Topological approach for finding nearest neighbor sequence in time series

<u>Paolo Avogadro</u>, Matteo Dominoni

Dipartimento di Informatica, Sistemistica e Comunicazione Università degli Studi di Milano-Bicocca

paolo.avogadro@unimib.it

Motivation \bigcirc Given a **sequence**, knowing which is its (Euclidean) **nearest neighbor** provides important

information, regarding:

anomalies

Recurrent patterns

clusters

11th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management

A fast and accurate algorithm to find an approximate nearest neighbor distance (nnd) profile for all the sequences of a time series

In order to obtain the **nnd** of **all** the squences one needs **2** nested **loops**.

In order to obtain the **nnd** of **all** the squences one needs **2** nested **loops**.

IC3K 2019

11th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management

In order to obtain the **nnd** of **all** the squences one needs **2** nested **loops**.

Let's prune the inner loop, thanks to

topologies

the N

11th International Joint Conference on Knowledge Discovery,

Another neighborhood:

Another neighborhood:

Another neighborhood:

$$d_t(S^k, S^j) = |k - j|$$

divide the sequence in parts

Piecewise Aggregate Approximation (PAA)

Piecewise Aggregate Approximation (PAA)

34433013225661872103

with 2 parameters:

- -the number of sub-sequences
- the number of symbols

A different form of Neighborhood:

Symbolic Aggregate approXimation **Topology**

Many sequences

3¹⁶

S⁹⁷

S⁶⁸⁴

S¹³⁵⁵

A different form of Neighborhood:

Symbolic Aggregate approXimation **Topology**

Many sequences

Symbolic-sequence

A different form of Neighborhood:

Symbolic
Aggregate
approXimation

Topology

Many sequences

Symbolic-sequence

The s-sequences are natural **clusters** of sequences!

HOT SAX, an algorithm for quickly finding the sequence with the highest nnd

SAX EUCLIDEAN

HOT SAX, an algorithm for quickly finding the sequence with the highest nnd

SAX EUCLIDEAN

Algorithm

Inner loop:

Run on all the sequences which belonging to the **same** s-sequence (**exit** from inner loop if the *nnd* drops below the best so far)

Run on all other s-sequences (exit from inner loop if the *nnd* drops below the best so far)

Outer loop:

Run on all the sequences:

IC3K 2019

SAX EUCLIDEAN

Algorithm

Inner loop:

Run on all the sequences which belonging to the **same** s-sequence (**exit** from inner loop if the *nnd* drops below the best so far)

Run on all other s-sequences (exit from inner loop if the *nnd* drops below the best so far)

Outer loop:

Run on all the sequences:

warning

HOT SAX is **not** supposed to provide a good nnd for **all** the sequences!

Algorithm

Inner loop:

Run on all the sequences which belonging to the **same** s-sequence (exit from inner loop if the *nnd* drops below the best so far)

Run on all other s-sequences (exit from inner loop if the *nnd* drops below the best so far) 1

Let's force a full run on the same cluster!

Outer loop:

Run on all the sequences:

Algorithm

Inner loop:

Run on all the sequences which belonging to the **same** s-sequence

Run on all the sequences which belonging to the **same** s-sequence (alphabet + 1)

Run on all other s-sequences (exit from inner loop if the *nnd* drops below the best so far) 2

Let's force a full run on the same cluster, but with alphabet +1

Outer loop:

Run on all the sequences

s-sequences
hypercubes

$$\frac{\text{inner volume}}{\text{volume}} = \left(\frac{l - 2\varepsilon}{l}\right)^n \xrightarrow{n \to \infty} 0$$

For higher dimensions most of the volume of a hypercube is close to its borders!

The nearest neighbor of S^9 is S^{453}

$$nnd(S^9) = 17.8$$

Since $nnd(S^8) \ll nnd(S^9)$

$$nnd(S^{i+1}) \leq d_2(S^{i+1}, S^{i+k+1}) = nnd(S^i) + (p_{i+s} - p_{i+s+k})^2 - (p_i - p_{i+k})^2$$

