Discrete Test 2, Spring '20. Version B.	Name:
My signature here is to pledge that I have answered each	Time:
test question from my own knowledge and understanding,	
without giving or receiving any unauthorized help.	
Sign:	Date:

Read directions carefully! Put a box around your final answer if there is any extra work shown.

1. Fill in the blanks. Suppose we are trying to prove the statement

" $\forall x, y, z \in \mathbb{Z}, (x > 2 \text{ and } z|y^2) \Longrightarrow (x + |y| \ge 7 \text{ and } xy \nmid 4.)$ "

(Answer the following without using the word "not" or the symbol " \sim .")

a) For a proof via the contrapositive we assume:

and show:

b) For proof by contradiction we assume:

and show that we reach a false conclusion.

c) For direct proof we assume:

and show:

d) For disproof by counterexample we find:

Version B 3

2. Prove: $\forall a,b \in \mathbb{Z}$, (a is even and 4|(b+7)) \Longrightarrow $4 \nmid (a^2+b^2-36)$, by precisely following these steps:

Step 1: Write the negation of the implication.

Step 2: Assume the negation of the implication and use it to prove that 4|13, thus achieving a contradiction.

Hint! Assuming the negation will mean three separate facts about divisibility, turned into equations. Use a different variable for each (p, m, n) You will substitute the first two facts into the third fact: but first, solve the second one a bit by subtracting 7 from both sides to get b = 4m - 7.

3. Prove: $\forall n \in \mathbb{N}, n \geq 2 \Longrightarrow 3 | (7^n - 3^n - 1)$. Label the base case, the inductive assumption, the statement to be shown, and then prove. Hint! In the proof, after you substitute, you can factor a 3 out of 3^k like this: $3^k = 3 \cdot 3^{k-1}$.

Base case checked:

Induction-Assume:

Show:

Proof:

4.	Let $a_1 = 4, a_2 = 16$, and $a_n = 11a_{n-1} - 28a_{n-2}$. Prove: $\forall n \in \mathbb{N}, n \ge 1 \Longrightarrow a_n = 4^n$.
	Label the base cases, the strong inductive assumption, the statement to be shown, and then
	prove.

Base cases checked:

Induction–Assume:

Show:

Proof:

5. Consider the sequence $a_n = (n^2 + 4) \mod 9$; starting at n = 1. Use it to encrypt the word FUZZY.

i	letter	std. number	a_i		
1	F				
2	U				
3	Z				
4	Z				
5	Y				

6. Consider the sequence $a_n = 2n + 1$; starting at n = 1. It has been used to encrypt a message, and the encrypted message is QNJN. Use the same sequence to decrypt and find the original word.

i	letter	std. number	a_i		
_1	Q				
2	N				
	N				
3	J				
4	N				

7. Consider the BBS (Blum Blum Shub) sequence $a_n = (a_{n-1})^2 \mod pq$; with $a_0 = 7$ (that is, k = 7) and with p = 5, q = 5. Starting at n = 1, use this sequence to encrypt the binary number 1010.

i	bit	$ a_i $	
1	1		
_	_		
	0		
3	1		
4	0		