Plus l'énergie de la particule est faible, plus l'ionisation est forte.

Courbe de Bragg

Le ralentissement va donc s'accélérer et le dépôt d'énergie croître à mesure que la particule ralentit. La particule <u>dépose la plupart de son énergie sur la fin de son parcours</u>: Le pic de Bragg

Notion de Parcours

Valable pour un projectile donné, de vitesse donnée, dans un matériau donné

Ralentissement

Arrêt

Théoriquement pour calculer la parcours,

il suffit de calculer
$$R(T) = \int_0^T (\frac{dE}{dx})^{-1} dE$$

Graphe en log-log \longrightarrow $R \propto E^b$

$$\Rightarrow$$

$$R \propto E^b$$

En effet
$$\frac{dE}{dx} \propto \frac{1}{v^2} \propto E^{-1} \longrightarrow R \propto \int E dE \propto E^2$$

Unité:

cm ou mg/cm²

$$R = \frac{1}{m \cdot z^2} f(E)$$

 $R = \frac{1}{m_{ion}z^2} f(E)$ \longrightarrow A même énergie, un deuton a le parcours moitié d'un proton

Un α a un parcours 16 fois plus faible qu'un proton?

Dans AI: p de 1 MeV ---> 3.967 mg/cm² $\frac{/16}{}$ 0.248 mg/cm²

 α de 1 MeV ---> 0.959 mg/cm²

Quand on sort de la partie 3 de la formule de Bethe

Relation entre les parcours de deux particules chargées de même vitesse :

$$R_2 = R_1 \frac{A_2}{A_1} \left(\frac{Z_1}{Z_2} \right)^2$$

Cette relation montre que le parcours d'un proton est le même que celui d'un alpha de même vitesse, donc d'énergie quatre fois plus élevée.

A vitesse égale, les isotopes (par exemple : proton et deuteron) ont des parcours proportionnels à leur masse.

Parcours dans des milieux différents

Règle de Bragg-Kleeman

Connaissant le parcours R_a d'une particule dans un milieu, on peut calculer son parcours R_b dans un autre milieu à l'aide de la relation semi-empirique de Bragg-Kleeman :

$$\frac{R_b}{R_a} \simeq \frac{\rho_a \sqrt{A_b}}{\rho_b \sqrt{A_a}}$$

où ρ_a , ρ_b sont les densités des milieux concernés A_a , A_b leur poids atomique.

La précision sur la valeur du parcours est de l'ordre de 15%.

Utilisation des tables

Calcul de la perte d'énergie après traversée d'une épaisseur t :

Sit mince: $\Delta E = dE/dx * t$

Tables des pouvoirs d'arrêt

Si t épais:

$$R_{final} = R_{initial} - †$$

Tables des parcours

Temps d'arrêt

$$v_i = \sqrt{\frac{2E}{m_{ion}}} \cong 1.39\,10^7\,\sqrt{\frac{E}{A}} \qquad \text{Si < v> = K } v_i$$

$$T = \frac{R}{\langle v \rangle} = \frac{R}{1.39\,10^7\,K}\,\sqrt{\frac{A}{E}} = 1.2\,10^{-7}\,R\,\sqrt{\frac{A}{E}} \qquad \text{en seconde}$$

$$R \text{ en m}$$

$$E \text{ en MeV}$$

$$A: \text{ nombre de masse}$$

qq ps dans les solides et liquides qq ns dans les gaz

Autres contributions

· Collisions noyau-noyau

négligeable au-delà de 200 keV/amu

fin de parcours...

modélisés à partir des potentiels d'interaction atomiques (SRIM, Ziegler)

Défauts d'ionisation - altération de la structure cristalline (Si)

· Rayonnement de freinage

« Toute particule chargée subissant une accélération rayonne de l'énergie sauf si elle se trouve dans un état stationnaire »

$$\sigma \propto \frac{z^2}{m_{ion}^2}$$
 electrons

· Effet Čerenkov

v > c/n , n : indice de réfraction du milieu

Phénomène analogue au passage du mur du son

$$\cos \theta = \frac{AC}{AB} = \frac{(c/n)\Delta t}{\beta c \Delta t}$$

$$\cos \theta = \frac{1}{\beta n}$$

- Intensité : $\propto z^2$
- · UV et visible
- Faible perte d'énergie

Détecteurs sur ligne de faisceau La Particule émettra une radiation Cherenkov tangente à un cône d'angle θ_c autour de la trace: cos θ_c = 1/ β n

Les matériaux composites

Règle de Bragg

Dans un milieu contenant plus d'un élément, la perte d'énergie de la particule est la somme des pertes dues à chacun des éléments, pondérée par leur abondance respective.

$$\left(\frac{dE}{dx}\right)_{compos\acute{e}} = \frac{1}{M} \sum_{i} N_{i} A_{i} \left(\frac{dE}{dx}\right)_{i}$$

Masse molaire du matériau

Constituant $i : N_i$ atomes de masse atomique A_i .

