12 Air Traffic Control

金力 Li Jin li.jin@sjtu.edu.cn

上海交通大学密西根学院 Shanghai Jiao Tong University UM Joint Institute

Recap

- Background
 - Static & dynamic routing
 - Applications
- Single & parallel queues
 - Arrival process & service processes
 - Single queue
 - Parallel queues
- Queuing networks
 - Model
 - Bernoulli routing
 - Dynamic routing

Outline

- Introduction to air traffic control
- Microscopic optimization
 - 4-dimensional trajectory
 - Practical considerations
 - Optimization
- Macroscopic optimization
 - Scheduling
 - Congestion pricing
- Summary

Introduction to Air Traffic Control

 https://ocw.mit.edu/courses/aeronautics-andastronautics/16-72-air-traffic-control-fall-2006/lecture-notes/lec1.pdf

Air transportation

Airspace is increasingly congested

- Hartsfield-Jackson Atlanta International Airport
 - 879,560 aircraft movements (takeoff or landing) in 2017
 - More than 100 movements per hour
- Percentage of on-time flights (2019)
 - China: 77.60% (133.cn)
 - US: 78.66% (bts.gov)

https://v.qq.com/x/page/j03950axod7.html

Phases of a flight

- Taxi
- Take off
- Climb
- Cruise
- Approach
- Descend
- Land
- Taxi

Air traffic control functions & infrastructure

Functions

- Aircraft separation assurance
- Traffic congestion management
- Flight information
- Search and rescue

Infrastructure

- Airports: runways, terminals, ground transport interface, servicing, maintenance
- Air traffic management: Communications, navigation, surveillance, control
- Weather: observation, forecasting, dissemination

Road traffic vs. air traffic

Road

- Highly distributed
- Primary cost: time
- Less sensitive to weather
- Low automation level

Air

- Highly centralized
- Primary cost: fuel
- Extremely sensitive to weather
- High automation level

Microscopic optimization

- Ground operations
- Terminal-area operations
- En-route operations

Formulation

- Data
 - Flight path/itinerary
- Decision variables
 - 4D trajectories
- Constraints
 - Safety
 - Saturation
 - Operational
- Objective function
 - Minimize cost (fuel + time)

Scenarios

- Ground operations
 - Taxiing
 - Queuing for take-off
- Terminal-area operations
 - Approach, descent, landing
 - Take-off, climb

Ground operations

- Aircraft scheduled for departure & take-off
- Aircraft move from terminal to runway via taxiways
- As important as airborne movement (Tenerife 1977)
- Reference: Simaiakis, I., & Balakrishnan, H. (2009, August). Queuing models of airport departure processes for emissions reduction. In *AIAA Guidance, Navigation, and Control Conference* (p. 5650).

Queuing model for departure process

- Arrival process: controlled ("pushbacks")
- Service process: runway
- Total taxi-out time (i.e. from terminal to runway) is
 t = nominal taxi-out time + taxiway delay + takeoff delay
- Idea of pushback control: having aircraft wait at terminal is much less costly than on taxiway

Terminal-area operations

- Consider a terminal area, i.e. the neighborhood if an airport.
- n aircraft will land at the airport.
- Time of arrival at the terminal area: t_1 , t_2 , ..., t_n
- Jin, L., Cao, Y., & Sun, D. (2013). Investigation of potential fuel savings due to continuous-descent approach. *Journal of aircraft*, *50*(3), 807-816.

3-dimensional trajectory

- Initial conditions
 - $x_i(t_i) \in \mathbb{R}^3$ (longitude, latitude, altitude)
 - $v_i(t_i) \in \mathbb{R}^3$ (longitudinal speed, latitudinal speed, vertical speed)
- Terminal conditions (T_i = landing time)
 - $x_i(T_i) = 0$ (location of airport)
 - $v_i(T_i) \in V_{landing}$ (landing configuration)
- Intermediate trajectory
 - $x_i(t)$, $t = t_i, t_i + 1, ..., T$
 - $v_i(t)$, $t = t_i, t_i + 1, ..., T$

