The paragraphs presented above incorporate changes as indicated by the marked-up versions below.

Page 18, line 6:

In preferred embodiments, R5 is a hydrogen, or a halogentated halogenated lower alkyl.

Page 18, line 9:

In preferred embodiments,  $R_{61}$  and  $R_{62}$ , independently, represent lower alkyls, such as methyl, ethyl, propyl, isopropyl, tert-butyl or the like;

The present invention provides methods and compositions for modification and regulation of <u>GLP 1 metabolism</u>, glucose and lipid metabolism, generally to reduce insulin resistance, hyperglycemia, hyperinsulinemia, obesity, hyperlipidemia, hyperlipoprotein-emia (such as chylomicrons, VLDL and LDL), and to regulate body fat and more generally lipid stores, and, more generally, for the improvement of metabolism disorders, especially those associated with diabetes, obesity and/or atherosclerosis. <u>The compositions described herein are high-affinity boronyl and non-boronyl peptidomimetic inhibitors of DPIV</u>.

## In the claims:

For the convenience of the Examiner, all claims being examined, whether or not amended, are presented below. Please cancel claim 15 without prejudice.

1. (Amended) A method for modifying, in an animal, metabolism of glucagon-like peptide 1 (GLP-1), comprising administering to the animal a composition including one or more inhibitors of a dipeptidylpeptidase which inactivates GLP-1, wherein the inhibitor is represented by Formula I:



wherein

A represents a 4-8 membered heterocycle including the N and a Cα carbon;

Z represents C or N;

W represents -CH=NR<sub>5</sub>, a functional group which reacts with an active site residue of the targeted protease, or

$$\begin{cases} 0 & 0 & 0 \\ \frac{1}{5} - \frac{1}{5} - X_1 & \frac{1}{5} - \frac{1$$

R<sub>1</sub> represents a C-terminally linked amino acid residue or amino acid analog, or a C- terminally linked peptide or peptide analog, or an amino-protecting group, or

R<sub>2</sub> is absent or represents one or more substitutions to the ring A, each of which can independently be a halogen, a lower alkyl, a lower alkenyl, a lower alkynyl, a carbonyl, a thiocarbonyl, an amino, an acylamino, an amido, a cyano, a nitro, an azido, a sulfate, a sulfonate, a sulfonamido, -(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>, -(CH<sub>2</sub>)<sub>m</sub>-OH, -(CH<sub>2</sub>)<sub>m</sub>-O-lower alkyl, -(CH<sub>2</sub>)<sub>m</sub>-O-lower alkenyl, -(CH<sub>2</sub>)<sub>n</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>, -(CH<sub>2</sub>)<sub>m</sub>-SH, -(CH<sub>2</sub>)<sub>m</sub>-S-lower alkyl, -(CH<sub>2</sub>)<sub>m</sub>-S-lower alkenyl, or -(CH<sub>2</sub>)<sub>n</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>;

if Z is N, R<sub>3</sub> represents hydrogen, if Z is C, R<sub>3</sub> represents hydrogen or a halogen, a lower alkyl, a lower alkynyl, a carbonyl, a thiocarbonyl, an amino, an acylamino, an amido, a cyano, a nitro, an azido, a sulfate, a sulfonate, a sulfonamido, -(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>, - (CH<sub>2</sub>)<sub>m</sub>-OH, -(CH<sub>2</sub>)<sub>m</sub>-O-lower alkyl, -(CH<sub>2</sub>)<sub>m</sub>-O-lower alkenyl, -(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-O-(CH

 $R_7$ , -(CH<sub>2</sub>)<sub>m</sub>-SH, -(CH<sub>2</sub>)<sub>m</sub>-S-lower alkyl, -(CH<sub>2</sub>)<sub>m</sub>-S-lower alkenyl, or -(CH<sub>2</sub>)<sub>n</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>;

R<sub>5</sub> represents a hydrogen, an alkyl, an alkenyl, an alkynyl,  $-C(X_1)(X_2)X_3$ ,  $-(CH_2)_m-R_7$ ,  $-(CH_2)_n-OH$ ,  $-(CH_2)_n-O-alkyl$ ,  $-(CH_2)_n-O-alkenyl$ ,  $-(CH_2)_n-O-alkynyl$ ,  $-(CH_2)_m-R_7$ ,  $-(CH_2)_n-SH$ ,  $-(CH_2)_n-S-alkyl$ ,  $-(CH_2)_n-S-alkenyl$ ,  $-(CH_2)_n-S-alkynyl$ ,  $-(CH_2)_n-S-(CH_2)_m-R_7$ ,  $-C(O)C(O)NH_2$ , or  $-C(O)C(O)OR^*_7$ ;

R<sub>6</sub> represents hydrogen, a halogen, an alkyl, an alkenyl, an alkynyl, an aryl, -(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>, - (CH<sub>2</sub>)<sub>m</sub>-O+, -(CH<sub>2</sub>)<sub>m</sub>-O-alkyl, -(CH<sub>2</sub>)<sub>m</sub>-O-alkenyl, -(CH<sub>2</sub>)<sub>m</sub>-O-alkynyl, -(CH<sub>2</sub>)<sub>m</sub>-O-alkynyl, -(CH<sub>2</sub>)<sub>m</sub>-S-alkyl, -(CH<sub>2</sub>)<sub>m</sub>-S-alkynyl, -(CH<sub>2</sub>)<sub>m</sub>-S-alkynyl, -(CH<sub>2</sub>)<sub>m</sub>-S-alkynyl, -(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>,

R<sub>7</sub> represents, for each occurrence, a substituted or unsubstituted aryl, aralkyl, cycloalkyl, cycloalkenyl, or heterocycle;

R'7 represents, for each occurrence, hydrogen, or a substituted or unsubstituted alkyl, alkenyl, aryl, aralkyl, cycloalkyl, cycloalkenyl or heterocyclyl;

R<sub>8</sub> and R<sub>9</sub> each independently represent hydrogen, alkyl, alkenyl, -(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>, -C(=O)-alkyl, -C(=O)-alkynyl, or -C(=O)-(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>,

or R<sub>8</sub> and R<sub>9</sub> taken together with the N atom to which they are attached complete a heterocyclic ring having from 4 to 8 atoms in the ring structure;

R<sub>50</sub> represents O or S;

R<sub>51</sub> represents N<sub>3</sub>, SH, NH<sub>2</sub>, NO<sub>2</sub> or OR'<sub>7</sub>;

R<sub>52</sub> represents hydrogen, a lower alkyl, an amine, OR'<sub>7</sub>, or a pharmaceutically acceptable salt, or R<sub>51</sub> and R<sub>52</sub> taken together with the phosphorous atom to which they are attached complete a heterocyclic ring having from 5 to 8 atoms in the ring structure;

X<sub>1</sub> represents a halogen;

X<sub>2</sub> and X<sub>3</sub> each represent a hydrogen or a halogen; m is zero or an integer in the range of 1 to 8; and n is an integer in the range of 1 to 8.

- 2. (Amended) A method for modifying glucose metabolism of an animal, comprising administering to the animal a composition including one or more protease inhibitors which inhibit DPIV-mediated proteolysis, wherein the inhibitor is represented by Formula I.
- 3. (Amended) A method for modifying glucose metabolism of an animal, comprising administering to the animal a composition including one or more protease inhibitors which inhibit the proteolysis of glucagon-like peptide 1 (GLP-1) and accordingly increase the plasma half-life of GLP-1, wherein the inhibitor is represented by Formula I.
- 4. (Amended) A method for treating Type II diabetes, comprising administering to an animal a composition including one or more inhibitors of dipeptidylpeptidase IV (DPIV) represented by Formula I.
- 5. (Amended) The method of claim 1, wherein the dipeptidylpeptidase is DPIV.
- 6. (Amended) The method of claim 3, wherein the protease inhibitor is an inhibitor of DPIV.
- 7. (Amended) The method of claim 2 or 3, wherein administering the inhibitor reduces one or more of insulin resistance, glucose intolerance, hyperglycemia, hyperinsulinemia, obesity, hyperlipidemia, or hyperlipoproteinemia.
- 8. (Amended) The method of claim 1, 2, 3 or 4, wherein the inhibitor has an EC<sub>50</sub> for modification of glucose metabolism which is at least one order of magnitude less than its EC<sub>50</sub> for immunosuppression.
- 9. (Amended) The method of claim 1, 2, 3 or 4, wherein the inhibitor has an EC<sub>50</sub> for inhibition of glucose intolerance in the nanomolar or less range

- 10. (Amended) The method of claim 8, wherein the inhibitor has an EC<sub>50</sub> for immunosuppression in the  $\mu M$  or greater range.
- 11. (Amended) The method of claim 4, 5 or 6, wherein the inhibitor has a Ki for DPIV inhibition of 1.0 nM or less.
- 12. (Amended) The method of claim 1, 2, 3 or 4, wherein the inhibitor is peptidomimetic of a peptide selected from Pro-Pro, Ala-Pro, and (D)-Ala-(L)-Ala.
- 13. (Amended) The method of claim 1, 2, 3 or 4, wherein the inhibitor has a molecular weight less than 7500 amu.
- 14. (Amended) The method of claim 1, 2, 3 or 4, wherein the inhibitor is administered orally.

