Lending Club Loan Default Detection

01 Project Overview

- Project Introduction
- Data Overview
- **02** Data Preprocessing
- **03 Loan Default Prediction (modeling)**
 - Supervised Learning: Probability of Default Estimation
 - ❖ Self-supervised Learning: Anomaly Detection

04 Model Performance Comparison

05 Conclusions

CONTENT

1 Project Overview

Project Introduction

Problem Description

Data Overview

1.1 Project Introduction

- Peer to peer lending & financial inclusion
- Objectives: Loan repayment defaulter detection

1.2 Problems Description

1.3 Database Introduction

LendingClub Issued Loans Data: https://www.kaggle.com/husainsb/lendingclub-issued-loans

- Training Data set: lc_loan.csv
 Contains loans issued from 2007-2015
 74 columns
- Test Data set: lc_2016_2017.csv
 Contains loans issued from 2016-2017
 72 columns (missing the columns of 'open_il_6m', 'url')

2 Data preprocessing

Data Preprocessing

- Predictors (X): from 73 to 41
- Target Variables (Y): {'o':'good', '1':'default'}

3 Modeling --Loan Default Prediction

- 1) Supervised Learning
- 2) Unsupervised Learning

- 3.1 Probability of Default Estimation
- -- Fully-connected Neural Network

- Supervised Learning
- Fully-connected Neural Network
- Undersampling
- Oversampling

Problem of Imbalanced Classification

- Target column -- "Loan_Status" 0 is good 1 is default
- The number of default transactions in training data is 52937 and number of transactions which do not default is 738087;
- The number of default transactions in testing data is 52564 and number of transactions which do not default is 706270;

1 Basic Model -- Fully-connected Neural Network

1.1 Modeling

- Standardization
- Dropout
- Regularization
- Change architecture
- Early Stopping

Model: "sequential_15"			
Layer (type)	Output	Shape	Param #
dense_58 (Dense)	(None,	128)	5376
dense_59 (Dense)	(None,	64)	8256
dropout_38 (Dropout)	(None,	64)	0
dense_60 (Dense)	(None,	32)	2080
dropout_39 (Dropout)	(None,	32)	0
dense_61 (Dense)	(None,	16)	528
dense_62 (Dense)	(None,	1)	17

Total params: 16,257 Trainable params: 16,257 Non-trainable params: 0

1 Basic Model -- Fully-connected Neural Network

1.2 Evaluation

• reducing the data by eliminating examples belonging to the majority class

2.1 Modeling

- Standardization
- Regularization
- Change architecture
- Early Stopping

Model: "sequential_16"

Layer (type)	Output	Shape	Param #
dense_63 (Dense)	(None,	128)	5376
dense_64 (Dense)	(None,	64)	8256
dense_65 (Dense)	(None,	32)	2080
dense_66 (Dense)	(None,	16)	528
dense_67 (Dense)	(None,	1)	17

Total params: 16,257

Trainable params: 16,257 Non-trainable params: 0

2.2 Evaluation

 selecting examples that are close in the feature space, drawing a line between the examples in the feature space and drawing a new sample at a point along that line -- increase the percentage of minority class

3.1 Modeling

- Standardization
- Dropout
- Regularization
- Change architecture
- Early Stopping

Model:	"sequent	ial_18"
--------	----------	---------

Layer (type)	Output Shape	Param #
dense_73 (Dense)	(None, 64)	2688
dropout_44 (Dropout)	(None, 64)	0
dense_74 (Dense)	(None, 32)	2080
dropout_45 (Dropout)	(None, 32)	0
dense_75 (Dense)	(None, 32)	1056
dropout_46 (Dropout)	(None, 32)	0
dense_76 (Dense)	(None, 16)	528
dropout_47 (Dropout)	(None, 16)	0
dense_77 (Dense)	(None, 1)	17

Total params: 6,369
Trainable params: 6,369
Non-trainable params: 0

3.2 Evaluation

Confusion matrix, without normalization
[[449402 256868]
[74621 631649]]

