Билеты к экзамену по «Аналитической Механике», $\Phi O \Pi \Phi$

Авторы: Хоружий Кирилл

Примак Евгений

От: 18 января 2021 г.

Содержание

31	Уравнение Лагранжа второго рода	4
32	Разрешимость уравнений Лагранжа	4
33	Изменение полной мехнической энергии голономной системы	4
34	Обобщенный потенциал и первые интегралы лагранжевых систем	
35	Гамильтонов формализм, уравнения и интеграл Якоби	4
	Принцип навмон породобствия	6

31 Уравнение Лагранжа второго рода

Def 31.1. Обобщенная сила Q_k – величина коэффициента ∂q^k при вариации δA , то есть $\delta A = Q_k \delta q^k$.

Thr 31.2 (Уравнения Лагранжа второго рода). Каждая механическая система характеризуется определенной функцией $L(q,\dot{q},t)$. Для голономных системы с конфигурационном многообразием степени n, верно что

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_k} - \frac{\partial L}{\partial q_k} = 0, \quad k = 1, \dots, n.$$

 Γ де для потенциальных систем $L=T-\Pi$. В более общем случае можно записать, что

$$\left(\frac{d}{dt}\frac{\partial T}{\partial \dot{q}^k} - \frac{\partial T}{\partial q^k} - Q^k\right)\delta q^k = 0, \qquad Q^k = -\frac{\partial \Pi}{\partial q^k}.$$

 \triangle . Запишем второй закон Ньютона: $(m_i \mathbf{w}_i = \mathbf{F}_i + \mathbf{R}_i) \mid_{\cdot d\mathbf{r}_i}$, где \mathbf{R}_i – реакции связи. Хотим записать уравнение в общековариантном виде. То есть мы «замораживаем» время, так чтобы $\mathbf{R} \cdot \delta \mathbf{r} = 0$. На таких перемещениях работа реакция связи равна 0.

$$\left[\sum m_{i}\left(\mathbf{w}_{i} \cdot \frac{\partial \mathbf{r}_{i}}{\partial q^{k}}\right) - \left(\mathbf{F}_{i} \cdot \frac{\partial \mathbf{r}_{i}}{\partial q^{k}}\right) - \underbrace{\left(\mathbf{R}_{i} \cdot \frac{\partial \mathbf{r}_{i}}{\partial q^{k}}\right)}_{\cdot \delta q^{k} \to 0}\right] \cdot \delta q^{k} = 0;$$

$$\left[\frac{d}{dt}\frac{\partial}{\partial \dot{q}^{k}}\sum \frac{m_{i}v_{i}^{2}}{2} - \frac{\partial}{\partial q^{k}}\sum \frac{m_{i}v_{i}^{2}}{2} - \sum \mathbf{F}_{i}\frac{\partial \mathbf{r}_{i}}{\partial q^{k}}\right] \delta q^{k} = 0, \quad \Rightarrow \quad \sum_{k}\left[\frac{d}{dt}\frac{\partial T}{\partial \dot{q}^{k}} - \frac{\partial T}{\partial q^{k}} - Q^{k}\right] \delta q^{k} = 0.$$

Проблема остается в неголономных системах, где δq^k не являются независимыми, получается, что уравнения Лагранжа справедливы для голономных систем.

Вспоминая, что

$$\delta A = \sum_{i} m{F}_{i} \cdot \delta m{r}_{i} = \sum_{i} \left(m{F}_{i} \cdot rac{\partial m{r}_{i}}{\partial q^{k}}
ight) \delta q^{k} = \sum_{k} rac{\delta A_{k}}{\delta q^{k}} \delta q^{k} = Q_{k} \delta q^{k}.$$

Тогда пусть $\Pi(q,t)$: $Q^k = -\partial \Pi/\partial q^k$. Тогда

$$\frac{d}{dt}\frac{\partial(T-\Pi)}{\partial\dot{q}^k}-\frac{\partial(T-\Pi)}{\partial q^k}=0, \quad \Rightarrow \quad \frac{d}{dt}\frac{\partial L}{\partial\dot{q}^k}-\frac{\partial L}{\partial q^k}=0, \quad k=1,\ldots,n.$$

To есть получили систему уравнений на 2n переменных.

