APPLICATIONS 4CCS 1 ELA ELEMENTARY LOGIC WITH

LECTURE 10:

PREDICATE LOGIC PROGRAMMING

Objectives for the day

 Consolidate Predicate Definite Clause Programming

- Learn about and work on Backtracking
- Learn about and work on Negation as Failure
- Learn about and work on Recursion
- And all that is Predicate Logic Programming

Predicate Definite Clause Programming

Predicate definite clause programs

 A predicate definite clause program is a set of first order definite clauses

$$- \forall x_1, ..., \forall x_n \neg \alpha_1 \lor ... \lor \neg \alpha_m \lor \alpha$$

 These can be represented as their equivalent definite rules and we can program with these rules

$$- \forall x_1, ..., \forall x_n \ \alpha_1 \land ... \land \alpha_m \rightarrow \alpha$$

$$- \forall x_1, \ldots, \forall x_n \ \alpha_1, \ldots, \alpha_m \rightarrow \alpha$$

First order definite clause programs

- A first order (predicate) definite clause program is a set of first order definite clauses
- These can be represented as their equivalent definite rules and we can program with these rules
- 1. loves(mary, john)

definite clauses

- engaged(mary, john)
- 3. $\forall x \ \forall y \ \neg loves(x, y) \ \lor \neg engaged(x, y) \ \lor marries(x, y)$

1. \rightarrow loves(mary, john)

definite rules

- 2. \rightarrow engaged(mary, john)
- 3. $\forall x \ \forall y \ loves(x, y), \ engaged(x, y) \rightarrow marries(x, y)$

Querying a predicate logic program

- Let P be a program of first order definite rules
- A query to P is a PNF formula

$$\exists x_1 \dots \exists x_n F$$

where F is a conjunction of positive atoms and $x_1 \dots x_n$ are the variables in F

- 1. $\rightarrow loves(mary, john)$
- \rightarrow engaged(mary, john)
- $\forall x \ \forall y \ loves(x, y), \ engaged(x, y) \rightarrow marries(x, y)$

Query ? $\exists z \exists w \ marries(z, w)$

Querying a predicate logic program

- Choose rule with matching head
- And then replace with body of rule query

```
1. \rightarrow loves(mary,john)
```


3. $\forall x \ \forall y \ loves(x, y), \ engaged(x, y) \rightarrow marries(x, y)$

Query ? $\exists z \exists w \ marries(z, w)$

So let's try...

- 1. \rightarrow loves(mary,john)
- 2. \rightarrow engaged(mary,john)
- 3. $\forall x \ \forall y \ loves(x, y), \ engaged(x, y) \rightarrow marries(x, y)$

- ? $\exists z \exists w \ marries(z, w)$
- I have a matching head, but it does not look right...
- The head is marries(x, y)
- But my query is marries(z, w)
- If only I could **substitute** that x with a z and that y with w ...

Substitution

- A substitution S is a finite set { (x₁/t₁), ..., (x_n/t_n) } where:
 - $-x_1, ..., x_n$ are distinct variables (only variables can be substituted)
 - t₁, ..., t_n are terms (<u>variables, constants</u> or functions applied to terms)
- **every instance** of variable x_i is **simultaneously** replaced by t_i

Unification through substitution

- We use substitution to make a formula match another formula.
 - This is called unification of two formulas.
 - In our case here, we are trying to match a query with the head of the rule.

- Head of rule: marries(x, y)
- Query: marries(z, w)
- We apply substitution: $\{(x/z), (y/w)\}$

Unification through substitution

- The goal of the substitution is to make a formula match another formula.
 - This is called unification of two formulas.
 - In our case here, we are trying to match a query with the head of the rule.
- marries(z, w)
- marries(**z**, **w**)
- Now the rule and query are unified!

So let's try again...

```
1. \rightarrow loves(mary,john)
 2. \rightarrow engaged(mary,john)
     \forall x \ \forall y \ loves(x, y), \ engaged(x, y) \rightarrow marries(x, y)
                                I choose the left
                                most atom
? IzIw marries(z, w)
                                                 marries(x, y)
                                                  \{ (x/z), (y/w) \}
? loves(z, w), engaged(z, w)
                                              loves(mary,john)
                                          { (z/mary), (w/john) }
? engaged(mary, john)
                                           engaged(mary, john)
```

Recap of predicate **definite clause** programming

Let us formally define the programming procedure:

Input:

- A program P of definite rules
- A query *Q*,

$$Q = \exists x_1 \dots \exists x_m \, \alpha_1 \wedge \dots \wedge \alpha_n$$

Note that we replace \land with ,

Output:

If Q is logical consequence of P then output Yes, else output No.

