

PROPOSAL PROGRAM KREATIVITAS MAHASISWA

THE GUARDIAN, ALAT JAMMER SINYAL SELULER UNTUK MENJAGA KEHIKMATAN BERIBADAH DI LINGKUNGAN MASJID YANG DAPAT DI PROGRAM BERDASARKAN JADWAL WAKTU SHOLAT

BIDANG KEGIATAN PKM KARSA CIPTA

Diusulkan oleh:

Faisal Zidni; 16134401; 2016

Yoga Faissi Rachman; 151344029; 2015 Muhammad Nurkholis Wildan; 171344020; 2017

POLITEKNIK NEGERI BANDUNG BANDUNG

2019

PENGESAHAAN PKM-KARSA CIPTA

1. Judul Kegiatan

: The Guardian, Alat Jammer Sinyal Seluler untuk Menjaga Kehikmatan Beribadah di Lingkungan Masjid yang dapat Diprogram Berdasarkan Jadwal

2. Bidang Kegiatan

3. Ketua Pelaksana Kegiatan

a. Nama Lengkap

b. NIM

c. Jurusan

d. Perguruan Tinggi

e. Alamat Rumah dan No. Tel/HP

f. Alamat Email

4. Anggota Pelaksana Kegiatan/Penulis

Dosen Pendamping

a. Nama Lengkap dan Gelar

b. NIDN

c. Alamat Rumah dan No. Tel/HP

6. Biaya Kegiatan Total

a. Kemristekdikti

b. Sumber lain

Jangka Waktu Pelaksanaan

Waktu Sholat.

: PKM-KC

: Faisal Zidni

: 161344011

: Teknik Elektro

: Politeknik Negeri Bandung

: Jl.Rancabali No. 36 Pasirkaliki /

08984551428

: Fzidni98@gmail.com

: 2 orang

: Tata Supriyadi, DUT., ST., M.Eng

: 0026112603

: Jalan Sipil No.3 Perumahan Polban,

Bandung / 08121496565

: Rp 12.452.000,-

: 5 (lima) bulan

Bandung, 07 Januari 2019

Ketua Pelaksana Kegiatan,

Menyetujui,

Ketua Jurusan,

NIP 19540101 198403 1 001

(Faisal Zidni) NIM. 161344011

Dosen Pendamping,

Direktur Politeknik Negeri

NIP. 19600316 1988710

(Tata Supriyadi, DUT., ST., M.Eng)

NIDN. 0026112603

DAFTAR ISI

PENGESAHAAN PKM-KARSA CIPTA	ii
DAFTAR ISI	iii
BAB I PENDAHULUAN	1
1.1. Latar Belakang	1
1.2. Perumusan Masalah	
1.3. Tujuan	2
1.4. Kegunaan Produk	
1.5. Luaran	
BAB II TINJAUAN PUSTAKA	3
BAB III METODE PELAKSANAAN	4
3.1. Perancangan	4
3.2. Realisasi	6
3.3. Pengujian	6
3.4. Analisis	7
3.5. Evaluasi	7
BAB IV BIAYA DAN JADWAL KEGIATAN	8
4.1. Anggaran Biaya	8
4.2. Jadwal Kegiatan	8
DAFTAR PUSTAKA	
LAMPIRAN-LAMPIRAN	10
Lampiran 1. Biodata Ketua, Anggota, dan Dosen Pembimbing	10
Lampiran 2. Justifikasi Anggaran Kegiatan	16
Lampiran 3. Susunan Organisasi Tim Pelaksana dan Pembagian Tugas	
Lampiran 4. Surat Pernyataan Ketua Peneliti	
Lampiran 5. Gambaran Teknologi yang Hendak Diharapkan	

BAB I PENDAHULUAN

1.1. Latar Belakang

Dewasa ini penggunaan teknologi komunikasi khususnya smartphone semakin meluas. Seiring perkembangan waktu, smartphone tidak hanya digunakan untuk media komunikasi saja, akan tetapi menjadi suatu pusat hiburan disemua kalangan, seperti untuk browsing internet, bermain game online, streaming video online, melakukan panggilan online tanpa pulsa, dan sebagainya. Akan tetapi masyarakat sering kali menggunakan smartphone di waktu yang salah, yaitu waktu sholat. Pada waktu sholat jumat dan sholat sholat besar lainnya, seperti sholat ied, dan sebagainya. Hal ini tidak hanya dapat diatasi dengan sholat idul adha, peringatan atau razia semata. Pada waktu sholat jumat sebagai contoh, setelah diberi peringatan untuk mematikan ponsel sebelum waktu khutbah khotib, banyak sekali masyarakat khususnya anak-anak yang bermain game online, orang-orang dewasa melakukan panggilan. Bahkan sering kali ketika waktu sholat berlangsung, terdapat banyak panggilan masuk baik itu secara online ataupun GSM yang mengeluarkan ringtone bising dari smartphone, dimana ini sangat menganggu kehikmatan ibadah masyarakat lainnya yang sedang sholat.

