

54F/74F138 1-of-8 Decoder/Demultiplexer

General Description

The 'F138 is a high-speed 1-of-8 decoder/demultiplexer. This device is ideally suited for high-speed bipolar memory chip select address decoding. The multiple input enables allow parallel expansion to a 1-of-24 decoder using just three 'F138 devices or a 1-of-32 decoder using four 'F138 devices and one inverter.

Features

- Demultiplexing capability
- Multiple input enable for easy expansion
- Active LOW mutually exclusive outputs
- Guaranteed 4000V minimum ESD protection

Commercial	Military	Package Number	Package Description			
74F138PC		N16E	16-Lead (0.300" Wide) Molded Dual-In-Line			
	54F138DM (Note 2)	J16A	16-Lead Ceramic Dual-In-Line			
74F138SC (Note 1)		M16A	16-Lead (0.150" Wide) Molded Small Outline, JEDEC			
74F138SJ (Note 1)		M16D	16-Lead (0.300" Wide) Molded Small Outline, EIAJ			
	54F138FM (Note 2)	W16A	16-Lead Cerpack			
	54F138LM (Note 2)	E20A	20-Lead Ceramic Leadless Chip Carrier, Type C			

Note 1: Devices also available in 13" reel. Use suffix = SCX and SJX.

Note 2: Military grade device with environmental and burn-in processing. Use suffix = DMQB, FMQB and LMQB.

Logic Symbols

Connection Diagrams

Unit Loading/Fan Out

		54F/74F				
Pin Names	Description	U.L. HIGH/LOW	Input I _{IH} /I _{IL} Output I _{OH} /I _{OL}			
A ₀ -A ₂	Address Inputs	1.0/1.0	20 μA/ - 0.6 mA			
$\overline{E}_1, \overline{E}_2$	Enable Inputs (Active LOW)	1.0/1.0	20 μA/ – 0.6 mA			
E ₃	Enable Input (Active HIGH)	1.0/1.0	20 μA/ – 0.6 mA			
$\overline{O}_0 - \overline{O}_7$	Outputs (Active LOW)	50/33.3	−1 mA/20 mA			

Functional Description

The 'F138 high-speed 1-of-8 decoder/demultiplexer accepts three binary weighted inputs $(A_0,\,A_1,\,A_2)$ and, when enabled, provides eight mutually exclusive active LOW outputs $(\overline{O}_0-\overline{O}_7)$. The 'F138 features three Enable inputs, two active LOW ($\overline{E}_1,\,\overline{E}_2)$ and one active HIGH (E_3). All outputs will be HIGH unless \overline{E}_1 and \overline{E}_2 are LOW and E_3 is HIGH. This multiple enable function allows easy parallel expansion

of the device to a 1-of-32 (5 lines to 32 lines) decoder with just four 'F138 devices and one inverter (See Figure 1). The 'F138 can be used as an 8-output demultiplexer by using one of the active LOW Enable inputs as the data input and the other Enable inputs as strobes. The Enable inputs which are not used must be permanently tied to their appropriate active HIGH or active LOW state.

Truth Table

Inputs						Outputs								
Ē ₁	\overline{E}_2	E ₃	A ₀	A ₁	A ₂	O ₀	\overline{O}_1	\overline{O}_2	\overline{O}_3	\overline{O}_4	\overline{O}_5	\overline{O}_6	<u>0</u> 7	
Н	Χ	Χ	Х	Χ	Χ	Н	Н	Н	Н	Н	Н	Н	Н	
X	Н	Χ	X	Χ	Χ	Н	Н	Н	Н	Н	Н	Н	Н	
X	Χ	L	Х	Χ	Χ	Н	Н	Н	Н	Н	Н	Н	Н	
L	L	Н	L	L	L	L	Н	Н	Н	Н	Н	Н	Н	
L	L	Н	Н	L	L	Н	L	Н	Н	Н	Н	Н	Н	
L	L	Н	L	Н	L	Н	Н	L	Н	Н	Н	Н	Н	
L	L	Н	Н	Н	L	Н	Н	Н	L	Н	Н	Н	Н	
L	L	Н	L	L	Н	Н	Н	Н	Н	L	Н	Н	Н	
L	L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н	
L	L	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	
L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

TL/F/9478-4

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

V_{CC} Pin Potential to

 Ground Pin
 −0.5V to +7.0V

 Input Voltage (Note 2)
 −0.5V to +7.0V

 Input Current (Note 2)
 −30 mA to +5.0 mA

Voltage Applied to Output

in HIGH State (with $V_{CC} = 0V$)

 $\begin{array}{lll} \text{Standard Output} & -0.5 \text{V to V}_{\text{CC}} \\ \text{TRI-STATE} \tiny{\$} \text{ Output} & -0.5 \text{V to } +5.5 \text{V} \end{array}$

