Réponses aux exercices du chapitre 7

Numéro 1. Faire trois itérations avec h = 0.1 des méthodes d'Euler explicite, d'Euler modifiée, du point milieu et de Runge-Kutta d'ordre 4 pour les équations différentielles suivantes:

a)
$$y'(t) = t \sin(y(t))$$
 $(y(0) = 2)$

b)
$$y'(t) = t^2 + (y(t))^2 + 1$$
 $(y(1) = 0)$

c)
$$y'(t) = y(t)e^t$$
 $(y(0) = 2)$

Solution

a) On a $y' = t \sin(y(t))$, y(0) = 2 et h = 0,1. On a donc que $t_0 = 0$, que $y_0 = 2$ et que $f(t_n, y_n) = t_n \sin(y_n).$

Euler:
$$\begin{cases} y_{n+1} = y_n + h f(t_n, y_n) \\ t_{n+1} = t_n + h \end{cases}$$

$$-y_0=2$$

$$-y_1 = 2 + 0.1 \times 0 \times \sin 2 = 2$$

$$-y_2 = 2 + 0.1 \times 0.1 \sin 2 = 2.0090929$$

$$-y_3 = 2,009\,0929 + 0.1 \times 0.2 \times \sin 2,009\,0929 = 2,027\,202\,49$$

Euler modifiée :
$$\left\{ \begin{array}{l} \hat{y} = y_n + hf(t_n, y_n) \\ y_{n+1} = y_n + \frac{h}{2}[f(t_n, y_n) + f(t_{n+1}, \hat{y})] \end{array} \right.$$

$$\begin{array}{rcl}
- & f(t_0, y_0) &= f(0, 2) = 0 \\
\hat{y} &= y_0 + h \times f(t_0, y_0) = 2 + h \times 0 = 2
\end{array}$$

$$- f(t_0, y_0) = f(0, 2) = 0$$

$$\hat{y} = y_0 + h \times f(t_0, y_0) = 2 + h \times 0 = 2$$

$$y_1 = y_0 + \frac{h}{2} [f(t_0, y_0) + f(t_0 + h, \hat{y})] = 2 + 0.05[0 + 0.1 \times \sin(2)] = 2.004546487$$

$$f(t_0, y_0) = 0.1 \times \sin(2.004546487) = 0.0007306$$

$$- f(t_1, y_1) = 0.1 \times \sin(2,004546487) = 0.0907396$$

$$\hat{y} = 2,004\,546\,487 + 0,1 \times 0,090\,7396 = 2,013\,620\,44$$

$$f(t_2, \hat{y}) = 0.2 \times \sin(2.01362044) = 0.18070903$$

$$y_2 = 2,004546487 + 0,05[0,0907396 + 0,18070903] = 2,018118919$$

- De même, on a que $y_3 = 2,040539939$.

Runge-Kutta d'ordre 4 :
$$\begin{cases} k_1 = hf(t_n, y_n) \\ k_2 = hf(t_n + h/2, y_n + k_1/2) \\ k_3 = hf(t_n + h/2, y_n + k_2/2) \\ k_4 = hf(t_n + h, y_n + k_3) \\ y_{n+1} = y_n + 1/6(k_1 + 2k_2 + 2k_3 + k + 4) \\ t_{n+1} = t_n + h \end{cases}$$

On a que h = 0,1, $t_0 = 0$, $y_0 = 2$ et que $f(t_n, y_n) = t_n \sin(y_n)$.

