CS204: 數位系統設計

Gate-Level Minimization

Outline of Chapter 3

- 3.1 Introduction
- 3.2 The Map Method
- 3.3 Four-Variable Map
- 3.4 Product-of-Sums Simplification
- 3.5 Don't-Care Conditions
- 3.6 NAND and NOR Implementation
- 3.7 Other Two-Level Implementation
- 3.8 Exclusive-OR Function
- 3.9 Hardware Description Language

3-1 Introduction (p.89)

- Gate-level minimization refers to the design task of finding an optimal gate-level implementation of Boolean functions describing a digital circuit
- The complexity of the digital logic gates
 - The complexity of the algebraic expression
- Algebraic approaches: lack specific rules

3-2 The Map Method (p.89, 90)

- The Karnaugh map
 - A simple and straight forward procedure
 - A pictorial form of a truth table
 - \bullet Applicable if the # of variables \leq 6
- A diagram made up of squares
 - Each square represents one minterm

Two-Variable Map (p.90)

A two-variable map

- Four minterms
- x' = row 0; x = row 1
- y' = column 0; y = column 1
- A truth table in square diagram
- Fig. 3.2(a): $xy = m_3$
- Fig. 3.2(b): $x + y = x'y + xy' + xy = m_1 + m_2 + m_3$

Figure 3.1 Two-variable Map

A Three-Variable Map (p.91)

A three-variable map

- Eight minterms
- The Gray code sequence
- Any two adjacent squares in the map differ by only one variable
 - » Primed in one square and unprimed in the other
 - » e.g., m_5 and m_7 can be simplified
 - $m_5 + m_7 = xy'z + xyz = xz(y' + y) = xz$

Figure 3.3 Three-variable Map

A Three-Variable Map (p.91, 92)

- \bullet m_0 and m_2 (m_4 and m_6) are adjacent
- \bullet $m_0 + m_2 = x'y'z' + x'yz' = x'z'(y' + y) = x'z'$
- \bullet $m_4 + m_6 = xy'z' + xyz' = xz'(y' + y) = xz'$

					$\searrow yz$			<i>y</i>		
					_	x	00	0 1	11	10
	m_0	m_1	m_3	m_2		0	x'y'z'	x'y'z	x'yz	x'yz'
	m_4	m_5	m_7	m_6	x	1	xy'z'	xy'z	xyz	xyz'
•		•				b)				

Fig. 3-3 Three-variable Map

Example 3.1 (p.92)

- **Example 3.1:** simplify the Boolean function $F(x, y, z) = \Sigma(2, 3, 4, 5)$
 - + $F(x, y, z) = \Sigma(2, 3, 4, 5) = x'y + xy'$

Figure 3.4 Map for Example 3.1, $F(x, y, z) = \Sigma(2, 3, 4, 5) = x'y + xy'$

Example 3.2 (p.93)

- **Example 3.2:** simplify $F(x, y, z) = \Sigma(3, 4, 6, 7)$
 - $F(x, y, z) = \Sigma(3, 4, 6, 7) = yz + xz'$

Figure 3.5 Map for Example 3-2; $F(x, y, z) = \Sigma(3, 4, 6, 7) = yz + xz'$

Four adjacent Squares (p.94)

Consider four adjacent squares

- 2, 4, and 8 squares
- $m_0 + m_2 + m_4 + m_6 = x'y'z' + x'yz' + xy'z' + xyz' = x'z'(y' + y) + xz'(y' + y) = x'z' + xz' = z'$
- $m_1 + m_3 + m_5 + m_7 = x'y'z + x'yz + xy'z + xyz = x'z(y' + y) + xz(y' + y) = x'z + xz = z$

Figure 3.3 Three-variable Map

Example 3.3 (p.94)

- **Example 3.3:** simplify $F(x, y, z) = \Sigma(0, 2, 4, 5, 6)$
- $F(x, y, z) = \Sigma(0, 2, 4, 5, 6) = z' + xy'$

Figure 3.6 Map for Example 3-3, $F(x, y, z) = \Sigma(0, 2, 4, 5, 6) = z' + xy'$

Example 3.4 (p.95)

