Parameter-Efficient Fine-tuning

Parameter-Efficient Fine-tuning

- A method of pre-training models by changing a small number of parameters
- Used for training LLMs that are too costly to fine-tune
- When training on several different tasks, you can store only the set of changed parameters for each task

Few-shot and Zero-shot for GPT

- GPT-3 has been trained on 45 TB of data. This gives it useful properties.
- The model can be applied to a new problem by showing it examples of solutions in a prompt.

```
Translate from Russian to English:

стол => table

сыр => cheese

дом =>
```

It's called **Few-shot** learning.

Few-shot and Zero-shot for GPT

It is possible not to show the correct solutions at all

```
Translate from Russian to English:
дом =>
```

It's called **Zero-shot** learning.

Few-shot and Zero-shot for GPT

The larger the model, the better it performs.

However, the result may be poor because of the fact that

- The model has not learnt how to solve this problem
- Prompt is not good enough

Prompt Tuning

Idea: Let's try to automatically select the most appropriate prompt

- Initialise the prompt embeddings randomly, specifying only the number of them
- We can initialize the embeddings with embeddings of some prompt.
- For the classification task we need to train the head additionally

Prompt Tuning

- The length of the prompt directly affects the quality of the model
- However, the larger the model, the smaller the difference in quality

Prompt Tuning: Disadvantages

- Addition of a trained prompt limits the maximum length and slows down the model
- Prompt Tuning is very unstable and quality changes non-monotonically as the size of the prompt and model increases

Adapters

- After each attention layer and FFN, a small trainable adapter is added
- The adapter has skip-connection and two full-connection layers with dimensionality reduction (reduces the number of parameters)
- Only the adapters, normalizations and head are trained
- Such technique reaches fine-tuning in terms of quality

Adapters: Disadvantages

- The basic version of the adapter adds quite a few parameters compared to Prompt Tuning
- Adapters add extra layers that cannot be computed in parallel
- This slows down the model. Especially for small batch sizes

LoRA Low-Rank Adaptation

 Idea: To adapt the model to the new task, we need to shift the weights towards the anti-gradient direction

$$W' = W + \delta W$$

LoRA Low-Rank Adaptation

 Idea: To adapt the model to the new task, we need to shift the weights towards the anti-gradient direction

$$W' = W + \delta W$$

• We approximate δW by the product of the training matrices AB

$$W' = W + AB$$

LoRA Low-Rank Adaptation

 Idea: To adapt the model to the new task, we need to shift the weights towards the anti-gradient direction

$$W' = W + \delta W$$

• We approximate δW by the product of the training matrices AB

$$W' = W + AB$$

- Only the matrices W_q and $W_{\it v}$ of the attention mechanism are changed in this way
- This way very few parameters are added and the addition can be considered in parallel with the main block
- The most popular PEFT method

BitFitBias-terms Fine-tuning

Idea: biases have very few parameters, we will train only them

Attention

$$egin{aligned} \mathbf{Q}^{m,\ell}(\mathbf{x}) &= \mathbf{W}_q^{m,\ell}\mathbf{x} + \mathbf{b}_q^{m,\ell} \ \mathbf{K}^{m,\ell}(\mathbf{x}) &= \mathbf{W}_k^{m,\ell}\mathbf{x} + \mathbf{b}_k^{m,\ell} \ \mathbf{V}^{m,\ell}(\mathbf{x}) &= \mathbf{W}_v^{m,\ell}\mathbf{x} + \mathbf{b}_v^{m,\ell} \end{aligned}$$
 $egin{aligned} \mathbf{h}_1^\ell &= att(\mathbf{Q}^{1,\ell},\mathbf{K}^{1,\ell},\mathbf{V}^{1,\ell},..,\mathbf{Q}^{m,\ell},\mathbf{K}^{m,\ell},\mathbf{V}^{m,l}) \end{aligned}$

