1.5 Funções Exponenciais

A função $f(x) = 2^x$ é chamada *função exponencial*, pois a variável, x, é o expoente. Ela não deve ser confundida com a função potência $g(x) = x^2$, na qual a variável é a base.

Em geral, uma função exponencial é uma função da forma

$$f(x) = a^x$$

onde a é uma constante positiva. Vamos recordar o que isso significa.

Se x = n, um inteiro positivo, então

$$a^n = a \cdot a \cdot \cdots \cdot a$$

Se x = 0, então $a^0 = 1$, e se x = -n, onde n é um inteiro positivo, então

$$a^{-n} = \frac{1}{a^n}$$

Se x for um número racional, x = p/q, onde p e q são inteiros e q > 0, então

$$a^{x} = a^{p/q} = \sqrt[q]{a^{p}} = \left(\sqrt[q]{a}\right)^{p}$$

Mas qual o significado de a^x se x for um número irracional? Por exemplo, qual o significado de $2^{\sqrt{3}}$ ou 5^{π} ?

Usando aproximações para $\sqrt{3}$, e tomando 2^x nelas, podemos estimar um valor para $2^{\sqrt{3}}$:

$$\begin{array}{ccccc} 1,7 < \sqrt{3} < 1,8 & \Rightarrow & 2^{1,7} < 2^{\sqrt{3}} < 2^{1,8} & -1,73 < \sqrt{3} < 1,74 & \Rightarrow & 2^{1,73} < 2^{\sqrt{3}} < 2^{1,74} & -1,732 < \sqrt{3} < 1,733 & \Rightarrow & 2^{1,732} < 2^{\sqrt{3}} < 2^{1,733} & -1,7320 < \sqrt{3} < 1,7321 & \Rightarrow & 2^{1,7320} < 2^{\sqrt{3}} < 2^{1,7321} & -1,73205 < \sqrt{3} < 1,73206 & \Rightarrow & 2^{1,73205} < 2^{\sqrt{3}} < 2^{1,73206} & -1,73206 & -1,73$$

Ou seja, para cara $x \in \mathbb{R}$, podemos obter $2^{\sqrt{3}}$, com qualquer precisão desejada.

Os gráficos dos membros da família de funções $y = a^x$ estão na Figura 3, para vários valores da base a. Observe que todos esses gráficos passam pelo mesmo ponto (0, 1) porque $a^0 = 1$ para $a \ne 0$. Observe que a função exponencial cresce mais rapidamente à medida que a fica maior (para x > 0).

Existem basicamente 3 situações:

(a)
$$y=a^x$$
, $0 < a < 1$

(b)
$$y = 1^x$$

(c)
$$y=a^x$$
, $a>1$

Observe que, se a > 1 e $y = a^x$, então

$$y(-x) = a^{-x} = (a^{-1})^x = (1/a)^x$$

Ou seja, y(-x), uma reflação em torno do eixo Y, é exatamente a exponencial associada a 1/a.

Um fato importante sobre as funções exponeciais é que elas herdam todas as propriedades algébricas das potências:

Propriedades dos Expoentes Se a e b forem números positivos e x e y, quaisquer números reais, então

$$1. \ a^{x+y} = a^x a^y$$

1.
$$a^{x+y} = a^x a^y$$
 2. $a^{x-y} = \frac{a^x}{a^y}$ **3.** $(a^x)^y = a^{xy}$ **4.** $(ab)^x = a^x b^x$

3.
$$(a^x)^y = a^{xy}$$

$$4. (ab)^x = a^x b^x$$

EXEMPLO 1 Esboce o gráfico da função $y = 3 - 2^x$ e determine seu domínio e imagem.

(c) $y = 3 - 2^x$

Aplicações de Funções Exponenciais

Vamos considerar primeiro uma população de bactérias em um meio nutriente homogêneo. Suponhamos que tomando amostras da população em certos intervalos de tempo fique determinado que a população dobra a cada hora. Se o número de bactérias no instante t for p(t), onde t é medido em horas, e a população inicial for p(0) = 1000, então

$$p(1) = 2p(0) = 2 \times 1000$$

$$p(2) = 2p(1) = 2^2 \times 1000$$

$$p(3) = 2p(2) = 2^3 \times 1000$$

Desse padrão parece que, em geral,

$$p(t) = 2^t \times 1000 = (1000)2^t$$

$lue{f 0}$ Número e

Uma forma de se definir o número 'e' é como aquele cuja exponencial tenha tangente de inclinação 1 no ponto (0,1).

Isso resultará em propriedades muito importantes para o cálculo.

Podemos chamar a função $f(x) = e^x$ de **função exponencial natural**.

