Thème 0 : Statistique Descriptive

Introduction

Statistique descriptive : permet de décrire les données à l'aide de graphiques et de paramètres d'une façon compréhensible et utilisable

Probabilité : permet de modéliser efficacement les phénomènes étudiés en statistiques

Statistique inférencielle : permet de faire des prévisions ou généralisations à toute une population à partir d'échantillons

Régression linéaire : permet d'étudier la relation existante entre deux variables. Met en place des modèles de prévisions et des outils pour valider ceux ci

Vocabulaire

Vocabulaire	
Ensembliste	Statistique
Ensemble	Population (Ω)
Application	Variable / Caractère
Elément	Individu / unité statistique
Sous-Element	Sous-population
Cardinal	Effectif

Fréquence d'une sous population E de Ω : $f(E) = \frac{Card(E)}{Card(\Omega)} \in [0,1]$

Variables ou caractères

Variables qualitatives : appartenance à une catégorie Variables quantitative/numériques : taille, poids, volume...

Variables **discrète** : nombre fini ou indéfini dénombrable de valeurs observées

Soit une variable discrète X, l'ensemble des valeurs (modalités) prises par X est l'ensemble :

$$X(\Omega) = \{x_1, x_2, \dots, x_n \dots\} = \{x_i, i \in \mathbb{N}\}\$$

Loi d'une variable quantitative, fonction de répartition

La loi ou distribution empirique d'une variable X sur Ω est la donnée de la fréquence de chaque classe définie par la variable X

— Si X quantitative ou qualitative discrète, sa loi est définie par la fréquence de chaque sous-population du type $\{X=x_i\}=\{\omega\in\Omega,X(\omega)=x_i\}$;

— Si X continue et si les valeurs possibles de X sont réparties en classes C_i , la loi est la donnée de chaque fréquence des sous-populations $\{X \in C_i\} = \{\omega \in \Omega, X(\omega) \in C_i\}$

La fonction de répartition empirique de X est la fonction, notée F_x , qui à $x \in \mathbb{R}$ associe la fréquence de la sous-population $\{X \leq x\}$:

$$F_X: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto F_X(x) = \frac{Card\{\omega \in \Omega, X(\omega) \le x\}}{Card\Omega}$$

Grandeurs statistiques usuelles

La **moyenne** du caractère X est la quantité

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

La moyenne est une statistique *peu robuste* (sensible aux valeurs extrêmes)

Proposition : si Y = aX + b avec $a, b \in \mathbb{R}$, alors : $\bar{y} = a\bar{x} + b$

Le **mode** ou **classe modale** d'une distribution statistique est la valeur ou la classe du caractère qui correspond à la plus grande fréquence.

La **mediane** du caractère X est la valeur M_e telle que, en notant f(...) la fréquence : $f(\{X \leq M_e\}) \geq \frac{1}{2}etf(\{X \geq M_e\}) \geq \frac{1}{2}$

Les quartiles Q_1, Q_2etQ_3 sont les valeurs permettant de diviser la population en quatre sous-populations d'effectif égaux, représentant chacune 25% de la population totale.

L'étendue est la différence entre les valeurs extrêmes du caractère : $\omega = x_{max} - x_{min}$

La **variance** de la variable X est la quantitié $\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2 = \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \bar{x}^2$ représentant la moyenne des carrés des écarts entre les observations et leur moyenne

Proposition: transformation affine sur la variance: si on pose Y = aX + b, $\sigma_Y^2 = a^2 \sigma_X^2$

L'écart-type de X est la racine carrée σ de la variance

Distributions à deux caractères

L'effectif marginal en X et la fréquence marginale en X de la classe C_i :

$$n_{i.} = \sum_{j=1}^{s} n_{ij}$$
 et $f_{i.} = \frac{n_{i.}}{n} = \sum_{j=1}^{s} f_{ij}$

La loi conditionnelle de Y sachant $X \in C_i$ est la donnée, pour tout $j \in \{1, \ldots, s\}$ des fréquences relatives des classes D_j par rapport à $C_i : f_{j/i} = \frac{n_{ij}}{n_i} = \frac{f_{ij}}{f_i}$ Les deux variables X et Y sont dites indépendantes si la loi conditionnelle de Y sachant $X \in C_i$ ne dépend pas de i

Cas de deux variances quantitatives

La **covariance** de deux variables quantitatives X et Y

est:
$$Cov(X,Y) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

La covariance permet de quantifier la liaison entre les deux variables (positive = même sens = liaison positive, négatif = sens contraires = liaison négative)

Propriétés de la covariance :

- (1) La covariance est symétrique : $\mathbb{C}ov(X,Y) = \mathbb{C}ov(Y,X)$
- (2) Covariance de X avec elle-même : \mathbb{C} ov $(X, X) = \mathbb{V}(X)$
- (3) Transformation affine : $\mathbb{C}ov (aX + b, cY + d) = ac\mathbb{C}ov (Y, X)$
- (4) Variance d'une somme : $\mathbb{V}(X + Y) = \mathbb{V}(X) + 2\mathbb{C}\text{ov}(X,Y) + \mathbb{V}(Y)$
- (5) Inégalité de Cauchy-Schwartz : $|\mathbb{C}\text{ov }(X,Y)| \leq \sigma(X)\sigma(Y)$ avec égalité si et seulement si il existe une relation affine entre X et Y:Y=aX+b ou X=cY+d (6) Cas de variables indépendantes : si X et Y sont indépendantes, leur covariance est nulle. La réciproque est fausse

Lorsque deux variables ont une covariance nulle, on dit qu'elles sont **décorrélées**.