CS 225 Spring 2019 :: TA Lecture Notes 2/22 BST Remove

By Wenjie

• Remove in BST

- First of all, we need to find the element that we want to eliminate.
- Then we start the removal steps:
 - o If the node we want to delete is a leaf, we can just delete it.
 - Eg. _remove(20)

- If the node we want to delete has only one child, we can delete as like in the linked list - just replace that node with it's child.
 - Eg: _remove(25)

CS 225 Spring 2019 :: TA Lecture Notes 2/22 BST Remove

By Wenjie

- o If the node we want to delete has two children:
 - First to find inorder predecessor (IOP) the largest node in the left subtree as well as the rightmost node of the left subtree
 - Swap IOP and the node we actually want to delete
 - The node is now a leaf, so we can remove it.
 - o Eg: _remove(51)

- Find / insert / delete : O(h)

• The relationship between H and N

• We observe every operation on BST in terms of the height of the tree.

CS 225 Spring 2019 :: TA Lecture Notes 2/22 BST Remove

By Wenjie

$$\begin{array}{ll} \circ & m(n) = max \; number \; of \; nodes \\ & = \{0, & h = -1 \\ & 1 + 2m(h - 1), \; h > -1 \\ & = 2^{h + 1} - 1 \; \; \; //O(2^h) \end{array}$$

- Proof by induction
 - o Base case: $m(0) = 2^{0+1} 1 = 2 1 = 1$
 - o Inductive step: m(h) = 1 + 2m(h 1)= $1 + 2(2^{(h-1)+1} - 1)$ = $1 + 2 * 2^h - 2 = 2^{h+1} - 1$
- Therefore we have $(2^{h+1} 1) \le n$. By solving it we have $h \le \log(n+1) 1$
- The height of the tree is depend on the order of which data to insert
- For every BST, O(log n) is the lower bound running time and O(n) is the upper bound running time.