信号解析の数理

線型代数で信号を理解するために

calamari_dev

はじめに

準備中.

2022 年〇月

calamari_dev

目次

はじめに		iii
記号につ	ριτ	vii
第1章	数ベクトル空間	1
1.1	行列とベクトル空間ベクトル空間/基底/線型写像と表現行列/固有値と固有空間/対 角化	1
1.2	直交射影 直交補空間/スペクトル定理	5
1.3	最小二乗問題 最小二乗問題/特異値分解/擬似逆行列	6
1.4	離散フーリエ変換	6
1.5	多重解像度解析	6
1.A	主成分分析	6
1.B	低ランク近似	7
1.C	窓関数	7
	演習問題	7
第2章	ヒルベルト空間	9
2.1	無限次元の線型空間 距離空間/ノルム線型空間/内積空間/ヒルベルト空間	11
2.2	直交射影直交射影/直交補空間/正規直交列	11
2.3	フーリエ級数展開	11
2.4	多重解像度解析	11

vi 目次

2.A	半ノルムと <i>IP</i> 空間	
	演習問題	11
第3章	確率空間	13
3.1	確率空間	13
	ウィナーフィルタ	
	カルマンフィルタ	
3.A	カルーネン・レーベ変換	
	演習問題	13
壶 引		15

記号について

書籍ごとに異なることが多い記号について,記号と定義の組を示します.これら以外の記号については、巻末の索引を参照してください.

記号	定義
N	{1, 2,}
\mathbb{K}	実数体 ℝ か複素数体 ℂ
S^{c}	集合Sの補集合
$\operatorname{cl} S$	集合Sの閉包
δ_{ij}	クロネッカーのデルタ
$\langle u, v \rangle$	ベクトル u, v の内積
$\ v\ $	ベクトルυのノルム
I	単位行列
0	零行列
$m{M}^{\intercal}$	行列 M の転置行列
M^{H}	行列 M のエルミート転置
$\ oldsymbol{M}\ _{ ext{F}}$	行列 M のフロベニウスノルム
$\mathcal{N}(m, \sigma^2)$	平均 m ,分散 σ^2 の正規分布
$\mathcal{N}(\boldsymbol{m}, \boldsymbol{\Sigma})$	平均 m ,分散共分散行列 Σ の多変量正規分布
$\hat{f_n}$	関数 f のフーリエ係数
$\mathcal{F}f$	関数 f のフーリエ変換

第1章 数ベクトル空間

第1章で書く予定のことを並べておく.

1.1 行列とベクトル空間

信号解析に関連する議論へと移る前に,有限次元の線型代数について簡単に 説明しておく.

1.1.1 ベクトル空間

以下、集合 K は実数の全体集合 R か、複素数の全体集合 C であるとする.

定義 1.1.1 (ベクトル空間) V を空でない集合とする。また、任意の $x, y \in V$ 、 $s \in \mathbb{K}$ について、和 $x + y \in V$ とスカラー倍 $sx \in V$ が定義されているとする。任意の $x, y, z \in V$ 、 $s, t \in \mathbb{K}$ に対する以下の条件を満たすとき、V は \mathbb{K} 上のベクトル空間(vector space)であるという。

- 1. (x + y) + z = x + (y + z)
- 2. x + y = y + x
- 3. ある $0 \in V$ が存在し、任意の $v \in V$ に対してv + 0 = vを満たす
- 4. 各 $v \in V$ に対し、ある $w \in V$ が一意に存在してv + w = 0を満たす
- 5. (s+t)x = sx + tx
- $6. \ s(\mathbf{x} + \mathbf{y}) = s\mathbf{x} + s\mathbf{y}$
- 7. $(st)\mathbf{x} = s(t\mathbf{x})$
- 8. 1x = x

定義 1.1.1 の $\bf 0$ を零ベクトル (zero vector), $\bf w$ を $\bf v$ の加法逆元 (additive inverse) という. 通常, $\bf v$ の加法逆元は $\bf -\bf v$ と表される.

ノート 定義 1.1.1 はごてごてしているように見えるが, それは和とスカラー

倍について、 \mathbb{K}^n と同様に計算できるよう、ルールをつけ加えていった結果といえる. \diamondsuit

1.1.2 基底

任意のベクトル $\mathbf{x} = [x_1 \cdots x_n]^\mathsf{T} \in \mathbb{K}^n$ は,第 i 成分が 1,他の成分が 0 のベクトル \mathbf{e}_i を用いて $\mathbf{x} = x_1\mathbf{e}_1 + \cdots + x_n\mathbf{e}_n$ と表せる.すなわち,集合 $\mathcal{S}_n = \{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ は「 \mathbb{K}^n のすべての元を \mathcal{S}_n の元の線型結合で書ける」という 性質を持つ.

