КОМПЮТЕРНИЙ ПРАКТИКУМ 1. ПРОСТА ОБЧИСЛЮВАЛЬНА ПРОГРАМА

(до теми «Базові поняття мови програмування С»)

Мета роботи: Навчитись синтаксично правильно будувати програму мовою програмування С, коректно користуватись можливостями середовища програмування для її запуску та отримання результату роботи; навчитись складати та вміти перевірити семантику простої обчислювальної програми, що реалізує лінійний алгоритм.

Основні теоретичні відомості

Складові мови програмування С

Основні складові будь-якої алгоритмічної мови — це символи, лексеми, вирази і оператори, які складають власне програму.

Символи — це основні неподільні елементи мови. Представляють собою знаки, які складають усі конструкції мови.

Символи утворюють **алфавіт** мови. До алфавіту мови С входять символи, визначені в таблиці кодування ASCII, а саме:

- 1. Великі та малі латинські літери (розрізняються компілятором).
- 2. Цифри 0-9.
- 3. Знаки пунктуації
- 4. Деякі інші символи

Таблиця 1. Знаки пунктуації

Символ	Назва	Символ	Назва
1	кома)	права кругла дужка
	крапка	(ліва кругла дужка
• /	крапка з комою	{	права фігурна дужка
:	двокрапка	}	ліва фігурна дужка
?	знак питання	<	менше
•	апостроф	>	більше
!	знак оклику]	права квадратна дужка
	вертикальна риса	[ліва квадратна дужка
/	дробова риса (слеш)	#	решітка
\	зворотна риса (зворотний слеш)	%	процент
7	тільда	&	амперсанд
*	зірочка	۸	виключне «або»
+	плюс	=	дорівнює
-	мінус	11	лапки
_	знак підкреслення		

Лексема – мінімальна одиниця мови, яка має власний зміст та обробляється транслятором. Лексеми формують **вирази**. **Програма** розглядається як послідовність виразів і лексем.

У мові С кожна лексема належить одній з наступних категорій:

- зарезервовані (ключові) слова;
- ідентифікатори;
- літерали;
- знаки операцій;
- розділювачі.

Зарезервовані слова стандарту С89:

auto	double	int	struct
break	else	long	switch
case	enum	register	typedef
char	extern	return	union
const	float	short	unsigned
continue	for	signed	void
default	goto	sizeof	volatile
do	if	static	while

Зарезервовані слова стандарту С99:

_Bool _Imaginery restrict _Complex inline

Ідентифікатор — це лексема, яка складена із літер латинського алфавіту, цифр, символів «_»(підкреслення) та «\$» (знак долару), які даються програмним об'єктам, тобто змінним, іменованим константам, типам та функціям. Інші символи, крім перелічених, в ідентифікаторах недопустимі. Великі і малі букви в ідентифікаторах відрізняються (мова С чутлива до регістру) Ідентифікатор не може співпадати з зарезервованим словом! Ідентифікатор не може містити пропуск!

Літерали — це значення констант різних типів, які зустрічаються у тексті програми. Зовнішній вигляд літералів залежить від типу, до якого вони належать. Наприклад, 23 — ціле **int**, 45.6 або 0.5e-3 — дійсні **double**, 'g' — символ **char**, "**some information**" — рядковий літерал.

Знаки операцій побудовані на основі набору спеціальних символів і букв алфавіту.

Таблиця 2. Знаки операцій

,	!	! =		=	%	%=	&	&&
&=	()	*	*=	+	++	+=	_	
-=	->	->*	•	• *	/	/=	<	<<
<=	<<=	>	>>	>=	>>=	==	?:	[]
٨	^=	~		#	##	sizeof		

Розділювачі – це ';' крапка з комою, '{}' фігурні дужки, '...' трикрапка.

Множина операцій та розділювачів фіксована. Лексеми відокремлюються так званими пробільними символами, кількість яких необмежена. Це власне пропуск, **ENTER**, знаки табуляції

Інші символи можуть зустрічатись лише у коментарях чи текстових виразах. Багаторядковий коментар починається з символів /* і закінчується символами */, однорядковий коментар починається з символів // і закінчується в кінці рядка. Наприклад:

```
/* це багаторядковий коментар

*/
// це однорядковий коментар
```

Однорядковий коментар може знаходитись всередині багаторядкового.

Вираз - це сукупність операндів, об'єднаних знаками операцій. Операндом можуть бути: константи, змінні, елементи масивів, функції.

Порядок виконання операцій залежить від пріоритету операцій і може бути змінений за допомогою дужок ().

Загальна структура програми.

