

LEAVING CERTIFICATE EXAMINATION, 2007 MATHEMATICS – HIGHER LEVEL PAPER 1 (300 marks) THURSDAY, 7 JUNE - MORNING, 9:30 to 12:00 Attempt SIX QUESTIONS (50 marks each). WARNING: Marks will be lost if all necessary work is not clearly shown. Answers should include the appropriate units of measurement, where relevant.

1. (a) Simplify
$$\frac{x^2 - xy}{x^2 - y^2}$$
.

- **(b)** Let $f(x) = x^2 + (k+1)x k 2$, where k is a constant.
 - (i) Find the value of k for which f(x) = 0 has equal roots.
 - (ii) Find, in terms of k, the roots of f(x) = 0.
 - (iii) Find the range of values of k for which both roots are positive.
- (c) x + p is a factor of both $ax^2 + b$ and $ax^2 + bx ac$.
 - (i) Show that $p^2 = -\frac{b}{a}$ and that $p = \frac{-b ac}{b}$.
 - (ii) Hence show that $p^2 + p^3 = c$.

$$x + y + z = 2$$

 $2x + y + z = 3$
 $x - 2y + 2z = 15$.

- **(b)** α and β are the roots of the equation $x^2 4x + 6 = 0$.
 - (i) Find the value of $\frac{1}{\alpha} + \frac{1}{\beta}$.
 - (ii) Find the quadratic equation whose roots are $\frac{1}{\alpha}$ and $\frac{1}{\beta}$.
- (c) (i) Prove that $x + \frac{9}{x+2} \ge 4$, where x + 2 > 0.
 - (ii) Prove that $x + \frac{9}{x+a} \ge 6-a$, where x+a > 0.

- 3. (a) Let $A = \begin{pmatrix} \frac{1}{2} & \frac{1}{4} \\ 3 & \frac{3}{2} \end{pmatrix}$. Find $A^2 2A$.
 - **(b)** Let z = -1 + i, where $i^2 = -1$.
 - (i) Use De Moivre's theorem to evaluate z^5 and z^9 .
 - (ii) Show that $z^5 + z^9 = 12z$.
 - (c) (i) Find the two complex numbers a + bi for which $(a + bi)^2 = 15 + 8i$.
 - (ii) Solve the equation $iz^2 + (2-3i)z + (-5+5i) = 0$.
- **4.** (a) Show that $\binom{n}{1} + \binom{n}{2} = \binom{n+1}{2}$ for all natural numbers $n \ge 2$.
 - **(b)** $u_1 = 5 \text{ and } u_{n+1} = \frac{n}{n+1} u_n \text{ for all } n \ge 1, n \in \mathbb{N}$.
 - (i) Write down the value of each of u_2 , u_3 , and u_4 .
 - (ii) Hence, by inspection, write an expression for u_n in terms of n.
 - (iii) Use induction to justify your answer for part (ii).
 - (c) The sum of the first *n* terms of a series is given by $S_n = n^2 \log_e 3$.
 - (i) Find the n^{th} term and prove that the series is arithmetic.
 - (ii) How many of the terms of the series are less than $12 \log_e 27$?

- 5. (a) Plot, on the number line, the values of x that satisfy the inequality $|x+1| \le 2$, where $x \in \mathbb{Z}$.
 - **(b)** In the expansion of $\left(2x \frac{1}{x^2}\right)^9$,
 - (i) find the general term
 - (ii) find the value of the term independent of x.
 - (c) The n^{th} term of a series is given by nx^n , where |x| < 1.
 - (i) Find an expression for S_n , the sum of the first n terms of the series.
 - (ii) Hence, find the sum to infinity of the series.
- 6. (a) Differentiate $\frac{x^2-1}{x^2+1}$ with respect to x.
 - **(b)** (i) Differentiate $\frac{1}{x}$ with respect to x from first principles.
 - (ii) Find the equation of the tangent to $y = \frac{1}{x}$ at the point $\left(2, \frac{1}{2}\right)$.
 - (c) Let $f(x) = \tan^{-1} \frac{x}{2}$ and $g(x) = \tan^{-1} \frac{2}{x}$, for x > 0.
 - (i) Find f'(x) and g'(x).
 - (ii) Hence, show that f(x)+g(x) is constant.
 - (iii) Find the value of f(x) + g(x).

- 7. (a) Taking 1 as the first approximation of a root of $x^3 + 2x 4 = 0$, use the Newton-Raphson method to calculate the second approximation of this root.
 - (b) (i) Find the equation of the tangent to the curve $3x^2 + y^2 = 28$ at the point (2, -4).

(ii)
$$x = e^t \cos t$$
 and $y = e^t \sin t$. Show that $\frac{dy}{dx} = \frac{x+y}{x-y}$.

- (c) $f(x) = \log_e 3x 3x$, where x > 0.
 - (i) Show that $(\frac{1}{3}, -1)$ is a local maximum point of f(x).
 - (ii) Deduce that the graph of f(x) does not intersect the x-axis.
- **8.** (a) Find (i) $\int x^3 dx$ (ii) $\int \frac{1}{x^3} dx$.
 - **(b)** (i) Evaluate $\int_{0}^{4} x \sqrt{x^2 + 9} \, dx.$
 - (ii) f is a function such that $f'(x) = 6 \sin x$ and $f\left(\frac{\pi}{3}\right) = 2\pi$. Find f(x).
 - (c) The line 2x y 10 = 0 is a tangent to the curve $y = x^2 9$, as shown.

 The shaded region is bounded by the line, the curve and the *x*-axis.

 Calculate the area of this region.

Blank Page