

### **Description**

#### **Image**



### Caption

Medium carbon steel is the material of cheap tools. Low alloy steels are much superior and only a little more expensive -- quality tools are low alloy. © Granta Design

#### The material

Medium carbon steel (0.25-0.7% carbon) hardens when quenched - a quality that gives great control over properties. "Hardenability" measures the degree to which it can be hardened in thick sections; plain carbon steels have poor hardenability - additional alloying elements are used to increase it (see Low alloy steels). Medium carbon steels are used on an enormous scale for railroad tracks; there are many other lower-volume applications.

#### **Compositional summary**

Fe/0.3 - 0.7%C

**General properties** 

| Density         | 7.8e3  | - | 7.9e3 | kg/m^3 |
|-----------------|--------|---|-------|--------|
| Price           | * 0.58 | - | 0.59  | USD/kg |
| Date first used | 1610   |   |       |        |

### **Mechanical properties**

| Young's modulus                 | 200   | - | 216    | GPa      |
|---------------------------------|-------|---|--------|----------|
| Shear modulus                   | 77    | - | 85     | GPa      |
| Bulk modulus                    | 158   | - | 170    | GPa      |
| Poisson's ratio                 | 0.285 | - | 0.295  |          |
| Yield strength (elastic limit)  | 305   | - | 900    | MPa      |
| Tensile strength                | 410   | - | 1.2e3  | MPa      |
| Compressive strength            | 305   | - | 1.76e3 | MPa      |
| Elongation                      | 4     | - | 39     | % strain |
| Hardness - Vickers              | 120   | - | 565    | HV       |
| Fatigue strength at 10^7 cycles | * 229 | - | 600    | MPa      |
|                                 |       |   |        |          |





| Fracture toughness                      | * 12     | - | 92      | MPa.m^0.5 |
|-----------------------------------------|----------|---|---------|-----------|
| Mechanical loss coefficient (tan delta) | * 2.2e-4 | - | 0.00119 |           |

# **Thermal properties**

| Melting point                   | 1.38e3  | -    | 1.51e3 | °C         |
|---------------------------------|---------|------|--------|------------|
| Maximum service temperature     | * 370   | -    | 420    | °C         |
| Minimum service temperature     | * -68.2 | -    | -33.2  | °C         |
| Thermal conductor or insulator? | Good co | ondu | ctor   |            |
| Thermal conductivity            | 45      | -    | 55     | W/m.°C     |
| Specific heat capacity          | 440     | -    | 520    | J/kg.°C    |
| Thermal expansion coefficient   | 10      | -    | 14     | µstrain/°C |

### **Electrical properties**

| Electrical conductor or insulator? | Good conductor  |
|------------------------------------|-----------------|
| Electrical resistivity             | 15 - 22 μohm.cm |

### **Optical properties**

| Transparency   | Opaque |
|----------------|--------|
| Processability |        |
| •              |        |

| Castability        | 2 | - | 3 |
|--------------------|---|---|---|
| Formability        | 4 | - | 5 |
| Machinability      | 3 | - | 4 |
| Weldability        | 5 |   |   |
| Solder/brazability | 5 |   |   |

# **Durability: water and aqueous solutions**

| Water (fresh)          | Acceptable   |
|------------------------|--------------|
| Water (salt)           | Limited use  |
| Soils, acidic (peat)   | Acceptable   |
| Soils, alkaline (clay) | Acceptable   |
| Wine                   | Unacceptable |

# **Durability: acids**

| Acetic acid (10%)       | Limited use  |
|-------------------------|--------------|
| Acetic acid (glacial)   | Unacceptable |
| Citric acid (10%)       | Unacceptable |
| Hydrochloric acid (10%) | Unacceptable |
| Hydrochloric acid (36%) | Unacceptable |
| Hydrofluoric acid (40%) | Unacceptable |
| Nitric acid (10%)       | Unacceptable |
| Nitric acid (70%)       |              |



|                       | Unacceptable |
|-----------------------|--------------|
| Phosphoric acid (10%) | Unacceptable |
| Phosphoric acid (85%) | Unacceptable |
| Sulfuric acid (10%)   | Unacceptable |
| Sulfuric acid (70%)   | Unacceptable |

