REFERENCE NO.

36

In re application of: Daniele Piomelli, et al.

Application No.: 10/642,462 Filing Date: August 15, 2003

Attorney Docket No.: 02307E-125510US

PCT

(30) Priority Data:

08/764,104

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:
A61K

(11) International Publication Number: WO 98/24396

(43) International Publication Date: 11 June 1998 (11.06.98)

US

- (21) International Application Number: PCT/US97/22063
- (22) International Filing Date: 25 November 1997 (25.11.97)
- (71) Applicant: NEUROSCIENCES RESEARCH FOUNDATION, INC. [US/US]; 10640 John Jay Hopkins Drive, San Diego, CA 92121 (US).

6 December 1996 (06.12.96)

- (72) Inventors: PIOMELLI, Daniele; 4992 Academy Street, San Diego, CA 92109 (US). BELTRAMO, Massimiliano; Apartment 2609, 7425 Charmant Drive, San Diego, CA 92112 (US).
- (74) Agent: DUNCAN, Margaret, M.; McDermott, Will & Emery, Suite 4400, 227 W. Monroe Street, Chicago, II. 60606–5096 (US).
- (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: METHODS OF TREATING MENTAL DISEASES, INFLAMMATION AND PAIN

$$\begin{array}{c|c}
R & CH_2 - CH_2 \\
\hline
 & R_1 & O \\
\hline
 & O
\end{array}$$
(1)

(57) Abstract

Methods are disclosed for treating or preventing disorders such as mental diseases, inflammation and pain by inhibiting the enzyme anandamide amidohydrolase. A therapeutically effective level of an anandamide amidohydrolase inhibitor is administered such as a therapeutically effective level of a haloenol lactone. Preferably, the haloenol lactone is of formula (I) wherein R is hydrogen, R₁ is a halogen, and R₂ is selected from the group consisting of aryl, aryloxy, and heteroaryl radicals, derivatives of said haloenol lactones, and mixtures thereof. The haloenol lactone, E-6-(bromomethylene)tetrahydro-3-(1-naphthalenyl)-2H-pyrane-2-one, is most preferred.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL.	Albania	ES	Spain	1.S	Lesotho	SI	Slovenia
AM	Amenia	Fi	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ.	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	ТJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	ΙE	Ireland	·MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	11,	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	КG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
Cl	Côte d'Ivoire	KP	Democratic People's	NZ	New Zcaland		
CM	Cameroon		Republic of Korea	PI.	Poland		
CN	China'	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	кo	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

METHODS OF TREATING MENTAL DISEASES, INFLAMMATION AND PAIN

FIELD OF THE INVENTION

The invention relates to methods and compositions for treating disorders such as mental diseases, inflammation and pain. More particularly, the invention relates to methods for treating such disorders by administering a therapeutically effective level of an anandamide amidohydrolase inhibitor.

BACKGROUND OF THE INVENTION

Anandamide (N-arachidonoylethanolamine) is thought to act as an endogenous cannabinoid neurotransmitter in vertebrate nervous systems. It binds to and activates cannabinoid receptors and simulates many distinctive effects typical of plant-derived or synthetic cannabinoid drugs.

Biochemical evidence indicates that anandamide is produced in and released from neurons in an activity-dependent manner. Further, as expected of a signalling molecule, anandamide is short-lived: its life-span is limited by uptake into neural cells and by enzymatic hydrolysis. Anandamide hydrolysis is catalyzed by the enzyme anandamide amidohydrolase, which converts anandamide to yield two inactive metabolites, arachidonate and ethanolamine. This reaction is illustrated by the following:

25

20

5

10

15

Anandamide amidohydrolase is likely to play an important role in the physiological degradation of anandamide. Three lines of evidence support this possibility. First, anandamide amidohydrolase is highly selective. Second, anandamide amidohydrolase is discretely distributed in the central nervous system, where its localization parallels that of cannabinoid receptors. Third, a protease inhibitor that blocks anandamide amidohydrolase non-selectively,

phenylmethylsulphonylfluoride, extends the actions of anandamide.

Therefore, inhibition of anandamide amidohydrolase to increase the accumulation of anandamide at its sites of action is desirable as a potential therapeutic approach for the treatment or prevention of disorders such as mental diseases, inflammation and pain, including treatment or prevention of schizophrenia, mood disorders, anorexia, multiple sclerosis, spasticity and glaucoma. Despite these potential applications, no potent and selective inhibitors of anandamide amidohydrolase have been identified as yet.

The anandamide amidohydrolase inhibitors useful in the present invention comprise haloenol lactones. The preferred haloenol lactones are compounds of the formula:

$$\begin{array}{c|c}
R & CH_2 - CH_2 \\
\hline
 & R_1 & O \\
\hline
 & O
\end{array}$$

25

20

5

10

15

wherein R is hydrogen, R_1 is a halogen, and R_2 is selected from the group consisting of aryl, aryloxy, and heteroaryl radicals. A most preferred haloenol lactone is E-6-(bromomethylene) tetrahydro-3-(1-naphthalenyl)-2H-pyrane-2-one which has the following formula:

$$\begin{array}{c|c}
R & CH_2 - CH_2 \\
\hline
 & O & O
\end{array}$$

The synthesis of this compound and the identification of its ability to inhibit an enzyme which is unrelated to anandamide amidohydrolase, i.e., the cardiac calcium-independent phospholipase A₂, have been described in the following patents and publications: Hazen, et al., <u>J. Biol. Chem. 266</u>, 7227-7232 (1991); Weiss, et al., U.S. Patent No. 5,208,244; and Balsinde, et al., <u>Proc. Natl. Acad. Sci. U.S.A. 92</u>, 8527-8531 (1995).

