Multicategory Logit Models Ordinal Responses

Demetris Athienitis

Motivation

Try to utilize the inherent information in ordinal responses to provide more accurate predictions.

Ordinal responses are often quantitative responses that have been simplified. E.g. a beverage can be small, medium or large. Underlying is a quantitative scale such as ml or oz. Sometimes it is harder to unearth the quantitative scale, e.g. happiness scale: very happy, happy, indifferent, sad, very sad.

Proportional Odds Model

$$\log i \left[P(Y \le j) \right] = \log \left(\frac{P(Y \le j)}{1 - P(Y \le j)} \right)$$

$$= \log \left(\frac{P(Y \le j)}{P(Y > j)} \right)$$

$$= \alpha_j + \beta_x, \quad j = 1, \dots, J - 1$$

Proportional Odds Model

$$P(Y \le j) = \frac{e^{\alpha_j + \beta x}}{1 + e^{\alpha_j + \beta x}}, \quad j = 1, 2, \dots J - 1$$

- Separate intercept α_i for each cumulative logit
- Same (slope) coefficient β for each cumulative logit
- The term $e^{\beta}=$ multiplicative effect of 1-unit increase in x on odds that $(Y\leq j)$ instead of (Y>j)

$$\begin{split} \frac{\operatorname{odds}(Y \leq j | x_2)}{\operatorname{odds}(Y \leq j | x_1)} &= \frac{e^{\alpha_j + \beta x_2}}{e^{\alpha_j + \beta x_1}} \\ &= e^{\beta(x_2 - x_1)} \\ &= e^{\beta}, \quad \text{when } x_2 = x_1 + 1 \end{split}$$

Example (Job Satisfaction)

Income	Job Satisfaction					
	Dissat	Little	Moderate	Very		
< 5k	2	4	13	3		
5k-15k	2	6	22	4		
15k-25k	0	1	15	8		
> 25k	0	3	13	8		

$$logit[P(Y \le j|x)] = \alpha_j + \beta x \quad j = 1, 2, 3$$

income -0.056347 0.020871 -2.6998

Residual deviance: 5.9527 on 8 degrees of freedom Log-likelihood: -17.60121 on 8 degrees of freedom

$$\operatorname{logit}\left[\hat{P}(Y \leq j|x)\right] = \hat{\alpha}_j - 0.056x \quad j = 1, 2, 3.$$

- Odds of response at low end of job satisfaction scale decrease as x increases, i.e. $\exp(-0.056) = 0.95$
- Estimated odds of job satisfaction below any given level (instead of above it) multiply by 0.95 for a 1-unit increase in \times (1-unit=\$1000)
- For a \$10,000 increase in income, i.e. 10 units, the estimated odds multiply by $\exp(10(-0.056)) = 0.57$
- ullet If we were to reverse the order of the responses, then $\hat{eta}=+0.056$
- Odds ratio is the same between *same* two categories of *x* irrespective of cutoff region for response categories
- Odds ratio is the same between categories x=10 and x=20, and x=20 and x=30 due to the same increment in x=30

A goodness of fit test concludes that the model is a good fit

```
> 1-pchisq(deviance(fit.clogit1),df.residual(fit.clogit1))
[1] 0.6525305
```

Test of H_0 : job satisfaction independent of income, i.e. $\beta=0$ yields

- A Wald z-stat of -2.6998 (or χ^2 of 7.17) and a p-value of 0.007.
- A LR statistic of 13.4673 5.9527 = 7.5146 on 1 df and a p-value of 0.006. The null deviance was computed using
- > vglm(cbind(VD,LD,MS,VS)~1,
- + family=cumulative(parallel=TRUE),data=dat)

A model with different β_j for j=1,2,3 although more "flexible" does not significantly differ from the parallel lines model. To test $H_0: \beta_1=\beta_2=\beta_3$ via L.R.T.

```
> fit.clogit2=vglm(cbind(VD,LD,MS,VS)~income,
+ family=cumulative(parallel=FALSE),data=dat)
> summary(fit.clogit2)
```

Residual deviance: 4.37717 on 6 degrees of freedom

```
> 1-pchisq(5.9527-4.37717,2)
[1] 0.4548603
```

and conclude that at we should be using one common β .

