Lista de Exercícios 3

- ① Resolva as seguintes EDOs:
 - (a) $u'' + \omega_0^2 u = \cos(\omega t)$ (separe em casos: $\omega^2 = \omega_0^2$ e $\omega^2 \neq \omega_0^2$);
 - (b) $2y'' + 3y' + y = t^2 + 3\sin t$;
 - (c) $y'' 2y' 3y = 3te^{2t}$, com y(0) = 1 e y'(0) = 0.
- ② Para cada EDO abaixo, proceda da seguinte maneira: (i) Procure por uma solução da EDO homogênea associada na forma $y_1(x) = x^{\alpha}$, com α sendo uma constante a ser determinada; (ii) Calcule explicitamente o wronskiano associado à EDO homogênea e, em seguida, fazendo uso desse resultado e do item anterior, obtenha uma outra solução $y_2(x)$ da EDO homogênea que seja linearmente independente em relação a $y_1(x)$; (iii) Encontre novamente $y_2(x)$ mas agora pelo método da redução de ordem (ou seja, escrevendo $y_2(x) = c(x)y_1(x)$ e determinando c(x)); (iv) Obtenha a solução geral da EDO inomogênea dada pelo método da variação dos parâmetros.
 - (a) $x^2y'' x(x+2)y' + (x+2)y = 2x^3, x > 0$;
 - (b) $x^2y'' 3xy' + 4y = x^2 \ln x, x > 0;$
 - (c) $y'' + \frac{\ln x}{x(1+\ln x)}y' \frac{(3+\ln x)}{4x^2(1+\ln x)}y = \frac{(1+\ln x)}{x^{3/2}\ln x}, x > 1.$
- ③ Para cada uma das EDOs abaixo, determine os pontos ordinários e os pontos singulares (dizendo se estes últimos são regulares ou irregulares), obtenha os expoentes das singularidades regulares e escreva a forma geral das soluções L.I. expandidas em torno de x=0, calculando explicitamente os primeiros três termos não nulos de cada uma.
 - (a) xy'' + y' y = 0;
 - (b) xy'' + y = 0;
 - (c) x(x-1)y'' + y = 0.
- 4 Considere a seguinte EDO, conhecida como equação de Bessel:

$$x^{2}y'' + xy' + (x^{2} + \nu^{2})y = 0,$$

com ν sendo uma constante.

- (a) Calcule os expoentes da singularidade regular em x=0;
- (b) Esboce a forma de duas soluções L.I. dessa EDO, separando em casos dependendo do valor de ν ;
- (c) Calcule as soluções para os casos $\nu = 0$ e $\nu = 1/2$ (ou seja, obtenha os valores dos parâmetros que aparecem na forma geral e a relação de recorrência que os coeficientes das séries satisfazem).
- $\mbox{\fontfamily{\fontfamil}{\fontfamily{\fontfamily{\fontfamily{\fontfamily{\fontfamily{\fontfamily{\fontfamily{\fontfamily{\fontfamily{\fontfamily{\fontfamil}{\fontfamily{\fontfamil}{\fontfamily{\fontfamil}{\fontfamil}{\fontfamil}{\fontfamil}{\fontfamil}{\fontfamil}{\fontfamil}{\fontfamil}{\fontfamil}{\fontfamil}{\fontfamil}{\fontfamil}{\fontfamil}{\fontfamil}{\fontfamil}{\fontfamil}{\fontfamil}{\fontfamil$
 - (a) $f(t) = t^n e^{at}$ $(t \ge 0, n \in \mathbb{N}, a \in \mathbb{R});$
 - (b) $f(t) = u_a(t)$ (a > 0), onde $u_a(t)$ é a função degrau em t = a (ou seja, $u_a(t) = 1$ se $t \ge a$ e $u_a(t) = 0$ se t < a);
 - (c) $f(t) = u_a(t)(t-a)^n$ $(a > 0, n \in \mathbb{N} e u_a \text{ \'e a função degrau em } t = a);$
 - (d) $f(t) = \chi_{[a,b)}(t)$ (b > a > 0), onde $\chi_{[a,b)}$ é a função característica do intervalo real [a,b) (ou seja, $\chi_{[a,b)}(t) = 1$ se $t \in [a,b)$ e $\chi_{[a,b)}(t) = 0$ caso contrário; note que $\chi_{[a,b)}(t) = u_a(t) u_b(t)$);
 - (e) $f(t) = \sum_{n=0}^{\infty} (-1)^n u_n(t)$ (visualize o gráfico dessa função);
 - (f) $f(t) = \chi_{[a,b)}(t)/(b-a)$ (b>a>0) no limite em que $b\to a$. (Essa "função limite", normalmente representada por $\delta_a(t)$ ou $\delta(t-a)$, representa uma "função" de impulso unitário em t=a e é uma representação da famosa "delta de Dirac".)

Para finalizar, mostre que a relação entre $\mathcal{L}\{u_a\}(s)$ (calculada no item (b)) e $\mathcal{L}\{\delta_a\}(s)$ (calculada no item (f)) sugere a expressão formal $u'_a(t) = \delta_a(t)$ (embora nem u'_a , nem δ_a existam como funções, a rigor).

- **6** Utilizando a tabela da seção 6.2 do livro do Boyce&DiPrima, obtenha a transformada de Laplace *inversa* das seguintes funções:
 - (a) $F(s) = e^{-2s}/(s^2 + 2 2);$
 - (b) $F(s) = (s-2)e^{-s}/(s^2 4s + 3);$
 - (c) $F(s) = (2s+1)/(4s^2+4s+5)$.
- Tesolva, pelo método da transformada de Laplace, cada uma das EDOs dadas no exercício ①.