合肥工业大学研究生《数值分析》课程教学日历

32 课时 (课堂教学: 32 课时)

课次	讲授内容	备注
第1次	第1章 绪论 1.1 引言 1.2 误差的基本理论 1.3 避免误差危害的若干原则	
第2次	第2章线性方程组的数值解法2.1引言2.2Gauss 消去法(含 追赶法)(略讲,以讲思想为主)2.3矩阵三角分解法(不讲)2.4向量与矩阵范数	
第3次	第2章 线性方程组的数值解法2.5 解线性方程组的迭代法2.6 迭代法的收敛性2.6.1 收敛性判别	
第 4 次	第2章 线性方程组的数值解法 2.6 迭代法的收敛性 2.6.2 一些特殊线性方程组的迭代法的收敛性判别 2.7 方程组的性态及误差分析	
第 5 次	第3章 非线性方程(组)的数值解法3.1 引言3.2 求实根的二分法(略讲)3.3 迭代法及其收敛性3.3.1 不动点的迭代法及其收敛性	
第6次	 第3章 非线性方程(组)的数值解法 3.3 迭代法及其收敛性 3.3.2 局部收敛性与收敛阶 3.3.3 迭代法加速(不讲) 3.4 Newton 迭代法 3.4.1 Newton 迭代法及其收敛性 3.4.2 Newton 迭代法求重根 3.5 弦截法 	
第7次	第4章 插值法 4.1 引言 4.2 Lagrange 插值	
第8次	第4章 插值法 4.3 Newton 插值	
第9次	第4章 插值法 4.4 Hermite 插值 4.5 分段多项式插值	
第 10 次	第4章 插值法	

	4.6 三次样条插值
第 11 次	第5章 数据拟合与函数逼近
	5.1 引言
	5.1 最小二乘法
第 12 次	第6章 数值微积分
	6.1 引言
	6.2 数值微分
	6.2.1 三点公式和五点公式
	6.2.2 三次样条法
	6.2.3 变步长中点法
	6.2.4 李查逊外推法 (时间紧可不讲)
	6.3 数值积分的一般概念
第 13 次	第6章 数值微积分
	6.4 Newton-Cotes 求积公式
	6.5 复化求积公式
第 14 次	第6章 数值微积分
	6.6 Romberg 算法
	6.7 Gaussian 型求积公式
第 15 次	第 7 章 常微分方程的数值解法
	7.1 引言
	7.2 Euler 方法及改进的 Euler 方法
第 16 次	第 7 章 常微分方程的数值解法
	7.3 Runge-Kutta 方法
	7.4 单步法的相容性、收敛性和稳定性(只讲收敛性,只
	解释,不证明)

注: 每次2课时。