

Chicago Traffic Crashes

Proyecto Final

Damián García

Data Analytics

Comisión 53465 Prof: Marcela Alcaraz Tutor: Analía Romano

Índice

Descripcion de la temática	
Hipótesis	3
Público objetivo	3
Nivel Táctico	3
Nivel Estratégico	3
Diagrama de Entidad-Relación	4
Descripción del Dataset	5
Tabla de hecho	5
Tablas de dimensiones	7
Tablero de Control	10
Alcance	10
Usuarios	11
Medidas y Columnas Calculadas	12
Columnas calculadas en la tabla traffic_crashes	12
Columnas calculadas en la tabla calendar	12
Medidas calculadas en la tabla _measures	13
Changelog	16
Diseño del tablero	20
Vistas	21
Portada	21
Overview	22
Infrastructure	23
Infractions	24
Traffic Control Devices analysis	25
Glossary	26
Tabla de versiones	27
Acciones Futuras	28
Glosario	29
Referencias	30

Descripción de la temática

El presente trabajo tiene por objeto de estudio la ocurrencia de accidentes de tránsito registrados en la ciudad de Chicago, EUA. Para esto utilizaremos un dataset con casi 800.000 registros de accidentes de tránsito, la cantidad de vehículos involucrados en cada uno, víctimas (fatales y no fatales), las condiciones del lugar donde se produjo el accidente (localización, tipo de calle, estado de la señalización, condiciones meteorológicas y de iluminación, etc) y las causas del accidente según el reporte policial.

Intentaremos descubrir la dinámica del tráfico urbano en Chicago a través de este conjunto de datos integral, que ofrece una instantánea detallada de los accidentes de tránsito dentro de los límites de la ciudad. Exploraremos patrones, factores contribuyentes y condiciones que rodean cada incidente, proporcionando información valiosa para la optimización del tráfico, la planificación urbana y el análisis de políticas.

Hipótesis

El presente proyecto se propone validar la siguiente hipótesis: Desentrañar los factores que producen el mayor número de accidentes y de víctimas puede aportar información valiosa para determinar y priorizar las acciones que se realizarán para producir mejoras drásticas en ambas métricas objetivo.

Público objetivo

Nivel Táctico

El presente análisis está destinado principalmente a las autoridades de tránsito de la ciudad de Chicago. Pretende ser una herramienta para la toma de decisiones que reduzcan la cantidad de accidentes y de lesiones por accidentes de tránsito. Dichas decisiones podrían incluir mejorar o incrementar la señalización en puntos clave, reparaciones en calles deterioradas, incrementar la iluminación, modificación de las velocidades límite, etc.

Nivel Estratégico

Segundo pero no menos importante, el objetivo de este análisis es que las autoridades de la ciudad de Chicago puedan contar con información valiosa a la hora de planificar la urbanización de la ciudad, como por ejemplo la construcción de nuevas arterias de tránsito, rotondas en esquinas conflictivas, ensanchar carreteras siempre que el espacio lo permita o planificar nuevas rutas para el transporte público, por nombrar algunas.

Diagrama de Entidad-Relación

A continuación se presenta el diagrama de Entidad-Relación correspondiente al modelo de datos normalizado.

Descripción del Dataset

El dataset completo y normalizado se puede encontrar en el siguiente <u>link</u>. A continuación presentaremos las tablas que lo componen:

Tabla de hecho

traffic_crash es nuestra tabla de hecho. Contiene toda la información correspondiente a los accidentes. Algunos de los datos son cuantitativos, como por ejemplo la velocidad límite en el lugar del siniestro, cantidad de heridos (discriminados por tipos de heridas) y cantidad de vehículos involucrados. Por otro lado contiene las claves foráneas a todos datos cualitativos del accidente, como por ejemplo qué dispositivo de control hay en el lugar y en qué estado está, el tipo de ruta, superficie, defectos y más datos.

Key	Name	Туре	Description	Null
PK	crash_record_id	int	ID del accidente	no
	posted_speed_limit	int	Velocidad máxima permitida en el lugar del accidente	no
FK	traffic_control_device_id	tinyint	ID del dispositivo de control en el lugar	no
FK	device_condition_id	tinyint	ID del estado del dispositivo	no
FK	weather_condition_id	tinyint	ID de la condición climática	no
FK	lighting_condition_id	tinyint	ID de la condición lumínica	no
FK	first_crash_type_id	tinyint	ID del tipo del primer impacto	no
FK	trafficway_type_id	tinyint	ID del tipo de vía	no
FK	alignment_id	tinyint	ID del tipo de carril	no
FK	roadway_surface_cond_id	tinyint	ID de la condición de superficie	no
FK	road_defect_id	tinyint	ID del defecto en la calzada	no
FK	report_type_id	tinyint	ID del tipo de reporte	no
FK	crash_type_id	tinyint	ID del tipo de accidente	no
	intersection_related_i	bit	Valor lógico que indica si el accidente se produjo en una intersección	no

	not_right_of_way_i	bit	Valor lógico que indica si un vehículo no respetó la prioridad	no
	hit_and_run_i	bit	Valor lógico que indica si un vehículo huyó luego del accidente	no
FK	damage_range_id	tinyint	ID del rango económico de los daños	no
FK	prim_contributory_cause_id	tinyint	ID de la causa principal del accidente	no
FK	sec_contributory_cause_id	tinyint	ID de la causa secundaria	no
FK	street_id	int	ID de la calle o avenida	no
	street_direction	nvarchar	Dirección en que corre la calle	no
	street_number	int	Numeración en la que se produjo el accidente	no
	beat_of_occurrence	smallint	Jurisdicción correspondiente	no
	dooring_i	bit	Valor lógico que indica si un pasajero abrió una puerta del vehículo de forma imprudente	no
	work_zone_i	bit	Valor lógico que indica si el accidente se produjo en una zona de obras	no
	workers_present_i	bit	Valor lógico que indica si había trabajadores presentes en la zona	no
	num_units	tinyint	Cantidad de vehículos implicados en el accidente	no
FK	most_severe_injury_id	tinyint	ID de la lesión más grave del accidente	no
	injuries_total	tinyint	Total de lesiones	no
	injuries_fatal	tinyint	Total de lesiones fatales	no
	injuries_incapacitating	tinyint	Total de lesiones incapacitantes	no
	injuries_non_incapacitating	tinyint	Total de lesiones no incapacitantes	no

		-	
injuries_reported_not_evident	tinyint	Total de lesiones reportadas pero no evidentes	no
injuries_no_indication	tinyint	Total de personas involucradas que no reportaron lesiones	no
injuries_unknown	tinyint	Total de lesiones desconocidas	no
crash_hour	tinyint	Hora del accidente	no
crash_day_of_week	tinyint	Día de la semana del accidente	no
crash_month	tinyint	Mes del accidente	no
date	date	Fecha del accidente	no

Tablas de dimensiones

traffic_control_device: Contiene los tipos de dispositivos de control de tránsito en el lugar de los accidentes (Semáforos, disco Stop, Ceda el Paso, etc).

Key	Name	Туре	Description	Null
PK	traffic_control_device_id	int	ID	no
	traffic_control_device	varchar	Tipo de dispositivo de control	no

device_condition: Contiene las posibles condiciones en que se encuentra un dispositivo de control (funcionando apropiadamente, funcionando inapropiadamente, no funcionando, etc).

Key	Name	Туре	Description	Null
PK	device_condition_id	int	ID	no
	device_condition	varchar	Condición del dispositivo	no

weather_condition: Contiene las condiciones climáticas en las que se produjo el accidente (Día soleado, Iluvia, nieve, etc).

Key	Name	Туре	Description	Null
PK	weather_condition_id	int	ID	no
	weather_condition	varchar	Condición climática	no

lighting_condition: Contiene las condiciones lumínicas en las que se produjo el accidente (luz diurna, oscuridad, amanecer, iluminación artificial, etc).

Key	Name	Туре	Description	Null
PK	lighting_condition_id	int	ID	no
	lighting_condition	varchar	Condición lumínica	no

first_crash_type: Contiene los posibles tipos de impacto que desencadenaron el accidente.

Key	Name	Туре	Description	Null
PK	first_crash_type_id	int	ID	no
	first_crash_type	varchar	Tipo de impacto	no

trafficway_type: Contiene el tipo de vía en el que se produjo el accidente (una mano, entrada de vehículos, intersección L, intersección T, etc).

Key	Name	Туре	Description	Null
PK	trafficway_type_id	int	ID	no
	trafficway_type	varchar	Tipo de vía	no

alignment: Contiene los posibles tipo de alineación de carriles en el lugar del accidente.

Key	Name	Туре	Description	Null
PK	alignment_id	int	ID	no
	alignment	varchar	Tipo de alineación	no

roadway_surface_condition: Contiene las posibles condiciones de la calzada en el lugar del accidente (Seca, mojada, con nieve, etc).

Key	Name	Туре	Description	Null
PK	roadway_surface_condition_id	int	ID	no
	roadway_surface_condition	varchar	Condición de la calzada	no

road_defect: Contiene los tipos de defecto de la calzada en el lugar del accidente (agujeros, superficie desgastada, escombros, etc).

Key	Name	Туре	Description	Null
PK	road_defect_id	int	ID	no
	road_defect	varchar	Defectos en la calzada	no

report_type: Tipos de reporte (In situ, por escritorio, etc).

Key	Name	Туре	Description	Null
PK	report_type_id	int	ID	no
	report_type	varchar	Tipo de reporte	no

crash_type: Contiene los tipos de accidente (con o sin lesiones/remolques)

Key	Name	Туре	Description	Null
PK	crash_type_id	int	ID	no
	crash_type	varchar	Tipo de accidente	no

damage_range: Rango económico de los daños expresado en dólares americanos (menos de \$500, entre \$500 y \$1500, más de \$500).

Key	Name	Туре	Description	Null
PK	damage_range_id	int	ID	no
	damage_range	varchar	Rango económico	no

cause: Contiene las posibles causas del accidente (exceso de velocidad, omisión de semáforo, conducir en estado de ebriedad, etc).

l	Key	Name	Туре	Description	Null
	PK	contributory_cause_id	int	ID	no
		contributory_cause	varchar	Descripción de la causa	no

	short_name	varchar	Descripción corta para tablero	no
FK	category	int	ID de categoría de la causa	no

cause_category: Contiene una categorización de las causas de los accidentes (infracciones, errores humanos, acciones ilegales, etc).

Key	Name	Туре	Description	Null
PK	category_id	int	ID	no
	category	varchar	Nombre de la categoría	no

street: Contiene las calles de la ciudad

Key	Name	Туре	Description	Null
PK	street_id	int	ID	no
	street_name	varchar	Nombre de la calle	no

injury_type: Contiene los tipos de lesiones (fatales, incapacitantes, no incapacitantes, etc).

Key	Name	Туре	Description	Null
PK	injury_type_id	int	ID	no
	injury_type	varchar	Tipo de lesión	no

Tablero de Control

Alcance

El presente tablero incluye un análisis sobre las métricas más generales del dataset, esto es: accidentes a través del tiempo, principales causas, principales factores de influencia y mapas para visualizar las zonas más conflictivas.

También hace un análisis más detallado de dos casos particulares: Los accidentes causados por problemas en la infraestructura del sistema vial (calles en mal estado, dispositivos de control no funcionando correctamente, etc.) o por infracciones de tránsito por parte de los usuarios (por ejemplo, conducir bajo la influencia de sustancias ilegales o viajar por encima de los límites de velocidad permitidos). Se seleccionaron estas categorías en particular ya que es responsabilidad de la Traffic Management Authority velar por el buen estado de la infraestructura vial así como conducir campañas de concientización para la prevención de accidentes.

