Курсова работа по Съвременни биометрични технологии

Изследване и разработка на подход за разпознаване на 2D лица

Изготвили студенти:

Николай Станимиров Проданов;

Чани Димов Димов;

Фк. №: 111321045; Група: 232

Фк. №: 111321018; Група: 232

Биометрични данни

Фиг. 1 - Популярни методи за удостоверение

- пръстовите отпечатаци
- лицевото разпознаване
- Глас
- разпознаване на ириса

Разпознаване на лица

- Метод за разпознаване на 2D лица чрез метода на Собствени лица (eigenfaces)
- РСА алгоритъм

Фиг. 2 - Разпознаване на лица с помощта на собствени лица (РСА алгоритъм)

Конволюционната невронна мрежа (ConvNet)

- Конволюция
- аспекти/обекти в изображение

Фиг. 3 - Конволюционна операция за анализ на информация

Keras API

Подобряване на изображение

Разтягане на контраста

Изравняването на хистограмата

адаптивно изравняване на хистограма

Система за разпознаване на лица

- Два етапа
 - Детекция на лице в текущото изображение
 - Разпознаване на лицето в изображението
- Подобрено бързодействие
- По добра точност

Детекция на лице в изображение

- Face detection with Haar cascades
- Публикувано от Пол Виола и Михаил Джоунс през 2001
- Характеристично-базиран каскаден класификатор на Харра
- Отркиване признаци в изображение

Признаци на Хаара

Фиг. 10 - Признак по ръб (Edge feature)

Фиг. 11- Признак по линия (Line feature)

- Извличане на признаци
- Кърнели или филтри
- Предложен е от Алфред Хаара през 1909 година
- Подобно на конволиционен кърнел
- Голям брой филтри
- Пример: 24х24 -> 160 хиляди различни признака

Интегрално изображение

98 99 97	110	121	125	122	129
	110	120	116	116 123	129 134
97	113	147	108	125	142
95	111	168	122	130	137
96	104	172	130	126	130

98 197 294 392	208	329	454	576	705						
	417 623 833	658 988 1330	899 1340 1790	1137 1701 2274	1395 2093 2799						
						489	1043	1687	2255	2864	3531
						584 680	1249	2061	2751	3490	4294
1449	2433	3253	4118	5052							

б

- Еднакви операции при метода на Харра
- Време за сложност за един правоъгълник е O(n²).
- Чрез интегрално изображение O(1)

$$P(r, k) = \sum_{i=0}^{r} \sum_{j=0}^{k} p(i, j)$$

Фиг. 13 а – стойности на пикселите в матричен вид б – интегралното изображение на а

a

Интегрално изображение

98	110	121	125	122	129
99	110	120	116	116	129
97	109	124	111	123	134
98	112	132	108	123	133
97	113	147	108	125	142
95	111	168	122	130	137
96	104	172	130	126	130

Фиг. 14

а – изчисляване на сумата на пикселите в правоъгълника б – графично решение с интегрално изображение

"boost" трениращи алгоритми и AdaBoost

Фиг. 15 – схема на трениране на класификатори с AdaBoost

- Комбинират няколко слаби класификатора в един по силен класификатор
- Позволява на детектиращят алгоритъм бързо да елиминира изображения

Каскаден филтър

• В резултат от AdaBoost подхода за трениране

Фиг. 16 – Каскаден филтър

Разпознаване на лице

- FaceNet модел
- Разработен на Keras
- Вектор с признаци
- Позволява на алгоритми за класификация да работят с изображения на лица
- Надграден и разработен от Google
- Използва се в Google Pictures
- Големи компании като Netflix също го използват

Реализация на система за разпознаване на лица

- Тренира се да разпознава лица на известни личниости
- Общо 92 изображения
- 70% обучение 30% верификация
- Вероятностен резултат
- Accuracy: train=100.000%, test=100.000%