

Masterarbeit

Kernel k-means Methoden zur spektralen Clusteranalyse von Graphen

Lukas Pradel 18. Januar 2015

Gutachter:

Prof. Dr. Christian Sohler Dipl.-Inf. Melanie Schmidt

Technische Universität Dortmund Fakultät für Informatik Lehrstuhl II - Effiziente Algorithmen und Komplexitätstheorie http://ls2-www.cs.tu-dortmund.de/

Inhaltsverzeichnis

1	Einleitung			1
2	Grundlegende Definitionen und Algorithmen			
	2.1	Cluste	ering und k -means	2
	2.2	Graph	nen und Clusteranalyse von Graphen	4
	2.3	Kernel-Methoden und spektrales Clustering		
		2.3.1	Kernel- k -means	7
		2.3.2	Spektrale Clustering Methoden	11
Li	terat	tur		16
Erklärung				

1 Einleitung

2 Grundlegende Definitionen und Algorithmen

In diesem Kapitel definieren wir die für unsere Zwecke relevanten Begriffe im Kontext der Clusteranalyse und führen die wichtigen grundlegenden Algorithmen ein, deren Ideen für uns im Folgenden noch von Bedeutung sein werden. Wir gehen dabei nach Themengebieten geordnet vor: In Abschnitt 2.1 skizzieren wir kurz das Themengebiet der Clusteranalyse, definieren die üblichen Zielfunktionen und stellen zwei bedeutende Algorithmen vor. Abschnitt 2.2 führt kurz in die Graphentheorie sowie die Clusteranalyse von Graphen ein. In diesem Abschnitt werden wir zudem verschiedene Optimierungskritierien für die Clusteranalyse von Graphen herausstellen. Schließlich fassen wir in Abschnitt 2.3 die wichtigsten Methoden und Algorithmen aus dem Bereich der spektralen Clusteranalyse zusammen und stellen zudem die wesentlichen Konzepte von Kernel-Methoden vor.

2.1 Clustering und k-means

Clusteranalyse oder "Clustering" beschäftigt sich mit der Einteilung von Objekten in Gruppen ("Cluster"), sodass sich die Objekte innerhalb eines Clusters gemäß eines bestimmten Optimierungskriteriums ähnlich sind und von Objekten eines anderen Clusters unterscheiden. Es existieren zahlreiche grundsätzlich verschiedene Ansätze, Clusteringprobleme zu lösen. Wir beschränken uns in dieser Arbeit auf partitionierende Clusteringprobleme und -verfahren. Bei diesen soll eine Menge von d-dimensionalen Punkten, welche der erste Teil der Eingabe ist, gemäß einer Cluster-Zielfunktion möglichst optimal in genau k Cluster unterteilt werden. Dabei ist k der ganzzahlige zweite Teil der Eingabe.

Für die Zielfunktion, welche die Nähe oder Ferne von Punkten zueinander quantifiziert, sind bei Eingabepunkten aus \mathbb{R}^d Metriken naheliegend. Intuitiv ist dabei die euklidische Distanz, auf der die beiden bekanntesten Clustering-Problemstellungen basieren.

Definition 2.1.1 (k-median und k-means). Sei $P \subset \mathbb{R}^d$ und $k \in \mathbb{N}^+$. Das k-median-Problem besteht darin, eine Menge von k (Cluster-) $Zentren\ C = \{c_1, \ldots, c_k\}$ mit $c_i \in \mathbb{R}^d$ zu finden, sodass der folgende Term minimal wird:

$$\sum_{p \in P} \min_{c \in C} \lVert p - c \rVert$$

Das k-means-Problem unterscheidet sich nur darin, dass bei diesem die Summe der quadrierten euklidischen Distanzen zum jeweils nächstgelegenen Zentrum minimiert

werden soll, das heißt, dass der folgende Term minimiert werden soll:

$$\sum_{p \in P} \min_{c \in C} ||p - c||^2$$

Beim qewichteten k-means-Problem werden den Eingabepunkten zusätzlich mit einer Funktion $w: P \to \mathbb{R}$ Gewichte zugewiesen. Die zu minimierende Zielfunktion lautet dann entsprechend

$$\sum_{p \in P} \min_{c \in C} w(p) ||p - c||^2$$

Sowohl das k-Median-Problem [MS84] als auch das k-means-Problem [ADHP09] sind optimal NP-schwer lösbar. Typischerweise werden zur Lösung daher approximative oder heuristische Algorithmen eingesetzt. Die bekannteste und bis heute sehr erfolgreiche Heuristik für das k-means-Problem ist der Algorithmus von Lloyd [Llo82]. Wegen seiner großen Popularität wird der Algorithmus häufig auch als "k-means-Algorithmus" bezeichnet. Der Algorithmus wählt initial k zufällige Punkte aus der Eingabemenge oder sogar beliebige Punkte aus \mathbb{R}^d als initiale Clusterzentren. Anschließend wird jedem Punkt das am nächsten gelegene Zentrum zugewiesen. Dadurch entstehen die initialen Cluster mit ihren jeweiligen Zentren. Im zweiten Schritt wird das neue Zentrum eines jeden Clusters als der geometrische Zentroid des Clusters gewählt. Die Zuweisung von Punkten zum nächstgelegenen Clusterzentrum und die Berechnung der neuen Zentroiden werden solange alterniert, bis die Lösung konvergiert, also wenn sich die Zuordnungen der Punkte nicht mehr ändern. In der Praxis wird gelegentlich auch nach einer festen Anzahl von Iterationen terminiert.