Програма мовою С складається з директив препроцесора, зовнішніх описів і функцій і має таку структуру:

```
<директиви препроцесора>
<описи>
<функції>
```

У будь-якому місці програма може мати коментарі.

Директиви препроцесора вказують на перетворення, які потрібно зробити з текстом програми. За їх допомогою також здійснюється оголошення іменованих констант, що використовуються у всій програмі, підключення інформації про стандартну бібліотеку та ін.

В розділі описів роблять глобальні оголошення.

Функції — це основні складові програми. Представляють собою синтаксично та логічно завершений самостійний фрагмент програми, призначений для розв'язання певної задачі. Складаються із послідовності операторів у фігурних дужках, кожний з яких відокремлений символом ';'. Синтаксис оголошення функції:

```
<тип_значення_що_повертає> і'мя ( [<список_параметрів>])
{
      <onepatopu_функції>;
};
```

Програма може містити декілька функцій, а може — лише одну, але обов'язково функцію з назвою main().

Оператори бувають виконувані (задають дії над даними) і невиконувані (задають описи даних). Відокремлюються символом ';'.

Приклад. Проста програма мовою С:

Виконання програми завжди починається з функції **main**. Із **main** для виконання різних операцій можуть бути викликані інші функції, які або знаходяться у стандартних бібліотеках, або мають бути написані самим програмістом.

Перший рядок програми

#include <stdio.h>

— це директива препроцесора, яка вказує на необхідність додати до програми інформацію про стандартну бібліотеку. У даному випадку, **stdio.h** — заголовковий файл, що містить оголошення функцій введення-виведення, у тому числі і функцію **printf** із приклада.

Один з методів передачі даних між функціями полягає в тому, що одна функція викликає іншу і надає їй список змінних, які називають аргументами. Цей список розташований у круглих дужках одразу після імені функції. У прикладі функція main викликає printf з аргументом "hello, world\n". Функція printf виводить свої аргументи на екран або на друк. Функція main не має аргументів, на що вказує порожній список в дужках: int main().

У наведеному прикладі ніяких обчислень не було, тому змінні і константи не були використані.

Типи даних

Типи даних визначають обсяг пам'яті, що виділяється під данні, спосіб представлення даних в комп'ютері та їх інтерпретацію, діапазон значень, перелік операцій та функцій, що можуть бути використані для обробки даних.

Цілі типи. Підтримуються такі цілі типи:

Тип	Назва типу	Діапазон значень	Розмір	Знак
short int	коротке ціле	-32768(-8000)32768(+7FFF)	2 байта	із знаком
unsigned	коротке ціле	0(0) 65535(FFFF)	2 байта	без знаку
short int	без знаку			
int	Ціле	-80000000+7FFFFFF	4 байта	із знаком
unsigned	ціле без	0+FFFFFFF	4 байта	без знаку
int	знаку			
long	стандарт С99	-(2^63-1) (2^63-1)	8 байт	із знаком
long int				

Арифметичні операції над даними цілого типу:

+ додавання

віднімання, також унарний мінус
множення
цілочисельне ділення: 13/3 = 4
остача від ділення: 13%3 = 1
префіксний інкремент x=x+1
постфіксний інкремент x=x+1
префіксний декремент x=x-1
постфіксний декремент x=x-1

Функції цілого аргументу, стають доступні, якщо підключити заголовковий файл з математичними функціями <math.h>:

abs(x);
$$|x|$$

pow(x,2); x^2

Порозрядні операції:

8 побітове І – бінарна операція, дія якої еквівалентно застосування логічного І до кожної пари бітів, які стоять на однакових позиціях у двійкових представленнях операндів.

Приклад:

9 . (I)	0011
& (I)	0101
	0001

побітове АБО — бінарна операція, дія якої еквівалентно застосування логічного АБО до кожної пари бітів, які стоять на однакових позиціях у двійкових представленнях операндів.

Приклад:

	0011
(ABO)	0101
	0111

• виключне АБО — бінарна операція, результат дії якої дорівнює 1, якщо сума бітів, які стоять на однакових позиціях у двійкових представленнях операндів, непарна, або 0, якщо парне.

Приклад:

/ (Differ A L())	0011
	0101
	0110

НЕ (заперечення, доповнення до 1)

Приклад:

~ (HE)	0110
	1001

>> зсув вправо, в напрямку від старшого біта до молодшого.

Приклад:

x>>2	0100
	0001

сув вліво, в напрямку від молодшого біта до старшого.

