#### Statistical Inference

Instructor: Li, Caixia

## References

- TEXTBOOK: Statistical Inference, 2nd edition; Casella and Berger, 2002.
- Other References:
  - Introduction to Mathematical Statistics, 6th edition; Hogg, McKean and Craig.
  - 高等数理统计(第2版), 茆诗松,王静龙



## Chapter 1 ~ 4

- Chapter 1. Probability Theory
- Chapter 2. Transformations and Expectations
- Chapter 3. Common Families of Distributions
- Chapter 4. Multiple Random Vaviables

## Chapter 1. Probability Theory

#### Terminology

- Sample space
- random variable
- Distribution functions
  - Cumulative distribution function (cdf)
  - Probability mass function (pmf)
  - Probability density function(pdf)

# Chapter 2 Transformations and Expectations

- Y=g(X) and X with cdf  $F_X(x)$
- X: discrete random variable, Y=g(X)

$$f_{Y}(y) = P(Y = y) = \sum_{x \in \{x: g(x) = y\}} P(X = x) = \sum_{x \in \{x: g(x) = y\}} f_{X}(x)$$

X: continuous random variable

$$F_{Y}(y)=P(Y \le y)=P(g(X) \le y)$$

$$=P(\{x:g(x) \le y\})=\int_{\{x:g(x) \le y\}} f_{X}(x)dx$$

- Theorem 2.1.8 f<sub>x</sub>(x), Y=g(X) with g is continuous, suppose there exist monotone functions g<sub>1</sub>(x), ..., g<sub>k</sub>(x), defined on A<sub>1</sub>, ..., A<sub>k</sub>
- 分段单调

$$f_{Y}(y) = \begin{cases} \sum_{i=1}^{k} f_{X}(g_{i}^{-1}(y)) \left| \frac{d}{dy} g_{i}^{-1}(y) \right| \\ 0 \end{cases}$$

#### Expectation of Random Variable

Let X be a r.v. If X is a discrete or continuous r.v. with pdf f(x) (or pmf p(x) if X is a discrete type r. v.), and

$$\int_{-\infty}^{\infty} |g(x)| f(x) dx \left( or \sum_{x \in S} |g(x)| p(x) \right)$$

exists. Then the expectation of Y=g(X) is

$$E[Y] = E[g(X)] = \int_{-\infty}^{\infty} g(x)f(x)dx \qquad (or \sum_{x \in S} g(x)p(x))$$

#### Moments and Moment Generating Functions

- The nth moment,  $E(X^n)$ . (e.g.  $\mu = EX$ )
- The nth central moment,  $E(X-\mu)^n$ ,
  - Variance:  $Var(X) = E(X-\mu)^2$
  - Standard deviation:  $\sqrt{\operatorname{var}(X)}$
- Moment generating function(mgf),

$$\mathbf{M}_{X}(t) = \mathbf{E} \left( \mathbf{e}^{tX} \right)$$

$$\frac{d^n}{dt^n} M_X(t)|_{t=0} = EX^n \quad \text{e.g.} \quad \frac{d}{dt} M_X(t)|_{t=0} = EX$$

## Chapter 3 Common Families of Distributions

- Discrete Distributions
  - Discrete Uniform
  - Binomial,
  - Poisson,
  - Geometric,
  - Negative binomial (Parskal),
  - Hyper-geometric,
  - .......

- Continuous Distributions
  - Continuous Uniform
  - Exponential
  - Normal
  - Gamma
  - Beta
  - Cauchy
  - Lognormal
  - Double Exponential

— .....

