Genes with COMMONN SNVs from gnomad and clinvar

mfpfox

2023-06-09

```
source("1_import_annotated_variants.R")
```

```
## Warning: `funs()` was deprecated in dplyr 0.8.0.
## Please use a list of either functions or lambdas:
##
    # Simple named list:
##
    list(mean = mean, median = median)
##
##
    # Auto named with `tibble::lst()`:
##
    tibble::lst(mean, median)
##
##
    # Using lambdas
##
## list(\sim mean(., trim = .2), \sim median(., na.rm = TRUE))
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was generated.
```

```
## 'data.frame':
                   9110589 obs. of 30 variables:
                              : chr "10_000093000_G/A_A" "10_000093003_C/T_V" "10_00009
## $ keyID37aa
3004_A/G_V/A" "10_000093007_T/A_E/V" ...
## $ CDS.position
                              : chr "1332" "1329" "1328" "1325" ...
                             : chr "444" "443" "443" "442" ...
## $ Protein.position
                              : chr "A" "V" "V/A" "E/V" ...
## $ Amino.acids
                              : chr "gcC/gcT" "gtG/gtA" "gTg/gCg" "gAg/gTg" ...
## $ Codons
##
   $ SYMBOL
                              : chr "TUBB8" "TUBB8" "TUBB8" ...
                              : chr "HGNC" "HGNC" "HGNC" ...
  $ SYMBOL.SOURCE
                              : chr "-" "-" "tolerated_low_confidence" "deleterious_low
## $ SIFT
_confidence" ...
## $ SIFT.score
                                    NA NA 0.62 0 0.15 0.05 NA NA 0.69 0.6 ...
                              : num
                             : chr "-" "-" "benign" "benign" ...
## $ PolyPhen
## $ PolyPhen.score
                             : num NA NA 0 0.013 0.557 0.305 NA NA 0.001 0.001 ...
## $ DOMAINS
                              : chr "-" "Coiled-coils (Ncoils):Coil" "Coiled-coils (Nco
ils):Coil" "Coiled-coils_(Ncoils):Coil,Low_complexity_(Seg):seg" ...
                                     "['WGS', 'WES']" "['WES']" "['WES']" ...
                             : chr
   $ AC
                                    10 1 2 1 1 1 2 1 1 11 ...
##
                              : num
## $ AN
                              : num
                                     194416 171722 174636 180624 194710 ...
##
   $ nhomalt
                              : num
                                     0000000000...
## $ AF
                              : num
                                     5.14e-05 5.82e-06 1.15e-05 5.54e-06 5.14e-06 ...
                                     0000000000...
  $ nhomalt.x2
                              : num
##
##
  $ nhetalt
                              : num 10 1 2 1 1 1 2 1 1 11 ...
                                     00000000000...
   $ ratio.nhomalt.over.nhetalt: num
##
## $ keyAA
                              : chr
                                    "A" "V" "V/A" "E/V" ...
                              : chr "synonymous_variant" "synonymous_variant" "missense
##
   $ CONSEQ
_variant" "missense_variant" ...
   $ clinvarAA
                              : chr NA NA NA NA ...
##
                              : chr NA NA NA NA ...
## $ clinvarGeneSymbol
##
   $ clinvarCONSEQ
                              : chr NA NA NA NA ...
## $ HGVSp.VEP
                              : chr NA NA NA NA ...
                              : chr NA NA NA NA ...
##
   $ HGVSc.VEP
##
                              : chr NA NA NA NA ...
  $ StarReviewStatus
                             : chr NA NA NA NA ...
## $ myClinVarLabels
## $ LABEL
                              : chr NA NA NA NA ...
```

```
# used colors
unusedcolors = c("skyblue", "#FD6467", "#F4B5BD", "#3B9AB2",
                     "#DD8D29", "#E2D200", "#46ACC8",
                    "#7294D4", "#C6CDF7", "#FD6467", "#5B1A18",
                    "#F2AD00","#90D4CC","#FD6467","#00A08A",
                    "#FF0000", "#08519c",
                 "red2", "orange2", "pink1")
maf_colors = c("#C6CDF7", "plum", "purple3")
maf2_colors = c("#C6CDF7", "purple3")
var_colors = c( "blue", "#85D4E3", "green4")
class_colors = c( "#DD8D29", "#E2D200", "#46ACC8")
goflof colors = c( "#FF0000", "#08519c" ,"#D9D0D3")
SUM.cv = "1,550,594"
SUM.gnomad = "8,390,678"
SUB1 = paste0("ClinVar v202304 n = ", SUM.cv)
SUB2 = paste0("gnomAD v2.1.1 n = ", SUM.gnomad)
SUB.total = paste(SUB1, SUB2, sep = "\n")
DBname <- "Exclusive ClinVar SNV n = 719,911\nExclusive gnomAD SNV n = 7,559,995\nOverlap
gnomAD & ClinVar SNV n = 830,683"
SUB0 = "Overlap gnomAD & ClinVar SNV n = 830,683"
```

