数字电路

第2章 数制与编码

杨旭

北京理工大学 pyro_yangxu@bit.edu.cn

本章内容

- □ 2.1 数制
- □ 2.2 数制转换
- □ 2.3 二进制符号数的表示方法
- □ 2.4 二-十进制编码 (BCD码)
- □ 2.5 格雷 (Gray) 码
- □ 2.6 ASCII字符集
- □ 2.7 检错码和纠错码

数制与编码

□ 人类在日常生活中如何表示数字?

十进制

□ 计算机中如何表示数字?

- □ 二进制和十进制之间的关系是什么?
- □ 还有别的常用的表示方法吗?

八进制、十六进制

数制

•即记数法,人们用一组规定的符号和规则来 表示数的方法

数制的两个基本要素

基数

符号

位权

规则

基数

- · 数制中每一位数所 用到的数码的个数。
- 基数为N的记数制中,含有0、1、...、N-1,共N个数码,进位规律

位权

- 数制中每一固定位 置对应的单位值 (数值"1")代表 的值。
- 例如: 十进制中第 二位的位权是10,

□ 任意一个数均可写为多项式形式

□ 十进制数的基数为10, 用到的10个符号为

0 1 2 3 4 5 6 7 8 9

对于任意R进制数N, 假设整数位数为n、小数位数为m

$$(N)_{R} = K_{n-1}K_{n-2} \cdots K_{0} \cdot K_{-1} \cdots K_{-m}$$

$$= K_{n-1}R^{n-1} + K_{n-2}R^{n-2} + \cdots + K_{0}R^{0} + K_{-1}R^{-1} + \cdots K_{-m}R^{-m}$$

$$= \sum_{i=-m}^{n-1} K_{i}R^{i}$$

□ 其中R为R进制数的基数,K_i为0,1,R-1范围内取 值的数字。

二、八、十、十六进制数

- \bullet (N)₁₀= $\sum d_i \cdot 10^i$
- •d_i的取值范围: 0, 1, 2...9
 - \bullet (N)₂= $\sum b_i \cdot 2^i$
 - •b_i的取值范围: 0, 1
 - $(N)_8 = \sum q_i \cdot 8^i$
 - •qi的取值范围: 0, 1, 2...7
- \bullet (N) $_{16}$ = $\sum h_i \cdot 16^i$
 - •h_i的取值范围: 0, 1...9, A,B,C,D,E,F

二、八、十、十六进制数

二、八、十六进制到十进制的转换

转换方法: 直接按位加权相加

例1
$$(101.001)_2 = 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 + 0 \cdot 2^{-1} + 0 \cdot 2^{-2} + 1 \cdot 2^{-3}$$

= $(5.125)_{10}$

例2
$$(32.56)_8 = 3.8^1 + 2.8^0 + 5.8^{-1} + 6.8^{-2}$$

= $(26.71875)_{10}$

例3 (ED.A)₁₆ =
$$14 \cdot 16^{1} + 13 \cdot 16^{0} + 10 \cdot 16^{-1}$$

= $(237.625)_{10}$

十、二、八、十六进制对照表

十进制	二进制	八进制	十六进制
0	0000	00	0
1	0001	01	1
2	0010	02	2
3	0011	03	3
4	0100	04	4
5	0101	05	5
6	0110	06	6
7	0111	07	7
8	1000	10	8
9	1001	11	9
10	1010	12	А
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111 pyro_yangxu	u@bit.edu.cn 17	F