Q5

16. (Amended) The method of claim 1, 2, 3, or 4, wherein W represents -CH=NR<sub>5</sub>,

R<sub>5</sub> represents H, an alkyl, an alkenyl, an alkynyl,  $-C(X_1)(X_2)X_3$ ,  $-(CH_2)m-R_7$ ,  $-(CH_2)n-OH$ ,  $-(CH_2)n-O-alkyl$ ,  $-(CH_2)n-O-alkynyl$ ,  $-(CH_2)n-O-(CH_2)m-R_7$ ,  $-(CH_2)n-SH$ ,  $-(CH_2)n-S-alkyl$ ,  $-(CH_2)n-S-alkynyl$ ,  $-(CH_2)n-S-a$ 

- R<sub>7</sub> represents, for each occurrence, a substituted or unsubstituted aryl, aralkyl, cycloalkyl, cycloalkenyl or heterocyclyl;
- R'7 represents, for each occurrence, hydrogen, or a substituted or unsubstituted alkyl, alkenyl, aryl, aralkyl, cycloalkyl, cycloalkenyl, or heterocycle; Y<sub>1</sub> and Y<sub>2</sub> can independently or together be OH, or a group capable of being hydrolyzed to a hydroxyl group, including

cyclic derivatives where  $Y_1$  and  $Y_2$  are connected via a ring having from 5 to 8 atoms in the ring structure;

R<sub>50</sub> represents O or S;

R<sub>51</sub> represents N<sub>3</sub>, SH, NH<sub>2</sub>, NO<sub>2</sub> or OR'<sub>7</sub>;

R<sub>52</sub> represents hydrogen, a lower alkyl, an amine, OR'<sub>7</sub>, or a pharmaceutically acceptable salt, or R<sub>51</sub> and R<sub>52</sub> taken together with the phosphorous atom to which they are attached complete a heterocyclic ring having from 5 to 8 atoms in the ring structure;

X<sub>1</sub> represents a halogen;

Mary 1

 $X_2$  and  $X_3$  each represent a hydrogen or a halogen; m is zero or an integer in the range of 1 to 8; and n is an integer in the range of 1 to 8.

17. (Amended) The method of claim 16, wherein the ring A is represented by the formula:

wherein n is an integer of 1 or 2.

18. The method of claim 16, wherein W represents 
$$\begin{array}{c} Y_1 \\ Y_2 \end{array}$$
 or  $\begin{array}{c} Q \\ Y_2 \end{array}$ 

19. The method of claim 16, wherein R<sub>1</sub> represents

 $R_{36}$  is a small hydrophobic group and  $R_{38}$  is hydrogen, or,  $R_{36}$  and  $R_{38}$  together form a 4-7 membered heterocycle including the N and the  $C\alpha$  carbon, as defined for A above; and

R<sub>40</sub> represents a C-terminally linked amino acid residue or amino acid analog, or a C-terminally linked peptide or peptide analog, or an amino-protecting group.

- 20. (Amended) The method of claim 16, wherein R<sub>2</sub> is absent, or represents a small hydrophobic group.
- 21. (Amended) The method of claim 16, wherein R<sub>3</sub> is a hydrogen, or a small hydrophobic group.
- 22. (Amended) The method of claim 16, wherein R<sub>5</sub> is a hydrogen, or a halogenated lower alkyl.
- 23. (Amended) The method of claim 16, wherein  $X_1$  is a fluorine, and  $X_2$  and  $X_3$ , if halogens, are fluorine.
- 24. (Amended) The method of claim 16, wherein the inhibitor is represented by the general formula:

$$R1$$
 $N$ 
 $OR_{12}$ 
 $OR_{11}$ 

wherein

R<sub>1</sub> represents a C-terminally linked amino acid residue or amino acid analog, or a C-terminally linked peptide or peptide analog, or an amino protecting group, or

$$R_6$$
  $R_6$   $R_6$ 

 $R_6$  represents hydrogen, a halogen, an alkyl, an alkenyl, an alkynyl, an aryl, - $(CH_2)_m$ - $R_7$ , -  $(CH_2)_m$ -O-alkyl, - $(CH_2)_m$ -O-alkyl, - $(CH_2)_m$ -O-alkynyl, - $(CH_2)_m$ -O-alkynyl, - $(CH_2)_m$ -S-alkyl, - $(CH_2)_m$ -S-alkyl, - $(CH_2)_m$ -S-alkynyl, - $(CH_2)_m$ -S-alkynyl, - $(CH_2)_m$ -S- $(CH_2)_m$ -R<sub>7</sub>,

R7 represents an aryl, a cycloalkyl, a cycloalkenyl, or a heterocycle;

R<sub>8</sub> and R<sub>9</sub> each independently represent hydrogen, alkyl, alkenyl, -(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>, -C(=O)-alkyl, -C(=O)-alkynyl, -C(=O)-(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>,

or R<sub>8</sub> and R<sub>9</sub> taken together with the N atom to which they are attached complete a heterocyclic ring having from 4 to 8 atoms in the ring structure;

R<sub>11</sub> and R<sub>12</sub> each independently represent hydrogen, a alkyl, or a pharmaceutically acceptable salt, or R<sub>11</sub> and R<sub>12</sub> taken together with the O-B-O atoms to which they are attached complete a heterocyclic ring having from 5 to 8 atoms in the ring structure; m is zero or an integer in the range of 1 to 8; and n is an integer in the range of 1 to 8.

25. (Amended) The method of claim 16, wherein the inhibitor is represented by the general formula

wherein

R<sub>1</sub> represents a C-terminally linked amino acid residue or amino acid analog, or a C-terminally linked peptide or peptide analog, or an amino protecting group, or

$$R_6$$
  $S_5$ ,  $R_6$   $S_5$ , or  $R_6$   $S_5$ ,  $S_7$ ;

 $R_6$  represents hydrogen, a halogen, an alkyl, an alkenyl, an alkynyl, an aryl,  $-(CH_2)_m$ - $R_7$ ,  $-(CH_2)_m$ -O-alkyl,  $-(CH_2)_m$ -O-alkenyl,  $-(CH_2)_m$ -O-alkynyl,  $-(CH_2)_m$ -O-alkynyl,  $-(CH_2)_m$ - $R_7$ ,  $-(CH_2)_m$ - $-(CH_2)_m$ --(C

R7 represents an aryl, a cycloalkyl, a cycloalkenyl, or a heterocycle;

R<sub>8</sub> and R<sub>9</sub> each independently represent hydrogen, alkyl, alkenyl, -(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>, -C(=O)-alkyl, -C(=O)-alkynyl, -C(=O)-(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>,

or R<sub>8</sub> and R<sub>9</sub> taken together with the N atom to which they are attached complete a heterocyclic ring having from 4 to 8 atoms in the ring structure;
m is zero or an integer in the range of 1 to 8; and n is an integer in the range of 1 to 8.