- Pour la première itération, on obtient :

$$k_1 = hf(t_0, y_0) = 0.1 \times 0 \times \sin 2 = 0$$

$$k_2 = hf(0+0.05, 2+\frac{0}{2}) = 0.1f(0.05, 2) = 0.1 \times 0.05 \times \sin 2 = 0.004546487$$

$$k_3 = 0.1 \dot{f}(0.05, 2 + 0.004546487/2) = 0.1 f(0.05, 2.002273244)$$

= 0.1 × 0.05 × sin(2.002273244) = 0.004541745

$$k_4 = 0.1f(0.1, 2.004541745) = 0.00907398$$

$$\Rightarrow y_1 = 2 + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4) = 2,004\,541\,741.$$

De même, on trouve que :

Deuxième itération :

$$k_1 = 0,009\,074$$
 $k_2 = 0,013\,582$ $k_3 = 0,013\,568$ $k_4 = 0,018\,032$ $y_2 = 2,018\,109\,47$

- Troisième itération :

$$k_1 = 0.018\,032$$
 $k_2 = 0.022\,442$ $k_3 = 0.022\,418$ $k_4 = 0.026\,751$ $y_2 = 2.040\,526\,45$

b) On a $y'(t) = t^2 + (y(t))^2 + 1$, y(1) = 0 et h = 0,1. Donc, on a également que $t_0 = 1$, $y_0 = 0$ et que $f(t_n, y_n) = t_n^2 + (y_n)^2 + 1$.

Euler:
$$y_1 = y_0 + hf(t_0, y_0) = 0 + 0.1 \times (1^2 + 0 + 1)$$

 $y_1 = 0.2$ $t_1 = 1.1$
 $y_2 = y_1 + hf(t_1, y_1) = 0.2 + 0.1 \times (1.1^2 + 0.2^2 + 1)$
 $y_2 = 0.425$ $t_2 = 1.2$
 $y_3 = y_2 + hf(t_2, y_2) = 0.425 + 0.1 \times (1.2^2 + 0.425^2 + 1)$
 $y_3 = 0.6870625$ $t_3 = 1.3$

Euler modifiée :

- Première itération

$$\hat{y} = y_0 + hf(t_0, y_0) = 0 + 0.1 \times f(1, 0) = 0.2$$

 $y_1 = y_0 + h/2(f(t_0, y_0) + f(t_0 + h, \hat{y})) = 0 + 0.05 \times (f(1, 0) + f(1.1, 0.2)) = 0.2125$
 $t_1 = 1.1$

Deuxième itération

$$\hat{y} = y_1 + hf(t_1, y_1) = 0.2125 + 0.1 \times f(1.1, 0.2125) = 0.4380156$$

$$y_2 = y_1 + h/2(f(t_1, y_1) + f(t_1 + h, \hat{y}))$$

$$y_2 = 0.2125 + 0.05 \times (f(1.1, 0.2125) + f(1.2, 0.4380156)) = 0.45685069$$

 $t_2 = 1.2$

- Troisième itération

$$\hat{y} = y_2 + hf(t_2, y_2) = 0.45685069 + 0.1 \times f(1.2, 0.45685069) = 0.7217219$$

$$y_3 = y_2 + h/2(f(t_2, y_2) + f(t_2 + h, \hat{y}))$$

$$y_3 = 0.45685069 + 0.05 \times (f(1.2, 0.45685069) + f(1.3, 0.7217219)) = 0.74983045$$

 $t_3 = 1.3$

Runge-Kutta $O(h^4)$:

- Première itération

$$k_1 = 0.2$$
 $k_2 = 0.211\,250$ $k_3 = 0.211\,366$ $k_4 = 0.225\,468$

 $y_1 = 0.2117831$

- Deuxième itération

$$k_1 = 0.225485$$
 $k_2 = 0.242782$ $k_3 = 0.243351$ $k_4 = 0.264715$

 $y_2 = 0.45552718$

- Troisième itération

$$k_1 = 0.264751$$
 $k_2 = 0.290813$ $k_3 = 0.292362$ $k_4 = 0.420788$

 $y_3 = 0.748199$

c) On a $y'(t) = y(t)e^t$, y(0) = 2 et h = 0,1. Donc, on a également que $t_0 = 0$, $y_0 = 2$ et que $f(t_n, y_n) = y_n e^{t_n}$.

