Параметры источника и нагрузки для выполнения лабораторной работы "Исследование переходных процессов в электрических цепях"

D	II D	опыт 1	опыт 2.1	опыт 2.2	I Г	СФ
Bap	$U_{\mathrm{m}},\mathrm{B}$		R, Om		L , Γ н	C , мк Φ
001	2	40	160	20	0,08	50
002	2	40	160	20	0,12	75
003	2	40	160	20	0,16	100
004	2	40	160	20	0,2	125
005	2	40	160	20	0,24	150
006	2	40	160	20	0,32	200
007	2	40	160	20	0,36	225
008	2	40	160	20	0,4	250
009	2	40	160	20	0,48	300
010	2	40	160	20	0,8	500
011	3	25	100	12,5	0,05	80
012	3	150	600	75	0,45	20
013	3	25	100	12,5	0,1	160
014	3	25	100	12,5	0,125	200
015	3	150	600	75	0,9	40
016	3	25	100	12,5	0,2	320
017	3	150	600	75	1,35	60
018	3	25	100	12,5	0,25	400
019	3	150	600	75	1,8	80
020	3	25	100	12,5	0,5	800
021	4	80	320	40	0,16	25
022	4	80	320	40	0,24	37,5
023	4	80	320	40	0,32	50
024	4	500	2000	250	2,5	10
025	4	80	320	40	0,48	75
026	4	80	320	40	0,64	100
027	4	100	400	50	0,9	90
028	4	500	2000	250	5	20
029	4	80	320	40	0,96	150
030	4	500	2000	250	10	40
031	5	250	1000	125	0,5	8
032	5	250	1000	125	0,75	12
033	5	250	1000	125	1	16
034	5	250	1000	125	1,25	20
035	5	250	1000	125	1,5	24
036	5	250	1000	125	2	32
037	5	250	1000	125	2,25	36

Bap	U _m , B	опыт 1	опыт 2.1 <i>R</i> , Ом	опыт 2.2	L, Гн	С, мкФ
038	5	250	1000	125	2,5	40
039	5	250	1000	125	3	48
040	5	250	1000	125	5	80
041	6	160	640	80	0,32	12,5
042	6	120	480	60	0,36	25
043	6	160	640	80	0,64	25
044	6	80	320	40	0,4	62,5
045	6	120	480	60	0,72	50
046	6	160	640	80	1,28	50
047	6	120	480	60	1,08	75
048	6	80	320	40	0,8	125
049	6	120	480	60	1,44	100
050	6	80	320	40	1,6	250
051	8	200	800	100	0,4	10
052	8	200	800	100	0,6	15
053	8	200	800	100	0,8	20
054	8	200	800	100	1	25
055	8	200	800	100	1,2	30
056	8	200	800	100	1,6	40
057	8	200	800	100	1,8	45
058	8	200	800	100	2	50
059	8	200	800	100	2,4	60
060	8	200	800	100	4	100
061	9	20	80	10	0,04	100
062	9	30	120	15	0,09	100
063	9	20	80	10	0,08	200
064	9	20	80	10	0,1	250
065	9	30	120	15	0,18	200
066	9	20	80	10	0,16	400
067	9	30	120	15	0,27	300
068	9	20	80	10	0,2	500
069	9	30	120	15	0,36	400
070	9	20	80	10	0,4	1000
071	12	100	400	50	0,2	20
072	12	60	240	30	0,18	50
073	12	100	400	50	0,4	40
074	12	100	400	50	0,5	50
075	12	60	240	30	0,36	100
076	12	100	400	50	0,8	80

Don	II D	опыт 1	опыт 2.1	опыт 2.2	Ι Γ.,	Camp
Bap	U _m , B		R, Om	L, Гн	C , мк Φ	
077	12	60	240	30	0,54	150
078	12	100	400	50	1	100
079	12	60	240	30	0,72	200
080	12	100	400	50	2	200
081	15	50	200	25	0,1	40
082	15	50	200	25	0,15	60
083	15	50	200	25	0,2	80
084	15	50	200	25	0,25	100
085	15	50	200	25	0,3	120
086	15	50	200	25	0,4	160
087	15	50	200	25	0,45	180
088	15	50	200	25	0,5	200
089	15	50	200	25	0,6	240
090	15	50	200	25	1	400
091	18	320	1280	160	0,64	6,25
092	18	300	1200	150	0,9	10
093	18	320	1280	160	1,28	12,5
094	18	400	1600	200	2	12,5
095	18	300	1200	150	1,8	20
096	18	320	1280	160	2,56	25
097	18	300	1200	150	2,7	30
098	18	400	1600	200	4	25
099	18	300	1200	150	3,6	40
100	18	400	1600	200	8	50

