3GPP TS 36.104 V8.2.0 (2008-05)

Technical Specification

3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) radio transmission and reception (Release 8)

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

Keywords UMTS, BSS, radio

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis Valbonne - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.

 $\ \, \mathbb{O}\,$ 2008, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC). All rights reserved.

Contents

Forew	vord	6
1	Scope	7
2	References	7
3	Definitions, symbols and abbreviations	7
3.1	Definitions	
3.2	Symbols	8
3.3	Abbreviations	9
4	General	
4.1	Relationship between minimum requirements and test requirements	
4.2	Base station classes	
4.3	Regional requirements	10
5	Frequency bands and channel arrangement.	
5.1	General	
5.2	Channel bandwidth	
5.3	Frequency bands	
5.4	Channel arrangement	
5.4.1	Channel spacing	
5.4.2	Channel raster	
5.4.3	Carrier frequency and EARFCN	12
6	Transmitter characteristics	13
6.1	General	
6.2	Base station output power.	
6.2.1	Minimum requirement	
6.3	Output power dynamics	
6.3.1.1		
6.3.2.1		
6.4	Transmit ON/OFF power	
6.4.1	Transmit OFF power	
6.4.1.1		
6.5	Transmitted signal quality	
6.5.1	Frequency error	
6.5.1.1		
6.5.2	Error Vector Magnitude	
6.5.3	Time alignment between transmitter branches	
6.5.3.1	<u> </u>	
6.5.4.1		
6.6	Unwanted emissions	16
6.6.1	Occupied bandwidth	16
6.6.1.1	1 Minimum requirement	16
6.6.2	Adjacent Channel Leakage power Ratio (ACLR)	17
6.6.2.1		
6.6.3	Operating band unwanted emissions	18
6.6.3.1	Minimum requirements (Category A)	19
6.6.3.2	2 Minimum requirements (Category B)	20
6.6.3.3		
6.6.4	Transmitter spurious emissions	23
6.6.4.1	Mandatory Requirements	23
6.6.4.1	• •	
6.6.4.1		
6.6.4.1	1.2 Spurious emissions (Category B)	24
6.6.4.2		
6.6.4.2		
6.6.4.3	Co-existence with other systems in the same geographical area	24

0.0.4.4		
6.7	Transmitter intermodulation	
6.7.1	Minimum requirement	29
7	Receiver characteristics	30
7.1	General	
7.2	Reference sensitivity level	
7.2.1	Minimum requirement	
7.3	Dynamic range	
7.3.1 7.4	Minimum requirement In-channel selectivity	
7. 4 7.4.1	Minimum requirement	
7. 4 .1 7.5	Adjacent Channel Selectivity (ACS) and narrow-band blocking	
7.5.1	Minimum requirement	
7.6	Blocking	
7.6.1	General requirement	
7.6.2	Co-location with other base stations	
7.7	Receiver spurious emissions	
7.7.1	Minimum requirement	
7.8 7.8.1	Receiver intermodulation Minimum requirement	
	•	
8	Performance requirement	
8.1	General	
8.2	Performance requirements for PUSCH	
8.2.1 8.3	Requirements	
8.3.1	DTX to ACK performance	
8.3.2	ACK missed detection requirements for PUCCH format 1a	
8.4	Performance requirements for PRACH	
8.4.1	PRACH False alarm probability	
8.4.2	PRACH missed detection requirements	
Anno	x A (normative): Reference measurement channels	16
A .1	Fixed Reference Channels for reference sensitivity and in-channel selectivity (QPSK, R=1/3)	46
A.2	Fixed Reference Channels for dynamic range (16QAM, R=2/3)	47
A.3	Fixed Reference Channels for performance requirements (QPSK 1/3)	47
A.4	Fixed Reference Channels for performance requirements (16QAM 3/4)	
	Fixed Reference Channels for performance requirements (64QAM 5/6)	
A.6	PRACH Test preambles	40
Anne	x B (normative): Propagation conditions	50
B.1	Static propagation condition.	50
B.2	Multi-path fading propagation conditions	50
B.3	High speed train condition	
Anne	x D (normative): Environmental requirements for the BS equipment	54
Anne	x E (normative): Error Vector Magnitude	55
	eference point for measurement.	
E.2	Basic unit of measurement.	
E.3	Modified signal under test	
E.4	Estimation of frequency offset Estimation of time offset	
E.5 E.5.1	Window length	
E.5.1 E.6	Estimation of TX chain amplitude and frequency response parameters	
E.7	Averaged EVM	

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

- x the first digit:
 - 1 presented to TSG for information;
 - 2 presented to TSG for approval;
 - 3 or greater indicates TSG approved document under change control.
- y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc
- z the third digit is incremented when editorial only changes have been incorporated in the document.

1 Scope

The present document establishes the minimum RF characteristics and minimum performance requirements of E-UTRA Base Station (BS).

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document *in the same Release as the present document*.
- [1] 3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
- [2] ITU-R Recommendation SM.329: "Unwanted emissions in the spurious domain".
- [3] ITU-R Recommendation M.1545: "Measurement uncertainty as it applies to test limits for the terrestrial component of International Mobile Telecommunications-2000".
- [4] 3GPP TS 36.141: "Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) conformance testing".
- [5] ITU-R recommendation SM.328: "Spectra and bandwidth of emissions".
- [6] 3GPP TS 25.104: "Base Station (BS) radio transmission and reception (FDD)".
- [7] 3GPP TS 25.105: "Base Station (BS) radio transmission and reception (TDD)".
- [8] 3GPP TR 25.942: "RF system scenarios".

3 Definitions, symbols and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [1].

Carrier: The modulated waveform conveying the E-UTRA or UTRA (WCDMA) physical channels

Channel bandwidth: The RF bandwidth supporting a single E-UTRA RF carrier with the transmission bandwidth configured in the uplink or downlink of a cell. The channel bandwidth is measured in MHz and is used as a reference for transmitter and receiver RF requirements.

Channel edge: The lowest and highest frequency of the E-UTRA carrier, separated by the channel bandwidth.

DL RS power: The resource element power of Downlink Reference Signal.

Maximum output Power: The mean power level per carrier of the base station measured at the antenna connector in a specified reference condition.

Maximum throughput: The maximum achievable throughput for a reference measurement channel.

Mean power: When applied to E-UTRA transmission this is the power measured in the channel bandwidth of the carrier. The period of measurement shall be at least one subframe (1ms), unless otherwise stated.

Measurement bandwidth: The bandwidth in which an emission level is specified.

Occupied bandwidth: The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage $\beta/2$ of the total mean power of a given emission.

Output power: The mean power of one carrier of the base station, delivered to a load with resistance equal to the nominal load impedance of the transmitter.

Rated output power: Rated output power of the base station is the mean power level per carrier that the manufacturer has declared to be available at the antenna connector.

RE power control dynamic range: The difference between the power of a RE and the average RE power for a BS at maximum output power for a specified reference condition.

RRC filtered mean power: The mean power of a UTRA carrier as measured through a root raised cosine filter with roll-off factor α and a bandwidth equal to the chip rate of the radio access mode.

NOTE 1: The RRC filtered mean power of a perfectly modulated UTRA signal is 0.246 dB lower than the mean power of the same signal.

Throughput: The number of payload bits successfully received per second for a reference measurement channel in a specified reference condition.

Total power dynamic range: The difference between the maximum and the minimum transmit power of an OFDM symbol for a specified reference condition.

Transmission bandwidth: Bandwidth of an instantaneous transmission from a UE or BS, measured in Resource Block units.

Transmission bandwidth configuration: The highest transmission bandwidth allowed for uplink or downlink in a given channel bandwidth, measured in Resource Block units.

3.2 Symbols

For the purposes of the present document, the following symbols apply:

α Roll-off factor

β Percentage of the mean transmitted power emitted outside the occupied bandwidth on the assigned

channel

 $BW_{\it Channel} \qquad \quad Channel \ bandwidth$

BW_{Config} Transmission bandwidth configuration, expressed in MHz, where BW_{Config} = N_{RB} x 180 kHz in the

uplink and BW_{Config} = $15 \text{ kHz} + N_{RB} \times 180 \text{ kHz}$ in the downlink.

f Frequency

Δf Separation between the channel edge frequency and the nominal -3dB point of the measuring filter

closest to the carrier frequency

 Δf_{max} The largest value of Δf used for defining the requirement

F_C Carrier centre frequency

f_offset Separation between the channel edge frequency and the centre of the measuring filter

f_offset_{max} The maximum value of f_offset used for defining the requirement

 $\begin{array}{ll} F_{DL_low} & The \ lowest \ frequency \ of \ the \ downlink \ operating \ band \\ F_{DL_high} & The \ highest \ frequency \ of \ the \ downlink \ operating \ band \\ F_{UL_high} & The \ lowest \ frequency \ of \ the \ uplink \ operating \ band \\ F_{UL_high} & The \ highest \ frequency \ of \ the \ uplink \ operating \ band \\ \end{array}$

N_{DL} Downlink EARFCN

 $N_{Offs\text{-}DL}$ Offset used for calculating downlink EARFCN $N_{Offs\text{-}UL}$ Offset used for calculating uplink EARFCN

N_{RB} Transmission bandwidth configuration, expressed in units of resource blocks

N_{UL} Uplink EARFCN
Pmax Maximum output Power

Pout Output power

P_{REFSENS} Reference Sensitivity power level

3.3 Abbreviations

For the purposes of the present document, the abbreviations given in TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [1].

ACLR Adjacent Channel Leakage Ratio
ACK Acknowledgement (in ARQ protocols)

ACS Adjacent Channel Selectivity
AWGN Additive White Gaussian Noise

BS Base Station
CW Continuous Wave

EARFCN E-UTRA Absolute Radio Frequency Channel Number

EPA Extended Pedestrian A model
ETU Extended Typical Urban model
EVA Extended Vehicular A model
EVM Error Vector Magnitude
FDD Frequency Division Duplex
FRC Fixed Reference Channel
ICS In-Channel Selectivity

MCS Modulation and Coding Scheme

NACK Negative Acknowledgement (in ARQ protocols)

OOB Out-of-band
PA Power Amplifier
RB Resource Block
RE Resource Element
RF Radio Frequency

RMS Root Mean Square (value)

RS Reference Symbol

RX Receiver

RRC Root Raised Cosine
SNR Signal-to-Noise Ratio
TDD Time Division Duplex

TX Transmitter
UE User Equipment

4 General

4.1 Relationship between minimum requirements and test requirements

The Minimum Requirements given in this specification make no allowance for measurement uncertainty. The test specification TS 36.141 [4] section 4 defines Test Tolerances. These Test Tolerances are individually calculated for each test. The Test Tolerances are used to relax the Minimum Requirements in this specification to create Test Requirements.

The measurement results returned by the Test System are compared - without any modification - against the Test Requirements as defined by the shared risk principle.

The Shared Risk principle is defined in ITU-R M.1545 [3].

4.2 Base station classes

The requirements in this specification apply to Base Stations intended for general-purpose.

Other base station classes are for further study. The requirements for these may be different than for general-purpose applications.

4.3 Regional requirements

Some requirements in the present document may only apply in certain regions. Table 4.3-1 lists all requirements that may be applied differently in different regions.

Table 4.3-1: List of regional requirements

Clause number	Requirement	Comments
5.2	Channel bandwidth	Some channel bandwidths may be applied regionally.
5.3	Frequency bands	Some bands may be applied regionally.
5.4	Channel arrangement	The requirement is applied according to what frequency bands in Clause 5.3 that are supported by the BS.
6.2	Base station maximum output power	In certain regions, the minimum requirement for normal conditions may apply also for some conditions outside the range of conditions defined as normal.
6.6.3.1	Operating band unwanted emissions (Category A)	This requirement is mandatory for regions where Category A limits for spurious emissions, as defined in ITU-R Recommendation SM.329 [2] apply.
6.6.3.2	Operating band unwanted emissions (Category B)	This requirement is mandatory for regions where Category B limits for spurious emissions, as defined in ITU-R Recommendation SM.329 [2], apply.
6.6.4.1.1	Spurious emissions (Category A)	This requirement is mandatory for regions where Category A limits for spurious emissions, as defined in ITU-R Recommendation SM.329 [2] apply.
6.6.4.1.2	Spurious emissions (Category B)	This requirement is mandatory for regions where Category B limits for spurious emissions, as defined in ITU-R Recommendation SM.329 [2], apply.
6.6.4.3	Co-existence with other systems in the same geographical area	These requirements may apply in geographic areas in which both E-UTRA and a system operating in another frequency band are deployed.
6.6.4.4	Co-location with other base stations	These requirements may be applied for the protection of other BS receivers when a BS operating in another frequency band is co-located with an E-UTRA BS.
7.6.2	Co-location with other base stations	These requirements may be applied for the protection of the BS receiver when a BS operating in another frequency band is co-located with an E-UTRA BS.

5 Frequency bands and channel arrangement

5.1 General

The channel arrangements presented in this clause are based on the frequency bands and channel bandwidths defined in the present release of specifications.

NOTE: Other frequency bands and channel bandwidths may be considered in future releases.

5.2 Channel bandwidth

Requirements in present document are specified for the channel bandwidths listed in Table 5.2-1.

Table 5.2-1 Transmission bandwidth configuration N_{RB} in E-UTRA channel bandwidths

$\begin{array}{c} \textbf{Channel bandwidth} \\ \textbf{BW}_{\textbf{Channel}} [\textbf{MHz}] \end{array}$	1.4	3	5	10	15	20
Transmission bandwidth configuration N_{RB}	6	15	25	50	75	100

Figure 5.2-1 shows the relation between the Channel bandwidth ($BW_{Channel}$) and the Transmission bandwidth configuration (N_{RB}). The channel edges are defined as the lowest and highest frequencies of the carrier separated by the channel bandwidth, i.e. at F_C +/- $BW_{Channel}$ /2.

Figure 5.2-1 Definition of Channel Bandwidth and Transmission Bandwidth Configuration for one E-UTRA carrier

5.3 Frequency bands

E-UTRA is designed to operate in the frequency bands defined in Table 5.3-1.

