Processamento de Chamadas GSM

CEDET

CENTRO DE DESENVOLVIMENTO PROFISSIONAL E TECNOLÓGICO

CEDET

CENTRO DE DESENVOLVIMENTO PROFISSIONAL E TECNOLÓGICO

Processamento de Chamadas GSM

Versão 2.2

Dr. César Kyn d'Ávila

Todos os direitos reservados e protegidos pela Lei 5.988 de 14/12/1973. Nenhuma parte deste material poderá ser reproduzida ou transmitida sejam quais forem os meios empregados : eletrônicos, mecânicos, fotográficos, gravação ou quaisquer outros.

Copyright © 2004-2012 – CEDET – Centro de Desenvolvimento Profissional e Tecnológico

<u>Índice</u>

CAPÍTULO 1 – INTRODUÇÃO	5
Interface Aérea GSM	
Hierarquia dos Burst Frames	
Canais Lógicos GSM	
Traffic Channel (TCH)	
Control Channel (CCH)	
Protocolos GSM – Interface Aérea	
Protocolos GSM – A-bis	
Protocolos GSM – Interface A	
Cenários do Curso	
CAPÍTULO 2 – INICIALIZAÇÃO DO MÓVEL	23
Power-on	
Seleção	
Captura do FCCH	
Captura do SCH	
Captura do BCCH	
System Information Types	
Stand-by	
Reselection	
CAPÍTULO 3 – LOCATION UPDATE	45
Representação das Mensagens	
Fluxo de Mensagens do Location Update	
Representação das Mensagens na Interface A	50
Autenticação	
IMEI Check	
Liberação do SDCCH	
Exercício	
Mensagens da Interface Aérea	
CAPÍTULO 4 – ORIGINAÇÃO E RECEBIMENTO DI	E CHAMADAS63
Originação	
Exercício – Origination Call Flow	66
Desconexão da Chamada	
Measurement Reporting	84
Recebimento de Chamada	85
Desconexão da Rede	91
Controle de Potência	93

CAPÍTULO 5 – HANDOVER	95
Procedimento de Handover	
Handover Sincronizado Intra-BTS	102
Handover não-Sincronizado Intra-BSC	104
Handover Intra-MSC	106
Handover Inter-MSC	

Capítulo 1

Introdução

Capítulo 1 Introdução

Tópicos do Capítulo 1

- > Revisão de conceitos básicos para esse curso:
 - > Hierarquia dos Burst Frames.
 - > Canais Lógicos GSM.
 - Multiframe de Controle.
- > Protocolos GSM para Sinalização:
 - Interface Aérea (LAPD, GSM Layer 3).
 - > A-bis (LAPD, CCM, RLM, DCM, TRXM).
 - ➤ Interface A (SCCP, BSSMAP, DTAP).
- > Cenários que iremos estudar.

O objetivo do capítulo 1 é fazer uma revisão de alguns conceitos sobre a tecnologia GSM. A idéia é reforçar alguns conceitos e informações necessárias para o entendimento completo do conteúdo dessa apostila. Basicamente iremos abordar os seguintes tópicos:

- Hierarquia dos Burst Frames
- Canais Lógicos GSM
- Multiframe de Controle
- Protocolos GSM para Sinalização (Interface Aérea, A-bis e Interface A).

Interface Aérea GSM

- ➤ Um canal GSM é definido por 2 dimensões :
 - ➤ freqüência e
 - > tempo
- As portadoras em freqüência do sistema GSM tem largura de banda de 200 kHz.
- Cada portadora contém 8 slots de tempo.

ANOTAÇÕES		

ANOTAÇÕES		

Hierarquia dos Burst Frames Multiframes (26)

26 Frames (Tráfego + SACCH) – 120 mseg

0 1 2 3 11 SACCH 12 13 ... 22 23 Vazio

Burst Frame de Voz (4,616 mseg)

TS 0 TS 1 TS 2 TS 3 TS 4 TS 5 TS 6 TS 7

3 57 1 26 1 57 3

148 bits (577 μseg)

- ➤ A cada 26 Burst Frames forma-se um Multiframe com período de 20 mseg.
- Os canais de tráfego Full-Rate possuem associados um frame SACCH em cada Multiframe.
- > Existe outro modo de operação onde trabalha-se em Half-Rate (especificado para transmissão de dados banda estreita).
- Neste último caso são inseridos no Multiframe 2 frames SACCH.

ANOTAÇÕES

NOTAÇÕES	

Uma grande variedade de informações devem ser transmitidas entre o móvel e a BTS e, dependendo do tipo de informação são utilizados diferentes canais lógicos. Estes estão divididos em duas categorias: canais de tráfego e canais de controle.

Traffic Channels - TCHs

- Responsável pelo envio de voz e dados codificados tanto no downlink como no uplink.
- A voz a 13 kbps vai na taxa Full-Rate (TCH/F). Existem várias soluções de vocoders com qualidades diferentes.
- ➤ Pode-se trabalhar na taxa Half-Rate para voz, operando com vocoding de 6,5 kbps.
- Para transmissão de dados existem diversas taxas de transmissão possíveis : Half-Rate (TCH/H) e Eighth-Rate (TCH/8).

Traffic Channel (TCH) – responsável pela transmissão de voz codificada ou dados dos usuários em ambos os sentidos da comunicação uplink e downlink.

Dentro desta categoria, os canais ainda são divididos em dois tipos de acordo com suas taxas de transmissão.

<u>Full Rate TCH</u>: porta informações a uma taxa bruta de 22,8 Kbps. Isto corresponde a uma taxa de voz de 13 Kbps.

<u>Half Rate TCH</u>: porta informações de voz codificada à metade da taxa bruta abrangida pelo canal full rate, ou seja, 11,4 Kbps.

ANOTAÇÕES		

Control Channel - CCH

Responsáveis pelo transporte de dados de sinalização e sincronismo

Existem quatro tipos de canais de controle:

- 1. Canal de Controle Associado (SACCH e FACCH).
- 2. Canal de controle Broadcast (BCCH);
- 3. Canal de controle Comum (CCCH);
- 4. Canal de controle Dedicado (DCCH);

Control Channel (CCH) – responsável pela transmissão de dados de sinalização e sincronismo. Os canais de controle estão divididos em três tipos:

Broadcast Control Channel (BCCH) — fornece informações gerais para os usuários cobertos por uma mesma BTS incluindo parâmetros necessários para registro do móvel no sistema. Dentre as outras informações transmitidas neste canal estão: códigos do país, da rede, de área, canal usado dentro da célula onde o móvel se encontra, células vizinhas, seqüência de hopping, parâmetros de seleção da célula e canal RF para alocação. Uma das informações mais importantes do BCCH é a organização dos CCCH (Common Control Channel).

<u>Common Control Channel (CCCH)</u> – é um canal de controle bidirecional que carrega informações necessárias para funções de gerenciamento de acesso, como por exemplo, alocação de canal dedicado.

Este ainda se divide em:

 Paging Channel (PCH) – utilizado para busca do usuário no downlink.

- Random Access Channel (RACH) utilizado para pedido de alocação de SDCCH, resposta à busca e originação/registro do móvel.
- Access Grant Channel (AGCH) utilizado para alocar diretamente um SDCCH ou um TCH.

