

ΑΛΓΟΡΙΘΜΟΙ

Δρ. Χάρης Κουζινόπουλος

Εθνικό Κέντρο Έρευνας και Τεχνολογικής Ανάπτυξης Πανεπιστήμιο Μακεδονίας

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Ψευδοκώδικας - [28]

Βρόχος *repeat ...until...*

Παράδειγμα.

$$s \leftarrow 0$$

$$x \leftarrow 1$$

repeat

$$S \leftarrow S+X$$

$$x \leftarrow x+1$$

until x > 5

Επαναλήψεις	S	X	x > 5
Αρχή	0	1	-
1	1	2	Ψ
2	3	3	Ψ
3	6	4	Ψ
4	10	5	Ψ
5	15	6	Α

Ψευδοκώδικας - [29]

Παράδειγμα. Να αναπτυχτεί αλγόριθμος, ο οποίος να ελέγχει αν ένας αριθμός n ≥ 2 είναι πρώτος ή όχι.

Ψευδοκώδικας - [29]

Παράδειγμα. Να αναπτυχτεί αλγόριθμος, ο οποίος να ελέγχει αν ένας αριθμός n ≥ 2 είναι πρώτος ή όχι.

```
Λύση. ans \leftarrow 1
j \leftarrow 1
repeat
j \leftarrow j + 1
until mod(n, j) = 0
if 2 \le j < n
ans \leftarrow 0
```

Άσκηση. Γράψτε τον ψευδοκώδικα με χρήση βρόχου **while**.

Ψευδοκώδικας - [31]

Εντολή σταματήματος stop: Αν βρίσκεται μέσα σε άλλη εντολή σταματά την εκτέλεσή της ή τον αλγόριθμο.

Παράδειγμα. Υπολογισμός ΜΚΔ (απλός).

Πρόβλημα για το σπίτι – [6]

Έστω μια λίστα L με n στοιχεία. Ένα στοιχείο της λίστας L είναι πλειοψηφία αν εμφανίζεται περισσότερες από n/2 φορές.

Σχεδιάστε έναν αλγόριθμο ο οποίος θα βρίσκει μια πλειοψηφία αν υπάρχει, ενώ σε αντίθετη περίπτωση να επιστρέφει το μήνυμα «Δεν υπάρχει τέτοιο στοιχείο».

Quiz – [7]

Ο ιστορικός Flavius Josephus αφηγήθηκε την ιστορία του, όπου η μικρή ομάδα στρατιωτών του (41 άντρες) περικυκλώθηκαν από τον αντίπαλο ρωμαϊκό στρατό και επέλεξαν να αυτοκτονήσουν παρά να παραδοθούν. Προς επίτευξη αυτού του σκοπού, σχημάτισαν κύκλο και θανάτωναν κάθε 3° άντρα.

Η διαδικασία αυτή επαναλήφθηκε μέχρι που έμειναν ο Josephus και ένας ακόμα στρατιώτης, οι οποίοι αποφάσισαν και να παραδοθούν.

Quiz - [7]

Σύμφωνα με τα παραπάνω το πρόβλημα του Φλάβιου περιγράφεται ως εξής:

Αν η θετικοί ακέραιοι αριθμοί (1, ..., η) διατάσσονται σε έναν κύκλο και αφαιρούμε κάθε φορά τον m-οστό αριθμό (m<n) από τον κύκλο, ποια είναι η ακολουθία των αριθμών που θα εξαχθεί?

Π.χ. Έστω 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 με n=10 και m=4. Η ακολουθία που θα εξαχθεί θα είναι

4, 8, 2, 7, 3, 10, 9, 1, 6, 5

Να σχεδιάσετε αλγόριθμο σε μορφή ψευδοκώδικα ο οποίος θα δέχεται ως είσοδο τα η και η και θα επιστρέφει την ακολουθία των αριθμών που θα εξαχθεί.

