Diskretne strukture

Permutacije, izročki

Fakulteta za računalništvo in informatiko Univerza v Ljubljani

3. januar 2023

Kaj so permutacije

Naj bo A poljubna množica. Permutacija na A je vsaka bijektivna preslikava $f:A\to A$.

Permutacija reda n je permutacija v $\{1, 2, ..., n\}$. Množico vseh permutacij reda *n* imenujemo *simetrična grupa reda n* in jo označimo z S_n .

Primer

• $\pi_1: \{1,2,3\} \to \{1,2,3\}$, $\pi_1(1)=2$, $\pi_1(2)=3$, $\pi_1(3)=1$, je permutacija reda 3. V kompaktni obliki jo zapišemo kot

$$\pi_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}.$$

• $\pi_2: \{1, \dots, 6\} \rightarrow \{1, \dots, 6\}, \ \pi_2(1) = 2, \ \pi_2(2) = 3, \ \pi_2(3) = 4, \ \pi_2(4) = 1, \ \pi_2(5) = 5, \ \pi_2(6) = 6, \ je \ permutacija \ reda \ 6. \ V$ kompaktni obliki jo zapišemo kot

$$\pi_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 4 & 1 & 5 & 6 \end{pmatrix}.$$

Produkt permutacij

Naj bosta $\pi, \psi \in S_n$ permutaciji reda n.

Produkt $\pi * \psi$ permutacij π in ψ je permutacija reda n, definirana kot

$$(\pi * \psi)(i) = \psi(\pi(i)) \quad \text{za vsak } i = 1, \dots, n.$$
 (1)

Opomba

Kompozitum funkcij $f \circ g$ je definiran s predpisom $(f \circ g)(x) = f(g(x))$. Produkt permutacij pa interpretiramo kot produkt relacij, tako da $(\pi * \psi)(i) = j$ pomeni $i(\pi * \psi)j$ in zato $(\pi * \psi)(i)$ izračunamo kot v (1).

Primer

$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 3 & 4 & 1 & 7 & 6 & 5 \end{pmatrix} \qquad \psi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 5 & 4 & 2 & 3 & 1 & 6 \end{pmatrix}$$

$$\pi*\psi = \left(\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 3 & 4 & 1 & 7 & 6 & 5 \end{smallmatrix}\right) * \left(\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 5 & 4 & 2 & 3 & 1 & 6 \end{smallmatrix}\right) = \left(\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 4 & 2 & 7 & 6 & 1 & 3 \end{smallmatrix}\right)$$

$$\psi * \pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 5 & 4 & 2 & 3 & 1 & 6 \end{pmatrix} * \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 3 & 4 & 1 & 7 & 6 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 7 & 1 & 3 & 4 & 2 & 6 \end{pmatrix}$$

Produkt permutacij ni komutativna operacija.

Inverzna permutacija

Z id_n označimo *identično permutacijo* reda n, tj. $id_n(i) = i$ za vsak $i = 1, \ldots, n$.

Inverzna permutacija π^{-1} permutacije π je permutacija reda n, ki zadošča $\pi * \pi^{-1} = \pi^{-1} * \pi = \mathrm{id}_n$.

Primer

$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 3 & 4 & 1 & 7 & 6 & 5 \end{pmatrix} \qquad \psi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 5 & 4 & 2 & 3 & 1 & 6 \end{pmatrix}$$

$$\pi^{-1} = \left(\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 1 & 2 & 3 & 7 & 6 & 5 \end{smallmatrix} \right) \qquad \psi^{-1} = \left(\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 6 & 4 & 5 & 3 & 2 & 7 & 1 \end{smallmatrix} \right)$$

$$\pi*\pi^{-1} = \left(\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 3 & 4 & 1 & 7 & 6 & 5 \end{smallmatrix}\right) * \left(\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 1 & 2 & 3 & 7 & 6 & 5 \end{smallmatrix}\right) = \left(\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 \end{smallmatrix}\right) = \mathrm{id}$$

Velia tudi: $\pi^{-1} * \pi = \psi * \psi^{-1} = \psi^{-1} * \psi = id$

Trditev

Naj bosta $\pi, \psi \in S_n$. Velja $(\pi * \psi)^{-1} = \psi^{-1} * \pi^{-1}$.

