Introduction to mathematical concepts

Cryptography summer course

DACLab

August 13, 2023

Department of Knowledge Engineering VNUHCM - University of Science {ndhy, nvqhuy}@hcmus.edu.vn

Table of contents

- 1. Introduction
- 2. Prime Numbers and Factorization
- 3. Modular Arithmetic & Modular Exponentiation
- 4. Greatest Common Divisor and Euclidean Algorithm
- 5. Chinese Remainder Theorem
- 6. Review & Exercises

Introduction

Introduction to Cryptography

· Overview:

- Cryptography is the practice and study of secure communication techniques.
- It involves encryption, which converts plaintext into ciphertext, and decryption, the reverse process.
- · Importance of Mathematics:
 - · Mathematics forms the foundation of modern cryptography.
 - Complex mathematical problems are at the core of cryptographic algorithms.
- Secure Communication:
 - Cryptography enables secure communication over insecure channels.
 - Confidentiality, integrity, authentication, and non-repudiation are achieved through cryptographic protocols.

Introduction to Cryptography

· Data Protection:

- · Cryptography safeguards sensitive data from unauthorized access.
- Applications include protecting passwords, financial information, and personal data.
- · Future of Cryptography:
 - As technology evolves, cryptography must adapt to maintain security.
 - Quantum cryptography shows promise in providing unbreakable encryption.

Key concepts of modern cryptographic algorithms

- Prime Numbers: Prime numbers are fundamental for cryptography, as security depends on factoring large composites into primes.
- Modular Arithmetic: Modular arithmetic simplifies operations in encryption by handling remainders from integer divisions, preventing overflow.
- One-Way Hash Functions: One-way hash functions generate fixed-size outputs from any input, easy to compute but hard to reverse.
- Randomness: Crucial for strong cryptography, generates unpredictable keys and initialization vectors.

Prime Numbers and Factorization

Factorization

- Factorization is a fundamental mathematical concept with applications in various fields.
- Expressing a number or mathematical object as a product of smaller, simpler factors of the same kind:
 - Simple Factoring: Finding 2 numbers that multiply to form another number like $32 = 4 \times 8$.
 - Prime Factorization: Breaking numbers down to their prime components e.g., $81 = 3 \times 3 \times 3 \times 3$.
 - Greatest Common Factor (GCF): Simplifying expressions by factoring out the common factor as in 2x + 10 = 2(x + 5).
 - Exercies: Factoring complex expressions like $x^2 14x 32,15x^2 26x + 11, or150x^3 + 350x^2 + 180x + 420.$

Prime Numbers

- A prime number is a natural number greater than 1 that has no positive divisors other than 1 and itself: {2,3,5,7,11,13,...}
- · Primality Testing
 - Primality testing involves determining whether a given number is prime or composite.
 - Efficient algorithms like Miller-Rabin and AKS have been developed for accurate and low-computational primality testing.
- Prime Generation
 - Prime number generation methods include the Sieve of Eratosthenes for efficient generation up to a limit and randomized approaches like Baillie-PSW for generating random probable primes.
 - These techniques are essential in cryptography for generating secure encryption keys and prime-based algorithms.

Modular Arithmetic & Modular

Exponentiation

- In modular arithmetic, we pick a number n as the 'modulus', and our numbers range from 0 to n - 1. Numbers wrap around after reaching n for sensible arithmetic.
- Example: With modulus 5, we work in $\{0,1,2,3,4\}$. We get 2+1=3 and 2+2=4. However, 2+3=5 wraps to 0, and 2+4=6 wraps to 1.
- Think of a clock: 1 o'clock to 12 o'clock, then back to 1 o'clock. This is like a modulus of 12, using {1, 2, ..., 12}. Yet, {0, 1, ..., 11} is the same, as 0 and 12 wrap around similarly.
- Example: Assume the current time is 2 : 00 p.m. Write this as 14 : 00. Sixty five hours later, it would be 79 : 00. Since 79 = 243 + 7, it will be 7 : 00 or 7 a.m
- As you can see, the modulo *n* arithmetic maps all integers into the set {0,1,2,3,...., *n*1}

Definition: Congruent modulo

Let $n \ge 2$ be a fixed integer. We say the two integers m_1 and m_2 are congruent modulo, denoted

$$m_1 \equiv m_2 \mod n$$

if and only if $n|(m_1 - m_2)$. The integer n is called the modulus of the congruence.

Theorem

Let $n \ge 2$ be a fixed integer. For any two integers m_1 and m_2 $m_1 \equiv m_2 \mod n \Leftrightarrow m_1 \mod n = m_2 \mod n$.

