PROJECT REPORT

DEEP LEARNING FUNDUS IMAGE ANALYSIS FOR EARLY DETECTION OF DIABETIC RECTINOPATHY

SUBMITTED BY

Team ID: PNT2022TMID52149

A.Thanga Abiya (962719106036)

T.Thanusha (962719106037)

A.Subitha (962719106035)

K. Yoka Muthu Nivethitha (962719106040)

Team ID	PNT2022TMID52149
Project Name	Deep Learning Fundus Image Analysis For Early Detection Of Diabetic Retinopathy

INTRODUCTION:

Diabetic retinopathy is an eye condition that can cause vision loss and blindness in people who have diabetes. It affects blood vessels in the retina (the light sensitive layer of tissue in the back of your eye). If you have diabetes, it's important to get a comprehensive dilated eye exam at least once a year. Diabetic retinopathy may not have any symptoms at first — but finding it early can help you take steps to protect your vision. We also provide novel results for five different screening and clinical grading systems for diabetic retinopathy including state-of-the-art results for accurately classifying images according to clinical five-grade diabetic retinopathy. These results suggest, that a deep learning system could increase the cost-effectiveness of screening and diagnosis, while attaining higher than recommended performance, and that the system could be applied in clinical examinations requiring finer grading.

The purpose of our study is to investigate the effectiveness of UWF fundus image in DR detection.

LITERATURE SURVEY:

People with diabetes can have an eye disease called diabetic retinopathy. This is when high blood sugar levels cause damage to blood vessels in the retina. These blood vessels can swell and leak. Or they can close, stopping blood from passing through. Sometimes abnormal new blood vessels grow on the retina. All of these changes can steal your vision.

The evaluation of the severity and degree of retinopathy associated with a person having diabetes, is currently performed by medical experts based on the fundus or retinal image of the patient's eyes.

IDEATION & PROPOSED SOLUTION: EMPATHY MAP CANVAS:

IDEATION & BRAINSTROMING:

PROPOSED SOLUTION:

S.No.	Parameter	Description
1.	Problem Statement	Deep Learning Fundus Image Analysis for Early Detection of Diabetic Retinopathy:
		The Diabetic Retinopathy is a disease which affects the vision of the patient. The project is the time consuming, cost effective detection the DR with the high accuracy without need of Clinicians.
2.	Idea / Solution description	Collect the datasets for classifying the normal retina and diabetic retina in real time. Develop the machine learning algorithm to classify normal retina and diabetic retina. After developing the algorithm, train the model with datasets collected in real time datasets. Validation for test data will be carried. Once the performance accuracy is above 98%, the algorithm will be implemented.
3.	Novelty / Uniqueness	Using the trained model with more than 98% accuracy to detect the diabetic retinopathy will result in the more accurate result.
4.	Social Impact / Customer Satisfaction	This will very helpful for the people to easily detect diabetic retinopathy within the less amount of time and take necessary treatment to prevent the Caustious effects
5.	Business Model (Revenue Model)	This will be developed as a product to detect diabetic retinopathy. This will reduce the number of Clinicians and time required to detect the DR in the hospitals.
6.	Scalability of the Solution	This will be done by collecting the correct information as a constraint and training the model with more datasets till the accuracy becomes greater than the 98%. Once the optimum accuracy is reached, then it will be implemented using embedded device

PROBLEM SOLUTION FIT:

REQUIREMENT ANALYSIS:

FUNCTIONAL REQUIREMENT:

FR No. Functional Requirement (Epic) Sub Requirement (Story / Sub-Task)		Sub Requirement (Story / Sub-Task)	
FR-1	Datasets	For training the model, the most accurate real time datasets are required	
FR-2	Camera	For getting real time images for testing the model	
FR-3	Cloud Storage	For storing the required images and programming	

NON FUNCTIONAL REQUIREMENT:

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	The user can easily upload their images for processing
NFR-2	Security	This will protect the user data like their eye images and their results
NFR-3	Reliability	It will process the images more quickly, so that we can process the more number of images within the limited time
NFR-4	Performance	This will give more than 98% accuracy
NFR-5	Availability	This will be avalaible in low cost, so that we can implement in many places
NFR-6	Scalability	It will be enhances for other diseases also

PROJECT DESIGN:

DATA FLOW DIAGRAM:

SOLUTION ARCHITECTURE:

USER STORIES:

PROJECT PLANNING AND SCHEDULING:

SPRINT PLANNING AND ESTIMATION:

S.NO	ACTIVITY	DESCRIPTION	DURATION
	TITLE		
1	Understanding	Assign the	1 week
	the project and	teammembers and	
	its requirement	createrepository in	
		the GitHub, Assign	
		the task to each	
		team member and	
		teach how to use	
		the GitHub and	
		IBM	
		careereducation.	
2	Start the project	Advice students	1 week
		toattend classes of	
		IBM portal create	
		and develop an	
		rough diagram	
		based on project	
		description and	
		gather	
		informationon AI	
		and IBM project	
		and team leader	
		assign task to	
		each member	
		ofthe project.	

3	Attend class	Team members and team lead mustattend the classes and learnfrom classes provided byIBM and NALAYATHIRAN and must gainaccess of MIT license forthe project.	4 weeks
---	--------------	--	---------

4	Budget and scope	Reduce cost	Progress
	of project	efficiencyand analyse	
	1 3	the use of AI in the	
		project	

SPRINT DELIVERY SCHEDULE:

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority
Sprint-1	Data Collection	Task-1	In Deep Learning Model, It can be spilt into Testing and Training set.	4	Medium
Sprint-1	Data Pre-processing	Task-2	Import the required data for pre-processing. Application of the image data generator to the train and test set.	7	Low
Sprint-1	Build Homepage	USN-1	Homepage give the brief description to the user.	4	Medium
Sprint-2	Create Registration page	USN-2	In this page, User will able to register for the application.	2	Low
Sprint-2	Train Save Test	Task-3	To train the model with the configured neural network and save the model. Test the build model against the testing dataset.	3	High
Sprint-3	Create Service	Task-4	Configure the location of resource such as web server and cloud storage for an application.	7	High
Sprint-3	Creating Database	Task-5	IBM Cloud, offered the required credentials to access the services and the database accessed by the users.	6	High
Sprint-3	Creating Tables in Database	Task-6	Structure the required tables with necessary attributes in cloud DB.	4	Medium

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority
Sprint-4	Building login page	USN-3	User will be able to login by using the credentials.	3	Low
Sprint-4	Create Image uploading page	Task-7	Upload the test image	2	Low
Sprint-4	Building Prediction page	USN-4	User able to receive the diagnosis on their diabetic retinopathy.	2	Medium
Sprint-4	Building logout page	USN-5	User will be able to logout their account in this Page.	2	Medium
Sprint-4	Build Python code	Task-8	The Necessary modules should be initialize and the libraries should be imported.	1	Medium
Sprint-4		Task-9	Use the database using initiating client and rendering HTML page.	2	Medium
Sprint-4		Task-10	Configuring the registration, login pages and evaluating the credentials.	2	Medium
Sprint-4		Task-11	The model prediction will be showcased on UI.	1	High
Sprint-4	Run the Application	Task-12	Run to check the application.	2	High
Sprint-4		Task-13	Upload image in the homepage to predict the diabetic retinopathy.	5	High
Sprint-4	Train model on IBM	Task-14	Train the model on IBM and integrate it with the flask application.	3	High

