Chapitre 16

Polynômes

Sommaire

I	Ensemble des polynômes
	1) Définition
	2) Opérations sur les polynômes
II	Division euclidienne
	1) Degré d'un polynôme
	2) Algorithme de la division euclidienne
	3) Divisibilité
III	Fonctions polynomiales, racines
	1) Fonctions polynomiales
	2) Racines d'un polynôme
	3) Corps algébriquement clos
	4) Relations racines coefficients
IV	Formule de Taylor des polynômes
	1) Dérivation des polynômes
	2) Formule de Taylor
V	Solution des exercices

Dans tout ce chapitre, K désigne un corps inclus dans C.

I ENSEMBLE DES POLYNÔMES

1) Définition

Définition 16.1

On appelle polynôme à coefficients dans \mathbb{K} toute somme de la forme : $P = a_0 + a_1X + \cdots + a_nX^n$, où $n \in \mathbb{N}$, $a_0, \ldots, a_n \in \mathbb{K}$, et où X est un symbole appelé **indéterminée**. Les a_i sont appelés **coefficients** du polynôme. Si tous les coefficients sont nuls, on dit que P est le polynôme nul. Si tous les coefficients sont nuls sauf un, le polynôme est appelé monôme. Si tous les coefficients sont nuls à partir de l'indice P, on dit que le polynôme est constant. L'ensemble des polynômes à coefficients dans \mathbb{K} est noté $\mathbb{K}[X]$.

Remarque 16.1 – Il est commode de noter les polynômes sous la forme $\sum_{k \in \mathbb{N}} a_k X^k$ avec la convention que **les coefficients sont tous nuls à partir d'un certain rang**. Ainsi on peut dire que les coefficients d'un polynôme forment une suite (a_k) d'éléments de \mathbb{K} , nulle à partir d'un certain rang.

Définition 16.2 (égalité de deux polynômes)

On pose : $\sum_{k \in \mathbb{N}} a_k X^k = \sum_{k \in \mathbb{N}} b_k X^k \iff \forall k \in \mathbb{N}, \ a_k = b_k \ \text{(mêmes coefficients)}.$

Opérations sur les polynômes

Soient $P = \sum_{k \in \mathbb{N}} a_k X^k$ et $Q = \sum_{k \in \mathbb{N}} b_k X^k$ deux polynômes. Il existe deux entiers N et N' tels que : $n \ge N \implies$ $a_n=0$, et $n\geqslant \stackrel{\text{\tiny N-1-N}}{\text{\tiny N'}}\Longrightarrow b_n=0$, par conséquent si $n\geqslant \max(N,N')$, alors $a_n+b_n=0$. Si $\lambda\in\mathbb{K}$, alors $n\geqslant N\Longrightarrow$ $\lambda a_n = 0.$

Définition 16.3 (Somme et produit par un scalaire)

On pose : $P + Q = \sum_{k \in \mathbb{N}} (a_k + b_k) X^k$, et pour $\lambda \in \mathbb{K}$, on pose $\lambda . P = \sum_{k \in \mathbb{N}} \lambda a_k X^k$. On définit ainsi une addition interne dans $\mathbb{K}[X]$ et un produit par les scalaires.

Propriétés : $(\mathbb{K}[X], +, .)$ est un \mathbb{K} -espace vectoriel.

Avec les notations précédentes, pour $n \in \mathbb{N}$, on pose $c_n = \sum_{k=0}^n a_k b_{n-k}$, si $n \geqslant N + N' - 1$, alors il est facile de voir que pour toute valeur de k dans [0; n], le produit $a_k b_{n-k}$ est nul, et donc c_n est nul.

Définition 16.4 (Produit de deux polynômes)

On pose $P \times Q = \sum_{n \in \mathbb{N}} c_n X^n$ où la suite (c_n) est définie par : $c_n = \sum_{k=0}^n a_k b_{n-k}$. On définit ainsi une multiplication interne dans $\mathbb{K}[X]$.

Remarque 16.2 – *On a aussi* $c_n = \sum_{k=0}^{n} a_{n-k} b_k = \sum_{p+q=n} a_p b_q$.

Propriétés: on vérifie que cette multiplication:

- est commutative,
- est associative,
- possède un élément neutre qui est le polynôme constant 1.
- est distributive sur l'addition.

Par conséquent : $(\mathbb{K}[X], +, \times)$ est un anneau.

