SAT based Classical Planning for Multi-Agent Systems

Ravi Kuril

thesis guide Dr. Indranil Saha

Department of Computer Science IIT Kanpur

July 10, 2018

Outline

- Background and Introduction
 - Definitions
- 2 Objective of the Thesis
- Multi-agent Classical Planning
- SAT Planning Architecture
- 5 SAT reduction for Ma-Sokoban puzzle
- 6 Automated Reduction Model
- Tool component description
- Results
- Onclusion and Future work

Outline

- Background and Introduction
 - Definitions
- Objective of the Thesis
- Multi-agent Classical Planning
- 4 SAT Planning Architecture
- 5 SAT reduction for Ma-Sokoban puzzle
- 6 Automated Reduction Model
- Tool component description
- Results
- Onclusion and Future work

Definitions

Al Planning:

The realization of strategies or action sequences by intelligent agents to achieve a goal is called planning.

Classical planning:

The environments that are fully observable, deterministic, finite, static, and discrete (in time, action, objects, and effects).

Multiagent Classical planning:

Multiple agents performs a sequence of actions to obtain a set of goals.

Make-span:

The makespan is the total horizon length of the plan.

Total Cost:

Summation of the cost of each actions in the plan.

Time step N:

In the N Number of iterations, an agent can execute a plan of maximum trajectory of N length.

Objective of the Thesis

- Existing tools are fast but compromise in optimal make-span.
- Introduce a SAT based encoding approach for multi-agent classical planning problem
- Develop a SAT based tool which can solve multi-agent classical planning problems.
- Optimal make-span.

Multi-agent Classical Planning, Existing Tools

- Multi-agent Classical Planning example : blockworld
- Graph based planner :
 - ADP and ADP-Legacy, MAPlan
- Reduction based planner :
 - Madagascar, BlackBox

SAT Planning Architecture

Outline

- Background and Introduction
 - Definitions
- Objective of the Thesis
- Multi-agent Classical Planning
- 4 SAT Planning Architecture
- 5 SAT reduction for Ma-Sokoban puzzle
- 6 Automated Reduction Model
- Tool component description
- Results
- Onclusion and Future work

SAT reduction for Ma-Sokoban Puzzle

Figure: Ma-Sokoban puzzle

- MA-Sokoban: Multiple agents push boxes to place them on goal locations.
- Encoding Approach 1
- 1. Player movement constraints:

$$\rho_i(x, y, t) \Rightarrow \rho_i(x, y, t+1) \lor \rho_i(x+1, y, t+1) \lor \rho_i(x-1, y, t+1) \lor \rho_i(x, y+1, t+1) \lor \rho_i(x, y-1, t+1)$$
 where $\forall \rho_i, \rho_i \in R$

2. Box push movement constraints: Right Push

$$b_i(x,y,t+1) \Rightarrow (b_i(x,y,t) \lor (\bigvee_{r \in R} (p_r(x-2,y,t) \land b_i(x-1,y,t) \land p_r(x-1,y,t+1))))$$

3. Player Head-on constraint:

$$\neg((p_1(x,y,t) \land p_2(x,y+1,t) \land p_1(x,y+1,t+1) \land p_2(x,y,t+1))$$

$$\neg((p_1(x,y,t) \land p_2(x+1,y,t) \land p_1(x+1,y,t+1) \land p_2(x,y,t+1))$$

- 4. Player's single place existence constraints:
- $\neg (p_i(x_1, y_1, t) \land p_i(x_2, y_2, t))$ where $\forall p_i, p_i \in R$ and $t \in T$.
- 5. Box's single place existence constraints:
- $\neg(b_i(x_1, y_1, t) \land b_i(x_2, y_2, t))$ where $\forall b_i, b_i \in S$ and $t \in T$.

Motivating Example Cont. Encoding Approach 1

Constraints:

6. Player to Player collision constraints:

$$\neg (p_i(x, y, t) \land p_i(x, y, t))$$

where $\forall p_i, p_i \in R$, $\forall p_i, p_i \in R$, $i \neq j$ and $t \in T$.

7. Box to Box collision constraints:

$$\neg(b_i(x,y,t) \land b_j(x,y,t))$$

where $\forall b_i, b_i \in S$, $\forall b_i, b_i \in S, i \neq j$ and $t \in T$.

8. Box to player collision constraints

$$\neg(b_i(x, y, t) \land p_j(x, y, t))$$

where $\forall b_i, b_i \in S$, $\forall p_i, p_i \in R$ and $t \in T$.