Распределение вариантов параметров к лабораторной работе "Исследование переходных процессов в электрических цепях"

Табельный номер	ФИО	ЛР2
408094	Абакаров Расул Тигранович	27
336358	Амельченко Дмитрий Сергеевич	51
470407	Антипин Григорий Викторович	84
367822	Арабян Армен Арсенович	53
408190	Багманов Владимир Алексеевич	24
410774	Барашко Арсений Александрович	70
335189	Батаргин Егор Александрович	54
367097	Березовский Артемий Сергеевич	94
408308	Борисова Дарья Александровна	57
336423	Вавилина Екатерина Андреевна	26
412904	Ваганова Мария Александровна	25
408349	Валеева Карина Тимуровна	17
408409	Гаврилин Олег Сергеевич	46
408413	Гаврилович Вероника Вячеславовна	29
408481	Горюнов Семён Олегович	18
368069	Гуренков Максим Сергеевич	37
408549	Долинный Михаил Владимирович	72
368136	Дьяков Тимофей Александрович	9
408574	Евстигнеев Никита Артёмович	56
412944	Забиров Шахбоз Махмадкосирович	67
408648	Захарченко Роман Владимирович	40
408665	Зорин Георгий Юрьевич	82
377912	Иевлев Ринат Андреевич	45
374215	Ике Холи Дестини	23
408708	Исупов Никита Александрович	8
367259	Кадилов Михаил Владимирович	95
470150	Казакова Кристина Дмитриевна	62
368273	Карандашева Анастасия Денисовна	100
489408	Киселев Михаил Васильевич	63
408933	Кузнецов Кирилл Андреевич	61
408965	Кучерук Родион Олегович	22
367355	Лихачев Владлен Артемович	39
336799	Логинова Ольга Олеговна	81
367363	Лучинкин Константин Сергеевич	3
336208	Май Тхи Ле Куен	31
409100	Матевосян Артур Русланович	28
409109	Машкин Григорий Андреевич	50
413006	Медведева Даниэла Михайловна	12
413012	Мироненко Артём Дмитриевич	20
409146	Миронов Иван Николаевич	43
379673	Муравенко Григорий Павлович	93
338996	Мустафин Родион Андреевич	15

Табельный номер	ФИО	ЛР2
368598	Носов Георгий Иванович	58
470401	Пасечник Иван Андреевич	97
409319	Пашов Илья Александрович	10
409324	Перминов Юрий Константинович	6
409359	Пожарский Семён Андреевич	99
409463	Рублёв Валерий Георгиевич	47
336774	Рыжова Евгения Романовна	65
409513	Самойлова Артемия Александровна	55
410770	Слепцов Кирилл Андреевич	80
409577	Слонимская Ксения Григорьевна	30
374755	Теребов Святослав Дмитриевич	69
409682	Тимошкин Роман Вячеславович	33
471572	Тоскуев Егор Денисович	14
373763	Хомич Екатерина Игоревна	75
409832	Чермантиев Илья Маратович	76
409856	Чураков Александр Алексеевич	49
367652	Шубин Илья Васильевич	2
336210	Ястребов-Амирханов Алекси	73

ИТМО

ОСНОВЫ ЭЛЕКТРОТЕХНИКИ

ОТЧЕТ

по лабораторной работе

Исследование переходных процессов в электрических цепях

Группа *Р3300*

Вариант *013*

Выполнил(а): Кузнецов Кузьма Кузьмич

Дата сдачи отчета: 22.09.2025

Дата защиты:

Контрольный защиты: 10.11.2025

Количество баллов:

Цель работы: исследование переходных процессов в электрических цепях первого и второго порядков с источником постоянного напряжения.