On a également : $\forall P, Q \in \mathbb{K}[X], \forall \lambda \in \mathbb{K}, \lambda.(P \times Q) = (\lambda.P) \times Q = P \times (\lambda.Q).$

$$\sum_{n \in \mathbb{N}} a_n X^n = \sum_{n \in \mathbb{N}} b_n X^n \iff \forall n \in \mathbb{N}, a_n = b_n.$$

$$\left(\sum_{n \in \mathbb{N}} a_n X^n\right) + \left(\sum_{n \in \mathbb{N}} b_n X^n\right) = \sum_{n \in \mathbb{N}} (a_n + b_n) X^n.$$

$$\left(\sum_{n \in \mathbb{N}} a_n X^n\right) \times \left(\sum_{n \in \mathbb{N}} b_n X^n\right) = \sum_{n \in \mathbb{N}} \left(\sum_{p+q=n} a_p b_q\right) X^n.$$

$$\sum_{n \in \mathbb{N}} a_n X^n \in \mathbb{K} \iff \forall n \geqslant 1, a_n = 0.$$

DIVISION EUCLIDIENNE

1) Degré d'un polynôme

Soit $P \in \mathbb{K}[X]$, si P = 0 alors tous les coefficients de P sont nuls, si $P \neq 0$, alors l'ensemble des indices des coefficients non nuls de P n'est pas vide, et il est majoré (les coefficients sont nuls à partir d'un certain rang), donc cet ensemble admet un plus grand élément.

Définition 16.5

Soit $P \in \mathbb{K}[X]$, si P = 0 alors on pose $\deg(P) = -\infty$, sinon on pose $\deg(P) = \max\{k \in \mathbb{N} \mid a_k \neq 0\}$. Si P = 0non nul de degré n, alors le coefficient a_n est appelé coefficient dominant de P, si ce coefficient vaut 1, alors on dit que le polynôme P est unitaire (ou normalisé).

Remarque 16.3 – Caractérisations du polynôme nul et des polynômes constants non nuls

- $-P=0 \iff \deg(P)=-\infty.$
- $P \in \mathbb{K}^* \iff \deg(P) = 0.$

🛂 Théorème 16.1

 $Soient \ P,Q \in \mathbb{K}[X], deg(P+Q) \leqslant max(deg(P), deg(Q)), \ et \ deg(P \times Q) = deg(P) + deg(Q).$

Preuve: Si l'un des deux polynômes est nul, alors le théorème est évident. Supposons les deux polynômes non nuls: P = $\sum a_n X^n$ et $Q = \sum b_n X^n$, si $a_n + b_n \neq 0$ alors $a_n \neq 0$ ou $b_n \neq 0$, donc $n \leq \deg(P)$ ou $n \leq \deg(Q)$ *i.e.* $n \leq \max(\deg(P), \deg(Q))$, ce qui prouve le premier résultat.

 $P \times Q = \sum_{n} c_n X^n$ où $c_n = \sum_{p+q=n} a_p b_q$. Posons $N = \deg(P)$ et $N' = \deg(Q)$, il est clair que $c_{N+N'} = a_N b_{N'} \neq 0$, d'autre part si n > N + N', alors si p + q = n on a p > N ou q > N' donc $a_p b_q = 0$ ce qui entraîne $c_n = 0$. Par conséquent, $\deg(P \times Q) = N + N' = \deg(P) + \deg(Q).$

Remarque 16.4 - Lorsque P et Q ont des degrés distincts, ou bien lorsque P et Q ont même degré mais des $coefficients\ dominants\ non\ oppos\'es,\ alors\ deg(P+Q) = max(deg(P), deg(Q)).$

🙀 Théorème 16.2

L'anneau ($\mathbb{K}[X], +, \times$) est un anneau intègre, et seuls les polynômes constants non nuls ont un inverse dans $\mathbb{K}[X]$.

Preuve: Si P et Q sont deux polynômes non nuls, alors $deg(P \times Q) = deg(P) + deg(Q) \in \mathbb{N}$, donc $P \times Q \neq 0$, ce qui prouve aue K[X] est intègre.

Si P est inversible dans $\mathbb{K}[X]$, alors il existe un polynôme Q tel que $P \times Q = 1$, d'où deg(P) + deg(Q) = 0, ce qui entraîne deg(P) = deg(Q) = 0 et donc $P \in \mathbb{K}^*$. La réciproque est évidente.

Notation: Soit $n \in \mathbb{N}$, on note $\mathbb{K}_n[X]$ l'ensemble des polynômes de degré inférieur ou égal à n:

$$\mathbb{K}_n[X] = \{ P \in \mathbb{K}[X] / \deg(P) \leq n \}$$

Algorithme de la division euclidienne

Théorème 16.3 (de la division euclidienne)

Soient A et B deux polynômes avec $B \neq 0$, alors il existe deux polynômes Q et R **uniques** tels que: $A = B \times Q + R$ avec deg(R) < deg(B)

