Spring 2016 Math 511 Homework 6 Due date: Friday, April 22, 2016

1. Suppose $f: \mathbf{C} \to \mathbf{C}$ is 1-1 (no assumption of onto) and holomorphic. Prove that f(z) = az + b for some $a \neq 0$, $b \in \mathbf{C}$. (Hint: Consider the power series of f and check the behavior at ∞ .)

Solution: Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ for $z \in \mathbb{C}$. Define $g : \mathbb{C} \setminus \{0\} \to \mathbb{C}$ by

$$g(z) = f\left(\frac{1}{z}\right) = \sum_{n=0}^{\infty} a_n \left(\frac{1}{z}\right)^n \tag{1}$$

Since f is holomorphic on C, (1) converges for all $z \neq 0$. We will prove that g does not have an essential singularity at 0.

Since f is 1-1, g is also 1-1. We have

$$(D(0,1) \setminus \{0\}) \cap D(3,1) = \emptyset \Rightarrow g(D(0,1) \setminus \{0\}) \cap g(D(3,1)) = \emptyset$$

By the Open Mapping Theorem, g(D(3,1)) is a non-empty open subset. Therefore, $g(D(0,1) \setminus \{0\})$ is not dense in \mathbb{C} . By Theorem 4.1.4, 0 is not an essential singularity of g. So $a_n \neq 0$ for at most a finite number of n. Hence, f is a polynomial. Since f is 1-1, f has degree 1.

2. Let S be the sphere of radius 1, centered at the origin in \mathbb{R}^3 and N=(0,0,1). For each point (x,y,z), let p(x,y,z) be the point in $\mathbb{C} \cup \{\infty\}$ under the stereographic projection (see Assignment 1, Q.3). Let γ be a circle on S. Prove that **a)** $p(\gamma)$ is a line (respectively, circle) if $N \in \gamma$ (respectively, $N \notin \gamma$) and **b)** every line or circle in $\mathbb{C} \cup \{\infty\}$ is equal to $p(\gamma)$ for some circle γ on S.

Solution: Suppose p(x, y, z) = u + iv. From Assignment 1, Q. 3, we have

$$x = \frac{2u}{(u^2 + v^2 + 1)}, \ y = \frac{2v}{(u^2 + v^2 + 1)}, \ z = \frac{(u^2 + v^2 - 1)}{(u^2 + v^2 + 1)}$$
 (2)

a) Suppose γ is a circle on S. Then γ is the intersection of S with a plane given by an equation Ax + By + Cz = D, where at least one of A, B or C is nonzero. For the plane to cut out a circle on S, the distance from the origin to the plane has to be less than 1. Therefore, we have

$$\frac{|0-D|}{\sqrt{A^2+B^2+C^2}} < 1 \iff A^2+B^2+C^2 > D^2$$

u + iv lies on $p(\gamma)$ if and only if

$$A\left(\frac{2u}{(u^2+v^2+1)}\right) + B\left(\frac{2v}{(u^2+v^2+1)}\right) + C\left(\frac{(u^2+v^2-1)}{(u^2+v^2+1)}\right) = D$$

$$\Leftrightarrow 2Au + 2Bv + C(u^2+v^2-1) = D(u^2+v^2+1)$$

$$\Leftrightarrow (C-D)(u^2+v^2) + 2Au + 2Bv = (C+D)$$
(3)

If $N \in \gamma$, then $A(0) + B(0) + C(1) = D \Rightarrow C = D$ and (3) becomes 2Au + 2Bv = (C + D), which is the equation of a line.

If $N \notin \gamma$, then $A(0) + B(0) + C(1) \neq D \Rightarrow C - D \neq 0$ and (3) becomes

$$(u^{2} + v^{2}) + \frac{2Au}{(C - D)} + \frac{2Bv}{(C - D)} = \frac{(C + D)}{(C - D)}$$

$$\Leftrightarrow \left(u + \frac{A}{(C - D)}\right)^{2} + \left(v + \frac{B}{(C - D)}\right)^{2} = \frac{(C + D)}{(C - D)} + \frac{A^{2} + B^{2}}{(C - D)^{2}}$$

$$\Leftrightarrow \left(u + \frac{A}{(C - D)}\right)^{2} + \left(v + \frac{B}{(C - D)}\right)^{2} = \frac{A^{2} + B^{2} + C^{2} - D^{2}}{(C - D)^{2}}$$

Therefore, $f(\gamma)$ is a circle.

b) Suppose L is a line on the uv plane with equation Au + Bv = C. Then let γ be the intersection of S with the plane Ax + By + Cz = C. Then by the calculation in a), we have $L = p(\gamma)$.

