

Тиристори

Полупроводникови елементи

Двустабилна схема

Между PNP и NPN транзисторите съществува положителна обратна връзка:

- увеличаване на lb(Q2) води до увеличаване на lc(Q2) и следователно на lb(Q1)
- увеличаването на lb(Q1) води до пропорционално нарастване на lc(Q1), който в крайна сметка още повече увеличава lb(Q2)

Този процес ще завърши когато и двата транзистора достигна режим на насищане.

По подобен начин ще се "усилват" и отрицателните промени. Ако някакъв фактор причини намаляване на базовия ток на един от транзисторите, процесът ще продължи докато и двата транзистора достигнат режим на отсечка.

Схемата има две стабилни състояния: отворено и затворено.

Преминаването между тях не може да стане бе намеса на външна сила.

Диод на Шокли (Schockley)

Единственият начин да се "затвори" този диод е чрез пробив в прехода j2. Единственият начин да се "отвори" този диод е като се намали токът докато стане по-малък от т.нар. ток на задържане.

Тиристор

Включване — импулс на гейта Изключване — намаляване на напрежението анод-катод

Тиристор - структура

Тиристор - характеристика

Voltage Current Characteristic of SCR

Symbol	Parameter
V _{DRM}	Peak Repetitive Off State Forward Voltage
I _{DRM}	Peak Forward Blocking Current
V _{RRM}	Peak Repetitive Off State Reverse Voltage
I _{RRM}	Peak Reverse Blocking Current
V _{TM}	Peak On State Voltage
I _H	Holding Current

Предимства и приложения на тиристорите

- Могат да работят във вериги с променливо напрежение (за разлика от MOSFET)
- Малко съпротивление когато са във включено състояние (по сравнение с MOSFET)
- Издържат големи токове (приложение в схеми за защита от свръхнапрежение)
- Управлението чрез ток на гейта се реализира с прости схеми
- Остава в включено състояние след като края на управляващия сигнал
- Изключва се когато токът стане нула (zero current turn off)
- Издържа на високи напрежения

Приложения – защита от пренапрежение

Приложения – регулиране на мощността

Симетрични триристори – триак

IGBT - insulated-gate bipolar transistor

От MOSFET:

Висок входен импеданс и малък входен капацитет.

От BJT:

Ниско съпротивление във включено състояние и способност да управлява големи токове.

Може да бъде изключен чрез гейта.