Proofs for Chapter 5 Sequences

Constantin Filip

December 24, 2024

Definition 1 A sequence is a function $f : \mathbb{N} \to \mathbb{R}$, denoted $(a_n)_{n \geq 1}$, where $a_n = f(n)$

Definition 2 An arithmetic sequence is the sequence $f: \mathbb{N}^+ \to \mathbb{R}$ defined by

$$f(n) = \begin{cases} a_1 & n = 1\\ a_1 + (n-1)d & otherwise \end{cases}$$

Theorem 1 The sum of the first n terms of the arithmetic sequence $(a_n)_{n\geq 1} = a_1 + (n-1)d$ is $S_n = \frac{n}{2}(a_1 + a_n)$

We can write

$$S_n = a_1 + (a_1 + d) + (a_1 + 2d) + \dots + (a_1 + (n-2)d) + (a_1 + (n-1)d)$$

$$S_n = (a_n - (n-1)d) + (a_n - (n-2)d) + \dots + (a_n - 2d) + (a_n - d) + a_n$$

Summing both sides of the equation, the terms involving d cancel:

$$2S_n = n(a_1 + a_n)$$

Dividing both sides by 2:

$$S_n = \frac{n}{2}(a_1 + a_n) \qquad \Box$$

Definition 3 A geometric sequence is the sequence $f: \mathbb{N}^+ \to \mathbb{R}$ defined by

$$f(n) = ar^{n-1}$$

Theorem 2 The sum of the first n terms of the geometric sequence $(a_n)_{n\geq 1} = ar^{n-1}$ is $S_n = \frac{a(1-r^n)}{1-r}$

$$S_n = ar^0 + ar^1 + ar^2 + \dots + ar^{n-1}$$

Multiplying both sides by (1-r):

$$(1-r)S_n = (1-r)(ar^0 + ar^1 + ar^2 + \dots + ar^{n-1})$$

$$= (ar^0 + ar^1 + ar^2 + \dots + ar^{n-1}) - (ar^1 + ar^2 + ar^3 + \dots + ar^n)$$

$$= a - ar^n$$

Definition 4 A sequence $(a_n)_{n\geq 1}$ is increasing if $a_{n+1}\geq a_n$ for $n\geq 1$, and decreasing if $a_{n+1}\leq a_n$ for $n\geq 1$. The sequence is called monotonic if either increasing or decreasing.

Definition 5 The ϵ -neighbourhood of a point $a \in \mathbb{R}$ is defined as

$$U_{\epsilon}(a) \triangleq \{x \in \mathbb{R} : |a - x| < \epsilon\} = (a - \epsilon, a + \epsilon)$$

where $\epsilon > 0$

Definition 6 The sequence $(a_n)_{n\geq 1}$ converges to a limit l in \mathbb{R} iff it settles in each ϵ -neighbourhood of a, that is,

$$\forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \forall n > N \ (|a_n - l| < \epsilon)$$

Definition 7 The sequence $(a_n)_{n\geq 1}$ converges to ∞ iff

$$\forall r \in \mathbb{R} \ \exists N \in \mathbb{N} \ \forall n > N(a_n > r)$$

Definition 8 The sequence $(a_n)_{n\geq 1}$ converges to $-\infty$ iff

$$\forall r \in \mathbb{R} \ \exists N \in \mathbb{N} \ \forall n > N(a_n < r)$$

Theorem 3 $(a_n)_{n\geq 1} = \left(\frac{1}{n^c}\right)_{n\geq 1} \to 0$ as $n\to\infty$, where c>0.

We want to show that given any $\epsilon>0,$ we can find N_ϵ such that for all n>N

$$\left|\frac{1}{n^c}\right| < \epsilon$$

Since n is positive, $n^c > \frac{1}{\epsilon} \Leftrightarrow n > 1/\epsilon^{1/c}$. Hence we can set

$$N_{\epsilon} = \left| \frac{1}{\sqrt[c]{\epsilon}} \right|$$

for any value of $\epsilon > 0$. \square

Theorem 4 $(a_n)_{n\geq 1}=\left(\frac{1}{c^n}\right)_{n\geq 1}\to 0$ as $n\to\infty$ for |c|>1