Preuve: Pour l'existence : si deg(A) < deg(B), alors on peut prendre Q = 0 et R = A; si deg(A) = deg(B) = d: soit a_d le coefficient dominant de A, et b_d celui de B, posons $Q = \frac{a_d}{b_d}$, alors le coefficient dominant de B × Q est a_d , donc $deg(A - B \times Q) < d = deg(B)$, on peut donc prendre $R = A - B \times Q$. Supposons maintenant l'existence démontrée pour deg(A) $\leq n$ avec $n \geq d$, et soit A de degré n+1, notons a_{n+1} son coefficient dominant, soit $Q' = \frac{a_{n+1}}{h_d}X^{n+1-d}$, alors $\deg(B \times Q') = n + 1$ et le coefficient dominant de $B \times Q'$ est a_{n+1} , donc $\deg(A - B \times Q') \le n$, d'après l'hypothèse de récurrence, il existe deux polynômes Q'' et R tels que $A - B \times Q' = B \times Q'' + R$ avec deg(R) < deg(B), mais alors $A = B \times (Q' + Q'') + R$, ce qui prouve l'existence au rang n + 1.

Pour l'unicité : supposons que $A = B \times Q + R = B \times Q' + R'$ avec $\deg(R) < \deg(B)$ et $\deg(R') < \deg(B)$, alors $B \times (Q - Q') = R'$ R' - R, d'où deg(B) + deg(Q - Q') = deg(R' - R) < deg(B), comme $deg(B) \ge 0$, on a nécessairement $deg(Q - Q') = -\infty = -\infty$ deg(R'-R), et donc Q=Q', R=R'.

Remarque 16.5 – La démonstration est constructive, en ce sens qu'elle donne un algorithme de calcul du quotient (Q) et du reste (R).

Exemple: Avec $A = X^4 + aX^2 + bX + c$ et $B = X^2 + X + 1$, on obtient le quotient $Q = X^2 - X + a$ et le reste R = (b - a + 1)X + c - a. On peut vérifier que $A = B \times (X^2 - X + a) + (b - a + 1)X + c - a$.

Divisibilité

Définition 16.6

Soient $A, B \in \mathbb{K}[X]$, on dit que B divise A lorsqu'il existe un polynôme Q tel que $A = Q \times B$, notation B|A.

Remarque 16.6 – On définit ainsi une relation dans $\mathbb{K}[X]$, on peut vérifier que celle - ci est réflexive, transitive, mais elle n'est ni symétrique, ni antisymétrique. Plus précisément, B|A et A|B ssi il existe $A \in \mathbb{K}^*$ tel que $A = \lambda B$ (on dit que A et B sont associés).

- Si B \neq 0, alors B|A si et seulement si le reste de la division euclidienne de A par B est nul.
- Si A ≠ 0 et B|A, alors deg(B) \leq deg(A).
- Si B|A et B|C, alors \forall U, V ∈ $\mathbb{K}[X]$, B|A × U + C × V.

Preuve : Celle-ci est simple et laissée en exercice.

Remarque 16.7 – Il découle du dernier point que si B|A – C et B|D – E, alors B|(A + D) – (C + E) et B|AD – EC, en particulier, si B|A - C alors $\forall n \in \mathbb{N}, B|A^n - C^n$.

FONCTIONS POLYNOMIALES, RACINES

1) **Fonctions polynomiales**

Théorème 16.5 (Substitution)

 $\mathbb{K}[X] \longrightarrow \mathcal{A}$ $\sum_{k=0}^{n} \alpha_k X^k \mapsto \sum_{k=0}^{n} \alpha_k a^k$ Soit \mathscr{A} une \mathbb{K} -algèbre et soit $a \in \mathscr{A}$, l'application : S_a : , est un morphisme

 $de \mathbb{K}$ -algèbres, c'est à dire : $\forall P, Q \in \mathbb{K}[X], \forall \lambda \in \mathbb{K}$

- $S_a(P + Q) = S_a(P) + S_a(Q).$
- $S_a(P \times Q) = S_a(P) \times S_a(Q).$
- $S_a(\lambda P) = \lambda S_a(P)$.
- $S_a(1) = 1.$

Preuve : Celle - ci repose sur les règles de calculs dans une algèbre.

Remarque 16.8 – L'application S_a est appelée substitution par a. Concrètement, le théorème ci - dessus dit que la substitution par a consiste simplement à remplacer l'indéterminée X par a. Par exemple, si on a $P = Q \times B + R$, alors $S_a(P) = S_a(Q) \times S_a(B) + S_a(R)$.

d Définition 16.7

L'application : \widetilde{P} : $\mathbb{K} \to \mathbb{K}$, est appelée fonction polynomiale associée au polynôme P. Si

$$P = \sum_{k=0}^{n} a_k X^k, \text{ alors } \widetilde{P} : x \mapsto \sum_{k=0}^{n} a_k x^k \text{ où } x \text{ est une variable qui décrit } \mathbb{K}.$$

Remarque 16.9 – On prendra garde à ne pas confondre la variable x, qui est un élément de \mathbb{K} , avec l'indéterminée X (qui n'appartient pas à K).

