CHAPITRE 11

VECTEURS DE L'ESPACE

11.1 Égalité de deux vecteurs - Somme de deux vecteurs :

11.1.1 Éléments caractéristiques d'un vecteur :

Soit A et B deux points différents de l'espace. Si on pose $\overrightarrow{u} = \overrightarrow{AB}$ alors :

- \triangleright La direction du vecteur \overrightarrow{u} est la droite (AB).
- \triangleright Le sens du vecteur \overrightarrow{u} est celui de A vers B.
- ightharpoonup La norme du vecteur \overrightarrow{u} est la distance AB, et on écrit : $\|\overrightarrow{u}\| = AB$.

Remarque:

- Pour tout point A de l'espace, le vecteur \overrightarrow{AA} n'a pas de direction et sa norme est nulle; \overrightarrow{AA} est appelé vecteur nul, et on écrit : $\overrightarrow{AA} = \overrightarrow{0}$.
- \triangleright Pour tout vecteur \overrightarrow{u} et tout point A de l'espace,

il existe un et un seul point M de l'espace tel que : $\overrightarrow{AM} = \overrightarrow{u}$

Définition 11.1

On dit que deux vecteurs sont égaux, s'ils ont la même direction, le même sens et la même norme.

Proprieté 27

Soit ABCD un quadrilatère dans l'espace on a :

ABCD parallélogramme si et seulement si : $\overrightarrow{AB} = \overrightarrow{DC}$

11.1.2 Somme de deux vecteurs :

Définition 11.2

Soit \overrightarrow{u} et \overrightarrow{v} deux vecteurs de l'espace.

La somme des vecteurs \overrightarrow{u} et \overrightarrow{v} est le vecteur \overrightarrow{w} tel que :

Si on pose : $\overrightarrow{u} = \overrightarrow{AB}$ et $\overrightarrow{v} = \overrightarrow{BC}$ alors : $\overrightarrow{w} = \overrightarrow{AC}$ et on écrit : $\overrightarrow{w} = \overrightarrow{u} + \overrightarrow{v}$.

Relation de Chasles:

Pour tous points A, B et C de l'espace, on a : $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$

Opposé d'un vecteur :

Pour tout vecteur \overrightarrow{u} de l'espace :

- \triangleright L'opposé du vecteur \overrightarrow{u} et le vecteur qui a la même direction, et la même norme que le vecteur \overrightarrow{u} , mais il est de sens contraire au vecteur \overrightarrow{u} .
- ightharpoonup L'opposé du vecteur \overrightarrow{u} est noté $-\overrightarrow{u}$.
- \triangleright Pour tout points A et B on a : $\overrightarrow{BA} = -\overrightarrow{AB}$

Remarque:

Soient O; M; N et R quatre points de l'espace :

 $\overrightarrow{OM} + \overrightarrow{ON} = \overrightarrow{OR}$ si et seulement si *OMNR* est un parallélogramme.

11.2 Colinéarité de deux vecteurs - Définition vectorielle d'une droite :

11.2.1 Multiplication d'un vecteur par un réel :

Définition 11.3

Soient \overrightarrow{u} un vecteur non nul et k un nombre réel non nul.

Le produit du vecteur \overrightarrow{u} par le réel k est le vecteur noté $k \cdot \overrightarrow{u}$, ou simplement $k \overrightarrow{u}$, qui vérifier les condition suivants :

- $\triangleright k \overrightarrow{u}$ et \overrightarrow{u} ont la même direction.
- $\triangleright \|k\overrightarrow{u}\| = |k| \times \|\overrightarrow{u}\|$
 - $k \overrightarrow{u}$ a le même sens que celui de \overrightarrow{u} si k > 0
 - $k \overrightarrow{u}$ a de sens contraire que celui de \overrightarrow{u} si k > 0

 $k \succ 0$

 \triangleright Pour tout vecteur \overrightarrow{u} et tout réel k on pose : $0 \cdot \overrightarrow{u} = \overrightarrow{0}$ et $k \cdot \overrightarrow{0} = \overrightarrow{0}$

Proprieté 28

Pour tous vecteurs \overrightarrow{u} et \overrightarrow{v} et pour tous réels k et k' on a :

$$\triangleright (k+k')\overrightarrow{u} = k\overrightarrow{u} + k'\overrightarrow{u}$$

$$\triangleright k(\overrightarrow{u} + \overrightarrow{v}) = k\overrightarrow{u} + k\overrightarrow{v}$$

$$\triangleright 1 \cdot \overrightarrow{u} = \overrightarrow{u}$$

 $\triangleright k(k' \cdot \overrightarrow{u}) = (kk')\overrightarrow{u}$

$$\triangleright k\overrightarrow{u} = \overrightarrow{0} \Leftrightarrow k = 0 \text{ ou } \overrightarrow{u} = \overrightarrow{0}$$

11.2.2 Colinéarité de deux vecteurs - alignement de trois points :

Définition 11.4

On dit que deux vecteurs \overrightarrow{u} et \overrightarrow{v} sont colinéaires s'il existe un nombre réel k tel que : $\overrightarrow{v} = k \overrightarrow{u}$.