9. Obstacle collision constraints:

Player with obstacle:

$$\neg p(x_o, y_o, t)$$

where (x_0, y_0) is the obstacle location.

Box with obstacle:

$$\neg b(x_0, y_0, t)$$

where (x_o, y_o) is the obstacle location.

Motivating Example Cont. Encoding Approach 2

- Constraints:
 - 1. Box push movement constraints Push Right:

$$(b_i(x,y,t) \wedge b_i(x+1,y,t+1) \Rightarrow (\bigvee_{(p_r \in R)} (p_r(x-1,y,t) \wedge p_r(x,y,t+1))$$

where $\forall b_i, b_i \in S$. Similarly all the constraints are generated for left, up and down direction.

2. Box movement constraints:

$$b_i(x, y, t) \Rightarrow b_i(x, y, t+1) \lor b_i(x+1, y, t+1) \lor b_i(x-1, y, t+1) \lor b_i(x, y+1, t+1) \lor b_i(x, y-1, t+1)$$
 where $\forall b_i, b_i \in S$

Motivating Example Cont. Encoding Approach 1 vs Encoding Approach 2

 Constraints: Push Right constraint for one box and two players Encoding Approach 1

$$b_1(x, y, t+1) \Rightarrow (b_1(x, y, t) \lor (\rho_1(x-2, y, t) \land b_1(x-1, y, t) \land \rho_1(x-1, y, t+1)) \bigvee (\rho_2(x-2, y, t) \land b_1(x-1, y, t) \land \rho_2(x-1, y, t+1)))$$

Boolean Simplification: 9 clauses

Encoding Approach 2

Proposition 1

$$(b_1(x,y,t) \land b_1(x+1,y,t+1) \Rightarrow ((p_1(x-1,y,t) \land p_1(x,y,t+1)) \bigvee (p_2(x-1,y,t) \land p_2(x,y,t+1)))$$

Proposition 2

$$b_1(x,y,t) \Rightarrow b_1(x,y,t+1) \lor b_1(x+1,y,t+1) \lor b_1(x-1,y,t+1) \lor b_1(x,y+1,t+1) \lor b_1(x,y-1,t+1)$$

Boolean Simplification: 5 clauses (4 clauses in CNF of proposition 1, 1 clause of proposition 2)

Motivating Example Cont. Encoding Approach 2, Solver strategies

Solver Invocation Strategies
 Strategy 1: Linear Approach (Encoding approach 1+PBL Interface)
 Solver Invocation Strategies
 Strategy 2: Linear Approach (Encoding approach 1+PBL Interface)

Strategy 2: Exponential Jumps Approach (Encoding Approach 2)

Clause Optimization Strategy

Strategy 1: Neighborhood Encoding Approach (Encoding Approach 2)

Strategy 2: Neighborhood Encoding Approach with Relaxed Jump(Encoding Approach 2)

Outline

- Background and Introduction
 - Definitions
- Objective of the Thesis
- Multi-agent Classical Planning
- SAT Planning Architecture
- SAT reduction for Ma-Sokoban puzzle
- 6 Automated Reduction Model
- Tool component description
- Results
- Onclusion and Future work

MA-PDDL representation of Blockworld domain

```
(define(domain blocks)
      (:requirements:typing:multi-agent:unfactored-privacy)
(:types
                                                                                  Problem File
      agent block - object
                                                                                  (define (problem BLOCKS-4-0) (:domain blocks)
                                                                                         (:objects
(:predicates
                                                                                               a - block
      (on ?x - block ?v - block)
                                                                                               c - block
      (ontable ?x - block)
                                                                                                b - block
      (clear ?x - block)
                                                                                         (:private al
      (:private ?agent - agent
            (holding ?agent - agent ?x - block)
                                                                                               a1 - agent
            (handempty ?agent - agent)
                                                                                         (:private a2
                                                                                               a2 - agent
(:action pick-up
      :agent ?a - agent
      :parameters (?x - block)
                                                                                  (:init
      :precondition (and (clear ?x)(ontable ?x)(handempty ?a))
                                                                                         (handempty a1)
      :effect (and (not (ontable ?x)) (not (clear ?x)) (not (handempt;
                                                                                         (handempty a2)
                  (holding ?a ?x) )
                                                                                         (clear c)
                                                                                         (ontable c)
(:action put-down
                                                                                         (ontable b)
                                                                                         (on a b)
(:action stack
                                                                                  (:goal
                                                                                         (and
(:action unstack
                                                                                               (on b a)
                                                                                                (on c b)
```

Automated Reduction Model

- O Grounding: Generate all cases of a predicate with objects.
- Mutex generation: Conflict actions.(two agents pick one box)
- Consistency Constraints: More than one action's effect is same.(cover a tile)

Automated Reduction Model cont...