Zapis permutacije z disjunktnimi cikli

Permutacijo lahko zapišemo tudi *z disjunktnimi cikli* in ne v obliki *tabelice*.

Primer

$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 3 & 4 & 1 & 7 & 6 & 5 \end{pmatrix} \qquad \psi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 5 & 4 & 2 & 3 & 1 & 6 \end{pmatrix}$$

$$\pi = (1234)(57)(6) = (1234)(57) = (6)(57)(1234)$$

$$= (3412)(75)(6) = (176)(2534),$$

$$\psi = (176)(2534),$$

$$\pi * \psi = (1234)(57) * (176)(2534) = (156)(2473),$$

$$\psi * \pi = (176)(2534) * (1234)(57) = (1543)(276).$$

Zapis $(i_1i_2i_3...i_{k-1}i_k)$ preberemo kot

$$i_1\mapsto i_2,\ i_2\mapsto i_3,\ \dots,\ i_{k-1}\mapsto i_k,\ i_k\mapsto i_1.$$

Števila, ki jih izpustimo, se slikajo same vase.

Ciklična struktura permutacije

Primer

```
\pi = (1234)(57)(6) je produkt 4-cikla, 2-cikla in 1-cikla, \psi = (176)(2534) pa je produkt 3-cikla in 4-cikla.
```

Ciklična struktura permutacije π je zaporedje dolžin ciklov v zapisu permutacije z disjunktnimi cikli.

Primer

Naj bosta π in ψ kot v primeru zgoraj. Ciklična struktura permutacije π je [4, 2, 1]. Ciklična struktura permutacije ψ je [4, 3].

1-ciklu pravimo tudi *fiksna točka* permutacije, 2-ciklu pa *transpozicija*.

Potenciranje permutacij

Za potenciranje permutacij je ugodnejši zapis permutacije *z disjunktnimi cikli* kot pa zapis v obliki *tabelice*.

$$\pi = (1234)(57)$$

Kako izračunati $\pi^2, \pi^3, \pi^4, \dots$?

$$\pi^{2} = (1234)(57) * (1234)(57)$$

$$= (1234)^{2}(57)^{2}$$

$$= (13)(24)(57),$$

$$\pi^{2} = (1234)(57) * (1234)(57) * (1234)(57)$$

$$= (1234)^{3}(57)^{3}$$

$$= (1432)(57),$$

Za potenciranje permutacij je dovolj poznati potence ciklov.

Potenciranje ciklov

Primer

Potencirajmo 5- in 6-cikel, $\alpha = (12345), \beta = (123456)$:

$$\alpha^2 = (13524), \ \alpha^3 = (14253), \ \alpha^4 = (15432), \ \alpha^5 = \alpha.$$

 $\beta^2 = (135)(246), \ \beta^3 = (14)(25)(36), \ \beta^4 = (153)(264),$
 $\beta^5 = (165432), \ \beta^6 = \beta.$

Trditev

Naj bo α permutacija, sestavljena iz samo enega cikla dolžine n. Permutacija α^k ima ciklično strukturo

Torej je sestavljena iz gcd(n, k) disjunktnih ciklov, ki so vsi iste dolžine $\frac{n}{gcd(n, k)}$.

Primer

Naj bo α 6-cikel. Velja:

- Ciklična struktura α^2 je [3, 3], saj je gcd(6, 2) = 2.
- Ciklična struktura α^3 je [2, 2, 2], saj je gcd(6,3) = 3.
- Ciklična struktura α^4 je [3,3], saj je gcd(6,4) = 2.
- Ciklična struktura α^5 je [6], saj je gcd(6,5) = 1.
- Ciklična struktura α^6 je [1, 1, 1, 1, 1, 1], saj je $\gcd(6, 6) = 6$.
- Ciklična struktura α^7 je enaka ciklični strukturi α .
- Ciklična struktura α^8 je enaka ciklični strukturi α^2 .

Red permutacije

 $\textit{Red permutacije } \pi$ je najmanjše naravno število $k \geq 1$, za katerega je

$$\pi^k = \mathrm{id}$$
.