Εύρεση μέσου όρου πίνακα (1)

Αλγόριθμος : Mean Value Είσοδος : Ρ, Ν Έξοδος : ΜΟ READ(N) X=03 for $I \leftarrow 1$ to N PRINT(P(I)) $X \leftarrow X + P(I)$ $MO \leftarrow X/N$ 6 PRINT(MO)

Θα δείξουμε την εκτέλεση του αλγόριθμου βήμα προς βήμα χρησιμοποιώντας έναν πίνακα εισόδου P τεσσάρων (4) στοιχείων.

P	1	2	3	4
P[I]	14	5	166	40

Εύρεση μέσου όρου πίνακα (2)

Σε κάθε στιγμή της εκτέλεσης του αλγόριθμου η κίτρινη μπάρα μας δείχνει την εντολή που μόλις εκτελέστηκε.

Αλγό	Αλγόριθμος : Mean_Value			
Είσο	δος : Ρ, Ν			
Έξοδ	ος : ΜΟ			
1	READ(N)			
2	X=0			
3	for I \leftarrow 1 to N			
4	PRINT(P(I))			
5	X←X + P(I)			
6	$MO \leftarrow X/N$			
7	PRINT(MO)			

Εύρεση μέσου όρου πίνακα (3)

Με κόκκινο χρώμα φαίνονται οι τιμές των μεταβλητών που άλλαξαντιμή στο τρέχον βήμα.

N	X	I	P[I]	MO
4	14	→ 2	5	?

Με μπλε χρώμα φαίνονται τα δεδομένα εισόδου —

Το κίτρινο χρώμα μας δείχνει το στοιχείο του πίνακα που εξετάζουμε στο τρέχον βήμα του βρόγχου

Р	1	2	3	4
P[I]	→ 14	2	166	40

ΟΘΟΝΗ ΕΚΤΥΠΩΣΗΣ

Δώστε τιμή για το Ν: 4

Εύρεση μέσου όρου πίνακα (4)

Αλγό	<mark>Αλγόριθμος : Mean_Value</mark>				
Είσο	Είσοδος : Ρ, Ν				
Έξοδ	ος : ΜΟ				
1	READ(N)				
2	X=0				
3	for $I \leftarrow 1$ to N				
4	PRINT(P(I))				
5	X←X + P(I)				
6	$MO \leftarrow X/N$				
7	PRINT(MO)				

N	Х	I	P[I]	МО
٠٠	٠٠	٠٠	?	?

Р	1	2	3	4
P[I]	14	5	166	40

Εύρεση μέσου όρου πίνακα (5)

Αλγόριθμος : Mean_Value

Είσοδος: Ρ, Ν

EC S S S . N 1 O

ΕξΟΟ	ος : ΙνίΟ
1	READ(N)
2	X=0
3	for $I \leftarrow 1$ to N
4	PRINT(P(I))
5	X←X + P(I)
6	$MO \leftarrow X/N$
7	PRINT(MO)

N	Х	- 1	P[I]	МО
4	?	?	?	?

Р	1	2	3	4
P[I]	14	5	166	40

```
ΟΘΟΝΗ ΕΚΤΥΠΩΣΗΣ
Δώστε τιμή για το Ν: 4
```

Εύρεση μέσου όρου πίνακα (6)

Αλγόριθμος : Mean_Value Είσοδος : P, N Έξοδος : MO 1 READ(N) 2 X=0 3 for I \leftarrow 1 to N 4 PRINT(P(I))

 $X \leftarrow X + P(I)$

 $MO \leftarrow X/N$

PRINT(MO)

6

N	Х	I	P[I]	МО
4	0		٠.	?

Р	1	2	3	4
P[I]	14	5	166	40

```
ΟΘΟΝΗ ΕΚΤΥΠΩΣΗΣ
Δώστε τιμή για το Ν: 4
```

Εύρεση μέσου όρου πίνακα (7)

Αλγόριθμος : Mean_Value Είσοδος : Ρ, Ν Έξοδος : ΜΟ READ(N) X=0 for $I \leftarrow 1$ to N PRINT(P(I)) $X \leftarrow X + P(I)$ $MO \leftarrow X/N$ 6 PRINT(MO)

N	Х	1	P[I]	МО
4	0	1	14	?

