Inference and Estimation in GLMMs

Recall GLMMs

Conditional on cluster specific random effects b_i ,

$$E(Y_{ij}|b_i) = \mu_{ij}^{\mathbf{b}}$$
$$var(Y_{ij}|b_i) = \phi a_{ij}^{-1} v(\mu_{ij}^{\mathbf{b}})$$

Random Effects Model:

$$g(\boldsymbol{\mu}_{ij}^{\mathbf{b}}) = \mathbf{X}_{ij}^T \boldsymbol{\beta} + \mathbf{Z}_{ij}^T \mathbf{b}_i$$

where

$$\mathbf{b}_i \sim N\{0, \mathbf{D}_0(\boldsymbol{\theta})\}$$

Likelihood

$$\mathrm{e}^{\ell(eta,oldsymbol{ heta})} \propto |\mathbf{D}|^{-rac{1}{2}} \int \exp^{\{\sum_{i=1}^n \ell_i(Y_i|\mathbf{b};eta) - rac{1}{2}\mathbf{b}^\mathsf{T}\mathbf{D}^{-1}\mathbf{b}\}} d\mathbf{b}$$

How do we do estimation?

$$e^{\ell(oldsymbol{eta},oldsymbol{ heta})} \propto |\mathbf{D}|^{-rac{1}{2}} \int exp^{\{\sum_{i=1}^n \ell_i(Y_i|\mathbf{b};oldsymbol{eta}) - rac{1}{2}\mathbf{b}^\mathsf{T}\mathbf{D}^{-1}\mathbf{b}\}} d\mathbf{b}$$

Main challenge: Difficult to take that integral!

Conditional Inference

Recall: this is potential approach for dealing with random effects

- Idea: Calculate the sufficient statistic for b_is and make inference using the conditional likelihood on the sufficient statistics.
- Pro: robustness (no distributional assumptions on \mathbf{b}_i) and likelihood has closed form
- Con: only works in special cases (e.g. logistic GLMM and poisson log linear GLMM)
- Con: you've lost the random effects

Instead: can we just take the MLE?

Full MLE Approach

$$e^{\ell(eta,oldsymbol{ heta})} \propto |\mathbf{D}|^{-rac{1}{2}} \int exp^{\{\sum_{i=1}^n \ell_i(Y_i|\mathbf{b};eta) - rac{1}{2}\mathbf{b}^\mathsf{T}\mathbf{D}^{-1}\mathbf{b}\}} d\mathbf{b}$$

Idea: To directly evaluate the integrated loglikelihood $\ell(\beta, \theta)$ using numerical integration methods, such as adaptive Gaussian quadrature or Monte-Carlo.

Numerical Integration: Adaptive Guassian Quadrature

Idea: To numerically evaluate the integral in $\ell(\beta, \theta)$ using a weighted sum over predefined set of quadrature points, i.e., by replacing the integral by a sum.

Advantages:

- Full MLE if the integral can be evaluated precisely using sufficient number of quadrature points.
- For a one-dimensional integral, e.g., random intercept models, 10-20 quadrature points give a very precise evaluation of the integral and calculations are very quick.

Numerical Integration: Adaptive Gaussian Quadrature (2)

Disadvantages:

- It is only feasible if the dimension of integral is small, e.g., in simple random effect models for longitudinal/clustered data.
- For a multi-dimensional integral, the number of quadrature points grows exponentially and such a direct quadrature approximation can be prohibited, e.g., for a 5-dimensional integral, the number of quadratures is 20⁵.
- For spatial data, the dimension of integration is the sample size. Direct numerical integration is infeasible.

References:

Golub and Welsch (1969); Pinheiro and Bates (1995)

Adaptive Gaussian Quadrature: Operationally

Quadrature replaces

$$I = \int w(u)g(u)du$$
 by $\tilde{I} = \sum_{i=1}^{n} w_i g(u_i)$

for nodes u_i and weights w_i (note n is not sample size)

- For GLMM: we have integrals w.r.t. a Gaussian density
- Gauss-Hermite quadrature is designed for problems of this type

Adaptive Gaussian Quadrature: Operationally (2)

Gauss-Hermite Quadrature:

$$I = \int_{-\infty}^{\infty} \exp(-u^2) g(u) du \approx \sum_{i=1}^{n} w_i g(u_i) = \widetilde{I}$$

where $g(\cdot)$ is a polynomial of degree 2n-1 or less.