Euler: $y_1 = 2,2$

 $y_2 = 2,443\,1376$

 $y_3 = 2,741543$

Euler modifiée : $\hat{y} = 2.2$ $\Rightarrow y_1 = 2.2215688$

 $\hat{y} = 2,467\,0901 \implies y_2 = 2,494\,994$

 $\hat{y} = 2,7997344 \implies y_3 = 2,836326$

Runge-Kutta $O(h^4)$:

- Première itération :

$$k_1 = 0.2$$
 $k_2 = 0.220767$ $k_3 = 0.221859$ $k_4 = 0.245553$

 $y_2 = 2,221\,8007$

Deuxième itération :

$$k_1 = 0.245547$$
 $k_2 = 0.272401$ $k_3 = 0.273961$ $k_4 = 0.304833$

 $y_2 = 2,495651$

- Troisième itération :

$$k_1 = 0.304820$$
 $k_2 = 0.340018$ $k_3 = 0.342278$ $k_4 = 0.383080$

 $y_2 = 2,8377328$

Numéro 2. L'équation différentielle :

$$y'(t) = y(t) + e^{2t}$$
 $(y(0) = 2)$

possède la solution analytique $y(t) = e^t + e^{2t}$.

- a) En prenant h = 0,1, faire 3 itérations de la méthode d'Euler modifiée et calculer l'erreur commise sur y_3 en comparant les résultats avec la solution analytique y(0,3).
- b) En prenant h = 0.05, faire 6 itérations de la méthode d'Euler modifiée et calculer l'erreur commise sur y_6 en comparant les résultats avec la solution analytique y(0,3).
- c) Faire le rapport des erreurs commises en a) et en b) et commenter le résultat en fonction de l'erreur de troncature locale liée à la méthode utilisée.
- d) Utiliser l'extrapolation de Richardson pour obtenir une meilleure approximation de y(0,3).

Solution

Comme $y(t) = e^t + e^{2t}$, alors $y(0,3) = 3{,}171\,977\,608$. Aussi, on a que $f(t_n, y_n) = y_n + e^{2t_n}$, que y(0) = 2 et donc que $y_0 = 2$ et que $t_0 = 0$.

a) On fait 3 itérations avec h = 0,1 et avec la méthode d'Euler modifiée.

$$\hat{y} = 2.3$$
 $\Rightarrow y_1 = 2.2215688$
 $\hat{y} = 2.68081743$ $\Rightarrow y_2 = 2.712075889$
 $\hat{y} = 3.132465948$ $\Rightarrow y_3 = 3.1700001557$

L'erreur est alors donnée par :

$$|y(0,3) - y_3| = |3,171\,977\,608 - 3,170\,000\,1557| = 0,001\,977\,45.$$

b) On fait 6 itérations avec h = 0.05 et avec la méthode d'Euler modifiée.

$$\begin{array}{lll} \hat{y} &= 2.15 & \Rightarrow y_1 = 2.156\,3793 \\ \hat{y} &= 2.319\,4568 & \Rightarrow y_2 = 2.326\,4395 \\ \hat{y} &= 2.503\,8316 & \Rightarrow y_3 = 2.511\,4778 \\ \hat{y} &= 2.704\,5447 & \Rightarrow y_4 = 2.712\,9205 \\ \hat{y} &= 2.923\,1577 & \Rightarrow y_5 = 2.932\,3361 \\ \hat{y} &= 3.161\,3890 & \Rightarrow y_6 = 3.171\,4502 \end{array}$$

L'erreur est alors donnée par : $|y(0,3) - y_6| = |3,171\,977\,608 - 3,171\,4502| = 0,000\,527\,39.$

