Aula 4

Professores:

Anselmo Montenegro Esteban Clua

Conteúdo:

- Objetos gráficos espaciais (parte I)

Objetos gráficos espaciais: definições

- Um *objeto gráfico espacial* é um objeto gráfico que está imerso em um espaço ambiente de dimensão 3.
- Exemplos de objetos gráficos espaciais são:
 - Curvas espaciais. (objetos 1D imersos em espaços 3D).
 - Superfícies. (objetos 2D imersos em espaços 3D).
 - Sólidos.
 - Imagens 3D.

Objetos gráficos espaciais: curvas paramétricas

- Uma curva paramétrica no R3 é uma aplicação $g:I\subset R\to R^3$.
- •Logo $g(t) = (x(t), y(t), z(t)), t \in I$ e o **vetor velocidade** é dado por: g'(t) = (x'(t), y'(t), z'(t))

Objetos gráficos espaciais: curvas paramétricas

- Aplicações:
 - Elementos auxiliares na construção de superfícies.
 - Especificação de trajetórias utilizadas em animação e controle de câmeras.

- Uma superfície é um subconjunto de pontos S⊂R³ que localmente se assemelha a um plano.
- Se definirmos uma esfera de raio suficientemente pequeno então, a sua interseção com a superfície se assemelha a um disco(ou semi-disco nas bordas)

• Uma superfície paramétrica S é descrita como uma aplicação $f: U \subset R^2 \to R^3$.

- Para evitar casos degenerados $f: U \subset \mathbb{R}^2 \to \mathbb{R}^3$ deve:
 - Ser uma bijeção, isto é, existir uma correspondência um-para-um entre pontos do domínio e do contradomínio.

- ter um plano tangente bem definido em cada ponto.

- Exemplo: cilindro
 - Um cilindro é uma superfície descrita por um conjunto de pontos equidistantes a uma reta (eixo do cilindro).
- Parametrização do cilindro
 - $f:[0,2\pi]\times R\to R^3$, $f(u,v)=(R\cos(u),R\sin(u),v)$.

Objetos gráficos espaciais: Superfícies implícitas

 •Uma superfície implícita S⊂R³ é definida pelo conjunto de raízes de uma função

$$F: U \subset \mathbb{R}^3$$
, ou sej $S = \{(x,y,z); F(x,y,z) = 0\}$

Objetos gráficos espaciais: Superfícies implícitas

- O conjunto de pontos da superfície é também indicado pela notação F¹(0) e é chamado imagem inversa do conjunto {0} ∈ R por F.
- •Este conjunto define uma *superfície de nível* de *F* (ver a figura anterior).
- •A função $F: U \subset \mathbb{R}^3 \to \mathbb{R}$ define um *campo escalar* pois associa um número real a cada ponto do \mathbb{R}^3 .

Objetos gráficos espaciais: exemplo de superfície definida de forma implícita

- Exemplo: cilindro
 - Se (x,y,z) são os pontos de um cilindro de raio R então:

$$||(x,y,z)-(0,0,z)|| = R$$

•Daí segue-se que:

$$-F(x,y,z) = x^2 + y^2 - z^2$$

•O conjunto de todos os vetores tangentes a S no ponto p determina o **plano tangente** de S em p que denominamos T_pS .

•O conjunto de todos os vetores tangentes a *S* no ponto *p* determina o *plano tangente* de *S* em *p* que denominamos *T_pS*.

•O conjunto de todos os vetores tangentes a *S* no ponto *p* determina o *plano tangente* de *S* em *p* que denominamos *T_pS*.

•O conjunto de todos os vetores tangentes a S no ponto p determina o **plano tangente** de S em p que denominamos T_pS .

•Um vetor $n \in \mathbb{R}^3$ é **normal** à superfície S no ponto p se n é perpendicular a T_pS .

- •São análogos tridimensionais às regiões no caso planar.
- Possuem a mesma dimensão do espaço ambiente.
- São denominados sólidos.