#### Discrete Uniform Distribution

$$P(X = x \mid N) = \frac{1}{N}, x = 1, 2, ..., N,$$

#### **Binomial Distribution**

$$P(X = x \mid n, p) = {n \choose x} p^{x} (1-p)^{n-x}, \quad x = 0, 1, 2, \dots, n,$$



X

the number of observed successes in a sequence of n times Bernoulli trials

#### Poisson Distribution

$$P(X = x \mid \lambda) = \frac{e^{-\lambda} \lambda^{x}}{x!}, x = 0, 1, ...$$

## Negative Binomial Distribution

The number of trials observed until the r-th success occurs in a sequence of Bernoulli trials

$$P(X = x \mid r, p) = {x-1 \choose r-1} p^{r} (1-p)^{x-r}, x = r, r+1, ...$$

The number of fails observed until the r-th success occurs in a sequence of Bernoulli trials

$$P(X = x \mid r, p) = {x + r - 1 \choose r - 1} p^{r} (1 - p)^{x} = {-r \choose x} (-1)^{x} p^{r} (1 - p)^{x}, x = 0, 1, 2, \dots$$

**Geometric Distribution** is a special case of Negative Binomial Distribution with r=1.  $P(X = x | p) = p(1-p)^{x-1}, x = 1, 2, ...$ 

$$P(X=x/p)=p(1-p)^x$$
,  $x=0, 1, 2, ...$ 

## Hypergeometric Distribution

$$P(X = x \mid N, M, K) = \frac{\binom{M}{x} \binom{N - M}{K - x}}{\binom{N}{k}}, x = 0, 1, ..., K.$$

#### Continuous Uniform Distribution

$$f(x \mid a, b) = \begin{cases} \frac{1}{b-a}, & \text{if } x \in (a, b) \\ 0, & \text{otherwise} \end{cases}$$

#### Gamma Distribution



The waiting time until the r-th change occurs when observing a Poisson process  $P(\lambda)$ .

a continuous counterpart of the negative-binomial distribution

20

$$f(x \mid \alpha, \beta) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-x/\beta}, 0 < x < \infty, \alpha > 0, \beta > 0.$$

## **Exponential distribution**

$$f(x \mid \lambda) = \lambda e^{-\lambda x}, \quad x \ge 0$$



the waiting time until the first change occurs when observing a Poisson process  $P(\lambda)$ .

a continuous counterpart of the geometric distribution

**Exponential Distribution** is a special case of Gamma Distribution with r=1.

## Chi-square Distribution

$$f(x|n) = \frac{1}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})} x^{\frac{n}{2}-1} e^{-\frac{x}{2}}, \ x \ge 0$$

**Exponential Distribution** is a special case of Gamma Distribution with r=n/2 and  $\lambda=1/2$  (or  $\alpha=n/2$  and  $\beta=2$ ).

Remark: the **sum of the squares** of *k* independent **standard normal** random variables

$$Z_1^2 + Z_2^2 + \cdots + Z_k^2 \sim \chi_{(k)}^2$$

#### **Normal Distribution**

$$f(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/(2\sigma^2)}, -\infty < x < \infty$$



$$X \sim N(\mu, \sigma^2)$$

$$\downarrow$$

$$Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

#### **Beta Distribution**

$$f(x \mid \alpha, \beta) = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}, 0 < x < 1, \alpha > 0, \beta > 0.$$

$$B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}$$

Remark: Suppose the independent r. vs  $X_1 \sim \Gamma(\alpha, \lambda)$ , and  $X_2 \sim \Gamma(\beta, \lambda)$ , then  $X_1 + X_2 \sim \Gamma(\alpha + \beta, \lambda)$  is independent  $X_1/(X_1 + X_2) \sim \text{Beta}(\alpha, \beta)$ .

## Cauchy Distribution

$$f(x \mid \theta) = \frac{1}{\pi} \frac{1}{1 + (x - \theta)^2}, -\infty < x < \infty, -\infty < \theta < \infty$$

$$E|X|=\infty$$

## Lognormal Distribution

$$f(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \frac{1}{x} e^{-(\log x - \mu)^2/(2\sigma^2)}, 0 < x < \infty, -\infty < \mu < \infty, \sigma > 0$$

$$EX = e^{\mu + (\sigma^2/2)}$$

Remark: If  $X \sim LogN(\mu, \sigma^2)$ , then  $logX \sim N(\mu, \sigma^2)$ .