Р	1	2	3	4
P[I]	14	5	166	40

```
ΟΘΟΝΗ ΕΚΤΥΠΩΣΗΣ
Δώστε τιμή για το Ν: 4
```

Εύρεση μέσου όρου πίνακα (8)

Αλγόριθμος : Mean_Value

Είσοδος : Ρ, Ν

Έξοδος : ΜΟ

1	READ	(N)
---	------	-----

 $2 \quad | X=0 |$

3 | for I \leftarrow 1 to N

4	PRINT(P(I))	

5 $X \leftarrow X + P(I)$

6 $MO \leftarrow X/N$

7 **PRINT**(MO)

N	Х	1	P[I]	МО
4	0	1	14	

Р	1	2	3	4
P[I]	14	5	166	40

```
ΟΘΟΝΗ ΕΚΤΥΠΩΣΗΣ
Δώστε τιμή για το Ν: 4
14
```

Εύρεση μέσου όρου πίνακα (9)

Αλγόριθμος : Mean_Value Είσοδος : Ρ, Ν Έξοδος : ΜΟ READ(N) X=0for $I \leftarrow 1$ to N PRINT(P(I)) $X \leftarrow X + P(I)$ 6 $MO \leftarrow X/N$ PRINT(MO)

N	Х	1	P[I]	МО
4	14	1	14	?

Р	1	2	3	4
P[I]	14	5	166	40

```
ΟΘΟΝΗ ΕΚΤΥΠΩΣΗΣ
Δώστε τιμή για το Ν: 4
14
```

Εύρεση μέσου όρου πίνακα (10)

Αλγόριθμος : Mean_Value Είσοδος : Ρ, Ν Έξοδος : ΜΟ READ(N) X=0for $I \leftarrow 1$ to N **PRINT**(P(I)) $X \leftarrow X + P(I)$ 6 $MO \leftarrow X/N$ PRINT(MO)

N	Х	I	P[I]	МО
4	14	2	5	?

Р	1	2	3	4
P[I]	14	5	166	40

```
ΟΘΟΝΗ ΕΚΤΥΠΩΣΗΣ
Δώστε τιμή για το Ν: 4
14
```

Εύρεση μέσου όρου πίνακα (11)

Αλγόριθμος : Mean_Value Είσοδος : Ρ, Ν Έξοδος : ΜΟ READ(N) X=0for $I \leftarrow 1$ to N PRINT(P(I)) 5 $X \leftarrow X + P(I)$ 6 $MO \leftarrow X/N$ PRINT(MO)

N	Х	1	P[I]	МО
4	14	2	5	?

Р	1	2	3	4
P[I]	14	5	166	40

```
ΟΘΟΝΗ ΕΚΤΥΠΩΣΗΣ
Δώστε τιμή για το Ν: 4
14
5
```

Εύρεση μέσου όρου πίνακα (12)

Αλγόριθμος : Mean_Value Είσοδος : Ρ, Ν Έξοδος : ΜΟ READ(N) X=0for $I \leftarrow 1$ to N **PRINT**(P(I)) $X \leftarrow X + P(I)$ 6 $MO \leftarrow X/N$ PRINT(MO)

N	Х	I	P[I]	МО
4	19	2	5	?

Р	1	2	3	4
P[I]	14	5	166	40

```
ΟΘΟΝΗ ΕΚΤΥΠΩΣΗΣ
Δώστε τιμή για το Ν: 4
14
5
```

Εύρεση μέσου όρου πίνακα (13)

Αλγόριθμος : Mean_Value Είσοδος : Ρ, Ν Έξοδος : ΜΟ READ(N) X=0 for $I \leftarrow 1$ to N **PRINT**(P(I)) $X \leftarrow X + P(I)$ 6 $MO \leftarrow X/N$ PRINT(MO)

N	Х	I	P[I]	МО
4	19	3	166	?