- **Example 3.4:** let F = A'C + A'B + AB'C + BC
 - a) Express it in sum of minterms
 - b) Find the minimal sum of products expression

$$F(A, B, C) = \Sigma(1, 2, 3, 5, 7) = C + A'B$$

Figure 3.7 Map for Example 3.4, A'C + A'B + AB'C + BC = C + A'B

3.3 Four-Variable Map (p.96)

■ The map

- 16 minterms
- Combinations of 2, 4, 8, and 16 adjacent squares

m_0	m_1	m_3	m_2	
m_4	m_5	m_7	m_6	
m_{12}	m_{13}	m_{15}	m_{14}	
m_8	m_9	m_{11}	m_{10}	
(a)				

Figure 3.8 Four-variable Map

Example 3.5 (p.97)

Example 3.5: simplify $F(w, x, y, z) = \Sigma(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$

Figure 3.9 Map for Example 3-5; $F(w, x, y, z) = \Sigma(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14) = y' + w' z' + xz'$

Example 3.6 (p.97, 98)

Example 3.6: simplify F = A B C' + B CD' + A BCD' + AB C'

Figure 3.9 Map for Example 3-6; **ABC'+BCD'+ABCD'+ABC'=BD'+BC'+ACD'**

Prime Implicants (p.98)

- K-map-based minimization
 - All the minterms are covered
 - Minimize the number of terms
- Prime Implicants
 - A prime implicant: a product term obtained by combining the maximum possible number of adjacent squares (combining all possible maximum numbers of squares)
 - Essential P.I.: a prime implicant in which there exists a minterm which is only covered by the prime implicant
 - The essential P.I. must be included
 - » So, select them first

Prime Implicants (p.99)

- **©** Consider $F(A, B, C, D) = \Sigma(0, 2, 3, 5, 7, 8, 9, 10, 11, 13, 15)$
 - The simplified expression may not be unique
 - F = BD+B'D'+CD+AD = BD+B'D'+CD+AB'
 = BD+B'D'+B'C+AD = BD+B'D'+B'C+AB'

Note: A'B'C'D' + A'B'CD' = A'B'D' AB'C'D' + AB'CD' = AB'D'A'B'D' + AB'D' = B'D'

(a) Essential prime implicants *BD* and *B'D'*

(b) Prime implicants CD, B'C, AD, and AB'

Figure 3.11 Simplification Using Prime Implicants

3-4 Product of Sums Simplification (p.100)

Approach #1

- Simplified F' in the form of sum of products
- Apply DeMorgan's theorem F = (F')'
- \bullet F': sum of products \rightarrow F: product of sums

Approach #2: duality

- Combinations of maxterms (it was minterms)
- \bullet $M_0M_1 = (A+B+C+D)(A+B+C+D') = (A+B+C)+(DD') = A+B+C$

	CD			
AB \	00	01	11	10
00	M_0	M_1	M_3	M_2
01	M_4	M_5	M_7	M_6
11	M_{12}	M_{13}	M_{15}	M_{14}
10	M_8	M_9	M_{11}	M_{10}

Example 3.7 (p.101)

Example 3.7: simplify $F = \Sigma(0, 1, 2, 5, 8, 9, 10)$ into (a) sum-ofproducts form, and (b) product-of-sums form:

F(A, B, C, D) = S(0, 1, 2, 5, 8,(9, 10) = B'D' + B'C' + A'C'D

> » Apply DeMorgan's theorem; F=(A'+B')(C'+D')(B'+D)

Note: BC'D' + BCD' = BD'

Figure 3.12 Map for Example 3.7, $F(A, B, C, D) = \Sigma(0, 1, 1)$ (2, 5, 8, 9, 10) = B'D' + B'C' + A'C'D

Example 3.7 (cont.) (p.102)

■ Gate implementation of the function of Example 3.7

Sum-of products form

Product-of sums form

Figure 3.13 Gate Implementation of the Function of Example 3.7

3-5 Don't-Care Conditions (p.104)

- The value of a function is not specified for certain combinations of variables
 - BCD; 1010-1111: don't care
- The don't-care conditions can be utilized in logic minimization
 - Can be implemented as 0 or 1
- **Example 3.8:** simplify $F(w, x, y, z) = \Sigma(1, 3, 7, 11, 15)$ which has the don't-care conditions $d(w, x, y, z) = \Sigma(0, 2, 5)$