二十一八进制之间的转换

转换方法:每三位二进制数对应一位八进制数。转换时从小数点向左、向右每3位为一组,直接写出对应的八进制数即可。小数点后最后一组要补足3位。

 $(10010111.1101)_2$

 $= (010 \ 010 \ 111.110 \ 100)_2$

 $=(227.64)_{8}$

 $(227.64)_{Q}$

 $= (010 \ 010 \ 111.110 \ 100)_{B}$

 $= (10010111.1101)_{B}$

二一十六进制之间的转换

转换方法:四位二进制数对应一位十六进制数。转换时从小数点向左、向右每4位为一组,直接写出对应的十六进制数即可。小数点后最后一组要补足4位。

 $(110110111.011)_2$

 $=(0001 \ 1011 \ 0111.0110)_2$

 $=(1B7.6)_{16}$

 $(1C7.6)_{H}$

 $=(0001 \ 1100 \ 0111.0110)_{B}$

 $=(111000111.011)_{B}$

八一十六进制之间的转换

转换方法: 八进制数与十六进制数之间的转换可以通过 转换为二进制数作为中间过程。

 $(1C7.6)_{16}$

 $=(0001 \ 1100 \ 0111.0110)_2$

 $=(111\ 000\ 111.011)_2$

 $=(707.3)_{8}$

 $(707.3)_8$

 $=(111\ 000\ 111.011)_2$

 $=(0001 \ 1100 \ 0111.0110)_2$

 $=(1C7.6)_{16}$

十进制到二进制的转换

整数部分和小数部分分别进行转换

整数部分用连除法

例: (59)₁₀=(?)₂

解:

$$0 \stackrel{\cancel{/2}}{\leftarrow} 1 \stackrel{\cancel{/2}}{\leftarrow} 3 \stackrel{\cancel{/2}}{\leftarrow} 7 \stackrel{\cancel{/2}}{\leftarrow} 14 \stackrel{\cancel{/2}}{\leftarrow} 29 \stackrel{\cancel{/2}}{\leftarrow} 59$$

$$1 \quad 1 \quad 1 \quad 0 \quad 1 \quad 1$$

$$b_5 \quad b_4 \quad b_3 \quad b_2 \quad b_1 \quad b_0$$

$$(59)_{10} = (111011)_2$$

十进制到二进制的转换

整数部分和小数部分分别进行转换

小数部分用连乘法

例: (0.8125)₁₀=(?)₂

解: $0.8125 \stackrel{\times 2}{\longrightarrow} 0.625 \stackrel{\times 2}{\longrightarrow} 0.25 \stackrel{\times 2}{\longrightarrow} 0.5 \stackrel{\times 2}{\longrightarrow} 0.5$

1

b₋₁ b₋₂

0 1

b₋₃

b₋₄

 $(0.8125)_{10} = (0.1101)_2$

十进制到二进制的转换

整数、小数分别转换,转换结果合到一起即可。

$$(59)_{10} = (111011)_{2}$$

$$(59.8125)_{10}$$

$$= (111011.1101)_{2}$$

$$(0.8125)_{10} = (0.1101)_{2}$$

小数位数的确定

给定位数

(0.2)₁₀=(?)₂, 保留8位小数

(0.2)₁₀=(?)₂, 要求误差小于1%

$$(0.2)_{10} = (0.00110011)_2$$

- ∵0.2*1%=0.002
- 且2-9=0.00195<0.002
- 二需要保留9位小数
- $(0.2)_{10} = (0.001100110)_2$

十进制到八、十六进制的转换

方法一: 连除(乘)法。

例: (59)₁₀=(?)₈

所以 (59)10=(73)8

例: (0.8125)₁₀=(?)₈

解: 0.8125→0.5→0

6 4

 q_{-1} q_{-2}

所以(0.8125)₁₀=(0.64)₈

 $(59.8125)_{10} = (73.64)_{8}$

十进制到八、十六进制的转换(续)

方法一: 连除(乘)法。

解:
$$0 \leftarrow 3 \leftarrow 59$$

3 B(11)
 h_1 h_2

 $(59.8125)_{10} = (3B.D)_{16}$

十进制到八、十六进制的转换

方法二:十进制 → 二进制 → 八 (十六) 进制数

方法二 方法一 算式较长 算式较短 运算简单 运算繁琐 常用方法

重要的数字

$$2^{i}, 2^{i}-1, i=0,1,...10$$

$$2^{10} = 1024 \approx 1000 = 1$$
K

$$2^{20} = 1M$$

$$2^{30} = 1G$$

$$2^{32} = 4G$$

二进制符号数的表示方法

符号数:

带正、负号的数

原码 表示法

反码 表示法 补码 表示法

原码表示法

符号

1位二进制数表示符号: 0表示正数, 1表示负数

数值

数的大小以该数的绝对值表示

符号位置

符号放在最高位

00010111 = +23

10010111 = -23

符号绝对值

符号 绝对值

原码表示法

例:数据位宽n=8,最高位为符号位

十进制表示	二进制	原码表示法
(+37) ₁₀	+0100101	<mark>0</mark> 0100101
(-37) ₁₀	- 0100101	10100101
(+0) ₁₀	+0000000	0000000
(-0) ₁₀	- 0000000	10000000
(+127) ₁₀	+1111111	01111111
(-127) ₁₀	-1111111	1 1111111

- □ n位数字采用原码可表示的数据范围: -(2ⁿ⁻¹-1)~+(2ⁿ⁻¹-1)
- □ 0有两种表示方式: +0 和-0

反码

反码: 将二进制数的每一位分别求反而得到的二进制码

0 反码 1

N : 10011011

 $N_{\overline{D}}: 01100100$

符号数的反码表示法

符号

1位二进制数表示符号: 0表示正数, 1表示负数

数值

正数用原码表示, 负数以该数的反码表示

符号位置

符号放在最高位

00010111 = +23

10010111 = -104

符号原码

符号 反码

反码表示法

例:数据位宽n=8,最高位为符号位

十进制表示	二进制	反码表示法
(+37) ₁₀	+0100101	00100101
(-37) ₁₀	- 0100101	1 1011010
(+0) ₁₀	+0000000	0000000
(-0) ₁₀	- 0000000	1 1111111
(+127) ₁₀	+1111111	<mark>0</mark> 1111111
(-127) ₁₀	- 1111111	1000000

- □ n位数字采用反码可表示的数据范围: -(2ⁿ⁻¹-1)~+(2ⁿ⁻¹-1)
- □ 0有两种表示方式: +0 和-0

补码

补码:设数N为包含n位整数、m位小数的二进制数,则N

的补码定义为:

$$(N)_{\nmid h_n} = 2^n - N$$

N的补码与N的大小有关,还与整数位数n有关,与小数位数m无关

设n=8, 则
$$(11001)_{\frac{1}{4} \cdot .8} = 2^{8} - 11001 = 11100111$$

$$(11001.0101)_{\frac{1}{4} \cdot .8} = 2^{8} - 11001.0101$$

$$= 11100110.1011$$

补码的求法

方法一

• 利用补码的定义计算

较为繁琐,一般不用

方法二

• 将原码补足n位整数后整体求反加1

常用方法

如:求(11001)在n=8时的补码

1) 补齐8位: 00011001

2) 求反: 11100110

3) 加1: 11100111

"加1"是在整个数的最后一位(包括小数部分)加1 !!

一般人我 不告诉他

补码的求法

证明方法

$$N_{n} = 2^n - N = (2^n - 1 - N) + 1$$

$$2^{n}-1 = 111....111$$
 $-n$
 $2^{n}-1-N = N_{\overline{\mathbb{N}}}$

 $N_{\lambda h} = N_{\overline{\Sigma}} + 1$

10000000

-

11111111

11111111 - 01101001

10010110

补码的求法

方法三

- 将数N补足n位整数
- 从右往左第一个1及其右边的0不变
- 基金合位的= 00100 100 $(N)_{31.8} = 11011 100$

依据: 100求反加1仍为100, 其它位求反不变

补充概念

- □ 反码又称为1的补码(1's complement)
 - $> 2^{n}-1-N$
- □ 补码又称为2的补码 (2's complement)
 - > 2ⁿ-N
 - $> N+(N)_{k}=N+2^n-N=2^n$
 - \rightarrow $((N)_{\lambda h})_{\lambda h} = N$

