Exercise 6 Answer Sheet — Logic Theory (2), 80424

May 15, 2025

Question 1

Notation 0.1 (Closure over induction scheme). Suppose that Γ is some collection of formulas over L_{PA} , then we define $I\Gamma = \{\text{Ind}(\varphi) \mid \varphi \in \Gamma\}.$

Notation 0.2 (Collection formula). Suppose that $\varphi(z,y,t_0,\ldots,t_{n-1})$ is some formula in L_{PA} , then we define $\text{Coll}(\varphi) = \forall z \forall t_0 \ldots \forall t_{n-1} (\forall x \leq z \exists y \ \varphi \leftrightarrow \exists w \forall x \leq z \exists y \leq w \ \varphi)$.

In the previous exercise we proved that $PA \vdash Coll(\varphi)$ for any φ . Let $Coll = \{Coll(\varphi) \mid \varphi \in form_{L_{PA}}\}$. Let $Q \subseteq PA$ be the first 9 axioms without the induction scheme, and let $PA_0 = Q \cup I\Sigma_0 \cup Coll$. We will show that $PA_0 \vdash I\Sigma_1$.

Proof. Let $\psi \in I\Sigma_1$, meaning that $\psi = \operatorname{Ind}(\exists x \ \varphi(x,y,z))$ for some $\varphi \in \Sigma_0$, for localized version of Σ_0 . Let us assume that $\mathcal{M} \models \operatorname{PA}_0$ is some model such that $c = z^{\mathcal{M}}$ for some z such that $\mathcal{M} \models \exists x \ \varphi(x,0,c)$ and $\mathcal{M} \models (\exists x \ \varphi(x,y,c)) \rightarrow (\exists x \ \varphi(x,y+1,c))$. There exists such a model as this sentence is satisfiable.

We intend to show that $\mathcal{M} \models \forall y \exists x \ \varphi(x, y, c)$. We fix some $b \in M$, and want to show that $\mathcal{M} \models \exists x \varphi(x, b, c)$. We use $\operatorname{Coll}(\varphi(x, y \leq b, c))$ to fix some d such that for all $b' \leq b$, if $\mathcal{M} \models \exists x \ \varphi(x, b', c)$ then $\mathcal{M} \models \exists x \leq d \ \varphi(x, b', c)$. Note that this is an $I\Sigma_0$ formula, thus by our assumptions about \mathcal{M} it holds, and it follows that $\exists x \varphi(x, b, c)$ holds as well.

Question 3

Part a

We will show that full recursion functions are definable.

Proof. Let us assume that G is some primitive-recursion function, and we define $F(n) = G(\#\langle F(i) \mid i < n \rangle)$ (the sequence is coded). We will show that F is primitive recursion definable by showing it is Σ_0^1 .

Note that when given a finite sequence, a function to append value to the sequence is primitive-recursive. This is true as the length function is primitive-recursive, as the singleton and union, enabling us to code the pair $\langle i, x \rangle$ for some given x numeral. Let $\eta : \mathbb{N}^2 \to \mathbb{N}$ be such function, meaning that $\eta(\#\langle a_i \mid i < n \rangle, a_{i+1}) = \#\langle a_i \mid i < n+1 \rangle$.

Lastly we define $H(x) = \eta(x, G(x))$ and use the induction scheme over it to define F.

Part b

We will show that the relation P(x) such that P(x) if and only if x is a prime, is primitive-recursive.

Proof. $P(x) \iff \forall y, \ y \mid x \to y = 1 \lor y = x$. This is clearly a Σ_0 formula, thus implies that P is Δ_1^0 and a primitive-recursion relation.

Part c

We will show that the function $n \mapsto p_n$ where p_n it the n-th prime, is primitive-recursion function.

Proof. By primes definition and the order of the primes as sub-order of the elements,

$$F(n+1) = y \iff \exists p_n < y < p_n^2, \ P(y) \land \forall p_n < x < y, \neg P(y)$$

But this is full recursion using a primitive-recursion relation, then we deduce that F is indeed primitive-recursive. \Box

Question 4

We define the base b-concatenation as the function such that for every $x, y, b \in \mathbb{N}$, $x *_b y$ is the representation of the digits of x followed by these of y in base b. We will show that the function $(x, y, b) \mapsto x *_b y$ is primitive-recursive.

Proof. We define the operation / as the no-residue division, meaning that if $y = x \cdot b + c$ for c < b, then y/b = x. This is a primitive-recursive as it is a Σ_1^0 function.

We define the least nullifier function as the function such that $\lambda_b(x)$ is finite product of b, that its the minimal value such that $x/\lambda_b(x)=0$. For example, $\lambda_2(7)=2^3=8$. We also define $0\mapsto 1$. The recursive definition is

$$\lambda_b(x) = \begin{cases} 1 & x = 0\\ b \cdot \lambda(x/b) & x > 0 \end{cases}$$

This is a primitive-recursive function by question 3.

Directly from definition of base-b representation of a number we deduce that $x \cdot \lambda_b(y) + y$ is the concatenation.