# CREAZIONE DI UN SERVER HTTP, HTTPS E DNS

Per questa prova bisogna cambiare gli IP della macchina win7 e kali nei seguenti IP.

Kali: 192.168.32.100 WIN7: 192.168.32.101

## Come cambiare gli IP:

Partendo da kali apriamo il menu a tendina e andiamo su impostazioni







#### e impostare l'IP qui



Per cambiare l'IP su win7 andiamo in basso a destra, clicchiamo sopra e entriamo nelle impostazioni di rete,



selezioniamo Change network adapter settings e sulle proprieta' della scheda di rete entriamo in IPv4 ed cambiamo il nuovo IP



Su win7 dobbiamo aggiungere prima le regola al firewall dei nuovi indirizzi IP: Aprendo le impostazioni dei firewall andiamo sempre su Inbound Rules e apriamo la regola che abbiamo creato l'ultima volta, poi andando su Scope possiamo aggiungere nuovi indirizzi IP come qui sotto. E di seguito il ping per verificare il tutto



```
kali⊕ kali)-[~]
ping 192.168.32.101
PING 192.168.32.101 (192.168.32.101) 56(84) bytes of data.
64 bytes from 192.168.32.101: icmp_seq=1 ttl=128 time=1.87 ms
```

# AVVIO E CONFIGURAZIONE SERVER HTTP, HTTPS E DNS

Apriamo la console di kali e andiamo sulle impostazioni di InetSim con il seguente comando

```
__(kali⊕ kali)-[~]
$\frac{\sudo}{\sudo} \nano \frac{\end{area}{etc/inetsim/inetsim.conf}}
```

Entriamo nelle impostazioni e aggiungiamo questi parametri service\_bind\_address 192.168.32.100 dns\_static epicode.internal 192.168.32.100

```
# Default: 127.0.0.1
#
#service_bind_address 10.10.10.1
service_bind_address 192.168.32.100
#dns_static ftp.bar.net 10.10.20.30
dns_static epicode.internal 192.168.32.100
```

La prima opzione serve a mettere in locale il server http\https sull'IP di kali e la seconda serve ad aggiungere una nuova voce al server DNS, in questo cosa dice che epicode.internal e' associato all'IP 192.168.32.100.

Salviamo tutto e avviamo INetSim con il seguente comando: sudo inetsim

n <mark>─(kali⊗ kali</mark>)-[~] s <u>sudo</u> inetsim

| Ora | andiamo | su win7 | aggiungiamo | nelle im | postazioni | i di rete | il server | DNS ( | di kali |
|-----|---------|---------|-------------|----------|------------|-----------|-----------|-------|---------|
|     |         |         |             |          |            |           |           |       |         |

| Use the following DNS server addresses: |           |        |       |  |  |
|-----------------------------------------|-----------|--------|-------|--|--|
| Preferred DNS server:                   | 192 . 168 | 3 . 32 | . 100 |  |  |
| Alternate DNS server:                   |           |        |       |  |  |

Apriamo il browser e cerchiamo epicode.internal e vedremo che lo risolvera' in automatico grazie al nostro servizio DNS attivo da kali\inetsim.



This is the default HTML page for INetSim HTTP server fake mode.

This file is an HTML document.

Possiamo anche aprirlo in HTTPS

# CATTURA PACCHETTI CON WIRESHARK

Su kali apriamo wireshark ed incominciamo ad ascoltare su tutte le schede di rete, mentre su win7 ricarichiamo la pagina in modo tale da effettuare nuovamente l'accesso. Questi saranno i pacchetti che vedremo su wireshark

|   | 1 0.000000000  | PcsCompu_94:a0:c5 | Broadcast         | ARP  | 60 Who has 192.168  |
|---|----------------|-------------------|-------------------|------|---------------------|
|   | 2 0.000016979  | PcsCompu_22:46:4f | PcsCompu_94:a0:c5 | ARP  | 42 192.168.32.100   |
|   | 3 0.000746029  | 192.168.32.101    | 192.168.32.100    | TCP  | 66 49185 → 80 [SYN  |
|   | 4 0.000810497  | 192.168.32.100    | 192.168.32.101    | TCP  | 66 80 → 49185 [SYN  |
|   | 5 0.001495968  | 192.168.32.101    | 192.168.32.100    | TCP  | 60 49185 → 80 [ACK  |
| - | 6 0.002045841  | 192.168.32.101    | 192.168.32.100    | HTTP | 361 GET / HTTP/1.1  |
|   | 7 0.002059166  | 192.168.32.100    | 192.168.32.101    | TCP  | 54 80 → 49185 [ACK  |
|   | 8 0.025036285  | 192.168.32.100    | 192.168.32.101    | TCP  | 204 80 → 49185 [PSH |
| 4 | 9 0.028525418  | 192.168.32.100    | 192.168.32.101    | HTTP | 312 HTTP/1.1 200 OK |
|   | 10 0.029231701 | 192.168.32.101    | 192.168.32.100    | TCP  | 60 49185 → 80 [ACK  |
|   | 11 0.029619862 | 192.168.32.101    | 192.168.32.100    | TCP  | 60 49185 → 80 [FIN  |
|   | 12 0.029637877 | 192.168.32.100    | 192.168.32.101    | TCP  | 54 80 → 49185 [ACK  |
|   | 13 5.072978498 | PcsCompu_22:46:4f | PcsCompu_94:a0:c5 | ARP  | 42 Who has 192.168  |
|   | 14 5.073504509 | PcsCompu_94:a0:c5 | PcsCompu_22:46:4f | ARP  | 60 192.168.32.101   |

## mentre questi entrando con l'https che sono molti di piu' infatti in immagine non ci stanno

| 1 0.000000000  | PcsCompu_94:a0:c5   | Broadcast         | ARP    | 60 Who has 192.168.32.100? Tell 192.168.32.101              |
|----------------|---------------------|-------------------|--------|-------------------------------------------------------------|
| 2 0.000017196  | PcsCompu_22:46:4f   | PcsCompu_94:a0:c5 | ARP    | 42 192.168.32.100 is at 08:00:27:22:46:4f                   |
| 3 0.000651232  | 192.168.32.101      | 192.168.32.100    | TCP    | 66 49186 → 443 [SYN] Seq=0 Win=8192 Len=0 MSS=1460 WS=4 S   |
| 4 0.000698854  | 192.168.32.100      | 192.168.32.101    | TCP    | 66 443 → 49186 [SYN, ACK] Seq=0 Ack=1 Win=64240 Len=0 MS    |
| 5 0.001399679  | 192.168.32.101      | 192.168.32.100    | TCP    | 60 49186 → 443 [ACK] Seq=1 Ack=1 Win=65700 Len=0            |
| 6 0.001963762  | 192.168.32.101      | 192.168.32.100    | TLSv1  | 215 Client Hello                                            |
| 7 0.001976779  | 192.168.32.100      | 192.168.32.101    | TCP    | 54 443 → 49186 [ACK] Seq=1 Ack=162 Win=64128 Len=0          |
| 8 0.009994211  | 192.168.32.100      | 192.168.32.101    | TLSv1  | 1373 Server Hello, Certificate, Server Key Exchange, Server |
| 9 0.017893394  | 192.168.32.101      | 192.168.32.100    | TLSv1  | 188 Client Key Exchange, Change Cipher Spec, Encrypted Har  |
| 10 0.017931312 | 192.168.32.100      | 192.168.32.101    | TCP    | 54 443 → 49186 [ACK] Seq=1320 Ack=296 Win=64128 Len=0       |
| 11 0.018951414 | 192.168.32.100      | 192.168.32.101    | TLSv1  | 113 Change Cipher Spec, Encrypted Handshake Message         |
| 12 0.041907585 | PcsCompu_94:a0:c5   | Broadcast         | ARP    | 60 Who has 192.168.32.1? Tell 192.168.32.101                |
| 13 0.240677886 | 192.168.32.101      | 192.168.32.100    | TCP    | 60 49186 → 443 [ACK] Seq=296 Ack=1379 Win=64320 Len=0       |
| 14 0.927499494 | PcsCompu_94:a0:c5   | Broadcast         | ARP    | 60 Who has 192.168.32.1? Tell 192.168.32.101                |
| 15 1.927424305 | PcsCompu_94:a0:c5   | Broadcast         | ARP    | 60 Who has 192.168.32.1? Tell 192.168.32.101                |
| 16 3.219982341 | fe80::4839:3aec:d13 | ff02::1:3         | LLMNR  | 84 Standard query 0x9aec A wpad                             |
| 17 3.219982729 | 192.168.32.101      | 224.0.0.252       | LLMNR  | 64 Standard query 0x9aec A wpad                             |
| 18 3.225037342 | fe80::4839:3aec:d13 | ff02::16          | ICMPv6 | 90 Multicast Listener Report Message v2                     |

Le differenze tra i due sono chiare, sull'http abbiamo i protocolli ARP, TCP e HTTP mentre su https ci sono i protocolli TLS al posto dei HTTPper la crittografia come possiamo vedere. Qui sotto aprendo il pacchetto TCP o TLS possiamo vedere i 2 IP e MACaddress delle 2 macchine



Anche aprendo un pacchetto TPC dalla scansione in http possiamo vedere i MAC e gli IP.