Homework 3 Solutions

E2-210, Jan-Apr 2025

1. Show that the set of Pauli matrices $\{X(\mathbf{a})Z(\mathbf{b}): \mathbf{a}, \mathbf{b} \in \{0,1\}^n\}$ is an orthonormal basis for the vector space, $\mathbb{C}^{N \times N}$, of $N \times N$ complex matrices, under the Hilbert-Schmidt inner product: $(A,B) \stackrel{\text{def}}{=} \frac{1}{N} \operatorname{tr}(A^{\dagger}B)$. (Here, as usual $N=2^n$.)

Solution: Recall that $X(\mathbf{a})Z(\mathbf{b})$ denotes the Pauli operator $M_1 \otimes M_2 \otimes \cdots \otimes M_n$, with

$$M_{j} = \begin{cases} I & \text{if } (a_{j}, b_{j}) = (0, 0) \\ X & \text{if } (a_{j}, b_{j}) = (1, 0) \\ Y & \text{if } (a_{j}, b_{j}) = (1, 1) \\ Z & \text{if } (a_{j}, b_{j}) = (0, 1) \end{cases}$$

In particular, if $M = X(\mathbf{a})Z(\mathbf{b})$, then $M^{\dagger} = M$.

Now, consider any pair of Pauli matrices $M = X(\mathbf{a})Z(\mathbf{b})$ and $M' = X(\mathbf{a}')Z(\mathbf{b}')$ with $(\mathbf{a}, \mathbf{b}) \neq (\mathbf{a}', \mathbf{b}')$. Recall that MM' is, up to a phase factor, equal to $X(\mathbf{a} \oplus \mathbf{a}')Z(\mathbf{b} \oplus \mathbf{b}')$. Since $(\mathbf{a}, \mathbf{b}) \neq (\mathbf{a}', \mathbf{b}')$, we have $(\mathbf{a} \oplus \mathbf{a}', \mathbf{b} \oplus \mathbf{b}') \neq (\mathbf{0}, \mathbf{0})$. Hence, $X(\mathbf{a} \oplus \mathbf{a}')Z(\mathbf{b} \oplus \mathbf{b}') \neq I_N$, so that $\operatorname{tr}(X(\mathbf{a} \oplus \mathbf{a}')Z(\mathbf{b} \oplus \mathbf{b}')) = 0$. Therefore,

$$(M,M') = \frac{1}{N}\operatorname{tr}(M^\dagger M') = \frac{1}{N}\operatorname{tr}(MM') = \frac{(\operatorname{phase \ factor})}{N}\operatorname{tr}\big(X(\mathbf{a} \oplus \mathbf{a}')Z(\mathbf{b} \oplus \mathbf{b}')\big) = 0.$$

On the other hand, $(M,M)=\frac{1}{N}\operatorname{tr}(M^2)=\frac{1}{N}\operatorname{tr}(I_N)=1.$

Thus, with respect to the Hilbert-Schmidt inner product, $\{X(\mathbf{a})Z(\mathbf{b}): \mathbf{a}, \mathbf{b} \in \{0,1\}^n\}$ is a collection of orthonormal matrices. Since the matrices are mutually orthogonal, they are linearly independent. There are $2^{2n} = N^2$ such matrices and $\dim(\mathbb{C}^{N\times N}) = N^2$, so they must form a basis of $\mathbb{C}^{N\times N}$.

2. Let G be a graph on the vertex set $[n] := \{1, 2, \dots, n\}$ having edge set $E \subseteq {[n] \choose 2}$. (Here, ${[n] \choose 2}$ denotes the set of all 2-subsets of [n], so that edges are certain 2-subsets of [n]. In particular, the graph has no self-loops, i.e., edges that connect a vertex to itself.)

Let A be the adjacency matrix of G; this is the $n \times n$ matrix with 0/1 entries, whose (i, j)-th entry is 1 iff $\{i, j\}$ is an edge of G. Set $H = [I \mid A]$, where I is the $n \times n$ identity matrix. Thus, H is an $n \times 2n$ matrix having rank n.

1

(a) Show that the symplectic product between any pair of rows of H is 0.

Solution: Let $a_{i,j}$ denote the (i,j)-th entry of the adjacency matrix A, and let $\mathbf{a}_i = [a_{i,1} \ a_{i,2} \ \dots \ a_{i,n}]$ be the i-th row of A. Note that A is symmetric: $a_{i,j} = a_{j,i} = 1$ if the vertices i and j are connected by an edge in the graph G, and $a_{i,j} = a_{j,i} = 0$ otherwise.

