MAT137 Lecture 7 — Absolute Values

Warmup:

You want to show " $\exists n \in \mathbb{N}$ s.t. $n^2 = 4$ ". Which proofs below are correct/incorrect?

- (A) Let n = 2. Then, $n \in \mathbb{N}$ and $n^2 = 4$.
- (B) Take $n \in \mathbb{N}$. Let n = 2. Then $n^2 = 4$.
- (C) Let $n \in \mathbb{N}$. Assume n = 2. Then $n^2 = 4$.
- (D) Take n = 2. Then $n \in \mathbb{N}$ and $n^2 = 4$.

Before next class:

Watch videos 2.1, 2.2, 2.3

Variations on induction

S₁

 $\forall n \geq 3. S_n \implies S_{n+1}$

Let S_n be a statement depending on a positive integer n.

What conclusions can you draw in each of the following cases? (I.e., for which n do you know that S_n is true?)

S₁

 $\forall n \geq 1, S_{n+1} \implies S_n$

Variations on induction 2

We want to prove

$$\forall n \geq 1, S_n$$

So far we have proven

- *S*₁
- $\bullet \ \forall n \geq 1, \ S_n \implies S_{n+3}.$

What else do we need to do?

What is wrong with this proof by induction?

Theorem

 $\forall N \geq 1$, every set of N students in MAT137 will get the same grade.

What is wrong with this proof by induction?

Theorem

 $\forall N \geq 1$, every set of N students in MAT137 will get the same grade.

Proof.

- Base case. It is clearly true for N = 1.
- Induction step.

Assume it is true for N. I'll show it is true for N + 1. Take a set of N + 1 students. By induction hypothesis:

- The first N students get the same grade.
- The last N students get the same grade.

Hence the N+1 students all get the same grade.

What is wrong with this proof by induction?

For every $N \geq 1$, let

$$S_N =$$
 "every set of N students in MAT137 will get the same grade"

What did we actually prove in the previous page?

- S_1 ?
- $\forall N \geq 1$, $S_N \implies S_{N+1}$?

Properties of absolute value

Let $a, b \in \mathbb{R}$. Are the following conclusions correct?

(A)
$$|ab| = |a||b|$$

(B) $|a+b| = |a|+|b|$

If any of the conclusions is wrong, fix it.

Properties of inequalities

Let $a, b, c \in \mathbb{R}$.

Assume a < b. Are the following conclusions correct?

(A)
$$a + c < b + c$$
 (D) $a^2 < b^2$

(B)
$$a-c < b-c$$

(C) $ac < bc$

(F) $\sin a < \sin b$

If any of the conclusions is wrong, fix it.

Sets described by distance

Let $a \in \mathbb{R}$. Let $\delta > 0$.

Describe the following sets using interval notation.

- (A) $A = \{x \in \mathbb{R} : |x| < \delta\}$
- (B) $B = \{x \in \mathbb{R} : |x| > \delta\}$
- (C) $C = \{x \in \mathbb{R} : |x a| < \delta\}$
- (D) $D = \{x \in \mathbb{R} : 0 < |x a| < \delta\}$

Implications

Find all positive values of X, Y, and Z which make the following implications true.

(A)
$$|t-3| < 1 \implies |2t-6| < X$$

(B)
$$|t-3| < Y \implies |2t-6| < 1$$

(C)
$$|t-3| < 1 \implies |t+5| < Z$$

MAT137 Lecture 8 — Limits

Warmup:

Let $a, b, c \in \mathbb{R}$. Determine whether the following statements are true or false.

- (A) $a > b \implies ac > bc$
- (B) $a > b \implies not (ac > bc)$
- (C) not $(a > b) \implies ac > bc$
- (D) not $(a > b \implies ac > bc)$

Before next class:

Watch videos 2.5, 2.6

Limits from a graph

Find the value of

(A) $\lim_{x\to 2} f(x)$ (B) $\lim_{x\to 0} f(f(x))$

Floor

Given a real number x, we defined the *floor of* x, denoted by $\lfloor x \rfloor$, as the largest integer smaller than or equal to x. For example:

$$\lfloor \pi \rfloor = 3, \qquad \lfloor 7 \rfloor = 7, \qquad \lfloor -0.5 \rfloor = -1.$$

Sketch the graph of $y = \lfloor x \rfloor$. Then compute:

(A)
$$\lim_{x \to 0^+} \lfloor x \rfloor$$
 (C) $\lim_{x \to 0} \lfloor x \rfloor$

