Verifying the system implementation

There are 3 methods:

- 1. Analytically
- 2. SISMO
- 3. Using Keil

.....

TASK	PERIODICTY	EXECUTION TIME
BUTTON 1	50	13.5 us
BUTTON 2	50	13.6 us
PERIODIC TX	100	18.7 us
UART RX	20	21.3 us
LOAD 1	10	5 ms
LOAD 2	100	12 ms

Method 1: Analytically:

- Hyper Period = LCM (50 , 50 , 100 , 20 , 10 , 100) = 100 ms
- CPU Load = (E1 + E2 + E3 + E4 + E5 + E6) / H = 13.5us*2 +13.6us*2+18.7us*1+21.33us*5+5ms*10+12ms 100
 - = 62.179 %
- System Schedulability:
 - > Rate motonic method:

$$U \le n[2^{\frac{1}{n}} - 1]$$

Urm =
$$n[2^{\frac{1}{n}} - 1] = 6[2^{\frac{1}{6}} - 1] = 0.7347$$

U = $\sum \frac{C_i}{P_i} = \frac{13.5 \text{ us}}{50} + \frac{13.6 \text{ us}}{50} + \frac{18.7 \text{ us}}{100} + \frac{21.33 \text{ us}}{20} + \frac{5 \text{ ms}}{100} + \frac{12 \text{ ms}}{100} = 0.6217$

>> U < URM

>> The system is guaranteed schedulable

> Time Demand Analysis:

$$w_i(t) = e_i + \sum_{k=1}^{i-1} \left[\frac{t}{p_k} \right] e_k \quad for \ 0 < t < p_i$$

Tasks according to priority:

1) Load 1 Task:

$$w(1) = 5+0 = 5ms$$

$$w(10) = 5+0 = 5ms$$

$$w(10) < D = 10$$

Task is schedulable #

2) UART RX Task:

$$w(1) = 21.33 \text{ us} + (1/10)*5 \text{ ms} = 0.5213$$

$$w(5) = 21.33 \text{ us} + (5/10)*5 \text{ ms} = 2.5213$$

$$w(10) = 21.33 \text{ us} + (10/10)*5 \text{ ms} = 5.213$$

$$w(20) = 21.33 \text{ us} + (20/10)*5 \text{ ms} = 10.021$$

$$w(20) < D = 20$$

Task is schedulable #

3) BUTTON 1 TASK:

4) BUTTON 2 TASK:

$$w(50) = 13.6 \text{ us} + (50/10)*5 \text{ ms}$$

+ $(50/50)*13.5 \text{ us} + (50/20)*21.33 \text{ us}$
= 25.08
 $w(50) < D = 50$
Task is Schedulable #

5) PERIODIC TX TASK

6) LOAD 2 TASK:

$$w(100) = 12 \text{ ms} + (100/100)*18.7 \text{ us}$$

+ $(100/50)*13.5 \text{ us} + (100/50)*13.6 \text{ us} +$
 $(100/10)*5 \text{ ms} + (100/20)*21.33 \text{ us}$
= 62.179
 $w(100) < D = 100$
Task is Schedulable #

>> The system is guaranteed schedulable

Method 2: SIMSO:

Method 3: Using Keil:

Comment: The three methods gives almost identical
Results which indicates to a successful
Implementation to an EDF scheduler.