Beberapa sistem yang telah diterapkan antara lain, jammer sinyal seluler dual band frekuensi jamming 800 MHz dan 1800 MHz dan Jammer dengan selective pemilihan frekuensi dari GSM850, GSM900, DCS1800 dan PCS1900. Pada sistem pertama, menggunakan VCO Crystek CVCO55CL pada 800 MHz, VCO Crystek CVCO55BE pada 1800 MHz, dan power amplifier IC PF08109B kurang baik dikarenakan peforma dari power amplifier tersebut kurang efisien pengeluarannya (Setiawan, 2011). Pada Sistem kedua, menggunakan VCO Crystek CVCO55CL yang sama pada 800 MHz, VCO Samsung VOF1748FRA untuk dual band 800 MHz – 1900 MHz sistem mengalami pengurangan peforma karena daya yang ditransfer kurang maksimum diakibatkan pensolderan yang kurang baik pada komponen RF section dan IC Power Amplifier yang kurang baik efisiensinya (Zakaria, 2017).

Dari solusi sistem yang telah rancang sebelumnya, jammer terdapat RF-Section, terdiri dari Voltage Control Oscillator dan Power Amplifier. Untuk dapat membuat sebuah sistem jammer sinyal seluler GSM800, GSM1800 dan 4G-LTE 2100 MHz maka Voltage Controlled Oscillator yang digunakan harus memliki range kerja frekuensi pada 850-900 MHz pada 2G GSM dan 1600-1800 MHz untuk GSM1800, dan 1900-2200 MHz untuk dapat mencangkup band frekuensi downlink dan uplink 4G-LTE, karena seluruh operator di Indonesia telah bergeser alokasi frekuensinya ke frekuensi tersebut sebagai alokasi barunya (Hardiyan, 2017).

Sistem Jammer ini akan meredam sinyal seluler GSM800, GSM1800, dan 4G-LTE. Dengan mikrokontroler dan IC real time clock jammer dapat aktif otomatis berdasarkan 5 waktu sholat yang tersimpan di IC real time clock dan dipanggil dengan program mikrokontroller. Konsep jammer yang akan digunakan adalah *Denial of service*, dimana terdapat IF-section yang akan membangkitkan sinyal *White Noise* dan dicampurkan dengan sinyal segitiga lalu dimodulasikan bersama sinyal carrier dari output VCO.Sinyal modulasi ini akan dikuatkan oleh power amplifier untuk menutupi sinyal seluler yang dipancarkan dalam frekuensi yang sama.

1.2. Perumusan Masalah

- 1. Bagaimana merealisasikan jammer sinyal seluler yang dapat meredam sinyal GSM800, GSM1800, dan 4G-LTE?
- 2. Bagaimana agar jammer tersebut dapat aktif hanya pada waktu sholat?
- 3. Bagaimana membangkitkan white noise untuk jammer?

1.3. Tujuan

Tujuan dari pembuatan karya cipta ini adalah:

- 1. Membatasi penggunaan ponsel di lingkungan masjid pada saat jadwal sholat.
- 2. Membantu menjaga kehikmatan beribadah di masjid.

1.4. Kegunaan Produk

Perangkat yang kami buat ini digunakan untuk menjaga kekhusyuan ibadah di lingkungan masjid ketika masuk waktu sholat. Dengan menggunakan jammer ini, sinyal 2G GSM dan 3G UMTS dapat langsung teredam ketika memasuki daerah dalam masjid. Jammer ini menggunakan kendali otomatis yang diatur menggunakan mikrokontroller sehingga dapat aktif hanya pada waktu sholat. Ketika waktu sholat jumat, pada waktu khutbah masyarakat tidak dapat menggunakan koneksi internet untuk bermain game online, browsing dan melakukan panggilan yang dapat menggangu kehikmatan ibadah. Pada waktu sholat tiba, panggilan masuk yang dapat mengganggu masyarakat ibadah juga dapat diredam. Petugas masjid tidak perlu lagi memperingatkan masyarakat untuk menonaktifkan ponsel karena jammer ini.

