3D Deep Learning approaches Point-based Networks

Evangelos Kalogerakis 574/674

3D Deep Learning approaches

- The Multi-View approach
- The Voxel approach
- The Point approach
 - PointNet
 - PointNet++
 - KPConv
- The Graph approach

Motivation

Lots of scanned data are raw 3D point clouds

What and where are the objects in a LiDAR scanned scene?

3D Deep Learning approaches

- The Multi-View approach
- The Voxel approach
- The Point approach
 - PointNet
 - PointNet++
 - KPConv
- The Graph approach

PointNet

PointNet processes input point clouds for various tasks

Object Classification

Segmentation

Correspondences

. . .

Desired Properties of PointNets

Point cloud: N orderless points, each represented by a D dim coordinate

2D array representation

Need permutation invariance!

Input 3D point coord.

MLP layer (shared parameters)

Input 3D point coord.

Simply a fully connected NN with one hidden layer,
3 inputs for 3D points, and T outputs (T is layer parameter)

Basic PointNet architecture

Classification Network mlp (64,128,1024) mlp (64,64) mlp max nput points (512,256,k) pool 1024 nx64 Š nx1024 shared shared global feature output scores. point features output scores n x 1088 shared shared mlp (128,m) mlp (512,128) Segmentation Network

Experiments

Object Classification Accuracy on ModelNet40

	input	accuracy
		avg. class
3DShapeNets [29]	volume	77.3
MVCNN [24]	image	90.1
Ours PointNet	point	86.2

3D Deep Learning approaches

- The Multi-View approach
- The Voxel approach
- The Point approach
 - PointNet
 - PointNet++
 - KPConv
 - Application: Point Cloud Registration
- The Graph approach

Use pointnet in local regions, aggregate local features by pointnet again

=> hierarchical feature learning

Sampling: Farthest Point Sampling (FPS)

Grouping: radius based ball query

Shared pointnet applied in each local region using local coord.

Apply pointnet multiple times:

PointNet++ architecture

3D Deep Learning approaches

- The Multi-View approach
- The Voxel approach
- The Point approach
 - PointNet
 - PointNet++
 - KPConv
 - Application: Point Cloud Registration
- The Graph approach

KPConv

A filter is a collection of points (kernel). Convolving such kernel at an input point requires a new convolution operator.

Figure 1. KPConv illustrated on 2D points. Input points with a constant scalar feature (in grey) are convolved through a KPConv that is defined by a set of kernel points (in black) with filter weights on each point.

Convolution for points

$$O(x, y, q) = \sum_{k=-n}^{k=n} \sum_{l=-n}^{l=n} \sum_{channel\ c} w_q(k, l, c) I(x+k, y+l, c)$$

$$O(\mathbf{p},q) = \sum_{\mathbf{p_i} \in Nb(\mathbf{p})} \sum_{channel\ c} w_q(\mathbf{p_i} - \mathbf{p}, c) \mathbf{f_i}(c)$$

 f_i stores feature vector at p_i (incl 1 entry for bias)

Retrieve neighbors inside a ball centered at **p**

Convolution for points

$$O(x, y, q) = \sum_{k=-n}^{k=n} \sum_{l=-n}^{l=n} \sum_{channel\ c} w_q(k, l, c) I(x+k, y+l, c)$$

$$O(\mathbf{p}, q) = \sum_{\mathbf{p_i} \in Nb(\mathbf{p})} \sum_{channel\ c} w_q(\mathbf{p_i} - \mathbf{p}, c) \mathbf{f_i}(c)$$

f_i stores feature vector at **p**_i (incl 1 entry for bias)

$$O(\mathbf{p},q) = \sum_{\mathbf{p_i} \in Nb(\mathbf{p})} \mathbf{w}_q(\mathbf{p_i} - \mathbf{p}) \cdot \mathbf{f_i}$$

a bit more compactly: use a dot product instead sum over channels

$$O(\mathbf{p}, q) = \sum_{\mathbf{p_i} \in Nb(\mathbf{p})} \mathbf{w}_q (\mathbf{p_i} - \mathbf{p}) \cdot \mathbf{f_i}$$

$$O(\mathbf{p}, q) = \sum_{\mathbf{p_i} \in Nb(\mathbf{p})} \mathbf{w}_q (\mathbf{p_i} - \mathbf{p}) \cdot \mathbf{f_i}$$

$$\mathbf{w}_{q}(\mathbf{p}_{i} - \mathbf{p}) = \sum_{\substack{\text{kernel} \\ \text{point k}}} h(\mathbf{p}_{i} - \mathbf{p}, \mathbf{x}_{k}) \mathbf{w}_{k}$$

measure correlation of each kernel point $\mathbf{x_k}$ with neighbor $\mathbf{p_i}$'s relative position, $\mathbf{w_k}$ is a learnable weight vector for kernel point

$$O(\mathbf{p}, q) = \sum_{\mathbf{p_i} \in Nb(\mathbf{p})} \mathbf{w}_q (\mathbf{p_i} - \mathbf{p}) \cdot \mathbf{f_i}$$

$$\mathbf{w}_{q}(\mathbf{p}_{i} - \mathbf{p}) = \sum_{\substack{\text{kernel} \\ \text{point k}}} h(\mathbf{p}_{i} - \mathbf{p}, \mathbf{x}_{k}) \mathbf{w}_{k}$$

measure correlation of each kernel point $\mathbf{x_k}$ with neighbor $\mathbf{p_i}$'s relative position, $\mathbf{w_k}$ is a learnable weight vector for kernel point

$$h(\mathbf{p_i} - \mathbf{p}, \mathbf{x_k}) = \max(0, 1 - \frac{\|\mathbf{p_i} - \mathbf{p} - \mathbf{x_k}\|}{\sigma})$$

Rigid Kernel examples

Figure 10. Illustration of the kernel points in stable dispositions.

