CEV-RZ/A1L

ハードウェア・マニュアル

(第1版)

ご使用になる前に

このたびは CEV-RZ/A1L をお買い上げいただきありがとうございます。 CEV-RZ/A1L をご使用になる前にマニュアルをよくお読みいただき、正しくお使いください。

- 本製品を輸出する(日本国外への持出含む)場合、またはソフトウェアを国内非居住者に提供する場合は外国為替及び外国貿易法に従って必要な手続きをお取りください。
- 本製品および付属のマニュアル、回路図、ソフトウェア等の一部、または全部を無断で使用することや、複製することはできません。
- 本製品の内容、および仕様に関しては製品の信頼性、機能、設計の改良により将来予告なしに変更することがあります。
- COMPUTEX は、(株)コンピューテックスの登録商標です。
- その他本書で取り上げる会社名および製品名などは、一般に各メーカーの商標、または登録商標です。

目 次

第 1 章 はじめに	1
1.1 はじめに	1
1.2 特長	
- 14Z	
第 2 章 仕様	2
2.1 仕様概要	2
2.2 外形仕様	3
2.3 回路構成	
2.4 メモリマップ	6
2.4.1 RZ/A1Lメモリマップ	6
第3章 機能	7
3.1 電源	7
3.1.1 電源回路構成	7
3.1.2 電源供給方法	
3.2 リセット	9
3.3 ブートモード	9
3.4 LED	
3.4.1 POWER LED	10
3.4.2 モニタ用LED	10
3.5 シリアルフラッシュメモリ	11
3.6 SDRAM	11
3.7 EEPROM	12
3.8 シリアル・インターフェース	12
3.9 USBホスト・インターフェース	13
3.9.1 USB_HCN	13
3.10 Ethernetインターフェース	14
3.10.1 LAN_CN	14
3.11 無線LANモジュール・インターフェース	15
3.11.1 WLAN_CN	16
3.12 センサー	17
3.12.1 Smart Analog	17
3.12.2 SA_EXTCN	17
3.12.3 温度センサー	18
Smart Analogレジスタ設定	18
3.12.4 湿度センサー	19
Smart Analogレジスタ設定	
3.13 JTAGインターフェース	
3.13.1 JTAG	
3.14 LCDインターフェース	
3.14.1 LCD_CN	21

3.15 拡張用端子 3.15.1 EXT_CN 3.16 外形寸法	22
第4章 関連製品	24
4.1 無線LANモジュール	
4 1 1 CM-, 1100	24

第1章 はじめに

1.1 はじめに

CEV-RZ/A1L ボードは、ルネサス エレクトロニクス製 RZ ファミリの RZ/A1 グループ CPU RZ/A1L を搭載した CPU ボードです。 RZ/A1L は 208 ピン QFP パッケージ "R7S721021VLFP"を搭載しています。

本ボードは、CPU の各種インターフェースを搭載し、外部メモリも 32MB の SDRAM とブート ROM となる 2MB のシリアルフラッシュを搭載しています。U-Boot による評価環境が整っているほか、JTAG デバッガによる本格的デバッグも可能です。ボードサイズはコンパクトにまとめ、低価格でご提供します。CEV-RZ/A1L は評価用ボードとして最適なパフォーマンスを発揮します。

1.2 特長

■ ルネサス エレクトロニクス製 ARM Cortex-A9 コア CPU 「RZ/A1L」を搭載

- ・ 各種ドキュメント(導入マニュアル、ハードウェア・マニュアル、回路図)をダウンロード可能
- ・ 本製品で動作するソフトウェアをダウンロード可能

■ 各種メモリを搭載

- ・ シリアルフラッシュ 2MB (ダイレクトフェッチ可能)
- ・ SDRAM 32MB, 16bit バス

■ 各種インターフェースを搭載

- ・ USB ファンクション(UART 変換) I/F
- USB ホスト I/F
- Ethernet I/F (10/100BASE-T)
- ・ 無線 LAN モジュール "CM-J100" (SDIO 仕様) I/F
- · JTAG I/F
- · LCD 拡張用端子
- · CPU 信号拡張用端子
- · Smart Analog 信号拡張用端子