Trditev

Naj bo α permutacija, sestavljena iz samo enega cikla dolžine n. Potem je red permuatcije α enak n in $\alpha^{-1} = \alpha^{n-1}$.

Trditev

Red permutacije π je najmanjši skupni večkratnik dolžin ciklov v zapisu permutacije π z disjunktnimi cikli. Oznaka: $r(\pi)$.

Primer

- Če je ciklična struktura α enaka [3,2] je $r(\alpha) = 6$.
- Če je ciklična struktura α enaka [4,3,2] je $r(\alpha) = 12$.
- Če je ciklična struktura α enaka [4,3,3,2,2] je $r(\alpha) = 12$.
- Če je ciklična struktura α enaka [8,7,5,2] je $r(\alpha) = 8 \cdot 7 \cdot 5$.

Potenciranje permutacij in zapis s transpozicijami

Izrek

Naj bo

$$\pi = \alpha_1 * \alpha_2 * \cdots * \alpha_m,$$

kjer so α_i , $i=1,\ldots,m$, cikli v zapisu permutacije α z disjunktnimi cikli. Potem je

$$\pi^k = \alpha_1^k * \alpha_2^k * \dots * \alpha_m^k.$$

Komentar: Permutacijo potenciramo tako, da jo zapišemo z disjunktnimi cikli in potenciramo vsak cikel posebej.

Trditev

Vsako permutacijo (iz S_n , $n \geq 2$) lahko zapišemo kot produkt transpozicij (2-ciklov).

Dokaz.

Trditev sledi iz enakosti: $(i_1 i_2 i_3 \dots i_k) = (i_1 i_2)(i_1 i_3) \dots (i_1 i_k)$.

Opomba

Zapis kot produkt transpozicij ni enolično določen.

Parnost permutacije

Permutacija je *soda*, če jo lahko zapišemo kot produkt sodo mnogo transpozicij.

Permutacija je *liha*, če jo lahko zapišemo kot produkt liho mnogo transpozicij.

Primer

$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 3 & 4 & 1 & 7 & 6 & 5 \end{pmatrix}$$

Pravimo, da sta (v permutaciji π) števili 1 in 2 v inverziji, ker sta v spodnji vrstici tabelice v napačnem vrstnem redu: 1 je manjše kot 2, toda 2 je zapisana pred 1.

Permutacija π ima 6 inverzij: 12, 13, 14, 56, 57, 67.

Izrek (o parnosti permutacij)

Denimo, da lahko permutacijo π zapišemo kot produkt m transpozicij, pa tudi kot produkt (morda drugih) n transpozicij. Potem je

$$m \equiv n \pmod{2}$$
.

Potenčna enačba s permutacijami

Permutacijska potenčna enačba je enačba oblike

$$\varphi^k = \alpha, \tag{2}$$

kjer je α znana permutacija, $k \in \mathbb{N}$, φ pa neznana permutacija.

Vprašanje. Kaj lahko povemo o rešljivosti enačbe (2)?

- k = 0: (2) je rešljiva samo, če je $\alpha = id$.
- k = 1: (2) je rešljiva.
- k=2: Če je (2) rešljiva, potem je permutacija α soda.

Trditev

Enačba (2) je rešljiva natanko tedaj, ko je ciklična struktura φ^k enaka ciklični strukturi α .

Metoda nedoločenih koeficientov

Primer

Rešujemo enačbo

$$\varphi^2 = (1,2)(3,4)(5,6,7,8,9,10,11) = \alpha.$$
 (3)

Ciklična struktura α je enaka [7,2,2]. Ker mora biti c.s. φ^2 enaka [7,2,2], je φ oblike

$$[m], [m_1, m_2]$$
 ali $[m_1, m_2, m_3].$

- Če je c.s. φ enaka [11], potem je c.s. φ^2 enaka [11], kar ni c.s. α . Torej ni rešitve.
- Če je c.s. φ enaka $[m_1, m_2]$, potem mora biti $m_1 = 7$, $m_2 = 4$. Torej rešitev je. Ugibajmo z metodo nedoločenih koeficientov:

$$\varphi = (x_1x_2x_3x_4)(x_5x_6x_7x_8x_9x_{10}x_{11}).$$

Potem je

$$\varphi^2 = (x_1 x_3)(x_2 x_4)(x_5 x_7 x_9 x_{11} x_6 x_8 x_{10}).$$

Primer

• Če je c.s. φ enaka $[m_1, m_2, m_3]$, potem je tudi

c.s.
$$\varphi^2$$
 enaka $[m_1, m_2, m_3] = [7, 2, 2]$.

