Table des matières

Ι	Les	propié	étés physiques	2
	1	Analys	se Dimensionnelle	2
		1.1	Propriété physique de bases	2
		1.2	Les propriétés physiques dérivés	3
		1.3	Calcul / Analyse Dimensionnel	3
	2	Mesur	es - Incertidude - Calcul des variations	3
		2.1	Calcul d'incertitudes	3
		2.2	Calcul de variations	4

I

Les propiétés physiques

1 Analyse Dimensionnelle

1.1 Propriété physique de bases

Type	Dimension	Unité (SI)
Longueur	${ m L}$	mètre (m)
Temps	${ m T}$	seconds (s)
Masse	M	kilogrammes (kg)
Température	Θ	Kelvin(K)
Courant	I	Ampère (A)

Remarque 1 Ne pas confondre unité et dimension.

— Unité Associé la valeur numérique d'une mesure

Remarque 2 Il existe des grandeurs ayant une unité mais sans dimensions. Par exemple un angle a pour unité le radian mais [angle] = 1.

définition d'un angle

Les propriétés physiques dérivés 1.2

Propriétés	Equation	Dimension	Unité (SI)
Surface	$s = x^2$	L^2	m^2
Volume	$s = x^3$	L^3	m^3
Fréquence	$f = \frac{1}{t}$	T^{-1}	Hz
Vitesse	$v = \frac{dl}{dt}$	$L*T^{-1}$	$m*s^-1$
Accélération	$a = \frac{d^2l}{dt^2}$	$L * T^{-2}$	$m * s^{-2}$
Force	F = m * a	$M*L*T^{-2}$	N
Energie	E = F * L	$M * L^2 * T^{-2}$	J
Puissance	$P = \frac{E}{t}$	$M * L^2 * R^{-3}$	W(Watt)
Pression	$P = \frac{F}{S}$	$M*L^{-1}*T^{-2}$	Pa(Pascal)

Calcul / Analyse Dimensionnel 1.3

$$[Q] = M^{\alpha} * T^{\beta} * L^{\gamma} * \Theta^{\delta} * I^{\epsilon}$$
 Si Q est sans dimensions, $\alpha = \beta = \dots = \epsilon = 0$ $[Q] = 1$

Propriétés Générales des Equations en physique

- a Toutes equations faisant itervenir des grandeurs ϕ doit etre homogène. Si $Q_1=Q_2$ alors $[Q_1] = [Q_2]$ (une Equation aux dimesions)
- b Si $Q = Q_1 + Q_2 + Q_3 + ... + Q_n$ alors $[Q] = [Q_1] = ... = [Q_n]$ c $Q = f(x) \rightarrow [Q] = [f(x)]$ Si $f(x) = e^x$ ou f(x) = sin(x) Alors la dimensions de l'arguments x doit etre égale à 1. [x] = 1
- d dimension d'un vecteur est la dimension de la norme du vecteurs et des composants.
- e dimension de la dérivé d'une grandeur ϕ :

$$Q = f(x)$$

$$\left[\frac{dQ}{dx}\right] = \left[\frac{df(x)}{dx}\right] = \left[\frac{\Delta Q}{\Delta x}\right] = \frac{[Q]}{[x]} = [Q][x]^{-1}$$

2 Mesures - Incertidude - Calcul des variations

Espériences sont susceptibles d'erreurs et donne des incertitudes. On donnes donc une estimation.

- 2 approches d'estimations d'incertitudes.
- 1) incertitude due à l'expérimentation / répétition de la mesure. On estime donc l'incertitude statistique.
- 2) $G_V \in [G_e xp \delta G; G_e xp + \delta G] \delta G = \text{incertitude absolue}$ $\frac{\delta G}{G} = \text{incertitude relative (ou Précision)}$

Calcul d'incertitudes 2.1

On Calcule G à partir d'autres grandeurs mesurées $G_1, G_2, G_3, ...$, avec des incertitude $\delta G_1, \delta G_2, ...$

$$G = f(x)$$
 $G_{mesure} = f(x_{mesure})$
 $G_{ex} = f(x_{\alpha}) = f(x + \Delta x)$

2. MESURES - INCERTIDUDE - CALCUL DES VARIATIONS ES PROPIÉTÉS PHYSIQUES

$$G_{e}x = f(x_{mesure}) + \frac{df}{dx}(x_{mes})(x - x_{mes}) + \dots$$
 (I.1)

$$G_{ex} - G_{mes} \simeq \frac{df}{dx}(x_{mes})(x - x_{mes})$$
 (I.2)

$$\Delta G \simeq \frac{df}{dx}(x_{mes}) * \Delta x$$
 (I.3)

$$\delta G \simeq \left| \frac{df}{dx}(x_{mes}) \right| * \delta x$$
 (I.4)

Exemple

$$G \to f(x)$$
 = loi expérimental
$$= A * x^{a}$$

$$\delta G = |\frac{df}{dx}| \delta x = (A\dot{a}x^{a-1}) \delta x$$

$$= \frac{f(x)}{x} * a * \delta x$$

$$\delta G = |a * \frac{G}{x}| * \delta x$$

$$\frac{\delta G}{G} = |\frac{a}{x}| * \delta x$$

Ecriture d'un résultat : $G = (G_e x p + -\delta G)$ (Unité)

 $G = G_e x p$ à $(\frac{\delta x}{G})$ près. Exemple : $V_m esuree$ avec δV Précision(incertitude relative) $\frac{\delta V}{V}$

$$V = (V_{mesure} + -\delta v)m * s^{-1}$$

et $V = V_{mesure} à \frac{\delta v}{v}$ près

Remarque Incertitude non indiquée explicitemment ext évaluée d'après dernier chiffre significatif. M=2.50 kg signifie qu'on est précis à 10^{-2} ($\delta m=0.01kg$)

A contrario Si on écrit une valeur calculée, il faut bien s'arreter au dernier chiffre significatif (on écrit pas M=2.50138 sachant qu'on est précis à 10^{-2} près)

2.2 Calcul de variations

2. MESURES - INCERTIDUDE - CALCUL DES VARIATIONSLES PROPIÉTÉS PHYSIQUES

Si la longueur d'un côté varie, $S=x^2=2^2=4cm^2$ La variation de S quand x varie de Δx $\Delta S=S(x+\Delta x)-S(x_0)=0.42cm^2$

Autre méthode

$$\Delta S =$$

$$= S(x) - S(x_0) = (x_0 + \Delta x)^2 - x_0^2$$

$$= 2x_0 \Delta x + (\Delta x)^2$$

Si $\Delta x << x_0$, alors $(\Delta x)^2 <<< x_0$ On néglige alors $(\Delta x)^2$ (therme de second ordre) car beaucoup plus petit que x_0

$$\Delta S = 2x_0 \dot{\Delta} x$$

Généralisation G dépend de x, $G(x) = f(x)(x - x_0)$

$$f(x) \simeq f(x_0) + \frac{df}{dx}$$
 avec $x = x_0$