Р	1	2	3	4
P[I]	14	5	166	40

```
ΟΘΟΝΗ ΕΚΤΥΠΩΣΗΣ
Δώστε τιμή για το Ν: 4
14
5
```

Εύρεση μέσου όρου πίνακα (14)

Αλγόριθμος : Mean_Value Είσοδος : Ρ, Ν Έξοδος : ΜΟ READ(N) X=0for $I \leftarrow 1$ to NPRINT(P(I)) 5 $X \leftarrow X + P(I)$ 6 $MO \leftarrow X/N$ PRINT(MO)

N	Х	I	P[I]	МО
4	19	3	166	?

Р	1	2	3	4
P[I]	14	5	166	40

```
ΟΘΟΝΗ ΕΚΤΥΠΩΣΗΣ

Δώστε τιμή για το Ν: 4

14

5

166
```

Εύρεση μέσου όρου πίνακα (15)

Αλγόριθμος : Mean_Value Είσοδος : Ρ, Ν Έξοδος : ΜΟ READ(N) X=0for $I \leftarrow 1$ to N PRINT(P(I)) $X \leftarrow X + P(I)$ 6 $MO \leftarrow X/N$ PRINT(MO)

N	Х	1	P[I]	МО
4	185	3	166	?

Р	1	2	3	4
P[I]	14	5	166	40

```
ΟΘΟΝΗ ΕΚΤΥΠΩΣΗΣ
Δώστε τιμή για το Ν: 4
14
5
166
```

Εύρεση μέσου όρου πίνακα (16)

Αλγόριθμος : Mean_Value Είσοδος : Ρ, Ν Έξοδος : ΜΟ READ(N) X=0 for $I \leftarrow 1$ to N PRINT(P(I)) $X \leftarrow X + P(I)$ 6 $MO \leftarrow X/N$ PRINT(MO)

N	Х		P[I]	МО
4	185	4	40	•

Р	1	2	3	4
P[I]	14	5	166	40

```
ΟΘΟΝΗ ΕΚΤΥΠΩΣΗΣ
Δώστε τιμή για το Ν: 4
14
5
166
```

Εύρεση μέσου όρου πίνακα (17)

Αλγόριθμος : Mean_Value Είσοδος : Ρ, Ν Έξοδος : ΜΟ READ(N) X=0for $I \leftarrow 1$ to NPRINT(P(I)) 5 $X \leftarrow X + P(I)$ 6 $MO \leftarrow X/N$ PRINT(MO)

N	Х	I	P[I]	МО
4	185	4	40	?

Р	1	2	3	4
P[I]	14	5	166	40

```
ΟΘΟΝΗ ΕΚΤΥΠΩΣΗΣ

Δώστε τιμή για το Ν: 4

14

5

166

40
```

Εύρεση μέσου όρου πίνακα (18)

Αλγόριθμος : Mean_Value Είσοδος: Ρ, Ν Έξοδος : ΜΟ READ(N) X=0for $I \leftarrow 1$ to N **PRINT**(P(I)) $X \leftarrow X + P(I)$ 6 $MO \leftarrow X/N$ PRINT(MO)

N	Х	1	P[I]	МО
4	225	4	40	

Р	1	2	3	4
P[I]	14	5	166	40

```
ΟΘΟΝΗ ΕΚΤΥΠΩΣΗΣ
Δώστε τιμή για το Ν: 4
14
5
166
40
```

Εύρεση μέσου όρου πίνακα (19)

Αλγόριθμος : Mean_Value Είσοδος: Ρ, Ν Έξοδος : ΜΟ READ(N) X=0 for $I \leftarrow 1$ to N PRINT(P(I)) $X \leftarrow X + P(I)$ 6 $MO \leftarrow X/N$ PRINT(MO)

N	Х	1	P[I]	МО
4	225	5	~ ·	?

