Bipartite graphs Bipartite check, MCBM, MVC, MIS

beOI Training

OLYMPIADE BELGE D'INFORMATIQUE BELGISCHE INFORMATICA-OLYMPIADE

Reminder about graphs

See 06-graph-basics

Bipartite graphs

A graph is bipartite if it can be separated into two sets U and V such that nodes in U are only connected to nodes in V, and conversely.

A tree is also a bipartite graph

Here $U = \{1, 4, 5, 6, 7\}$ and $V = \{2, 3, 8, 9\}$

Weighted bipartite graphs

The same, but with weights:

How to test if a particular graph is a bipartite one?

How to test if a particular graph is a bipartite one?

DFS with coloration!

Ok!

Algorithm

```
bool visit(int, const vector<vector<int>>&, vector<int>&, int); // defined below
2
   bool isBipartite(int n, const vector<vector<int>>>& successors) {
       //successors[i] contains the successors of node i
5
       vector\langle int \rangle color(n, -1): // initialized to -1
6
7
       for (int i = 0; i < n; i++) {
8
           if (color[i] = -1)
9
                if (!visit(i, successors, color, 1))
                    return false:
11
12
       return true:
14
   bool visit(int node, const vector<vector<int>& successors, vector<int>& color,
        int parentColor) {
16
       if (color[node] == parentColor) // failure
17
           return false:
18
19
       if (color[node] != -1) // avoid infinite looping
20
           return true:
       color[node] = (parentColor + 1) \% 2;
       for (int next : successors[node])
24
           if (!visit(next. successors. node. color[node]))
25
                return false:
26
       return true;
27
28
```

Maximum Cardinality Bipartite Matching

Given a set U of men and a set V of women, and a list of "compatibilities" between men and women, we obtain this:

Can you create a maximum number of couples?

A bit of theory

 $M \in E$ is a **matching** if each node is used at most once by the edges in M.

A maximum cardinality matching is a matching that has the maximal number of edge/node possible.

A node which is not used by any edge in a matching is said **free**. The others are said **non-free**.

An example of matching

An example of matching

It is maximal? How to improve it?

More theory

An augmenting path for a matching M is a path starting and ending at free nodes, and alternating between matched and unmatched edges.

An example of augmenting path

How can we use such paths? Let's find some useful properties

By definition, an aug. path always starts and ends at a free node

- By definition, an aug. path always starts and ends at a free node
- ► Thus, the first and last edge are not in M

- By definition, an aug. path always starts and ends at a free node
- ▶ Thus, the first and last edge are not in *M*
- The size of an aug. path is always odd

- By definition, an aug. path always starts and ends at a free node
- ▶ Thus, the first and last edge are not in M
- ▶ The size of an aug. path is always odd
- ► There is always one "free edge" more than the number of "taken edges" in an aug. path

- By definition, an aug. path always starts and ends at a free node
- ► Thus, the first and last edge are not in M
- The size of an aug. path is always odd
- ► There is always one "free edge" more than the number of "taken edges" in an aug. path
- ▶ What if we inverse the edges?

An augmenting path

Inversing the augmenting path

Augmenting path = good?

- It is always possible to inverse an augmenting path
- ▶ It always increase the size of the matching by 1!

Augmenting path = good!

Given a matching M in a bipartite graph such that there exist no augmenting path, then M is of **maximal cardinality**.

Solving the MCBM

- 1. Find an aug. path. If no such path exists, return the matching, it is maximal
- 2. Inverse the path found
- 3. Repeat from 1

Simple, isn't it?

Let's see two algorithms

- ► The first one is based on the "flow" representation of the graph, and is very similar to a max flow. Simple to understand, but longer.
- ► The second is recursive so more difficult to understand but shorter.

Finding an aug. path

An alternative representation:

In this representation, an aug. path is a path starting at a free node in U and ending at a free node in V.