(B)
$$\lim_{x\to 0^-} \lfloor x \rfloor$$
 (D) $\lim_{x\to 0} \lfloor x^2 \rfloor$

More limits from a graph

Find the value of

- (A) $\lim_{x\to 0^+} g(x)$
- (B) $\lim_{x\to 0^+} \lfloor g(x) \rfloor$
- (C) $\lim_{x\to 0^+} g(\lfloor x \rfloor)$
- (D) $\lim_{x\to 0^-} g(x)$
- (E) $\lim_{x\to 0^-} \lfloor g(x) \rfloor$
- (F) $\lim_{x\to 0^-} \lfloor \frac{g(x)}{2} \rfloor$
- (G) $\lim_{x\to 0^-} g(\lfloor x \rfloor)$

MAT137 Lecture 9 — Definition of Limit

Warmup:

Compute the follwoing limits

(A)
$$\lim_{x\to 0} \lfloor x \rfloor$$

(B)
$$\lim_{x\to 0} \lfloor x^2 \rfloor$$

Before next class:

Watch videos 2.7, 2.8, 2.9

δ from a graph

- (A) Find one value of $\delta > 0$ s.t. $0 < |x-2| < \delta \implies |f(x)-2| < 0.5$
- (B) Find all values of $\delta > 0$ s.t. $0 < |x 2| < \delta \implies |f(x) 2| < 0.5$

Warm-up

Write down the formal definition of

$$\lim_{x\to a} f(x) = L.$$

Side limits

Recall

Let $L, a \in \mathbb{R}$.

Let f be a function defined at least on an interval around a, except possibly at a.

$$\lim_{x\to a} f(x) = L$$

means

$$\forall \varepsilon > 0, \exists \delta > 0 \text{ s.t.} \quad 0 < |x-a| < \delta \implies |f(x)-L| < \varepsilon.$$

Write, instead, the formal definition of

$$\lim_{x\to a^+} f(x) = L, \quad \text{and} \quad \lim_{x\to a^-} f(x) = L.$$

Infinite limits

Definition

Let $a \in \mathbb{R}$.

Let f be a function defined at least on an interval around a, except possibly at a.

Write a formal definition for

$$\lim_{x\to a} f(x) = \infty.$$

Infinite limits 2

Which statements are equivalent to the definition of $\lim_{x\to a} f(x) = \infty$?

(A)
$$\forall \varepsilon > 0, \ \exists \delta > 0$$
 s.t. $0 < |x - a| < \delta \implies |f(x) - \infty| < \varepsilon$

(B)
$$\forall M \in \mathbb{R}, \exists \delta > 0 \text{ s.t. } 0 < |x - a| < \delta \implies f(x) > M$$

(C)
$$\forall \delta > 0, \exists M > 0 \text{ s.t. } 0 < |x - a| < \delta \implies f(x) > M$$

(D)
$$\forall M > 0, \exists \delta > 0 \text{ s.t. } 0 < |x - a| < \delta \implies f(x) > M$$

(E)
$$\forall M > 5$$
, $\exists \delta > 0$ s.t. $0 < |x - a| < \delta \implies f(x) > M$

(F)
$$\forall \varepsilon > 0, \ \exists \delta > 0 \ \text{ s.t. } 0 < |x - a| < \delta \implies f(x) > \varepsilon$$

MAT137 Lecture 10 — Proofs of limits

Warmup:

- Write the moral definition of $\lim_{x\to a} f(x) = \infty$
- Write the formal definition of $\lim_{x\to a} f(x) = \infty$

Before next class:

Watch videos 2.10, 2.11

Evaluating Limits

- You're trying to guess $\lim_{x\to 0} f(x)$.
- You plug in $x = 0.1, 0.01, 0.001, \ldots$ and get f(x) = 0 for all these values.
- In fact, you're told that for all $n=1,2,\ldots$, $f\left(\frac{1}{10^n}\right)=0.$
- Can you conclude that $\lim_{x\to 0} f(x) = 0$?

