	via β_1 -multiplications. Propagating of new families of differentials, is work in	homotopy groups computed in the gree has a source or target of dimension > which linear combination is involved. (whether a differential hits a generator,	the 3-primary version of Guozhen Wa dots denote copies of $\mathbb{Z}/3$. Concentri	imawy Adams Nasiltan								
	other differentials, as well as determining in progress.	ough the 108 stem, and are inferred from the reen book (Table A3.4). When a differential > 1, in general we do not claim to specify (Similarly, we do not attempt to indicate or, or 2 times the generator.) m are just the easy differentials propagated	ag the ANSS E_2 page, were generated using Wang's algebraic Novikov program. Solid tric circles denote copies of $\mathbb{Z}/3^n$. Brown ion by α_1 . Blue classes denote β_1 -divisible	tral sequence for the orbers								
	[5-0]											
	[5-2]	[7-0]										
	[5-3]	[8-0]	[9-0]									
	eta_2^2 eta_2eta_3	[7-3]	[9-2]									
$v_{1}^{3/3} = {}^{[4\text{-}0]}$ $v_{1}^{16}[1\text{-}0]$ $v_{1}^{16}[1\text{-}0]$ $v_{1}^{0}v_{1}v_{2}^{4}[1\text{-}0]$	$\begin{bmatrix} 3/3 \\ [4-5] \end{bmatrix} = \begin{bmatrix} 4-6 \end{bmatrix} + v_{3}^{3}[4-0] $ $\begin{bmatrix} 4-6 \end{bmatrix} + v_{3}^{3}[4-0] $ $\begin{bmatrix} -6 \end{bmatrix} + v_{3}^{3}[4-0] $ $\begin{bmatrix} -6 \end{bmatrix} + v_{3}^{3}[4-0] $ $\begin{bmatrix} -6 \end{bmatrix} + v_{3}^{3}[4-0] $	[7-4]	[11-2]	[13-0]	[15.0]							
	x_{75} $\beta_2 x_{57}$ β_{15-7}	$[6-6] + v_2^3[6-0]$ $[6-6]$ $[6-6]$	[10-3]	[13-2]	[16-0]	[17-0]						
	$\begin{bmatrix} 5-8 \\ v_3 \\ [5-2] \end{bmatrix}$ $v_2^3 \begin{bmatrix} 4-2 \\ v_3^2 \\ [3-3] \end{bmatrix}$ $v_3 \begin{bmatrix} 3-3 \\ 3 \end{bmatrix}$ $\begin{bmatrix} v_1 v_2 v_3 \\ [3-3] \end{bmatrix}$	$[8-6] + v_{2}^{3}[8-0]$ $[8-6]$ $[7-6]$ $[6-7]$ $[6]$	$[11-4]$ $[10-5]$ $[v_2^3[9-0]$	[13-3]	[15.2]	[18-0]	[19-0]					
	$v_3[5-3]$ $v_3[5-3]$ $v_3[4-3]$ $v_3[4-4]$	$\begin{bmatrix} [8-8] \\ v_3 \\ [7-8] \\ v_3 \\ [7-2] \end{bmatrix}$	$[10-6] + v_{\frac{3}{2}}^{3}[10-0]$ $[10-6]$ $[9-6]$	[13-4]	[15-3]	[17-2]	[20-0]	[21-0]				
	$v_{3}[5-4]$ $v_{3}[4-5]$ $v_{3}[4-5]$ $v_{3}[4-5]$ $v_{3}[4-5]$ $v_{4}[3-10]$	$v_2^3[8-3]$ $v_2^3[7-3]$ $v_3^3[7-3]$ $v_3^3[6-4]$	[10-8]	$[13-5] v_{\frac{3}{2}}^{3}[13-0]$ $[12-6] + v_{\frac{3}{2}}^{3}[12-0]$	[15-4]	[17-3]	[19-2]	[23-0]				
