DISPLAY Elektronik GmbH

DATA SHEET

LCD MODULE

DEM 16101 SYH

Product Specification

Version: 5.1.1

GENERAL SPECIFICATION

MODULE NO.:

DEM 16101 SYH

VERSION NO.	CHANGE DESCRIPTION	DATE
0	ORIGINAL VERSION	06.03.2000
1	ADDING DDRAM ADDRESS	15.03.2001
2	LCD VERSION CHANGED	17.04.2001
3	ADD VERSION	22.09.2001
4	Vlcd AMENDMENT	05.10.2001
5	LCD VERSION CHANGED	20.04.2002
5.1.1	UPDATE PCB DESCRIPTION	17.09.2008

PREPARED BY: XYP DATE: 17.09.2008

APPROVED BY: MH DATE: 23.09.2008

CONTENTS

1. FUNCTIONS & FEATURES	2
2. MECHANICAL SPECIFICATIONS	2
3. EXTERNAL DIMENSIONS	3
4. BLOCK DIAGRAM	3
5. PIN ASSIGNMENT	4
6. PCB DRAWING AND DESCRIPTION	4
7. DISPLAY DATA RAM (DDRAM)	5
8. MAXIMUM ABSOLUTE RATINGS	5
9. ELECTRICAL CHARACTERISTICS	6
10. CONTROL AND DISPLAY COMMAND	8
11. STANDARD CHARACTER PATTERN (ST7066U-0A)	9
12. LCD MODULES HANDLING PRECAUTIONS	10
13. OTHERS	10

1. FUNCTIONS & FEATURES

MODULE	LCD TYPE
DEM 16101 SYH	STN Yellow Green Reflective Positive Mode

• Driving Scheme : 1/16 Duty Cycle, 1/5 Bias

Power Supply Voltage : 5.0V (typ.)
 VLCD Adjustable For Best Contrast(VDD-V0) : 4.5V(option)

• Display contents : 16 x 1Characters (5 x 8 dots, Format: 208 Kinds)

• Internal Memory : CGROM (10,080 bits)

: CGRAM (64 x 8 bits)

: DDRAM (80 x 8 bits for Digits) : CGROM of the ST7066U-0A

CGROM
 Operating Temperature
 Storage Temperature
 CGROM of the ST
 : - 20°C to + 70°C
 : - 25°C to + 75°C

• Interface : Easy Interface with a 4-bit or 8-bit MPU

2. MECHANICAL SPECIFICATIONS

• Module size : 80.00 x 36.00 x 9.00 mm

Character Pitch : 3.75 x 5.95 mm
 Character Size : 3.20 x 5.95 mm
 Character Font : 5 x 8 dots

Dot Size : 0.60 x 0.70 mm
 Dot Pitch : 0.65 x 0.75 mm

3. EXTERNAL DIMENSIONS

UNMARKED TOLERANCE IS ±0.3

THE MATERIAL COMPLY WITH ROHS

4. BLOCK DIAGRAM

5. PIN ASSIGNMENT

Pin No.	Symbol	Function
1	Vss	Ground
2	$V_{ m DD}$	Power supply (+5.0V)
3	V_0	Power Supply for LCD
4	RS	Select Display Data ("H") or Instructions ("L")
5	R/W	Read or Write Select Signal
6	Е	Read/Write Enable Signal
7	DB0	
8	DB1	
9	DB2	
10	DB3	Disulas Data Cianal
11	DB4	Display Data Signal
12	DB5	
13	DB6	
14	DB7	
15	NC	No connect.
16	NC	TWO COMMECT.

6. PCB DRAWING AND DESCRIPTION

6.1 PCB DRAWING

Note: The part no. DEM16101 and "UL" are printed on the PCB.

6.2 DESCRIPTION:

6-2-1. The polarity of the pin 15 and the pin 16

J3,J5	J2, J4	LED Polarity				
13,13	J2, J4	15 Pin	16 Pin			
Each open	Each closed	Anode	Cathode			
Each closed	Each open	Cathode	Anode			

Note: In application module, J2=J4=J3=J5= open.

6-2-2. The metal-bezel is set be on ground when the J1 is closed

Note: In application module, J1=0 Ohm

6-2-3. The LED resistor on board are used when J6 is open

Note: In application module, J6=open

6-2-4. The mounting holes is set on ground when the J7 is closed.

Note: In application module, J7=0 Ohm

7. DISPLAY DATA RAM (DDRAM)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	←	DISPLAY POSITION
00	01	02	03	04	05	06	07	40	41	42	43	44	45	46	47	←	DDRAM ADDRESS

8. MAXIMUM ABSOLUTE RATINGS

Item	Symbol	Standard value	Unit
Power supply voltage (1)	$V_{ m DD}$	-0.3~+7.0	V
Power supply voltage (2)	V_0	V_{DD} -13.5~ V_{DD} +0.3	V
Input voltage	$V_{\rm IN}$	-0.3~V _{DD} +0.3	V
Operating temperature	Topr	-20~+70	°C
Storage temperature	Tstg	-25~+75	°C

^{*}Voltage greater than above may damage to the circuit.