Algorithmus 1: Algorithmus von Lloyd

Eingabe: $P \subseteq \mathbb{R}^d, k \in \mathbb{N}^+$

Ausgabe: : k-means-Clustering von P

- 1 Wähle zufällig k Zentren $c_1^{(0)}, \dots, c_k^{(0)}$ aus P oder \mathbb{R}^d 2 $S_i^{(0)} \leftarrow \{p \in P: \|p c_i^{(0)}\|^2 \le \|p c_{i'}^{(0)}\|^2 \, \forall \, i' \in \{1, \dots, k\}\}$
- з repeat
- $c_i^{(t)} \leftarrow \frac{1}{|S^{(t-1)}|} \sum_{p_i \in S_i^{(t-1)}} p_i$
- $S_i^{(t)} \leftarrow \{ p \in P : \|p c_i^{(t)}\|^2 \le \|p c_{i'}^{(t)}\|^2 \,\forall \, i' \in \{1, \dots, k\} \}$
- 6 until $S_i^{(t)} = S_i^{(t-1)}$

Die asymptotische Laufzeit des Algorithmus beträgt $\mathcal{O}(nkdi)$, wobei i die Anzahl an durchgeführten Iterationen ist. Wenn der Algorithmus konvergiert und nicht durch eine feste Anzahl von Iterationen terminiert wird, wurde ein lokales Optimum gefunden, welches jedoch im Allgemeinen kein globales Optimum oder eine

Approximation eines globalen Optimums ist. Die Güte des berechneten Clusterings hängt maßgeblich von der initialen Wahl der Clusterzentren ab. Der Algorithmus k-means++ [AV07] setzt genau an dieser Stelle an: er berechnet auf einfache, aber dennoch geschickte Art und Weise die initialen Cluster und führt anschließend mit diesen die übrigen Schritte von Lloyds Algorithmus durch. Der Algorithmus wählt zunächst ein einzelnes Clusterzentrum c_1 zufällig gleichverteilt aus der Eingabe-Punktmenge P und wählt alle weiteren Clusterzentren sukzessive nach der folgenden Vorschrift, bis insgesamt k Zentren gewählt wurden. Im Weiteren bezeichnen wir mit D(x) für einen Punkt x aus der Eingabe-Punktmenge P die geringste Distanz von x zum nächstgelegenen bereits gewählten Zentrum. In jeder Iteration wird als nächstes Zentrum c_i der Punkt $x' \in P \setminus \{c_1, \ldots, c_{i-1}\}$ mit Wahrscheinlichkeit $\frac{D(x')^2}{\sum_{x \in P} D(x)}$ gewählt.

Algorithmus 2: k-means++

Eingabe: $: P \subseteq \mathbb{R}^d, k \in \mathbb{N}^+$

Ausgabe: : k initiale Clusterzentren für P

- ı Wähle c_1 zufällig gleichverteilt aus P
- 2 for $i \leftarrow 1$ to k do
- Wähle den Punkt $x' \in P \setminus \{c_1, \dots, c_{i-1}\}$ als Zentrum c_i mit Wahrscheinlichkeit $\frac{D(x')^2}{\sum_{x \in P} D(x)}$
- 4 Führe Lloyds Algorithmus mit den initialen Clusterzentren c_1, \ldots, c_k aus.

Die k Zentren, die von k-means++ ausgewählt werden, sind eine $\mathcal{O}(\log k)$ -Approximation für das k-means-Problem, die durch die anschließende Ausführung von Lloyds Algorithmus noch zu einem lokalen Optimum verbessert werden.

Im nächsten Abschnitt betrachten wir das Clusteringproblem auf Graphen, das wir im später noch genauer untersuchen wollen.

2.2 Graphen und Clusteranalyse von Graphen

Der *Graph* ist in der Informatik eine vielseitig einsetzbare und gut erforschte Datenstruktur. Wir können diverse Clusteringprobleme nicht nur für eine Eingabepunktmenge formulieren, sondern auch für eine Eingabe, die aus einem Graphen besteht. Wir beginnen mit der folgenden Definition des Graphen.

Definition 2.2.1 (Graph). Sei V eine endliche Menge und $E \subseteq \{\{u,v\} \mid u,v \in V, u \neq v\}$. Dann heißt das Tupel G = (V,E) ein (endlicher) Graph mit Knotenmenge V und Kantenmenge E. Ist $e = \{u,v\} \in E$, dann sagen wir, dass die Kante e des Graphen G die Knoten u und v verbindet. In diesem Fall sind u und v die

Endknoten von e. Ein Knoten $u \in V$ und eine Kante $e \in V$ heißen inzident genau dann, wenn $u \in e$. Wir sagen, dass u und ein weiterer Knoten $v \in V$ adjazent sind genau dann, wenn es eine Kante $e' = \{u, v\}$ in E gibt. Typischerweise bezeichnet n = |V| die Knotenzahl von G und m = |E| die Kantenzahl von G.