Cost function*

Dynamic equation

$$(\text{Thr} - D)V_{\text{TAS}} = mg_0\dot{h} + mV_{\text{TAS}}\dot{V}_{\text{TAS}}$$

Thr	thrust's projection along the velocity vector
D	aerodynamic drag
m	aircraft mass
h	geodetic altitude
g0	gravitational acceleration
V_{TAS}	true airspeed

Cost function*

Dynamic equation

$$(\text{Thr} - D)V_{\text{TAS}} = mg_0\dot{h} + mV_{\text{TAS}}\dot{V}_{\text{TAS}}$$

Thr	thrust's projection along the velocity vector
D	aerodynamic drag
m	aircraft mass
h	geodetic altitude
g0	gravitational acceleration
V_{TAS}	true airspeed

Cost function*

Air drag

$$D = \frac{C_{D0}\rho S}{2}v^2 + \frac{2C_{D2}m^2g_0^2}{\rho S}\frac{1}{v^2}$$

- C_{D0} and C_{D2} are coefficients associated with the drag coefficient that are dependent of the flap setting, ρ is air density, and S is the wing reference area.
- Thrust specific fuel consumption (TSFC)

$$\eta = C_{f1} \left(1 + \frac{v}{C_{f2}} \right)$$

Fuel flow rate

$$fr = C_f Thr \cdot \eta$$

Continuous descent*

- Direct optimization of the trajectories is extremely involved due to
 - Nonlinear constraints
 - Very complex cost function
- Instead, we can analyze properties of the cost function and propose solutions expected to perform well

One such solution is so-called continuous descent

approach (CDA)

Speed optimization

- We first determine the fueloptimal speed
- Aircraft need airspeed to stay in the air
- Speed too low: to avoid stall, engines must provide very high thrust -> inefficient
- Speed too high: air drag increases. Also, aircraft structure cannot withstand excessively high speed

a) Relationship between fuel consumption and speed

b) Fuel curves given by the Volpe model [14]

Replacing level-off with CDA

Simulation results

One-day traffic at San Francisco International Airport

Macroscopic optimization

- Traffic flow management
- Landing sequencing

En-route optimization

- Cell transmission model (aggregate)
- Similar to road traffic, with technical differences
- On-ramp -> climb, off-ramp -> descent
- Sun, D., & Bayen, A. M. (2008). Multicommodity Eulerian-Lagrangian large-capacity cell transmission model for en route traffic. *Journal of guidance, control, and dynamics*, 31(3), 616-628.

En-route optimization

Model formulation

- A network of links indexed by 1,2,...,N
- Link i contains m_i cells, each cell has $x_i^1(k), x_i^2(k), \dots, x_i^{m_i}(k)$ aircraft at time k
- Forcing input $f_i^{in}(k)$: # of aircraft entering link i at time k
- Descent input $f_i^{desc}(k)$: # of aircraft leaving link i and descending to a lower flight level
- Climb input $f_i^{climb}(k)$: # of aircraft entering link i from a lower flight level

En-route optimization

- Control input $u_i(k)$: # of aircraft being held (delayed)
- Dynamic equation:

$$x_i(k+1) = A_i x_i(k) + B_i^f f_i(k) + B_i^u u_i(k)$$

• Safety constraint: $x_i^q(k)$ cannot exceed some threshold

Landing sequencing

- Single runway, mixed operations (takeoff & landing)
- Assume Bernoulli arrivals
- Half are small, half are large aircraft
- Small aircraft: fast takeoff/landing, less value of time (fuel)
- Prioritize small or large?
- Depends on both operation time and fuel rate.

Landing sequencing

- Having a large aircraft delay 1 min is much more costly than with a small aircraft -> put large in front of small
- However, such sequence (large followed by small) requires a larger headway between aircraft, compared with small followed by large
- A tradeoff is needed
- How to convince aircraft to accept assigned delay?
 - Pay the losers or charge the winners (congestion pricing)
 - Agreement with fleet operators
- Political issues may arise

Summary questions

- What are some similarities and differences between road and air transportation?
- What are aircraft trajectory optimization more challenging than CAV trajectory optimization?

Next time

Smart grids