Algorithm

0

The approx. nnds obtained with HOT SAX

Vienna - Austria DI IN

17 - 19 September, 2019

11th International Joint Conference on Knowledge Discovery,

Knowledge Engineering and Knowledge Management

Let's force a full run on the same cluster, but with alphabet +1

Improve the nnds with the time topology

file name	% of exact nnds	Err	speedup
$sel 0606_2$	99.6	0.05	83
$sel0606_3$	99.5	0.05	116
$sel 102_2$	98.8	0.05	40
$sel 102_3$	99.7	0.06	26
$sel 123_2$	98.8	0.05	32
$sel 123_3$	99.2	0.04	14
$bidmc15_2$	99.6	0.15	5
$bidmc15_3$	99.8	0.09	30
$bidmc15_4$	98.4	0.05	40
$bidmc15_5$	98.9	0.06	58

Err=Average Relative Error

file name	% of exact <i>nnds</i>	Err	speedup
$sel 0606_2$	99.6	0.05	83
$sel 0606_{3}$	99.5	0.05	116
$sel 102_2$	98.8	0.05	40
$sel 102_3$	99.7	0.06	26
$sel 123_2$	98.8	0.05	32
$sel 123_3$	99.2	0.04	14
$bidmc15_2$	99.6	0.15	5
$bidmc15_3$	99.8	0.09	30
$bidmc15_4$	98.4	0.05	40
$bidmc15_5$	98.9	0.06	58

N_a= number of sequences for which only an approximate nnd has been found

$$Err = \underbrace{\frac{1}{N_a} \sum_{i=1}^{N} \frac{nnd_a(S^i) - nnd(S^i)}{nnd(S^i)}}_{i=1}$$

approximate *nnd*

exact nnd

file name	% of exact <i>nnds</i>	Err	speedup
$sel0606_2$	99.6	0.05	83
$sel0606_3$	99.5	0.05	116
$sel 102_2$	98.8	0.05	40
$sel 102_3$	99.7	0.06	26
$sel 123_2$	98.8	0.05	32
$sel 123_3$	99.2	0.04	14
$bidmc15_2$	99.6	0.15	5
$bidmc15_3$	99.8	0.09	30
$bidmc15_4$	98.4	0.05	40
$bidmc15_5$	98.9	0.06	58

Vienna - Austria

17 - 19 September, 2019

1. By interweaving **Euclidean**, **SAX**, and **Time** topologies, (starting from a discord search algorithm) we obtain a new algorithm for finding an **approximate** *nnd* profile for all the sequences of a time series

- 1. By interweaving **Euclidean**, **SAX**, and **Time** topologies, (starting from a discord search algorithm) we obtain a new algorithm for finding an **approximate** *nnd* profile for all the sequences of a time series
- 2. The evaluation we performed returns more than 98% of the **exact nnds**, and the values of the approximate *nnd*s are within 15% in respect to the exact ones.

Vienna - Austria

17 - 19 September, 2019

- By interweaving Euclidean, SAX, and Time topologies, (starting from a discord search algorithm) we obtain a new algorithm for finding an approximate nnd profile for all the sequences of a time series
- The evaluation we performed returns more than 98% of the **exact nnds**, and the values of the approximate nnds are within 15% in respect to the exact ones.

Vienna - Austri

The speedups are between 1 and 2 orders of magnitude in respect to the brute force 3.

- 1. By interweaving **Euclidean**, **SAX**, and **Time** topologies, (starting from a discord search algorithm) we obtain a new algorithm for finding an **approximate** *nnd* profile for all the sequences of a time series
- 2. The evaluation we performed returns more than 98% of the **exact nnds**, and the values of the approximate *nnd*s are within 15% in respect to the exact ones.

17 - 19 September, 2019

- 3. The speedups are between 1 and 2 orders of magnitude in respect to the brute force
- 4. The algorithm **assures** to find the sequences with the highest *nnd* (*discords*)

- 1. By interweaving **Euclidean**, **SAX**, and **Time** topologies, (starting from a discord search algorithm) we obtain a new algorithm for finding an **approximate** *nnd* profile for all the sequences of a time series
- 2. The evaluation we performed returns more than 98% of the **exact nnds**, and the values of the approximate *nnd*s are within 15% in respect to the exact ones.
- 3. The speedups are between **1 and 2 orders** of magnitude in respect to the brute force
- 4. The algorithm **assures** to find the sequences with the highest *nnd* (*discords*)

Future

- 1. Use faster algorithms to calculate the distance between sequences
- 2. Add the second *nnd*, third *nnd*, etc.

