EMBEDDED VISION DESIGN 3

BASIC PRINCIPLES HANDS-ON

JEROEN VEEN

CONTENTS

- Introduction
- Workshop organization
- Assignment introduction
- ML portfolio template
- How to start? Conditioned acquisition and segmentation
- Set-up Raspberry Pi with OpenCV and sci-kit learn

WHAT IS MACHINE LEARNING?

- Human vs machine learning?
- Machines can perform predictive analytics on large amounts of data far faster than humans
- Machines maximize performance on a certain task
 Typically function approximations
- Learning does not imply intelligence
 if a machine can learn it is not necessarily aware

DEFINING AI, DL & ML

- Strong AI vs Applied AI
- Cognitive replication
- Rational process

Machine learning

- Performs predictive analysis
- Just fancy math & pattern matching

WHY MACHINE LEARNING?

Traditional approach

ML approach

Source: Géron, ISBN: 9781492032632

- Tackle problems for which existing solutions require a lot of fine-tuning or long lists of rules
- Deal with fluctuating environments by adapting to new data.
- Getting insights about complex problems and large amounts of data.

EXAMPLES OF MACHINE LEARNING

Classification

EXAMPLES OF MACHINE LEARNING

Object detection

UNIVERSITY
OF APPLIED SCIENCES

EXAMPLES OF MACHINE LEARNING

segmentation

HAN_UNIVERSITY
OF APPLIED SCIENCES

SHORT-CUT TO CLASSIFICATION

Classical image processing

EVD3 ASSIGNMENTS

- A project team will consist of 3 students.
- Portfolio building using template
- Deliver intermediate results via HandIN
- Template and schedule on Gitlab

HAND GESTURE CLASSIFICATION

- E.g. sign language, rock-paper-scissors
- Min. 3 classes + unknown
- Pick silhouette gestures
- Alternatively, find a simple case within your main project, e.g. objects in autonomous robot
- Term1: solve with ML
- Term2: solve with DL

EXAMPLES

ML PORTFOLIO TEMPLATE

1	INTRODUCTION	3
2	PROBLEM STATEMENT	4
3	DATA ACQUISITION AND EXPLORATION	5
4	MODEL SELECTION AND TRAINING	6
5	DEPLOY AND TEST	7
6	CONCLUSION	8
7	REFERENCES	9
CODE	E APPENDICES	10

TRAINING AND DEPLOYMENT

- Data exploration, model selection and training on embedded device or PC or even in the cloud (e.g. Google Colaboratory, Microsoft Azure)
- Data acquisition, model deployment and prediction testing on an embedded device, such as Raspberry Pi (sort of...)

CONDITIONED ACQUISITION

- Set-up image acquisition such that segmentation is easy
- Build a script to quickly collect >100 example images per class
- Study quality (and diversity) of your dataset
- Next week we'll discuss an example script

IMAGE ANNOTATION TOOLS

- VGG Image Annotator, LabelImg, OpenLabeler, or ImgLab, or perhaps a commercial tool like
- LabelBox or Supervisely.
- You may also want to consider crowdsourcing platforms such as Amazon Mechanical Turk if you have a very large number of images to annotate.

SIMPLE PREPROCESSING

- Build a script that transforms your images to feature vectors
- Use library functions, e.g. OpenCV

Scripting?

thresholding

feature extraction

PYTHON

- General-purpose language
- Interpreted (no compilation)
- Garbage collected (no memory management)
- Cross-platform: Linux, Mac OS X, Windows
- Weakly typed (duck typing)
- Object-oriented if you want it to
- Python's advantage is its extreme flexibility
- viable end solution for scientific computing, data analysis, plotting
- thanks to lots of efforts from the Open Source community, leading to the availability of mature 3rd-party tools e.g. numpy, scipy, matplotlib, ipython

ZEN OF PYTHON

pl

"Readability counts."

code is read much more often than it is written Check out PEP 8 -- Style Guide for Python Code https://www.python.org/dev/peps/pep-0008/

"Explicit is better than implicit."

