Compressed sensing of low-rank plus sparse matrices

SIMON VARY

simonvary.github.io/slides/LA21.pdf

Mathematical Institute, University of Oxford, United Kingdom ICTEAM, UCLouvain – Université catholique de Louvain, Belgium

joint work with Jared Tanner & Andrew Thompson

SIAM Conference on Applied Linear Algebra, New Orleans, 18/5/2021

Overview

Plan for the talk:

- 1. Models using rank or sparsity
- 2. Non-closedness of the feasible set
- 3. Theory: (i) Closing the set, (ii) Restricted isometry, (iii) Correlation between the components
- 4. Algorithms and convergence theorems
- 5. Numerical phase transition

Publications covered:

Matrix rigidity and the ill-posedness of Robust PCA and matrix completion,

SIAM Journal on Mathematics of Data Science, 1(3), 537-554, 2019.

Jared Tanner, Andrew Thompson, Simon Vary

Compressed sensing of low-rank plus sparse matrices,

```
preprint, arxiv.org/abs/2007.09457, 2020.
```

Jared Tanner, Simon Vary

On low-rank plus sparse matrix sensing,

PhD thesis, http://simonvary.github.io/thesis.pdf, 2021.

Simon Vary

Low-rank models

Principal Component Analysis (PCA)

We have a data matrix $M = [y_1, \dots, y_n]$ with mean-centered samples y_i

$$\min_{X\in\mathbb{R}^{m imes n}}\|X-M\|_{F},\quad ext{s.t. rank}\,(X)\leq r.$$

Low-rank matrix sensing (Recht et al., 2010)

We are given subsampled information about M in the form of $b = \mathcal{A}(M) \in \mathbb{R}^p$. Solving

$$\min_{X\in\mathbb{R}^{m imes n}}\|\,\mathcal{A}(X)-b\|_F,\quad ext{s.t.}\quad ext{rank}\,(X)\leq r$$

recovers M for many r and various linear maps $\mathcal{A}: \mathbb{R}^{m \times n} \to \mathbb{R}^{p}$.

What if the low-rank structure is corrupted?

We instead observe a low-rank structure corrupted by some sparse noise

$$M = \underbrace{\hat{L}}_{\text{low-rank}} + \underbrace{\hat{S}}_{\text{sparse}}.$$

Define the following set

$$\mathsf{LS}_{m,n}(r,s) = \left\{ L + S \in \mathbb{R}^{m \times n} : \mathsf{rank}\left(L\right) \le r, \, \|S\|_0 \le s \right\}.$$

For a given matrix M, find X

$$\min_{X \in \mathbb{R}^{m \times n}} \|X - M\|_F$$
, s.t. $X \in \mathsf{LS}_{m,n}(r,s)$.

Low-rank plus sparse matrix sensing

We are given subsampled information about M in the form of $b = \mathcal{A}(M) \in \mathbb{R}^p$. Solve

$$\min_{X \in \mathbb{R}^{m \times n}} \| \mathcal{A}(X) - b \|_F, \quad \text{s.t.} \quad X \in \mathsf{LS}_{m,n}(r,s).$$

to recover $M \in \mathsf{LS}_{m,n}(r,s)$ for a wide range of ranks r, support sizes s of the corruption, and linear maps $\mathcal{A}: \mathbb{R}^{m \times n} \to \mathbb{R}^p$.

Low-rank plus sparse matrix approximation (Robust PCA)

Incoherence between the low-rank and the sparse component (Candès et al., 2011)

It is necessary to control the correlation of singular vectors of the rank-r matrix $L = U\Sigma V^T \in \mathbb{R}^{m \times n}$ and the canonical basis with the coherence parameter $\mu \in [1, \sqrt{mn}]$

$$\max_{i \in \{1, \dots, r\}} \left\| U^T e_i \right\|_2 \leq \sqrt{\frac{\mu r}{m}}, \qquad \max_{i \in \{1, \dots, r\}} \left\| V^T e_i \right\|_2 \leq \sqrt{\frac{\mu r}{n}}.$$

For each triplet of (r, s, μ) , define the following *correlation coefficient* $\gamma_{r,s,\mu} = \mu \frac{r\sqrt{s}}{\sqrt{mn}}$.