Bei einem 3-Tupel G' = (V', E', w') mit $w' : E \to \mathbb{N}$ spricht man von einem gewichteten Graphen, dessen Kanten über ein Gewicht verfügen, das von der Gewichtsfunktion w' abgebildet wird.

Für die konkrete Datenhaltung von Graphen haben sich im Wesentlichen zwei Ansätze als praktikabel erwiesen: Bei den sogenannten Adjazenzlisten wird für jeden Knoten v im Graphen eine Liste Adj_v gehalten, in der für jeden zu v inzidenten Knoten ein Eintrag in Adj_v enthalten ist, der den entsprechenden adjazenten Knoten referenziert, sowie gegebenenfalls das Gewicht der Kante zwischen den beiden Knoten. Alternativ wird in einer $Adjazenzmatrix \ Adj^G$ der Größe $|V| \times |V|$ an der Stelle $Adj_{u,v}^G$ das Gewicht der Kante zwischen den Knoten u und v eingetragen, sofern die beiden Knoten durch eine Kante miteinander verbunden sind. Anderenfalls wird zumeist -1 oder 0 eingetragen. Bei ungewichteten Graphen wird dementsprechend lediglich 0 oder 1 eingetragen.

Wenn die Eingabe keine Punktmenge, sondern ein (gewichteter) Graph ist, können wir die Ideen partitionierender Clusteringverfahren übertragen. Wir interessieren uns in diesem Fall für die "Ähnlichkeit" von Knotenmengen im Graphen.

Definition 2.2.2 (Graph-Schnitt). Sei G = (V, E, w) ein gewichteter Graph. Ein *Schnitt* C = (S, T) von G ist eine Partitionierung von V in die beiden Mengen S und T, das heißt, dass $V = S \cup T$. Die *Schnittmenge* von C sind die Kanten in E, die einen Endpunkt in S und den anderen Endpunkt in T haben, das heißt formal ist die Schnittmenge definiert als

$$\{(u,v) \in E \mid u \in S, v \in T\}.$$

Das Gewicht oder der Wert eines Schnittes ist die Summe der Kantengewichte der Schnittmenge. Wir verwenden die folgende Notation:

$$w_{cut}(S,T) = \sum_{u \in S, v \in T} w((u,v))$$

Falls der Graph in Form einer Adjazenzmatrix Adj^G vorliegt, lautet die Berech-

nungsvorschrift entsprechend:

$$w_{cut}(S,T) = \sum_{u \in S, v \in T} Adj_{u,v}^G$$

Für eine direkte Analogie zum k-means-Problem wäre ein Schnitt- beziehungsweise Partitionierungs-Begriff wünschenswert, der eine k-fache Partitionierung der Knotenmenge erlaubt. Diese lautet wie folgt.

Definition 2.2.3 (k-Graphpartitionierung). Sei G = (V, E, w) ein gewichteter Graph. Für zwei Mengen $A, B \subseteq V$ definieren wir:

$$w(A, B) = \sum_{u \in A, v \in B} w((u, v))$$

Das k-Graphpartitionierungsproblem besteht darin, eine Partitionierung der Knotenmenge V in k disjunkte Teilmengen V_1, \ldots, V_k mit $\bigcup_{i \in \{1, \ldots, k\}} V_i = V$ zu ermitteln, sodass sich die Knoten innerhalb einer Partition bezüglich einer Ähnlichkeitsrelation möglichst ähnlich sind und die Knoten unterschiedlicher Partitionen bezüglich der Ähnlichkeitsrelation möglichst stark voneinander unterscheiden.

Beim Clustering von Punktmengen lagen für die Unähnlichkeitsrelation Metriken nahe, im Falle der Graphpartitionierung existiert eine Reihe von Optimierungskriterien, von denen wir im Folgenden die verbreitetsten einführen.

1. Ratio Association. Bei der Ratio Association sollen die Intra-Clusterabstände relativ zur jeweiligen Clustergröße maximiert werden:

$$\max_{V_1, \dots, V_k} \sum_{c=1}^k \frac{w(V_c, V_c)}{|V_c|}$$

2. Ratio Cut. Beim Ratio Cut wird das Gewicht des Schnitts zwischen jeweils einem Cluster und allen anderen Punkten im Graphen minimiert:

$$\min_{V_1, \dots, V_k} \sum_{c=1}^k \frac{w(V_c, V \setminus V_c)}{|V_c|}$$

3. **Kernighan-Lin**. Bei dem in [KL70] vorgestellten Optimierungskriterium werden die Intra-Clusterabstände ähnlich der Ratio Association minimiert, allerdings müssen alle Partitionen hier zusätzlich die selbe Größe haben. Die

hier vorgestellte Zielfunktion ist von 2 auf k Partitionen verallgemeinert:

$$\min_{V_1, \dots, V_k} \sum_{c=1}^k \frac{w(V_c, V_c)}{|V_c|} \text{ s.t. } |V_c| = \frac{|V|}{k} \, \forall \, c \in \{1, \dots, k\}$$

