Question	Scheme	Marks
8	$\int (18x^2 - 2x + 13) dx = \frac{18x^3}{3} - \frac{2x^2}{2} + 13x(+c)$	M1A1
	$f\left(\frac{1}{2}\right) = 6 \times \left(\frac{1}{2}\right)^3 - \left(\frac{1}{2}\right)^2 + 13 \times \left(\frac{1}{2}\right) + c = 0 \Rightarrow c = -7$	M1A1
	$f(x) = 6x^3 - x^2 + 13x - 7$ oe	A1
	$\frac{3x^2 + x + 7}{2x - 1 \int 6x^3 - x^2 + 13x - 7}$	M1A1
	$b^2 - 4ac = 1^2 - 4 \times 3 \times 7 = -83$	M1
	Conclusion: $b^2 - 4ac < 0$ so there is only one root/intersection	Alcso
	with the <i>x</i> -axis $\left[at \left(\frac{1}{2}, 0 \right) \right]$	[9]
	To	tal 9 marks

Mark	Notes
	For integrating the given $f'(x)$. + c is not required for this mark
	This can be simplified or unsimplified.
M1	Accept $\frac{18x^3}{3} - \frac{2x^2}{2} + 13x(+c)$ or $6x^3 - x^2 + 13x(+c)$ At least two terms must be integrated correctly, with no differentiation.
A1	For the correct integrated expression. Ignore the absence of $+c$
	For substituting $x = \frac{1}{2}$ into their integrated expression (which must include $+c$, otherwise it is M0) and setting equal to 0.
M1	ALT
	Some candidates are completing this step using polynomial division. If they do not have $+c$ at this stage then it is M0. If it is clear they are attempting to find the value of c by finding a numerical value for c [even if it is incorrect], award both this mark and the next M mark provided
	, , , , , , , , , , , , , , , , , , , ,

A1	For the correct value of $c = -7$
	For the fully correct $f(x) = 6x^3 - x^2 + 13x - 7$ all on one line.
A1	You do not need to see $f(x) =$
	Accept even when you see this as a complete dividend in the 'bus stop' or when equating coefficients.
	Polynomial division For dividing their f (1) by (2) 1) to achieve as a minimum $2n^2 + n$
M1	For dividing their f (x) by $(2x - 1)$ to achieve as a minimum $3x^2 + x$. Award this for correct attempts even without either $+ c$ or a value for c .
	$6x^2 + 2x (+l)$
	Allow also: $x - \frac{1}{2} \sqrt{6x^3 - x^2 + 13x - 7}$ [the correct quotient is $6x^2 + 2x + 14$]
	ALT Equating coefficients.
	They must achieve a correct value for A and B for the award of this mark.
	$6x^3 - x^2 + 13x - 7 = (2x - 1)(Ax^2 + Bx + C) \Rightarrow A = 3, B = 1$
	OR
	$6x^{3} - x^{2} + 13x - 7 = \left(x - \frac{1}{2}\right)\left(Ax^{2} + Bx + C\right) \Rightarrow A = 6, B = 2$
A1	For the correct quotient/quadratic factor
	$3x^2 + x + 7$ or $6x^2 + 2x + 14$ For using $b^2 - 4ac$ on their f (x) which must be a 3TQ
	Accept this as part of the quadratic formula.
M1	Sight of the complex roots $\left(\frac{-1\pm\left(\sqrt{83}\right)i}{6}\right)$ is M1
	Allow this mark even if they do not have $+c$ or find the correct cubic expression.
A1 cso	For concluding that as $b^2 - 4ac < 0$ then there is only one root/intersection with the
	x-axis. Do not accept statements such as 'not possible' or 'will not factorise' without reference to a negative discriminant.
	Accept evidence of a statement such as $1^2 < 4 \times 3 \times 7 \Rightarrow b^2 < 4ac$ oe, or embedded in a formula without explicit evaluation.
	Complex roots must be followed by a comment that as the roots are not real, there are no intersections with the <i>x</i> -axis. Quoting the complex roots without a correct explanation is A0.
	If they have not found $+c$ at the start, this mark is not available as this solution is cso.