 u_i is the i^{th} of n roots of the Hermite polynomial $H_n(u)$ with weight

$$w_i = \frac{2^{n-1} n! \sqrt{\pi}}{n^2 [H_{n-1}(u_i)]^2}$$

where $H_n(u)$ are orthogonal polynomial sequence given by

$$H_n(u) = (-1)^n \exp(-u^2) \frac{\partial^n}{\partial u^n} \exp(-u^2)$$

Adaptive Gaussian Quadrature: Getting Weights (3)

R functions to get the weights

```
> library(statmod)
> quad <- gauss.quad(4, kind="hermite")</pre>
> round(quad$nodes, 3)
[1] -1.651 -0.525 0.525 1.651
> round(quad$weights, 3)
[1] 0.081 0.805 0.805 0.081
> quad <- gauss.quad(5, kind="hermite")</pre>
> round(quad$nodes, 3)
[1] -2.020 -0.959 0.000 0.959 2.020
> round(quad$weights, 3)
[1] 0.020 0.394 0.945 0.394 0.020
```

Adaptive Gaussian Quadrature: Example (3)

$$\int_{-\infty}^{\infty} \exp(-u^2) \exp(\cos(u)^2 + \sin(u)^3) du$$

```
> u <- seq(-100,100,0.1)
```

> $sum(exp(-u^2)*exp(cos(u)^2+sin(u)^3)*0.1)$

[1] 3.829421

- > quad <- gauss.quad(5, kind="hermite")</pre>
- > sum(quad\$weights*exp(cos(quad\$nodes)^2+sin(quad\$nodes)^3

[1] 3.895256

- > quad <- gauss.quad(10, kind="hermite")</pre>
- > sum(quad\$weights*exp(cos(quad\$nodes)^2+sin(quad\$nodes)^3

[1] 3.830933

Adaptive Gaussian Quadrature: Multiple Dimensions

Suppose θ is two dimensional:

$$I = \int f(\theta)d\theta = \int \int f(\theta_1, \theta_2)d\theta_2d\theta_1 = \int f^*(\theta_1)d\theta_1$$

where $f^*(\theta_1) = \int f(\theta_1, \theta_2) d\theta_2$. Then

$$\widetilde{I} = \sum_{i=1}^{m} w_i f^*(\theta_{1_i}) = \sum_{i=1}^{n_1} w_i \sum_{j=1}^{n_2} w_j f(\theta_{1_i}, \theta_{2_j}) = \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} w_i w_j f(\theta_{1_i}, \theta_{2_j})$$

which is a Cartesian product.

Question: Where is the "adaptive" part?

Adaptive Gaussian Quadrature

- Note that the nodes are selected without regard to the function $g(\cdot)$
 - Good if w(u)g(u) behaves like a normal
 - But in general, quadrature points may not lie in interesting or important region
- Adaptive: rescale and shift quadrature points s.t. more quadrature points in region of interest
- Adaptive version requires fewer quadrature points, but requires calculating mode of w(u)g(u) which can be slow!

Recall: gets complicated when dimensionality of the integral gets higher \rightarrow Approximations

More Numerical Integration

- Tools in R:
 - integrate() and cubature package for integration
 - nlm() and optim() for optimization
 - numDeriv() for getting Hessians
- Ime4 bundles a lot of this stuff for you
- SAS is (again) probably a little bit better
- None of the R packages are perfect and need to look at the output carefully
- GEE is a bit more stable (numerically)

Estimating $oldsymbol{eta}$ and $oldsymbol{ heta}$

$$e^{\ell(oldsymbol{eta},oldsymbol{ heta})} \propto |\mathbf{D}|^{-rac{1}{2}} \int e^{\{\sum_{i=1}^n \ell_i(Y_i|\mathbf{b};oldsymbol{eta}) - rac{1}{2}\mathbf{b}^\mathsf{T}\mathbf{D}^{-1}\mathbf{b}\}} d\mathbf{b}$$

So far, to estimate β and θ :

- 1. Conditional inference (condition on sufficient statistic)
- 2. Full MLE using numerical integration (Gaussian Quadrature)

Other strategies:

- 1. Approximate Inference
- 2. Expectation Maximization algorithm
- 3. Gibbs Sampling

Approximate Inference

Idea: To approximate the integrated log-likelihood $\ell(\beta, \theta)$ using various lower-order approximations and maximize the approximate log-likelihood wrt (β, θ) .