Notation conventions

1. \rightarrow loves(mary,john)

 \mathcal{P}_1

- 2. \rightarrow engaged(mary,john)
- 3. $\forall x \ \forall y \ loves(x, y), \ engaged(x, y) \rightarrow marries(x, y)$

? \(\frac{1}{2}\)z\(\frac{1}{2}\)w marries(z, w)

- We can simply leave out:
 - the universal quantifiers before 3.
 - the ' \rightarrow ' before 1. and 2.
 - the existential quantifiers before query marries(z, w)
- 1. loves(mary,john)
- 2. engaged(mary,john)
- 3. loves(x, y), $engaged(x, y) \rightarrow marries(x, y)$

 \mathcal{P}_1

? marries(z, w)

Notation conventions

loves(mary,john)
 engaged(mary,john)
 loves(x, y), engaged(x, y) → marries(x, y)

- 1. and 2. are called **facts**. loves(mary,john) engaged(mary,john)
- 3 is called a rule
 - if ..., then... $loves(x, y), engaged(x, y) \rightarrow marries(x, y)$

Express the following as a (predicate logic) definite clause program:

One can travel between any two cities X and Y, if there is a direct flight from X to Y and there is a ticket available to travel from X to Y. A ticket between X and Y is available, if it can be bought online or bought over the phone.

One can travel between any two cities X and Y, **if** there is a direct flight from X to Y **and** there is a ticket available to travel from X to Y.

A ticket between X and Y is available, if it can be bought online or bought over the phone.

```
direct\_flight(X,Y) \land ticket(X,Y) \rightarrow travel\_between(X,Y)
```

 $direct_flight(X,Y)$, $ticket(X,Y) \rightarrow travel_between(X,Y)$

One can travel between any two cities X and Y, if there is a direct flight from X to Y and there is a ticket available to travel from X to Y.

A ticket between X and Y is available, **if** it can be bought online **or** bought over the phone.

 $direct_flight(X,Y)$, $ticket(X,Y) \rightarrow travel_between(X,Y)$

 $buy_online(X,Y) \lor buy_phone(X,Y) \rightarrow ticket(X,Y)$

But this does not have the form of a rule:

$$\alpha_1 \wedge ... \wedge \alpha_m \rightarrow \alpha$$

Can we fix it?

We apply the 'PNF to definite rules' process!

One can travel between any two cities X and Y, if there is a direct flight from X to Y and there is a ticket available to travel from X to Y.

A ticket between X and Y is available, **if** it can be bought online **or** bought over the phone.

```
direct\_flight(X,Y), ticket(X,Y) \rightarrow travel\_between(X,Y)
```

```
buy_online(X,Y) ∨ buy_phone(X,Y) → ticket(X,Y)

¬(buy_online(X,Y) ∨ buy_phone(X,Y)) ∨ ticket(X,Y)

(¬buy_online(X,Y) ∧ ¬ buy_phone(X,Y)) ∨ ticket(X,Y)

(¬ buy_online(X,Y) ∨ ticket(X,Y)) ∧ (¬ buy_phone(X,Y) ∨ ticket(X,Y))

buy_online(X,Y) → ticket(X,Y) and

buy_phone(X,Y) → ticket(X,Y)
```

One can travel between any two cities X and Y, if there is a direct flight from X to Y and there is a ticket available to travel from X to Y. A ticket between X and Y is available, if it can be bought online or bought over the phone.

```
direct\_flight(X,Y), ticket(X,Y) \rightarrow travel\_between(X,Y)
buy\_online(X,Y) \rightarrow ticket(X,Y)
buy\_phone(X,Y) \rightarrow ticket(X,Y)
```

Quick guide: representing and and or

P if A and B andand Q

A, B,...,
$$Q \rightarrow P$$

P if A or B oror Q

 $A \rightarrow P$

 $B \rightarrow P$

•

 $Q \rightarrow P$

One can travel between any two cities X and Y, if there is a direct flight from X to Y and there is a ticket available to travel from X to Y. A ticket between X and Y is available, if it can be bought online or bought over the phone.