Dedicated Control Channel (DCCH) — formado pelo SDCCH (Slow Dedicated Control Channel) e do ACCH (Associated Control Channel). O primeiro é utilizado nos períodos em que o móvel se encontra em stand by e para execução de chamadas antes da alocação do TCH. O segundo canal ainda se divide em dois: SACCH responsável por informação referidas ao canal como relatórios de medidas de qualidade do canal. ë usado também para controle de potência e ajuste de timming advence. O FACCH está associado ao TCH. É utilizado quando há a necessidade de troca de mensagens de controle durante uma conversação e essa troca deve ser mais rápida do que o SACCH é capaz de realizar. Neste caso, um burst de 20 ms de dados ou voz é "roubado" para fazer a transmissão da mensagem. Isto é comum de ser visto em handovers durante chamadas.

SACCH e FACCH – Slow/Fast Associated Control Channel

São canais associados ao canal de tráfego que levam sinalização de controle durante a transmissão de tráfego.

As vezes é necessário criar um canal de alta velocidade (FACCH – Fast Associated Control Channel) para a transmissão de informação urgente. Por isso existe a possibilidade, através dos Stealing Flags de "roubar" bursts de tráfego para que sejam enviadas mensagens.

Multiframe de Controle

- O Multiframe de controle possui 51 bursts que são alocados comumente da forma mostrada na tabela.
- Canais de Controle Lógicos : BCCH, CCCH, SDCCH e SACCH.
- O SACCH é um canal de controle lento associado ao SDCCH.

Frame (ou Burst)	Função
0-1	BCCH (FCCH+SCH)
2-5	ВССН
6-9	CCCH
10-11	BCCH (FCCH+SCH)
12-15	CCCH
16-19	CCCH
20-21	BCCH (FCCH+SCH)
22-25	SDCCH
26-29	SDCCH
30-31	BCCH (FCCH+SCH)
32-35	SDCCH
36-39	SDCCH
40-41	BCCH (FCCH+SCH)
42-45	SACCH
46-49	SACCH
50	ldle

- > O canal de Broadcast possui mais duas subdivisões: FCCH e SCH.
- O Frequency Correction Channel, como o próprio nome diz, fornece informações de correção de freqüência do canal reverso. De fato, é um burst com 148 bits zero.
- O Synchronization Channel carrega informações para sincronização do frame do móvel e a identificação da BTS, vindo em seguida ao FCCH (8 bursts mais tarde).

ANOTAÇÕES		

Canal de Controle Comum (CCCH)

Responsável pelas informações necessárias para funções de gerenciamento de acesso, como alocação de canal dedicado, por exemplo.

- ➤ O CCCH possui três subdivisões: PCH*, RACH* e AGCH*.
- > O PCH (enlace direto) é usado para paging (procura do móvel).
- ➤ O RACH (enlace reverso) é utilizado pelo móvel para requisitar um SDCCH (Stand-alone Dedicated Control Channel).
- ➤ O AGCH (enlace direto) é usado para alocar um SDCCH para o móvel.

*PCH: Paging CHannel
*RACH: Random Access CHannel
*AGCH: Access Grant CHannel

Anotações	

Stand-Alone Dedicated Control Channel (SDCCH)

- ➤ O Stand-Alone Dedicated Control Channel (SDCCH) é um canal bidirecional usado para sinalização do sistema. É um canal de controle alocado exclusivamente para uma unidade móvel para a execução de devesas operações como: registro do móvel, autenticação, atualização da localização.
- ➤ Quando alocado para um usuário, o SDCCH é formado por 4 bursts por multiframe, gerando uma taxa de aproximadamente 2 kbps.
- Veremos no Capítulo 4 alguns exemplos de utilização deste canal no processamento de uma chamada.

ANOTAÇÕES	

Protocolos GSM – Interface Aérea

- Quando transmitimos mensagens do móvel para a BTS, existem basicamente três protocolos associados ao encapsulamento da informação:
 - ➤ GSM RF (Canais da Interface Aérea).
 - > LAPDm (Link Access Protocol D-Channel).
 - ➤ GSM Layer 3 (Mensagens) RR (Radio Resource), MM (Mobility Management) e CC (Call Control).

Protocolos na Interface Aérea

- ➤ GSM RF implementa os canais lógicos da interface aérea.
- ➤ LAPDm implementa uma estrutura de encapsulamento da mensagem que: define os formatos dos frames para transmissão na interface aérea, inclui campos para categorizar as mensagens (PD, Message Type), etc.
- ➤ GSM Layer 3 consiste no conjunto de mensagens passíveis de envio na interface aérea.

PD = Protocol Discriminator.

Protocolos GSM — A-bis BSC TRXM/ CCM/ RLM/ DCM LAPD D- Channel > A camada 3 da A-bis discrimina 4 protocolos que consistem apenas em 4 grupos de mensagens relativas aos vários procedimentos do processamento de chamadas: > CCM = Common Control Management. > RLM = Radio Link Management. > DCM = Dedicated Channel Management. > TRXM = TRX Management.

ANOTAÇÕES		

Protocolos GSM — Interface A BSC BSSAP (BSSMAP, DTAP) SCCP MTP 1-3 > BSSAP = BSS Application. > BSSMAP = Base Station Subsystem Management App Part. > DTAP = Direct Transfer Application Part. > SCCP = Signaling Connection Control Part. > MTP = Message Transfer Part.

ANOTAÇÕES	

Cenários que Iremos Estudar

- ➤ Inicialização.
- ➤ Location Update.
- > Autenticação.
- > Originação de Chamadas.
- > Recebimento de Chamadas.
- ➤ Controle de Potência.
- > Handover.
 - ➤ Intra-BTS.
 - ➤ Intra-BSC.
 - ➤ Intra-MSC.
 - ➤ Inter-MSC.
- > Contexto PDP GPRS Service

- 1) "GSM and Personal Communications Handbook", Sigmund M. Redl, Matthias K. Weber, Malcom W. Oliphant; Artech House Publishers, 1998.
- 2) "GSM System Engineering", Asha Mehrotra, Artech House Publishers, 1997.
- 3) "GSM Networks: Protocols, Teminology, and Implementation", Gunnar Heine, Artech House Publishers, 1999.
- 4) "Principles & Applications of GSM", V. Garg, J. Wilkes, Prentice Hall, 1999.

BTS

Capítulo 2

Inicialização do Móvel

Capítulo 2 Inicialização do Móvel

Tópicos do Capítulo 2

- > Processo de inicialização do móvel.
 - > Ajuste de freqüência.
 - > Ajuste de sincronismo.
 - > Captura do BCCH.
- ➤ System Information Types.
- > Reselection.

Anotações	

- ➤ Existem duas formas de seleção:
 - ➤ Normal Cell-Selection: quando a unidade móvel não tem nenhuma dica de que freqüências deve procurar. Neste caso ela vai rastrear o espectro e escolher a portadora com o BCCH mais forte.
 - Stored List Cell-Selection: quando a unidade móvel possui uma lista de freqüências para o seu rastreamento (é um procedimento opcional). Essas freqüências se apresentarem qualidade suficiente terão prioridade.

O SIM Card do GSM pode armazenar uma série de informações incluindo: PIN, PUK, NCC, MCC, IMSI, TMSI, Ki, Kc, Algoritmo A3, Algoritmo A8, LAI, etc.