We want to show that given any $\epsilon > 0$, we can find $N_{\epsilon} \in \mathbb{N}^+$ such that for all $n > N_{\epsilon}$

$$\left|\frac{1}{c^n}\right| < \epsilon$$

Then $|c^n|=|c|^n>\frac{1}{\epsilon}\Leftrightarrow n\ln|c|>\ln\epsilon^{-1}\Leftrightarrow n>-\frac{\ln\epsilon}{\ln|c|}$ so we can set

$$N_{\epsilon} = \left| -\frac{\ln \epsilon}{\ln |c|} \right| \qquad \Box$$

Theorem 5 If $a_n \to a$ as $n \to \infty$, $\lim_{n \to \infty} \lambda a_n = \lambda a$

If $\lambda=0$, the problem is trivial. If $\lambda\neq 0$, then it is given that for any $\epsilon>0$, there exists some $N\in\mathbb{N}^+$ such that

$$|a_n - a| < \frac{\epsilon}{|\lambda|}$$

for all n > N.

(For added clarity, we could instead state as normal that $|a_n - a| < \epsilon$ and then say that there exists $k = \epsilon |\lambda|$; as ϵ can take any positive value, so does k)

$$|\lambda a_n - \lambda a| = |\lambda||a_n - a| < \epsilon$$

for all n > N. \square

Lemma 1 For any real a and b, $|a+b| \le |a| + |b|$

$$|a+b|^2 = (a+b)^2 = a^2 + 2ab + b^2$$

$$= |a|^2 + 2ab + |b|^2$$

$$\leq |a|^2 + 2|ab| + |b|^2$$

$$= |a|^2 + 2|a||b| + |b|^2$$

$$= (|a| + |b|)^2$$

Theorem 6 If $a_n \to a$ and $b_n \to b$ as $n \to \infty$, then $\lim_{n \to \infty} a_n + b_n = a + b$

Since $a_n \to a$ as $n \to \infty$, we can find an N_1 such that for any $n > N_1$, $|a_n - a| < \frac{1}{2}\epsilon$ (1).

Similarly, we can find an N_2 such that for any $n > N_2$, $|b_n - b| < \frac{1}{2}\epsilon$ (2).

Let $N = \max\{N_1, N_2\}$. Then if n > N, both (1) and (2) are true. Hence for any n > N

$$|(a_n + b_n) - (a + b)| = |(a_n - a) + (b_n - b)|$$

 $\leq |a_n - a| + |b_n - b|$
 $< \frac{1}{2}\epsilon + \frac{1}{2}\epsilon = \epsilon$

Theorem 7 If $a_n \to a$ and $b_n \to b$ as $n \to \infty$, then $\lim_{n \to \infty} a_n - b_n = a - b$

$$\lim_{n\to\infty} a_n - b_n = \lim_{n\to\infty} a_n + (-b_n) = a + (\lim_{n\to\infty} -1 \cdot b_n) = a_n - b_n \square$$

Definition 9 A subset $A \subset \mathbb{R}$ is bounded if there exists k > 0 such that $|a| \leq k$ for all $a \in A$

Lemma 2 If $(a_n)_{n\geq 1}$ converges to $a\in \mathbb{R}$, then it is bounded.

Let $\epsilon = 1$. Then there exists $N \in \mathbb{N}$ such that $|a_n - a| < 1$ for n > N. Hence $|a_n| = |a_n - a + a| \le |a| + |a_n - a| < |a| + 1$ for all n > N. Hence the bound $k = \max\{|a_i| : 1 \le i \le N\} \cup \{|a| + 1\}$

Theorem 8 If $a_n \to a$ and $b_n \to b$ as $n \to \infty$, then $\lim_{n \to \infty} a_n b_n = ab$

Since b_n converges, by lemma 2, there exists $K \in \mathbb{R}^+$ such that $|b_n| < K$ for all $n \in \mathbb{N}^+$.