Confusion matrix

4 Conclusion

- Utilizing dropout, regularization, change architecture, and early stopping, overfitting problem can be solved well
- Fully connected neural model has a good accuracy
- Undersampling would ease imbalance problem
- Oversampling might not be appropriate to solve the problem in this dataset

3.2 Probability of Default Estimation-- Convolutional Neural Network

- Convolutional Neural Network
- Undersampling
- Oversampling

Convolutional Neural Network Overview

- One of the main categories to do images recognition, images classifications
- Also can be used for non-image data set by reshaping the data with the input dimension = 1

1 Modeling

- Convolutional layer
- Dropout
- MaxPooling
- Flatten
- Early Stopping

Model: "model_conv1D"

Layer (type)	Output Shape	Param #
Conv1D_1 (Conv1D)	(None, 35, 64)	512
dropout (Dropout)	(None, 35, 64)	0
Conv1D_2 (Conv1D)	(None, 33, 32)	6176
Conv1D_3 (Conv1D)	(None, 32, 16)	1040
MaxPooling1D (MaxPooling1D)	(None, 16, 16)	0
flatten (Flatten)	(None, 256)	0
Dense_1 (Dense)	(None, 32)	8224
dense (Dense)	(None, 1)	33

Total params: 15,985

Trainable params: 15,985 Non-trainable params: 0

2 Evaluate

```
history = model convlD.fit(x train reshaped, y train.values, epochs=10,
      validation data = (x validation reshaped, y validation.values), callbacks = [Es])
Epoch 1/10
   Epoch 2/10
Epoch 3/10
Epoch 4/10
Epoch 5/10
Epoch 6/10
Epoch 7/10
                             val loss: 0.0892 - al acc: 0.9816
print("The testing accuracy is:", model conv1D.evaluate(x test reshaped, y test.values))
acc: 0.9791
The testing accuracy is: [0.09991364181041718, 0.9791087508201599]
```

- High accuracy with no overfitting
- But, data imbalance might lead to the "perfect" outcome
 - \rightarrow Need oversample/undersample

```
model conv1D = build conv1D model()
history = model conv1D.fit(x train bal reshaped, y train bal, epochs=10,
        validation data = (x validation bal reshaped, y validation bal), ca
Epoch 1/10
Epoch 2/10
Epoch 3/10
- 25s 8ms/step - loss: 0.5286 - acc: 0.7759
Epoch 4/10
Epoch 5/10
- 26s 8ms/step - loss: 0.3337 - acc: 0.8616
Epoch 6/10
Epoch 7/10
Epoch 8/10
Epoch 9/10
acc: 0.8675
print("The testing accuracy is: ", model conv1D.evaluate(x test bal reshaped, y test ba
acc: 0.8516
The testing accuracy is: [0.3204999566078186, 0.8515619039535522]
```



```
model conv1D = build conv1D model()
history = model conv1D.fit(x train bal reshaped, y train bal, epochs=10,
       validation data = (x validation bal reshaped, y validation bal), callbacks = [Es
Epoch 1/10
Epoch 2/10
Epoch 3/10
Epoch 4/10
Epoch 5/10
                 - 329s 7ms/step - loss: 0.2730 - acc: 0.8769 - val loss
Epoch 6/10
Epoch 7/10
Epoch 8/10
                              acc: 0.8763
print("The testing accuracy is:", model conv1D.evaluate(x test bal reshaped, y test bal))
acc: 0.8485
The testing accuracy is: [0.3100346624851227, 0.8484963178634644]
```


5 Conclusion

- Though CNN result for original data works pretty well, it cannot be taken into account due to imbalance data set.
- Oversampled data performs better with the CNN model in both accuracy and AUC/ROC curve.