•Sólido: subconjunto de pontos $p \in V \subset R^3$ tal que para todo ponto p, existe uma vizinhança "sólida, com volume" completamente contida em V.

•Em um sólido é possível aplicar uma *deformação contínua* ("amassar ou esticar", sem "recortar" ou "colar") sobre qualquer região na vizinhança de um ponto até que ela se torne uma esfera ou semi-esfera unitária.

- Um objeto volumétrico é normalmente descrito por uma função de densidade.
- •Uma função de densidade *constante* é muito utilizada para descrever peças mecânicas.
- Funções de densidade variáveis descrevem objetos com opacidades variáveis como tecidos, ossos, pele, etc.

•Mais exemplos: tecidos humanos e uma peça.

- Objetos volumétricos podem ser descritos de duas formas:
 - Descrição por bordo.
 - Descrição por *funções implícitas*.

- •O *Teorema de Jordan* é utilizado para caracterizar regiões do plano.
- •O mesmo teorema se estende para o espaço tridimensional.

•Teorema de Jordan:

"Uma superfície fechada, limitada e sem bordo M em K^3 divide o espaço em duas regiões $_1R$ e_2R , uma limitada e outra ilimitada das quais M é fronteira comum"

A região limitada R₁define um sólido.

- A descrição de um sólido pelo bordo fica completamente caracterizada por duas etapas:
 - Descrição da superfície que define o *bordo*.
 - Solução do problema de *classificação ponto-conjunto*.

- A descrição de um sólido pelo bordo fica completamente caracterizada por duas etapas:
 - Descrição da superfície que define o *bordo*.
 - Solução do problema de *classificação ponto-conjunto*.

- A descrição de um sólido pelo bordo fica completamente caracterizada por duas etapas:
 - Descrição da superfície que define o *bordo*.
 - Solução do problema de *classificação ponto-conjunto*.

- A descrição de um sólido pelo bordo fica completamente caracterizada por duas etapas:
 - Descrição da superfície que define o *bordo*.
 - Solução do problema de *classificação ponto-conjunto*.

- A descrição de um sólido pelo bordo fica completamente caracterizada por duas etapas:
 - Descrição da superfície que define o *bordo*.
 - Solução do problema de *classificação* ponto-conjunto.

- A descrição de um sólido pelo bordo fica completamente caracterizada por duas etapas:
 - Descrição da superfície que define o **bordo**.
 - Solução do problema de *classificação ponto-conjunto*.

- A descrição de um sólido pelo bordo fica completamente caracterizada por duas etapas:
 - Descrição da superfície que define o *bordo*.

Objetos gráficos espaciais: como descrever objetos volumétricos

- A descrição de um sólido pelo bordo fica completamente caracterizada por duas etapas:
 - Descrição da superfície que define o *bordo*.

- Solução do problema de *classificação*ponto-conjunto.

Superfície ou bordo

Classificador

p∈V, p'∉V

Fundação

CEFCIE

Objetos gráficos espaciais: objetos volumétricos - representação por bordo

- A representação por bordo pode não ser desejável para representar um objeto volumétrico por dois motivos:
 - Precisamos resolver o *problema de*classificação ponto conjunto para determinar
 se um ponto pertence ao sólido.
 - Não permite a descrição de sólidos constituídos de matéria não-homogênea.

Objetos gráficos espaciais: objetos volumétricos - representação implícita

 Seja F:R → R uma função que divide o espaço em 3 classes:

```
1. \{(x,y,z) \in \Re : F(x,y,z) > 0\}
```

2.
$$\{(x,y,z) \in R^2 : F(x,y,z) = 0\} \stackrel{d}{=} F(0)$$

3.
$$\{(x,y,z) \in \mathbb{R}^2 : F(x,y,z) < 0\}$$

•O conjunto $F^{-1}(0)$ define uma superfície implícita M e os outros pontos definem o interior e exterior de M.

