1-classifier-comparison

November 22, 2018

0.1 Classifier Comparison

In this notebook, we compare some of traditional machine learning algorithms on movie review datasets.

0.1.1 1. Data preprocessing

0.1.2 2. Classifiers

We investigate the algorithms most used in today's machine learning community. Each classifiy train on the training data and validate on the testing data.

```
In [4]: classifiers = {
            "K-Nearest Neighbors": KNeighborsClassifier(7),
            "Linear SVC": LinearSVC(),
            "Linear Classify with SGD": SGDClassifier(tol=1e-3),
            "Logistic Regression": LogisticRegression(),
            "MLP": MLPClassifier(),
            "Decision Tree": DecisionTreeClassifier(random_state=0),
            "Random Forest": RandomForestClassifier(random_state=0, n_estimators=100),
            "AdaBoost": AdaBoostClassifier(n_estimators=100),
            "Gaussian Naive Bayes": GaussianNB()
        }
        for nam, cla in classifiers.items():
            cla.fit(x_train_tf.toarray(), y_train)
            predicted = cla.predict(x_dev_tf.toarray())
            print("{0} - Accuracy: {1:.4f}".format(nam, metrics.accuracy_score(predicted, y_de
            print(metrics.classification_report(predicted, y_dev))
K-Nearest Neighbors - Accuracy: 0.6895
             precision
                          recall f1-score
                                              support
                            0.64
          0
                  0.91
                                       0.75
                                                  768
          1
                  0.47
                            0.83
                                       0.60
                                                  298
avg / total
                  0.78
                            0.69
                                       0.71
                                                 1066
Linear SVC - Accuracy: 0.7880
             precision
                          recall f1-score
                                              support
          0
                  0.78
                            0.80
                                       0.79
                                                  527
                            0.78
          1
                  0.80
                                       0.79
                                                  539
avg / total
                  0.79
                            0.79
                                       0.79
                                                 1066
Linear Classify with SGD - Accuracy: 0.7833
             precision
                          recall f1-score
                                              support
                                       0.80
          0
                            0.75
                  0.86
                                                  614
          1
                  0.71
                            0.83
                                       0.76
                                                  452
avg / total
                  0.79
                            0.78
                                       0.78
                                                 1066
Logistic Regression - Accuracy: 0.7664
```

support

recall f1-score

precision

0 1	0.76 0.77	0.77 0.76	0.77 0.77	
avg / total	0.77	0.77	0.77	1066
MLP - Accuracy: 0.7777				
	precision	recall	f1-score	support
0	0.78	0.78	0.78	538
1	0.78	0.77	0.78	528
avg / total	0.78	0.78	0.78	1066
Decision Tre	ee - Accurac			
	precision	recall	f1-score	support
0	0.62	0.61	0.62	540
1	0.61	0.61	0.61	526
avg / total	0.61	0.61	0.61	1066
Random Fores	st - Accurac	y: 0.7186		
	precision	recall	f1-score	support
0	0.72	0.72	0.72	541
1	0.71	0.72	0.71	525
avg / total	0.72	0.72	0.72	1066
AdaBoost - Accuracy: 0.6689				
	precision	recall	f1-score	support
0	0.66	0.68	0.67	528
1	0.68	0.66	0.67	538
avg / total	0.67	0.67	0.67	1066
Gaussian Naive Bayes - Accuracy: 0			0.6895	
	precision	recall	f1-score	support
0	0.73	0.68	0.70	578
1	0.65	0.70	0.67	488
avg / total	0.69	0.69	0.69	1066

0.1.3 3. Results

The only metrics used in the picture under is accuracy, and from the comparison of all classifiers, the sym with sgd optimization is the best one.

```
In [6]: import matplotlib.pyplot as plt

plt.rcdefaults()
fig, ax = plt.subplots()

models = classifiers.keys()
y_pos = np.arange(len(models))
performance = [0.6895, 0.7880, 0.7833, 0.7664, 0.7777, 0.6107, 0.7186, 0.6689, 0.6895]

ax.barh(y_pos, performance, align='center',color='green')
ax.set_yticks(y_pos)
ax.set_yticklabels(models)
ax.invert_yaxis() # labels read top-to-bottom
ax.set_xlabel('Accuracy')
ax.set_title('The classification preformance on different models.')

plt.show()
```

