

Shape-Assisted Multimodal Person Re-Identification

Ph.D. Dissertation Defense Haidong Zhu

Advisor: Prof. Ram Nevatia (Chair)

Committee: Prof. Ulrich Neumann

Prof. Antonio Ortega

Problem Definition

- ☐ Person Re-identification (Re-ID)
 - ☐ Identify the person based on their biometric information
 - ☐ Match the person in the probe (query) with examples in the template gallery

Challenges

☐ Representation – single-frame *v.s.* video

☐ Clothes conditions – same clothes *v.s.* clothes changes

□ Quality – Occlusion, degradation, yaw/pitch angle, etc.

Motivation and Background

- □ 3-D representation, compared with 2-D images, has the strength of:
 - □ 3-D body shape invariant to variations

□ Include external body shape prior

Has significant development recently.

3-D shape Representation And Reconstruction

Curriculum DeepSDF (ECCV 2020)

Semantic Analysis for Training DeepSDF

General 3-D Shape Representation

CAT-NeRF (CVPRw 2023)

Shape Consistency across frames in a video

Animatable NeRF

Multimodal NeRF (ICRA 2023)

Point-cloud as Density Guidance for Training

Mulitmodal Analysis

Re-Identification

GaitHBS (WACV 2023)

Gait Recognition with 3-D Body Shape Guidance

Re-Identification → Gait with 3-D Shape

GaitRef (IJCB 2023)

Consistency between Skeletons and Shape

Re-Identification → Gait with 2-D Shape

GaitSTR (TBIOM 2024)

Fusion between Shape and Different Skeletons

Re-Identification → Gait with 2-D Shape

3-D Reconstruction and Person Re-Identification

- □ NeRF-related representation mostly focuses on:
 - Rendering quality: Don't mind if need to retrain for a new scene;
 - Pixel-level accuracy: Focus on pixel-level aggregation and rendering.

Using 3-D Shape Representation For Person Re-Identification

ShARc (WACV 2024)

Multimodal Analysis for Person Re-Identification

Re-Identification → Multimodal Analysis

Comparing the Influence of Different Modalities for Wholebody Person Re-Identification

SEAS (CVPR 2024)

Using 3-D Body Shape as Training Supervision

Re-Identification → Shape and Appearance

Using Body Shape as Shape-Aligned Guidance for Training Instead of Input

CaesarNeRF (under review)

Semantic Extraction with NeRF using limited

3-D Representation → Semantic Analysis

Extracting 3-D Scenelevel Representation with Generalizable NeRF Using Limited Reference Input

ShARc: Shape and Appearance Recognition For Person Identification In-the-wild

WACV 2024

Haidong Zhu, Wanrong Zheng, Zhaoheng Zheng, Ram Nevatia

Recognizing Person In-the-wild

- □ Videos captured in-the-wild suffers from:
 - Different activity between videos
 - Clothes variations
 - Atmosphere turbulence and degradations

September 1997	BITTS AND REAL PROPERTY.		
Gallery	Standing	Different	Turbulence
Frame	Videos	Clothing	& Occlusion
Gait		✓	*
Body shape	×	×	✓
Appearance	\checkmark	×	*

Can be used for matching

Can be used for matching, but not very accurate

ShARc: Shape and Appearance Recognition

- ShARc decomposes the task to two branch with multimodality.
- Shape and pose recognize the person based on activity and body shape.
- Appearance focuses on directly fusing appearance across different frames.

PSE: Pose and Shape Encoder

Extract silhouettes (2-D body shape), SMPL (3-D body shape) and skeletons (Pose) combine them correspondingly

PSE: Pose and Shape Encoder

☐ 3-D Spatial Transformation Network

$$G_i = MLP(SMPL_i)$$

$$F_i = F_i \cdot (I + G_i)$$

F: 2D silhouette, G: 3D body feature

☐ Skeleton Encoder – STGCN

$$f_{out}(v_j) = \sum_{v_i \in R} \frac{1}{Z_{v_i}} f_{in}(v_i) \cdot w(v_i)$$

$$B = \{v_i | d(v_i, v_i) \le K \text{ and } \Delta t_{i,i} < \tau\}$$

 f_{in} : feature input v: vertex Z_v : normalization factor τ : temporal range hyperparam d: distance of nodes

AAE: Aggregated Appearance Encoder

Two different ways of aggregating feature maps across different frames in the video for appearance recognition.

