Санкт–Петербургский политехнический университет Петра Великого

Физико-механический институт Кафедра «Прикладная математика»

Отчёт по лабораторной работе №3 по дисциплине

«Контроль надежности инженерных и научных вычислений»

Выполнил:

Турченко Михаил Константинович

группа: 5030102/90101

Проверил:

Репин Сергей Игоревич

Санкт-Петербург 2023г.

Оглавление

Постановка задачи	3
Реализация метода Галеркина-Бубнова	3
Численный эксперимент	4
Вывол	19

Постановка задачи

Необходимо решить краевую задачу методом Галеркина-Бубнова:

$$x_i = hi, h = \frac{1}{n}$$

 $(au')' + f = 0, x \in [0,1], u(0) = u(1) = 0$
 $a \in C(0,1), f \in L_2(0,1)$

и построить оценку L_2 -нормы градиента численного решения:

$$\|u'-u_h'\|_{L_2(0,1)} \le a_{min}^{-1}|R(u_h)|$$
, где $R(u_h) = ((au_h')'+f) \in W_2^{-1}(0,1)$ $\|R(u_h)\|_{W_2^{-1}(0,1)} \le \sqrt{\sum_{i=0}^n c_i^2 * \|r(u_h)\|_{L_2(I_i)}^2}$ $I_i = (x_i, x_{i+1}), c_i = \frac{h_i}{\pi}, \|r(u_h)\|_{L_2(I_i)}^2 = \|(au_h')'+f\|_{L_2(I_i)}^2$ $a(x) = 1+x, a_{min} = 1, f = 27x^2+6x-6$ Точное решение: $u = 3x^2(1-x)$

А также необходимо внести возмущения в решение, полученное с помощью метода Галеркина-Бубнова и показать, что данная оценка нормы градиента ошибки не является верной для не-галеркинских

решений.

Реализация метода Галеркина-Бубнова

Возьмем базис из кусочно-линейных функций:

$$arphi_i = egin{cases} \dfrac{x - x_{i-1}}{x_i - x_{i-1}}, x \in [x_{i-1}, x_i] \\ \dfrac{x_{i+1} - x}{x_{i+1} - x_i}, x \in [x_i, x_{i+1}] \\ 0, \text{иначе} \end{cases}$$

 u_h есть решение задачи, если

$$\int_0^1 a \, u_h' \, w_h' dx = \int_0^1 f \, w_h dx \, \forall \, w_h \in V_{0h}$$

Представим решение в виде $u_h(x) = \sum_{i=0}^n a_i * \varphi_i(x)$

Выберем пробную функцию: $w_h = \sum_{j=0}^n a_j * \varphi_j(x)$

Тогда задача эквивалента СЛАУ:

$$Ax = b, A \in R[n + 1, n + 1], b \in R[n + 1]$$

$$A_{ij} = \int_0^1 a \; \varphi_i' \; \varphi_j' \; dx$$
 , $b_i = \int_0^1 f \varphi_i' \; dx$

Благодаря выбору вида базисных функций матрица СЛАУ получилась трехдиагональной. Такая СЛАУ решается методом прогонки.

Численный эксперимент

В качестве не-галеркинских решений возьмем две функции:

 u_h^1 получим из галеркинского решения u_h , узлы которого будут возмущены на 5%.

a
$$u_h^2 = 0.25\sin{(\pi x)};$$

Численный эксперимент был проведен при следующих разбиениях отрезка:

$$n = \{3,4,5,10,20,50,100,200,500,1000\}$$

Представим результаты в виде таблицы. Отметим жирным шрифтом те неравенства, которые не выполняются

n	u	$ u'-u_h' _{L_2(0,1)}$	Верхняя оценка
		-2(-)-	$a_{min}^{-1} \ R(u_h)\ _{W_2^{-1}(0,1)}$
3	u_h	0.558634	1.138796
	u_h^1	0.562880	1.135177
	u_h^2	0.743973	1.190327
	1		
4	u_h	0.425201	0.850247
	u_h^1	0.429874	0.847349
	u_h^1 u_h^2	0.743973	0.892745
5	u_h	0.342430	0.678749
	u_h^1	0.347701	0.676361
	u_h^1 u_h^2	0.743973	0.714196
10	u_h	0.172711	0.338397
	u_h^1 u_h^2	0.181626	0.337156
	u_h^2	0.743973	0.357098
20	u_h	0.086541	0.169075
	u_h^1	0.102611	0.168449
	u_h^2	0.743973	0.178549
50	u_h	0.034637	0.067616
	u_h^1	0.064854	0.067365
	u_h^2	0.743973	0.071420
100	21	0.017320	0.033807
	u_h u_h^1	0.057459	0.033682
	u_h^2	0.743973	0.035710
	u_h	01110710	0.000710
200	u_h	0.008660	0.016903
	u_h^1	0.055456	0.016841
	u_h^2	0.743973	0.017855
500	u_h	0.003464	0.006761
	u_h^1	0.054882	0.006736
	u_h^2	0.743973	0.007142
	16		
1000	u_h	0.001732	0.003381
	u_h^1	0.054800	0.003368
	u_h^2	0.743973	0.003571

По данным таблицы видно, что, начиная с некоторого числа разбиений, неравенство для оценки нормы градиента глобальной ошибки перестает выполняться для не-галеркинских решений, в то время как для галеркинского решения оно выполнено.