E-UTRA Band	Uplink (UL) eNode B receive UE transmit	Downlink (DL) eNode B transmit UE receive	Duplex Mode
	F _{UL_low} - F _{UL_high}	F _{DL_low} - F _{DL_high}	
1	1920 MHz — 1980 MHz	2110 MHz - 2170 MHz	FDD
2	1850 MHz - 1910 MHz	1930 MHz - 1990 MHz	FDD
3	1710 MHz - 1785 MHz	1805 MHz - 1880 MHz	FDD
4	1710 MHz - 1755 MHz	2110 MHz - 2155 MHz	FDD
5	824 MHz - 849 MHz	869 MHz – 894MHz	FDD
6	830 MHz - 840 MHz	875 MHz – 885 MHz	FDD
7	2500 MHz - 2570 MHz	2620 MHz - 2690 MHz	FDD
8	880 MHz - 915 MHz	925 MHz - 960 MHz	FDD
9	1749.9 MHz - 1784.9 MHz	1844.9 MHz - 1879.9 MHz	FDD
10	1710 MHz – 1770 MHz	2110 MHz - 2170 MHz	FDD
11	1427.9 MHz - 1452.9 MHz	1475.9 MHz - 1500.9 MHz	FDD
12	698 MHz - 716 MHz	728 MHz - 746 MHz	FDD
13	777 MHz – 787 MHz	746 MHz - 756 MHz	FDD
14	788 MHz – 798 MHz	758 MHz - 768 MHz	FDD
33	1900 MHz - 1920 MHz	1900 MHz - 1920 MHz	TDD
34	2010 MHz - 2025 MHz	2010 MHz - 2025 MHz	TDD
35	1850 MHz - 1910 MHz	1850 MHz - 1910 MHz	TDD
36	1930 MHz - 1990 MHz	1930 MHz - 1990 MHz	TDD
37	1910 MHz - 1930 MHz	1910 MHz - 1930 MHz	TDD
38	2570 MHz - 2620 MHz	2570 MHz - 2620 MHz	TDD
39	1880 MHz - 1920 MHz	1880 MHz - 1920 MHz	TDD
40	2300 MHz - 2400 MHz	2300 MHz - 2400 MHz	TDD

Table 5.3-1 E-UTRA frequency bands

5.4 Channel arrangement

5.4.1 Channel spacing

The spacing between carriers will depend on the deployment scenario, the size of the frequency block available and the channel bandwidths. The nominal channel spacing between two adjacent E-UTRA carriers is defined as following:

Nominal Channel spacing =
$$(BW_{Channel(1)} + BW_{Channel(2)})/2$$

where $BW_{Channel(1)}$ and $BW_{Channel(2)}$ are the channel bandwidths of the two respective E-UTRA carriers. The channel spacing can be adjusted to optimize performance in a particular deployment scenario.

5.4.2 Channel raster

The channel raster is 100 kHz for all bands, which means that the carrier centre frequency must be an integer multiple of 100 kHz.

5.4.3 Carrier frequency and EARFCN

The carrier frequency in the uplink and downlink is designated by the E-UTRA Absolute Radio Frequency Channel Number (EARFCN). The relation between EARFCN and the carrier frequency in MHz for the downlink is given by the following equation, where F_{DL_low} and $N_{Offs-DL}$ are given in table 5.4.3-1 and N_{DL} is the downlink EARFCN.

$$F_{DL} = F_{DL \text{ low}} + 0.1(N_{DL} - N_{Offs-DL})$$

The relation between EARFCN and the carrier frequency in MHz for the uplink is given by the following equation where $F_{UL\ low}$ and $N_{Offs\text{-}UL}$ are given in table 5.4.3-1 and N_{UL} is the uplink EARFCN.

$$F_{UL} = F_{UL low} + 0.1(N_{UL} - N_{Offs-UL})$$

E-UTRA	-UTRA Downlink			Uplink		
Band	F _{DL_low} [MHz]	N _{Offs-DL}	Range of N _{DL}	Ful_low [MHz]	N _{Offs-UL}	Range of N _{UL}
1	2110	0	0 – 599	1920	13000	13000 – 13599
2	1930	600	600 – 1199	1850	13600	13600 – 14199
3	1805	1200	1200 – 1949	1710	14200	14200 - 14949
4	2110	1950	1950 – 2399	1710	14950	14950 – 15399
5	869	2400	2400 - 2649	824	15400	15400 – 15649
6	875	2650	2650 – 2749	830	15650	15650 – 15749
7	2620	2750	2750 – 3449	2500	15750	15750 – 16449
8	925	3450	3450 - 3799	880	16450	16450 – 16799
9	1844.9	3800	3800 - 4149	1749.9	16800	16800 – 17149
10	2110	4150	4150 – 4749	1710	17150	17150 – 17749
11	1475.9	4750	4750 – 4999	1427.9	17750	17750 – 17999
12	728	5000	5000 - 5179	698	18000	18000 – 18179
13	746	5180	5180 - 5279	777	18180	18180 – 18279
14	758	5280	5280 - 5379	788	18280	18280 – 18379
33	1900	26000	26000 - 26199	1900	26000	26000 - 26199
34	2010	26200	26200 - 26349	2010	26200	26200 - 26349
35	1850	26350	26350 - 26949	1850	26350	26350 - 26949
36	1930	26950	26950 - 27549	1930	26950	26950 - 27549
37	1910	27550	27550 – 27749	1910	27550	27550 – 27749
38	2570	27750	27750 – 28249	2570	27750	27750 – 28249
39	1880	28250	28250 - 28649	1880	28250	28250 - 28649
40	2300	28650	28650 - 29649	2300	28650	28650 - 29649

Table 5.4.3-1 E-UTRA channel numbers

6 Transmitter characteristics

6.1 General

Unless otherwise stated, the requirements in Section 6 assume transmission with a single transmit antenna. In case of multiple transmit antennas the requirements apply to each antenna connector separately, with the other one(s) terminated. Unless otherwise stated, the requirements are unchanged.

Unless otherwise stated, the transmitter characteristics are specified at the BS antenna connector (test port A) with a full complement of transceivers for the configuration in normal operating conditions. If any external apparatus such as a TX amplifier, a filter or the combination of such devices is used, requirements apply at the far end antenna connector (port B).

Figure 6.1-1: Transmitter test ports

6.2 Base station output power

Output power, Pout, of the base station is the mean power of one carrier delivered to a load with resistance equal to the nominal load impedance of the transmitter.

Maximum output power, Pmax, of the base station is the mean power level per carrier measured at the antenna connector in a specified reference condition.

6.2.1 Minimum requirement

In normal conditions, the base station maximum output power shall remain within +2 dB and -2 dB of the rated output power declared by the manufacturer.

In extreme conditions, the base station maximum output power shall remain within +2.5 dB and -2.5 dB of the rated output power declared by the manufacturer.

In certain regions, the minimum requirement for normal conditions may apply also for some conditions outside the range of conditions defined as normal.

6.3 Output power dynamics

Power control is used to limit the interference level.

6.3.1 RE Power control dynamic range

The RE power control dynamic range is the difference between the power of a RE and the average RE power for a BS at maximum output power for a specified reference condition. Unwanted emissions (as specified in subclause 6.6) and Transmit modulation quality (as specified in subclause 6.5) shall be maintained within the whole power control dynamic range.

6.3.1.1 Minimum requirements

RE power control dynamic range:

Table 6.3.1.1-1 E-UTRA BS RE power control dynamic range, paired spectrum

Modulation scheme used on the RE	RE power control dynamic range (dB)		
	(down)	(up)	
QPSK (PDCCH)	-6	+4	
QPSK (PDSCH)	-6	+3	
16QAM	-3	+3	
64QAM	0	0	

NOTE 1: Total TX power shall always be less or equal to maximum BS output power.

NOTE 2: The test requirements could be defined as average RE power across resource block or control channel resource elements.

6.3.2 Total power dynamic range

The total power dynamic range is the difference between the maximum and the minimum power of an OFDM symbol for a specified reference condition.

NOTE: The upper limit of the dynamic range is the OFDM symbol power for a BS at maximum output power. The lower limit of the dynamic range is the OFDM symbol power for a BS when one resource block is transmitted. The OFDM symbol shall carry PDSCH and not contain RS, PBCH or synchronisation signals.

6.3.2.1 Minimum requirements

The downlink (DL) total power dynamic range shall be larger than the level in Table 6.3.2.1-1.

Table 6.3.2.1-1 E-UTRA BS total power dynamic range, paired spectrum

E-UTRA channel bandwidth (MHz)	Total power dynamic range (dB)
1.4	8
3	12
5	14
10	17
15	19
20	20

NOTE: appropriate averaging times of the OFDM symbol power in test requirements is FFS.

6.4 Transmit ON/OFF power

This requirement is only applied for E-UTRA TDD BS.

6.4.1 Transmit OFF power

Transmit OFF power is defined as the mean power measured when the transmitter is off. The transmit OFF is state when the BS does not transmit.

6.4.1.1 Minimum Requirement

The transmit OFF power shall be less than -85dBm/MHz.

<Text will be added.>

6.5 Transmitted signal quality

6.5.1 Frequency error

Frequency error is the measure of the difference between the actual BS transmit frequency and the assigned frequency. The same source shall be used for RF frequency and data clock generation.

6.5.1.1 Minimum requirement

The modulated carrier frequency of the BS shall be accurate to within ± 0.05 ppm observed over a period of one subframe (1ms).

Table 6.5.1-1: Void

6.5.2 Error Vector Magnitude

The Error Vector Magnitude is a measure of the difference between the ideal symbols and the measured symbols after the equalization. This difference is called the error vector. The equaliser parameters are estimated as defined in Annex E. The EVM result is defined as the square root of the ratio of the mean error vector power to the mean reference power expressed in percent.

For all bandwidths, the EVM measurement shall be performed over all allocated resource blocks and subframes within a frame. The EVM value is then calculated as the mean square root of the measured values. The EVM for different modulation schemes on PDSCH shall be better than the limits in table 6.5.2-1:

Table 6.5.2-1 EVM requirements

Modulation scheme for PDSCH	Required EVM [%]
QPSK	17.5 %
16QAM	12.5 %
64QAM	8 %

6.5.3 Time alignment between transmitter branches

In Tx Diversity and spatial multiplexing, signals are transmitted from two or more antennas. These signals shall be aligned. The time alignment error in Tx Diversity and spatial multiplexing transmission is specified as the delay between the signals from two antennas at the antenna ports.

6.5.3.1 Minimum Requirement

The time alignment error in Tx Diversity or spatial multiplexing for any possible configuration of two transmit antennas shall not exceed [65 ns].

6.5.4 DL RS power

DL RS power is the resource element power of Downlink Reference Signal.

The absolute DL RS power is indicated on the BCH. The absolute accuracy is defined as the maximum deviation between the DL RS power indicated on the BCH and the DL RS power measured at the BS antenna connector.

6.5.4.1 Minimum requirements

DL RS power shall be within $[\pm 2.1]$ dB of the DL RS power indicated on the BCH

6.6 Unwanted emissions

Unwanted emissions consist of out-of-band emissions and spurious emissions [2]. Out of band emissions are unwanted emissions immediately outside the channel bandwidth resulting from the modulation process and non-linearity in the transmitter but excluding spurious emissions. Spurious emissions are emissions which are caused by unwanted transmitter effects such as harmonics emission, parasitic emission, intermodulation products and frequency conversion products, but exclude out of band emissions.

The out-of-band emissions requirement for the BS transmitter is specified both in terms of Adjacent Channel Leakage power Ratio (ACLR) and Operating band unwanted emissions. The Operating band unwanted emissions define all unwanted emissions in the transmitter operating band plus the frequency ranges 10 MHz above and 10 MHz below the band. Unwanted emissions outside of this frequency range are limited by a spurious emissions requirement.

There is in addition a requirement for occupied bandwidth.

6.6.1 Occupied bandwidth

The occupied bandwidth is the width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage $\beta/2$ of the total mean transmitted power. See also ITU-R Recommendation SM.328 [5].

The value of $\beta/2$ shall be taken as 0.5%.

6.6.1.1 Minimum requirement

The occupied bandwidth shall be less than the channel bandwidth as defined in Table 5.2-1.

6.6.2 Adjacent Channel Leakage power Ratio (ACLR)

Adjacent Channel Leakage power Ratio (ACLR) is the ratio of the filtered mean power centred on the assigned channel frequency to the filtered mean power centred on an adjacent channel frequency.

The requirements shall apply whatever the type of transmitter considered (single carrier or multi-carrier). It applies for all transmission modes foreseen by the manufacturer's specification. For a multi-carrier BS, the requirement applies for the adjacent channel frequencies below the lowest carrier frequency used by the BS and above the highest carrier frequency used by the BS.

6.6.2.1 Minimum requirement

The ACLR is defined with a square filter of bandwidth equal to the transmission bandwidth configuration of the transmitted signal (BW_{Config}) centred on the assigned channel frequency and a filter centred on the adjacent channel frequency according to the tables below.

For Category A, either the ACLR limits in the tables below or the absolute limit of [-13dBm/MHz] apply, whichever is less stringent.

For Category B, either the ACLR limits in the tables below or the absolute limit of [-15dBm/MHz] apply, whichever is less stringent.

For operation in paired spectrum, the ACLR shall be higher than the value specified in Table 6.6.2.1-1.

Table 6.6.2.1-1: Base Station ACLR in paired spectrum

E-UTRA transmitted signal channel bandwidth BW _{Channel} [MHz]	BS adjacent channel centre frequency offset below the first or above the last carrier centre frequency used	Assumed adjacent channel carrier (informative)	Filter on the adjacent channel frequency and corresponding filter bandwidth	ACLR limit	
1.4, 3.0, 5, 10, 15, 20	BW _{Channel}	E-UTRA of same BW	Square (BW _{Config})	45 dB	
	2 x BW _{Channel}	E-UTRA of same BW	Square (BW _{Config})	45 dB	
	BW _{Channel} /2 + 2.5 MHz	3.84 Mcps UTRA	RRC (3.84 Mcps)	45 dB	
	BW _{Channel} /2 + 7.5 MHz	3.84 Mcps UTRA	RRC (3.84 Mcps)	45 dB	
NOTE 1: BW _{Channel} and BW _{Config} are the channel bandwidth and transmission bandwidth configuration of the E-UTRA transmitted signal on the assigned channel frequency.					
NOTE 2: The RRC filter shall be equivalent to the transmit pulse shape filter defined in TS 25.104 [6], with a chip rate as defined in this table.					

For operation in unpaired spectrum, the ACLR shall be higher than the value specified in Table 6.6.2.1-2.

Table 6.6.2.1-2: Base Station ACLR in unpaired spectrum with synchronized operation

E-UTRA transmitted signal channel bandwidth BW _{Channel} [MHz]	BS adjacent channel centre frequency offset below the first or above the last carrier centre frequency used	Assumed adjacent channel carrier (informative)	Filter on the adjacent channel frequency and corresponding filter bandwidth	ACLR limit
1.4, 3	BW _{Channel}	E-UTRA of same BW	Square (BW _{Config})	45 dB
	2 x BW _{Channel}	E-UTRA of same BW	Square (BW _{Config})	45 dB
	BW _{Channel} /2 + 0.8 MHz	1.28 Mcps UTRA	RRC (1.28 Mcps)	45 dB
	BW _{Channel} /2 + 2.4 MHz	1.28 Mcps UTRA	RRC (1.28 Mcps)	45 dB
5, 10, 15, 20	BW _{Channel}	E-UTRA of same BW	Square (BW _{Config})	45 dB
	2 x BW _{Channel}	E-UTRA of same BW	Square (BW _{Config})	45 dB
	BW _{Channel} /2 + 0.8 MHz	1.28 Mcps UTRA	RRC (1.28 Mcps)	45 dB
	BW _{Channel} /2 + 2.4 MHz	1.28 Mcps UTRA	RRC (1.28 Mcps)	45 dB
	BW _{Channel} /2 + 2.5 MHz	3.84 Mcps UTRA	RRC (3.84 Mcps)	45 dB
	BW _{Channel} /2 + 7.5 MHz	3.84 Mcps UTRA	RRC (3.84 Mcps)	45 dB
	BW _{Channel} /2 + 5 MHz	7.68 Mcps UTRA	RRC (7.68 Mcps)	45 dB
110== 1 5111	BW _{Channel} /2 + 15 MHz	7.68 Mcps UTRA	RRC (7.68 Mcps)	45 dB

NOTE 1: BW_{Channel} and BW_{Config} are the channel bandwidth and transmission bandwidth configuration of the E-UTRA transmitted signal on the assigned channel frequency.

NOTE 2: The RRC filter shall be equivalent to the transmit pulse shape filter defined in TS 25.105 [7], with a chip rate as defined in this table.