AAE: Aggregated Appearance Encoder

☐ Attention-based aggregation (AtA)

$$F_{t'}^{l+1} = w_1 \cdot F_t^l + w_2 \cdot F_{t+1}^l + w_3 \cdot S(F_t^l, F_{t+1}^l)$$

$$w_1 + w_2 + w_3 = 1$$

 $F: feat \ map, l: level, t: timestamp, S: fusion$

□ Averaging Aggregation (AvA)

$$F_{out} = \frac{1}{N} \sum F_t$$

Method	All Ac	ctivities
Wediod	Rank 1	Rank 20
GaitSet [2]	15.3	40.5
GaitPart [12]	14.1	41.7
GaitGL [35]	15.6	45.1
GaitMix [72]	15.9	46.5
GaitRef [72]	17.7	50.2
SMPLGait [66]	18.8	51.9
PSE (Ours)	21.2	65.3
DME [18]	25.0	63.8
PSTA [58]	33.6	67.3
CAL [16]	34.9	71.4
TCL Net [23]	31.3	65.6
Attn-CL+rerank [44]	27.6	61.8
AAE (Ours)	38.3	81.8
ShARc	41.1	83.0

PSE and AAE show state-of-the-art results for gait recognition and appearance recognition, while the aggregation, ShARc is the best

When person is walking, attention map focuses on legs and arms, while it focuses more on shoulder or body area for stationary videos

Method	Rank-1	Rank-20
(Gait only) GaitRef [1]	17.7	50.2
(Gait + body) GaitHBS [2]	19.7	63.4
(App.) AAE [2]	38.3	81.8
(Gait + body + app.) ShARc [3]	41.1	83.0

- □ Body shape contributes limited improvement in the final pipeline
 - □ Body shapes are not directly combined with appearance
 - □ Body shapes are not accurate enough for recognizing the person

^[1] Zhu* et al. Gaitref: Gait recognition with refined sequential skeletons. IJCB 2023

^[2] Zhu et al. Gait recognition using 3-d human body shape inference. WACV 2023

SEAS: ShapE-Aligned Supervision for Person Reidentification

CVPR 2024

Haidong Zhu, Pranav Budhwant, Zhaoheng Zheng, Ram Nevatia

University of Southern California

Introduction ShARc SEAS CaesarNeRF Summary

Existing Methods for Using 3-D Body shape

- Appearance-based recognition
 - Encode ID feature with an encoder;

- ☐ Using body shape as input
 - As a second branch [1];
 - As feature map [2] concatenated with RGB frames.

Shape and appearance recognition (Two approaches)

Introduction ShARc SEAS CaesarNeRF Summary

Existing Methods for Using 3-D Body shape

	Rank-1	mAP
Baseline	94.1	83.2
+ Shape as 2nd branch	94.1	84.8
+ Concatenated shape	94.3	85.5

Shape and appearance recognition (Two approaches)

Using 3-D Body Shape as Supervision

■ Using 3-D body shape as supervision ensure the body shape information is preserved in the encoded feature

□ During inference, the decoder can be dropped, ensuring no extra computation cost for inference pipeline

Using 3-D Body Shape as Supervision

SEAS pipeline – using body shape as supervision

Using 3-D Body Shape as Supervision (Calibration)

- Warping the point with a shared body shape model
- Sample the features from the corresponding area and determine their visibility
- Minimize the difference of features across frames

$$\mathcal{L}_{cali.} = \frac{1}{kn} \sum_{k} \sum_{n} \text{Variance}(\boldsymbol{F}_{i}^{map}(x_{i}, y_{i}))$$

☐ Frame-based results

Method	Market1:	501 [81]	MSMT	17 [68]
Wethod	Rank-1	mAP	Rank-1	mAP
ViT-B [13]	94.0	87.6	82.8	63.6
TransReID [22]	95.2	89.5	86.2	69.4
AAFormer [90]	95.4	87.7	83.6	63.2
AGW [75]	95.5	89.5	81.2	59.7
FlipReID [47]	95.5	89.6	85.6	68.0
CAL [53]	95.5	89.5	84.2	64.0
PFD [63]	95.5	89.7	83.8	64.4
SAN [30]	96.1	88.0	79.2	55.7
LDS [76]	95.8	90.4	86.5	67.2
DiP [36]	95.8	90.3	87.3	71.8
MPN [12]	96.4	90.1	83.5	62.7
MSINet [18]	95.3	89.6	81.0	59.6
SCSN [9]	95.7	88.5	83.8	58.5
PHA [77]	96.1	90.2	86.1	68.9
PASS ViT-B [89]	<u>96.9</u>	93.3	89.7	74.3
SOLIDER [8]	<u>96.9</u>	<u>93.9</u>	<u>90.7</u>	<u>77.1</u>
ASSP* [5]	95.0	87.3	-	-
3DInvarReID* [40]	95.1	87.9	80.8	59.1
Baseline (ResNet-50)	94.1	83.2	73.8	47.2
SEAS (ResNet-50)	98.6	98.9	91.7	92.8

