PHYSICS 373 Second Mid-Term Examination

 $\ \, \hbox{Time limit: } \mathbf{1} \,\, \mathbf{hour} \quad (\hbox{calculator permitted}) \\$

Question 1 — True / False (circle one)

a) For the 3-D isotropic harmonic oscillator, the n=2 energy level is 6-fold degenerate.

Answer: T

Why? In three dimensions the degeneracy is $g_n = \binom{n+2}{2}$. For n=2 one obtains $g_2 = \binom{4}{2} = 6$.

Concept cue: The integer $n=n_1+n_2+n_3$ can be "distributed" among the three Cartesian directions in $\binom{n+2}{2}$ ways (stars-and-bars combinatorics).

b) The spherical harmonic $Y_{\ell,\ell}(\theta,\phi)$ is independent of θ .

Answer: F

Why? $Y_{\ell,\ell} \propto \sin^{\ell}\theta \, e^{i\ell\phi}$; the $\sin^{\ell}\theta$ factor clearly depends on θ .

Concept cue: Highest-weight harmonics peak on the equator $(\theta = \pi/2)$ and vanish at the poles, so some θ -dependence is unavoidable.

c) Adding the operator $\frac{eB}{2m_e}\hat{L}_z$ to the hydrogen Hamiltonian removes all degeneracy of the n=2 levels.

Answer: F

Why? The Zeeman term lifts only the m (magnetic) degeneracy; the ℓ -degeneracy between 2s and 2p states ($\ell = 0$ vs. $\ell = 1$) survives.

Concept cue: A perturbation $\propto \hat{L}_z$ shifts states with different m's but leaves states that share the same m unaffected, regardless of ℓ .

d) For any Hermitian operator \hat{F} and any quantum state $|\psi\rangle$, the product $\Delta F \, \Delta L_z$ can reach zero.

Answer: F

Why? Both uncertainties vanish only if $|\psi\rangle$ is a simultaneous eigenstate of \hat{F} and \hat{L}_z , which requires $[\hat{F}, \hat{L}_z] = 0$. For a generic Hermitian \hat{F} this commutator is non-zero, so the product cannot be zero (Heisenberg inequality).

Concept cue: Zero uncertainties in two observables are possible only when the observables commute and the state lies in their common eigenbasis.

e) The spin- $\frac{3}{2}$ matrices can be chosen purely real in the S_z eigen-basis.

Answer: F

Why? While \hat{S}_z is real and diagonal in that basis, at least one of \hat{S}_x , \hat{S}_y must contain imaginary entries; in particular \hat{S}_y is proportional to the anti-Hermitian part $(\hat{S}_+ - \hat{S}_-)$ and cannot be made real simultaneously with \hat{S}_x .

2

Concept cue: The spin commutation relation $[\hat{S}_x, \hat{S}_y] = i\hbar \hat{S}_z$ forces an i in some matrix entries in any basis.

2. Ladder-operator algebra and degeneracy

For the 3-D isotropic harmonic oscillator we label Cartesian states by $|n_1, n_2, n_3\rangle$ with $n = n_1 + n_2 + n_3$ and spherical states by $|n; \ell, m\rangle$.

- a) Derive the six explicit relations that express the $|2; \ell, m\rangle$ states in the Cartesian basis. (You may quote the raising-operator identities from Problem Set 8.)
- **b)** From your result deduce the degeneracy formula $g_n = \binom{n+2}{2}$ for general n.

3. Hydrogen atom — uncertainties

The ground-state wave-function of hydrogen is $\psi_{100}(r) = \frac{1}{\sqrt{\pi a^3}} e^{-r/a}$.

- a) Compute $\langle x \rangle$, $\langle x^2 \rangle$ and hence Δx .
- **b)** Using $\hat{p}_x = -i\hbar \frac{\mathrm{d}}{\mathrm{d}x}$ in Cartesian components, show that $\Delta p_x = \frac{\hbar}{a}$.
- c) Verify that the Heisenberg product $\Delta x \, \Delta p_x$ exceeds $\hbar/2$.

4. Probability inside a sphere (excited hydrogen)

For the $n=2,\,\ell=1$ hydrogen states

$$\psi_{2;1,m}(r,\theta,\phi) = \frac{1}{(32\pi a^5)^{1/2}} r e^{-r/2a} Y_{1m}(\theta,\phi),$$

define P(b) to be the probability of finding the electron inside $r \leq b$.

- a) Show that $P(b) = 1 e^{-b/a} \left(1 + \frac{b}{a} + \frac{1}{2} \frac{b^2}{a^2}\right)$ and comment on its *m*-independence.
- **b)** Expand for small b/a and confirm that $P(b) \approx \frac{1}{15} (b/a)^5$.

5. Charged particle in B + axial trap

A particle of charge q moves in $\mathbf{B} = B_0 \hat{z}$ with vector potential $\mathbf{A} = (0, B_0 x, 0)$ and is confined by $V = \frac{1}{2} m \omega_0^2 z^2$.

- a) Using separation of variables and Landau-level notation, write down the complete set of energy eigenvalues.
- **b)** State the degeneracy of each Landau level for a fixed box size L_y (periodic boundary conditions).
- c) Briefly explain how the z-motion modifies the density of states compared with the pure-2D case.

6. Spin- $\frac{3}{2}$ matrices

With the ordered basis $\{ \left| +3/2 \right\rangle, \left| +1/2 \right\rangle, \left| -1/2 \right\rangle, \left| -3/2 \right\rangle \}$ take

$$\hat{S}_z = \frac{\hbar}{2} \begin{pmatrix} 3 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -3 \end{pmatrix}.$$

- a) Construct \hat{S}_{+} and \hat{S}_{-} via $\hat{S}_{\pm} = \hat{S}_{x} \pm i\hat{S}_{y}$ and give explicit 4×4 matrices.
- **b)** Hence write \hat{S}_x and \hat{S}_y and verify that they are Hermitian.
- c) Confirm the commutation relation $[\hat{S}_x, \hat{S}_y] = i\hbar \hat{S}_z$ in this representation.

7. Spin $-\frac{1}{2}$ in an infinite square well

Consider the Hamiltonian $\hat{H} = \hat{p}^2/2m + V(x)_2 + \beta \hat{S}_x$ with V(x) = 0 for 0 < x < L and $V = \infty$ otherwise.

- a) Solve the time-independent Schrödinger equation and give the energy eigenvalues.
- **b)** If the initial state is $\Psi(x,0) = \sqrt{\frac{2}{L}} \begin{pmatrix} \sin(\pi x/L) \\ 0 \end{pmatrix}$, find $\Psi(x,t)$.
- c) Determine the probability that a measurement of \hat{S}_x at time t yields $+\frac{\hbar}{2}$.

8. Spin-rotation operators

In the spin- $\frac{1}{2}$ representation $\hat{S} = \frac{\hbar}{2} \boldsymbol{\sigma}$.

- a) Show that $U_x(\alpha) = e^{-i\alpha \hat{S}_x/\hbar} = \cos \frac{\alpha}{2} i \sin \frac{\alpha}{2} \sigma_x$, and write the analogous formula for $U_z(\alpha)$.
- **b)** Verify the rotation-axis identity $U_x(\pi/2)^{-1} U_y(\alpha) U_x(\pi/2) = U_z(\alpha)$.

End of mock Exam 2

 $Solutions\ will\ be\ posted\ after\ the\ in\text{-}class\ test.$