Приклад:

x<<1	0011
	0110

Оператор надання:

<вина>=<вираз>/<вначення>

Типи даних з плаваючою крапкою

Підтримуються такі типи:

Тип	Точність	Розмір	Діапазон
	(кількість знаків)	(байт)	
float	6	4	1,175494351 E – 38
			3,402823466E+38
double	16	8	2,2250738585072014 E – 308
			1,7976931348623158 E + 308

Форма представлення - експоненційна (або з плаваючою крапкою)

 \pm **mE** \pm **p**, де m - мантиса, p - порядок. *Приклад*: $4.2E+02=4200=4.2*10^2$

Арифметичні операції для даних з плаваючою крапкою

додаваннявідніманнямноженняділення

Функції бібліотеки <math.h>:

fabs(x); |x|pow(x,2); x^2 cos(x); $\cos(x)$

$$sin(x)$$
; $sin(x)$
 $atan(x)$; $arctg(x)$
 $exp(x)$; e^x
 $log(x)$; $ln x$
 $sqrt(x)$; \sqrt{x}
 $modf(x)$; дробова частина x
round(x); ціла частина x

Можна будувати складні функції:

$$pow(sin(x),2) - sin x;$$

Дані з плаваючою крапкою можна привести до цілого типу:

long int lround(double x); х округлюється до найближчого цілого.

Складене надання або стенографічне (shorthand) надання:

«Складені» оператори надання існують для всіх бінарних операцій (тобто операцій, що мають два операнда). Будь-який оператор виду:

<змінна> = <змінна><оператор><вираз>

можна записати, як

<змінна> <оператор>= <вираз>

Приклади:

Загальні зауваження до оформлення програм

Щоб програму було легко читати та тестувати, потрібно:

- 1) широко використовувати коментарі;
- 2) обирати ідентифікатори так, щоб вони відображували зміст констант, змінних, функцій;
- 3) використовувати пропуски для виділення структури програми;
- 4) бажано, щоб кожний рядок містив один оператор;
- 5) кожному вводу даних повинно передувати повідомлення, які данні треба ввести і у якому вигляді.

```
Приклад. Надані х,у. Обчислити: a = \frac{\sqrt{|x+4,62|-y}}{1+2x^2+y^2}
```

```
#include <conio.h>
#include <math.h>
#include <stdio.h>
#define SQU 2

int main()
{
    float x,y,a;
    printf("введіть значення x i y через пропуск\n");
    scanf("%f%f",&x, &y);
    a=(sqrt(abs(x+4.62))-y)/(1+2*pow(x,SQU)+pow(y,SQU));
    printf("шукане значення a = %f",a);
    getch();
    return 0;
}
```

У розглянутому прикладі було використано ще одну директиву – #defte. 🛽

Тут – для визначення так званої іменованої константи SQU. У загальному випадку синтаксис наступний:

#define [im's константи] [значення]

Діятиме з моменту оголошення і до кінця коду або поки дія константи не буде скасована директивою #undef , синтаксис: #undef [im'я константи]

Порядок виконання роботи в аудиторії

1. Проаналізувати умову задачі.

- 2. Розробити алгоритм та створити програму розв'язання задачі згідно з номером варіанту.
- 3. Ознайомитись з основами роботи у середовищі Dev C++, освоїти використання системи довідки.

Таблиця 5. Варіанти завдань

1	$R = \ln(a^2 + b^2 + c^2) + e^{a+1}$	2	$R = \arcsin a^2 + \arccos(bx - a) + e^{bx}$
3	$R = (x+2,45) + \sqrt{ x+y^2 }$	4	$R = 2\sin(0.214y^5 + 1)$
5	$R = \sqrt{ x^2 + 5y^2 + 0.12 } + 37.5$	6	$R = \ln(y + 0.95) + \sin x^4$
7	$R = \sin(a * \arcsin x + \ln y) - \cos(2ax)$	8	$R = \sin x + e^{2y}$
9	$R = \sqrt{(2+y)^2 + \sin^2(y+5)} + \ln(y+5) - y^3$	10	$R = \cos 4x^2 + \sqrt{y^2 + 28.61}$
11	$R = tg^3 y + \sin^5 x \sqrt{b - c}$	12	$R = \cos^2 bx^5 - (\sin a^2 + \cos(x^3 + z^5 - a^2))$
13	$R = tg(y^3 - h^4) + h^2 - \sin^3 h + y$	14	$R = \frac{e^{2y} + \sin x}{\ln(3.8y + x)}$
			$\ln(3.8y + x)$
15	$R = \ln x + \frac{3.5x^2 + 1}{\cos 2y}$	16	$R = \frac{\ln(x - y) + y^4}{e^y + 2{,}33x^2}$
17	•	18	
17	$R = \frac{x^2 + 2,8x + 0,35}{\cos 2y + 3,5}$	10	$R = \frac{4z^2 + \ln 2}{e^{x+z} + 2.7\sin x}$
19	$R = \frac{x^2 - 0.1z + \sqrt{2.5y^2}}{3.7x^2 + \cos^2 y}$	20	$R = 4,35 y^{3} + \frac{1 + 2t \ln t}{\sqrt{\cos^{2} 2y + 4,35t^{2}}}$
21	$R = \frac{2t + y\cos t}{\sqrt{2.8t^2 + (y-1)^2}}$	22	$R = \frac{\sin(2t+1)^2 + 0.3}{\ln(t+y)}$
23	$R = \frac{\sin(p+0.25)^2}{y^2 + 7.32 p}$	24	$R = \frac{\sin(2x+y) + y^2}{e^y + x}$
25	$R = \frac{0,004a + e^{2b}}{e^{\frac{b}{2}}}$	26	$R = e^{y+2.5} + 7h^3 \frac{1}{\ln\sqrt{y^2 + 0.04h}}$
27	$R = \frac{0.33h^2 - 4.44}{e^{y+h} + \sqrt{2.7y}}$	28	$R = \frac{2\sin(0,35y+1)}{\ln(y+2t)}$
29	$R = \frac{\cos^3 y + 2^x d}{e^y + \ln(\sin^2 x + 4,2)}$	30	$R = \frac{\ln(x^3 + y) - y^4}{e^y + 5.4k^3}$