Steps of the Algorithm

- Step 1: Ground all public predicates and assign them a literal number.
- Step 2: Assign each agent a starting number. Initialize current time step to one.
- Step 3: Generate all possible moves of one-time step for all the agents and store those clauses.

 Step 4: Generate mutex action clauses for all the actions invoked by an agent.
- Step 5: Create clauses of the initial conditions and store them.
- **Step 6:** If the current time step is one then go to step 7 otherwise remove goal clauses of previous time step which is stored.
- Step 7: Create goal clauses for the current time step and store them.
- **Step 8:** If the current time step is one then go to step 9 otherwise shift actions clauses and mutex clauses for one more time step for all the agents and store them.
- Step 9: Call SAT solver and provide all the clauses which are generated in above steps.
- Step 10: If the SAT solver gives satisfiable as a result. Extract the plan and return. otherwise, go to step 6.

Automated Reduction Model cont.. Constraints generation

Automated Reduction Model cont.. Constraints generation

- Initial Configuration clauses
- Action Clauses: for every action $a = \langle pre(a), add(a), del(a) \rangle$

$$\bigvee_{i}^{add(a)} (add(a)pred_{(t+1)}^{i} \rightarrow add(a)pred_{(t+1)}^{add(a)\setminus i} \wedge del(a)_{pred(t+1)} \wedge \\ pre(a)pred_{(t)} \wedge Act_{no}(a)_{(t)} \wedge Ins_{no}(a)_{(t)})$$

similarly if the negative goal predicates are allowed.

$$\bigvee_{i}^{del(a)} (del(a)pred_{(t+1)}^{i} \rightarrow del(a)pred_{(t+1)}^{add(a)\setminus i} \wedge add(a)_{pred(t+1)} \wedge \\ pre(a)pred_{(t)} \wedge Act_{no}(a)_{(t)} \wedge Ins_{no}(a)_{(t)})$$

Automated Reduction Model cont.. Constraints generation

Constraints:

Predicate Clauses:

$$[Eff_pred_i(a_i, j, k, t + 1) \rightarrow Eff_pred_i(a_i, j, k, t)$$

$$\bigvee_{(\theta=1)}^{K} \bigvee_{(j=1,\textit{Eff-pred}_{j}(j,k,t+1) \in A_{\theta})}^{A_{\theta}} \bigvee_{\substack{(a_{(j,\theta)}(\textit{eff-pred}) | \\ \phi=1,\, \phi \neq i}}^{|a_{(j,\theta)}(\textit{eff-pred}_{\phi}(a_{(j,\theta)},p,q,t+1) \land a_{(j,\theta)}(ff-pred)|}$$

$$(\bigwedge_{\psi=1}^{|a_{(j,\theta)}(\textit{pre-pred})|} Pre_\textit{pred}_{\psi}(a_{(j,\theta)},\textit{r},\textit{s},\textit{t}))) \land \textit{Inst}_{\textit{no}} \land \textit{Act}_{(\textit{no},A_{\theta})}))]$$

where a_i denotes ith action of agent i. p, r is predicate of an action. q is the qth instance of the pth predicate. t is the time step. A_{θ} is the action applied by the θ agent. $|a_i(eff_pred)|$ is the number of effect predicates of an action of ith agent. $|a_i(pre_pred)|$ is the number of precondition predicates of an action of ith agent.

Mutual exclusion for actions:

$$\forall_{i=1}^K (\neg(a_{(i,x)}(t) \land a_{(i,y)}(t)))$$

where $x \neq y$, \forall i $x \in A_i$ and $y \in A_i$ Consistency clauses:

$$\forall_{i=1}^{|\mathit{M}|}\forall_{j=i+1}^{|\mathit{M}|}(\neg(\mathit{Inst}_{(i,t)}\wedge\mathit{Inst}_{(j,t)}))$$

Goal Condition:

$$Goal(T) = \bigwedge_{i=1}^{|X|} (x_{(i,T)} \models True)$$

Outline

- Background and Introduction
 - Definitions
- Objective of the Thesis
- Multi-agent Classical Planning
- 4 SAT Planning Architecture
- 5 SAT reduction for Ma-Sokoban puzzle
- 6 Automated Reduction Model
- Tool component description
- Results
- Onclusion and Future work

Automated Planner Components: WAVE(our tool)

Outline

- Background and Introduction
 - Definitions
- Objective of the Thesis
- Multi-agent Classical Planning
- SAT Planning Architecture
- 5 SAT reduction for Ma-Sokoban puzzle
- 6 Automated Reduction Model
- Tool component description
- 8 Results
- Onclusion and Future work

