2-3 Counting

Hengfeng Wei

hfwei@nju.edu.cn

March 12, 2020

 $O \quad \Omega \quad \Theta$

"People who analyze algorithms have double happiness ..."

Donald E. Knuth (1938 \sim)

Unfortunately, you have to master some mathematics.

Counting

Sums \sum Binomials (

Falling and Rising Factorials

$$m^{\underline{n}} = (m)_n = m(m-1)(m-2)\cdots(m-n+1) = \frac{m!}{(m-n)!}$$

$$m^{\bar{n}} = m^{(n)} = m(m+1)(m+2)\cdots(m+n-1)$$

$$n! = n^{\underline{n}} = 1^{\bar{n}}$$

$$\binom{m}{n} = \frac{m^{\underline{n}}}{n!}$$

Iverson Bracket

Kenneth Eugene Iverson $(1920 \sim 2004)$

$$[P] = \begin{cases} 1, & \text{if } P \text{ is true;} \\ 0, & \text{otherwise} \end{cases}$$

$$[n \le m] = \begin{cases} 1, & \text{if } n \le m; \\ 0, & \text{if } n > m \end{cases}$$

Theorem (Sum Principle)

$$S \cap T = \emptyset \implies |S \cup T| = |S| + |T|$$

Theorem (Product Principle)

$$|S \times T| = |S| \times |T|$$

Holds for finite sets S and T.

先学习下加法,1+1,就是

所以1+1=2,这很好理解 那我们趁热打铁学习下一个重要公式吧:

$$\frac{\sum_{w \in W} (-1)^{\det(w)} w(e^{\lambda + \rho})}{e^{\rho} \prod_{\alpha > 0} (1 - e^{-\alpha})}$$

Counting

tuples
permutations
combinations

compositions set partitions integer partitions

Counting # of functions under (twelve) different restrictions

Counting vs. Generating

Generating is more about algorithms.

Counting # of functions under (twelve) different restrictions

$$f:N\to M \qquad (|N|=n,\quad |M|=m)$$

$$12 = (2 \times 2) \times 3$$

Elements of N	Elements of M	Any f	Injective f	Surjective f
distinguishable	distinguishable			
in distinguishable	distinguishable			
distinguishable	in distinguishable			
in distinguishable	in distinguishable			

Table: The Twelvefold Way (Functions).

distinguishable vs. indistinguishable

Balls	Bins	unrestricted	≤ 1	≥ 1
unlabeled	unlabeled			
labeled	unlabeled			
unlabeled	labeled			
labeled	labeled			

Table: The Twelvefold Way (Balls into Bins Model).

labeled vs. unlabeled

(unrestricted)

labeled balls into labeled bins

unlabeled balls into labeled bins

Only # of balls in each bin matters.

(unrestricted)

$$= 1 + 1 + 0$$

$$= 1 + 0 + 1$$

$$= 0 + 2 + 0$$

$$= 0 + 1 + 1$$

$$= 0 + 0 + 2$$

$$n = x_1 + x_2 + \dots + x_m \quad (x_i \ge 0)$$

2 = 2 + 0 + 0

Only # of balls in each bin matters. weak composition of n with m terms

(unrestricted)

labeled balls into labeled bins

unlabeled balls into labeled bins

$$f: 1 \mapsto A, \quad 2 \mapsto B$$

$$f': 2 \mapsto A, \quad 1 \mapsto B$$

$$f' = f \circ (h: 1 \mapsto 2, \quad 2 \mapsto 1)$$

f class	Any f	Injective f	Surjective f
f	n tuples		
	of m items		
$f\circ S_N$	compositions of n		
	into m parts		

$$S_N = \{ f : N \underset{1-1}{\longleftrightarrow} N \}$$
$$[f] = f \circ S_N = \{ f \circ g \mid g \in S_N \}$$

f, g are indistinguishable $\iff g \in [f]$

(unrestricted)

labeled balls into labeled bins

labeled balls into unlabeled bins

$$\{1,2\} = \{1,2\}$$
$$= \{1\} \cup \{2\}$$

partition of N into $\leq m$ parts

$$\begin{Bmatrix} n \\ k \end{Bmatrix}$$
: # of partitions of N into k pa

$$\sum_{k=1}^{m} \begin{Bmatrix} n \\ k \end{Bmatrix}$$

$$\{1,2,3\} = \{1,2,3\}$$

$$= \{1\} \cup \{2,3\}$$

$$= \{2\} \cup \{1,3\}$$

$$= \{3\} \cup \{1,2\}$$

$$= \{1\} \cup \{2\} \cup \{3\}$$

(unrestricted)

