

TEST REPORT

Date:	ESPOO 30.5.2013	Page: <u>1 (31)</u> Appendices
Number: No. 1 / 1	206548A	Date of handing in: 03.04.2013 Tested by:
		Timo Hietala, Test Specialist
		Reviewed by:
		Janne Nyman, Compliance Specialist

SORT OF EQUIPMENT: Digital hearing aid system

MARKETING NAME:

TYPE:

MANUFACTURER: Comfort Audio AB

CLIENT: Comfort Audio AB

ADDRESS: Box 154, SE-30105, Halmstad, Sweden

DM30

TELEPHONE: +46 35 260 16 00

TEST LABORATORY: Nemko Oy

FCC REG. NO. 359859 October 20, 2011
IC FILE NO. 2040F-1 November 22, 2012

FCC ID: **UOJ-DG06T** IC: **6769A-DG06T**

SUMMARY:

In regard to the performed tests the equipment under test fulfils the requirements defined in the test specifications, see page 2 for details

The test results are valid for the tested unit only. Without a written permission of Nemko Oy it is allowed to copy this report as a whole, but not partially.

Summary of performed tests and test results

Section in CFR 47	Section in RSS-GEN		Result
	or RSS-210		
15.247 (b)(3)	RSS-Gen 4.8	Conducted peak output power	PASS
	RSS-210 A8.4 (4)		
15.247 (e)	RSS-210 A8.2 (b)	Power Spectral Density	PASS
15.247 (d)	RSS-Gen 4.9	Band-edge compliance of RF emissions	PASS
	RSS-210 A8.5		
15.247 (d) 15.209 (a)	RSS-Gen 4.9	Spurious radiated emissions	PASS
	RSS-210 A8.5		
15.207	RSS-Gen 7.2.4	AC power line conducted emissions	PASS
15.247 (a)(2)	RSS-Gen 4.6.2	6 dB bandwidth	PASS
,	RSS-210 A8.2 (a)		
2.1049	RSS-Gen 4.8/4.6.3	20 dB bandwidth	X

CISPR 22	Radiated emissions 30-1000 MHz	PASS,
		class B
CISPR 22	AC power line conducted emissions	PASS,
	·	class B

Explanations:

PASS The EUT passed that particular test. FAIL The EUT failed that particular test.

Χ The measurement was done, but there is no applicable performance criteria.

Contents

Su	mmary	of performed tests and test results	2
1.	EUT a	and Accessory Information	4
	1.1	EUT description	4
	1.2	EUT and accessories	4
	1.3	Additional information related to testing	4
	1.1	Interconnect Cables	5
	1.2	Mode of Operation During tests	5
2	Toct	etups	
3.	Stand	ards and measurement methods	7
4.	Test r	esults	7
	4.1	Conducted peak output power	7
	4.1.1	EUT operation mode Test method and limit	<u>7</u>
		Test results	
	4.2	Power Spectral Density	.1(
	4.2.1	EUT operation mode	.10
		Test method and limit	
	4.3	Band-edge compliance of RF emissions	
	4.3.1	EUT operation mode	.13
		Test method and limit	
	4.3.3	Spurious radiated emission	
		EUT operation mode	
	4.4.2	Test method and limit	.15
		Test results	
	4.5 4.5.1	AC power line conducted emissions	.18 .19
		EUT operation mode	
		Test results	
	4.6 4.6.1	6 dB bandwidth EUT operation mode	
	4.6.2	Test method and limit	.22
	4.6.3	Test results	
	4.7	20 dB bandwidth	
		EUT operation mode Test method and limit	
		Test results	
	4.8	Duty cycle	
		EUT operation mode Test method and limit	
		Test data	
5	l ist of	test equipment	21
6.	Photo	graphs	.31

1. EUT and Accessory Information

1.1 EUT description

Digital hearing aid system.

