Enhancing NHL Salary Evaluation through Dimensionality Reduction

Raphaël Fontaine McGill University Montreal, Canada raphael.fontaine@mail.mcgill.ca

Random Projection

```
In [5]: import common
   import pandas as pd
   import numpy as np
   from sklearn.random_projection import GaussianRandomProjection, SparseRandomPr
   ojection
```

```
In [6]: df = common.load_dataset()

# Split features and label
X_data, y_data = common.split_dataset(df)

X_columns = X_data.columns

# Split train and test data
X_train, y_train, X_test, y_test = common.split_train_test(X_data, y_data)

# Standardize the features
X_train, X_test = common.standard_scaler(X_train, X_test)
```

Johnson-Lindenstrauss Lemma

```
In [7]: X = X_train.copy()
        n_samples, n_features = X.shape
        # Determine the minimum of components k for different values of epsilon, using
        the Johnson-Lindenstrauss Lemma
        epsilons = [0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90]
        n_components = []
        for eps in epsilons:
            denominator = (eps**2 / 2) - (eps**3 / 3)
            k = (4 * np.log(n_samples) / denominator).astype(np.int64)
            n_components.append(k)
        # Print results as a table
        jl_df = pd.DataFrame(data={'Epsilon': epsilons, 'Number of components': n_comp
        onents})
        display(jl_df)
        # Discard the number of components that are bigger than the dataset dimension
        jl_df = jl_df[jl_df['Number of components'] < n_features]</pre>
```

	Epsilon	Number of components
0	0.1	7014
1	0.2	1888
2	0.3	909
3	0.4	557
4	0.5	392
5	0.6	303
6	0.7	250
7	8.0	219
8	0.9	202

Gaussian Random Matrix Projection

```
In [8]: results = []
        for eps, n_component in jl_df.to_numpy():
            n_component = int(n_component)
            # Generate a dense Gaussian random matrix
            rng = np.random.default_rng(12345)
            scale = 1.0 / np.sqrt(n_component)
            random_matrix = rng.normal(size=(n_features, n_component), scale=scale).as
        type(X.dtype, copy=False)
            # Project data onto random matrix
            X_train_projected = np.dot(X, random_matrix)
            X_test_projected = np.dot(X_test, random_matrix)
            # Train and evaluate the models
            results_df, predictions = common.train_and_evaluate(X_train_projected, y_t
        rain, X_test_projected, y_test)
            results_df["Components"] = n_component
            results_df["Epsilon"] = eps
            results.append(results_df)
        results_df = pd.concat(results)
        results_df.groupby(by="Epsilon")[results_df.columns].apply(lambda x: x).drop(c
        olumns=["Epsilon"])
```

		R2	MAE	Top-100 MAE	Top-50 MAE	SMAPE	Train time (sec)	Components
Epsilon	Model							
0.4	Linear Regression	0.4772	1,449,343	1,925,584	2,289,866	0.3670	6.60	557
	Random Forest	0.5501	1,387,369	1,910,571	2,486,037	0.3543	12.13	557
	Support Vector	0.5802	1,293,677	1,951,716	2,504,092	0.3250	5.85	557
	K-Nearest Neighbors	0.5446	1,379,937	2,002,477	2,584,236	0.3501	0.00	557
0.5	Linear Regression	0.5293	1,386,897	1,747,167	2,142,316	0.3507	5.15	392
	Random Forest	0.5646	1,354,649	1,820,897	2,384,940	0.3478	11.47	392
	Support Vector	0.5878	1,280,588	1,922,684	2,503,436	0.3236	3.47	392
	K-Nearest Neighbors	0.5535	1,356,066	2,031,758	2,652,892	0.3430	0.03	392
0.6	Linear Regression	0.5306	1,391,917	1,859,150	2,263,253	0.3539	3.60	303
	Random Forest	0.5576	1,366,545	1,813,436	2,367,626	0.3494	10.39	303
	Support Vector	0.5797	1,302,989	1,832,474	2,350,518	0.3306	2.50	303
	K-Nearest Neighbors	0.5715	1,331,155	1,966,218	2,541,004	0.3387	0.00	303
0.7	Linear Regression	0.5420	1,373,855	1,979,209	2,385,997	0.3465	2.88	250
	Random Forest	0.5602	1,364,271	1,871,017	2,422,313	0.3501	10.73	250
	Support Vector	0.5668	1,324,016	1,950,564	2,453,819	0.3337	2.21	250
	K-Nearest Neighbors	0.5695	1,345,593	1,941,830	2,438,948	0.3443	0.00	250
0.8	Linear Regression	0.5706	1,333,041	1,919,475	2,339,018	0.3348	2.86	219
	Random Forest	0.5543	1,371,156	1,856,456	2,405,458	0.3515	12.10	219
	Support Vector	0.5898	1,272,156	1,907,310	2,430,132	0.3195	2.12	219
	K-Nearest Neighbors	0.5424	1,382,793	2,073,160	2,689,819	0.3519	0.00	219

