Chapter 1

Time Series

1.1 Introduction

A random variable is a $(\Omega, \mathscr{F}) \setminus (\mathbb{R}^m, \mathscr{B})$ measure function. A time series is a sequence of random variables $(y_1(\omega), y_2(\omega), \ldots, y_n(\omega)) \in \mathbb{R}^{m \times n}$, and it can be extended to a doubly infinite sequence $(\ldots, y_{t-1}, y_t, y_{t+1}, \ldots) \in \mathbb{R}^{m \times \infty}$. We consider discrete time series (instead of the continuous time series). For each fixed ω , the sequence is a deterministic vector $(\omega) \in \mathbb{R}^{m \times n}$; for each fixed t, $y_t(\omega)$ is a common random vector in \mathbb{R}^m .

1.2 Stationarity

In reality, we have only one realized sequence, but statistics needs repeated observations. We introduce the concept *stationarity* to produce "repeated" observations.

Definition 1.1. (y_t) is **covariance stationarity** or **weakly stationarity** if the mean $\mu = E[y_t]$, covariance $\Sigma = E[(y_t - \mu)(y_t - \mu)']$ and autocovariance $\Gamma(\ell) = E[(y_t - \mu)(y_{t-\ell} - \mu)']$ are independent of t.

• For a vector-valued weakly stationarity time series, $\Sigma = \Gamma(0)$ is a positive-definite symmetric matrix. The autovariance $\Gamma(\ell)$, $\ell \neq 0$ is not symmetric in general, and

$$\Gamma\left(-\ell\right) = E\left[\left(y_{t} - \mu\right)\left(y_{t+\ell} - \mu\right)'\right] = E\left[\left(y_{t-\ell} - \mu\right)\left(y_{t} - \mu\right)'\right] = \Gamma\left(\ell\right)'.$$

• When m=1 (scalar time series), we use $\gamma(0)$, $\gamma(1)$, ..., for the autocovariance, and we define autocorrelation as $\rho(\ell) = \gamma(\ell)/\gamma(0)$. By the Cauchy-Schwarz inequality $\rho(\ell) \in [-1,1]$.

Definition 1.2. (y_t) is strictly stationarity, if for every $\ell \in \mathbb{Z}^+$, joint distribution of $(y_t, y_{t+1}, \dots, y_{t+\ell})$ is independent of t.

When mentioning "stationarity", the default is "strictly stationarity".

- If (y_t) is i.i.d, then it is strictly stationarity.
- If (y_t) is strictly stationarity, its transformation $x_t \in \phi(y_t, y_{t-1}, ...) \in \mathbb{R}^q$ is also strictly stationarity. In other words, strictly stationarity is preserved by transformation.

Series:
$$x_t = \sum_{j=0}^{\infty} a_j y_{t-j}$$

- The infinite series x_t is convergent if the partial sum $\sum_{j=1}^{N} a_j y_{t-j}$ has a finite limit as $N \to \infty$ almost surely.
- If y_t is strictly stationarity, $E ||y|| < \infty$ and $\sum_{j=0}^{N} |a_j| < \infty$ (absolutely summable), then x_t is convergent and strictly stationarity.

1.3 Ergodicity

A time series $\{y_t\}$ is ergodic if all invariant events are trivial. Any event unaffected by time shift is of probability 0 or 1. "invariant" means the sequence of a random variable gets stuck somewhere. Ergodicty is preserved by transformation. If $\{y_t\}$ is stationarity and erdogic, the same is for $x_t \in \phi(y_t, y_{t-1}, ...)$ (function with infinite terms).

Example 1.1. If $x_t = \sum_{j=0}^{\infty} a_j y_{t-j}$ if convergent and (y_t) is erdogic, then x_t is also erdogic.

(Cesaro means) If $a_j \to a$ as $j \to \infty$, then $\frac{1}{n} \sum_{j=0}^{\infty} a_j \to a$ as $n \to \infty$.

Theorem 1.1. If $y_t \in \mathbb{R}^m$ is stationarity and erdogic, and $var(y_t) < \infty$, then $\frac{1}{n} \sum_{\ell=1}^n cov(y_t, y_{t+\ell}) \to 0$ as $n \to \infty$

Definition 1.3. Formal definitions

Let $\widetilde{y}_t = (..., y_{t-1}, y_t, y_{t+1}, ...)$ an event $A \in {\widetilde{y}_t \in G}$ for some $G \subseteq \mathbb{R}^{m \times \infty}$.

