Mechanics

Govind Gaurav
Assistant Professor
Department of Civil Engineering
Thapar Institute of Engineering and Technology
Patiala 147 004, India
govind.gaurav@thapar.edu

Analysis of Trusses: Method of Section

External Equilibrium: to find the *reaction forces*, follow the below steps:

- 1. Draw the *FBD* for the entire truss system.
- 2. Determine the *reactions*. Using the equations of (2 D) which states:

$$\sum F_x = 0$$
, $\sum F_y = 0$, $\sum M_o = 0$

Sign Convention: For the force in member

Positive

Negative

Analysis of Trusses: Method of Section

Method of section (Internal equilibrium): to find the *forces* in any *member*, choose a *section*, to which that *member* is appeared as an internal force, and follow the below steps:

- 1. Draw the *FBD* for the entire truss system.
- 2. Determine the *reactions*. Using the equations of (2 D) which states:

$$\sum F_x = 0 , \quad \sum F_y = 0 , \quad \sum M_o = 0$$

- 3. Choose the *section*, and draw *FBD* of that *section*, shows how the forces replace the sectioned members.
- 4. Using the equation of (2 D) which states:

$$\sum F_x = 0$$
, $\sum F_y = 0$, $\sum M_o = 0$

- 5. The *internal forces* are determined.
- 6. Choose another *section* or *joint*.

Free Body Diagram (FBD)

ARAV

Free Body Diagram (FBD)

Rau

Internal tensile forces

Free Body Diagram (FBD)

Problem Statement: Determine the force developed in members FE, EB, and BC of the truss and state if these members are in tension or compression using "Method of Sections".

Problem Statement (cont..): Determine the force developed in members FE, EB, and BC of the truss and state if these members are in tension or compression "Method of Sections".

Problem Statement (cont..): Determine the force developed in members FE, EB, and BC of the truss and state if these members are in tension or compression "Method of Sections".