Corollary

Let $n \ge 2$ be a fixed integer. Then

$$a \equiv 0 \mod n \Leftrightarrow n \mid a$$
.

Theorem

Let $n \ge 2$ be a fixed integer. If $a \equiv b \mod n$ and $c \equiv d \mod n$, then

$$a + c \equiv b + d \qquad \mod n$$

$$ac \equiv bd \qquad \mod n$$

<u>Proof:</u> Assume $a \equiv b \mod n$ and $c \equiv d \mod n$. Then $n \mid (a - b)$ and $n \mid (c - d)$. We can write a - b = ns, and c - d = nt for some integers s and t. Consequently,

$$(a+c)-(b+d)=(a-b)+(c-d)=ns+nt=n(s+t).$$

where s+t is an integer. This proves that $a+c\equiv b+d \mod n$. We also have

$$ac-bd = (b+ns)(d+nt)-bd = bnt+nsd+n^2st = n(bt+sd+nst).$$

where bt + sd + nst is an integer. Thus, $n \mid (acbd)$, which means $ac \equiv bd \mod n$.

Properties of addition in modular arithmetic:

- If a + b = c, then $a \mod n + b \mod n \equiv c \mod n$
- If $a \equiv b \mod n$, then $a + k \equiv b + k \mod n$ for any integer k
- If $a \equiv b \mod n$ and $c \equiv d \mod n$, then $a + c \equiv b + d \mod n$
- If $a \equiv b \mod n$, then $-a \equiv -b \mod n$

Properties of modular multiplication:

- If $a \cdot b = c$, then $(a \mod n) \cdot (b \mod n) \equiv c \mod n$
- If $a \equiv b \mod n$, then $k \cdot a \equiv k \cdot b \mod n$ for any integer k
- If $a \equiv b \mod n$ and $c \equiv d \mod n$, then $a \cdot c \equiv b \cdot d \mod n$

Modular Exponentiation

 Modular exponentiation is the process of repeatedly squaring and reducing a number modulo some integer, and then combining the results to find the required answer.

Theorem

If $a \equiv b \mod n$, then $a^k \equiv b^k \mod n$ for any positive integer k.

Example

How do Modular Arithmetic and Caesar Ciphers relate?

• Since there are 26 letters in the English alphabet, let's relate the letters a-z by numbers 0-25 as shown by the diagram below.

Notice going from "a" to "D" was a shift of 3 letters over. Thus we can encrypt the word "pumpkin" by relating "p" with 15 on the wheel, adding 3 to get 18, and then we turn this back into a letter, which gives us "S". Similarly "u" → 20 → 23 → X.

Example

Euclidean Algorithm

Greatest Common Divisor and

Divisor

A divisor b of an integer a, denoted by $b \mid a$, is an integer satisfying a = bq where q is an integer.

Example: All divisors of 12 are ± 1 , ± 2 , ± 3 , ± 4 , ± 6 , and ± 12 .

Common Divisor

An integer n is a common divisor of a and b iff $n \mid a$ and $n \mid b$. Example: 3 is a common divisor of 12 and 18.

Greatest Common Divisor

An integer n is the greatest commmon divisor (GCD) of a and b iff there is no common divisor of a and b larger than n.

Then, n is denoted by gcd(a, b).

Example: gcd(12, 18) = 6.

Theorem (Bézout's Lemma)

Let a and b be integers with the integer d = gcd(a, b). Then, there exists integers x and y such that ax + by = d. Moreover, d is a divisor of ax + by for all integers x and y.

Example: $gcd(12, 18) = 6 = 12 \times (-1) + 18 \times 1$.

Remarks

- The equation $ax + b = 0 \pmod{n}$ has a solution iff $gcd(a, n) \mid b$. Therefore, if gcd(a, n) = 1, the equation always has a solution.
- If a and n are coprime, i.e. gcd(a, n) = 1, there exists an integer b satisfying $ab = 1 \pmod{n}$. Then, b is called a modular multiplicative inverse of a and denoted by a^{-1} .
- With the prime number p, all integers a satisfying $p \nmid a$ are coprime with p. That means we can design modular operations like addition, subtraction, multiplication, division, and exponentiation.
 - \rightarrow The foundation of the cryptographic theory.

Theorem (Euclidean Algorithm)

Let a, b, and k be integers. Then, gcd(a,b) = gcd(a+bk,b).

Euclidean Algorithm

Let a and b be positive integers. Find gcd(a, b)?

