[12.16] (Observe the use of the Einstein Summation Convention in this problem). Let \mathcal{M} be an n-manifold, $q \le n$, and $M = \{1, 2, ..., n\}$. Let α be a p-form

$$\alpha = \alpha_{r \cdots t} \, dx^r \wedge \cdots \wedge dx^t$$
 and let ψ be its q -vector Hodge-like dual $\psi = \psi^{uv \cdots w} \, \frac{\partial}{\partial x^u} \cdots \frac{\partial}{\partial x^w}$.

- (a) Confirm the equivalency of the 3 conditions for simplicity:
 - 1. α is simple iff $\alpha_{\mathbf{r}\cdots t}$ $\alpha_{r'\mathbf{l}s'\cdots t'}=0$ for all p-tuples (r, ..., t) and (r', ..., t') in \mathbf{M}^p
 - 2. ψ is simple iff $\psi^{[u\cdots w]}\psi^{u']v'\cdots w'}=0$ for all q-tuples (u,\ldots,w) and (u',\ldots,w') in \mathbb{M}^q
 - 3. α and ψ are both simple iff $\psi^{u\cdots w} \alpha_{ws\cdots t} = 0$ for all p-tuples $(w, s \dots, t)$ and q-tuples (u, \dots, w) .
- (b) Show that a 2-form $\alpha = \alpha_{rs} dx^r \wedge dx^s$ in \mathcal{M} is simple iff $\alpha_{[rs} \alpha_{r']s'} = 0$ for all pairs (r, s) and (r', s') in \mathbb{M}^2

Proof: Einstein summation convention is used throughout this proof.

This is a rework for myself of Juergen Beckmann's proof with additional details and different wording so that I can more easily follow it. It also isimplifies his part (b) proof by skipping the vectors that Penrose mentions in his hint.

(a)

Preface: I find it easier to use equations rather than proportions for the Hodge-like duals α and ψ . The most logical choice is to make both proportionality constants the same,

$$\frac{1}{\sqrt{n!}}$$
, as in

- (i) $\alpha_{r\cdots t} = \frac{1}{\sqrt{n!}} \varepsilon_{r\cdots tu\cdots w} \psi^{u\cdots w}$ where ε is an *n*-form, and
- (ii) $\psi^{u\cdots w} = \frac{1}{\sqrt{n!}} \alpha_{r\cdots t} \in \alpha_{r\cdots t} \text{ where } \epsilon \text{ is an } n\text{-vector such that}$
- (iii) $\varepsilon \bullet \in = \varepsilon_{r \cdots t u \cdots w} \in {}^{r \cdots t u \cdots w} = n!$:

To see that this works, set the constant to $\frac{1}{\sqrt{n!}}$ in (ii). We then see that (i) must have the same constant [due to equation (iii)] since

$$\alpha_{r\dots t} = \alpha_{r\dots t} \frac{\varepsilon \bullet \in \stackrel{\text{(iii)}}{=} \frac{1}{n!}}{n!} \alpha_{r\dots t} \varepsilon_{r\dots tu \dots w} \in \frac{r \dots tu \dots w}{1} = \left(\frac{1}{\sqrt{n!}} \alpha_{r\dots t} \in \stackrel{r \dots tu \dots w}{1}\right) \left(\frac{1}{\sqrt{n!}} \varepsilon_{r\dots tu \dots w}\right) = \frac{1}{\sqrt{n!}} \varepsilon_{r\dots tu \dots w} \psi^{u \dots w}$$

Notice that the indices used in the p-tuple in (3) are slightly different than in (1) and (2). Because in this proof we will be switching often between the expressions in (1), (2), and (3) we require a set of non-conflicting indices. To do this we re-write (i) and (ii):

- (iv) $\alpha_{ws\cdots t} = \frac{1}{\sqrt{n!}} \varepsilon_{ws\cdots tx\cdots z} \psi^{x\cdots z}$ where $r \dots t$ are given distinct members of M and
 - x...z sums over the remaining members of M, and
- (v) $\psi^{u\cdots w} = \frac{1}{\sqrt{n!}} \alpha_{a\cdots c} \in a^{\cdots cu\cdots w}$ where $u \dots w$ are given distinct members of M and $a \dots c$ sums over the remaining members of M.

We also must keep in mind the following fact:

(vi) Each set $r...t \ x...z \ and \ a...c \ u...w$ is a permutation of the members of $M = \{1, 2, ..., n\}$.

