Repàs de models de regressió lineal

$$y_{ij} = \mu + \alpha_i + e_{ij}$$

Models de regressió lineal

Rendi2 = 10,2163 + 0,447563 Temperatura

Model de regresión simple

Model per la població:

$$y = β_0 + β_1 x + ε$$

 $ε \sim N (0, σ)$

Recta ajustada: (a partir d'una mostra)

$$\hat{\mathbf{y}} = \mathbf{b}_0 + \mathbf{b}_1 \mathbf{x}$$

Regressió simple: comparació de situacions

Situación 1

The regression equation is Rendi1 = 3.08 + 0.495 Temperatura

Predictor Coef SE Coef Р 3,082 2,162 Constant 1,43 0,160 0,49524 0,01325 37,38 Temperat 0,000 S = 0.7932R-Sq = 96,7% R-Sq(adj) = 96,6%

Situación 3

The regression equation is

Rendi3 = 65,7 + 0,110 Temperatura

Predictor Coef SE Coef T P

Constant 65,72 11,00 5,97 0,000

Temperat 0,11029 0,06743 1,64 0,108

S = 4,037 R-Sq = 5,3% R-Sq(adj) = 3,3%

Regressió simple: interpretació de resultats

Situación 2

The regression equation is

Rendi2 = 10,2 + 0,448 Temperatura

Predictor	Coef	SE Coef	T	P
Constant	10,216	5,497	(1,86	0,069
Temperat	0,44756	0,03370	13,28	0,000

Desviació tipus dels residus

Percentatge de la variabilitat de y Proves de significació pels explicat per l'equació

coeficients

Residus: Què són?

Part de la variable dependent (y) no explicada pel model

Análisi dels residus

Análisi dels residus

Model lineal

Residus versus valors previstos

Els residus contenen informació Model no adequat

Análisi dels residus

Model quadràtic

Residus versus valors previstos

Els residus contenen informació Model adequat

Regressió múltiple

+	C1	C2	C3	
	Presion	Temperatura	Rendi	
1	2,8	152	86,0	
2	2,8	178	91,1	
3	2,0	160	86,0	
4	2,4	153	85,4	
5	2,5	179	90,8	
6	2,7	166	88,68	
7	2,1	169	0,88	
8	2,0	174	8,88	
9	2,5	164	87,9	
10	2,5	163	87,78	
11	2,9	158	87,4	
12	2,7	160	87,4	
13	2,1	151	84,4	
14	2,7	158	87,1	
15	2,5	177	90,4	
16	3,0	169	89,8	
17	2,8	178	91,2	
18	2,8	159	87,4	
19	2,4	160	86,88	
20	2,0	150	84,0	
21	2,0	150	84,0	
22	3,0	150	96,0	
23	2,0	180	90,0	
24	3,0	180	92,0	
25				

Regressió múltiple: interpretació dels resultats

Regression Analysis: Rendi versus

Presion; Temperatura

The regression equation is

Rendi = 48,9 + 1,84 Presion + 0,208 Temperatura

Predictor	Coef	SE Coef	Т	P
Constant	48,941	2,709	18,07	0,000
Presion	1,8437	0,4699	3,92	0,001
Temperat	0,20807	0,01562	13,32	0,000

Desviació tipus dels residus

Proves de significació pels coeficients

Mesura de qualitat de l'ajust

Regressió múltiple: construcció del model

Construir el millor model de regressió múltiple no és evident...

Volem construir un model per explicar 'y' en funció de només 2 variables regressores (d'entre les 3 disponibles)

Quines són les 2 variables que cal fer servir?

Obtindrem un bon ajust?

Regressió múltiple: construcció del model

Correlations: y; x1; x2; x3

x 1	У 0,675 0,001	x 1	x 2
x 2	0,901 0,000	0,516 0,020	
x 3	0,088 0,714	-0,676 0,001	0,204 0,388

Cell Contents: Pearson correlation
P-Value

Regressió múltiple: construcció del model

Les variables més adequades NO SON x2 y x1

$$y = x1 + x3$$

 $R^2 = 100 \%$

Quan es tenen moltes variables, trobar el millor model no és tan fàcil. Hi ha mètodes que ajuden a trobar-lo.

L'exemple de la molla

Anàlisi com a disseny factorial:

	C5	C6	C7	C8	C9
s	Α	В	С	У	
1	-1	-1	-1	79	
1	1	-1	-1	97	
1	-1	1	-1	75	
1	1	1	-1	92	
1	-1	-1	1	64	
1	1	-1	1	84	
1	-1	1	1	73	
1	1	1	1	90	

Term	Effect	Coef
Constant		81,750
A	18,000	9,000
В	1,500	0,750
С	-8,000	-4,000
A*B	-1,000	-0,500
A*C	0,500	0,250
B*C	6,000	3,000
A*B*C	-0,500	-0,250

L'exemple de la molla

Anàlisi per regressió

C5	C6	C7	C8	C9	C10	C11	C12
Α	В	С	AB	AC	BC	ABC	у
-1	-1	-1	1	1	1	-1	79
1	-1	-1	-1	-1	1	1	97
-1	1	-1	-1	1	-1	1	75
1	1	-1	1	-1	-1	-1	92
-1	-1	1	1	-1	-1	1	64
1	-1	1	-1	1	-1	-1	84
-1	1	1	-1	-1	1	-1	73
1	1	1	1	1	1	1	90

The regression equation is y = 81.8 + 9.00 A + 0.750 B - 4.00 C - 0.500 AB + 0.250 AC + 3.00 BC - 0.250 ABC

Predictor	Coef	SE Coef	T	P
Constant	81,7500	0,0000	*	*
A	9,00000	0,00000	*	*
В	0,750000	0,000000	*	*
С	-4,00000	0,00000	*	*
AB	-0,500000	0,000000	*	*
AC	0,250000	0,000000	*	*
BC	3,00000	0,00000	*	*
ABC	-0,250000	0,000000	*	*

Models de regressió lineals

```
> summary(aov(Y~L*G*T, data=molles.cod))
           Df Sum Sq Mean Sq F value
                                       Pr (>F)
L
                1296
                        1296
                              259.2 2.224e-07 ***
                           9
                               1.8 0.2165473
                         256
                               51.2 9.658e-05 ***
L:G
                               0.8 0.3972038
L:T
                               0.2 0.6665811
            1 144
                        144
                               28.8 0.0006724 ***
G:T
L:G:T
                               0.2 0.6665811
Residuals
```

Amb R:

Fent servir aov i Im (sobre la matriu de disseny en unitats codificades) lm(formula = Y ~ L * G * T, data = molles.cod)

Residuals:

Min 1Q Median 3Q Max -2.000e+00 -1.250e+00 -5.551e-17 1.250e+00 2.000e+00

Coefficients:

	Estimate	Std.	Error	t value	Pr(> t)	
(Intercept)	81.750		0.559	146.239	5.35e-15	***
L	9.000		0.559	16.100	2.22e-07	***
G	0.750		0.559	1.342	0.216547	
T	-4.000		0.559	-7.155	9.66e-05	***
L:G	-0.500		0.559	-0.894	0.397204	
L:T	0.250		0.559	0.447	0.666581	
G:T	3.000		0.559	5.367	0.000672	***
L:G:T	-0.250		0.559	-0.447	0.666581	

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.236 on 8 degrees of freedom Multiple R-squared: 0.9772, Adjusted R-squared: 0.9572

F-statistic: 48.89 on 7 and 8 DF, p-value: 6.101e-06

