Pervasive Computing Research Center, Institute of Computing Technology, Chinese Academy of Sciences

#### Eigenfaces vs. Fisherfaces:Recognition Using Class Specific Linear Projection

Liping Jia

Jindong Wang wangjindong@ict.ac.cn jialiping@ict.ac.cn

May 15, 2016

#### Content



#### Introduction

Speaker

This Paper, TPAMI & Author

#### Motivation

#### Background

Principle Component Analysis

Eigenfaces

Fisher Linear Discriminant

#### Method

#### Evaluation

Variation in Lighting Variation in Facial Expression, Eye Wear and Lighting Glasses Recognition

#### Conclusion

#### References



#### Jindong Wang [1]

- ▶ Ph.D candidate in ICT, CAS, since 2014.09
- Activity recognition, ubiquitous computing, machine learning
- ► Supervisor: Prof. Yiqiang Chen

# NA

#### Liping Jia [2, 3]

The same since 2015.09, but also:

- Super Brain candidate
- ► Cubic master







# Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection

Peter N. Belhumeur, João P. Hespanha, and David J. Kriegman

- ▶ Published in *IEEE TPAMI*, 1997
- ▶ Google Scholar citations: 10575
- ► Recommended by *J. Daugman*, a professor of CVPR at Cambridge [4]



IEEE Transactions on Pattern Analysis and Machine Intelligence

#### Intro



- ► Since 1979, published monthly
- ► Impact Factor: **5.781**(2016.05)
- ► CCF rank: **A** (Artificial Intelligence)

#### Scope

- Computer vision and image understanding
- Pattern analysis and recognition
- ► Other related areas in machine learning



There are 3 CV related authors:

#### Peter N. Belhumeur [5, 6]

- ▶ Ph.D., Harvard, 1993; Professor at Columbia U.
- ► Google Scholar citations: 26000, h-index:56

#### João P. Hespanha [7, 8]

- ► Ph.D, Yale, 1998; Portugal, Professor at UCSB
- ► Google Scholar citations: 28337, h-index: 63

#### David J. Kriegman [9, 10]

- Ph.D, Stanford, 1989; Professor at UCSD
- ► Google Scholar citations: 31435, h-index: 56







#### Motivation



Many wonderful algorithms in face recognition But they are **sensitive** to large variation in

- Lighting direction
- ► Facial expression

Since faces are not truly **Lambertian surfaces**, they have **self-shadows**.





Figure: Same pecrson under different lighting conditions



#### Basic intro

- ▶ Also known as PCA, proposed by Karl Pearson in 1901 [11]
- Purpose: linearly feature dimensionality reduction
- Assume X is a n-dimensional feature vector, after PCA, there will be Y with m-dimensional feature vectors, where  $m \ll n$ , and all new feature vectors **independent**



Figure: PCA



#### **PCA** Formulation

- ▶ Source: *N*-dimensional vectors  $X_k$ ,  $k = 1, 2, \dots, N$
- ▶ Target: *M*-dimensional vectors  $Y_k$ ,  $k = 1, 2, \dots, M, M \ll N$
- ► Transformation:  $Y_k = W^T X_k, k = 1, 2, \dots, N$ , where  $W \in \mathbb{R}^{n \times m}$  is a matrix with orthonormal columns.
- ▶ Total scatter matrix:  $S_T = \sum_{k=1}^{N} (X_k \mu)(X_k \mu)^T$
- ▶ Objective:  $W_{opt} = \underset{W}{\operatorname{arg max}} |W^T S_T W|$
- Note: The objective is to maximize the between-class scatter.
- But does it always yields the optimal solution?

#### Background Eigenfaces

- ▶ Main idea is **PCA**, proposed by *Sirovich* and *Kirby* in 1987 [13].
- First used in face recognition by Matthew Turk and Alex Pentland in 1991 [14].

#### **Procedure**

- Input: a list of faces as training set
- Output: eigenvectors
- Methods:
  - Calculate the mean vector and covariance matrix
  - Select the principle components



Figure: Eigenfaces



#### Basic intro

- ▶ Proposed by Robert Fisher in 1936 [12]
- ▶ Objective: not just maximize the between-class scatter, but with regarding to the within-class scatter.



