GUB_FlightNo:MH370

Md. Hosain Rohman Noyon

Ismatul Islam Pranto

Samim Reza

Green University of Bangladesh

Table of Contents

Template2
Graph Grid Possible moves 2
Bitwise Operation 3
STL3
Pair3
Vector3
Set(unique value)3
Map(Sorted & No Duplicate key) 4
Upper bound & lower bound:4
Compare for sort()4
Stack:4
Queue:4
DeQue:4
Algorithms: 5
String 5
Formulas5
Triangle5
Quadrilateral6
Circle6
Ellipse6
Hexagon6
3D Shape6
Prism6
Lines:6
Combinatorics:6
Sequence and Series Formula7
MATH 7
ALGORITHM7
MOD7
BIG MOD7
Inverse mod7
Extended Euclidean Algorithm7
Check Prime or not7
Sieve Algorithm7
Prime Factors8
Find Divisors & Count till N 8
Count & SumOfDivisors of N8
SumOfDivisor of till N8
Power of Prime Number in a
Factorial n!8
Binary Search8

BFS 8
DFS9
Cycle Detection (DFS)9
Path Print(BFS)9
Dijkstra9
White-Black (two-color) -
Balanced Subtrees(dfs)9
BFS on GRID10
Kruskal for finding MST10
Prim's for finding MST11
KMP string matching11
Longest increasing subsequence
(LIS)12
Longest common subsequence (LCS)12
Longest Unique Subarray12 Coin Change12
least Coin needed13
Knapsack profit
SOS DP
Remove k digit build lowest
number13
Subarray Sum count number of subarrays have same sum13
Minimum Lexicographical Rotation14
Merge Sort14
Counting Sort14
Next Greater Element // O(n) 14
String OP14
Large Division15
Catalan Number16
Ordered Set:16
Hashing 16
Mobius:16
Binary Indexed Tree 16
Segment tree17
Sum/Min/Max/kth '1'/first ind>x 17
Min/Max and number of same element18
Max Sum of Segment19
Segment Tree - Lazy Propagation 20

Matrix expo	. 21
Mo Algorithm	.22
Pollard rho	23

Segmented tree Tri.....21

GUB FlightNO:MH370

<u>Template</u>

```
#include<bits/stdc++.h>
#define ff first
#define ss second
using namespace std;
typedef long long 11;
typedef long double ld;
typedef unsigned int uint;
typedef unsigned long long
ull;
using pll = pair<ll, ll>;
typedef vector<int> vi;
typedef vector<ll> vl;
typedef vector<pll> vpll;
typedef vector<vl> matrix;
typedef vector<bool> vb;
#define PI acos(-1)
#define endl "\n"
#define pb push back
#define ppb pop back
#define lb lower bound
#define ub upper bound
#define for0(n) for(int
i=0;i<n;i++)
#define for1(n) for(int
i=1; i <= n; i++)
#define for0j(n) for(int
j=0; j<n; j++)
#define for1j(n) for(int
j=1; j<=n; j++)
#define each(v) for (auto
&it : v)
#define all(x) (x).begin(),
(x).end()
#define rall(x)
(x).rbegin(), (x).rend()
#define MOD 1000000007
#define MAX LLONG MAX
#define MIN LLONG MIN
#define mp make pair
#define MEM(a,x)
memset(a,x,sizeof(a))
//Debugging Functions starts
template <class T> void
print(T x) {cerr << x;}</pre>
```

```
template <class T, class V>
void print(pair<T, V> x) {
print(x.ff); cerr << ':';</pre>
print(x.ss);}
template <class T> void
print(vector<T>
&a) {cerr<<'['<<' '; each(a)
{ print(it); cerr << '
';}cerr << ']';}
template <class T> void
print(stack<T> x) {cerr<<"[</pre>
"; while(!x.empty()) {cerr<<x.
top()<<", ";
x.pop();}cerr<<"]";}
template <class T> void
print(queue<T> x) {cerr<<"[</pre>
"; while (!x.empty()) {cerr<<x.
front()<<", ";
x.pop();}cerr<<"]";}
template <class T> void
print(set<T>
&a) {cerr<<'['<<' ';each(a) {
print(it); cerr << ' ';</pre>
}cerr << ']';}</pre>
template <class T> void
print(set<T, greater<T>>
&a) {cerr<<'['<<' '; each(a)
{print(it);cerr<<'
';}cerr<<']';}
template <class T> void
print(multiset<T> &a)
{cerr<<'['<<' ';
each(a){print(it);cerr<<'
';} cerr<<']';}
template <class T> void
print(multiset<T,</pre>
greater<T>> &a) {cerr<<'['<<'<']</pre>
'; each(a) {print(it);cerr<<'
';}cerr<<']';}
template <class T> void
print(unordered set<T>
&a) {cerr << '[' << ' ';
';}cerr<<']';}
```

```
template <class T, class V>
void print(vector<pair<T,</pre>
V>> &a) {cerr<<'['<<' ';</pre>
each(a) {print(it.ff);cerr<<"</pre>
:";print(it.ss);cerr<<'
';}cerr<<']';}
template <class T, class V>
void print(map<T, V>
&a) {cerr<<"[ ";</pre>
each(a) {print(it);cerr<<"</pre>
";}cerr<<"]";}
template <class T, class V>
void print(unordered map<T,</pre>
V> &a) {cerr<<"[ ";</pre>
each(a) {print(it);cerr<<"</pre>
";}cerr<<"]";}
template <class T> void
print (vector<vector<T>>
&a) {cerr<<"[ ";</pre>
each(a) {print(it);cerr<<"</pre>
";}cerr<<"]";}
//Debugging Functions ends
            FastIO
void speed() {
ios base::sync with stdio(fa
lse); cin.tie(NULL);
cout.tie(NULL);}
          File I/O
void file(){
#ifndef ONLINE JUDGE
freopen("input.txt", "r",
stdin);
freopen ("output.txt", "w",
stdout);
freopen("error.txt", "w",
stderr);
#define dbg(x) cerr << #x <<</pre>
" "; print(x); cerr << '\n';
#else
       #define dbg(x)
#endif
   Graph Grid Possible
            moves
bool ifExist(ll x, ll y) {
  if(x \ge 0 \&\& y \ge 0 \&\&
x<=Right && y<=Right) return
true;
```

GUB_FlightNO:MH370 return false; 11 reverse = 0; v.push back(n); 11 temp = n;v.pop back(); while (temp > 0) { v.front(); 11 $x[]=\{1,-1,0,0,1,-1,1,-1\};$ v.back(); reverse = (reverse << v.size(); v.empty(); ll y[]={0,0,1,-1,1,-1,-1,1}; 1) | (temp & 1); v.erase(iterator); [To run at terminal] temp >>= 1; v.begin(), v.end(); win/g++ main.cpp && ./a.exe sort(v.begin(), v.end()); lin/g++ main.cpp && ./a.out return reverse == n;} sort(v.begin(), v.end(), void printBinary(ll num) { greater<ll>()); Bitwise Operation for (ll i=63; i>=0; i--)auto it = cout << ((num>>i) &1); bitset<n> x; find(v.begin(), cout << endl;</pre> v.end(), num); bitset<n> x(intVal); } for (auto n: v) /loop x[1] = 1; x[2] = 0;Built in Function vector<pair<ll,ll>> v; /Note x[0-4] valid v.push back($\{x,y\}$); No. of leftside zero: v[ind].first; cout << x << endl;</pre> builtin clz(x); v[ind].second; Output: 00010 builtin clzll(x); *max element(all(v)); Getbit: n&(1LL<<i)</pre> No of rightside zero: Setbit0:n&(~(1LL<<i))</pre> Set (unique value) builtin ctz(x); Setbit1: n|(1LL<<i)</pre> $/O(\log n) \rightarrow BST$ builtin ctzll(x); Clearbit:n&(~(111<<i))</pre> set<11>s; No. of 1 bit: set<ll, greater<ll>>s = Togglebit: n^(1LL<<i)</pre> builtin popcount(x); {3,2,1,4} RightLast1: n&(-n) /output : 4 3 2 1 builtin popcountll(x); Swap two numbers a, b: $a = a^b;$ Parity (if odd no of s.insert(n); s.clear(); $b = a^b;$ 1bits or not) s.size(); s.empty(); $a = a^b;$ builtin parity(x); s.count(n); s.find(n); Check if N is power of 2: s.erase(x); /delete all if(n&(n-1)==0)Infinity same value cout << "YES"<< endl;</pre> builtin inf();/double s.erase(s.find(x));Uppercase to lowercase: (int) builtin infd32(); /delete 1 same value char $f = ch \mid 32$; (ll int) builtin infd64(); for (auto n: s) /loop Lowercase to uppercase: s.begin(), s.end(); char g = ch & ~32;Toggle case: STL s1.swap(s2);char $e = 'a' ^ (1 << 5);$ s2.insert(s1.begin(),s1 <u>Pair</u> char $h = 'a' ^ 32;$.end()); pair<int, char> p1; Clear LSB till nth bit: *st.begin(); /minimum n pl.first, pl.second; 11 b = n &*st.rbegin();/maximum n p1= make pair(1,'a'); $(\sim ((1<<(i+1))-1));$ s.erase(s.begin()) Clear MSB till nth bit p1= {1,'a'}; /first n delete ll c=n & ((1<<(i+1))-1);s.erase(--s.end()) Multiply by 2: Vector /last n delete cout << (a<<1) << endl;</pre> vector<ll> v; Divide by 2: UnOrder Set (Not sorted) vector<ll> v(size); cout << (a>>1) << endl; unordered set<ll> s; v.insert(v.begin()+ind,

val);

isPalindrome(ll n) {

```
GUB_FlightNO:MH370
                                                                "<<p.first.second<<" "
     Multi Set (Duplicate
       value with sorted)
                                                                <<pre><<pre>cond;
                                                                                                                                /Call sort function
multiset<int> ms1;
                                                                                                                                sort(all(v),funName);
multiset<int,
                                                                cout << mp1.size();</pre>
                                                                                                                                                     Stack:
greater<int>> ms1;
                                                                /map key finding:
auto it= ms1.begin();
                                                                                                                                stack<int> st;
                                                                if(mp.find(0) ==
it++;
                                                                mp.end()) /Not found
                                                                                                                                st.push(x);
                                                                else /found
                                                                                                                                while(!st.empty()) {
         Map (Sorted & No
                                                                                                                                cout<< st.top();</pre>
          Duplicate key)
                                                                    Upper bound & lower
                                                                                     bound:
                                                                                                                                st.pop(); }
O(\log n) \rightarrow BST
map<11,11> m;
                                                                >For vector:
map < int, int > mp3 =
                                                                index =
                                                                                                                                                     Queue:
\{\{1, 2\}, \{3, 4\}, \{5, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6, 4\}, \{6,
                                                                lower bound(v.begin(),
                                                                                                                                queue<int> q;
                                                                v.end(), num) - v.begin();
                                                                                                                                q.push(x);
                                                                                                                                                                q.pop();
m.insert({x,y});
                                                                index =
                                                                upper bound(v.begin(),
                                                                                                                                q.front();
                                                                                                                                                                q.back();
/\{\text{key,n}\}
print->m[key];
                                                                v.end(),num)-v.begin();
                                                                                                                                          Priority Queue:
m.find(x);
                                                                                                                                Descending order:
for(auto it: m) /loop
                                                                >For array:
                                                                                                                                priority queue<int>
it.first, it.second;
                                                                index = lower bound(A,
                                                                                                                                pq1;
it->first,it->second;
                                                                A+n, num) -A;
                                                                                                                                Ascending order:
/for outside loop
                                                                index = upper bound(A,
                                                                                                                                priority queue<int,
it = m.lower bound(x)
                                                                A+n, num) -A;
                                                                                                                                vector <int>, greater
it->first;
                                                                                                                                \langle int \rangle > pq2;
m.upper bound(x)->first;
                                                                     Compare for sort()
                                                                                                                                pq2.push(x);
                                                                /Descending
                                                                                                                                while(!pq.empty()){
                  Pair Map
                                                                                                                                       cout<<pq.top();</pre>
map<int, pair<int,</pre>
                                                                Sort(v.begin(), v.end(),
int>> mp1;
                                                                                                                                       pq.pop();
                                                                greater<ll>()):
                                                                                                                                 }
mp1[a].first,
                                                                /PairSort 2<sup>nd</sup> element
mp1[a].second;
                                                                                                                                                     DeQue:
/if value for key is
                                                                pairSort(pair<11,11>
                                                                                                                                deque<int> dq;
not assigned Output:
                                                                &a, pair<11,11> &b) {
                                                                                                                                       dq.push back(10);
/for int 0,
                                                                                                                                       dq.push front(20);
                                                                if(a.second==b.second)
/for pair<int, int> it
                                                                                                                                       dq.pop front();
                                                                return (a.first <
is {0, 0}
                                                                                                                                       dq.pop back()
                                                                b.first);
map<pair<int, int>,
                                                                                                                                dq.insert(it, val);
int> mp2;
                                                                return (a.second <
                                                                                                                                dq.at(ind); dq.size();
mp2[{1, 3}] = -1;
                                                                b.second);}
                                                                                                                                dq.front(); dq.back();
cout << mp2[{1,3}]; /-1
                                                                                                                                dq.clear();
                                                                /Vector Row sort
                                                                                                                                dq.erase(it);
/Pair, int map loop
                                                                vector<vector<ll>>> v(sz);
                                                                                                                                for(auto it=dq.begin();
for(pair<pair<int,</pre>
                                                                bool sortcol(const
                                                                                                                                it!=dq.end();++it)
int>, int> p: mp4)
                                                                vector<ll>& v1, const
                                                                                                                                       cout<< *it<<" ";
cout<<p.first.first<< "</pre>
                                                                vector<ll>& v2) {
```

return v1[0] < v2[0];

GUB_FlightNO:MH370

Algorithms:

```
>sort(vec.begin(),
vec.end(), [](int x, int
y) {return x < y; });
>copy if(foo.begin(),
foo.end(), bar.begin(),
[](int i){return
!(i<0);}) /copy positive
val from foo to bar vec
>find if(all(v), IsOdd)
bool IsOdd (int i) {
 return ((i%2)==1);}
/get index where
predicate first true
>binary search(all(v),
item) /returns true if
found
>is sorted(all(foo));
>reverse(all(vec));
>is permutation
(all(foo), bar.begin())
>*min element(all(vec))
>*max element(all(vec))
> do{
perms.push back(arr);
      } while
(next permutation(all(arr
)));
>unique copy
(all(v1), v2.begin());
Function pointer --> int
(*funcPtr)()
#undef: Un-defines a text
macro
#ifdef: Same as #if
defined(...)
#ifndef: Same as #if
!defined(...)
#endif: Used to end an
#if, #ifdef, or #ifndef
```

String

```
Transformation:
transform(S.begin(),
S.end(), S.begin(), ::
toupper);
transform(S.begin(),
S.end(), S.begin(), ::
tolower);
strcpy(destStr, srcStr);
int n = stoi(str);
double n = stod(str);
string s= to string(n);
s = s1+s2; /merge
string s1 = "Hello
World";
/get substr
subS = s1.substr(7,5);
/Output: World
subS = s1.substr(7)
/Output: World
/replace substr
s1.replace(7,5,"Uni");
s1.replace(s1.find(s2),
s2.length(), newString);
s.resize(oldSize+Value)
,'+');
s.empty();
s.at(index);
s.find(subS);
s.rfind(subS);
swap(s1, s2);
str.size();
s1.compare(s2); s1>s2=1,
s1 < s2 = -1, s1 = s2 = 0
/If we want to take
input with space:
char c;
cin >> c;
getline(cin, s)
s = c + s;
sort(s.rbegin(),
s.rend()) /sort in
non-increasing order
int n =
unique(s.begin(),s.end(
)) - sbegin(); /Getting
unique char in string
```

```
max / min char:
*max element(s.begin(),
s.end());
*min element(s.begin(),
s.end());
/delete substr from
string:
s.erase(s.begin() + 3,
s.end()+7) /remove
loWo from helloworld
/push any substr
string Tmp = "hello
alam hello";
string S = "tasdid";
copy(tmp.begin() + 6,
tmp.begin()+10,
back inserter(s));
/Output: tasdid alam
/remove all specific
char
s.erase(remove(
s.begin(), s.end(), 'a'
), s.end());
/check given string is
substring or not
O(n*m) complexity
if(s.find("hello") !=
-1 )item found
else not found
       Formulas
       Triangle
Perimeter 2s: a+b+c
s is Half of Perimeter
Area:
\sqrt{s(s-a)(s-b)(s-c)}
/Any two sides a,b and
the angle between them:
Area = \frac{1}{2} a*b*sin\theta
Right angle:
```

Area: (b*h)/2

Equilateral:

Height: $\frac{\sqrt{3}}{2}a^2$

Pythagoras: $c^2 = a^2 + b^2$

GUB_FlightNO:MH370		
Area: $\frac{\sqrt{3}}{4}a^2$	LS = Curved/lateral s	slope, m = tan(theta)
7	TS = Total surface	Perpendicular lines,
Isosceles:	Cuboid-Rectangle:	m1*m2 = -1
a = len of equal sides,	Diagonal: $sqrt(a^2+b^2+c^2)$	Vertical line, m= inf
b = base,	TS Area:2(ab+bc+ca)	horizontal line, m=0
Height: $sqrt(4a^2-b^2)/2$	LS area: 2h(1+b)	/Given a straight line,
Area: $(b/4) * sqrt (4a^2-b^2)$	Volume: abc	find the parallel and
<u>Quadrilateral</u>	Cube-Square:	perpendicular line:
Rectangle :	Volume: a ³	>Parallel:change C to K
Perimeter: 2(1+w)	LS area: 4a ²	>Perpendicular: swap a
Length: P/2 - w	TS area: 6a²	and b with sign
Width: P/2 - 1	Sphere-Circle:	(bx-ay+k=0)
Area: l*w	Volume: (4/3)*pi*r ³	>Solution of x,
Parallelogram :	LS area: 4*pi*r²	$x = (-b + - sqrt (b^2 - 4ac)) / 2a$
Perimeter: 2(len+base)	TS area: 4*pi*r²	Combinatorics:
Area: base * height	<pre>Hemisphere-Half_circle:</pre>	Permutation (Order
Square :	Volume: (2/3)*pi*r³	matters):
Perimeter: 4*a	LS area: 2*pi*r²	>Repetition not allowed
Area: a*a	TS area: 3*pi*r²	P(n,r):n!/(n-r)!
diagonal: $\sqrt{2}a$	Cylinder:	>Repetition allowed ,
Rhombus :	Volume: pi*r²*h	P(n,r): n ^r
Perimeter: 4*a	LS area: 2*pi*r*h	
Area: $(d_1 * d_2) / 2$	TS area: 2*pi*r(r+h)	Combinations:
d = diagonal	Cone:	>Number of arrangements
Trapezium :	Volume: (1/3)*pi*r²*h	C(n) = n!
Perimeter: a+b+c+d	LS area: pi*r*l	>With r elements,
Area: $(a + b) \times h/2$	TS area: pi(r+l)	Without repetition
For all:	<u>Prism</u>	C(n,r) = n!/(n-r)!r!,
Area: 2 * TriangleArea	Volume of a triangular	>With repetition:
Circle	prism: area of triangle	C(n,r) = (n+r-1)!/(n-1)!r! Example: Flavors are
Circumference= 2*pi*r	\times Height = (1/2 base \times	Example: Flavors are chocolate, vanilla, and
Area = $pi * r^2$	height) × Height;	pineapple. If the person
Part Area= $(\theta/360)$ pi*r ²	base: length of the	can select two scoops at
-	base of the triangle	a time, then he can have
Arc len, $s = \frac{pi * r * \theta}{180}$	height: height of the	one flavor two times
<u>Ellipse</u>	triangle	Circular permutations,
Perimeter = pi*(a+b)	Height: height of the	>when clockwise and
Area = pi * a * b	triangular prism	anticlockwise orders
<u>Hexagon</u>	Lines:	are same: $(n-1)!/2$
Perimeter= 6*a	Straight line eqn,	when clockwise and
Area = $na^2 \cot (180/n)/4n$	y = mx + c;	anticlockwise orders
Area = 6 * TriangleArea	IntersectionRatio, m1:m2	are different: (n-1)!
{triangle is Equilateral}	$X = \frac{(m1x2+m2x1)}{(m1+m2)}$	From n points:
3D Shape	y = (myx2+m2y1) / (m1+m2)	>Straight line:
CS = Curved suface	slope, $m = (y2-y1) / (x2-x1)$	nC2 = n(n-1)/2
		>Triange = $nC3$

```
GUB FlightNO:MH370
>Ractacangle = nc4
>Diagonal =
nC2-n = (\frac{1}{2}) n (n-3)
>To invite 1 or more
from N friends= (2^n)-1
 Sequence and Series
        Formula
>Nth term:
a+(n-1)d
ar<sup>(n-1)</sup>
>Sum of Nth term:
n/2(2a + (n-1)d)
a(1-r^n)/(1-r) /if r<1
a(r^{n}-1)/(r-1) /if r>1
>Natural number
N*(N+1)/2
>Square of Natural n
[n(n+1)(2n+1)] / 6
>Sum of squares of
first n even numbers
[2n(n + 1)(2n + 1)]/3
>Sum of squares of
first n odd numbers
[n(2n+1)(2n-1)] / 3
          MATH
* if x and m coprime, x
^{\circ} phi(m) = 1
(mod m)
* if x and m coprime, x
^n = x ^m \pmod{n}
phi(m)) (mod m)
```

ALGORITHM

MOD

```
> (a+b) %mod = ((a%mod)
+ (b%mod)) %mod;
> (a-b) %mod = ((a%mod)
- (b%mod) +mod) %mod;
> (a*b) %mod = ((a%mod)
* (b%mod)) %mod;
> (a/b) % mod =
((a%mod) * (b<sup>-1</sup>%mod))
```

```
%mod; [NB:exist if
gcd (b, mod) == 1]
>b^{-1}%mod = x
or, 1 = (b*x) % mode
>B^{-1} \% \mod = (B^{\mod -2} \%
mod)
> (a/b) % mod = (a% mod)
(binPow(b, mod-2, mod))
\underline{/GCD} = gcd(a,b);
/LCM = (a*b)/gcd(a,b);
         BIG MOD
ll binPow(ll a, ll b,
ll m) {
if (b==0) return 1;
if(b==1) return a% m;
ll ans = binPow(a, b/2,
m);
ans = (ans * ans) % m;
if(b%2==1) ans = (ans *
a) % m;
return ans ;}
```

Inverse mod

11 inv(ll a,ll m) {
return (binPow(a, m-2,
m)%m);}

Extended Euclidean Algorithm

```
Question: Given, a,b,c
for eq ax + by = c; x,y
?
Ans: ax + by = gcd(a,
b);
gcd(a, b) = gcd(b,
a%b);
gcd(b, a%b) = bx1 +
(a%b)y1;
a%b = a - (a/b) * b;
From the above
equations we get,
ax + by = bx1+ (a%b)y1;
```

} int x1, y1; int gcd = gcdExtended(b % a, a, &x1, &v1); *x = y1 - (b / a) * x1;*y = x1;return gcd; } int main() { int x, y, a=35, b=15;int q = gcdExtended(a,b,&x,&y); cout<<"GCD("<<a<<","<<b <<")="<<q<<endl; return 0; } /Input: a = 35, b = 15/Output:gcd=5, x=1, y=-2Note: 35*1+15*(-2) = 5

Check Prime or not

```
bool checkPrime(ll n) {
  if(n==2) return true;
  if(n==1) return false;
  for
  (int i=2;i*i<=n;i++) {
    if(n%i==0)
      return false;}
  return true;}</pre>
```

Sieve Algorithm

/To get primes in
O(nloglogn)

```
GUB FlightNO:MH370
const int N=1e7+10;/1e6
vector<ll>
primeFactor[N+1];
vector<bool>
isPrime(N+1, true);
vector < int > lp(N, 0), hp(N, 0)
);
void sieve() {
isPrime[0] = false ;
isPrime[1] = false;
for (int p = 2; p * p <=
N; p++) {
 if (isPrime[p] == true)
\{ lp[p] = hp[p] = p;
primeFactor[p].pb(p);
  for (int i = p * 2; i <
N; i += p) {
primeFactor[i].pb(p);
isPrime[i] = false;
hp[i] = p;
if(lp[i]==0) lp[i] = p;
      Prime Factors
/Find hp using Sieve algo
map<ll,ll> primeFactor;
ll num;
cin>>num;
while(num>1) {
  int primeFac = hp[num];
  while(num%primeFac==0) {
     num /= primeFac;
primeFactor[primeFac]++;
Input: num = 30
Output: 2 ase 3 bar,
```

Find Divisors & Count till N

3 ase 1 bar

/Alternate of Sieve

```
const int Max = 1e5+10;
ll divcnt[Max];
vector<ll> divs[Max];
void DivisorCount(ll
n) {
  for(int i = 1; i <=
n; i++) {
    for(int j = i; j <=
n; j += i) {
      divcnt[j]++;
      divs[j].pb(i);
    }
}</pre>
```

Count & SumOfDivisors of N

```
/Using Sieve&PrimeFactors

if num = P_1^{n1} * P_2^{n2} * P_3^{n3}..

count= (n_1+1) (n_2+1) (n_3+1)
... (n_k+1)

sum = (1+P_1^1+P_1^2+...+P_1^{n1}) *
(1+P_2^1+P_2^2+...+P_2^{n2}) *
(1+P_3^1+P_3^2+...+P_3^{n3})...

= [(P_1^{n1+1}-1)/(P_1-1)] *
[(P_2^{n2+1}-1)/(P_2-1)] *
[(P_3^{n3+1}-1)/(P_3-1)]...

Input: 36
Output: 2^2*3^2
= (1+2+4)*(1+3+9)
```

SumOfDivisor of till N

= 91

 $= [(2^{2+1}-1)/(2-1)]*$

 $[(3^{2+1}-1)/(3-1)]$

```
/like N=2, sum = 4
/cz div[1]=1,div[2]=1,2
ll sumOfDiv(ll n) {
    ll sum = 0;
    for(int i = 1; i <= n;
i++) {
        ll div = n/i;
        sum += div*i;
        }
    return sum;</pre>
```

```
Power of Prime Number
   in a Factorial n!
ll largestPower(ll n, ll
} (q
  11 x = 0;
  while(n) {
    n /= p;
    x += n;
return x; }
\Input: n = 100 and p1 = 5
\langle \text{Output: e1} = [100/5] +
[100/25] + [100/125] \dots
e1 = 20 + 4 + 0
e1 = 24
The power of 5 in 100! is
     Binary Search
ll binarySearch(ll arr[],
ll l, ll r, ll x) {
 while (l \le r) {
  11 m = 1 + (r - 1)/2;
   if (arr[m] == x)
         return m;
   if (arr[m] < x)
        1 = m + 1;
   else
    r = m - 1;
 }
return -1; }
           BFS
bool bfs(src) {
deque<11>q;
vis[src] = true;
q.pb(src);
d[src] = 0;
while(!q.empty()){
  11 src=q.front();
```

q.pop front();

each(graph[src]){

adj=graph[src][i];

vis[adj]=true;