1.5. Luaran

Luaran yang diharapkan dari pembuatan proposal ini adalah membuat suatu alat jammer sinyal seluler untuk menjaga kehikmatan ibadah masyarakat di lingkungan masjid yang dapat di program berdasarkan jadwal waktu sholat.

BAB II TINJAUAN PUSTAKA

Terdapat beberapa sistem solusi yang telah dikembangkan sebelumnya, yaitu selektif jammer sinyal seluler frekuensi GSM800, DCS1800 dan PCS1900, *Cellphone* jammer pada jaringan GSM900 dan GSM1800, dan Jammer sinyal seluler untuk frekuensi UMTS 2100 MHz dan EVDO 800 MHz.

Sistem selektif jammer GSM800, DCS1800 dan PCS1900 menggunakan konsep jamming *denial of service*, menggunakan VCO crystek CVCO55CL yang bekerja di band 800-980 MHz, VCO Samsung VOF1748FRA yang bekerja di dual band frekuensi frekuensi bawah 885-920 MHz dan frekuensi atas 1660-1970 MHz (Zakaria *et al*, 2017). Sistem ini memiliki waktu yang lama untuk melakukan sweepin frekuensi dikarenakan frekuensi VCO yang terlalu lebar. Selain itu juga sistem ini belum bekerja di band frekuensi 4G-LTE yang banyak dipakai masyarakat saat ini. Sistem yang kami buat dapat bekerja di 4G-LTE untuk meredam sinyal lebih digunakan masyarkat saat ini. Selain itu, sistem kami menggunakan pengendali otomatis untuk mengaktifkan jammer di waktu yang ditentukan

Sistem cellphone jammer GSM800 dan GSM1800 menggunakan konsep jamming yang sama yaitu *denial of service*, dual band GSM900 dan 1800 dan menggunakan Power Amplifier IC PF08109B (Setiawan, 2011). Sistem ini memiliki penguatan daya maksimal yang buruk, tidak mencapai +34 dBm. Sistem kami akan menggunakan Power Amplifier yang baik Gainnya untuk penguatan maksimal, sehingga efek meredam sinyal seluler akan semakin baik.

Sistem Jammer Sinyal UMTS 3G dan EVDO 800 MHz menggunakan dualband frekuensi dan menggunakan konsep jamming *denial of service* (Saputro, 2013). Di dalam sistem ini hanya mencangkup dualband frekuensi. Band frekuensi 4G-LTE banyak dipakai masyarakat pada smartphonenya sehingga untuk menertibkan sinyal seluler jammer harus mampu bekerja di frekuensi uplink 4G-LTE 2110-2170 MHz dan frekuensi downlink 4G-LTE 1920 MHz-1980 MHz yang mana akan dirancang pada sistem jammer seluler kami.

Dari semua sistem yang sudah ada, kami kembali mengembangkan sistem jammer yang lebih luas kerja frekuensinya. Sistem kami akan rancang menggunakan VCO yang dapat mencangkup frekuensi kerja GSM800, GSM900, 4G LTE 2100 MHz dan Power Amplifier yang efisiensi gainnya lebih tinggi. Penggunaan Mikrokontroler dan Real time clock sebagai kendali otomatis pada sistem kami yang akan kami rancang memudahkan petugas masjid, karena jammer akan aktif dengan sendirinya pada waktu ibadah sholat yang telah terprogram.

BAB III METODE PELAKSANAAN

3.1. Perancangan

Gambar 3.1 Blok Diagram Keseluruhan Sistem

Gambar 3.2 Blok Diagram Sistem Jammer

Blok diagram diatas menggambarkan berbagai macam bagian. Bagian Power Supply, catu daya yang digunakan berupa tegangan AC. Jammer ini akan langsung terhubung ke jala-jala listrik. Catu daya yang diperoleh dari tegangan PLN sebesar 220V 50Hz. Catu daya ini juga terdapat tansformator step down, sehingga tegangan masukan dari listrik AC yang semula 220V akan diubah menjadi 12 Volt. Tegangan keluaran dari rangkaian filter kapasitor, alat ini menggunakan IC Regulator. Ada dua jenis regulator yang akan digunakan yaitu LM7805 untuk tegangan DC +5 Volt untuk mencatu rangkaian mococontroller dan LM317 untuk tegangan DC +3.7 Volt yang digunakan juga untuk mencatu modul jammer.pada blok input terdapat RTC DS1307 dan Push Button. Rangkaian RTC digunakan untuk menyimpan data berupa waktu dan tanggal, data tersebut berupa detik, menit, jam, tanggal, bulan dan tahun yang tersimpan pada internal RAM RTC dimana data harus tetap disimpan walaupun RTC tidak memperoleh pasokan dari catu daya utama, DS1307 mempunyai built in circuit electrical yang akan mendeteksi

