EE CS 281, Jamany 27, 2015

Noninverting Gales:

In CHOS: simplest gates are inverters
and next simplest are WAND
and NOR gates.

Not possible to design a noninverting gate with a smaller number of transistors than an inverting one.

Switching Algebra

X : variable, represents conditions of a logic signal.

Loulhigh 100/0ff, 0/1

Axioms!

Al: X=0 if $X \neq 1$

A1': X=1 7 X=0

T2:
$$X + 1 = 1$$

 $+2' = X = 0$

(Null elements)

(Idempotency) T3: $X + X = X$

$$+3' : X - X = X$$

$$T4: (X')' = X (Involution)$$

$$Complements)T5: X+X' = 1 T5: X-X' = 0$$

T6:
$$X + Y = Y + X$$
 T6 $X \cdot Y = Y \cdot X$
Commutativity.

$$77: (X+Y)+2=X+(Y+2)$$
 $+550ciahin_{7}$
 $+7': (X,Y).2=X.(Y,Z)$

$$+8': (X+Y) \cdot (X+Z) = X + 4 \cdot Z$$

Covering:
$$X = X$$

Covering: $X + X \cdot Y = X$

Covering: $X + X \cdot Y = X$
 $X \cdot (Y + Y') = X$

Combining:
$$X.(Y+Y')=X$$

Tio: $X_0Y+X_0Y'=X$

$$T_{0}$$
: $(X+Y) \cdot (X+Y') = X$

Con sensus:

$$711: X.Y + X.2 + Y.2 = X.Y + X.2$$

$$Y. 2 = 1$$
 \Rightarrow $Y = 1$, $2 = 1$
 $X = 0$ $X. Y + X. 2 = 1$
 $Y = 1$
 $Y = 1$

$$X = 1$$
 $X \cdot Y + X - Z = 1$ $Y = 1$ $Z = 1$

.

5

CMOS 2-input NOR gate: (a) circuit diagram; (b) function table; (c) logic symbol.

From Digital Design: Principles and Practices, Fourth Edition, John F. Wakerly, ISBN 0-13-186389-4. ©2006, Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

From Digital Design: Principles and Practices, Fourth Edition, John F. Wakerly, ISBN 0-13-186389-4. ©2006. Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

CMOS noninverting buffer: (a) circuit diagram; (b) function table; (c) logic symbol.

From Digital Design: Principles and Practices, Fourth Edition, John F. Wakerly, ISBN 0-13-186389-4. ©2006, Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

CMOS 2-input AND gate: (a) circuit diagram; (b) function table; (c) logic symbol.

From Digital Design: Principles and Practices, Fourth Edition, John F. Wakerly, ISBN 0-13-186389-4. ©2006, Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

7	I	I	I		I	I	I		ェ	I	エ	_	_	_	_	_
87	on	off	OU	off	OO	off	on	off								
<i>2</i> 0	off	0	Off	0	off	0	Off	0	off	on	off	no	Off	o	off	on
97	on	o	off	off	o	on	off	off	O	O	off	off	O	on	off	off
ζÕ	off	off	0	0	off	₩	0	0	off	off	0	0	off	off	0	0
ħÕ	on	on	o	o	off	off	해	off	o	on	on	on	off	off	off	off
63	off	off	off	off	0	0	0	0	off	off	off	off	0	0	0	0
<i>Q</i> 2	0	0	0	0	0	0	0	0	off	off	off	off	off	off	off	off
10	off	0	0	0	0	0	0	0	0							
۵	_	工		工	_	工		I	_	I	لــا	工		工		I
ပ		_	I	工	_	_	エ	I	_	_	エ	エ	_		エ	エ
മ		_	_	_	I	I	I	エ	_	_		_	I	I	I	エ
⋖		لب		_	_		_	_	I	エ	エ	I	I	I	I	I

Ν

 $\mathcal{E}_{\mathcal{O}}$

O

70

80

90

(p)

⋖

<u>(a</u>)

 \Box

Figure 3-20

CMOS AND-OR-INVERT gate: (a) circuit diagram; (b) function table.

From Digital Design: Principles and Practices, Fourth Edition, John F. Wakerly, ISBN 0-13-186389-4. ©2006, Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Figure 3-42

Propagation delays for a CMOS inverter: (a) ignoring rise and fall times; (b) measured at midpoints of transitions.

From Digital Design: Principles and Practices, Fourth Edition, John F. Wakerly, ISBN 0-13-186389-4. ©2006, Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.