32 Разрешимость уравнений Лагранжа

Подставим разложение кинетической энергии в уравнения Лагранжа, оставив только слагаемые с обобщёнными ускорениями $f_i(q,\dot{q},t)=a_{jk}\ddot{q}^j$.

$$T = \frac{1}{2} \sum_{\nu} m_{\nu} \dot{\boldsymbol{r}}_{\nu}^{2} = \frac{1}{2} \sum_{\nu} \left(\frac{\partial \boldsymbol{r}_{\nu}}{\partial q^{j}} \dot{q}^{j} + \frac{\partial \boldsymbol{r}_{\nu}}{\partial t} \right)^{2} = \frac{1}{2} \left[\underbrace{a_{jk} \dot{q}^{j} \dot{q}^{k}}_{2T_{2}} + \underbrace{a_{j} \dot{q}^{j}}_{2T_{1}} + \underbrace{a_{0}}_{2T_{0}} \right],$$

где коэффициенты, соответственно, равны

$$a_{jk}(q,t) = \sum_{\nu} m_{\nu} \frac{\partial \mathbf{r}_{\nu}}{\partial q^{j}} \cdot \frac{\partial \mathbf{r}_{\nu}}{\partial q^{k}}, \quad a_{j}(q,t) = \sum_{\nu} m_{\nu} \frac{\partial \mathbf{r}_{\nu}}{\partial q^{j}} \cdot \frac{\partial \mathbf{r}_{\nu}}{\partial t}, \quad a_{0} = \sum_{\nu} m_{\nu} \left(\frac{\partial \mathbf{r}_{\nu}}{\partial t}\right)^{2}.$$

Для склерономных систем $\partial r_{\nu}/\partial t=0$, соотвественно $T=a_{jk}\dot{q}^{j}\dot{q}^{k}$, при чём $a_{jk}\equiv a_{jk}(q)$.

Теперь подставим значение T в уравнения Лагранжа, и получим, что $a_{ik}\ddot{q}^k = f_i$, где $f_1 = f_1(q,\dot{q},t)$. Уравнений в системе n, причём a_{jk} является положительно определенной формой¹, соответственно невырожденной.

Thr 32.1. Уравнения Лагранжа второго рода разрешимы относительно обобщенных ускорений

33 Изменение полной мехнической энергии голономной системы

Пусть есть также непотенциальные силы, часть обобщенных сил, соответстующих непотенциальным силам, обозначим Q_i^* , тогда

$$Q_1 = -\frac{\partial \Pi}{\partial q^i} + Q_i^*, \quad \Rightarrow \quad \frac{d}{dt} \frac{\partial T}{\partial \dot{q}^i} - \frac{\partial T}{\partial q^i} = -\frac{\partial \Pi}{\partial q^i} + Q_i^*.$$

¹Требует отдельного доказательства.

Найдём производную по времени от кинетической энергии

$$\frac{dT}{dt} = \frac{\partial T}{\partial \dot{q}^i} \ddot{q}^i + \frac{\partial T}{\partial q^i} \dot{q}_i + \frac{\partial T}{\partial t} = \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}^i} \dot{q}^i \right) - \left(\frac{d}{dt} \frac{\partial T}{\partial \dot{q}^i} - \frac{\partial T}{\partial q^i} \right) \dot{q}^i + \frac{\partial T}{\partial t}.$$

По теореме Эйлера об однороных функциях для $f(x_1,\ldots,x_n)$ k-й степени верно что

$$\frac{\partial f}{\partial x^i}x^i = kf, \quad \Rightarrow \quad \frac{\partial T}{\partial \dot{q}^i}\dot{q}^i = 2T_2 + T_1.$$

В таком случае последнее равеноство перепишется, как

$$\begin{split} \frac{dT}{dt} &= \frac{d}{dt}(2T_2 + T_1) + \frac{\partial \Pi}{\partial q^i}\dot{q}^i - Q_i^*\dot{q}^i + \frac{\partial T}{\partial t} = \\ &= \frac{d}{dt}(2T_2 + 2T_1 + 2T_0) - \frac{d}{dt}(T_1 + 2T_0) + \frac{d\Pi}{dt} - \frac{\partial \Pi}{\partial t} - Q_i^*\dot{q}^i + \frac{\partial T}{\partial t}. \end{split}$$

Таким образом мы доказали следующую теорему.

