فصل چهارم هندسه و استدلال

خط: از کنار هم قرار گرفتن بی شمار نقطه در کنار هم به وجود می آید .

انواع خط :

۳ - خط خمیده (منحنی):

نام گذاری نقطه و خط :

در ریاضیات برای نام گذاری شکل ها از حروف انگلیسی استفاده می کنیم . به طور معمول نقطه را با حروف بزرگ انگلیسی نام گذاری می کنیم و برای نام گذاری امتداد خط که در شکل با فلش نشان می دهیم از حروف کوچک استفاده می کنیم. مانند :

- از یک نقطه بی شمار خط می گذرد .
- از دو نقطه فقط یک خط راست می گذرد .
- * از دو نقطه بی شمار خط خمیده و شکسته می گذرد .

پاره خط :

قسمتی از یک خط که با دو نقطه جدا شده باشد .

طول یا اندازهٔ پاره خط :

طول یک پاره خط را با قراردادن یک پاره خط کوچک در بالای نام آن نمایش می دهیم. برای مثال $\overline{\mathrm{AB}}$ یعنی طول پاره خط AB و آن فاصلهٔ بین دو سر پاره خط میباشد که با واحدی به نام سانتیمتر (cm) اندازه گیری می شود .

$$\frac{n(n-1)}{7}$$

تعداد تمام پاره خط های روی یک خط از این دستور محاسبه می شود

. در این فرمول $m{n}$ تعداد نقطه ها می باشد

نيم خط :

قسمتی از یک خط که از یک طرف با یک نقطه جدا شده باشد . نیم خط را ابتدا با نام نقطه و سپس نام خط نام گذاری و می خوانند . مانند نیم خط Ax

تعداد تمام نیمخط های روی یک خط از دستور n به دست می آید که در آن n تعداد نقطه ها می باشد.

مقايسهٔ پاره خط ها :

پاره خط ها را با توجه به طول آنها با هم مقایسه میکنیم.

مثلا پاره خط AB بزرگتر از پاره خط EF میباشد . این موضوع را به صورت ریاضی چنین مینویسیم .

 $\overline{AB} > \overline{EF}$ $A \longrightarrow A \longrightarrow B \longrightarrow F$

جمع و تفریق پاره خط ها :

در جمع پاره خط ها به دنبال هم و در تفریق ، آنها را روی هم قرار میدهیم . مانند : در شکل نقاط B ، A و C روی یک خط قرار دارند. داریم :

نسبت بین پا*ر*ہ خط ھا :

با توجه به طول پاره خط ها می توان بین آنها نسبتهای مختلفی به دست آورد . مانند : در شکل M وسط پاره خط AB است.

$$\overline{AB} = \Upsilon \overline{MB}$$
 $\overline{AM} = \frac{1}{\Upsilon} \overline{AB}$

روابط بين پاره خط ها :

با شناخت رابطهٔ بین چند پاره خط ها ، می توان به رابطه های دیگری رسید . مانند :

$$\overline{AB} = \overline{CD} \\
\longrightarrow \overline{CD} > \overline{EF}$$

$$AB > \overline{EF}$$

زاویه :

دو نیم خط با رأس مشترک ، زاویه ایجاد می کنند .

نام گذاری زاویه :

۱ - با حرف رأس ؛ یک حرف بزرگ انگلیسی

ا با حرف رأس و دو نیم خط به مرف انگلیسی که حرف وسط (همان رأس) حرف بزرگ و حروف کناری X نیم خط ها) حرف کوچک استفاده میشود .مانند با نیم خط ها) حرف کوچک استفاده میشود .مانند با نیم خط ها نیم نود کوچک استفاده میشود .مانند با نود با نود

سه حرف xÔy یک حرف)

انواع زاویه :

زاویه های متمم :

. دو زاویه (خواه کنار هم ، خواه جدا از هم) که مجموع آنها ${\bf 90}$ شود

$$\widehat{\mathbf{A}}_1 + \widehat{\mathbf{A}}_Y = \mathbf{q} \circ^{\circ}$$

زاویه های مکمل :

دو زاویه (خواه کنار هم ، خواه جدا از هم) که مجموع آنها ° • ۱۸ شود .

$$\widehat{\mathbf{0}}_1 + \widehat{\mathbf{0}}_7 = 1 \lambda \circ^\circ$$

10 4

زاویه های متقابل به رأس :

در امتداد هم باشند .

