```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")
```

Exploratory Data Analysis

```
In [2]: data=pd.read_csv("/home/placemnet/YUVA/Advertising.csv")
    data.head()
```

Out[2]:

	Unnamed: 0	TV	radio	newspaper	sales
0	1	230.1	37.8	69.2	22.1
1	2	44.5	39.3	45.1	10.4
2	3	17.2	45.9	69.3	9.3
3	4	151.5	41.3	58.5	18.5
4	5	180.8	10.8	58.4	12.9

```
In [3]: a=data['sales']
b=data.drop(['sales','Unnamed: 0'],axis=1)
b
```

Out[3]:

	TV	radio	newspaper
0	230.1	37.8	69.2
1	44.5	39.3	45.1
2	17.2	45.9	69.3
3	151.5	41.3	58.5
4	180.8	10.8	58.4
195	38.2	3.7	13.8
196	94.2	4.9	8.1
197	177.0	9.3	6.4
198	283.6	42.0	66.2
199	232.1	8.6	8.7

200 rows × 3 columns

In [4]: from sklearn.model_selection import train_test_split
a_train,a_test,b_train,b_test=train_test_split(a,b,test_size=0.1,random_state=42)
b_test

Out[4]:

95	163.3	31.6	52.9
15	195.4	47.7	52.9
30	292.9	28.3	43.2
158	11.7	36.9	45.2
128	220.3	49.0	3.2
115	75.1	35.0	52.7
69	216.8	43.9	27.2
170	50.0	11.6	18.4
174	222.4	3.4	13.1
45	175.1	22.5	31.5
66	31.5	24.6	2.2
182	56.2	5.7	29.7
165	234.5	3.4	84.8
78	5.4	29.9	9.4
186	139.5	2.1	26.6
177	170.2	7.8	35.2
56	7.3	28.1	41.4
152	197.6	23.3	14.2
82	75.3	20.3	32.5
68	237.4	27.5	11.0

TV radio newspaper

Lasso

```
In [5]: from sklearn.linear model import Lasso
        from sklearn.model selection import GridSearchCV
        lasso = Lasso()
        parameters = \{ \text{'alpha'}: [1e-15, 1e-10, 1e-8, 1e-4, 1e-3, 1e-2, 1, 5, 10, 20] \}
        lasso regressor = GridSearchCV(lasso, parameters)
        lasso_regressor.fit(b_train, a_train)
Out[5]:
                                             GridSearchCV
         GridSearchCV(estimator=Lasso(),
                       param grid={'alpha': [1e-15, 1e-10, 1e-08, 0.0001, 0.001, 0.01, 1,
                                             5, 10, 20]})
                                         ▼ estimator: Lasso
                                         Lasso()
                                               ▼ Lasso
                                              Lasso()
In [6]: lasso regressor.best params
Out[6]: {'alpha': 1}
In [7]: lasso=Lasso(alpha=1)
        lasso.fit(b train,a train)
        a pred lasso=lasso.predict(b test)
```

Out[9]:

	index	Actual	Predicted	ld
0	95	16.9	16.305758	0
1	15	22.4	20.668405	1
2	30	21.4	21.534602	2
3	158	7.3	10.435192	3
4	128	24.7	21.985764	4

```
In [10]: import seaborn as sns
sns.lineplot(x='Id',y='Actual',data=results.head(50))
sns.lineplot(x='Id',y='Predicted',data=results.head(50))
plt.plot()
```

Out[10]: []

In []: