Databases Final Project: Exploratory Analysis using Tennis Data Set

This notebook outlines our queries of the tennis players, matches, and rankings databases. We perform large scale analysis on statistics and display them!

We take a look at the following statistics:

- General Data Analysis
- World Number 1 Ranking
- Performance by Age
- Performance by Country
- Performance by Handedness
- Player Analysis

```
In [1]:
```

```
import pandas as pd import os
```

Tn [2]

%load_ext sql

In [3]:

```
project_folder = %pwd
database_path = os.path.join(project_folder, 'archive', 'database.sqlite')
%sql sqlite://{database_path}
```

General Data Analysis

In our data tables, we have this many rows for each:

- matches: 932504
- players: 64675
- rankings: 3190379

In our data tables, we have this many columns for each:

- matches: 81
- players:8
- rankings: 4

For more details on what is included in the data, please visit the Kaggle link: https://www.kaggle.com/datasets/guillemservera/tennis/data

Let's look at the number of players per ranking year and include info on the maximum points and average points per year.

```
In [4]:
```

```
% sql result_set <<
SELECT
SUBSTR(CAST(ranking_date AS STRING), 1, 4) AS ranking_year,
    COUNT(DISTINCT player) AS number_of_players,
    SUM(points) AS maxPoints,
    AVG(points) AS avgPoints
FROM
    rankings
GROUP BY
    ranking_year
HAVING
    maxPoints IS NOT NULL AND avgPoints IS NOT NULL
ORDER BY
    ranking_year</pre>
```

* sqlite:///Users/thomasyu/Desktop/Project/archive/database.sqlite Done. Returning data to local variable result_set

We will display the data.

```
In [5]:

df = result_set.DataFrame()
display(df)
```

	ranking_year	number_of_players	maxPoints	avgPoints
0	1990	1602	4801538.0	85.677492
1	1991	1603	5595642.0	101.342787
2	1992	1697	6209566.0	107.059637
3	1993	1693	6877411.0	114.935759
4	1994	1729	7448389.0	118.955346
5	1995	1831	7598822.0	117.289302
6	1996	1901	8562352.0	125.422628
7	1997	1990	9370894.0	131.017477
8	1998	2062	9810755.0	127.164679
9	1999	2042	9779934.0	118.730306
10	2000	2033	8140186.0	100.298004
11	2001	2091	8877007.0	103.307502
12	2002	2135	8609010.0	101.934854
13	2003	2188	8474126.0	95.945812
14	2004	2296	8711505.0	95.771869
15	2005	2395	9057824.0	98.472805
16	2006	2528	9106359.0	89.155659
17	2007	2447	9400359.0	94.021454
18	2008	2435	9382620.0	95.754700
19	2009	2365	15430313.0	158.301834
20	2010	2270	12234914.0	132.078006
~-	2011	0000	110100000	100 075000

```
2011 2302 11040023.0 129.2/10809 ranking_year number_of_players maxPoints avgPoints
23
            2013
                              2691 11194707.0 117.879969
24
           2014
                              2766 11456451.0 113.330343
            2015
                              2843 11538550.0 112.982365
            2016
                              2762 11857813.0 119.760163
27
            2017
                              2536 11769285.0 120.540005
            2018
            2019
                              2265 10624400.0 180.028806
            2020
                              2034 7103103.0 133.624979
31
                              2384 14240954.0 147.086904
            2021
32
            2022
                              2776 11853431.0 123.966523
                              2488 9743748.0 126.348557
33
            2023
```

Now let's analyze using heatmaps for each column individually.

```
In [6]:
```

```
# Separate the DataFrame into three DataFrames based on columns
df_number of players = df[['ranking_year', 'number of players']].copy()
df_maxPoints']].copy()
df_avgPoints = df[['ranking_year', 'avgPoints']].copy()
```

Let's see number of players over the years.

```
In [7]
```

```
# Apply background gradient styling on number of players.
styled_df_gradient = (
    df_number_of_players
    .style
    .background_gradient(cmap='viridis', axis=None)
)
# Display the styled_DataFrame with background gradient
display(styled_df_gradient)
```

```
1990
                              1602
           1991
                              1603
           1992
                              1697
 2
 3
           1993
                              1693
           1994
                              1729
                              1831
           1995
           1996
                              1901
                              1990
           1997
           1998
                              2062
           1999
                              2042
10
           2000
                              2033
11
           2001
12
           2002
13
           2003
           2004
15
           2005
           2006
                              2528
17
           2007
18
           2008
19
           2009
           2010
20
                              2362
21
           2011
22
           2012
                              2489
23
           2013
                              2691
24
           2014
                              2766
25
           2015
                              2843
           2016
27
28
           2018
                              2523
           2019
30
           2020
                              2034
31
           2021
32
           2022
                              2776
33
           2023
                              2488
```

As we can see, there are more professional tennis players as the years go on.

```
In [8]:
```

```
# Apply background gradient styling on maximum points in a year.

styled_df_gradient = (
    df_maxPoints
    .style
    .background_gradient(cmap='viridis', axis=None)
)

# Display the styled_DataFrame with background gradient
display(styled_df_gradient)
```

ran	king_year	maxPoints
0	1990	4801538.000000

```
1 ranking_yeer 5595642.000000
2
           1992
                  6209566.000000
           1993
                  6877411.000000
           1994
           1995
           1996
                  8562352.000000
                  9370894.000000
           1997
                  9810755.000000
           1998
                  9779934.000000
           1999
                  8140186.000000
10
           2000
11
                  8877007.000000
           2001
                  8609010.000000
12
           2002
13
           2003
                  8474126.000000
                  8711505.000000
14
           2004
15
           2005
16
17
           2007
18
           2008
19
           2009 15430313.000000
           2010 12234914.000000
20
21
           2011
           2012 11342655.000000
22
23
           2013 11194707.000000
           2014 11456451.000000
24
           2015 11538550.000000
25
26
           2016 11857813.000000
27
           2017 11769285.000000
           2018 11701155.000000
           2019 10624400.000000
           2020 7103103.000000
           2021 14240954.000000
           2022 11853431.00000
           2023 9743748.000000
33
```

In [9]:

11

12

13

14

15

16

17

18

19

20

21

22

23

24 25

26

27

28

29

30

```
# Apply background gradient styling on average points per player.
styled_df_gradient = (
    df_avgPoints
    .style
       .background_gradient(cmap='viridis', axis=None)
# Display the styled DataFrame with background gradient display(styled_df_gradient)
```

ranking_year avgPo 85.677492 0 1990 1991 101.342787 1992 107.059637 1993 114.935759 1994 118.955346 1995 117.289302 1996 125.422628 1997 131.017477 1998 127.164679 118.730306 1999

2000 100.298004

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

103.307502

101.934854

95.945812

95.771869

98.472805

89.155659

94.021454

95.754700

158.301834

117.879969 2014 113.330343

2015 112.982365

2016 119.760163

2017 120.540005

2018 126.852789

2019 180.028806 2020 133.624979

```
        31
        ranking
        2021 very length
        147,056904 very length

        32
        2022 very length
        123,966523 very length

        33
        2023 very length
        126,348557 very length
```

The number of players each year increases, which is entirely expected! We know that tennis is still a growing sport despite its long history. We can see the increasing popularity and competition as the maximum points and average points are generally increasing each year. This means that there are tournaments and more players are participating in the tournaments.

We will be using the year a lot. In the data, the dates are represented as a single number, so we will need to extract the year from that date number. Here, we create a temporary table for the ranking year. Additionally, the rankings table does not include player names, so we will add that as well.

```
In [10]:

%%sql
CREATE TEMP TABLE player_rankings AS
SELECT
    r.*,
    p.*,
    p.name_first || ' ' || p.name_last AS player_name,
    SUBSTR(CAST(r.ranking_date AS STRING), 1, 4) AS year
FROM
    rankings AS r
LEFT JOIN
    players AS p ON p.player_id = r.player

* sqlite:////Users/thomasyu/Desktop/Project/archive/database.sqlite
```

World Number 1 Ranking

Since we have data about player rankings, it will be interesting to see which players have consistently been ranked number 1 over time. This can give us insight on who we might consider to be the GOAT (Greatest of All Time)

```
In [11]:
```

Out[10]:

```
%%sql
SELECT
   player_name, COUNT(*) as ranked_first, count(DISTINCT year) as years_being_first
FROM   player_rankings
WHERE
   rank = 1
GROUP BY
   player_name
ORDER BY
   ranked_first desc
LIMIT
   25
```

Out[11]:

player_name	ranked_first	years_being_first
Novak Djokovic	355	12
Roger Federer	307	9
Pete Sampras	285	8
Ivan Lendi	228	8
Rafael Nadal	193	10
John McEnroe	136	6
Jimmy Connors	104	8
Andre Agassi	100	5
Bjorn Borg	94	4
Lleyton Hewitt	80	3
Stefan Edberg	71	3
Jim Courier	58	2
Gustavo Kuerten	43	2
Andy Murray	37	2
Carlos Alcaraz	31	2
Mats Wilander	16	2
Daniil Medvedev	13	1
Andy Roddick	13	2
Boris Becker	12	1
Ilie Nastase	10	2
Marat Safin	9	2
Juan Carlos Ferrero	8	1
Yevgeny Kafelnikov	6	1
Thomas Muster	6	1
Marcelo Rios	6	1

Just as suspected, we can see that the big three (Djokovic, Nadal, and Federer) are quite dominant even among the best in history. We can also see some other big names and how they compare.

Performance by Age

We can look at the players table a bit more. THe table also has dob (date of birth) for the player so we can use it to identify how old they are.

Age Analysis

```
In [12]:
```

```
%%sql result_set <<
SELECT
    year,</pre>
```

 $^{^{\}star}$ sqlite:////Users/thomasyu/Desktop/Project/archive/database.sqlite Done.

```
rank = 1
GROUP BY
 year
ORDER BY
year asc
  * sqlite:////Users/thomasyu/Desktop/Project/archive/database.sqlite
 Returning data to local variable result_set
 In [13]:
df = result_set.DataFrame()
display(df)
      year average_age
  0 1973
             27.000000
  1 1974
              24.600000
  2 1975
              23.000000
  3 1976
              24.000000
  4 1977
              24.875000
  5 1978
              26.000000
  6 1979
              24.128205
  7 1980
              23.733333
  9 1982
              24.272727
 10 1983
 11 1984
              24.697674
 12 1985
              25.642857
 13 1986
              26.000000
 14 1987
              27.000000
 15 1988
              26.666667
 16 1989
              28 813953
 17 1990
              27 692308
 18 1991
              24.769231
 19 1992
              22.846154
 20 1993
              22 326923
 21 1994
 24 1997
              26.000000
 25 1998
              26.538462
 26 1999
              27.807692
 27 2000
              28.941176
 28 2001
              23.811321
              21.000000
 29 2002
 30 2003
              24.942308
 31 2004
              22 923077
 32 2005
              24.000000
 33 2006
              25.000000
 34 2007
              26.000000
 35 2008
              25.076923
     2009
 37 2010
              26.115385
              24.456522
 38 2011
              27.042553
 39 2012
 40 2013
              26.282609
              27.456522
 41 2014
 42 2015
              28.000000
 43 2016
              29 000000
 44 2017
              30.382979
 45 2018
              32.446809
 46 2019
              32.191489
 47 2020
 48 2021
            29.684211
 50 2023
 Let's plot this on a graph to make it easier to interpret.
import matplotlib.pyplot as plt
 # Plot the data
# Plot the data
plt.figure(figsize=(10, 6))
plt.plot(df['year'], df['average_age'], marker='o', linestyle='-', color='r')
plt.title('Average Age of Top-ranked Players Over the Years')
plt.xlabel('Ranking Year')
plt.ylabel('Average Age')
plt.xtick(df['year'][::10])
plt.grid(True)
```

AVG(year - CAST(SUBSTR(dob, 1, 4) AS INT)) AS average_age

player_rankings WHERE

The age of the number 1 ranked player seems to iterate through eras. It creeps up for a number of years and then sinks down again as a new champion takes over the reigns. From the year 2000 to 2020 we can see that this is the era of the big 3 as they dominate and age.

We can also take a look at different ranking positions other than world number 1.

```
In [15]:
```

* sqlite:////Users/thomasyu/Desktop/Project/archive/database.sqlite

Returning data to local variable result_set

In [16]

```
df = result_set.DataFrame()
display(df)
```

	year	rank_1	top_5	top_10	top_20	top_50	top_100
0	1973	27.00	28.29	34.14	34.14	34.14	34.14
1	1974	24.60	31.00	31.50	31.50	31.50	31.50
2	1975	23.00	31.25	35.86	35.86	35.86	35.86
3	1976	24.00	27.00	33.50	33.50	34.00	35.00
4	1977	24.88	26.13	27.03	33.41	33.41	33.41
5	1978	26.00	26.00	27.09	29.88	30.13	30.13
6	1979	24.13	25.74	30.67	30.67	30.67	30.67
7	1980	23.73	27.69	27.69	27.69	28.32	29.80
8	1981	23.71	27.36	27.60	27.60	29.26	29.26
9	1982	24.27	27.59	27.59	28.48	28.64	28.64
10	1983	24.79	27.88	27.88	28.88	28.88	28.88
11	1984	24.70	29.95	29.95	29.95	29.95	29.95
12	1985	25.64	27.00	27.00	27.00	27.63	27.63
13	1986	26.00	26.00	26.00	26.00	26.73	26.88
14	1987	27.00	27.00	27.79	27.79	27.79	27.79
15	1988	26.67	26.67	27.90	27.90	27.90	27.90
16	1989	28.81	28.81	28.81	28.81	28.81	28.81
17	1990	27.69	27.69	27.69	27.69	27.69	27.69
18	1991	24.77	27.48	27.48	27.48	27.48	27.48
19	1992	22.85	24.67	25.42	26.00	28.54	28.54
20	1993	22.33	25.92	25.92	26.63	26.67	26.67
21	1994	23.00	26.00	26.00	26.13	27.90	27.90
22	1995	24.58	28.00	28.00	28.00	28.00	28.00
23	1996	25.49	26.72	26.72	26.72	27.47	27.47
24	1997	26.00	26.04	26.04	26.04	27.43	27.43
25	1998	26.54	26.54	26.54	26.54	27.48	27.48
^^	1000	^7 ^4	^7 ^4	27.24	~~ ~4	~~ ~4	27.04

20	1999 year		27.81 top_5	27.81 top_10			27.8° top_100
27	2000	28.94	28.94	28.94	28.94	28.94	28.9
28	2001	23.81	27.25	27.25	27.70	27.70	28.2
29	2002	21.00	26.27	26.83	27.13	28.04	28.04
30	2003	24.94	27.19	27.19	27.37	28.06	28.06
31	2004	22.92	25.46	28.35	28.35	28.35	28.3
32	2005	24.00	24.29	29.42	29.42	29.42	29.42
33	2006	25.00	25.42	25.98	26.38	28.13	28.13
34	2007	26.00	26.00	26.11	26.43	27.79	28.42
35	2008	25.08	25.08	26.35	26.67	28.27	29.8
36	2009	25.50	25.50	25.96	28.00	28.23	28.23
37	2010	26.12	26.12	27.65	29.56	29.56	29.56
38	2011	24.46	28.04	28.63	28.63	28.63	28.63
39	2012	27.04	27.87	29.30	29.30	29.40	29.40
40	2013	26.28	29.04	29.04	29.46	29.74	29.7
41	2014	27.46	30.02	30.02	30.02	30.35	30.3
42	2015	28.00	32.43	32.43	32.43	32.43	32.43
43	2016	29.00	32.65	32.65	32.65	32.65	32.65
44	2017	30.38	32.26	32.26	32.26	32.26	32.26
45	2018	32.45	35.02	35.02	35.02	35.02	35.02
46	2019	32.19	33.57	33.57	33.57	33.57	33.5
47	2020	33.11	33.89	33.89	33.89	33.89	33.89
48	2021	34.00	34.00	34.00	34.00	34.00	34.00
49	2022	26.89	28.85	28.85	29.74	30.07	30.07
50	2023	29.68	29.68	29.68	29.68	29.68	30.3

Let's also graph this to make it more interpretable.

```
In [17]:
```

```
# Plot the data
plt.figure(figsize=(12, 8))

plt.plot(df['year'], df['rank_1'], marker='o', linestyle='-', label='Rank 1')
plt.plot(df['year'], df['top_5'], marker='o', linestyle='-', label='Top 5')
plt.plot(df['year'], df['top_10'], marker='o', linestyle='-', label='Top 10')
plt.plot(df['year'], df['top_20'], marker='o', linestyle='-', label='Top 20')
plt.plot(df['year'], df['top_50'], marker='o', linestyle='-', label='Top 50')
plt.plot(df['year'], df['top_100'], marker='o', linestyle='-', label='Top 100')

plt.title('Average Age of Top-ranked Players Over the Years by Rank')
plt.xlabel('Ranking Year')
plt.xlabel('Ranking Year')
plt.xlabel('Year'][::10])
plt.legend(loc='upper left')
plt.grid(True)
plt.show()
```


There are some interesting patterns here. Seems that the average age moves together and varies a lot throughout the years. This indicates that the overall players on tour are varying in a age a lot through the years. Seems that professional players come in waves and generations. Very interesting.

In the graph, it appears that the number ranking seems to be a bit younger than the rest of the pack. I wonder if this is because youth has an advantage. Let's look at the youngest number 1 players.

In [18]:

```
%%sql
WITH RankedPlayers AS (
    SELECT
    year,
    player_name,
    year - CAST (SUBSTR(dob, 1, 4) AS INT) AS age,
```

```
ROW_NUMBER() OVER(PARTITION BY year, player_name ORDER BY year ASC) AS row
     player_rankings
WHERE rank = 1
SELECT
      year,
player_name,
      age
 FROM
RankedPlayers
WHERE
row = 1
ORDER BY
age ASC
LIMIT
25
```

* sqlite:////Users/thomasyu/Desktop/Project/archive/database.sqlite Done.

Out[18]:

Juc [.		
year	player_name	age
2022	Carlos Alcaraz	19
2000	Marat Safin	20
2001	Lleyton Hewitt	20
2023	Carlos Alcaraz	20
1977	Bjorn Borg	21
1980	John McEnroe	21
2001	Marat Safin	21
2002	Lleyton Hewitt	21
2003	Andy Roddick	21
1974	Jimmy Connors	22
1981	John McEnroe	22
1992	Jim Courier	22
1993	Pete Sampras	22
2003	Lleyton Hewitt	22
2004	Andy Roddick	22
2008	Rafael Nadal	22
1975	Jimmy Connors	23
1979	Bjorn Borg	23
1982	John McEnroe	23
1983	Ivan Lendl	23
1993	Jim Courier	23
1994	Pete Sampras	23
1998	Marcelo Rios	23
1999	Carlos Moya	23
2003	Juan Carlos Ferrero	23

We can see some of the greats, and how successful they were at such young ages. We can also see a more recent young guy doing well (Carlos Alcaraz). Great for the future of tennis!

Performance by Handedness

As a left-handed tennis player myself, I have heard many times that it is an advantage. I wonder if this is true in professional tennis as well. Let's find out!

```
In [19]:
%%sql
SELECT
hand,
COUNT(*) AS cases,
AVG(rank) AS ranking_by_hand
FROM
player_rankings
WHERE
hand IN ('L', 'R')
GROUP BY
LIMIT
10
```

* sqlite:////Users/thomasyu/Desktop/Project/archive/database.sqlite

hand cases ranking_by_hand L 278010 674.2971439876263 R 2234345 731.5845811636073

There seems to be a clear correlation between handedness and ranking. Lefties are ranked higher (lower number is better) than righties on average.

Let's see what percentage of high rankings are lefties. Let's start with the top 10.

```
In [20]:
```

```
rank,
(sum(CASE WHEN hand = 'L' THEN 1 ELSE 0 END) / CAST(count(*) AS REAL)) * 100 AS lefties_percentage
FROM
player_rankings
rank <= 10
GROUP BY
rank
```

 * sqlite:////Users/thomasyu/Desktop/Project/archive/database.sqlite Done.

20.0 1 2 31.41831238779174 3 19.53195319531953 4 15.01123595505618 5 15.985630893578806 6 15.92442645074224 7 12.398921832884097 8 9.712230215827338 9 13.689407540394974

10 12.455035971223023

As we can see, it is a small percentage, but there are a lot of lefties ranked high in the top 10 all the time. Especially in the top 3 players. These guys are much more frequently left-handed. This is likely skewed due to super star players such as Rafael Nadal and John McEnroe, who were/are lefties.

Let's see what percentage of the top 100 players are lefties.

```
In [21]:
(SUM (CASE WHEN hand = 'L' THEN 1 ELSE 0 END) / CAST(COUNT(*) AS REAL)) * 100 AS lefties_percentage FROM
player_rankings
   rank <= 100
 * sqlite:///Users/thomasyu/Desktop/Project/archive/database.sqlite
```

Done.

14.816479737474994

So just under 15% of top 100 players in the world are lefty usually. That doesn't seem like a lot. Let's compare this with how many players are lefty in the first place.

```
In [22]:
%%sql
SELECT
     hand,
COUNT(*) AS total_cases,
AVG(rank) AS ranking_by_hand,
COUNT(*) * 100.0 / SUM(COUNT(*)) OVER () AS percentage_of_total
FROM
player_rankings
WHERE
      hand IN ('L', 'R')
GROUP BY
      hand
LIMIT
```

* sqlite:////Users/thomasyu/Desktop/Project/archive/database.sqlite

Out[22]:

ha	nd	total_cases	ranking_by_hand	percentage_of_total
	L	278010	674.2971439876263	11.065713245142506
	R	2234345	731.5845811636073	88.9342867548575

So only 11% of the players were lefty in the first place. Yet, all the top ranking positions have a higher percentage of lefties occupying. This makes it pretty evident that being left-handed is an advantage in tennis!

It is also worth noting that some players on tour don't have known handedness. That data was omitted from our analysis.

Performance by Country

Now we will look at players performance based on what country they are from. We will look at how many points countries have in total from their players. Total points will indicate both how strong players are from a country as well as how many players reside from said country. A country with many strong players will have more points.

```
In [23]:
```

```
%%sql
SELECT
    ioc, sum(points) as country_points
    player rankings
GROUP BY
ORDER BY
country_points desc
```

* sqlite:////Users/thomasyu/Desktop/Project/archive/database.sqlite

ESP 36384117.0 USA 32983420.0 26052278.0 FRA 19536655.0 GER ARG 18709291 0 IΤΔ 14498405 0 RUS 13312107.0 AUS 13006544.0 SUI 11621000.0 SRB 11267457.0

9 ₹	country potents
GBR	9477252.0
SWE	9420275.0
CRO	7190220.0
AUT	6691896.0
BRA	6433650.0
NED	6137481.0
BEL	5259736.0
JPN	4887741.0
CAN	4629628.0
SVK	4113360.0
СНІ	3853831.0
RSA	3844179.0
ROU	2788844.0
UKR	2487952.0

As we can see, Spain holds the most overall points. This likely indicates they have a lot of professional tennis players, and their players are strong!

We can also see whether countries are able to top the rankings over the years. We expect countries that had a high number of total points to do well here (Spain, USA, Franace). This will show which countries are able to produce champions. Let's only take a look at the top 10 countries with the most points.

```
In [24]:
```

```
SELECT

SELECT

Year,

MAX (CASE WHEN ioc = 'ESP' THEN highest_ranked_player END) AS ESP,

MAX (CASE WHEN ioc = 'USA' THEN highest_ranked_player END) AS USA,

MAX (CASE WHEN ioc = 'RA' THEN highest_ranked_player END) AS FRA,

MAX (CASE WHEN ioc = 'GER' THEN highest_ranked_player END) AS GER,

MAX (CASE WHEN ioc = 'ALS' THEN highest_ranked_player END) AS ARG,

MAX (CASE WHEN ioc = 'TAA' THEN highest_ranked_player END) AS RUS,

MAX (CASE WHEN ioc = 'AUS' THEN highest_ranked_player END) AS RUS,

MAX (CASE WHEN ioc = 'AUS' THEN highest_ranked_player END) AS SUJ,

MAX (CASE WHEN ioc = 'SUI' THEN highest_ranked_player END) AS SUJ,

MAX (CASE WHEN ioc = 'SUI' THEN highest_ranked_player END) AS SUJ,

MAX (CASE WHEN ioc = 'SUB' THEN highest_ranked_player END) AS SUJ,

MAX (CASE WHEN ioc = 'SUB' THEN highest_ranked_player END) AS SUJ,

MAX (CASE WHEN ioc = 'SUB' THEN highest_ranked_player END) AS SUJ,

MAX (CASE WHEN ioc = 'SUB' THEN highest_ranked_player END) AS SUJ,

MAX (CASE WHEN ioc = 'SUB' THEN highest_ranked_player END) AS SUB

FROM (

SELECT

ioc,
 year,
 MIN(rank) AS highest_ranked_player

FROM

player_rankings

WHERE ioc IN ('ESP', 'USA', 'FRA', 'GER', 'ARG', 'ITA', 'RUS', 'AUS', 'SUI', 'SRB')

GROUP BY

ioc, year

ORDUP SY

year

ORDUP SY

year

ORDER BY

year
```

* sqlite:////Users/thomasyu/Desktop/Project/archive/database.sqlite

Done.
Returning data to local variable result_set

In [25]:

df = result_set.DataFrame()
display(df)

	year	ESP	USA	FRA	GER	ARG	ITA	RUS	AUS	SUI	SRB
0	1973	2	3	23	20	27	8	32.0	2	126	111.0
1	1974	9	1	20	33	5	12	9.0	1	148	121.0
2	1975	5	1	26	31	2	14	13.0	2	156	92.0
3	1976	4	1	19	36	3	6	47.0	9	190	134.0
4	1977	4	1	27	34	2	7	60.0	11	234	68.0
5	1978	7	1	38	28	2	7	144.0	12	48	122.0
6	1979	7	1	22	19	3	10	NaN	15	51	312.0
7	1980	7	1	12	23	4	19	249.0	18	24	309.0
8	1981	23	1	12	30	4	17	NaN	8	23	NaN
9	1982	7	1	9	41	2	39	NaN	8	36	450.0
10	1983	6	1	4	58	4	35	616.0	7	25	NaN
11	1984	7	1	5	55	8	22	180.0	7	23	NaN
12	1985	19	1	5	5	19	21	131.0	7	26	NaN
13	1986	14	1	3	2	14	31	30.0	24	22	NaN
14	1987	14	1	4	2	13	37	32.0	7	23	NaN
15	1988	14	1	7	4	13	53	14.0	4	8	NaN
16	1989	13	1	9	2	8	26	17.0	19	7	1103.0
17	1990	7	1	9	2	10	31	10.0	24	17	684.0
18	1991	5	2	4	1	14	24	9.0	26	14	413.0
19	1992	8	1	6	3	11	18	15.0	32	17	383.0
20	1993	4	1	10	2	27	42	14.0	15	15	317.0
21	1994	3	1	9	2	48	21	11.0	19	14	474.0
22	1995	4	1	14	3	30	18	4.0	20	9	473.0
23	1996	11	1	12	3	37	19	3.0	19	12	394.0
24	1997	4	1	20	6	43	39	3.0	2	16	218.0
25	1998	3	1	10	21	35	31	4.0	2	26	176.0
26	1999	1	1	13	6	23	41	1.0	1	23	176.0
27	2000	6	1	5	4	11	42	1.0	6	24	157.0
28	2001	4	2	6	8	14	40	1.0	1	12	200.0

29	2002	ESP	USÂ	FRÆ	GER	AFÍG	п¥Ã	RÚŚ	AUŚ	SUÎ	18AB
30	2003	1	1	9	6	4	44	3.0	1	2	134.0
31	2004	2	1	9	5	3	35	4.0	3	1	106.0
32	2005	2	2	12	14	5	28	3.0	2	1	75.0
33	2006	2	3	12	11	3	31	3.0	4	1	16.0
34	2007	2	3	7	9	8	25	3.0	16	1	3.0
35	2008	1	6	6	11	7	27	4.0	18	1	3.0
36	2009	1	5	6	17	5	33	5.0	20	1	3.0
37	2010	1	7	9	17	4	45	5.0	19	1	2.0
38	2011	1	7	6	18	11	32	10.0	41	2	1.0
39	2012	2	8	5	16	7	22	25.0	27	1	1.0
40	2013	1	13	7	11	5	16	15.0	39	2	1.0
41	2014	1	9	9	12	4	13	14.0	38	2	1.0
42	2015	3	11	9	22	21	18	47.0	18	2	1.0
43	2016	4	11	6	20	33	21	39.0	13	2	1.0
44	2017	1	8	6	3	11	25	29.0	13	2	2.0
45	2018	1	8	10	3	3	13	11.0	14	1	1.0
46	2019	1	9	10	3	4	8	4.0	18	3	1.0
47	2020	1	18	9	7	8	8	4.0	18	3	1.0
48	2021	2	19	11	3	9	7	2.0	15	5	1.0
49	2022	1	8	16	2	13	6	1.0	20	16	1.0
50	2023	1	5	20	7	19	4	2.0	11	40	1.0

In [26]:

```
import matplotlib.pyplot as plt
import pandas as pd
# Assuming result_set is your result set from the SQL query
# Convert the result_set to a Pandas DataFrame
df = result_set.DataFrame()
# Extract countries and their respective columns
countries = ['ESP', 'USA', 'FRA', 'GER', 'ARG', 'ITA', 'RUS', 'AUS', 'SUI', 'SRB']
colors = ['b', 'g', 'r', 'c', 'm', 'y', 'k', '#FFA07A', '#00FA9A', '#8A2BE2']
# Invert the ranking values
df[countries] = 1 / df[countries]
 # Calculate the total ranking for each year
df['total_ranking'] = df[countries].sum(axis=1)
# Calculate the percentage of ranking for each country
for country in countries:
    df[country + '_percentage'] = (df[country] / df['total_ranking']) * 100.0
# Plot the data as a stacked bar chart
plt.figure(figsize=(12, 8))
bottom = None
for i, country in enumerate(countries):
   plt.bar(df['year'], df[country + '_percentage'], label=country, color=colors[i], bottom=bottom)
if bottom is None:
            bottom = df[country + '_percentage']
           bottom += df[country + '_percentage']
plt.title('Percentage of Top-ranked Players from Different Countries Over the Years')
plt.xlabel('Year')
plt.ylabel('Percentage of Total Ranking')
plt.legend(loc='upper right')
# Rotate x-axis labels for better visibility
plt.xticks(rotation=45, ha='right')
plt.grid(True)
plt.show()
```


Year

This is some interesting data to look at. As we can see, Spain has always had a player ranked high throughout the years. They must invest a lot into their professional athletes! We can see that the US dominated up until the 2000s and we can also see the contributions made by the big three to their respective countries (SRB, ESP, and SUI).

Let's take a look at how our home country (USA) has done over the years.

* sqlite:////Users/thomasyu/Desktop/Project/archive/database.sqlite

Out[27]:

player_name rank ioc year Jimmy Connors 1 USA 1974 Jimmy Connors 1 USA 1975 Jimmy Connors 1 USA 1976 Jimmy Connors 1 USA 1977 Jimmy Connors 1 USA 1978 1 USA 1979 John McEnroe 1 USA 1980 1 USA 1981 John McEnroe 1 USA 1982 John McEnroe 1 USA 1983 1 USA 1983 Jimmy Connors Ivan Lendl 1 USA 1983 1 USA 1984 John McEnroe 1 USA 1984 Ivan Lendl John McEnroe 1 USA 1985 Ivan Lendl 1 USA 1985 Ivan Lendi 1 USA 1986 Ivan Lendl 1 USA 1987 Ivan Lendl 1 USA 1988 Ivan Lendl 1 USA 1989 Ivan Lendl 1 USA 1990 Jim Courier 1 USA 1992 Jim Courier 1 USA 1993 Pete Sampras 1 USA 1993

%%sql WITH RankedPlayers AS (

As you can see, a lot of Americans have reached the number 1 ranking. So let's take a look at rankings in recent years, specifically 2023.

```
SELECT
year,
year,
player_name,
ROW_NUMBER() OVER(PARTITION BY year, player_name ORDER BY rank ASC) AS rn
FROM
player_rankings
WHERE ioc = 'USA'
)

SELECT DISTINCT
RP.player_name,
R.rank,
R.ioc,
R.year
FROM
RankedPlayers RP
JOIN
player_rankings R ON RP.year = R.year AND RP.player_name = R.player_name
WHERE
```

* sqlite:////Users/thomasyu/Desktop/Project/archive/database.sqlite Done.

Out[28]:

LIMIT

Out [28]:

RP.rn = 1

R.year DESC, R.rank

```
Taylor Fritz
              7 USA 2023
  Taylor Fritz
              8 USA 2023
  Taylor Fritz
              9 USA 2023
            10 USA 2023
             10 USA 2023
             12 USA 2023
 Tommy Paul 12 USA 2023
 Tommy Paul 13 USA 2023
Frances Tiafoe
             13 USA 2023
Frances Tiafoe
             14 USA 2023
 Tommy Paul 14 USA 2023
Frances Tiafoe 15 USA 2023
 Tommy Paul 15 USA 2023
  Ben Shelton 15 USA 2023
Frances Tiafoe
             16 USA 2023
 Tommy Paul
             16 USA 2023
             16 USA 2023
             17 USA 2023
             17 USA 2023
             17 USA 2023
  Ben Shelton
 Tommy Paul
             18 USA 2023
Frances Tiafoe 19 USA 2023
Tommy Paul 19 USA 2023
```

Pretty cool! We see our top Americans in recent years. Taylor Fritz seems to be our top guy this year. We could do this for any country that we want!

We can do the same for any country that appears in the database. Enter a country! Note that we need country abbreviation.

* sqlite:////Users/thomasyu/Desktop/Project/archive/database.sqlite Done.
The country 'ESP' is in the database.

Run the next cell for information for this specific country!

```
In [30]:
%%sql
WITH RankedPlayers AS (
          year,
          player_name,
ROW_NUMBER() OVER(PARTITION BY year, player_name ORDER BY rank ASC) AS rn
     FROM
     player_rankings
WHERE ioc = '{country input}'
     RP.player_name,
     R.rank,
     R.points,
R.ioc,
R.year
FROM
     RankedPlayers RP
player_rankings R ON RP.year = R.year AND RP.player_name = R.player_name WHERE
RP.rn = 1
ORDER BY
     R.year DESC, R.rank
LIMIT
   sqlite:////Users/thomasyu/Desktop/Project/archive/database.sqlite
```

^ sqlite:///users/tnomasyu/pesktop/Project/archive/database.sqlite
Done.

player_name	rank	points	ioc	year
Carlos Alcaraz	1	6820.0	ESP	2023
Carlos Alcaraz	1	6820.0	ESP	2023
Carlos Alcaraz	1	6820.0	ESP	2023
Carlos Alcaraz	- 1	7420 0	FSP	2023

```
1 6815.0 ESP 2023
               1 7675.0 ESP 2023
Carlos Alcaraz
               1 7675.0 ESP 2023
               1 9675.0 ESP 2023
Carlos Alcaraz
               1 9375.0 ESP 2023
Carlos Alcaraz
               1 9225.0 ESP 2023
Carlos Alcaraz
               1 9225.0 ESP 2023
Carlos Alcaraz
               1 9395.0 ESP 2023
Carlos Alcaraz
Carlos Alcaraz
               1 9815.0 ESP 2023
Carlos Alcaraz
               1 9815.0 ESP 2023
 Rafael Nadal
               2 6020.0 ESP 2023
 Rafael Nadal 2 5770.0 ESP 2023
               2 5770.0 ESP 2023
Carlos Alcaraz 2 6730.0 ESP 2023
               2 6730.0 ESP 2023
               2 6730.0 ESP 2023
               2 6480.0 ESP 2023
Carlos Alcaraz 2 6780.0 ESP 2023
               2 6780.0 ESP 2023
Carlos Alcaraz
Carlos Alcaraz 2 6780.0 ESP 2023
```

Player Analysis

Let's see an example of the matches data.

```
In [31]:

**sql
SELECT

*FROM
matches
LIMIT
1

* sqlite:///Users/thomasuw/Desktop/Erciect/archive/database sqlite
```

 $\begin{tabular}{ll} \star sqlite:///Users/thomasyu/Desktop/Project/archive/database.sqlite Done. \end{tabular}$

