Analog Electronic Circuits (EC2.103): Quiz-2

Instructor: Prof. Abhishek Srivastava, CVEST, IIIT Hyderabad Date: 2^{nd} April, 2024, Duration: 45 minutes, Max. Marks: 10

Instructions:

- Clearly write your valid assumptions (if any)
- You are only allowed to use own handwritten single A-4 sheet (both sides) as short notes
- Mobile phone, computers can not be used during the exam
- 1. (a) Fig. 1(a) shows a voltage amplifier. The transfer characteristic (V_{OUT} vs V_{IN}) of this amplifier is shown in Fig. 1(b). An ac input $v_{in} = sin(2\pi 1000t)mV$ is applied to the circuit. Find the amplitude of the output sinusoidal voltages for $V_{DC} = 0.2V$ and 0.9V, respectively.

Figure 1: (a), (b) and (c), respectively

- (b) As shown in figure 1(c), derive the expression for small signal input resistance R_{in} . Consider that both transistors ($Q_1 \& Q_2$) are in active mode and symbols have their usual meanings. [2M]
- 2. Figure 2(a) shows an common source amplifier where transistor M_1 and M_2 are biased in saturation. It is given that the small signal drain resistance (r_{o1}) of M_1 is sufficiently larger than the load resistance $R_L = 500 \ \Omega$ as shown in the figure, voltage gain $\left| \frac{v_{out}}{v_{in}} \right| = 5$ and the DC voltage at the output node is 0.9V. Consider $\mu_n C_{ox} = 250 \mu A/V^2$.
 - (a) What are the values of the required transconductance (g_m) and $\frac{W}{L}$ of M_1 , respectively? [2M]
 - (b) Draw small signal equivalent and derive voltage gain $(A_v = \frac{v_{out}}{v_{tn}})$.
 - (c) In Fig. 2(b), M_P and M_N are sized such that $V_B=0.9$ V. Find the region of operation of the two transistors considering $|V_{TN}| = |V_{TP}| = 0.45V$ (show the necessary steps). Draw small signal equivalent and derive the expression for voltage gain $\frac{v_h}{v_e}$. [2M]

Figure 2: (a) and (b), respectively