Let $\epsilon = \frac{\epsilon}{2K}$. Then there exists $N_1 \in \mathbb{N}^+$ such that

$$|a_n - a| < \frac{\epsilon}{2k}$$

There also exists $N_2 \in \mathbb{N}^+$ such that

$$|b_n - b| < \frac{\epsilon}{2|a|}$$

Then

$$|a_n b_n - ab| = |a_n b_n - ab_n + ab_n - ab|$$

$$\leq |b_n||a_n - a| + |a||b_n - b|$$

$$< K\left(\frac{\epsilon}{2K}\right) + |a|\left(\frac{\epsilon}{2|a|}\right)$$

$$= \epsilon$$

Theorem 9 If $a_n \to a$ and $b_n \to b$ as $n \to \infty$, then $\lim_{n \to \infty} = \frac{a}{b}$ given that $b \neq 0$

We first show that

$$\lim_{n \to \infty} \frac{1}{b_n} = \frac{1}{b}$$

Let $\epsilon = \frac{|b|}{2}$. Then there exists $N_1 \in \mathbb{N}$ such that

$$|b_n - b| < \frac{|b|}{2}$$

for all $n > N_1$.

Therefore

$$|b| = |b - b_n + b_n|$$

$$\leq |b_n - b| + |b_n|$$

$$\Rightarrow |b_n| \ge |b| - |b_n - b|$$

$$> |b| - \frac{|b|}{2}$$

$$= \frac{|b|}{2}$$

for $n > N_1$

For any $\epsilon > 0$, there exists $N_2 \in \mathbb{N}$ such that

$$|b_n - b| < \frac{\epsilon |b|^2}{2}$$

for any $n > N_2$.

Therefore, for any $\epsilon > 0$

$$\left| \frac{b_n - b}{b_n b} \right| = \frac{|b_n - b|}{|b_n||b|}$$

$$< \frac{\epsilon |b|^2 / 2}{\frac{|b|}{2} |b|}$$

$$= \epsilon$$

for all $n > \max\{N_1, N_2\} \square$

Theorem 10 A sequence $(a_n)_{n\geq 1}$ can only have one limit.

Suppose that $(a_n)_{n\geq 1}$ has two limits, L and M such that $L\neq M$. Let $\epsilon=\frac{|L-M|}{2}$. Then there exists N_1 such that for all $\epsilon>0$, $|a_n-L|<\epsilon$ for all $n>N_1$. There also exists N_2 such that for all $\epsilon>0$, $|a_n-M|<\epsilon$ for all $n>N_2$. Let $N=\max\{N_1,N_2\}$. Then both inequalities hold simultaneously. Then

$$|L - M| = |L - a_n + a_n - M|$$

$$\leq |L - a_n| + |a_n - M|$$

$$= |a_n - L| + |a_n - M|$$

$$< |L - M|$$

which is impossible. Hence the assumption that $L \neq M$ is false so L = M

Definition 10 A sequence $(a_n)_{n\geq 1}$ is a Cauchy sequence iff

$$\forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \forall n, m > N(|a_n - a_m| < \epsilon)$$

Theorem 11 Every sequence that converges to a real number is a Cauchy sequence

For every $\epsilon > 0$, there exists $N \in \mathbb{N}^+$ such that for any n, m > N

$$|a_n - l| < \frac{\epsilon}{2} |a_m - l| < \frac{\epsilon}{2}$$
 Then $-\frac{\epsilon}{2} < a_n - l < \frac{\epsilon}{2}$ and $-\frac{\epsilon}{2} < a_m - l < \frac{\epsilon}{2}$, so
$$|a_n - a_m| = |a_n - l + l - a_m|$$

$$\leq |a_n - l| + |a_m - l|$$

$$< \epsilon$$

Definition 11 A subset $A \subset \mathbb{R}$ is said to be **complete** if any Cauchy sequence in A converges to a limit in A

Theorem 12 Sandwich theorem Let $(l_n)_{n\geq 1}$ and $(u_n)_{n\geq 1}$ be sequences, and l a real number where both $\lim_{n\to\infty} l_n = l$ and $\lim_{n\to\infty} u_n = l$. If for a third sequence $(a_n)_{n\geq 1}$, there is some $N\in\mathbb{N}$ such that $l_n\leq a_n\leq u_n$ for all $n\geq N$, then $\lim_{n\to\infty} a_n = l$.

For any $\epsilon > 0$, there exists N_1 such that $|l_n - l| < \epsilon$ for all $n > N_1$. There also exists N_2 such that $|u_n - l| < \epsilon$ for all $n > N_2$.