* دو زاویهٔ متقابل به رأس همیشه با هم مساویند .

روابط بین زاویه ها :

با شناخت رابطهٔ بین چند زاویه ، می توان به رابطه های دیگری رسید . مانند :

$$\widehat{M}_{1} + \widehat{M}_{2} = 1 \lambda \circ^{\circ}$$

$$\Longrightarrow \widehat{M}_{1} = \widehat{M}_{2}$$

$$\widehat{M}_{2} + \widehat{M}_{2} = 1 \lambda \circ^{\circ}$$

 $\hat{\mathbf{0}}_1 = \hat{\mathbf{0}}_Y$

چند ضلعی ها :

مثلث :

در هر مثلث ، مجموع زاویه ها برابر ° ه ۱۸ است.

مثلث ها را با توجه به اندازهٔ زاویه هایشان به سه دسته تقسیم می کنیم :

- * مثلث هایی که هر سه زاویهٔ آنها تند است.
 - * مثلث هایی که یک زاویهٔ راست دارند.
 - شلث هایی که یک زاویهٔ باز دارند.
- 🕸 یک مثلث را وقتی نمی توان کشید که اندازهٔ هرضلع آن مساوی یا بزرگتر از جمع دو ضلع دیگرش باشد .

جمع دو ضلع دیگر > اندازهٔ هرضلع

* مثلث مختلف الاضلاع را می توان (با سه زاویه تند)، (با یک زاویه قائمه و دو زاویه تند) و (با یک زاویه باز و دو زاویه تند) رسم کرد.

* مثلث متساوی الساقین را می توان (با سه زاویه تند)، (با یک زاویه قائمه و دو زاویه تند) و (با یک زاویه باز و دو زاویه تند) رسم کرد.

% مثلث متساوی الاضلاع را فقط با سه زاویه تند ($^{\circ}$ $^{\circ}$) می توان رسم کرد.

- * چند ضلعی هایی که هیچ زاویهٔ بزرگتر از ° ۰ ۱۸ ندارند ، محدّب یا کوژ نامیده می شوند.
- ∗ به چند ضلعی ای که دست کم یک زاویهٔ بزرگتر از °ه ۱۸ داشته باشد ، چند ضلعی مقعر یا کاو می گویند.
 - * به چند ضلعی هایی که همهٔ ضلع ها و زاویه هایشان با هم مساوی است ، چند ضلعی منتظم گفته میشود.
 - مانند مثلث متساوی الاضلاع ، مربع و . . .
 - n فلعی برابر است با n فرموع زاویه های هر n

$$(n-Y) \times 1 \wedge \circ$$
 (تعداد اضلاع است n)

اندازهٔ هر زاویه هر n ضلعی برابر است با st

$$\frac{1 \wedge \cdot \times (n-1)}{n}$$

n تعداد قطرهای هر n ضلعی برابر است با *

$$\frac{n\times(n-r)}{r}$$

زاویه بین عقربه های ساعت :

زاویه بین عقربه های ساعت شمار و دقیقه شمار در ساعت h و دقیقه m از رابطه زیر به دست می آید.

$$\widehat{\mathbf{A}} = \left| \mathbf{Y} \cdot \mathbf{h} - \frac{\mathbf{11}}{\mathbf{Y}} \mathbf{m} \right|$$

تبدیلات هندسی (انتقال ، تقارن ، دوران) :

اگر شکل را بدون تغییر جهت روی صفحه حرکت دهید تا تصویر آن جابجا گردد ، بدین ترتیب شکل را روی صفحه انتقال داده اید.

وقتی قرینهٔ شکلی را نسبت به یک خط(خط تقارن) پیدا می کنیم ، تصویر به دست آمده مساوی آن شکل است ؛ **امّا جهت** آ**ن تغییر** می کند.

مركز دوران ، نقطه اى است كه شكل حول آن گردش (يا دوران) مى كند .

در مرکز دوران °ه ۱۸ شکل به اندازهٔ یک زایهٔ نیم صفحه (°ه ۱۸) گردش خواهد داشت .

در مرکز دوران $^{\circ}$ و شکل به اندازهٔ یک زایهٔ قائمه ($^{\circ}$ و و کردش می کند . این گردش به دوصورت امکان پذیر است . خلاف عقربه های ساعت ، که گردش $^{\circ}$ و به سمت چپ شکل اولیهٔ صورت میگیرد .