Example 3.8 (cont.) (p.104, 105)

- ightharpoonup F = yz + w'x'; F = yz + w'z
- $F = \Sigma(0, 1, 2, 3, 7, 11, 15)$; $F = \Sigma(1, 3, 5, 7, 11, 15)$
- Either expression is acceptable

Figure 3.15 Example with don't-care Conditions

3-6 NAND and NOR Implementation (p.106)

NAND gate is a universal gate

Can implement any Boolean function

Figure 3.16 Logic Operations with NAND Gates

NAND Gate (p.107)

Two graphic symbols for a NAND gate

Figure 3.17 Two Graphic Symbols for NAND Gate

Two-level Implementation (p.107, 108)

Two-level logic

- **♦** NAND-NAND = sum of products
- **♦** Example: *F* = *AB+CD*
- F = ((AB)' (CD)')' =AB+CD

Figure 3.18 Three ways to implement F = AB + CD

Example 3.9 (p.108, 109)

Example 3-9: implement F(x, y, z) =

$$F(x, y, z) = \sum (1, 2, 3, 4, 5, 7)$$

$$F(x, y, z) = xy' + x'y + z$$

Figure 3.19 Solution to Example 3-9

Procedure with Two Levels NAND (p.109)

The procedure

- Simplified in the form of sum of products;
- A NAND gate for each product term; the inputs to each NAND gate are the literals of the term (the first level);
- A single NAND gate for the second sum term (the second level);
- A term with a single literal requires an inverter in the first level

Multilevel NAND Circuits (p.109, 110)

Boolean function implementation

- ◆ AND-OR logic → NAND-NAND logic
 - » AND → NAND + inverter
 - » OR: inverter + OR = NAND

(a) AND-OR gates Alternating levels of AND and OR gates

(b) NAND gates

Figure 3.20 Implementing F = A(CD + B) + BC'

NAND Implementation (p.110, 111)

Figure 3.21 Implementing F = (AB' + AB)(C + D')

NOR Implementation (p.111, 112)

- NOR function is the dual of NAND function
- The NOR gate is also universal

Figure 3.22 Logic Operation with NOR Gates

Two Graphic Symbols for a NOR Gate (p.112, 113)

$$x = (x + y + z)'$$

$$x = (x + y + z)'$$

$$x = (x + y + z)'$$

$$x = (x + y + z)'$$
(a) OR-invert
(b) Invert-AND

Figure 3.23 Two Graphic Symbols for NOR Gate

Example:
$$F = (A + B)(C + D)E$$

Figure 3.24 Implementing F = (A + B)(C + D)E

Example (p.113)

Example: F = (AB' + A'B)(C + D')

Figure 3.25 Implementing F = (AB' + AB)(C + D') with NOR gates

3-70ther Two-level Implementations

16 possible combinations of two-level forms

- Eight of them: degenerate forms = a single operation
 - » AND-AND, AND-NAND, OR-OR, OR-NOR, NAND-OR, NAND-NOR, NOR-AND, NOR-NAND.
- The eight non-degenerate forms
 - » AND-OR, OR-AND, NAND-NAND, NOR-NOR, NOR-OR, NAND-AND, OR-NAND, AND-NOR.
 - » AND-OR and NAND-NAND = sum of products
 - » OR-AND and NOR-NOR = product of sums
 - » NAND-AND and AND-NOR = AND-OR-INVERT
 - » NOR-OR and OR-NAND = OR-AND-INVERT

AND-OR-Invert Implementation (p.115)

AND-OR-INVERT (AOI) Implementation

- ◆ NAND-AND = AND-NOR = AOI
- ightharpoonup F = (AB+CD+E)' (sum of products + Inverter)
- ♦ F' = AB+CD+E (sum of products)

Figure 3.27 AND-OR-INVERT circuits, F = (AB + CD + E)'

OR-AND-Invert Implementation (p.116)

