Introducción a la Informática Teórica Tarea 3 "¡Opa Chomsky Style!"

Hernán Vargas Leighton 201073009-3

16 de mayo 2014

Respuestas

Gramáticas

1. Digamos $G = (\Sigma, N, P, S)$ la gramática de libre contexto con:

$$\Sigma = \{a, b\}$$

$$N = \{S, A, B\}$$

$$P = \begin{cases} S \to A | B \\ A \to aSa | aa | a \\ B \to bSb | bb | b \end{cases}$$

Con S símbolo de partida.

Luego ${\cal G}$ genera los palíndromos.

2. Suponiendo w cualquier expresión que puede ser encerrada por los paréntesis, además digamos que el string vacío ϵ es un string con paréntesis equilibrados, tenemos que $G = (\Sigma, N, P, S)$ con:

$$\Sigma = \left\{ (,), \{,\}, [,], w \right\}$$

$$N = \left\{ S, A, B, C \right\}$$

$$P = \left\{ \begin{array}{c} S \rightarrow A|B|C|SS|w|\epsilon \\ A \rightarrow (S) \\ B \rightarrow [S] \\ C \rightarrow \{S\} \end{array} \right\}$$

Será la gramática que acepta cualquier expresión con paréntesis equilibrados.

NOTA: w puede ser reemplazado por cualquier alfabeto, por ejemplo, si decimos w = x|y|z simplemente reemplazamos w en Σ y en S y generamos strings con paréntesis equilibrados de la forma: ((x)y[z(x)]),...

- 3. Los cuatro niveles de la jerarquía de Chomsky son:
 - Tipo 0:
 - Lenguaje recursivamente enumerable.
 - Gramática sin restricciones.
 - Autómata: Máquina de Turing.
 - Tipo 1:
 - Lenguaje sensible al contexto.
 - Gramática: α → β tal que $|\alpha| \le |\beta|$
 - Autómata: Linealmente acotado.
 - Tipo 2:
 - Lenguaje de contexto libre.
 - Gramática: Tipo 1 y al lado izquierdo solo un no terminal: $A \to B$ con $A \in N, B \in (N \cup \Sigma)^*$
 - Autómata con pila (PDA)

- Tipo 3:
 - Lenguaje Regular.
 - Gramática: Tipo 2 y al lado derecho a lo más un no terminal $A \to \alpha$, $A \to \alpha B$ con $A, B \in N$, $\alpha \in \Sigma^*$
 - Autómata finito.
- 4. Gramática para las operaciones aritméticas:
 - Digamos $G = \{\Sigma, N, P, S\}$ con:

$$\Sigma = \{(,),+,-,\cdot,a,b\} \qquad \qquad N = \{S\} \qquad \qquad P = \left\{S \to SS|(S)|S \cdot S|S + S|S - S|a|b\right\}$$

Con S símbolo de partida. G representará las operaciones aritméticas.

• Se puede, nos basta con cambiar el alfabeto Σ para reemplazar a, b por x, y, z y hacer lo mismo en G: Ahora tenemos $G = \{\Sigma, N, P, S\}$ con:

$$\Sigma = \{(,), +, -, \cdot, x, y, z\}$$

$$N = \{S\}$$

$$P = \left\{S \to SS|(S)|S \cdot S|S + S|S - S|x|y|z\right\}$$

NOTA: Se considera que el cambio en el alfabeto no afecta a los caracteres propios de una operación aritmética $((,),+,-,\cdot)$.

• El árbol de derivación para $(z - (x + y)(x - y)) + zx - (x + y) \cdot z$ será:

• La gramática es ambigua ya que existe más de una forma de hacer la derivación de extrema izquierda:

$$S \to S + S \to (S) + S \to (S - S) + S \dots \tag{1}$$

$$S \to S - S \to S + S - S \to (S) + S - S \to (S - S) + S - S \dots \tag{2}$$

(1) y (2) son diferentes formas de derivación de extrema izquierda que nos llevan al mismo resultado (el árbol). Es más evidente (y menos costoso de escribir) para un string x + y - z, tenemos:

$$S \rightarrow S + S \rightarrow x + S \rightarrow x + S - S \rightarrow x + y - S \rightarrow x + y - z$$

$$S \rightarrow S - S \rightarrow S + S - S \rightarrow x + S - S \rightarrow x + y - S \rightarrow x + y - z$$

• La gramática cumple con no tener ϵ ni producciones unitarias ni producciones que no participen en la derivación del lenguaje $\mathcal{L}(G)$, por lo tanto nos basta con escribirla de la forma $A \to \alpha$, $A \to BC$, entonces:

$$S \to x|y|z$$

$$A \rightarrow ($$

$$B \rightarrow$$
)

$$C \rightarrow +$$

$$D \rightarrow -$$

$$E \rightarrow \cdot$$

$$F \rightarrow AS$$

$$G \rightarrow SC$$

$$H \rightarrow SD$$

$$I \rightarrow SE$$

$$S \rightarrow SS|FB|GS|HS|IS$$

Será la gramática en forma normal de Chomsky.

