An Autonomous Institute under MAKAUT

B.Tech./IT/ODD/3RD SEM/R_21/IT 305/2022-2023 YEAR: 2022

FORMAL LANGUAGE AND AUTOMATA THEORY IT 305

TIME ALLOTTED: 3 HOURS FULL MARKS: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable

GROUP – A (Multiple Choice Type Questions)

1. Answer any *ten* from the following, choosing the correct alternative of each question: $10 \times 1 = 10$

	1. This wer any ten from the following, choosing the correct alternative of each question: 1001–10				
SL	Question	Marks	Co	Blooms Taxonomy Level	
(i)	The production of the form A->B, where A and B are non-terminals is called	1	CO1, CO3	Knowledge, Comprehension	
	a) Null productionb) Unit production				
	c) Greibach Normal Form				
	d) Chomsky Normal Form				
(ii)	Which of the production rule can be accepted by Chomsky grammar?	1	CO1,	Knowledge,	
	a) A->BC		CO3	Comprehension	
	b) A->a c) S->e				
	d) All of these				
(:::)		1	CO1	W., 1 . 1	
(iii)	A Language for which no DFA exist is a	1	CO1, CO3	Knowledge, Comprehension	
	a) Regular Languageb) Non-Regular Language		003	comprehension	
	c) May be Regular				
	d) none of these				
(iv)	A context free grammar can be recognized by	1	CO3	Application	
	a) Push down automata				
	b) 2 way linearly bounded automata				
	c) Turing Machine d) Finite Automata				
	d) I line Automata				
(v)	Given:	1	CO3	Comprehension	
	L1= $\{x \in \sum^* x \text{ contains even no's of 0's} \}$				
	$L2 = \{x \in \sum^* x \text{ contains odd no's of 1's} \}$				
	No of final states in Language L1 U L2?				
	a) 1 b) 2				
	c) 3				
	d) 4				

An Autonomous Institute under MAKAUT

(vi)	Regular expression for all strings starts with ab and ends with bba is. a) aba*b*bba	1	CO3	Comprehension
	b) ab(ab)*bba			
	c) ab(a+b)*bba			
	d) All of the mentioned			
(vii)	RR* can be expressed in which of the forms:	1	CO3	Comprehension
	a) R+			
	b) R-			
	c) R+ U R-			
	d) R			
(viii)	A turing machine operates over:	1	CO3	Application
	a) finite memory tape			
	b) infinite memory tape			
	c) depends on the algorithm d) none of the mentioned			
	d) hole of the mentioned			
(ix)	Push down automata accepts languages.	1	CO3	Application
	a) Type 3			
	b) Type 2			
	c) Type 1			
	d) Type 0			
(x)	Which among the following looks similar to the given expression?	1	CO1,	Knowledge,
	((0+1). (0+1)) *		CO3	Comprehension
	a) $\{x \in \{0,1\} * x \text{ is all binary number with even length}\}$			
	b) $\{x \in \{0,1\} x \text{ is all binary number with even length}\}$			
	c) $\{x \in \{0,1\} * x \text{ is all binary number with odd length}\}$			
	d) $\{x \in \{0,1\} x \text{ is all binary number with odd length}\}$			
(xi)	Simplify the following regular expression:	1	CO3	Comprehension
	ε+1*(011) *(1*(011) *) *			
	a) (1+011) *			
	b) (1*(011) *)			
	c) (1+(011) *) *			
	d) (1011) *			
(xii)	In Moore machine, output is produced over the change of:	1	CO1,	Knowledge
	a) transitions		CO2	
	b) states			
	c) inputs			
	d) none of these			

An Autonomous Institute under MAKAUT

GROUP - B (Short Answer Type Questions) (Answer any three of the following) $3 \times 5 = 15$

SL	Question	Marks	Co	Blooms
				Taxonomy
				Level
2.	Define Left factoring & Left recursion with proper example.	5	CO3	Knowledge,
				Comprehension
3.	Construct a minimum state automaton equivalent to the finite automaton	5	CO3	Knowledge,
	given in the table below.			Comprehension

State / Σ	0	1
→ q0	q1	q5
q1	q6	q2
q 2	q0	q2
q3	q2	q6
q4	q7	q5
q5	q2	q6
q6	q6	q4
q7	q6	q2

4. Consider G whose productions are:

S -> aAS | a, A -> SbA| SS| ba

For the string aabbaa, find leftmost derivation, rightmost derivation and derivation tree.

