

TREINAMENTO NEWAVE – DECOMP

Guia prático de utilização Modelo DECOMP — versão 28

	INTRO	ODUÇÃO	4
?	ARQU	IVOS DO PROGRAMA DECOMP	4
		xecutável e arquivos do sistema	
	2.2 D	ados descritivos do estudo (arquivos texto)	5
		eados descritivos do estudo (arquivos binários)	
,			
•		RIÇÃO DOS ARQUIVOS DE DADOS DE ENTRADA	
		ASO.DAT – Nome do arquivo lista	
	3.2 R	VO –Lista dos arquivos utilizados pelo programa	6
	3.3 D	ADGER.RV0 – Dados do estudo	6
	3.3.1	Título do estudo	
	3.3.2	Configuração dos subsistemas	7
	3.3.3	Configuração hidráulica	
	3.3.4	Configuração térmica	
	3.3.5	Estações de bombeamento	
	3.3.6	Carga de energia	
	3.3.7	Custo de déficit	
	3.3.8	Dados de geração de pequenas usinas	
	3.3.9	Geração de Itaipu no trecho de 50Hz	
	3.3.10	Limites de intercâmbio entre subsistemas	
	3.3.11 3.3.12	Parâmetros para execução e controle do processamento	. 15
	3.3.12	Manutenção programada em usinas hidrelétricas	
	3.3.13	Manutenção programada em usinas termelétricas	
	3.3.14	Dados de volume de espera para controle de cheias	
	3.3.16	Dados de enchimento de volume morto	
	3.3.17	Dados de restrições elétricas	
	3.3.18	Dados de tempo de viagem entre aproveitamentos	
	3.3.19	Alteração de dados de cadastro	
	3.3.20	Contratos de importação e/ou exportação	
	3.3.21	Dados da função de custo futuro do NEWAVE	.24
	3.3.22	Energias afluentes pré-estudo	
	3.3.23	Taxas de irrigação ou retirada de água	
	3.3.24	Vazão mínima do histórico	
	3.3.25	Função de energia armazenada (EZ)	.26
	3.3.26	Restrições de vazão afluente (RHA)	
	3.3.27	Restrições de volume armazenado ou defluente (RHV)	.27
	3.3.28	Restrições de vazão defluente (RHQ)	
	3.3.29	Função de Aversão ao risco (AR)	.30
	3.3.30	Perdas por evaporação (EV)	.30
	3.4 D	ADGNL.RV0 – Dados das usinas GNL	.31
	3.4.1	Configuração térmica	
	3.4.2	5 ,	

	3.4.3	Lag de antecipação do despacho	32
	3.4.4	Comandos antecipados	32
4	Arquiv	os de Dados e Relatórios do modelo DECOMP	<i>3</i> 3
	4.1 A	rquivo RELATO	33
	4.1.1	Relatório Inicial	
	4.1.2	Parâmetros do estudo	
	4.1.3	Configuração dos REEs e Subsistemas	36
	4.1.4	Relatório dos Dados de Cadastro e Limites Operacionais das Usinas Hidráulicas	
	4.1.5	Relatório dos Dados de Cadastro e Limites Operacionais das Usinas Hidráulicas	
	4.1.6	Relatório dos Dados de Defluência Mínima	38
	4.1.7	Relatório dos Coeficientes de Evaporação	39
	4.1.8	Relatório de Dados de Taxa de irrigação (uso múltiplo)	39
	4.1.9	Relatório de Dados de Enchimento de volume morto	40
	4.1.10	Relatório de Dados de Manutenção Programada	40
	4.1.11	Relatório de Dados de Fator de Disponibilidade	41
	4.1.12	Relatório de Dados de Potência Disponível	
	4.1.13	Relatório de Dados de Fator de Perda para o Centro de gravidade da Carga	
	4.1.14	Relatório dos Dados de Volume de Espera	
	4.1.15	Relatório dos Dados das Usinas Elevatórias	
	4.1.16	Relatório dos Dados de Manutenção das Unidades Elevatória	
	4.1.17	Relatório de Dados de Usinas Térmicas	
	4.1.18	Relatório de Dados de Patamar de Déficit	
	4.1.19	Relatório de Dados de Manutenção Programada - Usinas Térmicas	
	4.1.20	Relatório do Fator de Perda para o Centro de gravidade da Carga – Térmicas	
	4.1.21	Relatório de Dados de Carga	
	4.1.22	Relatório de Dados de Limites nas Interligações	
	4.1.23	Relatório do Fator de Perda para o Centro de gravidade da Carga - Fluxos	
	4.1.24	Relatório de Dados de Pequenas Usinas	
	4.1.25	Relatório de Dados de Restrições Elétricas	
	4.1.26	Relatório de Dados de Restrições Hidráulicas	
	4.1.27	Relatório de Dados de Tempo de Viagem	
	4.1.28	Relatório de Dados da Vazão Média de Longo Termo	
	4.1.29	Relatório de Dados de Energia Natural Afluente para Função de Custo Futuro	
	4.1.30	Relatório de dados da função de custo futuro do médio prazo	
	4.1.31	Relatório de convergência.	
	4.1.32	Relatório de Operação dos Aproveitamentos Hidráulicos	
	4.1.33	Relatório de Operação das Restrições elétricas (por patamar de carga)	
	4.1.34	Relatório de Operação do Balanço Hidráulico	
	4.1.35 4.1.36	1 3 3 4 1	
	4.1.36	Relatório da Operação das Usinas Térmicas e Contratos	
	4.1.38	Relatório dos Custos de Operação	
		rquivo SUMARIO	
5	Tabela	lista de arquivos de dados e resultados	62
6	Diagra	uma esquemático: atividades num estudo DECOMP	6 3

1 INTRODUÇÃO

O presente guia tem por objetivo auxiliar o usuário na operação do modelo DECOMP para acompanhamento da sua aplicação no Planejamento Mensal da Operação (PMO) do ONS e no cálculo do Preço de Liquidação das Diferenças (PLD) na CCEE.

Detalhando procedimentos e facilitando a compreensão da lógica do seu funcionamento, pretende-se que o usuário, com o auxílio desta apostila, desenvolva o conhecimento necessário para exploração das informações que o modelo DECOMP oferece.

Para qualquer dúvida que possa existir entre as informações aqui contidas e os manuais do modelo DECOMP, prevalecerá o conteúdo dos documentos produzidos pelo CEPEL.

2 ARQUIVOS DO PROGRAMA DECOMP

Atualmente, o programa DECOMP é executado no ambiente Linux com possibilidade de processamento paralelo. A instalação dos módulos computacionais da versão LINUX deve ser acompanhada pela área de suporte operacional do usuário e, em caso de dúvidas, deve-se recorrer ao provedor CEPEL para esclarecimentos. A versão Windows foi descontinuada pelo provedor, uma vez que o tempo computacional na plataforma Linux é inferior devido a possibilidade de processamento paralelo.

Considerando que muitos usuários do modelo DECOMP dispõem de aplicativos no sistema operacional Windows, e que os micros atuais são multiprocessadores, o CEPEL desenvolveu um tutorial para criação de uma máquina virtual LINUX onde é possível executar estudos do DECOMP conforme as características de cada ambiente.

O documento denominado "Tutorial_UsoDECOMPLinuxPlataformaWindows.pfd" apresenta as instruções para criação da máquina virtual e é distribuído pelo CEPEL conjuntamente com a documentação do modelo DECOMP.

2.1 Executável e arquivos do sistema

Estes arquivos devem estar localizados na pasta do estudo:

decomp NN Arquivo executável do DECOMP

convertenomesdecomp Arquivo executável para conversão de dados

mpi Arquivo executável de comandos para a jornada do estudo

2.2 Dados descritivos do estudo (arquivos texto)

Esta categoria compreende os arquivos de dados de entrada que são criados/modificados pelo usuário, os quais são denominados:

CASO.DAT Nome do arquivo lista (exemplo: xxx) RVn Lista dos arquivos utilizados no estudo

DADGER. RVn Dados para descrição do parque hidrotérmico, carga, restrições, etc.

DADGNL. RVn Dados com detalhamento das usinas GNL

PERDAS.DAT Arquivo com fatores de perda

Os nomes destes arquivos consideram os padrões que vêm sendo utilizados nos estudos oficiais da CCEE e do ONS. A extensão dos mesmos caracteriza "RVn" caracteriza a diferenciação entre os estudos criados para cada estudo semanal (PMO e suas revisões). O único arquivo que tem nome fixo é o CASO.DAT.

2.3 Dados descritivos do estudo (arquivos binários)

Os arquivos binários são não são formatados, não sendo possível visualizá-los com editores de texto padrão. Atualmente, os seguintes arquivos dos estudos DECOMP são arquivos binários:

HIDR.DAT Arquivo que contém o cadastro de usinas hidroelétricas

MLT.DAT Arquivo que contém os valores mensais da vazão, média de longo termo

do histórico (estes valores são utilizados nos relatórios da operação do

modelo DECOMP)

VAZOES.RVn Conjunto de cenários de vazões (afluências) para o período estudado CORTES,xxx Arquivo da Função de Custo Futuro (FCF) produzida pelo NEWAVE

CORTESH,xxx Arquivo de acesso da FCF produzida pelo NEWAVE

3 DESCRIÇÃO DOS ARQUIVOS DE DADOS DE ENTRADA

3.1 CASO.DAT - Nome do arquivo lista

É o arquivo que indica o nome do arquivo com a lista de dados de entrada. Este arquivo é o único que possui nome fixo (CASO.DAT) através do qual o programa DECOMP é informado sobre o conjunto de dados do estudo a ser processado.

RV0	arquivo descritor do dados do estudo
-----	--------------------------------------

3.2 RV0 –Lista dos arquivos utilizados pelo programa

É o arquivo que contém a lista com os nomes dos arquivos de dados. Usualmente a extensão utilizada nos estudos do DECOMP segue o critério de numeração das revisões do Programa Mensal de Operação – PMO. A extensão RV0 está associada ao estudo de elaboração do PMO, e à medida que ocorrem revisões do planejamento, a extensão assume valores seqüenciais: RV1 (primeira revisão), RV2 e assim por diante.

DADGER.RV0	arquivo com os dados gerais do estudo
DADGNL.RV0	arquivo com os dados de usinas GNL
VAZOES.RV0	arquivo com os dados de cenários de vazões
HIDR.DAT	cadastro de dados das usinas hidrelétricas
MLT.DAT	dados de médias históricas de afluência
PERDAS.DAT	arquivo de fatores de perda
./	pasta/diretório onde se localizam os programas executáveis

3.3 DADGER.RV0 – Dados do estudo

É o arquivo que contém os dados gerais do caso estudo. Alguns destes dados podem ser considerados parâmetros da simulação e não devem ser alterados a cada teste, pois fazem parte da calibragem do modelo. Para facilitar o preenchimento do arquivo de dados, é possível incluir comentários, bastando para isso colocar o caracter & na primeira coluna da linha.

A maioria das informações para um caso estudo do DECOMP é fornecida nesse arquivo, onde os dados estão agrupados em blocos que são identificados por duas letras no início da linha (colunas 1 e 2). Cada bloco define, por exemplo, a configuração dos subsistemas, lista das usinas, carga dos subsistemas, restrições operativas, etc.

3.3.1 Título do estudo

O título do estudo serve como identificação e é de livre escolha do usuário.

3.3.2 Configuração dos subsistemas

O grupo de dados SB define a configuração de subsistemas do estudo. A configuração e numeração dos subsistemas deve ser igual àquela definida no estudo do modelo NEWAVE provedor da função de custo futuro para o horizonte do estudo DECOMP.

&	S	MNEMONICO	(MAX	2	LETRAS)	Observações
&	XX	XX				O código ou a sigla do subsistemas (SE, NE, etc) serão aplicados em outros blocos no campo "identificador do subsistema"
SB	1	SE				·
SB	2	S				
SB	3	NE				
SB	4	N				
SB	11	FC				

No DECOMP, a configuração de subsistemas utilizada atualmente é a seguinte:

3.3.3 Configuração hidráulica

A configuração hidráulica é definida através dos registros com caracteres UH nas colunas 1 e 2. Os campos que compõem esse registro são os seguintes:

IDENTIFICAÇÃO UH

UHE código da usina hidrelétrica no arquivo HIDR.DAT

Índice do reservatório equivalente de energia (REE) em que ela será considerada no DECOMP

VINI volume inicial em % do volume útil

DEFMIN defluência mínima (m³/s)

EVAP identificador para a consideração da evaporação
OPER estágio em que a usina entra em operação
VMORTOINI % do volume morto no início do estudo
LIMSUP limite superior para a vazão vertida (m³/s)

Observações:

Obs. 1: Os registros UH definem o parque hidráulico do estudo, logo todas as usinas em operação até o horizonte do estudo precisam ser incluídas neste bloco de dados e devem ser consideradas nos mesmos REEs definidos no estudo do modelo NEWAVE, modelo provedor função de custo futuro para o horizonte do estudo DECOMP.

Obs. 2: Caso o campo OPER esteja em branco, a usina é considerada para operação desde o primeiro estágio, caso contrário este campo indicará o estágio a partir do qual a usina estará disponível (o estágio pode corresponder a alguma semana do mês inicial ou ao segundo mês, essa identificação é sequencial e depende do total de estágios de cada estudo.

Exemplo da definição da configuração hidráulica:

&	UHE	REE	VINI	DEFMIN	EVAP	OPER	VMORTOINI	LIMSUP	FATOR
&	xxx	XX	xxxxxxxxx	XXXXXXXXX	х	xx	XXXXXXXXX	XXXXXXXX	xxxxxxx
&.									
&*	018		CEMIG						
&.									
&	CAMARG	os							
UH	1	10	53.22		1				
& :	ITUTIN	IG A							
	2		0.0		1				
	FUNIL								
	4		0.0		1				
	EMBORC								
	24		15.56		1				
	APIM E								
	27		34.35		1				
	APIM B								
	28		0.0		1				
	NOVA P								
	25		20.02		1				
	AO SIM				_				
	33		87.54		1				
	TRES M								
UH	156	1	32.46		1				

3.3.4 Configuração térmica

Os dados da configuração de usinas térmicas são definidos com o uso dos caracteres CT nas colunas 1 e 2. Os campos que compõem esse registro são os seguintes:

IDENTIFICAÇÃO CT

UTE código da usina termelétrica
S Índice do subsistema
Nome UTE nome da usina

Ie estágio a partir do qual as informações são válidas

Gmin geração mínima obrigatória por patamar

Gmax geração máxima por patamar

R\$/MWh custo variável de geração da usina por patamar

Exemplo da definição da configuração térmica:

	Pro		emição da comi	<u> </u>	
&				PATAMAR 1 PATAMAR 2 PATAMAR 3	
&	+-+	+	++++	++	+
&	UTE	s	Nome UTE le	Gmin Gmax S/MWh Gmin Gmax S/MWh Gmin Gmax	S/MWh
&	+-+	++	++++	+++	+
CT	65	1	ATLAN_CSA 1	150.1150.1 0.00150.1150.1 0.00150.1150.1	0.00
CT	65	1	ATLAN_CSA 2	150.3150.3 0.00150.3150.3 0.00150.3150.3	0.00
CT	65	1	ATLAN_CSA 3	129.8129.8 0.00129.8129.8 0.00129.8129.8	0.00
CT	65	1	ATLAN_CSA 4	131.3131.3 0.00131.3131.3 0.00131.3131.3	0.00
CT	65	1	ATLAN_CSA 5	139.1139.1 0.00139.1139.1 0.00139.1139.1	0.00
CT	65	1	ATLAN_CSA 6	148.3148.3 0.00148.3148.3 0.00148.3148.3	0.00
CT	65	1	ATLAN_CSA 7	126.3126.3 0.00126.3126.3 0.00126.3126.3	0.00
CT	13	1	ANGRA 2 1	0.0 0.0 20.12 0.0 0.0 20.12 0.0 0.0	20.12
CT	13	1	ANGRA 2 4	900.01125. 20.12849.01062. 20.12620.0775.0	20.12
CT	13	1	ANGRA 2 5	1080.1350. 20.121080.1350. 20.121080.1350.	20.12
CT	1	1	ANGRA 1 1	520.0640.0 31.17520.0640.0 31.17520.0640.0	31.17
CT	171	1	NORTEFLU 1 1	400.0400.0 58.86400.0400.0 58.86400.0400.0	58.86
CT	171	1	NORTEFLU 1 7	391.0391.0 58.86391.0391.0 58.86391.0391.0	58.86
CT	172	1	NORTEFLU 2 1	100.0100.0 69.88100.0100.0 69.88100.0100.0	69.88
CT	172	1	NORTEFLU 2 7	0.0 0.0 69.88 0.0 0.0 69.88 0.0 0.0	69.88

Observações:

Obs. 1 As informações de uma usina térmica podem ser válidas em estágios consecutivos.

A cada registro CT, o modelo carrega as informações para o estágio corrente e para os demais estágios subsequentes. Caso seja fornecido outro registro CT, os limites operacionais serão redefinidos seguindo essa regra. Assim, estes registros devem ser fornecidos em ordem crescente dos estágios.

No exemplo, a geração mínima e máxima da usina de Angra 2 (UTE 13) foi declarada igual a ZERO MWmed para o estágio 1 (Ie=1),e segundo a regra, esses valores serão válidos para todos os demais estágios do estudo até a declaração dos valores de 900 e 1125 MWmed para geração mínima e máxima no estágio 4 (Ie=4), e depois, geração mínima e máxima de 1080 e 1350 MWmed a partir do estágio 5 (Ie=5), permanecendo válidos para os demais estágios do estudo (6 e 7).

No caso de Angra 1(UTE 1) os valores de geração mínima de 520 MWmed e de 640 MWmed declarados para o estágio 1 (Ie=1) serão válidos para todos os demais estágios do estudo.

Obs. 2 Ressaltamos que os registros CT devem ser fornecidos em ordem crescente dos estágios.

3.3.5 Estações de bombeamento

Os dados da configuração das estações de bombeamento são definidos com o uso de registros com caracteres UE nas colunas 1 e 2. Os campos que compõem esse registro são os seguintes:

IDENTIFICAÇÃO **UE**

UNE código da estação de bombeamento

S Índice do subsistema
Nome nome da estação

USM usina de montante, para onde é enviada a água usina de jusante, de onde é retirada a água

 $\begin{array}{lll} \text{Qmin} & \text{m}^3/\text{s} & \text{vazão bombeada mínima} \\ \text{Qmax} & \text{m}^3/\text{s} & \text{limite máximo de bombeamento} \end{array}$

Cons Mwmed/m³/s consumo específico das estações de bombeamento

Exemplo dos dados de estações de bombeamento:

&								
&XX	UNE	s	(NOME)	USM	USJ	Qmin (m³/s) Qma	x (m³/s) Cons	$MWmed/m^3/s$)
UE	001	1	Sta Cecilia	181	125	75	160.	0.20
UE	002	1	Vigario	182	181	75	190.0	0.44
UE	003	1	Traicao	109	108	0.0	270.0	0.30
UE	004	1	Pedreira	118	109	0.0	395.0	0.25

3.3.6 Carga de energia

Os dados de carga de energia são definidos com o uso dos caracteres DP nas colunas 1 e 2. Os campos que compõem esse registro são os seguintes:

Identificação DP

IP Índice do período (estágio) S Índice do subsistema

PAT número de patamares no estágio

MWmed carga de energia em MW médios (por patamar)
PAT_1 duração do patamar em horas (por patamar)

Nesta versão, o limite máximo de patamares de carga que podem ser considerados é 3 (três). Exemplo dos dados de carga de energia para um estudo de 4semanas e um mês estocástico:

&				PESADA		MEDIA		LEVE	
&	++	+ s	+ PAT				+++		
& &	Ie ++	+	+				Pat_2(h) +++		
&									
DP	1	1	3	44807.0	18.0	43893.0	89.0	34629.0	61.0
DP	1	2	3	13331.0	18.0	13901.0	89.0	10144.0	61.0
DP	1	3	3	11740.0	18.0	11757.0	89.0	9981.0	61.0
DP	1	4	3	5813.0	18.0	5709.0	89.0	5279.0	61.0
DP	1	11	3		18.0		89.0		61.0
&									

3.3.7 Custo de déficit

Os dados de custo de déficit são definidos com o uso dos caracteres CD nas colunas 1 e 2. Os campos que compõem esse registro são os seguintes:

IDENTIFICAÇÃO CD

NUMÍndice da curva de déficitSÍndice do subsistemaNOMEnome da curva de déficit

INDÍndice do estágio para qual os dados são válidosLIMSUPlimite superior do corte de carga em % da cargaCUSTOcusto de déficit associado ao segmento da curva

Exemplo dos dados de custo de déficit:

&					10 INTE	ERV	20 INT	ERV	3o INT	ERV
&	PAT	S	NOME	Ie	LIMSP	CUSTO	LIMSP	CUSTO	LIMSP	CUSTO
&	хx	Х	xxxxxxx	xxxXX	XXXXXX	(XXXXXXXX	xxxxxXX	XXXXXXX	xxxxxXX	XXXXXXX
CD	1	1	1PDEF	1	100	4596.31	100	4596.31	100	4596.31
CD	1	2	1PDEF	1	100	4596.31	100	4596.31	100	4596.31
CD	1	3	1PDEF	1	100	4596.31	100	4596.31	100	4596.31
CD	1	4	1PDEF	1	100	4596.31	100	4596.31	100	4596.31

Observações:

- Obs. 1 As informações dos registros CD seguem as mesmas regras dos registros CT, ou seja, o modelo carrega as informações para o estágio corrente (campo Ie) e para os estágios subsequentes. Caso seja fornecido outro registro CD, os limites operacionais serão redefinidos para o estágio informado e todos os estágios seguintes.
- Obs. 2 Ressaltamos que desde janeiro de 2017, o custo de déficit foi definido para um único patamar de déficit.

