 inches, the vertex angle is 32° 15′. Find the base.
- 3. The equal sides of a wedge are 4.2 inches, the base is 1.6 inches. Find the angles.

- 4. Find the radius of a circle in which a 59-foot chord subtends an angle of 12° at the center.
- 5. The radius of a circle is 40 inches, the length of a chord is 70 inches. Find the central angle subtended by the chord.
- 6. Find the radius of a circle in which a chord of 7.1 inches subtends an angle of 142° 36' at the center.
- 7. Find the chord of a 35° arc in a circle of radius 14 inches.
- 8. Find the length of a belt passing around two pulleys whose radii are 14 inches and 5 inches respectively. and whose distance apart, between centers, is 10 feet.
- 9. A barn has a gable roof whose rafters are 20 feet long. The width of the barn is 30 feet. Find the angle that the rafters make with the horizontal. Find the area of one of the gable ends (i.e., the triangle in Fig. 24).

- 10. A barn is 30 feet wide by 60 feet long; the rafters make an angle of 40° with the horizontal. Find the area of each of the two gable ends and the area of the roof.
- 11. Find the radius, the apothem (perpendicular distance from the center to a side), and the area of the following regular polygons: (a) a decagon whose side is 10 inches; (b) a 9-sided polygon whose side is 15 inches; (c) a 20-sided polygon whose side is 6.758 inches.
- 12. The radius of a circle is 100 feet. Find the perimeter and the area of (a) a regular inscribed pentagon; (b) a regular inscribed decagon; (c) a regular circumscribed pentagon; (d) a regular circumscribed decagon.
- 13. The area of a regular pentagon is 560 square feet. Find the radii of the circumscribed and inscribed circles.
- 14. A metal nut $\frac{3}{4}$ inch thick is in the shape of a regular hexagon, the distance between the parallel sides being $1\frac{3}{4}$ inches. The circular hole through the center is \(\frac{3}{4}\) inch in diameter. Find the amount of metal in the nut.
- 15. Show that the area of a regular polygon of n sides circumscribed about a circle of radius r is

$$nr^2 \tan \frac{180^{\circ}}{n}$$

16. Show that the perimeter of a regular polygon of n sides inscribed in a circle of radius r is

$$2nr \sin \frac{180^{\circ}}{n}$$

*11. Solution of oblique triangles by means of right triangles.

Oblique triangles can always be solved by breaking them up into right triangles. The following examples illustrate the methods used in the four typical cases which arise. Usually, however, it will be found more convenient to employ other methods and formulas for solving oblique triangles. These will be developed in a later chapter.

Case I. Two angles and a side given.

Example 1.

In the triangle ABC, $A = 40^{\circ}$, $B = 60^{\circ}$, c = 50. Find the remaining parts.

SOLUTION. $C = 180^{\circ} - (A + B)$ = $180^{\circ} - (40^{\circ} + 60^{\circ}) = 80^{\circ}$. Draw the altitude from one end of the known side. Suppose that this altitude is AD = h (Fig. 25).

Then, in the right triangle ABD, $h = 50 \sin 60^{\circ} = 43.30$. Now, in the right triangle ADC,

$$b = \frac{h}{\sin C} = \frac{43.30}{\sin 80^{\circ}} = 44.0.$$

Side a may be found in a similar manner by drawing the altitude from B, or by computing the segments BD and DC and adding them.

Case II. Two sides and the angle opposite one of them given. (See discussion, section 53, pages 84-86.)

Example 2.

Given $A = 75^{\circ}$, a = 20, b = 10; find B, C, c.

Solution. Draw the altitude CD = h (Fig. 26). (The altitude must not be drawn from the vertex of the known angle.) In the right triangle ADC,

$$h = b \sin A = 10 \sin 75^{\circ} = 9.659.$$

In the right triangle BDC,

$$\sin B = \frac{h}{a} = \frac{9.659}{20} = 0.48295, \quad B = 28^{\circ} 53'.$$

$$C = 180^{\circ} - (A + B) = 180^{\circ} - 103^{\circ} 53' = 76^{\circ} 7'.$$

Side c may be similarly found by drawing the altitude from B, or by computing the segments AD and DB and adding.

Case III. Two sides and the included angle given.

Example 3.

Given a = 25, b = 30, $C = 50^{\circ}$; find the other parts.

Solution. Draw an altitude to one of the known sides, prefer-

ably the larger. Suppose that this altitude is BD = h, and that it divides the side BC into the segments CD = m and DA = n (Fig. 27). Then,

$$h = a \sin C = 25 \sin 50^{\circ} = 19.15,$$

 $m = a \cos C = 25 \cos 50^{\circ} = 16.07,$
 $n = b - m = 30 - 16.07 = 13.93,$

$$c^2 = h^2 + n^2 = (19.15)^2 + (13.93)^2 = 560.8, c = 23.7.$$

Angles A and B can now be found quite easily.

Case IV. Three sides given.

Example 4.

The three sides of a triangle are a = 5, b = 6, c = 9. Find the angles.

SOLUTION. Draw an altitude to one of the sides, preferably the largest. Suppose that this altitude h divides the side AR

into segments
$$AD = m$$
 and $DB = n$ (Fig. 28). Then,
 $h^2 = 36 - m^2 = 25 - n^2$,
 $m^2 - n^2 = 36 - 25 = 11$,
 $(m+n)(m-n) = 11$.
But,
 $m+n = 9$,

and consequently, $m-n=\frac{11}{\alpha}$.

Solving these simultaneous equations, we get

$$m = \frac{46}{9}$$
, $n = \frac{35}{9}$.
 $\cos A = \frac{m}{b} = \frac{23}{27} = 0.8519$, $A = 31.6^{\circ}$;
 $\cos B = \frac{n}{a} = 0.7778$, $B = 39.0^{\circ}$;
 $C = 180^{\circ} - (A + B) = 180^{\circ} - 70.6^{\circ} = 109.4^{\circ}$.

EXERCISES II. E

Solve the following triangles:

1.
$$A = 30^{\circ}, B = 80^{\circ}, a = 15$$
.

3.
$$A = 70^{\circ}, a = 8, c = 5.$$

5.
$$a = 2.3, b = 1.5, c = 1.6$$

7.
$$C = 100^{\circ}, a = 82, c = 105$$
. 8. $a = 95, b = 102, c = 150$.

- 9. From the top of a hill, the angles of depression of two successive milestones on a level road, which leads straight away from the hill, are 5° and 15° respectively. Find the height of the hill.
- **1.** $A = 30^{\circ}, B = 80^{\circ}, a = 15.$ **2.** $A = 35^{\circ}, b = 17, c = 32.$
 - **4.** $B = 100^{\circ}, C = 30^{\circ}, b = 75$
- 5. a = 2.3, b = 1.5, c = 1.6. 6. $a = 26, c = 40, B = 62^{\circ}$.

Fig. 29 (not drawn to scale).

Suggestion. In Fig. 29 BE is drawn perpendicular to AD. Find BE, then BD, finally CD.

- 10. At a certain horizontal distance from the foot of a vertical cliff, the angle of elevation of the top of a flagpole 50 feet tall standing on the edge of the cliff is 40°. From the same position, the angle of elevation of the foot of the pole is 35°. How high is the cliff?
- 11. At a certain point, the angle of elevation of the top of a flagpole, which stands on level ground, is 35°. Seventy-five feet nearer the pole, the angle of elevation is 50°. How high is the pole?
- 12. Solve the preceding exercise if the angles of elevation are 30° and 45° respectively.
- 13. From a window 30 feet above the street, the angle of depression of the curb on the near side of the street is 50°, that of the curb on the far side is 13°. How wide is the street from curb to curb?
- 14. At a point in the same horizontal plane with the foot of a vertical cliff 150 feet high, the angles of elevation of the top and the bottom of a flagpole standing on top of the cliff are 20° and 16° respectively. Find the height of the pole.
- 15. Points A and B are on opposite sides of a lake. At a point C, which is 456 feet from A and 580 feet from B, the angle subtended by the line AB is 44° 35′. Find the distance from A to B.
- 16. The sides of a triangle are 20, 25, and 30. Find the length of the altitude to the longest side.

CHAPTER

Approximate Numbers and Computation

12. Approximate numbers.

An approximate number is one which differs slightly from the exact number for which it stands. In trigonometry we deal almost entirely with approximate numbers. With certain exceptions (e.g., $\sin 30^{\circ} = \frac{1}{2} = 0.5$), all of the tabulated values of the trigonometric functions are approximations. Thus, when we write

$$\sin 45^{\circ} = \frac{\sqrt{2}}{2} = 0.7071,$$

we do not mean that sin 45° is exactly equal to 0.7071, but that 0.7071 is the four-place number which is closest to the value of sin 45°.

All measurements are approximate numbers. When we measure a line to the nearest tenth of an inch and say that its length is 18.3 inches, we mean that the length is between 18.25 inches and 18.35 inches.

13. Rounding off numbers.

It is often desirable to reduce an approximate number to one of less accuracy. This process is called rounding off the number. In rounding off a number we choose the nearest number having the desired number of places. Thus, if we round off 4.2537 to thousandths, we get 4.254. If we round it off to hundredths, we get 4.25.* To tenths, the number is 4.3.

^{*} Here it would be best to write 4.25+. Similarly, in rounding off the

In rounding off a number ending in 5, to a number having one less digit, it is customary to make the resulting number end in an even digit. Thus, 17.25 becomes 17.2, while 17.75 becomes 17.8.

*14. Error.

The difference between an approximate value of a quantity and its exact or true value is the absolute error of the approximate value. In the approximate number 18.3, the maximum absolute error is 0.05, since 18.3 cannot be less than 18.25 or greater than 18.35. The relative error is the quotient of the absolute error divided by the true value. (Ordinarily the true value is not ascertainable, and we are forced to use the approximate value for the divisor. This does not make an appreciable difference in the quotient.) The maximum relative error in the example just given is 0.05/18.3 = 0.003, or 0.3 per cent.

Relative error is independent of the position of the decimal point. Thus, a measurement of 1.83 inches, although accurate to hundredths, is relatively no more accurate than a measurement of 18.3 inches. For the maximum relative error of the approximate number 1.83 is 0.005/1.83 = 0.003, and this is exactly the same as the maximum relative error of 18.3.

15. Significant figures.

The illustration of the preceding section indicates that relative accuracy does not depend upon the number of decimal places or upon the position of the decimal point, but upon the number of significant figures that the number contains. A significant figure is any one of the digits from 1 to 9 inclusive, and 0 except when it is used to fix the decimal point or to fill the places of unknown or discarded digits.

number 6.347, it would be best to write 6.35—. This is helpful if the number is to be rounded off still further.

The 0's in 0.75 and 0.0024 are not significant figures.

The 0 in 6.80 is a significant figure. In this connection, note that 6.80 means a number between 6.795 and 6.805, whereas 6.8 means a number between 6.75 and 6.85. The number 6.80 has three significant figures, and is more accurate than 6.8, which has only two.

The significance of 0's at the right of a whole number is doubtful. For example, if it is stated that a man's income for a certain calendar year is \$5000, it is impossible to say, without further information, which, if any, of the 0's are significant figures. If his income tax return were available and showed his income to be \$5043.75, the first 0 in the \$5000 would be significant but the other two would not. If the return showed his income to be \$5122.80, none of the 0's in the \$5000 would be significant.

16. Scientific notation.

The leading digit of a number is the first non-zero digit from the left (i.e., the first significant figure). A number is said to be expressed in scientific notation when it is written as the product of a number having the decimal point just after the leading digit, and a power of 10. (When the decimal point is just after the leading digit it may be said to be in standard position.)

The method of changing from the usual to the scientific notation is illustrated by the following examples:

$$237.65 = 2.3765 \times 100 = 2.3765 \times 10^{2}$$
, $0.0054 = 5.4 \div 1000 = 5.4 \times 10^{-3}$.

It is possible to indicate, by writing a number in scientific notation, whether the 0's at the right of a number are significant. Thus, if in the number 1,300,000 the first two 0's are significant but the last three are not, we could write the number in the form 1.300×10^6 .

EXERCISES III. A

- **1.** Round off the following numbers to one less decimal place: 12.34, 29.87, 4.06, 1.396, 0.251, 0.215, 68.2, 63.25, 1.9999, 1.9995, 2.355, 2.345, 2.354, 2.350.
- 2. Round off the following numbers (a) to three decimal places, (b) to three significant figures: 1.2464, 0.5864, 12.9065, 12.9055, 2.3505, 16.0031, 0.003664.
- 3. Find the maximum relative error in each of the following approximate numbers: 24.2, 105.16, 38.985, 0.002, 0.00025.
- 4. How many significant figures are there in each of the following numbers? 39.46, 1.004, 1.400, 0.0014, 100.03, 0.00005, 123892, 200.0.
- 5. Underline the significant 0's in the following numbers, and put a question mark under each doubtful 0: 10.02, 10.20, 0.20, 0.02, 0.020, 25000, 2506, 0.00300, 0.20500, 20500.
- **6.** Express the following numbers in scientific notation: 256835, 0.000232, 0.000,000,006, 3876.5, 984.876, 1,462,817.
- 7. Write each of the following numbers in ordinary notation: 1.8×10^7 , 2.35×10^{-5} , 8.482×10^8 , 3.7×10^{-9} .

*17. Addition and subtraction of approximate numbers.

When two or more approximate numbers are added, the sum cannot be more accurate than the least accurate of the numbers. (This is in the sense of absolute accuracy, not relative accuracy.) For example, consider the sum of the numbers 2.3683, 81.02, 0.0457. The sum cannot be accurate beyond hundredths, so some of the numbers can be rounded off. We carry them, whenever possible, to one more place than the least accurate number, on the theory that the errors in these numbers tend to compensate for each other (that is, that positive and negative errors occur in nearly equal proportions). Thus, we write

 $2.368 \\ 81.02 \\ \underline{0.046} \\ 83.434$

The sum should be rounded off to hundredths, giving 83.43. The above remarks apply also to subtraction.

*18. Multiplication of approximate numbers.

Suppose that the sides of a rectangle are measured as 5.73 and 6.42 inches respectively. The area would be found by multiplying these numbers together; thus,

area =
$$5.73 \times 6.42 = 36.7866$$
.

However, this result is not accurate to as many significant figures as are given. For the approximate number 5.73 means some value between 5.725 and 5.735; similarly, 6.42 means a value between 6.415 and 6.425. Therefore we can merely say that the area is between

$$5.725 \times 6.415 = 36.725875$$
, and $5.735 \times 6.425 = 36.847375$.

Therefore, in the product 36.7866 we retain only three significant figures, namely 36.8; even then the last digit is not absolutely certain.

In general, we are not justified in retaining more significant figures in a product calculated from approximate numbers than the least accurate of the factors which go to make up the product. Thus, we round off all the factors to the number of such figures in the least accurate factor. The multiplication can then be performed in contracted form, in which the partial products are carried just one place beyond the last place which is to be retained. The following illustration of the multiplication of 6.42 by 5.73 exhibits the method:

$$6.42 \\ \underline{5.73} \\ \overline{32.10} \\ \underline{4.49} \\ \underline{.19} \\ \overline{36.78}$$

The first partial product is obtained by multiplying the multiplicand, 6.42, by the leading digit, 5, of the multiplier; thus, $5 \times 6.42 = 32.10$.

Multiplying by the next digit of the multiplier, we have $7 \times 2 = 14$, and we should write the 4 one place to the right of the 0 in 32.10, and on the next line below, carrying the 1. However, we do not write down the 4, as it does not contribute to the accuracy of our final product, but merely carry the 1. In this way, we find 4.49 as our second partial product.

Before finding our third partial product, we strike out the 2 in the multiplicand. Then we find that $3 \times 4 = 12$, and carry the 1 to add to 3×6 . Thus, the third partial product is .19.

The sum of the partial products is rounded off to three significant figures, giving 36.8 as the final product.

*19. Division of approximate numbers.

As in multiplication, so in division, we can show that in general it is useless to retain more figures in the quotient than the number of significant figures in the less accurate of the two numbers, dividend and divisor. Consequently, we note which of these contains the fewer significant figures, and round the other off to the same number of such figures. If, after this has been done, the dividend, without regard to the decimal point, is less than the divisor, we restore one digit to the dividend. (See example below.) The quotient is carried to the same number of significant figures as are contained in the divisor. A contracted form of the division process as applied to the example 36.78 ÷ 6.42 is shown on page 42.

Here, if the dividend were rounded off to 368 (decimal point omitted), it would be less than the divisor, 642. Hence, we retain four, rather than three, figures in the dividend.

	5.73
$6.42)\overline{36}$	3.78
3	2 10
	$\overline{468}$
	449
	19
	19

After the first partial product $(5 \times 642 = 3210)$ has been subtracted, we do not bring down a 0 from the dividend, but strike out the final digit, 2, in the divisor.

The next digit in the quotient will obviously be 7. We note that $7 \times 2 = 14$, but do not write down the 4; we merely carry the 1. The partial product is 449.

The process is continued as far as possible, cutting down the divisor by one digit at each stage. The final quotient is 5.73.

*20. Square root.

It will be assumed that the student is familiar with the method of extracting square root learned in arithmetic. How a table of squares, such as is to be found in Table VI of the Macmillan Logarithmic and Trigonometric Tables, can be used to expedite the process will be illustrated by extracting the square root of 1350 (considered as an exact, not an approximate, number).

$$1350.00' (36.7)$$

$$(367)^{2} = 1346.89$$

$$2 \times 367 = 734 | 3.11$$

After separating the number into groups of two digits each, starting at the decimal point and going both to left and to right, we note that the largest square contained in the group at the left, namely 13, is the square of 3. Turning to the 300's of Table VI, we find that the largest square just below 135000 is 134689, which is the square of 367.

Subtracting the square of 367, we have a remainder of 311. This is the process previously learned, except that we have subtracted the square of a three-digit number instead of that of a one-digit number.

The process may now be continued as usual. It may be noted, however, that if we have obtained k significant figures in the square root, then k-1 more may be obtained by division. Thus, in the present example, we may divide 311 by 734 and obtain two more significant figures in the square root.

*21. Use of calculating machines.

If a calculating machine is available, the contracted forms of multiplication and division are of course not used. All that has been said about significant digits, however, holds. For example, it would be absurd to carry the quotient of $36.78 \div 6.42$ out to eight or ten figures, even though the division could easily be performed on a machine.

While it is possible to extract square root on a calculating machine, an effective method is to use a table of squares, such as Table VI,* in conjunction with a machine, employing the machine to perform the final division.

EXERCISES III. B

Perform the following operations, retaining the proper number of significant figures:

- 1. 35.8×41.6 .
- 3. 14.26×3.860 .
- **5.** 5028×46.09 ..
- 7. $43.8 \times 13.1 \times 32.8$.
- 9. 13845×89.763 .
- 11. $63.1 \div 21.5$.
- 13. $52.96 \div 1.895$.
- 15. $2500 \div 16.98$.
- **17.** (436.5)².

- 2. 5.25×48.4 .
- **4.** 529.6×29.64 .
- **6.** 0.1283×127400 .
- 8. $0.532 \times 0.00567 \times 12.3$.
- 10. $7.283 \times 283.4 \times 5.437$.
- 12. $0.5929 \div 3.801$.
- 14. $2.451 \div 1903$.
- 16. $32.17 \div 712.3$.
- **18.** (71.48)².

^{*} Or Barlow's Tables.

44 APPROXIMATE NUMBERS AND COMPUTATION [Ch. III]

19.
$$\frac{35.8 \times 9.86}{136}$$
 20. $\frac{12.34 \times 1}{286.4}$

Extract the square roots of the following quantities, carrying the results to four significant figures:

 21. 1683.
 22. 25648.
 23. 17.986.

 24. 0.01534.
 25. 0.6843.
 26. 1.0076.

CHAPTER IV

Logarithms

22. Logarithms.

The logarithm of a number to a given base is the exponent of the power to which the base must be raised to yield the number. It is assumed that the base is positive and different from 1, and that the number is positive.

Thus, since $2^3 = 8$, 3 is the logarithm of 8 to the base 2. This may be written in the form $\log_2 8 = 3$. More generally, we write

$$\log_b N = x,\tag{1}$$

$$b^x = N$$
 $(b > 0, \neq 1; N > 0).$ (2)

Forms (1) and (2) are equivalent.

The base in most common use is 10. Since, for example, $10^2 = 100$, we have $\log_{10} 100 = 2$. As we shall deal almost exclusively with logarithms to the base 10 (that is, **common logarithms**), we shall omit the subscript indicating the base, and write simply $\log 100 = 2$. Thus,

$$10^3 = 1000$$
, or $\log 1000 = 3$; $10^2 = 100$, or $\log 100 = 2$; $10^1 = 10$, or $\log 10 = 1$; $10^0 = 1$, or $\log 1 = 0$; $10^{-1} = 0.1$, or $\log 0.1 = -1$; $10^{-2} = 0.01$, or $\log 0.01 = -2$; $10^{-3} = 0.001$, or $\log 0.001 = -3$.

The logarithms of integral powers of 10, such as the foregoing, can, because of the very meaning of logarithm, be expressed exactly. Although the logarithm of a number such as 3, for example, cannot be expressed exactly in the decimal notation, we assume that a number x exists for which $10^x = 3$, and that an approximation to this number can be found. Actually, such an approximation, to five decimal places, is 0.47712, and we write $\log 3 = 0.47712$. Similarly, $\log 3.262 = 0.51348$. (How these values are obtained from tables will be explained later.)

23. Mantissa.

Assuming that

$$\log 3.262 = 0.51348$$
,

let us write

or

$$10^{0.51348} = 3.262. (1)$$

Multiplying both sides by 10, we get

$$10^{1.51348} = 32.62,$$

which, in logarithmic notation, is

$$\log 32.62 = 1.51348.$$

By dividing both sides of (1) by 10, we get

$$10^{0.51348-1} = 0.3262,$$

$$\log 0.3262 = 0.51348$$

This could also be written $\log 0.3262 = -0.48652$,* but it is usually more convenient to keep the decimal part of a logarithm positive. This positive decimal part of a logarithm is called the mantissa of the logarithm.

The two examples given above illustrate the fundamental principle: For numbers having the same sequence of digits, such as 3.262, 32620, 0.003262, the mantissa of the logarithm is the same. †

^{*} Found by subtracting 0.51348 from 1 and prefixing a negative sign. † Provided that the base is 10.

24. Characteristic.

The integral, or whole-number, part of a logarithm is called the characteristic. Thus, since log 32.62 = 1.51348, the characteristic of the logarithm of 32.62 is 1.

Since $\log 1 = 0$, and $\log 10 = 1$, the logarithm of a number between 1 and 10, for example 3.262, is between 0 and 1 in value, and consequently has the characteristic 0.* We shall say that such a number has the decimal point in standard position, namely after the first non-zero digit. (See section 16.)

Each time we multiply a number by 10 we move the decimal point one place to the right, and each time we divide by 10 we move the point one place to the left. But each time we multiply a number by 10 we increase the logarithm of the number by 1, and each time we divide a number by 10 we decrease its logarithm by 1, as was seen in the illustration above. Thus, we may state the following rule for finding the characteristic:

If a number has its decimal point in standard position (i.e., after the first non-zero digit), the characteristic of the logarithm of the number is zero; if the decimal point is not in standard position, the characteristic of the logarithm of the number is equal to the number of places the point has been moved from standard position, and is positive if the point has been moved to the right, negative if it has been moved to the left.†

For example, in the number 78460, the decimal point has been moved from standard position (after the 7) 4 places to the right (after the 0), and the characteristic of the logarithm of the number is therefore 4.

In the number 0.03262, the point has been moved from standard position 2 places to the left. The characteristic of the logarithm of the number is therefore -2. In fact,

^{*} A characteristic should always be written, even though it is 0.

[†] Note that the characteristic is also equal to the exponent of 10 when the number is written in scientific notation. (See section 16.)

since we saw above that log 3.262 = 0.51348, we may write

$$\log 0.03262 = 0.51348 - 2.$$

It is frequently convenient to write this in the form

$$\log 0.03262 = 8.51348 - 10.$$

The rule given for determining the characteristic also tells us how to point off a number corresponding to a given logarithm. (The number corresponding to a logarithm is called the antilogarithm. More precisely, if $\log N = x$, then N is the antilogarithm of x.)

Thus, if we have given

$$\log N = 2.51348,$$

we know from the illustration above that the number N is composed of the sequence of digits 3262. Since the characteristic is 2, the decimal point has been moved 2 places to the right from standard position. Therefore,

$$N = 326.2.$$

EXERCISES IV.

Determine the characteristic of the logarithm of:

1. 436. 4. 4. 7. 0.42. 10. 1.0075. 13. 21.64. 16. 0.384. 19. 380000. 22. 7.952. 25. 98.52. 28. 0.9852. 31. 0.098. 34. 6.	2. 25. 5. 0.136. 8. 0.04. 11. 0.1075. 14. 384.6. 17. 8.124. 20. 0.006934. 23. 98. 26. 985. 29. 0.985. 32. 0.000,001,2. 35. 0.6.	3. 3280. 6. 0.2. 9. 0.0075. 12. 52.684. 15. 2500. 18. 0.2960. 21. 0.02796. 24. 98.5. 27. 9852. 30. 0.98. 33. 60,000,000.
	30. 0.6.	36. 0.600.

25. Finding the mantissa.

In a standard five-place table of logarithms, such as Table I of the Macmillan Logarithmic and Trigonometric Tables, the first three digits of a number are found at the left of the page, the fourth digit at the top or bottom, the corresponding mantissa (decimal point omitted) being in the same row as the first three digits of the number and in the same column as the fourth digit. The student should verify that the mantissa of the logarithm of 3262 is .51348.

To find the logarithm of a number composed of five digits we must use interpolation. (See section 8.)

Example.

Find log 32.627.

Solution. Find the mantissas for the numbers next above and next below 32.62:

Number	Mantissa
	(decimal point omitted)
r 32.630	51362 ¬
$.010 \begin{bmatrix} 32.630 \\ .007 \begin{bmatrix} 32.627 \\ 32.620 \end{bmatrix}$	$\begin{bmatrix} 51362 \\ ? \\ 51348 \end{bmatrix} x \bigg] 14$
$L^{.007}L_{32.620}$	51348 1 2

Assuming that the change in the mantissa is proportional to the change in the number,* we have

$$\frac{x}{14}$$
 $0.007 = 0.7$, $x = 0.7 \times 14 = 9.8$. Mantissa = 51348 + 10 = 51358. $\log 32.627 = 1.51358$.

Once the principle of proportionality or proportional parts is understood, the work can be arranged more com-

^{*} This is only approximately true.

pactly in some such way as the following, or may be performed mentally.

$$32.63 \sim 51362$$

$$32.62 \sim \frac{51348}{14}$$
difference = $\frac{14}{9.8}$

$$\frac{0.7}{9.8}$$

$$\frac{51348}{1.51358}$$

(The symbol \sim may here be read "corresponds to.")

EXERCISES IV. B

Find the logarithm of each of the following numbers:

1.	68.	2.	68.3.	3.	359.
4.	381.	5.	2.	6.	2.87.
7.	5000.	8.	751.5.	9.	8428.
10.	0.4313.	11.	0.02156.	12.	56980.
13.	250000.	14.	0.00036.	15.	7.851.
16.	1.003.	17.	15.95.	18.	0.003097.
	2.9645.	20.	23572.	21.	6784.8.
22.	67.843.	23.	54326.	24.	38.794.
25.	6.3129.	26.	0.34732.		0.000,876,95.
28.	1.0006.	29.	9.9982.		99.992.
31.	99998.	32.	0.10101.		0.000,100,01.
34.	2509.9.	35.	829.99.		91.119.

26. Finding the antilogarithm.

The process of finding the number corresponding to a given logarithm is illustrated by the following examples:

Example 1.

Find the number whose logarithm is 7.91121 - 10.

Solution. The mantissa is found exactly in the table. At the left we find 815; at the top we find 1. Thus, the number is composed of the sequence of digits 8151. The characteristic is 7-10 = -3. Consequently, the decimal point must be moved from

standard position (after the 8) 3 places to the left. Therefore the number is 0.008151.

Example 2.

Given log N = 1.91123; find N.

Solution. Here we use inverse interpolation.

Mantissa		Number
Г 91126		8152 7
5 2 91123		$\begin{bmatrix} ? \\ 8151 \end{bmatrix} x \end{bmatrix}^1$
L ² L91121		8151 _~_
	x = 2	
•	$\frac{x}{1} = \frac{2}{5} = 0.4.$	
	N = 81.514.	

EXERCISES IV. C

Find the number corresponding to each of the following logarithms:

1.	0.69897.	2.	1.76042.	3.	2.93601.
4.	4.26174.	5.	0.81278 - 1.	6.	9.96741 - 10
7.	3.76253 - 10.	8.	3.63337.	9.	8.84442 - 10
10.	0.63994.	11.	0.69085 - 2.	12.	1.51416.
13.	7.19767 - 10.	14.	1.48762.	15.	8.82326 - 10
16.	5.18752.	17.	6.15465.	18.	9.79029 - 10
19.	0.83445.	20.	6.36021 - 10.	21	1.94548.
22.	9.00000 - 10.	23.	1.00009.	24 .	0.99998.

27. Laws of logarithms.

Since logarithms are exponents, they obey the laws of exponents, it being assumed that these laws hold for irrational as well as rational exponents.*

I. The logarithm of a product is equal to the sum of the logarithms of its factors.

^{*} See the author's College Algebra.

Let
$$\log_b M = x$$
, $\log_b N = y$.
Then, $M = b^x$, $N = b^y$, $MN = b^x b^y = b^{x+y}$, $\log_b MN = x + y$, or $\log_b MN = \log_b M + \log_b N$.

The proof can easily be extended to cover the case of any finite number of factors.

II. The logarithm of a quotient is equal to the logarithm of the dividend minus the logarithm of the divisor.

Using the same notation as above, we have

$$rac{M}{N} = rac{b^x}{b^y} = b^{x-y},$$
 $\log_b rac{M}{N} = x - y,$
 $\log_b rac{M}{N} = \log_b M - \log_b N.$

or

III. The logarithm of the mth power of a number is equal to m times the logarithm of the number.

If $\log_b N = x$, then $N = b^x$, and

$$N^m = (b^x)^m = b^{mx},$$

$$\log_b N^m = mx.$$

or

$$\log_b N^m = m \log_b N.$$

IV. The logarithm of the mth real positive root of a number is equal to one mth of the logarithm of the number.

This is really the same as III, since $\sqrt[m]{N} = N^{1/m}$. Thus,

$$\log_b \sqrt[m]{N} = \frac{1}{m} \log_b N.$$

28. Logarithmic computation of products and quotients.

The advantage of logarithms in performing multiplication and division is that these operations can be replaced by the simpler operations of addition and subtraction respectively.

It must be realized that results are only approximate.

Example 1.

Find the value of 32.62×8.673 .

Solution. Denoting the product by x, we have

$$\log x = \log 32.62 + \log 8.673.$$

We arrange the work as follows:

Example 2.

Find the value of $8.673 \div 32.62$.

Solution. Let the quotient be denoted by x. Then

$$\log x = \log 8.673 - \log 32.62.$$

$$\log 8.673 \quad 0.93817$$

$$\log 32.62 \quad 1.51348$$

Here we are subtracting the larger quantity from the smaller. In order to keep the mantissa positive, we add 10 to, and subtract 10 from, the logarithm of 8.673, getting

$$\begin{array}{c} \log 8.673 & 10.93817 - 10 \\ \log 32.62 & 1.51348 \\ \text{difference} = \log x & 9.42469 - 10 \\ x & 0.2659 \end{array}$$

Example 3.

Find the value of

$$\frac{3262 \times 1.786}{532.1 \times 0.8673}$$

SOLUTION. We note that

 $\log fraction = \log numerator - \log denominator,$

and arrange the work as follows:

log 3262 log 1.786 log numerator log denominator log fraction fraction	$\begin{array}{r} 3.51348 \\ 0.25188 \\ \hline 3.76536 \\ 2.66416 \\ \hline 1.10120 \\ 12.62 \end{array}$	log 532.1 log 0.8673 log denominator	$\begin{array}{r} 2.72599 \\ 9.93817 - 10 \\ \hline 12.66416 - 10 \end{array}$
--	---	--	--

Note that we do not interpolate to find a fifth figure in the antilogarithm because of the rules for computation with approximate numbers.

29. Cologarithm.

When one number is to be divided by another we may change the problem to one of multiplication by using the reciprocal of the divisor. For example, $3 \div 2 = 3 \times \frac{1}{2}$.

The logarithm of the reciprocal of a number is called the cologarithm of the number and is abbreviated colog. That is,

$$\operatorname{colog} N = \log \frac{1}{N} = \log 1 - \log N = -\log N.$$

Thus, the cologarithm of a number is the negative of the logarithm of the number. Consequently, in solving a problem in division by means of logarithms, we may either subtract the logarithm of the divisor or add its cologarithm. There is no advantage, but rather a disadvantage, in using the cologarithm when only two numbers are involved in a division problem. There is, however, some advantage, particularly in the arrangement of the solution, when more than one number occurs in the denominator of an expression.

The cologarithm of a number is obtained by subtracting

the logarithm of the number from $\log 1$, that is, from 0. The 0 is usually written in the form 10-10, and the subtraction can be performed mentally, after some practice, by the following method: Begin at the left, and subtract from 9 each digit of the logarithm except the last non-zero digit, which must be subtracted from 10.

Examples.

```
\log 32.62 = 1.51348, \log 0.01508 = 8.17840 - 10, \log 32.62 = 8.48652 - 10, \log 0.01508 = 1.82160.
```

Following is a solution of example 3 above which employs cologarithms:

$\log 3262$	3.51348
$\log 1.786$	0.25188
colog 532.1	7.27401 - 10
colog 0.8673	0.06183
log fraction	11.10120 - 10
fraction	12.62

30. Logarithmic computation of powers and roots.

The operations of raising to powers and of extracting roots are greatly facilitated by the use of logarithms, because it replaces these operations by the simpler ones of multiplication and division.

Example 1.

Evaluate (3.262)4.

Solution. Let
$$x = (3.262)^4$$
; then $\log x = 4 \log 3.262$.
$$\log 3.262 \quad 0.51348 \\ \times 4 \\ \log x \quad 2.0539^*$$

113.2

^{*}Only five significant figures are retained here because of the rules for computation with approximate numbers.

Example 2.

Find the cube root of 3.262.

Solution. If x is the desired cube root, then

$$\log x = \frac{1}{3} \log 3.262.$$

Example 3.

Find the cube root of 0.3262.

Solution. If x is the desired cube root, then

$$\log x = \frac{1}{3}\log 0.3262 = \frac{1}{3}(9.51348 - 10).$$

In order to make the negative part of the characteristic exactly divisible by 3, add 20 and subtract 20:

EXERCISES IV. D

Find the value of each of the following expressions by means of logarithms:

- 1. 41.6×35.8 .
- 3. $41.6 \div 35.8$.
- 5. 529.6×29.64 .
- 7. 123.4×9.866 .
- 9. $5.832 \div 25.96$.
- **11.** $\sqrt{26.18}$.
- 13. $\sqrt{0.9146}$.
- 15. 24284×3789.5 .
- 17. $1.3336 \div 2.1248$.
- 19. $0.41831 \div 0.057864$

- 2. 4.84×5.25 .
- 4. $4.84 \div 5.25$.
- **6.** 127400×0.1283 .
- **8.** (3.482)³.
- 10. $7.283 \times 283.4 \times 5.437$.
- 12. $\sqrt[3]{1.546}$.
- **14.** $\sqrt[5]{3}$.
- **16.** $0.82371 \times 0.001,985,7$.
- **18.** $1.7321 \div 0.73205$.
- **20.** $48.252 \times 9.6384 \times 0.96384$.

21.
$$53201 \times 56784 \times 12619$$
.

23.
$$\sqrt{89897}$$
.

25.
$$\sqrt[3]{0.92468}$$
.

27.
$$\frac{9.812 \times 18.76}{405.1}$$
.

29.
$$\frac{54.321 \times 2.7183}{3.1416}$$
.

33.
$$\sqrt{5.2683 \times 0.84216}$$
.

35.
$$\frac{538.21 \times 1.7864}{0.40752 \times 863.76}$$

37.
$$\sqrt[3]{25.321}$$
 $\sqrt{1.0048}$

39.
$$\frac{0.15630(-3.6251)^3}{-36.714\sqrt[5]{-91850}}$$

22.
$$472.48 \times 45.990 \times 0.87723$$
.

24.
$$\sqrt[3]{4.6123}$$
.

26.
$$\sqrt[3]{0.092468}$$
.

28.
$$\frac{32.64}{19.23 \times 0.7191}$$

30.
$$\frac{1776.4}{24.683 \times 1.0054}$$

$$97.304 \times 71.486$$

Note. Although negative numbers have no real logarithms, we can treat this problem as if all the numbers involved were positive, and then prefix the proper sign to the result. Here we have, symbolically,

$$\frac{(+)(-)^3}{(-)^{\sqrt[5]{-}}} = \frac{(+)(-)}{(-)(-)} = \frac{-}{+} = -$$

Thus, a negative sign should precede the final result.

40.
$$(-1.2381)^2 \div (-7.9564)^3$$
. **41.** $\sqrt[3]{-9999.4}$.

42.
$$\frac{6.8213 \times (-3.4868)}{12.863}$$
 43. $\frac{(-25.868)^2 \sqrt[3]{-0.88255}}{-32.759}$

31. Logarithms of the trigonometric functions.

Tables giving the values of the trigonometric functions of angles are called tables of "natural functions" to distinguish them from tables which give the logarithms of these functions. We might in all cases find the natural function, and then the logarithm of that function from a table of logarithms of numbers. However, we have tables

which omit one step in this process by giving the logarithm of the function directly, when the value of the angle is known (e.g., Table III of the Macmillan Logarithmic and Trigonometric Tables).

The process of finding the value of the logarithm of a trigonometric function is quite like that of finding the value of the natural function, even when interpolation is required. Similarly, the process of finding the angle, when the logarithm of the function is given, is in no respect different from that of finding the angle when the natural function is given.

Example 1.

Find log cos 17° 25.8'.

Solution. The interpolation can be carried out as in section 8, or it can be arranged as follows (cf. section 25):

$$\log \cos 17^{\circ} 25' = 9.97962 - 10$$

$$\log \cos 17^{\circ} 26' = 9.97658 - 10$$

$$\text{difference} = \frac{4}{\times 0.8}$$

$$log cos 17^{\circ} 25' = 9.97962 - 10$$

negative correction = 3
 $log cos 17^{\circ} 25.8' = 9.97959 - 10$

Example 2.

Given log tan A = 0.10860; find the acute angle A. Solution.

$$1' \left\{ \begin{array}{l} \log \tan 52^{\circ} \ 6' = 0.10875 \\ x \left\{ \log \tan A = 0.10860 \\ \log \tan 52^{\circ} \ 5' = 0.10849 \right\} 11 \end{array} \right\} 26$$

$$\frac{x}{1'} = \frac{11}{26}, \qquad x = \frac{11}{26} \times 1' = 0.4'.$$

$$A = 52^{\circ} \ 5.4'.$$

EXERCISES IV. E

Find the following by using tables of logarithms of the trigonometric functions:

- 1. log sin 29°.
- 3. $\log \sin 78^{\circ} 10'$.
- 5. log cot 17° 17′.
- 7. log tan 12° 25′.
- 9. log cos 49° 12′.
- 11. $\log \sin 7^{\circ} 46'$.
- 13. log cot 30° 26′.
- 15. log tan 35° 15.3′.
- 17. log cos 58° 37.8′.
- 19. log sin 9° 41.4′.
- 21. log sin 57° 17.7′.
- 23. log cot 10° 59.9′.

- 2. log cos 31°.
- 4. log tan 74° 20′.
- 6. $\log \cot 80^{\circ} 22'$.
- 8. log sin 31° 52′.
- 10. log sin 6° 31′.
- **12.** log cos 53° 21′.
- 14. log sin 26° 45′.
- 16. log sin 12° 13.2′.
- **18.** log cot 81° 25.1′.
- 20. log tan 54° 22.2'.
- **22.** log cos 45° 2.3′. 24. log tan 88° 59.8'.
- Find the acute angle A, given that
- **25.** $\log \sin A = 9.53888 10$.
- **27.** $\log \tan A = 0.30575$.
- **29.** $\log \tan A = 0.18762$.
- **31.** $\log \tan A = 9.28875 10.$
- **33.** $\log \cos A = 9.72868 10.$
- **35.** $\log \cos A = 9.89530 10$.
- 37. $\log \sin A = 9.80070 10$.
- **39.** $\log \cot A = 9.18854 10.$
- **41.** $\log \tan A = 0.06735$.
- **43.** $\log \tan A = 1.55553$.
- **45.** $\log \sin A = 9.99950 10$.
- **47.** $\log \cos A = 0.17182$.

- **26.** $\log \cos A = 9.99484 10$.
- **28.** $\log \cot A = 1.54493$.
- **30.** $\log \sin A = 9.71708 10$.
- **32.** $\log \cos A = 9.53871 10$. **34.** $\log \cos A = 9.88150 - 10$.
- **36.** $\log \sin A = 8.90150 10$.
- 38. $\log \sin A = 9.99483 10$.
- **40.** $\log \cot A = 0.18750$.
- **42.** $\log \tan A = 0.10235$.
- **44.** $\log \cot A = 8.99983 10.$
- **46.** $\log \tan A = 1.00000$.
- **48.** $\log \sin A = 0.111111$.

Find, by using logarithms, the value of each of the following expressions:

- **49.** 12.38 sin 13° 20′.
- **51.** 204.65 sin 28° 18.2′.
- **53.** 0.18622 cos 14° 8.3′.
- **55.** 152.98 sin 74′ 22.9′.
- **57.** 1.2346 cos 45° 45.4′.
- **50.** 485.6 cos 22° 28′.
- **52.** 98.128 tan 33° 35.6′.
- **54.** 57663 cot 40° 40.8′.
- 56. 3004.2 tan 66° 33.4′.
- **58.** 19.897 sin 38° 59.6′.

59.
$$\frac{543.21 \sin 72^{\circ} 14.3'}{\sin 22^{\circ} 18.9'}$$

60.
$$\frac{2381.4 \tan 44^{\circ} 18.3'}{4561.8}$$

Find the value of the acute angle A, given that

61.
$$\sin A = \frac{548.26 \sin 75^{\circ} 43.3'}{865.27}$$
.

62.
$$\sin A = \frac{9753.6 \sin 18^{\circ} 36.6'}{8910.4}$$
.

CHAPTER V

Logarithmic Solution of Right Triangles

32. Logarithmic solution of right triangles.

The general instructions of section 7 apply to the logarithmic solution of right triangles. It should be noted that the theorem of Pythagoras is not adapted to the use of logarithms if it is written in the form $c^2 = a^2 + b^2$. However, if the hypotenuse, c, is one of the known parts, we can write

$$a^2 = c^2 - b^2 = (c + b)(c - b)$$
, or $b^2 = (c + a)(c - a)$,

and to these forms logarithms can be applied.

An outline, like that in the model solution shown on page 62, should first be made out. Begin with the known parts and conclude with the check. The outline should be complete before any numerical values are written in.

The following general rules will be of use in determining the degree of accuracy to be expected when dealing with approximate numbers, not only in connection with right triangles, but for all trigonometric work:

Lengths expressed to two significant figures call for angles to be expressed to the nearest 30', and vice versa.

Lengths expressed to three significant figures call for angles to be expressed to the nearest 5', and vice versa.

Lengths expressed to four significant figures call for angles to be expressed to the nearest minute, and vice versa.

Lengths expressed to five significant figures call for angles to be expressed to the nearest tenth of a minute, and vice versa.

It is thus convenient, in dealing with lengths expressed

to three significant figures and angles expressed to the nearest 5', to use a four-place table of natural functions, such as the table on pages 12–14, without interpolation, or with very rough interpolation. For lengths expressed to four significant figures and angles to the nearest minute, four-place tables of the natural functions or four-place logarithmic tables may be used; in either case interpolation should be employed. Also, for this degree of accuracy, five-place logarithmic tables may be used without interpolation. For lengths expressed to five significant figures and angles to the nearest tenth of a minute, five-place logarithmic tables should be used with interpolation.

Example.

Solve the right triangle in which a = 16.84, c = 20.36.

SOLUTION.

$$\sin A = \frac{a}{c'}$$

$$\log \sin A = \log a - \log c.$$

$$\log \frac{a}{a} = \frac{16.84}{1.22634}$$

$$\log \frac{a}{a} = \frac{1.22634}{1.22634}$$

$$\log \frac{a}{a} = \frac{1.30878}{1.30878}$$

$$\log \frac{a}{a} = \frac{1.30878}{1.2634}$$

$$\log \frac{a}{b} = \frac{1.30878}{1.30878}$$

$$B = 90^{\circ} - A.$$

$$B = 34^{\circ} \cdot 12'$$

$$c + a = 37.20$$

$$c + a = 37.20$$

$$c - a = 3.52$$

$$\log(c + a) = \frac{1.57054}{1.57054}$$

$$\log b = \frac{1}{2}[\log(c + a) + \log(c - a)].$$

$$\log \frac{b}{b} = \frac{1.30878}{1.30878}$$

$$\log b = \log c + \log \cos A.$$

$$\log \cos A = \frac{9.74980}{\log b} = \frac{1.05858}{1.05858}$$

The work is checked, since the values of $\log b$, obtained by two different methods, agree except in the last place.

EXERCISES V. A

Find the remaining parts, and also the areas, of the following right triangles ($C = 90^{\circ}$) by logarithms:

1.
$$a = 793.6, b = 965.5.$$
 2. $A = 52^{\circ} 41', a = 55.71.$

3.
$$a = 0.2042$$
, $c = 0.2753$. **4.** $A = 10^{\circ} 51'$, $b = 7.123$.

5.
$$b = 5012$$
, $c = 8117$. **6.** $A = 30^{\circ} 18'$, $c = 0.02040$.

7.
$$B = 58^{\circ} 15'$$
, $a = 48.04$. 8. $B = 6^{\circ} 31'$, $b = 0.3691$.

9.
$$B = 23^{\circ} 9', b = 754.8.$$
 10. $A = 43^{\circ} 49.2', b = 22.568.$

9.
$$B = 23$$
 9, $b = 754.8$.
10. $A = 45$ 49.2, $b = 22.508$.
11. $a = 2841.6$, $c = 6394.7$.
12. $A = 45^{\circ} 11.6'$, $b = 61.496$.

13.
$$b = 862.35$$
, $c = 1036.0$. **14.** $A = 14^{\circ} 21.1'$, $c = 9.4726$.

13.
$$0 = 802.35$$
, $c = 1030.0$. **14.** $A = 14^{\circ} 21.1^{\circ}$, $c = 9.4720$

15.
$$B = 26^{\circ} 17.2'$$
, $a = 335.88$. **16.** $a = 0.18709$, $b = 0.22115$. **17.** $B = 52^{\circ} 9.8'$, $c = 73.211$. **18.** $B = 34^{\circ} 14.6'$, $b = 1202.2$.

- 20. Find the side of a regular pentagon inscribed in a circle whose radius is 10.354 inches.
- 21. Find the radius of a circle in which a chord of 23.546 centimeters subtends an angle of 141° 18.4' at the center.
- 22. Find the area of a regular 5-pointed star inscribed in a circle of radius 12.517 inches.

Additional material for practice in the logarithmic solution of right triangles may be obtained from the exercises of Chapter II.

CHAPTER VI

Trigonometric Functions of Any Angle

33. Generation of an angle.

The angle at O in Fig. 30 may be thought of as generated by the rotation of the line OP, from coincidence with OX to its present position. The line OX is called the initial side of the angle, OP is its terminal side.

34. Positive and negative angles.

It is evident that there is a choice of directions for rotating the generating line from the position OX to the position OP. One of these is that of the motion of the hands of a

clock, and is called clock-wise, the other is called counterclockwise. If the rotation of the generating line is counterclockwise, the angle is positive (+); if the rotation is clockwise, the

angle is negative (-).* A small curved arrow, starting from the initial side and ending with its tip on the terminal side, is often used to indicate the direction of motion. (See Fig. 31.)

It is evident that an angle may be of any magnitude

^{*}There is no intrinsic reason why a counterclockwise rotation should give a positive angle and a clockwise rotation a negative angle. This designation, however, is the customary one.

(either positive or negative) whatever, for the generating line may rotate any number of times in either direction.

Any given position of OP represents an unlimited number of positive and negative angles.* On the other hand, to each angle, whether positive, negative, or zero, there corresponds one and only one position of OP.

Angles are equal if they are generated by the same amount of rotation in the same direction.

35. Rectangular coordinates.

Let us take two straight lines, OX and OY, intersecting at right angles at the point O. (See Fig. 32.) On each line we mark off a scale (same scale on each); positive numbers are to the right on the horizontal line OX, above on the vertical line OY; negative numbers are to the left on OX, below on OY. Line OX is called the x-axis, line OY the y-axis, point O the origin.

Now take any point P. The distance of the point from the y-axis is called the abscissa of the point and is denoted by x, its distance from the x-axis is called its ordinate and is denoted by y. The abscissa and ordinate together are called the coordinates (more specifically, rectangular coordinates)

of the point. The point P in Fig. 32 has the abscissa -3 and the ordinate 4. For such a point it is customary to write P(-3, 4), the abscissa being written first.

Locating and marking the position of a point whose coordinates are given is called **plotting** the point.

^{*} These angles may be called coterminal, since they have the same terminal side.

Besides the coordinates of the point, we find it convenient to consider its distance from the origin, which may be termed its radius vector, or simply its radius, and which we shall denote by r. Unless otherwise stated, r will for the present always be regarded as positive. (But see section 72.) Obviously we have $r^2 = x^2 + y^2$, and for the point P in the figure, $r = \sqrt{9 + 16} = 5$. Thus, for this particular point, we have x = -3, y = 4, r = 5.

36. Quadrants.

It will be noted that the coordinate axes divide the plane into four parts, called quadrants, numbered as shown in Fig. 33. The order of numbering is in accordance with counterclockwise rotation. That is, a line starting from

coincidence with the positive end of the x-axis, and rotating about the origin O so as to generate a positive angle, turns first through quadrant I, then through quadrant II, and so on. Angles between 0° and 90° are in quadrant II, angles between 90° and 180° are in quadrant II, those between 180° and 270° are in quadrant III,

those between 270° and 360° are in quadrant IV. Angles between 360° and 450° are in the first quadrant, and so on.

The signs of x and y in each of the various quadrants are shown in Fig. 33 (the sign of x is written first) and in the following table:

Quadrant	I		\mathbf{m}	IV
x (abscissa)	+			+
y (ordinate)	+	+		

As already stated, the radius r will for the present be considered as always positive.

37. Trigonometric functions of any anale.

The definitions of the trigonometric functions given in section 2 suffice for acute angles only. In order to deal with the solution of oblique triangles and with other phases of

trigonometry, it is necessary to generalize these definitions so that they will apply to any angle.

To this end, let us consider the angle θ (Fig. 34), which has been generated by a line rotating about the

origin, starting from coincidence with OX. Take any point P on its terminal side. With this point are associated three values: the abscissa x, the ordinate y, and the radius r. We define

$$\sin \theta = \frac{\text{ordinate}}{\text{radius}} = \frac{y}{r},$$
 $\csc \theta = \frac{\text{radius}}{\text{ordinate}}$
 y'
 $\cos \theta = \frac{\text{abscissa}}{\text{radius}} = \frac{x}{r},$
 $\sec \theta = \frac{\text{radius}}{\text{abscissa}} = \frac{r}{x},$
 $\cot \theta = \frac{\text{abscissa}}{\text{ordinate}} = \frac{x}{y}.$
 (1)

These new definitions agree with those previously given (section 2) if the angle θ is in the first quadrant. As an illustration of their meanings for other angles, let us find the functions of 120°.

On the terminal side of an angle of 120° , whose initial side is the x-axis,

take the point P so that r = 2. (See Fig. 35.) Then, angle $MOP = 60^{\circ}$ and x = -1, from which we find, by using the theorem of Pythagoras, that $y = \sqrt{3}$. The functions may now be read from the figure as follows:

$$\sin 120^{\circ} = \frac{y}{r} = \frac{\sqrt{3}}{2},$$

$$\cos 120^{\circ} = \frac{x}{r} = \frac{-1}{2} = -\frac{1}{2},$$

$$\tan 120^{\circ} = \frac{y}{x} = \frac{\sqrt{3}}{-1} = -\sqrt{3},$$

$$\csc 120^{\circ} = \frac{r}{y} = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3},$$

$$\sec 120^{\circ} = \frac{r}{x} = \frac{2}{-1} = -2,$$

$$\cot 120^{\circ} = \frac{x}{y} = \frac{-1}{\sqrt{3}} = -\frac{\sqrt{3}}{3}.$$

EXERCISE

Show that the signs of the functions in the various quadrants are as shown in the following table.

quadrant	sin	cos	tan	csc	1	
I	+	-L			sec	cot
TT	<u> </u>			+		+
	+	_	_	+	PR News	****
III	_	_	+	Annual Control of the		
IV	_	+		-		- Transit to the Williams
				*****	·+·	****

38. Functions of 0°, 90°, 180°, 270°.

We may consider that we have an angle of 0° if there has been no rotation of the generating line. Take a point P on the terminal side of the angle, which of course coincides with the initial side, with any convenient abscissa, say 1. (See Fig. 36.) Then x = 1, y = 0, r = 1, and we have

$$(x=1, y=0, r=1)$$
Fig. 36

$$\sin 0^{\circ} = \frac{y}{r} = \frac{0}{1} = 0,$$

$$\cos 0^{\circ} = \frac{x}{r} = \frac{1}{1} = 1,$$

$$\tan 0^{\circ} = \frac{y}{x} = \frac{0}{1} = 0,$$

$$\csc 0^{\circ} = \frac{r}{y} = \frac{1}{0}, \text{ undefined,}$$

$$\sec 0^{\circ} = \frac{r}{x} = \frac{1}{1} = 1,$$

$$\cot 0^{\circ} = \frac{x}{y} = \frac{1}{0}, \text{ undefined.}$$

Note that csc 0° and cot 0° do not exist, since the ratios which would represent them have zero for denominator, and division by zero is impossible. However, as the angle θ shrinks to zero, cot θ * becomes numerically larger and larger without bound (e.g., cot 1' = 3437.7, cot 1" = 206265). It is customary to express this fact by writing

$$\cot \theta \to \infty \text{ as } \theta \to 0, \tag{1}$$

where the symbol \rightarrow is read "approaches" and the symbol ∞ is called **infinity**. The fact may also be written in the form

$$\lim_{\theta \to 0} \cot \theta = \infty, \tag{2}$$

which is read "the limit, as θ approaches zero, of $\cot \theta$ is infinity." Either (1) or (2) is merely a shorthand notation for indicating that as the angle gets closer and closer to the value zero, the cotangent increases numerically without bound. It must be insisted that infinity (∞) is not a number.

^{*} We select $\cot \theta$ merely for purposes of illustration. A similar discussion holds for $\csc \theta$.

Similarly, from Fig. 37, in which each of the points P_1 , P_2 , P_3 is at a numerical distance of 1 from the origin, we

can read off the functions of 90°, 180°, 270°. The values of these functions, as well as the functions of 0°, are tabulated below. The student should check them as an exercise. It is clear that the functions of 360° are the same as the functions of 0°. In the table the symbol ∞ is used to indicate that as the angle approaches the speci-

fied value, the corresponding function increases in numerical value without bound.

angle	sin	cos	tan	csc	sec	cot
0°	0	1	0	∞	1	8
90°	1	0,	&	1	o	0
180°	0	<u>-1</u> ·	0	~	-1	8
270°	-1	0	-	-1	80	()

EXERCISES VI. A

Find the six functions of

- **1.** 135°.
- **2.** 150°.
- 3. 210°.
- 4. 240°.

- **5.** 225°.
- 6. 300°.
- 7. 330°.
- 8. 315°.

Find the values of the following expressions:

- 9. $\sin 150^{\circ} + \tan 225^{\circ} + \cos 330^{\circ}$.
- 10. $\cos 150^{\circ} 3 \tan 300^{\circ} + 2 \sin 90^{\circ}$.
- 11. $3 \tan 240^{\circ} \sin^2 135^{\circ} + 2 \cot 210^{\circ}$.
- 12. $3 \sin 135^{\circ} + 2 \cos 225^{\circ} \tan 315^{\circ}$.

- 13. $2\cos 150^{\circ} 3\sin 90^{\circ} + \tan 210^{\circ}$.
- 14. $(\cos 225^{\circ} + \tan 45^{\circ})(\sin 135^{\circ} + \cos 0^{\circ})$.
- **15.** $(\tan 240^{\circ} \cos 300^{\circ})(2 \sin 300^{\circ} + \frac{1}{2} \cot 225^{\circ}).$
- 16. $\sin^2 315^\circ + \cos^2 270^\circ + \tan^2 225^\circ$.
- 17. $(\sin 315^{\circ} + \cos 270^{\circ} + \tan 225^{\circ})^{2}$.
- 18. $2 \cot 300^{\circ} + 3 \cos 180^{\circ} + \sin 270^{\circ} \tan 150^{\circ}$.
- 19. $\csc 150^{\circ} + 2 \sec 330^{\circ} + 5 \sin 180^{\circ}$.
- **20.** $3 \sec 135^{\circ} 2 \csc 225^{\circ} + 4 \sin 315^{\circ}$.
- **21.** $\sec 150^{\circ} \tan 300^{\circ} + \tan 225^{\circ} \csc^2 315^{\circ}$.
- **22.** $(5\cos 270^{\circ} + \sec 180^{\circ} \frac{1}{3}\sin 360^{\circ})^{3}$
- **23.** $(\frac{1}{2} \sec 240^{\circ} + \csc^2 315^{\circ} \cot 135^{\circ})^2$.
- **24.** $\sqrt{2} \tan 135^{\circ} + \sqrt{3} \sin 240^{\circ} + \sqrt{5} \csc 270^{\circ}$.
- 25. $\frac{\cos 300^{\circ} + \cos 360^{\circ}}{\sin 150^{\circ} + \sec 300^{\circ}}$.
- 26. $\frac{3 \tan 135^{\circ} + 2 \cos 225^{\circ}}{\sin 240^{\circ} + \tan 300^{\circ}}$.
- 27. $\frac{\cot 225^{\circ} + \sin 270^{\circ}}{\sec 225^{\circ} \tan 300^{\circ}}$.

39. Functions of $-\theta$.

Let us consider the functions of $-\theta$, where θ is any angle

whatever. In Fig. 38 the angle θ is, for definiteness, shown in the first quadrant, but in the following considerations θ is not restricted to the first, or to any other quadrant. It is readily seen that in the congruent right triangles OMP' and OMP, x' = x, y' = -y (since MP' and MP extend in opposite directions), and r' = r (since the radius is to be recorded.

the radius is to be regarded as positive). Consequently,

$$\sin(-\theta) = \frac{y'}{r'} = \frac{-y}{r} = -\frac{y}{r} = -\sin\theta,$$

$$\cos(-\theta) = \frac{x'}{r'} = \frac{x}{r} = \cos \theta,$$

$$\tan(-\theta) = \frac{y'}{r'} = \frac{-y}{x} = -\frac{y}{r} = -\tan \theta,$$

$$\csc(-\theta) = \frac{r'}{y'} = \frac{r}{-y} = -\frac{r}{y} = -\csc \theta,$$

$$\sec(-\theta) = \frac{r'}{x'} = \frac{r}{x} = \sec \theta,$$

$$\cot(-\theta) = \frac{x'}{y'} = \frac{x}{-y} = -\frac{x}{y} = -\cot \theta.$$

EXERCISE

Prove the formulas of section 39 by means of a figure in which θ is an angle in (a) quad-

which θ is an angle in (a) quadrant II, (b) quadrant III, (c) quadrant IV.

40. Functions of $180^{\circ} - \theta$.

Let us now consider the functions of $180^{\circ} - \theta$, where again θ may be any angle whatever. Reference to Fig. 39, in which OM'P' and OMP are congruent right triangles, shows that

$$\sin(180^{\circ} - \theta) = \frac{y'}{r'} = \frac{y}{r} = \sin \theta,$$

$$\cos(180^{\circ} - \theta) = \frac{x'}{r'} = \frac{-x}{r} = -\frac{x}{r} = -\cos \theta,$$

$$\tan(180^{\circ} - \theta) = \frac{y'}{x'} = \frac{y}{-x} = -\frac{y}{x} = -\tan \theta,$$

$$\csc(180^{\circ} - \theta) = \frac{r'}{y'} = \frac{r}{y} = \csc \theta,$$

$$\sec(180^{\circ} - \theta) = \frac{r}{x'} \quad \frac{r}{-x} \quad -\frac{r}{x} \quad -\sec \theta,$$

$$\cot(180^{\circ} - \theta) = \frac{x}{y'} = \frac{-x}{y} \quad -\frac{x}{y} \quad -\cot \theta.$$

EXERCISE

Prove the formulas of section 40 by means of a figure in which θ is an angle in (a) quadrant II, (b) quadrant III, (c) quadrant IV.

41. Functions of $180^{\circ} + \theta$.

By the same method of proof, it can be shown from Fig. 40, that

$$\sin(180^{\circ} + \theta) = -\sin \theta,$$

$$\csc(180^{\circ} + \theta) = -\csc \theta,$$

$$\cos(180^{\circ} + \theta) = -\cos \theta,$$

$$\sec(180^{\circ} + \theta) = -\sec \theta,$$

$$\tan(180^{\circ} + \theta) = \tan \theta,$$

$$\cot(180^{\circ} + \theta) = \cot \theta.$$

This is left as an exercise for the student.

42. Functions of $360^{\circ} - \theta$.

From Fig. 38, it is evident that the functions of $360^{\circ} - \theta$ are the same as the functions of $-\theta$. Thus,

$$\sin(360^{\circ} - \theta) = -\sin \theta,$$
 $\csc(360^{\circ} - \theta) = -\csc \theta,$ $\cos(360^{\circ} - \theta) = \cos \theta,$ $\sec(360^{\circ} - \theta) = \sec \theta,$ $\tan(360^{\circ} - \theta) = -\tan \theta,$ $\cot(360^{\circ} - \theta) = -\cot \theta.$

43. Functions of $360^{\circ} + \theta$.

It should be quite clear that the functions of $360^{\circ} + \theta$ are the same as the corresponding functions of θ , since these two angles are coterminal. (See footnote, page 65.)

44. Functions of $90^{\circ} - \theta$.

It was shown in section 3 that, for any acute angle A. $\sin(90^{\circ} - A) = \cos A$, etc. That is, any function of an acute angle is equal to the cofunction of the complementary angle. That formulas (2) of section 3 are true for any angle may be shown by Fig. 41 as follows:

Right triangles OM'P' and OMP are congruent, and con-

sequently
$$x' = y$$
, $y' = x$, $r' = r$. Therefore,

$$\sin(90^{\circ} - \theta) = \frac{y'}{r'} = \frac{x}{r} = \cos \theta,$$

$$\cos(90^{\circ} - \theta) = \frac{x'}{r'} = \frac{y}{r} = \sin \theta,$$

$$\tan(90^{\circ} - \theta) = \frac{y'}{x'} = \frac{x}{y} = \cot \theta,$$

$$\csc(90^{\circ} - \theta) = \frac{r'}{y'} = \frac{r}{x} = \sec \theta,$$

$$\sec(90^{\circ} - \theta) = \frac{r'}{x'} = \frac{r}{y} = \csc \theta,$$

$$\cot(90^{\circ} - \theta) = \frac{x'}{y'} = \frac{y}{x} = \tan \theta.$$

EXERCISE

Prove the formulas of section 44 by means of a figure in which θ is an angle in (a) quadrant II, (b) quadrant III, (c) quadrant IV.

45. Functions of $90^{\circ} + \theta$.

It is seen that in Fig. 42, x' and y are numerically equal but have opposite signs; that is, x' = -y. Similarly, y' and x are numerically equal and have the same sign; that is, y' = x. Also, r' = r. It follows that

$$\sin(90^{\circ} + \theta) = \frac{y'}{r'} = \frac{x}{r} = \cos \theta,$$

$$\cos(90^{\circ} + \theta) = \frac{x'}{x'} = \frac{-y}{r} = -\frac{y}{r} = -\sin \theta,$$

$$\tan(90^{\circ} + \theta) = \frac{y'}{x'} = \frac{x}{-y} = -\frac{x}{y} = -\cot \theta,$$

$$\csc(90^{\circ} + \theta) = \frac{r'}{y'} = \frac{r}{x} = \sec \theta,$$

$$\sec^{\bullet}(90^{\circ} + \theta) = \frac{r'}{x'} = \frac{r}{-y} = -\csc$$

$$\cot(90^{\circ} + \theta) = \frac{x'}{y'} = \frac{-y}{r} = -\tan \theta.$$

EXERCISE

Prove the formulas of section 45 by means of a figure in which θ is an angle in (a) quadrant II, (b) quadrant III, (c) quadrant IV.

46. Functions of $270^{\circ} - \theta$.

In Fig. 43, x' = -y, y' = -x, r' = r, and it can readily be proved that

$$\sin(270^{\circ} - \theta) = -\cos \theta,$$
 $\csc(270^{\circ} - \theta) = -\sec \theta,$

$$\cos(270^{\circ} - \theta) = -\sin \theta,$$
 $\sec(270^{\circ} - \theta) = -\csc \theta,$
 $\tan(270^{\circ} - \theta) = \cot \theta,$ $\cot(270^{\circ} - \theta) = \tan \theta.$

Proofs are left as exercises for the student.

47. Functions of $270^{\circ} + \theta$.

In Fig. 44, x' = y, y' = -x, r' = r, and it follows that $\sin(270^{\circ} + \theta) = -\cos \theta$, $\csc(270^{\circ} + \theta) = -\sec \theta$, $\csc(270^{\circ} + \theta) = -\sec \theta$, $\sec(270^{\circ} + \theta) = -\sec \theta$, $\tan(270^{\circ} + \theta) = -\cot \theta$, $\cot(270^{\circ} + \theta) = -\tan \theta$.

Proofs are left as exercises.

48. Summary.

The formulas of sections 39–47 may be summarized as in the accompanying table. The upper sign preceding a function corresponds to the upper sign in the angle at the left of the same row, and similarly for the lower sign.

angle	sin	cos	tan	csc	sec	cot
$ \begin{array}{c} -\theta \\ 90^{\circ} \pm \theta \\ 180^{\circ} \pm \theta \\ 270^{\circ} \pm \theta \\ 360^{\circ} \pm \theta \end{array} $	$ \begin{array}{c} -\sin \theta \\ \cos \theta \\ \mp \sin \theta \\ -\cos \theta \\ \pm \sin \theta \end{array} $	$ \begin{array}{c} \cos \theta \\ \mp \sin \theta \\ -\cos \theta \\ \pm \sin \theta \\ \cos \theta \end{array} $	$ \begin{array}{c} -\tan \theta \\ \mp \cot \theta \\ \pm \tan \theta \\ \mp \cot \theta \\ \pm \tan \theta \end{array} $	-csc 0 sec 0 ∓csc 0 -sec 0 ±csc 0	$\begin{array}{c} \sec \theta \\ \mp \csc \theta \\ -\sec \theta \\ \pm \csc \theta \end{array}$	$ \begin{array}{c} -\cot \theta \\ \mp \tan \theta \\ \pm \cot \theta \\ \mp \tan \theta \\ \pm \cot \theta \end{array} $

Note that in any column we have the same function as that at the head of the column, except for the rows having $90^{\circ} \pm \theta$ and $270^{\circ} \pm \theta$ at the left; in these rows we find the cofunctions.

The student should make no attempt to memorize this table, but he should be able to work out any of the results listed in it by the methods of the preceding sections; that is, by drawing a figure for each separate problem as needed.

For the important special case in which θ is an acute angle the following statements may prove helpful: If an angle is written in the form $-\theta$, $180^{\circ} \pm \theta$, or $360^{\circ} \pm \theta$ we may say that it is referred to the x-axis; if it is written in the form $90^{\circ} \pm \theta$ or $270^{\circ} \pm \theta$, we may say that it is referred to the y-axis; in either case we shall call θ the reference angle. The function of any angle referred to the x-axis is numerically equal to the same function of the reference angle; the function of any angle referred to the y-axis is numerically equal to the cofunction of the reference angle. The sign to be prefixed to the resulting function of θ is that of the original function, as determined by the quadrant in which the original angle is situated.

49. Reduction of functions of any angle to functions of an acute angle.

We are now in a position to find the functions of any angle whatever.

Example 1.

Find sine, cosine, and tangent of 110°.

Solution. Since $110^{\circ} = 180^{\circ} - 70^{\circ}$, we have

$$\sin 110^{\circ} = \sin(180^{\circ} - 70^{\circ}) = \sin 70^{\circ} = 0.9397,$$

 $\cos 110^{\circ} = \cos(180^{\circ} - 70^{\circ}) = -\cos 70^{\circ} = -0.3420,$
 $\tan 110^{\circ} = \tan(180^{\circ} - 70^{\circ}) = -\tan 70^{\circ} = -2.7475.$

Or, since
$$110^{\circ} = 90^{\circ} + 20^{\circ}$$
,
 $\sin 110^{\circ} = \sin(90^{\circ} + 20^{\circ}) = \cos 20^{\circ} = 0.9397$,
 $\cos 110^{\circ} = \cos(90^{\circ} + 20^{\circ}) = -\sin 20^{\circ} = -0.3420$,
 $\tan 110^{\circ} = \tan(90^{\circ} + 20^{\circ}) = -\cot 20^{\circ} = -2.7475$.

Example 2.

Find sine, cosine, and tangent of 615°.

Solution. Since $615^{\circ} = 360^{\circ} + 255^{\circ}$, the functions of 615° are exactly the same as those of 255° . But $255^{\circ} = 180^{\circ} + 75^{\circ}$. Thus,

$$\sin 615^{\circ} = \sin 255^{\circ} = \sin(180^{\circ} + 75^{\circ}) = -\sin 75^{\circ} = -0.9659,$$

 $\cos 615^{\circ} = \cos 255^{\circ} = \cos(180^{\circ} + 75^{\circ}) = -\cos 75^{\circ} = -0.2588,$
 $\tan 615^{\circ} = \tan 255^{\circ} = \tan(180^{\circ} + 75^{\circ}) = \tan 75^{\circ} = 3.7321.$

Or, we could express 255° as $270^{\circ} - 15^{\circ}$.

EXERCISES VI. B

- 1. Express each of the following as a function of a positive acute angle:
- (a) $\sin 160^{\circ}$,
- (b) cos 145°,
- (c) tan 100°.

- (d) csc 130°,
- (e) sec 172°,
- (f) cot 98°,

- (g) sin 137°,(j) cot 125° 18′,
- (h) cos 95° 10′,(k) sin 114° 21′,
- (i) tan 162° 4′,(l) cos 92° 12.8′.
- 2. Reduce each of the following to a function of a positive angle less than 45°:
- (a) sin 175°.
- (b) $\cos(-167^{\circ})$,
- (c) tan 520°,

- (d) cot 125° 26',
- (e) sec 267° 28′,
- (f) esc 325° 41.8′,

- (g) sin 215° 5′,
- (h) cos 281° 22′,
- (i) tan 197° 35′,

- (j) cot 312° 54′,
- (k) $\sin 356^{\circ} 56'$,
- (l) cos 95° 6.5′.

- 3. Find the numerical value of
- (a) sin 145°,
- (b) cos 246°,
- (c) tan 285°,

- (d) cot 572° 38′, (g) cot 121° 13.6′,
- (e) $\cos 321^{\circ}$,
- (f) sin 642° 50.5′,

- (j) $\cos(-72^{\circ} 15')$,
- (h) $\sin 462^{\circ} 31.1'$, (k) $\tan(-200^{\circ})$.
- (i) $\sin(-162^{\circ} 45')$, (l) $\cot(-275^{\circ} 18')$.

Find the value of

- 4. $\cos 240^{\circ} \cos 120^{\circ} \sin 120^{\circ} \cos 150^{\circ}$.
- 5. $\tan 315^{\circ} \sec 900^{\circ} + \cot 495^{\circ} \csc 450^{\circ}$.
- 6. $\sin(90^{\circ} + \theta) \sin(180^{\circ} + \theta) + \cos(90^{\circ} + \theta) \cos(180^{\circ} \theta)$.
- 7. Given that θ is the angle of a triangle, find θ if
 - (a) $\sin \theta = 0.3090$, (b) $\cos \theta = 0.4975$, (c) $\tan \theta = 2.8770$,
 - (d) $\cot \theta = 1.7090$, (e) $\sin \theta = 0.6713$, (f) $\cos \theta = -0.7716$.
- **8.** Express as functions of θ :
 - (a) $\sin(810^{\circ} \theta)$, (b) $\tan(990^{\circ} \theta)$, (c) $\cot(\theta 360^{\circ})$,
 - (d) $\sec(\theta 90^{\circ})$, (e) $\cos(-180^{\circ} \theta)$, (f) $\csc(630^{\circ} + \theta)$.

CHAPTER VII

Solution of Oblique Triangles

50. The four cases.

We shall now take up the solution of oblique triangles by methods that do not require breaking them up into right triangles, as was done in section 11. Problems in the solution of oblique triangles may be classified into the following four cases, already mentioned in that section:

Case I. Two angles and a side given.

Case II. Two sides and the angle opposite one of them given.

Case III. Two sides and the included angle given.

Case IV. Three sides given.

Certain formulas are necessary for handling the various cases, and these will be developed as needed.

51. Law of sines.

Fig. 45(a) represents an acute triangle, Fig. 45(b) an ob-

tuse triangle, B being the obtuse angle. In each figure we draw the altitude CD and designate its length by h. Then, in Fig. 45(a),

$$\sin B = \frac{h}{a}, \quad \text{or} \quad h = a \sin B, \tag{1}$$

and the same relation holds in Fig. 45(b), since

$$\sin(180^{\circ} - B) = \sin B.$$

In either figure,

$$\sin A = \frac{h}{b}, \quad \text{or} \quad h = b \sin A.$$
 (2)

Equating the values of h in (1) and (2), we have

$$a\sin B = b\sin A,\tag{3}$$

and dividing both sides of (3) by $\sin A \sin B$, we get

$$\frac{a}{\sin A} = \frac{b}{\sin B}.$$
 (4)

Similarly, by drawing the altitude from A, we can prove that

$$\sin B = \sin C \tag{5}$$

Combining (4) and (5), we obtain the law of sines,

$$\frac{1}{\sin A} = \frac{1}{\sin B} = \frac{1}{\sin C}, \tag{6}$$

which may be stated in words as follows: The sides of a triangle are proportional to the sines of the opposite angles.

EXERCISE

Prove that if $C = 90^{\circ}$, formula (6) reduces to the definitions of $\sin A$ and $\sin B$.

A formula for the area of a triangle is easily derivable from formula (2) for the altitude. Since the area is equal to half the product of the base and the altitude, we have

$$area = \frac{1}{2} bc \sin A. (7)$$

The area is also of course equal to $\frac{1}{2}$ ac sin B and $\frac{1}{2}$ ab sin C. In words, the area of a triangle is equal to one-half the product

of any two sides and the sine of the included angle.

The following proof of the law of sines gives a geometric meaning to the equal ratios in (6):

Draw the perpendicular bisectors of the sides of the triangle ABC (Fig. 46). They will meet in a point O, which is the center of the circumscribed circle. Draw this circle, and connect its center

with the vertices of the triangle. Let R be the radius of the circle, and, as usual, let A, B, C represent the angles of the triangle.

Then, angle BOC = 2A. (Why?)

Hence, angle BOL = A.

Consequently,

$$\sin A = \sin BOL = \frac{DL}{R} = \frac{\frac{1}{2}a}{R} = \frac{a}{2R}.$$

Similarly,

$$\sin B = \frac{o}{2R}, \quad \sin C = \frac{c}{2R},$$

and it follows that

$$\frac{a}{\sin A} \quad \frac{b}{\sin B} = \frac{c}{\sin C} = 2R = D,\tag{8}$$

where D is the diameter of the circumscribed circle.

If one of the angles of the triangle is obtuse, the proof requires a slight modification.

52. Solution of Case I.

This case, in which there are two angles and a side given, can be solved by the law of sines.

Example.

Solve the triangle $A = 40^{\circ}$, $B = 60^{\circ}$, c = 50.

Solution. $C = 180^{\circ} - (A + B) = 80^{\circ}$. From the law of sines,

$$a = \frac{c \sin A}{\sin C} \quad \frac{50 \sin 40^{\circ}}{\sin 80^{\circ}} \quad \frac{50 \times 0.6428}{0.9848} = 32.6,$$

$$b = \frac{c \sin B}{\sin C} \quad \frac{50 \sin 60^{\circ}}{\sin 80^{\circ}} \quad \frac{50 \times 0.8660}{0.9848} = 44.0.$$

These results may be checked by using the relation $a/\sin A = b/\sin B$, or by means of Mollweide's equation,

$$\frac{a+b}{c} = \frac{\cos\frac{1}{2}(A-B)}{\sin\frac{1}{2}C},\tag{1}$$

which is proved in section 61. (If B > A, interchange A and B, a and b, respectively, in the formula.)

They may also be checked by using one of the following relations, proofs of which are left as exercises:

$$a = b \cos C + c \cos B,$$
 $b = a \cos C + c \cos A,$ $c = a \cos B + b \cos A.$ (2)

EXERCISES VII. A

Solve the following triangles:

1. $A = 70^{\circ}$, $B = 80^{\circ}$,a = 12.2. $A = 70^{\circ}$, $B = 80^{\circ}$,c = 12.3. $A = 58^{\circ} 10'$, $C = 84^{\circ} 40'$,b = 2.5.4. $B = 132^{\circ} 10'$, $C = 18^{\circ} 20'$,c = 10.2.5. $B = 10^{\circ} 50'$, $C = 75^{\circ} 30'$,b = 61.6. $A = 95^{\circ} 40'$, $C = 45^{\circ} 20'$,a = 8.2.

- 7. The bases of a trapezoid are 22 and 12 respectively. The angles at the extremities of one base are 65° and 40° respectively. Find the two legs.
- 8. Two observers, who are 2 miles apart on a horizontal plane, observe a balloon in the same vertical plane with themselves. The angles of elevation are 50° and 65° respectively. Find the height of the balloon, (a) if it is between the observers; (b) if it is on the same side of both of them.
- 9. One diagonal of a parallelogram is 16.5. It makes angles of 36° 10′ and 14° 30′ respectively with the sides. Find the sides.
- 10. A line AB, 125 feet long, is measured along the straight bank of a river. A point C is on the opposite bank. Angles ABC and BAC are found to be 65° 40′ and 54° 30′ respectively. How wide is the river?
- 11. From a certain point the angle of elevation of the top of a building is 38°. From a point 75 feet nearer the building the angle of elevation is 65°. Find the height of the building.
- 12. From a given position an observer notes that the angle of elevation of a rock is 47°. After walking 1000 feet towards the rock, up a slope of 32°, he finds the angle of elevation to be 75°. Find the vertical distance of the rock above each point of observation.
- 13. A flagpole 25 feet tall stands on top of a building. From a point in the same horizontal plane with the base of the building the angles of elevation of the top and the bottom of the flagpole are 61° 30′ and 56° 20′ respectively. How high is the building?
- 14. Find the radius of the circle circumscribed about the triangle for which $A = 50^{\circ}$, $B = 20^{\circ}$, a = 35.

53. Solution of Case II.

This case, in which we have two sides and the angle opposite one of them given, presents difficulties that are not found in the other cases. This is because we sometimes find two solutions for the problem; that is, we find two triangles having the given parts. Sometimes we find only one triangle, and sometimes, indeed, we do not find any; that

is, the problem is impossible. A carefully constructed figure will usually show how many solutions there are, but the following discussion explains how this can be determined accurately:

Let us suppose that the given parts are a, b, A.

We consider first the case in which A is acute. Construct

this angle, and mark off the point C on one of its sides so that AC = b. Extend the other side indefinitely. (See Fig. 47.)

The perpendicular distance from C to this extended side is $b \sin A$, and it is evident that various

cases may occur, depending upon the length of a as compared with b and with b sin A.

Let us take a pair of compasses, and with C as center and a as radius, test these various cases by constructing arcs.

If a is less than b sin A, the arc will be like MN, and there will be no triangle.

If $a = b \sin A$, the arc will be tangent to the base line (that is, the extended side) at the point B, and there will be but one triangle, the right triangle ABC.

If a is greater than b sin A but less than b, the arc will cut the base line in two points, such as B_1 and B_2 . Consequently, we get two triangles, AB_1C and AB_2C . Under these conditions, Case II is said to be **ambiguous**, that is, there is not a unique solution. Since either of the triangles satisfies the requirements of the problem, we must solve both.

If a = b, the arc passes through A, and we get but one solution, the isosceles triangle AB_3C .

If a is greater than b, there is but one triangle, such as AB_4C .

There are no other possible conditions when A is acute.

If A is a right angle, as shown in Fig. 48, it is evident that we cannot have a triangle unless a is greater than b,

under which condition we have only one construction.

If A is obtuse, as in Fig. 49, the arc having a as radius cannot

cut the base line on the proper side of the point A unless a is greater than b. Thus, we have no triangle unless a is greater than b, and then we have only one.

Our conclusions may be summarized as follows:

$$A < 90^{\circ}$$

$$a < b \sin A \quad \text{no solution}$$

$$a = b \sin A \quad \text{one solution (right triangle)}$$

$$b \sin A < a < b \quad \text{two solutions}$$

$$a = b \quad \text{one solution (isosceles triangle)}$$

$$a > b \quad \text{one solution}$$

$$A \ge 90^{\circ}$$

$$a \le b \quad \text{no solution}$$

$$a > b \quad \text{one solution}$$

If the given parts are other than a, b, A, the foregoing summary must, of course, be modified accordingly.

Case II is solved by the application of the law of sines.

Example.

Solve the triangle a = 20, b = 10, $A = 75^{\circ}$.

Solution. It is apparent here that there is only one solution. From the law of sines, we have

$$\sin B = \frac{b \sin A}{a} = \frac{10 \sin 75^{\circ}}{20} = \frac{10 \times 0.9659}{20} = 0.4830,$$

$$B = 28^{\circ} 50',$$

$$C = 180^{\circ} - (A + B) = 180^{\circ} - 103^{\circ} 50' = 76^{\circ} 10',$$

$$c = \frac{a \sin C}{\sin A} - \frac{20 \sin 76^{\circ} 10'}{\sin 75^{\circ}} \quad \frac{20 \times 0.9710}{0.9659} = 20.1.$$

The results may be checked by computing c from the relation $c = b \sin C/\sin B$, or by using Mollweide's equation (1) of the preceding section.

Note that from the value $\sin B = 0.4830$ we could also have $B = 180^{\circ} - 28^{\circ} 50' = 151^{\circ} 10'$. However, if we should attempt to find C by adding A and B and subtracting their sum from 180° , we should find $A + B = 75^{\circ} + 151^{\circ} 10' = 226^{\circ} 10'$, which is impossible. This method will always show whether there is a second solution.

EXERCISES VII. B

Solve the following triangles:

- a=81. $A = 40^{\circ}$ b = 5. **2.** $A = 30^{\circ}$, a=5. b = 8. 3. $B = 36^{\circ} 10'$, a = 21.2, b = 31.0.**4.** $C = 108^{\circ} 20'$, b = 12.2c = 25.1. 5. $A = 73^{\circ} 20'$, a = 2.5, b = 1.8. **6.** $B = 30^{\circ}$, b = 99, a = 198.7. $C = 15^{\circ} 40'$ a = 35. c = 9.5. 8. $B = 65^{\circ} 30'$, a = 17.6, b = 15.9.
- 9. A side and a diagonal of a parallelogram are 12 inches and 19 inches respectively. The angle between the diagonals, opposite the given side, is 124°. Find the length of the other diagonal and the length of the other side.
- 10. A lighthouse is 10 miles northeast of a dock. A ship leaves the dock at noon, and sails east at a speed of 12 miles an hour. At what time will it be 8 miles from the lighthouse?
- 11. A vertical pole 35 feet high, standing on sloping ground, is braced by a wire which extends from the top of the pole to a point on the ground 25 feet from the foot of the pole. If the pole subtends an angle of 30° at the point where the wire reaches the ground, how long is the wire?
- 12. A tower 125 feet high stands on the side of a hill. At a point 240 feet from the foot of the tower, measured straight down the hill, the tower subtends an angle of 25°. What angle does the side of the hill make with the horizontal?

54. Law of cosines.

In Fig. 50(a), angle A is acute; in Fig. 50(b), angle A is obtuse. In each figure let us draw the altitude CD, whose numerical value we set equal to h. Further, let AD = m. Then, in Fig. 50(a),

$$a^2 = h^2 + (c - m)^2 = h^2 + c^2 - 2 cm + m^2,$$
 (1)

while in Fig. 50(b),

$$a^2 = h^2 + (c+m)^2 = h^2 + c^2 + 2 cm + m^2.$$
 (2)

Since, in either figure, $h^2 + m^2 = b^2$, (1) and (2) reduce respectively to

$$a^2 = b^2 + c^2 - 2cm$$
, (3)
and
 $a^2 = b^2 + c^2 + 2cm$. (4)

But in Fig. 50(a),

$$m=b\cos A$$
,

and in Fig. 50(b),

$$m = b \cos(180^\circ - A) = -b \cos A.$$

Substituting these values of m in (3) and (4) respectively, we obtain

$$a^2 = b^2 + c^2 - 2bc \cos A. \tag{5}$$

Similarly,
$$b^2 = c^2 + a^2 - 2ca \cos B, \tag{6}$$

and
$$c^2 = a^2 + b^2 - 2ab \cos C.$$
 (7)

These three formulas constitute the law of cosines, which states that the square of any side of a triangle is equal to the sum of the squares of the other two sides minus twice the product of these two sides times the cosine of the angle between them.

NOTE. The law of cosines combines into one statement the following three theorems of plane geometry:

- I. The square of the hypotenuse of a right triangle is equal to the sum of the squares of the two sides.
- II. In any triangle, the square of the side opposite an acute angle is equal to the sum of the squares of the other two sides diminished by twice the product of either of those sides by the projection of the other upon it.
- III. In any obtuse triangle, the square of the side opposite the obtuse angle is equal to the sum of the squares of the other two sides increased by twice the product of one of those sides by the projection of the other upon it.

Formulas (6) and (7) may be obtained from (5) by what is termed a cyclic change of letters. This may be effected in the following way:

 $\begin{array}{c}
c & A \\
B & C
\end{array}$ Fig. 51

Arrange the letters around the circumference of a circle, as in Fig. 51. Then replace each letter in the given formula by the next in order. Thus, a new formula is obtained if

a is replaced by b,b is replaced by c,c is replaced bu a.

and similarly for the capital letters.

In this manner (5) is changed into (6), which in turn may be changed into (7).

Note that if C is a right angle, (7) becomes the Pythagorean relation, $c^2 = a^2 + b^2$, since $\cos 90^\circ = 0$.

EXERCISE

Show that if $C = 90^{\circ}$, (5) and (6) reduce to the definitions of $\cos A$ and $\cos B$ respectively.

55. Solution of Case III.

The law of cosines is useful in solving Case III, in which we have two sides and the included angle given.

Example.

Solve the triangle
$$a=25$$
, $b=30$, $C=50^{\circ}$
Solution. $c^2=a^2+b^2-2ab\cos C$
 $=(25)^2+(30)^2-2\times 25\times 30\times \cos 50^{\circ}$
 $=625+900-1500\times 0.6428=560.8$,
 $c=23.7$.

Angles A and B may be found by the law of sines.

The smaller of these angles should be found first, for if the larger is obtuse some confusion may arise.

A check is afforded by Mollweide's equation (1) of section 52.

EXERCISES VII. C

Solve the following triangles:

- 1. a = 5,c = 6, $B = 60^{\circ}$.2. a = 2,b = 3, $C = 130^{\circ}$.3. b = 1.7,c = 2.2, $A = 17^{\circ} 20'$.4. a = 0.35,b = 0.24, $C = 75^{\circ} 40'$.5. a = 230,b = 150, $C = 95^{\circ}$.
- **6.** b = 80.1, c = 106, $A = 165^{\circ} 50'$.
- 7. Two ships leave a dock at the same time. One sails northeast at the rate of 8.5 miles an hour, the other sails north at the rate of 10 miles an hour. How far apart are they at the end of 2 hours?
- 8. If the slower ship in the preceding exercise leaves at noon, and the other at 1 p.m., how far apart are they at 2 p.m.?
- 9. The diagonals of a parallelogram are 7 inches and 9 inches respectively; they intersect at an angle of 52°. Find the sides of the parallelogram.
- 10. A military observer notes two enemy batteries which subtend, at his observation post, an angle of 40°. The interval between the flash and the report of a gun is 5 seconds for one battery, and 4 seconds for the other. If the velocity of sound is 1140 feet a second, how far apart are the batteries?
- 11. Points A and B are separated by an obstacle. In order to find the distance between them, a third point C is selected which is 120 yards from A and 150 yards from B. The angle

ACB is measured to be 80° 10′. Find the distance from A to B.

12. Two circles, whose radii are 12 inches and 16 inches respectively, intersect. The angle between the tangents at either of the points of intersection is 29° 30′. Find the distance between the centers of the circles.

56. Solution of Case IV.

Case IV, three sides given, can also be solved by the law of cosines.

Example.

Solve the triangle a = 5, b = 6, c = 9.

Solution. Solving the law of cosines $a^2 = b^2 + c^2 - 2bc \cos A$ for $\cos A$, we get

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc} = \frac{36 + 81 - 25}{2 \times 6 \times 9} = \frac{92}{108} = 0.8519,$$

$$A = 31^{\circ} 35'.$$

Similarly,

$$\cos B = \frac{c^2 + a^2 - b^2}{2ca} = \frac{81 + 25 - 36}{2 \times 9 \times 5} = \frac{70}{90} = 0.7778,$$

$$B = 38^{\circ} 57';$$

$$\cos C = \frac{a^2 + b^2 - c^2}{2ab} = \frac{25 + 36 - 81}{2 \times 5 \times 6} = -\frac{20}{60} = -0.3333,$$

$$C = 180^{\circ} - 70^{\circ} 32' = 109^{\circ} 28'.$$

Check. $A + B + C = 180^{\circ}$.

EXERCISES VII. D

Find the angles of the following triangles:

1.
$$a = 2$$
, $b = 3$, $c = 4$.2. $a = 0.013$, $b = 0.014$, $c = 0.015$.3. $a = 8.4$, $b = 7.2$, $c = 6.5$.4. $a = 45$, $b = 32$, $c = 71$.5. $a = 1.4$, $b = 4.8$, $c = 5.0$.6. $a = 24$, $b = 7$, $c = 25$.7. $a = 13.2$, $b = 11.8$, $c = 20.1$.8. $a = 20.1$, $b = 21.0$, $c = 15.5$.

- **9.** Three towns, A, B, and C, are situated so that AB = 300 miles, AC = 194 miles, and BC = 160 miles, B being due north of C. Find the direction from B to A.
- 10. A ladder 20 feet long is set with one end at a horizontal distance of 7 feet from a sloping wall. The other end of the ladder reaches 15 feet up the face of the wall. What angle does the wall make with the horizontal?
- 11. The sides of a parallelogram are 11.7 inches and 15.0 inches respectively; one diagonal is 13.1 inches. Find the angles. Also find the other diagonal.
- 12. If the sides of a triangle are 16, 20, and 27 respectively, what is the length of the bisector of the largest angle?
- 13. Find the length of the median to the longest side in the preceding exercise.
- 14. Three circles of radii 3, 4, and 5 inches respectively are tangent to each other externally. Find the angles of the triangle formed by joining the centers.

*57. Application of law of cosines to Case II.

It may be noted that Case II can be handled by the law of cosines.

Example.

Solve the triangle a = 20, b = 10, $A = 75^{\circ}$.

Solution. Substitute the given values in the equation

$$a^2 = b^2 + c^2 - 2bc \cos A$$
.

This gives
$$400 = 100 + c^2 - 2 \times 10 \times c \times \cos 75^\circ$$

= $100 + c^2 - 20c \times 0.2588$,

which reduces to the quadratic equation

$$c^2 - 5.176c - 300 = 0.$$

$$\frac{1}{2}$$
 = 20.1.

There is also a negative root of the equation, but it is discarded. If there are two positive roots, it means that there are two solutions.

The method is particularly useful if it is not required to find the remaining two angles. However, if they are required, they may be found either by the law of sines or by the law of cosines.

EXERCISE

Solve, by using the law of cosines, exercise VII. B, 10; also such other exercises of VII. B as the instructor may assign.

58. Logarithmic solution of Case 1.

The solution of this case by logarithms follows the same steps as the solution in section 52. The only difference is that logarithms are employed in performing the computations.

Example.

Solve the triangle
$$A=79^{\circ}$$
 59.3', $B=46^{\circ}$ 36.4', $a=804.32$.

Solution.
$$C=180^{\circ}-(A+B).$$

$$A=\frac{a \sin B}{\sin A},$$

$$C=\frac{a \sin B}{\sin A},$$

$$C=\frac{a \sin C}{\sin A},$$

$$C=\frac{a \sin C}{\cos A},$$

$$C=\frac{a \cos A}{\cos A},$$

$$C=\frac{a \cos A$$

It should be noted that, in checking, we do not need to find the quantities (a + b)/c and $\cos \frac{1}{2}(A - B)/\sin \frac{1}{2}C$; it is sufficient if the logarithms of these quantities agree. Slight discrepancies in the last place are to be expected.

EXERCISES VII. E

Find the remaining parts, and also the areas, of the following triangles:

- $C = 81^{\circ} 24.6'$ 1. $B = 65^{\circ} 25.5'$ b = 724.32.**2.** $B = 38^{\circ} 37.4'$, $C = 75^{\circ} 32.8'$ c = 129.63. 3. $A = 48^{\circ} 29.2'$. $C = 115^{\circ} 33.8'$ a = 14.829. $C = 110^{\circ} 16.5'$ 4. $A = 68^{\circ} 41.5'$ c = 9.4326. 5. $A = 11^{\circ} 11.3'$ $C = 57^{\circ} 37.4'$ c = 444.79. 6. $B = 20^{\circ} 20.2'$ $C = 12^{\circ} 28.5'$ a = 673.75. b = 730.80.7. $A = 28^{\circ} 14.7'$ $C = 109^{\circ} 32.5'$ $C = 20^{\circ} 3.2',$ 8. $B = 102^{\circ} 38.3'$ b = 479.36. 9. $B = 30^{\circ} 36.8'$ $C = 107^{\circ} 15.5'$ b = 0.14379.**10.** $A = 36^{\circ} 14.2'$, $B = 14^{\circ} 26.7'$ c = 16.583.
- 11. One diagonal of a parallelogram is 21.871 inches. It makes angles of 43° 20.5′ and 56° 14.2′ respectively with the sides. Find the sides of the parallelogram.
- 12. At a certain point in the same horizontal plane as the base of a radio tower, the angle of elevation of the top of the tower is 13° 25.4′. At a point which is 156.25 feet nearer the tower the angle of elevation is 18° 10.5′. Find the height of the tower.

59. Logarithmic solution of Case II.

Case II can also be solved logarithmically by using the law of sines. The solution may be checked by formula (1) of section 52 (page 83) or by the law of tangents. (See section 60.)

Example.

Solve the triangle $A = 38^{\circ} 14.2'$, a = 87161, b = 9.7869.

EXERCISES VII. F

Solve all possible triangles in the following set, and find their areas:

1.
$$a = 62.518$$
, $b = 72.932$, $B = 98^{\circ} 23.5'$.2. $a = 429.15$, $c = 328.12$, $A = 130^{\circ} 33.7'$.3. $b = 3912.7$, $c = 3526.5$, $C = 35^{\circ} 25.8'$.4. $b = 12968$, $c = 1529.6$, $B = 38^{\circ} 28.6'$.5. $a = 86.425$, $c = 73.463$, $C = 49^{\circ} 18.9'$.6. $b = 223.46$, $c = 327.92$, $C = 116^{\circ} 19.6'$.

7. $b = 0.32492$,	c = 0.52392,	$B = 27^{\circ} 49.3'$.
8. $a = 5660.1$,	c = 8442.0,	$A = 42^{\circ} 6.2'$.
9. $b = 45.872$,	c = 56.321,	$B = 20^{\circ} 14.5'$.
10. $a = 57.147$,	b = 46.703,	$B = 19^{\circ} 17.8'$.
11. $a = 515.55$.	c = 524.31	$A = 80^{\circ} 52.2'$.

- 12. Two lighthouses are 3.276 miles apart, and a certain rock is 4.835 miles from one of them. The angle subtended by the two lighthouses at the rock is 15° 22′. How far is the rock from the other lighthouse? (Two solutions.)
- 13. The diagonals of a parallelogram intersect at an angle of 52° 10.2′. One diagonal is 3325 feet and one side is 2995 feet. Find the other diagonal. (Two solutions.)

60. Law of tangents.

Case III was solved by the law of cosines, but the method is not adapted to the use of logarithms. In the present sec-

tion we shall develop a formula which enables us to use logarithms in solving this case.

In triangle ABC, suppose that a is greater than b (Fig. 52). With C as center and b as radius, draw a circle cutting BC in D, and BC extended in E. Then,

$$BD = a - b, \qquad BE = a + b. \tag{1}$$

At B draw a perpendicular to BE. Draw EA and extend to meet this perpendicular in F. On DF as diameter construct a circle. This circle will pass through A; for FAD is a right angle, since it is supplementary to EAD, which is inscribed in a semicircle. The circle will also pass through B, since DBF is a right angle by construction.

It follows that $BEA = \frac{1}{2}C$, and that $BFE = \frac{1}{2}(A + B)$, since BFE is the complement of $\frac{1}{2}C$. Also, DFA and B are equal, since they are inscribed angles intercepting the same arc, AD. By subtraction we find $BFD = \frac{1}{2}(A - B)$.

Now in right triangles BDF and BEF we have respectively,

$$\frac{a-b}{BF} = \tan \frac{1}{2}(A-B), \qquad \frac{a+b}{BF} = \tan \frac{1}{2}(A+B).$$
 (2)

Dividing the first of the foregoing equations by the second, we obtain

$$\frac{a-b}{a+b} = \frac{\tan\frac{1}{2}(A-B)}{\tan\frac{1}{2}(A+B)}.$$
 (3)

This formula is one form of the **law of tangents.** Other forms may be obtained by a cyclic change of letters. If b were greater than a, we could interchange a and b, A and B, in (3). If a and b were equal the formula would still hold, but would be trivial, since both sides of the equation would be zero.

*61. Mollweide's equations.

From Fig. 52 we can obtain two formulas which are very serviceable in checking solutions of triangles.

Applying the law of sines to triangle ABD, we get

$$\frac{\sin DAB}{\sin BDA} \tag{1}$$

But $DAB = \frac{1}{2}(A - B)$, since DAB and DFB are inscribed angles intercepting the same arc. BD; and BDA

= 90° + $\frac{1}{2}$ C, since BDA is an exterior angle of the triangle ADE. Since $\sin(90^{\circ} + \frac{1}{2}C) = \cos \frac{1}{2}C$, (1) reduces to

$$\frac{a-b}{c} = \frac{\sin\frac{1}{2}(A-B)}{\cos\frac{1}{2}C}.$$
 (2)

Applying the law of sines to triangle ABE, we get

$$\frac{a+b}{c} = \frac{\sin BAE}{\sin \frac{1}{2}C}$$
 (3)

But $BAE = A + \frac{1}{2}C = \frac{1}{2}(A + B + C) + \frac{1}{2}(A - B)$ = $90^{\circ} + \frac{1}{2}(A - B)$. Thus, $\sin BAE = \cos \frac{1}{2}(A - B)$, and (3) becomes

$$\frac{a+b}{c} = \frac{\cos\frac{1}{2}(A-B)}{\sin\frac{1}{2}C}.$$
 (4)

Formulas (2) and (4) are sometimes called Mollweide's equations.* Their advantage as checking formulas is that each contains all six parts of a triangle, and hence an error will be detected by a lack of agreement between the two members of one of these equations.

62. Logarithmic solution of Case III.

We are now ready to solve Case III by means of logarithms. The two angles are found by the law of tangents; the third side is then found by the law of sines. A check may be made by the law of sines or by one of Mollweide's equations.

Example.

Solve the triangle $a=55.138,\,b=33.094,\,C=30^{\circ}$ 24.6 . Solution.

$$A + B = 180^{\circ} - C.$$

 $\tan \frac{1}{2}(A - B) = \frac{a - b}{a + b} \tan \frac{1}{2}(A + B),$

^{*}The law of tangents can be obtained from Mollweide's equations by division.

$$\log \tan \frac{1}{2}(A-B) = \log(a-b) + \operatorname{colog}(a+b) \\ + \log \tan \frac{1}{2}(A+B).$$

$$\begin{array}{c} a \\ 55.138 \\ 33.094 \\ C \\ 30^{\circ} 24.6' \\ a-b \\ 22.044 \\ a+b \\ 88.232 \\ A+B \\ \frac{1}{2}(A+B) \\ \log(a-b) \\ \log(a-b) \\ \log(a-b) \\ \log(a-b) \\ \log \tan \frac{1}{2}(A+B) \\ \log \tan \frac{1}{2}(A+B) \\ \log \tan \frac{1}{2}(A-B) \\ \frac{1}{2}(A-B) \\ \frac{1}{2}(A-B) \\ \frac{1}{2}(A+B) \\ \frac{1$$

$$c = \frac{a \sin C}{\sin A},$$
 $\log c = \log a + \log \sin C + \operatorname{colog} \sin A.$
 $\log a \mid 1.74145$
 $\log \sin C \mid 9.70431 - 10$
 $\operatorname{colog} \sin A \mid 0.05162$
 $\log c \mid 1.49738$

EXERCISES VII. G

Solve the following triangles, and find their areas:

1.
$$a = 284.3$$
, $b = 286.5$, $C = 63^{\circ} 38'$.
2. $a = 49.366$, $b = 286.5$, $C = 63^{\circ} 38'$.

3.
$$a = 36.508$$
, $b = 8.9156$, $C = 132^{\circ} 18.3'$.4. $b = 247.81$, $c = 513.58$, $A = 147^{\circ} 8.8'$.5. $a = 67.375$, $c = 36.858$, $B = 12^{\circ} 28.5'$.6. $b = 284.12$, $c = 362.12$, $A = 126^{\circ} 32.2'$.7. $a = 482.33$, $c = 395.71$, $B = 137^{\circ} 31.2'$.8. $a = 0.06350$, $c = 0.10391$, $B = 83^{\circ} 29.4'$.9. $b = 17976$, $c = 24824$, $A = 43^{\circ} 36.2'$.10. $a = 4216.4$, $b = 3125.2$, $C = 88^{\circ} 10.1'$.

- 11. Two points, A and B, are at opposite ends of a lake. To find the distance between them, a point C is selected so that it is possible to measure a straight line from A to C and also from B to C. The distances AC and BC are measured and found to be 3472 feet and 2956 feet respectively. The angle ACB is measured by means of a transit, and is found to be 46° 25′. What is the distance from A to B?
- 12. Two sides of a triangular plot of ground are 256.8 feet and 198.2 feet respectively, the included angle being 65° 22′. Find (a) the length of fence required to enclose the plot, (b) the area of the plot.

*63. Heron's formula.

In this section and the following we shall derive formulas for the logarithmic solution of Case IV.

From formula (7) of section 51 we have

$$(area)^2 = \frac{1}{4}b^2c^2\sin^2 A,$$
 (1)

and, since by exercise I. C, 24,*

$$\sin^2 A = 1 - \cos^2 A = (1 + \cos A)(1 - \cos A),$$

we have

$$(\text{area})^2 = \frac{1}{4}b^2c^2(1 + \cos A)(1 - \cos A).$$
 (2)

By the law of cosines,

$$\cos A = \frac{b^2 + c^2}{2bc} \quad a^2, \tag{3}$$

^{*} This exercise covers only the case in which A is acute. The case in which A is obtuse is covered by (4) of section 68.

and consequently,

$$1 + \cos A = \frac{2bc + b^2 + c^2 - a^2}{2bc} = \frac{(b+c)^2 - a^2}{2bc}$$
$$\frac{(b+c+a)(b+c-a)}{2bc}, \quad (4)$$

$$1 - \cos A = \frac{2bc - b^2 - c^2 + a^2}{2bc} = \frac{a^2 - (b - c)^2}{2bc}$$
$$= \frac{(a + b - c)(a - b + c)}{2bc}.$$
 (5)

If we let

$$s = \frac{1}{2}(a+b+c), (6)$$

then it can easily be shown that

$$b+c-a = 2(s-a), a+c-b = 2(s-b), a+b-c = 2(s-c).$$
 (7)

Making use of (6) and (7) in (4) and (5), we find that

$$1 + \cos A = \frac{2s(s-a)}{bc},$$

$$1 - \cos A = \frac{2(s-b)(s-c)}{bc}$$
(8)

Substituting these values in (2) and extracting the square root, we obtain **Heron's formula** for the area of a triangle:

$$area = \sqrt{s(s-a)(s-b)(s-c)}, \qquad (9)$$

in which s is defined by (6), that is, it is the semiperimeter of the triangle.

64. Half-angle formulas.

In Fig. 53 the radius of the circle inscribed in triangle ABC is r. Then r is

Fig. 53

the altitude of each of the triangles AOB, BOC, COA, which have as a common vertex the center, O, of the circle. It is readily seen that the area of the triangle ABC is given by the formula

area =
$$\frac{1}{2}r(a+b+c) = rs$$
, (1)

where, as before $s = \frac{1}{2}(a + b + c)$.

But, by Heron's formula,

$$area = \sqrt{s(s-a)(s-b)(s-c)}.$$
 (2)

Equating the two expressions for the area, we find that

$$r = \sqrt{\frac{(s-a)(s-b)(s-c)}{c}}.$$
 (3)

Now let the equal tangents from A be denoted by x, those from B by y, and those from C by z. Adding all of these tangents, we get the perimeter of the triangle, or

$$2x + 2y + 2z = a + b + c = 2s. (4)$$

From this it follows that x + y + z = s, and

$$x = s - y - z = s - a,$$
 $y = s - b,$ $z = s - c.$

Consequently,

$$\tan \frac{1}{2}A = \frac{r}{s-a}$$
, $\tan \frac{1}{2}B = \frac{r}{s-b}$, $\tan \frac{1}{2}C = \frac{r}{s-c}$, (5)

in which r is given by (3), and

$$s = \frac{1}{2}(a+b+c).$$
(6)

Formulas (5) may be termed the half-angle formulas.

65. Logarithmic solution of Case IV.

The half-angle formulas enable us to use logarithms in solving Case IV.

Example.

Solve the triangle a = 51.286, b = 65.353, c = 20.001.

Solution.
$$s = \frac{1}{2}(a+b+c).$$

$$s = \frac{1}{2}(a+b+c).$$

$$r = \sqrt{\frac{(s-a)(s-b)(s-c)}{s}},$$

$$\log r = \frac{1}{2}[\log(s-a) + \log(s-b) \\ + \log(s-c) + \operatorname{colog} s].$$

$$tan \frac{1}{2}A = \frac{r}{s-a}, \text{ etc.},$$

$$\log \tan \frac{1}{2}A = \log r - \log(s-a), \text{ etc.}$$

$$\log \tan \frac{1}{2}A = \log r - \log(s-a), \text{ etc.}$$

$$\log \tan \frac{1}{2}A = \frac{r}{s-a}, \text{ etc.},$$

$$\log \tan \frac{1}{2}A = \frac{r}{s-a} \cdot \operatorname{etc.},$$

$$\ln \cos \tan \frac{1}{2}A = \frac{1}{s-a} \cdot \operatorname{etc.},$$

$$\ln \cos \tan \frac{1}{s-a} \cdot \operatorname{etc.$$

It is an easy and valuable check to add the values of s-a, s-b, and s-c, as soon as these have been found. Since this gives 3s-a-b-c=3s-2s=s, the sum should be equal to s. This simple check often prevents working the entire problem with an incorrect value for one of the expressions s-a, s-b, s-c.

For convenience in computing $\log \tan \frac{1}{2}A$, etc., $\log r$ may be written at the bottom of a slip of paper, and placed in turn above $\log(s-a)$, $\log(s-b)$, $\log(s-c)$.

EXERCISES VII. H

Solve the following triangles, and find their areas:

1.
$$a = 125.36$$
, $b = 176.43$, $c = 101.23$.

- 11. The sides of a triangular lot are 156.8 feet, 132.4 feet, and 148.3 feet respectively. Find the radius of the largest upright eylindrical tank that can be constructed on the lot.
- 12. In a triangle ABC, a = 25.864, b = 26.232, and the median from A is 20.866. Find the angles of the triangle, also side c.

66. Summary of methods.

The methods of solving oblique triangles are recapitulated below.

Case I. Two angles and a side given.

Use law of sines. Check by Mollweide's equation.

Case II. Two sides and the angle opposite one of them given.

Use law of sines. (Law of cosines may be used.) Note number of solutions. Check by Mollweide's equation.

Case III. Two sides and the included angle given.

If the sides are given to a small number of significant figures, or if only the third side is desired, law of cosines may be used. Find angles by law of sines.

For logarithmic solution, use law of tangents to find angles. Find third side by law of sines.

Check by Mollweide's equation.

If the sides are given to a small number of significant figures, or if only one angle is desired, law of cosines may be used.

For logarithmic solution, use half-angle formulas.

Check by $A + B + C = 180^\circ$

Note that an alternative check to Mollweide's equations is provided by the law of tangents.

To find the area of a triangle we can always resort to the fundamental formula of half the product of the base and the altitude. However, the formula

area =
$$\frac{1}{2}bc \sin A$$

(and the others obtained from it by a cyclic change of letters) and Heron's formula are sometimes useful. (See also exercise VII. I, 47.)

MISCELLANEOUS EXERCISES VII. I

Solve the following triangles, and find their areas:

```
1. A = 55^{\circ} 23.2'
                      B = 72^{\circ} 20.9'
                                            a = 537.14.
 2. A = 87^{\circ} 58.4'
                       a = 119.51,
                                             b = 72.486.
                      C = 94^{\circ} 39.8',
                                           a = 4.3612.
 3. B = 19^{\circ} 58.4',
 4. A = 34^{\circ} 39.6',
                       b = 61.519,
                                             c = 47.612.
 5. a = 0.74261,
                       b = 0.10398,
                                           c = 0.67517.
                      b = 14.433,

a = 273.18,
 6. C = 11^{\circ} 14.3',
                                             c = 9.4670.
 7. C = 26^{\circ} 36.6',
                                            b = 479.63.
                       b = 1093.3,

a = 67517,
 8. a = 1960.4,
                                            c = 2601.3.
 9. B = 127^{\circ} 9.3',
                                             c = 10398.
10. B = 32^{\circ} 18.0',
                     a = 480.01,
                                            b = 312.39.
11. A = 53^{\circ} 7.8'
                       C = 45^{\circ} 40.0'
                                            b = 374.85.
                                           c = 712.25.
                      C = 87^{\circ} 20.1',
12. B = 73^{\circ} 44.4',
13. B = 104^{\circ} 15.0',
                       a=7.3515,
                                             c = 4.9764.
14. B = 75^{\circ} 45.0',
                        a = 735.15,
                                             b = 983.97.
15. a = 31.628,
                        b = 68.235, c = 52.063.
16. a = 592.45,
                                           c = 585.48.
c = 392.37.
                        b = 285.77
                      B = 102^{\circ} 40.8',
17. A = 43^{\circ} 36.2'
18. C = 43^{\circ} 35.6',
                       b = 74.591,
                                             c = 34.191.
19. C = 51^{\circ} 59.9',
                        a = 228.15,
                                             b = 109.84.
                        b = 0.32897, c = 0.43129.
20. a = 0.45562,
```

- 21. Two sides of a parallelogram are 694.50 feet and 418.32 feet respectively; one diagonal is 602.94 feet. Find the length of the other diagonal.
- 22. The bases of a trapezoid are 397.62 and 254.15 respectively;

the angles that the sides make with the longer base are 68° 39.2' and 72° 6.0'. Find the sides and the diagonals.

- 23. The sides of a triangular field are AB = 193.8 feet, BC= 139.8 feet, and CA = 218.3 feet. If the bearing of AB is N 20° E,* find the bearings of BC and CA, it being given that C is west of AB.
- 24. Let A, B, C represent three consecutive mileposts on a straight road. From each of these a distant spire is observed At A it is northeast, at B it is east, and at C it is E 30° S. Find the distance of the spire from B, and the shortest distance from the road to the spire.
- 25. Along one bank of a river with parallel banks, a surveyor lavs off a base line, AB, 600.0 feet long. From each end of the line an object C on the opposite bank is sighted. The angles which the lines of sight make with the base line are 62° 5.3' and 81° 34.7′ respectively. Find the width of the river.
- 26. Points A and B are on opposite sides of a body of water, and soundings are to be taken in the line AB at points onequarter, one-half, and three-quarters of the distance from A to B. On the shore, a base line AC is laid off, and it is found that angle $BAC = 63^{\circ}19'$, angle $ACB = 78^{\circ}43'$. What angles must be turned from CA at C in order to line up the boat from which the soundings are made at the proper points on the line AB?
- 27. In order to measure the distance between two inaccessible

points, A and B, a base line, CD, 1168.2 feet in length was laid off. The following angles were then measured: ACD $= 132^{\circ} 29', \quad ACB = 82^{\circ} 20',$ $ADC = 45^{\circ} 59', BDC = 124^{\circ}$ 48'. Find the distance AB.

28. It is required to find the horizontal distance and the verti-

cal distance from a point A to an inaccessible point D, when it is not convenient to measure a base line in the same vertical plane with D. (See Fig. 54.) Draw AB, of length c, in any

^{*} This means that the line drawn from A to B makes an angle of 20° with north, measured toward east.

convenient direction, in a horizontal plane. Let C be the foot of the perpendicular from D to this plane. Let A' and B' be the angles of elevation of D from A and B respectively. Show that

$$AC = rac{c \sin B}{\sin C}$$
, $BC = rac{c \sin A}{\sin C}$, $CD = rac{c \sin A \tan B'}{\sin C}$ $rac{c \sin B \tan A'}{\sin C}$

where A, B, C are the angles of the triangle ABC. The height CD can be found from both formulas in order to check.

- **29.** In the preceding exercise let AB = 1255 feet, $ABC = 46^{\circ}$ 27', $BAC = 54^{\circ}$ 40', $A' = 38^{\circ}$ 42'. Find AC, CD, B'.
- 30. Two boundary lines of a piece of property intersect at an angle of 85°. It is desired to cut off a triangular portion of the property which will be one acre (43560 square feet) in area by means of a straight fence. If the fence begins at a point on one boundary 250 feet from the corner of the property, and runs in a straight line to the other boundary, what angles does it make with the boundary lines, and how long is it?
- 31. To measure across a pond from A to B, a point C is selected so that AC = 489 feet, BC = 674 feet, and angle $ACB = 78^{\circ} 45'$. Find the distance AB.
- 32. The diagonals of a parallelogram are 56.5 yards and 78.4 yards respectively. They intersect at an angle of 51° 35′. Find the area of the parallelogram.
- 33. A chimney projects 6 feet above a roof. At a point 10 feet 8 inches down the roof from the base of the chimney, the chimney subtends an angle of 17° 40′. Find the angle at which the roof is inclined to the horizontal.
- 34. The sides of a triangle are 14.832, 16.987, 18.645 respectively. Find the length of the perpendicular from the vertex of the largest angle to the side opposite.
- 35. The sides of a triangular grass plot are 47.5, 64.5, and 85 feet respectively. Find the minimum radius of action of an automatic lawn sprinkler which will water all parts of the plot simultaneously.

37. The sum of the sides of a triangle is 100 inches. The angles are in the continued proportion 1:2:4. Find the sides.

38. Find the number of square yards of canvas in a conical tent, if the angle between the axis of the cone and an element is 30°, and the center pole is 14 feet high.

39. The sides of a triangular field which contains 15 acres are in the continued proportion 3:5:7. Find the sides. (1 acre = 160 sq. rd.)

40. Prove that the area of a quadrilateral is equal to half the product of its diagonals multiplied by the sine of their included angle.

41. A point A is in the same horizontal plane as the base of a radio tower. From this point a horizontal line AB, of length d, is drawn directly toward the tower. If the angle of elevation of the top of the tower from the point A is denoted by A, and the angle of elevation from the point B is denoted by B, show that the height of the tower is

$$\frac{d\sin A\sin B}{\sin(B-A)}.$$

42. A flagpole of height k stands on top of a building. From a certain point of observation in the same horizontal plane as the base of the building, the angle of elevation of the top of the pole is A, the angle of elevation of the bottom of the pole is B. Show that the distance d to the building from the point of observation, and the height h of the building are

$$d = \frac{k \cos A \cos B}{\sin(A - B)}, \qquad h = \frac{k \cos A \sin B}{\sin(A - B)}$$

43. In a triangle ABC, D is the intersection of the median from A and the bisector of angle C. Prove that

$$a \times \text{area } ABC = (a + 2b) \times \text{area } BCD.$$

44. On the sides of a triangle ABC are constructed isosceles triangles with their vertices on the circumference of the circumscribed circle of the given triangle. Show that their areas are in the ratio

$$\begin{array}{ccc} & b^2 \\ s-a & -b & -c \end{array}$$

where $s = \frac{1}{2}(a + b + c)$.

45. Prove the formulas:

$$\sin \frac{1}{2}A = \sqrt{\frac{(s-b)(s-c)}{bc}} \qquad \cos \frac{1}{2}A = \sqrt{\frac{s}{b} - a}$$

46. Prove that the area of a triangle is given by the formula

$$\frac{c^2 \sin A \sin B}{2 \sin(A+B)}.$$

- 47. Prove that the area of a triangle is given by the formula abc/4R, where R is the radius of the circumscribed circle.
- 48. Find the angle between the diagonal of a cube and the diagonal of a face of the cube, both diagonals drawn from the same vertex.
- 49. From one corner of a cube lines are drawn in two of its faces, making angles of 30° and 40° respectively with the common edge of these faces. Find the angle between the two lines.
- 50. A rectangular solid is 5 inches long, 4 inches wide, and 3 inches high. From one vertex a diagonal is drawn in each of the three faces having this vertex in common. Find the angles between these diagonals.

*67. Vectors.

If an object is at the point A in Fig. 55, and is displaced (i.e. moved) to the point B, the displacement may be repre-

sented by the directed line segment AB. (The arrow indicates the direction.) It will be noted that this line segment represents both the amount and the direction of the displacement. Now let BC represent another displacement. If an object originally at A is given both of these displacements it will arrive at the point C. The order in which these

110. 0

displacements occur is immaterial; that is, the object may be moved from A to B and then from B to C, or it may be

moved from A to D (the displacement AD is equal and parallel to BC) and then from D to C. The displacement AC is called the **resultant** of the displacements AB and AD. (Cf. section 9.) Obviously, the resultant is a diagonal of the parallelogram of which AB and AD are sides. The displacements AB and AD are called **components** of AC.

It can be proved experimentally that two forces acting at the same point also combine into a resultant according to this so-called parallelogram law. Thus, if in Fig. 55, AB and AD represent, in magnitude and direction, two forces acting on an object at A, then the diagonal AC will represent, in magnitude and direction, the resultant of the two given forces. That is, the single force represented by AC will have the same effect on the object as the two forces represented by AB and AD.

Velocities and many other directed quantities (those which have direction as well as magnitude) also combine according to the parallelogram law. Such a quantity is called a vector quantity. The directed line segment representing the vector quantity is called a vector.

The resultant of any two vectors may of course be found graphically or geometrically by completing the parallelogram of which they form the adjacent sides, and drawing the diagonal. This is called the "addition" of the vectors. They may also be "added" by placing the initial point of one on the terminal point of the other, preserving the proper direction of each, and then drawing a third vector from the initial point of the first to the terminal point of the second. This can be seen by reference to Fig. 55.

A knowledge of trigonometry is essential in dealing with vectors. Its application may be illustrated by the following examples.

Example 1.

Three forces of 20, 30, and 40 pounds, respectively, are in equilibrium. Find the angles that they make with each other.

SOLUTION. Since the forces are in equilibrium, any one of them must be equal in magnitude and opposite in direction to the

resultant of the other two. That is, we have a parallelogram in which the diagonal is, for example, 40, and in which the two sides are 20 and 30. (See Fig. 56.) Our problem is thus reduced to that of finding the angles of a triangle whose sides are 20, 30, and 40. This

Fig. 56

may be done by employing the law of cosines or the law of tangents. Since the numbers are simple, we shall use the former. Referring to the figure, we see that

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc} = \frac{(40)^2 + (30)^2 - (20)^2}{2 \cdot 40 \cdot 30} = 0.8750,$$

$$\cos B = \frac{c^2 + a^2 - b^2}{2ca} = \frac{(30)^2 + (20)^2 - (40)^2}{2 \cdot 30 \cdot 20} = -0.2500,$$

$$\cos C = \frac{a^2 + b^2 - c^2}{2ab} = \frac{(20)^2 + (40)^2 - (30)^2}{2 \cdot 20 \cdot 40} = 0.6875;$$

$$A = 28^{\circ} 57', \quad B = 104^{\circ} 29', \quad C = 46^{\circ} 34'.$$

CHECK.

$$A + B + C = 180^{\circ} 00'$$
.

Therefore.

angle between 40-lb. and 30-lb. forces = $180^{\circ} - A = 151^{\circ}$ 3′, angle between 30-lb. and 20-lb. forces = $180^{\circ} - B = 75^{\circ}$ 31′, angle between 20-lb. and 40-lb. forces = $180^{\circ} - C = 133^{\circ}$ 26′. Check. 360° 00′.

It may be noted that since the forces are represented by the sides of the triangle ABC, the forces are proportional to the sines of the opposite angles.

Example 2.

An airplane having a speed of 120 miles an hour in calm air is pointed in a direction 30° east of north. A wind having a velocity

Fig. 57

of 15 miles an hour is blowing from the northwest. Find the speed and direction of the airplane relative to the ground.

Solution. Referring to Fig. 57, we see that the vector AB represents the velocity of the airplane due to its own power, and that the vector AD represents the velocity of the wind. We draw BC parallel and equal to AD, and connect A and C. Then AC represents the velocity of the airplane relative to the ground and is the vector required.

It is readily seen, if we draw a north-south line through B,

that angle $B=30^\circ+45^\circ=75$. Thus, in the triangle ABC, we have a=15, c=120, $B=75^\circ$. The numbers are simple, and we use the law of cosines, finding

$$b^{2} = a^{2} + c^{2} - 2ac \cos B$$

$$= (15)^{2} + (120)^{2} - 2 \cdot 15 \cdot 120 \cdot \cos 75^{\circ}$$

$$= 13693.25,$$

$$b = 117.0.$$

Further,

$$\sin A = \frac{a \sin B}{7} - \frac{15 \sin 75}{117.0} = 0.1238,$$

$$A (= BAC) = 7^{\circ} 7', \qquad NAC = 30^{\circ} + 7^{\circ} 7' = 37^{\circ} 7'.$$

Thus, the airplane actually travels in a direction 37° 7′ east of north at a speed of 117 miles per hour relative to the ground

EXERCISES VII. J

- 1. Two forces of 8 and 11 pounds respectively act at an angle of 75° with each other. Find the magnitude of their resultant, and the angle that it makes with the 8-pound force.
- 2. Three forces of 7, 9, and 13 pounds respectively are in equilibrium. Find the angles that they make with each other.

- 3. A train is traveling at the rate of 30 miles an hour, and rain is falling with a velocity of 22 feet a second, at an angle of 30° with the vertical and in the same direction as the motion of the train. Find the direction of the splashes made on the windows of the coaches by the raindrops.
- 4. A motorboat which has a speed of 15 miles an hour in still water sets out to cross a stream which has a current of 5 miles an hour. The boat points upstream at an angle of 30° with the bank. Find its actual speed and the actual direction that it takes.
- **5.** If a force of 100 pounds is resolved into components of 60 pounds and 50 pounds respectively, what angle do these components make with each other?
- 6. An airplane has a speed of 150 miles an hour in still air. The pilot wishes to fly in a direction 65° east of north. A 15-mile wind is blowing from the southeast. In what direction must the airplane be pointed?
- 7. The actual velocity of a motorboat is 25 miles an hour due north. The wind is blowing from the direction N 50° W at the rate of 15 miles an hour. What is the apparent velocity of the wind, and from what direction does it seem to strike the boat?
- 8. Two forces of 475 and 530 pounds respectively, making an angle of 36° 35′ with each other, act at the same point. Find the magnitude of their resultant, and the angle that it makes with the smaller force.
- 9. Three forces of 255, 320, and 195 pounds respectively are in equilibrium. What angles do they make with each other?
- 10. An airplane has a speed of 120 miles an hour in still air. A 20-mile wind is blowing from the northwest. A pilot wishes to fly 200 miles west and return to his original position. In what direction must be point the airplane (a) on the outward trip? (b) on the return trip?

CHAPTER VIII

Trigonometric Formulas and Identities

68. Fundamental relations among the functions.

It is readily seen, from the generalized definitions of section 37, that the functions of any angle satisfy the same reciprocal relations as the functions of an acute angle, namely,

$$csc \theta = \frac{1}{\sin \theta}, \qquad \sin \theta = \csc \theta'$$

$$sec \theta = \frac{1}{\cos \theta}, \qquad \cos \theta = \frac{1}{\sec \theta}, \qquad (1)$$

$$\cot \theta = \frac{1}{\tan \theta}, \qquad \tan \theta = \frac{1}{\cot \theta}$$

The following relations can also be readily proved:

$$\tan \theta = \frac{\sin \theta}{\cos \theta}, \qquad \cot \theta = \frac{\cos \theta}{\sin \theta}.$$
 (2)

The first can be proved by making use of the definitions of the functions. For,

$$\frac{\sin \theta}{\cos \theta} = \frac{\frac{y}{r}}{x} = \frac{y}{x} = \tan \theta.$$

The second follows from the fact that $\cot \theta = 1/\tan \theta$, or it can be proved independently.

Starting from the equation

$$x^2 + y^2 = r^2, (3)$$

which may be obtained from Fig. 34 (page 67) by applying the theorem of Pythagoras, we can derive three more fundamental relations.

Dividing (3) by r^2 , we get

$$\frac{x^2}{x^2} + \frac{y^2}{x^2} = 1$$
,

which, since $x/r = \cos \theta$ and $y/r = \sin \theta$, can be written

$$\cos^2\theta + \sin^2\theta = 1. \tag{4}$$

Dividing (3) by x^2 , we get

$$1 + \frac{y^2}{x^2} = \frac{r^2}{x^2},$$

which becomes

$$1 + \tan^2 \theta = \sec^2 \theta. \tag{5}$$

Finally, dividing (3) by y^2 , we get

$$\frac{x^2}{y^2} + 1 = \frac{r^2}{y^2},$$

or

$$\cot^2\theta + 1 = \csc^2\theta. \tag{6}$$

Relations (4), (5), (6) may be termed the **Pythagorean** relations. They may be written in different forms if desirable; for example, (4) may be transformed as follows:

$$\cos^2 \theta = 1 - \sin^2 \theta$$
, or $\cos \theta = \pm \sqrt{1 - \sin^2 \theta}$.

69. Finding the other functions of an angle when one function is given.

The foregoing formulas may be used to find the values of the functions of an angle when the value of one function is given. However, the method used in section 4 for functions of acute angles is preferable.

Example 1.

Given $\sin \theta = \frac{3}{5}$; find the other functions of θ .

Solution. Since $\sin \theta = y/r$, we may take r = 5, from which

it follows that y=3. Draw a circle with its center at the origin and having a radius of 5 units (Fig. 58). Take a point on the y-axis at a distance of 3 units above the x-axis. A line through this point parallel to the x-axis will cut the circle in two points, and consequently there will be two positions for the angle θ : θ_1 in quadrant I, and θ_2 in quadrant II, as shown in the figure.

Now,

$$x^2 = 5^2 - 3^2 = 16, \quad x = \pm 4.$$

Thus, corresponding to the angle in quadrant I we have an abscissa 4, and corresponding to the angle in quadrant II we have an abscissa -4. We can now read all of the functions of both angles directly from the figure.

Quadrant I	Quadrant II
$\sin \theta_1 = \frac{3}{5},$	$\sin \theta_2 = \frac{3}{5},$
$\cos \theta_1 = \frac{4}{5},$	$\cos\theta_2=-\tfrac{4}{5},$
$\tan\theta_1=\tfrac{3}{4},$	$\tan\theta_2=-\tfrac{3}{4},$
$\csc \theta_1 = \frac{5}{3},$	$\csc \theta_2 = \frac{5}{3},$
$\sec \theta_1 = \frac{5}{4},$	$\sec \theta_2 = -\frac{5}{4},$
$\cot \theta_1 = \frac{4}{3} \cdot$	$\cot \theta_2 = -\frac{4}{3}$

Example 2.

Given $\tan \theta = 2$; find the other functions.

Solution. Since $\tan \theta = y/x$, we may take y = 2 and x = 1,

or y = -2 and x = -1 (Fig. 59). There are two angles, one in quadrant II. In either case,

$$r^2 = 1^2 + 2^2 = 5$$
, $r = \sqrt{5}$.

(We take only the positive square root as the value of r, according to the agreement of section 35.) From the figure we read

Quadrant I Quadrant III
$$\sin \theta_1 = \frac{2}{\sqrt{5}} = \frac{2\sqrt{5}}{5} \qquad \sin \theta_2 = \frac{-2}{\sqrt{5}} = -\frac{2\sqrt{5}}{5}$$

$$\cos \frac{1}{\sqrt{5}} = \frac{\sqrt{5}}{5}, \qquad \cos \theta_2 = \frac{-1}{\sqrt{5}} = \frac{\sqrt{5}}{5}$$

$$\tan \theta_1 = 2, \qquad \tan \theta_2 = \frac{-2}{-1} = 2,$$

$$\csc \theta_1 = \frac{\sqrt{5}}{2}, \qquad \csc \theta_2 = \frac{\sqrt{5}}{-2} = -\frac{\sqrt{5}}{2},$$

$$\sec \theta_1 = \sqrt{5}, \qquad \sec \theta_1 = \frac{1}{2}. \qquad \cot \theta_2 = \frac{-1}{-2} = \frac{1}{2}.$$

EXERCISES VIII. A

Find the other functions of θ , given that

- **1.** $\sin \theta = \frac{12}{13}$, θ in quadrant I.
- 2. $\cos \theta = -\frac{4}{5}$, θ in quadrant III.
- 3. $\tan \theta = -\frac{2}{3}$, θ in quadrant IV.
- **4.** cot $\theta = \frac{1}{5}$, θ in quadrant III.
- 5. $\cos \theta = -\frac{2}{5}$, θ in quadrant II.
- **6.** csc $\theta = -\frac{41}{9}$, θ in quadrant IV.
- 7. sec $\theta = \sqrt{2}$, θ in quadrant IV.
- 8. $\sin \theta = \frac{5}{6}$, θ in quadrant II.
- 9. $\tan \theta = \frac{7}{24}$, θ in quadrant III.
- 10. csc $\theta = \frac{17}{15}$, θ in quadrant II.

Find the other functions of θ if

 11. $\sin \theta = \frac{1}{2}$ 12. $\cos \theta = \frac{2}{3}$

 13. $\tan \theta = -\frac{2}{5}$ 14. $\csc \theta = \frac{4}{3}$

 15. $\cot \theta = \frac{5}{2}$ 16. $\sec \theta = \frac{5}{4}$

 17. $\sec \theta = -2$ 18. $\cos \theta = -\frac{1}{4}$

 19. $\tan \theta = 0.5$ 20. $\sin \theta = -0.5$

 21. $\csc \theta = 3$ 22. $\cos \theta = 0.2$

23.
$$\tan \theta = -\sqrt{3}$$
. **24.** $\csc \theta = -\frac{5}{3}$. **25.** $\cos \theta = -\frac{1}{3}$. **26.** $\tan \theta = -5$.

27.
$$\cot \theta = 0.1$$
. **28.** $\sin \theta = -\frac{5}{6}$. **29.** $\tan \theta = \sqrt{2}$. **30.** $\cot \theta = 1$.

31. If
$$\sin \theta = \frac{7}{25}$$
 and $\cos \phi = \frac{15}{17}$, find all possible values of

(a)
$$\tan \theta + \tan \phi$$
, (b) $\cos \theta + \sin \phi$,
(c) $5 \sin \theta - 2 \sin \phi$, (d) $\sec \theta \tan \phi$,

(e)
$$\frac{1 + \cot \theta}{\sin \phi}$$
, (f) $\frac{1 - \cos \theta}{1 + \tan \phi}$

(g)
$$(2 + \cos \theta)(3 - 2\sin \phi)$$
, (h) $(m + n \tan \theta)(m + n \cot \phi)$.

32. If
$$\tan \theta = \frac{21}{20}$$
 and $\cot \phi = -\frac{9}{40}$, find all possible values of

(a)
$$\sin \theta + \sin \phi$$
,

(a)
$$\sin \theta + \sin \phi$$
, (b) $\cos \theta + \tan \phi$,
(c) $\frac{1}{3} \sin \theta + \frac{1}{5} \sin \phi$, (d) $\sec \theta (2 - 3 \cos \phi)$,

(e)
$$\csc \theta \sec \phi$$
,

(f)
$$\sin \theta \cos \phi + \cos \theta \sin \phi$$
,

(g)
$$\frac{\sec \phi}{1 + \frac{1}{2}\cos \theta},$$

(h)
$$\frac{\tan \theta - \tan \phi}{1 + \tan \theta \tan \phi}$$

70. Identities.

Formulas (1), (2), (4), (5), (6) of section 68 are identities. in the sense that they are satisfied by all possible values of θ for which their left-hand and right-hand members are defined. By means of them it is possible to prove other identities, and consequently to change an expression involving trigonometric functions into a different but equivalent form which is more suitable for the purpose at hand.

Example 1.

Prove:

$$\tan \theta + \cot \theta = \sec \theta \csc \theta$$
.

SOLUTION. To reduce the expression on the left to that on the right we first make use of (2) of section 68:

$$\tan \theta + \cot \theta = \frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta} = \frac{\sin^2 \theta + \cos^2 \theta}{\cos \theta \sin \theta}.$$

But by (6) of section 68, the last numerator is equal to 1, and the above expression reduces to

$$\frac{-}{\cos\theta\sin\theta}$$
,

which, because of the reciprocal relations, is equal to sec θ csc θ . Thus, we have reduced the left-hand side to the right-hand side and have consequently proved the identity.

Example 2.

Prove:
$$\frac{1 + \tan^2 \theta}{\csc \theta} = \sec \theta \tan \theta.$$

SOLUTION. Applying the Pythagorean relation (5) of section 68 to the numerator on the left, we reduce the fraction to

$$\frac{\sec^{z}}{\csc \theta} \quad \frac{\sec \theta}{\cos \theta} = \sec \theta \frac{\sin \theta}{\cos \theta}.$$

$$\sin \theta$$

This, by the first of equations (2) of section 68, reduces to $\sec \theta \tan \theta$, and the identity is established.

Ordinarily, in proving an identity, one must transform one side into the other. No general method of proof can be given. However, a thorough familiarity with the fundamental identities is essential. These should be kept constantly in mind, and careful consideration should be given to the question of which one of them is appropriate to the situation. There should also be kept in mind the expression toward which one is working. It is usually better to work with the more complicated side of the identity, endeavoring to reduce it to the form of the simpler side.

Frequently, if all functions are expressed in terms of sines and cosines, a clue will be obtained as to the next step to take.

If one side of the identity involves but one function, it may be best to express everything on the other side in terms of that function.

It is usually best to avoid radical expressions when possible.

EXERCISES VIII. B

Prove the following identities:

1.
$$\cos \theta \tan \theta = \sin \theta$$
.

2.
$$\cot \theta \cos \theta = \csc \theta - \sin \theta$$
.

3.
$$\frac{1+\sin\,\theta}{\cos\,\theta} = \frac{\cos\,\theta}{1-\sin\,\theta}$$
.

4.
$$(\tan \theta - \sin \theta)^2 + (1 - \cos \theta)^2 = (1 - \sec \theta)^2$$
.

5.
$$\frac{\cos^2 \theta}{1 - \sin \theta} = 1 + \sin \theta.$$

6.
$$\cot \theta + \tan \theta = \frac{\csc^2 \theta + \sec^2 \theta}{\csc \theta \sec \theta}$$
.

7.
$$\frac{\sin \theta + \tan \theta}{\cot \theta + \csc \theta} = \sin \theta \tan \theta.$$

8.
$$\frac{1-2\cos^2\theta}{\sin\theta\cos\theta} = \tan\theta \quad \cot\theta$$

9.
$$(\sin \theta + \cos \theta)^2 + (\sin \theta - \cos \theta)^2 = 2$$
.

10.
$$\sin^4 \theta - \cos^4 \theta = \sin^2 \theta - \cos^2 \theta$$
.

11.
$$\tan^2 \theta - \sin^2 \theta = \tan^2 \theta \sin^2 \theta$$
.

12.
$$\sin^6 \theta + \cos^6 \theta = 1 - 3 \sin^2 \theta \cos^2 \theta$$
.

13.
$$\frac{\csc \theta}{\csc \theta - 1} + \frac{\csc \theta}{\csc \theta + 1} = 2 \sec^2 \theta.$$

14.
$$\frac{1-\tan\theta}{1+\tan\theta} = \frac{\cot\theta-1}{\cot\theta+1}$$

15.
$$\frac{\tan^2\theta}{\sec^2\theta} + \frac{\cot^2\theta}{\csc^2\theta} = 1.$$

16.
$$\frac{\sin \theta + \cos \phi}{\sin \theta - \cos \phi} = \frac{\sec \phi + \csc \theta}{\sec \phi - \csc \theta}.$$

17.
$$(\tan \theta + \cot \phi)(\cot \theta - \tan \phi) = \cot \theta \cot \phi - \tan \theta \tan \phi$$
.

18.
$$(\tan \theta - \sec \phi)(\cot \theta + \cos \phi) = \tan \theta \cos \phi - \cot \theta \sec \phi$$
.

19.
$$\sin^2 \theta (1 + \cot^2 \theta) = 1$$
.

20.
$$\cos \theta (1 + \tan^2 \theta) = \sec \theta$$
.

21.
$$\sin \theta (1 + \cot^2 \theta) = \csc \theta$$
.

22.
$$\frac{1+\sec\theta}{1-\sec\theta}=\frac{\cos\theta+1}{\cos\theta-1}.$$

23.
$$\sec \theta - \sin \theta \tan \theta = \cos \theta$$
.

24.
$$\frac{1 - \tan^2 \theta}{1 - \cot^2 \theta} = 1 - \sec^2 \theta$$

25.
$$\tan \theta + \tan(90^{\circ} - \theta) = \sec \theta \csc \theta$$
.

26.
$$\frac{\tan \theta}{\tan \theta} - \frac{\sec \theta + 1}{\sec \theta - 1}$$
.

27.
$$\frac{\sin \theta}{1 + \cos \theta} = \csc \theta - \cot \theta$$
.

28.
$$\sec^2 \theta - \tan^4 \theta = 1 + 2 \tan^2 \theta$$
.

29.
$$\frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} = \cos^2 \theta - \sin^2 \theta$$
.

30.
$$\frac{\tan \theta - \tan \phi}{\cot \theta - \cot \phi} = -\tan \theta \tan \phi.$$

31.
$$\frac{\cos \theta}{\cos \theta - \sin \theta} = \frac{1}{1 - \tan \theta}.$$

32.
$$\frac{\tan \theta}{\sin^2 \theta} = \pm \sqrt{\frac{1+\tan^2 \theta}{1-\cos^2 \theta}}$$

33.
$$\frac{\tan \theta + \tan \phi}{\cot \theta + \cot \phi} = \tan \theta \tan \phi.$$

34.
$$(1 - \cos^2 \theta)(1 + \cot^2 \theta) = 1$$
.

35.
$$\frac{1}{\sec \theta + \tan \theta} = \sec \theta - \tan \theta.$$

36.
$$\frac{\sin \theta + \tan \theta}{1 + \sec \theta} = \sin \theta.$$

37.
$$\frac{\cos \theta}{\sec \theta} = \frac{\sin \theta}{\cot \theta} = \frac{\cos \theta \cot \theta - \tan}{\csc \theta}$$

38.
$$\frac{\cot \theta}{1-\sin \theta} = \frac{\cot \theta}{\cot \theta - \cos \theta}$$

39.
$$\frac{\cos \theta}{1 - \tan \theta} + \frac{\sin \theta}{1 - \cot} = \sin \theta + \cos \theta.$$

40. Express $\sin \theta$ in terms of $\tan \theta$.

SOLUTION.

$$\frac{\sin \theta}{\cos \theta} = \tan \theta,$$

$$\frac{\sin^2 \theta}{1 - \sin^2 \theta} = \tan^2 \theta,$$

$$\sin^2 \theta = \tan^2 \theta - \tan^2 \theta \sin^2 \theta,$$

$$(1 + \tan^2 \theta) \sin^2 \theta = \tan^2 \theta,$$

$$\sin^2 \theta = \frac{\tan^2 \theta}{1 + \tan^2 \theta},$$

$$\sin \theta = \pm -\frac{\tan \theta}{1 + \tan^2 \theta}$$

The exercise can also be solved as follows: Draw a right triangle having an acute angle θ . Mark the opposite side $\tan \theta$, the adjacent side 1. Then the hypotenuse will be $\sqrt{1 + \tan^2 \theta}$. The value of $\sin \theta$ can now be read from the figure. (Cf. section 69.) The double sign should be used with the radical.

41. Construct a table giving each of the functions in terms of the other functions.

71. Directed line segments.

In defining rectangular coordinates, we introduced the idea of a positive and a negative direction on a line. Thus, the positive direction on the x-axis is to the right, the positive direction on the y-axis is upward. Any line, such as one of these axes, on which the positive direction has

been specified, is a directed line. A portion of a directed line, such as AB in Fig. 60 in Fig. 60, is called a directed line segment. The point A may be called the initial point and the point B the terminal point of the line segment AB.

Two line segments may be added by placing the initial point of the second on the terminal point of the first; the sum is the segment from the

initial point of the first segment to the terminal point of

the second. (It is immaterial which segment is considered the first and which the second.) The proper direction must, of course, be preserved for each segment. Thus, if A, B, C are points arranged in any order on a directed line, we may write

$$AB + BC = AC$$
,

which merely states that if we go from A to B and then from B to C, we reach the same position that we reach by going directly from A to C.

Subtraction of two directed line segments is accomplished by changing the direction of the segment to be subtracted, and then proceeding as in addition.

Several segments can be added by carrying out successively the process described for two segments.

72. Functions of the sum and the difference of two angles.

To derive a formula for $\cos(\theta + \phi)$, place the angles θ and ϕ with reference to the coordinate axes as shown in Fig. 62. Take a point P on the terminal side of the angle $\theta + \phi$, and drop a perpendicular PQ to the terminal side of θ . Draw PM and QN perpendicular to the x-axis.

Now, if we take into consideration the signs of the line segments

sideration the signs of the line segments involved, we have

$$OM = ON + NM. (1)$$

But $OM = OP \cos(\theta + \phi), \quad ON = OQ \cos \theta,$ $NM = QP \cos(90^{\circ} + \theta) = -QP \sin \theta.$ (2)

Substituting these values in (1), we get

$$OP \cos(\theta + \phi) = OQ \cos \theta - QP \sin \theta$$
.

Division by OP gives

$$\cos(\theta + \phi) = \frac{OQ}{OP}\cos\theta - \frac{QP}{OP}\sin\theta.$$

But

$$\frac{OQ}{OP} = \cos \phi, \qquad \frac{QP}{OP} = \sin \phi,$$

and consequently,

$$\cos(\theta + \phi) = \cos\theta\cos\phi - \sin\theta\sin\phi. \tag{3}$$

The foregoing proof will hold for all values of θ and φ if we are careful to take into consideration the proper sign of each function and of each line segment involved. It will be necessary, however, to consider as negative a segment measured

Fig. 63

backward along the terminal side of an angle, such as segment OP in Fig. 63. In this figure r would be considered negative.

If in (3) we replace ϕ by $-\phi$, we get

$$\cos(\theta - \phi) = \cos\theta \cos(-\phi) - \sin\theta \sin(-\phi),$$
or
$$\cos(\theta - \phi) = \cos\theta \cos\phi + \sin\theta \sin\phi.$$
 (4)

To develop a formula for $\sin(\theta + \phi)$, we use (3), replacing θ by $90^{\circ} - \theta$, and ϕ by $-\phi$. We get

$$\cos(90^{\circ} - \theta - \phi) = \cos[(90^{\circ} - \theta) + (-\phi)] = \cos(90^{\circ} - \theta)\cos(-\phi) - \sin(90^{\circ} - \theta)\sin(-\phi),$$

which becomes

$$\sin(\theta + \phi) = \sin\theta\cos\phi + \cos\theta\sin\phi. \tag{5}$$

The foregoing formula can also be derived by dropping

perpendiculars from the points P and Q in Fig. 62 to the y-axis, and proceeding somewhat as in the proof of (3).

If in (5) we replace ϕ by $-\phi$, we get

$$\sin(\theta - \phi) = \sin \theta \cos(-\phi) + \cos \theta \sin(-\phi),$$
or
$$\sin(\theta - \phi) = \sin \theta \cos \phi - \cos \theta \sin \phi.$$
 (6)

Formulas (3) and (5) are sometimes called the addition formulas for the cosine and sine respectively. Similarly, (4) and (6) may be called their subtraction formulas.