6.6.3 Operating band unwanted emissions

The Operating band unwanted emission limits are defined from 10 MHz below the lowest frequency of the BS transmitter operating band up to 10 MHz above the highest frequency of the BS transmitter operating band.

The requirements shall apply whatever the type of transmitter considered (single carrier or multi-carrier) and for all transmission modes foreseen by the manufacturer's specification.

The unwanted emission limits in the part of the operating band that falls in the spurious domain are consistent with ITU-R Recommendation SM.329 [2].

Emissions shall not exceed the maximum levels specified in the tables below, where:

- Δf is the separation between the channel edge frequency and the nominal -3dB point of the measuring filter closest to the carrier frequency.
- f offset is the separation between the channel edge frequency and the centre of the measuring filter.
- f offset_{max} is the offset to the frequency 10 MHz outside the BS transmitter operating band.
- Δf_{max} is equal to $f_{offset_{max}}$ minus half of the bandwidth of the measuring filter.

For a multicarrier E-UTRA BS the definitions above apply to the lower edge of the carrier transmitted at the lowest carrier frequency and the higher edge of the carrier transmitted at the highest carrier frequency.

The requirements of either subclause 6.6.3.1 or subclause 6.6.3.2 shall apply.

The Additional operating band unwanted emission limits defined in subclause 6.6.3. below may be mandatory in certain regions. In other regions it may not apply.

6.6.3.1 Minimum requirements (Category A)

For E-UTRA BS operating in Bands 5, 6, 8, 12, 13, 14, emissions shall not exceed the maximum levels specified in Tables 6.6.3.1-1 to 6.6.3.1-3.

Table 6.6.3.1-1: General operating band unwanted emission limits for 1.4 MHz channel bandwidth (E-UTRA bands <1GHz) for Category A

Frequency offset of measurement filter -3dB point, Δf	Frequency offset of measurement filter centre frequency, f_offset	Minimum requirement	Measurement bandwidth (Note 1)
0 MHz ≤ Δf < 1.4 MHz	0.05 MHz ≤ f_offset < 1.45 MHz	$-1dBm - \frac{10}{1.4} \cdot \left(\frac{f_offset}{MHz} - 0.05\right)dB$	100 kHz
1.4 MHz ≤ Δf < 2.8 MHz	1.45 MHz ≤ f_offset < 2.85 MHz	-11 dBm	100 kHz
$2.8 \text{ MHz} \leq \Delta f \leq \Delta f_{\text{max}}$	$2.85 \text{ MHz} \leq f_\text{offset} < f_\text{offset}_{\text{max}}$	-13 dBm	100 kHz

Table 6.6.3.1-2: General operating band unwanted emission limits for 3 MHz channel bandwidth (E-UTRA bands <1GHz) for Category A

Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Minimum requirement	Measurement bandwidth (Note 1)
0 MHz ≤ Δf < 3 MHz	0.05 MHz ≤ f_offset < 3.05 MHz	$-4.5dBm - \frac{10}{3} \left(\frac{f_offset}{MHz} - 0.05 \right) dB$	100 kHz
$3~\text{MHz} \leq \Delta f \leq \Delta f_{\text{max}}$	$3.05 \text{ MHz} \le f_\text{offset} < f_\text{offset}_{\text{max}}$	-13 dBm	100 kHz

Table 6.6.3.1-3: General operating band unwanted emission limits for 5, 10, 15 and 20 MHz channel bandwidth (E-UTRA bands <1GHz) for Category A

Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Minimum requirement	Measurement bandwidth (Note 1)
0 MHz ≤ Δf < 5 MHz	0.05 MHz ≤ f_offset < 5.05 MHz	$-7dBm - \frac{7}{5} \cdot \left(\frac{f - offset}{MHz} - 0.05\right) dB$	100 kHz
$5 \text{ MHz} \leq \Delta f < 10 \text{ MHz}$	5.05 MHz ≤ f_offset < 10.05 MHz	-14 dBm	100 kHz
10 MHz $\leq \Delta f \leq \Delta f_{max}$	10.05 MHz ≤ f_offset < f_offset _{max}	-13 dBm	100 kHz

For E-UTRA BS operating in Bands 1, 2, 3, 4, 7, 9, 10, 11, 33, 34, 35, 36, 37, 38, 39, 40, emissions shall not exceed the maximum levels specified in Tables 6.6.3.1-4 to 6.6.3.1-6:

Table 6.6.3.1-4: General operating band unwanted emission limits for 1.4 MHz channel bandwidth (E-UTRA bands >1GHz) for Category A

Frequency offset of measurement filter -3dB point, Δf	Frequency offset of measurement filter centre frequency, f_offset	Minimum requirement	Measurement bandwidth (Note 1)
0 MHz ≤ Δf < 1.4 MHz	0.05 MHz ≤ f_offset < 1.45 MHz	$-1dBm - \frac{10}{1.4} \cdot \left(\frac{f_offset}{MHz} - 0.05\right) dB$	100 kHz
1.4 MHz ≤ Δf < 2.8 MHz	1.45 MHz ≤ f_offset < 2.85 MHz	-11 dBm	100 kHz
$2.8 \text{ MHz} \leq \Delta f \leq \Delta f_{\text{max}}$	$3.3 \text{ MHz} \leq f_\text{offset} < f_\text{offset}_{\text{max}}$	-13 dBm	1MHz

Table 6.6.3.1-5: General operating band unwanted emission limits for 3 MHz channel bandwidth (E-UTRA bands >1GHz) for Category A

Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Minimum requirement	Measurement bandwidth (Note 1)
0 MHz ≤ Δf < 3 MHz	0.05 MHz ≤ f_offset < 3.05 MHz	$-5dBm - \frac{10}{3} \cdot \left(\frac{f - offset}{MHz} - 0.05\right)dB$	100 kHz
$3 \text{ MHz} \leq \Delta f < 6 \text{ MHz}$	3.05 MHz ≤ f_offset < 6.05 MHz	-15 dBm	100 kHz
$6 \text{ MHz} \leq \Delta f \leq \Delta f_{\text{max}}$	6.5 MHz ≤ f_offset < f_offset _{max}	-13 dBm	1MHz

Table 6.6.3.1-6: General operating band unwanted emission limits for 5, 10, 15 and 20 MHz channel bandwidth (E-UTRA bands >1GHz) for Category A

Frequency offset of measurement filter -3dB point, Δf	Frequency offset of measurement filter centre frequency, f_offset	Minimum requirement	Measurement bandwidth (Note 1)
0 MHz ≤ Δf < 5 MHz	0.05 MHz ≤ f_offset < 5.05 MHz	$-7dBm - \frac{7}{5} \cdot \left(\frac{f - offset}{MHz} - 0.05\right) dB$	100 kHz
5 MHz ≤ Δf < 10 MHz	5.05 MHz ≤ f_offset < 10.05 MHz	-14 dBm	100 kHz
10 MHz $\leq \Delta f \leq \Delta f_{max}$	$10.5 \text{ MHz} \le f_\text{offset} < f_\text{offset}_{max}$	-13 dBm	1MHz

6.6.3.2 Minimum requirements (Category B)

For E-UTRA BS operating in Bands 5, 6, 8, 12, 13, 14, emissions shall not exceed the maximum levels specified in Tables 6.6.3.2-1 to 6.6.3.2-3:

Table 6.6.3.2-1: General operating band unwanted emission limits for 1.4 MHz channel bandwidth (E-UTRA bands <1GHz) for Category B

Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Minimum requirement	Measurement bandwidth (Note 1)
0 MHz ≤ Δf < 1.4 MHz	0.05 MHz ≤ f_offset < 1.45 MHz	$-1dBm - \frac{10}{1.4} \cdot \left(\frac{f_offset}{MHz} - 0.05\right) dB$	100 kHz
$1.4 \text{ MHz} \leq \Delta f < 2.8 \text{ MHz}$	1.45 MHz ≤ f_offset < 2.85 MHz	-11 dBm	100 kHz
$2.8 \text{ MHz} \leq \Delta f \leq \Delta f_{\text{max}}$	2.85 MHz ≤ f offset < f offset _{max}	-16 dBm	100 kHz

Table 6.6.3.2-2: General operating band unwanted emission limits for 3 MHz channel bandwidth (E-UTRA bands <1GHz) for Category B

Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Minimum requirement	Measurement bandwidth (Note 1)
0 MHz ≤ Δf < 3 MHz	0.05 MHz ≤ f_offset < 3.05 MHz	$-5dBm - \frac{10}{3} \cdot \left(\frac{f - offset}{MHz} - 0.05\right)dB$	100 kHz
3 MHz ≤ Δf < 6 MHz	3.05 MHz ≤ f_offset < 6.05 MHz	-15 dBm	100 kHz
$6 \text{ MHz} \leq \Delta f \leq \Delta f_{\text{max}}$	6.05 MHz ≤ f_offset < f_offset _{max}	-16 dBm	100 kHz

Table 6.6.3.2-3: General operating band unwanted emission limits for 5, 10, 15 and 20 MHz channel bandwidth (E-UTRA bands <1GHz) for Category B

Frequency offset of measurement filter -3dB point, Δf	Frequency offset of measurement filter centre frequency, f_offset	Minimum requirement	Measurement bandwidth (Note 1)
0 MHz ≤ Δf < 5 MHz	0.05 MHz ≤ f_offset < 5.05 MHz	$-7dBm - \frac{7}{5} \cdot \left(\frac{f - offset}{MHz} - 0.05\right)dB$	100 kHz
5 MHz ≤ Δf < 10 MHz	5.05 MHz ≤ f_offset < 10.05 MHz	-14 dBm	100 kHz
10 MHz $\leq \Delta f \leq \Delta f_{max}$	10.05 MHz ≤ f_offset < f_offset _{max}	-16 dBm	100 kHz

For E-UTRA BS operating in Bands 1, 2, 3, 4, 7, 9, 10, 11, 33, 34, 35, 36, 37, 38, 39, 40, emissions shall not exceed the maximum levels specified in Tables 6.6.3.2-4 to 6.6.3.2-6:

Table 6.6.3.2-4: General operating band unwanted emission limits for 1.4 MHz channel bandwidth (E-UTRA bands >1GHz) for Category B

Frequency offset of measurement filter -3dB point, Δf	Frequency offset of measurement filter centre frequency, f_offset	Minimum requirement	Measurement bandwidth (Note 1)
0 MHz ≤ Δf < 1.4 MHz	0.05 MHz ≤ f_offset < 1.45 MHz	$-1dBm - \frac{10}{1.4} \cdot \left(\frac{f_offset}{MHz} - 0.05\right) dB$	100 kHz
1.4 MHz ≤ Δf < 2.8 MHz	1.45 MHz ≤ f_offset < 2.85 MHz	-11 dBm	100 kHz
$2.8~MHz \leq \Delta f \leq \Delta f_{max}$	$3.3 \text{ MHz} \leq f_offset < f_offset_{max}$	-15 dBm	1MHz

Table 6.6.3.2-5: General operating band unwanted emission limits for 3 MHz channel bandwidth (E-UTRA bands >1GHz) for Category B

Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Minimum requirement	Measurement bandwidth (Note 1)
$0 \text{ MHz} \leq \Delta f < 3 \text{ MHz}$	0.05 MHz ≤ f_offset < 3.05 MHz	$-5dBm - \frac{10}{3} \cdot \left(\frac{f - offset}{MHz} - 0.05\right) dB$	100 kHz
3 MHz ≤ Δf < 6 MHz	3.05 MHz ≤ f_offset < 6.05 MHz	-15 dBm	100 kHz
$6 \text{ MHz} < \Lambda f < \Lambda f_{max}$	6.5 MHz < f_offset < f_offset_max	-15 dBm	1MHz

Table 6.6.3.2-6: General operating band unwanted emission limits for 5, 10, 15 and 20 MHz channel bandwidth (E-UTRA bands >1GHz) for Category B

Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Minimum requirement	Measurement bandwidth (Note 1)
0 MHz ≤ Δf < 5 MHz	0.05 MHz ≤ f_offset < 5.05 MHz	$-7dBm - \frac{7}{5} \cdot \left(\frac{f - offset}{MHz} - 0.05\right) dB$	100 kHz
5 MHz ≤ Δf < 10 MHz	5.05 MHz ≤ f_offset < 10.05 MHz	-14 dBm	100 kHz
10 MHz $\leq \Delta f \leq \Delta f_{max}$	10.5 MHz ≤ f_offset < f_offset _{max}	-15 dBm	1MHz

6.6.3.3 Additional requirements

In certain regions the following requirement may apply. For E-UTRA BS operating in Bands 5, emissions shall not exceed the maximum levels specified in Tables 6.6.3.3-1.

Table 6.6.3.3-1: Additional operating band unwanted emission limits for E-UTRA bands <1GHz

Channel bandwidth	Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Minimum requirement	Measurement bandwidth (Note 1)
1.4 MHz	$0 \text{ MHz} \leq \Delta f < 1 \text{ MHz}$	0.005 MHz ≤ f_offset < 0.995 MHz	-14 dBm	10 kHz
3 MHz	$0 \text{ MHz} \leq \Delta f < 1 \text{ MHz}$	0.015 MHz ≤ f_offset < 0.985 MHz	-13 dBm	30 kHz
5 MHz	$0 \text{ MHz} \leq \Delta f < 1 \text{ MHz}$	0.015 MHz ≤ f_offset < 0.985 MHz	-15 dBm	30 kHz
10 MHz	$0 \text{ MHz} \leq \Delta f < 1 \text{ MHz}$	0.05 MHz ≤ f_offset < 0.95 MHz	-13 dBm	100 kHz
15 MHz	$0 \text{ MHz} \leq \Delta f < 1 \text{ MHz}$	0.05 MHz ≤ f_offset < 0.95 MHz	-13 dBm	100 kHz
20 MHz	$0 \text{ MHz} \leq \Delta f < 1 \text{ MHz}$	0.05 MHz ≤ f_offset < 0.95 MHz	-13 dBm	100 kHz
All	1 MHz $\leq \Delta f < \Delta f_{max}$	$1.05 \text{ MHz} \le f_{\text{offset}} < f_{\text{offset}_{\text{max}}}$	-13 dBm	100 kHz

In certain regions the following requirement may apply. For E-UTRA BS operating in Bands 2, 4, 10, 35, 36, emissions shall not exceed the maximum levels specified in Table 6.6.3.2-2.

Table 6.6.3.3-2: Additional operating band unwanted emission limits for E-UTRA bands>1GHz

Channel bandwidth	Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Minimum requirement	Measurement bandwidth (Note 1)
1.4 MHz	$0 \text{ MHz} \leq \Delta f < 1 \text{ MHz}$	0.005 MHz ≤ f_offset < 0.995 MHz	-14 dBm	10 kHz
3 MHz	$0 \text{ MHz} \leq \Delta f < 1 \text{ MHz}$	0.015 MHz ≤ f_offset < 0.985 MHz	-13 dBm	30 kHz
5 MHz	$0 \text{ MHz} \leq \Delta f < 1 \text{ MHz}$	0.015 MHz ≤ f_offset < 0.985 MHz	-15 dBm	30 kHz
10 MHz	$0 \text{ MHz} \leq \Delta f < 1 \text{ MHz}$	0.05 MHz ≤ f_offset < 0.95 MHz	-13 dBm	100 kHz
15 MHz	$0 \text{ MHz} \leq \Delta f < 1 \text{ MHz}$	0.05 MHz ≤ f_offset < 0.95 MHz	-15 dBm	100 kHz
20 MHz	$0 \text{ MHz} \leq \Delta f < 1 \text{ MHz}$	0.05 MHz ≤ f_offset < 0.95 MHz	-16 dBm	100 kHz
All	1 MHz $\leq \Delta f < \Delta f_{max}$	1.5 MHz ≤ f_offset < f_offset _{max}	-13 dBm	1 MHz

In certain regions the following requirement may apply. For E-UTRA BS operating in Bands 12, 13, 14, emissions shall not exceed the maximum levels specified in Table 6.6.3.3-3.