3.3.8 Dados de geração de pequenas usinas

Os dados de geração de pequenas usinas são definidos com o uso dos caracteres PQ nas colunas 1 e 2. Os campos que compõem esse registro são os seguintes:

IDENTIFICAÇÃO PQ

NOME nome associado ao conjunto de pequenas usinas

S Índice do subsistema

EST estágio para o qual os valores são válidos

VALOR valor da geração das pequenas usinas por patamar de carga

Exemplo dos dados de geração de pequenas usinas:

&							
œ							
&	NOME	S	Ie	PAT1 I	PAT2 I	ETA	
&	XXXXXXXXX	ΧX	xxx	XXXXX	(xxxx	XXXXX	
PQ	d1463SECO	1	1	182	175	138	
PQ	SUDESTE	1	1	3275	3275	3275	
PQ	d1463SECO	1	7	188	177	137	
PQ	SUDESTE	1	7	4420	4420	4420	
PQ	d1463SUL	2	1	126	130	96	
PQ	SUL	2	1	1699	1699	1699	
PQ	d1463SUL	2	7	135	132	93	
PQ	SUL	2	7	1792	1792	1792	
PQ	d1463NE	3	1	246	239	200	
PQ	NORDESTE	3	1	3702	3702	3702	
PQ	d1463NE	3	7	246	241	199	
PQ	NORDESTE	3	7	4052	4052	4052	
PQ	NORTE	4	1	184	184	184	
PQ	NORTE	4	7	186	186	186	

Observações:

- Obs. 1: Os valores de geração das pequenas usinas são abatidos da carga dos subsistemas.
- Obs. 2: Os montantes identificados com "d1463" referem-se a desvios de carga definidos Conforme despacho ANEEL 1463.
- Obs. 3: Ressaltamos que os registros PQ devem ser fornecidos em ordem crescente dos estágios. O modelo carrega as informações para o estágio corrente (campo Ie) e para os estágios subsequentes. Caso seja fornecido outro registro PQ, os limites operacionais serão redefinidos para o estágio informado e todos os estágios seguintes.

3.3.9 Geração de Itaipu no trecho de 50Hz

Este recurso permite que a representação da capacidade de transporte de energia entre Itaipu e os subsistemas Sul e Sudeste, através do nó de Ivaiporã, seja detalhada através de um conjunto de restrições específico. A figura abaixo ilustra esta representação para interligação de Itaipu.

Figura – Representação da interligação de Itaipu

Conforme a documentação do modelo, manual de referência, a usina de Itaipu é simulada no subsistema Sudeste mas a sua geração é repartida, por meio de restrições, entre as linhas de transmissão de 50Hz e 60Hz conforme limites definidos pelo usuário. Os registros IT indicam o valor da carga da ANDE e a geração de ITAIPU 50Hz.

Na formulação deste recurso são consideradas as seguintes restrições:

$$GH_{t}^{Itaipu} - IVSU_{t} - IVSE_{t} + SUIV_{t} + SEIV_{t} = IT50_{t}$$

$$GH_{t}^{Itaipu} = IT50_{t} + IT60_{t}$$

onde:

GH^{Itaipu}	geração total de Itaipu no período t
$IT60_t$	geração de Itaipu 60 Hz no período t para atendimento do Sul e Sudeste
$IT50_t$	geração de Itaipu 50 Hz (dado de entrada: registro IT)
$IVSU_t$	fluxo de Ivaiporã para o subsistema Sul no período t
$IVSE_t$	fluxo de Ivaiporã para o subsistema Sudeste no período t
$SUIV_t$	fluxo do subsistema Sul para Ivaiporã no período t
$SEIV_t$	fluxo do subsistema Sudeste para Ivaiporã no período t

Os dados de geração de Itaipu no trecho de 50Hz são definidos com o uso dos caracteres IT nas colunas 1 e 2. Os campos que compõem esse registro são os seguintes:

IDENTIFICAÇÃO	IT
EST	estágio para o qual os dados são válidos
UHE	código da usina Itaipu no arquivo HIDR.DAT
S	Índice do subsistema onde será considerada a geração de Itaipu
50Hz	valor da geração de Itaipu nas unidades de 50Hz
ANDE	valor do consumo de energia previsto para atendimento da ANDE

Exemplo dos dados de geração de Itaipu no trecho de 50Hz para um estudo de 6 semanas e um mês estocástico:

```
&
                  |--PAT1--|--PAT 2--|--PAT 3--|
&
  EST
        UHE
                   50Hz ANDE 50Hz ANDE 50Hz ANDE
&
   хx
        XXX
                  XXXXXxxxxXXXXXxxxx
IT
         66
                   4149 2249 3728 1828 3193 1293
    1
    7
                   3999 2099 3668 1768 2918 1018
```

- Obs. 1 No sentido de maximizar a otimização dos recursos do SIN na execução do PMO, este detalhe de planejamento vem sendo utilizado com maior grau de flexibilização, sem perda da sua eficácia. Para tanto, apenas a geração mínima de Itaipu é pré-definida. A diferença em relação à sua disponibilidade total é somada ao limite de recebimento do Sudeste, aumentando de modo fictício a capacidade desta interligação nos dados de entrada – registros IA.
- Obs. 2 Os registros IT devem ser fornecidos em ordem crescente dos estágios. O modelo carrega as informações para o estágio corrente (campo Ie) e para os estágios subsequentes. Caso seja fornecido outro registro IT, os limites operacionais serão redefinidos para o estágio informado e todos os estágios seguintes.

3.3.10 Limites de intercâmbio entre subsistemas

Os dados de limites de intercâmbio entre subsistemas são definidos com o uso dos caracteres IA nas colunas 1 e 2. Os campos que compõem esse registro são os seguintes:

IDENTIFICAÇÃO	IA
EST	estágio para o qual os dados são válidos
S1	índice do primeiro subsistema (DE)
S2	índice do segundo subsistema (PARA)
DE -> PARA	limite de transferência no sentido DE->PARA (por patamar)
PARA -> DE	limite de transferência no sentido PARA->DE (por patamar)

Exemplo dos dados de limite de intercâmbio entre subsistemas:

&				PATAM	MAR 1	PATAMAI	R 2	PATAMAR	3	
&	Ιe	S1	S2	DE->PARA	PARA->DE	DE->PARA	PARA->DE	DE->PARA	PARA->DE	
&	xx	XX	xx :	XXXXXXXXX	XXXXXXXXX	XXXXXXXXX	xxxxxxxx	XXXXXXXXXX	xxxxxxxx	
IA	1	N	FC	99999	99999	99999	99999	99999	99999	
IA	1	NE	FC	3600	4700	3800	4700	4200	4700	
IA	1	SE	FC	4000	4000	4000	4000	4000	4000	
IA	1	SE	IV	6720	10851	6720	11272	6020	11808	
ΙA	3	SE	IV	6720	10351	6720	10772	6020	11308	
IA	4	SE	IV	6720	10151	6720	10572	6020	11108	
IA	5	SE	IV	6720	10551	6720	10972	6020	11508	
IA	6	SE	IV	6720	10851	6720	11272	6020	11808	
IA	7	SE	IV	6720	11001	6720	11332	6020	12083	
IA	1	SE	NE	990	1000	990	1000	990	1000	
IA	1	IV	S	8400	6500	8400	6500	7700	6100	
& N	ova	Inter	ligacao	Norte-Suc	leste (Bipol	o Xingu-Est	treito)- I	ni. Oper. C	Comercial en	n Dez/2017
IA	1	N	SE	2000	1635	2000	1635	2000	1635	
IA	7	N	SE	4000	2000	4000	2000	4000	2000	

- Obs. 1: As informações dos campos S1 e/ou S2 identificam os subsistemas e precisam ser coerentes com os códigos definidos nos registros SB. Exceto o nó de Ivaiporã, que só pode ser identificado como "IV" quando utilizado o recurso opcional do registro IT para definir valores de Itaipu 50 Hz.
- Obs. 2: Ressaltamos que os registros IA devem ser fornecidos em ordem crescente dos estágios. O modelo carrega as informações para o estágio corrente (campo Ie) e para os estágios subsequentes. Caso seja fornecido outro registro IA, os limites operacionais serão redefinidos para o estágio informado e todos os estágios seguintes.

3.3.11 Parâmetros para execução e controle do processamento

Os principais parâmetros de execução encontram-se definidos no quadro abaixo.

```
&
    xxxxx
                                                 taxa de desconto anual (%)
ТX
     12.0
    xxxxxxxxx
GP
          0.001
                                                 tolerância para convergência (%)
&
æ
    XXX
ΝI
   200
                                                 número máximo de iterações
æ
    ХX
          XX
                XXXX
          02
                 2018
DT
    24
                                                  data do primeiro dia do estudo (sábado da semana operativa)
```

Observações:

Obs. 1: A semana operativa para os estudos do ONS e CCEE inicia-se sempre aos sábados, terminando na 6ª feira seguinte.

3.3.12 Manutenção programada em usinas hidrelétricas

Os dados de disponibilidade em função das manutenções programadas são definidos com o uso dos caracteres MP nas colunas 1 e 2. Os campos que compõem esse registro são os seguintes:

IDENTIFICAÇÃOMPUSIusina para a qual serão informados os fatores de disponibilidadeFDISPfator de disponibilidade (%) para cada estágio (semana ou mês) do estudo

Exemplo dos dados de manutenção programada:

```
&
  USI Sem1 | Sem2 | Sem3 | Sem4 | Sem5 | Sem6 | Mes2
&
  &MP
EMAE
&HENRY BORDEN
MP 119 0.9550.9550.9550.9550.9550.9551.000
&..........
      CESP
& . . . . . . . . . . . . .
          . . . . . . . . . . . . . . . . . . .
&P. PRIMAVERA
   46 0.9591.0001.0001.0001.0001.000
&JAGUARI
&PARAIBUNA
  121 1.0001.0001.0001.0001.0001.0001.000
MP
```


- Obs. 1 A disponibilidade final de cada UHE no segundo mês será resultado do produto fator de manutenção (1.00) versus o fator de disponibilidade (registros FD), posto que no segundo mês não existem dados para manutenção programada.
- Obs. 2 Atualmente, o valor de FD no segundo mês é calculado a partir dos dados de TEIF e IP disponíveis no cadastro de usinas hidráulicas.

3.3.13 Fator de disponibilidade de usinas hidrelétricas

Os dados de disponibilidade de usinas hidrelétricas são definidos com o uso dos caracteres FD nas colunas 1 e 2. Os campos que compõem esse registro são os seguintes:

IDENTIFICAÇÃO FD

USIusina para a qual serão informados os fatores de disponibilidadeFDISPfator de disponibilidade (p.u.) para cada estágio do estudo

Exemplo dos dados de disponibilidade:

```
&
&
   USI
        Sem1 | Sem2 | Sem3 | Sem4 | Sem5 | Sem6 | Mes2
&
        &
                                            Henry Borden
FD
   119 1.0001.0001.0001.0001.0001.0000.871
                                            P.Primavera
   46 1.0001.0001.0001.0001.0001.0000.938
FD
                                            Jaguari
        1.0001.0001.0001.0001.0001.0000.974
FD
   120
       1.0001.0001.0001.0001.0001.0000.953
                                            Paraibuna
FD
   121
```

Observações:

- Obs. 1 Atualmente, o valor de FD nas semanas do PMO é de 100% ou 1.00 pu.
- Obs. 2 A disponibilidade final de cada UHE é resultado do produto fator de manutenção (registros MP) versus o fator de disponibilidade (registros FD).

3.3.14 Manutenção programada em usinas termelétricas

Os dados de disponibilidade de usinas termelétricas em função das manutenções programadas são definidos com o uso dos caracteres MT nas colunas 1 e 2. Os campos que compõem esse registro são os seguintes:

IDENTIFICAÇÃO MT

USI usina para a qual serão informados os fatores de disponibilidade

SIST Índice do subsistema ao qual pertence a usina

FDISP fator de disponibilidade (%) para cada estágio do estudo

Exemplo dos dados de manutenção programada:

```
æ
   USI
&
          Sem1 | Sem2 | Sem3 | Sem4 | Sem5 | Sem6 | Mes2...
      Х
          æ
   XX
æ
       CEMIG
&..........
&IGARAPE
MΤ
       1 1.0001.0001.0001.0001.0001.000
&...........
      FURNAS
&...........
&ST.CRUZ 34
MΤ
  4 1
          1.0001.0001.0001.0001.0001.0001
&R.SILVEIRA
          1.0001.0001.0001.0001.0001.0001.000
MT
```

3.3.15 Dados de volume de espera para controle de cheias

Os dados de volume de espera para reservatórios são definidos com o uso dos caracteres VE nas colunas 1 e 2. Os campos que compõem esse registro são os seguintes:

IDENTIFICAÇÃO **VE**

USI usina para a qual serão informados os volumes de espera

VOLESP volume disponível para operação (em %) para cada estágio do estudo

Exemplo dos dados de volume de espera:

```
æ
   USI Sem1|Sem2|Sem3|Sem4|Sem5|Sem6|Mes2...
&CAMARGOS
    1 70.2470.2471.7380.6589.5894.05100.0
VE
&FURNAS
     6 40.0060.0075.0085.0090.0095.00100.0
VE
&M.MORAES
       65.0080.0087.0092.0095.0098.00100.0
&MARIMBONDO
   17 85.0090.0090.0092.0094.0095.0095.00
VE
&CACONDE
   14 96.0396.0398.0298.0298.0298.02100.0
VF.
&A. VERMELHA
VE
   18 80.0090.0090.0092.0097.0098.00100.0
& EMBORCACAO
   24 30.0050.0070.0080.0090.0095.00100.0
VE
```

Observações:

Obs. 1 Os dados de volume de espera para controle de cheias são calculados externamente ao modelo DECOMP e são considerados como restrições obrigatórias (não flexíveis ou "hard").

3.3.16 Dados de enchimento de volume morto

Os dados de enchimento volume morto de usinas hidrelétricas são definidos com o uso dos caracteres VM e DF nas colunas 1 e 2. Os campos que compõem esse registro são os seguintes:

IDENTIFICAÇÃO VM e DF

USI usina para a qual serão informados os dados de enchimento de volume morto

TAXA vazão a ser armazenada (m³/s) durante o enchimento para cada estágio do estudo (quando no registro VM)

vazão mínima a ser defluída (m³/s) durante o enchimento, para cada estágio do estudo (quando no registro

DF)

Exemplo dos dados de enchimento de volume de espera:

&	USI	Sem1 Sem2 Sem3 Sem4 Sem5 Sem6 Mes2	
&	xxx	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	
VM	203	300. 300. 300.	
DF	203	150. 150. 150.	

Observações:

- Obs. 1 Esses dados devem ser considerados apenas ilustrativos, pois essa usina já se encontra em operação. Nesse caso, durante o período do enchimento (quatro estágios) deverão ser armazenados 100 m³/s e a defluência mínima será de 150 m³/Atualmente, o valor de FD nas semanas do PMO é de 100%.
- Obs. 2 Ressalta-se que o valor informado no grupo DF (defluência mínima) é um limite mínimo a ser atendido, e o modelo DECOMP poderá, caso necessário liberar uma vazão superior a esse limite.
- Obs. 3 Caso seja necessário estabelecer um valor fixo, ou pré-determinado de defluência, deve-se utilizar o grupo de dados de restrições hidráulicas(registros HQ), que será abordado nos itens seguintes.

3.3.17 Dados de restrições elétricas

As restrições elétricas foram modeladas no DECOMP de modo a representar as limitações operativas frequentes nos estudos de planejamento de curto prazo.

Essas restrições são representadas por inequações ($LI \le \sum kG_t \le LS$) que impõem limites sobre a geração das usinas (hidráulicas e/ou térmicas) e, também, sobre o fluxo nas interligações considerando, se necessário, **o fator de ponderação** k **diferente da unidade**.

Os dados de restrições elétricas são definidos com três tipos de registro. O primeiro deles é identificado com os caracteres RE nas colunas 1 e 2 e define um índice externo para restrição e seu período de duração. Os campos que compõem esse registro RE são os seguintes:

IDENTIFICAÇÃO RE – identificação da restrição elétrica

NREST número de identificação da restrição definido pelo usuário

EST_I estágio inicial para consideração da restrição estágio final para consideração da restrição

O segundo tipo de registro, denominado LU, define os limites operativos da restrição elétrica em MWmed por patamar. Os campos que compõem esse registro são os seguintes:

IDENTIFICAÇÃO LU – identificação dos limites da restrição elétrica

NREST número de identificação da restrição definido pelo usuário no registro RE

ESTÁGIO estágio a partir do qual os limites inseridos serão válidos
LI (ipat) limite inferior da restrição elétrica para o patamar
LS (ipat) limite superior da restrição elétrica para o patamar

O terceiro tipo de cartão de identificação serve para definir as usinas ou intercâmbios que fazem parte da restrição elétrica. A sua identificação é feita com os seguintes caracteres nas colunas 1 e 2 (dependem do tipo de usina ou intercâmbio). Os campos que compõem esse registro são os seguintes:

FU usina hidrelétrica FT usina termelétrica

FI intercâmbio entre subsistemas

Os campos que compõem cada registro são dependentes do tipo de usina, ou intercâmbio, e são os seguintes, para cada tipo de componente da restrição.

Para usina hidrelétrica:

IDENTIFICAÇÃO FU

NREST número de identificação da restrição definido pelo usuário no registro RE

ESTÁGIO estágio a partir do qual o fator inserido será válido

CÓDIGO código da usina hidrelétrica conforme o arquivo HIDR.DAT

FAT_PART fator de participação da usina hidrelétrica na restrição elétrica

Exemplo de uma restrição para uma usina hidrelétrica (valores com objetivo didático):

```
&-21- SERRA DO FACAO
&Minimo / Maximo ---> Informacao do Agente
¿Devido a queda bruta de 69 m, a geracao minima das unidades e de 50 MW, conforme a curva de conlina
disponibilizada pelo fabricante da turbina.
RE
    21 1
LU
    21
         1
                               212
                                          50
                                                   212
                                                              50
                                                                       212
FU
    21
         1
              21
                            1
```

Essa restrição pode ser visualizada da seguinte forma, supondo um estudo com 7 estágios:

Estágio	Patamar 1	Patamar 2	Patamar 3
1	$50 \le Gh \le 212$	$50 \le Gh \le 212$	$50 \le Gh \le 212$
2	$50 \le Gh \le 212$	$50 \le Gh \le 212$	$50 \le Gh \le 212$
3	$50 \le Gh \le 212$	$50 \le Gh \le 212$	$50 \le Gh \le 212$
4	$50 \le Gh \le 212$	$50 \le Gh \le 212$	$50 \le Gh \le 212$
5	50 ≤ Gh ≤ 212	$50 \le Gh \le 212$	50 ≤ Gh ≤ 212
6	$50 \le Gh \le 212$	$50 \le Gh \le 212$	$50 \le Gh \le 212$
7	$50 \le Gh \le 212$	$50 \le Gh \le 212$	$50 \le Gh \le 212$

Para usina termelétrica:

IDENTIFICAÇÃO FT

NREST número de identificação da restrição definido pelo usuário no registro **RE**

ESTÁGIO estágio a partir do qual o fator inserido será válido

código da usina termelétrica conforme os cartões CT (configuração do parque térmico)

SUBSISTEMA índice do subsistema ao qual pertence a usina termelétrica FAT_PART fator de participação da usina termelétrica a restrição elétrica

Exemplo de uma restrição para uma usina termelétrica (valores com objetivo didático):

```
...
& -90- M.LAGO(Despacho Razao Eletrica - Restricao Intrassubsistema)
RE 619 1 1
LU 619 1 62 59 80
FT 619 1 90 1
...
```

Essa restrição foi declarada válida apenas para o estágio 1, e pode ser visualizada da seguinte forma supondo um estudo com 7 estágios:

Estágio	Patamar 1	Patamar 2	Patamar 3
1	0 ≤ Gt ≤ 62	$0 \le Gt \le 59$	$0 \le Gt \le 80$
2	Não existe restrição	Não existe restrição	Não existe restrição
3	Não existe restrição	Não existe restrição	Não existe restrição
4	Não existe restrição	Não existe restrição	Não existe restrição
5	Não existe restrição	Não existe restrição	Não existe restrição
6	Não existe restrição	Não existe restrição	Não existe restrição
7	Não existe restrição	Não existe restrição	Não existe restrição

Para intercâmbios:

IDENTIFICAÇÃO FI

NREST número de identificação da restrição definido pelo usuário RE

ESTÁGIO estágio a partir do qual o fator inserido será válido

Subsistema DE código do subsistema de origem, conforme definição nos registros **SB**Subsistema PARA código do subsistema de destino, conforme definição nos registros **SB**FAT_PART fator de participação do fluxo de intercâmbio na restrição elétrica

Exemplo de uma restrição para intercâmbios limitando o valor máximo de recebimento do subsistema Nordeste (valores com objetivo didático):

```
MAXIMO RECEBIMENTO NE FNE + FSENE (SE_NE + FC_NE) - Restricao entre Subsistemas
  Nota Tecnica 0022/2018 - Limites de Transmissao para o PMO
  MOP/ONS 052-S/2018
RE
   403
          1
               7
LU
    403
          1
                       0
                               4200
                                                   4200
                                                                 0
                                                                        4200
    403
              FC
                   NE
                                 1
FI
    403
```


Essa restrição pode ser visualizada da seguinte forma, supondo um estudo com 7 estágios:

Estágio	Patamar 1	Patamar 2	Patamar 3
1	0 ≤ FC-NE+SE-NE ≤ 4200	0 ≤ FC-NE+SE-NE ≤ 4200	0 ≤ FC-NE+SE-NE ≤ 4200
2	$0 \le FC-NE+SE-NE \le 4200$	$0 \le FC-NE+SE-NE \le 4200$	$0 \le FC-NE+SE-NE \le 4200$
3	$0 \le FC-NE+SE-NE \le 4200$	$0 \le FC-NE+SE-NE \le 4200$	$0 \le FC-NE+SE-NE \le 4200$
4	$0 \le FC-NE+SE-NE \le 4200$	$0 \le FC-NE+SE-NE \le 4200$	$0 \le FC-NE+SE-NE \le 4200$
5	$0 \le FC-NE+SE-NE \le 4200$	$0 \le FC-NE+SE-NE \le 4200$	$0 \le FC-NE+SE-NE \le 4200$
6	$0 \le FC-NE+SE-NE \le 4200$	$0 \le FC-NE+SE-NE \le 4200$	$0 \le FC-NE+SE-NE \le 4200$
7	$0 \le FC-NE+SE-NE \le 4200$	$0 \le FC-NE+SE-NE \le 4200$	$0 \le FC-NE+SE-NE \le 4200$