To find the tangent of $\theta + \phi$ and of $\theta - \phi$, we proceed as follows:

$$\tan(\theta + \phi) = \frac{\sin(\theta + \phi)}{\cos(\theta + \phi)} = \frac{\sin\theta\cos\phi + \cos\theta\sin\phi}{\cos\theta\cos\phi - \sin\theta\sin\phi}$$

If it is desired to express $\tan(\theta + \phi)$ in terms of $\tan \theta$ and $\tan \phi$, we divide numerator and denominator of the last fraction by $\cos \theta \cos \phi$, obtaining

$$\tan(\theta + \phi) = \frac{\frac{\sin \theta \cos \phi}{\cos \theta \cos \phi} + \frac{\cos \theta \sin \phi}{\cos \theta \cos \phi}}{\frac{\cos \theta \cos \phi}{\cos \theta \cos \phi} - \frac{\sin \theta \sin \phi}{\cos \theta \cos \phi}}$$

which reduces to

$$\tan(\theta + \phi) = \frac{\tan \theta + \tan \phi}{1 - \tan \theta \tan \phi}.$$
 (7)

In like manner, or by replacing ϕ by $-\phi$ in (7), we find that

$$\tan(\theta - \phi) = \frac{\tan \theta - \tan \phi}{1 + \tan \theta \tan \phi}.$$
 (8)

For the cotangent we obtain the following formulas:

$$\cot(\theta + \phi) = \frac{\cot \theta \cot \phi - 1}{\cot \phi + \cot \theta} \tag{9}$$

$$\cot(\theta - \phi) = \frac{\cot\theta\cot\phi + 1}{\cot\phi - \cot\theta}$$
 (10)

Proofs of (9) and (10) are left as exercises.

EXERCISES VIII. C

1. Find $\sin 75^{\circ}$ by setting $\theta = 45^{\circ}$, $\phi = 30^{\circ}$ in (5) of section 72.

Solution.
$$\sin 75^{\circ} = \sin(45^{\circ} + 30^{\circ})$$

 $= \sin 45^{\circ} \cos 30^{\circ} + \cos 45^{\circ} \sin 30^{\circ}$
 $= \frac{\sqrt{2}}{2} \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \frac{1}{2} = \frac{1}{4} (\sqrt{6} + \sqrt{2}).$

- 2. Find cos 75°, tan 75°, cot 75°.
- 3. Find sin 15°, cos 15°, tan 15°, cot 15°.
- **4.** Verify the values of $\sin 90^{\circ}$, $\cos 90^{\circ}$, $\cot 90^{\circ}$ by setting $\theta = 60^{\circ}$, $\phi = 30^{\circ}$ in (5), (3), (7), respectively, of section 72.
- 5. Verify the values of $\sin 30^{\circ}$, $\cos 30^{\circ}$, $\tan 30^{\circ}$, $\cot 30^{\circ}$ by setting $\theta = 60^{\circ}$, $\phi = 30^{\circ}$ in (6), (4), (8), (10), respectively, of section 72.
- **6.** Find sin 105°, cos 105°, tan 105°, cot 105°.
- 7. Prove the formulas for $\sin(90^{\circ} + \theta)$, $\cos(90^{\circ} + \theta)$, $\tan(90^{\circ} + \theta)$, $\cot(90^{\circ} + \theta)$ by means of the addition formulas.
- 8. Prove the formulas for $\sin(180^{\circ} \theta)$, $\cos(180^{\circ} \theta)$, $\tan(180^{\circ} \theta)$, $\cot(180^{\circ} \theta)$ by means of the subtraction formulas.

Simplify the following expressions:

9.
$$\sin(\theta + 30^{\circ}) + \cos(\theta + 60^{\circ})$$
.

10.
$$\sin(\theta + 60^{\circ}) - \cos(\theta + 30^{\circ}).$$

11.
$$\tan(\theta + 45^{\circ}) + \cot(\theta - 45^{\circ})$$
.

12.
$$\cos(30^{\circ} - \theta) - \cos(30^{\circ} + \theta)$$
.

Prove the following identities:

13.
$$\sin(\theta + \phi) \sin(\theta - \phi) = \sin^2 \theta - \sin^2 \phi$$
.

14.
$$\cos(\theta + \phi)\cos(\theta - \phi) = \cos^2\theta - \sin^2\phi$$
.

15.
$$\tan(45^{\circ} + \theta) = \frac{1 + \tan \theta}{1 - \tan \theta}$$
.

16.
$$\sin(45^{\circ} + \theta) \cos(45^{\circ} + \theta) = \frac{1}{2}(\cos^2 \theta - \sin^2 \theta).$$

17.
$$\sin(\theta + 30^{\circ})\cos(\theta + 60^{\circ}) = \frac{1}{4}(\cos^2\theta - 3\sin^2\theta)$$
.

- 18. Given $\sin \theta = \frac{3}{5}$, $\sin \phi = \frac{5}{13}$, θ and ϕ both acute. Find
 - (a) $\sin(\theta + \phi)$, (b) $\cos(\theta + \phi)$, (c) $\tan(\theta + \phi)$, (d) $\cot(\theta + \phi)$, (e) $\sin(\theta \phi)$, (f) $\cos(\theta \phi)$,

 - (g) $\tan(\theta \phi)$, (h) $\cot(\theta \phi)$, (i) $\sin(\phi \theta)$,
 - (j) $\cos(\phi \theta)$, (k) $\tan(\phi \theta)$, (l) $\cot(\phi \theta)$.
- 19. Given $\sin \theta = \frac{8}{17}$, $\tan \phi = \frac{9}{40}$, θ in quadrant II, ϕ in quadrant III. Find
 - (a) $\sin(\theta + \phi)$, (b) $\cos(\theta + \phi)$, (c) $\tan(\theta + \phi)$,
 - $(f) \cos(\theta \phi),$ (d) $\cot(\theta + \phi)$, (e) $\sin(\theta - \phi)$,
 - (g) $\tan(\theta \phi)$, (h) $\cot(\theta - \phi)$.
- 20. Given $\cos \theta = -\frac{4}{5}$, $\sin \phi = \frac{7}{25}$, θ in quadrant II. Find all possible values of the following:
 - (a) $\sin(\theta + \phi)$, (b) $\cos(\theta + \phi)$, (c) $\tan(\theta + \phi)$,
 - (f) $\cos(\theta \phi)$. (d) $\cot(\theta + \phi)$, (e) $\sin(\theta - \phi)$,
 - (g) $tan(\theta \phi)$, (h) $cot(\theta \phi)$.
- 21. Given $\tan \theta = \frac{8}{15}$, $\cot \phi = \frac{12}{5}$. Find all possible values of
 - (a) $\sin(\theta + \phi)$, (b) $\cos(\theta + \phi)$, (c) $\tan(\theta + \phi)$,
 - (e) $\sin(\theta \phi)$, (f) $\cos(\theta \phi)$, (d) $\cot(\theta + \phi)$,
 - (g) $tan(\theta \phi)$, (h) $cot(\theta \phi)$.

Prove:

- 22. $\sin(\theta + \phi + \psi) = \sin\theta\cos\phi\cos\psi + \cos\theta\sin\phi\cos\psi$ $+\cos\theta\cos\phi\sin\psi-\sin\theta\sin\phi\sin\psi$.
- 23. $\cos(\theta + \phi + \psi) = \cos\theta\cos\phi\cos\psi \cos\theta\sin\phi\sin\psi$ $-\sin\theta\cos\phi\sin\psi-\sin\theta\sin\phi\cos\psi$.
- **24.** $tan(\theta + \phi + \psi)$ $= \frac{\tan \theta + \tan \phi + \tan \psi - \tan \theta \tan \phi \tan \psi}{1 - \tan \phi \tan \psi - \tan \psi \tan \theta - \tan \theta \tan \phi}$
- **25.** $\cot(\theta + \phi + \psi)$ $\cot \theta \cot \phi \cot \psi - \cot \theta - \cot \phi - \cot \psi$ $\cot \phi \cot \psi + \cot \psi \cot \theta + \cot \phi \cot \phi - 1$

73. Functions of twice an angle.

If, in formulas (5), (3), (7), (9) of section 72, we substitute θ for ϕ , we obtain the following results:

$$\sin(\theta + \theta) = \sin \theta \cos \theta + \cos \theta \sin \theta,$$

or
$$\sin 2\theta = 2 \sin \theta \cos \theta$$
; (1)

$$\cos(\theta + \theta) = \cos\theta \cos\theta - \sin\theta \sin\theta,$$

or
$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta;$$
 (2)

$$\tan(\theta + \theta) = \frac{\tan \theta + \tan \theta}{1 - \tan \theta \tan \theta}$$

or

$$\tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta}, \qquad (3)$$

$$\cot(\theta + \theta) = \frac{\cot \theta \cot \theta - 1}{\cot \theta + \cot \theta}$$

or

$$\cot 2\theta = \frac{\cot^2 \theta - 1}{2 \cot \theta}. \tag{4}$$

Two other useful formulas for $\cos 2\theta$ may be derived as follows: Remembering that

$$\sin^2\theta = 1 - \cos^2\theta, \qquad \cos^2\theta = 1 - \sin^2\theta,$$

and substituting these separately in (2), we get

$$\cos 2\theta = 2\cos^2\theta - 1,\tag{5}$$

and

$$\cos 2\theta = 1 - 2\sin^2\theta. \tag{6}$$

74. Functions of half an angle.

From the relation connecting sine and cosine, and the formula for the cosine of twice an angle, we have

$$\cos^2\phi + \sin^2\phi = 1,\tag{1}$$

$$\cos^2\phi - \sin^2\phi = \cos 2\phi. \tag{2}$$

Adding these two equations, we get

$$2\cos^2\phi = 1 + \cos 2\phi.$$

From this we get

$$\cos^2 \phi = \frac{1 + \cos 2\phi}{2}$$

$$\cos \phi = \pm \sqrt{\frac{1 + \cos 2\phi}{2}}$$

or

If ϕ is replaced by $\frac{1}{2}\theta$, this becomes

$$\cos \frac{1}{2}\theta = \pm \sqrt{\frac{1}{2}} + \cos \theta \tag{3}$$

By subtracting (2) from (1) and proceeding as before, we obtain the formula

$$\sin \phi = \pm \sqrt{\frac{1 - \cos 2\phi}{2}}$$

which is equivalent to

$$\sin \frac{1}{2}\theta = \pm \sqrt{\frac{1}{1}} - \cos \theta \tag{4}$$

The sign to be used in the foregoing formulas depends upon the quadrant in which $\frac{1}{2}\theta$ lies.

Dividing (4) by (3), we get

$$\tan \frac{1}{2}\theta = \pm \sqrt{\frac{1}{1} - \cos \theta} \tag{5}$$

Multiplying numerator and denominator of the right-hand side of this last equation by $\sqrt{1-\cos\theta}$, we get

$$\tan \frac{1}{2}\theta = \frac{1 - \cos \theta}{\pm \sqrt{1 - \cos^2 \theta}}$$

or

$$\tan \frac{1}{2}\theta = \frac{1-\cos\theta}{\sin\theta}.$$
 (6)

Here the ambiguous sign (\pm) is not needed. For the numerator of the fraction in (6) is always positive (or zero),

so that the sign of the right-hand member depends upon the denominator, namely, $\sin \theta$. Now $\sin \theta$ will be positive if θ is in either of the first two quadrants, and negative otherwise. But if θ is in quadrant I or quadrant II, $\frac{1}{2}\theta$ will be in quadrant I; if θ is in quadrant III or quadrant IV, $\frac{1}{2}\theta$ will be in quadrant II. However, $\tan \frac{1}{2}\theta$ will be positive if $\frac{1}{2}\theta$ is in quadrant I, negative if $\frac{1}{2}\theta$ is in quadrant II. Thus, $\sin \theta$ and $\tan \frac{1}{2}\theta$ will always have the same sign, and there is no ambiguity.

If we multiply both numerator and denominator of the fraction in (5) by $\sqrt{1 + \cos \theta}$, and reduce, we get

$$\tan \frac{1}{2}\theta = \frac{\sin \theta}{1 + \cos \theta},\tag{7}$$

where again there is no ambiguity. Similarly, we obtain the formulas

$$\cot \frac{1}{2}\theta = \pm \sqrt{\frac{1+\cos\theta}{1-\cos\theta}} \tag{8}$$

$$\cot \frac{1}{2}\theta = \frac{\sin \theta}{1 - \cos \theta}, \tag{9}$$

$$\cot \frac{1}{2}\theta = \frac{1+\cos\theta}{\sin\theta}.$$
 (10)

EXERCISES VIII. D

- 1. Verify the formulas for $\sin 2\theta$, $\cos 2\theta$, $\tan 2\theta$, $\cot 2\theta$ by setting $\theta = 30^{\circ}$.
- 2. Verify the formulas for $\sin 2\theta$, $\cos 2\theta$, $\cot 2\theta$ by setting $\theta = 45^{\circ}$.
- 3. Find sin 120°, cos 120°, tan 120°, cot 120° by using the functions of 60°.
- **4.** Verify the formulas for $\sin \frac{1}{2}\theta$, $\cos \frac{1}{2}\theta$, $\tan \frac{1}{2}\theta$, $\cot \frac{1}{2}\theta$ by setting $\theta = 60^{\circ}$.
- 5. Find sin 15°, cos 15°, tan 15°, cot 15° by setting $\theta = 30^{\circ}$ in the formulas for the functions of $\frac{1}{2}\theta$.

(h) $\cot \frac{1}{2}\theta$.

- **6.** Given $\cos \theta = \frac{24}{25}$, θ an acute angle. Find
 - (c) $\tan 2\theta$, (d) $\cot 2\theta$,
 - (a) $\sin 2\theta$, (b) $\cos 2\theta$, (e) $\sin \frac{1}{2}\theta$, (f) $\cos \frac{1}{2}\theta$, (g) $\tan \frac{1}{2}\theta$, (h) $\cot \frac{1}{2}\theta$.
- 7. Given $\sin \theta = \frac{40}{41}$. Find
 - (c) $\tan 2\theta$, (d) $\cot 2\theta$,
 - (a) $\sin 2\theta$, (b) $\cos 2\theta$, (e) $\sin \frac{1}{2}\theta$, (f) $\cos \frac{1}{2}\theta$, (h) $\cot \frac{1}{2}\theta$. (g) $\tan \frac{1}{2}\theta$,
- 8. Given $\tan \theta = -2$. Find
 - (c) $\tan 2\theta$, (d) $\cot 2\theta$, (a) $\sin 2\theta$, (b) $\cos 2\theta$,
 - (e) $\sin \frac{1}{2}\theta$, (f) $\cos \frac{1}{2}\theta$, (g) $\tan \frac{1}{2}\theta$,

Prove the following identities:

9.
$$\tan(45^{\circ} + \frac{1}{2}\theta) = \frac{1 + \cos\theta + \sin\theta}{1 + \cos\theta - \sin\theta}$$

10.
$$\sin \theta = \frac{2 \tan \frac{1}{2} \theta}{1 + \tan^2 \frac{1}{2} \theta}$$
.

- 11. $\tan \frac{1}{2}\theta + \cot \frac{1}{2}\theta = 2 \csc \theta$.
- 12. A picture of height 5 feet hangs on the wall, with its lower edge 4 feet from the floor. At a certain point on the floor, directly in front of the picture, the angle subtended by the picture (that is, by its vertical dimension of 5 feet) is equal to the angle of elevation of the lower edge of the picture. How far is this point from the wall?

Prove:

- 13. $\sin \frac{1}{2}\theta + \cos \frac{1}{2}\theta + \pm \sqrt{1 + \sin \theta}$.
- 14. $\sin \frac{1}{2}\theta \qquad \cos \frac{1}{2}\theta = \pm \sqrt{1 \sin \theta}$.

75. Sums and differences of functions.

By the addition and subtraction formulas for the sine and cosine, we have

$$\sin(x+y) = \sin x \cos y + \cos x \sin y, \tag{1}$$

$$\sin(x - y) = \sin x \cos y - \cos x \sin y, \tag{2}$$

$$\cos(x+y) = \cos x \cos y - \sin x \sin y, \tag{3}$$

$$\cos(x - y) = \cos x \cos y + \sin x \sin y. \tag{4}$$

Addition of (1) and (2) gives

$$\sin(x+y) + \sin(x-y) = 2\sin x \cos y. \tag{5}$$

If we let

$$x + y = \theta, \qquad x - y = \phi, \tag{6}$$

and solve for x and y we find that

$$x = \frac{1}{2}(\theta + \phi), \qquad y = \frac{1}{2}(\theta - \phi).$$
 (7)

Thus, (5) becomes

$$\sin \theta + \sin \phi = 2 \sin \frac{1}{2}(\theta + \phi) \cos \frac{1}{2}(\theta - \phi). \quad (8)$$

Subtracting (2) from (1) gives

$$\sin(x+y) - \sin(x-y) = 2\cos x \sin y,$$

which, by the substitutions (6) and (7), becomes

$$\sin \theta - \sin \phi = 2 \cos \frac{1}{2}(\theta + \phi) \sin \frac{1}{2}(\theta - \phi). \tag{9}$$

From (3) and (4) we obtain, in a similar manner,

$$\cos\theta + \cos\phi = 2\cos\frac{1}{2}(\theta + \phi)\cos\frac{1}{2}(\theta - \phi), \quad (10)$$

$$\cos \theta - \cos \phi = -2 \sin \frac{1}{2}(\theta + \phi) \sin \frac{1}{2}(\theta - \phi).$$
 (11)

EXERCISES VIII. E

Represent as a product:

- 1. $\sin 40^{\circ} + \sin 20^{\circ}$.
- 3. $\cos 60^{\circ} + \cos 40^{\circ}$.
- 5. $\cos 38^{\circ} + \cos 42^{\circ}$.
- 7. $\sin 40^{\circ} + \sin 25^{\circ}$.
- 9. $\sin 32^{\circ} + \cos 22^{\circ}$.

Suggestion. $\cos 22^{\circ} = \sin(90^{\circ} - 22^{\circ})$.

- 10. $\cos 10^{\circ} + \sin 17^{\circ}$.
- 12. $\sin 4\theta \sin 2\theta$.
- 14. $\cos 5\theta + \cos 9\theta$.
- **16.** $\cos 7\theta \cos 3\theta$.

- 2. $\cos 80^{\circ} \cos 20^{\circ}$.
- **4.** $\sin 30^{\circ} \sin 80^{\circ}$.
- 6. $\sin 35^{\circ} + \sin 25^{\circ}$.
- 8. $\cos 17^{\circ} \cos 36^{\circ}$.
- 11. $\sin 44^{\circ} + \cos 40^{\circ}$.
- 13. $\sin 3\theta + \sin \theta$.
- **15.** $\sin \theta + \sin \theta$.
- 17. $\cos 4\theta + \cos 3\theta$.

Prove:

18.
$$\sin \theta + \cos \theta = \sqrt{2} \cos(\theta - 45^{\circ})$$
.
Suggestion. $\cos \theta = \sin(90^{\circ} - \theta)$.

19.
$$\frac{\sin \theta + \sin \phi}{\cos \theta - \cos \phi} = \cot \frac{1}{2}(\phi - \theta).$$

20.
$$\frac{\sin \theta - \sin \phi}{\sin \theta + \sin \phi} = \frac{\tan \frac{1}{2}(\theta - \phi)}{\tan \frac{1}{2}(\theta + \phi)}$$

21.
$$\frac{\sin 3\theta + \sin 5\theta}{\cos 3\theta - \cos 5\theta} = \cot \theta.$$

22.
$$\frac{\sin 75^{\circ} - \sin 15}{\cos 75^{\circ} + \cos 15^{\circ}}$$
 $\frac{\sqrt{3}}{3}$

23.
$$\cos 20^{\circ} + \cos 100^{\circ} + \cos 140^{\circ} = 0$$
.

24.
$$\sin \theta + \sin 3\theta + \sin 5\theta + \sin 7\theta = 4 \cos \theta \cos 2\theta \sin 4\theta$$
.

25.
$$\cos \theta + \cos 3\theta + \cos 5\theta + \cos 7\theta = 4 \cos \theta \cos 2\theta \cos 4\theta$$
.

MISCELLANEOUS EXERCISES VIII. F

Prove:

1.
$$\sin 3\theta = 3 \sin \theta - 4 \sin^3 \theta$$
.

2.
$$\cos 3\theta = 4 \cos^3 \theta - 3 \cos \theta$$
.

3.
$$\tan 3\theta = \frac{3 \tan \theta - \tan^3 \theta}{1 - 3 \tan^2 \theta}$$
.

$$\mathbf{4.} \cot 3\theta = \frac{\cot^3 \theta - 3 \cot \theta}{3 \cot^2 \theta - 1}.$$

5.
$$\sin 4\theta = 4 \sin \theta \cos \theta (1 - 2 \sin^2 \theta)$$

6.
$$\cos 4\theta = 8 \cos^4 \theta - 8 \cos^2 \theta + 1$$
.

7.
$$\tan 4\theta = \frac{4 \tan \theta (1 - \tan^2 \theta)}{1 - 6 \tan^2 \theta + \tan^4 \theta}$$

8.
$$\cot 4\theta = \frac{\cot^4 \theta - 6 \cot^2 \theta + 1}{4 \cot \theta (\cot^2 \theta - 1)}$$

9.
$$\tan \theta + \tan \phi = \frac{\sin(\theta + \phi)}{\cos \theta \cos \phi}$$

10.
$$\tan \theta - \tan \phi = \frac{\sin(\theta - \phi)}{\cos \theta \cos \phi}$$

11.
$$\cot \theta + \cot \phi = \frac{\sin(\theta + \phi)}{\sin \theta \sin \phi}$$

12.
$$\cot \theta - \cot \phi = \frac{\sin(\phi - \theta)}{\sin \theta \sin \phi}$$

13.
$$\frac{\sin \theta + \sin \phi}{\cos \theta + \cos \phi} = \tan \frac{1}{2}(\theta + \phi).$$

14.
$$\frac{\cos \theta - \cos \phi}{\cos \theta + \cos \phi} = -\tan \frac{1}{2}(\theta + \phi) \tan \frac{1}{2}(\theta - \phi).$$

15.
$$\frac{\cos(n-2)\theta - \cos n\theta}{\sin(n-2)\theta + \sin n\theta} = \tan \theta.$$

16.
$$\sin^2 \theta - \sin^2 \phi = \sin(\theta + \phi) \sin(\theta - \phi)$$
.

17.
$$\cos^2 \theta - \cos^2 \phi = -\sin(\theta + \phi)\sin(\theta - \phi)$$
.

18.
$$\frac{\sin(\theta + \phi)}{\sin(\theta - \phi)} = \frac{\tan \theta + \tan \phi}{\tan \theta - \tan \phi} = \frac{\cot \phi + \cot \theta}{\cot \phi - \cot \theta}$$

19.
$$\frac{\cos(\theta + \phi)}{\sin(\theta - \phi)} = \frac{1 - \tan \theta \tan \phi}{\tan \theta - \tan \phi} = \frac{1 - \cot \theta \cot \phi}{\cot \theta - \cot \phi}$$

20.
$$\frac{3 \sin \theta - \sin 3\theta}{3 \cos \theta + \cos 3\theta} = \tan^3 \theta.$$

21.
$$\sin \theta + \sin 3\theta + \sin 5\theta = \frac{\sin^2 3\theta}{\sin \theta}$$
.

- 22. Given $\sin \theta = \frac{4}{5}$, $\cos \phi = \frac{12}{13}$, both angles acute. Find
 - (a) $\sin(\theta+\phi)$, (b) $\cos(\theta+\phi)$, (c) $\tan(\theta+\phi)$, (d) $\cot(\theta+\phi)$,
 - (e) $\sin(\theta-\phi)$, (f) $\cos(\theta-\phi)$, (g) $\tan(\theta-\phi)$, (h) $\cot(\theta-\phi)$,
 - (i) $\sin 2\theta$, (j) $\cos 2\theta$, (k) $\tan 2\theta$, (l) $\cot 2\theta$,

 - (u) $\sin \theta + \sin \phi$, (v) $\sin \theta - \sin \phi$,
 - (w) $\cos \theta + \cos \phi$, (x) $\cos \theta - \cos \phi$.
- 23. Given $\tan \theta = \frac{7}{24}$, $\cos \phi = -\frac{40}{41}$. Find all possible values for the expressions (a)-(x) in the preceding exercise.
- **24.** Find $\sin 22\frac{1}{2}^{\circ}$, $\cos 22\frac{1}{2}^{\circ}$, $\tan 22\frac{1}{2}^{\circ}$, $\cot 22\frac{1}{2}^{\circ}$ by using the known functions of 45°.
- 25. Find sin 18°.

Solution. Let
$$\theta = 18^\circ$$
; then $3\theta = 54^\circ = 90^\circ - 2\theta$.
 $\cos 3\theta = \cos(90^\circ - 2\theta) = \sin 2\theta$.

Using exercise 2 above, we get

$$4\cos^3\theta - 3\cos\theta = 2\sin\theta\cos\theta,$$

$$\cos \theta (4 \cos^2 \theta - 2 \sin \theta - 3) = 0.$$

Setting the first factor equal to zero, we get

$$\cos \theta = 0$$
, $\theta = 90^{\circ} \text{ (not } 18^{\circ})$,

and this value must be discarded. From the second factor we get, after a slight reduction,

$$4\sin^2\theta+2\sin\theta-1=0.$$

This quadratic equation yields

$$\sin\,\theta = \frac{-1 \pm \sqrt{5}}{4}.$$

Since $\sin \theta$ must here be positive, we retain the upper sign only, and write

$$\sin 18^\circ = -1 + \sqrt{5}$$

- 26. Find cos 18°, tan 18°, cot 18°
- 27. Find sin 36°, cos 36°, tan 36° cot 36°
- 28. Find sin 9°, cos 9°.
- 29. Find sin 3°, cos 3°.
- 30. Find sin 6°, cos 6°.
- 31. A flagpole 34 feet high stands on top of a tower 30 feet high. From a certain point in the same horizontal plane with the base of the tower, the angle subtended by the pole is equal to the angle of elevation of the top of the tower. Find the distance from this point to the base of the tower.
- 32. A tree stands on the edge of a small lake. A man stands on the opposite side of the lake, his eve being at a height h above the foot of the tree. He finds that the angle of elevation of the top of the tree is E and the angle of depression of its reflection in the water is D. Show that the height of the tree is

Fig. 64

$$\frac{h\sin(D+E)}{\sin(D-E)}.$$

33. The radius of the circle in Fig. 64 is 1. Consequently MP

- = $\sin \theta$, $OM = \cos \theta$. Prove that $AQP = \frac{1}{2}\theta$, and show how to obtain the functions of $\frac{1}{2}\theta$ from the figure.
- **34.** Draw a similar figure for the case in which θ is obtuse, and show that the same method applies.

Prove that if A, B, C are the angles of a triangle, then

35.
$$\sin A + \sin B + \sin C = 4 \cos \frac{1}{2}A \cos \frac{1}{2}B \cos \frac{1}{2}C$$
.

36.
$$\cos A + \cos B + \cos C = 1 + 4 \sin \frac{1}{2} A \sin \frac{1}{2} B \sin \frac{1}{2} C$$
.

37.
$$\tan A + \tan B + \tan C = \tan A \tan B \tan C$$

38.
$$\sin A + \sin B - \sin C = 4 \sin \frac{1}{2}A \sin \frac{1}{2}B \cos \frac{1}{2}C$$
.

39.
$$\cos A + \cos B - \cos C = -1 + 4 \cos \frac{1}{2}A \cos \frac{1}{2}B \sin \frac{1}{2}C$$
.

40.
$$\sin 2A + \sin 2B + \sin 2C = 4 \sin A \sin B \sin C$$
.

41.
$$\cos 2A + \cos 2B + \cos 2C = -1 - 4 \cos A \cos B \cos C$$
.

42.
$$\sin 2A + \sin 2B - \sin 2C = 4 \cos A \cos B \sin C$$
.

43.
$$\cos 2A + \cos 2B - \cos 2C = 1 - 4 \sin A \sin B \cos C$$
.

44.
$$\sin^2 A + \sin^2 B + \sin^2 C = 2(1 + \cos A \cos B \cos C)$$
.

45.
$$\cos^2 A + \cos^2 B + \cos^2 C = 1 - 2 \cos A \cos B \cos C$$
.

46.
$$\sin^2 A + \sin^2 B - \sin^2 C = 2 \sin A \sin B \cos C$$
.

47.
$$\cos^2 A + \cos^2 B - \cos^2 C = 1 - 2 \sin A \sin B \cos C$$

48.
$$\sin^2 \frac{1}{2}A + \sin^2 \frac{1}{2}B + \sin^2 \frac{1}{2}C = 1 - 2 \sin \frac{1}{2}A \sin \frac{1}{2}B \sin \frac{1}{2}C$$
.

49.
$$\sin^2 \frac{1}{2}A + \sin^2 \frac{1}{2}B - \sin^2 \frac{1}{2}C = 1 - 2\cos \frac{1}{2}A\cos \frac{1}{2}B\sin \frac{1}{2}C$$
.

50.
$$\cot \frac{1}{2}A + \cot \frac{1}{2}B + \cot \frac{1}{2}C = \cot \frac{1}{2}A \cot \frac{1}{2}B \cot \frac{1}{2}C$$
.

51.
$$\tan \frac{1}{2}A \tan \frac{1}{2}B + \tan \frac{1}{2}B \tan \frac{1}{2}C + \tan \frac{1}{2}C \tan \frac{1}{2}A = 1$$
.

52.
$$\cot A \cot B + \cot B \cot C + \cot C \cot A = 1$$
.

53.
$$\sin(B+C-A) + \sin(C+A-B) + \sin(A+B-C)$$

= $4 \sin A \sin B \sin C$.

54.
$$\sin(B+2C) + \sin(C+2A) + \sin(A+2B)$$

= $4 \sin \frac{1}{2}(B-C) \sin \frac{1}{2}(C-A) \sin \frac{1}{2}(A-B)$.

55.
$$\frac{\sin 2A + \sin 2B + \sin 2C}{\sin A + \sin B + \sin C} = 8 \sin \frac{1}{2}A \sin \frac{1}{2}B \sin \frac{1}{2}C.$$

56. Prove the law of tangents by using the law of sines and (8) and (9) of section 75.

Suggestion. From the law of sines we get

$$\frac{a-b}{a+b} = \frac{\sin A - \sin B}{\sin A + \sin B}.$$

*76. Reduction of a cos $\theta \pm b \sin \theta$.

It is frequently desirable to reduce an expression of the form $a \cos \theta \pm b \sin \theta$ to the form

$$r \sin(\theta \pm \phi)$$
 or $r \cos(\theta \pm \phi)$.

These transformations adapt the expressions to logarithmic computations, and are often of advantage in solving trigonometric

vantage in solving trigonometric equations. They may be made in the following manner:

$$a\cos\theta + b\sin\theta$$

$$= \sqrt{a^2 + b^2} \left(\frac{a}{\sqrt{a^2 + b^2}} \cos \theta + \frac{b}{\sqrt{a^2 + b^2}} \sin \theta \right).$$

Let us introduce an angle ϕ such that (see Fig. 65)

$$\sin \phi = \cos \phi = b$$

Then,

$$a \cos \theta + b \sin \theta = \sqrt{a^2 + b^2} (\cos \theta \cos \phi + \sin \theta \sin \phi)$$
$$= \sqrt{a^2 + b^2} \cos(\theta - \phi).$$

Example.

Reduce $3 \cos \theta - 4 \sin \theta$ to the form $r \cos(\theta + \phi)$. Solution. Multiply and divide by $\sqrt{3^2 + 4^2} = 5$:

 $3\cos\theta - 4\sin\theta = 5(\frac{3}{5}\cos\theta - \frac{4}{5}\sin\theta).$

If ϕ is an angle such that (see Fig. 66),

$$\cos\phi = \frac{1}{5}, \qquad \sin\phi = \frac{4}{5},$$

then

$$3 \cos \theta - 4 \cos \theta = 5(\cos \theta \cos \phi - \sin \theta \sin \phi)$$
$$= 5 \cos(\theta + \phi).$$

From tables we find $\phi = 53^{\circ}$ approximately. Therefore, $3 \cos \theta - 4 \sin \theta = 5 \cos(\theta + 53^{\circ})$.

EXERCISES VIII. G

- 1. Reduce $\sin \theta \cos \theta$ to the form $r \sin(\theta \phi)$, and find the angle ϕ .
- 2. Reduce $\sin \theta + 2 \cos \theta$ to the form $r \sin(\theta + \phi)$, and find ϕ .

Reduce each of the following expressions to one of the forms $r\cos(\theta \pm \phi)$, $r\sin(\theta \pm \phi)$, and find the value of ϕ .

3.
$$12 \cos \theta - 5 \sin \theta$$
.

4.
$$3 \sin \theta - 2 \cos \theta$$
.

5.
$$\cos \theta + \sqrt{3} \sin \theta$$
.

6.
$$\frac{1}{2}\sin\theta + \frac{\sqrt{3}}{2}\cos\theta$$
.

7.
$$\cos \theta + \sin \theta$$
.

8.
$$0.4 \cos \theta + 1.5 \sin \theta$$
.

9. $0.3642 \cos \theta - 1.2476 \sin \theta$.

Suggestion. Use logarithms.

10. Given $3 \sin \theta - 4 \cos \theta = 2$. Reduce to the form $r \sin(\theta - \phi) = 2$, in which r and ϕ are known. Find $\sin(\theta - \phi)$, and, from tables, $\theta - \phi$. Finally, find a value of θ which satisfies the original equation.

CHAPTER IX

Radian Measure

77. Radian

One radian is the measure of an angle which, if its vertex

is placed at the center of a circle, intercepts on the circumference an arc equal in length to the radius. It may be abbreviated 1 rad. or 1^(r). This unit of measurement of angle is important in deriving and in simplifying certain formulas in calculus and higher mathematics. Radian measure is sometimes called circular measure of angles.

78. Relation between radian and degree.

The relation between the radian and the degree may be found as follows: The circumference of a circle is 2π times the radius. Therefore, the number of radians in 360° is 2π . That is, $360^{\circ} = 2\pi^{(r)}$. If we divide this equation by 2 we get

$$180^{\circ} = \pi^{(r)} = 3.1416^{(r)}. \tag{1}$$

This is a convenient relation to remember when reducing degrees to radians or radians to degrees.

Frequently used are the following angles:

$$90^{\circ} = \frac{\pi^{(r)}}{5}$$
 $60^{\circ} = \frac{\pi^{(r)}}{5}$ $45^{\circ} = \frac{\pi^{(r)}}{4}$ $30^{\circ} = \frac{\pi^{(r)}}{6}$

From (1) we get

$$1^{\circ} = \frac{\pi^{(r)}}{180} = 0.017453^{(r)},$$

also

$$1^{(r)} = \frac{180^{\circ}}{\pi} = 57.29578^{\circ} = 57^{\circ} 17' 44.8''.$$

Example 1.

Convert 37° 43′ 26″ to radians.

Solution.
$$37^{\circ} 43' 26'' = 37.7239^{\circ}$$

= $37.7239 \times 0.017453^{(r)} = 0.6584^{(r)}$.

Example 2.

Convert 2.25 radians to degrees, minutes, and seconds.

Solution.
$$2.25^{(r)} = 2.25 \times 57.29578^{\circ}$$

= $128.9155^{\circ} = 128^{\circ} 54' 56''$.

If tables for converting degrees to radians (e.g., Table IV of the Macmillan Logarithmic and Trigonometric Tables) and radians to degrees (e.g., Table Va of the Macmillan Tables) are available, problems such as the foregoing are considerably simplified.

EXERCISES IX. A

- 1. Reduce the following angles to radians, giving the results in terms of π :

- 2. Reduce the following angles to radians, giving the results in decimal form:

- (a) 15°, (b) 10° 17′, (c) 10° 17′ 22″, (d) 18° 24′ 16″, (e) 370° 15′ 8″, (f) 142° 25′ 30″, (g) 67° 43′ 52″, (h) 21° 21′ 21″, (i) 2° 3′ 49″.
- 3. Express the following angles in degrees. (When it is quite clear that radian measure is to be used, the symbol for radians

is commonly omitted. Thus, the angle π radians may be written simply π .)

(a)
$$\frac{\pi}{10}$$
,

(b)
$$\frac{\pi}{12}$$
,

(c)
$$\frac{\pi}{15}$$
,

(d)
$$\frac{\pi}{18}$$
,

(e)
$$\frac{2\pi}{3}$$
,

(f)
$$\frac{3\pi}{4}$$
,

(g)
$$\frac{3\pi}{2}$$
,

(h)
$$\frac{5\pi}{6}$$
,

(i)
$$\frac{\pi}{5}$$
,

(j)
$$\frac{2\pi}{5}$$
,

(k)
$$\frac{3\pi}{5}$$
,

(1)
$$\frac{4\pi}{5}$$
,

(m)
$$\frac{3\pi}{10}$$
,

(n)
$$\frac{7\pi}{15}$$
,

(o)
$$\frac{5\pi}{12}$$
;

(p)
$$\frac{7\pi}{0}$$
.

Express the following ang

(a)
$$\frac{\pi}{8}$$
,

(b)
$$\frac{\pi}{50}$$
,

(e)
$$\frac{\pi}{150}$$
:

(d)
$$\frac{\pi}{7}$$
,

(e)
$$\frac{2\pi}{11}$$
,

(f)
$$\frac{\pi}{40}$$
,

(g)
$$\frac{5\pi}{24}$$
,

(h)
$$\frac{\pi}{16}$$
:

(i)
$$\frac{\pi}{25}$$
,

(j)
$$\frac{11\pi}{50}$$

$$(k) \ \frac{3\pi}{32},$$

(l)
$$\frac{\pi}{48}$$
.

5. Reduce to degrees, minutes, and seconds:

- (b) $\frac{2}{3}$ (r),
- (c) $\frac{2}{7}$ (r),
- (d) $2\frac{5}{6}^{(r)}$,

- (e) $3.2^{(r)}$, (f) $1.236^{(r)}$,
- (g) $0.1236^{(r)}$,
- (h) $0.1236\pi^{(r)}$.

6. One angle of a triangle is 25°, another angle is 1.3 radians. Find the third angle in degrees, and also in radians.

7. Find, in radians, the angle between the hands of a clock at (a) 2 o'clock, (b) 5 o'clock, (c) 7:30, (d) 5:15.

8. Through how many radians does the hour hand of a watch turn in (a) 5 hours? (b) \(\frac{1}{2}\) hour? (c) 10 minutes? (d) 3 days? (e) between 8:00 a.m. and 5:30 p.m.?

9. Through how many radians does the earth turn in (a) 1 hour? (b) 1 minute? (c) 3 hours and 20 minutes? (d) 3 days? (e) between 8:00 a.m. and 5:30 p.m.?

10. An automobile wheel is 2 feet in diameter. Through how many radians does it turn while the automobile travels 1 mile?

11. Find the value of each of the following functions, using tables if necessary:

(a)
$$\sin \frac{\pi}{3}$$
,

(b)
$$\cos \frac{2\pi}{3}$$
,

(c)
$$\tan \frac{5\pi}{4}$$
,

(d)
$$\cot\left(-\frac{\pi}{6}\right)$$
,

(e)
$$\sec \frac{3\pi}{4}$$
,

(f)
$$\csc \frac{5\pi}{6}$$
,

(g) $\sin \frac{3\pi}{2}$	(h) $\cos \frac{2\pi}{9}$,	(i) $\tan \frac{21\pi}{20}$,
(j) $\cot \frac{6\pi}{7}$:	$(k) \sin \frac{12\pi}{11},$	(1) $\cos \frac{\pi}{13}$,
(m) $\sin 1^{(r)}$,	(n) $\cos 2.3^{(r)}$,	(o) $\tan(-5.2)^{(0)}$,
(n) $\cot 0.435^{(r)}$.	(q) $\sin 0.01^{(r)}$,	(r) $\cos 100^{(r)}$

79. Relation between arc and angle.

Suppose that the arc CD in Fig. 68 subtends a central angle of θ radians, and that the arc AB subtends a central angle of 1 radian. Since central angles have the same ratio as their intercepted arcs, $\theta/1 = s/r$, or

$$\theta = \frac{s}{r}, \qquad s = r\theta.$$
 (1)

That is,

 $arc = radius \times angle$ (in radians).

It is readily seen that for a unit circle (that is, a circle whose radius is 1), a central angle expressed in radians is numerically equal to the intercepted arc expressed in linear units. For example, in a circle having a radius of 1 inch, a central angle of 2.3 radians will intercept an arc of 2.3 inches.

Example.

What is the length of the arc intercepted by a central angle of 95° in a circle whose radius is 12 feet?

Solution. First reduce the angle to radians:

$$\theta = 95 \times \frac{\pi}{180} = 1.6$$

From (1),
$$s = r\theta = 12 \times 1.66 = 19.9 \text{ ft.}$$

*80. Angular velocity.

If a wheel turns completely round thirty times in a second, we say that it is rotating at the rate of thirty revo-

lutions per second, abbreviated r.p.s. (Similarly, the expression "revolutions per minute" is abbreviated r.p.m.) A spoke of this wheel will turn through 360° in each rotation, or through $30 \times 360^{\circ} = 10800^{\circ}$ per second. Since the spoke turns through 2π radians in each rotation, in each second it turns through $30 \times 2\pi$ radians, or 60π radians. The wheel is said to have an angular velocity of 30 r.p.s., or 10800° per second, or 60π radians per second.

Suppose now that the wheel has a radius of 2 feet. When the wheel has turned through an angle of 1 radian, a point on the circumference will have moved through 2 feet. For any number of radians through which the spoke turns, a point on the circumference travels twice that number of feet. But the wheel turns through 60π radians per second. Hence, a point on the circumference moves through $60\pi \times 2$ feet per second, or it has a linear velocity of 120π feet per second.

In general, let us suppose that a line OP, of length r, is rotating about the point O with a constant angular velocity. If it turns through an angle θ in t units of time, the angular velocity ω is given by the formula

$$\omega = \frac{\theta}{t}$$
,

from which we get

$$= \omega t. \tag{1}$$

Since the length of OP is r, we find from (1) of the preceding section that the arc through which P moves while OP turns through θ radians is

$$s = r\theta = r\omega t. \tag{2}$$

But if v is the velocity of P in linear units per unit of time, we have s = vt, that is,

$$vt = r\omega t$$

Dividing by t, we obtain the formula

$$v = r\omega.$$
 (3)

Example.

A rotating wheel has a radius of 2 feet 6 inches. A point on the rim of the wheel moves 10 yards in 3 seconds. Find the angular velocity of the wheel.

SOLUTION. The linear velocity of the point on the rim is

$$\frac{10}{3}$$
 yd. per sec. = $\frac{30}{3}$ ft. per sec. = 10 ft. per sec.

(It should be noted that like quantities must be reduced to the same unit.) Substituting v = 10, r = 2.5 in (3), we get

$$10 = 2.5\omega$$
, $\omega = \frac{10}{2.5} = 4^{(r)}$ per sec.

EXERCISES IX. B

- 1. A central angle in a circle of radius 10 inches intercepts an arc of 14 inches. How many radians are there in the angle?
- A circle has a radius of 15 inches. Find, in radians, a central angle subtended by an arc of (a) 25 inches, (b) 1 inch, (c) 2 feet 6 inches.
- 3. An arc of 4 feet 3 inches subtends a central angle of 1.2 radians. Find the radius of the circle.
- **4.** Find the length of the arc intercepted by an inscribed angle of 0.35 radian in a circle whose radius is 3 inches.
- 5. The angle between a tangent and a chord is \(\frac{1}{4} \) radian. If the length of the arc subtended by the chord is 5 inches, what is the radius of the circle?
- **6.** Find, in radians, the angle between the tangents to a circle at two points whose distance apart, measured on the circumference of the circle, is 350 feet, the radius of the circle being 800 feet.
- 7. Each of two tangents from an external point to a circle is 3 inches long. The smaller arc which they intercept is 2 radians. Find the radius of the circle.

- 8. A flywheel 1.5 feet in diameter has an angular velocity of 8 radians per second. Find the linear velocity of a point on the rim.
- 9. The wheel of an automobile is 2 feet in diameter. The automobile is traveling at the rate of 30 miles an hour. Find the angular velocity of the wheel in radians per minute.
- 10. A belt travels around two pulleys whose diameters are 10 inches and 4 feet respectively. The larger pulley makes 100 revolutions per minute. Find the angular velocity of the smaller pulley in radians per second.
- 11. An airplane propeller measures 8 feet from tip to tip. rotates at the rate of 1800 r.p.m. (a) Find its angular velocity in radians per second. (b) Find the linear speed of a point on the tip of one of the blades, assuming that the airplane itself is not in motion.

*81. Area of sector and of segment.

A sector of a circle is a portion of the circle bounded by two radii and their intercepted arc. In plane geometry it is shown that the area of a sector is equal to one-half its arc times the radius of the circle. Thus, the area of the sector OAB in Fig. 69 is given by the formula $\frac{1}{2}rs$, s being the length of the arc AB. If the angle θ in this figure is expressed in radians, we

have $s = r\theta$, and, substituting this in the expression $\frac{1}{2}rs$, we have

area of sector =
$$\frac{1}{2}r^2\theta$$
 (θ in radians). (1)

A segment of a circle is a portion of the circle bounded by an arc and its chord. The area of the sector bounded by arc AB and chord AB in Fig. 69 is obviously equal to the area of the sector AOB minus the area of the triangle AOB. But the area of the triangle is equal to $\frac{1}{2}r^2 \sin \theta$. (See section 51.) Thus,

area of segment =
$$\frac{1}{2}r^2(\theta - \sin \theta)$$
 (θ in radians). (2)

EXERCISES IX. C

- 1. Find the area of a sector having an angle of 0.75 radian in a circle whose radius is 6 inches. Find the area of the corresponding segment.
- 2. The perimeter of a circular sector, whose angle is 1.5 radians, is 14 inches. Find the radius of the circle.
- 3. The area of a sector of a circle, whose radius is 15 inches, is 135 square inches. Find the angle of the sector.
- **4.** The area of a sector of a circle is 705.6 square centimeters. If the angle of the sector is 0.45 radian, what is the radius of the circle?
- **5.** The central angle subtended by the arc of a segment of a circle is 1.3 radians. The area of the segment is 17 square inches. Find the radius of the circle.
- 6. A chord of 0.75 foot subtends an arc of 0.75 radian. Find the area of the segment bounded by the chord and the arc.
- 7. A segment of height 3 inches (distance from center of chord to center of arc) has an arc of $\frac{1}{3}$ radian. Find the area of the segment.
- 8. The perimeter of a segment of a circle is 22 inches. The arc is 2 radians. What is the area of the segment?
- 9. A right circular cone is made by cutting out a sector, whose angle is 1.2 radians, from a circular piece of paper of radius 5 inches, and then placing the cut edges of the remaining portion together. Find (a) the lateral area and (b) the volume of the cone. (Lat. area = ½ circumf. of base × slant ht., Vol. = ¼ area of base × alt.)
- 10. Find the area of a 35° sector in a circle whose diameter is 7 inches. Find the area of the corresponding segment.
- 11. A horizontal cylindrical tank has a diameter of 4 feet and a length of 10 feet. It is filled with liquid to a depth of 8 inches. How many gallons of liquid does it contain? (1 gal. = 231 cu. in.)

*82. Angles near 0° or 90°.

For angles near 0° or 90° (say between 0° and 3° or between 87° and 90°) interpolation by proportional parts may yield results which are considerably in error.

147

This difficulty may be remedied, to considerable extent,

by using special tables for such angles (e.g., Table IIIa of the Macmillan Logarithmic and Trigonometric Tables). However, the difficulty may be met in another way, which is also useful for still further refinements even if such special tables are available.

Fig. 70

In Fig. 70, AT is tangent to the unit circle with center at O, AP is a chord, angle θ is measured in radians. It is evident that, in area,

triangle
$$AOP < sector AOP < triangle AOT$$
. (1)

But by formula (7) of section 51,

area triangle
$$AOP = \frac{1}{2} \sin \theta$$
. (2)

By formula (1) of the preceding section,

area sector
$$AOP = \frac{1}{2}\theta$$
. (3)

Since $AT = \tan \theta$,

area triangle
$$OAT = \frac{1}{2} \tan \theta$$
. (4)

Substituting (2), (3), (4) in (1), and dividing through by $\frac{1}{2}$, we get

$$\sin \theta < \theta < \tan \theta. \tag{5}$$

That is, if a positive acute angle is measured in radians, it will always be greater than its sine and less than its tangent.

If we divide (4) by $\sin \theta$, we find that

$$1 < \sin < \sec \theta.$$
 (6)

Now, as the angle θ shrinks in size to 0, sec θ approaches the value 1. It is evident, therefore, that as θ approaches 0, the ratio $\theta/\sin \theta$ must also approach 1 as its value. This be written

$$\lim_{\theta \to 0} \frac{\theta}{\sin \theta} = 1. \tag{7}$$

Similarly, we may divide (5) by $\tan \theta$, getting

$$\cos \theta < \tan \theta < 1.$$
 (8)

Since $\cos 0 = 1$, it follows that

$$\lim_{\theta \to 0} \frac{\theta}{\tan \theta} = 1. \tag{9}$$

It may be noted that (7) and (9) are equivalent, respectively, to

$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1, \qquad \lim_{\theta \to 0} \frac{\tan \theta}{\theta} = 1. \tag{10}$$

These equations mean that

$$\sin \theta \approx \theta$$
, $\tan \theta \approx \theta$ (θ small), (11)

where the symbol \approx denotes " is approximately equal to." This may be verified by reference to tables. To illustrate, $\sin 2^{\circ} = 0.03490$, $\tan 2^{\circ} = 0.03492$, $2^{\circ} = 0.03491^{(\circ)}$. If θ is near 90° (i.e., $\frac{\pi^{(r)}}{2}$), we may write $\theta = \frac{\pi}{2} - \phi$, and ϕ will be a small angle. Consequently,

$$\cos \theta = \cos \left(\frac{\pi}{2} - \phi\right) = \sin \phi \approx \phi = \frac{\pi}{2} - \theta.$$
 (12)

Similarly,
$$\cot \theta \approx \frac{\pi}{9} - \theta.$$
 (13)

We may summarize as follows:

If θ is near 0,

$$\sin \theta \approx \tan \theta \approx \theta^{(r)},$$

$$\cot \theta \approx \csc \theta \approx \frac{1}{\theta^{(r)}},$$
(14)

 $\cos \theta$ and $\sec \theta$ may be found from tables, as usual.

If θ is near 90° (i.e., $\frac{\pi}{2}^{(r)}$),

$$\cos \theta \approx \cot \theta \approx \frac{\pi}{2} - \theta^{(r)},$$

$$\tan \theta \approx \sec \theta \approx \frac{1}{\frac{\pi}{2} - \theta^{(r)}},$$
(15)

 $\sin \theta$ and $\csc \theta$ may be found from tables, as usual.

Example 1.

Find log tan 2' 54".

Solution. $2'54'' = 0.048333^{\circ} = (0.048333 \times 0.017453)^{(r)}$.

$$\begin{array}{l} \log 0.048333 = 8.68425 - 10 \\ \log 0.017453 = 8.24187 - 10 \\ \log \tan 2' 54'' = \overline{6.92612 - 10} \end{array}$$

This agrees exactly with the value found in tables giving values for every second.

Example 2.

Find the angle subtended. of 1 mile.

Solution. Strictly speak-

ing, the yardstick would be the base of an isosceles triangle whose altitude is 1 mile, or 1760 yards. We could thus find (see Fig. 71)

$$\tan \frac{1}{2}\theta = \frac{0.5}{1760}$$

from which, since $\tan \frac{1}{2}\theta$ may be replaced by $\frac{1}{2}\theta$, θ is readily

obtainable. However, it makes no essential difference if we regard the yardstick as one side of a right triangle of which the other side is 1 mile. Indeed, probably the best way to regard the problem is to think of the yardstick as the arc, rather than the chord, of a circle of radius 1 mile. Any of these methods leads to the approximate equation

$$\theta = \frac{1}{1760} = 0.0005682^{(r)} = 1' 57.2''.$$

A slowly changing function does not determine the angle very definitely. For example, if it is given that $\log \cos \theta = 9.99990 - 10$, reference to a five-place table giving the values of the logarithmic functions for every minute, shows that θ may have any value from 1° 12′ to 1° 15′ inclusive. Hence we should, if possible, avoid using $\cos \theta$ if θ is near 0, or $\sin \theta$ if θ is near 90°.

EXERCISES IX. D

Find the values of the following functions:

- 1. (a) sin 1° 13′ 17″,
 - (b) tan 1° 13′ 17″,
 - (c) cot 1° 13′ 17″.
- 3. (a) log sin 54′ 22″,
 - (b) log tan 54' 22",
 - (c) log cot 54' 22"

- 2. (a) cos 89° 2′ 20″,
 - (b) cot 89° 2′ 20″,
 - (c) tan 89° 2′ 20″.
- 4. (a) log cos 89° 20′ 54″,
 - (b) log cot 89° 20′ 54″,
 - (c) log tan 89° 20′ 54″.
- 5. A railroad is inclined at an angle of 50' with the horizontal. How many feet does it rise in a horizontal distance of 2 miles?
- 6. A highway rises 70 feet in a horizontal distance of 1 mile. What is its angle of inclination?
- 7. If the moon is at a distance of 238860 miles from the earth, and its diameter subtends an angle of 31'5" at the earth, what is its diameter?
- 8. If the sun is 92,897,000 miles from the earth, and subtends an angle of 31' 59" at the earth, what is its diameter?
- 9. At Alpha Centauri, the nearest star to our sun, the distance from the earth to the sun (see preceding exercise) subtends an angle of 0.76". Find the distance from the sun to the star.

- 10. The mean radius of the earth is approximately 3957 miles. It subtends an angle of 8.8" at the sun. Find the distance from the earth to the sun.
- 11. If the mean radius of the earth (see preceding exercise) subtends an angle of 57′ 2.6″ at the moon, what is the distance from the earth to the moon?

Solve the following triangles:

12. $A = 1^{\circ} 28.1'$,	$C = 90^{\circ},$	a = 12.486.
13. $C = 90^{\circ}$,	a = 0.76128,	b = 57.953.
14. $A = 1^{\circ} 13.2'$,	$B = 46^{\circ} 21.4',$	a = 124.75.
15. $a = 54321$,	b = 28967,	c = 25422.
16. $C = 56.9'$,	a = 5.2389,	b = 1.9942.
17. $B = 88^{\circ} 15.3'$.	$C = 32^{\circ} 19.7'$	a = 0.11654

*83. Mil.

A unit of angular measurement used in military science is the mil, which is $\frac{1}{1600}$ of a right angle, or 3′ $22\frac{1}{2}$ ″. One degree is $17\frac{7}{3}$ mils. A mil is approximately equal to one thousandth of a radian (more accurately, 0.000982 radian). Practically, it is the angle subtended by a line of unit length at a distance of 1000 units.

If a line L units in length at a distance, or range, of R units, subtends an angle M (see Fig. 72), then the number of mils in M is given by the approximate formula

$$M \approx$$
 (1)

From this we get

$$L \approx 0.001 RM, \qquad R \approx \frac{1000 L}{M}$$
 (2)

The errors resulting from the use of formulas (1) and (2) will be less than 2 per cent provided the angle is not greater than 680 mils (about 38°).

In Fig. 72, L is the base of an isosceles triangle whose vertex angle is M. If, as in Fig. 73, the lengths L and R

are the sides of a right triangle having the acute angle M opposite side L, formulas (1) and (2) still hold. In this

case the error caused by using them will be less than 2 per cent if the angle is not greater than 340 mils (about 19°).

Example.

Find the angle subtended by an object 8 yards long at a distance of 2000 yards.

Solution. Here L=8, R=2000, and from (1) we find

$$M \approx \frac{1000 \times 8}{20000} = 4 \text{ mils.}$$

EXERCISES IX. E

- 1. An object 20 feet long is 500 feet away. How many mils does it subtend if it is at right angles to the line of sight?
- 2. A tree 250 yards distant subtends an angle of 30 mils. How tall is it?
- 3. A boxcar which is known to be 42 feet long subtends an angle of 20 mils. If it is perpendicular to the line of vision, how far away is it?
- 4. A hill at a distance of 1560 meters subtends an angle of 40 mils. How high is it?
- **5.** What angle does a pole 25 feet high subtend at a distance of 100 yards?
- 6. A balloon known to be 150 feet long is directly overhead and subtends an angle of 125 mils. How high is it?
- 7. A hill 50 meters high is 1500 meters away. At what angle with the horizontal must a gun be pointed in order for the projectile just to clear the top of the hill, if an allowance of 10 mils must be made for the fall of the projectile?
- 8. A tree 75 feet high is at a distance of 500 feet from a given point on the ground; 1500 feet farther away is a hill 350 feet

- high. If a line is drawn from the point on the ground through the top of the tree, how far from the top of the hill will it strike?
- 9. A gun is 2500 yards from its target. A shot is fired and the projectile is observed to strike even with the target but 8 mils to the right. By how many yards did it miss the target?
- 10. Change into mils: 10°, 15°, 10′, 10″.
- 11. Change into degrees, minutes, and seconds: 10 mils, 50 mils, 100 mils.

CHAPTEŘ X

Graphic Representations of the Trigonometric Functions

*84. Line representations of the trigonometric functions.

We shall now show how to represent the trigonometric functions by means of line segments. In so representing

the functions we shall make use of a unit circle, that is, a circle whose radius is 1.

The circles in Fig. 74 are unit circles. In this figure the

initial side of the angle θ is, as usual, in coincidence with the positive end of the x-axis; its terminal side is OP, P being the point in which the terminal side intersects the unit circle. Four different values of θ are shown, one in each of the four quadrants. In each case MP is drawn perpendicular to the x-axis, and the lines at A and B are tangent to the circle. (Points A and B are the intersections of the circle with the positive ends of the x- and y-axes respectively.)

Referring to the figure, we see that for θ in any quadrant,

$$\sin \theta = \frac{MP}{OP} = \frac{MP}{1} = MP,$$
$$\cos \theta = \frac{OM}{OP} = \frac{OM}{1} = OM.$$

The signs of these functions are determined by the directions of the segments MP and OP. The segment MP will be regarded as positive if the direction from M to P is upward, as negative if this direction is downward. The segment OM will be regarded as positive if the direction from O to M is to the right, as negative if this direction is to the left.

In order to complete this scheme of representing the functions, we must write the remaining functions as ratios in which the denominator is 1. This is accomplished by the selection of similar right triangles. Moreover, we wish to select the line segments which represent the functions so that they will have the proper signs.

To represent the tangent we note that

$$\tan \theta = \frac{MP}{OM} - \frac{AT}{OA} = \frac{AT}{1} = AT.$$

It is readily proved that the right triangles MOP and BOC are similar, and it follows that

$$\cot \theta = \frac{OM}{MP} = \frac{BC}{OB} = \frac{BC}{C} = BC.$$

The conventions regarding signs, as stated above, will apply to the segments AT and BC.

The secant and the cosecant are measured along the terminal side of the angle. We shall specify that when they are measured in the same direction as the terminal line, that is, from the origin out, they are positive, and when measured in the reverse direction they are negative. (Cf. section 72.) Then, from similar triangles, we have

$$\sec \theta = \frac{OP}{OM} = \frac{OT}{OA} = \frac{OT}{1} = OT,$$
 $\csc \theta = \frac{OP}{MP} = \frac{OC}{OB} = \frac{OC}{1} = OC.$

It should be noted that the functions are not lines. They are ratios, and therefore abstract numbers. The values of the functions are given by the measures of the lengths of the lines (i.e., line segments) in terms of the radius as a unit. The use of the circle explains why the trigonometric functions are sometimes called **circular functions**. It also explains the origin of the terms "tangent" and "secant."

Certain relations connecting the functions can be proved very readily from Fig. 74. For example,

$$\sin^2 \theta + \cos^2 \theta = 1$$
, $1 + \tan^2 \theta = \sec^2 \theta$, $1 + \cot^2 \theta = \csc^2 \theta$.

85. Graph of the sine.

A study of Fig. 74 shows that for an angle of 0° the line MP, representing the sine, disappears; that is, $\sin 0^{\circ} = 0$. As the angle increases from 0° , the sine increases, until at 90° it reaches its maximum value of 1; as the angle increases further, the value of the sine decreases to 0 at 180° , and to -1 at 270° . It has now reached its minimum value, and as the angle increases beyond 270° the sine increases from -1 to 0, which value it reaches when the angle reaches 360° .

This variation in value of the sine is shown in Fig. 75,

which is the graph of $y = \sin x$. The values 1 and -1 are marked on the y-axis, and any convenient unit is chosen on the x-axis. The information of the preceding paragraph is supplemented by using tables to obtain values of y for a number of values of x, so that the points can be plotted

Fig. 75

accurately. If a sufficient number of points are taken, a smooth curve can be drawn through them.

If tables are not conveniently at hand, the values of the sine for the angles 0°, 30°, 45°, 60°, 90°, 120°, and so on, can readily be calculated without tables. These values are listed in the accompanying table. From them the sine curve can often be plotted with sufficient accuracy.

θ	$\sin heta$	θ	$\sin heta$
0°	0	180°	0
30°	$\frac{1}{2} = 0.50$	210°	$-\frac{1}{2} = -0.50$
45°	$\frac{\sqrt{2}}{2} = 0.71$	225°	$-\frac{\sqrt{2}}{2} = -0.71$
60°	$\frac{\sqrt{3}}{2} = 0.87$	240°	$-\frac{\sqrt{3}}{2} = -0.87$
90°	1	270°	-1
120°	$\frac{\sqrt{3}}{2} = 0.87$	300°	$-\frac{\sqrt{3}}{2} = -0.87$
135°	$\frac{\sqrt{2}}{2} = 0.71$	315°	$-\frac{\sqrt{2}}{2} = -0.71$
150°	$\frac{1}{2} = 0.50$	330°	$-\frac{1}{2} = -0.50$
180°	0	360°	0

These same angles are useful in constructing graphs of the other functions. (See following sections.)

If the angle increases beyond 360°, the sine runs through the same values again. Thus, the part of the graph between 0° and 360° is a complete pattern of the entire curve, which extends indefinitely both to the right and to the left. For this reason, 360° is called the **period** of the sine.

86. Graph of the cosine.

The cosine starts with its maximum value of 1 when the angle is 0° , decreases to 0 at 90° , to -1 at 180° , and then increases from this minimum value through 0 at 270° to 1

at 360°. The period of the cosine is also 360°. The graph of $y = \cos x$ is shown in Fig. 76.

87. Graphs of the tangent and the cotangent.

In Fig. 74 the value of the tangent is given by the length and the direction of the tangent line AT. Since this length is determined by the point of intersection of the tangent line at A with the terminal side of the angle, at 0° the tangent is 0. The tangent increases as the angle increases, unlate 90° the terminal side is parallel to the tangent line, and there can be no point of intersection. That is, there is a value of the tangent for an angle of 90° . However, since a value of the tangent for an angle just less than 90° is

very great, and since the tangent is increasing as the angle increases, it is customary to say that the tangent approaches infinity (∞) as the angle approaches 90°. (See section 38.)

In the second quadrant the terminal line must be prolonged backward to intersect the tangent line. This means that AT extends downward, and that the tangent is negative. As the angle increases beyond 90°, the tangent, which

 $y = \tan x$ Fig. 77

has just extended indefinitely far in a positive direction, now begins at an indefinitely great distance in the negative direction.*

Thus, the tangent does not have a continuous change in value; there is a break at 90°. It increases from very large negative values, for values of the angle just greater than

^{*} When θ approaches 90° from below (i.e., in the first quadrant), the limit of $\tan \theta$ is $+\infty$; when θ approaches 90° from above (i.e., in the second quadrant), the limit of $\tan \theta$ is $-\infty$.

90°, to 0 at 180°. As the angle increases through the third quadrant, the terminal line must be prolonged backward, and the values are the same as in the first quadrant. As the angle increases from 270° to 360°, the tangent repeats

 $y = \cot x$ Fig. 78

its values of the second quadrant. The tangent thus passes through a complete cycle of values twice in one complete rotation of the line generating the angle. Its period is consequently 180°.

For a graph of $y = \tan x$ see Fig. 77.

In like manner, since the length and the direction of the cotangent line are determined by the intersection of the tangent line at B with the terminal side of the angle, the cotangent starts with very large values for very small positive values of the angle, and decreases to 0 at 90°. It continues to decrease through negative values in the second quadrant, these negative values becoming numerically greater and greater as the angle approaches 180° . As the

angle passes through 180°, the cotangent swings back to very large positive values, and decreases through 0 at 270° to very large negative values as the angle approaches 360°. (See Fig. 78.) Hence the cotangent also passes through a complete cycle of values twice in one complete rotation of the terminal line, and its period is 180°.

88. Graphs of the secant and the cosecant.

The secant starts with the value 1 at 0°, increases without bound as the angle approaches 90°, and jumps to very

Fig. 79

large negative values as the angle passes through 90° ; it then increases to -1 at 180° , but decreases back through large negative values as the angle approaches 270° . As the angle passes through 270° , the secant changes sign and comes back to the value 1 at 360° . (See Fig. 79.) Its period is 360° .

The cosecant starts with very large values for small

values of the angle, decreases to 1 at 90°, and increases without bound as the angle approaches 180°. It then changes sign and rises from very large negative values to -1 as the angle increases to 270°, but recedes indefinitely

as the angle continues to 360°. (See Fig. 80.) Its period is 360° .

89. Use of radian measure in graphing.

It is sometimes desirable to use radian measure in constructing the graphs of the functions. In such cases the point on the x-axis which previously was marked 360° would be marked 2π radians, the point corresponding to 180° would be marked π , and so on. Here it is usual to take the same unit on each axis; thus, the point π would be 3.14+ units from the origin.

If the radian is used as the unit of measure of angle, the

period of sine, cosine, secant, and cosecant is 2π ; the period of tangent and cotangent is π .

*90. Geometric construction of the sine and cosine graphs.

By using a unit circle, we can construct the sine curve as indicated in Fig. 81. In this figure a unit circle is drawn

at the left, and a horizontal line, to be used as the x-axis, is drawn through its center. On this line is marked an origin O, through which is drawn the y-axis. The segment from O to the point marked π is 3.1416 units long; that is, it is equal in length to the semicircumference. The distance from O to the point marked $\pi/6$ is equal to the arc of the circle from the point of its intersection with the x-axis to the point marked $\pi/6$, and so on. The method by which we obtain the ordinate corresponding to a given abscissa is evident from the figure.

The corresponding method of constructing the graph of the cosine curve is left as an exercise for the student.

EXERCISES X. A

Plot the following curves:

1. $y = 2 \sin x$.	2. $y = 2 \cos x$.	3. $y = \frac{1}{2} \sin x$.
4. $y = \sin 2x$.	5. $y = \sin \frac{1}{2}x$.	6. $y = \cos \frac{1}{2}x$.
7. $y = \cot \frac{1}{2}x$.	8. $y = \sin 3x$.	9. $y = \tan 2x$.
10. $y = \sin \pi x$.	11. $y = \cos \frac{\pi x}{2}$.	12. $y = \sin \frac{2\pi x}{3}$.

13. Plot $y = \sin x \cos x$.

164

Suggestion. $\sin x \cos x = \frac{1}{2} \sin 2x$.

- **14.** In what points will a line one unit above the x-axis intersect the curve $y = \tan x$?
- 15. If the graphs of $y = \sin x$ and $y = \cos x$ are plotted on the same set of axes, for what values of x will they intersect?
- **16.** Plot $y = \sin\left(x + \frac{\pi}{2}\right)$ and compare with $y = \cos x$.
- 17. Plot $y = \cos\left(\frac{\pi}{2} x\right)$ and compare with $y = \sin x$.
- **18.** Draw the graph of $y = \cos\left(x \frac{\pi}{4}\right)$.
- 19. Draw the graph of $y = \sin(x \frac{1}{2})$. Here radian measure is understood.
- **20.** Given the equation $y = \sin x + \cos x$.
 - (a) Plot the curve by plotting the sine curve and the cosine curve separately and adding their ordinates geometrically (for example, by using dividers).
 - (b) Plot the curve by first reducing $\sin x + \cos x$ to the form $r \sin(x + \phi)$.
- **21.** Draw the graph of $y = \sin x \cos x$.
- **22.** Plot $y = x + \sin x$, using radian measure.
- 23. Find the periods of the curves in exercises 1-12.

CHAPTER XI

Inverse Trigonometric Functions

91. Inverse trigonometric functions.

If $x = y^2$, then y is the positive or negative square root of x; in symbols, $y = \pm \sqrt{x}$. Similarly, if $x = \sin y$, then y is an angle whose sine is x; in abbreviated form we write

$$y = \arcsin x. \tag{1}$$

The right-hand member of this equation may be read "arc sine x" or "an angle whose sine is x," it being recalled that if a central angle of a unit circle is measured in radians, the intercepted arc is equal to the angle. The notation

$$y = \sin^{-1} x \tag{2}$$

is also used. The symbol $\sin^{-1} x$ may be read "inverse sine of x" or "antisine of x" or, to emphasize its meaning, "an angle whose sine is x." It should be carefully noted that the -1 is not an exponent. If we wish to have -1 as the exponent of a trigonometric function such as $\sin x$, we must write $(\sin x)^{-1}$, which means $1/\sin x$.

The function $\arcsin x$, or $\sin^{-1} x$, is called the **inverse sine** function of x. The other inverse trigonometric functions are

arccos x	or	$\cos^{-1} x$,
arctan x	or	$tan^{-1} x$,
arccot x	or	$\cot^{-1} x$,
arcsec x	or	$\sec^{-1} x$,
arccsc x	\mathbf{or}	$csc^{-1} x$.
	165	

92. Principal values.

An inverse trigonometric function, such as arcsin x, has infinitely many values corresponding to each value of x. Consider, for example, $\arcsin \frac{1}{2}$. There are two angles less than 360° whose sine is $\frac{1}{2}$, namely 30° and 150°. Any angle obtained from either of these by adding or subtracting a multiple of 360° also has its sine equal to $\frac{1}{2}$. Therefore we may write

$$\arcsin \frac{1}{2} = 30^{\circ} + n \cdot 360^{\circ}$$
 or $150^{\circ} + n \cdot 360^{\circ}$; $n = 0, \pm 1, \pm 2, \cdots$, (1)

or, if we use radian measure, which is usually more desirable in dealing with the inverse functions,

$$\arcsin \frac{1}{2} = \frac{\pi}{6} + 2n\pi$$
 or $\frac{5\pi}{6} + 2n\pi$; $n = 0, \pm 1, \pm 2,$ (2)

The principal value of $\arcsin x$, which will be denoted by Arcsin x or $\sin^{-1}x$, is that value between $-\pi/2$ and $\pi/2$ inclusive. Thus, the principal value of $\arcsin \frac{1}{2}$ is $-\pi/6$. If the principal value of $\arcsin x$ is θ , then all possible values are contained in the two sets

$$\theta + 2n\pi$$
, $\pi - \theta + 2n\pi$; $n = 0, \pm 1, \pm 2, \cdots$ (3)

These two sets may be grouped together by the formula

$$n\pi + (-1)^n\theta;$$
 $n = 0, \pm 1, \pm 2, \cdot \cdot \cdot$ (4)

The notation for the principal values of the other inverse trigonometric functions is like that for the inverse sine, namely, $\operatorname{Arccos} x$ or $\operatorname{Cos}^{-1}x$, $\operatorname{Arctan} x$ or $\operatorname{Tan}^{-1}x$, etc.

The principal values of the inverse functions are defined as follows. That is, the principal value is that value in the interval specified.

$$-1 \leq x \leq 1, \qquad -\frac{\pi}{2} \leq \operatorname{Arcsin} x \leq \frac{\pi}{2},$$

$$-\infty < x < \infty, \qquad -\frac{\pi}{2} < \operatorname{Arctan} x < \frac{\pi}{2},$$

$$-1 \leq x \leq 1, \qquad 0 \leq \operatorname{Arccot} x \leq \pi,$$

$$-\infty < x < \infty, \qquad 0 < \operatorname{Arccot} x < \pi,$$

$$x \geq 1, \qquad 0 \leq \operatorname{Arcsec} x < \frac{\pi}{2},$$

$$x \leq -1, \qquad -\pi \leq \operatorname{Arcsec} x < \frac{\pi}{2},$$

$$x \leq 1, \qquad 0 < \operatorname{Arccsc} x < \frac{\pi}{2},$$

$$x \leq 1, \qquad 0 < \operatorname{Arccsc} x \leq \frac{\pi}{2},$$

$$x \leq -1, \qquad -\pi < \operatorname{Arccsc} x \leq -\frac{\pi}{2},$$

Note. Other definitions of the principal values of the inverse trigonometric functions for negative values of x are sometimes given. However, the foregoing definitions are the most convenient from the standpoint of calculus.

If the principal value of an inverse trigonometric function is θ , then all values of the inverse sine or of the inverse cosecant are given by (3) or (4). All values of the inverse cosine or of the inverse secant are given by

$$2n\pi \pm \theta; \qquad n = 0, \pm 1, \pm 2, \cdot \cdot \cdot . \tag{5}$$

All values of the inverse tangent or of the inverse cotangent are given by

$$\theta + n\pi; \qquad n = 0, \pm 1, \pm 2, \cdot \cdot \cdot. \tag{6}$$

93. Graphs of the inverse trigonometric functions.

The graph of the equation

$$y = \arcsin x, \tag{7}$$

in which y is expressed in radians, is given in Fig. 82. The principal values of the function are indicated by the heavier

part of the curve, which constitutes the principal branch of the curve. It is clear that this curve is also the graph

of the equation $x = \sin y$, which is merely the other form of writing (7).

The graphs of the other inverse functions are shown in

Figs. 83-87. The principal branch in each case is indicated by the heavier part of the curve.

Fig. 84

Fig. 85

Fig. 87

172

EXERCISES XI. A

1. Find $\arcsin \sqrt{3}$

Solution. Let $\theta = \arcsin \frac{\sqrt{3}}{2}$. Then $\sin \theta = \frac{\sqrt{3}}{2}$, and the principal value of θ is 60° or $\pi/3$. Therefore, by (4),

2. $\arcsin \frac{1}{2}$.

3. $\arccos\left(-\frac{\sqrt{2}}{2}\right)$. 4. $\arcsin 0$.

5. arccos 0.

6. $\operatorname{arccot} \frac{\sqrt{3}}{2}$ 7. $\operatorname{arctan} 1$.

8. $\arccos\sqrt{2}$.

9. $\arctan(-\sqrt{3})$. 10. $\arcsin\left(-\frac{\sqrt{3}}{2}\right)$.

Find, by using tables, the principal values, and also the general values of

- 11. arcsin 0.23770.
- 12. arccos 0.93590.
- 13. arctan 1.4910.
- 14. $\arcsin(-0.95510)$.
- **15.** $\arccos(-0.01020)$.
- 16. $\arctan(-12.350)$.
- 17. arcsin \(\frac{2}{3} \).
- 18. arccos \(\frac{1}{8} \).
- 19. arctan 2.
- 20. Find cos(arctan §).

Let $\theta = \operatorname{arc}$ SOLUTION. $\tan \frac{5}{3}$. Then (see Fig. 88),

$$\tan \theta = \frac{5}{3}, \quad \cos \theta = \frac{3}{\pm \sqrt{34}} = \pm \frac{3\sqrt{34}}{34}.$$

Find

41. sec(arctan x).

21. $\tan(\arcsin \frac{3}{5})$.	22. $\sin(\arccos \frac{7}{25})$.
23. $\cos(\arccos\frac{9}{13})$.	24. $\sin[Arccos(-\frac{15}{17})].$
25. $\tan[Arccos(-\frac{15}{17})].$	26. $\cot[Arcsin(-\frac{12}{13})].$
27. $\sin(\arctan \frac{20}{21})$.	28. $\cos(\arcsin\frac{24}{25})$.
29. $\tan[\arccos(-\frac{4}{5})].$	30. sec(arctan 1.05).
31. $\cot[\arctan(-3)]$.	32. sec(arccot 2).
33. $\sin(\arcsin x)$.	34. $\cos(\arcsin x)$.
35. $tan(arcsin x)$.	36. $\sin(\arccos x)$.
37. $\cot(\arccos x)$.	38. $\tan(\arccos x)$.
39. $\sin(\arctan x)$.	40. $\cos(\arctan x)$.

43. Find the value of $\sin(\arccos \frac{3}{5} + \arctan \frac{12}{5})$.

Solution. Let
$$\theta = \arccos \frac{3}{5}$$
, $\phi = \arctan \frac{12}{5}$. Then, $\sin(\arccos \frac{3}{5} + \arctan \frac{12}{5}) = \sin(\theta + \phi)$

 $=\sin\theta\cos\phi + \cos\theta\sin\phi = (\pm\frac{4}{5})(\pm\frac{5}{13}) + \frac{3}{5}(\pm\frac{12}{12})$

42. tan(arcsec x).

Using all possible combinations of signs, we find the following four distinct values for the above expression:

They may be expressed in the more compact form: $\pm \frac{56}{65}$, $\pm \frac{16}{65}$. Find the values of

44.
$$\sin(\operatorname{Arcsin} \frac{7}{25} + \operatorname{Arccos} \frac{4}{5})$$
.

45.
$$\cos(\operatorname{Arcsin} \frac{15}{17} + \operatorname{Arccot} \frac{9}{40}).$$

46.
$$tan(arctan \frac{3}{4} + arctan \frac{8}{.15})$$
.

47.
$$\sin(\arcsin\frac{1}{3} + \arccos\frac{1}{3})$$
.

48.
$$\cos[\arcsin\frac{8}{17} + \arcsin(-\frac{3}{5})].$$

49.
$$\cos\left(2\arcsin\frac{\sqrt{5}}{3}\right)$$

50.
$$\sin(\frac{1}{2}\arccos\frac{7}{9})$$
.

51.
$$\tan(\arcsin \frac{5}{13} + 2 \arctan \frac{4}{5})$$
.

52.
$$tan[arctan \frac{3}{5} + arcsin(-\frac{3}{5})].$$

53.
$$\sin(\arctan \frac{9}{40} - \operatorname{arccot} \frac{21}{20})$$
.

54.
$$\cos[\arccos\frac{25}{7} - \arctan(-\frac{15}{8})].$$

55. $\sin(2 \arcsin \frac{3}{5} + \frac{1}{2} \arccos \frac{1}{49})$.

56.
$$\cos\left(\frac{1}{2}\arcsin\left(\sqrt{15}\right) - 2\arctan\frac{15}{8}\right)$$

57.
$$\sin(\arcsin \frac{4}{5} + \arctan \frac{12}{5} - \arccos \frac{8}{17})$$
.

58. Show that Arctan
$$\frac{1}{2}$$
 + Arctan $\frac{1}{3} = \frac{\pi}{4}$.

Solution. Let $\theta = \arctan \frac{1}{2}$, $\phi = \arctan \frac{1}{3}$. Then we wish to prove that $\theta + \phi = \pi/4$.

$$\tan(\theta + \phi) = \frac{\tan \theta + \tan \phi}{1 - \tan \theta \tan \phi} = \frac{\frac{1}{2} + \frac{1}{3}}{1 - \frac{1}{3} \cdot \frac{1}{3}} = 1.$$

From this we might have

$$+\phi = \frac{\pi}{4} + n\pi;$$
 $n = 0, \pm 1, \pm 2,$

However, since we are dealing with principal values, θ and ϕ are in the interval from 0 to $\pi/2$. Therefore $\theta + \phi$ is in the interval from 0 to π , and we must have $\theta + \phi = \pi/4$.

Prove that

- 59. Arcsin $\frac{3}{5}$ Arctan $\frac{3}{5}$ = Arctan $\frac{3}{29}$.
- 60. Arctan $\frac{1}{3}$ Arctan $\frac{1}{4}$ = Arctan $\frac{1}{13}$.
- **61.** Arcsin $\frac{3}{5}$ + Arcsin $\frac{8}{17}$ = Arcsin $\frac{77}{85}$.
- **62.** Arccos $\frac{4}{5}$ + Arccos $\frac{12}{13}$ = Arccos $\frac{33}{65}$.
- 63. Arccos $\frac{4}{5}$ + Arctan $\frac{3}{5}$ = Arctan $\frac{27}{11}$.
- **64.** 2 Arctan $\frac{1}{3}$ + Arctan $\frac{1}{7} = \frac{\pi}{4}$
- **65.** Arccos $\frac{63}{65} + 2$ Arctan $\frac{1}{5} = Arcsin \frac{3}{5}$.
- **66.** Arctan $\frac{1}{4}$ + Arctan $\frac{2}{3} = \frac{1}{2}$ Arccos $\frac{3}{5}$.
- 67. Arctan $\frac{1}{2}$ + Arctan $\frac{1}{5}$ + Arctan $\frac{1}{8}$ = $\frac{\pi}{4}$.
- **68.** Prove that $\arctan x + \arctan y = \arctan \frac{x+y}{1-xy}$ provided the value of the left-hand side is between $-\pi/2$ and $\pi/2$.

Note. In general,

$$\arctan x + \arctan y = \arctan \frac{x+y}{1-xy},$$

if it is understood that the particular values assigned to $t_{\rm WO}$ of the inverse functions are arbitrary; the particular value of the third is determined when the values of the others are assigned.

Prove that

69. Arcsin
$$x + \operatorname{Arccos} x = \frac{\pi}{2}$$
 for $-1 \le x \le 1$.

70. Arctan
$$x + \operatorname{Arccot} x = \frac{\pi}{2}$$
 for all values of x .

71. 2 Arcsin
$$x = Arccos(1 - 2x^2)$$
 for $0 \le x \le 1$.

72. Arcsin
$$x = \pm \operatorname{Arccos} \sqrt{1-x^2}$$
, according as $x \gtrsim 0$.

73. Arctan
$$x = Arcsin$$
; for all values of x .

74. Arctan
$$\frac{2x}{1-x^2}$$
 = Arcsin $\frac{2x}{1+x^2}$ for $-1 < x < 1$.

75. Arctan
$$x + \operatorname{Arccot}(x + 1) = \operatorname{Arctan}(x^2 + x + 1)$$
 for all ues of x .

76. Find all possible values of $\arcsin(\cos \theta)$.

Solution. Let $\phi = \arcsin(\cos \theta)$. Then,

$$\sin \phi = \cos \theta = \sin \left(\frac{\pi}{2} - \theta\right).$$

Therefore,

$$\phi = \frac{\frac{\pi}{2} - \theta + n \cdot 2\pi}{\pi - \left(\frac{\pi}{2} - \theta\right) + n \cdot 2\pi}.$$

These two sets of solutions may be expressed in the form

$$\phi = \frac{\pi}{2} \pm \theta + 2n\pi.$$

Find all possible values of the following expressions:

77. $\arcsin(\sin \theta)$.

78. $\arccos(\cos \theta)$.

79. $\arctan(\tan \theta)$.

80. $\arccos(\sin \theta)$.

CHAPTER XII

Trigonometric Equations

94. Trigonometric equations.

An equation which is satisfied by certain values only of the unknown quantity or quantities that it contains is called a **conditional equation**. Examples of conditional equations are 2x - 1 = 0, which is satisfied by $x = \frac{1}{2}$ only; $x^2 + y^2 = 25$, which is satisfied by an infinite number of pairs of values of x and y, but certainly not by all pairs of values; $\sin \theta = \frac{1}{2}$, which is satisfied by $\theta = 30^{\circ}$, 150° , 390° , 510° , etc., but not by all values of θ .

An identical equation, or identity, is an equation which is satisfied by all values (with perhaps some exceptions*) of the unknown quantity or quantities which it contains. Examples of identities are

$$(x+1)^2 = x^2 + 2x + 1,$$

$$\sin^2 \theta + \cos^2 \theta = 1,$$

$$\cos(\theta + \phi) = \cos \theta \cos \phi - \sin \theta \sin \phi.$$

The equations † which we shall consider in this chapter are conditional equations, identities having already been considered in various places throughout the book.

Trigonometric equations require, for a complete solution, general expressions such as (1) or (2) in section 92 of the preceding chapter. However, the equation is sometimes

^{*} For example, the identity $\tan \theta = \sin \theta/\cos \theta$ is not defined for values of θ , such as $\pi/2$, which make the denominator of the right-hand side equal to zero.

[†] It is customary to omit the qualifying adjective, and to refer to a conditional equation merely as an "equation."

considered sufficiently solved if all positive values of the unknown quantity less than 360° are obtained, or if the principal value of an inverse function is obtained.

There is no general method of solving trigonometric equations. If the equation contains a single function of an angle, solve for this function by appropriate algebraic methods, and then find the corresponding values of the angle. If more than one function appears in the equation, the equation should ordinarily be transformed so that it contains only one function, or into a factored form so that each factor contains only one function.

When the equation involves functions of different angles, such as θ , 2θ , $\frac{1}{2}\theta$, $\theta + 45^{\circ}$, it can sometimes be reduced to an equivalent equation which contains but a single function of a single angle, or to an equivalent equation which can be separated into factors each of which contains a single function of a single angle.

As in algebra, the test for each solution of an equation is to substitute it in the original equation to determine whether it satisfies the equation.

Some of the methods of solving trigonometric equations will be illustrated by examples.

Example 1.

Solve the equation $\sin \theta = \cos \theta$.

Solution. Divide both sides by $\cos \theta$:*

$$\tan \theta = 1.$$

The principal value of θ is 45°. The two positive values of θ less than 360° are 45° and 225°. The complete solution is

$$\theta = 45^{\circ} + n \cdot 180^{\circ}$$
, or $\theta = \frac{\pi}{4} + n\pi$; $n = 0, \pm 1, \pm 2$,

^{*}When both sides of an equation are divided by a quantity containing the unknown, this quantity should be set equal to zero to obtain possible solutions. If we set $\cos \theta = 0$, we get $\theta = 90^{\circ}$, 270° , \cdots . However, these values are not solutions of the equation $\sin \theta = \cos \theta$.

This equation can also be solved by replacing $\cos \theta$ by $\pm \sqrt{1 - \sin^2 \theta}$ and squaring both sides:

$$\sin^2 \theta = 1 - \sin^2 \theta,$$

 $2 \sin^2 \theta = 1,$
 $\sin \theta = \pm \frac{1}{\sqrt{2}},$
 $\theta = 45^\circ, 135^\circ, 225^\circ, 315^\circ, \cdot \cdot \cdot \cdot$

If this method is used, all the values obtained must be tested. It will be found that 135° and 315° do not satisfy the original equation. They are extraneous solutions introduced by squaring, and must be discarded.

Example 2.

Solve:

$$\cos^2\theta + 2\sin\theta + 1 = 0.$$

Solution. Replacing $\cos^2 \theta$ by $1 - \sin^2 \theta$, we get, after a slight simplification,

$$\sin^2\theta - 2\sin\theta - 2 = 0.$$

This is a quadratic equation in $\sin \theta$; solving it by the quadratic formula, we find

$$\sin \theta$$
 $\frac{2 \pm \sqrt{4+8}}{2} = \frac{2 \pm 2\sqrt{3}}{2} = 1 \pm \sqrt{3}$
= $1 \pm 1.73205 = 2.73205$ or -0.73205 .

The first value must be discarded, since the sine cannot be greater than 1; from the second we get two values of θ between 0° and 360°, viz.,

$$\theta = 180^{\circ} + 47^{\circ} 3.5' = 227^{\circ} 3.5',$$

 $\theta = 360^{\circ} - 47^{\circ} 3.5' = 312^{\circ} 56.5'.$

The general solution is given by

$$\theta = \begin{cases} 227^{\circ} & 3.5' + n \cdot 360^{\circ}, \\ 312^{\circ} & 56.5' + n \cdot 360^{\circ}; \end{cases} \quad n = 0, \pm 1, \pm 2, \cdots.$$

Example 3.

Solve:

$$2\sin^2\theta-\cos 2\theta=0.$$

Solution. Replace $\cos 2\theta$ by $1 - 2\sin^2 \theta$, and combine like terms:

$$4 \sin^2 \theta - 1 = 0,$$

 $\sin \theta = \pm \frac{1}{2},$
 $\theta = 30^{\circ}, 150^{\circ}, 210^{\circ}, 330^{\circ}, \cdots$

The general solution may be written in the form

$$\theta = n \cdot 180^{\circ} : 30^{\circ} = n\pi \pm \frac{\pi}{6}$$

Equations of the form $a \cos \theta \pm b \sin \theta = c \cos \theta$ solved by reducing the left side to one of the forms $r \sin(\theta \pm \phi)$, $r\cos(\theta \pm \phi)$. (See section 76.)

Example 4.

Solve:

$$3\sin\theta-4\cos\theta=1.$$

Solution. Divide both sides by $\sqrt{3^2 + (-4)^2} = 5$:

$$\frac{3}{5}\sin\theta - \frac{4}{5}\cos\theta = \frac{1}{5} = 0.2.$$
 (1)

If ϕ is an angle such that (see Fig. 89)

$$\cos\phi = \frac{3}{5}, \qquad \sin\phi = \frac{4}{5}, \tag{2}$$

Fig. 89

then (3) takes the form

$$\sin \theta \cos \phi - \cos \theta \sin \phi = 0.2,$$

$$\sin(\theta - \phi) = 0.2.$$

or

But from (2), using tables, we find $\phi = 53^{\circ} 8'$. Therefore

$$\sin(\theta - 53^{\circ} 8') = 0.2,$$

 $\theta - 53^{\circ} 8' = 11^{\circ} 32', 168^{\circ} 28', \cdots,$
 $\theta = 64^{\circ} 40', 221^{\circ} 36', \cdots.$

This method of solution is particularly valuable if the numbers involved are not simple, since it is adapted to the use of logarithms.

The equation could be solved by making the substitution $\cos \theta = \pm \sqrt{1 - \sin^2 \theta}$ and following the method used for solving radical equations in algebra. (Cf. example 1, second method.) This, however, introduces extraneous solutions.

EXERCISES XII. A

Solve the following equations:

1.
$$2\cos^2\theta - \sin^2\theta = 2$$
.

3.
$$\tan \theta + \cot \theta = 2$$
.

5.
$$\sec \theta = 4 \csc \theta$$
.

7.
$$\sin 2\theta + \cos \theta = 0$$
.

9.
$$\sin^2\theta=1-\sin 2\theta.$$

11.
$$\sin 2\theta + 2 \cos 2\theta = 1$$
.

11.
$$\sin 2\theta + 2 \cos 2\theta = 1$$

2.
$$2\cos^2\theta + 3\sin\theta = 0$$
.

4.
$$\sin \theta = 2 \cos \theta$$
.

6.
$$\cos 2\theta + \sin \theta = 0$$
.
8. $\sin 2\theta = 3 \sin^2 \theta - \cos^2 \theta$.

10.
$$\tan^2 \theta = \sin 2\theta$$
.

12.
$$4 \sec^2 2\theta + \tan 2\theta = 7$$
.

13.
$$\sin 2\theta = \cos 3\theta$$
.

Solution.
$$\sin 2\theta = \cos 3\theta = \sin(90^{\circ} - 3\theta)$$
.

Now if $\sin \theta = \sin \phi$, it follows that either

$$\theta = \phi + n \cdot 360^{\circ}$$
 or $\theta = 180^{\circ} - \phi + n \cdot 360^{\circ}$.

In the present case, therefore,

$$2\theta = 90^{\circ} - 3\theta + n \cdot 360^{\circ}$$
 or $2\theta = 180^{\circ} - (90^{\circ} - 3\theta) + n \cdot 360^{\circ}$.

The first equation yields

$$5\theta = 90^{\circ} + n \cdot 360^{\circ}, \qquad \theta = 18^{\circ} + n \cdot 72^{\circ}.$$

The second can be reduced to $\theta = 270^{\circ} + n \cdot 360^{\circ}$.

14.
$$\sin \theta = \cos(\theta + 15^{\circ}).$$

15.
$$\sin(\theta + 10^{\circ}) = \cos(\theta - 40^{\circ}).$$

16.
$$\sin(15^{\circ} - 2\theta) = \cos(7\theta + 10^{\circ}).$$

17.
$$\tan 5\theta = \cot 3\theta$$
.

18.
$$\tan(\theta + 25^{\circ}) = \cot 2\theta$$
.

19.
$$\tan(2\theta - 18^\circ) = \cot(3\theta + 48^\circ)$$
.

20.
$$\cos \theta + \cos 2\theta + \cos 3\theta = 0$$
.

21.
$$\csc 2\theta + \cot 2\theta = 2$$
.

- 22. $\sin 2\theta \cos 2\theta = -2 \sin \theta$.
- 23. $\sin \theta + \cos \theta = 1$.
- **24.** $5 \cos \theta + 12 \sin \theta = 4$.
- **25.** $3264 \sin \theta 5728 \cos \theta = 6018$.
- **26.** $0.1723 \cos \theta + 1.3284 \sin \theta = 0.8492$.
- 27. $\sqrt{3}\cos\theta \sin\theta = \sqrt{2}$.
- 28. csc $\theta = \cot \theta + \sqrt{3}$.
- **29.** $2 \sin^2 \theta + \sin^2 2\theta = 2$.
- **30.** $\tan^2 \theta + \cot^2 \theta = \frac{10}{3}$.
- **31.** $\cos 3\theta 2 \cos 2\theta + \cos \theta = 0$.
- 32. $\sin(\theta + 12^{\circ}) + \sin(\theta 8^{\circ}) = \sin 20^{\circ}$.
- 33. $\sin^4 \theta \cos^4 \theta = \frac{7}{36}$.
- **34.** $\sin^4 \theta + \cos^4 \theta = 1$.
- **35.** $\sin 3\theta = \cos 2\theta 1$.
- **36.** $3-4\cos^2\theta=\cos 3\theta$.
- 37. $\sin(60^{\circ} \theta) \sin(60^{\circ} + \theta) = \frac{\sqrt{3}}{2}$
- **38.** $\tan(\theta + 15^{\circ}) = 3 \tan(\theta 15^{\circ}).$
- 39. Solve the following simultaneous equations for r and θ in terms of x and y:

$$x = r \cos \theta,$$

$$y = r \sin \theta.$$

40. Solve the following simultaneous equations for r, θ , ϕ in terms of x, y, z, restricting r to positive values:

$$x = r \sin \theta \cos \phi,$$

 $y = r \sin \theta \sin \phi,$
 $z = r \cos \theta.$

Solve for θ and ϕ :

- **41.** $\sin \theta \sin \phi = 0.7038$, $\cos \theta \cos \phi = -0.7245$.
- 42. $\cos \theta + \cos \phi + \frac{1}{2} = 0$, $\cos \frac{1}{2}\theta + \frac{1}{2}\cos \phi - \frac{1}{4} = 0$.

- 43. $\sin \theta = \tan \phi$, $\cos \theta \cos \phi = \frac{1}{2}$.
- 44. $\sin \theta + \sin \phi = a$, $\cos \theta + \cos \phi = b$.
- **45.** Solve the equation $\cos x = x$ (x in radians).

Solution. Draw the graphs of $y = \cos x$ and y = x. (See Fig. 90.) The value of x for which the curve and the line inter-

sect is the solution of the equation. According to the graph, this value is approximately x = 0.74, about 42° 24′.

A more accurate value may be obtained by writing the equation in the form $\cos x - x = 0$, and employing interpolation. Tabulating for several val-

Fig. 90

ues of x, we get the results shown below.

	x	cos x	$\cos x - x$
42° 20′	.73886	.73924	.00038
42° 21′	.73915	.73904	00011
42° 22′	.73944	.73885	00059
42° 23′	.73973	.73865	00108
42° 24′	.74002	.73846	00156

Since we want the value of $\cos x - x$ to be zero, the required value of x is between 0.73886 and 0.73915. Using the ordinary methods of interpolation, we have

$$\frac{x - 0.73886}{0.73915 - 0.73886} \quad \frac{0 - 0.00038}{-0.00011 - 0.00038},$$

$$\frac{x - 0.73886}{0.00029} \quad \frac{38}{49},$$

or

from which we get

$$x = 0.73886 + \frac{38}{49} \times 0.00029$$
$$= 0.73886 + 0.00022 = 0.73908.$$

By means of more extensive tables, the value correct to five decimal places is found to be 0.73909.

Solve the following equations, in which x is to be expressed in radians:

46.
$$\cos x = 2x$$
.

47.
$$\sin x = x - 1$$
.

48.
$$\sin x = \frac{1}{x}$$
.

49.
$$\tan x = 1 - x$$
.

50.
$$\sin x = \log_{10} x$$
.

51.
$$\cos x = x^2$$
.

52.
$$\log_{10} x + x = 0$$
.

53.
$$x = 2 + \pi \sin x$$
.

54.
$$x = 1 + \frac{\pi}{6} \sin x$$
.

55.
$$x = \sin 2x$$
.

56.
$$3^x = 2 \cos x$$
.

57.
$$\sin x = 10^x$$
.

58. A horizontal cylindrical tank is 10 feet long and 4 feet in diameter. It contains 10 gallons of liquid. How deep is the liquid? (1 gal. = 231 cu. in.)

Some of the following equations are conditional, some are identical. Solve the former, prove the latter.

$$59. \ \frac{\sin^2 \theta}{1 + \cos \theta} = 1 - \cos \theta.$$

$$60. \frac{\sin^2 \theta}{1 + \sin \theta} = 1 - \sin \theta.$$

61.
$$\cos 2\theta + \sin 2\theta = (\cos \theta + \sin \theta)^2 + 2\sin^2 \theta$$
.

62.
$$\cos 2\theta + \sin 2\theta = (\cos \theta + \sin \theta)^2 - 2\sin^2 \theta$$
.

63.
$$\cot \frac{1}{2}\theta = \cot \theta (1 + \sec \theta)$$
.

64.
$$\csc 2\theta + 2 \tan \theta = 3$$
.

65.
$$2 \csc 2\theta - \tan \theta = \cot \theta$$
.

CHAPTER XIII

*Complex Numbers

95. Imaginary and complex numbers.

The imaginary unit, denoted by i, is a number having the property $i^2 = -1$. We postulate that it obeys all the laws of addition and multiplication assumed for real numbers.

Since $i^3 = i^2$ i = -i $i^4 = (i^2)^2 = 1$, $i^5 = i^4 \cdot i = i$, it is seen that the successive integral powers of i run through the cycle i, -1, -i, 1.

A number of the form a+bi, in which a and b are real numbers, is called a **complex number**. The number a is called the **real part**, and bi is called the **imaginary part** of the complex number, b being the coefficient of the imaginary part. If $b \neq 0$, the complex number is called an **imaginary number**. If $b \neq 0$ and a = 0, the complex number reduces to the form bi, which is called a **pure imaginary number**. If both a and b are different from zero, the number is sometimes called a **mixed imaginary number**. If b = 0, the complex number reduces to the real number a.

Two complex numbers such as a + bi and a - bi, which differ only in the signs of their imaginary parts, are called **conjugate** complex numbers. Either is said to be the conjugate of the other.

Two complex numbers are equal if and only if their real parts are equal and their imaginary parts are equal. In particular, a + bi = 0 if and only if a = 0 and b = 0.

96. Operations with complex numbers.

By definition, addition or subtraction of complex numbers is effected by adding or subtracting their real parts to obtain the real part of their sum or difference, and by adding or subtracting their imaginary parts to obtain the imaginary part of their sum or difference. Thus,

$$(a + bi) + (c + di) = (a + c) + (b + d)i,$$
 (1)

$$(a+bi) - (c+di) = (a-c) + (b-d)i.$$
 (2)

We multiply complex numbers according to the laws of real numbers, simplifying results by making use of the relation $i^2 = -1$. Thus,

$$(a + bi)(c + di) = ac + adi + bci + bdi^{2}$$

= $(ac - bd) + (ad + bc)i$. (3)

Division of complex numbers can be accomplished by writing the quotient in fractional form and multiplying both numerator and denominator by the conjugate of the denominator. Thus, to divide a + bi by c + di (c and d not both zero) we write

$$\frac{a+bi}{c+di} = \frac{a+bi}{c+di} \cdot \frac{c-di}{c-di} = \frac{ac-adi+bci-bdi^2}{c^2-d^2i^2}$$

$$= \frac{(ac+bd)+(bc-ad)i}{c^2+d^2}$$
(4)

97. Geometric representation of complex numbers.

The complex number x + yi may be represented by the point whose abscissa is x and whose ordinate is y. (See Fig. 91.) When complex numbers are so represented, the horizontal axis is called the axis of real numbers, and the vertical axis is called the axis of imaginary numbers.

98. Geometric addition and subtraction of complex numbers.

Let the complex numbers a + bi and c + di be represented by the points M and N respectively, and their sum, (a + c) + (b + d)i, by the point P. (See Fig. 92.) Draw OM, ON, MP, NP. Drop NQ, MR, PS perpendicular to OX. Draw MT parallel to OX. Then,

$$MT = RS = OS - OR = (a + c) - a = c = OQ,$$

 $TP = SP - ST = (b + d) - b = d = QN.$

Also, angle TPM is equal to angle QNO, and MP is parallel to ON. Quadrilateral OMPN is a parallelogram, since two of its sides are both equal and parallel.

Thus, to add two complex numbers geometrically, complete the parallelogram which has as adjacent sides the lines drawn from the origin to the points representing the two numbers. The fourth vertex of the parallelogram will be the point representing the sum of the two numbers.

If we think of the complex numbers a + bi and c + di as represented by the vectors OM and ON in Fig. 92, the sum of the numbers will be the vector OP. (See section 67.)

To subtract c + di from a + bi geometrically, we may add a + bi and -c - di.

EXERCISES XIII. A

Perform the indicated operations geometrically:

1.
$$(2+5i)+(6+i)$$
.

2.
$$(3+4i)+(5-2i)$$
.

3.
$$(5+3i)-(3-2i)$$
.

4.
$$(-4+2i)+(3+5i)$$
.

5.
$$(3i) + (6 + 2i)$$
.

6.
$$(5i) + (6)$$
.

7.
$$(5) - (6 - 7i)$$
.
8. $(1 + 2i) + (3 + 6i)$.
9. $(-6 + i) + (7 + 2i)$.
10. $(3 + 6i) - (1 + 2i)$.
11. $(7 + 5i) + (7 - 5i)$.
12. $(7 + 5i) - (7 - 5i)$.

13.
$$(-5-5i)+(10+3i)$$
. **14.** $(8+6i)-(4+6i)$.

15.
$$(-3+2i)+(3-7i)$$
. **16.** $(5+7i)+(5+7i)$.

17. (10+2i)+(-2+5i)+(3-4i).

Suggestion. Combine the first two numbers graphically, and then combine their sum with the third.

18.
$$(5+6i)+(6-2i)-(4-7i)$$
.

19. Given the complex numbers 10 - 4i, 5 + 5i, 1 - 6i. Show that the same result is obtained by geometrically (a) adding the first and second and then adding their sum to the third, (b) adding the first and third and then adding their sum to the second, (c) adding the second and third and then adding their sum to the first.

99. Trigonometric form of complex numbers.

Let the complex number x + yi be represented by the point P in Fig. 93. As usual, let OP = r (a non-negative number), and denote the angle XOP by θ . Then,

$$x = r \cos \theta, \qquad y = r \sin \theta, \tag{1}$$

and the complex number may be written

$$r(\cos\theta + i\sin\theta),$$
 (2)

which is called the trigonometric or polar form of the complex number, the form x + yi being called the rectangular form. The expression $\cos \theta + i \sin \theta$ is sometimes abbreviated cis θ .

In the trigonometric form (2), r is called the **modulus** or the

absolute value of the complex number, θ is called the amplitude or the argument. We have

$$r = \tan \theta = \frac{y}{x}$$
 (3)

Example 1.

Reduce 3 + 4i to trigonometric form.

SOLUTION.

$$r = \sqrt{3^2 + 4^2} = 5,$$

 $\tan \theta = \frac{4}{3} = 1.3333, \quad \theta = 53.1^\circ,$
 $3 + 4i = 5(\cos 53.1^\circ + i \sin 53.1^\circ).$

Example 2.

Reduce $-1 + i\sqrt{3}$ to trigonometric form.

Fig. 94

SOLUTION.

$$r = \sqrt{1+3} = 2,$$
 $\tan \theta = \frac{\sqrt{3}}{-1} = -\sqrt{3}, \quad \theta = 120^{\circ},$ $-1 + i\sqrt{3} = 2(\cos 120^{\circ} + i \sin 120^{\circ}).$

EXERCISES XIII. B

Reduce to trigonometric form:

1.
$$-5 + 5i$$
.

4.
$$6 + 6i$$
.

7. 6i.

10.
$$12 - 5i$$
.

13.
$$5 - i$$
.

16.
$$6 - 6i$$
.

19.
$$-7 + 2i$$
.

2.
$$3 + 4i$$
.

5.
$$3-4i$$
.

8.
$$-10$$
.

11.
$$2 + 3i$$
.

14.
$$-5i$$
.

17.
$$6 - 8i$$
.

20.
$$10 - 8i$$
.

3.
$$\sqrt{3} + i$$
.

6.
$$5 + 5i\sqrt{3}$$
.

6.
$$5 + 5i\sqrt{3}$$

9.
$$-8 - 15i$$
.

12.
$$12 + 5i$$
.

15.
$$-7 - 7i$$
.

18.
$$-2\sqrt{3} + 2i$$
.

21.
$$\frac{1}{2} + \frac{1}{3}i$$
.

Reduce to rectangular form:

22.
$$2(\cos 60^{\circ} + i \sin 60^{\circ})$$
.

24.
$$7(\cos 30^{\circ} + i \sin 30^{\circ}).$$

26.
$$4(\cos 330^{\circ} + i \sin 330^{\circ})$$
.

28.
$$5(\cos 180^{\circ} + i \sin 180^{\circ}).$$

30.
$$8(\cos 150^{\circ} + i \sin 150^{\circ})$$
.

32.
$$\sqrt{3}(\cos 210^{\circ} + i \sin 210^{\circ})$$
.

34.
$$8(\cos 100^{\circ} + i \sin 100^{\circ}).$$

36.
$$2(\cos 300^{\circ} + i \sin 300^{\circ}).$$

23.
$$5(\cos 45^{\circ} + i \sin 45^{\circ})$$
.

25.
$$3(\cos 225^{\circ} + i \sin 225^{\circ}).$$

27.
$$10(\cos 90^{\circ} + i \sin 90^{\circ})$$
.

29.
$$4(\cos 270^{\circ} + i \sin 270^{\circ}).$$

31.
$$\sqrt{2}(\cos 315^{\circ} + i \sin 315^{\circ})$$
.

33.
$$10[\cos(-35^\circ)+i\sin(-35^\circ)]$$
.

35.
$$5(\cos 200^{\circ} + i \sin 200^{\circ})$$
.

37.
$$10(\cos 400^{\circ} + i \sin 400^{\circ})$$
.

100. Multiplication and division of complex numbers in trigonometric form.

A very interesting result is obtained if two complex numbers expressed in trigonometric form are multiplied together. Thus,

$$r_{1}(\cos \theta_{1} + i \sin \theta_{1}) \times r_{2}(\cos \theta_{2} + i \sin \theta_{2})$$

$$= r_{1}r_{2}[(\cos \theta_{1} \cos \theta_{2} - \sin \theta_{1} \sin \theta_{2})$$

$$+ i(\sin \theta_{1} \cos \theta_{2} + \cos \theta_{1} \sin \theta_{2})]$$

$$= r_{1}r_{2}[\cos(\theta_{1} + \theta_{2}) + i \sin(\theta_{1} + \theta_{2})]. \tag{1}$$

Therefore, the product of two complex numbers is a complex number whose modulus is the product of the moduli of the numbers, and whose amplitude is the sum of their amplitudes.

It can readily be seen that this holds for the product of any finite number of complex numbers.

If one complex number is divided by another,* we have

$$\frac{r_1(\cos\theta_1 + i\sin\theta_1)}{r_2(\cos\theta_2 + i\sin\theta_2)} = \frac{r_1(\cos\theta_1 + i\sin\theta_1)}{r_2(\cos\theta_2 + i\sin\theta_2)} \cdot \frac{\cos\theta_2 - i\sin\theta_2}{\cos\theta_2 - i\sin\theta_2}$$

$$= \frac{r_1(\cos\theta_1\cos\theta_2 + \sin\theta_1\sin\theta_2) + i(\sin\theta_1\cos\theta_2 - \cos\theta_1\sin\theta_2)}{r_2(\cos^2\theta_2 + \sin^2\theta_2)}$$

$$\frac{r_1}{r_2}[\cos(\theta_1 - \theta_2) + i\sin(\theta_1 - \theta_2)]. \tag{2}$$

In words, the quotient of two complex numbers is a complex number whose modulus is the modulus of the dividend divided by the-modulus of the divisor, and whose amplitude is the amplitude of the dividend minus the amplitude of the divisor.

EXERCISES XIII. C

Perform the indicated operations, first reducing the numbers to trigonometric form (if necessary):

- 1. $3(\cos 40^{\circ} + i \sin 40^{\circ}) \cdot 5(\cos 70^{\circ} + i \sin 70^{\circ})$.
- 2. $2(\cos 200^{\circ} + i \sin 200^{\circ}) \cdot 6(\cos 300^{\circ} + i \sin 300^{\circ})$.

^{*} The divisor cannot be zero.

3.
$$\left(\frac{1}{2} + \frac{i\sqrt{3}}{2}\right)(2+2i)$$
. 4. $(-3+3i)(3-i\sqrt{3})$.

- 5. $6(\cos 70^{\circ} + i \sin 70^{\circ}) \cdot 2(\cos 40^{\circ} + i \sin 40^{\circ})$.
- **6.** $10(\cos 20^{\circ} + i \sin 20^{\circ}) \cdot 5(\cos 70^{\circ} + i \sin 70^{\circ}).$

7.
$$(3+3i\sqrt{3}) \div (\sqrt{3}-i)$$
. 8. $(-5+5i\sqrt{3}) \div (3+3i)$.

9.
$$(6-6i) \div (-2+2i\sqrt{3})$$
. **10.** $(1+i) \div (1+i\sqrt{3})$.

101. Powers of complex numbers.

Raising to a power is a special case of multiplication, and it follows, by a repeated application of (1) of section 100, that

$$[r(\cos\theta+i\sin\theta)]^n=r^n(\cos n\theta+i\sin n\theta),$$

where n is a positive integer. The foregoing relation is known as **De Moivre's theorem.***

Example.

Find the value of $(1+i)^5$.

Solution. Plot the complex number 1+i (Fig. 96). The absolute value is $-\sqrt{2}$ and the amplitude is 45° .

$$(1+i)^5 = [\sqrt{2}(\cos 45^\circ + i \sin 45^\circ)]^5$$

$$= 4\sqrt{2}(\cos 5 \cdot 45^\circ + i \sin 5 \cdot 45^\circ)$$

$$= 4\sqrt{2}(\cos 225^\circ + i \sin 225^\circ) = -4(1+i).$$

Frg. 96

102. Roots of complex numbers.

To prove De Moivre's theorem for the case in which the exponent is the reciprocal of a positive integer, take the expression

$$[r(\cos\theta + i\sin\theta)]^{1/n} = r^{1/n}(\cos\theta + i\sin\theta)^{1/n}.$$
 (1)

*A formal proof of the theorem can be effected by the process of mathematical induction. For an explanation of this process, see the author's College Algebra, Chapter X.

Let $\theta = n\phi$. Then the right side of (1) reduces to

$$r^{1/n}(\cos n\phi + i \sin n\phi)^{1/n} = r^{1/n}[(\cos \phi + i \sin \phi)^n]^{1/n}$$

= $r^{1/n}(\cos \phi + i \sin \phi)$,

or

$$[r(\cos\theta + i\sin\theta)]^{1/n} = r^{1/n} \left(\cos\frac{\theta}{n} + i\sin\frac{\theta}{n}\right).$$
 (2)

Since for any whole number k,

$$\cos(\theta + k \cdot 360^{\circ}) = \cos \theta, \quad \sin(\theta + k \cdot 360^{\circ}) = \sin \theta,$$

we have
$$[r(\cos\theta + i\sin\theta)]^{1/n}$$

$$= [r\{\cos(\theta + k \cdot 360^{\circ}) + i\sin(\theta + k \cdot 360^{\circ})\}]^{1/n}$$

$$= r^{1/n} \left(\cos \frac{\theta + k \cdot 360^{\circ}}{n} + i \sin \frac{\theta + k \cdot 360^{\circ}}{n}\right).$$
 (3)

Fig. 97

number $r(\cos \theta + i \sin \theta)$.

Example.

Find the fourth roots of $-1 - i\sqrt{3}$.

Solution. Plot the number $-1 - i\sqrt{3}$ (Fig. 97) and note that

By giving values to k from 0 to n-1 inclusive, we obtain n distinct roots of the

$$-1 - i\sqrt{3} = 2(\cos 240^{\circ} + i \sin 240^{\circ}),$$

$$(-1 - i\sqrt{3})^{\frac{1}{4}} = 2^{\frac{1}{4}} \left(\cos\frac{240^{\circ} + k \cdot 360^{\circ}}{4} + i\sin\frac{240^{\circ} + k \cdot 360^{\circ}}{4}\right)$$
$$= \sqrt{2}\cos(60^{\circ} + k \cdot 90^{\circ}) + i\sin(60^{\circ} + k \cdot 90^{\circ}).$$

Giving k successively the values 0, 1, 2, 3, we find for the four distinct fourth roots of $-1 - i\sqrt{3}$:

 $\sqrt[4]{2}(\cos 60^{\circ} + i \sin 60^{\circ})$

$$= \sqrt[4]{2} \left(-\frac{1}{2} + i \frac{\sqrt{3}}{2} \right) = -\frac{1}{2} \sqrt[4]{2} + \frac{i}{2} \sqrt[4]{18},$$

$$\sqrt[4]{2}(\cos 150^{\circ} + i \sin 150^{\circ})$$

$$= \sqrt[4]{2} \left(-\frac{\sqrt{3}}{2} + \frac{i}{2} \right) = -\frac{1}{2} \sqrt[4]{18} + \frac{i}{2} \sqrt[4]{2},$$

$$\sqrt[4]{2}(\cos 240^{\circ} + i \sin 240^{\circ})$$

$$= \sqrt[4]{2} \left(-\frac{1}{2} - i \frac{\sqrt{3}}{2} \right) = -\frac{1}{2} \sqrt[4]{2} - \frac{i}{2} \sqrt[4]{18},$$

$$\sqrt[4]{2}(\cos 330^{\circ} + i \sin 330^{\circ})$$

$$= \sqrt[4]{2} \left(\frac{\sqrt{3}}{2} - \frac{i}{2} \right) = \frac{1}{2} \sqrt[4]{18} - \frac{i}{2} \sqrt[4]{2}.$$

In Fig. 98, P represents the complex number $2(\cos 240^{\circ} + i \sin 240^{\circ})$; P_1 , P_2 , P_3 , P_4 represent the four roots whose amplitudes are 60°, 150°, 240°, 330°, respectively.

Note that the roots can be found geometrically as follows: Draw a circle with center at the origin and with radius equal to the numerical fourth root of the absolute value of the number whose fourth roots are to be found, that is, a radius equal to $\sqrt[4]{2}$. Take one-fourth of the amplitude of the original num-

ber $(\frac{1}{4} \times 240^{\circ} = 60^{\circ})$. This locates the point P_1 on the circle. The four roots all lie on the circle and are spaced at equal intervals of 90°. Thus we can find P_2 , P_3 , P_4 .

In general, the *n*th roots of the complex number $r(\cos \theta + i \sin \theta)$ can be found as follows: Draw a circle whose center is the origin and whose radius is the numerical *n*th root of r; divide the angle θ by n, the index of the root. Now divide the circumference of the circle, from θ/n to $\theta/n + 360^{\circ}$, into n equal parts. The n points of division will be the required roots.

EXERCISES XIII. D

Use De Moivre's theorem to raise to the indicated powers:

1.
$$[7(\cos 18^{\circ} + i \sin 18^{\circ})]^{3}$$
.

2.
$$[\sqrt{3}(\cos 20^{\circ} + i \sin 20^{\circ})]^{8}$$
.

3.
$$(1+i)^{10}$$
.

4.
$$(\sqrt{3}+i)^7$$
.

5.
$$(5-5i)^4$$
.

6.
$$[\sqrt{2}(\cos 100^{\circ} + i \sin 100^{\circ})]^{10}$$

7.
$$(\cos 22^{\circ} + i \sin 22^{\circ})^{8}$$
.

8.
$$\left(\frac{1}{2} + i\right)$$

$$9. \left(\frac{1}{2}-i\frac{\sqrt{3}}{2}\right)^3.$$

10.
$$[2(\cos 10^{\circ} + i \sin 10^{\circ})]^{-3}$$

11.
$$[10(\cos 70^{\circ} + i \sin 70^{\circ})]^{-6}$$
. **12.** $(1+i)^{-10}$.

12.
$$(1+i)^{-10}$$

Find all of the

- 13. Square roots of $9(\cos 80^{\circ} + i \sin 80^{\circ})$.
- **14.** Square roots of $4(\cos 100^{\circ} + i \sin 100^{\circ})$.
- **15.** Cube roots of $27(\cos 27^{\circ} + i \sin 27^{\circ})$.
- **16.** Square roots of $1 + i\sqrt{3}$.
- 17. Cube roots of $1+i\sqrt{3}$.
- 18. Cube roots of $-\sqrt{3} + i$.
- 19. Cube roots of 1.

Suggestion. $1 = \cos 0^{\circ} + i \sin 0^{\circ}$.

- **20.** Fifth roots of -1.
- **21.** Sixth roots of -8i.
- **22.** Cube roots of -2 + 3i.
- 23. Fifth roots of -4 4i.
- **24.** Seventh roots of $\sqrt{2}(1-i)$.

Obtain all of the roots of the following equations:

25.
$$x^5 - 1 = 0$$
.

25.
$$x^5 - 1 = 0$$
. **26.** $x^3 + 1 = 0$. **27.** $x^4 + 1 = 0$.

$$27. \ x^4 + 1 = 0.$$

28.
$$x^5 + 32 = 0$$

28.
$$x^5 + 32 = 0$$
. **29.** $x^4 - 16i = 0$. **30.** $x^7 - 1 = 0$.

30.
$$x^7 - 1 = 0$$
.

31.
$$x^4 + x^3 + x^2 + x + 1 = 0$$
.

Suggestion. Multiply by x-1, solve the resulting equation, and discard the extraneous root x = 1.

32.
$$x^4 - x^3 + x^2 - x + 1 = 0$$
.

CHAPTER XIV

Introduction to Spherical Trigonometry

103. Definitions and propositions from solid geometry.

The intersection of a plane with a sphere is a circle. If the plane passes through the center of the sphere, the intersection is a **great circle**; otherwise the intersection is a **small circle**. Obviously the radius of a great circle is equal to the radius of the sphere, while the radius of a small circle is less than the radius of the sphere.

A line through the center of the sphere perpendicular to the plane of a circle is called the **axis** of the circle. This axis pierces the sphere in two points, which are called the **poles** of the circle.

The shortest distance in space between two points on a sphere is the straight line joining them, but this line does not lie on the surface of the sphere. The shortest path on the sphere between the two points is the arc (not greater than a semicircle) of a great circle joining the points. The distance (on the sphere) between the two points is defined to be the length of this arc. This distance is usually expressed in angular units, and is equal to the angle which the arc subtends at the center of the sphere. However, it can be converted into linear units if the radius of the sphere is known

104. Spherical triangles.

A spherical triangle is that part of the surface of a sphere bounded by three arcs of great circles.* Like a plane tri-

^{*}That part of the surface of a sphere bounded by the arcs of two great circles is called a lune.

angle, it is composed of six parts—three sides and three angles. We shall ordinarily designate the angles by A, B, C, and the opposite sides by a, b, c, respectively.

To each spherical triangle there corresponds a trihedral

angle whose vertex is at the center of the sphere. A spherical triangle, with the corresponding trihedral angle, is illustrated in Fig. 99. In this figure, O is the center of the sphere. The sides of the spherical triangle are measured by the corresponding face angles

of the trihedral angle. Thus, a is measured by BOC, b is measured by AOC, c is measured by AOB.

The angles of the spherical triangle are measured by the corresponding dihedral angles of the trihedral angle. For example, angle A is measured by the dihedral angle whose edge is OA, namely B–OA–C.

This follows if the angle A of the spherical triangle is defined as the angle between the tangents at A to the arcs AB and AC, since the angle between these tangents is the plane angle of the dihedral angle.

It is possible to have spherical triangles with one or more sides or angles greater than 180°. However, we shall consider only triangles for which each side and each angle is less than 180°.* For such triangles, the sum of the sides is less than 360°, and the sum of the angles is between 180° and 540°; that is,

$$a + b + c < 360^{\circ},$$
 (1)

$$180^{\circ} < A + B + C < 540^{\circ}.$$
 (2)

^{*} Note that even with this restriction it is possible to have a spherical triangle with two, or even three, right angles. A spherical triangle having a right angle is called a right spherical triangle, one with two right angles is said to be birectangular, while one with three right angles is called trirectangular.

The amount by which the sum of the angles of a spherical triangle exceeds 180° is called the **spherical excess** of the triangle. That is, if E denotes the spherical excess, then

$$E = A + B + C - 180^{\circ}. (3)$$

The sum of any two sides is greater than the third side, and their difference is less than the third side.

If two sides are equal, the angles opposite are equal.

If two angles are equal, the sides opposite are equal.

If two sides are unequal, the angles opposite are unequal, and the greater angle is opposite the greater side.

If two angles are unequal, the sides opposite are unequal, and the greater side is opposite the greater angle.

105. Spherical polygons.

A spherical polygon is that part of the surface of a sphere bounded by three or more arcs of great circles. To every spherical polygon there corresponds a polyhedral angle whose vertex is at the center of the sphere. The sides of the polygon are measured by the corresponding face angles of the polyhedral angle, and the angles of the polygon are measured by the corresponding dihedral angles of the polyhedral angle.

A spherical polygon of n sides can be divided into n-2 triangles by drawing diagonals from one vertex. The sum of the excesses of these triangles is equal to the sum of the angles of the polygon less $(n-2) \cdot 180^{\circ}$. This difference may be called the spherical excess of the polygon.

106. Polar triangles.

With the vertices of a spherical triangle ABC as poles, construct three great circles. The great circles whose poles are B and C will intersect in two diametrically opposite

points. Denote by A' that point of intersection which is on the same side of BC as is A. Determine B' and C' similarly. Then A'B'C' is the **polar triangle** of ABC. (See Fig. 100.) Conversely, ABC is the polar triangle of A'B'C'.

Each angle of a spherical triangle is the supplement of the corresponding side in the polar triangle. That is,

$$A + a' = 180^{\circ}$$
, $B + b' = 180^{\circ}$, $C + c' = 180^{\circ}$, $A' + a = 180^{\circ}$, $B' + b = 180^{\circ}$, $C' + c = 180^{\circ}$

107. Areas.

The area of the surface of a sphere of radius R is $4\pi R^2$.

The area of a spherical triangle on a given sphere is proportional to its spherical excess. Since the area of a trirectangular triangle (whose excess is $270^{\circ} - 180^{\circ} = 90^{\circ}$) is one-eighth of the surface of the sphere, that is, $\frac{1}{8} \cdot 4\pi R^2 = \frac{1}{2}\pi R^2$, we have for the area of a triangle ABC,

$$\frac{\text{area}}{\frac{1}{2}\pi R^2} = \frac{E}{90},$$
or,
$$\text{area} = \frac{\pi R^2 E}{180}$$
(1)

This formula applies to any spherical polygon provided the excess of the polygon is defined as in section 105.

A spherical degree is a unit of surface measurement on a sphere equal to half a lune whose angle is 1°. (For definition of lune see footnote, page 197.) The area, in spherical degrees, of a spherical triangle, or of any spherical polygon, is equal to its spherical excess.*

* When the three sides of a spherical triangle are known, the excess can be determined by L'Huilier's formula, given here without derivation:

$$\tan \frac{1}{4}E = \sqrt{\tan \frac{1}{2}s \tan \frac{1}{2}(s-a) \tan \frac{1}{2}(s-b) \tan \frac{1}{2}(s-c)},$$
 in which $s = \frac{1}{2}(a+b+c).$

CHAPTER XV

Solution of Right Spherical Triangles

108. Formulas for solving right spherical triangles.

In Fig. 101 is represented a right spherical triangle, ABC, with the right angle at C (this will be the usual notation) and with sides a and b each less than 90°. Also shown is the

trihedral angle O-ABC associated with the triangle, O being the center of the sphere.

Through any point E on the edge OB, pass a plane DEF perpendicular to the edge OA and intersecting this edge in D. Then DE and DF will be perpendicular to OA.

From the various constructions it follows that the plane triangles ODF, ODE, OFE, DFE are right triangles, the vertex of the right angle being named as the middle letter.

In triangle DFE, angle D is equal to angle A of the spherical triangle, and each of the other plane right triangles has an angle equal to one of the sides of the spherical triangle.

Making use of these facts, we have

$$\sin a = \sin FOE = \frac{FE}{OE}, \qquad \sin c = \sin DOE = \frac{DE}{OE},$$

$$\frac{\sin a}{\sin c} = \frac{FE}{DE} = \sin A. \tag{1}$$

Also,

$$\tan b = \tan DOF = \frac{DF}{OD}, \qquad \tan c = \tan DOE = \frac{DE}{OD},$$

$$\frac{\tan b}{\tan c} = \frac{DF}{DE} = \cos A. \tag{2}$$

Similarly,

$$\tan a = \tan FOE = \frac{FE}{OF}, \quad \sin b = \sin DOF = \frac{DF}{OF},$$

$$\frac{\tan a}{\sin b} = \frac{FE}{DF} = \tan A. \tag{3}$$

Finally,

$$\cos a = \cos FOE = \frac{OF}{OE}, \qquad \cos b = \cos DOF = \frac{OD}{OF},$$
 $\cos a \cos b = \frac{OD}{OE} = \cos c.$ (4)

If the plane DEF had been constructed perpendicular to OB instead of to OA, we should have been led to results similar to (1), (2), (3), which can be obtained from these formulas by interchanging A and B, a and b. They are

$$\frac{\sin b}{\sin c} = \sin B, \qquad \frac{\tan a}{\tan c} = \cos B, \qquad \frac{\tan b}{\sin a} = \tan B. \quad (5)$$

Note that when this interchange is applied to (4) the formula reverts into itself.

From the foregoing formulas it can further be proved that

$$\cos a \sin B = \cos A$$
, $\cos b \sin A = \cos B$, (6)

$$\cot A \cot B = \cos a \cos b = \cos c. \tag{7}$$

Collecting these numbered results, and clearing of frac-

tions when necessary, we have the following ten formulas for the solution of right spherical triangles:

$$\sin a = \sin c \sin A$$
, (8) $\sin b = \sin c \sin B$, (9)
 $\tan a = \sin b \tan A$, (10) $\tan b = \sin a \tan B$, (11)
 $\tan a = \tan c \cos B$, (12) $\tan b = \tan c \cos A$, (13)
 $\cos c = \cos a \cos b$, (14) $\cos c = \cot A \cot B$, (15)
 $\cos A = \cos a \sin B$, (16) $\cos B = \cos b \sin A$. (17)

They have been derived for the case in which each part of the spherical triangle ABC (except the right angle C) is less than 90°. However, it can be proved that they hold for parts equal to or greater than 90°.

109. Napier's rules.

The foregoing ten formulas may, by a clever device due to Napier, be put into a form which is easily remembered.

In the schematic triangle of Fig. 102 we have replaced A by the symbol co-A, meaning "complement of A," and similarly for B and c.* Note that angle C is omitted. The five parts may also be arranged in a circle, as in Fig. 103, and are consequently often referred to as circular parts.

If in either of these diagrams any part is called the middle part, the two parts next to it are called the adjacent parts, and the other two are called the opposite parts. For example, if a is the middle part, then b and co-B are the adjacent parts, co-c and co-A are the opposite parts. Napier's rules are:

^{*} It should be understood that Fig. 102 does not represent a triangle.

- I. The sine of any middle part is equal to the product of the tangents of the adjacent parts.
- II. The sine of any middle part is equal to the product of the cosines of the opposite parts.

As an illustration, let us take the part a. Rule I gives

 $\sin a = \tan b \tan \cos B = \tan b \cot B$,

which is formula (11). Rule II gives

 $\sin a = \cos \cos - \cos \cos A = \sin c \sin A$,

which is (8).

By applying Napier's rules to each of the five parts of the diagram of Fig. 102 or that of Fig. 103, we obtain all ten of the formulas (8) to (17).

As a further mnemonic scheme we observe that the vowel i occurs in "sine" and "middle," the vowel a predominates in "tangents" and "adjacent" of Rule I, while the vowel o predominates in "cosines" and "opposite" of Rule II.

110. Solution of right spherical triangles.

If any two parts of a right spherical triangle (in addition to the right angle C) are given, the remaining parts can be found. However, it should be noted that sometimes no solution exists. (See example 2 later in this section.)

The quadrant in which any required part terminates may be determined by noting the signs of the functions involved. However, if the unknown part is determined from its sine, there are two possibilities for this part, the tabular value and its supplement, and consequently there are two solutions, subject however to the restrictions of the following theorems:

THEOREM I. In a right spherical triangle, any side and the opposite angle terminate in the same quadrant.

From equation (16), namely

 $\cos A = \cos a \sin B$,

it is seen, since sin B is positive, that $\cos a$ and $\cos A$ must

have the same sign. That is, a and A terminate in the same quadrant. The same result can be proved for b and B.

THEOREM II. If any two of the three parts a, b, c, terminate in the same quadrant, the third terminates in the first quadrant; if any two terminate in different quadrants, the third terminates in the second quadrant.

The proof follows directly from equation (14),

$$\cos c = \cos a \cos b$$
.

For if any two of the functions $\cos a$, $\cos b$, $\cos c$ have like signs, the third is positive; if any two have unlike signs, the third is negative.

The solution of a right spherical triangle can always be checked by the formula involving the three computed parts.

Example 1.

In a right spherical triangle ($C=90^{\circ}$), $A=69^{\circ}50.8'$, $c=72^{\circ}15.4'$; find B, a, b.

SOLUTION.	A	69° 50.8′
	c	72° 15.4′
$\sin a = \sin c \sin A,$	$\log \sin c$	9.97884 - 10
$\log \sin a = \log \sin c + \log \sin A.$	$\log \sin A$	9.97256 - 10
	$\log \overline{\sin a}$	9.95140 - 10
		63° 23.8′ *
$\cos A = \tan b \cot c,$	$\log \overline{\cos A}$	9.53723 - 10
$\log \tan b = \log \cos A - \log \cot c.$	$\log \cot c$	9.50511 - 10
	$\log \overline{\tan b}$	0.03212
	b	47° 7.0'
$\cos c = \cot A \cot B,$	$\log \cos c$	9.48395 - 10
$\log \cot B = \log \cos c \log \cot A.$	$\log \cot A$	9.56467 - 10
	$\log \overline{\cot B}$	$\overline{9.91928} - 10$
	B	50° 17.7′
	D	90 TI.1
Check. $\dagger \sin a = \tan b \cot B$,	$\log \frac{B}{\tan b}$	0.03212
CHECK.† $\sin a = \tan b \cot B$, $\log \sin a = \log \tan b + \log \cot B$.	$\log \overline{\tan b}$	

^{*}The supplementary value is not admissible, since, by Theorem I, α and A must terminate in the same quadrant.

[†] This check verifies the consistency of the logarithms, but does not prove that the angular quantities are correct.

Example 2.

Solve the spherical triangle
$$C=90^\circ$$
, $A=120^\circ$, $a=100^\circ$. Solution.
$$A 120^\circ \\ \sin b = \tan a \cot A, & \log \tan a - \log \cot A. \\ \log \sin b = \log \tan a + \log \cot A. & \log \cot A \\ \log \sin b = \frac{0.75368}{0.51512} & (\text{neg})^\circ \\ \text{No solution.}$$

Example 3.

Given $C = 90^{\circ}$, $B = 36^{\circ} 42.2'$, $b = 30^{\circ} 17.5'$; find the remaining parts.

Solution.

$$B = 36^{\circ} 42.2'$$
 $30^{\circ} 17.5'$
 $\sin a = \tan b \cot B$, $\log \tan b = 9.76654 - 10$
 $\log \sin a = \log \tan b + \log \cot B$. $\log \cot B = 0.12757$
 $\log \sin a = 9.89411 - 10$

$$a = 51^{\circ} 35.6' \text{ or } 128^{\circ} 24.4'$$
 $\sin b = \sin c \sin B$, $\log \sin b = 9.70278 - 10$
 $\log \sin c = \log \sin b - \log \sin B$. $\log \sin B = 9.77646 - 10$
 $\log \sin a = \log \cos b = \log \cos b$. $\log \cos a = 0.90403 - 10$
 $\log \sin A = \log \cos b = \log \cos b$. $\log \sin A = 0.906779 - 10$
 $\log \sin a = \log \sin c + \log \sin A$. $\log \sin a = 0.906779 - 10$
 $\log \sin a = \log \sin c + \log \sin A$. $\log \sin A = 0.906779 - 10$
 $\log \sin a = \log \sin c + \log \sin A$. $\log \sin A = 0.906779 - 10$
 $\log \sin a = \log \sin c + \log \sin A$. $\log \sin A = 0.906779 - 10$
 By Theorems I and II, the obtained values are grouped into the following two solutions:

$$A = 68^{\circ} 12.2',$$
 $a = 51^{\circ} 35.6',$ $c = 57^{\circ} 33.6';$ $A' = 111^{\circ} 47.8',$ $a' = 128^{\circ} 24.4',$ $c' = 122^{\circ} 26.4'.$

^{*}The notation (neg) indicates that the function is negative.

207

EXERCISES XV. A

Find the remaining parts of the following triangles, in each of which $C = 90^{\circ}$:

- **41.** $A = 80^{\circ} 10.5', c = 110^{\circ} 46.3'.$
 - **2.** $B = 130^{\circ} 30.0', a = 114^{\circ} 23.8'.$
- **43.** $B = 36^{\circ} 42.5', c = 112^{\circ} 25.0'$
- **4.** $A = 136^{\circ} 5.2', a = 110^{\circ} 18.6'.$
- **45.** $A = 75^{\circ} 15.0', B = 133^{\circ} 8.0'.$
 - **6.** $a = 66^{\circ} 59.5', b = 156^{\circ} 34.3'.$
- **₹7.** $B = 154^{\circ} 44.3'$, $b = 156^{\circ} 3.0'$.
- 8. $A = 116^{\circ} 32.4', b = 50^{\circ} 25.6'.$
- **49.** $B = 112^{\circ} 19.7', \alpha = 77^{\circ} 35.3'.$
- 10. $a = 39^{\circ} 46.3', b = 62^{\circ} 30.6'.$
- **411.** $a = 130^{\circ} 12.9', c = 73^{\circ} 58.0'.$
 - **12.** $A = 19^{\circ} 15.3', B = 85^{\circ} 33.0'.$
 - 13. $b = 26^{\circ} 28.7', c = 61^{\circ} 25.1'.$
 - **14.** $A = 132^{\circ} 15.6', B = 47^{\circ} 44.4'.$
 - **15.** $a = 98^{\circ} 8.1', c = 77^{\circ} 41.9'.$
- **16.** $B = 124^{\circ} 14.8', b = 147^{\circ} 15.2'.$
- 17. $A = 25^{\circ} 16.6'$, $a = 18^{\circ} 54.3'$.
- **18.** $A = 69^{\circ} 2.4', a = 62^{\circ} 12.8'.$
- 19. $A = 75^{\circ} 21.9', b = 14^{\circ} 59.6'.$
- **20.** $B = 83^{\circ} 56.7', b = 77^{\circ} 21.8'.$
- 21. Three concurrent edges of a cube are OP, OQ, OR. Find the dihedral angle between the plane PQR and one of the faces of the cube.
- 22. Show that if $B = C = 90^{\circ}$, then $b = c = 90^{\circ}$, and that A and a are indeterminate, but A = a.
- 23. Show that if $c = C = 90^{\circ}$, then either $A = a = 90^{\circ}$, and B and b are indeterminate, but B = b; or else $B = b = 90^{\circ}$, and A and a are indeterminate, but A = a.
- 24. Show that if C is a right angle and if b = c (and consequently each is a right angle), then $B = 90^{\circ}$, and that A and a are indeterminate, but A = a.

111. Quadrantal triangles.

A quadrantal triangle is a spherical triangle having a side equal to 90°. The polar triangle of a quadrantal triangle is

a right triangle, which can be solved by the methods explained in the preceding section. The parts of the quadrantal triangle can then be obtained.

For example, suppose we have given $c = 90^{\circ}$, $b = 50^{\circ}$, $A = 70^{\circ}$. We know that

$$C' = 180^{\circ} - c = 90^{\circ}, \qquad B' = 180^{\circ} - b = 130^{\circ},$$

 $a' = 180^{\circ} - A = 110^{\circ}.$

We then find A', b', c', from which the values of a, B, C are readily obtained.

EXERCISES XV. B

Solve the following quadrantal triangles ($c = 90^{\circ}$):

- \checkmark 1. $a = 70^{\circ} 7.8', b = 52^{\circ} 36.7'.$
 - **2.** $C = 135^{\circ} 33.7', a = 31^{\circ} 30.7'.$
- $\sqrt{3}$. $A = 118^{\circ} 46.4'$, $C = 100^{\circ} 7.8'$.
 - **4.** $B = 55^{\circ} 47.1', C = 105^{\circ} 9.5'.$
- $\sqrt{5}$. $A = 102^{\circ} 38.3'$, $a = 96^{\circ} 3.3'$.
 - **6.** $A = 73^{\circ} 45.4', b = 123^{\circ} 36.1'.$
 - 7. $a = 106^{\circ} 38.6', b = 36^{\circ} 49.7'.$
 - **8.** $A = 122^{\circ} 39.7', a = 116^{\circ} 52.5'.$
- **39.** $B = 63^{\circ} 4.6', b = 69^{\circ} 29.7'.$
- **10.** $\alpha = 60^{\circ} 39.8', b = 65^{\circ} 52.4'.$

112. Isosceles spherical triangles.

The great circle drawn from the vertex of an isosceles

spherical triangle to the midpoint of the opposite side divides the triangle into two symmetric right triangles. The solution of an isosceles spherical triangle can thus be reduced to the solution of

a right spherical triangle.

Example.

Find the remaining parts of an isosceles spherical triangle in which the equal angles are $D=E=80^{\circ}$ 27' and the side included by these equal angles is $f=76^{\circ}$ 42'. (See Fig. 104.)

Solution. Draw a perpendicular, FG, from the vertex F to the base DE. This divides the triangle into two symmetric right spherical triangles DFG and GFE. For clarity, the first of these has been redrawn at the right in Fig. 104, and has been relettered, so that A, B, C replace D, F, G, respectively. Then, in the triangle ABC, we have $C = 90^{\circ}$, $b = \frac{1}{2}f$. The logarithmic work follows.

$$\cos B = \cos b \sin A,$$

$$\log \cos B = \log \cos b + \log \sin A.$$

$$\begin{vmatrix} b & 38' & 27' \\ \log \cos \overline{b} & 9.89445 - 10 \\ \log \sin A & 9.99394 - 10 \\ \log \cos \overline{B} & 9.88839 - 10 \\ 8 & 39^{\circ} & 20.5' \\ \log \cot c = \log \cos A - \log \tan b.$$

$$\log \cot \frac{b}{c} & 9.89827 - 10 \\ \log \cot \frac{c}{c} & 9.32\overline{160} - 10 \\ c & 78^{\circ} & 9' \end{vmatrix}$$

Returning to the isosceles triangle, we have

$$F = 2B = 2 \times 39^{\circ} 20.5' = 78^{\circ} 41',$$

 $d = e = c = 78^{\circ} 9'.$

EXERCISES XV. C

Solve the following triangles:

✓1.
$$A = C = 69^{\circ} 2.3', b = 93^{\circ} 16.4'.$$
2. $B = C = 52^{\circ} 36.7', b = 73^{\circ} 58.0'.$
✓3. $B = 112^{\circ} 47.8', a = c = 99^{\circ} 9.6'.$
4. $a = c = 77^{\circ} 7.7', b = 37^{\circ} 30.4'.$
✓5. $A = 153^{\circ} 48.2', a = 145^{\circ} 3.8', B = C.$
6. $A = C = 77^{\circ} 40.5', b = 52^{\circ} 1.8'.$
✓7. $A = B = 95^{\circ} 5.1', C = 100^{\circ} 10.8'.$
8. $A = 58^{\circ} 58.8', b = c = 63^{\circ} 47.8'.$
9. $A = 62^{\circ} 1.5', a = c = 71^{\circ} 59.3'.$
10. $B = 72^{\circ} 48.8', b = 64^{\circ} 50.6', a = c.$

11.
$$a = b = c = 10^{\circ}$$
.
12. $a = b = c = 80^{\circ}$.
13. $a = b = c = 100^{\circ}$.
14. $A = B = C = 80^{\circ}$.
15. $A = B = C = 100^{\circ}$.
16. $A = B = C = 170^{\circ}$.

- 17. Show that if each side of a spherical triangle is 60° each angle is $\arccos \frac{1}{3}$.
- 18. Show that if each angle of a spherical triangle is 120° each side is $\arccos(-\frac{1}{3})$.
- 19. Show that if each side of a spherical triangle is 30° each angle is $arccos(2\sqrt{3}-3)$.
- 20. Prove that in an equilateral spherical triangle

$$\cos A = \frac{\cos a}{1 + \cos a}.$$

21. Prove that in an equiangular spherical triangle

$$\cos a = \frac{\cos A}{1 - \cos A}$$

22. In an isosceles spherical triangle the base is 63° 8.8′ and the equal sides are 40° 4.4′. Find the perpendicular from the vertex to the base, also the perpendicular from one end of the base to the opposite side.

CHAPTER XVI

Solution of Oblique Spherical Triangles

113. Oblique spherical triangles.

If no angle of a spherical triangle is a right angle the triangle is oblique. For the solution of oblique spherical triangles, certain formulas, analogous to those of Chapter VII are needed, and we shall proceed to develop them.

✓114. Law of sines.

Let ABC be any spherical triangle. Through the vertex C draw the arc of a great circle perpendicular to the

side c (produced if necessary) at the point D. (See Fig. 105.) Designate the length of this perpendicular CD by h.

The foregoing construction yields two right spherical triangles, ADC and BDC. By Napier's rules we find

$$\sin h = \sin a \sin B$$
, $\sin h = \sin b \sin A$. (1)

Equating the two values of $\sin h$, and dividing by $\sin A \sin B$, we get

$$\frac{\sin a}{\sin A} - \frac{\sin b}{\sin B} \tag{2}$$

Similarly, by drawing an arc through the vertex B perpendicular to the side b, we can prove the relation

$$\frac{\sin a}{\sin A} \quad \frac{\sin c}{\sin C} \tag{3}$$

Combining (2) and (3), we obtain the law of sines for spherical triangles,

$$\frac{\sin a}{\sin A} \quad \frac{\sin b}{\sin B} \quad \frac{\sin c}{\sin C}$$
 (4)

That is, the sines of the sides of a spherical triangle and the sines of the corresponding opposite angles are in proportion.

√115. Law of cosines for sides.

In Fig. 106, in which the construction is the same as that in Fig. 105, denote arc AD by m. Applying Napier's rules

to the right triangle BDC, we find, from either part of the figure, since $\cos(m-c) = \cos(c-m)$,

$$\cos a = \cos h \cos(c - m)$$

$$= \cos h(\cos c \cos m + \sin c \sin m). \tag{1}$$

From the right triangle ADC, we find

$$\cos b = \cos h \cos m$$
, or $\cos m = \frac{\cos b}{\cos h}$; (2)

and
$$\sin m = \tan h \cot A,$$
 (3)

$$\sin h = \sin b \sin A. \tag{4}$$

Substituting (2) and (3) in (1), we get

$$\cos a = \cos h(\cos c \frac{\cos b}{\cos h} + \sin c \tan h \cot A)$$
$$= \cos c \cos b + \sin c \sin h \cot A,$$

or, substituting the value of $\sin h$ from (4),

$$\cos a = \cos c \cos b + \sin c \sin b \cos A$$
.

Rearranging this formula, and writing the two others obtainable from it by a cyclic change of letters,* we have

$$\sqrt{\cos a} = \cos b \cos c + \sin b \sin c \cos A,$$
 (5)

$$\sqrt{\cos c} = \cos a \cos b + \sin a \sin b \cos C. \tag{7}$$

These formulas are known as the law of cosines for sides.

√116. Law of cosines for angles.

Applying formula (5) to A'B'C', the polar triangle of ABC, we get

$$\cos a' = \cos b' \cos c' + \sin b' \sin c' \cos A'. \tag{1}$$

If we now make use of the relations between the parts of a triangle and the parts of its polar triangle, $a' = 180^{\circ} - A$, etc. (see section 106), and of the formulas

$$cos(180^{\circ} - \theta) = -cos \theta, \quad sin(180^{\circ} - \theta) = sin \theta,$$

(1) reduces to

$$\sqrt{\cos A} = -\cos B \cos C + \sin B \sin C \cos a.$$
 (2) Similarly,

 $\cos B = -\cos C \cos A + \sin C \sin A \cos b, \qquad (3)$

$$\sqrt{\cos C} = -\cos A \cos B + \sin A \sin B \cos c.$$
 (4)

^{*} See section 54.

The three foregoing formulas constitute the law of cosines for angles.

The law of cosines, either for sides or for angles, together with the relations between the parts of a triangle and the parts of its polar triangle, is sufficient for solving any spherical triangle if three parts are given, since it is always possible to find a form of the law which involves the three given parts and a single unknown part. For example, if the given parts are A, B, a, we could use (2) to find C, then (3) and (4) to find b and c respectively. However, the law of cosines is not adapted to the use of logarithms, and as problems of spherical trigonometry ordinarily require accurate results, it is desirable to derive other formulas with which logarithms can be used.

√117. Law of tangents.