La presente entrega no posee un análisis detallado de los accidentes causados por errores humanos.

Por otro lado, si bien el dataset contiene datos desde el año 2013 hasta 2024, éste último recién empieza, por lo que los datos relativos al mismo son limitados. De forma similar, los datos correspondientes a los años desde 2013 hasta 2016 parecen ser mucho más escasos que para el resto de los años, posiblemente debido a que durante esos años, no todos los accidentes se cargaron en el dataset. Por este motivo y a fin de evitar sesgos en las comparaciones, el presente análisis se limita a los accidentes ocurridos entre 2017 y 2023.

Usuarios

El presente tablero se encuentra dirigido a las autoridades de tránsito de la ciudad de Chicago. Pretende ser útil en cuanto a la identificación de los factores que provocan la mayor cantidad de accidentes y los accidentes de mayor gravedad, de forma tal que la información que provee pueda usarse para priorizar problemáticas a abordar por la repartición. Algunos ejemplos de estas problemáticas pueden ser la reparación de calles, de dispositivos de control de tráfico o la dirección de campañas de concientización para los usuarios.

Medidas y Columnas Calculadas

Columnas calculadas en la tabla traffic_crashes

ESTIMATED_COST

Es un cálculo estimado del costo de un accidente.

ESTIMATED_COST = 0.5 * traffic_crashes[NUM_UNITS] * RELATED(damage range[AVG COST])

EVIDENT_INJURIES_TOTAL

Es la sumatoria de lesiones en un accidentes sin contar las desconocidas o no evidentes.


```
EVIDENT_INJURIES_TOTAL = traffic_crashes[INJURIES_FATAL] +
traffic_crashes[INJURIES_INCAPACITATING] +
traffic crashes[INJURIES NON INCAPACITATING]
```

INJURY_SCORE

Es una puntuación relacionada a la cantidad y gravedad de las lesiones implicadas en cada accidente.

```
INJURY_SCORE = 1 * traffic_crashes[INJURIES_REPORTED_NOT_EVIDENT] + 2.5 *
traffic_crashes[INJURIES_NON_INCAPACITATING] + 5 *
traffic_crashes[INJURIES_INCAPACITATING] + 10 * traffic_crashes[INJURIES_FATAL]
```

PEOPLE INVOLVED

Es la sumatoria de personas involucradas en un accidente, sumando las lesionadas con las que no presentaron lesiones

```
PEOPLE_INVOLVED = traffic_crashes[INJURIES_TOTAL] +
traffic_crashes[INJURIES_NO_INDICATION]
```

SEVERE_INJURIES_TOTAL

Es la sumatoria de lesiones fatales e incapacitantes

```
SEVERE_INJURIES_TOTAL = traffic_crashes[INJURIES_FATAL] +
traffic_crashes[INJURIES_INCAPACITATING]
```

SEVERITY_SCORE

Es una puntuación acerca de la seriedad de un accidente en función de las lesiones provocadas y costo estimado

```
SEVERITY_SCORE = traffic_crashes[INJURY_SCORE] + 0.0001 *
traffic_crashes[ESTIMATED_COST]
```

SEVERITY_CLASIFICATION

Es una clasificación humana de la seriedad de un accidente en términos del SEVERITY SCORE

```
SEVERITY_CLASIFICATION = IF(traffic_crashes[SEVERITY_SCORE] < 0.3, "Not Serious",
IF(traffic_crashes[SEVERITY_SCORE] < 0.9, "Somewhat Serious",
IF(traffic_crashes[SEVERITY_SCORE] < 4, "Really Serious", "Possibly Fatal")))</pre>
```

Columnas calculadas en la tabla calendar

DAY

Día extraido de la fecha

```
DAY = DAY(' calendar'[DATE])
```

MONTH

Mes extraido de la fecha

```
MONTH = MONTH('_calendar'[DATE])
```

QUARTER

Trimestre extraido de la fecha

```
QUARTER = QUARTER('_calendar'[DATE])
```

QUARTER ID

Trimestre y año en formato YYYY/QTR

```
QUARTER_ID = '_calendar'[YEAR] & "/" & "Q" & QUARTER('_calendar'[DATE])
```


WEEKDAY

Día de la semana extraido de la fecha

```
WEEKDAY = WEEKDAY(' calendar'[DATE])
```

YEAR

Año extraido de la fecha

```
YEAR = YEAR(' calendar'[DATE])
```

Medidas calculadas en la tabla measures

AVG_CRASHES_PER_DAY

Promedio de accidentes por día

CASUALTIES_TOTAL

Recuento de víctimas fatales

```
CASUALTIES TOTAL = SUM(traffic crashes[INJURIES FATAL])
```

CASUALTIES RATE

Promedio de víctimas fatales por accidente

CASUALTIES RATE = AVERAGE(traffic crashes[INJURIES FATAL])

EVIDENT_INJURIES_TOTAL_RATE

Promedio de lesiones por accidente

```
EVIDENT INJURIES TOTAL RATE = AVERAGE(traffic crashes[EVIDENT INJURIES TOTAL])
```

EVIDENT_INJURIES_TOTAL_SUM

Sumatoria de lesiones para un conjunto de accidentes

```
EVIDENT INJURIES TOTAL SUM = SUM(traffic crashes[EVIDENT INJURIES TOTAL])
```

PREVIOUS YEAR CRASHES

Recuento de accidentes del año anterior para una fecha en particular

```
PREVIOUS_YEAR_CRASHES =
VAR SAME_DATE_PREVIOUS_YEAR = DATEADD('_calendar'[DATE], -1, YEAR)
VAR SAME_DATE_PREVIOUS_YEAR_CRASHES = CALCULATE(SUM(traffic_crashes[NUM_UNITS]),
SAME_DATE_PREVIOUS_YEAR)
RETURN SAME DATE PREVIOUS YEAR CRASHES
```