if(vis[adj]==0) {

q.pb(adj);

```
GUB_FlightNO:MH370
     prev[adj] =src;
                                      Dijkstra
     d[adj] = d[src]+1;
                              struct Node{
                                int at, cost;
} } }
                                Node(int _at, int
return 0;}
                              cost) {
                                                            dist[e.v]));
                                  at = at;
           DFS
                                  cost = _cost;
                                                                 }
bool vis[N];
                                                                } }
                                } } ;
11 prev[N];
                              bool operator<(Node a,</pre>
                                                            }
ll stime[N], endTime[N];
                              Node b) {
vector<int>graph[10002];
                                return a.cost > b.cost;
prev[src] = -1,
stime[src] = 0;
                              struct Edge{
time = 0;
                                int v, w;
void dfs(int node) {
                                Edge(int _v, int _w){
     time++;
                                  v = v;
    stime[node] = time;
                                  w = w;
    vis[node]=true;
                                }
                                                              }
 for(auto x:graph[node]){
                              };
   if(!vis[x]){
                                                            int main(){
                              vector <Edge> G[10001];
                                                              int t;
     prev[x] = node;
                              priority queue <Node> pq;
                                                              cin>>t;
     dfs(x);
                              int dist[10001];
  }
                              int n, m, s;
                                                                cin>>n;
time++;
                              void dijsktra(int src){
endTime[node] = time;}
                                for (int i = 1; i \le n;
                              i++) {
Cycle Detection (DFS)
                                  dist[i] = 1e9;
If(prev[u]!=v &&
                                                            i++) {
visited[v] ==true) cycle
                                dist[src] = 0;
found. /inside loop
                                pq.push(Node(src, 0));
    Path Print(BFS)
                                while(!pq.empty()){
                                                                }
Print(G,src, cur) {
                                  Node u = pq.top();
If(cur==src) print(src)
                                  pq.pop();
Else if(Prev[cur]==-1)
                                                            i++) {
                                if(u.cost!=dist[u.at]){
    Print(no path);
                                    continue;
Else{
                                  }
   print(G, src, prev[cur]
                                 for (int i = 0; i <
                                                                }
   Print(cur); }
                                                               else{
                              G[u.at].size(); i++){
```

```
Edge e = G[u.at][i];
      if(dist[e.v] >
u.cost + e.w) {
    dist[e.v] = u.cost+e.w;
     pq.push (Node (e.v,
       White-Black
(two-color) - Balanced
      Subtrees (dfs)
void dfs(int s){
  for (int i=0;
i<nod[s].size(); i++){</pre>
   dfs(nod[s][i]);
b[s-1] += b[nod[s][i]-1];
w[s-1] += w[nod[s][i]-1];
  while (t--) {
     int n, q;
     w[0] = b[0] = 0;
  for (int i=0; i \le n;
i++) nod[i].clear();
  for (int i=1; i < n;
       int x;
       cin>>x;
 nod[x].push back(i+1);
       w[i] = b[i] = 0;
     cin>>st;
    for (int i=0; i < n;
   if(st[i] == 'W') {
         w[i]=1;
         b[i]=0;
```

```
GUB_FlightNO:MH370
         w[i] = 0;
                              q.pop();
                                                             int node, edge,
        b[i]=1;
                              for (int i = 0; i < 4;
                                                             parent[Max];
                              i++) {
                                                             int Find parent(int n) {
                                                             //cout<<": "<<n<<"
                              int adjx = x + dRow[i];
    dfs(1);
                                                             "<<pre>parent[n]<<endl;</pre>
    int cnt=0;
                              int adjy = y + dCol[i];
    for (int i=0; i < n;
                                                             if(parent[n] == n)
                              if (isValid(vis, adjx,
i++) {
                                                                   return n;
                              adjy)) {
      if(b[i] == w[i])
                                                             return
                              q.push({ adjx, adjy });
cnt++;
                                                               Find parent(parent[n]);
    }
                              vis[adjx][adjy] = true;
   cout << cnt << endl;
                                                             void graph() {
                                    }
  return 0;}
                                                              for (int i = 1; ; i++) {
                               }
      BFS on GRID
                                                                cin >> g[i].u >>
#define ROW 4
                                                             q[i].v >> q[i].w;
                              int main(){
#define COL 4
                                                                 edge++;
                              int grid[ROW][COL]={{
int dRow[] = \{-1, 0, 1, 0\};
                                                              }
                              1, 2, 3, 4}, { 5, 6, 7, 8
int dCol[] = \{0,1,0,-1\};
                                                             }
                              }, { 9, 10, 11, 12 }, {
bool isValid(bool
                                                             int kruskal(){
                              13, 14, 15, 16 }};
vis[][COL], int row, int
                                                               int sum = 0;
                              bool vis[ROW][COL];
col) {
                                                               for(int i = 0; i <=
                              memset(vis, false, sizeof
if(row<0 || col<0 ||
                                                             node; i++)
                              vis);
row>=ROW || col>=COL)
                                                                 parent[i] = i;
                              BFS(grid, vis, 0, 0);
     return false;
                                                               for(int i = 1; i <=
                              return 0;}
if (vis[row][col])
                                                             edge; i++)
                                Kruskal for finding
           return false;
                                                               {
                                          MST
return true;
                                                             int u =
                              const int Max = 15e3+10;
                                                             Find parent(g[i].u), v =
void BFS(int grid[][COL],
                              struct Node{
                                                             Find parent(g[i].v);
bool vis[][COL], int row,
                                int u, v, w;
                                                             //cout <<u<<" "<< v << endl;
int col) {
                              } q[Max];
                                                              if (u != v) {//printf("The)}
queue<pair<int, int>>q;
                              bool less (Node a, Node
                                                             cost from %d to %d is:
q.push({ row, col });
                              b) {
                                                             %d\n", s1[i], s2[i], w[i]);
vis[row][col] = true;
                                                                 parent[u] = v;
                                return a.w < b.w;
while (!q.empty()) {
                                                                 sum += q[i].w; }
                              }
pair<int, int> cell =
                              bool more (Node a, Node
                                                              return sum; }
q.front();
                                                             int main(){
                              b) {
int x = cell.first;
                                return a.w > b.w;
                                                               int t;
int y = cell.second;
                              }
                                                               cin >> t;
cout << grid[x][y] << " ";
```

```
GUB FlightNO:MH370
  for(int tc = 1; tc <=
                                                                 } } }
t; tc++) {
                                 return mn;
                                                              }
    cin >> node;
                               }
    edge = 0;
                               int main(){
                                 int n, m, u, v;
    graph();
// Minimus
                                 ll w, mn;
                                 cin >> n >> m;
sort(g+1,g+edge+1,less);
cout<<kruskal()<<endl;</pre>
                                 for (int i = 1; i \le m;
// Maximum
                               i++) {
                                                             lps);
sort(g+1,g+edge+1,more);
                                   cin >> u >> v >> w;
cout<<kruskal()<<endl;}</pre>
                               G[u].push back(make pair(
return 0;}
                                                             j)) {
                               w, v));
                               G[v].push back(make pair(
Prim's for finding MST
                               w, u));}
const int Max = 1e5+10;
                                mn = prim(1);
bool vist[Max];
                                 cout << mn << endl;</pre>
vector <pll> G[Max];
                                 return 0;
ll prim(int src){
                               }
priority queue<pll,
                                KMP string matching
vector<pll>, greater<pll>>
                               void
q;
                               computeLPSArray(string
  11 \, mn = 0;
                               pat, int M, int* lps) {
  q.push(make pair(0,
                                    int len = 0;
src));
                                    lps[0] = 0;
  while(!q.empty()){
                                    int i = 1;
    pll p = q.top();
                                                              else
                               while (i < M) {
    q.pop();
                                if(pat[i] == pat[len]) {
    int u = p.second;
                                                               } }
                                    len++;
   if(vist[u] == true){
                                    lps[i] = len;
      continue;
                                    i++;
    mn += p.first;
                                else{
    vist[u] = true;
                                  if (len != 0) {
    for(pll v : G[u]) {
                                   len = lps[len - 1];
      if(vist[v.second]
                                  }
== false) {
                                                              }
                                  else{
        q.push(v);
                                    lps[i] = 0;
      }
                                    i++;
    }
```

```
void KMPSearch(string
pat, string txt) {
int M = pat.size();
int N = txt.size();
int lps[M];
computeLPSArray(pat, M,
int i = 0, j = 0;
while ((N - i) >= (M -
 if (pat[j]==txt[i]) {
     j++;
     i++;
 if (j == M) {
  printf("Found pattern
at index %d ", i - j);
   j = lps[j - 1];
 else if (i < N && pat[j]</pre>
!= txt[i]) {
 if (j != 0)
    j = lps[j - 1];
   i = i + 1;
int main(){
string txt =
"ABABDABACDABABCABAB";
string pat = "ABABCABAB";
KMPSearch(pat, txt);
 return 0;
```

```
GUB FlightNO:MH370
  Longest increasing
   subsequence (LIS)
void solve(){
  11 n;
  cin>>n;
  ll arr[n];
for (int i=0; i< n; i++)
        cin>>arr[i];
vector<ll>v;
v.push back(arr[0]);
for(int i=1;i<n;i++){
 if(arr[i]>v.back())
  v.push back(arr[i]);
else{
   int ind =
lower bound(all(v),arr[i]
) - v.begin();
v[ind] = arr[i];
} }
cout<<v.size()<<endl;}</pre>
    Longest common
   subsequence (LCS)
int lcs(string X, string
Y, int m, int n) {
   int L[m + 1][n + 1];
   int i, j;
for (i = 0; i \le m; i++) \{
   for (j = 0; j \le n;
j++) {
 if (i==0 | j==0)
    L[i][j] = 0;
  else if (X[i-1] ==
Y[j - 1])
 L[i][j]=L[i-1][j-1]
  else
L[i][j] = max(L[i -
1][j], L[i][j - 1]);
```

```
}
return L[m][n];
}
int main() {
   string X = "AGGTAB";
    string Y = "GXTXAYB";
   int m = X.size();
    int n = Y.size();
printf("Length of LCS is
d\n'', lcs(X, Y, m, n));
 return 0;
    Longest Unique
        Subarray
11 n;
cin >> n;
vector<int> v;
map<int, bool> mp;
int mx=0;
int currans=0;
int j=0;
for(int i=0; i<n; i++) {
 int k;
 cin>>k;
 v.push back(k);
if(mp.find(k) == mp.end() | |
mp[k]==false) {
   mp[k]=true;
   currans++;
   mx=max(currans,mx);
  }
 else{
   while (v[j]!=k) {
      mp[v[j]]=false;
      j++;
    currans=(i-j);
    j++;
 }
```