The ℓ -th time shift is $\widetilde{y}_{t+\ell} = (..., y_{t-1+\ell}, y_{t+\ell}, y_{t+\ell+1}, ...)$ and a time shift of the event is $A_{\ell} \in \{\widetilde{y}_{t+\ell} \in G\}$.

An event is **invariant** if $A_{\ell} = A$

An event is **trivial** if P(A) = 0 or P(A) = 1.

Theorem 1.2. A stationarity $\{y_t\}$ is erdogic if for all events A and B,

$$\lim_{n\to\infty}\frac{1}{n}\sum_{\ell=1}^{n}P\left(A_{\ell}\cap B\right)=P\left(A\right)P\left(B\right)$$

Let B = A, and then we solve $P(A) = [P(A)]^2 \Rightarrow P(A) = 0$ or 1.

A "sufficient" condition for ergodicity is $P(A_{\ell} \cap B) \to P(A) P(B)$ as $\ell \to \infty$, according to Cesaro means. This sufficient condition is called "mixing".

- Mixing says that separate events (any A and B) are asymptotically independent when A is shifted to A_{ℓ} as $\ell \to \infty$.
- Ergodicity is slightly weaker than mixing (weak dependence), in the sense that the independence is "on average" in the form of $\frac{1}{n} \sum_{\ell=1}^{n} P(A_{\ell} \cap B)$.

Theorem 1.3. Ergodic Theorem:

 $y_t \in \mathbb{R}^m$ is stationarity and erdogic, and $E ||y|| < \infty$, then $E ||\bar{y} - \mu|| \to 0$ and $\bar{y} \stackrel{p}{\to} \mu$. Interpretation: Convergence in the 1st mean implies $\stackrel{p}{\to}$.

1.4 Information Set

- for a univariate time series, definite $E_{t-1}[y_t] = E[y_t \mid y_{t-1}, y_{t-2}, ...]$ as the condition expectation of y_t given the past history $(y_{t-1}, y_{t-2}, ...)$
- More generally, we write \mathscr{F}_t as the smallest σ -field generated by the information up to time t. \mathscr{F}_t is called an "information set".

$$E[y_t \mid \mathscr{F}_{t-1}] = E_{t-1}[y_t]$$

- Information sets are nested $\mathscr{F}_{t-1} \subseteq \mathscr{F}_t \subseteq \mathscr{F}_{t+1}, \dots$
- Depends on the definition, when multiple random variables are involved

$$\sigma(y_t, y_{t-1}, ...) \neq \sigma(y_t, x_t, y_{t-1}, x_{t-1}, ...)$$

1.5 Martingale Difference Sequence (MDS)

- Let $\{e_t\}$ be a time series, and \mathscr{F}_t be an information set, $\{e_t\}$ is **adapted** to \mathscr{F}_t if $E[e_t \mid \mathscr{F}_t] = e_t$ (\mathscr{F}_t contain the complete information of e_t . A **natural filtration** is $\mathscr{F}_t = \sigma(e_t, e_{t-1}, ...)$.)
- MDS: a process $\{e_t, \mathscr{F}_t\}$ is MDS if
- 1. e_t is adapted to \mathscr{F}_t
- 2. $E|e_t| < \infty$
- 3. $E[e_t \mid \mathscr{F}_{t-1}] = 0$

Interpretation: unforeseeable.

Mean independence. But it does not rule our predictability in other moments.

Example 1.2. $e_t = u_t u_{t-1}, u_t \sim i.i.d. N(0, 1)$

 e_t is MDS, but not i.i.d.

The covariance of e_t^2 and e_{t-1}^2 is not 0.

The filtration here is $\mathscr{F}_t = \sigma(u_t, u_{t-1}, ...)$, which subsumes $\sigma(e_t, e_{t-1}, ...)$

$$cov(e_t, e_{t-k}) = E[e_t e_{t-k}] = E[E[e_t e_{t-k} \mid \mathscr{F}_{t-1}]]$$

= $E[e_{t-k} E[e_t \mid \mathscr{F}_{t-1}]] = 0$

• A MDS (e_t, \mathscr{F}_t) is a homoskedastic martingale difference sequence if $E\left[e_t^2 \mid \mathscr{F}_{t-1}\right] = \sigma^2$. $e_t = u_t u_{t-1}$ is MDS, but not homoskedastic.