RULES:

```
direct\_flight(X,Y), ticket(X,Y) \rightarrow travel\_between(X,Y)
buy\_online(X,Y) \rightarrow ticket(X,Y)
buy\_phone(X,Y) \rightarrow ticket(X,Y)
```

Let's add the facts

```
RULES:
```

```
direct\_flight(X,Y), ticket(X,Y) \rightarrow travel\_between(X,Y)
buy\_online(X,Y) \rightarrow ticket(X,Y)
buy\_phone(X,Y) \rightarrow ticket(X,Y)
```

FACTS:

- There are direct flights from London (Ion) to Paris.
- There are direct flights from Paris to Athens.
- The ticket from London to Paris can be bought online.
- The ticket from Paris to Athens can be bought over the phone.

```
direct_flight(lon,paris)
direct_flight(paris,athens)
buy_online(lon,paris)
buy_phone(paris,athens)
```

```
direct\_flight(X,Y), ticket(X,Y) \rightarrow travel\_between(X,Y)

buy\_online(X,Y) \rightarrow ticket(X,Y)

buy\_phone(X,Y) \rightarrow ticket(X,Y)

direct\_flight(lon,paris)

direct\_flight(paris,athens)

buy\_online(lon,paris)

buy\_phone(paris,athens)
```

- Let's make a Query:
- ? travel_between(lon, paris)

Note: in the previous example a query contained variables, but a query can also contain constants

```
    df(X,Y), t(X,Y) → tb(X,Y)
    on(X,Y) → t(X,Y)
    ph(X,Y) → t(X,Y)
    df(lon,par)
    df(par,ath)
    on(lon,par)
    ph(par,ath)
```

- Let's make a Query:
- ? *tb*(*lon*, *par*)

```
    1) df(X,Y), t(X,Y) → tb(X,Y)
    2) on(X,Y) → t(X,Y)
    3) ph(X,Y) → t(X,Y)
    4) df(lon,par)
    5) df(par,ath)
    6) on(lon,par)
    7) ph(par,ath)
```

```
? tb(lon, par)
{(X/lon), (Y/par)}

I choose the left most atom

? t(lon, par)

Both 2) and 3) match!!
```

Which one to choose?

Choice points and **Backtracking**

Choice point

```
1) df(X,Y), t(X,Y) \rightarrow tb(X,Y)
2) on(X,Y) \rightarrow t(X,Y)
3) ph(X,Y) \rightarrow t(X,Y)
4) df(lon,par)
5) df(paris,ath)
6) on(lon,par)
7) ph(par,ath)
    ? tb(lon, par)
                                                       { (X/lon), (Y/par) }
    ? df(lon, par), t(lon, par)
```

Usual to choose **left most** atom in query

```
    df(X,Y), t(X,Y) → tb(X,Y)
    on(X,Y) → t(X,Y)
    ph(X,Y) → t(X,Y)
    df(lon,par)
    df(paris,ath)
    on(lon,par)
    ph(par,ath)
```

```
? tb(lon, par)
{ (X/lon), (Y/par) }

? df(lon, par) t(lon, par)

? t(lon, par)

Both 2) a
```

Both 2) and 3) match!! Which one to **choose**?

Choice point

```
1) df(X,Y), t(X,Y) \rightarrow tb(X,Y)
2) on(X,Y) \rightarrow t(X,Y)
3) ph(X,Y) \rightarrow t(X,Y)
4) df(lon,par)
   df(paris,ath)
6) on(lon,par)
7) ph(par,ath)
    ? tb(lon, par)
                                                     { (X/lon), (Y/par) }
    ? df(lon, par) , t(lon, par)
                                                     4)
    ? t(lon, par)
                                                                               Choice point
                                                     { (X/lon), (Y/par) }
   ? on(lon, par)
                                                    6)
```

Choice point

```
1) df(X,Y), t(X,Y) \rightarrow tb(X,Y)
2) on(X,Y) \rightarrow t(X,Y)
3) ph(X,Y) \rightarrow t(X,Y)
  df(lon,par)
   df(paris,ath)
  on(lon,par)
7) ph(par,ath)
    ? tb(lon, par)
                                                  { (X/lon), (Y/par) }
    ? df(lon, par), t(lon, par)
                                                  4)
    ? t(lon, par)
                                                                          Choice point
                                                  { (X/lon), (Y/par) }
   ? on(lon, par)
                                                 6)
                                  Choose first rule with matching head
```