To prove part (a) it is sufficient to show that $\alpha_{\mathbf{r}'',\mathbf{r}'',\mathbf{r}''} = 0$ iff $\psi^{\mathbf{l}^{u\cdots w}} \ \psi^{u''\mathbf{l}^{v'\cdots w'}} = 0$ iff $\psi^{\mathbf{l}^{u\cdots w}} \ \alpha_{ws\cdots t} = 0$ since then we will have α is simple iff $\alpha_{\mathbf{r}'',\mathbf{r}',\mathbf{r}'',\mathbf{r}''} = 0$ iff $\psi^{\mathbf{l}^{u\cdots w}} \ \psi^{u''\mathbf{l}^{v'\cdots w'}} = 0$ iff ψ is simple iff $\psi^{u\cdots w} \ \alpha_{ws\cdots t} = 0$ iff α and ψ are both simple.

$$\psi^{u\cdots w}\,\alpha_{ws\cdots t} \stackrel{\text{(v)}}{=} \left(\frac{1}{\sqrt{n!}}\,\alpha_{a\cdots c} \in^{a\cdots cu\cdots w}\right) \alpha_{ws\cdots t} = \frac{1}{\sqrt{n!}}\,\alpha_{a\cdots c}\,\,\alpha_{ws\cdots t} \in^{a\cdots cu\cdots w}$$

$$\stackrel{\text{(vi)}}{=} \frac{\pm 1}{\sqrt{n!}} \sum_{\pi \in \mathcal{P}} sign(\pi)\,\alpha_{\pi(a)\cdots\pi(c)}\,\,\alpha_{\pi(w)s\cdots t} \in^{1\,2\cdots n} \qquad \text{(\pm because \in is antisymmetric)}$$

$$\stackrel{\text{Defn of }}{=} \frac{\pm 1}{\sqrt{n!}} \alpha_{\text{I}a\cdots c}\,\,\alpha_{w\text{I}s\cdots t} \in^{1\,2\cdots n}$$

$$\stackrel{\text{Rename }}{=} \frac{\pm 1}{\sqrt{n!}} \alpha_{\text{I}r\cdots t}\,\,\alpha_{r'\text{I}s'\cdots t'} \in^{1\,2\cdots n} \text{ where \mathcal{P} is the set of permutations of (a,\ldots,c,w).}$$
 Therefore
$$\psi^{u\cdots w}\,\alpha_{ws\cdots t} = 0 \text{ iff }\,\,\alpha_{\text{I}r\cdots t}\,\,\alpha_{r'\text{I}s'\cdots t'} = 0\,.$$

$$\begin{split} \psi^{u\cdots w} & \alpha_{ws\cdots t} \stackrel{\text{(iv)}}{=} \psi^{u\cdots w} \bigg(\frac{1}{\sqrt{n!}} \varepsilon_{ws\cdots tx\cdots z} \psi^{x\cdots z} \hspace{0.1cm} \bigg) \alpha_{ws\cdots t} = \frac{1}{\sqrt{n!}} \psi^{x\cdots z} \hspace{0.1cm} \psi^{u\cdots vw} \hspace{0.1cm} \varepsilon_{ws\cdots tx\cdots z} \\ & = \frac{\pm 1}{\sqrt{n!}} \psi^{x\cdots z} \hspace{0.1cm} \psi^{wu\cdots v} \hspace{0.1cm} \varepsilon_{x\cdots zws\cdots t} \stackrel{\text{(vi)}}{=} \frac{\pm 1}{\sqrt{n!}} \sum_{\pi \in \mathscr{P}} \operatorname{sign}(\pi) \hspace{0.1cm} \psi^{\pi(x)\cdots \pi(z)} \hspace{0.1cm} \psi^{\pi(w)u\cdots v} \hspace{0.1cm} \varepsilon_{1 \, 2\cdots n} \\ & \stackrel{\text{Defn of}}{=} \frac{\pm 1}{\sqrt{n!}} \psi^{[x\cdots z} \hspace{0.1cm} \psi^{w]u\cdots v} \hspace{0.1cm} \varepsilon_{1 \, 2\cdots n} \\ & \stackrel{\text{Rename}}{=} \frac{\pm 1}{\sqrt{n!}} \psi^{[u\cdots w} \hspace{0.1cm} \psi^{u']v'\cdots w'} \hspace{0.1cm} \varepsilon_{1 \, 2\cdots n} \\ & \stackrel{\text{Rename}}{=} \frac{\pm 1}{\sqrt{n!}} \psi^{[u\cdots w} \hspace{0.1cm} \psi^{u']v'\cdots w'} \hspace{0.1cm} \varepsilon_{1 \, 2\cdots n} \\ \end{split}$$

Therefore $\psi^{u\cdots w}\,\alpha_{ws\cdots t}=0$ iff $\psi^{[u\cdots w}\,\psi^{u']v'\cdots w'}=0$.

