GRADUATION THESIS

ARNav - Augmented Reality Indoor Navigation Mobile Application

NGO VAN NAM

nam.nv187265@sis.hust.edu.vn

Major: Information Technology

Supervisor:	Master Le Tan Hung
	Signature
Department:	Computer Science
School:	Information and Communications Technology

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to everyone who has supported me throughout the process of this project. Firstly, I want to thank Master Hung Le for his guidance and knowledge that have been invaluable to me. I also want to express my appreciation to Mr. Hung Nguyen, Mobile Team Leader in Rabiloo Company for his valuable feedback and suggestions that have helped to improve my app.

Additionally, I want to thank my friends, Dao Vinh Linh and Le Huyen Linh for their assistance in testing and business analysis, respectively. I would also like to extend my gratitude to all my other friends who have provided me with valuable feedback and support throughout the development of this project.

Finally, I want to express my heartfelt gratitude to my family, especially my parents and my little sister, who have always been my source of inspiration and motivation during my years of studying and researching in the university.

ABSTRACT

When an individual visits a large building, such as a shopping mall or a supermarket, for the first time, they may experience confusion in addition to excitement. While it may be considered a minor journey through a modern indoor space, individuals often become tired when attempting to navigate to a specific location within the building without knowing how to get there. While most buildings nowadays provide maps on their front doors, few individuals seriously remember them. Even when using the maps, it can be challenging to follow the imagined path. This is where my indoor navigation app comes in. Unlike Google Maps, it was specifically designed for indoor use and provides a solution to this issue.

While some may initially view my app as simply a photo of a map on a smart-phone screen, it offers much more than a traditional 2D map. By incorporating Augmented Reality technology, the app is transformed into a "blue bird," providing dynamic 3D artifacts on users' smartphone cameras to guide them through indoor spaces with ease.

Some may ask, "Why should I use your AR navigation app when there are already similar options available?" But the question is, have you ever tried using them? I have, and let me tell you, it was a nightmare for my smartphone. Most of them required me to wander around the shopping mall holding my phone, while the app gathered data by using the camera. After collecting the data, when I finally got to try the guiding feature, the app was incredibly laggy and drained the battery life quickly, not to mention the lack of accuracy. This experience is what led me to create my own navigation app, designed to be easily applied to various buildings, with high performance while utilizing AR technology and minimal energy consumption, at least less than existing apps.

I came to the realization that the underlying issue with those apps was the way the system was designed. Their aim was to construct virtual environments using 3D platforms and execute computations on them, which required large amounts of computing resources that a small smartphone could barely provide. To tackle this, I adopted a different approach: I transformed the real world into data structures that a computer can easily interpret. After all the intricate processes, I only utilized the 3D platform in the final task. To be more specific, this project addresses two primary problems. The first is the Path Finding task, where I created standard graphs from the blueprints of the buildings and ran the routing algorithm on them to determine the route. Once we have the path, the second task is to convert it into

3D objects to display on the smartphone camera - the AR task.

In summary, this project not only enhanced my personal experience and that of other users, but it also created a promising business opportunity. Due to the ease with which buildings can be integrated into the app, I can potentially collaborate with building owners to add their locations. These could be shopping malls, universities, or parking lots, among others. As the app doesn't require 3D models or complex calculations, the cost would undoubtedly be reasonable.

TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION	1
1.1 Motivation	1
1.2 Objectives and scope of the graduation thesis	1
1.3 Tentative solution	2
1.4 Thesis organization	3
CHAPTER 2. REQUIREMENT SURVEY AND ANALYSIS	4
2.1 Survey on the users/customers	4
2.1.1 Building Visitors	4
2.1.2 Building Owners	5
2.2 Survey on the same existing applications	6
2.2.1 Outdoor Navigation Apps	6
2.2.2 Indoor Navigation Apps without AR integrated	6
2.2.3 Existing AR Indoor Navigation Apps	7
2.2.4 Indoor Positioning	7
2.3 High-level business process	8
2.3.1 Function Block Diagram	9
2.3.2 Flowchart	10
2.3.3 Swimlane	11
2.3.4 Usecase Diagram	12
2.3.5 Sequence Diagram	13
2.3.6 Actor	14
2.3.7 Usecase Catalogue	14
2.4 Usecase Specifications	14
2.5 Non-functional requirements	14