- c) Le ratio des erreurs est : $\frac{0,001\,977\,45}{0,000\,527\,39}=3,75\approx4,$ ce qui confirme que la méthode d'Euler modifiée est d'ordre 2.
- d) L'extrapolation de Richardson d'ordre n est donnée par l'équation suivante :

$$Q_{exa} \simeq \frac{2^n + Q_{app}(h/2) - Q_{app}(h)}{2^n - 1}$$

On a donc:

$$\frac{4 \times 3,171\,450\,217 - 3,170\,000\,1557}{3} = 3,171\,933\,572 \text{ (erreur} = 0,44 \times 10^{-4}).$$

Numéro 4. On considère l'équation différentielle :

$$\begin{cases} y'(t) = 2y(t) \\ y(0) = 5 \end{cases}$$

- a) Vérifier que la solution analytique est $y(t) = 5e^{2t}$.
- b) En posant $h = \frac{1}{N}$, montrer que les approximations fournies par la méthode d'Euler explicite peuvent s'écrire comme $y_n = 5(1+2h)^n$, pour n = 0, ..., N.
- c) Vérifier numériquement que l'erreur e(h) se comporte suivant la relation $e(h) \approx Kh$, où K est une constante.

Solution

- a) Si $y(t) = 5e^{2t}$, alors on a que $y'(t) = 10e^{2t} = 2y(t)$. De plus, on a que $y(0) = 5e^0 = 5$. Donc, $y(t) = 5e^{2t}$ est bien une solution analytique de l'équation différentielle.
- b) Puisque y'(t) = 2y(t), on a que $f(t_n, y_n) = 2y_n$. On a également que $y_0 = 5$. L'algorithme de la méthode d'Euler explicite nous dit que

$$y_{n+1} = y_n + hf(t_n, y_n) = y_n + h(2y_n) = (1+2h)y_n$$

pour tout n. Par conséquent, on obtient par récursivité que :

$$y_{n+1} = (1+2h)((1+2h)y_{n-1})$$

$$= (1+2h)^2((1+2h)y_{n-2})$$

$$= \vdots$$

$$= (1+2h)^{n+1}y_0 = 5(1+2h)^{n+1}$$

c) On peut chercher la constante en calculant e_n/h_n .

n	h_n	e_n	e_n/h_n
2	0,5	16,9462	33,9
10	0,1	5,9866	59,9
20	0,05	3,3077	66,7
100	0,01	0,7220	72,2
200	0,005	0,3651	73,0

et donc $K \simeq 73$.

Numéro 19. On vous demande de résoudre le système d'équations différentielles suivant pour modéliser le mouvement d'un pendule de Foucault :

$$\begin{cases} x''(t) = 2\omega y'(t)sin\psi - k^2x(t) & x(0) = 1 \ x'(0) = 0 \\ y''(t) = -2\omega x'(t)sin\psi - k^2y(t) & y(0) = 1 \ y'(0) = 0 \end{cases}$$

où (x(t),y(t)) désigne la trajectoire du pendule dans le plan, ω est la vitesse angulaire de la terre, ψ est la latitude locale et $k^2=g/l$, g étant l'accélération gravitationnelle et l la longueur du pendule.

Discuter brièvement d'une stratégie de résolution et, si nécessaire, reformuler ce problème pour que l'on puisse résoudre par les techniques numériques vues dans ce chapitre. **Ne pas répondre.**

Solution

En posant $x_1(t) = x(t)$, $x_2(t) = x'(t)$, $x_3(t) = y(t)$ et $x_4(t) = y'(t)$, on obtient le système suivant :

$$\begin{cases} x'_1(t) &= x_2(t) & x_1(0) = 1 \\ x'_2(t) &= 2\omega x_4(t)\sin\psi - k^2 x_1(t) & x_2(0) = 0 \\ x'_3(t) &= x_4(t) & x_3(0) = 0 \\ x'_4(t) &= -2\omega x_2(t)\sin\psi - k^2 x_3(t) & x_4(0) = 0 \end{cases}$$

On peut alors résoudre par une méthode de Runge-Kutta d'ordre 4 pour les systèmes d'équations différentielles pour une plus grande précision.