L'informatique au service des maths et de son enseignement

sujet 2

Lucile Alys Favero

November 1, 2022

- Section de mathématique - Semestre printemps

Table des matières

- 1. Présentation du sujet
- 2. Les tentatives
- 3. Une preuve

Présentation du sujet

Le sujet

Etant donné un triangle $\triangle ABC$ et un point $P \in \triangle ABC$,

Le sujet

Etant donné un triangle $\triangle ABC$ et un point $P \in \triangle ABC$,

 Construire le triangle dont les sommets A_P, B_P et C_P sont les pieds des perpendiculaires aux côtés de △ABC passant par le point P

Le sujet

Etant donné un triangle $\triangle ABC$ et un point $P \in \triangle ABC$,

- Construire le triangle dont les sommets A_P, B_P et C_P sont les pieds des perpendiculaires aux côtés de △ABC passant par le point P
- Déterminer le point P formant un triangle △A_PB_PC_P de périmètre minimal.

La construction

1. Construction de $\triangle ABC$ et de $P \in \triangle ABC$

La construction

- 1. Construction de $\triangle ABC$ et de $P \in \triangle ABC$
- 2. Construction des sommets A_P, B_P et C_P : les pieds des perpendiculaires aux côtés de $\triangle ABC$ passant par le point P

La construction

- 1. Construction de $\triangle ABC$ et de $P \in \triangle ABC$
- 2. Construction des sommets A_P, B_P et C_P : les pieds des perpendiculaires aux côtés de $\triangle ABC$ passant par le point P
- 3. Calcul du périmètre de $\triangle A_P B_P C_P$.

Création de l'outil

Création de l'outil

Les tentatives

Tâtonnement géométrique

Observation : Quand on fait passer PP_A [ou PP_B ou PP_C] proche de A [ou B ou C], le périmètre diminue.

Tâtonnement géométrique

Observation : Quand on fait passer PP_A [ou PP_B ou PP_C] proche de A [ou B ou C], le périmètre diminue.

Tâtonnement géométrique

Observation : Quand on fait passer PP_A [ou PP_B ou PP_C] proche de A [ou B ou C], le périmètre diminue.

Réponse empirique

But : **Déterminer le point P** formant un triangle $\triangle A_P B_P C_P$ de **périmètre minimal**.

Réponse empirique : En faisant coı̈ncider PP_A , PP_B et PP_C avec les hauteurs du triangle $\triangle ABC$,

Réponse empirique

But : **Déterminer le point P** formant un triangle $\triangle A_P B_P C_P$ de **périmètre minimal**.

Réponse empirique : En faisant coı̈ncider PP_A , PP_B et PP_C avec les hauteurs du triangle $\triangle ABC$, ie en placant P à l'intersection des hauteurs issues de A, B et C, (P est l'orthocentre du triangle $\triangle ABC$),

Réponse empirique

But : **Déterminer le point P** formant un triangle $\triangle A_P B_P C_P$ de **périmètre minimal**.

Réponse empirique : En faisant coı̈ncider PP_A , PP_B et PP_C avec les hauteurs du triangle $\triangle ABC$, ie en placant P à l'intersection des hauteurs issues de A, B et C, (P est l'orthocentre du triangle $\triangle ABC$), $\triangle A_PB_PC_P$ a le périmètre le plus petit.

Une preuve

Plan

- 1. Reformulation du problème
- 2. Construction d'une solution
- 3. Unicité de la solution
- 4. P_B (P_C) pied de la hauteur issue de B (C)

Construction:

1. Construction de P' à partir de P_A par symétrie axiale par rapport à (AC)

Construction:

- 1. Construction de P' à partir de P_A par symétrie axiale par rapport à (AC)
- 2. Construction de P" à partir de P_A par symétrie axiale par rapport à (AB)

Construction:

- 1. Construction de P' à partir de P_A par symétrie axiale par rapport à (AC)
- 2. Construction de P" à partir de P_A par symétrie axiale par rapport à (AB)
- 3. Relier P'' à P_C et P' à P_B

Observation:

Comme P' et P'' sont issus de symétries axiales, $\triangle P_A P_B P'$ et $\triangle P_A P_C P''$ (triangles bleus) sont isocèles.

Observation:

Comme P' et P'' sont issus de symétries axiales, $\triangle P_A P_B P'$ et $\triangle P_A P_C P''$ (triangles bleus) sont isocèles.

