Projeto e Análise de Algoritmos I

Aula 11 - Coloração de Grafos

Lucas Nunes Alegre

Inalegre@inf.ufrgs.br

Instituto de Informática
Universidade Federal do Rio Grande do Sul
Porto Alegre, Brasil
2025/1

Grafos Planares

Grafos Planares

Grafos Planares

Grafos Planares

• Fórmula de Euler:

$$v + f = e + 2$$

Grafos Planares

• Fórmula de Euler:

$$v + f = e + 2$$

 Teorema: (Kuratowski) um grafo simples é não-planar sss possui como subgrafo uma extensão do grafo K_{3,3} ou K₅

Roteiro

1. Motivação

Vamos colorir os países da América do Sul de modo que países vizinhos tenham cores diferentes.

- Foram necessárias 4 cores para colorir a América do Sul.
- Veremos nessa aula que qualquer grafo planar (e.g., mapas) pode ser colorido com no máximo 4 cores.

- Os professores de Teoria dos Grafos, Estruturas de Dados, Arquitetura de Computadores I, Lógica e Cálculo II querem agendar provas de modo que nenhum aluno tenha que realizar mais de uma prova no mesmo dia.
- Qual a menor quantidade de dias de provas necessária?

- Os professores de Teoria dos Grafos, Estruturas de Dados, Arquitetura de Computadores I, Lógica e
 Cálculo II querem agendar provas de modo que nenhum aluno tenha que realizar mais de uma prova no mesmo dia.
- Qual a menor quantidade de dias de provas necessária?

	Bob	Alice	João	Maria
Grafos	X		х	
E.D.	X	X		х
Cálculo II				x
ARQ I			х	
Lógica		X		

Scheduling Problem:

- Os professores de Teoria dos Grafos, Estruturas de Dados, Arquitetura de Computadores I, Lógica e
 Cálculo II querem agendar provas de modo que nenhum aluno tenha que realizar mais de uma prova no mesmo dia.
- Qual a menor quantidade de dias de provas necessária?

	Bob	Alice	João	Maria
Grafos	х		х	
E.D.	X	X		X
Cálculo II				х
ARQ I			х	
Lógica		X		

Grafos E.D

ARQ I Lógica

Cálculo

- Os professores de Teoria dos Grafos, Estruturas de Dados, Arquitetura de Computadores I, Lógica e Cálculo II querem agendar provas de modo que nenhum aluno tenha que realizar mais de uma prova no mesmo dia.
- Qual a menor quantidade de dias de provas necessária?

	Bob	Alice	João	Maria
Grafos	х		X	
E.D.	х	x		х
Cálculo II				х
ARQ I			x	
Lógica		x		

- Os professores de Teoria dos Grafos, Estruturas de Dados, Arquitetura de Computadores I, Lógica e
 Cálculo II querem agendar provas de modo que nenhum aluno tenha que realizar mais de uma prova no mesmo dia.
- Qual a menor quantidade de dias de provas necessária?

	Bob	Alice	João	Maria
Grafos	X		х	
E.D.	X	X		X
Cálculo II				Х
ARQ I			х	
Lógica		X		

- Os professores de Teoria dos Grafos, Estruturas de Dados, Arquitetura de Computadores I, Lógica e
 Cálculo II querem agendar provas de modo que nenhum aluno tenha que realizar mais de uma prova no mesmo dia.
- Qual a menor quantidade de dias de provas necessária?

	Bob	Alice	João	Maria
Grafos	X		Х	
E.D.	X	X		Х
Cálculo II				Х
ARQ I			Х	
Lógica		x		

Scheduling Problem:

- Os professores de Teoria dos Grafos, Estruturas de Dados, Arquitetura de Computadores I, Lógica e Cálculo II querem agendar provas de modo que nenhum aluno tenha que realizar mais de uma prova no mesmo dia.
- Qual a menor quantidade de dias de provas necessária?

	Bob	Alice	João	Maria
Grafos	Х		X	
E.D.	X	X		X
Cálculo II				х
ARQ I			X	
Lógica		X		

Dia 1: Grafos, Cálculo e Lógica

Dia 2: ARQ I e E.D.

Similarmente: registers schedulling, bandwidth allocation, Sudoku ...

• Definição: uma coloração (de vértices) de um grafo simples G = (V, E), é uma função $f: V \to C$ tal que, para todo $x, y \in V$,

$$\{x,y\} \in E \Rightarrow f(x) \neq f(y)$$

onde $C \subseteq \mathbb{N}$ é o conjunto de cores.

• Definição: uma coloração (de vértices) de um grafo simples G = (V, E), é uma função $f: V \to C$ tal que, para todo $x, y \in V$,

$$\{x,y\} \in E \Rightarrow f(x) \neq f(y)$$

onde $C \subseteq \mathbb{N}$ é o conjunto de cores.

Exemplo:

• |img(f)| é o número de cores de f.