"Beautiful is better than ugly."

"Simple is better than complex."

. . .

- python™
- https://www.youtube.com/watch?v=rfscVS0vtbw
- https://www.youtube.com/watch?v=sfhhk8m4mcQ
- https://docs.python.org/3/tutorial/
- https://www.learnpython.org/
- https://www.w3schools.com/python/
- https://www.tutorialspoint.com/python/index.htm/
- https://www.afterhoursprogramming.com/tutorial/python/pythonoverview/
- So many tutorials....

We will talk more about this next week, but pls start learning online

WINDOWS INSTALL

- Install the latest version of python3 via https://www.python.org/downloads/
- Pip should come with python3, if not install it https://pip.pypa.io/en/stable/installing/
- Install the necessary package from the command prompt

pip install numpy scipy scikit-learn imutils opency-python

See e.g. https://pypi.org/project/opencv-python/

HEADLESS RASPBERRY PI INSTALL

- Raspberry Pi Imager https://www.raspberrypi.org/downloads/
- To enable SSH, create a file named ssh in boot partition
- Via ethernet (e.g. direct) SSH to hostname: raspberrypi.local login:pi, password=raspberry
- Open raspi-config

sudo raspi-config

and set

- Interfacing options: enable VNC and camera
- Advanced options: expand filesystem, memorysplit: 256MB to GPU
- Reboot

sudo reboot

CONNECT TO "EDUROAM" WI-FI NETWORK

Open terminal and change /etc/wpa_supplicant/wpa_supplicant.conf

```
network={
    ssid="eduroam"
    scan_ssid=1
    proto=RSN
    key_mgmt=WPA-EAP
    group=CCMP TKIP
    eap=TTLS PEAP
    identity="your_username@han.nl"
    password="your_password"
    phase2="auth=MSCHAPV2"
}
```

Restart service

```
sudo wpa_supplicant -i wlan0 -c /etc/wpa_supplicant/wpa_supplicant.conf
```

Check your connection

iwconfig

https://www.instructables.com/id/Access-Eduroam-on-a-Raspberry-Pi-in-Cambridge/

INSTALL OPENCY ON RASPBERRY PI

- https://www.pyimagesearch.com/2019/09/16/install-opencv-4-on-raspberry-pi-4-and-raspbian-buster/
- Choose simple pip-install method (take Step#2 and Step #4a)
 N.B. pip is the package installer for Python.
 You can use pip to install packages from the Python Package Index and other indexes.
- Test and check build information

```
python3
>> import cv2
>>> cv2.__version__
>>> print(cv2.getBuildInformation())
....
CPU/HW features: VFPV3 NEON
Parallel framework: pthreads
```


ALTERNATIVELY, INSTALL OPENCY 4

- Sept. '21 unfortunately no wheels or pip installer available
- So, you could build from source, see e.g.

https://qengineering.eu/install-opencv-4.4-on-raspberry-pi-4.html

https://learnopencv.com/build-and-install-opencv-4-for-raspberry-pi/

RASPBERRY PI CAMERA

 Pure Python interface to the Raspberry Pi camera https://picamera.readthedocs.io/en/release-1.13/

```
sudo pip3 install "picamera[array]"
```

Newly released: Libcamera
 https://www.raspberrypi.org/documentation/linux/software/libcamera/README.md

INSTALL MORE PACKAGES

Mathematics and image processing

```
sudo pip3 install numpy --upgrade
sudo pip3 install matplotlib
sudo pip3 install scipy==1.3.3
sudo pip3 install scikit-image
sudo pip3 install imutils
```

 Find latest successful builds for Raspbian here: https://www.piwheels.org/project/scipy/

SCIKIT-LEARN

- Finally, the ML package sudo pip3 install scikit-learn
- Free software machine learning library for Python
- Features various classification, regression and clustering algorithms
- Designed to interoperate with the Python numerical and scientific libraries NumPy and SciPy.