4. Normalized Cut. Ziel des Normalized Cut ist wie beim Ratio Cut die Minimierung des Schnitts von einem Cluster mit den übrigen Punkten im Graphen, jedoch relativ zum Schnitt des Clusters mit allen Knoten im Graphen. Der Normalized Cut oder kurz NCut ist in der Bild-Segmentierung recht verbreitet [SM00]. Wir betrachten hier ebenfalls die auf k Partitionen verallgemeinerte Zielfunktion.

$$\min_{V_1,\dots,V_k} \sum_{c=1}^k \frac{w(V_c, V \setminus V_c)}{w(V_c, V)}$$

Im nächsten Abschnitt betrachten wir zwei Techniken, mit denen Limitierungen hinsichtlich der Qualität der erzielten Clusterings sowie der Komplexität der Berechnungen verbessert werden können.

2.3 Kernel-Methoden und spektrales Clustering

Legt man die k-means Zielfunktion zu Grunde, können im Ursprungsraum \mathbb{R}^d nur Cluster berechnet werden, die linear separierbar sind. Ein illustratives Beispiel im \mathbb{R}^2 sind zwei konzentrisch angeordnete ringförmige Punktmengen. Die gemäß der k-means Zielfunktion optimalen Cluster sind die beiden jeweiligen Ringe, es ist jedoch im \mathbb{R}^2 nicht möglich Clusterzentren anzugeben, die den zweidimensionalen Raum in Ringe partitionieren. Die Beschränkung liegt darin, dass wir die Partitionierung oder Separierung durch Hyperebenen vornehmen. Im Ursprungsraum können wir daher nur linear separierbare Cluster bestimmen. Wir betrachten nun ein Verfahren, mit dem sich diese Beschränkung umgehen lässt.

2.3.1 Kernel-k-means

Unsere fundamentale Motivation für diesen Abschnitt ist Covers Theorem [Cov65], welches informell zusammengefasst besagt, dass eine zufällige Eingabepunktmenge im d-dimensionalen Raum mit hoher Wahrscheinlichkeit in einen höherdimensionalen Raum (zum Beispiel der Dimension $D \gg d$) abgebildet linear separierbar ist.

Für Klassifizierungs- und insbesondere Clusteringprobleme benötigen wir sowohl im Ursprungsraum als auch im abgebildeten Raum ein algebraisches Maß für

Unähnlichkeit. Üblicherweise wird dabei eine auf Skalarprodukten basierende Metrik eingesetzt. Wir beziehen uns im Weiteren auf die folgende Definition von euklidischen Vektorräumen, also Vektorräumen mit einem reellen Skalarprodukt.

Definition 2.3.1 (Euklidischer Vektorraum). Sei V ein \mathbb{R} -Vektorraum. Ein reelles Skalarprodukt auf V ist eine Abbildung $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$, die den folgenden Eigenschaften genügt:

- 1. $\langle a, b \rangle = \langle b, a \rangle \, \forall \, a, b \in V$
- 2. $\langle \lambda a + \mu b, c \rangle = \lambda \langle a, c \rangle + \mu \langle b, c \rangle \, \forall \, a, b, c \in V \text{ und } \lambda, \mu \in \mathbb{R}$
- 3. $\langle a, a \rangle > 0$ und $\langle a, a \rangle = 0 \Leftrightarrow a = 0 \,\forall \, a \in V$

Ein R-Vektorraum mit einem reellen Skalarprodukt heißt euklidischer Vektorraum.

Die k-means-Zielfunktion kann auf euklidische Vektorräume erweitert werden, indem wir für einen euklidischen Vektorraum \mathcal{V} eine Norm $\|\cdot\|: \mathcal{V} \to \mathbb{R}$ über das Skalarprodukt gemäß der folgenden Abbildungsvorschrift für jedes $\chi \in \mathcal{V}$ definieren: $\|\chi\| = \sqrt{\langle \chi, \chi \rangle}$. Das auf Skalarprodukten basierte Analog zu Definition 2.1.1 des k-means-Problems lautet dann wie folgt:

Definition 2.3.2 (*k*-means in euklidischen Vektorräumen). Sei \mathcal{V} ein euklidischer Vektorraum mit der Norm $\|\cdot\|: \mathcal{V} \to \mathbb{R}$ und sei $\mathcal{P} \subset \mathcal{V}$ sowie $k \in \mathbb{N}^+$. Das *k*-means-Problem in \mathcal{V} besteht darin, eine Menge von *k* (Cluster-)Zentren $\mathcal{C} = \{c_1, \ldots, c_k\}$ mit $c_i \in \mathcal{V}$ zu finden, sodass der folgende Term minimal wird:

$$\sum_{p \in \mathcal{P}} \min_{c \in \mathcal{C}} \|p - c\|^2$$

Die gewichtete Variante des k-means-Problems in euklidischen Vektorräumen lautet entsprechend wie folgt:

$$\sum_{p \in \mathcal{P}} \min_{c \in \mathcal{C}} w(p) \|p - c\|^2$$

Damit ist es nun möglich, ein intuitives Verfahren zum Bestimmen von Clusterings mit nicht-linearen Separatoren anzugeben. Wir bilden zunächst mit einer Abbildung $\phi: \mathcal{X} \to \mathcal{V}$ unsere Eingabepunkte aus ihrem Ursprungsraum \mathcal{X} (also beispielsweise \mathbb{R}^d) auf einen D-dimensionalen (üblicherweise $D \gg d$) euklidischen Vektorraum \mathcal{V} ab, und berechnen in diesem mit Lloyds Algorithmus oder einem anderen Clusteringverfahren ein Clustering, welches im Ursprungsraum \mathcal{X} im Allgemeinen

nicht-linear separierten Clustern entspricht. Bei diesem Verfahren wird entsprechend der folgende Term minimiert:

$$\sum_{p \in P} \min_{c \in C} \|\phi(p) - c\|^2$$

Ein Clusterzentrum c_i ist dementsprechend definiert durch

$$c_i = \frac{\sum_{p \in S_i} \phi(p)}{|S_i|}$$

wobei S_i die Menge aller dem Clusterzentrum c_i zugeordneten Punkte ist. Zunächst haben wir uns damit nicht-linear separierte Cluster "erkauft", der Preis, den wir dafür zahlen, besteht jedoch in höherem Rechenaufwand, da wir einerseits die Punkte in den jeweils höherdimensionalen Raum abbilden müssen und andererseits die Berechnung der (euklidischen) Distanzen aufwändiger wird; diese benötigt im Ursprungsraum Zeit $\mathcal{O}(d)$ und im höherdimensionalen Raum $\mathcal{O}(D)$. Der Mehraufwand für die Distanzberechnung fällt dabei stärker ins Gewicht, da wir die Distanzberechnung beispielsweise bei Lloyds Algorithmus in jeder Schleifeniteration durchführen.

Dieses Problem wurde erstmals im Zusammenhang mit Support Vector Machines (kurz SVMs) gelöst [BGV92]. Wir übertragen die Lösung mittels des sogenannten Kernel-Tricks in den Clustering-Kontext und skizzieren diese kurz. Zunächst halten wir eine wichtige Beobachtung hinsichtlich der (quadrierten) euklidischen Distanz $\|\phi(p)-c\|^2$ zwischen dem abgebildeten Punkt und einem Clusterzentrum fest. Diese lässt sich wie folgt ausschließlich über Skalarprodukte berechnen (wobei auch hier wieder S_c die dem Clusterzentrum c zugeordnete Punktmenge ist):

$$\|\phi(p) - c\|^{2} = \|\phi(p) - \frac{1}{|S_{c}|} \sum_{x \in S_{c}} \phi(x) \|^{2}$$

$$= \left\langle \phi(p) - \frac{1}{|S_{c}|} \sum_{x \in S_{c}} \phi(x), \phi(p) - \frac{1}{|S_{c}|} \sum_{x \in S_{c}} \phi(x) \right\rangle$$

$$= \left\langle \phi(p), \phi(p) \right\rangle - \frac{1}{|S_{c}|} \sum_{x \in S_{c}} \left\langle \phi(p), \phi(x) \right\rangle - \frac{1}{|S_{c}|} \sum_{x \in S_{c}} \left\langle \phi(x), \phi(p) \right\rangle$$

$$+ \frac{1}{|S_{c}|^{2}} \sum_{x,y \in S_{c}} \left\langle \phi(x), \phi(y) \right\rangle$$
(2.1)

Diese Beobachtung allein hilft uns noch nicht weiter, da auch die Berechnung des Skalarproduktes im höherdimensionalen Raum einen asymptotischen Aufwand von

Linear-Kernel	$\kappa(x_i, x_j) = x_i \cdot x_j + \gamma$
Polynom-Kernel	$\kappa(x_i, x_j) = (x_i \cdot x_j + \gamma)^{\delta}$
Gauss-/RBF-Kernel	$\kappa(x_i, x_j) = \exp\left(-\frac{\ x_i - x_j\ ^2}{2\sigma^2}\right)$
Sigmoid-Kernel	$\kappa(x_i, x_j) = \tanh(\alpha(x_i \cdot x_j) + \acute{\theta})$

Tabelle 1: Beispiele für häufig eingesetzte Kernelfunktionen.

