Digital Integrated Circuit Design

Yu Bi

ELE447 – Digital Integrated Circuit Design I University of Rhode Island Spring 2021

ELE447

• Title: "Digital Integrated Circuit Design I"

• Instructor

• Yu Bi, Assistant Professor, ECBE Department

Class Time

• 2:00 – 4:45 pm Wednesday, Online (Zoom)

• Prerequisites

- Digital or analog circuit design
- ELE 338/339, PH204, ELE212, ELE215 or instructor's permission
- A brief overview of digital/VLSI design will be provided

ELE447

Office Hours

- 2:00-4:00 pm Tuesday&Thursday
- Fascitelli Center 410

• Textbooks:

- D. Harris and N. Weste, "<u>CMOS VLSI Design: A Circuits and Systems</u> <u>Perspective</u>", 4th edition, Pearson, 2010.
- D. A. Hodges, H. G. Jackson, R. A. Saleh, Analysis and Design of Integrated Circuits, 3rd edition, McGraw-Hill, 2004. ISBN 0-07-228365-3.

Course Websites:

• https://yubi-ece.github.io/teaching/ele447_digital_ic.html

Supplementary

• Opencores, https://opencores.org/

Textbooks and Materials

- Textbooks (not required):
 - CMOS VLSI Design: A Circuits and Systems Perspective, Pearson, 2010.
 - Analysis and Design of Integrated Circuits, McGraw-Hill, 2004.
- Reading Materials
 - Conferences: IEEE ISCAS, IEEE/ACM DAC, DATE, IEEE ICCAD; IEEE SSCC; IEEE CICC; IEEE VLSI Circuits, etc.
 - Journals: IEEE JSSC, IEEE TCAS-I/II, IEEE TCAD, IEEE TC, IEEE TVLSI etc.

Course Objectives

This is an introductory course in CMOS integrated circuit design where you will go from the low-level physical transistor and mask design of your own cell library, all the way to the design, implementation, and fabrication of a significant CMOS digital integrated circuit.

Course Topics

- CMOS Logic, Switch Models & Simple RC Models;
- IC Fabrication, Layout & Design Rules;
- Device Physics, MOS Models, Device Scaling & Short-channel effects;
- Static CMOS & Pseudo NMOS Logic Gates;
- Pass Transistor Logic;
- Dynamic Logic & Other CMOS Logic Families;
- Static/Dynamic Flip-Flops, Registers, Semiconductor Memory, Counters & Arithmetic Elements;

•

Work required by this course

- Lectures
 - Read sections in text and slides before class
- Lab Assignments
 - Six major exercises dealing with various aspects of VLSI design
 - Complete each section before the deadline
- Final Project
 - Your opportunity to design a chip of interest to you
 - Design could be completed to the point where it could be fabricated by following process covered this course
- This course includes a large amount of useful information and skill practice that will help you for your future career

Grading

- Grading
 - Lab Assignments and Reports: 60%
 - Student Final Projects and Reports: 40%
- Project
 - Individual
 - Propose or select from a given list of projects.

Collaboration is good! Cheating is not!

- Collaboration is good!
 - Discussing issues with your classmates is a good way to learn and a study group is a very effective learning tool. Feel free to discuss lab exercises with classmates, TAs and the instructors
 - Helping each other learn is particularly satisfying
 - But Individual assignments and projects must be done by individuals
- Cheating is a serious breach of trust and will not be tolerated
 - If ever in doubt, don't do it or ask me immediately for a clarification
 - Don't cheat, its not worth it.

IC Design - The Big Picture

- Today we are generally designing IC systems for a particular embedded application:
 - Need to decompose design into sub-functions
 - Need to integrate the various sub-functions into a System-on-a-Chip
 - Guess what? Also need to write 1 million lines of code to make your system work.
- What do you do with a billion transistors?
 - The real question is how do you test a billion transistors to make sure they were manufactured correctly?
 - How do you co-verify a million lines of software and the billion transistors?

Types of IC Designs

- IC Designs can be **Analog** or **Digital** or both!!
- Digital designs can be one of three groups
 - Full Custom
 - Every transistor designed and laid out by hand
 - **ASIC** (Application-Specific Integrated Circuits)
 - Designs synthesized automatically from a high-level language description
 - Semi-Custom or structured custom
 - Mixture of custom and synthesized modules
- Analog designs are generally full custom
 - Digitally assisted Analog is a combination of full custom and ASIC

Digital IC Design Flow

Old IC Landscape

IC Globalization

Laboratory Design Tools

- We will use commercial CAD tools
 - Cadence, Synopsys, etc.
- Commercial software is powerful, but very complex
 - Designers sent to long training classes
 - Students will benefit from using the software, but we don't have the luxury of long training
 - TAs have experience with the software
- Start work early in the lab
 - Plan designs carefully and save your work frequently.