☐ Video-based results

Method	MARS	S [82]	LS-VII	D [37]
	Rank-1	mAP	Rank-1	mAP
GRL [42]	91.0	84.8	-	-
TokenShift [4]	90.2	86.6	80.4	68.7
ViT [13]	89.7	86.4	85.3	76.4
TCLNet [26]	89.8	85.1	-	-
AP3D [19]	90.1	85.1	-	-
DenseIL [23]	90.8	87.0	-	-
STMN [15]	90.5	84.5	82.1	69.2
BiCnet-TKS [27]	90.2	86.0	84.6	75.1
STRF [1]	90.3	86.1	-	-
RFCnet [28]	90.7	86.3	-	-
CTL [41]	91.4	86.7	-	-
DSANet [32]	91.1	86.6	85.1	75.5
CAViT [72]	90.8	<u>87.2</u>	<u>89.2</u>	<u>79.2</u>
Baseline (PSTA) [65]	<u>91.5</u>	85.8	77.7	67.2
SEAS (PSTA)	95.1	96.6	90.5	93.4

Ablation Results

	Method	Rank-1	mAP	Params	FLOPs
(I) Appearance	Baseline (Market1501)	94.1	83.2	23.51M	4.07G
(II) Body shape as input	+ PIFu as 2^{nd} branch + PIFu concatenation	94.1 (+0.0) 94.3 (+0.2)	` /	34.80M 34.89M	6.28G 4.26G

Including 3-D body shape as input slightly improves the mAP, while rank-1 accuracy does not show too much difference.

Ablation Results

	Method	Rank-1	mAP	Params	FLOPs
(I) Appearance	Baseline (Market1501)	94.1	83.2	23.51M	4.07G
(II) Body shape	+ PIFu as 2 nd branch	94.1 (+0.0)	84.8 (+1.6)	34.80M	6.28G
as input	+ PIFu concatenation	94.3 (+0.2)	85.8 (+2.6)	34.89M	4.26G
(III) Body shape	+ SEAS (SPIN)	97.1 (+3.0)	97.8 (+14.6)	23.51M	4.07G
as supervision	+ SEAS (PIFu)	98.6 (+4.5)	98.9 (+15.7)	23.51M	4.07G

Using SEAS for 3-D body shape supervision significantly boosts the performance without introducing extra computation cost.

Ablation Results

	Method	Rank-1	mAP	Params	FLOPs
(I) Appearance	Baseline (Market1501)	94.1	83.2	23.51M	4.07G
(II) Body shape	+ PIFu as 2 nd branch	94.1 (+0.0)	84.8 (+1.6)	34.80M	6.28G
as input	+ PIFu concatenation	94.3 (+0.2)	85.8 (+2.6)	34.89M	4.26G
(III) Body shape	+ SEAS (SPIN)	97.1 (+3.0)	97.8 (+14.6)	23.51M	4.07G
as supervision	+ SEAS (PIFu)	98.6 (+4.5)	98.9 (+15.7)	23.51M	4.07G
(IV) SEAS w/	Baseline (MARS)	91.5	85.8	35.43M	37.70G
calibration for	+ SEAS (w/o $\mathcal{L}_{cali.}$)	94.8 (+3.3)	96.5 (+10.7)	35.43M	37.70G
video frames	+ SEAS (w/ $\mathcal{L}_{cali.}$)	95.1 (+3.6)	96.7 (+10.9)	35.43M	37.70G

SEAS assists the video-based recognition, and the calibration across different frames further improves the performance slightly.

Ablation Studies on Generalizability

Method	Market1:	Market1501 [81]		MSMT17 [68]	
Wethod	Rank-1	mAP	Rank-1	mAP	
BoT [44]	94.5	85.9	74.1	50.2	
w/ SEAS	95.9	97.5	81.3	86.2	
LDS [76]	95.8	90.4	86.5	67.2	
w/ SEAS	96.3	97.8	86.6	90.1	

Method	MARS [82]		MARS [82]		LS-VII	D [37]
Wiethod	Rank-1	mAP	Rank-1	mAP		
STMN [15]	90.5	84.5	82.1	69.2		
w/ SEAS	92.2	94.9	84.1	88.9		
BiCnet-TKS [27]	90.2 90.1	86.0	84.6	75.1		
w/ SEAS		87.9	86.7	90.8		

SEAS can also be applied to other architectures for both frame-based and video-based re-identification tasks.

Ablation Studies on Generalizability

Compared with concatenation of features, SEAS force the attention to distribute more evenly across different body parts

CaesarNeRF: Calibrated Sematic Representation for Few-shot Generalizable Neural Rendering

Under Review

Haidong Zhu^{1*}, Tianyu Ding^{2*}, Tianyi Chen², Ilya Zharkov², Ram Nevatia¹, Luming Liang²

University of Southern California¹ Microsoft²

Introduction ShARc SEAS CaesarNeRF Summary

NeRF for Body Shape Representation

- Rendering results from recent NeRF models are of better quality than PIFu
- □ NeRF does not require 3-D shape for training
- Requirement to use a NeRF model for Re-ID
 - Generalizability;
 - Number of Reference Views Required.

Source image, SMPL, PIFu

Introduction ShARc SEAS CaesarNeRF Summary

NeRF and **Generalizable NeRF**

- > Render an image from novel viewpoint with given images

NeRF and **Generalizable NeRF**

PSNR on LLFF

# of views	GeoNeRF	GNT
>=10	25.44	25.65
2	18.76	20.88
1	-	16.57

- Reasonable performance with all (>10) reference views
- Performance dropped significantly with limited number of input views

Introduction ShARc SEAS CaesarNeRF Summary

Few-shot Generalizable NeRF

Generalizable rendering with limited reference views:

- Relation ambiguity between different points at different camera pose;
- Pixel-level projection only intakes one pixel feature without a scene-level understanding.

Introduction ShARc SEAS CaesarNeRF Summary

Scene-level Representation

Scene-level latent representation

- Shared with different points of the same scene
- Concatenate with pixel-level embeddings
- Encoded with self-attention for corresponding feature encoding.

Scene-level Representation

Calibration Across Different Views

- Scene-level features do not include explicit camera poses from different views;
- □ Features encoded from different views suffer from conflict between them;
- Our target has only one view, and transformations between input and target are available.

Calibration Across Different Views

We encode the camera pose by converting it to a transformation matric in the feature space and multiply it with the scene feature for calibration.

Main Results

Rendered results with one view as reference, compared with our baseline, GNT

Main Results

Rendered results with one view as reference, compared with other SOTA methods

Main Results

Rendered results with two views as reference, compared with our baseline, GNT

Main Results

Method	1 reference view			2 reference views			3 reference views		
Wictiod	PSNR (†)	LPIPS (↓)	SSIM (†)	PSNR (†)	LPIPS (↓)	SSIM (†)	PSNR (†)	LPIPS (↓)	SSIM (†)
PixelNeRF [76]	9.32	0.898	0.264	11.23	0.766	0.282	11.24	0.671	0.486
GPNR [58]	15.91	0.527	0.400	18.79	0.380	0.575	21.57	0.288	0.695
NeuRay [38]	16.18	0.584	0.393	17.71	0.336	0.646	18.26	0.310	0.672
GeoNeRF [25]	-	-	-	18.76	0.473	0.500	23.40	0.246	0.766
MatchNeRF [8]	-	-	-	21.08	0.272	0.689	22.30	0.234	0.731
MVSNeRF [6]	-	-	-	19.15	0.336	0.704	19.84	0.314	0.729
IBRNet [64]	16.85	0.542	0.507	21.25	0.333	0.685	23.00	0.262	0.752
GNT [60]	16.57	0.500	0.424	20.88	0.251	0.691	23.21	0.178	0.782
Ours	18.31	0.435	0.521	21.94	0.224	0.736	23.45	0.176	0.794

Results with 1,2, and 3 views as reference on the LLFF dataset

Main Results

		PSNR	LPIPS	SSIM
1-view	IBRNet	19.14	0.458	0.595
	GNT	22.22	0.433	0.678
	Ours w/o C.	23.61	0.371	0.718
	Ours	24.28	0.334	0.747
2-view	IBRNet	24.38	0.266	0.818
	GNT	26.94	0.236	0.850
- 1	Ours w/o C.	26.34	0.274	0.817
	Ours	27.34	0.215	0.856
3-view	IBRNet	25.53	0.203	0.858
	GNT	27.41	0.206	0.870
	Ours w/o C.	27.10	0.228	0.850
	Ours	27.82	0.190	0.875
4-view	IBRNet	25.99	0.190	0.867
	GNT	27.51	0.197	0.875
	Ours w/o C.	27.30	0.210	0.862
	Ours	27.92	0.181	0.881
5-view	IBRNet	26.12	0.188	0.867
	GNT	27.51	0.194	0.876
	Ours w/o C.	27.34	0.203	0.865
	Ours	27.92	0.179	0.882

