БОБРУЙСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНО-ЭКОНОМИЧЕСКИЙ КОЛЛЕДЖ

Рассмотрено на заседании цикловой комиссии общепрофессиональных и специальных дисциплин

Протокол №	OT	_Председатель
Протокол №	от	_Председатель
Протокол №	от	_Председатель
Протокол №	от	_Председатель
Протокол №	OT	Председатель

Дисциплина

«Теория вероятностей и математическая статистика»

Задания для проведения практической работы №8

НАИМЕНОВАНИЕ РАБОТЫ: Составление законов распределения дискретной случайной величины. Вычисление числовых характеристик дискретной случайной величины.

ЦЕЛЬ РАБОТЫ: сформировать умения и навыки по составлению законов распределения дискретных случайных величин, вычислению числовых характеристик ДСВ.

МЕСТО ВЫПОЛНЕНИЯ РАБОТЫ: Аудитория.

ДИДАКТИЧЕСКОЕ И МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ: Счетная техника.

ТЕХНИКА БЕЗОПАСНОСТИ И ПОЖАРНАЯ БЕЗОПАСНОСТЬ НА РАБОЧЕМ МЕСТЕ: Общая.

ПОСЛЕДОВАТЕЛЬНОСТЬ ВЫПОЛНЕНИЯ РАБОТЫ:

1. Внеурочная подготовка

Подготовиться к практическому занятию, повторив следующие теоретические вопросы:

- 1.1. Биномиальное распределение.
- 1.2. Распределение Пуассона.

2. Работа в аудитории

2.1. Решение типовых заданий

Задание №1. Монета брошена 2 раза. Написать в виде таблицы закон распределения случайной величины X — числа выпадений «герба».

Решение.

Вероятность появления «герба» в каждом бросании монеты p = 0.5, следовательно, вероятность непоявления «герба» q = 1 - p = 0.5.

При двух бросаниях монеты «герб» может появиться либо 2 раза, либо 1 раз, либо совсем не появиться. Таким образом, возможные значения X таковы: $x_1 = 2$, $x_2 = 1$, $x_3 = 0$. Найдем вероятности этих возможных значений по формуле Бернулли:

$$P(2) = C_2^2 p^2 = (0.5)^2 = 0.25;$$

$$P(1) = C_2^1 pq = 2 \cdot 0.5 \cdot 0.5 = 0.5;$$

$$P(0) = C_2^0 q^2 = (0.5)^2 = 0.25.$$

Напишем искомый закон распределения:

X	2	1	0
P	0,25	0,5	0,25

Контроль: 0.25 + 0.5 + 0.25 = 1.

Задание №2. Завод отправил на базу 5000 доброкачественных изделий. Вероятность того, что в пути изделие повредится, равно 0,0002. Найти вероятность того, что на базу прибудут 3 негодных изделия.

Решение:

По условию, n = 5000, p = 0,0002, k = 3.

Найдем λ :

$$\lambda = np = 5000 \cdot 0,0002 = 1.$$

По формуле Пуассона искомая вероятность приближенно равна:

$$P_{5000}(3) = \frac{e^{-1}}{3!} = 0,0613.$$

Ответ: 0,0613.

2.2. Выполните задания

Уровень І

Задание №1. Найдите математическое ожидание и дисперсию числа бракованных изделий в партии из n изделий, если каждое изделие может оказаться бракованным с вероятностью p.

№	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
n	5000	4000	6000	3000	5000	4000	7000	3000	8000	4000	3000	6000	4000	5000	3000
р	0,02	0,03	0,05	0,04	0,01	0,06	0,05	0,04	0,02	0,05	0,05	0,04	0,02	0,04	0,02

Уровень II

Задание №2. Из партии, содержащей n изделий, среди которых имеется m дефектных, выбираются случайным образом (с возвратом) 5 изделий для проверки их качества. Построить ряд распределения случайной величины X — числа дефектных изделий. Построитель многоугольник распределения. Найти числовые характеристики этого распределения.

№	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
n	200	200	400	500	300	400	500	300	400	200	300	500	300	500	300
m	10	20	10	40	30	20	10	10	40	5	50	25	20	50	15

Уровень III

Задание №3. Вероятность детали быть бракованной равна 0,01. Произведено n деталей. Какова вероятность того, что: 1) в этой партии только k бракованных детали; 2) нет бракованных деталей; 3) менее k бракованных деталей; 4) более (k + 1) бракованных деталей; 5) хотя бы одна бракованная деталь.

№	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
n	300	400	500	600	300	200	400	300	500	200	200	400	200	500	200
k	4	3	5	4	5	4	5	6	3	6	5	6	7	5	3

Уровень IV. Составьте и решите задачу, в которой необходимо определить вероятность дискретной случайной величины, распределенной по закону Пуассона.

Контрольные вопросы:

- 1. Какое распределение случайной величины называют биноминальным?
- 2. Какое распределение называют распределением Пуассона?
- 3. Как рассчитать числовые характеристики при биномиальном распределении и распределении Пуассона?

Литература

Гусак А.А. Теория вероятностей: справ. Пособие к решению задач / А.А. Гусак, Е.А. Бричикова. — 6-е изд. — Минск: ТетраСистемс, 2007. — с.201 — 224.

Преподаватель В.П. Кошелева