Exemplo de uma restrição combinando duas hidrelétricas (valores com objetivo didático):

&	Soma da	geraç	ão de	Ilha Solteira Equiva	lente e Água Vermelha		
RE	180	1	6				
LU	180	1		3590	3390	2460	
FU	180	1	44	1			
FU	180	1	18	1			

Essa restrição pode ser visualizada da seguinte forma, supondo um estudo com 7 estágios:

Estágio	Patamar 1	Patamar 2	Patamar 3
1	$0 \le Gh44 + Gh18 \le 3590$	0 ≤ Gh44+Gh18 ≤ 3390	0 ≤ Gh44+Gh18 ≤ 2460
2	$0 \le Gh44+Gh18 \le 3590$	0 ≤ Gh44+Gh18 ≤ 3390	0 ≤ Gh44+Gh18 ≤ 2460
3	$0 \le Gh44 + Gh18 \le 3590$	$0 \le Gh44+Gh18 \le 3390$	$0 \le Gh44 + Gh18 \le 2460$
4	$0 \le Gh44+Gh18 \le 3590$	$0 \le Gh44+Gh18 \le 3390$	0 ≤ Gh44+Gh18 ≤ 2460
5	$0 \le Gh44+Gh18 \le 3590$	0 ≤ Gh44+Gh18 ≤ 3390	0 ≤ Gh44+Gh18 ≤ 2460
6	$0 \le Gh44+Gh18 \le 3590$	0 ≤ Gh44+Gh18 ≤ 3390	0 ≤ Gh44+Gh18 ≤ 2460
7	Não existe restrição	Não existe restrição	Não existe restrição

Exemplo de uma restrição combinando geração hidrelétrica e intercâmbio (valores com objetivo didático):

```
& FNS = GH LAJEADO GH P.ANGICAL + FC_SE
& Maximo ---> Limites de Seguranca de Transmissao - Restricao Interna ao Subsistema SE
  Nota Tecnica 0022/2018 - Limites de Transmissao para o PMO
  MOP/ONS 020-S/2018
RE
   405
         1
   405
                              1900
                                                   1900
                                                                       1100
LU
    405
              257
                            1
FU
          1
FU
    405
          1
              261
                            1
    405
                   SE
```

Essa restrição pode ser visualizada da seguinte forma, supondo um estudo com 7 estágios:

Estágio	Patamar 1	Patamar 2	Patamar 3
1	$0 \le Gh257 + Gh261 + FC - SE \le 1900$	$0 \le Gh257 + Gh261 + FC - SE \le 1900$	$0 \le Gh257+Gh261+FC-SE \le 1100$
2	$0 \le Gh257 + Gh261 + FC - SE \le 1900$	$0 \le Gh257+Gh261+FC-SE \le 1900$	$0 \le Gh257+Gh261+FC-SE \le 1100$
3	$0 \le Gh257 + Gh261 + FC - SE \le 1900$	$0 \le Gh257 + Gh261 + FC - SE \le 1900$	$0 \le Gh257+Gh261+FC-SE \le 1100$
4	$0 \le Gh257 + Gh261 + FC - SE \le 1900$	$0 \le Gh257+Gh261+FC-SE \le 1900$	$0 \le Gh257+Gh261+FC-SE \le 1100$
5	$0 \le Gh257 + Gh261 + FC - SE \le 1900$	$0 \le Gh257 + Gh261 + FC - SE \le 1900$	$0 \le Gh257+Gh261+FC-SE \le 1100$
6	$0 \le Gh257 + Gh261 + FC - SE \le 1900$	$0 \le Gh257 + Gh261 + FC - SE \le 1900$	$0 \le Gh257+Gh261+FC-SE \le 1100$
7	$0 \le Gh257 + Gh261 + FC - SE \le 1900$	$0 \le Gh257 + Gh261 + FC - SE \le 1900$	$0 \le Gh257+Gh261+FC-SE \le 1100$

Observações:

- Obs.1 caso não sejam fornecidos limites para todos os estágios do estudo, os últimos limites da restrição elétrica informados (índice do estágio mais alto) ficam válidos para o restante do período (até o estágio final da restrição).
- Obs.2 os limites da restrição elétrica são informados aos pares para cada patamar de carga, seguindo a mesma ordem fornecida no cartão DP (a ordem é: pesada, média e leve).

3.3.18 Dados de tempo de viagem entre aproveitamentos

Esse conjunto de dados serve para a inserção dos dados referentes à defasagem da defluência entre pares de aproveitamentos hidrelétricos. Os dados de tempo de viagem entre usinas hidrelétricas são definidos com o uso dos caracteres VI nas colunas 1 e 2. Os campos que compõem esse registro são os seguintes:

IDENTIFICAÇÃO VI – identificação do registro de tempo de viagem

COD código da usina de montante

DURAÇÃO tempo de viagem em horas entre essa usina e a de jusante

VAZ_DEF vazões defluentes por essa usina no período anterior ao início do estudo (m³/s)

Os dados a seguir ilustram as informações referentes à usina de Três Marias:

```
& tempo de viagem entre Tres Marias/Sobradinho
   USI DUR QDEF1QDEF2QDEF3QDEF4QDEF5
æ
   xxx XXX XXXXxxxxxXXXXXxxxxXXXXX
&VI
&TRÊS MARIAS
VI 156 360
                80
                     78
                          79
                               80
                                    81
&QUEIMADO
   162
        360
                     17
                          17
                               17
```

3.3.19 Alteração de dados de cadastro

O arquivo HIDR.DAT contém os dados das usinas hidrelétricas referentes à sua configuração final (completa). Assim, para todas usinas "em motorização" e/ou para informações especificas, como o cálculo de vazões, utilizamos o conjunto de registros **AC** para modificar os dados já cadastrados.

Uma descrição completa sobre as variáveis que podem ser alteradas, bem como, o detalhamento dos formatos e campos, é apresentada no Manual do Usuário do Modelo DECOMP.

Os campos que compõem esse registro são os seguintes:

IDENTIFICAÇÃO **AC**

código da usina que terá seus dados alterados

NOME_VAR nome da variável que será alterada (lista de mnemônicos detalhada no MANUAL DO USUÁRIO)
VALORES dependendo da variável a ser alterada, existem algumas variações nos campos de entrada

MÊS mês a partir do qual os valores são alterados

SEMANA

índice da semana a partir da qual os valores são alterados

Seguem exemplos de alteração de dados declarados no cadastro HIDR.DAT:

beguein	cacinpios	uc unter	ação de dac	ios acciarados no car	austro IIIDIX.I	7111.	
& UHE	MNEMONICO	VALOR			MES	NUMERO	DA SEMANA
& xxx	XXXXXX	xxxxxxx	«xxxxxxxxx	(XXXXXXXXXX	XXX	×	
&AC							
&Q.QUEIXO)						
AC 95	COFEVA	10	0				
£******	* Tucurui	*****	*****				
AC 275		12			MAR	. 1	
AC 275	JUSMED	13	. 06		ABR		
& DEFINIC	AO DOS POS	TOS DE V	/AZAO NATURA	AL.			
&							
&HENRY BO	RDEN						
AC 119	NUMPOS	300					
&ITIQUIRA	II						
AC 305	NUMPOS	300					
&Pereira	Passos						
AC 133	NUMPOS	300					
&Billings							
AC 118	NUMPOS	301					
&							
&							
&			EXPAN	ISAO 2º MES			
&-285-JIR		_					
AC 285	NUMCON	1				. 1	
AC 285	NUMMAQ	1				. 1	
	POTEFE	1	75.0		MAR	. 1	
&-288-BEL							
AC 288		1	_			. 1	
AC 288		1	8		MAR		
AC 288		1	611.1		MAR	. 1	
&-230-SAC		_				_	
AC 230		1				. 1	
AC 230		1	2		MAR		
AC 230			175.0		MAR		
AC 230		1	_		ABR		
	NUMMAQ		3		ABR		
AC 230	POTEFE	1	175.0		ABR		

3.3.20 Contratos de importação e/ou exportação

Os contratos de importação funcionam no modelo DECOMP como se fossem uma usina térmica, cujo custo de operação (variável) é igual ao custo ofertado pelo agente importador. Dessa forma, a gestão dos recursos é feita levando-se em conta as disponibilidades desses contratos e seus custos.

Para os contratos de exportação, o modelo DECOMP leva em conta o resultado líquido entre o valor recebido pela exportação de energia e os custos associados à produção de energia para a decisão de exportação. Caso essa diferença seja positiva, o modelo DECOMP decide pela exportação, pois haverá um ganho unitário ao se fazer a exportação de energia.

Os formatos dos registros que definem tanto os contratos de exportação como os de importação são idênticos, variando apenas na identificação dos registros: CI para os contratos de importação e CE para os contratos de exportação (sempre sob a ótica do sistema brasileiro).

Os campos que compõem esses registros são:

IDENTIFICAÇÃO CI – contratos de importação, CE – contratos de exportação

NUM número do contrato

subsistema relacionado ao contrato(entrada/saída da energia)

NOME nome do contrato

ESTÁGIO estágio a partir do qual são informados os valores de energia disponíveis no contrato

LINF limite inferior de utilização do contrato (MW médios)
LSUP limite superior de utilização do contrato (MW médios)

CUSTO custo associado ao MWmed transacionado no contrato (R\$/MWh)

Segue exemplo de dados para os contratos de importação:

&				PA	TAMAR	1	F	ATAMA	R 2		PATAM	AR 3
&	NUM	S NOME	Ie	LINF L	SUP	CUSTO I	INF I	SUP	CUSTO	LINF	LSUP	CUSTO
&		XXXXXXXXXX	xx	XXXXXx	XXXXX	XXXXXXXXX	XXXXX	XXXXX	xxxxxxxx	XXXXX	XXXXX	XXXXXXXX
& A	RGENT	INA										
CI	071	2 ArgGara1B	1	0.	0.	206.11	0.	0.	206.11	0.	0.	206.11
CI	038	2 ArgGara2A	1	0.	0.	53.07	0.	0.	53.07	0.	0.	53.07
CI	039	2 ArgGara2B	1	0.	0.	53.07	0.	0.	53.07	0.	0.	53.07
CI	040	2 ArgGara2C	1	0.	0.	53.07	0.	0.	53.07	0.	0.	53.07
CI	059	2 ArgGara2D	1	0.	0.	205.99	0.	0.	205.99	0.	0.	205.99
& C	OPEL-	ANDE										
CI	007	2 Copel Ande	1	0.0	0.0		0.0	0.0		0.0	0.0	
&		-										

Observações:

- Obs. 1 As informações dos campos que identificam os subsistemas precisam ser coerentes com os códigos/numeração definidos nos registros SB.
- Obs. 2 Ressaltamos que os registros CI e CE devem ser fornecidos em ordem crescente dos estágios, pois o modelo carrega as informações para o estágio corrente (campo Ie) e para todos os estágios subsequentes.

3.3.21 Dados da função de custo futuro do NEWAVE

Os dados da função de custo futuro são definidos com o uso dos caracteres FC nas colunas 1 e 2. Os campos que compõem esse registro são os seguintes:

IDENTIFICAÇÃO FC

NEWINF nome do arquivo descritor do estudo do NEWAVE

NEWCUT nome do arquivo com a função de custo futuro do NEWAVE

Segue exemplo de especificação do nome dos arquivos da FCF disponíveis na pasta de um estudo:

&	MNEMONICO	ARQUIVO
&	XXXXX	***********
FC	NEWV21	caminho para pasta com arquivos gravados/CORTESH.DAT
FC	NEWCUT	caminho para pasta com arquivos gravados/CORTES.DAT

3.3.22 Energias afluentes pré-estudo

As energias afluentes pré-estudo são importantes para o correto acoplamento do DECOMP com a função de custo futuro do NEWAVE. A partir da versão 25 do DECOMP, os valores de ENA observada nos 11 estágios anteriores ao início do mês de estudo do DECOMP para cada reservatório equivalente de energia (REE) são calculados a partir das vazões observadas (informadas no arquivo fornece os cenários de afluência). Então, os registros EA e ES foram descontinuados a partir da versão 25 do DECOMP.

3.3.23 Taxas de irrigação ou retirada de água

O modelo DECOMP permite representar as retiradas de água para os usos consuntivos (irrigação, abastecimento, etc) consideradas prioritárias à produção de energia elétrica (restrições obrigatórias).

Os dados de retiradas de água são definidos para cada usina através dos registros TI composto pelos seguintes campos:

IDENTIFICAÇÃO **TI**CÓDIGO código do aproveitamento para o qual serão fornecidos os valores de retirada de água valores de vazão retirada para cada estágio do estudo (m³/s)

Exemplo dos dados de da retirada de água:

& & XX	USI XXX	Sem1 S	•			•	•		
& TI TI	1 6	0.4 6	0. 4 6		0. 4 6	0. 4 6	0. 4 6		Camargos Furnas
TI	31	6.9	6.9	6.9	6.9	6.9	6.9	10.7	Itumbiara
TI TI	169 172				33.3 19.5				Sobradinho Itaparica

3.3.24 Vazão mínima do histórico

Os dados de percentual de vazão mínima do histórico são definidos com o uso dos caracteres RQ nas colunas 1 e 2. Os campos que compõem esse registro são os seguintes:

IDENTIFICAÇÃO RQ

CÓDIGO código do REE para o qual serão fornecidos os percentuais de vazão mínima do histórico

PERCENTUAL percentuais de vazão mínima obrigatória nos aproveitamentos hidrelétricos em estágio do estudo

Exemplo de dados de percentual da vazão mínima histórica:

	Cimp	10 40 0	auuo	5 ac	pere	CIItu	ui uu	· vuzu	o minima motorica.		
&	USI	Sem1 S	em1 Sem2 Sem3 Sem4 Sem5 Sem6 mes02								
&	xxx	XXXXXx	XXXXxxxxXXXXXxxxxXXXXX								
RQ	1	100	100	100	100	100	100	0			
RQ	6	100	100	100	100	100	100	0			
RQ	7	100	100	100	100	100	100	0			
RQ	5	100	100	100	100	100	100	0			

RQ	10	100	100	100	100	100	100	0
RQ	2	100	100	100	100	100	100	0
RQ	3	100	100	100	100	100	100	0
RQ	4	100	100	100	100	100	100	0
RQ	8	100	100	100	100	100	100	0

Observações:

- Obs. 1 Os valores de vazão mínima do histórico são valores médios mensais e estão declarados no cadastro HIDR.DAT.
- Obs. 2 O exemplo acima ilustra os valores usuais destes registros no estudos de PMO DECOMP, sendo considerado um percentual igual a 100% nos estágios semanais e o valor nulo no estágio mensal relativo aos cenários estocásticos.

3.3.25 Função de energia armazenada (EZ)

Nos casos em que ocorre o acoplamento hidráulico entre reservatórios equivalentes (SE-N com o rio Tocantins e SE-NE com o rio São Francisco), pode-se limitar a parcela da contribuição do volume de alguns aproveitamentos para o cálculo da energia armazenada.

Em todos os casos, é sempre necessário identificar as limitações para que o cálculo da energia armazenada dos subsistemas no modelo DECOMP fique compatível com o do modelo NEWAVE. Os dados de limitação de volume para cálculo da energia armazenada são definidos com o uso dos caracteres EZ nas colunas 1 e 2. Os campos que compõem esse registro são os seguintes:

```
IDENTIFICAÇÃO
CÓDIGO
PERCENTUAL
```

EZ

código do reservatório para o qual serão fornecidos os percentuais de volume que devem ser considerados no cálculo da energia armazenada percentuais do volume que deverá ser considerado no cálculo da energia armazenada

```
UHE
          VUTIL
         XXXXX
    xxx
EZ.
    251
           55.0
                  SERRA DA MESA
    156
         100.0
                  TRES MARIAS
    252
         100.0
                  CANA BRAVA
          100.0
                  SAO SALVADOR
    253
ΕZ
    257
          100.0
                  PEIXE ANGICAL
    261
          100.0
                  LAJEADO
                  QUEIMADO
    162
          100.0
EZ.
    156
          100.0
                  TRÊS MARIAS
         100.0
                  IRAPÉ
EZ
    148
    155
         100.0
                  RETIRO BAIXO
         100.0
```

- Obs. 1 Os valores de vazão mínima do histórico são valores médios mensais e estão declarados no cadastro HIDR.DAT.
- Obs. 2 O exemplo acima ilustra os valores usuais destes registros no estudos de PMO DECOMP sendo considerado um percentual igual a 100% para a maioria dos vínculos hidráulicos, exceção do valor máximo de 55% para contabilização da energia armazenada do reservatório de Serra da Mesa para o REE Norte.

3.3.26 Restrições de vazão afluente (RHA)

O modelo DECOMP possui alguns tipos de restrições específicas para a representação dos detalhes da operação hidráulica de aproveitamentos por meio de inequações.

Dentre as restrições operativas utilizadas no planejamento da operação, pode ser necessário fixar limites para a vazão afluente aos aproveitamentos.

Os dados para a definição da afluência mínima e/ou máxima são fornecidos através de três blocos de registros (similar aos da restrição elétrica).

O primeiro identificador é o tipo de restrição definido com o uso dos caracteres HA nas colunas 1 e 2, e o campos que compõem esse registro são:

IDENTIFICAÇÃO

NUM_REST

EST_INICIAL

EST_FINAL

MA

índice da restrição definido pelo usuário
estágio inicial a partir do qual a restrição é válida
estágio final para consideração desta restrição

O segundo grupo de dados define os limites da vazão afluente e são utilizados os caracteres LA nas colunas 1 e 2. Os campos que compõem esse registro são os seguintes:

IDENTIFICAÇÃO

NUM_REST

ESTAGIO

LIM_INFERIOR

LIM_SUPERIOR

Indice da restrição definido pelo usuário no registro HA
estágio a partir do qual os limites são válidos
limite inferior da vazão afluente (m³/s)
limite superior da vazão afluente (m³/s)

O terceiro grupo de dados define a usina para a qual se está estabelecendo os limites da vazão afluente e utilizam-se os caracteres CA nas colunas 1 e 2, e os campos que compõem esse registro são:

IDENTIFICAÇÃO CA

NUM_REST índice da restrição definido pelo usuário no registro **HA**

ESTAGIO estágio a partir do qual os limites são válidos

código da usina para a qual se está definindo os limites de vazão afluente

Exemplo de restrição de afluência (limite máximo de 190 m3/s)

```
& Afluencia Mínima Santa Cecilia

&HA

&-125- STA. CECILIA

HA 1 1 4

LA 1 1 190

CA 1 1 125
```

3.3.27 Restrições de volume armazenado ou defluente (RHV)

Para a definição de limites no volume armazenado nas usinas hidrelétricas, deve-se utilizar os registros HV, LV e CV no modo sequencial.

Os campos que compõem o registro HV definem o horizonte da restrição:

IDENTIFICAÇÃO HV

NUM_REST índice da restrição definido pelo usuário

EST_INICIAL estágio inicial para o qual a restrição é válida (pode-se inserir uma restrição a partir do 3º estágio)

EST_FINAL estágio final para o qual a restrição é válida (pode-se inserir uma restrição que deve ser considerada até o

4º estágio)

O segundo grupo de dados, registros LV, definem os limites de volume armazenado inicial e/ou final em cada estágio:

IDENTIFICAÇÃO **LV**

NUM_REST Índice da restrição definido pelo usuário no registro HV

ESTAGIO estágio para o qual os limites são válidos

LIM_INFERIOR limite inferior do volume armazenado ou defluente (hm³) limite superior do volume armazenado ou defluente (hm³)

Finalizando esse tipo de restrição deve ser incluído o registro CV identificando a usina para a qual foi definida a restrição:

IDENTIFICAÇÃO CV

NUM_REST índice da restrição, definido pelo usuário estágio para o qual a usina deve ser considerada

CODIGO código da usina para a qual se está definindo os limites de volume armazenado ou defluente

TIPO_VAR tipo da variável que identifica se é volume armazenado ou defluente

Para representar as possibilidades de defluência nas usinas hidrelétricas, TIPO_VAR pode assumir os seguintes valores, identificando as seguintes possibilidades:

VARM volume armazenado

VDEF volume defluente para jusante

VDES volume desviado

VBOM volume bombeado para as estações de bombeamento

Os exemplos a seguir ilustram a definição de limites para o armazenamento mínimo:

```
&-25- NOVA PONTE
&limites minimos p/a reserv. Nova Ponte- ANEEL - 6% VU
ΗV
   3 1
     3 1
3 1
LV
                   623.
             25
                         1.0
CV
                                VARM
                   minimo FAX ANEEL - 6% VU
&24 - Emborcacao -
    4 1 7
4 1
ΗV
LV
                  783.4
             2.4
                           1
CV
     4
        1
                                 VARM
&-33- S. SIMAO
&limites minimos p/a reserv. S.Simao - ANEEL - 10% VU
ΗV
     6
         1
LV
      6
         1
                   554.
CV
              33
                         1.0
                                 VARM
```

Observações:

Obs. 1 Os limites da restrição RHV são fornecidos em hm³, deve-se ter atenção especial para estudos onde coexistem estágios semanais e mensais, quando se definem limites para as variáveis associadas à defluência (VDEF, VBOM e VDES).