what genes have common stop_gained?

CDS.position

keyID37aa

```
common_nonsense <- wgs %>% filter(gnomadCONSEQ == "stop_gained")
print(length(unique(common_nonsense$SYMBOL)))

## [1] 18224

common_nonsense <- common_nonsense[order(-common_nonsense$AF), ]
common_nonsense <- common_nonsense[1:50, ]
print(length(unique(common_nonsense$SYMBOL)))

## [1] 50

datatable(common_nonsense, options = list(pageLength=5, scrollX='400px'), filter = 'top')

Show 5 ventries

Search:</pre>
```

Protein.position

Amino.acids

Codons

SYM

	All	All	All	All		1
164396	9_139937799_G/ A_R/*	73	25	R/*	Cga/Tga	NPDC [.]
14924	11_104763117_G/ A_R/*	373	125	R/*	Cga/Tga	CASP1
146743	7_064438667_G/ A_R/*	1282	428	R/*	Cga/Tga	ZNF11
72208	19_057642782_C/ A_Y/*	2739	913	Y/*	taC/taA	USP29
90901	1_248113026_T/ A_Y/*	867	289	Y/*	taT/taA	OR2L8
Showing 1	to 5 of 50 entries		Previous 1	2 3 4	5 10	Next
geom_ scale_ scale_	size=3, color="black hjust=1.2! vjust=0.2! show.lego check_overla	olack", gnomadCON .5, h aste0("", 5, c, end = FALS ap = TRUE) its = c(-0 ues=var_co ues=var_co	as.character(round) E, + .1, 1.15), n.breaks lors) +		ver.nhetalt, 2))))),

plot.common_nonsense

Top 50 MAF genes for gnomAD stop_gained
Ratio of individuals that are homozygous/heterozygous for ALT allele


```
ggsave("Top50_genes_w_common_gnomad_stopgain.png", width=8.5, height=9)
#facet_grid(ProteinConsequence ~ .) +
```

what genes have common missense?

Show 5

∨ entries

```
common_missense <- wgs %>% filter(gnomadCONSEQ == "missense_variant")
print(length(unique(common_missense$SYMBOL)))

## [1] 20212

common_missense <- common_missense[order(-common_missense$AF), ]
common_missense <- common_missense[1:50, ]
print(length(unique(common_missense$SYMBOL)))

## [1] 46

datatable(common_missense, options = list(pageLength=5, scrollX='400px'), filter = 'top')</pre>
```

keyID37aa CDS.position Protein.position Amino.acids Codons SYM

Search:

A_V/F 441799		All	All	All	All			-
### T_UN	24063		208	70	V/F		Gtc/Ttc	PTPLA
Sine of the second section of the section o	441799		26	9	I/N		aTc/aAc	SUV42
Showing 1 to 5 of 50 entries Previous Previo	511601		5948	1983	N/S		aAt/aGt	ATM
Showing 1 to 5 of 50 entries Previous Previo	536270		1681	561	P/A		Cct/Gct	TREH
<pre>plot.common_missense = ggplot(common_missense, aes(x= reorder(SYMBOL, AF), y=AF, color=gn omadCONSEQ)) + geom_point(shape = 21,</pre>	571078		1854	618	L/F		ttG/ttT	SNX19
<pre>omadCONSEQ)) + geom_point(shape = 21,</pre>	Showing 1	to 5 of 50 entries		Previous 1	2 3	4 5	10	Next
	scale scale scal labs(t	size = 3, stroke = 0 alpha=0.7) _text(aes(label=p size=3, color="blac hjust=1.2 vjust=0.2 show.leg check_overl _y_continuous(lim _color_manual(val e_fill_manual(val itle= "Top 50 MAF subtitle = "Ratio	.5, + aste0("", k", 5, end = FALS ap = TRUE) its = c(-0 ues=var_co ues=var_co genes for	E, + .1, 1.15), n.break lors) + lors) + gnomAD missense_v duals that are hom	ks =6) + variant",			
coord_flip()	nlo+							

