Problem 1

Theorem 1. Let $|E| < \infty$ and E_i (i = 1, 2, ..., m) be measurable subsets of E. Let $k \in \{1, 2, ..., m\}$. Show that if every point of E belongs to at least k of E_i , then there is i such that $|E_i| \ge \frac{k}{m}|E|$.

Solution

Proof. Since each $k \leq \sum_{i=1}^{m} \chi_{E_i}$ for each $k \in E$, theorem 5.5 tells us that

$$\int_{E} k \le \int_{E} \sum_{i=1}^{m} \chi_{E_{i}}.$$

The left hand side of this inequality is easily evaluated to be k|E| by Corollary 5.4. For the right hand side, we can use theorem 5.14 to see

$$\int_{E} \sum_{i=1}^{m} \chi_{E_{i}} = \sum_{i=1}^{m} \int_{E} \chi_{E_{i}}$$

$$= \sum_{i=1}^{m} |E_{i}|$$

$$\leq \sum_{j=1}^{m} \max\{|E_{i}| : i = 1, 2, ..., m\}$$

$$= m \cdot \max\{|E_{i}| : i = 1, 2, ..., m\}.$$

Thus, we have that

$$k|E| \leq m \cdot \max\{|E_i| : i = 1, 2, ..., m\} \implies \frac{k}{m} = \max\{|E_i| : i = 1, 2, ..., m\},$$

and our proof is complete.

Problem 2

Let f be continuous and nonnegative on [a, b] where $-\infty < a < b < \infty$. Define a nondecreasing sequence of step functions $\{\phi_k\}$ on [a, b] such that $\phi_k \to f$ on [a, b]. Then, use the monotone convergence theorem to show that

$$(L)\int_{[a,b]} f(x)dx = (R)\int_a^b f(x)dx.$$

Solution

Since f is continuous, we have that it is Reimann integrable and Lebesgue integrable. For each $k \in \mathbb{N}$, lets create a partition of [a,b], $\Gamma_k = \{I_1^k, I_2^k, ..., I_{N_k}^k\}$ with norm $|\Gamma_k| < \frac{1}{k}$. For each partition, define a function $\phi_k : [a,b] \to \mathbb{R}$ such that for $x \in I_n^k$, we have

$$\phi_k(x) = \inf\{f(x_n) : x_n \in I_n^k\}.$$

Then, we clearly have that $\phi_k \nearrow f$. By the monotone convergence theorem, we have

$$(L) \int_{[a,b]} \phi_k(x) dx \to (L) \int_a^b f(x) dx.$$

Also, we have by corollary 5.4 that

$$(L) \int_{[a,b]} \phi_k(x) dx = \sum_{n=1}^{N_k} \inf \{ f(x_n) : x_n \in I_n^k \} \cdot |k|$$

November 11, 2022

which is nothing more than a lower Reimann sum of f. Thus, we can conclude that

$$(L) \int_{[a,b]} \phi_k(x) dx \to (R) \int_a^b f(x) dx,$$

and ultimately that

$$(L)\int_{[a,b]} f(x)dx = (R)\int_a^b f(x)dx.$$

Problem 3

Theorem 2. Let $f \ge 0$ be measurable in \mathbb{R}^n . For k = 1, 2, ..., define the cut-off functions

$$f = \begin{cases} f(x) & \text{if } f(x) < k \\ 0 & \text{if } f(x) \ge k \end{cases}$$

Then, (i) each f_k is measurable on \mathbb{R}^n and (ii)

$$\int_{\mathbb{R}^n} f_k(x) dx \to \int_{\mathbb{R}^n} f(x) dx$$

as $k \to \infty$.

Solution

Proof. Part (i):

Let $a \in \mathbb{R}$. Suppose first that $a \geq k$. Then

$$\{f_k > a\} = \{x \in \mathbb{R} : f_k(x) > a\}$$
$$\subseteq \{x \in \mathbb{R} : f_k(x) > k\}$$
$$= \emptyset.$$

and we can conclude that $\{f_k > a\} = \emptyset$, which is measurable.

Now suppose that 0 < a < k. Then, we have

$${f_k > a} = {a < f_k < k}$$

= ${a < f < k},$

which is measurable, since f is measurable.