No processo de seleção, na memória do SIM Card existe uma are que armazena os ARFCNs da PLMN original que o móvel está licenciado. Esta lista de ARFCNs ajuda, mas não limita o procedimento de Stored List Cell-Selection.

ANOTAÇÕES		

ANOTAÇÕES	

BSIC = Base Station Identity Code.

T1, T2 e T3 são as três partes do RFN (Reduced TDMA Frame Number).

ANOTAÇÕES

System Information Types

- > Estrutura de Burst Normal.
- > Quatro estruturas de dados são enviadas para o móvel.

	Canal de Leitura
Sys Info Type 1	BCCH
Sys Info Type 2	BCCH
Sys Info Type 3	BCCH
Sys Info Type 4	BCCH
Sys Info Type 5	SACCH
Sys Info Type 6	SACCH

System Information Type 1

- Descrição dos canais da célula (estrutura de 16 bytes) indica quais portadoras (ARFCN) estão presentes naquela célula.
- Parâmetros de controle do RACH (estrutura de 3 bytes): Número máximo de retransmissões (1 a 7), cell barred, permissão para determinados tipos de chamadas, etc.

System Information Type 2

- Lista das Células Vizinhas (Neighbour List) estrutura de 16 bytes que contém as ARFCNs que devem ser medidas nas células vizinhas.
- ➤ Parâmetros de controle do RACH (estrutura de 3 bytes): idêntica ao campo do System Information Type 1.

System Information Type 3

- ➤ Identidade da Célula (2 bytes) estrutura que identifica a célula.
- ➤ Identificação da LA (Location Area) 5 bytes que indicam a área de localização.
- ➤ Descrição dos Canais de Controle (3 bytes) configuração dos canais no multiframe de controle.
- ➤ Opções da Célula (1 byte) informações gerais sobre a célula.
- ➤ Parâmetros de Seleção (2 bytes) parâmetros para o processo de seleção de células (camping).
- ➤ Parâmetros de controle do RACH (estrutura de 3 bytes): idêntica ao campo do System Information Type 1.

System Information Type 4

- ➤ Identificação da LA (Location Area) 5 bytes que indicam a área de localização (igual ao caso do SI Type 3).
- ➤ Parâmetros de Seleção (2 bytes) (igual ao caso do SI Type 3).
- ➤ Parâmetros de controle do RACH (estrutura de 3 bytes): idêntica ao campo do System Information Type 1.
- > Descrição do CBCH (Cell Broadcast Channel).

ANOTAÇÕES	

Stand-by

- Depois do procedimento de inicialização o móvel vai para stand-by.
- ➤ Nesse estado ele monitora o CCCH à espera de mensagens.
- ➤ Os bursts de CCCH são definidos na estrutura de multiframe especificada na System Information Type 3.
- > Existem duas formas mais comuns na prática:
 - > Com 4 SDCCHs (TS0).
 - ➤ Com 3+8 SDCCHs (TS0 + TS1).

ANOTAÇÕES	

Multiframe de Controle (apenas TS0)

Função
BCCH (FCCH+SCH)
BCCH
CCCH
BCCH (FCCH+SCH)
CCCH
CCCH
BCCH (FCCH+SCH)
SDCCH 0
SDCCH 1
BCCH (FCCH+SCH)
SDCCH 2
SDCCH 3
BCCH (FCCH+SCH)
SACCH
SACCH
ldle

Frame TS0 Função SDCCH 3 0-3 4-5 RACH 6-9 SACCH 2 SACCH 3 10-13 14-17 **RACH** RACH 18-21 22-25 **RACH** 26-29 **RACH** RACH 30-33 RACH 34-36 SDCCH 0 37-40 SDCCH 1 41-44 45-46 RACH 47-50 SDCCH 2

Multiframe de Controle Reverso (apenas TS0)

Multiframe de Controle Direto (TS0 + TS1)

Fra	me TS0	Função
	0-1	BCCH (FCCH+SCH)
	2-5	BCCH
	6-9	CCCH
	10-11	BCCH (FCCH+SCH)
	12-15	CCCH
	16-19	CCCH
2	20-21	BCCH (FCCH+SCH)
2	22-25	SDCCH 0
2	26-29	SDCCH 1
(30-31	BCCH (FCCH+SCH)
(32-35	CBCH
(36-39	SDCCH 3
4	10-41	BCCH (FCCH+SCH)
4	12-45	SACCH
4	16-49	SACCH
	50	ldle

Frame TS1	Função
0-3	SDCCH 0
4-7	SDCCH 1
8-11	SDCCH 2
12-15	SDCCH 3
16-19	SDCCH 4
20-23	SDCCH 5
24-27	SDCCH 6
28-31	SDCCH 7
32-35	SACCH 0
36-39	SACCH 1
40-43	SACCH 2
44-48	SACCH 3
49-50	Idle
•	·

Multiframe de Controle Reverso (TS0 + TS1)

Frame TS0	Função
0-3	SDCCH 3
4-5	RACH
6-9	SACCH 2
10-13	SACCH 3
14-17	RACH
18-21	RACH
22-25	RACH
26-29	RACH
30-33	RACH
34-36	RACH
37-40	SDCCH 0
41-44	SDCCH 1
45-46	RACH
47-50	Vazio

Frame TS1	Função
0-3	SACCH 1
4-7	SACCH 2
8-11	SACCH 3
12-14	Vazio
15-18	SDCCH 0
19-22	SDCCH 1
23-26	SDCCH 2
27-30	SDCCH 3
31-34	SDCCH 4
35-38	SDCCH 5
39-42	SDCCH 6
43-46	SDCCH 7
47-50	SACCH 0

Reselection

- ➤ Quando em Stand-by o móvel executa medidas da qualidade das células vizinhas, baseado nas informações da Neighbour List (SI Type 3).
- ➤ O tempo todo, utilizando os parâmetros de seleção de células (SI Type 3 e 4), o móvel procura decidir se fica ou se muda de célula.
- > Reselection.

ANOTAÇÕES

Parâmetros de Reselection

- ➤ Quando o móvel é iniciado, ele seleciona uma freqüência para trabalhar (selection).
- ➤ Quando em Idle, o handset recebe uma série de informações de configuração do sistema que irão influenciar na reseleção de freqüências (SI Type 3 e 4 do GSM 04.08):
 - ➤ BA Table e Neighbour List
 - > Parâmetros C1
 - ➤ Parâmetros C2

Anotações	

BA Table e Neighbour List

Campo	Tamarino (Bytes)
L2 Pseudo Lenght	1
RR Manager Protocol Discriminator	√2
Skip Indicator	1/2
System Information Type 2 Message Type	1
BCCH Frequency List	16
NCC Permited	1
RACH Control Parameters	3

- ➤ BA Table = BCCH Allocation Table.
- ➤ Essa tabela contém a lista de BCHs vizinhos que precisam ser monitorados pelo móvel para o processo de reselection e handover.
- ➤ Mensagem: System Information Type 2.
- Essa tabela é formatada e enviada também pelo SACCH (System Information Type 5 Message).