- Laplace approximation
- Solomon-Cox approximation
- Penalized Quasilikelihood (PQL)
- Corrected PQL

Note: These approximation procedures do not always give consistent estimation of β and θ except for normal data.

Laplace Approximation

ldea: To expand the integrand about the mode $\mathbf{b}=\widehat{\mathbf{b}}$ in a lower-order Taylor series before integration.

Then we have

$$\ell(\boldsymbol{\beta}, \mathbf{b}) \approx \ell(\boldsymbol{\beta}, \widehat{\mathbf{b}}) - \frac{1}{2} (\mathbf{b} - \widehat{\mathbf{b}})^{\mathsf{T}} \left[-\ell_{\mathbf{b}\mathbf{b}}''(\boldsymbol{\beta}, \boldsymbol{\theta}, \mathbf{b}) |_{\mathbf{b} = \widehat{\mathbf{b}}} \right] (\mathbf{b} - \widehat{\mathbf{b}})$$

and using this approximation we can calculate

$$e^{\ell(\beta,\theta)} \propto |\mathbf{D}|^{-\frac{1}{2}} \int e^{\{\sum_{i=1}^{n} \ell_{i}(Y_{i}|\mathbf{b};\beta) - \frac{1}{2}\mathbf{b}^{\mathsf{T}}\mathbf{D}^{-1}\mathbf{b}\}} d\mathbf{b}$$

$$\approx \int e^{\ell(\beta,\widehat{\mathbf{b}}) - \frac{1}{2}(\mathbf{b} - \widehat{\mathbf{b}})^{\mathsf{T}} \left[-\ell_{\mathbf{b}\mathbf{b}}^{"}(\beta,\theta,\mathbf{b})|_{\mathbf{b} = \widehat{\mathbf{b}}} \right] (\mathbf{b} - \widehat{\mathbf{b}})} d\mathbf{b}$$

$$= L(\beta,\widehat{\mathbf{b}}) \int e^{-\frac{1}{2}(\mathbf{b} - \widehat{\mathbf{b}})^{\mathsf{T}} \left[-\ell_{\mathbf{b}\mathbf{b}}^{"}(\beta,\theta,\mathbf{b})|_{\mathbf{b} = \widehat{\mathbf{b}}} \right] (\mathbf{b} - \widehat{\mathbf{b}})} d\mathbf{b}$$

$$= L(\beta,\widehat{\mathbf{b}}) \sqrt{\frac{(2\pi)^{q}}{\left| -\ell_{\mathbf{b}\mathbf{b}}^{"}(\beta,\theta,\mathbf{b}) \right|_{\mathbf{b} = \widehat{\mathbf{b}}} \right|}}$$

Laplace Approximation (2)

$$\ell(oldsymbol{eta}, oldsymbol{ heta}) pprox \ell(oldsymbol{eta}, \widehat{\mathbf{b}}) - rac{1}{2} \log \left\{ \left| -\ell''_{\mathbf{b}\mathbf{b}}(oldsymbol{eta}, oldsymbol{ heta}, \mathbf{b}) \left|_{\mathbf{b} = \widehat{\mathbf{b}}}
ight| \right\} + rac{q}{2} \log(2\pi)$$

- Laplace likelihood only approximates: some amount of error in the resulting estimates
- Usually "accurate enough"

References

Tierney and Kadane (1986, JASA, 82-86) Breslow and Clayton (1993, JASA); Breslow and Lin (1995, Biometrika, 81-91)

17

Soloman-Cox Approximation

Idea: To expand the integrand about the mode $\mathbf{b} = 0$ before integration.

Similar idea to Laplace approximation: simpler than Laplace, but also less accurate

References

Barndorff-Niolsen and Cox, 1989, 3.3 Solomon and Cox, 1992, Biometrika Breslow and Lin, 1995, Biometrika, 81-91

Penalized Quasilikelihood (PQL)

Idea: Modified Laplace in which we replace the GLM aspect with a nonlinear least-squares model

Main feature is that it iteratively fits linear mixed models using GLM-type working weights and working vectors

Usual PQL does not work well for sparse (e.g binary) data since Laplace doesn't work so well \rightarrow corrected PQL

References

Schall, 1991, Biometrika Breslow and Clayton, 1993, JASA Breslow and Lin, 1995, Biometrika Lin and Breslow, 1996, JASA