1.2 EUT and accessories

	unit	type	s/n
EUT1	Digital hearing aid system	DM30	353
	AC mains charger	FW7600/05	-
	Headphones	Comfort Audio	-
EUT2	Digital hearing aid system	DM30	1459
	(with temporary antenna connector)		

Operating voltages

EUT:

DM30: internal re-chargeable Li-ion Battery, 3.7V 650mAh

AC Charger: 115V 60Hz AC

1.3 Additional information related to testing

Tested Technology:	Digital Transmissions sy	Digital Transmissions system	
Type of Unit	Transceiver		
Antenna type	Integral		
Antenna gain (dBi)	<6dB		
RF Exposure Classification	Portable (<20 cm separat	tion from user)	
Modulation:	FSK	FSK	
Power Supply Requirement:	Nominal	3.7V	
Transmit Frequency Range	2400 to 2483.5 MHz		
Transmit Channels Tested:	Channel Number	Channel Frequency (MHz)	
	low	2401	
	mid	2440	
	high	2480	

There are currently 30 unique channel setups (i.e. jump sequences) and they all consist of 5 channels. The channels in the setups have been selected based on the following "design rules":

- 1. The channels shall be spread, as much as possible, over the full 2.4000-2.4835GHz bandwidth
- 2. No consecutive channel jump shall be less than 22MHz
- 3. All channels shall have, at least, 1MHz separation.
- 4. No setup must have two consecutive channels in common with another setup
- 5. The number of channels in the setup shall be odd

One frame consists of 47 bytes and takes, at a 500kbit/s gross data rate, ~0,75ms to transmit. After a change of channel (which occurs after every frame sent) radio re-calibration is required. The fastest "look up" method takes ~0,075ms. Thus EUT use 82.7% of the available bandwidth.

6. Pseudo-random hop sequence, equal use of each frequency, receiver matching bandwidth and synchronization

1.1 Interconnect Cables

■ NONE

ntity	Madal/Tyro	Rou	ting	Shielded / Unshielded	Description	Cable Length (m)
Quantity	Model/Type	From	То		Description	
1		AC/DC adapter	EUT	shielded	DC cable	1.9
1	Comfort Audio	EUT	Headphones	shielded	Audio cable	1.2

1.2 Mode of Operation During tests

The EUT was tested while in a continuous transmit mode. The EUT was tuned to the lowest, middle, and highest channels. The EUT continuously transmitted pseudo-random data. While transmitting the EUT was setup to operate at the intended maximum power output available to the end user. For all test cases pre-scans were completed in all modes to determine worst case levels. The rechargeable battery was fully charged.

2. Test setups

Setup 1 (Conducted measurements)

The test was performed inside a shielded room. The antenna port of the EUT was connected via an attenuator to the spectrum analyser.

Setup 2 (Radiated measurements)

The test was performed inside a semi anechoic shielded room. For the duration of the test the EUT was placed on a non-conductive support 0.8 m high standing on the turntable. The tower and turn table were remotely controlled to turn the EUT and change the antenna polarization. The measured signal was routed from the measuring antenna to the spectrum analyzer.

3. Standards and measurement methods

The test were performed in guidance of the CFR 47, FCC Rules Part 15 Subpart C, CISPR 22 Ed. 6.0, ANSI C63.10 (2009), KDB 558074 D01 DTS Meas Guidance v03r01 "Digital Transmission Systems (DTS) Operating under Section 15.247" 9/4/2013, IC standards RSS-GEN (Issue 3, December 2010) and RSS-210 (Issue 8, December 2010).

4. Test results

4.1 Conducted peak output power

The test was performed as a compliance test. The test parameters concerned were as follows:

EUT	EUT2, setup 1	
Site name	Nemko Oy / Perkkaa	
FCC rule part	§ 15.247 (b)(3)	
Section in RSS-210	A8.4 (4)	
Date of testing	13.5.2013	
Test equipment	566, 393	
Test conditions	22 °C, 30 % RH	

4.1.1 EUT operation mode

EUT operation mode	Transmitter on
EUT channel	low, mid and high

4.1.2 Test method and limit

The measurement is made according to ANSI C63.10 Section 6.10.1

Frequency range (MHz)	Limit (W)	Limit (dBm)
2400 – 2483.5	≤ 1.0	≤ 30

4.1.3 Test results

Channel / f (MHz)	P (dBm)	Result
low / 2401	7.04	PASS
mid / 2440	6.62	PASS
high / 2480	5.60	PASS

Figure 1. channel low, conducted peak output power

Figure 2. channel mid, conducted peak output power

Figure 3. channel high, conducted peak output power

4.2 Power Spectral Density

The test was performed as a compliance test. The test parameters concerned were as follows:

EUT	EUT2, setup 1
Site name	Nemko Oy / Perkkaa
FCC rule part	§ 15.247 (e)
Date of testing	13.5.2013
Test equipment	566, 393
Test conditions	22 °C, 30 % RH

4.2.1 EUT operation mode

EUT operation mode	Transmitter on
EUT channel	low, mid and high

4.2.2 Test method and limit

The measurement is made according to ANSI C63.10 Section 6.11.2

Frequency range (MHz)	Limit (dBm/3kHz)
2400 - 2483.5	≤8

4.2.3 Test results

Channel / f (MHz)	P (dBm/3kHz)	Result
low / 2401	0.20	PASS
mid / 2440	-0.42	PASS
high / 2480	-1.51	PASS

Figure 4. channel low, power spectral density

Figure 5. channel mid, power spectral density

Figure 6. channel high, power spectral density

4.3 Band-edge compliance of RF emissions

The test was performed as a compliance test. The test parameters concerned were as follows:

EUT	EUT2, setup 1
Site name	Nemko Oy / Perkkaa
FCC rule part	§ 15.247 (d)
Date of testing	13.5.2013
Test equipment	566, 319, 350
Test conditions	22 °C, 30 % RH

EUT operation mode 4.3.1

EUT operation mode	Transmitter on
EUT channel	low and high

4.3.2 Test method and limit

The measurement is made according to ANSI C63.10 Section 6.9.2 and FCC KDB 913591.

Frequency range (MHz)	Limit (dBc)
Below 2400	≤ -20

Limit (3m measuring distance)

Frequency range (MHz)	Average	Peak
Trequency range (Nin 12)	dB(μV/m)	dB(μV/m)
Above 2483.5	54	74

4.3.3 **Test results**

Channel low:

Below 2400 MHz:

Detector (RBW: 100kHz)	P (dBc)	Result
Peak	-30.03	PASS

TX on channel high/2480 MHz

Frequency	Result peak	Limit	Margin	Result
MHz	dB(μV/m)	dB(μV/m)	dB	
2483.5	64.98	74	9.02	PASS

Frequency MHz	Result average dB(µV/m)	Limit dB(µV/m)	Margin dB	Result
2483.5	48.58	54	9.02	PASS

Radiated power field strength (RBW 1MHz, VBW 3MHz) is 106.21 dB(μ V/m)/3m

Figure 7. Channel low, Band-edge compliance, low end

Figure 8. Channel high, Band-edge compliance, high end

4.4 Spurious radiated emission

The test was performed as a compliance test. The test parameters concerned were as follows:

EUT	EUT1, setup 2
Site name	Nemko Oy / Perkkaa
FCC rule part	§ 15.247 (d), § 15.209 (a)
Date of testing	8.4-20.5.2013
Test equipment	566, 709, 564, 559, 525, 319, 544, 710, 88
Test conditions	22 °C, 30 % RH

4.4.1 EUT operation mode

EUT operation mode	Transmitter on
EUT channel	Channel low, mid and high
EUT operation voltage	115 V / 60 Hz

4.4.2 Test method and limit

The test was performed in a semi-anechoic shielded room. The EUT was placed on a non-conductive 0.8 m high table standing on the turntable. During the test the distance from the EUT to the measuring antenna was 10 m (30MHz-1GHz), 3 m (1GHz-18GHz) and 1m (18-25GHz). The excess length of the cables of the EUT were made into bundles 30-40 cm in length (see photograph 1). In order to find the maximum levels of the disturbance radiation the angle of the turntable, the height of the measuring antenna and the lay-out of the EUT cables were varied during the tests. The test was performed with the measuring antenna being both in horizontal and vertical polarizations.

Vertical and horizontal polarizations in the frequency range 30-1000 MHz was measured by using the peak detector. During the peak detector scan. the turntable was rotated from 0° to 360° with 30° step with the antenna heights 1.0 m and 3.0 m. The highest levels of the radiated interference field strength measured by using the quasi-peak detector were recorded.

Vertical and horizontal polarizations in the frequency range 1000 – 25000 MHz was measured by using the peak detector. During the peak detector scan. the turntable was rotated from 0° to 360° with 15° step with the antenna heights 1.0 m, 1,5m, 2.0m, 2,5m and 3.0 m. The highest levels of the radiated interference field strength measured by using the peak detector were recorded. The average was obtained from the peak using the duty cycle correction factor.

