b)
$$f''$$
 $B \leftarrow C \quad f'(2) = C$
 $G \leftarrow G'(1) = b$
 $G \leftarrow G'(1) = a$

 $\begin{array}{l} \text{20. } \left[P\Lambda(P\to g)\right]\to P \equiv \neg \left[P\Lambda(P\to g)\right] \lor g \text{ by the conditional-disjunction equivalence} \\ \equiv \left[\neg P \lor \neg (P\to g)\right] \lor g \text{ by a De Morgan's law} \\ \equiv \left(\neg P \lor g\right) \lor \neg (P\to g) \text{ by commutativity and associativity} \\ \equiv \left(\neg P \lor g\right) \lor \neg \left(\neg P \lor g\right) \text{ by the conditional-disjunction equivalence} \\ \equiv \top \qquad \text{by a negation law}$

step		Reason
1	-t	Hypothesis
2	S→t	Hypothesis
3	75	Modus tollens using (1) and (2)
4	(7rv-f)-> (5/1)	Hypothesis
2	(-(5/1) -> -(-1/1-1)	contrapositive of (4)
6	(-5V-l)-(r/f)	De Morgan's law and double negative
7	フェマーl	Addition, using (3)
8	rnf	Modus ponens using (6) and (7)
9	Y	simplification using (8)
	I a	