Remarque: Le vecteur nul est colinéaire avec tous les vecteurs de l'espace.

Conséquences:

Soient \overrightarrow{AB} et \overrightarrow{AC} deux vecteurs non nuls de l'espace.

- ▶ $(\overrightarrow{AB} \text{ et } \overrightarrow{AC} \text{ sont colinéaire }) \Leftrightarrow (A; B \text{ et } C \text{ sont alignés}).$
- ▶ $(\overrightarrow{AB} \text{ et } \overrightarrow{CD} \text{ sont colinéaire }) \Leftrightarrow (AB) // (CD)$

11.2.3 Définition vectorielle d'une droite de l'espace :

Définition 11.5

Soient A et B deux ponts distincts de l'espace.

Tout vecteur non nul colinéaire avec le vecteur \overrightarrow{AB} est appelé vecteur directeur de (AB).

Proprieté 29

Soit A un point de l'espace et \overrightarrow{u} un vecteur non nul.

L'ensemble des points M de l'espace tels que $\overrightarrow{AM} = k\overrightarrow{u}$ où $k \in \mathbb{R}$, est la droite passant par A et de vecteur directeur \overrightarrow{u} , cette droite est notée $D(A; \overrightarrow{u})$.

On a:
$$D(A; \overrightarrow{u}) = \left\{ M \in (\mathcal{E}) / \overrightarrow{AM} = k \overrightarrow{u}; k \in \mathbb{R} \right\}.$$
 (où $(\mathcal{E}) = l$ 'espace)

Exercice:

Soient $\overrightarrow{ABCDEFGH}$ un cube posons $\overrightarrow{AB} = \vec{i}$ et $\overrightarrow{AD} = \vec{j}$ et $\overrightarrow{AE} = \vec{k}$ et $\vec{u} = \vec{i} + 2\vec{j} + 2\vec{k}$. et soit I le milieu de [HG]

1) Montrer que \vec{u} est un vecteur directeur de la droite (AI)

2) Soit (Δ) la droite passant par G et parallèle à (AI) et M un point de l'espace tel que : $\overrightarrow{BM} = \frac{1}{2}\overrightarrow{AB} + 2\overrightarrow{BG}$; Montrer que $M \in (\Delta)$.

Solution:

1) Montrons que \vec{u} est un vecteur directeur de la droite (AI), il suffit de montrer que \vec{u} et \overrightarrow{AI} sont colinéaire. On a : I est le milieu de [HG] alors : $\overrightarrow{HI} = \frac{1}{2}\overrightarrow{HG}$. On a :

$$\overrightarrow{AI} = \overrightarrow{AE} + \overrightarrow{EH} + \overrightarrow{HI} = \overrightarrow{AE} + \overrightarrow{EH} + \frac{1}{2}\overrightarrow{HG}$$
 et comme $\overrightarrow{ABCDEFGH}$ est un cube alors :

$$\overrightarrow{EH} = \overrightarrow{AD} = \overrightarrow{j} \text{ et } \overrightarrow{HG} = \overrightarrow{AB} = \overrightarrow{i} \text{ donc} : \overrightarrow{AI} = \overrightarrow{k} + \overrightarrow{j} + \frac{1}{2}\overrightarrow{i} = \frac{1}{2}(\overrightarrow{i} + 2\overrightarrow{j} + 2\overrightarrow{k}) = \frac{1}{2}\overrightarrow{u}$$

alors : \vec{u} et \overrightarrow{AI} sont colinéaire et donc \vec{u} est un vecteur directeur de la droite (AI).

2) Montrons que $M \in (\Delta)$.

On a (Δ) est la droite passant $\underline{par} G$ et parallèle à (AI) donc $(\Delta) = D(G; \vec{u})$

Donc il suffit de montrer que $\overrightarrow{GM} = \alpha \vec{u}$ (où $\alpha \in \mathbb{R}$)

$$\overrightarrow{GM} = \overrightarrow{GF} + \overrightarrow{FB} + \overrightarrow{BM} = \overrightarrow{GF} + \overrightarrow{FB} + \frac{1}{2}\overrightarrow{AB} + 2\overrightarrow{BG} = \overrightarrow{GF} + \overrightarrow{FB} + \frac{1}{2}\overrightarrow{AB} + 2\overrightarrow{BC} + 2\overrightarrow{CG}$$

$$\overrightarrow{BC} = \overrightarrow{j} \text{ g } \overrightarrow{CG} = \overrightarrow{k} \text{ g } \overrightarrow{FB} = -\overrightarrow{AE} = -\overrightarrow{k} \text{ g } \overrightarrow{GF} = -\overrightarrow{AD} = -\overrightarrow{j} \text{ div}$$

$$\overrightarrow{GM} = -\overrightarrow{j} - \overrightarrow{k} + \frac{1}{2}\overrightarrow{i} + 2\overrightarrow{j} + 2\overrightarrow{k} = \frac{1}{2}\overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k} = \frac{1}{2}(\overrightarrow{i} + 2\overrightarrow{j} + \overrightarrow{k}) = \frac{1}{2}\overrightarrow{u}$$