Suppose L is a circle on the uv plane with equation $(u+h)^2 + (v+k)^2 = r^2$. Then let γ be the intersection of S with the plane Ax + By + Cz = D, where

$$A = h, B = k, C = \frac{r^2 - h^2 - k^2 + 1}{2}$$
 and $D = \frac{r^2 - h^2 - k^2 - 1}{2}$

Then by the calculation in **a**), we have $L = p(\gamma)$.

3. Suppose $f: \mathbf{C} \setminus \{0\} \to \mathbf{C} \setminus \{0\}$ is conformal. Prove that there exists $a \in \mathbf{C} \setminus \{0\}$ such that f(z) = az or $f(z) = \frac{a}{z}$ for all $z \in \mathbf{C} \setminus \{0\}$. (Hint: First consider the case when 0 is a removable singularity of f. Show that $\lim_{z \to 0} f(z) = 0$.)

Solution: Suppose 0 is a removable singularity of f. Then we can extend $f: \mathbb{C} \to \mathbb{C}$. We will show that $\lim_{z\to 0} f(z) = 0$. Suppose not. Let $f(0) = q \in \mathbb{C} \setminus \{0\}$. Then there exists $p \in \mathbb{C} \setminus \{0\}$ such that f(p) = q. Let $\Gamma = \{z \in \mathbb{C} : |z| = 2|p|\}$ and

 $r = \min\{|f(z) - q| : z \in \Gamma\}/2$. Let $N(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f'(\zeta)}{f(\zeta) - z} d\zeta$. Then N(z) is an integer valued continuous function on D(q, r), with N(q) = 2 and $N(z) \leq 1$ for all $z \in D(q, r) \setminus \{q\}$, a contradiction. Thus $f : \mathbf{C} \to \mathbf{C}$ is (1-1 and onto \Rightarrow) conformal. By Theorem 6.1.1 and f(0) = 0, we have f(z) = az for some $a \in \mathbf{C} \setminus \{0\}$

If f has a pole at 0, then $g(z) = \frac{1}{f(z)}$ is also a conformal map on $\mathbb{C} \setminus \{0\}$. Since

$$\lim_{z\to 0} g(z) = 0$$
, there exists $a \in \mathbb{C} \setminus \{0\}$ such that $g(z) = az \Rightarrow f(z) = \frac{1/a}{z}$.

It remains to show that f cannot have an essential singularity at 0. Since f is 1-1, we have $f(D(0,1)\setminus\{0\})\cap f(D(3,1))=\emptyset$. By the Open Mapping Theorem, f(D(3,1)) is a non-empty open subset. Therefore, $f(D(0,1)\setminus\{0\})$ is not dense in \mathbb{C} . By Theorem 4.1.4, 0 is not an essential singularity of f.

4. Describe f(U) for each of the following domain U under the indicated maps.

(a)
$$U = \{z \in \mathbf{C} : \text{Im}(z) > 0\}, f(z) = \frac{2z - i}{2 + iz}.$$

$$f(-1) = \frac{-2-i}{2-i} = \frac{-(2+i)^2}{(2-i)(2+i)} = \frac{-3-4i}{5}$$

Solution:

$$f(0) = \frac{-i}{2}$$

$$f(1) = \frac{2-i}{2+i} = \frac{(2-i)^2}{(2+i)(2-i)} = \frac{3-4i}{5}$$

So the real line is mapped to the circle passing through $\frac{-3-4i}{5}$, $\frac{-i}{2}$, $\frac{3-4i}{5}$, which has center at $-\frac{5i}{4}$ and radius $\frac{3}{4}$. Therefore, $f(U)=\{z\in\mathbf{C}:\left|z+\frac{5i}{4}\right|>\frac{3}{4}\}$.

Note: The last assertion can be obtained by the checking the orientation of the images of the boundaries or $f(\frac{i}{2}) = 0$.