符号数的补码表示法

符号

1位二进制数表示符号: 0表示正数, 1表示负数

数值

正数用原码表示, 负数用该数绝对值的补码表示

符号位置

符号放在最高位

00010111 = +23

10010111 = -105

符号

原码

符号 绝对值的补码

符号数的补码表示法

例:数据位宽n=8,最高位为符号位

十进制表示	二进制	补码表示法
(+37) ₁₀	+0100101	<mark>0</mark> 0100101
(-37) ₁₀	- 0100101	1 1011011
(+0) ₁₀	+0000000	0000000
(-0) ₁₀	- 0000000	0000000
(+127) ₁₀	+1111111	<mark>0</mark> 1111111
(-127) ₁₀	- 1111111	1000001
(-128) ₁₀	-10000000	10000000

- □ n位数字采用补码可表示的数据范围: -(2ⁿ⁻¹)~+(2ⁿ⁻¹-1)
- □ +0 和-0的表示方法相同

问题1: 如何求有符号数的相反数?

原码表示法: 将符号位取反, 其余位不变

$$A=(3)_{10}=(0011)_2$$

$$-A=(-3)_{10}=(1011)_2$$

$$B=(-2)_{10}=(1010)_2$$

$$-B=(2)_{10}=(0010)_2$$

反码表示法: 将整个数值连同符号位一起取反(求反码)

$$A=(3)_{10}=(0011)_2$$

$$-A=(-3)_{10}=(1100)_2$$

$$B=(-2)_{10}=(1101)_2$$

$$-B=(2)_{10}=(0010)_2$$

<u>补码表示法:将整个数值连同符号位一起取反加1(求补码)</u>

$$A=(3)_{10}=(0011)_2$$

$$-A=(-3)_{10}=(1101)_2$$

$$B=(-2)_{10}=(1110)_2$$

$$-B=(2)_{10}=(0010)_2$$

问题2: 如何扩展数据的宽度

原码表示法: 在符号位和数据位之间填充0

$$A=(3)_{10}=(0011)_2$$

$$A=(3)_{10}=(00000011)_2$$

$$B=(-2)_{10}=(1010)_2$$

$$B=(-2)_{10}=(10000010)_2$$

反码表示法: 直接进行符号扩展

$$A=(3)_{10}=(0011)_2$$

$$A=(3)_{10}=(00000011)_2$$

$$B=(-2)_{10}=(1101)_2$$

$$B=(-2)_{10}=(111111101)_2$$

补码表示法: 直接进行符号扩展

$$A=(3)_{10}=(0011)_2$$

$$A=(3)_{10} = (00000011)_2$$

$$B=(-2)_{10}=(1110)_2$$

$$B=(-2)_{10}=(111111110)_2$$

□ 对于原码表示法,不管是正数还是负数,将数值部分1的对应位置权值相加,忽视0的对应位置。符号位确定正负。

Ex. 1

Determine the decimal value of this signed binary number expressed in sign-magnitude: 10010101.

Solution

The seven magnitude bits and their powers-of-two weights are as follows:

Summing the weights where there are 1s,

$$16 + 4 + 1 = 21$$

The sign bit is 1; therefore, the decimal number is -21

□ 反码表示法的正数和原码表示法的求法一致

□ 反码表示法的负数,先给符号位赋予一个负的权值, 将1的位置的权值相加,再加1

Ex. 1

Determine the decimal value of this signed binary number expressed in 1's complement.