Feed Forward Network

$$\begin{aligned} \mathbf{h}_{2}^{\ell} &= \operatorname{Dropout}(\mathbf{W}_{m_{1}}^{\ell} \cdot \mathbf{h}_{1}^{\ell} \ + \ \mathbf{b}_{m_{1}}^{\ell}) \\ \mathbf{h}_{3}^{\ell} &= \mathbf{g}_{LN_{1}}^{\ell} \odot \frac{(\mathbf{h}_{2}^{\ell} + \mathbf{x}) - \mu}{\sigma} + \mathbf{b}_{LN_{1}}^{\ell} \\ \mathbf{h}_{4}^{\ell} &= \operatorname{GELU}(\mathbf{W}_{m_{2}}^{\ell} \cdot \mathbf{h}_{3}^{\ell} \ + \ \mathbf{b}_{m_{2}}^{\ell}) \\ \mathbf{h}_{5}^{\ell} &= \operatorname{Dropout}(\mathbf{W}_{m_{3}}^{\ell} \cdot \mathbf{h}_{4}^{\ell} \ + \ \mathbf{b}_{m_{3}}^{\ell}) \\ \operatorname{out}^{\ell} &= \mathbf{g}_{LN_{2}}^{\ell} \odot \frac{(\mathbf{h}_{5}^{\ell} + \mathbf{h}_{3}^{\ell}) - \mu}{\sigma} + \mathbf{b}_{LN_{2}}^{\ell} \end{aligned}$$

Comparison of methods

Suppose we have a transformer with 350M parameters and 24 layers.

Method	Number of parameters			
Prompt tuning (length: 20)	15k (0.006%)			
Adapters (dim 64)	6M (2%)			
LoRA (dim 8)	0.8M (0.22%)			
BitFit	0.32M (0.09%)			

All methods show comparable quality on some tasks, but LoRA is the most stable and is used more often than the others

Comparison of methods

Model & Method										
	Parameters	MNLI	SST-2	MRPC	CoLA	QNLI	QQP	RTE	STS-B	Avg.
RoB _{base} (FT)*	125.0M	87.6	94.8	90.2	63.6	92.8	91.9	78.7	91.2	86.4
RoB _{base} (BitFit)*	0.1M	84.7	93.7	92.7	62.0	91.8	84.0	81.5	90.8	85.2
$RoB_{base} (Adpt^{D})*$	0.3M	$87.1_{\pm .0}$	$94.2 \scriptstyle{\pm .1}$	$88.5_{\pm 1.1}$	$60.8_{\pm.4}$	$93.1_{\pm.1}$	$90.2 \scriptstyle{\pm .0}$	$71.5_{\pm 2.7}$	$89.7_{\pm .3}$	84.4
$RoB_{base} (Adpt^{D})*$	0.9M	$87.3_{\pm .1}$	$94.7_{\pm .3}$	$88.4_{\pm.1}$	$62.6 \scriptstyle{\pm .9}$	$93.0_{\pm.2}$	$90.6 \scriptstyle{\pm .0}$	$75.9_{\pm 2.2}$	$90.3_{\pm .1}$	85.4
RoB _{base} (LoRA)	0.3M	$87.5_{\pm .3}$	$\textbf{95.1}_{\pm .2}$	$89.7_{\pm .7}$	$63.4{\scriptstyle\pm1.2}$	$\textbf{93.3}_{\pm .3}$	$\textbf{90.8}_{\pm.1}$	$\pmb{86.6} \scriptstyle{\pm .7}$	$\textbf{91.5}_{\pm .2}$	87.2

Model & Method	# Trainable	E2E NLG Challenge					
	Parameters	BLEU	NIST	MET	ROUGE-L	CIDEr	
GPT-2 M (FT)*	354.92M	68.2	8.62	46.2	71.0	2.47	
GPT-2 M (Adapter ^L)*	0.37M	66.3	8.41	45.0	69.8	2.40	
GPT-2 M (Adapter ^L)*	11.09M	68.9	8.71	46.1	71.3	2.47	
GPT-2 M (Adapter ^H)	11.09M	$67.3_{\pm .6}$	$8.50_{\pm.07}$	$46.0_{\pm.2}$	$70.7_{\pm .2}$	$2.44_{\pm.01}$	
GPT-2 M (FT^{Top2})*	25.19M	68.1	8.59	46.0	70.8	2.41	
GPT-2 M (PreLayer)*	0.35M	69.7	8.81	46.1	71.4	2.49	
GPT-2 M (LoRA)	0.35M	$oldsymbol{70.4}_{\pm.1}$	$\pmb{8.85}_{\pm .02}$	$\textbf{46.8}_{\pm .2}$	$\textbf{71.8}_{\pm.1}$	$\pmb{2.53}_{\pm .02}$	