группа: 9-3 *06 декабря 2018 г.*

Геометрический разнобой

1. В параллелограмме ABCD диагональ AC больше диагонали BD; M — такая точка диагонали AC, что четырёхугольник BCDM вписанный. Докажите, что прямая BD является общей касательной к описанным окружностям треугольников ABM и ADM.

- **2.** На сторонах AB и AC треугольника ABC отмечены точки C_1 и B_1 соответственно, а I центр вписанной окружности. Известно, что $BI^2 = BC_1 \cdot BC, CI^2 = CB_1 \cdot CB$. Докажите, что отрезок B_1C_1 проходит сквозь I.
- **3.** Даны окружность S и точки A и B вне её. Для каждой прямой ℓ , проходящей через точку A и пересекающей окружность S в точках M и N, рассмотрим описанную окружность треугольника BMN. Докажите, что все эти окружности имеют общую точку, отличную от точки B.
- **4.** В треугольнике ABC AA_1 и BB_1 высоты. На стороне AB выбраны точки M и K так, что $B_1K \parallel BC$ и $MA_1 \parallel AC$. Докажите, что $\angle AA_1K = \angle BB_1M$.
- **5.** Две неравные окружности с центрами M и N пересекаются в точках P и Q. Касательная к первой окружности, восстановленная в точке P, пересекает касательную в точке Q ко второй окружности в точке X. Докажите, что углы PXQ и MXN имеют общую биссектрису.
- **6.** В треугольнике ABC проведены биссектрисы BB_1 и CC_1 . B_2, C_2 середины дуг AC и AB описанной окружности. Пусть прямые B_1C_1 и B_2C_2 пересекаются в точке P. Докажите, что AP касательная к описанной окружности.
- 7. Дан выпуклый четырехугольник ABCD. Пусть $\omega_A, \omega_B, \omega_C, \omega_D$ окружности, описанные вокруг треугольников BCD, ACD, ABD, ABC соответственно. Обозначим через X_A произведение степени точки A относительно ω_A на площадь треугольника BCD. Аналогично определим X_B, X_C, X_D . Докажите, что
 - (a) $|X_A| = |X_B| = |X_C| = |X_D|;$
 - **(b)** $X_A + X_B + X_C + X_D = 0.$