一般に、ベクトル空間 V の部分集合 S に対して、S の元の線型結合で書けるベクトルの全体集合を S が**生成する部分空間**(generated subspace)といい、 $\operatorname{span} S$ と表記する。この記法を使えば、先述した S_n が持つ性質を「 $\operatorname{span} S_n = \mathbb{K}^n$ が成り立つ」と言い換えられる。

 $\operatorname{span} S = \mathbb{K}^n$ を満たす集合 $S \subset \mathbb{K}^n$ は, S_n 以外にも無数にある.たとえば $\mathbb{K}^n = \mathbb{R}^2$ のとき,集合 $T = \{[1 \quad 1]^\mathsf{T}, [2 \quad -1]^\mathsf{T}, [-1 \quad 0]^\mathsf{T}\}$ が生成する部分空間 は \mathbb{R}^2 である.しかし, $\mathcal{B}_2 = \{[1 \quad 0]^\mathsf{T}, [0 \quad 1]^\mathsf{T}\}$ の元の線型結合で \mathbb{R}^2 の元を表す方法はただ 1 通りであるのに対して,T はこの性質を持たない(図 1.1).

図 1.1 $v_1, v_2, v_3 \in T$ の線型結合で $x = \begin{bmatrix} 3/2 & 0 \end{bmatrix}^\mathsf{T}$ を表した様子. 明らかに $x = (-3/2)v_3$ である一方, $x = (v_1 + v_2)/2 = (1/2)v_1 + (1/2)v_2$ も成り立つ.

S の元の線型結合で $\operatorname{span} S$ の元を一意に表せるとき,任意の $a_i,b_i\in\mathbb{K}$, $\boldsymbol{v}_i\in S$ について

$$\sum_{i=1}^{k} a_i \mathbf{v}_i = \sum_{i=1}^{k} b_i \mathbf{v}_i \implies (a_1, \dots, a_k) = (b_1, \dots, b_k)$$
 (1.1)

が成立する. $c_i = a_i - b_i$ とおくと、式 (1.1) は

$$\sum_{i=1}^{k} c_i \mathbf{v}_i = \mathbf{0} \implies c_1 = \dots = c_k = 0$$
 (1.2)

と同値である.

任意の $c_1, ..., c_k \in \mathbb{K}$ に対して式 (1.2) が成立するとき, $v_1, ..., v_k$ は**線型独立**であるという.特に, $V = \operatorname{span} S$ かつ,S の元からなる有限個のベクトルの組が常に線型独立であるとき,S は V の基底であるという.以上を定義 1.1.2,1.1.3 にまとめておく.

定義 1.1.2 (生成系・線型独立・線型従属) V を \mathbb{K} 上のベクトル空間, S を V の部分集合とする.

- 1. V = span S であるとき、S を V の生成系(generating set)という
- 2. $\mathbf{v}_1, \dots, \mathbf{v}_k \in V$ が $\sum_{i=1}^k c_i \mathbf{v}_i = \mathbf{0} \implies c_1 = \dots = c_k = 0$ を満たすとき, $\mathbf{v}_1, \dots, \mathbf{v}_k$ は線型独立(linearly independent)であるという
- 3. $v_1, ..., v_k \in V$ が線型独立でないとき、 $v_1, ..., v_k$ は線型従属(linearly dependent)であるという

定義 1.1.3 (基底) V を \mathbb{K} 上のベクトル空間, \mathcal{B} を V の部分集合とする。 \mathcal{B} が V の生成系かつ, \mathcal{B} に属する有限個のベクトル $\mathbf{v}_1, \dots, \mathbf{v}_k$ が常に線型独立であるとき, \mathcal{B} は V の基底(basis)であるという.

例 1.1.4 (標準基底) S_n は \mathbb{K}^n の基底である. S_n を \mathbb{K}^n の標準基底 (standard basis) という.

さきほどの議論によれば、S の元の線型結合で $\operatorname{span} S$ の元を一意に表せるとき、任意の $c_1,\dots,c_k\in\mathbb{K}$ について式(1.2) が成立する。すなわち、S は $\operatorname{span} S$ の基底である。実はこの逆も示せるので、次の命題が成立する.

命題 1.1.5 V を \mathbb{K} 上のベクトル空間, S を V の部分集合とする. このとき, 次の命題は同値である.

1. S の元の線型結合で span S の元を一意に表せる

2. *S* は span *S* の基底である

Vの基底で有限集合のものがあるとき,Vは**有限次元**(finite-dimensional)であるという。Vが有限次元なら,Vの基底はすべて有限集合で,その元の個数は等しい。すなわち,元の個数 # \mathcal{B} は基底 \mathcal{B} のとりかたによらず定まる。# \mathcal{B} を V の次元(dimension)といい,dim V と表記する¹⁾。

1.1.3 線型写像と表現行列

以下, V は有限次元であるとする. 命題 1.1.5 によれば, V の基底 $\mathcal{B} = \{v_1, \dots, v_n\}$ $(n = \dim V)$ をとることで, 任意の $x \in V$ を

$$\boldsymbol{a} = c_1 \boldsymbol{v}_1 + \dots + c_n \boldsymbol{v}_n \quad (c_1, \dots, c_n \in \mathbb{K})$$
 (1.3)

の形で一意に表せる. 言い換えると、各 \boldsymbol{a} に $[c_1 \cdots c_n]^\mathsf{T}$ を割り当てる写像 $\phi: V \to \mathbb{K}^n$ を定義でき、それは単射 2)である.