3.3.28 Restrições de vazão defluente (RHQ)

Para a definição de limites na vazão defluente em usinas hidrelétricas, deve-se utilizar esse conjunto de registros. O primeiro identificador é o tipo de restrição e é definido com o uso dos caracteres HQ nas colunas 1 e 2. Os campos que compõem esse registro são os seguintes:

IDENTIFICAÇÃO **HQ**

NUM_REST índice da restrição, definido pelo usuário

EST_INICIAL estágio inicial para o qual a restrição é válida (pode-se inserir uma restrição a partir do 3º estágio)

EST_FINAL estágio final para o qual a restrição é válida (pode-se inserir uma restrição que deve ser considerada até o

4º estágio)

O segundo grupo de dados define os limites de vazão defluente e utiliza-se os caracteres LQ nas colunas 1 e 2. Os campos que compõem esse registro são os seguintes:

IDENTIFICAÇÃO **LQ**

NUM_REST índice da restrição, definido pelo usuário
ESTAGIO estágio a partir do qual os limites são válidos

LIM_INFERIOR limite inferior da vazão defluente (m³/s) – valor por patamar de carga LIM_SUPERIOR limite superior da vazão defluente (m³/s) – valor por patamar de carga

O terceiro grupo de dados identifica a usina para a qual se está estabelecendo os limites da vazão defluente e é definido com o uso dos caracteres CQ nas colunas 1 e 2. Os campos que compõem esse registro são os seguintes:

IDENTIFICAÇÃO CQ

NUM_REST índice da restrição, definido pelo usuário

ESTAGIO estágio a partir do qual a usina deve ser considerada

CODIGO código da usina para a qual se está definindo os limites de vazão defluente

TIPO_VAR tipo da variável que identifica se é vazão defluente

Para representar as possibilidades de defluência nas usinas hidrelétricas, COD_VAR pode assumir os seguintes valores, identificando as seguintes possibilidades:

QDEF vazão defluente para jusante (m³/s)

QDES vazão desviada (m³/s)

QBOM vazão bombeada nas estações (m³/s)

O exemplo abaixo ilustra a definição dos limites de vazão defluente para Camargos e Itutinga:

&-1-	CAMA	RGOS								Operativas	Hidraulicas -
&					ONS	DPP-REL	- 0169/20	17 – REVIS	AO 1		
HQ	12	1	7								
LQ	12	1		34	1000	34	1000	34	1000		
CQ	12	1	1		1 QDEF						
&-2-	ITUT	INGA			I	nformacad	do Invent	ario de Re	stricoes	Operativas	Hidraulicas -
&					ONS	DPP-REL	- 0169/20	17 - REVIS	AO 1		
HQ	13	1	7								
LQ	13	1		34	1170	34	1170	34	1170		
CQ	13	1	2		1 QDEF						

3.3.29 Função de Aversão ao risco (AR)

Os dados dos coeficientes da metodologia de aversão a risco na composição da função de custo futuro devem ser informados pelos registros AR. Os campos que compõem esse registro são os seguintes:

IDENTIFICAÇÃO AR

Ie Índice do período (estágio)

Coeficientes Valores dos coeficientes (em percentagem). Caso não preenchidos, serão

utilizados os mesmos valores do NEWAVE conforme dados dos arquivos da

função custo futuro.

O exemplo abaixo ilustra os campos deste registro para o PMO e Preço:

			 <u> </u>	3	
&	Ie	Lamb alfa			
&	XXX	XXXXX XXXXX			
AR	1				

3.3.30 Perdas por evaporação (EV)

O registro EV foi disponibilizado a partir da versão 26 do DECOMP para uso no PMO e Preço em substituição a metodologia de cálculo das perdas por evaporação anterior.

Assim sendo, a partir deste aprimoramento, o usuário deve escolher o modelo do cálculo da vazão evaporada que será utilizado durante a resolução do problema. Os campos que compõem o registro EV são os seguintes:

IDENTIFICAÇÃO EV

FLAG DO MODELO Flag para indicar o modelo para cálculo da vazão evaporada:

0-modelo tradicional por fora do PL;

1-modelo linear. Índice do período (estágio)

Mnemonico para Para o caso do campo 2 ser igual a "1", deve-se informar o volume de referência a ser utilizado:

VOLUME DE REFERENCIA INI – Utiliza o volume inicial como volume de referência; MED – Utiliza o volume útil médio

como referência.

O exemplo abaixo ilustra os campos deste registro para o PMO e Preço:

&	FLAG	Volume
&	XXX	xxxx
EV	1	INI

3.4 DADGNL.RV0 – Dados das usinas GNL

É o arquivo que contém os dados do parque térmico GNL informando a disponibilidade para novos comandos e os valores já comandados em estudos anteriores. Para facilitar o preenchimento do arquivo de dados, é possível incluir comentários, bastando para isso colocar o caractere & na primeira coluna da linha.

Neste arquivo devem ser fornecidos 4 blocos de dados descrevendo a configuração do parque térmico e suas restrições operativas.

3.4.1 Configuração térmica

Os dados da configuração de usinas térmicas são definidos com o uso dos caracteres TG nas colunas 1 e 2. Os campos que compõem esse registro são os seguintes:

IDENTIFICAÇÃO	TG
cod	código da usina termelétrica
S	sistema em que ela será considerada no DECOMP
nome	nome da usina
ip	estágio a partir do qual as informações são válidas
infl	geração mínima obrigatória por patamar
disp	geração máxima por patamar
C	custo variável de geração da usina por patamar (R\$/MWh)

Exemplo da definição da configuração térmica:

&			CO 1 *** 1 GISTRO TG)		CAS A GNL ***					
&	 U	 sina		Est	 Pat	1	Pat	2	 Pat:	3
&	cod	s	nome	ip	infl disp	cvu i	infl disp	cvu i	nfl disp	cvu
& X	XXX	XX	XXXXXXXX	κхХХ	xxxxxXXXXXxx	(xxxxxxxx	XXXXXxxxxXXX	XXXXXXXXX	xxxxXXXXxx	XXXXXXXX
TG	86	1	ST.CRUZ N	10 1	0 350	101.28	0 350	101.28	0 350	101.28
TG	15	1	LINHARES	1	0195.5	151.98	0195.5	151.98	0195.5	151.98
TG	15	1	LINHARES	4	0 204	151.98	0 204	151.98	0 204	151.98

3.4.2 Número de semanas em cada período mensal

O grupo de dados NS define o número de semanas nos meses do estudo e no mês posterior, conforme o "lag" de operação das usinas GNL.

&	mes	semanas
& X	XX	X
GS	1	4
GS	2	4
GS	3	5

Comentário: o primeiro GS corresponde ao número de semanas do mês inicial, o segundo ao número de semanas do mês estocástico e o terceiro registro para as semanas do mês seguinte ao horizonte do estudo.

3.4.3 Lag de antecipação do despacho

O grupo de dados NL definem o número de meses para comandar a operação das usinas GNL.

S _c	cod	SS	la
& X	XXX	XX	X
NL	86	1	2
NL	15	1	2

3.4.4 Comandos antecipados

Os dados dos comandos são definidos com o uso dos caracteres GL nas colunas 1 e 2. Os campos que compõem esse registro são os seguintes:

IDENTIFICAÇÃO	GL
cod	código da usina termelétrica
SS	sistema em que ela será considerada no DECOMP
ip	estágio a partir do qual as informações são válidas
geração	geração obrigatória por patamar
dur	Horas de duração do patamar
data ini	dia inicial da semana correspondente ao comando (dia-mês-ano)

Exemplo da definição da configuração térmica:

&										
&	Usi	na		Pat 1		Pat 2		Pat3		
&	cod	SS	sem	geracao	dur	geracao	dur	geracao	dur	data ini
λХ	XXX	XX	XX	XXXXXXXXXX	XXXXX	XXXXXXXXX	XXXXX	XXXXXXXXXX	XXXXX	xxXXxxx
&SA	NTA C	RUZ	NOVA							
& & M	AIO									
GL	86	1	1	350.0	18.	350.0	89.	350.0	61.	04052013
GL	86	1	2	350.0	18.	350.0	89.	350.0	61.	11052013
GL	86	1	3	350.0	18.	350.0	89.	350.0	61.	18052013
GL	86	1	4	350.0	15.	350.0	80.	350.0	73.	25052013
&&J	UNHO									
GL	86	1	5	350.0	18.	350.0	89.	350.0	61.	01062013
GL	86	1	6	350.0	18.	350.0	89.	350.0	61.	08062013
GL	86	1	7	350.0	18.	350.0	89.	350.0	61.	15062013
GL	86	1	8	350.0	18.	350.0	89.	350.0	61.	22062013
&&J	ULHO									
GL	86	1	9	350.0		350.0		350.0		29062013

4 Arquivos de Dados e Relatórios do modelo DECOMP

Os arquivos e relatórios de saída do modelo DECOMP, também, são classificados em arquivos texto ou binários, arquivos não formatados. O processamento de um caso estudo gera um conjunto mínimo de arquivos no disco. Um conjunto mais amplo dos resultados pode ser solicitado pelo usuário por meio dos respectivos registros de controle. Ainda, durante o processamento, são gerados em disco um conjunto de arquivos auxiliares que serão apagados pelo modelo ao término da sua execução.

Os principais relatórios de saída, arquivos denominados RELATO e SUMARIO, serão detalhados nos itens seguintes deste guia. O apêndice I apresenta um resumo de todos os arquivos de dados e resultados do modelo DECOMP.

4.1 Arquivo RELATO

O arquivo denominado RELATO contém um extenso conjunto de relatórios de dados e, relatórios de operação. Neste arquivo são apresentados os dados de entrada, o resumo dos parâmetros do estudo e um conjunto de relatórios conforme as premissas do estudo. Após o conjunto de relatórios sobre os dados de entrada, é apresentado o relatório de convergência do estudo e seguido dos relatórios de operação em cada semana, incluindo o detalhamento do balanço hidráulico por usina, o atendimento as restrições elétricas e hidráulicas, a geração térmica e custos associados.

A extensão do relatório de operação é definida pelo usuário por meio dos registros IR. Na versão 21, caso o usuário não faça alteração alguma nos parâmetros de controle, este relatório de operação é impresso para todos os estágios semanais e os resultados dos cenários mensais serão publicados no arquivo RELATO2.

A seguir será apresentado o detalhamento do conteúdo dos relatórios que compõem o RELATO.

4.1.1 Relatório Inicial

No quadro I é apresentado o relatório inicial contendo a identificação do arquivo de dados e o status da validação do seu conteúdo contendo mensagens de alerta para o usuário (ATENÇÃO).

O status da validação "OK" corresponde a finalização da leitura do arquivo para esta carga de dados inicial e, caso sejam detectados problemas nos dados de entrada, estes serão reportados neste relatório com a identificação de "ERRO".

QUADRO I - RELATO - Relatório INICIAL

PROGRAMA LICENCIADO PARA OPERADOR NACIONAL DO SISTEMA ELETRICO ONS


```
CEPEL: DECOMP - Coordenacao da Operacao a Curto Prazo - v27 - Jan/2018(L)
   07/03/2018 17:27
                     PAG.
  PROGRAMA LICENCIADO PARA OPERADOR NACIONAL DO SISTEMA ELETRICO ONS
  TREINAMENTO 2018 - CASO BASE
PLANEJAMENTO:07/03/2018
  ______
        DADOS DO EXECUTAVEL
  PLATAFORMA_
                ____: LINUX (L)
  NUMERO DE BITS___
                     _: 64 Bits
  PACOTE DE OTIMIZACAO: LIBSLV
   _____
  LENDO ARQUIVO DE DADOS DE VAZOES INCREMENTAIS ...
  vazoes.rv0
  VERSAO DO GEVAZP: 06.00.00;
  OK!
  LENDO ARQUIVO DE DADOS GERAIS ...
  dadger.rv0
 ATENCAO PT: NUMERO DE PATAMARES NAO DEFINIDOS NO REGISTRO PT
  ATENCAO UH: USINA 125 NAO ESTA NA CONFIGURAÇÃO DO NEWAVE
  ATENCAO UH: USINA 180 NAO ESTA NA CONFIGURAÇÃO DO NEWAVE
  ATENCAO UH: USINA 181 NAO ESTA NA CONFIGURAÇÃO DO NEWAVE
. . . .
  ATENCAO : RESTRICAO RHV
                          73 APRESENTA COEFICIENTES IGUAIS PARA OS PERIODOS SEMANAIS E MENSAIS
  ATENCAO : RESTRICAO RHV
                           75 APRESENTA COEFICIENTES IGUAIS PARA OS PERIODOS SEMANAIS E MENSAIS
  ATENCAO : RESTRICAO RHV
                           92 APRESENTA COEFICIENTES IGUAIS PARA OS PERIODOS SEMANAIS E MENSAIS
  ATENCAO : RESTRICAO RHV 101 APRESENTA COEFICIENTES IGUAIS PARA OS PERIODOS SEMANAIS E MENSAIS
  LENDO ARQUIVO DE DADOS DE MLT ...
  mlt.dat
  OK!
  LENDO ARQUIVO DE FATORES DE PERDA PARA CG ...
  perdas.dat
  LENDO AROUIVO DE INFORMAÇÕES PARA AS RHE ...
  OK!
```


4.1.2 Parâmetros do estudo

O segundo relatório apresentado no RELATO contém um resumo dos parâmetros do estudo conforme exemplo no quadro II, a seguir.

QUADRO II - RELATO - Relatório de Parâmetros do Estudo

```
Relatorio dos
                                  Dados Gerais
Inicio do periodo de estudos
                                                                                      ---> MARCO
                                                                                                                    /Ano:2018
Final do periodo de estudos
                                                                                       ---> ABRIL
                                                                                                                    /Ano:2018
Numero de semanas do mes inicial
                                                                                      ---> 6
Estagio inicial ( semana )
                                                                                       --->
                                                                                                    1
Numero de dias excluidos do segundo mes
                                                                                      --->
Numero de patamares de carga nas semanas
Restricoes tipo "escada" para geracao
                                                                                      --->
                                                                                                   NAO
                                                                                     --->
Total de estagios
Numero de estados por estagio
                                                                                      --->
                                                                                                     1
                                                                                                           1 1 1 1 1 143
Numero de usinas hidraulicas na configuração ---> 157
Penalidade p/ vertimento no subsistema SE ---> 0.10
Penalidade p/ vertimento no subsistema S ---> 0.10
                                                                                      ---> 0.1000E+00 ($/HM3)
Penalidade p/ vertimento no subsistema SE ---> 0.1000E+00 ($/HM3)
Penalidade p/ vertimento no subsistema S ---> 0.1000E+00 ($/HM3)
Penalidade p/ vertimento no subsistema NE ---> 0.1000E+00 ($/HM3)
Penalidade p/ vertimento no subsistema N ---> 0.1000E+00 ($/HM3)
Penalidade p/ vertimento no subsistema N ---> 0.1000E+00 ($/HM3)
Penalidade para o intercambio N -FC ---> 0.5000E-04 ($/MM1)
Penalidade para o intercambio SE-FC ---> 0.5000E-04 ($/MW1)
Penalidade para o intercambio SE-NE ---> 0.5000E-04 ($/MW1)
Penalidade para o intercambio N -SE ---> 0.5000E-03 ($/MW1)
Penalidade para o intercambio N -SE ---> 0.1000E-03 ($/MW1)
Penalidade para o intercambio N -SE ---> 0.1000E-03 ($/MW1)
Penalidade para o intercambio N -SE
                                                                                     ---> 0.1000E-03 ($/MWh)
Taxa de desconto anual
                                                                                      ---> 0.1200E+02 (%)
                                                                                      ---> 0.1000E-02 (%)
Tolerancia para convergencia
Numero maximo de iteracoes
                                                                                      ---> 200
                                                                                      ---> NORMAL
Nivel de relatorio
```

4.1.3 Configuração dos REEs e Subsistemas

O terceiro relatório apresentado no RELATO contém a descrição dos reservatórios equivalentes que compõem os subsistemas definidos na configuração do estudo do NEWAVE para elaboração da função de custo futuro, conforme exemplo no quadro a seguir.

QUADRO IIII - RELATO — Relatório dos dados da configuração das Usinas Hidroelétricas, Reservatórios Equivalentes (REEs) e Subsistemas

X				Х
Reserv. E	q.(REE)	S	ubsist	ema
				Nome NEWAVE
XX		-XX		-XX
1	SUDESTE	1	SE	SUDESTE
6	MADEIRA	1	SE	SUDESTE
7	TPIRES	1	SE	SUDESTE
5	ITAIPU	1	SE	SUDESTE
10	PARANA	1	SE	SUDESTE
12	PRNPANEMA	1	SE	SUDESTE
2	SUL	2	S	SUL
11	IGUACU	2	S	SUL
3	NORDESTE	3	NE	NORDESTE
4	NORTE	4	N	NORTE
8	BMONTE	4	N	NORTE
9	MAN-AP	4	N	NORTE
XX		-XX		-XX

4.1.4 Relatório dos Dados de Cadastro e Limites Operacionais das Usinas Hidráulicas

O quarto relatório apresentado no RELATO contém a descrição do parque hidráulico de cada um dos reservatórios equivalentes de energia que compõem os subsistemas, conforme exemplo a seguir.

QUADRO IV - RELATO — Relatório dos dados da configuração dos Reservatórios Equivalentes (REEs) e Subsistemas

X		X		X		X
	Usina	Re	eserv. Eq.(RE	EE)	Subsi	stema
			Nome			Nome NEWAVE
						ХХ
	6 TRES MARIAS					SUDESTE
13	4 SALTO GRANDE	1	SUDESTE	1	SE	SUDESTE
28	5 JIRAU	6	MADEIRA	1	SE	SUDESTE
229	9 TELES PIRES	7	TPIRES	1	SE	SUDESTE
6	6 ITAIPU	5	ITAIPU	1	SE	SUDESTE
	1 CAMARGOS	1.0	PARANA	1	SE	SUDESTE
	2 ITUTINGA		PARANA	1	SE	SUDESTE
	4 FUNIL-GRANDE	10	PARANA	1	SE	SUDESTE
8	9 GARIBALDI	2	SUL	2	S	SUL
	7 SLT.SANTIAGO	11	IGUACU	2	C	SUL
	8 SALTO OSORIO			2	S S	SUL
	8 SALIO OSORIO	11	IGUACU	2	5	SUL
169	9 SOBRADINHO	3	NORDESTE	3	NE	NORDESTE
17:	2 ITAPARICA	3	NORDESTE	3	NE	NORDESTE
26	7 ESTREITO TOC	4	NORTE	4	N	NORTE
27	5 TUCURUI	4	NORTE	4	N	NORTE
	2 CURUA-UNA	8	BMONTE	4	N	NORTE
286	6 STO ANT JARI	9	MAN-AP	4	N	NORTE
	4 FERREIRA GOM	9	MAN-AP	4	N	NORTE
20.	- LUMBIAN GOM	9	LILIIA LAL	-3	TA	NOKIL

4.1.5 Relatório dos Dados de Cadastro e Limites Operacionais das Usinas Hidráulicas

O Relatório de Dados de Cadastro é sempre impresso. Neste relatório é descrita a configuração das bacias e são apresentados alguns limites operativos, conforme exemplo. Neste relatório são consideradas as modificações dos dados de cadastro realizadas por meio registros AC.

QUADRO V - RELATO – Relatório de Dados de Cadastro

Relati	orio dos Dad	los	do C	'adaat	~ ~	dae	Haina	o IIi da	lia		ofi mumo	000	nonti.	. do oot	agio: 1	/AITCAD			
	X-										_		-		_			v	v v
VV																		A	A-A
Num	Nome S	sis	Pos (Jsi Us	i (Jsi ∖	7olume V	olume V	/util	Previs	Pinst 1	Perdas	Qtur	Qdef	Vert	Produt	Somprd	Produt	Somprd T
	da Usina		Vaz d	Jus De	s i	Jus N	Maximo M	inimo	Inic	Oper		Hid	Maxima	Minima	Maximo	Eqv	Eqv	65% VU	65% VU I
			Ope 0	pe En	е	hm3	hm3	8		MW	% - I	M m3,	s m3	/s m3/	s MJ/1	m3 MJ/r	n3 MJ/n	13 MJ/m	n3 P
XX	X-	X	X	X	-X-	X	X-	X-	X	X	X	>	[KX	X	X-	X-	X-	
1	CAMARGOS	SE	1	2	0	2	792.	120.	53.2	MAR2018	46.	1.2 %	258	. 0.	0.1E+21	0.1783	6.0977	0.1971	6.2134 M
2	ITUTINGA	SE	2	4	0	4	11.	11.	0.0	MAR2018	52.	2.0 %	213	. 0.	0.1E+21	0.2447	5.9194	0.2447	6.0163 D
4	FUNIL-GRANDE	SE	211	6	0	6	304.	304.	0.0	MAR2018	180.	0.8 r	n 521	. 0.	0.1E+21	0.3457	5.6747	0.3457	5.7716 D
24	EMBORCACAO	SE	24	31	0	31	17725.	4669.	15.6	MAR2018	1192.	1.3 %	1150	. 0.	0.1E+21	1.0370	4.3461	1.1027	4.4748 M
27	CAPIM BRANC1	SE	207	28	0	28	241.	228.	34.4	MAR2018	240.	1.8 r	1 478	. 0.	0.1E+21	0.5026	4.2134	0.5036	4.2774 M
28	CAPIM BRANC2	SE	28	31	0	31	879.	879.	0.0	MAR2018	210.	1.1 r	n 523	. 0.	0.1E+21	0.4018	3.7109	0.4018	3.7739 D
25	NOVA PONTE	SE	25	26	0	26	12792.	2412.	20.0	MAR2018	510.	0.9 r	541	. 0.	0.1E+21	0.9426	5.7661	1.0025	5.8942 M
33	SAO SIMAO	SE	33	44	0	44	12540.	7000.	87.5	MAR2018	1710.	0.6 %	2806	. 0.	0.1E+21	0.6093	2.3811	0.6241	2.4082 M
156	TRES MARIAS	SE	156	169	0	169	19528.	4250.	32.5	MAR2018	396.	0.6 r	994	. 0.	0.1E+21	0.3985	0.3985	0.4301	0.4301 M
134	SALTO GRANDE	SE	134	135	0	135	78.	78.	0.0	MAR2018	102.	6.1 %	130	. 0.	0.1E+21	0.7829	1.7852	0.7829	1.7974 D

A seguir são identificadas as colunas da tabela deste relatório:

Coluna Descrição

Num Número de identificação da usina no arquivo de cadastro

Nome da Usina Nome da usina no arquivo de cadastro

Ssis Identificação do subsistema
Pos Vaz Identificação do posto de vazão

Usi Jus Ope Identificação da usina a jusante para operação

UsiDesOpeIdentificação da usina para operação do canal de desvioUsiJusEneIdentificação da usina a jusante para cálculo de energia

Volume Maximo Volume máximo operativo (hm³)
Volume Minimo Volume mínimo operativo (hm³)

Vutil Inic Nível de partida do reservatório (% de volume útil)
Previs Oper Estágio previsto para operação do reservatório

Pinst Potência Instalada (MW)

Perdas Hidr Perdas Hidráulicas (percentual da queda bruta, ou, em metros)

Qtur Maximo Vazão máxima turbinável (m³/s)

Qdef Minimo Vazão defluente mínima (m³/s) – registro UH

Vert Maximo Limite para vertimento (m³/s)

Produt Eqv Produtividade média (MW/m³/s) supondo reservatórios operando em paralelo de

100% até zero do volume útil

Somprd Eqv% VU Produtividade média acumulada até o final da cascata (MW/m³/s)

Produt 65% VU Produtividade a 65% de armazenamento (MW/m³/s)

Somprd 65% VU Produtividade acumulada até o final da cascata a 65% de armazenamento (MW/m³/s)

Tipo Reservatório de regularização M-mensal, S-semanal ou D-diária

4.1.6 Relatório dos Dados de Defluência Mínima

O Relatório de Dados de Defluência Mínima apresenta os limites mínimos de vazão defluente mínima (vazão turbinada e vazão vertida) em cada estágio do estudo. Estes limites são obtidos a partir de informações do arquivo de dados gerais de planejamento conforme informações os registros UH ou RQ. Nos registros UH, que definem a usina hidráulica na configuração do estudo, pode ser incluído um limite mínimo de defluência para todos os estágios do estudo.