■ その他機能の充実

- Smart Analog 搭載 (ルネサス エレクトロニクス製アナログ IC)
- ・ 温度センサー (サーミスタ) 搭載

第2章 仕様

2.1 仕様概要

	項目	仕様			
CPU		R7S721021VLFP (RZ/A1L)			
		・内蔵 RAM 3MB			
		・208 ピン QFP (28mm×28mm) 0.5mm ピッチ			
		·コア電源:1.2V, I/O 電源:3.3V			
CPU クロ	ック	水晶発振子			
		・48.0MHz (入力クロック)			
		・32.768KHz (リアルタイムクロック)			
ブートモ-	ード	SPI シリアルフラッシュ			
リセット		パワーオンリセット			
		リセット IC:RNA51957BFP (ルネサス エレクトロニクス)			
	シリアルフラッシュ	MX25L1633EM2I-10G (Macronix) 2MB			
メモリ	SDRAM	MT48LC16M16A2P-6A (MICRON) 32MB、16bit バス			
	EEPROM	M24C01-RMN6TP (STMicro) 1Kbit、I2C I/F			
シリアル	I/F	USB2.0 mini-B コネクタ			
		FT232RL(FTDI)により、USB-シリアル変換を行っています。シリアル CH3。			
USB ホス	K- I/F	USB2.0 TYPE-A コネクタ			
Ethernet	I/F	RJ45 コネクタ (緑色 LED×2 付)			
		PHY チップ uPD60610 (ルネサス エレクトロニクス)			
		MAC アドレスは EEPROM に書き込まれています。ボードに貼付のシールを確認してください。			
無線 LAN	N モジュール I/F	コンピューテックス製無線 LAN モジュール "CM-J100"接続可能			
JTAG I/I	F	20 ピンハーフピッチコネクタ			
温度セン	サー	サーミスタ: 103AT-2 (SEMITEC)			
湿度セン	サー	CHS-GSS (TDK) パターン用意 *センサーは実装されていません。			
Smart Ar	nalog	RAA730300DFP (ルネサス エレクトロニクス)			
Smart Ar	nalog 用拡張端子	26(13×2)ピン *コネクタは実装されていません。			
LCD 拡張	長用端子	40(20×2)ピン *コネクタは実装されていません。			
CPU 拡引	長用端子	15(5×3)ピン *コネクタは実装されていません。			
LED		Power (緑): DC5V, LED1 (赤): P7_8, LED2 (赤): P7_9			
外形寸法		111.0mm×78.0mm (突起部分含まず)			
電源		①USB mini-B コネクタから供給 MAX:500mA			
		②電源拡張用 PCN 端子(2 ピン)に外部電源から供給 B2P-SHF-1AA (日本圧着端子)接続可能			
消費電流	E	MAX: 300mA (CEV-RZ/A1L 単体で使用した場合)			
使用環境	t .	動作温度:0℃~50℃			
		動作湿度:10%~90% 結露なし			

2.2 外形仕様

CEV-RZ/A1L TOP VIEW

CEV-RZ/A1L BOTTOM VIEW

■ 名称一覧

No.	名称	名称 仕様		メーカ	備考
[1]	CPU	RZ/A1L, 208 ピン QFP パッケージ	RZ/A1L, 208 ピン QFP パッケージ R7S721021VLFP		CPU
[2]	SA_EXTCN	Smart Analog 拡張用端子	-	_	未実装
[3]	水晶振動子	32.768KHz	NC-206	九州電通	
[4]	POWER	電源 LED (緑)	TLGE1002	TOSHIBA	
[5]	PCN	電源拡張用端子 (2ピン)	B2P-SHF-1AA	JST	未実装
[6]	USB_FCN	USB ファンクションコネクタ	UB-M5BR-S14-4S	JST	
[7]	WLAN_CN	無線 LAN モジュール接続用コネクタ	AXK630347YG	Panasonic	
[8]	ML_CN	MiddleLink 接続用端子	AXN430430	Panasonic	未実装
[9]	LED1	モニタ用 LED (赤)	TLRE1002A	TOSHIBA	
[10]	LED2	モニタ用 LED (赤)	TLRE1002A	TOSHIBA	
[11]	LAN_CN	LAN コネクタ	SI-60118-F	MAGJACK	
[12]	LCD_CN	LCD 用拡張端子			未実装
[13]	USB_HCN	USB ホストコネクタ	UBA_4R_S14_4S	JST	
[14]	EXT_CN	拡張用端子	-	_	未実装
[15]	温度センサー	サーミスタ	103AT-2	SEMITEC	
[16]	水晶振動子	48MHz	XRCGB48M000F0L00R0	村田製作所	
[17]	シリアルフラッシュメモリ	フラッシュメモリ 2M バイト MX25L1633EM2I-10G		Macronix	
[18]	SF_EXTCN	TCN 拡張用端子 -		_	未実装
[19]	JTAG	デバッガ接続用コネクタ	コネクタ FTSH-110-01-F-DV		
[20]	アナログ IC	Smart Analog	RAA730300DFP	RENESAS	
[21]	SDRAM メモリ	32M バイト, 16bit バス MT48LC16M1		MICRON	

2.3 回路構成

2.4 メモリマップ

2.4.1 RZ/A1L メモリマップ

Start Address	End Address	Size	Memory Map	Memory
0x0000 0000	0x03FF FFFF	-	CS0	空き
0x0400 0000	0x07FF FFFF	-	CS1	空き
0x0800 0000	0x0BFF FFFF	-	CS2	空き
0x0C00 0000	0x0FFF FFFF	32MB	CS3	SDRAM (16bit バス)
0x1000 0000	0x13FF FFFF	-	CS4	空き
0x1400 0000	0x17FF FFFF	-	CS5	空き
0x1800 0000	0x1FFF FFFF	2MB	その他	シリアルフラッシュメモリ
0x2000 0000	0x202F FFFF	3МВ	その他	内蔵 RAM
0x2300 0000	0x3FFF FFFF	_	その他	空き
0x4000 0000	0x43FF FFFF	_	CS0ミラー	-
0x4400 0000	0x47FF FFFF	-	CS1ミラー	-
0x4800 0000	0x4BFF FFFF	-	CS2ミラー	-
0x4C00 0000	0x4FFF FFFF	_	CS3ミラー	_
0x5000 0000	0x53FF FFFF	-	CS4ミラー	-
0x5400 0000	0x57FF FFFF	_	CS5ミラー	_
0x5800 0000	0xFFFF FFFF	_	その他	空き

第3章 機能

3.1 電源

本製品への電源供給は、USB ケーブルを接続し、USB の VBUS 電源から供給します。その場合、外部電源は不要です。 ただし、VBUS 電源の電圧や消費電流がご使用になる条件を満たさない場合は、電源拡張用 PCN 端子に安定した電源を接続してご使用ください。

3.1.1 電源回路構成

*: PCN にコネクタは実装されていません。

3.1.2 電源供給方法

電源の供給方法は2通りあります。

① USB ケーブルから電源を供給する

本製品とパソコンを USB ケーブルで接続します。

Note

VBUS 電源の電圧が使用条件を満たさない場合や消費電流が 500mA を超える場合は外部電源を使用してください。

② PCN 端子に外部電源から供給する

PCN 端子に外部電源より DC5V を接続してください。

*: PCN にコネクタは実装されていません。JST 製"B2P-SHF-1AA"が実装可能です。

3.2 リセット

USB ケーブルを接続したとき、もしくは外部電源から電源が供給された時にリセットが動作します。

電源投入時に 3.3V (VCC) 電源が電圧約 3.125V に達するとリセットが開始されます。 リセットは専用 IC "RNA51957BFP" により約 34ms 間 LOW パルスが出力されます。 Low パルスが解除され High になると CPU はパワーオンリセット処理を開始します。

3.3 ブートモード

CPU はブートモード 1 になっています。

SPI マルチ I/O バス空間に接続されたシリアルフラッシュメモリからブートします。

製品出荷時には、シリアルフラッシュメモリに U-Boot プログラムが書き込まれています。

3.4 LED

POWER LED

3.4.1 POWER LED

POWER LED (緑)は、電源が供給されると点灯します。

DC5V (VCC) の状態	POWER (D1)
ON	点灯
OFF	消灯

3.4.2 モニタ用 LED

モニタ用として CPU の P7_8 に LED1 (赤)が、P7_9 に LED2 (赤)が接続されています。

P7_8, P7_9 の出力	LED1 (D3), LED2 (D2)
High	点灯
Low	消灯

3.5 シリアルフラッシュメモリ

本製品には、2M バイトのシリアルフラッシュメモリを搭載しています。

CPU の SPI インターフェースに接続されており、シリアルフラッシュブート(CPU ブートモード 1)に設定している本製品は、電源投入後、シリアルフラッシュメモリに書き込まれている U-Boot プログラムがブートされます。 U-Boot は出荷時に書き込み済みです。

U-Boot がブートされると本製品のカスタマイズが行われます。

Note

シリアルフラッシュメモリに書き込まれている U-Boot プログラムを消去した場合、ボード単体では復旧させることはできませんので注意してください。書き込みを行う場合はデバッガが必要です。

3.6 SDRAM

本製品には、32M バイトの SDRAM を搭載しています。 CPU に 16bit バスで接続されています。

3.7 EEPROM

本製品には、パラメータ保存用として 1Kbit の EEPROM を搭載しています。

ネットワーク設定の保存や各種パラメータの保存に利用できます。

出荷時は、Ethernet 用の MAC アドレスが書き込まれており、アドレスを表記したシールをボード上に貼付しています。この MAC アドレスは当社が IEEE により取得したアドレスで、そのままご使用になれます。

MAC アドレスを変更される場合には、お客様にて取得されたアドレスをご使用ください。

3.8 シリアル・インターフェース

本製品のシリアル・インターフェースは、USB2.0 mini-Bコネクタ (USB_FCN) から USB-シリアル変換 IC を介して接続されています。 CPU のシリアル機能はチャネル 3 を使用しています。

3.9 USB ホスト・インターフェース

本製品は、USB ホストコネクタ (USB_HCN) を搭載しています。 CPU の USB 機能はチャネル 0 を使用しています。 VBUS 電源の出力は、CPU ポートによって電源スイッチを ON することで供給されます。

3.9.1 USB_HCN

No.	機能	備考
1	VBUS	CPU の P2_9 端子で制御します。
l '	VBUS	P2_9 = High のとき、VBUS に DC5V が供給されます。
2	DM0	USB Ch0 通信ポート
3	DP0	- USB CNU 通信水一ド
4	GND	

3.10 Ethernet インターフェース

本製品は、10/100BASE-TX 対応の Ethernet インターフェースを搭載しています。

機能	仕様
ボード構成	10/100BASE-TX 1 ポート
コネクタ	RJ-45 8ピン、LED×2 (MagJack)
MAC 層コントローラ	CPU 内蔵コントローラ
PHY 層コントローラ	uPD60610 (ルネサス エレクトロニクス)
通信速度(参考値)	送信:約 41Mbps、受信:約 56Mbps ※組み込み Linux で測定した実測値です。使用環境やソフトウェアによって変動します。

Ethernet を使って外部と通信を行う場合、MAC アドレスが必要になります。当社が用意した MAC アドレスは EEPROM に書き込まれていますのでご利用ください。MAC アドレスは本製品に貼付されているシールをご確認ください。

3.10.1 LAN_CN

- ・LINK LED (左)
 - LINK 発生時に点灯します。
- · ACTIV LED (右)

U-Boot が実行され、ボードがカスタマイズされると点灯します。

No.	信号
1	TX+
2	_
3	TX-
4	RX+
5	_
6	RX-
7	_
8	_

3.11 無線 LAN モジュール・インターフェース

本製品は、コンピューテックス製 無線 LAN モジュール "CM-J100"を搭載することができます。 CM-J100 は、WLAN_CN コネクタに接続します。

無線 LAN モジュール "CM-J100" については当社ホームページを参照してください。

http://www.computex.co.jp/products/cm_j/

無線 LAN モジュール	外形寸法	制御仕様	アンテナ	仕様
CM-J100	22.0mm × 32.0mm	SDIO	オンボード	IEEE802.11b/g/n
CIVI-0100			外部	国内技術基準適合認証済

3.11.1 WLAN_CN

No.	信号	入出力 <mark>*</mark> 1	備考	No.	信号	入出力 <mark>*</mark> 1	備考
1	+3.3V (VCC33)	出力	CM-J100 への	2	Reserve	-	
3	+3.3V (VCC33)	Ц	供給電源	4	Reserve	-	
5	+3.3V (VCC33)	出力	CM-J100 の リファレンス電源	6	Reserve	-	
7	SD_D3_1/P7_6 *2	入出力		8	Reserve	-	
9	SD_D2_1/P7_7 *2	入出力		10	Reserve	-	
11	SD_D1_1/P7_2*2	入出力	SDIO 信号	12	Reserve	-	
13	SD_D0_1/P7_3*2	入出力	SDIO 1a 号 CM-J100 制御信号	14	P6_10	出力	CMJ_RST機能 CM-J100 をリセットする信号
15	SD_CMD_1/P7_5 *2	入出力		16	Reserve	-	
17	SD_CLK_1/P7_4	出力		18	N.C.	-	
19	GND			20	N.C.	-	
21	P6_8	入力	WL_IRQ 機能 CM-J100 制御信号	22	N.C.	-	
23	P6_9	出力	WL_EN 機能 CM-J100 制御信号	24	Reserve	-	
25	GND			26	Reserve	-	
27	GND			28	Reserve	-	
29	GND			30	Reserve	-	

^{*1:}入出力はターゲット・システム基準です。

^{*2:}CM-J100を使用する場合、外部プルアップ抵抗が必要です。

3.12 センサー

本製品は、Smart Analogを介して温度センサーを接続しています。

CPUのA/D変換器で読み取ったデータから温度を計測することができます。

また、本製品上に湿度センサーを追加実装することができるほか、Smart Analog の拡張用端子 SA_EXTCN に接続することで、その他のセンサーを使用することができます。

オンボード上以外のセンサーを接続できるセンサー拡張ボード基板を別途用意しています。このボードには、焦電センサー、ガスセンサー、カレントトランスセンサーを実装することができます。

3.12.1 Smart Analog

Smart Analog は、ルネサスエレクトロニクス製のアナログ IC で、回路構成および特性の変更をソフトウェアで設定できる IC です。 詳細につきましてはルネサスエレクトロニクスのホームページを参照してください。

3.12.2 SA EXTCN

Smart Analog 信号の一部を拡張用端子 SA_EXTCN に接続しています。拡張接続する場合にご利用ください。 拡張用端子は、2.54mm ピッチで配置しています。

No	信号名	端子処理	No	信号名	端子処理
1	+3.3V (AVCC33)		2	AGND	
3	MPXIN30	0PD (R103)	4	MPXIN31	0PD (R104)
5	MPXIN40	0PD (R96)	6	MPXIN41	0PD (R97)
7	MPXIN50	0PD (R8)	8	MPXIN51	0PD (R10)
9	MPXIN60	0PD (R9)	10	MPXIN61	0PD (R11)
11	DAC3_OUT		12	DAC4_OUT	
13	AGND		14	AGND	
15	AMP5_OUT		16	AMP5_INN	0PD (R13)
17	LDO_OUT		18	AMP5_INP	0PD (R12)
19	AGND		20	AGND	
21	P1_11		22	GND	
23	P4_0		24	P4_1	
25	+3.3V (VCC33)		26	GND	

- *1:0PU:0Ω抵抗でプルダウン処理を行っています。カッコ内はプルダウン抵抗のリファレンスです。
- *2: Smart Analog の未使用端子は 0Ω 抵抗を介してアナログ GND に接続しています。 拡張して使用される場合は、抵抗を取り外してご使用ください。

3.12.3 温度センサー

本製品は、サーミスタを搭載しています。サーミスタは、温度変化によって自身の抵抗値が変化します。その特性を利用して電圧の変化を CPU の A/D 変換器で計測することで温度を測定します。 VCC には、Smart Analog から出力した 1V 電圧を使用します。この VCC を、サーミスタと抵抗 R105 で分圧した電圧の値によって温度を測定します。 Smart Analog 内で増幅して CPU に出力します。

Smart Analog レジスタ設定

温度センサー回路を使用する場合に必要な Smart Analog のレジスタ設定を以下に示します。

71.7	レジスタ名				デ・	ータ				UEV	
アドレス	レンスタ名	D7	D6	D5	D4	D3	D2	D1	D0	HEX	
00h	コンフィギュレーション・レジスタ 1	SW10	SW11	SW12	SW13	SW20	SW21	SW22	SW23		
Oon	CONFIG1	1	0	1	0	1	0	0	0	A8h	
01h	コンフィギュレーション・レジスタ 2	SW30	SW31	SW32	SW33	-	SW02	SW01	SW00	82h	
Oin	CONFIG2	1	0	0	0	0	0	1	0	ŏ∠n	
03h	MPX 設定レジスタ 1 MPX1	MPX1[1:0]		MPX2[1:0]		MPX3[1:0]		MPX4[1:0]		40h	
USII		0	1	0	0	0	0	0	0	4011	
06h	ゲイン制御レジスタ1	İ	-	-	AMPG1[4:0]					02h	
Oon	GC1	0	0	0	0	0	0	1	0	UZN	
0Dh	DAC 制御レジスタ 1		DAC1[7:0]								
ODN	DAC1C	0	1	0	0	1	1	0	1	4Dh	
11h	パワー制御レジスタ1	DAC40F	DAC3OF	DAC2OF	DAC10F	AMP40F	AMP30F	AMP2OF	AMP10F	141	
11111	PC1	0	0	0	1	0	0	0	1	11h	

3.12.4 湿度センサー

本製品は、湿度センサー"CHS-GSS" (TDK) を実装する基板パターンを用意しています。出荷時はセンサー部品は実装されていませんので、湿度センサーをご使用になる場合は別途ご用意ください。

センサーの VOUT は、DC 1V 出力で 100%RH を表示します。 Smart Analog を介して CPU へ出力します。 センサーの出力を直接 CPU に入力すると、CHS-GSS は出力インピーダンスが 200K Ω と高く、アナログ入力端子の許容信号源インピーダンスが Max 5K Ω の CPU 規格から外れてしまうため、A/D 変換器の精度が保証されず正確な測定ができないことが考えられます。 そのため、出力インピーダンスの低い Smart Analog をバッファアンプとして使用します。

Note

湿度センサー"CHS-GSS"に供給する電源電圧の規格は 4.75V~5.25V です。 しかし、USB の VBUS 電源を使用する場合、この規格を満たさないことがあります。その場合は、電源拡張用 PCN 端子に安定した DC5V 電源を接続してください。

Smart Analog レジスタ設定

湿度センサー回路を使用する場合に必要な Smart Analog のレジスタ設定を以下に示します。

アドレス	レジスタ名		データ							HEX
7,500	V > > 4	D7	D6	D5	D4	D3	D2	D1	D0	HEX
1116	パワー制御レジスタ 1 PC1	DAC40F	DAC30F	DAC2OF	DAC10F	AMP40F	AMP30F	AMP2OF	AMP10F	08h
lin		0	0	0	0	1	0	0	0	Uori

3.13 JTAG インターフェース

本製品は、JTAG コネクタ (DBG_CN) を搭載しています。コネクタは 20 ピンハーフピッチコネクタです。

当社デバッガ PALMiCE3 でご使用の際は、専用の変換プローブ「SWJ-PRB-MIL20-20HP」が必要です。

PALMiCE3 との接続

3.13.1 JTAG

No.	信号名	入出力*1	備考	No.	信号名	入出力* ¹	備考
1	+3.3V (VCC33)	出力		2	TMS	入力	10KPU
3	GND	_		4	TCK	入力	10KPU
5	GND	_		6	TDO	出力	
7	N.C.	_		8	TDI	入力	10KPU
9	GND	_		10	RESET	出力	
11	GND	_		12	N.C.	-	
13	GND	_		14	RTCK	入力	10KPU
15	GND	_		16	TRST	入力	10KPD
17	GND	-		18	N.C.	-	
19	GND	_		20	N.C.	-	

*1:入出力はターゲット・システム基準です。

***2**:10KPU: $10K\Omega$ 抵抗でプルアップ処理を行っています。 $10KPD: 10K\Omega$ 抵抗でプルダウン処理を行っています。

3.14 LCD インターフェース

本製品は、LCD 機能端子をまとめた拡張端子 LCD_CN を用意しています。LCD を拡張される場合にご利用ください。

CPU の LCD 機能端子は LAN 機能端子とマルチプレクスされた兼用端子のため、LCD と LAN を同時に使用することはできません。 出荷時はチップ抵抗によって LAN 関連の部品に接続されています。 LCD 拡張端子を使用する場合は、以下のチップ抵抗を実装変更する必要があります。

