

My Style Manager

Autoencoder와 추천 시스템을 활용한 코디 추천 모델

팀원 소개

선은지

서효정

박준혁

박규호

장해식

무신사 크롤링

데이터용량 핸들링

스트림릿 배포

모델학습

오토인코더 모델링

잠재표현형 기반 유사도 계산

데이터전처리

스트림릿 페이지 디자인

발표 피피티 제작

추천 시스템 설계

주제 선정 배경 및 이유

이른 아침, 간신히 일어나 눈을 비비고 나갈 준비를 하며

" 01 2011 01 TEL 23 0 4010 F 6 1-21?"

고민하는 당신을 위한 쉽고 간편한 코디 추천 모델 마이 스타일 매니저를 추천해드립니다!

프로젝트 목표 및 서비스의 흐름

원하는 의류의 사진을 촬영하여 업로드한다

학습된 모델이 데이터를 기반으로 어울리는 코디 사진을 추천해준다

추천 받은 코디 사진을 참고하면 출근 준비 끝!

데이터 출처 / 전처리

데이터 출처

crawling

데이터 전처리

cv2.cvtColor

이미지 RGB 포맷 변경

Image crop

물체 중심 이미지 크롭

cv2.resize

이미지 크기(해상도) 변경

gamma Correction

감마 보정 시행

Image Normalization

Pixel 값 (0,1) 정규화

MUSINSA

Top_2611103_1 125

Image based Fashion Recommendation System (64x64 Ver)

AutoEncoder Draft Reference

Convolutional AutoEncoder Model Design & Draft

(Encoder Part)

Model: "model"

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	[(None, 64, 64, 3)]	0
conv2d (Conv2D)	(None, 64, 64, 32)	896
max_pooling2d (MaxPooling2D)	(None, 32, 32, 32)	0
conv2d_1 (Conv2D)	(None, 32, 32, 16)	4624
max_pooling2d_1 (MaxPooling 2D)	(None, 16, 16, 16)	0
conv2d_2 (Conv2D)	(None, 16, 16, 8)	1160
max_pooling2d_2 (MaxPooling 2D)	(None, 8, 8, 8)	0
conv2d_3 (Conv2D)	(None, 8, 8, 8)	584
max_pooling2d_3 (MaxPooling 2D)	(None, 4, 4, 8)	0

Total params: 7,264 Trainable params: 7,264 Non-trainable params: 0

Convolutional AutoEncoder Model Design & Draft

(Decoder Part)

Model: "model 1" Output Shape Layer (type) Param # input_2 (InputLayer) [(None, 4, 4, 8)] conv2d 4 (Conv2D) (None, 4, 4, 8) up_sampling2d (UpSampling2D (None, 8, 8, 8) conv2d_5 (Conv2D) (None, 8, 8, 8) up_sampling2d_1 (UpSampling (None, 16, 16, 8) conv2d_6 (Conv2D) (None, 16, 16, 16) up_sampling2d_2 (UpSampling (None, 32, 32, 16) conv2d_7 (Conv2D) (None, 32, 32, 32) up_sampling2d_3 (UpSampling (None, 64, 64, 32) conv2d_8 (Conv2D) (None, 64, 64, 3) Total params: 7,843 Trainable params: 7,843 Non-trainable params: 0

Convolutional AutoEncoder Model Design & Draft

(ConvAE (Encoder + Decoder))

Model: "model_2"

Layer (type)	Output Shape	Param #
input_3 (InputLayer)	[(None, 64, 64, 3)]	0
model (Functional)	(None, 4, 4, 8)	7264
model_1 (Functional)	(None, 64, 64, 3)	7843

Total params: 15,107 Trainable params: 15,107 Non-trainable params: 0

.