Example (Political Ideology)

An example with the following data yields

> ideow Gender Party VLib SLib Mod SCon VCon 1 Female Democrat 44 47 118 23 32 Female Republican 18 28 86 39 48 3 36 34 53 18 23 Male Democrat 12 18 62 45 51 Male Republican

```
> ideo.cl1=vglm(cbind(VLib,SLib,Mod,SCon,VCon)~Gender+Party,
+ family=cumulative(parallel=TRUE), data=ideow)
> summary(ideo.cl1)
Coefficients:
```

```
Estimate Std. Error z value
(Intercept):1 -1.45177 0.12284 -11.81819
(Intercept):2 -0.45834 0.10577 -4.33337
(Intercept):3 1.25499 0.11455 10.95598
(Intercept):4 2.08904 0.12916 16.17374
GenderMale -0.11686 0.12681 -0.92147
PartyRepublican -0.96362 0.12936 -7.44917
```

Residual deviance: 15.05557 on 10 degrees of freedom Log-likelihood: -47.41497 on 10 degrees of freedom

- ullet GoF with $G^2=15.056$ and 10 df with p-value of 0.13
- Testing for gender effect (controlling for party) we have a Wald statistic -0.921 indicating a lack of evidence
- Testing for party effect (controlling for gender)
 - Wald: z = -7.449
 - LR: 71.902 15.056 = 56.846 with df = 1. (Deviance of 71.902 was obtained by fitting model with only gender effect)

Controlling for gender, estimated odds that a Republican's response $(x_2=0 \text{ to } x_2=1)$ is in liberal direction $(Y\leq j)$ rather than conservative (Y>j) are $\exp(-0.964)=0.38$ times estimated odds for a Democrat. The 95% CI for the odds ratio is (but best to use confint)

$$\exp(-0.964 \pm 1.96(0.129)) \rightarrow (0.30, 0.49)$$

May be an interaction between gender and party affiliation.

```
> ideo.cl2=vglm(cbind(VLib,SLib,Mod,SCon,VCon)~Gender*Party,
+ family=cumulative(parallel=TRUE), data=ideow)
```

> summary(ideo.cl2)

Coefficients:

	Lstimate	Sta. Erro	or z value	
(Intercept):1	-1.55209	0.1335	53 -11.62339	
(Intercept):2	-0.55499	0.1170	3 -4.74225	
(Intercept):3	1.16465	0.1233	9.44006	
(Intercept):4	2.00121	0.1368	32 14.62633	
GenderMale	0.14308	0.1793	36 0.79772	
PartyRepublican	-0.75621	0.1669	91 -4.53062	
GenderMale:PartyRepublican	-0.50913	0.2540	08 -2.00381	

Residual deviance: 11.06338 on 9 degrees of freedom

Interaction term appears significant.

- Wald: z = -2.004 with p-value=0.04507
- LR: 15.056 11.063 = 3.993 with df=1 and p-value=0.0457

The goodness of fit test with $G^2=11.063$ residual deviance and df=9 wields a p-value of 0.2714153, a big improvement from 0.13 for the additive model. This is because the interaction takes into account the relationship between gender and party affiliation and how they affect political ideology.

• Estimated odds ratio for party effect (x_2) , (allowing gender to differ)

$$\exp(b_2)=\exp(-0.756)=0.47$$
 when $x_1=0$ (F) $\exp(b_2+b_3)=\exp(-0.756-0.509)=0.28$ when $x_1=1$ (M)

- Estimated odds that a female Republican's response is in liberal direction rather than conservative are 0.47 times estimated odds for a female Democrat.
- Estimated odds that a male Republican's response is in liberal direction rather than conservative are 0.28 times estimated odds for a male Democrat.

• Estimated odds ratio for gender effect (x_1)

$$\exp(b_1)=\exp(0.143)=1.15$$
 when $x_2=0$ (Dem) $\exp(b_1+b_3)=\exp(0.143-0.509)=0.69$ when $x_2=1$ (Rep)

- Estimated odds that a male Democrat's response is in liberal direction rather than conservative are 1.15 times estimated odds for a female Democrat.
- Estimated odds that a male Republican's response is in liberal direction rather than conservative are 0.69 times estimated odds for a female Republican.

$$\hat{P}(Y \le j) = \frac{\exp(\hat{\alpha}_j + 0.143x_1 - 0.756x_2 - 0.509x_1x_2)}{1 + \exp(\hat{\alpha}_j + 0.143x_1 - 0.756x_2 - 0.509x_1x_2)}$$

• $\hat{P}(Y=1) = \hat{P}(Y \le 1)$. For j=1 (very liberal) the probability for a male republican $(\hat{\alpha}_1 = -1.55, x_1 = 1, x_2 = 1)$:

$$\hat{P}(Y=1) = \frac{e^{-2.67}}{1 + e^{2.67}} = 0.065$$

• Similarly, $\hat{P}(Y=2) = \hat{P}(Y \le 2) - \hat{P}(Y \le 1)$, etc. Note $\hat{P}(Y=5) = \hat{P}(Y \le 5) - \hat{P}(Y \le 4) = 1 - \hat{P}(Y \le 4)$.

We learned

- Utilized inherent information in ordinal responses to provide more accurate predictions
- Kept systematic component "parallel" so that there is no violation of cumulative probabilities.