Objetos gráficos espaciais: objetos volumétricos - representação implícita

- •O sólido é formado pela região limitada juntamente com a superfície de bordo *M*.
- •A própria função *F* resolve o problema de classificação ponto conjunto.
- Além disso pode ser interpretada como função densidade.

Objetos gráficos espaciais: representação de superfícies

- As curvas poligonais desempenham um papel importante na representação de curvas planas.
- No caso de superfícies este papel é representado pelas superfícies poliédricas.
- As superfícies poliédricas se baseiam no conceito de *triangulação*.

Objetos gráficos espaciais: triangulações 2D no espaço

- •Três pontos p_0 , p_1 e p_2 formam um triângulo no \mathbb{R}^3 se os vetores p_1 p_0 , p_1 p_2 forem linearmente independentes.
- •Uma *triangulação* 2D no R³ é uma coleção $T=\{T_i\}$ de triângulos tal que para dois triângulos distintos T_i e T_j em T_i com $T_i \cap T_j \neq \emptyset$ temos:
 - $T_i \cap T$ é um vértice em comum ou,
 - $T_i \cap T$ é uma aresta em comum.

- •Uma lista de quatro ponto $\sigma = (p_0, p_1, p_2, p_3)$, com $p_i R^3$, formam um **tetraedro** no R^3 , se os vetores $p_1 p_0$, $p_2 p_0$ e $p_3 p_0$ são linearmente independentes.
- •Os pontos p_0 , p_1 , p_2 e p_3 são os **vértices**, os segmentos p_0p_1 , p_1p_2 , p_0p_2 , p_0p_3 , p_1p_3 e p_2p_3 são as **arestas** e os triângulos $p_0p_1p_2$, $p_0p_1p_2$, $p_0p_2p_3$ e $p_0p_2p_3$ são as **faces** do tetraedro.

- •Uma lista de quatro ponto $\sigma = (p_0, p_1, p_2, p_3)$, com $p_i R^3$, formam um **tetraedro** no R^3 , se os vetores $p_1 p_0$, $p_2 p_0$ e $p_3 p_0$ são linearmente independentes.
- •Os pontos p_0 , p_1 , p_2 e p_3 são os **vértices**, os segmentos p_0p_1 , p_1p_2 , p_0p_2 , p_0p_3 , p_1p_3 e p_2p_3 são as **arestas** e os triângulos $p_0p_1p_2$, $p_0p_1p_3$, $p_0p_2p_3$ e $p_0p_2p_3$ são as **faces** do tetraedro.

- •Uma lista de quatro ponto $\sigma = (p_0, p_1, p_2, p_3)$, com $p_i R^3$, formam um **tetraedro** no R^3 , se os vetores $p_1 p_0$, $p_2 p_0$ e $p_3 p_0$ são linearmente independentes.
- •Os pontos p_0 , p_1 , p_2 e p_3 são os **vértices**, os segmentos p_0p_1 , p_1p_2 , p_0p_2 , p_0p_3 , p_1p_3 e p_2p_3 são as **arestas** e os triângulos $p_0p_1p_2$, $p_0p_1p_3$, $p_0p_2p_3$ e $p_0p_2p_3$ são as **faces** do tetraedro.

- •Uma lista de quatro pontos = (p_0, p_1, p_2, p_3) , com $p_i R^3$, formam um **tetraedro** no R^3 , se os vetores $p_1 p_0$, $p_2 p_0$ e $p_3 p_0$ são linearmente independentes.
- •Os pontos p_0 , p_1 , p_2 e p_3 são os **vértices**, os segmentos p_0p_1 , p_1p_2 , p_0p_2 , p_0p_3 , p_1p_3 e p_2p_3 são as **arestas** e os triângulos $p_0p_1p_2$, $p_0p_1p_3$, $p_0p_2p_3$ e $p_0p_2p_3$ são as **faces** do tetraedro.