CoDMAP Planner Comparison

CoDMAP planner Ranking

Planner	Optimality	Problem
i iaiiiiei	Optimality	Coverage
		Ranking
ADP legacy*	NO	1
ADP*	NO	2
SIW+-then-BFS(f)	NO	3
CMAP_t	NO	4
DFS+	NO	5
Anytime-LAPKT	NO	6
CMAP_q	NO	7
MAPlan/FF+DTG	NO	8
PSM-VRD	NO	9
MADLA	NO	10
MAPR_p	NO	12
PMR	NO	11
PSM-VR	NO	13
MAPlan/LM-Cut*	YES	15
MAPlan/MA-LM-Cut*	YES	16
MARC	NO	17

Table: All the planners of the CoDMAP Competition

Problem	Мр		MpC		ADP-		ADP		WAVE	
					Legacy					
	Plan	Time	Plan	Time	Steps	Time	Steps	Time	Steps	Time
	steps	(sec)	steps	(sec)		(sec)		(sec)		(sec)
prob-9-0	70[25]	0.462	160[59]	3.787s	48[18]	0.23	42[16]	0.22	40[16]	3m5.291
prob-9-1	144[50]	0.616	198[68]	1.396s	42[16]	0.21	30[10*]	0.17	34[14]	25.541
prob-9-2	68[24]	0.189	156[54]	0.436s	32[14]	0.19	22[10]	0.17	30[14]	39.675
prob-10-0	212[71]	1.276	70[26]	5.187s	34[12]	0.2	56[22]	0.38	45[17]	4m0.956
prob-10-1	128[44]	1.032	250[89]	1.202s	42[18]	0.22	38[20]	0.22	45[17]	3m43.440
prob-10-2	86[29]	7.037	272[85]	18.32s	40[14]	0.21	34[12]	0.2	44[15]	2m39.221
prob-11-0	228[77]	8.064	208[65]	0.569s	34[12]	0.26	38[14]	0.24	42[14]	2m0.565
prob-11-1	196[61]	30.045	276[88]	1m10.8s	38[14]	0.24	50[16]	0.27	39[13]	3m2.994
prob-11-2	90[29]	0.562	128[48]	1.380s	58[22]	0.31	48[16]	0.27	52[17]	8m53.651
prob-12-0	126[41]	53.356	100[33]	40.29s	74[24]	0.45	56[20]	0.3	40[15]	8m51.995
prob-12-1	46[17]	29.127	378[119]	4m28.4s	42[12]	0.29	44[16]	0.28	40[16]	9m8.420
prob-13-0	TO	TO	TO	TO	42[12]	4.15	92[36]	0.61	TO	TO
prob-13-1	TO	TO	TO	TO	66[24]	0.36	66[28]	0.4	TO	TO
prob-14-0	132[44]	6m10.2	240[78]	2m24.5s	64[22]	0.44	42[28]	0.37	46[17]	22m54.18
prob-14-1	148[45]	2m54.0	TO	TO	46[16]	0.37	58[20]	0.36	45[15]	14m37.95
prob-15-0	214[73]	14m42.2	258[85]	7.194s	98[32]	0.8	82[32]	0.48	TO	TO
prob-15-1	TO	TO	TO	TO	78[30]	0.52	86[28]	0.61	TO	TO
prob-16-1	178[52]	30m15.9	TO	TO	74[30]	1.44	68[32]	0.70	TO	TO
prob-16-2	TO	TO	TO	TO	84[22]	1.76	74[24]	0.72	TO	TO
prob-17-1	TO	TO	TO	TO	138[42]	17.72	90[30]	1.60	TO	TO
Coverage	15	-	13	-	20	-	20	-	13	-

