亚历克上 - M202161029

Numerical Exam

PART A

Newton's Met	hods disadvantages
- Can identify repeated roots - It converges quicker	- Can delay to jind the root.
- It converges quicker	representation of for.
- Can find complex roots assuming westert at x.	- Root is a granted.
- Poesn't get sooled by singularity	Hard to find the root for example
	$(x) = \tan^2 \alpha$
	- (an oscillate around the point due to change of sign.
	Je of sign.
4	

2) Interpolation regers to estimation of unknown values.

an approximation of a curve By Polynomial Approximation regers with a polynomial.

Examples of Interpolation and polynomial approximation

- O Taylors polynomial which illustrates that for a given junction jo and a point xo, we approximate to by the Taylor's polynomial Pn&.
- (ii) Nevillès method which illustrates that we don't know which choice is better since true years is unknown, but we can compute all elements and see the trend.
 - the data is arranged closer to the interpolated point. -The formular is: P(x) = (x-xi) Po,i,..., j+1, ... k(x)-Po,1,i-1,i+1...k(x)

Travadrages	interpolating polynomial Disadvantages - The formular length of interpolation is large. - Its too tedious as the approximation increases.
Newtonian int	erpolating polynomial. disadvantages.
- trast convergence - The length of interpolation formular is small No small	

Advantages Gauss Flimmation method	
Advantages (1)	
An augumented matrix is point The method require in	
mear Systems Ly	rore operations
→ Operation ase is 16i → Li	
00 E; + LE; -> E.	
7 It can solve	
equations simultaneously:	
- The procedure - 5 0 (1/6)	
- Useful for solving large problems	
Poul state	
7 H3 Claussian will no be 1	
The permular is ark = marc aik The permular is ORK = marc aik The permular is	staduelly dominat
The formular is ark = mark aik The formular is	
a; > \le a; a;	
34.	

4) Numerical differentian regars to the process of finding the numerical value of a derivative of a given function at a given point.

• good example is Taylor sories or lagrange interpolations

Taylor's series expansion is defined as:

$$f(x_0) = f(x_0) + \Delta x \frac{d}{dx} + \frac{(\Delta x)^2}{2!} \frac{d^2 d}{dx^2} + \dots$$

$$\Delta x = x_1 - x_0$$

$$= \frac{1}{2} f(x_0) + \dots$$

Numerical Intergration rejer to the approximation of a definite integration by a weighted sum of junction values at discretized points within the interval of integration.

The formular is:

 $\int_{\alpha}^{b} f(x) dx \approx \sum_{i=0}^{N} w_{i} f(x_{i})$

Composite Trapezoidal rule Composite Simpsons rule + Evaluates the area under the ruses jundamental theorems of curves by dividing the total area into smalter trapezoids rather than Calculas. + Used to evaluate definite integer using rectangles. integral. a Works by approximating the region -> Uses the quadratic approximation instead instead of linear approximation. under the graph of a junction as a + Provides accurate values when + takes the awarage of the left and the underlying junction is smooth. the right sum. = No accurate value when ynderlying function is smooth. agives approximation value by. * gives approximation value by: $\Delta x = b - a \quad \text{where} \quad x_1 = a + i \Delta x$ Ax = (b-a) where a=x0 (x1 < x2 ... < xn = 6

PART B

I a) Bissection method > P3 = f(x) = Jx - cosx = 0 ... We know. Hat there is atleast one not.

$$P_1 = \frac{x_1 - x}{2} = \frac{0+1}{2} = \frac{x}{2}$$

d(0,5)= Jx - cos x d(0,5)= Jo,5 - cos (0,5) d(0,5) => -0,17,

Since f(x) and f(x,5) < 0 new not is $[P_1, x_1] \Rightarrow [0,5;1]$ $P_2 = \frac{1+0.5}{2} = \frac{1.5}{2} = 0.75$

J(0,75)=J0,75-c05(0,75)

Since p1 and p2 Lo new root is [p, ,x,] = [0,5;0,15]

b)
$$f(x) = x^2 - 6 = 0$$
 Find f_2 with $f_0 = -1$

$$f(x) = x^2 - 6$$
 . $f_0 = -1$

$$f(x) = 2x$$

$$f'(e_0) = 2(-1)$$
 $(2 \neq 0)$

$$= -2$$
 opplicable.

$$P_{\bullet} = -1 - \frac{(-1)^2 - 6}{2(-1)} = 7 - 1 - \frac{15}{2} = -3.5$$

2)
$$\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt$$

=7 OS1135,

3)
$$\int_{-2}^{2} e^{2} x^{2} dx \quad , n = 4$$
The width of each subinterval is
$$\Delta_{x} = h = \frac{b-a}{n} = \frac{2-(c_{1})}{4} = \frac{4}{4} = 1$$

$$T_{4} = \frac{h}{2} \left[f(x_{0}) + 2f(x_{1}) + 2f(x_{2}) + 2f(x_{3}) + f(x_{4}) \right]$$

$$J(x_0) = J(-2) = e^{(x_0)} \stackrel{?}{=} 0,54 \cdot 134 \cdot 113$$

$$J(x_1) = J(-1) = e^{(x_0)} \stackrel{?}{=} 0,367 \cdot 87944$$

$$J(x_1) = J(0) e^{(x_0)} \stackrel{?}{=} 0$$

$$J(x_3) = J(1) e^{(x_1)} \stackrel{?}{=} 2,7(828 \cdot 162)$$

$$J(x_4) = J(1) e^{(x_1)} \stackrel{?}{=} 2,5622439$$

 $T_4 = \frac{1}{2} \left[0,5413 + 2(0,54788) + 0 + 2(2,71828) + 29,55 () \right]$

$$\begin{bmatrix}
10 & -1 & -1 \\
-1 & 10 & -2 \\
-2 & -1 & 5
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
=
\begin{bmatrix}
6,2 \\
8,5 \\
3,2
\end{bmatrix}$$

$$10x_1 - x_2 - x_3 = 6,2$$

 $-x_1 + 10x_2 - 2x_3 = 8,5$
 $-2x_1 - x_2 + 5x_3 = 3,5$

$$x_1 = \frac{6,2 + x_1 + x_2}{10}$$

$$x_2 = 8,5 + 2x_3 + x_1$$

$$x_{j} = 3,2 + 2x_{i} + 2x_{i}$$
5

1st teration
$$x_1^0 = \frac{612}{10}$$
, $x_2^0 = \frac{815}{10}$, $x_3^0 = \frac{312}{5}$

II iteration
$$x_1^{(n)} = 6,2$$
, $x_2^{(n)} = 0,2$, $x_3^{(n)} = 0,15$

5.
$$y' = -5y + 5t^{2} + 2t$$

$$y(0) = \frac{1}{3}$$

$$y' = -5y + 5t^{2} + 2t$$

$$y' = -5y + 5t^{2} + 2t$$

0,0 0,1 1,10 1,22 0,3 1,38 0,4 1,53 0,5 1,72 0,6 1,94 0,7 2,19	1,00 1,20 1,42 1,66 1,93 2,22	1, 40 1, 22 1,36 1,53 0,0456
0,2 6,3 1,36 0,4 1,53 0,5 1,72 0,6 1,44	1,93	1,36
0,4 1,53 0,5 1,72 0,6 1,94	1,93	1,53
0,4 1,53 0,5 1,72 0,6 1,44	1,93	
0,5 1,72		
0,6 1,94	2,22	,
2 -		0,6654
	2,54	0,6001
08	2,89	
0,9		0,6321
10 / 201	3,29	0,483455
3,18	3,21	0,98039199

76,4803