Phil Pützstück, 377247 Benedikt Gerlach, 376944 Sebastian Hackenberg, 377550

Hausaufgabe 11

Aufgabe 1

a)

Wert des Flusses insgesamt nach Iterationen: 1, $1 + \phi$, $1 + 2\phi$, $2 + \phi$, 3, $2 + 2\phi \cdots$ Dies lässt sich nach dem Hinweis auch in Potenzen von ϕ schreiben, also

1,
$$1 + \phi$$
, $1 + 2\phi$, $1 + 2\phi + \phi^2$, $1 + 2\phi + 2\phi^2$, $1 + 2\phi + 2\phi^2 + \phi^3 \cdots$

b)

Es ergibt sich ein offensichtliches Muster, wenn man den Wert des Flusses wie oben in Potenzen von ϕ schreibt. Insgesamt ist der Wert des Flusses nach der 2n-ten Iteration gegeben durch:

$$f_{2n} = 1 + 2\sum_{i=1}^{n} \phi^{i}$$

Es ergibt sich folgende Konvergenz:

$$1 + 2\sum_{i=1}^{\infty} \phi^{i} \stackrel{|\phi| < 1}{=} 1 + 2\frac{1}{1 - \phi} = 4 + \sqrt{5} < 201$$

Da also 201 der eigentliche maximale Flusswert ist, konvergiert der Algorithmus hier nicht zum erwünschten maximalen Fluss.

c)

Es wird behauptet, dass wenn der Algorithmus terminiert, er dann auf jeden Fall einen maximalen Fluss bestimmt. Ferner wird jedoch nur garantiert, dass er bei rationalen Kapazitäten terminiert. Da aber $\phi \notin \mathbb{Q}$, ist die falsche Konvergenz hier kein Problem.

Aufgabe 2

a)

b)

Wir können so einen Algorithmus rekursiv über die Struktur der Graphen implementieren.

Der Basisfall ist natürlich der Graph $s \to t$, bei welchem der maximale Fluss eben der Kapazität der Kante (s,t) entspricht. Nun können wir den rekursiven Fall betrachten: Bei einer Serie von SP-Graphen ist der maximale Fluss eben das Minimum der maximalen Flüsse der SP-Graphen, ähnlich wie bei den Kapazitäten der Kanten in einem augmentierenden Pfad.

Wenn wir 2 SP-Graphen Parallel ausführen so ist der maximale Fluss eben die Summe der maximalen Flüsse der SP-Graphen.

Insgesamt:

 $\operatorname{MaxFlow}(s,t) = c(s,t).$ $\operatorname{MaxFlow}(\operatorname{Serie}(s_G,t_G)) = \min\{\operatorname{MaxFlow}(s_G), \operatorname{MaxFlow}(t_G)\}$ $\operatorname{MaxFlow}(\operatorname{Parallel}(s_G,t_G)) = \operatorname{MaxFlow}(s_G) + \operatorname{MaxFlow}(t_G)$

Aufgabe 3

2	A	В	С	D	E
A	0	8	1	5	∞
В	∞	0	∞	∞	∞
С	∞	7	0	1	1
D	8	<u>16</u>	3	0	1
Е	∞	3	1	∞	0

3	A	B	C	D	E
A	0	8	1	5	∞
В	∞	0	∞	∞	∞
С	∞	7	0	1	1
D	8	16	3	0	1
Е	∞	3	1	∞	0

4	A	В	C	D	E
A	0	8	1	2	2
В	∞	0	∞	∞	∞
С	∞	7	0	1	1
D	8	<u>10</u>	3	0	1
Е	∞	3	1	2	0

5	A	В	C	D	E
A	0	8	1	2	2
В	∞	0	∞	∞	∞
С	9	7	0	1	1
D	8	10	3	0	1
Ε	<u>10</u>	3	1	2	0

6	A	В	С	D	E
A	0	<u>5</u>	1	2	2
В	∞	0	∞	∞	∞
$\overline{\mathbf{C}}$	9	4	0	1	1
D	8	4	2	0	1
\overline{E}	10	3	1	2	0

Aufgabe 4

initiales Restnetzwerk

Nächstes Flussnetzwerk mit aktuellem Fluss

Restnetzwerk

Restnetzwerk

Restnetzwerk

Der maximale Fluss hat den Wert 7.

Nächstes Flussnetzwerk mit aktuellem Fluss

Nächstes Flussnetzwerk mit aktuellem Fluss

a)

	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	3	3	3	3	3	3	3	3	3
2	0	0	3	3	3	3	9	9	12	12	12
3	0	0	3	4	4	7	9	9	12	13	13
4	0	2	3	5	6	7	9	11	12	14	15
5	0	2	3	5	6	7	9	11	12	14	15
6	0	2	3	5	6	7	9	11	12	14	15

Es ergibt sich der Maximalwert 15, wenn man Gegenstand 2,3 und 4 mitnimmt.

b)

	Ø	E	R	R	A	$\mid T \mid$	E	N
Ø		0	0	0	0	0	0	0
D	0	0	0	0	0	0	0	0
A	0	0	0	0	1	1	1	1
T	0	0	0	0	1	2	2	2
\mathbf{E}	0	1	1	1	1	2	3	3
N	0	1	1	1	1	2	3	4
\overline{S}	0	1	1	1	1	2	3	4
Т	0	1	1	1	1	2	3	4
R	0	1	2	2	2	2	3	4
U	0	1	2	2	2	2	3	4
K	0	1	2	2	2	2	3	4
Т	0	1	2	2	2	3	3	4
U	0	1	2	2	2	3	3	4
R	0	1	2	3	3	3	3	4
E	0	1	2	3	3	3	4	4
N	0	1	2	3	3	3	4	5

Damit ist die längste gemeinsame Teilsequenz ERTEN.