Р	1	2	3	4
P[I]	14	5	166	40

```
ΟΘΟΝΗ ΕΚΤΥΠΩΣΗΣ
Δώστε τιμή για το Ν: 4
14
5
166
40
```

Εύρεση μέσου όρου πίνακα (20)

Αλγόριθμος : Mean_Value Είσοδος: Ρ, Ν Έξοδος : ΜΟ READ(N) X=03 for $I \leftarrow 1$ to N **PRINT**(P(I)) $X \leftarrow X + P(I)$ 6 $MO \leftarrow X/N$ PRINT(MO)

N	Х	1	P[I]	МО
4	225	5	?	63,75

Р	1	2	3	4
P[I]	14	5	166	40

```
ΟΘΟΝΗ ΕΚΤΥΠΩΣΗΣ
Δώστε τιμή για το Ν: 4
14
5
166
40
```

Εύρεση μέσου όρου πίνακα (21)

Αλγόριθμος : Mean_Value Είσοδος: Ρ, Ν Έξοδος : ΜΟ READ(N) X=03 for $I \leftarrow 1$ to N **PRINT**(P(I)) $X \leftarrow X + P(I)$ 6 $MO \leftarrow X/N$ PRINT(MO)

N	Х	1	P[I]	МО
4	225	5	?	63,75

Р	1	2	3	4
P[I]	14	5	166	40

```
ΟΘΟΝΗ ΕΚΤΥΠΩΣΗΣ

Δώστε τιμή για το Ν: 4

14

5

166

40

63,75
```

Γενική παράσταση φυσικού αριθμού n

$$n = \alpha_k b^k + a_{k-1} b^{k-1} + \dots + a_1 b^1 + a_0 b^0$$

$$0 \le a_j < b$$

- b: βάση της παράστασης
- a_i : ψηφία της παράστασης

Σχήμα Horner

$$n=a_kb^k+a_{k-1}b^{k-1}+a_{k-2}b^{k-2}+...a_1b^1+a_0b^0=a_0+b(a_1+b(a_2+...+b(a_{k-1}+ba_k)...))$$

Υπολογισμός με διαδοχικούς πολλαπλασιασμούς από οποιαδήποτε βάση σε δεκαδικό σύστημα

```
Αλγόριθμος: b_0 = a_k for j=1,...,k b_j = a_{k-j} + b_{j-1} * b
```

Αριθμητικά Συστήματα – [1]

Χρειαζόμαστε λίγες γνώσεις συστημάτων αρίθμησης και μετατροπές από ένα σύστημα σε άλλο

Αναπαράσταση δυαδικών αριθμών

$$(b_m b_{m-1} ... b_1 b_0)_2$$
, $b_i = 0 \acute{\eta} 1$, $i = 0,1, ...,m$, $b_m = 1$
 $\pi . \chi$. $(10)_2$, $(1011)_2$, $(11101)_2$

Αναπαράσταση δεκαδικών αριθμών

$$(a_n a_{n-1}...a_1 a_0)_{10}$$
, $a_i = 0,...,9$, $i = 0, 1, ..., n$ και $a_n \neq 0$ π.χ. $(2)_{10}$, $(11)_{10}$, $(29)_{10}$

Αριθμητικά Συστήματα – [2]

Μετατροπή στο δεκαδικό σύστημα αρίθμησης

Παράδειγμα. Να μετατραπεί αριθμός από σύστημα αρίθμησης με βάση k <10 στο δεκαδικό σύστημα

Λύση. Η τιμή αριθμού στο δεκαδικό σύστημα δίνεται από τη σχέση $(b_m \ b_{m-1} \ ... \ b_1 \ b_0)_k = b_m k^m + b_{m-1} k^{m-1} + ... + b_1 k^1 + b_0$

Άρα χρησιμοποιούμε Σχήμα Horner με r = k

Από το δυαδικό στο δεκαδικό είναι r = 2.

Αριθμητικά Συστήματα – [3]

Μετατροπή από δεκαδικό σε δυαδικό. Να γραφεί αλγόριθμος, μετατροπής θετικού ακέραιου αριθμού από το δεκαδικό στο δυαδικό σύστημα αρίθμησης.