Now suppose that a = 0. Then,

$${f_k > a} = {f_k > 0}$$

= ${0 < f < k}$

which is measurable, since f is measurable.

Finally, suppose that a < 0. Then,

$$\{f_k > a\} = \{f_k \ge 0\}$$
$$= \mathbb{R}^n$$

Since f_k is a nonnegative function.

Thus, in every case, $\{f_k > a\}$ is measurable, and we have shown that each f_k is measurable.

Part (ii):

Since f is finite a.e., theorem 5.10 in our text tells us that it will suffice to show that

$$\int_{E} f_k(x)dx \to \int_{E} f(x)dx,$$

where $E \subseteq \mathbb{R}^n$ is the set of all $x \in \mathbb{R}^n$ such that f(x) is finite. Since each f_k is measurable and nonnegative, the monotone convergence theorem tells us that if $f_k \nearrow f$ on E, then we will have the desired result. Thus, we will show that $f_k \nearrow f$ on E.

Let $x \in E$. Since f is finite on E, there exists some least $K \in \mathbb{N}$ such that f(x) < K. Thus, for all $k \ge K$, we have that $f_k(x) = f(x)$. Now suppose that k < K. Then, we have $f_k(x) = 0 < f(x)$. Since this is true for any x, we have shown that $f_k \le f$ for all k and that $f_k \to f$. Thus, $f_k \nearrow f$, and our proof is complete. \square

Problem 4

Theorem 3. Suppose that $f \geq 0$ is continuous on (0,1] and the improper Riemann integral

$$(R) \int_0^1 f(x)dx = \lim_{a \to 0^+} (R) \int_a^1 f(x)dx$$

exists (finite or $+\infty$). Then,

$$(L) \int_{(0,1]} f(x) dx = (R) \int_0^1 f(x) dx.$$

Solution

Proof. Define the sequence of functions $\{f_k\}$ by

$$f_k = \chi_{\left[\frac{1}{L},1\right]} f.$$

Clearly, we have that $f_k \leq f$ and $f_k \to f$, and therefore that $f_k \nearrow f$. Furthermore, since indicator functions are measurable, and f is measurable, we have by theorem 4.10 that each f_k is measurable. Thus, we have by the monotone convergence theorem that

$$(L) \int_{(0,1]} f_k dx \to (L) \int_{(0,1]} f dx.$$

In addition to this, we have that for each k,

$$(L) \int_{(0,1]} f_k dx = (L) \int_{(0,\frac{1}{k})} f_k dx + (L) \int_{[\frac{1}{k},1]} f_k dx$$
 By theorem 5.7
$$= 0 + (L) \int_{[\frac{1}{k},1]} f_k dx$$
 Since $f_k = 0$ on $(0,\frac{1}{k})$

$$= (L) \int_{[\frac{1}{k},1]} f_k dx$$
 By problem 2

Thus, putting all of this together, we have

$$(R) \int_0^1 f(x)dx = \lim_{k \to \infty} (R) \int_{\frac{1}{k}}^1 f(x)dx$$
$$= \lim_{k \to \infty} (L) \int_{\left[\frac{1}{k}, 1\right]} f_k dx$$
$$= \lim_{k \to \infty} (L) \int_{(0, 1]} f_k dx$$
$$= (L) \int_{(0, 1]} f dx,$$

and our proof is complete.

Problem 5

Theorem 4. Let f be nonnegative and measurable on a measurable set $E \subseteq \mathbb{R}^n$ with $|E| < \infty$. Part (i):

If $f \leq M$ a.e. on E where M > 0 is constant, then

$$\int_{E} f = \inf \sum_{i} [\sup_{x \in E_{j}} f(x)] |E_{j}|,$$

where the infimum is taken over all decompositions $E = \bigcup_j E_j$ of E into the union of a finite number of disjoint measurable sets E_j .

Part (ii):

The statement of (i) can fail if we allow f to be unbounded.