Table: Automated planner results on Blockworld domain

Optimal total cost: 6/13 ADP , 7/13 ADP-legacy, 13/13 Mp and 13/13 MpC

Problem	Мр		MpC		ADP-		ADP		Wave			WAVE
	.				legacy							
	Plan	Time	Plan	Time	Steps	Time	Steps	Time	Steps	total	Time	Optima
	steps	(sec)	steps	(sec)		(sec)		(sec)		cost	(sec)	cost
pfile1	6[6]	0.004	6[6]	0.004s	6[6]	0.09	6[6]	0.07	6	6	5.789s	Yes
pfile2	16[8]	0.005	16[8]	0.004s	14[12]	0.08	14[12]	0.08	8	16	7.934s	-
pfile3	11[9]	0.004	11[9]	0.005s	11[11]	0.08	11[11]	0.08	7	14	7.192s	-
pfile4	13[9]	0.005	13[9]	0.005s	13[8]	0.09	13[8]	0.08	8	18	8.960s	-
pfile5	17[9]	0.006	17[8]	0.006s	25[19]	0.1	21[19]	0.09	10	22	13.244s	-
pfile6	10[6]	0.007	10[6]	0.007s	8[4]	0.1	8[4]	0.11	4	8	5.195s	Yes
pfile7	11[9]	0.01	11[9]	0.009s	12[12]	0.12	12[12]	0.11	7	18	9.238s	-
pfile8	28[11]	0.011	28[11]	0.014s	26[17]	0.12	26[17]	0.13	9	26	14.878s	Yes
pfile9	22[14]	0.012	23[14]	0.013s	23[16]	0.12	24[16]	0.12	10	20	19.218s	Yes
pfile10	17[8]	0.016	17[8]	0.013s	15[15]	0.16	15[15]	0.13	9	17	41.148s	-
pfile11	26[17]	0.019	23[13]	0.022s	20[11]	0.16	21[11]	0.15	11	21	1m24.8	5 -
pfile12	39[20]	0.05	34[16]	0.042s	32[27]	0.21	32[26]	0.2	14	28	39m(T	O)-
pfile13	29[15]	0.055	28[11]	0.049s	23[21]	0.25	25[23]	0.23	13	25	9m30.4	5 -
pfile14	43[17]	0.051	46[18]	0.056s	33[30]	0.28	32[29]	0.27	12	36	18m21.	4s -
pfile15	52[16]	0.156	44[16]	0.163s	41[26]	0.63	40[22]	0.61	ML	ML	ML	-
pfile16	67[18]	0.473	89[25]	0.484s	69[22]	3.68	66[26]	3.49	ML	ML	ML	-
pfile17	93[24]	0.724	102[25]	0.788s	80[35]	2.23	121[46]	4.96	ML	ML	ML	-
pfile18	133[34]	2.361	150[35]	2.255s	122[73]	8.86	122[68]	7.03	ML	ML	ML	-
pfile19	168[38]	2.347	172[45]	2.254s	144[93]	4m56.89	142[61]	4m3.8	ML	ML	ML	-
pfile20	191[33]	4.596	188[38]	4.784s	104[82]	8.06	116[95]	8.07	ML	ML	ML	-
Coverage	e 20	-	20	-	20	-	20	-	13	-	-	-

Table: Driver-log domain results

 \bullet Optimal total cost: 7/13 ADP , 6/13 ADP-legacy, 7/13 Mp and 10/13 MpC $_{<}$

Problem	MA-PLAN	Total	MAPlan	Total	WAVE	Total
	Total Cost	Time	/MA-LM-	Time	Total	Time
		(sec)	Cut Total	(sec)	Cost	(sec)
			cost			
probBLOCKS-9-0	20	1688.88	20	1781.12	40	316.577s
probBLOCKS-9-1	20	38.10	20	24.80	34	26.550s
probBLOCKS-9-2	-1	150.11	-1	250.97	39	63.07s
probBLOCKS-10-0	-1	1685.22	-1	1800.00	46	345.385s
probBLOCKS-10-1	-1	1686.14	-1	1780.24	42	381.875s
probBLOCKS-10-2	-1	1688.43	-1	1761.58	44	328.465s
probBLOCKS-11-0	-1	1690.02	-1	1800.02	39	207.308s
probBLOCKS-11-1	-1	1.00	-1	1.00	36	359.030s
probBLOCKS-11-2	-1	1687.06	-1	1800.00	45	744.841s
probBLOCKS-12-0	-1	1684.55	-1	1.00	41	401.532s
probBLOCKS-12-1	-1	1686.58	-1	1800.01	43	616.830s
probBLOCKS-13-0	-1	1687.30	-1	1800.01	65	TO
probBLOCKS-13-1	-1	1687.63	-1	1800.03	-1	TO
probBLOCKS-14-0	-1	1686.32	-1	1743.56	-1	TO
probBLOCKS-14-1	-1	1684.45	-1	1800.01	45	1575.589s
probBLOCKS-15-0	-1	1686.93	-1	1800.00	-1	TO
probBLOCKS-15-1	-1	1692.23	-1	1800.01	-1	TO
probBLOCKS-16-1	-1	1684.48	-1	1800.00	-1	TO
probBLOCKS-16-2	-1	1686.51	-1	1800.01	-1	TO
probBLOCKS-17-0	-1	1687.74	-1	1800.00	-1	то
Coverage	2	-	2	-	12	-