- 1. Loop until b = 0.
 - 1.1. $r \leftarrow a \mod b$. Note: r is an integer satisfying 0 < r < b and $b \mid (a - r)$.
 - 1.2. $(a, b) \leftarrow (b, r)$.
- 2. Return a.

Remark: By Euclidean Algorithm, we can find gcd(a, b), but how can we find integers x and y satisfying ax + by = gcd(a, b)?

Theorem (Extended Euclidean Algorithm)

Let $r_1 = ax_1 + by_1$, $r_2 = ax_2 + by_2$, and $r = r_1 + kr_2$. Then, r = ax + by where $x = x_1 + kx_2$ and $y = y_1 + ky_2$.

Extended Euclidean Algorithm

Let a and b be positive integers. Find d, x, and y such that d = gcd(a, b) = ax + by?

- 1. $(s_1, t_1, s_2, t_2) \leftarrow (1, 0, 0, 1)$.
- 2. Loop until b = 0.
 - 2.1. $r \leftarrow a \mod b$ and $q \leftarrow (a-r)/b$. Note: r is an integer satisfying $0 \le r < b$ and $b \mid (a-r)$.
 - 2.2. $(a, b, s_1, t_1, s_2, t_2) \leftarrow (b, r, s_2, t_2, s_1 qs_2, t_1 qt_2)$.
- 3. Return (a, s_1, t_1) .

Example (Extended Euclidean Algorithm)

Let a = 12 and b = 18. Find d, x, and y such that d = gcd(x, y) = ax + by?

The following table shows values of the variables after step 2.1 and before step 2.2:

а	Ь	S ₁	t ₁	S ₂	t ₂	q	r
12	18	1	0	0	1	0	12
18	12	0	1	1	0	1	6
12	6	1	0	-1	1	2	0

Therefore, d = 6, x = -1, and y = 1.

Remarks (Extended Euclidean Algorithm)

- The complexity of the algorithm is $O(\log(\min(a, b)))$. Thus, it is still considered efficient even with big integers.
- Bézout's Lemma shows the existence of modular multiplicative inverses, and Extended Euclidean Algorithm provides a method to find them. That is a crucial theoretical and practical basis to implement cryptosystems. This topic will be revisited in the RSA section.

Chinese Remainder Theorem

<u>Chinese Remainder Theorem (CRT):</u> Let n_1, \ldots, n_k be positive integers which are pairwise coprime with $N = n_1 \ldots n_k$, and a_1, \ldots, a_k be integers. Then the following system of equations

$$\begin{cases} x = a_1 \pmod{n_1} \\ \vdots \\ x = a_k \pmod{n_k} \end{cases}$$

has a solution. Moverover, any two solutions x_1 and x_2 are congruent modulo N, i.e. $x_1 = x_2 \pmod{N}$.

Example (CRT)

Consider the following system of equations:

$$\begin{cases} x = 7 \pmod{11} \\ x = 2 \pmod{13} \end{cases}$$

$$\iff \begin{cases} x = 7 - 4 \times 11 \pmod{11} \\ x = 2 - 3 \times 13 \pmod{13} \end{cases}$$

$$\iff \begin{cases} x = -37 \pmod{11} \\ x = -37 \pmod{13} \end{cases}$$

$$\iff x = -37 \pmod{11} \times 13 \implies x = -37 \pmod{143}$$

Therefore, all solutions $x = -37 \pmod{143}$.

Remarks (CRT)

- A solution of the system of equations is $a_1p_1q_1 + \dots + a_kp_kq_k$ where $p_i = \frac{N}{n_i}$ and $q_i = p_i^{-1} \pmod{n_i}$. Thus, if all n_i are unchanged, then we can precalculate all p_k and q_k , so as soon as all a_i is determined we can immediately find the solution.
- The performance of the operations can be improved by two ways:
 - Because all n_i are usually much smaller than N, the calculations for each n_i are much simpler and efficient. After that, we can instantly get the final result by precalculated p_i and q_i of CRT.
 - The calculations for each n_i are independent from each other. Therefore, parallel implementation is possible to utilize the full potential of hardware processing.

Applications (CRT)

- Speed up the signing process of certificates and the decryption process of cryptosystems. For example, CRT is applied in the standard implementation of public-key cryptography based on RSA ¹.
- Secret sharing: A secret is only recovered when at least any k
 people of a group join to decrypt together. For example, each
 person keep a piece of the secret which is a solution of a
 congruence equation, and to find the original secret, we need to
 solve a systems of equations. Therefore, CRT is essential to do
 that.

Review & Exercises

Exercises