		R2	MAE	Top-100 MAE	Top-50 MAE	SMAPE	Train time (sec)	Components
Epsilon	Model							
0.9	Linear Regression	0.5653	1,336,946	1,828,793	2,223,758	0.3405	3.75	202
	Random Forest	0.5542	1,386,972	1,834,528	2,384,162	0.3564	7.88	202
	Support Vector	0.5798	1,291,950	1,853,697	2,358,625	0.3265	1.36	202
	K-Nearest Neighbors	0.5564	1,370,809	2,025,079	2,562,036	0.3488	0.00	202

In [9]: common.plot_metrics(results_df, "Epsilon")
 common.plot_metrics(results_df, "Components")

Sparse Random Matrix Projection

```
In [10]: # Density of sparse matrices
         p = 1 / np.sqrt(n_features)
         results = []
         for eps, n_component in jl_df.to_numpy():
             n_component = int(n_component)
             # Generate random sparse matrix
             rng = np.random.default_rng(12345)
             k = n_{component}
             random_matrix = rng.choice(
                 [-np.sqrt(1/(k*p)), 0, np.sqrt(1/(k*p))],
                 size=(n_features, n_component),
                 p=[p/2, 1-p, p/2]
             ).astype(X.dtype, copy=False)
             # Project data onto random sparse matrix
             X_train_projected = np.dot(X, random_matrix)
             X_test_projected = np.dot(X_test, random_matrix)
             # Train and evaluate the models
             results_df, predictions = common.train_and_evaluate(X_train_projected, y_t
         rain, X_test_projected, y_test)
             results_df["Components"] = n_component
             results_df["Epsilon"] = eps
             results.append(results_df)
         results_df = pd.concat(results)
         results_df.groupby(by="Epsilon")[results_df.columns].apply(lambda x: x).drop(c
         olumns=["Epsilon"])
```

		R2	MAE	Top-100 MAE	Top-50 MAE	SMAPE	Train time (sec)	Components
Epsilon	Model							
0.4	Linear Regression	0.4929	1,447,730	1,926,613	2,277,496	0.3659	3.99	557
	Random Forest	0.5677	1,354,581	1,834,340	2,360,674	0.3479	12.45	557
	Support Vector	0.5896	1,293,912	1,809,285	2,348,889	0.3277	3.51	557
	K-Nearest Neighbors	0.5631	1,342,076	1,981,836	2,564,548	0.3414	0.00	557
0.5	Linear Regression	0.5196	1,408,368	1,835,555	2,246,959	0.3554	2.70	392
	Random Forest	0.5720	1,337,485	1,853,278	2,385,929	0.3439	7.19	392
	Support Vector	0.5779	1,300,279	1,975,796	2,534,010	0.3272	1.94	392
	K-Nearest Neighbors	0.5470	1,361,326	2,094,948	2,639,123	0.3453	0.00	392
0.6	Linear Regression	0.5443	1,370,806	1,880,034	2,328,615	0.3467	0.14	303
	Random Forest	0.5562	1,369,647	1,860,205	2,429,080	0.3509	6.44	303
	Support Vector	0.5690	1,309,732	2,001,370	2,588,757	0.3325	1.64	303
	K-Nearest Neighbors	0.5603	1,348,553	1,981,113	2,578,589	0.3418	0.00	303
0.7	Linear Regression	0.5335	1,376,338	1,971,659	2,483,549	0.3466	0.12	250
	Random Forest	0.5628	1,373,886	1,824,280	2,345,156	0.3520	5.45	250
	Support Vector	0.5630	1,322,790	1,996,544	2,565,925	0.3328	1.19	250
	K-Nearest Neighbors	0.5500	1,367,573	1,973,876	2,481,862	0.3477	0.00	250
0.8	Linear Regression	0.5554	1,380,573	1,930,908	2,388,718	0.3494	0.12	219
	Random Forest	0.5532	1,371,430	1,874,032	2,438,786	0.3530	5.19	219
	Support Vector	0.5586	1,339,521	1,954,430	2,506,329	0.3392	1.09	219
	K-Nearest Neighbors	0.5477	1,351,692	1,991,498	2,576,106	0.3443	0.00	219