kegagalan daya secara otomatis beralih ke pasokan daya cadangan. RTC ini digunakan sebagai masukan agar alat pengendali jammer ini mendapat penjadwalan, penjadwalan ini berfungsi agar mikropengandali dapat terprogram secara real time dan data penjadwalan tersebut dapat ditampilkan di LCD. Program auto disini dibuat dengan mengambil data sampel 5 periode waktu. Dan pada setiap periode sampel 5 waktu alat jammer akan bekerja selama 35 menit, setelah 35 menit jammer ini hidup maka secara otomatis jammer akan dimatikan dan alat akan berjalan normal kembali. Terdiri dari tiga push button yang akan digunakan, dimana push button pertama memberikan logic auto mode. Auto mode adalah kondisi normal dimana sistem akan bekerja secara otomatis dengan mengambil data dari RTC. Push button kedua memberikan logic manual mode, manual mode adalah suatu kondisi dimana jammer akan dihidupkan langsung tanpa melalui sistem timer dan tampa mengambil data dari RTC. Dan push button yang ketiga memberikan logic info dimana akan memberikan informasi mengenai fungsi push button yang akan ditampilkan dalam bentuk teks pada LCD. Tiga push button tersebut juga akan terkonfigursi dengan tiga buah LED, dimana LED akan hidup jika push button di tekan. LED merah menandakan Jammer On, LED hijau menandakan mode manual dan LED kuning menandakan mode auto timer. Relay berguna untuk menghidupkan dan mematikan Jammer. Relay ini bekerja ketika port mikro berlogika high 5 V maka transistor akan aktif dan jammer akan aktif memancarkan sinyal noise yang dayanya lebih tinggi dari sinyal seluler 2G GSM dan 3G UMTS sehingga akan merendam sinyal tersebut.

Gambar 3.3 Flowchart Sistem Kendali Keseluruhan

Sistem kendali otomatis yang tertampil dalam flowchart adalah dimulai dengan inisialisasi, dimana inisialisasi terdiri dari pengenalan dan deklarasi masingmasing komponen yang terhubung ke mikro baik sebagai masukan maupun keluaran. Deklarasi tersebut juga mengenalkan pin dan data yang diambil (data waktu H,M,S). Kemudian start up program dimana awal dari sistem kerja alat ini auto mode, ditandai dengan menyalanya indikator LED kuning. Lalu masuk ke pertanyaan apakah menekan tombol 2 atau tidak, jika iya maka mikrokontroler akan memerintakan relay untuk aktif dan secara otomatis jammer aktif. Jika tidak maka muncul pertanyaan apakah menekan tombol 1 atau tidak, jika iya maka alat bekerja secara normal atau auto mode. Auto mode yaitu kondisi dimana alat bekerja secara otomatis dengan mengambil data dari RTC lalu mencocokannya dengan program yang ditanamkan, jika cocok maka mikro akan memberikan perintah ke relay untuk mengaktifkan jammer. Pada auto mode di tandai dengan status waktu yang muncul pada LCD dan lampu indikator kuning menyala. Lalu muncul pertanyaan lagi apakah menekan tombol 3 atau tidak, jika iya maka mikrokontroler akan memerintahkan untuk LCD dapat memunculkan informasi mengenai kegunaan masing masing push button. program ini akan diulang terus menerus, atau dalam bahasa C disebut dengan void main.