Thr 33.1. Полная мехническая энергия голономной системы $E = T + \Pi$ изменяется следующим образом:

$$\frac{dE}{dt} = N^* + \frac{d}{dt}(T_1 + 2T_0) + \frac{\partial \Pi}{\partial t} - \frac{\partial T}{\partial t}.$$

 $\Gamma \partial e \ N^* = Q^*{}_i \dot{q}^i$ – мощность непотенциальных сил.

Def 33.2. Голономная склерономная система с $\Pi \equiv \Pi(q)$ называется консервативной, при чём dE/dt = 0.

Гироскопические силы

Def 33.3. Непотенициальные силы называют *гироскопическими*, если их мощность равна 0.

Пусть $Q^*_i = \gamma_{ik}\dot{q}^k$. Если $\gamma_{ik} = -\gamma_{ki}$, то силы Q^*_i гиросокопические, соответсвенно кососимметричность γ_{ik} необходима и достаточна.

Более того, имеет место равеноство $\sum_{\nu} \boldsymbol{F}_{\nu} \cdot \boldsymbol{v}_{\nu} = \sum_{\nu} \boldsymbol{F}_{\nu} \cdot \left(\frac{\partial \boldsymbol{r}_{\nu}}{\partial q^{i}} \dot{q}^{i} + \frac{\partial \boldsymbol{r}_{\nu}}{\partial t} \right) = \left(\sum_{\nu} \boldsymbol{F}_{\nu} \cdot \frac{\partial \boldsymbol{r}_{\nu}}{\partial q^{i}} \right) \dot{q}^{i} + \sum_{\nu} \boldsymbol{F}_{\nu} \cdot \frac{\partial \boldsymbol{r}_{\nu}}{\partial t}, \quad \overset{\partial \overrightarrow{\boldsymbol{r}}_{\nu}/\partial t = 0}{=} \quad \sum_{\nu} \boldsymbol{F}_{\nu} \cdot \boldsymbol{v}_{\nu} = Q_{i} \dot{q}^{i}.$

Поэтому для склерономных систем $N^*=0$ выражается в $\sum_{\nu} \boldsymbol{F}_{\nu}^* \cdot \boldsymbol{v}_{\nu}=0.$

Диссипативные силы

Def 33.4. Непотенциальные силы называются диссипативными, если их $N^* \leqslant 0$, но $N^* \not\equiv 0$. При $\Pi = \Pi(q)$ и диссипативности сил $dE/dt \leqslant 0$, тогда система называется диссипативной. В случае определенно-отрицательной $N^*(\dot{q})$ диссипация называется *полной*, а в случае знакопостоянной отрицательной N^* частичной.

Def 33.5. Диссипативной функцией Рэлея называется положительная квадратичная форма R такая, что

$$R = \frac{1}{2} b_{ik} \dot{q}^i \dot{q}^k, \qquad Q^*_{i} = -\frac{\partial R}{\partial \dot{q}^i} = -b_{ik} \dot{q}^k.$$

Тогда для склерономной системы можность N^* непотенциальных сил равна

$$\sum_{\nu} \boldsymbol{F}_{\nu}^* \cdot \boldsymbol{v}_{\nu} = Q_i^* \dot{q}^i = -2R \leqslant 0.$$

34 Обобщенный потенциал и первые интегралы лагранжевых систем

Путь существует функция $V(q,\dot{q},t)$ такая, что обобщенные силы Q_i определяются по формулам

$$Q_i = \frac{d}{dt} \frac{\partial V}{\partial \dot{q}^i} - \frac{\partial V}{\partial q^i}.$$

Тогда функция V называется обобщенным потенциалом. Действительно, при L=T-V уравнения движения запишутся в той же форме. Дифференцируя по времени выясним, что

$$Q_i = \frac{\partial^2 V}{\partial \dot{q}^i \partial \dot{q}^k} \ddot{q}^k + f_i,$$