	$v_{2}^{3}[5-5] \qquad [5-11]$ $v_{2}^{5}[5-0] \qquad v_{2}^{3}[5-6]$ $[4-11] \qquad v_{0}^{2}[4-10] \qquad v_{0}^{3}v_{2}^{3}[4-6] \qquad [4-12]$ $[3-11] \qquad v_{0}(3-12) \qquad v_{3}^{3}[3-10]$	$v_3^{2}[8-4]$ $v_2^{3}[7-4]$ $v_3^{2}[6-5]$ $v_3^{3}[6-5]$	$v_{2}^{3}[10-3]$ $v_{3}^{3}[10-3]$ $[9-9]$ $v_{3}^{3}[9-3]$	[13-6] [13-7] [12-7]	$[15-5] \\ \nu_{\frac{3}{2}}[15-0] \\ [14-6] + \nu_{\frac{3}{2}}[14-0]$	[17-4]	[19-3]	[21-2]	[25-0]			
	$v_{2}^{3}[5-7]$ $v_{2}^{6}[4-2]$ $v_{2}^{6}[4-2]$ $v_{3}^{6}[3-2]$ $v_{3}^{6}[3-2]$ $v_{3}^{6}[3-2]$ $v_{3}^{6}[3-2]$ $v_{3}^{6}[3-2]$ $v_{3}^{6}[3-2]$ $v_{3}^{6}[3-2]$ $v_{4}^{6}[3-2]$ $v_{5}^{6}[3-2]$ $v_{5}^{6}[3-2]$ $v_{5}^{6}[3-2]$	$v_{2}^{3}[8-5]$ $v_{2}[7-5]$ $v_{2}[7-9]$ $v_{2}[7-0]$ $v_{3}[6-6]$ $v_{2}^{6}[6-0]$ $v_{3}^{6}[6-1]$	$\begin{bmatrix} v_2^3[11\text{-}3] & v_3[11\text{-}4] \\ v_3[11\text{-}4] & v_3[11\text{-}4] \\ & & & & & & & & & & & & & & & & & & $	$\begin{bmatrix} 13-8 \end{bmatrix} \\ v_{2}^{3}[14-2] \\ v_{3}[13-2] \\ v_{3}^{2}[13-3] \\ v_{2}^{3}[12-3] \\ \end{bmatrix}$ $\begin{bmatrix} 12-8 \end{bmatrix} \\ v_{3}^{2}[12-3] \\ \end{bmatrix}$	$\begin{bmatrix} 16-6]+v_2^3 [16-6] \\ & & & & \\ 16-6\end{bmatrix}$	$[18-6] + \frac{1}{17-5}$ $\nu_{2}^{3}[17-0]$ $[17-6]$	[20-3]	[23-2]		[27-0]		
	$\begin{bmatrix} [5-16] \\ v_2^3v_3[5-2] \\ & v_2^6[5-3] \\ & & v_2^3v_3[5-3] \\ & & & v_2^3v_3[5-3] \\ & & & & v_2^6[4-3] \\ &$	$v_3^{3}[8-6] \\ v_2^{3}[7-7] \\ [6-12] \\ v_3^{6-7}] \\ v_3^{6-8}]$	$v_2[11\text{-}9] + 2v_2^3[11\text{-}5] \\ v_2[11\text{-}9] \\ v_3[10\text{-}5] \\ v_2^6[10\text{-}0] \\ v_2^6[10\text{-}0]$	$\begin{bmatrix} 13-9 \end{bmatrix} \\ v_3 \begin{bmatrix} 13-3 \end{bmatrix} \\ v_2 \begin{bmatrix} 12-4 \end{bmatrix} \\ v_2 \begin{bmatrix} 12-4 \end{bmatrix}$	$\begin{bmatrix} 16-8 \\ v_{2}^{3}[16-2] \\ v_{3}[15-2] \\ v_{2}^{3}[14-3] \end{bmatrix}$	[18-6] [18-7]	$[20-6]+v_{\frac{3}{2}}[20-0]$ $v_{\frac{3}{2}}[19-0]$ $[19-6]$	[23-4]	[25-2]	[28-0]	[29-0]	
	$v_{2}^{6}[4-5]$	$v_{2}^{6}[8-2] \\ v_{3}[7-10] \\ v_{3}^{2}[7-11] \\ v_{2}^{6}[7-3] \\ v_{2}^{6}[6-3] \\ v_{2}^{3}v_{3}[6-3]$	$v_2^6[11\text{-}0]$ $v_2^3[11\text{-}6]$ $v_2^3[9\text{-}7]$	$v_2[13-9] + 2v_2^3[13-5] \\ v_2[13-9] + 2v_2^6[13-9]$	$v_{\frac{3}{2}}^{2}[16-3]$ [16-9] $v_{3}[16-3]$ $v_{3}[15-3]$	$\begin{bmatrix} 18-8 \end{bmatrix} \\ v_{2}^{3}[18-2] \\ v_{3}[17-2] \\ v_{2}^{3}[17-3] \\ v_{3}^{3}[17-3] \\ v_{$	[20-6]	$\begin{bmatrix} 22-5 \end{bmatrix} \\ v_2^3[21-0] \\ \end{bmatrix} - \begin{bmatrix} 21-6 \end{bmatrix}$	[25-4]	[27-2]	[30-0]	[31-0]