Remarque 16.10 – On $\widetilde{aP+Q} = \widetilde{P} + \widetilde{Q}$, $\widetilde{P\times Q} = \widetilde{P} \times \widetilde{Q}$, $\widetilde{\lambda.P} = \lambda.\widetilde{P}$.

2) Racines d'un polynôme

Définition 16.8

Soit $P = \sum_{k=0}^{n} a_k X^k \in \mathbb{K}[X]$, on appelle racine de P dans \mathbb{K} tout nombre $\alpha \in \mathbb{K}$ tel que $\widetilde{P}(\alpha) = 0$, c'est à dire

toute solution dans \mathbb{K} à l'équation $\sum_{k=0}^{n} a_k x^k = 0$.

👺 Théorème 16.6

Soit $P \in \mathbb{K}[X]$:

Soit $a \in \mathbb{K}$, a est racine de P ssi X – a|P.

- $Si \deg(P)$ ≤ n et si P admet au moins (n + 1) racines dans \mathbb{K} , alors P = 0.

Preuve: Soit $a \in \mathbb{K}$, on effectue la division euclidienne de P par $X - a : P = Q \times (X - a) + R$ avec deg(R) < 1, donc R est un polynôme constant $R = \lambda$, finalement $P = Q \times (X - a) + \lambda$. Substituons $a \ge X : \widetilde{P}(a) = \widetilde{Q}(a) \times (a - a) + \lambda$, c'est \widetilde{A} dire: $\lambda = \widetilde{P}(a)$, ce qui prouve la première assertion.

La deuxième assertion se démontre par récurrence sur n: pour n = 0, l'hypothèse dit que P est une constante et que P a au moins une racine, donc cette constante est nulle, i.e. P = 0. Supposons le résultat démontré au rang n, et soit $deg(P) \le n+1$ avec P ayant au moins n+2 racines, soit a l'une d'elles, alors il existe $Q \in \mathbb{K}[X]$, tel que $P = Q \times (X-a)$, mais alors $\deg(Q) \le n$ et Q a au moins n+1 racines dans \mathbb{K} , donc Q=0 (HR) et par conséquent, P=0.

Conséquences:

- a) Si $a_1, ..., a_n$ sont des racines distinctes de P alors $(X a_1) \cdot ... (X a_n) | P$.
- b) Si P est non nul de degré *n*, alors P admet au plus *n* racines distinctes.
- c) L'application $\phi : \mathbb{K}[X] \to \mathscr{F}(\mathbb{K}, \mathbb{K})$ définie par $\phi(P) = \widetilde{P}$ est injective. On pourrait donc identifier P et \widetilde{P} la fonction polynomiale associée à P.

★Exercice 16.1 Soit P un polynôme de degré 2, on pose : $Q = (1 - X^2)\widetilde{P}(0) + \frac{X(X-1)}{2}\widetilde{P}(-1) + \frac{X(X+1)}{2}\widetilde{P}(1)$

$$Q = (1 - X^{2})\widetilde{P}(0) + \frac{X(X-1)}{2}\widetilde{P}(-1) + \frac{X(X+1)}{2}\widetilde{P}(1)$$

Montrer que P = Q.

Remarque 16.11 – Pour montrer qu'un polynôme P est nul on dispose de trois méthodes :

- Montrer que tous les coefficients de P sont nuls.
- Montrer que le degré de P est -∞.
- Montrer que P a une infinité de racines.

Soit P un polynôme non nul et soit $a \in \mathbb{K}$, on sait que que si $(X - a)^k | P$ alors $k \le \deg(P)$ (car $P \ne 0$). Par conséquent l'ensemble $\{k \in \mathbb{N} \mid (X-a)^k | P\}$ est un ensemble non vide (contient 0) et majoré par deg(P), comme c'est une partie de N, cet ensemble admet un plus grand élément.

Définition 16.9 (multiplicité d'une racine)

Soit $P \in \mathbb{K}[X]$ un polynôme non nul et soit $a \in \mathbb{K}$, on appelle multiplicité de a dans P le plus grand des entiers k tels que $(X - a)^k | P$. Notation : $m_P(a)$. Une racine de multiplicité 1 est appelée racine simple, une racine de multiplicité 2 est appelée racine double...etc

Remarque 16.12 –

- a est racine de P équivaut à $m_P(a) \ge 1$.
- Il est facile de vérifier que si $q \in \{k \in \mathbb{N} \mid (X-a)^k | P\}$, alors tout entier inférieur ou égal à q est également dans l'ensemble, cela signifie que l'ensemble $\{k \in \mathbb{N} \mid (X-a)^k | P\}$ est un intervalle d'entiers, on peut donc énoncer: $m = m_P(a) \iff (X - a)^m$ divise P et $(X - a)^{m+1}$ ne divise pas P.
- **Exercice 16.2** Calculer la multiplicité de 1 dans les polynômes $P = X^3 3X^2 + 2$ et $Q = X^3 4X^2 + 5X 2$.

