Examenul național de bacalaureat 2023

Proba E. c)

Matematică *M_şt-nat*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 1

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$4-6\sqrt{3}+3(2\sqrt{3}-1)=4-6\sqrt{3}+6\sqrt{3}-3=$	3 p
	=4-3=1	2p
2.	5a - 3 = 2a + 3	3 p
	a=2	2p
3.	$2^{2x+4} = 2^0$, de unde obținem $2x + 4 = 0$	3 p
	x = -2	2p
4.	Cifra zecilor se poate alege în 4 moduri	2p
	Pentru fiecare alegere a cifrei zecilor, cifra unităților se poate alege în câte 3 moduri, deci	3р
	sunt $4 \cdot 3 = 12$ numere	ОР
5.	$M(2,1)$, de unde obținem $MO = \sqrt{5}$	3 p
	$MC = \sqrt{5}$, deci $MO = MC$	2p
6.	$\sin\frac{\pi}{6} = \frac{1}{2}, \sin\frac{\pi}{3} = \frac{\sqrt{3}}{2}, \cos\frac{\pi}{6} = \frac{\sqrt{3}}{2}$	3p
	$\frac{311}{6} \frac{1}{2}, \frac{311}{3} \frac{1}{2}, \frac{311}{6} \frac{1}{2}$	υ p
	$E\left(\frac{\pi}{6}\right) = 2 \cdot \frac{1}{2} \cdot \frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2} = 0$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(0) = \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix} \Rightarrow \det(A(0)) = \begin{vmatrix} 3 & 2 \\ 1 & 1 \end{vmatrix} = 3 \cdot 1 - 2 \cdot 1 =$	3p
	=3-2=1	2p
b)	$A(a) - A(0) = \begin{pmatrix} a & -2a \\ -a & 3a \end{pmatrix}$	2p
	$A(0) \cdot (A(a) - A(0)) = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = aI_2$, pentru orice număr real a	3p
c)	$A(a^{2}) = \begin{pmatrix} 3+a^{2} & 2-2a^{2} \\ 1-a^{2} & 1+3a^{2} \end{pmatrix}, \ A(a^{2})-aA(a) = \begin{pmatrix} 3-3a & 2-2a \\ 1-a & 1-a \end{pmatrix}$	2p
	$\det(A(a^2)-aA(a)) = 3(1-a)^2 - 2(1-a)^2 = (1-a)^2 \ge 0$, pentru orice număr real a	3p
2.a)	$0 \circ 2 = 0^2 - 4 \cdot 0 \cdot 2 + 3 \cdot 2^2 =$	3 p
	=0-0+12=12	2p
b)	$(2x) \circ x = -x^2$, pentru orice număr real x	2p
	$-x^2 = -1$, de unde obținem $x = -1$ sau $x = 1$	3 p

Central Pagional de l'Ondre și Bratadre în Badeașie			
c)	$m \circ n = m^2 - mn - 3mn + 3n^2 = (m - n)(m - 3n)$, pentru orice numere întregi m și n	2p	
	(m-n)(m-3n)=3 și, cum m și n sunt numere întregi cu $m < n$, obținem perechile	3n	
	(-4,-1) și $(0,1)$	J p	

SUBIECTUL al III-lea (30 de puncte)

1 \		
1.a)	$f'(x) = \frac{4x^2 - (4x - 4) \cdot 2x}{x^4} =$	3 p
	$=\frac{4x(2-x)}{x^4} = \frac{4(2-x)}{x^3}, \ x \in (0,+\infty)$	2p
b)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(5 + \frac{4x - 4}{x^2} \right) = \lim_{x \to +\infty} \left(5 + \frac{4}{x} - \frac{4}{x^2} \right) = 5$	3 p
	Dreapta de ecuație $y = 5$ este asimptota orizontală spre $+\infty$ la graficul funcției f	2p
c)	$f'(x) = 0 \Leftrightarrow x = 2$; pentru orice $x \in [1,2]$, $f'(x) \ge 0 \Rightarrow f$ este crescătoare pe $[1,2]$ și pentru orice $x \in [2,+\infty)$, $f'(x) \le 0 \Rightarrow f$ este descrescătoare pe $[2,+\infty)$	2p
	$f(1)=5$, $f(2)=6$ și $\lim_{x\to+\infty} f(x)=5$, deci $5 \le f(x) \le 6$, pentru orice $x \in [1,+\infty)$, de unde obținem $ f(x)-f(y) \le 1$, pentru orice $x, y \in [1,+\infty)$	3 p
2.a)	$\int_{1}^{2} (f(x) - 4 \ln x) dx = \int_{1}^{2} 3x^{2} dx = x^{3} \Big _{1}^{2} = 8 - 1 = 7$	3p
b)		2 p
b)	$\int_{1}^{e} x (f(x) - 3x^{2}) dx = \int_{1}^{e} 4x \ln x dx = \int_{1}^{e} (2x^{2}) \ln x dx = 2x^{2} \ln x \Big _{1}^{e} - x^{2} \Big _{1}^{e} =$	3 p
	$=2e^2-0-e^2+1=e^2+1$	2p
c)	$F'(x) = f(x) \Rightarrow F''(x) = f'(x), x \in (0, +\infty)$	2p
	$\int_{1}^{\sqrt{e}} f(x)F''(x)dx = \int_{1}^{\sqrt{e}} f(x)f'(x)dx = \frac{f^{2}(x)}{2} \Big _{1}^{\sqrt{e}} = \frac{(3e+2)^{2}-3^{2}}{2} = \frac{(3e-1)(3e+5)}{2}$	3 p