定義 1.1.6 (線型写像) $V \ge W$ を \mathbb{K} 上のベクトル空間とする. 写像 $f: V \to W$ が以下の条件を満たすとき, f は**線型写像** (linear mapping) であるという.

- 1. 任意の $x, y \in V$ に対して f(x + y) = f(x) + f(y)
- 2. 任意の $\mathbf{x} \in V$, $c \in \mathbb{K}$ に対して $f(c\mathbf{x}) = cf(\mathbf{x})$

1.1.4 固有値と固有空間

定義 1.1.7(固有値,固有空間) A を n 次正方行列とする. 複素数 λ と $\mathbf{0}$ でないベクトル $\mathbf{x} \in \mathbb{C}^n$ が式 $A\mathbf{x} = \lambda \mathbf{x}$ を満たすとき, λ を A の固有値 (eigenvalue) という. また, \mathbf{x} を A の(固有値 λ に属する)固有ベクトル (eigenvector) という.

¹⁾ V が有限次元でないときも基底は存在し、濃度は基底の選び方に依存しない(証明は文献 [3]).

²⁾ 写像 f の定義域に属する任意の x,y について、命題「 $f(x)=f(y) \implies x=y$ 」が成立するとき、f は**単射**(injection)であるという.

定義 1.1.8 (固有空間) 定義 1.1.7 の A, λ について, 集合

$$E_{\lambda}(\boldsymbol{A}) = \{\boldsymbol{x} \in \mathbb{C}^n \mid \boldsymbol{A}\boldsymbol{x} = \lambda \boldsymbol{x}\}$$

は \mathbb{C}^n の部分空間になる. 部分空間 $E_{\lambda}(A)$ を, A の(固有値 λ に属する) **固有空間** (eigenspace) という.

固有空間は次の性質を持つ.

命題 1.1.9 λ_1 , λ_2 を n 次正方行列 A の固有値とする.

- 1. $\mathbf{x} \in E_{\lambda_1}(\mathbf{A}) \implies \mathbf{A}\mathbf{x} \in E_{\lambda_1}(\mathbf{A})$
- 2. $\lambda_1 \neq \lambda_2 \implies E_{\lambda_1}(\mathbf{A}) \cap E_{\lambda_2}(\mathbf{A}) = \{\mathbf{0}\}\$

1.1.5 対角化

1.2 直交射影

1.2.1 直交射影

- 1.2.2 直交補空間
- 1.2.3 スペクトル定理
- 1.3 最小二乗問題
- 1.3.1 最小二乗問題
- 1.3.2 特異値分解
- 1.3.3 擬似逆行列
- 1.4 離散フーリエ変換
- 1.5 多重解像度解析

1.A 主成分分析

1.B 低ランク近似

1.C 窓関数

演習問題

第2章 ヒルベルト空間

第2章で書く予定のことを並べておく.

2.1 無限次元の線型空間

- 2.1.1 距離空間
- 2.1.2 ノルム線型空間
- 2.1.3 内積空間
- 2.1.4 ヒルベルト空間
- 2.2 直交射影
- 2.2.1 直交射影
- 2.2.2 直交補空間
- 2.2.3 正規直交列
- 2.3 フーリエ級数展開
- 2.3.1 フーリエ級数展開
- 2.3.2 フーリエ変換
- 2.4 多重解像度解析
- 2.4.1 多重解像度解析
- 2.4.2 ウェーブレット変換
- 0 A M / 11 / 14 TO PERSON

第3章 確率空間

第3章で書く予定のことを並べておく.

- 3.1 確率空間
- 3.2 ウィナーフィルタ
- 3.3 カルマンフィルタ
- 3.A カルーネン・レーベ変換

演習問題

14 参考文献

参考文献

- [1] 齋藤正彦. 線型代数入門. 東京大学出版会, 2020, 274p., (基礎数学, 1).
- [2] 松坂和夫. 集合·位相入門. 岩波書店, 2018, 329p.
- [3] 雪江明彦. 環と体とガロア理論. 日本評論社, 2019, 300p., (代数学, 2).

索引 15

索引

	【記号】		固有ベクト	ル	4		[は]	
$\dim V$		4		[さ]		標準基底		3
span S $E_{\lambda}(A)$	[か]	2	次元	101	4	部分空間		
		5	零ベクトル		1	1 生成する—		2
			線型写像		4	ベクトル空	間	1
加法逆元	I'D'I	1	線型従属		3			
基底		3	線型独立		3			
固有空間		5		【た】			[4]	
固有値		4	単射		4	有限次元		4