где $f_i \equiv f_i(q,\dot{q},t)$. Но так как зависимость $Q_i(\ddot{q})$ это странно, то

$$V = A_i(q, t)\dot{q}^i + V_0(q, t).$$

Тогда обобщенные силы

$$Q_i = \frac{dA_i}{dt} - \frac{\partial}{\partial q^i} \left(A_k \dot{q}^k + V_0 \right) = -\frac{\partial V_0}{\partial q^i} + \frac{\partial A_i}{\partial t} + \left(\frac{\partial A_i}{\partial q^k} - \frac{\partial A_k}{\partial q^i} \right) \dot{q}^k.$$

Если $\partial A_i/\partial t=0$, то Q_i складываются из потенциальных $\partial V_0/\partial q_i$ и гироскопических $Q_i^*=\gamma_{ik}\dot{q}^k$, где $\gamma_{ik}=\partial_k A_i-\partial_i A_k$. Если система склерономна и $V_0\neq V_0(t)$, то $T+V_0$ остается постоянной.

В случае существования обобщенного потенциала L всё так же многочлен второй степени относительно $q, \dot{q},$ при чём $L_2 = T_2,$ так что уравнения остаются разрешимы относительно обобщенных ускорений.

Натуральные системы

Def 34.1. Системы, в которых силы имеют обычный $\Pi(q_i,t)$ или обобщенный $V(q^i,\dot{q}^i,t)$ потенциал, называются натуральными. В таких системах $L=T-\Pi$. Более общие системы $L(q^i,\dot{q}^i,t)$ не представимы в виде однако при выполнении условия,

$$\det\left[\frac{\partial^2 L}{\partial \dot{q}^i \partial \dot{q}^k}\right] \neq 0,$$

то есть ненулевого гессиана лагранжиана, уравнения Лагранжа остаются разрешимы относительно обобщенных ускорений.

Первые интегралы

Распространенным

35 Гамильтонов формализм, уравнения и интеграл Якоби

Преобразование Лежандра

Def 35.1. В уравнениях Лагранжа второго рода движения голономной системы в потенциальном поле сил, функция Лагранжа зависит от q, \dot{q} , t – переменные Лагранжа. Если в качестве параметров взять q, p, t, где p_i – обобщенные импульсы², определяемые как $p_i = \partial L/\partial \dot{q}^i$. То получим набор q, p, t – переменные Гамильтона.

В силу невырожденности $\partial L/(\partial \dot{q}^i\partial \dot{q}^j)=J_p$, то есть по *теореме о неявной функции* эти равенства разрешимы относительно переменных \dot{q}^i . Через преобразование Лежандра естестественно ввести функцию

$$H(q, p, t) = p_i \dot{q}^i - L(q, \dot{q}, t), \quad \dot{q} \equiv \dot{q}(q, p, t).$$

Уравнения Гамильтона

Полный дифференциал функции Гамильтона можем выразиь двумя способами:

$$dH = \frac{\partial H}{\partial q^{i}} dq^{i} + \frac{\partial H}{\partial p_{i}} dp_{i} + \frac{\partial H}{\partial t} dt,$$

$$dH = \dot{q}^{i} dp_{i} - \frac{\partial L}{\partial q^{i}} dq^{i} - \frac{\partial L}{\partial t} dt.$$

$$\Rightarrow \frac{\partial H}{\partial p_{i}} = \dot{q}^{i}, \quad \frac{\partial H}{\partial q^{i}} = -\frac{\partial L}{\partial q^{i}}$$

$$\Rightarrow \begin{cases} \frac{dq^{i}}{dt} = \frac{\partial H}{\partial p_{i}}, \\ \frac{dp_{i}}{dt} = -\frac{\partial H}{\partial q^{i}}. \end{cases}$$

Эти уравнения называются уравнениями Гамильтона, или каноническими уравнениями.