# Double Exponential Distribution (Laplace Distribution)

$$f(x \mid \mu, \sigma) = \frac{1}{2\sigma} e^{-|x-\mu|/\sigma}, -\infty < x < \infty, -\infty < \mu < \infty, \sigma > 0.$$

$$EX = \mu$$

$$VarX = 2\sigma^2$$

## **Exponential Families**

$$f(x \mid \theta) = h(x)c(\theta) \exp(\sum_{i=1}^{k} w_i(\theta)t_i(x)).$$

- Continuous families
  - Normal, Beta, Gamma, ......
- Discrete families
  - Binomial, Poisson, Negative binomial, ......

#### Location and Scale Families

$$g(x|\mu)=f(x-\mu)$$

$$g(\mathbf{x}|\boldsymbol{\sigma}) = \frac{1}{\boldsymbol{\sigma}} f\left(\frac{x}{\boldsymbol{\sigma}}\right)$$

$$g(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\sigma}) = \frac{1}{\boldsymbol{\sigma}} f\left(\frac{\boldsymbol{x} - \boldsymbol{\mu}}{\boldsymbol{\sigma}}\right)$$

#### Chapter 4 Multiple Random Vaviables

- Joint distribution
  - ${}^{\downarrow}Cdf F(x,y)=P(X\leq x,Y\leq y)$
  - -joint pmf (probability mass function)

-joint pdf (probability density function)

- Marginal distributions
  - Marginal pmfs of discrete bivariate (X,Y)

Marginal pdfs of continuous bivariate

#### Conditional Distributions

For discrete bivariate,

f(y|x)=P(Y=y|X=x)=f(x,y)/
$$f_x(x)$$
  
providing that  $f_x(x) > 0$   
f(x|y)=P(X=x|Y=y)=f(x,y)/ $f_y(y)$   
providing that  $f_y(y) > 0$ 

For continuous bivariate random vector, repalce the pmf function with pdf function

### Conditional Expectations

Expectations

for discrete bivariate random vector

$$E(g(Y)|x) = \sum_{y} g(y)f(y|x)$$

for continuous bivariate random vector

$$E(g(Y)|x) = \int_{-\infty}^{\infty} g(y)f(y|x)dy$$

# Conditional Distributions and Independence

- X and Y are called indepent random variables if for every x and y f(x,y)=f<sub>x</sub>(x)f<sub>Y</sub>(y)
- if X and Y are indepented t, then  $f(y|x)=f(x,y)/f_x(x)=f_x(x)f_y(y)/f_x(x)=f_y(y)$
- The knowledge X=x does't give us any infomation about Y

#### **Bivariate Transformations**

 If (X,Y) is a continuous random vector with joint pdf f<sub>X,Y</sub>(x,y),and U=g<sub>1</sub>(X,Y),V=g<sub>2</sub>(X,Y),

Suppose  $(g_1, g_2)$ : A->B is a one to one transformation

• 
$$x=h_1(u,v)$$
,  $y=h_2(u,v)$ , then
$$f_{U,V}(u,v)=f_{X,Y}(h_1(u,v),h_2(u,v))|J|$$

$$|J|=\begin{bmatrix}\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}\end{bmatrix}$$

Extending to not one-to-one transformation  $f_{U,V}(u,v) = \sum f_{X,Y}(h_{1i}(u,v),h_{2i}(u,v))|J_i|$ 

#### Covariance and Correlation

 The covariance of X and Y is the number defined by

$$Cov(X,Y)=E((X-u_X)(Y-u_Y))$$

The correlation of X and Y is the number defined by

$$\rho_{XY} = Cov(X,Y)/\sigma_X\sigma_Y$$

#### Covariance and Correlation

- Theorem 4.5.3 For any random variables X and Y, Cov(X,Y)=EXY-u<sub>X</sub>u<sub>Y</sub>
- Theorem 4.5.5 If X and Y are independent random variables, then Cov(X,Y)=0 and  $\rho_{XY=0}$
- However Cov(X,Y)=0 and  $\rho_{XY=0}$  does't mean the two are independent(P171)

#### Covariance and Correlation

Theorem 4.5.7 For any random variables X and Y,

b.  $|\rho_{XY}|=1$  if and only if there exist numbers  $a\neq 0$  and b such that P(Y=aX+b)=1.

If  $\rho_{XY}$ =1,then a>0, and if  $\rho_{XY}$ =-1,then a<0