PDA

1. El PDA que acepta $\mathcal{L} = w \in \Sigma$ tal que el string w tiene el doble de a's que b's es $M = (Q, \Sigma, \Gamma, \delta, q_0, z_0, F)$ con:

$$Q = \{q_0, q_1, q_2\}$$

$$\Sigma = \{a, b\}$$

$$\Gamma = \{Z, A, B\}$$

 δ = Función de transición

$$q_0 = q_0$$

$$F = \{q_2\}$$

Luego:

2. Digamos $\mathcal{L}(M) = \{a^x b^y c^z : |a| + |c| = |b|\}$. Creamos el PDA $M = (Q, \Sigma, \Gamma, \delta, q_0, z_0, F)$ tal que:

$$Q = \{q_0, q_1, q_2, q_3\}$$

$$\Sigma = \{a, b\}$$

$$\Gamma = \{Z, A, B\}$$

$$\delta = \text{Función de transición}$$

$$q_0 = q_0$$

$$z_0 = Z$$

$$F = \{q_4\}$$

Entonces:

Lema de Bombeo

- 1. Creo que cuando queremos demostrar con el lema del bombeo que un lenguaje no es regular el error más frecuente tiene relación con elegir un string no adecuado o hacer mal la división $\alpha\beta\gamma$ y no poder demostrar para toda división que el lema no se cumple.
 - En general estos errores están relacionados con hacer mal la negación del lema y, debido a ello, no poder probar la contradicción.
- 2. Supongamos el lenguaje $\mathcal{L} = \{0^i 1^j : \gcd(i, j) = 1\}$ regular, entonces cumple con el lema del bombeo:
 - Digamos $N \in \mathbb{N}_0$ constante del lema.
 - Digamos $w = 0^i 1^j \in \mathcal{L}$ con 0 < i < j, además cumple con $|w| = i + j \ge N$ y $\gcd(i, j) = 1$.
 - Digamos $\alpha = 0^p \land \beta = 0^{i-p} \land \gamma = 1^j$ será toda partición que cumple con $|\alpha\beta| = p + i p = i \le N \land |\beta| \ge 1$
 - Al bombear vemos que tenemos una cantidad de ceros igual a p + k(i p), por lo que con $k = \frac{j p}{i p}$ tendríamos j ceros y, por lo tanto, la misma cantidad de ceros que unos, así $\gcd(j, j) = j \neq 1$

Autómatas y expresiones regulares

1. El lenguaje $\mathcal{L} = \{a^nb^n : n = 2\}$ es regular ya que n es constante y igual a 2 por lo tanto el lenguaje no es infinito y puede ser escrito como $\mathcal{L} = aabbb$.

- 2. Para los lenguajes regulares \mathscr{A} y \mathscr{B} digamos Σ_A , Σ_B los alfabetos respectivos, además digamos $\Sigma = \Sigma_A \cup \Sigma_B$ la unión de ambos alfabetos, buscamos mostrar que la operación BMBMCHQBM produce lenguajes regulares.
 - **Demostración usando un autómata:** Digamos $\alpha = a_i \forall i \in [1, k], \beta = b_i \forall i \in [1, k]$, tenemos:

$$\Sigma = \{\alpha, \beta\}$$

$$Q=\{a,b\}$$

$$q_0 = a$$

$$F = \{a\}$$

Entonces $M = (\Sigma, Q, \delta, q_o, F)$ será:

• Demostración usando propiedades de clausura: Logramos la intercalación duplicando cada símbolo con todas las alternativas posibles, antes y después de él, según corresponda, así definimos las sustituciones:

$$S_1(a) = a \cdot \Sigma$$

$$S_2(a) = \Sigma \cdot a$$

Con
$$\Sigma = \bigcup_{a \in \Sigma} \{A\}$$

Luego debemos hacer la intercepción y el string resultante será justamente la intercalación pues es el único que se repite. Entonces:

BMBMCHQBM(
$$\mathscr{A},\mathscr{B}$$
) = $S_1(\mathscr{A}) \cap S_2(\mathscr{B})$