Donc $P_C P'' = P_A P_C$ (en brun) et $P_A P_B = P_A P'$ (en rose)

Observation:

Comme P' et P'' sont issus de symétries axiales, $\triangle P_A P_B P'$ et

 $\triangle P_A P_C P''$ (triangles bleus) sont isocèles. Donc $P_C P'' = P_A P_C$ (en brun) et $P_A P_B = P_A P'$ (en rose)

Ainsi, le problème de minimisation du périmètre de $\triangle A_P B_P C_P$, devient un problème de minimisation de la longueur de la ligne

brisée $P''P_CP_CP_BP_BP'$

1. Fixons P_A

- 1. Fixons P_A
- 2. Le minimum de la longueur d'une ligne brisée est la ligne droite
- 3. Laissons P_B et P_C bouger le long de AC et AB (respectivement), jusqu'à ce qu'il soient sur P'P''

- 1. Fixons P_A
- 2. Le minimum de la longueur d'une ligne brisée est la ligne droite
- 3. Laissons P_B et P_C bouger le long de AC et AB (respectivement), jusqu'à ce qu'il soient sur P'P''
- 4. Alors le périmètre de $\triangle A_P B_P C_P$ est P'P''

- 1. Fixons P_A
- 2. Le minimum de la longueur d'une ligne brisée est la ligne droite
- 3. Laissons P_B et P_C bouger le long de AC et AB (respectivement), jusqu'à ce qu'il soient sur P'P''
- 4. Alors le périmètre de $\triangle A_P B_P C_P$ est P'P'' on cherche à minimiser ce segment

Observation : Comme P' et P'' sont issus de symétries axiales, $\triangle P_A A P'$ et $\triangle P_A A P''$ (triangles oranges) sont isocèles.

Observation : Comme P' et P'' sont issus de symétries axiales, $\triangle P_A A P'$ et $\triangle P_A A P''$

(triangles oranges) sont isocèles. Donc $AP' = AP_A = AP''$

De plus, par propriété de conservation des angles de la symétrie axiale :

- AB est la bissectrice de l'angle $\angle P''AP_A$
- AC est la bissectrice de l'angle $\angle P'AP_A$

De plus, par propriété de conservation des angles de la symétrie axiale :

- AB est la bissectrice de l'angle $\angle P''AP_A$
- AC est la bissectrice de l'angle $\angle P'AP_A$

Donc : $\angle P''AP' = 2\angle BAC$, l'angle $\angle P''AP'$ ne dépend pas de la position de P_A

L'unique manière de diminuer la longueur de P''P' est de diminuer les longueurs AP' et AP'' ,

L'unique manière de diminuer la longueur de P''P' est de diminuer les longueurs AP' et AP'', c'est à dire de trouver où placer P_A de telle manière que AP_A soit minimal.

On fait bouger P_A le long de BC pour trouver cette position. Pour que le segment AP_A soit minimal il faut que ce soit **la hauteur de** BC passant par A.

Soit UVW, un autre triangle avec le périmètre minimal.

Soit UVW, un autre triangle avec le périmètre minimal. Soit $U=P_A$

1. Alors soit $V \neq P_B$, soit $W \neq P_C$, (ou les deux)

Soit UVW, un autre triangle avec le périmètre minimal. Soit $U=P_A$

- 1. Alors soit $V \neq P_B$, soit $W \neq P_C$, (ou les deux)
- 2. Le périmètre à minimiser devient une ligne brisée

Soit UVW, un autre triangle avec le périmètre minimal. Soit $U=P_A$

- 1. Alors soit $V \neq P_B$, soit $W \neq P_C$, (ou les deux)
- 2. Le périmètre à minimiser devient une ligne brisée
- 3. Or la ligne brisée P''WVP' est plus longue que le segment P''P'

Soit UVW, un autre triangle avec le périmètre minimal. Soit $U=P_A$

- 1. Alors soit $V \neq P_B$, soit $W \neq P_C$, (ou les deux)
- 2. Le périmètre à minimiser devient une ligne brisée
- 3. Or la ligne brisée P''WVP' est plus longue que le segment P''P'
- 4. Donc UVW n'a pas le périmètre minimal

Soit $U \neq P_A$, et U" U' le segment représentant le périmètre de UVW.

1. Alors $UA > P_A A$

Soit $U \neq P_A$, et U''U' le segment représentant le périmètre de UVW.

- 1. Alors $UA > P_A A$
- 2. U''U' > P''P'
- 3. Donc UVW n'a pas le périmètre minimal

Ainsi on a unicité de la construction.

4. P_B (P_C) pied de la hauteur issue de B (C)

On fait la même construction à partir du sommet B puis du C.

4. P_B (P_C) pied de la hauteur issue de B (C)

On fait la même construction à partir du sommet B puis du C. Ainsi P_B et P_C sont les pieds des hauteurs passant par B et C.

4. P_B (P_C) pied de la hauteur issue de B (C)

On fait la même construction à partir du sommet B puis du C. Ainsi P_B et P_C sont les pieds des hauteurs passant par B et C. Donc en placant P à l'intersection des hauteurs issues de A, B et C, $\triangle A_P B_P C_P$ a le périmètre le plus petit.