Current Applied to Output in LOW State (Max) twice the rated I_{OL} (mA) ESD Last Passing Voltage (Min) 4000V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

Free Air Ambient Temperature

Supply Voltage

Military +4.5V to +5.5V Commercial +4.5V to +5.5V

DC Electrical Characteristics

Symbol	Parameter			54F/74	F	Units	V	Conditions	
Oymbor	raiaille	Min	Тур	Max	Uiiis	V _{CC}			
V_{IH}	Input HIGH Voltage	2.0			V		Recognized as a HIGH Signal		
V_{IL}	Input LOW Voltage			0.8	V		Recognized as a LOW Signal		
V _{CD}	Input Clamp Diode Vo	oltage			-1.2	V	Min	$I_{\text{IN}} = -18 \text{mA}$	
V _{OH}	Output HIGH 54F 10% V _{CC} Voltage 74F 10% V _{CC} 74F 5% V _{CC}		2.5 2.5 2.7			٧	Min	$I_{OH} = -1 \text{ mA}$ $I_{OH} = -1 \text{ mA}$ $I_{OH} = -1 \text{ mA}$	
V _{OL}	Output LOW Voltage	54F 10% V _{CC} 74F 10% V _{CC}			0.5 0.5	٧	Min	I _{OL} = 20 mA I _{OL} = 20 mA	
I _{IH}	Input HIGH Current	54F 74F			20.0 5.0	μΑ	Max	$V_{\text{IN}} = 2.7V$	
I _{BVI}	Input HIGH Current Breakdown Test	54F 74F			100 7.0	μΑ	Max	V _{IN} = 7.0V	
I _{CEX}	Output HIGH Leakage Current	54F 74F			250 50	μΑ	Max	$V_{OUT} = V_{CC}$	
V _{ID}	Input Leakage Test	74F	4.75			٧	0.0	$I_{\text{ID}} = 1.9 \ \mu\text{A}$ All Other Pins Grounded	
I _{OD}	Output Leakage Circuit Current	74F			3.75	μΑ	0.0	V _{IOD} = 150 mV All Other Pins Grounded	
I _{IL}	Input LOW Current				-0.6	mA	Max	V _{IN} = 0.5V	
los	Output Short-Circuit (-60		-150	mA	Max	V _{OUT} = 0V		
Icch	Power Supply Curren		13	20	mA	Max	V _O = HIGH		
I _{CCL}	Power Supply Curren	t		13	20	mA	Max	$V_O = LOW$	

AC Electrical Characteristics											
					54F T _A , V _{CC} = Mil C _L = 50 pF		74F T _A , V _{CC} = Com C _L = 50 pF		Units	Fig. No.	
Symbol	Parameter										
		Min	Тур	Max	Min	Max	Min	Max			
t _{PLH}	Propagation Delay A_n to \overline{O}_n	3.5 4.0	5.6 6.1	7.5 8.0	3.0 4.0	12.0 9.5	3.5 4.0	8.5 9.0	ns	♦ -3	
t _{PLH}	Propagation Delay \overline{E}_1 or \overline{E}_2 to \overline{O}_n	3.5 3.0	5.4 5.3	7.0 7.0	3.0 3.0	11.0 8.0	3.5 3.0	8.0 7.5	ns	♦ -4	
t _{PLH}	Propagation Delay E_3 to \overline{O}_n	4.0 3.5	6.2 5.6	8.0 7.5	3.5 3.5	12.5 8.5	4.0 3.5	9.0 8.5	ns	♦ -4	

FIGURE 1. Expansion to 1-of-32 Decoding

Ordering Information

The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 2900 Semiconductor Drive P.O. Box 58090 Santa Clara, CA 95052-8090 Tel: 1(800) 272-9959 TWX: (910) 339-9240 National Semiconductor GmbH Livry-Gargan-Str. 10 D-82256 Fürstenfeldbruck Germany Tel: (81-41) 35-0 Telex: 527649 Fax: (81-41) 35-1

National Semiconductor Japan Ltd. Sumitomo Chemical Engineering Center Bldg. 7F 1-7-1, Nakase, Mihama-Ku Chiba-City, Ciba Prefecture 261

National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon u Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960 National Semiconductores Do Brazil Ltda. Rue Deputado Lacorda Franco 120-3A Sao Paulo-SP Brazil 05418-000 Tel: (55-11) 212-5066 Telex: 391-1131931 NSBR BR Fax: (55-11) 212-1181 National Semiconductor (Australia) Pty, Ltd. Building 16 Business Park Drive Monash Business Park Nottinghill, Melibourne Victoria 3168 Australia Tel: (3) 558-9999 Fax: (3) 558-9998 This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.