$$u(\boldsymbol{x}^{-}) = u(\boldsymbol{x}^{+}), \tag{2.9}$$

$$k_w \frac{\partial u}{\partial \nu}(\mathbf{x}^-) = k_D(\omega) \frac{\partial u}{\partial \nu}(\mathbf{x}^-). \tag{2.10}$$

The notation x^{\pm} means the inner/outer limit at the boundary of ∂D . More precisely, for a function w defined on \mathbb{R}^d , one has

$$w(\mathbf{x}^{\pm}) = \lim_{h \to 0} w(\mathbf{x} \pm h\mathbf{\nu}), \ \mathbf{x} \in \partial D,$$
 (2.11)

where ν is the outward normal unit vector of ∂D .

2) The boundary conditions over the skin are a bit more complicated (see Figure 2). This is due to the fact that, compared to the water which has a conduc-

Figure 2: Boundary conditions over the skin.

tivity of the order of $0.01 \,\mathrm{S} \cdot \mathrm{m}^{-1}$ [35], the skin is very resistive $(10^{-4} \,\mathrm{S} \cdot \mathrm{m}^{-1}$ [20]) and the body is very conductive $(1 \,\mathrm{S} \cdot \mathrm{m}^{-1})$ [42]. In other words, one has

$$k_s \ll k_w \ll k_b. \tag{2.12}$$

Furthermore, the skin is very thin: if we denote its thickness by δ , we have [49]

$$\delta \approx 100 \mu \mathrm{m} \ll L,$$

where L was defined as the body length in Section . In [1] we have shown in the case d=2 that, when $\delta/L\ll 1$ and $k_s/k_w\ll 1$, but $\delta k_w/(Lk_s)$ is of order one (or smaller), we have the following effective relation for $\boldsymbol{x}\in\partial\Omega$:

$$u(\mathbf{x}^{+}) - u(\mathbf{x}^{-}) = \xi \frac{\partial u}{\partial \nu}(\mathbf{x}^{+}), \qquad (2.13)$$