Anotações	

System Information Type 2 Message

Campo	Tamanho (Bytes)
L2 Pseudo Lenght	1
RR Manager Protocol Discriminator	1/2
Skip Indicator	1/2
System Information Type 2 Message Type	1
BCCH Frequency List	16
NCC Permited	1
RACH Control Parameters	3

<u>Lista de Vizinhos</u> <u>no BCCH</u>

System Information Type 5 Message

Campo	Tamanho (Bytes)	
RR Manager Protocol Discriminator	1/2	
Skip Indicator	1/2	L
System Information Type 5 Message Type	1	_
BCCH Frequency List	16	

ista de Vizinhos no SACCH

- ➤ O campo BCCH Frequency List carrega a informação "Neighbour Cells Description".
- Nesta informação estão os números dos canais (freqüências) que devem ser monitorados pela unidade móvel enquanto estiver na célula.
- Essa lista pode ser programada nos equipamentos e deve conter todos os canais físicos vizinhos para reselection e handover.

Reselection

- Para disparar um procedimento de Reselection, pelo menos um dos eventos abaixo precisa acontecer:
 - a) Parâmetro C1 indica que a perda de percurso do canal atual está alta (C1<0).
 - b) Falha na sinalização no downlink.
 - c) Existe uma célula melhor (critério C1 ou C2) na mesma área de registro, ou uma célula muito melhor em outra área de registro (parâmetro CRH - CELL_RESELECT_HYSTERESIS – vai no BCCH).
 - d) Uma tentativa de acesso falha após "Max_retrans" repetições ("Max_retrans" é um parâmetro transmitido no BCCH).

Anotações	

Parâmetro C1

➤ Cálculo de C1 – Critério de Perda de Percurso

 $C1 = A - \max(0,B)$

- > A = RLA_C RXLEV_ACCESS_MIN
- ➤ B = MS_TXPWR_MAX_CCH P ou
- ➤ B = MS_TXPWR_MAX_CCH + POWER OFFSET P (Banda de 1.8 GHz)
- > RXLEV_ACCESS_MIN = Mínimo RSSI requerido na unidade móvel para acesso ao sistema.
- ➤ MS_TXPWR_MAX_CCH = Nível de Potência de TX máximo que uma unidade móvel pode utilizar quando estiver acessando o sistema.
- > POWER OFFSET = offeset de MS_TXPWR_MAX CCH
- > P = Potência máxima de saída da unidade móvel.
- > Todos os valores são em dBm.

ANOTAÇÕES	

Parâmetro C2

- Cálculo de C2 Critério de Perda de Percurso 2 (opcional)
- C2 = C1 + CELL_RESELECT_OFFSET TEMPORARY OFFSET * H(PENALTY_TIME T) para PENALTY_TIME <> 11111
- C2 = C1 CELL_RESELECT_OFFSET para PENALTY_TIME = 11111
- onde para células que não são servidoras:

H(x) = 0 para x < 0 ou H(x) = 1 para x ? 0. para a célula servidora H(x) = 0.

- T = timer que pode ser implementado para cada célula.
- CELL_RESELECT_OFFSET é um offset que altera o resultado do critério de seleção a partir de C1.
- TEMPORARY_OFFSET é um offset temporário.

ANOTAÇÕES	

Reselection - Critérios

- No procedimento de reselection, no caso do parâmetro C1, ganha a célula com maior C1.
- Se a seleção por C2 estiver ativada, ganha a célula com maior C2 (note que existe a questão do temporizador).
- Se a célula escolhida for de outra área de registro, ela deve ainda atender o critério do parâmetro CRH que consiste no fato do seu C1 ou C2 serem CRH maiores do que qualquer outra célula da mesma área de registro.

Anotações	

Bibliografia do Capítulo 2

- 1) "GSM and Personal Communications Handbook", Sigmund M. Redl, Matthias K. Weber, Malcom W. Oliphant; Artech House Publishers, 1998.
- 2) "GSM System Engineering", Asha Mehrotra, Artech House Publishers, 1997.
- 3) "GSM Networks: Protocols, Teminology, and Implementation", Gunnar Heine, Artech House Publishers, 1999.
- 4) "Principles & Applications of GSM", V. Garg, J. Wilkes, Prentice Hall, 1999.
- 5) "The GSM System for Mobile Communications", M. Mouly, M. Pautet, Communications Publishing, 1992.
- 6) ETSI EN 300 940 Digital cellular telecommunications system: Mobile radio interface layer 3 specification (GSM 04.08 version 7.4.2 Release 1998).

Capítulo 3

Location Update

Capítulo 3 Location Update

Tópicos do Capítulo 3

- ➤ Análise do Cenário Location Update:
 - Detalhamento do fluxo do processo.
 - Mensagens transmitidas e protocolos envolvidos.
 - > Procedimento de autenticação.

Para facilitar o entendimento dos fluxos de mensagens, vamos adotar uma representação padrão. Iremos nesse curso analisar mensagens que são trocadas por diversos equipamentos, sendo as principais que serão estudadas: Interface Aérea, A-bis e A.

O slide mostra a padronização para as mensagens da Interface Aérea e para a Interface A-bis. O padrão para a Interface A apresentaremos em momento mais oportuno.

Depois do camping da unidade móvel, um dos procedimentos mais importantes é o "Location Update". Esse procedimento será agora detalhado e consiste na atualização da localização da unidade móvel.

O procedimento de "Location Update" deve ser disparado toda vez que a "LA – Location Área" muda. Como vimos no Capítulo 2, essa informação pode ser obtida nas SI do BCCH.

Descrição do "Location Update"

O início do procedimento se dá quando a unidade móvel requisita um canal de controle. Quem alocará o SDCCH será a BSC, e portanto, essa primeira mensagem (CHAN_REQ) irá da unidade móvel até a BSC. A mensagem CHAN_REQ pode ser utilizada para disparar diferentes procedimentos. Por isso, quando enviada, deve conter a informação do serviço que será executado, nesse nosso caso "Location Update".

A mensagem CHAN_REQ é repassada para a BSC que a processa e informa a BTS qual o tipo de canal e qual o número do canal que deve ser alocado através da mensagem CHAN_ACT. Em seguida a BTS confirma com um ACK e atualiza a BSC sobre o número do frame da interface aérea.

A BSC procura agora comunicar-se com o móvel enviando uma IMM_AST_CMD. Essa mensagem irá ativar o canal previamente reservado.

Na seqüência a BTS envia as informações do comando da BSC para o Móvel através da mensagem IMM_AST_CMD através do AGCH. Note que essa mensagem vai no AGCH definido pelo valor indicado no CHAN_REQ (refer.). Nessa mensagem é enviado também o valor TA – timing advance.

ANOTAÇÕES	

ANOTAÇOES		

Quando o móvel aloca o SDCCH é ativada a camada 2 (LAPDm). A estrutura SABM será utilizada para enviar a mensagem de camada 3 Location Updating Request. Os dados dessa mensagem incluem o TMSI (ou IMSI) do usuário, CI (Cell Identity) e LAC (Location Area Code).

A BTS confirma a conexão LAPDm enviando uma cópia da mensagem para o móvel e simultaneamente repassa a mensagem para a BSC.

É importante notar que a atualização de localização é uma mensagem ligada aos procedimentos de gerenciamento de mobilidade. Esses procedimentos são coordenados pela MSC/VLR. Dessa forma, a BSC irá repassar as informações para a MSC/VLR para a realização do "Location Update".

O primeiro passo na comunicação entre BSC e MSC será o estabelecimento de uma conexão SCCP. O disparo para esse procedimento já foi dado com a LOC_UPD_REQ. Ao processar essa mensagem a MSC confirma para a BSC a conexão SCCP.