(a) 00010111 (b) 11101000

Solution

(a) The bits and their powers-of-two weights are as follows:

Summing the weights where there are 1s,

$$16 + 4 + 2 + 1 = +23$$

(b) The bits and their powers-of-two weights are as follows:

$$-2^{7}$$
 2^{6} 2^{5} 2^{4} 2^{3} 2^{2} 2^{1} 2^{0} 1 1 0 1 0 0

Summing the weights where there are 1s,

$$-128 + 64 + 32 + 8 = -24$$

Adding 1 to the result, the final decimal number is

$$-24 + 1 = -23$$

□ 补码表示法,不管是正数还是负数,给符号位赋予一个负的权值,把所有1对应位置的权值相加即可

Ex. 1

Determine the decimal value of this signed binary number expressed in 2's complement.

(a) 01010110 (b) 10101010

Solution

(a) The bits and their powers-of-two weights are as follows:

$$-2^7$$
 2^6 2^5 2^4 2^3 2^2 2^1 2^0 0 1 0 1 1 0

Summing the weights where there are 1s,

$$64 + 16 + 4 + 2 = +86$$

(b) The bits and their powers-of-two weights are as follows:

$$-2^{7}$$
 2^{6} 2^{5} 2^{4} 2^{3} 2^{2} 2^{1} 2^{0} 1 0 1 0 1 0

Summing the weights where there are 1s,

$$-128 + 32 + 8 + 2 = -86$$

结论: 补码表示法下,不管是正数还是负数,都是统一的求 解方法,较为方便。估通常采用补码表示法来表示有符号数。

补码表示的符号数的加减运算

只需要加法器就 可完成加减运算

节省硬件,降低成本

$$-A-B = A + (-B)$$

$$B-A = (-A) + B$$

$$-B-A = (-A) + B$$

 $-A-B = (-A) + (-B)$

符号位直接参与运算

结果仍为补码表示

补码表示的符号数的加减运算

设n=8,有两个正数A=10011,B=1101。试用补码求A+B,A-B,B-A,-A-B

解:
$$(A)_{\stackrel{}{\nmid} h.8} = 00010011$$
, $(B)_{\stackrel{}{\nmid} h.8} = 00001101$ $(-A)_{\stackrel{}{\nmid} h.8} = 11101101$, $(-B)_{\stackrel{}{\nmid} h.8} = 11110011$

补码表示的符号数的加减运算(证明)

对任意正整数 N_1 和 N_2 ,(- N_1)_{$i_{1,n}} = 2^n - N_1$, (- N_2)_{$i_{1,n}} = 2^n - N_2$ </sub></sub>

N_1+N_2

• 两个正数相加,结果为正数

N_1-N_2

- $N_1-N_2=N_1+(2^n-N_2)=2^n-(N_2-N_1)$,
 - 若N₂>N₁,则结果为负, 2ⁿ-(N₂-N₁)就是-(N₂-N₁)的
 补码表示形式;
 - 若 $N_1>N_2$,则结果为 $2^n+(N_1-N_2)$, 2^n 位于第n+1位,为第n位的进位,位于n位运算器之外,舍去,故结

补码表示的符号数的加减运算(证明)

$N_2 - N_1$

与N₁-N₂同理

$-N_1-N_2$

- $-N_1-N_2=(2^n-N_1) + (2^n-N_2) = 2^n+[2^n-(N_1+N_2)]$
- 第1个2ⁿ为第n位的进位,位于在第n+1位上,在n 位运算器之外,舍去
- 而[2ⁿ-(N₁+N₂)]就是负数-(N₁+N₂)的补码表示,计

补码表示的符号数的加减运算_溢出

设n=8,有两个正数A=110011,B=1101101。试用补 码求A+B, A-B, B-A, -A-B

```
(B)_{k h.8} = 01101101
解: (A)_{\lambda h.8} = 00110011,
     (-A)_{\lambda h.8} = 11001101,
                                      (-B)_{k \mid 8} = 10010011
```

$$\begin{array}{r} 00110011 \\ + 01101101 \\ \hline 10100000 \end{array}$$

$$\begin{array}{r} 00110011 \\ + 10010011 \\ \hline 11000110 \end{array}$$

$$\begin{array}{c|c} & 11001101 \\ + & 10010011 \\ \hline & 101100000 \end{array}$$