The *i*-th row of H is of the form $[\mathbf{e}_i \mid \mathbf{a}_i]$, where $\mathbf{e}_i = [0 \cdots 0 \ 1 \ 0 \cdots 0]$ with the 1 appearing in the *i*-th coordinate. Thus, the symplectic product between the *i*-th and *j*-th rows of H is $\mathbf{e}_i \cdot \mathbf{a}_j - \mathbf{e}_j \cdot \mathbf{a}_i \mod 2$. This equals 0, since $\mathbf{e}_i \cdot \mathbf{a}_j - \mathbf{e}_j \cdot \mathbf{a}_i = a_{j,i} - a_{i,j} = 0$.

(b) If S is the stabilizer group defined by the check matrix H, what is dim Q_S ?

Solution: The check matrix H has rank n, so its rows correspond to n independent generators. Hence, $|\mathcal{S}| = 2^n$ and $\dim(\mathcal{Q}_{\mathcal{S}}) = 2^n/2^n = 1$. Thus, $\mathcal{Q}_{\mathcal{S}}$ is an [[n,0]] stabilizer code.

3. In this exercise, we will prove the following proposition:

Proposition: Let C_1 and C_2 be, respectively, $[n, k_1]$ and $[n, k_2]$ binary linear codes such that $C_1^{\perp} \subseteq C_2$. Let $A_0 := C_1^{\perp}$, A_1, \ldots, A_{K-1} be a listing of the $K = 2^{k_1 + k_2 - n}$ cosets of C_1^{\perp} within C_2 . Then, the quantum states

$$|\phi_j\rangle := \frac{1}{\sqrt{2^{n-k_1}}} \sum_{\mathbf{x} \in A_j} |\mathbf{x}\rangle, \quad j = 0, 1, \dots, K-1,$$

form an orthonormal basis of the quantum code \mathcal{Q} obtained via the CSS construction from \mathcal{C}_1 and \mathcal{C}_2 .

(a) Show that $\langle \phi_i | \phi_i \rangle = \delta_{i,j}$.

Solution: First, note that $\langle \mathbf{x} | \mathbf{x}' \rangle = 0$ for any pair of distinct binary n-tuples \mathbf{x} and \mathbf{x}' . To see this, write $|\mathbf{x}\rangle = |x_1x_2...x_n\rangle$ and $|\mathbf{x}'\rangle = |x_1'x_2'...x_n'\rangle$, with $x_1, x_i' \in \{0, 1\}$ for all i. We then have $\langle \mathbf{x} | \mathbf{x}' \rangle = \prod_{i=1}^n \langle x_i | x_i' \rangle = 0$, since for at least one index i, we have $x_i \neq x_i'$.

Now, use the fact that cosets A_i and A_j are disjoint for $i \neq j$. This means that for all $\mathbf{x} \in A_i$ and $\mathbf{x}' \in A_j$, we have $\mathbf{x} \neq \mathbf{x}'$, and hence, $\langle \mathbf{x} | \mathbf{x}' \rangle = 0$. It follows (by linearity of the inner product) that $\langle \phi_i | \phi_j \rangle = 0$ for $i \neq j$.

By similar reasoning, we have $\langle \phi_i | \phi_i \rangle = \frac{1}{2^{n-k_1}} \sum_{\mathbf{x} \in A_i} \underbrace{\langle \mathbf{x} | \mathbf{x} \rangle}_{=1} = \frac{1}{2^{n-k_1}} |A_i| = 1$, since all cosets A_i have size equal to $|\mathcal{C}_1^{\perp}| = 2^{n-k_1}$.

Let H_1 and H_2 be any pair of parity-check matrices for C_1 and C_2 , respectively, of full row-rank. Thus, H_1 and H_2 are, respectively, $(n - k_1) \times n$ and $(n - k_2) \times n$ binary matrices such that $H_1 H_2^T = \mathbf{0}$ over \mathbb{F}_2 . By the CSS construction, the stabilizer generators are $X(\mathbf{h})$ and $Z(\mathbf{h}')$, where \mathbf{h} and \mathbf{h}' range over the rows of H_1 and H_2 , respectively.

