TP n° 16: Changements d'états

Seuls les changements d'état solide-liquide sont au programme des MP

1) d'un corps pur (exemple de la fusion)

- Détermination de l'enthalpie de fusion de la glace par calorimétrie (Le Maréchal T1 p 262). Déterminer au préalable la « valeur en eau » du calorimètre (Le Maréchal T1 p 252).
 - Tracé de la courbe T = f(t) lors de la solidification de l'eau et du cyclohexane.
- Détermination d'une température de fusion. Revoir le principe et l'utilisation d'un banc Kopfler.
 - Fusion du soufre. Un document sera fourni .
- Fusion de deux diastéréoisomères : comparaison de l'acide fumarique et de l'acide maléique. *Un document sera fourni*.

2) d'un mélange binaire

- Distillation fractionnée d'un mélange pentane-heptane. (Hachette 1^{ère} S 2011 p 187).
- Solidification d'un mélange cyclohexane-heptane : tracé de la courbe T=f(t) lors de la solidification du cyclohexane en présence d'heptane. Comparaison avec 1)

Potentiel chimique du corps pur.	Identifier le potentiel chimique d'un corps pur à son enthalpie libre molaire.
Conditions d'équilibre d'un corps pur sous plusieurs phases.	Établir l'égalité des potentiels chimiques pour un corps pur en équilibre sous plusieurs phases. En déduire l'existence d'une courbe d'équilibre sur un diagramme (P,T).
Variance.	Définir et déterminer la variance d'un système polyphasé en équilibre.
Évolution d'un système sous plusieurs phases.	Prévoir le sens de l'évolution d'un corps pur diphasé hors d'équilibre.
5. Mélanges	
Potentiel chimique d'un constituant dans un mélange ; enthalpie libre d'un système chimique.	Citer l'expression (admise) du potentiel chimique d'un constituant en fonction de son activité.
	Exprimer l'enthalpie libre d'un système en fonction des potentiels chimiques.

	Approche documentaire : à partir de documents sur la pression osmotique, discuter de l'influence de la pression sur le potentiel chimique et d'applications au laboratoire, dans l'industrie, ou dans la vie courante.
6. Changement d'état des alliages métalliques	
- Diagrammes isobares d'équilibre solide-liquide :	Exploiter les diagrammes isobares d'équilibre entre
 avec miscibilité totale des solides ; 	deux phases pour, à composition en fraction
- avec miscibilité nulle des solides, avec ou sans	massique donnée :
composé défini à fusion congruente.	 décrire le comportement d'un mélange binaire lors d'une variation de température en traçant l'allure de la courbe d'analyse thermique.
Théorème des moments chimiques.	 déterminer les températures de début et de fin de changement d'état ;
	- donner la composition des phases en présence à
	une température fixée ainsi que les masses dans chaque phase ;
	- identifier les compositions relatives aux
	mélanges indifférents, eutectiques et aux
	composés définis et leur intérêt dans l'utilisation
	des alliages métalliques.

- **Variance** : $v = c + 2 \varphi$ Nombre nécessaire et suffisant de paramètre intensifs indépendants que l'expérimentateur peut choisir pour fixer totalement l'état d'équilibre du système.
- Qu'est-ce que ça veut dire que l'homoazéotrope est à un maximum ? Le maximum est un maximum de température. Cela veut dire que pour vaporiser, il faut fournir plus d'énergie donc que l'interaction $A \leftrightarrow B$ est plus favorable que l'interaction $A \leftrightarrow A$ ou $B \leftrightarrow B$. Le mélange n'est donc pas idéal.
- **Que veut dire homoazéotrope ?** On part d'une solution liquide homogène que l'on fait bouillir. *Azéotrope* = bouillir sans changement : sous-entendu sans changement de composition de chaque phase.
- **Que veut dire hétéroazéotrope ?** Cela veut dire *azéotrope : bouillir sans changement.* Mais avec la notion que les corps pur sont non miscible sous phase liquide.
- A quoi ressemble les courbes d'analyse thermique lorsqu'on est à la composition de l'azéotrope ? A l'azéotrope, il y a en plus la condition d'égalité des fractions molaires des phases (définition du mot azéotrope). Donc on a une relation en plus, ce qui fait tomber la variance à v=4-3=1.
- Pour différencier un corps pur d'un mélange binaire à composition de l'homoazéotrope: Il
 faut faire varier la pression car la composition de l'homoazéotrope varie avec la pression. En
 revanche, la composition au point indifférent (cas des transitions solide liquide) ne varie pas.
- De même qu'on peut avoir un hétéroazéotrope, il est possible d'avoir un point eutectique : L'analyse de la variance se fait facilement sans introduire de relation « ad-hoc ».
- Synthèse: → cas miscibilité totale : le seul moment où il y a 2 phases, c'est l'intérieur des fuseaux. → Cas miscibilité nulle : en bas, il y a 2 phases de même nature (solide par exemple) qui ne se mélange pas. → Cas miscibilité partielle : Il y a des zones en bas à gauche et à droite où un des 2 constituants est tellement en excès, qu'il n'y a qu'une phase solide
- **Pourquoi met-on du sel sur les routes ?** Car cela abaisse la température d'apparition du premier cristal de glace (cf courbe)