MEDICÃO DA FORÇA PRODUZIDA PELO SOLENÓIDE SOBRE O NÚCLEO MÓVEL EM BOBINAS USADAS NOS SISTEMAS DE PARTIDA

MILTON ANTONIO ZARO, ROSA LEAMAR DIAS BLANCO e CARLOS ALBERTO KERN THOMAS Escola de Engenharia da UFRGS, DEMEC 90049 Porto Alegre, RS - Brasil

RESUMO

Este trabalho teve origem num problema apresentado por uma indústria local que busca a otimização de seus produtos. O objetivo principal foi o da medição da força magnética gerada por um solenóide sobre o núcleo môvel, em chaves magnéticas, no instante em que é dada a partida de um veículo. Procurou-se, também, identificar as variáveis que influenciam esta força magnética, tais como intensidade de corrente elétrica, número de espirais, material do núcleo e outras. Fez-se um estudo teórico e comparou-se com os dados experimentais obtidos, constatando-se que a expressão teórica encontrada real mente indica as tendências e dependências da força magnética com relação às variáveis analisadas.

INTRODUÇÃO

Depois de alguns anos de contração, a indústria brasileira, de um modo geral, voltou a crescer com o congelame<u>n</u> to de preços de 1986, que certamente contribuiu no sentido de viabilizar o impulso expansivo que se está atravessando. Um dos setores que mais cresceu é o das autopeças: a demanda é tal que existem muitos componentes que praticamente não são mais encontrados nos revendedores.

Apesar de conseguir colocar praticamente 100% do que

produzem no mercado, existem muitas indústrias interessadas em melhorar o seu produto, além, naturalmente de baixar custos, o que fatalmente aumentaria ainda mais a competitividade desta empresa.

O presente trabalho originou-se numa empresa local, fornecedora de equipamentos elétricos para veículos. Muitos dos projetos de diversos componentes desta indústria, são an tigos (alguns de 2 ou 3 décadas) e, alguns estão superdimensionados, acarretando um custo excessivo. Desta forma, realizou-se um estudo e uma bateria de ensaios com chaves magnéticas (bobinas), utilizadas no sistema de partida dos veículos.

O objetivo principal da pesquisa centrou-se em tentar medir a força magnética gerada pelo solenóide sobre o núcleo móvel, no instante em que a partida é dada, ben como em identificar as variáveis que influenciam esta força magnética (intensidade de corrente, número de espiras, material do núcleo, etc.) para poder alterar o projeto e minimizar os custos.

A medição dessa força foi realizada através de uma c<u>é</u> lula de carga à base de strain gages, especialmente constru<u>í</u> da e calibrada para esse fim, já que os esforços envolvidos são relativamente pequenos (alguns newtons).

CÁLCULO DA FORÇA PRODUZIDA POR UM SOLENÕIDE SOBRE O NÚCLEO MÔVEL

Indução magnética no interior e na extremidade de um sotenóide

A Figura 1 mostra o esquema de um solenóide de comprimento L. com N espiras, percorrido por uma corrente "i". A indução magnética no ponto P pode ser deduzida pela Lei de Ampère e é dada por:

$$B_{x}(X_{o}) = \frac{\mu Ni}{2L} \left[\frac{(L-x_{o})}{[(L-x_{o})^{2} + a^{2}]^{1/2}} + \frac{X_{o}}{(x_{o}^{2} + a^{2})^{1/2}} \right]$$
(1)

onde µ é a permeabilidade magnética e os demais parâmetros po

dem ser identificados na Figura 1.

Figura 1 - a) Solenóide de comprimento L, raio a, N espiras e percorrido por uma corrente i;

 b) Corte transversal do solencide, onde P e um ponto situado no eixo, a uma distância x de uma das extremidades.