3.2. Realisasi

Blok diagram yang sudah ada akan dibuat desain skema dan di realisasikan pada PCB. Skema akan terdiri input pengendali, output pengendali dan bagian jammer. Di sisi Input pengendali otomatis, RTC sebagai memori waktu pengingat aktifnya jammer dan ketiga push button untuk mengatur mode kerja jammer yang akan terhubung ke Mikrokontroller. Pada sisi output pengendali, terdapat LCD dan LED. LCD terhubung dengan keluaran mikrokontroller yang dihasilkan oleh push button, menampilkan bentuk text dari mode jammer, apakah otomatis menggunakan waktu yang terperogram, apakah manual aktif dengan penekanan biasa. Relay terhubung dengan sisi jammer untuk sistem aktif dan menonaktifkan melewati output dari mikrokontroller. LED pula terhubung dengan output dari mikrokontroller sebagai indicator, hijau menyala, merah mati, kuning mode auto. Setelah desain skema selesai maka sudah dapat dilakukan percobaan untuk mengetes alur proses tiap bagiannya. Pada Jammer terdapat power supply yang terhubung langsung ke jala-jala listrik RF section dan IF section.

3.3. Pengujian

Pengujian dilakukan dimulai dari setiap bagian untuk mengecek kondisi setiap bagiannya. Berikut ini adalah paramater yang akan diuji:

1. Pemancaran sinyal noise jammer

Parameter yang diuji adalah kemampuan jammer memancarkan frekuensi yang lebih besar dayanya dari sinyal 2G GSM dan 3G UMTS, sehingga loss service karena teredam oleh frekuensi noise jammer

2. Program kendali Otomatis

Jammer memiliki waktu aktif pada waktu sholat yang telah deprogram yang tersimpan di mikrokontroller. Jammer harus aktif pada waktu sholat yang telah di program dan mati pada waktu diluar sholat. Push button pula harus dapat mengirim mode kerja jammer yaitu, mode manual dan mode otomotis saat ditekan. LCD pula harus dapat menampilkan jenis mode yang aktif dengan push button. Relay pun harus dapat mengaktifkan dan menonaktifkan jammer

3.4. Analisis

Apabila jarak daya output jammer kurang baik, maka perlu menggunakan booser atau Powe amplifier yang kurang baik. Penyolderan yang terlalu panas dapat menurunkan peforma power amplifier seperi daya pancar. Apabila lingkungan jamming dilakukan dekat dengan BTS, jammer akan kurang efektif peformanya

3.5. Evaluasi

Diharapkan alat ini dapat digunakan untuk meredam sinyal seluler sehingga dapat menertibkan penggunaan ponsel pada waktu ibadah untuk menjaga kehikmatan ibadah masyarakat.

BAB IV BIAYA DAN JADWAL KEGIATAN

4.1. Anggaran Biaya

Tabel 4.1 Ringkasan Anggaran Biaya

No	Jenis Pengeluaran	Biaya
1	Alat Penunjang	Rp 2.400.000,-
2	Bahan Habis Pakai	Rp 8.172.000,-
4	Perjalanan	Rp 360.000,-
5	Lain-lain Lain-lain	Rp 1.520.000,-
	JUMLAH	Rp 12.452.000,-

4.2. Jadwal Kegiatan

Tabel 4.2 Jadwal Kegiatan

No	Kegiatan	Bulan				
		1	2	3	4	5
1	Perancangan					
2	Survey Komponen					
3	Implementasi Alat					
4	Tahap Analisis					
5	Pengujian Alat					
6	Evaluasi					
7	Pembuatan Laporan Akhir					

DAFTAR PUSTAKA

- Setiawan, A. 2011. "Realisasi Cellphone Jammer Pada Jaringan Gsm". *Laporan Proyek Akhir*. Diploma IV Program Studi Teknik Telekomunikasi Jurusan Teknik Elektro Politeknik Negeri Bandung (Polban). Bandung.
- Zakaria, D. 2017. "Perancangan Dan Realisasi Selective Cellphone Jammer (Frekuensi 1800 1900 MHz)". *Laporan Proyek Akhir*. Diploma IV Program Studi Teknik Telekomunikasi Jurusan Teknik Elektro Politeknik Negeri Bandung (Polban). Bandung.
- Karisna, P. 2017. "Perancangan Dan Realisasi Selective Cellphone Jammer (Frekuensi 850 1800 MHz)." *Laporan Proyek Akhir*. Diploma IV Program Studi Teknik Telekomunikasi Jurusan Teknik Elektro Politeknik Negeri Bandung (Polban). Bandung.
- Saputro, Bayu Lana. 2013. "Perancangan Dan Implementasi Blok Rf-Stage Pada Jammer Untuk Sinyal Umts 2100 MHz Dan EVDO 800 MHz". *Laporan Proyek Akhir*. Fakultas Elektro Dan Komunikasi Institut Teknologi Telkom. Bandung