# **Durability: alkalis**

| Sodium hydroxide (10%) | Excellent  |
|------------------------|------------|
| Sodium hydroxide (60%) | Acceptable |

### **Durability: fuels, oils and solvents**

| Excellent |
|-----------|
| LAGGIGIT  |
| Excellent |
|           |

# Durability: alcohols, aldehydes, ketones

| Acetaldehyde              | Limited use  |
|---------------------------|--------------|
| Acetone                   | Excellent    |
| Ethyl alcohol (ethanol)   | Acceptable   |
| Ethylene glycol           | Acceptable   |
| Formaldehyde (40%)        | Unacceptable |
| Glycerol                  | Excellent    |
| Methyl alcohol (methanol) | Acceptable   |

### **Durability: halogens and gases**

| Chlorine gas (dry)   | Acceptable  |
|----------------------|-------------|
| Fluorine (gas)       | Excellent   |
| O2 (oxygen gas)      | Limited use |
| Sulfur dioxide (gas) | Acceptable  |



| Industrial atmosphere   | Limited use |
|-------------------------|-------------|
| Rural atmosphere        | Acceptable  |
| Marine atmosphere       | Limited use |
| UV radiation (sunlight) | Excellent   |

### **Durability: flammability**

| Flammability | on-flammable |
|--------------|--------------|
|--------------|--------------|

### **Durability: thermal environments**

| Tolerance to cryogenic temperatures | Unacceptable |
|-------------------------------------|--------------|
| Tolerance up to 150 C (302 F)       | Excellent    |
| Tolerance up to 250 C (482 F)       | Excellent    |
| Tolerance up to 450 C (842 F)       | Acceptable   |
| Tolerance up to 850 C (1562 F)      | Unacceptable |
| Tolerance above 850 C (1562 F)      | Unacceptable |

### Geo-economic data for principal component

| Annual world production, principal component | 2.3e9  | tonne/yr |
|----------------------------------------------|--------|----------|
| Reserves, principal component                | 1.6e11 | tonne    |

## Primary material production: energy, CO2 and water

| Embodied energy, primary production | * 25.1 | - | 27.8 | MJ/kg          |
|-------------------------------------|--------|---|------|----------------|
| CO2 footprint, primary production   | * 1.72 | - | 1.9  | kg/kg          |
| Water usage                         | * 43.6 | - | 48.2 | l/kg           |
| Eco-indicator 95                    | 86     |   |      | millipoints/kg |
| Eco-indicator 99                    | 106    |   |      | millipoints/kg |

### **Material processing: energy**

| * 10.9   | -                                                                               | 12.1                                                                              | MJ/kg                                                                                                                                    |
|----------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| * 5.94   | -                                                                               | 6.57                                                                              | MJ/kg                                                                                                                                    |
| * 3.11   | -                                                                               | 3.44                                                                              | MJ/kg                                                                                                                                    |
| * 21.5   | -                                                                               | 23.8                                                                              | MJ/kg                                                                                                                                    |
| * 35.9   | -                                                                               | 42.8                                                                              | MJ/kg                                                                                                                                    |
| * 1.09e4 | -                                                                               | 1.2e4                                                                             | MJ/kg                                                                                                                                    |
| * 0.899  | -                                                                               | 0.994                                                                             | MJ/kg                                                                                                                                    |
| * 4.72   | -                                                                               | 5.21                                                                              | MJ/kg                                                                                                                                    |
| * 8.96   | -                                                                               | 9.9                                                                               | MJ/kg                                                                                                                                    |
| 109      | -                                                                               | 120                                                                               | MJ/kg                                                                                                                                    |
|          | * 5.94<br>* 3.11<br>* 21.5<br>* 35.9<br>* 1.09e4<br>* 0.899<br>* 4.72<br>* 8.96 | * 5.94 -  * 3.11 -  * 21.5 -  * 35.9 -  * 1.09e4 -  * 0.899 -  * 4.72 -  * 8.96 - | * 5.94 - 6.57<br>* 3.11 - 3.44<br>* 21.5 - 23.8<br>* 35.9 - 42.8<br>* 1.09e4 - 1.2e4<br>* 0.899 - 0.994<br>* 4.72 - 5.21<br>* 8.96 - 9.9 |