(b).

Recall that α is antisymmetric in (r, s):

 α is a sum of, say, q simple 2-forms. So there are simple 1-forms γ^k and δ^k such that $\alpha = \sum_{k=1}^q \gamma^k \wedge \delta^k = \sum_{k=1}^q \gamma^k_{[r} \, \delta^k_{s]} \, dx^r \wedge dx^s = \alpha_{rs} \, dx^r \wedge dx^s$

That is,

(*)
$$\alpha_{rs} = \sum_{k=1}^{n} \gamma_{[r}^{k} \delta_{s]}^{k} = -\sum_{k=1}^{n} \gamma_{[s}^{k} \delta_{r]}^{k} = -\alpha_{rs}$$

Thus α is antisymmetric in (r, s).

 \pmb{lpha} is simple iff $\ \exists$ 1-forms $\pmb{\gamma} = \gamma_r \, d x^r$ and $\pmb{\delta} = \delta_s \, d x^s \ni \ \pmb{\alpha} = \pmb{\gamma} \wedge \pmb{\delta} = \gamma_{[r} \, \delta_{s]} \, d x^r \wedge d x^s$. That is, $\pmb{\alpha}$ is simple iff the components $\pmb{\alpha}_{rs}$ of $\pmb{\alpha}$ satisfy $\pmb{\alpha}_{rs} = \gamma_{[r} \delta_{s]} \, \forall r$, \pmb{s} .

"IF"

Suppose $\alpha_{[rs}\alpha_{r']s'}=0$ for all pairs (r, s) and (r', s') in M^2 .

If $\alpha = 0$, clearly α is simple (e.g., $\alpha = dx^1 \wedge dx^1$). So, suppose $\alpha \neq 0$. Then $\exists a, b \in \{1, ..., n\}$ such that $\alpha_{ab} \neq 0$. Define

(i)
$$\gamma=\gamma_{r}~dx^{r}~{\rm where}~\gamma_{r}=2\frac{\alpha_{rb}}{\alpha_{ab}}~{\rm and}~{\rm (ii)}~\delta=\delta_{s}~dx^{s}~{\rm where}~\delta_{s}=\alpha_{as}$$
 .

Consequently (i')
$$\gamma_{\rm s}=2\frac{\alpha_{\rm sb}}{\alpha_{\rm ab}}$$
 and (ii') $\delta_{\rm r}=\alpha_{\rm ar}$.

$$(\mathrm{iii}) \quad \gamma_{\mathrm{[r}} \delta_{\mathrm{s]}} = \tfrac{1}{2} \Big(\gamma_{\mathrm{r}} \delta_{\mathrm{s}} - \gamma_{\mathrm{s}} \delta_{\mathrm{r}} \Big)^{\mathrm{(i,\,ii,\,i',\,ii')}} \\ = \frac{\alpha_{\mathrm{rb}} \alpha_{\mathrm{as}} - \alpha_{\mathrm{sb}} \alpha_{\mathrm{ar}}}{\alpha_{\mathrm{ob}}}.$$

Now
$$0 = \alpha_{[rs}\alpha_{a]b} = \frac{1}{6} \left(\alpha_{rs}\alpha_{ab} + \alpha_{sa}\alpha_{rb} + \alpha_{ar}\alpha_{sb} - \alpha_{sr}\alpha_{ab} - \alpha_{as}\alpha_{rb} - \alpha_{ra}\alpha_{sb}\right)$$
, or
(iv) $\alpha_{rb}\alpha_{as} - \alpha_{sb}\alpha_{ar} = \alpha_{ab}\alpha_{rs} + \alpha_{rb}\alpha_{sa} - \alpha_{ab}\alpha_{sr} - \alpha_{sb}\alpha_{ra}$

