## Categorfication in topology and Knot theory

Category under ( Dan Freed) lose measure of the amount of abstraction included in a northenatical idea, theorem, construction, -. Aumbers

Aumbers

Auth structures

Sets

Groups

Groups

Groups · Vector spaces Map (Bm, S. Thin: The number "Thun: Two vs are the same" Thm: Two categories are the same " are equivelent " ( Requires a construction ) (Requires a deeper construction) Categority: Add abstraction (structure) and gain information.

Vm & Vm

A w

1

m - m

| Examples:                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1 (0 ->1): Finite sets                       | is a categorfication of the natural number,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                              | Category under ( clam Freed ) testo meage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                                              | Sm = set w/ m elements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| $\#S_n = n$ $n + m$                          | open bles.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Japat forte Catagories (= Long of mill strs) | Sm # Sm gradmoll                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| m.m                                          | $S_m \times S_m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| $\left( m^{n} \right)$                       | 1* { Man (S S )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| The cations are easily as a constant         | Map (Sm, Sm)  made and matter  mat |  |
| Not inique, can also take vector spaces:     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| IN n                                         | Id vector spaces (K  Vn = vs of dim n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| dim Vn = n                                   | Examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| n+m                                          | $V_n \otimes V_n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| n - m                                        | $\gamma_n \otimes \gamma_m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 1                                            | $\mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |

Def: A finte-dimensional chain conflex is a graded vector space  $C_{i\in\mathbb{Z}} = ( --- ) \subset ($ st only finitely many Ci are nonzero and all Ci are fd, equipped with a degree -1 self map  $\partial: C \to C \text{ st } \partial^2=0$ . The Euler characteristic of C is  $\chi(C) = Z(-1)^i \dim C^i$ I d Ch M > 0  $C = C_n^0$ m < 0C = Cn m = X (C) where  $(C \oplus D)^i = C^i \oplus D^i$ m + m0 ( , where  $(C \otimes D)^i = \bigoplus C^p \otimes D^q$  p+q=i $m \cdot m$  $C = k^1$ Z = Ko (fd Chn/chain htg eg), Ko Grothendreck ring ( Actually

| The was queled (restur speles)                                                    |                                      |
|-----------------------------------------------------------------------------------|--------------------------------------|
| Universal property of the free abelian group                                      | S set, A abelian group,              |
| then a map Z[S] = PZ -> A                                                         | of groups is determined by a may     |
| then a map $Z[S] = \bigoplus Z \longrightarrow A$ of sets $S \longrightarrow A$ , | st only finitely many C' are nonzero |
| $S \xrightarrow{\text{sets map}} A$                                               |                                      |
| d jgp hom                                                                         |                                      |
| Z[s]                                                                              |                                      |
| The categorfication of this statement is t                                        |                                      |
| Z[-J                                                                              |                                      |
| Set Ab                                                                            |                                      |
|                                                                                   |                                      |
| which means that there is a bijection                                             |                                      |
| Hom (ZZS), A)                                                                     | = Hom (SUA)                          |
|                                                                                   |                                      |
| which is natural in S and A.                                                      |                                      |
|                                                                                   |                                      |
|                                                                                   |                                      |
| Charles his eg 1 , Ko grothendieck nug                                            |                                      |





Definition: A Kauffman state for D is a choice of bijection between the crossings of D and the allowed regions. (Sm) = (1,0)(-1, -2) For each state, we want to assing two gradings according to the following rule: 1/2 -1/2 deposes of Alexander grading = S Maslor grading = m Now let CFK(D) be the free signaded Z/2 - vector space generated by the Kauffman states, so in the example  $CFK(D) = \mathbb{Z}/2_{(1,0)} \oplus \mathbb{Z}/2_{(0,-1)} \oplus \mathbb{Z}/2_{(-1,-2)}$   $0+(1)_{2,m} \times H : \mathbb{Z}/2_{m} \times H : \mathbb{Z}/2_{$ 

Theorem: 
$$CFK(D)$$
 admits a difference of bidegree  $(0,-1)$ , and  $\widehat{HFK}(K) := \frac{Ker}{hn} \partial$ 

is an invariant of  $K$ , called Heegaard-Floer honology.

Its graded Euler characteristic is precisely the Alexander polynomial of k,

 $\Delta_{K}(H) = \chi_{gr}(\widehat{HFK(K)}) = \sum_{m,s} (-1)^{m} \dim \widehat{HFK_{m,s}(K)} \cdot t^{s} \geq 1$ 

= Z(-1)<sup>m</sup> dim CFK<sub>m,s</sub>(K)·t<sup>s</sup>
m<sub>is</sub>

2 = porboro solumad A

In the example,

 $\chi_{gr}(HFK(3,1)) = (-1)^{\circ} \cdot 1 \cdot t + (-1)^{\circ} \cdot 1 \cdot t^{\circ} + (-1)^{\circ} \cdot 1 \cdot t^{-1}$   $= t - 1 + t^{-1} = \Delta_{3}(t).$ 

Upshot: Heegaard-Floer honology categorfies the Alexander polynomial.

Remark: HFK not only recovers Alexander but also strengthens its properties, eg  $g(K) \ge \frac{1}{2}$  breath  $(D_K(H))$  whereas  $g(K) = \max_{k} \int_{\mathbb{R}^n} f(K) + i \int_{\mathbb{R}^n} f(K) dK$ .