

Sistemas Ciber-Físicos | Ano Letivo 2024/2025

Aluno 1: Keven Garcia NºMEC: 30615

Aluno 2: Francisco Oliveira NºMEC: 22252

Documento de Planeamento

Sistema de Irrigação Inteligente

Requisitos funcionais

Monitorização de Humidade do Solo

- O sensor de humidade deve medir continuamente o nível de humidade do solo.
- Os dados capturados devem ser enviados periodicamente para o servidor HTTP.

Indicador LED

O LED de duas cores deve sinalizar:

- Verde: Humidade adequada (solo não precisa de irrigação).
- Vermelho: Humidade baixa (solo precisa de irrigação).

Servidor HTTP

- Deve receber os dados do sensor enviados pelo ESP32.
- Deve disponibilizar um dashboard para visualização em tempo real dos dados recebidos.
- Deve permitir o controlo manual do sistema de irrigação (ativação/desativação da bomba de água).

Notificações

• Enviar alertas ao **dashboard** caso o nível de humidade fique abaixo de um valor crítico.

Especificação do Sistema

Hardware

- ESP32: Microcontrolador para processamento e envio de dados.
- Sensor de Humidade: Para medir o nível de humidade do solo.

• LED de 2 Cores: Para indicar a humidade do solo.

Software

- Código no ESP32 para leitura de sensores e comunicação HTTP.
- Dashboard web baseado em Node.js, com frontend em HTML/CSS/JavaScript.

Arquitetura do Sistema

Plano de testes

- Iremos usar uma pequena amostra de areia e humedecer a mesma continuamente para podermos observar os valores devolvidos pelo sensor de humidade.
- Testar a mudança de cor conforme os valores lidos do sensor.
- Confirmar que os dados são enviados corretamente via Wi-Fi.
- Verificar a exibição correta dos dados no dashboard.

• Validar se o LED troca de cor de acordo com as condições predefinidas.

Etapas do projeto

Etapa	Descrição
Planeamento	Definir requisitos, especificações e arquitetura do sistema
Configuração do Hardware	Montagem e testes do ESP32, sensor de humidade e LED.
Desenvolvimento dos devices Drivers	Criar os drivers para o sensor de humidade e o atuador (LED de 2 cores).
Desenvolvimento	Integrar os drivers ao código principal para leitura do sensor, controle do LED e comunicação HTTP.
Implementação do Servidor	Configurar o servidor HTTP, criar API para receber dados
Testes	Realizar testes unitários, de integração, funcionais e de desempenho.
Apresentação PowerPoint	Criar slides para a apresentação final do projeto, com tópicos como objetivos, metodologia, resultados e conclusões.