Исходные данные для выполнения лабораторной работы:

Bap U	II D	опыт 1 опыт 2.1 опыт 2.2			<i>I</i> Г	СФ
	U _m , B		R, Ом		L, Гн	C , мк Φ
013	3	25	100	12,5	0,1	160

Часть І. Исследование переходных процессов в электрических цепях первого порядка с источником постоянного напряжения

І.1 Исследование переходного процесса в RC-цепи

Схема исследуемой *RC*-цепи

Графики переходных процессов и измерения по графикам

Зеленая линия — напряжение источника питания E(t) Красная линия — напряжение на емкости $U_C(t)$ Синяя линия — ток RC-цепи I(t)

$$I(0+) = 240 \text{ [mA]}, I(\infty) = 0 \text{ [mA]}, U_C(0+) = -3 \text{ [B]}, U_C(\infty) = 3 \text{ [B]}, t_{0.5} = 2,7780915 \text{ [mc]}$$

 $\tau = t_{0.5} / \ln(2) \approx 0,0027780915 / 0,6931 = 0,0040082117 \text{ [c]} = 4008,2117 \text{ [mkc]}$

$$I(0+) = (E(0+) - U_C(0+)) / R = (3 - (-3)) / 25 = 0,24 \text{ [A]} = 240 \text{ [mA]}$$

$$I(\infty) = I(0-) = 0 \text{ [A]} = 0 \text{ [mA]}$$

$$U_C(0+) = U_C(0-) = E(0-) = -3 \text{ [B]}$$

$$U_C(\infty) = E(0+) = 3 \text{ [B]}$$

$$\tau = R \cdot C = 25 \cdot 160 \cdot 10^{-6} = 4 \cdot 10^{-3} \text{ [c]} = 4000 \text{ [mkc]}$$

Таблица экспериментальных и расчетных данных

R	C	Тип	<i>I</i> (0+)	$I(\infty)$	$U_{C}(0+)$	$U_{C}(\infty)$	τ
Ом	мкФ	данных	мА	мА	В	В	мкс
25	160	эксп	240	0	-3	3	4008,2117
23	100	расч	240	0	-3	3	4000

I.2 Исследование переходного процесса в RL-цепи

Схема исследуемой *RL*-цепи

Графики переходных процессов и измерения по графикам

Зеленая линия — напряжение источника питания E(t) Красная линия — напряжение на емкости $U_C(t)$ Синяя линия — ток RL-цепи I(t)

$$I(0+) = -120 \text{ [MA]}, I(\infty) = 120 \text{ [MA]}, U_L(0+) = 6 \text{ [B]}, U_L(\infty) = 0 \text{ [B]}, t_{0,5} = 2,8006776 \text{ [MC]}$$

 $\tau = t_{0,5} / \ln(2) \approx 0,0028006776 / 0,6931 = 0,0040405237 \text{ [c]} = 4040,5237 \text{ [MKC]}$

$$I(0+) = E(0-) / R = (-3) / 25 = -0.12 \text{ [A]} = -120 \text{ [mA]}$$

 $I(\infty) = E(0+) / R = 3 / 25 = 0.12 \text{ [A]} = 120 \text{ [mA]}$
 $U_L(0+) = E(0+) = 3 \text{ [B]}$
 $U_L(\infty) = 0 \text{ [B]}$
 $\tau = L / R = 0.1 / 25 = 0.004 \text{ [c]} = 4000 \text{ [mkc]}$

Таблица экспериментальных и расчетных данных

R	L	Тип	<i>I</i> (0+)	$I(\infty)$	$U_{C}(0+)$	$U_L(\infty)$	τ
Ом	мГн	данных	мА	мА	В	В	мкс
25	100	эксп	-120	120	6	0	4040,5237
23	100	расч	-120	120	6	0	4000

Часть II. Исследование переходных процессов в электрических цепях второго порядка с источником постоянного напряжения