Физический смысл функции Гамильтона

Пусть система натуральна, тогда $L = L_2 + L_1 + L_0$, и, соответсвенно,

$$H = \frac{\partial L}{\partial \dot{q}^i} \dot{q}^i - L.$$

По теореме Эйлера об однородных функциях

$$\frac{\partial L_2}{\partial \dot{q}^i}\dot{q}^i = 2L_2, \qquad \quad \frac{\partial L_1}{\partial \dot{q}^i}\dot{q}^i = L_1, \quad \Rightarrow \quad \ H = L_2 - L_0.$$

пусть $T = T_2 + T_1 + T_0$, если силы имеют обычный потенциал Π , то $L_0 = T_0 - \Pi$,

$$H = T_2 - T_0 + \Pi.$$

Если же силы имеют обобщенный потенциал $V=V_1+V_0$, то $L_0=T_0-V_0$, и

$$H = T_2 - T_0 + V_0.$$

²Обобщенный импульс p_i – ковектор, а не вектор!

В случае натуральных и склерономных систем $T_1 = T_0 = 0$ и $T = T_2$, тогда $H = T + \Pi$. Т.е. для натуральных склерономных систем с обычным потенциалом сил функция Гамильтона H представляет собой полную механическую энергию.

Интеграл Якоби

Найдём полную производную H по времени,

$$\frac{dH}{dt} = \frac{\partial H}{\partial q^i} \dot{q}^i + \frac{\partial H}{\partial p_i} \dot{p}_i + \frac{\partial h}{\partial t} = \frac{\partial H}{\partial q^i} \frac{\partial H}{\partial p_i} - \frac{\partial H}{\partial p_i} \frac{\partial H}{\partial q^i} + \frac{\partial H}{\partial t} = \frac{\partial H}{\partial t}, \quad \Rightarrow \quad \frac{dH}{dt} = \frac{\partial h}{\partial t}.$$

Система называется обобщенно консервативной, если $\partial H/\partial t = 0$, т.е $H(q^i, p_i) = h$, собственно, H называют обобщенной полной энергией, а поледнее равенство – обобщенным интегралом энергии.

Def 35.2. Для натуральной системы с обычным потенциалом сил, если $\partial H/\partial t = 0$, то

$$H = T_2 - T_0 + \Pi = h = \text{const.}$$

Соотноешние, где h – произвольная постоянная, называют *интегралом* Якоби.

Есть и другая формулировка для интеграла Якоби голономной склерономной системы. Действительно, при $\partial L/\partial t=0$, интеграл Якоби перейдёт в

$$\frac{\partial H}{\partial t} = 0, \Rightarrow \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}^i} \dot{q}^i \right) = 0, \Rightarrow \frac{\partial L}{\partial \dot{q}^i} \dot{q}^i = \text{const.}$$

Уравнения Уиттекера

Если $\partial H/\partial t = 0$, то H(q,p) = h, где h = const определяемая из н.у. В 2n-мерном пространстве q, p интеграл Якобми задаёт гиперповерхность, рассмотрим движение с H = h.

Такое движение описывается системой с 2n-2 уравнений, причём она может быть записана в виде канонических уравнений. Пусть $\partial H/\partial p_1 \neq 0$, тогда

$$p_{1} = -K(q^{1}, \dots, q^{n}, p_{2}, \dots, p_{n}, h), \quad \Rightarrow \quad \begin{cases} \dot{q}^{i} = \frac{\partial H}{\partial p_{i}}, \\ \dot{p}_{j} = -\frac{\partial H}{\partial q^{j}} \end{cases} \quad \Rightarrow \quad \frac{dq^{j}}{dq^{1}} = \frac{\left(\frac{\partial H}{\partial p_{j}}\right)}{\left(\frac{\partial H}{\partial p_{1}}\right)}, \quad \frac{dp_{j}}{dq^{1}} = -\frac{\left(\frac{\partial H}{\partial q^{j}}\right)}{\left(\frac{\partial H}{\partial p_{1}}\right)},$$

для $j = 2, 3, \ldots, n$. Подставляя p_1 получим

$$\frac{\partial H}{\partial q^{j}} - \frac{\partial H}{\partial p_{1}} \frac{\partial K}{\partial q^{j}} = 0, \qquad (j = 2, 3, ..., n);$$

$$\frac{\partial H}{\partial p_{j}} - \frac{\partial H}{\partial p_{1}} \frac{\partial K}{\partial p_{j}} = 0, \qquad (j = 2, 3, ..., n).$$

Допиливая до надлежащего вида, окончательно находим

$$\frac{dq^j}{dq^1} = \frac{\partial K}{\partial p_j}, \qquad \frac{dp_j}{dq_1} = -\frac{\partial K}{\partial q^j}, \qquad (j = 2, 3, \dots, n).$$

Эти уравнения описывают движения системы при H = h = const, и называются уравнениями Уиттекера.