The law of sines for spherical triangles may be written in the form

$$\frac{\sin A}{\sin B} = \frac{\sin a}{\sin b}.$$
 (1)

By composition and division,*

$$\frac{\sin A - \sin B}{\sin A + \sin B} = \frac{\sin a - \sin b}{\sin a + \sin b}$$
 (2)

Applying formulas (9) and (8) of section 75 (page 132) to the numerator and denominator of the fraction on the left, we reduce it to the form

$$\frac{2\cos\frac{1}{2}(A+B)\sin\frac{1}{2}(A-B)}{2\sin\frac{1}{2}(A+B)\cos\frac{1}{2}(A-B)} = \frac{\tan\frac{1}{2}(A-B)}{\tan\frac{1}{2}(A+B)}.$$
 (3)

The right side of (2) may be similarly reduced, and we get the law of tangents for spherical triangles,

$$\sqrt{\frac{\tan\frac{1}{2}(A-B)}{\tan\frac{1}{2}(A+B)}} = \frac{\tan\frac{1}{2}(a-b)}{\tan\frac{1}{2}(a+b)}.$$
(4)

^{*}See the author's College Algebra, p. 128.

√118. Half-angle formulas.

We shall now develop the half-angle formulas for spherical trigonometry.

From formula (5) of section 74 (page 129), we have *

$$\tan \frac{1}{2}A = \sqrt{\frac{1}{1} - \cos A} \tag{1}$$

Solving equation (5) of the law of cosines (section 115) for $\cos A$, we find

$$\cos A = \frac{\cos a - \cos b \cos c}{\sin b \sin c}.$$

Subtracting each side from 1, we get

$$1 - \cos A = 1 - \frac{\cos a - \cos b \cos c}{\sin b \sin c}$$

$$= \frac{\sin b \sin c - \cos a + \cos b \cos c}{\sin b \sin c}$$

$$= \frac{\cos(b - c) - \cos a}{\sin b \sin c}.$$
 (2)

Similarly, we find

$$1 + \cos A = \frac{\cos a - \cos(b+c)}{\sin b \sin c}.$$
 (3)

Substituting (2) and (3) in (1), we get

$$\tan \frac{1}{2}A = \sqrt{\frac{\cos(b-c) - \cos a}{\cos a - \cos(b+c)}}.$$
 (4)

By formula (11) of section 75 (page 132),

$$\cos(b-c) - \cos a = -2\sin\frac{1}{2}(b-c+a)\sin\frac{1}{2}(b-c-a),$$
 (5)

$$\cos a - \cos(b+c) = -2 \sin \frac{1}{2}(a+b+c) \sin \frac{1}{2}(a-b-c).$$
 (6)

^{*}Only the positive sign is used with the radical, since, by the restriction imposed in section 104, $A < 180^{\circ}$, and consequently $\frac{1}{2}A < 90^{\circ}$.

If we let *

$$s = \frac{1}{2}(a+b+c), (7)$$

then it can easily be shown that

$$b + c - a = 2(s - a),$$

 $a + c - b = 2(s - b),$
 $a + b - c = 2(s - c).$
(8)

By means of (5), (6), (7), we can reduce (4) to the form

$$\tan \frac{1}{2}A = \sqrt{\frac{\sin(s-b)\sin(s-c)}{\sin s\sin(s-a)}}$$
 (9)

and, if †

$$\forall \tan r = \sqrt{\frac{\sin(s-a)\sin(s-b)\sin(s-c)}{\sin s}}$$
 (10)

(10) reduces to the simpler form

$$\forall \tan \frac{1}{2}A = \frac{\tan r}{\sin(s-a)}.$$
(11)

$$\sqrt{\tan \frac{1}{2}B} = \frac{\tan r}{\sin(s-b)}, \qquad (12)$$

$$\int \tan \frac{1}{2}C = \frac{\tan r}{\sin(s-c)}.$$
(13)

These may be termed the half-angle formulas.

119. Half-side formulas.

If we solve formula (2) of section 116 for $\cos a$ and proceed somewhat as above, we can derive the half-side formulas:

$$\tan \frac{1}{2}a = \tan R \cos(S - A), \tag{1}$$

$$\tan \frac{1}{2}b = \tan R \cos(S - B), \tag{2}$$

$$\tan \frac{1}{2}c = \tan R \cos(S - C), \tag{3}$$

in which I

^{*} Cf. section 64.

[†] It can be shown that r is the radius of the small circle inscribed in the spherical triangle ABC.

 $[\]ddagger$ It can be shown that R is the radius of the small circle circumscribed about the spherical triangle ABC.

$$\tan R = \sqrt{\frac{-\cos S}{\cos(S-A)\cos(S-B)\cos(S-C)}}$$
 (4)

and

$$S = \frac{1}{2}(A + B + C). \tag{5}$$

This is left as an exercise.

120. Napier's analogies.

Dividing (11) of section 118 by (12) of the same section, we get

$$\frac{\tan\frac{1}{2}A}{\tan\frac{1}{2}B} = \frac{\sin(s-b)}{\sin(s-a)},\tag{1}$$

and by composition and division,

$$\frac{\tan \frac{1}{2}A - \tan \frac{1}{2}B}{\tan \frac{1}{2}A + \tan \frac{1}{2}B} = \frac{\sin(s-b) - \sin(s-a)}{\sin(s-b) + \sin(s-a)},$$

which reduces as follows:

$$\frac{\frac{\sin \frac{1}{2}A}{\cos \frac{1}{2}A} - \frac{\sin \frac{1}{2}B}{\cos \frac{1}{2}B}}{\frac{\sin \frac{1}{2}A}{\cos \frac{1}{2}A} + \frac{\sin \frac{1}{2}B}{\cos \frac{1}{2}B}} = \frac{2 \cos \frac{1}{2}(2s - a - b) \sin \frac{1}{2}(a - b)}{2 \sin \frac{1}{2}(2s - a - b) \cos \frac{1}{2}(a - b)}$$

$$\frac{\sin\frac{1}{2}A\,\cos\frac{1}{2}B\,-\,\cos\frac{1}{2}A\,\sin\frac{1}{2}B}{\sin\frac{1}{2}A\,\cos\frac{1}{2}B\,+\,\cos\frac{1}{2}A\,\sin\frac{1}{2}B} = \frac{\tan\frac{1}{2}(a\,-\,b)}{\tan\frac{1}{2}c}$$

$$\frac{\sin \frac{1}{2}(A-B)}{\sin \frac{1}{2}(A+B)} = \frac{\tan \frac{1}{2}(a-b)}{\tan \frac{1}{2}c}.$$
 (2)

Multiplying (9) of section 118 by the corresponding formula for $\tan \frac{1}{2}B$ gives

$$\tan \frac{1}{2}A \tan \frac{1}{2}B = \frac{\sin(s-c)}{\sin s}.$$
 (3)

Writing the left side in the form $\tan \frac{1}{2}A/\cot \frac{1}{2}B$ and taking steps quite similar to those taken in proving formula (2) of

the present section, we can reduce (3) to the form *

$$\frac{\cos\frac{1}{2}(A-B)}{\cos\frac{1}{2}(A+B)} = \frac{\tan\frac{1}{2}(a+b)}{\tan\frac{1}{2}c}.$$
 (4)

This is left as an exercise.

It is also left as an exercise to prove, from (2) and (4), by the use of polar triangles, the following formulas:

$$\frac{\sin\frac{1}{2}(a-b)}{\sin\frac{1}{2}(a+b)} = \frac{\tan\frac{1}{2}(A-B)}{\cot\frac{1}{2}C}.$$
 (5)

$$\frac{\cos \frac{1}{2}(a-b)}{\cos \frac{1}{2}(a+b)} = \frac{\tan \frac{1}{2}(A+B)}{\cot \frac{1}{2}C}.$$
 (6)

By applying cyclic changes to the letters in formulas (2), (4), (5), (6) we obtain eight more formulas, or a total of twelve. These twelve formulas are called **Napier's analogies.**†

121. The six cases.

Problems in the solution of oblique spherical triangles may be classified into the following six cases:

VCase I. Three sides given. Torrs.

Case II. Three angles given.

Case III. Two sides and the included angle given.

Case IV. Two angles and the included side given.

Case V. Two sides and the angle opposite one of them given.

Case VI. Two angles and the side opposite one of them given.

Cases I and II, III and IV, V and VI, are essentially equivalent (in pairs) because of the relations between the parts of a triangle and the parts of its polar triangle. For example, if the three sides of a triangle are given, the three angles of the polar triangle can be found at once, so that

^{*} Formula (4) can also be derived by using the law of tangents and (2). † The word "analogy" is used in the now obsolete sense of "proportion."

Case I for the given triangle is Case II for the polar triangle.

The six cases can be solved by the application of the half-angle and half-side formulas, Napier's analogies, and the law of sines, as will be illustrated in subsequent sections.

122. Clearing up certain ambiguities.

When Napier's analogies are used, the quadrant in which any part terminates can always be determined by noting the signs of the functions involved. However, when the law of sines is used, two values are found for the required part. Whether one or both of these values are admissible may be determined by the principle established in solid geometry that the three sides and the three angles are in the same order of magnitude (e.g., if A > B > C, then a > b > c) or by the following theorems:

THEOREM I. Half the sum of any two sides is in the same quadrant as half the sum of the opposite angles.

This theorem is easily proved by using Napier's analogy (4), namely,

$$\frac{\cos \frac{1}{2}(A - B)}{\cos \frac{1}{2}(A + B)} = \frac{\tan \frac{1}{2}(a + b)}{\tan \frac{1}{2}c} \cdot$$

Since each part of a triangle is less than 180° , each of the quantities $\frac{1}{2}(A-B)$ and $\frac{1}{2}c$ is less than 90° . Consequently, $\cos \frac{1}{2}(A-B)$ and $\tan \frac{1}{2}(a-b)$ are both positive. Therefore, $\cos \frac{1}{2}(A+B)$ and $\tan \frac{1}{2}(a+b)$ are of the same sign, and $\frac{1}{2}(A+B)$ and $\frac{1}{2}(a+b)$ are either both in the first quadrant or both in the second quadrant.

COROLLARY. If two sides are supplementary the angles opposite are supplementary, and conversely.

THEOREM II. A side which differs from 90° more than another side does, terminates in the same quadrant as its opposite angle.

Suppose, for example, that a differs from 90° more than b does.

From the law of cosines for sides (formula (5) of section 115), we have

$$\cos A = \frac{\cos a - \cos b \cos c}{\sin b \sin c}.$$

From the hypothesis regarding a and b it follows that $\cos a$ is numerically greater than $\cos b$. Moreover, since $\cos c$ is numerically not greater than 1, $\cos a$ is also greater than $\cos b \cos c$. Hence the numerator of the above fraction has the same sign as $\cos a$. The denominator is positive, and consequently $\cos a$ and $\cos A$ have the same sign. Therefore a terminates in the same quadrant as A.

THEOREM III. An angle which differs from 90° more than another angle does, terminates in the same quadrant as its opposite side.

This theorem can be proved by using the law of cosines for angles. The proof is left as an exercise.

EXERCISES XVI. A

In the following sets of exercises, A, B, C, are the angles and a, b, c, the sides of spherical triangles.

- **1.** Given $a=100^{\circ}$, $b=95^{\circ}$, $c=75^{\circ}$. State whether the following angles are acute or obtuse: (a) $\frac{1}{2}(A+B)$, (b) $\frac{1}{2}(A+C)$, (c) $\frac{1}{2}(B+C)$.
- 2. Given $A = 60^{\circ}$, $B = 100^{\circ}$, $C = 120^{\circ}$. State whether the following quantities are acute or obtuse: (a) $\frac{1}{2}(a+b)$, (b) $\frac{1}{2}(a+c)$, (c) $\frac{1}{2}(b+c)$.
- **3.** If $a = 100^{\circ}$ and $b = 95^{\circ}$, is A acute or obtuse?
- **4.** Given $a = 100^{\circ}$, $b = 75^{\circ}$. Is B acute or obtuse?
- 5. Given $A = 132^{\circ}$, $B = 62^{\circ}$, $C = 42^{\circ}$. State whether the following sides are acute or obtuse: a, c.
- 6. Given $A = 76^{\circ}$, $B = 102^{\circ}$, $c = 75^{\circ}$. Which of the following quantities are acute and which obtuse? $\frac{1}{2}(a+b)$, a, $\frac{1}{2}(A+C)$.
- 7. Given $a = 82^{\circ}$, $b = 98^{\circ}$, $c = 99^{\circ}$. Which of the following angles are acute and which obtuse? $\frac{1}{2}(A+B)$, $\frac{1}{2}(A+C)$, $\frac{1}{2}(B+C)$, A, B, C.

123. Delambre's or Gauss's formulas.

Methods of checking solutions will be given in the model solutions. However, one of the following formulas, known as Delambre's or Gauss's formulas, always affords a good check, since each formula involves all six parts of the triangle. The formulas are given without proof.

$$\frac{\sin\frac{1}{2}(a-b)}{\sin\frac{1}{2}c} = \frac{\sin\frac{1}{2}(A-B)}{\cos\frac{1}{2}C},$$
 (1)

$$\frac{\sin\frac{1}{2}(a+b)}{\sin\frac{1}{2}c}=\frac{\cos\frac{1}{2}(A-B)}{\sin\frac{1}{2}C},$$
 (2)

$$\frac{\cos \frac{1}{2}(a-b)}{\cos \frac{1}{2}c} = \frac{\sin \frac{1}{2}(A+B)}{\cos \frac{1}{2}C},$$
 (3)

$$\frac{\cos \frac{1}{2}(a+b)}{\cos \frac{1}{2}c} = \frac{\cos \frac{1}{2}(A+B)}{\sin \frac{1}{2}C}.$$
 (4)

EXERCISE

Deduce Napier's analogies from the foregoing formulas.

194. Solution of Case I.

When we have the three sides given, the solution can be effected by the half-angle formulas and checked by the law of sines.

Example.

Solve the triangle $a = 56^{\circ} 17.2'$, $b = 110^{\circ} 4.7'$, $c = 71^{\circ} 29.3'$.

CHECK.

 $\tan r$

$$\log \tan r = \frac{1}{2}[\log \sin(s - a) + \log \sin(s - b) \\ + \log \sin(s - c) + \operatorname{colog} \sin s].$$

$$\tan \frac{1}{2}A = \frac{\tan r}{\sin(s - a)},$$

$$\log \tan \frac{1}{2}A = \log \tan r - \log \sin(s - a),$$

$$\operatorname{etc.}$$

$$\log \sin(s - a) \quad 9.94848 - 10$$

$$\log \sin(s - b) \quad 9.18701 - 10$$

$$\log \sin(s - c) \quad 9.86720 - 10$$

$$\operatorname{colog} \sin s \quad 0.05787$$

$$\log \tan^2 r \quad 9.06056 - 10$$

$$\log \tan r \quad 9.53028 - 10$$

$$\log \tan \frac{1}{2}A \quad 9.58180 - 10$$

$$\log \tan \frac{1}{2}B \quad 0.34327 - 10$$

$$\log \tan \frac{1}{2}B \quad 0.34327 - 10$$

$$\log \tan \frac{1}{2}C \quad 9.66308 - 10$$

$$20^{\circ} 53.7'$$

$$\frac{1}{2}B \quad 65^{\circ} 35.9'$$

$$\frac{1}{2}C \quad 24^{\circ} 43.1'$$

$$A \quad 41^{\circ} 47.4'$$

$$B \quad 131^{\circ} 11.8'$$

$$C \quad 49^{\circ} 26.2'$$

$$Check. \qquad \frac{\sin A}{\sin a} \quad \frac{\sin B}{\sin b} \quad \sin C = x,$$

$$\log x = \log \sin A - \log \sin a, \text{ etc.}$$

$$\log \sin A \quad 9.82374 - 10 \quad \log \sin B \quad 9.87648 - 10$$

$$\log \sin a \quad 9.92004 - 10 \quad \log \sin b \quad 9.97277 - 10$$

$$\log \sin a \quad 9.930370 - 10 \quad \log x \quad 9.90371 - 10$$

$$\log \sin C \quad 9.88063 - 10$$

$$\log \sin C \quad 9.88063 - 10$$

$$\log \sin C \quad 9.980692 - 10$$

 $\log x = 9.90371 - 10$

125. Solution of Case II.

When we have the three angles given the solution can be effected by the half-side formulas and checked by the law of sines.

The computational setup is the same as for Case I.

EXERCISES XVI. B

Solve the following triangles:

```
1. a = 125^{\circ} 40.2'
                              b = 53^{\circ} 56.2'
                                                            c = 98^{\circ} 51.3'.
 2. a = 63^{\circ} 24.4'
                                b = 74^{\circ} 45.2'
                                                            c = 136^{\circ} 42.8'
√3. a = 53^{\circ} 42.0',
                                                            c = 130^{\circ} 38.3'
                              b = 118^{\circ} 39.5'
                              b = 123^{\circ} 13.5',

b = 65^{\circ} 34.4',
 4. a = 158^{\circ} 33.7',
                                                           c = 64^{\circ} 36.9'.
 5. a = 84^{\circ} 35.2'
                                                           c = 103^{\circ} 24.2'
                              B = 55^{\circ} 31.4',
 6. A = 105^{\circ} 14.1'
                                                            C = 88^{\circ} 51.1'.
\checkmark7. A = 43^{\circ} 40.4'
                                B = 136^{\circ} 41.5'
                                                            C = 65^{\circ} 16.7'.
 8. A = 63^{\circ} 24.4'
                                B = 74^{\circ} 45.2'
                                                            C = 136^{\circ} 42.8'
\checkmark9. A = 128^{\circ} 17.1'
                                B = 50^{\circ} 2.5'
                                                            C = 114^{\circ} 40.6'
10. A = 81^{\circ} 52.5',
                                B = 97^{\circ} 31.1'
                                                            C = 111^{\circ} 3.7'.
11. a = 51^{\circ} 43.3',
                               b = 38^{\circ} 2.4',

b = 71^{\circ} 28.1',
                                                           c = 75^{\circ} 11.5'.
12. a = 146^{\circ} 48.7',
                                                           c = 129^{\circ} 16.3'
13. A = 83^{\circ} 54.0'
                                                            C = 93^{\circ} 2.0'.
                                 B = 102^{\circ} 6.4'
14. A = 143^{\circ} 35.0'
                               B = 104^{\circ} 16.2'
                                                           C = 112^{\circ} 15.2'
15. a = 170^{\circ} 30.8',
                               b = 85^{\circ} 50.4'
                                                          c = 108^{\circ} 5.3'.
16. a = 69^{\circ} 8.7'
                                b = 131^{\circ} 3.9'
                                                           c = 141^{\circ} 33.2'
                                                         C = 103^{\circ} 39.8'
17. A = 128^{\circ} 15.6',
                                 B = 120^{\circ} 28.2',
18. A = 59^{\circ} 4.4'
                                                           C = 120^{\circ} 4.8'.
                                 B = 94^{\circ} 23.2'
19. A = 45^{\circ} 24.6'
                                 B = 71^{\circ} 46.4'
                                                           C = 100^{\circ} 3.0'.
                                b = 83^{\circ} 14.7'
                                                           c = 96^{\circ} 53.2'.
20. a = 105^{\circ} 27.3',
```

126. Solution of Case III.

In this case we have two sides and the included angle given. Suppose, for example, that these are a, b, C. We find $\frac{1}{2}(A+B)$ and $\frac{1}{2}(A-B)$ from Napier's analogies (6) and (5) respectively (section 120). Angles A and B are then readily found. Side c may then be found by either of Napier's analogies (2) or (4). The solution may be checked

by the law of sines. It is desirable to check angles A and B as soon as they have been found, since they are used in finding c.

Example.

Solve the triangle $b=113^\circ$ 17.3′, $c=95^\circ$ 2.5′, $A=72^\circ$ 51.6′. Solution.

$$\tan \frac{1}{2}(B+C) = \frac{\cos \frac{1}{2}(b-c)}{\cos \frac{1}{2}(b+c)} \cot \frac{1}{2}A,$$

$$\tan \frac{1}{2}(B-C) = \frac{\sin \frac{1}{2}(b-c)}{\sin \frac{1}{2}(b+c)} \cot \frac{1}{2}A,$$

$$\log \tan \frac{1}{2}(B+C) = \log \cos \frac{1}{2}(b-c)$$

$$+ \operatorname{colog} \cos \frac{1}{2}(b+c) + \log \cot \frac{1}{2}A,$$

$$\log \tan \frac{1}{2}(B-C) = \log \sin \frac{1}{2}(b-c)$$

$$+ \operatorname{colog} \sin \frac{1}{2}(b+c) + \log \cot \frac{1}{2}A.$$

$$b \quad 113^{\circ} \quad 17.3'$$

$$c \quad 95^{\circ} \quad 2.5'$$

$$A \quad 72^{\circ} \quad 51.6'$$

$$b+c \quad 208^{\circ} \quad 19.8'$$

$$b-c \quad 18^{\circ} \quad 14.8'$$

$$\frac{1}{2}(b+c) \quad 104^{\circ} \quad 9.9'$$

$$\frac{1}{2}(b-c) \quad 9^{\circ} \quad 7.4'$$

$$\frac{1}{2}A \quad 36^{\circ} \quad 25.8'$$

$$\log \cos \frac{1}{2}(b-c) \quad 9.99447 - 10$$

$$\operatorname{colog} \cos \frac{1}{2}(b+c) \quad 0.61134 \text{ (neg) *}$$

$$\log \sin \frac{1}{2}(b-c) \quad 9.20020 - 10$$

$$\operatorname{colog} \sin \frac{1}{2}(b+c) \quad 0.73771 \text{ (neg) *}$$

$$\log \tan \frac{1}{2}(B-C) \quad 9.34551 - 10$$

$$\frac{1}{2}(B+C) \quad 100^{\circ} \quad 22.0'$$

$$\frac{1}{2}(B-C) \quad 12^{\circ} \quad 29.6'$$

$$B \quad 112^{\circ} \quad 51.6'$$

$$C \quad 87^{\circ} \quad 52.4'$$

^{*}The notation (neg) indicates that the corresponding function is negative. Thus, in finding $\frac{1}{2}(B+C)$, we must deduct the value found in the tables

$$\tan \frac{1}{2}a = \frac{\sin \frac{1}{2}(B+C)}{\sin \frac{1}{2}(B-C)} \tan \frac{1}{2}(b-c),$$

$$\log \tan \frac{1}{2}a = \log \sin \frac{1}{2}(B+C) + \log \tan \frac{1}{2}(b-c).$$

$$\log \sin \frac{1}{2}(B+C) + \log \tan \frac{1}{2}(b-c).$$

$$\log \sin \frac{1}{2}(B+C) + \log \tan \frac{1}{2}(b-c).$$

$$\log \sin \frac{1}{2}(B-C) + \log \tan \frac{1}{2}(b-c).$$

$$\log \tan \frac{1}{2}(B-C) + \log \tan \frac{1}{2}(b-c).$$

$$\log \tan \frac{1}{2}(B-C) + \log \tan \frac{1}{2}(b-c).$$

$$\log \tan \frac{1}{2}a + 9.86346 - 10.$$

$$\frac{1}{2}a + 36^{\circ} + 8.3'$$

$$a + 72^{\circ} + 16.6'$$

$$\sin a + \sin B + \sin C + x,$$

$$\cos a + \sin b + \sin C + x,$$

$$\log x = \log \sin A - \log \sin a, \text{ etc.}$$

$$\log \sin a + 9.98027 - 10 + \log \sin a, \text{ etc.}$$

$$\log \sin a + 9.97888 - 10 + \log \sin b + 9.963447 - 10.$$

$$\log \sin a + 9.97888 - 10 + \log \sin b + 9.96309 - 10.$$

$$\log \sin a + 9.97888 - 10 + \log \sin a + 9.96309 - 10.$$

$$\log \sin a + 9.99970 - 10.$$

$$\log \sin a + 9.99970 - 10.$$

$$\log \sin a + 9.999832 - 10.$$

$$\log \sin a + 9.99832 - 10.$$

$$\log \sin a + 9.99832 - 10.$$

$$\log \sin a + 9.99832 - 10.$$

127. Solution of Case IV.

The solution of this case, in which we have two angles and the included side given, is very similar to the solution of Case III. Using the appropriate analogies of Napier, we find half the sum and half the difference of the required sides. The sides themselves can then be found immediately. The unknown angle is found by using another of Napier's analogies, and the results may be checked by the law of sines, the two sides being checked as soon as they are found.

from 180°, since
$$\tan \frac{1}{2}(B+C)$$
 is negative. That is,
$$\frac{1}{2}(B+C)=180^{\circ}-79^{\circ}\,38.0'=100^{\circ}\,22.0'.$$

This could also be determined by Theorem I of section 122.

Example.

Solve the triangle $A=93^\circ$ 14.8′, $C=71^\circ$ 23.2′, $b=112^\circ$ 19.8′. Solution.

$$\tan \frac{1}{2}(a+c) = \frac{\cos \frac{1}{2}(A-C)}{\cos \frac{1}{2}(A+C)} \tan \frac{1}{2}b,$$

$$\tan \frac{1}{2}(a-c) = \frac{\sin \frac{1}{2}(A-C)}{\sin \frac{1}{2}(A+C)} \tan \frac{1}{2}b,$$

$$\log \tan \frac{1}{2}(a+c) = \log \cos \frac{1}{2}(A-C) + \log \tan \frac{1}{2}b,$$

$$\log \tan \frac{1}{2}(a-c) = \log \sin \frac{1}{2}(A-C) + \log \tan \frac{1}{2}b,$$

$$\log \tan \frac{1}{2}(a-c) = \log \sin \frac{1}{2}(A-C) + \log \tan \frac{1}{2}b.$$

$$93^{\circ} 14.8'$$

$$71^{\circ} 23.2'$$

$$112^{\circ} 19.8'$$

$$A+C \quad 164^{\circ} 38.0'$$

$$A-C \quad 21^{\circ} 51.6'$$

$$\frac{1}{2}(A+C) \quad 82^{\circ} 19.0'$$

$$\frac{1}{2}(A-C) \quad 10^{\circ} 55.8'$$

$$\frac{1}{2}b \quad 56^{\circ} 9.9'$$

$$\log \cos \frac{1}{2}(A-C) \quad 9.99205-10$$

$$\operatorname{colog} \cos \frac{1}{2}(A+C) \quad 9.87388$$

$$\log \tan \frac{1}{2}b \quad 0.17371$$

$$\log \sin \frac{1}{2}(A-C) \quad 9.27786-10$$

$$\operatorname{colog} \sin \frac{1}{2}(A+C) \quad 0.00392$$

$$\log \tan \frac{1}{2}(a+c) \quad 9.45549-10$$

$$\frac{1}{2}(a+c) \quad 84^{\circ} 47.1'$$

$$\frac{1}{2}(a-c) \quad 15^{\circ} 55.8'$$

$$100^{\circ} 42.9'$$

$$68^{\circ} 51.3'$$

$$\cot \frac{1}{2}B = \frac{\sin \frac{1}{2}(a+c)}{\sin \frac{1}{2}(a-c)} \tan \frac{1}{2}(A-C),$$

$$\log \cot \frac{1}{2}B = \log \sin \frac{1}{2}(a+c)$$

$$+ \operatorname{colog} \sin \frac{1}{2}(a-c) + \log \tan \frac{1}{2}(A-C).$$

$$\begin{array}{cccc} \log \sin \frac{1}{2}(a+c) & 9.99820 - 10 \\ \operatorname{colog} \sin \frac{1}{2}(a-c) & 0.56152 \\ \log \tan \frac{1}{2}(A-C) & 9.28581 - 10 \\ \log \cot \frac{1}{2}B & 9.84553 - 10 \\ & \frac{1}{2}B & 54^{\circ} 58.9' \\ & B & 109^{\circ} 57.8' \end{array}$$

CHECK.

$$\frac{\sin A}{\sin a} \quad \frac{\sin B}{\sin b} \quad \frac{\sin C}{\sin c} = x,$$

 $\log x = \log \sin A - \log \sin a$, etc.

EXERCISES XVI. C

Solve the following triangles:

1. $a = 56^{\circ} 19.7'$	$b = 20^{\circ} 16.7'$	$C: 114^{\circ} 20.3'$.
2. $b = 47^{\circ} 29.3'$,	$c = 50^{\circ} 6.3'$	$A: 129^{\circ} 58.5'$.
3. $a = 145^{\circ} 58.2'$	$b = 62^{\circ} 50.6'$	$C: 134^{\circ} 52.0'$.
4. $b = 120^{\circ} 30.5'$,	$c = 70^{\circ} 20.3',$	$A : 50^{\circ} 10.2'$.
5. $a = 95^{\circ} 12.9'$,	$b = 53^{\circ} 10.1',$	$C: 49^{\circ} 11.3'$.
6. $A :: 128^{\circ} 36.8'$,	$B = 106^{\circ} 45.2',$	$c: 87^{\circ} 40.3'$.
7. $A :: 77^{\circ} 59.6'$,	$B = 40^{\circ} 59.8'$,	$c: 108^{\circ} 0.5'$.
8. B :: 108° 28.9′,	$C = 38^{\circ} 11.5',$	$a: 52^{\circ} 29.0'$.
9. $A :: 127^{\circ} 19.6'$,	$C = 108^{\circ} 41.5',$	$b: 125^{\circ} 22.5'$.
10. $A := 142^{\circ} 30.8'$,	$B = 68^{\circ} 47.7'$	$c = 135^{\circ} 34.7'$.
11. $b = 99^{\circ} 40.8'$,	$c = 100^{\circ} 49.5',$	$A := 65^{\circ} 33.2'$.
12. $a = 41^{\circ} 5.1'$,	$b = 44^{\circ} 25.4',$	$C = 37^{\circ} 29.2'.$
13. $A := 176^{\circ} 16.6'$,	$C = 3^{\circ} 18.2',$	$b = 27^{\circ} 1.1'$.
14. B = 64° 48.9′,	$C = 40^{\circ} 23.3',$	' $a : 108^{\circ} 39.2'$.
15. $a = 88^{\circ} 37.7'$,	$b = 125^{\circ} 18.3',$	$C = 102^{\circ} 16.6'.$
16. $a = 67^{\circ} 12.6'$,	$c = 135^{\circ} 0.9',$	$B : 74^{\circ} 45.2'.$
17. $A = 34^{\circ} 29.5'$,	$B = 36^{\circ} 6.8'$	$c = 85^{\circ} 59.0'$.

18. $A = 78^{\circ} 30.8'$	$B = 91^{\circ} 28.2',$	$c = 51^{\circ} 22.4'$.
19. $a = 132^{\circ} 46.7'$	$b = 59^{\circ} 50.1',$	$C = 56^{\circ} 28.4'$.
20. $b = 28^{\circ} 20.3'$,	$c = 112^{\circ} 1.9',$	$A = 79^{\circ} 28.6'$.

128. Solution of Case V.

Case V, in which we have two sides and the angle opposite one of them given, presents the same peculiarities as the corresponding case in plane trigonometry. Suppose that the given parts are a, b, A. Angle B can be determined by the law of sines,

$$\sin B = \frac{\sin b \sin A}{\sin a} \,. \tag{1}$$

If the ratio on the right of this equation is greater than 1 (in other words, if $\log \sin B > 0$), no solution exists.

If this ratio is equal to 1, B is 90° and the resulting right triangle is a unique solution.

If the ratio is less than 1, we find two values for B, the tabular value and its supplement. In this event there may be two solutions (see

Fig. 107). The number of solutions may be determined by the principles of section 122.

The remaining angle, and likewise the required side, can be found by using appropriate forms of Napier's analogies.

Checking is perhaps best done by means of one of Delambre's formulas. Suppose, for example, that we rewrite (1) of section 123 in the form

$$\frac{\sin\frac{1}{2}(a-b)\cos\frac{1}{2}C}{\sin\frac{1}{2}(A-B)\sin\frac{1}{2}c} = 1.$$
 (2)

Then, the logarithm of the left side should be equal to zero (since log 1 = 0) if the work is correct.

Example.

Solve the triangle $a = 100^{\circ} 48.2'$, $b = 70^{\circ} 11.4'$, $B = 71^{\circ} 9.6'$. SOLUTION. b 70° 11.4′ B 71° 9.6′ $\sin A = \frac{\sin a \sin B}{\sin b},$ $\log \sin A = \log \sin a$ $\log \sin a \ 9.99223 - 10$ $+\log\sin B + \operatorname{colog}\sin b$. $\log \sin B = 9.97608 - 10$ colog sin b 0.02649 $\log \sin A = 9.99480 - 10$ $81^{\circ} 9.0'$, $A' = 98^{\circ} 51.0'$ $\cot \frac{1}{2}C = \frac{\sin \frac{1}{2}(a+b)}{\sin \frac{1}{2}(a-b)} \tan \frac{1}{2}(A-B),$ $\log \cot \frac{1}{2}C = \log \sin \frac{1}{2}(a+b) + \operatorname{colog} \sin \frac{1}{2}(a-b)$ $+ \log \tan \frac{1}{2}(A - B)$. $a + b \quad 170^{\circ} 59.6'$ $a - b = 30^{\circ} 36.8'$ A + B 152° 18.6′, A' + B = 170° 0.6′ A - B 9° 59.4′, $A' - B = 27^{\circ} 41.4'$ $\frac{1}{2}(a+b)$ 85° 29.8′ $\frac{1}{2}(a-b)$ 15° 18.4′ $\frac{\frac{1}{2}(A + B)}{\frac{1}{2}(A - B)} = \frac{76^{\circ} \ 9.3', \frac{1}{2}(A' + B)}{\frac{1}{2}(A - B)} = \frac{4^{\circ} 59.7', \frac{1}{2}(A' - B)}{\frac{1}{2}(A' - B)} = \frac{13^{\circ} 50.7'}{12}$ $\log \tan \frac{1}{8}(A - B)$ 8.94151 $\log \sin \frac{1}{2}(a+b)$ 9.99866 - 10 $colog sin \frac{1}{2}(a - b) 0.57842$ $\log \tan \frac{1}{2}(A'-B)$ 9.39174 - 10 $\log \cot \frac{1}{2}C$ 9.51859 - 10 $\log \cot \frac{1}{2}C'$ 9.96882 - 10 ½C 71° 44.0′ $\frac{1}{3}C'$ 47° 3.3′

$$\tan \frac{1}{2}c = \frac{\sin \frac{1}{2}(A+B)}{\sin \frac{1}{2}(A-B)} \tan \frac{1}{2}(a-b),$$

C 143° 28.0′ C' 94° 6.6′

$$\log \tan \frac{1}{2}c = \log \sin \frac{1}{2}(A + B) + \operatorname{colog} \sin \frac{1}{2}(A - B) + \log \tan \frac{1}{2}(A - B)$$

$$= \begin{cases} \log \sin \frac{1}{2}(A + B) & 9.98720 - 10 \\ 1.06014 & 1.06014 \end{cases}$$

$$= \log \tan \frac{1}{2}(a - b) & 9.43727 - 10 \\ \log \sin \frac{1}{2}(A' + B) & 9.99835 - 10 \\ \operatorname{colog} \sin \frac{1}{2}(A' - B) & 0.62106 \\ \log \tan \frac{1}{2}c & 0.48461 \\ \log \tan \frac{1}{2}c' & 48^{\circ} 43.7' \\ \frac{1}{2}c' & 48^{\circ} 43.7' \\ c & 143^{\circ} 43.2' \\ c' & 97^{\circ} 27.4' \end{cases}$$

CHECK. 1st solution.

$$\frac{\sin \frac{1}{2}(a-b) \cos \frac{1}{2}C}{\sin \frac{1}{2}(A-B) \sin \frac{1}{2}c} = 1$$

$$\log \sin \frac{1}{2}(a-b) + \log \cos \frac{1}{2}C + \operatorname{colog} \sin \frac{1}{2}(A-B) + \operatorname{colog} \sin \frac{1}{2}c = 0.$$

$$\begin{array}{ccc} \log \sin \frac{1}{2}(a-b) & 9.42158-10 \\ \log \cos \frac{1}{2}C & 9.49615-10 \\ \operatorname{colog} \sin \frac{1}{2}(A-B) & 1.06014 \\ \operatorname{colog} \sin \frac{1}{2}c & 0.02214 \\ & 0.00001 \end{array}$$

129. Solution of Case VI.

Case VI, two angles and the side opposite one of them given, is so similar to Case V that we shall not give a detailed discussion. A model solution, however, will be given.

Example.

Solve the triangle $A = 121^{\circ} 17.7'$, $B = 29^{\circ} 7.7'$, $a = 136^{\circ} 12.0'$.

Solution.
$$\sin b = \frac{\sin a \sin B}{\sin A},$$

 $\log \sin b = \log \sin a + \log \sin B + \operatorname{colog} \sin A.$

```
A 121° 17.7′
                                         B
                                                29° 7.7′
                                               136° 12.0′
                             \log \sin a \ 9.84020 - 10
                             \log \sin B = 9.68732 - 10
                          colog sin A = 0.06829
                             \log \sin b = 9.59581 - 10
                                          b 23° 13.3′, b' = 156° 46.7′ *
                      \tan \frac{1}{2}c = \frac{\sin \frac{1}{2}(A+B)}{\sin \frac{1}{2}(A-B)} \tan \frac{1}{2}(a-b),
\log \tan \frac{1}{2}c = \log \sin \frac{1}{2}(A+B) + \operatorname{colog} \sin \frac{1}{2}(A-B)
                                                                         + \log \tan \frac{1}{2}(a-b).
                                A + B \mid 150^{\circ} 25.4'
                       A - B 92° 10.0′

a + b 159° 25.3′

a - b 112° 58.7′
            \log \tan \frac{1}{2}(a-b) \mid 0.17905
                             \log \tan \frac{1}{2}c = 0.30688
                                         \frac{1}{2}c | 63° 44.5′
                                           c 127° 29.0'
                       \cot \frac{1}{2}C = \frac{\sin \frac{1}{2}(a+b)}{\sin \frac{1}{2}(a-b)} \tan \frac{1}{2}(A-B),
\log \cot \frac{1}{2}C = \log \sin \frac{1}{2}(a+b) + \operatorname{colog} \sin \frac{1}{2}(a-b)
                                                                       + \log \tan \frac{1}{2}(A - B).
                  \log \sin \frac{1}{2}(a+b) 9.99296 - 10
               colog \sin \frac{1}{2}(a-b) 0.07894
                \log \tan \frac{1}{2}(A - B) 0.01643

\begin{array}{ccc}
    & \log \cot \frac{1}{2}C & 0.08833 \\
    & \frac{1}{2}C & 39^{\circ} 12.8'
\end{array}

                                          C 78° 25.6′
```

^{*} Not admissible; for A > B, and therefore a must be greater than b.

232 SOLUTION OF OBLIQUE SPHERICAL TRIANGLES [Ch. XVI

Check.
$$\frac{\sin\frac{1}{2}(a-b)\cos\frac{1}{2}C}{\sin\frac{1}{2}(A-B)\sin\frac{1}{2}c} = 1,$$

$$\log\sin\frac{1}{2}(a-b) + \log\cos\frac{1}{2}C + \operatorname{colog}\sin\frac{1}{2}(A-B) + \operatorname{colog}\sin\frac{1}{2}(a-b) = 0.$$

$$\log\sin\frac{1}{2}(a-b) = 9.92106 - 10$$

$$\log\cos\frac{1}{2}C = 9.88919 - 10$$

$$\operatorname{colog}\sin\frac{1}{2}(A-B) = 0.14246$$

$$\operatorname{colog}\sin\frac{1}{2}c = 0.04730$$

$$0.00001$$

EXERCISES XVI. D

Solve the following triangles:

```
1. a = 44^{\circ} 48.3', b = 17^{\circ} 36.7', A = 63^{\circ} 24.8'.

2. a = 56^{\circ} 30.0', b = 31^{\circ} 20.0', A = 105^{\circ} 11.2'.

3. a = 52^{\circ} 45.3', b = 71^{\circ} 12.7', A = 46^{\circ} 22.2'.

4. b = 68^{\circ} 52.8', c = 56^{\circ} 49.8', C = 45^{\circ} 15.2'.

5. a = 30^{\circ} 38.1', c = 31^{\circ} 29.8', A = 87^{\circ} 53.3'.

6. A = 109^{\circ} 20.2', B = 134^{\circ} 16.4', a = 148^{\circ} 48.7'.

7. A = 143^{\circ} 17.4', B = 70^{\circ} 18.4', a = 160^{\circ} 40.6'.

8. A = 61^{\circ} 37.9', B = 139^{\circ} 54.6', b = 150^{\circ} 17.4'.

9. A = 70^{\circ} 15.2', B = 119^{\circ} 43.8', b = 80^{\circ} 24.4'.

10. B = 24^{\circ} 30.5', C = 61^{\circ} 29.5', C = 34^{\circ} 0.5'.

11. a = 80^{\circ} 5.3', b = 82^{\circ} 4.0', A = 83^{\circ} 34.2'.

12. a = 134^{\circ} 15.9', b = 150^{\circ} 57.1', B = 144^{\circ} 22.7'.

13. A = 79^{\circ} 37.3', C = 145^{\circ} 52.2', C = 150^{\circ} 42.7'.

14. A = 60^{\circ} 20.2', B = 17^{\circ} 12.9', b = 43^{\circ} 50.5'.

15. a = 148^{\circ} 34.4', b = 142^{\circ} 11.6', A = 153^{\circ} 17.6'.

16. a = 40^{\circ} 20.4', b = 20^{\circ} 18.2', A = 60^{\circ} 44.4'.

17. A = 117^{\circ} 54.4', B = 45^{\circ} 8.6', a = 76^{\circ} 37.5'.

18. b = 119^{\circ} 19.9', c = 160^{\circ} 2.3', C = 139^{\circ} 9.1'.

19. A = 104^{\circ} 40.0', B = 80^{\circ} 13.6', A = 29^{\circ} 42.6'.
```

130. Summary of methods.

The methods of solving oblique spherical triangles are epitomized below.

Case I. Three sides given.	Use half-angle formulas. Check by law of sines.
Case II. Three angles given.	Use half-side formulas. Check by law of sines.
Case III. Two sides and the included angle given.	Find half the sum and half the difference of the required angles by using appropriate forms of Napier's analogies. The required angles are then readily found. Find required side by another of Napier's analogies. Check by law of sines.
Case IV. Two angles and the included side given.	Find half the sum and half the difference of the required sides by using appropriate forms of Napier's analogies. The required sides are then readily found. Find required angle by another of Napier's analogies. Check by law of sines.
Case V. Two sides and the angle opposite one of them given.	Use law of sines to find an angle. Find remaining angle and required side by appropriate forms of Napier's analogies. Note number of solutions. Check by one of Delambre's formulas.
Case VI. Two angles and the side opposite one of them given.	Use law of sines to find a side. Find remaining side and required angle by appropriate forms of Napier's analogies. Note number of solutions. Check by one of Delambre's formulas.

MISCELLANEOUS EXERCISES XVI. E

Solve the following triangles:

- **1.** $a = 18^{\circ} 29.3'$, $b = 30^{\circ} 37.1'$, $C = 52^{\circ} 51.8'$. **2.** $a = 114^{\circ} 43.3'$, $b = 136^{\circ} 19.6'$, $c = 43^{\circ} 18.5'$.

234 SOLUTION OF OBLIQUE SPHERICAL TRIANGLES [Ch. XVI

```
3. A = 33^{\circ} 15.1'
                                B = 31^{\circ} 34.6'
                                                             C = 161^{\circ} 25.3'
  4. A = 80^{\circ} 2.3',
                                 a = 118^{\circ} 20.3'
                                                            b = 69^{\circ} 56.3'.
  5. B = 140^{\circ} 43.2',
                                C = 100^{\circ} 4.6'
                                                             a = 60^{\circ} 43.6'
  6. a = 76^{\circ} 40.4'
                                b = 54^{\circ} 21.3'
                                                             c = 36^{\circ} 8.7'.
  7. a = 148^{\circ} 34.4'
                                 b = 142^{\circ} 11.6'
                                                             A = 153^{\circ} 17.6'
  8. A = 40^{\circ} 20.4'
                                a = 60^{\circ} 44.4'
                                                            b = 20^{\circ} 18.2'
  9. a = 103^{\circ} 44.7'
                                 b = 64^{\circ} 12.3'
                                                          C = 98^{\circ} 33.8'.
C = 90^{\circ}.
 10. A = 30^{\circ} 51.2',
                                 B = 71^{\circ} 36.0'
 11. A = 100^{\circ} 51.3',
                                 B = 80^{\circ} 47.6'
                                                           C = 74^{\circ} 3.3'
12. A = 150^{\circ} 47.0',
                                C = 98^{\circ} 22.7'
                                                            c = 90^{\circ}.
13. A = 64^{\circ} 34.3',
                                 B = 119^{\circ} 54.6'
                                                             C = 63^{\circ} 20.2'.
14. A = 104^{\circ} 30.7',
                                B = 62^{\circ} 52.1'
                                                            c = 56^{\circ} 6.4'.
15. A = 117^{\circ} 54.4'
                                B = 45^{\circ} 8.6'
                                                            a = 76^{\circ} 37.5'
16. C = 50^{\circ} 10.2',
                                b = 69^{\circ} 34.9'
                                                              c = 120^{\circ} 30.5'
17. C = 50^{\circ} 10.2'
                                b = 120^{\circ} 30.5'
                                                            c = 69^{\circ} 34.9'.
18. A = 92^{\circ} 47.4'
                              B = 73^{\circ} 1.3'
                                                              c = 26^{\circ} 6.9'.
19. a = 80^{\circ} 39.1',
                              b = 75^{\circ} 12.3',

C = 139^{\circ} 54.6',
                                                              c = 141^{\circ} 5.6'.
20. A = 61^{\circ} 37.9',
                                                            c = 150^{\circ} 17.4'
21. A = 53^{\circ} 15.5',
                             C = 68^{\circ} 58.5',
                                                            b = 67^{\circ} 12.6'.
22. A = 99^{\circ} 34.1',
                               B = 67^{\circ} 46.7'
                                                           C = 91^{\circ} 56.8'.
23. a = 41^{\circ} 19.3',
                                                           c = 78^{\circ} 9.6'.
                              b = 112^{\circ} 36.2'
24. a = 58^{\circ} 49.6',
                             b = 75^{\circ} 12.1', C = 102^{\circ} 58.0'. B = 62^{\circ} 52.1', c = 56^{\circ} 6.4'.
25. A = 104^{\circ} 30.7'
26. A = 32^{\circ} 40.2',
                            B = 122^{\circ} 11.1'
                                                        C = 42^{\circ} 36.2'.
                              B = 80^{\circ} 13.6',

b = 99^{\circ} 40.8',
27. A = 104^{\circ} 40.0',
                                                           a = 126^{\circ} 50.4'.
28. A = 65^{\circ} 33.2',
                                                           c = 100^{\circ} 49.5'.
29. A = 113^{\circ} 30.0', B = 125^{\circ} 31.6', \alpha = 66^{\circ} 44.7'.
30. B = 10^{\circ} 10.2', \qquad C = 90^{\circ},
                                                           b = 10^{\circ} 10.2'.
```

- 31. Find the perimeter and the area of the spherical triangle in which $A=65^{\circ}$ 50', $b=63^{\circ}$ 17', $c=107^{\circ}$ 23', the radius of the sphere being 5 inches.
- 32. A triangle whose sides are 100°, 50°, and 60° lies on a sphere of radius 10 inches. Find the difference between the area of this triangle and that of an equilateral triangle having the same perimeter.
- 33. A triangle whose angles are 100°, 50°, and 60° lies on a sphere of radius 10 inches. Find the difference between the perimeter of this triangle and that of an equiangular triangle having the same area.

CHAPTER XVII

Applications of Spherical Trigonometry

131. Terrestrial sphere.

In long distance measurements on the surface of the earth, and in navigation, the earth is treated as a sphere having a radius of 3959 miles. This

is called the terrestrial sphere.

It rotates about a diameter, called its axis, which pierces the sphere in the north pole P and the south pole P'. (See Fig. 108.)

The equator is the great circle whose plane is perpendicular to the axis.

Fig. 108

A meridian is a great circle passing through the poles, for example, PMQ.

The latitude of a point M is the angular distance of the point from the equator, and will be considered positive if the point is north of the equator, negative if the point is south of the equator. It is measured by the arc QM of the meridian through the point. The colatitude is 90° minus the latitude.* It is the angular distance from the north pole and is measured by the arc MP.

The meridian through Greenwich is called the prime meridian. The longitude of a point is the angle between the prime meridian and the meridian through the point. It is measured by the number of degrees in the arc intercepted

^{*} If the point is south of the equator, say 30° south, its latitude is -30° and its colatitude is $90^{\circ} - (-30^{\circ}) = 120^{\circ}$.

at the equator by these two meridians.* If for example, in Fig. 109, PGG' is the prime meridian and PAA' is the meridian through the point A, these meridians cutting the equator in G' and A' respectively, then the longitude

of A is measured by the number of degrees in the arc G'A'. Longitude will be considered positive if the point is west of the prime meridian and negative if the point is east.

The distance between two points A and B is the length of the arc AB (not greater than a semicircumference) of a great circle passing through A and B. This distance

may be expressed in angular measure or in linear measure. To convert from angular units to linear units, we note that a nautical mile is the length of one minute of arc of a great circle on the terrestrial sphere. This is about 1.1516 statute miles of 5280 feet each, or 6080 feet.†

The bearing of point B from point A is the angle which the arc AB makes with the meridian through A (angle PAB in Fig. 109).‡

132. Terrestrial triangle.

To find the distance between A and B, and their bearings from each other, we consider the terrestrial triangle ABP, whose vertices are the two points and the north pole. If the latitude and longitude of the points are given, we can find arcs AP and BP, also angle APB, immedi-

^{*} It is also frequently expressed in hours, minutes, and seconds of time (cf. section 133), 1 hour being equivalent to 1/24 of 360°, or 15° of arc, 1 minute of time consequently being equivalent to 15 minutes of arc, and 1 second of time to 15 seconds of arc.

[†] The United States nautical mile is 6080.27 feet, the British nautical mile is 6080 feet.

[‡] In the United States Navy bearings are measured from 0° to 360°, from north through east. According to this convention, the bearing of B from A in Fig. 109 would be found by subtracting angle PAB from 360°.

ately, so that we have a problem under Case III, namely, two sides and the included angle given.

Example.

Find the distance between New York (40° 43' N, 74° 0' W) and Liverpool (53° 24' N, 3° 4' W) and the bearing of each of these places from the other.

Fig. 110

Solution. Represent New York by A and Liverpool by B (Fig. 110). Then,

$$b = AP = \text{colatitude } A = 90^{\circ} - 40^{\circ} 43' = 49^{\circ} 17',$$

 $a = BP = \text{colatitude } B = 90^{\circ} - 53^{\circ} 24' = 36^{\circ} 36',$
 $P = \text{difference in longitude} = 74^{\circ} 0' - 3^{\circ} 4' = 70^{\circ} 56'.$

$$\tan \frac{1}{2}(B+A) = \frac{\cos \frac{1}{2}(b-a)}{\cos \frac{1}{2}(b+a)} \cot \frac{1}{2}P,$$

$$\tan \frac{1}{2}(B-A) = \frac{\sin \frac{1}{2}(b-a)}{\sin \frac{1}{2}(b+a)} \cot \frac{1}{2}P,$$

$$\log \tan \frac{1}{2}(B+A) = \log \cos \frac{1}{2}(b-a) + \cos \cos \frac{1}{2}(b+a) + \log \cot \frac{1}{2}P,$$

$$\log \tan \frac{1}{2}(B - A) = \log \sin \frac{1}{2}(b - a) + \operatorname{colog} \sin \frac{1}{2}(b + a) = \log \cot \frac{1}{2}P.$$

$$\begin{array}{c|ccccc} b+a & 85^{\circ} & 53' \\ b-a & 12^{\circ} & 41' \\ \frac{1}{2}(b+a) & 42^{\circ} & 56.5' \\ \frac{1}{2}(b-a) & 6^{\circ} & 20.5' \\ & \frac{1}{2}P & 35^{\circ} & 28' \\ \hline \log \cos \frac{1}{2}(b-a) & 9.99734 - 10 \\ \operatorname{colog} \cos \frac{1}{2}(b+a) & 0.13546 \\ \log \sin \frac{1}{2}(b-a) & 9.04319 - 10 \\ \operatorname{colog} \sin \frac{1}{2}(b+a) & 0.16669 \\ \log \tan \frac{1}{2}(B+A) & 0.28007 \\ \log \tan \frac{1}{2}(B+A) & 9.35715 - 10 \\ \frac{1}{2}(B+A) & 62^{\circ} & 19' \\ \frac{1}{2}(B-A) & 12^{\circ} & 49' \\ \hline & B & 75^{\circ} & 8' \\ & A & 49^{\circ} & 30' \\ \hline \end{array}$$

$$\tan \frac{1}{2}p = \frac{\sin \frac{1}{2}(B+A)}{\sin \frac{1}{2}(B-A)} \tan \frac{1}{2}(b-a).$$

$$\log \tan \frac{1}{2}p = \log \sin \frac{1}{2}(B+A)$$

$$+ \operatorname{colog} \sin \frac{1}{2}(B-A) + \log \tan \frac{1}{2}(b-a).$$

$$\log \sin \frac{1}{2}(B+A) \quad 9.94720 - 10$$

$$\operatorname{colog} \sin \frac{1}{2}(B-A) \quad 0.65398$$

$$\log \tan \frac{1}{2}(b-a) \quad 9.04586 - 10$$

$$\log \tan \frac{1}{2}p \quad 9.64704 - 10$$

$$23^{\circ} 55'$$

$$p \quad 47^{\circ} 50' = 2870'$$

Distance = 2870 nautical miles.

Bearing of Liverpool from New York = $A = N 49^{\circ} 30'$ E.

Bearing of New York from Liverpool = $B = N 75^{\circ} 8' W$.

The solution should be checked by the law of sines.

EXERCISES XVII. A

Find the distances between the following places, also the bearing of each from the other. Latitudes and longitudes are given at the end of the set of exercises.

- 1. New York and San Francisco.
- 2. New York and Paris.
- 3. New York and Cape of Good Hope.
- 4. San Francisco and Sydney.
- 5. San Francisco and Rio de Janeiro.
- 6. New York and Rio de Janeiro.
- 7. Rio de Janeiro and Sydney.
- 8. Moscow and San Francisco.
- 9. How close to the north pole does the great circle path of the preceding exercise pass?
- 10. A ship sailed due east from New York to a point on the meridian of 10° W near Portugal. Find the distance it would have saved if it had sailed along the arc of a great circle.
- 11. A ship sails from New York to Cape of Good Hope along the arc of a great circle. Find its course (i.e., direction) (a) when it crosses the equator, (b) when it crosses the meridian of 10° W. (Use results of exercise 3.)
- 12. Find the area of the triangle whose vertices are New York,

- San Francisco, and Rio de Janeiro. (Use results of exercises 1, 5, 6.)
- 13. An airplane flies from New York to Chicago in 3 hours and 45 minutes. What is its average rate of speed in statute miles per hour?
- 14. An airplane flew from Chicago to San Francisco at an average speed of 180 statute miles per hour. How long did the flight take?

	Latitude	Longitude
Cape of Good Hope Chicago Moscow New York Paris Rio de Janeiro San Francisco Sydney	34° 21′ S 41° 50′ N 55° 45′ N 40° 43′ N 48° 50′ N 22° 54′ S 37° 47′ N 33° 52′ S	18° 30' E 87° 37' W 37° 34' E 74° 0' W 2° 20' E 43° 10' W 122° 26' W 151° 12' E

133. Celestial sphere.

A sphere, concentric with the earth, and having a radius of indefinite length, is called the celestial sphere. (See

Fig. 111, in which the earth is located at the point O.) With any point on this sphere is associated a direction, and thus

the angular distance (although not a linear distance) between any two points on it may be considered.

The points where the axis of the earth intersects the celestial sphere are the north and south celestial poles, P and P', respectively.

The plane of the equator of the earth cuts the celestial sphere in the celestial equator, EQW.

Great circles, such as PMP', passing through the celestial poles are called **hour circles**. The hour circle of the observer, the great circle NPZQS in the figure, is called the observer's **celestial meridian**.

The point Z on the celestial sphere vertically above the observer is called the **zenith** of the observer. The diametrically opposite point, Z', is called the **nadir**.

The horizon of the observer is the great circle NESW having the zenith and nadir as poles. On the horizon the cardinal points (north, south, east, west) are marked by the respective initial letters.

The declination of a star or other heavenly body, whose projection on the celestial sphere is represented by M in the figure, is its angular distance north or south of the celestial equator. It is regarded as positive if the body is north of the equator, negative if the body is south. The declination of the body M in Fig. 111 is measured by the arc KM of the hour circle of the body. Declination corresponds to latitude on the earth.

The hour angle of the body M is the angle at the pole between the celestial meridian (i.e., the hour circle of the observer) and the hour circle through the body. It is the angle ZPM in the figure, and may be measured by the arc QK of the celestial equator. It is usually measured from the celestial meridian, toward the west, from 0° to 360° or from 0 to 24 hours. Since the celestial sphere apparently rotates through 360° in 24 hours, 1 hour corresponds to $\frac{1}{24} \times 360^\circ = 15^\circ$, and we have the following relations between measures of time and angular measure:

The altitude of the body M is its distance above the horizon, and is measured by the arc HM.* The altitude is

taken as positive if the body is above the horizon. negative if it is below.

The azimuth of the body is the angle at the zenith between the celestial meridian PZQS and the great circle ZMHZ' through the

Fig. 112

zenith and the body. It may be measured from north or from south. If, for example, it is measured from the south. the azimuth of M in Fig. 111 is the angle SZM.

A heavenly body may be located by its declination and its hour angle, or by its altitude and azimuth.

134. Astronomical triangle.

The spherical triangle PZM whose vertices are the celestial pole,† the zenith, and the projection of a heavenly body on the celestial sphere, is called the astronomical triangle.

A study of Fig. 111 shows that

$$ZM = \text{coaltitude},$$
 (1)

$$MP =$$
codeclination, (2)

$$PZ = \text{colatitude},$$
 (3)

where the prefix "co" obviously denotes "complement of." Moreover.

$$P = \text{hour angle},$$
 (4)

$$Z = 180^{\circ} - azimuth.$$
 (5)

The angle M is of no special interest.

^{*} It can easily be shown that the altitude of the north celestial pole, at any place of observation, is the latitude of the place.

[†] The north pole if the observer is in the northern hemisphere, the south pole if he is in the southern hemisphere.

If any three of the other five parts are known, the remaining two can be found. Thus, if an observer knows his latitude, and measures the altitude and azimuth of the sun, he can find PZ, ZM, and Z. From these he can compute the hour angle P. This would give the local apparent time (shown on a sundial).

From the American Nautical Almanac or the American Air Almanac (these are published by the United States Naval Observatory) can be obtained the declination of each of many heavenly bodies (sun, moon, planets, and several hundred stars) for any hour of the day. If an observer knows the time and measures the altitude of the sun, he has, after finding the declination of the heavenly body M from the Almanac, the values of ZM, MP, and P, from which he can compute PZ and hence his latitude.

Example 1.

An observation taken in St. Louis (latitude 38° 38′ N) showed the altitude of the sun to be 30° 30′. Its declination was found to be 10° 20′ N. What was the time of day?

Solution. In the astronomical triangle we have

$$m = \text{colat.} = 90^{\circ} - 38^{\circ} 38' = 51^{\circ} 22',$$

 $p = \text{coalt.} = 90^{\circ} - 30^{\circ} 30' = 59^{\circ} 30',$
 $z = \text{codec.} = 90^{\circ} - 10^{\circ} 20' = 79^{\circ} 40'.$

This is Case I. Since only one angle is required, we use formula (9) of section 118 (page 216).

$$s = \frac{1}{2}(m+p+z).$$

$$\tan \frac{1}{2}P = \sqrt{\frac{\sin(s-m)\sin(s-z)}{\sin s\sin(s-p)}}$$

 $\log \tan \frac{1}{2}P$ $= \frac{1}{2}[\log \sin(s-m) + \log \sin(s-z) + \cos \sin s + \cos \sin(s-p)].$

Reducing the hour angle P to units of time (see section 133), we get $P = 59^{\circ} 1' \div 15 = 3^{h} 56^{m}$. If the observation was taken in the afternoon, the time was 3:56 p.m. If the observation was taken in the morning, the time was $12^{h} - 3^{h} 56^{m} = 8^{h} 4^{m}$, or 8:04 a.m. In either case the time is local apparent time.

Example 2.

The declination of a star is 7° 54′ N, its hour angle is 48° 51′. Find its azimuth, it being given that the observer is in latitude 67° 49′ N.

Solution. In the astronomical triangle we have

$$z = \text{codec.} = 90^{\circ} - 7^{\circ} 54' = 82^{\circ} 6',$$

 $P = \text{hr. } \angle = 48^{\circ} 51',$
 $m = \text{colat.} = 90^{\circ} - 67^{\circ} 49' = 22^{\circ} 11'.$

This is Case III.

$$\tan \frac{1}{2}(Z+M) = \frac{\cos \frac{1}{2}(z-m)}{\cos \frac{1}{2}(z+m)} \cot \frac{1}{2}P,$$

$$\tan \frac{1}{2}(Z-M) = \frac{\sin \frac{1}{2}(z-m)}{\sin \frac{1}{2}(z+m)} \cot \frac{1}{2}P,$$

$$\log \tan \frac{1}{2}(Z+M) = \log \cos \frac{1}{2}(z-m) + \log \cot \frac{1}{2}P,$$

log tan
$$\frac{1}{2}(Z-M) = \log \sin \frac{1}{2}(z-m)$$
 $+ \operatorname{colog} \sin \frac{1}{2}(z+m) + \log \cot \frac{1}{2}P.$
 $z+m$ $104^{\circ} 17'$
 $z-m$ $59^{\circ} 55'$
 $\frac{1}{2}(z+m)$ $52^{\circ} 8.5'$
 $\frac{1}{2}(z-m)$ $29^{\circ} 57.5'$
 $\frac{1}{2}(z-m)$ $9.93772 - 10$
 $\operatorname{colog} \cos \frac{1}{2}(z-m)$ $9.93772 - 10$
 $\operatorname{colog} \cot \frac{1}{2}P$ 0.21204
 $\operatorname{log} \cot \frac{1}{2}P$ 0.34280
 $\operatorname{log} \sin \frac{1}{2}(z-m)$ $9.69842 - 10$
 $\operatorname{colog} \sin \frac{1}{2}(z+m)$ 0.10263
 $\operatorname{log} \tan \frac{1}{2}(Z+M)$ 0.49256
 $\operatorname{log} \tan \frac{1}{2}(Z-M)$ 0.14385
 $\frac{1}{2}(Z+M)$ $72^{\circ} 10.0'$
 $\frac{1}{2}(Z-M)$ $54^{\circ} 19.2'$
 Z $126^{\circ} 29.2'$
 M $17^{\circ} 50.8'$

Azimuth = $180^{\circ} - Z = 53^{\circ} 31'$.

Check.

$$\frac{\sin Z}{\sin z} \frac{\sin M}{\sin m} = x,$$

$$\operatorname{log} x = \log \sin Z - \log \sin z$$
 $= \log \sin M - \log \sin m.$
 $\operatorname{log} \sin Z = \log \sin M - \log \sin m.$
 $\operatorname{log} \sin Z = \log \sin M - \log \sin M$
 $\operatorname{log} \sin M - \log \sin M - \log \sin M$
 $\operatorname{log} \sin M - \log \sin M - \log \sin M$
 $\operatorname{log} \sin M - \log \sin M - \log \sin M$
 $\operatorname{log} \sin M - \log \sin M - \log \sin M$
 $\operatorname{log} \sin M - \log \sin M - \log \sin M$
 $\operatorname{log} \sin M - \log \sin M - \log \sin M$
 $\operatorname{log} \sin M - \log M -$

Example 3.

An observer in the northern hemisphere finds the altitude of the sun to be 35° 23′ at 9:15 a.m., local apparent time. If the declination of the sun is 10° 48′ S, what is the latitude of the place of observation?

SOLUTION. In the astronomical triangle we have

$$z = MP = \text{codec.} = 90^{\circ} + 10^{\circ} 48' = 100^{\circ} 48',$$

 $p = ZM = \text{coalt.} = 90^{\circ} - 35^{\circ} 23' = 54^{\circ} 37',$
 $P = \text{hr. } \angle = 12^{\text{h}} - 9^{\text{h}} 15^{\text{m}} = 2^{\text{h}} 45^{\text{m}} = 41^{\circ} 15'.$

This is Case V.

$$\sin Z = \frac{\sin z \sin P}{\sin p}$$

$$\log \sin Z = \log \sin z + \log \sin P + \operatorname{colog} \sin p.$$

$$\log \sin z = 9.99224 - 10$$

 $\log \sin P = 9.81911 - 10$

$$colog \sin p = 0.08868$$

$$\log \sin Z = 9.90003 - 10$$

$$\tan \frac{1}{2}m = \frac{\sin \frac{1}{2}(Z+P)}{\sin \frac{1}{2}(Z-P)} \tan \frac{1}{2}(z-p),$$

 $\log \tan \frac{1}{2}m = \log \sin \frac{1}{2}(Z+P) + \operatorname{colog} \sin \frac{1}{2}(Z-P)$

 $+ \log \tan \frac{1}{2}(z-p)$.

$$Z + P \mid 168^{\circ} 39^{\circ}$$

$$Z - P \mid 86^{\circ} \mid 9'$$

$$z-p$$
 46° 11'

$$\frac{1}{2}(Z+P)$$
 84° 19.5′

$$\frac{1}{2}(Z-P)$$
 43° 4.5′

$$\begin{array}{c|cccc} Z+P & 168^{\circ} \ 39' \\ Z-P & 86^{\circ} \ 9' \\ z-p & 46^{\circ} \ 11' \\ \frac{1}{2}(Z+P) & 84^{\circ} \ 19.5' \\ \frac{1}{2}(Z-P) & 43^{\circ} \ 4.5' \\ \frac{1}{2}(z-p) & 23^{\circ} \ 5.5' \end{array}$$

$$\log \sin \frac{1}{2}(Z+P)$$
 9.99786 - 10

colog
$$\sin \frac{1}{2}(Z - P)$$
 0.16561

$$\log \tan \frac{1}{2}(z-p)$$
 9.62978 — 10

$$\log \tan \frac{1}{2}m \quad 9.79325 - 10 \\
 \frac{1}{2}m \quad 31^{\circ} 51'$$

$$m 63^{\circ} 42'$$

Since m = colat., lat. = $90^{\circ} - 63^{\circ} 42' = 26^{\circ} 18' \text{ N.}$

EXERCISES XVII. B

- 1. An observation taken in New York (40° 43' N) showed the altitude of the sun to be 52° 25'. Its declination was found
- * Discarded, since Z and z must terminate in the same quadrant.

- to be 12° 15′. What was the local apparent time of the observation if it was taken in the morning?
- 2. An afternoon observation at Montreal (45° 30′ N) determined the altitude of the sun to be 26° 30′. Given that the declination of the sun was 8° 0′ S, find the local apparent time of the observation.
- 3. Find the altitude and the azimuth of the sun at 3 p.m. in latitude 47° 38′ N, its declination being 7° 18′.
- 4. The declination of a star is 22° 1′, its hour angle is 15° 8′. The latitude of the place of observation is 51° 19′ N. Find the altitude and the azimuth of the star.
- 5. The declination of a star is -26° 19', its altitude is 31° 5', and its azimuth is S 18° 9' W. Find the latitude of the observer.
- 6. The altitude of the sun is 50° 32′, its declination is 12° 38′, its azimuth S 12° 6′ W. Find the latitude and the local apparent time.
- 7. Find the local apparent time of sunset in Chicago (41° 50′ N) on a day when the declination of the sun is -7° 30′.

Suggestion. At sunset the altitude of the sun is 0°.

Note. In practice a correction must be made in problems of this type for the refraction of the rays of the sun by the atmosphere of the earth. -Another correction must be made for the angular radius of the sun.

- 8. Find the length of the day (sunrise to sunset) in New Orleans (29° 57′ N) when the declination of the sun is -20° .
- 9. On the longest day of the year the declination of the sun is 23° 27′. Find the length of the longest day in latitude (a) 25°, (b) 45°, (c) 65°.
- 10. On the shortest day of the year the declination of the sun is -23° 27′. Find the length of the shortest day in latitude (a) 25°, (b) 45°, (c) 65°.

IMPORTANT FORMULAS INDEX ANSWERS

Important Formulas

$$\sin \theta \csc \theta = 1$$

$$\cos \theta \sec \theta = 1$$

$$\tan \theta \cot \theta = 1$$

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\sin(\theta + \phi) = \sin \theta \cos \phi + \cos \theta \sin \phi$$

$$\sin(\theta - \phi) = \sin \theta \cos \phi - \cos \theta \sin \phi$$

$$\cos(\theta + \phi) = \cos \theta \cos \phi - \sin \theta \sin \phi$$

$$\cos(\theta - \phi) = \cos \theta \cos \phi - \sin \theta \sin \phi$$

$$\cos(\theta - \phi) = \cos \theta \cos \phi + \sin \theta \sin \phi$$

$$\tan(\theta + \phi) = \frac{\tan \theta + \tan \phi}{1 - \tan \theta \tan \phi}$$

$$\cot(\theta + \phi) = \frac{\cot \theta \cot \phi - 1}{\cot \phi + \cot \theta}$$

$$\tan(\theta - \phi) = \frac{\tan \theta - \tan \phi}{1 + \tan \theta \tan \phi}$$

$$\cot(\theta - \phi) = \frac{\cot \theta \cot \phi + 1}{\cot \phi - \cot \theta}$$

$$\sin 2\theta = 2 \sin \theta \cos \theta$$

$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$$

$$\tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta}$$

$$\cot 2\theta = \frac{\cot^2 \theta - 1}{2 \cot \theta}$$

$$\sin \frac{1}{2}\theta = \pm \sqrt{\frac{1 - \cos \theta}{1 + \cos \theta}} = \frac{1 - \cos \theta}{\sin \theta} - \frac{\sin \theta}{1 + \cos \theta}$$

$$\sin \theta + \sin \phi = 2 \sin \frac{1}{2}(\theta + \phi) \cos \frac{1}{2}(\theta - \phi)$$

$$\sin \theta - \sin \phi = 2 \cos \frac{1}{2}(\theta + \phi) \sin \frac{1}{2}(\theta - \phi)$$

$$\cos \theta + \cos \phi = 2 \cos \frac{1}{2}(\theta + \phi) \cos \frac{1}{2}(\theta - \phi)$$
$$\cos \theta - \cos \phi = -2 \sin \frac{1}{2}(\theta + \phi) \sin \frac{1}{2}(\theta - \phi)$$

Plane triangles.

Law of sines:
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Law of cosines:
$$a^2 = b^2 + c^2 - 2bc \cos A$$
*

Law of tangents:
$$\frac{a-b}{a+b} = \frac{\tan \frac{1}{2}(A-B)}{\tan \frac{1}{2}(A+B)}^*$$

$$\tan \frac{1}{2}A = a' \qquad s = (a+b+c),$$

$$= \sqrt{\frac{(s-a)(s-b)(s-c)}{s}}$$

Spherical triangles.

co-B

Napier's rules (for right triangles):

Law of sines:
$$\frac{\sin a}{\sin A} = \frac{\sin b}{\sin B} = \frac{\sin c}{\sin C}$$

 $\cos a = \cos b \cos c + \sin b \sin c \cos A *$

Law of cosines for angles:

$$\cos A = -\cos B \cos C + \sin B \sin C \cos a^*$$

Napier's analogies:

$$\frac{\sin\frac{1}{2}(A - B)}{\sin\frac{1}{2}(A + B)} = \frac{\tan\frac{1}{2}(a - b)}{\tan\frac{1}{2}c}^*$$

ь

$$\frac{\cos \frac{1}{2}(A-B)}{\cos \frac{1}{2}(A+B)} = \frac{\tan \frac{1}{2}(a+b)}{\tan \frac{1}{2}c}^*$$

^{*} Two other formulas may be obtained by changing the letters.

$$\frac{\sin\frac{1}{2}(a-b)}{\sin\frac{1}{2}(a+b)} = \frac{\tan\frac{1}{2}(A-B)}{\cot\frac{1}{2}C} *$$

$$\frac{\cos\frac{1}{2}(a-b)}{\cos\frac{1}{2}(a+b)} = \frac{\tan\frac{1}{2}(A+B)}{\cot\frac{1}{2}C} *$$

$$\tan\frac{1}{2}A = \frac{\tan r}{\sin(s-a)}, * \qquad s = \frac{1}{2}(a+b+c),$$

$$\tan r = \sqrt{\frac{\sin(s-a)\sin(s-b)\sin(s-c)}{\sin s}} *$$

$$\tan \frac{1}{2}a = \tan R \cos(S-A), * \qquad S = \frac{1}{2}(A+B+C),$$

$$\tan R \qquad \sqrt{\frac{-\cos S}{\cos(S-A)\cos(S-B)\cos(S-C)}} *$$

^{*}Two other formulas may be obtained by changing the letters.

INDEX

254 Coaltitude, 241. Codeclination, 241. Cofunction, 7. Colatitude, 235, 241. Cologarithm, 54. Common logarithms, 45. Complementary angles, functions of, Complex numbers, 185; absolute value of, 188; addition and subtraction of, 185, 186, geometric, 187; amplitude of, 188; argument of, 188; conjugate, 185; division of, 186, in trigonometric form, 190; geometric representation of, 186; modulus of, 188; multiplication of, 186, in trigonometric form, 190; polar form of, 188; powers of, 191; rectangular form of, 188; roots of, 191; trigonometric form of, 188. Components, 25, 26, 110. Computation, logarithmic, of powers and roots, 55; of products and quotients, 52. Conditional equation, 177. Conjugate complex numbers, 185. Coordinates, 65. Cosecant, 67; of acute angle, 4; graph of, 161, 162; inverse, 165; line representation of, 154, 156; period of, 162, 163. Cosine, 67; of acute angle, 4; addition and subtraction formulas for. 124, 125; graph of, 158, geometric construction, 163; inverse, 165; line representation of, 154, 155; period of, 158, 163.

Cosines, law of, 88; for angles, 213, 214; for sides, 212, 213. Cotangent, 67; of acute angle, 5; addition and subtraction formulas for, 125; graph of, 158, 160; inverse, 165; line representation of, 154, 155; period of, 161, 163. Coterminal angles, 65 footnote. Counterclockwise rotation, 64. Coversed sine, 5. Cyclic change, 89.

Decimal point, standard position of, 38, 47. Declination, 240.

Degree and hour, relation between: 236 footnote, 240-241. Degree, spherical, 200. Delambre's formulas, 221. De Moivre's theorem, 191. Depression, angle of, 20. Diameter of circumscribed circle, 82. Difference of angles, functions of, 123. Differences of functions, 131. Digit, leading, 38.

Directed line, 122.

Distance, on sphere, 197; on terrestrial sphere, 236.

Division, of approximate numbers, 41; of complex numbers, 186, in trigonometric form, 190; logarithmic, 52.

Elevation, angle of, 20. Equation, conditional, 177; identical. 177; Mollweide's, 83, 97, 98. Equator, 235; celestial, 240. Error, 37; absolute, 37; relative, 37.

Excess, spherical, of polygon, 199; of triangle, 199, L'Huilier's formula for, 200 footnote.

Extraneous solutions, 179.

Figure, significant, 37. Functions, circular, 156.

Functions, inverse trigonometric. (See also Inverse trigono-165. metric functions.)

Functions, trigonometric, 67; of acute angle, 3; of complementary angles,. 6; differences of, 131; graphs of, 156-163; of half an angle, 128; line representations of, 154; logarithms of, 57; natural, 56; of sum and difference of angles, 123; sums of, 131; tables of, 11, 12-14; of twice an angle, 127; of 0°, 90°, 180°, 270°, 68; of 30°, 45°, 60°, 9; of $-\theta$, 71; of 90° $-\theta$, 74; of 90° $+\theta$, 75; of $180^{\circ} - \theta$, 72; of $180^{\circ} + \theta$, 73; of $270^{\circ} - \theta$, 75; of $270^{\circ} + \theta$, 76; of $360^{\circ} - \theta$, 73; of $360^{\circ} + \theta$, 73. (See also Sine, Cosine, etc.)

Gauss's formulas, 221. Geometric construction of sine and cosine graphs, 163.

INDEX 255

Geometric representation of complex numbers, 186.

Graphs, of inverse trigonometric functions, 167-172; of trigonometric functions, 156-163. Great circle, 197.

Half an angle, functions of, 128. Half-angle formulas, 101, 102; for spherical triangles, 215, 216.

Half-side formulas, 216.

Haversine, 5.

Heron's formula for area of triangle, 100, 101.

Horizon, 240.

Hour and degree, relation between, 236 footnote, 240-241.

Hour angle, 240, 241.

Hour circle, 240.

i, imaginary unit, 185. Identical equation, 177.

Identity, 118, 177.

Imaginary numbers, 185; axis of,

Imaginary part of complex number, 185.

Imaginary unit, i, 185.

Infinity, 69.

Initial point of directed line segment, 122.

Initial side of angle, 64.

Inscribed circle, radius of, 101, 102, (spherical triangle), 216 footnote. Interpolation, 21, 49, 58; inverse, 22, 51, 58.

Inverse interpolation, 22, 51, 58.

Inverse sine function, etc. Inverse trigonometric functions.)

Inverse trigonometric functions, 165; graphs of, 167-172; principal values of, 166.

Isosceles triangles, 29; spherical, 208.

Knot, 29.

Latitude, 235.

Law of cosines, 88; for angles, 213, 214; for sides, 212, 213.

Law of sines, 80-82; for spherical triangles, 211, 212.

Law of tangents, 96, 97; for spherical triangles, 214.

Laws of logarithms, 51-52.

Leading digit, 38.

L'Huilier's formula for excess, 200 footnote.

Line, directed, 122.

Line representations of the functions, 154.

Linear velocity, 143.

Local apparent time, 242.

Logarithm, 45; characteristic of, 47; common, 45; mantissa of, 46; of power, 52; of product, 51; of quotient, 52; of root, 52.

Logarithmic computation, of powers and roots, 55; of products and quotients, 52.

Logarithms, laws of, 51-52; of trigonometric functions, 57.

Longitude, 235.

Lune, 197 footnote.

Mantissa, 46; finding the, 49.

Measure, circular, 139; radian, 139; of time and arc, 236 footnote, 240 - 241.

Meridian, 235; celestial, 240; prime, 235.

Middle part, 203.

Mil, 151.

Mile, nautical, 29, 236, 236 footnote; statute, 29, 236, 236 footnote.

Minute of arc and of time, 236 footnote, 241.

Mixed imaginary number, 185.

Modulus of complex number, 188.

Mollweide's equations, 83, 97, 98.

Multiplication, of approximate numbers, 40; of complex numbers, 186, in trigonometric form, 190; logarithmic, 52.

Nadir, 240.

Napier's analogies, 217, 218.

Napier's rules, 203.

Natural functions, 57.

Nautical Almanac, 242.

Nautical mile, 29, 236, 236 footnote.

Negative angle, 64.

North celestial pole, 240.

North pole, 235.

(Numbers refer to pages)

Abscissa, 65. Absolute error, 37. Absolute value of complex number, Accuracy, degree of, 61. Addition, of approximate numbers, 39; of complex numbers, 185, geometric, 187; of vectors, 110. Addition formula, for cosine, 124, 125; for cotangent, 125; for sine, 124, 125; for tangent, 125. Adjacent parts, 203. Air Almanac, 242. Almanac, Air, 242; Nautical, 242. Altitude, 241; of sun, 24. Ambiguous case, 85. American Air Almanac, 242. American Nautical Almanac, 242. Amplitude of complex number, 188. Analogies, Napier's, 217, 218. Analogy, 218 footnote. Angle, 64; clockwise, 64; counterclockwise, 64; of depression, 20; of elevation, 20; generation of, 64; hour, 240, 241; initial side of, 64; negative, 64; positive, 64; reference, 77; terminal side of, 64. Angle and arc, relation between, 142. Angles near 0° or 90°, 146. Angular velocity, 142, 143. Antilogarithm, 48; finding the, 50. Antisine, 165. Apparent time, local, 242. "Approaches," symbol for, 69. Approximate numbers, 36; addition of, 39; division of, 41; multiplication of, 40; subtraction of, 39. Arc and angle, relation between, 142. Arc sine, etc., 165, 166; graphs of, 168-172.

of sphere, 200; of spherical polygon, 200; of spherical triangle, 200; of triangle, 82, Heron's formula for, 100, 101. Argument of complex number, 188. Astronomical triangle, 241. Axis, 65; of circle, 197; of imaginary numbers, 186; of real numbers, 186; of terrestrial sphere, 235. Azimuth, 241. Base of logarithms, 45. Bearing, 106, 236, 236 footnote. Birectangular spherical triangle, 198 footnote. British nautical mile, 236 footnote. Calculating machines, 43: Celestial equator, 240. Celestial meridian, 240. Celestial poles, 240. Celestial sphere, 239. Characteristic of logarithm, 47. Circle, axis of, 197; circumscribed, diameter of, 82; circumscribed (spherical triangle), radius of, 216 footnote; great, 197; hour, 240; inscribed, radius of, 101, 102; inscribed (spherical triangle), radius of, 216 footnote; poles of, 197; small, 197; unit, 154. Circular functions, 156. Circular measure, 139. Circular parts, 203. Circumscribed circle, diameter of, 82; radius of (spherical triangle),

Area, of sector, 145; of segment, 145;

216 footnote.

Clockwise rotation, 64.

cis, 188.

Number, approximate, 36, rounding off, 36; complex, 185; imaginary, 185; mixed imaginary, 185; pure imaginary, 185; real, 185.

Oblique spherical triangles, 211; summary of methods of solution of, 233.

Oblique triangles, solution of, by means of right triangles, 32; summary of methods of solution of, 104.

Observer's celestial meridian, 240. Opposite parts, 203.

Ordinate, 65.

Origin, 65.

Part, imaginary, of complex number, 185; real, of complex number, 185.

Parts, adjacent, 203; circular, 203; middle 202; competite 202; of

middle, 203; opposite, 203; of spherical triangle, 198; of triangle, 17.

Period of cosecant, 162, 163; cosine, 158, 163; cotangent, 161, 163; secant, 161, 163; sine, 158, 163; tangent, 160, 163.

Plotting, 65.

Polar form of complex number, 188. Polar triangle, 199, 200.

Poles, of circle, 197; north and south, 235, celestial, 240.

Polygon, regular, 29; spherical, 199, area of, 200, excess of, 199.

Position, standard, of decimal point, 38, 47.

Positive angle, 64.

Powers, of complex numbers, 191; logarithmic computation of, 55.

Prime meridian, 235.

Principal branch, 168.

Principal values of inverse trigonometric functions, 166.

Product, of complex numbers, 186, in trigonometric form, 190; logarithm of, 51; logarithmic computation of, 52.

Projection, 26.

Proportional parts, interpolation by, 21.

Pure imaginary number, 185. Pythagoras, theorem of, 7.

Pythagorean relations, 115.

Quadrantal triangle, 207.

Quadrants, 66; signs of functions in various, 68.

Quotient, of complex numbers, 186, in trigonometric form, 190; logarithm of, 52; logarithmic computation of, 52.

Radian, 139.

Radian measure in graphing, 162.

Radius, 66; of circumscribed circle of spherical triangle, 216 footnote; of inscribed circle, 101, 102, of spherical triangle, 216 footnote; vector, 66.

Real numbers, axis of, 186.

Real part of complex number, 185.

Reciprocal, 5 footnote.

Reciprocal relations, 5, 114.

Rectangular coordinates, 65.

Rectangular form of complex number, 188.

Reduction of $a\cos\theta \pm b\sin\theta$, 137.

Reduction of functions of any angle to functions of an acute angle, 77. Reference angle, 77.

Regular polygons, 29.

Relations among the functions, Pythagorean, 115; reciprocal, 5, 114.

Relative error, 37.

Resolving into components, 26.

Resultant, 26, 110.

Right triangle, solution of, 16, logarithmic, 61, spherical, 198 footnote, solution of, 204.

Root, of complex number, 191; logarithm of, 52; logarithmic computation of, 55; square, 42.

Rounding off numbers, 36.

Scientific notation, number expressed in, 38.

Secant, 67; of acute angle, 4; graph of, 161; inverse, 165; line representation of, 154, 156; period of, 161, 163.

Second of arc and of time, 236 footnote, 241.

Sector, 145; area of, 145.

Segment, 145; area of, 145; directed line, 122.

Significant figure, 37.

Signs of functions in various quadrants, 68.

Sine, 67; of acute angle, 4; addition formula for, 124, 125; coversed, 5; graph of, 156, 157, geometric construction, 163; inverse, 165; line representation of, 154, 155; period of, 158, 163; subtraction formula for, 125; versed, 5.

Sines, law of, 80-82; for spherical triangles, 211, 212.

Small circle, 197.

South pole, 235; celestial, 240.

Sphere, area of, 200; celestial, 239; terrestrial, 235.

Spherical degree, 200.

Spherical excess, of polygon, 199; of triangle, 199, L'Huilier's formula for, 200 footnote.

Spherical polygon, 199; area of, 200; excess of, 199.

Spherical triangle, 197; area of, 200; birectangular, 198 footnote; excess of, 199, L'Huilier's formula for, 200 footnote; isosceles, 208; oblique, 211, summary of methods of solution of, 233; right, 198 footnote; trirectangular, 198 footnote.

Square root, 42.

Standard position of decimal point, 38, 47.

Statute mile, 29, 236, 236 footnote.

Subtraction, of approximate numbers, 39; of complex numbers, 185, geometric, 187.

Subtraction formula, for cosine, 124, 125; for cotangent, 125; for sine, 125; for tangent, 125.

Sum of angles, functions of, 123.

Sum of complex numbers, 186, 187.

Summary, of formulas for functions of $90^{\circ} \pm \theta$, etc., 76; of methods of solution of oblique triangles, 104, spherical, 233.

Sums of functions, 131.

Sundial, 242.

Tables, of functions, 11, 12-14; of logarithms, 49; of logarithms of functions, 58.

Tangent, 67; of acute angle, 4; addition and subtraction formulas for, 125; graph of, 158, 159; inverse, 165; line representation of, 154, 155; period of, 160, 163.

Tangents, law of, 96, 97; for spherical triangles, 214.

Terminal point of directed line segment, 122.

Terminal side of angle, 64. Terrestrial sphere, 235.

Terrestrial triangle, 236.

Time, local apparent, 242.

Triangle, astronomical, 241; isosceles, 29, spherical, 208; oblique (see Oblique triangles); oblique spherical (see Oblique spherical triangles); polar, 199, 200; quadrantal, 207; right (see Right triangle); spherical (see Spherical triangle); terrestrial, 236.

Trigonometric equations, 177.

Trigonometric form of complex number, 188.

Trigonometric functions (see Functions, trigonometric).

Trigonometry, 3; uses of, 3.

Trihedral angle, 198.

Trirectangular spherical triangle, 198 footnote.

Twice an angle, functions of, 127.

Unit circle, 154.

Unit, imaginary, i, 185.

United States nautical mile, 236 footnote.

Value, absolute, of complex number, 188; principal, of inverse trigonometric functions, 166.

Vector, 109, 110; complex number as, 187; radius, 66.

Velocity, angular, 142, 143; linear, 143.

Versed sine, 5.

Zenith, 240.

Answers to Odd-Numbered Exercises

Exercises I. A and B, page 5

	sin A cos B	$\cos A \\ \sin B$	$ tan A \\ \cot B \\ \frac{4}{3} $	$\operatorname{csc} A$ $\operatorname{sec} B$	sec A csc B	cot A tan B
3.	$\frac{2\sqrt{13}}{13}$	$\frac{3\sqrt{13}}{13}$	$\frac{2}{3}$	$\frac{\sqrt{13}}{2}$	$\frac{\sqrt{13}}{3}$	$rac{3}{2}$
	$rac{2}{3}$	$\frac{\sqrt{5}}{3}$	$\frac{2\sqrt{5}}{5}$	$rac{3}{2}$	$\frac{3\sqrt{5}}{5}$	$\frac{\sqrt{5}}{2}$
7. 9.	$\frac{8}{17}$ $\frac{7}{25}$	$\frac{15}{17}$ $\frac{24}{25}$	$\frac{8}{15}$ $\frac{7}{24}$	$\frac{17}{8}$ $\frac{25}{7}$	$\frac{17}{15}$ $\frac{25}{34}$	2
11.	$rac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2\sqrt{3}}{3}$	$\sqrt{3}$
13.	$\frac{3\sqrt{10}}{10}$	$\sqrt{10}$ 10	ą	$\frac{\sqrt{10}}{2}$	$\sqrt{10}$	1 3
15.	$\frac{13}{15}$.	17. $\frac{1}{48}$.	19. (a) $\frac{3}{4}$,	$\sqrt{7}$ $3\sqrt{7}$; (b) $\frac{\sqrt{7}}{4}$, $\frac{3}{4}$	_

Exercises 1. C, page 8

	sin A	cos A	tan A	csc A	sec A	cot A
	35		<u>3</u>	<u>5</u>	<u>5</u>	*
	$\frac{5\sqrt{26}}{26}$	$\frac{\sqrt{26}}{26}$	5 .	$\frac{\sqrt{26}}{5}$	$\sqrt{26}$	·
5.	$\frac{\sqrt{2}}{2}$	$rac{\sqrt{2}}{2}$	1	$\sqrt{2}$		1
7.		$rac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$		$\frac{2\sqrt{3}}{3}$	$\sqrt{3}$
9.	$\frac{2\sqrt{29}}{29}$	$\frac{5\sqrt{29}}{29}$		$\frac{\sqrt{29}}{2}$	$\frac{\sqrt{29}}{5}$	$\frac{5}{2}$

						-
	$\sin A$	$\cos A \ 5\sqrt{29}$	tan A	csc A	sec A	cot A
11.	$\frac{2\sqrt{29}}{29}$	$\frac{5\sqrt{29}}{29}$	$\frac{2}{5}$	$rac{\sqrt{29}}{2}$	$\frac{\sqrt{29}}{5}$	
13.	$\frac{\sqrt{3}}{2}$	$rac{1}{2}$	$\sqrt{3}$	$\frac{2\sqrt{3}}{3}$		$\frac{\sqrt{3}}{3}$
15.	$\frac{\sqrt{5}}{5}$	$\frac{2\sqrt{5}}{5}$		$\sqrt{5}$	$\frac{\sqrt{5}}{2}$	2
17.		$rac{1}{2}$	$\sqrt{3}$	$\frac{2\sqrt{3}}{3}$	2	$\frac{\sqrt{3}}{3}$
19.	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$		2	$\frac{2\sqrt{3}}{3}$	$\sqrt{3}$
21.		$\frac{3\sqrt{5}}{7}$	$\frac{2\sqrt{5}}{15}$	$rac{7}{2}$	$\frac{2\sqrt{3}}{3}$ $\frac{7\sqrt{5}}{15}$	$\frac{3\sqrt{5}}{2}$
23. c	$os A = \frac{m!}{m!}$	$\frac{n^2-n^2}{n^2+n^2}$	$\tan A = \frac{1}{n}$	$\frac{2mn}{n^2-n^2}$,	$\csc A = \frac{n}{2}$	
		$\sec A = \frac{m^2}{m^2}$	$\frac{+n^2}{-}$,	$\cot A = \frac{m^2}{2}$	$\frac{-n^2}{mn}$.	

Exercises I. D, page 11

- 1. 0.8802. **3.** 0.2805. **5.** 0.7112. **7.** 0.0029. **9.** 343.77. **11.** 36° 40′. **13.** 17° 0′. **15.** 68° 30′. **17.** 8° 20′. **19.** 77° 10′. **21.** 24° 0′.
- 23. 0.8420. No.

Exercises II. A, page 19

- **1.** $B = 55^{\circ}$, a = 2.87, b = 4.10.
- **3.** $B = 53^{\circ}$, a = 39.94, c = 66.37.
- **5.** $A = 53^{\circ} 30'$, $B = 36^{\circ} 30'$, c = 28.60.
- 7. $A = 72^{\circ} 30'$, a = 293.1, c = 307.3.
- **9.** $A = 16^{\circ} 40'$, $B = 73^{\circ} 20'$, c = 0.8937. **11.** 37.3 ft., 38.6 ft.
- **13.** 46° **15.** 63.1 ft. **17.** 1418 ft. **19.** 120.6 ft.

Exercises II. B, page 23

- **1.** 0.5185. **3.** 0.8887. **5.** 0.8200. **7.** 0.3528. 9. 0.7001. **11.** 0.0026. **13.** 49.923. **15.** 0.4603.
- **17.** 21° 18′. 19. 21° 19′. 21. 19° 12′. 23. 67° 46′. **25.** 0° 45′. 27. 6° 5′. 29. 11° 28′.
- **31.** $A = 20^{\circ}, B = 70^{\circ}, b = 18.79.$
- **33.** $B = 32^{\circ} 48'$, a = 0.0240, b = 0.0155.
- **35.** $A = 29^{\circ} 49', B = 60^{\circ} 11', b = 32.27.$
- **37.** $B = 70^{\circ} \, 16', b = 63.56, c = 67.54.$
- **39.** $B = 44^{\circ} 58'$, a = 8.230, c = 11.63.
- **41.** $A = 7^{\circ} 22', B = 82^{\circ} 38', b = 1.825.$

51. 130.9 ft.

- **43.** $B = 78^{\circ} 59'$, a = 19.42, b = 99.73.
- **45.** $A = 7^{\circ} 4'$, $B = 82^{\circ} 56'$, b = 99.54.
- **47.** 161.4 ft., 32° 36′, 57° 24′. **49.** 80.87 ft.
- **53.** 2.48 ft. **55.** 3.47 ft. **57.** 116.1 ft.
- Exercises II. C, page 28
 - 1. 14.2 knots, S 28° 12′ W.
- 3. 24.2 ft./sec., 65° 34′.
- 5. (a) 53° 8' with upstream direction; (b) 15 min.
- 7. 90° 58′.
- **9.** 86.04 lb.

Exercises II. D, page 30

- 1. 99° 30′, 9.83 in., 47.6 sq. in.
 3. 21° 58′, 79° 1′, 79° 1′.
 - 7. 8.42 in. 9. 41° 25′, 198.4 sq. ft.
- **5.** 122° 6′.
- 11. (a) 16.18 in., 15.39 in., 769.4 sq. in.; (b) 21.93 in., 20.61 in., 1391 sq. in.; (c) 21.60 in., 21.33 in., 1442 sq. in.
- 13. 15.35 ft., 12.42 ft.

Exercises II. E, page 34

- **1.** $C = 70^{\circ}$, b = 29.5, c = 28.2. **3.** $B = 74^{\circ} 2'$, $C = 35^{\circ} 58'$, b = 8.2.
- 5. $A = 95^{\circ} 44'$, $B = 40^{\circ} 27'$, $C = 43^{\circ} 48'$.
- 7. $A = 50^{\circ} 16', B = 29^{\circ} 44', b = 52.9.$
- **9.** 0.13 mi. = 686 ft. **11.** 127 ft. **13.** 105 ft. 15. 409 ft.

Exercises III. A, page 39

- **1.** 12.3, 29.9, 4.1, 1.40, 0.25, 0.22, 68, 63.2, 2.000, 2.000, 2.36, 2.34, 2.35, 2.35.
- **3.** 0.002, 0.00005, 0.00001, 0.25, 0.02.
- **5.** 10.02, 10.20, 0.20, 0.02, 0.020, 25000 2506, 0.00300, 0.20500, 20500.
- **7.** 18,000,000, 0.000,023,5, 848,200,000, 0.000,000,003,7.

Exercises III. B, page 43

- **1.** 1490. **3.** 55.04. **5.** 231700. **7.** 18800. **9.** 1,242,800.
- **11.** 2.93. **13.** 27.95. **15.** 147.2. **17.** 190500. **19.** 2.60.
- **21.** 41.02. **23.** 4.241. **25.** 0.8272.

Exercises IV. A, page 48

- 1. 2. **3.** 3. **9.** -3. 11. -1. **5.** -1. **7.** -1.
- **13.** 1. **15.** 3. **17.** 0. **19.** 5. 21. -2. 23. 1.
- **29.** -1. 31. -2. 33. 7. 35. -1. 25. 1. **27.** 3.

Exercises IV. B, page 50

1. 1.83251.	3. 2.55509.	5. 0.30103.	7. 3.69897
9. 3.92572.	11. $8.33365 - 10$.	13. 5.39794.	15. 0.89492.
17. 1.20276.	19. 0.47195.	21. 3.83154.	23. 4.73501.
25. 0.80023.	27. $6.94298 - 10$.	29. 0.99992.	31. 4.99999.
33 6 00004 10	35 2 01 008		

Exercises IV. C, page 51

1.	5.0000.	3.	863.00.	5.	0.64980.	7.	0.000,000,578,80.
9.	0.069890.	11.	0.049074.	13.	0.001,576,4.	15.	0.066567.
17.	1.427.700.	19.	6.8305.	21.	88.202.	23.	10.002.

Exercises IV. D, page 56

1.	1489. 3.	1.16.	5.	15700.	7.	1217.	9.	0.2247.
11.	5.117. 13.	0.9564.	15.	92,024,000.	17.	0.62764.	19.	7.2292.
21.	38,122,000,6	000,000. 2	3. 2	99.83.	25.	0.97422.	27.	0.4544.
29.	47.002.	3:	1. 1	$.146 \times 10^{14}$.	33.	2.1064.	35.	2.7314.
37.	2.9295.	39	9	-0.020629.	41.	-21.544.	43.	19.594.

Exercises IV. E, page 59

In exercises 1–23, -10 is to be appended.

1.	9.68557.		3. 9.9906	7.	5. 10	0.507	704.	7.	9.34276.
9.	9.81519.		11. 9.1307	8.	13. 10).231	101.	15.	9.84933.
17.	9.71647.		19. 9.22613	3.	21. 9.	9250)4.	23.	10.71142.
25.	20° 14′.	27.	63° 41′.	29.	57° 0.5′.	31.	11° 0.1′.	33.	57° 37.8′.
35.	38° $12.4'$.	37.	39° 11.8′.	39.	81° 13.5′.	41.	$49^{\circ}\ 25.5'$.	4 3.	88° 24.4′.
4 5.	87° 15.0′.	47.	Impossible.	49.	2.855.	51.	97.035.	53.	0.18058.
55.	147.33.	57.	0.86142.	59.	1362.4.	61.	37° 52.9′.		

Exercises V. A, page 63

```
1. A = 39^{\circ} 25', B = 50^{\circ} 35', c = 1250; 383100.

3. A = 47^{\circ} 53', B = 42^{\circ} 7', b = 0.1846; 0.01885.

5. A = 51^{\circ} 52', B = 38^{\circ} 8', a = 6385; 16,000,000.

7. A = 31^{\circ} 45', b = 77.63, c = 91.29; 1865.

9. A = 66^{\circ} 51', a = 1765, c = 1920; 666200.

11. A = 26^{\circ} 23.0', B = 63^{\circ} 37.0', b = 5728.8; 8,139,400.
```

13.
$$A = 33^{\circ} 39.4'$$
, $B = 56^{\circ} 20.6'$, $a = 574.16$; 247560.

15.
$$A = 63^{\circ}$$
 42.8′, $b = 165.90$, $c = 374.61$; 27861. **17.** $A = 37^{\circ}$ 50.2′, $a = 44.909$, $b = 57.820$; 1298.3.

19. (a) 101.05; (b) 7319.2. **21.** 12.478 cm.

Fxercises VI. A, page 70

sin cos tan csc sec cot
1.
$$\frac{\sqrt{2}}{2}$$
 $-\frac{\sqrt{2}}{2}$ -1 $\sqrt{2}$ $-\sqrt{2}$ -1

3.
$$-\frac{1}{2}$$
 $-\frac{\sqrt{3}}{2}$ $\frac{\sqrt{3}}{3}$ -2 $-\frac{2\sqrt{3}}{3}$ $\sqrt{3}$

5.
$$-\frac{\sqrt{2}}{2}$$
 $-\sqrt{2}$ $-\sqrt{2}$

7.
$$-\frac{1}{2}$$
 $\frac{\sqrt{3}}{2}$ $-\frac{\sqrt{3}}{3}$ -2 $\frac{2\sqrt{3}}{3}$ $-\sqrt{3}$

9.
$$\frac{3}{2} + \frac{\sqrt{3}}{2}$$
 11. $-\frac{1}{2} + 5\sqrt{3}$. **13.** $-3 - \frac{2\sqrt{3}}{3}$ **15.** $-\frac{13}{4} + \sqrt{3}$.

17.
$$\frac{3}{2} - \sqrt{2}$$
. 19. $2 + \frac{4\sqrt{3}}{2}$ 21. 4. 23. 4. 25. 27. 0.

Exercises VI. B, page 78

- 1. (a) $\sin 20^{\circ}$ or $\cos 70^{\circ}$; (b) $-\cos 35^{\circ} \text{ or } -\sin 55^{\circ}$;
 - (c) $-\tan 80^{\circ}$ or $-\cot 10^{\circ}$ (d) $\csc 50^{\circ}$ or $\sec 40^{\circ}$;
 - (e) $-\sec 8^{\circ}$ or $-\csc 82^{\circ}$; (f) $-\cot 82^{\circ}$ or $-\tan 8^{\circ}$;
 - (g) $\sin 43^{\circ}$ or $\cos 47^{\circ}$; (h) $-\cos 84^{\circ} 50'$ or $-\sin 5^{\circ} 10'$;
 - (i) $-\tan 17^{\circ} 56'$ or $-\cot 72^{\circ} 4'$; (j) $-\cot 54^{\circ} 42'$ or $-\tan 35^{\circ} 18'$;
- (k) sin 65° 39′ or cos 24° 21′; (1) $-\cos 87^{\circ} 47.2' \text{ or } -\sin 2^{\circ} 12.8'.$
- **3.** (a) 0.57358; (b) -0.40674; (c) -3.7321; (d) 1.5617;
 - (e) 0.77715; (f) -0.97499; (g) -0.60626; (h) 0.97622; (i) -0.29654; (j) 0.30486; (k) -0.36397; (l) 0.09277.
- **5.** 0. 7. (a) 18° or 162°; (b) 60° 10′; (c) 70° 50′; (d) 30° 20′;
 - (e) $42^{\circ} 10'$ or $137^{\circ} 50'$; (f) $140^{\circ} 30'$.

Exercises VII. A, page 83

- **1.** $C=30^{\circ}, \ b=12.6, \ c=6.4.$ **3.** $B=37^{\circ}\ 10', \ a=3.5, \ c=4.1.$ **5.** $A=93^{\circ}\ 40', \ a=324, \ c=314.$ **7.** $9.4, \ 6.7.$ **9.** $12.6, \ 5.34.$
- **11.** 92.2 ft. **13.** 110 ft.

Exercises VII. B, page 87

- 1. $B = 23^{\circ} 41'$, $C = 116^{\circ} 19'$, c = 11.2.
- 3. $A = 23^{\circ} 48'$, $C = 120^{\circ} 2'$, c = 45.5.
- 5. $B = 43^{\circ} 37'$, $C = 63^{\circ} 3'$, c = 2.3.
- 7. $A = 84^{\circ} 12', B = 80^{\circ} 8', b = 34.7;$ $A' = 95^{\circ} 48', B' = 68^{\circ} 32', b' = 32.7.$
- **11.** 54.3 ft. **9.** 7.48 in., 8.03 in.

Exercises VII. C, page 90

- **1.** $A = 51^{\circ}$, $C = 69^{\circ}$, b = 5.6. **3.** $B = 41^{\circ}$, $C = 121^{\circ}$, a = 0.77
- **5.** $A = 53^{\circ} 25'$, $B = 31^{\circ} 35'$, c = 285. **7.** 14.4 mi. **9.** 3.62 in., 7.20 in.
- 11. 175 yd.

Exercises VII. D, page 91

- **1.** $A = 28^{\circ} 57', B = 46^{\circ} 34', C = 104^{\circ} 29'.$
- **3.** $A = 75^{\circ} 26', B = 56^{\circ} 4', C = 48^{\circ} 30'.$
- **5.** $A = 16^{\circ} 16', B = 73^{\circ} 44', C = 90^{\circ} 0'.$
- 7. $A = 38^{\circ} 56', B = 34^{\circ} 11', C = 106^{\circ} 54'.$
- **9.** 35° 42′ E or W of S. **11.** 57° 10′, 122° 50′, 23.5 in. **13.** 12.07.

Exercises VII. E, page 94

- **1.** $A = 33^{\circ} 9.9', a = 435.71, c = 787.53; 156030.$
- **3.** $B = 15^{\circ} 57.0', b = 5.4420, c = 17.865; 36.400.$
- **5.** $B = 111^{\circ} 11.3'$, a = 102.19, b = 491.06; 21190.
- 7. $B = 42^{\circ} 12.8'$, a = 514.73, c = 1025.0; 177250.
- **9.** $A = 42^{\circ} 7.7'$, a = 0.18940, c = 0.26964; 0.013004.
- 11. 15.223 in., 18.439 in.

Exercises VII. F, page 95

- **1.** $A = 57^{\circ} 59.9'$, $C = 23^{\circ} 36.6'$, c = 29.526; 913.08.
- 3. $A = 104^{\circ} 32.3'$, $B = 40^{\circ} 1.9'$, a = 5888.4; 6,678,200; $A' = 4^{\circ} 36.1'$, $B' = 139^{\circ} 58.1'$, a' = 488.04; 553500.
- **5.** $A = 63^{\circ} 8.3', B = 67^{\circ} 32.8', b = 89.534; 2933.9;$

 $A' = 116^{\circ} 51.7', B' = 13^{\circ} 49.4', b' = 23.147; 758.48.$

- 7. $A = 103^{\circ} 21.9', C = 48^{\circ} 48.8', a = 0.67733; 0.082812;$ $A' = 20^{\circ} 59.5', C' = 131^{\circ} 11.2', a' = 0.24939; 0.030491.$
- **9.** $A = 134^{\circ} 37.3'$, $C = 25^{\circ} 8.2'$, a = 94.370; 919.44; $A' = 4^{\circ} 53.7'$, $C' = 154^{\circ} 51.8'$, a' = 11.314; 110.23.
- 11. No solution. 13. 7423 ft. or 3344 ft.

Exercises VII. G, page 99

The answer for the third side may differ slightly from that given; it depends on the formula used.

- **1.** $A = 57^{\circ} 50', B = 58^{\circ} 32', c = 300.9; 36490.$
- **3.** $A = 38^{\circ} 52.7'$, $B = 8^{\circ} 49.0'$, c = 43.017; 120.36.
- **5.** $A = 153^{\circ} 17.5', C = 14^{\circ} 14.0', b = 32.381; 268.22.$
- 7. $A = 23^{\circ} 26.2'$, $C = 19^{\circ} 2.6'$, b = 819.00; 64450.
- **9.** $B = 46^{\circ} 23.8'$, $C = 90^{\circ}$, a = 17120; 153,880,000.
- 11. 2577 ft.

25. 885.2 ft.

Exercises VII. H, page 103

- **1.** $A = 44^{\circ} 4.8', B = 101^{\circ} 44.4', C = 34^{\circ} 10.8'; 6212.4.$
- 3. $A = 30^{\circ} 41.8'$, $B = 99^{\circ} 25.2'$, $C = 49^{\circ} 53.2'$; 74.745.
- **5.** $A = 33^{\circ} 32.6', B = 50^{\circ} 40.8', C = 95^{\circ} 46.6'; 1,742,200,000.$
- 7. $A = 53^{\circ} 34.0'$, $B = 26^{\circ} 5.0'$, $C = 100^{\circ} 21.0'$; 483.07.
- 9. $A = 28^{\circ} 11.8'$, $B = 34^{\circ} 4.8'$, $C = 117^{\circ} 43.2'$; 1.8836.
- 11. 41.51 ft.

Exercises VII. I, page 105

- **1.** $C = 52^{\circ} 15.9', b = 621.94, c = 516.16; 132100.$
- **3.** $A = 65^{\circ} 21.8', b = 1.6389, c = 4.7821; 3.5621.$
- **5.** $A = 127^{\circ} 9.4', B = 6^{\circ} 24.4', C = 46^{\circ} 26.2'; 0.027977.$
- 7. $A = 27^{\circ} 28.0', B = 125^{\circ} 55.4', c = 265.29; 29345.$
- **9.** $A = 46^{\circ} 26.3', B = 6^{\circ} 24.4', b = 74260; 279,762,000.$
- **11.** $B = 81^{\circ} 12.2'$, a = 303.45, c = 271.32; 40682.
- **13.** $A = 46^{\circ} 23.8'$, $C = 29^{\circ} 21.2'$, b = 9.8396; 17.730.
- **15.** $A = 26^{\circ} 21.6', B = 106^{\circ} 40.6', C = 46^{\circ} 57.8'; 788.70.$
- **17.** $C = 33^{\circ} 43.0'$, a = 487.51, b = 689.63; 93310.
- **19.** $A = 99^{\circ} 40.1'$, $B = 28^{\circ} 20.0'$, c = 182.37; 9873.5.
- **21.** 975.25 ft. **23.** N 80° 2′ W, S 19° 6′ E.
- **27.** 31830 ft. **29.** 927.0 ft., 742.6 ft., 35° 26.5′.
- **31.** 751.5 ft. **33.** 39° 41′. **35.** 42.9 ft. **37.** 19.806, 35.690, 44.504. **39.** 57.67 rd., 96.11 rd., 134.56 rd. **49.** 48° 26′.

Exercises VII. J, page 112

- 1. 15.18 lb., 44° 24′.
- 3. 30° with vertical and from front to back of windows.
- 5. 49° 28′.

- 7. 36.5 mi./hr., N 18° 21′ W.
- 9. $127^{\circ}\ 10'$, $90^{\circ}\ 22'$, $142^{\circ}\ 27'$.

Exercises VIII. A, page 117

	$\sin heta$	$\cos \theta$	$\tan \theta$	$\csc \theta$	$\sec \theta$	$\cot \theta$
1.		$\frac{5}{13}$	$\frac{1}{5}$	$\frac{13}{12}$	$\frac{13}{5}$	$\frac{5}{12}$
3.	$-\frac{2\sqrt{13}}{13}$	$\frac{3\sqrt{13}}{13}$		$-\frac{\sqrt{13}}{2}$	$\frac{\sqrt{13}}{3}$	$-rac{3}{2}$
5.	$\frac{\sqrt{21}}{5}$		$-\frac{\sqrt{21}}{2}$	$\frac{5\sqrt{21}}{21}$	$-rac{5}{2}$	$-\frac{2\sqrt{21}}{21}$
7.	$-\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	-1	$-\sqrt{2}$		-1
	$-\frac{7}{25}$	$-\frac{24}{25}$		$-\frac{25}{7}$	$-\frac{25}{24}$	$\frac{24}{7}$

11.
$$\pm \frac{\sqrt{3}}{2}$$
 $\sqrt{3}$ 2 $\pm \frac{2\sqrt{3}}{3}$ $\pm \sqrt{3}$

13.
$$\pm \frac{2\sqrt{29}}{29}$$
 $\mp \frac{5\sqrt{29}}{29}$ $\pm \frac{\sqrt{29}}{5}$ $\pm \frac{5\sqrt{29}}{5}$ $\pm \frac{5\sqrt{29}}{5}$

15.
$$\pm \frac{2\sqrt{29}}{29}$$
 $\pm \frac{5\sqrt{29}}{29}$ $\frac{2}{5}$ $\pm \frac{\sqrt{29}}{2}$ $\pm \sqrt{29}$

17.
$$\pm \frac{\sqrt{3}}{2}$$
 $-\frac{1}{2}$ $\mp \sqrt{3}$ $\pm \frac{2\sqrt{3}}{3}$ $\mp \frac{\sqrt{3}}{3}$

19.
$$\pm \frac{\sqrt{5}}{5}$$
 $\pm \frac{2\sqrt{5}}{5}$ $\pm \sqrt{5}$ $\pm \frac{\sqrt{5}}{2}$ 2

21.
$$\frac{1}{3}$$
 $\pm \frac{2\sqrt{2}}{4}$ $\pm 2\sqrt{2}$

23.
$$\pm \frac{\sqrt{3}}{2}$$
 $\mp \frac{1}{2}$ $\pm \frac{2\sqrt{3}}{3}$ ∓ 2 $-\frac{\sqrt{3}}{3}$

25.
$$\pm \frac{2\sqrt{2}}{3}$$
 $\mp 2\sqrt{2}$ $\pm \frac{3\sqrt{2}}{4}$ -3 $\mp \frac{\sqrt{2}}{4}$

27.
$$\pm \frac{10\sqrt{101}}{101}$$
 $\pm \frac{\sqrt{101}}{101}$ 10 $\pm \frac{\sqrt{101}}{10}$ $\pm \sqrt{101}$

31. (a)
$$\pm \frac{33}{40}$$
, $\pm \frac{29}{120}$; (b) $\pm \frac{608}{425}$, $\pm \frac{208}{425}$; (c) $\frac{199}{85}$, $\frac{39}{85}$; (d) $\pm \frac{5}{9}$;

(e)
$$\pm \frac{527}{56}$$
, $\pm \frac{289}{56}$; (f) $\frac{147}{115}$, $\frac{3}{115}$, $\frac{21}{5}$, $\frac{3}{35}$;

(g)
$$\frac{4958}{425}$$
, $\frac{518}{85}$, $\frac{1742}{425}$, $\frac{182}{85}$;

(h)
$$(192m^2 \pm 416mn + 105n^2)/192$$
, $(192m^2 \pm 304mn - 105n^2)/192$.

Exercises VIII. B, page 120

41.

$\pm \frac{1}{\sqrt{1+\cot^2\theta}}$	$\pm \frac{\cot \theta}{\sqrt{1 + \cot^2 \theta}}$	$\frac{1}{\cot \theta}$	$\pm\sqrt{1+\cot^2\theta}$	$\pm \frac{\sqrt{1 + \cot^2 \theta}}{\cot \theta}$	cot θ
$\pm \frac{\sqrt{\sec^2\theta - 1}}{\sec\theta}$	$\frac{1}{\sec \theta}$	$\pm\sqrt{\sec^2\theta-1}$	$\pm \frac{\sec \theta}{\sqrt{\sec^2 \theta - 1}}$	sec θ	$\pm \frac{1}{\sqrt{\sec^2\theta - 1}}$
$\frac{1}{\csc \theta}$	$\pm \frac{\sqrt{\csc^2 \theta - 1}}{\csc \theta}$	$\pm \frac{1}{\sqrt{\csc^2\theta - 1}}$	ese $ heta$	$\pm \frac{\csc \theta}{\sqrt{\csc^2 \theta - 1}}$	$\pm\sqrt{\csc^2\theta-1}$
$\frac{\tan \theta}{\sqrt{1+\tan^2 \theta}}$	$\pm \frac{1}{\sqrt{1+\tan^2 \theta}}$	an heta	$\pm \frac{\sqrt{1+\tan^2\theta}}{\tan\theta}$	$\pm\sqrt{1+\tan^2\theta}$	$\frac{1}{\tan \theta}$
$\pm\sqrt{1-\cos^2 heta}$	$\theta \cos \theta$	$\pm \frac{\sqrt{1-\cos^2\theta}}{\cos\theta}$	$\pm \frac{1}{\sqrt{1-\cos^2\theta}}$	$\frac{1}{\cos \theta}$	$\pm \frac{\cos \theta}{\sqrt{1-\cos^2 \theta}}$
θ wis	$\pm\sqrt{1-\sin^2\theta}$	$\pm \frac{\sin \theta}{\sqrt{1 - \sin^2 \theta}}$	$\frac{1}{\sin \theta}$	$\pm \frac{1}{\sqrt{1-\sin^2\theta}}$	$\pm \frac{\sqrt{1-\sin^2\theta}}{\sin\theta}$
$\theta = \theta$	$\theta = 0$	$\tan \theta =$	esc θ =	$\theta = \theta$	

Exercises VIII. C, page 126

- **3.** $\frac{1}{4}(\sqrt{6}-\sqrt{2})$, $\frac{1}{4}(\sqrt{6}+\sqrt{2})$, $2-\sqrt{3}$, $2+\sqrt{3}$. **9.** $\cos\theta$. **11.** 0.
- **19.** (a) $-\frac{185}{697}$; (b) $\frac{672}{697}$; (c) $-\frac{185}{672}$; (d) $-\frac{672}{185}$; (e) $-\frac{455}{697}$; (f) $\frac{528}{697}$.
 - (g) $-\frac{455}{528}$; (h) $-\frac{528}{455}$.
- **21.** (a) $\pm \frac{171}{221}$; (b) $\pm \frac{140}{221}$; (c) $\frac{171}{140}$; (d) $\frac{140}{171}$; (e) $\pm \frac{21}{221}$; (f) $\pm \frac{220}{231}$. (g) $\frac{21}{220}$; (h) $\frac{220}{21}$.

Exercises VIII. D. page 130

3.
$$\frac{\sqrt{3}}{2}$$
, $-\frac{1}{2}$, $-\sqrt{3}$, $-\frac{\sqrt{3}}{3}$.

- **5.** $\frac{1}{4}(\sqrt{6}-\sqrt{2}), \frac{1}{4}(\sqrt{6}+\sqrt{2}), 2-\sqrt{3}, 2+\sqrt{3}$
- 7. (a) $\pm \frac{720}{1681}$; (b) $-\frac{1519}{1681}$; (c) $\pm \frac{720}{1519}$; (d) $\pm \frac{1519}{720}$;

(e)
$$\pm \frac{5\sqrt{41}}{41}$$
, $\pm \frac{4\sqrt{41}}{41}$; (f) $\pm \frac{4\sqrt{41}}{41}$, $\pm \frac{5\sqrt{41}}{41}$; (g) $\frac{5}{4}$, $\frac{4}{5}$; (h) $\frac{4}{5}$, $\frac{5}{4}$.

Exercises VIII. E, page 132

- **1.** $2 \sin 30^{\circ} \cos 10^{\circ} = \cos 10^{\circ}$. **3.** $2 \cos 50^{\circ} \cos 10^{\circ}$. **5.** $2 \cos 40^{\circ} \cos 2^{\circ}$
- 7. $2 \sin 32\frac{1}{2}^{\circ} \cos 7\frac{1}{2}^{\circ}$. 9. $2 \sin 50^{\circ} \cos 18^{\circ} = 2 \cos 40^{\circ} \sin 72^{\circ}$.
- **11.** $2 \sin 47^{\circ} \cos 3^{\circ} = 2 \cos 43^{\circ} \sin 87^{\circ}$. 13. $2 \sin 2\theta \cos \theta$.
- 15. $2 \sin \frac{3}{4}\theta \cos \frac{1}{4}\theta$.

17. $2 \cos \frac{7}{2}\theta \cos \frac{1}{2}\theta$.

Exercises VIII. F, page 133

- **23.** (a) $\pm \frac{64}{1025}$, $\pm \frac{496}{1025}$; (b) $\pm \frac{1023}{1025}$, $\pm \frac{897}{1025}$; (c) $\frac{64}{1023}$, $\frac{496}{897}$;
 - (d) $\frac{1023}{64}$, $\frac{897}{496}$; (e) $\pm \frac{496}{1025}$, $\pm \frac{64}{1025}$; (f) $\pm \frac{897}{1025}$, $\pm \frac{1023}{1025}$;
 - (g) $\frac{496}{897}$, $\frac{64}{1023}$; (h) $\frac{897}{496}$, $\frac{1023}{64}$; (i) $\frac{336}{625}$; (j) $\frac{527}{625}$; (k) $\frac{336}{527}$;

(l)
$$\frac{527}{336}$$
; (m) $\pm \frac{\sqrt{2}}{10}$, $\pm \frac{7\sqrt{2}}{10}$; (n) $\pm \frac{7\sqrt{2}}{10}$, $\pm \frac{\sqrt{2}}{10}$; (o) $\frac{1}{7}$, -7 ;

(p) 7,
$$-\frac{1}{7}$$
; (q) $\pm \frac{9\sqrt{82}}{82}$; (r) $\pm \frac{\sqrt{82}}{82}$; (s) ± 9 ; (t) $\pm \frac{1}{9}$;

- (u) $\pm \frac{512}{1025}$, $\pm \frac{62}{1025}$; (v) $\pm \frac{512}{1025}$, $\pm \frac{62}{1025}$; (w) $-\frac{16}{1025}$, -
- $(x) \frac{1984}{1025}, \frac{16}{1025}$

27.
$$\frac{1}{4}\sqrt{10-2\sqrt{5}}$$
, $\frac{1}{4}(1+\sqrt{5})$, $\sqrt{5-2\sqrt{5}}$, $\frac{1}{5}\sqrt{25+10\sqrt{5}}$.

29.
$$\frac{1}{16}(\sqrt{6} + \sqrt{2})(\sqrt{5} - 1) - \frac{1}{8}(\sqrt{3} - 1)\sqrt{5 + \sqrt{5}},$$

 $\frac{1}{8}(\sqrt{3} + 1)\sqrt{5 + \sqrt{5}} + \frac{1}{16}(\sqrt{6} - \sqrt{2})(\sqrt{5} - 1).$

31. 120 ft.

Exercises VIII. G, page 138

- **1.** $\sqrt{2}\sin(\theta 45^{\circ})$. **3.** $13\cos(\theta + \phi)$, $\phi = \operatorname{arccot} \frac{12}{5} = 22^{\circ} 37'$.
- **5.** $2\cos(\theta 60^{\circ})$. **7.** $\sqrt{2}\cos(\theta 45^{\circ})$. **9.** $1.2997\cos(\theta + 73^{\circ}44')$.

Exercises IX. A, page 140

1. (a)
$$\frac{\pi}{18}$$
; (b) $\frac{7\pi}{36}$; (c) $\frac{4\pi}{15}$; (d) $\frac{7\pi}{18}$; (e) $\frac{5\pi}{6}$; (f) $\frac{14\pi}{9}$; (g) $\frac{\pi}{10}$;

(h)
$$\frac{20\pi}{9}$$
; (i) $\frac{7\pi}{120}$; (j) $\frac{11\pi}{80}$; (k) $\frac{641\pi}{240}$; (l) $\frac{13\pi}{135}$.

- 3. (a) 18°; (b) 15°; (c) 12°; (d) 10°; (e) 120°; (f) 135°; (g) 270°;
 - (h) 150°; (i) 36°; (j) 72°; (k) 108°; (l) 144°; (m) 54°; (n) 84°;
 - (o) 75°; (p) 140°.
- **5.** (a) 28° 38′ 52.4″; (b) 38° 11′ 49.9″; (c) 16° 22′ 12.8″:
 - (d) 162° 20′ 17″; (e) 183° 20′ 47.4″; (f) 70° 49′ 3.3″; (g) 7° 4′ 54.3″; (h) 22° 14′ 52.8″.
- 7. (a) $\frac{\pi}{3}$; (b) $\frac{5\pi}{6}$; (c) $\frac{\pi}{4}$; (d) $\frac{3\pi}{8}$.
- **9.** (a) $\frac{\pi}{12}$; (b) $\frac{\pi}{720}$; (c) $\frac{5\pi}{18}$; (d) 6π ; (e) $\frac{19\pi}{24}$.

11. (a)
$$\frac{\sqrt{3}}{2}$$
; (b) $-\frac{1}{2}$; (c) 1; (d) $-\sqrt{3}$; (e) $-\sqrt{2}$; (f) 2; (g) -1;

- (h) 0.76604; (i) 0.15838; (j) -2.0765; (k) -0.28173;
- (l) 0.97095; (m) 0.84147; (n) -0.66628; (o) 1.8856; (p) 2.1520;
- (q) 0.01000; (r) 0.86232.

Exercises IX. B, page 144

- **1.** 1.4. **3.** 3 ft. $6\frac{1}{2}$ in. **5.** 10 in. **7.** 1.9263 in. **9.** 2640.
- **11.** (a) $60\pi^{(r)}/\text{sec.}$; (b) 240π ft./sec.

Exercises IX. C, page 146

- **1.** 13.5 sq. in., 1.2305 sq. in. **3.** $1\frac{1}{5}$ ^(r). **5.** 10.05 in.
- 7. 144 sq. in. 9. (a) 15 sq. in.; (b) 4.687 cu. in. **11.** 103.0.

Exercises IX. D, page 150

Table IIIa of the Macmillan Logarithmic and Trigonometric Tables was used in obtaining some of these answers.

- **1.** (a) 0.02132; (b) 0.02132; (c) 46.903.
- 3. (a) 8.19904 10; (b) 8.19910 10; (c) 1.80090.
- **7.** 2160 mi. 9. 2.5×10^{13} mi. 11. 238500 mi. **5.** 153.6.
- **13.** $A = 0^{\circ} 45.2', B = 89^{\circ} 14.8', c = 57.958.$
- **15.** $A = 174^{\circ} 15.4', B = 3^{\circ} 3.5', C = 2^{\circ} 41.1'.$
- **17.** $A = 59^{\circ} 25.0', b = 0.13531, c = 0.072393.$

Exercises IX. E, page 152

3. 2100 ft. **7.** 43 mils. **5.** 83 mils. **9.** 20. **11.** 0° 33′ 45″, 2° 48′ 45″, 5° 37′ 30″.

Exercises X. A. page 163

15.
$$\frac{\pi}{4} + n\pi$$
.

23(1). 2π . **23(3).** 2π . **23(5).** 4π . **23(7).** 2π . **23(9).** $\frac{\pi}{2}$. **23(11).** 4.

Exercises XI. A, page 173

3.
$$\frac{3\pi}{4}$$
, $2n\pi \pm \frac{3\pi}{4}$. 5. $\frac{\pi}{2}$, $2n\pi \pm \frac{\pi}{2}$. 7. $\frac{\pi}{4}$, $\frac{\pi}{4} + n\pi$.

9.
$$-\frac{\pi}{3}$$
, $-\frac{\pi}{3} + n\pi$.

11. 0.240,
$$n\pi + (-1)^n$$
 0.240. **13.** 0.980, 0.980 + $n\pi$.

15. 1.581,
$$2n\pi \pm 1.581$$
. **17.** 0.7297, $n\pi + (-1)^n 0.7297$.

19. 1.1071, 1.1071 +
$$n\pi$$
. **21.** $\frac{3}{4}$. **23.** $\frac{9}{13}$. **25.** $-\frac{8}{15}$. **27.** $\pm\frac{20}{29}$. **29.** $\pm\frac{3}{4}$.

31.
$$-\frac{1}{3}$$
 33. x . 35. $\pm \frac{x}{\sqrt{1-x^2}}$ 37. $\pm \frac{x}{\sqrt{1-x^2}}$ 39. $\pm \frac{x}{\sqrt{1+x^2}}$

41.
$$\pm\sqrt{1+x^2}$$
. **45.** - **47.** 1, $-\frac{7}{9}$. **49.** $-\frac{1}{9}$. **51.** $\frac{435}{308}$, $-\frac{525}{92}$.

41.
$$\pm\sqrt{1+x^2}$$
. **45.** $-$ **47.** $1, -\frac{7}{9}$. **49.** $-\frac{1}{9}$. **51.** $\frac{438}{308}$, $-\frac{528}{92}$. **53.** $\pm\frac{611}{1189}$ **55.** $\pm\frac{24}{25}$ $\pm\frac{2\sqrt{6}}{25}$ **57.** $\pm\frac{943}{1105}$, $\pm\frac{47}{1105}$, $\pm\frac{1073}{1105}$, $\pm\frac{817}{1105}$.

77. $n\pi + (-1)^n\theta$. **79.** $\theta + n\pi$.

Exercises XII. A, page 181

1.
$$n \cdot 180^{\circ}$$
. **3.** $45^{\circ} + n \cdot 180^{\circ}$. **5.** $75^{\circ} 58' + n \cdot 180^{\circ}$.

7.
$$90^{\circ} + n \cdot 180^{\circ}$$
, $210^{\circ} + n \cdot 360^{\circ}$, $330^{\circ} + n \cdot 360^{\circ}$.

9.
$$90^{\circ} + n \cdot 180^{\circ}, 26^{\circ} 34' + n \cdot 180^{\circ}.$$

11.
$$45^{\circ} + n \cdot 180^{\circ}$$
, $161^{\circ} 34' + n \cdot 180^{\circ}$.

15.
$$60^{\circ} + n \cdot 180^{\circ}$$
. **17.** $11\frac{1}{4}^{\circ} + n \cdot 22\frac{1}{3}^{\circ}$.

19.
$$12^{\circ} + n \cdot 36^{\circ}$$
. **21.** $26^{\circ} 34' + n \cdot 180^{\circ}$.

23.
$$n \cdot 360^{\circ}$$
, $90^{\circ} + n \cdot 360^{\circ}$. **25.** $126^{\circ} 13' + n \cdot 360^{\circ}$, $174^{\circ} 25' + n \cdot 360^{\circ}$.

27.
$$15^{\circ} + n \cdot 360^{\circ}$$
, $285^{\circ} + n \cdot 360^{\circ}$. **29.** $n \cdot 180^{\circ} \pm 45^{\circ}$, $90^{\circ} + n \cdot 180^{\circ}$.

31.
$$n \cdot 360^{\circ}$$
, $45^{\circ} + n \cdot 90^{\circ}$. **33.** $n \cdot 360^{\circ} \pm 50^{\circ} 36'$, $n \cdot 360^{\circ} \pm 129^{\circ} 24'$.

35.
$$n \cdot 180^{\circ}$$
, $220^{\circ} 39' + n \cdot 360^{\circ}$, $319^{\circ} 21' + n \cdot 360^{\circ}$.

37.
$$240^{\circ} + n \cdot 360^{\circ}, 300^{\circ} + n \cdot 360^{\circ}.$$

$$\sqrt{x^2 + y^2}$$
, $\theta = \operatorname{Arctan} \frac{y}{x} + 2n\pi$,

$$r = -\sqrt{x^2 + y^2}, \theta : \pi + \operatorname{Arctan} \frac{y}{x} + 2n\pi;$$

$$x < 0, r = \pi + \arctan \frac{y}{x} + 2n\pi,$$

$$r = -\sqrt{x^2 + y^2}, \theta = \arctan \frac{y}{x} + 2n\pi;$$

$$x = 0, y > 0, r = \pm y, \theta = \pm \frac{\pi}{2} + 2n\pi,$$

$$y < 0, r = \pm y, \theta = \mp \frac{\pi}{2} + 2n\pi,$$

$$x = 0, r = 0, \theta \text{ meaningless}$$

$$y = 0, r = 0, \theta$$
 meaningless.
41. $\theta = 45^{\circ} 50' + (-1)^{m} \cdot 30^{\circ} 20' + (m + 2k) \cdot 180^{\circ}$,

- 41. $\theta = 45^{\circ} 50' + (-1)^{m} \cdot 30^{\circ} 20' + (m+2k) \cdot 180^{\circ}$, $\phi = 45^{\circ} 50' (-1)^{m} \cdot 30^{\circ} 20' + (m+2l) \cdot 180^{\circ}$, where k, l, m are any integers.
- **43.** $\theta = 50^{\circ} 46' + m \cdot 360^{\circ}, \ \phi = 37^{\circ} 46' + n \cdot 360^{\circ}; \ \theta = 129^{\circ} 14' + m \cdot 360^{\circ}, \ \phi = 217^{\circ} 46' + n \cdot 360^{\circ};$
 - $\theta = 230^{\circ} 46' + m \cdot 360^{\circ}, \, \phi = 142^{\circ} 14' + n \cdot 360^{\circ};$
 - $\theta = 309^{\circ} 14' + m \cdot 360^{\circ}, \, \phi = 322^{\circ} 14' + n \cdot 360^{\circ}.$
- **47.** 1.9346. **49.** 0.4797.* **51.** \pm 0.8241. **53.** 2.8632.
- **55.** 0, ± 0.9477 . **57.** -3.1423.* **59.** Identity. **61.** $n \cdot 180^{\circ}$.
- 63. Identity. 65. Identity.

Exercises XIII. A, page 187

- 1. 8 + 6i. 3. 2 + 5i. 5. 6 + 5i. 7. -1 + 7i. 9. 1 + 3i. 11. 14.
- 13. 5-2i. 15. -5i. 17. 11+3i.

Exercises XIII. B, page 189

- **1.** $5\sqrt{2}$ cis 135°. **3.** 2 cis 30°. **5.** 5 cis 306° 52′. **7.** 6 cis 90°.
- 9. 17 cis 241° 56′. 11. $\sqrt{13}$ cis 56° 19′. 13. $\sqrt{26}$ cis 348° 41′.
- **15.** $7\sqrt{2}$ cis 225°. **17.** 10 cis 306° 52′. **19.** $\sqrt{53}$ cis 164° 3′.
- **21.** $\frac{\sqrt{13}}{6}$ cis 33° 41′. **23.** $\frac{5\sqrt{2}}{2} + \frac{5i\sqrt{2}}{2}$ **25.** $-\frac{3\sqrt{2}}{2} \frac{3i\sqrt{2}}{2}$
- **27.** 10i. **29.** -4i. **31.** 1-i. **33.** 8.1915-5.7358i. **35.** -4.6984-1.7101i. **37.** 7.6604+6.4279i.

Exercises XIII. C, page 190

- **1.** 15 cis 110°. **3.** $2\sqrt{2}$ cis 105°. **5.** 12 cis 110°. **7.** 3 cis 90° = 3*i*.
- 9. $\frac{3\sqrt{2}}{2}$ cis 195°.

Exercises XIII. D, page 193

- **1.** $343 \text{ cis } 54^{\circ}$. **3.** $32 \text{ cis } 90^{\circ}$ 32i. **5.** $2500 \text{ cis } 180^{\circ}$ -2500.
- 7. cis 176° . 9. cis $180^{\circ} = -1$.

^{*} Other solutions exist.

- **11.** $10^{-6} \operatorname{cis} 300^{\circ} = 0.000,000,5(1 i\sqrt{3}).$ **13.** $3 \operatorname{cis} 40^{\circ}, 3 \operatorname{cis} 220^{\circ}$
- **15.** 3 cis 9°, 3 cis 129°, 3 cis 249°.
- 17. $\sqrt[3]{2}$ cis 20° = 1.1839 + 0.43092*i*, $\sqrt[3]{2}$ cis 140° = -0.96514 + 0.80986*i*, $\sqrt[3]{2}$ cis 260° = -0.21878 1.2408*i*.

19.
$$\operatorname{cis} 0^{\circ} = 1$$
, $\operatorname{cis} 120^{\circ} = -\frac{1}{2} + \frac{i\sqrt{3}}{2}$, $\operatorname{cis} 240^{\circ} = -\frac{1}{2} - \frac{i\sqrt{3}}{2}$.

21.
$$\sqrt{2}$$
 cis $45^{\circ} = 1 + i$, $\sqrt{2}$ cis $105^{\circ} = -0.36603 + 1.3660i$, $\sqrt{2}$ cis $165^{\circ} = -1.3660 + 0.36603i$, $\sqrt{2}$ cis $225^{\circ} = -1 - i$, $\sqrt{2}$ cis $285^{\circ} = 0.36603 - 1.3660i$, $\sqrt{2}$ cis $345^{\circ} = 1.3660 - 0.36603i$

23.
$$\sqrt{2}$$
 cis $45^{\circ} = 1 + i$, $\sqrt{2}$ cis $117^{\circ} = -0.64204 + 1.2601i$, $\sqrt{2}$ cis $189^{\circ} = -1.3968 - 0.22123i$, $\sqrt{2}$ cis $261^{\circ} = -0.22123 - 1.3968i$, $\sqrt{2}$ cis $333^{\circ} = 1.2601 - 0.64204i$.

25. 1, 0.30902
$$\pm$$
 0.95106*i*, $-0.80902 \pm 0.58779i$. **27.** $\pm \frac{\sqrt{2}}{2}(1 \pm i)$.

- **29.** $\pm (1.8478 + 0.76536i)$, $\pm (0.76536 1.8478i)$.
- **31.** Same as Ex. 25, discarding x = 1.

Exercises XV. A, page 207

- **1.** $B = 153^{\circ} 58.3'$, $a = 67^{\circ} 7.0'$, $b = 155^{\circ} 46.7'$.
- **3.** $A = 105^{\circ} 52.3'$, $a = 117^{\circ} 13.7'$, $b = 33^{\circ} 32.7'$.
- **5.** $a = 69^{\circ} 34.9'$, $b = 134^{\circ} 59.4'$, $c = 104^{\circ} 16.8'$.
- 7. $A = 81^{\circ} 43.0'$, $a = 70^{\circ} 16.2'$, $c = 107^{\circ} 58.2'$; $A' = 98^{\circ} 17.0'$, $a' = 109^{\circ} 43.8'$, $c' = 72^{\circ} 1.8'$.
- **9.** $A = 78^{\circ} 31.9', b = 112^{\circ} 48.5', c = 94^{\circ} 46.8'.$
- **11.** $A = 127^{\circ} 23.3', B = 109^{\circ} 52.2', b = 115^{\circ} 19.6'.$
- **13.** $A = 74^{\circ} 15.2', B = 30^{\circ} 30.8', a = 57^{\circ} 41.5'.$
- 15. No solution.
- **17.** $B = 72^{\circ} 54.2'$, $b = 46^{\circ} 29.5'$, $c = 49^{\circ} 21.5'$; $B' = 107^{\circ} 5.8'$, $b' = 133^{\circ} 30.5'$, $c' = 130^{\circ} 38.5'$.
- **19.** $B = 20^{\circ} 49.8'$, $\alpha = 44^{\circ} 44.0'$, $c = 46^{\circ} 40.1'$.
- **21.** $\arctan \sqrt{2} = 54^{\circ} 44'$.

Exercises XV. B, page 208

- **1.** $A = 64^{\circ} 40.4'$, $B = 49^{\circ} 47.1'$, $C = 106^{\circ} 2.0'$.
- **3.** $B = 111^{\circ} 25.9', a = 117^{\circ} 4.3', b = 108^{\circ} 59.2'.$
- **5.** $B = 28^{\circ} 14.0'$, $C = 78^{\circ} 53.3'$, $b = 28^{\circ} 49.4'$; $B' = 151^{\circ} 46.0'$, $C' = 101^{\circ} 6.7'$, $b' = 151^{\circ} 10.6'$.
- 7. $A = 118^{\circ} 32.6', B = 33^{\circ} 20.4', C = 66^{\circ} 28.3'.$
- **9.** $A = 47^{\circ} 25.6'$, $C = 107^{\circ} 50.2'$, $a = 50^{\circ} 40.8'$; $A' = 132^{\circ} 34.4'$, $C' = 72^{\circ} 9.8'$, $a' = 129^{\circ} 19.2'$.

Exercises XV. C, page 209

- 1. $B = 100^{\circ} 14.4'$, $\alpha = c = 71^{\circ} 19.9'$.
- 3. $A = C = 103^{\circ} 28.4', b = 110^{\circ} 37.6'.$
- 5. $B = C = 49^{\circ} 1.3', b = c = 78^{\circ} 20.3'$: $B' = C' = 130^{\circ} 58.7', b' = c' = 101^{\circ} 39.7'.$
- 7. $a = b = 94^{\circ} 16.1'$, $c = 99^{\circ} 48.2'$.
- 9. $B = 119^{\circ} 35.4'$, $C = 62^{\circ} 1.5'$, $b = 110^{\circ} 32.6'$.
- **11.** $A = B = C = 60^{\circ} 15.2'$. 13. $A = B = C = 102^{\circ} 7.8'$.
- **15.** $a = b = c = 98^{\circ} 30.5'$.

Exercises XVI. A, page 220

- 1. (a) Obtuse; (b) acute; (c) acute. 3. Obtuse. 5. a obtuse, c acute.
- 7. Acute: A; obtuse: $\frac{1}{2}(A+C)$, $\frac{1}{2}(B+C)$, B, C; 90° : $\frac{1}{2}(A+B)$.

Exercises XVI. B, page 223

- 1. $A = 128^{\circ} 4.2'$, $B = 51^{\circ} 34.2'$, $C = 73^{\circ} 14.6'$.
- 3. $A = 65^{\circ} 10.0', B = 98^{\circ} 50.6', C = 125^{\circ} 17.8'.$
- 5. $A = 77^{\circ} 36.0', B = 63^{\circ} 17.0', C = 107^{\circ} 23.2'.$
- 7. $a = 47^{\circ} 44.8'$, $b = 132^{\circ} 40.6'$, $c = 103^{\circ} 11.6'$.
- 9. No solution.
- **11.** $A = 45^{\circ} 25.0', B = 33^{\circ} 59.4', C = 118^{\circ} 42.0'.$
- 13. $a = 83^{\circ} 5.8', b = 102^{\circ} 31.6', c = 94^{\circ} 26.2'.$
- 15. No solution.
- 17. $a = 126^{\circ} 36.6'$, $b = 118^{\circ} 13.4'$, $c = 83^{\circ} 24.0'$.
- **19.** $a = 46^{\circ} 11.4'$, $b = 74^{\circ} 15.4'$, $c = 86^{\circ} 10.8'$.

Exercises XVI. C, page 227

- **1.** $A = 55^{\circ} 52.4'$, $B = 20^{\circ} 10.0'$, $c = 66^{\circ} 20.8'$.
- 3. $A = 144^{\circ} 33.3', B = 112^{\circ} 46.5', c = 136^{\circ} 50.8'.$
- 5. $A = 121^{\circ} 33.5'$, $B = 43^{\circ} 13.5'$, $c = 62^{\circ} 11.6'$.
- 7. $a = 95^{\circ} 38.0', b = 41^{\circ} 52.2', C = 110^{\circ} 48.8'.$
- **9.** $a = 123^{\circ} 21.4'$, $c = 84^{\circ} 15.4'$, $B = 129^{\circ} 4.6'$.
- **11.** $B = 95^{\circ} 38.1'$, $C = 97^{\circ} 26.5'$, $a = 64^{\circ} 23.2'$.
- **13.** $a = 89^{\circ} 30.3'$, $c = 62^{\circ} 32.1'$, $B = 1^{\circ} 41.4'$.
- **15.** $A = 96^{\circ} 2.3'$, $B = 125^{\circ} 43.7'$, $c = 100^{\circ} 48.0'$.
- **17.** $a = 47^{\circ} 29.3', b = 50^{\circ} 6.3', C = 129^{\circ} 58.6'.$
- **19.** $A = 142^{\circ} 16.3'$, $B = 46^{\circ} 7.1'$, $c = 89^{\circ} 28.2'$.

Exercises XVI. D, page 232

- **1.** $B = 22^{\circ} 34.8'$, $C = 101^{\circ} 16.0'$, $c = 50^{\circ} 36.6'$.
- **3.** $B = 59^{\circ} 24.4'$, $C = 115^{\circ} 39.8'$, $c = 97^{\circ} 33.2'$;

$$B' = 120^{\circ} 35.6', C' = 27^{\circ} 0.2', c' = 29^{\circ} 57.4'.$$

- 5. No solution.
- 7. $C = 101^{\circ} 42.0'$, $b = 31^{\circ} 24.7'$, $c = 147^{\circ} 10.6'$; $C' = 36^{\circ} 45.4'$, $b' = 148^{\circ} 35.3'$, $c' = 19^{\circ} 20.8'$.
- 9. No solution.
- **11.** $B = 87^{\circ} 34.5'$, $C = 53^{\circ} 6.6'$, $c = 52^{\circ} 27.2'$; $B' = 92^{\circ} 25.5'$, $C' = 25^{\circ} 26.2'$, $c' = 25^{\circ} 12.0'$.
- **13.** $B = 97^{\circ} 21.4'$, $a = 59^{\circ} 3.2'$, $b = 120^{\circ} 9.4'$; $B' = 58^{\circ} 55.4'$, $a' = 120^{\circ} 56.8'$, $b' = 48^{\circ} 19.2'$.
- **15.** $B = 148^{\circ} 6.3'$, $C = 130^{\circ} 21.4'$, $c = 62^{\circ} 9.0'$; $B' = 31^{\circ} 53.7'$, $C' = 6^{\circ} 17.6'$, $c' = 7^{\circ} 18.4'$.
- **17.** $C = 36^{\circ} 38.8', b = 51^{\circ} 17.9', c = 41^{\circ} 4.6'.$
- **19.** $C = 8^{\circ} 17.6'$, $b = 125^{\circ} 23.2'$, $c = 6^{\circ} 51.2'$; $C' = 139^{\circ} 39.0'$, $b' = 54^{\circ} 36.8'$, $c' = 147^{\circ} 36.8'$.

Exercises XVI. E, page 233

- **1.** $A = 38^{\circ} 27.5', B = 92^{\circ} 38.3', c = 23^{\circ} 59.0'.$
- **3.** $a = 80^{\circ} 5.2', b = 70^{\circ} 10.4', c = 145^{\circ} 5.0'.$
- **5.** $A = 80^{\circ} 14.8', b = 145^{\circ} 55.2', c = 119^{\circ} 22.6'.$
- 7. $B = 31^{\circ} 53.7'$, $C = 6^{\circ} 17.6'$, $c = 7^{\circ} 18.4'$; $B' = 148^{\circ} 6.3'$, $C' = 130^{\circ} 21.4'$, $c' = 62^{\circ} 9.0'$.
- **9.** $A = 98^{\circ} 56.0', B = 66^{\circ} 18.0', c = 103^{\circ} 30.6'.$
- **11.** $a = 98^{\circ} 44.8', b = 83^{\circ} 25.0', c = 75^{\circ} 23.2'.$
- **13.** $a = 74^{\circ} 36.4', b = 112^{\circ} 16.6', c = 72^{\circ} 33.4'.$
- **15.** $C = 36^{\circ} 38.8', b = 51^{\circ} 17.9', c = 41^{\circ} 4.6'.$
- **17.** $A = 50^{\circ} 30.2'$, $B = 135^{\circ} 5.5'$, $\alpha = 70^{\circ} 20.4'$.
- **19.** $A = 53^{\circ} 30.4'$, $B = 51^{\circ} 58.4'$, $C = 149^{\circ} 13.4'$.
- **21.** $B = 85^{\circ} 41.2'$, $a = 47^{\circ} 48.4'$, $c = 59^{\circ} 39.2'$.
- **23.** $A = 23^{\circ} 17.8', B = 146^{\circ} 25.6', C = 35^{\circ} 53.4'.$
- **25.** $C = 53^{\circ} 30.4'$, $a = 88^{\circ} 20.8'$, $b = 66^{\circ} 46.0'$.
- **27.** $C = 139^{\circ} 39.0'$, $b = 54^{\circ} 36.8'$, $c = 147^{\circ} 36.8'$; $C' = 8^{\circ} 17.6'$, $b' = 125^{\circ} 23.2'$, $c' = 6^{\circ} 51.2'$.
- **29.** $C = 155^{\circ} 51.0'$, $b = 125^{\circ} 22.7'$, $c = 155^{\circ} 48.0'$.
- **31.** 21.67 in., 25.89 sq. in. **33.** 1.645 in.