Table: Total Cost comparison of MAPLAN and WAVE on Blockworld Domain

Problem	MAPLan	Total	MAPlan/	Total	WAVE	Total
	/LM-Cut	Time	MA-LM-	Time	total	Time
	Total	(Sec)	Cut Total	(Sec)	cost	(Sec)
	cost		cost			
pfile1	6	6.15	6	8.69	6	5.579s
pfile2	13	1.66	-1	1.00	16	7.991s
pfile3	10	1.35	10	0.69	14	7.204s
pfile4	11	2.68	11	5.04	18	9.089s
pfile5	17	1.14	17	18.37	22	13.538s
pfile6	8	1.74	8	6.40	8	5.347s
pfile7	10	0.90	10	3.80	18	9.715s
pfile8	19	14.57	19	236.17	26	15.094s
pfile9	18	4.84	18	67.24	20	16.737s
pfile10	15	3.29	15	8.12	17	29.472s
pfile11	17	1.41	17	5.10	21	45.487s
pfile12	27	1219.88	-1	1.00	-1	1800.00s
pfile13	23	57.20	23	624.73	25	881.75s
pfile14	26	739.78	-1	1733.53	36	1424.083s
pfile15	29	1387.65	-1	1800.00	-1	ML
pfile16	-1	1.00	-1	1800.00	-1	ML
pfile17	-1	1694.16	-1	1.00	-1	ML
pfile18	-1	1714.66	-1	1800.00	-1	ML
pfile19	-1	1800.02	-1	1800.00	-1	ML
pfile20	-1	1800.00	-1	1800.00	-1	ML
Coverage	15	-	11	-	13	-

Table: Total Cost comparison of MAPLAN and WAVE on Driverlog Domain

Optimal total cost: 2/13 optimal solution

Domain	Blockworld	Driverlog	Total	Rank
Planner	20	20	40	
ADP-legacy**	20	20	40	1
ADP**	20	20	40	2
PSM-VRD	20	20	40	3
MAPR-p	20	20	40	4
CMAP-t	20	19	39	5
DFS+	20	19	39	6
PMR	20	19	39	7
CMAP-q	19	19	38	8
SIW+-then-BFS(f)	20	17	37	9
MAPlan/FF+DTG	20	16	36	10
Anytime-LAPKT	20	15	35	11
Madagascar**	15	20	35	12
MADLA	19	15	34	13
PSM-VR	12	15	27	14
Wave**	12	13	25	15
MH-FMAP	0	17	17	16
MAPLan/LM-Cut**	2	13	15	17
MAPlan/MA-LM-Cut**	2	12	14	18
MARC	0	0	0	19

Table: CoDMAP problem coverage planner rank

Ma-sokoban results

Problem	Grid	(Agents,	Plan	Plan	Total
Name		Boxes)	Found	Itera-	Time
				tion	(Sec)
p01	7*7	2,2	YES	17	169.11
p01-1	7*7	2,2	YES	13	127.19
p02	12*6	2,3	T.O	-	-
p02-1	12*6	2,3	T.O	-	-
p03	7*7	2,3	YES	8	93.9
p03-1	7*7	2,3	YES	7	117.0
p04	7*11	3,4	T.O	-	-
p04-1	7*11	3,4	T.O	-	-
p05	10*9	3,4	T.0	-	-
p05-1	10*9	3,4	T.O	-	-
p06	10*9	2,4	YES	14	644.1
p06-1	10*9	3,4	T.O	-	-
p07	9*8	2,3	T.O	-	-
p07-1	9*8	3,3	T.0	-	-
p08	12*10	3,2	M.L.	-	-
p08-1	12*10	3,3	M.L.	-	-
p09	15*7	3,4	T.O	-	-
p09-1	15*7	3,4	T.0	-	-
p10	29*17	4,1	M.L.	-	-
p10-1	15*7	3,4	M.L.	-	-

