Semantic foundations of potential-synthesis for expected amortised-cost analysis

Ohad Kammar and Georg Moser

11th ACM SIGPLAN Workshop on Higher-Order Programming with Effects HOPF@ICEP'23

> Seattle 04 September, 2023

Complexity unalysis of Data Structures

Interface

Operations

Guarated complexity bounds

Implementation

Postatype (invariants)

functions (specs)

Complexity analysis of Data Structures

Interface Implementation Operations (invariants) Patatype functions Guarated complexity bounds (specs) Ex: Stachs [5, 4,3]

Complexity analysis of Data Structures Interface Worst Case analysis Operations 1 insection ((Push)(a,s) Guarated complexity bounds c (pop)(k, s) k deletions Amortisel analysis [Tayjan '85] operation Sequences Worst Core 2 whits of c(opin-sopa) a (Push)(a,s) 0 units < a(op.) + -+ op(on) a (pop)(k,s) ≤ 2n

Data Structures Complexity was lysis of Worst Case analysis c(deletions)≤ # insertias Za(opi) = 2x # insertions +0 1 insertion ((Push (a, s) > # insertions + (pop)(k, s) 此 deletions = C(OP, - OP~) Amortises analysis [Tarjan 85] operation Sequences Worst Case 2 units ~ c(op.,-,opn) a (Push)(a,s) < a(op.) + -+ op(on) 0 units a (pop)(k,s) ≤ 2n

Data Structures Complexity unalysis of Worst Case analysis c(deletions)≤ # insertias Za(opi) = 2x # insertions +0 1 insertion ((Push (a, s) > #insertions + c(pop)(k,s) 此 deletions = C(OP, - OP~) Amortises analysis [Tarjan '85] for operation sequences Worst Case 2 units ~ c(op.,-,opm) a (Push)(a,s) < a(op.) + -+ op(on) a (pop)(k,s) ≤ 2n

Ohad Kammar <ohad.kammar@ed.ac.uk> and Georg Moser

Potential method [Tarjan 85]

Guss

such that

$$(\Delta \phi (op)(x,s) := \psi(s) - \phi(op(x,s))$$
 potential difference
 $\Rightarrow C(op) - \omega(op)$ telescopic & accounts for
amortisation discrepency

$$C(o_1, -o_n)(s) \leq \Sigma \alpha(o_i) + \Delta \phi(o_i, -o_n)(s)$$

Telescopic argunt:

$$\phi(o_1, -o_n)(s) + c(o_1, -o_n) \le \alpha(o_1) + \phi(o_2, -o_n)(s) + c(o_1, -o_n) \le \cdots$$

$$\alpha(o_1) + - + \alpha(o_n) + \phi(s)$$

$$NB:$$
 $a(op(x,s) + \phi(s) > \phi(op(x,s)) + C(op)(x,s)$

Automater / interactive Holman, Jost, Hoffmann et al 2000
2013
2016
Amortized Analysis 3 (A R)

94 Resources (A R)

2021

Interface

Derations

Detatype (invariants)

L'implement

Functions (specs)

derine

automotically/interact: wely

Workhorse: a quantitative House logic potestial suctions amontise! ΓSO, +M:ASSa, Γ,x:ASS P2+K:BSSa2 P, -3 1-3 Co smit Quatitative weakest pre "consition" calculus [Kozu 85, Mctver t Morgan'obj - 0; , a; Synthesises by SAT solver - constraints guarantee Soundness went. Cost semutics. 1. + P:ASSa => Cost P≤a

Motivation: ATLAS [Leutges, Moser, Zuleger'22] Probabilistic data structures - randomized splay thees [Albers + Karpinsni'02] - Splay heaps [Gambin 2 [Malinowski '93] - mellable heaps Adrienes tight bombs using hereditary ranking fuctions & Poly-logarithmic Cost funtias: [1 P1 - Pn]: Search -> [0,00]

Ohad Kammar <ohad.kammar@ed.ac.uk> and Georg Moser

 $t \mapsto q \cdot rk(t) + \sum_{i=1}^{n} P_{i} \cdot l_{q}(a_{i} \cdot sik t + b_{i})$

Motivation: ATLAS [Leutges, Moser, Zuleger'22] But both bounds on, e.g., Stacks
encoded as thees: [0,1,2] ~> Note o

**Mode1 Synthesizes amortised cost for push: ž Z $\alpha(\text{push}) + \Delta\phi(0) \approx \log t \gg 2$.

ASR design tensions quantity DSL Solveuble by

Our Proposal: Nano-Pass architecture

Layer Semantics

Meta-theory

```
Challenge: manage enpressivity tradeoffs
Computational cost mobile
```

Ohad Kammar <ohad.kammar@ed.ac.uk> and Georg Moser

P+M:A

Semantics for expected amortised cost analysis

[[1] - K([A] x[.,\o])

Our Proposal: Nano-Poss architecture

Layer Semantics

Meta-theory

t is a seman tree A Eg. tibinay tree +4 => Logical spec (not tolay) $\begin{bmatrix}
\Gamma[\Lambda] & \longrightarrow & \\
\Gamma[\Lambda + \Lambda | \Psi] \times [\alpha, \infty]
\end{bmatrix}$ $\begin{bmatrix}
\Gamma[\Lambda] & \longrightarrow \\
\Gamma[\Lambda] &$ Computational cost mobil P+M:A

Our Proposal: Nano-Pass architecture

Layer Semantics

Meta-theory

Quantitation estimands r| Z, ≤ Z2 + M; A | Z3 ≤ Z4 Logical spec (not tolay) Computational cost mobil r+M:A

Estimant senatics Sounders [[+]]: [[] - [00)] WP r+Cost M: [r] → [0,00] transforms