Let $f : \mathbb{R} \to \mathbb{R}$ be defined by f(x) = 2x. We want to prove

$$\lim_{x\to 3} f(x) = 6.$$

Find all values of X, Y, Z, W > 0 that make the following statements true

(A)
$$0 < |t-3| < X \implies |f(t)-6| < 1$$

(B)
$$0 < |t-3| < Y \implies |f(t)-6| < 1/10$$

(C)
$$0 < |t-3| < Z \implies |f(t)-6| < 1/100$$

Let $f : \mathbb{R} \to \mathbb{R}$ be defined by f(x) = 2x. We want to prove

$$\lim_{x\to 3} f(x) = 6.$$

Find all values of X, Y, Z, W > 0 that make the following statements true

(A)
$$0 < |t-3| < X \implies |f(t)-6| < 1$$

(B)
$$0 < |t-3| < Y \implies |f(t)-6| < 1/10$$

(C)
$$0 < |t-3| < Z \implies |f(t)-6| < 1/100$$

(D)
$$0 < |t - 3| < W \implies |f(t) - 6| < \varepsilon$$
 (assuming $\varepsilon > 0$ is fixed)

Let $f : \mathbb{R} \to \mathbb{R}$ be defined by f(x) = 2x. We want to prove

$$\lim_{x\to 3} f(x) = 6.$$

- The definition of $\lim_{x\to 3} f(x) = 6$
- The structure of a proof that $\lim_{x\to 3} f(x) = 6$

Let $f : \mathbb{R} \to \mathbb{R}$ be defined by f(x) = 2x. We want to prove

$$\lim_{x\to 3} f(x) = 6.$$

- The definition of $\lim_{x\to 3} f(x) = 6$
- The structure of a proof that $\lim_{x\to 3} f(x) = 6$
- Prove that $\lim_{x\to 3} f(x) = 6$

Disproving a Limit

Let $f : \mathbb{R} \to \mathbb{R}$ be defined by f(x) = 2x. We want to prove

$$\lim_{x\to 3} f(x) \neq 7.$$

- The definition of $\lim_{x\to 3} f(x) \neq 7$
- The structure of a proof that $\lim_{x\to 3} f(x) \neq 7$

Disproving a Limit

Let $f : \mathbb{R} \to \mathbb{R}$ be defined by f(x) = 2x. We want to prove

$$\lim_{x\to 3} f(x) \neq 7.$$

- The definition of $\lim_{x\to 3} f(x) \neq 7$
- The structure of a proof that $\lim_{x\to 3} f(x) \neq 7$
- Prove that $\lim_{x\to 3} f(x) \neq 7$

MAT137 Lecture 11 — Limit Laws

Before next class:

Watch videos 2.12, 2.13

What is wrong with this "proof"?

Prove that

$$\lim_{x\to 3}(5x+1)=16$$

"Proof:"

Let $\varepsilon > 0$.

WTS
$$\forall \varepsilon > 0$$
, $\exists \delta > 0$ s.t.

$$0<|x-3|<\delta \implies |(5x+1)-(16)|<\varepsilon$$

$$|(5x+1)-(16)| < \varepsilon \iff |5x+15| < \varepsilon$$

 $\iff 5|x+3| < \varepsilon \implies \delta = \frac{\varepsilon}{3}$

Indeterminate form

Let $a \in \mathbb{R}$. Let f and g be positive functions defined near a, except maybe at a.

Assume
$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$$
.

What can we conclude about $\lim_{x\to a} \frac{f(x)}{g(x)}$?

- (A) The limit is 1.
- (B) The limit is 0.
- (C) The limit is ∞ .
- (D) Limit does not exist.

(E) We do not have enough information to decide.

True or False?

Is this claim true?

Claim

Let $a \in \mathbb{R}$.

Let f and g be functions defined near a.

- IF $\lim_{x\to a} f(x) = 0$,
- THEN $\lim_{x\to a} [f(x)g(x)] = 0$.

Theorem

Let $a \in \mathbb{R}$. Let f and g be functions with domain \mathbb{R} , except possibly a. Assume

- $\bullet \lim_{x\to a} f(x) = 0, \text{ and }$
- g is bounded. This means that

$$\exists M > 0 \text{ s.t. } \forall x \neq a, |g(x)| \leq M.$$

THEN
$$\lim_{x \to 2} [f(x)g(x)] = 0$$

Theorem

Let $a \in \mathbb{R}$. Let f and g be functions with domain \mathbb{R} , except possibly a. Assume

- $\bullet \lim_{x\to a} f(x) = 0, \text{ and }$
- ullet g is bounded. This means that

$$\exists M > 0 \text{ s.t. } \forall x \neq a, |g(x)| \leq M.$$

THEN
$$\lim_{x\to a} [f(x)g(x)] = 0$$

(A) Write down the formal definition of what you want to prove.

Theorem

Let $a \in \mathbb{R}$. Let f and g be functions with domain \mathbb{R} , except possibly a. Assume

- $\bullet \lim_{x\to a} f(x) = 0, \text{ and }$
- g is bounded. This means that

$$\exists M > 0 \text{ s.t. } \forall x \neq a, |g(x)| \leq M.$$

THEN
$$\lim_{x \to a} [f(x)g(x)] = 0$$

- (A) Write down the formal definition of what you want to prove.
- (B) Write down what the structure of the formal proof.

Theorem

Let $a \in \mathbb{R}$. Let f and g be functions with domain \mathbb{R} , except possibly a. Assume

- $\bullet \lim_{x\to a} f(x) = 0, \text{ and }$
- g is bounded. This means that

$$\exists M > 0 \text{ s.t. } \forall x \neq a, |g(x)| \leq M.$$

THEN
$$\lim_{x \to a} [f(x)g(x)] = 0$$

- (A) Write down the formal definition of what you want to prove.
- (B) Write down what the structure of the formal proof.
- (C) Rough work.

A new theorem about products

Theorem

Let $a \in \mathbb{R}$. Let f and g be functions with domain \mathbb{R} , except possibly a. Assume

- g is bounded. This means that

$$\exists M > 0 \text{ s.t. } \forall x \neq a, |g(x)| \leq M.$$

THEN
$$\lim_{x \to a} [f(x)g(x)] = 0$$

- (A) Write down the formal definition of what you want to prove.
- (B) Write down what the structure of the formal proof.
- (C) Rough work.
- (D) Write down a complete formal proof.

Critique this "proof" - #1

• WTS $\lim_{x \to a} [f(x)g(x)] = 0$: $\forall \varepsilon > 0, \exists \delta > 0$ s.t. $0 < |x - a| < \delta \implies |f(x)g(x)| < \varepsilon$.

- We know $\lim_{x \to a} f(x) = 0$ $\forall \varepsilon_1 > 0, \exists \delta_1 > 0$ s.t. $0 < |x - a| < \delta_1 \implies |f(x)| < \varepsilon_1$.
- We know $\exists M > 0$ s.t. $\forall x \neq 0, |g(x)| \leq M$.
- $|f(x)g(x)| = |f(x)||g(x)| < \varepsilon_1 M$
- $\bullet \ \varepsilon = \varepsilon_1 M \implies \varepsilon_1 = \frac{\varepsilon}{M}$
- Take $\delta = \delta_1$

MAT137 Lecture 12 — Squeeze theorem

Before next class:

Watch videos 2.14, 2.15

Limits involving sin(1/x) Part I

$\lim_{x\to 0}\sin(1/x)$

- (A) DNE because the function values oscillate around 0
- (B) DNE because 1/0 is undefined
- (C) DNE because no matter how close x gets to 0, there are x's near 0 for which $\sin(1/x) = 1$, and some for which $\sin(1/x) = -1$
- (D) all of the above

Limits involving sin(1/x) Part II

```
\lim_{x\to 0} x^2 \sin(1/x)
```

- (A) DNE because the function values oscillate around 0
- (B) DNE because 1/0 is undefined
- (C) DNE because no matter how close x gets to 0, there are x's near 0 for which $\sin(1/x) = 1$, and some for which $\sin(1/x) = -1$
- (D) equals 0
- (E) equals 1

A new squeeze

This is the Squeeze Theorem, as you know it:

The (classical) Squeeze Theorem

Let $a, L \in \mathbb{R}$.

Let f, g, and h be functions defined near a, except possibly at a.

- For x close to a but not a, $h(x) \le g(x) \le f(x)$
 - $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} h(x) = L$

THEN •
$$\lim_{x \to a} g(x) = L$$

A new squeeze

This is the Squeeze Theorem, as you know it:

The (classical) Squeeze Theorem

Let $a, L \in \mathbb{R}$.

Let f, g, and h be functions defined near a, except possibly at a.

- For x close to a but not a, $h(x) \le g(x) \le f(x)$
 - $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} h(x) = L$

THEN •
$$\lim_{x \to a} g(x) = L$$

Come up with a new version of the theorem about limits being infinity. (The conclusion should be $\lim_{x\to 2} g(x) = \infty$.)

Hint: Draw a picture for the classical Squeeze Theorem. Then draw a picture for the new theorem.

A new theorem about products

Theorem

Let $a \in \mathbb{R}$. Let f and g be functions with domain \mathbb{R} , except possibly a. Assume

- $\lim_{x \to a} f(x) = 0, \text{ and }$
- g is bounded. This means that

$$\exists M > 0 \text{ s.t. } \forall x \neq a, |g(x)| \leq M.$$

THEN
$$\lim_{x\to a} [f(x)g(x)] = 0$$

Proof feedback

- (A) Is the structure of the proof correct? (First fix ε , then choose δ , then ...)
- (B) Did you say exactly what δ is?
- (C) Is the proof self-contained?(I do not need to read the rough work)
- (D) Are all variables defined? In the right order?
- (E) Do all steps follow logically from what comes before? Do you start from what you know and prove what you have to prove?
- (F) Are you proving your conclusion or assuming it?

Critique this "proof" - #1

• WTS $\lim_{x \to a} [f(x)g(x)] = 0$: $\forall \varepsilon > 0, \exists \delta > 0$ s.t. $0 < |x - a| < \delta \implies |f(x)g(x)| < \varepsilon$.

- We know $\lim_{x \to a} f(x) = 0$ $\forall \varepsilon_1 > 0, \exists \delta_1 > 0$ s.t. $0 < |x - a| < \delta_1 \implies |f(x)| < \varepsilon_1$.
- We know $\exists M > 0$ s.t. $\forall x \neq 0, |g(x)| \leq M$.
- $|f(x)g(x)| = |f(x)||g(x)| < \varepsilon_1 M$
- $\bullet \ \varepsilon = \varepsilon_1 M \implies \varepsilon_1 = \frac{\varepsilon}{M}$
- Take $\delta = \delta_1$

Critique this "proof" – #2

- WTS $\lim_{x \to a} [f(x)g(x)] = 0$. By definition, WTS: $\forall \varepsilon > 0, \exists \delta > 0 \text{ s.t. } 0 < |x a| < \delta \implies |f(x)g(x)| < \varepsilon$
- Let $\varepsilon > 0$.
- Use the value $\frac{\varepsilon}{M}$ as "epsilon" in the definition of $\lim_{x\to a} f(x) = 0$

$$\exists \delta_1 \in \mathbb{R} \text{ s.t. } 0 < |x - a| < \delta_1 \implies |f(x)| < \frac{\varepsilon}{M}.$$

- Take $\delta = \delta_1$.
- Let $x \in \mathbb{R}$. Assume $0 < |x a| < \delta$
- Since $\exists M > 0$ s.t. $\forall x \neq 0, |g(x)| \leq M$ $|f(x)g(x)| < \frac{\varepsilon}{M} \cdot M = \varepsilon.$

Critique this "proof" - #3

• Since g is bounded, $\exists M > 0$ s.t. $\forall x \neq 0, |g(x)| \leq M$

• Since $\lim_{x \to a} f(x) = 0$, there exists $\delta_1 > 0$ s.t. if $0 < |x - a| < \delta_1$, then $|f(x) - 0| = |f(x)| < \varepsilon_1 = \frac{\varepsilon}{M}$.

•
$$|f(x)g(x)| = |f(x)| \cdot |g(x)| \le |f(x)| \cdot M < \varepsilon_1 \cdot M = \frac{\varepsilon}{M} \cdot M = \varepsilon$$

• In summary, by setting $\delta = \min\{\delta_1\}$, we find that if $0 < |x-a| < \delta$, then $|f(x) \cdot g(x)| < \varepsilon$.

MAT137 Lecture 13 — Continuity

Before next class:

Watch videos 2.16, 2.17, 2.18

Undefined function

Let $a \in \mathbb{R}$ and let f be a function. Assume f(a) is undefined.

What can we conclude?

- (A) $\lim_{x \to a} f(x)$ exist
- (B) $\lim_{x\to a} f(x)$ doesn't exist.
- (C) No conclusion. $\lim_{x\to a} f(x)$ may or may not exist.

What else can we conclude?

- (D) f is continuous at a.
 - (E) f is not continuous at a.
- (F) No conclusion. f may or may not be continuous at a.

Definition of continuity

Let $f : \mathbb{R} \to \mathbb{R}$ be a function and let $a \in \mathbb{R}$.

Which statements are equivalent to "f is continuous at a"?