SUMMARY OF THE INVENTION

5

10

15

20

25

The invention comprises methods of treating or preventing disorders such as mental diseases, inflammation and pain, including schizophrenia, mood disorders, anorexia, multiple sclerosis, spasticity and glaucoma by administering a therapeutically effective level of an anandamide amidohydrolase inhibitor. The preferred anandamide amidohydrolase inhibitors comprise haloenol lactones. The preferred haloenol lactones are compounds of the formula:

$$\begin{array}{c|c}
R & CH_2 - CH_2 \\
\hline
 & R_1 & O \\
\hline
 & O
\end{array}$$

wherein R is hydrogen, R₁ is a halogen, and R₂ is selected from the group consisting of aryl, aryloxy, and heteroaryl radicals, and derivatives and mixtures thereof. The most preferred anandamide amidohydrolase inhibitors comprise E-6-(bromomethylene)tetrahydro-3-(1-naphthalenyl)-2H-pyrane-2-one, derivatives of this compound, and mixtures thereof.

The present invention further comprises methods of inhibiting anandamide amidohydrolase by administering a therapeutically effective amount of a haloenol lactone. The preferred haloenol lactones are compounds of the formula:

$$\begin{array}{c|c}
R & CH_2 - CH_2 \\
\hline
 & R_1
\end{array}$$

15

20

25

5

10

wherein R is hydrogen, R_1 is a halogen, and R_2 is selected from the group consisting of aryl, aryloxy, and heteroaryl radicals, derivatives of these compounds and mixtures thereof. The most preferred anandamide amidohydrolase inhibitors comprise E-6-(bromomethylene)tetrahydro-3-(1-naphthalenyl)-2H-pyrane-2-one.

The invention further comprises pharmaceutical compositions comprising anandamide amidohydrolase inhibitors for treating mental diseases, inflammation and pain, such as schizophrenia, mood disorders, anorexia, multiple sclerosis, spasticity and glaucoma. The preferred compositions comprise a

haloenol lactone at a therapeutically effective level to inhibit anandamide amidohydrolase.

DESCRIPTION OF THE DRAWINGS

5

10

15

20

25

FIGURE 1 is a graph showing a comparison of the effects of a haloenol lactone of the invention on anandamide amidohydrolase activities from rat brain and rat liver;

FIGURES 2A and 2B are graphs showing measurements of the levels of radiolabeled arachidonic acid accumulated in the presence of various concentrations of a haloenol lactone of the invention (Fig. 2A), or levels of phospholipids containing radiolabeled arachidonic acid (Fig. 2B); and

FIGURE 3 is a graph showing that intracellular levels of radiolabeled anandamide were greatly increased in the presence of a haloenol lactone of the invention.

DETAILED DESCRIPTION OF THE INVENTION

The preferred anandamide amidohydrolase inhibitors of the invention are haloenol lactones. The preferred haloenol lactones are compounds of the general formula:

$$\begin{array}{c|c}
R & \longrightarrow & CH_2 - CH_2 \\
 & \longrightarrow & \longrightarrow & R_2
\end{array}$$

wherein R is hydrogen, R_1 is a halogen, and R_2 is selected from the group consisting of aryl, aryloxy, and heteroaryl radicals, and derivatives and mixtures thereof. The preferred haloenol

lactones useful in the methods and compositions of the invention include E-6-(bromomethylene)tetrahydro-3-(1-naphthalenyl)-2H-pyrane-2-one, derivatives of this compound, and mixtures thereof.

Inhibition of anandamide amidohydrolase causes the accumulation of endogenously produced anandamide. Endogenous anandamide, in turn, activates cannabinoid receptors, resulting in therapeutically favorable effects that include mood elevation, appetite stimulation, relief of pain and inflammation, and symptomatic relief in diseases such as multiple sclerosis and glaucoma.

The following examples illustrate the anandamide amidohydrolase inhibitors of the invention.

5

10

15

20

25

Example 1

Anandamide amidohydrolase assay

An assay was developed which demonstrated inhibition of rat brain anandamide amidohydrolase by E-6-(bromomethylene) tetrahydro-3-(1-naphthalenyl)-2H-pyrane-2-one. This assay consisted of determining the amount of radiolabeled arachidonic acid liberated from radiolabeled anandamide by rat brain anandamide amidohydrolase in the presence of various concentrations of E-6-(bromomethylene)tetrahydro-3-(1-naphthalenyl)-2H-pyrane-2-one. This assay was also used to show that E-6-(bromomethylene)tetrahydro-3-(1-naphthalenyl)-2H-pyrane-2-one is more effective on brain tissue anandamide amidohydrolase

activity, by examining its effect on rat liver anandamide amidohydrolase.

5

10

15

20

25

Anandamide amidohydrolase was measured in rat brain or rat liver microsome fractions. The fractions (0.1 mg of protein) were prepared following the protocols of Desarnaud et al., \underline{J} . Biol. Chem. 270, 6030-6035 (1995), and were incubated in 50 mM Tris-Cl (pH 7.4) at 37°C, in the presence of radiolabeled anandamide obtained from New England Nuclear, Wilmington, DE, 221 Ci/mmol), plus various concentrations of test inhibitor (0.1-100 μ M). After 10 min. of incubation, the reactions were stopped with cold methanol, the radiolabeled lipids extracted with chloroform, and the organic phases brought to dryness under a stream of N₂ gas. The radioactive products were then fractionated by thin-layer chromatography (solvent system: chloroform/methanol/ammonia, 90:10:1 vol/vol/vol), collected by scraping appropriate areas of the chromatography plate, and quantified by liquid scintillation counting.