DEATH RATE IN INJURING CRASHES

Promedio de víctimas fatales en accidentes que tienen al menos una lesión

```
DEATH_RATE_IN_INJURING_CRASHES =
VAR injuring_crashes = COUNTROWS(FILTER(traffic_crashes,
traffic_crashes[INJURIES_TOTAL] > 0))
RETURN [CASUALTIES_TOTAL] / injuring_crashes
```

BUS_STOP_RELATED_CRASHES

Recuento de accidentes producidos en relación a paradas de colectivos

```
BUS_STOP_RELATED_CRASHES = COUNTROWS(FILTER(traffic_crashes,
traffic_crashes[PRIM_CONTRIBUTORY_CAUSE] = 5) )
```


OBSTRUCTED_CROSSWALKS_CRASHES

Recuento de accidentes producidos por cruces peatonales obstruidos

```
OBSTRUCTED_CROSSWALKS_CRASHES = COUNTROWS(FILTER(traffic_crashes, traffic crashes[PRIM CONTRIBUTORY CAUSE] = 31) )
```

ROAD_DEFECT_CRASHES

Recuento de accidentes producidos por defectos en la vía pública

```
ROAD_DEFECTS_CRASHES = COUNTROWS(FILTER(traffic_crashes,
traffic_crashes[PRIM_CONTRIBUTORY_CAUSE] = 15) )
```

ROAD_MAINTENANCE_CRASHES

Recuento de accidentes producidos por trabajos en la vía pública

```
ROAD_MAINTENANCE_CRASHES = COUNTROWS(FILTER(traffic_crashes,
traffic crashes[PRIM CONTRIBUTORY CAUSE] = 16) )
```

ROAD RELATED CRASHES

Sumatoria de accidentes producidos por trabajos o defectos en la vía pública

```
ROAD_RELATED_CRASHES = [ROAD_DEFECTS_CRASHES] + [ROAD_MAINTENANCE_CRASHES]
```

VISION OBSCURED CRASHES

Recuento de accidentes producidos por visibilidad obstruida

```
VISION_OBSCURED_CRASHES = COUNTROWS(FILTER(traffic_crashes,
traffic crashes[PRIM CONTRIBUTORY CAUSE] = 14) )
```

ALCOHOL_CAUSED_CRASHES

Recuento de accidentes producidos por el consumo de alcohol (no se produjo arresto)

```
ALCOHOL_CAUSED_CRASHES = COUNTROWS(FILTER(traffic_crashes,
traffic crashes[PRIM CONTRIBUTORY CAUSE] = 39) )
```

CELLPHONE_CAUSED_CRASHES

Recuento de accidentes producidos por uso del teléfono celular

```
CELLPHONE_CAUSED_CRASHES = COUNTROWS(FILTER(traffic_crashes,
traffic crashes[PRIM CONTRIBUTORY CAUSE] = 38) )
```

TEXTING CAUSED CRASHES

Recuento de accidentes producidos por el uso de aplicaciones de mensajería

```
TEXTING_CAUSED_CRASHES = COUNTROWS(FILTER(traffic_crashes,
traffic crashes[PRIM CONTRIBUTORY CAUSE] = 37) )
```

DRUGS_CAUSED_CRASHES

Recuento de accidentes producidos por el consumo de alcohol o drogas (arresto efectuado)

```
ALCOHOL_CAUSED_CRASHES = COUNTROWS(FILTER(traffic_crashes, traffic_crashes[PRIM_CONTRIBUTORY_CAUSE] = 40) )
```

SPEED EXCESS CAUSED CRASHES

Recuento de accidentes producidos por exceso de velocidad

```
SPEED_EXCESS_CAUSED_CRASHES = COUNTROWS(FILTER(traffic_crashes,
traffic crashes[PRIM CONTRIBUTORY CAUSE] = 33) )
```

DISREGARDING STOP SIGN CAUSED CRASHES

Recuento de accidentes producidos por omitir señal de stop

```
DISREGARDING_STOP_SIGN_CAUSED_CRASHES = COUNTROWS(FILTER(traffic_crashes,
traffic_crashes[PRIM_CONTRIBUTORY_CAUSE] = 24) )
```


DISREGARDING_YIELD_SIGN_CAUSED_CRASHES

Recuento de accidentes producidos por omitir cartel de "Ceda el paso"

DISREGARDING_YIELD_SIGN_CAUSED_CRASHES = COUNTROWS(FILTER(traffic_crashes, traffic crashes[PRIM CONTRIBUTORY CAUSE] = 22))

DISREGARDING_RAFFIC_SIGNALS_CAUSED_CRASHES

Recuento de accidentes producidos por omitir semáforo

DISREGARDING_RAFFIC_SIGNALS_CAUSED_CRASHES = COUNTROWS(FILTER(traffic_crashes,
traffic crashes[PRIM CONTRIBUTORY CAUSE] = 25))

DISREGARDING_ROAD_MARKINGS_CAUSED_CRASHES

Recuento de accidentes producidos por omitir señalización en la calzada

DISREGARDING_ROAD_MARKINGS_CAUSED_CRASHES = COUNTROWS(FILTER(traffic_crashes,
traffic crashes[PRIM CONTRIBUTORY CAUSE] = 23))

DISREGARDING_OTHER_TRAFFIC_SIGNS_CAUSED_CRASHES

Recuento de accidentes producidos por omitir otras señales de tránsito

DISREGARDING_OTHER_TRAFFIC_SIGNS_CAUSED_CRASHES = COUNTROWS(FILTER(traffic_crashes,
traffic_crashes[PRIM_CONTRIBUTORY_CAUSE] = 26))

FAILING_TO_YIELD_CAUSED_CRASHES

Recuento de accidentes producidos por no ceder el paso

FAILING_TO_YIELD_CAUSED_CRASHES = COUNTROWS(FILTER(traffic_crashes,
traffic crashes[PRIM CONTRIBUTORY CAUSE] = 7))