🔀 Théorème 16.7

Soit P un polynôme non nul, soit $a \in \mathbb{K}$, et soit $m \in \mathbb{N}$, on a alors :

$$m = m_{P}(a) \iff \exists Q \in \mathbb{K}[X], P = (X - a)^{m} \times Q \text{ et } \widetilde{Q}(a) \neq 0.$$

Preuve: Si on a P = $(X - a)^m \times Q$ et $\widetilde{Q}(a) \neq 0$, alors $m_P(a) \geqslant m$, mais si $(X - a)^{m+1} | P$, il est facile de voir que X - a | Q ce qui est absurde, donc $m_P(a) = m$.

Réciproquement, si $m = m_P(a)$, alors il existe Q tel que $P = (X - a)^m \times Q$, si $\widetilde{Q}(a) = 0$ alors X - a|Q et donc $(X - a)^{m+1}|P$ ce qui contradictoire, donc $Q(a) \neq 0$.

🍽 Théorème 16.8

Soient P, $Q \in \mathbb{K}[X]$, *non nuls, et* $a \in \mathbb{K}$

a)
$$m_{P \times Q}(a) = m_P(a) + m_Q(a)$$
.

b) $\sin P + Q \neq 0$, alors $m_{P+Q}(a) \geqslant \min(m_P(a); m_Q(a))$.

Preuve : Celle-ci est simple et laissée en exercice.

Corps algébriquement clos

Soit P un polynôme non nul ayant des racines dans \mathbb{K} , soient a_1, \ldots, a_n toutes les racines distinctes de P de multiplicités respectives : m_1, \ldots, m_n . D'après ce qui précède il existe un polynôme Q tel que $P = (X - a_1)^{m_1} \times Q$ avec $\widetilde{Q}(a_1) \neq 0$, comme $a_2 \neq a_1$ on peut affirmer que a_2 est racine de $Q: Q = (X - a_2)^m \times T$ avec $\widetilde{T}(a_2) \neq 0$, mais alors $P = (X - a_2)^m \times (X - a_1)^{m_1} \times T$, on en déduit que $m = m_2$, par conséquent on a $P = (X - a_1)^{m_1} (X - a_2)^{m_2} \times T$ avec a_1 et a_2 qui ne sont pas racines de T. De proche en proche (récurrence sur n) on a arrive à : il existe un polynôme S tel que P = $(X - a_1)^{m_1} \cdots (X - a_n)^{m_n} \times S$, avec a_1, \dots, a_n qui ne sont pas racines de S, mais comme P n'a pas d'autres racines on peut en déduire que S est **sans racine** dans K.

Macines) (factorisation d'un polynôme connaissant toutes ses racines)

Si $a_1, ..., a_n$ sont les racines distinctes de P de multiplicités respectives $m_1, ..., m_n$, alors il existe un polynôme Q sans racine dans \mathbb{K} tel que $P = Q \times \prod_{k=1}^{n} (X - a_k)^{m_k}$.

Définition 16.10 (polynôme scindé)

Si $a_1, ..., a_n$ sont les racines distinctes de P de multiplicités respectives $m_1, ..., m_n$, alors d'après le théorème précédent : $\sum_{k=1}^{n} m_k \le \deg(P)$. La quantité $\sum_{k=1}^{\bar{n}} m_k$ (somme des multiplicités des racines) est appelée **nombre de racines de** P **comptées avec leur multiplicité**. On dira que le polynôme P est scindé sur K lorsque cette quantité est égale au degré de P, on dit aussi que P admet toutes ses racines dans K (toutes : signifie que le nombre de racines comptées avec leur multiplicité, est égal au degré)

En reprenant la factorisation précédente : $P = Q \times \prod_{k=1}^{n} (X - a_k)^{m_k}$, on voit que lorsque P est scindé, alors deg(Q) = 0, le polynôme Q est donc une constante non nulle, en comparant les coefficients dominants de chaque coté, on voit que Q est égal au coefficient dominant de P, d'où l'énoncé :

Maria de la composição de la composição

Si P est scindé et si $a_1, ..., a_n$ sont les racines distinctes de P de multiplicités respectives $m_1, ..., m_n$, alors $P = \lambda \prod_{k=1}^{n} (X - a_k)^{m_k}$, où λ est le coefficient dominant de P.

Exemples:

- X^2 2 est scindé sur \mathbb{R} , mais pas sur \mathbb{Q} .
- X^2 + 1 est scindé sur ℂ, mais pas sur ℝ.

Définition 16.11

moins une racine dans \mathbb{K} .

Remarque 16.13 – D'après les exemples précédents, les corps \mathbb{Q} et \mathbb{R} ne sont pas algébriquement clos.

