REVIEW TUTORIAL (1): Non linear solvers of 20 decomposition
Given a non-linear equation (i.e. $f(x) = \cos x \cdot e^{-x} - x^3$) it can be really hold (or impossible!) to find a zero for it.
Usually need on itezative algozathm in the form:
$\chi^{(\kappa)} = \phi(\chi^{(\kappa-1)}) - \gamma$ recurrence itezonan
If x*is the true seas for the function what I want is:
$\lim_{k\to\infty} x^k = x^*$
, · · · ·
Literative methods can converge with different "speed": The 2 most common kind of convergence ore:
$\frac{ X^{(\kappa+1)}-X^{*} }{ X^{(\kappa)}-X^{*} } \leftarrow \frac{ X^{(\kappa+1)}-X^{*} }{ X^{(\kappa)}-X^{*} ^{2}} \leftarrow \frac{ X^{(\kappa+1)}-X^{(\kappa+1)} }{ X^{(\kappa)}-X^{(\kappa+1)} } \leftarrow \frac{ X^{(\kappa)}-X^{(\kappa+1)} }{ X^{(\kappa)}-X^{(\kappa+1)} } \leftarrow X$
In mollob we solve non (mear equation using the command: Lee 20

In mollob we solve non (mor equation using the command: feeto which take as ozguments the function f(x) I want to find the some initial guess x_0 . Alternotevely instead you can pass the interval inwhich you want to find the sero.

BISECTION METHOD

Bosed on imermeduote volve theorem

If f(x) e (on [a,b) ond f(a)f(b) <0 -> 3x in [a, b] | f(x4) =0.

Pseudo-voole:

$$X_1 = (b-a)$$

else check for f(a)f(x,)<0 or f(b)f(x,)<0 if f(a).f(x,)<0

$$X_2 = \underbrace{X_1 - a}_{2}$$

break repeat until f(xx) =0

Bisection object thm has unear convergence:

interval at
$$\leftarrow (b^{(\kappa)} - a^{(k)})$$
.

Top κ

$$(b^{(0)} - a^{(0)}) < \frac{1}{2^{\kappa}}$$

Nauton's METHOD

Olven a funamon f(x) and its demotive f(x) the Newton's method is:

$$X^{k+1} = X^k - f(X^k)$$

$$f'(X^k)$$
Newton Step

$$f(x) = 3x^3 - e^x$$

 $f'(x) = 9x^2 - e^x$
 $x_0 = 3$

$$\frac{\chi_{1} = \chi_{0} - f(\chi_{0}) = 3 - 3 \cdot 3^{3} - e^{3}}{f(\chi_{0})} = \frac{3 - 3 \cdot 3^{3} - e^{3}}{9 \cdot 3^{2} - e^{3}}$$

Newton's method for systems of equations:

Suppose I have a system of n equation, in n wouldes:

$$f(x,y) = \begin{cases} f(x,y) \\ f_2(x,y) \end{cases} \Rightarrow \text{system of 2 equations in 2 wouldes}$$

For an initial guess
$$\bar{x}_0 = \left(\frac{\bar{x}_0}{\bar{x}_{02}}\right)$$
 the newton's method is:

$$\widehat{X}_{1} = \overline{X}_{0} - \underbrace{f(\overline{X}_{0})}_{f(\overline{X}_{0})}$$

After k steps I can rewate:

$$\overline{\chi}_{k} = \overline{\chi}_{k-1} - \overline{f}(\overline{\chi}_{k-1})$$

$$\overline{f}(\overline{\chi}_{k-1})$$

where If is the Jacobion. The Joudian is a motrix of portrol decision us swith entires:

$$[Jf]_{k\ell} = Jf_k = [Jf/Jx] + [Jf/Jy]$$

$$Jk = [Jf/Jx] + [Jf/Jx] + [Jf/Jy]$$

Example:

$$\frac{1}{2} \left(\frac{x^3 - xy - 10}{10} = f_1(x, y) \right) \\
= \left(\frac{y^2 - 4x - 5}{10} = f_2(x, y) \right)$$

see muth newton, m to see how it works!

LU decomposition:
Given $Ax = b$, $2u$ decomposition foctionse the motax A into 2
MOTZIX Land U such that:
1-U = A
In pounculor, 1 is lower trumpulor and U is appez Trumpular
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$L = \begin{pmatrix} 2_1 & 2_2 \end{pmatrix} \qquad U = \begin{pmatrix} u_{22} & \cdots \\ u_{2n-1} & \cdots \\ u_{2n-1} & \cdots \end{pmatrix}$
C31 C32 C33
y
Now my system is: $2vx = b \rightarrow 2y = b$
I solve foz y:
$y = 2^{-1}b$
this is easy and not expansive to salve
using bockword Euler
1 1001
Now, remember that
0x = y
I solve foz x: X = Uÿ
This is easy and not expansive to solve
using focused Euler
Experiment in Hotlob using [L,U] = lu(A) and [L,U,P] = lu(A)
CXPECIMENTI IN MOUDE USING LL, UJ = W (A) WHO LL, U, IJ = W (A)