FOLLOWING_TOO_CLOSELY_CAUSED_CRASHES

Recuento de accidentes producidos por conducir por el lado incorrecto de la calle

FOLLOWING_TOO_CLOSELY_CAUSED_CRASHES = COUNTROWS(FILTER(traffic_crashes,
traffic crashes[PRIM CONTRIBUTORY CAUSE] = 12))

DRIVING ON WRONG SIDE CAUSED CRASHES

Recuento de accidentes producidos por conducir por el lado incorrecto de la calle

DRIVING_ON_WRONG_SIDE_CAUSED_CRASHES = COUNTROWS(FILTER(traffic_crashes, traffic crashes[PRIM CONTRIBUTORY CAUSE] = 11))

IMPROPER_BACKING_CAUSED_CRASHES

Recuento de accidentes producidos por retroceder inapropiadamente

IMPROPER_BACKING_CAUSED_CRASHES = COUNTROWS(FILTER(traffic_crashes,
traffic crashes[PRIM CONTRIBUTORY CAUSE] = 8))

IMPROPER_LANE_USAGE_CAUSED_CRASHES

Recuento de accidentes producidos por usar el carril inapropiadamente

IMPROPER_LANE_USAGE_CAUSED_CRASHES = COUNTROWS(FILTER(traffic_crashes,
traffic crashes[PRIM CONTRIBUTORY CAUSE] = 19))

IMPROPER OVERTAKING CAUSED CRASHES

Recuento de accidentes producidos por rebasar inapropiadamente

IMPROPER_OVERTAKING_CAUSED_CRASHES = COUNTROWS(FILTER(traffic_crashes,
traffic crashes[PRIM CONTRIBUTORY CAUSE] = 18))

IMPROPER_TURNING_CAUSED_CRASHES

Recuento de accidentes producidos por girar inapropiadamente

IMPROPER_TURNING_CAUSED_CRASHES = COUNTROWS(FILTER(traffic_crashes,
traffic crashes[PRIM CONTRIBUTORY CAUSE] = 9))

NOT_SERIOUS_CRASHES

Sumatoria de accidentes de clasificación "Not Serious"

```
NOT_SERIOUS_CRASHES = COUNTROWS(FILTER(traffic_crashes,
traffic crashes[SEVERITY CLASIFICATION] = "Not Serious") )
```

SOMEWHAT_SERIOUS_CRASHES

Sumatoria de accidentes de clasificación "Somewhat Serious"

```
SOMEWHAT_SERIOUS_CRASHES = COUNTROWS(FILTER(traffic_crashes,
traffic_crashes[SEVERITY_CLASIFICATION] = "Somewhat Serious") )
```

REALLY_SERIOUS_CRASHES

Sumatoria de accidentes de clasificación "Really Serious"

```
REALLY_SERIOUS_CRASHES = COUNTROWS(FILTER(traffic_crashes,
traffic_crashes[SEVERITY_CLASIFICATION] = "Really Serious") )
```

POSSIBLY_FATAL_CRASHES

Sumatoria de accidentes de clasificación "Possibly Fatal"

```
POSSIBLY_FATAL_CRASHES = COUNTROWS(FILTER(traffic_crashes,
traffic_crashes[SEVERITY_CLASIFICATION] = "Possibly Fatal") )
```

Changelog

- WORKERS_PRESENT error values replaced by FALSE
- DATE column type changed to DATE
- TRAFFIC_CRASHES table duplicated
- New table renamed as CALENDAR
- Other columns than DATE removed from table CALENDAR
- Duplicates removed from table CALENDAR
- Table CALENDAR sorted in ASC order
- First row of table CALENDAR removed
- New column added to table CALENDAR: YEAR = YEAR('calendar'[DATE])
- New column added to table CALENDAR: MONTH = MONTH ('calendar' [DATE])
- New column added to table CALENDAR: DAY = DAY('calendar'[DATE])
- New column added to table CALENDAR: WEEKDAY = WEEKDAY ('calendar' [DATE])
- New column added to table CALENDAR: QUARTER = QUARTER('calendar'[DATE])
- Column INJURIES_FATAL type changed to WHOLE NUMBER in table TRAFFIC CRASHES
- Property SUMMARIZATION set as NOT SUMMARIZE for columns
 BEAT_OF_OCCURRENCE, CRASH_DAY_OF_WEEK, CRASH_HOUR,
 CRASH_MONTH, CRASH_TYPE, DAMAGE_RANGE,
 DEVICE_CONDITION_FIRST_CRASH_TYPE, LATITUDE, LONGITUDE,
 LIGHTING_CONDITION, MOST_SEVERE_INJURY,
 PRIM_CONTIRBUTORY_CAUSE, SEC_CONTRIBUTORY_CAUSE,
 REPORT_TYPE, ROAD_DEFECT_ROADWAY_SURFACE_COND, STREET_NO,
 TRAFFIC_CONTROL_DEVICE, TRAFFICWAY_TYPE and WEATHER_CONDITION
 in table TRAFFIC_CRASHES
- Calculated column added to TRAFFIC CRASHES table:

```
EVIDENT_INJURIES_TOTAL = traffic_crashes[INJURIES_FATAL] +
traffic_crashes[INJURIES_INCAPACITATING] +
traffic_crashes[INJURIES_NON_INCAPACITATING]
```


Calculated column added to TRAFFIC CRASHES table:

```
SEVERE_INJURIES_TOTAL = traffic_crashes[INJURIES_FATAL] +
traffic crashes[INJURIES INCAPACITATING]
```

• Calculated measure added to MEASURES table:

```
CASUALTIES_TOTAL = SUM(traffic_crashes[INJURIES_FATAL])
```

Calculated measure added to MEASURES table:

```
CASUALTIES_RATE = AVERAGE(traffic_crashes[INJURIES_FATAL])
```

Calculated measure added to _MEASURES table:

```
EVIDENT INJURIES TOTAL SUM = SUM(traffic crashes[EVIDENT INJURIES TOTAL])
```

