Assignment 1

Due Feb 10 by 11:59pm **Points** 80 **Submitting** a file upload

Available after Jan 26 at 12am

Submit the assignment as a PDF document. You must typeset the answers; u se your favorite text/doc editor.

Submit the code separately (e.g., .java/.py/.cpp files). Make sure to at tach the screenshots of your results for the coding question.

All the files should be zipped together and submitted to Canvas.

Answer the following questions (no programming required -- show complete calculations)

- Consider the n-queens problem using the "efficient" incremental formulation given on page 72. Explain why the state space has at least ³√n! states and estimate the largest n for which exhaustive exploration is feasible. [10 points]
 - Hint: Derive a lower bound on the branching factor by considering the maximum number of squares that a queen can attack in any column.
- Compute the order in which states of the above graph are expanded and the the returned path for each of these graph search methods:
 - Depth-first search
 - Breadth-first search
 - Uniform cost search
 - Greedy search using the heuristic h shown on the graph. [4 * 5 = 20 points]

1 of 2 12/26/23, 15:09

_

Write a program to solve the following problem.

Consider the problem of finding the shortest path (e.g., using A* algorithm) between two points on a plane that has convex polygonal obstacles as shown in Figure 3.31. This is an idealization of the problem that a robot has to solve to navigate in a crowded environment. [50 points]

- Define the necessary functions to implement the search problem, including an ACTIONS function that takes a *vertex* as input and returns a set of vectors, each of which maps the current vertex to one of the vertices that can be reached in a straight line. (Do not forget the neighbors on the same polygon.)
 - Use the straight-line distance for the heuristic function.
- Write a program (language no bar) to solve the shortest pathfinding problem for such an environment.
 - Input: an environment like the one shown in Fig. 3.31 in your textbook, a start, and a goal location.
 - Output: the shortest path that the robot has to follow to reach from the start to the goal (Shown visually on screen).
 - the screenshots of the output should be added to the PDF.

2 of 2 12/26/23, 15:09