Plugging (iv) into (iii) yields

$$\begin{split} \gamma_{\text{[r}}\delta_{\text{s]}} &= \frac{\alpha_{rb}\alpha_{as} - \alpha_{sb}\alpha_{ar}}{\alpha_{ab}} = \frac{\alpha_{ab}\alpha_{rs} + \alpha_{rb}\alpha_{sa} - \alpha_{ab}\alpha_{sr} - \alpha_{sb}\alpha_{ra}}{\alpha_{ab}} \\ &\stackrel{\text{(*)}}{=} \alpha_{rs} - \left(\frac{\alpha_{rb}}{\alpha_{ab}}\right)\alpha_{as} - \alpha_{sr} + \left(\frac{\alpha_{sb}}{\alpha_{ab}}\right)\alpha_{ar} \\ &= \alpha_{rs} - \frac{1}{2}\gamma_{r}\delta_{s} - \alpha_{sr} + \frac{1}{2}\gamma_{s}\delta_{r} = 2\alpha_{rs} - \gamma_{\text{[r}}\delta_{\text{s]}} \end{split}$$

$$\Rightarrow \quad \alpha_{\rm rs} = \delta_{\rm [r} \gamma_{\rm s]}$$

$$\Rightarrow$$
 α is simple \checkmark

"ONLY IF"

Suppose $\alpha=\alpha_{rs}\, dx^r \wedge dx^s$ is simple. Then \exists 1-forms $\gamma=\gamma_r dx^r$ and $\delta=\delta_s dx^s$ such that (v) $\alpha_{rs}=\gamma_{lr}\delta_{sl} \quad \forall \, r,s.$

So

$$\begin{split} &\alpha_{\mathbf{l}rs}\alpha_{u\mathbf{l}v} = \frac{1}{6}\Big(\alpha_{rs}\alpha_{uv} + \alpha_{su}\alpha_{rv} + \alpha_{ur}\alpha_{sv} - \alpha_{sr}\alpha_{uv} - \alpha_{us}\alpha_{rv} - \alpha_{ru}\alpha_{sv}\Big) \\ &= \frac{1}{6}\Big[\Big(\alpha_{rs} - \alpha_{sr}\Big)\alpha_{uv} + \Big(\alpha_{su} - \alpha_{us}\Big)\alpha_{rv} + \Big(\alpha_{ur} - \alpha_{ru}\Big)\alpha_{sv}\Big] \\ &= \frac{1}{3}\Big(\alpha_{rs}\alpha_{uv} + \alpha_{su}\alpha_{rv} + \alpha_{ur}\alpha_{sv}\Big) \\ &= \frac{1}{3}\Big(\gamma_{\mathbf{l}r}\delta_{s\mathbf{l}}\gamma_{\mathbf{l}u}\delta_{v\mathbf{l}} + \gamma_{\mathbf{l}s}\delta_{u\mathbf{l}}\gamma_{\mathbf{l}r}\delta_{v\mathbf{l}} + \gamma_{\mathbf{l}u}\delta_{r\mathbf{l}}\gamma_{\mathbf{l}s}\delta_{v\mathbf{l}}\Big) \\ &= \Big(\frac{1}{3}\Big)\Big(\frac{1}{2}\Big)\Big(\frac{1}{2}\Big) \Bigg\{ \Big(\Big[\gamma_{r}\delta_{s} - \gamma_{s}\delta_{r}\Big]\Big[\gamma_{u}\delta_{v} - \gamma_{v}\delta_{u}\Big]\Big) + \Big(\Big[\gamma_{s}\delta_{u} - \gamma_{u}\delta_{s}\Big]\Big[\gamma_{r}\delta_{v} - \gamma_{v}\delta_{r}\Big]\Big) \\ &= \Big(\frac{1}{3}\Big)\Big(\frac{1}{2}\Big)\Big(\frac{1}{2}\Big) \Big\{ + \Big(\Big[\gamma_{u}\delta_{r} - \gamma_{r}\delta_{u}\Big]\Big[\gamma_{s}\delta_{v} - \gamma_{v}\delta_{s}\Big]\Big) \\ &= \frac{1}{12} \Bigg[\gamma_{r}\delta_{s}\gamma_{u}\delta_{v} - \gamma_{r}\delta_{s}\gamma_{v}\delta_{u} - \gamma_{s}\delta_{r}\gamma_{u}\delta_{r} + \gamma_{s}\delta_{r}\gamma_{v}\delta_{u} \\ &+ \gamma_{s}\delta_{u}\gamma_{r}\delta_{v} - \gamma_{s}\delta_{u}\gamma_{v}\delta_{r} - \gamma_{u}\delta_{s}\gamma_{r}\delta_{v} + \gamma_{u}\delta_{s}\gamma_{v}\delta_{r} \\ &+ \gamma_{u}\delta_{r}\gamma_{s}\delta_{v} - \gamma_{u}\delta_{r}\gamma_{v}\delta_{s} - \gamma_{r}\delta_{u}\gamma_{s}\delta_{v} + \gamma_{r}\delta_{u}\gamma_{v}\delta_{s} \Big] \\ &= 0 \ . \qquad \qquad \checkmark$$