Duas situações podem ser analisadas:

19) Se x_o = 0, ou x_o = L, tem-se B_x na extremidade do solenoide. Substituindo na equação (1), vem:

$$B_{x} = \frac{\nu Ni}{2(L^{2} + a^{2})^{1/2}}$$
 (2)

29) Se x = L/2, tem-se B no centro do solenóide, ou seja:

$$B_{x} = \frac{\mu N i}{(L^{2} + 4a^{2})^{1/2}}$$
 (3)

Como o campo magnético é dado por,

$$H = \frac{B}{U} \tag{4}$$

O campo magnético H_{e} nas extremidades do solenóide é, então,

$$H_{e} = \frac{Ni}{2(L^{2} + a^{2})^{1/2}}$$
 (5)

e, no centro do solenóide,

$$H_{c} = \frac{Ni}{(L^{2} + 4a^{2})^{1/2}}$$
 (6)

2.1 Energia magnética armazenada num campo magnético

A partir das equações de Maxwell, tem-se:

$$U_{\rm m} = \frac{1}{2} \int_{V} \frac{B^2}{\mu} dV$$
 (7)

onde \mathbf{U}_{m} é a energia magnética sobre todo o volume \mathbf{V}_{r} no qual atua o campo magnético.

Relação entre força e energia; força magnética sobre um núcleo movel no interior de um solenoide

Supondo um elemento (uma barra, por exemplo) que se move sob a influência de um campo magnético, e supondo que o trabalho realizado pela força magnética é realizado às custas da energía magnética, tem-se:

$$\dot{\mathbf{r}} = - \dot{\nabla} \mathbf{u}_{\mathbf{n}}$$
 (8)

Na Figura 2 mostra-se o esquema de um solenóide (co<u>r</u> te transversal), dentro do qual há um núcleo de formato cilíndrico, com área de secção transversal A e permeabilidade magnética µ_n.

No caso apresentado na Figura 2, as variações de interesse ocorrem na direção "x". Desta forma, pode-se escrever

Figura 2 - a) Solenőide;

- b) Posição inicial do núcleo solido do solenoide;
- c) Posição do solenoide ao sofrer um deslocamento x.

que a força magnética média, na direção "x", é dada por,

$$F_{x} = \frac{\Delta U}{\Delta x}$$
(9)

A expressão (7) pode ser escrita:

$$U_{m} = \int \frac{\mu}{2} (\vec{H} \cdot \vec{H}) dv \qquad (10)$$

Utilizando a expressão (10) e supondo que no restante do interior do solenóide há vácuo, ten-se:

$$U_{(x_0 + \Delta x)} = U_{(x_0)} + \frac{1}{2} \int_{A \cdot \Delta x} (u_n - u_0) H^2 dV$$
. (11)

Supondo H constante no trecho "x", pode-se escrever expressão (11) da seguinte forma.

$$U_{(x_0 + \Delta x)} = U_{(x_0)} + \frac{1}{2} (\mu_n - \mu_0) H^2 \Delta x A$$
 (12)

Substituindo (12) em (9), obtem-se,

$$F = \frac{1}{2} (\mu_n - \mu_0) H^2 A$$
 (13)

Se Ax ocorre na região central do solenóide, H é dado pela expressão (6), e a expressão anterior pode ser escri ta,

$$F = \frac{1}{2} (\mu_n - \mu_0) \frac{R^2 i^2}{(L^2 + 4a^2)}$$
 (14)

Sabe-se que

$$\mu_{\rm n} = \mu_{\rm 0} (1 + X_{\rm m})$$
 (15)

onde Xm é a susceptibilidade magnética do núcleo. Substituin do a expressão (15) na expressão (14) e reagrupando os termos, tem-se.

$$F_{c} = \frac{1}{2} \frac{x_{n} \mu_{o} N^{2} i^{2}}{(L^{2} + 4a^{2})}$$
 (16)

Se Ax ocorre nas regiões próximas às extremidades do solenóide, então H é dado pela expressão (5) e, utilizando a expressão (13) e a (15), vem,

$$F_{\phi} = \frac{1}{8} \frac{x_n \ \mu_o \ N^2 \ i^2}{(L^2 + a^2)^{1/4}}$$
 (17)

2.4 Solenőide revestido por carcaça metálica

A Figura 3 mostra uma bobina no interior de uma "capa" metálica.

Figura 3 - Solenoide revestido por uma capa metálica.

Neste caso, o campo magnético externo ao solenóide não pode ser desprezado. Aplicando a Lei de Ampère e desconsiderando os efeitos das extremidades, pode-se calcular o campo, supondo ν_{ex} a permeabilidade magnética da carcaça e supondo vario o centro do solenóide.

No interior do solenóide tem-se un campo H_C e na pa<u>r</u> te externa, H_{ex} (dentro da carcaça), de modo que, aplicando a Lei Ampère para a curva C, indicada na Fígura 4, obtém-se,

$$H_c + H_{ex} = N \frac{i}{L} \tag{18}$$

Figura 4 - Corte transversal do solenóide, revestido com capa metálica, indicando uma linha de indução.

