Off-Line Handwritten Character Recognition System Using Support Vector Machine

Komlan Jean-Marie DANTODJI

Etudiant en M1 Big Data

Université Paris 8

26 novembre 2020

Plan 2/14

- Introduction à la méthode du SVM : Support Vector Machine
 - Linéarité séparable
 - Déterminsation d'hyperplan
 - Linéarité inséparable
 - Linéarité inséparable
- 2 Etapes de prétraitement :
 - Etapes de traitement d'image de texte manuscrit
 - Shema des étapes
 - Extraction des caractéristiques
- Model de SVM
- 4 Synthèse et Conclusion
- S Référence

Etapes de prétraitement Model de SVM Synthèse et Conclusion Référence Références Linéarité séparable

Déterminsation d'hyperplan Linéarité inséparable Linéarité inséparable

Linéarité séparable

3/14

Model de SVM
Synthèse et Conclusion
Référence
Références

Linéarité séparable

Déterminsation d'hyperplan
Linéarité inséparable

Déterminsation d'hyperplan

4/14

 x_0 et x_1 deux vecteurs supports aux deux extrémités, Soit l' hyperplant

$$(P): w^T x + b = 0$$

$$M = d(x_0, P) + d(x_1, P) = \frac{|w^T x_0 + b|}{\sqrt{w^T w}} + \frac{|w^T x_1 + b|}{\sqrt{w^T w}}$$
$$= \frac{|1|}{\sqrt{w^T w}} + \frac{|-1|}{\sqrt{w^T w}} = \frac{2}{\sqrt{w^T w}}$$

Maximiser M revient à minimiser

$$\frac{\sqrt{w^T w}}{2} = \frac{\|w\|}{2}$$

Etapes de prétraitement : Model de SVM Synthèse et Conclusion Référence Références Linéarité séparable

Déterminsation d'hyperplan

Linéarité inséparable

Linéarité inséparable

Déterminsation d'hyperplan

5/14

Maximiser M revient à minimiser

$$M = \frac{\sqrt{w^T w}}{2} = \frac{\|w\|}{2}$$

Etapes de prétraitement : Model de SVM Synthèse et Conclusion Référence Références Linéarité séparable Déterminsation d'hyperplan Linéarité inséparable Linéarité inséparable

Linéarité inséparable

6/14

Figure – Inséparabilité linéaire : https://www.r-bloggers.com/2019/10/support-vector-machines-with-the-mlr-package/

tapes de prétraitement : Model de SVM Synthèse et Conclusion Référence Références Linéarité séparable Déterminsation d'hyperplan Linéarité inséparable Linéarité inséparable

Fonctions Kernel

7/14

Kernel linéaire:

$$K(X_i, X_j) = x_i^T x_j$$

Kernel Polynomial:

$$K(X_i, X_j) = (\gamma x_i^T x_j + r)^d$$

Kernel Radial:

$$K(X_i, X_j) = e^{\gamma(x_i - x_j)^2}$$

Kernel Sigmoid:

$$K(X_i, X_j) = \tanh(\gamma x_i^T x_j + r)$$

Les étapes de prétraitement

8/14

- Binarization
- Slant Correction
- Smoothing and Noise Removal
- Size Normalization

Shéma des étapes

9/14

FIGURE – Etapes de prétraitement de limage :

Extraction des caractéristiques

10/14

FIGURE – Méthode d'extraction diagonale :

https://www.researchgate.net/figure/Procedure-for-extracting-feature

Les différents étapes de SVM

11/14

FIGURE – Etapes de SVM:

https://www.researchgate.net/figure/Different-stages-of-SVM-classification

Synthèse et Conclusion

12/14

Table 1. % Accuracy with SVM classifier.

Classi	% Accuracy	% Accuracy for	%Accuracy for
fier	for digits	capital alphabet	small alphabet
SVM	97.16	95.74	92.19

FIGURE – https://www.researchgate.net/publication/323112207Off-Line Handwritten Character Recognition System Using Support Vector Machine

Introduction à la méthode du SVM : Support Vector Machine Etapes de prétraitement : Model de SVM Synthèse et Conclusion Référence Référence

Référence 13/14

Shabana Mehfuz Gauri Katiyar Ankita Katiyar. "Off-Line Handwritten Character Recognition System Using Support Vector Machine". In: American Journal of Neural Networks and Applications 3 (January 2017), p. 2469-7400.

Merci pour votre attention