Theorem 1.4. CLT for MDS: If $\{u_t\}$ is strictly stationary, ergodic and MDS, then

$$S_n = \frac{1}{\sqrt{n}} \sum_{t=1}^n u_t \stackrel{d}{\to} N\left(0, \sum\right)$$

where $\sum = E[u_t u_t']$. There is the t.s. counterpart of the Lindeberg-Lévy CLT.

1.6 Mixing

we will loose the restriction of MDS. The price are stronger assumptions on the dependence than ergodicity.

- $\bullet \ \alpha(A,B) = |P(AB) P(A)P(B)|$
- Let two σ -fields be $\mathscr{F}_{-\infty}^t = \sigma\left(..., y_{t-1}, y_t\right)$ and $\mathscr{F}_t^{\infty} = \sigma\left(y_t, y_{t+1}, ...\right)$
- Strong mixing coefficients

$$\alpha\left(\ell\right) = \sup_{A \in \mathscr{F}_{-\infty}^{t-\ell}, B \in \mathscr{F}_{t}^{\infty}} \alpha\left(A, B\right)$$

 y_t is strong mixing if $\alpha(\ell) \to 0$ as $\ell \to \infty$.

• In general, the α -coefficients should have a sup over t

$$\alpha\left(\ell\right) = \sup_{t} \sup_{A \in \mathscr{F}_{-\infty}^{t-\ell}, B \in \mathscr{F}_{t}^{\infty}} \alpha\left(A, B\right)$$

- A mixing process is ergodic.
- Absolute regularity (β -mixing)

$$\beta\left(\ell\right) = \sup_{A \in \mathscr{F}_{t}^{\infty}} \left| P\left(A \mid \mathscr{F}_{-\infty}^{t-\ell}\right) - P\left(A\right) \right|$$

 β mixing is stronger than α mixing.

• Strong mixing is preserved by finite transformation.

Theorem 1.5. y_t has mxing coefficients $\alpha_y(\ell)$. $x_t = \sigma(y_t, y_{t-1}, ..., y_{t-q})$ Then $\alpha_x(\ell) < \alpha_y(\ell - q)$ for $\ell \ge q$.

The α -coefficients satisfy the same rate and summation properties.

- Rate conditions $\alpha(\ell) = O(e^{-r})$. Summation restriction $\sum_{\ell=0}^{\infty} \alpha(e)^r < \infty$ or $\sum_{\ell=0}^{\infty} e^s \alpha(e)^r < \infty$.
- Thm 14.13 bounds covariances with functions of α -coefficients.

1.7 CLT for Correlated Variables

$$var\left(S_{n}\right) = var\left(\frac{1}{\sqrt{n}}\sum_{t=1}^{n}y_{t}\right)$$

$$= \frac{1}{n}\mathbf{I}'_{N}E\left[YY'\right]\mathbf{I}_{N}$$

$$= \frac{1}{n}\mathbf{I}'_{N}\begin{bmatrix} \sigma^{2} & \gamma\left(1\right) & \gamma\left(2\right) \\ \gamma\left(1\right) & \sigma^{2} & \gamma\left(1\right) \\ \gamma\left(2\right) & \gamma\left(1\right) & \sigma^{2} \end{bmatrix}$$

$$= \frac{1}{n}\left(n\sigma^{2} + 2\left(n-1\right)\gamma\left(1\right) + 2\left(n-2\right)\gamma\left(2\right) + \dots + 2\gamma\left(n-1\right) + 2\times 0\times\gamma\left(n\right)\right)$$

$$= \sigma^{2} + 2\sum_{\ell=1}^{n}\left(1 - \frac{\ell}{n}\right)\gamma\left(\ell\right)$$

As $\gamma(-\ell) = \gamma(\ell)$, $var(S_n) = \sum_{\ell=-n}^n \left(1 - \frac{|\ell|}{n}\right) \gamma(\ell)$ In vector case, similarly we have

$$var\left(S_{n}\right) = \Gamma\left(0\right) + \sum_{\ell=1}^{n} \left(1 - \frac{\ell}{n}\right) \left(\gamma\left(\ell\right) + \gamma\left(\ell\right)'\right) = \sum_{\ell=-n}^{n} \left(1 - \frac{|\ell|}{n}\right) \gamma\left(\ell\right)$$

• For CLT to work, $var(S_n)$ must be convergent in the limit

$$\sum_{\ell=1}^{n} \left(1 - \frac{\ell}{n}\right) \gamma\left(\ell\right) = \frac{1}{n} \sum_{\ell=1}^{n} \left(n - \ell\right) \gamma\left(\ell\right)$$
$$= \frac{1}{n} \sum_{\ell=1}^{n-1} \sum_{j=1}^{\ell} \gamma\left(j\right)$$
$$\to \sum_{j=1}^{\infty} \gamma\left(j\right) = \sum_{\ell=1}^{\infty} \gamma\left(\ell\right)$$

by the Theorem of Cesaro means if $\sum_{\ell=1}^{\infty} \gamma(\ell)$ is convergent.