Another query

```
1) df(X,Y), t(X,Y) \rightarrow tb(X,Y)
2) on(X,Y) \rightarrow t(X,Y)
3) ph(X,Y) \rightarrow t(X,Y)
4) df(lon,par)
   df(paris,ath)
6) on(lon,par)
7) ph(par,ath)
    ? tb(par, ath)
                                                    { (X/par), (Y/ath) }
    ? df(par, ath) , t(par, ath)
                                                    4)
    ? t(par, ath)
                                                                             Choice point
                                                    { (X/par), (Y/ath) }
   ? on(par, ath)
```

Let's go back to the last choice point and try again...

```
1) df(X,Y), t(X,Y) \rightarrow tb(X,Y)
2) on(X,Y) \rightarrow t(X,Y)
3) ph(X,Y) \rightarrow t(X,Y)
4) df(lon,par)
  df(paris,ath)
6) on(lon,par)
7) ph(par,ath)
    ? tb(par, ath)
                                                   { (X/par), (Y/ath) }
    ? df(par, ath) , t(par, ath)
                                                   4)
    ? t(par, ath)
                                                                            Choice point
                                                   { (X/par), (Y/ath)
   ? ph(par, ath)
                                                            SUCCESS!
                                                                                      33
```

Backtracking to last choice point

```
1) df(X,Y), t(X,Y) \rightarrow tb(X,Y)
2) on(X,Y) \rightarrow t(X,Y)
3) ph(X,Y) \rightarrow t(X,Y)
4) df(lon,par)
   df(paris,ath)
   on(lon,par)
7) ph(par,ath)
    ? tb(lon, ath)
                                                    { (X/lon), (Y/ath) }
    ? df(lon, ath) , t(lon, ath)
                                                    4)
    ? t(lon, ath)
                                                                             Choice point
                                                    { (X/lon), (Y/ath) }
   ? ph(lon, ath)
                                                   6)
                                         backtrack to last choice point, and choose
```

next rule

Activity

- 1) $Q(x,y), T(x,y), S(y) \rightarrow P(x,y)$
- *2) Q*(*a*,*b*)
- *3) Q*(*a*,*c*)
- 4) Q(a,d)
- 5) T(a,c)
- 6) T(a,d)
- 7) S(d)

P(x,y)

a, b, c, and d are constants x and y are variables

35

Show the derivation trees and the order in which they are generated if:

- 1. The left query atom is always chosen
- 2. The first listed rule or matching fact is chosen
- 3. If failure then backtrack to last choice point and choose next listed matching rule or fact

Derivation tree 1

Q(x,y), T(x,y), S(y) → P(x,y)
 Q(a,b)
 Q(a,c)
 Q(a,d)
 T(a,c)
 T(a,d)
 S(d)

a, b, c, and d are constants x and y are variables

Failure, backtrack to last choice point

Derivation tree 2

Q(x,y), T(x,y), S(y) → P(x,y)
 Q(a,b)
 Q(a,c)
 Q(a,d)
 T(a,c)
 T(a,d)
 S(d)

a, b, c, and d are constants x and y are variables

Failure, backtrack again to last choice point

Derivation tree 3

Q(x,y), T(x,y), S(y) → P(x,y)
 Q(a,b)
 Q(a,c)
 Q(a,d)
 T(a,c)
 T(a,d)
 S(d)

a, b, c, and d are constants x and y are variables

- Definite rules do not have negated atoms
- How then would we express the following?
- 'Someone is innocent if they are not guilty'
- What about:
- \neg guilty(x) \rightarrow innocent(x)
- But this is not a definite rule!

'Someone is innocent if they are not guilty'

 \neg guilty(x) \rightarrow innocent(x)

 But in the eyes of the law, someone is innocent if the prosecution FAILED to PROVE that he/she is guilty!

- It simply means that "not p" must hold if we failed to prove "p"!
 - every attempt to prove p failed, that is, there is no successful derivation tree for p.
- 'we cannot prove "p" to be true, so "not p" must be true!'
- But note: saying 'not p is true' is not strictly the same as saying ' $\neg p$ is true', because the latter would require us to prove $\neg p$
- What we cannot show/prove to be true must be false (this is called closed world assumption).