Table 6.6.3.3-3: Additional operating band unwanted emission limits for E-UTRA (bands 12, 13 and 14)

Channel bandwidth	Frequency offset of measurement filter -3dB point, Δf	Frequency offset of measurement filter centre frequency, f_offset	Minimum requirement	Measurement bandwidth (Note 1)
All	0 MHz ≤ Δf < 100 kHz	0.015 MHz ≤ f_offset < 0.085 MHz	-13 dBm	30 kHz
All	100 kHz $\leq \Delta f < \Delta f_{max}$	150 kHz ≤ f_offset < f_offset _{max}	-13 dBm	100 kHz

NOTE 1: As a general rule for the requirements in Clause 6.6., the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth can be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

NOTE 2: The definition of the frequency offset for Bands 2, 4, 5, 10, 35, 36, 37, 12, 13 and 14 may need to be revised and is for further study.

6.6.4 Transmitter spurious emissions

The transmitter spurious emission limits apply from 9 kHz to 12.75 GHz, excluding the frequency range from 10 MHz below the lowest frequency of the BS transmitter operating band up to 10 MHz above the highest frequency of the BS transmitter operating band. Exceptions are the requirement in Table 6.6.4.3-2 and 6.6.4.3-3 that apply also closer than 10 MHz from operating band.

The requirements shall apply whatever the type of transmitter considered (single carrier or multi-carrier). It applies for all transmission modes foreseen by the manufacturer's specification. Unless otherwise stated, all requirements are measured as mean power (RMS).

6.6.4.1 Mandatory Requirements

The requirements of either subclause 6.6.4.1.1 or subclause 6.6.4.1.2 shall apply.

6.6.4.1.1 Spurious emissions (Category A)

6.6.4.1.1.1 Minimum Requirement

The power of any spurious emission shall not exceed the limits in Table 6.6.4.1.1.1-1

Table 6.6.4.1.1.1-1: BS Spurious emission limits, Category A

Band	Maximum level	Measurement Bandwidth	Note
9kHz - 150kHz		1 kHz	Note 1
150kHz - 30MHz	-13 dBm	10 kHz	Note 1
30MHz - 1GHz	- 13 UDIII	100 kHz	Note 1
1GHz - 12.75 GHz		1 MHz	Note 2

NOTE 1: Bandwidth as in ITU-R SM.329 [2], s4.1

NOTE 2: Bandwidth as in ITU-R SM.329 [2] , s4.1. Upper frequency as in ITU-R SM.329 [2] , s2.5

table 1

6.6.4.1.2 Spurious emissions (Category B)

6.6.4.1.2.1 Minimum Requirement

The power of any spurious emission shall not exceed the limits in Table 6.6.4.1.2.1-1

Table 6.6.4.1.2.1-1: BS Spurious emissions limits, Category B

Band	Maximum Level	Measurement Bandwidth	Note
9 kHz ↔ 150 kHz	-36 dBm	1 kHz	Note 1
150 kHz ↔ 30 MHz	-36 dBm	10 kHz	Note 1
30 MHz ↔ 1 GHz	-36 dBm	100 kHz	Note 1
1 GHz ↔ 12.75 GHz	-30 dBm	1 MHz	Note 2

NOTE 1: Bandwidth as in ITU-R SM.329 [2], s4.1

NOTE 2: Bandwidth as in ITU-R SM.329 [2], s4.1. Upper frequency as in ITU-R SM.329 [2], s2.5 table 1

6.6.4.2 Protection of the BS receiver of own or different BS

This requirement shall be applied for E-UTRA FDD operation in paired frequency bands in order to prevent the receivers of the BSs being desensitised by emissions from a BS transmitter. It is measured at the transmit antenna port for any type of BS which has common or separate Tx/Rx antenna ports.

6.6.4.2.1 Minimum Requirement

The power of any spurious emission shall not exceed the limits in Table 6.6.4.2-1.

Table 6.6.4.2-1: BS Spurious emissions limits for protection of the BS receiver

Frequency range	Maximum Level	Measurement Bandwidth	Note
F _{UL_low} - F _{UL_high}	-96 dBm	100 kHz	

6.6.4.3 Co-existence with other systems in the same geographical area

These requirements may be applied for the protection of UE, MS and/or BS operating in other frequency bands in the same geographical area. The requirements may apply in geographic areas in which both E-UTRA BS and a system operating in another frequency band than the E-UTRA operating band are deployed. The system operating in the other frequency band may be GSM900, DCS1800, PCS1900, GSM850, UTRA FDD/TDD and/or E-UTRA.

The power of any spurious emission shall not exceed the limits of Table 6.6.4.3-1 for a BS where requirements for coexistence with the system listed in the first column apply.

Table 6.6.4.3-1: BS Spurious emissions limits for E-UTRA BS in geographic coverage area of systems operating in other frequency bands

System type operating in the same geographical area	Band for co- existence requirement	Maximu m Level	Measurement Bandwidth	Note
GSM900	921 - 960 MHz	-57 dBm	100 kHz	This requirement does not apply to E-UTRA BS operating in band 8
	876 - 915 MHz	-61 dBm	100 kHz	For the frequency range 880-915 MHz, this requirement does not apply to E-UTRA BS operating in band 8, since it is already covered by the requirement in sub-clause 6.6.4.2.
DCS1800	1805 - 1880 MHz	-47 dBm	100 kHz	This requirement does not apply to E-UTRA BS operating in band 3.
	1710 - 1785 MHz	-61 dBm	100 kHz	This requirement does not apply to E-UTRA BS operating in band 3, since it is already covered by the requirement in sub-clause 6.6.4.2.
PCS1900	1930 - 1990 MHz	-47 dBm	100 kHz	This requirement does not apply to E-UTRA BS operating in band 2 or band 36.
	1850 - 1910 MHz	-61 dBm	100 kHz	This requirement does not apply to E-UTRA BS operating in band 2, since it is already covered by the requirement in sub-clause 6.6.4.2. This requirement does not apply to E-UTRA BS operating in band 35.
GSM850	869 - 894 MHz	-57 dBm	100 kHz	This requirement does not apply to E-UTRA BS operating in band 5
	824 - 849 MHz	-61 dBm	100 kHz	This requirement does not apply to E-UTRA BS operating in band 5, since it is already covered by the requirement in sub-clause 6.6.4.2.
UTRA FDD Band I or	2110 - 2170 MHz	-52 dBm	1 MHz	This requirement does not apply to E-UTRA BS operating in band 1,
E-UTRA Band 1	1920 - 1980 MHz	-49 dBm	1 MHz	This requirement does not apply to E-UTRA BS operating in band 1, since it is already covered by the requirement in sub-clause 6.6.4.2.
UTRA FDD Band II or	1930 - 1990 MHz	-52 dBm	1 MHz	This requirement does not apply to E-UTRA BS operating in band 2.
E-UTRA Band 2	1850 - 1910 MHz	-49 dBm	1 MHz	This requirement does not apply to E-UTRA BS operating in band 2, since it is already covered by the requirement in sub-clause 6.6.4.2
UTRA FDD Band III or E-UTRA Band 3	1805 - 1880 MHz	-52 dBm	1 MHz	This requirement does not apply to E-UTRA BS operating in band 3.
,	1710 - 1785 MHz	-49 dBm	1 MHz	This requirement does not apply to E-UTRA BS operating in band 3, since it is already covered by the requirement in sub-clause 6.6.4.2.
UTRA FDD Band IV or	2110 - 2155 MHz	-52 dBm	1 MHz	This requirement does not apply to E-UTRA BS operating in band 4
E-UTRA Band 4	1710 - 1755 MHz	-49 dBm	1 MHz	This requirement does not apply to E-UTRA BS operating in band 4, since it is already covered by the requirement in sub-clause 6.6.4.2.
UTRA FDD Band V or	869 - 894 MHz	-52 dBm	1 MHz	This requirement does not apply to E-UTRA BS operating in band 5
E-UTRA Band 5	824 - 849 MHz	-49 dBm	1 MHz	This requirement does not apply to E-UTRA BS operating in band 5, since it is already covered by the requirement in sub-clause 6.6.4.2.
UTRA FDD Band VI or	860 - 895 MHz	-52 dBm	1 MHz	This requirement does not apply to E-UTRA BS operating in band 6
E-UTRA Band 6	815 - 850 MHz	-49 dBm	1 MHz	This requirement does not apply to E-UTRA BS operating in band 6, since it is already covered by the requirement in sub-clause 6.6.4.2.

UTRA FDD	2620 - 2690 MHz	-52 dBm	1 MHz	This requirement does not apply to E-UTRA BS
Band VII or E-UTRA Band 7				operating in band 7.
•	2500 - 2570 MHz	-49 dBm	1 MHz	This requirement does not apply to E-UTRA BS operating in band 7, since it is already covered by the requirement in sub-clause 6.6.4.2.
UTRA FDD Band VIII or E-UTRA Band 8	925 - 960 MHz	-52 dBm	1 MHz	This requirement does not apply to E-UTRA BS operating in band 8.
Ū	880 - 915 MHz	-49 dBm	1 MHz	This requirement does not apply to E-UTRA BS operating in band 8, since it is already covered by the requirement in sub-clause 6.6.4.2.
UTRA FDD Band IX or E-UTRA Band 9	1844.9 - 1879.9 MHz	-52 dBm	1 MHz	This requirement does not apply to E-UTRA BS operating in band 9.
	1749.9 - 1784.9 MHz	-49 dBm	1 MHz	This requirement does not apply to E-UTRA BS operating in band 9, since it is already covered by the requirement in sub-clause 6.6.4.2.
UTRA FDD Band X or E-UTRA Band 10	2110 - 2170 MHz	-52 dBm	1 MHz	This requirement does not apply to E-UTRA BS operating in band 10
	1710 - 1770 MHz	-49 dBm	1 MHz	This requirement does not apply to E-UTRA BS operating in band 10, since it is already covered by the requirement in sub-clause 6.6.4.2.
UTRA FDD Band XI or E-UTRA Band 11	1475.9 - 1500.9 MHz	-52 dBm	1 MHz	This requirement does not apply to E-UTRA BS operating in band 11
	1427.9 - 1452.9 MHz	-49 dBm	1 MHz	This requirement does not apply to E-UTRA BS operating in band 11, since it is already covered by the requirement in sub-clause 6.6.4.2.
UTRA FDD Band XII or E-UTRA Band 12	728 - 746 MHz	-52 dBm	1 MHz	This requirement does not apply to E-UTRA BS operating in band 12.
	698 - 716 MHz	-49 dBm	1 MHz	This requirement does not apply to E-UTRA BS operating in band 12, since it is already covered by the requirement in sub-clause 6.6.4.2.
UTRA FDD Band XIII or E-UTRA Band 13	746 - 756 MHz	-52 dBm	1 MHz	This requirement does not apply to E-UTRA BS operating in band 13.
	777 - 787 MHz	-49 dBm	1 MHz	This requirement does not apply to E-UTRA BS operating in band 13, since it is already covered by the requirement in sub-clause 6.6.4.2.
UTRA FDD Band XIV or E-UTRA Band 14	758 - 768 MHz	-52 dBm	1 MHz	This requirement does not apply to E-UTRA BS operating in band 14.
	788 - 798 MHz	-49 dBm	1 MHz	This requirement does not apply to E-UTRA BS operating in band 14, since it is already covered by the requirement in sub-clause 6.6.4.2.
UTRA TDD in Band a) or E- UTRA Band 33	1900 - 1920 MHz	-52 dBm	1 MHz	This requirement does not apply to E-UTRA BS operating in Band 33
UTRA TDD in Band a) or E- UTRA Band 34	2010 - 2025 MHz	-52 dBm	1 MHz	This requirement does not apply eto E-UTRA BS operating in Band 34
UTRA TDD in Band b) or E- UTRA Band 35	1850 – 1910 MHz	-52 dBm	1 MHz	This requirement does not apply to E-UTRA BS operating in Band 35
UTRA TDD in Band b) or E- UTRA Band 36	1930 - 1990 MHz	-52 dBm	1 MHz	This requirement does not apply to E-UTRA BS operating in Band 2 and 36

UTRA TDD in	1910 - 1930 MHz	-52 dBm	1 MHz	This is not applicable to E-UTRA BS operating in Band
Band c) or E-				37. This unpaired band is defined in ITU-R M.1036,
UTRA Band 37				but is pending any future deployment.
UTRA TDD in	2570 – 2620 MHz	-52 dBm	1 MHz	This requirement does not apply to E-UTRA BS
Band d) or E-				operating in Band 38.
UTRA Band 38				
E-UTRA Band	1880 - 1920MHz	-52 dBm	1 MHz	This is not applicable to E-UTRA BS operating in Band
39				39
E-UTRA Band	2300 - 2400MHz	-52 dBm	1 MHz	This is not applicable to E-UTRA BS operating in Band
40				40

NOTE 1: As defined in the scope for spurious emissions in this clause, the co-existence requirements in Table 6.6.4.3-1 do not apply for the 10 MHz frequency range immediately outside the BS transmit frequency range of an operating band (see Table 5.3-1). This is also the case when the transmit frequency range is adjacent to the Band for the co-existence requirement in the table. Emission limits for this excluded frequency range may also be covered by local or regional requirements.

NOTE 2: The table above assumes that two operating bands, where the frequency ranges in Table 5.3-1 would be overlapping, are not deployed in the same geographical area. For such a case of operation with overlapping frequency arrangements in the same geographical area, special co-existence requirements may apply that are not covered by the 3GPP specifications.

The following requirement may be applied for the protection of PHS in geographic areas in which both PHS and E-UTRA are deployed. This requirement is also applicable at specified frequencies falling between 10 MHz below the lowest BS transmitter frequency of the operating band and 10 MHz above the highest BS transmitter frequency of the operating band.

The power of any spurious emission shall not exceed:

Table 6.6.4.3-2: E-UTRA BS Spurious emissions limits for BS in geographic coverage area of PHS

Band	Maximum Level	Measurement Bandwidth	Note
1884.5 - 1919.6 MHz	-41 dBm	300 kHz	

The following requirement shall be applied to BS operating in Bands 13 and 14 to ensure that appropriate interference protection is provided to 700 MHz public safety operations. This requirement is also applicable at the frequency range from 10 MHz below the lowest frequency of the BS transmitter operating band up to 10 MHz above the highest frequency of the BS transmitter operating band.

The power of any spurious emission shall not exceed:

Table 6.6.4.3-3: BS Spurious emissions limits for protection of public safety operations

Operating Band	Band	Maximum Level	Measurement Bandwidth	Note
13	763 - 775 MHz	-46 dBm	6.25 kHz	
13	793 - 805 MHz	-46 dBm	6.25 kHz	
14	769 - 775 MHz	-46 dBm	6.25 kHz	
14	799 - 805 MHz	-46 dBm	6.25 kHz	

6.6.4.4 Co-location with other base stations

These requirements may be applied for the protection of other BS receivers when GSM900, DCS1800, PCS1900, GSM850, UTRA FDD, UTRA TDD and/or E-UTRA BS are co-located with an E-UTRA BS.