ANOTAÇÕES		

ANOTAÇOES		
1		

O pedido de atualização de área quando chega na MSC, será inicialmente respondido com um pedido de autenticação. Esse é um procedimento padrão do sistema GSM.

Desta forma, podemos observar o envio de AUTH_REQ na interface A. Essa mensagem vai de forma transparente até a unidade móvel (mais precisamente até o SIM Card) e carrega como principal informação a palavra RAND = palavra aleatória para execução do processo de senha e contra-senha da autenticação.

O móvel calcula SRES utilizando o algoritmo A3 e transmite a resposta através da mensagem AUTH_RSP que vai também de forma transparente até a MSC/VLR.

Se a autenticação for OK, a MSC/VLR irá proceder com a criptografia. Para isso ela envia informações tanto para o Móvel como para a BTS.

A mensagem CIPHER_MODE_CMD é enviada carregando a chave Kc e a identificação do algoritmo de criptografia que deve ser utilizado (A5/X, onde X é o número do algoritmo). A BTS extrai o Kc e envia para o móvel a mensagem CIPH_MOD_CMD com a informação A5/X.

ANOTAÇÕES	

A unidade móvel confirmará a criptografia enviando a mensagem CIPH_MOD_COM.

Nesse ponto a MSC/VLR pode fazer a verificação do IMEI no EIR. Para isso "Equipment Check" tem de estar habilitado.

O procedimento de IMEI Check será inciado com o envio de IDENT_REQ para o móvel. Essa mensagem é totalmente transparente para o BSS. Note que essa mensagem está pedindo o IMEI do aparelho móvel, mas ela também é utilizada para pedir IMSI, TMSI ou qualquer outra identificação do móvel.

O móvel responde com a mensagem IDENT_RSP.Quando a informação chega na MSC/VLR, esta irá checar a informação nas listas do EIR (Black, Gray ou White).

DTAÇÕES	

ANOTAÇÕES

Depois da autenticação e checagem do IMEI, a MSC/VLR designará um novo TMSI para o usuário para dificultar o seu rastreamento. O comando TMSI_REAL_CMD carregará o novo TMSI.

O móvel dará o OK com o comando TMSI_REAL_COM e a MSC/VLR envia LOC_UPD_ACC confirmando que atualizou a nova localização do usuário. Isso encerra o procedimento.

Liberação do SDCCH

Depois que o procedimento de Location Update termina, existe a necessidade de liberar o SDCCH alocado.

Quem irá disparar o processo de liberação é a MSC com um CLR_CMD. Nesse comando vai indicado o motivo pelo qual a liberação está sendo realizada. Nesse caso temos uma liberação "normal".

Note que na figura a BSC envia dois comando para a BTS. O primeiro, CHAN_REL, é de fato para o móvel. O segundo DEACT_SACCH é para a BTS desativar o envio de quaisquer informações através do SACCH para o móvel.

O móvel responde o CHAN_REL com uma mensagem DISC (LAPDm). Esse comando irá fazer a BTS cessar com a conexão de Layer 2 e confirmar isso por um acknowledge.

Na interface A-bis, mensagem REL_IND indicará que a interface aérea está liberada. A BSC então repassa essa mensagem para a MSC/VLR (CLR_CMP) e indica para a BTS que ela deve liberar o canal SDCCH alocado (RF_CHAN_REL).

A BTS confirma a liberação (RF_CH_REL_ACK), assim como a central irá confirmar a liberação pela mensagem RLSD.

Só depois de tudo isso podemos considerar o processo finalizado. A última mensagem é a RLC na interface A quando a BSC indica o fim do procedimento.

ANOTAÇÕES		

Mensagens da Interface Aérea (RR = Radio Resource)

Nаме	DIRECTION
CHANnel REQuest	MS→BTS
HaNDover ACcess	MS→BTS
SYStem INFOrmation 2bis	BTS→MS
SYStem INFOmartion 2ter	BTS→MS
SYStem INFOmartion 5bis	BTS→MS
SYStem INFOmartion 5ter	BTS→MS
PARTial RELease	BTS→MS
CHANnel Release	BTS→MS
PARTial RELease COMplete	MS→BTS
CHANnel MODe MODify	BTS→MS
RR STATUS	MS↔BTS
CLASSmark ENQuiry	BTS→MS
FREQuency REDEFinition	BTS→MS
MEASSurement REPort	MS→BTS
CLASSmark CHANGE	MS→BTS
CHANnel MODe MODify ACKnowledge	MS→BTS
SYStem INFOrmation 8	BTS→MS
SYSTem INFOrmation 1	BTS→MS
SYStem INFOrmation 2	BTS→MS
SYStem INFormation 3	BTS→MS
SYStem INFOrmation 4	BTS→MS
SYStem INFOrmation5	BTS→MS
SYStem INFOrmation 6	BTS→MS
SYStem INFOrmation 7	BTS→MS
PAGing REQuest Type 1	BTS→MS
PAGing REQuest Type 2	BTS→MS
PAGing REQuest Type 3	BTS→MS
PAGing ReSPonse	MS→BTS
HANDover FAllure	MS→BTS
ASsignmenT COMplete	MS→BTS
HaNDover CoMmanD	BTS→MS
HaNDover COMplete	MS→BTS
PHYsical INFOrmation	BTS→MS
ASsignmenT CoMmanD	BTS→MS
ASsignmenT FAIlure	MS→BTS
CIPHering MODe COMplete	MS→BTS
CIPHering MODe CoMmanD	BTS→MS
IMMediate ASsignmenT EXTended	BTS→MS

IMMediate ASsignmenT REJect	BTS→MS
ADDitional ASsignmenT	BTS→MS
IMMediate ASsignmenT CoMmand	BTS→MS

Mensagens da Interface Aérea (MM = Mobility Management)

Nаме	DIRECTION
IMSI Detach INDication	MS→BTS
LOCation UPDating ACCept	BTS→MS
LOCation UPDating REJect	BTS→MS
LOCation UPDating REQuest	MS→BTS
AUTHentication REJect	BTS→MS
AUTHetication REQuest	BTS→MS
AUTHentication ReSPonse	MS→BTS
IDENTity ReSPonse	MS→BTS
IDENTty REQest	BTS→MS
IDENtity ReSPonse	MS→BTS
TMSI REALlocation CoMmanD	BTS→MS
TMSI REALlocation COMplete	MS→BTS
CM SERvice ACCept	BTS→MS
CM SERvice REJect	BTS→MS
CM SERvice ABOrt	MS→BTS
CM SERvice REQuest	MS→BTS
CM ReeStablishment REQuest	MS→BTS
ABORT	BTS→MS
MM STATUS	MS↔BTS

Mensagens da Interface Aérea (CC = Call Control)

Name	DIRECTION
ALERTing	MS→BTS
CALL PROCeeding	BTS→MS
PROGRESS	BTS→MS
SETUP	MS↔BTS
CONnect	MS↔BTS