cout<<mx<<endl;</pre>

Coin Change In a strange shop there are n types of coins of value A1, A2,... An. You have to find the number of ways you can make K using the coins. You can use any coin at most K times. For example, suppose there are three coins 1, 2, 5. Then if K = 5 the possible ways are: 11111, 1112, 122, 5 So, 5 can be made in 4 ways. Solution: 11 ar[Max]; int main(){ ll t, n, k; cin>>t: 11 tc =1; while (t--) { cin>>n>>k;ll dp[k + 1];memset(dp,0,sizeof dp); dp[0] = 1;for (int i = 1; $i \le n$; i++) cin>>ar[i]; for(int i = 1; i <= n; i++) { for (int $j = 1; j \le k;$ j++) { if(ar[i] <= j){ dp[j] = dp[j] % Mod +dp[j-ar[i]] % Mod; dp[j] %= Mod; }

}

```
GUB_FlightNO:MH370
printf("Case %d: %lld\n",
                                                              while (k>0 \& \&
tc, dp[k]);
                                                            !stk.empty() &&
                              int main() {
    tc++;
                                                            stk.top()>num[i]){
                                int profit[] = \{60,
                              100, 120 };
                                                                stk.pop();
                                 int weight[] = \{10,
                                                                k--;
return 0;
                              20, 30 };
                                   int W = 50;
                                                              }
                                   int n =
                                                             if(num[i]!='0')
                              sizeof(profit) /
   least Coin needed
                                                               stk.push(num[i]);
                              sizeof(profit[0]);
int count(vector<int>&
                              cout << knapSack(W,
                                                             else if(!stk.empty())
coins, int n, int sum) {
                              weight, profit, n);
                                                               stk.push(num[i]);
                                   return 0;
  vector<vector<int>>
                              }
dp(n + 1, vector < int > (sum)
                                                            while(!stk.empty() &&
+ 1, 0));
                                       SOS DP
                                                            k--) {
    dp[0][0] = 1;
                              Problem: Given a fixed
                                                              stk.pop();
                              array A of 2N integers,
for(int i=1;i <= n;i++) {
                              we need to calculate \forall x
 for(int j=0;j<=sum;j++) {</pre>
                              function F(x) = Sum of
                                                            vector<char> ans;
                              all A[i] such that x&i =
 dp[i][j] += dp[i-1][j];
                                                            while(!stk.empty()){
                              i, i.e., i is a subset of
  if((j-coins[i-1]) >= 0){
                                                            ans.push back(stk.top());
    dp[i][j] += dp[i][j -
                                                             stk.pop();
                              for(int i = 0; i < (1 <<
coins[i - 1]];
                                                            }
                              N); ++i) F[i] = A[i];
                              for (int i = 0; i < N;
                                                            reverse (all (ans));
                              ++i) {
                                                            if(ans.empty())cout<<0;</pre>
    return dp[n][sum];
                                for (int mask = 0;
                                                            for(auto i:ans)cout<<i;</pre>
}
                              mask < (1 << N); ++ mask) {
                                                            cout << endl;
    Knapsack profit
                                 if(mask & (1 << i)){
// Function to find the
                                    F[mask] += F[mask ^
                                                              Subarray Sum count
maximum profit
                                                              number of subarrays
                              (1 << i);
int knapSack(int W, int
                                                                 have same sum
                                 } } }
wt[], int val[], int n)
                                                            cin>>n>>x;
    int dp[W + 1];
                                                            map<11, 11>mp;
                               Remove k digit build
    memset(dp, 0,
                                   lowest number
                                                            11 A[n+3], cnt=0, sum=0;
sizeof(dp));
                              string num;
                                                            for(int i=0; i<n; i++) {
for (int i = 1; i < n +
1; i++) {
                              int k;
                                                              cin>>k;
 for (int w = W; w >= 0;
                              cin>>num>>k;
                                                              sum+=k;
W--)
   if (wt[i - 1] \le w)
                              stack<char>stk;
                                                              A[i] = sum;
     dp[w] = max(dp[w],
                              int sz=num.size();
dp[w-wt[i-1]] + val[i-1]);
                                                            for(int i=0; i<n; i++) {
                              for(int i=0;i<sz; i++){
     }
                                                              if(A[i]==x) cnt++;
```

return dp[W];

```
GUB_FlightNO:MH370
  if(mp[A[i]-x]>=1)
                              else
                                                            for (int i=0; i \le K;
                                   Arr[k++]=A[q++];
                                                          i++) {
cnt+=mp[A[i]-x];
                                                              int tmp = Aux[i];
  mp[A[i]]++;
                              for (int p=0; p < k; p++)
                                                              // Aux stores which
                                 A[start++]=Arr[p];
                                                          element occurs how many
                             }
cout << cnt << endl;
                                                          times,
                             void merge sort (int A[
                                                              // Add i in
                             ], int start, int end) {
        Minimum
                                                          sortedA[] according to
                              if( start < end ) {</pre>
    Lexicographical
                                                          the number of times i
                                 int mid = (start +
        Rotation
                                                          occured in A[]
                             end ) / 2 ;
                             merge_sort (A, start, mid);
                                                             while (tmp--) {
int
                             merge sort(A, mid+1, end);
                                                                //cout << Aux[i]</pre>
minimumExpression(strin
                             merge(A, start, mid, end);
                                                          << endl;
q s) {
                              }
 s = s + s;
                                                                sortedA[j] = i;
                             }
  int i = 0, j = 1, k =
                                                                j++;
                                  Counting Sort
0, len = s.size();
                                                              }
while(i + k < len && j
                             void counting sort(int
                                                           }
                             A[], int Aux[], int
+ k < len) {
                                                          }
  if(s[i + k] == s[j+k])
                             sortedA[], int N) {
      k++;
                               // First, find the
                                                           Next Greater Element
else if (s[i+k] < s[j+k]) {
                             maximum value in A[]
                                                                   // O(n)
  j=max(j+k+1, i+1);
                               int K = 0;
                                                          vector<int>
  k = 0;
                               for (int i=0; i < N;
                                                          nextGreaterElement(vect
  }
                             i++) {
                                                          or<int> &arr) {
else{
                                 K = max(K, A[i]);
                                                            int n = arr.size();
   i = \max(i + k + 1, j)
                                                            stack<int> s;
+ 1);
                             // Initialize the
                                                            vector<int> ret(n +
  k = 0;
                             elements of Aux[] with
                                                          1, n);
   }
                                                            for (int i = n - 1; i
                                                          >= 0; i--) {
                              for (int i=0; i \le K;
  return min(i, j);
                                                             while(!s.empty() &&
                             i++) {
}
                                                          arr[s.top()] <=
                                 Aux[i] = 0;
                                                          arr[i]){
       Merge Sort
                                                                s.pop();
                             // Store the
void merge(int A[], int
                             frequencies of each
start, int mid, int end) {
                                                             if(!s.empty()){
  int p = start, q =
                             distinct element of
                                                                ret[i] = s.top();
mid+1;
                             A[],
  int Arr[end-start+1],
                               // by mapping its
                                                              s.push(i);
                             value as the index of
 for(int i = start ; i <=</pre>
                             Aux[] array
                                                            return ret;
end ; i++) {
                               for (int i=0; i< N;
  if(p > mid)
                             i++) {
                                                                 String OP
   Arr[k++] = A[q++];
                                 Aux[A[i]]++;
                                                          Mod of a string:
  else if (q > end)
                                                          int mod = 0;
   Arr[k++] = A[p++];
                                                          mod = (mod*10 + s[i]-'0')
                               int j = 0;
  else if (A[p] < A[q])
                                                          % num;
```

Arr[k++] = A[p++];