补码表示的符号数的加减运算_溢出

溢出(Overflow): 计算结果超出了n位符号数的表示范围

两个加数符号相同

当两个加数的绝对值之和超出符号数的表示 范围时,发生溢出

两个加数符号不同

相加结果的绝对值一定小于某一个加数的绝对值,因此一定不会溢出

补码表示的符号数的加减运算_溢出

溢出判断

•当第n-1位(符号位)和第n-2位(最高数字位)不同时有进位(两个负数相加时)或不同时无进位(两个正数相加时)时有溢出发生

有没有简单 点的办法啊

BCD: Binary Coded Decimal

如何选取有效的十个编码?

常用BCD码

有权码

无权码

余3循环码
0010
0110
0111
0101
0100
100
01
11
一位白豆
▎▘▎┴▎▎ ▗▔▘▗▔▘▞ ▗▔▘▗▔▘
逻辑相邻
0011
1011
1001
1000

有权码-每一位都有固定的权值

- 如8421、 5421、 2421码
- 有权码所表示十进制数的大小就是各位加权相加的值

无权码-各位没有固定的权值

• 如余3码和余3循环码

有效编码: 用以表示一位十进制数的码组

无效编码: 无任何意义的码组

逻辑相邻: 只有一位不同的两组编码

用BCD码表示十进制数时,每一位十进制数均需四位二进码表示

 $(216)_{10} = (0010\ 0001\ 0110)_{8421}$

 $= (0010\ 0001\ 1001)_{5421}$

 $= (0101\ 0100\ 1001)_{\oplus 3}$

"0"不能省略

□两个BCD码相加,结果必须还是BCD码,并且 还必须是合法的BCD码

 $(0010\ 0001\ 0110)_{8421} + (0011\ 1001\ 0011)_{8421}$

- $=(0101 \ \underline{1010} \ 1001)_{8421}$
- □其中和的第2位BCD码为1010,是非法的8421BCD码,要对其进行调整:本位加0110(10的补码),并向高位进1
- □调整后结果应为(0110 0000 1001)8421。

格雷(Gray)码

	序号	二进制码	格雷码	
	0	0000	0000	
	1	0001	0001	
余3码	2	0010	0011	
	3	0011	0010	
	4	0100	0110	余3循
	5	0101	0111	
	6	0110	0101	环码
	7	0111	0100	
	8	1000	1100	
	9	1001	1101	
	10	1010	1111	
	11	1011	1110	第一位自反,
	12	1100	1010	其它各位关于
	13	1101	1011	中间轴对称
	14	1110	1001	
上京理工大學	15	1111 pyro_yangxu@bit.e	1000	58

格雷(Gray)码的特点

位置相邻 的格雷码 逻辑相邻 最高位自 反,其它 位关于中间轴对称

根据此特点可方便地写出格雷码

格雷码的写法

0

二位

0001011110

三位

二进制码与格雷码转换

□ 异或运算:逻辑变量A、B的取值范围为0、1,则它们的**异或**运算定义为

二进制码与格雷码转换

由二进制码生成格雷码:

$$G_{n-1}=B_{n-1}$$
, $G_i=B_{i+1}\oplus B_i$ 式中i=n-2, n-3, ..., 2, 1, 0

例如: 求二进制码1 0 1 1的格雷码

二进制码与格雷码转换

由格雷码生成二进制码:

$$B_{n-1} = G_{n-1}, B_i = B_{i+1} \oplus G_i$$
 式中i=n-2, n-3, ..., 2, 1, 0

例如: 求格雷码1 0 1 1 的二进制码

ASCII符

- □ 除了需要表示十进制数外,还经常要表示人机交流用的其它一些信息,如大小写字母、+、-、×、÷、=、&、%…等字符,DEL、ESC、CR…等控制符
- □ 使用最广泛的是所谓ASCII(American Standard Codes for Information Interchange)字符集,又称为 ASCII码
- □ 每个ASCII符号是一个7位码
- □ 33个控制符, 95个字符, 共128个

