# **Today in Cryptography (5830)**

ECC wrapup
Hybrid encryption
OpenPGP standard
TextSecure

Katz-Lindell Chapter 10.3 (Hybrid Encryption) RFC 4880 (OpenPGP standard)

### Elliptic curves

 An elliptic curve is set of x,y points in F<sub>p</sub> defined by an equation

$$E = \{(x, y) \mid y^2 = x^3 + ax + b \mod p\}$$

a,b are fixed values also from  $\mathbf{F}_{p}$ . Technical condition:

$$4a^3 + 27b^2 \neq 0$$

- Plus one special point O called the "point at infinity"
- Defined group operation: point addition
  - Gives us a cyclic group
- NIST curves, Curve25519



 $y^2 = x^3 - 5x + 5$  (over the reals)

### Elliptic curve DH



Pick random x from  $\mathbf{Z}_q$ X = xP



Υ



Pick random y from  $\mathbf{Z}_{q}$ Y = yP

K = H(yX)

$$K = H(xY)$$

"Additive notation" vs. "multiplicative notation"



Pick random x from  $\mathbf{Z}_{|G|}$ X =  $\mathbf{g}^{x}$ 

 $K = H(Y^x)$ 







Pick random y from  $\mathbf{Z}_{|G|}$ Y =  $\mathbf{g}^{y}$ 

$$K = H(X^{y})$$

#### Elliptic curve DLP

- Given xP compute x
- Same as g<sup>x</sup> compute x, just different group!

- Trivial algorithm requires time O(q), q size of ECC group
- Best known algorithm against well-chosen ECC group version runs in time q<sup>0.5</sup>
  - Algorithm is *generic:* works against any cyclic group

#### **Baby-Step Giant-Step algorithm**

ECDLP: Given xP for random x, compute x

```
Rewrite x as x = am + b with m = ceil(q^{0.5})

xP + (-am)P = bP

For b = 1, ..., m

Store (b,bP)

For a = 1, ..., m

Check if xP + (-amP) equals one of precomputed bP

Return am + b
```

- Works in time O(q<sup>0.5</sup>) and space O(q<sup>0.5</sup>)
- Pollard rho method: reduce space to constant

#### **Baby-Step Giant-Step algorithm**

• DLP: Given g<sup>x</sup> for random x, compute x

```
Rewrite x as x = az + b with z = ceil(q^{0.5})
g^x g^{-az} = g^b
For b = 1, ..., z
Store (b, g^b)
For a = 1, ..., z
Check if g^x g^{-az} equals one of precomputed <math>g^b values Return az + b
```

- Works in time O(q<sup>0.5</sup>) and space O(q<sup>0.5</sup>)
- Pollard rho method: reduce space to constant

# Comparison

| Security level | RSA size<br>(log N) | DLP in finite field (log p) | DLP subgroup size (log q) | ECC group size (log q) |
|----------------|---------------------|-----------------------------|---------------------------|------------------------|
| 80             | 1024                | 1024                        | 160                       | 160                    |
| 112            | 2048                | 2048                        | 224                       | 224                    |
| 128            | 3072                | 3072                        | 256                       | 256                    |
| 256            | 15360               | 15360                       | 512                       | 512                    |

ECC has smallest representations and fastest performance of all asymptotic primitives we will see

# **Application-layer crypto**

- So far focused on TLS as running example
  - Transport Layer Security
  - Provides network socket style stream interface
- What about if an application wants to encrypt discrete messages (as opposed to stream)?
  - Email
  - Text messages
  - Etc.

## **Email encryption**



Encrypted, signed message



Sender pk<sub>A</sub>, sk<sub>A</sub>



Receiver pk<sub>B</sub>, sk<sub>B</sub>

- Message may be large (body of email, PDF of attachments)
- Desire authenticity and confidentiality
- Public-keys delivered out-of-band
  - Websites, key parties, key directory servers

### **Email encryption**



How should we design a solution?