$$\overrightarrow{GM} = -\overrightarrow{J} - \overrightarrow{K} + \frac{1}{2}\overrightarrow{i} + 2\overrightarrow{J} + 2\overrightarrow{K} = \frac{1}{2}\overrightarrow{i} + 2\overrightarrow{J} + 2\overrightarrow{K} = \frac{1}{2}\overrightarrow{i} + 2\overrightarrow{J} + 2\overrightarrow{K} = \frac{1}{2}\overrightarrow{i}$$

$$\overrightarrow{M} \in (\Delta) \text{ (b)} \quad \overrightarrow{M} \in D(G; \overrightarrow{u})$$

11.3 Définition vectorielle d'un plan - Les vecteurs coplanaires :

11.3.1 Définition vectorielle d'un plan :

Définition 11.6

Soit (P) un plan de l'espace et A; B et C trois points non alignés du plan (P).

On dit que (P) est le plan passant par A et de vecteurs directeurs \overrightarrow{AB} et \overrightarrow{AC} .

Remarque : \overrightarrow{BA} et \overrightarrow{BC} sont aussi des vecteurs directeurs du plan (P)

Conséquences:

Deux vecteurs non colinéaires \overrightarrow{u} et \overrightarrow{v} et un point A définissent un plan unique noté : (P), (ce plan passant par A et \overrightarrow{u} et \overrightarrow{v} sont deux vecteurs directeurs).

On écrit $(P) = P(A; \overrightarrow{u}; \overrightarrow{v})$.

11.3.2 Vecteurs coplanaires :

Définition 11.7

Soit \overrightarrow{u} ; \overrightarrow{v} et \overrightarrow{w} trois vecteurs de l'espace.

On dit que les vecteurs \overrightarrow{u} ; \overrightarrow{v} et \overrightarrow{w} sont **coplanaires**, s'il existe quatre points **coplanaires** A; B; C et D tels que : $\overrightarrow{u} = \overrightarrow{AB}$; $\overrightarrow{v} = \overrightarrow{AC}$ et $\overrightarrow{w} = \overrightarrow{AD}$.

Exemples:

Soit ABCDEFGH un parallélépipède rectangle.

On a les vecteurs \overrightarrow{BC} ; \overrightarrow{BH} et \overrightarrow{BE} sont coplanaires car les points B; C; E et H sont coplanaires.

 \overrightarrow{BD} ; \overrightarrow{BH} et \overrightarrow{BE} ne sont pas coplanaires car BDEH est un tétraèdre.

Proprieté 30

Soit \vec{u} et \vec{v} deux vecteurs non alignés et \vec{w} un vecteur de l'espace.

les vecteurs \vec{u} ; \vec{v} et \vec{w} sont coplanaires si et seulement si, il existe deux nombres réels x et y tels que $\vec{w} = x\vec{u} + y\vec{v}$.

Conséquences

Soient A; B; C et M des points de l'espace.

S'il existe deux réels x et y tels que $\overrightarrow{AM} = x\overrightarrow{AB} + y\overrightarrow{AC}$ alors, les points A; B; C et M sont coplanaires.

Exercice:

Soit EABCD un pyramide de base rectangle ABCD; I et J sont respectivement les milieux des segments [AE] et [BC].

Montrer que les vecteurs \overrightarrow{IJ} et \overrightarrow{AB} et \overrightarrow{EC} sont coplanaires.

Solution:

On a : $\overrightarrow{IJ} = \overrightarrow{IA} + \overrightarrow{AB} + \overrightarrow{BJ}$ et comme I et J sont les milieux des segments [AE] et [BC]. alors :

$$\overrightarrow{BJ} = \frac{1}{2}\overrightarrow{BC} \text{ 9 } \overrightarrow{IA} = \frac{1}{2}\overrightarrow{EA}$$

$$\overrightarrow{IJ} = \frac{1}{2}\overrightarrow{EA} + \overrightarrow{AB} + \frac{1}{2}\overrightarrow{BC}$$

$$\overrightarrow{IJ} = \frac{1}{2}\overrightarrow{EC} + \frac{1}{2}\overrightarrow{CA} + \overrightarrow{AB} + \frac{1}{2}\overrightarrow{BC}$$

$$\overrightarrow{IJ} = \frac{1}{2}\overrightarrow{EC} + \overrightarrow{AB} + \frac{1}{2}\overrightarrow{BA}$$

$$\overrightarrow{IJ} = \frac{1}{2}\overrightarrow{EC} + \overrightarrow{AB} + \frac{1}{2}\overrightarrow{AB}$$

$$\overrightarrow{IJ} = \frac{1}{2}\overrightarrow{EC} + \frac{1}{2}\overrightarrow{AB}$$

$$\overrightarrow{Alors les vecteurs}$$

$$\overrightarrow{IJetABetEC}$$

$$\overrightarrow{Sont coplanaires}$$