Our Proposal: Nano-Pass architecture Meta-theory Sombless of analysis Semanti cs Layer φ, ~~» Z; Analysis 1550 +M: ASSA Estimant senatics Quantitatinh estimands Sombug [[rz]: [r] → [oso] r| Z, ≤ ₹2 + M; A | ₹3 ≤ ₹4 r+Cost M: [[r] → [o,∞] transforms Logical spec (not tolog) [[] N + A | 4] × [a \omega])

[retirent [about Computational cost mobil [[] - | K([A] x[., \inc]) THM:A

Our Proposal: Nano-Pass architecture [WIP] Semanti os Meta-theory Layer Sombless standysis Analysis 1550 +M: ASSa

Quantitatine estimands [] Z, ≤ Z2 + M; A | Z3 ≤ Z4

Logical spec (not tolay)

Computational cost mobil

THM:A

Estimant sentics [[17]: [[] - [00]

r+Cost M: [r] → [0,00]

ITIN -> K[I FIN + A 14] × [0 00]) I refinent [[[] - | K([A] ×[-,∞])

Sombug transford

Rest of talu

contribution: isolate a 1st order language resolving the expressivity tension

Technical details of:

- 1) data types & their semantics
- 2) computational layer terms & types
- 3) semantics with Kegelspitze [Keinel4Plotkin17]

```
Data Types
```

Ezz

Data types: initial algebra sematics [Gognen, Theter '74)

[D] := \omega Cpo

Fixing a data signature
$$\mathcal{T} = (\Theta, tyre: \Theta \rightarrow \mathcal{T}yre(\Theta))$$

$$[\alpha]_{\mathcal{T}} := \mathcal{L}[\Theta + tyre \, \alpha]$$

1st order types

$$\Gamma_{\mathrm{Gnd}} := x_1 : A_1, \dots, x_n : A_n$$
 $F, G, H := (\Gamma_{\mathrm{Gnd}}) \to A$
 $\Gamma_{\mathrm{Fun}} := f_1 : F_1, \dots, f_n : F_n$
 $\Gamma := \Gamma_{\mathrm{Fun}}; \Gamma_{\mathrm{Gnd}}$

functions as Z^{al} class here

ground typing contexts 1st-order function type function typing contexts typing contexts

1st ord language: terms

STL C + Pattern matching m algebraic data types + recur sim

$$M, N ::= \begin{cases} x \mid c \\ \mid f(M_1, \dots, M_n) \\ \mid \mathbf{let} \, \mathbf{rec} \, f_1 : (\Gamma^1_{\mathbf{Gnd}}) \to A_1 = M_1 \\ \vdots \\ f_n : (\Gamma^n_{\mathbf{Gnd}}) \to A_n = M_n \\ \mathbf{in} \, N \\ \mid \mathbf{let} \, x_1 = M_1 \\ \vdots \\ x_n = M_n \\ \mathbf{in} \, N \end{cases}$$

A.CM $\mathbf{case}\ M\ \mathbf{of}$ $C_1x_1.N_1$ \vdots $C_nx_n.N_n$ $\langle C_1 := M_1, \dots, C_n := M_n \rangle$ $\mathbf{case}\ M\ \mathbf{of}$ $\langle C_1 := x_1, \dots, C_n := x_n \rangle .N$ $\mathbf{unroll}\ M \mid \alpha.\mathbf{roll}\ M$

st noklling

sample μ sample $\mu(M_1,\ldots,M_n)$ Probabilistic Choice

1st ord language : terms

Semutics

 $[\Gamma \vdash M: A] : [\Gamma] \longrightarrow k([A] \lor [o, \infty])$

Regelspitze (Idea)

discrete measures

discrete probabilities

Positive Cones [Tix '99

Sellinger '04]

Regelspitzen [Keinl, Phin'17]

Regelspitze (algebraic effects)

Senatic domain for discrete measures:
$$[0,\infty]$$
-modules:

 $(A, \sum_{i=1}^{n} w_i - A \rightarrow A) + \text{equations}$

Sematic domain for discrete probability [Store 42]

$$\begin{pmatrix}
A, & \sum_{i=1}^{p} P_{i} \cdots P_{i} & A \\
& \sum_{i=1}^{p} P_{i} \cdots P_{i} & A
\end{pmatrix} + \text{equations}$$
Presented as
$$\begin{pmatrix}
A, & (+) : A^{2} \rightarrow A \\
& P_{i} & P_{$$

Regelspitze
$$(A, (+): A^2 \rightarrow A, (\cdot): [0, 1] * A \rightarrow A)$$

Regelspitze $(A, (+): A^2 \rightarrow A, (\cdot): [0, 1] * A \rightarrow A)$
Pointd wor \int
 $-(A, (+))$ Boryantric
 $-(A, (+))$ Boryantric
 $-(A, (+))$ Boryantric

Regelspitze (Geometric intuition)

Bory estric Strute:

regelspitze

Regelspitze

Representation Thm: [Adapted from Keinel 4 Plotkin]

Subprobability distributions on NAT with dirac measures form the free Kepelspize on NAT

Our Proposal: Nano-Pass architecture Meta-theory Sombless of analysis Semanti cs Layer φ, ~~» Z; Analysis 1550 +M: ASSA Estimant senatics Quantitatinh estimands Sombug [[rz]: [r] → [oso] r| Z, ≤ ₹2 + M; A | ₹3 ≤ ₹4 r+Cost M: [[r] → [o,∞] transforms Logical spec (not tolog) [[] N + A | 4] × [a \omega])

[retirent [about Computational cost mobil [[] - | K([A] x[., \inc]) THM:A