26. (Amended) The method of claim 16, wherein the inhibitor is represented by the general formula:

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ X_3 & & \\ \end{array} \begin{array}{c} & & \\ X_1 & & \\ & & \\ X_2 & & \\ \end{array}$$

wherein

R<sub>1</sub> represents a C-terminally linked amino acid residue or amino acid analog, or a C-terminally linked peptide or peptide analog, or an amino protecting group, or

$$R_6$$
  $S_5$ , or  $R_6$   $S_5$ ,  $S_6$ ,  $S_6$ ,  $S_6$ 

R<sub>6</sub> represents hydrogen, a halogen, an alkyl, an alkenyl, an alkynyl, an aryl, -(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>, - (CH<sub>2</sub>)<sub>m</sub>-O+, -(CH<sub>2</sub>)<sub>m</sub>-O-alkyl, -(CH<sub>2</sub>)<sub>m</sub>-O-alkynyl, -(CH<sub>2</sub>)<sub>m</sub>-O-alkynyl, -(CH<sub>2</sub>)<sub>m</sub>-O-alkynyl, -(CH<sub>2</sub>)<sub>m</sub>-S-alkyl, -(CH<sub>2</sub>)<sub>m</sub>-S-alkynyl, -(CH<sub>2</sub>)<sub>m</sub>-S-alkynyl, -(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>, -(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>,

R7 represents an aryl, a cycloalkyl, a cycloalkenyl, or a heterocycle;

R<sub>8</sub> and R<sub>9</sub> each independently represent hydrogen, alkyl, alkenyl, -(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>, -C(=O)-alkyl, -C(=O)-alkynyl, -C(=O)-(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>,

or R<sub>8</sub> and R<sub>9</sub> taken together with the N atom to which they are attached complete a heterocyclic ring having from 4 to 8 atoms in the ring structure;

 $X_1, X_2$  and  $X_3$  each represent a hydrogen or a halogen;

m is zero or an integer in the range of 1 to 8; and n is an integer in the range of 1 to 8.

27. (Amended) The method of claim 16, wherein the inhibitor is represented by the general formula:

## wherein

A represent a 4-8 membered heterocycle including an N and a  $C\alpha$  carbon;

W represents, -CH=NR5,

R<sub>2</sub> is absent or represents one or more substitutions to the ring A, each of which can independently be a halogen, a lower alkyl, a lower alkenyl, a lower alkynyl, a carbonyl, a thiocarbonyl, an amino, an acylamino, an amido, a cyano, a nitro, an azido, a sulfate, a sulfonate, a sulfonamido, -(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>, -(CH<sub>2</sub>)<sub>m</sub>-OH, -(CH<sub>2</sub>)<sub>m</sub>-O-lower alkyl, -(CH<sub>2</sub>)<sub>m</sub>-O-lower alkenyl, -(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>, -(CH<sub>2</sub>)<sub>m</sub>-SH, -(CH<sub>2</sub>)<sub>m</sub>-S-lower alkyl, -(CH<sub>2</sub>)<sub>m</sub>-S-lower alkenyl, or -(CH<sub>2</sub>)<sub>n</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>;

R<sub>3</sub> represents a hydrogen or a halogen, a lower alkyl, a lower alkenyl, a lower alkynyl, a carbonyl, a thiocarbonyl, an amino, an acylamino, an amido, a cyano, a nitro, an azido, a sulfate, a sulfonate, a sulfonamido, -(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>, -(CH<sub>2</sub>)<sub>m</sub>-OH, -(CH<sub>2</sub>)<sub>m</sub>-O-lower alkyl, -(CH<sub>2</sub>)<sub>m</sub>-O-lower alkenyl, -(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>, -(CH<sub>2</sub>)<sub>m</sub>-SH, -(CH<sub>2</sub>)<sub>m</sub>-S-lower alkyl, -(CH<sub>2</sub>)<sub>m</sub>-S-lower alkenyl, or -(CH<sub>2</sub>)<sub>n</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>;

R<sub>5</sub> represents a hydrogen, an alkyl, an alkenyl, an alkynyl,  $-C(X_1)(X_2)X_3$ ,  $-(CH_2)_m-R_7$ ,  $-(CH_2)_n-O-alkyl$ ,  $-(CH_2)_n-O-alkynyl$ ,  $-(CH_2)_n-O-alkynyl$ ,  $-(CH_2)_n-O-alkynyl$ ,  $-(CH_2)_n-S-alkynyl$ ,  $-(CH_2)_n-S-alky$ 

R<sub>7</sub> represents, for each occurrence, a substituted or unsubstituted aryl, aralkyl, cycloalkyl, cycloalkenyl or heterocyclyl;

R'7 represents, for each occurrence, hydrogen, or a substituted or unsubstituted alkyl, alkenyl, aryl, aralkyl, cycloalkyl, cycloalkenyl or heterocyclyl;

R<sub>32</sub> is a small hydrophobic group;

R<sub>30</sub> represents a C-terminally linked amino acid residue or amino acid analog, or a C-terminally linked peptide or peptide analog, or an amino-protecting group- or

$$R_6$$
  $R_6$   $R_6$ 

R<sub>50</sub> represents O or S;

 $R_{51}$  represents N<sub>3</sub>, SH, NH<sub>2</sub>, NO<sub>2</sub> or OR'<sub>7</sub>;

 $R_{52}$  represents hydrogen, a lower alkyl, an amine, OR'7, or a pharmaceutically acceptable salt, or  $R_{51}$  and  $R_{52}$  taken together with the phosphorous atom to which they are attached complete a heterocyclic ring having from 5 to 8 atoms in the ring structure;

X<sub>1</sub> represents a halogen;

Lock Contract

X<sub>2</sub> and X<sub>3</sub> each represent a hydrogen or a halogen;

m is zero or an integer in the range of 1 to 8; and

n is an integer in the range of 1 to 8.

28. (Amended) A method for modifying, in an animal, metabolism of glucagon-like peptide 1 (GLP-1), comprising administering to the animal a composition including one or more inhibitors of a dipeptidylpeptidase which inactivates GLP-1, wherein the inhibitor is represented by Formula II:

$$\begin{array}{c|c}
R_1 & & H & L & W \\
\hline
& D & & N & L & W \\
& O & & R_{62} & (II)
\end{array}$$

wherein

W represents a functional group which reacts with an active site residue of the targeted protease, selected from -CN, -CH=NR<sub>5</sub>,

R<sub>1</sub> represents a C-terminally linked amino acid residue or amino acid analog, or a C- terminally linked peptide or peptide analog, or an amino-protecting group, or

$$R_6-C-, R_6-C-, R_6-C-$$

R<sub>3</sub> represents hydrogen or a halogen, a lower alkyl, a lower alkenyl, a lower alkynyl, a carbonyl, a thiocarbonyl, an amino, an acylamino, an amido, a cyano, a nitro, an azido, a sulfate, a sulfonate, a sulfonamido, -(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>, -(CH<sub>2</sub>)<sub>m</sub>-OH, -(CH<sub>2</sub>)<sub>m</sub>-O-lower alkyl, - (CH<sub>2</sub>)<sub>m</sub>-O-lower alkenyl, -(CH<sub>2</sub>)<sub>n</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>, -(CH<sub>2</sub>)<sub>m</sub>-SH, -(CH<sub>2</sub>)<sub>m</sub>-S-lower alkyl, -(CH<sub>2</sub>)<sub>m</sub>-S-lower alkenyl, or -(CH<sub>2</sub>)<sub>n</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>;

R<sub>5</sub> represents H, an alkyl, an alkenyl, an alkynyl,  $-C(X_1)(X_2)X_3$ ,  $-(CH_2)m-R_7$ ,  $-(CH_2)n-OH$ ,  $-(CH_2)n-O-alkyl$ ,  $-(CH_2)n-O-alkynyl$ ,  $-(CH_2)n-O-(CH_2)m-R_7$ ,  $-(CH_2)n-SH$ ,  $-(CH_2)n-S-alkyl$ ,  $-(CH_2)n-S-alkynyl$ ,  $-(CH_2)n-S-a$ 