Exercises XVII. A, page 238

Distances are given in nautical miles. To convert to statute miles, multiply by 1.1516. In Exercises 1–7 the first direction is the bearing of the second point from the first, the second direction is the bearing of the first point from the second.

1. 2229, N 78° 19′ W, N 69° 54′ E. 3. 6797, S 63° 54′ E, N 55° 32′ W.

- 5. 5754, S 65° 29′ E, N 51° 19′ W. 7. 7297, S 15° 34′ E, S 14° 0′ W.
- 9. 527 mi. 11. (a) S 42° 54′ E; (b) S 44° 0′ E. 13. 190.

Exercises XVII. B, page 245

- 1. 10:08 a.m. 3. 34° 30′, S 58° 20′ W. 5. 30° 13′ N. 7. 5:33 p.m
- 9. (a) $13^h 33^m$; (b) $15^h 26^m$; (c) $21^h 8^m$.

LOGARITHMIC AND TRIGONOMETRIC TABLES

THE MACMILLAN COMPANY
NEW YORK - BOSTON - CHICAGO - DALLAS
ATLANTA - SAN FRANCISCO

MACMILLAN AND CO., Limited London · Bombay · Calcutta · Madras Melbourne

THE MACMILLAN COMPANY OF CANADA, Limited TORONTO

LOGARITHMIC AND TRIGONOMETRIC TABLES

REVISED EDITION

PREPARED UNDER THE DIRECTION OF

EARLE RAYMOND HEDRICK

ENTIRELY RE-SET IN A NEW TYPE FACE

NEW YORK
THE MACMILLAN COMPANY

COPYRIGHT, 1913 AND 1920, By THE MACMILLAN COMPANY.

All rights reserved—no part of this book may be reproduced in any form without permission in writing from the publisher, except by a reviewer who wishes to quote brief passages in connection with a review written for inclusion in magazine or newspaper.

Set up and electrotyped. Revised edition published August, 1920. Reprinted April, 1924; May, September, December, 1925; April, June, 1926; January, July, 1927; March, December, 1928; November, 1929; October, November, 1930; April, October, 1931; February, 1932; April, 1933; May, 1933; November, 1933; July, 1935; May, 1936; December, 1937; May, June, 1938; December, 1939; August, October, 1940; May, June, 1941; March, April, May, 1942; February, May, 1943; June, September, November, 1943.

PRINTED IN THE UNITED STATES OF AMERICA

PREFACE

The present edition of this book contains all of the tables in the previous editions. All have been reset in a new and very readable type.

Great care has been exercised to preserve and to increase the great degree of reliability that existed in the previous edition. reading of the proofs, either in the first proofs made from type or in the proofs made from cast plates, I am indebted to my daughter Elisabeth and her husband, Mr. Richard L. Miller, to several of my own students, and to the following friends in other institutions, sometimes with the aid of their students: Professor C. H. Currier, Brown University; Professor H. T. Davis, University of Indiana; Professor H. B. Dwight, Massachusetts Institute of Technology; Professor W. B. Ford, University of Michigan; Professor A. M. Harding, University of Arkansas; Professor C. G. Jaeger, Pomona College; Professor L. S. Johnston, University of Detroit; Professors A. J. Kempner and C. A. Hutchinson, University of Colorado; Professor G. W. Mullins, Barnard College (Columbia University); Professor L. M. Passano, Massachusetts Institute of Technology; Professors H. L. Rietz, Roscoe Woods, and J. F. Reilly, University of Iowa; Professor E. E. Watson, Iowa State Teachers College at Cedar Falls; Dr. E. W. Wilson, Cambridge, Mass.; and Professor Kathryn Wyant, Athens College, Athens, Alabama. Each of these persons or groups has read the complete proof. With deep feeling, I may record also that the late Professor Louis Ingold of the University of Missouri read the proofs up to page 54, and had sent me the last of these pages within a week of his sudden death on January 25, 1935.

These careful readings render the possibility of printers' errors extremely remote. While the calculation of the probability that an undiscovered error exists is not simple, a strict account has been kept of each error found and of the total number not found by any one group of readers, so that a basis for a statistical calculation is known: the resulting probability that even one undiscovered printers' error exists is not more than one in many thousands.

I desire to express here my thanks to all those, particularly those mentioned above, who have assisted in the effort to make these tables so free from errors and therefore so reliable. I know of no comparable method for securing this quality in a set of tables.

I repeat also my acknowledgment made in the original edition to many previously existing tables, particularly those of Vega and those of Hoüel. During the proof-reading, those who have assisted have compared these tables with a great variety of existing tables, including several high-place tables, and the values have been recalculated and checked whenever a disagreement has been discovered.

Finally, I wish to mention the excellent cooperation of the editorial staff of the Macmillan Company under the able direction of Mr. F. T. Sutphen.

CONTENTS

EXPLA	NATION	OF THE TABLES.	vii–xvi
	מ	TABLES PRINCIPALLY TO FIVE PLACES	
TABLE	I.	Common Logarithms of Numbers	1-19
TABLE	Ia.	Condensed Logarithms and Antilogarithms	20
TABLE	II.	ACTUAL VALUES OF THE TRIGONOMETRIC FUNCTIONS.	21-44
TABLE	IIIa.	Values of S and T for Interpolation $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	45
Table	III.	Common Logarithms of the Trigonometric Func-	
		TIONS	45-90
TABLE	IV.	REDUCTION OF DEGREES TO RADIANS	91
TABLE	V.	TRIGONOMETRIC FUNCTIONS OF ANGLES IN RADIANS.	92-93
Table	Va.	REDUCTION OF RADIANS TO DEGREES	93
TABLE	VI.	Powers-Roots-Reciprocals	94–111
TABLE	VII.	Napierian or Natural Logarithms	112-114
TABLE	VIII.	Multiples of M and of $1/M$	115
TABLE	IX.	Values and Logarithms of Hyperbolic Functions	116-122
TABLE	X.	Values and Logarithms of Haversines	123-125
TABLE	XI.	Factor Table—Logarithms of Primes	126-127
TABLE	XIIa.	Compound Interest	128
TABLE	XIIb.	COMPOUND DISCOUNT	129
TABLE	XIIc.	Amount of an Annuity	130
TABLE	XIId.	PRESENT VALUE OF AN ANNUITY	131
TABLE	XIIe.	LOGARITHMS FOR INTEREST COMPUTATIONS	132
TABLE	XIIf.	American Experience Mortality Table	132
TABLE	XIII.	IMPORTANT CONSTANTS	133
	BRIE	F TABLES—PRINCIPALLY TO FOUR PLACES	}
TABLE	XIVa.	Common Logarithms	134–135
		•	136–137
TABLE	XIVc.	VALUES AND LOGARITHMS OF TRIGONOMETRIC FUNC-	
			138–142

EXPLANATION OF THE TABLES

TABLE I. FIVE-PLACE COMMON LOGARITHMS OF NUMBERS FROM 1 TO 10 000

- 1. Common Logarithms. The power to which 10 must be raised to produce any number n is called the common logarithm * of n. Thus $\log 10 = 1$, $\log 100 = 2$, $\log 1000 = 3$, etc.; $\log 1 = 0$, $\log 0.1 = -1$; $\log 0.01 = -2$, $\log 0.001 = -3$, etc. In general, if $10^{l} = n$, l is called the common logarithm of n, and is denoted by $\log n$.
- 2. Fundamental Principles. Logarithms constitute a great labor-saving device in arithmetical computations. The principles of their application are stated as follows:
- I. The logarithm of a product is equal to the sum of the logarithms of the factors: $\log ab = \log a + \log b$. This follows from the fact that if $10^i = a$ and $10^L = b$, $10^{i+L} = a \cdot b$. In brief: to multiply, add logarithms.
- II. The logarithm of a fraction is equal to the difference obtained by subtracting the logarithm of the denominator from the logarithm of the numerator: $\log (a/b) = \log a \log b$. For, if $10^i = a$ and $10^L = b$, then $10^{i-L} = a \div b$. In brief: to divide, subtract logarithms.
- III. The logarithm of a power is equal to the logarithm of the base multiplied by the exponent of the power: $\log a^b = b \log a$. This follows from the fact that if $10^l = a$, then $10^{lb} = a^b$.
- IV. The logarithm of a root of a number is found by dividing the logarithm of the number by the index of the root: $\log \sqrt[5]{a} = (\log a)/b$. This follows from the fact that if $10^l = a$, then $10^{l/b} = a^{1/b} = \sqrt[5]{a}$.

Corollary of II. The logarithm of the reciprocal of a number is the negative of the logarithm of the number: $\log (1/a) = -\log a$, since $\log 1 = 0$.

3. Characteristic and Mantissa. Every real positive number has a real common logarithm. If a and b are any two real positive numbers such that a < b, then $\log a < \log b$. Neither zero nor any negative number has a real logarithm.

	a	1	10	100	1000	10000	100000	1000000	10000000
lo	og a	0	1	2	3	4	5	6	7

Inspection of the preceding table shows that

the logarithm of every number between 1 and 10 is a proper fraction, the logarithm of every number between 10 and 100 is 1 + a fraction, the logarithm of every number between 100 and 1000 is 2 + a fraction;

* Common logarithms are exponents of the base 10; other systems of logarithms have bases different from 10; Napierian logarithms (see Table VII, p. 112) have a base denoted by e, an irrational number whose value is approximately 2.71828. When it is necessary to call attention to the base, the expression $\log_{10} n$ will mean common logarithm of n; $\log_e n$ will mean the Napierian logarithm, etc.; but in this book $\log n$ denotes $\log_{10} n$ unless otherwise explicitly stated.

and so on. It is evident that the logarithm of every number (not an exact power of 10) consists of a whole number + a fraction (usually written as a decimal). The whole number is called the **characteristic**; the decimal is called the **mantissa**. The characteristic of the logarithm of any number greater than 1 may be determined as follows:

RULE I. The characteristic of any number greater than 1 is one less than the number of digits before the decimal point.

The following table shows that

a	.0000001	.000001	.00001	.0001	.001	.01	.1	1
log a	-7	-6	-5	-4	-3	-2	-1	0

the logarithm of every number between 0.1 and 1 is -1 + a fraction, the logarithm of every number between 0.01 and 0.1 is -2 + a fraction, the logarithm of every number between 0.001 and 0.01 is -3 + a fraction; and so on.

Thus the characteristic of every number between 0 and 1 is a negative whole number; there is a great practical advantage, however, in computing, to write these characteristics as follows: -1 = 9 - 10, -2 = 8 - 10, -3 = 7 - 10, etc. Thus, the logarithm of 0.562 is -1 + 0.74974, but this should be written 9.74974 - 10; and similarly for all numbers less than 1.

RULE II. The characteristic of a number less than 1 is found by subtracting from 9 the number of ciphers between the decimal point and the first significant digit, and writing -10 after the result.

Thus, the characteristic of log 645 is 2 by Rule I; the characteristic of log 64.5 is 1 by (I); of log 6.45 is 0 by (I); of log 0.645 is 9 - 10 by (II); of log 0.0645 is 8 - 10 by (II).

To move the decimal point in a given number one place to the right is equivalent to adding one unit to its logarithm, because this is equivalent to multiplying the given number by 10. Likewise, to move the decimal point one place to the left is equivalent to subtracting one unit from the logarithm. Hence, moving the decimal point any number of places to the right or left does not change the mantissa but only the characteristic.*

Thus, 5345, 5.345, 534.5, 0.05345, 534500 all have the same mantissa.

4. Use of the Table. To use logarithms in computation we need a table arranged so as to enable us to find, with as little effort and time as possible, the logarithms of given numbers and, vice versa, to find numbers when their logarithms are known. Since the characteristics may be found by means of Rules I and II, p. viii, only mantissas are given. This is done in Table I. Most of the numbers in this table are irrational, and must be represented in the decimal system by approximations. A five-place table is one which gives the values correct to five places of decimals.

^{*} Another rule for finding the characteristic, based on this property, is often useful: if the decimal point were just after the first significant figure, the characteristic would be zero; start at this point and count the digits passed over to the left or right to the actual decimal point; the number obtained is the characteristic, except for sign; the sign is negative if the movement was to the left, positive if the movement was to the right.

PROBLEM 1. To find the logarithm of a given number. First, determine the characteristic, then look in the table for the mantissa.

To find the mantissa in the table when the given number (neglecting the decimal point) consists of four, or less, digits (exclusive of ciphers at the beginning or end), look in the column marked N for the first three digits and select the column headed by the fourth digit: the mantissa will be found at the intersection of this row and this column. Thus to find the logarithm of 72050, observe first (Rule I) that the characteristic is 4. To find the mantissa, fix attention on the digits 7205; find 720 in column N, and opposite it in column 5 is the desired mantissa, 0.85763; hence $\log 72050 = 4.85763$. The mantissa of 0.07826 is found opposite 782 in column 6 and is 0.89354; hence $\log 0.07826 = 8.89354 - 10$.

5. Interpolation. If there are more than four significant figures in the given number, its mantissa is not printed in the table; but it can be found approximately by assuming that the mantissa varies as the number varies in the small interval not tabulated; while this assumption is not strictly correct, it is sufficiently accurate for use with this table.

Thus, to find the logarithm of 72054 we observe that $\log 72050 = 4.85763$ and that $\log 72060 = 4.85769$. Hence a change of 10 in the number causes a change of 0.00006 in the mantissa; we assume therefore that a change of 4 in the number will cause, approximately, a change of $0.4 \times 0.00006 = 0.00002$ (dropping the sixth place) in the mantissa; and we write $\log 72054 = 4.85763 + 0.00002 = 4.85765$.

The difference between two successive values printed in the table is called a tabular difference (0.00006, above). The proportional part of this difference to be added to one of the tabular values is called the correction (0.00002, above), and is found by multiplying the tabular difference by the appropriate fraction (0.4, above). These proportional parts are usually written without the zeros, and are printed at the right-hand side of each page, to be used when mental multiplications seem uncertain.

Example 1. Find the logarithm of 0.0012647. Opposite 126 in column 4 find 0.10175; the tabular difference is 34 (zeros dropped); 0.7×34 is given in the margin as 24; this correction added gives 0.10199 as the mantissa of 0.0012647; hence $\log 0.0012647 = 7.10199 - 10$.

Example 2. Find the logarithm of 1.85643. Opposite 185 in column 6 find 0.26858; tabular difference 23; 0.43×23 is given in the margin as 10; this correction added gives 0.26868 as the mantissa of 1.85643; hence log 1.85643 = 0.26868.

6. Reverse Reading of the Table. PROBLEM 2. To find the number when its logarithm is known.* First, fixing attention on the mantissa only, find from the table the number having this mantissa, then place the decimal point by means of the two following rules: †

RULE III. If the characteristic of the logarithm is positive (in which case the mantissa is not followed by -10), begin at the left, count digits one more than the characteristic, and place the decimal point to the right of the last digit counted.

^{*} The number whose logarithm is k is often called the antilogarithm of k.

[†]Another convenient form of these rules is as follows: if the characteristic were zero, the decimal point would fall just after the first significant figure; move the decimal point one place to the right for each positive unit in the characteristic, one place to the left for each negative unit in the characteristic.

Rule IV. If the characteristic is negative (in which case the mantissa will be preceded by a number n and followed by -10), prefix 9-n ciphers, and place the decimal point to the left of these ciphers.

Example 1. Given $\log x = 1.22737$, to find x.

Since the mantissa is 22737, we look for 22 in the first column and to the right and below for 737, which we find in column 8 opposite 168. The number is therefore 1688. Since the characteristic is +1, we begin at the left, count 2 places, and place the point; hence x=16.88.

Example 2. Given $\log x = 2.24912$, to find x.

This mantissa is not found in the table; in such cases we interpolate as follows: select the mantissa in the table next less than the given mantissa, and write down the corresponding number; here, 1774; the tabular difference is 25; the actual difference (found by subtracting the mantissa of 1774 from the given mantissa) is 17; hence the proportionality factor is 17/25 = 0.68 or 0.7 (to the nearest tenth). Since moving the decimal point does not affect the mantissa, it follows that the digits in the required number are 17747 (to five places). The characteristic 2 directs to count 3 places from the left; hence x = 177.47.

- Rule. In general, when the given mantissa is not found in the table, write down four digits of the number corresponding to the mantissa in the table next less than the given mantissa, determine a fifth figure by dividing the actual difference by the tabular difference, and locate the decimal point by means of the characteristic.
- 7. Cologarithms. We might add the logarithms of the factors in the numerator and from this sum subtract the logarithm of the denominator; but we can shorten the operation by adding the negative of the logarithm of the denominator instead of subtracting the logarithm itself. The negative of the logarithm of a number (when written in convenient form for computation) is called the cologarithm of the number. We may find the negative of any number by subtracting it from zero, and it is convenient in logarithmic computation to write zero in the form 10.00000 10. Thus the negative of 2.17 is 7.83 10; the negative of 1.1432 10 is 8.8568. Remembering that the cologarithm of a number is its negative we have the following rule:

To find the cologarithm of a number begin at the left of its logarithm (including the characteristic) and subtract each digit from 9, except the last,* which subtract from 10; if the logarithm has not -10 after the mantissa, write -10 after the result; if the logarithm has -10 after the mantissa, do not write -10 after the result.

By this rule the cologarithm of a number can be read directly out of the table without taking the trouble to write down the logarithm. Attention must be given not to forget the characteristic. The use of the cologarithm is governed by the principle:

Adding the cologarithm is equivalent to subtracting the logarithm.

Ia. CONDENSED LOGARITHMS AND ANTILOGARITHMS

8. Method of Computing Logarithms. This table is a rearrangement of the condensed table given by Houel.† From it, the logarithm of any number whatever may be obtained to within 5 in the fifteenth place; or to any desired degree of accuracy less than this.

To illustrate the process, we shall compute $\log \pi$ to nine places. Taking $\pi = 3.14159\ 26535\ 8979$, we divide it by 3, the first significant digit, obtaining

^{*} If the logarithm ends in one or more ciphers, the last significant digit is to be understood here.

[†] Houel, Recueil de Formules et de Tables numériques, 3d ed., Paris, Gauthier-Villars, 1901.

 $\pi/3 = 1.04719755 \cdots$. We then divide this quotient by 1.04, etc., obtaining finally

 $\pi = 3(1.04)(1.006)(1.0009)(1.000015217223).$

We can obtain the logarithm of each of the first four factors from this table. The logarithm of the last factor can be obtained by multiplying its decimal part by M=0.43429~44819; for the error made in writing

$$\log\left(1+x\right) = Mx$$

is less than $Mx^2/2$. We find Mx either by using the fact that the last column in this table gives multiples of M, or (preferably) by Table VIII, page 115. Adding the five logarithms just mentioned, we find

$$\log \pi = 0.49714 98727 4$$
.

which is surely correct to within 1 in the tenth place. The correct value is $0.49714\ 98726\ 9\cdots$.

The process may be applied to any other number in an analogous manner. Such high-place logarithms are occasionally needed in statistical work and in the preparation of tables.

9. Method of Computing Antilogarithms. The condensed table of antilogarithms gives eleven significant figures (ten decimal places). From it, the antilogarithm of any number can be computed to within 5 in the tenth significant digit.

Thus, to compute the antilogarithm of .4342944319 to 8 significant figures, we may write

$$10^{0.43429} \, ^{44819} = (10^{0.4})(10^{0.03})(10^{0.004})(10^{0.0002})(10^{0.00009})(10^{0.00000} \, ^{44819}).$$

The first five factors may be obtained directly from the table. The last factor may be calculated from the formula $10^x = 1 + (1/M)x$. The error in this formula is less than 3 in the (2k)th decimal place if x is less than $(0.1)^k$, where k > 1.

However, a much more rapid process depends on the use of Tables I and XI with this table. Thus, by Table I, $10^{0.43429}=2.718$, nearly. By Table XI, $\log 2.718=0.43424$ 94524 · · · . Hence $10^{0.43429}^{4819}=(2.718)(10^{0.00004}^{50295})=(2.718)(10^{0.00004})(10^{0.00000}^{50295})$. Obtaining the second factor from this table, and the last factor from the formula $10^x=1+(1/M)x$, by Table VIII, we find $10^{0.43429}^{44819}=2.71828$ 1828; the correct value is 2.718281828459 · · · . This process requires only two long multiplications.

II. FIVE-PLACE TABLE OF THE ACTUAL VALUES OF THE TRIGONOMETRIC FUNCTIONS OF ANGLES

10. Direct Readings. This table gives the sines, cosines, tangents, and cotangents of the angles from 0° to 45°; and by a simple device, indicated by the printing, the values of these functions for angles from 45° to 90° may be read directly from the same table. For angles less than 45° read down the page, the degrees being found at the top and the minutes on the left; for angles greater than 45° read up the page, the degrees being found at the bottom and the minutes on the right.

To find a function of an angle (such as 15° 27'.6, for example) which does not reduce to an integral number of minutes, we employ the process of inter-

polation. To illustrate, let us find tan 15° 27'.6. In the table we find $\tan 15^{\circ} 27' = 0.27638$ and $\tan 15^{\circ} 28' = 0.27670$; we know that $\tan 15^{\circ} 27' 6$ lies between these two numbers. The process of interpolation depends on the assumption that between 15° 27' and 15° 28' the tangent of the angle varies directly as the angle; while this assumption is not strictly true, it gives an approximation sufficiently accurate for a five-place table. Thus we should assume that tan 15° 27'.5 is halfway between 0.27638 and 0.27670. We may state the problem as follows: An increase of 1' in the angle increases the tangent 0.00032; assuming that the tangent varies as the angle, an increase of 0'.6 in the angle will increase the tangent by $0.6 \times 0.00032 = 0.00019$ (retaining only five places); hence

 $\tan 15^{\circ} 27'.6 = 0.27638 + 0.00019 = 0.27657.$

The difference between two successive values in the table is called, as in Table I, the tabular difference (0.00032 above). The proportional part of the tabular difference which is used is called the correction (0.00019 above), and is found by multiplying the tabular difference by the appropriate fraction of the smallest unit given in the table.

Example 1. Find sin 63° 52'.8.

We find

 $\sin 63^{\circ} 52' = 0.89777;$

tabular difference = 0.00013 (subtracted mentally from the table).

correction = $0.8 \times 0.00013 = 0.00010$ (to be added). Hence

 $\sin 63^{\circ} 52'.8 = 0.89787.$

Example 2. Find cos 65° 24'.8.

 $\cos 65^{\circ} 24' = 0.41628;$

tabular difference = 26; $0.8 \times 26 = 21$

(to be subtracted because the cosine decreases as the angle increases).

 $\cos 65^{\circ} 24'.8 = 0.41607.$

Rule. To find a trigonometric function of an angle by interpolation: select the angle in the table which is next smaller than the given angle, and read its sine (cosine or tangent or cotangent as the case may be) and the tabular difference. Compute the correction as the proper proportional part of the tabular difference. In case of sines or tangents add the correction; in case of cosines or cotangents, subtract it.

11. Reverse Readings. Interpolation is also used in finding the angle when one of its functions is given.

Example 1. Given $\sin x = 0.32845$, to find x.

Looking in the table we find the sine which is next less than the given sine to be .32832, and this belongs to 19° 10'. Subtract the value of the sine selected from the given sine to obtain the actual difference = 0.00013; note that the tabular difference = 0.00027. The actual difference divided by the tabular difference gives the correction = 13/27 = 0.5 as the decimal of a minute (to be added). Hence $x = 19^{\circ} 10'.5$.

Example 2. Given $\cos x = 0.28432$, to find x.

The cosine in the table next less than this is 0.28429 and belongs to 73° 29'; the tabular difference is 28; the actual difference is 3; correction = 3/28 = 0.1 (to be subtracted). Hence $x = 73^{\circ} 28'.9.$

To find an angle when one of its trigonometric functions is given: select from the table the same named function which is next less than the given function, noting the corresponding angle and the tabular difference; compute the actual difference (between the selected value of the function and the given value) and divide

it by the tabular difference; this gives the correction which is to be added if the given function is sine or tangent, and to be subtracted if the given function is cosine or cotangent.

III. FIVE-PLACE COMMON LOGARITHMS OF THE TRIGONOMETRIC FUNCTIONS

12. Use of the Table. If it is required to find the numerical value of $x = 27.85 \times \sin 51^{\circ} 27'$, we may apply logarithms as follows:

$$\log 27.85 = 1.44483.$$

$$\log \sin 51^{\circ} 27' = 9.89324 - 10 \text{ (add)}$$

$$\log x = \overline{1.33807} \quad x = 21.78$$

The only new idea here is the method of finding $\log \sin 51^{\circ} 27'$, which means the logarithm of the sine of $51^{\circ} 27'$. The most obvious way is to find in Table II, $\sin 51^{\circ} 27' = 0.78206$, and then to find in Table I, $\log 0.78206 = 9.89324 - 10$, but this involves consulting two tables. To avoid the necessity of doing this, Table III gives the logarithms of the sines, cosines, tangents, and cotangents. The arrangement and the principles of interpolation are similar to those given on p. vii for Table I. The sines and cosines of all acute angles, the tangents of all acute angles less than 45° and the cotangents of all acute angles greater than 45° are proper fractions, and their logarithms end with -10, which is not printed in the table, but which should be written down whenever such a logarithm is used.

In the printed table, values are stated so that 10 should be subtracted in every case.

Example 1. Find log sin 68° 25'.4.

On the page having 68° at the bottom, and in the row having 25' on the right find log sin 68° 25' = 9.96843 - 10; the tabular difference is 5; 0.4×5 is given in the margin as 2; this is the correction to be added, giving log sin 68° 25'.4 = 9.96845 - 10.

(In case of sine and tangent add the correction. In case of cosine and cotangent, subtract the correction.)

Example 2. Given $\log \cos x = 9.72581 - 10$, to find x.

The logarithmic cosine next less than the given one is 9.72562 - 10 and belongs to 57° 53'; the actual difference is 19; the tabular difference is 20; hence the correction is 19/20 = 1.0 (to the nearest tenth); (subtract); hence $x = 57^{\circ}$ 52'.0.

In finding log ctn α for any angle α , note that log ctn $\alpha = -\log \tan \alpha$, since ctn $\alpha = 1/\tan \alpha$. Hence the tabular differences for log ctn are precisely the same as those for log tan throughout the table, but taken in reversed order. Likewise, log sec $\alpha = -\log \cos \alpha$, log csc $\alpha = -\log \sin \alpha$; hence the values of log sec α and log csc α are omitted.

For angles near 0° or near 90°, the interpolations are not very accurate if the differences are large. For the calculation of sine or tangent near 0°, Table IIIa, page 45, gives the values of

 $S = \log \sin A - \log A'$ and $T = \log \tan A - \log A'$,

where A is the given angle and A' is the number of minutes in A, for values of A between 0° and 3°. Then

 $\log \sin A = \log A' + S$ and $\log \tan A = \log A' + T$, for small angles. Moreover, since we have $\cos A = \sin (90^{\circ} - A)$ and $\cot A = \tan (90^{\circ} - A)$,

 $\log \cos A = \log (90^{\circ} - A)' + S$ and $\log \cot A = \log (90^{\circ} - A)' + T$, when A is near 90°.

Another method practically equivalent to the preceding is to use the approximate relations

$$\log \sin A - \log \sin B = \log A' - \log B'$$

and

$$\log \tan A - \log \tan B = \log A' - \log B',$$

where A is the given angle and B is the nearest angle to A that is given in the table. If $A < 3^{\circ}$ and |A - B| < 1', these formulas give log sin A and log tan A to five decimal places.

IV-V. RADIAN MEASURE

13. Computations in Radian Measure. The reduction of degrees to radians is facilitated by Table IV—Conversion of Degrees to Radians. Since π radians = 180°, this table may be regarded as a table of multiples of $\pi/180$.

The values of $\sin x$, $\cos x$, $\tan x$, are stated for every angle x from 0.00 to 1.60 radians at intervals of 0.01 radian in Table V—Trigonometric Functions in Radian Measure. The values of any of these functions for larger values of x may be computed by first converting the value of the angle in radian measure to degree measure, by Table Va, and then finding the value of the function from Table II.

The reduction of radians to degrees can be performed directly by Table V; or, for greater accuracy, by the supplementary Table Va.

VI. POWERS-ROOTS-RECIPROCALS

14. Arrangement. This table is arranged so that the square, cube, square root, cube root, or reciprocal can be read directly to five decimal places for any number n of three significant figures. To attain this, not only n^2 , n^3 , $\sqrt[3]{n}$, $\sqrt[3]{n}$, $\sqrt[3]{n}$, $\sqrt[3]{10}$ n, $\sqrt[3]{100}$ n are printed on every page. All values have been carefully recomputed and checked.

Thus to find $\sqrt{1.17}$, read in \sqrt{n} column the result: 1.08167. To find $\sqrt{11.7}$, read in the same line, in $\sqrt{10n}$ column the result: 3.42053. To find $\sqrt{117}$, read 10 times the entry in \sqrt{n} column, since $\sqrt{117} = 10\sqrt{1.17}$.

since $\sqrt{117} = 10\sqrt{1.17}$. Similarly, $\sqrt[3]{1.17} = 1.05373$ from $\sqrt[3]{n}$ column; $\sqrt[3]{11.7} = 2.27019$ from the same line in $\sqrt[3]{10n}$ column; $\sqrt[3]{117} = 4.89097$ from the same line in $\sqrt[3]{100n}$ column.

The effect of a change in the decimal point in n^2 , n^3 , and 1/n is only to shift the decimal point in the result, without altering the digits printed.

VII. NAPIERIAN OR NATURAL LOGARITHMS

15. The Base e.—Natural Logarithms. The number e=2.7182818 \cdots is called the natural base of logarithms. The logarithms of numbers to this base are given in Table VII at intervals of 0.01 from 0.01 to 10.09, and at unit intervals from 10 to 409. The fundamental relation $\log_e n = \log_e 10 \times \log_{10} n$ enables us to transfer from the base 10 to the base e, or conversely; where $\log_e 10 = 2.30258509 \cdots$.

VIII. MULTIPLES OF M AND OF 1/M

xv

16. Multiples of M and 1/M. This table is convenient whenever a number is to be multiplied by M or by 1/M. This occurs whenever it is desired to change from common logarithms to natural logarithms, or conversely, since $M = \log_{10} e$ and since we have

 $\log_{10} x = (\log_e x)(\log_{10} e) = M \log_e x$ and $\log_e x = (1/M) \log_{10} x$. Other formulas that require these multiples are

 $\log_{10} e^x = x \log_{10} e = x \cdot M$ and $\log_e (10^n \cdot x) = \log_e x + n(1/M);$ and the approximate formulas (see §§ 8, 9, pp. x, xi)

$$\log_{10} (1 \pm x) = \pm x \cdot M$$
 and $10^{\pm x} = 1 \pm (1/M)x$.

IX. VALUES AND LOGARITHMS OF HYPERBOLIC FUNCTIONS

17. Hyperbolic Functions. This table gives the values of e^x , e^{-x} , $\sinh x$, $\cosh x$, $\tanh x$; and the logarithms of e^x , $\sinh x$, $\cosh x$, at varying intervals from x=0 to x=10. It is to be noted that $\log e^{-x}=-\log e^x$ and $\log \tanh x=\log \sinh x-\log \cosh x$. The table may be extended indefinitely by means of Table VIII, since $\log_{10}e^x=x\cdot M$ for this reason Table VIII may be regarded as a table of values of $\log_{10}e^x$.

X. VALUES AND LOGARITHMS OF HAVERSINES

18. Haversines. This table gives the values and the logarithms of the haversines of angles from 0° to 180° at intervals of 10′. The haversine, which means half of the versed sine, is

hav
$$A = (\frac{1}{2})$$
 vers $A = (\frac{1}{2})(1 - \cos A)$;

hence its values to five places may be computed from the table of cosines. It is used extensively in navigation, and it may be used to advantage in the solution of ordinary oblique triangles.

XI. FACTOR TABLE-LOGARITHMS OF PRIMES

19. Factors of Composite Numbers. Logarithms of Primes. The uses of this table are evident in questions involving factoring, and for finding high-place logarithms of numbers whose prime factors are less than 2018.

We shall illustrate the finding of logarithms of other numbers by finding $\log \pi$. Taking $\pi = 3.14159\,26536$, divide by 3 (the first digit), obtaining 1.04719 75512 · · · . Divide this quotient by 1.047 (in general, by the nearest first four digits), obtaining 1.00018 8683 · · · . By Table VIII, the approximate formula $\log (1 \pm x) = \pm x \cdot M$ gives

while the true value of $\log \pi$ is 0.49714 98726 9, so that the error is less than 1 in the eighth place. In general, this process will give the logarithm of any number to within 6 in the eighth decimal place, and the probable error is less than 1.5 in the eighth place. For still greater accuracy, see Table Ia and § 10.

XII. INTEREST TABLES

20. Interest Tables. Tables XII a, b, c, d give compound interest and annuity data for various per cents up to fifty years. Aside from the obvious uses, formulas involving these data will be found in works on statistics, accounting, and the mathematics of business.

Table XIIe gives the logarithms of (1+r) to fifteen places, for all ordinary values of r from $\frac{1}{2}\%$ to 10%. For other values of r, log (1+r) may be computed from Table Ia (see § 8). The final result in interest calculations may be obtained to nine significant figures by the antilogarithms of Table Ia (see § 9).

Table XIIf is the American Experience Mortality Table.

XIV. FOUR-PLACE TABLES

- 21. Four-place Tables. These are duplicates of the preceding five-place tables, reduced to four places, and with larger intervals between the tabulations. The value of such four-place tables consists in the greater speed with which they can be used, in case the degree of accuracy they afford is sufficient for the purpose in hand.
- XIVa. Logarithms of Numbers. The only special feature of this table is that the proportional parts are printed for every tenth in every row; hence the logarithm of any number of four significant figures can be read directly.
- **XIVb.** Antilogarithms. This table will be found to facilitate approximate calculations to a marked degree. The proportional parts are stated in the right-hand margin for each row separately. This arrangement, with the corresponding one in Table XIVa, makes the tables *effectively* four-place each way.
- **XIVc.** Values and Logarithms of Trigonometric Functions. In this table, the values of $\sin \alpha$, $\cos \alpha$, $\tan \alpha$, $\cot \alpha$, and their common logarithms, are stated for each 10-minute interval in α . The characteristics of the logarithms are omitted, since they can be supplied readily from the value.

Greek Alphabet

LE	rter	s Names	LET	TER	NAMES	Ler	TERS	Names	Lei	TER	NAMES
A	a	Alpha	H	η	Eta	N	ν	Nu	\mathbf{T}	τ	Tau
В	β	Beta	Θ	θ	Theta	Ξ	ξ	Xi	Υ	υ	Upsilon
Г	γ	Gamma	Ι		Iota	0	0	Omicron	Φ	ϕ	\mathbf{Phi}
Δ	δ	Delta	K	κ	Kappa	\mathbf{n}	π	Pi	\mathbf{x}	x	Chi
\mathbf{E}	ϵ	${f E}$ psilon	Λ	λ	Lambda	P	ρ	$\mathbf{R}\mathbf{ho}$	Ψ	ψ	\mathbf{Psi}
\mathbf{z}	ζ	\mathbf{Z} eta	M	μ	Mu -	Σ	σς	Sigma	Ω	ω	Omega

LOGARITHMIC AND TRIGONOMETRIC TABLES

TABLE I COMMON LOGARITHMS OF NUMBERS

FROM

1 TO 10 000

TO

FIVE DECIMAL PLACES

1 - 100

N	Log	N	Log	N	Log	N	Log	N	Log
0		20	1.30 103	40	1.60 206	60	1.77 815	80	1.90 309
1	0.00 000	$\begin{array}{c} 21 \\ 22 \\ 23 \end{array}$	1.32 222	41	1.61 278	61	1.78 533	81	1.90 849
2	0.30 103		1.34 242	42	1.62 325	62	1.79 239	82	1.91 381
3	0.47 712		1.36 173	43	1.63 347	63	1.79 934	83	1.91 908
4	0.60 206	24	1.38 021	44	1.64 345	64	1.80 618	84	1.92 428
5	0.69 897	25	1.39 794	45	1.65 321	65	1.81 291	85	1.92 942
6	0.77 815	26	1.41 497	46	1.66 276	66	1.81 954	86	1.93 450
7	0.84 510	27	1.43 136	47	1.67 210	67	1.82 607	87	1.93 952
8	0.90 309	28	1.44 716	48	1.68 124	68	1.83 251	88	1.94 448
9	0.95 424	29	1.46 240	49	1.69 020	69	1.83 885	89	1.94 939
10	1.00 000	30	1.47 712	50	1.69 897	70	-1.84 510	90	1.95 424
11	1.04 139	31	1.49 136	51	1.70 757	71	1.85 126	91	1.95 904
12	1.07 918	32	1.50 515	52	1.71 600	72	1.85 733	92	1.96 379
13	1.11 394	33	1.51 851	53	1.72 428	73	1.86 332	93	1.96 848
14	1.14 613	34	1.53 148	54	1.73 239	74	1.86 923	94	1.97 313
15	1.17 609	35	1.54 407	55	1.74 036	75	1.87 506	95	1.97 772
16	1.20 412	36	1.55 630	56	1.74 819	76	1.88 081	96	1.98 227
17	1.23 045	37	1.56 820	57	1.75 587	77	1.88 649	97	1.98 677
18	1.25 527	38	1.57 978	58	1.76 343	78	1.89 209	98	1.99 123
19	1.27 875	39	1.59 106	59	1.77 085	79	1.89 763	99	1.99 564
N	Log	N	Log	N	Log	N	Log	N	Log

N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.
100	.00 000	043	087	130	173	217	260	303	346	389	
101 102 103	432 860 01 284	475 903 326	518 945 368	561 988 410	604 *030 452	647 *072 494	689 *115 536	732 *157 578	775 *199 620	817 *242 662	44 43 42 1 4.4 4.3 4.2 2 8.8 8.6 8.4
104 105 106	703 02 119 531	745 160 572	787 202 612	828 243 653	870 284 694	912 325 735	953 366 776	995 407 816	*036 449 857	*078 490 898	3 13.2 12.9 12.6 4 17.6 17.2 16.8 5 22.0 21.5 21.0 6 26.4 25.8 25.2
107 108 109	$03 \frac{938}{342} \\ 743$	979 383 782	*019 423 822	*060 463 862	*100 503 902	*141 543 941	*181 583 981	*222 623 *021	*262 663 *060	*302 703 *100	7;30.8 30.1 20.1 5;35.2 34.1 33.6 9;39.6;38.7;37.8
110	04 139	179	218	258	297	336	376	415	454	493	
111 112 113	532 922 05 308	571 961 346	610 999 385	650 *038 423	689 *077 461	727 *115 500	766 *154 538	805 *192 576	844 *231 614	883 *269 652	1 4.1 4.0 3.9 2 8.2 8.0 7.8
114 115 116	690 06 070 446	729 108 483	767 145 521	805 183 558	843 221 595	881/ 258 633	918 296 670	956 333 707	994 371 744	*032 408 781	3 12.3 12.0 11.7 4 16.4 16.0 15.6 5 20.5 20.0 19.5 6 24.6 24.0 23.4
117 118 119	819 07 188 555	856 225 591	893 262 628	930 298 664	967 335 700	*004 372 737	*041 408 773	*078 445 809	*115 482 846	*151 518 882	6 24.6 24.0 23.4 7 28.7 28.0 27.3 8 32.8 32.0 31.2 9 36.9 36.0 35.1
120	918	954	990	*027	*063	*099	*135	*171	*207	*243	
121 122 123	08 279 636 991	314 672 *026	350 707 *061	386 743 *096	422 778 *132	458 814 *167	493 849 *202	529 884 *237	565 920 *272	600 955 *307	38 37 36 1 3.8 3.7 3.6 2 7.6 7.4 7.2
124 125 126	$09342 \\ 691 \\ 10037$	377 726 072	412 760 106	447 795 140	482 830 175	517 864 209	552 899 243	587 934 278	621 968 312	656 *003 346	3 11.4 11.1 10.8 4 15.2 14.8 14.4 5.19.6 15.5 18.0
L27 L28 L29	380 721 11 059	415 755 093	449 789 126	483 823 160	517 857 193	551 890 227	585 924 261	619 958 294	653 992 327	687 *025 361	6 22.8 22.2 21.6 7 26.6 25.9 25.2 8 30.4 29.6 28.8 9 34.2 33.3 32.4
30	394	428	461	494	528	561	594	628	661	694	
.31 .32 .33	727 12 057 385	760 090 4 18	793 123 450	826 156 483	860 189 516	893 222 548	926 254 581	959 287 613	992 320 646	*024 352 678	35 34 33 1 3.5 3.4 3.3 2 7.0 6.8 6.6
.34 .35 .36	710 13 033 354	743 066 386	775 098 418	808 130 450	840 162 481	872 194 513	$905 \\ 226 \\ 545$	937 258 577	969 290 609	*001 322 640	3 10.5 10.2 9.9 4 14.0 13.6 13.2 5 17.5 17.0 16.5 6 21.0 20.4 19.8
.37 .38 .39	672 988 14 301	704 *019 333	735 *051 364	767 *082 395	799 *114 426	830 *145 457	862 *176 489	893 *208 520	925 *239 551	956 *270 582	7 24.5 23.8 23.1 8 28.0 27.2 26.4 9 31.5 30.6 29.7
40	613	644	675	706	737	768	799	829	860	891	
$\frac{41}{42}$	922 15 229 534	953 259 564	983 290 594	*014 320 625	*045 351 655	*076 381 685	*106 412 715	*137 442 746	*168 473 776	*198 503 806	32 31 30 1 3.2 3.1 3.0 2 6.4 6.2 6.0
44 45 46	836 16 137 435	866 167 465	897 197 495	927 227 524	$957 \\ 256 \\ 554$	987 286 584	*017 316 613	*047 346 643	*077 376 673	*107 406 702	3 9.6 9.3 9.0 4 12.8 12.4 12.0 5 16.0 15.5 15.0 6 19.2 18.6 18.0
47 48 49	732 17 026 319	761 056 348	791 085 377	820 114 406	850 143 435	879 173 464	909 202 493	$938 \\ 231 \\ 522$	967 260 551	997 289 580	7 22.4 21.7 21.0 8 25.6 24.8 24.0 9 28.8 27.9 27.0
50	609	638	667	696	725	754	782	811	840	869	
4.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.

N.	0	1	2	3	4	5	6	7	8	9		Prop.	Pts.
150	17 609	638	667	696	725	754	782	811	840	869	Π		
151 152 153	18 184	926 213 498	$955 \\ 241 \\ 526$	984 270 554	*013 298 583	*041 327 611	355		*127 412 696	*156 441 724	$\frac{1}{2}$	29 2.9 5.8	28 2.8 5.6
154 155 156	752 19 033 312	780 061 340	808 089 368	837 117 396	865 145 424	893 173 451	201	949 229 507	977 257 535	*005 285 562	3 4 5 6	8.7 11.6 14.5 17.4	8.4 11.2 14.0 16.8
157 158 159	590 866 20 140	618 893 167	645 921 194	673 948 222	700 976 249	728 *003 276				838 *112 385	789	20.3	19.6 22.4 25.2
160	412	439	466	493	520	548	575	602	629	656			
161 162 163	683 952 21 219	710 978 245	737 *005 272	763 *032 299	790 *059 325	817 *085 352	844 *112 378	871 *139 405	898 *165 431	925 *192 458	1 2	27 2.7 5.4	26 2.6 5.2
164 165 166	484 748 22 011	511 775 037	537 801 063	564 827 089	590 854 115	617 880 141	643 906 167	669 932 194	696 958 220	722 985 246	3 4 5 6	8.1 10.8 13.5 16.2	7.8 10.4 13.0 15.6
167 168 169	272 531 789	298 557 814	324 583 840	350 608 866	376 634 891	401 660 917	427 686 943	453 712 968	479 737 994	505 763 *019	7 8 9	18.9 21.6 24.3	18.2 20.8 23.4
170	23 045	070	096	121	147	172	198	223	249	274			
171 172 173	300 553 805	325 578 830	350 603 855	376 629 880	401 654 905	426 679 930	452 704 955	477 729 980	502 754 *005	528 779 *030	1 2	25 2.5 5.0	24 2.4 4.8
174 175 176	24 055 304 551	080 329 576	105 353 601	130 378 625	155 403 650	180 428 674	204 452 699	229 477 724	254 502 748	279 527 773	3456	7.5 10.0 12.5 15.0	7.2 9.6 12.0 14.4
177 178 179	797 25 042 285	822 066 310	846 091 334	871 115 358	895 139 382	920 164 406	944 188 431	969 212 455	993 237 479	*018 261 503	789	17.5 20.0 22.5	16.8 19.2 21.6
180	527	551	575	600	624	648	672	696	720	744			
181 182 183	768 26 007 245	792 031 269	816 055 293	840 079 316	864 102 340	888 126 364	912 150 387	935 174 411	959 198 435	983 221 458	1 2	23 2.3 4.6	22 2.2 4.4
184 185 186	482 717 951	505 741 975	529 764 998	553 788 *021	576 811 *045	600 834 *068	623 858 *091	647 881 *114	670 905 *138	694 928 *161	3 4 5 6	6.9 9.2 11.5 13.8	6.6 8.8 11.0 13.2
187 188 189	27 184 416 646	$207 \\ 439 \\ 669$	231 462 692	254 485 715	277 508 738	300 531 761	323 554 784	346 577 807	370 600 830	393 623 852	7 8 9	16.1 18.4 20.7	15.4 17.6 19.8
190	875	898	921	944	967	989	*012	*035	*058	*081	•		
191 192 193	28 103 330 556	126 353 578	149 375 601	171 398 623	194 421 646	217 443 668	240 466 691	262 488 713	285 511 735	307 533 758	1 2	21 2.1 4.2	
194 195 196	780 29 003 226	803 026 248	825 048 270	847 070 292	870 092 314	892 115 336	914 137 358	937 159 380	959 181 403	981 203 425	3 4 5 6	6.3 8.4 10.5 12.6	
197 198 199	447 667 885	469 688 907	491 710 929	513 732 951	535 754 973	557 776 994	579 798 *016	601 820 *038	623 842 *060	645 863 *081	7 8 .9	14.7 16.8 18.9	
200	30 103	125	146	168	190	211	233	255	276	298			
N.	0.	1	2	3	4	5	6	7	8	9	1	Prop.	Pts.

N.	0	1	2	3	4	5	6	7	8	9	Prop. Pr	s.
200	30 103	125	146	168	190	211	233	255	276	298		
201 202 203	320 535 750	341 557 771	363 578 792	384 600 814	406 621 835	428 643 856	449 664 878	471 685 899	492 707 920	514 728 942	log 2 =.30102 99	957
204 205 206	963 31 175 387	984 197 408	*006 218 429	*027 239 450	*048 260 471	*069 281 492	*091 302 513	*112 323 534	*133 345 555	*154 366 576	1 22 1 :	21
207 208 209	597 806 32 015	618 827 035	639 848 056	660 869 077	681 890 098	702 911 118	723 931 139	744 952 160	765 973 181	785 994 201	1 2.2	2.1 4.2 6.3
210	222	243	263	284	305	325	346	366	387	408	4 8.8	8.4
211 212 213	428 634 838	449 654 858	469 675 879	490 695 899	510 715 919	531 736 940	552 756 960	572 777 980	593 797 *001	613 818 *021	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	0.5 2.6 4.7 6.8
$214 \\ 215 \\ 216$	33 041 244 445	062 264 465	082 284 486	102 304 506	122 325 526	143 345 546	163 365 566	183 385 586	203 405 606	224 425 626		8.9
217 218 219	646 846 34 044	666 866 064	686 885 084	706 905 104	726 925 124	746 945 143	766 965 163	786 985 183	806 *005 203	826 *025 223		
220	242	262	282	301	321	341	361	380	400	420		
221 222 223	439 635 830	459 655 850	479 674 869	498 694 889	518 713 908	537 733 928	557 753 947	577 772 967	596 792 986	616 811 *005	1 2.0	19 1.9
224 225 226	35 025 218 411	044 238 430	064 257 449	083 276 468	102 295 488	122 315 507	141 334 526	160 353 545	180 372 564	199 392 583	2 4.0 3 6.0 4 8.0 5 10.0	3.8 5.7 7.6 9.5
227 228 229	603 793 984	622 813 *003	641 832 *021	660 851 *040	679 870 *059	698 889 *078	717 908 *097	736 927 *116	755 946 *135	774 965 *154	$egin{array}{c c c} 6 & 12.0 & 1 \\ 7 & 14.0 & 1 \\ 8 & 16.0 & 1 \\ \end{array}$	1.4 13.3 15.2
230	36 173	192	211	229	248	267	286	305	324	342	9 18.0 1	17.1
231 232 233	361 549 736	380 568 754	399 586 773	418 605 791	436 624 810	455 642 829	474 661 847	493 680 866	511 698 884	530 717 903		
234 235 236	922 37 107 291	940 125 310	959 144 328	977 162 346	996 181 365	*014 199 383	*033 218 401	*051 236 420	*070 254 438	*088 273 457		. _
237 238 239	475 658 840	493 676 858	511 694 876	530 712 894	548 731 912	566 749 931	585 767 949	603 785 967	621 803 985	639 822 *003	1 1.8 3.6	17 1.7 3.4
240	38 021	039	057	075	093	112	130	148	166	184	4 7.2	5.1 6.8
241 242 243	202 382 561	220 399 578	238 417 596	256 435 614	274 453 632	292 471 650	310 489 668	328 507 686	346 525 703	364 543 721	7 12.6 1	8.5 10.2 11.9
244 245 246	739 917 39 094	757 934 111	775 952 129	792 970 146	810 987 164	828 *005 182	846 *023 199	863 *041 217	881 *058 235	899 *076 252		13.6 15.3
$247 \\ 248 \\ 249$	270 445 620	287 463 637	305 480 655	322 498 672	340 515 690	358 533 707	375 550 724	393 568 742	410 585 759	428 602 777		
250	794	811	829	846	863	881	898	915	933	950		
N.	0	1	2	3	4	5	6	7	8	9	Prop. P	ts.

N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.
250	39 794	811	829	846	863	881	898	915	933	950	
251 252 253	967 40 140 312	985 157 329	*002 175 346	*019 192 364	*037 209 381	*054 226 398	*071 243 415	*088 261 432	*106 278 449	*123 295 466	
254 255 256	483 654 824	500 671 841	518 688 858	535 705 875	552 722 892	569 739 909	586 756 926	603 773 943	620 790 960	637 807 976	18 17 1 1.8 1.7
257 258 259	993 41 162 330	*010 179 347	*027 196 363	*044 212 380	*061 229 397	*078 246 414	*095 263 430	*111 280 447	*128 296 464	*145 313 481	2 3.6 3.4 3 5.4 5.1 4 7.2 6.8 5 9.0 8.5
260	497	514	531	547	564	581	597	614	631	647	6 10.8 10.2 7 12.6 11.9
261 262 263	664 830 9 96	681 847 *012	697 863 *029	714 880 *045	731 896 *062	747 913 *078	764 929 *095	780 946 *111	797 963 *127	814 979 *144	8 14.4 13.6 9 16.2 15.3
264 265 266	42 160 325 488	177 341 504	193 357 521	210 374 537	226 390 553	243 406 570	259 423 586	275 439 602	292 455 619	308 472 635	
267 268 269	651 813 975	667 830 991	684 846 *008	700 862 *024	716 878 *040	732 894 *056	749 911 *072	765 927 *088	781 943 *104	797 959 *120	$M = \log_{10} e = \log_{10} 2.718 \cdots$
270	43 136	152	169	185	201	217	233	249	265	281	=.43429 44819
271 272 273	297 457 616	313 473 632	329 489 648	345 505 664	361 521 680	377 537 696	393 553 712	409 569 727	425 584 743	441 600 759	
274 275 276	775 933 44 091	791 949 107	$807 \\ 965 \\ 122$	823 981 138	838 996 154	854 *012 170	870 *028 185	886 *044 201	902 *059 217	917 *075 232	16 15 1 1.6 1.5
277 278 279	248 404 560	264 420 576	279 436 592	295 451 607	311 467 623	326 483 638	342 498 654	358 514 669	373 529 685	389 545 700	2 3.2 3.0 3 4.8 4.5 4 6.4 6.0
280	716	731	747	762	778	793	809	824	840	855	5 8.0 7.5 6 9.6 9.0
281 282 283	871 45 025 179	886 040 194	902 056 209	917 071 225	932 086 240	948 102 255	963 117 271	979 133 286	994 148 301	*010 163 317	7 11.2 10.5 8 12.8 12.0 9 14.4 13.5
284 285 286	332 484 637	347 500 652	362 515 667	378 530 682	393 545 697	408 561 712	423 576 728	439 591 743	454 606 758	$\frac{469}{621}$	
287 288 289	788 939 46 090	803 954 105	818 969 120	834 984 135	849 *000 150	864 *015 165	879 *030 180	894 *045 195	909 *060 210	924 *075 225	1 14 1 1.4
290	240	255	270	285	300	315	330	345	359	374	2 2.8
291 292 293	389 538 687	404 553 702	419 568 716	434 583 731	449 598 746	464 613 761	479 627 776	494 642 790	509 657 805	523 672 820	3 4.2 4 5.6 5 7.0 6 8.4
294 295 296	835 982 47 129	850 997 144	864 *012 159	879 *026 173	894 *041 188	909 *056 202	923 *070 217	938 *085 232	953 *100 246	967 *114 261	7 9.8 8 11.2 9 12.6
297 298 299	276 422 567	290 436 582	305 451 596	319 465 611	334 480 625	349 494 640	363 509 654	378 524 669	392 538 683	407 553 698	
300	712	727	741	756	770	784	799	813	828	842	
N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.

N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.
300	47 712	727	741	756	770	784	799	813	828	842	
301 302 303	857 48 001 144	871 015 159	885 029 173	900 044 187	$914 \\ 058 \\ 202$	929 073 216	943 087 230	958 101 244	972 116 259	986 130 273	
304 305 306	287 430 572	302 444 586	316 458 601	330 473 615	344 487 629	359 501 643	373 515 657	387 530 671	401 544 686	416 558 700	$\log 3$ = .47712 12547 $\log \pi$
307 308 309	714 855 996	728 869 *010	742 883 *024	756 897 *038	770 911 *052	785 926 *066	799 940 *080	813 954 *094	827 968 *108	841 982 *122	=.49714 98727
310	49 136	150	164	178	192	206	220	234	248	262	
311 312 313	276 415 554	290 429 568	304 443 582	318 457 596	332 471 610	346 485 624	360 499 638	374 513 651	388 527 665	402 541 679	15 14 1 1.5 1.4 2 3.0 2.8
314 315 316	693 831 969	707 845 982	721 859 996	734 872 *010	748 886 *024	762 900 *037	776 914 *051	790 927 *065	803 941 *079	817 955 *092	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
317 318 319	50 106 243 379	120 256 393	133 270 406	147 284 420	161 297 433	174 311 447	188 325 461	202 338 474	215 352 488	229 365 501	6 9.0 8.4 7 10.5 9.8 8 12.0 11.2 9 13.5 12.6
320	515	529	542	556	569	583	596	610	623	637	0 10.0 12.0
321 322 323	651 786 920	664 799 934	678 813 947	691 826 961	705 840 974	718 853 987	732 866 *001	745 880 *014	759 893 *028	772 907 *041	
324 325 326	51 055 188 322	068 202 335	081 215 348	$095 \\ 228 \\ 362$	108 242 375	121 255 388	135 268 402	148 282 415	162 295 428	175 308 441	
327 328 329	455 587 720	468 601 733	481 614 746	495 627 759	508 640 772	521 654 786	534 667 799	548 680 812	561 693 825	574 706 838	
330	851	865	878	891	904	917	930	943	957	970	·
331 332 333	983 52 114 244	$996 \\ 127 \\ 257$	*009 140 270	*022 153 284	*035 166 297	*048 179 310	*061 192 323	*075 205 336	*088 218 349	*101 231 362	13 12 1 1.3 1.2
334 335 336	375 504 634	388 517 647	401 530 660	414 543 673	427 556 686	440 569 699	453 582 711	466 595 724	479 608 737	$492 \\ 621 \\ 750$	2 2.6 2.4 3 3.9 3.6 4 5.2 4.8 5 6.5 6.0
337 338 339	763 892 53 020	776 905 033	789 917 046	802 930 058	815 943 071	827 956 084	840 969 097	853 982 110	866 994 122	879 *007 135	6 7.8 7.2 7 9.1 8.4 8 10.4 9.6 9 11.7 10.8
340	148	161	173	186	199	212	224	237	250	263	9 11.7 10.8
341 342 343	275 403 529	288 415 542	301 428 555	314 441 567	326 453 580	339 466 593	352 479 605	364 491 618	377 504 631	390 517 643	
344 345 346	656 782 908	668 794 920	681 807 933	694 820 945	706 832 958	719 845 970	732 857 983	744 870 995	757 882 *008	769 895 *020	
347 348 349	54 033 158 283	045 170 295	058 183 307	070 195 320	083 208 332	095 220 345	108 233 357	120 245 370	133 258 382	145 270 394	
350	407	419	432	444	456	469	481	494	506	518	
N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.

N.	0	1	2	3	4	5	6	7	8	9	P	rop.	Pts.
350	54 407	419	432	444	456	469	481	494	506	5 18			
351 352 353	531 654 777	543 667 790	555 679 802	568 691 814	580 704 827	593 716 839	605 728 851	617 741 864	630 753 876	642 765 888			
354 355 356	$\begin{array}{c} 900 \\ 55\ 023 \\ 145 \end{array}$	913 035 157	$925 \\ 047 \\ 169$	937 060 182	$949 \\ 072 \\ 194$	962 084 206	974 096 218	986 108 230	$998 \\ 121 \\ 242$	*011 133 255			
357 358 359	267 388 509	$279 \\ 400 \\ 522$	291 413 534	303 425 546	315 437 558	328 449 570	340 461 582	352 473 594	364 485 606	376 497 618			
360	630	642	654	666	678	691	703	715	727	739			
361 362 363	751 871 991	763 883 *003	775 895 *015	787 907 *027	799 919 *038	811 931 *050	823 943 *062	835 955 *074	847 967 *086	859 979 *098	1 2	13 1.3 2.6	12 1.2 2.4
364 365 366	$56\ 110\ 229\ 348$	$122 \\ 241 \\ 360$	$134 \\ 253 \\ 372$	146 265 384	158 277 396	170 289 407	182 301 419	194 312 431	$205 \\ 324 \\ 443$	217 336 455	3 4 5 6	3.9 5.2 6.5 7.8	3.6 4.8 6.0 7.2
367 368 369	467 585 703	478 597 714	490 608 726	502 620 738	$514 \\ 632 \\ 750$	$526 \\ 644 \\ 761$	538 656 773	549 667 785	561 679 797	573 691 808	789	9.1 10.4 11.7	8.4 9.6 10.8
370	820°	832	844	855	867	879	891	902	914	926			
371 372 373	937 57 054 171	949 066 183	961 078 194	972 089 206	984 101 217	996 113 229	*008 124 241	*019 136 252	*031 148 264	*043 159 276			
374 375 376	287 403 519	299 415 530	310 426 542	322 438 553	334 449 565	345 461 576	357 473 588	368 484 600	380 496 611	392 507 623			
377 378 379	634 749 864	646 761 875	657 772 887	669 784 898	680 795 910	692 807 921	703 818 933	715 830 944	726 841 955	738 852 967			
380	978	990	*001	*013	*024	*035	*047	*058	*070	*081			
381 382 383	58 092 206 320	104 218 331	115 229 343	$127 \\ 240 \\ 354$	138 252 365	149 263 377	161 274 388	172 286 399	184 297 410	195 309 422	1 2 3	11 1.1 2.2	1.0 2.0
384 385 386	433 546 659	444 557 670	456 569 681	467 580 692	478 591 704	490 602 715	501 614 726	512 625 737	524 636 749	535 647 760	3 4 5	4.4	3.0 4.0 5.0 6.0
387 388 389	77 1 883 995	782 894 *006	794 906 *017	805 917 *028	816 928 *040	827 939 *051	838 950 *062	850 961 *073	861 973 *084	872 984 *095	8	7.7	7.0 8.0 9.0
390	59 106	118	129	140	151	162	173	184	195	207			
391 392 393	218 329 439	229 340 450	$ \begin{array}{r} 240 \\ 351 \\ 461 \end{array} $	$251 \\ 362 \\ 472$	262 373 483	273 384 494	284 395 506	295 406 517	306 417 528	318 428 539			
394 395 396	550 660 770	561 671 780	572 682 791	583 693 802	594 704 813	605 715 824	616 726 835	627 737 846	638 748 857	649 759 868			
397 398 399	879 988 60 097	890 999 108	901 *010 119	912 *021 130	$923 \\ *032 \\ 141$	934 *043 152	945 *054 163	956 *065 173	966 *076 184	977 *086 195			
400	206	217	228	239	249	260	271	282	293	304	_		
N.	0	1	2	3	4	5	6	7	8	9]	Prop.	Pts.

N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.	٦
400	60 206	217	228	239	249	260	271	282	293	304		٦
401 402 403	314 423 531	325 433 541	336 444 552	347 455 563	358 466 574	369 477 584	379 487 595	390 498 606	401 509 617	412 520 627	•	
404 405 406	638 746 853	649 756 863	660 767 874	670 778 885	681 788 895	692 799 906	703 810 917	713 821 927	724 831 938	735 842 949		
407 408 409	959 61 066 172	970 077 183	981 087 194	991 098 204	*002 109 215	*013 119 225	*023 130 236	*034 140 247	*045 151 257	*055 162 268		
410	278	289	300	310	321	331	342	352	363	374	11 10	۱
411 412 413	384 490 595	395 500 606	405 511 616	416 521 627	$\frac{426}{532}$ 637	437 542 648	448 553 658	458 563 669	469 574 679	479 584 690	$\begin{array}{ c c c c c }\hline 1 & 1.1 & 1.0 \\ 2 & 2.2 & 2.0 \\ 3 & 3.3 & 3.0 \\ 4 & 4.4 & 4.0 \\\hline\end{array}$	
414 415 416	700 805 909	711 815 920	721 826 930	731 836 941	742 847 951	752 857 962	763 868 972	773 878 982	784 888 993	794 899 *003	5 5.5 5.0 6 6.6 6.0 7 7.7 7.0	
417 418 419	$\begin{array}{c} 62\ 014 \\ 118 \\ 221 \end{array}$	$024 \\ 128 \\ 232$	034 138 242	045 149 252	055 159 263	066 170 273	076 180 284	086 190 294	097 201 304	107 211 315	8 8.8 8.0 9 9.9 9.0	
420	325	335	346	356	366	377	387	397	408	418	*	
421 422 423	428 531 634	439 542 644	449 552 655	459 562 665	469 572 675	480 583 685	490 593 696	500 603 706	511 613 716	521 624 726		
424 425 426	737 839 941	747 849 951	757 859 961	767 870 972	778 880 982	788 890 992	798 900 *002	808 910 *012	818 921 *022	829 931 *033	$ \begin{array}{l} \log M \\ = \log [\log e] \\ = 9.63778 433 \end{array} $	1
427 428 429	63 043 144 246	053 155 256	063 165 266	073 175 276	083 185 286	094 195 296	104 205 306	114 215 317	124 225 327	134 236 337	-10	
430	347	357	367	377	387	397	407	417	428	438		
431 432 433	448 548 649	458 558 659	468 568 669	478 579 679	488 589 689	498 599 699	508 609 709	518 619 719	528 629 729	538 639 739	9	
434 435 436	749 849 949	759 859 959	769 869 969	779 879 979	789 889 988	799 899 998	809 909 *008	819 919 *018	829 929 *028	839 939 *038	1 0.9 2 1.8 3 2.7	
437 438 439	64 048 147 246	058 157 256	068 167 266	078 177 276	088 187 286	098 197 296	108 207 306	118 217 316	128 227 326	137 237 335	4 3.6 5 4.5 6 5.4 7 6.3	
440	345	355	365	375	385	395	404	414	424	434	8 7.2 9 8.1	
441 442 443	444 542 640	454 552 650	464 562 660	473 572 670	483 582 680	493 591 689	503 601 699	513 611 709	523 621 719	532 631 729	0 10.1	
444 445 446	738 836 933	748 846 943	758 856 953	768 865 963	777 875 972	787 885 982	797 895 992	807 904 *002	816 914 *011	826 924 *021		
447 448 449	65 031 128 225	040 137 234	050 147 244	060 157 254	070 167 263	079 176 273	089 186 283	099 196 292	108 205 302	118 215 312		
450	321	331	341	350	360	369	379	389	398	408		
N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.	

N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.
450	65 321	331	341	350	360	369	379	389	398	408	
451 452 453	418 514 610	427 523 619	437 533 629	447 543 639	456 552 648	466 562 658	475 571 667	485 581 677	495 591 686	504 600 696	
454 455 456	706 801 896	715 811 906	725 820 916	734 830 925	744 839 935	753 849 944	763 858 954	772 868 963	782 877 973	792 887 982	
457 458 459	66 087 181	*001 096 191	*011 106 200	*020 115 210	*030 124 219	*039 134 229	*049 143 238	*058 153 247	*068 162 257	*077 172 266	
460	276	285	295	304	314	323	332	342	351	361	
461 462 463	370 464 558	380 474 567	389 483 577	398 492 586	408 502 596	417 511 605	427 521 614	436 530 624	445 539 633	455 549 642	10 9 1 1.0 0.9 2 2.0 1.8
464 465 466	652 745 839	661 755 848	671 764 857	680 773 867	689 783 876	699 792 885	708 801 894	717 811 904	727 820 913	736 829 922	3 3.0 2.7 4 4.0 3.6 5 5.0 4.5
467 468 469	$\begin{array}{c} 932 \\ 67\ 025 \\ 117 \end{array}$	941 034 127	950 043 136	$960 \\ 052 \\ 145$	969 062 154	978 071 164	987 080 173	997 089 182	*006 099 191	*015 108 201	6 6.0 5.4 7 7.0 6.3 8 8.0 7.2 9 9.0 8.1
470	210	219	228	237	247	256	265	274	284	293	0 010 012
$471 \\ 472 \\ 473$	302 394 486	311 403 495	321 413 504	330 422 514	339 431 523	348 440 532	357 449 541	367 459 550	376 468 560	385 477 569	
474 475 476	578 669 761	587 679 770	596 688 779	605 697 788	614 706 797	624 715 806	633 724 815	642 733 825	651 742 834	660 752 843	
477 478 479	852 943 68 034	861 952 043	870 961 052	879 970 061	888 979 070	897 988 079	906 997 088	916 *006 097	925 *015 106	934 *024 115	
480	124	133	142	151	160	169	178	187	196	205	
481 482 483	215 305 395	$224 \\ 314 \\ 404$	233 323 413	$ \begin{array}{r} 242 \\ 332 \\ 422 \end{array} $	251 341 431	$260 \\ 350 \\ 440$	269 359 449	278 368 458	287 377 467	296 386 476	1 0.8 2 1.6
484 485 486	485 574 664	494 583 673	502 592 681	511 601 690	520 610 699	529 619 708	538 628 717	547 637 726	556 646 735	565 655 744	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
487 488 489	753 842 931	762 851 940	771 860 949	780 869 958	789 878 966	797 886 975	806 895 984	815 904 993	824 913 *002	833 922 *011	6 4.8 7 5.6 8 6.4 9 7.2
490	69 020	028	037	046	055	064	073	082	090	099	
491 492 493	108 197 285	117 205 294	126 214 302	135 223 311	$\frac{144}{232}$ $\frac{320}{320}$	$152 \\ 241 \\ 329$	161 249 338	170 258 346	179 267 355	188 276 364	
494 495 496	373 461 5 48	381 469 557	390 478 566	399 487 574	408 496 583	417 504 592	$\frac{425}{513}$ 601	434 522 609	443 531 618	452 539 627	
497 498 499	636 723 810	644 732 819	653 740 827	662 749 836	671 758 845	679 767 854	688 775 862	697 784 871	705 793 880	714 801 888	,
500	897	906	914	923	932	940	949	958	966	975	
N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.

N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.
500	69 897	906	914	923	932	940	949	958	966	975	
501 502 503	70 070 157	992 079 165	*001 088 174	*010 096 183	*018 105 191	*027 114 200	*036 122 209	*044 131 217	*053 140 226	*062 148 234	
504 505 506	243 329 415	252 338 424	260 346 432	269 355 441	278 364 449	286 372 458	295 381 467	303 389 475	312 398 484	321° 406 492	log 5 =.69897 00043
507 508 509	501 586 672	509 595 680	518 603 689	526 612 697	535 621 706	544 629 714	552 638 723	561 646 731	569 655 740	578 663 749	
510	757	766	774	783	791	800	808	817	825	834	
511 512 513	842 927 71 012	851 935 020	859 944 029	868 952 037	876 961 046	885 969 054	893 978 063	902 986 071	910 995 079	919 *003 088	9 8 1 0.9 0.8 2 1.8 1.6
514 515 516	096 181 265	105 189 273	113 198 282	122 206 290	130 214 299	139 223 307	147 231 315	155 240 324	164 248 332	172 257 341	3 2.7 2.4 4 3.6 3.2 5 4.5 4.0
517 518 519	349 433 517	357 441 525	366 450 533	374 458 542	383 466 550	391 475 559	399 483 567	408 492 575	416 500 584	425 508 592	6 5.4 4.8 7 6.3 5.6 8 7.2 6.4 9 8.1 7.2
520	600	609	617	625	634	642	650	659	667	675	
521 522 523	684 767 850	692 775 858	700 784 867	709 792 875	717 800 883	725 809 892	734 817 900	742 825 908	750 834 917	759 842 925	
524 525 526	$\begin{array}{c} 933 \\ 72\ 016 \\ 099 \end{array}$	$941 \\ 024 \\ 107$	950 032 115	$958 \\ 041 \\ 123$	$966 \\ 049 \\ 132$	975 057 140	983 066 148	991 074 156	999 082 165	*008 090 173	
527 528 529	181 263 346	189 272 354	198 280 362	206 288 370	214 296 378	$\frac{222}{304}$ $\frac{387}{387}$	230 313 395	239 321 403	247 329 411	255 337 419	
530	428	436	444	452	460	469	477	485	493	501	
531 532 533	509 591 673	518 599 681	526 607 689	534 616 697	542 624 705	550 632 713	558 640 722	567 648 730	575 656 738	583 665 746	$\begin{bmatrix} 7 \\ 1 \\ 0.7 \\ 2 \\ 1.4 \end{bmatrix}$
534 535 536	754 835 916	762 843 925	770 852 933	779 860 941	787 868 949	795 876 957	803 884 965	811 892 973	819 900 981	827 908 989	$\begin{array}{c c} 3 & 2.1 \\ 4 & 2.8 \end{array}$
537 538 539	997 73 078 159	*006 086 167	*014 094 175	*022 102 183	*030 111 191	*038 119 199	*046 127 207	*054 135 215	*062 143 223	*070 151 231	5 3.5 6 4.2 7 4.9 8 5.6 9 6.3
540	239	247	255	263	272	280	288	296	304	312	,
541 542 543	320 400 480	328 408 488	336 416 496	344 424 504	352 432 512	360 440 520	368 448 528	376 456 536	384 464 544	392 472 552	
544 545 546	560 640 719	568 648 727	576 656 735	584 664 743	592 672 751	600 679 759	608 687 767	616 695 775	624 703 783	632 711 791	
547 548 549	799 878 957	807 886 965	815 894 973	823 902 981	830 910 989	838 918 997	846 926 *005	854 933 *013	862 941 *020	870 949 *028	
550	74 036	044	052	060	068	076	084	092	099	107	
N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.

N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.
550	74 036	044	052	060	068	076	084	092	099	107	
551 552 553	115 194 273	123 202 280	131 210 288	139 218 296	147 225 304	155 233 312	$162 \\ 241 \\ 320$	170 249 327	178 257 335	186 265 343	
554 555 556	351 429 507	359 437 515	367 445 523	374 453 531	382 461 539	390 468 547	398 476 554	406 484 562	414 492 570	421 500 578	
557 558 559	586 663 741	593 671 749	601 679 757	609 687 764	617 695 772	$624 \\ 702 \\ 780$	632 710 788	640 718 796	648 726 803	656 733 811	
560	819	827	834	842	850	858	865	873	881	889	
561 562 563	896 974 75 051	904 981 059	912 989 066	920 997 074	927 *005 082	935 *012 089	943 *020 097	950 *028 105	958 *035 113	966 *043 120	
564 565 566	128 205 282	136 213 289	143 220 297	151 228 305	159 236 312	166 243 320	174 251 328	182 259 335	189 266 343	197 274 351	
567 568 569	358 435 511	366 442 519	374 450 526	381 458 534	389 465 542	397 473 549	404 481 557	412 488 565	420 496 572	427 504 580	
570	587	595	603	610	618	626	633	641	648	656	1017
571 572 573	664 740 815	671 747 823	679 755 831	686 762 838	694 770 846	702 778 853	709 785 861	717 793 868	724 800 876	732 808 884	$\begin{array}{c c c} & 8 & 7 \\ 1 & 0.8 & 0.7 \\ 2 & 1.6 & 1.4 \end{array}$
574 575 576	891 967 76 042	899 974 050	906 982 057	914 989 065	921 997 072	929 *005 080	937 *012 087	944 *020 095	952 *027 103	959 *035 110	3 2.4 2.1 4 3.2 2.8 5 4.0 3.5 6 4.8 4.2
577 578 579	118 193 268	$125 \\ 200 \\ 275$	133 208 283	140 215 290	148 223 298	155 230 305	163 238 313	$170 \\ 245 \\ 320$	178 253 328	185 260 335	6 4.8 4.2 7 5.6 4.9 8 6.4 5.6 9 7.2 6.3
580	343	350	358	365	373	380	388	395	403	410	
581 582 583	418 492 567	425 500 574	433 507 582	440 515 589	448 522 597	455 530 604	462 537 612	470 545 619	477 552 626	485 559 634	
584 585 586	641 716 790	649 723 797	656 730 805	664 738 812	671 745 819	678 753 827	686 760 834	693 768 842	701 775 849	708 782 856	,
587 588 589	864 938 77 012	871 945 019	879 953 026	886 960 034	893 967 041	901 975 048	908 982 056	916 989 063	923 997 070	930 *004 078	
590	085	093	100	107	115	122	129	137	144	151	
591 592 593	159 232 305	166 240 313	173 247 320	181 254 327	188 262 335	195 269 342	$203 \\ 276 \\ 349$	210 283 357	217 291 364	225 298 371	
594 595 596	379 452 525	386 459 532	393 466 539	401 474 546	408 481 554	415 488 561	422 495 568	430 503 576	437 510 583	444 517 590	
597 598 599	597 670 743	605 677 750	612 685 757	619 692 764	627 699 772	634 706 779	641 714 786	648 721 793	656 728 801	663 735 808	,
600	815	822	830	837	844	851	859	866	873	880	
N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.

N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.
600	77 815	822	830	837	844	851	859	866	873	880	,
601 602 603	887 960 78 032	895 967 039	902 974 046	909 981 053	916 988 061	924 996 068	931 *003 075	938 *010 082	945 *017 089	952 *025 097	
604 605 606	104 176 247	111 183 254	118 190 262	125 197 269	132 204 276	140 211 283	147 219 290	154 226 297	161 233 305	168 240 312	
607 608 609	319 390 462	326 398 469	333 405 476	340 412 483	347 419 490	$\frac{355}{426}$ $\frac{497}{}$	362 433 504	369 440 512	376 447 519	383 455 526	
610	533	540	547	554	561	569	576	583	590	597	
611 612 613	604 675 746	611 682 753	618 689 760	625 696 767	633 704 774	$640 \\ 711 \\ 781$	647 718 789	654 725 796	661 732 803	668 739 810	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
614 615 616	817 888 958	824 895 965	831 902 972	838 909 979	845 916 986	852 923 993	859 930 *000	866 937 *007	873 944 *014	880 951 *021	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
617 618 619	79 029 099 169	036 106 176	043 113 183	050 120 190	057 127 197	$064 \\ 134 \\ 204$	$071 \\ 141 \\ 211$	078 148 218	085 155 225	092 162 232	6 4.8 4.2 7 5.6 4.9 8 6.4 5.6 9 7.2 6.3
620	239	246	253	260	267	274	281	288	295	302	
621 622 623	309 379 449	316 386 456	323 393 463	330 400 470	337 407 477	344 414 484	351 421 491	358 428 498	365 435 505	372 442 511	
624 625 626	518 588 657	525 595 664	532 602 671	539 609 678	546 616 685	553 623 692	560 630 699	567 637 706	574 644 713	581 650 720	·
627 628 629	727 796 865	734 803 872	741 810 879	748 817 886	754 824 893	761 831 900	768 837 906	775 844 913	782 851 920	789 858 927	
630	934	941	948	955	962	969	975	982	989	996	
631 632 633	80 003 072 140	010 079 147	017 085 154	024 092 161	030 099 168	037 106 175	044 113 182	051 120 188	058 127 195	065 134 202	1 0.6 2 1.2 3 1.8
634 635 636	209 277 346	216 284 353	223 291 359	229 298 366	236 305 373	243 312 380	250 318 387	257 325 393	264 332 400	271 339 407	4 2.4 5 3.0
637 638 639	414 482 550	421 489 557	428 496 564	434 502 570	441 509 577	448 516 584	455 523 591	462 530 598	468 536 604	475 543 611	6 3.6 7 4.2 8 4.8 9 5.4
640	618	625	632	638	645	652	659	665	672	679	
641 642 643	686 754 821	693 760 828	699 767 835	706 774 841	713 781 848	720 787 855	726 794 862	733 801 868	740 808 875	747 814 882	
644 645 646	889 956 81 023	895 963 030	902 969 037	909 976 043	916 983 050	922 990 057	929 996 064	936 *003 070	943 *010 077	949 *017 084	
647 648 649	090 158 224	097 164 231	104 171 238	111 178 245	117 184 251	124 191 258	131 198 265	137 204 271	144 211 278	151 218 285	
650	291	298	305	311	318	325	331	338	345	351	
N.	0	1	,2	3	4	5	6	7	8	9	Prop. Pts.

N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.
650	81 291	298	305	311	318	325	331	338	345	351	
651	358	365	371	378	385	391	398	405	411	418	
652	425	431	438	445	451	458	465	471	478	485	
653	491	498	505	511	518	525	531	538	544	551	
65 <u>4</u>	558	564	571	578	584	591	598	604	611	617	
655	624	631	637	644	651	657	664	671	677	684	
656	690	697	704	710	717	723	730	737	743	750	
657	757	763	770	776	783	790	796	803	809	816	
658	823	829	836	842	849	856	862	869	875	882	
659	889	895	902	908	915	921	928	935	941	948	
660	954	961	968	974	981	987	994	*000	*007	*014	
661 662 663	82 020 086 151	027 092 158	033 099 164	040 105 171	046 112 178	053 119 184	060 125 191	$066 \\ 132 \\ 197$	073 138 204	079 145 210	
664	217	223	230	236	243	249	256	263	269	276	
665	282	289	295	302	308	315	321	328	334	341	
666	347	354	360	367	373	380	387	393	400	406	
667	413	419	426	432	439	445	452	458	465	471	
668	478	484	491	497	504	510	517	523	530	536	
669	543	549	556	562	569	575	582	588	595	601	
670	607	614	620	627	633	640	646	653	659	666	
$671 \\ 672 \\ 673$	672	679	685	692	698	705	711	718	724	730	7 6
	737	743	750	756	763	769	776	782	789	795	1 0.7 0.6
	802	808	814	821	827	834	840	847	853	860	2 1.4 1.2
674	866	872	879	885	892	898	905	911	918	924	3 2.1 1.8
675	930	937	943	950	956	963	969	975	982	988	4 2.8 2.4
676	995	*001	*008	*014	*020	*027	*033	*040	*046	*052	5 3.5 3.0
677 678 679	83 059 123 187	065 129 193	072 136 200	078 142 206	085 149 213	091 155 219	097 161 225	104 168 232	110 174 238	117 181 245	6 4.2 3.6 7 4.9 4.2 8 5.6 4.8 9 6.3 5.4
680	251	257	264	270	276	283	289	296	302	308	
681	315	321	327	334	340	347	353	359	366	372	
682	378	385	391	398	404	410	417	423	429	436	
683	442	448	455	461	467	474	480	487	493	499	
684	506	512	518	525	531	537	544	550	556	563	
685	569	575	582	588	594	601	607	613	620	626	
686	632	639	645	651	658	664	670	677	683	689	
687	696	702	708	715	721	727	734	740	746	753	
688	759	765	771	778	784	790	797	803	809	816	
689	822	828	835	841	847	853	860	866	872	879	
690	885	891	897	904	910	916	923	929	935	942	
691	948	954	960	967	973	979	985	992	998	*004	
692	84 011	017	023	029	036	042	048	055	061	067	
693	073	080	086	092	098	105	111	117	123	130	
694	136	142	148	155	161	167	173	180	186	192	
695	198	205	211	217	223	230	236	242	248	255	
696	261	267	273	280	286	292	298	305	311	317	
697	323	330	336	342	348	354	361	367	373	379	
698	386	392	398	404	410	417	423	429	435	442	
699	448	454	460	466	473	479	485	491	497	504	
700	510	516	522	528	535	541	547	553	559	566	
N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.

N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.
700	84 510	516	522	528	535	541	547	553	559	566	
701 702 703	572 634 696	578 640 702	584 646 708	$590 \\ 652 \\ 714$	597 658 720	603 665 726	609 671 733	615 677 739	$621 \\ 683 \\ 745$	628 689 751	
704 705 706	757 819 880	763 825 887	770 831 893	776 837 899	782 844 905	788 850 911	794 856 917	800 862 924	807 868 930	813 874 936	log 7 = .84509 80400
707 708 709	942 85 003 065	948 009 071	$954 \\ 016 \\ 077$	$960 \\ 022 \\ 083$	967 028 089	973 034 095	979 040 101	985 046 107	$991 \\ 052 \\ 114$	$997 \\ 058 \\ 120$	
710	126	132	138	144	150	156	163	169	175	181	
711 712 713	187 248 309	193 254 315	199 260 321	$\frac{205}{266}$ $\frac{327}{327}$	211 272 333	$\frac{217}{278}$ $\frac{339}{339}$	224 285 345	$230 \\ 291 \\ 352$	$\frac{236}{297}$ $\frac{358}{358}$	$ \begin{array}{r} 242 \\ 303 \\ 364 \end{array} $	$\begin{array}{c c c} & 7 & 6 \\ 1 & 0.7 & 0.6 \\ 2 & 1.4 & 1.2 \end{array}$
714 715 716	370 431 491	376 437 497	382 443 503	388 449 509	394 455 516	$400 \\ 461 \\ 522$	406 467 528	412 473 534	418 479 540	425 485 546	3 2.1 1.8 4 2.8 2.4 5 3.5 3.0 6 4.2 3.6
717 718 719	552 612 673	558 618 679	564 625 685	570 631 691	576 637 697	582 643 703	588 649 709	594 655 715	$600 \\ 661 \\ 721$	606 667 727	6 4.2 3.6 7 4.9 4.2 8 5.6 4.8 9 6.3 5.4
720	733	739	745	751	757	763	769	775	781	788	
$721 \\ 722 \\ 723$	794 854 914	800 860 920	806 866 926	$812 \\ 872 \\ 932$	818 878 938	824 884 944	830 890 950	836 896 956	842 902 962	848 908 968	
$724 \\ 725 \\ 726$	974 86 034 094	980 040 100	986 046 106	992 052 112	998 058 118	*004 064 124	*010 070 130	*016 076 136	*022 082 141	*028 088 147	
727 728 729	153 213 273	159 219 279	165 225 285	171 231 291	177 237 297	183 243 303	189 249 308	195 255 314	201 261 320	207 267 326	
730	332	338	344	350	356	362	368	374	380	386	
731 732 733	392 451 510	398 457 516	404 463 522	410 469 528	415 475 534	421 481 540	427 487 546	433 493 552	439 499 558	445 504 564	1 0.5 2 1.0
734 735 736	570 629 688	576 635 694	581 641 700	587 646 705	593 652 711	599 658 717	605 664 723	611 670 729	617 676 735	623 682 741	2 1.0 3 1.5 4 2.0 5 2.5 6 3.0 7 3.5 8 4.0
737 738 739	747 806 864	753 812 870	759 817 876	764 823 882	770 829 888	776 835 894	782 841 900	788 847 906	794 853 911	800 859 917	7 3.5 8 4.0 9 4.5
740	923	929	935	941	947	953	958	964	970	976	-
741 742 743	982 87 040 099	988 046 105	994 052 111	999 058 116	*005 064 122	*011 070 128	*017 075 134	*023 081 140	*029 087 146	*035 093 151	
744 745 746	157 216 274	163 221 280	169 227 286	175 233 291	181 239 297	186 245 303	192 251 309	198 256 315	204 262 320	210 268 326	•
747 748 749	332 390 448	338 396 454	344 402 460	349 408 466	355 413 471	361 419 477	367 425 483	373 431 489	379 437 495	384 442 500	
750	506	512	518	523	529	535	541	547	552	558	
N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.

N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.
750	87 506	512	518	523	529	535	541	547	552	558	
751 752 753	564 622 679	570 628 685	576 633 691	581 639 697	587 645 703	593 651 708	599 656 714	604 662 720	610 668 726	616 674 731	
754 755 756	737 795 852	743 800 858	749 806 864	754 812 869	760 818 875	766 823 881	772 829 887	777 835 892	783 841 898	789 846 904	
757 758 759	910 967 88 024	915 973 030	921 978 036	927 984 041	933 990 047	938 996 053	944 *001 058	950 *007 064	955 *013 070	961 *018 076	
760	081	087	093	098	104	110	116	121	127	133	
761 762 763	138 195 252	144 201 258	150 207 264	156 213 270	161 218 275	167 224 281	173 230 287	178 235 292	184 241 298	190 247 304	
764 765 766	309 366 423	$315 \\ 372 \\ 429$	321 377 · 434	$326 \\ 383 \\ 440$	332 389 446	338 395 451	343 400 457	349 406 463	355 412 468	360 417 474	
767 768 769	480 536 593	485 542 598	491 547 604	497 553 610	502 559 615	508 564 621	513 570 627	519 576 632	525 581 638	530 587 643	
770	649	655	660	666	672	677	683	689	694	700	_
771 772 773	705 762 818	711 767 824	717 773 829	722 779 835	728 784 840	734 790 846	739 795 852	745 801 857	750 807 863	756 812 868	$\begin{array}{c c c} & 6 & 5 \\ 1 & 0.6 & 0.5 \\ 2 & 1.2 & 1.0 \end{array}$
774 775 776	874 930 986	880 936 992	885 941 997	891 947 *003	897 953 *009	902 958 *014	908 964 *020	913 969 *025	919 975 *031	925 981 *037	2 1.2 1.0 3 1.8 1.5 4 2.4 2.0 5 3.0 2.5 6 3.6 3.0
777 778 779	89 042 098	048 104 159	053 109 165	059 115 170	064 120 176	070 126 182	076 131 187	081 137 193	087 143 198	092 148 204	7 4.2 3.5 8 4.8 4.0 9 5.4 4.5
780	_	215	221	226	232	237	243	248	254	260	
781 782 783	321	271 326 382	276 332 387	282 337 393	287 343 398	293 348 404	298 354 409	304 360 415	310 365 421	315 371 426	
784 785 786	487	492	443 498 553	448 504 559	454 509 564	459 515 570	465 520 575	470 526 581	476 531 586	481 537 592	
787 788 789	653	658	609 664 719	614 669 724	620 675 730	625 680 735	631 686 741		642 697 752	647 702 757	
790	_	768	774	779	785	790	796	801	807	812	·
791 792 793	873	823 878 933	829 883 938	834 889 944	840 894 949	845 900 955	851 905 960	911	862 916 971	867 922 977	
794 795 796	982 5 90 037	988 042	048	053	059	*009 064 119	*015 069 124	075	*026 080 135	*031 086 140	
797 798 799	8 200	206	211	217	222	173 227 282	233	238	244 298	304	
800	309	314	320	325	331	336	342	347	352	3 58	
N.	. 0	1	2	3	4	5	6	7	8	9	Prop. Pts.

N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.
800	90 309	314	320	325	331	336	342	347	352	358	
801 802 803	363 417 472	369 423 477	374 428 482	380 434 488	385 439 493	390 445 499	396 450 504	401 455 509	407 461 515	412 466 520	
804 805 806	526 580 634	531 585 639	536 590 644	542 596 650	547 601 655	553 607 .660	558 612 666	563 617 671	569 623 677	574 628 682	
807 808 809	687 741 795	693 747 800	698 752 806	703 757 811	709 763 816	714 768 822	720 773 827	725 779 832	730 784 838	736 789 843	
810	849	854	859	865	870	875	881	886	891	897	
811 812 813	902 956 91 009	907 961 014	913 966 020	918 972 025	924 977 030	929 982 036	934 988 041	940 993 046	945 998 052	950 *004 057	
814 815 816	062 116 169	068 121 174	073 126 180	078 132 185	084 137 190	089 142 196	094 148 201	100 153 206	105 158 212	110 164 217	
817 818 819	222 275 328	228 281 334	233 286 339	$238 \\ 291 \\ 344$	243 297 350	249 302 355	254 307 360	259 312 365	265 318 371	270 323 376	
820	381	387	392	397	403	408	413	418	424	429	
821 822 823	434 487 54 0	440 492 545	445 498 551	450 503 556	455 508 561	461 514 566	466 519 572	471 524 577	477 529 582	482 535 587	6 5 1 0.6 0.5 2 1.2 1.0
824 825 826	593 645 698	598 651 703	603 656 709	609 661 714	614 666 719	$619 \\ 672 \\ 724$	624 677 -730	630 682 735	635 687 740	640 693 745	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
827 828 829	751 803 855	756 808 861	761 814 866	766 819 871	772 824 876	777 829 882	782 834 887	787 840 892	793 845 897	798 850 903	6 3.6 3.0 7 4.2 3.5 8 4.8 4.0 9 5.4 4.5
830	908	913	918	924	929	934	939	944	950	955	
831 832 833	960 92 012 065	965 018 070	971 023 075	976 028 080	981 033 085	986 038 091	991 044 096	997 049 101	*002 054 106	*007 059 111	
834 835 836	117 169 221	$122 \\ 174 \\ 226$	127 179 231	132 184 236	137 189 241	143 195 247	148 200 252	$\begin{array}{c} 153 \\ 205 \\ 257 \end{array}$	158 210 262	163 215 267	
837 838 839	273 324 376	278 330 381	283 335 387	288 340 392	293 345 397	298 350 402	304 355 407	$309 \\ 361 \\ 412$	314 366 418	319 371 423	,
840	428	433	438	443	449	454	459	464	469	474	
841 842 843	480 531 583	485 536 588	490 542 593	495 547 598	500 552 603	505 557 609	$511 \\ 562 \\ 614$	516 567 619	521 572 624	526 578 629	
844 845 846	634 686 737	$639 \\ 691 \\ 742$	645 696 747	650 701 752	655 706 758	660 711 763	665 716 768	670 722 773	675 727 778	681 732 783	
847 848 849	788 840 891	793 845 896	799 850 901	804 855 906	809 860 911	814 865 916	819 870 921	824 875 927	829 881 932	834 886 937	
850	942	947	952	957	962	967	973	978	983	988	
N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.

N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.
850	92942	947	952	957	962	967	973	978	983	988	
851 852 853	993 93 044 095	998 049 100	*003 054 105	*008 059 110	*013 064 115	*018 069 120	*024 075 125	*029 080 131	*034 085 136	*039 090 141	•
854 855 856	146 197 247	$\begin{array}{c} 151 \\ 202 \\ 252 \end{array}$	156 207 258	161 212 263	166 217 268	$171 \\ 222 \\ 273$	176 227 278	181 232 283	186 237 288	192 242 293	
857 858 859	298 349 399	303 354 404	308 359 409	313 364 414	318 369 420	323 374 425	328 379 430	334 384 435	339 389 440	344 394 445	
860	450	455	460	465	470	475	480	485	490	495	6 5
861 862 863	500 551 601	505 556 606	510 561 611	515 566 616	520 571 621	526 576 626	531 581 631	536 586 636	541 591 641	546 596 646	1 0.6 0.5
864 865 866	651 702 752	656 707 757	661 712 762	666 717 767	$\begin{array}{c} 671 \\ 722 \\ 772 \end{array}$	676 727 777	682 732 782	687 737 787	692 742 792	697 747 797	2 1.2 1.0 3 1.8 1.5 4 2.4 2.0 5 3.0 2.5 6 3.6 3.0 7 4.2 3.5
867 868 869	802 852 902	807 857 907	812 862 912	817 867 917	822 872 922	827 877 927	832 882 932	S37 887 937	842 892 942	847 897 947	7 4.2 3.5 8 4.8 4.0 9 5.4 4.5
870	952	957	962	967	972	977	982	987	992	997	
871 872 873	94 002 052 101	007 057 106	$012 \\ 062 \\ 111$	017 067 116	$022 \\ 072 \\ 121$	027 077 126	032 082 131	037 086 136	042 091 141	047 096 146	
874 875 876	151 201 250	156 206 255	161 211 260	166 216 265	171 221 270	176 226 275	181 231 280	186 236 285	240	196 245 295	
877 878 879	300 349 399	305 354 404		315 364 414	369	325 374 424	330 379 429	335 384 433	: 389	394	
880		453	458	463	468	473	478	483	488	493	
881 882 883	547	552	557	562	567	522 571 621	576	581	586	591	1 0.4 2 0.8
884 885 886	604	699	704	709	714	719	724	729	734	738	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
887 888 889	792 841	846	851	856	861	866	8 871	. 876	3 880	885	8 3.2
890		944	949	954	959				_	_	
891 892 893	95 036	041	046	05	L 056	061	L 066	07	1 078	5 080)
894 895 896	1 134 5 185	139	143 7 192	2 197	7 202	2 207	7 211	1 21	6, 22	$1 \mid 226$	3
89° 89° 89°	7 279 8 329	9 284 8 33	4 289 2 33'	9 29 7 34	2 347	7 35	2 357	7 36	1 36	6 37: 5 419	1 9
90					9 44	4 44	8 45	3 45	8 46	3 468	8
N	. 0	1	2	3	4	5	6	7	8	9	Prop. Pts.

N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.
900	95 424	429	434	439	444	448	453	458	463	468	
901 902 903	472 521 569	477 525 574	482 530 578	487 535 583	492 540 588	497 545 593	501 550 598	506 554 602	511 559 607	516 564 612	
904 905 906	617 665 713	$622 \\ 670 \\ 718$	$\begin{array}{c c} 626 \\ 674 \\ 722 \end{array}$	631 679 727	636 684 732	641 689 737	$\begin{array}{c} 646 \\ 694 \\ 742 \end{array}$	650 698 746	655 703 751	660 708 756	
907 908 909	761 809 856	766 813 861	770 818 866	775 823 871	780 828 875	785 832 880	789 837 885	794 842 890	799 847 895	804 852 899	
910	904	909	914	918	923	928	933	938	942	947	
911 912 913	952 999 96 047	957 *004 052	961 *009 057	966 *014 061	971 *019 066	976 *023 071	980 *028 076	985 *033 080	990 *038 085	995 *042 090	
914 915 916	095 142 190	099 147 194	104 152 199	109 156 204	114 161 209	118 166 213	123 171 218	128 175 223	133 180 227	137 185 232	
917 918 919	237 284 332	242 289 336	246 294 341	251 298 346	256 303 350	261 308 355	265 313 360	270 317 365	275 322 369	280 327 374	
920	379	384	388	393	398	402	407	412	417	421	
921 922 923	426 473 520	431 478 525	435 483 530	440 487 534	445 492 539	450 497 544	454 501 548	459 506 553	464 511 558	468 515 562	5 4 1 0.5 0.4 2 1.0 0.8
924 925 926	567 614 661	572 619 666	577 624 670	581 628 675	586 633 680	591 638 685	595 642 689	600 647 694	605 652 699	609 656 703	$egin{array}{c c c} 3 & 1.5 & 1.2 \\ 4 & 2.0 & 1.6 \\ 5 & 2.5 & 2.0 \\ \hline \end{array}$
927 928 929	708 755 802	713 759 806	717 764 811	722 769 816	727 774 820	731 778 825	736 783 830	741 788 834	745 792 839	750 797 844	6 3.0 2.4 7 3.5 2.8 8 4.0 3.2 9 4.5 3.6
930	848	853	858	862	867	872	876	881	886	890	
931 932 933	895 942 988	900 946 993	904 951 997	909 956 *002	914 960 *007	918 965 *011	923 970 *016	928 974 *021	932 979 *025	937 984 *030	
934 935 936	97 035 081 128	$039 \\ 086 \\ 132$	044 090 137	$049 \\ 095 \\ 142$	053 100 146	058 104 151	063 109 155	067 114 160	$072 \\ 118 \\ 165$	077 123 169	
937 938 939	174 220 267	$179 \\ 225 \\ 271$	183 230 276	188 234 280	192 239 285	197 243 290	202 248 294	206 253 299	$211 \\ 257 \\ 304$	216 262 308	
940	313	317	322	327	331	336	340	345	350	354	
941 942 943	359 405 451	364 410 456	368 414 460	373 419 465	377 424 470	382 428 474	387 433 479	391 437 483	396 442 488	400 447 493	
944 945 946	497 543 589	502 548 594	506 552 598	511 557 603	$516 \\ 562 \\ 607$	520 566 612	$525 \\ 571 \\ 617$	529 575 621	534 580 626	539 585 630	
947 948 949	635 681 727	640 685 731	644 690 736	649 695 740	653 699 745	658 704 749	663 708 754	667 713 759	$672 \\ 717 \\ 763$	676 722 768	
950	772	777	782	786	791	795	800	804	809	813	
N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.

1	^ 1	1.	6	0	4	p-	_				
N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.
950	97 772	777	782	786	791	795	800	804	809	813	
951 952 953	818 864 909	823 868 914	827 873 918	832 877 923	836 882 928	841 886 932	845 891 937	850 896 941	855 900 946	859 905 950	
954 955 956	955 98 000 046	959 005 050	964 009 055	968 014 059	973 019 064	978 023 068	982 028 073	987 032 078	991 037 082	996 041 087	
957 958 959	091 137 182	096 141 186	100 146 191	105 150 195	109 155 200	114 159 204	118 164 209	123 168 214	127 173 218	132 177 223	
960	227	232	236	241	245	250	254	259	263	268	
961 962 963	272 318 363	277 322 367	281 327 372	286 331 376	290 336 381	295 340 385	299 345 390	304 349 394	308 354 399	313 358 403	
964 965 966	408 453 498	412 457 502	417 462 507	421 466 511	426 471 516	430 475 5 20	435 480 525	439 484 529	444 489 534	448 493 538	
967 968 969	543 588 632	547 592 637	552 597 641	$556 \\ 601 \\ 646$	561 605 650	565 610 655	570 614 659	574 619 664	579 623 668	583 628 673	
970	677	682	686	691	695	700	704	709	713	717	
971 972 973	722 767 811	726 771 816	731 776 820	735 780 825	740 784 829	744 789 834	749 793 838	753 798 843	758 802 847	762 807 851	5 4 1 0.5 0.4 2 1.0 0.8 3 1.5 1.2
974 975 976	856 900 945	860 905 949	865 909 954	869 914 958	874 918 963	878 923 967	883 927 972	887 932 976	892 936 981	896 941 985	3 1.5 1.2 4 2.0 1.6 5 2.5 2.0 6 3.0 2.4
977 978 979	989 99 034 078	994 038 083	998 043 087	*003 047 092	*007 052 096	*012 056 100	*016 061 105	*021 065 109	*025 069 114	*029 074 118	7 3.5 2.8 8 4.0 3.2 9 4.5 3.6
980	123	127	131	136	140	145	149	154	158	162	
981 982 983	167 211 255	171 216 260	$176 \\ 220 \\ 264$	180 224 269	185 229 273	189 233 277	193 238 282	198 242 286	202 247 291	207 251 295	
984 985 986	300 344 388	304 348 392	308 352 396	313 357 401	317 361 405	322 366 410	326 370 414	330 374 419	335 379 423	339 383 427	
987 988 989	432 476 520	436 480 524	441 484 528	445 489 533	449 493 537	454 498 542	458 502 546	463 506 550	467 511 555	471 515 559	
990	564	568	572	577	581	585	590	594	599	603	
991 992 993		612 656 699	616 660 704	621 664 708	$\begin{array}{c} 625 \\ 669 \\ 712 \end{array}$	629 673 717	634 677 721	638 682 726	642 686 730	647 691 734	
994 995 996	782	743 787 830	747 791 835	752 795 839	756 800 843	760 804 848	765 808 852	769 813 856	774 817 861	778 822 865	
997 998 999	913	874 917 961	878 922 965	883 926 970	887 930 974	891 935 978	896 939 983	900 944 987	904 948 991	909 952 996	
1000	·	004	009	013	017	022	026	030	035	039	
N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.

CONDENSED LOGARITHMS TO FIFTEEN DECIMAL PLACES

20

[The first digits of n are given in the first row at the top; the last digit of n i the left-hand column. The first column of logarithms are those of 1, 2, 3, ...,! The remaining columns give log (1+x), where $x=(0.1)^k$ times 1, 2, ..., 9.]

Last Digit	First Digit of $n \longrightarrow$	1.	1.0	1.00
st git }	Log n	First Digits of $\log n \longrightarrow$.0	.00
1 2 3 4 5 6 7 8 9	00000 00000 00000 30102 99956 63981 47712 12547 19662 60205 99913 27962 69897 00043 36019 77815 12503 83644 84509 80400 14257 90308 99869 91944 95424 25094 39325	04139 26851 58225 07918 12460 47625 11394 33523 06837 14612 80356 78238 17609 12590 55681 20411 98226 55925 23044 89213 78274 25527 25051 03306 27875 36009 52829	0432 13737 82643 0860 01717 61918 1283 72247 05172 1703 33392 98780 2118 92990 69938 2530 58652 64770 2988 37776 85210 3342 37554 86950 3742 64979 40624	043 40774 79319 086 77215 31227 130 09330 20418 173 37128 09001 216 60617 56508 259 79807 19909 302 94705 53618 346 05321 09506 389 11662 36911

(continuation)

	1.000	1.0000	1.00000	1.000000	1.0000000	1.00000000
	.000	.0000	.00000	.000000	.0000000	.000000000
1 2 3 4 5 6 7 8 9	04 34272 76863 08 68502 11649 13 02688 05227 17 36830 58465 21 70929 72230 26 04985 47390 30 38997 84812 34 72966 85364 39 06892 49910	0 86858 02780 1 30286 39028 1 73714 31850 2 17141 81245 2 60568 87215 3 03995 49761 3 47421 68884	08685 88095 13028 81491 17371 74453 21714 66981 26057 59074 30400 50733 34743 41958	0868 58888 1302 88325 1737 17758 2171 47187 2605 76611 3040 06031 3474 35447	086 85890 130 28834 173 71779 217 14724 260 57668 304 00613 347 43557	08 68589 13 02883 17 37178 21 71472 26 05767 30 40061 34 74356

[For x < .00000001, log $(1 + x) = x \cdot M$, to within 3 in the 17th place, where $M = 0.43429448 \cdots$. Hence the last column gives multiples of M except for the lecimal place. All the columns that would follow have the same significant digits lisplaced each time one place.]

CONDENSED ANTILOGARITHMS TO TEN DECIMAL PLACES

[The first digits of n are given in the first row at the top; $n=(0.1)^k x$; $x=1,2,\dots,9$ are given in the left-hand column. The first digits in 10^n are given in the second row at the top.]

x	n=0.1x	0.01x	0.001x	0.0001x	$(0.1)^5x$	$(0.1)^6 x$	$(0.1)^7 x$
	10 ⁿ	1.	1.0	1.00	1.000	1.0000	1.00000
1 2 3 4 5 6 7 8 9	1.25892 54118 1.58489 31925 1.99526 23150 2.51188 64315 3.16227 76602 3.98107 17055 5.01187 23363 6.30957 34448 7.94328 23472	04712 85481 07151 93052 09647 81961 12201 84543 14815 36215 17489 75549 20226 44346	0461 57903 0693 16689 0925 28861 1157 94543 1391 13857 1624 86929 1859 13881	046 06231 069 10142 092 14583 115 19555 138 25058 161 31092 184 37657	04 60528 06 90799 09 21076 11 51359 13 81646 16 11939 18 42238	0 46052 0 69078 0 92104 1 15130 1 38156 1 61182 1 84209	04605 06908 09210 11513 13816 16118 18421

[For n < 0.000001, $10^n = 1 + n \cdot (1/M)$ to within 3 in the 12th decimal place, where 1/M) = 2.302585 · · · . Hence the last column gives multiples of (1/M) except for 12 decimal place. All the columns that would follow contain the same significant igits displaced one place for each new column.]

TABLE II

ACTUAL VALUES

OF THE

TRIGONOMETRIC FUNCTIONS

FROM

0° TO 90° AT INTERVALS OF ONE MINUTE

TO

FIVE DECIMAL PLACES

	1	Sin	Tan	Ctn	Cos	Ī	1	'	Sin	Tan	Ctn	Cos	Γττ
1	0					60		0	.01745	.01746	57.290		60
1	1	029										984	59
116	3	087	087	1145.9	000	57	П	3	832	833	54.561		
To To To To To To To To			f .				П						56
T	6							6					
10 100291 300291 343.77 1.0000 50 10 0.02036 0.02036 49.104 99970 50 11 330 349 349 286.48 999 48 11 0.004 0.095 47.740 978 48 13 378 378 264.44 999 47 13 123 124 47.085 977 47 14 407 407 245.55 999 46 14 152 153 46.449 977 46 156 0.00436 229.18 .99999 45 15 .02181 1.02182 45.829 .99976 44 16 211 211 45.226 976 44 17 495 495 202.22 999 43 17 240 240 44.639 975 44 18 524 524 190.98 999 42 18 269 269 44.086 974 42 19 553 553 180.93 998 41 19 298 298 43.508 974 41 22 22 24 698 608 149.47 998 37 23 414 415 41.411 971 37 22 640 640 166.26 998 38 22 385 386 41.916 972 38 22 385 386 41.916 972 38 22 385 386 41.916 972 38 22 385 386 41.916 972 38 22 385 386 41.916 972 38 25 0.0277 0.0727 137.51 9.9997 34 26 501 502 39.965 968 34 227 785 785 127.32 997 34 26 501 502 39.965 968 34 227 785 785 127.32 997 34 26 501 502 39.965 968 34 34 315 122.77 997 32 25 5007 503 39.506 968 33 30 0.00873 0.00873 10.439 996 29 31 647 648 37.769 965 29 34 0.0089 0.0989 10.11 995 26 34 34 318 38.144 999 37 37 706 706 707 92.008 9994 23 38 300 0.00873 0.018 99.408 39.999 37 38 30 0.00873 0.00873 0.018 99.408 32 37 502 39.956 963 37 37 376 37 37 376 37 37	7											981	53
10 .00291 .00291 .343.77 .10000 50 10 .02036 .02036 .49.104 .99970 40 11 .2030 .320	9						П						
12													50
13	12						П	12	094		47.740		
15							ı				47.085	977	47
16			1								1		
18	16	465	465	214.86					211	211	45.226	976	44
19										240 269			
Cos Ctn	19	553	553	180.93				19	298	298	43.508	974	41
22											42.964		
24	22	640	640	156.26	998	38	П	22	385	386	41.916	972	38
25	$\frac{25}{24}$			143.24			ı						
28							ı				40.436	.99969	35
28							П						34
30	28	814	815	122.77	997	32	П	28	560	560	39.057	967	32
31 902 902 110.89 996 29 31 647 648 37.769 965 29 32 931 931 107.43 996 28 32 676 677 37.358 964 28 38 960 960 104.17 995 27 33 705 706 36.956 963 27 37 37 37.358 964 28 35 0.01018 0.01018 98.218 9995 25 35 0.2763 0.02763 36.563 963 26 37 0.076 0.076 92.908 994 23 36 792 793 35.801 961 24 37 0.076 0.076 92.908 994 23 37 821 822 35.431 960 23 38 105 105 90.463 994 22 38 850 851 35.070 959 22 38 850 851 35.070 959 22 38 850 851 35.070 959 22 38 850 851 35.070 959 22 38 34.715 959 21 40 0.0164 0.0164 85.940 9.9993 20 40 0.02908 0.02910 34.368 9.9958 24 39 879 881 34.715 959 21 42 222 222 81.847 993 18 42 967 968 33.664 956 18 42 222 222 228 81.847 993 18 42 967 968 33.664 956 18 44 280 280 78.126 992 16 44 0.03025 0.03026 33.045 954 16 45 338 338 74.729 991 14 46 0.033 0.045 954 16 46 338 338 74.729 991 14 46 0.033 0.045 954 16 46 0.033 0.045 952 13 48 396 396 71.615 990 12 48 141 143 31.821 951 12 49 425 425 70.153 990 11 49 170 172 31.528 950 11 49 170 172 31.528 950 11 49 170 172 31.528 950 11 40 170 172 31.528 950 15 46 629 629 61.883 987 4 57 658 658 60.306 986 3 57 403 405 29.877 940 1 40 174 1							H				38.188	ı	
34 .0989 .09989 .00989 .01011 .995 .26 .34 .734 .735 .36.563 .968 .27 35 .01018 .01018 98.218 .99995 .25 .35 .02763 .02764 .36.178 .99962 .25 36 .047 .047 .95.489 .994 .23 .37 .821 .35 .850 .851 .99962 .25 37 .076 .076 .92.908 .994 .23 .37 .821 .822 .35.431 .960 .23 38 .105 .105 .90.463 .994 .21 .39 .879 .881 .34.715 .959 .21 40 .0.1164 .85.940 .99993 .20 .40 .02998 .02910 .34.368 .99958 20 41 .193 .193 .83.444 .993 .18 .42 .967 .968 .33.694 .956 .955 .17		902	902	110.89	996	29		31	647	648	37.769	965	29
34 .00989 .00989 101.11 .995 26 34 734 735 36.563 963 26 35 .01018 .98.218 .99995 25 35 .02763 .02764 36.178 .99962 25 36 047 047 95.489 .995 24 36 792 793 35.801 961 24 37 076 076 92.908 .994 23 37 821 822 35.431 .960 23 38 105 105 90.463 .994 22 38 850 851 35.070 .959 22 40 .01164 .01164 85.940 .99993 20 40 .02908 .02910 34.368 .99958 20 41 193 193 83.844 993 18 42 967 968 3.66 9957 19 44 280 280 78.126 99						$\frac{28}{27}$		33			36.956		
36											36.563	963	26
37													
39	37	076	076	92.908	994	23		37	821	822	35.431	960	23
193													
42 222 222 81.847 993 18 42 967 968 33.694 956 18 18 42 280 280 78.126 992 16 44 0.3025 0.3026 33.045 954 16 45 0.1309 0.1309 76.390 0.99991 15 45 0.3054 0.3055 32.730 0.99953 15 46 338 338 74.729 991 14 46 0.83 0.84 32.421 952 14 47 367 367 73.139 991 13 47 112 114 32.118 952 13 48 396 396 71.615 990 12 48 141 143 31.821 951 13 49 425 425 70.153 990 11 49 170 172 31.528 950 11 49 426 425 70.153 990 11 49 170 172 31.528 950 11 48 3484 67.402 989 9 51 228 230 30.960 948 9 951 248 3484 67.402 989 9 51 228 230 30.960 948 9 951 228 257 259 30.683 947 8 542 542 64.858 988 7 53 286 288 30.412 946 754 571 571 63.657 988 6 54 316 317 30.145 945 65 55 0.1600 0.1600 62.499 .99987 5 55 0.3345 0.3346 29.882 .99944 57 658 658 60.306 986 3 57 403 405 29.822 .9944 57 658 658 60.306 986 3 57 403 405 29.822 .9944 57 658 658 60.306 986 2 58 432 434 29.122 941 2 2 2 2 2 2 2 2 2									.02908				20
43 251 251 79.943 992 17 43 .02996 .02997 33.366 955 17 44 280 280 78.126 992 16 44 .03025 .03026 33.045 954 16 45 .01309 .01309 76.390 .99991 15 45 .03054 .03055 32.730 .99953 15 47 367 367 73.139 991 13 46 083 084 32.421 952 14 48 396 396 71.615 990 12 48 141 143 31.821 952 13 49 425 425 70.153 990 11 49 170 172 31.528 950 11 50 .01454 .01455 68.750 .99898 10 50 .03199 .03201 31.242 .99949 10 51 483 484 67	42	222	222	81.847						968			
15											33.366		17
46 338 338 74.729 991 14 46 083 084 32.421 952 14 47 367 367 73.139 991 13 47 112 114 32.118 952 13 48 396 396 71.615 990 12 48 141 143 31.521 951 12 49 425 425 70.153 990 11 49 170 172 31.528 950 11 50 .01454 .01455 68.750 .99989 10 50 .03199 .03201 31.242 .99949 10 51 483 484 67.402 989 9 51 228 230 30.960 948 9 52 513 513 66.105 989 8 52 257 259 30.683 947 8 54 571 571 63.657 988				76.390									15
48		338		74.729							32.421		14
50 .01454 .01455 68.750 .99889 10 50 .03199 .03201 31.242 .99949 10 51 483 484 67.402 989 9 51 228 230 30.960 948 9 52 513 513 66.105 989 8 52 257 259 30.683 947 8 53 542 542 64.858 988 7 53 286 288 30.412 946 7 54 571 63.657 988 6 54 316 317 30.145 945 6 55 .01600 .01600 62.499 .99987 5 55 .03345 .03346 29.882 .99944 5 57 658 658 60.306 986 3 57 403 405 29.371 942 3 58 687 687 59.266 986 2<	48	396	396	71.615	990	12	١	48	141	143	31.821		12
51 483 484 67.402 989 9 51 228 230 30.960 948 9 52 513 513 66.105 989 8 52 257 259 30.683 947 8 53 542 542 64.858 988 7 53 286 288 30.412 946 7 54 571 63.657 988 6 54 316 317 30.145 945 6 55 .01600 .01600 62.499 .99987 5 55 .03345 .03346 29.882 .99944 5 57 658 658 60.306 986 3 57 403 405 29.871 942 3 58 687 687 59.266 986 2 58 432 434 29.122 941 2 59 716 716 58.261 985 1 59<							۱				31.528		
52 513 513 66.105 989 8 52 257 259 30.683 947 8 53 542 542 64.858 988 7 53 286 288 30.412 946 7 54 571 571 63.657 988 6 54 316 317 30.145 946 7 56 629 629 61.383 987 4 56 374 376 29.624 943 4 57 658 658 60.306 986 2 58 432 434 29.624 943 4 58 687 687 59.266 986 2 58 432 434 29.122 941 2 59 716 716 58.261 985 1 59 461 463 28.877 940 1 60 .01745 .01746 57.290 .99985 0	51	483	484	67.402	989	9	ı		228		30.960		
54 571 571 63.657 988 6 54 316 317 30.145 945 6 55 .01600 .01600 62.499 .99987 5 55 .03345 .03346 29.882 .99944 5 56 629 629 61.383 987 4 56 374 376 29.624 943 4 57 658 658 60.306 986 3 57 403 405 29.371 942 3 58 687 687 59.266 986 2 58 432 434 29.122 941 2 59 716 716 58.261 985 1 59 461 463 28.877 940 1 60 .01745 .01746 57.290 .99985 0 60 .03490 .03492 28.636 .99939 0 Cos Ctn Tan Sin '	52 53			66.105		8		52	257	259	30.683		8
56 629 629 61.383 987 4 56 374 376 29.624 943 4 57 658 658 60.306 986 3 57 403 405 29.371 942 3 58 687 687 59.266 986 2 58 432 434 29.122 941 2 59 716 716 58.261 985 1 59 461 463 28.877 940 1 60 .01745 .01746 57.290 .99985 0 60 .03490 .03492 28.636 .99939 0 Cos Ctn Tan Sin ' Cos Ctn Tan Sin '	54	571											6
57 658 658 60.306 986 3 57 403 405 29.371 942 3 58 687 687 59.266 986 2 58 432 434 29.122 941 2 59 716 716 58.261 985 1 59 461 463 28.877 940 1 60 .01745 .01746 57.290 .99985 0 60 .03490 .03492 28.636 .99939 0 Cos Ctn Tan Sin ' Cos Ctn Tan Sin '													
59 716 716 58.261 985 1 59 461 463 28.877 940 1 60 .01745 .01746 57.290 .99985 0 60 .03490 .03492 28.636 .99939 0 Cos Ctn Tan Sin /	57	658	658	60.306	986	3		57	403	405	29.371	942	3
60 .01745 .01746 57.290 .99985 0 60 .03490 .03492 28.636 .99939 0 Cos Ctn Tan Sin ' Cos Ctn Tan Sin '						2							
Cos Ctn Tan Sin / Cos Ctn Tan Sin /				1 1		-	١	1					
		Cos	Ctn	Tan	Sin	7	١						1
			89)°			•			88			

11.]	- C:	70	O4 1	- C 1	_	i i	7					40
Ľ	Sin	Tan	Ctn	Cos		П		Sin	Tan	Ctn	Cos	_
0	.03490 519	.03492 521	28.636 .399	.99939 938	60 59		0	$05234 \\ 263$	$05241 \\ 270$	19.081	.99863	60
2	548	550	28.166	937	58		2	292	299	18.976 .871	861 860	59 58
3	577	579 609	27.937	936	57	П	3	321	328	.768	858	57
4. 5	.03635	.03638	.712 27.490	935 .99934	56 55	П	4 5	350	357	.666	857	56
6	664	667	.271	933	54		6	.05379 408	0.05387 416	18.564 .464	.99855 854	55 54
7	693	696	27.057	932	53	П	7	437	445	.366	852	53
8 9	$723 \\ 752$	$725 \\ 754$	26.845	931 930	52 51	П	8	466 495	474 503	.268	851	52
10	.03781	.03783	26.432	.99929	50	П	10	.05524	.05533	.171 18.075	.99847	51 50
11	810	812	.230	927	49	ı	11	553	562	17.980	846	49
$\frac{12}{13}$	839 868	842 871	$26.031 \\ 25.835$	926 925	48 47	ı	12 13	582	591	.886	844	48
14	897	900	.642	924	46	П	14	611 640	620 649	.793 .702	842 841	47 46
15	.03926	.03929	25.452	.99923	45	Н	15	.05669	.05678	17.611	.99839	45
16	955	958	.264	922	44	П	16	698	708	.521	838	44
17 18	.03984	.03987	$25.080 \\ 24.898$	921 919	43 42	П	17 18	727 756	737 766	.431 .343	836 834	43 42
19	042	046	.719	918	41	П	19	785	795	.256	833	41
20	.04071	.04075	24.542	.99917	40	П	20	.05814	.05824	17.169	.99831	40
$\frac{21}{22}$	100 129	$\frac{104}{133}$.368 .196	916 915	39 38	П	$\frac{21}{22}$	844 873	854 883	17.084 16.999	829 827	39 38
23	159	162	24.026	913	37	П	23	902	912	.915	826	37
24	188	191	23.859	912	36	П	24	931	941	.832	824	36
25 26	$04217 \\ 246$	$04220 \\ 250$	23.695 .532	.99911 910	35 34	Н	25 26	.05960 .05989	.05970	16.750 .668	.99822 821	35 34
27	275	279	.372	909	33		27	.06018	.06029	.587	819	33
28 29	304 333	308 337	214.23.058	907 906	$\frac{32}{31}$		28 29	$047 \\ 076$	058	.507	817	32
30	.04362	.04366	22.904	.99905	30	Н	30	.06105	.06116	.428 16.350	.99813	31 30
31	391	395	.752	904	29	Н	31	134	145	.272	812	29
32 33	420 449	424 454	.602 .454	902 901	$\frac{28}{27}$	П	32 33	163 192	175	.195	810	28
34	478	483	.308	900	26	П	34	$\frac{192}{221}$	204 233	.119	808 806	$\frac{27}{26}$
35	.04507	.04512	22.164	.99898	25	П	35	.06250	.06262	15.969	.99804	25
36 37	536 565	541 570	22.022 21.881	897 896	$\frac{24}{23}$	П	36 37	279 308	$\begin{array}{c c} 291 \\ 321 \end{array}$.895 .821	803 801	$\frac{24}{23}$
38	594	599	.743	894	22	П	38	337	350	.748	799	$\frac{23}{22}$
39	623	628	.606	893	21	ı	39	366	379	.676	797	21
40 41	$04653 \\ 682$.04658 687	21.470 .337	.99892 890	20 19		40 41	.06395 424	.06408 438	15.605 .534	.99795	20 19
$\frac{11}{42}$	711	716	.205	889	18		42	453	467	.464	792	18
43	740	745	21.075	888	17	H	43	482	496	.394	790	17
44 45	769 .04798	774 .04803	20.946 20.819	.99885	16 15	П	44 45	511 .06540	525 .06554	.325 15.257	788 .99786	16 15
46	827	833	.693	883	14	Н	46	569	584	.189	784	14
47	856	862	.569	882	13	Н	47	598	613	122	782	13
48 49	885 914	891 920	.446 .325	881 879	12 11	H	48 49	627 656	642 671	15.056 14.990	780 778	$\frac{12}{11}$
50	.04943	.04949	20.206	.99878	10		50	.06685	.06700	14.924	.99776	10
51	.04972	.04978	20.087	876	9	Н	51	714	730	.860	774	9
52 53	.05001	.05007	19.970 .855	875 873	8	Н	52 53	743 773	759 788	.795 .732	772 770	8
54	059	066	.740	872	6		54	802	817	.669	768	6
55	.05088	.05095	19.627	.99870	5	H	55	.06831	.06847	14.606	.99766	5
56 57	117 146	124 153	.516	869 867	4 3	H	56 57	. 860 889	876 905	.544	764 762	4 3 2
58	175	182	.296	866	2		58	918	934	.421	760	2
59	205	212	.188	864	1		59	947	963	.361	758	1
60	.05234	.05241	19.081	.99863	0	H	60	.06976	.06993	14.301	.99756	Ļ
ı	Cos	Ctn	Tan	Sin	Ι΄.	ı		Cos	Ctn	Tan	Sin	L '_

—	Sin	Tan	Ctn	Cos	Ť	٦	7	Sin	Tan	Ctn	C	L L
-		-	-		60	1	0	.08716			Cos	-
0	.06976	.06993	14.301 .241	754	59		1	745				
2	034	051	.182	752	58	1	2	774	807	.354	614	58
3 4		080 110	.124	750 748		ı	3 4	803 831				57
5	,	.07139	14.008	.99746		1	5	.08860			1 000	
6	150	168	13.951	744	54	ı	6	889	925	.205	604	
7 8	179 208	197 227	.894 .838	742 740	53 52	I	7 8	918 947	954			53
9	237	256	.782	738	51	ı	9	.08976	.09013			
10	.07266	.07285	13.727	.99736	50	ı	10	.09005	.09042		.99594	1
$\begin{array}{c} 11 \\ 12 \end{array}$	295 324	314 344	.672	734 731	49 48	ı	$\frac{11}{12}$	034 063	071 101	11.024		49
13	353	373	.563	729	47	ı	13	092	130		588 586	48 47
14	382	402	.510	727	46	ı	14	121	159	.918	583	46
15 16	.07411	.07431 461	13.457	.99725 723	45 44	I	15 16	.09150	.09189			45
17	469	490	.352	721	43	ı	17	208	247	.848	578 575	44 43
18	498	519	.300	719	42	ı	18	237	277	.780	572	42
19 20	527 .07556	.07578	.248	716	41 40	۱	19 20	.09295	306	.746	570	41
21	585	607	.146	712	39	l	21	324	.09335	10.712	.99567 564	40 39
22	614	636	.096	710	38	l	22	353	394	.645	562	38
$\frac{23}{24}$	643 672	665 695	13.046 12.996	708 705	37 36	l	$\frac{23}{24}$	382 411	423 453	.612	559 556	37
25	.07701	.07724	12.947	.99703	35	ı	25	.09440	.09482	10.546	.99553	36 35
26	730	753	.898	701	34	ı	26	469	511	.514	551	34
27 28	759 788	782 812	.850 .801	699 696	33 32	l	27 28	$\frac{498}{527}$	541 570	.481	548 545	33
29	817	841	.754	694	31	ı	29	556	600	.417	545	$\frac{32}{31}$
30	.07846	.07870	12.706	.99692	30	١	30	.09585	.09629	10.385	.99540	30
$\frac{31}{32}$	875 904	899 929	.659 .612	689 687	29 28		$\frac{31}{32}$	$614 \\ 642$	658 688	.354	537 534	29 28
33	933	958	.566	685	27		33	671	717	.291	531	27
34	962	.07987	.520	683	26		34	700	746	.260	528	26
35 36	.07991 .08020	.08017 046	12.474 .429	.99680 678	25 24	ı	35 36	.09729 758	.09776	10.229	.99526 523	25 24
37	049	∙075	.384	676	23	l	37	787	834	.168	520	23
38 39	078 107	$\frac{104}{134}$.339 .295	673 671	$\frac{22}{21}$	Н	38 39	816 845	864 893	.138	517	22
40	.08136	.08163	12.251	.99668	20	П	40	.09874	.09923	.108 10.078	.99511	21 20
41	165	192	.207	666	19	Н	41	903	952	.048	508	19
42 43	$194 \\ 223$	$\frac{221}{251}$.163	664 661	18 17	ı	42 43	932 961	.09981 $.10011$	10.019	506	18
44	252	280	.077	659	16		44	.09990	040	9.9893	503 500	17 16
45	.08281	.08309	12.035	.99657	15		45	.10019	.10069	9.9310	.99497	15
46 47	310 339	339 368	11.992	654	14 13	ı	46	048	099	.9021	494	14
48	368	397	.950	$652 \\ 649$	$\frac{13}{12}$		47 48	077 106	128 158	.8734	491 488	13 12
49	397	427	.867	647	11		49	135	187	.8164	485	11
50 51	.08426 455	.08456 485	11.826 .785	.99644 642	10 9	1	50	.10164	.10216	9.7882	.99482	10
52	484	514	.745	639	8	1	51 52	$\frac{192}{221}$	$\begin{array}{cc} & 246 \\ & 275 \end{array}$.7601 .7322	$\frac{479}{476}$	9 8
53 54	513	544	.705	637		1	53	250	305	.7044	473	8
55 55	.08571	.08602	.664 11.625	.99632	6 5	١	54 55	279	334	.6768	470	6
56	600	632	.585	630	4	1	56	.10308	.10363	9.6493 .6220	.99467 464	5 4
57	629	661	.546	627	3	ı	57	366	422	.5949	461	3
58 59	658 687	$\frac{690}{720}$.507	$\frac{625}{622}$	$\frac{2}{1}$	١	58 59	395 424	452 481	.5679 $.5411$	458 455	$\frac{2}{1}$
60	.08716	.08749	11.430	.99619	Ô	١	60	.10453	.10510	9.5144	.99452	ô
	Cos	Ctn	Tan	Sin	′	1		Cos	Ctn	Tan	Sin	7

II]	0		arues	C	уощ	JI P	_	IIC F U	nction	$s-7^{\circ}$		25
	Sin	Tan	Ctn	Cos			_	Sin	Tan	Ctn	Cos	
0 1 2 3 4	.10453 482 511 540 569	.10510 540 569 599 628	9.5144 .4878 .4614 .4352 .4090	.99452 449 446 443 440	59 58 57 56		0 1 2 3 4	.12187 216 245 274 302	.12278 308 338 367 397	8.1443 .1248 .1054 .0860 .0667	.99255 251 248 244 240	60 59 58 57
5 6 7 8	.10597 626 655 684 713	.10657 687 716 746 775	9.3831 .3572 .3315 .3060 .2806	.99437 434 431 428 424	55 54 53 52 51		5 6 7 8	.12331 360 389 418 447	.12426 456 485 515 544	8.0476 .0285 8.0095 7.9906	99237 233 230 226	56 55 54 53 52
9 10 11 12 13 14	.10742 771 800 829 858	.10805 834 863 893 922	9.2553 .2302 .2052 .1803 .1555	.99421 418 415 412 409	50 49 48 47 46		10 11 12 13 14	.12476 504 533 562 591	.12574 603 633 662 692	.9718 7.9530 .9344 .9158 .8973 .8789	222 .99219 215 211 208 204	51 50 49 48 47 46
15	.10887	.10952	9.1309	.99406	45		15	.12620	.12722	7.8606	.99200	45
16	916	.10981	.1065	402	44		16	649	751	.8424	197	44
17	945	.11011	.0821	399	43		17	678	781	.8243	193	43
18	.10973	040	.0579	396	42		18	706	810	.8062	189	42
19	.11002	070	.0338	393	41		19	735	840	.7882	186	41
20	.11031	.11099	9.0098	.99390	40		20	.12764	.12869	7.7704	.99182	40
21	060	128	8.9860	386	39		21	793	899	.7525	178	39
22	089	158	.9623	383	38		22	822	929	.7348	175	38
23	118	187	.9387	380	37		23	851	958	.7171	171	37
24	147	217	.9152	377	36		24	880	.12988	.6996	167	36
25	.11176	.11246	8.8919	.99374	35		25	.12908	.13017	7.6821	.99163	35
26	205	276	.8686	370	34		26	937	047	.6647	160	34
27	234	305	.8455	367	33		27	966	076	.6473	156	33
28	263	335	.8225	364	32		28	.12995	106	.6301	152	32
29	291	364	.7996	360	31		29	.13024	136	.6129	148	31
30	.11320	.11394	8.7769	.99357	30		30	.13053	.13165	7.5958	.99144	30
31	349	423	.7542	354	29		31	081	195	.5787	141	29
32	378	452	.7317	351	28		32	110	224	.5618	137	28
33	407	482	.7093	347	27		33	139	254	.5449	133	27
34	436	511	.6870	344	26		34	168	284	.5281	129	26
35	.11465	.11541	8.6648	.99341	25		35	.13197	.13313	7.5113	.99125	25
36	494	570	.6427	337	24		36	226	343	.4947	122	24
37	523	600	.6208	334	23		37	254	372	.4781	118	23
38	552	629	.5989	331	22		38	283	402	.4615	114	22
39	580	659	.5772	327	21		39	312	432	.4451	110	21
40	.11609	.11688	8.5555	.99324	20		40	.13341	.13461	7.4287	.99106	20
41	638	718	.5340	320	19		41	370	491	.4124	102	19
42	667	747	.5126	317	18		42	399	521	.3962	098	18
43	696	777	.4913	314	17		43	427	550	.3800	094	17
44	725	806	.4701	310	16		44	456	580	.3639	091	16
45	.11754	.11836	8.4490	.99307	15		45	.13485	.13609	7.3479	.99087	15
46	783	865	.4280	303	14		46	514	639	.3319	083	14
47	812	895	.4071	300	13		47	543	669	.3160	079	13
48	840	924	.3863	297	12		48	572	698	.3002	075	12
49	869	954	.3656	293	11		49	600	728	.2844	071	11
50	.11898	.11983	8.3450	.99290	10		50	.13629	.13758	7.2687	.99067	10
51	927	.12013	.3245	286	9		51	658	787	.2531	063	9
52	956	042	.3041	283	8		52	687	817	.2375	059	8
53	.11985	072	.2838	279	7		53	716	846	.2220	055	7
54	.12014	101	.2636	276	6		54	744	876	.2066	051	6
55 56 57 58 59	.12043 071 100 129 158	.12131 160 190 219 249	8.2434 .2234 .2035 .1837 .1640	.99272 269 265 262 258	5 4 3 2 1		55 56 57 58 59	.13773 802 831 860 889	.13906 935 965 .13995 .14024	7.1912 .1759 .1607 .1455	.99047 043 039 035 031	5 4 3 2 1
60	.12187	.12278	8.1443	.99255	Ō	l	60	.13917	.14054	7.1154	.99027	0
L	Cos	Ctn	Tan	Sin	<u>1 '</u>	1		Cos	Ctn	Tan	Sin	<u> </u>

83° 82°

1	Sin	Tan	Ctn	Cos	Ī	1	1	Sin	Tan	Ctn	Cos	LL
0	.13917	.14054	7.1154	.99027	60		0	.15643	.15838	6.3138	.98769	60
1	946	084	.1004	023 019	59 58	ı	$\frac{1}{2}$	672	868	.3019	764	59
2 3	.13975 .14004	113 143	.0855	019	57	I	3	701 730	898 928	.2901	760 755	58 57
4	033	173	.0558	011	56	l	4	758	958	.2666	751	56
5	.14061 090	.14202 232	7.0410 .0264	.99006 .99002	55 54	l	5	.15787 816	.15988 .16017	6.2549	.98746	55
6 7	119	262	7.0117	.98998	53		7	845	047	.2432	741	54
8	148	291 321	6.9972 $.9827$	994 990	52 51	ı	8 9	873 902	077	.2200	732	52
9 10	177 .14205	.14351	6.9682	.98986	50		10	.15931	107 16137	.2085 6.1970	728 .98723	51
$\overline{11}$	234	381	.9538	982	49		11	959	167	.1856	718	50 49
12 13	$\frac{263}{292}$	410 440	.9395 .9252	978 973	48 47		12 13	.15988	196 226	.1742 .1628	714	48
14	320	470	.9110	969	46	ı	14	046	256	.1515	709 704	47 46
15	.14349	.14499	6.8969	.98965	45		15	.16074	.16286	6.1402	.98700	45
$\frac{16}{17}$	378 407	529 559	.8828 .8687	961 957	44 43	П	16 17	103 132	316 346	.1290	695 690	44 43
18	436	588	.8548	953	42	П	18	160	376	.1066	686	42
19 20	464 .14493	618 .14648	.8408 6.8269	948 .98944	41 40		19 20	189 .16218	405	.0955	681	41
21	522	678	.8131	940	39	ı	$\overline{21}$	246	.16435 465	6.0844 .0734	.98676 671	40 39
$\frac{22}{23}$	551 580	707 737	.7994 .7856	936 931	38 37	П	22 23	$\frac{275}{304}$	495 525	.0624	667	38
$\frac{23}{24}$	608	767	.7720	927	36		$\frac{23}{24}$	333	555 555	.0514	662 657	37 36
25	.14637	.14796	6.7584	.98923	35		25	.16361	.16585	6.0296	.98652	35
$\frac{26}{27}$	666 695	826 856	.7448 .7313	$\frac{919}{914}$	34 33		$\frac{26}{27}$	390 419	615 645	.0188	648 643	34 33
28	723	886	.7179	910	32		28	447	674	5.9972	638	32
29 30	752	915	.7045	906	31 30		29 30	476	704	.9865	633	31
31	.14781 810	.14945 $.14975$	6.6912	.98902 897	29	П	31	.16505 533	.16734 764	5.9758 .9651	.98629 624	30 29
32 33	838 867	.15005	.6646	893	$\frac{28}{27}$	П	32 33	562	794	.9545	619	28
34	896	034 064	.6514	889 884	26	П	34	591 620	824 854	.9439	614 609	27 26
35	.14925	.15094	6.6252	.98880	25		35	.16648	.16884	5.9228	.98604	25
$\frac{36}{37}$	$954 \\ .14982$	$\frac{124}{153}$.6122 $.5992$	876 871	$\frac{24}{23}$		36 37	677 706	914 944	.9124	600 595	24 23
38	.15011	183	.5863	867	22		38	734	.16974	.8915	590	22
39 40	.15069	213	.5734	863	21 20		39 40	763	.17004	.8811	585	21
41	097	$.15243 \\ 272$	6.5606 .5478	.98858 854	19		41	$.16792 \\ 820$.17033 063	5.8708 .8605	.98580 575	20
42 43	126	302	.5350	849	18	ı	42	849	093	.8502	570	18
44	155 184	332 362	.5223	845 841	17 16		43 44	878 906	$\frac{123}{153}$.8400 .8298	565 561	17 16
45	.15212	.15391	6.4971	.98836	15		45	.16935	.17183	5.8197	.98556	15
46 47	$\frac{241}{270}$	$\frac{421}{451}$.4846 .4721	832 827	14 13	۱	46 47	$964 \\ .16992$	$\frac{213}{243}$.8095 .7994	551 546	14 13
48	299	481	.4596	823	12	۱	48	.17021	273	.7894	541	12
49 50	327	511	.4472	818	11	۱	49	050	303	.7794	536	11
51	.15356 385	.15540 570	6.4348	.98814	10 9	۱	50 51	.17078 107	.17333 363	5.7694 .7594	.98531 526	10
52 53	414	600	.4103	805	8	۱	52	136	393	.7495	521	8
54	442 471	630 660	.3980	800 796	7	۱	53 54	164 193	423 453	.7396 .7297	516 511	8 7 6
55	.15500	.15689	6.3737	.98791	5	١	55	.17222	.17483	5.7199	.98506	5
56 57	529 557	719 749	.3617	787 782	4 3	ı	56 57	250 279	513 543	.7101 .7004	501 496	4 3
58	586	779	.3376	778	2	١	58	308	543 573	.6906	496 491	2
59	615	809	.3257	773	1	١	59	336	603	.6809	486	1
60	.15643	.15838	6.3138	.98769	_0	١	60	.17365	.17633	5.6713	.98481	9
	Cos	Ctn	Tan	Sin				Cos	Ctn	Tan	Sin	

11.]	G:- 1	Trem	Ctm		5011		7	arc ru				Zí
	Sin	Tan	Ctn	Cos				Sin	Tan	Ctn	Cos	
0	.17365	.17633 663	5.6713 -6617	.98481 476	60 59		0	.19081 109	.19438 468	5.1446	.98163	60
2	422	693	.6521	471	58	H	2	138	498	.1366 .1286	$157 \\ 152$	59 58
3	451	723 753	.6425 .6329	466	57	П	3	167	529	.1207	146	57
4 5	479 .17508	.17783	5.6234	461 .98455	56 55	П	4 5	195	559	.1128	140	56
6	537	813	.6140	450	54		6	$ \begin{array}{r} .19224 \\ 252 \end{array} $.19589	5.1049	.98135 129	55 54
7	565	843	.6045	445	53		7	281	649	.0892	124	53
8	594 623	873 903	.5951 .5857	440 435	52 51		8	309 338	680	.0814	118	52
10	.17651	.17933	5.5764	.98430	50		10	.19366	710 .19740	.0736 5.0658	112 .98107	51 50
11	680	963	.5671	425	49		11	395	770	.0581	101	49
12.	708 737	.17993	.5578	420	48		12	423	801	.0504	096	48
13 14	766	053	.5485 .5393	414 409	47 46		13 14	$\frac{452}{481}$	831 861	.0427	090 084	47 46
15	.17794	.18083	5.5301	.98404	45		15	.19509	.19891	5.0273	.98079	45
16	823	113	.5209	399	44		16	538	921	.0197	073	44
17 18	852 880	143 173	.5118 .5026	394 389	43 42		17 18	566	952	.0121	067	43
19	909	203	.4936	383	41		19	595 623	.19982	5.0045 4.9969	061 056	42 41
20	.17937	.18233	5.4845	.98378	40		20	.19652	.20042	4.9894	.98050	40
21	966	263 293	.4755 .4665	373 368	39		$\frac{21}{22}$	680	073	.9819	044	39
22 23	.18023	323	.4575	362	38 37		23	709 737	103 133	.9744	039 033	38 37
$2\overset{\circ}{4}$	052	353	.4486	357	36		24	766	164	.9594	027	36
25	.18081	.18384	5.4397	.98352	35		25	.19794	.20194	4.9520	.98021	35
$\frac{26}{27}$	109 138	414 444	.4308 .4219	$\frac{347}{341}$	34 33		$\frac{26}{27}$	823 851	$\frac{224}{254}$.9446	016 010	34 33
28	166	474	.4131	336	32		28	880	285	.9298	.98004	32
29	195	504	.4043	331	31		29	908	315	.9225	.97998	31
30 31	$.18224 \\ 252$.18534	5.3955 .3868	.98325 320	30 29	Н	30 31	.19937 965	.20345 376	4.9152	.97992 987	30 29
32	281	594	.3781	315	28	I	32	.19994	406	.9006	981	$\frac{29}{28}$
33	309	624	.3694	310	27	П	33	.20022	436	.8933	975	27
34	338	.18684	.3607 5.3521	304 .98299	26 25	H	34 35	051	466	.8860	969	26 25
35 36	.18367 395	714	.3435	.98299	24		36	.20079 108	$\begin{bmatrix} .20497 \\ 527 \end{bmatrix}$	4.8788 .8716	.97963 958	25 24
37	424	745	.3349	288	23		37	136	557	.8644	952	23
38 39	452 481	775 805	.3263 .3178	$\frac{283}{277}$	$\frac{22}{21}$		38 39	165 193	588 618	.8573 .8501	946 940	$\frac{22}{21}$
40	.18509	.18835	5.3093	.98272	20		40	.20222	.20648	4.8430	.97934	20
41	538	865	.3008	267	19		41	250	679	.8359	928	19
42	567	895	.2924	261	18 17		42 43	279 307	709	.8288 .8218	922 916	18 17
43 44	595 624	925 955	.2755	256 250	16		44	336	739 770	.8147	910	16
45	.18652	.18986	5.2672	.98245	15		45	.20364	.20800	4.8077	.97905	15
46	681	.19016	.2588	240	14		46	393	830	.8007	899	14
47 48	710 738	046 076	.2505	234 229	$\frac{13}{12}$		47 48	421 450	861 891	.7937 .7867	893 887	13 12
49	767	106	.2339	223	īĩ		49	478	921	.7798	881	11
50	.18795	.19136	5.2257	.98218	10	ı	50	.20507	.20952	4.7729	.97875	10
$\frac{51}{52}$	824 852	166 197	.2174	212 207	9		$\frac{51}{52}$	535 563	.20982	.7659 .7591	869 863	9
53	881	227	.2011	201	7	ı	53	592	043	.7522	857	8
54	910	257	.1929	196	6		54	620	073	.7453	851	6
55	.18938	.19287	5.1848	.98190	5 4		55	.20649 677	.21104 134	4.7385	.97845	5
56 57	967 $.18995$	317 347	.1767	185 179	3		57	706	164	.7249	833	3
58	.19024	378	.1606	174	2		58	734	195	.7181	827	4 3 2 1
59	052	408	.1526	168	1	ľ	59	763	225	.7114	821 .97815	0
60	.19081	.19438	5.1446	.98163	0	l	60	.20791	.21256	4.7046 Tan		۱٠,
	Cos	Ctn	Tan	Sin	<u> </u>	l		Cos	Ctn	ian	Sin	1

1	Sin	Tan	Ctn	Cos	Ī	1	′	Sin	Tan	Ctn	Cos	[
0	.20791	.21256	4.7046	.97815	60	1	0	.22495	.23087	4.3315	.97437	60
$\frac{1}{2}$	820 848	286 316	.6979 .6912	809 803	59 58	I	$\frac{1}{2}$	523 552	117 148	.3257	430	59
3	877	347	.6845	797	57	I	3	580	179	.3200	424 417	58 57
4	905	377	.6779	791	56	I	4	608	209	.3086	411	56
5	.20933	.21408 438	4.6712 .6646	.97784 778	55 54		5	.22637 665	.23240 271	4.3029	.97404	55
6 7	962 .20990	469	.6580	772	53		7	693	301	.2972	398 391	54
8	.21019	499	.6514	766	52	Ĭ	8	722	332	.2859	384	52
9 10	.21076	529 .21560	.6448 4.6382	760 .97754	51 50	l	9 10	750 .22778	363 .23393	.2803 4.2747	378	51
111	104	590	.6317	748	49	l	11	807	424	.2691	.97371 365	50
12	132	621	.6252	742	48	l	12	835	455	.2635	358	48
13 14	161 189	651 682	.6187	735 729	47 46	1	13 14	863 892	485 516	.2580	351 345	47 46
15	.21218	.21712	4.6057	.97723	45	ı	15	.22920	.23547	4.2468	.97338	45
16	246	743	.5993	717	44 43	l	16 17	948	. 578	.2413	331	44
17 18	275 303	773 804	.5928	711 705	42	l	18	.22977 .23005	608 639	.2358 .2303	325 318	43 42
19	331	834	.5800	698	41	ı	19	033	670	.2248	311	41
20 21	.21360	.21864	4.5736	.97692	40 39		20	.23062	.23700	4.2193	.97304	40
$\frac{21}{22}$	388 417	895 925	.5673 .5609	686 680	38		$\frac{21}{22}$	090 118	731 762	.2139	298 291	39 38
23	445	956	.5546	673	37	ı	23	146	793	.2030	284	37
24 25	474 .21502	.21986	.5483 4.5420	667 .97661	36 35		24 25	175	823	.1976	278	36
26	530	047	.5357	655	34		26	.23203 231	.23854 885	4.1922 .1868	$\begin{array}{ c c c c c } .97271 \\ & 264 \end{array}$	35 34
27	559	078	.5294	648	33		27	260	916	.1814	257	33
28 29	587 616	108 139	.5232 .5169	642 636	$\frac{32}{31}$		28 29	288 316	$946 \\ .23977$.1760 .1706	$\frac{251}{244}$	32 31
30	.21644	.22169	4.5107	.97630	30		30	.23345	.24008	4.1653	.97237	30
31 32	$\frac{672}{701}$	$\frac{200}{231}$.5045 .4983	623 617	29 28	ı	$\frac{31}{32}$	373 401	039	.1600	230	29
33	729	$\frac{251}{261}$.4922	611	27	H	33	429	069 100	.1547	$\frac{223}{217}$	28 27
34	758	292	.4860	604	26		34	458	131	.1441	210	26
35 36	.21786 814	.22322 353	4.4799 .4737	.97598 592	25 24		35 36	.23486 514	1.24162 193	4.1388 .1335	.97203 196	25 24
37	843	383	.4676	585	23	П	37	542	223	.1282	189	23
38 39	871 899	414 444	.4615 .4555	579 573	$\frac{22}{21}$	П	38 39	571 599	$\frac{254}{285}$.1230 .1178	182	22
40	.21928	.22475	4.4494	.97566	20		40	.23627	.24316	4.1126	176 .97169	21 20
41	956	505	.4434	560	19		41	656	347	.1074	162	19
42 43	.21985	536 567	.4373 .4313	553 547	18 17		$\frac{42}{43}$	$684 \\ 712$	377 408	.1022	155 148	18 17
44	041	597	.4253	541	16		44	740	439	.0918	141	16
45	.22070	.22628	4.4194	.97534	15	١	45	.23769	.24470	4.0867	.97134	15
46 47	098 126	658 689	.4134 .4075	$\frac{528}{521}$	14 13		46 47	797 825	501 532	.0815	$\frac{127}{120}$	14 13
48	155	719	.4015	515	12		48	853	562	.0713	113	12
49 50	.22212	750 .22781	.3956 4.3897	508 .97502	11 10		49 50	882	593	.0662	106	11
51	240	811	.3838	496	9		51	.23910 938	$.24624 \\ 655$	4.0611 .0560	.97100 093	10
52	268	842	.3779	489	8		52	966	686	.0509	086	8
53 54	297 325	872 903	.3721 $.3662$	483 476	6		53 54	.23995	717 747	.0459	$079 \\ 072$	7
55	.22353	.22934	4.3604	.97470	5	ı	55	.24051	.24778	4.0358	.97065	5
56 57	382 410	964 .22995	.3546	463 457	4 3	1	56 57	079	809	.0308	058	4
58	438	.23026	.3430	450	2		58	108 136	840 871	0.0257	051 044	4 3 2 1
59	467	056	.3372	444	1	1	59	164	902	.0158	037	
60	.22495	.23087	4.3315	.97437	<u></u>		60	.24192	.24933	4.0108	.97030	_0
	Cos	Ctn	Tan	Sin	′			Cos	Ctn	Tan	Sin	′

