1. Suppose that $f: \mathbb{R}^n \to \mathbb{R}$ has continuous second-order partial derivatives. Let $x_0 \in \mathbb{R}^n$ be such that $\nabla f(x_0) = 0$ and that there exist two points $u, v \in \mathbb{R}^n$ s.t. the following are true:

$$\langle \nabla^2 f(x_0) u, u \rangle > 0,$$

 $\langle \nabla^2 f(x_0) v, v \rangle < 0.$

Show that the point x_0 is neither a local maximum nor a local minimum of the function $f: \mathbb{R}^n \to \mathbb{R}$.

NOTE: If $f: \mathcal{O} \to \mathbb{R}$ where $\mathcal{O} \subset \mathbb{R}^2$, such a point will be a saddle point of f.

HINT: Consider applying the second-order approx. theorem.

Proof Because $x \in \mathbb{R}$, choose r > 0 such that the open ball $B_r(x_0) \subseteq \mathbb{R}^n$, $u, v \in \mathbb{R}^n$. Let 0 < ||u|| < r and 0 < ||v|| < r. Then by the 2nd Order Approximation Theorem,

$$\lim_{u \to 0} \frac{f(x_0 + u) - [f(x_0) + \langle \nabla f(x_0), u \rangle + \frac{1}{2} \langle \nabla^2 f(x_0)u, u \rangle]}{\|u^2\|} = 0.$$

Since $\nabla f(x_0) = 0$,

$$\lim_{u \to 0} \frac{f(x_0 + u) - f(x_0)}{\|u\|^2} = \lim_{u \to 0} \frac{-\frac{1}{2} \langle \nabla^2 f(x_0) u, u \rangle}{\|u\|^2}$$

Because $\langle \nabla^2 f(x_0)u, u \rangle > 0$, $f(x_0 + u) - f(x_0) > 0$ if $f(x_0 + u) - f(x_0) > 0$, then $f(x_0 + u) > f(x_0)$.

$$\implies \lim_{v \to 0} \frac{f(x_0 + v) - [f(x_0) + \langle \nabla f(x_0), v \rangle + \frac{1}{2} \langle \nabla^2 f(x_0) v, v \rangle]}{\|v^2\|} = 0.$$

In turn,

$$\lim_{v \to 0} \frac{f(x_0 + v) - f(x_0)}{\|v\|^2} = \lim_{v \to 0} \frac{-\frac{1}{2} \langle \nabla^2 f(x_0) v, v \rangle}{\|v\|^2}.$$

Since $\langle \nabla^2 f(x_0)v, v \rangle < 0$, $f(x_0+v)-f(x_0) < 0$ and $f(x_0-v) < f(x_0)$. Since $f(x_0+u) > f(x_0)$ and $f(x_0-v) < f(x_0)$ for ||u||, ||v|| < r, there must exist a neighborhood around x_0 whose $f(x_0)$ is both the smallest and largest values from two different directions, meaning that x_0 cannot be a local min nor local max.

2. Suppose that $f: \mathbb{R} \to \mathbb{R}$ is twice differentiable on an open interval I containing a point a. Suppose that f'' is continuous at x = a. Show that

$$\lim_{h \to 0} \frac{f(a+h) - 2f(a) + f(a-h)}{h^2} = f''(a).$$

HINT: Consider Theorem 14.19

Proof Using the difference quotient definition of a derivative,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{f(x) - f(x-h)}{h}$$

Differentiating once again and using the same rearrangement as above,

$$f''(x) = \frac{f'(x) - f'(x-h)}{h} \implies f''(x) = \frac{f(x+h) - f(x) - f(x) + f(x+h)}{h^2}.$$

Let there exist a point x = a. Then,

$$f''(a) = \lim_{h \to 0} \frac{f(a+h) - 2f(a) + f(a+h)}{h^2}.$$

3. Let

$$f(x,y) = \begin{cases} \frac{x^3y}{x^4 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

Prove that the directional derivative $\frac{\partial f}{\partial p}(0,0) = 0$ for each nonzero point $p \in \mathbb{R}^2$, but f is not differentiable at (0,0).

WTS: f(x,y) has first order partial derivatives at every point in \mathbb{R} . Determine if f is continuously differentiable if $(x, y \neq 0$, then f(x, y) is rational with a nonzero denominator, i.e. it is continuously differentiable (CTN first order partials at (x,y)).

Proof Define the following:

$$\frac{\partial f}{\partial x}(x,y) = \frac{(3x^2y)(x^4 + y^2) - (x^3y)(4x^3 + y^2)}{(x^4 + y^2)^2}, (x,y) \neq (0,0)$$
$$\frac{\partial f}{\partial y} = \frac{(x^3(x^4 + y^2)) - ((2y + x^4)x^3y)}{(x^4 + y^2)^2}, (x,y) \neq (0,0).$$

Note that if $\lim_{t\to 0} \frac{f(x+tp)-f(x)}{t}$ exists, then it is called the directional derivative.

$$\lim_{t \to 0} \frac{f(x+tp) - f(x)}{t} = \lim_{t \to 0} \frac{f(tp_1 + tp_2)}{t} = \lim_{t \to 0} \frac{(tp_1)^3 tp_2}{((tp_1)^4 + (tp_2)^2)t} = \lim_{t \to 0} \frac{t^3 p_1^3 + tp_2}{t^5 p_1^4 + t^3 p_2^2} = 0$$

by asymptotic behavior.