👺 Théorème 16.11

Si K est un corps algébriquement clos, alors tout polynôme non constant de K [X] est scindé sur K.

Preuve: On montre par récurrence sur n que si deg(P) = n alors P admet n racines dans K. Pour n = 1, P = aX + b = na(X + b/a), une racine -b/a. Supposons le résultat démontré au rang n, et soit P de degré n+1: P est non constant, donc P admet au moins une racine a, d'où $P = (X - a) \times Q$, mais deg(Q) = n, il suffit alors d'appliquer l'hypothèse de récurrence à Q pour terminer.

🔁 Théorème 16.12 (de D'Alembert 1)

C est un corps algébriquement clos.

Exemples:

1. D'ALEMBERT JEAN Le Rond (1717 - 1783) : mathématicien français qui contribua notamment à l'étude des nombres complexes, l'analyse et les probabilités.

- Factoriser X^{2n} - 1 dans $\mathbb{C}[X]$ puis dans $\mathbb{R}[X]$.

$$\begin{split} \mathbf{X}^{2n} - 1 &= \prod_{k=0}^{2n-1} (\mathbf{X} - \exp(i \, k \frac{\pi}{n})) \\ &= (\mathbf{X} - 1)(\mathbf{X} + 1) \prod_{k=1}^{n-1} (\mathbf{X} - \exp(i \, k \frac{\pi}{n}))(\mathbf{X} - \exp(-i \, k \frac{\pi}{n})) \\ &= (\mathbf{X} - 1)(\mathbf{X} + 1) \prod_{k=1}^{n-1} (\mathbf{X}^2 - 2\cos(k \frac{\pi}{n})\mathbf{X} + 1). \end{split}$$

- Factoriser dans $\mathbb{R}[X]: X^4 + X^2 + 1$ et $X^4 + X^2 - 1$

$$\begin{split} X^4 + X^2 + 1 &= (X^2 + 1)^2 - X^2 = (X^2 - X + 1)(X^2 + X + 1) \\ X^4 + X^2 - 1 &= (X^2 + \frac{1}{2})^2 - \frac{5}{4} = (X^2 + \frac{1 + \sqrt{5}}{2})(X^2 - \frac{\sqrt{5} - 1}{2}) \\ &= (X^2 + \frac{1 + \sqrt{5}}{2})(X - \sqrt{\frac{\sqrt{5} - 1}{2}})(X + \sqrt{\frac{\sqrt{5} - 1}{2}}) \end{split}$$

★Exercice 16.3

1/ Soit $P \in \mathbb{C}[X]$ avec $P = \sum_{k} a_k X^k$, on appelle conjugué de P le polynôme $\overline{P} = \sum_{k} \overline{a_k} X^k$. Montrer que $\overline{P + Q} = \overline{P} + \overline{Q}$, que $\overline{PQ} = \overline{P} \times \overline{Q}$, et que $P \in \mathbb{R}[X]$ si et seulement si $\overline{P} = P$. Vérifier que pour $z \in \mathbb{C}$, $\overline{P(z)} = \overline{P}(\overline{z})$.

2/ Soit $P \in \mathbb{R}[X]$ non constant, soit z une racine complexe de P de multiplicité m. Montrer que \overline{z} est racine de P de multiplicité m.

4) Relations racines coefficients

Soit P un polynôme scindé sur \mathbb{K} , si deg(P) = n et si λ est le coefficient dominant de P, alors il existe $a_1, \dots, a_n \in \mathbb{K}$ (racines de P) tels que $P = \lambda(X - a_1) \cdots (X - a_n)$, si on développe ensuite cette expression, on va obtenir les coefficients de P en fonction des a_k . Par exemple :

-
$$P = \lambda(X - a_1)(X - a_2) = \lambda X^2 - \lambda(a_1 + a_2)X + \lambda a_1 a_2.$$

$$- P = \lambda(X - a_1)(X - a_2)(X - a_3) = \lambda X^3 - \lambda(a_1 + a_2 + a_3)X^2 + \lambda(a_1 a_2 + a_1 a_3 + a_2 a_3)X - \lambda a_1 a_2 a_3.$$

Notation : On pose $\sigma_0 = 1$, et pour k compris entre 1 et $n : \sigma_k =$

 σ_k est la somme des produits des racines (de P) par paquets de longueur k, par exemple : σ_1 est la somme des racines, σ_2 est la somme des produits deux à deux, \cdots , σ_n est le produit des racines.

Par récurrence on peut alors établir que :

$$(X - a_1) \cdots (X - a_n) = X^n - \sigma_1 X^{n-1} + \sigma_2 X^{n-2} - \cdots + (-1)^n \sigma_n = \sum_{k=0}^n (-1)^k \sigma_k X^{n-k}$$

On en déduit:

🌉 Théorème 16.13

Soient $a_1, ..., a_n \in \mathbb{K}$, si $P = \sum_{k=0}^n \alpha_k X^k = \alpha_n (X - a_1) \cdots (X - a_n)$, alors on a les relations racines - coefficients suivantes : $\alpha_{n-k} = (-1)^k \alpha_n \sigma_k$.