 $\mathcal{O}(D)$ hätte. An dieser Stelle kommt nun der in [BGV92] vorgestellte Kernel-Trick zum Tragen. Durch den Einsatz von sogenannten Kernelfunktionen lässt sich dieser Mehraufwand umgehen. Dabei handelt es sich um positiv definite Abbildungen $\kappa: X \times X \to \mathbb{R}$, die bei Eingabe von zwei Punkten aus dem Ursprungsraum X das Skalarprodukt der in den höherdimensionalen Raum abgebildeten Punkte berechnen:

$$\kappa(x,y) = \langle \phi(x), \phi(y) \rangle$$

Der Kernel-Trick besteht also darin, eine Kernelfunktion zur Berechnung der Skalarprodukte im höherdimensionalen Raum zu verwenden, für die keine explizite Kenntnis der Abbildung ϕ oder der abgebildeten Punkte $\phi(p)$ nötig ist. Mit der Kernelfunktion κ können wir nun die Distanzberechnung aus 2.1 weiter vereinfachen:

$$\|\phi(p) - c\|^2 = \kappa(p, p) - \frac{1}{|S_c|} \sum_{x \in S_c} \kappa(p, x) - \frac{1}{|S_c|} \sum_{x \in S_c} \kappa(x, p) + \frac{1}{|S_c|^2} \sum_{x, y \in S_c} \kappa(x, y)$$
(2.2)

Tabelle 1 bietet eine Übersicht über die am häufigsten eingesetzten Kernelfunktionen. Insbesondere die Gauss-Kernelfunktion und die Polynom-Kernelfunktion werden auch bei Support-Vektor-Machines gerne verwendet.

Eine auf Kernelfunktionen basierende Variante von (Lloyds) Algorithmus 1 folgt mit 2.2 unmittelbar. Der Algorithmus wird üblicherweise kurz "Kernel-k-means-Algorithmus" genannt. Der Vorfaktor für gewichtetes k-means hat auf die Berechnungsvorschriften keine weiteren Auswirkungen, Algorithmus 3 kann dementsprechend für gewichtetes k-means erweitert werden. Der Algorithmus lässt sich mit einer asymptotischen Laufzeit von $\mathcal{O}(n^2(\tau+d))$ implementieren [DGK04, DGK07], wobei τ die Anzahl an Iterationen der äußeren Schleife ist.

Im nächsten Unterabschnitt führen wir Verfahren ein, die mit Techniken aus der linearen Algebra das Graphclusteringproblem lösen und in Kombination mit dem

Algorithmus 3: Kernel-k-means

```
Eingabe: : P \subseteq \mathbb{R}^d, k \in \mathbb{N}^+, \kappa : X \times X \to \mathbb{R}
    Ausgabe: : k-means-Clustering von P
 ı Wähle zufällig k Zentren c_1^{(0)}, \ldots, c_k^{(0)} aus P oder \mathbb{R}^d
 t \leftarrow 0
 з repeat
          Berechne \|\phi(p) - c_i^{(t)}\|^2 für alle p \in P und i \in \{1, \dots, k\} mit 2.2
          foreach p \in P do
 5
               c^*(p) \leftarrow \operatorname{arg\,min}_i \left( \left\| \phi(p) - c_i^{(t)} \right\| \right)
 6
          t \leftarrow t + 1
 7
          for i \leftarrow 1 to k do
 8
               S_i^{(t)} \leftarrow \{ p \mid c^*(p) = i \}
                c_i^{(t)} \leftarrow \frac{1}{|S_i^{(t)}|} \sum_{p_j \in S_i^{(t)}} p_j
11 until Konvergenz oder t > t_{max}
```

hier vorgestellten Algorithmus eine robuste Grundlage für unsere Zwecke bilden.

2.3.2 Spektrale Clustering Methoden

Beim spektralen Clustering besteht die Eingabe aus einem Graphen, dessen Knoten geclustert werden sollen. Informationen über die "Ähnlichkeit" von Objekten werden in Form eines Kantengewichts der Kante zwischen den jeweiligen Objekten realisiert. Wenn G der Graph ist, durch den die Eingabemenge repräsentiert wird, dann ist die Adjazenzmatrix Adj^G des Graphen der Ausgangspunkt der spektralen Clusteranalyse. Bevor wir mit konkreten Verfahren der spektralen Clusteranalyse beginnen können, benötigen wir einige grundlegende Definitionen der (spektralen) Graphentheorie.

Definition 2.3.3 (Grad-Matrix). Sei G = (V, E) ein Graph mit |V| = n Knoten. Die *Grad-Matrix* von G ist die $n \times n$ -Diagonalmatrix D, die folgendermaßen definiert ist:

$$D_{i,j} = \begin{cases} \deg(v_i) & \text{falls } i = j, \\ 0 & \text{sonst} \end{cases}$$

Dabei ist $deg(v_i)$ die Anzahl an Kanten, die zum Knoten v_i inzident sind. Diese Anzahl wird auch Grad des Knotens v_i genannt.