_

LAMPIRAN-LAMPIRAN

Lampiran 1. Biodata Ketua, Anggota, dan Dosen Pembimbing Biodata Ketua Pelaksana

A. Identitas Diri

1.	Nama Lengkap	Faisal Zidni
2.	Jenis Kelamin	Laki-Laki
3.	Program Studi	Teknik Telekomunikasi
4.	NIM	161344011
5.	Tempat dan Tanggal Lahir	Cimahi, 24 Oktober 1998
6.	Email	Fzidni98@gmail.com
7.	Nomor Telepon/Hp	08984551428

B. Kegiatan Mahasiswa Yang Sedang/Pernah Diikuti

NO	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	Pengabdian Kepada Masyrakat	Panitia	2017 di SDN Karyabakti Cisarua
2	HIMATEL	Anggota	2016-Sekarang di POLBAN

C. Penghargaan yang pernah diterima

NO	Jenis Penghargaan	Institusi Penghargaan	Tahun

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidak-sesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Pekan Kreativitas Mahasiswa Karsa Cipta.

Bandung, 07 Januari 2019 Pengusul,

Faisal Zidni

Biodata Anggota Pengusul

A. Identitas Diri

1.	Nama Lengkap	Yoga Faissi Rachman
2.	Jenis Kelamin	Laki-laki
3.	Program Studi	Teknik Telekomunikasi
4.	NIM	151344029
5.	Tempat dan Tanggal Lahir	Palembang, 10 Juni 1998
6.	Email	yogafaissirachman@gmail.com
7.	Nomor Telepon/Hp	082213584175

B. Kegiatan Kemahasiswaaan Yang Sedang/Pernah Diikuti

NO	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	HIMATEL	Anggota Divisi Seni dan Olahraga	2016-Sekarang
2	Kunjungan Industri 1.0	Peserta	2016 di PT. Indosat
3	Kunjungan Industri 2.0	Peserta	2017 di PT. SKKL Indosat
4	Bela Negara	Peserta	2015 di POLBAN
5	ESQ Leadership Training	Peserta	2015 di POLBAN
6	Pelatihan Komputer (Netiquet)	Peserta	2015 di POLBAN
7	PPKK Polban	Peserta	2015 di POLBAN

C. Penghargaan yang pernah diterima

NO	Jenis Penghargaan	Institusi Penghargaan	Tahun

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidak-sesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Pekan Kreativitas Mahasiswa Karsa Cipta.

Bandung, 07 Januari 2019

Pengusul,

Yoga Faissi Rachman

Biodata Anggota Pengusul

A. Identitas Diri

1.	Nama Lengkap	Muhammad Nurkholis Wildan	
2.	Jenis Kelamin	Laki-Laki	
3.	Program Studi	Teknik Telekomunikasi	
4.	NIM	171344020	
5.	Tempat dan Tanggal Lahir	Garut, 30 Oktober 2018	
6.	Email	Wildanm216@gmail.com	
7.	Nomor Telepon/Hp	081572174025	

B. Kegiatan Mahasiswa Yang Sedang/Pernah Diikuti

NO	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
			14200000

C. Penghargaan Yang Pernah Diterima

NO	Jenis Penghargaan	Institusi Penghargaan	Tahun
	1		

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidak-sesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Pekan Kreativitas Mahasiswa Karsa Cipta.

Bandung, 07 Januari 2019 Pengusul,

Muhammad Nurkholis Wildan

Biodata Dosen Pembimbing

A. Identitas Diri

1.	Nama Lengkap	Tata Supriyadi, DUT., ST., M.Eng.	
2.	Jenis Kelamin	Laki – laki	
3.	Program Studi	Teknik Telekomunikasi	
4.	NIDN	0026112603	
5.	Tempat dan Tanggal Lahir	Bandung, 26 Nopember 1963	
6.	Email	tatasupriyadi@yahoo.com	
7.	Nomor Telepon/Hp	08121496565	

B. Riwayat Pendidikan

Gelar Akademik	Sarjana	S2/Magister	S3/Doktor
Nama Institusi	Universitas Kristen	Universitas Gajah Mada	
	Maranatha	-	
Jurusan/Prodi	Teknik Elektro	Teknik Elektro / Sistem	
		Komputer dan Informatika	
Tahun Masuk-Lulus	1998-2000	2009-2011	