• Definição: uma coloração (de vértices) de um grafo simples G = (V, E), é uma função $f: V \to C$ tal que, para todo $x, y \in V$,

$$\{x,y\} \in E \Rightarrow f(x) \neq f(y)$$

onde $C \subseteq \mathbb{N}$ é o conjunto de cores.

Definição: um grafo G é k-colorível se, e somente se, existe uma coloração de G com no máximo k cores.

• Definição: uma coloração (de vértices) de um grafo simples G = (V, E), é uma função $f: V \to C$ tal que, para todo $x, y \in V$,

$$\{x,y\} \in E \Rightarrow f(x) \neq f(y)$$

onde $C \subseteq \mathbb{N}$ é o conjunto de cores.

Definição: um grafo G é k-colorível se, e somente se, existe uma coloração de G com no máximo k cores.

- <u>Importante</u>:
 - Pseudografos não são coloríveis, pois possuem laços.

• Definição: o número cromático $\chi(G)$ de um grafo G é o menor número de cores k tal que G é k-colorível.

G é k-cromático
$$\Leftrightarrow \chi(G) = k$$

 Definição: o número cromático χ(G) de um grafo G é o menor número de cores k tal que G é k-colorível.

G é k-cromático
$$\Leftrightarrow \chi(G) = k$$

Exemplo:

10-colorível

 Definição: o número cromático χ(G) de um grafo G é o menor número de cores k tal que G é k-colorível.

G é k-cromático
$$\Leftrightarrow \chi(G) = k$$

Exemplo:

- 10-colorível
- 9-colorível

 Definição: o número cromático χ(G) de um grafo G é o menor número de cores k tal que G é k-colorível.

G é k-cromático
$$\Leftrightarrow \chi(G) = k$$

Exemplo:

- 10-colorível
- 9-colorível
- •
- 3-colorível
- não é 2-colorível

 Definição: o número cromático χ(G) de um grafo G é o menor número de cores k tal que G é k-colorível.

G é k-cromático
$$\Leftrightarrow \chi(G) = k$$

Exemplo:

- 10-colorível
- 9-colorível

- 3-cromático
 - $\chi(G) = 3$

- 3-colorível
- não é 2-colorível

 Definição: o número cromático χ(G) de um grafo G é o menor número de cores k tal que G é k-colorível.

G é k-cromático
$$\Leftrightarrow \chi(G) = k$$

Exercício: defina o número cromáticos dos grafos abaixo:

Se $\chi(G)$ é o número cromático de um grafo simples G, então:

Se $\chi(G)$ é o número cromático de um grafo simples G, então:

• se |V| = 0, então $\chi(G) = 0$

Se $\chi(G)$ é o número cromático de um grafo simples G, então:

• se |V| = 0, então $\chi(G) = 0$

• se |E| = 0 e |V| > 0, então $\chi(G) = 1$

Se $\chi(G)$ é o número cromático de um grafo simples G, então:

• se |V| = 0, então $\chi(G) = 0$

• se |E| = 0 e |V| > 0, então $\chi(G) = 1$

• $\chi(G) \leq |V|$

Se $\chi(G)$ é o número cromático de um grafo simples G, então:

se G bipartido, então

Se $\chi(G)$ é o número cromático de um grafo simples G, então:

• se G bipartido, então $\chi(G) = 2$

Se $\chi(G)$ é o número cromático de um grafo simples G, então:

• se G k-partido, então $\chi(G) = k$

Se $\chi(G)$ é o número cromático de um grafo simples G, então:

• se G k-partido, então $\chi(G) = k$

• $\omega(G) \leq \chi(G)$, onde $\omega(G)$ é o número de nodos do maior clique de G

Se $\chi(G)$ é o número cromático de um grafo simples G, então:

• se G k-partido, então $\chi(G) = k$

- $\omega(G) \leq \chi(G)$, onde $\omega(G)$ é o número de nodos do maior clique de G
 - num clique cada nodo deve obrigatoriamente ter uma cor diferente

$$\chi(K_5) = 5$$

Teorema: Em um grafo simples G = (V, E) temos $\chi(G) \le \Delta(G) + 1$, onde $\Delta(G)$ é o maior grau do grafo.

Intuição: o número cromático é sempre menor ou igual ao maior grau do grafo mais um.

- Seja v_1, v_2, \ldots, v_n uma enumeração qualquer dos vértices de V.
- Seja C = c_1, \ldots, c_k uma coleção de $k = \Delta(G) + 1$ cores.