Example

- 1) bird(x), not $can_fly(x) \rightarrow flightless_bird(x)$
- bird(eagle)
- can_fly(eagle)
- 4) bird(chicken)

every attempt to prove can_fly(chicken) failed (that is, there is no successful derivation tree for can_fly(chicken)). So not can_fly(chicken) must be true.

```
? flightless_bird (chicken)
                                           { (x/chicken) }
? bird(chicken), not can_fly(chicken)
? not can_fly(chicken)
                                                       ? can_fly(chicken)
```

Example: another query

1) bird(x), not $can_fly(x) \rightarrow flightless_bird(x)$ bird(eagle) Our **attempt** to prove can_fly(eagle) can_fly(eagle) bird(chicken) succeeded (that is, there was a successful ? flightless_bird (eagle) derivation tree for { (x/eagle) } can_fly(eagle)). So **not** can_fly(eagle) ? bird(eagle), not can_fly(eagle) 2) must be false. ? not can_fly(eagle) ? can_fly(eagle) 3)

From definite clause programming to logic programming

- Predicate logic programming =
- Definite Clause Programming +
 - 1) **Control** (procedural) features with selection of leftmost query atom and topmost program rule or fact
 - 2) **Backtracking** to choice points
 - 3) **Negation** as Failure (Closed World Assumption)

A predicate logic programming derivation includes all derivation trees obtained on backtracking in order to prove query and all trees attempting to prove p given a query 'not p'

Recursion

 Specify the following as a predicate logic program:

One can travel from city X to Y if there is a direct flight from X to Y. Otherwise, one can travel from city X to Y, if one can get a direct flight from X to Z and then travel from city Z to Y

 Specify the following as a predicate logic program:

One can travel from city X to Y if there is a direct flight from X to Y. Otherwise, one can travel from city X to Y, if one can get a direct flight from X to Z and then travel from city Z to Y

Solving the problem of whether one can travel from X to Y depends on solving a **smaller version of the same** problem – whether can one travelsfrom Z to Y.

One can travel from city X to Y if there is a direct flight from X to Y. Otherwise, one can travel from city X to Y, if one can get a direct flight from X to Z and then travel from city Z to Y

 $direct_flight(x,y) \rightarrow travel_from(x,y)$

One can travel from city X to Y if there is a direct flight from X to Y. Otherwise, one can travel from city X to Y, if one can get a direct flight from X to Z and then travel from city Z to Y


```
direct\_flight(x,y) \rightarrow travel\_from(x,y)
direct\_flight(x,z), travel\_from(z,y) \rightarrow travel\_from(x,y)
```

```
1) direct\_flight(x,y) \rightarrow travel\_from(x,y)

2) direct\_flight(x,z), travel\_from(z,y) \rightarrow travel\_from(x,y)

3) direct\_flight(london, paris)

4) direct\_flight(paris, athens)
```

```
? travel_from(london,athens) [1] Choice point { (x/london), (y/athens) }
```

? direct_flight(london,athens)

```
1) direct_flight(x,y) → travel_from(x,y)
2) direct_flight(x,z), travel_from(z,y) → travel_from(x,y)
3) direct_flight(london, paris)
4) direct_flight(paris, athens)
```

```
? travel_from(london,athens) [1] Choice point { (x/london), (y/athens)}
```

? direct_flight(london,athens)

Backtrack to last choice point

```
1) direct\_flight(x,y) \rightarrow travel\_from(x,y)

2) direct\_flight(x,z), travel\_from(z,y) \rightarrow travel\_from(x,y)

3) direct\_flight(london, paris)

4) direct\_flight(paris, athens)
```

```
? travel_from(london,athens)
{ (x/london), (y/athens) }

? direct_flight(london,z), travel_from(z,athens)
{ (z/paris) }

? travel_from(paris,athens)

1)
{ (x/paris), (y/athens) }

? direct_flight(paris,athens)

4)
```

Recursion

- When something is defined in terms of smaller versions of itself
- Generally in CS, recursion is a method where solving a problem depends on solving smaller versions of the same problem
- A recursive program consists of:
 - a base case: the rule that cannot be expressed in terms of smaller versions of itself
 - $direct_flight(x,y) \rightarrow travel_from(x,y)$ the problem of whether one can travel from X to Y is when there is a direct flight from X to Y
 - a recursive case: the rule that can be expressed in terms of smaller versions of itself
 - $direct_flight(x,z)$, $travel_from(z,y) \rightarrow travel_from(x,y)$ Solving the problem of whether one can travel from X to Y depends on solving a smaller version of the same problem – whether can one travel from Z to Y.


```
justAte(X,Y) \rightarrow isDigesting(X,Y)

justAte(X,Z), isDigesting(Z,Y) \rightarrow isDigesting(X,Y)

justAte(snail, flower)

justAte(frog,snail)

justAte(fox,frog)
```


