Foundations of Data Science syllabus

Wesley Tansey

September 11, 2023

This course will cover the foundations of modern data science from a probabilistic modeling perspective. We will cover the basics of statistical modeling: likelihoods, priors, and posteriors. We will compare and contrast different ways to fit these models, focusing on the trade-offs made between computation and objectives like uncertainty quantification or accuracy. There will be 3 homeworks, each having both problem sets and a programming task. Some lectures will have assigned readings that must be completed before the lecture begins; readings will be sent out the week before the lecture.

Final project. There is a final project for the course that accounts for the bulk of the overall grade. A mid-semester report is due with the expectation of substantial progress made. A report on the project is due at the end of the course along with a short presentation. Students should budget substantial time for the final project throughout the entire course.

Meeting times. The course will meet Mondays and Wednesdays, 10am-11:30m, in the lower level conference room of the Joy building (321 E 61st St.). All lectures are entirely in-person.

Prerequisites. Students are expected to have a working knowledge of linear algebra, calculus, and basic probability. It is also expected that they will have working knowledge of python (numpy, scipy, matplotlib).

Asking for help. A Slack channel is available for discussions and questions. All students enrolled will receive an invite automatically. Any auditing students that wish to be invited to the channel should email me.

Topics. Below are topics covered in the class. The precise ordering may change through the semester.

- Background / refresher. Algebra, calculus, linear algebra, probability, python programming.
- Intro to statistical inference. Likelihoods, maximum likelihood estimation, bias of an estimator, variance of an estimator, bias-variance decomposition of MSE, bias-variance trade-off.

- Convex optimization. Convexity, logistic regression, gradient descent, Newton's method, coordinate descent.
- Stochastic optimization. Stochastic gradient descent, automatic differentiation, pytorch.
- **Deep learning.** Neural networks, convolutional nets, transformers, residual nets, batch norm, U-nets.
- Bayesian modeling. Priors, Bayes' rule, MAP inference, prior/penalty duality, L1 and L2 penalties.
- Bayesian analysis. Posterior distributions, uncertainty intervals, posterior predictive, posterior predictive checks, model criticism, Box's loop.
- **Graphical models.** Exponential families, conjugate priors, hierarchical models, plate diagrams.
- Bayesian posterior inference. Benefits of Bayesian inference in non-convex problems, MCMC, Gibbs sampling, Metropolis-Hastings, computational issues for MCMC.
- Scalable approximate Bayesian inference. Empirical Bayes, variational inference, Hamiltonian Monte Carlo, trade-offs of hybrid methods.
- Deep generative models. Amortized inference, variational autoencoders, deep empirical Bayes.
- Causal inference. Confounders, mediators, colliders, D-separation, structure learning, causal estimation, potential outcomes, estimands (ATE, ITE), double robustness, Bayesian causal inference, missing data perspective, sensitivity analysis.
- Applications. Illustrative examples of common types of modeling problems:
 - Matrix factorization. Alternating minimization, identifiability, interpretability, cross-validation, strong generalization, tensors, multiview factorization.
 - **Mixture models.** Latent variable models, expectation maximization, data augmentation.
 - Spatiotemporal data. Time series, spatial data, graph data, trend filtering, Gaussian processes.