Mit Hilfe der Grad-Matrix eines Graphen lässt sich die sogenannte *Laplace-Matrix* des Graphen berechnen, welche eine Matrix-Repräsentation von Graphen ist, die

aufschlussreiche Informationen über die Struktur und Beschaffenheit des Graphen erlaubt. Sie ist wie folgt definiert:

Definition 2.3.4 (Laplace-Matrix [Lux07]). Sei G = (V, E) ein Graph ohne Schleifen mit Grad-Matrix D und (gewichteter) Adjazenzmatrix Adj^G . Die (nichtnormalisierte) Laplace-Matrix L von G ist definiert als:

$$L = D - Adj^G$$

Die Einträge der Matrix sind dementsprechend folgendermaßen definiert:

$$L_{i,j} = \begin{cases} \deg(v_i) & \text{falls } i = j, \\ -1 & \text{falls } i \neq j \text{ und } v_i \text{ inzident zu } v_j \text{ ist,} \\ 0 & \text{sonst} \end{cases}$$

Es existieren zwei normalisierte Formen der Laplace-Matrix, die *normalisierte* Laplace-Matrizen genannt werden. Sie sind wie folgt definiert:

$$\mathcal{L}_{sym} = D^{-\frac{1}{2}} L D^{-\frac{1}{2}}$$
$$\mathcal{L}_{rw} = D^{-1} L$$

Die Eigenwerte der Laplace-Matrizen eines Graphen geben beispielsweise Aufschluss über die Zusammenhangskomponenten eines Graphen. Eine Zusammenhangskomponente definiert ist als Teilgraph, in dem jedes Paar von Knoten über einen Pfad miteinander verbunden ist. Das folgende Lemma illustriert die Zusammenhangsinformationen, die sich aus der Laplace-Matrix ablesen lassen:

Lemma 2.3.1 (Zusammenhang und Laplace-Matrix [Lux07]). Gegeben sei G = (V, E) ein schleifenloser Graph mit nicht-negativen Gewichten und Laplace-Matrix L. Die Anzahl an Zusammenhangskomponenten von G ist gleich der Anzahl an Eigenwerten von L, die gleich Null sind.

Da die Eigenwerte einer Matrix auch "Spektrum" genannt werden und man bei den hier vorgestellten Methoden die Eigenwerte der Laplace-Matrix nutzt, wird diese Technik "spektrale Clusteranalyse" genannt.

Die wichtigsten Algorithmen, die auf dem Spektrum der Laplace-Matrix der Eingabe basieren, wollen wir im Folgenden vorstellen. Wir beginnen mit den Algorithmen 4 und 5, welche die normalisierten Laplace-Matrizen verwenden und in den jeweils zitierten Papieren vorgestellt wurden.

Algorithmus 4: Nicht-normalisiertes spektrales Clustering [Lux07]

Eingabe: : Gewichtete Adjazenzmatrix $Adj^G \in \mathbb{R}^{n \times n}, k \in \mathbb{N}^+$

Ausgabe: : k Cluster C_1, \ldots, C_k

- 1 Berechne die nicht-normalisierte Laplace-Matrix L des Graphen G mit Adj^G
- **2** Bestimme Eigenvektoren u_1, \ldots, u_k zu den k kleinsten Eigenwerten von L
- $\mathbf{3}$ Sei $U \in \mathbb{R}^{n \times k}$ die Matrix mit $u_1, \dots u_k$ als Spaltenvektoren
- 4 Für $i \leftarrow \{1, \dots, n\}$ sei $y_i \in \mathbb{R}^k$ der Vektor der i-ten Reihe von U
- 5 Clustere die Punkte $(y_i)_{i \in \{1,\dots,n\}}$ mit einem k-means-Algorithmus in C_1,\dots,C_k

Algorithmus 5: Normalisiertes spektrales Clustering [SM00]

Eingabe: : Gewichtete Adjazenzmatrix $Adj^G \in \mathbb{R}^{n \times n}, k \in \mathbb{N}^+$

Ausgabe: : k Cluster C_1, \ldots, C_k

- 1 Berechne die normalisierte Laplace-Matrix \mathcal{L}_{rw} des Graphen G mit Adj^G
- **2** Bestimme Eigenvektoren u_1, \ldots, u_k zu den k kleinsten Eigenwerten von \mathcal{L}_{rw}
- $\mathbf{3}$ Sei $U \in \mathbb{R}^{n \times k}$ die Matrix mit $u_1, \dots u_k$ als Spaltenvektoren
- 4 Für $i \leftarrow \{1, \dots, n\}$ sei $y_i \in \mathbb{R}^k$ der Vektor der i-ten Reihe von U
- 5 Clustere die Punkte $(y_i)_{i\in\{1,\dots,n\}}$ mit einem k-means-Algorithmus in C_1,\dots,C_k

Der in [SM00] vorgestellte Algorithmus sieht in seiner ursprünglichen Form zunächst eine Bipartitionierung anhand des Eigenvektors mit dem zweitkleinsten Eigenwert vor (dies entspricht einer Approximation des *sparsest cut*), die anschließend gegebenenfalls weiter partitioniert wird. Dieses Vorgehen ist jedoch analog zu dem hier vor uns angegebenen Algorithmus.

