

Folgen und Reihen

Mathematik 1 für Wirtschaftsinformatiker

Prof. Dr. Jonas Offtermatt — 28. November 2024

Einführung in Folgen

Definition einer Folge

Eine Folge ist eine geordnete Liste von Zahlen, die bestimmten Regeln folgt.

Mathematische Definition

Eine Abbildung (a_n) , die jeder natürlichen Zahl $n \in \mathbb{N}$ eine reelle Zahl a_n zuordnet, heißt reelle Zahlenfolge.

Beispiele von Folgen

- $a_n = n^2$: Die quadratische Folge $1, 4, 9, 16, \ldots$
- $b_n = \frac{1}{n}$: Die harmonische Folge $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$
- $c_n = (-1)^n$: Die alternierende Folge $-1, 1, -1, 1, \dots$

Arithmetische und Geometrische Folgen

Arithmetische Folgen

Eine arithmetische Folge ist eine Folge, in der die Differenz zwischen aufeinanderfolgenden Gliedern konstant ist.

Definition einer arithmetischen Folge

Eine Folge a_1,a_2,a_3,\ldots heißt arithmetische Folge, wenn die Differenz d zwischen zwei aufeinanderfolgenden Gliedern konstant ist. Das heißt, für alle $n\geq 1$ gilt: $a_{n+1}-a_n=d$.

Beispiel einer arithmetischen Folge

Die Folge $2, 5, 8, 11, 14, \ldots$ ist eine arithmetische Folge mit der Differenz d=3.

Arithmetische und Geometrische Folgen

Geometrische Folgen

Eine geometrische Folge ist eine Folge, in der das Verhältnis zwischen aufeinanderfolgenden Gliedern konstant ist.

Definition einer geometrischen Folge

Eine Folge a_1,a_2,a_3,\ldots heißt geometrische Folge, wenn das Verhältnis q zwischen zwei aufeinanderfolgenden Gliedern konstant ist. Das heißt, für alle $n\geq 1$ gilt: $\frac{a_{n+1}}{a_n}=q$.

Beispiel einer geometrischen Folge

Die Folge $3,6,12,24,48,\ldots$ ist eine geometrische Folge mit dem Verhältnis q=2.

Konvergenz von Folgen

Definition der Konvergenz

Eine Folge a_1,a_2,a_3,\ldots konvergiert gegen den Grenzwert L, wenn für jede positive Zahl $\epsilon>0$ ein Index n_0 existiert, so dass für alle $n\geq n_0$ gilt:

$$|a_n - L| < \epsilon$$

.

Schreibweise: $\lim_{n\to\infty} a_n = L$.

Beispiel einer konvergenten Folge

Die Folge $1,\frac{1}{2},\frac{1}{4},\frac{1}{8},\ldots$ konvergiert gegen den Grenzwert 0.

Divergenz einer Folge

Eine Folge, die nicht gegen einen Grenzwert konvergiert, wird als divergent bezeichnet.

Die Folge $1, 2, 3, 4, \ldots$ ist eine divergente Folge.

Rechenregeln für Grenzwerte bei Folgen

Für konvergente Folgen gelten folgende Rechenregeln für Grenzwerte:

Konstantenregel

Für eine konstante Zahl c gilt: $\lim_{n \to \infty} c = c$

Summenregel

Für zwei konvergente Folgen a_n und b_n gilt:

$$\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n$$

Produktregel

Für zwei konvergente Folgen a_n und b_n gilt:

$$\lim_{n \to \infty} (a_n \cdot b_n) = \lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} b_n$$

Rechenregeln für Grenzwerte bei Folgen

Quotientenregel

Für zwei konvergente Folgen a_n und b_n mit $b_n \neq 0$ gilt:

$$\lim_{n \to \infty} \left(\frac{a_n}{b_n} \right) = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n}$$

Potenzregel

Für eine konvergente Folge a_n und eine natürliche Zahl k gilt:

$$\lim_{n \to \infty} (a_n^k) = \left(\lim_{n \to \infty} a_n\right)^k$$

Korridor

Gilt $a_n \le c_n \le b_n$ und $\lim a_n = \lim b_n$, dann folgt $\lim c_n = \lim a_n$.

Reihen

Eine Reihe ist die Summe aller Glieder einer Folge (a_n) :

$$s_n = a_0 + a_1 + a_2 + \ldots + a_n = \sum_{i=0}^n a_i$$

Endliche Reihen

Eine endliche Reihe ist eine Reihe, die nur eine begrenzte Anzahl von Gliedern hat.

Die endliche Reihe 1+2+3+4+5 hat 5 Glieder, und die Summe beträgt 15.

Unendliche Reihen

Eine unendliche Reihe hat eine unendliche Anzahl von Gliedern.

$$\sum_{i=0}^{\infty} a_i = \lim_{n \to \infty} \sum_{i=0}^{n} a_i$$

Arithmetische und Geometrische Reihen

Arithmetische Reihe Für die Partialsummen der arithmetischen Reihe $\sum_{i=0}^{n} i$ gilt:

$$s_n = \sum_{i=0}^n i = \frac{n(n+1)}{2}$$

•

Geometrische Reihe Die Partialsummen der geometrischen Reihe $\sum_{i=0}^n q^i$ mit $q \in \mathbb{R}$ und $q \neq 1$ lassen sich vereinfachen zu:

$$s_n = \sum_{i=0}^n q^i = \frac{1 - q^{n+1}}{1 - q}$$

.

Konvergenz von Reihen

Offensichtlich gilt für die arithmetische Reihe:

$$\lim_{n \to \infty} s_n = \lim_{n \to \infty} \sum_{i=0}^n i = \lim_{n \to \infty} \frac{n(n+1)}{2} = \infty$$

Es gibt aber durchaus auch unendliche Reihen die konvergieren. So gilt bspw.

$$\lim_{n \to \infty} s_n = \lim_{n \to \infty} \sum_{i=0}^n q^i = \frac{1}{1 - q}$$

 $\text{für } q \in \mathbb{R} \text{ und } |q| < 1.$