(b) Argue that, for any binary *n*-tuples \mathbf{x} , \mathbf{h} and \mathbf{h}' , we have $X(\mathbf{h}) | \mathbf{x} \rangle = | \mathbf{x} \oplus \mathbf{h} \rangle$ and $Z(\mathbf{h}') | \mathbf{x} \rangle = (-1)^{\mathbf{h}' \cdot \mathbf{x}} | \mathbf{x} \rangle$. In other words, the Pauli operator $X(\mathbf{h})$ applied to $| \mathbf{x} \rangle$ yields $| \mathbf{x} \oplus \mathbf{h} \rangle$, and the Pauli operator $Z(\mathbf{h}')$ applied to $| \mathbf{x} \rangle$ yields $(-1)^{\mathbf{h}' \cdot \mathbf{x}} | \mathbf{x} \rangle$.

Solution: This is more or less by definition of the X and Z operators. Note that $X(\mathbf{h}) = \bigoplus_i X_i^{h_i}$, where X_i is the X operator acting on the ith qubit. Thus, $X(\mathbf{h}) | \mathbf{x} \rangle = \bigotimes_i X_i^{h_i} | x_i \rangle = \bigotimes_i | x_i \oplus h_i \rangle = | \mathbf{x} \oplus \mathbf{h} \rangle$.

Similarly,
$$Z(\mathbf{h}') | \mathbf{x} \rangle = \bigotimes_i Z_i^{h_i'} | x_i \rangle = \bigotimes_i (-1)^{h_i' x_i} | x_i \rangle = \left[\prod_i (-1)^{h_i' x_i} \right] | \mathbf{x} \rangle = (-1)^{\mathbf{h}' \cdot \mathbf{x}} | \mathbf{x} \rangle.$$

(c) Show, using (b), that for any row \mathbf{h} of H_1 , we have $X(\mathbf{h}) |\phi_j\rangle = |\phi_j\rangle$, and for any row \mathbf{h}' of H_2 , we have $Z(\mathbf{h}') |\phi_j\rangle = |\phi_j\rangle$.

Solution: Write the sum $\sum_{\mathbf{x}\in A_j} |\mathbf{x}\rangle$ as $\sum_{\mathbf{c}\in\mathcal{C}_1^{\perp}} |\mathbf{a}\oplus\mathbf{c}\rangle$, where \mathbf{a} is a fixed binary vector (a "coset leader") in A_j . Then, for any row \mathbf{h} of H_1 , we have

$$X(\mathbf{h}) |\phi_{j}\rangle = \frac{1}{\sqrt{2^{n-k_{1}}}} \sum_{\mathbf{c} \in \mathcal{C}_{1}^{\perp}} X(\mathbf{h}) |\mathbf{a} \oplus \mathbf{c}\rangle$$

$$\stackrel{\text{by (b)}}{=} \frac{1}{\sqrt{2^{n-k_{1}}}} \sum_{\mathbf{c} \in \mathcal{C}_{1}^{\perp}} |\mathbf{a} \oplus \mathbf{c} \oplus \mathbf{h}\rangle$$

$$= \frac{1}{\sqrt{2^{n-k_{1}}}} \sum_{\mathbf{c}' \in \mathcal{C}_{1}^{\perp}} |\mathbf{a} \oplus \mathbf{c}'\rangle = |\phi_{j}\rangle.$$

In the last line above, we have used the fact that as c runs over the codewords in \mathcal{C}^{\perp} , so does c' := c + h, since h, being a row of the parity-check matrix of \mathcal{C}_1 , is some (fixed) codeword of \mathcal{C}_1^{\perp} .

Next, for any row h' of H_2 , we have

$$Z(\mathbf{h}') |\phi_{j}\rangle = \frac{1}{\sqrt{2^{n-k_{1}}}} \sum_{\mathbf{x} \in A_{j}} Z(\mathbf{h}') |\mathbf{x}\rangle$$

$$\stackrel{\text{by (b)}}{=} \frac{1}{\sqrt{2^{n-k_{1}}}} \sum_{\mathbf{x} \in A_{j}} (-1)^{\mathbf{h}' \cdot \mathbf{x}} |\mathbf{x}\rangle$$

$$= \frac{1}{\sqrt{2^{n-k_{1}}}} \sum_{\mathbf{x} \in A_{j}} |\mathbf{x}\rangle = |\phi_{j}\rangle.$$

In the last line above, we have used the fact that $\mathbf{h}' \in \mathcal{C}_2^{\perp}$ (since it is a row of a parity-check matrix of \mathcal{C}_2) and $\mathbf{x} \in \mathcal{C}_2$ (since it is an element of a coset of \mathcal{C}_1^{\perp} within \mathcal{C}_2), so that $\mathbf{h}' \cdot \mathbf{x} = 0 \pmod{2}$.