The effects of E-6-(bromomethylene)tetrahydro-3-(1-naphthalenyl)-2H-pyrane-2-one on anandamide amidohydrolases from rat brain or liver are shown in Figure 1. This compound is potent in inhibiting brain anandamide amidohydrolase. The concentration of E-6-(bromomethylene)tetrahydro-3-(1-naphthalenyl)-2H-pyrane-2-one which decreases the enzyme activity to 50% of the activity measured in the absence of the compound (defined as IC_{50}), was 0.7 μM .

Underscoring the tissue differences of this inhibitory effect, inhibition of the liver enzyme was achieved at concentrations of E-6-(bromomethylene)tetrahydro-3-(1-naphthalenyl)-2H-pyrane-2-one that were more than 100-fold higher than in brain (IC $_{50}$ =97 μ M).

Pharmaceutical compositions comprising the haloenol lactones of the invention can be administered utilizing an effective inhibitory amount of the compound(s). This amount can range from about 1 nM to 0.1 mM, preferably from about 1 μ M to about 50 μ M. A most preferred effective amount is about 10 μ M. Such compositions can be prepared with acceptable diluents and/or carriers, as described, for example, in Remington's Pharmaceutical Sciences, Arthur Osol, Ed., 16th Ed., 1980, Mack Publishing Company.

15

20

25

²5

10

Example 2

Assay in cultures of cortical astrocytes

An additional assay demonstrated inhibition of anandamide amidohydrolase in intact neural cells. This assay consisted of determining the amount of radiolabeled arachidonic acid produced, when cultures of rat cortical astrocytes were incubated in the presence of radiolabeled anandamide.

Cultures of rat cortical astrocytes, essentially free of neurons, were prepared following the standard procedures described in Cadas et al., <u>J. Neurosci. 16</u>, 3934-3942 (1996), and used after 3 weeks in culture. The cultures were incubated in

Krebs Tris solution (pH 7.4) at 37°C, in the presence of radiolabeled anandamide plus various concentrations of E-6-(bromomethylene) tetrahydro-3-(1-naphthalenyl)-2H-pyrane-2-one $(0.1-100 \mu M)$. After 20 min. of incubation, the reactions were stopped with cold methanol, and the cells were scraped from the culture dishes and subjected to chloroform extraction. organic phases were dried, and analyzed as follows. To measure radiolabeled anandamide and arachidonic acid, the organic extracts were fractionated by silica gel G column chromatography, as described in Fontana et al., Prostaglandins Leukotrienes Essential Fatty Acids 53, 301-308 (1995). Radiolabeled anandamide and arachidonic acid were eluted from the column with a solvent system of chloroform/methanol (9:1, vol/vol), and further purified by thin-layer chromatography (solvent system of chloroform/methanol/ammonia, 80:20:1, vol/vol/vol). To measure radiolabeled phospholipids, which were formed in intact cells from the enzymatic esterification of radiolabeled arachidonic acid, the organic extracts were fractionated by thin-layer chromatography (solvent system of

5

10

15

20

25

chloroform/methanol/ammonia/water, 65:25:4:1, vol/vol/vol/vol).

E-6-(bromomethylene)tetrahydro-3-(1-naphthalenyl)-2H-pyrane-2-one is potent in inhibiting the anandamide amidohydrolase of intact astrocytes ($IC_{50}=0.5~\text{uM}$). This can be shown either by measuring the levels of radiolabeled arachidonic acid accumulated in the presence of various concentrations of the inhibitor (Fig. 2A), or by measuring the levels of phospholipids

containing radiolabeled arachidonic acid (Fig. 2B). By contrast, E-6-(bromomethylene)tetrahydro-3-(1-naphthalenyl)-2H-pyrane-2-one does not inhibit the uptake of radiolabeled anandamide. This is indicated by the fact that the intracellular levels of radiolabeled anandamide were greatly increased in the presence of this compound, which would not be expected if the uptake were inhibited (Fig. 3).

The embodiments of the invention disclosed herein have been discussed for the purpose of familiarizing the reader with novel aspects of the invention. Although preferred embodiments of the invention have been shown and described, many changes, modifications, and substitutions may be made by one having skill in the art without necessarily departing from the spirit and scope of the invention.

15

10

5

CLAIMS

5

10

15

- 1. A method of inhibiting anandamide amidohydrolase by administering a therapeutically effective amount of a haloenol lactone.
- 2. The method of claim 1 wherein the haloenol lactone comprises a compound of the formula:

$$\begin{array}{c|c}
R & CH_2 - CH_2 \\
\hline
 & R_1 & O \\
\hline
 & O
\end{array}$$

wherein R is hydrogen, R_1 is a halogen, and R_2 is selected from the group consisting of aryl, aryloxy, and heteroaryl radicals, derivatives and mixtures thereof.

- 3. The method of claim 1 wherein said haloenol lactone comprises E-6-(bromomethylene)tetrahydro-3-(1-naphthalenyl)-2H-pyrane-2-one.
- 4. A method of treating mental disease, inflammation or pain comprising administering a therapeutically effective level of an anandamide amidohydrolase inhibitor.
- 5. The method of claim 4 wherein the anandamide amidohydrolase inhibitor comprises a haloenol lactone.

5

6. The method of claim 4 wherein the haloenol lactone comprises a compound of the formula:

$$\begin{array}{c|c}
R & CH_2 - CH_2 \\
\hline
 & R_1
\end{array}$$

wherein R is hydrogen, R_1 is a halogen, and R_2 is selected from the group consisting of aryl, aryloxy, and heteroaryl radicals, derivatives of said haloenol lactones, and mixtures thereof.