Minimum Standard: In any 100kHz bandwidth outside the frequency band in which the transmitter is operating, emissions shall be at least 20 dB below the fundamental emission or shall not exceed the following field strength limits:

Emissions falling in the restricted bands of 15.205 shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions.

FCC Part 15.209 Limit values

Frequency band	Quasi-peak	Quasi-peak
MHz	dB(μV/m) @ 3m	dB(μV/m) @ 10m
30 – 88	40.0@3m	29.5@10m
88 – 216	43.5@3m	33.0@10m
216 – 960	46.0@3m	35.5@10m
960 – 1000	54.0@3m	43.5@10m

Frequency band	limit, average detector	limit, peak detector
MHz	dB(μV/m)	dB(μV/m)
1000 - 25000	54	74

The EUT was tested on three orthogonal axis.

The device was tested from 30 MHz to the tenth harmonic of the highest fundamental frequency per 15.33. The device was tested on three channels per 15.31(I).

Duty Cycle Calculation:

Duty Cycle correction factor(dB) = $20 \log (rf_{ON} \text{ in ms/100ms})$ $rf_{ON} = 0.7548 \text{ms} \times 20 = 15.1 \text{ ms}$ correction factor = -16.4 dB (correction factor was not used below 1GHz)

The CFR 47 Part 15. Subpart B. Class B limit of 500 μ V/m has been calculated to correspond 54 dB(μ V/m) as follows: [dB(μ V/m)]=20log[μ V/m].

The measurement results were obtained as described below.

$$E[\mu V/m] = U_{RX} + A_{CABLE} + AF - G_{PREAMP}$$

Where

 U_{RX} receiver reading

A_{CABLE} attenuation of the cable

AF antenna factor

 G_{PRFAMP} gain of the preamplifier

Page 16 (31) Date 30.5.2013

4.4.3 Test results

Figure 9. Spurious emissions, 30-1000 MHz, middle channel

Below 1GHz, Channel mid (RBW120kHz)

Frequency	Quasi peak	Limit	Margin	Result
MHz	dB(μV/m)	dB(μV/m)	dB	
36.96	20.7	29.5	8.8	PASS
42.94	22.2	29.5	7.3	PASS
131.18	20.4	33.0	12.6	PASS
131.78	23.4	33.0	9.6	PASS
132.81	23.7	33.0	9.3	PASS
134.23	23.2	33.0	9.8	PASS

Above 1GHz. Channel low, (RBW 100kHz, VBW 300 kHz)

Frequency	Peak	Limit	Margin	Result
GHz	dBc	dBc	dB	
all	<-30	-20	>30	PASS

All peak emissions were more than 30 dB below the in-band power.

Above 1GHz. Channel mid, (RBW 100kHz, VBW 300 kHz)

Frequency	Peak	Limit	Margin	Result
GHz	dBc	dBc	dB	
all	<-30	-20	>30	PASS

All peak emissions were more than 30 dB below the in-band power.

Above 1GHz. Channel high, (RBW 100kHz, VBW 300 kHz)

Frequency	Peak	Limit	Margin	Result
GHz	dBc	dBc	dB	
all	<-30	-20	>30	PASS

All peak emissions were more than 30 dB below the in-band power.

4.4.4 Test results, Radiated emissions in restricted bands 30 MHz – 25 GHz (TX and RX)

TX on channel low/2401 MHz

(RBW 1MHz. VBW 3MHz)

MHz Result Limit Margin Result Limit $dB(\mu V/m)$ $dB(\mu V/m)$ dB $dB(\mu V/m)$ $dB(\mu V/m)$	Margin dB
Frequency Average (Av) Peak	

TX on channel middle/2440 MHz

(RBW 1MHz, VBW 3MHz)

Frequency	Average (Av)			Peak		
MHz	Result dB(μV/m)	3 3 3		Result Limit Margin dB(μV/m) dB		Margin dB
4880	42.4	54	11.6	58.8	74	15.2
7320	39.1	54	14.9	55.5	74	18.5

TX on channel high/2480 MHz

(RBW 1MHz, VBW 3MHz)

Frequency MHz	Average (Av)		Peak			
IVII 12	Result dB(µV/m)	Limit dB(μV/m)	Margin dB	Result dB(µV/m)	Limit dB(μV/m)	Margin dB
4960	38.7	54	15.3	55.1	74	18.9
7440	39.0	54	15.0	55.4	74	18.6

The average was obtained from the peak using the duty cycle correction factor. The peak was measured using a peak detector.