Table: Sokoban Encoding Approach 1

Ma-sokoban Encoding Approach 1 planner comparison

Problem	Мр		МрС		ADP-leg	gacy	ADP		Our app (seq+P	oroach BL+py)
	plan	Time	plan	Time	plan	Time	plan	Time	plan	Time
	Steps	(sec)	Steps	(sec)	Steps	(sec)	Steps	(sec)	Steps	(sec)
p01	32(19)	0.026	32(19)	0.022	40(22)	0.120	34(21)	0.113	17	169.11
p01-1	20(14)	0.020	14(14)	0.020	28(15)	0.114	26(13)	0.102	13	127.19
p02	129(76)	0.550	80(74)	0.132	123(62)	0.39	133(74)	0.40	TO	TO
p02-1	159(92)	12.528	123(76)	1.106	145(74)	0.34	163(82)	0.31	TO	TO
p03	11(8)	0.032	11(8)	0.027	11(8)	0.14	11(8)	0.13	8	93.947
p03-1	10(8)	0.018	10(8)	0.023	17(10)	0.12	17(10)	0.13	7	117.080
p04	65(33)	0.270	71(31)	0.295	102(38)	1.25	134(55)	1.48	TO	TO
p04-1	TÒ Í	30M	TÒ	30M	TO`	TO	то` 1	TO	TO	TO
p05	85(41)	0.434	65(27)	0.225	54(51)	1.98	56(53)	1.90	TO	TO
p05-1	24(21)	0.240	70(26)	0.258	24(21)	0.31	42(21)	0.36	TO	TO
p06	25(14)	0.140	25(14)	0.155	30(16)	0.41	37(22)	0.45	14	644.169
p06-1	42(24)	0.403	41(16)	0.218	29(14)	0.88	29(14)	0.89	TO	TO
p07	73(49)	0.602	63(39)	0.103	85(43)	0.50	87(45)	0.51	TO	TO
p07-1	44(24)	0.122	52(29)	0.135	40(26)	0.25	38(24)	0.40	TO	TO
p08	157(90)	3.936	169(92)	1m3.45	168(96)	01.73	172(96)	1.42	M.L.	M.L.
p08-1	126(56)	9.043	129(49)	2m19.5	124(85)	0.89	124(85)	0.98	M.L.	M.L.
p09	91(42)	0.606	120(54)	0.455	176(78)	4m57.8		3m53.5	з то	TO
p09-1	TÒ Í	30M	то` 1	30M	то` 1	TO	то` 1	TO	TO	TO
p10	TO	30M	296(223) 4m24.0	216(211) 04.87	216(211) 4.81	M.L.	M.L.
p10-1	73(36)	0.560	73(38)	0.433	171(68)	15m27.	3 149(57)	15m42.	6 M.L.	M.L.
Coverage	17	-	18	-	18	-	18	-	5	-

Table: All Planner comparison for Encoding Approach 1

Ma-sokoban results

Problem	Grid Size N*M	Agents	Boxes	ENCODING 1(seq+PBL +python) Make- Span	Time(sec)	ENCODING 1(seq +python) Make- Span	Time(sec)
p01	7*7	2	2	17	169.11	17	10.227
p01-1	7*7	2	2	13	127.19	13	5.66
p03	7*7	2	3	8	93.947	8	5.53
p03-1	7*7	2	3	7	117.08	7	6.35

Table: PBL removal on Encoding Scheme 1 result

Ma-sokoban results

Proble	m Grid	Robot	Вох	Expojump	ADP	Мр	Мрс	М	Black	SAT-
				Time	Time	Time	Time	Time	BOX	PLAN
				(Sec)	(Sec)	(Sec)	(Sec)	(Sec)	Time	Time
								, ,	(Sec)	(Sec)
Test_1	7*7	2	2	0.043s	0.131	0.019**	0.018	0.033	3.91	INC.
				[13]	[13]					***
Test_2	15*15	2	2	1.065s	1.722	7.941s	7.867	8.760	11.68hrs	INC.
				[18]	[25]	[19]	[19]	[20]		
Test_3	30*30	2	2	18.957s	14.56	11m29.9s	11m53s	11m20s	T.O.	INC.
				[29]	[29]	[29]	[29]	[29]		

Table: ALL Planner comparison with exponential jumps

Notation:

- 1. O.S. is optimal steps (makespan) for solving the problem.
- 2. *Time is in seconds (user+sys mode of process execution)
- 3. ** Min time taken when multiple run gives different values.
- 4 .***INC means that conversion from Ma-pddl to pddl is not compatible with the planner.

Test Cases: There are three test cases the configuration is given below.