Figure: Fisher Linear Discriminant



#### Formulation

- ▶ Between-class scatter matrix:  $S_B = \sum_{i=1}^c N_i (\mu_i \mu) (\mu_i \mu)^T$
- ▶ With-class scatter matrix:  $S_W = \sum_{i=1}^c \sum_{x_k \in X_i} (x_k \mu_i)(x_k \mu_i)^T$   $\mu_i$ : mean image of class  $X_i$   $N_i$ : # samples in class  $X_i$
- ▶ Objective:  $W_{opt} = \arg\max_{W} \frac{|W^T S_B W|}{|W^T S_B W|}$
- Solution:  $S_B w_i = \lambda_i S_W w_i, i = 1, 2, \dots, m$ , where  $\{w_i | i = 1, 2, \dots, m\}$  is the set of generalized eigenvectors.

#### Method Fisherface

Main idea is Fisher Linear Discriminant. The comparison between Eigenfaces and Fisherfaces:



Figure: Eigenfaces vs Fisherfaces



#### More

- ightharpoonup if  $S_w$  is single, then
- $\begin{array}{l} \blacktriangleright \text{ Objective: } \textit{W}_{opt}^{T} = \textit{W}_{FLD}^{T} \, \textit{W}_{PCA}^{T} \\ \textit{W}_{PCA} = \underset{\textit{W}}{\operatorname{arg \, max}} | \textit{W}^{T} \, \textit{S}_{T} \, \textit{W} | \\ \textit{W}_{FLD} = \underset{\textit{W}}{\operatorname{arg \, max}} \frac{|\textit{W}^{T} \, \textit{W}_{PCA}^{T} \, \textit{S}_{B} \, \textit{W}_{PCA} \, \textit{W}}{|\textit{W}^{T} \, \textit{W}_{PCA}^{T} \, \textit{S}_{w} \, \textit{W}_{PCA} \, \textit{W}} | \\ \end{array}$

### **Evaluation**Overview



#### 3 Experiments

- Variation in Lighting (Harvard dataset)
- Facial Expression, Eye Wear and Lighting (Yale dataset)
- ► Glasses Recognition

#### 2 Datasets

- Harvard Robotics Laboratory 330 images of 5 people used (66 each)
- Yale U. 160 frontal face images of 16 people under 10 lighting conditions

#### 5 Methods

- ► Eigenfaces (w/o first 3 PCs)
- Fisherfaces

- Correlation
- ▶ Linear Subspace

## Evaluation Overview



#### Harvard image dataset:



Figure: Harvard database images



#### Yale image dataset:



Figure: Yale database images

# Evaluation Variation in Lighting



Extrapolation & interpolations experiments:



Figure: Extrapolation result on 5 methods

# Evaluation Variation in Lighting





Figure: Interpolation result on 5 methods

# Evaluation Variation in Lighting



| Extrapolating from Subset 1 |         |                |          |          |
|-----------------------------|---------|----------------|----------|----------|
| Method                      | Reduced | Error Rate (%) |          |          |
|                             | Space   | Subset 1       | Subset 2 | Subset 3 |
| Eigenface                   | 4       | 0.0            | 31.1     | 47.7     |
|                             | 10      | 0.0            | 4.4      | 41.5     |
| Eigenface                   | 4       | 0.0            | 13.3     | 41.5     |
| w/o 1st 3                   | 10      | 0.0            | 4.4      | 27.7     |
| Correlation                 | 29      | 0.0            | 0.0      | 33.9     |
| Linear Subspace             | 15      | 0.0            | 4.4      | 9.2      |
| Fisherface                  | 4       | 0.0            | 0.0      | 4.6      |

