

·

Teoría de Conjuntos

Conjuntos

Georg Cantor (1846-1918) definió el concepto de conjunto como una **colección** de objetos reales o abstractos e introdujo el conjunto potencia y las operaciones entre conjuntos.

A pesar de las críticas iniciales que recibió, la teoría de conjuntos es la base de varias ramas de las matemáticas, entre las que destacan la **probabilidad**, la **lógica** matemática, de las ciencias de la computación ya que sirve de fundamento del **álgebra booleana**, de los **lenguajes**, de los **autómatas**, de las **relaciones**, de las **bases de datos**, de los **grafos**, de las **redes** y de los **árboles**, etc.

Concepto de un Conjunto

Un conjunto es una colección bien definida de objetos llamados elementos o miembros del conjunto.

Ejemplo:

- a) La colección de pizarrones azules.
- b) El grupo de argentinos entre 20 y 30 años.
- c) El grupo de estudiantes de la carrera Ingeniería de la UGD.
- d) El grupo de cuadros más bellos de una galería de arte.

Para denotar conjuntos utilizaremos generalmente letras mayúsculas, y para especificar elementos se usarán letras minúsculas, a menos que dichos elementos sean a su vez conjuntos.

Un conjunto está bien definido si tenemos un criterio por el cual podemos determinar si un elemento pertenece al conjunto o no. Si un elemento x pertenece al conjunto A, escribiremos $x \in A$ y si no pertenece se simboliza con \notin

Existen dos alternativas para escribir un conjunto una es extensión y la otra por comprensión. En la primera, se nombran a todos los elementos que constituyen el conjunto y en la segunda se indica la propiedad que caracteriza a todos los elementos del conjunto.

Ejemplo:

Si queremos escribir el conjunto A formado por todos los números naturales mayores que 2 y menores que 8 podemos escribirlo por extensión como

 $A = \{3,4,5,6,7\}$ y por Comprensión $A = \{x \in N \mid 2 < x < 8\}$ Se lee x pertenece al conjunto de los naturales tales que x es mayor a 2 y menor a 8

Conjuntos Notables:

Conjunto Vacío: se simboliza con \emptyset y es aquel conjunto que no posee elementos.

Ejemplo: $A = \{números impares entre 5 y 7\} = \emptyset o \{ \}$ No existe ningún número impar entre los números 5 y 7.

Conjunto Universal: se simboliza con U y es aquel conjunto que contiene todos los elementos del tema en estudio; por lo tanto, no es fijo y se debe fijar de antemano.

Conjunto Unitario: está compuesto por un único elemento.

Ejemplo:

$$A = \{1\}$$

Si un conjunto tiene n elementos, se dice que es finito, caso contrario el conjunto es infinito.

Conjuntos Numéricos:

$$N \subseteq Z \subseteq Q \subseteq R \subseteq C$$

Representación Gráfica de Conjuntos

Los conjuntos pueden representarse gráficamente mediante diagramas de Venn, en honor al matemático John Venn.

El conjunto universal se representa con un rectángulo, y el diagrama para un conjunto A cualquiera es una curva cerrada en cuyo interior se colocan puntos que representan a los elementos del conjunto A.

Inclusión-Subconjuntos

Si damos el conjunto $S = \{x \in R / 2 < x < 8\}$

$$A = \{x \in N / 2 < x < 8\}$$

Por ejemplo

 $5 \in S$ pero $2 \notin S$

También podemos relacionar conjuntos, por ejemplo, podemos decir que los conjuntos A y S, dados arriba, son distintos pues no tienen los mismos elementos. Pero observamos que cualquier elemento de A también es un elemento de S y esto lo escribimos como

 $A \subseteq S$, se lee A está contenido en S o A está incluido en S o A es un subconjunto de S.

A esta relación se le llama relación de inclusión.

