Лабораторная работа №8

Модель ТСР/АОМ

Городянский Фёдор Николаевич

Содержание

Цель работы	4
Задание	5
Выполнение лабораторной работы Реализация в xcos	6 10
Выводы	12

Список иллюстраций

0.1	Установка контекста	6
0.2	Модель TCP/AQM в xcos	7
0.3	Динамика изменения размера TCP окна W (t) и размера	
	очереди Q(t)	8
0.4	Фазовый портрет (W, Q)	8
0.5	Динамика изменения размера TCP окна W (t) и размера	
	очереди Q(t) при C = 0.9	ç
0.6	Фазовый портрет (W, Q) при C = 0.9	10
0.7	Динамика изменения размера TCP окна W (t) и размера	
	очереди Q(t). OpenModelica	11
0.8	Фазовый портрет (W, Q). OpenModelica	11

Цель работы

Реализовать модель TCP/AQM в xcos и OpenModelica.

Задание

- 1. Построить модель TCP/AQM в xcos;
- 2. Построить графики динамики изменения размера TCP окна W(t) и размера очереди Q(t);
- 3. Построить модель TCP/AQM в OpenModelica;

Выполнение лабораторной работы

Реализация в хсоѕ

Построим схему хсоs, моделирующую нашу систему, с начальными значениями параметров N=1, R=1, K=5.3, C=1, W(0)=0.1, Q(0)=1. Для этого сначала зададим переменные окружения (рис. [-@fig:001]).

Рис. 0.1: Установка контекста

Затем реализуем модель TCP/AQM, разместив блоки интегрирования, суммирования, произведения, констант, а также регистрирующие устройства (рис. [-@fig:002]):

Рис. 0.2: Модель TCP/AQM в xcos

В результате получим динамику изменения размера ТСР окна W(t) (зеленая линия) и размера очереди Q(t) (черная линия), а также фазовый портрет, который показывает наличие автоколебаний параметров системы — фазовая траектория осциллирует вокруг своей стационарной точки (рис. [-@fig:003], [-@fig:004]):

Рис. 0.3: Динамика изменения размера TCP окна W (t) и размера очереди Q(t)

Рис. 0.4: Фазовый портрет (W, Q)

Уменьшив скорость обработки пакетов C до 0.9 увидим, что автоколебания стали более выраженными (рис. [-@fig:005], [-@fig:006]).

Рис. 0.5: Динамика изменения размера TCP окна W (t) и размера очере- ди Q(t) при C = 0.9

Рис. 0.6: Фазовый портрет (W, Q) при C = 0.9

Реализация модели в OpenModelica

Перейдем к реализации модели в OpenModelica. Зададим параметры, начальные значения и систему уравнений.

```
parameter Real N=1;
parameter Real R=1;
parameter Real K=5.3;
parameter Real C=1;

Real W(start=0.1);
Real Q(start=1);
equation
```

```
der(W)= 1/R - W*delay(W, R)/(2*R)*K*delay(Q, R);

der(Q)= if (Q==0) then max(N*W/R-C,0) else (N*W/R-C);
```

Выполнив симуляцию, получим динамику изменения размера ТСР окна W(t)(зеленая линия) и размера очереди Q(t)(черная линия), а также фазовый портрет, который показывает наличие автоколебаний параметров системы — фазовая траектория осциллирует вокруг своей стационарной точки (рис. [-@fig:007], [-@fig:008]).

Рис. 0.7: Динамика изменения размера TCP окна W (t) и размера очереди Q(t). OpenModelica

Рис. 0.8: Фазовый портрет (W, Q). OpenModelica

Выводы

В процессе выполнения данной лабораторной работы я реализовал модель TCP/AQM в xcos и OpenModelica.