(b)
$$U = \{z \in \mathbf{C} : 0 < \text{Re}(z) < 1\}, f(z) = \frac{z-1}{z}.$$

$$f(0) = \infty$$

$$f(i) = \frac{i-1}{i} = 1+i$$

Solution:

$$f(\infty) = 1$$

$$f(1) = 0$$

$$f(1+i) = \frac{1+i-1}{1+i} = \frac{1+i}{2}$$

So f takes the line $\operatorname{Re}(z) = 0$ to the line $\operatorname{Re}(z) = 1$ and the line $\operatorname{Re}(z) = 1$ to the circle passing through 1, 0, $\frac{1+i}{2}$, which has center at $\frac{1}{2}$ and radius $\frac{1}{2}$. Therefore,

$$f(U) = \{z \in \mathbf{C} : \text{Re}(z) < 1 \text{ and } \left| z - \frac{1}{2} \right| > \frac{1}{2} \}.$$

Note: The last assertion can be obtained by the checking the orientation of the images of the boundaries or $f(\frac{1}{2}) = -1$.

5. Let $f: \mathbf{C} \cup \{\infty\} \to \mathbf{C} \cup \{\infty\}$ be a linear fractional transformation. Prove that f has a unique fixed point z_0 with $z_0 \in \mathbf{C}$ if and only if $\frac{1}{f(z) - z_0} = \frac{1}{z - z_0} + h$, with $h \neq 0$.

Solution: " \Leftarrow " If $\frac{1}{f(z)-z_0} = \frac{1}{z-z_0} + h$, with $h \neq 0$ then

$$f(z) = z \iff \frac{1}{z - z_0} = \frac{1}{z - z_0} + h \iff z = z_0$$

" \Rightarrow " Let $f(z) = \frac{az+b}{cz+d}$. First consider the case when $z_0 = 0$. Then $b = 0 \Rightarrow ad \neq 0$. Since ∞ is not a fixed point, $c \neq 0$. $z \in \mathbf{C}$ is a fixed point if and only if z satisfies

$$\frac{az}{cz+d} = z \iff cz^2 + (d-a)z = 0$$

f has a unique fixed point at 0 if and only if a = d. Let $h = \frac{c}{a} \neq 0$. We have

$$f(z) = \frac{z}{hz+1} \Rightarrow \frac{1}{f(z)-0} = \frac{1}{z-0} + h$$

Suppose f is a linear fractional transformation with a unique fixed point $z_0 \in \mathbb{C}$. Then let $g(z) = f(z + z_0) - z_0$. Then

$$g(z) = z \iff f(z + z_0) - z_0 = z \iff f(z + z_0) = z + z_0 \iff z + z_0 = z_0 \iff z = 0$$

So g has a unique fixed point at 0. Thus we have a non-zero $h \in \mathbb{C}$, such that, for

$$\frac{1}{g(z)} = \frac{1}{z} + h \text{ for all } z \in \mathbf{C}$$

$$\Rightarrow \frac{1}{f(z+z_0) - z_0} = \frac{1}{z} + h \text{ for all } z \in \mathbf{C}$$

$$\Rightarrow \frac{1}{f(z) - z_0} = \frac{1}{z - z_0} + h \text{ for all } z \in \mathbf{C}$$

6. Find a linear fractional transformation f such that i is the only fixed point and $f(1) = \infty$.

Solution: By the result in the previous problem, we have $\frac{1}{f(z)-i} = \frac{1}{z-i} + h$ for some $h \neq 0$.

$$f(1) = \infty \Rightarrow \frac{1}{1-i} + h = 0 \Rightarrow h = -\frac{1}{1-i}$$

Therefore,

$$\frac{1}{f(z)-i} = \frac{1}{z-i} - \frac{1}{1-i} = \frac{(1-i)-(z-i)}{(1-i)(z-i)} = \frac{(1-z)}{(1-i)(z-i)}$$

$$\Rightarrow f(z) = \frac{(1-i)(z-i)}{1-z} + i = \frac{(1-2i)z-1}{1-z}$$

7. Find a linear fractional transformation f that takes the upper half plane to itself and satisfies f(0) = 1, f(i) = 2i.