11.1	Sin	Tan	Ctn	Cos			,	Sin	There	5-16		<i>2</i> 9
-	.24192	.24933	4.0108	.97030	60	П	_		Tan	Ctn	Cos	_
0	220	964	.0058	023	59	П	0	.25882 910	.26795 826	$3.7321 \\ .7277$.96593	60
2	249	.24995	4.0009	015	58	П	2	938	857	7234	585 578	59 58
3	277 305	.25026 056	3.9959 .9910	.97001	57 56	Н	3	966	888	.7191	570	57
4	.24333	.25087	3.9861	.96994	55	П	4 5	.25994	920	.7148	562	56
5	362	118	.9812	987	54	П	6	.26022 050	.26951 $.26982$	3.7105 .7062	.96555	55
7	390	149	.9763	980	53	11	7	079	.27013	.7019	547 540	54 53
8	418	180	.9714	973	52	П	8	107	044	.6976	532	52
9	446	211 $.25242$.9665 3.9617	966	51	Н	9	135	076	.6933	524	51
10 11	.24474 503	273	.9568	.96959 952	50 49	ı	10 11	.26163 191	.27107 138	3.6891 .6848	.96517 509	50
12	531	304	.9520	945	48	Н	12	219	169	.6806	502	48
13	559	335	.9471 .9423	937	47	Н	13	247	201	.6764	494	47
14	587	366 .25397	3.9375	930 .96923	46 45	ı	14	275	232	.6722	486	46
15 16	.24615	428	.9327	916	44		15 16	.26303 331	.27263 294	3.6680 .6638	.96479 471	45 44
17	672	4 59	.9279	909	43		17	359	326	.6596	463	43
18	700	490	.9232	902	42	П	18	387	357	.6554	456	42
19	728	521 $.25552$.9184 3.9136	894	41 40	ı	19 20	415	388	.6512	448	41
20 21	.24756 784	583	.9089	.96887 880	39	П	21	$.26443 \\ 471$.27419 451	3.6470 .6429	.96440 433	40 39
22	813	614	.9042	873	38	П	22	500	482	.6387	425	38
23	841	645 676	.8995 .8947	866 858	37 36	П	$\frac{23}{24}$	528	513	-6346	417	37
24 25	869 .24897	.25707	3.8900	.96851	35	П	25	556 .26584	.27576	.6305	410	36 35
26	925	738	.8854	844	34	П	26	612	607	3.6264 .6222	.96402 394	34
27	954	769	.8807	837	33		27	640	638	.6181	386	33
28	.24982	800 831	.8760 .8714	829 822	32 31	П	28 29	668 696	670	.6140	379	32
29 30	.25010	.25862	3.8667	.96815	30	П	30	.26724	701 .27732	3.6059	.96363	31 30
31	066	893	.8621	807	29		31	752	764	.6018	355	29
32	094	924	.8575	800	28	П	32	780	795	.5978	347	28
33 34	$\frac{122}{151}$	955 $.25986$.8528 .8482	793 786	27 26	П	33 34	808 836	826 858	.5937 .5897	340 332	27 26
35	.25179	.26017	3.8436	.96778	25	П	35	.26864	.27889	3.5856	.96324	25
36	207	048	.8391	771	24	П	36	892	921	.5816	316	24
37	235	079	-8345	764	23 22	П	37	920 948	952	.5776	308	23 22
38 39	263 291	110 141	.8299 .8254	756 749	$\frac{22}{21}$	Ш	38 39	.26976	.27983	.5696	301 293	$\frac{22}{21}$
40	.25320	.26172	3.8208	.96742	20	П	40	.27004	.28046	3.5656	.96285	20
41	348	203	.8163	734	19	Н	41	032	077	.5616	277	19
42	376 404	235 266	.8118 .8073	727 719	18 17	ľ	42 43	060 088	109 140	.5576 .5536	269 261	18 17
43 44	432	297	.8028	719	16	Н	44	116	172	.5497	253	16
45	.25460	.26328	3.7983	.96705	15	H	45	.27144	.28203	3.5457	.96246	15
46	488	359	.7938	697	14	H	46	172	234	.5418	238	14
47 48	516 545	$\frac{390}{421}$.7893 .7848	690 682	13 12	ı	47 48	200 228	266 297	.5379	230 222	13 12
49	573	452	.7804	675	ii	П	49	256	329	.5300	214	îĩ
50	.25601	.26483	3.7760	.96667	10	П	50	.27284	.28360	3.5261	.96206	10
51	629	515	.7715	660	9.	П	51 52	312 3 4 0	391 423	.5222	198 190	9
52 53	657 685	546 577	.7671 .7627	653 645	8 7	П	52 53	340 368	423 454	.5144	182	8 7
54	713	608	.7583	638	6	ı	54	396	486	.5105	174	6
55	.25741	.26639	3.7539	.96630	5	П	55	.27424	.28517	3.5067	.96166	5
56	769	670	.7495	623	4	H	56 57	452	549 580	.5028 .4989	158 150	4
57 58	798 826	701 733	.7451 .7408	615 608	3 2	H	58	480 508	612	.4951	142	4 3 2 1
59	854	764	.7364	600	ĩ	l	59	536	643	.4912	134	
60	.25882	.26795	3.7321	.96593	0	H	60	.27564	.28675	3.4874	.96126	0
	Cos	Ctn	Tan	Sin	′	۱		Cos	Ctn	Tan	Sin	1

° 74°

	Sin	Tan	Ctn	Cos	Т	7	7	Sin	Tan	Ctn	I Ca	<u>[</u>].
10			_		60	1	10	.29237			Cos	-
li	592	706	.4836	118	59	ı	1	265	605			
3	620 648					l	2 3	293		.2641	613	
4			4722	094		l	4	321 348			605 596	
5	.27704	.28832	3.4684	.96086	55	ı	5	.29376	.30732			1
6 7	731	864	.4646	078		ı	6 7	404		.2506	579	54
8	759 787	895 927	.4570	062		ı	8	432 460	796 828	$\begin{array}{c c} .2472 \\ .2438 \end{array}$		53
9	815	958	.4533	054	51	ı	9	487	860			
10 11	.27843 871	.28990 .29021	3.4495	.96046	50 49	l	10 11	.29515	.30891		.95545	50
12	899	053	.4420	029	48	ı	12	543 571	923 955			
13	927	084	.4383	021	47	ı	13	599	.30987	.2272	528 519	
14 15	955 .27983	116	.4346 3.4308	.96005	46 45	l	14 15	626	.31019	.2238	511	46
16	.28011	.29147 179	.4271	.95997	44	l	16	.29654 682	.31051 083	3.2205 $.2172$.95502 493	
17	039	210	.4234	989	43	l	17	710	115	.2139	485	44 43
18 19	067 095	242 274	.4197	981 972	42 41	ı	18 19	737 765	147 178	.2106	476	42
20	.28123	.29305	3.4124	.95964	40	ı	20	.29793	.31210	3.2041	.95459	41 40
21	150	337	.4087	956	39	ı	$\overline{21}$	821	242	.2008	450	39
$\frac{22}{23}$	178 206	368 400	.4050 .4014	948 940	38 37	l	$\frac{22}{23}$	849 876	274 306	.1975	441	38
24	234	432	.3977	931	36	ı	$\frac{23}{24}$	904	338	.1910	433 424	37 36
25 26	.28262	.29463	3.3941	.95923	35	ı	25	.29932	.31370	3.1878	.95415	35
$\frac{20}{27}$	290 318	495 526	.3904	915 907	34 33		$\frac{26}{27}$	960 .29987	402 434	.1845	407 398	34
28	346	558	.3832	898	32		28	.30015	466	1780	389	33 32
29 30	374	590	.3796	890	31		29	043	498	.1748	380	31
31	.28402 429	.29621 653	3.3759	.95882 874	30 29	ı	30 31	.30071 098	.31530 562	3.1716	.95372	30
32	457	685	.3687	865	28	H	32	126	594	.1652	363 354	29 28
33 34	485 513	716 748	.3652 .3616	857 849	27 26		33 34	154 182	626 658	1.1620	345	27
35	.28541	.29780	3.3580	.95841	25		35	.30209	.31690	3.1556	337 .95328	26 25
36 37	569 597	811	.3544	832	24	H	36 37	237	722	.1524	319	24
38	625	843 875	.3509 .3473	824 816	$\frac{23}{22}$	П	37 38	$\frac{265}{292}$	754 786	.1492	310 301	23 22
39	652	906	.3438	807	21	Н	39	320	818	.1429	293	21
40 41	.28680 708	.29938 .29970	3.3402 .3367	.95799 791	20 19		40 41	.30348	.31850	3.1397	.95284	20
42	736	.30001	.3332	782	18	1	41	376 403	882 914	.1366 .1334	275 266	19 18
43 44	764 792	033	.3297	774	17	ı	43	431	946	.1303	257	17
45	.28820	.30097	.3261 3.3226	766 .95757	16 15	ı	44 45	459	.31978	.1271	248	16
46	847	128	.3191	749	14	ı	46	.30486	.32010 042	3.1240 .1209	.95240 231	15 14
47 48	875 903	160 192	.3156 .3122	740	13	ı	47	542	074	.1178	222	13
49	931	$\frac{192}{224}$.3122	$732 \\ 724$	$\frac{12}{11}$	١	48 49	570 597	106 139	.1146	$\frac{213}{204}$	$\frac{12}{11}$
50	.28959	.30255	3.3052	.95715	10	ı	50	.30625	.32171	3.1084	.95195	10
$\frac{51}{52}$.28987 $.29015$	$\frac{287}{319}$.3017	707	9		51	653	203	.1053	186	9
53	042	351	.2948	698 690	8		52 53	680 708	235 267	.1022	177 168	8 7
54	070	382	.2914	681	6	ı	54	736	299	.0961	159	6
55	.29098 126	.30414	3.2879	.95673	5 4	ı	55	.30763	.32331	3.0930	.95150	5
57	154	478	.2811	656	3	Į	56 57	791 819	363 396	.0899	142 133	4 3
58 59	182 209	509 541	.2777 $.2743$	647	$\frac{2}{1}$		58	846	428	.0838	124	2
60	.29237	.30573	3.2709	.95630	0	ı	59 60	.30902	460 .32492	.0807	115	1
_	Cos	Ctn	Tan	Sin	귀	ŀ	<u></u>	Cos	.32492 Ctn	3.0777 Tan	.95106 Sin	쒸
				~		L		CUS	Oin	Tau	DIU	

	Sin	Tan	Ctn	Cos		Г	71	Gi., I	W			ΔL
_		.32492	3.0777	.95106	<u></u>	-		Sin	Tan	Ctn	Cos	
0 1 2	.30902 929 957 .30985	524 524 556 588	.0746 .0716 .0686	097 088 079	59 58 57		0 1 2 3	.32557 584 612	.34433 465 498	2.9042 .9015 .8987	.94552 542 533	60 59 58
3 4 5	.31012 .31040	621 .32653	.0655 3.0625	.95061	56 55		3 4 5	639 667 .32694	530 563 .34596	.8960 .8933 2.8905	523 514 .94504	57 56 55
6	068	685	.0595	052	54	,	6	722	628	.8878	495	54
7	095	717	.0565	043	53		7	749	661	.8851	485	53
8	123	749	.0535	033	52		8	777	693	.8824	476	52
9	151	782	.0505	024	51		9	804	726	.8797	466	51
10	.31178	.32814	3.0475	.95015	50		10	.32832	.34758	2.8770	.94457	50
11	206	846	.0445	.95006	49		11	859	791	.8743	447	49
12	233	878	.0415	.94997	48		12	887	824	.8716	438	48
13	261	911	.0385	988	47		13	914	856	.8689	428	47
14	289	943	.0356	979	46		14	942	889	.8662	418	46
15	.31316	.32975	3.0326	.94970	45		15	.32969	.34922	2.8636	.94409	45
16	344	.33007	.0296	961	44		16	.32997	954	.8609	399	44
17	372	040	.0267	952	43		17	.33024	.34987	.8582	390	43
18	399	072	.0237	943	42		18	051	.35020	.8556	380	42
19	427	104	.0208	933	41		19	079	052	.8529	370	41
20	.31454	.33136	3.0178	.94924	40		20	.33106	.35085	2.8502	.94361	40
21	482	169	.0149	915	39		21	134	118	.8476	351	39
22	510	201	.0120	906	38		22	161	150	.8449	342	38
23	537	233	.0090	897	37		23	189	183	.8423	332	37
24	565	266	.0061	888	36		24	216	216	.8397	322	36
25	.31593	.33298	3.0032	.94878	35		25	.33244	.35248	2.8370	.94313	35
26	620	330	3.0003	869	34		26	271	281	.8344	303	34
27	648	363	2.9974	860	33		27	298	314	.8318	293	33
28	675	395	.9945	851	32		28	326	346	.8291	284	32
29	703	427	.9916	842	31		29	353	379	.8265	274	31
30	.31730	.33460	2.9887	.94832	30		30	.33381	.35412	2.8239	.94264	30
31	758	492	.9858	823	29		31	408	445	.8213	254	29
32	786	524	.9829	814	28		32	436	477	.8187	245	28
33	813	557	.9800	805	27		33	463	510	.8161	235	27
34	841	589	.9772	795	26		34	490	543	.8135	225	26
35	.31868	.33621	2.9743	.94786	25		35	.33518	.35576	2.8109	.94215	25
36	896	654	.9714	777	24		36	545	608	.8083	206	24
37	923	686	.9686	768	23		37	573	641	.8057	196	23
38	951	718	.9657	758	22		38	600	674	.8032	186	22
39	.31979	751	.9629	749	21		39	627	707	.8006	176	21
40	.32006	.33783	2.9600	.94740	20		40	.33655	.35740	2.7980	.94167	20
41	034	816	.9572	730	19		41	682	772	.7955	157	19
42	061	848	.9544	721	18		42	710	805	.7929	147	18
43	089	881	.9515	712	17		43	737	838	.7903	137	17
44	116	913	.9487	702	16		44	764	871	.7878	127	16
45	.32144	.33945	2.9459	.94693	15		45	.33792	.35904	2.7852	.94118	15
46	171	.33978	.9431	684	14		46	819	937	.7827	108	14
47	199	.34010	.9403	674	13		47	846	.35969	.7801	098	13
48	227	043	.9375	665	12		48	874	.36002	.7776	088	12
49	254	075	.9347	656	11		49	901	035	.7751	078	11
50	.32282	.34108	2.9319	.94646	10		50	.33929	.36068	2.7725	.94068	10
51	309	140	.9291	637	9		51	956	101	.7700	058	9
52	337	173	.9263	627	8		52	.33983	134	.7675	049	8
53	364	205	.9235	618	7		53	.34011	167	.7650	039	7
54	392	238	.9208	609	6		54	038	199	.7625	029	6
55 56 57 58	.32419 447 474 502	.34270 303 335 368	2.9180 .9152 .9125 .9097	.94599 590 580 571	5 4 3 2		55 56 57 58	.34065 093 120 147	.36232 265 298 331	2.7600 .7575 .7550 .7525 .7500	.94019 .94009 .93999 989 979	5 4 3 2 1
59 60	529 .32557	.34433	.9070 2.9042	561 .94552	1 0		59 60	175 .34202	364 .36397	2.7475	.93969	ó
	Cos	Ctn	Tan	Sin	1	[Cos	Ctn	Tan	Sin	1

71° 70°

7	Sin	Tan	Ctn	Cos			1	Sin	Tan	Ctn	Cos	ī
0	.40674	.44523	2.2460	.91355	60		0	.42262	.46631	2.1445	.90631	60
1	700	558	.2443	343	59	П	1	288	666	.1429	618	59
2	727	593	.2425	331 319	58 57		$\frac{1}{2}$	315 341	702 737	.1413	606	58
3 4	753 780	$\frac{627}{662}$.2408 .2390	307	56	П	4	367	772	.1396 .1380	594 582	57
5	.40806	.44697	2.2373	.91295	55		5	.42394	.46808	2.1364	.90569	56 55
6	833	732	.2355	283	54	H	6	420	843	.1348	557	54
7	860	767	.2338	272	53 52	П	7 8	446	879	.1332	545	53
8	886 913	802 837	.2320	$\frac{260}{248}$	51		9	473 499	914 950	.1315	532 520	52
10	.40939	.44872	2,2286	.91236	50	П	10	.42525	.46985	2.1283	.90507	51 50
11	966	907	.2268	224	49	П	11	552	.47021	.1267	495	49
12 13	.40992	$942 \\ .44977$.2251 .2234	$\frac{212}{200}$	48 47	Н	12 13	578 604	$056 \\ 092$.1251	483	48
14	045	.45012	.2216	188	46	ı	14	631	128	.1219	470 458	47 46
15	.41072	.45047	2.2199	.91176	45	П	15	.42657	.47163	2.1203	.90446	45
16	098	082	.2182	164	44	Н	$\frac{16}{17}$	683	199	.1187	433	44
17 18	$125 \\ 151$	$\begin{array}{c} 117 \\ 152 \end{array}$.2165	$\frac{152}{140}$	43 42	Н	18	709 736	$\frac{234}{270}$.1171	421 408	43 42
19	178	187	.2130	128	41	П	1 9	762	305	.1139	396	41
20	.41204	.45222	2.2113	.91116	40	Н	20	.42788	.47341	2.1123	.90383	40
$\frac{21}{22}$	$\frac{231}{257}$	$\frac{257}{292}$.2096	$\begin{array}{c} 104 \\ 092 \end{array}$	39 38	П	$\frac{21}{22}$	815 841	$\frac{377}{412}$.1107	371	39
$\frac{22}{23}$	284	327	.2062	080	37	l	23	867	448	.1092	358 346	38 37
24	310	362	.2045	068	36		24	894	483	.1060	334	36
25	.41337	.45397	2.2028	.91056	35	Н	25	.42920	.47519	2.1044	.90321	35
$\frac{26}{27}$	363 390	$\frac{432}{467}$.2011 .1994	$044 \\ 032$	34 33		26 27	946 972	555 590	.1028	309 296	34 33
28	416	502	.1977	020	32	ı	28	.42999	626	.0997	284	32
29	443	538	.1960	.91008	31	Н	29	.43025	662	.0981	271	31
30 31	.41469 496	.45573 608	2.1943 .1926	.90996 984	30 29	ı	30 31	.43051 077	.47698 733	2.0965 .0950	.90259	30
32	522	643	.1909	972	28		32	104	769	.0934	$\frac{246}{233}$	29 28
33	549	678	.1892	960	27	П	33	130	805	.0918	221	27
34 35	575	713 .45748	2.1876 2.1859	.90936	26 25	П	34 35	156	840	.0903	208	26
36	.41602 628	784	.1842	924	24	ı	36	.43182. 209	.47876 912	2.0887 .0872	.90196 183	25 24
37	655	819	.1825	911	23	1	37	235	948	.0856	171	23
38 39	681 707	854 889	.1808 .1792	899 887	$\frac{22}{21}$	ı	38 39	$\frac{261}{287}$.47984	.0840	158	22
40	.41734	.45924	2.1775	.90875	20	۱	40	.43313	.48055	.0825 2.0809	146	21 20
41	760	960	.1758	863	19	ı	41	340	091	.0794	.90133	19
42	787	.45995	.1742	851	18		42	366	127	.0778	108	18
43 44	813 840	.46030 065	.1725 .1708	839 826	17 16		43 44	392 418	163 198	.0763 .0748	095 082	17 16
45	.41866	.46101	2.1692	.90814	15	۱	45	.43445	.48234	2.0732	.90070	15
46	892	136	.1675	802	14		46	471	270	.0717	057	14
47 48	919 945	171 206	.1659 .1642	790 778	13 12	ı	47 48	497 523	$\frac{306}{342}$.0701	045 032	13 12
49	972	242	.1625	766	11		49	523 549	342 378	.0686	032	11
50	.41998	.46277	2.1609	.90753	10		50	.43575	.48414	2.0655	.90007	10
$\frac{51}{52}$.42024 051	312	.1592	741	9		51	602	450	.0640	.89994	9
53	077	348 383	.1576	729 717	8	۱	52 53	628 654	$\frac{486}{521}$.0625	981 968	8 7
54	104	418	.1543	704	6		54	680	557	.0594	956	6
55	.42130	.46454	2.1527	.90692	5		55	.43706	.48593	2.0579	.89943	5
56 57	156 183	$\frac{489}{525}$.1510	680 668	4 3		56 57	733 759	629 665	.0564	930 918	4 3
58	209	560	.1478	655	2	H	58	785	701	.0533	918	2
59	235	595	1461	643	1	١	59	811	737	.0518	892	1
60	.42262	.46631	2.1445	.90631	0	ı	60	.43837	.48773	2.0503	.89879	0
	Cos	Ctn	Tan	Sin	′	П		Cos	Ctn	Tan	Sin	1

0 43837 48773 20503 89879 60 1 45399 50953 1.9626 8 1 863 809 .0488 867 59 1 425 .50989 9.612 2 2 889 845 .0473 854 58 2 451 .51026 .9598 3 916 881 .0458 841 57 3 477 063 .9584 4 942 917 .0443 828 56 4 503 099 .9570 5 .43968 .48953 2.0428 .89816 55 5 .45529 .51136 1.9556 .8 6 .43994 .48989 .0413 803 54 6 554 173 .9542 .8 7 .44020 .49026 .0398 790 53 7 580 209 .9528 .8 8 046 062	os				G. • 1	7		Con	Ctn	Tions	C# 1	
1 863 809 .0488 867 59 1 425 .50989 .9612 88 2 451 .51026 .9598 3961 881 .0458 841 57 3 477 063 .9584 4 942 917 .0443 828 56 4 503 099 .9570 5 43968 .48989 2.0428 .89816 55 5 .45529 .51136 1.9556 .8 6 43994 .48989 .0413 803 54 6 .554 173 .9542 .8 7 .44020 .49026 .0398 790 53 7 580 209 .9528 8 8 046 062 .0383 777 52 8 606 246 .9514 .8 10 .44098 .49134 2.0353 .89752 50 10 .45658 .51319 .19486 .8 11 <t< th=""><th></th><th>1</th><th>Ctn</th><th>Tan</th><th></th><th></th><th>_</th><th></th><th></th><th></th><th></th><th></th></t<>		1	Ctn	Tan			_					
2 889 845 .0473 854 58 2 451 .51026 .9598 898 3 916 881 .0458 841 57 3 477 063 .9584 477 063 .9584 58 5 477 063 .9584 .9570 5 .43968 .48953 2.0428 .89816 55 5 .45529 .51136 1.9556 .8 6 .43994 .48989 .0413 803 54 6 .554 173 .9542 .8 046 062 .0383 777 52 8 606 246 .9514 .8 9 072 098 .0368 764 51 9 632 283 .9500 .9528 .8 10 .44098 .49134 2.0353 .89752 50 10 .45658 .51319 1.9486 .8 11 124 170 .0323 726 48 12 710	101 60											
3 916 881 .0458 841 57 3 477 063 .99584 4 942 917 .0443 828 56 4 503 099 .9570 5 .43998 .48989 .0413 803 54 6 555 .51136 1.9556 .8 6 .43994 .449989 .0413 803 54 6 554 173 .9542 .8 7 .44020 .49026 .0398 770 53 7 580 209 .9528 .8 8 046 062 .0383 777 52 8 606 246 .9514 .8 9 072 098 .0368 764 51 9 632 283 .9500 10 .44098 .49134 2.0353 .78752 50 10 .45658 .51319 1.9486 .8 11 124 170	087 59 074 58							854				
4 942 917 .0443 828 56 4 503 099 .9570 5 43968 .48953 2.0428 .89816 55 5 .45529 .51136 1.9556 8 6 .43994 .48989 .0413 803 54 6 554 173 .9528 .8 7 .44020 .49026 .0388 770 53 7 580 209 .9528 .8 9 072 098 .0368 764 51 9 632 283 .9500 10 .44098 .49134 2.0353 .89752 50 10 .45658 .51319 .19486 .8 11 124 170 .0338 739 49 11 684 356 .9472 12 151 206 .0323 726 48 12 713 47 13 736 430 .9472 14	061 57				477	3	57	841			916	3
6 43994 .48989 .0413 803 54 6 554 173 .9542 8 7 .44020 .49026 .0398 770 53 7 580 209 .9528 8 8 046 062 .0383 777 52 8 606 246 .9514 .8 9 072 098 .0368 764 51 9 632 283 .9500 10 .44098 .49134 2.0353 .89752 50 10 .45658 .51319 1.9486 .8 11 124 170 .0338 739 49 11 684 356 .9472 12 151 206 .0323 726 48 12 710 393 .9458 13 177 242 .0308 713 47 13 736 430 .9444 14 203 278315 .0293 <	048 56			099	503				1	- 1		
7 34020 .49026 .0398 790 53 7 580 209 .9528 .8 8 046 062 .0383 777 52 8 606 246 .9514 .8 9 072 098 .0368 764 51 9 632 283 .9500 10 .44098 .49134 2.0353 .89752 50 10 .45658 .51319 1.9486 .8 11 124 170 .0338 739 49 11 .684 356 .9472 13 177 242 .0308 713 47 13 736 430 .9444 14 203 278 .0293 700 46 14 762 467 .9430 15 .44229 .49315 2.0278 .89687 45 15 .45787 .51503 1.9416 .8 16 255 351 .0263 </td <td>035 55</td> <td></td>	035 55											
8 046 062 .0383 777 52 8 606 246 .9514 8 9 072 098 .0368 764 51 9 632 283 .9500 10 .44098 .49134 2.0353 .89752 50 10 .45658 .51319 1.9486 .8 11 124 170 .0338 739 49 11 684 356 .9472 12 151 206 .0323 726 48 12 710 393 .9458 13 177 242 .0308 713 47 13 736 430 .9444 14 203 278 .0293 700 46 14 762 467 .9430 15 .44229 .49315 2.0278 .89687 45 15 .45787 .51503 1.9416 .8 16 255 351 .0263 674	021 54											
9 072 098 .0368 764 51 9 632 283 .9500 10 .44098 .49134 2.0353 .89752 50 10 .46568 .51319 1.9486 8 11 124 170 .0338 739 49 11 684 356 .9472 12 151 206 .0323 726 48 12 710 393 .9458 13 177 242 .0308 713 47 13 736 430 .9444 14 203 278 .0293 700 46 14 762 467 .9430 15 .44229 .49315 2.0278 .89687 45 15 .45787 .51503 1.9416 .8 16 255 351 .0263 674 44 16 813 540 .9402 17 281 387 .0248 662 43 <td>3995 52</td> <td></td> <td></td> <td></td> <td></td> <td>8</td> <td>52</td> <td>777</td> <td>.0383</td> <td>062</td> <td>046</td> <td></td>	3995 52					8	52	777	.0383	062	046	
11 124 170 .0338 739 49 11 684 356 .9472 12 151 206 .0323 726 48 12 710 393 .9458 12 171 393 .9458 12 710 393 .9458 14 12 736 430 .9444 14 762 467 .9430 .9416 15 .44229 .49315 2.0278 .89687 45 15 .45787 .51503 1.9416 .8 16 255 351 .0263 674 44 16 .45787 .51503 1.9416 .8 17 839 577 .9388 18 307 423 .0233 649 42 18 865 614 .9375 .9361 19 33 459 .0219 636 41 19 891 .5168 1.9347 .8 21 .942 .24 .9375 19 33 459 .0219 636	981 51			283		- 1						9
12 151 206 .0323 726 48 12 710 393 .9458 13 177 242 .0308 713 47 13 736 430 .9444 14 203 278 .0293 700 46 14 762 467 .9430 15 .44229 .49315 2.0278 .89687 45 15 .45787 .51503 1.9416 .8 16 255 351 .0263 674 44 16 813 540 .9402 .9402 17 281 387 .0248 662 43 17 839 577 .9388 18 307 423 .0233 649 42 18 865 614 .9375 19 333 459 .0219 636 41 19 891 651 .9361 20 44359 .49495 2.0204 .89623 40	3968 50											
13 177 242 .0308 713 47 13 736 430 .9444 14 203 278 .0293 700 46 14 762 467 .9430 15 .44229 .49315 2.0278 .89687 45 15 .45787 .51503 1.9416 .8 16 255 351 .0263 674 44 16 813 540 .9402 17 281 387 .0248 662 43 17 839 577 .9388 18 307 423 .0233 649 42 18 865 614 .9375 19 333 459 .0219 636 41 19 891 651 .9361 20 .44359 .49495 2.0204 .89623 40 20 .45917 .51688 1.9347 .8 21 385 532 .0189 610 39<	955 49 942 48											
15 .44229 .49315 2.0278 .89687 45 15 .45787 .51503 1.9416 .8 16 255 351 .0263 674 44 16 813 540 .9402 17 281 387 .0248 662 43 17 839 577 .9388 18 307 423 .0233 649 42 18 865 614 .9375 19 333 459 .0219 636 41 19 891 651 .9361 20 .44359 .49495 2.0204 .89623 40 20 .45917 .51688 1.9347 .8 21 385 532 .0189 610 39 21 942 724 .9333 1.9347 .8 22 411 568 .0174 597 38 22 968 761 .9319 .9361 .9319 .9362 .9333	928 47				736		47	713	.0308	242		
16 255 351 .0263 674 44 16 813 540 .9402 17 281 387 .0248 662 43 17 839 577 .9388 18 307 423 .0233 649 42 18 865 614 .9375 19 333 459 .0219 636 41 19 891 651 .9361 20 .44359 .49495 2.0204 .89623 40 20 .45917 .51688 1.9347 .8 21 385 532 .0189 610 39 21 942 724 .9333 22 411 568 .0174 597 38 22 968 761 .9319 23 437 604 .0160 584 37 23 .45994 798 .9306 24 464 640 .0165 571 36 24 <	915 46	30	.943	467						-		
17 281 387 .0248 662 43 17 839 577 .9388 18 307 423 .0233 649 42 18 865 614 .9375 19 333 459 .0219 636 41 19 891 651 .9361 20 .44359 .49495 2.0204 .89623 40 20 .45917 .51688 1.9347 .8 21 385 532 .0189 610 39 21 942 724 .9333 .9322 22 411 568 .0174 597 38 22 968 761 .9319 23 437 604 .0160 584 37 23 .45994 798 .9306 24 464 640 .0145 571 36 24 .46020 835 .9292 25 .44490 .49677 2.0130 .89558 3	3902 45											
18 307 423 .0238 649 42 18 865 614 .9375 19 333 459 .0219 636 41 19 891 651 .9361 20 .44359 .49495 2.0204 .89623 40 20 .45917 .5168 1.9347 .8 21 385 532 .0189 610 39 21 942 724 .9333 22 411 568 .0174 597 38 22 968 761 .9319 23 437 604 .0160 584 37 23 .45994 798 .9306 24 464 640 .0145 571 36 24 .46020 835 .9292 25 .44490 .49677 2.0130 .89558 35 25 .46046 .51872 1.9278 .8 26 516 713 .0115 545 <t< td=""><td>888 44 875 43</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	888 44 875 43											
20 .44359 .49495 2.0204 .89623 40 20 .45917 .51688 1.9347 .8 21 385 532 .0189 610 39 21 942 724 .9333 .9322 .942 724 .9333 .9319 .936 .9329 .942 724 .9333 .9306 .936 .936 .936 .9394 798 .9306 .938 .922 .968 .9394 798 .9306 .936 .944 .94602 .835 .9292 .925 .44490 .49677 .20130 .89558 .85 .25 .46046 .51872 1.9278 .8 .8 .26 .712 .909 .9251 .9251 .9251 .9378 .8 .9251 .936 .9251 .936 .9251 .936 .9251 .9378 .936 .936 .9378 .936 .9378 .936 .9378 .9378 .936 .9378 .9378 .936 .9378 <	862 42					18	42	649	.0233	423		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	848 41	61	.936	651								19
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8835 40											
23 437 604 .0160 584 37 23 .45994 798 .9306 24 464 640 .0145 571 36 24 .46020 835 .9292 25 .44490 .49677 2.0130 .89558 35 25 .46046 .51872 1.9278 .8 26 516 713 .0115 545 34 26 072 909 .9265 27 .9278 .8 .9237 .9278 .8 .9251 .928 .9251 .928 .9251 .928 .9251 .928	822 39 808 38					$\frac{21}{22}$	38		.0174			
25 .44490 .49677 2.0130 .89558 35 25 .46046 .51872 1.9278 .8 26 516 713 .0115 545 34 26 072 909 .9265 27 542 749 .0101 532 33 27 097 946 .9251 28 568 786 .0086 519 32 28 123 .51983 .9237 29 594 822 .0072 506 31 29 149 .52020 .9223 30 .44620 .49858 2.0057 .89493 30 30 .46175 .52057 1.9210 .8	795 37	06	.930	798	.45994	23	37	584	.0160	604	437	
26 516 713 .0115 545 34 26 072 909 .9265 27 542 749 .0101 532 33 27 097 946 .9251 28 568 786 .0086 519 32 28 123 .51983 .9237 29 594 822 .0072 506 31 29 149 .52020 .9223 30 .44620 .49858 2.0057 .89493 30 30 .46175 .52057 1.9210 .8	782 36											
27	3768 35	78	1.92									
28	755 34 741 33	51	.920		072							
30 .44620 .49858 2.0057 .89493 30 30 . 46175 .52057 1.9210 .8	728 32	37	.923	.51983	123	28	32	519	.0086	786	568	
	715 31	. 1		1	•							
	8701 30 688 29											
32 672 931 .0028 467 28 32 226 131 .9183	674 28											
33 698 .49967 2.0013 454 27 33 252 168 .9169	661 27	69	.910		252		27	454		.49967	698	33
34 724 .50004 1.9999 441 26 34 278 205 .9155	647 26	- 1	1									
35 .44750 .50040 1.9984 .89428 25 35 .46304 .52242 1.9142 .89428 .9970 .415 .44 .36 .330 .279 .9128	8634 25 620 24											
37 802 113 .9955 402 23 37 355 316 .9115	607 23	15	.91	316	355	•37	23	402	.9955	113		
38 828 149 .9941 389 22 38 381 353 .9101 .9948 .9926 376 21 39 407 390 .9088	593 22 580 21											
90 902 200 10000	8566 20											
40 .44880 .50222 1.9912 .89363 20 40 .46433 .52427 1.9074 .8 41 906 258 .9897 350 19 41 458 464 .9061	553 19				458							
42 932 295 .9883 337 18 42 484 501 .9047	539 18	47	.90	501	484	42	18	337	.9883			42
43 958 331 .9868 324 17 43 510 538 .9034 44 .44984 368 .9854 311 16 44 536 575 .9020	526 17 512 16	34	.90		510							
	8499 15			4								
46 036 441 9825 285 14 46 587 650 8993	485 14	93	.89	650			14					
47 062 477 .9811 272 13 47 613 687 .8980	472 13				613	47	13	272	.9811	477	062	47
48 088 514 .9797 259 12 48 639 724 .8967 49 114 550 .9782 245 11 49 664 761 .8953	458 12 445 11											
	8431 10				1							
51 166 623 .9754 219 9 51 716 836 .8927	417 9	27	.89	-836	716	51	9	219		623		
52 192 660 .9740 206 8 52 742 873 .8913	404 8 390 7						8	206	.9740	660	192	52
53 218 696 .9725 193 7 53 767 910 .8900 54 243 733 .9711 180 6 54 793 947 .8887	377 6						6				218	
101 220 100 10.22 200 0 10.2	8363 5	- 1	1	_	1							
56 295 806 9683 153 4 56 844 53022 8860	349 4	360	.88	.53022	844		4	153				
57 321 843 .9669 140 3 57 870 059 .8847	336 3 322 2 308 1						3		.9669	843	321	57
58 347 879 .9654 127 2 58 896 096 .8834 59 373 916 .9640 114 1 59 921 134 .8820	308 1											
			1		1				1			
Cos Ctn Tan Sin Cos Ctn Tan	8295 0	SU7 1	1.00	1.00111	.40947							

63° 62°

7	Sin	Tan	Ctn	Cos	Ī	7	7	Sin			ĹΠ	
<u></u>			1.6003		60	ł	6				Cos	<u> </u>
0	.52992 .53017	.62487 527	.5993	.84805 789	59	ı	Ĭ	.54464 488	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.5399 .5389	.83867 851	60
2	041	568	.5983	774	58	ı	2	513	.65024	.5379	835	59 58
3	066	608	.5972	759 743	57	ı	3	537	065	.5369	819	57
4 5	.53115	649	1.5962	.84728	56 55	ı	4 5	561	106	.5359	804	56
6	140	.62689 730	.5941	712	54	ı	6	.54586 610	.65148 189	1.5350 .5340	.83788 772	55
7	164	770	.5931	697	53	ı	7	635	231	.5330	756	54 53
8	189	811	.5921	681	52		8 9	659	272	.5320	740	52
10	214	852	.5911	666	51 50		10	683	314	.5311	724	51
11	.53238 263	.62892 933	1.5900 .5890	.84650 635	49		11	.54708 732	.65355 397	1.5301 .5291	.83708 692	50
12	288	.62973	.5880	619	48		12	756	438	.5282	676	49 48
13	312	.63014	.5869	604	47	П	13	781	480	.5272	660	47
14 15	337 .53361	.63095	.5859 1.5849	588	46 45		14 15	805	521	.5262	645	46
16	386	136	.5839	.84573 557	44		16	.54829 854	.65563 604	1.5253 .5243	.83629 613	45
17	411	177	.5829	542	43		17	878	646	.5233	597	44 43
18	435	217	.5818	526	42		18	902	688	.5224	581	42
19 20	460	258	.5808	511	41 40	ı	19	927	729	.5214	565	41
21	.53484 509	.63299 340	1.5798 .5788	.84495 480	39	П	20 21	.54951 975	.65771 813	1.5204 .5195	.83549 533	40
22	534	380	.5778	464	38	П	22	.54999	854	.5185	517	39 38
23	558	421	.5768	448	37	Н	23	.55024	896	.5175	501	37
24 25	583 .53607	462	.5757	433	36 35	П	24	048	938	.5166	485	36
26 26	632	.63503 544	1.5747 .5737	.84417 402	34	Н	25 26	.55072 097	.65980 .66021	1.5156	.83469 453	35
27	656	584	.5727	386	33	Н	27	121	063	.5137	437	34 33
28 29	681	625	.5717	370	32	П	28	145	105	.5127	421	32
30	705	666	.5707	355	31 30	П	29 30	169	147	.5118	405	31
31	$\begin{bmatrix} .53730 \\ 754 \end{bmatrix}$.63707 748	1.5697 .5687	.84339 324	29	Н	31	.55194	.66189 230	1.5108 .5099	.83389 373	30 29
32	779	789	.5677	308	28	П	32	242	272	.5089	356	28
33 34	804 828	830 871	.5667	$\frac{292}{277}$	27 26	ı	33	266	314	.5080	340	27
35	.53853	.63912	1.5647	.84261	25	ı	34 35	291	356	.5070	324	26
36	877	953	.5637	= 245	24	Н	36	.55315 339	.66398 440	1.5061 .5051	.83308 292	25 24
37	902	.63994	.5627	230	23	ı	37	363	482	.5042	276	23
38 39	926 951	.64035 076	.5617 .5607	214 198	22 21	П	38 39	$\frac{388}{412}$	524	.5032	260	22
40	.53975	.64117	1.5597	.84182	20		40	.55436	.66608	.5023 1.5013	.83228	21 20
41	.54000	158	.5587	167	19	ı	41	460	650	.5004	212	19
42	024	199	.5577	151	18	П	42	484	692	.4994	195	18
43 44	049 073	240 281	.5567 .5557	135 120	17 16	П	43 44	509 533	734 776	.4985 .4975	179	17
45	.54097	.64322	1.5547	.84104	15	۱	45	.55557	.66818	1.4966	163 .83147	16 15
46	122	363	.5537	088	14		46	581	860	.4957	131	14
47 48	146	404	.5527	072	13	١	47	605	902	.4947	115	13
48	171 195	446 487	.5517	$057 \\ 041$	$\frac{12}{11}$	١	48 49	630 654	944 .66986	.4938 .4928	098 082	12 11
50	.54220	.64528	1.5497	.84025	10	j	50	.55678	.67028	1.4919	.83066	10
51	244	569	.5487	.84009	9		51	702	071	.4910	050	9
52 53	269 293	610 652	.5477 .5468	.83994 978	8	1	52 53	726	113	.4900	034	8
54	317	693	.5458	978 962	6	1	54	750 775	155 197	.4891 .4882	.83001	7
55	.54342	.64734	1.5448	.83946	5	1	55	.55799	.67239	1.4872	.82985	5
56	366	775	.5438	930	4		56	823	282	.4863	969	4
57 58	391 415	817 858	.5428 .5418	915 899	3 2	١	57	847	324	.4854	953	3
59	440	899	.5408	883	1	١	58 59	871 895	366 409	.4844	936 920	2 1
60	.54464	.64941	1.5399	.83867	õ	١	60	.55919	.67451	1.4826	.82904	ô
	Cos	Ctn	Tan	Sin	$\overline{}$	ľ		Cos	Ctn	Tan	Sin	

[Sin	Tan	Ctn	Cos			1	Sin	Tan	Ctn	Cos	7
0	.55919	.67451	1.4826	.82904	60		0	.57358	.70021	1.4281	.81915	60
$\begin{array}{ c c }\hline 1\\ 2\end{array}$	943 968	493 536	.4816 .4807	887 871	59 58		$\frac{1}{2}$	381 405	064 107	.4273 .4264	899 882	59
3	.55992	578	.4798	855	57	ı	3	429	151	.4255	865	58 57
4	.56016	620	.4788	839	56	ı	4	453	194	.4246	848	56
5	.56040 064	.67663 705	1.4779 .4770	.82822 806	55 54	ı	5	.57477 501	.70238 281	1.4237 $.4229$.81832 815	55 54
7	088	748	.4761	790	53	١	7	524	325	.4220	798	53
8	112 136	790 832	.4751 .4742	773 757	52 51	١	8	548 572	368 412	.4211 .4202	782 765	52
10	.56160	.67875	1.4733	.82741	50	١	10	.57596	.70455	1.4193	.81748	51 50
11	184	917	.4724	724	49	١	11	619	499	.4185	731	49
$\frac{12}{13}$	$\frac{208}{232}$.67960 .68002	.4715 .4705	708 692	48 47	ı	12 13	643 667	542 586	.4176 .4167	714 698	48 47
14	256	045	.4696	675	46	١	14	691	629	.4158	681	46
15	.56280	.68088	1.4687	.82659	45	١	15	.57715	.70673	1.4150	.81664	45
16 17	305 329	130 173	.4678 .4669	643 626	44 43	١	16 17	738 762	717 760	.4141 .4132	647 631	44 43
18	353	215	.4659	610	42		18	786	804	.4124	614	42
19	377	258	.4650	593	41	ı	19	810	848	.4115	597	41
20 21	$56401 \\ 425$.68301 343	1.4641 .4632	.82577 $.561$	40 39	I	20 21	.57833 857	.70891 935	1.4106 .4097	.81580 563	40 39
22	449	386	.4623	544	38	Н	22	881	.70979	.4089	546	38
$\frac{23}{24}$	473 497	$\frac{429}{471}$.4614 .4605	528 511	37 36	ı	23 24	904 928	.71023 066	.4080 .4071	530 513	37 36
25	.56521	.68514	1.4596	.82495	35		25	.57952	.71110	1.4063	.81496	35
26	545	557	.4586	478	34	ı	26	976	154	.4054	479	34
$\frac{27}{28}$	569 593	$\frac{600}{642}$.4577 .4568	462 446	33 32	П	$\frac{27}{28}$.57999	198 242	.4045	$\frac{462}{445}$	33 32
29	617	685	.4559	429	31	Н	29	047	285	.4028	428	31
30	.56641 665	.68728 771	1.4550 .4541	.82413 396	30 29	П	30 31	.58070 094	.71329 373	1.4019 .4011	.81412 395	30 29
$\frac{31}{32}$	689	814	.4532	380	28	П	$\frac{31}{32}$	118	417	.4002	378	28
33	713	857 900	.4523 .4514	363 347	27 26	Н	33 34	141 165	461 505	.3994	361 344	27 26
34 35	736 .56760	.68942	1.4505	.82330	25	Н	35	.58189	.71549	1.3976	.81327	25
36	784	.68985	.4496	314	24	H	36	212	593	.3968	310	24
37 38	808 832	.69028 071	.4487 .4478	297 281	23 22	ı	37 38	236 260	637	.3959	293 276	$\frac{23}{22}$
39	856	114	.4469	264	21		39	283	725	.3942	259	$\tilde{21}$
40	.56880	.69157	1.4460	.82248	20	П	40	.58307	.71769	1.3934	.81242 225	20
$\frac{41}{42}$	904 928	$\begin{array}{c c} 200 \\ 243 \end{array}$.4451	$^{-231}_{214}$	19 18		$\frac{41}{42}$	330 354	813 857	.3925	225	19 18
43	952	286	.4433	198	17	ı	43	378	901	.3908	191	179
44 45	.56976	329	1.4424	.82165	16 15	ı	44 45	401 .58425	946 .71990	.3899 1.3891	.81157	16 15
46	.57000 024	.69372 416	.4406	148	14	l	46	449	.72034	.3882	140	14
47	047	459	.4397	132	13 12		47	472 496	078 122	.3874	123 106	13 12
48. 49	071 095	502 545	.4388 .4379	115 098	11	H	48 49	519	167	.3857	089	11
50	.57119	.69588	1.4370	.82082	10		50	.58543	.72211	1.3848	.81072	10
51	143	631	.4361 .4352	065 048	9	l	51 52	567 590	255 299	.3840 .3831	055 038	9
52 53	167 191	675 718	.4352	032	8 7		53	614	344	.3823	021	8 7 6
54	215	761	.4335	.82015	6	l	54	637	388	.3814	.81004	6 5
55	.57238 262	.69804 847	1.4326 .4317	.81999 982	5 4	۱	55	.58661 684	.72432 477	1.3806	.80987 970	4
57	286	891	.4308	965	3		57	708	521	.3789	953	3 2
58 59	310 334	934	.4299 .4290	949 932	2		58 59	731 755	565 610	3781	936 919	$\begin{bmatrix} 2 \\ 1 \end{bmatrix}$
60	.57358	.70021	1.4281	.81915	٥		60	.58779	.72654	1.3764	.80902	ō
٣	Cos	Ctn	Tan	Sin	Ť	L		Cos	Ctn	Tan	Sin	1
	1 008	Om	, Lan	, Dane	•	•		, 500	, , ,			

40	/ G:										7"
Ľ	Sin	Tan	Ctn	Cos	_	-		Sin	Tan	Ctn	Cos
0 1 2 3 4	.58779 802 826 849 873	.72654 699 743 788 832	1.3764 .3755 .3747 .3739 .3730	.80902 885 867 850 833	59 58 57 56		0 1 2 3 4	.60182 205 228 251 274	.75355 401 447 492 538	1.3270 .3262 .3254 .3246 .3238	.79864 846 829 811
5	.58896	.72877	1.3722	.80816	55		5	.60298	.75584	1.3230	793
6	920	921	.3713	799	54		6	321	629	.3222	.79776
7	943	.72966	.3705	782	53		7	344	675	.3214	758
8	967	.73010	.3697	765	52		8	367	721	.3206	741
9	.58990	055	.3688	748	51		9	390	767	.3198	723
10 11 12 13 14	.59014 037 061 084 108	.73100 144 189 234 278	1.3680 .3672 .3663 .3655 .3647	.80730 713 696 679 662	50 49 48 47 46		10 11 12 13 14	.60414 437 460 483 506	.75812 858 904 950 .75996	1.3190 .3182 .3175 .3167 .3159	706 .79688 671 653 635 618
15	.59131	.73323	1.3638	.80644	45		15	.60529	.76042	1.3151	.79600
16	154	368	.3630	627	44		16	553	088	.3143	583
17	178	413	.3622	610	43		17	576	134	.3135	565
18	201	457	.3613	593	42		18	599	180	.3127	547
19	225	502	.3605	576	41		19	622	226	.3119	530
20	.59248	.73547	1.3597	.80558	40		20	.60645	.76272	1.3111	.79512
21	272	592	.3588	541	39		21	668	318	.3103	494
22	295	637	.3580	524	38		22	691	364	.3095	477
23	318	681	.3572	507	37		23	714	410	.3087	459
24	342	726	.3564	489	36		24	738	456	.3079	441
25	.59365	.73771	1.3555	.80472	35		25	.60761	.76502	1.3072	.79424
26	389	816	.3547	455	34		26	784	548	.3064	406
27	412	861	.3539	438	33		27	807	594	.3056	388
28	436	906	.3531	420	32		28	830	640	.3048	371
29	459	951	.3522	403	31		29	853	686	.3040	353
30	.59482	.73996	1.3514	.80386	30		30	.60876	.76733	1.3032	.79335
31	506	.74041	.3506	368	29		31	899	779	.3024	318
32	529	086	.3498	351	28		32	922	825	.3017	300
33	552	131	.3490	334	27		33	945	871	.3009	282
34	576	176	.3481	316	26		34	968	918	.3001	264
35	.59599	.74221	1.3473	.80299	25		35	.60991	.76964	1.2993	.79247
36	622	267	.3465	282	24		36	.61015	.77010	.2985	229
37	646	312	.3457	264	23		37	038	057	.2977	211
38	669	357	.3449	247	22		38	061	103	.2970	193
39	693	402	.3440	230	21		39	084	149	.2962	176
40	.59716	.74447	1.3432	.80212	20		40	.61107	.77196	1.2954	.79158
41	739	492	.3424	195	19		41	130	242	.2946	140
42	763	538	.3416	178	18		42	153	289	.2938	122
43	786	583	.3408	160	17		43	176	335	.2931	105
44	809	628	.3400	143	16		44	199	382	.2923	087
45	.59832	.74674	1.3392	.80125	15		45	.61222	.77428	1.2915	.79069
46	856	719	.3384	108	14		46	245	475	.2907	051
47	879	764	.3375	091	13		47	268	521	.2900	033
48	902	810	.3367	073	12		48	291	568	.2892	.79016
49	926	855	.3359	056	11		49	314	615	.2884	.78998
50	.59949	.74900	1.3351	.80038	10		50	.61337	.77661	1.2876	.78980
51	972	946	.3343	021	9		51	360	708	.2869	962
52	.59995	.74991	.3335	.80003	8		52	383	754	.2861	944
53	.60019	.75037	.3327	.79986	7		53	406	801	.2853	926
54	042	082	.3319	968	6		54	429	848	.2846	908
55	.60065	.75128	1.3311	.79951	5		55	.61451	.77895	1.2838	.78891
56	089	173	.3303	934	4		56	474	941	.2830	873
57	112	219	.3295	916	3		57	497	.77988	.2822	855
58	135	264	.3287	899	2		58	520	.78035	.2815	837
59	158	310	.3278	881	1		59	543	082	.2807	819
60	.60182	.75355	1.3270	.79864	0		60	.61566	.78129	1.2799	.78801
Щ.	Cos	Ctn	Tan	Sin		L		Cos	Ctn	Tan	Sin

117				~ ~ ~ ~ ~ ~	,			~		<u> </u>	~ ,	_
Ľ	Sin	Tan	Ctn	Cos		1		Sin	Tan	Ctn	Cos	_
0	.61566	.78129	1.2799	.78801	60	1	0	.62932	.80978 .81027	1.2349	.77715 696	60 59
$\frac{1}{2}$	589 612	$\frac{175}{222}$.2792 $.2784$	783 765	59 58		$\frac{1}{2}$	$955 \\ .62977$	075	.2334	678	58
3	635	269	.2776	747	57		3	.63000	123	.2327	660	57
4	658	316	.2769	729	56		4	022	171	.2320	641	56 55
5	.61681	.78363 410	$1.2761 \\ .2753$.78711 694	55 54	ı	5	.63045 068	.81220 268	1.2312	.77623 605	54
6 7	704 726	457	.2746	676	53	П	7	090	316	.2298	586	53
8	749	504	.2738	658	52	П	8	113	364	.2290	568	52
9	772	551	.2731	640	51 50		9 10	135 .63158	413 .81461	0.2283 1.2276	550 .77531	51 50
10	.61795 818	.78598 645	1.2723 .2715	$.78622 \\ 604$	49	П	11	180	510	.2268	513	49
11 12	841	692	.2708	586	48	Ш	12	203	558	.2261	494	48
13	864	739	.2700	568 550	47 46		13 14	$\frac{225}{248}$	606 655	.2254	476 458	47 46
14	887	786 .78834	.2693 1.2685	.78532	45		15	.63271	.81703	1.2239	.77439	45
15 16	.61909 932	881	.2677	514	44	ı	16	293	752	.2232	421	44
17	955	928	.2670	496	43	l	17	316	800	.2225 .2218	402 384	43 42
18		.78975 .79022	.2662	478 460	42 41	l	18 19	338 361	849 898	.2218	366	41
19 20	1	.79070	1.2647	.78442	40	ŀ	20	.63383	.81946	1.2203	.77347	40
21		117	.2640	424	39	١	21	406	.81995	.2196	329	39
22	069	164	.2632	405 387	38 37	l	$\frac{22}{23}$	428 451	.82044 092	.2189 .2181	$\frac{310}{292}$	38 37
23 24		212 259	.2624	369	36	l	$\frac{23}{24}$	473	141	.2174	273	36
25	1	.79306	1.2609	.78351	35	۱	25	.63496	.82190	1.2167	.77255	35
26	160	354	.2602	333	34	l	$\frac{26}{27}$	518	238 287	.2160	236 218	34 33
27		401 449	.2594	315 297	33	l	28	540 563	336	.2145	199	32
28 29		496	2579	279	31	l	29	585	385	.2138	181	31
30		.79544	1.2572	.78261	30	l	30	.63608		1.2131 .2124	.77162 144	30 29
3.		591 639	.2564	243 225	29 28	١	$\frac{31}{32}$	630 653		.2117	125	28
33			.2549	206	27	١	33	675	580		107	27
34		734	.2542	188	1	١	34	698	1	1	77070	26 25
3			1.2534	.78170 152			35	.63720 742		.2088	051	24
3		829 877		134	23	ı	37	765	776	.2081	033	$\begin{vmatrix} 23 \\ 22 \end{vmatrix}$
3	8 433	924	.2512	116			38 39	787 810			.77014 .76996	$\frac{22}{21}$
3		1		78079			40		1		.76977	20
4							41	854	.82972	.2052	959	19
4			.2482	043	18		42				940 921	18 17
4	3 547						43 44				1	16
4		1					45	8	.83169	1.2024	.76884	15
4				970	14		46	966	$3 \mid 218$		866 847	
. 4	7 638	354	.2445				47 48					
	8 666	402 3 450	$\begin{array}{c c} 24.37 \\ 24.30 \\ 2430 \end{array}$				49				810	11
	0 .6270		1				50					
5	72	3 546	.2415	879	9 9)	51 52					9 8
5	2 75					?	52 53	12	3 56	.1967	738	7
	3 77- 4 79				4 (3	54	14.		1 :		
	6281	1	3 1.2386	.7780		5	55			$\begin{bmatrix} 2 & 1.1953 \\ 2 & .1946 \end{bmatrix}$		4
- 18	66 84	2 78			8 4	3	57	,		1 .1939	66	1 3
	57 86 58 88				11:	2	58	3 23	4 81	1 .193		
	90		0 .235	3 73	~ I	1	59		- 1	1	1 .	
	.6293	2 .8097	8 1.2349	_		<u>)</u>	60				Sin	7
	` Cos	Ctn	Tan	Sin	1		١L	Cos	Ctn	Tan	1 13111	

51° 50°

-	1 6:	-	7	7	/ Sin Ton Ctn C							
_	Sin	Tan	Ctn	Cos	_	l	_	Sin	Tan	Ctn	Cos	
0 1 2 3	301 323 346	.83910 .83960 .84009 059	1.1918 .1910 .1903 .1896	.76604 586 567 548	59 58 57		0 1 2 3	.65606 628 650 672	.86929 .86980 .87031 082	1.1504 .1497 .1490 .1483	.75471 452 433 414	60 59 58 57
4 5 6 7 8	368 .64390 412 435 457	108 .84158 208 258 307	.1889 1.1882 .1875 .1868 .1861	530 .76511 492 473 455	56 55 54 53 52		4 5 6 7 8	694 .65716 738 759 781	.87184 .236 287 338	.1477 1.1470 .1463 .1456 .1450	395 .75375 356 337 318	56 55 54 53
9 10 11 12 13	479 .64501 524 546 568	357 .84407 457 507 556	.1854 1.1847 .1840 .1833 .1826	436 .76417 398 380 361	51 50 49 48 47		9 10 11 12 13	803 .65825 847 869 891	389 .87441 492 543 595	1.1443 1.1436 1.1430 1.1423 1.1416	299 .75280 261 241 222	52 51 50 49 48 47
14 15 16 17 18 19	590 .64612 635 657 679 701	.84656 706 756 806 856	.1819 1.1812 .1806 .1799 .1792 .1785	342 .76323 304 286 267 248	46 45 44 43 42 41		14 15 16 17 18 19	913 .65935 956 .65978 .66000	646 .87698 749 801 852	1.1410 1.1403 .1396 .1389 .1383	203 .75184 165 146 126	46 45 44 43 42
20 21 22 23 24	.64723 746 768 790 812	.84906 .84956 .85006 057 107	1.1778 1.1778 .1771 .1764 .1757 .1750	.76229 210 192 173 154	41 40 39 38 37 36		20 21 22 23 24	022 .66044 066 088 109 131	904 .87955 .88007 059 110 162	1.1376 1.1369 .1363 .1356 .1349 .1343	107 .75088 069 050 030 .75011	41 40 39 38 37 36
25 26 27 28 29	.64834 856 878 901 923	.85157 207 257 308 358	1.1743 .1736 .1729 .1722 .1715	.76135 116 097 078 059	35 34 33 32 31		25 26 27 28 29	.66153 175 197 218 240	.88214 265 317 369 421	1.1336 .1329 .1323 .1316 .1310	.74992 973 953 934 915	35 34 33 32 31
30 31 32 33 34	.64945 967 .64989 .65011 033	.85408 458 509 559 609	1.1708 .1702 .1695 .1688 .1681	.76041 022 .76003 .75984 965	30 29 28 27 26		30 31 32 33 34	.66262 284 306 327 349	.88473 524 576 628 680	1.1303 .1296 .1290 .1283 .1276	.74896 876 857 838 818	30 29 28 27 26
35 36 37 38 39	.65055 077 100 122 144	.85660 710 761 811 862	1.1674 .1667 .1660 .1653 .1647	.75946 927 908 889 870	25 24 23 22 21		35 36 37 38 39	.66371 393 414 436 458	.88732 784 836 888 940	1.1270 .1263 .1257 .1250 .1243	.74799 780 760 741 722	25 24 23 22 21
40 41 42 43 44	.65166 188 210 232 254	.85912 .85963 .86014 064 115	1.1640 .1633 .1626 .1619 .1612	.75851 832 813 794 775	20 19 18 17 16		40 41 42 43 44	.66480 501 523 545 566	.88992 .89045 097 149 201	1.1237 .1230 .1224 .1217 .1211	.74703 683 664 644 625	20 19 18 17 16
45 46 47 48 49	.65276 298 320 342 364	.86166 216 267 318 368	1.1606 .1599 .1592 .1585 .1578	.75756 738 719 700 680	15 14 13 12 11		45 46 47 48 49	.66588 610 632 653 675	.89253 306 358 410 463	1.1204 .1197 .1191 .1184 .1178	.74606 586 567 548 528	15 14 13 12 11
50 51 52 53 54	.65386 408 430 452 474	.86419 470 521 572 623	1.1571 .1565 .1558 .1551 .1544	.75661 642 623 604 585	10 9 8 7 6	The second second second	50 51 52 53 54	.66697 718 740 762 783	.89515 567 620 672 725	1.1171 .1165 .1158 .1152 .1145	.74509 489 470 451 431	10 9 8 7 6
55 56 57 58 59	.65496 518 540 562 584	.86674 725 776 827 878	1.1538 .1531 .1524 .1517 .1510	.75566 547 528 509 490	5 4 3 2 1		55 56 57 58 59	.66805 827 848 870 891	.89777 830 883 935 .89988	1.1139 .1132 .1126 .1119 .1113	.74412 392 373 353 334	5 4 3 2
60	.65606 Cos	.86929 Ctn	1.1504 Tan	.75471 Sin	0		60	.66913 Cos	.90040 Ctn	1.1106	.74314 Sin	٥
	- J.	VUL	1 all	ामच		1		COS	UIN	Tan	oin	٠ ا

	values of Trigonometric Functions — 43°								43			
إــٰـا	Sin	Tan	Ctn	Cos	_	L	_	Sin	Tan	Ctn	Cos	
0 1 2 3 4	.66913 935 956 978 .66999	.90040 093 146 199 251	1.1106 .1100 .1093 .1087 .1080	.74314 295 276 256 237	59 58 57 56		0 1 2 3 4	.68200 221 242 264 285	.93252 306 360 415 469	1.0724 .0717 .0711 .0705 .0699	.73135 116 096 076 056	60 59 58 57 56
5 6789	.67021 043 064 086 107	.90304 357 410 463 516	1.1074 .1067 .1061 .1054 .1048	.74217 198 178 159 139	55 54 53 52 51		5 6 7 8 9	.68306 327 349 370 391	.93524 578 633 688 742	1.0692 .0686 .0680 .0674 .0668	.73036 .73016 .72996 976 957	55 54 53 52 51
10	.67129	.90569	1.1041	.74120	50		10	.68412	.93797	1.0661	.72937	50
11	151	621	.1035	100	49		11	434	852	.0655	917	49
12	172	674	.1028	080	48		12	455	906	.0649	897	48
13	194	727	.1022	061	47		13	476	.93961	.0643	877	47
14	215	781	.1016	041	46		14	497	.94016	.0637	857	46
15 16 17 18 19	.67237 258 280 301 323	.90834 887 940 .90993 .91046	1.1009 .1003 .0996 .0990 .0983	.74022 .7400 2 .73983 963 944	45 44 43 42 41		15 16 17 18	.68518 539 561 582 603	.94071 125 180 235 290	1.0630 .0624 .0618 .0612 .0606	.72837 817 797 777 757	45 44 43 42 41
20 21 22 23 24	.67344 366 387 409 430	.91099 153 206 259 313	1.0977 .0971 .0964 .0958 .0951	.73924 904 885 865 846	40 39 38 37 36		20 21 22 23 24	.68624 645 666 688 709	.94345 400 455 510 565	1.0599 .0593 .0587 .0581	.72737 717 697 677 657	40 39 38 37 36
25	.67452	.91366	1.0945	.73826	35		25	.68730	.94620	1.0569	.72637	35
26	473	419	.0939	806	34		26	751	676	.0562	617	34
27	495	473	.0932	787	33		27	772	731	.0556	597	33
28	516	526	.0926	767	32		28	793	786	.0550	577	32
29	538	580	.0919	747	31		29	814	841	.0544	557	31
30	.67559	.91633	1.0913	.73728	30		30	.68835	.94896	1.0538	.72537	30
31	580	687	.0907	708	29		31	857	.94952	.0532	517	29
32	602	740	.0900	688	28		32	878	.95007	.0526	497	28
33	623	794	.0894	669	27		33	899	062	.0519	477	27
34	645	847	.0888	649	26		34	920	118	.0513	457	26
35	.67666	.91901	1.0881	.73629	25		35	.68941	.95173	1.0507	.72437	25
36	688	.91955	.0875	610	24		36	962	229	.0501	417	24
37	709	.92008	.0869	590	23		37	.68983	284	.0495	397	23
38	730	062	.0862	570	22		38	.69004	340	.0489	377	22
39	752	116	.0856	551	21		39	025	395	.0483	357	21
40	.67773	.92170	1.0850	.73531	20		40	.69046	.95451	1.0477	.72337	20
41	795	224	.0843	511	19		41	067	506	.0470	317	19
42	816	277	.0837	491	18		42	088	562	.0464	297	18
43	837	331	.0831	472	17		43	109	618	.0458	277	17
44	859	385	.0824	452	16		44	130	673	.0452	257	16
45	.67880	.92439	1.0818	.73432	15		45	.69151	.95729	1.0446	.72236	15
46	901	493	.0812	413	14		46	172	785	.0440	216	14
47	923	547	.0805	393	13		47	193	841	.0434	196	13
48	944	601	.0799	373	12		48	214	897	.0428	176	12
49	965	655	.0793	353	11		49	235	.95952	.0422	156	11
50	.67987	.92709	1.0786	.73333	10	$\ \ $	50	.69256	.96008	1.0416	.72136	10
51	.68008	763	.0780	314	9		51	277	064	.0410	116	9
52	029	817	.0774	294	8		52	298	120	.0404	095	8
53	051	872	.0768	274	7		53	319	176	.0398	075	7
54	072	926	.0761	254	6		54	340	232	.0392	055	6
55	.68093	.92980	1.0755	.73234	5		55	.69361	.96288	1.0385	.72035	5
56	115	.93034	.0749	215	4		56	382	344	.0379	.72015	4
57	136	088	.0742	195	3		57	403	400	.0373	.71995	3
58	157	143	.0736	175	2		58	424	457	.0367	974	2
59	179	197	.0730	155	1		59	445	513	.0361	954	1
60	.68200	.93252	1.0724	.73135	0		60	.69466	.96569	1.0355	.71934	0
<u></u>	Cos	Ctn	Tan	Sin	′	١L		Cos	Ctn	Tan	Sin	<u>L'</u>

47° 46°

, ,			Зопош	eure r	un
<u></u>	Sin	Tan	Ctn	Cos	_
0 1 2 3 4	.69466 487 508 529 549	.96569 625 681 738 794	1.0355 .0349 .0343 .0337	.71934 914 894 873 853	60 59 58 57 56
5 67 8 9	.69570	.96850	1.0325	.71833	55
	591	907	.0319	813	54
	612	.96963	.0313	792	53
	633	.97020	.0307	772	52
	654	076	.0301	752	51
10	.69675	.97133	1.0295	.71732	50
11	696	189	.0289	711	49
12	717	246	.0283	691	48
13	737	302	.0277	671	47
14	758	359	.0271	650	46
15	.69779	.97416	1.0265	.71630	45
16	800	472	.0259	610	44
17	821	529	.0253	590	43
18	842	586	.0247	569	42
19	862	643	.0241	549	41
20	.69883	.97700	1.0235	.71529	40
21	904	756	.0230	508	39
22	925	813	.0224	488	38
23	946	870	.0218	468	37
24	966	927	.0212	447	36
25	-69987	.97984	1.0206	.71427	35
26	.70008	.98041	.0200	407	34
27	029	098	.0194	386	33
28	049	155	.0188	366	32
29	070	213	.0182	345	31
30	.70091	.98270	1.0176	.71325	30
31	112	327	.0170	305	29
32	132	384	.0164	284	28
33	153	441	.0158	264	27
34	174	499	.0152	243	26
35	.70195	.98556	1.0147	71223	25
36 37 38 39 40	215 236 257 277	613 671 728 786	.0141 .0135 .0129 .0123	.71223 203 182 162 141	24 23 22 21
41 42 43 44	.70298 319 339 360 381	.98843 901 .98958 .99016 073	1.0117 .0111 .0105 .0099 .0094	.71121 100 080 059 039	19 18 17 16
45	.70401	.99131	1.0088	.71019	15
46	422	189	.0082	.70998	14
47	443	247	.0076	978	13
48	463	304	.0070	957	12
49	484	362	.0064	937	11
50 51 52 53 54	.70505 525 546 567 587	.99420 478 536 594 652	1.0058 .0052 .0047 .0041 .0035	.70916 896 875 855 834	10 9876
55	.70608	.99710	1.0029	.70813	5
56	628	768	.0023	793	4
57	649	826	.0017	772	3
58	670	884	.0012	752	2
59	690	.99942	.0006	731	1
60	.70711 Cos	1.0000 Ctn	1.0000	.70711	<u>,</u>
	COS	Cin	Tan	Sin	

TABLE III

COMMON LOGARITHMS

OF THE

TRIGONOMETRIC FUNCTIONS

FROM

0° TO 90° AT INTERVALS OF ONE MINUTE

TO

FIVE DECIMAL PLACES

From each logarithm given, subtract 10

Table IIIa—Auxiliary Table of S and T for A in Minutes

 $S = \log \sin A - \log A'$ and $T = \log \tan A - \log A'$

A'	S+10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.46373 72 71 6.46370 69 68 6.46367 65 6.46364 62 6.46361 60 59 6.46358 57 6.46355 6.46355

A'	T+10
0' - 26' 27' - 39' 40' - 48' 49' - 63' 64' - 69' 70' - 74' 75' - 80' 81' - 85' 86' - 89' 90' - 94' 95' - 98' 99' - 102' 103' - 106' 107' - 110' 111' - 113' 114' - 117' 118' - 120' 121' - 124' 125' - 127' 128' - 130'	6.46373 74 75 6.46376 77 78 6.46379 80 81 6.46382 83 84 6.46385 86 87 6.46388 89 90 6.46391 92 93

A'	T+10
131' - 133' 134' - 136' 137' - 139' 140' - 142' 143' - 145' 146' - 148' 149' - 150' 151' - 153' 154' - 156' 157' - 161' 162' - 163' 164' - 166' 167' - 168' 172' - 173' 174' - 175' 176' - 178' 179' - 180' 181' - 182' 183' - 184'	6.46394 95 96 6.46397 98 99 6.46400 02 6.46403 04 05 6.46406 07 08 6.46409 10 11 6.46412 13 14

For small angles: $\log \sin A = \log A' + S$ and $\log \tan A = \log A' + T$. For angles near 90°: $\log \cos A = \log (90^{\circ} - A)' + S$, $\log \cot A = \log (90^{\circ} - A)' + T$ where A' = number of minutes in A, and $(90^{\circ} - A)' =$ number of minutes in $90^{\circ} - A$.

L Sin		L Tan	c d	L Ctn	L Cos			LTTT
6.46 373 6.76 476 6.94 085 7.06 579 7.16 270 7.16 270 7.16 270 7.16 270 7.16 270 7.16 270 7.16 270 7.46 3882 7.30 882 7.36 682 7.41 797 7.46 3982 7.60 784 7.75 291 7.57 7.60 985 7.63 982 7.60 784 7.71 900 7.74 248 7.78 594 22 7.80 612 23 7.82 545 24 7.84 393 25 7.86 168 26 7.87 870 27 7.89 509 28 7.91 088 31 7.95 508 32 7.96 887 33 7.98 223 34 7.99 520 35 8.00 793 36 8.02 002 37 8.03 192 38 8.04 350 39 8.05 478 40 8.06 578 41 8.07 650 42 8.08 696 43 8.09 718 44 8.10 717 45 8.11 693 46 8.12 647 47 8.13 581 48 8.14 495 49 8.15 391 50 8.16 268 51 8.17 1971 53 8.18 798 55 8.20 407 56 8.21 189 57 8.21 189 58 8.21 713 59 8.25	3010 1760 1249 960 7911 669 580 2633 2483 2297 2119 1930 1579 1158 1100 1259 1223 1190 1223 1190 1223 1190 1259 1299 1299 1299 1299 1299 1299 1299	6.46 373 6.76 476 9 6.94 085 4 7.06 579 8 7.16 270 8 7.16 270 8 7.36 682 7.36 682 7.36 682 7.36 512 9 7.50 512 9 7.50 512 9 7.50 9418 7.76 9418 7.76 476 7.78 595 7.80 615 7.82 546 7.84 394 7.84 394 7.84 394	30103 17609 12494 9691 7918 6694 55105 4576 4139 3476 3219 2906 2803 2633 2482 22348 2228 2119 1704 1639 1524 1473 1424 1473 1424 1473 1424 1473 1429 1599 1529 1128 1109 1128 1109 1128 1109 1128 1109 1128 1109 1128 1109 1128 1109 1128 1129 1128 1129 1129 1128 1129 1128 1129 1128 1129 1128 1129 1128 1129 1128 1129 1128 1129 1128 1129 1128 1129 1128 1129 1128 1129 1128 1129 1128 1129 1128 1129 1128 1129 1128 1129 1128 1129 1129	13.53 622 13.23 524 12.93 421 12.83 730 12.75 81 12.69 118 12.63 318 12.53 627 12.49 488 12.45 709 12.42 233 12.30 582 12.25 12.30 582 12.25 752 12.23 524 12.21 405 12.15 606 12.15 833 12.10 490 12.05 914 12.07 454 12.10 490 12.08 911 12.07 75 12.00 478 11.91 200 478 11.92 347 11.93 419 11.93 419 11.94 519 11.93 419 11.95 647 11.96 806 11.96 806 11.97 807 11.98 280 11.99 219 11.91 385 11.91 385 11.91 11.92 347 11.94 519 11.93 419 11.95 647 11.96 806 11.96 806 11.97 807 11.98 11.99 219 11.98 349 11.99 2347 11.91 300 11.92 347 11.93 419 11.93 419 11.93 419 11.95 647 11.96 806 11.96 806 11.97 806 11.98 806 11.99 806 11.99 806 11.99 806 11.99 806 11.99 806 11.99 806 11.99 806 11.99 806 11.99 806 11.99 806 11.99 806 11.99 806 11.99 806 11.81 806 11.82 807 11.82 807 11.82 807 11.82 807 11.82 807 11.82 807 11.82 807 11.82 807 11.82 807 11.83 805 1.77 280 1.77 280 1.77 280 1.76 538	10.00 00 10.	00 0 0 0 0 55 55 56 65 56 65 65 65 65 65 65 65 65	Z 23 7	proportional parts; ted for 1° and 2° in this table are sufficien hen great accuracy is not requeed, even if the ordinary method of interpolation is used.

111				Te reneuous					41			
	L Sin	d	L Tan	c d	L Ctn	L Cos			Pre	op. P	ts.	
0 1 2 3 4 5 6 7	8.24 186 8.24 903 8.25 609 8.26 304 8.26 988 8.27 661 8.28 324 8.28 977	717 706 695 684 673 663 653	8.24 192 8.24 910 8.25 616 8.26 312 8.26 996 8.27 669 8.28 332 8.28 986	718 706 696 684 673 663 654	11.75 808 11.75 090 11.74 384 11.73 688 11.73 004 11.72 331 11.71 668 11.71 014	9.99 993 9.99 993 9.99 993 9.99 992 9.99 992 9.99 992 9.99 992	60 59 58 57 56 55 53	23456789	710 142 213 284 355 426 497 568 639	690 138 207 276 345 414 483 552 621	670 134 201 268 335 402 469 536 603	650 130 195 260 325 390 456 520 585
8 9 10 11 12 13 14	8.29 621 8.30 255 8.30 879 8.31 495 8.32 103 8.32 702 8.33 292	644 634 624 616 608 599 590 583	8.29 629 8.30 263 8.30 888 8.31 505 8.32 112 8.32 711 8.33 302	643 634 625 617 607 599 591 584	11.70 371 11.69 737 11.69 112 11.68 495 11.67 888 11.67 289 11.66 698	9.99 992 9.99 991 9.99 991 9.99 990 9.99 990 9.99 990	52 51 50 49 48 47 46	23456789	630 126 189 252 315 378 441 504 567	620 124 186 248 310 372 434 496 558	610 122 183 244 305 366 427 488 549	600 120 180 240 300 420 480 540
15 16 17 18 19 20 21 22	8.33 875 8.34 450 8.35 018 8.35 578 8.36 131 8.36 678 8.37 217 8.37 750	575 568 560 553 547 539 533 526	8.33 886 8.34 461 8.35 029 8.35 590 8.36 143 8.36 689 8.37 229 8.37 762	575 568 561 553 546 540 533 527	11.66 114 11.65 539 11.64 971 11.64 410 11.63 857 11.63 311 11.62 771 11.62 238	9.99 990 9.99 989 9.99 989 9.99 989 9.99 988 9.99 988 9.99 988	45 44 43 42 41 40 39 38	23456789	590 118 177 236 295 354 413 472 531	580 116 174 232 290 348 406 464 522	570 114 171 228 285 342 399 456 513	560 112 168 224 280 336 392 448 504
23 24 25 26 27 28 29	8.38 276 8.38 796 8.39 310 8.39 818 8.40 320 8.40 816 8.41 307 8.41 792	520 514 508 502 496 491 485	8.38 289 8.38 809 8.39 323 8.39 832 8.40 334 8.40 830 8.41 321 8.41 807	520 514 509 502 496 491 486	11.61 711 11.61 191 11.60 677 11.60 168 11.59 666 11.59 170 11.58 679 11.58 193	9.99 987 9.99 987 9.99 986 9.99 986 9.99 986 9.99 985 9.99 985	32 31	2 34 5 6 7 8 9	550 110 165 220 275 330 385 440 495	540 108 162 216 270 324 378 432 486	530 106 159 212 265 318 371 424 477	520 104 156 208 260 312 364 416 468
30 31 32 33 34 35 36 37	8.41 792 8.42 272 8.42 746 8.43 216 8.43 680 8.44 139 8.44 594 8.45 044	480 474 470 464 459 455 450	8.42 287 8.42 762 8.43 232 8.43 696 8.44 156 8.44 611 8.45 061	480 475 470 464 460 455 450	11.57 713 11.57 238 11.56 768 11.56 304 11.55 844 11.55 389 11.54 939	9.99 985 9.99 984 9.99 984 9.99 983 9.99 983 9.99 983	29 28 27 26 25 24 23	23456789	510 102 153 204 255 306 357 408 459	500 100 150 200 250 300 350 400 450	490 98 147 196 245 294 343 392 441	480 96 144 192 240 288 336 384 432
38 39 40 41 42 43 44	8.45 489 8.45 930 8.46 366 8.46 799 8.47 226 8.47 650 8.48 069	445 441 436 433 427 424 419 416	8.45 507 8.45 948 8.46 385 8.46 817 8.47 245 8.47 669 8.48 089	446 441 437 432 428 424 420 416	11.54 493 11.54 052 11.53 615 11.53 183 11.52 755 11.52 331 11.51 911	9.99 982 9.99 982 9.99 981 9.99 981 9.99 981 9.99 980	21 20 19 18 17 16	23,456789	470 94 141 188 235 282 329 376 423	460 92 138 184 230 276 322 368 414	90 135 180 225 270 315 360 405	440 88 132 176 220 264 308 352 396
45 46 47 48 49 50	8.48 896 8.49 304 8.49 708 8.50 108 9 8.50 504 8.50 897	411 408 404 400 396 393	8.48 505 8.48 917 8.49 325 8.49 729 8.50 130 8.50 527 8.50 920 8.51 310	412 408 404 401 397 393 390	11.51 495 11.51 083 11.50 675 11.50 271 11.49 870 11.49 473 11.49 080 11.48 690	9.99 980 9.99 979 9.99 979 9.99 978 9.99 978 9.99 977	14 13 12 3 11 3 10 9	23456789	430 129 172 215 258 301 344 387	420 84 126 168 210 252 294 336 378	410 82 123 164 205 246 287 328 369	400 80 120 160 200 240 280 320 360
52 53 54 56 55 55	8 8.51 673 4 8.52 055 5 8.52 434 6 8.52 810 7 8.53 183 8 8.53 552	386 382 379 376 373 369	8.51 696 8.52 079 8.52 459 8.52 835 8.53 208 8.53 578 8.53 945	383 380 376 373 370	11.48 304 11.47 921 11.47 541 11.47 165 11.46 792 11.46 422 11.46 055	9.99 977 9.99 976 9.99 977 9.99 977 9.99 977 9.99 97	7 7 6 6 5 5 4 5 5 4 2 4 1	3456789	390 78 117 156 195 234 273 312 351	76 114 152 190 228 266	259	72 108 144 180
60	8.54 282	303	8.54 308	3	11.45 692		_	<u>'</u> -	T	rop.	Pts	
L	L Cos	d	L Ctn	c d	L Tan	L Sin				rop.	110	

88° — Logarithms of Trigonometric Functions

_								T unctions			
-	L Si		L Tan	ı cd	L Ctn	L Cos			Pr	op. P	s.
	0 8.54 28 1 8.54 64 2 8.54 99	$\frac{12}{9} \begin{vmatrix} 36\\35 \end{vmatrix}$	7 8.55 02	9 361	11.45 69 11.45 33 11.44 97	1 9.99 97 3 9.99 97	3 59 3 58		360 72 108	355	350
Ì	3 8.55 35 4 8.55 70 5 8.56 05 6 8.56 40	35 34 34 34 34	1 8.55 73 9 8.56 083 6 8 56 429	352 349 346	11.44 61 11.44 26 11.43 91 11.43 57	6 9.99 97 7 9.99 97	2 56 1 55	5 6 7	144 180 216 252 288 324	106.5 142.0 177.5 213.0 248.5 284.0	105 140 175 210 245
	7 8.56 74 8 8.57 08 9 8.57 42	$\begin{vmatrix} 34 \\ 34 \\ 34 \end{vmatrix}$	8.56 773 8.57 114 8.57 459	344 341 338	11.43 227 11.42 886 11.42 548	7 9.99 97 3 9.99 97	53 52		345	319.5 340	315 335
1 1 1 1 1	1 8.58 08 2 8.58 41 3 8.58 74 4 8.59 07	7 9 9 330 7 328 2 325 2	8.57 788 8.58 121 8.58 451 8.58 479 8.59 105	333 330 328 326 326	11.42 212 11.41 879 11.41 549 11.41 221 11.40 895	9.99 968 9.99 968 1 9.99 968	50 49 48 47	23456789	69.0 103.5 138.0 172.5 207.0 241.5 276.0 310.5	68 102 136 170 204 238 272 306	67.0 100.5 134.0 167.5 201.0 234.5 268.0 301.5
1 1 1 1 1 2	6 8.59 71 7 8.60 03 8 8.60 34 9 8.60 66	5 320 3 318 9 316 2 313	8.59 428 8.59 749 8.60 068 8.60 384 8.60 698	321 319 316 314	11.40 572 11.40 251 11.39 932 11.39 616 11.39 302	9.99 966 9.99 966 9.99 965 9.99 964	44 43 42 41	234567	330 66 99 132 165 198	325 65.0 97.5 130.0 162.5	820 64 96 128 160 192
2: 2: 2: 2: 2: 2: 2:	8.61 28 8.61 58 8.61 89	2 309 307 4 305 3 302	8.61 626	310 307 305	11.38991 11.38681 11.38374 11.38069 11.37766	9.99 963 9.99 963 9.99 962	39 38 37	7 8 9	231 264 297 315	227.5 260.0 292.5	224 256 288 305
25 27 28 29	8.62 493 8.62 798 8.63 093 8.63 388 8.63 678	7 298 296 296 294 293	8.62 535 8.62 834 8.63 131 8.63 426 8.63 718	301 299 297 295 292 291	11.37 465 11.37 166 11.36 869 11.36 574 11.36 282	9.99 961 9.99 961 9.99 960	35 34 33	23456789	63.0 94.5 126.0 157.5 189.0 220.5 252.0 283.5	62 93 124 155 186 217 248 279	61.0 91.5 122.0 152.5 183.0 213.5 244.0 274.5
31 32 33 34 35	8.64 256 8.64 543 8.64 827 8.65 110	288 287 284 283 281	8.64 009 8.64 298 8.64 585 8.64 870 8.65 154	289 287 285 284 281	11.35 991 11.35 702 11.35 415 11.35 130 11.34 846	9.99 959 9.99 958 9.99 958 9.99 957 9.99 956	30 29 28 27 26	23456	300 60 90 120 150 180	295 59.0 88.5 118.0 147.5 177.0 206.5	290 58 87 116 145 174
36 37 38	8.65 670 8.65 947 8.66 223	279 277 276	8.65 435 8.65 715 8.65 993 8.66 269	280 278 276	11.34 565 11.34 285 11.34 007 11.33 731	9.99 956 9.99 955 9.99 955 9.99 954	25 24 23 22	6 7 8 9	210 240 270 285	265.5 265.5	203 232 261
39 40 41 42 43 44	8.66 497 8.66 769 8.67 039 8.67 308 8.67 575 8.67 841	272 270 269 267 266	8.66 543 8.66 816 8.67 087 8.67 356 8.67 624 8.67 890	273 271 269 268 266	11.33 457 11.33 184 11.32 913 11.32 644 11.32 376 11.32 110	9.99 954 9.99 953 9.99 952 9.99 952 9.99 951 9.99 951	21 20 19 18 17 16	23456789	57.0 85.5 114.0 142.5 171.0 199.5 228.0 256.5	280 56 84 112 140 168 196 224 252	55.0 82.5 110.0 137.5 165.0 192.5 220.0
45 46 47 48 49	8.68 104 8.68 367 8.68 627 8.68 886 8.69 144	263 263 260 259 258 256	8.68 154 8.68 417 8.68 678 8.68 938 8.69 196	263 261 260	11.31 846 11.31 583 11.31 322 11.31 062 11.30 804	9.99 950 9.99 949 9.99 949 9.99 948 9.99 948	15 14 13 12 11	23456	270 54 81 108 135 162	265 53.0 79.5 106.0 132.5 159.0	247.5 260 52 78 104 130
50 51 52 53	8.69 400 8.69 654 8.69 907 8.70 159	254 253 252 250	8.69 453 8.69 708 8.69 962 8.70 214	255 254 252	11.30 547 11.30 292 11.30 038 11.29 786	9.99 947 9.99 946 9.99 946 9.99 945	10 9 8 7	6 7 8 9	189 216 243	185.5 212.0 238.5	130 156 182 208 234
54 55 56 57 58 59	8.70 409 8.70 658 8.70 905 8.71 151 8.71 395 8.71 638	249 247 246 244 243	8.70 465 8.70 714 8.70 962 8.71 208 8.71 453	249 248 246 245	11.29 535 11.29 286 11.29 038 11.28 792 11.28 547	9.99 944 9.99 944 9.99 943 9.99 942 9.99 942	6 5 4 3 2	23456789	255 51.0 76.5 102.0 127.5 153.0 178.5 204.0 229.5	250 50 75 100 125 150 175 200 225	245 49.0 73.5 98.0 122.5 147.0 171.5 196.0
60	8.71 880	242	8.71 697 8.71 940	243	1.28 303 1.28 060	9.99 941 9.99 940	1 0	9 I	229.5	225	220.5
	L Cos	d	L Ctn	c d	L Tan	L Sin	7		Prop	. Pts.	

 87° — Logarithms of Trigonometric Functions

		.,	- -	÷		TOT IT	nai		D 1	soo at 1	_
*S	op. Pt	ν <u>α</u>	_ -	<u></u>	T Sin	L Tan	c q	r Ctn	<u>P</u>	L Cos	~
			. 1	- 1	₱68 66°6	988 81.11	182	₱9₱ ₱8°8	181	838 48.8	09
8.44I 9.231	163.8	7.49I			968 66 6 968 66 6	817 31.11	182	001 48.8 282 48.8	181	771 48.8	8g
9.801 7.921	2.901 4.721 8.641	1.821	4	8	768 66.6	11.16 084	₹8I	916 88.8	183	818 88.8	
3.06 3.80r	0.16	2.16		Ť l	868 66.6	892 91.11	185 184	287 88.8	183	088 88.8	9g
4.27 2.09	36.4 54.6 72.8 91.0	2.87 8.16 109.8	8	9	868 66.6	11.16 453	981	7₽3 £8.8	182	8.83 446	99
2.38		9 98 1	5	9	668 66 6	689 91.11	981	198 88.8	981	192 88.8	₽9
181	787	183		4	006 66.6	11.16 825	88I	8.83 175 8.83 175	28T	888 28.8 370 88.8	53
9.691	₹°29T	7.69I	6	8	206 66.6 106 66.6	102 71.11	188	667 28.8	281	107 28.8	Ιĝ
4.011 8.821 8.741 165.6	130.2	131.6 150.4 169.2	8	ŎT	806 66.6	068 71.11	681	019 28.8	188	8.82 513	20
4.0II	9.47 9.111 9.111 9.111 9.111 8.841 4.731	8.211	9	II	706 66 6 6 7 €	11.17 580	06T 06T	024 28.8	68I 06I	8.82 324	6₹
2.88 6.87 0.29	8.88 74.4	94.0 9.40	8	12	₹06 66.6	077 71.11	192	082 28.8	061	₽£1 28.8	87
8.88	2.78	9.7E I	ž	13	906 66.6	481 81.11 296 71.11	76I	8.81 846 8.82 038	192	237 18.8 449 18.8	7₽ 9₽
78₹	981	188	1	gil	206 66 6	748 81.11	86I	8.81 653	192	095 18.8	ĞΨ
152.0	8,271	7.871 l	6	91	806 66.6	11.18 541	76I 96I	63 <u>₽</u> 18.8	£61 ₹61	788 18.8	₽₽
123.0	4.481 3.631	8.811 1.881 1.481 7.541	8	LΙ	606 66.6	857 81.11	961	492 18.8	961	871 18.8	££
0.551 133.0	115.2	8.211	8499	81	606 66'6	286 81.11	96T	890 18.8	961	876 08.8	Į₽ Į₽
0.92	8:92	3.77	Ť	100	016 66 6 116 66 6	821 91.11	86T	1 278 08.8	26T	383 08.8 287 08.8	Ó₹
0.78 0.78 0.88 0.88	4.88 6.73 6.89 96.03 4.481 6.831 8.271	9.85 6.73	3 3	IZ	9,99 912	11.19 524	861	974 08.8	26T	888 08.8	68
OGT	261	E61		22	816 66.6	827 91.11	100	772 08.8	661 661	681 08.8	88
G-G/T	S-11T	T'6/T 1	6	23	6.99 913	₽26 61.11	201	970 08.8	102	066 64.8	78
126.0 156.0	9:291	4.911 2.931 2.931	Š.	₹7	₹16 66.6	321 02.11	202	378 67.8	102	888 67.8 887 67.8	3 2
0.711 0.711	8.87 8.81 8.81 8.81 8.73 8.73 8.77 8.77 8.77	₽.611	849	52	916 66.6 916 66.6	083 02.11 728 02.11	203	07 <u>₽</u> 67.8	202	988 67.8	34
0.87 3.79	8.87	9.64 9.64	ğ	72	416 66 6	487 02.11	20₹	952 97.8	203	881 67.8	33
0.9g	₽.68 1.63	8.68 7.63	2	88	716 66.6	11.20 939	205	1 190 67.8	205	881 67.8 881 67.8	32
76T	161	661		56	816 66.6	11.21 351 11.21 145	902	338 87.8	206	893 87.8 277 87.8	30
81081	7.281	₽,681	16	30 31	026 96.6 919 96.6	11.21 559	802	144 87.8	208	098 87.8	67
6.081 8.081	2.18 2.18 2.101 3.101 8.121 1.241 7.281	123.6 144.2 144.2 164.8	8	28	9.99 920	892 12.11	210	282 87.8	802	8.78 152	82
9,021	8.121	123.6	9	33	126 99.9	876 12.11	112	1 220 87.8	210	849 77.8	72
≱.08 3.001	2.18	2.14 8.18 4.28 0.501	7	₹8 92	826 66.6 6.99 923	11.22 400	TIZ	118 77.8	IIZ	228 77.8 887 77.8	25 25
40.2 60.3	8.0 1	8.14	2 3	36	826 66.6	513 22.11	213	788 77.8	212	018 77.8	77
102	203	902		78	\$26 66.6	728 22.11	717	LOST SIC	213	760 77.8	23
7.101	6.861	2°TET	16	88	326 96.9	11.23 042	215	826 97.8	214	\$88 97.8 \$60 77.8	55
6.641 6.681 2.781	7.741 8.881 8.981	7.161 7.161	8	36	976 66.6	832 82.11	212	2⊉7 87.8	912	799 97.8	12
8.421		8.721 1.941	9 2	0₹ 1₹	726 66.6 926 66.6	\$69 82.11	617	626 525	712	134 97.8	6I
83.2 104.0	63.3 63.5 63.5 63.5 63.5 63.5 63.5 63.5	2.38 2.08 106.5 2.721	ΙĐ	2±	826 66.6	819 82.11	612		219	210 97.8	
7.79 9.14	2.24 5.53	6.83 63.9	8	ξŦ	6.99 929	881 42.11	222	798 37.8	220	367 37.8	121
802	377	213	_	Ħ	676 66.6	11.24 355	1 222	349 87.8	7.7.7	378 37.8	91
9.881	0.861	2.202	1 6	97	086 66.6	778 42.11	1.72	624 47 8	977	838 37.8	
3.031 0.271 3.591	0.971	112.5 135.0 157.5 180.0	8	97 27	289 99.9 189 99.9	11.25 026 11.24 801	. ≌60		, 100	906 £7.8	13
6.70I 0.92I	110.0	135.0	87.90	87	286 66.6			10=+ = 1.0	, 900	1000 #10	21
6.48 6.58 8.701	0.88 0.88	5.78 0.09 5.211	g 7	67	886 99.9	67£ 32.11	622	123 47.8	877	PSP 47.8	II
43.0	0.44	0.34 3.73	3	20	₹86 66.6		822	668 47.8	677	966 74 8	
212	220	225	. 0	52	₹86 66.6 \$786 66.6		: 127	890 77.8	0.87	1 700 87 8	
				53	989 99.6	00# 9Z*T1	- 000	288 87.8	282		1 2
702 191	6.481 6.881 6.115	891 185 186	8	₹9	986 66.6	£89 92.11	100		532 534	'lene ere	9
881 191	3.71 0.14 3.40	168 144	8499	99		898 92.11	002	1281 81.8	982	. 690 E7.8	3 9
26 311 851	0.46	1 521 96	ş	99			1 / 02	7 1 968 64 8	197	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 8
69 97	Ğ.07 0.7≜	8 <u>4</u>	3	88	850 66 6		683	3 699 64 8	888	1 600 71.8	2 2
082		078	. 0	69	076 66 6	618 72.11	TE	1 707 - 110		C 120 27.8	3 I
				09		090 82.11		076 T4.8	3 000	, 088 17.8	3 0
	.esq.	Prop			r Cos	L Ctn	p:	L Tan	P	r Sin	1

86° — Lovarithms of Trivonometric Functions

7	L Sin	d	L Tan	c d	L Ctn	L Cos		_	Pro	p. Pts	LTTT
-		<u> </u>				9.99 894	60		110	p. r is	-
0 1 2 3 4 5 6	8.84 358 8.84 539 8.84 718 8.84 897 8.85 075 8.85 252 8.85 429	181 179 179 178 177	8.84 464 8.84 646 8.84 826 8.85 006 8.85 185 8.85 363 8.85 540	182 180 180 179 178	11.15 536 11.15 354 11.15 174 11.14 994 11.14 815 11.14 637 11.14 460	9.99 893 9.99 892 9.99 891 9.99 891 9.99 890 9.99 889	59 58 57 56 55 54	23456789	181 36.2 54.3 72.4 90.5 108.6 126.7 144.8 162.9	180 36.0 54.0 72.0 90.0 108.0 126.0 144.0	179 35.8 53.7 71.6 89.5 107.4 125.3 143.2
7 8 9 10 11 12 13 14	8.85 605 8.85 780 8.85 955 8.86 128 8.86 301 8.86 474 8.86 645 8.86 816	176 175 175 173 173 173 171 171	8.85 717 8.85 893 8.86 069 8.86 243 8.86 417 8.86 591 8.86 763 8.86 935	177 176 176 174 174 174 172 172	11.14 283 11.14 107 11.13 931 11.13 757 11.13 583 11.13 409 11.13 237 11.13 065	9.99 888 9.99 887 9.99 886 9.99 885 9.99 884 9.99 883 9.99 881	53 52 51 50 49 48 47 46	23456789	177 35.4 53.1 70.8 88.5 106.2 123.9 141.6 159.3	162.0 175 35.0 52.5 70.0 87.5 105.0 122.5 140.0 157.5	161.1 173 34.6 51.9 69.2 86.5 103.8 121.1 138.4 155.7
15 16 17 18 19 20 21 22	8.86 987 8.87 156 8.87 325 8.87 494 8.87 661 8.87 829 8.87 995 8.88 161	171 169 169 167 168 166 166	8.87 106 8.87 277 8.87 447 8.87 616 8.87 785 8.87 953 8.88 120 8.88 287	171 170 169 169 168 167	11.12 894 11.12 723 11.12 553 11.12 384 11.12 215 11.12 047 11.11 880 11.11 713	9.99 880 9.99 879 9.99 879 9.99 878 9.99 877 9.99 876 9.99 875 9.99 874	45 44 43 42 41 40 39 38	23456789	171 34.2 51.3 68.4 85.5 102.6 119.7 136.8 153.9	170 34.0 51.0 68.0 85.0 102.0 119.0 136.0 153.0	169 33.8 50.7 67.6 84.5 101.4 118.3 135.2 152.1
23 24 25 26 27 28 29 30	8.88 326 8.88 490 8.88 654 8.88 817 8.88 980 8.89 142 8.89 304 8.89 464	165 164 163 163 162 162 160	8.88 453 8.88 618 8.88 783 8.88 948 8.89 111 8.89 274 8.89 437 8.89 598	166 165 165 165 163 163 163	11.11 547 11.11 382 11.11 217 11.11 052 11.10 889 11.10 726 11.10 563 11.10 402	9.99 873 9.99 872 9.99 871 9.99 870 9.99 869 9.99 868 9.99 867 9.99 866	37 36 35 34 33 32 31 30	23456789	167 33.4 50.1 66.8 83.5 100.2 116.9 133.6 150.3	165 33.0 49.5 66.0 82.5 99.0 1132.0 148.5	163 32.6 48.9 65.2 81.5 97.8 114.1 130.4 146.7
31 32 33 34 35 36 37	8.89 625 8.89 784 8.89 943 8.90 102 8.90 260 8.90 417 8.90 574	161 159 159 159 158 157 157	8.89 760 8.89 920 8.90 080 8.90 240 8.90 399 8.90 557 8.90 715	162 160 160 159 158 158 157	11.10 240 11.10 080 11.09 920 11.09 760 11.09 601 11.09 443 11.09 285	9.99 865 9.99 864 9.99 863 9.99 862 9.99 861 9.99 860 9.99 859	29 27 26 25 24 23	23456789	161 32.2 48.3 64.4 80.5 96.6 112.7 128.8 144.9	160 32.0 48.0 64.0 80.0 96.0 112.0 128.0 144.0	159 31.8 47.7 63.6 79.5 95.4 111.3 127.2 143.1
38 39 40 41 42 43 44 45	8.90 730 8.90 885 8.91 040 8.91 195 8.91 349 8.91 502 8.91 655	155 155 155 154 153 153 152	8.90 872 8.91 029 8.91 185 8.91 340 8.91 495 8.91 650 8.91 803	157 156 155 155 155 153 154	11.09 128 11.08 971 11.08 815 11.08 660 11.08 505 11.08 350 11.08 197	9.99 858 9.99 857 9.99 856 9.99 855 9.99 854 9.99 853 9.99 852	22 21 20 19 18 17 16	23456789	157 31.4 47.1 62.8 78.5 94.2 109.9 125.6 141.3	155 31.0 46.5 62.0 77.5 93.0 108.5 124.0 139.5	153 30.6 45.9 61.2 76.5 91.8 107.1 122.4 137.7
46 47 48 49 50 51 52	8.91 807 8.91 959 8.92 110 8.92 261 8.92 411 8.92 561 8.92 710 8.92 859	152 151 151 150 150 149 149	8.91 957 8.92 110 8.92 262 8.92 414 8.92 565 8.92 716 8.92 866 8.93 016	153 152 152 151 151 150 150	11.08 043 11.07 890 11.07 738 11.07 586 11.07 435 11.07 284 11.07 134 11.06 984	9.99 851 9.99 850 9.99 848 9.99 847 9.99 846 9.99 845 9.99 843	15 14 13 12 11 10 9 8	234567-89	30.2 45.3 60.4 75.5 90.6 105.7 120.8 135.9	30.0 45.0 60.0 75.0 90.0 105.0 120.0 135.0	149 29.8 44.7 59.6 74.5 89.4 104.3 119.2 134.1
53 54 55 56 57 58 59	8.93 007 8.93 154 8.93 301 8.93 448 8.93 594 8.93 740 8.93 885	148 147 147 146 146 145 145	8.93 165 8.93 313 8.93 462 8.93 609 8.93 756 8.93 903 8.94 049	149 148 149 147 147 147 146 146	11.06 835 11.06 687 11.06 538 11.06 391 11.06 244 11.06 097 11.05 951	9.99 842 9.99 841 9.99 840 9.99 839 9.99 838 9.99 837 9.99 836	76 5 4321	23456789	147 29.4 44.1 58.8 73.5 88.2 102.9 117.6 132.3	29.0 43.5 58.0 72.5 87.0 101.5 116.0 130.5	28.8 43.2 57.6 72.0 86.4 100.8 115.2 129.6
60	8.94 030 L Cos	<u>d</u>	8.94 195 L Ctn	c d	11.05 805 L Tan	9.99 834 L Sin	<u>,</u>			p. Pts	
_	1 2 000	<u> </u>	1 DOM	cu	L Lan	TI OIL			TIO	h. T re	•

85° — Logarithms of Trigonometric Functions

J • -	Doguiimin	or irigo	or rigonometric runctions				
L Sin d	L Tan c d	L Ctn	L Cos		Prop	. Pts.	-
3.94 030 3.94 174 44 3.94 317 43 3.94 461 42 3.94 603 43 8.94 746 3.94 887 41 3.95 029 42	3.94 195 .94 340 .94 485 3.94 630 3.94 773 3.94 917 3.95 060 8.95 202 42	11.05 805 11.05 660 11.05 515 11.05 370 11.05 227 11.05 083 11.04 940 11.04 798	9.99 834 9.99 833 9.99 832 .99 831 9.99 830 9.99 829 .99 828 .99 827	23456789	143 28.6 42.9 57.2 71.5 85.8 100.1 114.4 128.7	28.4 42.6 56.8 71.0 85.2 99.4 113.6 127.8	141 28.2 42.3 70.5 84.6 98.7 112.8 126.9
5.95 170 40 .95 310 40 .95 450 139 8.95 589 139 8.95 728 139 8.95 867 138 8.96 005 138	3.95 344 .42 .95 486 142 .95 627 140 8.95 767 140 8.95 908 141 8.96 047 139 8.96 187 140 8.96 325	11.09 919	9.99 825 9.99 824 9.99 823 9.99 822 9.99 821 9.99 820 9.99 819	48 67 47 8 46 9	140 28.0 42.0 56.0 70.0 84.0 98.0 112.0 126.0	139 27.8 41.7 55.6 69.5 83.4 97.3 111.2 125.1	138 27.6 41.4 55.2 69.0 82.8 96.6 110.4 124.2
8.96 143 8.96 280 137 8.96 417 8.96 553 8.96 553 8.96 689 136 8.96 825 8.96 960 8.96 960 8.97 095	8.96 464 139 8.96 602 138 8.96 739 137 8.96 877 138 8.97 013 137 8.97 150 137 8.97 285 138	11.03 356 11.03 398 11.03 261 11.03 123 11.02 987 11.02 850	9.99 817 9.99 816 9.99 815 9.99 814 9.99 813 9.99 812 9.99 810 9.99 809	45 44 43 42 41 40 40 39 38	137 27.4 41.1 54.8 68.5 82.2 95.9 109.6 123.3	136 27.2 40.8 54.4 68.0 81.6 95.2 108.8 122.4	27.0 40.5 54.0 67.5 81.0 94.5 108.0 121.5
8.97 229 134 8.97 363 134 8.97 496 133 8.97 629 133 8.97 762 133 8.97 894 132 8.98 026 132	8.97 421 136 8.97 556 136 8.97 691 136 8.97 825 136 8.97 959 136 8.98 092 136 8.98 225 136	11.02 444 11.02 309 11.02 175 11.02 041 11.01 908 11.01 775	9.99 808 9.99 807 9.99 806 9.99 804 9.99 803 9.99 802 9.99 801	37 36 2 35 34 34 5 33 6 32 8 31 9	134 26.8 40.2 53.6 67.0 80.4 93.8 107.2 120.6	133 26.6 39.9 53.2 66.5 79.8 93.1 106.4 119.7	132 26.4 39.6 52.8 66.0 79.2 92.4 105.6 118.8
8.98 157 8.98 288 8.98 419 8.98 549 8.98 549 130 8.98 679 130 8.98 808 8.98 808 8.98 906 129	8.98 358 8.98 490 13: 8.98 622 13: 8.98 753 13: 8.98 884 13: 8.99 145 13: 8.99 175 13:	11.01 642 11.01 510 2 11.01 378 1 11.01 247 1 11.01 116 1 11.00 985 0 11.00 725	9.99 800 9.99 798 9.99 797 9.99 796 9.99 795 9.99 79 9.99 791	30 29 28 27 26 7 26 7 24 23	131 26.2 39.3 52.4 65.5 78.6 91.7 104.8 117.9	130 26.0 39.0 52.0 65.0 78.0 91.0 104.0 117.0	129 25.8 38.7 51.6 64.5 77.4 90.3 103.2 116.1
8.99 194 128 8.99 322 128 8.99 450 127 8.99 577 127 8.99 830 126 8.99 956 126	8.99 405 12 8.99 534 12 8.99 662 12 8.99 791 12 8.99 919 12 9.00 046 12 9.00 174 12	11.00 595 11.00 466 11.00 338 11.00 209 11.00 081 10.99 954 7 10.99 826	9.99782	2: 21 2 2 3 4 19 18 6 7 16 9	128 25.6 38.4 51.2 64.0 76.8 89.6 102.4 115.2	127 25.4 38.1 50.8 63.5 76.2 88.9 101.6 114.3	126 25.2 37.8 50.4 63.0 75.6 88.2 100.8 113.4
9.00 08: 9.00 207 9.00 332 9.00 456 9.00 581 125 9.00 704 9.00 828 126 9.00 951	$\begin{array}{c} 9.00\ 301 \\ 9.00\ 427 \\ \hline 12 \\ 9.00\ 553 \\ \hline 12 \\ 9.00\ 679 \\ \hline 12 \\ 9.00\ 80. \\ \hline 12 \\ 9.00\ 930 \\ \hline 12 \\ 9.01\ 055 \\ \hline 12 \\ 9.01\ 179 \\ \hline 12 \\ \hline \end{array}$	$ \begin{array}{c} 10.99699 \\ 10.9957 \\ 6 10.995447 \\ 6 10.99321 \\ 10.99195 \\ \hline 5 10.99075 \\ 10.98894 \\ 4 10.98821 \\ \end{array} $	9.99 781 9.99 780 9.99 778 9.99 77' 9.99 776 9.99 775 9.99 772	15 14 13 12 14 15 6 7 9 8	25.0 37.5 50.0 62.5 75.0 87.5 100.0 112.5	124 24.8 37.2 49.6 62.0 74.4 86.8 99.2 111.6	123 24.6 36.9 49.2 61.5 73.8 86.1 98.4 110.7
9.01 074 123 9.01 196 123 9.01 318 123 9.01 440 123 9.01 561 123 9.01 682 123 9.01 803 123	3 9.01 30 12 2 9.01 42 12 2 9.01 550 12 2 9.01 673 12 9.01 796 12 9.01 918 12 9.02 040 12	4 10.98 697 4 10.98 573 3 10.98 450 3 10.98 327 3 10.98 20 2 10.98 082 2 10.97 960	9.99 768 9.99 767 9.99 765 9.99 764 9.99 76	7 6 2 3 4 5 6 7 8 9	122 24.4 36.6 48.8 61.0 73.2 85.4 97.6 109.8	121 24.2 36.3 48.4 60.5 72.6 84.7 96.8 108.9	120 24.0 36.0 48.0 60.0 72.0 84.0 96.0 108.0
$9.01\ 923$	9.02 162 L Ctn c	10.97 888	9.99 76 L Sin		Pre	op. Pt	S.
L Cos	L Cin c	<u>u 11411</u>	T DIN				

84° — Logarithms of Trigonometric Functions

02			Logarit		or ringo	- LOMOU		****	unctions [II]			
Ľ	L Sin	d	L Tan	c d	L Ctn	L Cos		_	Pro	p. Pts	i	
0 1 2 3 4 5 6 7	9.01 923 9.02 043 9.02 163 9.02 283 9.02 402 9.02 520 9.02 639 9.02 757	120 120 120 119 118 119 118	9.02 162 9.02 283 9.02 404 9.02 525 9.02 645 9.02 766 9.02 885 9.03 005	121 121 121 120 121 119 120	10.97 838 10.97 717 10.97 596 10.97 475 10.97 355 10.97 234 10.97 115 10.96 995	9.99 761 9.99 760 9.99 759 9.99 757 9.99 756 9.99 753 9.99 753	59 58 57 56 55 54 53	23456789	121 24.2 36.3 48.4 60.5 72.6 84.7 96.8 108.9	120 24.0 36.0 48.0 60.0 72.0 84.0 96.0 108.0	119 23.8 35.7 47.6 59.5 71.4 83.3 95.2 107.1	
8 9 10 11 12 13 14 15	9.02 874 9.02 992 9.03 109 9.03 226 9.03 342 9.03 458 9.03 574 9.03 690	117 118 117 117 116 116 116 116	9.03 124 9.03 242 9.03 361 9.03 479 9.03 597 9.03 714 9.03 832 9.03 948	119 118 119 118 118 117 118 116	10.96 876 10.96 758 10.96 639 10.96 521 10.96 403 10.96 286 10.96 168	9.99 751 9.99 749 9.99 748 9.99 747 9.99 745 9.99 744 9.99 742 9.99 741	52 51 50 49 48 47 46 45	23456789	118 23.6 35.4 47.2 59.0 70.8 82.6 94.4 106.2	117 23.4 35.1 46.8 58.5 70.2 81.9 93.6 105.3	116 23.2 34.8 46.4 58.0 69.6 81.2 92.8 104.4	
16 17 18 19 20 21 22 23	9.03 805 9.03 920 9.04 034 9.04 149 9.04 262 9.04 376 9.04 490 9.04 603	115 114 115 113 113 114 114 113	9.04 065 9.04 181 9.04 297 9.04 413 9.04 528 9.04 643 9.04 758 9.04 873	117 116 116 116 115 115 115	10.95 935 10.95 819 10.95 703 10.95 587 10.95 472 10.95 357 10.95 242 10.95 127	9.99 740 9.99 738 9.99 737 9.99 736 9.99 734 9.99 733 9.99 731 9.99 730	44 43 42 41 40 38 38 37	23456789	115 23.0 34.5 46.0 57.5 69.0 80.5 92.0 103.5	114 22.8 34.2 45.6 57.0 68.4 79.8 91.2 102.6	113 22.6 33.9 45.2 56.5 67.8 79.1 90.4 101.7	
24 25 26 27 28 29 30	9.04 715 9.04 828 9.04 940 9.05 052 9.05 164 9.05 275 9.05 386	112 113 112 112 112 111 111	9.04 987 9.05 101 9.05 214 9.05 328 9.05 441 9.05 553 9.05 666	114 113 114 113 112 113 112	10.95 013 10.94 899 10.94 786 10.94 672 10.94 559 10.94 447 10.94 334	9.99 728 9.99 727 9.99 726 9.99 724 9.99 723 9.99 721 9.99 720	36 35 34 33 32 31 30	23456789	112 22.4 33.6 44.8 56.0 67.2 78.4 89.6 100.8	111 22.2 33.3 44.4 55.5 66.6 77.7 88.8 99.9	22.0 33.0 44.0 55.0 66.0 77.0 88.0 99.0	
31 32 33 34 35 36 37	9.05 497 9.05 607 9.05 717 9.05 827 9.05 937 9.06 046 9.06 155 9.06 264	110 110 110 110 110 109 109 109	9.05 778 9.05 890 9.06 002 9.06 113 9.06 224 9.06 335 9.06 445 9.06 556	112 112 111 111 111 110 111 110	10.94 222 10.94 110 10.93 998 10.93 887 10.93 665 10.93 555 10.93 444	9.99 718 9.99 717 9.99 716 9.99 714 9.99 713 9.99 710 9.99 708	29 27 26 25 24 23 22	23456789	109 21.8 32.7 43.6 54.5 65.4 76.3 87.2 98.1	108 21.6 32.4 43.2 54.0 64.8 75.6 86.4 97.2	107 21.4 32.1 42.8 53.5 64.2 74.9 85.6 96.3	
39 40 41 42 43 44 45	9.06 372 9.06 481 9.06 589 9.06 696 9.06 804 9.06 911 9.07 018 9.07 124	109 108 107 108 107 107 106	9.06 666 9.06 775 9.06 885 9.06 994 9.07 103 9.07 211 9.07 320 9.07 428	109 110 109 109 108 109 108	10.93 334 10.93 225 10.93 115 10.93 006 10.92 897 10.92 789 10.92 680 10.92 572	9.99 707 9.99 705 9.99 704 9.99 702 9.99 701 9.99 699 9.99 698 9.99 696	21 20 19 18 17 16 15	23456789	106 21.2 31.8 42.4 53.0 63.6 74.2 84.8 95.4	105 21.0 31.5 42.0 52.5 63.0 73.5 84.0 94.5	20.8 31.2 41.6 52.0 62.4 72.8 83.2 93.6	
47 48 49 50 51 52 53 54	9.07 231 9.07 337 9.07 442 9.07 548 9.07 653 9.07 758 9.07 863 9.07 968	107 106 105 106 105 105 105 105	9.07 536 9.07 643 9.07 751 9.07 858 9.07 964 9.08 071 9.08 177 9.08 283	108 107 108 107 106 107 106 106	10.92 464 10.92 357 10.92 249 10.92 142 10.92 036 10.91 929 10.91 823 10.91 717	9.99 695 9.99 693 9.99 692 9.99 690 9.99 680 9.99 687 9.99 686 9.99 684	13 12 11 10 9 8 7	rea 96° co-	From the for 6°-d as post or 5° function the	or 100 to	d; for read	
55 56 57 58 59 60	9.08 072 9.08 176 9.08 280 9.08 383 9.08 486 9.08 589 L Cos	104 104 103 103 103	9.08 283 9.08 495 9.08 600 9.08 705 9.08 810 9.08 914 L Ctn	106 105 105 105 104 c d	10.91 611 10.91 505 10.91 400 10.91 295 10.91 190 10.91 086 L Tan	9.99 683 9.99 681 9.99 680 9.99 678 9.99 677 9.99 675 L Sin	5 4 3 2 1 0	rea 173	From the For 83° d as 1	orinted 353°+,	863°+, l; for read	
	₩ \US	u I	- LOUIL	cul	TITEL	TICIT			TIO	7. I 15.	•	

82° — Logarithms of Trigonometric Functions

-					or resolutions.			LIII			
	L Sin		L Tan	c	L Ctn	L Cos		Prop. Pts.			
	9.14 35 9.14 44 9.14 53 9.14 624 9.14 714 9.14 805 9.14 89 9.14 98	8	9.14 780 9.14 87 9.14 96 9.15 05 9.15 144 9.15 23 9.15 32 9.15 41	92 9 91 91 91 90 91	10.85 22 10.85 128 10.85 03 10.84 94 10.84 85 10.84 76 10.84 67 10.84 58	9.99 57. 9.99 57. 9.99 57. 9.99 56. 9.99 56. 9.99 56. 9.99 56.		92 91 90 18.4 18.2 18.0 27.6 27.3 27.0 36.8 36.4 36.0 46.0 45.5 45.0 55.2 54.6 54.0			
10	9.15 06 9.15 157 9.15 245 9.15 333	88 88 88 88	9.15 50 9.15 598 9.15 688 9.15 777	90 90 89 90	10.84 492 10.84 402 10.84 312 10.84 223	9.99 56 9.99 550 9.99 550 9.99 550		64.4 63.7 63.0 73.6 72.8 72.0 82.8 81.9 81.0			
1: 18	9.15 421 9.15 508	87	9.15 867 9.15 956	89	10.84 133 10.84 044	9.99 554 9.99 552		89 88 87			
14 15 16 1 19 20 21	9.15 596 9.15 683 9.15 770 9.15 857 9.15 944 9.16 030 9.16 116 9.16 203	88 87 87 87 86 86 86	9.16 046 9.16 135 9.16 224 9.16 312 9.16 401 9.16 489 9.16 577 9.16 665	90 89 89 88 89 88 88 88	10.83 954 10.83 865 10.83 776 10.83 688 10.83 599 10.83 511 10.83 423 10.83 335	9.99 550 9.99 54 9.99 546 9.99 545 9.99 54 9.99 531 9.99 537	46 45 43 42 41 40 39	17.8 17.6 17.4 26.7 26.4 26.1 35.6 35.2 34.8 44.5 44.0 43.5 53.4 52.8 52.2 62.3 61.6 60.9 71.2 70.4 69.6 80.1 79.2 78.3			
22 23	9.16 289 9.16 374	86 85	9.16 753 9.16 841	88 88	10.83 247 10.83 159	9.99 535 9.99 533	38 37	186 85 84			
24 25 26 2 28	9.16 460 9.16 545 9.16 631 9.16 716 9.16 801	86 85 86 85 85	9.16 928 9.17 016 9.17 103 9.17 190 9.17 277	87 88 87 87 87	10.83 07: 10.82 984 10.82 897 10.82 810 10.82 723	9.99 532 9.99 530 9.99 528 9.99 526 9.99 524	36 35 34 33 32	17.2 17.0 16.8 25.8 25.5 25.2 34.4 34.0 33.6 43.0 42.5 42.0			
29 30 31 3: 33	9.16 886 9.16 970 9.17 055 9.17 139 9.17 223	85 84 85 84 84	9.17 363 9.17 450 9.17 536 9.17 622 9.17 708	86 87 86 86 86	10.82 637 10.82 550 10.82 464 10.82 378 10.82 292	9.99 522 9.99 520 9.99 518 9.99 517 9.99 515	31 30 29 28 27	51.6 51.0 50.4 60.2 59.5 58.8 68.8 68.0 67.2 77.4 76.5 75.6			
34 35 36 37 38 39	9.17 307 9.17 391 9.17 474 9.17 558 9.17 641 9.17 724	84 84 83 84 83 83 83	9.17 794 9.17 880 9.17 965 9.18 051 9.18 136).18 221	86 86 85 86 85 85	10.82 206 10.82 120 10.82 035 10.81 949 10.81 864 0.81 779	9.99 513 9.99 511 .99 509 9.99 507 .99 505 .99 503	26 25 24 23 22	83 82 81 16.6 16.4 16.2 24.9 24.6 24.3 33.2 32.8 32.4 41.5 41.0 40.5 49.8 49.2 48.6			
40 41 42 43 44	9.17 807).17 890 9.17 973).18 055).18 137	83 83 82 82 83	9.18 306 9.18 391 9.18 475 9.18 560 1.18 644	85 84 85 84 84	10.81 694 0.81 609 0.81 525 0.81 440 0.81 356	9.99 501 1.99 499 1.99 497 1.99 495 1.99 494		58.1 57.4 56.7 66.4 65.6 64.8 74.7 73.8 72.9			
45 46 47 48 9	9.18 220 9.18 302 9.18 383 1.18 465 9.18 547	82 81 82 82 82 31	9.18 728 9.18 812 9.18 896 9.18 979 9.19 063	84 34 33 84 33	0.81 272 0.81 188 0.81 104 0.81 021 0.80 937	.99 492 .99 490 .99 488 .99 486 .99 484		From the top: For 8°+ or 188°+, ead as printed; for 98°+ or 278°+, read			
50 1	9.18 628).18 709	81	1.19 146	33	0.80 854 0.80 771	.99 482 .99 480		o-function.			
3).18 790).18 871	81 31	.19 312).19 395	33 83	0.80 688 0.80 605	.99 478 .99 476		From the bottom:			
54 5 5	0.18 952	31 ;1	1.19 478 1.19 561	33 33	.0.80 522	.99474		For 81°+ or 261°+,			
6 7 8 9	1.19 113 1.19 193 1.19 273 1.19 353	80 30 80 30	1.19 643 1.19 725 1.19 807 1.19 889	32 32 32 32	0.80 439 0.80 357 0.80 275 0.80 193 0.80 111	.99 472 .99 470 .99 468 .99 466		read as printed; for .71°+ or 351°+, read o-function.			
0	0.19 433	30	.19 971	32	0.80 029	.99 462					
	L Cos		L Ctn		' Tan	L Sin		Prop. Pts.			
	Q1	u	Taramir	· L	a acmusa		T	T 42			

81° — Logarithms of Trigonometric Functions

L Sin	L Tan cd	L Ctn	L Cos	Prop. Pts.
9.19 [°] 433 9.19 513 9.19 592 9.19 672	9.19 971 9.20 053 9.20 134 9.20 216 9.20 297 9.20 378	10.80 029 10.79 947 10.79 866 10.79 784	9.99 462 9.99 460 9.99 458 9.99 456	
9.19 751 9.19 830 9.19 909	9.20 297 9.20 378 9.20 459	10.79 703 10.79 622 10.79 541	9.99 454 9.99 452 9.99 450	16.4 16.2 16.0 24.6 24.3 24.0 32.8 32.4 32.0 41.0 40.5 40.0
9.19 988 9.20 067 9.20 145 9.20 223	9.20 540 9.20 621 9.20 701 9.20 782	10.79 460 10.79 379 10.79 299	9.99 452 9.99 450 9.99 448 9.99 444 9.99 442	82 81 80 16.4 16.2 16.0 24.6 24.3 24.0 32.8 32.4 32.0 41.0 40.5 40.0 49.2 48.6 48.0 57.4 56.7 56.0 65.6 64.8 64.0 73.8 72.9 72.0
9.20 302 9.20 380 9.20 458	9.20 378 9.20 459 9.20 540 9.20 5621 9.20 701 9.20 782 9.20 862 9.20 942 9.21 102 9.21 102	10.79 138 10.79 058 10.78 978	9.99 438 9.99 436	
9.20 535 9.20 613 9.20 691 9.20 768 9.20 845	9.21 102 9.21 182 9.21 261 9.21 341 9.21 420 9.21 499 9.21 578 9.21 657 9.21 814 9.21 814 9.21 893 9.21 971 9.22 049 9.22 127 9.22 205 9.22 283 9.22 361	10.78 898 10.78 818 10.78 739 10.78 659 10.78 580	9.99 438 9.99 436 9.99 434 9.99 429 9.99 427 9.99 425 9.99 423 9.99 421 9.99 417 9.99 417 9.99 415	79 78 77 15.8 15.6 15.4 23.7 23.4 23.1 31.6 31.2 30.8 39.5 39.0 38.5 47.4 46.8 46.2 55.3 54.6 53.9 63.2 62.4 61.6 71.1 70.2 69.3
9.20 922 9.20 999 9.21 076 9.21 153	9.21 499 9.21 578 9.21 657 9.21 736	10.78 501 10.78 422 10.78 343 10.78 264	9.99 423 9.99 421 9.99 419 9.99 417	$ \begin{vmatrix} 55.3 & 54.6 & 53.9 \\ 63.2 & 62.4 & 61.6 \\ 71.1 & 70.2 & 69.3 \end{vmatrix} $
9.21 229 9.21 306 9.21 382	9.21 814 9.21 893 9.21 971	10.78 186 10.78 107 10.78 029	9.99 415 9.99 413 9.99 411	76 75 74 15.2 15.0 14.8 22.8 22.5 22.2
9.21 458 9.21 534 9.21 610 9.21 685	9.22 049 9.22 127 9.22 205 9.22 283	10.77 951 10.77 873 10.77 795 10.77 717	9.99 409 9.99 407 9.99 404 9.99 402	45.6 45.0 44.4
9.21761 9.21836 9.21912 9.21987	9.22 361 9.22 438 9.22 516 9.22 593 9.22 670	10.77 639 10.77 562 10.77 484 10.77 407	9.99 402 9.99 400 9.99 398 9.99 396 9.99 394	
9.22 062 9.22 137 9.22 211	9.22 670 9.22 747 9.22 824	10.77 330 10.77 253 10.77 176	9.99 392 9.99 390 9.99 388	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
9.22 286 9.22 361 9.22 435	9.22 670 9.22 747 9.22 824 9.22 901 9.22 977 9.23 054	10.77 099 10.77 023 10.76 946	9.99 390 9.99 388 9.99 385 9.99 383 9.99 379 9.99 377 9.99 377 9.99 372	73 72 71 14.6 14.4 14.2 21.9 21.6 21.3 29.2 28.8 28.4 36.5 36.0 35.5 43.8 43.2 42.6 51.1 50.4 49.7 58.4 57.6 56.8 65.7 64.8 63.9
9.22 509 9.22 583 9.22 657 9.22 731	9.23 130 9.23 206 9.23 283 9.23 359 9.23 435 9.23 510 9.23 586 9.23 661 9.23.737 9.23 812	10.76 870 10.76 794 10.76 717 10.76 641	9.99 377 9.99 375 9.99 372	58.4 57.6 56.8 65.7 64.8 63.9
9.22 805 9.22 878 9.22 952	9.23 435 9.23 510 9.23 586	10.76 490 10.76 414 10.76 330	9.99 370 9.99 368 9.99 366	Tr 00+ 1000+
9.23 025 9.23 098 9.23 171 9.23 244	9.23 737 9.23 812 9.23 887	10.76 263 10.76 188 10.76 113	9.99 364 9.99 362 9.99 359 9.99 357	read as printed; for 99°+ or 279°+, read co-function.
9.23 317 9.23 390 9.23 462	9.23 887 9.23 962 9.24 037 9.24 112 9.24 186	10.76 038 10.75 963 10.75 888	9.99 355 9.99 353 9.99 351	From the bottom:
9.23 535 9.23 607 9.23 679	9.24 186 9.24 261 9.24 335	10.75 814 10.75 739 10.75 665	9.99344	101 00 01 200 ,
9.23 752 9.23 823 9.23 895	9.24 261 9.24 335 9.24 410 9.24 484 9.24 558 9.24 632	10.75 590 10.75 516 10.75 442	9.99 340	co-function.
9.23 967 L Cos	9.24 632 L Ctn	10.75 368 L Tan	2.99 33 <u>3</u> L Sin	Prop. Pts.
0.00	T	e m		ie Functions

80° - Logarithms of Trigonometric Functions

90	10		- Logarithms of Trigonometric					[III			
	L Sin	d	L Tan	c d	L Ctn	L Cos			Pro	p. Pts	_ i.
	9.23 96' 9.24 03! 9.24 110 9.24 182 9.24 253 9.24 324 9.24 39!		9.24 632 9.24 706 9.24 77 9.24 853 9.24 926 9.25 000 9.25 073	74 73 74 7: 74 73	10.75 368 10.75 29 10.75 221 10.75 147 10.75 074 10.75 000 10.74 927	9.99 33 9.99 33 9.99 32 9.99 32 9.99 326 9.99 324 9.99 322	6(555555555554		74 14.8 22.2 29.6 37.0	73 14.6 21.9 29.2 36.5	72 14.4 21.6 28.8 36.0
10 11 12	9.24 46 9.24 53 9.24 60' 9.24 677 9.24 74 9.24 81		9.25 146 9.25 219 9.25 292 9.25 365 9.25 437 9.25 510	73 73 73 73 7: 73 72	10.74 854 10.74 781 10.74 708 10.74 635 10.74 563 10.74 490	9.99 319 9.99 317 9.99 318 9.99 310 9.99 308	5; 52 5 50 49 48		44.4 51.8 59.2 66.6	43.8 51.1 58.4 65.7	43.2 50.4 57.6 64.8
13 14 15 16 17 18 19 20	9.24 88 9.24 958 9.25 028 9.25 098 9.25 168 9.25 237 9.25 307 9.25 376 9.25 445	69	9.25 582 9.25 655 9.25 727 9.25 799 9.25 871 9.25 943 9.26 01 9.26 086 9.26 158	73 72 72 72 72 72 72 71 72 71	10.74 418 10.74 345 10.74 273 10.74 201 10.74 129 10.74 057 10.73 985 10.73 914 10.73 84	9.99 306 9.99 304 9.99 301 9.99 299 9.99 297 9.99 294 9.99 290 9.99 288	4. 46 45 44 43 42 41 40		71 14.2 21.3 28.4 35.5 42.6 49.7 56.8 63.9	70 14.0 21.0 28.0 35.0 42.0 49.0 56.0 63.0	13.8 20.7 27.6 34.5 41.4 48.3 55.2 62.1
22 23 24 25 26 27 28 29 30 31 32	9.25 514 9.25 583 9.25 652 9.25 721 9.25 790 9.25 858 9.25 927 9.25 995 9.26 063 9.26 131 9.26 199	69 68	9.26 229 9.26 301 9.26 37: 9.26 443 9.26 514 9.26 585 9.26 655 9.26 726 9.26 797 9.26 867 9.26 937	72 71 71 71 71 70 71 71 70 70	10.73 771 10.73 699 10.73 628 10.73 557 10.73 486 10.73 415 10.73 274 10.73 203 10.73 1063	9.99 285 9.99 283 9.99 278 9.99 276 9.99 274 9.99 261 9.99 267 9.99 264 9.99 26	38 37 36 35 34 33 31 30 29 28	234 567 89	68 13.6 20.4 27.2 34.0 40.8 47.6 54.4 61.2	13.4 20.1 26.8 33.5 40.2 46.9 53.6 60.3	13.: 19.8 26.4 33.0 39.6 46.2 52.8 59.4
33 34 35 36 37 38 39 40 41 42 43	9.26 267 9.26 335 9.26 403 9.26 470 9.26 538 9.26 605 9.26 672 9.26 739 9.26 806 9.26 873 9.26 940		9.27 008 9.27 078 9.27 148 9.27 218 9.27 288 9.27 357 9.27 427 9.27 566 9.27 563 9.27 704	71 70 70 70 70 69 70 69 70	10.73 063 10.72 992 10.72 922 10.72 852 10.72 782 10.72 712 10.72 643 10.72 573 10.72 504 10.72 434 10.72 365 10.72 396	9.99 260 9.99 257 9.99 255 9.99 250 9.99 248 9.99 245 9.99 243 9.99 241 9.99 238 9.99 236	27 26 25 24 23 2 21 20 19 18		65 13.0 19.5 26.0 32.5 39.0 45.5 52.0 58.5	0.9 1.2 1.5 1.8 2.1 2.4	0.4 0.6 0.8 1.0 1.2 1.4 1.6
44 45 46 47 48 49 50	9.27 007 9.27 073 9.27 140 9.27 206 9.27 273 9.27 339 9.27 405 9.27 471		9.27 773 9.27 842 9.27 911 9.27 980 9.28 049 9.28 117 9.28 186 9.28 254	69 69 69 69 68 69	10.72 227 10.72 158 10.72 089 10.72 020 10.71 951 10.71 883 10.71 814 10.71 746	9.99 233 9.99 231 9.99 229 9.99 226 9.99 224 9.99 221 9.99 219).99 217	16 15 14 13 12 11 10	rea 10 0	For 10°d as p 0°+ or 10°f functi	orinted 280°+	.90°+, d; for
52 53 54	52 9.27 537 53 9.27 602		9.28 323 9.28 391 9.28 459 9.28 527 9.28 595 2.28 730 9.28 798 2.28 865	69 68 68 68 67 68 68 67	10.71 677 10.71 609 10.71 541 10.71 473 0.71 405 10.71 338 0.71 270 0.71 202 0.71 135	99 214 99 212 99 209 9.99 207 99 204 99 202 99 200 99 197 .99 195		ea . 6 9	From to For 79 °d as p 9°+ or functi	o+ or 2 printed 349°+,	59°+, l; for
	L Cos	d	L Ctn		L Tan	L Sin			Pro	o. Pts	
	700	,	T 40		0.75		, n				_

 79° — Logarithms of Trigonometric Functions

					LILL				
	Sin	L Tan	c	L Ctn	L Co:	d	_]	Prop.	Pts.
! !	9.31 78 9.31 84 9.31 90 9.31 96 9.32 02 9.32 08	9.32 74' 9.32 81 9.32 87: 9.32 93 9.32 99 9.33 05'		10.67 253 10.67 190 10.67 128 10.67 067 10.67 005 10.66 943	9.99 04 9.99 03 9.99 03 9.99 03 9.99 03 9.99 02	60 59 58 57 56 55	12 18	3.9 18	61 2.4 12.2 3.6 18.3
110	9.32 14 9.32 20 9.32 26 9.32 31 9.32 37 9.32 43	9.33 11 9.33 18 9.33 24 9.33 30 9.33 36 9.33 42		10.66 881 10.66 820 10.66 758 10.66 697 10.66 635 10.66 574	9.99 0_ 9.99 02 9.99 01 9.99 01 9.99 01 9.99 01	54 53 52 51 50 49	31 37 44 50	1.5 31 7.8 37 1.1 43 0.4 49	1.8 24.4 1.0 30.5 7.2 36.6 3.4 42.7 9.6 48.8 5.8 54.9
12 9 13 9 14 9 15 9 16 9 17 9 18 9	9.32 49 9.32 55 9.32 61: 9.32 67(9.32 72 9.32 78(9.32 844 9.32 902	9.33 48' 9.33 54 9.33 60' 9.33 67' 9.33 73 9.33 792 9.33 852 9.33 913		10.66 513 10.66 452 10.66 391 10.66 330 10.66 269 10.66 208 10.66 147 10.66 087	9.99 00 9.99 00 9.99 00 9.98 99 9.98 99 9.98 99	48 47 46 45 44 43 42 41	12 18 24 30 36 42	3.0 17 3.0 23 3.0 29 3.0 35 3.0 41	.8 11.6 .7 17.4 .6 23.2 .5 29.0 .4 34.8
21 9 22 9 23 9 24 9	9.32 960 9.33 01 9.33 075 9.33 133 9.33 190 9.33 248	9.33 974 9.34 03 9.34 09 9.34 15 9.34 215		10.66 026 10.65 966 10.65 905 10.65 845 10.65 785	9.98 986 9.98 985 9.98 98 9.98 975	40 39 38 37 36	48	6.0 47	56 11.2
26 9 27 9 28 9 29 9	9.33 305 9.33 36: 9.33 420 9.33 477 9.33 534	9.34 276 9.34 336 9.34 396 9.34 456 9.34 516 9.34 576		10.65 724 10.65 664 10.65 604 10.65 544 10.65 484 10.65 424	9.98 972 9.98 96 9.98 964 9.98 96 9.98 958	35 34 33 32 31 30	3 4 5 6 7 8	17.1 22.8 28.5 34.2 39.9 45.6	16.8 22.4 28.0 33.6 39.2 44.8
32 9 33 9 34 9	9.33 591 9.33 647 9.33 704 9.33 761 9.33 818	9.34 635 9.34 695 34 755 9.34 814 34 874		10.65 365 10.65 305 10.65 245 10.65 186 10.65 126	9.98 955 9.98 953 9.98 950 9.98 94 9.98 944	29 28 27 26 25		51.3 5 5 1.0 0.	50.4
36 9 37 9 38 9 39 9	9.33 874 9.33 931 9.33 987 9.34 043 9.34 100	.34 933 9.34 992 .35 051 .35 111 .35 170	59 60	10.65 067 .0.65 008 .0.64 949 .0.64 889 .0.64 830	9.98 941 9.98 938 9.98 936 9.98 933 9.98 930	24 23 22 21 20	10 22 27 33	6.5 0.	.9 0.6 .2 0.8 .5 1.0 .8 1.2
41 9 42 9 43 9 44 9	0.34 156 0.34 212 0.34 268 0.34 324 0.34 380	1.35 229 1.35 288 1.35 347 1.35 405 1.35 464		10.64 771 .0.64 712 .0.64 653 .0.64 595 10.64 536	9.98 927 9.98 924 9.98 921 9.98 919 9.98 916	19 18 17 16 15	4: 4:	4.0 2. 9.5 2. m the i	4 1.6 7 1.8
46 9 47 9 48 9 49 9	9.34 436 9.34 491 9.34 547 9.34 602 9.34 658	.35 523 .35 581 .35 640 .35 698		.0.64 477 .0.64 419 .0.64 360 .0.64 302 0.64 243	9.98 913 9.98 910 9.98 907 9.98 904 9.98 901	14 13 12 11 10	For read a	12°+ o as prin or 282	r 192°+, ted; for °+, read
51 9 52 9 53 9 54 9	9.34 713 9.34 769 9.34 824 9.34 879 9.34 934	.35 815 .35 873 .35 931 .35 989 .36 047		0.64 185 0.64 127 0.64 069 0.64 011 0.63 953	9.98 898 9.98 896 9.98 893 9.98 890 9.98 887	10	From	n the b 77 °+ 0	ottom: r 257 °+,
56 9 57 9 58 9 59 9	0.34 989 0.35 044 0.35 099 0.35 154 0.35 209	36 105 .36 163 .36 221 .36 279 .36 336		0.63 895 0.63 837 0.63 779 0.63 721 0.63 664	9.98 884 9.98 881 9.98 878 9.98 875 9.98 872			or 347	ted; for °+, read
	L Cos	Ctn		Tan	1.000			. F	'ts
									-~

TIIT

00	-	-	Logar		ns or Iti	gonome	ile runctions [II			
	L Sin		L Tan	c	L Ctn	L Cos		Prop. Pts.		
1(9.38 36 9.38 41 9.38 46 9.38 57 9.38 57 9.38 67 9.38 72 9.38 77 9.38 82	5; 5; 5; 5; 5; 5; 50 50	9.39 67' 9.39 78 9.39 78 9.39 83 9.39 89 9.39 994 9.40 052 9.40 10 9.40 159	53	10.60 32: 10.60 26: 10.60 21: 10.60 16: 10.60 05: 10.60 00: 10.59 94: 10.59 894:	9.98 690 9.98 684 9.98 68 9.98 67 9.98 67 9.98 66 9.98 66 9.98 66	6 5555 5 55555	54 53 52 10.8 10.6 10. 16.2 15.9 15. 21.6 21.2 20. 27.0 26.5 26. 32.4 31.8 31. 37.8 37.1 36. 43.2 42.4 41.		
1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2	9.38 87 9.38 92 9.38 97 9.39 02 9.39 071 9.39 121 9.39 220 9.39 270 9.39 369 9.39 418 9.39 467	50 50 50 50 50 49 50 49 50 49	9.40 212 9.40 266 9.40 319 9.40 372 9.40 425 9.40 531 9.40 581 9.40 689 9.40 742 9.40 795	54 53 53 53 53 53 53 53 53 53 53 53	10.59 78£ 10.59 68 10.59 628 10.59 575 10.59 522 10.59 416 10.59 364 10.59 361 10.59 258	9.98 655 9.98 656 9.98 656 9.98 649 9.98 644 9.98 643 9.98 633 9.98 633 9.98 627 9.98 623	50 4! 44 46 45 44 43 42 41 40 39	51 50 10.0 15.3 15.0 14.0 20.4 20.0 19.6 25.5 25.0 24.5 30.6 30.0 29.4 35.7 35.0 34.3 40.8 40.0 39.2 45.9 45.0 44.1	7 6 5 4 3	
23 25 26 27 28 29 30 31 3.	9.39 517 9.39 566 9.39 615 9.39 664 9.39 713 9.39 762 9.39 811 9.39 860 9.39 909 9.39 958 9.40 006	50 49 49 49 49 49 49 49 49	9.40 847 9.40 900 9.40 952 9.41 005 9.41 107 9.41 101 9.41 214 9.41 266 9.41 318 9.41 370 9.41 422	53 52 53 52 52 52 53 52 52 52 52 52 52	10.59 153 10.59 104 10.59 048 10.58 99 10.58 891 10.58 839 10.58 734 10.58 682 10.58 680 10.58 578	9.98 620 9.98 617 9.98 614 9.98 607 9.98 607 9.98 601 9.98 59 9.98 594 9.98 591 9.98 588 9.98 588	38 36 3, 34 33 32 31 30 29 28 27	48 47 2 9.6 9.4 3 14.4 14.1 4 19.2 18.8 5 24.0 23.5 6 28.8 28.2 7 33.6 32.9 8 38.4 37.6 9 43.2 42.3		
34 35 36 38 39 40 41 4: 4: 4:	9.40 055 9.40 103 9.40 152 9.40 200 9.40 249 9.40 297 9.40 346 9.40 394 9.40 442 9.40 490 9.40 538	49 48 49 48 49 48 49 48 48 48 48 48	9.41 474 9.41 526 9.41 578 9.41 629 9.41 681 9.41 733 9.41 784 9.41 836 -41 887 9.41 939 -41 990	52 52 51 52 52 51 52 51 52 51	10.58 526 10.58 474 10.58 422 10.58 371 10.58 319 10.58 267 10.58 164 10.58 113 10.58 061 0.58 010	9.98 581 9.98 578 9.98 574 9.98 568 9.98 565 9.98 565 9.98 555 9.98 555 9.98 551 9.98 548	26 25 24 23 22 1 20	0.8 0.6 1.2 0.9 1.6 1.2 2.0 1.5 2.4 1.8 2.8 2.1 3.2 2.4 3.6 2.7		
45 46 47 48 49 50 51 52 53	9.40 586 9.40 634 9.40 682 9.40 730 9.40 778 40 825 9.40 873 9.40 921 40 968	48 48 48 48 48 47 48 47	.42 041 .42 093 .42 144 .42 195 .42 246 .42 297 .42 348 .42 399 .42 450	52 1 1 1 1	0.57 959 0.57 907 0.57 856 0.57 805 0.57 754 0.57 703 0.57 652 0.57 601 0.57 550	.98 545 .98 541 .98 538 .98 535 .98 531 .98 528 .98 525 .98 521 .98 518	e, . 0	From the top: For 14°+ or 194°+, ad as printed; for 4°+ or 284°+, read function. From the bottom:		
54 55 56 57 58 59 60	.41 016 .41 063 .41 111 .41 158 .41 205 .41 252 .41 300 L Cos	47 :8 :7 :7 :7 48	.42 501 .42 552 .42 603 .42 653 .42 704 .42 755 .42 805 L Ctn	c d	0.57 499 0.57 448 0.57 397 0.57 347 0.57 296 0.57 245 0.57 195 L Tan	.98 515 .98 511 .98 508 .98 505 .98 505 .98 498 .98 494 L Sin	e: .6	For 75°+ or 255°+, ad as printed; for 5°+ or 345°+, read function. Prop. Pts.		