Expectation-Maximization (EM) Algorithm

Complete data: Y, Z Observed data: Y

We want to estimate β which has likelihood $L(\beta; \mathbf{Y}, \mathbf{Z})$ by maximizing the marginal likelihood

$$L(\beta; \mathbf{Y}) = \int L(\beta; \mathbf{Y}, \mathbf{Z}) d\mathbf{Z}.$$

Expectation (E) Step: Define $Q(\beta|\beta^{(k)})$ as expected log likelihood wrt current distribution of $\mathbf{Z}|\mathbf{Y}$ and current parameters $(\beta^{(k)})$

$$Q(eta|eta^{(k)}) = E_{\mathbf{Z}|\mathbf{Y},eta^{(k)}}[\ell(eta;\mathbf{YZ})]$$

Maximization (M) Step: Find parameters that maximize

$$oldsymbol{eta^{(k+1)}} = \mathop{\mathsf{argmax}}_{eta} \mathcal{Q}(oldsymbol{eta}|oldsymbol{eta^{(k)}})$$

EM for G/LMM

Complete data: Y, b

Observed data: Y

E-step:

$$Q(\beta, \theta | \beta^{[k]}, \theta^{[k]}) = E\{\ell(\mathbf{Y} | \mathbf{b}; \beta) + \ell(\mathbf{b}; \theta) | \mathbf{Y}; \beta^{[k]}, \theta^{[k]}\}$$

Involves the same dimension of integration as the likelihood but the terms are relatively easier to calculate.

- Gaussian approximation (Stiratelli,et al, 1982, Biometrika)
- 2nd order Laplace approximation (Steele, 1996, Biometrics)
- Monte-Carlo simulation (Metropolis) (McCulloch, 1994, 1997, JASA; Waller, et al, 1997, JASA)

M-step: Maximize $Q(\beta, \theta | \beta^{[k]}, \theta^{[k]})$ wrt β and θ .

Remarks

- Implementation of EM in practice is done backward, as it is harder to deal with maximization but easier to deal with equation solving.
- One starts from the M-step by calculating using the complete data loglikelihood the score equations for the model parameters, i.e., β and θ , and identify terms that involve the missing data, i.e., the terms involving \mathbf{b}_i .
- At the E-step, calculate the expectations of the identified terms that involve the missing data \mathbf{b}_i and evaluate the expectations at $\hat{\boldsymbol{\beta}}^{[k]}$ and $\hat{\boldsymbol{\theta}}^{[k]}$.
- Iterate between the M-step and the E-step until convergence.

Example: EM for LMM

Model:

$$\mathbf{Y}_i = \mathbf{X}_i \boldsymbol{\beta} + \mathbf{Z}_i \mathbf{b}_i + \mathbf{e}_i$$

where $e_i \sim N(0, \sigma^2 \mathbf{I}), \quad \mathbf{b}_i \sim N_q(0, \mathbf{D}).$

Observed data: Y Complete data: Y, b

Parameters: β , σ ², **D**

Complete Data Loglikelihood

$$\sum_{i=1}^{m} \ell(\mathbf{Y}_{i}|\mathbf{b}_{i}; \boldsymbol{\beta}, \sigma^{2}) + \ell(\mathbf{b}_{i}; \mathbf{D})$$

$$= \sum_{i=1}^{m} \{-\frac{n_{i}}{2} ln\sigma^{2} - \frac{1}{2\sigma^{2}} (\mathbf{Y}_{i} - \mathbf{X}_{i}\boldsymbol{\beta} - \mathbf{Z}_{i}\mathbf{b}_{i})^{T} (\mathbf{Y}_{i} - \mathbf{X}_{i}\boldsymbol{\beta} - \mathbf{Z}_{i}\mathbf{b}_{i})$$

$$-\frac{1}{2} ln|\mathbf{D}| - \frac{1}{2}\mathbf{b}_{i}^{T}\mathbf{D}^{-1}\mathbf{b}_{i}\}$$

Example: EM for LMM (2)

Score equations for complete data:

$$\sum_{i=1}^{m} \mathbf{X}_{i}^{T} (\mathbf{Y}_{i} - \mathbf{X}_{i} \boldsymbol{\beta} - \mathbf{Z}_{i} \mathbf{b}_{i}) = 0$$