It is given there exists $N_3 \in \mathbb{N}$ such that $l_n \leq a_n \leq u_n$ for all $n > N_3$. Let $N = \max\{N_1, N_2, N_3\}$; then all three inequalities hold simultaneously.

Hence $-\epsilon < l_n - l < \epsilon$ and $-\epsilon < u_n - l < \epsilon$ for all n > N. But since also $l_n \le a_n \le u_n$ for n > N, we have

$$l - \epsilon < l_n \le a_n \le u_n < l + \epsilon$$

 $-\epsilon < a_n - l < \epsilon$ so $|a_n - l| < \epsilon$ as required. \square

Theorem 13 Ratio test Let $c \in \mathbb{R}$ be such that $0 \le c < 1$. Suppose that there is some N in \mathbb{N} such that for all $n \ge N$ we have $\left|\frac{a_{n+1}}{a_n}\right| \le c$. Then $\lim_{n\to\infty} a_n = 0$.

Multiplying both sides of the inequality by $|a_n|$, we get $|a_{n+1}| \le c|a_n|$ for $n \ge N$. Similarly, $|a_n| \le c|a_{n-1}|$ and so forth until n = N:

$$|a_n| \le c|a_{n-1}| \le c^2|a_{n-2}| \le \dots \le c^{n-N}|a_N|$$

for all $n \geq N$. This means that

$$|a_n| \le c^{n-N} |a_N| \le kc^n$$

where $k = \frac{|a_N|}{c^N}$ is constant. Therefore, for all $n \ge N$

$$-kc^n < a_n < kc^n$$

Since 0 < c < 1, $-kc^n \to 0$ and $kc^n \to 0$ as $n \to \infty$. Hence by the sandwich theorem, a_n also tends to 0. \square .

Theorem 14 Limit ratio test If the limit $r = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$ exists and r < 1, then the sequence $(a_n)_{n \ge 1}$ converges to 0.

Let $(b_n)_{n\geq 1}=|\frac{a_{n+1}}{a_n}|$. Then for all $\epsilon>0$, there exists $N\in\mathbb{N}$ such that for all n>N we have $|b_n-r|<\epsilon$. Therefore

$$r - \epsilon < b_n < r + \epsilon$$

Assume r < 1. Since r < 1, we know that ϵ defined as $\frac{1-r}{2}$ is positive. Therefore, there exists some $N(\epsilon)$ such that for all n > N, the inequalities above are true, and they now read as:

$$r - \frac{1 - r}{2} < b_n < r + \frac{1 - r}{2}$$

which we can simplify to

$$\frac{3r-2}{2} < b_n < \frac{r+1}{2}.$$

Taking the right-hand side, we see that $b_n < \frac{r+1}{2} < 1$. Therefore, since $b_n < 1$ for $n > N(\epsilon)$, we can apply the ratio test to conclude that $(a_n)_{n \ge 1}$ converges to 0. \square

Definition 12 If $f : \mathbb{N} \to \mathbb{R}$ is a sequence and $M \subset \mathbb{N}$ an infinite subset, then $f : M \to \mathbb{R}$ is called a subsequence of f, usually written $(a_{n_i})_{i \geq 1}$ where n_i are positive integers.

Theorem 15 Any subsequence of a convergent sequence converges to the limit of the sequence.

Let $l = \lim_{n \to \infty}$ and let (a_{n_i}) be any subsequence. Let $\epsilon > 0$. Then there exists N > 0 such that for n > N we have $|a_n - l| < \epsilon$. By definition, $n_i \ge i$, so for i > N, $|a_{n_i} < \epsilon|$. \square

Theorem 16 Any sequence of real numbers has a monotonic subsequence

Consider a sequence $(a_n)_{n\geq 1}$. For any $m\geq 1$, we call a_m a peak of $(a_n)_{n\geq 1}$ if $a_m\geq a_n$ for all $n\geq m$.

Suppose in the first case that $(a_n)_{n\geq 1}$ has infinitely many peaks denoted a_{n_1}, a_{n_2}, \ldots Then the subsequence $(a_{n_i})_{i\geq 1}$ is monotonically decreasing.