		R2	MAE	Top-100 MAE	Top-50 MAE	SMAPE	Train time (sec)	Components
Epsilon	Model							
0.9	Linear Regression	0.5807	1,320,126	1,937,740	2,362,910	0.3382	0.11	202
	Random Forest	0.5614	1,364,272	1,904,327	2,451,333	0.3507	5.52	202
	Support Vector	0.5757	1,290,071	1,986,179	2,523,237	0.3235	1.06	202
	K-Nearest Neighbors	0.5380	1,373,240	2,162,742	2,707,002	0.3471	0.02	202

In [11]: common.plot_metrics(results_df, "Epsilon")
 common.plot_metrics(results_df, "Components")

Sklearn Random Projection

Gaussian Random Projection

```
In [12]: results = []
         for eps, n_component in jl_df.to_numpy():
             n_component = int(n_component)
             # Train and test using sklearn
             grp = GaussianRandomProjection(n_components=n_component, eps=eps, random_s
         tate=12345)
             X_train_grp = grp.fit_transform(X_train)
             X_test_grp = grp.transform(X_test)
             # Train and evaluate the model
             results_df, predictions = common.train_and_evaluate(X_train_grp, y_train,
         X_test_grp, y_test)
             results_df["Components"] = n_component
             results_df["Epsilon"] = eps
             results.append(results_df)
         results_df = pd.concat(results)
         results_df.groupby(by="Epsilon")[results_df.columns].apply(lambda x: x).drop(c
         olumns=["Epsilon"])
```

		R2	MAE	Top-100 MAE	Top-50 MAE	SMAPE	Train time (sec)	Components
Epsilon	Model							
0.4	Linear Regression	0.4192	1,469,078	1,908,124	2,260,402	0.3688	0.24	557
	Random Forest	0.5620	1,359,857	1,823,444	2,357,254	0.3503	8.96	557
	Support Vector	0.5801	1,310,526	1,851,573	2,370,715	0.3308	3.13	557
	K-Nearest Neighbors	0.5510	1,365,011	1,965,775	2,518,604	0.3475	0.00	557
0.5	Linear Regression	0.5385	1,378,102	1,756,509	2,200,566	0.3490	0.16	392
	Random Forest	0.5579	1,371,821	1,868,950	2,435,015	0.3526	7.61	392
	Support Vector	0.5863	1,302,174	1,811,184	2,292,809	0.3271	1.86	392
	K-Nearest Neighbors	0.5583	1,342,546	1,972,078	2,569,981	0.3415	0.00	392
0.6	Linear Regression	0.5328	1,410,192	1,754,458	2,214,650	0.3519	0.13	303
	Random Forest	0.5545	1,376,722	1,800,616	2,329,936	0.3547	5.78	303
	Support Vector	0.5834	1,310,403	1,848,103	2,344,505	0.3302	1.53	303
	K-Nearest Neighbors	0.5570	1,338,400	1,984,778	2,527,290	0.3401	0.00	303
0.7	Linear Regression	0.5434	1,401,641	1,790,909	2,206,982	0.3521	0.12	250
	Random Forest	0.5626	1,369,404	1,797,362	2,337,838	0.3534	5.24	250
	Support Vector	0.5817	1,315,331	1,876,547	2,356,015	0.3322	1.12	250
	K-Nearest Neighbors	0.5619	1,337,662	1,973,702	2,511,175	0.3398	0.00	250
0.8	Linear Regression	0.5631	1,357,184	1,871,351	2,253,201	0.3454	0.13	219
	Random Forest	0.5557	1,374,977	1,842,586	2,387,345	0.3531	5.60	219
	Support Vector	0.5874	1,300,504	1,890,460	2,357,412	0.3292	1.26	219
	K-Nearest Neighbors	0.5630	1,326,890	1,969,850	2,517,957	0.3374	0.00	219