- 7. The method of claim 4 wherein the haloenol lactone comprises E-6-(bromomethylene)tetrahydro-3-(1-naphthalenyl)-2H-pyrane-2-one.
- 8. A composition for treating mental disease,
 inflammation or pain comprising a therapeutically effective level
 of a haloenol lactone sufficient to inhibit anandamide
 amidohydrolase and a pharmaceutically acceptable carrier.

5

9. The composition of claim 8 wherein the haloenol lactone comprises a compound of the formula:

$$R \xrightarrow{CH_2 - CH_2} R_2$$

$$Q \xrightarrow{CH_2 - CH_2} O$$

wherein R is hydrogen, R_1 is a halogen, and R_2 is selected from the group consisting of aryl, aryloxy, and heteroaryl radicals, derivatives of said haloenol lactones, and mixtures thereof.

10. The composition of claim 8 wherein the haloenol lactone comprises E-6-(bromomethylene)tetrahydro-3-(1-naphthalenyl)-2H-pyrane-2-one.

1/3

Figure 1

Figure 2A

Figure 2B

3/3

Figure 3

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:

(11) International Publication Number:

WO 98/24396

A61K 31/35

A3

(43) International Publication Date:

11 June 1998 (11.06.98)

(21) International Application Number:

PCT/US97/22063

(22) International Filing Date:

25 November 1997 (25.11.97)

(30) Priority Data:

08/764,104

6 December 1996 (06.12.96)

US

(71) Applicant: NEUROSCIENCES RESEARCH FOUNDATION, INC. [US/US]; 10640 John Jay Hopkins Drive, San Diego, CA 92121 (US).

(72) Inventors: PIOMELLI, Daniele; 4992 Academy Street, San Diego, CA 92109 (US). BELTRAMO, Massimiliano; Apartment 2609, 7425 Charmant Drive, San Diego, CA 92112 (US).

(74) Agent: DUNCAN, Margaret, M.; McDermott, Will & Emery, Suite 4400, 227 W. Monroe Street, Chicago, IL 60606-5096 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA. UG, UZ, VN, YU, ZW, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(88) Date of publication of the international search report:

27 August 1998 (27.08.98)

(54) Title: METHODS OF TREATING MENTAL DISEASES, INFLAMMATION AND PAIN

$$\begin{array}{c|c}
R & \longrightarrow & CH_2 - CH_2 \\
 & \longrightarrow & \longrightarrow & R_2 \\
 & O & \longrightarrow & O
\end{array}$$
(1)

(57) Abstract

Methods are disclosed for treating or preventing disorders such as mental diseases, inflammation and pain by inhibiting the enzyme anandamide amidohydrolase. A therapeutically effective level of an anandamide amidohydrolase inhibitor is administered such as a therapeutically effective level of a haloenol lactone. Preferably, the haloenol lactone is of formula (I) wherein R is hydrogen, R1 is a halogen, and R2 is selected from the group consisting of aryl, aryloxy, and heteroaryl radicals, derivatives of said haloenol lactones, and mixtures thereof. The haloenol lactone, E-6-(bromomethylene)tetrahydro-3-(1-naphthalenyl)-2H-pyrane-2-one, is most preferred.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

			•				
ΛL	Albania	ES	Spain	I.S	Lesotho	SI	Slovenia
AM	Amenia	FI	Finland	LT	Lithuania	SK	Slovakia
ΛT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΛU	Australia	GA	Gabon	LV	Latvia	S7.	Swaziland
ΛZ	Azerbaijan	GB	United Kingdom	мс	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania *	UG	Uganda
BY	Belanus	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Vict Nam
CG	Сондо	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CX	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	1.1	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

INTERNATIONAL SEARCH REPORT

International application No. PCT/US97/22063

A. CLASSIFICATION OF SUBJECT MATTER		•				
IPC(6) : A61K 31/35						
US CL : 514/460	i al desification and IRC					
According to International Patent Classification (IPC) or to both	n national classification and Ire					
B. FIELDS SEARCHED	ad by classification symbols)					
Minimum documentation searched (classification system followed	ed by classification symbolis					
U.S. : 514/460						
Documentation searched other than minimum documentation to th	ne extent that such documents are included	in the fields searched				
Electronic data base consulted during the international search (n	name of data hase and, where practicable	, search terms used)				
C. DOCUMENTS CONSIDERED TO BE RELEVANT						
Category* Citation of document, with indication, where ap	ppropriate, of the relevant passages	Relevant to claim No.				
X US 4,602,006 A (KRANTZ ET AL.)) 22 July 1986, col. 16, lines	1-3, 8-10				
55-70. A		4-7				
X US 5,208,244 A (WEISS ET AL.) 04	May 1993, col. 2, lines 33-50	4-10				
and claims 1-15.	•	1-3				
A	·					
X Database CAPLUS on STN, AN 199 endogenous cannabinoid receptor a memory in rats, abstract, Behav. Phar	agonist anandamide impairs	4 1-3 and 5-10				
Further documents are listed in the continuation of Box (
 Special categories of cited documents: A. document defining the general state of the art which is not considered 	"T" later document published after the int date and not in conflict with the app the principle or theory underlying the	lication but cited to understand				
to be of particular relevance	*X* document of particular relevance; the	ne claimed invention cannot be				
E carlier document published on or after the international filing date *L* document which may throw doubts on priority claim(s) or which is	considered novel or cannot be considered novel or cannot be considered about the document is taken alone	ered to involve an inventive step				
cited to establish the publication date of another citation or other special reason (as specified)	*Y* document of particular relevance; the considered to involve an inventive	he claimed invention cannot be				
O document referring to an oral disclosure, use, exhibition or other means		ch documents, such combination				
P document published prior to the international filing date but later than the priority date claimed	*&* document member of the same pater	nt family				
Date of the actual completion of the international search	Date of mailing of the international se	earch report				
14 JANUARY 1998	0 000 1330	<u> </u>				
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Westigned D. C. 2023	Authorized officer / ///////// KEITH MACMIELAN	HWP/				
Washington, D.C. 20231 - Facsimile No. (703) 305-3230	Telephone No. (703) 308-1235	_ /				