5. Minimize the states in the DFA depicted in the following diagram: 5 CO₃ Comprehension

6. Explain classification of languages and their relations 5 CO3 Knowledge, Comprehension

5

CO3

Knowledge, Comprehension,

Application

Knowledge,

An Autonomous Institute under MAKAUT

GROUP - C

(Long Answer Type Questions) (Answer any three of the following) $3 \times 15 = 45$

S	SL	Question	Marks	Co	Blooms Taxonomy
7.	(i)	State & Prove Arden's Theorem.	5	CO2	Level Comprehension
	(ii)	What is <i>ambiguous grammar</i> ? Comment on the ambiguity of the following grammar. Justify your answer with an example. $S \rightarrow SS$, $S \rightarrow a$, where $S \in N$, $a \in T$ $L(G) = \{a^n \mid n \ge 1\}$	2+3	CO2, CO3, CO5	Knowledge, Application
	(iii)	Convert the following Moore machine into Mealy machine:	5	CO1, CO3	Knowledge, Application

	NEXT :		
PRESENT STATE	a = 0	a = 1	OUTPUT
\rightarrow q ₁	q_1	q_2	0
q_2	q_1	q_3	0
q_3	q_1	q_3	1

- 8. Explain Chomsky Normal Form or CNF of grammar with an example. (i)
- Knowledge, 3 CO1, CO3 Application

4

(ii) Convert the following grammar into CNF – CO1, Knowledge, CO3 Application

 $S \rightarrow aAD, A \rightarrow aB \mid bAB, B \rightarrow b, D \rightarrow d$

- Find the equivalence class partition of the machine shown below: (iii)
- 8 CO1, Knowledge, CO3 Application

	NEXT STATE, z				
PRESENT STATE	x=0	x=1			
A	E,0	D,1			
В	F,0	D,0			
C	E,0	B,1			
D	F,0	В,0			
Е	C,0	F,1			
F	В,0	C,0			

- 9. (i) Construct a DFA equivalent to the NDFA given in the table below.
- 6 CO2, Knowledge,

State / Σ	a	b
→ q0	q0, q1	q0
q1	q2	q1
q2	q3	q3
<u>q3</u>		q2

(ii) Simplify the given grammar: CO₃ Comprehension

5 CO3 Application

 $S \rightarrow aXb$

An Autonomous Institute under MAKAUT

X -> aXb | e

	(iii)	What do you mean by unit production? Explain with an example.	4	CO1, CO2	Knowledge, Comprehension
10.	(i)	Prove that $(1+00*1) + (1+00*1) (0+10*1)* (0+10*1) = 0*1(0+10*1)*$	3	CO2, CO3	Knowledge, Comprehension
	(ii)	Explain Merger Graph with example	4	CO3	Knowledge, Comprehension, Application
	(iii)	Convert the following grammar into GNF - S -> AB, A -> BS b, B -> SA a	8	CO3	Application
11.	(i)	Define Push Down Automata.	2	CO2	Knowledge
	(ii)	Construct a push down automata for the language L= $\{wwR \mid w \in \{a,b\}^*\}$	6	CO3, CO4	Application
	(iii)	What is derivation tree?	2	CO2, CO3	Knowledge
	(iv)	Convert the following grammar into CNF - S -> aAD, A -> aB bAB, B -> b, D -> d	5	CO1, CO3	Knowledge, Comprehension
12.	(i)	Using Pumping Lemma check whether L= $\{a^n \ b^n \ \ n \ge 1\}$ is regular or not.	5	CO3	Knowledge, Application
	(ii)	Construct a PDA accepting the set of all strings over {a,b} with equal number of a's followed by equal number of b's.	5	CO3, CO4	Application
	(iii)	Find the highest type number of the following production rules - $S \rightarrow ASB \mid d, A \rightarrow aA, S \rightarrow aA \mid c, A \rightarrow ac, aAbcD \rightarrow abcDbcD$	5	CO1, CO3	Application