Tools for Lab/Projects

- Tools
 - Circuit Simulation: Cadence Virtuoso
 - Remote Access: MobaXterm; Xpra
 - MobaXterm: https://mobaxterm.mobatek.net/
 - Linux commands, Bash and Shell etc.
- Hardware
 - URI Engineering Servers

URI Linux Account

ECBE Portal Link: https://portal.ele.uri.edu/

Instruction:

- 1) Visit the ECBE Portal
- 2) Log in with their URI G-Suite accounts
- 3) Use the Portal's "Create/Reset ELE Account" function to create their ELE accounts

The Portal's account creation form has a text field for justification for the new account. Simply enter "ELE448" in the justification field.

Remote Access

- MobaXterm
 - https://mobaxterm.mobatek.net/

Remote Access

- MobaXterm
 - Connect to URI engineering servers (e.g. jib.ele.uri.edu)

Remote Access

- URI Engineering Server Lists
 - *.ele.uri.edu (* is computer name)

• Students will be assigned to each computer

Computer Name		
jib		
fin		
keel		
bow		
oar		
rudder		
anchor		
sail		
mast		
shark		
sans		
papyrus		
toriel		
eddie		
undyne		

Cadence

Circuit Schematic and Simulation

Circuit Schematic

Circuit Simulation

Cadence Virtuoso

Circuit Layouts and Fabrication

Circuit Layouts

Chip Image

Take a Break!

Silicon (Si)

- Silicon is a semiconductor
- Pure silicon has no free carriers and conducts poorly
- Adding dopants increases the conductivity
- Group V: extra electron (n-type)
- Group III: missing electron, called hole (p-type)

P-N Junctions

- A junction between p-type and n-type semiconductor forms a diode.
- Current flows only in one direction

anode cathode

nMOS Transistor

- Four terminals: gate, source, drain, body
- Gate oxide body stack looks like a capacitor
 - Gate and body are conductors
 - SiO₂ (oxide) is a very good insulator
 - Called metal oxide semiconductor (MOS) capacitor
 - Even though the gate is no longer made of metal
 - Not true for 45nm and beyond.

nMOS Operation

- Body is commonly tied to ground (0 V)
- When the gate is at a low voltage:
 - P-type body is at low voltage
 - Source-body and drain-body diodes are OFF
 - No current flows, transistor is OFF

nMOS Operation

When the gate is at a high voltage:

- Positive charge on gate of MOS capacitor
- Negative charge attracted to body
- Inverts a channel under gate to n-type
- Now current can flow through n-type silicon from source through channel to drain, transistor is ON

pMOS Transistor

Similar, but doping and voltages reversed

- Body tied to high voltage (VDD)
- Gate low: transistor ON
- Gate high: transistor OFF
- Bubble indicates inverted behavior

Power Supply Voltage

- In 1970's VDD = 12-18V for Metal Gate CMOS
- In 1980's, VDD = 5V
- VDD has decreased in modern processes
 - High VDD would damage modern tiny transistors
 - Lower VDD saves power
- VDD = 3.3, 2.5, 1.8, 1.5, 1.2, 1.0, 0.8, 0.7, 0.6
- GND = 0 V

Transistors as Switches

- We can view MOS transistors as electrically controlled switches
- Voltage at gate controls path from source to drain

CMOS Inverter

Α	Υ
0	
1	

CMOS Inverter

CMOS Inverter

CMOS NOR Gate

Α	В	Υ		
0	0	1		
0	1	0		
1	0	0		
1	1	0		

3-input NAND Gate

- Y pulls low if ALL inputs are 1
- Y pulls high if ANY input is 0

3-input NAND Gate

- Y pulls low if ALL inputs are 1
- Y pulls high if ANY input is 0

Characteristics of CMOS Gates

- In general, when the circuit is stable
 - There is a path from one supply (VSS or VDD) to the output (low static power dissipation)
 - There is NEVER a path from one supply to another
- There is a momentary drain of current when a gate switches from one state to the other
 - Dynamic power dissipation
- If a node has no path to power or ground, the previous value retained due to the capacitance of the node.
 - Don't count on it though. Leakage is so bad in DSM that the charge will be lost.