Convex problem

$$\min_{L,S\in\mathbb{R}^{n\times n}} \lVert L \rVert_* + \lambda \lVert S \rVert_1,$$
 s.t. $M = L + S$

- Solves also the non-convex problem
- $\|\cdot\|_*$ requires the <u>full</u> SVD $\Rightarrow \mathcal{O}(n^3)$
- IALM (Lin et al., 2009)

- PCP (Candès et al., 2011)

$\min \|X - M\|_{\epsilon}$

Non-convex problem

$$\min_{X \in \mathbb{R}^{m \times n}} ||X - M||_F,$$

s.t. $X = L + S \in \mathsf{LS}_{m,n}(r,s)$

- $L = YZ^T$ for $Y, Z \in \mathbb{R}^{n \times r}$ - Alternating projections for L, S
- Per iteration complexity:
 - Per iteration complexity: AltProj, $\mathcal{O}(r^2n^2)$ (Netrapalli *et al.*, 2014)
 - FastGD, $\mathcal{O}(rn^2)$ (Yi et al., 2016)

Simple example of non-closedness

Consider the best $LS_{3,3}(1,1)$ approximation to M

$$\min_{X \in \mathbb{R}^{3 \times 3}} \|X - M\|_F, \qquad \text{s.t.} \quad X \in \mathsf{LS}_{3,3}(1,1),$$
 with $M = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \leftarrow \underbrace{\begin{bmatrix} 0 & 1 & 1 \\ 1 & \varepsilon & \varepsilon \\ 1 & \varepsilon & \varepsilon \end{bmatrix}}_{X_\varepsilon \in \mathsf{LS}_{3,3}(1,1)} = \underbrace{\begin{bmatrix} 1/\varepsilon & 1 & 1 \\ 1 & \varepsilon & \varepsilon \\ 1 & \varepsilon & \varepsilon \end{bmatrix}}_{L_\varepsilon} + \underbrace{\begin{bmatrix} -1/\varepsilon & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}}_{S_\varepsilon}.$

- As $\varepsilon \to 0$, the error $||X_{\varepsilon} M||_F = 2\varepsilon \to 0$.
- However, X_{ε} converges to M which is outside of the feasible set LS_{3,3}(1,1).
- As $\varepsilon o 0$ $\|L_{\varepsilon}\|_F$ and $\|S_{\varepsilon}\|_F$ become unbounded.

Generalization of the previous example

Theorem $(\mathsf{LS}_n(r,s))$ is not closed for a range of $r,s\in\mathbb{N})^1$

The set of low-rank plus sparse matrices $LS_n(r,s)$ is not closed for $r \ge 1$, $s \ge 1$ provided $(r+1)(s+2) \le n$, or provided $(r+2)^{3/2}s^{1/2} \le n$ where s is of the form $s=p^2r$ for an integer $p \ge 1$.

As a consequence, there are matrices $M \in \mathbb{R}^{n \times n}$ for which Robust PCA and low-rank matrix completion are ill-posed in the sense that they have no global minimum.

¹Tanner, Thompson & Vary, (2019), Matrix rigidity and the ill-posedness of Robust PCA and matrix completion

Divergence of non-convex Robust PCA

Solve $\min_X \|X - M\|_F$, s.t. $X \in LS_3(1,1)$ for the following matrices

$$M^{(1)} = egin{bmatrix} 2 & -1 & -1 \ -1 & 0 & 0 \ -1 & 0 & 0 \end{bmatrix}, \quad M^{(2)} = egin{bmatrix} 1 & -2 & -2 \ -2 & 0 & 0 \ -2 & 0 & 0 \end{bmatrix},$$

Part 1: Closing the $LS_{m,n}(r,s)$ set

Restrict the norm of one of the components

The following set

$$\mathsf{LS}_{m,n}^{\tau}(r,s) = \left\{ X = L + S \in \mathbb{R}^{m \times n} : \mathsf{rank}(L) \le r, \ \|S\|_0 \le s, \ \|L\|_F \le \tau \ \|X\|_F \right\}$$

is the Minkowski sum of a closed and a compact set and therefore it is a closed set.

Restrict the incoherence of the low-rank component

$$\mathsf{LS}_{m,n}(r,s,\mu) = \left\{ \begin{aligned} & \mathsf{rank}(L) \leq r, \ \|S\|_0 \leq s \\ L + S \in \mathbb{R}^{m \times n} : & \mathsf{max}_{i \in \{1,\dots,m\}} \ \|U^T e_i\|_2 \leq \sqrt{\frac{\mu r}{m}} \\ & \mathsf{max}_{i \in \{1,\dots,n\}} \ \|V^T f_i\|_2 \leq \sqrt{\frac{\mu r}{n}} \end{aligned} \right\}.$$

Subset relations between the sets (Lemma 2.10; Vary 2021)

When $\gamma_{r,s,\mu} := \mu \frac{r\sqrt{s}}{\sqrt{mn}} < 1$ (i.e. $\mu < \sqrt{mn}/(r\sqrt{s})$), we have that

$$\mathsf{LS}_{m,n}(r,s,\mu) \subset \mathsf{LS}^{ au}_{m,n}(r,s),$$

for $\tau = \left(1 - \gamma_{r,s,\mu}^2\right)^{-1/2}$. As a consequence, $\mathsf{LS}_{m,n}(r,s,\mu)$ is a closed set when $\mu < \sqrt{mn}/(r\sqrt{s})$.