Уравнения Якоби

Уравнения Уиттекера имеют структуру уравнений Гамильтона, соответственно их можно зписать в виде уравнений типа Лагранжа, при гессиане K по p неравным 0. Пусть P – преобразование Лежандра функции K по p_i ($j=2,\ 3,\ \ldots,\ n$). Тогда

$$P = P(q^2, \dots, q^n, \tilde{q}^2, \dots, \tilde{q}^n, q^1, h) = \sum_{j=2}^n \tilde{q}^j p_j - K,$$

где $\tilde{q}^j=dq^j/dq^1$. Величины p_j выражаются через $\tilde{q}^2,\ \dots,\ \tilde{q}_n$ из уравнений

$$\tilde{q}^j = \frac{\partial K}{\partial p_j}, \quad (j = 2, 3, \dots, n),$$

т.е. из первых n-1 уравнений Уиттекера. При помощи функции P эти уравнения могут быть записаны в эквивалентной форме:

$$\frac{d}{dq^1}\frac{\partial P}{\partial q'_i} - \frac{\partial P}{\partial q^j} = 0 \qquad (j = 2, 3, \dots, n).$$

Это уравнения типа Лагранжа, называются уравнениями Якоби.

Преобразовывая выражение для P найдём, что

$$P = \sum_{j=2}^{n} q_j \tilde{q}^j + p_1 = \sum_{i=1}^{n} p_1 \tilde{q}_i = \frac{1}{\dot{q}^1} \sum_{i=1}^{n} p_i \dot{q}^i = \frac{1}{\dot{q}^1} (L + H).$$

Тогда в случае консервативной системы $L = T - \Pi$, $H = T + \Pi$, и³

$$P = \frac{2T}{\dot{q}^1}, \quad \Rightarrow \quad P = 2\sqrt{(h-\Pi)G}.$$

36 Принцип наименьшего действия

Def 36.1. Действием по Гамильтону называют функционал вида

$$S = \int_{t_0}^{t_1} L(\gamma(t), \dot{\gamma}(t), t) dt.$$

Переходя к однопараметрическому семейству кривых $\gamma(\alpha,t)$ получим вариацию действия

$$S = \int_{t_0}^{t_1} L(\gamma(\alpha, t), \dot{\gamma}(\alpha, t), t) dt, \quad \delta S = \frac{dS}{d\alpha} \delta \alpha.$$

Thr 36.2 (принцип Гамильтона). Кривая $\gamma(\alpha,t)$ является экстремалью действия тогда и только тогда, когда является решением уравнений Лагранжа

$$\delta S = 0 \quad \Leftrightarrow \quad \gamma(\alpha,t) \in \mathrm{Sol}\,\left(\frac{d}{dt}\frac{\partial L}{\partial \dot{q}^k} - \frac{\partial L}{\partial q^k} = 0\right).$$

△. Давайте просто проварьируем Лагранжиан, тогда

$$\delta S = \int_{t_0}^{t_1} \left(\frac{\partial L}{\partial q^i} \frac{\partial q^i}{\partial \alpha} + \frac{\partial L}{\partial \dot{q}^i} \frac{\partial \dot{q}^i}{\partial \alpha} \right) \delta \alpha \, dt = \int_{t_0}^{t_1} \left(\frac{\partial L}{\partial q^i} \delta q^i + \frac{\partial L}{\partial \dot{q}^i} \delta \dot{q}^i \right) \, dt = \frac{\partial L}{\partial \dot{q}} \partial q \bigg|_{t_1}^{t_2} + \int_{t_1}^{t_2} \left(\frac{\partial L}{\partial q^i} - \frac{d}{dt} \frac{\partial L}{\partial \dot{q}^i} \right) \delta q^i \, dt = 0.$$
 вким образом уравнения Лагранжа выполнены.

таким образом уравнения Лагранжа выполнены.

 $^{^3\}Pi$ ара выражений в выводе опущены.