Quipper

Lesson 18.3

Uses of Genetically Modified Organisms

Objectives

At the end of this lesson, students should be able to:

Quipper

introduce the concepts of genetic engineering;

describe the history of genetic engineering;

explain the general process of genetic engineering; and

enumerate the common products of genetic engineering in society.

GMO Applications

- Genetic modification has extended its applications in the following fields:
 - agriculture;
 - animal production;
 - medicine; and
 - environmental protection.

Genetic engineering procedures include testing of cattle semen.

Agriculture

 GM crops have higher resistance to environmental stressors, can produce more nutrients, and have longer shelf life.

Larva of *Helicoverpa armigera*, one of the worst insect pests.

Animal Production

 GM animals have improved meat quantity and quality and resistance to some diseases.

The Atlantic salmon is genetically manipulated to grow at higher rates.

Medicine

 Some GMOs can produce hormones, antibodies, and other therapeutic proteins for humans.

Escherichia coli is genetically engineered to produce human hormone.

Environmental Protection

 Some GMOs have higher capacity for bioremediation by processing more environmental contaminants.

Saccharomyces cerevisiae is genetically modified for bioremediation.

- Bt corn produces Bt toxin (cry1Ab protein) to deter Asian corn borer (Ostrinia furnacalis).
- Bt toxin gene comes from *Bacillus* thuringiensis.

Ostrinia furnacalis larval (left) and adult (right) stages.

- Golden Rice is modified to produce more beta carotene.
- Genes for phytoene synthase and carotene desaturase come from daffodils and bacteria, respectively.

Normal rice and Golden rice.

Examples of GMO

FLAVR SAVR tomato

- Tomatoes are modified to have extended shelf life.
- It results from underexpression of polygalacturonase.

Tomatoes now have delayed ripening.

- Arctic salmon is modified to grow at higher rates.
- It has extra gene for growth hormone from the Chinook salmon.

The AquAdvantage salmon grows significantly larger than its counterparts.

- GloFish
 - Danio rerio or zebra fish is modified to have fluorescent protein from sea anemone.
 - It is a controversial product of genetic engineering.

GloFish is marketed as the world's first GM pet.

- Insulin-producing bacteria
 - Insulin is now produced from transgenic bacteria to make it available for Type 1 diabetes patients.

Artificially produced insulin can now be distributed in syringes.

Examples of GMO

- Bioreactor cows and sheep
 - Cows and sheep are engineered to produce antibodies and therapeutic proteins for humans.

Sheep blood is extracted and purified for human antibodies.

Examples of GMO

- Yeast and bacteria
 - Microorganisms such as yeasts and bacteria are modified to have more resistance to extreme conditions.
 - This enhances their capacity for bioremediation.

Yeast cells are modified to increase stress tolerance.

1

Genetically modified organisms are revolutionary biotechnological breakthroughs but they have raised various social, ethical, and even political issues.

2

By modifying the genes of **crops and livestock** through genetic engineering, the plants and animals have improved quality in terms of their use.

3

Genetic engineering is commonly used to produce biopharmaceutical drugs in the field of medicine.

4

Genetically modified organisms have posed a lot of **political and ethical issues** especially in the production and consumption of these products.

Check Your Understanding

Determine whether each of the following statements is right or wrong.

- 1. Insulin is one of the first genetically engineered drug available in the market.
- 2. Philippines prohibit the availability of GMO products in the country.
- 3. GMO products can be dangerous to the people consuming the products.
- 4. GMO medicines can be easily produced through the use of insect as expression vector.
- 5. Bacteria are common options in genetic engineering in order to express the target genes.

How can GMO products improve the productivity of farmers?

Photo Credits

- Slide 4: This file, <u>CSIRO Sciencelmage 7410 A larva of Helicoverpa armigera the worlds worst insect pest</u>, by CSIRO, is licensed under <u>CC BY 3.0</u> via <u>Creative Commons</u>.
- **Slide 5:** This file, <u>Salmo salar-Atlantic Salmon-Atlanterhavsparken Norway</u>, by Hans-Petter Fjeld, is licensed under <u>CC BY-SA 2.5</u> via <u>Creative Commons</u>.
- Slide 7: This file, <u>Saccharomyces cerevisiae SEM</u> by Mogana Das Murtey and Patchamuthu Ramasamy, is licensed under <u>CC BY-SA 3.0</u> via <u>Creative Commons</u>.
- Slide 12: This file, <u>Danio rerio GloFish-science institute aquaria 05</u> by <u>Karol007</u>, is licensed under <u>CC BY-SA 3.0</u> via <u>Creative Commons</u>.

Bibliography

Aleksandr Ivanovich Oparin. 2003. The Origin of Life. Massachusetts: Courier Corporation.

Klug, William S., and Michael R. Cummings. 2003. Concepts of genetics. Upper Saddle River, N.J.: Prentice Hall.

Rakesh Kumar Rastogi. 2007. Concepts of Biology XII. New Delhi: Rastogi Publications.

Reece, J.B. and Campbell, N.A. 2011. Campbell Biology. Boston: Benjamin Cummings/Pearson.

Sandra Alters. 2000. Biology: Understanding Life. Massachusetts: Jones & Bartlett Learning.

Shri Hemant Roy. 2005. Comprehensive MCQs in Biology. New Delhi: Golden Bells.