- •Um tetraedro pode ser visto como a generalização de um triângulo no espaço 3D.
- Uma triangulação 3D ou triangulação
 volumétrica do espaço é um conjunto finito { σ, ...,σ_n} de tetraedros tal que a interseção de dois tetraedros do conjunto é vazia, um vértice, uma aresta ou uma face.

Objetos gráficos espaciais: superfícies poliédricas

- Uma superfície poliédrica é uma triangulação 2D do espaço que representa uma superfície.
- Como temos mais graus de liberdade ao posicionar os triângulos no espaço devemos evitar o seguinte caso:

 Para isso, impomos a restrição de que cada aresta seja compartilhada por apenas 2 triângulos.

Objetos gráficos espaciais:por que utilizar triângulos?

- •Faces triangulares apresentam as seguintes vantagens:
 - Planaridade.

- Sistema de coordenadas.
- Extensibilidade.

•Problema:

- Como codificar a estrutura *geométrica e topológica* (sistema de vizinhanças) da superfície poliédrica?
- A codificação está diretamente associada a estrutura de dados associada a triangulação da superfície.

- Uma superfície poliédrica pode ser codificada através de **grafos**.
- Temos dois grafos associados a uma superfície poliedral:
 - Grafo de vértices
 - Induzido pelos vértices e arestas da superfície.
 - Grafo dual
 - Um vértice existe para cada face da superfície, os quais são conectados por uma aresta no grafo

Grafo de vértices

Grafo de vértices Grafo dual

Vértice Aresta Vértice Aresta

 O problema de estruturação da superfície poliédrica se resume a codificação dos grafos associados.

- A representação de uma superfície é vista como um banco de dados geométrico.
- É comum efetuar certos tipos de consulta sobre propriedades geométricas e topológicas da superfície:
 - Achar todas as arestas que incidem em um vértice.
 - Achar todos os polígonos que compartilham uma aresta ou um vértice.
 - Achar as arestas que delimitam um polígono.
 - Visualizar a superfície.

- A escolha da codificação está intimamente ligada ao conjunto de operações que se deseja realizar.
- Veremos 3 tipos de codificação:
 - Codificação explícita.
 - Codificação por lista de vértices.
 - Codificação por lista de arestas.

 Codifica explicitamente os polígonos da superfície fornecendo uma lista de vértices com suas coordenadas.

Atenção: O professor diz a partir daqui "tetraedro", mas na verdade é uma "pirâmide" e é mencionada "triangulação" sendo que uma pirâmide não é uma triangulação (a base não é um triângulo).

 Codifica explicitamente os polígonos da superfície fornecendo uma lista de vértices com suas coordenadas.

Codificação explícita	
$f_1 = ((x_1, y_1, z_1), (x_5, y_5, z_5), (x_2, y_2, z_2))$	
$f_2 = ((x_3, y_3, z_3), (x_5, y_5, z_5), (x_4, y_4, z_4))$	
$f_3 = ((x_2, y_2, z_2), (x_5, y_5, z_5), (x_3, y_3, z_3))$	
$f_4 = ((x_1, y_1, z_1), (x_4, y_4, z_4), (x_5, y_5, z_5))$	-2
$f_5 = ((x_1, y_1, z_1), (x_2, y_2, z_2), (x_3, y_3, z_3), (x_4, y_4, z_4)$	

 Codifica explicitamente os polígonos da superfície fornecendo uma lista de vértices com suas coordenadas.