Out[31]:

tourney_id	tourney_name	surface	draw_size	tourney_level	tourney_date	match_num	winner_id	winner_seed	winner_entry	winner_name	winner_hand	winner_ht	winner_ioc	winner_age	loser_id	loser_seed	loser_entry	loser_name loser_l
2003-1536	Madrid Masters	Hard	48	М	20031013.0	1	101965.0	None	None	Wayne Ferreira	R	185.0	RSA	32.0	103344.0	None	None	Ivan Ljubicic
4				1888														•

Alright, we can make an analysis of specific players. Enter a professional tennis player!

```
In [32]:

# Define the SQL query template
sql_query = "SELECT COUNT(*) FROM player_rankings WHERE player_name = :player_name_input"

while True:
    # Take user input for the player name
player_name_input = input ("Enter a player name (or 'exit' to stop): ")

# Check if the user wants to exit
if player_name_input.lower() == 'exit':
    print("Exiting...")
    break

# Execute SQL query to check if the player name exists
result = %sql sql query

# Extract the count from the result
count = result[0][0]

# Check if the player name exists
if count > 0:
    print(f"The player name '[player_name_input]' is in the database.")
    break
else:
    print(f"The player name '[player_name_input]' is not in the database. Please try again.")
```

* sqlite:////Users/thomasyu/Desktop/Project/archive/database.sqlite Done.
The player name 'Novak Djokovic' is in the database.

Lets show the matches that this player most recently played.

```
In [33]:
%%sql
SELECT
FROM
matches
WHERE
winner_name = :player_name_input OR loser_name = :player_name_input
ORDER BY
tourney_date DESC
LIMIT
10
```

* sqlite:////Users/thomasyu/Desktop/Project/archive/database.sqlite

Out[33]:

tourney_id	tourney_name	surface draw_size	tourney_level	tourney_date	match_num	winner_id	winner_seed	winner_entry	winner_name	winner_hand	winner_ht	winner_ioc	winner_age	loser_id	loser_seed	loser_entry	loser_name loser_l
2023-0605	Tour Finals	Hard 8	A	20231113.0	300	104925.0	1.0	None	Novak Djokovic	R	188.0	SRB	36.4	206173.0	4.0	None	Jannik Sinner
2000 2005	T	11		^^^^	222	101005.0			Novak	-	400.0	000	^^ 4	207222	••		Carlos

2023-0605 tourney_id	our Finais tourney_name	naro surface	draw_size	tourney_level	20231113.0 tourney_date	298 match_num	104925.0 winner_id	vinner_seed	None winner_entry	winn Di <u>karie</u>	winner_hand	188.0 winner_ht	SHB winner_ioc	30.4 winner_age	207989.0 loser_id	loser_seed	None loser_entry	lose ^{Alfialfite} lose
2023-0605	Tour Finals	Hard	8	А	20231113.0	297	206173.0	4.0	None	Jannik Sinner	R	188.0	ITA	22.2	104925.0	1.0	None	Novak Djokovic
2023-0605	Tour Finals	Hard	8	А	20231113.0	296	104925.0	1.0	None	Novak Djokovic	R	188.0	SRB	36.4	128034.0	9.0	None	Hubert Hurkacz
2023-0605	Tour Finals	Hard	8	А	20231113.0	295	104925.0	1.0	None	Novak Djokovic	R	188.0	SRB	36.4	208029.0	8.0	None	Holger Rune
2023-0352	Paris Masters	Hard	64	М	20231030.0	300	104925.0	1.0	None	Novak Djokovic	R	188.0	SRB	36.4	105777.0	None	None	Grigor Dimitrov
2023-0352	Paris Masters	Hard	64	М	20231030.0	299	104925.0	1.0	None	Novak Djokovic	R	188.0	SRB	36.4	126094.0	5.0	None	Andrey Rublev
2023-0352	Paris Masters	Hard	64	М	20231030.0	297	104925.0	1.0	None	Novak Djokovic	R	188.0	SRB	36.4	208029.0	6.0	None	Holger Rune
2023-0352	Paris Masters	Hard	64	М	20231030.0	293	104925.0	1.0	None	Novak Djokovic	R	188.0	SRB	36.4	134868.0	None	None	Tallon Griekspoor
2023-0352	Paris Masters	Hard	64	М	20231030.0	285	104925.0	1.0	None	Novak Djokovic	R	188.0	SRB	36.4	144869.0	None	None	Tomas Martin Etcheverry
4																		<u>}</u>

We can see all the results from this year.

```
In [34]:
```

```
In [34]:
% and result set <</td>

% WITH MatchResults AS (
SELECT
CASE WHEN winner name = :player name input THEN loser name ELSE winner name END AS opponent,
CASE WHEN winner name = :player name input THEN loser rank ELSE winner rank END AS opponent rank,
tourney date,
score
FROM
matches
WHERE
(winner name = :player name input OR loser name = :player name input)
AND SUBSTR(tourney_date, 1, 4) = '2023'
)
SELECT
opponent,
result,
opponent rank,
tourney_date,
score
FROM
MatchResults
UNION ALL
SELECT
'Total',
''
''
''
''
''
COUNT(*) | ' Matches'
FROM
MatchResults
MatchResults
MatchResults

MatchResults

MatchResults

MatchResults
```

 \star sqlite:////Users/thomasyu/Desktop/Project/archive/database.sqlite Done. Returning data to local variable result_set

In [35]:

```
df = result_set.DataFrame()
pd.set_option('display.max_rows', 1000)
display(df)
```