Part 2: Restricted isometry constants (RICs) for the additive structure (Tanner & Vary, 2020)

Definition: Restricted isometry constants for $LS_{m,n}(r,s,\mu)$

For every pair of integers (r,s) and every $1 \le \mu \le \sqrt{mn}/r$, define the (r,s,μ) -restricted isometry constant to be the smallest $\Delta_{r,s,\mu} > 0$ such that

$$(1 - \Delta_{r,s,\mu}) \|X\|_F^2 \le \|\mathcal{A}(X)\|_2^2 \le (1 + \Delta_{r,s,\mu}) \|X\|_F^2,$$

for all matrices $X \in \mathsf{LS}_{m,n}(r,s,\mu)$.

Theorem: Restricted isometry constants for random Gaussian subsampling and $LS_{m,n}(r,s,\mu)$

For a given $m,n,p\in\mathbb{N}$, $\Delta\in(0,1)$, $\mu\in\left[1,\frac{\sqrt{mn}}{r\sqrt{s}}\right)$, and a random Gaussian subsampling transform $\mathcal{A}:\mathbb{R}^{m\times n}\to\mathbb{R}^p$ there exist constants $c_0,c_1>0$ such that the RIC for $\mathsf{LS}_{m,n}(r,s,\mu)$ is upper bounded with $\Delta_{r,s,\mu}\leq\Delta$ provided

$$p > c_0 \left(r(m+n-r) + s \right) \log \left(\left(1 - \gamma^2 \right)^{-1/2} \frac{mn}{s} \right), \tag{1}$$

with probability at least $1-\exp\left(-c_1p\right)$, where c_0,c_1 are constants that depend only on Δ .

Part 3: Controlling correlation between the two components

Rank-sparsity correlation bound (Lemma 2.1; Vary, 2021)

If L is a rank-r matrix that is μ -incoherent and S is an s-sparse matrix

$$|\langle L, S \rangle| \leq \gamma_{r,s,\mu} \|L\|_F \|S\|_F$$

where $\gamma_{r,s,\mu}:=\mu \frac{r\sqrt{s}}{\sqrt{mn}}$. The bound is only meaningful, when $\gamma_{r,s,\mu}<1$, i.e. $\mu<\frac{\sqrt{mn}}{r\sqrt{s}}$.

Upper bound on the correlation in the subsampled space (Lemma 4.3; Vary, 2021)

For an operator $\mathcal{A}(\cdot)$ which has RICs bounded by $\Delta_{2r,2s,\mu}<\Delta_2$ and two incoherent low-rank plus sparse matrices $X_1=L_1+S_1\in\mathsf{LS}_{m,n}(r,s,\mu)$, $X_2=L_2+S_2\in\mathsf{LS}_{m,n}(r,s,\mu)$ that have orthogonal components $\langle L_1,L_2\rangle=0$, $\langle S_1,S_2\rangle=0$ and have bounded $\mu<\frac{\sqrt{mn}}{2r\sqrt{2s}}$, we have that

$$\left| \langle \mathcal{A}(X_1), \mathcal{A}(X_2) \rangle \right| \leq \left(\Delta_2 + \frac{2\gamma_2}{1 - \gamma_2^2} \right) \|X_1\|_F \|X_2\|_F, \tag{2}$$

where
$$\gamma_2 = \mu \frac{2r\sqrt{2s}}{\sqrt{mn}}$$
.