Como as linhas são fechadas, então o fluxo na parte

interna è igual ao da parte externa e, utilizando a Lei Ampère:

$$B_{c} A_{c} = B_{ex} A_{ex}$$
 (19)

Combinando (4), (18) e (19), obtém-se:

$$H_{c} \left(1 + \frac{\mu_{o}}{\mu_{ex}} \cdot \frac{A_{c}}{A_{ex}}\right) = \frac{Ni}{L}$$
 (20)

O circuito elétrico equivalente à Figura 4 está apres sentado na Figura 5.

Pigura 5 - Circuito elétrico equivalente ao solenoide com capa metálica.

Do circuito da Figura 5, tem-se:

onde V_m é a força magnetomotriz, Re_{e_X} é a relutância da capa e Re_c é a relutância do centro do solenóide. Lembrando que:

$$V_{m} = \int_{A}^{B} \dot{H} \cdot d\dot{L} = Ni \qquad (22)$$

tem-se.

$$\phi = \frac{Ni}{(Re_{ex} + Re_{e})}$$
(23)

Portanto, as relutâncias do centro e da capa estão en série e, variando qualquer uma delas, varia o fluxo magnético. Combinando (6), (15) e (17) e lembrando que a relutância é dada por Re = $\frac{L}{\mu A}$, onde L é o comprimento do circuito magnético e A a área da secção transversal do mesmo, pode-se re-

-escrever a força magnética que a bobina faz sobre o núcleo mo vel.

$$F_c = \frac{1}{2} \frac{X_m N^2 i^2}{\mu_o \pi a^2 (Re_{ex} + Re_c)^2}$$
 (24)

3. EQUIPAMENTOS E DISPOSITIVOS UTILIZADOS PARA AS MEDIÇÕES

Foram testadas três chaves magnéticas. Para a realização dos experimentos utilizaram-se:

a) Uma "célula de carga" projetada a partir de uma lâmina retangular de aço rápido na qual foram colados "strain gages", de modo que o sensor seja sensível a esforços axíais e insensível a flexões laterais. A calibração da célula foi realizada através de "pesos-padrão". A Figura 6 mostra um esquema da lâmina com sensores.

Figura 6 - Célula de carga, com "strain gages" colados, utilizadas para as medições.

 b) Uma "ponte amplificadora", marca Transdutec, modelo TMDE para excitar o circuito formado pelos extensometros e para indicar o sinal de desbalanço proveniente da deformação dos mesmos. Os extensômetros usados são da marca KIOWA, tipo KFC-5-C1-11. A Figura 7 mostra um esquema básico do circuito montado com os strain gages para a leitura do sinal.

Figura 7 - Esquema básico do circuito montado para ler o sinal de desbalanço.

- c) Um conjunto de "pesos-padrão", variáveis de 0,80 a 20,15 kfg.
- d) Uma máquina de ensaios modelo RPU-6, da W.P.M., onde foi fixada a célula de carga (na placa superior) e um sistema de fixação de bobina, especialmente projetado para este fim (adaptado na mesa da máquina).
- e) Um multímetro digital ECB, 4 1/2 dígitos, modelo MDM220. A Figura 8 mostra o esquema experimental utilizado nos en saios realizados, objetivando medir a força exercida pela bobina sobre o núcleo móvel. A máquina RPU-6 foi usada tão somente como elemento de fixação, devido a sua rigidez fren te aos esforços exercidos pela bobina que são relativamen te pequenos.
- f) Três bobinas de dimensões diferentes, mas cujo aspecto ge ral é semelhante ao do esquena da Figura 9.

As medições foram feitas, partindo de diversas posições do núcleo, em relação ao corpo da bobina. Ou seja, as me didas foram realizadas: a) com o núcleo praticamente fora da bobina; b) com o núcleo totalmente dentro da bobina; c) posições intermediárias. A Figura 10 mostra o aspecto geométrico

Figura 8 - Esquema da montagem do conjunto de equipamentos:

- 1) Maquina RPU-6;
- 2) Dispositivo de fixação da bobina;
- 3) Célula de carga;
 - 4) Bobina.