The requirements assume a 30 dB coupling loss between transmitter and receiver.

NOTE: For co-location with UTRA, the requirements are based on co-location with Wide Area UTRA FDD or TDD base stations.

The power of any spurious emission shall not exceed the limits of Table 6.6.4.4-1 for a BS where requirements for colocation with a BS type listed in the first column apply.

Table 6.6.4.4-1: BS Spurious emissions limits for BS co-located with another BS

Type of co-located BS	Band for co-location	Maximum	Measurement	Note
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	requirement	Level	Bandwidth	
Macro GSM900	876-915 MHz	-98 dBm	100 kHz	
Macro DCS1800	1710 - 1785 MHz	-98 dBm	100 kHz	
Macro PCS1900	1850 - 1910 MHz	-98 dBm	100 kHz	
Macro GSM850	824 - 849 MHz	-98 dBm	100 kHz	
UTRA FDD Band I or E-	1920 - 1980 MHz	-96 dBm	100 kHz	
UTRA Band 1				
UTRA FDD Band II or E- UTRA Band 2	1850 - 1910 MHz	-96 dBm	100 kHz	
UTRA FDD Band III or E- UTRA Band 3	1710 - 1785 MHz	-96 dBm	100 kHz	
UTRA FDD Band IV or E- UTRA Band 4	1710 - 1755 MHz	-96 dBm	100 kHz	
UTRA FDD Band V or E- UTRA Band 5	824 - 849 MHz	-96 dBm	100 kHz	
UTRA FDD Band VI or E- UTRA Band 6	815 - 850 MHz	-96 dBm	100 kHz	
UTRA FDD Band VII or E-UTRA Band 7	2500 - 2570 MHz	-96 dBm	100 KHz	
UTRA FDD Band VIII or E-UTRA Band 8	880 - 915 MHz	-96 dBm	100 KHz	
UTRA FDD Band IX or E- UTRA Band 9	1749.9 - 1784.9 MHz	-96 dBm	100 KHz	
UTRA FDD Band X or E- UTRA Band 10	1710 - 1770 MHz	-96 dBm	100 kHz	
UTRA FDD Band XI or E- UTRA Band 11	1427.9 - 1452.9 MHz	-96 dBm	100 kHz	
UTRA FDD Band XII or E-UTRA Band 12	698 - 716 MHz	-96 dBm	100 kHz	
UTRA FDD Band XIII or E-UTRA Band 13	777 - 787 MHz	-96 dBm	100 kHz	
UTRA FDD Band XIV or E-UTRA Band 14	788 - 798 MHz	-96 dBm	100 kHz	
UTRA TDD in Band a) or E-UTRA Band 33	1900 - 1920 MHz	-96 dBm	100 kHz	This is not applicable to E- UTRA BS operating in Band 33
UTRA TDD in Band a) or E-UTRA Band 34	2010 - 2025 MHz	-96 dBm	100 kHz	This is not applicable to E- UTRA BS operating in Band 34
UTRA TDD in Band b) or E-UTRA Band 35	1850 – 1910 MHz	-96 dBm	100 kHz	This is not applicable to E- UTRA BS operating in Band 35
UTRA TDD in Band b) or E-UTRA Band 36	1930 - 1990 MHz	-96 dBm	100 kHz	This is not applicable to E- UTRA BS operating in Band 2 and 36
UTRA TDD in Band c) or E-UTRA Band 37	1910 - 1930 MHz	-96 dBm	100 kHz	This is not applicable to E-UTRA BS operating in Band 37. This unpaired band is defined in ITU-R M.1036, but is pending any future deployment.

UTRA TDD in Band d) or E-UTRA Band 38	2570 – 2620 MHz	-96 dBm	100 kHz	This is not applicable to E- UTRA BS operating in Band 38.
E-UTRA Band 39	1880 – 1920MHz	-96 dBm	100 kHz	This is not applicable to E- UTRA BS operating in Band 33 and 39
E-UTRA Band 40	2300 – 2400MHz	-96 dBm	100 kHz	This is not applicable to E- UTRA BS operating in Band 40

- NOTE 1: As defined in the scope for spurious emissions in this clause, the co-location requirements in Table 6.6.4.4-1 do not apply for the 10 MHz frequency range immediately outside the BS transmit frequency range of an operating band (see Table 5.3-1). This is also the case when the transmit frequency range is adjacent to the Band for the co-location requirement in the table. The current state-of-the-art technology does not allow a single generic solution for co-location with other system on adjacent frequencies for 30dB BS-BS minimum coupling loss. However, there are certain site-engineering solutions that can be used. These techniques are addressed in TR 25.942 [13].
- NOTE 2: The table above assumes that two operating bands, where the corresponding eNode B transmit and receive frequency ranges in Table 5.3-1 would be overlapping, are not deployed in the same geographical area. For such a case of operation with overlapping frequency arrangements in the same geographical area, special co-location requirements may apply that are not covered by the 3GPP specifications.
- NOTE 3: Co-located TDD base stations that are synchronized and using the same operating band can transmit without special co-locations requirements. For unsynchronized base stations, special co-location requirements may apply that are not covered by the 3GPP specifications.

6.7 Transmitter intermodulation

The transmit intermodulation requirement is a measure of the capability of the transmitter to inhibit the generation of signals in its non linear elements caused by presence of the own transmit signal and an interfering signal reaching the transmitter via the antenna

6.7.1 Minimum requirement

The transmitter intermodulation level is the power of the intermodulation products when an interfering signal is injected into the antenna connector. The wanted signal channel bandwidth $BW_{Channel}$ shall be the maximum bandwidth supported by the base station. The offset of the interfering signal from the wanted signal shall be as in Table 6.7.1-1.

Table 6.7.1-1 Interfering and wanted signals for the Transmitter intermodulation requirement

Parameter	Value		
Wanted signal	E-UTRA signal of maximum channel bandwidth		
	BW _{Channel}		
Interfering signal type	E-UTRA signal of channel bandwidth 5 MHz		
Interfering signal level	Mean power level 30 dB below the mean power		
	of the wanted signal		
Interfering signal centre	-BW _{Channel} /2 - 12.5 MHz		
frequency offset from	-BW _{Channel} /2 - 7.5 MHz		
wanted signal carrier	-BW _{Channel} /2 - 2.5 MHz		
centre frequency	BW _{Channel} /2 + 2.5 MHz		
	BW _{Channel} /2 + 7.5 MHz		
	BW _{Channel} /2 + 12.5 MHz		
	Interfering signal positions that are partially or completely outside		
of the operating frequency band of the base station are excluded			
from the requirement.			

The transmitter intermodulation level shall not exceed the unwanted emission limits in Clause 6.6 in the presence of an interfering signal according to Table 6.7.1-1. The measurement can be limited to frequencies on which third and fifth order intermodulation products appear, considering the width of these products.

7 Receiver characteristics

7.1 General

The requirements in Section 7 assume reception with a single antenna. In case of multiple receive antennas the requirements apply to each antenna connector separately, with the other one(s) terminated or disabled. Unless otherwise stated, the requirements remain unchanged.

Unless otherwise stated, the receiver characteristics are specified at the BS antenna connector (test port A) with a full complement of transceivers for the configuration in normal operating conditions. If any external apparatus such as a RX amplifier, a filter or the combination of such devices is used, requirements apply at the far end antenna connector (port B).

Figure 7.1: Receiver test ports

The throughput requirements defined for the receiver characteristics in this clause do not assume HARQ retransmissions.

7.2 Reference sensitivity level

The reference sensitivity power level $P_{REFSENS}$ is the minimum mean power received at the antenna connector at which a throughput requirement shall be met for a specified reference measurement channel.

7.2.1 Minimum requirement

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channel as specified in Annex A with parameters specified in Table 7.2.1-1.

Table 7.2.1-1: BS reference sensitivity levels

E-UTRA channel bandwidth [MHz]	Reference measurement channel	Reference sensitivity power level, PREFSENS [dBm]
1.4	FRC A1-1 in Annex A.1	-107.3
3	FRC A1-2 in Annex A.1	-103.6
5	FRC A1-3 in Annex A.1	-101.6
10	FRC A1-3 in Annex A.1*	-101.6
15	FRC A1-3 in Annex A.1*	-101.6
20	FRC A1-3 in Annex A.1*	-101.6

Note*:

P_{REFSENS} is the power level of a single instance of the reference measurement channel. This requirement shall be met for each consecutive application of a single instance of FRC A1-3 mapped to disjoint frequency ranges with a width of 25 resource blocks each

7.3 Dynamic range

The dynamic range is specified as a measure of the capability of the receiver to receive a wanted signal in the presence of an interfering signal inside the received frequency channel at which a throughput requirement shall be met for a specified reference measurement channel. The interfering signal for the dynamic range requirement is an AWGN signal.

7.3.1 Minimum requirement

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channel as specified in Annex A with parameters specified in Table 7.3.1-1.

Table 7.3.1-1: Dynamic range

E-UTRA channel bandwidth [MHz]	Reference measurement channel	Wanted signal mean power [dBm]	Interfering signal mean power [dBm] /channel BW	Type of interfering signal
1.4	FRC A2-1 in Annex A.2	-76.8	-88.7	AWGN
3	FRC A2-2 in Annex A.2	-72.9	-84.7	AWGN
5	FRC A2-3 in Annex A.2	-70.8	-82.5	AWGN
10	FRC A2-3 in Annex A.2*	-70.8	-79.5	AWGN
15	FRC A2-3 in Annex A.2*	-70.8	-77.7	AWGN
20	FRC A2-3 in Annex A.2*	-70.8	-76.4	AWGN

Note*: The wanted signal mean power is the power level of a single instance of the reference measurement channel. This requirement shall be met for each consecutive application of a single instance of FRC A2-3 mapped to

disjoint frequency ranges with a width of 25 resource blocks each

7.4 In-channel selectivity

In-channel selectivity (ICS) is a measure of the receiver ability to receive a wanted signal at its assigned resource block locations in the presence of an interfering signal received at a larger power spectral density at which a throughput requirement shall be met for a specified reference measurement channel. The interfering signal shall be an E-UTRA signal as specified in Annex C.

7.4.1 Minimum requirement

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channel as specified in Annex A with parameters specified in Table 7.4.1-1.

E-UTRA Reference Wanted signal Interfering channel Type of interfering measurement mean power signal mean bandwidth signal power [dBm] channel [dBm] (MHz) A1-4 in Annex 1.4 MHz E-UTRA 1.4 [-106.7][-87] A.1 signal, 3 RBs A1-5 in Annex 3 MHz E-UTRA 3 [-102.6][-84] A.1 signal, 6 RBs A1-2 in Annex 5 MHz E-UTRA 5 [-100.6][-81] A.1 signal, 10 RBs A1-3 in Annex 10 MHz E-UTRA 10 [-98.6] [-77] A.1 signal, 25 RBs A1-3 in Annex 15 MHz E-UTRA 15 [-98.6] [-77] A.1* signal, 25 RBs* A1-3 in Annex 20 MHz E-UTRA 20 [-98.6][-77] signal, 25 RBs* A.1* Note*: Wanted and interfering signal are placed adjacently around DC

Table 7.4.1-1 E-UTRA BS in-channel selectivity

7.5 Adjacent Channel Selectivity (ACS) and narrow-band blocking

Adjacent channel selectivity (ACS) is a measure of the receiver ability to receive a wanted signal at its assigned channel frequency in the presence of an adjacent channel signal with a specified centre frequency offset of the interfering signal to the band edge of a victim system. The interfering signal shall be an E-UTRA signal as specified in Annex C.

7.5.1 Minimum requirement

The throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channel, with a wanted and an interfering signal coupled to the BS antenna input as specified in Tables 7.5.1-1 and 7.5.1-2 for narrowband blocking and in Table 7.5.1-3 for ACS. The reference measurement channel for the wanted signal is identified in Table 7.2.1-1 for each channel bandwidth and further specified in Annex A.

Table 7.5.1-1: Narrowband blocking requirement

	ed signal mean wer [dBm]	Interfering signal mean power [dBm]	Type of interfering signal	
P_{RE}	FSENS + 6dB*	-49	See Table 7.5.1-2	
Note*: P _{REFSENS} depends on the channel bandwidth as specified in Table 7.2.1-1.				

Table 7.5.1-2: Interfering signal for Narrowband blocking requirement

E-UTRA Assigned BW [MHz]	Interfering RB centre frequency offset to the channel edge of the wanted signal [kHz]	Type of interfering signal	
1.4	250+m*180, m=0, 1, 2, 3, 4, 5	1.4 MHz E-UTRA signal, 1 RB*	
3	240+m*180, m=0, 1, 2, 3, 4, 7, 10, 13	3 MHz E-UTRA signal, 1 RB*	
5	340+m*180, m=0, 1, 2, 3, 4, 9, 14, 19, 24	5 MHz E-UTRA signal, 1 RB*	
10	340+m*180, m=0, 1, 2, 3, 4, 9, 14, 19, 24	5 MHz E-UTRA signal, 1 RB*	
15	340+m*180, m=0, 1, 2, 3, 4, 9, 14, 19, 24	5 MHz E-UTRA signal, 1 RB*	
20	340+m*180, m=0, 1, 2, 3, 4, 9, 14, 19, 24	5 MHz E-UTRA signal, 1 RB*	
Note*: Interfering signal consisting of one resource block adjacent to the wanted signal			

Table 7.5.1-3: Adjacent channel selectivity

E-UTRA channel bandwidth [MHz]	Wanted signal mean power [dBm]	Interfering signal mean power [dBm]	Interfering signal centre frequency offset from the channel edge of the wanted signal [MHz]	Type of interfering signal
1.4	P _{REFSENS} + 11dB*	-52	0.7	1.4MHz E-UTRA signal
3	P _{REFSENS} + 8dB*	-52	1.5	3MHz E-UTRA signal
5	P _{REFSENS} + 6dB*	-52	2.5	5MHz E-UTRA signal
10	P _{REFSENS} + 6dB*	-52	2.5	5MHz E-UTRA signal
15	P _{REFSENS} + 6dB*	-52	2.5	5MHz E-UTRA signal
20	P _{REFSENS} + 6dB*	-52	2.5	5MHz E-UTRA signal
Note*: P	REFSENS depends on the c	hannel bandwidth	as specified in Table 7.2.1-1.	

7.6 Blocking

The blocking characteristics is a measure of the receiver ability to receive a wanted signal at its assigned channel frequency in the presence of an unwanted interferer, which are either a 1.4MHz, 3MHz or 5MHz E-UTRA signal for inband blocking or a CW signal for out-of-band blocking. The interfering signal shall be an E-UTRA signal as specified in Annex C.

The blocking performance requirement applies as specified in the tables 7.6.1-1 and 7.6.1-2 in section 7.6.1

7.6.1 General requirement

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channel, with a wanted and an interfering signal coupled to BS antenna input using the parameters in Table 7.6.1-1 and 7.6.1-2. The reference measurement channel for the wanted signal is identified in Table 7.2.1-1 for each channel bandwidth and further specified in Annex A.