### **Material processing: CO2 footprint**



| Casting CO2                                          | * 0.819  | - | 0.906  | kg/kg |
|------------------------------------------------------|----------|---|--------|-------|
| Extrusion, foil rolling CO2                          | * 0.446  | - | 0.492  | kg/kg |
| Rough rolling, forging CO2                           | * 0.233  | - | 0.258  | kg/kg |
| Wire drawing CO2                                     | * 1.61   | - | 1.78   | kg/kg |
| Metal powder forming CO2                             | * 2.87   | - | 3.42   | kg/kg |
| Vaporization CO2                                     | * 815    | - | 901    | kg/kg |
| Coarse machining CO2 (per unit wt removed)           | * 0.0674 | - | 0.0745 | kg/kg |
| Fine machining CO2 (per unit wt removed)             | * 0.354  | - | 0.391  | kg/kg |
| Grinding CO2 (per unit wt removed)                   | * 0.672  | - | 0.743  | kg/kg |
| Non-conventional machining CO2 (per unit wt removed) | 8.15     | - | 9.01   | kg/kg |

### Material recycling: energy, CO2 and recycle fraction

| Recycle                            | ✓                     |
|------------------------------------|-----------------------|
| Embodied energy, recycling         | * 6.96 - 7.69 MJ/kg   |
| CO2 footprint, recycling           | * 0.547 - 0.605 kg/kg |
| Recycle fraction in current supply | 40 - 44 %             |
| Downcycle                          | ✓                     |
| Combust for energy recovery        | ×                     |
| Landfill                           | ✓                     |
| Biodegrade                         | ×                     |
| Toxicity rating                    | Non-toxic             |
| A renewable resource?              | ×                     |

#### **Environmental notes**

The production energy of steel is comparatively low - per unit weight, about a half that of polymers; per unit volume, though, twice as much. Carbon steels are easy to recycle, and the energy to do so is small.

#### **Supporting information**

### Design guidelines

Hardenability measures the degree to which it can be hardened in thick sections; plain carbon steels have poor hardenability - additional alloying elements are used to increase it (see Low alloy steels).

#### Technical notes

The two standard classifications for steels, the AISI and the SAE standards, have now been merged. In the SAE-AISI system, each steel has a four-digit code. The first two digits indicate the major alloying elements. The second two give the amount of carbon, in hundredths of a percent. Thus the plain carbon steels have designations starting 10xx, 11xx, 12xx or 14xxx, depending on how much manganese, sulfur and phosphorus they contain. The common low-carbon steels have the designations 1015,1020, 1022, 1117,1118; the common medium carbon steels are 1030,1040, 1050, 1060, 1137, 1141, 1144 and 1340; the common high alloy steels are 1080and 1095. More information on designations and equivalent grades can be found on the Granta Design website at www.grantadesign.com/designations

### Phase diagram





#### Phase diagram description

Medium carbon steels are alloys of iron (Fe) with 0.3 - 0.7% carbon (C), for which this is the phase

### Typical uses

General construction; general mechanical engineering; automotive; tools; axles; gears; bearings; cranks; shafts; gears; bells; cams, knives and scissors.

#### Links

Reference
ProcessUniverse
Producers