PCT

(30) Priority Data:

08/764,104

WORLD INTELLIECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:
A61K

(11) International Publication Number: WO 98/24396
(43) International Publication Date: 11 June 1998 (11.06.98)

US

- (21) International Application Number: PCT/US97/22063
- (22) International Filing Date: 25 November 1997 (25.11.97)
- (71) Applicant: NEUROSCIENCES RESEARCH FOUNDATION, INC. [US/US]; 10640 John Jay Hopkins Drive, San Diego, CA 92121 (US).

6 December 1996 (06.12.96)

- (72) Inventors: PIOMELLI, Daniele; 4992 Academy Street, San Diego, CA 92109 (US). BELTRAMO, Massimiliano; Apartment 2609, 7425 Charmant Drive, San Diego, CA 92112 (US).
- (74) Agent: DUNCAN, Margaret, M.; McDermott, Will & Emery, Suite 4400, 227 W. Monroe Street, Chicago, IL 60606-5096 (US).
- (81) Designated States: AL. AM. AT. AU, AZ, BA. BB, BG, BR. BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: METHODS OF TREATING MENTAL DISEASES, INFLAMMATION AND PAIN

$$\begin{array}{c|c}
R & CH_2 - CH_2 \\
\hline
 & R_1 & O \\
\hline
 & O
\end{array}$$

(57) Abstract

Methods are disclosed for treating or preventing disorders such as mental diseases, inflammation and pain by inhibiting the enzyme anandamide amidohydrolase. A therapeutically effective level of an anandamide amidohydrolase inhibitor is administered such as a therapeutically effective level of a haloenol lactone. Preferably, the haloenol lactone is of formula (I) wherein R is hydrogen, R_1 is a halogen, and R_2 is selected from the group consisting of aryl, aryloxy, and heteroaryl radicals, derivatives of said haloenol lactones, and mixtures thereof. The haloenol lactone, E-6-(bromomethylene)tetrahydro-3-(1-naphthalenyl)-2H-pyrane-2-one, is most preferred.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ.	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	ΙE	Ireland	MN	Mongolia	U٨	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	liaty	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		•
CM	Cameroon		Republic of Korea	PI.	Poland		
CN	China .	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	кO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

METHODS OF TREATING MENTAL DISEASES, INFLAMMATION AND PAIN

FIELD OF THE INVENTION

The invention relates to methods and compositions for treating disorders such as mental diseases, inflammation and pain. More particularly, the invention relates to methods for treating such disorders by administering a therapeutically effective level of an anandamide amidohydrolase inhibitor.

10 BACKGROUND OF THE INVENTION

Anandamide (N-arachidonoylethanolamine) is thought to act as an endogenous cannabinoid neurotransmitter in vertebrate nervous systems. It binds to and activates cannabinoid receptors and simulates many distinctive effects typical of plant-derived or synthetic cannabinoid drugs.

Biochemical evidence indicates that anandamide is produced in and released from neurons in an activity-dependent manner. Further, as expected of a signalling molecule, anandamide is short-lived: its life-span is limited by uptake into neural cells and by enzymatic hydrolysis. Anandamide hydrolysis is catalyzed by the enzyme anandamide amidohydrolase, which converts anandamide to yield two inactive metabolites, arachidonate and ethanolamine. This reaction is illustrated by the following:

25

20

5

15

Anandamide amidohydrolase is likely to play an important role in the physiological degradation of anandamide. Three lines of evidence support this possibility. First, anandamide amidohydrolase is highly selective. Second, anandamide amidohydrolase is discretely distributed in the central nervous system, where its localization parallels that of cannabinoid receptors. Third, a protease inhibitor that blocks anandamide amidohydrolase non-selectively,

phenylmethylsulphonylfluoride, extends the actions of anandamide.

Therefore, inhibition of anandamide amidohydrolase to increase the accumulation of anandamide at its sites of action is desirable as a potential therapeutic approach for the treatment or prevention of disorders such as mental diseases, inflammation and pain, including treatment or prevention of schizophrenia, mood disorders, anorexia, multiple sclerosis, spasticity and glaucoma. Despite these potential applications, no potent and selective inhibitors of anandamide amidohydrolase have been identified as yet.

The anandamide amidohydrolase inhibitors useful in the present invention comprise haloenol lactones. The preferred haloenol lactones are compounds of the formula:

$$\begin{array}{c|c}
R & CH_2 - CH_2 \\
\hline
 & R_1 & O \\
\hline
 & O
\end{array}$$

25

5

10

15

20

wherein R is hydrogen, R₁ is a halogen, and R₂ is selected from the group consisting of aryl, aryloxy, and heteroaryl radicals. A most preferred haloenol lactone is E-6-(bromomethylene) tetrahydro-3-(1-naphthalenyl)-2H-pyrane-2-one which has the following formula:

$$\begin{array}{c} R \\ R \\ O \end{array} \begin{array}{c} CH_2 - CH_2 \\ O \end{array} \begin{array}{c} \\ \\ O \end{array}$$

The synthesis of this compound and the identification of its ability to inhibit an enzyme which is unrelated to anandamide amidohydrolase, i.e., the cardiac calcium-independent phospholipase A₂, have been described in the following patents and publications: Hazen, et al., <u>J. Biol. Chem. 266</u>, 7227-7232 (1991); Weiss, et al., U.S. Patent No. 5,208,244; and Balsinde, et al., <u>Proc. Natl. Acad. Sci. U.S.A. 92</u>, 8527-8531 (1995).