		R2	MAE	Top-100 MAE	Top-50 MAE	SMAPE	Train time (sec)	Components
Epsilon	Model							
0.9	Linear Regression	0.5639	1,349,141	1,911,611	2,290,718	0.3430	0.10	202
	Random Forest	0.5633	1,358,921	1,811,341	2,349,612	0.3501	4.86	202
	Support Vector	0.5916	1,290,090	1,873,204	2,330,786	0.3259	0.90	202
	K-Nearest Neighbors	0.5659	1,324,999	1,946,208	2,472,329	0.3385	0.00	202

Sparse Matrix Random Projection

```
In [13]: | results = []
         for eps, n_component in jl_df.to_numpy():
             n_component = int(n_component)
             # Train and test using sklearn
             grp = SparseRandomProjection(n_components=n_component, eps=eps, random_sta
         te=12345)
             X_train_grp = grp.fit_transform(X_train)
             X_test_grp = grp.transform(X_test)
             # Train and evaluate the models
             results_df, predictions = common.train_and_evaluate(X_train_grp, y_train,
         X_test_grp, y_test)
             results_df["Components"] = n_component
             results_df["Epsilon"] = eps
             results.append(results_df)
         results_df = pd.concat(results)
         results_df.groupby(by="Epsilon")[results_df.columns].apply(lambda x: x).drop(c
         olumns=["Epsilon"])
```

		R2	MAE	Top-100 MAE	Top-50 MAE	SMAPE	Train time (sec)	Components
Epsilon	Model							
0.4	Linear Regression	0.4871	1,441,535	1,938,102	2,303,167	0.3631	0.22	557
	Random Forest	0.5674	1,351,966	1,803,927	2,346,078	0.3476	8.46	557
	Support Vector	0.5833	1,301,843	1,899,314	2,430,388	0.3284	3.28	557
	K-Nearest Neighbors	0.5778	1,337,588	1,943,292	2,448,738	0.3414	0.01	557
0.5	Linear Regression	0.5162	1,404,633	1,941,664	2,372,015	0.3564	0.13	392
	Random Forest	0.5524	1,391,693	1,881,728	2,434,763	0.3576	6.56	392
	Support Vector	0.5772	1,297,153	1,942,015	2,533,461	0.3274	1.88	392
	K-Nearest Neighbors	0.5454	1,392,000	1,936,565	2,469,002	0.3545	0.00	392
0.6	Linear Regression	0.5276	1,389,957	1,843,873	2,226,917	0.3523	0.12	303
	Random Forest	0.5486	1,383,252	1,817,536	2,341,322	0.3536	6.89	303
	Support Vector	0.5746	1,316,245	1,822,899	2,312,214	0.3318	1.48	303
	K-Nearest Neighbors	0.5660	1,337,420	1,933,053	2,459,587	0.3393	0.02	303
0.7	Linear Regression	0.5585	1,343,418	1,642,964	2,032,249	0.3357	0.13	250
	Random Forest	0.5676	1,364,784	1,855,125	2,355,645	0.3514	5.18	250
	Support Vector	0.5776	1,290,019	1,855,029	2,430,698	0.3269	1.20	250
	K-Nearest Neighbors	0.5521	1,370,646	1,997,861	2,510,903	0.3493	0.00	250
0.8	Linear Regression	0.5793	1,317,984	1,810,111	2,211,133	0.3343	0.08	219
	Random Forest	0.5530	1,374,642	1,863,367	2,404,346	0.3509	4.88	219
	Support Vector	0.5862	1,288,950	1,849,318	2,322,432	0.3264	1.00	219
	K-Nearest Neighbors	0.5789	1,324,909	1,877,110	2,391,925	0.3394	0.00	219

		R2	MAE	Top-100 MAE	Top-50 MAE	SMAPE	Train time (sec)	Components
Epsilon	Model							
0.9	Linear Regression	0.5643	1,354,683	1,886,447	2,299,880	0.3399	0.10	202
	Random Forest	0.5565	1,377,184	1,858,645	2,393,417	0.3521	5.05	202
	Support Vector	0.5625	1,334,153	1,923,577	2,423,074	0.3363	0.99	202
	K-Nearest Neighbors	0.5547	1,351,077	1,997,335	2,513,720	0.3448	0.00	202

In [14]: common.plot_metrics(results_df, "Epsilon")
 common.plot_metrics(results_df, "Components")