Solution:

By the symmetry principle, we have f(-i) = -2i. Hence, we can solve w in terms of z in

$$\frac{(w-1)}{(w-2i)}\frac{(-2i-2i)}{(-2i-1)} = \frac{(z-0)}{(z-i)}\frac{(-i-i)}{(-i-0)} \Rightarrow w = \frac{4z+2}{2-z}$$

8. Find a linear fractional transformation that takes the half plane $P = \{x+iy : x+y > 2\}$ to D(0, 1).

Solution: Let w = T(z) be the linear fractional transformation that takes 2 to -i, 1 + i to -1 and 2i to i. Then w can be solved from

$$\frac{(w+1)}{(w-i)}\frac{(-i-i)}{(-i+1)} = \frac{(z-(i+1))}{(z-2i)}\frac{(2-2i)}{(2-(i+1))} \Rightarrow w = \frac{(z-(2+2i))}{z}$$

Remark: There are many linear fractional transformations S taking P to D(0, 1). Since $S \circ T^{-1}$ takes D(0, 1) to D(0, 1), we have $S \circ T^{-1} = e^{i\theta}\phi_a$ for some $a \in D(0, 1)$ and $\theta \in [0, 2\pi)$. Therefore, the most general form of S is

$$S(z) = e^{i\theta} \phi_a \circ T(z) = e^{i\theta} \frac{((1-a)z - (2+2i))}{((1-\overline{a})z + \overline{a}(2+2i))}$$

9. Find a conformal map $f:\{z\in\mathbf{C}:|z-1|>1\ \text{ and } |z-2|<2\}\to D(0,1).$

Solution: Let $U = \{z \in \mathbf{C} : |z - 1| > 1 \text{ and } |z - 2| < 2\}.$

(a) Find a linear fractional transformation f such that $f_1(0) = \infty$, $f_1(2) = 0$, $f_1(4) = 1$ by solving

$$\frac{1-0}{w-0} = \frac{(z-0)}{(z-2)} \frac{(4-2)}{(4-0)} \Rightarrow w = \frac{2(z-2)}{z}$$

Let $f_1(z) = \frac{2(z-2)}{z}$. Then $f_1(1+i) = 2i$ and $f_1(2+2i) = 1+i$. Therefore, f_1 takes the circles $\partial D(1,1)$ and $\partial D(2,2)$ to the vertical lines passing 0 and 1 respectively. So, $f_1(U) = U_1 = \{x + iy \in \mathbb{C} : 0 < x < 1\}$.

- (b) Let $f_2(z) = \pi i z$. Then $f_2(U_1) = U_2 = \{x + iy \in \mathbb{C} : 0 < y < \pi\}$.
- (c) Let $f_3(z) = e^z$. Then $f_3(U_2) = U_3 = \{x + iy \in \mathbf{C} : 0 < y\}$.
- (d) Let $f_4(z) = \frac{z-i}{z+i}$. Then $f_4(U_3) = D(0,1)$.

Therefore, we can take $f(z) = \frac{e^{\frac{2\pi i(z-2)}{z}} - i}{e^{\frac{2\pi i(z-2)}{z}} + i}$.

- 10. Find a conformal map $f : \{x + iy \in \mathbf{C} : x > 0 \text{ and } 0 < y < 1\} \to D(0, 1)$. Let $U = \{x + iy \in \mathbf{C} : x > 0 \text{ and } 0 < y < 1\}$.
 - (a) Let $f_1(z) = \pi z$. Then $f_1(U) = U_1 = \{x + iy \in \mathbb{C} : x > 0 \text{ and } 0 < y < \pi\}$.
 - (b) Let $f_2(z) = e^z$. Then $f_2(U_1) = U_2 = \{re^{i\theta} : r > 1, \ 0 < \theta < \pi\}$.
 - (c) Let $f_3(z) = \frac{1}{2} \left(z + \frac{1}{z} \right)$. Then $f_3(U_2) = U_3 = \{ x + iy \in \mathbf{C} : y > 0 \}$.
 - (d) Let $f_4(z) = \frac{z-i}{z+i}$. Then $f_4(U_3) = D(0,1)$.

Therefore, we can take $f(z) = \frac{\frac{1}{2} \left(e^{\pi z} + e^{-\pi z} \right) - i}{\frac{1}{2} \left(e^{\pi z} + e^{-\pi z} \right) + i} = \frac{\left(e^{\pi z} + e^{-\pi z} - 2i \right)}{\left(e^{\pi z} + e^{-\pi z} + 2i \right)}.$