SUMMARY OF THE INVENTION

5

10

15

20

25

The invention comprises methods of treating or preventing disorders such as mental diseases, inflammation and pain, including schizophrenia, mood disorders, anorexia, multiple sclerosis, spasticity and glaucoma by administering a therapeutically effective level of an anandamide amidohydrolase inhibitor. The preferred anandamide amidohydrolase inhibitors comprise haloenol lactones. The preferred haloenol lactones are compounds of the formula:

$$\begin{array}{c|c}
R & \longrightarrow & CH_2 - CH_2 \\
R_1 & \bigcirc & \bigcirc & R_2
\end{array}$$

wherein R is hydrogen, R₁ is a halogen, and R₂ is selected from the group consisting of aryl, aryloxy, and heteroaryl radicals, and derivatives and mixtures thereof. The most preferred anandamide amidohydrolase inhibitors comprise E-6-(bromomethylene)tetrahydro-3-(1-naphthalenyl)-2H-pyrane-2-one, derivatives of this compound, and mixtures thereof.

The present invention further comprises methods of inhibiting anandamide amidohydrolase by administering a therapeutically effective amount of a haloenol lactone. The preferred haloenol lactones are compounds of the formula:

$$\begin{array}{c|c}
R & CH_2 - CH_2 \\
\hline
 & R_1 & O & \\
\hline
 & O & \\
\end{array}$$

15

5

10

wherein R is hydrogen, R_1 is a halogen, and R_2 is selected from the group consisting of aryl, aryloxy, and heteroaryl radicals, derivatives of these compounds and mixtures thereof. The most preferred anandamide amidohydrolase inhibitors comprise E-6-(bromomethylene)tetrahydro-3-(1-naphthalenyl)-2H-pyrane-2-one.

The invention further comprises pharmaceutical compositions comprising anandamide amidohydrolase inhibitors for treating mental diseases, inflammation and pain, such as schizophrenia, mood disorders, anorexia, multiple sclerosis, spasticity and glaucoma. The preferred compositions comprise a

25

20

haloenol lactone at a therapeutically effective level to inhibit anandamide amidohydrolase.

DESCRIPTION OF THE DRAWINGS

5

10

15

20

25

FIGURE 1 is a graph showing a comparison of the effects of a haloenol lactone of the invention on anandamide amidohydrolase activities from rat brain and rat liver;

FIGURES 2A and 2B are graphs showing measurements of the levels of radiolabeled arachidonic acid accumulated in the presence of various concentrations of a haloenol lactone of the invention (Fig. 2A), or levels of phospholipids containing radiolabeled arachidonic acid (Fig. 2B); and

FIGURE 3 is a graph showing that intracellular levels of radiolabeled anandamide were greatly increased in the presence of a haloenol lactone of the invention.

DETAILED DESCRIPTION OF THE INVENTION

The preferred anandamide amidohydrolase inhibitors of the invention are haloenol lactones. The preferred haloenol lactones are compounds of the general formula:

$$\begin{array}{c|c}
R & \longrightarrow & CH_2 - CH_2 \\
 & \longrightarrow & \longrightarrow & R_2
\end{array}$$

wherein R is hydrogen, R_1 is a halogen, and R_2 is selected from the group consisting of aryl, aryloxy, and heteroaryl radicals, and derivatives and mixtures thereof. The preferred haloenol

lactones useful in the methods and compositions of the invention include E-6-(bromomethylene)tetrahydro-3-(1-naphthalenyl)-2H-pyrane-2-one, derivatives of this compound, and mixtures thereof.

Inhibition of anandamide amidohydrolase causes the accumulation of endogenously produced anandamide. Endogenous anandamide, in turn, activates cannabinoid receptors, resulting in therapeutically favorable effects that include mood elevation, appetite stimulation, relief of pain and inflammation, and symptomatic relief in diseases such as multiple sclerosis and glaucoma.

The following examples illustrate the anandamide amidohydrolase inhibitors of the invention.

5

10

15

20

25

Example 1

Anandamide amidohydrolase assay

An assay was developed which demonstrated inhibition of rat brain anandamide amidohydrolase by E-6-(bromomethylene) tetrahydro-3-(1-naphthalenyl)-2H-pyrane-2-one. This assay consisted of determining the amount of radiolabeled arachidonic acid liberated from radiolabeled anandamide by rat brain anandamide amidohydrolase in the presence of various concentrations of E-6-(bromomethylene)tetrahydro-3-(1-naphthalenyl)-2H-pyrane-2-one. This assay was also used to show that E-6-(bromomethylene)tetrahydro-3-(1-naphthalenyl)-2H-pyrane-2-one is more effective on brain tissue anandamide amidohydrolase

activity, by examining its effect on rat liver anandamide amidohydrolase.

5

10

15

20

25

Anandamide amidohydrolase was measured in rat brain or rat liver microsome fractions. The fractions (0.1 mg of protein) were prepared following the protocols of Desarnaud et al., \underline{J} . Biol. Chem. 270, 6030-6035 (1995), and were incubated in 50 mM Tris-Cl (pH 7.4) at 37°C, in the presence of radiolabeled anandamide obtained from New England Nuclear, Wilmington, DE, 221 Ci/mmol), plus various concentrations of test inhibitor (0.1-100 μ M). After 10 min. of incubation, the reactions were stopped with cold methanol, the radiolabeled lipids extracted with chloroform, and the organic phases brought to dryness under a stream of N_2 gas. The radioactive products were then fractionated by thin-layer chromatography (solvent system: chloroform/methanol/ammonia, 90:10:1 vol/vol/vol), collected by scraping appropriate areas of the chromatography plate, and quantified by liquid scintillation counting.