Table 7.6.1-1: Blocking performance requirement for

Operating Band	•	ency nal [N	of Interfering IHz]	Interfering Signal mean power [dBm]	Wanted Signal mean power [dBm]	Interfering signal centre frequency minimum frequency offset from the channel edge of the wanted signal [MHz]	Type of Interfering Signal
1-7, 9-11, 13-14, 33-	(F _{UL_low} -20)	to	(F _{UL_high} +20)	-43	P _{REFSENS} +6dB*	See table 7.6.1-2	See table 7.6.1-2
40	1 (F _{UL_high} +20)	to to	(F _{UL_low} -20) 12750	-15	P _{REFSENS} +6dB*	_	CW carrier
8	(F _{UL_low} -20)	to	(F _{UL_high} +10)	-43	P _{REFSENS} +6dB*	See table 7.6.1-2	See table 7.6.1-2
	1 (F _{UL_high} +10)	to to	(F _{UL_low} -20) 12750	-15	P _{REFSENS} +6dB*	_	CW carrier
12	(F _{UL_low} -20)	to	(F _{UL_high} +12)	-43	P _{REFSENS} +6dB*	See table 7.6.1-2	See table 7.6.1-2
	1 (F _{UL_high} +12)	to to	(F _{UL_low} -20) 12750	-15	Prefsens +6dB*	_	CW carrier
Note*: P							

Table 7.6.1-2: Interfering signals for blocking performance requirement for

E-UTRA channel BW [MHz]	Interfering signal centre frequency minimum offset to the channel edge of the wanted signal [MHz]	Type of interfering signal
1.4	2.1	1.4MHz E-UTRA signal
3	4.5	3MHz E-UTRA signal
5	7.5	5MHz E-UTRA signal
10	7.5	5MHz E-UTRA signal
15	7.5	5MHz E-UTRA signal
20	7.5	5MHz E-UTRA signal

7.6.2 Co-location with other base stations

This additional blocking requirement may be applied for the protection of E-UTRA BS receivers when GSM, UTRA or E-UTRA BS operating in a different frequency band are co-located with an E-UTRA BS. The requirement is applicable to all channel bandwidths supported by the E-UTRA BS.

The requirements in this clause assume a 30 dB coupling loss between interfering transmitter and E-UTRA BS receiver.

NOTE: For co-location with UTRA, the requirements are based on co-location with Wide Area UTRA FDD or TDD base stations.

For a E-UTRA BS, the static reference performance as specified for reference sensitivity in section 7.2 shall be met with a wanted and an interfering signal coupled to the BS antenna input using the parameters in Table 7.6.1-3.

Table 7.6.1-3: Blocking performance requirement for E-UTRA BS when co-located with BS in other frequency bands.

Co-located BS type	Centre Frequency of Interfering Signal (MHz)	Interfering Signal mean power (dBm)	Wanted Signal mean power (dBm)	Type of Interfering Signal
Macro GSM850	869 – 894	+16	REFSENS + 6dB*	CW carrier
Macro GSM900	921 – 960	+16	REFSENS + 6dB*	CW carrier
Macro DCS1800	1805 – 1880	+16	REFSENS + 6dB*	CW carrier
Macro PCS1900	1930 – 1990	+16	REFSENS + 6dB*	CW carrier
UTRA FDD Band I or E-	1930 – 1990	710	KEI SENS + OUB	CVV Carrier
UTRA Band 1	2110 – 2170	+16	REFSENS + 6dB*	CW carrier
UTRA FDD Band II or E- UTRA Band 2	1930 – 1990	+16	REFSENS + 6dB*	CW carrier
UTRA FDD Band III or E- UTRA Band 3	1805 – 1880	+16	REFSENS + 6dB*	CW carrier
UTRA FDD Band IV or E- UTRA Band 4	2110 – 2155	+16	REFSENS + 6dB*	CW carrier
UTRA FDD Band V or E- UTRA Band 5	869 – 894	+16	REFSENS + 6dB*	CW carrier
UTRA FDD Band VI or E- UTRA Band 6	875 – 885	+16	REFSENS + 6dB*	CW carrier
UTRA FDD Band VII or E- UTRA Band 7	2620 – 2690	+16	REFSENS + 6dB*	CW carrier
UTRA FDD Band VIII or E- UTRA Band 8	925 – 960	+16	REFSENS + 6dB*	CW carrier
UTRA FDD Band IX or E- UTRA Band 9	1844.9 – 1879.9	+16	REFSENS + 6dB*	CW carrier
UTRA FDD Band X or E- UTRA Band 10	2110 – 2170	+16	REFSENS + 6dB*	CW carrier
UTRA FDD Band XI or E- UTRA Band 11	1475.9 - 1500.9	+16	REFSENS + 6dB*	CW carrier
UTRA FDD Band XII or E- UTRA Band 12	728 - 746	+16	REFSENS + 6dB*	CW carrier
UTRA FDD Band XIIII or E- UTRA Band 13	746 - 756	+16	REFSENS + 6dB*	CW carrier
UTRA FDD Band XIV or E- UTRA Band 14	758 - 768	+16	REFSENS + 6dB*	CW carrier
UTRA TDD in Band a)	1900-1920 2010-2025	+16	REFSENS + 6dB*	CW carrier
E-UTRA TDD in Band 33	1900-1920	+16	REFSENS + 6dB*	CW carrier
E-UTRA TDD in Band 34	2010-2025	+16	REFSENS + 6dB*	CW carrier
UTRA TDD in Band b)	1850-1910 1930-1990	+16	REFSENS + 6dB*	CW carrier
E-UTRA TDD in Band 35	1850-1910	+16	REFSENS + 6dB*	CW carrier
E-UTRA TDD in Band 36	1930-1990	+16	REFSENS + 6dB*	CW carrier
UTRA TDD in Band c) or	1910-1930	+16	REFSENS + 6dB*	CW carrier
E-UTRA TDD in Band 37 UTRA TDD in Band d) or E-UTRA in Band 38	2570-2620	+16	REFSENS + 6dB*	CW carrier
	1000 1000	146	DEEGENG : 64D*	CM corrier
E-UTRA in Band 39	1880-1920	+16	REFSENS + 6dB*	CW carrier
E-UTRA in Band 40 2300-2400 +16 REFSENS + 6dB* CW carr Note*: REFSENS is related to the channel bandwidth and specified in section 7.2				
NOTE: Some combinations of bands may not be possible to co-site based on the requirements				

Some combinations of bands may not be possible to co-site based on the requirements above. The current state-of-the-art technology does not allow a single generic solution for co-location of UTRA TDD or E-UTRA TDD with E-UTRA FDD on adjacent frequencies for 30dB BS-BS minimum coupling loss. However, there are certain site-engineering solutions that can be used. These techniques are addressed in TR 25.942 [8].

Note

7.7 Receiver spurious emissions

The spurious emissions power is the power of emissions generated or amplified in a receiver that appear at the BS receiver antenna connector. The requirements apply to all BS with separate RX and TX antenna ports. The test shall be performed when both TX and RX are on, with the TX port terminated.

For all BS with common RX and TX antenna port the transmitter spurious emission as specified in clause 6.6.4 is valid.

7.7.1 Minimum requirement

Band

The power of any spurious emission shall not exceed the levels in Table 7.7.1-1:

Maximum

Table 7.7.1-1: General spurious emission minimum requirement

Measurement

level					
30MHz - 1 GHz -57 dBm 100 kHz					
-47 dBm	1 MHz				
NOTE: The frequency range between 2.5 * BW _{Channel} below the first carrier frequency and					
2.5 * BW _{Channel} above the last carrier frequency transmitted by the BS, where BW _{Channel} is the					
channel bandwidth according to Table 5.2-1, may be excluded from the requirement.					
However, frequencies that are more than 10 MHz below the lowest frequency of the BS					
transmitter operating band or more than 10 MHz above the highest frequency of the BS					
transmitter operating band of more than 10 Miriz above the highest frequency of the BS transmitter operating band shall not be excluded from the requirement.					
	-57 dBm -47 dBm juency range bet V_{Channel} above th bandwidth acco or, frequencies the	-57 dBm 100 kHz -47 dBm 1 MHz quency range between 2.5 * BW _{Channel} W _{Channel} above the last carrier frequence bandwidth according to Table 5.2-1, er, frequencies that are more than 10 M ter operating band or more than 10 M			

In addition to the requirements in Table 7.7.1-1, the power of any spurious emission shall not exceed the levels specified for Protection of the E-UTRA FDD BS receiver of own or different BS in Clause 6.6.4.2 and for Co-existence with other systems in the same geographical area in Clause 6.6.4.3. In addition, the co-existence requirements for co-located base stations specified in subclause 6.6.4.4 may also be applied.

7.8 Receiver intermodulation

Third and higher order mixing of the two interfering RF signals can produce an interfering signal in the band of the desired channel. Intermodulation response rejection is a measure of the capability of the receiver to receive a wanted signal on its assigned channel frequency in the presence of two interfering signals which have a specific frequency relationship to the wanted signal. Interfering signals shall be a CW signal and an E-UTRA signal as specified in Annex C.

7.8.1 Minimum requirement

The throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channel, with a wanted signal at the assigned channel frequency and two interfering signals coupled to the BS antenna input, with the conditions specified in Tables 7.8.1-1 and 7.8.1-2 for intermodulation performance and in Table 7.8.1-3 for narrowband intermodulation performance. The reference measurement channel for the wanted signal is identified in Table 7.2.1-1 for each channel bandwidth and further specified in Annex A.

Table 7.8.1-1: Intermodulation performance requirement

	signal mean /er [dBm]	Interfering signal mean power [dBm]	Type of interfering signal		
Prefs	SENS + 6dB*	-52	See Table 7.8.1-2		
Note*:					

Table 7.8.1-2: Interfering signal for Intermodulation performance requirement

E-UTRA channel bandwidth [MHz]	Interfering signal centre frequency offset from the channel edge of the wanted signal [MHz]	Type of interfering signal
1.4	2.1	CW
1.4	4.9	1.4MHz E-UTRA signal
3	4.5	CW
3	10.5	3MHz E-UTRA signal
5	7.5	CW
5	17.5	5MHz E-UTRA signal
10	7.5	CW
10	17.7	5MHz E-UTRA signal
15	7.5	CW
13	18	5MHz E-UTRA signal
20	7.5	CW
20	18.2	5MHz E-UTRA signal

Table 7.8.1-3: Narrowband intermodulation performance requirement

E-UTRA channel bandwidth [MHz]	Wanted signal mean power [dBm]	Interfering signal mean power [dBm]	Interfering RB centre frequency offset from the channel edge of the wanted signal [kHz]	Type of interfering signal
		-52	270	CW
1.4	P _{REFSENS} + 6dB*	-52	790	1.4 MHz E-UTRA signal, 1 RB**
		-52	275	CW
3	P _{REFSENS} + 6dB*	-52	790	3.0 MHz E-UTRA signal, 1 RB**
		-52	360	CW
5	P _{REFSENS} + 6dB*	-52	1060	5 MHz E-UTRA signal, 1 RB**
	D . 64D*	-52	415	CW
10	P _{REFSENS} + 6dB* (***)	-52	1420	5 MHz E-UTRA signal, 1 RB**
	D + CdD*	-52	380	CW
15	P _{REFSENS} + 6dB* (***)	-52	1600	5MHz E-UTRA signal, 1 RB**
	D . C4D*	-52	345	CW
20	P _{REFSENS} + 6dB* (***)	-52	1780	5MHz E-UTRA signal, 1 RB**

Note*: Prefsens is related to the channel bandwidth as specified in Table 7.2.1-1.

Note**: Interfering signal consisting of one resource block positioned at the stated offset.

Note***: This requirement shall apply only for a FRC A1-3 mapped to the frequency range at the channel edge adjacent to the interfering signals

8 Performance requirement

8.1 General

Performance requirements for the BS are specified for the measurement channels defined in Annex A and the propagation conditions in Annex B. The requirements only apply to those measurement channels that are supported by the base station.

The SNR used in this section is defined as:

SNR = S / N

Where:

- S is the total signal energy in the subframe on a single antenna port.
- N is the noise energy in a bandwidth corresponding to the allocated bandwidth over the duration of a subframe.

8.2 Performance requirements for PUSCH

8.2.1 Requirements

The performance requirement of PUSCH is determined by a minimum required throughput for a given SNR. The required throughput is expressed as a fraction of maximum throughput for the FRCs listed in Annex A. The performance requirements assume HARQ retransmissions.

Table 8.2.1-1 Test parameters for testing PUSCH

Parameter	Value
Maximum number of HARQ transmissions	4
RV sequence	0, 2, 3, 1, 0, 2, 3, 1
Uplink-downlink allocation for TDD	Configuration 1 (2:2)

Table 8.2.1-2 Minimum requirements for PUSCH, 1.4 MHz Channel Bandwidth

Number of RX antennas	Cyclic prefix	Propagation conditions (Annex B)	FRC (Annex A)	Fraction of maximum throughput	SNR [dB]
2	Normal	EPA 5Hz	A3-2	30%	-4.0
				70%	0.3
			A4-3	70%	10.6
			A5-2	70%	17.5
		EVA 5Hz	A3-1	30%	-2.5
				70%	1.7
			A4-1	30%	5.0
				70%	12.0
			A5-1	70%	19.1
		EVA 70Hz	A3-2	30%	-3.6
				70%	0.7
			A4-3	30%	4.3
				70%	11.8
		ETU 70Hz	A3-1	30%	-2.4
				70%	2.1
		ETU 300Hz	A3-1	30%	-2.2
				70%	2.5
	Extended	ETU 70Hz	A4-2	30%	5.5
				70%	13.5
4	Normal	EPA 5Hz	A3-2	30%	-6.2
				70%	-2.8
			A4-3	70%	7.2
			A5-2	70%	14.3
		EVA 5Hz	A3-1	30%	-5.1
				70%	-1.7
			A4-1	30%	1.4
				70%	8.4
			A5-1	70%	15.4
		EVA 70Hz	A3-2	30%	-5.7
				70%	-2.2
			A4-4	30%	1.2
				70%	8.1
		ETU 70Hz	A3-1	30%	-5.0
				70%	-1.3
		ETU 300Hz	A3-1	30%	-4.9
				70%	-1.1
	Extended	ETU 70Hz	A4-2	30%	1.5
				70%	9.6

Table 8.2.1-3 Minimum requirements for PUSCH, 3 MHz Channel Bandwidth

Number of RX antennas	Cyclic prefix	Propagation conditions (Annex B)	FRC (Annex A)	Fraction of maximum throughput	SNR [dB]
2	Normal	EPA 5Hz	A3-3	30%	-4.4
				70%	0.0
			A4-4	70%	10.9
			A5-3	70%	18.0
		EVA 5Hz	A3-1	30%	-2.4
				70%	1.8
			A4-1	30%	4.8
				70%	12.2
			A5-1	70%	19.2
		EVA 70Hz	A3-3	30%	-3.8
				70%	0.3
			A4-4	30%	4.7
				70%	12.5
		ETU 70Hz	A3-1	30%	-2.3
				70%	2.2
		ETU 300Hz	A3-1	30%	-2.2
				70%	2.3
	Extended	ETU 70Hz	A4-2	30%	5.3
				70%	13.5
4	Normal	EPA 5Hz	A3-3	30%	-6.6
				70%	-3.3
			A4-4	70%	7.7
			A5-3	70%	14.6
		EVA 5Hz	A3-1	30%	-4.9
				70%	-1.5
			A4-1	30%	1.8
				70%	8.5
			A5-1	70%	15.6
		EVA 70Hz	A3-3	30%	-6.2
				70%	-2.6
			A4-4	30%	1.6
				70%	8.7
		ETU 70Hz	A3-1	30%	-4.7
				70%	-1.1
		ETU 300Hz	A3-1	30%	-4.6
				70%	-0.9
	Extended	ETU 70Hz	A4-2	30%	2.1
				70%	9.7

