TU BRAUNSCHWEIG

Prof. Dr.-Ing. Marcus Magnor Institut für Computergraphik Felix Klose (klose@cg.cs.tu-bs.de)

23.05.2015

Bildbasierte Modellierung SS 2015 Übungsblatt 4

Abgabe: Präsentation der bearbeiteten Aufgaben in der Übung am 5.6.2015.

Für die Programmieraufgaben kann in Gruppen von max. 3 Leuten zusammengearbeitet werden. Dabei muss aber jeder einzelne in der Lage sein, alle Teile des Programms zu erklären. Die Materialien für die Programmieraufgaben sind jeweils erhältlich unter:

http://www.cg.cs.tu-bs.de/teaching/lectures/ss15/bbm/

4.1 Homographien (5 Punkte)

Unter der Annahme, dass Bilder mit einer verzerrungsfreien Lochbildkamera aufgenommen werden, kann man Aufnahmen mit verschiedenen Bildebenen und gleichem Projektionszentren durch projektive Abbildungen, sogenannte Homographien, beschreiben.

- Schreibe Translation als Homographie auf (auf Papier!).
- Verschiebe die Bildebene eines Testbildes um 20 Pixel nach rechts, ohne das Projektionszentrum zu ändern. Benutze dafür cvWarpPerspective.
- Wieviele Punktkorrespondenzen benötigt man mindestens, um eine projektive Abbildung zwischen zwei Bildern bis auf eine Skalierung eindeutig zu bestimmen? Warum? (Schriftlich beantworten!)

4.2 Panorama (15 Punkte)

Ziel dieser Aufgabe ist es, aus zwei gegebenen Bildern ein Panorama zu konstruieren.

Dafür muss zunächst aus den gegeben Punktkorrespondenzen

linkes Bild	rechtes Bild
(x,y)	(x,y)
(463, 164)	(225, 179)
(530, 357)	(294, 370)
(618, 357)	(379, 367)
(610, 153)	(369, 168)

eine perspektivische Transformation bestimmt werden, mit der die Bilder auf eine gemeinsame Bildebene transformiert werden können.

- Berechne die Transformation aus den gegebenen Punktkorrespondenzen. Benutze die Funktion cvGetPerspectiveTransform. Was ist die zentrale Idee des DLT-Algorithmus, wie er in der Vorlesung vorgestellt wurde?
- Bestimme die notwendige Bildgröße für das Panoramabild.
- Projiziere das linke Bild in die Bildebene des rechten Bildes. Beachte dabei, dass auch der linke Bildrand in das Panoramabild projiziert wird.
- Bilde das Panoramabild, so dass Pixel, für die zwei Werte vorhanden sind, den Mittelwert zugeordnet bekommen.
- Zeige das Panoramabild an.