- 1) $justAte(X,Y) \rightarrow isDigesting(X,Y)$
- 2) justAte(X,Z), $isDigesting(Z,Y) \rightarrow isDigesting(X,Y)$
- 3) justAte(snail, flower)
- *4) justAte(frog,snail)*
- *5) justAte(fox,frog)*

? isDigesting(fox,flower)

- 1) $justAte(X,Y) \rightarrow isDigesting(X,Y)$
- 2) justAte(X,Z), $isDigesting(Z,Y) \rightarrow isDigesting(X,Y)$
- 3) justAte(snail, flower)
- *4) justAte(frog,snail)*
- *5) justAte(fox,frog)*

? isDigesting(fox,flower)

1)
{ (X/fox), (Y/flower) }/

? justAte(fox,flower)

- 1) $justAte(X,Y) \rightarrow isDigesting(X,Y)$
- 2) justAte(X,Z), $isDigesting(Z,Y) \rightarrow isDigesting(X,Y)$
- 3) justAte(snail, flower)
- *4) justAte(frog,snail)*
- *5) justAte(fox,frog)*

? *isDigesting(fox,flower)*

1) { (X/fox), (Y/flower) }

? justAte(fox,flower)

Backtrack to last choice point

- 1) $justAte(X,Y) \rightarrow isDigesting(X,Y)$
- 2) justAte(X,Z), $isDigesting(Z,Y) \rightarrow isDigesting(X,Y)$
- 3) justAte(snail, flower)
- 4) justAte(frog,snail)
- *5) justAte(fox,frog)*

? isDigesting(fox,flower)

```
2) { (X/fox), (Y/flower) }
```

? justAte(fox, Z), isDigesting (Z, flower) 5 { (Z/frog) }

? isDigesting (frog, flower)

/ 1) \{ (X/frog), (Y/flower) }

? justAte (frog, flower)

Backtrack to last choice point

- 1) $justAte(X,Y) \rightarrow isDigesting(X,Y)$
- 2) justAte(X,Z), $isDigesting(Z,Y) \rightarrow isDigesting(X,Y)$
- 3) justAte(snail, flower)
- 4) justAte(frog,snail)
- *5) justAte(fox,frog)*

```
? isDigesting(fox,flower)
? justAte(fox, Z), isDigesting(Z,flower)
? isDigesting(frog,flower)
? justAte(frog, Z), isDigesting(Z,flower)
? justAte(frog, Z), isDigesting(Z,flower)
4)
{ \{Z/frog\}}
? isDigesting(frog,flower)
1)
{ \{Z/frog\}}
? isDigesting(frog,flower)
3)
```

```
1) direct_flight(x,y) → travel_from(x,y)
2) direct_flight(x,z), travel_from(z,y) → travel_from(x,y)
3) direct_flight(london, paris)
4) direct_flight(paris, athens)
5) direct_flight(athens,cairo)
```

Draw only the successful derivation tree for the query:

? travel_from(london,cairo)

```
    direct_flight(x,y) → travel_from(x,y)
    direct_flight(x,z), travel_from(z,y) → travel_from(x,y)
    direct_flight(london, paris)
    direct_flight(paris, athens)
    direct_flight(athens,cairo)
```

```
? travel_from(london,cairo)

? direct_flight(london,z), travel_from(z,cairo)

? travel_from(paris,cairo)

? direct_flight(paris,z), travel_from(z,cairo)

? travel_from(athens,cairo)

? direct_flight(athens,cairo)

? direct_flight(athens,cairo)

2)
{(x/paris)}
{(z/paris)}

? travel_from(z,cairo)

1)
{((x/athens), (y/cairo)}

? direct_flight(athens,cairo)

5)
```

Tutorials and Next Lecture

Large Group Tutorial:

- Questions 1 and 2a) are in slides; make sure you can do them yourself!
- Tutorial questions 2b), 3 and 4 not in slides

Small Group Tutorials:

You can complete all questions.

Next Lecture:

- Revision
- Next Year: 5CCS2PLD you will revisit and start 'doing' logic programming