Solution

Proof. Part (i):

In light of theorem 5.10, we will assume that $f \leq M$ everywhere on E. Then, we have that the measurable function M-f is nonnegative on E. Utilizing theorem 5.8, we have

$$\begin{split} \int_E (M-f) &= \sup \sum_j [\inf_{x \in E_j} (M-f(x))] |E_j| \\ &= -\inf \left(-\sum_j [\inf_{x \in E_j} (M-f(x))] |E_j| \right) \quad \text{Using the relation between inf and sup we used to prove 4.11} \\ &= -\inf \sum_j [\sup_{x \in E_j} (f(x)-M)] |E_j| \quad \text{Using the same relation again} \\ &= -\inf \sum_j ([\sup_{x \in E_j} f(x)]-M) |E_j| \\ &= \inf \sum_j M |E_j| -\inf \sum_j [\sup_{x \in E_j} f(x)] |E_j| \\ &= \sum_j M |E_j| -\inf \sum_j [\sup_{x \in E_j} f(x)] |E_j| \\ &= \int_E M -\inf \sum_j [\sup_{x \in E_j} f(x)] |E_j| \quad \text{By theorem 5.7 and corollary 5.4.} \end{split}$$

We have by theorem 5.5 part (i) that $\int_E f \leq \int_E M$. Combining this with that fact $\int_E M = M|E|$, we have that the integral of f is finite. Finally, using corollary 5.15, we have that

$$\int_{E} M - \int_{E} f = \int_{E} (M - f)$$

$$= \int_{E} M - \inf \sum_{j} [\sup_{x \in E_{j}} f(x)] |E_{j}|$$

$$- \int_{E} f = -\inf \sum_{j} [\sup_{x \in E_{j}} f(x)] |E_{j}|$$

$$\int_{E} f = \inf \sum_{j} [\sup_{x \in E_{j}} f(x)] |E_{j}|,$$

and our proof of (i) is complete.

Part (ii):

Consider the function $f(x) = \frac{1}{\sqrt{x}}$ with E = (0, 1]. Taking the limit of Reimann integrals in the same manner as problem 4 leads us easily to the fact that

$$\int_{(0,1]} f(x)dx = 2.$$

Now, let $\{E_j\}$ be some finite decomposition of E into disjoint measurable sets. Since this decomposition is finite, there must be some E_j that contains an interval $(0, \epsilon)$ for some $\epsilon > 0$. Thus, we have

$$\sum_{j} [\sup_{x \in E_{j}} f(x)] |E_{j}| \ge [\sup_{x \in (0, \epsilon)} f(x)] |(0, \epsilon)|$$
$$= \infty \cdot \epsilon$$
$$= \infty.$$

Since this is true for any such decomposition, we have that

$$\inf \sum_{j} [\sup_{x \in E_j} f(x)] |E_j| = \infty$$

$$\neq \int_{(0,1]} f(x) dx,$$

and our proof is complete.

Problem 6

Theorem 5. Let $\{f_k\}$ be a sequence of nonnegative measurable functions defined on E. If $f_k \to f$ and $f_k \le f$ a.e. on E, then

$$\int_{E} f_{k} \to \int_{E} f.$$

Solution

Proof. Since $f_k \leq f$ a.e., we can define for each k a set of measure zero

$$Z_k = \{f_k > f\}.$$

With this, define $Z = \bigcup_{k=1}^{\infty} Z_k$. Then, Z has zero measure, and we have that for each $k, f_k \leq f$ and $f_k \to f$ on E - Z. Thus,

$$\lim_{k \to \infty} \int_{E} f_{k} = \lim_{k \to \infty} \left(\int_{E-Z} f_{k} + \int_{Z} f_{k} \right)$$
 By theorem 5.7
$$= \lim_{k \to \infty} \int_{E-Z} f_{k}$$
 By theorem 5.9, since $|Z| = 0$

$$= \int_{E-Z} f$$
 By the monotone convergence theorem
$$= \int_{E-Z} f + \int_{Z} f$$

$$= \int_{E} f,$$

and our proof is complete.

Problem 7

Theorem 6. If $f \in L(0,1)$, then $x^k f(x) \in L(0,1)$ for k = 1, 2, ..., and

$$\int_0^1 x^k f(x) dx \to 0.$$

Solution

Proof. Since x^k is continuous, we have that x^k is measurable. Furthermore, we have that $|x^k| = x^k \le 1$ for all $x \in (0,1)$. Thus, by theorem 5.30, $x^k f(x) \in L(0,1)$ for each $k \in \mathbb{N}$.

