北京理工大学 2004—2005 学年第一学期 2004 级《微积分 A》期末试卷(A卷)

- 一、 计算下列各题(每小题6分)
 - 1. 计算不定积分 $\int (\arcsin x x\sqrt{1-x^2}) dx$.
 - 2. 求方程 $y'' + y = e^{2x}$ 的通解.
 - 3. 求极限 $\lim_{x\to 0} \frac{\int_0^{2x} \ln(1+t^2)dt}{x^3}$.
 - 4. 设 $f(x) = x^2 \ln(1+x^2)$. 利用 Taylor 公式求 $f^{(8)}(0)$.
 - 5. 求对数螺线 $\rho = e^{\theta}$ 在点 $(\rho, \theta) = (e^{\pi/2}, \frac{\pi}{2})$ 处的切线的直角坐标方程.
- 二、 求解下列各题(每小题7分)
 - 1. 计算广义积分 $\int_{1}^{+\infty} \frac{\sqrt{x} dx}{1 + x\sqrt{x}}.$
 - 2. 试确定 a,b 的值,使函数 $f(x) = \begin{cases} ae^x + be^{-x}, & x \le 0 \\ \frac{1}{x} \ln(1+x), & x > 0 \end{cases}$ 在 $\left(-\infty, +\infty\right)$ 内可导,并求 f'(x).
 - 3. 求微分方程 $\begin{cases} yy' + 2xy^2 x = 0 \\ y(0) = 1 \end{cases}$ 的特解.
 - 4. 求特殊和式的极限 $\lim_{n\to\infty} \left(\frac{1}{\sqrt{4n^2-1^2}} + \frac{1}{\sqrt{4n^2-2^2}} + \dots + \frac{1}{\sqrt{4n^2-n^2}} \right)$.
- 三、(8 分)设 F(x) 是 f(x) 的原函数,且 $F(1) = \frac{\sqrt{2}}{4}\pi$. 又设当 x > 0 时,有 $f(x)F(x) = \frac{\arctan\sqrt{x}}{\sqrt{x(1+x)}}$,试求 f(x) 的表达式.

四 (12 分) 设直线 y = ax 与抛物线 $y = x^2$ 围 成平面图形 D_1 ; 记直线 y = ax、抛物线 $y = x^2$ 与直线 $x = \sqrt{2}$ 围成的曲边三角形为 D_2 , 其中 $0 < a < \sqrt{2}$.

- (1) 求a的适当值,使平面图形 D_1 与 D_2 的面积之和取最小值;
- (2) 对上述a的值,求 D_1 绕y 轴旋转所得旋转体的体积 V_1 和 D_2 绕x 轴旋转所得旋转体的体积 V_2 .

五 (8分) 求证: 对任意的
$$x > 0$$
, $x \int_0^x \frac{dt}{\sqrt{1+t^2}} > 2\sqrt{1+x^2} - 2$.

- 六 (8分)某游艇在速度为5m/s时关闭发动机靠惯性在河道中滑行. 假设游艇滑行时所受到的阻力与其速度成正比. 已知4秒钟后游艇的速度为2.5m/s. 求游艇速度v与时间t的关系v(t),并求游艇滑行的最长距离.
- 七 (6分)设函数 f(x)和 g(x)在 [0, a]内可导,且 f(0) = g(0) = 0. 又设在 [0, a]内 g'(x) > 0 . 求证:若 $\frac{f'(x)}{g'(x)}$ 在 [0, a]内单调递增,

则 $\frac{f(x)}{g(x)}$ 在 (0, a) 内也单调递增.