En particulier, la somme des racines est $-\frac{\alpha_{n-1}}{\alpha_n}$ et le produit des racines est $(-1)^n \frac{\alpha_0}{\alpha_n}$.

\bigstar Exercice 16.4 Calculer la somme et le produit des racines n^{es} de l'unité $(n \ge 2)$.

FORMULE DE TAYLOR DES POLYNÔMES

Dérivation des polynômes 1)

On reprend la dérivation usuelle des fonctions polynomiales :

Soit $P = \sum_k a_k X^k$, on appelle polynôme dérivé de P, le polynôme noté P' ou $\frac{dP}{dX}$, et défini par :

$$P' = \sum_{k \ge 1} k a_k X^{k-1}.$$

Par récurrence, la dérivée n-ième de P, notée $P^{(n)}$, est : $P^{(n)} = \begin{cases} P & \text{si } n = 0 \\ \left[P^{(n-1)}\right]' & \text{si } n \geqslant 1 \end{cases}$

🙀 Théorème 16.14 (propriétés)

Soient, $P,Q \in \mathbb{K}[X]$ *et soit* $\lambda \in \mathbb{K}$:

- $P' = 0 \iff P \text{ est constant.}$
- $(P+Q)' = P' + Q' et (\lambda P)' = \lambda P'.$
- $(P \times Q)' = P' \times Q + P \times Q'$, plus généralement, on a la formule de LEIBNIZ²:

$$(P \times Q)^{(n)} = \sum_{k=0}^{n} {n \choose k} P^{(k)} \times Q^{(n-k)}.$$

 $-P(Q)' = Q' \times P'(Q)$ (dérivée d'une composée, une composée est une substitution de X par un autre polynôme).

Preuve : La première propriété est simple à vérifier. Pour la deuxième propriété, on commence par montrer que $(X^n \times Q)' = nX^{n-1} \times Q + X^n \times Q'$, puis on applique la première propriété. La formule de LEIBNIZ se montre ensuite par récurrence sur n (exactement comme la formule du binôme de NEWTON). Quant à la troisième, on commence par le cas où $P = X^n$, c'est à dire on commence par montrer que $[Q^n]' = nQ' \times Q^{n-1}$, ce qui se fait par récurrence sur n, on utilise ensuite la première propriété pour le cas général.

🔛 Théorème 16.15

$$Si P = X^n$$
, alors $P^{(k)} = \begin{cases} \frac{n!}{(n-k)!} X^{n-k} & \text{si } k \leq n \\ 0 & \text{si } k > n \end{cases}$. On en déduit que $Si P = \sum_n a_n X^n$, alors

$$P^{(k)} = \sum_{n>k} \frac{n!}{(n-k)!} a_n X^{n-k}$$

En particulier si deg(P) = n alors $P^{(n)} = a_n n!$ et si k > deg(P), alors $P^{(k)} = 0$. D'autre part, lorsque $k \leq \deg(P)$, alors $\deg(P^{(k)}) = \deg(P) - k$.

Preuve : Celle - ci est simple et laissée en exercice.

Formule de Taylor 2)

Soit $P = \sum_{k \in \mathbb{N}} a_k X^k$, soit r un entier naturel, alors $P^{(r)} = \sum_{k > r}^n \frac{k!}{(k-r)!} a_k X^{k-r}$, substituons 0 à X, on obtient alors $\widetilde{\mathrm{P}^{(r)}}(0) = r!a_r$, on en déduit donc que :

$$\forall r \in \llbracket 0; n \rrbracket, a_r = \frac{\widetilde{\mathrm{P}^{(r)}}(0)}{r!}.$$

On obtient ainsi la formule de Taylor ³ en 0 :

$$P = \sum_{k} \frac{\widetilde{P^{(k)}}(0)}{k!} X^{k}.$$

Soit $a \in \mathbb{K}$, posons Q = P(X + a) (composée de P avec le polynôme X + a), d'après ce qui précède, on a :

$$Q = \sum_{k} \frac{\widetilde{Q^{(k)}}(0)}{k!} X^{k}.$$

- 2. LEIBNIZ Gottfried (1646 1716): philosophe et mathématicien allemand.
- 3. TAYLOR BROOK (1685 1731): mathématicien anglais qui a énoncé sa célèbre formule en 1715.