Λύση:
$$a=(a_m\ a_{m-1}\ ...\ a_1\ a_0)_2=a_m2^m+a_{m-1}2^{m-1}+...+a_12+a_0$$

$$=(...\ ((a_m2+a_{m-1})2+a_{m-2})2+...+a_1)2+a_0$$
 Πηλίκο
$$\delta\iota\alpha\acute{\epsilon}\rho\epsilon\sigma\eta\varsigma\ a\ /\ 2$$
 Υπόλοιπο διαίρεσης a / 2

Συμπέρασμα: Διαιρώντας διαδοχικά το a δια 2 και υπολογίζοντας κάθε φορά το υπόλοιπο, τα δυφία υπολογίζονται με τη σειρά a_0 , a_1 , ... a_m .

Αριθμητικά Συστήματα – [4]

Μετατροπή από δεκαδικό σε δυαδικό.

29=
$$(x(5) ... x(1))_2$$
 = $(1 1 1 0 1)_2$.

Πρόβλημα για το σπίτι – [8]

```
Αλγόριθμος : Home 8
Είσοδος: Ν
Έξοδος: Ν
    READ(N)
    while N≠1
3
        if mod(N,2)=0
           N←N/2
5
        else
           N←3N+1
```

Ερώτημα! Τερματίζει ο παραπάνω αλγόριθμος για οποιαδήποτε θετική τιμή του Ν, δηλ. το (N=1)?

Η εικασία του Collatz

Πρόβλημα για το σπίτι – [8]

Φράκταλ της απεικόνισης Κόλατζ σε μια γειτονιά του πραγματικού άξονα

Quiz - [9]

Έστω μια γραμμική διάταξη με 2N δίσκους δύο χρωμάτων. Δηλαδή, υπάρχουν N μπλε δίσκοι και N λευκοί δίσκοι. Αρχικά, είναι τοποθετημένοι εναλλάξ, μπλε, λευκός, μπλε, λευκός, ...

Πρέπει να μεταφερθούν όλοι οι μπλε δίσκοι στα δεξιά και όλοι οι λευκοί στα αριστερά.

Η μόνη κίνηση που επιτρέπεται είναι η εναλλαγή δυο γειτονικών δίσκων.

Να σχεδιαστεί ένας αλγόριθμος που να λύνει το πρόβλημα και να υπολογιστεί το ελάχιστο πλήθος κινήσεων (εναλλαγών) που απαιτείται.

Συγχώνευση διανυσμάτων - [1]

Παράδειγμα. Δίνονται δυο ταξινομημένα κατά αύξουσα τάξη διανύσματα Α και Β με η και m στοιχεία αντίστοιχα. Να γραφεί αλγόριθμος ταξινόμησης του C = [A B]

Λύση

```
Αλγόριθμος: merge1 Είσοδος: Α, Β, n, m Έξοδος: C
```

```
1 C \leftarrow A
2 for i \leftarrow 1 to m
3 C \leftarrow insert(C, B(i))
```

AN n > m

Συγχώνευση διανυσμάτων - [2]

```
Έστω A = [10 \ 14 \ 22 \ 36 \ 42 \ 56], n=6 και
B= [12 18 26 40 52], m=5.
Θέτουμε C=A= [10 14 22 36 42 56].
Επανάληψη 1<sup>η</sup> (i=1).
  C \leftarrow insert(C, B(1)=12).
  Nέο C= [10 12 14 22 36 42 56].
Επανάληψη 2<sup>η</sup> (i=2).
  C \leftarrow insert(C, B(2)=18).
  Nέο C= [10 12 14 18 22 36 42 56].
Επανάληψη 3<sup>η</sup> (i=3).
  C \leftarrow insert(C, B(3)=26).
  Nέο C= [10 12 14 18 22 26 36 42 56].
```

Συγχώνευση διανυσμάτων - [3]

```
Eπανάληψη 4<sup>η</sup> (i=4).
C \leftarrow insert(C, B(4)=40).
Nέο C= [10 12 14 18 22 26 36 40 42 56].
Eπανάληψη 5<sup>η</sup> (i=5).
C \leftarrow insert(C, B(5)=52).
Nέο C= [10 12 14 18 22 26 36 40 42 52 56].
```