

Statistics Notations Population vs Sample

QL 1.1

Learning Outcomes

By the end of today, you should be able to

- Compare and contrast sample vs population variance and standard deviations
- 2. Identify the position of a data value in a data set, using z-score

Population vs Sample

- A population includes all of the elements from a set of data.
- A sample consists one or more observations drawn from the population.
- The population size is shown by N.
- The sample size is shown by of n.

Population vs Sample Mean

• The mean of a population is denoted by the symbol $m{\mu}$ but the mean of a sample is denoted by the symbol \overline{X}

Population Mean	Sample Mean	
$\mu = \frac{\sum_{i=1}^{N} x_i}{N}$	$\overline{X} = \frac{\sum_{i=1}^{n} x_i}{n}$	
N = number of items in the population	n = number of items in the sample	

Population vs Sample Variance

Population Variance

Sample Variance

$$\sigma^2 = \frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}$$

$$\sigma^2 = \frac{\sum_{i=1}^{N} (x_i - \mu)}{N}$$

 σ^2 = population variance

 $x_i = \text{value of } i^{th} \text{ element}$

 μ = population mean

N = population size

$$s^2 = \frac{\sum_{i=1}^n \left(x_i - \overline{x}\right)^2}{n-1}$$

 s^2 = sample variance

 x_i = value of $i^{(0)}$ element

 $\bar{x} = \text{sample mean}$

n = sample size

Population vs Sample variance

5 min

- a. A population consists of four observations: {1, 3, 5, 7}. What is the variance?
- b. Now assume simple random sample consists of four observations: {1, 3, 5, 7}. Based on these sample observations, what is the best estimate of the variance of the population?

Measure of Position: z-score

Measures of Position

- We have
 - measures of central tendency
 - Mean, median, mode
 - measures of variation
 - Range, variance, standard variation
 - measures position (=location)
 - Percentiles and Standard scores (z scores)

Which player does better against their personal track record?

Imagine a situation in which you have two basketball players of different ability. The first player gets the ball into the net an average of 70% of the time, and he has a standard deviation of 20%. The second player has a mean of 40% and a standard deviation of 10%.

In a particular practice session, Player 1 gets the ball into the net 75% of the time, and Player 2 makes a basket 55% of the time. Which player does best against their personal track record?

Which player does better against their personal track record?

Standard Score (z-score)

A standard score or z score tells how many standard deviations a data value is above or below the mean. A z score or standard score for a value is obtained by

$$z = \frac{value - mean}{standard \ deviation}$$

For populations, the formula is

$$z = \frac{X - \mu}{\sigma}$$

For samples, the formula is:

$$z = \frac{X - \overline{X}}{s}$$

Let's

Standard Scores (z-Scores)

 A student scored 65 on a calculus test that had a mean of 50 and a standard deviation of 10. She scored 30 on a history test with a mean of 25 and a standard deviation of 5. Compare her relative positions to other students on the two tests.

Solution

First, find the z scores. For calculus the z score is

$$z = \frac{X - \overline{X}}{s} = \frac{65 - 50}{10} = 1.5$$

For history the z score is

$$z = \frac{30 - 25}{5} = 1.0$$

Find the z score for each test, and state which is higher.

Test A	X = 38	$\overline{X} = 40$	s = 5
Test B	X = 94	$\overline{X} = 100$	s = 10

z score

5 mins

Answer