Results with comparing using calibration with no calibration on MVImgNet

Main Result

Target Image

Two reference Views

Depth Prediction using one or two reference views, comparing with GNT

Human Result

Input # 1

Input # 2

Input # 3

Use all input views

Depth map using Input #1

Human Result

	Rank-1	mAP
Baseline (ResNet 50)	73.8	47.2
+ SEAS (PIFu)	91.7	92.8
+ SEAS (CeasarNeRF)	91.4	93.0

Using the encoder of CaesarNeRF as 3-D shape extractor with SEAS on MSMT17 dataset

Summary

- Multimodal features enable recognition at long distances in the wild, which includes body shape, appearance and specific activities;
- □ Compared with using 3-D body shape as input, using it as supervision can provide more distinguishment for encoded features;
- □ By using calibrated semantic representation, we can extend generalizable NeRF with limited reference views, but a good feature encoder still requires additional human body priors.

Future Directions

Generalizable Few-shot Rendering with Human Prior

- Depth map for more accurate human object guidance;
- Generalizable body-specific models.

Zheng, Shunyuan, et al. "Gps-gaussian: Generalizable pixel-wise 3d gaussian splatting for real-time human novel view synthesis." arXiv preprint arXiv:2312.02155 (2023).

Future Directions

Original image

Generated image

Vision-language model assisted person re-identification

- Prompts for clothes changes with shape prior
- Augment model training with different clothes variations.

Publications

3-D F	Reconstruction					
	Zhu* et al., CaesarNeRF: Calibrated Semantic Representation for Few-shot Generalizable Neural Rendering, under review					
	Zhu et al., Multimodal neural radiance field, ICRA 2023					
	Zhu et al., CAT-NeRF: Constancy-Aware Tx2Former for Dynamic Body Modeling, CVPRw 2023					
	Zhu, et al., Open: Order-preserving pointcloud encoder decoder network for body shape refinement, ICPR 2022					
	Duan*, Zhu* et al. Curriculum deepsdf, ECCV 2020					
Re-Id	dentification					
	Zhu et al., SEAS: Shape-aligned supervision for person re-identification, CVPR 2024.					
	Zhu et al., Share: Shape and appearance recognition for person identification in-the-wild, WACV 2024.					
	Zheng*, Zhu* et al. GaitSTR: Gait Recognition with Sequential Two-stream Refinement, TBIOM 2024.					
	Zhu* et al. Gaitref: Gait recognition with refined sequential skeletons, IJCB 2023.					
	Zhu et al. Gait recognition using 3-d human body shape inference, WACV 2023.					
	Zhu et al., Temporal shift and attention modules for graphical skeleton action recognition, ICPR 2022.					

Publications

Ц	V1S10	on and Language						
		Zheng et al., Large Language Models are Good Prompt Learners for Low-Shot Image Classification, CVPR 2024.						
		Zheng, Zhu et al., CAILA: Concept-Aware Intra-Layer Adapters for Compositional Zero-Shot Learning, WACV 2024.						
		Zhu et al., Self-supervised Learning for Sentiment Analysis via Image-text Matching, ICASSP 2022.						
		Zhu, et al., Utilizing Every Image Object for Semi-supervised Phrase Grounding, WACV 2021.						
		He, Zhu, et al., CPARR: Category-based Proposal Analysis for Referring Relationships, CVPRw 2020.						
	System and Survey							
		Ding et al., The efficiency spectrum of large language models: An algorithmic survey, arXiv 2023.						
		Nguyen et al., AG-ReID 2023: Aerial-Ground Person Re-identification Challenge Results, IJCB 2023.						
		Li et al., GAIA at SMKBP 2020-a dockerlized multi-media multi-lingual knowledge extraction, clustering, temporal tracking and hypothesis generation system, TAC 2020 .						

Acknowledgement

Pranav Budhwant

Tianyu Ding

Yueqi Duan

Xuefeng Hu

Luming Liang

Jiajia Luo

Ram Nevatia

Arka Sadhu

Ye Yuan

Wanrong Zheng

Zhaoheng Zheng

And many others...

Thank you!