Лабораторная работа №7

Введение в работу с данными

Тазаева Анастасия Анатольевна

Содержание

1	Цель работы											
2 Задание												
3	Выполнение лабораторной работы 3.1 Примеры из раздела 6.2	7 7 19										
4	Выводы	22										

Список иллюстраций

3.1	Считывание данных. Часть 1	./
3.2	Считывание данных. Часть 2	8
3.3	Считывание данных. Часть 3	9
3.4	Словари	10
3.5	DataFrames	10
3.6	RDatasets	11
3.7	Работа с переменными отсутствующего типа (Missing Values). Часть 1	11
3.8	Работа с переменными отсутствующего типа (Missing Values). Часть 2	12
3.9	Кластеризация данных. Метод k-средних. Часть 1	12
3.10	Кластеризация данных. Метод k-средних. Часть 2	13
3.11	Кластеризация данных. Метод k-средних. Часть 3	13
3.12	Кластеризация данных. Метод k-средних. Часть 4	14
3.13	Кластеризация данных. Метод k-средних. Часть 5	14
3.14	Кластеризация данных. Метод k-средних. Часть 6	15
3.15	Кластеризация данных. Метод k ближайших соседей. Часть 1	15
3.16	Кластеризация данных. Метод k ближайших соседей. Часть 2	16
3.17	Кластеризация данных. Метод главных компонент. Часть 1	16
3.18	Кластеризация данных. Метод главных компонент. Часть 2	17
3.19	Обработка данных. Линейная регрессия. Часть 1	17
3.20	Обработка данных. Линейная регрессия. Часть 2	18
3.21	Обработка данных. Линейная регрессия. Часть 3	19
3.22	Кластеризация. Часть 1	19
3.23	Кластеризация. Часть 2	20
3.24	Кластеризация. Часть 3	20
3.25	Регрессия. Часть 1	21
3.26	Регрессия. Часть 2	21

Список таблиц

1 Цель работы

Основной целью работы является освоение специализированных пакетов для обработки данных.

2 Задание

- 1. Используя Jupyter Lab, повторите примеры из раздела 7.2.
- 2. Выполните задания для самостоятельной работы (раздел 7.4).

3 Выполнение лабораторной работы

3.1 Примеры из раздела 6.2

Примеры представлены на рис. 3.1 - 3.21.

```
Считывание данных
using Pkg
Pkg.update
using Pkg
 for p in ["CSV", "DataFrames", "RDatasets", "FileIO"]
Pkg.add(p)
using CSV, DataFrames, DelimitedFiles, FileIO
@[32m@[1m Updating@[22m@[39m registry at `C:\Users\noname\.julia\registries\General.toml` ◆◆◆
# Считывание данных и их запись в структуру:
P = CSV.File("programminglanguages.csv") |> DataFrame
 <div><div style = "float: left;"><span>73×2 DataFrame</span></div><div style = "float: right;"><span st</pre>
# Функция определения по названию языка программирования года его создания:
 function language_created_year(P,language::String)
 loc = findfirst(P[:,2].==language)
 return P[loc,1]
 language_created_year (generic function with 1 method)
# Пример вызова функции и определение даты создания языка Python:
language_created_year(P,"Python")
# Пример вызова функции и определение даты создания языка Julia:
language_created_year(P,"Julia")
language_created_year(P,"julia")
MethodError: no method matching getindex(::DataFrame, ::Nothing, ::Int64) •••
```

Рис. 3.1: Считывание данных. Часть 1

```
[9]: # Функция определения по названию языка программирования
        # года его создания (без учёта регистра):
       function language_created_year_v2(P,language::String)
loc = findfirst(lowercase.(P[:,2]).==lowercase.(language))
       return P[loc,1]
       end
 [9]: language_created_year_v2 (generic function with 1 method)
[10]: # Пример вызова функции и определение даты создания языка julia:
       language_created_year_v2(P,"julia")
[10]: 2012
[11]: # Построчное считывание данных с указанием разделителя:

Тх = readdlm("programminglanguages.csv", ',')
[11]: 74×2 Matrix{Any}:
             "year"
                     "language"
        1951
                      "Regional Assembly Language"
                      "Autocode"
"IPL"
        1952
        1954
        1955
                     "FLOW-MATIC"
        1957
                      "FORTRAN"
        1957
                      "COMTRAN"
                      "LISP"
        1958
                      "ALGOL 58"
        1958
                      "FACT"
        1959
                      "COBOL"
        1959
                      "RPG"
        1962
                      "APL"
                      "Scala"
        2003
        2005
                      "PowerShell"
        2006
                      "Clojure"
        2007
                      "Go"
        2009
                      "Rust"
        2010
        2011
                      "Kotlin"
                      "Red"
        2011
                      "Elixir"
        2011
                      "Julia"
        2012
        2014
                      "Swift"
```

