コンピュータ科学特別講義Ⅳ

Parallel Algorithm Design (#6)

Masato Edahiro June 22, 2018

Please download handouts before class from http://www.pdsl.jp/class/utyo2018/

Contents of This Class

Our Target

Understand Systems and Algorithms on "Multi-Core" processors

Schedule (Tentative)

- #1 April 6 (= Today) What's "Multi-Core"?
- #2 April 13 : Parallel Programming Languages (Ex. 1)
- April 20, 27, May 4, 11, 18: NO CLASS
- #3 May 25 : Parallel Algorithm Design
- #4 June 1 (Fri) : Laws on Multi-Core
- #5 June 8 : Examples of Parallel Algorithms (1) (Ex. 2)
- June 15: NO CLASS
- #6 June 22: Examples of Parallel Algorithms (2)
- #7 June 29: Examples of Parallel Algorithms (3)
- #8 July 6 : Examples of Parallel Algorithms (4)
- #9 July 13: Examples of Parallel Algorithms (5) (Ex. 3)
- (July 20)
- If you want to graduate in August, ask Edahiro asap.

Sorting (2)

 Given a sequence of n numbers, reorder the numbers in increasing (decreasing) order

Theoretical algorithms

Odd-Even Merge Sort: Basic Idea

(for 8 Numbers)

Given Two Sorted List

(Odd-Even Merge) Sorter for 2 Numbers (Just a Comparator)

Odd-Even Merge Sorter for 4 Numbers

Given Two Sorted List

Sorter for 4 Numbers

Odd-Even Merge Sorter for 8 Numbers

Given Two Sorted List

Sorter for 8 Numbers

For 2ⁿ⁺¹ Sorting

(4 Sorting)

Analysis: # of Comparator Steps and # of Comparators

N(=2ⁿ) O-E Merge Sort

of Comparator Step: S'_n $S'_n = S'_{n-1} + 1$ # of Comparators: C'_n $C'_n = 2*C'_{n-1} + (N/2) - 1$ N(=2ⁿ) Sort

of Comparator Step: S_n $S_n = S_{n-1} + S'_n$ # of Comparators: C_n $C_n = 2*C_{n-1} + C'_n$

Analysis: # of Comparator Steps and # of Comparators

- 1. How many Comparator Steps of Odd-Even Merge Sorter for N Numbers?
- 2. How many Comparator Steps of N-Sorter?
- 3. How many Comparators (Asymptotic Order) in each Comparator Step of N-Sorter?
- 4. How many Comparators (Asymptotic Order) in N-Sorter?

- Bitonic Sequence
 - Connect two monotonic sequence (increasing and decreasing)
 - Shifted bitonic sequence is also bitonic.

- Take Two Bitonic Sequence
 - Max- and Min-Sequences are also bitonic.

Sorting is Done by Bitonic Merges Recursively

(for 8 Numbers)

(to next page)

(for 8 Numbers)

(Bitonic Merge) Sorter for 2 Numbers (Just a Comparator)

Bitonic Merge Sorter for 4 Numbers

Sorter for 4 Numbers

Bitonic Merge Sorter for 8 Numbers

Sorter for 8 Numbers

For 2ⁿ⁺¹ Sorting

(4 Sorting)

Analysis: # of Comparator Steps and # of Comparators

N(=2ⁿ) Bitonic Merge Sort

of Comparator Step: S'_n $S'_n = S'_{n-1} + 1$ # of Comparators: C'_n $C'_n = 2*C'_{n-1} + (N/2)$ N(=2ⁿ) Sort

of Comparator Step: S_n $S_n = S_{n-1} + S'_n$ # of Comparators: C_n $C_n = 2*C_{n-1} + C'_n$

Analysis: # of Comparator Steps and # of Comparators

- 1. How many Comparator Steps of Bitonic Merge Sorter for N Numbers?
- 2. How many Comparator Steps of N-Sorter?
- 3. How many Comparators (Asymptotic Order) in each Comparator Step of N-Sorter?
- 4. How many Comparators (Asymptotic Order) in N-Sorter?