 $R_6 \text{ represents hydrogen, a halogen, an alkyl, an alkenyl, an alkynyl, an aryl, -(CH_2)_m-R_7, - \\ (CH_2)_m-OH, -(CH_2)_m-O-alkyl, -(CH_2)_m-O-alkenyl, -(CH_2)_m-O-alkynyl, -(CH_2)_m-O-alkynyl, -(CH_2)_m-S-alkyl, -(CH_2)_m-S-alkynyl, -(CH_2)_m-S-alkynyl, -(CH_2)_m-S-alkynyl, -(CH_2)_m-S-(CH_2)_m-R_7;$ 

R<sub>7</sub> represents, for each occurrence, a substituted or unsubstituted aryl, aralkyl, cycloalkyl, cycloalkenyl, or heterocycle;

R'7 represents, for each occurrence, hydrogen, or a substituted or unsubstituted alkyl, alkenyl, aryl, aralkyl, cycloalkyl, cycloalkenyl, or heterocycle;

 $R_{61}$  and  $R_{62}$ , independently, represent small hydrophobic groups;

 $Y_1$  and  $Y_2$  can independently or together be OH, or a group capable of being hydrolyzed to a hydroxyl group, including cyclic derivatives where  $Y_1$  and  $Y_2$  are connected via a ring having from 5 to 8 atoms in the ring structure;

R<sub>50</sub> represents O or S;

R<sub>51</sub> represents N<sub>3</sub>, SH, NH<sub>2</sub>, NO<sub>2</sub> or OR'<sub>7</sub>;

R<sub>52</sub> represents hydrogen, a lower alkyl, an amine, OR'<sub>7</sub>, or a pharmaceutically acceptable salt, or R<sub>51</sub> and R<sub>52</sub> taken together with the phosphorous atom to which they are attached complete a heterocyclic ring having from 5 to 8 atoms in the ring structure

X<sub>1</sub> represents a halogen;

X<sub>2</sub> and X<sub>3</sub> each represent a hydrogen or a halogen; m is zero or an integer in the range of 1 to 8; and n is an integer in the range of 1 to 8.

- 29. (Amended) A method for modifiying, in an animal, metabolism of peptide hormone, comprising administering to the animal a composition including one or more inhibitors of dipeptidylpeptidase IV (DPIV) in an amount sufficient to increase the plasma half-life of a peptide hormone, which peptide hormone is selected from glucagon-like peptide 2 (GLP-2), growth hormone-releasing factor (GHRF), vasoactive intestinal peptide (VIP), peptide histidine isoleucine (PHI), pituitary adenylate cyclase activating peptide (PACAP), gastric inhibitory peptide (GIP), helodermin, Peptide YY and neuropeptide Y.
- 30. (Amended) A method for modifying glucose metabolism of an animal, comprising administering to the animal a composition including boronyl peptidomimetic of a peptide selected from Pro-Pro, Ala-Pro, and (D)-Ala-(L)-Ala.
- 31. (Amended) The method of claim 31, wherein the boronyl peptidomimetic is represented in the general formula:

$$R30-N \xrightarrow{D} \xrightarrow{N} \xrightarrow{L} \xrightarrow{B} \xrightarrow{Y_1} \xrightarrow{Q_2}$$

or

wherein

each A independently represents a 4-8 membered heterocycle including the N and a  $C\alpha$  carbon; R<sub>2</sub> is absent or represents one or more substitutions to the ring A, each of which can

Cont

independently be a halogen, a lower alkyl, a lower alkenyl, a lower alkynyl, a carbonyl, a thiocarbonyl, an amino, an acylamino, an amido, a cyano, a nitro, an azido, a sulfate, a sulfonate, a sulfonamido,  $-(CH_2)_m-R_7$ ,  $-(CH_2)_m-OH$ ,  $-(CH_2)_m-O-lower$  alkyl,  $-(CH_2)_m-O-lower$  alkenyl,  $-(CH_2)_m-O-(CH_2)_m-R_7$ ,  $-(CH_2)_m-SH$ ,  $-(CH_2)_m-S-lower$  alkyl,  $-(CH_2)_m-S-lower$  alkenyl, or  $-(CH_2)_n-S-(CH_2)_m-R_7$ ;

R<sub>3</sub> represents hydrogen or a halogen, a lower alkyl, a lower alkenyl, a lower alkynyl, a carbonyl, a thiocarbonyl, an amino, an acylamino, an amido, a cyano, a nitro, an azido, a sulfate, a sulfonate, a sulfonamido, -(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>, -(CH<sub>2</sub>)<sub>m</sub>-OH, -(CH<sub>2</sub>)<sub>m</sub>-O-lower alkyl, - (CH<sub>2</sub>)<sub>m</sub>-O-lower alkenyl, -(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>, -(CH<sub>2</sub>)<sub>m</sub>-SH, -(CH<sub>2</sub>)<sub>m</sub>-S-lower alkyl, -(CH<sub>2</sub>)<sub>m</sub>-S-lower alkenyl, or -(CH<sub>2</sub>)<sub>n</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>;

R<sub>5</sub> represents H, an alkyl, an alkenyl, an alkynyl,  $-C(X_1)(X_2)X_3$ ,  $-(CH_2)m-R_7$ ,  $-(CH_2)n-OH$ ,  $-(CH_2)n-O-alkyl$ ,  $-(CH_2)n-O-alkynyl$ ,  $-(CH_2)n-O-(CH_2)m-R_7$ ,  $-(CH_2)n-SH$ ,  $-(CH_2)n-S-alkyl$ ,  $-(CH_2)n-S-alkynyl$ ,  $-(CH_2)n-S-a$ 

 $R_6$  represents hydrogen, a halogen, an alkyl, an alkenyl, an alkynyl, an aryl, - $(CH_2)_m$ - $R_7$ , - $(CH_2)_m$ 

 $(CH_2)_m$ -R<sub>7</sub>, - $(CH_2)_m$ -SH, - $(CH_2)_m$ -S-alkyl, - $(CH_2)_m$ -S-alkenyl, - $(CH_2)_m$ -S-alkynyl, or - $(CH_2)_m$ -S- $(CH_2)_m$ -R<sub>7</sub>;

R7 represents, for each occurrence, a substituted or unsubstituted aryl, aralkyl, cycloalkyl, cycloalkenyl, or heterocycle;

R<sub>30</sub> represents a C-terminally linked amino acid residue or amino acid analog, or a C- terminally linked peptide or peptide analog, or an amino-protecting group, or

$$R_6-\overset{O}{\overset{||}{C}}-, R_6-\overset{S}{\overset{||}{C}}-, R_6-\overset{O}{\overset{||}{\overset{||}{C}}}-;$$

 $R_{32} \ \text{and} \ R_{61},$  independently, represent small hydrophobic groups;

 $Y_1$  and  $Y_2$  can independently or together be OH, or a group capable of being hydrolyzed to a hydroxyl group, including cyclic derivatives where  $Y_1$  and  $Y_2$  are connected via a ring having from 5 to 8 atoms in the ring structure;

m is zero or an integer in the range of 1 to 8; and n is an integer in the range of 1 to 8.

- 32. (Amended) The method of claim 31, wherein administering the boronyl peptidomimetic reduces one or more of insulin resistance, glucose intolerance, hyperglycemia, hyperinsulinemia, obesity, hyperlipidemia, hyperlipoproteinemia.
- 33. (Amended) The method of claim 31, wherein the boronyl peptidomimetic has an EC<sub>50</sub> for modification of glucose metabolism which is at least one order of magnitude less than its EC<sub>50</sub> for immunosuppression.
- 34. (Amended) The method of claim 31, wherein the boronyl peptidomimetic has an EC<sub>50</sub> for inhibition of glucose tolerance in the nanomolar or less range.
- 35. (Amended) The method of claim 31, wherein the boronyl peptidomimetic has an EC<sub>50</sub> for immunosuppression in the  $\mu$ M or greater range.

36. (Amended) The method of claim 31, wherein the boronyl peptidomimetic is administered orally.



37. (Amended) A method for modifying glucose metabolism of an animal, comprising administering to the animal a composition comprising a peptidomimetic boronyl inhibitor wherein the peptide to be mimicked is Pro-Pro, Ala-Pro, and (D)-Ala-(L)-Ala.

The claims presented above incorporate changes as indicated by the marked-up versions below.

