考研概率论

枫聆

2021年10月8日

目录

1	概率运算	2
	1.1 翻译事件要准确	
2	正态分布 2.1 正态分布的线性运算	3
	期望和方差 3.1 复杂随机变量函数	4
	三大分布 4.1 三大分布重要性质的应用	4

概率运算

翻译事件要准确

Example 1.1. 某种产品由自动生产线进行生成,一旦出现不合格品就立即对其进行调整,经过调整后生产出的产品为不合格的概率为 0.1,求两次调整之间至少产生 3 件产品的概率.

hints 设 $A_i = \{ -$ 次调整之后生产的第 i 件为次品 $\}, B = \{ 两次调整之间至少产生 3 件产品<math>\}, 那么$

$$P(B) = 1 - P(A_1) - P(A_2) = 1 - 0.1 - 0.1 * 0.9 = 0.81.$$

贝叶斯的应用

Example 1.2. 假设有两箱同种零件: 第一箱内装有 50 件, 其中 10 件一等品; 第二箱内装有 30 件, 其中 18 件一等品. 现从两箱中随意挑选一箱, 然后从箱中随机取两个零件, 试求在第一次取出的零件是一等品的条件下, 第二次取出一等品的概率.

hints 设事件 A 为选择第一个箱子,事件 B_1 为第一次取出一等品,事件 B_2 为第二次取出一等品. 这里要求的是一个条件概率 $P(B_2|B_1)$,首先我们用贝叶斯公式分别计算 $P(A|B_1)$ 和 $P(\bar{A}|B_1)$,即

$$P(A|B_1) = \frac{P(A)P(B_1|A)}{P(A)P(B_1|A) + P(\bar{A})P(B_1|\bar{A})} = \frac{\frac{10}{50}}{\frac{10}{50} + \frac{18}{30}} = \frac{1}{4},$$

因此 $P(\bar{A}|B_1) = \frac{3}{4}$. 于是

$$P(B_2|B_1) = P(B_2|AB_1)P(A|B_1) + P(B_2|\bar{A}B_1)P(\bar{A}|B_1) = \frac{9}{49} \times \frac{1}{4} + \frac{17}{29} \times \frac{3}{4}$$

正态分布

线性运算

Example 2.1. 设 X_1, X_2 是两个独立的正态分布 (μ, σ^2) ,证明: $X_1 - X_2$ 和 $X_1 + X_2$ 也是独立的. hints

$$Cov(X_1 - X_2, X_1 + X_2) = D(X_1) - D(X_2) = 0,$$

期望和方差

复杂随机变量函数

Example 3.1. 相互独立的随机变量 X_1 和 X_2 均服从正态分布 $N(0, \frac{1}{2})$,求 $D(|X_1 - X_2|)$.

hints 这里求期望不需要计算出 $|X_1-X_2|$ 的概率分布,只需要确定 X_1-X_2 概率分布即可,设 $Z=X_1-X_2$,那么显然有 $Z\sim N(0,1)$. 首先求 $E(|X_1-X_2|)$

$$E(|X_1 - X_2|) = \int_{-\infty}^{+\infty} |z| f_z(z) dz = 2 \int_0^{+\infty} z \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} = \frac{\sqrt{2}}{\sqrt{\pi}}.$$

再来求 $D(|X_1 - X_2|)$

$$D(|X_1 - X_2|) = D(|Z|) = E(Z^2) - E^2(|Z|) = 1 - \frac{2}{\pi}.$$

三大分布

三大分布重要性质的应用

Example 4.1. 设 X_1, X_2, \dots, X_n 来自正态总体 $N(\mu, \sigma^2)$ 的简单随机样本,求 $E\left\{\sum_{i=1}^n X_i \left[\sum_{j=1}^n (nX_j - \sum_{k=1}^n X_k)^2\right]\right\}$. hints \overline{X} 和 S^2 线性无关.

Example 4.2. 设 X_1, X_2, \dots, X_n 和 Y_1, Y_2, \dots, Y_n 分别来自正态总体 $N(\mu, \sigma^2)$ 两个相互独立简单随机样本,设它们样本方差分别为 S_X^2 和 S_Y^2 ,求统计量 $T = (n-1)(S_X^2 + S_Y^2)$ 的方差 DT. hints $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$.

Example 4.3. 设随机变量 $X \sim F(n,n), p_1 = P\{X \geq 1\}, p_2 = P\{X \leq 1\},$ 证明: $p_1 = p_2$. hints $X \sim F(n_1, n_2) \Rightarrow \frac{1}{X} \sim F(n_2, n_1)$.