String Multiplication:

```
string multiply(string
num1, string num2) {
int len1 = num1.size();
int len2 = num2.size();
if(len1==0 || len2==0)
   return "0";
vector<int> result(len1 +
len2, 0);
int i n1 = 0;
int i n2 = 0;
for(int
i=len1-1; i>=0; i--) {
    int carry = 0;
   int n1 = num1[i] -
'0';
i n2 = 0;
for (int j=len2-1; j>=0;
 int n2 = num2[j] - '0';
 int sum = n1*n2 +
result[i n1 + i n2] +
carry;
   carry = sum/10;
result[i n1 + i n2] =
sum % 10;
    i n2++;
if (carry > 0)
     result[i n1 + i n2]
+= carry;
   i n1++;
int i =result.size()-1;
while (i>=0 && result[i]
== 0)
   i--;
 if (i == -1)
   return "0";
  string s = "";
 while (i >= 0)
```

```
s +=
std::to string(result[i--
1);
 return s;
int main(){
 string str1;
  string str2;
 if((str1.at(0) == '-'
| | str2.at(0) == '-') &&
      (str1.at(0) != '-'
|| str2.at(0) != '-' ))
   cout<<"-";
  if(str1.at(0) == '-')
    str1 =
strl.substr(1);
  if(str2.at(0) == '-')
    str2 =
str2.substr(1);
  cout << multiply(str1,</pre>
str2);
 return 0;
String Addition:
string findSum(string
str1, string str2) {
  if (str1.length() >
str2.length())
    swap(str1, str2);
   string str = "";
int n1 = strl.length(),
n2 = str2.length();
reverse(strl.begin(),
str1.end());
reverse(str2.begin(),
str2.end());
int carry = 0;
```

```
int sum =
((str1[i]-'0')+(str2[i]
-'0')+carry);
str.push back(sum%10 +
'0');
   carry = sum/10;
for(ll i=n1; i<n2; i++) {
   int sum =
((str2[i]-'0')+carry);
str.push back(sum%10 +
'0');
    carry = sum/10;
if (carry)
str.push back(carry+'0'
);
  reverse(str.begin(),
str.end());
  return str;
    Large Division
#include<bits/stdc++.h>
using namespace std;
#define ll long long
int main(){
    int test, cs = 1;
    cin>>test;
    while(test--){
        string s;
        ll div;
        cin>>s>>div;
        11 \text{ temp} = 0;
        if(div < 0)
    div = -1*div;
 for(int i = 0; i <
s.size(); i++) {
  if(s[i] == '-')
     continue;
  temp =
temp*10+(s[i]-'0');
 if(temp >= div){
    temp %= div;
        }
```

for (ll i=0; i<n1;

i++) {

```
GUB_FlightNO:MH370
      }
                            using namespace
                                                        void Hashing(string
   cout<<"Case
                             gnu pbds;
                                                        str, int len) {
"<<cs++<<": ";
                                                           11 \text{ hash val} = 0;
                            template <typename T>
 if(temp == 0)
                            using Set = tree<T,
                                                           for(int i = 0; i <
cout << "divisible" << endl
                            null type,
                                                        len; i++) {
                                                              hash val =
                                                         (hash val * base +
 else
                            less<T>, rb tree tag,
   cout<<"not
                                                        str[i]) % Mod;
divisible" << endl;
                                                         Hash[i + 1] = hash val;
                            tree order statistics n
   }
                            ode update>;
}
                            Set <int> st;
                                                         }
                            int main(){
                                                        ll SubstringHash (int 1,
    Catalan Number
                                st.insert(5);
                                                        int r) {
                            //Insert
                                                             return (Hash[r] -
ll catalon number(ll
                                                         (Hash[l-1] * pw[r-l]
                                st.erase(5);
n) {
                                                        + 1]) % Mod + Mod) %
                            //Delete
    vll catalon(n+5);
                                st.insert(1);
                                                        Mod;
    catalon[0]=1;
                                st.insert(2);
                                                         }
    FOR (1, n+1) {
                                st.insert(9);
     catalon[i] =
                                cout <<
                                                                 Mobius:
(catalon[i-1]*(4*i-2))/
                            *st.find by order(0) <<
(i+1);
                                                        int N = 15;
                            endl; //Find value by
   }
                            rank
   return catalon[n];
                                                        int mu[N+1];
                                cout <<
                                                        memset(mu,0,sizeof(mu))
                            st.order of key(9) <<
The Catalan numbers: 1,
                            endl; //Find value's
2, 5, 14, 42, 132, 429,
                                                        mu[1] = 1;
                            rank
1430, 4862, 16796,
                                /* For multiple
58786, 208012, 742900,
                                                         for (ll i = 1; i \le N; ++i)
                            same element, use pair,
2674440, 9694845
                                                         for(ll j = 2*i; j \le N;
                            store index in second
Distance:
                                                        j += i)
                            of pair */
  1. 2 point :
                                                            mu[j] -= mu[i];
                                return 0;
  2. point - line:
                                                         for (int i = 1; i \le N;
                            }
     (ax1+by1+c)/sqrt(a
     ^2+b^2)
                                    Hashing
                                                             printf("%d :
  3. Line - line:
                                                        %d\n",i,mu[i]);
                            const int base = 331;
     (c1-c2)/sqrt(a^2+b)
                            const int Max = 2e6+10;
     ^2)
                                                          Binary Indexed Tree
                            const int Mod = 1e9 + 7;
                            const ll Inf = 1LL << 62;
                                                        const int Max = 1e5 +
     Ordered Set:
                            11 pw[Max];
                                                        10;
#include<bits/stdc++.h>
                            11 Hash[Max];
                                                        int ar[Max], n;
#include
                            void pre power(){
                                                        11 BIT[Max];
<ext/pb ds/assoc contai
                               pw[0] = 1;
ner.hpp>
                            for(ll i = 1;i<Max;i++)</pre>
                                                        void update(int idx,
#include
                                                        int val) {
<ext/pb ds/tree policy.
                              pw[i] = (pw[i - 1] *
                                                          while (idx \leq n) {
hpp>
                            base) % Mod;
                                                              BIT[idx] += val;
using namespace std;
                                }
                                                             idx += idx & -idx;
```

}

```
GUB_FlightNO:MH370
                            void build(ll node, ll
                                                             return
                            st, 11 en) {
                                                         query(2*node+1,mid+1,en
ll query(int idx) {
                                                         ,k-tree[2*node]);
                             if(st==en){
    11 \text{ ret} = 0;
    while (idx > 0) {
                               tree[node] = a[st];
    ret += BIT[idx];
                                                         11 \text{ mid} = (st+en)/2;
                                  return;
    idx -= idx & -idx;
                                                         11 q1 = query(2*node,
                              }
                                                         st, mid, l, r);
    return ret;
                             11 \text{ mid} = (st+en)/2;
}
                                                         11 q2 = query(2*node+1,
                                                         mid+1, en, l, r);
                            build(2*node, st, mid);
ll query(int l, int r){
                                                         /For sum
                            build(2*node+1,mid+1,en
    return query(r) -
                            );
query(1 - 1);
                                                         return q1 + q2;
                            /For sum/kth '1'
                                                         /For max/first ind > x
void build() {
                            tree[node] =
   for(int i = 1; i <=
                                                         return max(q1, q2);
                            tree[2*node] +
n; i++) {
                            tree[2*node+1];
        update(i,
ar[i]);
                            /For max/first ind>x
   }
                            tree[node] =
                                                         void update(ll node, ll
                            max(tree[2*node], tree[2
                                                         st, ll en, ll ind, ll
int main(){
                            *node+1]);
                                                         val) {
  int q, 1, r;
                                                         /For kth '1' remove
  scanf("%d %d", &n,
                                                         'val'
 for (int i = 1; i \le n;
                                                           if(st==en) {
                            11 query(11 node, 11
i++) {
                            st, ll en, ll l, ll r) {
                                                              a[st] = val;
  scanf("%d", &ar[i]);
                            /For kth '1' replace
                                                             tree[node] = val;
 build();
                             `l,r' with `k'
                                                         /For kth '1'
  while (q--) {
                             if(st>r || en<l)
     cin>>l>>r;
                                                           a[st] ^= 1;
printf("%lld\n",
                                return 0; /INT MIN
                                                           tree[node] ^= 1;
query(1, r));
                             if(l<=st && en<=r)
                                                              return; }
   return 0;
                                return tree[node];
                                                          11 \text{ mid} = (st+en)/2;
}
                            /For kth '1'
                                                         /For kth '1' parameters
     Segment tree
                            if(st==en) return st;
                                                         of calling func might
                                                         be changed.
                            if(k<tree[2*node])</pre>
    Sum/Min/Max/kth
                                                          if(ind<=mid)</pre>
    '1'/first ind>x
                                return
                                                         update(2*node, st, mid, in
                            query(2*node,st,mid,k);
const ll N = 1e5+2;
                                                         d, val);
```