If there are only a finite number of peaks $a_{n_1}, a_{n_2}, \ldots, a_{n_k}$, then choose $t_1 = n_k + 1$. Since t_1 is not a peak, there exists $t_2 > t_1$ such that $a_{t_1} < a_{t_2}$. We can then construct t_i for all $i \ge 1$ such that $(a_{t_i})_{i \ge 1}$ is monotonically increasing sequence. If there are no peaks, then the sequence is strictly increasing (and likewise any subsequence).

Theorem 17 reverse triangle inequality $|x-y| \ge ||x|-|y||$

From the triangle inequality

$$|y| = |x + y - x| \le |x| + |y - x| \ |x| = |y + x - y| \le |y| + |x - y|$$

Therefore $|y - x| \ge |y| - |x|$ and $|x - y| \ge |x| - |y|$. Since |y - x| = |x - y|, we have $|x - y| \ge -(|x| - |y|)$ and $|x - y| \ge |x| - |y|$. Therefore

$$|x - y| \ge ||x| - |y||$$

as required.

Theorem 18 The least upper bound of a set X is unique

Let $L, L' \in \mathbb{R}$ be such that both are least upper bounds of X.Since L is an upper bound of X and L' is a least upper bound, $L' \leq L$. Since L' is an upper bound of X and L is a least upper bound of X, $L \leq L'$. Therefore, L = L'.

Definition 13 Axiom of Dedekind-completeness for real numbers Even Y ery nonempty subset X of the real numbers \mathbb{R} that is bounded above has a least upper bound.

Theorem 19 Fundamental theorem of analysis Let $(a_n)_{n\geq 1}$ be a sequence of real numbers that is increasing and bounded above. Then $s = \sup\{a_n\}$ and is the limit of $(a_n)_{n\geq 1}$.

By the axiom of Dedekind-completeness, we know that the supremum \boldsymbol{s} stated exists.

Let $\epsilon > 0$ be given. We assume that there does not exist $N \in \mathbb{N}$ such that $|a_N - s| < \epsilon$. Then $|a_n - s| \ge \epsilon$ for all $n \ge 1$. This implies $s - a_n \ge \epsilon$, so $s - \epsilon \ge a_n$ for all $n \ge 1$. But then $s - \epsilon$ is an upper bound of a_n . Since s is the supremum, we have $s \le s - \epsilon$, which is a contradiction since ϵ is positive. Then there exists $N \in \mathbb{N}$ such that $|a_N - s| < \epsilon$.

Since the sequence is monotonically increasing, n > N implies that $a_n \ge a_N$. Therefore $-\epsilon < 0 \le s - a_n \le s - a_N < \epsilon$, so $|s - a_n| < \epsilon$ for all n > N as required. \square

Theorem 20 The set of real numbers is complete.

Let $(a_n)_{n\geq 1}$ be a Cauchy sequence. Putting $\epsilon=1$, there exists $N\in\mathbb{N}$ such that for n,m>N, $|a_n-a_m|<1$. Let $K=1+\max\{|a_1|,|a_2|,\ldots,|a_N|,|a_{N+1}|\}$. Then for m>N we have $|a_m|\leq |a_{N+1}|+|a_m-a_{N+1}|<|a_{N+1}|+1$. Therefore $|a_n|< K$ for all $n\geq 1$, so the sequence is bounded.

Since any sequence has a monotonic subsequence, let $(a_{n_i})_{i\geq 1}$ be a monotonic subsequence of $(a_n)_{n\geq 1}$. Then by the fundamental theorem of analysis, the subsequence is convergent with limit l.

Let $\epsilon > 0$ be given. Since $(a_n)_{n \geq 1}$ is Cauchy, there exists $N_1 \in \mathbb{N}$ such that for $n, m > N_1$, we have $|a_n - a_m| < \epsilon/2$. Since $\lim_{i \to \infty} a_{n_i} = l$, there exists $N_2 > 0$ such that for $i > N_2$, we have $|a_{n_i} - l| < \epsilon/2$.

Let $N = \max\{N_1, N_2\}$. Then

$$|a_n - l| \le |a_n - a_{n_i}| + |a_{n_i} - l| < \epsilon/2 + \epsilon/2 = \epsilon$$

for any n, i > N. Hence $(a_n)_{n \ge 1}$ is convergent to a real number. \square