Nos registros RQ são informados percentuais, por estágio e subsistema, que são aplicados sobre o valor histórico cadastrado para cada aproveitamento definindo sua taxa de defluência.

Deve ser ressaltado que o atendimento a estas taxas é prioritário em relação à otimização de geração de energia elétrica, então caso não seja possível atender a essa restrição de vazão mínima, o programa reportará a impossibilidade. O quadro VI apresenta um exemplo deste relatório.

QUADRO VI – RELATO - Relatório dos Dados de Defluência Mínima

Num	Usina	Q_Hist S	Sem_01 S	Sem_02 S	Sem_03 S	Sem_04 S	em_05 S	em_06 M	s_02	
XX	ζ	-XX-	X-	X-	X-	X-	X-	X-	X	
1	CAMARGOS	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
2	ITUTINGA	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
4	FUNIL-GRANDE	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
24	EMBORCACAO	51	51.0	51.0	51.0	51.0	51.0	51.0	0.0	
27	CAPIM BRANC1	42	42.0	42.0	42.0	42.0	42.0	42.0	0.0	
28	CAPIM BRANC2	42	42.0	42.0	42.0	42.0	42.0	42.0	0.0	

4.1.7 Relatório dos Coeficientes de Evaporação

O Relatório dos Coeficientes de Evaporação é impresso somente quando é definido o *flag* associado à consideração desta perda no respectivo campo do registro UH do arquivo de dados gerais de planejamento.

Neste relatório são apresentados os coeficientes mensais de evaporação cadastrados para cada usina, que são associados a cada estágio do estudo, conforme exemplo no quadro seguinte.

QUADRO VII - RELATO – Relatório dos Coeficientes de Evaporação

	latorio dos Coe XX			~			X-	X
Num	Usina	Sem_01 S	Sem_02 S	Sem_03 S	Sem_04	Sem_05	Sem_06 N	1es_02
X	XX	X-	X-	X-	X	X	X-	X
1	CAMARGOS	29	29	29	29	29	29	40
2	ITUTINGA	31	31	31	31	31	31	40
4	FUNIL-GRANDE	31	31	31	31	31	31	42
24	EMBORCACAO	16	16	16	16	16	16	36
27	CAPIM BRANC1	18	18	18	18	18	18	38
28	CAPIM BRANC2	18	18	18	18	18	18	40
25	NOVA PONTE	23	23	23	23	23	23	40
33	SAO SIMAO	25	25	25	25	25	25	46

4.1.8 Relatório de Dados de Taxa de irrigação (uso múltiplo)

O Relatório dos dados de taxa de irrigação é impresso somente para as usinas que estiverem com retiradas de água definidas pelos registros TI do arquivo de dados gerais de planejamento. Nestes registros são informadas as taxas de retirada/recebimento em cada estágio, conforme exemplo no quadro VI. Caso a retirada apresente sinal negativo, considera-se como contribuição (acréscimo).

Observa-se que o atendimento a estas taxas é prioritário a otimização de geração de energia elétrica, caso não seja possível atender a esta operação o programa reportará a impossibilidade de atendimento à estas restrições.

QUADRO VIII - RELATO — Relatório dos Dados de Taxa de Irrigação

Relatorio dos	Dados d	e Taxa	de Irri	gacao			
XY USINA	XX SEM_01						
	(M3/S)	(M3/S)	(M3/S)	(M3/S)	(M3/S)	(M3/S)	(M3/S)
X	XX	>	<x< td=""><td>X</td><td>XX</td><td>></td><td>XX</td></x<>	X	XX	>	XX
CAMARGOS	0.4	0.4	0.4	0.4	0.4	0.4	0.5
FUNIL-GRANDE	1.6	1.6	1.6	1.6	1.6	1.6	3.1
EMBORCACAO	3.7	3.7	3.7	3.7	3.7	3.7	10.2
BARRA BONITA	47.9	47.9	47.9	47.9	47.9	47.9	53.9
PROMISSÃO	1.3	1.3	1.3	1.3	1.3	1.3	3.2
NAVANHANDAVA	1.5	1.5	1.5	1.5	1.5	1.5	3.7
FOZ CHAPECO	75.8	75.8	75.8	75.8	75.8	75.8	75.8
SOBRADINHO	33.3	33.3	33.3	33.3	33.3	33.3	78.7
ITAPARICA	19.5	19.5	19.5	19.5	19.5	19.5	53.2

4.1.9 Relatório de Dados de Enchimento de volume morto

O Relatório dos dados de enchimento de volume morto é impresso somente para as usinas que estiverem sob esta condição de operação definida pelos registros UH, VM e DF do arquivo de dados gerais de planejamento. Nestes registros são definidos os seguintes parâmetros:

- porcentagem do volume morto já completa no início do estudo;
- vazão que será armazenada no aproveitamento;
- vazão que será defluída pelo aproveitamento;
- estágio em que se prevê a entrada em operação do reservatório.

De acordo com estes parâmetros, o modelo desconta a vazão que deve ser armazenada durante o período do enchimento das usinas à jusante e considera disponível a vazão que será defluída. Quando se atinge o estágio em que o aproveitamento entra em operação, os seus recursos energéticos passam a fazer parte da gestão otimizada da operação dos sistemas em estudo.

O programa reportará a inviabilidade caso não seja possível atender esta operação.

4.1.10 Relatório de Dados de Manutenção Programada

O Relatório dos dados de manutenção programada é impresso para todas as usinas hidráulicas na configuração. O fator de disponibilidade de geração será de 100%, ou o percentual equivalente a partir dos valores em p.u. definidos pelos registros MP do arquivo de dados gerais de planejamento, conforme exemplo.

QUADRO IX - RELATO - Relatório dos Dados de Manutenção Programada

	Relatorio dos					_		
	-X							
Nu		_	Sem_02	_	_	_	_	_
	-X							
			100.0					
						100.0		100.0
	FUNIL-GRANDE			100.0	100.0	100.0	100.0	100.0
	EMBORCACAO	96.4		100.0	100.0	100.0	100.0	100.0
	CAPIM BRANC1	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	CAPIM BRANC2	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	NOVA PONTE	66.7	66.7	71.4	100.0	100.0	100.0	100.0
		100.0	90.5	100.0	100.0	100.0	100.0	100.0
	TRES MARIAS	100.0	90.5	100.0	100.0	100.0	100.0	100.0
	SALTO GRANDE	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	IGARAPAVA	100.0	100.0	100.0	100.0	100.0	100.0	100.0
143	AIMORES	100.0	100.0	100.0	100.0	100.0	100.0	100.0
162	QUEIMADO	100.0	100.0	100.0	100.0	100.0	100.0	100.0
148	IRAPE	100.0	100.0	100.0	100.0	100.0	100.0	100.0
217	ROSAL	71.4	100.0	100.0	100.0	100.0	100.0	100.0
193	SA CARVALHO	100.0	100.0	100.0	100.0	100.0	100.0	100.0
141	BAGUARI	100.0	100.0	100.0	100.0	100.0	100.0	100.0
14	CACONDE	100.0	100.0	100.0	100.0	100.0	100.0	100.0
18	A. VERMELHA	78.6	73.8	83.3	83.3	83.3	83.3	100.0
37	BARRA BONITA	100.0	100.0	100.0	100.0	100.0	100.0	100.0
40	PROMISSÃO	76.2	66.7	66.7	66.7	57.1	66.7	100.0
42	NAVANHANDAVA	100.0	100.0	100.0	100.0	100.0	100.0	100.0
15	E. DA CUNHA	85.7	100.0	100.0	100.0	100.0	100.0	100.0
16	A.S.OLIVEIRA	100.0	100.0	100.0	100.0	100.0	100.0	100.0

4.1.11 Relatório de Dados de Fator de Disponibilidade

O Relatório dos dados de fator de disponibilidade é impresso para todas as usinas hidráulicas na configuração. O fator de disponibilidade de geração será de 100% ou o percentual equivalente a partir dos valores em p.u. definidos pelos registros FD do arquivo de dados gerais de planejamento, conforme exemplo no quadro abaixo.

QUADRO X - RELATO - Relatório dos Dados de Fator de Disponibilidade

```
Disponibilidade das Usinas Hidraulicas (%)
            ----X----X
 Nıım
        Usina
                 Sem_01 Sem_02 Sem_03 Sem_04 Sem_05 Sem_06 Mes_02
X---X--
        1 CAMARGOS
               100.0 100.0
                            100.0
                                   100.0
 4 FUNIL-GRANDE 100.0
                      100.0
                             100.0
                                   100.0
                                          100.0
                                                 100.0
                                                        92.8
24 EMBORCACAO
                100.0
                      100.0
                             100.0
                                    100.0
                                          100.0
                                                 100.0
                                                        90.0
27 CAPIM BRANC1
                100.0
                      100.0
                             100.0
                                    100.0
                                          100.0
                                                 100.0
                                                        96.9
28 CAPIM BRANC2
                      100.0
                             100.0
                                    100.0
                100.0
                                          100.0
                                                 100.0
                                                        95.1
25 NOVA PONTE
                100.0
                       100.0
                             100.0
                                    100.0
                                          100.0
                                                 100.0
                                                        90.5
                      100.0
                             100.0
33 SAO SIMAO
                100.0
                                   100.0
                                          100.0
                                                 100.0
                       100.0
156 TRES MARIAS
                100.0
                             100.0
                                    100.0
                                          100.0
                                                 100.0
134 SALTO GRANDE
                100.0
                       100.0
                             100.0
                                    100.0
                                          100.0
                                                 100.0
                                                        96.6.
```

4.1.12 Relatório de Dados de Potência Disponível

O Relatório dos dados de potência disponível é impresso para todas as usinas hidráulicas na configuração e apresenta a capacidade de geração de cada usina (MW) para cada estágio do período do estudo. Esta parcela é calculada a partir do produto do fator de disponibilidade de geração pelo fator de manutenção da usina pela capacidade total da usina conforme cadastro.

QUADRO XI - RELATO - Relatório dos Dados de Potência Disponível

	latório de F -X		-		X	X	X	ХХ
Nur		_	_	_	_	_	_	_
X	-X	-X	X	X	X	X	X	·XX
1	CAMARGOS	46.0	46.0	46.0	46.0	46.0	46.0	41.5
2	ITUTINGA	52.0	52.0	52.0	52.0	52.0	44.9	49.0
4	FUNIL-GRANDE	180.0	180.0	180.0	180.0	180.0	180.0	167.0
24	EMBORCACAO	1149.1	1192.0	1192.0	1192.0	1192.0	1192.0	1072.8
27	CAPIM BRANC1	240.0	240.0	240.0	240.0	240.0	240.0	232.6
28	CAPIM BRANC2	210.0	210.0	210.0	210.0	210.0	210.0	199.7
25	NOVA PONTE	340.2	340.2	364.1	510.0	510.0	510.0	461.6
33	SAO SIMAO	1710.0	1547.5	1710.0	1710.0	1710.0	1710.0	1586.9
156	TRES MARIAS	396.0	358.4	396.0	396.0	396.0	396.0	318.0
134	SALTO GRANDE	102.0	102.0	102.0	102.0	102.0	102.0	98.5
10	IGARAPAVA	210.0	210.0	210.0	210.0	210.0	210.0	200.3
143	AIMORES	330.0	330.0	330.0	330.0	330.0	330.0	316.1
162	QUEIMADO	105.0	105.0	105.0	105.0	105.0	105.0	91.3

4.1.13 Relatório de Dados de Fator de Perda para o Centro de gravidade da Carga

O Relatório dos dados de fator de perda para o centro de gravidade da carga é impresso para todas as usinas hidráulicas e térmicas na configuração. O fator de perda nulo significa que não estão sendo consideradas estas perdas, ou seja, não existem informações no arquivo PERDAS.DAT.

QUADRO XII - RELATO — Relatório dos Dados de Fator de Perda para o Centro de gravidade da carga

```
Relatorio dos dados de fatores de perda para o centro de gravidade da carga (p.u.)
Arquivo de dados: PERDAS.DAT
Usinas hidraulicas
                 Pat Sem_01 Sem_02 Sem_03 Sem_04 Sem_05 Sem_06 Mes_02
               --X---X
                         --X----X----X
                                           --X---
                   1 0.000 0.000 0.000 0.000 0.000 0.000
    1 CAMARGOS
                                                           0.000
                   2 0.000 0.000
                                  0.000
                                        0.000
                                              0.000
                                                     0.000
                                                           0.000
                   3 0.000 0.000
                                  0.000
                                        0.000 0.000
                                                     0.000
                                                           0.000
    2 ITUTINGA
                   1 0.000 0.000
                                  0.000
                                              0.000
                     0.000 0.000
                                  0.000
                                        0.000
                                              0.000
                                                     0.000
                                                           0.000
                   3 0.000
                            0.000
                                  0.000
                                        0.000
                                              0.000
                                                     0.000
                                                           0.000
    4 FUNIL-GRANDE 1 0.000 0.000
                                  0.000
                                        0.000
                                              0.000
                                                     0.000
                                                           0.000
                   2 0.000 0.000
                                  0.000
                                        0.000
                                              0.000
                                                     0.000
                                                           0.000
                   3 0.000 0.000
                                  0.000
                                        0.000
                                              0.000
                                                     0.000
                                                           0.000
   24 EMBORCACAO
                     0.000 0.000
                  2 0.000 0.000
                                  0.000
                                        0.000
                                              0.000
                                                     0.000
                                                           0.000
                   3 0.000 0.000
                                  0.000
                                        0.000
                                              0.000
                                                     0.000
                                                           0.000
   0.000
                                                           0.000
                   3 0.000 0.000 0.000 0.000 0.000 0.000
                                                           0.000
```

4.1.14 Relatório dos Dados de Volume de Espera

O Relatório dos dados de volume de espera é impresso somente para as usinas sob esta condição de operação definida nos registros VE do arquivo de dados gerais de planejamento. Neste relatório são apresentados os percentuais de volume de espera para cada estágio do estudo, conforme exemplo.

QUADRO XIII - RELATO - Relatório dos Dados de Volume de Espera

	XX							
	Usina							
	XX							
	CAMARGOS	29.8			19.3		5.9	0.0
	EMBORCACAO	70.0	50.0	30.0	20.0	10.0	5.0	0.0
	CAPIM BRANC1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	NOVA PONTE	65.0	45.0	30.0	20.0	10.0	5.0	0.0
33	SAO SIMAO	8.0	5.0	5.0	3.0	2.0	2.0	0.0
156	TRES MARIAS	7.5	5.9	4.1	2.0	0.0	0.0	0.0
162	QUEIMADO	18.0	15.4	15.4	12.8	12.8	10.3	2.6
148	IRAPE	4.9	4.9	4.6	4.3	4.3	4.1	0.0
14	CACONDE	4.0	4.0	2.0	2.0	2.0	2.0	0.0
18	A. VERMELHA	20.0	10.0	10.0	8.0	3.0	2.0	0.0
37	BARRA BONITA	8.0	6.8	6.2	5.2	4.3	4.3	4.3
40	PROMISSÃO	15.0	13.0	11.7	9.9	7.8	5.9	0.0
47	A.A. LAYDNER	17.0	7.9	7.9	4.7	2.0	2.0	6.0
49	CHAVANTES	13.0	3.3	3.3	2.0	2.0	3.3	7.4
61	CAPIVARA	2.0	2.0	2.0	2.0	2.0	2.0	0.0
44	I. SOLT. EQV	10.0	5.0	5.0	3.0	2.0	2.0	0.0
120	JAGUARI	0.0	0.0	0.0	0.0	0.0	0.0	0.0
121	PARAIBUNA	0.0	0.0	0.0	0.0	0.0	0.0	0.0
6	FURNAS	60.0	40.0	25.0	15.0	10.0	5.0	0.0
7	M. DE MORAES	35.0	20.0	13.0	8.0	5.0	2.0	0.0
17	MARIMBONDO	15.0	10.0	10.0	8.0	6.0	5.0	5.0
31	ITUMBIARA	40.0	20.0	15.0	10.0	5.0	3.0	0.0

4.1.15 Relatório dos Dados das Usinas Elevatórias

Neste relatório são apresentados os dados de configuração das usinas elevatórias, seus limites operacionais (capacidade de bombeamento) e o consumo médio, conforme informações nos registros UE do arquivo de dados gerais.

QUADRO XIV - RELATO - Relatório dos Dados de Usinas Elevatórias

```
Relatorio dos Dados das Unidades Elevatorias
                ---X---X---X-
                                                  --X---
               Ssis Usi Usi Vazao Bombeada Consumo
Jus Mnt Minima Maxima MW/m³/s
Nıım
        Nome
  da Usina
SE 125 181 75.0 160.0 0.2000
SE 181 182 75.0 190.0 0.4400
SE 108 109 0.0 270.0 0.3000
  1 STA CECILIA SE 125 181
2 VIGARIO SE 181 182
   3 TRAICAO
   4 PEDRETRA
                    SE
                         109 118
                                             395.0
                                                     0.2500
```

4.1.16 Relatório dos Dados de Manutenção das Unidades Elevatória

O Relatório dos dados de manutenção programada é impresso para todas as usinas elevatórias na configuração. O fator de disponibilidade de geração será de 100%, valor *default*, ou calculado a partir dos valores em p.u. definidos pelos registros do arquivo de dados gerais de planejamento, conforme exemplo no quadro IX.

QUADRO XV - RELATO — Relatório dos Dados de Manutenção de unidades Elevatórias

```
Disponibilidade das Usinas Hidraulicas (%)
X---X-----X-----X-----X-----X
Num Elevatoria Sem_01 Sem_02 Sem_03 Sem_04 Sem_05 Sem_06 Mes_02
                    --X---
                          --X----X----
                                      --X---
  1 STA CECILIA 100.0 100.0 100.0 100.0 100.0 100.0 100.0
  2 VIGARIO
                100.0 100.0 100.0 100.0 100.0 100.0
  3 TRATCAO
                100.0 100.0 100.0 100.0 100.0 100.0 100.0
  4 PEDREIRA
                100.0
                      100.0
                             100.0
                                   100.0
                                         100.0
                                                100.0
```

4.1.17 Relatório de Dados de Usinas Térmicas

O Relatório dos Dados de Usinas Térmicas apresenta para cada usina, a capacidade de geração e custo associado(\$/MWh) em cada estágio e patamar de carga, conforme as condições de operação definidas nos registros CT do arquivo de dados gerais de planejamento.

QUADRO XVI - RELATO - Relatório dos Dados de Usinas Térmicas

XX											
Num Usina	Subsis	Estagio	GTmin_1	GTmax_1	Custo_1	GTmin_2	GTmax_2	Custo_2	GTmin_3	GTmax_3	Custo_3
			(MWmed)	(MWmed)	(\$/MWh)	(MWmed)	(MWmed)	(\$/MWh)	(MWmed)	(MWmed)	(\$/MWh)
XX	-X	X	ΧΣ	ζΣ	ζ	ΚΣ	<Σ	<2	K	X>	ΧX
13 ANGRA 2	SE	1	0.00	0.00	20.12	0.00	0.00	20.12	0.00	0.00	20.12
		2	0.00	0.00	20.12	0.00	0.00	20.12	0.00	0.00	20.12
		3	0.00	0.00	20.12	0.00	0.00	20.12	0.00	0.00	20.12
		4	900.00	1125.00	20.12	849.00	1062.00	20.12	620.00	775.00	20.12
		5	1080.00	1350.00	20.12	1080.00	1350.00	20.12	1080.00	1350.00	20.12
		6	1080.00	1350.00	20.12	1080.00	1350.00	20.12	1080.00	1350.00	20.12
		7	1080.00	1350.00	20.12	1080.00	1350.00	20.12	1080.00	1350.00	20.12

4.1.18 Relatório de Dados de Patamar de Déficit

O Relatório dos Dados de Patamar de déficit apresenta os intervalos de energia (MWmed) e os respectivos custos (\$/MWh) em cada estágio e patamar de carga dos subsistemas, conforme as informações definidas nos registros CD do arquivo de dados gerais de planejamento.