1. (Amended) A method for modifying, in an animal, metabolism of glucagon-like peptide 1 (GLP-1), comprising administering to the animal a composition including one or more inhibitors of a dipeptidylpeptidase which inactivates GLP-1, which inhibitor(s) are administered in an amount sufficient to inhibit the dipeptidylpeptidase proteolysis of GLP-1 wherein the inhibitor is represented by Formula I:

$$\begin{array}{c|c}
 & R_2 \\
 & X \\
 & X \\
 & X \\
 & X_3 \\
 & X_3
\end{array}$$

wherein

A represents a 4-8 membered heterocycle including the N and a Cα carbon;

Z represents C or N;

W represents -CH=NR<sub>5</sub>, a functional group which reacts with an active site residue of the targeted protease, or

R<sub>1</sub> represents a C-terminally linked amino acid residue or amino acid analog, or a C- terminally linked peptide or peptide analog, or an amino-protecting group, or

$$R_6$$
  $S^{s}$ ,  $R_6$   $S^{s}$ , or  $R_6$   $S^{s}$   $S^{s}$ 

- R2 is absent or represents one or more substitutions to the ring A, each of which can independently be a halogen, a lower alkyl, a lower alkenyl, a lower alkynyl, a carbonyl, a thiocarbonyl, an amino, an acylamino, an amido, a cyano, a nitro, an azido, a sulfate, a sulfonate, a sulfonamido, -(CH2)m-R7, -(CH2)m-OH, -(CH2)m-O-lower alkyl, -(CH2)m-O-lower alkenyl, -(CH2)m-R7, -(CH2)m-SH, -(CH2)m-S-lower alkyl, -(CH2)m-S-lower alkenyl, or -(CH2)n-S-(CH2)m-R7;
- if Z is N, R<sub>3</sub> represents hydrogen, if Z is C, R<sub>3</sub> represents hydrogen or a halogen, a lower alkyl, a lower alkynyl, a carbonyl, a thiocarbonyl, an amino, an acylamino, an amido, a cyano, a nitro, an azido, a sulfate, a sulfonate, a sulfonamido, -(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>, (CH<sub>2</sub>)<sub>m</sub>-O-lower alkyl, -(CH<sub>2</sub>)<sub>m</sub>-O-lower alkenyl, -(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>, -(CH<sub>2</sub>)<sub>m</sub>-S-lower alkyl, -(CH<sub>2</sub>)<sub>m</sub>-S-lower alkenyl, or -(CH<sub>2</sub>)<sub>n</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)
- R<sub>5</sub> represents a hydrogen, an alkyl, an alkenyl, an alkynyl, -C(X<sub>1</sub>)(X<sub>2</sub>)X<sub>3</sub>, -(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>, (CH<sub>2</sub>)<sub>n</sub>-O+alkyl, -(CH<sub>2</sub>)<sub>n</sub>-O-alkyl, -(CH<sub>2</sub>)<sub>n</sub>-O-alkynyl, -(CH<sub>2</sub>)<sub>n</sub>-O-alkynyl, -(CH<sub>2</sub>)<sub>n</sub>-S-alkynyl, -(CH<sub>2</sub>)<sub>n</sub>-S-alkynyl, -(CH<sub>2</sub>)<sub>n</sub>-S-alkynyl, -(CH<sub>2</sub>)<sub>n</sub>-S-alkynyl, -(CH<sub>2</sub>)<sub>n</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>, -C(O)C(O)NH<sub>2</sub>, or -C(O)C(O)OR'<sub>7</sub>;
- $\begin{array}{c} \underline{R_6 \text{ represents hydrogen, a halogen, an alkyl, an alkenyl, an alkynyl, an aryl, -(CH$_2$)$_{\underline{m}}-R$_{\underline{7}}$, -$\\ \underline{(CH$_2$)$_{\underline{m}}-O+, -(CH$_2$)$_{\underline{m}}-O-alkyl, -(CH$_2$)$_{\underline{m}}-O-alkenyl, -(CH$_2$)$_{\underline{m}}-O-alkynyl, -(CH$_2$)$_{\underline{m}}-S-alkynyl, -(CH$_2$)$_{\underline{$

$$\underline{\text{or -(CH}_2)_{\underline{m}}\text{-S-(CH}_2)_{\underline{m}}\text{-R}_{\underline{7}}}$$

- <u>R7</u> represents, for each occurrence, a substituted or unsubstituted aryl, aralkyl, cycloalkyl, cycloalkyl, or heterocycle;
- R'7 represents, for each occurrence, hydrogen, or a substituted or unsubstituted alkyl, alkenyl, aryl, aralkyl, cycloalkyl, cycloalkenyl or heterocyclyl;
- R<sub>8</sub> and R<sub>9</sub> each independently represent hydrogen, alkyl, alkenyl, -(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>, -C(=O)-alkyl, C(=O)-alkynyl, or -C(=O)-(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>,
- or Rg and Ro taken together with the N atom to which they are attached complete a heterocyclic ring having from 4 to 8 atoms in the ring structure;

R<sub>50</sub> represents O or S;

R<sub>51</sub> represents N<sub>3</sub>, SH, NH<sub>2</sub>, NO<sub>2</sub> or OR'<sub>7</sub>;

R<sub>52</sub> represents hydrogen, a lower alkyl, an amine, OR'<sub>7</sub>, or a pharmaceutically acceptable salt, or R<sub>51</sub> and R<sub>52</sub> taken together with the phosphorous atom to which they are attached complete a heterocyclic ring having from 5 to 8 atoms in the ring structure;

X<sub>1</sub> represents a halogen;

 $\underline{X_2}$  and  $\underline{X_3}$  each represent a hydrogen or a halogen;

m is zero or an integer in the range of 1 to 8; and n is an integer in the range of 1 to 8.

2. (Amended) A method for modifying glucose metabolism of an animal, comprising administering to the animal a composition including one or more protease inhibitors which inhibit DPIV-mediated proteolysis with a Ki of 1nM or less., wherein the inhibitor is represented by Formula I.

- 3. (Amended) A method for modifying glucose metabolism of an animal, comprising administering to the animal a composition including one or more protease inhibitors which inhibit the proteolysis of glucagon-like peptide 1 (GLP-1) and accordingly increase the plasma half-life of GLP-1, wherein the inhibitor is represented by Formula I.
- 4. (Amended) A method for treating Type II diabetes, comprising administering to an animal a composition including one or more inhibitors of dipeptidylpeptidase IV (DPIV) represented by Formula I.
- 5. (Amended) The method of claim 1, wherein the dipeptidylpeptidase is DPIV.
- 6. (Amended) The method of claim 3, wherein the protease inhibitor is an inhibitor of DPIV.
- 7. (Amended) The method of claim 2 or 3, wherein administering the inhibitor reduces one or more of insulin resistance, glucose intolerance, hyperglycemia, hyperinsulinemia, obesity, hyperlipidemia, or hyperlipoproteinemia.
- 8. (Amended) The method of claim 1, 2, 3 or 4, wherein the inhibitor has an  $EC_{50}$  for modification of glucose metabolism which is at least one order of magnitude less than its  $EC_{50}$  for immunosuppression.
- 9. (Amended) The method of claim 1, 2, 3 or 4, wherein the inhibitor has an  $EC_{\underline{50}}$  for inhibition of glucose intolerance in the nanomolar or less range
- 10. (Amended) The method of claim 1, 2, 3 or 4, wherein the inhibitor has an EC<sub>50</sub> for immunosuppression in the  $\mu$ M or greater range.
- 11. (Amended) The method of claim 4, 5 or 6, wherein the inhibitor has a Ki for DPIV inhibition of 1.0 nm-nM or less.