- Seja v_1, v_2, \ldots, v_n uma enumeração qualquer dos vértices de V.
- Seja C = c_1, \ldots, c_k uma coleção de $k = \Delta(G) + 1$ cores.

$$\Delta(G) = 3$$

$$K = \Delta(G) + 1 = 4$$

- Seja v_1, v_2, \ldots, v_n uma enumeração qualquer dos vértices de V.
- Seja C = c_1, \ldots, c_k uma coleção de $k = \Delta(G) + 1$ cores.
- Para cada v_i atribua a primeira cor da enumeração C que não ocorre em nenhum dos v_1, \ldots, v_{i-1} anteriores adjacentes a v_i

$$\Delta(G) = 3$$

$$K = \Delta(G) + 1 = 4$$

- Seja v₁, v₂, ..., v_n uma enumeração qualquer dos vértices de V.
- Seja C = c_1, \ldots, c_k uma coleção de $k = \Delta(G) + 1$ cores.
- Para cada v_i atribua a primeira cor da enumeração C que não ocorre em nenhum dos v_1, \ldots, v_{i-1} anteriores adjacentes a v_i

$$\Delta(G) = 3$$

$$K = \Delta(G) + 1 = 4$$

- Seja v_1, v_2, \ldots, v_n uma enumeração qualquer dos vértices de V.
- Seja C = c_1, \ldots, c_k uma coleção de $k = \Delta(G) + 1$ cores.
- Para cada v_i atribua a primeira cor da enumeração C que não ocorre em nenhum dos v₁, . . . , v_{i-1} anteriores adjacentes a v_i
- No pior caso, há $\Delta(G)$ vizinhos adjacentes de v_i com cores diferentes precedendo v_i , e portanto precisamos de uma cor adicional

Teorema: Se G = (V, E) é simples e planar, então $\chi(G) \le 4$.

Teorema: Se G = (V, E) é simples e planar, então $\chi(G) \le 4$.

- F. Guthrie conjecturou o problema em 1852 para seu professor, de Morgan.
- Durante anos ninguém conseguiu provar formalmente a validade do teorema.

Teorema: Se G = (V, E) é simples e planar, então $\chi(G) \le 4$.

- F. Guthrie conjecturou o problema em 1852 para seu professor, de Morgan.
- Durante anos ninguém conseguiu provar formalmente a validade do teorema.
- Somente em 1977, Appel and Haken provaram o teorema com ajuda de computadores (primeira vez que um teorema importante é provado dessa forma).

Teorema: Se G = (V, E) é simples e planar, então $\chi(G) \le 4$.

- F. Guthrie conjecturou o problema em 1852 para seu professor, de Morgan.
- Durante anos ninguém conseguiu provar formalmente a validade do teorema.
- Somente em 1977, Appel and Haken provaram o teorema com ajuda de computadores (primeira vez que um teorema importante é provado dessa forma).
- Como parte da prova consistia numa busca exaustiva de muitos casos discretos através de computadores, alguns matemáticos não aceitaram.

• Como computar $\chi(G)$ dado um grafo G?

• Como verificar se $\chi(G) = k$ dado um grafo G?

- Como computar $\chi(G)$ dado um grafo G?
 - Problema NP-Hard!

- Como verificar se $\chi(G) = k$ dado um grafo G?
 - Problema NP-Completo! (entre os 21 problemas NP-Completos de Karp)

- Como computar $\chi(G)$ dado um grafo G?
 - Problema NP-Hard! -----

INF05515 - Complexidade de Algoritmos Classes de problemas, complexidade, etc.

- Como verificar se $\chi(G) = k$ dado um grafo G?
 - Problema NP-Completo! (entre os 21 problemas NP-Completos de Karp)

- Como computar $\chi(G)$ dado um grafo G?
 - Problema NP-Hard!

Disciplina de Teoria da Computação Classes de problemas, complexidade, etc.

- Como verificar se $\chi(G) = k$ dado um grafo G?
 - Problema NP-Completo! (entre os 21 problemas NP-Completos de Karp)
- Intuitivamente: o número de operações de um algoritmo ótimo para o problema cresce exponencialmente em relação ao tamanho do grafo.

Algoritmo Guloso (não ótimo)

Entrada: grafo simples G = (V, E), cores $C = c_1, c_2, \dots, c_k$

Saída: coloração f : V → C

Ordene os vértices v_1, v_2, \dots, v_n em ordem arbitrária

Para cada vértice v_i, em ordem:

Para cada cor c_i, em ordem:

Se algum vizinho de v_i possui cor c_i, vá para a próxima cor

Senão, atribua cor c_i para o vértice v_i : $f(v_i) = c_i$

Lista de Exercícios

Referências

- Paulo Oswaldo Boaventura Netto. Grafos: teoria, modelos, algoritmos. 2006.isbn: 8521203918.1
- Edson Prestes. Introdução a Teoria dos Grafos.
 2020.url:http://www.inf.ufrgs.br/~prestes/Courses/GraphTheory/Livro/LivroGrafos.pdf.
- Richard J. Trudeau. Introduction to graph theory. 2015.isbn: 1684112311.url:http://www.worldcat.org/isbn/1684112311.
- Douglas B. West. Introduction to Graph Theory. 2nd ed. Prentice Hall, Sept.
 2000.isbn: 0130144002
- Weisstein, Eric W. "Four-Color Theorem." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Four-ColorTheorem.html