WEEK 9 SUBMISSION

QUESTION 1:

Use a weather forecast website, and utilize the psychrometric chart and the formula we went through in the class to determine the absolute humidity, the wet-bulb temperature and the mass of water vapor in the air in Classroom A (Aula A) of Piacenza campus in the moment that you are solving this exercise (provide the inputs that you utilized)

ANSWER 1:

			oggi in F lì, 04 Dice		9		
	05:00	07:00	10:00	14:00	18:00	19:00	21:00
	*	*	*	*	*	*	*
	LightCloud	PartlyCloud	Sun	Sun	LightCloud	PartlyCloud	PartlyCloud
Temperatura effettiva	2°C	0°C	4°C	7°C	2°C	1°C	0°C
Temperatura percepita	1°C	-3°C	3°C	5°C	0°C	-1°C	-2°C
Precipitazioni	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm
Umidità	83 %	93 %	79 %	66 %	88 %	89 %	93 %
Pressione atmosferica	1027 hPa	1027 hPa	1027 hPa	1025 hPa	1025 hPa	1025 hPa	1025 hPa
Intensità del vento	5 km/h	8 km/h	5 km/h	9 km/h	6 km/h	6 km/h	6 km/h
Direzione del vento	←	\leftarrow	^	\leftarrow	Ţ	✓	✓
	E	E	NE	E	S	SW	SW
Probabilità di nebbia	0 %	0 %	0 %	0 %	0 %	0 %	0 %
Punto di rugiada	0°C	-1°C	1°C	1°C	0°C	0°C	-1°C
Nuvole	13 %	59 %	12 %	9 %	17 %	70 %	91 %
Nuvole basse	6 %	8 %	12 %	9 %	2 %	1 %	0 %
Nuvole medie	0 %	0 %	0 %	0 %	0 %	0 %	0 %
Nuvole alte	8 %	56 %	0 %	0 %	16 %	70 %	91 %

According to the table

 $T = 4^{\circ}\mathbb{C}$

 $\omega = 79\%$

P = 102.7kPa

Water saturation pressure at 4 degree C:

0.813 kPa

 $ClassroomA: 12m \times 6m \times 5m$

From the chart,

$$T_{wb} = 3^{\circ}\mathrm{C}$$

$$\omega = 0.004$$

$$\omega = \frac{0.622P_{v}}{P_{a}} = \frac{0.622P_{v}}{P - P_{v}} = 0.004$$

introduce

$$P = 102.7kP_a$$

$$P_{v} = 0.656kP_{a}$$

For ideal gas

$$\begin{split} m &= \frac{PV}{R_{sp} \cdot T} \\ R_{sp} &= 0.4615 \\ m_v &= \frac{PV}{R_{sp} \cdot T} = \frac{0.656 \times (12 \times 6 \times 5)}{0.4615 \times (273 + 4)} = 1.847kg \\ m_g &= \frac{m_v}{\phi} = \frac{1.847}{79\%} = 2.338kg \\ h_a &= 1.005 \times 3 = 3.015kJ / kg_{dryair} \\ h_v &= 2501.3 + 1.82 \times 3 = 2506.76kJ / kg_{water} \\ h &= h_a + \omega h_v = 3.015 + 0.004 \times 2506.76 = 13.04kJ / kg_{dryAir} \end{split}$$

QUESTION 2:

Utilize the same methodology we went through in the class and determine the sensible and latent load corresponding to internal gains, the ventilation, and the infiltration in a house with a good construction quality and with the same geometry as that of the example which is located in Brindisi, Italy

ANSWER 2:

Good quality construction $A_{ul} = 1.4cm^2/m^2$

#: 1632	WMO#						l, Italy	RINDIS	E						
N: 999	WBAN	86-10	Period:	N)	.00 (EUV	ime Zone:		101.2	StdP:	10	Elev	17.95E	Long:	40.65N	Lat:
											onditions	ion Design C	umidificati	ating and H	Annual He
_	/PCWD	MCWS	В	h WS/MCD	dest mont	C		IR.	/MCDB and I	nidification DF	Hun				
	to 99.6% DB			0.4% 1%		99%			99.6%		g DB	Heatin	Coldest Month		
	PCWD	MCWS	MCDB	WS	MCDB	WS	MCDB	HR	DP	MCDB	HR	DP	99%	99.6%	MOTIUI
	(0)	(n)	(m)	(1)	(k)	(1)	(1)	(h)	(g)	(f)	(0)	(d)	(c)	(b)	(0)
	250	3.4	10.6	12.4	10.2	13.4	7.4	3.0	-3.0	7.2	2.5	-5.1	4.1	2.9	2
										n Conditions	alpy Desig	on, and Enth	midification	oling, Dehu	Annual Co
/S/PCWD				WB/MCDB						DB/MCWB				Hottest Month	Hottest
4% DB				1%		0.4%	2%			1%		0.4%		Month	
	MCWS	MCDB	WB	MCDB	WB	MCDB	WB	MCWB	DB	MCWB	DB	MCWB	DB	DB Range	
(P	(0)	(n)	(m)	(1)	(k)	(1)	(1)	(h)	(9)	(1)	(0)	(d)	(c)	(b)	(0)
18	4.2	28.3	25.6	29.0	26.3	29.7	27.2	24.3	29.9	24.3	31.1	23.6	32.8	7.1	8
Hou			y/MCDB				- 1		į.	CDB and HR		Dehumidific			
8 to 4	%			1		0.4		2%		1	1%			0.4%	
_	MCDB	Enth	MCDB	Enth	MCDB	Enth	MCDB	HR	DP	MCDB	HR	DP	MCDB	HR	DP
123	28.3	78.5	(m) 29.1	82.2	30.1	86.0	27.9	(h) 19.7	(g) 24.7	28.5	20.7	25.4	29.2	21.8	(a) 26.3
												ons	n Conditio	nnual Desig	Extreme A
		xtreme DB	Values of E	turn Period	-Year Ret				Annual DB	Extreme		Extreme			5.4
50 years		years			n=10		n=5		Standard d	ean		Max	(30,75)	eme Annual	(100)
Ma	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	WB	5%	2.5%	1%
(P	(0)	(n)	(m)	(1)	(k)	(j)	(1)	(h)	(9)	(1)	(0)	(d)	(c)	(b)	(0)
44.	-3.2	42.8	-2.2	41.1	-1.4	39.4	-0.6	3.0	1.4	37.3	0.4	31.4	8.7	9.9	11.3

$$IDF_{heating} = 0.065 \frac{L}{s \cdot cm^{2}}$$

$$IDF_{heating} = 0.032 \frac{L}{s \cdot cm^{2}}$$

$$V_{\text{inf }iltration_{heating}}^{\text{R}} = A_l \times IDF = 481.6 \times 0.065 = 31.304 \frac{L}{s}$$

$$V_{\text{inf }iltration_{cooling}}^{\&} = A_l \times IDF = 481.6 \times 0.032 = 15.411 \frac{L}{s}$$

$$V_{ventilation}^{\&} = 0.05A_{cf} + 3.5(N_{br} + 1) = 0.05 \times 200 + 3.5 \times 2 = 17\frac{l}{s}$$

$$V_{\text{inf-ventilation}_{heating}}^{\&} = 31.304 + 17 = 48.30 \frac{L}{s}$$

$$V_{\text{inf-ventilation}_{cooling}}^{\&} = 15.411 + 17 = 32.41 \frac{L}{s}$$

$$\cancel{Q}_{\inf-ventilation_{heating}} = C_{sensible} \cancel{V} \Delta T_{heating} = 1.23 \times 48.30 \times 15.9 = 944.60W$$

$$\mathcal{O}_{\inf-ventilation_{heating_{latent}}}^{k} = C_{latent} \mathcal{V} \Delta \omega_{heating} = 3010 \times 48.30 \times 0.0065 = 944.99W$$

$$\mathcal{Q}_{\inf-ventilation_{cooling}} = C_{sensible} V \Delta T_{cooling} = 1.23 \times 32.41 \times 7.1 = 283.04W$$

$$\mathcal{O}_{\inf-ventilation_{cooling_{latent}}}^{\mathbf{k}} = C_{latent} \mathcal{V} \Delta \omega_{cooling} = 3010 \times 32.41 \times 0.0039 = 380.46W$$