# **ElGamal public-key encryption**

g is generator for group of order p Kg outputs  $pk = (g,X = g^x)$  and sk = (g,x)

> Enc((g,X), M, R)  $r < -\$ \mathbf{Z}_p$   $C1 = g^r$   $C2 = X^r * M$ Return C1, C2

<u>Dec((g,x), C1, C2 ):</u> Return C2 \* C1<sup>-x</sup>

This is only at most chosen-plaintext attack secure. CCA attacks?

Only encrypts messages of size up to about log p bits

# Hybrid encryption (KEM/DEM)





KEM = key encapsulation mechanism Randomized public-key primitive DEM = data encapsulation mechanism
One-time secure authenticated encryption

HybEnc(pk, M)

K, C<sub>kem</sub> <-\$ KEM(pk)

C<sub>dem</sub> <- Enc(K,M)

Return C<sub>kem</sub>, C<sub>dem</sub>

HybDec(sk, C<sub>kem</sub>, C<sub>dem\_</sub>)
K <- KEM<sup>-1</sup>(sk, C<sub>kem</sub>)
M <- Dec(K, C<sub>dem</sub>)
Return M

#### **KEM from PKE**



KEM = key encapsulation mechanism Public-key primitive

#### KEM(pk)

Choose randomness R C<sub>kem</sub> <- PKE-Enc(pk,R) Return H(R), C<sub>kem</sub>

#### **ElGamal KEM**

Kg outputs  $pk = (g,X = g^x)$  and sk = (g,x)g is generator for group of order prime p

EG-KEM((g,X), R)

 $r = R \mod p$ 

 $C_{kem} = g^r$ 

 $K = X^r$ 

Return H(K), C<sub>kem</sub>

 $Dec((g,x), C_{kem})$ :

Return  $H(C_{kem}^{x})$ 

Secure if computational Diffie-Hellman assumption holds in group

# **Example hybrid encryption**

Enc(X,M):

$$K1 \mid \mid K2 = SHA256(g^{xr})$$



### **Email encryption**



- To digitally sign, let M = Msg | | Sign(sk<sub>A</sub>, Msg)
- Ctxt = Encrypt(pk<sub>B</sub>, M)

### PGP history

 Phil Zimmerman released "Pretty Good Privacy" in 1991 on a USENET post marked as "US only"

- 1993: Criminal investigation by US government for munitions export without a license.
  - Printed PGP source code into a book. First amendment gambit

### **OpenPGP overview**

- Standard for PGP is RFC 4880
- Key encapsulation mechanism:
  - RSA PKCS#1 v1.5 encryption
  - ElGamal over finite field or elliptic curve
- Digital signatures:
  - RSA PKCS#1 v1.5 signatures
  - DSA
- Symmetric encryption:
  - Password-based key derivations using iterated hashing
  - CFB mode using block cipher (variant of CBC mode)

### **OpenPGP overview**

- Security problems:
  - Padding oracle attacks against CFB & PKCS#1 v1.5
  - Attacks against home-brewed integrity checks (modification detection check, MDC)
  - Subject lines always in the clear
- Usability problems:
  - Users must manage their own keys
  - Copying private keys to each device
  - Checking validity of other recipient's public key



The Switch

### Yahoo's plan to get Mail users to encrypt their email: Make it simple



# Messaging encryption



Sender  $pk_A$ ,  $sk_A$ 





Receiver  $pk_B$ ,  $sk_B$ 

- End-to-end encrypted messaging is a big topic
- TextSecure is protocol adopted by WhatsApp (~1 billion users)

#### **TextSecure**



#### **Encrypted/Signed SMS or IM**



https://eprint.iacr.org/2014/904.pdf

#### **TextSecure**



#### **Encrypted/Signed SMS or IM**





https://eprint.iacr.org/2014/904.pdf

# Verifying public keys



**SCAN CODE** 





### Summary

- Hybrid encryption uses combination of asymmetric and symmetric cryptography
  - Key encapsulation mechanisms (KEM) based on secure PKE, (elliptic curve) Diffie-Hellman
  - Use an authenticated encryption scheme for data encapsulation mechanism (DEM)
- PGP is historical example (and still somewhat widely used)
- End-to-end messaging for IM, chat hotter topic, now widely deployed