labeled balls into labeled bins

labeled balls into unlabeled bins

$$f: 1 \mapsto A, \quad 2 \mapsto A$$

$$g: 1 \mapsto B, \quad 2 \mapsto B$$

$$h: 1 \mapsto C, \quad 2 \mapsto C$$

$$g=(l:A\mapsto B,\quad B\mapsto A)\circ f$$

f class	Any f	Injective f	Surjective f
f	n tuples of $m items$		
$f \circ S_N$	compositions of n into m parts		
$S_M \circ f$	partitions of N into $\leq m$ parts		

$$S_M = \{ f : M \stackrel{\text{onto}}{\longleftarrow} M \}$$
$$[f] = S_M \circ f = \{ g \circ f \mid g \in S_M \}$$

f, g are indistinguishable $\iff g \in [f]$

f class	Any f	Injective f	Surjective f
f	n tuples		
	of m items		
$f\circ S_N$	compositions of n		
$J \circ S_N$	into m parts		
$S_M \circ f$	partitions of N		
	into $\leq m$ parts		
$S_M \circ f \circ S_N$	partitions of n		
	into $\leq m$ parts		

$$5 = 5$$

$$= 41$$

$$= 32 = 311$$

$$= 221 = 21111$$

$$= 11111$$

$$x_1 + x_2 + \dots + x_k = n$$

$$x_1 \ge x_2 \ge \dots \ge x_k \ge 1$$

$$\begin{vmatrix} n \\ k \end{vmatrix} : \# \text{ of (integral) solutions}$$

$$\sum_{k=1}^{m} \binom{n}{k}$$

f class	Any f	Injective f	Surjective f
f	n -tuples of m items m^n	n -permutations of m items $m^{\underline{n}}$???
$f\circ S_N$	weak compositions of n into m parts $\binom{n}{m}$	n -combinations of m items $\binom{m}{n}$	compositions of n into m parts
$S_M \circ f$	partitions of N into $\leq m$ parts $\sum_{k=1}^{m} {n \brace k}$	n pigeons into m holes $[n \le m]$	partitions of N into m parts $\binom{n}{m}$
$S_M \circ f \circ S_N$	partitions of n into $\leq m$ parts $\sum_{k=1}^{m} {n \choose k}$	n pigeons into m holes $[n \le m]$	partitions of n into m parts $\binom{n}{m}$

$$\begin{pmatrix} \binom{n}{m} \end{pmatrix} \begin{cases} \binom{n}{k} & \binom{n}{k} \\ \binom{n}{k} & \binom{n}{k} \end{pmatrix}$$
2-3 Counting

Weak composition of n with m terms

$$2 = 2 + 0 + 0$$

$$= 1 + 1 + 0$$

$$= 1 + 0 + 1$$

$$= 0 + 2 + 0$$

$$= 0 + 1 + 1$$

$$= 0 + 0 + 2$$

$$\binom{n + m - 1}{m - 1} = \binom{n + m - 1}{n}$$

$$7 = 4 + 0 + 1 + 2 + 0$$
 (Stars and Bars)

Placing m-1 bars into n+(m-1) slots.

Composition of n with m terms

$$n = x_1 + x_2 + \ldots + x_m \quad (x_i > 0)$$

$$7 = 4 + 1 + 2$$
 (Stars and Bars)

Placing m-1 bars into n-1 slots.

$$\binom{n-1}{m-1}$$

Theorem

The # of weak composition of n with m terms is

$$\binom{n+m-1}{m-1} = \binom{n+m-1}{n}$$

Theorem (CS Theorem 1.8)

The # of n-element multisets chosen from an m-element set is

$$\binom{n+m-1}{m-1} = \binom{n+m-1}{n}$$

$$n = 7$$
 $m = 5$

n = 7 m = 5 (Apples and Children)