CHAPTER 3. TECHNOLOGY USED	16
3.1 Mapbox	16
3.2 Floyd - Warshall Algorithm	17
3.3 Python Programming Language	17
3.4 MySQL Database Management System	18
3.5 RESTful API, NodeJS and Javascript Programming Language	18
3.6 Android and Java Programming Language	18
3.7 ARCore Platform	19
CHAPTER 4. EXPERIMENT AND EVALUATION	20
4.1 Architecture design	20
4.1.1 Software architecture selection	20
4.1.2 Overall design	20
4.1.3 Detailed package design	22
4.2 Application Building	28
4.2.1 Libraries and Tools	28
4.2.2 Achievement	28
4.2.3 Illustration of main functions	29
4.3 Testing	32
4.4 Deployment	33
CHAPTER 5. SOLUTION AND CONTRIBUTION	34
5.1 Path Finding Task	34
5.1.1 Graph Construction	35
5.1.2 Algorithm Implementation	38
5.1.3 Backend API Development	41
5.2 AR Integration Task	42
5.2.1 Starting and Ending Point Input	42

5.2.2 JSON Path to Real-World Path Transformation	45
CHAPTER 6. CONCLUSION	47
6.1 Conclusion	47
6.2 Future work	47
APPENDIX	50
A. USE CASE SPECIFICATIONS	50
A.1 Enter Address	50
A.1.1 Overview	50
A.1.2 Flow of Events	50
A.2 Scan Image	52
A.2.1 Overview	52
A.2.2 Flow of Events	52
A.3 Get The Path	54
A.3.1 Overview	54
A.3.2 Flow of Events	54
A.4 Get Direction	56
A.4.1 Overview	56
A.4.2 Flow of Events	56
A.5 Anchor Converting.	57
A.5.1 Overview	57
A.5.2 Flow of Events	57
A.6 Render A Route	58
A.6.1 Overview	58
A.6.2 Flow of Events	58

LIST OF FIGURES

Figure 2.1	Functinal Block Diagram	9
Figure 2.2	Flowchart	10
Figure 2.3	Swimlane	11
Figure 2.4	Usecase Diagram	12
Figure 2.5	Sequence Diagram	13
Figure 4.1	Package Relation Diagram	21
Figure 4.2	UI package details	22
Figure 4.3	AppUtils package details	23
Figure 4.4	API package details	24
Figure 4.5	Data package and Model package details	25
Figure 4.6	AR package details	27
Figure 4.7	Launcher Screen	30
Figure 4.8	Scan Image Screen	31
Figure 4.9	AR Screen	32
Figure 5.1	AEON Mall 1st Floor Plan	36
Figure 5.2	The JSON graph built and visualized in Mapbox	36

LIST OF TABLES

Table 2.1	Actor	14
Table 2.2	Usecase Catalogue	14
Table 4.1	Libraries and Tools Used	28
Table 4.2	Overall Statistic	29
Table A.1	Use Case 01 Overview	50
Table A.2	Use Case 01 Basic Flow	50
Table A.3	Use Case 01 Alternative Flow: Unavailable location to select	51
Table A.4	Use Case 01 Alternative Flow: Blank selection	51
Table A.5	Use Case 01 Exceptional Flow: No internet	51
Table A.6	Use Case 01 Exceptional Flow: Session Timeout	51
Table A.7	Use Case 02 Overview	52
Table A.8	Use Case 02 Basic Flow	52
Table A.9	Use Case 02 Alternative Flow: Non-existence code	52
Table A.10	Use Case 02 Alternative Flow: Out of frame	53
Table A.11	Use Case 02 Exceptional Flow: Session Timeout	53
Table A.12	Use Case 03 Overview	54
Table A.13	Use Case 03 Basic Flow	54
Table A.14	Use Case 03 Alternative Flow: Unavailable location for search-	
ing		54
Table A.15	Use Case 03 Exceptional Flow: No internet	55
Table A.16	Use Case 03 Exceptional Flow: Session Timeout	55
Table A.17	Use Case 04 Overview	56
Table A.18	Use Case 04 Basic Flow	56
Table A.19	Use Case 04 Exceptional Flow: Internal Error	56
Table A.20	Use Case 04 Exceptional Flow: Session Timeout	56
Table A.21	Use Case 05 Overview	57
Table A.22	Use Case 05 Basic Flow	57
Table A.23	Use Case 05 Exceptional Flow: Calculation Error	57
Table A.24	Use Case 05 Exceptional Flow: Session Timeout	57
Table A.25	Use Case 06 Overview	58
Table A.26	Use Case 06 Basic Flow	58
Table A.27	Use Case 06 Exceptional Flow: Internal Error	58
Table A.28	Use Case 06 Exceptional Flow: Session Timeout	58