Formalmente

Sean A y B dos conjuntos

$$A \subset B \iff \forall x : x \in A \Rightarrow x \in B$$

De elemento a conjunto se utiliza ∈ De conjunto a conjunto se utiliza ⊂

 $B \supset A$ B contiene al conjunto A

Igualdad de conjuntos

Si $A \subset B$ y $B \subset A$ diremos que A = B es decir

$$A = B \iff A \subset B \land B \subset A$$

Propiedades de la inclusión de conjuntos:

- 1) $\forall A : \emptyset \subset A$
- 2) $\forall A: A \subset A$
- 3) $\forall A, B: A \subset B \land B \subset A \Longrightarrow A = B$
- 4) $\forall A, B, C: A \subset B \land B \subset C \implies A \subset C$

SUBCONJUNTOS DE LOS NÚMEROS REALES: INTERVALOS

Un **intervalo** es un conjunto infinito de números reales comprendidos entre dos valores fijos que se denominan **extremos del intervalo**.

Denominación	Notación de Intervalos	Notación como subconjunto de los reales	Forma gráfica
Intervalo abierto	(a, b)	$\{x \in R / a < x < b\}$	(////)b
Intervalo cerrado	[a, b]	$\{x\in R/a\leq x\leq b\}$	
Intervalos semiabiertos	(a, b]	$\{x \in R \mid a < x \le b\}$	
	[a, b)	$\{x \in R / a \le x \le b\}$	
Intervalos infinitos	$(-\infty, b)$ $(-\infty, b]$ (a, ∞) $[a, \infty)$	$\{x \in R \ / x < b\}$ $\{x \in R \ / x \le b\}$ $\{x \in R \ / x \ge a\}$ $\{x \in R \ / x \ge a\}$	~/////////////////////////////////////

Observaciones:

- Los símbolos ∞ y -∞ se leen "infinito positivo" e "infinito negativo" respectivamente.
- Los intervalos no se expresan por extensión
- Los intervalos no se representan gráficamente mediante diagramas de Venn.
- Los intervalos se representan gráficamente en la recta real.

Ejemplo:

$$A = \{x \in R / x \ge -5\}$$

$$A = [-5, +\infty)$$

$$B = \{x \in R / x < 3\}$$

$$B = (-\infty, 3)$$

$$C = \{x \in R / -1 < x \le 7\}$$

$$C = (-1, 7]$$

Conjuntos de partes

Dado un conjunto A se define un nuevo conjunto por todos los subconjuntos de A, que recibe el nombre de Conjunto de partes de A.

$$P(A) = \{X / X \subset A\}$$

Aclaración: Los elementos del conjunto de partes de A son subconjuntos del conjunto A

Ej:

$$A = \{1,2,3\}$$

$$P(A) = \{\emptyset, A, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\} \}$$

$$2^3 = 8$$

- $\{1\} \in A$ Falso
- {1} ⊂ A Verdadero

 $1 \in P(A)$ falso

 $1 \subset P(A)$ falso

 $\{1\} \subset P(A)$ falso

 $\{1\} \in P(A)$ verdadero

$$B = \{a, b\}$$

$$P(B) = \{\emptyset, B, \{a\}, \{b\}\}\$$

 $\{a\} \in P(B)$ Verdadero

 $\emptyset \subset P(B)$ falso

 $\emptyset \subset B$ verdadero

Cardinalidad de un conjunto

Sea A un conjunto con un número finito de elementos. La cardinalidad de A representada por |A| o #A, es igual al número de elementos en A

$$(A \subset B) \Rightarrow (|A| < |B|)$$

OPERACIONES CON CONJUNTOS

UNIÓN

Si A y B son dos conjuntos, se define la **unión entre A y B**, que se denota $A \cup B$, al conjunto cuyos elementos pertenecen a A o a B o a ambos.

Simbólicamente se expresa: A \cup B= {x / x \in A \vee x \in B}

El diagrama de venn es:

❖ INTERSECCIÓN

Si A y B son dos conjuntos, se define la **intersección entre A y B**, que se denota $A \cap B$, al conjunto cuyos elementos pertenecen a A y a B.

Simbólicamente se expresa: $A \cap B = \{x \mid x \in A \land x \in B\}$

El diagrama de venn es:

Observación:

Conjuntos disjuntos: Dos conjuntos son disjuntos cuando no tienen elementos comunes.