4.5 AC power line conducted emissions

The test was performed as a compliance test. The test parameters concerned were as follows:

EUT	EUT1
Site name	Nemko / Perkkaa
FCC rule part	§ 15.207
Test method	CISPR 22 /ANSI C63.4-2009
Date of testing	29.04.2013
Test equipment	745, 348, 694
Test conditions	22 °C, 30 % RH

4.5.1 Test method and limit

The measurement is made according to ANSI C63.4-2009. The test was performed inside a shielded room where the floor and one of the walls of the test site comprised the reference ground plane (RGP). For the duration of the test the EUT was placed on a non-conductive table 0.8 m high standing on the reference ground plane (see photograph 2). The excess length of the cables of the EUT were made into bundles 30-40 cm in length. The power input cable of the EUT was connected to an artificial mains network. The test was performed separately on the phase and also on the neutral wire.

The disturbances were first examined by performing a spectrum scan by using a peak detector. The general procedure in the conducted disturbance emission test is that no further measurements are necessary if the disturbance levels measured by using the peak detector are below the limit value defined for the measurement performed by using an average detector.

If not, then at the test frequencies concerned the measurement is performed also by using a quasipeak detector. If the disturbance levels measured by using the quasi-peak detector are below the limit value defined for the measurement performed by using an average detector, then measurements by using the average detector are not necessary.

CISPR 22, class B limits

<u> ,</u>		
Frequency band	Quasi-peak	Average limit
MHz	dB(μV)	dB(μV)
0.15 - 0.5	66 – 56	56 – 46
0.5 – 5	56	46
5 - 30	60	50

4.5.2 EUT operation mode

EUT operation mode	Transmitter on
EUT channel	mid
EUT operation voltage	115 V / 60 Hz

4.5.3 Test results

Line N

Figure 10. AC powerline emissions, Line N

Highest emissions (bw 10kHz):

Frequency	Quasi-peak	Limit value	Margin	Result
MHz	dB(μV)	dB(μV)	dB	
0.333	31.9	59.4	27.5	Pass
0.501	32.8	56.0	23.2	Pass
2.001	26.9	56.0	29.1	Pass
2.875	26.8	56.0	29.2	Pass

Frequency	Average	Limit value	Margin	Result
MHz	dB(μV)	dB(μV)	dB	
0.333	22.7	49.4	26.7	Pass
0.498	21.6	46.0	24.5	Pass
2.000	21.1	46.0	24.9	Pass
2.953	19.9	46.0	26.1	Pass

Line L

Figure 11. AC powerline emissions, Line L

Highest emissions (bw 10kHz):

Frequency	Quasi-peak	Limit value	Margin	Result
MHz	dB(μV)	dB(μV)	dB	
0.150	40.1	66.0	25.9	Pass
0.506	29.1	56.0	26.9	Pass
2.065	24.9	56.0	31.1	Pass
2.789	25.8	56.0	30.2	Pass
17.781	29.9	60.0	30.1	Pass

Frequency	Average	Limit value	Margin	Result
MHz	dB(μV)	dB(μV)	dB	
0.5	20.7	46.0	25.3	Pass
2.000	20.8	46.0	25.2	Pass

4.6 6 dB bandwidth

The test was performed as a compliance test. The test parameters concerned were as follows:

EUT	EUT2, setup 1
Site name	Nemko Oy / Perkkaa
FCC rule part	§ 15.247 (a)(2)
Date of testing	13.5.2013
Test equipment	566, 393
Test conditions	22 °C, 30 % RH

4.6.1 EUT operation mode

EUT operation mode	Transmitter on
EUT channel	low, mid and high

4.6.2 Test method and limit

The measurement is made according to ANSI C63.10 Section 6.9.1 referencing KDB 558074 D01 DTS Meas Guidance v03r01 "Digital Transmission Systems (DTS) Operating under Section 15.247" 9/4/2013, 8.2 option 2.