 $\{1, 1, 3, 1, 4, 3, 5\}$

$$7 = 3 + 0 + 2 + 1 + 1$$

 $\begin{Bmatrix} n \\ k \end{Bmatrix}$: # of partitions of set N into k parts

$$\{1,2,3\} = \{1,2,3\}$$

$$= \{1\} \cup \{2,3\}$$

$$= \{2\} \cup \{1,3\}$$

$$= \{3\} \cup \{1,2\}$$

$$= \{1\} \cup \{2\} \cup \{3\}$$

Stirling number of the second kind

Set Partition (CS: 1.5 - 12)

 $\begin{Bmatrix} n \\ k \end{Bmatrix}$: # of partitions of set N into k parts

$$\begin{Bmatrix} n \\ k \end{Bmatrix} = \underbrace{\begin{Bmatrix} n-1 \\ k-1 \end{Bmatrix}}_{n \text{ is alone}} + \underbrace{k \begin{Bmatrix} n-1 \\ k \end{Bmatrix}}_{n \text{ is not alone}} \qquad (n > 0, k > 0)$$

Bell number:
$$B_n = \sum_{k=1}^{k=n} {n \choose k}$$

$$\begin{pmatrix} n \\ k \end{pmatrix}$$
: # of partitions of n into k parts

$$5 = 5$$

$$= 41$$

$$= 32 = 311$$

$$= 221 = 21111$$

$$= 11111$$

$$x_1 + x_2 + \dots + x_k = n$$

$$x_1 \ge x_2 \ge \dots \ge x_k \ge 1$$

$$x_1 + x_2 + \dots + x_k = n$$
$$x_1 \ge x_2 \ge \dots \ge x_k \ge 1$$

Theorem (Recurrence for $\binom{n}{k}$)

Case II: $x_k > 1$

Case
$$I: x_k = 1$$

$$\begin{vmatrix} n-1 \\ k-1 \end{vmatrix}$$

$$x_1 - 1 \ge x_2 - 1 \ge \cdots \ge x_k - 1 \ge 1$$

$$\left| {n-k \atop k} \right|$$

Theorem (G. H. Hardy, Ramanujan (1918))

$$p(n) \triangleq \sum_{x=1}^{x=n} \binom{n}{k} \sim \frac{1}{4\sqrt{3}n} \exp\left(\pi\sqrt{\frac{2n}{3}}\right)$$

$$p(200) \sim 4,100,251,432,188$$

$$p(200) = 3,972,999,029,388$$

3.203%

f class	Any f	Injective f	Surjective f
	n-tuples	<i>n</i> -permutations	
f	of m items	of m items	???
	m^n	$m^{\underline{n}}$	
	weak compositions of n	<i>n</i> -combinations	compositions of n
$f \circ S_N$	into m parts	of m items	into m parts
	$\binom{n}{m} = \binom{n+m-1}{m-1} = \binom{n+m-1}{n}$	$\binom{m}{n}$	$\binom{n-1}{m-1}$
$S_M\circ f$	partitions of N into $\leq m$ parts $\sum_{k=1}^{m} {n \brace k}$	n pigeons into m holes $[n \leq m]$	partitions of N into m parts $\binom{n}{m}$
$S_M \circ f \circ S_N$	$\begin{array}{c} \sum\limits_{k=1}^{\kappa=1} \text{partitions of } n \\ \text{into } \leq m \text{ parts} \\ \sum\limits_{k=1}^{m} \left \frac{n}{k} \right \end{array}$	n pigeons into m holes $[n \le m]$	partitions of n into m parts $\binom{n}{m}$

THE TWELVEFOLD WAY

balls per urn	unrestricted	≤ 1	≥ 1
n labeled balls, m labeled urns	n-tuples of m things	n-permutations of m things	partitions of $\{1, \ldots, n\}$ into m ordered parts
n unlabeled balls, m labeled urns	n-multicombinations of m things	n-combinations of m things	compositions of n into m parts
n labeled balls, m unlabeled urns	partitions of $\{1, \dots, n\}$ into $\leq m$ parts	n pigeons into m holes	partitions of $\{1, \dots, n\}$ into m parts
n unlabeled balls, m unlabeled urns	partitions of n into $\leq m$ parts	n pigeons into m holes	partitions of n into m parts

Thank You!

Office 302

Mailbox: H016

hfwei@nju.edu.cn