OALL CONF	140 570
CALL CONFirmed	MS→BTS
EMERGency SETUP	MS→BTS
CONnect ACKnowledge	MS↔BTS
USER INFOrmation	MS↔BTS
MODify REJect	MS↔BTS
MODify	MS↔BTS
HOLD	MS→BTS
HOLD ACKnowledge	BTS→MS
HOLD REJect	BTS→MS
RETRIEVE	MS→BTS
RETRIEVE ACKnowledge	BTS→MS
RETRIEVE REJect	BTS→MS
MODify COMplete	MS↔BTS
DISConnect	MS↔BTS
RELease COMplete	MS↔BTS
RELease	MS↔BTS
STOP DTMF	MS→BTS
STOP DTMF ACKnowledge	BTS→MS
STATUS ENQuiry	MS↔BTS
START DTMF	MS→BTS
STARTDTMF ACKnowledge	BTS→MS
START DTMF REJect	BTS→MS
CONGESTion CONTROL	MS↔BTS
STATUS	MS↔BTS
NOTIFY	MS↔BTS

Bibliografia do Capítulo 3

- 1) "GSM and Personal Communications Handbook", Sigmund M. Redl, Matthias K. Weber, Malcom W. Oliphant; Artech House Publishers, 1998.
- 2) "GSM System Engineering", Asha Mehrotra, Artech House Publishers, 1997.
- 3) "GSM Networks: Protocols, Teminology, and Implementation", Gunnar Heine, Artech House Publishers, 1999.
- 4) "Principles & Applications of GSM", V. Garg, J. Wilkes, Prentice Hall, 1999.
- 5) "The GSM System for Mobile Communications", M. Mouly, M. Pautet, Communications Publishing, 1992.
- 6) ETSI EN 300 940 Digital cellular telecommunications system: Mobile radio interface layer 3 specification (GSM 04.08 version 7.4.2 Release 1998).

Capítulo 4

Originação e Recebimento de Chamadas

Capítulo 4 Originação/Recebimento de Chamadas

Tópicos do Capítulo 4

- ➤ Análise dos cenários de originação e recebimento de chamadas:
 - Detalhamento do fluxo do processo.
 - Mensagens transmitidas e protocolos envolvidos.
- > Measurement Reporting.
- > Power Control.

A originação é iniciada novamente com um CHAN_REQ por parte da unidade móvel. A diferença dessa mensagem para aquela utilizada no processo de Location Update é principalmente no tipo de serviço indicado. Nesse caso teremos: MOC (Mobile Originating a Call).

·			

	-	

·	·	·	

	-	

A desconexão da chamada pode ocorrer por qualquer uma dos lados. No caso apresentamos a situação onde o móvel pressiona a tecla END. Essa ação gera uma mensagem DISC que é transparente do móvel até a MSC/VLR.

A MSC/VLR irá responder com uma mensagem REL, que também trafega de forma transparente da MSC até o móvel. O móvel ainda envia uma REL_COM para confirmar a liberação. Nesse ponto, da perspectiva do controle da chamada, esta pode ser considerada terminada.

Entretanto, existe a necessidade de liberação dos recursos da rede, principalmente do SDCCH da interface aérea. A partir da mensagem CLR_CMD do diagrama, todo o procedimento já foi estudado no Capítulo 3.

ANOTAÇÕES		

ANOTAÇÕES

Durante uma chamada, um procedimento de sinalização que ocorre o tempo todo e que é fundamental é o Mesarument Reporting.

Quando a chamada já está em curso, é importante lembrar que a sinalização da interface aérea é feita principalmente através do SACCH.

Tanto MS quanto BTS enviam suas medidas nas mensagens MEAS_RES e MEAS_REP para a BSC. Isso ocorre inclusive durante o processo de estabelecimento da chamada.

No uplink do SACCH o móvel envia seus relatórios de medida. Enquanto que no downlink a BTS envia SYS_INFO 5 e 6 uma vez por multiframe para a unidade móvel. Outras mensagens também são enviadas como informações de TA (Timing Advance) e de controle de potência.

ANOTAÇÕES		

Nesse ponto do curso, já tomamos conhecimento de diversos procedimentos e mensagens que serão executados/utilizados exatamente da mesma forma em outros call flows. Procuraremos evitar repetir explicações daqui para frente.

Entretanto, quando o móvel recebe uma chamada, existem algumas novidades no call flow, uma delas na sua fase inicial.

Nesse caso, virá da MSC uma mensagem de PAGING. A MSC irá enviar essa mensagem para todas as BSCs que contiverem BTSs pertencentes à última LA que o móvel registrou. Na figura, mostramos o envio dessa mensagem para apenas uma BSC.

A BSC recebe a informação de quais células devem buscar o móvel e do IMSI/TMSI do aparelho. Para todas essas células, é enviada uma mensagem PAGING_CMD, que provocará o envio na interface aérea da mensagem PAG_REQ.

Se a unidade móvel recebe essa mensagem, ela deve proceder com o pedido de um SDCCH. Isso será feito da mesma forma como estudado na originação. A diferença é que o serviço solicitado será "Answer to Paging".

Depois de alocado o SDCCH, a unidade móvel requisita à BTS o estabelecimento de uma conexão em camada 2 (LAPDm) enviando uma SABM contendo a mesagem PAG_RSP. Nessa mensagem vai a identificação do serviço e do usuário.

A conexão de camada 2 é confirmada por uma mensagem UA própria do protocolo LAPDm carregando uma cópia da PAG_RSP. Simultaneamente a BTS repassa a mensagem de paging para a BSC que irá processar parcialmente a mensagem e repassa-la para a MSC adicionando as informações LAC e CI. Toda essa informação está encapsulada na estrutura CL3I que irá ao mesmo tempo fazer o pedido de uma conexão SCCP.

Na figura, a MSC confirma a conexão, para em seguida disparar os processos de autenticação, criptografia, checagem do IMEI e troca de TMSI já bem conhecidos nesse momento.

ANOTAÇÕES			

Depois da troca de TMSI, a MSC/VLR irá enviar uma mensagem de SETUP. Note que essa mensagem foi também utilizada na originação, mas em sentido contrário (MSC para o móvel). A mensagem de SETUP informará o móvel sobre as pré-condições técnicas necessárias (bearer capabilities) para que ele aceite a conexão.

Ao receber o SETUP, a unidade móvel irá confirmar a sua capacidade de operar o serviço e enviará uma CALL_CONF se tudo estiver OK.

ANOTAÇÕES	

ANOTAÇÕES

Em seguida a unidade móvel inicia o toque da campainha para alertar o usuário. Ao fazer isso, envia simultaneamente uma mensagem ALERT de forma transparente até a MSC/VLR. Isso dispara uma ACM (ISUP) para geração do ring back.

O próximo passo é o atendimento, e ao faze-lo, o usuário aperta o SEND do aparelho gerando uma mensagem CON para o estabelecimento final da conexão. Essa mensagem, ao chegar na MSC dispara uma mensagem ANS do ISUP e o ACK de retorno para o móvel.

Finalmente a chamada está em curso.

ANOTAÇÕES	

ANOTAÇÕES

ANOTAÇÕES

Controle de Potência

- ➤ A unidade móvel é controlada em potência pela BTS com steps de 2 dB.
- ➤ As mensagens de power control são enviadas no SACCH: Power Command Information (5 bits = 32 níveis).