QUADRO XVII - RELATO - Relatório dos Dados de Patamar de Deficit

				XX						
lum	Usina	Subsis	_	Limitel Limitel Cust	_		_			_
				%) (MWmed) (\$/MWh)	,	, (, ,	, , ,	•	, (, ,	,
				XX						
1	1PDEF	SE		100.0 44807.0 459						
			2	100.0 44808.0 459						
			3	100.0 44708.0 459						
			4	100.0 45801.0 459						
			5	100.0 45413.0 459						
			6	100.0 45759.0 459						
			7	100.0 44273.0 459			4596.31			
1	1PDEF	S	1	100.0 13331.0 459		13901.0			10144.0	
			2	100.0 13345.0 459		13720.0			9981.0	
			3	100.0 13316.0 459		13690.0			9959.0	
			4	100.0 13571.0 459		13615.0			9778.0	
			5	100.0 13611.0 459		13456.0			9673.0	
			6	100.0 13884.0 459		13709.0			9529.0	
			7	100.0 13034.0 459		12754.0			9054.0	
1	1PDEF	NE	1	100.0 11740.0 459		11757.0			9981.0	
			2	100.0 11847.0 459		11903.0			10267.0	
			3	100.0 11906.0 459					10317.0	
			4	100.0 12144.0 459					10326.0	
			5	100.0 12152.0 459					10214.0	
			6	100.0 12242.0 459					10255.0	
			7	100.0 12172.0 459		11933.0			9855.0	
1	1PDEF	N	1	100.0 5813.0 459		5709.0			5279.0	
			2	100.0 5734.0 459			4596.31		5337.0	
			3	100.0 5889.0 459			4596.31	100.0	5481.0	4596.31
			4	100.0 5913.0 459			4596.31	100.0	5366.0	4596.31
			5	100.0 5890.0 459			4596.31		5297.0	
			6	100.0 5939.0 459	6.31 100.0	5875.0	4596.31	100.0	5335.0	4596.31
			7	100.0 5967.0 459	6.31 100.0	5778.0	4596.31	100.0	5339.0	4596.31

4.1.19 Relatório de Dados de Manutenção Programada - Usinas Térmicas

O Relatório dos Dados de Manutenção das Usinas Térmicas apresenta para cada estágio do período de estudo, o fator de disponibilidade de geração da usina, em percentagem, calculado a partir do valor em p.u. definido nos registros MT do arquivo de dados gerais de planejamento.

QUADRO XVIII - RELATO – Relatório dos Dados de Usinas Térmicas

4.1.20 Relatório do Fator de Perda para o Centro de gravidade da Carga – Térmicas

O Relatório dos dados de fator de perda para o centro de gravidade da carga é impresso para todas as usinas hidráulicas e térmicas na configuração. O fator de perda nulo significa que não estão sendo consideradas estas perdas, ou seja, não existem informações no arquivo PERDAS.DAT.

QUADRO XIX - RELATO - Relatório dos Dados de fatores de perda

latório dos dados quivo de dados: P		s de perda	para o	centro	de grav	idade d	da carga(p.u.)
quivo de dados. i	BIOTIO . aac						
Usinas termicas							_
XX Num Usina		X 01 Sem 02					
XX			_	_	_	_	_
86 SANTA CRUZ	1 0.				0.000		
	2 0.	000 0.000	0.000	0.000	0.000	0.000	0.000
	3 0.	000.000	0.000	0.000	0.000	0.000	0.000
15 LUIZORMELO	1 0.	000.000	0.000	0.000	0.000	0.000	0.000
	2 0.	000 0.000	0.000	0.000	0.000	0.000	0.000
	3 0.	000 0.000	0.000	0.000	0.000	0.000	0.000
65 ATLAN_CSA	1 0.	000.000	0.000	0.000	0.000	0.000	0.000
	2 0.	000.000	0.000	0.000	0.000	0.000	0.000
	3 0.	000.000	0.000	0.000	0.000	0.000	0.000
13 ANGRA 2	1 0.	000.000	0.000	0.000	0.000	0.000	0.000
	2 0.	000.000	0.000	0.000	0.000	0.000	0.000
	3 0.	000 0.000	0.000	0.000	0.000	0.000	0.000
1 ANGRA 1	1 0.	000 0.000	0.000	0.000	0.000	0.000	0.000
	2 0.	000 0.000	0.000	0.000	0.000	0.000	0.000
	3 0.	000 0.000	0.000	0.000	0.000	0.000	0.000

4.1.21 Relatório de Dados de Carga

O Relatório dos Dados de Carga apresenta o mercado de cada subsistema, em cada estágio e patamar de carga, conforme informações nos registros do arquivo de dados gerais de planejamento.

O valor nulo de carga é associado aos subsistemas fictícios como , por exemplo, Imperatriz (ver FC no quadro a seguir).

QUADRO XX - RELATO - Relatório dos Dados de Carga

-		-X Patamar 1		-		-	-
Locagi	Jubbis	(horas)		(horas)		(horas)	(MW)
v	v	-X	, ,		, ,	,	, ,
1							
1		18.0	44807.0		43893.0		34629.0
	ANDE	18.0	2249.0		1828.0		1293.0
	S	18.0	13331.0		13901.0		10144.0
	NE	18.0	11740.0		11757.0		9981.0
	N	18.0	5813.0	89.0	5709.0	61.0	5279.0
	FC	18.0	0.0	89.0	0.0	61.0	0.0
2	SE	18.0	44808.0	89.0	43735.0	61.0	34757.0
	ANDE	18.0	2249.0	89.0	1828.0	61.0	1293.0
	S	18.0	13345.0	89.0	13720.0	61.0	9981.0
	NE	18.0	11847.0	89.0	11903.0	61.0	10267.0
	N	18.0	5734.0	89.0	5655.0	61.0	5337.0
	FC	18.0	0.0	89.0	0.0	61.0	0.0
3	SE	18.0	44708.0	89.0	43638.0	61.0	34680.0
	ANDE	18.0	2249.0	89.0	1828.0	61.0	1293.0
	S	18.0	13316.0	89.0	13690.0	61.0	9959.0
	NE	18.0	11906.0	89.0	11962.0	61.0	10317.0
	N	18.0	5889.0	89.0	5808.0	61.0	5481.0
	FC	18.0	0.0	89.0	0.0	61.0	0.0

4.1.22 Relatório de Dados de Limites nas Interligações

Este relatório apresenta os limites no fluxo de interligação entre os subsistemas em cada estágio do estudo, conforme a configuração e os limites de fluxo definidos nos registros IA do arquivo de dados gerais.

QUADRO XXI - RELATO - Relatório dos dados de Limites de Interligação

4.1.23 Relatório do Fator de Perda para o Centro de gravidade da Carga - Fluxos

O Relatório dos dados de fator de perda para o centro de gravidade da carga é impresso para todas as interligações entre subsistemas. O fator de perda nulo significa que não estão sendo consideradas estas perdas, ou seja, não existem informações no arquivo PERDAS.DAT.

QUADRO XXII - RELATO - Relatório dos Dados de fatores de perda - fluxo nas interligações

```
Relatorio dos dados de fatores de perda para o centro de gravidade da carga (p.u.) Arquivo de dados: PERDAS.dat
            -X---X----X----X----X----X
 Sub1 Sub2 Pat Sem_01 Sem_02 Sem_03 Sem_04 Sem_05 Sem_06 Mes_0
1 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000
             3 0.000 0.000
1 0.000 0.000
                              0.000
                                     0.000
                                           0.000
                                                 0.000
                              0.000
                                     0.000
                                           0.000
                                                 0.000
                                     0.000
              2 0.000 0.000
                              0.000
                                           0.000
                                                 0.000
                                                        0.000
              3 0.000 0.000
                                           0.000
                              0.000
                                     0.000
                                                 0.000
  NE
              1 0.000 0.000
                              0.000
                                     0.000
                                           0.000
                                                 0.000
              2 0.000
                       0.000
                              0.000
                                     0.000
                                           0.000
              3 0.000
                       0.000
                              0.000
                                     0.000
                                           0.000
                                                  0.000
  FC
        NE
             1 0.000 0.000
                              0.000
                                     0.000
                                           0.000
                                                 0.000
                                                        0.000
              2 0.000
                       0.000
                              0.000
                                     0.000
                                                        0.000
                                           0.000
                                                 0.000
                 0.000
                       0.000
                              0.000
                                     0.000
                                           0.000
                                                 0.000
                                                        0.000
                              0.000
                                    0.000
                                           0.000
                 0.000
                        0.000
                              0.000
                                     0.000
                                           0.000
              3 0.000 0.000
                              0.000 0.000
                                           0.000
                                                 0.000 0.000
```

4.1.24 Relatório de Dados de Pequenas Usinas

O Relatório dos Dados de Pequenas Usinas apresenta para cada estágio e patamar de carga, os valores de geração de energia declarados nos registros do arquivo de dados gerais de planejamento, registros denominados PQ.

QUADRO XXIII – RELATO - Relatório dos Dados de Pequenas Usinas

Usina		Estagio	(MW)	(MW)	(MW)
X	ζ	X	-X>	ζΣ	Κ
d1463SECO	SE	1	182.0	175.0	138.0
		2	182.0	175.0	138.0
		3	182.0	175.0	138.0
		4	182.0	175.0	138.0
		5	182.0	175.0	138.0
		6	182.0	175.0	138.0
		7	188.0	177.0	137.0
SUDESTE	SE	1	3275.0	3275.0	3275.0
		2	3275.0	3275.0	3275.0
		3	3275.0	3275.0	3275.0
		4	3275.0	3275.0	3275.0
		5	3275.0	3275.0	3275.0
		6	3275.0	3275.0	3275.0
		7	4420.0	4420.0	4420.0
d1463SUL	S	1	126.0	130.0	96.0
		2	126.0	130.0	96.0
		3	126.0	130.0	96.0
		4	126.0	130.0	96.0
		5	126.0	130.0	96.0
		6	126.0	130.0	96.0
		7	135.0	132.0	93.0
SUL	S	1	1699.0	1699.0	1699.0
		2	1699.0	1699.0	1699.0
		3	1699.0	1699.0	1699.0
		4	1699.0	1699.0	1699.0
		5	1699.0	1699.0	1699.0
		6	1699.0	1699.0	1699.0
		7	1792.0	1792.0	1792.0

4.1.25 Relatório de Dados de Restrições Elétricas

Este relatório é composto por duas tabelas onde estão expostos os detalhes de cada restrição elétrica definida por meio dos registros RE do arquivo de dados gerais. Estas restrições definem limites operativos e caso não seja possível seu atendimento, o programa reporta cada inviabilidade.

QUADRO XXIV – RELATO - Relatório dos Dados de Restrições Elétricas – Limites de Geração

Relatorio do	s Dados	de Rest	ricoes E	letricas						
Limites de Ge							,	17	., .,	
X Est Pat									xx RE 049	
X										
01_01 Inf	120.0	555.0		50.0				14.0		160.0
01_01 Sup	+INFTO	+INFTO	+INFTO	212.0	+INFTO	+INFTO	+INFTO	+INFTO	+INFTO	+INFTO
01_02 Inf	120.0	555.0	120.0	50.0	102.0	21.0	14.0	14.0	16.0	160.0
01_02 Sup	+INFTO	+INFTO	+INFTO	212.0	+INFTO	+INFTO	+INFTO	+INFTO	+INFTO	+INFTO
01_03 Inf	120.0	555.0	120.0	50.0	102.0	21.0	14.0	14.0	16.0	160.0
01_03 Sup	+INFTO	+INFTO	+INFTO	212.0	+INFTO	+INFTO	+INFTO	+INFTO	+INFTO	+INFTO
02_01 Inf	120.0	555.0	120.0	50.0	102.0	21.0	14.0	14.0	16.0	160.0
02_01 Sup	+INFTO	+INFTO	+INFTO	212.0	+INFTO	+INFTO	+INFTO	+INFTO	+INFTO	+INFTO
02_02 Inf	120.0	555.0	120.0	50.0	102.0	21.0	14.0	14.0	16.0	160.0
02_02 Sup	+INFTO	+INFTO	+INFTO	212.0	+INFTO	+INFTO	+INFTO	+INFTO	+INFTO	+INFTO
02 03 Inf	120.0	555.0	120.0	50.0	102.0	21.0	14.0	14.0	16.0	160.0
02 03 Sup	+INFTO	+INFTO	+INFTO	212.0	+INFTO	+INFTO	+INFTO	+INFTO	+INFTO	+INFTO
03_01 Inf	120.0	555.0	120.0	50.0	102.0	21.0	14.0	14.0	16.0	160.0
03_01 Sup	+INFTO			212.0	+INFTO	+INFTO	+INFTO	+INFTO	+INFTO	
03_02 Inf	120.0	555.0	120.0	50.0	102.0	21.0	14.0	14.0	16.0	160.0
03 02 Sup	+INFTO			212.0	+INFTO	+INFTO			+INFTO	+INFTO
03 03 Inf	120.0									160.0
03 03 Sup	+INFTO				+INFTO					+INFTO
X-	X	X-	X	X-	X-	X-	X-	X-	X	
Est_Pat	RE_616	RE_617	RE_618	RE_619	RE_650	RE_651	RE_652	RE_653	RE_654	
X-	X	X-	X-	X-	X-	X-	X-	X-	X	
01_01 Inf	17.0	33.0	21.0	62.0	0.0	-INFTO	-INFTO	-INFTO	-INFTO	
01_01 Sup	+INFTO	+INFTO	+INFTO	+INFTO	0.0	400.0	1900.0	70.0	50.0	
01_02 Inf	16.0	31.0	20.0	59.0	0.0	-INFTO	-INFTO	-INFTO	-INFTO	
01_02 Sup	+INFTO	+INFTO	+INFTO	+INFTO	0.0	400.0	1900.0	62.1	44.4	
01_03 Inf	21.0	43.0	27.0	80.0	0.0	-INFTO	-INFTO	-INFTO	-INFTO	
01_03 Sup	+INFTO	+INFTO	+INFTO	+INFTO	0.0	400.0	1900.0	70.0	50.0	
02_01 Inf					0.0	-INFTO	-INFTO			
02_01 Sup					0.0	400.0	1900.0			
02_02 Inf					0.0	-INFTO	-INFTO			
02_02 Sup					0.0	400.0	1900.0			
02_03 Inf					0.0	-INFTO	-INFTO			
02_03 Sup					0.0	400.0	1900.0			

Complementando as informações são informados os fatores de participação conforme exemplo apresentado no quadro a seguir.

QUADRO XXV - RELATO - Relatório dos Dados de Restrições Elétricas - Fatores de Participação

Fatores das							
XX		XX-	X-	X-	X-	X-	X
Usina	Restricao	Est_01 E:	st_02 E	st_03 E	st_04 E	st_05 E	st_06
XX		XX-	X-	X-	X-	X-	X
EMBORCACAO	1	1.0	1.0	1.0	1.0	1.0	1.0
NOVA PONTE	5	1.0	1.0	1.0	1.0	1.0	1.0
SAO SIMAO	3	1.0	1.0	1.0	1.0	1.0	1.0
TAQUARUCU	53	1.0	1.0	1.0	1.0	1.0	1.0
ROSANA	55	1.0	1.0	1.0	1.0	1.0	1.0
CANOAS I	49	1.0	1.0	1.0	1.0	1.0	1.0
CANOAS II	47	1.0	1.0	1.0	1.0	1.0	1.0
A.A. LAYDN	43	1.0	1.0	1.0	1.0	1.0	1.0
CHAVANTES	41	1.0	1.0	1.0	1.0	1.0	1.0
NORTEFLU 1	615	1.0					
NORTEFLU 2	616	1.0					
NORTEFLU 3	617	1.0					

4.1.26 Relatório de Dados de Restrições Hidráulicas

Este relatório apresenta as restrições hidráulicas definidas para cada estágio do período de estudo através dos respectivos registros conforme o tipo de restrição: HA para vazão afluente, HV referente ao volume armazenado ou HQ referente a vazão defluente, desviada ou bombeada. No relatório são informados os limites de cada restrição e fator, conforme informações do arquivo de dados gerais. Estas restrições devem ser sempre atendidas, caso não seja possível o programa reportará a inviabilidade. O quadro a seguir apresenta um exemplo deste relatório.

QUADRO XXVI - RELATO - Relatório dos Dados de Restrições Hidráulicas

```
Relatorio dos Dados de Restricoes Hidraulicas Especiais de volume armazenado
Restricoes para o periodo:
                  1.00 V(NOVA PONTE )
RHV_003 : <= +INFTO
RHV_004 :
            783.4 <=
+ 1.
RHV_004 : <= +INFTO
                  1.00 V(EMBORCACAO )
            554.0 <=
RHV 006 :
                  1.00 V(SAO SIMAO )
RHV_006 : <= +INFTO
RHV_013 :
              516.9 <=
+ 1.00 V(A. VERMELHA )
RHV_013 : <= +INFTO
RHV_015 : 1239.0 <=
                  1.00 V(BARRA BONITA)
RHV_015 : <= +INFTO
RHV_017 :
            616.0 <=
Relatorio dos Dados de Restricoes Hidraulicas Especiais de vazao defluente
Restricoes para o periodo:
RHQ_010 : 450.00 450.00
+ 1.00 Q(BALBINA )
RHQ_010 : <= +INFTO +INFTO
                                      450.00 <=
                                      +TNFTO
RHQ_011: 72.00
                           72.00
                                        72.00 <=
                  1.00 Q(CAPIM BRANC1)
                                  +INFTO
RHQ_011 : <= +INFTO
                      +INFTO
RHQ_012: 34.00
+ 1.00
                  .00 34.00 34.00 <= 1.00 Q(CAMARGOS) 1000.00 1000.00
               1000.00 1000.00
RHQ_012 : <=
RHQ_013: 34.00 34.00
+ 1.00 Q(ITUTINGA)
RHO_013: <= 1170.00 1170.00
                                        34.00 <=
                                        1170.00
             60.00
RHQ_015 :
                            60.00
                                        60.00 <=
                   1.00 Q(FUNIL-GRANDE)
+ 1.00 Q
RHQ_015 : <= 1250.00
                          1250.00
                                         1250.00
RHQ_030 :
           172.00
                           172.00
                                      172.00 <=
                   1.00 Q(IGARAPAVA
+ 1.00 Q
RHQ_030 : <= 4500.00
                            4500.00
                                        4500.00
RHQ_034: 100.00
                                     100.00 <=
                           100.00
                  1.00 Q(EMBORCACAO )
             5000.00 5000.00
RHO 034 : <=
                                         5000.00
```


4.1.27 Relatório de Dados de Tempo de Viagem

Neste relatório são apresentados os fatores de defasagem, em cada estágio, para todas as usinas com representação do tempo de viagem da água de montante, conforme informado nos registros VI do arquivo de dados gerais de planejamento.

QUADRO XXVII - RELATO - Relatório dos Dados de Tempo de Viagem

RELATORIO DOS	DADO	S D	E TEM	1PO	DE V	'IAG	EM									
COEFICIENTES D	E AMOF	RTECI	MENTO	DA	DEFLUE	NCI.	A									
xx		X	>	ζ	X		X		X	[>	[X		X	
Usina	Horas	S Sei	m_01	Se	m_02	Se	m_03	Se	m_04	Sei	m_05	Sei	m_06	Me	s_02	
		Lag	Fat	Lag	Fat	Lag	Fat	Lag	Fat	Lag	Fat	Lag	Fat	Lag	Fat	
XX		X	X	<	X		X		X		>	[X		X	
TRES MARIAS	360	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.38	
		1	0.00	1	0.00	1	0.00	1	0.00	1	0.00	1	0.00	1	1.00	
		2	0.86	2	0.86	2	0.86	2	0.86	2	0.86	2	0.86	2	1.00	
		3	0.14	3	0.14	3	0.14	3	0.14	3	0.14	3	0.14	3	0.14	
QUEIMADO	360	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.38	
		1	0.00	1	0.00	1	0.00	1	0.00	1	0.00	1	0.00	1	1.00	
		2	0.86	2	0.86	2	0.86	2	0.86	2	0.86	2	0.86	2	1.00	
		3	0.14	3	0.14	3	0.14	3	0.14	3	0.14	3	0.14	3	0.14	
XX		37		,						,		,				

4.1.28 Relatório de Dados da Vazão Média de Longo Termo

Neste relatório são apresentados os valores médios de vazão natural afluente a cada aproveitamento, em cada mês do ano que esteja no período de estudo. Estes valores são provenientes do arquivo de dados denominado MLT.DAT.

QUADRO XXVIII - RELATO - Relatório dos Dados de Vazão Natural Média de longo termo

```
Vazao natural afluente media de longo termo - MLT (m3/s)
\mathsf{X}\text{---}\mathsf{X}\text{-----}\mathsf{X}\text{-----}\mathsf{X}\text{-----}\mathsf{X}\text{-----}\mathsf{X}\text{-----}\mathsf{X}
        Usina
                   Sem_01 Sem_02 Sem_03 Sem_04 Sem_05 Sem_06 Mes_02
                ---X-----X-----X-----X
                             200.
                                     200.
   2 ITUTINGA
                      200.
                             200.
                                     200.
                                             200.
                                                     200.
                                                             200.
                                                                    137.
                              459.
                                                     459.
   4 FUNIL-GRANDE
                      459.
                                     459.
                                             459.
                                                             459.
                                                                    317.
  24 EMBORCACAO
                      847.
                                     847.
                             847.
                                             847.
                                                     847.
                                                             847.
                                                                    619.
  27 CAPIM BRANC1
                                                     580.
                      580.
                             580.
                                     580.
                                             580.
                                                             580.
                                                                    441.
  28 CAPIM BRANC2
  25 NOVA PONTE
                     493.
                             493.
                                     493.
                                             493.
                                                     493.
                                                             493.
                                                                    370.
  33 SAO SIMAO
                     4197.
                            4197.
                                    4197.
                                            4197.
                                                    4197.
                                                            4197.
156 TRES MARIAS
134 SALTO GRANDE
                    1115.
                            1115.
                                    1115.
                                            1115.
                                                    1115.
                                                           1115.
                                                                    739
                             211.
                     211.
                                     211.
                                             211.
                                                     211.
                                                             211.
                                                                    159.
  10 IGARAPAVA
                    1750.
                            1750.
                                    1750. 1750.
                                                   1750.
                                                           1750.
                                                                   1216.
 143 AIMORES
                    1082. 1082. 1082. 1082. 1082.
                                                           1082.
 162 QUEIMADO
```

4.1.29 Relatório de Dados de Energia Natural Afluente para Função de Custo Futuro

Este relatório apresenta para todos os subsistemas, os valores de energia natural afluente de cada estágio e cenário calculados com a produtividade de 65% de armazenamento. Os valores dos meses que antecedem o período de estudo são informados após estas tabelas e contém os dados declarados nos registros EA (ES no caso de semanas da revisão) do arquivo de dados gerais de planejamento.