3.3 Anomaly Detection-- self-supervised Learning

- Anomaly Detection
- Autoencoder
- Variational autoencoder

1 Anomaly Detection

Self-supervised Learning -- Autoencoder/VAE

- Train model using **normal training data set**
- Find the threshold of the anomaly using reconstruction error (mean-squared-error)
- If reconstruction error > threshold, it's an anomaly

2 Autoencoder

Modeling

Basic Model

val_loss : 0.0032

val_accuracy: 0.5886

Parameter: loss='MSE', optimizer='adam'

- Change architectures
- Bottleneck
- Hidden layers
- Parameters
- Loss function
- Early Stopping

Model Improvement

Improved Model

val_loss (mse): 3.6713e-04

val_accuracy: 0.7190

2 Autoencoder

Evaluation

Basic Model

Improved Model

3 Variational Autoencoder

Modeling

Parameter: loss=reconstruction_loss + kl_loss, optimizer='adam'

Basic Model

val loss: 10.6706

val_accuracy: 0.3098

• Change architectures

Hidden layers

Parameters

o Batch size

o optimizer

Early Stopping

More complex architecture:
Adding hidden layer functions little

 $p_{\theta}(x|z)$

Distribution

encode →

Input

Optimizer: (1) RMSprop doesn't work

(2) Adamax is sort of better than Adam

Models improve little

3 Variational Autoencoder

Evaluation

50

Epoch

60

70

20

Basic Model

4 Conclusion

- Autoencoder can perform well in this anomaly detection problem after improving model using change architectures, parameters, and early stopping
- Potential Method:
- (1) Use pretraining model to train the autoencoder
- (2) Use other optimizers to train model (simulated annealing, genetic algorithm, particle swarm optimization, etc.)
- VAE doesn't work well so far
- Potential Solutions: Use other optimizers to train model

4 Model Performance Comparison

Model Performance Comparison

(1) Fully-connected NN-Undersampling

Accuracy: 0.8642

Receiver Operating Characteristic

0.8

0.6

0.2

AUC = 0.93

0.4

False Positive Rate

0.6

0.8

1.0

0.0

0.2

(2) CNN-Oversampling

Accuracy: 0.8485

(3) Autoencoder

Accuracy: 0.6988

5 Conclusions

Conclusion

Fully-connected NN:

• **Undersampling** would ease imbalance problem, and functions better than the oversampling tools for fully-connected NN and this dataset

CNN:

• **Oversampled** data performs better with the CNN model in both accuracy and AUC/ROC curve

Autoencoder/VAE:

• Based on current algorithm, autoencoder performs better than VAE

For current deep learning algorithms and dataset, **undersampled fully-connected NN** works best for this loan default detection problem.

Sources

- [1] Brownlee, Jason. "SMOTE for Imbalanced Classification with Python." Machine Learning Mastery, 20 Aug. 2020, machinelearningmastery.com/smote-oversampling-for-imbalanced-classification/.
- [2] Berk Gokden, Applying Anomaly Detection with Autoencoders to Fraud Detection, towards data science 2020: https://towardsdatascience.com/applying-anomaly-detection-with-autoencoders-to-fraud-detection-feaaee6b5b09
- [3] Deep Dense Convolutional Networks for Repayment Prediction in Peer-to-Peer Lending,
- http://sclab.yonsei.ac.kr/publications/Papers/IC/2018_SOCO_JYK.pdf
- [4] https://medium.com/@RaghavPrabhu/understanding-of-convolutional-neural-network-cnn-deep-learning-99760835f148
- [5] LendingClub Issued Loans Data: https://www.kaggle.com/husainsb/lendingclub-issued-loans
- [6] Renström, Holmsten: Fraud Detection on Unlabeled Data with Unsupervised Machine Learning, KTH 2018
- [7] The Keras Blog-Building Autoencoders in Keras: https://blog.keras.io/building-autoencoders-in-keras.html
- [8] Tom Sweers, Autoencoding Credit Card Fraud, Radbound University 2018
- [9] Understanding of Convolutional Neural Network (CNN) Deep Learning
- Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey. ACM Comput. Surv., 41(3):15:1–15:58, July 2009
- [10] Z. Chen, C. K. Yeo, B. S. Lee, and C. T. Lau. Autoencoder-based network anomaly detection. In 2018 Wireless Telecommunications Symposium (WTS), pages 1–5, April 2018.
- [11] Packages: Python 3.0 numpy; pandas; matplotlib; seaborn; sklearn; mlxtend.plotting; pathlib2; pickle; keras; tensorflow;