Finding an aug. path

```
// succ[i] contains the nodes that can be reached from i
  // initially, all the edges are from U\rightarrowV
  // inU[i] is true iff i is in U
   bool findAndReverse(int n, vector<vector<int>>& succ, vector<bool>& inU) {
5
       vector<int> pred(n);
       vector<bool> visited(n, false);
6
7
8
9
       stack<int> todo:
       // Find free nodes in U
10
       vector<bool> isFree(n, true);
       for (int i = 0; i < n; i++)
12
           if (!inU[i])
                for (int s : succ[i])
14
                        isFree[s] = false;
15
16
       for (int i = 0; i < n; i++) {
17
           if (inU[i] && isFree[i]) {
18
                todo.push(i);
19
                pred[i] = -1:
20
```

Finding an aug. path (cont.)

```
Run the DES
24
        int found = -1:
25
       while (!todo.empty()) {
26
            int node = todo.top(); todo.pop();
27
            if (visited [node])
28
                continue:
29
            visited [node] = true;
30
            //if we are at a free node in V
31
            if(!inU[node] \&\& succ[node]. size() == 0) {
32
                found = node:
33
                break;
34
35
            else
36
                 for(int next: successors[node]) {
37
                     if (! visited [next]) {
38
                         pred[next] = node;
39
                         todo.push(next);
40
41
42
43
44
45
           Reverse the nodes
46
       if (found !=-1) {
47
            while (predecessors [found] !=-1) {
48
                succ[pred[found]].erase(found);
49
                succ[found].push_back(pred[found]);
50
                found = pred[found];
51
52
            return true;
53
54
       return false:
55
```

Final algorithm

```
void getMCBM(int n, vector<vector<int>>& succ, vector<bool>& inU) {
   while(findAndReverse(n, succ, inU)) {}
   //MCBM == edges from nodes in V (in succ)
}
```

Another (shorter) algorithm

```
vector<vi> AdiList:
   vi match. vis:
   int Aug(int I) { // return 1 if an augmenting path is found
5
       if (vis[1]) return 0; // return 0 otherwise
6
7
       vis[I] = 1;
       for (int j = 0; j < (int) AdjList[I]. size(); <math>j++) {
8
           int r = AdjList[I][j];
9
            if (match[r] = -1 \mid | Aug(match[r])) {
10
                match[r] = I;
11
                return 1; // found 1 matching
14
       return 0; // no matching
15
16
   int MCBM = 0;
   match.assign (V, -1); //V = total number of vertices
   for (int I = 0; I < n; I++) { I/n = size of the left set
20
       vis.assign(n, 0);
21
       MCBM += Aug(I):
```

Minimum vertex cover (in bipartite graph)

A **Vertex cover** K is a set of nodes from G such that each edge of G is incident to at least one node of K.

A Minimal vertex cover is a vertex cover of minimal size.

Given a maximum matching M

Given a maximum matching M, if we construct a minimum vertex cover of size |M|, it must be minimal.

Given a maximum matching M, if we construct a minimum vertex cover of size |M|, it must be minimal.

Let U_f be the set of free nodes in U, and let Z be the set of vertices in U_f or connected to U_f using alternating paths.

Given a maximum matching M, if we construct a minimum vertex cover of size |M|, it must be minimal.

Let U_f be the set of free nodes in U, and let Z be the set of vertices in U_f or connected to U_f using alternating paths.

Given a maximum matching M, if we construct a minimum vertex cover of size |M|, it must be minimal.

Let U_f be the set of free nodes in U, and let Z be the set of vertices in U_f or connected to U_f using alternating paths.

Then $K = (U \setminus Z) \cup (V \cap Z)$ is a minimum vertex cover

Given a maximum matching M, if we construct a minimum vertex cover of size |M|, it must be minimal.

Let U_f be the set of free nodes in U, and let Z be the set of vertices in U_f or connected to U_f using alternating paths.

Then $K = (U \backslash Z) \cup (V \cap Z)$ is a minimum vertex cover

Maximum independant set (in bipartite graph)

An **independant set** of a bipartite graph $G = \langle V, E \rangle$ is a set of nodes MIS such that there is no edges between nodes in MIS.

Said in another way, $\not\exists v_1 \in MIS, v_2 \in MIS$ s.t. $(v_1, v_2) \in E$.

A maximum independant set is an independant set whose size is maximal (...)

Maximum independant set (2)

Given a Minimum vertex cover K on a graph with the set of nodes S = U + V, then

$$MIS = S - K$$

is a maximum independant set.