Table 8.2.1-4 Minimum requirements for PUSCH, 5 MHz Channel Bandwidth

Number of RX antennas	Cyclic prefix	Propagation conditions (Annex B)	FRC (Annex A)	Fraction of maximum throughput	SNR [dB]
2	Normal	EPA 5Hz	A3-4	30%	-4.4
				70%	-0.5
			A4-5	70%	10.4
			A5-4	70%	17.6
		EVA 5Hz	A3-1	30%	-2.4
				70%	1.7
			A4-1	30%	4.8
				70%	12.3
			A5-1	70%	19.3
		EVA 70Hz	A3-4	30%	-3.9
				70%	-0.1
			A4-5	30%	4.3
				70%	12.3
		ETU 70Hz	A3-1	30%	-2.2
				70%	2.0

		ETU 300Hz	A3-1	30%	-2.0
				70%	2.6
	Extended	ETU 70Hz	A4-2	30%	4.9
				70%	13.6
4	Normal	EPA 5Hz	A3-4	30%	-6.6
				70%	-3.4
			A4-5	70%	7.6
			A5-4	70%	15.0
		EVA 5Hz	A3-1	30%	-4.9
				70%	-1.3
			A4-1	30%	1.8
				70%	8.7
			A5-1	70%	15.7
		EVA 70Hz	A3-4	30%	-6.7
				70%	-3.2
			A4-5	30%	1.2
				70%	8.3
		ETU 70Hz	A3-1	30%	-4.7
				70%	-1.1
		ETU 300Hz	A3-1	30%	-4.6
				70%	-0.9
	Extended	ETU 70Hz	A4-2	30%	2.1
				70%	9.6

Table 8.2.1-5 Minimum requirements for PUSCH, 10 MHz Channel Bandwidth

Number of RX antennas	Cyclic prefix	Propagation conditions (Annex B)	FRC (Annex A)	Fraction of maximum throughput	SNR [dB]
2	Normal	EPA 5Hz	A3-5	30%	-4.3
			ĺ	70%	-0.5
			A4-6	70%	10.8
			A5-5	70%	18.0
		EVA 5Hz	A3-1	30%	-2.5
			ĺ	70%	1.9
			A4-1	30%	4.9
				70%	12.5
			A5-1	70%	19.4
		EVA 70Hz	A3-5	30%	-3.9
				70%	-0.1
			A4-6	30%	4.5
				70%	12.6
		ETU 70Hz	A3-1	30%	-2.2
				70%	2.3
		ETU 300Hz	A3-1	30%	-2.1
				70%	2.6
	Extended	ETU 70Hz	A4-2	30%	5.0
				70%	13.5
4	Normal	EPA 5Hz	A3-5	30%	-6.6
				70%	-3.4
			A4-6	70%	7.5
			A5-5	70%	14.9
		EVA 5Hz	A3-1	30%	-4.6
				70%	-1.1
			A4-1	30%	2.1
				70%	9.0
			A5-1	70%	15.9
		EVA 70Hz	A3-5	30%	-6.3
				70%	-2.9
			A4-6	30%	0.7
				70%	8.0
		ETU 70Hz	A3-1	30%	-4.5
				70%	-0.8
		ETU 300Hz	A3-1	30%	-4.3
				70%	-0.5
	Extended	ETU 70Hz	A4-2	30%	2.1
				70%	9.6

Table 8.2.1-6 Minimum requirements for PUSCH, 15 MHz Channel Bandwidth

Number of RX antennas	Cyclic prefix	Propagation conditions (Annex B)	FRC (Annex A)	Fraction of maximum throughput	SNR [dB]
2	Normal	EPA 5Hz	A3-6	30%	-4.0
			ĺ	70%	-0.4
			A4-7	70%	11.5
			A5-6	70%	19.1
		EVA 5Hz	A3-1	30%	-2.5
			ĺ	70%	1.7
			A4-1	30%	4.6
				70%	12.3
			A5-1	70%	19.5
		EVA 70Hz	A3-6	30%	-4.0
				70%	0.1
			A4-7	30%	4.8
				70%	13.1
		ETU 70Hz	A3-1	30%	-2.4
				70%	2.0
		ETU 300Hz	A3-1	30%	-2.2
				70%	2.3
	Extended	ETU 70Hz	A4-2	30%	5.3
				70%	13.6
4	Normal	EPA 5Hz	A3-6	30%	-6.4
				70%	-3.4
			A4-7	70%	8.0
			A5-6	70%	15.6
		EVA 5Hz	A3-1	30%	-4.8
				70%	-1.4
			A4-1	30%	1.7
				70%	8.8
			A5-1	70%	15.8
		EVA 70Hz	A3-6	30%	-6.3
				70%	-2.8
			A4-7	30%	1.6
				70%	8.6
		ETU 70Hz	A3-1	30%	-4.7
				70%	-1.1
		ETU 300Hz	A3-1	30%	-4.5
				70%	-0.9
	Extended	ETU 70Hz	A4-2	30%	2.0
				70%	9.7

Table 8.2.1-7 Minimum requirements for PUSCH, 20 MHz Channel Bandwidth

Number of RX antennas	Cyclic prefix	Propagation conditions (Annex B)	FRC (Annex A)	Fraction of maximum throughput	SNR [dB]
2	Normal	EPA 5Hz	A3-7	30%	-3.6
				70%	-0.1
			A4-8	70%	11.6
			A5-7	70%	19.4
		EVA 5Hz	A3-1	30%	-2.5
				70%	1.8
			A4-1	30%	4.8
				70%	12.4
			A5-1	70%	19.6
		EVA 70Hz	A3-7	30%	-3.7
				70%	0.3
			A4-8	30%	4.9
				70%	12.9
		ETU 70Hz	A3-1	30%	-2.3
				70%	2.1
		ETU 300Hz	A3-1	30%	-2.2
				70%	2.3
	Extended	ETU 70Hz	A4-2	30%	5.3
				70%	13.6
4	Normal	EPA 5Hz	A3-7	30%	-6.4
				70%	-3.4
			A4-8	70%	8.2
			A5-7	70%	15.8
		EVA 5Hz	A3-1	30%	-4.8
				70%	-1.4
			A4-1	30%	1.8
				70%	8.8
			A5-1	70%	15.9
		EVA 70Hz	A3-7	30%	-6.3
				70%	-2.8
			A4-8	30%	1.7
				70%	8.6
		ETU 70Hz	A3-1	30%	-4.7
				70%	-1.2
		ETU 300Hz	A3-1	30%	-4.5
				70%	-0.9
	Extended	ETU 70Hz	A4-2	30%	2.0
				70%	9.7

8.3 Performance requirements for PUCCH

8.3.1 DTX to ACK performance

The DTX to ACK requirement is valid for any number of receive antennas, for all frame structures and for any channel bandwidth.

The DTX to ACK probability, i.e. the probability that ACK is detected when nothing is sent, shall not exceed 1%.

8.3.2 ACK missed detection requirements for PUCCH format 1a

The ACK missed detection probability shall not exceed 1% at the SNR given in table 8.3.2-1.

Table 8.3.2-1 Minimum requirements for PUCCH

Number	Cyclic	Propagation		vidth / SNR [th / SNR [dB]			
of RX antennas	Prefix	Conditions (Annex B)	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
2	Normal	EPA 5	-2.5	-3.9	-4.8	-5.4	-5.3	-5.1
		EVA 5	-4.5	-5.1	-5.1	-5.0	-5.1	-5.1
		EVA 70	-4.9	-5.2	-5.2	-5.1	-5.2	-5.1
		ETU 300	-5.0	-5.1	-4.9	-5.0	-5.2	-5.2
	Extended	ETU 70	-4.2	-4.3	-4.1	-4.3	-4.2	-4.3
4	Normal	EPA 5	-7.9	-8.4	-8.7	-8.9	-8.9	-9.0
		EVA 5	-8.8	-9.1	-9.1	-8.8	-8.9	-8.9
		EVA 70	-8.9	-9.0	-9.0	-8.8	-9.0	-8.8
		ETU 300	-8.7	-8.9	-8.7	-8.7	-8.9	-8.8
	Extended	ETU 70	-7.9	-8.1	-7.9	-8.1	-8.0	-8.0

8.4 Performance requirements for PRACH

8.4.1 PRACH False alarm probability

The false alarm requirement is valid for any number of receive antennas, for all frame structures and for any channel bandwidth:

The total false alarm probability should be less than 0.1%.

8.4.2 PRACH missed detection requirements

The probability of missed detection shall not exceed 1% for the SNR levels listed in table 8.4.2-1 and 8.4.2-2. The test preambles for normal mode are listed in table A.6-1 and the test preambles for high speed mode are listed in A.6-2

The requirements for Burst format 4 are only valid for base stations supporting TDD. The requirements for high speed mode (table 8.4.2-2) are only valid for the base stations supporting high speed mode.

Table 8.4.2-1 PRACH missed detection requirements for Normal Mode

Number of RX	Propagation	Frequency	SNR [dB]				
antennas	conditions (Annex	offset	Burst	Burst	Burst	Burst	Burst
	В)		format 0	format 1	format 2	format 3	format 4
2	AWGN	0	-14.2	-14.2	-16.4	-16.5	TBD
	ETU 70	270 Hz	-8.0	-7.8	-10.0	-10.1	TBD
4	AWGN	0	-16.9	-16.7	-19.0	-18.8	TBD
	ETU 70	270 Hz	-12.1	-11.7	-14.1	-13.9	TBD

Table 8.4.2-2 PRACH missed detection requirements for High speed Mode

Number of RX	Propagation conditions	Frequency	SNR [dB]			
antennas	(Annex B)	offset	Burst format 0	Burst format 1	Burst format 2	Burst format 3
2	AWGN	0	-14.1	-14.2	-16.3	-16.6
	ETU 70	270 Hz	-7.4	-7.3	-9.3	-9.5
	AWGN	625 Hz	-12.4	-12.3	-14.4	-14.4
	AWGN	1340 Hz	-13.4	-13.5	-15.5	-15.7
4	AWGN	0	-16.9	-16.6	-18.9	-18.8
	ETU 70	270 Hz	-11.8	-11.4	-13.7	-13.7
	AWGN	625 Hz	-14.9	-14.6	-16.8	-16.8
	AWGN	1340 Hz	-15.9	-15.5	-17.8	-17.8

Annex A (normative): Reference measurement channels

The parameters for the reference measurement channels are specified in clause A.1 for reference sensitivity and inchannel selectivity and in clause A.2 for dynamic range.

A schematic overview of the encoding process for the reference measurement channels is provided in Figure A-1.

Receiver requirements in the present document are defined with a throughput stated relative to the Maximum throughput of the FRC. The Maximum throughput for an FRC equals the Payload size * the Number of uplink subframes per second. For FDD, 1000 uplink sub-frames per second are used.

Figure A-1. Schematic overview of the encoding process

A.1 Fixed Reference Channels for reference sensitivity and in-channel selectivity (QPSK, R=1/3)

The parameters for the reference measurement channels are specified in Table A.1-1 for reference sensitivity and inchannel selectivity

Table A.1-1 FRC parameters for reference sensitivity and in-channel selectivity

Reference channel	A1-1	A1-2	A1-3	A1-4	A1-5
Allocated resource blocks	6	15	25	3	9
DFT-OFDM Symbols per subframe	12	12	12	12	12
Modulation	QPSK	QPSK	QPSK	QPSK	QPSK
Code rate	1/3	1/3	1/3	1/3	1/3
Payload size (bits)	568	1416	2344	288	856
Transport block CRC (bits)	24	24	24	24	24
Code block CRC size (bits)	0	0	0	0	0
Number of code blocks - C	1	1	1	1	1
Coded block size including 12bits trellis	1788	4332	7116	948	2652
termination (bits)					
Total number of bits per sub-frame	1728	4320	7200	864	2592
Total symbols per sub-frame	864	2160	3600	432	1296

A.2 Fixed Reference Channels for dynamic range (16QAM, R=2/3)

The parameters for the reference measurement channels are specified in Table A.2-1 for dynamic range.

Table A.2-1 FRC parameters for dynamic range

Reference channel	A2-1	A2-2	A2-3
Allocated resource blocks	6	15	25
DFT-OFDM Symbols per subframe	12	12	12
Modulation	16QAM	16QAM	16QAM
Code rate	2/3	2/3	2/3
Payload size (bits)	2280	5736	9528
Transport block CRC (bits)	24	24	24
Code block CRC size (bits)	0	0	24
Number of code blocks - C	1	1	2
Coded block size including 12bits trellis	6924	17292	14412
termination (bits)			
Total number of bits per sub-frame	3456	8640	14400
Total symbols per sub-frame	864	2160	3600

A.3 Fixed Reference Channels for performance requirements (QPSK 1/3)

Table A.3-1 FRC parameters for performance requirements (QPSK 1/3)

Reference channel	A3-1	A3-2	A3-3	A3-4	A3-5	A3-6	A3-7
Allocated resource blocks	1	6	15	25	50	75	100
DFT-OFDM Symbols per subframe	12	12	12	12	12	12	12
Modulation	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Code rate	1/3	1/3	1/3	1/3	1/3	1/3	1/3
Payload size (bits)	96	568	1416	2344	4776	7096	9528
Transport block CRC (bits)	24	24	24	24	24	24	24
Code block CRC size (bits)	0	0	0	0	0	24	24
Number of code blocks - C	1	1	1	1	1	2	2
Coded block size including 12bits trellis	372	1788	4332	7116	14412	10764	14412
termination (bits)							
Total number of bits per sub-frame	288	1728	4320	7200	14400	21600	28800
Total symbols per sub-frame	144	864	2160	3600	7200	10800	14400

A.4 Fixed Reference Channels for performance requirements (16QAM 3/4)

Table A.4-1 FRC parameters for performance requirements (16QAM 3/4)

Reference channel	A4-1	A4-2	A4-3	A4-4	A4-5	A4-6	A4-7	A4-8
Allocated resource blocks	1	1	6	15	25	50	75	100
DFT-OFDM Symbols per subframe	12	10	12	12	12	12	12	12
Modulation	16QAM							
Code rate	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4
Payload size (bits)	432	360	2536	6456	10680	21384	32088	42816
Transport block CRC (bits)	24	24	24	24	24	24	24	24
Code block CRC size (bits)	0	0	0	24	24	24	24	24
Number of code blocks - C	1	1	1	2	2	4	6	7
Coded block size including 12bits	1380	1164	7692	9804	16140	16140	16140	18444
trellis termination (bits) Total number of bits per sub-frame	576	480	3456	8640	14400	28800	43200	57600
Total symbols per sub-frame	144	120	864	2160	3600	7200	10800	14400

A.5 Fixed Reference Channels for performance requirements (64QAM 5/6)

Table A.5-1 FRC parameters for performance requirements (64QAM 5/6)

Reference channel	A5-1	A5-2	A5-3	A5-4	A5-5	A5-6	A5-7
Allocated resource blocks	1	6	15	25	50	75	100
DFT-OFDM Symbols per subframe	12	12	12	12	12	12	12
Modulation	64QAM						
Code rate	5/6	5/6	5/6	5/6	5/6	5/6	5/6
Payload size (bits)	712	4264	10680	17952	35928	53904	71880
Transport block CRC (bits)	24	24	24	24	24	24	24
Code block CRC size (bits)	0	0	24	24	24	24	24
Number of code blocks - C	1	1	2	3	6	9	12
Coded block size including 12bits trellis termination (bits)	2220	12876	16140	18060	18060	18060	18060
Total number of bits per sub-frame	864	5184	12960	21600	43200	64800	86400
Total symbols per sub-frame	144	864	2160	3600	7200	10800	14400

A.6 PRACH Test preambles

Table A.6-1 Test preambles for Normal Mode

Burst format	Ncs	Logical sequence index	V
0	13	22	32
1	167	22	2
2	167	22	0
3	0	22	0
4	10	0	0

Table A.6-2 Test preambles for High speed Mode

Burst format	Ncs	Logical sequence index	V
0	15	384	0
1	202	384	0
2	202	384	0
3	237	384	0

Annex B (normative): Propagation conditions

B.1 Static propagation condition

The propagation for the static performance measurement is an Additive White Gaussian Noise (AWGN) environment. No fading or multi-paths exist for this propagation model.