 \Rightarrow

$$\widehat{\boldsymbol{\beta}} = (\sum_{i=1}^{m} \mathbf{X}_{i}^{T} \mathbf{X}_{i})^{-1} \sum_{i=1}^{m} (\mathbf{Y}_{i} - \mathbf{Z}_{i} \mathbf{b}_{i})$$

$$\widehat{\mathbf{D}} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{b}_{i} \mathbf{b}_{i}^{T}$$

$$\hat{\sigma^2} = \frac{1}{\sum n_i} \sum_{i=1}^{m} (\mathbf{Y}_i - \mathbf{X}_i \boldsymbol{\beta} - \mathbf{Z}_i \mathbf{b}_i)^T (\mathbf{Y}_i - \mathbf{X}_i \boldsymbol{\beta} - \mathbf{Z}_i \mathbf{b}_i)$$

Example: EM for LMM - E-step

Need to calculate

$$E[\mathbf{b}_i|\mathbf{Y}_i; \hat{\boldsymbol{\beta}}^{[k]}, \hat{\mathbf{D}}^{[k]}, \hat{\sigma}^{2^{[k]}}]$$
$$E[\mathbf{b}_i\mathbf{b}_i^T|\mathbf{Y}_i, \hat{\boldsymbol{\beta}}^{[k]}, \hat{\mathbf{D}}^{[k]}, \hat{\sigma}^{2^{[k]}}]$$

$$E[\mathbf{e}_i^T \mathbf{e}_i | \mathbf{Y}_i, \hat{\boldsymbol{\beta}}^{[k]}, \hat{\mathbf{D}}^{[k]}, \hat{\sigma}^{2^{[k]}}],$$

where $\mathbf{e_i} = \mathbf{Y_i} - \mathbf{X_i} \boldsymbol{\beta} - \mathbf{Z_i} \mathbf{b_i}$.

Example: EM for LMM - E-step (2)

Recall LMMs:

$$\mathbf{Y}_i = \mathbf{X}_i \boldsymbol{\beta} + \mathbf{Z}_i \mathbf{b}_i + \mathbf{e}_i, \ \mathbf{b}_i \sim \mathcal{N}(0, \mathbf{D})$$

Fact 1:

$$\left(\begin{array}{c} \mathbf{Y}_{i} \\ \mathbf{b}_{i} \end{array}\right) \sim N \left[\left(\begin{array}{c} \mathbf{X}_{i} \boldsymbol{\beta} \\ 0 \end{array}\right), \left(\begin{array}{cc} \mathbf{V}_{i} & \mathbf{Z}_{i} \mathbf{D} \\ \mathbf{DZ}_{i}^{T} & \mathbf{D} \end{array}\right) \right]$$

where $\mathbf{V}_i = \mathbf{Z}_i \mathbf{D} \mathbf{Z}_i^T + \sigma^2 \mathbf{I}$. Then

$$\hat{\mathbf{b}}_{i} = E(\mathbf{b}_{i}|\mathbf{Y}_{i}) = \mathbf{D}\mathbf{Z}_{i}^{T}\mathbf{V}_{i}^{-1}(\mathbf{Y}_{i} - \mathbf{X}_{i}\beta)
\hat{\mathbf{V}}_{b_{i}} = cov(\mathbf{b}_{i}|\mathbf{Y}_{i}) = \mathbf{D} - \mathbf{D}\mathbf{Z}_{i}^{T}\mathbf{V}_{i}^{-1}\mathbf{Z}_{i}\mathbf{D}$$

Fact 2:

If a random variable $\mathbf{c} \sim \mathcal{N}(\mu, \mathbf{\Sigma})$, then

$$E(\mathbf{c}^T \mathbf{A} \mathbf{c}) = tr(\mathbf{A} \mathbf{\Sigma}) + \mu^T \mathbf{A} \mu$$

Example: EM for LMM - E-step (3)