Algorithmus 6: Normalisiertes spektrales Clustering [NJW01]

Eingabe: : Gewichtete Adjazenzmatrix $Adj^G \in \mathbb{R}^{n \times n}, k \in \mathbb{N}^+$

Ausgabe: : k Cluster C_1, \ldots, C_k

- 1 Berechne die normalisierte Laplace-Matrix \mathcal{L}_{sym} des Graphen G mit Adj^G
- ${\bf 2}$ Bestimme Eigenvektoren u_1,\ldots,u_k zu den kkleinsten Eigenwerten von ${\cal L}_{sym}$
- $\mathbf{3}$ Sei $U \in \mathbb{R}^{n \times k}$ die Matrix mit $u_1, \dots u_k$ als Spaltenvektoren
- 4 Sei $T \in \mathbb{R}^{n \times k}$ die Matrix mit den Einträgen $T_{i,j} = \frac{U_{i,j}}{\left(\sum_k U_{i,k}^2\right)^{\frac{1}{2}}}$
- 5 Für $i \leftarrow \{1, \dots, n\}$ sei $y_i \in \mathbb{R}^k$ der Vektor der i-ten Reihe von T
- 6 Clustere die Punkte $(y_i)_{i \in \{1,\dots,n\}}$ mit einem k-means-Algorithmus in C_1,\dots,C_k

Der Algorithmus aus [NJW01] ist dem von [SM00] sehr ähnlich, verwendet jedoch die normalisierte Laplace-Matrix \mathcal{L}_{sym} . Außerdem ist für diesen Algorithmus eine zusätzliche Normalisierung nötig, deren Details in [Lux07] erläutert werden.

Das Berechnen aller Eigenvektoren benötigt asymptotischen Rechenaufwand von

 $\mathcal{O}(n^3)$, was für viele Anwendungen deutlich zu viel Rechenzeit ist. Beschränkt man sich auf die Berechnung von wenigen oder sogar nur einem einzelnen Eigenvektor, lässt sich die Komplexität signifikant verringern, beispielsweise unter Einsatz von Lanczos Algorithmus [Lan50]. Da für viele spektrale Clusteringalgorithmen die Berechnung der Eigenvektoren jedoch nach wie vor ein großer Flaschenhals ist, betrachten wir im nächsten Kapitel einen Ansatz, mit dem die Berechnung von Eigenvektoren für Graphclusterings prinzipiell vermieden werden kann.

Literatur

- [ADHP09] Aloise, Daniel; Deshpande, Amit; Hansen, Pierre; Popat, Preyas: NP-hardness of Euclidean sum-of-squares clustering. In: *Machine Learning* (2009), S. 245–248
 - [AV07] ARTHUR, David; VASSILVITSKII, Sergei: k-means++: The advantages of careful seeding. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, New Orleans, Louisiana, USA, January 7-9, 2007, 2007, S. 1027–1035
 - [BGV92] Boser, Bernhard E.; Guyon, Isabelle; Vapnik, Vladimir: A Training Algorithm for Optimal Margin Classifiers. In: *Proceedings of the Fifth Annual ACM Conference on Computational Learning Theory, COLT* 1992, Pittsburgh, PA, USA, July 27-29, 1992., 1992, S. 144–152
 - [Cov65] COVER, T.M.: Geometrical and Statistical Properties of Systems of Linear Inequalities with Applications in Pattern Recognition. In: Electronic Computers, IEEE Transactions on EC-14 (1965), June, Nr. 3, S. 326–334
 - [DGK04] DHILLON, Inderjit; GUAN, Yuqiang; KULIS, Brian: A Unified View of Kernel k-means, Spectral Clustering and Graph Cuts / University of Texas at Austin. 2004 (TR-04-25). – Forschungsbericht
 - [DGK07] DHILLON, Inderjit S.; GUAN, Yuqiang; KULIS, Brian: Weighted Graph Cuts without Eigenvectors A Multilevel Approach. In: *IEEE Trans.* Pattern Anal. Mach. Intell. 29 (2007), Nr. 11, S. 1944–1957
 - [KL70] KERNIGHAN, B. W.; LIN, S.: An Efficient Heuristic Procedure for Partitioning Graphs. In: The Bell System Technical Journal 49 (1970), Nr. 1, S. 291–307
 - [Lan50] Lanczos, Cornelius: An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. In: Journal of Research of the National Bureau of Standards 45 (1950), S. 255–282
 - [Llo82] Lloyd, Stuart P.: Least squares quantization in PCM. In: *IEEE Transactions on Information Theory* 28 (1982), Nr. 2, S. 129–136
 - [Lux07] Luxburg, Ulrike von: A Tutorial on Spectral Clustering. In: Statistics and Computing 17 (2007), Nr. 4, S. 395–416

- [MS84] MEGIDDO, Nimrod; SUPOWIT, Kenneth J.: On the Complexity of Some Common Geometric Location Problems. In: SIAM J. Comput. 13 (1984), Nr. 1, S. 182–196
- [NJW01] NG, Andrew Y.; JORDAN, Michael I.; WEISS, Yair: On Spectral Clustering: Analysis and an algorithm. In: Advances In Neural Information Processing Systems, 2001, S. 849–856
 - [SM00] Shi, Jianbo; Malik, Jitendra: Normalized Cuts and Image Segmentation. In: IEEE Trans. Pattern Anal. Mach. Intell. 22 (2000), Nr. 8, S. 888–905

Hiermit versichere ich, dass ich die vorliegende Arbeit selbstständig verfasst habe und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet sowie Zitate kenntlich gemacht habe.

Dortmund, den 18. Januar 2015

Lukas Pradel