

MRI HW1-Spin Echo

Presenter:

M11107309 何柏昇

OUTLINE

- Introduction
- Method
 - DCM
 - Curve Fitting
- Experimental Results

Introduction

Introduction

T2 equation:

$$M = M_0 * e^{-T2/TE}$$

$$\Rightarrow M_0 \& TE$$

Introduction

OUTLINE

- Introduction
- Method
 - DCM
 - Curve Fitting
- Experimental Results

Method

Python

- pydicom: To read DCM file
- numpy and scipy: To calculate
- matplotlib: To plot the image

Method - DCM

DCM file Read

- pydicom

```
#讀取 DCM
filename = '012 se mc/012-001.dcm'
ds = dcmread(filename)
print(ds)
```

```
Dataset.file_meta ------
(0002, 0000) File Meta Information Group Length UL: 178
(0002, 0001) File Meta Information Version
                                               OB: b'\x00\
(0002, 0002) Media Storage SOP Class UID
                                               UI: MR Imag
(0002, 0003) Media Storage SOP Instance UID
                                               UI: 1.3.12
(0002, 0010) Transfer Syntax UID
                                              UI: Explici
(0002, 0012) Implementation Class UID
                                               UI: 1.3.12
(0002, 0013) Implementation Version Name
                                              SH: 'MR VB1
(0008, 0005) Specific Character Set
                                              CS: 'ISO IF
(0008, 0008) Image Type
                                              CS: ['ORIGI
(0008, 0012) Instance Creation Date
                                              DA: '201416
(0008, 0013) Instance Creation Time
                                               TM: '212136
(0008, 0016) SOP Class UID
                                               UI: MR Imag
```

DCM Table

(0018,0061)	DS	
(0018,0070)	IS	Counts Accumulated
(0018,0071)	CS	Acquisition Termination Condition
(0018,0072)	DS	Effective Duration
(0018,0073)	CS	Acquisition Start Condition
(0018,0074)	IS	Acquisition Start Condition Data
(0018.0075)	IS	Acquisition Termination Condition Data
(0018,0080)	DS	Repetition Time
(0018,0080) (0018,0081)	DS DS	Repetition Time Echo Time
		•
(0018,0081)	DS	Echo Time
(0018,0081) (0018,0082)	DS DS	Echo Time Inversion Time
(0018,0081) (0018,0082) (0018,0083)	DS DS DS	Echo Time Inversion Time Number of Averages

Method - DCM

DCM file Read

- pydicom

```
# Echo time
print('Echo time: ', ds[0x18,0x81].value)

# Information of image
print('shape: ',ds.pixel_array.shape)
print('data type: ',ds.pixel_array.dtype)

# matplotlib to plot the DCM
plt.imshow(ds.pixel_array,cmap='gray')
plt.show()
```

Echo time: 13.6

shape: (256, 256)

data type: uint16

Method - Curve Fitting

$$M = M_0 * e^{-T2/TE}$$

- $\Rightarrow M_0 \& TE$
- \Rightarrow Curve fitting

Method - Curve Fitting

Curve fitting

- scipy.optimize.curve_fit

- Setting threshold: To skip noise of background
- Curve fitting : To find M_0 & TE
- Setting P_0 : To find correct solution faster

Method - Curve Fitting

Curve fitting

• Setting P_0 : To find correct solution faster

$$M = M_0 * e^{-T2/TE}$$

When
$$T2 = TE$$

$$M = M_0 * 0.37$$

Assume $M_1 \approx M_0$

$$\Rightarrow M_2 \approx M_1 * 0.37$$

$$\Rightarrow P_0 = (TE_2, M_1)$$

OUTLINE

- Introduction
- Method
 - DCM
 - Curve Fitting
- Experimental Results

Experimental Results - Curve Fitting

• Experimental Results - Curve Fitting - Image A

Experimental Results - Curve Fitting - Image B

• Experimental Results - Mapping

• Experimental Results - Mapping

Q&A

Thanks