Figure: Extrapolation result on 5 methods

| Interpolating between Subsets 1 and 5 |         |                |          |          |
|---------------------------------------|---------|----------------|----------|----------|
| Method                                | Reduced | Error Rate (%) |          |          |
|                                       | Space   | Subset 2       | Subset 3 | Subset 4 |
| Eigenface                             | 4       | 53.3           | 75.4     | 52.9     |
|                                       | 10      | 11.11          | 33.9     | 20.0     |
| Eigenface                             | 4       | 31.11          | 60.0     | 29.4     |
| w/o 1st 3                             | 10      | 6.7            | 20.0     | 12.9     |
| Correlation                           | 129     | 0.0            | 21.54    | 7.1      |
| Linear Subspace                       | 15      | 0.0            | 1.5      | 0.0      |
| Fisherface                            | 4       | 0.0            | 0.0      | 1.2      |

Figure: Interpolation result on 5 methods



#### Variation in Lighting:

#### Discovery

- ► All algorithms are perfect when the light is nearly **frontal**
- When # eigenfaces=|training set|, Eigenface method = correlation method
- Eigenfaces will be better if removing the first 3 principle components
- Although Linear Subspace method is better than Fisherface, it requires more than 3 times space
- ► Fisherface is better than Eigenface method while requiring less computation time



As # principle component increases:



Figure: Eigenfaces vs Fisherfaces as # PC changes

#### **Evaluation**



#### Error rate of different algorithms:

Variation in Facial Expression, Eye Wear and Lighting



Figure: Error rate of different algorithms



#### Error rate of different algorithms:

| "Leaving-One-Out" of Yale Database |         |                |           |  |
|------------------------------------|---------|----------------|-----------|--|
| Method                             | Reduced | Error Rate (%) |           |  |
|                                    | Space   | Close Crop     | Full Face |  |
| Eigenface                          | 30      | 24.4           | 19.4      |  |
| Eigenface                          |         |                |           |  |
| w/o 1st 3                          | 30      | 15.3           | 10.8      |  |
| Correlation                        | 160     | 23.9           | 20.0      |  |
| Linear                             | 48      | 21.6           | 15.6      |  |
| Subspace                           |         |                |           |  |
| Fisherface                         | 15      | 7.3            | 0.6       |  |

Figure: Error rate of different algorithms

#### Discovery

- ► Fisherface method has better performance
- Linear Subspace methods fails dramatically as different facial expressions make image nonlinear
- ► All algorithms perform well on full face



#### Performance with glasses:





| :after |  |
|--------|--|

Figure: Left:glasses;right:after Fisherface

| Glasses Recognition |               |                   |  |
|---------------------|---------------|-------------------|--|
| Method              | Reduced Space | Error Rate<br>(%) |  |
| PCA                 | 10            | 52.6              |  |
| Fisherface          | 1             | 5.3               |  |

Figure: Comparison between PCA and Fisherface

#### Discovery

► Fisherface method wins!

#### Conclusion



#### Conclusion

- Lighting variation: Fisherface wins, with Linear Subspace second
- ► Eigenfaces: **removing** the largest 3 PC improves performance
- Fisherface method is the best at handling variation in lighting and expression

#### Questions

- Fisherface in large databases?
- Performance with fewer lighting condition
- ► Extreme lighting condition

#### References



- [1] http://jd92.wang.
- [2] http://dwz.cn/3eN8I2.
- [3] http://weibo.com/u/1425663374.
- [4] http://www.cl.cam.ac.uk/ jgd1000/.
- [5] https://scholar.google.com/citations?user=J8YyZugAAAAJ.
- [6] http://www.cs.columbia.edu/ belhumeur/.
- [7] https://scholar.google.com/citations?user=NAwmHTEAAAAJ.
- [8] http://www.ece.ucsb.edu/ hespanha/.
- [9] https://scholar.google.com.hk/citations?user=EqetexsAAAAJ.
- [10] http://cseweb.ucsd.edu/ kriegman/.
- [11] Richard O Duda, Peter E Hart, and David G Stork. Pattern classification. John Wiley & Sons, 2012.
- [12] R Fisher.

The use of multiple measures in taxonomic problems. *Ann. Eugenics. v7*, pages 179–188.

[13] L. Sirovich and M. Kirby.

Low-dimensional procedure for the characterization of human faces. J. Opt. Soc. Am. A, 4(3):519–524, Mar 1987.

[14] Matthew Turk and Alex Pentland.

Eigenfaces for recognition.

Journal of cognitive neuroscience, 3(1):71–86, 1991.