We will now use the monotone convergence theorem (part (ii)) to show that $\int_0^1 x^k f(x) dx \to 0$. Define $f_k = x^k f(x)$, and $\phi = |f|$. Clearly, we have that $f_k \le \phi$ on (0,1). By theorem 5.21, we have that $\phi \in L(0,1)$. Thus, it just remains to show that $f_k \to 0$ a.e. on (0,1).

By theorem 5.22, we have that f(x) is finite for almost all $x \in (0,1)$. Let $x \in (0,1)$ be such that f(x) is finite, and let $\epsilon > 0$. We have that $x^k \to 0$, thus, there exists some $K \in \mathbb{N}$ such that for all $k \ge K$, $x^k < \frac{\epsilon}{|f(x)|}$. Then,

we have for all $k \geq K$,

$$|f_k(x)| = |x^k f(x)|$$

$$= x^k |f(x)|$$

$$< \frac{\epsilon}{|f(x)|} |f(x)|$$

$$= \epsilon$$

Thus, $f_k \to 0$ a.e. on (0,1), and the monotone convergence theorem leads us to conclude that

$$\int_0^1 x^k f(x) dx \to 0,$$

and our proof is complete.

Problem 8

Theorem 7. Part (a):

Let $\{f_k\}$ be a sequence of measurable functions on E. Then $\sum f_k$ converges absolutely a.e. in E if $\sum \int_E |f_k| < +\infty$.

Part (b):

If $\{r_k\}$ denotes the rational numbers in [0,1] and $\{a_k\}$ satisfies $\sum |a_k| < \infty$, then $\sum a_k |x - r_k|^{-1/2}$ converges absolutely a.e. in [0,1].

Solution

Proof. Part (a):

Suppose that $\sum \int_E |f_k| < +\infty$. Since each f_k is measurable, we have that the nonnegative functions $|f_k|$ are measurable. Thus, by theorem 5.16, we have

$$\sum \int_{E} |f_k| = \int_{E} \sum |f_k|.$$

By theorem 5.22, we have $\int_E \sum |f_k| < \infty$ implies that $\sum |f_k|$ is finite a.e. in E. Thus, we have shown that $\sum |f_k|$ converges absolutely a.e. in E.

Part(b):

We have that $|x-r_k|^{-1/2}$ is continuous and nonnegative on $[0, r_k)$ and $(r_k, 1]$, and is thus Riemann integrable on these sets. Furthermore, by the results of Problem 4, the Riemann integral coincides with the Lebesgue integral on these sets. Thus, we have

$$\int_{[0,1]} a_k |x - r_k|^{-1/2} dx = \int_{[0,r_k)} a_k |x - r_k|^{-1/2} + \int_{(r_k,1]} a_k |x - r_k|^{-1/2} dx$$

$$= \int_{[0,r_k)} a_k (r_k - x)^{-1/2} + \int_{(r_k,1]} a_k (x - r_k)^{-1/2} dx$$

$$= (R) \int_0^{r_k} a_k (r_k - x)^{-1/2} + (R) \int_{r_k}^1 a_k (x - r_k)^{-1/2} dx.$$

Using the standard techniques from elementary real analysis (u substitution), we have

$$(R) \int_0^{r_k} a_k (r_k - x)^{-1/2} = 2a_k r^{1/2},$$

and

$$(R) \int_{r_k}^1 a_k (x - r_k)^{-1/2} dx = 2a_k (1 - r_k)^{1/2}.$$

With this, we have

$$\int_{[0,1]} a_k |x - r_k|^{-1/2} dx = 2a_k r_k^{1/2} + 2a_k (1 - r_k)^{1/2}$$

$$= 2a_k (r_k^{1/2} + (1 - r_k)^{1/2})$$

$$\leq 4a_k.$$

Finally, we have

$$\sum_{k} \int_{[0,1]} |a_{k}| |x - r_{k}|^{-1/2} dx \le \sum_{k} 4|a_{k}|$$

$$= 4 \sum_{k} |a_{k}|$$

$$\le \infty.$$

By part (a), we have shown that $\sum a_k |x - r_k|^{-1/2}$ converges absolutely a.e. in [0,1].