Chapter 7.2 Nearest Neighbour Methods

Yi Hu 10/06/2021

7.2 Nearest Neighbour Methods

Classification

Regression

7.2.1 Nearest Neighbor Smoothing

FIGURE 7.4 Output of the nearest neighbour method and two kernel smoothers on thedata of duration and repose of eruptions of Mount Ruapehu 1860–2006.

7.2.2 KD-Tree

Suppose we had 7 2-dimentional points to make a tree: (5,4), (1,6), (6,1), (7,5), (2,7), (2,2), (5,8)

7.2.2 KD-Tree

7.2.3 Distance Measures

• Euclidean distance: $d_E = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$,

• Manhattan distance: $d_C = |x_1 - x_2| + |y_1 - y_2|$.

• Minkowski distance: $L_k(\mathbf{x},\mathbf{y}) = \left(\sum_{i=1}^d |x_i - y_i|^k\right)^{\frac{1}{k}}$.

Thank you!