Calculated measure added to MEASURES table:

```
EVIDENT_INJURIES_TOTAL_RATE =
AVERAGE(traffic_crashes[EVIDENT_INJURIES_TOTAL])
```

- Empty rows removed from table TRAFFIC_CRASHES
- Calculated measure added to MEASURES table

```
DEATH_RATE_IN_INJURING_CRASHES =
VAR injuring_crashes = COUNTROWS(FILTER(traffic_crashes,
traffic_crashes[INJURIES_TOTAL] > 0))
RETURN [CASUALTIES TOTAL] / injuring crashes
```

Calculated measure added to MEASURES table

```
PREVIOUS_YEAR_CRASHES =
VAR SAME_DATE_PREVIOUS_YEAR = DATEADD('calendar'[DATE], -1, YEAR)
VAR SAME_DATE_PREVIOUS_YEAR_CRASHES =
CALCULATE(SUM(traffic_crashes[NUM_UNITS]), SAME_DATE_PREVIOUS_YEAR)
RETURN SAME DATE PREVIOUS YEAR CRASHES
```

- Column INJURIES_UNKNOWN removed from table TRAFFIC_CRASHES
- Column added to table TRAFFIC CRASHES

```
ESTIMATED_COST = 0.5 * traffic_crashes[NUM_UNITS] *
RELATED(damage_range[AVG_COST])
```

Column added to table TRAFFIC CRASHES

```
INJURY_SCORE = 1 * traffic_crashes[INJURIES_REPORTED_NOT_EVIDENT] + 2.5 *
traffic_crashes[INJURIES_NON_INCAPACITATING] + 5 *
traffic_crashes[INJURIES_INCAPACITATING] + 10 *
traffic_crashes[INJURIES_FATAL]
```

Column added to table TRAFFIC CRASHES

```
PEOPLE_INVOLVED = traffic_crashes[INJURIES_TOTAL] +
traffic crashes[INJURIES NO INDICATION]
```

Column added to table TRAFFIC_CRASHES

```
SEVERITY_SCORE = traffic_crashes[INJURY_SCORE] + 0.0001 *
traffic crashes[ESTIMATED COST]
```

Column added to table TRAFFIC_CRASHES

```
SEVERITY_CLASIFICATION = IF(traffic_crashes[SEVERITY_SCORE] < 0.3, "Not
Serious", IF(traffic_crashes[SEVERITY_SCORE] < 0.9, "Somewhat Serious",
IF(traffic_crashes[SEVERITY_SCORE] < 4, "Really Serious", "Possibly
Fatal")))</pre>
```

Calculated measure added to _MEASURES table

Calculated measure added to MEASURES table

```
BUS_STOP_RELATED_CRASHES = COUNTROWS(FILTER(traffic_crashes,
traffic crashes[PRIM CONTRIBUTORY CAUSE] = 5) )
```

Calculated measure added to _MEASURES table

```
OBSTRUCTED_CROSSWALKS_CRASHES = COUNTROWS(FILTER(traffic_crashes, traffic crashes[PRIM CONTRIBUTORY CAUSE] = 31))
```


Calculated measure added to MEASURES table

```
ROAD_DEFECTS_CRASHES = COUNTROWS(FILTER(traffic_crashes,
traffic crashes[PRIM CONTRIBUTORY CAUSE] = 15) )
```

Calculated measure added to MEASURES table

ROAD_MAINTENANCE_CRASHES = COUNTROWS(FILTER(traffic_crashes, traffic crashes[PRIM CONTRIBUTORY CAUSE] = 16))

Calculated measure added to MEASURES table

ROAD RELATED CRASHES = [ROAD DEFECTS CRASHES] + [ROAD MAINTENANCE CRASHES]

• Calculated measure added to MEASURES table

VISION_OBSCURED_CRASHES = COUNTROWS(FILTER(traffic_crashes, traffic crashes[PRIM CONTRIBUTORY CAUSE] = 14))

Calculated measure added to MEASURES table

ALCOHOL_CAUSED_CRASHES = COUNTROWS(FILTER(traffic_crashes, traffic crashes[PRIM CONTRIBUTORY CAUSE] = 39))

• Calculated measure added to MEASURES table

CELLPHONE_CAUSED_CRASHES = COUNTROWS(FILTER(traffic_crashes,
traffic crashes[PRIM CONTRIBUTORY CAUSE] = 38))

Calculated measure added to MEASURES table

TEXTING_CAUSED_CRASHES = COUNTROWS(FILTER(traffic_crashes, traffic crashes[PRIM CONTRIBUTORY CAUSE] = 37))

Calculated measure added to MEASURES table

ALCOHOL_CAUSED_CRASHES = COUNTROWS(FILTER(traffic_crashes, traffic crashes[PRIM CONTRIBUTORY CAUSE] = 40))

Calculated measure added to _MEASURES table

SPEED_EXCESS_CAUSED_CRASHES = COUNTROWS(FILTER(traffic_crashes,
traffic crashes[PRIM CONTRIBUTORY CAUSE] = 33))

Calculated measure added to MEASURES table

DISREGARDING_STOP_SIGN_CAUSED_CRASHES = COUNTROWS(FILTER(traffic_crashes, traffic_crashes[PRIM_CONTRIBUTORY_CAUSE] = 24))

Calculated measure added to MEASURES table

DISREGARDING_YIELD_SIGN_CAUSED_CRASHES = COUNTROWS(FILTER(traffic_crashes,
traffic crashes[PRIM CONTRIBUTORY CAUSE] = 22))

Calculated measure added to MEASURES table

DISREGARDING_TRAFFIC_SIGNALS_CAUSED_CRASHES =
COUNTROWS(FILTER(traffic_crashes, traffic_crashes[PRIM_CONTRIBUTORY_CAUSE] =
25))

