Formale Grundlagen der Informatik I 1. Übungsblatt

Fachbereich Mathematik Prof. Dr. Martin Ziegler Alexander Kreuzer

SS 2011

Minitest Lösung

Carsten Rösnick

- a) Sei $M = \{1, 2, 3\}$. Welche der folgenden Aussagen ist wahr?
 - $\square \emptyset \in M$
 - $\boxtimes \emptyset \subseteq M$
 - $\square \{\emptyset\} \in M$

Begründung: Die leere Menge (\emptyset) ist nicht in M enthalten, weil M nach Voraussetzung nur 1,2,3 enthält. ($\emptyset \in M$ würde z.B. gelten, wenn $M = \{\emptyset, 1, 2, 3\}$). Aus dem gleiche Grund ist auch die Menge, die nur \emptyset enthält, also $\{\emptyset\}$, nicht in M enthalten. Die leere Menge ist aber eine Teilmenge von M, weil für jedes Element der leeren Menge gilt, dass es auch Element von M ist.

b) Sei \sim die Äquivalenzrelation auf der Menge $\{a,b,c,d\}$, die durch $a\sim b, c\sim b, a\sim c, a\nsim d$ gegeben ist. Welchen Index hat diese Äquivalenzrelation?

Antwort: 2

Begründung: Da \sim nach Voraussetzung eine Äquivalenzrelation ist, gilt $[a]_{\sim} = \{a,b,c\}$. Da Äquivalenzklassen entweder disjunkt oder gleich sind folgt mit $a \nsim d$, dass $[d]_{\sim} = \{d\}$. Folglich gilt: index $(\{a,b,c,d\}/\sim) = |\{[a]_{\sim},[d]_{\sim}\}| = 2$.

c) Seien $R, R' \subseteq \mathbb{N} \times \mathbb{N}$ zwei Ordnungsrelationen, so ist $R \cap R'$ ebenfalls eine Ordnungsrelation.

Antwort: Richtig.

Begründung: Beispielhaft für die Antisymmetrie. Seien $(a,b) \in R \cap R'$ und $(b,a) \in R \cap R'$, dann gilt $(a,b),(b,a) \in R$. Da R nach Voraussetzung antisymmetrisch folgt daraus a=b (was zu zeigen war).

Gruppenübung

Aufgabe G1 (Transitionssysteme)

Gegeben sei ein Stapel unterschiedlich großer Pfannkuchen, die der Größe nach sortiert werden sollen. Erlaubt ist es dabei nur, einen Oberteil des Stapels umzudrehen. Bei 6 Pfannkuchen, die wir der Größe nach mit 1,2,3,4,5,6 bezeichnen und anfangs in der Ordnung 352416 auf dem Stapel liegen, würde das Umdrehen der ersten (obersten) 4 dem Übergang

$$352416 \xrightarrow{4} 425316$$

entsprechen.

- (a) Zeichnen Sie für Stapel von 3 Pfannkuchen ein Diagramm mit allen möglichen Stapeln und den möglichen Übergängen (Wenden der ersten 2 oder 3) zwischen diesen.
- (b) Betrachten Sie Stapel mit 4 Pfannkuchen. Geben Sie für $0 \le k \le 4$ die Menge aller Stapel an, die sich mit k Operationen zu 1234 sortieren lassen, aber nicht mit weniger als k Operationen. Welches ist der einzige Stapel, der sich auf zwei verschiedene Weisen in genau 3 Schritten sortieren lässt?

Aufgabe G2 (Mengenoperationen)

Sei M eine Menge und $A, B, C \subseteq M$ Teilmengen.

(a) Beweisen Sie die folgenden Aussagen.

i.
$$(A \cap B) \setminus C = (A \setminus C) \cap B$$
.

ii.
$$C \setminus (A \cap B) = (C \setminus A) \cup (C \setminus B)$$
.

(b) Welche der folgenden Mengen sind Teilmengen voneinander? Welche sind disjunkt?

$$A \setminus (B \cap C)$$
, $A \cap (M \setminus B)$, $M \setminus (A \cup B)$, $(M \setminus A) \cup (M \setminus B)$.

Aufgabe G3 (Relationen)

Sei R eine binäre Relation auf X, also $R \subseteq X \times X$. Wir definieren (induktiv)

$$R^0 := \{(x, x) : x \in X\},\$$
 $R^{n+1} := \{(x, y) : \text{ es gibt ein } z \text{ mit } (x, z) \in R \text{ und } (z, y) \in R^n \},\$
 $R^* := \bigcup_{n>0} R^n.$

Zeigen Sie:

- (a) R^* ist eine reflexive Relation.
- (b) R^* ist eine transitive Relation.
- (c) R^* umfasst R, d.h. $R \subseteq R^*$.
- (d) R^* ist die kleinste reflexive und transitive Relation, die R umfasst (d.h. falls R' reflexiv und transitiv ist mit $R \subseteq R'$, so gilt $R^* \subseteq R'$)

Hausübung

Aufgabe H1 (Boolsche Algebra)

(6 Punkte)

Sei $|: \mathbb{B}^2 \to \mathbb{B}$ die durch die folgende Wahrheitstafel definierte Boolesche Operation

$$\begin{array}{c|c|c|c}
 & 0 & 1 \\
\hline
 0 & 1 & 1 \\
\hline
 1 & 1 & 0
\end{array}$$

- (i) Drücken Sie die Bedeutung von $p \mid q$ umgangssprachlich aus.
- (ii) Zeigen Sie, dass sich die üblichen Operationen \neg , \lor , \land , \rightarrow , \longleftrightarrow durch | alleine definieren lassen. Extra: gibt es eine andere zweistellige Operation mit derselben Eigenschaft?

Aufgabe H2 (Induktion)

(i) Beweisen Sie durch Induktion:

Es gibt kein Wort
$$w \in \{a, b\}^*$$
 mit $aw = wb$.

(ii) Geben Sie einen Ein-Zeilen-Beweis für (i), der keine Induktion verwendet.

- (iii) Die Menge der arithmetischen Ausdrücke sei wie folgt induktiv erklärt:
 - (a) jede Zahl $n \in \mathbb{N}$ ist ein Ausdruck,
 - (b) mit s und t sind auch $s \cdot t$ und s + t Ausdrücke,
 - (c) mit s ist auch (s) ein Ausdruck.

Zeigen Sie durch strukturelle Induktion, dass jeder Ausdruck die gleiche Anzahl von linken und rechten Klammern enthält.