383. Показать, что функция $f(x) = \frac{1+x^2}{1+x^4}$ ограния чена в интервале — $\infty < x < +\infty$.

384. Показать, что функция $f(x) = \frac{1}{x} \cos \frac{1}{x}$ не ограничена в любой окрестности точки x = 0, однако не является бесконечно большой при $x \to 0$.

385. Исследовать на ограниченность функцию

$$f(x) = \ln x \cdot \sin^2 \frac{\pi}{x}$$

в интервале $0 < x < \varepsilon$.

386. Показать, что функция $f(x) = \frac{x}{1+x}$ в области $0 \le x < +\infty$ имеет нижнюю грань m = 0 и верхнюю грань M = 1.

387. Функция f(x) определена и монотонно возрастает на сегменте [a, b]. Чему равны ее нижняя и верхняя грани на этом сегменте?

Определить нижнюю и верхнюю грани функцийз

388.
$$f(x) = x^2$$
 Ha [-2, 5).

389.
$$f(x) = \frac{1}{1+x^2}$$
 Ha $(-\infty, +\infty)$.

390.
$$f(x) = \frac{2x}{1+x^2}$$
 Ha $(0, +\infty)$.

391.
$$f(x) = x + \frac{1}{x}$$
 Ha $(0, +\infty)$.

392.
$$f(x) = \sin x$$
 Ha $(0, +\infty)$.

393.
$$f(x) = \sin x + \cos x$$
 Ha [0, 2π].

394.
$$f(x) = 2^x$$
 Ha (-1, 2).

395.
$$f(x) = [x]$$
: a) Ha $(0, 2)$ H $(0, 2)$ H $(0, 2)$.

396.
$$f(x) = x - [x]$$
 Ha $[0, 1]$.

397. Определить колебание функции

$$f(x) = x^2$$

на интервалах: а) (1; 3); б) (1,9; 2,1); в) (1,99; 2,01); г) (1,999; 2,001).