ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ»

"ВЫСШАЯ ШКОЛА ЭКОНОМИКИ"

Московский институт электроники и математики им. А.Н.Тихонова

ОТЧЁТ По домашней работе 1 По курсу "Компьютерный практикум" Вариант 81

ФИО студента	Группа	Дата	Балл
Волков Егор Ильич	БПМ245	09.10.2024	

Москва 2024

Задание А1:

- 1. Вручную преобразовать десятичное число (3055) в 16-ричную и двоичную системы счисления.
- 2. В байте записано 16-ричное число. Перевести его в десятичную систему счисления, рассматривая как беззнаковое и как знаковое. Какому символу кодовых таблицы ср866 и ср1251 соответствует данное число? Ответ с подробным обоснованием и пояснениями в тексте отчета окончательно должен быть представлен в виде таблицы для двух заданных положительных и отрицательных 16-ричных чисел.
- 3. Сложить в двоичной системе счисления хранящиеся в памяти байтовые значения двух чисел, используя их знаковое и беззнаковое представление. Для каждого случая знакового и беззнакового сложения на основе анализа единиц перехода в знаковый разряд и флаг переноса СF указать, когда происходит переполнение и когда оно отсутствует. Проверить полученные результаты сложением заданных байтовых значений в десятичной системе счисления, сравнивая их с соответствующими знаковыми и беззнаковыми диапазонами байтовых значений.

1. Переведём число 3055 из десятичной системы счисления в шестнадцатеричную (будем нацело делить число на основание системы счисления и записывать остатки):

```
3055÷16=190 (15)
190÷16=11 (14)
11÷16=0 (11)
```

Соединяем остатки в обратном порядке: 11 (B), 14 (E), 15 (F) В итоге, **шестнадцатеричное** представление числа **3055** — **BEF**

Теперь, переведём число 3055 в двоичную систему:

```
3055÷2=1527 (1)
1527÷2=763 (1)
763÷2=381 (1)
381÷2=190 (1)
190÷2=95 (0)
95÷2=47 (1)
47÷2=23 (1)
23÷2=11 (1)
11÷2=5 (1)
5÷2=2 (1)
2÷2=1 (0)
1÷2=0 (1)
```

Соединяем остатки в обратном порядке: 101111101111 В итоге, **двоичное** представление числа **3055**: **101111101111**

Сделаем проверку: разобьем 101111101111 на группы по 4 бита, начиная с конца:

- 1) 1011- B
- 2) 1110- E
- 3) 1111- F

2.

Содержимое байта	Двоичное представлени е	Беззнаковое десятичное	Знаковое десятичное	Символ в ср866	Символ в ср1251
84h	1000 0100	132	-124	Ф	Д
67h	0110 0111	103	103	g	g

При рассмотрении числа как знакового будем использовать двоичное представление числа (старший бит является знаковым (1 - число отрицательное, 0 - положительное))

Переведём число 84h в двоичную систему:

- 1) 8 в шестнадцатеричной системе это 1000 в двоичной
- 2) 4 в шестнадцатеричной системе это 0100 в двоичной

Соединяем две группы по 4 бита:

84h = 1000 0100

Так же, можно было перевести с помощью данной таблицы:

0000 = 0	0100 = 4	1000 = 8	1100 = C
0001 = 1	0101 = 5	1001 = 9	1101 = D
0010 = 2	0110 = 6	1010 = A	1110 = E
0011 = 3	0111 = 7	1011 = B	1111 = F

Рассмотрим данное число как знаковое:

Старший бит равен 1, число будет отрицательным при знаковом рассмотрении переведём его в десятичную систему:

$$-1 \times 2^{**}7 + 0 \times 2^{**}6 + 0 \times 2^{**}5 + 0 \times 2^{**}4 + 0 \times 2^{**}3 + 1 \times 2^{**}2 + 0 \times 2^{**}1 + 0 \times 2^{**}0 = -124$$

При рассмотрении этого числа как беззнакового:

Переведём число 67h в двоичную систему:

67h = 0110 0111

Старший бит равен 0, число будет положительным при знаковом рассмотрении Переведём его в десятичную систему:

$$0 \times 2^{**}7 + 1 \times 2^{**}6 + 1 \times 2^{**}5 + 0 \times 2^{**}4 + 0 \times 2^{**}3 + 1 \times 2^{**}2 + 1 \times 2^{**}1 + 1 \times 2^{**}0 = 103$$

При рассмотрении этого числа как беззнакового:

Найдём соответствующие данным числам символы, содержащиеся в таблицах ср866 и ср1251:

Cp866:

Co	Codepage 866 - Russia															
	-0	-1	-2	-3	-4	-5	-6	-7	-8	-9	-A	-B	-C	-D	-E	-F
0-		263A	2638	2665	2066	2663	2660	2022	25D8	O 25CB	2509	∂ 2842	우 2640	1	Ĵ] 2668	☆
1-	258A	2504	‡ 2195	!! 200C	¶ 0006	§ 00A7	25AC	<u>‡</u> 21A8	↑ 2191	¥ 2193	→ 2192	← 2190	L 221F	↔ 2194	A 2582	▼ 258C
2-	0020	0021	0022	# 0023	\$ 0024	% 0025	& 0026	0027	(0028)	₩	+	9 0020	- 0020	• 002E	/ 002F
3-	0	1 0031	2	3	4	5	6	7	8	9	: 003A	9 0038	< 003C	= 0030	> 003E	? 000F
4-	@ 0040	A	B	C 0043	D	E	F 0046	G	H 0048	I 0049	J 004A	K	L	M	N 004E	O 004F
5-	P	Q	R	S 0063	T 0064	U	V 0066	W	X 0058	Y	Z	0058	\ 0060]	∧ 005€	006F
6-	0060	a 0061	b	C 0063	d	e es	f	g	h	i	j	k 0068	1	m	n 006E	O
7-	P	q	r 0072	S 0073	t	u 0075	V	W	X 0078	y	Z	{ 0078	007C	}	~	2302
8-	A 0410	B	B 0412	Г 0413	Д	E 0415	Ж	3	И	Й	K 041A	Л 0418	M 0410	H 041D	O 041E	П 041F
9-	P 0420	C 0421	T 0422	y	Ф 0424	X 0425	Ц 0426	u	Ш 0428	Щ 0429	Ъ	Ы 042В	b	Э 0420	Ю 042Е	Я
A-	a 0430	б 0431	B 0432	Г 0433	Д 0434	e 0435	Ж 0436	3 0437	И 0438	й	K	Л 0438	M 0430	H	O 043E	П 043F
B-	2591	2592	2593	2502	2524	= 2561	1 2562	TI 2556	7	1 2563	2551	7	<u></u>		Ⅎ	7 2510
C-	L 2514	 2634	T 252C	F 251C	2500	+	₽ 255E	- 255F	L 256A	F 2554	<u>L</u>	¬_ 2586	L	2550		2567
D-	 2568		TT 2565	LL 2559	∟ 2558	F 2562	FF 2553	2568	± 256A		F 2500	2588	2584	258C	2590	2580
E-	p	C 0441	T 0442	y	ф	X 0445	Ц 0446	Ч	Ш 0448	Щ	Ъ 044A	Ы 0448	b	Э ₀₄₄₽	Ю 044Е	Я 044F
F-	Ë	ë 0451	€	€ 0454	Ï 0407	Ï 0457	Ў	ў 045E	0080	e 2219	• 0087	√ 221A	N º 2116	¤	25A0	00.40

Числу 84h соответствует " Φ " ; числу 67h соответствует "g"

Cp1251:

	0	1	2	3	4	5	6	7	8	9	A	В	C	D	E	F
_				0	Ë	§	€	•		0						
0		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1																
-	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
2		1		#	\$	%	&		()						1
-	32	33	34	35	36	37	38	39	40	9	42	43	44	45	46	47
3	0	1	2	3		5	6	7	8		:	1	<	-	>	
	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
4	@	Α	В	С	D	E	F	G	н	1	J	K	L	М	N	0
_	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79
5	Р	Q	R	S	T	U	V	w	×	Y	Z	1	1	1	^	-
_	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95
6	•	а	b	С	d	e	f	g	h	i	j	k	1	m	n	0
~	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111
7	р	q	r	S	t	u	V	W	×	У	Z	{		31	~	
	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127
8	ъ	ľ	,	ŕ	***		†	1		%0	љ		Нь	K	Ъ	Ų
	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143
$\overline{}$	ħ	•	•				-	-		TM	љ	->	њ	Ŕ	ħ	Ų
9	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159
		ý	ў	J	п	ľ	1	§	Ë	0	€	44		-	®	I
A	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175
_	0	±	1	i	ľ	μ			e	No.	€	>>	i	S	s	ï
В	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191
	Α	Б	В	Г	Д	E	ж	3	И	Й	К	Л	M	н	0	П
C	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207
	P	С	T	У	Φ	×	Ц	ч	Ш	Щ	ъ	ы	ь	Э	ю	Я
D	208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	. 223
_	a	6	В	г	Д	e	ж	3	и	й	К	л	м	н	0	п
E	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239
	p	С	T	У	Ф	×	ц	ч	ш	щ	ъ	ы	ь	Э	ю	Я
F	240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255

Числу 84h соответствует "Д" ; числу 67h соответствует " g"

3. Переведем **D3h** и **85h** из шестнадцатеричной системы в двоичную с помощью таблицы:

0000 = 0	0100 = 4	1000 = 8	1100 = C
0001 = 1	0101 = 5	1001 = 9	1101 = D
0010 = 2	0110 = 6	1010 = A	1110 = E
0011 = 3	0111 = 7	1011 = B	1111 = F

D3h = 1101 0011

85h = 1000 0101

Рассмотрим беззнаковое представление:

 $1 \times 2^{**}7 + 1 \times 2^{**}6 + 0 \times 2^{**}5 + 1 \times 2^{**}4 + 0 \times 2^{**}3 + 0 \times 2^{**}2 + 1 \times 2^{**}1 + 1 \times 2^{**}0 = 211 (D3h)$

1×2**7+0×2**6+0×2**5+0×2**4+0×2**3+1×2**2+0×2**1+1×2**0 = 133 (85h)

В результате сложения получим: 211 + 133 = 344

Рассмотрим знаковое представление:

Число **1101 0011** имеет старший бит = 1, следовательно, оно отрицательное -1×2**7+1×2**6+0×2**5+1×2**4+0×2**3+0×2**2+1×2**1+1×2**0 = - 45 (D3h)

Число **1000 0101** имеет старший бит = 1, следовательно, оно отрицательное -1×2**7+0×2**6+0×2**5+0×2**4+0×2**3+1×2**2+0×2**1+1×2**0 = - 123 (85h)

В результате сложения получим: -45 – 123 = -168

Сложим числа 1101 0011 и 1000 0101 в двоичной системе:

```
1101 0011 (D3h)
+
1000 0101(85h)
=
```

1 0101 1000

Проведем анализ флагов переноса(СF) и переполнения:

Беззнаковое сложение:

При беззнаковом сложении учитываем только факт **переноса** Флаг переноса (CF) = 1, так как появился дополнительный старший бит **Переполнение произошло**

Знаковое сложение:

При знаковом сложении учитываем переполнение при переходе из положительного в отрицательное или наоборот

Оба исходных числа (D3h и 85h) **отрицательные** (старший бит = 1)

Результат 0101 1000 имеет старший бит = 0 (положительное число)

Переход от отрицательного к положительному указывает на переполнение

Переполнение произошло

Проверим результаты:

Беззнаковые значения чисел [0, ..., 255]:

D3h = 211

85h = 133

Сумма: 211+133 = 344

Сумма 344 выходит за пределы диапазона, подтверждая переполнение

Знаковые значения чисел [-128, ..., 127]:

D3h = -45

85h = −123

Сумма: -45+(-123) = -168

Сумма -168 выходит за пределы диапазона, подтверждая переполнение