CS205 Parallel Design of FaceX-Train

Zhecheng Yao, Yixian Gan, Rebecca Qiu, Lucy Li

Introduction

FaceX-Train

3

2

- **Training Data**: consists of facial images and corresponding annotated facial landmarks.
- Training Parameters: specified in a configuration file

Challenges:

- 1. High data volume
 - The simplest training set consists of ~6000 training images, 260,000 rows
 - Transformation is done at the pixel by pixel level
- 2. Varying offsets
 - Each process needs to work on images of different dimensions
- 3. Storage
 - Facial rectangles
 - Landmark coordinates

Introduction

Working Sequential Baseline Model

Training Time: ~ 5700s on cluster (Intel Xeon E5-2683 v4)
Data Size: 13466 images (250x250 pixel)

```
Training begin.

Training data count: 13466

(^_^) Finish training 1 regressor. Using 553.477s. 10 in total.

(^_^) Finish training 2 regressor. Using 561.787s. 10 in total.

(^_^) Finish training 3 regressor. Using 561.36s. 10 in total.

(^_^) Finish training 4 regressor. Using 564.956s. 10 in total.

(^_^) Finish training 5 regressor. Using 564.419s. 10 in total.

(^_^) Finish training 6 regressor. Using 568.158s. 10 in total.

(^_^) Finish training 7 regressor. Using 588.351s. 10 in total.

(^_^) Finish training 8 regressor. Using 578.051s. 10 in total.

(^_^) Finish training 9 regressor. Using 579.996s. 10 in total.

(^_^) Finish training 10 regressor. Using 575.504s. 10 in total.
```


Training

Testing

Introduction

Training: Two-level Boosted Regression

Training Size: 13466 Images

Outer Regression

- Explicit Shape Regression Framework
- Stage regressors (R¹, ..., R^T) are sequentially learnt
 to reduce the alignment error between the input
 shape S^T and the mean shape of all training images

$$R^{t} = \underset{R}{\operatorname{argmin}} \sum_{i=1}^{N} ||y_{i} - R(I_{i}, S_{i}^{t-1})||_{2}$$
$$y_{i} = M_{S_{i}^{t-1}} \circ (\hat{S}_{i} - S_{i}^{t-1}),$$

Inner Regression

- Ferns Framework
- Sequentially learnt to greedily fit regression targets
- Sample useful features distributed around salient landmarks, where feature that maximizes correlation with the target is selected

$$j_{\text{opt}} = \underset{j}{\operatorname{argmin}} \operatorname{corr}(Y_{\text{prob}}, X_j)$$

Introduction Regression Hierarchy

10 Iterations

Outer Regression

Outer Regression 2

• • •

Outer Regression 10

Inner Regression 1

. . .

Inner Regression 2

Inner Regression 500

Within each outer regression, iterate over 500 inner regressions

Fern update & selection Loop 1

Fern update & selection Loop 2

. . .

Fern update & selection Loop 5 Pixel Intensity Matrix & Landmark Position Matrix Covariance Calculation For Feature 1

Pixel Intensity Matrix & Landmark Position Matrix Covariance Calculation For Feature 2

• • •

Pixel Intensity Matrix & Landmark Position Matrix Covariance Calculation For Feature 400

Within each fern loop, iterate over 400 features

Within each inner regression, iterate over 5 fern loops

Parallelization Overview

Algorithm 1 ESR Training Require: Image I, Shape SEnsure: Regressor RRead in data Augment training data for t in 1 to T do Compute similarity transform Compute Normalized Target $R_t \leftarrow \text{LearnStageRegressor}$ for i in 1 to N do Update landmark shape using Gradient Boost end for end for return Regressor R

Outer Regression

Algorithm 2 LearnStageRegressor

Require: Targets Y

Ensure: Stage Regressor R_t

Generate local coordinates

Extract shape indexed pixels

🔭 Pre-compute pixel-pixel covariance 🧳

 $Y_0 \leftarrow \text{Random initialization}$

for k from 1 to K do

Correlation based feature selection

Sample F thresholds from an uniform distribution

Partition training samples into 2^F bins

Compute the outputs of all bins

Construct a fern Update the targets

Fern Update Loop

& Feature Iterations

end for

 $R_t \leftarrow \text{Construct stage regressor}$

return Stage regressor R_t

Inner Regression

Parallelization Overview

Variables: Training images and labeled shapes $\{I_l, \hat{S}_l\}_{l=1}^L$; ESR model $\{R^t\}_{t=1}^T$; Testing image I; Predicted shape S; TrainParams{times of data augment N_{aug} , number of stages T};

TestParams{number of multiple initializations N_{int} };

InitSet which contains exemplar shapes for initialization

```
ESRTraining(\{I_l, \hat{S}_l\}_{l=1}^L, TrainParams, InitSet)
```

// augment training data

$$\{I_i, \hat{S}_i, S_i^0\}_{i=1}^N \leftarrow Initialization (\{I_l, \hat{S}_l\}_{l=1}^L, N_{\text{aug}}, InitSet)$$
 1

for t from 1 to T

$$Y \leftarrow \{M_{S_i^{t-1}} \circ (\hat{S}_i - S_i^{t-1})\}_{i=1}^N$$
 // compute normalized targets 2

 $R^t \leftarrow LearnStageRegressor(Y, \{I_i, S_i^{t-1}\}_{i=1}^N) \text{ // using Eq. (3)}$

for i from 1 to N

$$S_i^t \leftarrow S_i^{t-1} + M_{S_i^{t-1}}^{-1} \circ R^t(I_i, S_i^{t-1})$$

return $\{R^t\}_{t=1}^T$

$$M_S = \underset{M}{\operatorname{argmin}} ||\bar{S} - M \circ S||_2,$$

Outer regression

To Parallelize

Non-trivial communication

Bottleneck

Variables: regression targets $Y \in \Re^{N \times 2N_{\text{fp}}}$; training images and corresponding estimated shapes $\{I_i, S_i\}_{i=1}^N$; training parameters TrainParams $\{N_{\rm fp}, P, \kappa, F, K\}$; the stage regressor R; testing image and corresponding estimated shape $\{I, S\}$;

Inner regression

No Communication

Communication (gather & distribute)

Parallelization Flow Chart

- **1** Read in a subset of images and compute the mean shape of the subset.
- **2** Compute the mean shape of all subsets, augment the training data for more robust learning, and distribute to all ranks.
- **3** Compute **Normalization Target** (the normalized difference between ground-truth landmark points and the initial shapes of a training data point) and align the input shape to the mean shape using a similarity transformation, minimizing the L-2 distance.
- **4** Generate local coordinates for pixels in the training images.
- **5** Extract the pixel-pair values at the randomly selected locations, and store the pixel values if the pixel position is inside the image bounds.
- **6** Compute the covariance matrix of the pixel intensity difference values and distribute to all ranks.
- **7** Train all Ferns in the inner regressor, which calculates and selects fern features by randomly projecting the input data onto a single dimension and then identifying the two pixels that have the strongest correlation with this projection.
- **8** Compress the inner regressor to reduce model size by calling the Orthogonal Matching Pursuit (OMP) function.
- **9** After the two-level boosted regression is completed, average the results from all ranks and save the trained model to file.

time facial recognition

Execution order

Identify Bottleneck Through Profiling

Each sample counts as 0.01 seconds. cumulative self self total calls ms/call ms/call time seconds seconds name 84.00 2462.49 2462.49 10025000 0.25 0.25 Covariance(double*, double*, int) 19.36 3.30 2559.29 96.81 5000 517.39 FernTrain::Regress(std::vector<std::vector<cv: 2.98 2646.77 87.48 1346600000 0.00 FernTrain::ApplyMini(cv::Mat, std::vector<do 2.21 2711.55 64.78 RegressorTrain::Apply(std::vector<cv::Point <d 58.21 cv::Mat::~Mat() 1.99 2769.76 2812.60 FernTrain::Apply(cv::Mat) const 1.46 42.84 1346600000 0.00 0.00 ShapeAdjustment(std::vector<cv::Point_<doubl 0.95 2840.33 27.73 1349293200 0.00 0.00 0.94 2867.89 27.55 1349293200 0.00 ShapeDifference(std::vector<cv::Point <doubl 0.00

Top time consuming process Covariance

- Use majority of training time on avg (>80%)
- 10 million calls
- Called by each innermost iteration
- No further function calls (self seconds = cumulative seconds)

Covariance Kernel

```
double Covariance(double *x, double * y, const int size)
{
    double a = 0, b = 0, c = 0;
    for (int i = 0; i < size; ++i)
    {
        a += x[i];
        b += y[i];
        c += x[i] * y[i];
    }
    return c / size - (a / size) * (b / size);
}</pre>
```


Serial Baseline Performance:

- Size: 269320
- 4 flops per loop 26930*4 flops per call
- function call 10^7 times
- 10772.8 GFlops
- 2462.49 s

= 4.37 **GFlop/s**

Operational Intensity:

- 4N operations
- 8*2N bytes

= 0.25 Flop/Byte

A closer look at our bottleneck

Roofline Analysis: Covariance Kernel

Intel Xeon E5-2683 16 core CPU

double precision peak π = 537.6Gflop/s

Memory bound up to 7 Flop/s

Peak memory bandwidth β = 76.8GB/s

Peak attainable performance

P = min(β *I, π) = 19.2GFlop/s

A closer look at our bottleneck

Parallelizing Covariance: Three Levels of Optimization

Distributed memory model: MPI

- Mainly collective operations
- MPI_Bcast, MPI_Scatter, MPI_Allgather, MPI_Allreduce, ...

For each process: Thread level parallelization

- OMP macros
- reduction

For each thread: Data level parallelization

- Vectorization
- SSE, AVX

Team 06

- Zhecheng Yao: zhechengyao@g.harvard.edu
- Yixian Gan: ygan@g.harvard.edu
- Rebecca Qiu: zqiu1@fas.harvard.edu
- Lucy Li: cli@fas.harvard.edu