Or, il est facile de montrer que $Q^{(k)} = P^{(k)}(X + a)$, par conséquent $\widetilde{Q^{(k)}}(0) = \widetilde{P^{(k)}}(a)$, et comme P = Q(X - a), on obtient:

$$P = \sum_{k} \frac{\widetilde{P^{(k)}}(a)}{k!} (X - a)^{k}.$$

Maria de la composição de la composição

 $Si P \in \mathbb{K}[X]$ et $a \in \mathbb{K}$, alors $P = \sum_{k} \frac{\widetilde{P(k)}(a)}{k!} (X - a)^{k}$. C'est la formule de TAYLOR pour le polynôme P en a.

Applications:

- Division euclidienne d'un polynôme P par $(X - a)^n$: d'après la formule de TAYLOR en a appliquée à P, on a :

$$\begin{split} \mathbf{P} &= \sum_{k} \frac{\widetilde{\mathbf{P}^{(k)}}(a)}{k!} (\mathbf{X} - a)^{k} \\ &= \sum_{k \geqslant n} \frac{\widetilde{\mathbf{P}^{(k)}}(a)}{k!} (\mathbf{X} - a)^{k} + \sum_{k < n} \frac{\widetilde{\mathbf{P}^{(k)}}(a)}{k!} (\mathbf{X} - a)^{k} \\ &= (\mathbf{X} - a)^{n} \times \sum_{k \geqslant n} \frac{\widetilde{\mathbf{P}^{(k)}}(a)}{k!} (\mathbf{X} - a)^{k - n} + \sum_{k < n} \frac{\widetilde{\mathbf{P}^{(k)}}(a)}{k!} (\mathbf{X} - a)^{k}, \end{split}$$

comme deg($\sum_{k < n} \frac{\widetilde{P^{(k)}}(a)}{k!} (X - a)^k$) < n, on en déduit que le quotient Q et le reste R dans la division euclidienne par $(X - a)^n$ sont :

$$Q = \sum_{k \ge n} \frac{\widetilde{P^{(k)}}(a)}{k!} (X - a)^{k - n} \text{ et } R = \sum_{k < n} \frac{\widetilde{P^{(k)}}(a)}{k!} (X - a)^k.$$

- Calcul de la multiplicité d'une racine :

🛂 Théorème 16.17

 $a \in \mathbb{K}$ est une racine de P de multiplicité $n \ge 1$ si et seulement si :

$$\forall \ k \in [0; n-1], \widetilde{P^{(k)}}(a) = 0 \ et \ \widetilde{P^{(n)}}(a) \neq 0.$$

Preuve: En effet, d'après ce qui précède, $P = (X - a)^n Q + R$ avec $Q = \sum_{k \ge n} \frac{\widetilde{P^{(k)}}(a)}{k!} (X - a)^{k-n}$ et $R = \sum_{k \le n} \frac{\widetilde{P^{(k)}}(a)}{k!} (X - a)^k$, d'où:

$$n = m_{\mathbf{P}}(a) \iff \mathbf{R} = 0 \text{ et } \widetilde{\mathbf{Q}}(a) \neq 0$$

 $\iff \mathbf{R}(\mathbf{X} + a) = 0 \text{ et } \widetilde{\mathbf{Q}}(a) \neq 0$
 $\iff \forall k \in [0; n-1], \widetilde{\mathbf{P}^{(k)}}(a) = 0, \text{ et } \widetilde{\mathbf{P}^{(n)}}(a) \neq 0$

SOLUTION DES EXERCICES

Solution 16.1 On pose R = P - Q, alors $deg(R) \leq max(deg(P), deg(Q)) \leq 2$. On évalue le polynôme R en -1, 0 et 1, on trouve R(-1) = 0, R(0) = 0, R(1) = 0, on a donc au moins 3 racines alors que $deg(R) \le 2$, on en déduit que R et nul et donc P = O.

Solution 16.2 On trouve que $P = (X - 1)(X^2 - 2X - 2)$ et 1 n'est pas racine du deuxième facteur, donc $m_P(1) = 1$. $Q = (X-1)^2(X-2) \ donc \ m_O(1) = 2.$

Solution 16.3

1/ Simple vérification en appliquant la définition des opérations.

2/ Dans $\mathbb{C}[X]$ on $a P = (X - z)^m Q$ avec $Q(z) \neq 0$, d'où en conjuguant (P et Q étant à coefficients réels) $P = \overline{P} = (X - \overline{z})^m \overline{Q} = \overline{Q}$ $(X - \overline{z})^m Q$, avec $Q(\overline{z}) = \overline{Q}(z) \neq 0$.

Solution 16.4 Soit $P = X^n - 1$, ses racines sont exactement les racines n^{es} de l'unité, notons a_k le coefficient de X^k , alors on sait que la somme des racines est donnée par la formule $-\frac{a_{n-1}}{a_n}=0$ car a_{n-1} est nul $(n-1\geqslant 1)$. Le produit des racines est donné par la formule $(-1)^n\frac{a_0}{a_n}=(-1)^{n+1}$ car $a_0=a_n=1$.