Exemple: le mylar $(C_{10}H_8O_4)$

$$M = 10 \times 12 + 8 \times 1 + 4 \times 16 = 192$$

$$\frac{dE}{dx} \Big|_{mylar} = \frac{1}{192} \left(120 \left(\frac{dE}{dx} \right)_C + 8 \left(\frac{dE}{dx} \right)_H + 64 \left(\frac{dE}{dx} \right)_O \right)$$

Application: identification des noyaux

Pour des particules dans la zone 3 (ions lourds du GANIL par ex)

$$\frac{dE}{dx} \propto \frac{z^2}{v^2}$$

Ou encore:
$$-\frac{dE}{dx} \propto \frac{1}{E} Az^2$$

On mesure simultanément E et ΔE dans une épaisseur Δx .

$$\Delta E \approx -\frac{dE}{dx} \Delta x$$

donc
$$E \times \Delta E \propto Az^2$$

À chaque ion correspond une hyperbole dans le plan $(E, \Delta E)$

Performances de la méthode

Meilleure séparation en charge qu'en masse

$$\Delta E \propto \frac{m_{ion} z_{ion}^2}{E}$$

$$\frac{\Delta(\Delta E)}{\Delta E} = \frac{\Delta(m_{ion})}{m_{ion}} + \frac{2\Delta(z_{ion})}{z_{ion}}$$

$$z_{ion}$$
 m_{ion} ??

Avec
$$m_{ion} \sim 2 z_{ion}$$
:
$$\frac{\Delta(\Delta E)}{\Delta E} \approx \frac{3\Delta(z_{ion})}{z_{ion}}$$

Résolution de 3% pour une séparation en z autour de z = 100.

A
$$z_{ion}$$
 fixé:
$$\frac{\Delta(\Delta E)}{\Delta E} \approx \frac{\Delta(m_{ion})}{m_{ion}}$$

Résolution de 0.5% pour une séparation en masse autour de m = 200.

Limitation par la dispersion en énergie des détecteurs

dE/dx fluctuations

La formule de Bethe Bloch décrit l'énergie moyenne perdue. On mesure l'énergie ΔE perdue dans un matériel d'épaisseur Δx avec

$$\Delta E = \sum_{n=1}^{N} \delta E_n$$

N: number of collisions

δE: energy loss in a single collision

La perte d'énergie δE est distribuée statistiquement

On parle de « straggling » en énergie

Forme des distributions de ΔE

Petites épaisseurs (ou matériaux de basse densité):

- · Peu de collisions, mais certaines d'entre elles ont un grand transfert d'énergie
- Les fluctuations (dues aux électrons δ) deviennent importantes
- · Les distributions de ΔE présentent de grandes fluctuations vers les pertes élevées (queues de Landau)
- · Distributions asymétriques (Distribution de Landau)
- · Typiquement quelques dizaines de collisions dans 1 cm de gaz

Grandes épaisseurs (ou matériaux de haute densité) : Beaucoup de collisions Les distributions de ΔE sont gaussiennes

 $\sigma_{\Delta E} = 4\pi N_A r_e^2 m_e^2 c^4 \rho \frac{Z_T}{A_T} x = 0.1569 \rho \frac{Z_T}{A_T} x \text{ MeV}^2 - P(\Delta E) \propto \exp \left\{ -\frac{\left(\Delta E - \langle \Delta E \rangle\right)^2}{2\sigma_{\Delta E}} \right\}$

Dispersion en énergie des ions Ar dans le Si

Epaisseur Energie	1 μm		10 μm		100 μm	
	ΔE	R	ΔE	R	ΔE	R
5 MeV	2.3	3%	/	/	/	/
50 MeV	4.2	6%	38	2%	/	/
500 MeV	1.7	15%	17.5	4.5%	200	1.5%

± Ok pour les charges, masses limitées à ~ A = 50

(dans le meilleur des cas...)

Année 2016-2017

Détecteurs pas trop minces...

Si dynamique en énergie large : télescope à plusieurs étages