Порядок виконання домашньої роботи

- 1. Проаналізувати умову задачі.
- 2. Розробити алгоритм та створити програму розв'язання задачі згідно з номером варіанту.

Варіанти завдань

1 - 1. Дано х,у,z, обчислити:

$$a = \frac{\sqrt{x-1} - \sqrt[3]{|y|}}{1 + \frac{x^2}{2} + \frac{y^2}{4}}; \qquad b = x \left(arctg \ z + e^{-(x+3)} \right).$$

1 - 2. Дано х,у, z обчислити:

$$a = \frac{3 + e^{y-1}}{1 + x^2 |y - tg|}; b = 1 + |y - x| + \frac{(y - x)^2}{2} + \frac{|y - x|^2}{3}.$$

1 - 3. Дано х,у,z, обчислити:

$$a = (1+y)\frac{x+y/(x^2+4)}{e^{-x-2}+1/(x^2+4)}; \quad b = \frac{1+\cos(y-2)}{x^4/2+\sin^2 z}.$$

1 - 4. Дано x, y, z обчислити:

$$a = y \frac{x}{y^2 + \left| \frac{x^2}{y + x^3/3} \right|}; \quad b = \left(1 + tg^2 \frac{z}{2} \right).$$

1 - 5. Дано x, y, z обчислити:

$$a = \frac{2\cos(x-p/6)}{1/2+\sin^2 y}$$
; $b = 1 + \frac{z^2}{3+x^2/5}$.

1 - 6. Дано x, y, z обчислити:

$$a = \frac{1 + \sin^2(x + y)}{2 + |x - 2x/(1 + x^2 y^2)|} + x; \quad b = \cos^2\left(arctg\frac{1}{z}\right).$$

1 - 7. Дано x, y, z обчислити:

$$a = \ln \left| \left(y - \sqrt{x} \right) \left(x - \frac{y}{z + x^2/4} \right) \right|; b = x - \frac{x^2}{3!} + \frac{x^5}{5!}.$$

1 - 8. Дано c,d; знайти:

$$\left| \frac{\sin^3 \left| cx_1^3 + dx_2^2 - cd \right|}{\sqrt{\left(cx_1^3 + dx_2^2 - x_1 \right)^2 + 3.14}} \right|,$$

де x_1, x_2 – це більший і менший корені рівняння: $x^2 - 3x - cd = 0$

1 - 9. Дано c, d; знайти:

$$tg(cx_1^3 + dx_2^2 - x_1)$$
, де — x_1, x_2 відповідно більший та менший дійсні корені рівняння: $x^2 - 3x - cd = 0$

