Introduction

Lecture notes by Ethem Alpaydın Introduction to Machine Learning (Boğaziçi Üniversitesi)

Lecture notes by Kevyn Collins-Thompson Applied Machine Learning (Coursera) Lecture notes by Andrew NG
Machine Learning by Stanford University (Coursera)

What is Machine Learning?

- The study of computer programs (algorithms) that can learn by example
- ML algorithms can generalize from existing examples of a task

Machine Learning Definition

Arthur Samuel (1959). Machine Learning: Field of study that gives computers the ability to learn without being explicitly programmed.

Machine Learning Definition

Tom Mitchell (1998) Well-posed Learning Problem: A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E.

Suppose your email program watches which emails you do or do not mark as spam, and based on that learns how to better filter spam. What is the task T in this setting?

- A. Classifying emails as spam or not spam.
- B. Watching you label emails as spam or not spam.
- C. The number (or fraction) of emails correctly classified as spam/not spam.
- D. None of the above—this is not a machine learning problem.

Machine Learning brings together statistics, computer science, and more...

Statistical methods

- Infer conclusions from data
- Estimate reliability of predictions

Computer science

- Large-scale computing architectures
- Algorithms for capturing, manipulating, indexing, combining, retrieving and performing predictions on data
- Software pipelines that manage the complexity of multiple subtasks

Economics, biology, psychology

- How can an individual or system efficiently improve their performance in a given environment?
- What is learning and how can it be optimized?

Key Concepts in Machine Learning

Supervised Learning

Classification

Regression

Unsupervised Learning

Reinforcement Learning

Recommender System

Machine Learning

Algorithm

Supervised Learning

Learn to predict target values from labelled data.

- Classification (target values are discrete classes)
- Regression (target values are continuous values)

Right answers are given

Supervised Learning - Classification

- Discrete valued output
- The function that we learn is called the <u>classifier</u>.

Supervised Learning - Classification

for new instances using the

learned rules.

Supervised Learning - Classification

Example: Credit scoring

Differentiating between lowrisk and high-risk customers from their *income* and *savings*

Discriminant: IF $income > \theta_1$ AND $savings > \theta_2$ THEN low-risk ELSE high-risk

Supervised Learning - Regression

- Continuous valued output
- Regression function

Supervised Learning - Regression

Example: Price of a used car

x : car attributes

y: price

Supervised Learning: Uses

- Prediction of future cases: Use the rule to predict the output for future inputs
- Knowledge extraction: The rule is easy to understand
- Compression: The rule is simpler than the data it explains
- Outlier detection: Exceptions that are not covered by the rule, e.g., fraud

Unsupervised Learning

Find structure in *unlabeled data*

- Find groups of similar instances in the data (clustering)
- Finding unusual patterns (outlier detection)

Unsupervised Learning

Finding clusters of similar users (clustering)

Unsupervised outlier detection

A Basic Machine Learning Workflow - Classification

Choose:

- A feature representation
- Type of classifier to use

e.g. image pixels, with k-nearest neighbor classifier

Choose:

- What criterion distinguishes good vs. bad classifiers?
- e.g. % correct predictions on test set

Choose:

 How to search for the settings/parameters that give the best classifier for this evaluation criterion

e.g. try a range of values for "k" parameter in k-nearest neighbor classifier

Feature Representations

Email

Feature representation

A list of words with their frequency counts

A matrix of color
values (pixels)

Sea Creatures

Value			
Yes			
Orange			
Yes White			
4.3 cm			

A set of attribute values

Feature Representations

20

Represent / Train / Evaluate / Refine Cycle

21

Python Libraries

scikit-learn : Python Machine Learning Library

SciPy Library : Scientific Computing Tools

NumPy : Scientific Computing Library

Pandas : Data Manipulation and Analysis

matplotlib and other plotting libraries

The Fruit Dataset

	fruit_label	fruit_name	fruit_subtype	mass	width	height	color_score
0	1	apple	granny_smith	192	8.4	7.3	0.55
1	1	apple	granny_smith	180	9.0	6.8	0.59
2	1	apple	granny_smith	176	7.4	7.2	0.60
3	2	mandarin	mandarin	86	6.2	4.7	0.80
4	2	mandarin	mandarin	84	6.0	4.6	0.79
5	2	mandarin	mandarin	80	5.8	4.3	0.77
6	2	mandarin	mandarin	80	5.9	4.3	0.81
7	2	mandarin	mandarin	76	5.8	4.0	0.81
8	1	apple	braebum	178	7.1	7.8	0.92
9	1	apple	braebum	172	7.4	7.0	0.89
10	1	apple	braebum	166	6.9	7.3	0.93
11	1	apple	braebum	172	7.1	7.6	0.92
12	1	apple	braebum	154	7.0	7.1	0.88
13	1	apple	golden_delicious	164	7.3	7.7	0.70
14	1	apple	golden_delicious	152	7.6	7.3	0.69
15	1	apple	golden_delicious	158	7.7	7.1	0.69
16	1	apple	golden delicious	156	7.6	7.5	0.67

fruit_data_with_colors.txt

Credit: Original version of the fruit dataset created by Dr. Iain Murray, Univ. of Edinburgh

The input data as a table

Some reasons why looking at the data initially is important

- Inspecting feature values may help identify what cleaning or preprocessing still needs to be done once you can see the range or distribution of values that is typical for each attribute.
- You might notice missing or noisy data, or inconsistencies such as the wrong data type being used for a column, incorrect units of measurements for a particular column, or that there aren't enough examples of a particular class