"KPConv" convolution with deformable kernel

$$\mathbf{w}_{q}(\mathbf{p}_{i} - \mathbf{p}) = \sum_{\substack{\text{kernel} \\ \text{point k}}} h(\mathbf{p}_{i} - \mathbf{p}, \mathbf{x}_{k} + \Delta \mathbf{x}_{k}) \mathbf{w}_{k}$$
 learns to perturb kernel points => Deformable kernel

Deformable convolution in 2D

Figure 1: Illustration of the sampling locations in 3×3 standard and deformable convolutions. (a) regular sampling grid (green points) of standard convolution. (b) deformed sampling locations (dark blue points) with augmented offsets (light blue arrows) in deformable convolution.

Deformable convolution in 2D

(a) standard convolution

(b) deformable convolution

Performance

Excellent performance on segmentation (esp for scenes)

	ModelNet40	ShapeNetPart	
Methods	OA	mcIoU	mIoU
SPLATNet [34]	-	83.7	85.4
SGPN [42]	-	82.8	85.8
3DmFV-Net [9]	91.6	81.0	84.3
SynSpecCNN [48]	-	82.0	84.7
RSNet [15]	-	81.4	84.9
SpecGCN [40]	91.5	-	85.4
PointNet++ [27]	90.7	81.9	85.1
SO-Net [19]	90.9	81.0	84.9
PCNN by Ext [2]	92.3	81.8	85.1
SpiderCNN [45]	90.5	82.4	85.3
MCConv [13]	90.9	-	85.9
FlexConv [10]	90.2	84.7	85.0
PointCNN [20]	92.2	84.6	86.1
DGCNN [43]	92.2	85.0	84.7
SubSparseCNN [9]	-	83.3	86.0
KPConv rigid	$\boldsymbol{92.9}$	85.0	86.2
KPConv deform	92.7	85.1	86.4

Table 1. 3D Shape Classification and Segmentation results.

Methods	Scannet	Sem3D	S3DIS	PL3D
Pointnet [26]	-	-	41.1	-
Pointnet++ [27]	33.9	-	-	-
SnapNet [4]	-	59.1	-	-
SPLATNet [34]	39.3	-	-	-
SegCloud [37]	-	61.3	48.9	-
RF_MSSF [38]	-	62.7	49.8	56.3
Eff3DConv [50]	-	-	51.8	-
TangentConv [36]	43.8	-	52.6	-
MSDVN [30]	-	65.3	54.7	66.9
RSNet [15]	-	-	56.5	-
FCPN [28]	44.7	-	-	-
PointCNN [20]	45.8	-	57.3	-
PCNN [2]	49.8	-	-	-
SPGraph [17]	-	73.2	58.0	-
ParamConv [41]	-	-	58.3	-
SubSparseCNN [9]	72.5	-	-	-
KPConv rigid	68.6	74.6	65.4	72.3
KPConv deform	68.4	73.1	67.1	75.9

Table 2. 3D scene segmentation scores (mIoU). Scannet, Semantic3D and Paris-Lille-3D (PL3D) scores are taken from their respective online benchmarks (reduced-8 challenge for Semantic3D). S3DIS scores are given for Area-5 (see supplementary material for k-fold).

Performance

Excellent performance on segmentation (esp for scenes)

	ModelNet40	Shapel	NetPart
Methods	OA	mcIoU	mIoU
SPLATNet [34]	-	83.7	85.4
SGPN [42]	-	82.8	85.8
3DmFV-Net [9]	91.6	81.0	84.3
SynSpecCNN [48]	-	82.0	84.7
RSNet [15]	-	81.4	84.9
SpecGCN [40]	91.5	-	85.4
PointNet++ [27]	90.7	81.9	85.1
SO-Net [19]	90.9	81.0	84.9
PCNN by Ext [2]	92.3	81.8	85.1
SpiderCNN [45]	90.5	82.4	85.3
MCConv [13]	90.9	-	85.9
FlexConv [10]	90.2	84.7	85.0
PointCNN [20]	92.2	84.6	86.1
DGCNN [43]	92.2	85.0	84.7
SubSparseCNN [9]	-	83.3	86.0
KPConv rigid	92.9	85.0	86.2
KPConv deform	92.7	85.1	86.4

Table 1. 3D Shape Classification and Segmentation results.

Methods	Scannet	Sem3D	S3DIS	PL3D
Pointnet [26]	-	-	41.1	-
Pointnet++ [27]	33.9	-	-	-
SnapNet [4]	-	59.1	-	-
SPLATNet [34]	39.3	-	-	-
SegCloud [37]	-	61.3	48.9	-
RF_MSSF [38]	-	62.7	49.8	56.3
Eff3DConv [50]	-	-	51.8	-
TangentConv [36]	43.8	-	52.6	-
MSDVN [30]	-	65.3	54.7	66.9
RSNet [15]	-	-	56.5	-
FCPN [28]	44.7	-	-	-
PointCNN [20]	45.8	-	57.3	-
PCNN [2]	49.8	-	-	-
SPGraph [17]	-	73.2	58.0	-
ParamConv [41]	-	-	58.3	-
SubSparseCNN [9]	72.5	-	-	-
KPConv rigid	68.6	74.6	65.4	72.3
KPConv deform	68.4	73.1	67.1	75.9

MinkowskiNet42 (2cm)[†] 73.4 scores (mIoU). Scannet, Semantic3D and Paris-Lille-3D (PL3D) scores are taken from their respective online benchmarks (reduced-8 challenge for Semantic3D). S3DIS scores are given for Area-5 (see supplementary material for k-fold).