- 12. (Amended) The method of claim 1, 2, 3 or 4, wherein the inhibitor is peptidomimetic of a peptide selected from the group consisting-Pro-Pro, Ala-Pro, and (D)-Ala-(L)-Ala.
- 13. (Amended) The method of claim 1, 2, 3 or 4, wherein the inhibitor has a molecular weights less than 7500 amu.
- 14. (Amended) The method of claim 1, 2, 3 or 4, wherein the inhibitor is orally active administered orally.
- 16. (Amended) The method of claim 151, 2, 3, or 4, wherein W represents—CN<sub>3</sub> -CH=NR<sub>5</sub>,

 $\frac{\left\{-S-X_{1}, X_{2}, Y_{2}, \right\}-R_{52}}{V_{2}, R_{51}}$ R<sub>5</sub> represents H, an alkyl, an alkenyl, an alkynyl,  $-C(X_{1})(X_{2})X_{3}$ ,  $-(CH_{2})m-R_{7}$ ,  $-(CH_{2})n-OH$ , -

R<sub>5</sub> represents H, an alkyl, an alkenyl, an alkynyl, -C(X<sub>1</sub>)(X<sub>2</sub>)X<sub>3</sub>, -(CH<sub>2</sub>)m-R<sub>7</sub>, -(CH<sub>2</sub>)n-OH, (CH<sub>2</sub>)n-O-alkyl, -(CH<sub>2</sub>)n-O-alkynyl, -(CH<sub>2</sub>)n-O-(CH<sub>2</sub>)m-R<sub>7</sub>, - (CH<sub>2</sub>)n-SH, -(CH<sub>2</sub>)n-S-alkyl, -(CH<sub>2</sub>)n-S-alkynyl, -(CH<sub>2</sub>)n-S-alkynyl, -(CH<sub>2</sub>)n-S-(CH<sub>2</sub>)m-R<sub>7</sub>, -C(O)C(O)NH<sub>2</sub>, or -C(O)C(O)OR'<sub>7</sub>;

<u>R7</u> represents, for each occurrence, a substituted or unsubstituted aryl, aralkyl, cycloalkyl, cycloalkenyl or heterocyclyl;

- R'7 represents, for each occurrence, hydrogen, or a substituted or unsubstituted alkyl, alkenyl, aryl, aralkyl, cycloalkyl, cycloalkenyl, or heterocycle; and
- Y<sub>1</sub> and Y<sub>2</sub> can independently or together be OH, or a group capable of being hydrolyzed to a hydroxyl group, including cyclic derivatives where Y<sub>1</sub> and Y<sub>2</sub> are connected via a ring having from 5 to 8 atoms in the ring structure (such as pinacol or the like),:

  R<sub>50</sub> represents O or S;

R<sub>51</sub> represents N<sub>3</sub>, SH<sub>2</sub>, NH<sub>2</sub>, NO<sub>2</sub> or OR'<sub>7</sub>;

 $R_{52}$  represents hydrogen, a lower alkyl, an amine, OR'7, or a pharmaceutically acceptable salt, or  $R_{51}$  and  $R_{52}$  taken together with the phosphorous atom to which they are attached complete a heterocyclic ring having from 5 to 8 atoms in the ring structure;

X<sub>2</sub> and X<sub>3</sub> each represent a hydrogen or a halogen; m is zero or an integer in the range of 1 to 8; and n is an integer in the range of 1 to 8.

1817. (Amended) The method of claim 16, wherein the ring A is represented by the formula:

$$- \stackrel{\textstyle \bigwedge}{ \bigvee} \stackrel{n}{ }$$

wherein n is an integer of 1 or 2.

X<sub>1</sub> represents a halogen;

 $-B \stackrel{Y_1}{\underbrace{Y_2}} \quad \text{or} \quad \stackrel{O}{\underbrace{\downarrow}}_{R5}$  1918. The method of claim 16, wherein W represents

2019. The method of claim 16, wherein R<sub>1</sub> represents

## wherein

 $R_{36}$  is a small hydrophobic group and  $R_{38}$  is hydrogen, or,  $R_{36}$  and  $R_{38}$  together form a 4-7 membered heterocycle including the N and the C $\alpha$  carbon, as defined for A above; and

R<sub>40</sub> represents a C-terminally linked amino acid residue or amino acid analog, or a C-terminally linked peptide or peptide analog, or an amino-protecting group.

 $21\underline{20}$ . (Amended) The method of claim 16, wherein  $R_2$  is absent, or represents a small hydrophobic group.

2221. (Amended) The method of claim 16, wherein  $R_3$  is a hydrogen, or a small hydrophobic group.

2322. (Amended) The method of claim 16, wherein  $R_5$  is a hydrogen, or a halogentated halogenated lower alkyl.

2423. (Amended) The method of claim 16, wherein  $X_1$  is a fluorine, and  $X_2$  and  $X_3$ , if halogens, are fluorine.

2524. (Amended) The method of claim 16-, wherein the inhibitor is represented by the general formula:

$$\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

wherein

R<sub>1</sub> represents a C-terminally linked amino acid residue or amino acid analog, or a C-terminally linked peptide or peptide analog, or an amino protecting group, or

 $R_6$  represents hydrogen, a halogen, an alkyl, an alkenyl, an alkynyl, an aryl, - $(CH_2)_m$ - $R_7$ , -  $(CH_2)_m$ -O-alkyl, - $(CH_2)_m$ -O-alkyl, - $(CH_2)_m$ -O-alkynyl, - $(CH_2)_m$ -O-alkynyl, - $(CH_2)_m$ -S-alkyl, - $(CH_2)_m$ -S-alkyl, - $(CH_2)_m$ -S-alkynyl, - $(CH_2)_m$ -S-alkynyl, - $(CH_2)_m$ -S-alkynyl, - $(CH_2)_m$ -S- $(CH_2)_m$ -R<sub>7</sub>,

R7 represents an aryl, a cycloalkyl, a cycloalkenyl, or a heterocycle;

R<sub>8</sub> and R<sub>9</sub> each independently represent hydrogen, alkyl, alkenyl,  $-(CH_2)_m$ -R<sub>7</sub>, -C(=O)-alkyl, -C(=O)-alkynyl, -C(=O)-(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>,

or R<sub>8</sub> and R<sub>9</sub> taken together with the N atom to which they are attached complete a heterocyclic ring having from 4 to 8 atoms in the ring structure;

R<sub>11</sub> and R<sub>12</sub> each independently represent hydrogen, a alkyl, or a pharmaceutically acceptable salt, or R<sub>11</sub> and R<sub>12</sub> taken together with the O-B-O atoms to which they are attached complete a heterocyclic ring having from 5 to 8 atoms in the ring structure; m is zero or an integer in the range of 1 to 8; and n is an integer in the range of 1 to 8.

2625. (Amended) The method of claim 16-, wherein the inhibitor is represented by the general formula

wherein

R<sub>1</sub> represents a C-terminally linked amino acid residue or amino acid analog, or a C-terminally linked peptide or peptide analog, or an amino protecting group, or

R<sub>6</sub> represents hydrogen, a halogen, an alkyl, an alkenyl, an alkynyl, an aryl, -(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>, - (CH<sub>2</sub>)<sub>m</sub>-O+, -(CH<sub>2</sub>)<sub>m</sub>-O-alkyl, -(CH<sub>2</sub>)<sub>m</sub>-O-alkenyl, -(CH<sub>2</sub>)<sub>m</sub>-O-alkynyl, -(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-S-alkyl, -(CH<sub>2</sub>)<sub>m</sub>-S-alkyl, -(CH<sub>2</sub>)<sub>m</sub>-S-alkynyl, -(CH<sub>2</sub>)<sub>m</sub>-S-alkynyl, -(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>,

R7 represents an aryl, a cycloalkyl, a cycloalkenyl, or a heterocycle;

 $R_8$  and  $R_9$  each independently represent hydrogen, alkyl, alkenyl, -(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>, -C(=O)-alkyl, -C(=O)-alkynyl, -C(=O)-(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>,

or R<sub>8</sub> and R<sub>9</sub> taken together with the N atom to which they are attached complete a heterocyclic ring having from 4 to 8 atoms in the ring structure; and m is zero or an integer in the range of 1 to 8; and n is an integer in the range of 1 to 8.