	opponent	result	opponent_rank	tourney_date	score
0	Sebastian Korda	Win	33.0	20230102.0	6-7(8) 7-6(3) 6-4
1	Daniil Medvedev	Win	7.0	20230102.0	6-3 6-4
2	Denis Shapovalov	Win	18.0	20230102.0	6-3 6-4
3	Quentin Halys	Win	64.0	20230102.0	7-6(3) 7-6(5)
4	Constant Lestienne	Win	65.0	20230102.0	6-3 6-2
5	Roberto Carballes Baena	Win	75.0	20230116.0	6-3 6-4 6-0
6	Enzo Couacaud	Win	191.0	20230116.0	6-1 6-7(5) 6-2 6-0
7	Grigor Dimitrov	Win	28.0	20230116.0	7-6(7) 6-3 6-4
8	Alex De Minaur	Win	24.0	20230116.0	6-2 6-1 6-2
9	Andrey Rublev	Win	6.0	20230116.0	6-1 6-2 6-4
10	Tommy Paul	Win	35.0	20230116.0	7-5 6-1 6-2
11	Stefanos Tsitsipas	Win	4.0	20230116.0	6-3 7-6(4) 7-6(5)
12	Daniil Medvedev	Loss	7.0	20230227.0	6-4 6-4
13	Hubert Hurkacz	Win	11.0	20230227.0	6-3 7-5
14	Tallon Griekspoor	Win	39.0	20230227.0	6-2 6-3
15	Tomas Machac	Win	130.0	20230227.0	6-3 3-6 7-6(1)
16	Lorenzo Musetti	Loss	21.0	20230410.0	4-6 7-5 6-4
17	Ivan Gakhov	Win	198.0	20230410.0	7-6(5) 6-2
18	Dusan Lajovic	Loss	70.0	20230417.0	6-4 7-6(6)
19	Luca Van Assche	Win	87.0	20230417.0	6-7(4) 6-3 6-2
20	Holger Rune	Loss	7.0	20230508.0	6-2 4-6 6-2
21	Cameron Norrie	Win	13.0	20230508.0	6-3 6-4
22	Grigor Dimitrov	Win	33.0	20230508.0	6-3 4-6 6-1
23	Tomas Martin Etcheverry	Win	61.0	20230508.0	7-6(5) 6-2
24	Aleksandar Kovacevic	Win	114.0	20230529.0	6-3 6-2 7-6(1)
~-	M	****	^^ ^	********	7 0/00 0 0 0 0

20 20	warton rucsovics opponent	vvin result	opponent_rank	20230529.0 tourney_date	/-v(2) v-U v-3 score		
	Alejandro Davidovich Fokina	Win	34.0	20230529.0	7-0(4) 7-0(5) 0-2		
27	Juan Pablo Varillas	Win	94.0	20230529.0	6-3 6-2 6-2		
28	Karen Khachanov	Win	11.0	20230529.0	4-6 7-6(0) 6-2 6-4		
29	Carlos Alcaraz	Win	1.0	20230529.0	6-3 5-7 6-1 6-1		
30	Casper Ruud	Win	4.0	20230529.0	7-6(1) 6-3 7-5		
31	Pedro Cachin	Win	68.0	20230703.0	6-3 6-3 7-6(4)		
32	Jordan Thompson	Win	70.0	20230703.0	6-3 7-6(4) 7-5		
33	Stan Wawrinka	Win	88.0	20230703.0	6-3 6-1 7-6(5)		
34	Hubert Hurkacz	Win	18.0	20230703.0	7-6(6) 7-6(6) 5-7 6-4		
35	Andrey Rublev	Win	7.0	20230703.0	4-6 6-1 6-4 6-3		
36	Jannik Sinner	Win	8.0	20230703.0	6-3 6-4 7-6(4)		
37	Carlos Alcaraz	Loss	1.0	20230703.0	1-6 7-6(6) 6-1 3-6 6-4		
38	Carlos Alcaraz	Win	1.0	20230814.0	5-7 7-6(7) 7-6(4)		
39	Alexander Zverev	Win	17.0	20230814.0	7-6(5) 7-5		
40	Taylor Fritz	Win	9.0	20230814.0	6-0 6-4		
41	Gael Monfils	Win	211.0	20230814.0	6-3 6-2		
42	Alejandro Davidovich Fokina	Win	23.0	20230814.0	6-4 0-0 RET		
43	Alexandre Muller	Win	84.0	20230828.0	6-0 6-2 6-3		
44	Bernabe Zapata Miralles	Win	76.0	20230828.0	6-4 6-1 6-1		
45	Laslo Djere	Win	38.0	20230828.0	4-6 4-6 6-1 6-1 6-3		
46	Borna Gojo	Win	105.0	20230828.0	6-2 7-5 6-4		
47	Taylor Fritz	Win	9.0	20230828.0	6-1 6-4 6-4		
48	Ben Shelton	Win	47.0	20230828.0	6-3 6-2 7-6(4)		
49	Daniil Medvedev	Win	3.0	20230828.0	6-3 7-6(5) 6-3		
50	Grigor Dimitrov	Win	17.0	20231030.0	6-4 6-3		
51	Andrey Rublev	Win	5.0	20231030.0	5-7 7-6(3) 7-5		
52	Holger Rune	Win	7.0	20231030.0	7-5 6-7(3) 6-4		
53	Tallon Griekspoor	Win	23.0	20231030.0	4-6 7-6(2) 6-4		
54	Tomas Martin Etcheverry	Win	31.0	20231030.0	6-3 6-2		
55	Jannik Sinner	Win	4.0	20231113.0	6-3 6-3		
56	Carlos Alcaraz	Win	2.0	20231113.0	6-3 6-2		
57	Jannik Sinner	Loss	4.0	20231113.0	7-5 6-7(5) 7-6(2)		
58	Hubert Hurkacz	Win	9.0	20231113.0	7-6(1) 4-6 6-1		
59	Holger Rune	Win	8.0	20231113.0	7-6(4) 6-7(1) 6-3		
60	Alejandro Davidovich Fokina	Win	25.0	20230915.0	6-3 6-4		
61	Total				61 Matches		

We will graphically represent the players wins and losses. You can notice interesting patterns in their performance against players of different ranks.

```
In [36]:
```

```
import matplotlib.pyplot as plt

# Assuming 'df' is your DataFrame
# Filter out the 'Total' row if it exists

df_plot = df(df('result').isin(('Win', 'Loss')))

# Create a scatter plot
plt.figure(figafice*(12, 3))

# Flot wins (green circles)

plt.scatter(
    pd.to datetime(df_plot(f_plot('result') == 'Win')['tourney_date']),
    df_plot(df_plot('result') == 'Win')['reponent_rank'],
    marker='o',
    label='Win')

# Flot losses (red "x" markers)
plt.scatter(
    pd.to_datetime(df_plot(df_plot('result') == 'Loss')['tourney_date']),
    df_plot(df_plot(f_plot('result') == 'Loss')['tourney_date']),
    df_plot(df_plot(f_plot(f_plot('result') == 'Loss')['tourney_date']),
    df_plot(df_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plot(f_plo
```