Necessary condition: $\gamma(\ell) \to 0$ as $\ell \to \infty$.

Sufficient: $\sum_{\ell=1}^{\infty} |\gamma(\ell)| < \infty$

It can be show if $E \|u_t\|^r < \infty$ and $\sum_{\ell=0}^{\infty} \alpha(\ell)^{1-2/\gamma} < \infty$ for some $\gamma > 2$, then $\sum_{\ell=1}^{\infty} |\Gamma(\gamma)| < \infty$ is absolutely convergent.

Theorem 1.6. (CLT) If y_t is strictly stationarity with α -mixing coefficients $\sum_{\ell=0}^{\infty} \alpha(\ell)^{1-2/\gamma} < \infty$ and $E \|u_t\|^r < \infty$ for some $\gamma > 2$, $E[u_t] = 0$, then $S_n \stackrel{d}{\to} N(0, \Omega)$ where $\Omega = \sum_{\ell=-\infty}^{\infty} \Gamma(\gamma)$ is the long-run variance.

1.8 Linear Projection

- In regression problems, $\mathscr{P}(y \mid X) = X\beta^* = X'(E[XX'])^{-1}E[Xy]$
- Extend to a projection to the infinite past history $\tilde{y}_{t-1} = (y_{t-1}, y_{t-2}, ...)$

Denote $\mathscr{P}_{t-1}\left(y_{t}\right)=\mathscr{P}\left[y_{t}\mid\tilde{y}_{t-1}\right]$, and the projection error $e_{t}=y_{t}-\mathscr{P}_{t-1}\left(y_{t}\right)$

Theorem 1.7. Projection Theorem:

If $y_t \in \mathbb{R}$ is covariance stationarity, then the projection error statistics

- (1) $E[e_t] = 0$
- $(2) \sigma^2 = E\left[e_t^2\right] \le E\left[y_t^2\right]$
- (3) $E[e_t e_{t-j}] = 0$ for all $j \ge 1$.

In other words, $\{e_t\}$ is a white noise.

• If $\{y_t\}$ is strictly stationarity, then $\{e_t\}$ is strictly stationarity.

Definition 1.4. A time series is a white noise if it is covariance stationarity with 0 autocovariance. It is helpful to imagine the projection as a linear combination

$$y_t = \alpha_1 y_{t-1} + \alpha_2 y_{t-2} + \dots + e_t$$

The nature of projection ensures e_t is uncorrelated with all regressions.

 e_{t-j} is a linear combination $y_{t-j} - \alpha_1 y_{t-j-1} - \alpha_2 y_{t-j-2} - \dots$

Then e_t is uncorrelated with e_{t-j} .

1.9 Wold Decomposition

• If y_t is covariance stationarity, and the linear projection error has $\sigma^2 > 0$, then $y_t = u_t + \sum_{j=0}^{\infty} b_j e_{t-j}$, $b_0 = 1$, and $u_t = \lim_{m \to \infty} \mathscr{P}_{t-m}(y_t)$

Project y_t onto the orthogonal elements $e_t, e_{t-1}, e_{t-2}, \dots$ For simplicity, we can consider the case $\mu_t = \mu$.

Definition 1.5. Lag operator: $Ly_t = y_{t-1}$, $L^2y_t = L(Ly_t) = Ly_{t-1} = y_{t-2}$, and so on.

$$y_{t} = \mu + \sum_{j=0}^{\infty} b_{j} e_{t-j}$$

$$= \mu + (b_{0} + b_{1} L + b_{2} L^{2} + ...) e_{t}$$

$$= \mu + b (L) e_{t}$$

where b(L) is an infinite-order polynomial.

• Autoregressive Wold Representation: If y_t is covariance stationarity with $y_t = u_t + b(L) e_t$, then with some additional technical restrictions, $y_t = \mu + \sum_{j=1}^{\infty} a_j y_{t-j} + e_j$.

Zhentao Shi. Mar 14, 2023. Transcribed by Shu Shen.