Tabela de Níveis de Potência (GSM 400 and GSM 900 and GSM 850)

(GSM 400 and GSM 900 and GSM 650)				
	Nominal Output	Tolerance (conditie	. ,	
level	power (dBm)	normal	extreme	
0-2	39	±2	±2,5	
3	37	±3	±4	
4	35	±3	±4	
5	33	±3	±4	
6	31	±3	±4	
7	29	±3	±4	
8	27	±3	±4	
9	25	±3	±4	
10	23	±3	±4	
11	21	±3	±4	
12	19	±3	±4	
13	17	±3	±4	
14	15	±3	±4	
15	13	±3	±4	
16	11	±5	±6	
17	9	±5	±6	
18	7	±5	±6	
19-31	5	±5	±6	

Tabela de Níveis de Potência (DCS 1 800)

Power control level	Nominal Output power (dBm)	Tolerance condit	
control level	power (ubili)	normal	extreme
29	36	±2	±2,5
30	34	±3	±4
31	32	±3	±4
0	30	±3	±4
1	28	±3	±4
2	26	±3	±4
3	24	±3	±4
4	22	±3	±4
5	20	±3	±4
6	18	±3	±4
7	16	±3	±4
8	14	±3	±4
9	12	±4	±5
10	10	±4	±5
11	8	±4	±5
12	6	±4	±5
13	4	±4	±5
14	2	±5	±6
15-28	0	±5	±6

Bibliografia do Capítulo 4

- 1) "GSM and Personal Communications Handbook", Sigmund M. Redl, Matthias K. Weber, Malcom W. Oliphant; Artech House Publishers, 1998.
- 2) "GSM System Engineering", Asha Mehrotra, Artech House Publishers, 1997
- 3) "GSM Networks: Protocols, Teminology, and Implementation", Gunnar Heine, Artech House Publishers, 1999.
- 4) "Principles & Applications of GSM", V. Garg, J. Wilkes, Prentice Hall, 1999.
- 5) "The GSM System for Mobile Communications", M. Mouly, M. Pautet, Communications Publishing, 1992.
- 6) ETSI EN 300 940 Digital cellular telecommunications system: Mobile radio interface layer 3 specification (GSM 04.08 version 7.4.2 Release 1998).

Capítulo 5

Handover

Capítulo 5 Handover

Tópicos do Capítulo 5

- > Fases do processo de Handover.
- > Análise dos cenários de handover:
 - > Intra-BTS Handover.
 - > Intra-BSC Handover.
 - > Intra-MSC Handover.
 - ➤ Inter-MSC Handover.
 - > Detalhamento do fluxo dos processos.
 - Mensagens transmitidas e protocolos envolvidos.

ANOTAÇÕES		

Coleta de Dados

- Móvel faz medidas dos vizinhos baseado na tabela de vizinhos.
- Quando no canal de tráfego, o tempo de 1 TS é utilizado para transmissão, o tempo de 1 TS é utilizado para a recepção, e o tempo de 6 TS é utilizado para medidas dos vizinhos.
- Ao finalizar as medidas dos vizinhos, envia para o sistema o relatório pela Measurement Report Message.

Measurement Report Message

Campo	Tamanho (Bytes)
RR Manager Protocol Discriminator	1/2
Skip Indicator	1/2
Measurement Report Message Type	1
Measurement Results	16

 O campo measurement results contém as informações sobre a potência do sinal e da qualidade do sinal dos diversos vizinhos.

Medidas de potência e qualidade

- RXQUAL é a variável que indica qualidade na norma GSM - possui 7 níveis de qualidade:
 - RXQUAL_0 = BER < 0,2%
 - RXQUAL_1 = 0,2 < BER < 0,4%
 - RXQUAL_2 = 0,4 < BER < 0,8%

 - RXQUAL_3 = 0.8 < BER < 1.6%
 RXQUAL_4 = 1.6 < BER < 3.2%
 - RXQUAL_5 = 3,2 < BER < 6,4%
 - RXQUAL 6 = 6,4 < BER < 12,8%
 - RXQUAL_7 = BER > 12,8%
- RXLEV é a variável que indica o RSSI na norma GSM possui 64 níveis de qualidade:
 - RXLEV0 = menos de -110 dBm + SCALE
 - RXLEV1 = de -110 dBm + SCALE até -109 dBm + SCALE
 - RXLEV63 = maior que -48 dBm + SCALE

SCALE = offset com default = 0 dB.

ANOTAÇÕES	

Decisão

- Algoritmo de decisão é proprietário do fabricante.
- Entretanto, geralmente são definidas margens para o handover acontecer.
- Margens de potência e qualidade para evitar efeitos indesejados.

ANOTAÇÕES	

Alocação de Recursos e Efetivação

IEI	Information element	Type / Reference	Presence	Format	length
	RR management Protocol Discriminator	Protocol Discriminator 10.2	М	V	1/2
	Skip Indicator	Skip Indicator 10.3.1	M	V	1/2
	Handover Command Message Type	Message Type 10.4	М	V	1
	Cell Description	Cell description 10.5.2.2	М	V	2
	Description of the first channel, after time	Channel Description 10.5.2.5	М	V	3
	Handover Reference	Handover Reference 10.5.2.15	М	V	1
	Power Command and Access type	Power Command and Access type 10.5.2.28a	М	V	1
D-	Synchronization Indication	Synchronization Indication 10.5.2.39	0	TV	1
02	Frequency Short List, after time	Frequency Short List 10.5.2.14	С	TV	10
05	Frequency List, after time	Frequency List 10.5.2.13	С	TLV	4-131
62	Cell Channel Description	Cell Channel Description 10.5.2.1b	С	TV	17
63	Mode of the First Channel	Channel Mode 10.5.2.6	0	TV	2

- BSC aloca o um TCH na nova BTS.
- Note que essa alocação depende de fatores como disponibilidade de canais que devem ser utilizados no processo de decisão.
- Com o canal alocado, envia para o móvel uma Handover Command Message pelo FACCH.

ANOTAÇÕES	

Durante a fase ativa da chamada, as medidas do canal de tráfego atual sugerem um intra-BTS Handover. Como visto, essa decisão é da BSC.

A BSC enviará um AST_CMD ou HND_CMD para iniciar o procedimento de Handover. As informações mais importantes são:

- Qual é o novo canal (time slot e frequência).
- Como a unidade móvel deve se identificar no novo canal (HO Reference).

No caso de um Handover sincronizado, a unidade móvel envia até quatro mensagens HND_ACC para a BTS depois que recebe o HND_CMD. Note que HND_ACC é enviada para a nova BTS e é uma mensagem curta (1 byte) contendo basicamente a identificação temporária do móvel para esse processo (HO Reference).

A conexão LAPDm pode agora ser estabelecida com a troca de SABM e UA. A recepção do SABM pela BTS implica no envio de uma mensagem EST_IND vazia.

A unidade móvel, depois de receber a UA, considera a conexão LAPDm ativa e confirma o Handover com uma HND_COM ou uma AST_COM. Note que até agora, a MSC não participou do processo. De fato, somente agora é que a mensagem HAND_PERF da interface A será repassada para a MSC.

A fase final do Handover é a liberação do canal antigo com as mensagens RF_CHAN_REL e RF_CH_REL_ACK.

O procedimento de intra-BSC Handover é bem semelhante ao anterior.

No início, as medidas do canal atual de tráfego sugerem um intra-BSC Handover. Note que todo o processo será controlado por apenas uma BSC e portanto as principais decisões serão tomadas apenas por ela.

A primeira parte do processo é ativar o novo canal de tráfego na BTS nova. As mensagens CHAN_ACT e CHAN_ACT_ACK são utilizadas para esse propósito.