QUADRO XXIX – RELATO - Relatório dos Dados de Energia Natural Afluente para acoplamento

```
Relatorio dos Dados de Energia Natural Afluente para Acoplamento c/ Longo Prazo por REE (MWmed)
                1 - SUDESTE / SUBSISTEMA: 1 - SE
    ×---×-----x
     Cen Sem_01 Sem_02 Sem_03 Sem_04 Sem_05 Sem_06 Mes_02
    x--x----x-----x-----x------x
         1 6464.7 7190.3 7675.0 7863.7 7542.4 7021.5 7152.8
2 6464.7 7190.3 7675.0 7863.7 7542.4 7021.5 6055.3
         2 6464.7 7190.3 7675.0 7863.7 7542.4 7021.5 6055.3 

3 6464.7 7190.3 7675.0 7863.7 7542.4 7021.5 5202.5 

4 6464.7 7190.3 7675.0 7863.7 7542.4 7021.5 4555.6 

5 6464.7 7190.3 7675.0 7863.7 7542.4 7021.5 5454.0 

6 6464.7 7190.3 7675.0 7863.7 7542.4 7021.5 5263.0 

7 6464.7 7190.3 7675.0 7863.7 7542.4 7021.5 5899.5 

8 6464.7 7190.3 7675.0 7863.7 7542.4 7021.5 5370.2 

9 6464.7 7190.3 7675.0 7863.7 7542.4 7021.5 7353.0
   RELATORIO DOS DADOS DE ENERGIA NATURAL AFLUENTE POR REE (MESES PRE-ESTUDO)
   ----X--X--X--X---X----X------X-----
               Num Num Earmax*
               REE Sis (MWmes)
                                                                                              (MWmes)
    ----X---X--X
                              ----X-
PARANA 10 1 13999'.6 23144.9 285/3.8 22219.7 12810.4 59/3.6 5058.7 69/4.5 8042.6 11179.1 15201.2 14095.7 PRNPANEMA 12 1 12029.0 4170.1 7538.4 3711.8 5365.6 2470.3 1585.3 2482.6 2614.3 6316.0 4842.3 2633.9 SUL 2 2 9590.9 2797.3 5781.8 2492.9 4077.2 5040.2 1600.8 2950.0 2371.7 19356.2 9791.3 3474.6 IGUACU 11 2 10508.9 4819.0 8615.5 4087.3 8012.3 5981.2 1161.4 2289.2 1896.1 9035.0 4764.9 2056.2 NORDESTE 3 3 51830.9 6008.3 4993.5 5527.8 1321.1 695.5 894.3 1076.5 1201.9 1560.2 1592.5 2893.2 NORTE 4 4 13259.3 13170.7 5344.7 3776.4 1474.5 666.4 656.7 877.5 1165.5 2089.6 4596.6 9419.2 BMONTE 8 4 27.5 8840.9 4165.1 2083.9 331.9 84.7 100.9 301.2 874.7 2735.8 5924.1 9654.1 MAN-AP 9 4 773.4 901.4 530.3 273.2 178.7 252.7 383.7 488.9 893.0 1179.3 1615.6 1675.2
*Referencia: fim do estudo
 RELATORIO DOS DADOS DE ENERGIA NATURAL AFLUENTE POR SUBSISTEMA (MESES PRE-ESTUDO)
   ----X---X----X-----X------
Subsis Num Earmax*
                                                                                Ena pre-estudo
    SE 1 203667.2 57162.6 62399.3 44521.0 31511.2 15826.8 12758.1 17221.6 19989.3 33778.5 38806.6 38875.4 S 2 20099.7 7616.3 14397.4 6580.2 12089.5 11021.4 2762.2 5239.1 4267.8 28391.2 14556.2 5530.9 NE 3 51830.9 6008.3 4993.5 5527.8 1321.1 695.5 894.3 1076.5 1201.9 1560.2 1592.5 2893.2 N 4 14060.2 22913.0 10040.1 6133.4 1985.1 1003.8 1141.3 1667.6 2933.1 6004.7 12136.4 20748.4
   *Referencia: fim do estudo
    RELATORIO DOS DADOS DE ENERGIA NATURAL AFLUENTE POR REE (SEMANAS PRE-ESTUDO)
    Num Num Earmax*
REE Sis (MWmes)
                                                                       Ena pre-estudo semanal
                                                                              (MWmed)
     X-----X---X---X----X-----X------X
SUDESTE 1 1 50682.4 0.0 0.0 0.0 0.0 0.0
MADEIRA 6 1 290.0 0.0 0.0 0.0 0.0 0.0
TPIRES 7 1 0.0 0.0 0.0 0.0 0.0 0.0
ITAIPU 5 1 668.3 0.0 0.0 0.0 0.0 0.0
PARANA 10 1 139997.6 0.0 0.0 0.0 0.0 0.0
PRIPANEMA 12 1 12029.0 0.0 0.0 0.0 0.0 0.0
SUL 2 2 9590.9 0.0 0.0 0.0 0.0 0.0
IGUACU 11 2 10508.9 0.0 0.0 0.0 0.0 0.0
NORDESTE 3 3 51830.9 0.0 0.0 0.0 0.0 0.0
NORTE 4 4 13259.3 0.0 0.0 0.0 0.0 0.0
BMONTE 8 4 27.5 0.0 0.0 0.0 0.0 0.0
MAN-AP 9 4 773.4 0.0 0.0 0.0 0.0 0.0
X------X---X----X-----X
    *Referencia: fim do estudo
```


RELATORIO DOS DADOS DE ENERGIA NATURAL AFLUENTE POR SUBSISTEMA (SEMANAS PRE-ESTUDO)

Subsistema	Num	Earmax* (MWmes)	Ena pr	e-estudo (MWmed)	semanal		
X	X	XX					X
SE	1	203667.2	0.0	0.0	0.0	0.0	0.0
S	2	20099.7	0.0	0.0	0.0	0.0	0.0
NE	3	51830.9	0.0	0.0	0.0	0.0	0.0
N	4	14060.2	0.0	0.0	0.0	0.0	0.0
X	X	XX					X

*Referencia: fim do estudo

INFORMACOES PARA CALCULO DA ENERGIA AFLUENTE MEDIA DO PRIMEIRO MES PARA ACOPLAMENTO

Mes inicial do periodo de estudos : MARCO /Ano:2018

Numero de dias excluidos da semana inicial : 5
Numero de dias excluidos da semana final : 6

Conforme Manual de Metodologia, o acoplamento do modelo DECOMP com a função de custo futuro no horizonte de planejamento, dada pelo modelo de médio prazo, é expresso em termos dos volumes armazenados nos reservatórios utilizando a regra da cadeia: conhecidas as energias afluentes nos meses anteriores, é possível obter, para cada usina do sistema, a derivada da função de custo futuro do horizonte de curto prazo a partir da função de custo futuro de médio prazo:

$$\frac{\partial \alpha_{T+1}}{\partial V_i} = \frac{\partial \alpha_{T+1}}{\partial EARM_{T+1}} \cdot \frac{\partial EARM_{T+1}}{\partial V_i}$$

Como a energia armazenada é dada por
$$EARM_{T+1} = \sum_{i=1}^{NH_k} V_i \left(\sum_{j \in J_i} \rho_j \right)$$
 temos $\frac{\partial EARM_{T+1}}{\partial V_i} = \sum_{j \in J_i} \rho_j$ e,

portanto, $\frac{\partial \alpha_{T+1}}{\partial V_i} = \frac{\partial \alpha_{T+1}}{\partial EARM_{T+1}} \cdot \sum_{j \in J_i} \rho_j$, onde J_i é o conjunto de usinas composto pelo reservatório i e todas a jusante dele.

No caso das semanas do PMO, a energia afluente média no primeiro mês é calculada considerando as energias afluentes no período de estudo e a duração efetiva do mês – correspondente à diferença entre o total de horas considerado no Programa Mensal de Operação e o número de horas da última semana do primeiro mês que pertencem ao mês seguinte. Caso sejam informadas as energias afluentes em semanas anteriores ao início do período de estudo estas serão consideradas no cálculo da energia afluente média conforme detalhamento na documentação do modelo DECOMP.

4.1.30 Relatório de dados da função de custo futuro do médio prazo

Neste relatório estão indicados os parâmetros do CVAR que devem ser de acordo com aqueles aplicados na elaboração da função de custo futuro do médio prazo.

QUADRO XXX – RELATO - Relatório de Informações da FCF do médio prazo

4.1.31 Relatório de convergência

O critério de convergência do processo iterativo empregado pelo modelo DECOMP baseia-se na comparação entre a estimativa do valor esperado do custo de operação (custo de operação no estágio mais o valor esperado do custo futuro - limite inferior) e o custo de operação calculado ao longo do período do planejamento, através da simulação da política de operação obtida até a presente iteração (limite superior). Este processo iterativo pode ser visualizado através do seguinte gráfico:

O processo converge quando a "distância" entre os dois limites é menor ou igual à tolerância (*gap*) definida no registro GP do arquivo de dado gerais. O quadro a seguir apresenta um exemplo do relatório de convergência impresso no RELATO e, também, disponível em tela durante o processamento do estudo.

DE										
KE	LATORIO DE CO	NVERGENCIA DO	PROCESSO ITERAT	IVO						
X	X	X-		X						>
				ļ		Primeiro				,
		_		i	Tot I	Def				•
It			GAP (%)	İ		Niv Seg	Num.	Inviab	Inviab	Inviab
X	X	:X								
1			50064.0253786							0.
2			270.8005720							0.
3	91527793.2	103472709.7	13.0505895	00:01:07	0.	-	4	0.	42.	0.
4	94285328.7		0.1089767		0.	_	0	0.	0.	0.
5			0.0872366	00:01:34	0.	- -	0	0.		0.
6	94334530.8		0.0457164		Ω	_	Ω	0.		0.
7	94338453.7		0.0308451	00:01:59	0.	_	0	0.	0.	0.
8	94349483.7	94365483.9	0.0169585		0.	_	0	0.	0.	0.
9	94349838.5	94360526.9	0.0113285	00.02.221	0.	-	0	0.	0.	0.
10	94353374.6	94360526.9	0.0075804	00:02:33	0.	-	0	0.	0.	0.
11	94353922.0	94359768.2	0.0061960	00:02:43	0.	_	0	0.	0.	0.
12	94356628.2	94358048.0	0.0015047	00:02:53	0.	- - - - -	0	0.	0.	0.
13	94356675.3	94358048.0	0.0014548	00:03:02	0.	_	Λ	0.	0.	0.
14	94356703.1	94358048.0	0.0014253	00:03:11	0.	-		0.	0.	
15			0.0010214			-		0.		
16			0.0009310			_		0.	0.	0.

4.1.32 Relatório de Operação dos Aproveitamentos Hidráulicos

Este relatório apresenta do balanço de energia por usina hidreléltrica com as seguinte informações:

Coluna	Descrição
Usina	Número e nome da usina/estação elevatória
Volume Ini.	Volume armazenado inicial (% vol. útil)
Volume Fin.	Volume armazenado final (% vol. útil)
Volume Esp.	Volume de espera (% vol. útil)
Vazões Qnat	Vazão natural afluente (m³/s) e percentual da MLT
Vazões Qafl	Vazão total afluente (m³/s)
Vazões Qdef	Vazão total defluente (m³/s)
Energia GER_1	Energia produzida no patamar de carga pesada (MWmed)
Energia GER_2	Energia produzida no patamar de carga média (MWmed)
Energia GER_3	Energia produzida no patamar de carga leve (MWmed)
Energia Media	Valor médio da energia produzida nos patamares de carga (MWmed)
Energia VT	Energia vertida turbinável (MWmed)
Energia VNT	Energia vertida não turbinável (MWmed)
Disponibilidade na Ponta	Valor máximo de energia disponível na ponta (MWmed)

RE	CLATORIO DA	OPEF	RACAO														
RE	LATORIO DA	OPEF	RACAO														
ARCO) / SEMANA	1 -	- ESTAG	10 1	/ CEN	IARIO	1 - PR	OB ACUMUL	: 1.00000	0 PROB S	UBPROB:	1.000000					
#	Aproveitament	o(s)	com e	vapora	cao												
	Aproveitament																
	Aproveitament Aproveitament																
ب X	Aprovercament	>	de ca (Deceil	.a : ue	: :	.a = ze			×							X
No.	Usina		Volume					(M3/S)				ed) - CG					**
			Ini.	Fin.	Esp.	Qnat	(%ML	T) Qafl	Qdef	GER_1	GER_2	GER_3	Media	VT(*)	VNT	Ponta	FPCGC
X	(>							-X	X	X	X	Κ	K	X>	ζ	XX
	CAMARGOS	#	53.2	51.1	29.8	79.0							20.5	0.0			
	ITUTINGA	#					(39.				35.5		25.5	0.0		52.0	
	FUNIL-GRANDE					192.0					88.1		73.5	0.0			
	FURNAS	#				532.0					599.6		417.5	0.0		1163.2	
	M. DE MORAES		34.4	47.2	35.0	650.0					47.0 108.8	47.0 85.2	47.0 97.7	0.0		350.0 1104.0	
	ESTREITO JAGUARA	#				677.0 688.0					82.8		76.2	0.0		424.0	
	IGARAPAVA	#				720.0	,	. ,			39.1		33.0	0.0		210.0	
	VOLTA GRANDE	#				792.0					44.1		70.9	0.0			
		#				949.0		,			108.7		78.7	0.0			
	CACONDE	# @	31.3	32.3	4.0	41.0					24.6		24.6	0.0			
	E. DA CUNHA						(47.				59.7		41.4	0.0			
6	A.S.OLIVEIRA	#					(47.		9 57.8	12.5	18.2	4.3	12.5	0.0	0.0	32.0	0.0
7	MARIMBONDO	#	72.6	74.0	15.0	1519.0	(50.	7) 996.	4 848.6	575.9	575.9	198.0	438.7	0.0	0.0	1386.6	0.0
8	A. VERMELHA	#	55.9	53.9	20.0	1842.0	(53.	9) 1171.	6 1336.3	877.3	877.3	171.7	621.1	0.0	0.0	1316.4	0.0
0.5	BATALHA	#	62.8	67.1	0.0	197.0	(100.	5) 197.	0 97.2	40.9	40.9	23.9	34.7	0.1	0.0	52.5	0.0
	STA CECILIA								131.0			-32.0	-26.2				
	VIGARIO TRAICAO								140.0	-33.0 0.0	-52.3 0.0	-83.6 0.0	-61.6 0.0				
	PEDREIRA								0.0	0.0	0.0	0.0	0.0				
	PEDREIRA	>	/Y	y	/S	·		Y						/Y		/	Y
	l no subsiste				2	•		7.	**				34866.7				
	il no subsiste											4073.9				14461.6	
	il no subsiste											1666.7				15162.4	
ota	l no subsiste	ma N	1										11296.2	2194.2	8860.9	15162.4	
Γota	al no subsiste	ma F	rC .							0.0	0.0	0.0	0.0	0.0	0.0	0.0	
(*) OBS.: os va	lore	es da e	nergia	verti	.da turb	inavel	contem o	s desvios	da func	ao de pr	oducao					

4.1.33 Relatório de Operação das Restrições elétricas (por patamar de carga)

A tabela apresenta o detalhamento do relatório.

Coluna Descrição
Restricao Número externo da restrição

Usina Nome do aproveitamento
Fator Fator de participação
MW med Energia (MWmed)

Produto Resultado do produto: fator x energia

Observação Indicativos:

LIMITE INFERIOR LIMITE SUPERIOR NO LIMITE DA IGUALDADE

	s Restricoes					X
Restricao		Fator	MWmed		Observacao	X
1 Total	EMBORCACAO	1.0	120.0	120.0 120.0	120.0 < Total < LIMITE INFERIOR	+INFTO
3 Total	SAO SIMAO	1.0	1271.7	1271.7 1271.7	555.0 < Total <	+INFTO
5 Total	NOVA PONTE	1.0	127.1	127.1 127.1	120.0 < Total <	+INFTO

4.1.34 Relatório de Operação do Balanço Hidráulico

A tabela apresenta o detalhamento do balanço hidráulico das usinas contendo:

Coluna Descrição

Usina Nome do aproveitamento
Qinc Vazão natural incremental (m³/s)
Qafl Vazão total afluente (m³/s)
Qtur Vazão turbinada (m³/s)
Qver Vazão vertida (m³/s)
Qdes Vazão desviada (m³/s)

Qirr + Qbomb Taxa de irrigação e bombeamento (m³/s)

Qevp Vazão evaporada (m³/s)

Qarm Vazão armazenada (m³/s) – valores negativos correspondem a defluência do reservatório

Montante nome do aproveitamento a montante

Qdef Vazão defluente (m³/s) Qdes Vazão desviada (m³/s)

Lag Fator Fator de defasagem (dias) – para o caso de existência de tempo de viagem

	/	v	v		'	V	/	v	/	vv	x			v	
X Usina	Qinc (m3/s)	Qafl (m3/s)	Qtur (m3/s)	Qver (m3/s)	Qdes (m3/s)	Qirr+Qbb (m3/s)	Qda (m3/s)	Qret (m3/s)	Qevp (m3/s)	Qarm (m3/s)	Montante	Qdef (m3/s)	Qdes (m3/s)	Lag F	ator
 X	x	х	x			x/	\	x	K	хх	x	x		.	
CAMARGOS	79.0	79.0	101.6	0.0	0.0	0.4	0.0	0.0	0.6	-23.6					
ITUTINGA	0.0	101.6	101.6	0.0	0.0	0.0	0.0	0.0	0.0		CAMARGOS	101.6	0.0		
FUNIL-GRANDE	113.0	214.6	212.6	0.0	0.0	1.6	0.0	0.0	0.4		ITUTINGA	101.6	0.0		
FURNAS	340.0	552.6	563.0	0.0	0.0	6.0	0.0	0.0	7.7	-24.1	FUNIL-GRANDE	212.6	0.0		
M. DE MORAES	118.0	681.0	149.0	0.0	0.0	1.1	0.0	0.0	1.4	529.5	FURNAS	563.0	0.0		
ESTREITO	27.0	176.0	175.5	0.0	0.0	0.2	0.0	0.0	0.3		M. DE MORAES	149.0	0.0		
JAGUARA	11.0	186.5	186.1	0.0	0.0	0.1	0.0	0.0	0.3		ESTREITO	175.5	0.0		
IGARAPAVA	32.0	218.1	217.3	0.0	0.0	0.3	0.0	0.0	0.5		JAGUARA	186.1	0.0		
VOLTA GRANDE	72.0	289.3	286.2	0.0	0.0	1.3	0.0	0.0	1.8		IGARAPAVA	217.3	0.0		
P. COLOMBIA	157.0	443.2	436.6	0.0	0.0	5.1	0.0	0.0	1.5		VOLTA GRANDE	286.2	0.0		
CACONDE	41.0	41.0	32.0	0.08		0.5	0.0	0.0	0.2				0.0		
E. DA CUNHA	26.0	58.0	56.9	0.0	0.0	1.1		0.0	0.2	0.5	CACONDE	32.0	0.0		
A.S.OLIVEIRA	1.0	57.9	57.8	0.0	0.0	0.1	0.0	0.0	0.0		E. DA CUNHA	56.9	0.0		
MARIMBONDO	502.0	996.4	848.6	0.0	0.0		0.0		4.2	121.9	A.S.OLIVEIRA	57.8	0.0		
MAKIMBONDO	302.0	990.4	040.0	0.0	0.0	21.7	0.0	0.0	4.2	121.9	P. COLOMBIA	436.6	0.0		
A. VERMELHA	323.0	1171.6	1336.3	0.0	0.0	2.9	0.0	0.0	6 1	-173.8	MARIMBONDO	848.6	0.0		
	197.0		97.2							97.2	MARIMBUNDU	848.6	0.0		
BATALHA		197.0		0.0	0.0		0.0	0.0	1.0			07.0			
SERRA FACAO	123.0	220.2	130.4	0.0	0.0		0.0	0.0	1.1		BATALHA	97.2	0.0		
EMBORCACAO	326.0	456.4	120.2	0.08		3.7	0.0	0.0	1.3		SERRA FACAO	130.4	0.0		
NOVA PONTE	331.0	331.0	136.2	0.08		2.1		0.0	1.8						
MIRANDA	19.0	155.2	157.4	0.0	0.0	0.2	0.0	0.0	0.3		NOVA PONTE	136.2	0.0		
CAPIM BRANC1	2.0	159.4	144.9	0.0	0.0	0.4	0.0	0.0	0.2		MIRANDA	157.4	0.0		
CAPIM BRANC2	6.0	150.9	149.6	0.0	0.0	0.9	0.0	0.0	0.4		CAPIM BRANC1	144.9	0.0		
CORUMBA IV	145.0	145.0	148.6	0.0	0.0		0.0	0.0	1.1						
CORUMBA III	53.0	201.6	226.6	0.0	0.0	0.2	0.0	0.0	0.5		CORUMBA IV	148.6	0.0		
CORUMBA I	475.0	701.6	565.0s		0.0		0.0				CORUMBA III	226.6	0.0		
ITUMBIARA	451.0	1285.8	233.0	0.0	0.0	6.9	0.0	0.0	3.6	1042.3	EMBORCACAO	120.2	0.0		
											CAPIM BRANC2	149.6	0.0		
											CORUMBA I	565.0	0.0		
CACH.DOURADA	153.0	386.0	385.0	0.0	0.0	0.4	0.0	0.0	0.6		ITUMBIARA	233.0	0.0		
SOBRADINHO	1688.0	1783.1	885.5	0.0	0.0	33.3	0.0	0.0	43.3	821.1	TRES MARIAS	80.0	0.0	0	00/0
												80.0	0.0	1	00/0
												78.0	0.0	2	06/0
												79.0	0.0		01/0
											QUEIMADO	46.1	0.0		00/0
											- '	17.0	0.0		00/0
												17.0	0.0		06/0
												17.0	0.0		01/0
ITAPARICA	0.0	885.5	608.9	0.0	0.0	19.5	0.0	0.0	11.6	245.5	SOBRADINHO	885.5	0.0	-	, •
MOXOTO	0.0	608.9	0.3	0.0	604.9		0.0	0.0	2.8		ITAPARICA	608.9	0.0		
P.AFONSO 123	0.0	0.3	0.0	0.0	0.0	0.1	0.0	0.0	0.2		MOXOTO	0.3	0.0		
P.AFONSO 123	0.0	604.9	601.3	0.0	0.0	0.0	0.0	0.0	3.6		MOXOTO	0.3	604.9		
	0.0	004.9	001.5	0.0	0.0	0.0	0.0	0.0	5.0			0.0	004.9		

