Optimización

Formulario · Primavera 2021

1. Optimización estática

1.1. Análisis convexo

Definición 1.1 (Conjunto convexo). Sea $X \subseteq \mathbb{R}^n$, decimos que X es convexo si, para cualesquiera $\mathbf{x}, \mathbf{y} \in X$ y para toda $\lambda \in (0,1)$, se cumple:

$$\lambda \mathbf{x} + (1 - \lambda)\mathbf{y} \in X$$
.

Equivalentemente, decimos que X es **convexo** si, para todas $a \in \partial X$ y $b \in X$, existe ℓ tal que $\langle b-a, \ell \rangle \leq 0$; donde ∂X es la frontera de X y $\langle \cdot , \cdot \rangle$ denota el producto punto.

Conjunto convexo

Conjunto no convexo

Proposición 1.1

Sean A y B dos subconjuntos convexos de \mathbb{R}^n , entonces:

- (i) $A \cap B$ es convexo.
- (II) $A + B = \{a + b : a \in A, b \in B\}$ es convexo.
- (III) Para todo $k \in \mathbb{R}$, $kA = \{ka : a \in A\}$ es convexo.

Definición 1.2 (Función convexa). Sea $X \subseteq R^n$ un conjunto convexo, $f: X \to \mathbb{R}$ es una **función convexa** si, para toda $\mathbf{x}_1 \neq \mathbf{x}_2 \in X$ y toda $\lambda \in (0,1)$, se tiene:

$$f(\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2) < \lambda f(\mathbf{x}_1) + (1 - \lambda)f(\mathbf{x}_2).$$

Si la desigualdad es estricta, se dice que la función es estrictamente convexa.

Definición 1.3 (Función cóncava). Sea $X \subseteq \mathbb{R}^n$ un conjunto convexo, $f: X \to \mathbb{R}$ es una **función cóncava** si, para toda $\mathbf{x}_1 \neq \mathbf{x}_2 \in X$ y toda $\lambda \in (0,1)$, se tiene:

$$f(\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2) \ge \lambda f(\mathbf{x}_1) + (1 - \lambda)f(\mathbf{x}_2).$$

Si la desigualdad es estricta, se dice que la función es estrictamente cóncava.

Definición 1.4. Sea $X\subseteq \mathbb{R}^n$ y $f:X\to \mathbb{R}$ una función, definimos:

- · la gráfica de f como $G_f = \{(\mathbf{x}, r) \in X \times \mathbb{R} : f(\mathbf{x}) = r\}.$
- · el epígrafo de f como $E_f = \{(\mathbf{x}, r) \in X \times \mathbb{R} : f(\mathbf{x}) \leq r\}.$
- · el hipógrafo de f como $H_f = \{(\mathbf{x}, r) \in X \times \mathbb{R} : f(\mathbf{x}) \geq r\}.$

Teorema 1.1

Sea $X \subseteq \mathbb{R}^n$ un conjunto convexo,

- (I) una función $f: X \to \mathbb{R}$ es convexa si y solo si E_f es un conjunto convexo de \mathbb{R}^{n+1} .
- (II) una función $f:X\to\mathbb{R}$ es cóncava si y solo si H_f es un conjunto convexo de $\mathbb{R}^{n+1}.$

Proposición 1.2

Sean $X \subseteq \mathbb{R}^n$ un conjunto convexo, $f: X \to \mathbb{R}$ y $g: X \to \mathbb{R}$ dos funciones cóncavas, y $\alpha \in \mathbb{R}$, entonces:

- (I) f es cóncava si $\alpha > 0$.
- (II) f es convexa si $\alpha < 0$.
- (III) f + g es cóncava.

Proposición 1.3

Sean $X\subseteq\mathbb{R}^n$ un conjunto convexo, $g:X\to\mathbb{R}$ una función cóncava, y $h:Y\to\mathbb{R}$ una función cóncava y creciente tal que $g(X)\subseteq Y\subseteq\mathbb{R}$; entonces, $h\circ g$ es cóncava.

Definición 1.5 (Vector gradiente). Sea $f \in C^1(X)$, el vector gradiente de f está dado por:

$$\nabla f(\mathbf{x}) = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix}$$

Definición 1.6 (Matriz hessiana). Sea $f \in C^2(X)$, se define la matriz hessiana de f como $H_f(\mathbf{x})$, donde:

$$H_f(\mathbf{x})_{i,j} = \frac{\partial^2 f(\mathbf{x})}{\partial x_i \partial x_j}.$$

Definición 1.7 (Serie de Taylor).

$$T(\mathbf{x}) = \sum_{|\alpha| > 0} \frac{(\mathbf{x} - \mathbf{a})^{\alpha}}{\alpha!} (\partial^{\alpha} f) (\mathbf{a}).$$

Teorema 1.2: de Taylor

Sea $f: \mathbb{R}^n \to \mathbb{R}$ tal que $f \in \mathcal{C}^k(\mathbf{a})$. Entonces, existe $h_\alpha: \mathbb{R}^n \to \mathbb{R}$ tal que:

$$f(\mathbf{x}) = \sum_{|\alpha| \le k} \frac{\partial^{\alpha} f(\mathbf{a})}{\alpha!} (\mathbf{x} - \mathbf{a})^{\alpha} + \sum_{|\alpha| = k} h_{\alpha}(\mathbf{x}) (\mathbf{x} - \mathbf{a})^{\alpha},$$

У

$$\lim_{\mathbf{x}\to\mathbf{a}}h_{\alpha}(\mathbf{x})=0.$$

Definición 1.8 (Matriz simétrica). Decimos que una matriz $A \in \mathcal{M}_{n \times n}$ es simétrica si y solo si:

$$A = A^T$$
.

Definición 1.9 (Matriz diagonalizable). Decimos que una matriz $A \in \mathcal{M}_{n \times n}$ es diagonalizable si y solo si existe una matriz $P \in \mathcal{M}_{n \times n}$ invertible tal que $P^{-1}AP$ es diagonal.

Definición 1.10 (Matriz ortogonalmente diagonalizable). Decimos que una matriz $A \in \mathcal{M}_{n \times n}$ es ortogonalmente diagonalizable si y solo si existe una matriz $T \in \mathcal{M}_{n \times n}$ invertible tal que $T^{-1}AT$ es diagonal y $T^{-1} = T^T$.

Teorema 1.3

Si $A \in \mathcal{M}_{n \times n}$ es simétrica, sus valores propios son reales.

Teorema 1.4

Una matriz simétrica A de tamaño $n \times n$ puede determinar la forma cuadrática q_A de n variables como sigue:

$$q_A(\mathbf{x}) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j = \mathbf{x}^T A \mathbf{x}.$$

Corolario 1.1: Clasificación de formas cuadráticas

La matriz asociada a la forma cuadrática q_A es:

- (I) definida positiva si $q_A(\mathbf{x}) > 0, \ \forall \mathbf{x} \neq 0.$
- (II) definida negativa si $q_A(\mathbf{x}) < 0, \ \forall \mathbf{x} \neq 0.$
- (III) semidefinida positiva si $q_A(\mathbf{x}) \geq 0, \ \forall \mathbf{x} \neq 0.$
- (IV) semidefinida negativa si $q_A(\mathbf{x}) < 0, \ \forall \mathbf{x} \neq 0.$
- (v) indefinida si $q_A(\mathbf{x})$ toma tanto valores positivos como negativos.

Carlos Lezama Optimización \cdot Formulario Página 1

_	$\alpha = 1$		
2.	Calcul	o de	variaciones

3. Teoría de control óptimo

4. Elementos de programación dinámica