Para iniciar um Handover Intra-BSC, a BSC vai enviar uma mensagem HND_CMD carregando HO Reference e informações do novo canal (TS e Portadora).

Note que por se tratar de duas BTSs diferentes, o handover será não-sincronizado. Nesse caso, serão enviadas várias mensagem de HND_ACC do móvel para a nova BTS. Essas mensagens carregarão "HO Reference" e servirão para a BTS calcular o TA. Toda vez que calcular o TA a BTS envia uma PHYS_INFO com o novo valor de TA. Esse procedimento é feito até que o móvel envie uma SABM para estabelecimento da conexão de camada 2.

A partir daí o procedimento é exatamente o mesmo do caso anterior.

ANOTAÇÕES	

No início, as medidas do canal atual de tráfego sugerem um Handover para fora da área da BSC. Quem decide isso é a BSC atual. Como possíveis BTS alvo estão fora da área da BSC, ela informa a MSC pela mensagem da Interface-A HND_RQD. A mensagem será enviada diversas vezes, se necessário, caso a MSC não responda (existe um timer que define o tempo de retransmissão: BSS timer 7). Na HND_RQD, a BSC envia para a MSC uma lista das possíveis BTS alvo tirada da lista de vizinhos. Note que a BSC não tem idéia se o handover será intra-MSC ou inter-MSC. Quem irá decidir isso é a MSC.

A MSC irá analisar a HND_RQD e enviar um HND_REQ para a BSC alvo que contém a BTS alvo. Essa BSC irá alocar um canal de RF na sua área de serviço enviando uma mensagem A-bis CHAN_ACT. Depois de alocado o canal, a BTS reponde com uma CHAN_ACT_ACK que provoca o envio de uma HND_REQ_ACK da BTS para a MSC.

ANOTAÇÕES		

Em seguida a MSC passa uma HND_CMD para a BSC servidora que irá transmiti-la para o móvel. Novamente é enviada a informação "HO Reference" que identificará o móvel na entrada do novo canal.

Ao receber HND_CMD, o móvel vai para o novo canal e envia HND_ACC para ajuste do TA (mesmo procedimento do intra-BSC Handover).

Quando detecta o móvel (recepção da HND_ACC), a nova BTS irá informar a BSC com HND_DET que por sua vez irá informar a MSC.

Depois do TA ajustado, o móvel envia SABM, recebe UA para estabelecer a conexão de camada 2.

Por fim, o móvel envia HND_COM que vai até a MSC.

Em seguida a MSC procede com a liberação de recursos na BSC antiga. Note que a MSC tem de desconectar o SCCP.

	_	-	

Mensagens da Interface A-bis (RLM)

Name	DIRECTION
DATA REQest	BSC→BTS
DATA INDication	BTS→BSC
ERROR INDication	BTS→BSC
ESTablish REQest	BSC→BTS
ESTablish CONFirm	BTS→BSC
ESTablish INDication	BTS→BSC
RELease REQest	BSC→BTS
RELease CONFirm	BTS→BSC
RELease INDication	BTS→BSC
UNIT DATA REQest	BSC→BTS
UNIT DATA INDication	BTS→BSC

Mensagens da Interface A-bis (CCM e TRXM)

Name	DIRECTION
BCCH INFOrmation	BSC→BTS
CCCH LOAD INDication	BTS→BSC
CHANnel ReQuireA	BTS→BSC
DELETE INDication	BTS→BSC
PAGing CoMmanD	BSC→BTS
IMMediate ASsignmenT CoMmanD	BSC→BTS
SMS BroadCast REQest	BSC→BTS
RF RESource INDication	BTS→BSC
SACCH FILLing	BSC→BTS
OVERLOAD	BTS→BSC
ERROR REPORT	BTS→BSC
SMS BroadCast CoMmanD	BTS→BSC

Mensagens da Interface A-bis (DCM)

NAME	DIRECTION
CHANnel ACTivation	BSC→BTS
CHANnel ACTvation ACKnowledge	BTS→BSC
CHANnel ACTivation Negative ACKnowledge	BTS→BSC
CONNection FAILure	BTS→BSC
DEACTivate SACCH	BSC→BTS

ENCRyption CoMmanD	BSC→BTS
HANDover DETect	BTS→BSC
MEASurement RESult	BTS→BSC
MODE MODify REQuest	BSC→BTS
MODE MODify ACKnowledge	BTS→BSC
MODE MODify Negative ACKnowledge	BTS→BSC
PHYsical CONTEXT REQuest	BSC→BTS
PHYsical CONTEXT CONFirm	BTS→BSC
RF CHANnel RELease	BSC→BTS
MS POWER CONTROL	BSC→BTS
BS POWER CONTROL	BSC→BTS
PREPROCess CONFIGure	BSC→BTS
PREPROcessed MEASurement RESult	BTS→BSC
RF Channel RELease ACKnowledge	BTS→BSC
SACCH INFO MODIFY	BSC→BTS

Mensagens da Interface A (BSSMAP)

NAME	DIRECTION
ASsignmenT REQuest	MSC→BSC
AssignmenT COMplete	BSC→MSC
ASsignmenT FAllure	BSC→MSC
HaNDover REQuest	MSC→BSC
HaNDover ReQuireD	BSC→MSC
HaNDover ReQuest ACKnowledge	BSC→MSC
HaNDover CoMmanD	MSC→BSC
HaNDover CoMPlete	BSC→MSC
HaNDover FAllure	BSC→MSC
HaNDover PERFormed	BSC→MSC
HaNDover CaNDidate ENQuire	MSC→BSC
HaNDover CaNDidate RESponse	BSC→MSC
HaNDover ReQuireD REJect	MSC→BSC
HaNDover DETect	BSC→MSC
CleaR CoManD	MSC→BSC
CleaR CoMPlete	BSC→MSC
CleaR REQuest	BSC→MSC
SAPI"n" REJect	BSC→MSC
CONFUSION	BSC↔MSC
RESET	BSC↔MSC
RESet ACKnowledge	BSC↔MSC

OVERLOAD	BSC↔MSC
RESet CIRCuit	BSC↔MSC
RESet CIRCuit ACKnowledge	BSC↔MSC
MSC IN Voke TraCe	MSC→BSC
BSS INVoke TRaCe	BSC→MSC
BLOck	BSC→MSC
BLOcking ACKnowledge	MSC→BSC
UnBLOck	BSC→MSC
UnBLOcking ACKnowledge	MSC→BSC
CIRCuit GrouP BLOck	BSC→MSC
CIRCuit GrouP BLOcking ACKnowledge	MSC→BSC
CIRCuit GrouP UnBLOck	BSC→MSC
CIRCuit GrouP BLOcking ACKnowledge	MSC→BSC
UNEQipped CIRCuit	BSC→MSC
RESource REQuest	MSC→BSC
RESource INDication	BSC→MSC
PAGING	MSC→BSC
CHIPER MODE CoManD	MSC→BSC
ClaSsMaRK UPDate	BSC↔MSC
CHIPER MODE CoMPlete	BSC→MSC
QUEUing INDication	BSC→MSC
Complete Layer 3 Information	BSC→MSC
ClaSsMark REQuest	MSC→BSC
CHIPER MODE REject	BSC→MSC
LOAD INDication	BSC↔MSC