Compressed sensing of low-rank plus sparse matrices

Convex recovery

Let $X_0 = L_0 + S_0 \in \mathsf{LS}(r,s,\tau)$ and $b = \mathcal{A}(X_0)$ where $\mathcal{A}: \mathbb{R}^{m \times n} \to \mathbb{R}^p$ is a linear subsampling operator satisfying the RIP for low-rank plus sparse matrices.

$$(L^*, S^*) = \underset{L, S \in \mathbb{R}^{m \times n}}{\arg \min} \|L\|_* + \lambda \|S\|_1,$$
s.t.
$$A(L+S) = b.$$

Nonconvex recovery

Algorithm 1 NAHT (Tanner & Vary, 2020)

- 1: while not converged do
 - 2: Compute the residual $R_L^j = \mathcal{A}^* \left(\mathcal{A}(X^j) b
 ight)$
- 3: Set $V^j = L^j \alpha_j^L R_L^j$
- 4: Set $L^{j+1} = \operatorname{HT}(V^j; r)$
- 5: Set $X^{j+\frac{1}{2}} = L^{j+1} + S^{j}$
- 6: Compute the residual $R_S^j = \mathcal{A}^* \left(\mathcal{A}(X^{j+\frac{1}{2}}) b \right)$
- 7: Set $W^j = S^j \alpha_i^S R_S^j$
- 8: Set $S^{j+1} = HT(W^{j}; s)$
- 9: Set $X^{j+1} = L^{j+1} + S^{j+1}$
- 10: j = j + 1
- 11: end while

Global convergence theorems

Guaranteed convex recovery (Theorem 4.2; Tanner & Vary, 2021)

Let $b=\mathcal{A}(X_0)$ and suppose that $r,s\in\mathbb{N}$ and $\mu<\sqrt{mn}/\left(4r\sqrt{3s}\right)$ are such that the restricted isometry constant $\Delta_{4r,3s,\mu}\leq\frac{1}{5}-12\mu\frac{r\sqrt{s}}{\sqrt{mn}}$. Let $X_*=L_*+S_*$ be the solution of the convex relaxation with $\lambda=\sqrt{r/s}$, then $X_*=X_0$.

Global convergence of NAHT (Theorem 4.4; Tanner & Vary, 2021)

Suppose that $r,s\in\mathbb{N}$ and $\mu<\sqrt{mn}/\left(3r\sqrt{3s}\right)$ are such that the restricted isometry constant

 $\Delta_3 := \Delta_{3r,3s,\mu} < \frac{1}{9} - 3\mu \frac{r\sqrt{s}}{\sqrt{mn}}$. Then NAHT applied to $b = \mathcal{A}(X_0)$ as described in NAHT Algorithm will linearly converge to $X_0 = L_0 + S_0$ as

$$\left\| L^{j+1} - L_0 \right\|_F + \left\| S^{j+1} - S_0 \right\|_F \le \frac{6\Delta_3 + \frac{9}{2}\gamma_2}{1 - 3\Delta_3 - \frac{9}{2}\gamma_2} \left(\left\| L^j - L_0 \right\|_F + \left\| S^j - S_0 \right\|_F \right), \tag{3}$$

where $\gamma_2 := \frac{2r\sqrt{2s}}{\sqrt{mn}}$.

Numerical phase transition: Convex relaxation and NAHT

Phase transition δ^* above which recovery is possible, where

subsampling:
$$\delta = \frac{p}{mn}$$
, rank: $\rho_r = \frac{r(m+n-r)}{p}$, sparsity: $\rho_s = s/p$

(a) Convex recovery for 30 \times 30 matrix, $\mu \approx$ 3.

(b) NAHT recovery for 30 imes 30 matrix, $\mu \approx$ 3.

Thank you for your attention.

References

CANDÈS, EMMANUEL J., LI, XIAODONG, MA, YI, & WRIGHT, JOHN. 2011.

Robust principal component analysis?

Journal of the acm, **58**(3), 1–37.

LIN, ZHOUCHEN, CHEN, M., WU, L., & MA, Y. 2009.

The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices.

Technical report.

Liu, Guangcan, Lin, Zhouchen, Yan, Shuicheng, Sun, Ju, Yu, Yong, & Ma, Yi. 2013.

Robust recovery of subspace structures by low-rank representation.

leee transactions on pattern analysis and machine intelligence, 35(1), 171–184.

References ii

NETRAPALLI, PRANEETH, NIRANJAN, U N, SANGHAVI, SUJAY, ANANDKUMAR, ANIMASHREE, & JAIN, PRATEEK. 2014.

Non-convex robust PCA.

Advances in neural information processing systems.

RECHT, BENJAMIN, FAZEL, MARYAM, & PARRILO, PABLO A. 2010.

Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization.

Siam review, 52(3), 471-501.

YI, XINYANG, PARK, DOHYUNG, CHEN, YUDONG, & CARAMANIS, CONSTANTINE. 2016.

Fast algorithms for robust PCA via gradient descent.

Advances in neural information processing systems.