Рис. 3.2: Считывание данных. Часть 2

```
# Запись данных в CSV-файл:
CSV.write("programming_languages_data2.csv", P)
"programming_languages_data2.csv"
# Пример записи данных в текстовый файл с разделителем ',':
writedlm("programming_languages_data.txt", Tx, ',')
# Пример записи данных в текстовый файл с разделителем '-':
writedlm("programming_languages_data2.txt", Tx, '-')
# Построчное считывание данных с указанием разделителя:
P_new_delim = readdlm("programming_languages_data2.txt", '-')
74×2 Matrix{Any}:
    "year" "language"
           "Regional Assembly Language"
"Autocode"
1951
1952
            "IPL"
1954
            "FLOW-MATIC"
1955
            "FORTRAN"
1957
1957
            "COMTRAN"
             "LISP"
1958
            "ALGOL 58"
1958
1959
            "FACT"
            "COBOL"
1959
1959
            "RPG"
            "APL"
1962
            "Scala"
2003
2005
            "F#"
2006
             "PowerShell"
            "Clojure"
2007
2009
            "Go"
            "Rust"
2010
2011
            "Dart"
2011
             "Kotlin"
            "Red"
2011
2011
            "Elixir"
            "Julia"
2012
2014
             "Swift"
```

Рис. 3.3: Считывание данных. Часть 3

```
Словари
# Инициализация словаря:
dict = Dict{Integer, Vector{String}}()
Dict{Integer, Vector{String}}()
# Инициализация словаря:
dict2 = Dict()
Dict{Any, Any}()
for i = 1:size(P,1)
year,lang = P[i,:]
if year in keys(dict)
dict[year] = push!(dict[year],lang)
dict[year] = [lang]
end
# Пример определения в словаре языков программирования, созданных в 2003 году:
dict[2003]
2-element Vector{String}:
"Groovy"
"Scala"
```

Рис. 3.4: Словари

```
DataFrames
: # Подгружаем пакет DataFrames:
using DataFrames
   # Задаём переменную со структурой DataFrame:
df = DataFrame(year = P[:,1], language = P[:,2])
 73×2 DataFrame
   Row year language
   Int64 String31
       1 1951 Regional Assembly Language
  2 1952 Autocode
     3 1954 IPL
  4 1955 FLOW-MATIC
       5 1957 FORTRAN
  6 1957 COMTRAN
    7 1958 LISP
 # Вывод всех значения столбца year:
df[!,:year]
   73-element Vector{Int64}: •••
 # Получение статистических сведений о фрейме:
describe(df)
  2×7 DataFrame
   Row variable mean min median max nmissing eltype

        Symbol
        Union...
        Any
        Union...
        Any
        Int64
        DataType

        1
        year
        1982.99
        1951
        1986.0
        2014
        0
        Int64

        2
        language
        ALGOL 58
        dBase III
        0
        String31
```

Рис. 3.5: DataFrames

Рис. 3.6: RDatasets

```
Работа с переменными отсутствующего типа (Missing Values)
# Omcymcm6yk
a = missing
typeof(a)
Missing
# Пример операции с переменной отсутствующего типа:
missing
# Определение перечня продуктов:
foods = ["apple", "cucumber", "tomato", "banana"]
4-element Vector{String}:
 "apple"
"cucumber"
"tomato"
 "banana"
calories = [missing,47,22,105]
\hbox{$4$-element Vector}\{\hbox{Union}\{\hbox{Missing, Int64}\}\}\colon
22
105
typeof(calories)
Vector{Union{Missing, Int64}} (alias for Array{Union{Missing, Int64}, 1})
# Подключаем пакет Statistics:
using Statistics
# Определение среднего значения:
mean(calories)
missing
```

Рис. 3.7: Работа с переменными отсутствующего типа (Missing Values). Часть 1

Рис. 3.8: Работа с переменными отсутствующего типа (Missing Values). Часть 2

usin	CSV											
Bazpyano downur: ouses « CSV.File("houses.csv") > DataFrame												
85×12 DataFrame												
Row	street	city	zip	state	beds	baths	sqft	type	sale_date	price	latitude	longitude
	String	String15	Int64	String3	Int64	Int64	Int64	String15	String31	Int64	Float64	Float64
1	3526 HIGH ST	SACRAMENTO	95838	CA	2	1	836	Residential	Wed May 21 00:00:00 EDT 2008	59222	38.6319	-121.435
2	51 OMAHA CT	SACRAMENTO	95823	CA	3	1	1167	Residential	Wed May 21 00:00:00 EDT 2008	68212	38.4789	-121.431
3	2796 BRANCH ST	SACRAMENTO	95815	CA	2	1	796	Residential	Wed May 21 00:00:00 EDT 2008	68880	38.6183	-121.444
4	2805 JANETTE WAY	SACRAMENTO	95815	CA	2	1	852	Residential	Wed May 21 00:00:00 EDT 2008	69307	38.6168	-121.439
5	6001 MCMAHON DR	SACRAMENTO	95824	CA	2	1	797	Residential	Wed May 21 00:00:00 EDT 2008	81900	38.5195	-121.436
6	5828 PEPPERMILL CT	SACRAMENTO	95841	CA	3	1	1122	Condo	Wed May 21 00:00:00 EDT 2008	89921	38.6626	-121.328
7	6048 OGDEN NASH WAY	SACRAMENTO	95842	CA	3	2	1104	Residential	Wed May 21 00:00:00 EDT 2008	90895	38.6817	-121.352
8	2561 19TH AVE	SACRAMENTO	95820	CA	3	1	1177	Residential	Wed May 21 00:00:00 EDT 2008	91002	38.5351	-121.481
9	11150 TRINITY RIVER DR Unit 114	RANCHO CORDOVA	95670	CA	2	2	941	Condo	Wed May 21 00:00:00 EDT 2008	94905	38.6212	-121.271
10	7325 10TH ST	RIO LINDA	95673	CA	3	2	1146	Residential	Wed May 21 00:00:00 EDT 2008	98937	38.7009	-121.443
11	645 MORRISON AVE	SACRAMENTO	95838	CA	3	2	909	Residential	Wed May 21 00:00:00 EDT 2008	100309	38.6377	-121.452
12	4085 FAWN CIR	SACRAMENTO	95823	CA	3	2	1289	Residential	Wed May 21 00:00:00 EDT 2008	106250	38.4707	-121.459
13	2930 LA ROSA RD	SACRAMENTO	95815	CA	1	1	871	Residential	Wed May 21 00:00:00 EDT 2008	106852	38.6187	-121.436
974	2181 WINTERHAVEN CIR	CAMERON PARK	95682	CA	3	2	0	Residential	Thu May 15 00:00:00 EDT 2008	224500	38.6976	-120.996
975	7540 HICKORY AVE	ORANGEVALE	95662	CA	3	1	1456	Residential	Thu May 15 00:00:00 EDT 2008	225000	38.7031	-121.235
976	5024 CHAMBERLIN CIR	ELK GROVE	95757	CA	3	2	1450	Residential	Thu May 15 00:00:00 EDT 2008	228000	38.3898	-121.446
977	2400 INVERNESS DR	LINCOLN	95648	CA	3	2	1358	Residential	Thu May 15 00:00:00 EDT 2008	229027	38.8978	-121.325
978	5 BISHOPGATE CT	SACRAMENTO	95823	CA	4	2	1329	Residential	Thu May 15 00:00:00 EDT 2008	229500	38.4679	-121.445
979	5601 REXLEIGH DR	SACRAMENTO	95823	CA	4	2	1715	Residential	Thu May 15 00:00:00 EDT 2008	230000	38.4453	-121.442
980	1909 YARNELL WAY	ELK GROVE	95758	CA	3	2	1262	Residential	Thu May 15 00:00:00 EDT 2008	230000	38.4174	-121.484
981	9169 GARLINGTON CT	SACRAMENTO	95829	CA	4	3	2280	Residential	Thu May 15 00:00:00 EDT 2008	232425	38.4577	-121.36
982	6932 RUSKUT WAY	SACRAMENTO	95823	CA	3	2	1477	Residential	Thu May 15 00:00:00 EDT 2008	234000	38.4999	-121.459
983	7933 DAFFODIL WAY	CITRUS HEIGHTS	95610	CA	3	2	1216	Residential	Thu May 15 00:00:00 EDT 2008	235000	38.7088	-121.257
984	8304 RED FOX WAY	ELK GROVE	95758	CA	4	2	1685	Residential	Thu May 15 00:00:00 EDT 2008	235301	38.417	-121.397
985	3882 YELLOWSTONE LN	EL DORADO HILLS	95762	CA	3	2	1362	Residential	Thu May 15 00:00:00 EDT 2008	235738	38.6552	-121.076

Рис. 3.9: Кластеризация данных. Метод k-средних. Часть 1

Рис. 3.10: Кластеризация данных. Метод k-средних. Часть 2

Рис. 3.11: Кластеризация данных. Метод k-средних. Часть 3

Рис. 3.12: Кластеризация данных. Метод k-средних. Часть 4

Рис. 3.13: Кластеризация данных. Метод k-средних. Часть 5

```
unique_rips = unique(filter_houses[1,:zip])
zips_figure = plot(legend = false)
for uzfp in unique_zips
subs = filter_houses[filter_houses[1,:zip].==uzip,:]
x = subs[1,:lanitude]
y = subs[1,:lanitude]
scatter!(zips_figure,x,y)
end
vlabel!("Latitude")
ylabel!("Longitude")
title!("Mouse color-coded by zip code")
display(zips_figure)

Houses color-coded by zip code

-120.6

-121.2

-121.4

38.6

38.6

38.8

39.0

Latitude
```

Рис. 3.14: Кластеризация данных. Метод k-средних. Часть 6

Рис. 3.15: Кластеризация данных. Метод k ближайших соседей. Часть 1

Рис. 3.16: Кластеризация данных. Метод k ближайших соседей. Часть 2

```
| OSpadorka gainthix. Merog rasehux κομποιθείτ
| F = Filter Desires[[r]sqrke]
| F = Filter Desires[[r]sqrke]
| State Desi
```

Рис. 3.17: Кластеризация данных. Метод главных компонент. Часть 1

Рис. 3.18: Кластеризация данных. Метод главных компонент. Часть 2

Рис. 3.19: Обработка данных. Линейная регрессия. Часть 1

```
a, b = find_best_fit(xvals,yvals)
ynew = a * xvals + b
plot1(xvals,ynew)

12

12

13

14

24

68

10

xvals = 1:100000;
xvals = nepeat(xvals,inner-3);
yvals = a repeat(xvals,inner-3);
yvals = a repeat(xvals,inner-3);
yvals = 3 * xvals + 2*rand(length(xvals)) - 1;
genow size(xvals)
genow size(xvals)
genow size(xvals)
genow size(xvals)
genow size(xvals)
size(xvals) = (300000,)
size(xvals)
```

Рис. 3.20: Обработка данных. Линейная регрессия. Часть 2

```
: ру"""
   def find_best_fit_python(xvals,yvals):
      meanx = numpy.mean(xvals)
      meany = numpy.mean(yvals)
      stdx = numpy.std(xvals)
      stdy = numpy.std(yvals)
      r = numpy.corrcoef(xvals,yvals)[0][1]
      a = r*stdy/stdx
      b = meany - a*meanx
      return a,b
: xpy = PyObject(xvals)
  ypy = PyObject(yvals)
  @time a,b = py"find_best_fit_python"(xpy,ypy)
    0.137126 seconds (65.78 k allocations: 4.622 MiB, 51.55% compilation time)
: (1.0000000574192378, 2.998644319399318)
: import Pkg
  Pkg.add("BenchmarkTools")
  using BenchmarkTools
  @btime a,b = py"find_best_fit_python"(xvals,yvals)
  @btime a,b = find_best_fit(xvals,yvals)
    Resolving package versions...
    No Changes to `C:\Users\noname\.julia\environments\v1.10\Project.toml`
   No Changes to `C:\Users\noname\.julia\environments\v1.10\Manifest.toml`
    4.701 ms (28 allocations: 976 bytes)
    434.600 µs (1 allocation: 32 bytes)
: (1.0000000574192405, 2.998644319261075)
```

Рис. 3.21: Обработка данных. Линейная регрессия. Часть 3

3.2 Самостоятельная работа

Примеры представлены на рис. 3.22 - 3.26.

Рис. 3.22: Кластеризация. Часть 1

```
Dict(String, Int64) with 3 entries:
"virginica" => 3
"setosa" => 1
"versicolor" => 2
iris[1,:5] = [iris_spec[item] for item in iris[1,:5]]
```

Рис. 3.23: Кластеризация. Часть 2

Рис. 3.24: Кластеризация. Часть 3

```
# 4acts 1

X = randn(1000, 3)

a0 = rand(3)

y = X * a0 + 0.1 * randn(1000);

# 4acts 2

X = rand(100);

y = 2X + 0.1 * randn(100);
```

Часть 1 Пусть регрессионная зависимость является линейной. Матрица наблюдений факторов X имеет размерность N × 3 randn (N, 3), массив результатов N × 1, регрессионная зависимость является линейной. Найдите МНК-оценку для линейной модели. – Сравните свои результаты с результатым использования lisq из MultivariateStatsi, (просмотрите документацию). — Сравните свои результаты с результатым использования регулярной регрессии наименьших квардатов из GLM-ji. Подсказка. Создайте матрицу данных X2, которая добавляет столбец единиц в начало матрицы данных и решите систему линейных уравнений. Объясните с помощью теоретических выкладок. Часть 2 Найдите линию регрессии, используя данные (X, у). Постройте график (X, у), используя точечный график. Добавьте линию регрессии, используя ablinei. Добавьте заголовок «График регрессии» и подпишите оси x и y

Рис. 3.25: Регрессия. Часть 1

Рис. 3.26: Регрессия. Часть 2

4 Выводы

В ходе лабораторной работы мною были освоены специализированные пакеты для обработки данных.