else

else

11 tree[4*N], a[N];

```
GUB_FlightNO:MH370
   update (2*node+1,
mid+1, en, ind, val);
/For sum or, kth '1'
tree[node] = tree[2*node]
+ tree[2*node+1];
/For max /first ind>x
tree[node] = max(tree[2*n
ode] , tree[2*node+1]);
ind main(){
 int n,q;
 cin >> n >> q;
 for(int i=0; i<n;i++){
    cin >> a[i];
 build(1,0,n-1);
 while (q--) {
     ll type;
     cin>>type;
if(type==1){
    ll ind, x;
   cin >> ind >> x;
 update (1, 0, n-1, ind, x);
}
else {
   11 1, r;
  cin>>l>>r;
  ll ans =
query(1,0,n-1, 1, r);
   cout << ans << endl;
/For first ind > x
 11 x;
cin>>x;
```

```
11 10 = 0, hi = n-1;
ll ans = n;
while(lo<=hi) {</pre>
            11 \text{ mid} = (10+\text{hi})/2;
            if (query(1, 0, n-1, lo, n-1
mid) < x)
           lo = mid + 1;
else{
hi = mid - 1;
ans = min(ans, mid);
if (ans==n)
                  cout << -1 << endl;
else
              cout << ans << endl;
      }
   return 0;
 }
   Min/Max and number of
                                  same element
const ll N = 1e5+2;
pll tree[4*N];
ll a[N];
void build(ll node, ll
st, 11 en) {
     if(st==en){
tree[node].first=a[st];
tree[node].second = 1;
                                           return;
             }
```

```
11 \text{ mid} = (st+en)/2;
build(2*node, st, mid);
build(2*node+1, mid+1, en
);
if(tree[2*node].ff ==
tree[2*node+1].ff) {
   tree[node].ff =
tree[2*node].ff;
  tree[node].ss =
tree[2*node].ss +
tree[2*node+1].ss;
else if(tree[2*node].ff
< tree[2*node+1].ff) {
     tree[node].ff =
tree[2*node].ff;
     tree[node].ss =
tree[2*node].ss;
}
else if(tree[2*node].ff
> tree[2*node+1].ff) {
     tree[node].ff =
tree[2*node+1].ff;
     tree[node].ss =
tree[2*node+1].ss;
   }
}
pll query(ll node, ll
st, ll en, ll l, ll r){
  if(st>r || en<l)
      return {MAX, 0};
 if(1<=st && en<=r)
   return tree[node];
ll mid = (st+en)/2;
```

```
GUB_FlightNO:MH370
pll q1 = query(2*node,
st, mid, 1, r);
pll q2 =
query(2*node+1, mid+1,
en, 1, r);
if(q1.ff == q2.ff){
q1.ss = q1.ss + q2.ss;
  return q1;
}
else if(q1.ff>q2.ff)
     return q2;
else
     return q1;
}
void update(ll node, ll
st, ll en, ll ind, ll
val) {
 if(st==en) {
     a[st] = val;
  tree[node].ff = val;
  return;
11 \text{ mid} = (st+en)/2;
if(ind<=mid)</pre>
  update (2*node, st,
mid, ind, val);
else
  update(2*node+1,
mid+1, en, ind, val);
if(tree[2*node].ff ==
tree[2*node+1].ff) {
```

```
tree[node].ff =
tree[2*node].ff;
   tree[node].ss =
tree[2*node].ss +
tree[2*node+1].ss;
else if(tree[2*node].ff
< tree[2*node+1].ff) {
 tree[node].ff =
tree[2*node].ff;
   tree[node].ss =
tree[2*node].ss;
    }
else
if(tree[2*node].ff >
tree[2*node+1].ff) {
   tree[node].ff =
tree[2*node+1].ff;
   tree[node].ss =
tree[2*node+1].ss;
}
int main(){
   11 n, q;
   cin>>n>>q;
for(ll i=0; i<n;i++) {
   cin >> a[i];
      }
build (1, 0, n-1);
 while (q--) {
    ll type;
    cin>>type;
if(type==1){
   ll ind, x;
  cin >> ind >> x;
update (1,0,n-1,ind,x);
  }
else {
   ll l, r;
   cin>>l>>r;
```

```
pll ans =
query(1,0,n-1, 1, r-1);
cout<<ans.ff<<"
"<<ans.ss<<endl; }}

<u>Max Sum of Segment</u>
```

```
sum = Total sum of
segment
pref = max sum of pref
segment
suff = max sum of suff
segment
ans= max sum of the
segment
const ll N = 1e5+2;
struct grp{
11 sum, pref, suff, ans;
grp tree[4*N];
ll a[N];
void build(ll node, ll
st, 11 en) {
 if(st == en) {
    if(a[st]<=0){
tree[node].sum = a[st];
tree[node].pref =
tree[node].suff =
tree[node].ans = 0; }
else{
tree[node].sum =
tree[node].pref =
tree[node].suff =
tree[node].ans = a[st];
   return; }
11 \text{ mid} = (\text{st} + \text{en})/2;
build(2*node, st, mid);
build(2*node+1, mid+1,
en);
```

```
tree[node].sum =
tree[2*node].sum +
tree[2*node+1].sum;
tree[node].pref =
max(tree[2*node].pref,
tree[2*node].sum +
tree[2*node+1].pref);
tree[node].suff =
max(tree[2*node+1].suff
, tree[2*node+1].sum +
tree[2*node].suff);
tree[node].ans =
max(tree[2*node].suff+t
ree[2*node+1].pref,
max(tree[2*node].ans,
tree[2*node+1].ans));
}
void update(ll node, ll
st, ll en, ll idx, ll
val) {
  if(st == en) {
     a[st] = val;
    if(a[st] <= 0) {
tree[node].sum = a[st];
tree[node].pref =
tree[node].suff =
tree[node].ans = 0;
  else{
tree[node].sum =
tree[node].pref =
tree[node].suff =
tree[node].ans = a[st];
        }
     return; }
  11 \text{ mid} = (st+en)/2;
 if(idx \le mid){
    update(2*node, st,
mid, idx, val);
```

```
}
 else{
update(2*node+1, mid+1,
en, idx, val);
  tree[node].sum =
tree[2*node].sum +
tree[2*node+1].sum;
  tree[node].pref =
max(tree[2*node].pref,
tree[2*node].sum +
tree[2*node+1].pref);
   tree[node].suff =
max(tree[2*node+1].suff
, tree[2*node+1].sum +
tree[2*node].suff);
   tree[node].ans =
max(tree[2*node].suff+t
ree[2*node+1].pref,
max(tree[2*node].ans,
tree[2*node+1].ans));
}
int main(){
    ll n, q;
   cin>>n>>q;
for(ll i=0; i<n;i++) {
    cin >> a[i];
build(1,0,n-1);
cout<<tree[1].ans<<endl</pre>
while (q--) {
    ll ind,x;
   cin >> ind >> x;
update (1, 0, n-1, ind, x);
cout<<tree[1].ans<<endl</pre>
   }
}
```

<u>Segment Tree - Lazy</u> <u>Propagation</u>

```
const int mx = 1e5 +
10;
ll a[mx];
struct Node
  ll sm, prop;
} seg[4*mx];
void build(ll nod, ll
lo, ll hi)
{
  if(lo==hi)
  seq[nod].sm=a[lo];
   return;
  ll mid = (lo+hi) >> 1;
 build(nod*2, lo, mid);
  build(nod*2+1, mid+1,
hi);
  seg[nod].sm =
seq[nod*2].sm +
seg[nod*2+1].sm;
  seg[nod].prop = 0;
}
ll query(ll nod, ll lo,
ll hi, ll l, ll r, ll
cary)
  if(lo>r || hi<l)
return 0;
  if(lo>=1 && hi<=r)
    return seg[nod].sm
+ cary*(r-1+1);
  ll mid=(lo+hi)>>1;
  11 x = query(nod*2,
lo, mid, 1, r, cary +
seg[nod].prop);
  11 y = query(nod*2+1,
mid+1, hi, l, r, cary +
seg[nod].prop);
  return x+y;
```

```
GUB_FlightNO:MH370
                                  update(1, 0, n-1,
                                                        #define ull unsigned
                            pos-1, pos-1, val);
                                                        long long
void update(ll nod, ll
                               }
                                                        #define ll long long
lo, ll hi, ll l, ll r,
                             }
ll val)
                            }
                                                        11 a,b,n,x;
  if(lo>r || hi<l)
                              Segmented tree Tri
return;
                                                        void matmul(ll a[2][2],
                            #define FOR(i,a,b)
  if(lo>=l && hi<=r)
                                                        ll b[2][2]){
                            for(int i=a;i<=b;i++)</pre>
                                                            11 mul[2][2];
                            #define ROF(i,a,b)
    seg[nod].sm +=
                            for(int i=a; i>=b; i--)
((r-l+1) * val);
                                                            for (int i=0; i<2;
    seg[nod].prop +=
                            #define REP(i,b)
                                                        i++) {
val;
                            for(int i=0;i<b;i++)
                                                                 for (int j=0;
    return;
                                                        j<2; j++) {
  11 mid=(lo+hi)>>1;
                            int tri[1000005][26];
  update(nod*2, lo,
                                                        mul[i][j]=0;
                            //Total char in input
mid, 1, r, val);
                            file, Number of distinct
  update(nod*2+1,
                                                                     for(int
                            char
                                                        k=0; k<2; k++) {
mid+1, hi, l, r, val);
  seg[nod].sm =
                            bool flag[1000005];
seq[nod*2].sm +
                            //Indicate where string
                                                        mul[i][j] = (mul[i][j] + (a
seg[nod*2+1].sm +
                            finishes
                                                        [i][k]*b[k][j])%x)%x;
(r-1+1) *
                            int id=1;
seq[nod].prop;
                                                                 }
                            int main(){
int main(){
                                                             }
                                string str;
  ll n, q;
                                cin >> str;
                                                        for (int i=0; i<2; i++) {
  cin >> n >> q;
                                int r=1;
for(ll i=0; i<n; i++)
                               REP(i,str.size()){
                                                        for (int j=0; j<2; j++) {
    cin>>a[i];
                              int x=str[i]-'a'; //
                                                           b[i][j]=mul[i][j];
                            It maybe '0'/'A'/both
  build(1, 0, n-1);
                              if(!tri[r][x]){
                                                          //cout<<a[i][j]<<" ";
                                tri[r][x]=++id;
                                                            }
for(ll i=0; i<q; i++) {
    int x;
                                r=tri[r][x];
                                                           //cout<<endl;
    cin>>x;
    if(x==2) {
                              flag[r]=true;
     11 1, r;
                              return 0;
                                                         return;
      cin>>l>>r;
     cout < query(1, 0,
n-1, 1, r, 0)<<endl;
                                  Matrix expo
                                                        void find ans(ll
                            #include<bits/stdc++.h>
                                                        m[2][2],11 b[2][2], 11
    else{
                                                        p) {
                            using namespace std;
      ll val, pos;
      cin>>pos>>val;
                                                          while(p){
```

```
GUB_FlightNO:MH370
    if(p&1)
       matmul(m,b);
       matmul(m,m);
       p/=2;
                             long long
   }
  return;
                             #define pii
}
void solve(){
   cin>>a>>b>>n>>x;
   x = pow(10, x);
                             ans[MAX];
  ll base[2][2]=
{{b,0},{a,0}};
                             int
  ll mat[2][2]=
\{\{1,1\},\{1,0\}\};
  ll ans;
  if (n==1) ans=b;
                             bool
  else if (n==0) ans=a;
   else{
                             <pii,int>y) {
find ans (mat, base, n-1);
                                  int
ans=base[0][0]+base[0][
1];
                             size;
   }
  cout << ans << endl;
                                  int
    return;
}
                             size;
int main(){
                             xx<yy;
    int t, tc=1;
                                  return
    cin>>t;
    while (t--) {
                             second;
        cout<<"Case
"<<tc++<<": ";
                             }
        solve();
    //solve();
    return 0;
}
     Mo Algorithm
problem link-
https://www.hackerrank.
                                  }
com/contests/gub-idpc-2
```