VDD > V1 > V2 > V3 > V4 > V5

9. ELECTRICAL CHARACTERISTICS

9-1 DC Characteristics(VDD=4.5V~5.5V,Ta=-20~+70°C)

Itam	Cymals al		andard Val	ue	Test	T Init	
Item	Symbol	MIN	TYP	MAX	Condition	Unit	
Operating Voltage	$V_{ m DD}$	4.5	5.0	5.5		V	
LCD Driving Voltage	VLCD	3.0	4.5	13.0	V _{DD} -V ₀	V	
Supply Current	I_{DD}		0.35	0.6	VDD=5V,fosc=270kHz	mA	

9-2 AC Characteristics (VDD=4.5V~5.5V, Ta=-20~+70°C)

9-2-1 Write mode (writing data from MPU to module)

Characteristic	Symbol	Min	Type	Max	Unit	Test PIN
E Cycle Time	$t_{\rm C}$	1200			ns	Е
E Rise Time	t_R			25	ns	Е
E Fall Time	$t_{ m F}$			25	ns	Е
E Pulse width	$t_{ m W}$	140			ns	Е
Address Setup Time	$t_{ m SU1}$	0			ns	R/W,RS,E
Address Hold Time	t _{H1}	10			ns	R/W,RS,E
Data Set-up Time	$t_{ m SU2}$	40			ns	DB0~DB7
Data Hold Time	t _{H2}	10			ns	DB0~DB7

9-2-2 Read Mode (Reading Data from module to MPU)

Characteristic	Symbol	Min	Type	Max	Unit	Test PIN
E Cycle Time	$t_{\rm C}$	1200			ns	E
E Rise Time	t_{R}			25	ns	Е
E Fall Time	t_{F}			25	ns	Е
E Pulse width	tp_W	140			ns	Е
Address Setup Time	t_{AS}	0			ns	R/W,RS,E
Address Hold Time	t_{AH}	10			ns	R/W,RS,E
Data Setup Time	$t_{ m DDR}$			100	ns	DB0~DB7
Data Hold Time	t_{H}	10			ns	DB0~DB7

10. CONTROL AND DISPLAY COMMAND

Command	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Execution time (fosc=270KHz)	Remark
Clear Display	0	0	0	0	0	0	0	0	0	1	1.52ms	Write"20H" to DDRAM. And set DDRAM address to "00H" from AC
Return home	0	0	0	0	0	0	0	0	1	х	1.52ms	Set DDRAM address to "00H" from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.
Entry mode Set	0	0	0	0	0	0	0	1	I/D	S	37us	Sets cursor move direction and specifies display shift. These operations are performed during data write and read.
Display on/off control	0	0	0	0	0	0	1	D	С	В	37us	D=1: entire display on C=1: cursor on B=1: cursor position on
Cursor or Display Shift	0	0	0	0	0	1	S/C	R/L	X	X	37us	Set cursor moving and display shift control bit, and the direction, without changing DDRAM data.
function Set	0	0	0	0	1	DL	N	F	X	X	37us	DL: interface data is 8/4 bits N: number of line is 2/1 F: font size is 5x11/5x8
Set CGRAM address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	37us	Set CGRAM address in address counter
Set DDRAM address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	37us	Set DDRAM address in address counter
Read busy flag& address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	0us	Whether during internal operation or not can be known by reading BF. The contents of address counter can also be read.
Write data to RAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0	37us	Write data into internal RAM (DDRAM/CGRAM)
Read data from RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	37us	Read data from internal RAM (DDRAM / CGRAM)

Note:

Be sure the ST7066U is not is not in the busy state (BF=00 before sending an instruction from the MPU to the ST7066U. If an instruction is sent without checking the busy flag, the time between the first instruction and next instruction will take much longer than the instruction time itself. Refer to instruction table for the list of each instruction execution time.

11. STANDARD CHARACTER PATTERN (ST7066U-0A)

Upper(4bit)	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	10010	1011	1100	1101	1110	1111
Lower(40ii) 0000	CG RAM (1)															
0001	(2)															
0010	(3)															
0011	(4)															
0100	(5)															
0101	(6)															
0110	(7)															
0111	(8)															
1000	(1)															
1001	(2)															
1010	(3)															
1011	(4)															
1100	(5)															
1101	(6)															
1110	(7)															
1111	(8)															

12. LCD MODULES HANDLING PRECAUTIONS

- Please remove the protection foil of polarizer before using.
- The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from a high place, etc.
- If the display panel is damaged and the liquid crystal substance inside it leaks out, do not get any in your mouth. If the substance comes into contact with your skin or clothes promptly wash it off using soap and water.
- Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.
- The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.
- To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment
 - -Be sure to ground the body when handling the LCD module.
 - -Tools required for assembly, such as soldering irons, must be properly grounded.
 - -To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions.
 - -The LCD module is coated with a film to protect the display surface. Exercise care when peeling off this protective film since static electricity may be generated.

Storage precautions

When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps. Keep the modules in bags designed to prevent static electricity charging under low temperature / normal humidity conditions (avoid high temperature / high humidity and low temperatures below 0°C). Whenever possible, the LCD modules should be stored in the same conditions in which they were shipped from our company.

16 OTHERS

- Liquid crystals solidify at low temperature (below the storage temperature range) leading to defective orientation of liquid crystal or the generation of air bubbles (black or white). Air bubbles may also be generated if the module is subjected to a strong shock at a low temperature.
- If the LCD modules have been operating for a long time showing the same display, patterns may remain on the screen as ghost images and a slight contrast irregularity may also appear. Abnormal operating status can be resumed to be normal condition by suspending use for some time. It should be noted that this phenomena does not adversely affect performance reliability.
- To minimize the performance degradation of the LCD modules resulting from caused by static electricity, etc. exercise care to avoid holding the following sections when handling the modules:
 - Exposed area of the printed circuit board
 - Terminal electrode sections