11.	.] -0				or Tire	опоще	iic ru	menous of
	L Sin		L Tan		L Ctn	L Cos		Prop. Pts.
10	41 347 41 394 41 441 4 41 488 5 41 535 6 41 582 7 41 628 8 41 675 9 41 722 9 41 768	.7 .7 .47 .47 .46 .7 .46 .47	1.42 805 1.42 856 1.42 906 1.42 957 1.43 007 1.43 158 1.43 158 1.43 208 9.43 258 9.43 358	51 50 51 50 50 51 50 50 50 50	0.57 195 0.57 144 0.57 094 10.57 094 10.56 993 10.56 892 10.56 842 10.56 792 10.56 692 10.56 692 10.56 692	1.98 494 1.98 491 1.98 488 1.98 484 1.98 477 1.98 477 1.98 471 1.98 461 1.98 464 1.98 460 9.98 457	55 34 33 32 1 50 49	51 50 49 10.2 10.0 9.8 15.3 15.0 14.7 20.4 20.0 19.6 25.5 25.0 24.5 30.6 30.0 29.4 40.8 40.0 39.2 45.9 45.0 44.1
12 13 14 15 16 17 18 19 20 21 22	9.41 861 9.41 908 9.42 001 9.42 047 9.42 093 9.42 140 9.42 186 9.42 232 9.42 278 9.42 324	46 47 46 47 46 46 46 46 46 46	9.43 408 9.43 458 9.43 558 9.43 657 9.43 657 9.43 707 9.43 756 9.43 855 9.43 905	50 50 50 50 49 50 49 50 49 50	10.56 592 10.56 542 10.56 442 10.56 393 10.56 343 10.56 293 10.56 144 10.56 145 10.56 095	9.98 453 9.98 450 9.98 447 9.98 443 9.98 440 9.98 433 9.98 429 9.98 429 9.98 429 9.98 419	48 47 46 45 44 43 42 41 40 39 38	48 47 46 2 9.6 9.4 9.2 3 14.4 14.1 13.8 4 19.2 18.8 18.4 5 24.0 27.6 7 33.6 32.9 32.2 8 38.4 37.6 36.8 9 43.2 42.3 41.4
23 24 25 26 27 28 29 30 31 32 33	9.42 370 9.42 416 9.42 461 9.42 507 9.42 553 9.42 599 9.42 644 9.42 690 9.42 781 9.42 781	46 46 46 46 46 45 46 45 46 45 46	9.43 954 9.44 004 9.44 053 9.44 102 9.44 201 9.44 250 9.44 299 9.44 348 9.44 347 9.44 446	49 50 49 49 50 49 49 49 49 49	10.56 046 10.55 996 10.55 997 10.55 898 10.55 799 10.55 750 10.55 750 10.55 60 10.55 60 10.55 60 10.55 554	9.98 415 9.98 409 9.98 405 9.98 405 9.98 395 9.98 395 9.98 395 9.98 381 9.98 381	37 36 35 34 33 32 31 30 29 28	45 44 9.0 8.8 13.5 13.2 18.0 17.6 22.5 22.0 27.0 26.4 31.5 30.8 36.0 35.2 40.5 39.6
34 35 36 37 38 39 40 41 42 43 44	9.42 917 9.42 962 9.43 008 9.43 053 9.43 098 9.43 143 9.43 188 9.43 188 9.43 278 9.43 32	45 45 46 45 45 45 45 45 45 45 45 45	9.44 495 9.44 594 9.44 690 9.44 738 9.44 787 9.44 836 9.44 836 9.44 838 9.44 981	49 48 49 48 49 48 49 48 49 48	10.55 505 10.55 456 10.55 459 10.55 359 10.55 310 10.55 262 10.55 213 10.55 164 10.55 067 10.55 019	9.98 377 9.98 373 9.98 366 9.98 369 9.98 359 9.98 35- 9.98 349 9.98 345 9.98 342	26 25 24 23 22 21 20 19 18	0.8 0.6 1.2 0.9 1.6 1.2 2.0 1.5 2.4 1.8 2.8 2.1 3.2 2.4 3.6 2.7
45 46 47 48 49 50 51 52 53	9.43 412 9.43 45 9.43 502 9.43 546 9.43 591 9.43 635 9.43 680	45 45 45 44 45 44 45 44	9.45 029 9.45 078 9.45 126 9.45 174 9.45 222 9.45 271 9.45 31 9.45 367 9.45 415	49 48 48 49 48 48 48	10.54 971 10.54 922 10.54 874 10.54 826 10.54 779 10.54 68 10.54 633 10.54 585	9.98 338 9.98 334 9.98 331 9.98 327 9.98 324 9.98 320 9.98 317 9.98 313 9.98 309	15 1 1 12 1 10	For 15°+ or 195°+ read as printed; fo: 105°+ or 285°+, reac co-function. From the bottom
54 55 56 5 5 5	9.43 769 9.43 819 9.43 85 9.43 90 9.43 94 9.43 99 9.44 03	45 44 44 45 44 44	9.45 463 9.45 51 9.45 559 9.45 60 9.45 654 9.45 702 9.45 75	48 48 47 48 48 48	10.54 53 10.54 489 10.54 44 10.54 394 10.54 34 10.54 298 10.54 25	9.98 306 9.98 302 9.98 299 9.98 29! 9.98 29 9.98 28! 9.98 28		For 74°+ or 254 read as printed; 164°+ or 344°+, read co-function. Prop. Pts.
	L Cos	, 🛰	Ctn	c	L Tan	L Sin		

74° — Logarithms of Trigonometric Functions

62	10		- Logarn	nms	s or reig	onomeni	CFU	nctions	$\Pi\Pi$
	L Sin	d	L Tan	c d	L Ctn	${f L}$ Cos		Prop. Pts.	-
	9.44 034 9.44 078 .44 122 .44 166 9.44 210	44 44 44 44	9.45 750 9.45 797 .45 845 9.45 892 9.45 940	47 48 47	10.54 250 10.54 203 10.54 155 10.54 108 10.54 060	9.98 284 9.98 281 9.98 277 9.98 273 9.98 270	60	48 47 9.6 9.4	46 9.2
	9.44 253 9.44 297 9.44 341 9.44 385	43 44 44 44 43	9.45 987 9.46 035 9.46 082 9.46 130	47 48 47 48	10.54 013 10.53 965 10.53 918 10.53 870 10.53 823	9.98 266 9.98 262 9.98 259 9.98 255 9.98 251	55 54 53 52 51	$ \begin{vmatrix} 19.2 & 18.8 \\ 24.0 & 23.5 \\ 28.8 & 28.2 \\ 33.6 & 32.9 \end{vmatrix} $	13.8 18.4 23.0 27.6 32.2
10 11 12 13	9.44 428 9.44 472 9.44 516 9.44 559 9.44 602	44 44 43 43 44	9.46 177 9.46 224 9.46 271 9.46 319 9.46 366	47 47 48	10.53 776 10.53 729 10.53 681 10.53 634	9.98 248 9.98 244 9.98 240 9.98 237	50 49 48 47	43.2 42.3 4	43
14 15 16 17 18 19	9.44 646 9.44 689 9.44 733 9.44 776 9.44 819 9.44 862	43 44 43 43 43	9.46 413 9.46 460 9.46 507 9.46 554 9.46 601 9.46 648	47 47 47 47 47	10.53 587 10.53 540 10.53 493 10.53 446 10.53 399 10.53 352	9.98 233 9.98 229 9.98 226 9.98 222 9.98 218 9.98 215	46 45 44 43 42 41	$ \begin{array}{c cccc} 18.0 & 17.6 \\ 22.5 & 22.0 \\ 27.0 & 26.4 \end{array} $	8.6 12.9 17.2 21.5 25.8 30.1
20 21 22 23 24	9.44 905 9.44 948 9.44 992 9.45 035 9.45 077	43 44 43 42	9.46 694 9.46 741 9.46 788 9.46 835 9.46 881	46 47 47 47 46	10.53 306 10.53 259 10.53 212 10.53 165 10.53 119	9.98 211 9.98 207 9.98 204 9.98 200 9.98 196	40 39 38 37 36	36.0 35.2 40.5 39.6	34.4 38.7
25 26 27 28 29	9.45 120 9.45 163 9.45 206 9.45 249 9.45 292	43 43 43 43	9.46 928 9.46 975 9.47 021 9.47 068 9.47 114	47 46 47 46	10.53 072 10.53 025 10.52 979 10.52 932 10.52 886	9.98 192 9.98 189 9.98 185 9.98 181 9.98 177	35 34 33 32 31	2 8.4 8. 3 12.6 12. 4 16.8 16. 5 21.0 20. 6 25.2 24. 7 29.4 28. 8 33.6 32.	3 4 5 6
30 31 32 33 34	9.45 334 9.45 377 9.45 419 9.45 462 9.45 504	42 43 42 43 42 43	9.47 160 9.47 207 9.47 253 9.47 299 9.47 346	46 47 46 46 47 46	$\begin{array}{c} 10.52840 \\ 10.52793 \\ 10.52747 \\ 10.52701 \\ 10.52654 \end{array}$	9.98 174 9.98 170 9.98 166 9.98 162 9.98 159	30 29 28 27 26	9 37.8 36.	8 9
35 36 37 38 39	9.45 547 9.45 589 9.45 632 9.45 674 9.45 716	42 43 42 42 42	9.47 392 9.47 438 9.47 484 9.47 530 9.47 576	46 46 46 46 46	10.52 608 10.52 562 10.52 516 10.52 470 10.52 424	9.98 15 9.98 151 9.98 147 9.98 144 9.98 140	25 24 23 2 21	2 0.8 0.6 3 1.2 0.9 4 1.6 1.2 5 2.0 1.5 6 2.4 1.8 7 2.8 2.1 8 3.2 2.4 9 3.6 2.7	
40 41 42 43 44	9.45 758 9.45 801 9.45 843 9.45 885 9.45 927	43 42 42 42 42	9.47 622 9.47 668 9.47 714 9.47 760 9.47 806	46 46 46 46	10.52 378 10.52 33 10.52 286 10.52 240 10.52 194	9.98 136 9.98 13 9.98 129 9.98 125 9.98 121	20 19 18 17 16	8 3.2 2.4 9 3.6 2.7	
45 46 47 48 49	9.45 969 9.46 011 9.46 053 9.46 095 9.46 136	42 42 42 41 41	9.47 852 9.47 897 9.47 943 9.47 989 9.48 035	45 46 46 46 45	10.52 148 10.52 103 10.52 05' 10.52 011 10.51 965	9.98 11 9.98 113 9.98 110 9.98 106 9.98 102	15 14 1 12 11	For 16°+ or 19 read as printed 106°+ or 286°+, co-function.)6°+, ; for
50 51 52 53 54	9.46 178 9.46 220 9.46 262 9.46 303 9.46 345		9.48 080 9.48 126 9.48 171 9.48 217 9.48 26	46 45 46 45	10.51 920 10.51 874 10.51 829 10.51 783 10.51 738	9.98 098 9.98 094 9.98 090 9.98 087 9.98 083	10	From the botte For 73°+ or 25	1
55 56 57 58 59	9.46 386 9.46 428 9.46 469 9.46 511 9.46 55		9.48 30' 9.48 353 9.48 398 9.48 443 9.48 489	46 45 45 46 45	10.51 693 10.51 647 10.51 60 10.51 557 10.51 511	9.98 079 9.98 075 9.98 071 9.98 067 9.98 063		read as printed 163°+ or 343°+, co-function.	
60	9.46 594 L Cos	d	9.48 534 L Ctn	c d	10.51 466 L Tan	9.98 060 L Sin	đ	Prop. Pts.	_
		~							

73° — Logarithms of Trigonometric Functions

III.		17		Logari	ULLILLE	or mig	OHOMCO	110	1.0	ш	uons	03
1]	Sin	d	L Tan	cd	L Ctn	L Cos	d			Prop. Pt	s.
0 1 2 3 4 5 6 7 8 9	9.9.9.9.9.9.9.9.9	46 594 46 635 46 676 46 717 46 758 46 800 46 841 46 882 46 923 46 964 47 005	41 41 41 42 41 41 41 41 41	9.48 534 9.48 579 9.48 624 9.48 669 9.48 714 9.48 804 9.48 804 9.48 894 9.48 994 9.48 994 9.48 984	45 45 45 45 45 45 45 45 45 45	10.51 466 10.51 421 10.51 376 10.51 331 10.51 286 10.51 241 10.51 196 10.51 106 10.51 061	9.98 060 9.98 056 9.98 052 9.98 048 9.98 044 9.98 030 9.98 030 9.98 032 9.98 029 9.98 025	4444443444	50 59 58 57 56 55 54 53 51 50	23456789	9.0 8.8 13.5 13.2 18.0 17.6 22.5 22.0 27.0 26.4 31.5 30.8 36.0 35.3 40.5 39.6	43 8.6 12.9 17.2 21.5 25.8 30.1 2 34.4
11 12 13 14 15 16 17 18 19 20 21	9999999999999	.47 045 .47 086 .47 127 .47 168 .47 209 .47 249 .47 290 .47 330 .47 371 .47 411 .47 452	41 41 41 40 41 40 41 40 41 40 41	9.49 029 9.49 073 9.49 118 9.49 163 9.49 207 9.49 252 9.49 341 9.49 385 9.49 474 9.49 519	44 45 45 44 45 44 45 44 45 44 45 44 45	10.50 971 10.50 927 10.50 882 10.50 887 10.50 793 10.50 704 10.50 659 10.50 615 10.50 570 10.50 582 10.50 481	9.97 974	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	41 40 39 38	23456789	16.8 16.4 21.0 20.4 25.2 24.4 29.4 28.4 33.6 32.4 37.8 36.4 37.8 36.4 37.8 36.4 37.8 36.4	2 8.0 3 12.0 4 16.0 5 20.0 6 24.0 7 28.0 8 32.0 9 36.0
28 24 28 29 29 29 30 33 33 33	34 95 67 89 0 1 2 3 4	9.47 533 9.47 573 9.47 613 9.47 654 9.47 694 9.47 774 9.47 814 9.47 854 9.47 894 9.47 974	40 40 41 40 40 40 40 40 40 40 40 40 40 40 40 40	9.49 96 9.50 00 9.50 04	7 44 45 44 44 44 44 44 44 44 44 44 44 44 4	10.50 437 10.50 393 10.50 348 10.50 304 10.50 260 10.50 172 10.50 128 10.50 084 10.49 995 10.49 955	9.97 962 9.97 958 9.97 956 9.97 956 9.97 946 9.97 945 9.97 93 9.97 93 9.97 93 9.97 93 9.97 93	6 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	30 30 31 31 31 31 31 31 31 31 31 31 31 31 31	5 5 4 3 2 1 0 9 8	2 7.8 3 11.7 4 15.6 5 19.5 6 23.4 7 27.3 8 31.2 9 35.1 4 2 0.8	3 0.6
3 3 4 4 4 4 4 4 4	6 7 8 9	9.48 014 9.48 054 9.48 094 9.48 133 9.48 173 9.48 252 9.48 292 9.48 332 9.48 37 9.48 41 9.48 45	40 39 40 39 40 40 40 40 40 40 40 40 40 40	9.50 13 9.50 18 9.50 22 9.50 26 9.50 31 9.50 35 9.50 48 9.50 48 9.50 55 9.50 55	6 44 44 43 44 44 44 43 44 44 43 44 43 44 43 44 43 44 43 44 43 44 43 44 43 44 43 44 43 44 44	10.49 86 10.49 82 10.49 77 10.49 78 10.49 68 10.49 64 10.49 55 10.49 51 10.49 47	4 9.97 91 0 9.97 91 7 9.97 91 3 9.97 90 9.97 90 5 9.97 89 2 9.97 88 9.97 88 9.97 88 9.97 88	84062840628	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3 2 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 1.2 4 1.6 5 2.0 6 2.4 7 2.8 8 3.2 9 3.6 From the For 17°+	or 197°+,
2. 2. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	17 18 19 50 51 52 53 54 55 55 55 55 55 55 55	9.48 490 9.48 52 9.48 56 9.48 64 9.48 68 9.48 72 9.48 76 9.48 80 9.48 82 9.48 92 9.48 92	09887765433333333333333333333333333333333333	9.50 61 9.50 62 9.50 74 9.50 77 9.50 77 9.50 83 9.50 9 9.50 9 9.50 9 9.51 0 9.51 0	16 43 59 43 43 43 43 43 43 43 43 43 43 43 43 44 43 43	10.49 34 10.49 29 10.49 21 10.49 21 10.49 16 10.49 16 10.49 08 10.48 98 10.48 98 10.48 98 10.48 98 10.48 98 10.48 98	1 9.97 87 9.97 86 4 9.97 86 1	70 56 57 53 45 41 37 33 29 25	4	11 10 9876 54 32	read as pri 107° + or 28 co-function From the For 72° + read as pri 162° + or 3° co-function	tor 252°+; read to bottom: or 252°+; inted; fo 12°+, read
	60	9.48 99	8	9.51 1 d L Ct	78 4	10.488			d	<u>,</u>	Prop	Pts.
- 1		L Co	SI	uibu	IL IU					77		

72° — Logarithms of Trigonometric Functions

04	19	- Logarithin			runctions [III
	L Sin	L Tan c d	L Ctn	L Cos d	Prop. Pts.
0 1 2 3 4	9.48 998 9.49 037 9.49 076 9.49 115 9.49 153	9.51 178 9.51 221 9.51 264 9.51 306 9.51 349	10.48 822 10.48 779 10.48 736 10.48 694 10.48 651	9.97 821 9.97 817 9.97 812 9.97 808 9.97 804	
5 6 7 8 9	9.49 192 9.49 231 9.49 269 9.49 308 9.49 347	9.51 392 9.51 435 9.51 478 9.51 520 9.51 563	10.48 608 10.48 565 10.48 522 10.48 480 10.48 437	9.97 800 9.97 796 9.97 792 9.97 788 9.97 784	43 42 41 8.6 8.4 8.2 12.9 12.6 12.3 17.2 16.8 16.4
10 11 12 13 14	9.49 385 9.49 424 9.49 462 9.49 500 9.49 539	9.51 606 9.51 648 9.51 691 9.51 734 9.51 776	10.48 394 10.48 352 10.48 309 10.48 266 10.48 224	9.97 779 9.97 775 9.97 771 9.97 767 9.97 763	21.5 21.0 20.5 25.8 25.2 24.6 30.1 29.4 28.7 34.4 33.6 32.8 38.7 37.8 36.9
15 16 17 18 19	9.49 577 9.49 615 9.49 654 9.49 692 9.49 730	9.51 819 9.51 861 9.51 903 9.51 946 9.51 988	10.48 181 10.48 139 10.48 097 10.48 054 10.48 012	9.97759 9.97754 9.97750 9.97746 9.97742	39 38 37 7.8 7.6 7.4 11.7 11.4 11.1 15.6 15.2 14.8
20 21 22 23 24 25	9.49 768 9.49 806 9.49 844 9.49 882 9.49 920	9.52 031 9.52 073 9.52 115 9.52 157 9.52 200	10.47 969 10.47 927 10.47 885 10.47 843 10.47 800	9.97738 9.97734 9.97729 9.97725 9.97721	15.6 15.2 14.8 19.5 19.0 18.5 23.4 22.8 22.2 27.3 26.6 25.9 31.2 30.4 29.6 35.1 34.2 33.3
26 27 28 29 30	9.49 958 9.49 996 9.50 034 9.50 072 9.50 110 9.50 148	9.52 242 9.52 284 9.52 326 9.52 368 9.52 410 9.52 452	10.47 758 10.47 716 10.47 674 10.47 632 10.47 590 10.47 548	9.97717 9.97713 9.97708 9.97704 9.97700 9.97696	36 5
31 32 33 34 35	9.50 185 9.50 223 9.50 261 9.50 298 9.50 336	9.52 494 9.52 536 9.52 578 9.52 620 9.52 661	10.47 506 10.47 464 10.47 422 10.47 380 10.47 339	9.97 691 9.97 687 9.97 683 9.97 679 9.97 674	14.4 2.0 1.6 18.0 2.5 2.0 21.6 3.0 2.4 25.2 3.5 2.8 28.8 4.0 3.2
36 37 38 39 40	9.50 374 9.50 411 9.50 449 9.50 486 9.50 523	9.52 703 9.52 745 9.52 787 9.52 829 9.52 870	10.47 297 10.47 255 10.47 213 10.47 171 10.47 130	9.97 670 9.97 666 9.97 662 9.97 657 9.97 653	32.4 4.5 3.6
41 42 43 44	9.50 561 9.50 598 9.50 635 9.50 673	9.52 912 9.52 953 9.52 995 9.53 037	10.47 088 10.47 047 10.47 005 10.46 963	9.97 649 9.97 645 9.97 640 9.97 636	From the top: For 18°+ or 198°+,
45 46 47 48 49	9.50 710 9.50 747 9.50 784 9.50 821 9.50 858	9.53 078 9.53 120 9.53 161 9.53 202 9.53 244	10.46 922 10.46 880 10.46 839 10.46 798 10.46 756	9.97 632 9.97 628 9.97 623 9.97 619 9.97 615	read as printed; for 108°+ or 288°+, read co-function.
50 51 52 53 54	9.50 896 9.50 933 9.50 970 9.51 007 9.51 043	9.53 285 9.53 327 9.53 368 9.53 409 9.53 450	10.46 715 10.46 673 10.46 632 10.46 591 10.46 550	9.97 610 9.97 606 9.97 602 9.97 597 9.97 593	From the bottom: For 71°+ or 251°+, read as printed; for 161°+ or 341°+, read
55 56 57 58 59	9.51 080 9.51 117 9.51 154 9.51 191 9.51 227	9.53 492 9.53 533 9.53 574 9.53 615 9.53 656	10.46 508 10.46 467 10.46 426 10.46 385 10.46 344	9.97 589 9.97 584 9.97 580 9.97 576 9.97 571	co-function.
60	9.51 264	9.53 697	10.46 303	9.97 567	
	L Cos	d LCtn cd	L Tan	L Sin d	Prop. Pts.

10	20801101	and or ringonomiculo r	unctions of
L Sin	L Tan c	d L Ctn L Cos d	Prop. Pts.
9.51 264 9.51 301 9.51 338 9.51 374 9.51 411	9.53 697 9.53 738 9.53 779 9.53 820 9.53 861	10.46 303 9.97 567 10.46 262 9.97 563 10.46 221 9.97 558 10.46 180 9.97 554 10.46 139 9.97 550	
9.51 447 9.51 484 9.51 520 9.51 557 9.51 593	9.53 902 9.53 943 9.53 984 9.54 025 9.54 065	10.46 098 9.97 545 10.46 057 9.97 546 10.46 016 9.97 536 10.45 975 9.97 532 10.45 935 9.97 528	41 40 39 8.2 8.0 7.8 12.3 12.0 11.7 16.4 16.0 15.6 20.5 20.0 19.5
9.51 629 9.51 666 9.51 702 9.51 738 9.51 774 9.51 811	9.54 106 9.54 147 9.54 187 9.54 228 9.54 269 9.54 309	10.45 894 9.97 523 10.45 853 9.97 519 10.45 813 9.97 515 10.45 772 9.97 510 10.45 691 9.97 506	24.6 24.0 23.4 28.7 28.0 27.3 32.8 32.0 31.2 36.9 36.0 35.1
9.51 847 9.51 883 9.51 919 9.51 955 9.51 991	9.54 350 9.54 390 9.54 431 9.54 471 9.54 512	$\begin{array}{c} 10.45\ 650 & 9.97\ 497 \\ 10.45\ 610 & 9.97\ 492 \\ 10.45\ 569 & 9.97\ 488 \\ 10.45\ 529 & 9.97\ 484 \\ 10.45\ 488 & 9.97\ 479 \end{array}$	37 36 35 7.4 7.2 7.0 11.1 10.8 10.5 14.8 14.4 14.0 18.5 18.0 17.5
9.52 027 9.52 063 9.52 099 9.52 135 9.52 171	9.54 552 9.54 593 9.54 633 9.54 673 9.54 714	10.45 407 9.97 470 10.45 367 9.97 466 10.45 327 9.97 461 10.45 286 9.97 457	22.2 21.6 21.0 25.9 25.2 24.5 29.6 28.8 28.0 33.3 32.4 31.5
9.52 207 9.52 242 9.52 278 9.52 314 9.52 350	9.54 754 9.54 794 9.54 835 9.54 875 9.54 915	$\begin{array}{ccc} 10.45\ 246 & 9.97\ 453 \\ 10.45\ 206 & 9.97\ 444 \\ 10.45\ 165 & 9.97\ 444 \\ 10.45\ 125 & 9.97\ 439 \\ 10.45\ 085 & 9.97\ 435 \end{array}$	34 5 6.8 1.0 0.8 10.2 1.5 1.2 13.6 2.0 1.6
9.52 385 9.52 421 9.52 456 9.52 492 9.52 527	9.54 955 9.54 995 9.55 035 9.55 075 9.55 115	$\begin{array}{rrrr} 10.45045 & 9.97430 \\ 10.45005 & 9.97426 \\ 10.44965 & 9.97421 \\ 10.44925 & 9.97417 \\ 10.44885 & 9.97412 \\ \end{array}$	13.6 2.0 1.6 17.0 2.5 2.0 20.4 3.0 2.4 23.8 3.5 2.8 27.2 4.0 3.2 30.6 4.5 3.6
9.52 563 9.52 598 9.52 634 9.52 669 9.52 705	9.55 155 9.55 195 9.55 235 9.55 275 9.55 315	10.44 845 9.97 408 10.44 805 9.97 403 10.44 765 9.97 399 10.44 725 9.97 394 10.44 685 9.97 390	1000120100
9.52 740 9.52 775 9.52 811 9.52 846	9.55 355 9.55 395 9.55 434 9.55 474	10.44645 9.97385 10.44605 9.97381 10.44566 9.97376 10.44526 9.97372	From the top: For 19°+ or 199°+, read as printed; for
9.52 881 9.52 916 9.52 951 9.52 986 9.53 021	9.55 514 9.55 554 9.55 593 9.55 633 9.55 673	10.44 486 9.97 367 10.44 446 9.97 363 10.44 407 9.97 358 10.44 367 9.97 353 10.44 327 9.97 349	109°+ or 289°+, read co-function. From the bottom:
9.53 056 9.53 092 9.53 126 9.53 161 9.53 196	9.55 712 9.55 752 9.55 791 9.55 831 9.55 870	10.44 288 9.97 344 10.44 248 9.97 340 10.44 209 9.97 335 10.44 169 9.97 331 10.44 130 9.97 326	For 70°+ or 250°+, read as printed; for 160°+ or 340°+, read
9.53 231 9.53 266 9.53 301 9.53 336 9.53 370	9.55 910 9.55 949 9.55 989 9.56 028 9.56 067	$\begin{array}{ccc} 10.44090 & 9.97322 \\ 10.44051 & 9.97317 \\ 10.44011 & 9.97312 \\ 10.43972 & 9.97308 \\ 10.43933 & 9.97303 \end{array}$	co-function.
9.53 ± 405	9.56 107	10.43 893 9.97 299	Prop. Pts.
L Cos	L Ctn	cd L Tan L Sin d	1 1 OD: 1 100

70° - Logarithms of Trigonometric Functions

00		2050220					ETT.	Ţ
	L Sin	L Tan	c d	L Ctn	L Cos		Prop. Pts.	
99	0.53 405 0.53 440 0.53 475 0.53 509 0.53 544	9.56 107 9.56 146 9.56 185 9.56 224 9.56 264	:	10.43 893 10.43 854 10.43 815 10.43 776 10.43 736	9.97 299 9.97 294 9.97 289 9.97 285 9.97 280			
999	0.53 578 0.53 613 0.53 647 0.53 682 0.53 716	9.56 303 9.56 342 9.56 381 9.56 420 9.56 459	:	10.43 697 10.43 658 10.43 619 10.43 580 10.43 541	9.97 276 9.97 271 9.97 266 9.97 262 9.97 257 9.97 252		40 39 38 8.0 7.8 7.6 12.0 11.7 11.4 16.0 15.6 15.2 20.0 19.5 19.0	
11 9 12 9 13 9 14 9 15 9	0.53 751 0.53 785 0.53 819 0.53 854 0.53 888 0.53 922	9.56 498 9.56 537 9.56 576 9.56 615 9.56 654 9.56 693 9.56 732		10.43 502 10.43 463 10.43 424 10.43 385 10.43 346 10.43 307	9.97 248 9.97 243 9.97 238 9.97 234 9.97 229 9.97 224		24.0 23.4 22.8 28.0 27.3 26.6 32.0 31.2 30.4 36.0 35.1 34.2	
17 9 18 9 19 9 20 9	0.53 957 0.53 991 0.54 025 0.54 059 0.54 093 0.54 127	9.56 732 9.56 771 9.56 810 9.56 849 9.56 887 9.56 926		10.43 268 10.43 229 10.43 190 10.43 151 10.43 113 10.43 074	9.97 224 9.97 220 9.97 215 9.97 210 9.97 206 9.97 201		37 35 34 7.4 7.0 6.8 11.1 10.5 10.2 14.8 14.0 13.6 18.5 17.5 17.0	
22 9 23 9 24 9 25 9 26 9	0.54 161 0.54 195 0.54 229 0.54 263 0.54 297	9.56 965 9.57 004 9.57 042 9.57 081 9.57 120		10.43 035 10.42 996 10.42 958 10.42 919 10.42 880	9.97 196 9.97 192 9.97 187 9.97 182 9.97 178		22.2 21.0 20.4 25.9 24.5 23.8 29.6 28.0 27.2 33.3 31.5 30.6	
28 9 29 9 30 9 31 9 32 9	0.54 331 0.54 365 0.54 399 0.54 433 0.54 466 0.54 500	9.57 158 9.57 197 9.57 235 9.57 274 9.57 312 9.57 351 9.57 389		10.42 842 10.42 803 10.42 765 10.42 726 10.42 688 10.42 649	9.97 173 9.97 168 9.97 163 9.97 159 9.97 154 9.97 149		33 5 4 6.6 1.0 0.8 9.9 1.5 1.2 13.2 2.0 1.6 16.5 2.5 2.0 2.4	
34 9 35 9 36 9 37 9	0.54 534 0.54 567 0.54 601 0.54 635 0.54 668 0.54 702	9.57 389 9.57 428 9.57 466 9.57 504 9.57 543 9.57 581	:	10.42 611 10.42 572 10.42 534 10.42 496 10.42 457 10.42 419	9.97 149 9.97 145 9.97 140 9.97 135 9.97 130 9.97 126 9.97 121		19.8 3.0 2.4 23.1 3.5 2.8 26.4 4.0 3.2 29.7 4.5 3.6	
40 9 41 9 42 9 43 9	9.54 735 9.54 769 9.54 802 9.54 836 9.54 869 9.54 903	9.57 619 9.57 658 9.57 696 9.57 734 9.57 772 9.57 810	:	10.42 381 10.42 342 10.42 304 10.42 266 10.42 228 10.42 190	9.97 116 9.97 111 9.97 107 9.97 102 9.97 097 9.97 092		From the top: For 20°+ or 200°+,	,
45 9 46 9 47 9 48 9 49 9	9.54 936 9.54 969 9.55 003 9.55 036 9.55 069	9.57 849 9.57 887 9.57 925 9.57 963 9.58 001	:	10.42 151 10.42 113 10.42 075 10.42 037 10.41 999	9.97 087 9.97 083, 9.97 078 9.97 073 9.97 068	11 co	ead as printed; for 10°+ or 290°+, read of the contion. From the bottom:	
51 9 52 9 53 9 54 9	9.55 102 9.55 136 9.55 169 9.55 202 9.55 235 9.55 268	9.58 039 9.58 077 9.58 115 9.58 153 9.58 191 9.58 229		10.41 961 10.41 923 10.41 885 10.41 847 10.41 809 10.41 771	9.97 063 9.97 059 9.97 054 9.97 049 9.97 044 9.97 039	re 1 5	For 69°+ or 249°+, ead as printed; for 59°+ or 339°+, read o-function.	•
56 9 57 9 58 9 59 9	9.55 301 9.55 334 9.55 367 9.55 400 9.55 433	9.58 267 9.58 304 9.58 342 9.58 380 9.58 418		10.41 733 10.41 696 10.41 658 10.41 620 10.41 582	9.97 035 9.97 030 9.97 025 9.97 020 9.97 015			
	L Cos	d L Ctn	c d	L Tan	L Sin	d	Prop. Pts.	

L Cos d | L Ctn cd | L Tan L Sin | d Prop 69° — Logarithms of Trigonometric Functions

III]	21	Logarii	thms of Trig	onometric	Functions	67
1	L Sin	L Tan	cd L Ctn	L Cos d	Prop. Pts	-
0 1 2 3 4	9.55 433 9.55 466 9.55 499 9.55 532 9.55 564	9.58 418 9.58 455 9.58 493 9.58 531 9.58 569	10.41 582 10.41 545 10.41 507 10.41 469 10.41 431	9.97 015 9.97 010 9.97 005 9.97 001		AND LINE
5 6 7	9.55 597 9.55 630 9.55 663 9.55 695 9.55 728 9.55 761 9.55 793 9.55 826 9.55 858	9.58 606 9.58 644 9.58 681 9.58 719 9.58 757 9.58 794 9.58 832 9.58 869 9.58 907	10.41 394 10.41 356 10.41 319 10.41 281 10.41 243 10.41 206 10.41 168 10.41 131 10.41 093	9.96 991 9.96 986 9.96 981 9.96 976 9.96 971 9.96 966 9.96 962 9.96 957 9.96 952	38 37 7.6 7.4 11.4 11.1 15.2 14.8 19.0 18.5 22.8 22.2 26.6 25.9 30.4 29.6 34.2 33.3	36 7.2° 10.8 14.4 18.0 21.6 25.2 28.8 32.4
	9.55 891 9.55 923 9.55 956 9.55 988 9.56 021 9.56 053 9.56 188 9.56 150 9.56 182 9.56 215	9.58 944 9.58 981 9.59 019 9.59 056 9.59 094 9.59 181 9.59 205 9.59 243 9.59 280 9.59 317	10.41 056 10.41 019 10.40 981 10.40 944 10.40 906 10.40 832 10.40 795 10.40 757 10.40 752 10.40 683	9.96 947 9.96 942 9.96 937 9.96 932 9.96 927 9.96 922 9.96 917 9.96 907 9.96 903 9.96 898	33 32 6.6 6.4 9.9 9.6 13.2 12.8 16.5 16.0 19.8 19.2 23.1 22.4 26.4 25.6 29.7 28.8	31 6.2 9.3 12.4 15.5 18.6 21.7
	9.56 247 9.56 247 9.56 343 9.56 375 9.56 408 9.56 440 9.56 440 9.56 504 9.56 508 9.56 508 9.56 631 9.56 663 9.56 663 9.56 695	9.59 354 9.59 391 9.59 466 9.59 503 9.59 540 9.59 577 9.59 614 9.59 651 9.59 725 9.59 762 9.59 799 9.59 835 9.59 835	10.40 646 10.40 609 10.40 571 10.40 534 10.40 497 10.40 460 10.40 386 10.40 384 10.40 312 10.40 275 10.40 238 10.40 201 10.40 165 10.40 128	9.96 893 9.96 883 9.96 878 9.96 873 9.96 863 9.96 853 9.96 843 9.96 843 9.96 833 9.96 833 9.96 823	$\begin{array}{c cccc} 1.8 & 1.5 \\ 2.4 & 2.0 \\ 3.0 & 2.5 \\ 3.6 & 3.0 \\ 4.2 & 3.5 \end{array}$	0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6
	9.56 727 9.56 759 9.56 790 9.56 822 9.56 854 9.56 917 9.56 949 9.56 980 9.57 012	9.59 909 9.59 946 9.59 983 9.60 019 9.60 056 9.60 130 9.60 166 9.60 203 9.60 240	10.40 091 10.40 054 10.40 017 10.39 981 10.39 944 10.39 870 10.39 870 10.39 870 10.39 797	9.96 818 9.96 813 9.96 808 9.96 803 9.96 798 9.96 793 9.96 788 9.96 783 9.96 778 9.96 772	From the top For 21°+ or 2 read as printed 111°+ or 291°+ co-function.	01°+, d; for
	9.57 044 9.57 075 9.57 107 9.57 138 9.57 169 9.57 201 9.57 232 9.57 264	9.60 276 9.60 313 9.60 349 9.60 386 9.60 422 9.60 495 9.60 495 9.60 532	10.39 724 10.39 687 10.39 651 10.39 614 10.39 578 10.39 505 10.39 468	9.96 767 9.96 762 9.96 757 9.96 752 9.96 747 9.96 742 9.96 737 9.96 732	From the bot For 68°+ or 2 read as printe 158°+ or 338°+ co-function.	48 °+, d; for
	9.57 295 9.57 326 9.57 358 L Cos	9.60 568 9.60 605 9.60 641 d L Ctn	10.39 432 10.39 395 10.39 359 cd L Tan	9.96 727 9.96 722 9.96 71 <u>7</u> L Sin	Prop. Pts	5 .

68° — Logarithms of Trigonometric Functions

	00		20502111111		,022022	C I directoris
		L Sin d	L Tan cd	L Ctn	${f L}$ Cos	Prop. Pts.
	0 1 2 3 4	9.57 358 9.57 389 9.57 420 9.57 451 9.57 482	9.60 641 9.60 677 9.60 714 9.60 750 9.60 786	10.39 359 10.39 323 10.39 286 10.39 250 10.39 214	9.96 717 9.96 711 9.96 706 9.96 701 9.96 696	
	5 6 7 8 9 110	9.57 514 9.57 545 9.57 576 9.57 607 9.57 638 9.57 669	9.60 823 9.60 859 9.60 895 9.60 931 9.60 967 9.61 004	10.39 177 10.39 141 10.39 105 10.39 069 10.39 033 10.38 996	9.96 691 9.96 686 9.96 681 9.96 676 9.96 670 9.96 665	37 36 35 7.4 7.2 7.0 11.1 10.8 10.5 14.8 14.4 14.0 18.5 18.0 17.5
	11 12 13 14 15	9.57 700 9.57 731 9.57 762 9.57 793 9.57 824 9.57 855	9.61 040 9.61 076 9.61 112 9.61 148	10.38 960 10.38 924 10.38 888 10.38 852 10.38 816 10.38 780	9.96 660 9.96 655 9.96 650 9.96 645 9.96 640	22.2 21.6 21.0 25.9 25.2 24.5 29.6 28.8 28.0 33.3 32.4 31.5
	16 17 18 19 20 21	9.57 855 9.57 885 9.57 916 9.57 947 9.57 978 9.58 008	9.61 184 9.61 220 9.61 256 9.61 292 9.61 328 9.61 364 9.61 400	10.38 780 10.38 744 10.38 708 10.38 672 10.38 636 10.38 600	9.96 634 9.96 629 9.96 624 9.96 619 9.96 614 9.96 608	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	22 23 24 25 26	9.58 039 9.58 070 9.58 101 9.58 131 9.58 162	9.61 436 9.61 472 9.61 508 9.61 544 9.61 579	10.38 564 10.38 528 10.38 492 10.38 456 10.38 421	9.96 603 9.96 598 9.96 593 9.96 588 9.96 582	19.2 18.6 18.0 22.4 21.7 21.0 25.6 24.8 24.0 28.8 27.9 27.0
	27 28 29 30 31	9.58 192 9.58 223 9.58 253 9.58 284 9.58 314	9.61 615 9.61 651 9.61 687 9.61 722 9.61 758	10.38 385 10.38 349 10.38 313 10.38 278 10.38 242	9.96 577 9.96 572 9.96 567 9.96 562 9.96 556	29 6 5.8 1.2 1.0 8.7 1.8 1.5 11.6 2.4 2.0 14.5 3.0 2.5
	32 33 34 35 36 37	9.58 345 9.58 375 9.58 406 9.58 436 9.58 467 9.58 497	9.61 794 9.61 830 9.61 865 9.61 901 9.61 936 9.61 972	10.38 206 10.38 170 10.38 135 10.38 099 10.38 064 10.38 028	9.96 551 9.96 546 9.96 541 9.96 535 9.96 530 9.96 525	14.5 3.0 2.5 17.4 3.6 3.0 20.3 4.2 3.5 23.2 4.8 4.0 26.1 5.4 4.5
	38 39 40 41 42	9.58 527 9.58 557 9.58 588 9.58 618 9.58 648	9.62 008 9.62 043 9.62 079 9.62 114 9.62 150	10.37 992 10.37 957 10.37 921 10.37 886 10.37 850	9.96 520 9.96 514 9.96 509 9.96 504 9.96 498	From the top:
	43 44 45 46 47 48	9.58 678 9.58 709 9.58 739 9.58 769 9.58 799 9.58 829	9.62 185 9.62 221 9.62 256 9.62 292 9.62 327 9.62 362	10.37 815 10.37 779 10.37 744 10.37 708 10.37 673 10.37 638	9.96 493 9.96 488 9.96 483 9.96 477 9.96 472 9.96 467	For 22°+ or 202°+, read as printed; for 112°+ or 292°+, read co-function.
	50 51 52 53 54	9.58 859 9.58 889 9.58 919 9.58 949 9.58 979 9.59 009	9.62 398 9.62 433 9.62 468 9.62 504 9.62 539 9.62 574	10.37 602 10.37 567 10.37 532 10.37 496 10.37 461 10.37 426	9.96 461 9.96 456 9.96 451 9.96 445 9.96 440 9.96 435	From the bottom: For 67°+ or 247°+, read as printed; for 157°+ or 337°+, read
	55 56 57 58 59 60	9.59 039 9.59 069 9.59 098 9.59 128 9.59 158 9.59 188	9.62 609 9.62 645 9.62 680 9.62 715 9.62 750	10.37 391 10.37 355 10.37 320 10.37 285 10.37 250	9.96 429 9.96 424 9.96 419 9.96 413 9.96 408	co-function.
1	00	L Cos d	9.62 785	10.37 215	9.96 403	Duan Dia
		L COS a	L Ctn c d	L Tan	L Sin	Prop. Pts.

67° — Logarithms of Trigonometric Functions

٠.			OI 1116	OHOMCUI	CEU	actions of	,
	L Sin	L Tan	L Ctn	L Cos		Prop. Pts.	
9	9.59 188 9.59 218 9.59 247	9.62 785 9.62 820 9.62 855	10.37 215 10.37 180 10.37 145	9.96 403 9.96 397 9.96 392	60 59 58	36 35	
	9.59 277 9.59 307	9.62 890 9.62 926	10.37 110 10.37 074	9.96 387 9.96 381	$\begin{array}{c} 57 \\ 56 \end{array}$	$7.2 7.0 \\ 10.8 10.5$	
	9.59 336 9.59 366 9.59 396	9.62 961 9.62 996 9.63 031	10.37 039 10.37 004 10.36 969	9.96 376 9.96 370 9.96 365	55 54 53	$\begin{array}{ccc} 14.4 & 14.0 \\ 18.0 & 17.5 \\ 21.6 & 21.0 \end{array}$	
	9.59 425 9.59 455	9.63 066 9.63 101	10.36 934 10.36 899	9.96 360 9.96 354	52 51	25.2 24.5 28.8 28.0 32.4 31.5	
	9.59 484 9.59 514 9.59 543 9.59 573	9.63 135 9.63 170 9.63 205 9.63 240	10.36 865 10.36 830 10.36 795 10.36 760	9.96 349 9.96 343 9.96 338 9.96 333	50 49 48 47	32.4 31.5 34 30	
	9.59 602 9.59 632	$9.63\ 275$ $9.63\ 310$	10.36 725 10.36 690	9.96327 9.96322	46 45	6.8 6.0 10.2 9.0	
	9.59 661 9.59 690 9.59 720 9.59 749	9.63345 9.63379 9.63414 9.63449	10.36 655 10.36 621 10.36 586 10.36 551	9.96316 9.96311 9.96305 9.96300	44 43 42 41	13.6 12.0 17.0 15.0 20.4 18.0 23.8 21.0	
	9.59 778 9.59 808 9.59 837	9.63 484 9.63 519 9.63 553	10.36 516 10.36 481 10.36 447	9.96 294 9.96 289 9.96 284	40 39 38	27.2 24.0 30.6 27.0	
	9.59 866 9.59 895	9.63 588 9.63 623	$\begin{array}{c} 10.36412 \\ 10.36377 \end{array}$	9.96278 9.96273	37 36	2 29 28 2 5.8 5.6	
	9.59 924 9.59 954 9.59 983 9.60 012	9.63 657 9.63 692 9.63 726 9.63 761	10.36 343 10.36 308 10.36 274 10.36 239	9.96 267 9.96 262 9.96 256 9.96 251	35 34 33 32	3 8.7 8.4 4 11.6 11.2 5 14.5 14.0 6 17.4 16.8	
	9.60 041 9.60 070 9.60 099 9.60 128	9.63 796 9.63 830 9.63 865 9.63 899	10.36 204 10.36 170 10.36 135 10.36 101	9.96 245 9.96 240 9.96 234 9.96 229	31 30 29 28	$egin{array}{c cccc} 7 & 20.3 & 19.6 \\ 8 & 23.2 & 22.4 \\ 9 & 26.1 & 25.2 \end{array}$	
	9.60 157 9.60 186	9.63 934 9.63 968	10.36 066 10.36 032	9.96 223 9.96 218	27 26	6 5	
	9.60 215 9.60 244 9.60 273 9.60 302	9.64 003 9.64 037 9.64 072 9.64 106	10.35 997 10.35 963 10.35 928 10.35 894	9.96 212 9.96 207 9.96 201 9.96 196	25 24 23 22	2 1.2 1.0 3 1.8 1.5 4 2.4 2.0 5 3.0 2.5 6 3.6 3.0	
	9.60 331 9.60 359 9.60 388 9.60 417	9.64 140 9.64 175 9.64 209 9.64 243	10.35 860 10.35 825 10.35 791 10.35 757	9.96 190 9.96 185 9.96 179 9.96 174	21 20 19 18	7 4.2 3.5 8 4.8 4.0 9 5.4 4.5	
	9.60 446 9.60 474	$9.64\ 278$ $9.64\ 312$	10.35 722 10.35 688	9.96 168 9.96 162	17 16 15	From the top:	
	9.60 503 9.60 532 9.60 561	9.64 346 9.64 381 9.64 415	10.35 654 10.35 619 10.35 585	9.96 157 9.96 151 9.96 146	14 13	For 23°+ or 203°+ read as printed; for	
	9.60 589 9.60 618	9.64 449 9.64 483	10.35 551 10.35 517	9.96 140 9.96 135	$^{12}_{11}$	113°+ or 293°+, read	
	9.60 646 9.60 675	9.64 517 9.64 552	10.35 483 10.35 448 10.35 414	9.96 129 9.96 123 9.96 118	10 9	co-function.	
	9.60 704 9.60 732 9.60 761	9.64 586 9.64 620 9.64 654	10.35 380 10.35 346	9.96 112 9.96 107		From the bottom: For 66°+ or 246°+,	
	9.60 789 9.60 818 9.60 846	9.64 688 9.64 722 9.64 756	10.35 312 10.35 278 10.35 244	9.96 101 9.96 095 9.96 090		read as printed; for 156°+ or 336°+, read	
	9.60 875 9.60 903	9.64790 9.64824	$\begin{array}{c} 10.35210 \\ 10.35176 \end{array}$	9.96 084 9.96 079		co-function.	
	9.60 931 L Cos	9.64 858 L Ctn c	10.35 142 d L Tan	9.96 073 L Sin 6	i	Prop. Pts.	
		Ť . 1/1.			a Tru	notions	

66° — Logarithms of Trigonometric Functions

U	24 -	– Logarithn	is of Trigonometric	Functions [III
	L Sin d	L Tan c d	L Ctn L Cos d	Prop. Pts.
	9.60 931 9.60 960 9.60 988 9.61 016 9.61 045	9.64 858 9.64 892 9.64 926 9.64 960 9.64 994	10.35 142 9.96 073 10.35 108 9.96 067 10.35 074 9.96 062 10.35 040 9.96 056 10.35 006 9.96 050	34 33 2 6.8 6.6
	9.61 073 9.61 101 9.61 129 9.61 158 9.61 186	9.65 028 9.65 062 9.65 096 9.65 130 9.65 164	10.34 972 9.96 045 10.34 938 9.96 039 10.34 904 9.96 034 10.34 870 9.96 028 10.34 836 9.96 022	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	9.61 214 9.61 242 9.61 270 9.61 298 9.61 326	9.65 197 9.65 231 9.65 265 9.65 299 9.65 333	10.34 803 9.96 017 10.34 769 9.96 011 10.34 735 9.96 005 10.34 701 9.96 000 10.34 667 9.95 994	9 30.6 29.7 29 28 2 5.8 5.6
	9.61 354 9.61 382 9.61 411 9.61 438 9.61 466 9.61 494	9.65 366 9.65 400 9.65 434 9.65 467 9.65 501 9.65 535	10.34 634 9.95 988 10.34 600 9.95 982 10.34 566 9.95 977 10.34 533 9.95 971 10.34 499 9.95 965 10.34 465 9.95 960	3 8.7 8.4 4 11.6 11.2 5 14.5 14.0 6 17.4 16.8 7 20.3 19.6 8 23.2 22.4
	9.61 522 9.61 550 9.61 578 9.61 606 9.61 634	9.65 568 9.65 602 9.65 636 9.65 669	10.34 432 9.95 954 10.34 398 9.95 948 10.34 364 9.95 942 10.34 331 9.95 937	9 26.1 25.2 27 6 2 5.4 1.2 3 8.1 1.8
	9.61 662 9.61 689 9.61 717 9.61 745 9.61 773	9.65 703 9.65 736 9.65 770 9.65 803 9.65 837 9.65 870	10.34 264 9.95 925 10.34 230 9.95 920 10.34 197 9.95 914 10.34 163 9.95 908	3 8.1 1.8 4 10.8 2.4 5 13.5 3.0 6 16.2 3.6 7 18.9 4.2 8 21.6 4.8
	9.61 800 9.61 828 9.61 856 9.61 883 9.61 911	9.65 870 9.65 904 9.65 937 9.65 971 9.66 004 9.66 038	10.34 130 9.95 902 10.34 096 9.95 897 10.34 063 9.95 891 10.34 029 9.95 885 10.33 996 9.95 879 10.33 962 9.95 873	9 24.3 5.4
	9.61 939 9.61 966 9.61 994 9.62 021 9.62 049	9.66 071 9.66 104 9.66 138 9.66 171 9.66 204	10.33 929 9.95 868 10.33 896 9.95 862 10.33 862 9.95 856 10.33 829 9.95 850 10.33 796 9.95 844	2 1.0 3 1.5 4 2.0 5 2.5 6 3.0 7 3.5 8 4.0 9 4.5
	9.62 076 9.62 104 9.62 131 9.62 159 9.62 186	9.66 238 9.66 271 9.66 304 9.66 337	10.33 762 9.95 839 10.33 729 9.95 833 10.33 696 9.95 827 10.33 663 9.95 821	8 4.0 9 4.5 From the top:
	9.62 214 9.62 241 9.62 268 9.62 296 9.62 323	9.66 371 9.66 404 9.66 437 9.66 470 9.66 503 9.66 537	10.33 629 9.95 815 10.33 596 9.95 810 10.33 563 9.95 804 10.33 530 9.95 798 10.33 497 9.95 792 10.33 463 9.95 786	For 24°+ or 204°+, read as printed; for 114°+ or 294°+, read co-function.
	9.62 350 9.62 377 9.62 405 9.62 432	9.66 570 9.66 603 9.66 636 9.66 669	10.33 430 9.95 780 10.33 397 9.95 775 10.33 364 9.95 769 10.33 331 9.95 763	From the bottom: For 65 °+ or 245 °+
	9.62 459 9.62 486 9.62 513 9.62 541 9.62 568	9.66 702 9.66 735 9.66 768 9.66 801 9.66 834	10.33 298 9.95 757 10.33 265 9.95 755 10.33 232 9.95 745 10.33 199 9.95 739 10.33 166 9.95 733	read as printed; for 155°+ or 335°+, read co-function.
	9.62 595 L Cos d	9.66 867 L Ctn cd	10.33 133 9.95 728 L Tan L Sin d	' Prop. Pts.
	CFO	T	LIAN LISM U	TIOD. T 120

20	Logarithm	S OL LIE	nomenic	Lun	tions 11
L Sin d	L' Tan cd	L Ctn	L Cos		Prop. Pts.
9.62 595 9.62 622 9.62 649 9.62 676 9.62 703	9.66 867 9.66 900 9.66 933 9.66 966 9.66 999	10.33 001	9.95 728 9.95 722 9.95 716 9.95 710 9.95 704	60 59 58 57 56	33 32 2 6.6 6.4 3 9.9 9.6
9.62 730 9.62 757 9.62 784 9.62 811 9.62 838 9.62 865	9.67 032 9.67 065 9.67 098 9.67 131 9.67 163 9.67 196	10.32 968 10.32 935 10.32 902 10.32 869 10.32 837 10.32 804	9.95 698 9.95 692 9.95 686 9.95 680 9.95 674 9.95 668	55 54 53 52 51 50	4 13.2 12.8 5 16.5 16.0 6 19.8 19.2 7 23.1 22.4 8 26.4 25.6 9 29.7 28.8
9.62 892 9.62 918 9.62 945 9.62 972 9.62 999	9.67 229 9.67 262 9.67 295 9.67 327	10.32 771 10.32 738 10.32 705 10.32 673 10.32 640	9.95 663 9.95 657 9.95 651 9.95 645 9.95 639	49 48 47 46 45	27 26 5.4 5.2 8.1 7.8
9.63 026 9.63 052 9.63 079 9.63 106 9.63 133	9.67 360 9.67 393 9.67 426 9.67 458 9.67 491 9.67 524	10.32 607 10.32 574 10.32 542 10.32 509 10.32 476	9.95 633 9.95 627 9.95 621 9.95 615 9.95 609	44 43 42 41 40	10.8 10.4 13.5 13.0 16.2 15.6 18.9 18.2 21.6 20.8 24.3 23.4
9.63 159 9.63 186 9.63 213 9.63 239 9.63 266	9.67 556 9.67 589 9.67 622 9.67 654	10.32 444 10.32 411 10.32 378 10.32 346 10.32 313	9.95 597 9.95 591 9.95 585 9.95 579	39 38 37 36 35	$\begin{bmatrix} 7 \\ 2 \\ 1.4 \\ 2.1 \\ 1.8 \end{bmatrix}$
9.63 292 9.63 319 9.63 345 9.63 372 9.63 398	9.67 687 9.67 719 9.67 752 9.67 785 9.67 817 9.67 850	10.32 281 10.32 248 10.32 215 10.32 183 10.32 150	9.95 561 9.95 555 9.95 549	34 33 32 31 30	4 2.8 2.4 5 3.5 3.0 6 4.2 3.6 7 4.9 4.2 8 5.6 4.8
9.63 425 9.63 451 9.63 478 9.63 504	9.67 850 9.67 882 9.67 915 9.67 947 9.67 980 9.68 012	10.32 118 10.32 085 10.32 053 10.32 020 10.31 988	9.95 537 9.95 531 9.95 525	29 28 27 26 25	9 6.3 5.4
9.63 531 9.63 557 9.63 583 9.63 610 9.63 636	9.68 044 9.68 077 9.68 109 9.68 142	10.31 956 10.31 928 10.31 891 10.31 858	9.95 513 9.95 507 9.95 500 9.95 494	24 23 22 21 20	1.5 2.0 2.5 3.0 3.5
9.63 662 9.63 689 9.63 715 9.63 741 9.63 767	9.68 174 9.68 206 9.68 239 9.68 271 9.68 303	10.31 826 10.31 794 10.31 76 10.31 729 10.31 69	4 9.95 482 1 9.95 476 9 9.95 470 7 9.95 464	19 18 17 16 15	4.0 4.5 From the top:
9.63 794 9.63 820 9.63 846 9.63 872 9.63 898	9.68 336 9.68 368 9.68 400 9.68 432 9.68 465	10.31 66- 10.31 63: 10.31 60: 10.31 56: 10.31 53:	2 9.95 452 0 9.95 446 8 9.95 440 5 9.95 434	14 13 12 11	For 25°+ or 205°+, read as printed; for 115°+ or 295°+, read co-function.
9.63 924 9.63 950 9.63 976 9.64 002 9.64 028	9.68 497 9.68 529 9.68 561 9.68 593 9.68 626	10.31 50 10.31 47 10.31 43 10.31 40 10.31 37	1 9.95 421 9 9.95 415 7 9.95 409 4 9.95 403	10 9 8 7 6	From the bottom: For 64°+ or 244°+,
9.64 054 9.64 080 9.64 106 9.64 132 9.64 158	9.68 658 9.68 690 9.68 722 9.68 754 9.68 786	10.31 34 10.31 31 10.31 27 10.31 24 10.31 21	9.95391 8 9.95384 6 9.95378 4 9.95372	5 4 3 2 1	read as printed; for 154°+ or 334°+, read co-function.
9.64 184	9.68 818	10.31 18		م اما	Prop. Pts.
L Cos	L Ctn	cd L Tar			unctions
			•		TMATIANC

64° — Logarithms of Trigonometric Functions

9.44 184				,	LTIT
9.64 210	L Sin	L Tan c d	L Ctn	L Cos d	Prop. Pts.
11 9.64 468 9.69 170 10.30 830 9.95 298 12 9.64 494 9.69 202 10.30 768 9.95 292 13 9.64 519 9.69 234 10.30 766 9.95 286 2 52 52 15 9.64 571 9.69 298 10.30 671 9.95 267 4 10.4	9.64 210 9.64 236 9.64 236 9.64 288 9.64 313 9.64 339 9.64 365 9.64 391 9.64 417	9.68 850 9.68 882 9.68 914 9.68 946 9.68 978 9.69 010 9.69 042 9.69 074 9.69 106	10.31 150 10.31 118 10.31 086 10.31 054 10.31 022 10.30 990 10.30 958 10.30 926 10.30 894	9.95 360 9.95 354 9.95 348 9.95 341 9.95 335 9.95 329 9.95 323 9.95 317 9.95 310	2 6.4 6.2 3 9.6 9.3 4 12.8 12.4 5 16.0 15.5 6 19.2 18.6 7 22.4 21.7 8 25.6 24.8
23 9.64 775 9.69 552 10.30 448 9.95 223	11 9.64 468 12 9.64 494 13 9.64 519 14 9.64 545 15 9.64 571 16 9.64 596 17 9.64 622 18 9.64 647 19 9.64 673 20 9.64 698	9.69 202 9.69 234 9.69 266 9.69 298 9.69 329 9.69 361 9.69 393 9.69 425 9.69 457 9.69 488	10.30 830 10.30 798 10.30 766 10.30 764 10.30 671 10.30 639 10.30 639 10.30 575 10.30 543 10.30 512	9.95 298 9.95 292 9.95 286 9.95 279 9.95 267 9.95 267 9.95 264 9.95 248 9.95 242 9.95 236	26 25 2 5.2 5.0 3 7.8 7.5 4 10.4 10.5 6 15.6 15.5 6 15.6 15.0 7 18.2 17.5 8 20.8 20.0
34 9.65 054 9.09 900 10.30 100 9.95 154 6 35 9.65 079 9.69 932 10.30 068 9.95 148 1.2 36 9.65 104 9.69 963 10.30 037 9.95 141 1.8 37 9.65 130 9.69 995 10.30 005 9.95 135 2.4 38 9.65 155 9.70 026 10.29 974 9.95 129 3.0 39 9.65 180 9.70 058 10.29 942 9.95 122 3.6 40 9.65 205 9.70 089 10.29 911 9.95 116 4.2 41 9.65 230 9.70 121 10.29 878 9.95 110 4.8 42 9.65 255 9.70 184 10.29 816 9.95 097 44 9.65 306 9.70 215 10.29 848 9.95 103 5.4 43 9.65 281 9.70 184 10.29 816 9.95 097 44 9.65 331 9.70 247 10.29 753 9.95 084 From the top: 46 9.65 356 9.70 273 10.29 659 9.95 078 For 26°+ or 20′ 47 9.65 381 9.70 309 10.29 691 9.95 071 read as printed 49 9.65 481 9.70 341 10.29 659 9.95 059 50 9.65 486 9.70 404 10.29 596 9.95 059 516°+ or 20′ 51 9.65 481 9.70 435 10.29 628 9.95 059 53 9.65 531 9.70 498 10.29 502 9.95 033 From the botte 52 9.65 506 9.70 529 10.29 471 9.95 027 For 63°+ or 20′ 55 9.65 580 9.70 592 10.29 471 9.95 027 For 63°+ or 20′ 55 9.65 680 9.70 683 10.29 377 9.95 007 For 63°+ or 20′ 58 9.65 685 9.70 685 10.29 315 9.94 988	23 9.64 775 24 9.64 800 25 9.64 826 26 9.64 851 27 9.64 877 28 9.64 902 29 9.64 927 30 9.64 953 31 9.64 978 32 9.65 003	9.69 552. 9.69 584 9.69 615 9.69 647 9.69 679 9.69 710 9.69 742 9.69 774 9.69 805 9.69 837	10.30 448 10.30 416 10.30 385 10.30 353 10.30 321 10.30 220 10.30 258 10.30 226 10.30 195 10.30 163	9.95 223 9.95 217 9.95 211 9.95 204 9.95 198 9.95 198 9.95 185 9.95 179 9.95 173 9.95 167	2 4.8 1.4 3 7.2 2.1 4 9.6 2.8 5 12.0 3.5 6 14.4 4.2 7 16.8 4.9
45 9.65 331 9.70 247 10.29 753 9.95 084 From the top: 46 9.65 336 9.70 278 10.29 722 9.95 078 For 26°+ or 20 48 9.65 381 9.70 309 10.29 691 9.95 065 116°+ or 296°+, 50 9.65 481 9.70 372 10.29 628 9.95 059 116°+ or 296°+, 50 9.65 481 9.70 435 10.29 565 9.95 046 52 9.65 506 9.70 404 10.29 596 9.95 052 51 9.65 481 9.70 435 10.29 565 9.95 046 52 9.65 506 9.70 486 10.29 534 9.95 039 From the botte 54 9.65 556 9.70 592 10.29 471 9.95 027 For 63°+ or 26° 9.65 680 9.70 560 10.29 440 9.95 020 For 63°+ or 26° 9.65 605 9.70 592 10.29 440 9.95 020 For 63°+ or 26° 9.65 680 9.70 683 10.29 377 9.95 007 153°+ or 333°+, 58 9.65 680 9.70 685 10.29 346 9.95 001 153°+ or 333°+, 59 9.65 680 9.70 685 10.29 315 9.94 998	34 9.65 054 35 9.65 079 36 9.65 104 37 9.65 130 38 9.65 155 39 9.65 180 40 9.65 205 41 9.65 230 42 9.65 255 43 9.65 281	9.69 900 9.69 932 9.69 963 9.69 995 9.70 026 9.70 058 9.70 089 9.70 152 9.70 184	10.30 100 10.30 068 10.30 037 10.30 005 10.29 974 10.29 942 10.29 9879 10.29 848 10.29 816	9.95 154 9.95 148 9.95 141 9.95 135 9.95 129 9.95 122 9.95 116 9.95 110 9.95 103 9.95 007	1.2 1.8 2.4 3.0 3.6 4.2 4.8 5.4
54 9.65 556 9.70 529 10.29 471 9.95 027 For 63°+ or 24° 55 9.65 580 9.70 560 10.29 440 9.95 020 read as printed 56 9.65 630 9.70 592 10.29 408 9.95 014 153°+ or 333°+, 58 9.65 655 9.70 654 10.29 377 9.95 007 co-function. 59 9.65 680 9.70 685 10.29 315 9.94 995 601 co-function.	45 9.65 331 46 9.65 356 47 9.65 381 48 9.65 406 49 9.65 431 50 9.65 456 51 9.65 481 52 9.65 506	9.70 247 9.70 278 9.70 309 9.70 341 9.70 372 9.70 404 9.70 435 9.70 466	10.29 753 10.29 722 10.29 691 10.29 659 10.29 628 10.29 596 10.29 565 10.29 534	9.95 084 9.95 078 9.95 071 9.95 065 9.95 059 9.95 052 9.95 046 9.95 039	For 26°+ or 206°+, read as printed; for 116°+ or 296°+, read co-function.
L Cos d L Ctn cd L Tan L Sin d Prop. Pts.	54 9.65 556 55 9.65 580 56 9.65 605 57 9.65 630 58 9.65 655 59 9.65 680 60 9.65 705	9.70 529 9.70 560 9.70 592 9.70 623 9.70 654 9.70 685 9.70 717	10.29 471 10.29 440 10.29 408 10.29 377 10.29 346 10.29 315 10.29 283	9.95 027 9.95 020 9.95 014 9.95 007 9.95 001 9.94 995 9.94 988	For 63°+ or 243°+, read as printed; for 153°+ or 333°+, read co-function.
	L Cos d	L Ctn c d	L Tan	L Sin d	Prop. Pts.

L Sin	L Tan cd	L Ctn	L Cos d		Prop. Pts.
9.65705 9.65729	9.70 717 9.70 748	10.29 283 10.29 252	9.94 988 9.94 982	60 59	
9.65 754 9.65 779	9.70 779 9.70 810	10.29 221 10.29 190	9.94 975 9.94 969	58 57	32 31
9.65 804 9.65 828	9.70 841 9.70 873	10.29159	9.94962	56	$ \begin{array}{c cccc} 2 & 6.4 & 6.2 \\ 3 & 9.6 & 9.3 \end{array} $
9.65 853	9.70904	10.29 127 10.29 096	9.94 956 9.94 949	55 54	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
9.65 878 9.65 902	9.70 935 9.70 966	$10.29065 \\ 10.29034$	9.94943 9.94936	53 52	$ \begin{array}{c c c} 6 & 19.2 & 18.6 \\ 7 & 22.4 & 21.7 \end{array} $
9.65 927 9.65 952	9.70 997 9.71 028	10.29 003 10.28 972	9.94 930 9.94 923	51 50	8 25.6 24.8 9 28.8 27.9
9.65976	9.71 059	10.28 941	9.94917	49	0 20.0 21.0
$9.66\ 001$ $9.66\ 025$	$9.71\ 090$ $9.71\ 121$	10.28 910 10.28 879	9.94911 9.94904	48 47	30 25
9.66 050 9.66 075	9.71 153 9.71 184	10.28 847 10.28 816	9.94 898 9.94 891	46 45	$\begin{array}{c cccc} 2 & 6.0 & 5.0 \\ 3 & 9.0 & 7.5 \end{array}$
9.66 099 9.66 124	$9.71\ 215$ $9.71\ 246$	10.28 785 10.28 754	9.94 885 9.94 878	44 43	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
9.66 148	9.71277	10.28723	9.94871	42	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
9.66 173 9.66 197	9.71 308 9.71 339	10.28 692 10.28 661	9.94 865 9.94 858	41 40	8 24.0 20.0 9 27.0 22.5
9.66221 9.66246	$9.71\ 370$ $9.71\ 401$	10.28630 10.28599	9.94 852 9.94 845	39 38	9 21.0 22.5
9.66 270 9.66 295	$9.71\ 431$ $9.71\ 462$	10.28 569 10.28 538	9.94 839 9.94 832	37 36	24 23
9.66 319	9.71 493	10.28 507	9.94 826	35	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
9.66 343 9.66 368	$9.71\ 524$ $9.71\ 555$	10.28476 10.28445	9.94 819 9.94 813	34 33	$ \begin{array}{c cccc} 4 & 9.6 & 9.2 \\ 5 & 12.0 & 11.5 \end{array} $
$9.66\ 392$ $9.66\ 416$	9.71 586 9.71 617	10.28 414 10.28 383	9.94806 9.94799	$\frac{32}{31}$	6 14.4 13.8 7 16.8 16.1
9.66 441	9.71 648	$10.28\ 352$	9.94793	30	8 19.2 18.4
9.66465 9.66489	9.71 679 9.71 709	10.28 321 10.28 291	9.94786 9.94780	29 28	9 21.6 20.7
9.66 513 9.66 537	9.71 740 9.71 771	$\begin{array}{c} 10.28260 \\ 10.28229 \end{array}$	9.94773 9.94767	$\frac{27}{26}$	7 6
9.66562 9.66586	$9.71802 \\ 9.71833$	$\begin{array}{c} 10.28198 \\ 10.28167 \end{array}$	9.94760 9.94753	25 24	$\begin{array}{cc} 1.4 & 1.2 \\ 2.1 & 1.8 \end{array}$
9.66 610 9.66 634	9.71 863 9.71 894	10.28 137 10.28 106	9.94 747 9.94 740	$\frac{23}{22}$	2.8 2.4 3.5 3.0
9.66 658	9.71925	10.28075	9.94734	21	4.2 3.6 4.9 4.2
9.66682 9.66706	9.71 955 9.71 986	10.28 045 10.28 014	9.94727 9.94720	20 19	5.6 4.8
9.66731 9.66755	$9.72\ 017$ $9.72\ 048$	$\begin{array}{c} 10.27983 \\ 10.27952 \end{array}$	9.94714 9.94707	18 17	6.3 5.4
9.66 779	9.72 078	10.27922	9.94700	16 15	From the top:
9.66803 9.66827	$9.72\ 109$ $9.72\ 140$	$10.27891\\10.27860$	9.94 694 9.94 687	14	For 27°+ or 207°
9.66851 9.66875	$9.72\ 170$ $9.72\ 201$	$10.27830 \\ 10.27799$	$9.94\ 680$ $9.94\ 674$	13 12	read as printed; for 117°+ or 297°+, read
9.66 899 9.66 922	$9.72\ 231$ $9.72\ 262$	10.27 769 10.27 738	9.94 667 9.94 660	11 10	co-function.
9.66 946 9.66 970	9.72 293 9.72 323	10.27 707 10.27 677	9.94 654 9.94 647	9	
9.66994	$9.72\ 354$	10.27 646	9.94640	7	From the bottom:
$9.67\ 018$ $9.67\ 042$	9.72 384 9.72 415	10.27 616 10.27 585	9.94634 9.94627	6 5	For 62°+ or 242°+, read as printed; for
9.67 066 9.67 090	9.72445 9.72476	$\begin{array}{c} 10.27555 \\ 10.27524 \end{array}$	9.94 620 9.94 614	4	152°+ or 332°+, read
$9.67\ 113$	9.72 506	10.27 494 10.27 463	9.94 607 9.94 600	2 1	co-function.
9.67 137 9.67 161	$9.72\ 537$ $9.72\ 567$	10.27 433	9.94 500	1	
L Cos d	L Ctn cd	L Tan	LSin d	l ′	Prop. Pts.

	L Sin		L Tan	c d	L Ctn	L Cos	d		Prop.	Pts.
8 9 10 1	9.67 161 9.67 185 9.67 208 9.67 232 9.67 256 9.67 303 9.67 327 9.67 350 9.67 374 9.67 398 9.67 421	24 23 24 24 24 23 24 23 24 24 23	9.72 567 9.72 598 9.72 659 9.72 659 9.72 689 9.72 720 9.72 780 9.72 811 9.72 811 9.72 87 9.72 90:	31 30 31 30 31 30 31 30 31 30	10.27 433 10.27 402 10.27 372 10.27 341 10.27 311 10.27 250 10.27 220 10.27 189 10.27 159 10.27 128 10.27 098	9.94 592 9.94 587 9.94 587 9.94 573 9.94 560 9.94 560 9.94 553 9.94 540 9.94 533 9.94 526 9.94 529 9.94 519	55 55 55 55 55 55 52 51 50	2 3 4 5 6	31 6.2 9.3 12.4 15.5 18.6 21.7 24.8 27.9	30 6.0 9.0 12.0 15.0 18.0 21.0 24.0 27.0
12 1 14 16 17 18 19 20 21 22	9.67 445 9.67 468 9.67 49: 9.67 515 9.67 539 9.67 586 9.67 586 9.67 609 9.67 633 9.67 656	24 23 24 23 24 23 24 23 24 23 24 23 24	9.72 932 9.72 963 9.72 99 9.73 023 9.73 054 9.73 114 9.73 144 9.73 175 9.73 205 9.73 235	30 30 30 31 30 30 30 31 30 30	10.27 068 10.27 037 10.27 007 10.26 977 10.26 946 10.26 886 10.26 856 10.26 856 10.26 795 10.26 795	9.94 513 9.94 506 9.94 499 9.94 485 9.94 479 9.94 475 9.94 458 9.94 451 9.94 445	48 47 46 45 44 43 42 41 40 39	3 4	5.8 8.7 11.6 14.5 17.4 20.3 23.2 26.1	4.8 7.2 9.6 12.0 14.4 16.8 19.2 21.6
23 24 25 26 27 28 29 30 31 32 33	9.67 680 9.67 703 9.67 726 9.67 750 9.67 773 9.67 796 9.67 820 9.67 843 9.67 866 9.67 890 9.67 913 9.67 936	23 24 23 24 23 24 23 24 23 24 23 23 24 23 23	9.73 265 9.73 295 9.73 326 9.73 356 9.73 386 9.73 416 9.73 446 9.73 476 9.73 507 9.73 537 9.73 567	30 31 30 30 30 30 30 30 30 30	10.26 735 10.26 705 10.26 674 10.26 614 10.26 514 10.26 554 10.26 453 10.26 463 10.26 433	9.94 438 9.94 421 9.94 417 9.94 410 9.94 404 9.94 397 9.94 383 9.94 376 9.94 369	36 36 35 34 33 32 31 30 29 28 27	2 3 4 5 6 7 8 9	4.6 6.9 9.2 11.5 13.8 16.1 18.4 20.7	4.4 6.6 8.8 11.0 13.2 15.4 17.6 19.8
34 35 36 37 38 39 40 41 42 43 44	9.67 959 9.67 982 9.68 006 9.68 029 9.68 052 9.68 075 9.68 098 9.68 121 9.68 144 9.68 167 9.68 190	23 24 23 23 23 23 23 23 23 23 23 23 23	9.73 597 9.73 627 9.73 657 9.73 687 9.73 717 9.73 747 9.73 777 9.73 807 9.73 867 9.73 867 9.73 897	30 30 30 30 30 30 30 30 30	10.26 403 10.26 373 10.26 343 10.26 313 10.26 253 10.26 223 10.26 193 10.26 163 10.26 133 10.26 103	9.94 362 9.94 355 9.94 349 9.94 335 9.94 328 9.94 321 9.94 307 9.94 300 9.94 293	26 25 24 23 22 21 20 19 8 7		4.2 4.9 5.6 6.3	1.8 2.4 3.0 3.6 4.2 4.8 5.4
45 46 47 48 49 50 51 52 53 54	9.68 213 9.68 237 9.68 260 9.68 283 9.68 305 9.68 351 9.68 374 9.68 397 9.68 420	24 23 23 22 23 23 23 23 23	9.73 927 9.73 957 9.73 987 9.74 017 9.74 047 9.74 107 9.74 107 9.74 166 9.74 196	30 30 30 30 30 30 30 30 29 30	10.26 073 10.26 043 10.26 013 10.25 983 10.25 953 10.25 893 10.25 893 10.25 863 10.25 834 10.25 804	9.94 286 .94 279 9.94 273 .94 266 .94 259 .94 252 9.94 245 9.94 238 .94 231 .94 224	15 14 13 12 11 10 9 8 7	For read: 118°+ 20-fur	as prin or 298 nction <i>m the</i>	or 208°+, ated; for 3°+, read bottom:
55	9.68 443 9.68 466 9.68 489 9.68 512 9.68 534 9.68 557 L Cos	23 23 23 23 22 23	9.74 226 9.74 256 9.74 286 9.74 316 9.74 345 .74 375 L Ctn	30 30 30 30 29 30	10.25 774 10.25 774 10.25 714 10.25 684 10.25 655 10.25 625 L Tan	.94 217 .94 210 .94 203 .94 196 .94 189 .94 182 L Sin	5 4 3 2 1 0	ead : . 51 °+ :o-fu	as prir	

61° — Logarithms of Trigonometric Functions

		~ 01 1116	оношсии	Functions 75
L Sin	L Tan cd	L Ctn	L Cos d	Prop. Pts.
9.68 557 9.68 580	$9.74375\ 9.74405$	$\begin{array}{c} 10.25 \ 625 \\ 10.25 \ 595 \end{array}$	9.94 182	
9.68 603	9.74435	10.25565	9.94 175 9.94 168	
9.68 625 9.68 648	9.74465 9.74494	10.25535	9.94161	
9.68 671	9.74 524	10.25 506 10.25 476	9.94 154 9.94 147	00 00
9.68 694	9.74554	10.25446	9.94 140	30 29
9.68 716 9.68 73 9	9.74 583 9.74 613	10.25417 10.25387	9.94 133 9.94 126	6.0 5.8 9.0 8.7
9.68 762	9.74 643	10.25 357	9.94 119	12.0 11.6
9.68 784 9.68 807	9.74673 9.74702	10.25 327	9.94 112	18.0 17.4
9.68 829	9.74732	$\begin{array}{c} 10.25\ 298 \\ 10.25\ 268 \end{array}$	9.94 105 9.94 098	$\begin{array}{ccc} 21.0 & 20.3 \\ 24.0 & 23.2 \end{array}$
$9.68\ 852$ $9.68\ 875$	9.74762 9.74791	10.25238	9.94 090	$\frac{24.0}{27.0}$ $\frac{23.2}{26.1}$
9.68 897	9.74 821	10.25 209 10.25 179	9.94 083 9.94 076	
9.68 920	9.74851	10.25 149	9.94069	23 22
9.68 942 9.68 965	$9.74880\ 9.74910$	10.25 120 10.25 090	$9.94062\ 9.94055$	2 4.6 4.4
9.68 987	9.74 939	10.25 061	9.94 048	3 6.9 6.6
9.69 010 9.69 032	9.74 969 9.74 998	10.25 031	9.94 041	$\begin{array}{c cccc} 4 & 9.2 & 8.8 \\ \hline 5 & 11.5 & 11.0 \end{array}$
9.69 055	9.75 028	10.25 002 10.24 972	$9.94034 \\ 9.94027$	6 13.8 13.2
9.69 077 9.69 100	9.75 058 9.75 087	10.24 942 10.24 913	9.94020 9.94012	6 13.8 13.2 7 16.1 15.4 8 18.4 17.6
9.69 122	9.75 117	10.24 913	9.94 012	9 20.7 19.8
$9.69\ 144$	9.75 146	10.24854	9.93998	
9.69 167 9.69 189	$9.75\ 176$ $9.75\ 205$	10.24 824 10.24 795	9.93 991 9.93 984	181
$9.69\ 212$	9.75 205 9.75 235	10.24765	9.93977	2 1.6 1.4
$9.69\ 234$ $9.69\ 256$	$9.75\ 264$ $9.75\ 294$	10.24 736 10.24 706	9.93 970 9.93 963	$egin{array}{c c} 3 & 2.4 & 2.1 \\ 4 & 3.2 & 2.8 \\ \hline \end{array}$
9.69279	$9.75\ 294$ $9.75\ 323$	10.24677	9.93955	5 4.0 3.5
9.69 301 9.69 323	9.75 353 9.75 382	10.24 647 10.24 618	9.93 948 9.93 941	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
9.69 345	9.75 411	10.24 589	9.93 934	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
9.69 368 9.69 390	9.75 441 9.75 470	10.24 559 10.24 530	9.93 927 9.93 920	9 1.2 0.3
$9.69\ 412$	9.75 500	10.24 500	9.93912	
9.69 434	9.75 529	10.24 471	9.93 905	
9.69 456 9.69 479	9.75 558 9.75 588	10.24442 10.24412	9.93 898 9.93 891	
9.69 501	9.75 617	10.24 383 10.24 353	9.93884 9.93876	From the top:
9.69 523 9.69 545	9.75 647 9.75 676	10.24333 10.24324	9.93 869	For 29°+ or 209°+,
9.69 567	9.75 705 9.75 735	10.24 295	9.93 862	read as printed; for
$9.69\ 589\ 9.69\ 611$	9.75735 9.75764	10.24 265 10.24 236	9.93 855 9.93 847	119°+ or 299°+, read
9.69 633	9.75 793	10.24207	9.93840	co-runction.
9.69 655 9.69 677	9.75 822 9.75 852	10.24 178 10.24 148	9.93 833 9.93 826	From the bottom:
9.69699	9.75881	10.24119	9.93819	For 60°+ or 240°+,
9.69721 9.69743	9.75 910 9.75 939	$10.24090 \\ 10.24061$	$9.93\ 811$ $9.93\ 804$	read as printed; for
9.69 765	9.75 969	10.24 031	9.93797	150°+ or 330°+, read
9.69 787 9.69 809	9.75998 9.76027	10.24002 10.23973	9.93 789 9.93 782	co-function.
9.69831	9.76 027 9.76 056 9.76 086	10.23 944	9.93775	
9.69 853 9.69 875	9.76 086 9.76 115	10.23 914 10.23 885	9.93 768 9.93 760	
9.69 897	9.76 144	10.23 856		
L Cos	L Ctn cd		L Sin	Prop. Pts.

60° — Logarithms of Trigonometric Functions

-		<u> </u>	- Logaritu	ims of 111	вопоше	ric runc	tions	[III]
<u></u>	L Sin	d	L Tan c	L Ctn	L Cos		Prop.	
	9.69 89 9.69 91 9.69 94 9.69 96 9.69 98	22 22 22 21	9.76 20 9.76 23 9.76 26	10.23 85 10.23 8 10.23 79 10.23 76 10.23 73	9.93 75 9.93 74 9.93 73 9.93 73 9.93 7	60 59 58 57	30 6.0	29 5.8
	9.70 006 9.70 02 9.70 05 9.70 07 9.70 09	22 22 22 22 21	9.76 29 9.76 31	10.23 71 10.23 68 10.23 65 10.23 62	9.93 71 9.93 70 9.93 70 9.93 69	56 55 54 53 52	9.0 12.0 15.0 18.0 21.0	8.7 11.6 14.5 17.4 20.3
10 11 12 13	9.70 11 9.70 13 9.70 15 9.70 18	22 22 22 21 22	9.76 43 9.76 464 9.76 49 9.76 52 9.76 55	10.23 59 10.23 56 10.23 53 10.23 50 10.23 47	9.93 68 9.93 68 9.93 67 9.93 66 9.93 65	51 50 49 48 47	24.0 27.0	23.2 26.1
14 15 16 17 18 19	9.70 20: 9.70 224 9.70 24: 9.70 26: 9.70 288 9.70 310	22 21 22 21 21 22	9.76 580 9.76 60 9.76 639 9.76 665	10.23 44 10.23 42 10.23 39 10.23 36 10.23 332	9.93 65 9.93 64 9.93 63 9.93 62 9.93 62	46 45 44 43 42	5.6 8.4 11.2 14.0 16.8	4.4 6.6 8.8 11.0 13.2
20 21 22 23 24	9.70 332 9.70 353 9.70 375 9.70 396	22 21 22 21 22 21	9.76 697 9.76 725 9.76 754 9.76 783 9.76 81	10.23 308 10.23 275 10.23 240 10.23 217 10.23 18	9.93 614 9.93 60 9.93 599 9.93 591 9.93 584	41 40 39 38 37	19.6 22.4 25.2	15.4 17.6 19.8
25 26 27 28 29	9.70 418 9.70 439 9.70 461 9.70 482 9.70 504 9.70 525	21 22 21 22 21	9.76 841 9.76 870 9.76 899 9.76 928 9.76 957 9.76 986	10.23 159 10.23 130 10.23 101 10.23 07: 10.23 043 10.23 014	9.93 577 9.93 569 9.93 562 9.93 554 9.93 547 9.93 539	36 35 34 33 32	4.2 6.3 8.4 10.5 12.6	1.6 2.4 3.2 4.0 4.8
30 31 32 33 34	9.70 547 9.70 568 9.70 590 9.70 611 9.70 633	22 21 22 21 22 21 22 21	9.77 015 9.77 044 9.77 073 9.77 101 9.77 130	10.22 985 10.22 956 10.22 927 10.22 899 10.22 870	9.93 535 9.93 525 9.93 517 9.93 510 9.93 502	31 30 29 28 27 26	14.7 16.8 18.9	5.6 6.4 7.2
35 36 37 38 39	9.70 654 9.70 675 9.70 697 9.70 718 9.70 739	21 22 21 21 21 22	9.77 159 9.77 188 9.77 217 9.77 246 9.77 274	$\begin{array}{c} 10.22841 \\ 10.22812 \\ 10.22783 \\ 10.22754 \\ 10.22726 \end{array}$	9.93 495 .93 487 9.93 480 .93 47 9.93 465	25 24 23 22 21	1.4 2.5 2.8 3.8 4.5	1 3 5 2
44	9.70 761 9.70 782 9.70 803 9.70 824 9.70 846	21 21 21 22 1	9.77 303 9.77 332 9.77 361 9.77 390 9.77 418	0.22 697 0.22 668 0.22 639 0.22 610 0.22 582	.93 457 .93 450 .93 442 .93 435 .93 427	20 19 18 17 16	4.9 5.6 6.3	3
46 47 48 49	9.70 867 9.70 888 9.70 909 9.70 931 9.70 952	1 2 1 1	9.77 447 9.77 476 9.77 505 9.77 533 9.77 562	0.22 553 0.22 524 0.22 495 0.22 467 0.22 438	.93 420 .93 412 .93 405 .93 397 .93 390	14 Fo 13 read 12 120	rom the to or 30°+ or l as print o+ or 300°	r 210 ', ted: for
51 52 53 54	9.70 973 9.70 994 9.71 015 9.71 036 9.71 058 9.71 079	1 1 1 2 1	9.77 591 9.77 619 9.77 648 9.77 677 9.77 706	$\begin{array}{c} 0.22409 \\ 0.22381 \\ 0.22352 \\ 0.22323 \\ 0.22294 \end{array}$.93 382 .93 375 .93 367 .93 360 .93 352	9 8 <i>F</i> ₇	on the bor 59° + or	
56 57 58 59	9.71 079 9.71 100 9.71 121 9.71 142 9.71 163 9.71 184	1	9.77 734 9.77 763 9.77 791 9.77 820 9.77 849	0.22 266 0.22 237 0.22 209 0.22 180 0.22 151	93 344 93 337 93 329 93 322 93 314	5 read 3 149° 2 co-ft	as print + or 329° inction.	ed; for
30 3	L Cos	_	9.77 877 L Ctn	0.22 123 Tan	93 307 L Sin	-0	D 70	4
	' 500	-	T 4.5	1 all	TI OIL	<u> </u>	Prop. P	ts

59° — Logarithms of Trigonometric Functions

			,	-0 - 4	LOHS	
L Sin	L Tan c d	L Ctn	L Cos		Prop.	Pts.
9.71 184 9.71 205 9.71 226 9.71 247 9.71 268	9.77 877 9.77 906 9.77 935 9.77 963 9.77 992	10.22 123 10.22 094 10.22 065 10.22 037	9.93 307 9.93 299 9.93 291 9.93 284	60 59 58 57		
9.71 200 9.71 289 9.71 310 9.71 331 9.71 352 9.71 373	9.78 020 9.78 049 9.78 077 9.78 106 9.78 135	10.22 008 10.21 980 10.21 951 10.21 923 10.21 894 10.21 865	9.93 276 9.93 269 9.93 261 9.93 253 9.93 246 9.93 238	53 52	29 2 5.8 3 8.7 4 11.6	28 5.6 8.4 11.2
9.71 393 9.71 414 9.71 435 9.71 456 9.71 477	9.78 163 9.78 192 9.78 220 9.78 249 9.78 277	10.21 837 10.21 808 10.21 780 10.21 751 10.21 723	9.93 230 9.93 223 9.93 215 9.93 207 9.93 200	50 49 48	5 14.5 6 17.4 7 20.3 8 23.2 9 26.1	14.0 16.8 19.6 22.4 25.2
9.71 498 9.71 519 9.71 539 9.71 560 9.71 581 9.71 602	9.78 306 9.78 334 9.78 363 9.78 391 9.78 419 9.78 448	10.21 694 10.21 666 10.21 637 10.21 609 10.21 581 10.21 552	9.93 192 9.93 184 9.93 177 9.93 169 9.93 161 9.93 154	45 44 43 42 41 40	21 2 4.2 3 6.3 4 8.4 5 10.5	20 4.0 6.0 8.0
9.71 622 9.71 643 9.71 664 9.71 685 9.71 705 9.71 726	9.78 476 9.78 505 9.78 533 9.78 562 9.78 590 9.78 618	10.21 524 10.21 495 10.21 467 10.21 438 10.21 410 10.21 382	9.93 146 9.93 138 9.93 131 9.93 123 9.93 115	39 38 37 36 35	5 10.5 6 12.6 7 14.7 8 16.8 9 18.9	10.0 12.0 14.0 16.0 18.0
9.71 747 9.71 767 9.71 788 9.71 809 9.71 829	9.78 647 9.78 675 9.78 704 9.78 732 9.78 760	10.21 353 10.21 325 10.21 296 10.21 268 10.21 240	9.93 108 9.93 100 9.93 092 9.93 084 9.93 077 9.93 069	34 33 32 31 30 29	8 2 1.6 3 2.4 4 3.2	1.4 2.1 2.8
9.71 850 9.71 870 9.71 891 9.71 911 9.71 932 9.71 952	9.78 789 9.78 817 9.78 845 9.78 874 9.78 902 9.78 930	10.21 211 10.21 183 10.21 155 10.21 126 10.21 098 10.21 070	9.93 061 9.93 053 9.93 046 9.93 038 9.93 030 9.93 022	28 27 26 25 24 23	4 3.2 5 4.0 6 4.8 7 5.6 8 6.4 9 7.2	3.5 4.2 4.9 5.6 6.3
9.71 973 9.71 994 9.72 014 9.72 034 9.72 055	9.78 959 9.78 987 9.79 015 9.79 043 9.79 072	10.21 041 10.21 013 10.20 985 10.20 957 10.20 928	9.93 014 9.93 007 9.92 999 9.92 991 9.92 983	22 21 20 19 18	From the	top:
9.72 075 9.72 096 9.72 116 9.72 137 9.72 157 9.72 177	9.79 100 9.79 128 9.79 156 9.79 185 9.79 213 9.79 241	10.20 900 10.20 872 10.20 844 10.20 815 10.20 787 10.20 759	9.92 976 9.92 968 9.92 960 9.92 952 9.92 944 9.92 936	15 res 14 12: 13 co- 12	ıd as pri	or 211° +, nted; for 1°+, read
9.72 198 9.72 218 9.72 238 9.72 259 9.72 279 9.72 299	9.79 269 9.79 297 9.79 326 9.79 354 9.79 382 9.79 410	10.20 731 10.20 703 10.20 674 10.20 646 10.20 618 10.20 590	9.92 929 9.92 921 9.92 913 9.92 905 9.92 897 9.92 889	9] 8 res 6 14	ad as pri 8 °+ or 32	or 238°+; inted; for 28°+, read
9.72 320 9.72 340 9.72 360 9.72 381 9.72 401 9.72 421	9.79 438 9.79 466 9.79 495 9.79 523 9.79 551 9.79 579	10.20 562 10.20 534 10.20 505 10.20 477 10.20 449 10.20 421	9.92 866 9.92 858 9.92 850	5 ^{co}	-function	1.
L Cos	L Ctn cd	_	L Sin		Prop.	Pts.

58° — Logarithms of Trigonometric Functions

• •	-		alog ear 1		OI AILE	,011011100		LITT
	L Sin	d	L Tan	<u>c d</u>	L Ctn	${f L}$ Cos		Prop. Pts.
	$9.72\ 421$ $9.72\ 441$	20	9.79 579 9.79 607	28	10.20 421 10.20 393	9.92842 9.9283	60 5	
	9.72461 9.72482	$\frac{20}{21}$	9.79 635 9.79 663	28 28	$10.20365\\10.20337$	9.92826 9.92818	58	29 28
	9.72482 9.72502	20	9.79 691	28 28	10.20 309	9.92 810	5 56	$egin{array}{c c c} 2 & 5.8 & 5.6 \ 3 & 8.7 & 8.4 \ \end{array}$
	9.72 52:	20 20	9.79 719	28	10.20 281 10.20 253	9.92 803	5	4 11.6 11.2
	9.72 542 9.72 56:	20	9.79 719 9.79 747 9.79 776	29	10.20 224	9.92795 9.92787	5 53	6 17.4 16.8
	9.72 58. 9.72 60.	20 20	9.79 804 9.79 83	28 28	10.20 196 10.20 168	9.92779 9.92771	52 51	$ \begin{array}{c c c} 7 & 20.3 & 19.6 \\ 8 & 23.2 & 22.4 \end{array} $
10	9.72 62:	20 21	9.79 860	28 28	10.20 140	9.92763	50	$9 \mid 26.1 \mid 25.2$
11 1.	9.72643 9.72663	20	9.79 888 9.79 916	28	10.20 112 10.20 084	9.92755 9.92747	49 48	
13	9.72683	20 20	9.79944	28 28	10.20 056	9.92739	47	27 21 5.4 4.2
14 15	9.72 703 9.72 723	20	9.79 97: 9.80 000	28	10.20 028 10.20 000	9.92731 9.92723	46 45	8.1 6.3
$\frac{16}{17}$	9.72 743 9.72 763	20 20	9.80 028 9.80 056	28 28	10.19 97_ 10.19 944	9.92715 9.92707	44 43	10.8 8.4 13.5 10.5
18	9.72783	20 20	9.80084	28 28	10.19 916	9.92699	4.	16.2 12.6
19 20	9.72 803 9.72 823	2 0	9.80 112 9.80 140	28	10.19 888 10.19 860	9.92 691 9.92 683	41 40	21.6 16.8
21	9.72843	20 20	9.80168	28 27	10.19 832	9.92675	39	24.3 18.9
$\frac{22}{23}$	9.72863 9.72883	20	9.80 195 9.80 223	28	10.19 805 10.19 777	9.92667 9.92659	38 37	20 19
24	$9.72\ 902$	19 20	9.80251	28 28	10.19 749	9.92651	36	2 4.0 3.8
25 26	9.72922 9.72942	20	9.80 279 9.80 307	28	10.19 721 10.19 693	9.92 643 9.92 635	35 34	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
27 28	9.72962 9.72982	20 20	9.80 335 9.80 363	28 28	10.19 665 10.19 637	9.92 627 9.92 619	33 32	5 10.0 9.5
29	$9.73\ 002$	20 20	9.80 391	28 28	10.19 609	9.92611	31	$egin{array}{c c c} 6 & 12.0 & 11.4 \\ 7 & 14.0 & 13.3 \end{array}$
30 31	$9.73\ 022$ $9.73\ 041$	19	9.80 419 9.80 447	28	10.19 581 10.19 553	9.92603 9.92595	30 29	8 16.0 15.2 9 18.0 17.1
32	9.73061	20 20	9.80474	27 28	10.19526	9.92587	28	0 10.0 11.1
$\frac{33}{34}$	9.73 081 9.73 101	20 20	9.80 502 9.80 530	28 28	10.19 498 10.19 470	9.92579 9.92571	$\frac{27}{26}$	9 8
35 36	9.73121 9.73140	19	9.80 558 9.80 586	28	10.19 442 10.19 414	9.92563 9.92555	25 24	$egin{array}{ c c c c c c c c c c c c c c c c c c c$
37	$9.73\ 160$	20 20	9.80614	28 28	10.19 386	9.92546	23	3.6 3.2 2.8
38 39	$9.73\ 180$ $9.73\ 200$	20	9.80 642 9.80 669	27	10.19 358 10.19 331	9.92538 9.92530	$\frac{22}{21}$	$egin{array}{ c c c c c c c c c c c c c c c c c c c$
40	9.73 219	19 20	9.80 697	28 28	10.19 303	9.92522	20	$egin{array}{ c c c c c c c c c c c c c c c c c c c$
$\frac{41}{42}$	9.73239 9.73259	20	9.80 725 9.80 753	28	10.19 275 10.19 247	9.92514 9.92506	19 18	$9 \mid 8.1 \mid 7.2 \mid 6.3$
$\frac{43}{44}$	$9.73\ 278$ $9.73\ 298$	19 20	9.80 781 9.80 808	28 27	10.19 219 10.19 192	9.92 498 9.92 490	17 16	
45	9.73 318	20 19	9.80 836	28 28	10.19 164	9.92482	15	From the top:
$\frac{46}{47}$	9.73337 9.73357	20	9.80 864 9.80 892	28	10.19 136 10.19 108	9.92 473 9.92 465	14 13	For 32°+ or 212°+,
48	9.73 377 9.73 396	20 19	9.80919	27 28	10.19 081	9.92457	12	read as printed; for 122°+ or 302°+, read
49 50	9.73 416	20	9.80 947 9.80 975	28	10.19 053 10.19 025	9.92 449 9.92 441	11 10	co-function.
51 52	9.73 435 9.73 455	19 20	9.81 003 9.81 030	28 27	10.18 997 10.18 970	9.92 433 9.92 425		
53	9.73474	19 20	.81 058	28 28	10.18942	9.92416		From the bottom:
54 55	9.73 494 9.73 513	19	9.81 086 9.81 113	27	10.18 914 10.18 887	.92 408		For 57°+ or 237°+,
56	9.73533	20 19	9.81 141	28 28	_0.18 859	.92392		read as printed; for 147°+ or 327°+, read
57 18	9.73552 9.73572	20	9.81 169 9.81 196	27	$\begin{array}{c} 10.18831 \\ 10.18804 \end{array}$	9.92384 9.92376		co-function.
;9 60	7.73 591 7.73 611	19 20	.81 224	28 28	10.18776	9.92367		
60	L Cos	ď	.81 252 L Ctn	c d	10.18 748 L Tan	92 359 L Sin		Prop. Pts.
		_	·			M DIM		

				0 01 1115	onomen	IC F U	nchous 79
L Sin		L Tan	c d	L Ctn	L Cos		Prop. Pts.
9.73 611 9.73 630 9.73 650	19 20	9.81 252 9.81 279 9.81 307	27 28	10.18 748 10.18 721 10.18 693	9.92 359 9.92 351		 - -
9.73 669	19 20	$9.81\ 335$	28 · 27	10.18665	9.92 343 9.92 335		28 27 2 5.6 5.4
9.73 689 9.73 708	19	9.81 362 9.81 390	28	10.18 638 10.18 610	9.92 326 9.92 318		3 8.4 8.1
9.73727	19 20	9.81418	28 27	10.18 582	9.92310		4 11.2 10.8 5 14.0 13.5
9.73747 9.73766	19	9.81 445 9.81 473	28	$10.18555\\10.18527$	9.92 302 9.92 293		$\begin{array}{c c c} 6 & 16.8 & 16.2 \\ 7 & 19.6 & 18.9 \end{array}$
9.73785	19 20	$9.81\ 500$	27 28	10.18 500	9.92285		8 22.4 21.6
9.73805 9.73824	19	9.81 528 9.81 556	28	10.18472 10.18444	9.92277 9.92269		9 25.2 24.3
9.73843 9.73863	19 20	9.81 583 9.81 611	27 28	10.18 417 10.18 389	9.92 260 9.92 252		1 20 19
9.73882	19 19	9.81 638	$\frac{27}{28}$	10.18 362	9.92244		2 4.0 3.8
$9.73901 \\ 9.73921$	20	9.81 666 9.81 693	27	10.18 334 10.18 307	9.92235 9.92227		3 6.0 5.7 4 8.0 7.6
9.73940	19 19	9.81 721	28 27	10.18279	9.92219		5 10.0 9.5
9.73959 9.73978	19	9.81 721 9.81 748 9.81 776	28	$\frac{10.18252}{10.18224}$	9.92211 9.92202		7 14.0 13.3
9.73997 9.74017	19 20	9.81 803	27 28	10.18 197	9.92 194		8 16.0 15.2 9 18.0 17.1
9.74036	19 19	9.81 831 9.81 858	27 28	$\begin{array}{c} 10.18169 \\ 10.18142 \end{array}$	$9.92186 \\ 9.92177$		
$9.74\ 055$ $9.74\ 074$	19	9.81886 9.81913	27	10.18 114 10.18 087	9.92 169 9.92 161		18 9
9.74 093	19 20	9.81 941	28 27	10.18 059	9.92152		$\begin{array}{c cccc} 2 & 3.6 & 1.8 \\ 3 & 5.4 & 2.7 \\ 4 & 7.2 & 3.6 \end{array}$
$9.74\ 113$ $9.74\ 132$	19	9.81 968 9.81 996	28	$\frac{10.18032}{10.18004}$	9.92144 9.92136		$egin{array}{c cccc} 3 & 5.4 & 2.7 \\ 4 & 7.2 & 3.6 \\ 5 & 9.0 & 4.5 \\ \end{array}$
$9.74\ 151$ $9.74\ 170$	19 19	9.82023 9.82051	$\frac{27}{28}$	10.17 977 10.17 949	9.92127 9.92119		6 10.8 5.4
9.74 189	19 19	9.82 078	27 28	10.17 922	9.92111		8 14.4 7.2
9.74208 9.74227	19	9.82 106 9.82 133	27	10.17 894 10.17 867	9.92102 9.92094		9 16.2 8.1
$9.74\ 246$ $9.74\ 265$	19 19 19	$9.82\ 161$ $9.82\ 188$	28 27 2 7	$10.17839 \\ 10.17812$	9.92086 9.92077		
9.74 284 9.74 303	19	$9.82\ 215$ $9.82\ 243$	28	10.17 785 10.17 757	9.92069 9.92060		$\substack{\textbf{1.6}\\2.4}$
9.74322 9.74341	19 19	9.82 270 9.82 298	$\frac{27}{28}$	10.17 730 10.17 702	9.92052 9.92044		$\begin{array}{c} 3.2 \\ 4.0 \end{array}$
9.74 360	19 19	9.82 325	$\frac{27}{27}$	10.17 675	9.92044 9.92035		4.8
9.74 379 9.74 398	19	9.82 352 9.82 380	28	10.17648 10.17620	9.92027 9.92018		$\begin{array}{c} 5.6 \\ \underline{6.4} \end{array}$
9.74417	19 19	9.82407	$\begin{array}{c} 27 \\ 28 \end{array}$	10.17 593	9.92010		7.2
9.74 436 9.74 455	19 19	9.82435 9.82462	27 27	10.17 565 10.17 538	9.92002 9.91993		From the top:
9.74 474 9.74 493	19	$9.82489 \\ 9.82517$	28	10.17 511 10.17 483	9.91985 9.91976		For 33°+ or 213°+,
9.74512	19 19	$9.82\ 544$	$\frac{27}{27}$	10.17 4 56	9.91968		read as printed; for
9.74531 9.74549	18	9.82571 9.82599	28 27	10.17 429 10.17 401	9.91959 9.91951		123°+ or 303°+, read
9.74 568 9.74 587	19 19	9.82 626 9.82 653	27	10.17 374 10.17 347	9.91942 9.91934		co-function.
9.74 606	19 19	9.82681	28 27	10.17 319	9.91925		From the bottom:
9.74 625 9.74 644	19	9.82 708 9.82 735	27	$\begin{array}{c} 10.17292 \\ 10.17265 \end{array}$	9.91917 9.91908		For 56°+ or 236°
9.74 662	18 19	$9.82762 \\ 9.82790$	27 28	$\begin{array}{c} 10.17238 \\ 10.17210 \end{array}$	9.91900 9.91891		read as printed; for
9.74 681 9.74 700	19 19	9.82817	27 27	10.17 183 10.17 156	9.91883		146°+ or 326°+, read co-function.
9.74 719 9.74 73'	18	9.82844 9.82871	27	10.17 156 10.17 129	9.91874 9.91866		co-innomon.
9.74 756	19	9.82 899	28	10.17 101	9.91857		
L Cos	d	L Ctn	c d	L Tan	LSin	d [Prop. Pts.

Г	,	LSin	d	L Tan	c d	L Ctn	L Cos	d	7	Dron Di
-	_		-	-	-	-		-	-	Prop. Pts.
	0 1234 5 6789 0	9.74 756 9.74 775 9.74 794 9.74 812 9.74 831 9.74 850 9.74 868 9.74 887 9.74 906 9.74 924 9.74 943	19	9.82 899 9.82 926 9.82 953 9.82 980 9.83 008 9.83 035 9.83 062 9.83 089 9.83 117 9.83 144 9.83 171	27 27 27 28 27 27 27 28 27 27 27 27	10.17 101 10.17 074 10.17 047 10.17 020 10.16 992 10.16 938 10.16 938 10.16 883 10.16 856	9.91 840 9.91 832 9.91 823 9.91 815 9.91 806 9.91 798 9.91 789 9.91 772	89898980	58 57 56 55 54 53 52 51 50	28 27 2 5.6 5.4 3 8.4 8.1 4 11.2 10.8 5 14.0 13.5 6 16.8 16.2 7 19.6 18.9 8 22.4 21.6 9 25.2 24.3
1 1 1 1 1 1 1 2	1234 5 6789 0 12	9.74 961 9.74 980 9.74 999 9.75 017 9.75 036 9.75 054 9.75 073 9.75 191 9.75 128 9.75 147 9.75 165	18 19 19 18 19 18 19 18 19 18	9.83 198 9.83 252 9.83 252 9.83 280 9.83 307 9.83 384 9.83 361 9.83 415 9.83 442 9.83 470 9.83 470	27 27 28 27 27 27 27 27 27 27 27 27 27 27 27 27	10.16 802 10.16 775 10.16 748 10.16 720 10.16 693 10.16 666 10.16 639 10.16 555 10.16 553 10.16 530 10.16 503	9.91 763 9.91 755 9.91 746 9.91 738 9.91 729 9.91 720 9.91 703 9.91 695 9.91 677 9.91 669	98989 98989 98	49 48 47 46 45 44 43 42 41 40 39 38	26 19 2 5.2 3.8 3 7.8 5.7 4 10.4 7.6 5 13.0 9.5 6 15.6 11.4 7 18.2 13.3 8 20.8 15.2 9 23.4 17.1
2	3 4 5 6 7 8 9 0 1 2 3	9.75 184 9.75 202 9.75 221 9.75 239 9.75 276 9.75 276 9.75 294 9.75 313 9.75 331 9.75 368 9.75 368 9.75 386	19 18 19 18 19 18 19 18 19 18 19 18	9.83 524 9.83 551 9.83 578 9.83 605 9.83 632 9.83 659 9.83 659 9.83 713 9.83 740 9.83 768 9.83 795	27 27 27 27 27 27 27 27 27 27 27 27 27 2	10.16 476 10.16 449 10.16 422 10.16 395 10.16 368 10.16 341 10.16 287 10.16 260 10.16 205 10.16 205 10.16 178	9.91 660 9.91 651 9.91 634 9.91 634 9.91 625 9.91 608 9.91 599 9.91 591 9.91 582 9.91 573 9.91 565	9989989989	37 36 35 34 33 32 31 30 29 28 27 26	18 9 2 3.6 1.8 3 5.4 2.7 4 7.2 3.6 5 9.0 4.5 6 10.8 5.4 7 12.6 6.3 8 14.4 7.2 9 16.2 8.1
3 3 3 3 3 4 4 4 4 4 4 4	6789 01234 5	9.75 405 9.75 423 9.75 441 9.75 459 9.75 478 9.75 514 9.75 533 9.75 551 9.75 569 9.75 587	19 18 18 19 18 19 18 19 18 19	9.83 849 9.83 876 9.83 903 9.83 930 9.83 957 9.83 984 9.84 011 9.84 038 9.84 065 9.84 092 9.84 119	27 27 27 27 27 27 27 27 27 27 27	10.16 151 10.16 124 10.16 097 10.16 070 10.16 043 10.16 016 10.15 989 10.15 962 10.15 908 10.15 908	9.91 556 9.91 547 9.91 538 9.91 530 9.91 521 9.91 502 9.91 502 9.91 495 9.91 477 9.91 469	998998998	25 24 23 22 21 20 19 18 17 16 15	2 1.6 3 2.4 4 3.2 5 4.0 6 4.8 7 5.6 8 6.4 9 7.2
44 44 5 5 5 5 5 5 5 5 5 5 5 5 5 5	78901284	9.75 605 9.75 624 *9.75 642 9.75 660 9.75 678 9.75 733 9.75 733 9.75 751 9.75 769 9.75 787 9.75 805 9.75 823	18 19 18 18 18 18 19 18 18 18 18 18 18	9.84 146 9.84 173 9.84 200 9.84 227 9.84 254 9.84 280 9.84 307 9.84 334 9.84 361 9.84 388 9.84 415 9.84 442 9.84 469	27 27 27 27 27 26 27 27 27 27 27 27 27 27	10.15 854 10.15 827 10.15 800 10.15 773 10.15 746 10.15 720 10.15 693 10.15 666 10.15 639 10.15 612 10.15 588 10.15 538	9.91 460 9.91 451 9.91 443 9.91 425 9.91 416 9.91 407 9.91 398 9.91 389 9.91 381 9.91 372 9.91 363 9.91 354	9000000000000000	14 13 12 11 10 9 8 7 6 5 4 3	For 34°+ or 214°+, read as printed; for 124°+ or 304°+, read co-function. From the bottom: For 55°+ or 235°+, read as printed; for 145°+ or 325°+, read co-function.
59 60	- 1	9.75 841 9.75 859 L Cos	18 d	9.84 496 9.84 523 L Ctn	27 c d	10.15 504 10.15 477 L Tan	9.91 345 9.91 336 L Sin	9 d	0	Prop. Pts.

8.		ns	uncuo	sonomenic i	or TII	ZOSWIIIIII	
	Pts.	rop.	F	L Cos	L Ctn	L Tan	L Sin d
	26 5.2 7.8 10.4 13.0 15.6 18.2 20.8 23.4	27 5.4 8.1 10.8 13.5 16.2 18.9 21.6	2 3 4 5 6 7 8 9	9.91 336 9.91 328 9.91 319 9.91 310 9.91 301 9.91 292 9.91 283 9.91 274 9.91 266 9.91 257 9.91 248 9.91 239	10.15 477 10.15 450 10.15 424 10.15 397 10.15 370 10.15 343 10.15 316 10.15 289 10.15 262 10.15 209 10.15 209	9.84 550 9.84 576 9.84 603 9.84 630 9.84 657 9.84 684 9.84 711 9.84 738 9.84 764 9.84 791	9.75 859 9.75 877 9.75 895 9.75 913 9.75 931 9.75 949 9.75 967 9.75 985 9.76 003 9.76 021 9.76 039 9.76 057
	3.4 5.1 6.8 8.5 10.2 11.9 13.6 15.3	3.6 5.4 7.2 9.0 10.8 12.6 14.4 16.2	2 3 4 5 6 7 8 9	9.91 230 9.91 221 9.91 212 9.91 203 9.91 194 9.91 185 9.91 176 9.91 167 9.91 158 9.91 149	10.15 155 10.15 128 10.15 101 10.15 075 10.15 048 10.15 021 10.14 994 10.14 941 10.14 914	9.84 845 9.84 872 9.84 899 9.84 925 9.84 952 9.84 979 9.85 006 9.85 033 9.85 059 9.85 086	9.76 075 9.76 093 9.76 111 9.76 129 9.76 146 9.76 164 9.76 182 9.76 200 9.76 218 9.76 236 9.76 253
	9 1.8 2.7 3.6 4.5 5.4 6.3 7.2 8.1	10 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0	2 3 4 5 6 7 8 9	9.91141 9.91132 9.91123 9.91114 9.91105 9.91096 9.91078 9.91078 9.91069	10.14 887 10.14 860 10.14 834 10.14 807 10.14 780 10.14 753 10.14 727 10.14 673 10.14 646	9.85 140 9.85 166 9.85 193 9.85 220 9.85 247 9.85 273 9.85 300 9.85 327 9.85 354	9.76 271 9.76 289 9.76 307 9.76 324 9.76 342 9.76 360 9.76 378 9.76 395 9.76 413
	3 .6 .4 .2 .0 .8	1 2 3 4 4		9.91 051 9.91 042 9.91 033 9.91 023 9.91 014 9.91 005 9.90 996 9.90 987 9.90 978	10.14 620 10.14 593 10.14 566 10.14 540 10.14 513 10.14 486 10.14 433 10.14 406	9.85 380 9.85 407 9.85 434 9.85 460 9.85 487 9.85 514 9.85 540 9.85 567 9.85 594	9.76 431 9.76 448 9.76 466 9.76 484 9.76 501 9.76 537 9.76 554 9.76 572
for	or 215 nted; 5°+, r e	7 m the 35°+ as pri or 30	For read a	9.90 969 9.90 960 9.90 951 9.90 942 9.90 933 9.90 924 9.90 915 9.90 906 9.90 896 9.90 887	10.14 380 10.14 353 10.14 326 10.14 300 10.14 273 10.14 246 10.14 220 10.14 193 10.14 166 10.14 140	9.85 620 9.85 647 9.85 674 9.85 700 9.85 727 9.85 754 9.85 780 9.85 834 9.85 884	9.76 590 9.76 607 9.76 625 9.76 642 9.76 660 9.76 677 9.76 695 9.76 712 9.76 730 9.76 747
1 °+, for	botton or 234 nted; 4°+, re	54°+ as pri or 32	For read	9.90 878 9.90 869 9.90 860 9.90 851 9.90 842 9.90 832 9.90 823 9.90 814 9.90 805 9.90 796	10.14 113 10.14 087 10.14 060 10.14 033 10.14 007 10.13 980 10.13 954 10.13 927 10.13 900 10.13 874	9.85 887 9.85 913 9.85 940 9.85 967 9.85 993 9.86 020 9.86 020 9.86 100 9.86 100 9.86 126	9.76 765 9.76 782 9.76 800 9.76 817 9.76 835 9.76 852 9.76 870 9.76 887 9.76 904 9.76 922
	Pts.	rop.	_1			L Ctn cd	L Cos d

54° — Logarithms of Trigonometric Functions

84	90	Logarithi	ns or Iti	gonome	LIC.	r unctions [III]
	L Sin	d L Tan cd	L Ctn	${f L}$ Cos		Prop. Pts.
5	9.76 922 9.76 939 9.76 957 9.76 974 9.76 991 9.77 009	9.86 126 9.86 153 9.86 179 9.86 206 9.86 232 9.86 259 9.86 285	10.13 874 10.13 847 10.13 821 10.13 794 10.13 768 10.13 741 10.13 715	9.90 796 9.90 787 9.90 777 9.90 768 9.90 759 9.90 750		27 26 2 5.4 5.2 3 8.1 7.8 4 10.8 10.4 5 10.8
6 7 8 9 10	9.77 026 9.77 043 9.77 061 9.77 078 9.77 095 9.77 112	9.86 312 9.86 312 9.86 365 9.86 392 9.86 418	10.13 688 10.13 662 10.13 635 10.13 608 10.13 582	9.90 741 9.90 731 9.90 722 9.90 713 9.90 704 9.90 694	10	5 13.5 13.0 6 16.2 15.6 7 18.9 18.2 8 21.6 20.8 9 24.3 23.4
12 13 14 15 16 17 18 19 20 21 22	9.77 130 9.77 147 9.77 164 9.77 181 9.77 199 9.77 216 9.77 233 9.77 250 9.77 268 9.77 285 9.77 302 9.77 319	9.86 445 9.86 471 9.86 498 9.86 524 9.86 551 9.86 577 9.86 603 9.86 630 9.86 636	10.13 555 10.13 529 10.13 502 10.13 476 10.13 449 10.13 397 10.13 370 10.13 344 10.13 317 10.13 391	9.90 685 9.90 676 9.90 667 9.90 657 9.90 648 9.90 639 9.90 630 9.90 611 9.90 602 9.90 592	10	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
23 24 25 26 27 28 29 30 31 32 33	9.77 336 9.77 353 9.77 370 9.77 387 9.77 405 9.77 422 9.77 439 9.77 456 9.77 473 9.77 490	9.86 709 9.86 736 9.86 762 9.86 789 9.86 815 9.86 842 9.86 868 9.86 894 9.86 921 9.86 947 9.86 974 9.87 000	10.13 264 10.13 238 10.13 211 10.13 185 10.13 158 10.13 106 10.13 079 10.13 026 10.13 026 10.13 000	9.90 583 9.90 574 9.90 565 9.90 555 9.90 537 9.90 527 9.90 518 9.90 509 9.90 509 9.90 499 9.90 490	10	16 10 2 3.2 2.0 3 4.8 3.0 4 6.4 4.0 5 8.0 5.0 6 9.6 6.0 7 11.2 7.0 8 12.8 8.0 9 14.4 9.0
34 35 36 37 38 39 40 41	9.77 507 9.77 524 9.77 541 9.77 558 9.77 575 9.77 592 9.77 609 9.77 626 9.77 643 9.77 660 9.77 667	9.87 027 9.87 053 9.87 079 9.87 106 9.87 132 9.87 158 9.87 185 9.87 211 9.87 238 9.87 264 9.87 290	10.12 973 10.12 947 10.12 921 10.12 894 10.12 868 10.12 842 10.12 815 10.12 789 10.12 762 10.12 736	9.90 480 9.90 471 9.90 462 9.90 452 9.90 443 9.90 434 9.90 424 9.90 415 9.90 405 9.90 396		1.8 2.7 3.6 4.5 5.4 6.3 7.2 8.1
45 46 47 48 49 50 51	9.77 694 9.77 711 9.77 728 9.77 744 9.77 761 9.77 778	9.87 317 9.87 343 9.87 369 9.87 396 9.87 422 9.87 448	10.12 710 10.12 683 10.12 657 10.12 631 10.12 604 10.12 578 10.12 552	9.90 386 9.90 377 9.90 368 9.90 358 9.90 349 9.90 339 9.90 330		From the top: For 36°+ or 216°+, read as printed; for 126°+ or 306°+, read co-function.
51 52 53 54 55 56 57 58 59 60	9.77 795 9.77 812 9.77 829 9.77 846 9.77 862 9.77 879 9.77 913 9.77 930 9.77 946	9.87 475 9.87 501 9.87 527 9.87 554 9.87 580 9.87 606 9.87 633 9.87 659 9.87 685 9.87 711	10.12 525 10.12 499 10.12 473 10.12 446 10.12 394 10.12 367 10.12 341 10.12 315 10.12 289	9.90 320 9.90 311 9.90 301 9.90 292 9.90 282 9.90 273 9.90 263 9.90 254 9.90 244 9.90 235		From the bottom: For 53°+ or 233°+, read as printed; for 143°+ or 323°+, read co-function.
	L Cos	d L Ctn cd	L Tan		d	Prop. Pts.

 53° — Logarithms of Trigonometric Functions

L Cos Logarithms of Trigonometric Functions

L Ctn

	20501		15 01 111	gonome	uic.	runctions [111
L Sin	dirm-	•	- ~			
9.78 934	9.89 281 9.89 307 9.89 333 9.89 359 9.89 481 9.89 463 9.89 489 9.89 515 9.89 541 9.89 567	26 26 26 26 26 26 26 26 26 26 26 26	10.10 719 10.10 693 10.10 667 10.10 641 10.10 615 10.10 589 10.10 563 10.10 537 10.10 485 10.10 459	9.89 633 9.89 624 9.89 614 9.89 604 9.89 594 9.89 584 9.89 564 9.89 554	10 10 10 10 10 10 10 10 10 10	26 25 5.0 7.8 7.5 10.4 10.0 13.0 12.5 15.6 15.0 18.2 17.5 20.8 20.0 23.4 22.5
[20]	9.89 593 9.89 619 9.89 645 9.89 671 9.89 697 9.89 723 9.89 749 9.89 775 9.89 801 9.89 827	26 26 26 26 26 26 26 26 26 26 26	10.10 433 10.10 407 10.10 381 10.10 355 10.10 329 10.10 303 10.10 277 10.10 251 10.10 199 10.10 173	9.89 544 9.89 524 9.89 514 9.89 514 9.89 495 9.89 475 9.89 465 9.89 455 9.89 445	10 10 10 10 10 10 10 10 10	17 16 3.4 3.2 5.1 4.8 6.8 6.4 8.5 8.0 10.2 9.6 11.9 11.2 13.6 12.8 15.3 14.4
 25 29	9.89 853 9.89 879 9.89 905 9.89 931 9.89 957 9.89 983 9.90 009 9.90 035	26 26 26 26 26 26 26 26	10.10 147 10.10 121 10.10 095 10.10 069 10.10 043 10.10 017 10.09 991 10.09 965	9.89 435 9.89 425 9.89 415 9.89 405 9.89 395 9.89 385 9.89 375 9.89 364	10 10 10 10 10 10 10	15 11 3.0 2.2 4.5 3.3 6.0 4.4 7.5 5.5 9.0 6.6
30 31 32 33 34 35	9.90 086 9.90 112 9.90 138 9.90 164 9.90 190 9.90 216 9.90 242 9.90 268	25 26 26 26 26 26 26 26 26 26	10.09 939 10.09 914 10.09 888 10.09 862 10.09 836 10.09 810 10.09 758	9.89 354 9.89 344 9.89 334 9.89 324 9.89 314 9.89 304 9.89 294 9.89 284 9.89 274	10 10 10 10 10 10 10	10.5 7.7 12.0 8.8 13.5 9.9 10 2.0 1.8 3.0 2.7 4.0 3.6 5.0 4.5
1 4 2 1	9.90 294 9.90 320 9.90 346 9.90 371 9.90 397 9.90 423 9.90 449 9.90 475	26 26 25 26 26 26 26 26 26 26 26	10.09 732 10.09 706 10.09 680 10.09 654 10.09 603 10.09 577 10.09 551 10.09 525	9.89 264 9.89 254 9.89 244 9.89 233 9.89 223 9.89 213 9.89 203 9.89 193	10 10 11 10 11 10 10 10	6.0 5.4 7.0 6.3 8.0 7.2 9.0 From the top: For 38°+ or 218°+,
 49	9.90 501 9.90 527 9.90 553 9.90 578 9.90 604	26 26 25 26	10.09 499 10.09 473 10.09 447 10.09 422 10.09 396	9.89 183 9.89 173 9.89 162 9.89 152 9.89 142		read as printed; for 128°+ or 308°+, read co-function.
53	9.90 630 9.90 656 9.90 682	26 26 26 26	10.09 370 10.09 344 10.09 318	9.89 132 9.89 122 9.89 112		From the bottom: For 51°+ or 231°+,
56 57	0 00 1	1	I Ton	9.89 101 9.89 091 9.89 081 9.89 071 9.89 060 9.89 050		read as printed; for 141°+ or 321°+, read co-function.
			L Tan	L Sin	ч	Prop Pts.

_		2050110111	ro or Tire	опошен	ic rui	ictions (50
	L Sin d	L Tan cd	L Ctn	L Cos	ī	Prop. Pts.	
	9.79 887 9.79 903 9.79 918 9.79 934	9.90837 9.90863 9.90889 9.90914	10.09 163 10.09 137 10.09 111 10.09 086	9.89 050 9.89 040 9.89 030 9.89 020	60 59 58		
	9.79 950 9.79 965	9.90 940 9.90 966	10.09 060	9.89 009 9.88 999	57 56 55	26	
	9.79 981 9.79 996 9.80 012	9.90 992 9.91 018 9.91 043	10.09 008 10.08 982 10.08 957	9.88 978 9.88 968	54 53 52	5.2 5.0 7.8 7.5 10.4 10.0	
	9.80 027 9.80 043 9.80 058	9.91 069 9.91 095 9.91 121	10.08 931 10.08 905 10.08 879	9.88 958 9.88 948	51 50	13.0 12.5 15.6 15.0	
	9.80 074 9.80 089 9.80 105	9.91 147 9.91 172 9.91 198	10.08 853 10.08 828 10.08 802	9.88 937 9.88 927 9.88 917 9.88 906	49 48 47 46	18.2 17.5 20.8 20.0 23.4 22.5	
	9.80 120 9.80 136 9.80 151 9.80 166	9.91 224 9.91 250 9.91 276 9.91 301	10.08 776 10.08 750 10.08 724 10.08 699	9.88 896 9.88 886 9.88 875 9.88 865	45 44 43 42	2 3.2 3.0 3 4.8 4.5	
	9.80 182 9.80 197 9.80 213 9.80 228	9.91 327 9.91 353 9.91 379 9.91 404	10.08 673 10.08 647 10.08 621 10.08 596	9.88 855 9.88 844 9.88 834 9.88 824	41 40 39 38	4 6.4 6.0 5 8.0 7.5 6 9.6 9.0	
	9.80244 9.80259	9.91430 9.91456	$10.08570\\10.08544$	9.88 813 9.88 803	37 36	7 11.2 10.5 8 12.8 12.0 9 14.4 13.5	
	9.80 274 9.80 290 9.80 305	9.91 482 9.91 507 9.91 533	10.08 518 10.08 493 10.08 467 10.08 441	9.88 793 9.88 782 9.88 772	35 34 33 32	11 10	
	9.80 320 9.80 336 9.80 351	9.91 559 9.91 585 9.91 610	10.08 415	9.88 761 9.88 751 9.88 741	31 30	$\begin{array}{c cccc} 2 & 2.2 & 2.0 \\ 3 & 3.3 & 3.0 \end{array}$	
	9.80 366 9.80 382 9.80 397 9.80 412	9.91 636 9.91 662 9.91 688 9.91 713	10.08 364 10.08 338 10.08 312 10.08 287	9.88 730 9.88 720 9.88 709 9.88 699	29 28 27 26	4 4.4 4.0 5 5.5 5.0 6 6.6 6.0 7 7.7 7.0	
	9.80 428 9.80 443 9.80 458 9.80 473	9.91739 9.91765 9.91791 9.91816	10.08 261 10.08 235 10.08 209 10.08 184	9.88 688 9.88 678 9.88 668 9.88 657	25 24 23 22	8 8.8 8.0 9 9.9 9.0	
	9.80 489 9.80 504	9.91 842 9.91 868	10.08 158 10.08 132	9.88 647 9.88 636	21 20		
	9.80519 9.80534	$9.91893 \\ 9.91919$	10.08 107 10.08 081 10.08 055	9.88 626 9.88 615 9.88 605	19 18 17	From the top:	
	9.80 550 9.80 565 9.80 580	9.91 945 9.91 971 9.91 996	10.08 033 10.08 029 10.08 004	9.88 594 9.88 584	16 15	For 39°+ or 219° read as printed; for	•
	9.80 595 9.80 610 9.80 625	9.92 022 9.92 048 9.92 073	10.07 978 10.07 952 10.07 927	9.88 573 9.88 563 9.88 552	14 13 12	129°+ or 309°+, resco-function.	ad,
	9.80 641 9.80 656	9.92 099 9.92 12 5	10.07 901 10.07 875	9.88 542 9.88 531	11 10	From the bottom	
	9.80 671 9.80 686 9.80 701	9.92 150 9.92 176 9.92 202 9.92 227	10.07 850 10.07 824 10.07 798 10.07 773	9.88 521 9.88 510 9.88 499 9.88 489	9 8 7 6	For 50°+ or 230° read as printed; f 140°+ or 320°+, read	or
	9.80 716 9.80 731 9.80 746	9.92 227 9.92 253 9.92 279	10.07 747 10.07 721	9.88 478 9.88 468	5	co-function.	
	9.80 740 9.80 762 9.80 777 9.80 792	9.92304 9.92330 9.92356	10.07 696 10.07 670 10.07 644	9.88 457 9.88 447 9.88 436	$\frac{4}{3} \\ \frac{2}{1}$		
	9.80 807	9.92381	10.07 619	9.88425	0		
	L Cos	L Ctn	L Tan	L Sin	.:. T	Prop. Pts.	

50° — Logarithms of Trigonometric Functions

			Logari	CILII	19 01 111	вопоше	uic	T U	menons [III]
	L Sin	,	T	-	-				Prop. Pts.
	9.80 807 9.80 822 9.80 837 9.80 852 9.80 867	15	9.92 381 9.92 407 9.92 433 9.92 458 9.92 484		10.07 619 10.07 593 10.07 567 10.07 542 10.07 516	9.88 425 9.88 415 9.88 404 9.88 394 9.88 383			
	9.80 882 9.80 897 9.80 912 9.80 927 9.80 942 9.80 957	15 15 15	9.92510 9.92535 9.92561 9.92587 9.92612 9.92638		10.07 490 10.07 465 10.07 439 10.07 413 10.07 388 10.07 362	9.88 372 9.88 362 9.88 351 9.88 340 9.88 330 9.88 319		šī	26 25 5.2 5.0 7.8 7.5 10.4 10.0 13.0 12.5 15.6 15.0
	9.80 972 9.80 987 9.81 002 9.81 017	15 15 15 15 15	9.92 663 9.92 689 9.92 715 9.92 740		10.07 337 10.07 311 10.07 285 10.07 260	9.88 308 9.88 298 9.88 287 9.88 276		48	18.2 17.5 20.8 20.0 23.4 22.5
	9.81 032 9.81 047 9.81 061 9.81 076 9.81 091 9.81 106	15 14 15 15 15	9.92766 9.92792 9.92817 9.92843 9.92868 9.92894		10.07 234 10.07 208 10.07 183 10.07 157 10.07 132 10.07 106	9,88 266 9,88 255 9,88 244 9,88 234 9,88 223 9,88 212	11 11 10 11 11	45 44 43 42 41 40	15 14 3.0 2.8 4.5 4.2 6.0 5.6
	9.81 121 9.81 136 9.81 151 9.81 166 9.81 180	15 15 15 15 14	9.92 920 9.92 945 9.92 971 9.92 996 9.93 022		10.07 080 10.07 055 10.07 029 10.07 004 10.06 978	9.88 201 9.88 191 9.88 180 9.88 169 9.88 158	11 10 11 11 11	39 38 37 36 35	7.5 7.0 9.0 8.4 10.5 9.8 12.0 11.2 13.5 12.6
	9.81 195 9.81 210 9.81 225 9.81 240 9.81 254	15 15 15 15 14	9.93 048 9.93 073 9.93 099 9.93 124 9.93 150		10.06 952 10.06 927 10.06 901 10.06 876 10.06 850	9.88 148 9.88 137 9.88 126 9.88 115 9.88 105	10 11 11 11 10	34 33 32 31 30	11 10 2,2 2.0 3,3 3.0
	9.81 269 9.81 284 9.81 299 9.81 314 9.81 328	15 15 15 15 14	9.93 175 9.93 201 9.93 227 9.93 252 9.93 278		10.06 825 10.06 799 10.06 773 10.06 748 10.06 722	9.88 094 9.88 083 9.88 072 9.88 061 9.88 051	11 11 11 11 10	29 28 27 26 25	4.4 4.0 5.5 5.0 6.6 6.0 7.7 7.0 8.8 8.0
10	9.81 343 9.81 358 9.81 372 9.81 387 9.81 402	15 15 14 15 15	9.93 303 9.93 329 9.93 354 9.93 380 9.93 406	26	10.06 697 10.06 671 10.06 646 10.06 620 10.06 594	9.88 040 9.88 029 9.88 018 9.88 007 9.87 996	11 11 11 11	24 23 22 21 20	9.9 9.0
73 (9.81 417 9.81 431 9.81 446 .81 461	15 14 15 15	9.93 431 9.93 457 9.93 482 9.93 508	25 26 25 26	10.06 569 10.06 543 10.06 518 10.06 492	9.87 985 9.87 975 9.87 964 9.87 953	11 10 11 11	19 18 17 16	From the top: For 40°+ or 220°+,
	1 475 11 490 81 505 81 519 81 534	14 15 15 14 15	9.93 533 9.93 559 9.93 584 9.93 610 9.93 636	25 26 25 26 26	10.06 467 10.06 441 10.06 416 10.06 390 10.06 364	9.87 942 9.87 931 9.87 920 9.87 909 9.87 898	11 11 11 11	15 14 13 12 11	read as printed; for 130°+ or 310°+, read co-function.
53 54	9.81 549 9.81 563 9.81 578 9.81 592 9.81 607	15 14 15	9.93 661 9.93 687 9.93 712 9.93 738 9.93 763	25 26 25 26 25 26	10.06 339 10.06 313 10.06 288 10.06 262 10.06 237	9.87 887 9.87 877 9.87 866 9.87 855 9.87 844	11 10 11 11 11 11	10 9 8 7 6	From the bottom: For 49°+ or 229°+, read as printed; for 139°+ or 319°+, read
55 56 57 58 59	9.81 622 9.81 636 9.81 651 9.81 665 9.81 680		9.93 789 9.93 814 9.93 840 9.93 865 9.93 891	25 26 25 26 25 26 25	10.06 211 10.06 186 10.06 160 10.06 135 10.06 109	9.87 833 9.87 822 9.87 811 9.87 800 9.87 789	11 11 11 11 11	5 4 3 2 1	co-function.
60	9.81 694 L Cos	d	9.93 916 L Ctn	cd	10.06 084 Tan	9.87778 L Sin			Prop. Pts
	_ 505	- • •	. 2 0	- u	· ran	T SIII			1100.16

49° — Logarithms of Trigonometric Functions

1	1	L Sin	d	L Tan			T. C.	- 1		
1 9.81 709	-		<u>"</u>		cd .	L Ctn	L Cos	<u>d</u>	_	Prop. Pts.
16	1 2 3 4 5 6 7 8 9 10 11 12 13 14	9.81 709 9.81 723 9.81 723 9.81 752 9.81 767 9.81 767 9.81 810 9.81 825 9.81 839 9.81 854 9.81 868 9.81 882 9.81 882 9.81 897	14 15 14 15 14 15 14 15 14 15 14	9.93 942 9.93 967 9.93 993 9.94 018 9.94 069 9.94 095 9.94 120 9.94 171 9.94 177 9.94 222 9.94 278 9.94 278	25 26 25 26 25 26 25 26 25 26 25 26 25 26 25	10.06 058 10.06 033 10.06 007 10.05 982 10.05 956 10.05 931 10.05 980 10.05 880 10.05 880 10.05 878 10.05 772 10.05 772	9.87 756 9.87 745 9.87 734 9.87 723 9.87 701 9.87 600 9.87 669 9.87 668 9.87 657 9.87 646 9.87 635 9.87 642	11 11 11 11 11 11 11 11 11 11	59 58 57 56 55 53 52 51 50 48 47 46	2 5.2 5.0 3 7.8 7.5 4 10.4 10.0 5 13.0 12.5 6 15.6 15.0 7 18.2 17.5 8 20.8 20.0
28 9.82 098	16 17 18 19 20 21 22 23 24 25	9.81 926 9.81 940 9.81 955 9.81 969 9.81 983 9.81 998 9.82 012 9.82 041 9.82 055 9.82 069	14 15 14 14 15 14 15 14 15 14	9.94 324 9.94 350 9.94 375 9.94 401 9.94 452 9.94 477 9.94 503 9.94 528 9.94 554 9.94 579	26 25 26 25 26 25 26 25 26 25 26	10.05 676 10.05 650 10.05 625 10.05 599 10.05 574 10.05 523 10.05 497 10.05 472 10.05 446 10.05 421	9.87 601 9.87 590 9.87 579 9.87 568 9.87 546 9.87 535 9.87 524 9.87 513 9.87 501 9.87 490	11 11 11 11 11 11 11 12 11	44 43 42 41 40 39 38 37 36 35	2 3.0 2.8 3 4.5 4.2 4 6.0 5.6 5 7.5 7.0 6 9.0 8.4 7 10.5 9.8 8 12.0 11.2
40 9.82 269 14 9.94 986 25 10.05 065 9.87 334 12 12 13 14 14 15 15 15 16 15 16 16 16	28 29 30 31 32 33 34 35 36 37 38 39	9.82 098 9.82 112 9.82 126 9.82 141 9.82 155 9.82 169 9.82 184 9.82 212 9.82 226 9.82 240	14 14 14 15 14 15 14 14 14 14 15	9.94 630 9.94 655 9.94 681 9.94 706 9.94 757 9.94 757 9.94 783 9.94 808 9.94 834 9.94 859 9.94 884	26 25 26 25 26 25 26 25 26 25 26 25 26 25 26	10.05 370 10.05 345 10.05 319 10.05 294 10.05 268 10.05 217 10.05 192 10.05 166 10.05 141 10.05 116	9.87 468 9.87 457 9.87 446 9.87 423 9.87 423 9.87 401 9.87 390 9.87 378 9.87 378 9.87 356	11 11 12 11 11 11 11 12 11 11 11	32 31 30 29 28 27 26 25 24 23 22 21	2 2.4 2.2 3 3.6 3.3 4 4.8 4.4 5 6.0 5.5 6 7.2 6.6 7 8.4 7.7 8 9.6 8.8
50 9.82 410 14 9.95 190 15. 25 10.04 810 9.87 221 15. 25 10.04 785 9.87 221 15. 25 10.04 785 9.87 281 11. 8	41 42 43 44 45 46 47 48 49	9.82 283 9.82 297 9.82 311 9.82 326 9.82 340 9.82 354 9.82 368 9.82 382 9.82 396	14 14 15 14 14 14 14 14	9.94 961 9.94 986 9.95 012 9.95 037 9.95 062 9.95 088 9.95 113 9.95 139	26 25 26 25 25 25 26 25 26 25 26 25	10.05 039 10.05 014 10.04 988 10.04 963 10.04 938 10.04 912 10.04 887 10.04 861	9.87 322 9.87 311 9.87 300 9.87 288 9.87 277 9.87 266 9.87 255 9.87 243 9.87 232	12 11 12 11 11 11 11 12 11	19 18 17 16 15 14 13 12	For 41°+ or 221°+, read as printed; for 131°+ or 311°+, read co-function.
L Cos d L Ctn cd L Tan L Sin d ' Prop. Pts.	51 52 53 54 55 56 57 58	9.82 424 9.82 439 9.82 453 9.82 467 9.82 481 9.82 495 9.82 509 8 9.82 523 9.82 537	14 15 14 14 14 14 14 14 14	9.95 215 9.95 240 9.95 266 9.95 291 9.95 317 9.95 342 9.95 368 9.95 393 9.95 418	25 25 26 25 26 25 26 25 26 25 26 25 26	10.04 785 10.04 760 10.04 734 10.04 709 10.04 683 10.04 658 10.04 607 10.04 582 10.04 556	9.87 209 9.87 198 9.87 187 9.87 175 9.87 164 9.87 153 9.87 141 9.87 130 9.87 119	12 11 12 11 11 12 11 12 11	9 8 7 6 5 4 3 2	For 48°+ or 228°+, read as printed; for 138°+ or 318°+, read

48° — Logarithms of Trigonometric Functions

		42		- Logan	ithms of Trigonometric							
-		L Sin	d	L Tan	cd	L Ctn	L Cos	d		Prop. Pts.		
	01234	9.82 551 9.82 565 9.82 579 9.82 593 9.82 607	14 14 14 14 14	9.95 444 9.95 469 9.95 495 9.95 520 9.95 545	25 26 25 25 25 26	10.04 556 10.04 531 10.04 505 10.04 480 10.04 455	9.87 107 9.87 096 9.87 085 9.87 073 9.87 062	11 11 12 11 12	60 59 58 57 56			
	5 6 7 8 9 10 11 12 13 14	9.82 621 9.82 635 9.82 649 9.82 663 9.82 677 9.82 691 9.82 705 9.82 719 9.82 733 9.82 747	14 14 14 14 14 14 14 14 14 14	9.95 571 9.95 596 9.95 622 9.95 647 9.95 672 9.95 698 9.95 723 9.95 748 9.95 774 9.95 799	25 26 25 25 26 25 26 25 26 25 26	10.04 429 10.04 404 10.04 378 10.04 328 10.04 328 10.04 302 10.04 277 10.04 252 10.04 226 10.04 201	9.87 050 9.87 039 9.87 028 9.87 016 9.87 005 9.86 993 9.86 982 9.86 970 9.86 959 9.86 947	11 11 12 11 12 11 12 11 12	55 54 53 52 51 50 49 48 47 46	26 25 25 2 5.0 5.2 5.0 5.2 5.0 5.4 10.4 10.0 5 13.0 12.5 6 15.6 15.0 6 15.6 15.0 7 18.2 17.5 8 20.8 20.0 9 23.4 22.5		
	15 16 17 18 19 20 21 22 23 24 25 26	9.82 761 9.82 775 9.82 778 9.82 802 9.82 816 9.82 830 9.82 844 9.82 858 9.82 872 9.82 885 9.82 899 9.82 913	14 13 14 14 14 14 14 14 14 14 14	9.95 825 9.95 850 9.95 875 9.95 901 9.95 926 9.95 952 9.95 977 9.96 002 9.96 028 9.96 053 9.96 078 9.96 104	25 25 26 25 26 25 26 25 26 25 26 25 26	10.04 175 10.04 150 10.04 125 10.04 099 10.04 074 10.04 023 10.03 998 10.03 947 10.03 947 10.03 986	9.86 936 9.86 924 9.86 913 9.86 890 9.86 879 9.86 867 9.86 855 9.86 844 9.86 832 9.86 821 9.86 809	12 11 12 11 12 12 12 11 12 11 12	45 44 42 41 40 38 37 36 35 34	14 13 2 2.8 2.6 3 4.2 3.9 4 5.6 5.2 5 7.0 6.5 6 8.4 7.8 7 9.8 9.1 8 11.2 10.4 9 12.6 11.7		
	27 28 30 31 33 34 35 36 37 38 39	9.82 927 9.82 941 9.82 955 9.82 968 9.82 982 9.82 996 9.83 010 9.83 023 9.83 051 9.83 065 9.83 078 9.83 078 9.83 078	14 14 13 14 14 13 14 14 13 14 14	9.96 129 9.96 155 9.96 180 9.96 231 9.96 231 9.96 281 9.96 307 9.96 332 9.96 357 9.96 383 9.96 433	25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 26 26 26 26 26 26 26 26 26 26 26 26	10.03 871 10.03 845 10.03 795 10.03 769 10.03 769 10.03 719 10.03 693 10.03 668 10.03 643 10.03 659 10.03 592	9.86 798 9.86 786 9.86 755 9.86 752 9.86 752 9.86 717 9.86 705 9.86 694 9.86 682 9.86 670 9.86 659	11 12 11 12 12 11 12 11 12 11 12 11 12	33 32 31 30 29 28 27 26 25 22 21	12 11 2 2.4 2.2 3 3.6 3.3 4 4.8 4.4 5 6.0 5.5 6 7.2 6.6 7 8.4 7.7 8 9.6 8.8 9 10.8		
	40 41 42 43 44 45 46 47 48 49	9.83 106 9.83 120 9.83 133 9.83 147 9.83 161 9.83 174 9.83 188 9.83 202 9.83 215 9.83 229	14 13 14 14 13 14 14 13 14	9.96 459 9.96 484 9.96 510 9.96 535 9.96 560 9.96 586 9.96 636 9.96 662 9.96 687	25 26 25 25 25	10.03 541 10.03 516 10.03 490 10.03 465 10.03 441 10.03 389 10.03 364 10.03 338 10.03 313	9.86 647 9.86 635 9.86 624 9.86 612 9.86 500 9.86 589 9.86 577 9.86 565 9.86 554 9.86 542	12 11 12 12 11 12 12 11 12	20 19 18 17 16 15 14 13 12 11	From the top: For 42°+ or 222°+, read as printed; for 132°+ or 312°+, read co-function.		
	50 51 52 53 54 55 56 57 58	9.83 242 9.83 256 9.83 270 9.83 283 9.83 297 9.83 310 9.83 324 9.83 338 9.83 351	14 14 13 14	9.96 712 9.96 738 9.96 763 9.96 788 9.96 814 9.96 839 9.96 864 9.96 890 9.96 915		10.03 288 10.03 262 10.03 237 10.03 212 10.03 186 10.03 161 10.03 136 10.03 110 10.03 085	9.86 530 9.86 518 9.86 507 9.86 495 9.86 483 9.86 472 9.86 460 9.86 448 9.86 436	12 11 12 12 11 12 11 12 12 12 11	10 9 8 7 6 5 4 3 2	From the bottom: For 47°+ or 227°+, read as printed; for 137°+ or 317°+, read co-function.		
1	59 60	9.83 365 9.83 378	13	9.96 940 9.96 966		10.03 060	9.86 425 9.86 413	12	0			
		L Cos	d	L Ctn	cd	L Tan	L Sin			. Pts		
		477	0	Tamani	41	- cm-:	-	•	T3			

	40	Logarithin	ra or Tuế	gonometric	Functions 89
	L Sin d	L Tan cd	L Ctn	L Cos d	Prop. Pts.
9 9	.83 378 .83 392 .83 405 .83 419	9.96 966 9.96 991 9.97 016 9.97 042	10.03 034 10.03 009 10.02 984 10.02 958	9.86 413 9.86 401 9.86 389 9.86 377	
9	.83 432 .83 446 .83 459	9.97 067 9.97 092 9.97 118	10.02 933 10.02 908 10.02 882	9.86 366 9.86 354 9.86 342	26 25
9	.83 473 .83 486 .83 500	9.97143 9.97168 9.97193	10.02 857 10.02 832 10.02 807	9.86 330 9.86 318 9.86 306	$\begin{array}{c cccc} 2 & 5.2 & 5.0 \\ 3 & 7.8 & 7.5 \\ 4 & 10.4 & 10.0 \\ 5 & 13.0 & 12.5 \end{array}$
9	.83 513 .83 527 .83 540 .83 554 .83 567	9.97 219 9.97 244 9.97 269 9.97 295 9.97 320	10.02 781 10.02 756 10.02 731 10.02 705 10.02 680	9.86 295 9.86 283 9.86 271 9.86 259 9.86 247	4 10.4 10.0 5 13.0 12.5 6 15.6 15.0 7 18.2 17.5 8 20.8 20.0 9 23.4 22.5
9	0.83 581 0.83 594 0.83 608 0.83 621 0.83 634	9.97 345 9.97 371 9.97 396 9.97 421 9.97 447	10.02 655 10.02 629 10.02 604 10.02 579 10.02 553	9.86 235 9.86 223 9.86 211 9.86 200 9.86 188	14 13 2.8 2.6 4.2 3.9
ç	0.83 648 0.83 661 0.83 674 0.83 688 0.83 701	9.97 472 9.97 497 9.97 523 9.97 548 9.97 573	10.02 528 10.02 503 10.02 477 10.02 452 10.02 427	9.86 176 9.86 164 9.86 152 9.86 140 9.86 128	$\begin{array}{ccc} 5.6 & 5.2 \\ 7.0 & 6.5 \\ 8.4 & 7.8 \\ 9.8 & 9.1 \\ 11.2 & 10.4 \end{array}$
ç	0.83 715 0.83 728 0.83 741 0.83 755	9.97 598 9.97 624 9.97 649 9.97 674 9.97 700	10.02 402 10.02 376 10.02 351 10.02 326	9.86 116 9.86 104 9.86 092 9.86 080	12.6 11.7
ç	0.83 768 0.83 781 0.83 795 0.83 808 0.83 821 0.83 834	9.97 700 9.97 725 9.97 750 9.97 776 9.97 801 9.97 826	10.02 300 10.02 275 10.02 250 10.02 224 10.02 199 10.02 174	9.86 068 9.86 056 9.86 044 9.86 032 9.86 020 9.86 008	2 2.4 2.2 3 3.6 3.3 4 4.8 4.4 5 6.0 5.5 6 7.2 6.6 7 8.4 7.7
ç	0.83 848 0.83 861 0.83 874 0.83 887 0.83 901	9.97 851 9.97 877 9.97 902 9.97 927 9.97 953	10.02 174 10.02 149 10.02 123 10.02 098 10.02 073 10.02 047	9.85 996 9.85 984 9.85 972 9.85 960 9.85 948	8 9.6 8.8 9 10.8 9.9
Ç	0.83 914 0.83 927 0.83 940 0.83 954 0.83 967	9.97 978 9.98 003 9.98 029 9.98 054 9.98 079	10.02 022 10.01 997 10.01 971 10.01 946 10.01 921	9.85 936 9.85 924 9.85 912 9.85 900 9.85 888	From the top: For 43°+ or 223°+,
ç	9.83 980 9.83 993 9.84 006 9.84 020 9.84 033	9.98 104 9.98 130 9.98 155 9.98 180 9.98 206	10.01 896 10.01 870 10.01 845 10.01 820 10.01 794	9.85 876 9.85 864 9.85 851 9.85 839 9.85 827	read as printed; for 133°+ or 313°+, read co-function.
0	9.84 046 9.84 059 9.84 072 9.84 085	9.98 231 9.98 256 9.98 281 9.98 307	10.01769 10.01744 10.01719 10.01693	9.85 815 9.85 803 9.85 791 9.85 779	From the bottom: For 46°+ or 226°+, read as printed; for 136°+ or 316°+, read
0	9.84 098 9.84 112 9.84 125 9.84 138 9.84 151	9.98 332 9.98 357 9.98 383 9.98 408 9.98 433	10.01 668 10.01 643 10.01 617 10.01 592 10.01 567	9.85 766 9.85 754 9.85 742 9.85 730 9.85 718	co-function.
	9.84 164 9.84 177	9.98458 9.98484	10.01 542 10.01 516	9.85 706 9.85 693	
	L Cos	L Ctn	L Tan	L Sin d	Prop. Pts.
	4.00	Tr • . 1	e 70. 2		Eumations

46° — Logarithms of Trigonometric Functions

50			Logari	LILII	12 OI TITE	onomeur	CIU	псио	113	LTTT
	L Sin		L Tan		L Ctn	L Cos		_]	Prop.	Pts.
	9.84 177 9.84 190 9.84 205 9.84 216 9.84 229	18 13 13 18	9.98 484 9.98 509 9.98 534 9.98 560 9.98 585	25 25 26 25	10.01 51 10.01 49 10.01 46 10.01 44(10.01 41	9.85 695 9.85 68 9.85 66 9.85 65 9.85 645	5 5 5 5			
1	9.84 242 9.84 255 9.84 269 9.84 282 9.84 29	13 1 13 13 13	9.98 610 9.98 63 9.98 66_ 9.98 686 9.98 711	25 26 25 25 25 26	10.01 390 10.01 365 10.01 339 10.01 314 10.01 289	9.85 632 9.85 62(9.85 608 9.85 596 9.85 583	5 5 5 5 5 5 5 5	2 3 4 5	5.2 7.8 10.4 13.0	5.0 7.5 10.0 12.5
10 11 12	9.84 308 9.84 321 9.84 334 9.84 347 9.84 360	1; 1; 13 13	9.98737 9.98762 9.9878 9.9881_ 9.98838	25 25 25 26 25	10.01 263 10.01 238 10.01 21 10.01 188 10.01 16	9.85 571 9.85 559 9.85 547 9.85 534 9.85 522	50 .4: 48 4' 41	6 7 8 9	15.6 18.2 20.8 23.4	15.0 17.5 20.0 22.5
15 16 17 18 19	9.84 373 9.84 385 9.84 398 9.84 411 9.84 424 9.84 437	1: 13 13 13 13	9.98 863 9.98 888 9.98 913 9.98 939 9.98 964 9.98 989	25 25 26 2 25	10.01 137 10.01 112 10.01 087 10.01 061 10.01 036 10.01 011	9.85 510 9.85 497 9.85 485 9.85 473 9.85 460 9.85 448	45 44 43 42 41 40	2 3 4	14 2.8 4.2 5.6	2.6 3.9 5.2 6.5
21 22 23 24 25	9.84 450 9.84 463 9.84 476 9.84 489 9.84 502	13 13 13 13	9.99 015 9.99 040 9.99 065 9.99 090 9.99 116	26 25 25 25 26	10.00 985 10.00 960 10.00 935 10.00 910 10.00 884	9.85 436 9.85 423 9.85 411 9.85 399 9.85 386	39 38 37 36 35	5 6 7 8 9	7.0 8.4 9.8 11.2 12.6	7.8 9.1 10.4
26 27 28 29 30	9.84 515 9.84 528 9.84 540 9.84 553 9.84 566	13 13 12 13 13	9.99 141 9.99 166 9.99 191 9.99 217 9.99 242	25 25 25 26 25	10.00 859 10.00 834 10.00 809 10.00 783 10.00 758	9.85 374 9.85 361 9.85 349 9.85 337 9.85 324	34 33 3. 31 30		3	.4 .6
31 32 33 34 35	9.84 579 9.84 592 9.84 605 9.84 618 9.84 630	13 13 13 13 12 13	9.99 267 9.99 293 9.99 318 9.99 343 9.99 368	25 26 25 25 25 25 26	10.00 733 10.00 707 10.00 682 10.00 657 10.00 632	9.85 312 9.85 299 9.85 287 9.85 274 9.85 262	29 28 2' 26 25		6 7 8	8 0 2 4
36 37 38 39 40	9.84 643 9.84 656 9.84 669 9.84 682 9.84 694	13 13 13 12	9.99 394 9.99 419 9.99 444 9.99 469 9.99 495	25 25 25 26	10.00 606 10.00 581 10.00 556 10.00 531 10.00 505	9.85 250 9.85 237 9.85 225 9.85 212 9.85 200	24 23 22 21 20		10	
41 42 43 44	9.84 707 9.84 720 9.84 733 9.84 745	13 13 13 12	9.99 520 9.99 545 9.99 570 9.99 596	25 25 25 26	10.00 480 10.00 455 10.00 430 10.00 404	9.85 187 9.85 175 9.85 162 9.85 150	17	For		or 224 °+,
45 46 47 48 49	9.84758 9.84771 9.84784 9.84796 9.84809	13 13 13 12 13	9.99 621 9.99 646 9.99 672 9.99 697 9.99 722	25 26 25 25 25	10.00 379 10.00 354 10.00 328 10.00 303 10.00 278	9.85 137 9.85 125 9.85 112 9.85 100 9.85 087		134 °-		nted; for 4°+, read
50	9.84 822 9.84 835 9.84 847 9.84 860	13 12 13 13	9.99 747 1.99 773 1.99 798 1.99 823	25 26 25 25 25	10.00 253 10.00 227 .0.00 202 .0.00 177	9.85 074 9.85 062 9.85 049 9.85 037		For ead	: 45 °+ : as pri	bottom: or 225°+, oted; for 5°+, read
	.84 873 .84 885	12 13 13 12	1.99 848 9.99 874 9.99 899 1.99 924	26 25 25 25	0.00 152 0.00 126 0.00 101 0.00 076	.85 024 .85 012 .84 999 .84 986			nction	
	.84 923 .84 936 .84 949	13	1.99 949 1.99 975 10.0000	26 25	0.00 051 0.00 025 0.00 000	.84 974 .84 961 .84 949		7	Duon	Dta
	Cos		L Ctn		L Tan	L Sin d	!		Prop.	L f2.

