Semaine 2

10 janvier 2022

Soient (G, \cdot) un groupe et I un ensemble non vide. On considère une famille de sous-groupes de G, notée $(G_i)_{i \in I}$, telle que

$$\forall (i,j) \in I^2, \exists k \in I, G_i \cup G_j \subset G_k$$

Montrer que $\bigcup_{i \in I} G_i$ est un sous-groupe de G.

MATTEO DELFOUR ★★☆☆☆

Soit (E, \cdot) un magma associatif tel qu'il existe $n \in \mathbb{N}$, supérieur ou égal à 2, tel que

$$\forall (x,y) \in E^2, (xy)^n = yx$$

Montrer que · est commutative.

YANIS GRIGY ★★★☆☆

Montrer que pour tout $n \in \mathbb{N}^*$, $\ln(n!) \ge n \ln \frac{n}{e}$ et en déduire que

$$\forall (x_1, ..., x_n) \in (\mathbb{R}_+^*)^n, \quad \left(\prod_{k=1}^n x_k\right)^{\frac{1}{n}} \leq \frac{e}{n^2} \sum_{k=1}^n k x_k$$

Louis Marchal **

Soient $a < b \in \mathbb{R}$ et $f: [a,b] \to \mathbb{R}$ une application bornée vérifiant

$$\forall (x,y) \in [a,b]^2, \quad f\left(\frac{x+y}{2}\right) \le \frac{f(x)+f(y)}{2}$$

Montrer que f est convexe sur [a, b].

Shems ★★★☆☆

Quels sont les groupes qui ne possèdent qu'un nombre fini de sous-groupes?