

Art of Problem Solving 2001 APMO

APMO 2001	
1	For a positive integer n let $S(n)$ be the sum of digits in the decimal representation of n . Any positive integer obtained by removing several (at least one) digits from the right-hand end of the decimal representation of n is called a $stump$ of n . Let $T(n)$ be the sum of all stumps of n . Prove that $n = S(n) + 9T(n)$.
2	Find the largest positive integer N so that the number of integers in the set $\{1, 2,, N\}$ which are divisible by 3 is equal to the number of integers which are divisible by 5 or 7 (or both).
3	Two equal-sized regular n -gons intersect to form a $2n$ -gon C . Prove that the sum of the sides of C which form part of one n -gon equals half the perimeter of C .
	Alternative formulation:
	Let two equal regular n -gons S and T be located in the plane such that their intersection $S \cap T$ is a $2n$ -gon (with $n \geq 3$). The sides of the polygon S are coloured in red and the sides of T in blue.
	Prove that the sum of the lengths of the blue sides of the polygon $S \cap T$ is equal to the sum of the lengths of its red sides.
4	A point in the plane with a cartesian coordinate system is called a <i>mixed point</i> if one of its coordinates is rational and the other one is irrational. Find all polynomials with real coefficients such that their graphs do not contain any mixed point.
5	Find the greatest integer n , such that there are $n+4$ points A , B , C , D , X_1, \ldots, X_n in the plane with $AB \neq CD$ that satisfy the following condition: for each $i=1,2,\ldots,n$ triangles ABX_i and CDX_i are equal.

Contributors: shobber, hossein11652