45° — Logarithms of Trigonometric Functions

			Degrees			ī -	Minutes		Seconds
	0.00000 00	60°	1.04719 76	1900	2.00420.51	_			
1 2 3 4	0.01745 33 0.03490 66 0.05235 99 0.06981 32	61 62 63 64	1.06465 08 1.08210 41 1.09955 74 1.11701 07	$121 \\ 122 \\ 123 \\ 124$	2.11184 84 2.12930 17 2.14675 50 2.16420 83	0 1 2 3 4	0.00000 00 0.00029 09 0.00058 18 0.00087 27 0.00116 36	1 2 3	0.00000 00 0.00000 48 0.00000 97 0.00001 45 0.00001 94
5 67 8 9	0.08726 65 0.10471 98 0.12217 30 0.13962 63 0.15707 96	65 66 67 68 69	1.15191 73	125 126 127 128 129	2.18166 16 2.19911 49 2.21656 82 2.23402 14 2.25147 47	5 6 7 8 9	0.00145 44 0.00174 53 0.00203 62 0.00232 71 0.00261 80	5 6 7 8 9	0.00002 42 0.00002 91 0.00003 39 0.00003 88 0.00004 36
10 11 12 13 14	0.17453 29 0.19198 62 0.20943 95 0.22689 28 0.24434 61	70 71 72 73 74	1.25663 71 1.27409 04	130 131 132 133 134	2.26892 80 2.28638 13 2.30383 46 2.32128 79 2.33874 12	10 11 12 13 14	0.00290 89 0.00319 98 0.00349 07 0.00378 15 0.00407 24	10 11 12 13 14	0.00004 85 0.00005 33 0.00005 82 0.00006 30 0.00006 79
15 16 17 18 19	0.26179 94 0.27925 27 0.29670 60 0.31415 93 0.33161 26	75 76 77 78 79	1.32645 02 1.34390 35 1.36135 68	135 136 137 138 139	2.35619 45 2.37364 78 2.39110 11 2.40855 44 2.42600 77	15 16 17 18 19	0.00436 33 0.00465 42 0.00494 51 0.00523 60 0.00552 69	15 16 17 18 19	0.00007 27 0.00007 76 0.00008 24 0.00008 73 0.00009 21
20 21 22 23 24	0.34906 59 0.36651 91 0.38397 24 0.40142 57 0.41887 90	80 81 82 83 84	1.39626 34 1.41371 67 1.43117 00 1.44862 33 1.46607 66	140 141 142 143 144	2.44346 10 2.46091 42 2.47836 75 2.49582 08 2.51327 41	20 21 22 23 24	0.00581 78 0.00610 87 0.00639 95 0.00669 04 0.00698 13	20 21 22 23 24	0.00009 70 0.00010 18 0.00010 67 0.00011 15 0.00011 64
25 26 27 28 29	0.43633 23 0.45378 56 0.47123 89 0.48869 22 0.50614 55	85 86 87 88 89	1.48352 99 1.50098 32 1.51843 64 1.53588 97 1.55334 30	145 146 147 148 149	2.53072 74 2.54818 07 2.56563 40 2.58308 73 2.60054 06	25 26 27 28 29	0.00727 22 0.00756 31 0.00785 40 0.00814 49 0.00843 58	25 26 27 28 29	0.00012 12 0.00012 61 0.00013 09 0.00013 57 0.00014 06
30 31 32 33 34	0.52359 88 0.54105 21 0.55850 54 0.57595 87 0.59341 19	90 91 92 93 94	1.57079 63 1.58824 96 1.60570 29 1.62315 62 1.64060 95	150 151 152 153 154	2.61799 39 2.63544 72 2.65290 05 2.67035 38 2.68780 70	30 31 32 33 34	0.00872 66 0.00901 75 0.00930 84 0.00959 93 0.00989 02	30 31 32 33 34	0.00014 54 0.00015 03 0.00015 51 0.00016 00 0.00016 48
35 36 37 38 39	0.61086 52 0.62831 85 0.64577 18 0.66322 51 0.68067 84	95 96 97 98 99	1.65806 28 1.67551 61 1.69296 94 1.71042 27 1.72787 60	155 156 157 158 159	2.70526 03 2.72271 36 2.74016 69 2.75762 02 2.77507 35	35 36 37 38 39	0.01018 11 0.01047 20 0.01076 29 0.01105 38 0.01134 46	35 36 37 38 39	0.00016 97 0.00017 45 0.00017 94 0.00018 42 0.00018 91
40 41 42 43 44	0.69813 17 0.71558 50 0.73303 83 0.75049 16 0.76794 49	100 101 102 103 104	1.74532 93 1.76278 25 1.78023 58 1.79768 91 1.81514 24	160 161 162 163 164	2.79252 68 2.80998 01 2.82743 34 2.84488 67 2.86234 00	41	0.01163 55 0.01192 64 0.01221 73 0.01250 82 0.01279 91	40 41 42 43 44	0.00019 39 0.00019 88 0.00020 36 0.00020 85 0.00021 33
45 46 47 48 49	0.78539 82 0.80285 15 0.82030 47 0.83775 80 0.85521 13	105 106 107 108 109	1.83259 57 1.85004 90 1.86750 23 1.88495 56 1.90240 89	165 166 167 168 169	2.87979 33 2.89724 66 2.91469 99 2.93215 31 2.94960 64	46 47 48		45 46 47 48 49	0.00021 82 0.00022 30 0.00022 79 0.00023 27 0.00023 76
50 51 52 53 54	0.89011 79 0.90757 12 0.92502 45	110 111 112 113 114	1.91986 22 1.93731 55 1.95476 88 1.97222 21 1.98967 53	170 171 172 173 174	2.96705 97 2.98451 30 3.00196 63 3.01941 96 3.03687 29	51 52 53	0.01483 53 0.01512 62 0.01541 71	50 51 52 53 54	0.00024 24 0.00024 73 0.00025 21 0.00025 70 0.00026 18
55 56 57 58 59	$\begin{array}{c c} 0.97738 \ 44 \\ 0.99483 \ 77 \\ 1.01229 \ 10 \end{array}$	117 118	2.00712 86 2.02458 19 2.04203 52 2.05948 85 2.07694 18	178	3.05432 62 3.07177 95 3.08923 28 3.10668 61 3.12413 94	56 57 58	0.01628 97 0.01658 06 0.01687 15	56 57 58 59	0.00026 66 0.00027 15 0.00027 63 0.00028 12 0.00028 60
60	1.04719 76	120	2.09439 51	180	3.14159 27	60	0.01745 33	60	0.00029 09

12

x Radians	Sin x	Cos x	Tan x	Equivalent of x	x Radians	Sin x	Cos x	Tan x	Equivalent of x
1.00	.84147	.54030	1.5574	57° 17′.7	1.30	.96356	.26750	3.6021	74° 29′.1
1.01 1.02 1.03	.84683 .85211 .85730	.53186 .52337 .51482	$\begin{array}{c} 1.5922 \\ 1.6281 \\ 1.6652 \end{array}$	57° 52′.1 58° 26′.5 59° 00′.9	1.31 1.32 1.33	.96618 .96872 .97115	.25785 .24818 .23848	3.7471 3.9033 4.0723	75° 03′.4 75° 37′.8 76° 12′.2
1.04 1.05 1.06	.86240 .86742 .87236	.50622 .49757 .48887	1.7036 1.7433 1.7844	59° 35′.3 60° 09′.6 60° 44′.0	1.34 1.35 1.36	.97348 .97572 .97786	.22875 .21901 .20924	4.2556 4.4552 4.6734	76° 46′.6 77° 21′.0 77° 55′.3
1.07 1.08 1.09	.87720 .88196 .88663	.48012 .47133 .46249	$\begin{array}{c} 1.8270 \\ 1.8712 \\ 1.9171 \end{array}$	61° 18′.4 61° 52′.8 62° 27′.1	1.37 1.38 1.39	.97991 .98185 .98370	.19945 .18964 .17981	4.9131 5.1774 5.4707	78° 29′.7 79° 04′.1 79° 38′.5
1.10	.89121	.45360	1.9648	63° 01′.5	1.40	.98545	.16997	5.7979	80° 12′.8
1.11 1.12 1.13	.89570 .90010 .90441	.44466 .43568 .42666	2.0143 2.0660 2.1198	63° 35′.9 64° 10′.3 64° 44′.7	$1.41 \\ 1.42 \\ 1.43$.98710 .98865 .99010	.16010 .15023 .14033	6.1654 6.5811 7.0555	80° 47′.2 81° 21′.6 81° 56′.0
1.14 1.15 1.16	.90863 .91276 .91680	.41759 .40849 .39934	2.1759 2.2345 2.2958	65° 19′.0 65° 53′.4 66° 27′.8	1.44 1.45 1.46	.99146 .99271 .99387	.13042 .12050 .11057	7.6018 8.2381 8.9886	82° 30′.4 83° 04′.7 83° 39′.1
1.17 1.18 1.19	.92075 .92461 .92837	.39015 .38092 .37166	$2.3600 \\ 2.4273 \\ 2.4979$	67° 02′.2 67° 36′.5 68° 10′.9	1.47 1.48 1.49		.10063 .09067 .08071	9.8874 10.983 12.350	84° 13′.5 84° 47′.9 85° 22″.2
1.20	.93204	.36236	2.5722	68° 45′.3	1.50	.99749	.07074	14.101	85° 56′.6
1.21 1.22 1.23	.93562 .93910 .94249	.35302 .34365 .33424	2.6503 2.7328 2.8198	69° 19′.7 69° 54′.1 70° 28′.4	1.51 1.52 1.53	.99871	.06076 .05077 .04079	16.428 19.670 24.498	87° 05′.4
1.24 1.25 1.26	.94578 .94898 .95209	.32480 .31532 .30582	2.9119 3.0096 3.1133	71° 02′.8 71° 37′.2 72° 11′.6	1.54 1.55 1.56	.99978	.02079		88° 48'.5
1.27	.95510			72° 45′.9	*1.57	*1.0000	*.00080	*1255.8	
1.28 1.29	.95802 .96084			73° 20′.3 73° 54′.7	1.58 1.59		01920	-52.067	91° 06′.0
1.30	.96356	.26750	3.6021	74° 29′.1	1.60	.99957	02920	-34.233	91° 40′.4

 π radians = 180° 1 radian = 57° 17′ 44″.806 = 57.°2957795 π = 3.14159265 3600″ = 60′ = 1° = 0.01745329 radian

Table Va — Radians to Degrees

	Radians	Tentes	Hundredths	Thousandths	Ten-thousandtes
123456789	57°17'44".8 114°35'29".6 171°53'14".4 229°10'55".2 286°28'44".0 343°46'28".8 401° 4'13".6 458°21'58".4 515°39'43".3	5°43'46".5 11°27'33".0 17°11'19".4 22°55'05".9 28°38'52".4 34°22'38".9 40° 6'25".4 45°50'11".8 51°33'58".3	0°34'22".6 1° 8'45".3 1°43'07".9 2°17'30".6 2°51'53".2 3°26'15".9 4° 0'38".5 4°35'01".2 5° 9'23".8	0° 3′26″.3 0° 6′52″.5 0°10′18″.8 0°13′45″.1 0°17′11″.3 0°20′37″.6 0°24′03″.9 0°27′30″.1 0°30′56″.4	0° 0′20″.6 0° 0′41″.3 0° 1′01″.9 0° 1′22″.5 0° 1′43″.1 0° 2′03″.8 0° 2′24″.4 0° 2′45″.0

^{*1} right angle = $90^{\circ} = \pi/2$ radians = 1.5707963 radians

				. 3	$\sqrt[3]{n}$			~ ,
\boldsymbol{n}	n^2	\sqrt{n}		n^3		0.15110		$\frac{1/n}{}$
1.00	1.0000	1.00000	3.16228	1.00000	1.00000	2.15443	4 07701	1.00000
$\substack{1.01\\1.02}$	1.0201 1.0404	1.00499 1.00995	$3.17805 \\ 3.19374$	1.03030 1.06121	1.00662	$2.16159 \\ 2.16870$	$\frac{4.65701}{4.67233}$.990099 .980392
1.03	1.0609	1.01489	3.20936	1.09273	1.00990	2.17577	4.68755	.970874
$\frac{1.04}{1.05}$	1.0816 1.1025	1.01980 1.02470	$3.22490 \\ 3.24037$	1.12486 1.15762	1.01316 1.01640	2.18279 2.18976	4.70267 4.71769	.961538 .952381
1.06	1.1236	1.02956	3.25576	1.19102	1.01961	2.19669	4.73262	.943396
1.07	1.1449	1.03441	$3.27109 \\ 3.28634$	1.22504 1.25971	1.02281 1.02599	2.20358 2.21042	4.74746 4.76220	.934579
$\frac{1.08}{1.09}$	1.1664 1.1881	1.03923 1.04403	3.30151	1.29503	1.02914	2.21722	4.77686	.925926 $.917431$
1.10	1.2100	1.04881	3.31662	1.33100	1.03228	2.22398	4.79142	.909091
1.11	1.2321	1.05357	3.33167	1.36763	1.03540	2.23070	4.80590	.900901
1.12 1.13	$1.2544 \\ 1.2769$	$1.05830 \\ 1.06301$	3.34664 3.36155	1.40493 1.44290	1.03850 1.04158	2.23738 2.24402	4.82028 4.83459	.892857 .884956
1.14	1.2996	1.06771	3.37639	1.48154	1.04464	2.25062	4.84881	.877193
$1.15 \\ 1.16$	$1.3225 \\ 1.3456$	1.07238 1.07703	3.39116 3.40588	1.52088 1.56090	1.04769 1.05072	2.25718 2.26370	4.86294 4.87700	.869565 .862069
1.17	1.3689	1.08167	3.42053	1.60161	1.05373	2.27019	4.89097	.854701
1.18 1.19	1.3924 1.4161	1.08628 1.09087	3.43511 3.44964	1.64303 1.68516	1.05672 1.05970	2.27664 2.28305	4.90487 4.91868	.847458 .840336
1.19	1.4400	1.09545	3.46410	1.72800	1.06266	2.28943	4.93242	.833333
1.21	1.4641	1.10000	3.47851	1.77156	1.06560	2.29577	4.94609	.826446
1.22	1.4884	1.10454	$3.49285 \\ 3.50714$	1.81585 1.86087	1.06853 1.07144	2.30208 2.30835	4.95968 4.97319	.819672
1.23 1.24	1.5129 1.5376	1.10905 1.11355	3.52136	1.90662	1.07144	2.31459	4.98663	.813008 .806452
1.25	1.5625	1.11803	3.53553	1.95312	1.07722	2.32079	5.00000	.800000
1.26	1.5876	1.12250	3.54965	2.00038 2.04838	1.08008 1.08293	2.32697 2.33311	5.01330 5.02653	.793651
$\frac{1.27}{1.28}$	1.6129 1.6384	1.12694 1.13137	$3.56371 \\ 3.57771$	2.09715	1.08577	2.33921	5.03968	.787402 .781250
1.29	1.6641	1.13578	3.59166	2.14669	1.08859	2.34529	5.05277	.775194
1.30	1.6900	1.14018	3.60555	2.19700	1.09139	2.35133	5.06580	.769231
$\frac{1.31}{1.32}$	1.7161 1.7424	1.14455 1.14891	3.61939 3.63318	2.24809 2.29997	1.09418 1.09696	2.35735 2.36333	5.07875 5.09164	.763359 .757576
1.33	1.7689	1.15326	3.64692	2.35264	1.09972	2.36928	5.10447	. 751880
$\frac{1.34}{1.35}$	1.7956 1.8225	1.15758 1.16190	$3.66060 \\ 3.67423$	2.40610 2.46038	1.10247 1.10521	2.37521 2.38110	5.11723 5.12993	.746269 .740741
1.36	1.8496	1.16619	3.68782	2.51546	1.10793	2.38697	5.14256	.735294
1.37	1.8769 1.9044	1.17047 1.17473	3.70135 3.71484	2.57135 2.62807	1.11064 1.11334	2.39280 2.39861	5.15514 5.16765	.729927 .724638
1.38 1.39	1.9321	1.17898	3.71404 3.72827	2.68562	1.11602	2.40439	5.18010	.719424
1.40	1.9600	1.18322	3.74166	2.74400	1.11869	2.41014	5.19249	.714286
1.41	1.9881	1.18743	3.75500	2.80322 2.86329	1.12135 1.12399	2.41587 2.42156	5.20483 5.21710	.709220 .704225
$\frac{1.42}{1.43}$	$2.0164 \\ 2.0449$	1.19164 1.19583	3.76829 3.78153	2.80329 2.92421	1.12399	2.42136 2.42724	5.21710 5.22932	.699301
1.44	2.0736	1.20000	3.79473	2.98598	1.12924	2.43288	5.24148	.694444
$1.45 \\ 1.46$	2.1025 2.1316	1.20416 1.20830	3.80789 3.82099	3.04862 3.11214	1.13185 1.13445	2.43850 2.44409	5.25359 5.26564	.689655 .684932
1.47	2.1609	1.21244	3.83406	3.17652	1.13703	2.44966	5.27763	.680272
1.48 1.49	2.1904 2.2201	1.21655 1.22066	3.84708 3.86005	3.24179 3.30795	1.13960 1.14216	2.45520 2.46072	5.28957 5.30146	.675676 .671141
1.50	2.2500	1.22474	3.87298	3.37500	1.14471	$\frac{2.46621}{2.46621}$	5.31329	.666667
					$\frac{3\sqrt{n}}{\sqrt[3]{n}}$			
\boldsymbol{n}	$m{n}^2$	\sqrt{n}		$m{n}^{3}$	$\mathbf{v}n$			1/n

n	n^2	\sqrt{n}	$\sqrt{10 n}$	n^3	$\sqrt[3]{n}$	$\sqrt[3]{10 n}$	$\sqrt[3]{100 n}$	1/n
1.50	2.2500	1.22474	3.87298	3.37500	1.14471	2.46621	5.31329	.666667
1.51	2.2801	1.22882	3.88587	3.44295	1.14725	$\begin{array}{c} 2.47168 \\ 2.47712 \\ 2.48255 \end{array}$	5.32507	.662252
1.52	2.3104	1.23288	3.89872	3.51181	1.14978		5.33680	.657895
1.53	2.3409	1.23693	3.91152	3.58158	1.15230		5.34848	.653595
1.54	$\begin{array}{c} 2.3716 \\ 2.4025 \\ 2.4336 \end{array}$	1.24097	3.92428	3.65226	1.15480	2.48794	5.36011	.649351
1.55		1.24499	3.93700	3.72388	1.15729	2.49332	5.37169	.645161
1.56		1.24900	3.94968	3.79642	1.15978	2.49867	5.38321	.641026
1.57	2.4649	1.25300	3.96232	3.86989	1.16225	2.50399	5.39469	.636943
1.58	2.4964	1.25698	3.97492	3.94431	1.16471	2.50930	5.40612	.632911
1.59	2.5281	1.26095	3.98748	4.01968	1.16717	2.51458	5.41750	.628931
1.60	2.5600	1.26491	4.00000	4.09600	1.16961	2.51984	5.42884	.625000
1.61	2.5921	$\begin{array}{c} 1.26886 \\ 1.27279 \\ 1.27671 \end{array}$	4.01248	4.17328	1.17204	2.52508	5.44012	.621118
1.62	2.6244		4.02492	4.25153	1.17446	2.53030	5.45136	.617284
1.63	2.6569		4.03733	4.33075	1.17687	2.53549	5.46256	.613497
1.64	2.6896	$\begin{array}{c} 1.28062 \\ 1.28452 \\ 1.28841 \end{array}$	4.04969	4.41094	1.17927	2.54067	5.47370	.609756
1.65	2.7225		4.06202	4.49212	1.18167	2.54582	5.48481	.606061
1.66	2.7556		4.07431	4.57430	1.18405	2.55095	5.49586	.602410
1.67	2.7889	1.29228	4.08656	4.65746	1.18642	2.55607	5.50688	.598802
1.68	2.8224	1.29615	4.09878	4.74163	1.18878	2.56116	5.51785	.595238
1.69	2.8561	1.30000	4.11096	4.82681	1.19114	2.56623	5.52877	.591716
1.70	2.8900	1.30384	4.12311	4.91300	1.19348	2.57128	5.53966	.588235
1.71	2.9241	1.30767	4.13521	5.00021	1.19582	2.57631	5.55050	.584795
1.72	2.9584	1.31149	4.14729	5.08845	1.19815	2.58133	5.56130	.581395
1.73	2.9929	1.31529	4.15933	5.17772	1.20046	2.58632	5.57205	.578035
1.74	3.0276	1.31909	4.17133	5.26802	1.20277	2.59129	5.58277	.574713
1.75	3.0625	1.32288	4.18330	5.35938	1.20507	2.59625	5.59344	.571429
1.76	3.0976	1.32665	4.19524	5.45178	1.20736	2.60118	5.60408	.568182
1.77	3.1329	1.33041	4.20714	5.54523	1.20964	2.60610 2.61100 2.61588	5.61467	.564972
1.78	3.1684	1.33417	4.21900	5.63975	1.21192		5.62523	.561798
1.79	3.2041	1.33791	4.23084	5.73534	1.21418		5.63574	.558659
1.80	3.2400	1.34164	4.24264	5.83200	1.21644	2.62074	5.64622	.555556
1.81	3.2761	1.34536	4.25441	5.92974	1.21869	2.62559	5.65665	.552486
1.82	3.3124	1.34907	4.26615	6.02857	1.22093	2.63041	5.66705	.549451
1.83	3.3489	1.35277	4.27785	6.12849	1.22316	2.63522	5.67741	.546448
1.84	3.3856	1.35647	4.28952	6.22950	1.22539	$2.64001 \\ 2.64479 \\ 2.64954$	5.68773	.543478
1.85	3.4225	1.36015	4.30116	6.33162	1.22760		5.69802	.540541
1.86	3.4596	1.36382	4.31277	6.43486	1.22981		5.70827	.537634
1.87	3.4969	1.36748	4.32435	6.53920	1.23201	$\begin{array}{c} 2.65428 \\ 2.65901 \\ 2.66371 \end{array}$	5.71848	.534759
1.88	3.5344	1.37113	4.33590	6.64467	1.23420		5.72865	.531915
1.89	3.5721	1.37477	4.34741	6.75127	1.23639		5.73879	.529101
1.90	3.6100	1.37840	4.35890	6.85900	1.23856	2.66840	5.74890	.526316
1.91	3.6481	1.38203	4.37035	6.96787	1.24073	2.67307	5.75897	.523560
1.92	3.6864	1.38564	4.38178	7.07789	1.24289	2.67773	5.76900	.520833
1.93	3.7249	1.38924	4.39318	7.18906	1.24505	2.68237	5.77900	.518135
1.94	3.7636	1.39284	4.40454	7.30138	1.24719	2.68700	5.79889	.515464
1.95	3.8025	1.39642	4.41588	7.41488	1.24933	2.69161		.512821
1.96	3.8416	1.40000	4.42719	7.52954	1.25146	2.69620		.510204
1.97	3.8809	1.40357	4.43847	7.64537	1.25359	2.70078	5.82848	.507614
1.98	3.9204	1.40712	4.44972	7.76239	1.25571	2.70534		.505051
1.99	3.9601	1.41067	4.46094	7.88060	1.25782	2.70989		.502513
2.00	4.0000	1.41421	4.47214	8.00000	1.25992	2.71442	5.84804	.500000
n	n^2	\sqrt{n}	$\sqrt{10 n}$	n^3	$\sqrt[3]{n}$	$\sqrt[3]{10 \ n}$	³ √100 r	1/n

n	n^2	\sqrt{n}	$\sqrt{10 n}$	n^3	$\sqrt[3]{n}$	$\sqrt[3]{10 n}$	$\sqrt[3]{100 n}$	1/n
2.00	4.0000	1.41421	4.47214	8.00000	1.25992	2.71442	5.84804	.500000
2.01	4.0401	1.41774	4.48330	8.12060	1.26202	2.71893	5.85777	.497512
$\frac{2.02}{2.03}$	4.0804 4.1209	1.42127 1.42478	4.49444 4.50555	8.24241 8.36543	1.26411	2.72344 2.72792	5.86746	.495050 .492611
2.04	4.1616	1.42829	4.51664	8.48966	1.26827	2.73239	5.88677	.490196
2.05	4.2025	1.43178	4.52769	8.61512	1.27033 1.27240	2.73685 2.74129	5.89637	.487805
2.06	4.2436	1.43527	4. 53872 4. 54973	8.74182 8.86974	1.27240	2.74129	5.90594 5.91548	.485437
$\frac{2.07}{2.08}$	4.2849 4.3264	1.43875 1.44222	4.56070	8.99891	1.27650	2.75014	5.92499	.483092 .480769
2.09	4.3681	1.44568	4.57165	9.12933	1.27854	2.75454	5.93447	.478469
2.10	4.4100	1.44914	4.58258	9.26100	1.28058	2.75892	5.94392	.476190
$\frac{2.11}{2.12}$	4.4521 4.4944	1.45258 1.45602	4.59347 4.60435	9.39393 9.52813	1.28261 1.28463	2.76330 2.76766	5.95334 5.96273	.473934 .471698
$\frac{2.12}{2.13}$	4.5369	1.45945	4.61519	9.66360	1.28665	2.77200	5.97209	.469434
2.14	4.5796	1.46287	4.62601	9.80034	1.28866	2.77633	5.98142	.467290
$2.15 \\ 2.16$	4.6225 4.6656	1.46629 1.46969	4.63681 4.64758	9.93838	1.29066 1.29266	2.78065 2.78495	5.99073 6.00000	.465116 .462963
2.17	4.7089	1.47309	4.65833	10.2183	1.29465	2.78924	6.00925	.460829
2.18	4.7524	1.47648	4.66905	10.3602	1.29664	2.79352	6.01846	.458716
2.19	4.7961	1.47986	4.67974	10.5035	1.29862	2.79779	6.02765	.456621
2.20	4.8400	1.48324	4.69042	10.6480	1.30059	2.80204	6.03681	.454545
$\frac{2.21}{2.22}$	4.8841 4.9284	1.48661 1.48997	4.70106 4.71169	10.7939	1.30256 1.30452	2.80628 2.81050	6.04594 6.05505	.452489 .450450
2.23	4.9729	1.49332	4.72229	11.0896	1.30648	2.81472	6.06413	.448430
2.24	5.0176	1.49666	4.73286	11.2394	1.30843	2.81892	6.07318	.446429
$2.25 \\ 2.26$	5.0625 5.1076	1.50000 1.50333	4.74342 4.75395	11.3906 11.5432	1.31037 1.31231	2.82311 2.82728	6.08220 6.09120	.444444 .442478
2.27	5.1529	1.50665	4.76445	11.6971	1.31424	2.83145	6.10017	.440529
$\frac{2.28}{2.29}$	5.1984 5.2441	1.50997 1.51327	4.77493 4.78539	11.8524 12.0090	1.31617 1.31809	2.83560 2.83974	6.10911 6.11803	.438596 .436681
2.30	5.2900	1.51658	4.79583	12.1670	1.32001	2.84387	6.12693	.434783
2.31	5.3361	1.51987	4.80625	12.3264	1.32192	2.84798	6.13579	.432900
2.32	5.3824	1.52315	4.81664	12.4872	1.32382	2.85209	6.14463	.431034
2.33	5.4289	1.52643	4.82701	12.6493	1.32572	2.85618	6.15345	.429185
$2.34 \\ 2.35$	$5.4756 \\ 5.5225$	$1.52971 \\ 1.53297$	4.83735 4.84768	12.8129 12.9779	1.32761	2.86026 2.86433	$6.16224 \\ 6.17101$.427350 .425532
2.36	5.5696	1.53623	4.85798	13.1443	1.33139	2.86838	6.17975	.423729
2.37	5.6169	1.53948	4.86826	13.3121	1.33326	2.87243	6.18846	.421941
$\frac{2.38}{2.39}$	$5.6644 \\ 5.7121$	1.54272 1.54596	4.87852 4.88876	13.4813 13.6519	1.33514 1.33700	2.87646 2.88049	6.19715 6.20582	.420168 .418410
2.40	5.7600	1.54919	4.89898	13.8240	1.33887	2.88450	6.21447	.416667
2.41	5.8081	1.55242	4.90918	13.9975	1.34072	2.88850	6.22308	.414938
$\frac{2.42}{2.43}$	5.8564 5.9049	1.55563 1.55885	4.91935 4.92950	14.1725	1.34257 1.34442	2.89249 2.89647	6.23168 6.24025	.413223
2.43	5.9536	1.56205	4.93964	14.3489 14.5268	1.34442	2.89647	6.24880	.411523
2.45	6.0025	1.56525	4.94975	14.7061	1.34810	2.90439	6.25732	.409836 .408163
2.46	6.0516	1.56844	4.95984	14.8869	1.34993	2.90834	6.26583	.406504
$\frac{2.47}{2.48}$	6.1009 6.1504	1.57162 1.57480	4.96991 4.97996	15.0692 15.2530	1.35176 1.35358	2.91227 2.91620	6.27431 6.28276	.404858 .403226
2.49	6.2001	1.57797	4.98999	15.4382	1.35540	2.92011	6.29119	.401606
2.50	6.2500	1.58114	5.00000	15.6250	1.35721	2.92402	6.29961	.400000
n	n^2	\sqrt{n}	$\sqrt{10 n}$	n^3	$\sqrt[3]{n}$	$\sqrt[3]{10 n}$	$\sqrt[3]{100 n}$	1/n

		-				TOURS		31
n	n^2	\sqrt{n}	$\sqrt{10 n}$	n^3	$\sqrt[3]{n}$	$\sqrt[3]{10 n}$	$\sqrt[3]{100 n}$	1/n
2.50	6.2500	1.58114	5.00000	15.6250	1.35721	2.92402	6.29961	.400000
2.51	6.3001	1.58430	5.00999	15.8133	1.35902	2.92791	6.30799	.398406
2.52	6.3504	1.58745	5.01996	16.0030	1.36082	2.93179	6.31636	.396825
2.53	6.4009	1.59060	5.02991	16.1943	1.36262	2.93567	6.32470	.395257
2.54	6.4516	1.59374	5.03984	$\begin{array}{c} 16.3871 \\ 16.5814 \\ 16.7772 \end{array}$	1.36441	2.93953	6.33303	.393701
2.55	6.5025	1.59687	5.04975		1.36620	2.94338	6.34133	.392157
2.56	6.5536	1.60000	5.05964		1.36798	2.94723	6.34960	.390625
2.57	6.6049	1.60312	5.06952	16.9746	1.36976	2.95106	6.35786	.389105
2.58	6.6564	1.60624	5.07937	17.1735	1.37153	2.95488	6.36610	.387597
2.59	6.7081	1.60935	5.08920	17.3740	1.37330	2.95869	6.37431	.386100
2.60	6.7600	1.61245	5.09902	17.5760	1.37507	2.96250	6.38250	.384615
2.61	6.8121	1.61555	5.10882	17.7796	1.37683	2.96629	6.39068	.383142
2.62	6.8644	1.61864	5.11859	17.9847	1.37859	2.97007	6.39883	.381679
2.63	6.9169	1.62173	5.12835	18.1914	1.38034	2.97385	6.40696	.380228
2.64	6.9696	1.62481	5.13809	18.3997	1.38208	2.97761	6.41507	.378788
2.65	7.0225	1.62788	5.14782	18.6096	1.38383	2.98137	6.42316	.377358
2.66	7.0756	1.63095	5.15752	18.8211	1.38557	2.98511	6.43123	.375940
2.67 2.68 2.69	7.1289	1.63401	5.16720	19.0342	1.38730	2.98885	6.43928	.374532
	7.1824	1.63707	5.17687	19.2488	1.38903	2.99257	6.44731	.373134
	7.2361	1.64012	5.18652	19.4651	1.39076	2.99629	6.45531	.371747
2.70	7.2900	1.64317	5.19615	19.6830	1.39248	3.00000	6.46330	.370370
2.71 2.72 2.73	7.3441	1.64621	5.20577	19.9025	1.39419	3.00370	6.47127	.369004
	7.3984	1.64924	5.21536	20.1236	1.39591	3.00739	6.47922	.367647
	7.4529	1.65227	5.22494	20.3464	1.39761	3.01107	6.48715	.366300
2.74 2.75 2.76	7.5076	1.65529	5.23450	20.5708	1.39932	3.01474	6.49507	.364964
	7.5625	1.65831	5.24404	20.7969	1.40102	3.01841	6.50296	.363636
	7.6176	1.66132	5.25357	21.0246	1.40272	3.02206	6.51083	.362319
2.77 2.78 2.79	7.6729	1.66433	5.26308	21.2539	1.40441	3.02570	6.51868	.361011
	7.7284	1.66733	5.27257	21.4850	1.40610	3.02934	6.52652	.359712
	7.7841	1.67033	5.28205	21.7176	1.40778	3.03297	6.53434	.358423
2.80	7.8400	1.67332	5.29150	21.9520	1.40946	3.03659	6.54213	.357143
2.81	7.8961	1.67631	5.30094	22.1880	1.41114	3.04020	6.54991	.355872
2.82	7.9524	1.67929	5.31037	22.4258	1.41281	3.04380	6.55767	.354610
2.83	8.0089	1.68226	5.31977	22.6652	1.41448	3.04740	6.56541	.353357
2.84	8.0656	1.68523	5.32917	22.9063	1.41614	3.05098	6.57314	.352113
2.85	8.1225	1.68819	5.33854	23.1491	1.41780	3.05456	6.58084	.350877
2.86	8.1796	1.69115	5.34790	23.3937	1.41946	3.05813	6.58853	.349650
2.87	8.2369	1.69411	5.35724	23.6399	1.42111	3.06169	6.59620	.348432
2.88	8.2944	1.69706	5.36656	23.8879	1.42276	3.06524	6.60385	.347222
2.89	8.3521	1.70000	5.37587	24.1376	1.42440	3.06878	6.61149	.346021
2.90	8.4100	1.70294	5.38516	24.3890	1.42604	3.07232	6.61911	.344828
2.91	8.4681	1.70587	5.39444	24.6422	1.42768	3.07584	6.62671	.343643
2.92	8.5264	1.70880	5.40370	24.8971	1.42931	3.07936	6.63429	.342466
2.93	8.5849	1.71172	5.41295	25.1538	1.43094	3.08287	6.64185	.341297
2.94	8.6436	1.71464	5.42218	25.4122	1.43257	3.08638	6.64940	.340136
2.95	8.7025	1.71756	5.43139	25.6724	1.43419	3.08987	6.65693	.338983
2.96	8.7616	1.72047	5.44059	25.9343	1.43581	3.09336	6.66444	.337838
2.97	8.8209	1.72337	5.44977	26.1981	1.43743	3.09684	6.67194	.336700
2.98	8.8804	1.72627	5.45894	26.4636	1.43904	3.10031	6.67942	.335570
2.99	8.9401	1.72916	5.46809	26.7309	1.44065	3.10378	6.68688	.334448
3.00	9.0000	1.73205	5.47723	27.0000	1.44225	3.10723	6.69433	.333333
n	n^2	\sqrt{n}	$\sqrt{10 n}$	n^3	$\sqrt[3]{n}$	$\sqrt[3]{10 n}$	$\sqrt[3]{100} n$	1/n

n	n^2	\sqrt{n}	$\sqrt{10 n}$	n^3	$\sqrt[3]{n}$	$\sqrt[3]{10 n}$	$\sqrt[3]{100 n}$	1/n
3.00	9.0000	1.73205	5.47723	27.0000	1.44225	3.10723	6.69433	.333333
3.01	9.0601	1.73494	5.48635	27.2709	1.44385	3.11068	6.70176	.332226
3.02	9.1204	1.73781	5.49545	27.5436	1.44545	3.11412	6.70917	.331126
3.03	9.1809	1.74069	5.50454	27.8181	1.44704	3.11756	6.71657	.330033
3.04	9.2416	1.74356	5.51362	28.0945	1.44863	3.12098	6.72395	.328947
3.05	9.3025	1.74642	5.52268	28.3726	1.45022	3.12440	6.73132	.327869
3.06	9.3636	1.74929	5.53173	28.6526	1.45180	3.12781	6.73866	.326797
3.07	9.4249	1.75214	5.54076	28.9344	1.45338	3.13121	6.74600	.325733
3.08	9.4864	1.75499	5.54977	29.2181	1.45496	3.13461	6.75331	.324675
3.09	9.5481	1.75784	5.55878	29.5036	1.45653	3.13800	6.76061	.323625
3.10	9.6100	1.76068	5.56776	29.7910	1.45810	3.14138	6.76790	.322581
3.11 3.12 3.13	9.6721 9.7344 9.7969	1.76352 1.76635 1.76918	5.57674 5.58570 5.59464	30.0802 30.3713 30.6643	$\begin{array}{c} 1.45967 \\ 1.46123 \\ 1.46279 \end{array}$	3.14475 3.14812 3.15148	$\begin{array}{c} 6.77517 \\ 6.78242 \\ 6.78966 \end{array}$.321543 .320513 .319489
3.14	9.8596	1.77200	5.60357	30.9591	1.46434	3.15483	6.79688	.318471
3.15	9.9225	1.77482	5.61249	31.2559	1.46590	3.15818	6.80409	.317460
3.16	9.9856	1.77764	5.62139	31.5545	1.46745	3.16152	6.81128	.316456
3.17	10.0489	1.78045	5.63028	31.8550	1.46899	3.16485	6.81846	.315457
3.18	10.1124	1.78326	5.63915	32.1574	1.47054	3.16817	6.82562	.314465
3.19	10.1761	1.78606	5.64801	32.4618	1.47208	3.17149	6.83277	.313480
3.20	10.2400	1.78885	5.65685	32.7680	1.47361	3.17480	6.83990	.312500
3.21	10.3041	$\begin{array}{c} 1.79165 \\ 1.79444 \\ 1.79722 \end{array}$	5.66569	33.0762	1.47515	3.17811	6.84702	.311526
3.22	10.3684		5.67450	33.3862	1.47668	3.18140	6.85412	.310559
3.23	10.4329		5.68331	33.6983	1.47820	3.18469	6.86121	.309598
$3.24 \\ 3.25 \\ 3.26$	10.4976	1.80000	5.69210	34.0122	1.47973	3.18798	6.86829	.308642
	10.5625	1.80278	5.70088	34.3281	1.48125	3.19125	6.87534	.307692
	10.6276	1.80555	5.70964	34.6460	1.48277	3.19452	6.88239	.306748
3.27	10.6929	1.80831	5.71839	34.9658	1.48428	3.19778	6.88942	.305810
3.28	10.7584	1.81108	5.72713	35.2876	1.48579	3.20104	6.89643	.304878
3.29	10.8241	1.81384	5.73585	35.6113	1.48730	3.20429	6.90344	.303951
3.30	10.8900	1.81659	5.74456	35.9370	1.48881	3.20753	6.91042	.303030
3.31 3.32 3.33	10.9561 11.0224 11.0889	1.81934 1.82209 1.82483	5.75326 5.76194 5.77062	36.2647 36.5944 36.9260	1.49031 1.49181 1.49330	$3.21077 \\ 3.21400 \\ 3.21722$	$\begin{array}{c} 6.91740 \\ 6.92436 \\ 6.93130 \end{array}$.302115 .301205 .300300
3.34	11.1556	1.82757	5.77927	37.2597	1.49480	3.22044	6.93823	.299401
3.35	11.2225	1.83030	5.78792	37.5954	1.49629	3.22365	6.94515	.298507
3.36	11.2896	1.83303	5.79655	37.9331	1.49777	3.22686	6.95205	.297619
3.37	11.3569	1.83576	5.80517	38.2728	1.49926	3.23006	6.95894	.296736
3.38	11.4244	1.83848	5.81378	38.6145	1.50074	3.23325	6.96582	.295858
3.39	11.4921	1.84120	5.82237	38.9582	1.50222	3.23643	6.97268	.294985
3.40	11.5600	1.84391	5.83095	39.3040	1.50369	3.23961	6.97953	.294118
3.41	11.6281	1.84662	5.83952	39.6518	1.50517	3.24278	6.98637	.293255
3.42	11.6964	1.84932	5.84808	40.0017	1.50664	3.24595	6.99319	.292398
3.43	11.7649	1.85203	5.85662	40.3536	1.50810	3.24911	7.00000	.291545
3.44	11.8336	1.85472	5.86515	40.7076	1.50957	3.25227	7.00680	.290698
3.45	11.9025	1.85742	5.87367	41.0636	1.51103	3.25542	7.01358	.289855
3.46	11.9716	1.86011	5.88218	41.4217	1.51249	3.25856	7.02035	.289017
3.47	12.0409	1.86279	5.89067	41.7819	1.51394	3.26169	7.02711	.288184
3.48	12.1104	1.86548	5.89915	42.1442	1.51540	3.26482	7.03385	.287356
3.49	12.1801	1.86815	5.90762	42.5085	1.51685	3.26795	7.04058	.286533
3.50	12.2500	1.87083	5.91608	42.8750	1.51829	3.27107	7.04730	.285714
n	n^2	\sqrt{n}	$\sqrt{10 n}$	n^3	$\sqrt[3]{n}$	$\sqrt[3]{10 n}$	$\sqrt[3]{100 n}$	1/n

	n^2	\sqrt{n}	$\sqrt{10 n}$	n^3	$\sqrt[3]{n}$	3/7.0	3/7.00	- 1
$\frac{n}{2.50}$						$\sqrt[3]{10 n}$	$\sqrt[3]{100 n}$	1/n
3.50	$\frac{12.2500}{12.3201}$	1.87083	5.91608	42.8750	1.51829	3.27107	7.04730	.285714
$\frac{3.51}{3.52}$	12.3201	1.87617	5.92453 5.93296	43.2436 43.6142	$\begin{array}{c} 1.51974 \\ 1.52118 \end{array}$	$3.27418 \ 3.27729$	7.05400 7.06070	.284900 .284091
3.53	12.4609	1.87883	5.94138	43.9870	1.52262	3.28039	7.06738	.283286
3.54	12.5316 12.6025	1.88149 1.88414	5.94979 5.95819	44.3619 44.7389	1.52406	3.28348	7.07404	.282486
3.55 3.56	12.6736	1.88680	5.96657	45.1180	1.52549 1.52692	3.28657 3.28965	7.08070 7.08734	.281690
3.57	12.7449	1.88944	5.97495	45.4993	1.52835	3.29273	7.09397	.280112
3.58 3.59	$12.8164 \\ 12.8881$	1.89209 1.89473	5.98331 5.99166	45.8827 46.2683	1.52978 1.53120	3.29580 3.29887	7.10059 7.10719	.279330 .278552
3.60	12.9600	1.89737	6.00000	46.6560	1.53262	3.30193	7.11379	.277778
3.61	13.0321	1.90000	6.00833	47.0459	1.53404	3.30498	7.12037	.277008
3.62	13.1044	1.90263	6.01664	47.4379	1.53545	3.30803	7.12694	.276243
3.63	13.1769	1.90526	6.02495	47.8321	1.53686	3.31107	7.13349	.275482
3.64 3.65	$13.2496 \\ 13.3225$	1.90788 1.91050	$6.03324 \\ 6.04152$	48.2285 48.6271	1.53827 1.53968	3.31411 3.31714	7.14004 7.14657	.274725 .273973
3.66	13.3956	1.91311	6.04979	49.0279	1.54109	3.32017	7.15309	.273224
3.67	13.4689 13.5424	1.91572 1.91833	6.05805	49.4309 49.8360	1.54249	3.32319	7.15960	.272480
3.68 3.69	13.6161	1.92094	6.07454	50.2434	1.54389	$\begin{vmatrix} 3.32621 \\ 3.32922 \end{vmatrix}$	7.16610 7.17258	.271739 .271003
3.70	13.6900	1.92354	6.08276	50.6530	1.54668	3.33222	7.17905	.270270
3.71	13.7641	1.92614	6.09098	51.0648	1.54807	3.33522	7.18552	.269542
$\frac{3.72}{3.73}$	13.8384 13.9129	1.92873 1.93132	6.09918 6.10737	51.4788 51.8951	1.54946 1.55085	3.33822 3.34120	7.19197 7.19840	.268817 .268097
3.74	13.9876	1.93391	6.11555	52.3136	1.55223	3.34419	7.20483	.267380
3.75	14.0625 14.1376	1.93649 1.93907	6.12372	52.7344 53.1574	1.55362 1.55500	3.34716 3.35014	7.21125 7.21765	.266667 .265957
3.76 3.77	14.2129	1.94165	6.14003	53.5826	1.55637	3.35310	7.22405	.265252
3.78	14.2129	1.94422	6.14817	54.0102	1.55775	3.35607	7.23043	.264550
3.79	14.3641	1.94679	6.15630	54.4399	1.55912	3.35902	7.23680	.263852
3.80	14.4400	1.94936	6.16441	54.8720	1.56049	3.36198	7.24316	.263158
$\frac{3.81}{3.82}$	14.5161 14.5924	1.95192	6.17252 6.18061	55.3063 55.7430	1.56186 1.56322	3.36492 3.36786	7.24950 7.25584	.262467 .261780
3.83	14.6689	1.95704	6.18870	56.1819	1.56459	3.37080	7.26217	.261097
3.84	14.7456	1.95959	6.19677	56.6231	1.56595	3.37373 3.37666	7.26848 7.27479	.260417 .259740
$\frac{3.85}{3.86}$	14.8225 14.8996	1.96214	$\begin{vmatrix} 6.20484 \\ 6.21289 \end{vmatrix}$	57.0666 57.5125	1.56731 1.56866	3.37958	7.28108	.259067
3.87	14.9769	1.96723	6.22093	57.9606	1.57001	3.38249	7.28736	.258398
3.88 3.89	15.0544 15.1321	1.96977 1.97231	6.22896 6.23699	58.4111 58.8639	1.57137 1.57271	3.38540	7.29363	.257732 .257069
3.90	15.2100	1.97484	6.24500	-59.3190	1.57406	3.39121	7.30614	.256410
3.91	15.2881	1.97737	6.25300	59.7765	1.57541	3.39411	7.31238	.255754
3.92	15.3664	1.97990	6.26099	60.2363	1.57675	3.39700	7.31861 7.32483	.255102 .254453
3.93	15.4449	1.98242	6.26897	60.6985	1.57809	3.39988 3.40277	7.32483	.253807
$\frac{3.94}{3.95}$	15.5236 15.6025	1.98494	6.27694 6.28490	61.1630 61.6299	1.57942 1.58076	3.40564	7.33723	.253165
3.96	15.6816	1.98997	6.29285	62.0991	1.58209	3.40851	7.34342	.252525
3.97	15.7609	1.99249	6.30079 6.30872	62.5708 63.0448	1.58342 1.58475	3.41138 3.41424	7.34960 7.35576	.251889 .251256
$3.98 \\ 3.99$	15.8404 15.9201	1.99499 1.99750	6.31664	63.5212	1.58608		7.36192	.250627
4.00	16.0000	2.00000	6.32456	64.0000	1.58740	3.41995	7.36806	.250000
n	n^2	\sqrt{n}	$\sqrt{10 n}$	n^3	$\sqrt[3]{n}$	$\sqrt[3]{10 n}$	$\sqrt[3]{100} n$	1/n

n	n^2	\sqrt{n}	$\sqrt{10 n}$	n^3	$\sqrt[3]{n}$	$\sqrt[3]{10 n}$	$\sqrt[3]{100 \ n}$	1/n
4.00	16.0000	2.00000	6.32456	64.0000	1.58740	3.41995	7.36806	.250000
4.01	16.0801	2.00250	6.33246	64.4812	1.58872	3.42280	7.37420	.249377
4.02	16.1604	2.00499	6.34035	64.9648	1.59004	3.42564	7.38032	.248756
4.03	16.2409	2.00749	6.34823	65.4508	1.59136	3.42848	7.38644	.248139
4.04	16.3216	2.00998	6.35610	65.9393	1.59267	3.43131	7.39254	.247525
4.05	16.4025	2.01246	6.36396	66.4301	1.59399	3.43414	7.39864	.246914
4.06	16.4836	2.01494	6.37181	66.9234	1.59530	3.43697	7.40472	.246305
4.07	16.5649	2.01742	6.37966	67.4191	1.59661	3.43979	7.41080	.245700
4.08	16.6464	2.01990	6.38749	67.9173	1.59791	3.44260	7.41686	.245098
4.09	16.7281	2.02237	6.39531	68.4179	1.59922	3.44541	7.42291	.244499
4.10	16.8100	2.02485	6.40312	68.9210	1.60052	3.44822	7.42896	.243902
4.11	16.8921	2.02731	6.41093	69.4265	1.60182	3.45102	7.43499	.243309
4.12	16.9744	2.02978	6.41872	69.9345	1.60312	3.45382	7.44102	.242718
4.13	17.0569	2.03224	6.42651	70.4450	1.60441	3.45661	7.44703	.242131
4.14	17.1396	2.03470	6.43428	70.9579	1.60571	3.45939	7.45304	.241546
4.15	17.2225	2.03715	6.44205	71.4734	1.60700	3.46218	7.45904	.240964
4.16	17.3056	2.03961	6.44981	71.9913	1.60829	3.46496	7.46502	.240385
4.17	17.3889	2.04206	6.45755	72.5117	1.60958	3.46773 3.47050 3.47327	7.47100	.239808
4.18	17.4724	2.04450	6.46529	73.0346	1.61086		7.47697	.239234
4.19	17.5561	2.04695	6.47302	73.5601	1.61215		7.48292	.238663
4.20	17.6400	2.04939	6.48074	74.0880	1.61343	3.47603	7.48887	.238095
4.21	17.7241	2.05183	6.48845	74.6185	1.61471	3.47878	7.49481	.237530
4.22	17.8084	2.05426	6.49615	75.1514	1.61599	3.48154	7.50074	.236967
4.23	17.8929	2.05670	6.50384	75.6870	1.61726	3.48428	7.50666	.236407
4.24	17.9776	2.05913	6.51153	76.2250	1.61853	3.48703	7.51257	.235849
4.25	18.0625	2.06155	6.51920	76.7656	1.61981	3.48977	7.51847	.235294
4.26	18.1476	2.06398	6.52687	77.3088	1.62108	3.49250	7.52437	.234742
4.27	18.2329	$2.06640 \\ 2.06882 \\ 2.07123$	6.53452	77.8545	1.62234	3.49523	7.53025	.234192
4.28	18.3184		6.54217	78.4028	1.62361	3.49796	7.53612	.233645
4.29	18.4041		6.54981	78.9536	1.62487	3.50068	7.54199	.233100
4.30	18.4900	2.07364	6.55744	79.5070	1.62613	3.50340	7.54784	.232558
4.31	18.5761	2.07605	6.56506	80.0630	1.62739	3.50611	7.55369	.232019
4.32	18.6624	2.07846	6.57267	80.6216	1.62865	3.50882	7.55953	.231481
4.33	18.7489	2.08087	6.58027	81.1827	1.62991	3.51153	7.56535	.230947
4.34	18.8356	2.08327	6.58787	81.7465	1.63116	3.51423	7.57117	.230415
4.35	18.9225	2.08567	6.59545	82.3129	1.63241	3.51692	7.57698	.229885
4.36	19.0096	2.08806	6.60303	82.8819	1.63366	3.51962	7.58279	.229358
4.37	19.0969	2.09045	6.61060	83.4535	1.63491	3.52231	7.58858	.228833
4.38	19.1844	2.09284	6.61816	84.0277	1.63619	3.52499	7.59436	.228311
4.39	19.2721	2.09523	6.62571	84.6045	1.63740	3.52767	7.60014	.227790
4.40	19.3600	2.09762	6.63325	85.1840	1.63864	3.53035	7.60590	.227273
4.41	19.4481	2.10000	6.64078	85.7661	1.63988	3.53302	7.61166	.226757
4.42	19.5364	2.10238	6.64831	86.3509	1.64112	3.53569	7.61741	.226244
4.43	19.6249	2.10476	6.65582	86.9383	1.64236	3.53835	7.62315	.225734
4.44	19.7136	2.10713 2.10950 2.11187	6.66333	87.5284	1.64359	3.54101	7.62888	.225225
4.45	19.8025		6.67083	88.1211	1.64483	3.54367	7.63461	.224719
4.46	19.8916		6.67832	88.7165	1.64606	3.54632	7.64032	.224215
4.47	19.9809	2.11424	6.68581	89.3146	1.64729	3.54897	7.64603	.223714
4.48	20.0704	2.11660	6.69328	89.9154	1.64851	3.55162	7.65172	.223214
4.49	20.1601	2.11896	6.70075	90.5188	1.64974	3.55426	7.65741	.222717
4.50	20.2500	2.12132	6.70820	91.1250	1.65096	3.55689	7.66309	.222222
n	n^2	\sqrt{n}	$\sqrt{10 n}$	n^3	$\sqrt[3]{n}$	$\sqrt[3]{10 n}$	$\sqrt[3]{100 n}$	1/n

n	n^2	\sqrt{n}	$\sqrt{10 n}$	n^3	$\sqrt[3]{n}$	$\sqrt[3]{10 n}$	$\sqrt[3]{100 \ n}$	1/n
4.50	20.2500	2.12132	6.70820	91.1250	1.65096	3.55689	7.66309	.222222
4.51	20.3401	2.12368	6.71565	91.7339	1.65219	3.55953	7.66877	.221729
4.52	20.4304	2.12603	6.72309	92.3454	1.65341	3.56215	7.67443	.221239
4.53	20.5209	2.12838	6.73053	92.9597	1.65462	3.56478	7.68009	.220751
4.54	20.6116	2.13073	6.73795	93.5767	1.65584	3.56740	7.68573	.220264
4.55	20.7025	2.13307	6.74537	94.1964	1.65706	3.57002	7.69137	.219780
4.56	20.7936	2.13542	6.75278	94.8188	1.65827	3.57263	7.69700	.219298
4.57	20.8849	2.13776	6.76018	95.4440	1.65948	3.57524	7.70262	.218818
4.58	20.9764	2.14009	6.76757	96.0719	1.66069	3.57785	7.70824	.218341
4.59	21.0681	2.14243	6.77495	96.7026	1.66190	3.58045	7.71384	.217865
4.60	21.1600	2.14476	6.78233	97.3360	1.66310	3.58305	7.71944	.217391
4.61 4.62 4.63	$\begin{array}{c} 21.2521 \\ 21.3444 \\ 21.4369 \end{array}$	$\begin{array}{c} 2.14709 \\ 2.14942 \\ 2.15174 \end{array}$	6.78970 6.79706 6.80441	97.9722 98.6111 99.2528	1.66431 1.66551 1.66671	3.58564 3.58823 3.59082	7.72503 7.73061 7.73619	.216920 .216450 .215983
4.64	21.5296	$\begin{array}{c} 2.15407 \\ 2.15639 \\ 2.15870 \end{array}$	6.81175	99.8973	1.66791	3.59340	7.74175	.215517
4.65	21.6225		6.81909	100.545	1.66911	3.59598	7.74731	.215054
4.66	21.7156		6.82642	101.195	1.67030	3.59856	7.75286	.214592
4.67	21.8089	$\begin{array}{c} 2.16102 \\ 2.16333 \\ 2.16564 \end{array}$	6.83374	101.848	1.67150	3.60113	7.75840	.214133
4.68	21.9024		6.84105	102.503	1.67269	3.60370	7.76394	.213675
4.69	21.9961		6.84836	103.162	1.67388	3.60626	7.76946	.213220
4.70	22.0900	2.16795	6.85565	103.823	1.67507	3.60883	7.77498	.212766
4.71	22.1841	2.17025	6.86294	104.487	1.67626	3.61138	7.78049	.212314
4.72	22.2784	2.17256	6.87023	105.154	1.67744	3.61394	7.78599	.211864
4.73	22.3729	2.17486	6.87750	105.824	1.67863	3.61649	7.79149	.211416
4.74	22.4676	$\begin{array}{c} 2.17715 \\ 2.17945 \\ 2.18174 \end{array}$	6.88477	106.496	1.67981	3.61903	7.79697	.210970
4.75	22.5625		6.89202	107.172	1.68099	3.62158	7.80245	.210526
4.76	22.6576		6.89928	107.850	1.68217	3.62412	7.80793	.210084
4.77	22.7529	2.18403	6.90652	108.531	1.68334	3.62665	7.81339	.209644
4.78	22.8484	2.18632	6.91375	109.215	1.68452	3.62919	7.81885	.209205
4.79	22.9441	2.18861	6.92098	109.902	1.68569	3.63172	7.82429	.208768
4.80	23.0400	2.19089	6.92820	110.592	1.68687	3.63424	7.82974	.208333
4.81	23.1361	2.19317	6.93542	111.285	1.68804	3.63676	7.83517	.207900
4.82	23.2324	2.19545	6.94262	111.980	1.68920	3.63928	7.84059	.207469
4.83	23.3289	2.19773	6.94982	112.679	1.69037	3.64180	7.84601	.207039
4.84	23.4256	2.20000	6.95701	113.380	1.69154	3.64431	7.85142	.206612
4.85	23.5225	2.20227	6.96419	114.084	1.69270	3.64682	7.85683	.206186
4.86	23.6196	2.20454	6.97137	114.791	1.69386	3.64932	7.86222	.205761
4.87	23.7169	2.20681	6.97854	115.501	1.69503	3.65182	7.86761	.205339
4.88	23.8144	2.20907	6.98570	116.214	1.69619	3.65432	7.87299	.204918
4.89	23.9121	2.21133	6.99285	116.930	1.69734	3.65681	7.87837	.204499
4.90	24.0100	2.21359	7.00000	117.649	1.69850	3.65931	7.88374	.204082
4.91	24.1081	2.21585	7.00714	118.371	1.69965	3.66179	7.88909	.203666
4.92	24.2064	2.21811	7.01427	119.095	1.70081	3.66428	7.89445	.203252
4.93	24.3049	2.22036	7.02140	119.823	1.70196	3.66676	7.89979	.202840
4.94	24.4036	$\begin{array}{c} 2.22261 \\ 2.22486 \\ 2.22711 \end{array}$	7.02851	120.554	1.70311	3.66924	7.90513	.202429
4.95	24.5025		7.03562	121.287	1.70426	3.67171	7.91046	.202020
4.96	24.6016		7.04273	122.024	1.70540	3.67418	7.91578	.201613
4.97	24.7009	2.22935	7.04982	122.763	1.70655	3.67665	7.92110	.201207
4.98	24.8004	2.23159	7.05691	123.506	1.70769	3.67911	7.92641	.200803
4.99	24.9001	2.23383	7.06399	124.251	1.70884	3.68157	7.93171	.200401
5.00	25.0000	2.23607	7.07107	125.000	1.70998	3.68403	7.93701	.200000
n	n^2	\sqrt{n}	$\sqrt{10 n}$	n^3	$\sqrt[3]{n}$	$\sqrt[3]{10 n}$	$\sqrt[3]{100} n$	1/n

n	n^2	\sqrt{n}	$\sqrt{10 n}$	n^3	$\sqrt[3]{n}$	$\sqrt[3]{10 n}$	$\sqrt[3]{100 \ n}$	1/n
5.00	25.0000	2.23607	7.07107	125.000	1.70998	3.68403	7.93701	.200000
5.01	25.1001	2.23830	7.07814	125.752	1.71112	3.68649	7.94229	.199601
5.02	25.2004	2.24054	7.08520	126.506	1.71225	3.68894	7.94757	.199203
5.03	25.3009	2.24277	7.09225	127.264	1.71339	3.69138	7.95285	.198807
5.04	25.4016	2.24499	7.09930	128.024	1.71452	3.69383	7.95811	.198413
5.05	25.5025	2.24722	7.10634	128.788	1.71566	3.69627	7.96337	.198020
5.06	25.6036	2.24944	7.11337	129.554	1.71679	3.69871	7.96863	.197628
5.07	25.7049	2.25167	7.12039	130.324	1.71792	3.70114	7.97387	.197239
5.08	25.8064	2.25389	7.12741	131.097	1.71905	3.70357	7.97911	.196850
5.09	25.9081	2.25610	7.13442	131.872	1.72017	3.70600	7.98434	.196464
5.10	26.0100	2.25832	7.14143	132.651	1.72130	3.70843	7.98957	.196078
5.11	26.1121	2.26053	7.14843	133.433	$\begin{array}{c} 1.72242 \\ 1.72355 \\ 1.72467 \end{array}$	3.71085	7.99479	.195695
5.12	26.2144	2.26274	7.15542	134.218		3.71327	8.00000	.195312
5.13	26.3169	2.26495	7.16240	135.006		3.71569	8.00520	.194932
5.14 5.15 5.16	26.4196 26.5225 26.6256	$\begin{array}{c} 2.26716 \\ 2.26936 \\ 2.27156 \end{array}$	7.16938 7.17635 7.18331	135.797 136.591 137.388	$\begin{array}{c} 1.72579 \\ 1.72691 \\ 1.72802 \end{array}$	3.71810 3.72051 3.72292	8.01040 8.01559 8.02078	.194553 .194175 .193798
5.17	26.7289	2.27376	7.19027	138.188	1.72914	3.72532	8.02596	.193424
5.18	26.8324	2.27596	7.19722	138.992	1.73025	3.72772	8.03113	.193050
5.19	26.9361	2.27816	7.20417	139.798	1.73137	3.73012	8.03629	.192678
5.20	27.0400	2.28035	7.21110	140.608	1.73248	3.73251	8.04145	.192308
5.21	27.1441	2.28254	7.21803	141.421	1.73359	3.73490	8.04660	.191939
5.22	27.2484	2.28473	7.22496	142.237	1.73470	3.73729	8.05175	.191571
5.23	27.3529	2.28692	7.23187	143.056	1.73580	3.73968	8.05689	.191205
5.24	27.4576	2.28910	7.23878	143.878	1.73691	3.74206	8.06202	.190840
5.25	27.5625	2.29129	7.24569	144.703	1.73801	3.74443	8.06714	.190476
5.26	27.6676	2.29347	7.25259	145.532	1.73912	3.74681	8.07226	.190114
5.27	27.7729	2.29565	7.25948	146.363	$\begin{array}{c} 1.74022 \\ 1.74132 \\ 1.74242 \end{array}$	3.74918	8.07737	.189753
5.28	27.8784	2.29783	7.26636	147.198		3.75155	8.08248	.189394
5.29	27.9841	2.30000	7.27324	148.036		3.75392	8.08758	.189036
5.30	28.0900	2.30217	7.28011	148.877	1.74351	3.75629	8.09267	.188679
5.31	28.1961	2.30434	7.28697	149.721	1.74461	3.75865	8.09776	.188324
5.32	28.3024	2.30651	7.29383	150.569	1.74570	3.76101	8.10284	.187970
5.33	28.4089	2.30868	7.30068	151.419	1.74680	3.76336	8.10791	.187617
5.34	28.5156	2.31084	7.30753	152.273	1.74789	3.76571	8.11298	.187266
5.35	28.6225	2.31301	7.31437	153.130	1.74898	3.76806	8.11804	.186916
5.36	28.7296	2.31517	7.32120	153.991	1.75007	3.77041	8.12310	.186567
5.37	28.8369	2.31733	7.32803	154.854	$\begin{array}{c} 1.75116 \\ 1.75224 \\ 1.75333 \end{array}$	3.77275	8.12814	.186220
5.38	28.9444	2.31948	7.33485	155.721		3.77509	8.13319	.185874
5.39	29.0521	2.32164	7.34166	156.591		3.77743	8.13822	.185529
5.40	29.1600	2.32379	7.34847	157.464	1.75441	3.77976	8.14325	.185185
5.41	29.2681	2.32594	7.35527	158.340	1.75549	3.78209	8.14828	.184843
5.42	29.3764	2.32809	7.36206	159.220	1.75657	3.78442	8.15329	.184502
5.43	29.4849	2.33024	7.36885	160.103	1.75765	3.78675	8.15831	.184162
5.44	29.5936	2.33238	7.37564	160.989	1.75873	3.78907	8.16331	.183824
5.45	29.7025	2.33452	7.38241	161.879	1.75981	3.79139	8.16831	.183486
5.46	29.8116	2.33666	7.38918	162.771	1.76088	3.79371	8.17330	.183150
5.47	29.9209	2.33880	7.39594	163.667	1.76196	3.79603	8.17829	.182815
5.48	30.0304	2.34094	7.40270	164.567	1.76303	3.79834	8.18327	.182482
5.49	30.1401	2.34307	7.40945	165.469	1.76410	3.80065	8.18824	.182149
5.50	30.2500	2.34521	7.41620	166.375	1.76517	3.80295	8.19321	.181818
\boldsymbol{n}	n^2	\sqrt{n}	$\sqrt{10 n}$	n^3	$\sqrt[3]{n}$	$\sqrt[3]{10 n}$	$\sqrt[3]{100 \ n}$	1/n

n	n^2	\sqrt{n}	$\sqrt{10 n}$	n^3	$\sqrt[3]{n}$	$\sqrt[3]{10 n}$	$\sqrt[3]{100 n}$	1/n
5.50	30.2500	2.34521	7.41620	166.375	1.76517	3.80295	8.19321	.181818
5.51	30.3601	2.34734	7.42294	167.284	1.76624	3.80526	8.19818	.181488
5.52	30.4704	2.34947	7.42967	168.197	1.76731	3.80756	8.20313	.181159
5.53	30.5809	2.35160	7.43640	169.112	1.76838	3.80985	8.20808	.180832
5.54	30.6916	$\begin{array}{c} 2.35372 \\ 2.35584 \\ 2.35797 \end{array}$	7.44312	170.031	1.76944	3.81215	8.21303	.180505
5.55	30.8025		7.44983	170.954	1.77051	3.81444	8.21797	.180180
5.56	30.9136		7.45654	171.880	1.77157	3.81673	8.22290	.179856
5.57	31.0249	2.36008	7.46324	172.809	1.77263	3.81902	8.22783	.179533
5.58	31.1364	2.36220	7.46994	173.741	1.77369	3.82130	8.23275	.179211
5.59	31.2481	2.36432	7.47663	174.677	1.77475	3.82358	8.23766	.178891
5.60	31.3600	2.36643	7.48331	175.616	1.77581	3.82586	8.24257	.178571
5.61	31.4721	2.36854	7.48999	176.558	1.77686	3.82814	8.24747	.178253
5.62	31.5844	2.37065	7.49667	177.504	1.77792	3.83041	8.25237	.177936
5.63	31.6969	2.37276	7.50333	178.454	1.77897	3.83268	8.25726	.177620
5.64	31.8096	$\begin{array}{c} 2.37487 \\ 2.37697 \\ 2.37908 \end{array}$	7.50999	179.406	1.78003	3.83495	8.26215	.177305
5.65	31.9225		7.51665	180.362	1.78108	3.83722	8.26703	.176991
5.66	32.0356		7.52330	181.321	1.78213	3.83948	8.27190	.176678
5.67	32.1489	2.38118	7.52994	182.284	1.78318	3.84174	8.27677	.176367
5.68	32.2624	2.38328	7.53658	183.250	1.78422	3.84399	8.28164	.176056
5.69	32.3761	2.38537	7.54321	184.220	1.78527	3.84625	8.28649	.175747
5.70	32.4900	2.38747	7.54983	185.193	1.78632	3.84850	8.29134	.175439
5.71	32.6041	$\begin{array}{c} 2.38956 \\ 2.39165 \\ 2.39374 \end{array}$	7.55645	186.169	1.78736	3.85075	8.29619	.175131
5.72	32.7184		7.56307	187.149	1.78840	3.85300	8.30103	.174825
5.73	32.8329		7.56968	188.133	1.78944	3.85524	8.30587	.174520
5.74	32.9476	2.39583	7.57628	189.119	1.79048	3.85748	8.31069	.174216
5.75	33.0625	2.39792	7.58288	190.109	1.79152	3.85972	8.31552	.173913
5.76	33.1776	2.40000	7.58947	191.103	1.79256	3.86196	8.32034	.173611
5.77	33.2929	2.40208	7.59605	192.100	1.79360	3.86419	8.32515	.173310
5.78	33.4084	2.40416	7.60263	193.101	1.79463	3.86642	8.32995	.173010
5.79	33.5241	2.40624	7.60920	194.105	1.79567	3.86865	8.33476	.172712
5.80	33.6400	2.40832	7.61577	195.112	1.79670	3.87088	8.33955	.172414
5.81	33.7561	2.41039	7.62234	196.123	1.79773	3.87310	8.34434	.172117
5.82	33.8724	2.41247	7.62889	197.137	1.79876	3.87532	8.34913	.171821
5.83	33.9889	2.41454	7.63544	198.155	1.79979	3.87754	8.35390	.171527
5.84	34.1056	2.41661 2.41868 2.42074	7.64199	199.177	1.80082	3.87975	8.35868	.171233
5.85	34.2225		7.64853	200.202	1.80185	3.88197	8.36345	.170940
5.86	34.3396		7.65506	201.230	1.80288	3.88418	8.36821	.170649
5.87	34.4569	2.42281	7.66159	202.262	1.80390	3.88639	8.37297	.170358
5.88	34.5744	2.42487	7.66812	203.297	1.80492	3.88859	8.37772	.170068
5.89	34.6921	2.42693	7.67463	204.336	1.80595	3.89080	8.38247	.169779
5.90	34.8100	2.42899	7.68115	205.379	1.80697	3.89300	8.38721	.169492
5.91	34.9281	2.43105	7.68765	206.425	1.80799	3.89519	8.39194	.169205
5.92	35.0464	2.43311	7.69415	207.475	1.80901	3.89739	8.39667	.168919
5.93	35.1649	2.43516	7.70065	208.528	1.81003	3.89958	8.40140	.168634
5.94	35.2836	2.43721	7.70714	209.585	1.81104	3.90177	8.40612	.168350
5.95	35.4025	2.43926	7.71362	210.645	1.81206	3.90396	8.41083	.168067
5.96	35.5216	2.44131	7.72010	211.709	1.81307	3.90615	8.41554	.167785
5.97	35.6409	$\begin{array}{c} 2.44336 \\ 2.44540 \\ 2.44745 \end{array}$	7.72658	212.776	1.81409	3.90833	8.42025	.167504
5.98	35.7604		7.73305	213.847	1.81510	3.91051	8.42494	.167224
5.99	35.8801		7.73951	214.922	1.81611	3.91269	8.42964	.166945
6.00	36.0000	2.44949	7.74597	216.000	1.81712	3.91487	8.43433	.166667
n	n^2	\sqrt{n}	$\sqrt{10 n}$	n^3	$\sqrt[3]{n}$	$\sqrt[3]{10 n}$	$\sqrt[3]{100 n}$	1/n

n	n^2	\sqrt{n}	$\sqrt{10 n}$	$m{n}^3$	$\sqrt[3]{n}$	$\sqrt[3]{10 n}$	$\sqrt[3]{100} n$	1/n
6.00	36,0000	2.44949	7.74597	216.000	1.81712	3.91487	8.43433	.166667
6.01	36.1201	2.45153	7.75242	217.082	1.81813	3.91704	8.43901	.166389
6.02	36.2404	2.45357	7.75887	218.167	1.81914	3.91921	8.44369	.166113
6.03	36.3609	2.45561	7.76531	219.256	1.82014	3.92138	8.44836	.165837
6.04	36.4816	2.45764	7.77174	$\begin{array}{c} 220.349 \\ 221.445 \\ 222.545 \end{array}$	1.82115	3.92355	8.45303	.165563
6.05	36.6025	2.45967	7.77817		1.82215	3.92571	8.45769	.165289
6.06	36.7236	2.46171	7.78460		1.82316	3.92787	8.46235	.165017
6.07	36.8449	2.46374	7.79102	223.649	1.82416	3.93003	8.46700	.164745
6.08	36.9664	2.46577	7.79744	224.756	1.82516	3.93219	8.47165	.164474
6.09	37.0881	2.46779	7.80385	225.867	1.82616	3.93434	8.47629	.164204
6.10	37.2100	2.46982	7.81025	226.981	1.82716	3.93650	8.48093	.163934
6.11	37.3321	2.47184	7.81665	228.099	1.82816	3.93865	8.48556	.163666
6.12	37.4544	2.47386	7.82304	229.221	1.82915	3.94079	8.49018	.163399
6.13	37.5769	2.47588	7.82943	230.346	1.83015	3.94294	8.49481	.163132
6.14	37.6996	2.47790	7.83582	231.476	1.83115	3.94508	8.49942	.162866
6.15	37.8225	2.47992	7.84219	232.608	1.83214	3.94722	8.50403	.162602
6.16	37.9456	2.48193	7.84857	233.745	1.83313	3.94936	8.50864	.162338
6.17	38.0689	2.48395	7.85493	234.885	1.83412	3.95150	8.51324	.162075
6.18	38.1924	2.48596	7.86130	236.029	1.83511	3.95363	8.51784	.161812
6.19	38.3161	2.48797	7.86766	237.177	1.83610	3.95576	8.52243	.161551
6.20	38.4400	2.48998	7.87401	238.328	1.83709	3.95789	8.52702	.161290
6.21	38.5641	2.49199	7.88036	239.483	1.83808	3.96002	8.53160	.161031
6.22	38.6884	2.49399	7.88670	240.642	1.83906	3.96214	8.53618	.160772
6.23	38.8129	2.49600	7.89303	241.804	1.84005	3.96427	8.54075	.160514
6.24	38.9376	2.49800	7.89937	242.971	1.84103	3.96638	8.54532	.160256
6.25	39.0625	2.50000	7.90569	244.141	1.84202	3.96850	8.54988	.160000
6.26	39.1876	2.50200	7.91202	245.314	1.84300	3.97062	8.55444	.159744
6.27	39.3129	2.50400	7.91833	246.492	1.84398	3.97273	8.55899	.159490
6.28	39.4384	2.50599	7.92465	247.673	1.84496	3.97484	8.56354	.159236
6.29	39.5641	2.50799	7.93095	248.858	1.84594	3.97695	8.56808	.158983
6.30	39.6900	2.50998	7.93725	250.047	1.84691	3.97906	8.57262	.158730
6.31	39.8161	2.51197	7.94355	251.240	1.84789	3.98116	8.57715	.158479
6.32	39.9424	2.51396	7.94984	252.436	1.84887	3.98326	8.58168	.158228
6.33	40.0689	2.51595	7.95613	253.636	1.84984	3.98536	8.58620	.157978
6.34	40.1956	2.51794	7.96241	254.840	1.85082	3.98746	8.59072	.157729
6.35	40.3225	2.51992	7.96869	256.048	1.85179	3.98956	8.59524	.157480
6.36	40.4496	2.52190	7.97496	257.259	1.85276	3.99165	8.59975	.157233
6.37	40.5769	2.52389	7.98123	258.475	1.85373	3.99374	8.60425	.156986
6.38	40.7044	2.52587	7.98749	259.694	1.85470	3.99583	8.60875	.156740
6.39	40.8321	2.52784	7.99375	260.917	1.85567	3.99792	8.61325	.156495
6.40	40.9600	2.52982	8.00000	262.144	1.85664	4.00000	8.61774	.156250
6.41	41.0881	2.53180	8.00625	263.375	1.85760	4.00208	8.62222	.156006
6.42	41.2164	2.53377	8.01249	264.609	1.85857	4.00416	8.62671	.155763
6.43	41.3449	2.53574	8.01873	265.848	1.85953	4.00624	8.63118	.155521
6.44	41.4736	2.53772	8.02496	267.090	1.86050	4.00832	8.63566	.155280
6.45	41.6025	2.53969	8.03119	268.336	1.86146	4.01039	8.64012	.155039
6.46	41.7316	2.54165	8.03741	269.586	1.86242	4.01246	8.64459	.154799
6.47	41.8609	2.54362	8.04363	270.840	1.86338	4.01453	8.64904	.154560
6.48	41.9904	2.54558	8.04984	272.098	1.86434	4.01660	8.65350	.154321
6.49	42.1201	2.54755	8.05605	273.359	1.86530	4.01866	8.65795	.154083
6.50	42.2500	2.54951	8.06226	274.625	1.86626	4.02073	8.66239	.153846
n	n^2	\sqrt{n}	$\sqrt{10 n}$	n^3	$\sqrt[3]{n}$	$\sqrt[3]{10 n}$	$\sqrt[3]{100 n}$	1/n

n	n^2	\sqrt{n}	$\sqrt{10 n}$	n^3	$\sqrt[3]{n}$	$\sqrt[3]{10 n}$	$\sqrt[3]{100 n}$	1/n
6.50	42.2500	2.54951	8.06226	274.625	1.86626	4.02073	8.66239	.153846
6.51 6.52 6.53	42.3801 42.5104 42.6409	2.55147 2.55343 2.55539	8.06846 8.07465 8.08084	275.894 277.168 278.445	1.86721 1.86817 1.86912	4.02279 4.02485 4.02690	8.66683 8.67127 8.67570	.153610 .153374 .153139
$6.54 \\ 6.55 \\ 6.56$	42.7716 42.9025 43.0336	2.55734 2.55930 2.56125	8.08703 8.09321 8.09938	279.726 281.011 282.300	1.87008 1.87103 1.87198	4.02896 4.03101 4.03306	8.68012 8.68455 8.68896	.152905 .152672 .152439
6.57 6.58 6.59	43.1649 43.2964 43.4281	2.56320 2.56515 2.56710	8.10555 8.11172 8.11788	283.593 284.890 286.191	1.87293 1.87388 1.87483	4.03511 4.03715 4.03920	8.69338 8.69778 8.70219	.152207 .151976 .151745
6.60	43.5600	2.56905	8.12404	287.496	1.87578	4.04124	8.70659	.151515
6.61 6.62 6.63	43.6921 43.8244 43.9569	2.57099 2.57294 2.57488	8.13019 8.13634 8.14248	288.805 290.118 291.434	1.87672 1.87767 1.87862	4.04328 4.04532 4.04735	8.71098 8.71537 8.71976	.151286 .151057 .150830
6.64 6.65 6.66	44.0896 44.2225 44.3556	2.57682 2.57876 2.58070	8.14862 8.15475 8.16088	292.755 294.080 295.408	1.87956 1.88050 1.88144	4.04939 4.05142 4.05345	8.72414 8.72852 8.73289	.150602 .150376 .150150
6.67 6.68 6.69	44.4889 44.6224 44.7561	2.58263 2.58457 2.58650	8.16701 8.17313 8.17924	296.741 298.078 299.418	1.88239 1.88333 1.88427	4.05548 4.05750 4.05953	8.73726 8.74162 8.74598	.149925 .149701 .149477
6.70	44.8900	2.58844	8.18535	300.763	1.88520	4.06155	8.75034	.149254
6.71 6.72 6.73	45.0241 45.1584 45.2929		8.19146 8.19756 8.20366	302.112 303.464 304.821	1.88614 1.88708 1.88801	4.06357 4.06559 4.06760	8.75469 8.75904 8.76338	.149031 .148810 .148588
6.74 6.75 6.76	45.4276 45.5625 45.6976	2.59615 2.59808 2.60000	8.20975 8.21584 8.22192	306.182 307.547 308.916	1.88895 1.88988 1.89081	4.07163	8.76772 8.77205 8.77638	.148368 .148148 .147929
6.77 6.78 6.79	45.8329 45.9684 46.1041	2.60384	8.22800 8.23408 8.24015	310.289 311.666 313.047		4.07765	8.78503	.147710 .147493 .147275
6.80	46.2400	2.60768	8.24621	314.432	1.89454	4.08166	8.79366	.147059
6.81 6.82 6.83	46.5124	. 2.61151	8.25227 8.25833 8.26438	315.821 317.215 318.612	1.89639	4.08565	8.80227	.146843 .146628 .146413
6.84 6.85 6.86	46.9225	2.61725	8.27647	321.419	1.89917	4.09163	8.81516 8.81945	.145773
6.87 6.88 6.89	3 47.3344	2.62298	8.29458	325.661	1.90194	4.09760	8.82801 8.83228	.145349 .145138
6.90	47.6100	2.62679	8.30662	328.509	1.90378	3 4.10157		
6.93 6.93 6.93	2 47.886	4 2.63059	8.31865	331.374	1.9056	$\begin{bmatrix} 2 & 4.10555 \\ 4.10756 \end{bmatrix}$	2 8.84509 0 8.84934	.144509
6.94 6.94 6.94	5 48.302	$5 \mid 2.63629$	8.33667	335.70	2 1.9083'	7 4.1114 8 4.1134	$\begin{bmatrix} 8.85785 \\ 2 & 8.86210 \end{bmatrix}$.143885 .143678
6.9 6.9 6.9	8 48.720	4 2.6419	7 8.35464	4 340.06	$\begin{array}{c c} 8 & 1.9111 \\ 2 & 1.9120 \end{array}$	$ \begin{array}{c cccc} 1 & 4.1173 \\ 2 & 4.1193 \end{array} $	8.87058 2 8.8748	3 .143266 1 .143062
7.0		0 2.6457	5 8.36660	343.00	0 1.9129			142857
	n^2	\sqrt{n}	$\sqrt{10 r}$	n^3	$\sqrt[3]{n}$	$\sqrt[3]{10}$ 7	2 √100 z	$n \mid 1/n$

[VI

n	n^2	\sqrt{n}	$\sqrt{10 n}$	n^3	$\sqrt[3]{n}$	$\sqrt[3]{10 n}$	$\sqrt[3]{100 n}$	1/n
7.00	49.0000	2.64575	8.36660	343.000	1.91293	4.12129	8.87904	.142857
7.01	49.1401	2.64764	8.37257	344.472	1.91384	4.12325	8.88327	.142653
7.02	49.2804	2.64953	8.37854	345.948	1.91475	4.12521	8.88749	.142450
7.03	49.4209	2.65141	8.38451	347.429	1.91566	4.12716	8.89171	.142248
7.04	49.5616	2.65330	8.39047	348.914	1.91657	4.12912	8.89592	.142045
7.05	49.7025	2.65518	8.39643	350.403	1.91747	4.13107	8.90013	.141844
7.06	49.8436	2.65707	8.40238	351.896	1.91838	4.13303	8.90434	.141643
7.07	49.9849	2.65895	8.40833	353.393	1.91929	4.13498	8.90854	.141443
7.08	50.1264	2.66083	8.41427	354.895	1.92019	4.13693	8.91274	.141243
7.09	50.2681	2.66271	8.42021	356.401	1.92109	4.13887	8.91693	.141044
7.10	50.4100	2.66458	8.42615	357.911	1.92200	4.14082	8.92112	.140845
7.11	50.5521	2.66646	8.43208	359.425	1.92290	4.14276	8.92531	.140647
7.12	50.6944	2.66833	8.43801	360.944	1.92380	4.14470	8.92949	.140449
7.13	50.8369	2.67021	8.44393	362.467	1.92470	4.14664	8.93367	.140252
7.14	50.9796	2.67208	8.44985	363.994	1.92560	4.14858	8.93784	.140056
7.15	51.1225	2.67395	8.45577	365.526	1.92650	4.15052	8.94201	.139860
7.16	51.2656	2.67582	8.46168	367.062	1.92740	4.15245	8.94618	.139665
7.17	51.4089	2.67769	8.46759	368.602	1.92829	4.15438	8.95034	.139470
7.18	51.5524	2.67955	8.47349	370.146	1.92919	4.15631	8.95450	.139276
7.19	51.6961	2.68142	8.47939	371.695	1.93008	4.15824	8.95866	.139082
7.20	51.8400	2.68328	8.48528	373.248	1.93098	4.16017	8.96281	.138889
7.21	51.9841	2.68514	8.49117	374.805	1.93187	4.16209	8.96696	.138696
7.22	52.1284	2.68701	8.49706	376.367	1.93277	4.16402	8.97110	.138504
7.23	52.2729	2.68887	8.50294	377.933	1.93366	4.16594	8.97524	.138313
7.24	52.4176	2.69072	8.50882	379.503	1.93455	4.16786	8.97938	.138122
7.25	52.5625	2.69258	8.51469	381.078	1.93544	4.16978	8.98351	.137931
7.26	52.7076	2.69444	8.52056	382.657	1.93633	4.17169	8.98764	.137741
7.27	52.8529	2.69629	8.52643	384.241	1.93722	4.17361	8.99176	.137552
7.28	52.9984	2.69815	8.53229	385.828	1.93810	4.17552	8.99588	.137363
7.29	53.1441	2.70000	8.53815	387.420	1.93899	4.17743	9.00000	.137174
7.30	53.2900	2.70185	8.54400	389.017	1.93988	4.17934	9.00411	.136986
7.31	53.4361	$\begin{array}{c} 2.70370 \\ 2.70555 \\ 2.70740 \end{array}$	8.54985	390.618	1.94076	4.18125	9.00822	.136799
7.32	53.5824		8.55570	392.223	1.94165	4.18315	9.01233	.136612
7.33	53.7289		8.56154	393.833	1.94253	4.18506	9.01643	.136426
7.34	53.8756	2.70924	8.56738	395.447	1.94341	4.18696	9.02053	.136240
7.35	54.0225	2.71109	8.57321	397.065	1.94430	4.18886	9.02462	.136054
7.36	54.1696	2.71293	8.57904	398.688	1.94518	4.19076	9.02871	.135870
7.37	54.3169	2.71477	8.58487	400.316	1.94606	4.19266	9.03280	.135685
7.38	54.4644	2.71662	8.59069	401.947	1.94694	4.19455	9.03689	.135501
7.39	54.6121	2.71846	8.59651	403.583	1.94782	4.19644	9.04097	.135318
7.40	54.7600	2.72029	8.60233	405.224	1.94870	4.19834	9.04504	.135135
7.41	54.9081	2.72213	8.60814	406.869	1.94957	4.20023	9.04911	.134953
7.42	55.0564	2.72397	8.61394	408.518	1.95045	4.20212	9.05318	.134771
7.43	55.2049	2.72580	8.61974	410.172	1.95132	4.20400	9.05725	.134590
7.44	55.3536	2.72764	8.62554	411.831	1.95220	4.20589	9.06131	.134409
7.45	55.5025	2.72947	8.63134	413.494	1.95307	4.20777	9.06537	.134228
7.46	55.6516	2.73130	8.63713	415.161	1.95395	4.20965	9.06942	.134048
7.47	55.8009	2.73313	8.64292	416.833	1.95482	4.21153	9.07347	.133869
7.48	55.9504	2.73496	8.64870	418.509	1.95569	4.21341	9.07752	.133690
7.49	56.1001	2.73679	8.65448	420.190	1.95656	4.21529	9.08156	.133511
7.50	56.2500	2.73861	8.66025	421.875	1.95743	4.21716	9.08560	.133333
n	n^2	\sqrt{n}	$\sqrt{10 n}$	n^3	$\sqrt[3]{n}$	$\sqrt[3]{10 n}$	$\sqrt[3]{100 n}$	1/n

\boldsymbol{n}	n^2	\sqrt{n}	$\sqrt{10 n}$	n^3	$\sqrt[3]{n}$	$\sqrt[3]{10 n}$	$\sqrt[3]{100 n}$	1/n
7.50	56.2500	2.73861	8.66025	421.875	1.95743	4.21716	9.08560	.133333
7.51	56.4001	2.74044	8.66603	423.565	1.95830	4.21904	9.08964	.133156
7.52	56.5504	2.74226	8.67179	425.259	1.95917	4.22091	9.09367	.132979
7.53	56.7009	2.74408	8.67756	426.958	1.96004	4.22278	9.09770	.132802
7.54	56.8516	2.74591	8.68332	428.661	1.96091	4.22465	9.10173	.132626
7.55	57.0025	2.74773	8.68907	430.369	1.96177	4.22651	9.10575	.132450
7.56	57.1536	2.74955	8.69483	432.081	1.96264	4.22838	9.10977	.132275
7.57	57.3049	2.75136	8.70057	433.798	1.96350	4.23024	9.11378	.132100
7.58	57.4564	2.75318	8.70632	435.520	1.96437	4.23210	9.11779	.131926
7.59	57.6081	2.75500	8.71206	437.245	1.96523	4.23396	9.12180	.131752
7.60	57.7600	2.75681	8.71780	438.976	1.96610	4.23582	9.12581	.131579
7.61	57.9121	2.75862	8.72353	440.711	1.96696	4.23768	9.12981	.131406
7.62	58.0644	2.76043	8.72926	442.451	1.96782	4.23954	9.13380	.131234
7.63	58.2169	2.76225	8.73499	444.195	1.96868	4.24139	9.13780	.131062
7.64	58.3696	2.76405	8.74071	445.944	1.96954	4.24324	9.14179	.130890
7.65	58.5225	2.76586	8.74643	447.697	1.97040	4.24509	9.14577	.130719
7.66	58.6756	2.76767	8.75214	449.455	1.97126	4.24694	9.14976	.130548
7.67	58.8289	$\begin{array}{c} 2.76948 \\ 2.77128 \\ 2.77308 \end{array}$	8.75785	451.218	1.97211	4.24879	9.15374	.130378
7.68	58.9824		8.76356	452.985	1.97297	4.25063	9.15771	.130208
7.69	59.1361		8.76926	454.757	1.97383	4.25248	9.16169	.130039
7.70	59.2900	2.77489	8.77496	456.533	1.97468	4.25432	9.16566	.129870
7.71	59.4441	$\begin{array}{c} 2.77669 \\ 2.77849 \\ 2.78029 \end{array}$	8.78066	458.314	1.97554	4.25616	9.16962	.129702
7.72	59.5984		8.78635	460.100	1.97639	4.25800	9.17359	.129534
7.73	59.7529		8.79204	461.890	1.97724	4.25984	9.17754	.129366
7.74	59.9076	2.78209	8.79773	463.685	1.97809	4.26167	9.18150	.129199
7.75	60.0625	2.78388	8.80341	465.484	1.97895	4.26351	9.18545	.129032
7.76	60.2176	2.78568	8.80909	467.289	1.97980	4.26534	9.18940	.128866
7.77	60.3729	2.78747	8.81476	$\begin{array}{c} 469.097 \\ 470.911 \\ 472.729 \end{array}$	1.98065	4.26717	9.19335	.128700
7.78	60.5284	2.78927	8.82043		1.98150	4.26900	9.19729	.128535
7.79	60.6841	2.79106	8.82610		1.98234	4.27083	9.20123	.128370
7.80	60.8400	2.79285	8.83176	474.552	1.98319	4.27266	9.20516	.128205
7.81	60.9961	2.79464	8.83742	476.380	1.98404	4.27448	9.20910	.128041
7.82	61.1524	2.79643	8.84308	478.212	1.98489	4.27631	9.21302	.127877
7.83	61.3089	2.79821	8.84873	480.049	1.98573	4.27813	9.21695	.127714
7.84	61.4656	2.80000	8.85438	481.890	1.98658	4.27995	9.22087	.127551
7.85	61.6225	2.80179	8.86002	483.737	1.98742	4.28177	9.22479	.127389
7.86	61.7796	2.80357	8.86566	485.588	1.98826	4.28359	9.22871	.127226
7.87	61.9369	2.80535	8.87130	487.443	1.98911	4.28540	9.23262	.127065
7.88	62.0944	2.80713	8.87694	489.304	1.98995	4.28722	9.23653	.126904
7.89	62.2521	2.80891	8.88257	491.169	1.99079	4.28903	9.24043	.126743
7.90	62.4100	2.81069	8.88819	493.039	1.99163	4.29084	9.24434	.126582
7.91	62.5681	2.81247	8.89382	494.914	1.99247	4.29265	9.24823	.126422
7.92	62.7264	2.81425	8.89944	496.793	1.99331	4.29446	9.25213	.126263
7.93	62.8849	2.81603	8.90505	498.677	1.99415	4.29627	9.25602	.126103
7.94	63.0436	2.81780	8.91067	500.566	1.99499	4.29807	9.25991	.125945
7.95	63.2025	2.81957	8.91628	502.460	1.99582	4.29987	9.26380	.125786
7.96	63.3616	2.82135	8.92188	504.358	1.99666	4.30168	9.26768	.125628
7.97	63.5209	2.82312	8.92749	506.262	1.99750	4.30348	9.27156	.125471
7.98	63.6804	2.82489	8.93308	508.170	1.99833	4.30528	9.27544	.125313
7.99	63.8401	2.82666	8.93868	510.082	1.99917	4.30707	9.27931	.125156
8.00	64.0000	2.82843	8.94427	512.000	2.00000	4.30887	9.28318	.125000
n	n^2	\sqrt{n}	$\sqrt{10 n}$	n^3	$\sqrt[3]{n}$	$\sqrt[3]{10 n}$	$\sqrt[3]{100 n}$	1/n

n'	n^z	\sqrt{n}		$n^{\mathfrak s}$	$\sqrt[3]{n}$			1/n
8.00	64.0000	2.82843	8.94427	512.000	2.00000	4.30887	9.28318	.125000
8.01 8.02 8.03	64.1601 64.3204 64.4809	2.83019 2.83196 2.83373	8.94986 8.95545 8.96103	513.922 515.850 517.782	2.00083 2.00167 2.00250	4.31066 4.31246 4.31425	9.28704 9.29091 9.29477	.124844 .124688 .124533
8.04 8.05 8.06	64.6416 64.8025 64.9636	2.83549 2.83725 2.83901	8.96660 8.97218 8.97775	519.718 521.660 523.607	2.00333 2.00416 2.00499	4.31604 4.31783 4.31961	9.29862 9.30248 9.30633	$\begin{array}{c} .124378 \\ .124224 \\ .124069 \end{array}$
8.07 8.08 8.09	65.1249 65.2864 65.4481	2.84077 2.84253 2.84429	8.98332 8.98888 8.99444	525.558 527.514 529.475	$\begin{array}{c} 2.00582 \\ 2.00664 \\ 2.00747 \end{array}$	4.32140 4.32318 4.32497	9.31018 9.31402 9.31786	.123916 .123762 .123609
8.10	65.6100	2.84605	9.00000	531.441	2.00830	4.32675	9.32170	.123457
8.11 8.12 8.13	65.7721 65.9344 66.0969	2.84781 2.84956 2.85132	9.00555 9.01110 9.01665	533.412 535.387 537.368	2.00912 2.00995 2.01078	4.32853 4.33031 4.33208	9.32553 9.32936 9.33319	.123305 .123153 .123001
8.14 8.15 8.16	$\begin{array}{c} 66.2596 \\ 66.4225 \\ 66.5856 \end{array}$	2.85307 2.85482 2.85657	9.02219 9.02774 9.03327	539.353 541.343 543.338	$\begin{array}{c} 2.01160 \\ 2.01242 \\ 2.01325 \end{array}$	4.33386 4.33563 4.33741	9.33702 9.34084 9.34466	.122850 .122699 .122549
8.17 8.18 8.19	$\begin{array}{c} 66.7489 \\ 66.9124 \\ 67.0761 \end{array}$	2.85832 2.86007 2.86182	9.03881 9.04434 9.04986	545.339 547.343 549.353	2.01407 2.01489 2.01571	4.33918 4.34095 4.34271	9.34847 9.35229 9.35610	.122399 .122249 .122100
8.20	67.2400	2.86356	9.05539	551.368	2.01653	4.34448	9.35990	.121951
8.21 8.22 8.23	67.4041 67.5684 67.7329	2.86531 2.86705 2.86880	9.06091 9.06642 9.07193	553.388 555.412 557.442	2.01735 2.01817 2.01899	4.34625 4.34801 4.34977	9.36370 9.36751 9.37130	.121803 .121655 .121507
8.24 8.25 8.26	67.8976 68.0625 68.2276	2.87054 2.87228 2.87402	9.07744 9.08295 9.08845	559.476 561.516 563.560	2.01980 2.02062 2.02144	4.35153 4.35329 4.35505	9.37510 9.37889 9.38268	.121359 .121212 .121065
8.27	68.3929 68.5584 68.7241	2.87576 2.87750 2.87924	9.09395 9.09945 9.10494	565.609 567.664 569.723	2.02225 2.02307 2.02388	4.35681 4.35856 4.36032	9.38646 9.39024 9.39402	.120919 .120773 .120627
	68.8900	2.88097	9.11043	571.787	2.02469	4.36207	9.39780	.120482
8. 33	69.0561 69.2224 69.3889	2.88271 2.88444 2.88617	9.11592 9.12140 9.12688	573.856 575.930 578.010	$\begin{array}{c} 2.02551 \\ 2.02632 \\ 2.02713 \end{array}$	4.36382 4.36557 4.36732	9.40157 9.40534 9.40911	.120337 .120192 .120048
8.34 8.35 8.36	69.5556 69.7225 69.8896	2.88791 2.88964 2.89137	9.13236 9.13783 9.14330	580.094 582.183 584.277	$\begin{array}{c} 2.02794 \\ 2.02875 \\ 2.02956 \end{array}$	4.36907 4.37081 4.37256	9.41287 9.41663 9.42039	.119904 .119760 .119617
8.37 8.38 8.39	70.0569 70.2244 70.3921	2.89310 2.89482 2.89655	9.14877 9.15423 9.15969	586.376 588.480 590.590	2.03037 2.03118 2.03199	4.37430 4.37604 4.37778	9.42414 9.42789 9.43164	.119474 .119332 .119190
8.40	70.5600	2.89828	9.16515	592.704	2.03279	4.37952	9.43539	.119048
8.41 8.42 8.43	70.7281 70.8964 71.0649	2.90000 2.90172 2.90345	9.17061 9.17606 9.18150	594.823 596.948 599.077	2.03360 2.03440 2.03521	4.38126 4.38299 4.38473	9.43913 9.44287 9.44661	.118906 .118765 .118624
8.44 8.45 8.46	71.2336 71.4025 71.5716	2.90517 2.90689 2.90861	9.18695 9.19239 9.19783	601.212 603.351 605.496	2.03601 2.03682 2.03762	4.38646 4.38819 4.38992	9.45034 9.45407 9.45780	.118483 .118343 .118203
8.47 8.48 8.49	71.7409 71.9104 72.0801	2.91033 2.91204 2.91376	9.20326 9.20869 9.21412	607.645 609.800 611.960	2.03842 2.03923 2.04003	4.39165 4.39338 4.39510	9.46152 9.46525 9.46897	.118064 .117925 .117786
8.50	72.2500	2.91548	9.21954	614.125	2.04083	4.39683	9.47268	.117647
n	n^z	\sqrt{n}			$\sqrt[3]{n}$	$\sqrt[3]{10 n}$		1/n

n	n^2	\sqrt{n}	$\sqrt{10 n}$	n^3	$\sqrt[3]{n}$	$\sqrt[3]{10 n}$	$\sqrt[3]{100 n}$	1/n
8.50	72.2500	2.91548	9.21954	614.125	2.04083	4.39683	9.47268	.117647
8.51	72.4201	2.91719	9.22497	616.295	2.04163	4.39855	9.47640	.117509
8.52	72.5904	2.91890	9.23038	618.470	2.04243	4.40028	9.48011	.117371
8.53	72.7609	2.92062	9.23580	620.650	2.04323	4.40200	9.48381	.117233
8.54 8.55 8.56	72.9316 73.1025 73.2736	$\begin{array}{c} 2.92233 \\ 2.92404 \\ 2.92575 \end{array}$	9.24121 9.24662 9.25203	$\begin{array}{c} 622.836 \\ 625.026 \\ 627.222 \end{array}$	$\begin{array}{c} 2.04402 \\ 2.04482 \\ 2.04562 \end{array}$	4.40372 4.40543 4.40715	$\begin{array}{c} 9.48752 \\ 9.49122 \\ 9.49492 \end{array}$.117096 .116959 .116822
8.57	73.4449	2.92746	9.25743	629.423	2.04641	4.40887	9.49861	.116686
8.58	73.6164	2.92916	9.26283	631.629	2.04721	4.41058	9.50231	.116550
8.59	73.7881	2.93087	9.26823	633.840	2.04801	4.41229	9.50600	.116414
8.60	73.9600	2.93258	9.27362	636.056	2.04880	4.41400	9.50969	.116279
8.61	74.1321	2.93428	9.27901	638.277	2.04959	4.41571	9.51337	.116144
8.62	74.3044	2.93598	9.28440	640.504	2.05039	4.41742	9.51705	.116009
8.63	74.4769	2.93769	9.28978	642.736	2.05118	4.41913	9.52073	.115875
8.64	74.6496	2.93939	9.29516	644.973	2.05197	4.42084	9.52441	.115741
8.65	74.8225	2.94109	9.30054	647.215	2.05276	4.42254	9.52808	.115607
8.66	74.9956	2.94279	9.30591	649.462	2.05355	4.42425	9.53175	.115473
8.67	75.1689	2.94449	9.31128	651.714	2.05434 2.05513 2.05592	4.42595	9.53542	.115340
8.68	75.3424	2.94618	9.31665	653.972		4.42765	9.53908	.115207
8.69	75.5161	2.94788	9.32202	656.235		4.42935	9.54274	.115075
8.70	75.6900	2.94958	9.32738	658.503	2.05671	4.43105	9.54640	.114943
8.71	75.8641	2.95127	9.33274	660.776	2.05750	4.43274	9.55006	.114811
8.72	76.0384	2.95296	9.33809	663.055	2.05828	4.43444	9.55371	.114679
8.73	76.2129	2.95466	9.34345	665.339	2.05907	4.43613	9.55736	.114548
8.74	76.3876	2.95635	9.34880	667.628	2.05986 2.06064 2.06143	4.43783	9.56101	.114416
8.75	76.5625	2.95804	9.35414	669.922		4.43952	9.56466	.114286
8.76	76.7376	2.95973	9.35949	672.221		4.44121	9.56830	.114155
8.77	76.9129	2.96142	9.36483	674.526	2.06221	4.44290	9.57194	.114025
8.78	77.0884	2.96311	9.37017	676.836	2.06299	4.44459	9.57557	.113895
8.79	77.2641	2.96479	9.37550	679.151	2.06378	4.44627	9.57921	.113766
8.80	77.4400	2.96648	9.38083	681.472	2.06456	4.44796	9.58284	.113636
8.81	77.6161	2.96816	9.38616	683.798	2.06534	4.44964	9.58647	.113507
8.82	77.7924	2.96985	9.39149	686.129	2.06612	4.45133	9.59009	.113379
8.83	77.9689	2.97153	9.39681	688.465	2.06690	4.45301	9.59372	.113250
8.84	78.1456	2.97321	9.40213	690.807	2.06768	4.45637	9.59734	.113122
8.85	78.3225	2.97489	9.40744	693.154	2.06846		9.60095	.112994
8.86	78.4996	2.97658	9.41276	695.506	2.06924		9.60457	.112867
8.87	78.6769	2.97825	9.41807	697.864	2.07002	4.45972	9.60818	.112740
8.88	78.8544	2.97993	9.42338	700.227	2.07080	4.46140	9.61179	.112613
8.89	79.0321	2.98161	9.42868	702.595	2.07157	4.46307	9.61540	.112486
8.90	79.2100	2.98329	9.43398	704.969	2.07235	4.46475	9.61900	.112360
8.91	79.3881	2.98496	9.43928	707.348	2.07313		9.62260	.112233
8.92	79.5664	2.98664	9.44458	709.732	2.07390		9.62620	.112108
8.93	79.7449	2.98831	9.44987	712.122	2.07468		9.62980	.111982
8.94 8.95 8.96	79.9236 80.1025 80.2816	2.98998 2.99166 2.99333	9.45516 9.46044 9.46573	714.517 716.917 719.323	2.07545 2.07622 2.07700	4.47309	9.63698	.111857 .111732 .111607
8.97 8.98 8.99	80.4609 80.6404 80.8201	2.99500 2.99666 2.99833	9.47101 9.47629 9.48156	721.734 724.151 726.573	2.07777 2.07854 2.07931	4.47808	9.64774	.111483 .111359 .111235
9.00	81.0000	3.00000	9.48683	729.000	2.08008	4.48140	9.65489	.111111
n	n^2	\sqrt{n}	$\sqrt{10 n}$	n^3	$\sqrt[3]{n}$	$\sqrt[3]{10 n}$	³ √100 r	1/n

\boldsymbol{n}	n^z	\sqrt{n}	$\sqrt{10 n}$	n°	\sqrt{n}			1/n
9.00	81.0000	3.00000	9.48683	729.000	2.08008	4.48140	9.65489	.111111
$9.01 \\ 9.02 \\ 9.03$	81.1801	3.00167	9.49210	731.433	2.08085	4.4 8306	9.65847	.110988
	81.3604	3.00333	9.49737	733.871	2.08162	4.4 8472	9.66204	.110865
	81.5409	3.00500	9.50263	736.314	2.08239	4.4 8638	9.66561	.110742
9.04	81.7216	3.00666	9.50789	738.763	2.08316	4.48803	9.66918	.110619
9.05	81.9025	3.00832	9.51315	741.218	2.08393	4.48969	9.67274	.110497
9.06	82.0836	3.00998	9.51840	743.677	2.08470	4.49134	9.67630	.110375
9.07	82.2649	3.01164	9.52365	746.143	2.08546	4.49299	9.67986	.110254
9.08	82.4464	3.01330	9.52890	748.613	2.08623	4.49464	9.68342	.110132
9.09	82.6281	3.01496	9.53415	751.089	2.08699	4.49629	9.68697	.110011
9.10	82.8100	3.01662	9.53939	753.571	2.08776	4.49794	9.69052	.109890
9.11 9.12 9.13	82.9921	3.01828	9.54463	756.058	2.08852	4.49959	9.69407	.109769
	83.1744	3.01993	9.54987	758.551	2.08929	4.50123	9.69762	.109649
	83.3569	3.02159	9.55510	761.048	2.09005	4.50288	9.70116	.109529
9.14	83.5396	3.02324 3.02490 3.02655	9.56033	763.552	2.09081	4.50452	9.70470	.109409
9.15	83.7225		9.56556	766.061	2.09158	4.50616	9.70824	.109290
9.16	83.9056		9.57079	768.575	2.09234	4.50781	9.71177	.109170
9.17 9.18 9.19	84.0889 84.2724 84.4561	$3.02820 \\ 3.02985 \\ 3.03150$	9.57601 9.58123 9.58645	771.095 773.621 776.152	2.09310 2.09386 2.09462	4.50945 4.51108 4.51272	$\begin{array}{c} 9.71531 \\ 9.71884 \\ 9.72236 \end{array}$.109051 .108932 .108814
9.20	84.6400	3.03315	9.59166	778.688	2.09538	4.51436	9.72589	.108696
9.21	84.8241	3.03480	9.59687	781.230	2.09614	4.51599	9.72941	.108578
9.22	85.0084	3.03645	9.60208	783.777	2.09690	4.51763	9.73293	.108460
9.23	85.1929	3.03809	9.60729	786.330	2.09765	4.51926	9.73645	.108342
9.24	85.3776	3.03974	9.61249	788.889	$\begin{array}{c} 2.09841 \\ 2.09917 \\ 2.09992 \end{array}$	4.52089	9.73996	.108225
9.25	85.5625	3.04138	9.61769	791.453		4.52252	9.74348	.108108
9.26	85.7476	3.04302	9.62289	794.023		4.52415	9.74699	.107991
9.27	85.9329	3.04467	9.62808	796.598	2.10068	4.52578	9.75049	.107875
9.28	86.1184	3.04631	9.63328	799.179	2.10144	4.52740	9.75400	.107759
9.29	86.3041	3.04795	9.63846	801.765	2.10219	4.52903	9.75750	.107643
9.30	86.4900	3.04959	9.64365	804.357	2.10294	4.53065	9.76100	.107527
9.31	86.6761	3.05123	9.64883	806.954	$2.10370 \\ 2.10445 \\ 2.10520$	4.53228	9.76450	.107411
9.32	86.8624	3.05287	9.65401	809.558		4.53390	9.76799	.107296
9.33	87.0489	3.05450	9.65919	812.166		4.53552	9.77148	.107181
9.34	87.2356	3.05614	9.66437	814.781	2.10595	4.53714	9.77497	.107066
9.35	87.4225	3.05778	9.66954	817.400	2.10671	4.53876	9.77846	.106952
9.36	87.6096	3.05941	9.67471	820.026	2.10746	4.54038	9.78195	.106838
9.37	87.7969	3.06105	9.67988	822.657	2.10821	4.54199	9.78543	.106724
9.38	87.9844	3.06268	9.68504	825.294	2.10896	4.54361	9.78891	.106610
9.39	88.1721	3.06431	9.69020	827.936	2.10971	4.54522	9.79239	.106496
9.40	88.3600	3.06594	9.69536	830.584	2.11045	4.54684	9.79586	.106383
9.41	88.5481	3.06757	9.70052	833.238	2.11120 2.11195 2.11270	4.54845	9.79933	.106270
9.42	88.7364	3.06920	9.70567	835.897		4.55006	9.80280	.106157
9.43	88.9249	3.07083	9.71082	838.562		4.55167	9.80627	.106045
9.44	89.1136	3.07246	9.71597	841.232	2.11344	4.55328	9.80974	.105932
9.45	89.3025	3.07409	9.72111	843.909	2.11419	4.55488	9.81320	.105820
9.46	89.4916	3.07571	9.72625	846.591	2.11494	4.55649	9.81666	.105708
9.47	89.6809	3.07734	9.73139	849.278	2.11568	4.55809	9.82012	.105597
9.48	89.8704	3.07896	9.73653	851.971	2.11642	4.55970	9.82357	.105485
9.49	90.0601	3.08058	9.74166	854.670	2.11717	4.56130	9.82703	.105374
9.50	90.2500	3.08221	9.74679	857.375	2.11791	4.56290	9.83048	.105263
\boldsymbol{n}	n^z	\sqrt{n}		$n^{\mathfrak s}$	\sqrt{n}			1/n

n	n^2	\sqrt{n}	$\sqrt{10 n}$	n^3	$\sqrt[3]{n}$	$\sqrt[3]{10 n}$	$\sqrt[3]{100 \ n}$	1/n
9.50	90.2500	3.08221	9.74679	857.375	2.11791	4.56290	9.83048	.105263
9.51 9.52 9.53	90.4401 90.6304 90.8209	3.08383 3.08545 3.08707	9.75192 9.75705 9.76217	860.085 862.801 865.523	2.11865 2.11940 2.12014	4.56450 4.56610 4.56770	9.83392 9.83737 9.84081	.105152 .105042 .104932
9.54 9.55 9.56	91.0116 91.2025 91.3936	3.08869 3.09031 3.09192	9.76729 9.77241 9.77753	868.251 870.984 873.723	$\begin{array}{c} 2.12088 \\ 2.12162 \\ 2.12236 \end{array}$	4.56930 4.57089 4.57249	9.84425 9.84769 9.85113	.104822 .104712 .104603
9.57 9.58 9.59	91.5849 91.7764 91.9681	3.09354 3.09516 3.09677	9.78264 9.78775 9.79285	876.467 879.218 881.974	$\begin{array}{c} 2.12310 \\ 2.12384 \\ 2.12458 \end{array}$	4.57408 4.57567 4.57727	9.85456 9.85799 9.86142	.104493 .104384 .104275
9.60	92.1600	3.09839	9.79796	884.736	2.12532	4.57886	9.86485	.104167
9.61 9.62 9.63	92.3521 92.5444 92.7369	$3.10000 \\ 3.10161 \\ 3.10322$	9.80306 9.80816 9.81326	887.504 890.277 893.056	$\substack{2.12605 \\ 2.12679 \\ 2.12753}$	4.58045 4.58204 4.58362	9.86827 9.87169 9.87511	.104058 .103950 .103842
9.64 9.65 9.66	92.9296 93.1225 93.3156	3.10483 3.10644 3.10805	9.81835 9.82344 9.82853	895.841 898.632 901.429	2.12826 2.12900 2.12974	4.58521 4.58679 4.58838	9.87853 9.88195 9.88536	.103734 .103627 .103520
9.67 9.68 9.69	93.5089 93.7024 93.8961	3.10966 3.11127 3.11288	9.83362 9.83870 9.84378	904.231 907.039 909.853	2.13047 2.13120 2.13194	4.58996 4.59154 4.59312	9.88877 9.89217 9.89558	.103413 .103306 .103199
9.70	94.0900	3.11448	9.84886	912.673	2.13267	4.59470	9.89898	.103093
9.71 9.72 9.73	94.2841 94.4784 94.6729	3.11609 3.11769 3.11929	9.85393 9.85901 9.86408	915.499 918.330 921.167	2.13340 2.13414 2.13487	4.59628 4.59786 4.59943	9.90238 9.90578 9.90918	.102987 .102881 .102775
9.74 9.75 9.76	94.8676 95.0625 95.2576	3.12090 3.12250 3.12410	9.86914 9.87421 9.87927	924.010 926.859 929.714	2.13560 2.13633 2.13706	4.60258	9.91257 9.91596 9.91935	.102669 .102564 .102459
9.77 9.78 9.79	95.4529 95.6484 95.8441	3.12570 3.12730 3.12890	9.88433 9.88939 9.89444	932.575 935.441 938.314		4.60730	9.92274 9.92612 9.92950	.102354 .102249 .102145
9.80	96.0400	3.13050	9.89949	941.192	2.13997	4.61044	9.93288	.102041
9.81 9.82 9.83	96.2361 96.4324 96.6289	3.13209 3.13369 3.13528	9.90454 9.90959 9.91464	944.076 946.966 949.862	2.14143	4.61357	9.93964	.101937 .10183 3 .101729
9.84 9.85 9.86	97.0225	3.13847	9.91968 9.92472 9.92975	952.764 955.672 958.585	2.14361	4.61826	9.94975	.101626 .101523 .101420
9.87 9.88 9.89		3.14325	9.93479 9.93982 9.94485	961.505 964.430 967.362	2.14578	$3 \mid 4.62295$	9.95984	
9.90	98.0100	3.14643	9.94987	970.299	2.14723	4.62607	9.96655	.101010
9.91 9.92 9.93	98.4064	. 3.14960	9.95992	976.191	2.14867	$7 \mid 4.62918$	9.97326	.100806 .100705
9.94 9.95 9.96	99.0025	3.15278 3.15436	9.96995 9.97497	985.075	$5 \mid 2.15084$	4.63384	9.98331 9.98665	.100503 .100402
9.97 9.98 9.99	99.6004	1 3.15911	9.98999	994.012	2 2.1530	0 4.63849	9.99333	100200
10.0	0 100.000		-	1000.00	2.1544	3 4.6415	10.0000	.100000
$\frac{1}{n}$	n^2	\sqrt{n}	$\sqrt{10} n$	n^3	$\sqrt[3]{n}$	$\sqrt[3]{10} r$	i √100 :	n 1/n

	0	3		8 9
5.0	1.6 0944	1144 1343 1542	1741 1939 2137	2334 2531 2728
4.7 4.8 4.9	4756 6862 8924	4969 5181 5393 7070 7277 7485 9127 9331 9534	5604 5814 6025 7691 7898 8104 9737 9939 *0141	6235 6444 6653 8309 8515 8719 *0342 *0543 *0744
4.4 4.5 4.6	8160 1.5 0408 2606	8387 8614 8840 0630 0851 1072 2823 3039 3256	9065 9290 9515 1293 1513 1732 3471 3687 3902	9739 9962 *0185 1951 2170 2388 4116 4 330 4543
$\frac{4.1}{4.2}$ $\frac{4.3}{4.3}$	1.4 1099 3508 5862	1342 1585 1828 3746 3984 4220 6094 6326 6557	2070 2311 2552 4456 4692 4927 6787 7018 7247	2792 3031 3270 5161 5395 5629 7476 7705 7933
4.0	8629	8879 9128 9377	9624 9872 *0118	*0364 *0610 *0854
3.7 3.8 3.9	1.3 0833 3500 6098	1103 1372 1641 3763 4025 4286 6354 6609 6864	1909 2176 2442 4547 4807 5067 7118 7372 7624	2708 2972 3237 5325 5584 5841 7877 8128 8379
3.4 3.5 3.6	1.2 2378 5276 8093	2671 2964 3256 5562 5846 6130 8371 8647 8923	3547 3837 4127 6413 6695 6976 9198 9473 9746	4415 4703 4990 7257 7536 7815 *0019 *0291 *0563
3.1 3.2 3.3	1.1 3140 6315 9392	3462 3783 4103 6627 6938 7248 9695 9996 *0297	4422 4740 5057 7557 7865 8173 *0597 *0896 *1194	5373 5688 6002 8479 8784 9089 *1491 *1788 *2083
3.0	9861	*0194 *0526 *0856	*1186 *1514 *1841	*2168 *2493 *2817
$2.7 \\ 2.8 \\ 2.9$	$\begin{array}{c} 9325 \\ 1.02962 \\ 6471 \end{array}$	9695 *0063 *0430 3318 3674 4028 6815 7158 7500	*0796 *1160 *1523 4380 4732 5082 7841 8181 8519	*1885 *2245 *2604 5431 5779 6126 8856 9192 9527
$2.4 \\ 2.5 \\ 2.6$	7547 0.9 1629 5551	7963 8377 8789 2028 2426 2822 5935 6317 6698	9200 9609 *0016 3216 3609 4001 7078 7456 7833	*0422 *0826 *1228 4391 4779 5166 8208 8582 8954
$2.1 \\ 2.2 \\ 2.3$	$0.74194\ 8846\ 0.83291$	4669 5142 5612 9299 9751 *0200 3725 4157 4587	6081 6547 7011 *0648 *1093 *1536 5015 5442 5866	7473 7932 8390 *1978 *2418 *2855 6289 6710 7129
2.0	9315	9813 *0310 *0804	_	*2755 *3237 *3716
	0.5 3063 8779 0.6 4185	3649 4232 4812 9333 9884 *0432 4710 5233 5752	5389 5962 6531 *0977 *1519 *2058 6269 6783 7294	7098 7661 8222 *2594 *3127 *3658 7803 8310 8813
	0.3 3647 0.4 0547 7000	4359 5066 5767 1211 1871 2527 7623 8243 8858	6464 7156 7844 3178 3825 4469 9470 *0078 *0682	8526 9204 9878 5108 5742 6373 *1282 *1879 *2473
	9531 0.1 8232 0.2 6236	*0436 *1333 *2222 9062 9885 *0701 7003 7763 8518	*3103 *3976 *4842 *1511 *2314 *3111 9267 *0010 *0748	*5700 *6551 *7395 *3902 *4686 *5464 *1481 *2208 *2930
	9.895	9.906 9.917 9.927 0995 1980 2956	9.938 9.949 9.959 3922 4879 5827	9.970 9.980 9.990 6766 7696 8618
	9.489 9.777	9.506 9.522 9.538 9.658 9.671 9.685 9.789 9.802 9.814	9.699 9.712 9.726 9.826 9.837 9.849	9.600 9.614 9.629 9.739 9.752 9.764 9.861 9.872 9.883
	9.084 9.307	9.108 9.132 9.156 9.327 9.346 9.365 9.506 9.522 9.538	9.179 9.201 9.223 9.384 9.402 9.420 9.554 9.569 9.584	9.245 9.266 9.287 9.438 9.455 9.472
	7.697 8.391 8.796	7.793 7.880 7.960 8.439 8.486 8.530 8.829 8.861 8.891	8.034 8.103 8.167 8.573 8.614 8.653 8.921 8.950 8.978	8.228 8.285 8.339 8.691 8.727 8.762 9.006 9.032 9.058
0.0		5.395 6.088 6.493	6.781 7.004 7.187	7.341 7.474 7.592
		2		

N	0	1	2	3	4	5	6	7		
5.0	1.6 0944	1144	1343	1542	1741	1939	2137		8	9
5.1	2924	3120	3315	3511	3705	3900	4094	$\frac{2334}{4287}$	2531	2728
5.2	4866	5058	5250	5441	5632	5823	6013	6203	4481 6393	4673 6582
5.3	6771	6959	7147	7335	7523	7710	7896	8083	8269	8455
5.4 5.5	8640 1.7 0475	8825 0656	9010 0838	9194 1019	9378 1199	9562 1380	9745 1560	9928 1740	*0111 1919	*0293 2098
5.6	2277	2455	2633	2811	2988	3166	3342	3519	3695	3871
5.7	4047	4222	4397	4572	4746	4920	5094	5267	5440	5613
5.8 5.9	5786 7495	5958 7665	$6130 \\ 7834$	6302 8002	6473 8171	6644 8339	6815 8507	6985 8675	7156 8842	7326
6.0	9176	9342	9509	9675		*0006	*0171	*0336		*0665
6.1	1.8 0829	0993	1156	1319	1482	1645	1808	1970	2132	2294
6.2 6.3	$2455 \\ 4055$	2616 4214	$2777 \\ 4372$	2938 4530	3098 4688	3258	3418	3578	3737	3896
6.4	5630	5786	5942	6097	6253	4845 6408	5003 6563	5160	5317	5473
6.5	7180	7334	7487	7641	7794	7947	8099	6718 8251	6872 8403	7026 8555
6.6	8707	8858	9010	9160	9311	9462	9612	9762	9912	*0061
6.7 6.8	$1.9\ 0211\ 1692$	0360 1839	0509 1986	$0658 \\ 2132$	0806 2279	$0954 \\ 2425$	$\frac{1102}{2571}$	1250 2716	1398 2862	1545 3007
6.9	3152	3297	3442	3586	3730	3874	4018	4162		4448
7.0	4591	4734	4876	5019	5161	5303	5445	5586	5727	5869
7.1	6009	6150	6291	6431	6571	6711	6851	6991	7130	7269
7.2 7.3	7408 8787	7547 8924	7685 9061	$7824 \\ 9198$	7962 9334	8100 9470	8238 9606	8376 9742		8650 *0013
7.4	2.0 0148	0283	0418	0553	0687	0821	0956	1089		1357
7.5	1490	1624	1757	1890	2022	2155	2287	2419	2551	2683
7.6	2815	2946	3078	3209	3340	3471	3601	3732		3992
7.7 7.8	$\frac{4122}{5412}$	4252 5540	4381 5668	4511 5796	4640 5924	4769 6051	4898 6179	5027 6306		5284 6560
7.9	6686	6813	6939	7065	7191	7317	7443	7568		7819
8.0	7944	8069	8194	8318	8443	8567	8691	8815		9063
8.1	9186 2.1 0413	9310 0535	9433 0657	$9556 \\ 0779$	9679	9802 1021	$9924 \\ 1142$	*0047 1263		*0291 1505
8.2 8.3	1626	1746	1866	1986	2106	2226	2346	2465		2704
8.4	2823	2942	3061	3180	3298	3417	3535	3653		3889
8.5 8.6	4007 5176	4124 5292	4242 5409	$\frac{4359}{5524}$	4476 5640	4593 5756	$\frac{4710}{5871}$	4827 5987	4943 6102	5060 6217
8.7	6332	6447	6562	6677	6791	6905	7020	7134		7361
8.8	7475	7589	7702	7816	7929	8042	8155	8267	8380	8493
8.9	8605	8717	8830	8942	9054	9165	9277	9389		9611
9.0	9722	9834		*0055	*0166				*0607	
$9.1 \\ 9.2$	$2.2\ 0827$ 1920	0937 2029	$\frac{1047}{2138}$	$1157 \\ 2246$	1266 2354	$\frac{1375}{2462}$	$\frac{1485}{2570}$.	1594 2678	2786	$\frac{1812}{2894}$
9.3	3001	3109	3216	3324	3431	3538	3645	3751		3965
9.4	4071	4177	4284	4390	4496 5549	4601 5654	4707 5759	4813 5863		
9.5 9.6	5129 6176	5234 6280	5339 6384	$\frac{5444}{6488}$	6592	6696	6799	6903		
9.7	7213	7316	7419	7521	7624	7727	7829	7932		
9.8	8238	8340 9354	8442 9455	8544 9556	8646 9657	8747 9757	8849 9858	8950 9958	9051	9152 *0158
9.9 10.0	9253 2.3 0259	0358	0458	0558	0658		0857	0956		
N 10.0	0	1	2	3	4	5	6	7	8	9
174	ı v	<u> </u>	-					<u> </u>		

10	2.30259	25	3.21888	40	3.68888	55	4.00733	70	4.24850	85	4.44265
11	2.39790	26	3.25810	41	3.71357	56	4.02535	71	4.26268	86	4.45435
12	2.48491	27	3.29584	42	3.73767	57	4.04305	72	4.27667	87	4.46591
13	2.56495	28	3.33220	43	3.76120	58	4.06044	73	4.29046	88	4.47734
14	2.63906	29	3.36730	44	3.78419	59	4.07754	74	4.30407	89	4.48864
15	2.70805	30	3.40120	45	3.80666	60	4.09434	75	4.31749	90	4.49981
16	2.77259	31	3.43399	46	3.82864	61	4.11087	76	4.33073	91	4.51086
17	2.83321	32	3.46574	47	3.85015	62	4.12713	77	4.34381	92	4.52179
18	2.89037	33	3.49651	48	3.87120	63	4.14313	78	4.35671	93	4.53260
19	2.94444	34	3.52636	49	3.89182	64	4.15888	79	4.36945	94	4.54329
20	2.99573	35	3.55535	50	3.91202	65	4.17439	80	4.38203	95	4.55388
21	3.04452	36	3.58352	51	3.93183	66	4.18965	81	4.39445	96	4.56435
22	3.09104	37	3.61092	52	3.95124	67	4.20469	82	4.40672	97	4.57471
23	3.13549	38	3.63759	53	3.97029	68	4.21951	83	4.41884	98	4.58497
24	3.17805	39	3.66356	54	3.98898	69	4.23411	84	4.43082	99	4.59512

Napierian or Natural Logarithms — 100 to 409

N	0	1	2	3	4	5	6	7	8	9
10	4.6 0517	1512	2497	3473	4439	5396	6344	7283	8213	9135
11 12 13	4.7 0048 8749 4.8 6753	0953 9579 7520	1850 *0402 8280	2739 *1218 9035		4493 *2831 *0527		6217 *4419 *1998	7068 *5203 *2725	7912 *5981 *3447
14 15 16	4.9 4164 5.0 1064 7517	4876 1728 8140	5583 2388 8760	6284 3044 9375	6981 3695 9987	7673 4343 *0595	8361 4986 *1199	9043 5625 *1799		*0395 6890 *2990
17 18 19	5.1 3580 9296 5.2 4702	4166 9850 5227	4749 *0401 5750	5329 *0949 6269	5906 *1494 6786	6479 *2036 7300	7048 *2575 7811	7615 *3111 8320	8178 *3644 8827	8739 *4175 9330
20	9832	*0330	*0827	*1321	*1812	*2301	*2788	*3272	*3754	*4233
21 22 23	5.3 4711 9363 5.4 3808	5186 9816 4242	5659 *0268 4674	6129 *0717 5104	6598 *1165 5532	7064 *1610 5959	7528 *2053 6383	7990 *2495 6806	8450 *2935 7227	8907 *3372 7646
24 25 26	8064 5.5 2146 6068	8480 2545 6452	8894 2943 6834	9306 3339 7215	9717 3733 7595	*0126 4126 7973	*0533 4518 8350	*0939 4908 8725	*1343 5296 9099	*1745 5683 9471
27 28 29	9842 5.6 3479 6988	*0212 3835 7332	*0580 4191 7675	*0947 4545 8017	*1313 4897 8358	*1677 5249 8698	*2040 5599 9036	*2402 5948 9373	*2762 6296 9709	*3121 6643 *0044
30	5.7 0378	0711	1043	1373	1703	2031	2359	2685	3010	3334
31 32 33	3657 6832 9909	3979 7144 *0212	4300 7455 *0513	4620 7765 *0814	4939 8074 *1114	5257 8383 *1413	5574 8690 *1711	5890 8996 *2008	9301	6519 9606 *2600
34 35 36	5.8 2895 5793 8610	3188 6079 8888	3481 6363 9164	3773 6647 9440	4064 6930 9715	7212	4644 7493 *0263	4932 7774 *0536	8053	5507 8332 *1080
37 38 39	5.9 1350 4017 6615	1620 4280 6871	1889 4542 7126	2158 4803 7381	2426 5064 7635	2693 5324 7889	2959 5584 8141	3225 5842 8394		3754 6358 8896
40	9146	9396	9645	9894	*0141	*0389	*0635	*0881	*1127	*1372
N	0	1	2	3	4	5	6	7	8	9

Above 409, use the formula $\log_e 10n := \log_e n + \log_e 10 = \log_e n + 2.30258509$, or the formula $\log_e n := \log_e 10 \cdot \log_{10} n = 2.30258509 \log_{10} n$.