			列号(b ₆ b ₅ b ₄)							
		В	000	001	010	011	100	101	110	111
	В	Н	0	1	2	3	4	5	6	7
	0000	0	NUL	DLE	SP	0	@	P	4	р
	0001	1	SOH	DC1	!	1	A	Q	a	q
	0010	2	STX	DC2	66	2	В	R	b	r
行号(b3b2b1b0)	0011	3	ETX	DC3	#	3	C	S	c	S
	0100	4	EOT	DC4	\$	4	D	T	d	t
	0101	5	ENQ	NAK	%	5	E	U	e	u
	0110	6	ACK	SYN	&	6	F	V	f	v
	0111	7	BEL	ЕТВ	,	7	G	W	g	w
	1000	8	BS	CAN	(8	Н	X	h	X
	1001	9	HT	EM)	9	I	Y	i	y
	1010	A	LF	SUB	*	•	J	Z	j	Z
	1011	В	VT	ESC	+	;	K	[k	{
	1100	C	FF	FS	,	<	L	\	1	
	1101	D	CR	GS		=	M]	m	}
	1110	E	SO	RS	•	>	N	^	n	~
3 38	京理工	大學	SI	US	pyro_ / angxu@	⊉bit.ed i d.cn	О	-	0	DEL 65

BEIJING INSTITUTE OF TECHNOLOGY

ASCII符

- □ 数字0~9的ASCII符为30H~39H
 - > 字符"0"和数字0在机器中是不一样的
- □ A~Z的ASCII符为41H~5AH; a~z的ASCII符为61H~7AH
 - > 如何进行大小写的转换? 如何进行数字与字符转换?
- □ "BEIJING2008"的ASCII符为(每个字符用8位) 42<u>4549</u>4A49<u>4E47</u>3230<u>3038</u>H(8 8 位)
- □ 如果每个字符用7位,则上述字符串为1<u>0000</u>10 10<u>0010</u>1 100<u>1001</u> 1001<u>010 1</u>0010<u>01 10</u>0111<u>0</u> 1000111 0110010 0110000 0110000 0111000 B

=<u>10A2</u>C995<u>2674</u>764C<u>1838</u>H (77位)

检错码和纠错码

检错码: 仅能检测数字信号是否发生错误

纠错码: 能够检测并纠正数字信号中的错误

奇偶校验码: 除要发送的信息码之外再多发送一位奇偶

校验位P,奇偶校验位一般放在最高位

奇校验码: 信息码与校验位所构成的奇偶校验码中,

'1'的个数为奇数

偶校验码: 信息码与校验位所构成的奇偶校验码中,

'1'的个数为偶数

奇偶校验码

- □ 采用偶校验发送字符"A"
 - ▶ "A"的ASCII符为100001
 - ▶ 加上P位使1的个数为偶数P100001
 - ▶ 则 P = 0
- □ 传输效率η = 7 / 8 = 8 7 . 5 %
- □可靠性是牺牲效率换来的
- □ 奇偶校验只能发现奇数位错,因为偶数位错不改变码的奇偶性
- □ 适用于误码率较低的场合

二维奇偶纠错码

第2章小结

- □二、八、十、十六进制数及它们之间的相互转换
- □补码、反码的定义及求法
- □ 二进制数的计算机表示方法(符号数的表示方法)
- □利用补码进行二进制数的加减运算
- □ 十进制数的二进制编码(即BCD码)
- □格雷码
- □ ASCII字符集
- □ 奇偶校验码,二维奇偶纠错码