Departamento de Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE

Curso: Estadística (MA3402)

Prof: Felipe Tobar

Profs. Aux.: Nelson Moreno, Francisco Vásquez y Arie Wortsman

Fecha de publicación 30/09/20

Tarea #1

Dedicación recomendada: 10 horas

Fecha de entrega: 13 de octubre

1. (25%) Se estudiará el comportamiento de un vector bidimensional que tiene sus dos componentes ortogonales, independientes y que siguen una distribución normal. Al realizar las mediciones respectivas de cada componente, se obtiene una MAS $U = (U_1, ..., U_n)$ de n observaciones con $U_n \sim \mathcal{N}(0, \sigma^2)$ y una MAS $V = (V_1, ..., V_n)$ de n observaciones con $V_n \sim \mathcal{N}(0, \sigma^2)$. En específico, se busca estudiar el comportamiento de los módulos de los vectores obtenidos. En base a las MAS anteriores se tiene una nueva MAS $X = (X_1, ..., X_n)$ dada por:

$$X_n = \sqrt{U_n^2 + V_n^2}.$$

Se tiene que X_n sigue una distribución Rayleigh (σ) con función de densidad dada por:

$$f_{X_n}(x;\sigma) = \frac{x}{\sigma^2} \exp\left(\frac{-x^2}{2\sigma^2}\right), \quad x \ge 0.$$

Se considera $n \in \mathbb{N}$. Se pide lo siguiente:

- a) Defina el modelo paramétrico del problema.
- b) Determine si la distribución de X_n pertenece a la familia exponencial y encuentre un estadístico suficiente para σ^2 .
- c) Encuentre un estadístico suficiente minimal para σ^2 .
- d) Considere el estimador de máxima verosimilitud de σ^2 dado por

$$\widehat{\sigma^2}_{EMV} = \frac{1}{2n} \sum_{i=1}^n X_i^2$$

¿Es el estimador $\widehat{\sigma^2}_{EMV}$ insesgado? Si no lo es, modifíquelo para que así sea.

- e) Encuentre la distribución de $\sqrt{n}(\widehat{\sigma^2}_{MLE} \sigma^2)$
- 2. (25%) Sea $X = (X_1, ..., X_n)$ una MAS de $n \in \mathbb{N}$ observaciones con $X_n \sim \text{Unif}(\theta, 2\theta)$. Considere que para la MAS anterior, sus estadísticos de orden $X_{(1)}, ..., X_{(n)}$, es decir, $\forall i, j \in \{1, ..., n\}$ se tiene

$$i < j \Rightarrow X_{(i)} \le X_{(i)}$$
.

Considere además que el i-ésimo estadístico de orden tiene una densidad dada por:

$$f_{X_{(i)}}(x) = \frac{n!}{(i-1)!(n-i)!} \frac{1}{\theta} \left(\frac{x-\theta}{\theta} \right)^{i-1} \left(1 - \left(\frac{x-\theta}{\theta} \right) \right)^{n-i} , \quad x \in [\theta, 2\theta].$$

Se busca estimar el parámetro θ . Para esto se pide lo siguiente:

- a) Encuentre un estadístico suficiente para θ .
- b) Considere el estimador $\hat{\theta} = \frac{2}{3}X_1$. Muestre que es insesgado.
- c) Utilice el Teorema de Rao-Blackwell para encontrar un estimador $\widetilde{\theta}$ de θ con menor MSE que $\widehat{\theta}$.
- d) Demuestre que $\widetilde{\theta}$ es insesgado.
- e) Interprete $\widetilde{\theta}$
- 3. (25%) Sea $X = (X_1, ..., X_n)$ una MAS de un modelo paramétrico $\{\mathbb{P}_{\theta} | \theta \in \Theta\}$, con $\mathcal{X} = \mathbb{R}$, $\Theta = (0, \infty)$, tal que \mathbb{P}_{θ} admite densidad $f(x, \theta)$, cuyo soporte no depende de θ . Para $x \in \mathcal{X}, \theta, h \in \Theta$ tales que $f(x, \theta) > 0$ se define

$$r(x, \theta, h) := \frac{f(x, \theta + h) - f(x, \theta)}{f(x, \theta)}.$$

Sea $I_{\theta,h} = \mathbb{E}_{\theta}(r(X,\theta,h)^2)$ y $\hat{\theta}(X)$ un estimador insesgado de θ con varianza finita.

Nuestro objetivo es demostrar que:

$$\mathbb{V}_{\theta}(\hat{\theta}(X)) \ge \frac{h^2}{I_{\theta,h}}, \ \forall \theta, h \in \Theta$$

Para ello se presentan los siguientes pasos:

- a) Calcule $\mathbb{E}_{\theta}(r(X, \theta, h))$
- b) Usando el resultado anterior, encuentre $cov_{\theta}(r(X,\theta,h),\hat{\theta}(X))$
- c) Concluya usando el Teorema de Cauchy-Schwartz.
- 4. (25 %) Sea f una función integrable en $(0, \infty)$. Definimos:

$$c(\theta) = \frac{1}{\int_{\theta}^{\infty} f(x)dx},$$

y tomemos $p_{\theta}(x) = c(\theta)f(x)$ para $x > \theta$ y $p_{\theta}(x) = 0$ para $x \leq \theta$. Sea $X_1, ..., X_n$ un MAS condensidad común p_{θ} .

- a) Muestre que $M=\min\left\{X_1,...,X_n\right\}$ es suficiente.
- b) Muestre que M es minimal.