N	$N \cdot M$	N	$N \cdot M$	I	N	$N \div M$	N	$N \div M$
0	0.000000000	50	21.71472 410	ı	0	0.000000000	50	115.12925 465
1 2 3	0.43429 448 0.86858 896 1.30288 345	51 52 53	22.14901 858 22.58331 306 23.01760 754		1 2 3	2.30258 509 4.60517 019 6.90775 528	51 52 53	117.43183 974 119.73442 484 122.03700 993
4 5 6	1.73717 793 2.17147 241 2.60576 689	54 55 56	23.45190 202 23.88619 650 24.32049 099		4 5 6	9.21034 037 11.51292 546 13.81551 056	54 55 56	124.33959 502 126.64218 011 128.94476 521
7 8 9	3.04006 137 3.47435 586 3.90865 034	57 58 59	24.75478 547 25.18907 995 25.62337 443		7 8 9	16.11809 565 18.42068 074 20.72326 584	57 58 59	131.24735 030 133.54993 539 135.85252 049
10	4.34294 482	60	26.05766 891		10	23.02585 093	60	138.15510 558
11 12 13	4.77723 930 5.21153 378 5.64582 826	61 62 63	26.49196 340 26.92625 788 27.36055 236		11 12 13	25.32843 602 27.63102 112 29.93360 621	61 62 63	140.45769 067 142.76027 577 145.06286 086
14 15 16	6.08012 275 6.51441 723 6.94871 171	64 65 66	27.79484 684 28.22914 132 28.66343 581		14 15 16	32.23619 130 34.53877 639 36.84136 149	64 65 66	147.36544 595 149.66803 104 151.97061 614
17 18 19	7.38300 619 7.81730 067 8.25159 516	67 68 69	29.09773 029 29.53202 477 29.96631 925		17 18 19	39.14394 658 41.44653 167 43.74911 677	67 68 69	154.27320 123 156.57578 632 158.87837 142
20	8.68588 964	70	30.40061 373		20	46.05170 186	70	161.18095 651
$\begin{array}{c} 21 \\ 22 \\ 23 \end{array}$	9.12018 412 9.55447 860 9.98877 308	71 72 73	30.83490 822 31.26920 270 31.70349 718		21 22 23	48.35428 695 50.65687 205 52.95945 714	71 72 73	163.48354 160 165.78612 670 168.08871 179
24 25 26	10.42306 757 10.85736 205 11.29165 653	74 75 76	32.13779 166 32.57208 614 33.00638 062		24 25 26	55.26204 223 57.56462 732 59.86721 242	74 75 76	170.39129 688 172.69388 197 174.99646 707
27 28 29	11.72595 101 12.16024 549 12.59453 998	77 78 79	33.44067 511 33.87496 959 34.30926 407		27 28 29	62.16979 751 64.47238 260 66.77496 770	77 78 79	177.29905 216 179.60163 725 181.90422 235
30	13.02883 446	80	34.74355 855	l	30	69.07755 279	80	184.20680 744
31 32 33	13.46312 894 13.89742 342 14.33171 790	81 82 83	35.17785 303 35.61214 752 36.04644 200		31 32 33	71.38013 788 73.68272 298 75.98530 807	81 82 83	186.50939 253 188.81197 763 191.11456 272
34 35 36	14.76601 238 15.20030 687 15.63460 135	84 85 86	36.48073 648 36.91503 096 37.34932 544		34 35 36	78.28789 316 80.59047 825 82.89306 335	84 85 86	193.41714 781 195.71973 290 198.02231 800
37 38 39	16.06889 583 16.50319 031 16.93748 479	87 88 89	37.78361 993 38.21791 441 38.65220 889		37 38 39	85.19564 844 87.49823 353 89.80081 863	87 88 89	
40	17.37177 928	90	39.08650 337		40	92.10340 372	90	
41 42 43	17.80607 376 18.24036 824 18.67466 272	91 92 93	39.52079 785 39.95509 234 40.38938 682		$\frac{41}{42}$ $\frac{43}{43}$	94.40598 881 96.70857 391 99.01115 900	91 92 93	211.83782 856
44 45 46	19.10895 720 19.54325 169 19.97754 617	94 95 96	40.82368 130 41.25797 578 41.69227 026		44 45 46	101.31374 409 103.61632 918 105.91891 428	94 95 96	218.74558 383
47 48 49	20.41184 065 20.84613 513 21.28042 961	97 98 99	42.12656 474 42.56085 923 42.99515 371		47 48 49	108.22149 937 110.52408 446 112.82666 956	97 98 99	225.65333 911
50	21.71472 410	100	43.42944 819	1	50	115.12925 465	100	230.25850 930

 $M = \log_{10} e = .43429 \ 44819 \ 03251 \ 82765$ $\log_{10} n = \log_e n \cdot \log_{10} e = M \log_e n.$ $\log_{10} e^x = x \cdot \log_{10} e = x \cdot M.$
$$\begin{split} 1/M &= \log_e 10 = 2.30258\,50929\,94045\,68402 \\ \log_e n &= \log_{10} n \cdot \log_e 10 = (1/M)\,\log_{10} n. \\ \log_e (10^n \cdot x) &= \log_e x + n(1/M). \end{split}$$

x	e		e^{-x}	Sin			h x	Tanh x
	Value	Log_{10}	Value	Value	Log_{10}	Value	Log_{10}	Value
0.00	1.0000	.00000	1.0000	0.0000	- ∞	1.0000	.00000	.00000
$0.01 \\ 0.02 \\ 0.03$	1.0101	.00434	.99005	0.0100	.00001	1.0001	.00002	.01000
	1.0202	.00869	.98020	0.0200	.30106	1.0002	.00009	.02000
	1.0305	.01303	.97045	0.0300	.47719	1.0005	.00020	.02999
0.0 <u>4</u>	1.0408	.01737	.96079	0.0400	.60218	1.0008	.00035	.03998
0.05	1.0513	.02171	.95123	0.0500	.69915	1.0013	.00054	.04996
0.06	1.0618	.02606	.94176	0.0600	.77841	1.0018	.00078	.05993
0.07	1.0725	.03040	.93239	0.0701	.84545	1.0025	.00106	.06989
0.08	1.0833	.03474	.92312	0.0801	.90355	1.0032	.00139	.07983
0.09	1.0942	.03909	.91393	0.0901	.95483	1.0041	.00176	.08976
0.10	1.1052	.04343	.90484	0.1002	.00072	1.0050	.00217	.09967
0.11	1.1163	.04777	.89583	0.1102	.04227	1.0061	.00262	.10956
0.12	1.1275	.05212	.88692	0.1203	.08022	1.0072	.00312	.11943
0.13	1.1388	.05646	.87810	0.1304	.11517	1.0085	.00366	.12927
0.14	1.1503	.06080	.86936	0.1405	.14755	1.0098	.00424	.13909
0.15	1.1618	.06514	.86071	0.1506	.17772	1.0113	.00487	.14889
0.16	1.1735	.06949	.85214	0.1607	.20597	1.0128	.00554	.15865
0.17	1.1853	.07383	.84366	0.1708	.23254	1.0145	.00625	.16838
0.18	1.1972	.07817	.83527	0.1810	.25762	1.0162	.00700	.17808
0.19	1.2092	.08252	.82696	0.1911	.28136	1.0181	.00779	.18775
0.20	1.2214	.08686	.81873	0.2013	.30392	1.0201	.00863	.19738
0.21 0.22 0.23	1.2337 1.2461 1.2586	.09120 .09554 .09989	.81058 .80252 .79453	$0.2115 \\ 0.2218 \\ 0.2320$.32541 .34592 .36555	$\begin{array}{c} 1.0221 \\ 1.0243 \\ 1.0266 \end{array}$.00951 .01043 .01139	.20697 .21652 .22603
$0.24 \\ 0.25 \\ 0.26$	1.2712 1.2840 1.2969	.10423 .10857 .11292	.78663 .77880 .77105	$\begin{array}{c} 0.2423 \\ 0.2526 \\ 0.2629 \end{array}$.38437 .40245 .41986	1.0289 1.0314 1.0340	.01239 .01343 .01452	.23550 .24492 .25430
0.27	1.3100	.11726	.76338	$0.2733 \\ 0.2837 \\ 0.2941$.43663	1.0367	.01564	.26362
0.28	1.3231	.12160	.75578		.45282	1.0395	.01681	.27291
0.29	1.3364	.12595	.74826		.46847	1.0423	.01801	.28213
0.30	1.3499	.13029	.74082	0.3045	.48362	1.0453	.01926	.29131
0.31	1.3634	.13463	.73345	0.3150	.49830	1.0484 1.0516 1.0549	.02054	.30044
0.32	1.3771	.13897	.72615	0.3255	.51254		.02187	.30951
0.33	1.3910	.14332	.71892	0.3360	.52637		.02323	.31852
0.34	1.4049	.14766	.71177	$0.3466 \\ 0.3572 \\ 0.3678$.53981	1.0584	.02463	.32748
0.35	1.4191	.15200	.70469		.55290	1.0619	.02607	.33638
0.36	1.4333	.15635	.69768		.56564	1.0655	.02755	.34521
0.37	·1.4477	.16069	.69073	$\begin{array}{c} 0.3785 \\ 0.3892 \\ 0.4000 \end{array}$.57807	1.0692	.02907	.35399
0.38	1.4623	.16503	.68386		.59019	1.0731	.03063	.36271
0.39	1.4770	.16937	.67706		.60202	1.0770	.03222	.37136
0.40	1.4918	.17372	.67032	0.4108	.61358	1.0811	.03385	.37995
$0.41 \\ 0.42 \\ 0.43$	1.5068 1.5220 1.5373	.17806 .18240 .18675	.66365 .65705 .65051	$0.4216 \\ 0.4325 \\ 0.4434$.62488 .63594 .64677	1.0852 1.0895 1.0939	.03552 .03723 .03897	.38847 .39693 .40532
0.44	1.5527	.19109	.64404	$0.4543 \\ 0.4653 \\ 0.4764$.65738	1.0984	.04075	.41364
0.45	1.5683	.19543	.63763		.66777	1.1030	.04256	.42190
0.46	1.5841	.19978	.63128		.67797	1.1077	.04441	.43008
0.47	1.6000	.20412	.62500	0.4875	.68797	1.1125	.04630	.43820
0.48	1.6161	.20846	.61878	0.4986	.69779	1.1174	.04822	.44624
0.49	1.6323	.21280	.61263	0.5098	.70744	1.1225	.05018	.45422
0.50	1.6487	.21715	.60653	0.5211	.71692	1.1276	.05217	.46212

x	e^x		e^{-x} Sinh x			Cos	h x	Tanh x
	Value	Log_{10}	Value	Value	Log_{10}	Value	Logio	Value
0.50	1.6487	.21715	.60653	0.5211	.71692	1.1276	.05217	.46212
$0.51 \\ 0.52 \\ 0.53$	1.6653 1.6820 1.6989	.22149 .22583 .23018	.60050 .59452 .58860	$\begin{array}{c} 0.5324 \\ 0.5438 \\ 0.5552 \end{array}$.72624 .73540 .74442	1.1329 1.1383 1.1438	.05419 .05625 .05834	.46995 .47770 .48538
0.54	1.7160	.23452	.58275	0.5666	.75330	1.1494	.06046	.49299
0.55	1.7333	.23886	.57695	0.5782	.76204	1.1551	.06262	.50052
0.56	1.7507	.24320	.57121	0.5897	.77065	1.1609	.06481	.50798
0.57	1.7683	.24755	.56553	0.6014 0.6131 0.6248	.77914	1.1669	.06703	.51536
0.58	1.7860	.25189	.55990		.78751	1.1730	.06929	.52267
0.59	1.8040	.25623	.55433		.79576	1.1792	.07157	.52990
0.60	1.8221	.26058	.54881	0.6367	.80390	1.1855	.07389	.53705
$0.61 \\ 0.62 \\ 0.63$	1.8404 1.8589 1.8776	.26492 .26926 .27361	.54335 .53794 .53259	$\begin{array}{c} 0.6485 \\ 0.6605 \\ 0.6725 \end{array}$.81194 .81987 .82770	1.1919 1.198 4 1.2051	.07624 .07861 .08102	.54413 .55113 .55805
0.64	1.8965	.27795	.52729	$\begin{array}{c} 0.6846 \\ 0.6967 \\ 0.7090 \end{array}$.83543	1.2119	.08346	.56490
0.65	1.9155	.28229	.52205		.84308	1.2188	.08593	.57167
0.66	1.9348	.28663	.51685		.85063	1.2258	.08843	.57836
0.67	1.9542	.29098	.51171	0.7213 0.7336 0.7461	.85809	1.2330	.09095	.58498
0.68	1.9739	.29532	.50662		.86548	1.2402	.09351	.59152
0.69	1.9937	.29966	.50158		.87278	1.2476	.09609	.59798
0.70	2.0138	.30401	.49659	0.7586	.88000	1.2552	.09870	.60437
$0.71 \\ 0.72 \\ 0.73$	2.0340	.30835	.49164	0.7712	.88715	1.2628	.10134	.61068
	2.0544	.31269	.48675	0.7838	.89423	1.2706	.10401	.61691
	2.0751	.31703	.48191	0.7966	.90123	1.2785	.10670	.62307
0.74	2.0959	.32138	.47711	0.8094	.90817	1.2865	.10942	.62915
0.75	2.1170	.32572	.47237	0.8223	.91504	1.2947	.11216	.63515
0.76	2.1383	.33006	.46767	0.8353	.92185	1.3030	.11493	.64108
$0.77 \\ 0.78 \\ 0.79$	2.1598	.33441	.46301	0.8484	.92859	1.3114	.11773	.64693
	2.1815	.33875	.45841	0.8615	.93527	1.3199	.12055	.65271
	2.2034	.34309	.45384	0.8748	.94190	1.3286	.12340	.65841
0.80	2.2255	.34744	.44933	0.8881	.94846	1.3374	.12627	.66404
0.81	2.2479	.35178	.44486	0.9015	.95498	1.3464	.12917	.66959
0.82	2.2705	.35612	.44043	0.9150	.96144	1.3555	.13209	.67507
0.83	2.2933	.36046	.43605	0.9286	.96784	1.3647	.13503	.68048
0.84	2.3164	.36481	.43171	0.9423	.97420	1.3740	.13800	.68581
0.85	2.3396	.36915	.42741	0.9561	.98051	1.3835	.14099	.69107
0.86	2.3632	.37349	.42316	0.9700	.98677	1.3932	.14400	.69626
0.87	2.3869	.37784	.41895	$\begin{array}{c} 0.9840 \\ 0.9981 \\ 1.0122 \end{array}$.99299	1.4029	.14704	.70137
0.88	2.4109	.38218	.41478		.99916	1.4128	.15009	.70642
0.89	2.4351	.38652	.41066		.00528	1.4229	.15317	.71139
0.90	2.4596	.39087	.40657	1.0265	.01137	1.4331	.15627	.71630
0.91	2.4843	.39521	.40252	1.0409	.01741	1.4434	.15939	.72113
0.92	2.5093	.39955	.39852	1.0554	.02341	1.4539	.16254	.72590
0.93	2.5345	.40389	.39455	1.0700	.02937	1.4645	.16570	.73059
0.94	2.5600	.40824	.39063	1.0847	.03530	1.4753	.16888	.73522
0.95	2.5857	.41258	.38674	1.0995	.04119	1.4862	.17208	.73978
0.96	2.6117	.41692	.38289	1.1144	.04704	1.4973	.17531	.74428
0.97	2.6379	.42127	.37908	1.1294	.05286	1.5085	.17855	.74870
0.98	2.6645	.42561	.37531	1.1446	.05864	1.5199	.18181	.75307
0.99	2.6912	.42995	.37158	1.1598	.06439	1.5314	.18509	.75736
1.00	2.7183	.43429	.36788	1.1752	.07011	1.5431	.18839	.76159

1.00 2.7183 .43429 .36788 1.1752 .07011 1.5431 1.8839 .76153 .76	x	e		e^{-x}	Sin			sh x	Tanh x
1.01 2.7456 43864 36422 1.1907 .07580 1.5549 .19171 .76576 1.02 2.7732 .44298 .36060 .08146 1.5669 .19504 .76981 .103 2.5011 .44732 .35701 1.2220 .08708 1.5790 .19339 .77391 .04 2.8292 .45167 .35345 1.2379 .09825 1.6033 .20516 .77881 .106 2.8564 .46085 .34994 1.2539 .09825 1.6033 .20515 .75816 .106 2.8564 .46085 .34646 1.2700 .10379 .16164 .20855 .75856 .07743 .47338 .33620 .3025 .11479 1.6421 .21541 .79321 .109 2.9743 .47338 .33620 .3025 .11479 1.6421 .21541 .79321 .109 2.9743 .47338 .33623 .13190 .12025 .16552 .21886 .76688 .1203 .1049 .10552 .21886 .76688 .1203 .109 .2743 .47338 .33628 .13190 .12025 .16552 .21886 .76688 .1213 .10344 .48207 .32956 .3524 .13111 .16820 .22582 .80406 .112 .30649 .48641 .32628 .3693 .13494 .16556 .22233 .80756 .113 .30957 .49075 .32303 .13863 .14720 .17233 .22636 .81441 .15 .31582 .49944 .31664 .4208 .15253 .17374 .23999 .817774 .116 .31899 .50378 .31349 .14382 .15783 .17517 .24346 .82104 .116 .31899 .50378 .31349 .14382 .15783 .17517 .24346 .82104 .119 .32544 .51247 .30728 .47355 .16836 .17807 .25422 .83651 .120 .33201 .52115 .30119 .50955 .17882 .18107 .25784 .8361 .223 .3872 .52984 .29523 .15460 .18920 .18412 .26510 .83961 .121 .33535 .52540 .28520 .5276 .18402 .18258 .26146 .83664 .2263 .28500 .5276 .18402 .18258 .26146 .83665 .22439 .15460 .18920 .18412 .26510 .83961 .223 .34903 .54287 .28650 .6619 .20464 .18288 .26146 .83664 .26466 .264		Value	Log_{10}	Value	Value	Log ₁₀	Value	Log_{10}	Value
1.02 2.7732	1.00	2.7183	.43429	.36788	1.1752	.07011			.76159
1.03									76576
1.06					1.2220	.08708			.77391
1.06									.77789
1.07 2.9154 .46470 .34301 1.2862 .10930 1.6292 .21197 .78946 .7982 .7943 .47338 .33622 1.3190 .12025 1.6552 .21886 .79688 .7968						.10379			.78181 .78566
1.08 2.9447 446904 .33660 1.3025 1.1479 1.6421 .21546 .79688 1.00 3.0042 47772 .33287 1.3356 12569 1.66652 .2233 80050 1.11 3.0344 48207 .32956 1.3524 .13111 1.6820 .22582 80400 1.12 3.0649 48641 .32628 1.3693 .13649 1.6956 .22931 .80750 1.13 3.0957 4.9075 .32303 1.3863 .14186 1.7093 .23283 .81100 1.14 3.1268 .49510 .31982 1.4035 .14720 1.7233 .22638 .81411 1.15 3.1582 .49944 .31664 1.4208 .15253 1.7374 .23990 .81773 1.16 3.1589 .50378 .31349 1.4382 .15783 1.7517 .24346 .82101 .117 3.2220 .50812 .31037 1.4558 .16811 1.7662 .24703 .82427 1.18 3.2544 .51247 .30728 1.4735 .16836 1.7808 .25062 .82741 .19 3.2871 .51681 .30422 1.4914 .17360 1.7957 .25422 .83051 .223 .33535 .52555 .29820 .15276 .18402 1.8412 .26510 .83961 .223 .33872 .52984 .29523 1.5460 .18920 1.8412 .26510 .83961 .233 .34212 .53418 .29229 1.5645 .19437 1.8568 .26876 .84251 .253 .4903 .54287 .28650 .6019 .20464 .18844 .27610 .84821 .253 .35966 .55590 .27804 .16593 .19931 .19931 .18725 .27742 .84544 .1273 .28365 .6209 .20975 .19045 .27979 .85100 .27824 .3538 .5331 .19951 .18725 .27942 .84544 .253 .35966 .55590 .27804 .6593 .21993 .19373 .28721 .85644 .253 .25365 .6209 .20975 .19045 .27979 .85100 .27824 .28565 .6209 .20975 .19045 .27979 .85100 .29467 .28650 .6019 .20464 .18884 .27610 .84821 .28510 .2865 .27527 .67788 .22499 .19460 .29931 .85641 .2933 .28721 .28650 .6019 .20464 .18884 .27610 .84821 .28510 .29033 .28721 .28565 .28083 .16400 .21485 .29033 .30217 .86677 .28650 .28686 .55590 .27804 .16788 .22499 .19460 .29093 .38512 .29083 .3940 .29467 .28484 .24631 .29930 .28484 .24631 .29930 .284				.34301	1.2862	.10930	•	.21197	.78946
1.10	1.08		.46904						.7 9320
1.11 3.0344									
1.12									
1.14 3.1268 .49510 .31982 1.4035 .14720 1.7233 .22636 .81441 1.15 3.1582 .49944 .31664 1.4208 .15253 1.7374 .23990 .81775 1.16 3.1899 .50378 .31349 1.4382 .15783 1.7517 .24346 .82105 .116 3.2202 .50812 .31037 1.4558 .16811 1.7662 .24703 .82425 .118 3.2544 .51247 .30728 1.4735 .16836 1.7808 .25062 .82745 .119 3.2871 .51681 .30422 1.4914 .17360 1.7957 .25422 .83055 .2203 .33201 .52115 .30119 1.5095 .17882 1.8107 .25784 .83365 .2233872 .52984 .29523 1.5460 .18920 1.8412 .26510 .83965 .223 .33872 .52984 .29523 1.5465 .19437 1.8568 .26876 .84255 .223 .34913 .54287 .28650 .6019 .20464 1.8884 .27610 .84825 .253 .25354 .54721 .28365 1.6209 .20975 1.9045 .27979 .85100 .27804 .16593 .21993 .19373 .28721 .55645 .28083 .16400 .21485 1.9208 .28349 .85386 .2938 .56024 .27527 .16788 .22499 .19540 .29093 .85915 .286676 .24660 .21485 .29093 .36328 .56024 .27527 .16788 .22499 .19540 .29093 .85915 .386676 .346676 .3	1.12	3.0649	.48641	.32628	1.3693	.13649	1.6956	.22931	80757
1.15									
1.16 3.1899 .50378 .31349 1.4382 .15783 1.7517 .24346 .82104 .117 3.2220 .50812 .31037 1.4558 .16811 1.7662 .24703 .82421 .18 3.2544 .51247 .30728 1.4735 .16836 1.7808 .25062 .82741 .19 3.2871 .51681 .30422 1.4914 .17360 1.7957 .25422 .83051 .20 3.3201 .52115 .30119 1.5095 .17882 1.8107 .25784 .83361 .21 3.3535 .52550 .29820 1.5276 .18402 1.8258 .26146 .83661 .22 3.3872 .52984 .29523 1.5460 .18920 1.8412 .26510 .83961 .23 3.4212 .53418 .29229 1.5645 .19437 1.8568 .26876 .84251 .24 3.4556 .53853 .28938 1.5831 .19951 1.8725 .27242 .84544 .125 3.4903 .54287 .28650 1.6019 .20464 .18884 .27610 .84821 .26 3.5254 .54721 .28365 1.6209 .20975 1.9045 .27979 .85100 .27806 .55590 .27804 1.6593 .21993 1.9373 .28721 .85641 .29 3.6328 .56024 .27527 .16788 .22499 .19540 .29093 .85911 .29 3.6328 .56024 .27527 .16788 .22499 .19540 .29093 .85911 .30 3.6693 .56458 .27253 1.6984 .23004 1.9709 .29467 .8617 .31 3.7062 .56893 .26982 1.7182 .23507 .19880 .30217 .86671 .35 3.8574 .58630 .25924 1.7182 .23507 .19880 .30217 .86671 .35 3.8574 .58630 .25924 1.7786 .25008 .20404 .30972 .87167 .35 3.8962 .59064 .25666 .8198 .26002 .20764 .31732 .87631 .39 .4.0149 .60367 .24908 1.8829 .27482 .21320 .32878 .88311 .40 .4.0552 .60801 .24660 .19043 .27974 .21509 .33262 .88531 .44 .4.0960 .61236 .24414 .1.9259 .28464 .2.1700 .33647 .88764 .4.2631 .62973 .23457 .20443 .30412 .24883 .35196 .89561 .44 .4.2007 .62538 .23693 .1.9919 .29926 .2228 .34807 .89376 .442 .4.371 .61670 .24471 .1.9477 .28952 .21894 .34033 .88961 .444 .4.2007 .62538 .23693 .1.9919 .29926 .2288 .34807 .89361 .444 .4.2007						,15253			.81775
1.18 3.2544 .51247 .30728 1.4735 .16836 1.7808 .25062 .82744 1.19 3.2871 .51681 .30422 1.4914 .17360 1.7957 .25422 .83055 1.20 3.3201 .52115 .30119 1.5095 .17882 1.8107 .25784 .83365 1.21 3.3572 .52984 .29523 1.5460 .18920 1.8412 .26510 .83961 1.22 3.34212 .53418 .29229 1.5645 .19437 1.8568 .26876 .84251 1.24 3.4556 .53853 .28938 1.5831 .19951 1.8725 .27242 .84546 1.25 3.4903 .54287 .28650 1.6019 .20464 1.8884 .27610 .84825 1.26 3.5660 .55590 .27804 1.6593 .21993 1.9349 .28721 .8654 1.27 3.56609 .55155 .28083 1.6400 .21485 1.9208	1.16				ĺ	.15783	i .		.82104
1.19 3.2871 .51681 .30422 1.4914 .17360 1.7957 .25422 .83053 1.20 3.3201 .52115 .30119 1.5095 .17882 1.8107 .25784 .83363 1.21 3.3535 .52550 .29820 1.5276 .18402 1.8258 .26146 .83661 1.22 3.3872 .52984 .29523 1.5460 .18920 1.8412 .26510 .83961 1.23 3.4212 .53418 .29229 1.5645 .19437 1.8568 .26876 .84251 1.24 3.4556 .53853 .28938 1.5831 .19951 1.8725 .27242 .84544 1.26 3.5254 .54721 .28365 1.6209 .20975 1.9045 .27979 .85100 1.27 3.5609 .55155 .28083 1.6400 .21485 1.9208 .28349 .85381 1.28 3.5966 .55590 .27804 1.6593 .21993 1.9373									
1.21 3.3535 .52550 .29820 1.5276 .18402 1.8258 .26146 .83666 1.22 3.3872 .52984 .29523 1.5460 .18920 1.8412 .26510 .83966 1.23 3.4212 .53418 .29229 1.5645 .19437 1.8568 .26876 .84251 1.24 3.4556 .53853 .28938 1.5831 .19951 1.8725 .27242 .84542 1.25 3.4903 .54287 .28650 1.6019 .20464 1.8884 .27610 .8482 1.26 3.5554 .54721 .28365 1.6019 .20464 1.8884 .27610 .8482 1.27 3.5609 .55155 .28083 1.6400 .21485 1.9208 .28349 .8538 1.28 3.5966 .55590 .27804 1.6593 .21993 1.9373 .28721 .85644 1.29 3.6328 .56024 .27527 1.6788 .22499 1.9540									.83058
1.22 3.3872 .52984 .29523 1.5460 .18920 1.8412 .26510 .83961 1.23 3.4212 .53418 .29229 1.5645 .19437 1.8568 .26876 .84251 1.24 3.4556 .53853 .28938 1.5831 .19951 1.8725 .27242 .84544 1.25 3.4903 .54287 .28650 1.6099 .20975 1.9045 .27979 .85100 1.27 3.5609 .55155 .28083 1.6400 .21485 1.9208 .28349 .85381 1.28 3.5966 .55590 .27804 1.6593 .21993 1.9373 .28721 .85641 1.29 3.6328 .56024 .27527 1.6788 .22499 1.9540 .29093 .8591 1.30 3.6693 .56458 .27253 1.6984 .23004 1.9709 .29467 .8617 1.31 3.7626 .56893 .26982 1.7182 .23507 1.9880	1.20	3.3201	.52115	.30119	1.5095	.17882	1.8107	.25784	.83365
1.23 3.4212 .53418 .29229 1.5645 .19437 1.8568 .26876 .84258 1.24 3.4556 .53853 .28938 1.5831 .19951 1.8725 .27242 .84541 1.25 3.4903 .54287 .28650 1.6019 .20464 1.8884 .27610 .84821 1.26 3.5254 .54721 .28365 1.6209 .20975 1.9045 .27979 .85101 1.27 3.5609 .55155 .28083 1.6400 .21485 1.9208 .28349 .85381 1.29 3.6328 .56024 .27527 1.6788 .22499 1.9540 .29093 .8591 1.30 3.6693 .56458 .27253 1.6984 .23004 1.9709 .29467 .8617 1.31 3.7062 .56893 .26982 1.7182 .23507 1.9880 .29422 .8642 1.32 3.7434 .57327 .26714 1.7381 .24009 2.0053	1.21						1.8258		.83668
1.25 3.4903 .54287 .28650 1.6019 .20464 1.8884 .27610 .84825 1.26 3.5254 .54721 .28365 1.6209 .20975 1.9045 .27979 .85100 1.27 3.56609 .55155 .28083 1.6400 .21485 1.9208 .28349 .85386 1.28 3.5966 .55590 .27804 1.6593 .21993 1.9540 .29093 .85913 1.30 3.6693 .56458 .27253 1.6984 .23004 1.9709 .29467 .86173 1.31 3.7062 .56893 .26982 1.7182 .23507 1.9880 .29842 .86421 1.32 3.7434 .57327 .26714 1.7381 .24009 2.0053 .30217 .86671 1.34 3.8190 .58195 .26185 1.7786 .25008 2.0404 .30972 .8716 1.35 3.8574 .58630 .25924 1.7991 .25505 2.0583	1.23								.84258
1.26 3.5254 .54721 .28365 1.6209 .20975 1.9045 .27979 .85106 1.27 3.5609 .55155 .28083 1.6400 .21485 1.9208 .28349 .85386 1.28 3.5966 .55590 .27804 1.6593 .21993 1.9373 .28721 .85641 1.29 3.6328 .56024 .27527 1.6788 .22499 1.9540 .29093 .8591 1.30 3.6693 .56458 .27253 1.6984 .23004 1.9709 .29467 .8617 1.31 3.7062 .56893 .26982 1.7182 .23507 1.9880 .29842 .8642 1.32 3.7434 .57327 .26714 1.7381 .24509 2.0228 .30594 .8692 1.34 3.8190 .58195 .26185 1.7786 .25008 2.0404 .30972 .8716 1.35 3.8574 .58630 .25924 1.7991 .25505 2.0583 <t< td=""><th>1.24</th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>.84546</td></t<>	1.24								.84546
1.28 3.5966 .55590 .27804 1.6593 .21993 1.9373 .28721 .85644 1.29 3.6328 .56024 .27527 1.6788 .22499 1.9540 .29093 .85913 1.30 3.6693 .56458 .27253 1.6984 .23004 1.9709 .29467 .86173 1.31 3.7062 .56893 .26982 1.7182 .23507 1.9880 .29842 .86673 1.33 3.7434 .57327 .26714 1.7381 .24009 2.0053 .30217 .86673 1.33 3.7810 .57761 .26448 1.7583 .24509 2.0228 .30594 .8692 1.34 3.8190 .58195 .26185 1.7786 .25008 2.0404 .30972 .87163 1.35 3.8574 .58630 .25924 1.7991 .25505 2.0583 .31352 .87403 1.36 3.8962 .59044 .25666 1.8198 .26002 2.0764	1.25 1.26								.84828
1.29 3.6328 .56024 .27527 1.6788 .22499 1.9540 .29093 .85913 1.30 3.6693 .56458 .27253 1.6984 .23004 1.9709 .29467 .86173 1.31 3.7062 .56893 .26982 1.7182 .23507 1.9880 .29842 .86423 1.32 3.7434 .57327 .26714 1.7381 .24009 2.0053 .30517 .86673 1.33 3.7810 .57761 .26448 1.7583 .24509 2.0228 .30594 .8692 1.34 3.8190 .58195 .26185 1.7786 .25008 2.0404 .30972 .8716 1.35 3.8574 .58630 .25924 1.7991 .25505 2.0583 .31352 .8740 1.36 3.8962 .59064 .25666 1.8198 .26002 2.0764 .31732 .8763 1.37 3.9354 .59498 .25411 1.8406 .26496 2.0947 <		3.5609							.85380
1.30 3.6693 .56458 .27253 1.6984 .23004 1.9709 .29467 .8617 1.31 3.7062 .56893 .26982 1.7182 .23507 1.9880 .29842 .8642 1.32 3.7434 .57327 .26714 1.7381 .24009 2.0053 .30217 .8667 1.33 3.7810 .57761 .26448 1.7583 .24509 2.0228 .30594 .8692 1.34 3.8190 .58195 .26185 1.7786 .25008 2.0404 .30972 .8716 1.35 3.8574 .58630 .25924 1.7991 .25505 2.0583 .31352 .8740 1.36 3.8962 .59064 .25666 1.8198 .26002 2.0764 .31732 .8763 1.37 3.9354 .59498 .25411 1.8406 .26496 2.0947 .32113 .87863 1.38 3.9749 .59933 .25158 1.8617 .26990 2.1132									.85648 85013
1.31 3.7062 .56893 .26982 1.7182 .23507 1.9880 .29842 .86422 1.32 3.7434 .57327 .26714 1.7381 .24009 2.0053 .30217 .86673 1.33 3.7810 .57761 .26448 1.7583 .24509 2.0228 .30594 .86923 1.34 3.8190 .58195 .26185 1.7786 .25008 2.0404 .30972 .87167 1.35 3.8574 .58630 .25924 1.7991 .25505 2.0583 .31552 .87401 1.36 3.8962 .59064 .25666 1.8198 .26002 2.0764 .31732 .8763 1.37 3.9354 .59498 .25411 1.8406 .26496 2.0947 .32113 .87863 1.39 4.0149 .60367 .24908 1.8829 .27482 2.1320 .32878 .8831 1.40 4.0552 .60801 .24660 1.9043 .27974 2.1509									.86172
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.86428
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.57327						.86678
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		l		i	l				l
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.35	3.8574	.58630	.25924	1.7991	.25505	2,0583	.31352	.87405
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1		1					.87639
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.88095
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		4.0149	.60367	.24908	1.8829	.27482	2.1320	.32878	.88317
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.88535
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.88749
1.45 4.2631 .62973 .23457 2.0143 .30412 2.2488 .35196 .89569 1.46 4.3060 .63407 .23224 2.0369 .30896 2.2691 .35585 .89769 1.47 4.3492 .63841 .22993 2.0597 .31379 2.2896 .35976 .89958 1.48 4.3929 .64276 .22764 2.0827 .31862 2.3103 .36367 .90147									.89167
1.46 4.3060 .63407 .23224 2.0369 .30896 2.2691 .35585 .89764 1.47 4.3492 .63841 .22993 2.0597 .31379 2.2896 .35976 .89958 1.48 4.3929 .64276 .22764 2.0827 .31862 2.3103 .36367 .90147									.89370
1.47 4.3492 .63841 .22993 2.0597 .31379 2.2896 .35976 .89958 1.48 4.3929 .64276 .22764 2.0827 .31862 2.3103 .36367 .90143									.89569
1.48 4.3929 .64276 .22764 2.0827 .31862 2.3103 .36367 .90147						.31379		.35976	.89958
						.31862			.90147 .90332
									.90515

	_	æ	e^{-x}	G:-	L.	6.7		
x	Value	$\operatorname{Log_{10}}$	Value	Value	h x Log ₁₀	Value	Sh x Log ₁₀	Tanh x Value
1.50	4.4817	.65144	.22313	2.1293	.32823	2.3524	.37151	.90515
1.51	4.5267	.65578	.22091	2.1529	.33303	2.3738	.37545	.90694
1.52	4.5722	.66013	.21871	2.1768	.33781	2.3955	.37939	.90870
1.53	4.6182	.66447	.21654	2.2008	.34258	2.4174	.38334	.91042
1.54	4.6646	.66881	.21438	2.2251	.34735	2.4395	.38730	.91212
1.55	4.7115	.67316	.21225	2.2496	.35211	2.4619	.39126	.91379
1.56	4.7588	.67750	.21014	2.2743	.35686	2.4845	.39524	.91542
1.57	4.8066	.68184	.20805	2.2993	.36160	2.5073	.39921	.91703
1.58	4.8550	.68619	.20598	2.3245	.36633	2.5305	.40320	.91860
1.59	4.9037	.69053	.20393	2.3499	.37105	2.5538	.40719	.92015
1.60	4.9530	.69487	.20190	2.3756	.37577	2.5775	.41119	.92167
1.61	5.0028	.69921	.19989	2.4015 2.4276 2.4540	.38048	2.6013	.41520	.92316
1.62	5.0531	.70356	.19790		.38518	2.6255	.41921	.92462
1.63	5.1039	.70790	.19593		.38987	2.6499	.42323	.92606
1.64	5.1552	.71224	.19398	2.4806 2.5075 2.5346	.39456	2.6746	.42725	.92747
1.65	5.2070	.71659	.19205		.39923	2.6995	.43129	.92886
1.66	5.2593	.72093	.19014		.40391	2.7247	.43532	.93022
1.67	5.3122	.72527	.18825	2.5620	.40857	2.7502	.43937	.93155
1.68	5.3656	.72961	.18637	2.5896	.41323	2.7760	.44341	.93286
1.69	5.4195	.73396	.18452	2.6175	.41788	2.8020	.44747	.93415
1.70	5.4739	.73830	.18268	2.6456	.42253	2.8283	.45153	.93541
1.71 1.72 1.73	5.5290	.74264	.18087	2.6740	.42717	2.8549	.45559	.93665
	5.5845	.74699	.17907	2.7027	.43180	2.8818	.45966	.93786
	5.6407	.75133	.17728	2.7317	.43643	2.9090	.46374	.93906
1.74	5.6973	.75567	.17552	2.7609	.44105	2.9364	.46782	.94023
1.75	5.7546	.76002	.17377	2.7904	.44567	2.9642	.47191	.94138
1.76	5.8124	.76436	.17204	2.8202	.45028	2.9922	.47600	.94250
1.77	5.8709	.76870	.17033	2.8503	.45488	3.0206	.48009	.94361
1.78	5.9299	.77304	.16864	2.8806	.45948	3.0492	.48419	.94470
1.79	5.9895	.77739	.16696	2.9112	.46408	3.0782	.48830	.94576
1.80	6.0496	.78173	.16530	2.9422	.46867	3.1075	.49241	.94681
1.81	$6.1104 \\ 6.1719 \\ 6.2339$.78607	.16365	2.9734	.47325	3.1371	.49652	.94783
1.82		.79042	.16203	3.0049	.47783	3.1669	.50064	.94884
1.83		.79476	.16041	3.0367	.48241	3.1972	.50476	.94983
1.84	$\begin{array}{c} 6.2965 \\ 6.3598 \\ 6.4237 \end{array}$.79910	.15882	3.0689	.48698	3.2277	.50889	.95080
1.85		.80344	.15724	3.1013	.49154	3.2585	.51302	.95175
1.86		.80779	.15567	3.1340	.49610	3.2897	.51716	.95268
1.87	6.4883	.81213	.15412	3.1671	.50066	3.3212	.52130	.95359
1.88	6.5535	.81647	.15259	3.2005	.50521	3.3530	.52544	.95449
1.89	6.6194	.82082	.15107	3.2341	.50976	3.3852	.52959	.95537
1.90	6.6859	.82516	.14957	3.2682	.51430	3.4177	.53374	.95624
1.91	6.7531	.82950	.14808	3.3025	.51884	3.4506	.53789	.95709
1.92	6.8210	.83385	.14661	3.3372	.52338	3.4838	.54205	.95792
1.93	6.8895	.83819	.14515	3.3722	.52791	3.5173	.54621	.95873
1.94	6.9588	.84253	.14370	3.4075	.53244	3.5512	.55038	.95953
1.95	7.0287	.84687	.14227	3.4432	.53696	3.5855	.55455	.96032
1.96	7.0993	.85122	.14086	3.4792	.54148	3.6201	.55872	.96109
1.97 1.98 1.99	7.1707	.85556	.13946	3.5156	.54600	3.6551	.56290	.96185
	7.2427	.85990	.13807	3.5523	.55051	3.6904	.56707	.96259
	7.3155	.86425	.13670	3.5894	.55502	3.7261	.57126	.96331
2.00	7.3891	.86859	.13534	3.6269	.55953	3.7622	.57544	.96403

x		,* T	e^{-x}		ıh x		sh x	Tanh x
	Value	Log ₁₀	Value	Value	Log ₁₀	Value	Log ₁₀	Value
2.00	7.3891	.86859	.13534	3.6269	.55953	3.7622	.57544	.96403
2.01	7.4633	.87293	.13399	3,6647	.56403	3.7987	.57963	.96473
2.02	7.5383	.87727	.13266	3.7028	.56853	3.8355	.58382	.96541
2.03	7.6141	.88162	.13134	3.7414	.57303	3.8727	.58802	.96609
2.04 2.05 2.06	7.6906	.88596	.13003	3.7803	.57753	3.9103	.59221	.96675
	7.7679	.89030	.12873	3.8196	.58202	3.9483	.59641	.96740
	7.8460	.89465	.12745	3.8593	.58650	3.9867	.60061	.96803
2.07	7.9248	.89899	.12619	3.8993	.59099	4.0255	.60482	.96865
2.08	8.0045	.90333	.12493	3.9398	.59547	4.0647	.60903	.96926
2.09	8.0849	.90768	.12369	3.9806	.59995	4.1043	.61324	.96986
2.10	8.1662	.91202	.12246	4.0219	.60443	4.1443	.61745	.97045
2.11 2.12 2.13	8.2482	.91636	.12124	4.0635	.60890	4.1847	.62167	.97103
	8.3311	.92070	.12003	4.1056	.61337	4.2256	.62589	.97159
	8.4149	.92505	.11884	4.1480	.61784	4.2669	.63011	.97215
2.14	8.4994	.92939	.11765	4.1909	.62231	4.3085	.63433	.97269
2.15	8.5849	.93373	.11648	4.2342	.62677	4.3507	.63856	.97323
2.16	8.6711	.93808	.11533	4.2779	.63123	4.3932	.64278	.97375
2.17	8.7583	.94242	.11418	4.3221	.63569	4.4362	.64701	.97426
2.18	8.8463	.94676	.11304	4.3666	.64015	4.4797	.65125	.97477
2.19	8.9352	.95110	.11192	4.4116	.64460	4.5236	.65548	.97526
2.20	9.0250	.95545	.11080	4.4571	.64905	4.5679	.65972	.97574
2.21	9.1157	.95979	.10970	4.5030	.65350	4.6127	.66396	.97622
2.22	9.2073	.96413	.10861	4.5494	.65795	4.6580	.66820	.97668
2.23	9.2999	.96848	.10753	4.5962	.66240	4.7037	.67244	.97714
2.24	9.3933	.97282	.10646	4.6434	.66684	4.7499	.67668	.97759
2.25	9.4877	.97716	.10540	4.6912	.67128	4.7966	.68093	.97803
2.26	9.5831	.98151	.10435	4.7394	.67572	4.8437	.68518	.97846
2.27	9.6794	.98585	.10331	4.7880	.68016	4.8914	.68943	.97888
2.28	9.7767	.99019	.10228	4.8372	.68459	4.9395	.69368	.97929
2.29	9.8749	.99453	.10127	4.8868	.68903	4.9881	.69794	.97970
2.30	9.9742	.99888	.10026	4.9370	.69346	5.0372	.70219	.98010
2.31	10.074	.00322	.09926	4.9876	.69789	5.0868	.70645	.98049
2.32	10.176	.00756	.09827	5.0387	.70232	5.1370	.71071	.98087
2.33	10.278	.01191	.09730	5.0903	.70675	5.1876	.71497	.98124
2.34	10.381	.01625	.09633	5.1425	.71117	5.2388	.71923	.98161
2.35	10.486	.02059	.09537	5.1951	.71559	5.2905	.72349	.98197
2.36	10.591	.02493	.09442	5.2483	.72002	5.3427	.72776	.98233
2.37	10.697	.02928	.09348	5.3020	.72444	5.3954	.73203	.98267
2.38	10.805	.03362	.09255	5.3562	.72885	5.4487	.73630	.98301
2.39	10.913	.03796	.09163	5.4109	.73327	5.5026	.74056	.98335
2.40	11.023	.04231	.09072	5.4662	73769	5.5569	.74484	.98367
$2.41 \\ 2.42 \\ 2.43$	11.134	.04665	.08982	5.5221	.74210	5.6119	.74911	.98400
	11.246	.05099	.08892	5.5785	.74652	5.6674	.75338	.98431
	11.359	.05534	.08804	5.6354	.75093	5.7235	.75766	.98462
$2.44 \\ 2.45 \\ 2.46$	11.473	.05968	.08716	5.6929	.75534	5.7801	.76194	.98492
	11.588	.06402	.08629	5.7510	.75975	5.8373	.76621	.98522
	11.705	.06836	.08543	5.8097	.76415	5.8951	.77049	.98551
2.47	11.822	.07271	.08458	5.8689	.76856	5.9535	.77477	.98579
2.48	11.941	.07705	.08374	5.9288	.77296	6.0125	.77906	.98607
2.49	12.061	.08139	.08291	5.9892	.77737	6.0721	.78334	.98635
2.50	12.182	.08574	.08208	6.0502	.78177	6.1323	.78762	.98661

x	e ^a		e^{-x}	Sinl	ıx I	Cos	h x	Tanh x
	Value	Log_{10}	Value	Value	Log_{10}	Value	Log ₁₀	Value
2.50	12.182	.08574	.08208	6.0502	.78177	6.1323	.78762	.98661
2.51	12.305	.09008	.08127	6.1118	.78617	6.1931	.79191	.98688
2.52	12.429	.09442	.08046	6.1741	.79057	6.2545	.79619	.98714
2.53	12.554	.09877	.07966	6.2369	.79497	6.3166	.80048	.98739
2.54	12.680	.10311	.07887	6.3004	.79937	6.3793	.80477	.98764
2.55	12.807	.10745	.07808	6.3645	.80377	6.4426	.80906	.98788
2.56	12.936	.11179	.07730	6.4293	.80816	6.5066	.81335	.98812
2.57	13.066	.11614	.07654	6.4946	.81256	$\begin{array}{c} 6.5712 \\ 6.6365 \\ 6.7024 \end{array}$.81764	.98835
2.58	13.197	.12048	.07577	6.5607	.81695		.82194	.98858
2.59	13.330	.12482	.07502	6.6274	.82134		.82623	.98881
2.60	13.464	.12917	.07427	6.6947	.82573	6.7690	.83052	.98903
$2.61 \\ 2.62 \\ 2.63$	13.599 13.736 13.874	.13351 .13785 .14219	.07353 .07280 .07208	6.7628 6.8315 6.9008	.83012 .83451 .83890	$\begin{array}{c} 6.8363 \\ 6.9043 \\ 6.9729 \end{array}$.83482 .83912 .84341	.98924 .98946 .98966
2.64 2.65 2.66	14.013	.14654	.07136	6.9709	.84329	7.0423	.84771	.98987
	14.154	.15088	.07065	7.0417	.84768	7.1123	.85201	.99007
	14.296	.15522	.06995	7.1132	.85206	7.1831	.85631	.99026
2.67	14.440	.15957	.06925	7.1854	.85645	7.2546	.86061	.99045
2.68	14.585	.16391	.06856	7.2583	.86083	7.3268	.86492	.99064
2.69	14.732	.16825	.06788	7.3319	.86522	7.3998	.86922	.99083
2.70	14.880	.17260	.06721	7.4063	.86960	7.4735	.87352	.99101
$2.71 \\ 2.72 \\ 2.73$	15.029	.17694	.06654	7.4814	.87398	7.5479	.87783	.99118
	15.180	.18128	.06587	7.5572	.87836	7.6231	.88213	.99136
	15.333	.18562	.06522	7.6338	.88274	7.6991	.88644	.99153
2.74 2.75 2.76	15.487	.18997	.06457	7.7112	.88712	7.7758	.89074	.99170
	15.643	.19431	.06393	7.7894	.89150	7.8533	.89505	.99186
	15.800	.19865	.06329	7.8683	.89588	7.9316	.89936	.99202
2.77 2.78 2.79	15.959	.20300	.06266	7.9480	.90026	8.0106	.903 6 7	.99218
	16.119	.20734	.06204	8.0285	.90463	8.0905	.90798	.99233
	16.281	.21168	.06142	8.1098	.90901	8.1712	.91229	.99248
2.80	16.445	.21602	.06081	8.1919	.91339	8.2527	.91660	.99263
2.81	16.610	.22037	.06020	8.2749	.91776	8.3351	.92091	.99278
2.82	16.777	.22471	.05961	8.3586	.92213	8.4182	.92522	.99292
2.83	16.945	.22905	.05901	8.4432	.92651	8.5022	.92953	.99306
2.84	17.116	.23340	.05843	8.5287	.93088	8.5871	.93385	.99320
2.85	17.288	.23774	.05784	8.6150	.93525	8.6728	.93816	.99333
2.86	17.462	.24208	.05727	8.7021	.93963	8.7594	.94247	.99346
2.87	17.637	.24643	.05670	8.7902	.94400	8.8469	.94679	.99359
2.88	17.814	.25077	.05613	8.8791	.94837	8.9352	.95110	.99372
2.89	17.993	.25511	.05558	8.9689	.95274	9.0244	.95542	.99384
2.90	18.174	.25945	.05502	9.0596	.95711	9.1146	.95974	.99396
2.91 2.92 2.93	18.357	.26380	.05448	9.1512	.96148	9.2056	.96405	.99408
	18.541	.26814	.05393	9.2437	.96584	9.2976	.96837	.99420
	18.728	.27248	.05340	9.3371	.97021	9.3905	.97269	.99431
2.94 2.95 2.96	19.106	.27683 .28117 .28551	.05287 .05234 .05182	9.4315 9.5268 9.6231	.97458 .97895 .98331	9.4844 9.5791 9.6749	.97701 .98133 .98565	.99443 .99454 .99464
2.97	19.688	.28985	.05130	9.7203	.98768	9.7716	.98997	.99475
2.98		.29420	.05079	9.8185	.99205	9.8693	.99429	.99485
2.99		.29854	.05029	9.9177	.99641	9.9680	.99861	.99496
3.00	20.086	.30288	.04979	10.018	.00078	10.068	.00293	.99505

	e	x	e^{-x}	Sin	h x	Cos	sh x	Tanh x
x.	Value	$\mathbf{Log_{10}}$	Value	Value	Log_{10}	Value	Log_{10}	Value
3.00	20.086	.30288	.04979	10.018	.00078	10.068	.00293	.99505
3.05	21.115	.32460	.04736	10.534	.02259	10.581	.02454	.99552
3.10	22.198	.34631	.04505	11.076	.04440	11.122	.04616	.99595
3.15	23.336	.36803	.04285	11.647	.06620	11.689	.06779	.99633
3.20	$\begin{array}{c} 24.533 \\ 25.790 \\ 27.113 \end{array}$.38974	.04076	12.246	.08799	12.287	.08943	.99668
3.25		.41146	.03877	12.876	.10977	12.915	.11108	.99700
3.30		.43317	.03688	13.538	.13155	13.575	.13273	.99728
3.35	28.503	.45489	.03508	14.234	.15332	14.269	.15439	.99754
3.40	29.964	.47660	.03337	14.965	.17509	14.999	.17605	.99777
3.45	31.500	.49832	.03175	15.734	.19685	15.766	.19772	.99799
3.50	33.115	.52003	.03020	16.543	.21860	16.573	.21940	.99818
3.55	34.813	.54175	.02872	17.392	.24036	17.421	.24107	.99835
3.60	36.598	.56346	.02732	18.285	.26211	18.313	.26275	.99851
3.65	38.475	.58517	.02599	19.224	.28385	19.250	.28444	.99865
3.70	40.447	.60689	.02472	20.211	.30559	20.236	.30612	.99878
3.75	42.521	.62860	.02352	21.249	.32733	21.272	.32781	.99889
3.80	44.701	.65032	.02237	22.339	.34907	22.362	.34951	.99900
3.85	46.993	.67203	.02128	23.486	.37081	23.507 24.711 25.977	.37120	.99909
3.90	49.402	.69375	.02024	24.691	.39254		.39290	.99918
3.95	51.935	.71546	.01925	25.958	.41427		.41459	.99926
4.00	54.598	.73718	.01832	27.290	.43600	27.308	.43629	.99933
4.10	60.340	.78061	.01657	30.162	.47946	30.178	.47970	.99945
4.20	66.686	.82404	.01500	33.336	.52291	33.351	.52310	.99955
4.30	73.700	.86747	.01357	36.843	.56636	36.857	.56652	.99963
4.40	81.451	.91090	.01228	40.719	.60980	40.732	.60993	.99970
4.50	90.017	.95433	.01111	45.003	.65324	45.014	.65335	.99975
4.60	99.484	.99775	.01005	49.737	.69668	49.747	.69677	.99980
4.70	109.95	.04118	.00910	54.969	.74012	54.978	.74019	.99983
4.80	121.51	.08461	.00823	60.751	.78355	60.759	.78361	.99986
4.90	134.29	.12804	.00745	67.141	.82699	67.149	.82704	.99989
5.00	148.41	.17147	.00674	74.203	.87042	74.210	.87046	.99991
5.10	164.02	.21490	.00610	82.008	.91386	82.014	.91389	.99993
5.20	181.27	.25833	.00552	90.633	.95729	90.639	.95731	.99994
5.30	200.34	.30176	.00499	100.17	.00072	100.17	.00074	.99995
5.40	221.41	.34519	.00452	110.70	.04415	110.71	.04417	.99996
5.50	244.69	.38862	.00409	122.34	.08758	122.35	.08760	.99997
5.60	270.43	.43205	.00370	135.21	.13101	135.22	.13103	.99997
5.70	298.87	.47548	.00335	149.43	.17444	149.44	.17445	.99998
5.80	330.30	.51891	.00303	165.15	.21787	165.15	.21788	.99998
5.90	365.04	.56234	.00274	182.52	.26130	182.52	.26131	.99998
6.00	403.43	.60577	.00248	201.71	.30473	201.72	.30474	.99999
6.25	518.01	.71434	.00193	259.01	.41331	259.01	.41331	.99999
6.50	665.14	.82291	.00150	332.57	.52188	332.57	.52189	1.0000
6.75	854.06	.93149	.00117	427.03	.63046	427.03	.63046	1.0000
7.00	1096.6	.04006	.00091	548.32	.73903	548.32	.73903	1.0000
7.50	1808.0	.25721	.00055	904.02	.95618	904.02	.95618	1.0000
8.00	2981.0	.47436	.00034	1490.5	.17333	1490.5	.17333	1.0000
8.50	4914.8	.69150	.00020	2457.4	.39047	2457.4	.39047	1.0000
9.00	8103.1	.90865	.00012	4051.5	.60762	4051.5	.60762	1.0000
9.50	13360.	.12580	.00007	6679.9	.82477	6679.9	.82477	1.0000
10.00	22026.	.34294	.00005	11013.	.04191	11013.	.04191	1.0000

[Characteristics of Logarithms omitted—determine by rule from the value]

·	0	'	10) '	20	0'	30)′	40	v	50	ν
_	Value	Log_{10}	Value	Log_{10}	Value		Value	Log_{10}	Value	Log_{10}	Value	
3	.00015	.8817 .4837 .8358	.00004 .00016 .0004 .0008 .0013	.0156 .5532 .8828	.00004 .00016 .0004 .0008	.1315 .6176	.0000 5 .0002 .0005 .0009	.2796 .2338 .6775 .9697	.0000 5 .0002 .0005 .0010	.3254	.0001 8 .0003 .0006 .0011	5.7223 .4081 .7862 .0487 .2499
g	.0027 .0037 .0049 .0062	.5713 .6872 .7893	.0020 .0029 .0039 .0051 .0064	.3078 .4614 .5918 .7051 .8052	.0022 .0031 .0041 .0053 .0066	.3354 .4845 .6117 .7226 .8208	.0023 .0032 .0043 .0055	.3621 .5071 .6312 .7397 .8361	.0024 .0034 .0045 .0057	.3880 .5290 .6503 .7566 .8512	.0026 .0036 .0047 .0059 .0073	.4132 .5504 .6689 .7731 .8660
11 12 13	.0109 .0128 .0149	.8806 .9631 .0385 .1077 .1718	.0079 .0095 .0112 .0131 .0152		.0081 .0097 .0115 .0135 .0156	.9090 .9890 .0622 .1296 .1921 .2504	.0084 .0100 .0119 .0138 .0159	.9229 .0016 .0738 .1404 .2021	.0086 .0103 .0122 .0142 .0163	.9365 .0141 .0853 .1510 .2120	.0089 .0106 .0125 .0145 .0167	.9499 .0264 .0966 .1614 .2218
16 17 18	0.0194 0.0218 0.0245 0.0272	.2871 .3394 .3887 .4352 .4793	.0198 .0223 .0249 .0277	.2961 .3478 .3966 .4427	.0202 .0227 .0254 .0282	.3049 .3561 .4045 .4502	.0206 .0231 .0258 .0287 .0317	.3137 .3644 .4123 .4576	.0210 .0236 .0263 .0292 .0322	.3223 .3726 .4200 .4649	.0214 .0240 .0268 .0297	.3309 .3806 .4276 .4721
22 23 24 24	3.0397 4.0432 5.0468	.5213 .5612 .5993 .6357 .6707	.0337 .0370 .0403 .0438 .0475	.5281 .5677 .6055 .6417	.0343 .0375 .0409 .0444 .0481	.5348 .5741 .6116 .6476	.0348 .0381 .0415 .0450 .0487	.5415 .5805 .6177 .6534 .6876	.0353 .0386 .0421 .0456 .0493	.5481 .5868 .6238 .6592 .6932	.0359 .0392 .0426 .0462 .0500	.5547 .5931 .6298 .6650
26 27 28 29 30	7 .0545 8 .0585 9 .0627 0 .0670	.7042 .7364 .7673 .7972 .8260	.0512 .0552 .0592 .0634 .0677	.7096 .7416 .7724 .8020 .8307	.0519 .0558 .0599 .0641 .0684	.7151 .7468 .7774 .8069 .8354		.7204 .7520 .7824 .8117 .8400	.0572 .0613 .0655 .0699	.7258 .7572 .7874 .8165 .8446	.0538 .0578 .0620 .0663 .0707	.7311 .7623 .7923 .8213 .8492
3; 3; 3 ;	2.0760 3.0807 4.0855 5.0904	.8538 .8807 .9067 .9319 .9563	.0722 .0767 .0815 .0863	.8583 .8851 .9109 .9360	.0729 .0775 .0823 .0871 .0921	.8629 .8894 .9152 .9401	.0783 .0831 .0879	.8673 .8938 .9194 .9442 .9682	.0791 .0839 .0888 .0938	.8718 .8981 .9236 .9482	.0799 .0847 .0896	.8763 .9024 .9277 .9523 .9761
3 4	7.1007 8.1060 9.1114 0.1170	.9800 .0030 .0253 .0470	.0963 .1016 .1069 .1123 .1179	.9838 .0067 .0289 .0505 .0716	.0972 .1024 .1078 .1133 .1189	.0326 .0541 .0750	.1033 .1087 .1142 .1198	.9915 .0142 .0362 .0576	.1042 .1096 .1151 .1207	.0817	.1051 .1105 .1160	.0853
4 4 4 4	3 .1343 4 .1403 5 .1464	.0887 .1087 .1282 .1472 .1657	.1236 .1294 .1353 .1413	.0920 .1119 .1314 .1503 .1687	.1246 .1304 .1363 .1424 .1485	.0954 .1152 .1345 .1534 .1718	.1314 .1373 .1434 .1495	.0987 .1185 .1377 .1565	.1323 .1383 .1444 .1506	.1778	.1333 .1393 .1454 .1516	.1808
4	6 .1527 7 .1590 8 .1654 9 .1720 0 .1786	.1838 .2014 .2186 .2355 .2519	.1538 .1600 .1665 .1731 .1797	.1867 .2043 .2215 .2382 .2546		.2410 .2573	.1622 .1687 .1753 .1820	.1926 .2101 .2271 .2437	.1633 .1698 .1764 .1831	.1956 .2129 .2299 .2465	.1644 .1709 .1775	.2327 .2492 .2653
5 5 5	1.1853 2.1922 3.1991 4.2061 5.2132	.2680 .2837 .2991 .3141	.2073		.1945 .2014 .2085	.3041 .3190	.1956 .2026 .2096 .2168	.3361	.1968 .2038 .2108 .2180	.3239 .3384	.1979 .2049 .2120 .2192	.2965 .3116 .3264 .3408
555	6 .2204 7 .2277 8 .2350 9 .2425	.3432 .3573 .3711	.2216 .2289 .2363	.3456 .3596 .3734	.2228 .2301 .2375	.3480 .3620 .3757	$\begin{array}{c c} .2240 \\ .2314 \\ .2388 \end{array}$.3503 .3643 .3779	$\begin{array}{c c} 3 & .2252 \\ 3 & .2326 \\ 2 & .2400 \end{array}$.3666 .3802	.2338	.3689 .3824

[Characteristics of Logarithms omitted—determine by rule from the value]

	_	,		0.7	-	~′	- 0	^/	1 4	01		
°	0 Value	Log_{10}	Value	$_{ m Log_{10}}^{ m 0'}$	Value	0' Log10	Value	$_{\mathrm{Log}_{10}}^{\prime}$	Value	$\begin{array}{c} 0' \\ \text{Log}_{10} \end{array}$	Value	Loga
	.2500 .2576	.3979 .4109	.2513 .2589	.4001 .4131	.2525 .2601	.4023 .4152 .4279	.2538 .2614 .2691	.4045 .4173 .4300	.2551 .2627 .2704	.4066 .4195	.2563 .2640	.4088 .4216
63 64	.2653 .2730 .2808	.4237 .4362 .4484	.2665 .2743 .2821	.4258 .4382 .4504	.2678 .2756 .2834	.4403 .4524	.2769 .2847	.4423 .4545	.2782 .2861	.4320 .4444 .4565	.2717 .2795 .2874	.4341 .4464 .4584
67 68	.2966 .3046 .3127	.4604 .4722 .4838 .4951	.2900 .2980 .3060 .3140	.4624 .4742 .4857 .4970	.2913 .2993 .3073 .3154	.4644 .4761 .4876 .4989	.2927 .3006 .3087 .3167	.4664 .4780 .4895 .5007	.2940 .3020 .3100 .3181	.4683 .4799 .4914 .5026	.2953 .3033 .3113 .3195	.4703 .4819 .4932 .5044
70 71	.3372	.5063 .5172 .5279	.3222 .3304 .3386	.5081 .5190 .5297	.3235 .3317 .3400	.5099 .5208 .5314	.3249 .3331 .3413 .3496	.5117 .5226 .5332	.3263 .3345 .3427	.5136 .5244 .5349	.3276 .3358 .3441	.5154 .5261 .5367
72 73 74 75	.3538 .3622	.5384 .5488 .5589	.3469 .3552 .3636	.5402 .5505 .5606	.3483 .3566 .3650	.5419 .5522 .5623	.3580 .3664 .3748	.5436 .5539 .5639 .5738	.3510 .3594 .3678 .3762	.5454 .5556 .5656	.3524 .3608 .3692	.5471 .5572 .5672
76 77 78		.5689 .5787 .5883 .5977 .6070	.3720 .3805 .3889 .3975 .4060	.5705 .5803 .5899 .5993 .6085	.3734 .3819 .3904 .3989 .4075		.3833 .3918 .4003 .4089	.5735 .5835 .5930 .6024 .6116	.3847 .3932 .4017 .4103	.5754 .5851 .5946 .6039 .6131	.3776 .3861 .3946 .4032 .4117	.5771 .5867 .5962 .6055 .6146
80 81	.4132 .4218 .4304	.6161 .6251 .6339 .6425	.4146 .4232 .4319	.6176 .6266 .6353 .6440	.4160	.6191 .6280	.4175 .4261 .4347 .4434	.6206 .6295 .6382 .6468	.4189 .4275 .4362 .4448	.6221 .6310 .6397 .6482	.4203 .4290 .4376 .4463	.6236 .6324 .6411 .6496
84 85 86	.4477 .4564 .4651	.6510 .6594 .6676	.4492 .4579 .4666	.6524 .6607 .6689	.4506 .4593 .4680	.6538 .6621 .6703	.4521 .4608 .4695	.6552 .6635 .6716	.4535 .4622 .4709	.6566 .6649 .6730	.4550 .4637 .4724	.6580 .6662 .6743
88 89		.6756 .6835 .6913	.4753 .4840 .4937	.6770 .6848 .6926 .7002	.4767 .4855 .4942	.6783 .6862 .6939 .7015	.4782 .4869 .4956	.6796 .6875 .6952	.4796 .4884 .4971 .5058	.6809 .6887 .6964 .7040	.4811 .4898 .4985	.6822 .6900 .6977 .7052
91 92 93 94	.5087 .5174 .5262	.7065 .7139 .7211 .7283	.5102 .5189 .5276 .5363	.7077 .7151 .7223 .7294	.5116 .5204 .5291 .5378	.7090 .7163 .7235 .7306	.5131 .5218 .5305 .5392	.7102 .7175 .7247 .7318	.5145 .5233 .5320 .5407	.7114 .7187 .7259 .7329	.5160 .5247 .5334 .5421	.7126 .7199 .7271 .7341
95 96 97 98 99	.5523 .5609 .5696	.7353 .7421 .7489 .7556 .7621	.5450 .5537 .5624 .5710 .5797	.7364 .7433 .7500 .7567 .7632	.5465 .5552 .5638 .5725 .5811	.7376 .7444 .7511 .7577 .7642	.5479 .5566 .5653 .5739 .5825	.7387 .7455 .7523 .7588 .7653	.5494 .5580 .5667 .5753 .5840	.7399 .7467 .7534 .7599 .7664	.5508 .5595 .5682 .5768 .5854	.7410 .7478 .7545 .7610 .7674
102 103	.5868 .5954 .6040 .6125 .6210		.5883 .5968 .6054 .6139 .6224	.7696 .7759 .7820 .7881 .7940	.5897 .5983 .6068 .6153 .6238	.7706 .7769 .7830 .7891 .7950	.5911 .5997 .6082 .6167 .6252	.7717 .7779 .7841 .7901 .7960	.5925 .6011 .6096 .6181 .6266	.7727 .7790 .7851 .7911 .7970	.5940 .6025 .6111 .6195 .6280	.7738 .7800 .7861 .7921 .7980
106 107 108	.6294 .6378 .6462 .6545	.7989 .8047 .8104 .8159 .8214	.6308 .6392 .6476 .6559 .6642	.7999 .8056 .8113 .8168 .8223	.6322 .6406 .6490 .6573 .6655	.8009 .8066 .8122 .8177 .8232	.6336 .6420 .6504 .6587 .6669	.8018 .8075 .8131 .8187 .8241	.6350 .6434 .6517 .6600 .6683	.8028 .8085 .8141 .8196 .8250	.6364 .6448 .6531 .6614 .6696	.8037 .8094 .8150 .8205 .8258
110 111 112 113	.6710 .6792 .6873 .6954 .7034	.8267 .8320 .8371 .8422 .8472	.6724 .6805 .6887 .6967 .7047	.8276 .8329 .8380 .8430 .8480	.6737 .6819 .6900 .6980	.8285 .8337 .8388 .8439 .8488	.6751 .6833 .6913 .6994 .7073	.8294 .8346 .8397 .8447 .8496	.6765 .6846 .6927 .7007 .7087	.8302 .8354 .8405 .8455 .8504	.6778 .6860 .6940 .7020	.8311 .8363 .8414 .8464 .8513
115 116 117 118	.7113 .7192 .7270 .7347	.8521 .8568 .8615 .8661	.7126 .7205 .7283 .7360	.8529 .8576 .8623 .8669	.7139 .7218 .7296 .7373 .7449	.8537 .8584 .8631 .8676	.7153 .7231 .7309 .7386 .7462	.8545 .8592 .8638 .8684	.7166 .7244 .7322 .7399 .7475	.8553 .8600 .8646 .8691	.7179 .7257 .7335 .7411 .7487	.8561 .8608 .8654 .8699 .8743

[Characteristics of Logarithms omitted—determine by rule from the value]

0′	107	201	201		
Value Log ₁₀	Value Log ₁₀				Value Log ₁₀
120 .7500 .8751 121 .7575 .8794 122 .7650 .8836 123 .7723 .8878 124 .7796 .8919	7513 .8758 .7588 .8801 .7662 .8843 .7735 .8885 .7808 .8925	.7525 .8765 .7600 .8808 .7674 .8850 .7748 .8892 .7820 .8932	.7538 .8772 .7612 .8815 .7686 .8857 .7760 .8898 .7832 .8939	7550 .8780 7625 .8822 7699 .8864 7772 .8905 7844 .8945	.7563 .8787 .7637 .8829 .7711 .8871 .7784 .8912 .7856 .8952
125 7868 .8959 126 7939 .8998 127 .8009 .9036 128 .8078 .9073 129 .8147 .9110	.7880 .8965 .7951 .9004 .8021 .9042 .8090 .9079	.7892 .8972 .7962 .9010 .8032	.7904 .8978 .7974 .9017 .8044 .9055 .8113 .9092	.7915 .8985 .7986 .9023 .8055 .9061 .8124 .9098	.7927 .8991 .7997 .9030 .8067 .9067 .8135 .9104
130 8214 .9146 131 8280 .9180 132 8346 .9215 133 8410 .9248 134 .8473 .9281	.8225 .9151 .8291 .9186 .8356 .9220 .8421 .9253	.8236 .9157 .8302 .9192 .8367 .9226	8247 .9163 .8313 .9198 .8378 .9231 .8442 .9264 .8501 .9297	8192 .9134 8258 .9169 8324 .9203 8389 .9237 8452 .9270 .8515 .9302	.8203 .9140 .8269 .9175 .8335 .9209 .8399 .9242 .8463 .9275 .8525 .9307
135 8586 .9312 136 8597 .9343 137 8657 .9374 138 8716 .9403 139 8774 .9432	.8607 .9348 .8667 .9379 .8725 .9408 .8783 .9436	.8556 .9323 .8617 .9353 .8677 .9383 .8735 .9413 .8793 .9441	8566 .9328 .8627 .9359 .8686 .9388 .8745 .9417	8576 .9333 8637 .9364 .9393 .8754 .9422	.8587 .9338 .8647 .9369 .8706 .9398 .8764 .9427 .8821 .9455
140 8830 .9460 141 .9487 142 8940 .9513 143 .8993 .9539 144 .9045 .9564	.8895 .9491 .8949 .9518 .9002 .9543 .9054 .9568	.8904 .9496 .8958 .9522 .9011 .9548 .9062 .9572	.8913 .9500 .8967 .9526 .9019 .9552 .9071 .9576	.8867 .9478 .8922 .9505 .9531 .9028 .9556 .9079 .9580	.8877 .9482 .8931 .9509 .8984 .9535 .9037 .9560 .9087 .9584
145 9096 9588 146 9145 9612 147 9193 9635 148 9240 9657 149 9286 9678	.9153 .9616 .9201 .9638 .9248 .9660 .9293 .9682	.9209 .9642 .9256 .9664 .9301 .9685	.9308 .9689	.9129 .9604 9177 .9627 9225 .9650 9271 .9671 .9316 .9692	.9137 .9608 .9185 .9631 .9233 .9653 .9278 .9675 .9323 .9695
150 9330 .9699 151 9373 .9719 152 9415 .9738 153 9455 .9757 154 9494 .9774	.9380 .9722 .9422 .9741 .9462 .9760 .9500 .9777	.9387 .9725 .9428 .9744 .9468 .9763 .9507 .9780	.9394 .9729 .9435 .9747 .9475 .9766 .9513 .9783	.9359 .9712 .9401 .9732 .9442 .9751 .9481 .9769 .9519 .9786	.9366 .9716 .9408 .9735 .9448 .9754 .9488 .9772 .9525 .9789
158 9636 .9839 159 9668 .9853	.9574 .9811 .9608 .9826 .9641 .9841 .9673 .9856	.9579 .9813 .9614 .9829 .9647 .9844 .9678 .9858	.9585 .9816 .9619 .9831 .9652 .9846 .9683 .9860	.9591 .9819 .9625 .9834 .9657 .9849 .9863	.9562 .9805 .9597 .9821 .9630 .9836 .9663 .9851 .9693 .9865 .9723 .9878
16 .9755 .9892 16 .9782 .9904 164 .9806 .9915	.9732 .9760 .9786 .9906 .9810 .9917	.9737 .9884 .9764 .9790 .9908 .9814 .9919	.9742 .9886 .9769 .9898 .9794 .9910 .9818 .9920	.9746 .9773 .9900	.9751 .9890 .9777 .99 .9802 .9826
16, 19872 .9944 168, 9891 .9952 169, 9908 .9960	.9855 .9937 .9875 .9945 .9954 .9911 .9961	.9938 .9878 .9947 .9897 .9955 .9914 .9962	.9862 .9940 .9881 .9948 .9900 .9956 .9916 .9963	.9865 .9941 .9885 .9950 .9903 .9957 .9919 .9965	.9869 .9888 .9905 .9921
174 .9973 .9988	.9941 .9974 .9953 .9980 .9964 .9984	.9985 .9976 .9989	.9945 .9976 .9957 .9981 .9968 .9986 .9977 .9990	.9959 .9982 .9969 .9987 .9978 .9991	.9936 .9949 .9961 .998 .9971 .9980 .9991
175 9981 9992 176 9988 9995 177 9993 9997 178 9997 9999 179 9999 9999		.9983 .9993 .9990 .9995 .9998 .9999 .9999 .9999		0000 0006	

[If N is prime, its logarithm is given. If N is not prime, its factors are given.]

		rime, its logarithm	1	i not prime, its rac		14611.]	
N	1	3	7	9	N		Log N
10 11 12 13 14	0043213738 3·37 112 1172712957 3·47	0128372247 0530784435 3 · 41 7 · 19 11 · 13	$ \begin{array}{c} 0293837777 \\ 3^2 \cdot 13 \\ 1038037210 \\ 1367205672 \\ 3 \cdot 7^2 \end{array} $	0374264979 7·.17 3·43 1430148003 1731862684	2 3 5 7 11	698 845	029995664 121254720 970004336 098040014 392685158
15 16 17 18 19	1789769473 7·23 32·19 2576785749 2810333672	32-17 2121876044 2380461031 3-61 2855573090	1958996524 2227164711 3·59 11·17 2944662262	3.53 13 ² 2528530310 3 ³ .7 2988530764	13 17 19 23 29	1139 230- 278 361	943352307 448921378 753600953 727836018 397997899
20 21 22 23 24	3.67 3242824553 13.17 3.7.11 3820170426	7·29 3·71 3483048630 3673559210 3 ⁵	32-23 7-31 3560258572 3-79 13-19	11·19 3·73 3598354823 3783979009 3·83	31 37 41 43 47	491 568 612 633	361693834 201724067 783856720 468455580 097857936
25 26 27 28 29	3996737215 32-29 4329692909 4487063199 3-97	11·23 4199557485 3·7·13 4517864355 4668676204	4099331233 3·89 4424797691 7·41 3³·11	7·37 4297522800 3 ² ·31 17 ² 13·23	53 59 61 67 71	724 770 785 826	275869601 852011642 329835011 074802701 258348719
30 31 32 33 34	7·43 4927603890 3·107 5198279938 11·31	3·101 4955443375 17·19 32·37 73	4871383755 5010592622 3·109 5276299009 5403294748	3·103 11·29 7·47 3·113 5428254270	73 79 83 89 97	863 897 919 949	322860120 627091290 078092376 390006645 771734266
35 36 37 38 39	$ \begin{array}{r} 3\$ \cdot 13 \\ 19^2 \\ 7 \cdot 53 \\ 3 \cdot 127 \\ 17 \cdot 23 \end{array} $	5477747054 3·11 ² 5717088318 5831987740 3·131	3.7.17 5646660643 13.29 32.43 5987905068	5550944486 3 ² ·41 5786392100 5899496013 3·7·19	130 130 130 131 132	$ \begin{bmatrix} 3 & 1 \\ 7 & 1 \\ 9 & 1 \end{bmatrix} $	142772966 149444157 162755876 202447955 209028176
40 41 42 43 44	6031443726 3·137 6242820958 6344772702 3 ² ·7 ²	13·31 7·59 32·47 6364878964 6464037262	11·37 3·139 7·61 19·23 3·149	6117233080 6222140230 3·11·13 6424645202 6522463410	132 136 136 137 138	1 1 7 1 3 1	228709229 338581252 357685146 376705372 401936786
45 46 47 48 49	11·41 6637009254 3·157 13·37 6910814921	3·151 6655809910 11·43 3·7·23 17·29	6599162001 6693168806 32.53 6875289612 7.71	33·17 7·67 6803355134 3·163 6981005456	139 140 142 142 142	9 1. 3 1. 7 1.	458177145 489109931 532049001 544239731 550322288
50 51 52 53 54	$ \begin{array}{r} 3 \cdot 167 \\ 7 \cdot 73 \\ 7168377233 \\ 3^2 \cdot 59 \\ 7331972651 \end{array} $	7015679851 3 ³ ·19 7185016889 13·41 3·181	3·13 ² 11·47 17·31 3·179 7379873263	7067177823 3·173 23 ² 7 ² ·11 3 ² ·61	143 143 144 145 145	$ \begin{bmatrix} 1 & 1 & 0 \\ 7 & 1 & 0 \\ 1 & 1 & 0 \\ \end{bmatrix} $	562461904 580607939 604685311 616674124 622656143
55 56 57 58 59	19·29 3·11·17 7566361082 7·83 3·197	7.79 7505083949 3.191 11.53 7730546934	7458551952 34.7 7611758132 7686381012 3.199	13·43 7551122664 3·193 19·31 7774268224	145 147 148 148 148	L 10 L 17 3 17 7 17	340552919 376126727 705550585 711411510 723109685
60 61 62 63 64	7788744720 13·47 3³·23 8000293592 8068580295	32-67 7874604745 7-89 3-211 8082109729	7831886911 7902851640 3·11·19 72·13 8109042807	3·7·29 7916906490 17·37 3²·71 11·59	1489 1499 1499 1513 1523	3 17 9 17 1 17 3 18	728946978 740598077 758016328 792644643 326999033
65 66 67 68 69	3·7·31 8202014595 11·61 3·227 8394780474	8149131813 3·13·17 8280150642 8344207037 3²·7·11	32·73 23·29 8305886687 3·229 17·41	8188854146 3·223 7·97 13·53 3·233	153 154 154 155 155	3 18 9 19 3 19	349751907 383659261 900514178 911714557 928461152

[If N is a prime, its logarithm is given. If N is not a prime, its factors are given.]

\overline{N}	1	3	7	9	N	Log N
70 71 72 73	8457180180 3 ² ·79 7·103 17·43	19·37 23·31 3·241 8651039746	7·101 3·239 8615344109 11·67	8506462352 8567288904 36 8686444384	1567 1577 1579 1588	1950689965 1961761850 1983821300 1994809149
74 75 76 77 78 79	3·13·19 8756399370 8813846568 3·257 11·71 7·113	8709888138 3·251 7·109 8881794939 3·29 13·61	32-83 8790958795 13-59 3-7-37 8959747324 9014583214	7·107 3·11·23 8859263398 19·41 3·263 17·47	1597 1607 1607 1608 1618 1618	2043913319 2060158768 2065560441 2076343674
80 81 82 83 84	32·89 9090208542 9143431571 3·277 292	11.73 3.271 9153998352 72.17 3.281	3·269 19·43 9175055096 3³·31 7·11²	9079485216 32.7.13 9185545306 9237619608 3.283	162 162 163 163 165 166	2097830148 2113875529 2140486794 2193225084
85 86 87 88 89	23·37 3·7·41 13·67 9449759084 3 ⁴ ·11	9309490312 9360107957 32-97 9459607036 19-47	9329808219 3·17 ² 9429995934 9479236198 3·13·23	9339931638 11·79 3·293 7·127 29·31	1669 1699 1699 1699	2224563367 2286569581 2296818423
90 91 92 93 94	17.53 9595183770 3.307 72.19 9735896234	3·7·43 11·83 13·71 3·311 23·41	9576072871 7·131 3²·103 9717395909 9763499790	32·101 9633155114 9680157140 3·313 13·73	170 172 172 173 174	2357808703 2362852774 2387985627 2407987711
95 96 97 98 99	3·317 31 ² 9872192299 3 ² ·109 9960736545	9790929006 32·107 7·139 9925535178 3·331	3·11·29 9854264741 9898945637 3·7·47 9986951583	7·137 3·17·19 11·89 23·43 3³·37	174' 175: 175: 177' 178:	3 2437819161 9 2452658395 7 2496874278 3 2511513432
100 101 102 103 104	7·11·13 3·337 0090257421 0132586653 3·347	17.59 0056094454 3.11.31 0141003215 7.149	19·53 3 ² ·113 13·79 17·61 3·349	0038911662 0081741840 3·7³ 0166155476 0207754882	178 178 180 181 182	9 2526103406 1 2555137128 1 2579184503 3 2607866687
105 106 107 108 109	0216027160 0257153839 3 ² ·7·17 23·47 0378247506	34·13 0265332645 29·37 3·19² 0386201619	7·151 11·97 3·359 0362295441 0402066276	3·353 0289777052 13·83 3²·11² 7·157	183 184 186 186 187	7 2664668954 1 2697463731 7 2711443179 1 2720737875
110 111 112 113 114	3·367 11·101 19·59 3·13·29 7·163	0425755124 3·7·53 0503797563 11·103 3²·127	3 ³ ·41 0480531731 7 ² ·23 3·379 31·37	0449315461 3.373 0526939419 17.67 3.383	187 187 187 188 190	7 2734642726 9 2739267801 9 2762319579 1 2789821169
115 116 117 118 119	0610753236 3 ³ ·43 0685568951 0722498976 3·397	0618293073 0655797147 3·17·23 7·13 ² 0766404437	13.89 3.389 11.107 0744507190 32.7.19	19·61 7·167 3 ² ·131 29·41 11·109	190' 191: 193: 193: 194:	3 2817149700 1 2857822738 3 2862318540 9 2898118391
120 121 122 123 124	0.795430074 7·173 3·11·37 0902580529 17·73	3·401 0838608009 0874264570 3²·137 11·113	17·71 0852905782 3·409 0923696996 29·43	3·13·31 23·53 0895518829 3·7·59 0965624384	195 197 197 198 199	3 2961270853 2964457942 7 2981978671 3 2995072987
125 126 127 128 129	$\begin{array}{c} 3^2 \cdot 139 \\ 13 \cdot 97 \\ 31 \cdot 41 \\ 3 \cdot 7 \cdot 61 \\ 1109262423 \end{array}$	7·179 3·421 19·67 1082266564 3·431	3·419 7·181 1061908973 3²·11·13 1129399761	1000257301 33-47 1068705445 1102529174 3-433	199 199 200 201 201	9 3008127941 3 3016809493 1 3034120706

Amount of One Dollar Principal at Compound Interest After n Years

		z %	$2rac{1}{2}~\%$	3 %	3½ %	4 %		<i>5</i> %	6 %
		1.020 1.0404 1.0612	1.025 1.050 1.076	1.0300 1.0609 1.092	1.035(1.071 1.108	1.040 1.081 1.124	1.045 1.092 1.141	1.050 1.102 1.157	1.060 1.123 1.191
		1.082 1.104 1.126	1.103 1.131 1.159	1.125 1.159 1.194	1.147 1.187 1.229	1.169 1.216 1.265	1.192 1.246 1.3023	1.215 1.276 1.340	1.262 1.338 1.418
		1.148' 1.171' 1.195	1.1887 1.2184 1.2489	1.2298 1.266 1.3048	1.2728 1.3168 1.3629	1.315 1.368 1.423	1.360 1.422 1.486	1.4071 1.477 1.551	1.503 1.593 1.689
		1.219	1.2801	1.3439	1.410	1.480	1.553	1.6289	1.790
	1 12 13	1.2434 1.2682 1.2936	1.3121 1.3449 1.3785	1.3842 1.425 1.4685	1.460 1.511 1.564	1.539. 1.601(1.6651	$\substack{1.6229 \\ 1.6959 \\ 1.7722}$	1.710 1.7959 1.8856	1.8988 2.0122 2.1329
	1. 1. 16	1.319. 1.3459 1.3728	1.4130 1.4483 1.4845	1.5126 1.5580 1.6047	1.6187 1.6753 1.7340	1.7317 1.8009 1.873(1.8519 1.9353 2.0224	1.9799 2.0789 2.1829	2.2609 2.3966 2.5404
	17 18 19	1.400: 1.4282 1.4568	1.5216 1.559' 1.5987	1.6528 1.7024 1.7535	1.7947 1.8575 1.922	1.9479 2.0258 2.1068	2.1134 2.2085 2.3079	$\begin{array}{c} 2.2920 \\ 2.4066 \\ 2.5270 \end{array}$	$\begin{array}{c} 2.6928 \\ 2.8543 \\ 3.0256 \end{array}$
ı	20	1.4859	6386	1.8061	1.9898	2.1911	2.4117	2.6533	3.2071
	21 2 23	1.51 1.5460 1.5769	1.6796 1.7216 1.7646	1.8603 1.9161 1.9736	2.0594 2.1315 2.2061	2.2788 2.3699 2.4647	2.5202 2.6337 2.7522	$\begin{array}{c} 2.7860 \\ 2.9253 \\ 3.0715 \end{array}$	3.3996 3.603 3.8197
	24 25 26	1.6084 1.6406 1.6734	1.8087 1.8539 1.9003	2.0328 2.0938 2.1566	2.2833 2.3632 2.4460	2.5633 2.6658 2.7725	2.8760 3.0054 3.1407	3.2251 3.3864 3.5557	4.0489 4.2919 4.5494
	27 28 29	1.7069 1.7410 1.7758	1.9478 1.9965 2.0464	2.2213 2.2879 2.3566	2.5316 2.6202 2.7119	2.8834 2.9987 3.1187	3.2820 3.4297 3.5840	3.7335 3.9201 4.1161	4.8223 5.1117 5.4184
	30	1.8114	2.0976	2.4273	2.8068	.2434	.7453	4.3219	5.7435
	31 32 33	.8476 .8845 .9222	2.1500 2.2038 2.2589	2.5001 2.5751 2.6523	.9050 .0067 .1119	.3731 .5081 .6484	.9139 .0900 .2740	4.5380 4.7649 5.0032	6.0881 6.4534 6.8406
	34 35 36	.9607 .9999 .0399	2.3153 .3732 2.4325	2.7319 2.8139 3.8983	.2209 .3336 .4503	.7943 .9461 4.1039	.4664 .6673 .8774	5.2533 5.5160 5.7918	7.2510 7.6861 8.1473
	37 38 39	.0807 .1223 .1647	.4933 .5557 .6196	.9852 .0748 .1670	.5710 .6960 .8254	.2681 4388 6164	.0969 .3262 .5659	6.0814 6.3855 6.7048	8.6361 9.1543 9.7035
	40	.2080	.6851	.2620	.9593	.8010	8164	7.0400	0.2857
	41 42 43	1.2522 1.2972 1.3432	.7522 .8210 .8915	.3599 .4607 .5645	.0978 .2413 .3897	.9931 .1928 .4005	$0781 \\ .3516 \\ .6374$	7.3920 7.7616 8.1497	$\begin{array}{c} 0.9029 \\ 1.5570 \\ 2.2505 \end{array}$
	44 45 46	.3901 .4379 .4866	.9638 .0379 .1139	.6715 .7816 .8950	.5433 7024 8669	.6165 .8412 .0748	.9361 .2482 .5744	8.5572 8.9850 9.4343	2.9855 3.7646 4.5905
	47 48 49	.5363 .5871 .6388	.1917 .2715 .3533	$\begin{array}{c} .0119 \\ 1323 \\ .2562 \end{array}$.0373 .2136 3961	.3178 .5705 .8333	.9153 .2715 .6437	9.9060 0.4013 0.9213	5.4659 6.3939 7.3775
	50	.6916	.4371	.3839	.5849	1067	0326	1.4674	8.4202

PRESENT VALUE OF ONE DOLLAR DUE AT THE END OF n YEARS

n	2	%	21/2	%	3 %	1	3½ %	4	%	4	%	5 %	,	6 %	7	%
$\frac{1}{2}$.96	$039 \\ 117 \\ 232$.95		9426 .9151	0 .	93351 90194	.92	2456 3900	.91	6694 1573 7630	.9523 .9070 .8638)3 .	94340 89000 83962	.87	3458 7344 1630
	.90	385 573 3797	.88	0595 8385 6230	.8884 .8626 .8374	31 .	87144 84197 81350	.8	5480 2193 9031	.80	3856 0245 6790	.8227 .7838 .7469	53.	.79209 .74726 .70496	.7	3290 1299 3634
	.8	7056 5349 3676	.8	4127 2075 0073	.8130 .789 .766	11 .	.78599 .75941 .73373	.7	5992 3069 0259	.7	3483 0319 7290	.710 .676 .644	84	.66506 .62741 .59190	.5	2275 8201 4393
10		2035	.7	8120	.744	09	.70892	.6	7556	.6	4393	.613	91	.55839	.5	0835
	.7	0426 8849 7303	.7	76214 74356 72542	.722 .701 .680	38	.68495 .66178 .63940	.6	34958 32460 30057	.5	31620 58966 56427	.584 .556 .530	84	.52679 .49697 .46884	.4	7509 4401 1496
	.7	5788 4301 2845	6	70773 39047 67362	.661 .641 .623	.86	.61778 .59689 .57671		57748 55526 53391		53997 51672 49447	.505 .481 .458	102	.44230 .41727 .39365	.3	8782 86245 83873
		71416 70016 38643	. 6	65720 64117 62553	.605 .587	'39	.55720 .53836 .52016	} .	51337 49363 47464		47318 45280 43330	.436 .41.		.37136 .35034 .33051	L .5	31657 29586 27651
20	0 .	67297	7 .	61027	.55	368	.5025		45639		41464	1	689	.31180) .	25842
2 2	2 .	65978 64684 6341	41.	59539 58086 56670	.53′ .52 .50		4855 4691 4532	5.	42196 40573	3.	37970 36335	.34	185 557	.2941 .2775 .2618	1 .	$24151 \\ 22571 \\ 21095$
		6217 6095 5975	3	.55288 .53939 .52623	.47	193 761 369	.4379 .4231 .4088	5.	.39012 .37512	2.	.34770 .33273 .31840	.29	$ \begin{array}{r} 007 \\ 530 \\ 124 \end{array} $.2469 .2330 .2198	ο.	19715 18425 17220
		.5858 .5743 .5631	7	.51340 .50088	.43	019 708 435	.3950 .3816 .3687	5	.3468 .3334 .3206	8	.30469 .29157 .27902	.25	5785 5509 1295	.2073 .1956 .1845	3 6	.16093 .15040 .14056
3	30	.5520)7	.47674	.41	199	.3562		.3083	2	.26700		3138	.1741		13137
		.5412 .5306 .5202	33	.46511 .45377 .44270	.38	9999 383 4 7 7 03	.3442 .3328 .3213	59	.2964 .2850 .2740)6	.2555 .2445 .2339	20.20	2036 0987 9987	.1549	96	.12277 .11474 .10723
		.510 .500 .490	03	.4319 .4213 .4110	7.3	6604 5538 4503	.299	98	.2635 .2534 .2436	12	.2239 .2142 .2050	5.1	9035 8129 7266	.130	11	.10022 .09366 .08754
		.480 .471 .461	61 19	.4010 .3912 .3817	8 .3	3498 2523 1575	.270	56	.2343 .2252 .2166	29	.1962 .1877 .1796	5 .1	6444 5661 4915	.109	24	.08181 .07646 .07146
	40	.452		.3724		0656	.252	57	.208	29	.1719	1. 8	420	5 .097	22	.06678
		.444 .435	530	.3633 .3544 .3458	8 .2	9763 8896 8054	3.235	78	.200 .192 .185	57	.1645 .1574 .1506	4 .	13528 1288 1227	4.086	553	.06241 .05833 .05451
		.418 .419	840 020	.3374 .3291 .3211	0 .2	2723' 2644 2567	7 .220 4 .212	266	.178 .171 .164	20	.144 .137 .132	96.	1168 1113 1060	0 .07		.05095 .04761 .04450
		.39 .38	427 654 896	.313 .305	31 .: 37 .:	2492 2420 2349	6 .198 0 .193	181	.158 .152 .146	219	.126 .120 .115	90 .	1009 0961 0915	4 .06	466 100 755	.04159 .03887 .03632
	50		153			2281	1 .17	905	.140	071	.110	71	.0872	20 .05	429	.03398

Amount of an Annuity of One Dollar per Year after n Years

	2 %	$2\frac{1}{2}\%$	3 %	$3\frac{1}{2}~\%$	4 %	$4\frac{1}{2}\%$	5 %	6 %	7 %
	1.0000 2.0200 3.0604	2.0250	1.0000 2.0300 3.0909	$\begin{array}{c} 1.0000 \\ 2.0350 \\ 3.1062 \end{array}$	1.0000 2.0400 3.1216	1.0000 2.0450 3.1370	$1.0000 \ 2.0500 \ 3.1525$	1.0000 2.0600 3.1836	1.0000 2.0700 3.2149
	4.1216 5.2040 6.3081	4.1525 5.2563 6.3877	4.1836 5.3091 6.4684	4.2149 5.3625 6.5502	4.2465 5.4163 6.6330	4.2782 5.4707 6.7169	4.3101 5.5256 6.8019	4.3746 5.6371 6.9753	4.4399 5.7507 7.1533
	7.4343 8.5830 9.7546	7.5474 8.7361 9.9545	7.6625 8.8923 10.1591	7.7794 9.0517 10.3685	7.8983 9.2142 10.5828	8.0192 9.3800 10.8021	8.1420 9.5491 11.0266	8.3938 9.8975 11.4913	8.6540 10.2598 11.9780
10	10.9497	11.2034	11.4639	11.7314	12.0061	12.2882	12.5779	13.1808	13.8164
11	13.4121	12.4835 13.7956 15.1404	12.8078 14.1920 15.6178	13.1420 14.6020 16.1130	13.4864 15.0258 16.6268	13.8412 15.4640 17.1599	14.2068 15.9171 17.7130	14.9716 16.8699 18.8821	15.7836 17.8885 20.1406
	17.2934 18.6393	16.5190 17.9319 19.3802	17.0863 18.5989 20.1569	17.6770 19.2957 20.9710	18.2919 20.0236 21.8245	18.9321 20.7841 22.7193	19.5986 21.5786 23.6575	$\begin{array}{c} 21.0151 \\ 23.2760 \\ 25.6725 \end{array}$	
	21.4123	20.8647 22.3863 23.9460	21.7616 23.4144 25.1169	22.7050 24.4997 26.3572	23.6975 25.6454 27.6712	24.7417 26.8551 29.0636	25.8404 28.1324 30.5390	28.2129 30.9057 33.7600	30.8402 33.9990 37.3790
20	24.2974	25.5447	26.8704	28.2797	29.7781	31.3714	33.0660	36.7856	40.9955
•	27.2990	27.1833 28.8629 30.5844	28.676 30.5368 32.4529	30.2695 32.3289 34.4604	31.9692 34.2480 36.6179	33.7831 36.3034 38.9370	35.7193 38.5052 41.4305	39.9927 43.3923 46.9958	49.0057
	32.0303	32.3490 34.1578 36.0117	34.4265 36.4593 38.5530	36.6665 38.9499 41.3131	39.0826 41.6459 44.3117	41.6892 44.5652 47.5706	44.5020 47.7271 51:1135	50.8156 54.8645 59.1564	58.1767 63.2490 68.6765
29	37.0512	37.9120 39.8598 41.8563	40.7096 42.9309 45.2189	43.7591 46.2906 48.9108	47.0842 49.9676 52.9663	50.7113 53.9933 57.4230	54.6691 58.4026 62.3227	63.7058 68.5281 73.6398	74.4838 80.6977 87.3465
30	40.5681	43.902	47.5754	51.6227	56.0849	61.0071	66.4388	79.0582	94.4608
	44.2270	46.0003 48.1503 50.3540	50.002 52.5028 55.0778	54.429 57.3345 60.341	59.3283 62.7015 66.2095	64.7524 68.666: 72.7562	70.7608 75.2988 80.0638	90,8898	102.0730 110.2182 118.9334
	49.9945	52.6129 54.9282 57.3014	57.7302 60.4621 63.2759	$\begin{array}{c} 63.4532 \\ 66.6740 \\ 70.0076 \end{array}$	69.8579 73.6522 77.5983	77.0303 81.4966 86.1640	90.3203	104.1838 111.4348 119.1209	138.2369
	56.1149	$\begin{array}{c} 3 59.7339 \\ 62.2273 \\ 64.7830 \end{array}$	66.1742 69.1594 72.234	73.4579 77.0289 80.7249	81.7022 85.9703 90.4091		101.6281 107.709 114.0950	135.904:	172.5610
40	60.4020	67.4026	75.401	84.5503	95.0255	107.0303	120.7998	154.7620	199.6351
42	64.862	70.0876 72.8398 75.6608	78.6633 82.0232 85.4839	88.5095 92.6074 96.8486	104.8196	112.846' 118.9248 125.2764	135.2318	175.9505	230.6322
•	71.8927	7 78.5523 7 81.5161 8 84.5540	92.7199	101.2383 105.781 110.4840	121.0294	138.8500	159.7002	212.743	285.7493
47	79.3535	90.8596	100.3965 104.4084 108.5406	120.3883	139.263	161.5879	188.0254	256.5645	353.2701
	84.5794	197.4843	112.7969	130.9979	152.6671	178.5030	209.3480	290.3359	406.5289

Present Value of One Dollar per Year for n Years

n	2 %	$2rac{1}{2}\%$	3 %	3½ %	4 %	41/2 %	5 %	6 %	7%
$\begin{array}{c} 1 \\ 2 \\ 3 \end{array}$.9804 1.9416 2.8839	.9756 1.9274 2.8560	.9709 1.9135 2.8286	.9662 1.8997 2.8016	.9615 1.8861 2.7751	.9569 1.8727 2.7490	.9524 1.8594 2.7232	.9434 1.8334 2.6730	.9346 1.8080 2.6243
4 5 6	3.8077 4.7135 5.6014	3.7620 4.6458 5.5081	3.7171 4.5797 5.4172	3.6731 4.5151 5.3286	3.6299 4.4518 5.2421	3.5875 4.3900 5.1579	3.5460 4.3295 5.0757	3.4651 4.2124 4.9173	3.3872 4.1002 4.7665
7 8 9	6.4720 7.3255 8.1622	6.3494 7.1701 7.9709	6.2303 7.0197 7.7861	6.1145 6.8740 7.6077	6.0021 6.7327 7.4353	5.8927 6.5959 7.2688	5.7864 6.4632 7.1078	5.5824 6.2098 6.8017	5.3893 5.9713 6.5152
10	8.9826	8.7521	8.5302	8.3166	8.1109	7.9127	7.7217	7.3601	7.0236
11 12 13	9.7868 10.5753 11.3484	9.5142 10.2578 10.9832	9.2526 9.9540 10.6350	9.0016 9.6633 10.3027	8.7605 9.3851 9.9856	8.5289 9.1186 9.6829	8.3064 8.8633 9.3936	7.8869 8.3838 8.8527	7.4987 7.9427 8.3577
14 15 16	12.1062 12.8493 13.5777		11.2961 11.9379 12.5611	10.9205 11.5174 12.0941	10.5631 11.1184 11.6523	10.2228 10.7395 11.2340	9.8986 10.3797 10.8378	$\begin{array}{c} 9.2950 \\ 9.7122 \\ 10.1059 \end{array}$	8.7455 9.1079 9.4466
17 18 19	14.2919 14.9920 15.6785	13.7122 14.3534 14.9789	13.1661 13.7535 14.3238	12.6513 13.1897 13.7098	12.1657 12.6593 13.1339	11.7072 12.1600 12.5933	11.2741 11.6896 12.0853	10.4773 10.8276 11.1581	9.7632 10.0591 10.3356
20	16.3514	15.5892	14.8775	14.2124	13.5903	13.0079	12.4622	11.4699	10.5940
$\frac{21}{22}$ $\frac{23}{23}$	17.0112 17.6580 18.2922	16.1845 16.7654 17.3321	15.4150 15.9369 16.4436	14.6980 15.1671 15.6204	14.0292 14.4511 14.8568	13.4047 13.7844 14.1478	12.8212 13.1630 13.4886	11.7641 12.0416 12.3034	10.8355 11.0612 11.2722
24 25 26	18.9139 19.5235 20.1210	17.8850 18.4244 18.9506	16.9355 17.4131 17.8768	16.0584 16.4815 16.8904	15.2470 15.6221 15.9828	14.4955 14.8282 15.1466	13.7986 14.0939 14.3752	12.5504 12.7834 13.0032	11.4693 11.6536 11.8258
27 28 29	$\begin{array}{c} 20.7069 \\ 21.2813 \\ 21.8444 \end{array}$	19.4640 19.9649 20.4535	18.3270 18.7641 19.1885	17.2854 17.6670 18.0358	16.6631	15.4513 15.7429 16.0219	14.6430 14.8981 15.1411	13.2105 13.4062 13.5907	11.9867 12.1371 12.2777
30	22.3965	20.9303	19.6004	18.3920	17.2920	16.2889	15.3725	13.7648	12.4090
31 32 33		21.3954 21.8492 22.2919	20.0004 20.3888 20.7658	18.7363 19.0689 19.3902	17.8736	16.5444 16.7889 17.0229	15.5928 15.8027 16.0025	13.9291 14.0840 14.2302	12.5318 12.6466 12.7538
34 35 36	24.9986	22.7238 23.1452 23.5563	21.1318 21.4872 21.8323	19.7007 20.0007 20.2905	18.6646	17.4610	16.1929 16.3742 16.5469	14.4982	12.9477
37 38 39	26.4406		$\begin{array}{c} 22.1672 \\ 22.4925 \\ 22.8082 \end{array}$	20.5705 20.8411 21.1025	19.3679	18.0500	16.8679	14.8460	13.1935
40	27.3555	25.1028	23.1148	21.3551	19.7928	18.4016	17.1591	15.0463	13.3317
41 42 43	28.2348	25.8206	23.4124 23.7014 23.9819	21.8349	20.1856	18.7236	17.4232	15.2245	13.4524
44 45 46	29.4902	26.8330	24.5187	22.4955	20.7200	19.1563	17.774	15.4558	13.6055
47 48 49	3 30.6731	27.7732	25.2667	23.091	2 21.1951	19.5356	18.077	2 15.6500 7 15.7076	13.7305 13.7668
50	31.4236	28.3623	25.7298	3 23.455	6 21.4822	19.762	18.255	15.7619	13.8007

132 Table XII e - Logarithms for Interest Computations [XII e

1+r	log(1+r)	r	1+r	log (1+r)
1.005 1.010 1.015 1.020 1.025 1.030 1.035 1.040 1.045 1.050	00216 60617 56508 00432 13737 82643 00646 60422 49232 00860 01717 61918 01072 38653 91773 01283 72247 05172 01494 03497 92937 01703 33392 98780 01911 62904 47073 02118 92990 69938	56677 8 9120	1.055 1.060 1.065 1.070 1.075 1.080 1.085 1.090 1.095	02325 24596 33711 02530 58652 64770 02734 96077 74757 02938 37776 85210 03140 84642 51624 03342 37554 86950 03542 97381 84548 03742 64979 40624 03941 41191 76137 04139 26851 58225

For Amount, A, of any principal, P, after n years: $A = P(1 + r)^n$.

For present worth, P, of any amount, A, at the end of n years: $P = A \div (1+r)^n$. To find logarithms and antilogarithms of A and P to many significant figures, use Table XI, p. 126, and Table I a, p. 20.

Table XII f - American Experience Mortality Table

Based on 100,000 living at age 10

	At Age	Number Surviving	Deaths	At Age	Number Surviving	Deaths	At Age	Number Surviving	Deaths	At Age	Number Surviving	Deaths
,	10 11 12 13 14	100,000 99,251 98,505 97,762 97,022	749 746 743 740 737	35 36 37 38 39	81,822 81,090 80,353 79,611 78,862	732 737 742 749 756	60 61 62 63 64	57,917 56,371 54,743 53,030 51,230	1,546 1,628 1,713 1,800 1,889	85 86 87 88 89	5,485 4,193 3,079 2,146 1,402	1,292 1,114 933 744 555
	15.0	96,285 95,550 94,818 94,089 93,362	735 732 729 727 725	40 41 42 43 44	78,106 77,341 76,567 75,782 74,985	765 774 785 797 812	65 66 67 68 69	49,341 47,361 45,291 43,133 40,890	1,980 2,070 2,158 2,243 2,321	90 91 92 93 94	847 462 216 79 21	385 246 137 58 18
	21 22 23 24	92,637 91,914 91,192 90,471 89,751	723 722 721 720 719	45 46 47 48 49	74,173 73,345 72,497 71,627 70,731	828 848 870 896 927	70 71 72 73 74	38,569 36,178 33,730 31,243 28,738	2,391 2,448 2,487 2,505 2,501	95	3	3
	25 26 27 28 29	89,032 88,314 87,596 86,878 86,160	718 718 718 718 718 719	50 51 52 53 54	69,804 68,842 67,841 66,797 65,706	962 1,001 1,044 1,091 1,143	75 76 77 78 79	26,237 23,761 21,330 18,961 16,670	2,476 2,431 2,369 2,291 2,196			
ı	30 31 32 33 34	85,441 84,721 84,000 83,277 82,551	720 721 723 726 729	55 56 57 58 59	64,563 63,364 62,104 60,779 59,385	1,199 1,260 1,325 1,394 1,468	80 81 82 83 84	14,474 12,383 10,419 8,603 6,955	2,091 1,964 1,816 1,648 1,470			

LOGARITHMS OF IMPORTANT CONSTANTS

n = NUMBER	V_{ALUE} of n	$\operatorname{Log}_{10} n$
$1 \div \pi$ π^{2} $\sqrt{\pi}$ $e = \text{Naperian Base}$ $M = \log_{0} e$ $1 \div M = \log_{e} 10$ $180 \div \pi = \text{degrees in 1 radian}$ $\pi \div 180 = \text{radians in 1}^{\circ}$ $\pi \div 10800 = \text{radians in 1}^{\circ}$ $\pi \div 648000 = \text{radians in 1}^{\circ}$ $\sin 1''$ $\cot 1''$ $\cot 1''$ $\cot 1 \text{ centimeters in 1 ft.}$ feet in 1 cm. inches in 1 m. pounds in 1 kg. $\text{kilograms in 1 lb.}$ $g \text{ (average value)}$ $\text{weight of 1 cu. ft. of water}$ $\text{weight of 1 cu. ft. of air}$ $\text{cu. in. in 1 (U. S.) gallon}$ $\text{ft. lb. per sec. in 1 H. P.}$ watts in 1 H. P.	3.14159265 0.31830989 9.86960440 1.77245385 2.71828183 0.43429448 2.30258509 57.2957795 0.01745329 0.000004848136811095 0.000004848136811076 0.00004848136811133 30.480 0.032808 39.37 (exact legal value) 2.20462 0.453593 32.16 ft./sec./sec. = 981 cm./sec./sec. 62.425 lb. (max. density) 0.0807 lb. (at 32° F.) 231 (exact legal value) 550 (exact legal value) 76.0404 745.957	0.49714987 9.50285013 0.99429975 0.24857494 0.43429448 9.63778431 0.36221569 1.75812263 8.24187737 6.46372612 4.68557487 4.68557487 4.68557487 1.4840158 8.5159842 1.5951654 0.3433340 0.3433340 0.17953586 8.907 2.3636120 2.7403627 1.8810445 2.8727135

SEVERAL NUMBERS VERY ACCURATELY

Certain Convenient Values for n=1 to n=10

n	1/n	\sqrt{n}	-3√n	n!	1/n!	. Log ₁₀ n
1	1.000000	1.00000	1.00000	1	1.0000000	0.00000000
2	0.500000	1.41421	1.25992	2	0.5000000	0.301029996
3	0.333333	1.73205	1.44225	6	0.1666667	0.477121255
4	0.250000	2.00000	1.58740	24	0.0416667	0.602059991
5	0.200000	2.23607	1.70998	120	0.003333	0,698970004
6	0.166667	2.44949	1.81712	720	0.0013889	0.778151250
7	0.142857	2.64575	1.91293	5040	0.0001984	0.845098040
8	0.125000	2.82843	2.00000	40320	0.0000248	0.903089987
9	0.111111	3.00000	2.08008	362880	0.000028	0.954242509
10	0.100000	3.16228	2.15443	362880	0.000003	1.000000000

N 2		8	1 :	23	4	5		7	8	9
10 0000 0043 0086	3 0128 0170 0212 0253 0	294 0334 0374	4 8	3 12	17	21 :	25	29	33	37
12 0792 0828 0864	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	038 1072 1106	3 7	10	14	19 2 17 2 16 3	21	$\frac{26}{24} \\ 23$	28	31
15 1761 1790 1818	3 1553 1584 1614 1644 1 3 1847 1875 1903 1931 1 5 2122 2148 2175 2201 2	959 1987 2014	3 (3 (3 (8	11	15 1 14 1 13 1	17	21 20 18	22	25
18 2553 2577 2601	5 2380 2405 2430 2455 2 1 2625 2648 2672 2695 2 8 2856 2878 2900 2923 2	718 2742 2765	$\frac{2}{2} \frac{3}{4}$	7	9	12] 12] 11]	14	17 16 16	19	21
	k 3075 3096 3118 3139 3				8	11 1	13	15	17	19
3424 3444 3464	3 3284 3304 3324 3345 33 3483 3502 3522 3541 3 3674 3692 3711 3729 3	560 3579 3598	2 4	ŀ 6		10 1 10 1 9 1	12	14 14 13	16	17
3979 3997 4014	8 3856 3874 3892 3909 39 4031 4048 4065 4082 49 4200 4216 4232 4249 43	099 4116 4133	2 4			9 1 9 1 8 1	LŌ	12 12 11	14	16
4472 4487 4502	3 4362 4378 4393 4409 44518 4533 4548 4564 44669 4683 4698 4713 4	579 4594 4609	$\frac{2}{2} \frac{3}{3}$	5	6 6 6	8 8 7	9 9	11 11 10	12	14
4771 4786 4800	0 4814 4829 4843 4857 4	871 4886 4900	1 3	4	6	7		10		
051 065 5079	2 4955 4969 4983 4997 5 5092 5105 5119 5132 5 5224 5237 5250 5263 5	145 5159 5172	1 8 1 8 1 8	4	5 5 5	7 7 7	8 8 8		11 11 11	12
5441,5453,5465	0 5353 5366 5378 5391 5- 5 5478 5490 5502 5514 5- 7 5599 5611 5623 5635 56	527.5539 5551	1 2 1 2 1 2	3 4	5 5 5	6 6	8 7 7	9	10 10 10	11
38 5798 5809 5821	5 5717 5729 5740 5752 5 5 5832 5843 5855 5866 5 5 5944 5955 5966 5977 5	877 5888 5899	1 2	2	5 5 4	6 6 5	7 7 7	8 8	9	11 10 10
•	2 6053 6064 6075 6085 6				4	5	6		9	10
42 6232 6243 6253	9 6160 6170 6180 6191 6 8 6263 6274 6284 6294 6 5 6365 6375 6385 6395 6	304 6314 6325	1 2 1 2 1 2		4 4 4	5 5 5	6 6		8 8 8	9 9
45 6532 6542 6553	4 6464 6474 6484 6493 6 1 6561 6571 6580 6590 6 3 6656 6665 6675 6684 6	599 6609 6618	1 2 1 2 1 2		4 4 4	5 5 5	6 6 6		8 8 7	9 9 8
47 6721 6730 6739 48 681 6821 6830	9 6749 6758 6767 6776 6 0 6839 6848 6857 6866 6 0 6928 6937 6946 6955 6	785 6794 6803 875 6884 6893	1 2 1 2 1 2	3	4 4 4	5 5 4	6 6 5		7 7 7	8 8 8
50 6990 6998 700	7 7016 7024 7033 7042 7	050 7059 7067		3	3	4	5	6	7	-
51 7076 7084 7093 52 7160 7168 717 53 7243 7251 725	$rac{3}{7}101 7110 7118 7126 7 \\ 7185 7193 720 7210 7 \\ 9 7267 727 7284 7292 7 \\$	135 7143 7152 218 7226 7235 300 7308 7316	1 2 1 2 1 2	2	3 3 3	4 4 4	5 5 5		7 7 6	8 7 7
54 7324 7332 734	0 7348 7356 7364 737: 7	380 7388 7396	1 5	2 2	3	4	5	б	6	7
N		8 9	1 :	3	4	5	6	7	8	9

The proportional parts are stated in full for every tenth at the right-hand side, he logarithm of any number of four significant figures can be read directly by add-

N											1	2	3	4	5	6	7	8	9
	'404 7482	412 490	'419 '497	427 505	7435 7513	443 520	'451 '528	459 536	'466 '543	474 551		$\frac{2}{2}$	$\frac{2}{2}$		44		5 5	6	7 7
	634	566 642 716	574 649 723		7589 7664 738	597 672 745	604	612 686 760	'619 '694		1 1 1	1 1 1		3	444	5 4	5	6 6	7
60	782	789	796	'803	7810	'818	825	832	839		1	1	2	3	4	4	5	6	6
	7853 7 '924 '993 8	931	868 938 8007	875 945 8014	952	'889 '959 8028	896 966 035	973	7910 7980 8048		1	1 1 1	2	3 3 3	3	4 4 4	5 5 5		6 6 6
	062 8 129 8 8195 8	3136	8142	3149	8156	-162	169	3176	116 182 8248	8189		1 1 1		3 3 3	3	4 4 4	5 5 5		6 6 6
	8261 8 8325 8 8388 8	3331	8338	8344	8351	8357	8363	370	8376	8382	1 1 1		$\frac{2}{2}$	3 3	3	4 4 4		5	6 6 6
70	8451 8	457	8463	8470	8476	8482	8488	8494	8500	8506	1	1	2	3	3	4	4	5	6
	8513 8 8573 8 8633 8	579	8585	8591	8597	603	3609	615	621	8627	1	1 1 1		3 3 2	3	4 4 4	4	5 5 5	
	3692 3751 8 8808 8	756 814	3762	8768	8774	722 8779 8837	3727 3785 8842	8791	8797	8802	1 1 1	1 1 1	$\frac{2}{2}$	$\frac{2}{2}$	3 3 3	4 3 3	4	5 4	5
		927	932	3938	8943	8949	8899 3954 1009	3960	8965	971	1 1 1	1 1 1	2	$\frac{2}{2}$	3 3 3			4 4 4	5
80	9031 9	036	9042	9047	9053	9058	9063	069	9074	9079	1	1	2	2	3	3	4	4	5
	9085 9 9138 9 9191 9	9143	9149	9154	9159	9165	9170	9175	9180	9186	1 1 1			$\frac{2}{2}$	3 3 3	3 3 3	4	4 4 4	5
	9243 9 9294 9 9345 9	299	9304	9309	9315	9320	9325	9330	9335	9340	1 1 1	1		$\frac{2}{2}$	3	3 3 3	4	4 4 4	5
	939¦ 9 9445 9 9494 9	9450	9455	9460	9465	9469	9474	9479	9484	9489	1 0 0	1 1 1	$_{1}^{2}$	$\frac{2}{2}$	2	3 3 3	3	4 4 4	4
90	9542 9	547	955:	9557	9562	9566	9571	9576	9581	9586	0	1	1	2	2	3			
	9590 9 9638 9 9685 9	9643	964'	965:	965	9661	9666	9671	9675	9680	0	1 1 1	1 1 1	$\frac{2}{2}$	$\frac{2}{2}$	3 3	3 3 3	44	
	9731 9 9777 9 9823 9	9782	9786	9791	. 9795	9800	980	9809	9814	9818	0	1	1 1 1	$\frac{2}{2}$	2	3 3	3	4	
	9868 991 9956	987: 9917	9877 9921	9926	,9886 9930	9890	9894 9939	9899	9908 9948	80998	0	1	1 1 1	$\frac{2}{2}$	2	3	3	3	4 4 4
N	•						6				1	2	3	4	5	6	7	8	9

ing the proportional part corresponding to the fourth figure to the tabular number corresponding to the first three figures. There may be an error of 1 in the last place.

		1	2	3	4	5	6	7	8 9	
.00	1000 1002 1005 1007 1009 1012 1014 1016 1019 1021	. 0	0	1	1	1	1	2	2 2	
	1023 1026 1028 1030 1033 1035 1038 1040 1042 1045			1	1	1	1	2		
	1047 1050 1052 1054 1057 1059 1062 1064 1067 1069 1072 1074 1076 1079 1081 1084 1086 1089 1091 1094		0		1	1	1	2 2		
	1096 1099 1102 1104 1107 1109 1112 1114 1117 1119			1	1	1	2	2	2 2	
	1122 1125 1127 1130 1132 1135 1138 1140 1143 1146 1148 1151 1153 1156 1159 1161 1164 1167 1169 1172		1	1	1 1	1	$\frac{2}{2}$	2. 2	$egin{smallmatrix} 2 & 2 \ 2 & 2 \end{bmatrix}$	
	1175 1178 1180 1183 1186 1189 1191 1194 1197 1199		1		1	_	2	2		
	1202 1205 1208 1211 1213 1216 1219 1222 1225 1227 1230 1233 1236 1239 1242 1245 1247 1250 1253 1256		1	1	1	1	$\frac{2}{2}$	2 2	$\begin{array}{ccc} 2 & 3 \\ 2 & 3 \end{array}$	
.10	1259 1262 1265 1268 1271 1274 1276 1279 1282 1285	0	1	1	1	1	2	2	2 3	
	1288 1291 1294 1297 1300 1303 1306 1309 1312 1315		1	1	1	2	2		2 3	
	1318 1321 1324 1327 330 1334 1337 1340 1343 1346 1349 1352 1355 1358 361 1365 1368 1371 1374 1377		1 1	1 1	1 1		$\frac{2}{2}$	2 2		
	1380 1384 1387 1390 .393 1396 1400 1403 1406 1409)	1	1	1		2		3 3	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	1 1	1 1	$\frac{2}{2}$	$\frac{2}{2}$	$egin{smallmatrix} 2 \\ 2 \end{matrix}$	3 3	
	1479 1483 1486 1489 1493 1496 1500 1503 1507 1510		1	1	1		2	2		
	1514 1517 1521 1524 1528 1531 1535 1538 1542 1549 1552 1556 1560 1563 1567 1570 1574 1578 1583		1	1 1	1 1		$\frac{2}{2}$		3 3	
.20	1585 1589 1592 1596 1600 1603 1607 1611 1614 1618	8 0	1	1	1	2	2	3	3 3	
	1622 1626 1629 1633 1637 1641 1644 1648 1652 1656	0	1	1	1	2	2	3 3	3 3	
	$\begin{array}{c} 1660 1663 1667 1671 1675 1679 1683 1687 1690 1694 \\ 1698 1702 1706 1710 1714 1718 1722 1726 1730 1734 \\ \end{array}$	Ö	1	1	$\frac{2}{2}$		$_{2}^{2}$	3		
	1738 1742 1746 1750 1754 1758 1762 1766 1770 1774	l o		1	2	2	2		3 4	
	$\frac{1778}{1782} \frac{1782}{1782} \frac{1796}{1791} \frac{1795}{1799} \frac{1799}{1803} \frac{1807}{1811} \frac{1816}{1820} \frac{1824}{1828} \frac{1832}{1837} \frac{1841}{1845} \frac{1849}{1849} \frac{1854}{1858}$	8 0	1	1	$\frac{2}{2}$	$\frac{2}{2}$	3 3	3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	186: 1866 1871 1875 1879 1884 1888 1892 1897 1901	0	1	1	2		3		3 4	
	$\frac{1905}{1950} \frac{1910}{1954} \frac{1919}{1950} \frac{1923}{1950} \frac{1928}{1950} \frac{1932}{1950} \frac{1936}{1950} \frac{1941}{1950} \frac{1941}{1950} \frac{1941}{1950} \frac{1923}{1950} \frac{1928}{1972} \frac{1936}{1977} \frac{1936}{1980} \frac{1941}{1980} \frac{1945}{1980} \frac{1941}{1980} \frac{1945}{1980} \frac{1941}{1980} \frac{1945}{1980} \frac{1941}{1980} \frac{1945}{1980} \frac{1941}{1980} \frac{1945}{1980} $		1	1 1	$\frac{2}{2}$	2	3 3	3	$\begin{array}{c} 4 & 4 \\ 4 & 4 \end{array}$	
.30	$1995\ 2000\ 2004 2009 2014 2018 2023 2028 2032 2037 2028 2032 2032 2039 2039 2039 2039 2039 2039$	0	1	1	2	2	3	3	4 4	
	$egin{array}{l} 2042 2046 2051 2056 2061 2065 2070 2075 2080 2089\\ 2089 2094 2099 2104 2109 2113 2118 2123 2128 2135\\ 2089 2094 2099 2104 2109 2113 2118 2123 2128 2135\\ 2089 2094 2099 2104 2109 2113 2118 2123 2128 2135\\ 2089 2094 2099 2104 2109 2113 2118 2123 2128 2135\\ 2089 2094 2099 2104 2109 2113 2118 2123 2128 2135\\ 2089 2094 2099 2104 2109 2113 2118 2123 2128 2135\\ 2089 2094 2099 2104 2109 2113 2118 2123 2128 2135\\ 2089 2094 2099 2104 2109 2113 2118 2123 2128 2135\\ 2089 2094 2099 2104 2109 2113 2118 2123 2128 2135\\ 2089 2094 2099 2104 2109 2113 2118 2123 2128 2135\\ 2089 2094 2099 2113 2118 2123 2128 2135\\ 2089 2094 2099 2113 2118 2123 2128 2135\\ 2089 2094 2099 2113 2118 2123 2128 2135\\ 2089 2094 2099 2113 2118 2123 2128 2135\\ 2089 2094 2099 2094 2099 2094 2099 2094 2099 2094 2099 2094 2099 2094 2099 2099$	0 0	1 1	1	$\frac{2}{2}$	2 2	3		4 4 4 4	
	2138 2143 2148 2153 2158 2163 2168 2173 2178 2183	ŠÖ	ī	î	$\tilde{2}$		3		4 4	
.34	2188 2193 2198 2203 2208 2213 2218 2223 2228 2234 2228 2244 2240 2254 2250 2265 2270 2275 2280 2286	1 1		$\frac{2}{2}$	$\frac{2}{2}$	3	3		4 5 4 5	
36	2239 2244 2249 2254 2259 2265 2270 2275 2280 2286 2291 2296 2301 2307 2312 2317 2323 2328 2333 2338	1		$\tilde{2}$	$\tilde{2}$		3	4		
	2344 2350 2355 2360 2366 2371 2377 2382 2388 2393	3 1 9 1	-	$\frac{2}{2}$	$\frac{2}{2}$		3	4 4		
	2399 2404 2410 2415 2421 2427 2432 2438 2448 2449 2455 2460 2466 247: 2477 2483 2489 2495 2500 2500	î		$\tilde{2}$	2			4		
.40	2512 2518 2523 2529 253 2541 2547 2553 2559 2564		1	2	2		4		5 5	
	$\begin{array}{c} 2570 2576 2582 2588 2594 2600 2606 2612 2618 262\\ 2630 2636 2642 2649 2655 2661 2667 2673 2679 268 \end{array}$	1 1 1		2	2	3		4 4	5 6 5 6	
	2692 2698 2704 2710 2716 2723 2729 2735 2742 2748	3, 1			2	3	4	4	56	
	2754 2761 2767 2773 2780 2786 2793 2799 2805 2818 2825 2831 2838 2844 2851 2858 2864 2871 2877 2878	2 1 7 1		$\frac{2}{2}$	3			4 5	5 6 5 6	
	2884 2891 2897 2904 2911 2917 2924 2931 2938 2944	1, 1		$\tilde{2}$	3	3		5	56	
	2951 2958 2965 2972 2979 2985 2992 2999 3006 3013 8020 3027 3034 3041 3048 3055 3062 3069 3076 3083	3 1 3 1		$\frac{2}{2}$	3				66	
	3020 3027 3034 3041 3048 3055 3062 3069 3076 308 3090 309' 3105 3112 3119 3126 3133 3141 3148 315	śi			3	4	4		66	

```
123 4 5
                                                                                                                                 7 8 9
.50| 162| 170 3177 3184| 192 3199 |206 3214 3221 |228| 1 1 2
                                                                                                                3
                                                                                                                                 5
                                                                                                                                     6
       | 236 | 3243 | 3251 | 3258 | 266 | 3273 | 3281 | 3289 | 3296 | 3304 | 3311 | 3319 | 3327 | 3334 | 342 | 3350 | 3357 | 3365 | 3373 | 3381 | 3483 | 3396 | 3404 | 3412 | 420 | 428 | 3436 | 3443 | 3451 | 3459 |
                                                                                                 1 1 2
                                                                                                                                 5
                                                                                                                                     6
                                                                                                                                 6

    3467
    3475
    3483
    3491
    3499
    3508
    3516
    524
    3532
    3540

    548
    3556
    3565
    3573
    3581
    3589
    3597
    3606
    3614
    3622

    631
    3639
    3648
    3656
    664
    3673
    3681
    690
    3698
    707

                                                                                                  1
                                                                                                                                     7 .
                                                                                                                     4
                                                                                                                                 6
       715 3724 3733 3741 3750 3758 3767 3776 3784 3793 1 2 3 802 3811 3819 3828 3837 3846 3855 864 3873 3882 1 2 3 890 3908 3917 3926 3936 3945 954 3963 3972 1 2 3
                                                                                                                3
                                                                                                                     4
                                                                                                                                 6
                                                                                                                                           8
                                                                                                                                     7
                                                                                                                                 6
                                                                                                                                          8
60 981 990 999 4009 4018 4027 4036 4046 4055 4064 1 2 3
                                                                                                                                 7
                                                                                                                                          8
                                                                                                                     5
                                                                                                                                     8
\begin{array}{c} .61|4074|4083|4093|4102|4111|4121|4130|4140|4150|4159|\\ 4169|4178|.188|4198|4207|4217|4227|4236|4246|4256|\\ 4266|4276|4285|4295|4305|4315|4325|4335|4345|4355 \end{array}
                                                                                                                                          9
                                                                                                 123
                                                                                                                                          9
                                                                                                                                     8
                                                                                                                                          9
\begin{array}{c} 64 \, | \, 4365 \, | \, 4375 \, | \, 4385 \, | \, 4395 \, | \, 4406 \, | \, 4416 \, | \, 4426 \, | \, 4436 \, | \, 4446 \, | \, 4457 \, | \, 1 \, \, 2 \, \, 3 \\ 65 \, | \, 4467 \, | \, 4477 \, | \, 4487 \, | \, 4498 \, | \, 4508 \, | \, 4519 \, | \, 4529 \, | \, 4539 \, | \, 4550 \, | \, 4560 \, | \, \, 1 \, \, 2 \, \, 3 \\ 66 \, | \, 4571 \, | \, 4581 \, | \, 4592 \, | \, 4603 \, | \, 4613 \, | \, 4624 \, | \, 4634 \, | \, 4645 \, | \, 4656 \, | \, 4667 \, | \, \, 1 \, \, \, 2 \, \, 3 \end{array}
                                                                                                                                     8 9
                                                                                                                     5
                                                                                                                                     9 10
      4677 4688 4699 4710 4721 4732 4742 4753 4764 4775 4786 4797 4808 4819 4831 4842 4853 4864 4875 4887
                                                                                                 123
                                                                                                                                     9 10
                                                                                                 1 2 3
                                                                                                                     6
                                                                                                                                     9 10
      4898 4909 4920 4932 4943 4955 4966 4977 4989 5000 1 2 3
                                                                                                                                     9 10
.70|5012|5023|5035|5047| |058| |070| |082|5093|5105|5117| |1|2|3
                                                                                                                     6
                                                                                                                                 8 9 10
       8 10 11
                                                                                                                                 9 10 11
                                                                                                                                 9 10 11
74 5495 5508 5521 5534 5546 5559 572 5585 5598 5610 1 3 4 623 5636 5649 5662 675 689 702 715 728 5741 1 3 4 754 5768 5784 808 5821 5834 5861 5875 1 3 4
                                                                                                                                 9\ 10\ 12
                                                                                                                     7
                                                                                                                                 9 11 12
                                                                                                                                 9 11 12
        888 590: 5916 5929 943 5957 5970 984 5998 6012 1 3 4
                                                                                                                               10 11 12
      6026 6039 6053 6067 6081 609 6109 6124 6138 6152 1 3 4
                                                                                                                     7
                                                                                                                6
                                                                                                                          8
                                                                                                                               10 11 13
      6166 6180 6194 6209 6223 6237 625 6266 6281 6295 1 3 4
                                                                                                                               10 11 13
 80 6310 6324 6339 6353 6368 6383 6397 6412 6427 6442 1 3 4
                                                                                                                6
                                                                                                                     7
                                                                                                                          9
                                                                                                                               10 12 13
      6457 6471 6486 6501 6516 6531 6546 6561 6577 659 660: 6622 6637 6653 6668 6699 6714 6730 6745
                                                                                                                     8
                                                                                                                               11 12 14
                                                                                                  2 3 5
                                                                                                                               11 12 14
                                                                                                                6
                                                                                                                     8
                                                                                                                          9
      6761 6776 6792 6808 6823 6839 6855 6871 6887 690
                                                                                                                     8
                                                                                                                               11 13 14
84 6918 6934 6950 6966 698: 6998 7015 7031 7047 7063 2 3 5 85 7079 7096 7112 7129 7145 7161 7178 7194 7211 7228 2 3 5 86 7244 7261 7278 7295 7311 7328 7345 736: 7379 7396 2 3 5
                                                                                                                     8 10
                                                                                                                               11 13 15
                                                                                                                7
                                                                                                                              12 13 15
                                                                                                                     8 10
                                                                                                                     8 10
                                                                                                                              12 14 15
7
                                                                                                                     9 10
                                                                                                                              12 14 16
                                                                                                   2 4 5
                                                                                                                7
                                                                                                                     9 11 12 14 16
                                                                                                                    9 11 13 15 16
 .90|7943|7962|7980|7998 801' 8035 8054|807: 8091|8110
                                                                                                   246
                                                                                                                 7 9 11 13 15 17
      8128|814' 8166 8185 8204|8222|8241|8260 8279|8299|
|8318 8337 8356 8375 8395 8414|8433 8453 847: 8492
                                                                                                                 8 9 11 13 15 17
                                                                                                   246
                                                                                                   \tilde{2} 4 6
                                                                                                                 8 10 12
                                                                                                                               14 15 17
                                                                                                                 8 10 12 14 16 18
       8511 8531 8551 8570 8590 8610 8630 8650 8670 8690
 94 8710 873( 8750 8770 8790 8810 8831 8851 887; 8892
                                                                                                                 8 10 12 14 16 18
                                                                                                   246
 \begin{array}{c} 95 \\ 8913 \\ 8935 \\ 8954 \\ 897 \\ 899 \\ 9016 \\ 9036 \\ 905 \\ 9078 \\ 9099 \\ 9110 \\ 9162 \\ 9183 \\ 9204 \\ 9226 \\ 9247 \\ 9268 \\ 9290 \\ 9311 \\ \end{array}
                                                                                                  246
                                                                                                                 8 10 12 15 17 19
                                                                                                                 9 11 13 15 17 19
       9333 9354 937 939 9419 9441 9462 9484 9506 9528 2 4 6 9556 9572 9594 9616 9638 9661 9683 9705 9727 9750 2 4 7 9772 979£ 981 984 986 9886 9886 9908 9931 995 9977 2 5 7
                                                                                                                 9 11 13 15 17 19
                                                                                                                 9 11 13 16 18 20
                                                                                                                 9 11 14 16 18 21
```

138 Table XIV c — Four Place Trigonometric Functions [XIV c

[Characteristics of Logarithms omitted—determine by the usual rule from the value]

Radians	Degrees	SINE Value Log ₁₀	Tangent Value Log ₁₀	Cotangent Value Log ₁₀	Cosine Value Log ₁₀		
.0000 .0029 .0058 .0087 .0116 .0145	0° 00′ 10 20 30 40 50	.0116 .0658	.0058 .7648 .0087 .9409 .0116 .0658	343.77 .5363 171.89 .2352 114.59 .0591 85.940 .9342 68.750 .8373	1.0000 .0000 1.0000 .0000	90° 00′ 50 40 30 20 10	1.5708 1.5679 1.5650 1.5621 1.5592 1.5563
.0175 .0204 .0233 .0262 .0291 .0320	1° 00′ 10 20 30 40 50	.0233 .3668 .0262 .4179 .0291 .4637	.0204 .3089 .0233 .3669 .0262 .4181	57.290 .7581 49.104 .6911 42.964 .6331 38.188 .5819 34.368 .5362 31.242 .4947	.9998 .9999 .9998 .9999 .9997 .9999 .9996 .9998 .9995 .9998	50 40 30 20 10	1.5533 1.5504 1.5475 1.5446 1.5417
.0349 .0378 .0407 .0436 .0465 .0495	2° 00′ 10 20 30 40 50	.0407 .6097 .0436 .6397 .0465 .6677	.0378 .5779 .0407 .6101 .0437 .6401 .0466 .6682	28.636 .4569 26.432 .4221 24.542 .3899 22.904 .3599 21.470 .3318 20.206 .3055	.9994 .9997 .9993 .9997 .9992 .9996 .9990 .9996 .9989 .9995 .9988 .9995	50 40 30 20 10	1.5359 1.5330 1.5301 1.5272 1.5243 1.5213
.0524 .0553 .0582 .0611 .0640 .0669	3° 00′ 10 20 30 40 50	.0552 .7423 .0581 .7645 .0610 .7857 .0640 .8059	.0582 .7652 .0612 .7865 .0641 .8067	18.075 .2571	.9986 .9994 .9985 .9993 .9983 .9993 .9981 .9992 .9980 .9991 .9978 .9990	87° 00′ 50 40 30 20 10	1.5184 1.5155 1.5126 1.5097 1.5068 1.5039
.0698 .0727 .0756 .0785 .0814 .0844	4° 00′ 10 20 30 40 50	.0814 .9104	.0729 .8624 .0758 .8795 .0787 .8960 .0816 .9118	14.301 .1554 13.727 .1376 13.197 .1205 12.706 .1040 12.251 .0882 11.826 .0728	.9974 .9989 .9971 .9988 .9969 .9987	50 40 30	1.5010 1.4981 1.4952 1.4923 1.4893 1.4864
.0873 .0902 .0931 .0960 .0989	5° 00′ 10 20 30 40 50	.0901 .9545 .0929 .9682 .0958 .9816 .0987 .9945	.0904 .9563 .0934 .9701 .0963 .9836	10.385 .0164 10.078 .0034	.9951 .9979	50 40 30	1.4835 1.4806 1.4777 1.4748 1.4719 1.4690
.1047 .1076 .1105 .1134 .1164 .1193	6° 00′ 10 20 30 40 50	.1074 .0311 .1103 .0420 .1132 .0539 .1161 .0648	.1080 .0336 .1110 .0453 .1139 .0567	9.0098 .9547 8.7769 .9433 8.5555 .9322	.9942 .9975 .9939 .9973 .9936 .9972 .9932 .9971	50 40 30 20	1.4661 1.4632 1.4603 1.4573 1.4544 1.4515
.1222 .1251 .1280 .1309 .1338 .1367	7° 00′ 10 20 30 40 50	.1248 .096 .1276 .1060 .1305 .115	0 .1287 .1096 7 .1317 .1194 2 .1346 .1291	7.9530 .9005 7.7704 .8904 7.5958 .8806 7.4287 .8709	.9922 .9966 .9918 .9964 .9914 .9963 .9911 .9961	50 40 30 20	1.4486 1.4457 1.4428 1.4399 1.4370 1.4341
.1396 .1425 .1454 .1484 .1513 .1542	8° 00 10 20 30 40 50	.1392 .1430 .1421 .152 .1449 .161 .1478 .169 .1507 .178	3 .1405 .1478 5 .1435 .1569 2 .1465 .1658 7 .1495 .1745 1 .1524 .1831	7.1154 .8522 6.9682 .8431 6.8269 .8342 6.6912 .8255 6.5606 .8169 6.4348 .8085	.9899 .9956 .9894 .9954 .9890 .9952 .9886 .9950	50 40 30 20	1.4312 1.4283 1.4254 1.4224 1.4195 1.4166
.1571	9° 00	Value Logic		6.3138 .8003 Value Log ₁₀			1.4137
		Cosine	COTANGENT	TANGENT	SINE SINE	Degrees	RADIANS

Radians	DEGREES	Sine Value Log ₁₀	TANGENT Value Log ₁₀	Cotangent Value Logio	Cosine Value Log ₁₀		
.1571 .1600 .1629 .1658 .1687 .1716	20 30 40	.1593 .2022	.1614 .2078 .1644 .2158 .1673 .2236 .1703 .2313	6.3138 .8003 6.1970 .7922 6.0844 .7842 5.9758 .7764 5.8708 .7687 5.7694 .7611	.9872 .9944 .9868 .9942 .9863 .9940 .9858 .9938	50 40 30 20	1.4137 1.4108 1.4079 1.4050 1.4021 1.3992
.1745 .1774 .1804 .1833 .1862 .1891	10	.1736 .2397 .1765 .2468 .1794 .2538 .1822 .2606 .1851 .2674 .1880 .2740	.1793 .2536 .1823 .2609 .1853 .2680 .1883 .2750	5.6713 .7537 5.5764 .7464 5.4845 .7391 5.3955 .7320 5.3093 .7250 5.2257 .7181	.9843 .9931 .9838 .9929 .9833 .9927 .9827 .9924	50 40 30 20	1.3963 1.3934 1.3904 1.3875 1.3846 1.3817
.1920 .1949 .1978 .2007 .2036 .2065	11° 00′ 10 20 30 40 50	.1908 .2806 .1937 .2870 .1965 .2934 .1994 .2997 .2022 .3058 .2051 .3119	.1974 .2953 .2004 .3020 .2035 .3085 .2065 .3149	5.1446 .7113 5.0658 .7047 4.9894 .6980 4.9152 .6915 4.8430 .6851 4.7729 .6788	.9811 .9917 .9805 .9914 .9799 .9912 .9793 .9909	50 40 30 20	1.3788 1.3759 1.3730 1.3701 1.3672 1.3643
.2094 .2123 .2153 .2182 .2211 .2240	12° 00′ 10 20 30 40 50	.2079 .3179 .2108 .3238 .2136 .3296 .2164 .3353 .2193 .3410 .2221 .3466	.2156 .3336 .2186 .3397 .2217 .3458 .2247 .3517	4.7046 .6725 4.6382 .6664 4.5736 .6603 4.5107 .6542 4.4494 .6483 4.3897 .6424	.9775 .9901 .9769 .9899 .9763 .9896	50 40 30 20	1.3614 1.3584 1.3555 1.3526 1.3497 1.3468
.2269 .2298 .2327 .2356 .2385 .2414	13° 00′ 10 20 30 40 50	.2334 .3682	.2339 .3691 .2370 .3748 .2401 .3804 .2432 .3859	4.2747 .6309	.9737 .9884 .9730 .9881 .9724 .9878 .9717 .9875	50 40 30 20	1.3439 1.3410 1.3381 1.3352 1.3323 1.3294
.2443 .2473 .2502 .2531 .2560 .2589	14° 00′ 10 20 30 40 50		.2524 .4021 .2555 .4074 .2586 .4127 .2617 .4178	13.9136 .5926 73.8667 .5873 83.8208 .5822	.9696 .9866 .9689 .9863 .9681 .9859	76° 00′ 50 40 30 20 10	1.3265 1.3235 1.3206 1.3177 1.3148 1.3119
.2618 .2647 .2676 .2705 .2734 .2763	10 20 30 40	.2700 .4314	.2711 .4331 .2742 .4381	3.5656 .552	9.9659 .9849 9.9652 .9846 9.9644 .9843 9.9636 .9839 1.9628 .9836 3.9621 .9832	75° 00′ 50 40 30 20 10	1.3090 1.3061 1.3032 1.3003 1.2974 1.2945
.2793 .2822 .2851 .2880 .2909 .2938	10 20 30 40	.2784 .4447 .2812 .4493 .2840 .4533 .2868 .4576	.2899 .4629 1.2931 .4669	9 3.4124 .533 6 3.3759 .5284 2 3.3402 .523	5 .9613 .9828 8 .9605 .9825 1 .9596 .9821 4 .9588 .9817 8 .9580 .9814 2 .9572 .9810	74° 00′ 50 40 30 20 10	1.2915 1.2886 1.2857 1.2828 1.2799 1.2770
.2967 .2996 .3025 .3054 .3083 .3113	10 20 30 40 50	.2952 .470 .2979 .474 .3007 .478 .3035 .482 .3062 .486	0 .3089 .489 1 .3121 .494 1 .3153 .498 1 .3185 .503 1 .3217 .507	3 3.2709 .514' 8 3.2371 .510' 3 3.2041 .505' 7 3.1716 .501' 1 3.1397 .496 5 3.1084 .492	2 .9555 .9802 7 .9546 .9798 3 .9537 .9794 9 .9528 .9790 5 .9520 .9786	50 40 30 20 10	1.2741 1.2712 1.2683 1.2654 1.2625 1.2595
.3142	18° 00′	Value Logi Cosine	_		-	72° 00′ Degrees	1.2566 RADIANS

Four Place Trigonometric Functions

[Characteristics of Logarithms omitted—determine by the usual rule from the value]

	Degrees	Sine Value Lo	Tangent Value Log	Cotan Value	GENT Log ₁₀	Cos Value	INE Log ₁₀		
.3142 .3171 .3200 .3229 .3258 .3287	18° 00′ 10 20 30 40 50	3145 .4977 3173 .5015 3201 .5052	.3281 .516 .3314 .526 .3346 .524 .3378 .528	18 3.0777 31 3.0475 03 3.0178 45 2.9887 37 2.9600 29 2.9319	.4713	.9502 .9492 .9483 .9474	.9782 .9778 .9774 .9770 .9765 .9761	72° 00′ 50 40 30 20 10	1.2566 1.2537 1.2508 1.2479 1.2450 1.2421
.3316 .3345 .3374 .3403 .3432 .3462	19° 00′ 10 20 30 40 50	3283 .5163 3311 .5199 3338 .5235 .3365 .5270 3393 .5306	.3476 .541 .3508 .545 .3541 .549 .3574 .553 .3607 .557	51 2.8502 91 2.8239 31 2.7980 71 2.7725	.4630 .4589 .4549 .4509 .4469 .4429	.9446 .9436 .9426 .9417 .9407	.9757 .9752 .9748 .9743 .9739 .9734	71° 00′ 50 40 30 20 10	1.2392 1.2363 1.2334 1.2305 1.2275 1.2246
.3491 .3520 .3549 .3578 .3607 .3636	20° 00′ 10 20 30 40 50	3448 .5375 3475 .5409 3502 .5443 3529 .5477 3557 .5510	.3673 .568 .3706 .568 .3739 .573 .3772 .576 .3805 .586	$\begin{array}{c c} 66 & 2.6511 \\ 04 & 2.6279 \end{array}$.4389 .4350 .4311 .4273 .4234 .4196	.9387 .9377 .9367 .9356 .9346	.9730 .9725 .9721 .9716 .9711	70° 00′ 50 40 30 20 10	1.2217 1.2188 1.2159 1.2130 1.2101 1.2072
.3665 .3694 .3723 .3752 .3782 .3811	21° 00′ 10 20 30 40 50	3611 .5576 3638 .5609 3665 .5641 3692 .5673	3872 .587 3906 .593 3939 .595 3973 .599 4006 .602	17 2.5605 54 2.5386 91 2.5172 28 2.4960		.9325 .9315 .9304 .9293 .9283	.9682 .9677	69° 00′ 50 40 30 20 10	1.2043 1.2014 1.1985 1.1956 1.1926 1.1897
.3840 .3869 .3898 .3927 .3956 .3985	22° 00′ 10 20 30 40 50	.3773 .5767 .3800 .5798 .3827 .5828 .3854 .5859	.4074 610 .4108 .613 .4142 .617 .4176 .620	54 2.4751 00 2.4545 36 2.4342 72 2.4142 08 2.3945 13 2.3750	.3936 .3900 .3864 .3828 .3792 .3757	9261 9250 9239 9228	.9672 .9667 .9661 .9656 .9651 .9646	68° 00′ 50 40 30 20 10	1.1868 1.1839 1.1810 1.1781 1.1752 1.1723
.4014 .4043 .4072 .4102 .4131 .4160	23° 00′ 10 20 30 40 50	.3934 .5948 .3961 .5978 .3987 .6007 .4014 .6036	.4279 .63 .4314 .634 .4348 .638 .4383 .641	79 2.3559 14 2.3369 18 2.3183 83 2.2998 17 2.2817 52 2.2637	.3721 .3686 .3652 .3617 .3583 .3548	.9194 .9182 .9171 .9159	.9640 .9635 .9629 .9624 .9618	67° 00′ 50 40 30 20 10	1.1694 1.1665 1.1636 1.1606 1.1577 1.1548
.4189 .4218 .4247 .4276 .4305 .4334	24° 00′ 10 20 30 40 50	4094 .6121 4120 .6149 4147 .6177 4173 .6205	.4487 .652 .4522 .653 .4557 .658 .4592 .663	$\begin{array}{c} 36\ 2.2460 \\ 20 2.2286 \\ 53\ 2.2113 \\ 37 2.1943 \\ 20 2.1775 \\ 54 2.1609 \end{array}$.3447 .3413 .3380	9124 9112 9100	.9607 .9602 .9596 .9590 .9584 .9579	66° 00′ 50 40 30 20 10	1.1519 1.1490 1.1461 1.1432 1.1403 1.1374
.4363 .4392 .4422 .4451 .4480 .4509	25° 00′ 10 20 30 40 50	.4253 .6286 .4279 .6313 .4305 .6340 .4331 .6366	.4699 .672 .4734 .678 .4770 .678 .4806 .68	$\begin{array}{c} 87 \ 2.1445 \\ 20 \ 2.1283 \\ 52 \ 2.1123 \\ 85 \ 2.0965 \\ 17 \ 2.0809 \\ 50 \ 2.0655 \end{array}$.3280	.9038 .9026 .9013	.9573 .9567 .9561 .9555 .9549 .9543	65° 00′ 50 40 30 20 10	1.1345 1.1316 1.1286 1.1257 1.1228 1.1199
.4538 .4567 .4596 .4625 .4654 .4683	26° 00′ 10 20 30 40 50	4410 .6444 4436 .6470 4462 .6495 4488 .6521 4514 .6546	4913 .693 0.4950 .694 0.4986 .693 0.5022 .700 0.5059 .704	$ \begin{array}{r r} 82 & 2.0503 \\ 14 & 2.0353 \\ 46 & 2.0204 \\ 77 & 2.0057 \\ 09 & 1.9912 \\ 40 & 1.9768 \\ \end{array} $.8962 .8949 .8936 .8923	.9537 .9530 .9524 .9518 .9512 .9505	64° 00′ 50 40 30 20 10	1.1170 1.1141 1.1112 1.1083 1.1054 1.1025
.4712	27° 00′	.4540 .6570	.5095 .70	7: 1.9626	.2928	.8910	.9499	63° 00′	1.0996

RADIANS

[Characteristics of Logarithms omitted—determine by the usual rule from the value]

Radians	Degrees	SINE Value Logio	Tangent Value Log ₁₀	Cotangent Value Log ₁₀	Cosine Value Log ₁₀		
.4712 .4741 .4771 .4800 .4829 .4858		.4592 .6620 .4617 .6644 .4643 .6668	.5169 .7134 .5206 .7165 .5243 .7196	1.9626 .2928 1.9486 .2897 1.9347 .2866 1.9210 .2835 1.9074 .2804 1.8940 .2774	.8897 .9492 .8884 .9486 .8870 .9479 .8857 .9473	50 40 30 20	1.0996 1.0966 1.0937 1.0908 1.0879 1.0850
.4887 .4916 .4945 .4974 .5003	30 40 50	.4823 .6833	.5354 .7287 .5392 .7317 .5430 .7348 .5467 .7378 .5505 .7408	1.8807 .2743 1.8676 .2713 1.8546 .2683 1.8418 .2652 1.8291 .2622 1.8165 .2592	.8816 .9453 .8802 .9446 .8788 .9439 .8774 .9432	50 40 30 20	1.0821 1.0792 1.0763 1.0734 1.0705 1.0676
.5061 .5091 .5120 .5149 .5178 .5207	29° 00′ 10 20 30 40 50	.4874 .6878 .4899 .6901 .4924 .6923	.5658 .7526 .5696 .7556	1.7917 .2533 1.7796 .2503 1.7675 .2474	.8732 .9411 .8718 .9404 .8704 .9397 .8689 .9390	50 40 30 20	1.0647 1.0617 1.0588 1.0559 1.0530 1.0501
.5236 .5265 .5294 .5323 .5352 .5381	30° 00′ 10 20 30 40 50	.5025 .7012 .5050 .7033 .5075 .7055	.5851 .7673 .5890 .7701 .5930 .7730	1.7205 .2356 1.7090 .2327	.8646 .9368 .8631 .9361 .8616 .9353 .8601 .9346	50 40 30 20	1.0472 1.0443 1.0414 1.0385 1.0356 1.0327
.5411 .5440 .5469 .5498 .5527 .5556	31° 00′ 10 20 30 40 50	.5200 .7160 .5225 .7181 .5250 .7201	.6048 .7816 .6088 .7845 .6128 .7873 .6168 .7902	1.6534 .2184 1.6426 .2155 1.6319 .2127 1.6212 .2098	.8557 .9323 .8542 .9315 .8526 .9308	59° 00′ 50 40 30 20 10	1.0297 1.0268 1.0239 1.0210 1.0181 1.0152
.5585 .5614 .5643 .5672 .5701 .5730	32° 00′ 10 20 30 40 50	.5324 .7262 .5348 .7282 .5373 .7302	.6289 .7986 .6330 .8014 .6371 .8042 .6412 .8070	1.5900 .2014 1.5798 .1986 1.5697 .1958 1.5597 .1930	.8450 .9268 .843 4 .9260	58° 00′ 50 40 30 20 10	1.0123 1.0094 1.0065 1.0036 1.0007 .9977
.5760 .5789 .5818 .5847 .5876 .5905	33° 00′ 10 20 30 40 50	.5471 .7380 .5495 .7400	.6536 .8153 .6577 .8180 .6619 .8208 .6661 .8235	1.5399 .1875 1.5301 .1847 1.5204 .1820 1.5108 .1792 1.5013 .1765 1.4919 .1737	.8371 .9228 .8355 .9219 .8339 .9211 .8323 .9203	57° 00′ 50 40 30 20 10	.9948 .9919 .9890 .9861 .9832 .9803
.5934 .5963 .5992 .6021 .6050 .6080	34° 00′ 10 20 30 40 50	.5616 .7494 .5640 .7513 .5664 .7531	1.6787 .8317 3.6830 .8344 1.6873 .837 0.6916 .8398		.8241 .9160 .8225 .9151	56° 00′ 50 40 30 20 10	.9774 .9745 .9716 .9687 .9657
.6109 .6138 .6167 .6196 .6225 .6254	35° 00′ 10 20 30 40 50	.5783 .762: .5807 .764: .5831 .765: .5854 .767	4 .7046 .8479 2 .7089 .8500 0 .7133 .853 7 .7177 .8559 5 .7221 .858	9 1.4193 .1523 3 1.4106 .1494 8 1.4019 .1463 9 1.3934 .1443 6 1.3848 .1414	.8124 .9098 1.8107 .9089	10	.9599 .9570 .9541 .9512 .9483 .9454
.6283	36° 00′	Value Logi Cosine	-	Value Logic TANGENT	-	54° 00′ Degrees	.9425

[Characteristics of Logarithms omitted—determine by the usual rule from the value]

RADIANS DEGREES	Sine Value Log ₁₀	Tangent Value Log	Cotang 10 Value		Cosi Value	NE Log ₁₀		
.6283 36° 00′ .6312 10 .6341 20 .6370 30 .6400 40 .6429 50	.5878 .7692 .5901 .7710 .5925 .7727 .5948 .7744 .5972 .7761 .5995 .7778	.7310 .863 .7355 .866 .7400 .869 .7445 .87	36 1.3597 92 1.3514 18 1.3432	$.1361 \ 8 \ .1334 \ 8$	8073 8056 8039 8021	.9080 .9070 .9061 .9052 .9042 .9033	54° 00′ 50 40 30 20 10	.9425 .9396 .9367 .9338 .9308 .9279
.6458 37° 00′ .6487 10 .6516 20 .6545 30 .6574 40 .6603 50	6018 .7795 6041 .7811 6065 .7828 6088 .7844 6111 .7861 .6134 .7877	.7581 .879 .7627 .883 .7673 .885 .7720 .885 .7766 .890	97 1.3190 24 1.3111 50 1.3032 76 1.2954 02 1.2876	.1098	7969 7951 7934 7916 7898	.9023 .9014 .9004 .8995 .8985 .8975	53° 00′ 50 40 30 20 10	.9250 .9221 .9192 .9163 .9134 .9105
.6632 38° 00' .6661 10 .6690 20 .6720 30 .6749 40 .6778 50	.6157 .7893 .6180 .7910 .6202 .7926 .6225 .7941 .6248 .7957 .6271 .7973	.7860 .898 .7907 .898 .7954 .900 .8002 .903 .8050 .908	54 1.2723 50 1.2647 56 1.2572 32 1.2497 58 1.2423	.1046 .1020 .0994 .0968 .0942	7862 7844 7826 7808 7790	.8965 .8955 .8945 .8935 .8925 .8915	52° 00′ 50 40 30 20 10	.9076 .9047 .9018 .8988 .8959 .8930
.6807 39° 00' .6836 10 .6865 20 .6894 30 .6923 40 .6952 50	6293 .7989 6316 .8004 6338 .8020 6361 .8035 6383 .8050 6406 .8066	.8146 .913 .8195 .913 .8243 .916 .8292 .918	10 1.2276 35 1.2203 31 1.2131 37 1.2059	.0916 .0890 .0865 .0839 .0813	7753 7735 7716 7698 7679	.889 .8884 .8874 .8864 .885	51° 00′ 50 40 30 20 10	.8901 .8872 .8843 .8814 .8785 .8756
.6981 40° 00′ .7010 10 .7039 20 .7069 30 .7098 40 .7127 50	6428 .8081 6450 .8096 6472 .8111 .6494 .8125 .6517 .8140 6539 .8155	.8441 .926 .8491 .928 .8541 .93 .8591 .934 .8642 .936	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.0762 . .0736 . .0711 . .0685 . .0659 .	7642 7623 7604 7585 7566	.8843 .883 .8821 .8810 .8800 .8789	50° 00° 50° 40° 30° 20° 10°	.8727 .8698 .8668 .8639 .8610 .8581
.7156 41° 00′ .7185 10 .7214 20 .7243 30 .7272 40 .7301 50	6561 .8169 6583 .8184 6604 .8198 6626 .8213 6648 .8227 6670 .8241	.8744 .94 .8796 .94 .8847 .946 .8899 .949 .8952 .95	43 1.1369 58 1.1303 94 1.1237 19 1.1171	.0583 . .0557 . .0532 . .0506 .	7528 7509 7490 7470 7451	.8778 .876 .8756 .8745 .873 .8722	49° 00° 50 40 30 20 10	.8552 .8523 .8494 .8465 .8436 .8407
.7330 42° 00′ .7359 10 .7389 20 .7418 30 .7447 40 .7476 50	6691 .8255 6713 .8269 6734 .8283 6756 .8297 6777 .8311 6799 .8324	.9057 .95' .9110 .959 .9163 .965 .9217 .964 .9271 .96	21 1.0913 46 1.0850 71 1.0786	.0430 . .040 . .0379 . .0354 .	7412 7392 7373 7353 7333	.8711 .8699 .8688 .8676 .866	48° 00 50 40 30 20 10	.8378 .8348 .8319 .8290 .8261 .8232
.7505 43° 00′ .7534 10 .7563 20 .7592 30 .7621 40 .7650 50	.6820 .8338 .6841 .8351 .6862 .8365 .6884 .8378 .6905 .8391 .6926 .8405	.9380 .975 .9435 .976 .9490 .977 .9545 .979	47 1.0599 72 1.0538 98 1.0477	.0303 . .0278 . .0253 . .0228 . .0202 .	7294 7274 7254 7234	.8629 .8618 .8606 .8594 .8582	50 40 30 20 10	.8203 .8174 .8145 .8116 .8087 .8058
.7679 44° 00′ .7709 10 .7738 20 .7767 30 .7796 40 .7825 50	.6967 .8431 .6988 .8444 .7009 .8457 .7030 .8469 .7050 .848	.9713 .98' .9770 .98' .9827 .99' .9884 .994 .9942 .99'	74 1.0295 99	.0152 . .0126 . .0101 . .0076 . .0051 .	7173 7153 7133 7112 7092		46° 00 50 40 30 20 10	.8029 .7999 .7970 .7941 .7912 .7883
.7854 45° 00 ′	.7071 .8495	1.0000 .00	00 1-0000	.0000 .	7071	.849	45° 00'	.7854

Value Log10 Value Log10 Value Log10 Value Log10 Value Log10 DEGREES RADIANS COSINE

SLIDE-RULE

DIRECTIONS

A reasonably accurate slide-rule may be made by the student, for temporary practice, as follows. Take three strips of heavy stiff cardboard 1".3 wide by 6" long; these are shown in cross-section in (1), (2), (3) above. On (3) paste or glue the adjoining cut of the slide rule. Then cut strips (2) and (3) accurately along the lines marked. Paste or glue the pieces together as shown in (4) and (5). Then (5) forms the slide of the slide-rule, and it will fit in the groove in (4) if the work has been carefully done. Trim off the ends as shown in the large cut.

