Material Contact Properties Table

The table below shows material types and their commonly used values for the dynamic coefficient of friction and restitution.

References

Learn more about contacts.

Material 1:	Material 2:	Mu static:	Mu dynamic:	Restitution coefficient:
Dry steel	Dry steel	0.70	0.57	0.80
Greasy steel	Dry steel	0.23	0.16	0.90
Greasy steel	Greasy steel	0.23	0.16	0.90
Dry aluminium	Dry steel	0.70	0.50	0.85
Dry aluminium	Greasy steel	0.23	0.16	0.85
Dry aluminium	Dry aluminium	0.70	0.50	0.85
Greasy aluminium	Dry steel	0.30	0.20	0.85
Greasy aluminium	Greasy steel	0.23	0.16	0.85
Greasy aluminium	Dry aluminium	0.30	0.20	0.85
Greasy aluminium	Greasy aluminium	0.30	0.20	0.85
Acrylic	Dry steel	0.20	0.15	0.70
Acrylic	Greasy steel	0.20	0.15	0.70
Acrylic	Dry aluminium	0.20	0.15	0.70
Acrylic	Greasy aluminium	0.20	0.15	0.70
Acrylic	Acrylic	0.20	0.15	0.70
Nylon	Dry steel	0.10	0.06	0.70
Nylon	Greasy steel	0.10	0.06	0.70
Nylon	Dry aluminium	0.10	0.06	0.70
Nylon	Greasy aluminium	0.10	0.06	0.70
Nylon	Acrylic	0.10	0.06	0.65
Nylon	Nylon	0.10	0.06	0.70

1 z 2 8. 8. 2008 18:32

Dry rubber	Dry Steel	0.80	0.76	0.95
Dry rubber	Greasy steel	0.80	0.76	0.95
Dry rubber	Dry aluminium	0.80	0.76	0.95
Dry rubber	Greasy aluminium	0.80	0.76	0.95
Dry rubber	Acrylic	0.80	0.76	0.95
Dry rubber	Nylon	0.80	0.76	0.95
Dry rubber	Dry rubber	0.80	0.76	0.95
Greasy rubber	Dry steel	0.63	0.56	0.95
Greasy rubber	Greasy steel	0.63	0.56	0.95
Greasy rubber	Dry aluminium	0.63	0.56	0.95
Greasy rubber	Greasy aluminium	0.63	0.56	0.95
Greasy rubber	Acrylic	0.63	0.56	0.95
Greasy rubber	Nylon	0.63	0.56	0.95
Greasy rubber	Dry rubber	0.63	0.56	0.95
Greasy rubber	Greasy rubber	0.63	0.56	0.95

References

The friction values used in the material interaction table are generalized values based on the following references:

- Bowden & Tabor, "The Friction and Lubrication of Solids," Oxford.
- Fuller, "Theory and Practice of Lubrication for Engineers," Wiley.
- Ham & Crane, "Mechanics of Machinery," McGraw-Hill.
- Bevan, "Theory of Machines," Longmans.
- Shigley, "Mechanical Design," McGraw-Hill.
- Rabinowicz, "Friction and Wear of Materials," Wiley.

2 z 2 8. 8. 2008 18:32