Sperner Property of the Boolean Algebra

Haoyang Xu, Nathan Phan 2025 Brown DRP Poster Session

Motivating Problem

Question

What is the maximum number of subsets of $\{1, 2, ..., n\}$ that do not contain each other?

Fig. 1: Hasse diagram of B_4

Possible Thoughts

One may argue that the answer is **the number of subsets in the** *middle layer*, but how do we know that this is true?

Sperner Property

Poset and Antichain

A **poset** P is a finite set with a binary operation \leq that is reflexive, antisymmetric, and transitive. An **antichain** in P is a subset $A \subset P$ where no two elements are comparable.

Boolean Algebra

 B_n , a **boolean algebra** of rank n, is a set of all subsets of an n-element set. This can be regarded as a poset with \subseteq being the binary relation.

Sperner Property

A graded poset P can be partitioned into layers $P = P_1 \sqcup P_2 \sqcup \cdots \sqcup P_n$.

For
$$B_n$$
, $P_i = \{S \subset \{1, \dots, n\} : |S| = i\}$.
A graded poset P is **Sperner** if

 $\max(|A: \operatorname{antichain}|) = \max(|P_i|).$

Theorem B_n is **Sperner**!

Answer to our motivating problem

of subsets =
$$\binom{n}{\left|\frac{n}{2}\right|}$$

A Proof Method

We can find **order-matchings** that partition B_n .

Fig. 2: B_4 with order-matchings

Acknowledgments

We are deeply grateful to Ethan Partida for his exceptional mentorship and huge support. We also wish to acknowledge Prof. Richard P. Stanley and his book *Algebraic Combinatorics* [1] that we enjoyed reading and learned a lot.

References

[1] Richard P. Stanley. *Algebraic Combinatorics*. 2018. DOI: https://doi.org/10.1007/978-3-319-77173-1.