- Test_1: CoDMAP sokoban problem 2
- $\textbf{Test_2:} \ \, \text{A1:} (0,0) \ \, \text{A2:} (14,0) [\text{Agents}] \ \, \text{B1:} (1,1) \\ \text{B2:} (13,1) [\text{Boxes}] \ \, \text{G1:} (14,14) \ \, \text{G2:} (0,14) \ \, \text{[Goals]}$
- Test_3: A1:(0,0) A2:(29,0)[Agents] B1:(1,1)B2:(28,1)[Boxes] G1:(29,29)G2:(0,29) [Goals]

Ma-sokoban results: : Neighborhood Encoding Approach

Problem	Grid	Agent	Вох	Total Time	Clause Gen- era- tion Time	SAT solver Time	Steps	ADP (Time)	ADP (Make Span)
p01 p01-1	7*7 7*7	2 2	2 2	10.227 5.66		5.419 1.928	17 13	0.020 0.005	22 13

Table: Encoding scheme 1 result

Problem	Grid	Agent	Box	Total	Clause	SAT	Steps	ADP	ADP
				Time	Gen-	solver		(Time)	(Make
					era-	Time			Span)
					tion				
					Time				
p01	7*7	2	2	1.94083	1.27823	0.662594	- 17	0.020	22
p01-1	7*7	2	2	0.97435	0.67516	0.29937	13	0.005	13

Table: Neighborhood Encoding Approach with encoding scheme 2 result

Ma-sokoban results: Relaxed jump with neighborhood Approach

Problem	Мр		МрС		ADP-legacy		ADP		Our approach (seq+NEG+Rel_jmp)	
	plan	Time	plan	Time	plan	Time	plan	Time	plan	Time
	Steps	(sec)	Steps	(sec)	Steps	(sec)	Steps	(sec)	Steps	(sec)
p01	32(19)	0.026	32(19)	0.022	40(22)	0.120	34(21)	0.113	17	0.159
p01-1	20(14)	0.020	14(14)	0.020	28(15)	0.114	26(13)	0.102	13	0.072
p02	129(76)	0.550	80(74)	0.132	123(62)	0.39	133(74)	0.40	51	2m49.56
p02-1	159(92)	12.528	123(76)	1.106	145(74)	0.34	163(82)	0.31	45	2m24.76
p03	10(8)	0.032	10 ` ′	0.027	11 ` ′	0.14	11 ` ′	0.13	8	0.038
p03-1	10(8)	0.018	10(8)	0.023	17(10)	0.12	17(10)	0.13	7	0.033
p04	65(33)	0.270	71(31)	0.295	102(38)	1.25	134(55)	1.48	21	6m47.69
p04-1	TO	30M	TO	30M	TO	TO	TO	TO	TO	TO
p05	85(41)	0.434	65(27)	0.225	54(51)	1.98	56(53)	1.90	20	4.279
p05-1	24(21)	0.240	70(26)	0.258	24(21)	0.31	42(21)	0.36	16	1.204
p06	25(14)	0.140	25(14)	0.155	30(16)	0.41	37(22)	0.45	14	0.352
p06-1	42(24)	0.403	41(16)	0.218	29(14)	0.88	29(14)	0.89	12	0.310
p07	73(49)	0.602	63(39)	0.103	85(43)	0.50	87(45)	0.51	31	39.574
p07-1	44(24)	0.122	52(29)	0.135	40(26)	0.25	38(24)	0.40	19	0.991
p08	157(90)	3.936	169(92)	1m3.45	168(96)	01.73	172(96)	1.42	TO	TO
p08-1	126(56)	9.043	129(49)	2m19.5	124(85)	0.89	124(85)	0.98	29	27.01
p09	91(42)	0.606	120(54)	0.455	176(78)	4:57.83	111(52)	3:53.5	31	22.72
p09-1	TO	30M	TO	30M	TO	TO	TO TO	TO	TO	TO
p10	TO	30M	296(223)	4m24.0	216(211)	04.87	216(211)	4.81	TO	TO
p10-1	73(36)	0.560	73(38)	0.433	171(68)	15:27.8	149(57)	15:42.	5 28	40.94
Coverage	17	-	18	-	18	-	18	-	16	_

Table: All Planner comparison with relaxed jump with neighborhood encoding approach

Outline

- Background and Introduction
 - Definitions
- Objective of the Thesis
- Multi-agent Classical Planning
- 4 SAT Planning Architecture
- 5 SAT reduction for Ma-Sokoban puzzle
- 6 Automated Reduction Model
- Tool component description
- Results
- Onclusion and Future work

Limitation, conclusion and Future Work

Limitations:

- The main reason of tool's slow performance is slow performance of the SAT solver.
- Our planner does not give optimal total cost of the problem.
- Our planner does not supports features of MA-PDDL which is not highlighted in RED.

Future work

- Introduce cardinality constraints for plan optimality in terms of total cost.
- Introduce Incremental approach in the SAT solver to optimize the SAT solver invocation time.
- Introduce the plan validator module in the tool.
- New features of MA-PDDL can be added in the tool.
- Relaxed Jump using graph approach.
- Scalability.

QA

• Questions ?