Offizielles Hilfsblatt für die Klausur Regelungstechnik 1, Seite 1/2

Prof. Dr.-Ing. Jens Geisler, Hochschule Flensburg, Stand: 17. April 2025

	Differenzialgleichung	Übertragungsfunktion $G(s)$	Übergangsfunktion $h(t)$	Ortskurve $G(\mathrm{j}\omega)$	Bode- Amplitudengang	Bode- Phasengang	Pol-Nullstellen- Diagramm
PT1	$T\dot{x}_a(t) + x_a(t) = K \cdot x_e(t)$	$rac{K}{Ts+1}$		$\mathbb{E} \frac{K}{\omega = 0}$	$\frac{\text{gp}}{\frac{S}{\omega}} \frac{1/T}{1/T} \omega$ -20 dB/Dek	0 1/T 3	1/T o
PT2	$T_1T_2\ddot{x}_a(t) + (T_1 + T_2)\dot{x}_a(t) + x_a(t)$ $= K \cdot x_e(t)$ (aus 2 PT1-Gliedern)	$\frac{K}{(T_1s+1)(T_2s+1)}$		$\mathbb{E} \qquad K$ $\mathbb{R}e$ $\omega = 0$	ED K 20 dB/Dek	0 1/T ₁ 1/T ₂ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$ \begin{array}{c} 1/T_2 \\ \sigma \\ 1/T_1 \end{array} $
PT2	$\omega_0^{-2}\ddot{x}_a(t) + 2D\omega_0^{-1}\dot{x}_a(t) + x_a(t)$ $= K \cdot x_e(t)$ (schwingfähig)	$\frac{K}{\frac{1}{\omega_0^2}s^2 + \frac{2D}{\omega_0}s + 1}$		$\mathbb{E} \begin{array}{c} K \\ \omega = 0 \end{array}$	(S) (W) (W) (W) (W) (W) (W) (W) (W) (W) (W	0 w	$ \begin{array}{c c} & \times \omega_0 \\ \hline D\omega_0 & \sigma \\ \vdots \\ \times \cdots & \omega_D \end{array} $
IT1	$T\ddot{x}_a(t) + \dot{x}_a(t) = K \cdot x_e(t)$	$\frac{K}{s(Ts+1)}$	$ \begin{array}{c c} $	T·K ∄ Re	$ \begin{array}{c c} & 20 \text{ dB/Dek} \\ \hline & & \omega \\ \hline & 1/T \\ \hline & -40 \text{ dB/Dek} \end{array} $	(%) 1/T \(\omega\) \(\	1/T .3 o
DT1	$T\dot{x}_a(t) + x_a(t) = K \cdot \dot{x}_e(t)$	$\frac{K \cdot s}{Ts + 1}$	$ \begin{array}{c} \frac{K}{T} \\ (t) \\ \vdots \\ T \end{array} $	$\underbrace{\Xi}_{\omega = 0 \text{ Re}}$	$\frac{\text{gp}}{\frac{(s)}{D}} \frac{\frac{K}{T}}{1/T} \omega$ 20 dB/Dek	$\begin{array}{c} 90 \\ \circ \\ (s) \\ D \\ 0 \\ \hline 1/T \omega \end{array}$	1/T 3

Offizielles Hilfsblatt für die Klausur Regelungstechnik 1, Seite 2/2

Prof. Dr.-Ing. Jens Geisler, Hochschule Flensburg, Stand: 17. April 2025

	Differenzialgleichung	Übertragungsfunktion $G(s)$	Übergangsfunktion $h(t)$	Ortskurve $G(\mathrm{j}\omega)$	Bode- Amplitudengang	Bode- Phasengang	Pol-Nullstellen- Diagramm
PI	$y(t) = K_R \left(e(t) + \frac{1}{T_N} \int e(t) d\tau \right)$	$K_R rac{T_N s + 1}{T_N s}$	$h(t) \\ K_R \\ 1 \\ T_N \\ 0 \\ t$	E KR Re	$\frac{\text{gp}}{\overset{(s)}{S}} = \frac{-20 \text{ dB/Dek}}{K_R}$ $\frac{1/T_N \omega}{}$	$\begin{array}{c c} 0 & 1/T_N & \omega \\ \circ & \circ \\ \odot & \circ \\ 0 & \circ$	1/T _N .3 .3
PD	$x_a(t) = K_R \left(e(t) + T_V \frac{\mathrm{d}}{\mathrm{d}t} e(t) \right)$	$K_R\left(T_V s + 1\right)$	$ \begin{array}{c c} & h(0) \to \infty \\ \hline & K_R \\ \hline & 0 & t \end{array} $	Æ Re KR	$\begin{array}{c} \text{gp} \\ \text{gp} \\$	$\begin{array}{c} 90 \\ \circ \\ \odot \\ D \\ 1/T_V \end{array}$	$\frac{1/T_V}{\sigma}$
PDT1	$T_p \dot{x}_a(t) + x_a(t)$ $= K_R \left(e(t) + T_V \frac{\mathrm{d}}{\mathrm{d}t} e(t) \right)$	$K_R rac{T_V s + 1}{T_P s + 1}$	$ \begin{array}{c c} K_{\overline{K}}T_{\overline{V}} \\ \vdots \\ T_{p} \\ K_{R} \\ 0 \\ t \end{array} $	E K _R Re	$\frac{\mathrm{EP}}{\mathrm{S}} \underbrace{\frac{\mathrm{K}_{R} \cdot \mathrm{T}_{V}}{\mathrm{T}_{p}}}_{K_{R}}$ $1/T_{V} \cdot 1/T_{p}$	90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\frac{1/T_V}{\sigma}$
Р							
I							
D							