4.1.35 Relatório de Operação das Restrições hidráulicas (por patamar de carga)

A tabela apresenta o detalhamento do conteúdo dos relatórios de operação de restrições de volume armazenado (RHV) e vazão defluente (RHQ):

Coluna Descrição Restricao Número externo da restrição (definido pelo usuário) Usina Nome do aproveitamento Fator Fator de participação (m^3/s) Produto Resultado do produto: fator x energia Observacao Indicativos RHV: V Aproveitamento com restricao de volume armazenado Q Aproveitamento com restricao de volume defluente D Aproveitamento com restricao de volume desviado B Aproveitamento com restricao de volume bombeado Observacao Indicativos RHQ: Q Aproveitamento com restricao de vazao defluente D Aproveitamento com restricao de vazao desviada B Aproveitamento com restricao de vazao bombeada

OVA PONTE		2193.6 Hm3		(
MBORCACAO			2193.6	623.0	< Total <	INFTO
	1.00 V	2231.9 Hm3	2231.9			
			2231.9	783.4	< Total <	INFTO
AO SIMAO	1.00 V	5019.8 Hm3	5019.8			
			5019.8	554.0	< Total <	INFTO
. VERMELHA	1.00 V	2784.4 Hm3	2784.4			
			2784.4	516.9	< Total <	INFTO
ARRA BONITA	1.00 V	2104.4 Hm3	2104.4			
			2104.4	1239.0	< Total <	INFTO
ROMISSAO	1.00 V	1510.2 Hm3	1510.2			
ANTA BRANCA	1.00 V	183.9 Hm3	183.9			
			183.9	123.2	< Total <	INFTO
UNIL	1.00 V	386.4 Hm3	386.4			
			386.4	181.5	< Total <	INFTO
AJES	1.00 V	429.4 Hm3	429.4			
			429.4	81.5	< Total <	INFTO
UARAPIRANGA	1.00 V	150.1 Hm3	150.1			
			150.1	-INFTO	< Total <	183.7
ORDAO	1.00 V	25.0 Hm3	25.0			
			25.0	25.0	< Total <	INFTO
UCURUI	1.00 V	38982.0 Hm3	38982.0			
			38982.0	3898.2	< Total <	38982.0
	ARRA BONITA ROMISSAO ANTA BRANCA UNIL AJES UARAPIRANGA ORDAO	ARRA BONITA 1.00 V ROMISSAO 1.00 V ANTA BRANCA 1.00 V UNIL 1.00 V AJES 1.00 V UARAPIRANGA 1.00 V ORDAO 1.00 V UCURUI 1.00 V	UNIL 1.00 V 386.4 Hm3 AJES 1.00 V 429.4 Hm3 UARAPIRANGA 1.00 V 150.1 Hm3 DRDAO 1.00 V 25.0 Hm3 UCURUI 1.00 V 38982.0 Hm3	. VERMELHA 1.00 V 2784.4 Hm3 2784.4 2784.4 ARRA BONITA 1.00 V 2104.4 Hm3 2104.4 2104.4 ROMISSAO 1.00 V 1510.2 Hm3 1510.2 ANTA BRANCA 1.00 V 183.9 Hm3 183.9 UNIL 1.00 V 386.4 Hm3 386.4 AJES 1.00 V 429.4 Hm3 429.4 429.4 UARAPIRANGA 1.00 V 150.1 Hm3 150.1 DRDAO 1.00 V 25.0 Hm3 25.0 UCURUI 1.00 V 38982.0 Hm3 38982.0 38982.0	. VERMELHA 1.00 V 2784.4 Hm3 2784.4 2784.4 516.9 ARRA BONITA 1.00 V 2104.4 Hm3 2104.4 1239.0 ROMISSAO 1.00 V 1510.2 Hm3 1510.2 Hm3 1510.2 Hm3 1510.2 Hm3 183.9 123.2 UNIL 1.00 V 386.4 Hm3 386.4 181.5 AJES 1.00 V 429.4 Hm3 429.4 429.4 81.5 UARAPIRANGA 1.00 V 150.1 Hm3 150.1 150.1 -INFTO DRDAO 1.00 V 25.0 Hm3 38982.0 25.0 25.0 UCURUI 1.00 V 38982.0 Hm3 38982.0 3898.2	. VERMELHA 1.00 V 2784.4 Hm3 2784.4

No.	Usina	Fator	Qdef (m3/s)	Produto (m3/s)		da Resti (m3/s)			
					K				
10 Total	BALBINA	1.0 Q	450.0	450.0 450.0	450.0	< Total	_	INFTO	
11	CAPIM BRANC1	1.0 Q	129.2	129.2	430.0	\ local	`	INFIO	
Total	CALIM DIVINCE	1.0 2	123.2	129.2	72 0	< Total	<	INFTO	
12	CAMARGOS	1.0 Q	101.6	101.6			-		
Total		~ ~		101.6	34.0	< Total	<	1000.0	
13	ITUTINGA	1.0 Q	132.3	132.3					
Total				132.3	34.0	< Total	<	1170.0	
15	FUNIL-GRANDE	1.0 Q	520.6	520.6					
Total				520.6	60.0	< Total	<	1250.0	
30	IGARAPAVA	1.0 Q	172.0	172.0	170 0	- m-+-1		4500 0	
Total 34	EMBORCACAO	1.0 Q	120.2	172.0 120.2	172.0	< Total	•	4500.0	
Total	EMBORCACAO	1.0 Q	120.2	120.2	100.0	< Total	<	5000.0	
	X-								
	s Restricoes Hid: 				-				
No.	Usina	Fator	Qdef	Produto	Limites	da Resti	ricac		
			(m3/s)	(m3/s)		(m3/s)			
	:				ζ				
10	BALBINA	1.0 Q	450.0	450.0	450.0				
Total	CADIM DDAMG1	1 0 0	100.0	450.0	450.0	< Total	<	INFTO	
11	CAPIM BRANC1	1.0 Q	198.0	198.0	72.0	< To+-1		TNETO	
Total 12	CAMARGOS	1.0 Q	101.6	198.0 101.6	12.0	< Total	<	INFTO	
Total	CAMANGOS	1.0 0	101.0	101.6	34 0	< Total	/	1000.0	
13	ITUTINGA	1.0 Q	141.8	141.8	31.0	10041	`	1000.0	
Total		2		141.8	34.0	< Total	<	1170.0	
15	FUNIL-GRANDE	1.0 Q	254.8	254.8					
Total				254.8	60.0	< Total	<	1250.0	
30	IGARAPAVA	1.0 Q	257.6	257.6					
Total			400.0	257.6	172.0	< Total	<	4500.0	
34 Total	EMBORCACAO	1.0 Q	120.2	120.2 120.2	100 0	< Total		5000.0	
IULAI				120.2	100.0	\ IOCal		3000.0	
XX		XX-	X	:X	ζ				
Relatorio	das Restricoes	Hidraulica	as de Vazao	Defluente (m3	3/s) no patam	ar 3			
No.	Usina	Fator			Limites		ricad)	
., .,		., .,	(m3/s)	(m3/s)	,	(m3/s)			
10	BALBINA	1.0 O	450.0	450.0	<i></i>				
Total	DALDINA	1.0 Q	450.0	450.0	450 0	< Total	_	INFTO	
11	CAPIM BRANC1	1.0 Q	72.0	72.0	450.0	\ 10cai		INLIO	
Total	***************************************	2		72.0	72.0	< Total	<	INFTO	
12	CAMARGOS	1.0 Q	101.6	101.6					
Total				101.6	34.0	< Total	<	1000.0	
13	ITUTINGA	1.0 Q	34.0	34.0					
Total				34.0	34.0	< Total	<	1170.0	
15	FUNIL-GRANDE	1.0 Q	60.0	60.0	<i>co c</i>	, m		1050 0	
Total 30	TCADADATIA	1.0 Q	172.0	60.0	60.0	< Total	<	1250.0	
Total	IGARAPAVA	1.0 Q	1/2.0	172.0 172.0	172 ∩	< Total	_	4500.0	
34	EMBORCACAO	1.0 Q	120.2	120.2	1/2.0	\ IULal		4200.U	
	DI IDOI(OI1OI1O	±•• ∨	120.2	120.2	100.0	< Total	<	5000.0	
Total									
					-				

4.1.36 Relatório da Operação das Usinas Térmicas e Contratos

A tabela apresenta o detalhamento do relatório.

Coluna Descrição

Subsis Nome do subsistema

Classe / Contrato

FPcgc

Ene_Pat_1

Custo

Nome da térmica ou contrato

Fator de perda para o CGC

identificação do patamar de carga

Custo em (1000\$) de unidades

Total Termica
Total de geração térmica do subsistema no patamar de carga 1, 2 e 3 (MWmed)
Total Deficit
Total Compra
Total Venda
Total de geração térmica do subsistema no patamar de carga 1, 2 e 3 (MWmed)
Total de energia importada pelo subsistema patamar de carga (MWmed)
Total de energia exportada pelo subsistema no patamar de carga (MWmed)

Um exemplo é apresentado no quadro a seguir.

x						х	
	Contrato	(%)	(MWmed)	(MWmed)	Ene_pat_3 (MWmed)	(1000 \$)	
	SANTA CRUZ		17E 00+	17E 00+	x- 175.00*	1270 72	
	LUIZORMELO		204.00*	204.00*	204.00* 150.101 640.00S 400.001 100.001 200.001 511.80S	7693.04	
SE	ATLAN_CSA		150.101	150.101	150.101	0.00	
SE	ANGRA 1		640.00S	640.00S	640.00S	3351.40	
SE	NORTEFLU 1		400.00I	400.00I	400.00I	3955.39	
	NORTEFLU 2		100.001	100.001	100.001	1173.98	
	NORTEFLU 3		200.001	200.001	200.001	4426.46	
	BAIXADA FL		511.80S	511.808	511.808	11335.06	
	ATLANTICO		218.701	218.701	218.70I 134.30S	6445.21	
	LCPRES_L1 GLBRIZ L1		134.305	134.308	134.308	4213.53 E124 71	
	BLSOBR_L1		128.00	39 00	164.00 53.00	2105 36	
	GLBRIZ_L13		5 00	5 00	6.00	288 80	
			126.001	126.001	126.001	7869.63	
SE	NORTEFLU 4 M.LAGO		62.00	59.00	164.00 53.00 6.00 126.001 80.00	5755.43	
X>		xx	KX	xx	:X-	X	
	Total	Termica	3096.90	3083.90	3162.90	68117.71	
		Deficit	0.00	0.00	0.00 0.00	0.00	
		Compra	0.00	0.00	0.00		
					0.00	0.00	
					Ene_pat_3		
	Contrato	(%)	(MWmed)	(MWmed)	(MWmed)	(1000 \$)	
	CANDIOTA_3	vx	230.00s	230.00s	230.00S 321.30S	3045.22	
S	J.LACER. C		302.50S	305.90S	321.30S	9351.52	
	J.LACER. B		160.00	160.00	160.00 33.00	5630.82	
	J.LAC. A2		33.00	33.00	33.00	1207.98	
	MADEIRA		2.001	2.001	2.00I 12.00I	94.70	
	FIGUEIRA				12.001 X-		
A2							
	IOCAI	Deficit	0.00	142.90	0.00	0.00	
		Compra	0.00	0.00	758.30 0.00 0.00 0.00	0.00	
		Venda	0.00	0.00	0.00	0.00	

4.1.37 Relatório do Balanço Energético dos Subsistemas

A tabela apresenta o detalhamento do relatório.

Coluna Descrição

Subsistema Identificação do subsistema

EAR_ini Energia armazenada inicial (MWmês) e percentual da máxima

ENA Energia natural afluente (MWmed)

EAR_fim Energia armazenada final(MWmês) e percentual da máxima

Mercado Carga (MWmed)

Cbomba Consumo de energia das usinas elevatórias (MW méd)

Bacia e pequenas usinas Geração das usinas não simuladas (MWmed)

Ghid Geração hidráulica (MWmed) Gter Geração térmica (MWmed) Deficit Déficit de energia (MWmed) Compra Energia importada(MWmed) Venda Energia exportada (MWmed) Interligação Fluxo na interligação (MWmed) Itaipu50 Geração em Itaipu 50Hz (MWmed) Itaipu60 Geração em Itaipu 60Hz (MWmed)

EAR_	i stema SE ini: 729 3	83. (Mwr										
	Mercado (MWmed)	Bacia (MWmed)	Cbomba (MWmed)	Ghid (MWmed)	Gter (MWmed)	GterAT (MWmed)	Deficit (MWmed)	Compra (MWmed)	Venda (MWme	Interligacao d) (MWmed)‡	Itaipu50 (MWmed)	Itaipu60
Pat_1	44807.0	3457.0	48.0	24440.6	2717.9	379.0	0.0	0.0	0.0	SE: 11960.5 NE: -674.5 N: -2000.0 FC: -759.1 IV: -8526.9	4149.0	8526.9
Pat_2	43893.0	3450.0	76.8	25284.0	2704.9	379.0	0.0	0.0		SE: 10251.9 NE: -854.3 N: -2000.0 FC: -741.7 IV: -6655.9	3728.0	8795.0
										SE: 8343.9 NE: -1000.0 N: -2000.0 FC: -65.6 IV: -5278.2		
-									0.0	SE: 9742.2* NE: -887.9 N: -2000.0 FC: -498.1 IV: -6356.2		
Subsi	istema S ini: 155 7 Mercado	546. (Mwr 77.3 (%E <i>l</i> Bacia	mes) El ARM) Cbomba	NA: 506 25 Ghid	54. (MWme 5.2 (%EAI	ed) EAI RM) GterAT	R_fim: 1	15031. (M 74.8 (% Compra	EARM) Venda	e) Interligacao (MWmed)	-X	
										s: 0.0	-X	
									0.0	IV: 0.0 S: 2139.1		
									0.0	IV: -2139.1 S: 3516.8 IV: -3516.8		

4.1.38 Relatório dos Custos de Operação

Este relatório consiste num resumo dos custos de operação do estágio, finalizando o respectivo relatório de operação. O quadro a seguir apresenta um exemplo deste resumo.

```
RELATORIO DA OPERACAO
           / SEMANA 1 - ESTAGIO 1 / CENARIO 1 - PROB ACUMUL: 1.000000 PROB SUBPROB: 1.000000
MARCO
                                                            94184492.67 (1000 $)
Valor esperado do custo futuro:
Custo total de operacao no estagio:
Custo total de operacao no estagio:
                                                               147065.57 (1000 $)
                                                              147065.57 (1000 $) (Atualizado para valor presente)
                                                                53952.57 (1000 $)
Parcela referente a geracao termica minima:
                                                             147051.43 (1000 $)
                                                total :
                                                              0.00 (1000 $)
0.00 (1000 $)
Parcela referente a contrato de importacao minimo:
Custo marginal de operacao do subsistema SE:
Custo marginal de operacao do subsistema S:
Custo marginal de operacao do subsistema NE:
Custo marginal de operacao do subsistema N:
Custo marginal de operacao do subsistema FC:
                                                                 195.74 ($/MWh)
191.69 ($/MWh)
                                                                  0.00 ($/MWh)
0.00 ($/MWh)
```

4.2 Arquivo SUMARIO

O arquivo denominado SUMARIO contém tabelas com resumo da operação nas semanas do mês inicial do estudo incluindo:

- trajetória dos volumes armazenados nos reservatórios;
- trajetória de energia armazenada nos REEs;
- trajetória de energia armazenada em cada subsistema;
- fluxos de intercâmbio entre os subsistemas em cada patamar de carga;
- total de geração de Itaipu, 50Hz e 60Hz, em cada patamar de carga;
- custo marginal de operação em cada patamar de carga;
- custo de operação e valor esperado do custo futuro;
- total de energia térmica em cada subsistema;
- geração das UHE nos patamares;
- geração das UTE nos patamares;
- geração das pequenas usinas nos patamares;
- Demanda bruta dos subsistemas;
- Eventual déficit em cada subsistema

Observa-se que mesmo com ITAIPU definida REE no NEWAVE, a representação da capacidade de transporte de energia entre Itaipu (Ivaiporã) e os subsistemas Sul e Sudeste no DECOMP ainda pode Guia prático de utilização Modelo DECOMP – versão 28 página 61

ser realizada pela incorporação (opcional) de um conjunto específico de restrições para este fim (registros IT).

Ao final do arquivo SUMARIO é apresentada uma tabela com as trajetórias de energia armazenada em cada subsistema para cada estágio e cenário do estudo.

5 Tabela lista de arquivos de dados e resultados

Lista dos principais arquivos de entrada/saída do modelo DECOMP versão 28:

Nome (default)	Descrição	Acesso	Origem
CASO.DAT	Arquivo de dados: contém nome do arquivo lista do estudo	texto	Usuário
XXX	Arquivo de dados: lista de arquivos de dados de entrada	texto	Usuário
DADGER.xxx	Arquivo de dados: dados gerais de planejamento para o curto prazo	formatado	Usuário
DADGNL.xxx	Arquivo de dados: dados de usinas GNL	formatado	Usuário
HIDR.DAT	Arquivo de dados: cadastro das usinas hidráulicas	não formatado	Processo ONS
MLT.DAT	Arquivo de dados contendo a MLT dos postos das usinas hidráulicas	não formatado	Processo ONS
PERDAS.xxx	Arquivo de dados contendo os coeficientes de perda para o centro de gravidade da carga	formatado	Usuário
VAZOES.xxx	Arquivo de dados: previsão das semanas do mês inicial e afluências dos cenários de vazões incrementais	não formatado	Usuário
CORTES.xxx	Arquivo descritor da Função Custo Futuro (FCF)do médio prazo	não formatado	NEWAVE
CORTESH.xxx	Arquivo header p/a FCF do médio prazo	não formatado	NEWAVE
DECOMP.ARQ	Arquivo de dados: informe do conteúdo do arquivo lista	texto	DECOMP
dec_desvfpha.xx	Arquivo de saída com a descrição da FPHA de cada aproveitamento	texto	DECOMP
avl_turb_max.csv	Arquivo de saída com informações de avaliação da FPHA para cada aproveitamento(usi) e estágio (nnn)	texto	DECOMP
avl_cortesfpha_dec	Arquivo de saída com informações de avaliação da FPHA para cada aproveitamento(usi) e estágio (nnn)	texto	DECOMP
avl_desv_fpha_s	Arquivo de saída com informações de avaliação da FPHA para cada aproveitamento(usi) e estágio (nnn)	texto	DECOMP
avl_desv_fpha_q_v	Arquivo de saída com informações de avaliação da FPHA para cada aproveitamento(usi) e estágio (nnn)	texto	DECOMP
RELATO.xxx	Relatório de saída: descrição detalhada dos dados de entrada e da política ótima de operação	texto	DECOMP
RELATO2.xxx	Relatório de saída: descrição detalhada da política ótima de operação dos meses do período estocástico	texto	DECOMP
RELGNL.xxx	Relatório de saída: descrição detalhada dos dados de entrada e operação das usinas GNL	texto	DECOMP
SUMARIO.xxx	Relatório de saída: sumário da política das semanas do mês inicial	texto	DECOMP
FCFNWN.xxx	Relatório de saída contendo os parâmetros da função de produção do médio prazo para o horizonte de planejamento do DECOMP	texto	DECOMP
ENERGIA.xxx	Relatório de saída: ENA (critério de acoplamento) p/a cada subsistema em cada estágio e cenário e EARM final por subsistema em cada estágio e cenário.	texto	DECOMP
DECONF.xxx	Relatório de saída: disponibilidade na ponta das usinas hidráulicas/térmicas para cada estágio e cenário	texto	DECOMP
OUTGNL.xxx	Relatório de saída: disponibilidade e descrição das usinas GNL para composição do arquivo DDAGNL do estudo da semana do período seguinte	texto	DECOMP
BENGNL.xxx	Relatório de saída: benefício dos comandos de despacho em usinas GNL	texto	DECOMP
INVIAB_UNIC.xxx	Arquivo de saída com detalhamento das restrições	texto	DECOMP
CUSTOS.xxx	Relatório de saída opcional: variáveis duais da política	Opcional – texto	DECOMP

Nome (default)	Descrição	Acesso	Origem
MEMCAL.xxx	Relatório de saída opcional: memória de cálculo da ENA p/a cada subsistema em cada estágio e cenário; EARMAX por subsistema em cada estágio; FCF no acoplamento com Newave para cenário pré-definido	Opcional – texto	DECOMP
TERM.CSV QNAT.CSV VUTIL.CSV GHID.CSV CONTRATOS.CSV HIDRPATn.CSV TERMPATn.CSV UTEPATn.CSV CMARnnn.CSV PDEFnnn.CSV	Relatório de saída opcional: trajetórias da política de operação para usinas hidráulicas nos estágios semanais (volume útil, vazão turbinada, vertimento, vazão natural afluente, energia gerada, energia vertida e energia vertida não turbinável, contratos de importação e ou exportação, geração hidráulica e geração térmica em cada patamar, custos marginal dos subsistemas, patamar de déficit nos subsistemas)	texto	DECOMP
FLXs1s2p.CSV BALSUBss.CSV	Relatório de saída opcional: Intercâmbio entre os subsistemas S1 e S2 no patamar e Balanço energético do subsistema para cada estágio e cenário do período de planejamento.	Opcional – texto	DECOMP

6 Diagrama esquemático: atividades num estudo DECOMP