2726. (Amended) The method of claim 16-, wherein the inhibitor is represented by the general formula:

wherein

R<sub>1</sub> represents a C-terminally linked amino acid residue or amino acid analog, or a C-terminally linked peptide or peptide analog, or an amino protecting group, or

 $R_6$  represents hydrogen, a halogen, an alkyl, an alkenyl, an alkynyl, an aryl, -(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>, - (CH<sub>2</sub>)<sub>m</sub>-O-alkyl, -(CH<sub>2</sub>)<sub>m</sub>-O-alkynyl, -(CH<sub>2</sub>)<sub>m</sub>-O-a

 $(\mathrm{CH_2})_m - \mathrm{R_7, -(CH_2)_m - SH, -(CH_2)_m - S-alkyl, -(CH_2)_m - S-alkenyl, -(CH_2)_m - S-alkynyl, -(CH_2)_m - S-(CH_2)_m - R_7, }$ 

$$-(CH_{2})_{m}-N \xrightarrow{R_{8}} -(CH_{2})_{n}-C-N \xrightarrow{R_{8}} -(CH_{2})_{n}-NH_{2}-C-NH_{2} , -(CH_{2})_{n}-C-O-R_{7}$$

$$-(CH_{2})_{m}-C-alkyl , -(CH_{2})_{n}-C-alkenyl , -(CH_{2})_{n}-C-alkynyl , or -(CH_{2})_{n}-C-(CH_{2})_{m}-R_{7} ;$$

R7 represents an aryl, a cycloalkyl, a cycloalkenyl, or a heterocycle;

R<sub>8</sub> and R<sub>9</sub> each independently represent hydrogen, alkyl, alkenyl, -(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>, -C(=O)-alkyl, -C(=O)-alkyl, -C(=O)-(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>,

or R<sub>8</sub> and R<sub>9</sub> taken together with the N atom to which they are attached complete a heterocyclic ring having from 4 to 8 atoms in the ring structure;

X<sub>1</sub>, X<sub>2</sub> and X<sub>3</sub> each represent a hydrogen or a halogen; and

m is zero or an integer in the range of 1 to 8; and n is an integer in the range of 1 to 8.

2827. (Amended) The method of claim 16-, wherein the inhibitor is represented by the general formula:

wherein

A represent a 4-8 membered heterocycle including an N and a Cα carbon;

W represents, -CH=NR<sub>5</sub>

- R2 is absent or represents one or more substitutions to the ring A, each of which can independently be a halogen, a lower alkyl, a lower alkenyl, a lower alkynyl, a carbonyl, a thiocarbonyl, an amino, an acylamino, an amido, a cyano, a nitro, an azido, a sulfate, a sulfonate, a sulfonamido, -(CH2)m-R7, -(CH2)m-OH, -(CH2)m-O-lower alkyl, -(CH2)m-O-lower alkenyl, -(CH2)m-R7, -(CH2)m-SH, -(CH2)m-S-lower alkyl, -(CH2)m-S-lower alkenyl, or -(CH2)n-S-(CH2)m-R7;
- R<sub>3</sub> represents a hydrogen or a halogen, a lower alkyl, a lower alkenyl, a lower alkynyl, a carbonyl, a thiocarbonyl, an amino, an acylamino, an amido, a cyano, a nitro, an azido, a sulfate, a sulfonate, a sulfonamido, -(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>, -(CH<sub>2</sub>)<sub>m</sub>-OH, -(CH<sub>2</sub>)<sub>m</sub>-O-lower alkyl, -(CH<sub>2</sub>)<sub>m</sub>-O-lower alkenyl, -(CH<sub>2</sub>)<sub>m</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>, -(CH<sub>2</sub>)<sub>m</sub>-SH, -(CH<sub>2</sub>)<sub>m</sub>-S-lower alkyl, -(CH<sub>2</sub>)<sub>m</sub>-S-lower alkenyl, or -(CH<sub>2</sub>)<sub>n</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>;
- R<sub>5</sub> represents a hydrogen, an alkyl, an alkenyl, an alkynyl,  $-C(X_1)(X_2)X_3$ ,  $-(CH_2)_m-R_7$ ,  $-(CH_2)_n-O-alkyl$ ,  $-(CH_2)_n-O-alkyl$ ,  $-(CH_2)_n-O-alkyl$ ,  $-(CH_2)_n-O-alkyl$ ,  $-(CH_2)_n-O-alkyl$ ,  $-(CH_2)_n-S-alkyl$ ,  $-(CH_2)_n-S-al$
- <u>R7</u> represents, for each occurrence, a substituted or unsubstituted aryl, aralkyl, cycloalkyl, cycloalkenyl or heterocyclyl;
- R'<u>7</u> represents, for each occurrence, hydrogen, or a substituted or unsubstituted alkyl, alkenyl, aryl, aralkyl, cycloalkyl, cycloalkenyl or heterocyclyl;
- $R_{\underline{32}}$  is a small hydrophobic group; and

R<sub>30</sub> represents a C-terminally linked amino acid residue or amino acid analog, or a C-terminally linked peptide or peptide analog, or an amino-protecting group-or

$$R_6$$
  $S_5$ ,  $R_6$   $S_5$ , or  $R_6$   $S_5$ 

R<sub>50</sub> represents O or S;

R<sub>51</sub> represents N<sub>3</sub>, SH, NH<sub>2</sub>, NO<sub>2</sub> or OR'<sub>7</sub>;

R<sub>52</sub> represents hydrogen, a lower alkyl, an amine, OR'7, or a pharmaceutically acceptable salt, or

R<sub>51</sub> and R<sub>52</sub> taken together with the phosphorous atom to which they are attached complete a heterocyclic ring having from 5 to 8 atoms in the ring structure;

X<sub>1</sub> represents a halogen;

 $X_2$  and  $X_3$  each represent a hydrogen or a halogen;

m is zero or an integer in the range of 1 to 8; and

n is an integer in the range of 1 to 8.

2928. (Amended) A method for modifying, in an animal, metabolism of glucagon-like peptide 1 (GLP-1), comprising administering to the animal a composition including one or more inhibitors of a dipeptidylpeptidase which inactivates GLP-1, The method of claim 16, wherein the inhibitor is represented by the general formula Formula II:

$$R1 \xrightarrow{D} \stackrel{H}{\longrightarrow} \stackrel{L}{\longrightarrow} W$$

$$O \xrightarrow{R_{62}} (II)$$

wherein

W represents a functional group which reacts with an active site residue of the targeted protease, as for example, selected from -CN, -CH=NR<sub>5</sub>,

R<sub>1</sub> represents a C-terminally linked amino acid residue or amino acid analog, or a C- terminally linked peptide or peptide analog, or an amino-protecting group, or

$$R_6-C-$$
,  $R_6-C-$ ,  $R_6-C-$ ,  $R_6-C-$ ;

R<sub>3</sub> represents hydrogen or a halogen, a lower alkyl, a lower alkenyl, a lower alkynyl, a carbonyl (such as a carboxyl, an ester, a formate, or a ketone), a thiocarbonyl (such as a thioester, a thioacetate, or a thioformate), an amino, an acylamino, an amido, a cyano, a nitro, an azido, a sulfate, a sulfonate, a sulfonamido, -(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>, -(CH<sub>2</sub>)<sub>m</sub>-OH, -(CH<sub>2</sub>)<sub>m</sub>-Olower alkyl, -(CH<sub>2</sub>)<sub>m</sub>-Olower alkenyl, -(CH<sub>2</sub>)<sub>n</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>, -(CH<sub>2</sub>)<sub>m</sub>-SH, -(CH<sub>2</sub>)<sub>m</sub>-S-lower alkyl, -(CH<sub>2</sub>)<sub>m</sub>-S-lower alkenyl, or -(CH<sub>2</sub>)<sub>n</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>;

R<sub>5</sub> represents H, an alkyl, an alkenyl, an alkynyl,  $-C(X_1)(X_2)X_3$ ,  $-(CH_2)m-R_7$ ,  $-(CH_2)n-OH$ ,  $-(CH_2)n-O-alkyl$ ,  $-(CH_2)n-O-alkynyl$ ,  $-(CH_2)n-O-(CH_2)m-R_7$ ,  $-(CH_2)n-SH$ ,  $-(CH_2)n-S-alkyl$ ,  $-(CH_2)n-S-alkynyl$ ,  $-(CH_2)n-S-a$ 