plot.common_missense

Top 50 MAF genes for gnomAD missense_variant
Ratio of individuals that are homozygous/heterozygous for ALT allele

ggsave("Top50_genes_w_common_gnomad_missense.png", width=8.5, height=9)

what genes have common silent?

```
common_silent <- wgs %>% filter(gnomadCONSEQ == "synonymous_variant")
print(length(unique(common_silent$SYMBOL)))
```

```
## [1] 20177
```

```
common_silent <- common_silent[order(-common_silent$AF), ]
common_silent <- common_silent[1:50, ]
print(length(unique(common_silent$SYMBOL)))</pre>
```

```
## [1] 48
```

```
datatable(common_silent, options = list(pageLength=5, scrollX='400px'), filter = 'top')
```

Show 5 v entries Search:	
--------------------------	--

keyID37aa CDS.position Protein.position Amino.acids Codons SYN

	All	All	All			ΔII	,	1
654854	16_000476096_A/ G_A	90	30		А		gcA/gcG	RAB1
890449	17_043318778_G/ C_G	1362	454		G		ggG/ggC	FMNI
939529	17_076228088_T/ A_P	534	178		Р		ccT/ccA	TME
1104565	19_034973413_T/ C_A	534	178		А		gcT/gcC	WTIP
1318893	1_064608329_G/ T_A	1170	390		А		gcG/gcT	ROR
Showing 1 t	o 5 of 50 entries		Previous	1 2	3	4 5	10	Next
	size = 3,		Q) ,					

Top 50 MAF genes for gnomAD synonymous_variant Ratio of individuals that are homozygous/heterozygous for ALT allele

ggsave("Top50_genes_w_common_gnomad_synonymous.png", width=8.5, height=9)

what genes have common PATHO?

```
common_patho <- wgs %>% filter(myClinVarLabels == "PATHO") %>% filter(MAF2 == "Common (>=
5%)")
print(length(unique(common_patho$clinvarGeneSymbol)))
```

[1] 23

print(length(unique(common_patho\$keyID37aa)))

[1] 26

```
common_patho <- common_patho[order(-common_patho$AF), ]
# common_patho <- common_patho[1:50, ]
# print(length(unique(common_patho$clinvarGeneSymbol)))
datatable(common_patho, options = list(pageLength=5, scrollX='400px'), filter = 'top')</pre>
```

Show 5 v entries

Search:

	keyID37aa	CDS.position	Protein.posi	tion Am	nino.acids	Co	dons	S	YMBOL	
	All	All	All		All				<i>F</i>	
13	1_226923505_G/ T_P/Q	1655	552	P/Q		cCg/	cAg	ITP	KB	
11	1_000911595_A/ G_V/A	2048	683	V/A	V/A		gTg/gCg		C1orf170	
21	5_131995964_A/ G_Q/R	431	144	Q/R		cAg/	cGg	IL1	3	
1	10_070641860_T/ C_Y/H	457	153	Y/H	Y/H		Cac	ST	OX1	
14	1_226923938_A/ C_S/A	1222	408	S/A		Tcc/0	Gcc	ITP	KB	
Show	ing 1 to 5 of 26 entrie	es	Prev	rious 1	2 3	4	5	6	Next	

```
plot.common.patho = ggplot(common_patho,
                           aes(x= reorder(clinvarGeneSymbol, AF), y=AF)) +
   geom_point(shape = 21,
              colour = "black",
              aes(fill = clinvarCONSEQ),
              size = 3,
              stroke = 0.5,
             alpha=0.7) +
     # geom_text(aes(label= HGVSp.VEP, color=clinvarCONSEQ),
                  size=3,
     #
                  fontface = "bold",
      #
                 hjust = -0.8,
                 vjust=0.25,
                  show.legend = FALSE,
               check_overlap = TRUE) +
   geom_text(aes(label=paste0("", as.character(round(ratio.nhomalt.over.nhetalt, 2)))),
                size=3,
               color="black",
               hjust= 1.25,
               vjust=0.25,
                show.legend = FALSE,
              check_overlap = TRUE) +
  scale_y\_continuous(limits = c(-0.1, 1.15), n.breaks = 6) +
   scale_fill_manual(values=var_colors) +
     scale_color_manual(values=var_colors) +
labs(title= "Common ClinVar PATHO SNV genes",
       subtitle = "Ratio of individuals that are homozygous/heterozygous for ALT allele\nn
= 23 genes\nn = 26 variants",
       y="Minor Allele Frequency (MAF)",
       x="Gene") +
 theme_bw() +
  coord_flip()
plot.common.patho
```