Modeling Result & Performance Evaluation

Training Time : 12:41:57

Training History

loss val_loss

95	0.215168	0.217177
96	0.215134	0.217394
97	0.215113	0.217406
98	0.215106	0.217107
99	0.215111	0.217343

Loss Learning Curve

Test Data Evaluation

Reconstruction Error Variances

Modeling Result & Performance Evaluation

Test & Reconstruction Image Samples

Test Images

Reconstructed Images

Latent Space Projection

Latent Feature Extraction by Encoder Part

Image based Fashion Recommendation System (64x64 Ver)

Latent Space Projection

Latent Feature Space

	comp1	comp2	comp3	comp4	comp5	comp6	comp7	comp8	label
0	3.670829	0.488182	4.741859	1.273471	1.086036	1.266953	5.101594	0.466279	Item-Image\u0928015_B.jpg
1	3.687016	0.438862	4.726101	1.260007	1.113906	1.261978	5.113382	0.480564	Item-Image₩0928015_F.jpg
2	3.678386	0.497772	4.745491	1.274425	1.088167	1.272623	5.099578	0.466892	Item-Image\u0929029_B.jpg
3	3.666209	0.488873	4.733748	1.271945	1.101050	1.258321	5.098758	0.474383	Item-Image₩0929029_F.jpg
4	6.417155	9.030645	7.210944	3.931133	1.731876	5.646265	4.130309	5.715511	Item-Image\{\pi1008001_B.jpg

* By Projecting Images as low-dimensional Features, Easy to develop Recommendation System such as Similarity Calculations

Autoencoder를 활용하여 최종적으로 도출해낸 학습 데이터셋의 8가지 feature component 이후, 사용자로부터 받는 입력 이미지의 feature component 와 비교할 예정

Similarity Calculation & Top 10 item Return

Sample Images

Cosine Similarity

Euclidean Distance

Top10 Similar Images

Pearson Similarity

Top10 Similar Images

Image based Fashion Recommendation System (64x64 Ver)

Fashion Coordination Recommendation

	wearing	hat	main_top	inner_top	bottom	shoes
0	1008_1008_720_A_A001_A001_000.jpg	1008013	1008011	0	1008012	0
1	1030_1030_720_A_A002_232_223_222_A002_000.jpg	1029449	1029157	0	1029107	0
2	1030_1030_720_A_A003_232_220_222_A003_000.jpg	1029442	1029411	0	1029109	0
3	1030_1030_720_B_B002_232_221_223_B002_000.jpg	1029434	1029073	0	1029141	0
4	1030_1030_720_B_B003_232_227_223_B003_000.jpg	1029431	1029255	0	1029142	0

* fashion_df.shape : (18040,6)

Image based Fashion Recommendation System (64x64 Ver)

Fashion Coordination Recommendation

Match the Coordination

recomm_df : 10 DataFrame 1 item's coordination cases: 3 2 item's coordination cases : 1 3 item's coordination cases: 3 4 item's coordination cases : 2 5 item's coordination cases : 2 6 item's coordination cases : 1 7 item's coordination cases : 1 8 item's coordination cases : 2 9 item's coordination cases: 4 10 item's coordination cases : 1

Top10 Similar Images

Fashion Best Fit Recommendatation!!

Image based Fashion Recommendation System (64x64 Ver)

Fashion Coordination Recommendation

Another Use Case Result

Top10 Similar Images

Fashion Best Fit Recommendatation!!

Fashion Best Fit Recommendatation!!

-

Top10 Similar Images

Image based Fashion Recommendation System (64x64 Ver)

Fashion Coordination Recommendation

Another Use Case Result

Top10 Similar Images

Fashion Best Fit Recommendatation!!

Top10 Similar Images

프로젝트 진행 중 겪은 문제

<u>Aa</u> 이름	☱ 작성자		☆ 속성
●◎ 예시) 데이터가 다운로드 용량이 너무 커서 난항임	박규호	2022년 8월 10일	Done
이미지 전처리 단계에서 의류를 정확하게 디텍팅하는 방법 (Crop, 보정, 크기)	박준혁	2022년 8월 10일	Done
ConvAE 개선방안 : [Crop 후 Center, Contrast, Layer, HyperParamter, Data 증 강,	박준혁	2022년 8월 10일	• Done
ਊ Github에 이미지를 어떻게 올리면 좋을까?	선은지	2022년 8월 12일	Done
입력받는 사진을 완벽하게 통제할 수 있을 까?	서효정	2022년 8월 12일	• Done
	서효정	2022년 8월 16일	• Done

향후 개선사항

데이터 화질 128 * 128 로 적용하여 옷의 질감과 디테일 살리기

모델 구현 로컬이 아닌 Streamlit으로 구현

무신사 크롤링 데이터 연관상품 추천으로 링크 걸기

모델 성능 더 높여보기