Figura 9 - Esquema das bobinas testadas. As dimensões de cada modelo são variáveis, mas o aspecto geral é o esquematizado nesta figura.

Figura 10 - Pontos sobre o núcleo móvel, caracterizando a posição relativa en relação à bobina. Para y_o tem-se o núcleo praticamente dentro da bobina e para y_o ele está praticamente fora.

do núcleo de uma das bobinas e os pontos correspondentes as diversas posições para as quais foi medida a forca.

4. DADOS OBTIDOS

Na Tabela 1 ten-se os valores encontrados para a calibração da célula de carga e a Figura 11 apresenta a curva de calibração de força versus sinal de desbalanço da ponte amplificadora.

As Tabelas 2, 3 e 4 apresentam os resultados obtidos para as bobinas A, B e C. Estas bobinas possuem geometria $d\underline{i}$ ferentes em função do modelo de veículo a que se destinam.

As Figuras 12, 13 e 14 mostram os gráficos correspondentes aos dados das Tabelas 2, 3 e 4.

Quanto a obtenção dos dados e ao traçado dos gráficos, deve-se salientar os seguintes aspectos:

- 19) O objetivo dos dados obtidos é de analisar, inicialmente, de forma quase qualitativa, o comportamento da força magnética sobre o núcleo môvel.
- 29) Cada ponto obtido nas Figuras 12, 13 e 14 representa uma medida de força naquela profundidade. Para se obter um valor médio com o respectivo erro deveria-se fazer um con junto de medidas en ocasiões diferentes com a mesma bobi na e garantindo as mesmas condições da bateria. Isso por que, como se constatou, a cada medida há um aquecimento

Tabela 1 - Célula de carga (F x m/m)

F(N)	DEFORMAÇÃO								
F(N)	1	2	3	4	Média				
7,8	0,2	0,2	0.2	0,2	0,2				
13,7	0,4	0,4	0,4	0.4	0,4				
15,7	0,5	0,5	0,5	0,4	0,4				
17,6	0.5	0.5	0,5	0,5	0,5				
21,6	0,7	0,8	0.7	0,6	0,7				
29,4	0,9	0,8	1,0	1,0	0,9				
39,5	1,1	1.1	1,2	1.1	1,1				
57,1	1,6	1,4	1,7	1.7	1.6				
80,0	2,2	2,3	2,4	2,3	2,3				
96.6	3,2	2,7	3,0	2,8	2,9				
118,5	3,4	3,6	3,6	3,5	3,5				
135,8	3,8	3,9	4,2	3,9	3,9				
158.0	4,6	4,5	4,5	4,4	4,5				
175,6	5,1	5,0	4,9	5,0	5,0				
197.5	5,7	5,7	5,6	5,7	5,7				

do núcleo, o que altera as propriedades magnéticas do mes mo e, consequentemente a força.

30) As temperaturas atingidas pelo núcleo não foram medidas. Para obter-se estes valores deve-se fazer uma montagem, não muito simples, de modo a colocar sensores no interior da bobina. Como esse não é o objetivo do presente trabalho, sugeriu-se o mesmo como uma tarefa complementar destes experimentos.

5. CONCLUSÕES

As curvas obtidas nos gráficos das Figuras 12, 13 e 14 mostram que a força sobre o núcleo movel depende fortemen te da posição do núcleo em relação ao solenóide (no momento

Figura 11 - Curva de calibração da célula de carga (dados da Tabela 1).

da partida da chave), e da temperatura.

Na medida em que o núcleo está mais imerso na bobina, no momento da partida, a variação do fluxo magnético é maior, pois o núcleo se desloca mais e, consequentemente, a força mag nética é mais intensa.

A força magnética varia com a suscetibilidade magnética do núcleo móvel. Por outro lado, a suscetibilidade magnética é bastante afetada pela temperatura. Assim, ao se rea

Tabela 2 - Força x posição inicial do núcleo na bobina A

			A	- 1	R ₀ = 0	.39Ω			
Ponto	Y x 10 ⁻³ (m)	Desbalanço (mV/V)				Força (N)			
		1	2	3	- 4	1	2	3	4
1	05	6,8	5,2	4,8	4,6	233	180	166	159
2	10	2,2	2,1	1,9	1.8	7.7	73	66	63
3	15	1.0	0,8	0.8	0.8	35	28	2.8	2.8
4	20	0,3	0,3	0,3	0,3	1.1	1.1	11	11
5	2.5	0.0	0,1	0,1	0,0	0	3	3	