Let y = x be a sequence of points in \mathbb{R}^2 along the line y = x which converges to (0,0). Then,

$$\lim_{(x,y)\to(0,0)}\frac{x^3y}{x^4y^2}=\lim_{x\to 0}\frac{x^4}{x^4+x^2}=1.$$

Similarly, let y = -x be a sequence of points in \mathbb{R}^2 along the line y = -x which converges to (0,0). As such,

$$\lim_{(x,y)\to(0,0)} \frac{x^3y}{x^4y^2} = \lim_{x\to 0} \frac{-x^4}{x^4 - x^2} = -1.$$

Because the limit must approach the same value from the left and the right, f is not differentiable at (0,0).

4. Suppose $f: \mathbb{R}^n \to \mathbb{R}$ has continuous second-order partial derivatives and that $x_0 \in \mathbb{R}^n$ is a point such that $\nabla f(x_0) = 0$. Suppose that there exists $\lambda > 0$ s.t. $\langle \nabla^2 f(x_0)y, y \rangle \geq \lambda ||y||^2 \rangle$ for all $y \in \mathbb{R}^2$. Prove that there exist two positive numbers $\delta, c > 0$ s.t. if $||h|| < \delta$, then

$$f(x_0 + h) - f(x_0) \ge c ||h||^2.$$

Proof Let there exist $\lambda > 0$ such that $\langle \nabla^2 f(x_0) y, y \rangle \geq \lambda ||y||^2 \in \mathbb{R}^n$. Using the Second Order Approximation Theorem, for $x_0 \in \mathbb{R}^n$,

$$\lim_{h \to 0} \frac{f(x_0 + h) - [f(x_0) + \langle \nabla f(x_0), h \rangle + \frac{1}{2} \langle \nabla^2 f(x_0)h, h \rangle]}{\|h^2\|} > 0.$$

Rearrange the above by letting $h \ge y$ such that

$$\lim_{y \to 0} \frac{f(x_0 + y) - [f(x_0) + \langle \nabla f(x_0), y \rangle + \frac{1}{2} \langle \nabla^2 f(x_0)y, y \rangle]}{\|y^2\|} = 0$$

This implies,

$$\lim_{y \to 0} \frac{f(x_0 + y) - f(x_0)}{\|y^2\|} = \lim_{y \to 0} \frac{\frac{1}{2} \langle \nabla^2 f(x_0) y, y \rangle}{\|y\|^2}.$$

Since $\frac{1}{2} \langle \nabla^2 f(x_0) y, y \rangle \ge \lambda \|y\|^2$ for some $\lambda > 0$, then $\frac{1}{2} \langle \nabla^2 f(x_0) y, y \rangle \ge \frac{1}{2} \lambda \|y\|^2$.

Hence,
$$\frac{\frac{1}{2}\langle \nabla^2 f(x_0)y, y\rangle}{\|y\|^2} \ge \frac{1}{2}\lambda$$
, which implies $\frac{f(x_0+y)-f(x_0)}{\|y\|^2} = \frac{\frac{1}{2}\langle \nabla^2 f(x_0)y, y\rangle}{\|y\|^2} \ge \frac{1}{2}\lambda$.

Thus, $f(x_0+y)-f(x_0)\geq \frac{1}{2}\lambda\|y\|^2<\lambda\delta$. Because $\frac{1}{2}\|y\|^2<\delta$ and $\frac{1}{2}\lambda\|y\|^2<\lambda\delta$,

$$f(x_0 + y) - f(x_0) < \lambda \delta$$

If we let c > 0 such that $c < \frac{1}{2}\lambda$, then $f(x_0 + y) - f(x_0) \ge \frac{1}{2}\lambda ||y||^2 c\lambda \delta$, $f(x_0 + y) - f(x_0) \ge c||y||^2$.

With h > y, write $f(x_0 + h) - f(x_0) \ge c \|h\|^2$ if $\|h\| < \delta$ and $c < \frac{1}{2}\lambda$ given c, d > 0.

5. Let f, g be twice continuously differentiable on $\mathbb R$ and define

$$F(x,y) = f(x+ay) + q(x-ay)$$

for $(x,y) \in \mathbb{R}^2$ and $a \in \mathbb{R}$. Show that F satisfies the "wave equation":

$$a^{2} \frac{\partial^{2} F(x,y)}{\partial x^{2}} = \frac{\partial^{2} F(x,y)}{\partial y^{2}}$$

Proof First, note the following partial derivatives,

$$\frac{\partial F}{\partial x} = f'(x + ay) - g'(x - ay),$$

$$\frac{\partial^2 F}{\partial x^2} = f'(x + ay) - g'(x - ay),$$

$$\frac{\partial F}{\partial u} = af'(x + ay) - ag'(x - ay),$$

$$\frac{\partial^2 F}{\partial y^2} = a^2 f''(x + ay) + a^2 g(x - ay).$$

If
$$\frac{\partial^2 F}{\partial x^2} = f''(x+ay) + g''(x-ay)$$
 and $\frac{\partial^2 F}{\partial y^2} = a^2[f''(x+ay) + g''(x-ay)],$

then,
$$a^2 \frac{\partial^2 F}{\partial x^2} = \frac{\partial^2 F}{\partial y^2}$$
.

Therefore, $\frac{\partial^2 F}{\partial y^2} - a^2 \frac{\partial^2 F}{\partial x^2} = 0$ and F(x,y) = f(x+ay) + g(x-ay) is a solution of the "wave equation."