Limit (kHz)	
≥500	

4.6.3 Test results

EUT Channel / f (MHz)	6 dB bandwidth (kHz)
low / 2401	565.702
mid / 2440	556.013
high / 2480	561.552

Figure 12. channel low, 6 dB bandwidth

Figure 13. channel middle, 6 dB bandwidth

Figure 14. channel high, 6 dB bandwidth

4.7 20 dB bandwidth

The test was performed as a compliance test. The test parameters concerned were as follows:

EUT	EUT2, setup 1
Site name	Nemko Oy / Perkkaa
FCC rule part	§ 2.1049
Date of testing	13.5.2013
Test equipment	566, 393
Test conditions	22 °C, 30 % RH

4.7.1 EUT operation mode

EUT operation mode	Transmitter on
EUT channel	Low, mid and high

4.7.2 Test method and limit

The measurement is made according to ANSI C63.10 Section 6.9.1.

Limit (kHz)	
N/A	

4.7.3 Test results

EUT Channel / f (MHz)	20 dB bandwidth (MHz)
low / 2401	1.025
mid / 2440	1.181
high / 2480	1.358

Figure 15. channel low, 20 dB bandwidth

Figure 16. channel middle, 20 dB bandwidth

Figure 17. channel high, 20 dB bandwidth

4.8 Duty cycle

The test was performed as a compliance test. The test parameters concerned were as follows:

Site name	Nemko Oy / Perkkaa		
FCC rule part	§ 15.35(c)		
Section in RSS-Gen	4.5		
Date of testing	13.5.2013		
Test equipment	566, 393		
Test conditions	22 °C, 30 % RH		
Test result	PASS		

4.8.1 EUT operation mode

EUT operation mode	TX on with modulation	
EUT channel	low	
EUT TX power level	Nominal	
EUT operation voltage	3.7 VDC	

4.8.2 Test method and limit

Spectrum analyzer with zero span was used to investigate spectrum.

15.35(c) Unless otherwise specified, e.g.§ 15.255(b), when the radiated emission limits are expressed in terms of the average value of the emission, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. The exact method of calculating the average field strength shall be submitted with any application for certification or shall be retained in the measurement data file for equipment subject to notification or verification.

4.8.2 Test data

Pulses/100ms=20 Length of one pulse = 0.7548ms

DutyCycleCorrectionFactor=20*log(Tocc/100)=20*log(20*0.7548/100)=-16.4dB

Figure 14. 100ms plot

Figure 15. 1.2 ms plot

5. List of test equipment

Each active test equipment is calibrated once a year, antennas every 18 months and other passive equipment every 24 months.

Nr.	Equipment	Туре	Manufacturer	Serial number
88	Antenna	638	Narda	8003
745	2-Line V-Network	ENV216	Rohde & Schwarz	101466
319	Antenna	CBL6112	Chase	2018
348	Shielded room	RFSD-100	Euroshield Oy	1320
350	Semianechoic shielded room	RFD-F-100	Euroshield Oy	1327
393	RF attenuator PAD	1A (10dB)	Weinschel	
519	RF High-Power Attenuator	765-20	Narda	
525	Double-Ridged Horn	3115	Emco	6691
542	Double-Ridged Horn	3115	Emco	00023905
544	RF-amplifier	ZFL-1000VH2	Mini-Circuits	QA0749010
546	Bluetooth Test Set	MT8850A	Anritsu	6K00000092
559	Highpass Filter	WHKX3.0/18G-10SS	Wainwright Instruments	1
572	High Pass Filter	WHKX1.5/15G-12SS	Wainwright Instruments	4
564	RF amplifier	CA018-4010	CIAO Wireless	132
566	Spectrum analyzer	E4448A	Agilent	US42510236
567	RF generator	E8257C	Agilent	MY43320736
338	Test receiver	ESS	Rohde & Schwarz	847151/009
694	EMI Test Receiver	ESPC	Rohde & Schwarz	842888/023
709	EMI test receiver	ESU8	Rohde & Schwarz	100297
710	RF amplifier	ALS1826-41-12	ALC Microwave Inc.	0011
377	RF attenuator PAD	757 C - 20 dB	Narda	-
393	RF attenuator PAD	1A (10dB)	Weinschel	-
383	Hybrid	3033B	Narda	01727
X1	Dual directional coupler	11692D	Hewlett Packard	1212A01868

6. Photographs

See document "206548_test_setup_photographs"