Toda, če je c.s. φ enaka [7,2,2] sledi, da je c.s. φ^2 enaka [7,1,1,1,1]. Torej ni rešitev.

$$\varphi^2 = \alpha$$
, kjer je c.s. α enaka $[m]$

Če je c.s. α enaka [m] sledi, da mora biti tudi c.s. φ^2 enaka [m].

Trditev

Če je c.s. α enaka [m], je $\varphi^2=\alpha$ rešljiva natanko tedaj, ko je $\gcd(2,m)=1$.

V tem primeru je rešitev celo ena sama, kar se vidi iz naslednjega premisleka.

Linearna diofantska enačba

$$2k + m\ell = 1$$

je namreč rešljiva. Zato velja

$$\alpha^k = (\varphi^2)^k = \varphi^{1-m\ell} = \varphi * (\varphi^m)^{-\ell} = \varphi * \mathrm{id} = \varphi.$$

Trditev

Če je $arphi^2=lpha$ rešljiva, potem je rešitev ena sama in enaka $arphi=lpha^k$.

$\varphi^2 = \alpha$, kjer je c.s. α enaka $[m, \ldots, m]$

Trditev

Naj bo c.s. α enaka $[m, \ldots, m]$.

• Če je gcd(m,2) = 1, potem je $\varphi^2 = \alpha$ rešljiva, rešitev pa je več. Rešitve imajo ciklično strukturo oblike

$$[2m,\ldots,2m,m,\ldots,m].$$

② Če je gcd(m,2) = 2, potem je $\varphi^2 = \alpha$ rešljiva, če je r sod. Ciklična struktura φ mora biti oblike

$$[2m,\ldots,2m].$$

Primer

Obravnavajte rešljivost enačbe $\varphi^2 = \alpha$ pri c.s. α enako [3,3,3,3,3].

Velja gcd(3,2) = 1, zato obstajajo rešitve φ za vsako od naslednjih cikličnih struktur [6,6,3],[6,3,3,3],[3,3,3,3].

$\varphi^2 = \alpha$, kjer je α poljubna

Naj bo

c.s.
$$\alpha$$
 enaka $[m_1,\ldots,m_1,m_2,\ldots,m_2,\ldots,m_\ell,\ldots,m_\ell]$.

V tem primeru rešimo enačbe

$$\varphi_j^2 = \alpha_1^{(j)} * \ldots * \alpha_{i_j}^{(j)}, \quad j = 1, \ldots, \ell,$$

pri čemer so $\alpha_i^{(j)}$ vsi cikli v α dolžine m_j .

Rešitev $\varphi^2=\alpha$ je potem

$$\varphi = \varphi_1 * \cdots * \varphi_\ell.$$

Primer

Reši enačbo $\varphi^2 = (123)(456)(789)(10,11)(12,13)(14)$.

Rešujemo
$$\varphi_1^2=(123)(456)(789),\ \varphi_2^2=(10,11)(12,13)$$
 in $\varphi_3^2=(14).$

- Če je c.s. φ_1^2 enaka [3,3,3] sledi, da je c.s. permutacije φ_1 enaka bodisi [6,3] bodisi [3,3,3]. V prvem primeru je rešitev npr. $\varphi_1 = (142536)(798)$, v drugem pa $\varphi_1 = (132)(465)(798)$.
- Če je c.s. φ_2^2 enaka [2,2] sledi, da je c.s. φ_2 enaka [4]. Torej je rešitev $\varphi_2 = (10, 12, 11, 13)$.
- *Očitno je* $\varphi_3 = (14)$.

Končni rešitvi sta

$$\varphi = (142536)(798)(10, 12, 11, 13)(14),$$

 $\varphi = (132)(465)(798)(10, 12, 11, 13)(14).$