	Area of Circles & Segments Mark Scheme	
1	X Arc Chord Sector Radius Tangent	[5] Mark for each correctly matched term
2(a)	$2 \times 3.7 = 7.4 m$	[1] Diameter of the circle
2(b)	$C = \pi d$ or $7.4 \times \pi = 23.2478$	[1] Correct circumference
	C = 23.25 m	[1] Correct rounding required
3(a)	Diameter = 2 × r = 2 × 3.6 = 7.2 cm	[1] Multiplication of radius by 2
	Circumference = $\pi \times d = 2 \times \pi \times r = 7.2\pi cm$	[1] Correct circumference in terms of π
3(b)	$Area = \pi \times r^2 = \pi \times 3.6^2$	[1] Correct calculation
	$= 12.96 \pi = 40.7 cm^2$	[1] Correct area to 1 decimal place
4	Perimeter of semi-circle arc: $\frac{1}{2} \times \pi \times d = \frac{1}{2} \times \pi \times 16 = 8\pi \ cm$	[1] Correct calculation
	Perimeter of diameter = $16 cm$	[1] Correct calculation
	Total Perimeter= $16 + 8\pi = 41.1 cm$	[1] Correct perimeter to 1 decimal place

5	Area = $\pi \times x^2 = 150 \ cm^2$	[1] Forming correct equation
	$x = \sqrt{\frac{150}{\pi}}$	[1] Rearranging to make x the subject
	x = 6.9 cm	[1] Correct radius to 1 decimal place
6(a)	Area of A = $\pi \times 16^2 = 256\pi \ cm^2$	[1] Correct area of circle A
6(b)	Area of B = $\pi \times 7^2 = 49\pi \ cm^2$	[1] Correct area of circle B
	Shaded area = $256\pi - 49\pi = 207\pi \ cm^2$	[1] Finding the difference of the two areas
	$= 650.3 \ cm^2$	[1] Correct shaded area to 1 decimal place
7	Shaded outer area = $100\pi - 49\pi = 51\pi m^2$	[1] Calculation of the area of the outer ring
	Area of interior circles = $5 \times (\pi \times 1^2) = 5\pi m^2$	[1] Calculation of the interior circles area
	Total shaded area = $(51\pi + 5\pi) = 56\pi m^2$	[1] Summing all shaded areas
	$= \frac{56\pi}{100\pi} = 56\%$	[1] Correct shaded area as a percentage to the total area of the large circle
8	Ratio of areas is $1^2: 2^2: 3^2: 5^2$	[1] Correct calculation
	1:4:9:25	[1] Correct answer in its simplest form
9(a)	Diagonal AC = 12 cm	[1] Identify length of diagonal AC or BD
	$x^2 + x^2 = 12^2$ $2x^2 = 144$	[1] By use of Pythagoras or otherwise, find
	$x = \sqrt{72} = 6\sqrt{2}$	the lengths, x , of each side of the square
	$Area = 6\sqrt{2} \times 6\sqrt{2} = 72 \text{ cm}^2$	[1] Correct area of square ABCD
9(b)	Area of circle = $\pi \times 6^2 = 36\pi$	[1] Correct calculation
	Shaded area = $36\pi - 72 = 41.1 \ cm^2$	[1] Correct shaded area to 1 decimal place