- 一、填空(每空2分,共26分)
- 1. 圆周率 π = 3.1415926...的近似数 π_1 = 3.1416 准确到______位小数;
- 3. 矩阵 $A = \begin{bmatrix} 1 & -2 \\ 3 & 4 \end{bmatrix}$ 的条件数 $cond_1(A) =$ ______;
- 4. 设 $l_0(x), l_1(x), l_2(x), l_3(x)$ 是以 x_{0,x_1,x_2,x_3} 为互异节点的三次 Lagrange 插值基函数,则 $\sum_{j=0}^{3} l_j(x)(x_j-2)^3 = _____;$
- 5. 若 $f(x) = 2x^6 3x^5 + x^3 + 1$,则其六阶差商 $f[3^0, 3^1, 3^2, \dots 3^6] =$ _______;
- 6. 数值积分公式中的 simpson 公式的代数精度为_____;
- 7. 给定 $x^{(0)} = (0,0)^T$,用共轭梯度法求解线性方程组 $\begin{bmatrix} 6 & 3 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$,可得 $x^{(1)} =$ _______;
- 9. 已知线性方程组 Ax = b , 其中 $A = \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 2 & 4 & 3 \\ 0 & 1 & 0 & 3 \end{bmatrix}$, $b = \begin{bmatrix} 3 \\ 2 \\ 10 \\ 4 \end{bmatrix}$, 作矩阵 A 的杜立特尔(Doolittle)

分解 A=LU, 并利用其解方程组 Ax = b, 则 L=_____, U=_____,x=_____

二、(7分)已知函数 y = f(x) 的函数值、导数值如下:

x	0	1
y(x)	1	0
y'(x)	0	1
y''(x)	2	

求满足条件的 Hermite 插值多项式及截断误差表示式

三、(7分)求函数 $y=e^x$ 在区间[1,2]上的最优平方逼近一次式。

四、(8分) 对线性方程组
$$Ax = b$$
;
$$\begin{cases} 2x_2 + x_3 = -1 \\ 3x_1 - 2x_3 = 5 \\ -2x_1 + x_2 + 2x \end{cases}$$

(1) 请写出雅克比(Jacobi)迭代法的迭代格式,并证明迭代格式收敛还是发散;

- (2) 请写出高斯-赛德尔(Gauss-Seidel) 迭代法的迭代格式,并证明迭代格式收敛还是发散。
- 五、(8分)设方程式 $3-3x-2\sin x=0$,
 - (1) 证明方程在[0,1]内存在唯一解;
 - (2) 若采用如下迭代公式 $x_{n+1} = 1 \frac{2}{3} \sin x_n$, 判定迭代是否收敛。

六、(5分)用反幂法求矩阵
$$A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 3 & 1 \\ 0 & 1 & 4 \end{bmatrix}$$
,

在 $\lambda=1$ 附近的特征值及其对应的特征向量,选取初始向量为 $(1,1,1)^T$ 进行迭代,给出迭代一次的结果。

七、(8分)给定差微分方程初值问题
$$\begin{cases} y'(x) = x - y + 1, 0 \le x \le 1 \\ y(0) = 1 \end{cases}$$
,取 h=0.1.

- (1) 用欧拉法求 y(x)在 x=0.2 的近似值;
- (2) 利用标准的四级四阶龙格-库塔法求 y(x)在 x=0.1 的近似值。

八、(7分)设 $f(x) \in C^2[a,b]$,记

$$I[f] = \int_0^2 f(x)dx$$
, $Q[f] = Af(x_0) + f(x_1)$

- (1) 求参数 A,x_0,x_1 ,使求积公式 $I[f] \approx Q[f]$ 具有尽可能高的代数精度;
- (2) 并给出数值积分公式截断误差表示式。

九、 (4分)设有线性方程组 Ax = b,其中 A 是 n 阶对称正定矩阵且 $\left\|\frac{\omega}{2}A\right\| < 1$,证明当 $\omega > 0$ 时,由迭代格式(法):

$$x^{(k+1)} = x^{(k)} - \omega \left(A \frac{x^{(k+1)} + x^{(k)}}{2} - b \right)$$
产生的迭代序列收敛于方程组的唯一解。