022/challenges/frequenc

```
y-xor/copy-from/1347288
#define ull unsigned
#define ll long long
pair<int,int>
#define MAX 1000005
int arr[MAX], cnt[MAX],
n,q,block size,ansr=0;
pair<pii, int>qry[MAX];
cmp(pair<pii,int>x,pair
xx=x.first.first/block
yy=y.first.first/block
    if(xx!=yy) return
x.first.second<y.first.</pre>
void add(int x) {
    if(cnt[x]==0){
        ansr^=1;
        cnt[x]++;
    else{
```

```
ansr^=cnt[x];
         cnt[x]++;
         ansr^=cnt[x];
    }
}
void Remove(int x) {
    ansr^=cnt[x];
    cnt[x]--;
    ansr^=cnt[x];
}
void solve2(){
    int l=0, r=-1;
    set<int>s;
    for (int i=0; i < q;
i++) {
         int
lp=qry[i].first.first;
         int
rp=qry[i].first.second;
         while(r<rp) {</pre>
             r++;
add(arr[r]);
         }
         while(r>rp) {
Remove(arr[r]);
             r--;
         }
         while(l<lp) {</pre>
Remove(arr[1]);
```

```
GUB_FlightNO:MH370
            1++;
                            using namespace std;
                                                         this part then CPU
                                                         limit will be exit
                            #define ull unsigned
                            long long
                                                         //
                                                               if(p==0) return
        while(1>lp){
                                                         0;
                            #define ll long long
            1--;
                                                         //
                                                               11
                            #define SZ 1000005
                                                         ret=Mul(a,p/2,m);
add(arr[1]);
                                                         //
                                                         ret=((ret%m)+(ret%m))%m
        }
                            int MARK[SZ+1];
                                                         ;
                            vector<int>PRIME;
                                                         //
                                                               if(p&1)
ans[qry[i].second] = ansr
                                                         ret=((ret%m)+(a%m))%m;
                            void sieve(){
                                                         //
    }
                                MARK[1]=1;
                                                         // return ret;
                                 int root=sqrt(SZ);
                                                         //}
    for (int i=0; i < q;
i++)
                                 for (int i=3;
                                                         ll Mul(ll a, ll b, ll
                            i<=root; i+=2) {
                                                         m) {
cout<<ans[i]<<endl;</pre>
                                     if(!MARK[i]){
                                                             11 ret=0, c=a;
}
                                         for(int
                                                             while(b){
                            j=i*i; j<=SZ;
                                                                  if(b&1)
                            j+=(i*2)) {
                                                         ret=(ret+c)%m;
void solve(){
    cin>>n;
                                                                 b >> = 1;
                            MARK[j]=1;
    for(int i=1; i<=n;
                                                         c=(c+c) %m;
i++) cin>>arr[i];
                                         }
    cin>>q;
                                     }
    for (int i=0; i < q;
                                                             return ret;
i++) {
                                 }
        int x, y;
                                                         }
                            PRIME.push back(2);
cin>>x>>y;
                                                         //ll bigmod(ll a, ll p,
                                for (int i=3; i \le SZ;
                                                         ll m) {
qry[i].first.first=x;
                            i+=2) {
                                                         //
                                                               if(p==0) return
qry[i].first.second=y;
                                                         1;
                                     if(!MARK[i])
qry[i].second=i;
                                                         //
                                                               11
                            PRIME.push back(i);
    }
                                                         ret=bigmod(a,p/2,m);
block size=sqrt(n);
                                                         //
                                                               ret*=ret;
sort(qry,qry+q,cmp);
                                                         //
                                                               if (p\&1) ret*=a;
                                return;
    solve2();
                                                         //
    return;
                            }
                                                         //
                                                               return ret;
}
                                                         //}
                            //ll Mul(ll a, ll p, ll
      Pollard rho
                            m){//If we use
                                                         ll bigmod(ll a, ll n,
                            recursive function for
#include<bits/stdc++.h>
                                                         ll m) {
                                                          11 \text{ ret}=1, c=a;
```

```
GUB_FlightNO:MH370
 while(n) {
 if(n&1)
   ret=Mul(ret,c,m);
      n >> = 1;
    c=Mul(c,c,m);
  return ret;
}
bool isprime(ll n) {
   if (n==2) return 1;
   if (n%2==0) return 0;
   11 d=n-1;
  while (d%2==0) d>>=1;
  int test[]=
{2,3,5,7,11,13,17,19,23
};
for (int i=0; i<9; i++) {
 ll x=test[i]%(n-2),
temp=d;
 if (x<2) x+=2;
 ll a=bigmod(x,d,n);
 while(temp!=n-1 &&
a!=1 && a!=n-1) {
   a=Mul(a,a,n);
   temp<<=1;
 if(a!=n-1 \&\&
(temp&1) == 0) return 0;
  }
  return 1;
}
ll pollard rho(ll n, ll
C) {
  11 x=2, y=2, i=1,
k=2, d;
```

```
while(true) {
x = (Mul(x, x, n) + c);
      if (x>=n) x-=n;
d = gcd(abs(x-y),n);
     if(d>1) return d;
         if (++i==k) {
             y=x, k <<=1;
         }
    return n;
}
void llfactorize(ll n,
vector<ll> &f) {
    if(n==1) return;
    if(n < 1e9) {
    for (int i=0;
PRIME[i] *PRIME[i] <= n;</pre>
if (n%PRIME[i] == 0) {
while (n%PRIME[i] == 0) {
f.push back(PRIME[i]);
   n/=PRIME[i];
   }
   }
if (n!=1) f.push back (n);
    return;
 }
 if(isprime(n)){
    f.push back(n);
    return;
    11 d=n;
for(ll i=2; d==n;i++) {
d=pollard rho(n,i);
   }
  llfactorize(d,f);
  llfactorize (n/d, f);
}
void factorize(ll n,
vector<pair<11,11>>
&ans) {
   vector<11>v;
  llfactorize(n,v);
if(v.size()==0) return;
sort(v.begin(),
v.end());
```

```
11 a=v[0], b=1;
for(ll i=1; i<v.size();</pre>
i++) {
if(v[i] == v[i-1]) b++;
ans.push back({a,b});
       a=v[i];
       b=1;
   }
ans.push back({a,b});
ll phi(ll n,
vector<pair<ll, ll>>
&ans) {
    ll ph=n;
 for(auto i:ans) {
    ph/=i.first;
   ph*=(i.first-1);
  return ph;
void solve(){
    ll n, ans;
    cin>>n;
vector<pair<ll,ll>>v;
  factorize (n, v);
  ll phi n=phi(n,v);
  11 b=n+1;
while(1){
vector<pair<ll, ll>>vv;
factorize(b, vv);
ll phi b= phi(b, vv);
if(phi b>phi n){
  cout<<b<<endl;
  break;
  }
  b++;
```