The effects of E-6-(bromomethylene) tetrahydro-3-(1-naphthalenyl)-2H-pyrane-2-one on anandamide amidohydrolases from rat brain or liver are shown in Figure 1. This compound is potent in inhibiting brain anandamide amidohydrolase. The concentration of E-6-(bromomethylene) tetrahydro-3-(1-naphthalenyl)-2H-pyrane-2-one which decreases the enzyme activity to 50% of the activity measured in the absence of the compound (defined as IC_{50}), was 0.7 μM .

Underscoring the tissue differences of this inhibitory effect, inhibition of the liver enzyme was achieved at concentrations of E-6-(bromomethylene)tetrahydro-3-(1-naphthalenyl)-2H-pyrane-2-one that were more than 100-fold higher than in brain (IC₅₀=97 μ M).

Pharmaceutical compositions comprising the haloenol lactones of the invention can be administered utilizing an effective inhibitory amount of the compound(s). This amount can range from about 1 nM to 0.1 mM, preferably from about 1 μ M to about 50 μ M. A most preferred effective amount is about 10 μ M. Such compositions can be prepared with acceptable diluents and/or carriers, as described, for example, in Remington's Pharmaceutical Sciences, Arthur Osol, Ed., 16th Ed., 1980, Mack Publishing Company.

15

20

25

5

10

Example 2

Assay in cultures of cortical astrocytes

An additional assay demonstrated inhibition of anandamide amidohydrolase in intact neural cells. This assay consisted of determining the amount of radiolabeled arachidonic acid produced, when cultures of rat cortical astrocytes were incubated in the presence of radiolabeled anandamide.

Cultures of rat cortical astrocytes, essentially free of neurons, were prepared following the standard procedures described in Cadas et al., <u>J. Neurosci. 16</u>, 3934-3942 (1996), and used after 3 weeks in culture. The cultures were incubated in

Krebs Tris solution (pH 7.4) at 37°C, in the presence of radiolabeled anandamide plus various concentrations of E-6-(bromomethylene) tetrahydro-3-(1-naphthalenyl)-2H-pyrane-2-one $(0.1-100 \mu M)$. After 20 min. of incubation, the reactions were stopped with cold methanol, and the cells were scraped from the culture dishes and subjected to chloroform extraction. organic phases were dried, and analyzed as follows. To measure radiolabeled anandamide and arachidonic acid, the organic extracts were fractionated by silica gel G column chromatography, as described in Fontana et al., Prostaglandins Leukotrienes Essential Fatty Acids 53, 301-308 (1995). Radiolabeled anandamide and arachidonic acid were eluted from the column with a solvent system of chloroform/methanol (9:1, vol/vol), and further purified by thin-layer chromatography (solvent system of chloroform/methanol/ammonia, 80:20:1, vol/vol/vol). To measure radiolabeled phospholipids, which were formed in intact cells from the enzymatic esterification of radiolabeled arachidonic acid, the organic extracts were fractionated by thin-layer chromatography (solvent system of

5

10

15

20

25

chloroform/methanol/ammonia/water, 65:25:4:1, vol/vol/vol/vol).

E-6-(bromomethylene)tetrahydro-3-(1-naphthalenyl)-2H-pyrane-2-one is potent in inhibiting the anandamide amidohydrolase of intact astrocytes (IC $_{50}$ = 0.5 uM). This can be shown either by measuring the levels of radiolabeled arachidonic acid accumulated in the presence of various concentrations of the inhibitor (Fig. 2A), or by measuring the levels of phospholipids

containing radiolabeled arachidonic acid (Fig. 2B). By contrast, E-6-(bromomethylene)tetrahydro-3-(1-naphthalenyl)-2H-pyrane-2-one does not inhibit the uptake of radiolabeled anandamide. This is indicated by the fact that the intracellular levels of radiolabeled anandamide were greatly increased in the presence of this compound, which would not be expected if the uptake were inhibited (Fig. 3).

The embodiments of the invention disclosed herein have been discussed for the purpose of familiarizing the reader with novel aspects of the invention. Although preferred embodiments of the invention have been shown and described, many changes, modifications, and substitutions may be made by one having skill in the art without necessarily departing from the spirit and scope of the invention.

15

10

5

CLAIMS

5

10

15

- 1. A method of inhibiting anandamide amidohydrolase by administering a therapeutically effective amount of a haloenol lactone.
- 2. The method of claim 1 wherein the haloenol lactone comprises a compound of the formula:

$$\begin{array}{c|c}
R & CH_2 - CH_2 \\
\hline
 & R_1 & O \\
\hline
 & O
\end{array}$$

wherein R is hydrogen, R_1 is a halogen, and R_2 is selected from the group consisting of aryl, aryloxy, and heteroaryl radicals, derivatives and mixtures thereof.

- 3. The method of claim 1 wherein said haloenol lactone comprises E-6-(bromomethylene)tetrahydro-3-(1-naphthalenyl)-2H-pyrane-2-one.
- 4. A method of treating mental disease, inflammation or pain comprising administering a therapeutically effective level of an anandamide amidohydrolase inhibitor.
- 5. The method of claim 4 wherein the anandamide amidohydrolase inhibitor comprises a haloenol lactone.

