Assignment-1

Credit Card Fraud Detection using KNN Algorithm

Introduction:

In recent years, as there is advancement of technology, most of them are using credit card for buying their needs so the frauds associated with it is also rising gradually. In the present world, almost all the enterprises from small to big industries are using the credit card as mode of payment. Credit card fraud is happening in all organization such as appliances industry, automobile industry, banks and so on.

Technologies & Tools

- Python
- NumPy
- Pandas
- Scikit-learn (sklearn)
- Matplotlib / Seaborn (for visualization)
- Jupyter Notebook / Google Colab

Dataset

- The dataset used is the <u>Credit Card Fraud Detection dataset</u> from Kaggle.
- It contains transactions made by European cardholders in September 2013.
- Total: 284,807 transactions
- Fraudulent transactions: **492** (approx. 0.17%)

Project Workflow

1. Data Preprocessing

- Handling missing values (if any)
- Feature scaling (StandardScaler)
- Splitting the dataset into training and testing sets

2. Dimensionality Reduction with PCA

Reducing the feature space to **2 principal components** for visualization and efficiency

3. Model Building

- o Using K-Nearest Neighbors (KNN) for classification
- o Hyperparameter tuning for the best value of **K**

4. Model Evaluation

- Confusion Matrix
- o Accuracy, Precision, Recall, F1-Score

5. Visualization

o Plotting decision boundaries (using 2D PCA components)

Visualizing fraud vs. non-fraud in PCA space

Code with output:

In [1]:

import pandas as pd import numpy as np

import time

from matplotlib import pyplot as plt

import seaborn as sns

from mpl toolkits.mplot3d import Axes3D

plt.style.use('ggplot')

from sklearn.neighbors import KNeighborsClassifier

from sklearn.model selection import train test split

from sklearn.preprocessing import normalize

from sklearn.metrics import confusion matrix, accuracy score, precision score, recall score,

 $fl_score, matthews_corrcoef, classification_report, roc_curve$

import joblib

from sklearn.preprocessing import StandardScaler

from sklearn.decomposition import PCA

In [2]:

from google.colab import drive

drive.mount('/content/drive')

df=pd.read_csv('/content/drive/MyDrive/creditcard.csv')
df.head()

	Time	V1	V2	V3	V4	V5	V 6	V7	V8	V 9	 V21	V22	V23	V24	V25	V26	V27	V28	Amount	Class
0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098698	0.363787	 -0.018307	0.277838	-0.110474	0.066928	0.128539	-0.189115	0.133558	-0.021053	149.62	0
1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.085102	-0.255425	 -0.225775	-0.638672	0.101288	-0.339846	0.167170	0.125895	-0.008983	0.014724	2.69	0
2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.247676	-1.514654	 0.247998	0.771679	0.909412	-0.689281	-0.327642	-0.139097	-0.055353	-0.059752	378.66	0
3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.377436	-1.387024	 -0.108300	0.005274	-0.190321	-1.175575	0.647376	-0.221929	0.062723	0.061458	123.50	0
4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.270533	0.817739	 -0.009431	0.798278	-0.137458	0.141267	-0.206010	0.502292	0.219422	0.215153	69.99	0
5 rows x 31 columns																				

Fig 1. Read dataset

In [3]:

df.shape

(284807, 31)

Fig 2: number of rows and columns

In [4]:

df.isnull().any().sum()

```
np.int64(0)
```

Fig 3: Checking if any value is null or not

In [5]:

```
All = df.shape[0]
fraud = df[df['Class'] == 1]
nonFraud = df[df['Class'] == 0]
x = len(fraud)/All
y = len(nonFraud)/All
print('frauds:',x*100,'%')
print('non frauds:',y*100,'%')
print(len(fraud))
print(len(nonFraud))

frauds: 0.1727485630620034 %
non_frauds: 09_82725143693798 %
```

non frauds : 99.82725143693798 % 492 284315

Fig 4: Fraud vs non-fraud cases

In [6]:

sns.countplot(x='Class',data=df)
plt.show()

Fig 5: Graph of fraud vs non-fraud cases

In [7]:

amount= df['Amount'].values
sns.distplot(amount)

Fig 6: Amount of fraud committed

In [8]: time= [df['Time'].values] sns.distplot(time)

Fig 7: Number of times a fraud is committed

In [9]:

```
import matplotlib.gridspec as gridspec anomalous_features = df.iloc[:,1:29].columns plt.figure(figsize=(12,28*4)) gs = gridspec.GridSpec(28, 1) for i, cn in enumerate(df[anomalous_features]): ax = plt.subplot(gs[i]) sns.distplot(df[cn][df.Class == 1], bins=50) sns.distplot(df[cn][df.Class == 0], bins=50) ax.set_xlabel(") ax.set_title('histogram of feature: ' + str(cn)) plt.show()
```


Fig 8: Histograms showing different features

In [10]:

```
df['Vamount'] = StandardScaler().fit_transform(df['Amount'].values.reshape(-1,1))
df['Vtime'] = StandardScaler().fit_transform(df['Time'].values.reshape(-1,1))
df = df.drop(['Time','Amount'], axis = 1)
df.head()
```

```
| Value | Valu
```

Fig 9: Scaling the time and amount of data between (-1,1)

