- 1. [10] U kolu sa slike 1, oba tranzistora su identična sa V_{BE} =0.7V, V_{CES} =0.2V i $\beta_F \to \infty$. Poznato je i: $R_1 = R_2 = R_3$ =3 k Ω , R_4 =1 k Ω i V_{CC} =10V. Ako se ulazni napon menja u granicama 0V $\leq v_G \leq 1$ 0V, odrediti i nacrtati prenosne karakteristike $v_I(v_G)$ i $v_{C1}(v_G)$.
- **2.** a) [5] Nacrtati pojačavač sa NMOS tranzistorom na ulazu i PMOS tranzistorom na izlazu i negativnom povratnom spregom koja povećava ulaznu otpornost i smanjuje izlaznu otpornost, napajan iz dve baterije za napajanje.
 - b) [5] Nacrtati vremenske dijagrame napona na priključcima oba tranzistora za sinusoidalni napon pobudnog generatora.
- **3.** a) [4] Nacrtati pojačavač sa zajedničkim emitorom i aktivnim opterećenjem u obliku prostog strujnog izvora.
 - b) [3] Izračunati ulaznu, izlaznu otpornost i pojačanje u mirnoj radnoj tački pojačavača iz tačke a).
 - c) [3] Nacrtati izlaznu karakteristiku $v_I = f(v_U)$ i zavisnost pojačanja za male signala $a = \frac{dv_I}{dv_U}$ od ulaznog napona v_{II} a) pojačavača iz tačke a).
- **4.** U kolu sa slike 4, operacioni pojačavači su idealni. Smatrajući da oba operaciona pojačavača rade u linearnom režimu, odrediti:
 - a) [6] Zavisnost $v_I(v_1, v_2)$.
 - b) [2] Koji uslov treba da zadovoljavaju otpornici u kolu, da bi izlazni napon bio oblika $v_1 = k(v_1 v_2)$? Kolika je u tom slučaju konstanta proporcionalnosti k?
 - c) [2] Ako je: $v_1(t) = 1V + 0.1V \sin(2\pi ft)$, $v_2(t) = 1V$, $R_1 = 1 \text{ k}\Omega$, $R_2 = 10 \text{ k}\Omega$, $R_3 = 10 \text{ k}\Omega$, $R_4 = 1 \text{ k}\Omega$ i $R_5 = 100 \text{ k}\Omega$, odrediti vremenske oblike napona na izlazima operacionih pojačavača $v_I(t)$ i $v_{I1}(t)$.

Slika 1.

Slika 4.

Studenti koji polažu drugi kolokvijum rade zadatke 3 i 4 u trajanju od 2,5 sata. Studenti koji polažu kompletan ispit rade sve zadatke u trajanju od 4 sata.