Calculated measure added to MEASURES table

DISREGARDING_ROAD_MARKINGS_CAUSED_CRASHES =
COUNTROWS(FILTER(traffic_crashes, traffic_crashes[PRIM_CONTRIBUTORY_CAUSE] =
23))

Calculated measure added to _MEASURES table

DISREGARDING_OTHER_TRAFFIC_SIGNS_CAUSED_CRASHES =
COUNTROWS(FILTER(traffic_crashes, traffic_crashes[PRIM_CONTRIBUTORY_CAUSE] =
26))

Calculated measure added to _MEASURES table

FALING_TO_YIELD_CAUSED_CRASHES = COUNTROWS(FILTER(traffic_crashes,
traffic crashes[PRIM CONTRIBUTORY CAUSE] = 7))

Calculated measure added to _MEASURES table

FOLLOWING_TOO_CLOSELY_CAUSED_CRASHES = COUNTROWS(FILTER(traffic_crashes, traffic_crashes[PRIM_CONTRIBUTORY_CAUSE] = 12))

Calculated measure added to MEASURES table

DRIVING_ON_WRONG_SIDE_CAUSED_CRASHES = COUNTROWS(FILTER(traffic_crashes,
traffic crashes[PRIM CONTRIBUTORY CAUSE] = 11))

• Calculated measure added to _MEASURES table

IMPROPER_BACKING_CAUSED_CRASHES = COUNTROWS(FILTER(traffic_crashes,
traffic crashes[PRIM CONTRIBUTORY CAUSE] = 8))

• Calculated measure added to _MEASURES table

IMPROPER_LANE_USAGE_CAUSED_CRASHES = COUNTROWS(FILTER(traffic_crashes,
traffic_crashes[PRIM_CONTRIBUTORY_CAUSE] = 19))

• Calculated measure added to _MEASURES table

IMPROPER_OVERTAKING_CAUSED_CRASHES = COUNTROWS(FILTER(traffic_crashes,
traffic_crashes[PRIM_CONTRIBUTORY_CAUSE] = 18))

• Calculated measure added to _MEASURES table

IMPROPER_TURNING_CAUSED_CRASHES = COUNTROWS(FILTER(traffic_crashes,
traffic crashes[PRIM CONTRIBUTORY CAUSE] = 9))

Calculated measure added to _MEASURES table
 NOT_SERIOUS_CRASHES = COUNTROWS(FILTER(traffic_crashes, traffic crashes[SEVERITY CLASIFICATION] = "Not Serious"))

Calculated measure added to _MEASURES table
 Sumatoria de accidentes de clasificación "Somewhat Serious"
 SOMEWHAT_SERIOUS_CRASHES = COUNTROWS (FILTER (traffic_crashes, traffic crashes [SEVERITY CLASIFICATION] = "Somewhat Serious"))

Calculated measure added to _MEASURES table
 REALLY_SERIOUS_CRASHES = COUNTROWS (FILTER (traffic_crashes, traffic_crashes[SEVERITY_CLASIFICATION] = "Really Serious"))

Calculated measure added to _MEASURES table POSSIBLY_FATAL_CRASHES = COUNTROWS(FILTER(traffic_crashes, traffic_crashes[SEVERITY_CLASIFICATION] = "Possibly Fatal"))

Diseño del tablero

Se utilizó un logotipo de la ciudad de Chicago y la siguiente paleta de colores:

coolors

Además, se utilizó una paleta de colores especial para graficar la gravedad de los accidentes, utilizando el amarillo más claro para la menor gravedad y el rojo oscuro para la más grave.

coolors

Vistas

Portada

Presenta el storytelling y algunas métricas muy generales como anticipación de lo que se verá en el resto de las vistas. Explica qué es lo que se verá en cada solapa ofreciendo links para navegar hacia las mismas.

Overview

Presenta métricas generales para todos los accidentes: Evolución de los accidentes a través del tiempo, distribución de las causas y principales factores que influencian la gravedad de los mismos.

A continuación se encuentra el Diagrama de Entidad-Relación del subconjunto de datos visualizado.

Infrastructure

Muestra métricas relacionadas a los accidentes causados por problemas de infraestructura, es decir, calles en mal estado o dispositivos de control que no funcionan correctamente. Presenta un análisis de las calles más conflictivas, y un mapa para completar el análisis.

A continuación se encuentra el Diagrama de Entidad-Relación del subconjunto de datos visualizado.

Infractions

Muestra métricas relacionadas a accidentes causados por acciones legales, como el uso de alcohol o el exceso de velocidad. Muestra la evolución de los accidentes en el tiempo, horarios de mayor ocurrencia, causas más comunes y cuáles afectan otras métricas objetivo, como el costo de los daños.

A continuación se encuentra el Diagrama de Entidad-Relación del subconjunto de datos visualizado:

Traffic control devices analysis

Muestra un desglose de los accidentes causados por infracciones de tránsito y el estado de los dispositivos en el lugar del accidente. También presenta una visualización de las condiciones lumínicas, ya que puede influir en la visualización de la señalización. Presenta un mapa y una curva con la evolución de este tipo de accidentes a lo largo del tiempo, ya que la misma puede (y debería) estar influenciada por la instalación de nuevos dispositivos y el mantenimiento de los dispositivos existentes.

A continuación se encuentra el Diagrama de Entidad-Relación del subconjunto de datos visualizado.

Glossary

Glosario de términos.