OR-AND-INVERT (OAI) Implementation

- OR-NAND = NOR-OR = OAI
- + F = ((A+B)(C+D)E)' (product of sums + Inverter)
- + F' = (A+B)(C+D)E (product of sums)

Figure 3.28 OR-AND-INVERT circuits, F = ((A+B)(C+D)E)'

Tabular Summary and Examples (p.117)

Table 3.2 *Implementation with Other Two-Level Forms*

	valent nerate Form	Implements	Simplify	To Get an Output of
(a)	(b)*	the Function	F' into	
AND-NOR	NAND-AND	AND-OR-INVERT	Sum-of-products form by combining 0's in the map.	F
OR-NAND	NOR-OR	OR-AND-INVERT	Product-of-sums form by combining 1's in the map and then complementing.	F

^{*}Form (b) requires an inverter for a single literal term.

Tabular Summary and Examples (p.117)

Example 3-10: Implement the following function with (a) AND-NOR (b) NAND-AND (c) OR-NAND (d) NOR-OR forms

(a) Map simplification in sum of products

Tabular Summary and Examples (p.118)

(a) AND-NOR (b) NAND-AND

+ F' = x'y+xy'+z

(F': sum of products)

F = (x'y+xy'+z)'

(F: AOI implementation)

Tabular Summary and Examples (p.118)

(c) OR-NAND (d) NOR-OR forms

ightharpoonup F = x'y'z' + xyz' (F: sum of products)

F' = (x+y+z)(x'+y'+z) (F': product of sums)

• F = ((x+y+z)(x'+y'+z))' (F: OAI)

3-8 Exclusive-OR Function (p.119)

- Exclusive-OR (XOR)
 - \rightarrow $x \oplus y = xy' + x'y$
- Exclusive-NOR (XNOR)
 - $(x \oplus y)' = xy + x'y'$
- Some identities
 - $\rightarrow x \oplus 0 = x$
 - \bullet $x \oplus 1 = x'$
 - \bullet $x \oplus x = 0$
 - $\rightarrow x \oplus x' = 1$
 - \rightarrow $x \oplus y' = (x \oplus y)'$
 - \rightarrow $x' \oplus y = (x \oplus y)'$
- Commutative and associative
 - $A \oplus B = B \oplus A$
 - $\bullet \quad (A \oplus B) \oplus C = A \oplus (B \oplus C) = A \oplus B \oplus C$

Exclusive-OR Implementations (p.120)

Implementations

 $(x' + y') x + (x' + y') y = xy' + x'y = x \oplus y$

(a) With AND-OR-NOT gates

Figure 3.30 Exclusive-OR Implementations

Odd Function (p.120, 121)

- ♦ $A \oplus B \oplus C = (AB'+A'B)C' + (AB+A'B')C = AB'C'+A'BC'+ABC+A'B'C = Σ(1, 2, 4, 7)$
- ♦ XOR is an odd function \rightarrow an odd number of 1's, then F = 1
- ♦ XNOR is an even function \rightarrow an even number of 1's, then F = 1

(a) Odd function $F = A \oplus B \oplus C$

(b) Even function $F = (A \oplus B \oplus C)'$

Figure 3.31 Map for a Three-variable Exclusive-OR Function

XOR and XNOR (p.121)

Logic diagram of odd and even functions

Figure 3.32 Logic Diagram of Odd and Even Functions

Four-variable Exclusive-OR function

Four-variable Exclusive-OR function

Figure 3.33 Map for a Four-variable Exclusive-OR Function

Parity Generation and Checking (p.122, 123)

Parity Generation and Checking

- ♦ A parity bit: $P = x \oplus y \oplus z$
- **♦** Parity check: $C = x \oplus y \oplus z \oplus P$
 - » C=1: one bit error or an odd number of data bit error
 - » C=0: correct or an even # of data bit error

Figure 3.34 Logic Diagram of a Parity Generator and Checker

Parity Generation and Checking

Table 3.3 *Even-Parity-Generator Truth Table*

Three	e-Bit Me	Parity Bit	
X	y	Z	P
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Parity Generation and Checking (p.124)

Table 3.4 *Even-Parity-Checker Truth Table*

		Bits ived	Parity Error Check	
X	y	z	P	С
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0