- (A) $\lim_{x\to a} f(x)$ exists.
- (B) $\lim_{x\to a} f(x)$ exists and f(a) is defined.
- (C) $\lim_{x\to a} f(x) = f(a)$.
- (D) $\forall \varepsilon > 0, \ \exists \delta > 0, \ \text{s.t.} \ \forall x \in \mathbb{R}, \ 0 < |x a| < \delta \implies |f(x) L| < \varepsilon$
- $(\mathsf{E}) \quad \forall \varepsilon > 0, \ \exists \delta > 0, \ \mathsf{s.t.} \ \forall x \in \mathbb{R}, \ 0 < |x a| < \delta \implies |f(x) f(a)| < \varepsilon$
- (F) $\forall \varepsilon > 0, \ \exists \delta > 0, \ \text{s.t.} \ \forall x \in \mathbb{R}, \qquad |x a| < \delta \implies |f(x) f(a)| < \varepsilon$

A new function

• Let $x, y \in \mathbb{R}$. What does the following expression calculate? Prove it.

$$f(x,y) = \frac{x+y+|x-y|}{2}$$

Suggestion: If you don't know how to start, try some sample values of x and y.

A new function

• Let $x, y \in \mathbb{R}$. What does the following expression calculate? Prove it.

$$f(x,y) = \frac{x+y+|x-y|}{2}$$

Suggestion: If you don't know how to start, try some sample values of x and y.

• Write a similar expression to compute $min\{x, y\}$.

More continuous functions

We want to prove the following theorem

Theorem

IF f and g are continuous functions THEN $h(x) = \max\{f(x), g(x)\}$ is also a continuous function.

You are allowed to use all results that we already know. What is the fastest way to prove this?

Hint: There is a way to prove this quickly without writing any epsilons.

Existence

Write down the formal definition of the following statements:

(A)
$$\lim_{x\to a} f(x) = L$$

(B)
$$\lim_{x\to a} f(x)$$
 exists

(C) $\lim_{x\to a} f(x)$ does not exist

MAT137 Lecture 14 — Continuity 2

Before next class:

Watch videos 2.19, 2.20

True or False? – Discontinuities

- (A) IF f and g have removable discontinuities at a THEN f+g has a removable discontinuity at a
- (B) IF f and g have non-removable discontinuities at a THEN f+g has a non-removable discontinuity at a

Which one is the correct claim?

Claim 1?

(Assuming these limits exist)

$$\lim_{x\to a} g(f(x)) = g\left(\lim_{x\to a} f(x)\right)$$

Claim 2?

IF (A)
$$\lim_{x\to a} f(x) = L$$
, and (B) $\lim_{t\to L} g(t) = M$
THEN (C) $\lim_{t\to L} g(f(x)) = M$

A difficult example

Construct a pair of functions f and g such that

$$\lim_{x \to 0} f(x) = 1$$

$$\lim_{t \to 1} g(t) = 2$$

$$\lim_{x \to 0} g(f(x)) = 42$$

Continuity and Quantifiers

Let $f: \mathbb{R} \to \mathbb{R}$ be a function.

Which statements are equivalent to "f is continuous"?

(A)
$$\lim_{x\to a} f(x) = f(a)$$
.

(B)
$$\forall \varepsilon > 0, \ \exists \delta > 0, \ \text{s.t.} \ \forall x \in \mathbb{R}, \ |x - a| < \delta \implies |f(x) - f(a)| < \varepsilon$$

(C)
$$\forall a \in \mathbb{R}, \ \forall \varepsilon > 0, \ \exists \delta > 0, \ \text{s.t.} \ \forall x \in \mathbb{R}, \ |x - a| < \delta \implies |f(x) - f(a)| < \varepsilon$$

(D)
$$\forall x \in \mathbb{R}, \ \forall \varepsilon > 0, \ \exists \delta > 0, \ \text{s.t.} \ \forall a \in \mathbb{R}, \ |x - a| < \delta \implies |f(x) - f(a)| < \varepsilon$$

(E)
$$\forall \varepsilon > 0, \ \exists \delta > 0, \ \text{s.t.} \ \forall a \in \mathbb{R}, \ \forall x \in \mathbb{R}, \ |x - a| < \delta \implies |f(x) - f(a)| < \varepsilon$$

MAT137 Lecture 15 — Computations

Before next class:

Watch videos 2.21, 2.22

Transforming limits

The only thing we know about the function g is that

$$\lim_{x\to 0}\frac{g(x)}{x^2}=2.$$

Use it to compute the following limits:

(A)
$$\lim_{x\to 0} \frac{g(x)}{x}$$
 (C) $\lim_{x\to 0} \frac{g(3x)}{x^2}$ (B) $\lim_{x\to 0} \frac{g(x)}{x^4}$

(B)
$$\lim_{x\to 0} \frac{g(x)}{x^4}$$

Limits at infinity

Compute:

$$\begin{array}{lll} \text{(A)} & \lim_{x \to \infty} \left(x^7 - 2x^5 + 11 \right) \\ \text{(B)} & \lim_{x \to \infty} \left(x^2 - \sqrt{x^5 + 1} \right) \\ \text{(C)} & \lim_{x \to \infty} \frac{x^2 + 11}{x + 1} \\ \text{(D)} & \lim_{x \to \infty} \frac{x^2 + 2x + 3}{3x^2 + 4x + 5} \\ \text{(E)} & \lim_{x \to 0} \frac{\sin(5x)}{x} \\ \end{array} \qquad \begin{array}{ll} \text{(F)} & \lim_{x \to 0} \frac{\tan^2(2x^2)}{x^4} \\ \text{(G)} & \lim_{x \to 0} \frac{\sin e^x}{e^x} \\ \text{(H)} & \lim_{x \to 0} \frac{1 - \cos x}{x} \\ \text{(H)} & \lim_{x \to 0} \frac{x^3 + \sqrt{2x^6 + 1}}{x} \\ \text{(I)} & \lim_{x \to \infty} \frac{x^3 + \sqrt{2x^6 + 1}}{2x^3 + \sqrt{x^5 + 1}} \end{array}$$

Which solution is right?

Compute
$$L = \lim_{x \to -\infty} \left[x - \sqrt{x^2 + x} \right]$$
.

Solution 1

$$L = \lim_{x \to -\infty} \frac{\left[x - \sqrt{x^2 + x}\right] \left[x + \sqrt{x^2 + x}\right]}{\left[x + \sqrt{x^2 + x}\right]} = \lim_{x \to -\infty} \frac{x^2 - (x^2 + x)}{\left[x + \sqrt{x^2 + x}\right]}$$
$$= \lim_{x \to -\infty} \frac{-x}{x \left[1 + \sqrt{1 + \frac{1}{x}}\right]} = \lim_{x \to -\infty} \frac{-1}{\left[1 + \sqrt{1 + \frac{1}{x}}\right]} = \frac{-1}{2}$$

Solution 2

$$L = \lim_{x \to -\infty} \left[x - \sqrt{x^2 + x} \right] = (-\infty) - \infty = -\infty$$

MAT137 Lecture 16 — IVT and EVT

Before next class:

Watch videos 3.1, 3.2, 3.3

Existence of solutions

Prove that the equation

$$x^4-2x=100$$

has at least two solutions.

Can this be proven? (Use IVT)

- (A) Prove that there exists a time of the day when the hour hand and the minute hand of a clock form an angle of exactly 23 degrees.
- (B) During a Raptors basketball game, at half time the Raptors have 52 points. Prove that at some point they had exactly 26 points.
- (C) Prove that at some point during Jason's life, his height in centimetres was exactly equal to 10 times his weight in kilograms. Some data:
 - His height at birth: 47 cm
 - His weight at birth: 3.2 kg
 - His height today: 170 cm

Definition of maximum

Let f be a function with domain I. Which one (or ones) of the following is (or are) a definition of "f has a maximum on I"?

(A)
$$\forall x \in I$$
, $\exists C \in \mathbb{R}$ s.t. $f(x) \leq C$

(B)
$$\exists C \in I \text{ s.t. } \forall x \in I, f(x) \leq C$$

(C)
$$\exists C \in \mathbb{R} \text{ s.t. } \forall x \in I, \ f(x) \leq C$$

(D)
$$\exists C \in \mathbb{R} \text{ s.t. } \forall x \in I, f(x) < C$$

Extrema

In each of the following cases, does the function f have a maximum and a minimum on the interval A?

(A)
$$f(x) = x^2$$
, $A = (-1, 1)$.
(B) $f(x) = \frac{(e^x + 2)\sin x}{x} - \cos x + 3$, $A = [2, 6]$
(C) $f(x) = \frac{(e^x + 2)\sin x}{x} - \cos x + 3$, $A = (0, 5]$