PICK YOUR FAVORITE IDE

- Anaconda
- Ipython
- Pycharm
- Spyder
- Thonny
- Atom
- Visual studio code
- Jupyter Notebook
- Colab

• • • •

BUILT-IN DATA TYPES

Text Type: str

Numeric Types: int, float, complex

Sequence Types: list, tuple, range

Mapping Type: dict

Set Types: set, frozenset

Boolean Type: bool

Binary Types: bytes, bytearray, memoryview

Note that almost everything in Python is an object

LISTS

```
my_list = [2, {'dog': ['Rex', 3]}, 'John', 3.14]
```

Collection which is ordered and changeable (mutable)
 Slicing

```
x[start:stop:step] indices can be negative
```

- Functions
 - len() gives the length of a list
 sorted() returns a sorted version of a list
 sum() does what you might expect
- Methods
 - .append() modifies a list by adding an item to the end
 - .pop() removes and returns the last element of a list
 - .index() searches index of element

FLOW CONTROL

```
fruits = ["apple", "banana", "cherry"]
for x in fruits:
   print(x)
```

- Indentation to mark blocks of code
- for iterates on elements from "iterables", default iterables: arrays, lists, tuples, dictionaries, strings
 The for loop specifies: the variable name to use, the set of values to loop over. You use the word "in" to link them together.
- Useful functions range() returns a sequence of numbers enumerate() returns item and index zip() returns combinations
- while loop iterates until some condition is met
- Note: no switch statement break exits a loop continue loops around pass does nothing

FUNCTIONS

```
def my_function():
    print("Hello from a function")
```

- Functions are defined by def
- Keyword arguments
- Default arguments
- Function recursion is accepted
- Functions Applied to Functions

https://www.w3schools.com/python/python_functions.asp

MODULES

from math import log, pi

- Collection of variables (a namespace, if you like) defined by someone else.
- You can import modules or packages
- E.g. importing math from the standard library
- Other libraries can be easily added
- We can see all the names in math using the built-in function dir().
- Access functions and variables using dot syntax.
- Import module under a shorter alias to save some typing
- import * makes all the module's variables directly accessible (without any dotted prefix)
 - but "star imports" can occasionally lead to weird, difficult-to-debug situations. convenient but name collisions possible avoid if possible
- good compromise is to import only the specific things we'll need from each module

NUMPY

- Fundamental package for computing in Python
- Multidimensional array object
 and various derived objects (such as masked arrays and matrices)
- Assortment of routines for fast operations on arrays, including mathematical, logical, shape manipulation, sorting, selecting, I/O, discrete Fourier transforms, basic linear algebra, basic statistical operations, random simulation and much more
- Execute operations at near-C speed but with simple code
- Fully supports an object-oriented approach

Check out e.g.

- https://www.pythoncourse.eu/numpy_numerical_operations_on_numpy_arrays.php
- https://towardsdatascience.com/20-numpy-operations-that-everydata-scientist-should-know-fb44bb52bde5

NDARRAY TYPE

- numpy's ndarray type is specialized for working with multidimensional data, e.g.
- Defines its own logic for indexing, allowing us to index by a tuple to specify the index at each dimension, e.g.
- Boolean indexing returns a new array (not a view), e.g.

$$y = x[x<2]$$

Overloaded operators, e.g.

Lots of very useful method, e.g.

c Indexing (copy)

d Vectorization

g Example

```
In [2]: x = np.arange(12)
In [3]: x = x.reshape(4, 3)
```

In [1]: import numpy as np

In [4]: x Out [4]:

In [5]: np.mean(x, axis=0)

In [6]: x = x - np.mean(x, axis=0)

Out [5]: array([4.5, 5.5, 6.5])

In [7]: x Out [7]:

[1.5, 1.5, 1.5], [4.5, 4.5, 4.5]

b Indexing (view)

e Broadcasting

f Reduction

From: Array programming with NumPy