- 1 10. Знайти кути трикутника із сторонами a, b, c
- 1 11. За сторонами трикутника a, b, c. Знайти:
 - 1) довжини висот;
 - 2) довжини медіан.
- 1 12. Дано сторони трикутника а, b, с. Знайти:
 - 1) довжини бісектрис;
 - 2) радіуси вписаного та описаного кола.
- 1 13. Є гіпотенуза та катет прямокутного трикутника. Знайти:
 - 1) другий катет;
 - 2) радіус вписаного кола.
- 1-14. Трикутник задано координатами вершин $(x_1, y_1)(x_2, y_2)(x_3, y_3)$. Знайти:
 - 1) периметр трикутника
 - 2) площу трикутника.
- 1 15. Надано дві сторони трикутника та кут між ними в градусах. Знайти довжину третьої сторони та площу трикутника.
- 1 16. Дано x, y, z. Знайти:

$$\max(x + y + z, xyz); \min^{2}(x + y + z/2, xyz) + 1.$$

1 – 17. Дано h. Визначити, чи має рівняння: $ax^2 + bx + c = 0$ дійсні корені, якщо:

$$a = \left(\frac{|\sin 8h| + 17}{(1 - \sin 8h \cos(h^2 + 18))^2}\right)^{1/2},$$

$$b = 1 - \left(\frac{3}{3 + \left| tg \ ah^2 - \sin ah \right|}\right)^{1/2},$$

$$c = ah^2 \sin 6h + 6h^3 \cos ah$$

1 – 18. Вивести комплексне число у вигляді RE + i*IM, дійсна та уявна частини якого визначаються за формулами:

$$RE = \frac{|\sin 8h| + 17}{(1 - \sin 8h \cos(h^2 + 18))^2},$$

$$IM = 1 - \left(\frac{3}{3 + \left|tg \ h^2 - \sin h\right|}\right)^{1/2}$$
, де h - надане.

1 – 19. Для заданих а, в обчислити:

$$(a+b)\sin a + (a-b)\cos b + \frac{a-b}{\sqrt{\sin a + \cos b}}$$

1 - 20. Для наданого х знайти:

$$\frac{x+1}{x-1} + 3.6(x - (\sin x + 1)^2 + x^2(\sin x - 1))$$

1 - 21. Для наданих x, y, z знайти:

$$a = \frac{xyz - 3.3|x + \sqrt[4]{y}|}{10^7 + \sqrt{\lg 4!}}; \quad b = e^{|x-y|} + \ln(1+e) - z.$$

1 - 22. Для 5 наданих елементів обчислити:

$$p = \frac{a_1 + \sin^2 a_2 - arctg(1 + \ln a_3)}{\sqrt{a_4^2 + a_5^2}}.$$

1-23. Надано числа a_1, a_2 . Обчислити a_3, a_4 за такими виразами:

$$a_3 = \frac{\max^2(a_1, a_2) + e^{a_2} \sin a_1}{\sqrt{\min(a_1, a_2) + a_1^2 + a_2^2}}; \quad a_4 = \ln|a_1| - tg^2 a_2 \sin a_1.$$

- 1-24. Обчислити площу поверхні піраміди, гранню якої ϵ рівносторонній трикутник із стороною A.
- 1-25. Знайти дробову частину середнього геометричного та цілу частину середнього арифметичного п'яти дійсних чисел, введених з клавіатури. масиву A (5).
- 1 26. Знайти усі цифри цілого числа а і вивести їх у стовпчик.
- 1 27. Знайти суму цифр введеного з клавіатури цілого числа.
- 1-28. Знайти число, що утворюється перестановкою у зворотному порядку цифр наданого чотиризначного числа.
- 1 29. Дано 5 дійсних чисел. Знайти цілу та дробову частини їх суми.
- 1 30. Трикутник задано у вигляді координат вершин. Знайти довжину його сторін та периметр.
- 1 31. Надано два кути трикутника та сторона між ними. Знайти інші сторони та кути.
- 1 32. Змішано v1 літрів води температури t1 з v2 літрами води температури t2.Знайти об'єм та температуру суміші.
- 1 33. Визначити периметр правильного n-кутника, описаного навколо кола радіусом r.
- 1 34. Знайти час, через який зустрінуться два тіла, що рухаються з постійним прискоренням, якщо відомі їх початкові швидкості та прискорення і відстань між тілами.
- 1 35. Перевести координати точки із декартової до полярної системи координат.
- 1 36. Порахувати рентабельність роботи підприємства за поточний місяць, якщо собівартість продукції знизилась на 5% порівняно з попереднім.
 Значення прибутку і собівартості за минулий місяць увести з клавіатури.

(рентабельність рахують у процентах як відношення прибутку до собівартості).

Контрольні запитання

- 1. Основні складові мови програмування. Склад алфавіту.
- 2. Що таке лексеми? Які різновиди лексем ви знаєте? Надати характеристику.
- 3. Правила формування ідентифікаторів.
- 4. Що таке зарезервовані слова?
- 5. З чого складаються вирази?
- 6. Загальна структура програми.
- 7. Поняття типів даних. Цілі типи та типи з плаваючою крапкою. Операції з даними цих типів.