5

6. The method of claim 4 wherein the haloenol lactone comprises a compound of the formula:

$$\begin{array}{c|c}
R & \longrightarrow & CH_2 - CH_2 \\
 & \longrightarrow & \searrow & R_2 \\
 & O & \longrightarrow & \searrow & O
\end{array}$$

wherein R is hydrogen, R_1 is a halogen, and R_2 is selected from the group consisting of aryl, aryloxy, and heteroaryl radicals, derivatives of said haloenol lactones, and mixtures thereof.

- 7. The method of claim 4 wherein the haloenol lactone comprises E-6-(bromomethylene)tetrahydro-3-(1-naphthalenyl)-2H-pyrane-2-one.
- 8. A composition for treating mental disease,
 inflammation or pain comprising a therapeutically effective level
 of a haloenol lactone sufficient to inhibit anandamide
 amidohydrolase and a pharmaceutically acceptable carrier.

5

9. The composition of claim 8 wherein the haloenol lactone comprises a compound of the formula:

$$R \xrightarrow{CH_2 - CH_2} R_2$$

$$R_1 \xrightarrow{O} O$$

wherein R is hydrogen, R_1 is a halogen, and R_2 is selected from the group consisting of aryl, aryloxy, and heteroaryl radicals, derivatives of said haloenol lactones, and mixtures thereof.

10. The composition of claim 8 wherein the haloenol lactone comprises E-6-(bromomethylene)tetrahydro-3-(1-naphthalenyl)-2H-pyrane-2-one.

1/3

Figure 1

Figure 2A

Figure 2B

3/3

Figure 3

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION. International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

A61K 31/35

(11) International Publication Number:

WO 98/24396

A3

(43) International Publication Date:

11 June 1998 (11.06.98)

(21) International Application Number:

PCT/US97/22063

(22) International Filing Date:

25 November 1997 (25.11.97)

(30) Priority Data:

08/764,104

6 December 1996 (06.12.96)

US

(71) Applicant: NEUROSCIENCES RESEARCH FOUNDATION, INC. [US/US]; 10640 John Jay Hopkins Drive, San Diego, CA 92121 (US).

(72) Inventors: PIOMELLI, Daniele; 4992 Academy Street, San Diego, CA 92109 (US). BELTRAMO, Massimiliano; Apartment 2609, 7425 Charmant Drive, San Diego, CA 92112 (US).

(74) Agent: DUNCAN, Margaret, M.; McDermott, Will & Emery, Suite 4400, 227 W. Monroe Street, Chicago, IL 60606-5096 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(88) Date of publication of the international search report: 27 August 1998 (27.08.98)

(54) Title: METHODS OF TREATING MENTAL DISEASES, INFLAMMATION AND PAIN

$$\begin{array}{c|c}
R & CH_2 - CH_2 \\
\hline
 & R_1 & O & \\
\end{array}$$

$$\begin{array}{c}
CH_2 - CH_2 \\
\hline
 & R_2
\end{array}$$

$$\begin{array}{c}
O
\end{array}$$

$$\begin{array}{c}
O
\end{array}$$

(57) Abstract

Methods are disclosed for treating or preventing disorders such as mental diseases, inflammation and pain by inhibiting the enzyme anandamide amidohydrolase. A therapeutically effective level of an anandamide amidohydrolase inhibitor is administered such as a therapeutically effective level of a haloenol lactone. Preferably, the haloenol lactone is of formula (I) wherein R is hydrogen, R₁ is a halogen, and R2 is selected from the group consisting of aryl, aryloxy, and heteroaryl radicals, derivatives of said haloenol lactones, and mixtures thereof. The haloenol lactone, E-6-(bromomethylene)tetrahydro-3-(1-naphthalenyl)-2H-pyrane-2-one, is most preferred.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL.	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
ΛT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΛU	Australia	GA	Gabon	ĹV	Latvia	SZ	Swaziland
ΛZ	Azerbaijan	GB	United Kingdom	мс	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	ТJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	Œ	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	ΙL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	feeland	MW	Malawi	US	United States of America
CA	Canada	TT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Vict Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	l'T	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

INTERNATIONAL SEARCH REPORT

International application No. PCT/US97/22063

IPC(6) US CL According t B. F1EL Minimum d U.S.: Documentati	SSIFICATION OF SUBJECT MATTER : A61K 31/35 : 514/460 o International Patent Classification (IPC) or to both r DS SEARCHED ocumentation searched (classification system followed 514/460 ion searched other than minimum documentation to the ata base consulted during the international search (nat	by classification symbols) extent that such documents are included		
C. DOC	UMENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where app	propriate, of the relevant passages	Relevant to claim No.	
X A X	US 4,602,006 A (KRANTZ ET AL.) 55-70. US 5,208,244 A (WEISS ET AL.) 04 M	1-3, 8-10 		
A X A	and claims 1-15. Database CAPLUS on STN, AN 1996 endogenous cannabinoid receptor agmemory in rats,' abstract, Behav. Pharm	1-3 4 1-3 and 5-10		
	de acceptance listed in the continuation of Box C	See patent family annex.		
* Sp 'A' do to 'E' car 'I.' do cit sp 'O' do	ecial categories of cited documents: cument defining the general state of the art which is not considered the of particular relevance riter document published on or after the international filing date icument which may throw doubts on priority claim(s) or which is ad to establish the publication date of another citation or other ecial reason (as specified) icument referring to an oral disclosure, use, exhibition or other cens	*T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art		
	ocument published prior to the international filing date but later than e priority date claimed	"&" document member of the same pater	nt family	
Date of the 14 JANU Name and	actual completion of the international search ARY 1998 mailing address of the ISA/US	Date of mailing of the international se 0 6 JUL 1998 Authorized officer	arch report	
Commission Box PCT	oner of Patents and Trademarks	KEITH MACMILLAN Telephone No. (703) 308-1235	TILLEX/P	