C. Rekam Jejak Tri Dharma PT

C.1 Pendidikan/pengajaran

NO	Nama Mata Kuliah	Wajib/Pilihan	SKS
1	Desain Elektronika/Bengkel ME	Wajib	3
2	Manajemen Proyek	Wajib	4
3	Pemerograman WEB	Wajib	4

C.2 Pengalaman Penelitian

1.	2012	DIPA (Terapan)	Anggota	Pengembangan Rear-end Collision Warning System berbasis Fuzzy Logic
2.	2013	DIPA (Pengembangan Laboratorium)	Anggota	Pengembangan Modul Praktikum Switching Power Supply Sebagai Alat Bantu Pengajaran Praktikum Dasar Sistem Komputer Program Studi Teknik Telekomunikasi
3.	2014	DIPA (Pengembangan Laboratorium)	Anggota	Pengembangan Modul Praktikum Personal Computer Sebagai Alat Bantu Pengajaran Praktikum Dasar Sistem Komputer Program Studi Teknik Telekomunikasi

4.	2016	DIPA (Pengembangan Laboratorium)	Anggota	Pengembangan Modul Praktikum Sistem Unit Display Personal Computer (PC) Untuk Pembelajaran Praktikum Dasar Teknik Komputer
5.	2016	DIPA (Penelitian Terapan Berbasis KBK)	Ketua	Rancang Bangun Alat Bantu Baca Nilai Nominal Uang Kertas Rupiah Untuk Penyandang Tunanetra Menggunakan Algoritma Backpropagation
6.	2017	RISTEK DIKTI (Penelitian Produk Terapan)	Ketua	Pengembangan Alat Bantu Pengganti Indera Penglihatan Berbasis Embedded System Bagi Disabilitas Netra

C.3 Pengalaman Pengabdian Kepada Masyarakat

No.	Tahun	Judul	Sumber	Jumlah (Rp)
1.	2012	Pelatihan Administrasi Perkantoran di Kelurahan Gegerkalong	DIPA	10.000.000,-
2.	2012	Sistem Peringatan Intercom melalui jaringan LAN untuk mendukung SISKAMLING di Kelurahan Gegerkalong	DIPA	10.000.000,-
3.	2015	Pendampingan Penataan Ulang dan Teknik Pengoperasian Sound Sistem di Mesjid Jami Al-Haq	DIPA	15.000.000,-

4.	2016	Pendampingan Dan Pelatihan Teknik Perancangan, Penginstalasian dan Pengoperasian Sistem Komunikasi Radio Dan Data Untuk Anggota SENKOM Mitra POLRI	DIPA	20,000.000,-

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidak-sesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Pekan Kreativitas Mahasiswa Karsa Cipta.

Bandung, 07 Januari 2019 Pengusul,

Tata Supriyadi, DUT., ST., M.Eng.

Lampiran 2. Justifikasi Anggaran Kegiatan

1. Jenis Perlengkapan	Volume	Harga Satuan (Rp)	Nilai (Rp)
Toolset Elektronik	1 Set	500.000	500.000
Modul Akuisisi Data	1 Set	1.800.000	1.800.000
Terminal	1 Set	100.000	100.000
SU	2.400.000		

2. Bahan Habis Pakai	Volume	Harga Satuan (Rp)	Nilai (Rp)
PCB	2 Buah	200.000	400.000
VCO ROS-2270W-2 1660-2270	2 Buah	400.000	800.000
Timah & loftet	2 Buah	60.000	120.000
Casing	2 Buah	150.000	300.000
VCO Crytek- CVCO55CL	2 buah	300.000	600.000
VCO Crystek CVCO55BE 1600-1850	2 buah	300.000	600.000
IC Power Amplifier GSM800 MHz	2 buah	200.000	400.000
IC Power Amplifier IC GSM1800 MHz	2 buah	300.000	600.000
IC Power Amplifier IC 4G-LTE 2100 MHz	2 buah	400.000	800.000
Resistor (varian)	1 Set	30.000	30.000
Kapasitor (Varian)	1 Set	50.000	50.000
Dioda Zener 1N4728	10 Buah	500	5.000
Dioda Zener 1N5235B	10 Buah	500	5.000
Dioda Zener 1N146D	10 Buah	700	7.000
IC DSE1307 RTC	2 Buah	3.500	7.000
Konektor SMA	4 Set	20.000	80.000
IC NE555 N	3 Buah	4.000	12.000
IC OP-Amp LM741	3 Buah	7.000	21.000
AT-MEGA8-PU	1 Buah	50.000	50.000
Osiloskop Mini Digital	1 Buah	2.000.000	2.000.000
IC 7805 Regulator	6 Buah	5.000	30.000