信号	LAN 使用時		LCD 使用時	信号	LAN 使用時		LCD 使用時
P8_0	R80	\rightarrow	R17	P8_6	R66	\rightarrow	R29
P8_1	R76	\rightarrow	R20	P8_7	R65	\rightarrow	R28
P8_2	R72	\rightarrow	R22	P8_8	R63	\rightarrow	R31
P8_3	R70	\rightarrow	R23	P8_9	R62	\rightarrow	R30
P8_4	R69	\rightarrow	R24	P8_10	R64	\rightarrow	R27
P8_5	R67	\rightarrow	R25	P8_14	R78	\rightarrow	R19

3.14.1 LCD_CN

No.	信 号 名	入出力* ¹	N	信号名	入出力 <mark>*</mark> 1	
NO.	16 7 1	ХШЛ	О.	1674		
1	LCD0_TCON0/P8_8	出力	2	LCD0_TCON1/P8_9	出力	
3	GND		4	LCD0_TCON2/P8_10	出力	
5	GND		6	N.C.		
7	LCD0_DATA0/P8_0	出力	8	LCD0_DATA1/P8_1	出力	
9	GND		10	LCD0_DATA2/P8_2	出力	
11	LCD0_DATA3/P8_3	出力	12	LCD0_DATA4/P8_4	出力	
13	GND		14	LCD0_DATA5/P8_5	出力	
15	LCD0_DATA6/P8_6	出力	16	LCD0_DATA7/P8_7	出力	
17	GND		18	LCD0_DATA8/P6_0	出力	
19	LCD0_DATA9/P6_1	出力	20	LCD0_DATA10/P6_2	出力	
21	GND		22	N.C.		
23	LCD0_DATA11/P6_3	出力	24	LCD0_DATA12/P6_4	出力	
25	GND		26	LCD0_DATA13/P6_5	出力	
27	LCD0_DATA14/P6_6	出力	28	LCD0_DATA15/P6_7	出力	
29	GND		30	LCD0_TCON3/P8_11		
31	LCD0_TCON4/P8_12		32	LCD0_TCON5/P8_13		
33	LCD0_TCON6/P8_14	出力	34	VCC33		
35	VCC33		36	N.C.		
37	N.C.		38	LCD0_CLK/P7_4		
39	+5V (VCC50)		40	+5V (VCC50)		

^{*1:}入出力はターゲット・システム基準です。

3.15 拡張用端子

本製品は、CPU 信号の一部を拡張用端子 EXT_CN に接続しています。拡張接続する場合にご利用ください。 拡張用端子は、2.54mm ピッチで配置しています。

EXT_CN

3.15.1 EXT_CN

No	信 号 名	備考	No	信 号 名	備考	No	信 号 名	備考
1	P1_2		2	P1_3		3	P1_4	
4	P1_5		5	P1_6		6	P1_7	
7	P1_8		8	P1_9		9	P1_10	
10	P1_11		11	/RES		12	NMI	
13	+3.3V (VCC33)		14	GND		15	GND	

3.16 外形寸法

単位(mm)

第4章 関連製品

4.1 無線 LAN モジュール

4.1.1 CM-J100

CM-J100 外観

SDIO I/F 仕様の無線 LAN モジュールです。

- IEEE802.11b/g/n 準拠
- ・ 国内技術基準適合認証済み
- 寸法:22.0mm×32.0mm

チップアンテナを搭載したオンボードモデルと外部アンテナを接続可能なモデルの2 モデルを用意しています。

CEV-RZ/A1L ハードウェア・マニュアル 変更履歴

日付	版	内容
2013-09	1	初版

CEV-RZ/A1L 技術的なお問い合わせについて

CEV-RZ/A1L に関する技術的なお問い合わせについては、当社ホーム・ページ CEV 製品ページからサポート・コミュニティに投稿してください。

CEV 製品ページ

 $\underline{\text{http://www.computex.co.jp/products/cev/}}$

本 社 〒605-0846 京都市東山区五条橋東四丁目 432-13 對嵐坊ビル TEL.075(551)0528(代表) FAX.075(551)2585

東京営業所 TEL.03(5753)9911(代表) FAX.03(5753)9917 テクニカルセンタ TEL.075(551)0373 FAX.075(551)2585

CEV-RZ/A1L ハードウェア・マニュアル 2013年9月第1版 CM1496(A)1309