Linux history; File system

CISC220

More silly Linux fun

```
sudo apt-get install pacman4console
pacman4console
```

A brief history of Linux

- ▶ Linux is actually the kernel of the GNU/Linux operating system (OS)
 - kernel provides an interface between hardware and software applications
- Linux is modelled on the UNIX kernel
 - UNIX was developed in the late 1970s at Bell Labs
 - became one of the first portable OSes because it was mostly written in C
 - too expensive for individual users

A brief history of Linux

- in 1983, Richard Stallman started the GNU project with the goal of creating a free, Unix-like OS
 - developed the tools needed for kernel development but was still missing an actual kernel
 - kernel was called Hurd but development was slow
- in 1991, Finnish graduate student Linux Torvalds announced on Usenet that he was developing a free operating system (as a hobby) for 80386 processors
 - used GNU software for Linux kernel development
 - thus GNU/Linux was born

Linux today

- dominant in cloud infrastructure and supercomputing
- ▶ Android runs more than 70% of smartphones in the world
- common in embedded systems
- uncommon on the desktop (unless you include Chrome OS)

Bash

Terminals

- https://en.wikipedia.org/wiki/Computer_terminal
 - originally, an electronic or electromechanical device for data input/output

- today, a software program called a terminal emulator
 - show

Shells

- software program that interprets text to determine meaning
 - where does the text come from? a terminal
- many different shells
 - https://en.wikipedia.org/wiki/Comparison_of_command_shells

Bash

- Bourne Again Shell
 - replaces the older UNIX Bourne shell
 - default login shell for most Linux distributions
 - was the default login shell for macOS until 2019
 - □ macOS now uses the zsh
- this course assumes that you are using a Bash shell

- ▶ a filesystem is the part of an operating system that controls how data is stored and retrieved
 - most often associated with physical storage media (disk, USB drive, optical media, magnetic tape, etc)
- many different filesystems
 - Windows
 - ► FAT, exFAT, NTFS
 - macOS
 - ▶ AFS (Apple File System)
 - Linux
 - ext, ext2, ext3, ext4, ReiserFS, XFS, ...

- a *device* is a physical piece of hardware that can store files, e.g.,
 - disk drive, USB flash drive, CD-ROM drive

- the contents of a file is just bits (ones and zeros)
- imagine that your OS abstracts your disk drive as an array

- the contents of several files is stored in the array
 - contents of each file shown in different colors

- what information does the OS need to store so that it knows where the contents of a file can be found?
 - what other information might be useful?

Inodes

- an inode stores information about the contents of a file such as:
 - the device where the inode resides
 - file type
 - user ID (owner of the file)
 - file size
 - time when the file was created
 - time when the file was last modified
 - time when the file was last accessed
 - and more (including where to find the file contents)

Inodes

- an inode has an integer number called the inode number that is a unique id for the inode on a given device
 - different devices can have inodes with the same inode number so the inode number is not a globally unique id for the filesystem

Directories

- but where are the filenames?
- a directory is a file whose contents is basically a table mapping filenames to inode numbers
 - for example, the contents of my home directory might look something like:

filename	inode number
dir1	45201
dir2	45212
dir3	45229
file1.txt	43108
file2.txt	43161
file3.txt	43162
tmp	45217

Filesystem Hierarchy Standard

- https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
- defines the directory structure and directory contents for Linux distributions
 - macOS uses a similar, but different, hierarchy
- we do not need to study this in detail but it is useful to know something about it
- there is a top-level (or uppermost) directory named / that contains all other directories
 - slash, or the root directory

To change to the root directory, use the built-in shell command **cd** which changes the current working directory of the shell to the specified directory:

To print the name of the current working directory use the built-in shell command **pwd**:

To list the contents of a directory use the **1s** command (ell-ess, not one-ess):

Built-in commands vs commands

- there is a distinction between built-in shell commands and other commands
 - built-in commands
 - commands that are defined by the Bash shell
 - other commands
 - just programs that can be run by the Bash shell

To get documentation for a built-in command, use:

To get documentation for other commands, use **man** *cmdname* where *cmdname* is the name of the command:

Filesystem Hierarchy Standard

- **bin**: essential command binaries
- **home**: user home directories
- ▶ root: the root, or superuser, home directory
- usr: secondary hierarchy for read-only user data;
 contains majority of installed applications

To list the contents of a directory, use **1s** *dirname* where *dirname* is the name of the directory:

Absolute pathnames

- ▶ a pathname is the name of a file that uniquely identifies the location of a file
- an absolute pathname includes all of directory names that lead to the file
 - directories are separated by the / character, e.g.:

```
/ root directory
/bin
/bin/ls
/home/burton/CISC220/tests/exam/exam.pdf root directory
ls file
```

Relative pathnames

- a relative pathname includes all of directory names that lead to the file starting from the current directory
 - for example, suppose that we are in the directory /home/burton/CISC220, then the following are all relative pathnames:

```
tests
tests/exam
tests/exam/exam.pdf
tests/exam/exam.docx
```

exam directory
examp.pdf file
exam.docx file

If the current working directory is the root directory, then we can list the contents of any other directory using a relative path:

```
ls bin
1s etc
ls etc/calendar
ls usr/local/bin
```

Any command that requires a pathname will accept a relative pathname. For example, starting from the root directory:

```
cd etc
pwd
cd calendar
pwd
1s
```

cd on its own will change to the current user's home directory:

~, • and • •

- ~ represents the current user's home directory
 - but this can be changed
- represents the current working directory
- . . represents the parent directory of the current working directory

```
cd ~
pwd
cd .
pwd
cd ..
pwd
cd
pwd
cd ../..
```