CODING:

import numpy as np
import os
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.inception_v3 import
preprocess_input
from flask import Flask, request,flash, render_template, redirect,url_for
from cloudant.client import Cloudant
from twilio.rest import Client

```
model = load_model("inception-diabetic.h5")
app = Flask( name )
app.secret_key="abc"
app.config['UPLOAD_FOLDER'] = "User_Images"
# Authenticate using an IAM API key
client=Cloudant.iam('0f5ab837-7e5c-486c-a220-5256e075616c-
bluemix','0UGpqPnFUGkN6XC93fLwLujtajQ7wWmOVf7HGB2z2gq
X',connect=True)
my_database=client.create_database('my_database')
if my_database.exists():
  print("Database '{0}' successfully created.".format('my_db'))
# default home page or route
user = ""
@app.route('/')
def index():
  return render_template('index.html', pred="Login", vis ="visible")
@ app.route('/index')
def home():
  return render_template("index.html", pred="Login", vis ="visible")
# registration page
@ app.route('/register',methods=["GET","POST"])
def register():
```

```
if request.method == "POST":
    name = request.form.get("name")
    mail = request.form.get("emailid")
    mobile = request.form.get("num")
    pswd = request.form.get("pass")
     data = {
       'name': name,
       'mail': mail,
       'mobile': mobile,
       'psw': pswd
    print(data)
    query = {'mail': {'$eq': data['mail']}}
     docs = my_database.get_query_result(query)
    print(docs)
    print(len(docs.all()))
    if (len(docs.all()) == 0):
       url = my_database.create_document(data)
       return render_template("register.html", pred=" Registration
Successful, please login using your details ")
     else:
       return render_template('register.html', pred=" You are already a
member, please login using your details ")
  else:
    return render_template('register.html')
```

```
@ app.route('/login', methods=['GET','POST'])
def login():
  if request.method == "GET":
     user = request.args.get('mail')
     passw = request.args.get('pass')
     print(user, passw)
     query = {'mail': {'$eq': user}}
     docs = my_database.get_query_result(query)
     print(docs)
     print(len(docs.all()))
     if (len(docs.all()) == 0):
       return render_template('login.html', pred="")
     else:
       if ((user == docs[0][0]['mail'] \text{ and } passw == docs[0][0]['psw'])):
          flash("Logged in as " + str(user))
          return render_template('index.html', pred="Logged in as
"+str(user), vis = "hidden", vis2="visible")
       else:
          return render_template('login.html', pred="The password is
wrong.")
  else:
     return render_template('login.html')
@ app.route('/logout')
def logout():
   return render_template('logout.html')
```

```
@app.route("/predict",methods=["GET", "POST"])
def predict():
  if request.method == "POST":
    f = request.files['file']
    # getting the current path 1.e where app.py is present
    basepath = os.path.dirname( file )
    #print ( " current path " , basepath )
    # from anywhere in the system we can give image but we want that
    filepath = os.path.join(str(basepath), 'User Images', str(f.filename))
    #print ( " upload folder is " , filepath )
    f.save(filepath)
    img = image.load_img(filepath, target_size=(224, 224))
    x = image.img\_to\_array(img) # ing to array
    x = np.expand\_dims(x, axis=0) # used for adding one more
dimension
    #print (x)
    img_data = preprocess_input(x)
    prediction = np.argmax(model.predict(img_data), axis=1)
    index = ['No Diabetic Retinopathy', 'Mild NPDR',
          'Moderate NPDR', 'Severe NPDR', 'Proliferative DR']
    result = str(index[prediction[0]])
    print(result)
    account sid = 'AC040db3f6fc52556d2a15a7c8814238e2'
    auth_token = '1dedefd14bb721ecb05dd4c68dc1ec82'
    client = Client(account_sid, auth_token)
```

SOLUTION:

Sent from your Twilio trial account - Results: Proliferative DR

TESTING:

RESULTS:

ADVANTAGES:

Earlier detection reduce the risk of Vision loss.

The amount of time for detecting the DR is less.

Cost of detecting is less.

DISADVANTAGES:

If the images is not uploaded correctly then detection may be difficult.