$$\begin{split} \hat{\boldsymbol{b}}_{i}^{[k]} &= & E[\mathbf{b}_{i}|\mathbf{Y}_{i}; \hat{\boldsymbol{\beta}}^{[k]}, \hat{\mathbf{D}}^{[k]}, \hat{\boldsymbol{\sigma}}^{2^{[k]}}] &= \mathbf{D}^{[k]}\mathbf{Z}_{i}^{T}\mathbf{V}_{i}^{-1}(\mathbf{Y}_{i} - \mathbf{X}_{i}\boldsymbol{\beta}^{[k]}) \\ \hat{\mathbf{V}}_{b_{i}}^{[k]} &= & cov[\mathbf{b}_{i}|\mathbf{Y}_{i}; \hat{\boldsymbol{\beta}}^{[k]}, \hat{\mathbf{D}}^{[k]}, \hat{\boldsymbol{\sigma}}^{2^{[k]}}] &= \mathbf{D}^{[k]} - \mathbf{D}^{[k]}\mathbf{Z}^{T}_{i}\mathbf{V}_{i}^{-1[k]}\mathbf{Z}_{i}\mathbf{D}^{[k]} \\ & E[\mathbf{b}_{i}\mathbf{b}_{i}^{T}|\mathbf{Y}_{i}; \hat{\boldsymbol{\beta}}^{[k]}, \hat{\mathbf{D}}^{[k]}, \hat{\boldsymbol{\sigma}}^{2^{[k]}}] &= \hat{\mathbf{V}}_{b_{i}}^{[k]} + \hat{\mathbf{b}}_{i}^{[k]}\hat{\mathbf{b}}_{i}^{[k]T} \\ & E[\mathbf{e}_{i}^{T}\mathbf{e}_{i}|\mathbf{Y}_{i}, \hat{\boldsymbol{\beta}}^{[k]}, \hat{\mathbf{D}}^{[k]}, \hat{\boldsymbol{\sigma}}^{2^{[k]}}] &= tr(\mathbf{Z}^{T}_{i}\hat{\mathbf{V}}_{b_{i}}^{[k]}\mathbf{Z}_{i}) + \hat{\mathbf{e}}_{i}^{[k]T}\hat{\mathbf{e}}_{i}^{[k]}, \end{split}$$
 where $\hat{\mathbf{e}}_{i}^{[k]} = \mathbf{Y}_{i} - \mathbf{X}_{i}\boldsymbol{\beta}^{[k]} - \mathbf{Z}_{i}\mathbf{b}_{i}^{[k]}.$

Example: EM for LMM - M-step

$$\widehat{\boldsymbol{\beta}}^{[k+1]} = (\sum_{i=1}^{m} \mathbf{X}_{i}^{T} \mathbf{X}_{i})^{-1} \sum_{i=1}^{m} (\mathbf{Y}_{i} - \mathbf{Z}_{i} \hat{\mathbf{b}}_{i}^{[k]})$$

$$\widehat{\mathbf{D}}^{[k+1]} = \frac{1}{m} \sum_{i=1}^{m} E(\mathbf{b}_{i} \mathbf{b}_{i}^{T} | \mathbf{Y}_{i}; \boldsymbol{\beta}, \hat{\mathbf{D}}^{[k]}, \hat{\sigma^{2}}^{[k]})$$

$$= \frac{1}{m} \sum_{i=1}^{m} (\hat{\mathbf{V}}_{b_{i}}^{[k]} + \hat{\mathbf{b}}_{i}^{[k]} \hat{\mathbf{b}}_{i}^{[k]T})$$

$$\hat{\sigma^{2}}^{[k+1]} = \frac{1}{\sum n_{i}} \sum_{i} E(\mathbf{e}_{i}^{\mathsf{T}} \mathbf{e}_{i} | \mathbf{Y}_{i}; \widehat{\boldsymbol{\beta}}^{[k]}, \hat{\mathbf{D}}^{[k]}, \hat{\sigma^{2}}^{[k]})
= \frac{1}{\sum n_{i}} \sum_{i=1}^{m} \{ tr(\mathbf{Z}_{i}^{\mathsf{T}} \hat{\mathbf{V}}_{b_{i}}^{[k]} \mathbf{Z}_{i}) + \hat{\mathbf{e}}_{i}^{[k]\mathsf{T}} \hat{\mathbf{e}}_{i}^{[k]} \}.$$

Gibbs Sampling

A popular Bayesian inference procedure in hierarchical models.

Prior for β : nearly non-informative prior, i.e., $\beta \sim (0, 1000 \text{I})$.

Prior for $D(\theta)$: Gamma/Wishart (Jeffery prior does not work, since the posterior is not proper).

Objective: Generate the joint distribution of $[m{eta}, m{ heta}, m{ heta} \mid m{ extbf{Y}}]$

How: Generate a series of conditional distributions $[\beta \mid \theta, \mathbf{b}, \mathbf{Y}]$, $[\mathbf{b} \mid \beta, \theta, \mathbf{Y}]$, $[\theta \mid \beta, \mathbf{b}, \mathbf{Y}]$

References: Zeger and Karim (1991, JASA); McCulloch (1994, JASA)