 $R_6$  represents hydrogen, a halogen, an alkyl, an alkenyl, an alkynyl, an aryl, -(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>, - (CH<sub>2</sub>)<sub>m</sub>-OH, -(CH<sub>2</sub>)<sub>m</sub>-O-alkyl, -(CH<sub>2</sub>)<sub>m</sub>-O-alkenyl, -(CH<sub>2</sub>)<sub>m</sub>-O-alkynyl, -(CH<sub>2</sub>)<sub>m</sub>-O-alkynyl, -(CH<sub>2</sub>)<sub>m</sub>-S-alkyl, -(CH<sub>2</sub>)<sub>m</sub>-S-alkynyl, -(CH<sub>2</sub>)<sub>m</sub>-S-alkynyl, -(CH<sub>2</sub>)<sub>m</sub>-S-alkynyl, -(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-R<sub>7;3</sub>

R7 represents, for each occurrence, a substituted or unsubstituted aryl, aralkyl, cycloalkyl, cycloalkenyl, or heterocycle;

R'7 represents, for each occurrence, hydrogen, or a substituted or unsubstituted alkyl, alkenyl, aryl, aralkyl, cycloalkyl, cycloalkenyl, or heterocycle;

R<sub>61</sub> and R<sub>62</sub>, independently, represent small hydrophobic groups;

Y<sub>1</sub> and Y<sub>2</sub> can independently or together be OH, or a group capable of being hydrolyzed to a hydroxyl group, including cyclic derivatives where Y<sub>1</sub> and Y<sub>2</sub> are connected via a ring having from 5 to 8 atoms in the ring structure (such as pinacol or the like),;

R<sub>50</sub> represents O or S;

R<sub>51</sub> represents N<sub>3</sub>, SH<sub>2</sub>, NH<sub>2</sub>, NO<sub>2</sub> or OR'<sub>7</sub>;

R<sub>52</sub> represents hydrogen, a lower alkyl, an amine, OR'<sub>7</sub>, or a pharmaceutically acceptable salt, or R<sub>51</sub> and R<sub>52</sub> taken together with the phosphorous atom to which they are attached complete a heterocyclic ring having from 5 to 8 atoms in the ring structure

X<sub>1</sub> represents a halogen;

X<sub>2</sub> and X<sub>3</sub> each represent a hydrogen or a halogen; m is zero or an integer in the range of 1 to 8; and n is an integer in the range of 1 to 8.

3029. (Amended) A method for modifiying, in an animal, metabolism of peptide hormone, comprising administering to the animal a composition including one or more <u>boronyl</u> <u>peptidomimetic</u> inhibitors of dipeptidylpeptidase IV (DPIV) in an amount sufficient to increase the plasma half-life of a peptide hormone, which peptide hormone is selected from the group eonsisting of glucagon-like peptide 2 (GLP-2), growth hormone-releasing factor (GHRF), vasoactive intestinal peptide (VIP), peptide histidine isoleucine (PHI), pituitary adenylate cyclase activating peptide (PACAP), gastric inhibitory peptide (GIP), helodermin, Peptide YY and neuropeptide Y.

3130. (Amended) A method for modifying glucose metabolism of an animal, comprising administering to the animal a composition including boronyl peptidomimetic of a peptide selected from the group consisting Pro-Pro, Ala-Pro, and (D)-Ala-(L)-Ala.

3231. (Amended) The method of claim 31, wherien wherein the boronyl peptidomimetic is represented in the general formula:

wherein

each A independently represents a 4-8 membered heterocycle including the N and the a Ca carbon;

R<sub>2</sub> is absent or represents one or more substitutions to the ring A, each of which can independently be a halogen, a lower alkyl, a lower alkenyl, a lower alkynyl, a carbonyl (such as a carboxyl, an ester, a formate, or a ketone), a thiocarbonyl-(such as a thioester, a thioacetate, or a thioformate), an amino, an acylamino, an amido, a cyano, a nitro, an azido, a sulfate, a sulfonate, a sulfonamido, -(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>, -(CH<sub>2</sub>)<sub>m</sub>-OH, -(CH<sub>2</sub>)<sub>m</sub>-Olower alkyl, -(CH<sub>2</sub>)<sub>m</sub>-Olower alkenyl, or -(CH<sub>2</sub>)<sub>n</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>.

R<sub>3</sub> represents hydrogen or a halogen, a lower alkyl, a lower alkenyl, a lower alkynyl, a carbonyl (such as a carboxyl, an ester, a formate, or a ketone), a thiocarbonyl (such as a thioester, a thioacetate, or a thioformate), an amino, an acylamino, an amido, a cyano, a nitro, an azido, a sulfate, a sulfonate, a sulfonamido, -(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>, -(CH<sub>2</sub>)<sub>m</sub>-OH, -(CH<sub>2</sub>)<sub>m</sub>-Olower alkyl, -(CH<sub>2</sub>)<sub>m</sub>-Olower alkenyl, -(CH<sub>2</sub>)<sub>n</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>, -(CH<sub>2</sub>)<sub>m</sub>-SH, -(CH<sub>2</sub>)<sub>m</sub>-S-lower alkenyl, or -(CH<sub>2</sub>)<sub>n</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>;

R<sub>5</sub> represents H, an alkyl, an alkenyl, an alkynyl,  $-C(X_1)(X_2)X_3$ ,  $-(CH_2)m-R_7$ ,  $-(CH_2)n-OH$ ,  $-(CH_2)n-O-alkyl$ ,  $-(CH_2)n-O-alkynyl$ ,  $-(CH_2)n-O-(CH_2)m-R_7$ ,  $-(CH_2)n-SH$ ,  $-(CH_2)n-S-alkyl$ ,  $-(CH_2)n-S-alkynyl$ ,  $-(CH_2)n-S-a$ 

R<sub>6</sub> represents hydrogen, a halogen, an alkyl, an alkenyl, an alkynyl, an aryl, -(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>, - (CH<sub>2</sub>)<sub>m</sub>-OH, -(CH<sub>2</sub>)<sub>m</sub>-O-alkyl, -(CH<sub>2</sub>)<sub>m</sub>-O-alkenyl, -(CH<sub>2</sub>)<sub>m</sub>-O-alkynyl, -(CH<sub>2</sub>)<sub>m</sub>-O-alkynyl, -(CH<sub>2</sub>)<sub>m</sub>-S-alkyl, -(CH<sub>2</sub>)<sub>m</sub>-S-alkynyl, -(CH<sub>2</sub>)<sub>m</sub>-S-alkynyl, -(CH<sub>2</sub>)<sub>m</sub>-S-alkynyl, -(CH<sub>2</sub>)<sub>m</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>;

R<sub>7</sub> represents, for each occurrence, a substituted or unsubstituted aryl, aralkyl, cycloalkyl, cycloalkenyl, or heterocycle;

R<sub>30</sub> represents a C-terminally linked amino acid residue or amino acid analog, or a C- terminally linked peptide or peptide analog, or an amino-protecting group, or

$$R_6-C--$$
,  $R_6-C--$ ,  $R_6-C--$ ,  $R_6-C--$ ;

R<sub>32</sub> and R<sub>61</sub>, independently, represent small hydrophobic groups, preferably lower-alkyls, and more preferably methyl;

Y<sub>1</sub> and Y<sub>2</sub> can independently or together be OH, or a group capable of being hydrolyzed to a hydroxyl group, including cyclic derivatives where Y<sub>1</sub> and Y<sub>2</sub> are connected via a ring having from 5 to 8 atoms in the ring structure (such as pinacol or the like),; m is zero or an integer in the range of 1 to 8; and n is an integer in the range of 1 to 8.

- 3332. (Amended) The method of claim 3231, wherein administering the boronyl peptidomimetic reduces one or more of insulin resistance, glucose intolerance, hyperglycemia, hyperinsulinemia, obesity, hyperlipidemia, hyperlipoproteinemia.
- 3433. (Amended) The method of claim 3231, wherein the boronyl peptidomimetic has an EC<sub>50</sub> for modification of glucose metabolism which is at least one order of magnitude less than its  $EC_{50}$  for immunosuppression.
- 3534. (Amended) The method of claim 3231, wherein the boronyl peptidomimetic has an EC<sub>50</sub> for inhibition of glucose tolerance in the nanomolar or less range.