Codificação explícita $f_{1} = ((x_{1},y_{1},z_{1}),(x_{5},y_{5},z_{5}),(x_{2},y_{2},z_{2}))$ $f_{2} = ((x_{3},y_{3},z_{3}),(x_{5},y_{5},z_{5}),(x_{4},y_{4},z_{4}))$ $f_{3} = ((x_{2},y_{2},z_{2}),(x_{5},y_{5},z_{5}),(x_{3},y_{3},z_{3}))$ $f_{4} = ((x_{1},y_{1},z_{1}),(x_{4},y_{4},z_{4}),(x_{5},y_{5},z_{5}))$ $f_{5} = ((x_{1},y_{1},z_{1}),(x_{2},y_{2},z_{2}),(x_{3},y_{3},z_{3}),(x_{4},y_{4},z_{4})$

- Vantagens: Extremamente simples.
- Desvantagens redundância :
 - Ocupa espaço de armazenamento desnecessário.
 - Operações geométricas podem introduzir erros numéricos independentes nas coordenadas dos vértices.
 - Ineficiência (cada aresta é desenhada duas vezes na visualização).

Objetos gráficos espaciais: propriedades desejadas em uma codificação

- Para solucionar os problemas encontrados na codificação explícita devemos eliminar os seguintes problemas:
 - Evitar a replicação de vértices.
 - Codificar as *informações de adjacência*.

 Criamos uma *lista de vértices* e cada polígono da superfície é definido por referência aos vértices desta lista.

 Criamos uma *lista de vértices* e cada polígono da superfície é definido por referência aos vértices desta lista.

Lista de vértices

$$v_i = (x_i, y_i, z_i)$$

$$v_2 = (x_2, y_2, z_2)$$

$$v_3 = (x_3, y_3, z_3)$$

$$v_A = (x_A, y_A, z_A)$$

$$v_s = (x_s, y_s, z_s)$$

 Criamos uma lista de vértices e cada polígono da superfície é definido por referência aos vértices desta lista.

Lista de vértices

$$v_i = (x_i, y_i, z_i)$$

$$v_2 = (x_2, y_2, z_2)$$

$$v_3 = (x_3, y_3, z_3)$$

$$v_{A} = (x_{A}, y_{A}, z_{A})$$

$$v_5 = (x_5, y_5, z_5)$$

Lista de faces

$$f_1 = (v_1, v_5, v_2)$$

$$f_2 = (v_3, v_5, v_4)$$

$$f_3 = (v_2, v_3, v_3)$$

$$f_4 = (v_1, v_4, v_5)$$

$$f_5 = (v_2, v_2, v_3, v_4)$$

 Criamos uma lista de vértices e cada polígono da superfície é definido por referência aos vértices desta lista.

Lista de vértices

$$v_i = (x_i, y_i, z_i)$$

$$v_2 = (x_2, y_2, z_2)$$

$$v_3 = (x_3, y_3, z_3)$$

$$v_A = (x_A, y_A, z_A)$$

$$v_5 = (x_5, y_5, z_5)$$

Lista de faces

$$f_1 = (v_1, v_5, v_2)$$

$$f_2 = (v_3, v_5, v_4)$$

$$f_3 = (v_2, v_3, v_3)$$

$$f_4 = (v_1, v_4, v_5)$$

$$f_5 = (v_1, v_2, v_3, v_4)$$

- Vantagens:
 - Proporciona *maior economia de espaço*.
 - Ao alterar as coordenadas de um vértice, todos os polígonos nele incidentes são alterados automaticamente.
- Ainda alguns problemas:
 - É difícil determinar os polígonos que compartilham uma aresta.
 - Arestas compartilhadas são desenhadas duas vezes.

- Acrescentamos uma lista de arestas definida por pares de referências à lista de vértices.
- A lista de faces é definida por referências às arestas que as definem, descritas na lista de arestas.