Tabela 3 - Força x posição inicial do núcleo na bobina B

			A		R _o = 0	,73N			
Ponto	Y x 10 ⁻³ (m)	De	sbalan	ço (mV	/v)	Força (N)			
ronto		1	2	3	4	1	2	3	4
1	10	4,2	3,9	3,7	3,7	145	135	127	127
2	15	1,5	1,6	1,2	1,4	5.2	56	42	49
3	20	0,6	0,7	0,7	0,5	21	25	2.5	17
4	2.5	0,2	0,3	0,2	0,1	8	1.1	8	4
5	30	0,0	0,0	0,0	0,0	0	0	0	0
		1,0			-			1	10.00

Tabela 4 - Força x posição inicial do núcleo da bobina C

			С	1	R ₀ = 0	,25Ω	- 10		
Ponto	Y x 10 ⁻³ (m)	Desbalanço (mV/V)				Força (N)			
	1 x 10 (a)	1	2	3	4	1	2	3	4
1	12	3,1	2,9	2,5	2,0	107	100	86	70
2	17	1,4	1,2	1,0	0,8	49	42	35	28
3	22	0,5	0.4	0,4	0.4	17	14	14	14
4	27	0,1	0,1	0,1	0,1	. 2	2	2	2

Figura 12 - Gráfico Força × posição do núcleo da bobina A; no decorrer do ensaio, devido à corrente eleva da, a bobina aquece. O resultado, do aquecimento é observado nas diversas curvas apresentadas.

Figura 13 - Gráfico Força × posição inicial do núcleo da bobina B (Tabela 3).

Figura 14 - Gráfico Força × posição inicial do núcleo da bobina C (Tabela 4).

lizar as medições na segunda vez (curva 2 das Figuras 12, 13 e 14) há um decréscimo da força magnética, no seu valor máximo, devido ao pré-aquecimento do núcleo. Esse fato se acentua no terceiro (curva 3 das Figuras 12, 13 e 14) e no quarto (curva 4 das Figuras 12, 13 e 14) conjunto de medidas realizadas.

Comparando-se os resultados obtidos com a expressão teórica para a força magnética sobre o núcleo móvel, constata-se que depende da intensidade de corrente elétrica, susce tibilidade magnética, número de espiras, relutância magnética, etc. Contudo, na prática, é difícil isolar a influência destas variáveis sobre a força magnética devido, entre outros, aos seguintes aspectos:

- a) as variáveis N (número de espiras) e i (intensidade de cor rente elétrica) estão relacionadas entre si, pois ao variar N varia-se a resistência elétrica da bobina e, conse quentemente, o valor de i;
- b) a suscetibilidade magnética do material varia, para cada partida de material adquirido, pois a matéria prima do nú cleo é fornecido por diferentes fabricantes que não tem controle de qualidade rigoroso sobre o produto;
- c) a relutância magnética da carcaça, Re_c, varia con a espe<u>s</u> sura da capa da bobina, a qual, também, não é rigorosame<u>n</u> te controlada.

Outrossim, a expressão teórica encontrada é de grande utilidade para especificar, de um modo geral, quais os pa râmetros de maior ou menor relevância a serem tratados, no problema.

6. RECOMENDAÇÕES

Após estas medições, recomendou-se à indústria a con fecção de novos protótipos visando a realização de experimen tos para avaliar mais precisamente a influência dos parâmetros que aparecem na expressão do cálculo da força magnética.

BIBLIOGRAFIA

- Hayt Junior, W.H., Engineering Electromagnetics, McGraw-Hill, New York, 1967.
- Quevedo, C.P., <u>Eletromagnetismo</u>, NcGrav-Hill do Brasil, São Paulo, 1977.
- Kraus, J.D., Caiver, K.R., <u>Eletromagnetismo</u>, Editora Guanabara Dois S.A., Rio de Janeiro, 1978.
- Silvester, P., Modern Eletromagnetic Fields, Englewood Cliffs, New Jersey, 1968.
- Fitzgerald, A.E., Kingsley Jr., C., <u>Electric Machinery</u>, McGraw-Hill. New York, 1952.
- Kostenko, H., Piotrovsky, L., <u>Electrical Machines</u>, F. L. Publishing House, Moscow.