Для $n = \{5,10,100,1000\}$ построим индикаторы для оценки локальной ошибки нормы градиента.

Локальная ошибка на отрезке I_i :

$$||u' - u_h'||_{L_2(I_i)} = \left(\int_{x_i}^{x_{i+1}} (u' - u_h')^2 dx\right)^{\frac{1}{2}}$$

Индикатор на отрезке I_i :

$$a_{min}^{-1} * c_i * ||r(u_h)||_{L_2(I_i)} = a_{min}^{-1} * c_i * \left(\int_{x_i}^{x_{i+1}} (u_h' + f)^2 dx \right)^{\frac{1}{2}}$$

Значения ошибок и значения индикаторов будем изображать на графике константой прямой, равной своему значению, изображенной на интервале I_i .

Изображения графиков при n = 5:

Индикаторы для галеркинского решения и галеркинского решения оказались точны на всех интервалах, для не-галеркинского — оказались неточными.

Изображения графиков при n = 10:

Для галеркинского решения индикаторы точны, для галеркинского с ошибкой только два индикатора оказались неточными, для негалеркинского решения — все индикаторы неточные.

Для n = 100 проведем более детальный эксперимент. Приведем изображения графиков галеркинского решения и точного, галеркинской производной и точной производной, чтобы проанализировать их поведение и сравнить с графиком точной ошибки галеркинской производной.

На графике значений и' и иh' для галеркинского решения видно, что лучше всего производная приближается в окрестности точки 0.33, в точке перегиба точного решения, потому что на изображении графики накладываются друг на друга в этой окрестности. С отдалением от этой точки кривая производной галеркинского решения хуже описывает производную точного решения. Нет такого наложения кривых друг на друга, как в точке перегиба.

На графике ошибки минимальное значение в окрестности точки 0.33, то есть ошибка в этой точке минимальна. Затем с отдалением от этой точки ошибка увеличивается.

Таким образом, изображения графиков согласуются друг с другом.

Далее для всех трех решений приведем графики точных ошибок производной и локальных индикаторов, а также отметим те интервалы, которые в сумме дают вклад в 30% суммарной ошибки производной.

Для всех трех численных решений оказались одинаковыми интервалы с максимальными точными ошибками и с максимальными производными. Однако, если поведение галеркинской ошибкой согласуется с индикаторами, то для галеркинского решения с ошибкой и для не-галеркинского решения поведение не согласуется. Тогда совпадение интервалов с наибольшими точными ошибками и наибольшими индикаторами для негалеркинских решений достиглось за счет того, что на правом интервале слишком большая ошибка.

Проведем тот же эксперимент, но будем считать 60% от максимальной ошибки и покажем, что в данном случае для галеркинского решения будет совпадение интервалов, а для негалеркинских – не будет.

Теперь на изображениях графиков видно, что в случае негалеркинских решений нельзя доверять индикаторам для определения интервалов с наибольшей ошибкой, в сумме дающих 60% от общего числа, потому что наибольшая ошибка возникает как на правом конце, так и около точки перегиба в точке х = 0.33.

Для галеркинского решения множества интервалов с наибольшей точной ошибкой и максимальными индикаторами, дающими в сумме 60% ошибки, оказались одинаковыми. Таким образом, для галеркинских решений таким индикаторам можно доверять.

Изображения графиков точной и численной ошибки производной при n = 1000:

Для галеркинского решения все индикаторы оказались точными. Для галеркинского с ошибкой — почти все неточные, кроме нескольких в окрестности нуля производной точного решения. Для негалеркинского решения все индикаторы неточные.

Вывод

В лабораторной работе была построена оценка нормы вектора глобальной ошибки градиента решения краевой задачи, полученная по методу Галеркина-Бубнова, а также она была сравнена с оценками для не-галеркинских решений. Начиная с некоторого числа разбиений, для не-галеркинских решений данная оценка становится неверной, а для галеркинского решения остается верной.

Также были построены индикаторы локальной ошибки, показывающие норму вектора ошибки на конкретном интервале. Также, как и в случае глобальной ошибки, индикаторы оказались неточными для не-галеркинских решений и точными для галеркинских. Данные индикаторы удобно применять для оценки решения на локальных интервалах для дальнейшего дополнительного разбиения интервалов для уменьшения ошибки на них.