B.2 Multi-path fading propagation conditions

Table B.2-1 shows multi-path delay profiles that are used for the performance measurements in multi-path fading environment. All taps have classical Doppler spectrum, defined as:

(CLASS)
$$S(f) \propto 1/(1 - (f/f_D)^2)^{0.5} \qquad \text{for } f \in -f_D, f_D.$$

Table B.2-1 Extended Pedestrian A model (EPA)

Excess tap delay [ns]	Relative power [dB]
0	0.0
30	-1.0
70	-2.0
90	-3.0
110	-8.0
190	-17.2
410	-20.8

Table B.2-2 Extended Vehicular A model (EVA)

Excess tap delay [ns]	Relative power [dB]
0	0.0
30	-1.5
150	-1.4
310	-3.6
370	-0.6
710	-9.1
1090	-7.0
1730	-12.0
2510	-16.9

Table B.2-3 Extended Typical Urban model (ETU)

Excess tap delay [ns]	Relative power [dB]
0	-1.0
50	-1.0
120	-1.0
200	0.0
230	0.0
500	0.0
1600	-3.0
2300	-5.0
5000	-7.0

A multipath fading propagation condition is defined by a combination of a multi-path delay profile and a maximum Doppler frequency f_D which is either 5, 70 or 300 Hz.

B.3 High speed train condition

High speed train conditions are as follows.

Scenario 1: Open space

[Scenario 2: Tunnel with leaky cable]

Scenario 3: Tunnel for multi-antennas

The high speed train conditions for the test of the baseband performance are two non-fading propagation channels (scenario 1 and 3) [and one fading propagation channel (scenario 2) with one tap]. For BS with Rx diversity defined in scenario 1, the Doppler shift variation is the same between antennas.

For scenario 1 and 3, Doppler shift is given by

$$f_s(t) = f_d \cos \theta(t) \tag{B.3.1}$$

where $f_s(t)$ is the Doppler shift and f_d is the maximum Doppler frequency. The cosine of angle $\theta(t)$ is given by

$$\cos \theta(t) = \frac{D_s/2 - vt}{\sqrt{D_{\min}^2 + (D_s/2 - vt)^2}}, \ 0 \le t \le D_s/v$$
(B.3.2)

where $D_s/2$ is the initial distance of the train from BS, and D_{\min} is BS-Railway track distance, both in meters; v is the velocity of the train in m/s, t is time in seconds.

For scenario 1 and 3, Doppler shift and cosine angle is given by equation B.3.1 and B.3.2 respectively, where the required input parameters are listed in table B.3-1. The resulting Doppler shift for scenario 1 and 3 is shown in Figure B.3-1 and B.3-2, respectively.

[For scenario 2, Rician fading is considered where Rician factor, *K* is defined as the ratio between the dominant signal power and the variant of the other weaker signals. Parameters are according to Table B.3-1.]

Table B.3-1: Parameters for high speed train conditions

Parameter	Value				
	Scenario 1	[Scenario 2]	Scenario 3		
D_s	1000 m	[Infinity]	300 m		
D_{min}	50 m	-	2 m		
K	-	[10 dB]	-		
v	350 km/h	[300 km/h]	300 km/h		
f_d	1340 Hz	[1500 Hz]	1150 Hz		

Figure B.3-1: Doppler shift trajectory for scenario 1

Figure B.3-2: Doppler shift trajectory for scenario 3

Annex C (normative): Characteristics of the interfering signals

The interfering signal shall be a PUSCH containing data and reference symbols. Normal cyclic prefix is used. The data content shall be uncorrelated to the wanted signal and modulated according to clause 5 of TS36.211. Mapping of PUSCH modulation to receiver requirement are specified in table C-1.1.

Table C-1: Modulation of the interfering signal

Receiver requirement	Modulation		
In-channel selectivity	16QAM		
Adjacent channel selectivity	QPSK		
and narrow-band blocking			
Blocking	QPSK		
Receiver intermodulation	QPSK		

Annex D (normative): Environmental requirements for the BS equipment

The BS equipment shall fulfil all the requirements in the full range of environmental conditions for the relevant environmental class from the relevant IEC specifications listed below

60 721-3-3 "Stationary use at weather protected locations"

"Stationary use at non weather protected locations"

Normally it should be sufficient for all tests to be conducted using normal test conditions except where otherwise stated. For guidance on the use of test conditions to be used in order to show compliance refer to TS 36.141.

Annex E (normative): Error Vector Magnitude

E.1 Reference point for measurement

The EVM should be measured at the point after the FFT and a zero-forcing (ZF) equalizer in the receiver, as depicted in Figure E.1-1 below.

Figure E.1-1: Reference point for EVM measurement

E.2 Basic unit of measurement

The basic unit of EVM measurement is defined over one subframe (1ms) in the time domain and N_{BW}^{RB} subcarriers (180kHz) in the frequency domain:

$$EVM = \sqrt{\frac{\sum_{t \in T} \sum_{f \in F(t)} |Z'(t, f) - I(t, f)|^{2}}{\sum_{t \in T} \sum_{f \in F(t)} |I(t, f)|^{2}}}$$

where

T is the set of symbols with the considered modulation scheme being active within the subframe,

F(t) is the set of subcarriers within the $N_{\rm BW}^{\rm RB}$ subcarriers with the considered modulation scheme being active in symbol t,

I(t, f) is the ideal signal reconstructed by the measurement equipment in accordance with relevant Tx models,

Z'(t, f) is the modified signal under test defined in E.3.

Note: Although the basic unit of measurement is one subframe, the equalizer is calculated over the entire 10 subframes measurement period to reduce the impact of noise in the reference symbols.

E.3 Modified signal under test

Implicit in the definition of EVM is an assumption that the receiver is able to compensate a number of transmitter impairments. The signal under test is equalised and decoded according to:

$$Z'(t,f) = \frac{FFT\left\{z(v - \Delta \widetilde{t}) \cdot e^{-j2\pi \Delta \widetilde{f}v}\right\} e^{j2\pi f\Delta \widetilde{t}}}{\widetilde{a}(t,f) \cdot e^{j\widetilde{\varphi}(t,f)}}$$

where

z(v) is the time domain samples of the signal under test.

 $\Delta \tilde{t}$ is the sample timing difference between the FFT processing window in relation to nominal timing of the ideal signal. Note that two timing offsets are determined, the corresponding EVM is measured and the maximum used as described in E.7.

 $\Delta \widetilde{f}$ is the RF frequency offset.

 $\widetilde{\varphi}(t, f)$ is the phase response of the TX chain.

 $\widetilde{a}(t, f)$ is the amplitude response of the TX chain.

E.4 Estimation of frequency offset

The observation period for determining the frequency offset $\Delta \tilde{f}$ should be 1 ms.

E.5 Estimation of time offset

The observation period for determining the sample timing difference $\Delta \widetilde{t}$ should be 1 ms.

In the following $\Delta \widetilde{c}$ represents the middle sample of the EVM window of length W (defined in E.5.1) or the last sample of the first window half if W is even.

 $\Delta \widetilde{c}$ is estimated so that the EVM window of length W is centred on the measured cyclic prefix of the considered OFDM symbol. To minimize the estimation error the timing shall be based on the primary synchronization signal and reference signals. To limit time distortion of any transmit filter the reference signals in the 1 outer RBs are not taken into account in the timing estimation

Two values for $\Delta \widetilde{t}$ are determined:

$$\Delta \widetilde{t_l} = \Delta \widetilde{c} + \alpha - \left\lfloor \frac{W}{2} \right\rfloor$$
 and

$$\Delta \widetilde{t_h} = \Delta \widetilde{c} + \left\lfloor \frac{W}{2} \right\rfloor$$
 where $\alpha = 0$ if W is odd and $\alpha = 1$ if W is even.

When the cyclic prefix length varies from symbol to symbol (e.g. time multiplexed MBMS and unicast) then T should be further restricted to the subset of symbols with the considered modulation scheme being active and with the considered cyclic prefix length type.

E.5.1 Window length

Table E.5.1-1 below specifies EVM window length (W) for normal CP, the cyclic prefix length N_{cp} is 160 for symbols 0 and 144 for symbols 1-6.

Table E.5.1-2 specifies the EVM window length (W) for extended CP, the cyclic prefix length N_{cp} is 512.

Table E.5.1-1 EVM window length for normal CP

Channel Bandwidth MHz	FFT size		Cyclic prefix length for symbols 0 in FFT samples	Cyclic prefix length for symbols 1-6 in FFT samples	EVM window length <i>W</i>	Ratio of W to total CP for symbols 1-6* [%]
1.4	128		10	9	5	55.6
3	256		20	18	12	66.7
5	512		40	36	32	88.9
10	1024		80	72	66	91.7
15	1536		120	108	102	94.4
20	2048		160	144	136	94.4
* Note: These percentages are informative and apply to symbols 1 through 6. Symbol 0 has a longer CP and therefore a lower percentage.						

Table E.5.1-2 EVM window length for extended CP

Channel Bandwidth [MHz]	FFT size	Cyclic prefix in FFT samples	EVM window length <i>W</i>	Ratio of W to total CP *
1.4	128	32	28	87.5
3	256	64	58	90.6
5	512	128	124	96.9
10	1024	256	250	97.7
15	1536	384	378	98.4
20	2048	512	504	98.4
* Note: Th	nese percentag	es are informative.		

E.6 Estimation of TX chain amplitude and frequency response parameters

The equalizer coefficients $\tilde{a}(t, f)$ and $\tilde{\varphi}(t, f)$ are determined as follows:

- 1. time averaging at each reference signal subcarrier of the amplitude and phase of the reference symbols, the time-averaging length is 10 subframes This process creates an average amplitude and phase for each reference signal subcarrier (i.e. every third subcarrier with the exception of the reference subcarrier spacing across the DC subcarrier).
- 2. The equalizer coefficients for amplitude and phase $\hat{a}(t,f)$ and $\hat{\varphi}(t,f)$ at the reference signal subcarriers are obtained by computing the moving average in the frequency domain of the time-averaged reference signal subcarriers, i.e. every third subcarrier. The moving average window size is 19. For reference subcarriers at or near the edge of the channel the window size is reduced accordingly as per figure E.6-1.
- 3. performing linear interpolation from the equalizer coefficients $\hat{a}(t, f)$ and $\hat{\varphi}(t, f)$ to compute coefficients $\tilde{a}(t, f)$, $\tilde{\varphi}(t, f)$ for each subcarrier.

Figure E.6-1: Reference subcarrier smoothing in the frequency domain

E.7 Averaged EVM

EVM is averaged over all allocated resource blocks with the considered modulation scheme in the frequency domain, and 10 consecutive downlink subframes (10 ms):

$$\overline{EVM} = \sqrt{\frac{1}{\sum_{i=1}^{10} Ni} \sum_{i=1}^{10} \sum_{j=1}^{Ni} EVM_{i,j}^{2}}$$

Where Ni is the number of resource blocks with the considered modulation scheme in subframe i.

The EVM requirements should be tested against the maximum of the RMS average at the window W extremities of the EVM measurements:

Thus $\overline{\text{EVM}}_1$ is calculated using $\Delta \widetilde{t} = \Delta \widetilde{t_l}$ in the expressions above and $\overline{\text{EVM}}$ h is calculated using $\Delta \widetilde{t} = \Delta \widetilde{t_h}$.

Thus we get:

$$EVM = \max(\overline{EVM}_1, \overline{EVM}_h)$$

For TDD special fields (DwPTS and GP) are not included in the averaging.

Annex F (informative): Change history

Table E.1: Change History

	Change history							
Date	TSG #	TSG Doc.	CR	Rev	Subject/Comment	Old	New	
2007-08	RAN4#44	R4-071465			TS skeleton created from 3GPP TS template.		0.0.1	
2007-10	RAN4#44	R4-071709			Agreed TP in RAN4#44:	0.0.1	0.0.2	
	bis				R4-071466, "TP Common definitions for TS 36.104"			
2007-10	RAN4#44	R4-071782			Agreed TP in RAN4#44bis:	0.0.2	0.1.0	
	bis				R4-071681, "TP 36.104: General (6.1)".			
					R4-071740, "E-UTRA FDD BS general receiver requirements".			
2007-11	RAN4#45	R4-072157			Agreed TP in RAN4#45:	0.1.0	0.2.0	
					R4-071854, "E-UTRA FDD BS Reference sensitivity level"			
					R4-071858, "E-UTRA FDD BS Receiver intermodulation"			
					R4-071859, "E-UTRA FDD BS Fixed Reference Channels"			
					R4-071860, "E-UTRA FDD BS In-channel selectivity"			
					R4-071964 , "TS 36.104: TP for Unwanted emissions (6.6)"			
					R4-071968 , "TS 36.104: TP for Tx Intermodulation (6.7)"			
					R4-071969 , "TS 36.104: TP for Rx spurious emissions (7.6)"			
					R4-072123, "TS 36.104: TP for General (4)"			
					R4-072124, "TS 36.104: TP for Operating band unwanted			
					emissions (6.6.3)"			
					R4-072126, "E-UTRA FDD BS Dynamic range"			
					R4-072127, "E-UTRA FDD BS Adjacent channel selectivity and			
					narrow band blocking"			
					R4-072128, "TS 36.104: TP for Propagation conditions for BS			
					(Annex B)"			
					R4-072130, "E-UTRA FDD BS Blocking"			
					R4-072155 , "TS 36.104: TP for Occupied bandwidth (6.6.1)"			
					R4-072162, "TP to 36.104 on performance requirements"			
					R4-072177, "TS 36.104: TP for Frequency bands and channel			
					arrangement (5)"			
					R4-072185 , "TS 36.104: TP for ACLR (6.6.2)"			
					R4-072205, "TS 36.104: TP for Transmitter spurious emissions			
	D 4 5 1 11 2 2	DD 0-00-			(6.6.4)"			
2007-11	RAN#38	RP-070975			Presentation to TSG	0.2.0	1.0.0	
2007-11	<u> </u>				Approved version at TSG RAN #38	1.0.0	8.0.0	
2008-03	RAN#39	RP-080123		2	Combined updates of E-UTRA BS RF requirements	8.0.0	8.1.0	
2008-05	RAN#40	RP-080325	4		Updates of E-UTRA BS requirements	8.1.0	8.2.0	