Simbólicamente: A y B son **disjuntos** si y sólo si $A \cap B = \emptyset$

***** COMPLEMENTO

Si U es el conjunto universal que contiene al conjunto A, se llama **complemento** de A y se simboliza \bar{A} , al conjunto formado por todos los elementos del universo que no pertenecen al conjunto A.

Simbólicamente: $\bar{A} = \{x \in U / x \notin A\}$

***** DIFERENCIA

Si A y B son dos conjuntos, se define la **diferencia** de A y B, que se simboliza A - B al conjunto formado por los elementos que pertenecen al conjunto A que no pertenecen al conjunto B.

Simbólicamente: A- B = $\{x / x \in A \land x \notin B\}$

Observación: Se verifica:

- \bullet A B = A $\cap \bar{B}$
- $A B \neq B A$ (la diferencia no es conmutativa)

Diferencia simétrica

Si A y B son dos conjuntos, se define la diferencia simétrica de A y B, que se simboliza A Δ B al conjunto formado por los elementos que pertenecen al conjunto A que no pertenecen al conjunto B y viceversa.

Simbólicamente: $A\Delta B = \{x \mid x \in A \ \underline{\lor} \ x \notin B\}$

 $A \Delta B$

Ejercicio

Dados los conjuntos

$$A = \{1, 2, 3, 4\}, C = \{3, 4, 5, 6\}$$

Calcule por extensión

b)
$$A \cap C = \{$$

- d) $C^C = \{ \}$
- e) $A \cup C^C = \{ \}$
- f) $A\Delta C = \{ \}$

Leyes del álgebra de conjuntos

A continuación, algunas propiedades asociadas al álgebra de conjuntos:

Idempotencia

- $A \cup A = A$
- $A \cap A = A$

Conmutativa

- $A \cup B = B \cup A$
- $A \cap B = B \cap A$

Asociativa

- $(A \cup B) \cup C = A \cup (B \cup C)$
- $(A \cap B) \cap C = A \cap (B \cap C)$

Distributiva

- $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Ley De Morgan

•
$$(A \cup B)^C = A^C \cap B^C$$

$$\bullet \ (A \cap B)^C = A^C \cup B^C$$

Ley de la diferencia

$$A - \emptyset = A$$

$$A - A = \emptyset$$

$$A - B = \emptyset \leftrightarrow A \subseteq B$$

$$A - B = A \leftrightarrow A \cap B = \emptyset$$

Ley de la diferencia simétrica

•
$$A \triangle B = (A - B) \cup (B - A)$$

•
$$A \triangle B = (A \cup B) - (B \cap A)$$

$$A \Delta A = \emptyset$$

$$B \subseteq A \rightarrow A \Delta B = A - B$$

$$(A \Delta B)\Delta C = A\Delta (B\Delta C)$$

$$A \Delta B = B\Delta A$$

$$A \Delta \emptyset = A$$

Del complemento

•
$$A \cup A^C = U$$

•
$$A \cap A^C = \emptyset$$

•
$$(A^C)^C = A$$

•
$$U^C = \emptyset$$

•
$$\emptyset^C = U$$

De la absorción

- $A \cup (A \cap B) = A$
- $A \cap (A \cup B) = A$
- $A \cup (A^C \cap B) = A \cup B$
- $A \cap (A^C \cup B) = A \cap B$

Elemento neutro

$$A \cup \emptyset = A$$

 $A \cap U = A$

Ejercicios

Demostrar la siguiente igualdad $(A \cup B) \cap ((A \cup B) \cap A) = A$

Ejercicio

$$(B \cup A) \cap (B^C \cap A^C)^C = B \cup A$$

Ejercicio: Simplificar

$$(A \cup A) - (A \cap B)$$

Operaciones con intervalos

❖ UNIÓN DE INTERVALOS: A∪B

Se representan gráficamente ambos conjuntos en la recta numérica y la unión de intervalos es la sección de la recta numérica que se encuentra rayada.

Ejemplos: