Guía de Problemas n⁰ 4

October 22, 2024

Problema 1

Demuestre que $u^{(1)}$ y $u^{(2)}$ (Ecuación 7.46) son ortogonales, en el sentido de que $u^{(1)\dagger}u^{(1)}=0$. Del mismo modo, demuestre que $v^{(1)}$ y $v^{(2)}$ son ortogonales. ¿Son $u^{(1)}$) y $v^{(1)}$ ortogonales?

Problema 2

Si el eje z apunta a lo largo de la dirección del movimiento, demuestre que $u^{(1)}$ (Ecuación 7.46) se reduce a

$$u^{(1)} = \begin{pmatrix} \sqrt{(E + mc^2)/c} \\ 0 \\ \sqrt{(E - mc^2)/c} \\ 0 \end{pmatrix}$$

y construye $u^{(2)}$, $v^{(1)}$ y $v^{(2)}$. Confirmar que son todos los autoespinores de S_z y hallar los valores propios.

Problema 3

El operador de conjugación de carga (C) transforma un espinor de Dirac ψ en el espinor 'conjugado de carga' ψ_c dado por

$$\psi_c = i\gamma^2 \psi^*$$

donde γ^2 es la tercera matriz gamma de Dirac. (Véase Halzen y Martin (7). Secc 5.4.) Hallar los conjugados de carga de $u^{(1)}$ $u^{(2)}$, y compararlos con $v^{(1)}$ y $v^{(2)}$.

Problema 4

Confirme el papel de la transformación (Ecuación 7.52, con 7.53 y 7.54) para los espinores. [Ayuda: queremos que lleve las soluciones de la ecuación de Dirac en el marco original a soluciones en el marco primado.

$$i\hbar\gamma^{\mu}\partial_{\mu}\psi - m\psi \longleftrightarrow i\hbar\gamma^{\mu}\partial_{\mu}^{'}\psi^{'} - m\psi^{'}$$

donde $\psi' = S\psi$ y

$$\partial_{\mu}^{'} = \frac{\partial}{\partial x^{\mu'}} = \frac{\partial x^{\nu}}{\partial x^{\mu'}} \frac{\partial}{\partial x^{\nu}} = \frac{\partial x^{\nu}}{\partial x^{\mu'}} \partial_{\nu}$$

se deduce que

$$(S^{-1}\gamma^{\mu}S)\frac{\partial x^{\nu}}{\partial x^{\mu'}} = \gamma^{\nu}$$

Problema 5

- a) Partiendo de la ecuación 7.53, calcule $S^{\dagger}S$, y confirme la ecuación 7.57.
- b) Demuestre que $S^{\dagger} \gamma^0 S$) = γ^0 .

Problema 6

Demostrar que los espinores adjuntos $\bar{u}^{1,2}$ y $\bar{v}^{1,2}$ satisfacen las ecuaciones

$$\bar{u}(\gamma^{\mu}p_{\mu} - mc) = 0 \qquad \bar{v}(\gamma^{\mu}p_{\mu} + mc) = 0$$

Ayuda: Tome el transpuesto conjugado de las ecuaciones 7.49 y 7.50; multiplique por la derecha por γ^0 y demuestre que $(\gamma^{\mu}) \dagger \gamma^0 = \gamma^0 \gamma^{\mu}$.

Problema 7

- a) Deduzca las ecuaciones 7.70 (i y iv) a partir de la ecuación 7.73.
- b) Demuestre la ecuación 7.74. a partir de la ecuación 7.73.

Problema 8

Demuestre que la ecuación de continuidad (Ecuación 7.74) obliga a la conservación de la carga. (si no ve cómo hacerlo, busque en cualquier libro de texto de lectrodinámica).

Problema 9

Demostrar que siempre somos libres de elegir $A^0=0$. en el espacio libre. Es decir, dado un potencial A^μ que no satisface esta restricción, encontrar una función gauge λ , consistente con la Ecuación 7.8S. tal que A_0' (en la ecuación 7.81) sea cero.

Problema 10

Usando ε^1 y ε^2 (Ecuación 7.93), confirme la relación completenss para fotones (Ecuación 7.105).