Tabla de versiones

ID	Versión	Fecha	Descripción
1	1er Pre-entrega	28/01/2024	Descripción de la temáticaHipótesisDataset
2	2da Pre-entrega	15/02/2024	 Objetivo del proyecto Alcance Nivel de aplicación Diagrama de Entidad-Relación Descripción de tablas
3	3er Pre-entrega	26/03/2024	 Tabla calendario Tabla de medidas Log de transformaciones Prototipo de tablero Portada Overview Accidentes relacionados con infraestructura Accidentes relacionados con infracciones Glosario Conclusiones/Acciones futuras
4	Proyecto Final	16/04/2024	 Tablero final Se agregó análisis de dispositivos de control Tootips Marcadores Paleta de colores actualizada

Acciones Futuras

Algunas conclusiones que podemos extraer del presente análisis pueden ser las siguientes:

El factor que más accidentes de tránsito provoca es la omisión de la cesión del paso por parte de los usuarios hacia otros vehículos, seguido por el hecho de que los usuarios no suelen dejar suficiente espacio entre un vehículo y el que le sigue en una calle transitada. Si bien, en promedio, la gravedad de este tipo de accidentes no es la mayor, es considerablemente alta. Esto sugiere que puede ser una de las primeras problemáticas a atacar a la hora de conseguir mejoras significativas en la cantidad de accidentes futuros.

Algo que llama la atención es que la omisión de la señalización de "Ceda el paso" es muy poco frecuente, por lo que los datos sugieren que se podría evitar una gran cantidad de los accidentes mencionados anteriormente simplemente añadiendo señalización en esquinas dónde aún no existe.

Por otro lado, la falta de atención a semáforos es otro factor determinante. Si bien no es el más frecuente, sí es el que causa los accidentes más graves y, por lo tanto, también se puede asumir como una prioridad a la hora de atacar problemáticas específicas.

En materia de infraestructura vial, se puede apreciar que el mayor problema al que se enfrentan los conductores es la falta de visibilidad de la señalización vial, seguida tanto por defectos en las calles como por tareas de mantenimiento en las mismas. La mayoría de los lugares donde se han producido accidentes causados por la deficiencia de la infraestructura vial no cuentan con dispositivos de control vehicular.

De las 20 avenidas más conflictivas de la ciudad, 16 corren de norte a sur (o de sur a norte).

En cuanto a los accidentes causados por acciones ilegales de los usuarios, se puede apreciar que han decrecido progresivamente desde 2019 a la fecha. Si bien durante el año 2020 hubo accidentes más graves (en promedio), la tendencia en cuanto a la cantidad se mantuvo.

La principal causa de este tipo de accidentes es el consumo de alcohol o drogas duras. Además los accidentes de esta índole son los que más lesiones y daños materiales provocan. La mayor cantidad de accidentes de este tipo ocurre entre las 22:00 hs y las 2:00 a.m. y su gravedad en promedio es un 25% mayor que el del resto de los accidentes.

El análisis muestra que los accidentes por exceso de velocidad se redujeron drásticamente en 2019 con respecto al año anterior y prácticamente se eliminaron por completo a partir del año 2020, lo que hace suponer que se incrementó mucho la concientización de los usuarios en este aspecto, se incrementaron los dispositivos de control o (¿por qué no?) ambas opciones.

Glosario

POSTED_SPEED_LIMIT: velocidad límite en el lugar del accidente

TRAFFIC_CONTROL_DEVICE: dispositivo de control de tránsito (Stop, semáforos, etc.)

DEVICE_CONDITION: estado del dispositivo (funcionando correctamente, corroído, etc.)

WEATHER_CONDITION: condición climática (despejado, lluvioso, etc.)

LIGHTING_CONDITION: condiciones de luz (día, amanecer, oscuro, etc.)

FIRST_CRASH_TYPE: tipo del accidente que desencadenó el siniestro (vehículo de motor estacionado, desplazamiento lateral en la misma dirección, desplazamiento lateral en la dirección contraria, etc.)

TRAFFICWAY_TYPE: tipo de calle (una mano, intersección L, intersección T, etc.)

ALIGNMENT: alineación de la ruta (recta o curva con o sin desnivel)

ROADWAY_SURFACE_COND: condición de la calzada (seca, mojada, con nieve, barro, etc.)

ROAD_DEFECT: defectos en la calzada (rebarbas, pozos, desgaste, etc.)

REPORT_TYPE: tipo de reporte (in situ, en oficina)

CRASH_TYPE: con/sin lesiones o daños significativos que ameriten un remolque

INTERSECTION_RELATED: accidente relacionado a una intersección

NOT_RIGHT_OF_WAY: vehículo avanzando sin prioridad

HIT_AND_RUN: atropello y escape

DAMAGE_RANGE: rango del daño expresado en dólares

PRIM_CONTRIBUTORY_CAUSE: principal causa del accidente SEC_CONTRIBUTORY_CAUSE: causa secundaria del accidente

BEAT_OF_OCCURRENCE: jurisdicción donde se produjo el accidente

DOORING: apertura imprudente de la puerta de un vehículo

WORK_ZONE: zona de obras

WORKERS_PRESENT: obreros presentes en la zona al momento del accidente

NUM_UNITS: cantidad de vehículos involucrados

INJURY_SCORE: Esta métrica representa cuán serio fue un accidente en términos de

lesiones. Se calcula como:

INJURY_SCORE = INJURIES_REPORTED_NOT_EVIDENT + 2.5 *

INJURIES_NON_INCAPACITATING + 5 * INJURIES_INCAPACITATING + 10 * INJURIES_FATAL SEVERITY_SCORE: Esta es nuestra propia métrica de cuán serio fue un accidente . Se calcula como:

SEVERITY_SCORE = INJURY_SCORE + 0.0001 * ESTIMATED_COST

SEVERITY: Esta es una clasificacion humana de cuán serio fue un accidente, basada en el severity_score.

Not Serious (severity_score menor a 0.3)

Somewhat Serious (severity_score entre 0.3 y 0.9)

Really Serious (severity_score is entre 0.9 y 4)

Possibly Fatal (severity-score es 4 o más)

Referencias

El dataset fue obtenido de <u>kaggle.com</u>.

Para la normalización de los datos se utilizaron las herramientas <u>SQL Server Management</u> <u>Studio</u> y <u>LibreOffice</u>.

El diagrama de Entidad-Relación fue realizado con draw.io.

Para el tablero de control de utilizó la herramienta Power BI, de Microsoft