LM 317 Regulator	6 Buah	5.000	30.000
TRAFO 5A	1 Buah	150.000	150.000
RELAY 5 V	3 Buah	25.000	75.000
Multimeter Digital	1 Set	1.000.000	1.000.000
SI	8.172.000		

3. Perjalanan	Volume	Harga Satuan (Rp)	Nilai (Rp)
Perjalanan ke percetakan PCB	5 Kali	75.000	150.000
Perjalanan ke Jaya Plaza, Bandung	5 Kali	75.000	150.000
Parkir	20 Kali	3.000	60.000
	360.000		

4. Lain-lain	Volume	Harga Satuan (Rp)	Jumlah (Rp)
Kertas	2 Rim	60.000	120.000
Tinta	4 Set	100.000	400.000
Seminar Nasional	1 Kali	1.000.000	1.000.000
	1.520.000		

Lampiran 3. Susunan Organisasi Tim Pelaksana dan Pembagian Tugas

No	Nama/ Nim	Program Studi	Bidang Ilmu	Alokasi Waktu (jam / minggu)	Uraian Tugas
1.	Faisal Zidni (161344011)	D4	Teknik Telekomunikasi	20 jam	Bagian RF-Section Jammer GSM800 & GSM1800
2.	Yoga Faissi Rachman (151344029)	D4	Teknik Telekomunikasi	20 jam	Bagian RF-Section Jammer 4G-LTE 2100 MHz dan IF- Section Jammer
3.	Muhammad Nurkholis Wildan (171344003)	D4	Teknik Telekomunikasi	20 jam	Bagian Program Kendali otomatis Jammer

KEMENTERIAN RISET, TEKNOLOGI, DAN PENDIDIKAN TINGGI POLITEKNIK NEGERI BANDUNG

Jalan Gegerkalong Hilir, Ds. Ciwaruga, Bandung 40012, Kotak Pos 1234, Telepon (022) 2013789, Fax. (022) 2013889

Homepage: www.polban.ac.id Email: polban@polban.ac.id

SURAT PERNYATAAN KETUA PENELITI

Saya yang menandatangani Surat Pernyataan ini:

Nama

: Faisal Zidni : 161344011

NIM Program Studi

: Teknik Telekomunikasi

Jurusan

: Elektro

Dengan ini menyatakan bahwa proposal Pekan Kreativitas Mahasiswa Karsa Cipta saya dengan judul "The Guardian, Alat Jammer Sinyal Seluler Dilengkapi Kendali Otomatis Dengan Real Time Clock Berdasarkan Waktu Sholat Untuk Menjaga Kehikmatan Waktu Beribadah Masyarakat" yang diusulkan untuk tahun anggaran 2019 adalah asli karya kami dan belum pernah dibiayai oleh lembaga atau sumber dana lain.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya penelitian yang sudah diterima ke kas negara.

Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenar-benarnya.

Mengetahui Ketua Jurusan,

(Malayusfi, BSEE., M. Eng.) NIP. 19770726 200812 1002 Bandung, 07 Januari 2019

Yang mengajukan,

Lampiran 5. Gambaran Teknologi yang Hendak Diharapkan

Gambar 5.1 Ilustrasi Jammer Device di Lingkungan Masjid

Sistem Jammer ini akan meredam sinyal seluler GSM800, GSM1800, dan 4G-LTE 2100 MHz. Dengan mikrokontroler dan IC real time clock yang terintegrasi, jammer dapat aktif otomatis berdasarkan 5 waktu sholat yang tersimpan di IC real time clock dan dipanggil dengan program mikrokontroller. Konsep jammer yang akan digunakan adalah *Denial of service*, dimana terdapat IF-section yang akan membangkitkan sinyal *White Noise* dan dicampurkan dengan sinyal segitiga lalu dimodulasikan bersama sinyal carrier dari output VCO.Sinyal modulasi ini akan dikuatkan oleh power amplifier untuk menutupi sinyal seluler yang dipancarkan dalam frekuensi yang sama. User yang berada pada jamming area tidak dapat menerima sinyal yang dipancarkan BTS, sehingga tidak bisa menggunakan voice call atau internet. Sedangkan User yang berada di luar area jamming, bisa menerima sinyal dari BTS karena diluar area efek jamming.