Lista de vértices

		6	200		- 76
1.2	700	1.00	3.3		- 1
100		1.0	In Y	I was	2.1
		30	8 C. C.	0.00	10

$$v_2 = (x_2, y_2, z_2)$$

$$v_3 = (x_3, y_3, z_3)$$

$$v_{a} = (x_{a}, y_{a}, z_{a})$$

$$v_5 = (x_5, y_5, z_5)$$

Lista de vértices

$$v_i = (x_i, y_i, z_i)$$

$$v_2 = (x_2, y_2, z_2)$$

$$v_3 = (x_3, y_3, z_3)$$

$$v_a = (x_a, y_a, z_a)$$

$$v_5 = (x_5, y_5, z_5)$$

Lista de arestas

$$e_i = v_i, v_i$$

$$e_2 = v_2 \cdot v_3$$

$$e_3 = v_3, v_3$$

$$e_{a} = v_{a}, v_{j}$$

$$e_s = v_p, v_s$$

$$e_6 = v_p v_s$$

$$e_z = v_z v_s$$

$$e_s = v_x v_s$$

Lista de vértices

$$v_i = (x_i, y_i, z_i)$$

$$v_2 = (x_2, y_2, z_2)$$

$$v_3 = (x_3, y_3, z_3)$$

$$v_a = (x_a, y_a, z_a)$$

$$v_5 = (x_5, y_5, z_5)$$

Lista de arestas

$$e_i = v_i, v_j$$

$$e_{2} = v_{2}, v_{3}$$

$$e_3 = v_3, v_4$$

$$e_{x} = v_{x}, v_{y}$$

$$e_s = v_p, v_s$$

$$e_6 = v_2, v_3$$

$$e_{\tau} = v_{v}v_{s}$$

$$e_s = v_x v_s$$

Lista de faces

$$f_1 = e_1, e_5, e_6$$

$$f_2 = e_3, e_7, e_8$$

$$f_3 = e_2, e_5, e_7$$

$$f_4 = e_4, e_8, e_5$$

$$f_5 = e_1, e_2, e_3, e_4$$

Lista de vértices

$$v_i = (x_i, y_i, z_i)$$

$$v_2 = (x_2, y_2, z_2)$$

$$v_3 = (x_3, y_3, z_3)$$

$$v_a = (x_a, y_a, z_a)$$

$$v_5 = (x_5, y_5, z_5)$$

Lista de arestas

$$e_i = v_i, v_j$$

$$e_1 = v_2 v_3$$

$$e_{x} = v_{x}, v_{x}$$

$$e_{i} = v_{i}v_{j}$$

$$e_s = v_p, v_s$$

$$e_6 = v_2 v$$

$$e_2 = v_2 v$$

$$e_s = v_a, v_s$$

Lista de faces

$$f_1 = e_1, e_5, e_6$$

$$f_2 = e_3, e_7, e_8$$

$$f_3 = e_2, e_5, e_7$$

$$f_a = e_a, e_s, e_s$$

$$f_5 = e_1, e_2, e_3, e_4$$

- Propriedades
 - Acesso a todas as arestas sem precisar percorrer as fronteiras dos polígonos.
 - As arestas que incidem em um vértice podem ser obtidas através de uma combinação de algoritmos geométricos e de busca.

 Podemos acrescentar na lista de arestas informações sobre as faces adjacentes a uma aresta.

Lista de arestas
$e_1 = v_1, v_2, f_1, f_5$
$e_2 = v_2, v_3, f_3, f_5$
$e_3 = v_3, v_4, f_2, f_5$
$e_4 = v_4, v_1, f_4, f_5$
$e_5 = v_1, v_5, f_1, f_4$
$e_6 = v_2, v_5, f_1, f_3$
$e_7 = v_3, v_5, f_2, f_3$
$e_8 = v_4, v_5, f_2, f_4$

Objetos gráficos espaciais: outras codificações

- As codificações descritas anteriormente ainda possuem muitas restrições quanto à representação da topologia das faces e da geometria do objeto gráfico.
- Codificações mais completas são dadas pelas estruturas topológicas clássicas como, por exemplo:
 - Winged-edge
 - Half-edge
 - Radial-edge

Aula 4

Professores:

Anselmo Montenegro Esteban Clua

Conteúdo:

- Objetos gráficos espaciais (parte I)