In [11]:

```
X = df.drop(['Class'], axis = 1)
y = df['Class']
pca = PCA(n_components=2)
principalComponents = pca.fit_transform(X.values)
principalDf = pd.DataFrame(data = principalComponents
, columns = ['principal component 1', 'principal component 2'])
finalDf = pd.concat([principalDf, y], axis = 1)
finalDf.head()
```

	principal component 1	principal component 2	Class
0	-1.571678	0.675572	0
1	1.086213	0.282673	0
2	-2.053411	-1.077634	0
3	-1.150107	0.427442	0
4	-1.143820	1.341999	0

Fig 10: Using Principal component analysis for dimension reduction

In [12]:

```
\begin{array}{l} \text{fig} = \text{plt.figure}(\text{figsize} = (8,8)) \\ \text{ax} = \text{fig.add\_subplot}(1,1,1) \\ \text{ax.set\_xlabel}(\text{'Principal Component 1', fontsize} = 15) \\ \text{ax.set\_ylabel}(\text{'Principal Component 2', fontsize} = 15) \\ \text{ax.set\_title}(\text{'2 component PCA', fontsize} = 20) \\ \text{targets} = [0, 1] \\ \text{colors} = [\text{'r', 'g'}] \\ \text{for target, color in zip(targets, colors):} \\ \text{indicesToKeep} = \text{finalDf['Class']} == \text{target} \\ \text{ax.scatter}(\text{finalDf.loc[indicesToKeep, 'principal component 1']} \\ \text{, finalDf.loc[indicesToKeep, 'principal component 2']} \\ \text{, c} = \text{color} \\ \text{, s} = 50) \\ \end{array}
```


Fig 11: Visualization to see how distinct or overlapping the data points are

In [13]:

```
\begin{split} df &= df.sample(frac=1) \\ frauds &= df[df['Class'] == 1] \\ non\_frauds &= df[df['Class'] == 0][:492] \\ new\_df &= pd.concat([non\_frauds, frauds]) \\ new\_df &= new\_df.sample(frac=1, random\_state=42) \\ labels &= ['non frauds','fraud'] \\ classes &= pd.value\_counts(new\_df['Class'], sort = True) \\ classes.plot(kind = 'bar', rot=0) \\ plt.title("Transaction class distribution") \\ plt.xlabel("Class") \\ plt.ylabel("Frequency") \end{split}
```

Transaction class distribution

Fig 12: preparing and visualizing the distribution of a binary-class dataset

In [14]:

```
features = new_df.drop(['Class'], axis = 1)
labels = pd.DataFrame(new_df['Class'])
feature_array = features.values
label array = labels.values
```

In [15]:

```
X_train,X_test,y_train,y_test = train_test_split(feature_array,label_array,test_size=0.20)
X_train = normalize(X_train)
X_test=normalize(X_test)
```

In [16]:

```
neighbours = np.arange(1,25)
train_accuracy =np.empty(len(neighbours))
test_accuracy = np.empty(len(neighbours))
for i,k in enumerate(neighbours):
knn=KNeighborsClassifier(n_neighbors=k,algorithm="kd_tree",n_jobs=-1)
knn.fit(X_train,y_train.ravel())
train_accuracy[i] = knn.score(X_train, y_train.ravel())
test_accuracy[i] = knn.score(X_test, y_test.ravel())
```

In [17]:

```
plt.title('k-NN Varying number of neighbors')
plt.plot(neighbours, test_accuracy, label='Testing Accuracy')
```

```
plt.plot(neighbours, train_accuracy, label='Training accuracy')
plt.legend()
plt.xlabel('Number of neighbors')
plt.ylabel('Accuracy')
plt.show()
```

k-NN Varying number of neighbors

Fig 13: plot to visualize the performance of a k-Nearest Neighbors (k-NN) classifier

In [18]:

```
idx = np.where(test_accuracy == max(test_accuracy))
x = neighbours[idx]
knn=KNeighborsClassifier(n_neighbors=x[0],algorithm="kd_tree",n_jobs=-1)
knn.fit(X train,y train.ravel())
```

```
KNeighborsClassifier
KNeighborsClassifier(algorithm='kd_tree', n_jobs=-1, n_neighbors=np.int64(24))
```

Fig 14: Documentation for KNN Algorithm

In [19]:

```
knn_predicted_test_labels=knn.predict(X_test)
from pylab import rcParams
rcParams['figure.figsize'] = 14, 8
plt.subplot(222)
plt.scatter(X_test[:, 0], X_test[:, 1], c=knn_predicted_test_labels)
```

plt.title(" Number of Blobs")

Number of Blobs

Fig 15: visualizing the predictions made by k-NN classifier

In [20]:

knn_accuracy_score = accuracy_score(y_test,knn_predicted_test_labels)
knn_precison_score = precision_score(y_test,knn_predicted_test_labels)
knn_recall_score = recall_score(y_test,knn_predicted_test_labels)
knn_fl_score = fl_score(y_test,knn_predicted_test_labels)
knn_MCC = matthews_corrcoef(y_test,knn_predicted_test_labels)

In [21]:

print(knn_accuracy_score) 0.9695431472081218

Fig 16: Accuracy for KNN

In [22]:

print(knn_fl_score) 0.967741935483871

Fig 17: F1-score for KNN

In [23]:

print(knn_precison_score) 0.9782608695652174

Fig 18: Precision score for KNN