II.1 Исследование апериодического переходного процесса

Схема исследуемой *RLC*-цепи

Графики переходных процессов и измерения по графикам


```
\frac{\delta = R / (2L) = 100 / (2 \cdot 0,1) = 500 [1/c]}{\omega_0 = 1 / \sqrt{(L \cdot C)} = 1 / \sqrt{(0,1 \cdot 160 \cdot 10^{-6})} = 250 [1/c]}
s_1 = -\delta + \sqrt{(\delta^2 - \omega_0^2)} = -500 + \sqrt{(500^2 - 250^2)} \approx -66,987 [1/c]
s_2 = -\delta + \sqrt{(\delta^2 - \omega_0^2)} = -500 - \sqrt{(500^2 - 250^2)} \approx -933,013 [1/c]
i(t) = E_{\Sigma} \cdot (e^{s1t} - e^{s2t}) / (L \cdot (s_1 - s_2)) = 6 \cdot (e^{-66.987t} - e^{-933,013t}) / (0,1 \cdot (-66,987 - (-933,013))) \approx
\approx 69,282 \cdot (e^{-66.987t} - e^{-933,013t}) [\text{MA}], \text{ тогда } I(0+) = i(0) = 0 [\text{A}]
u_L(t) = E_{\Sigma} \cdot (s_1 \cdot e^{s1t} - s_2 \cdot e^{s2t}) / (s_1 - s_2) = 6 \cdot (-66,987 \cdot e^{-66.987t} - (-933,013) \cdot e^{-933,013t}) / (-66,987 - (-933,013)) \approx -0,464 \cdot e^{-66.987t} + 6,464 \cdot e^{-933,013t} [\text{B}], \text{ тогда } U_L(0+) = u_L(0) = 6 [\text{B}]
u_C(t) = E(0+) - E_{\Sigma} \cdot (s_1 \cdot e^{s2t} - s_2 \cdot e^{s1t}) / (s_1 - s_2) = 3 - 6 \cdot (-66,987 \cdot e^{-933,013t} - (-933,013) \cdot e^{-66,987t}) / (-66,987 - (-933,013)) \approx 3 + 0,464 \cdot e^{-933,013t} - 6,464 \cdot e^{-66,987t} [\text{B}], \text{ тогда } U_C(0+) = u_C(0) = -3 [\text{B}]
t_p = 3 / |s_1| = 3 / |-66,987| \approx 0,044785 [c] = 44785 [\text{MKC}]
```

Таблица экспериментальных и расчетных данных

R	L	C	Тип	$U_{C}(0+)$	$U_L(0+)$	<i>I</i> (0+)	$t_{ m p}$
Ом	мГн	мкФ	данных	В	В	A	мкс
100 100	100 160 91	эксп	-3	6	0	45850	
	100	расч	-3	6	0	44785	

II.2 Исследование колебательного переходного процесса

<u>Схема исследуемой *RLC*-цепи</u>

Графики переходных процессов и измерения по графикам

$$T = 26,019198 \text{ [Mc]}, I_{m1} = 170,554 \text{ [MA]}, I_{m2} = 33,647 \text{ [MA]}$$

$$\omega_{c} = 2 \cdot \pi / T = 2 \cdot \pi / (26,019198 \cdot 10^{-3}) = 241,483 \text{ [1/c]}$$

$$\delta = \ln (I_{m1} / I_{m2}) / T = \ln ((170,554 \cdot 10^{-3}) / (33,647 \cdot 10^{-3})) / (26,019198 \cdot 10^{-3}) = 63,382 \text{ [1/c]}$$

$$\delta = R / (2L) = 12.5 / (2 \cdot 0.1) = 62.5 [1/c]$$

$$\omega_0 = 1 / \sqrt{(L \cdot C)} = 1 / \sqrt{(0.1 \cdot 160 \cdot 10^{-6})} = 250 [1/c]$$

$$\omega_c = \sqrt{(\omega_0^2 - \delta^2)} = \sqrt{(250^2 - 62.5^2)} \approx 242.061 [1/c]$$

Таблица экспериментальных и расчетных данных

R	L	C	Тип	δ	ω_{c}
Ом	мΓн	мкФ	данных	1/c	1/c
100	100	160	эксп	63,382	241,483
100		100	расч	62,5	242,061

ВЫВОДЫ по работе
