L = set of binary stirng containing at most two 1s

L = set of binary stirng containing at most two 1s RE = 0*/0*10*/0*10*10* کے

Design an eNFA for L1L2 (using closure properties)where L1 = set of binary strings containing at most two 1s, L2 = set of binary strings which are alternating sequences of 0s and 1s.

L = set of binary stirng containing at most two 1s

RE = 0*/0*10*/0*10*10*

Design an eNFA for L^R where L = set of binary strings which contain at most two 1s.

Design an eNFA for L1 = set of binary strings which are alternating sequences of 0s and 1s. Design another eNFA for L2 = set of binary strings which end with 10.

Then design an eNFA for L1L2.

RE for L2 = (0/1)*10

L1 = {e, 0, 1, 10, 01, 101, 010, 1010, 0101,}.
RE =
$$(10)*/(01)*/0(10)*/1(01)* = (0/e)(10)*(1/e)$$

Design an eNFA for L^R where L is the set of binary strings which contain at least two 1s.

RE for L =
$$(0/1)*1(0/1)*1(0/1)*$$

=> NFA:

NFA for L^R:

Design an eNFA for L = set of alternating sequence of 0s and 1s. Then use that to design an eNFA for L*

eNFA for L*:

Design an eNFA for L = set of alternating sequence of 0s and 1s. Then use that to design an eNFA for L^R

$$R = (0/\epsilon)(10)^*(1/\epsilon)$$

eNFA for L^R:

