Modern Control Theory

Lecture No. 1

- Why re-learn Control Theory & Feedback?
- Classical Controls & their Limitations
- Why State Space?
- ■Concepts behind State
 Space Theory
- ■The Big Picture:
 - State Feedback
 - State Estimation
 - Virtual Sensoring,
 Monitoring, Diagnostics,
 Prognostics

The Four Industrial Revolutions

The Control Revolution

Industry 1.0

Mechanization and the introduction of steam and water power

1765

Industry 2.0

Mass production assembly lines using electrical power

1870

Industry 3.0

Automated production.

computers, IT-systems

and robotics

2014

Cold War WW-II **Efforts Efforts**

> Classical Ctrl., State Space Ctrl., Estimation, etc.

Industry 4.0

The Smart Factory. Autonomous systems, IoT, machine learning

Control Engg. vis-à-vis **Industrial Revolutions**

The Growth of

Why have feedbacks?

The ODE as a first step towards understanding the Transient & Steady State Characteristics of a Dynamic System

$$\frac{d^2y}{dt^2} + P_1 \frac{dy}{dt} + P_0 y = Q(t) \quad \bullet \quad \bullet$$

Non - homogeneous equation

$$\frac{d^2y}{dt^2} + P_1 \frac{dy}{dt} + P_0 y = 0$$

$$y'' + p(x)y' + q(x)y = r(x)$$

Handling Transients & Steady State Errors, while ensuring Stability and Adherence to Performance Specifications

Some of the Wizards of Controls, who helped shape our lives

$$Y(s) = \frac{s+1}{s(s^2+4s+4)} = \frac{A}{S} + \frac{B}{(s+2)} + \frac{C}{(s+2)^2}$$

$$A_k = \lim_{s \to r_k} (s - (r_k)^m Y(s))$$

(repeated root, highest order where order = m)

The Transfer Function Approach

Some of the Typical Classical Control Techniques

Limitations of the Transfer Function Approach for Multi Variable Problem Solving

High Order Differential Equation

A Set of Simultaneous First Order Differential Equations

Numerical Solution

Matrix Equation

State Space (Control System)

Visualizing the State Space Framework

Any Dynamic System comprises of internal variables, termed as States

The Concept of State Transfer

Time Driven

Casting MIMO Systems in the State Space Framework

Question Time