Common ClinVar PATHO SNV genes

Ratio of individuals that are homozygous/heterozygous for ALT allele n = 23 genes n = 26 variants

ggsave("Common_clinvar_patho_genes.png", width=8, height=7)

what genes have common VUS?

```
common_vus <- wgs %>% filter(myClinVarLabels == "VUS") %>% filter(MAF2 == "Common (>=
5%)")
print(length(unique(common_vus$clinvarGeneSymbol)))
```

```
## [1] 85
```

print(length(unique(common_vus\$keyID37aa)))

```
## [1] 103
```

```
common_vus <- common_vus[order(-common_vus$AF), ]
common_vus <- common_vus[1:50, ]
print(length(unique(common_vus$clinvarGeneSymbol)))</pre>
```

```
## [1] 43
```

```
print(length(unique(common_vus$keyID37aa)))
```

[1] 50

datatable(common_vus, options = list(pageLength=5, scrollX='400px'), filter = 'top')

Show	5 v entries		Search:						
	keylD37aa	CDS.position	Protein.position	Amino.acids	Codons	SYMBOL			
	All	All	All	All	,	<i>F</i>			
50	1_055523033_A/ G_Q	1026	342	Q	caA/caG	PCSK9			
97	7_127251188_T/ G_H/P	962	321	H/P	cAc/cCc	PAX4			
35	17_039684321_G/ C_A/G	179	60	A/G	gCc/gGc	KRT19			
34	17_039681475_A/ G_N	471	157	N	aaT/aaC	KRT19			
57	1_196659237_C/ T_H/Y	1204	402	H/Y	Cat/Tat	CFH			
Showi	ng 1 to 5 of 50 entrie	S	Previous 1	2 3 4	5	10 Next			

```
plot.common.vus = ggplot(common_vus, aes(x= reorder(clinvarGeneSymbol, AF), y=AF)) +
    geom_point(shape = 21,
              colour = "black",
              aes(fill = gnomadCONSEQ),
              size = 3,
              stroke = 0.5,
             alpha=0.7) +
   geom_text(aes(label=paste0("", as.character(round(ratio.nhomalt.over.nhetalt, 2)))),
                size=3,
             color="black",
               hjust=1.25,
               vjust=0.25,
                show.legend = FALSE,
             check_overlap = TRUE) +
  # geom_text(aes(label= HGVSp.VEP, color=clinvarCONSEQ),
                  size=3,
                  fontface = "bold",
  #
  #
                 hjust=1.25,
                 vjust=0.25,
                  show.legend = FALSE,
               check_overlap = TRUE) +
  scale_y\_continuous(limits = c(-0.1, 1.15), n.breaks = 6) +
  scale_fill_manual(values=var_colors) +
     scale_color_manual(values=var_colors) +
labs(title= "Top 50 MAF genes for ClinVar VUS SNVs",
        subtitle = "Ratio of individuals that are homozygous/heterozygous for ALT allele\n
n = 43 \text{ genes} \setminus nn = 50 \text{ variants},
       y="Minor Allele Frequency (MAF)",
       x="Gene") +
  theme_bw() +
  coord_flip()
plot.common.vus
```

Top 50 MAF genes for ClinVar VUS SNVs

Ratio of individuals that are homozygous/heterozygous for ALT allele $n=43\ genes$ $n=50\ variants$

ggsave("Top50_genes_w_common_clinvar_vus.png", width=8.5, height=9)