Applications Models _ VoIP

Client-Server Model

Servidor

Always ON.

Endereço IP é sempre o mesmo ou existe uma associação estática entre um nome e um endereço IP.

Podem comunicar entre si

Podem atuar como cliente

Cliente

Comunicar com servidores

Pode estar ON apenas quando estiver a operar

Pode ter endereço dinâmico

Neste modelo, não comunicam entre si

P2P Model

Servidor

Pode existir apenas para iniciar uma rede P2P

Cliente

Comunicar entre si

Pode estar ON apenas quando estiver a operar

Pode ter endereço dinâmico

Descobrimento de pares pode ser feito dentro de uma rede P2P ou usando um servidor central

VoIP

Conjunto de protocolos e equipamentos que permitem a codificação, transporte e encaminhamento de chamadas áudio/video através de redes IP.

As streams de áudio/video são codificadas e encapsuladas em pacotes IP para serem transportados na rede (é necessário a devida sinalização (processos de interação entre nós de uma rede por forma a controlar chamadas)).

VoIP tem como grandes vantagens os **custos reduzidos** (não é preciso pagar) e o facto de **não depender de operadores**. Como a qualidade é semelhante à dos telefones, existem várias companhias a investir nestes serviços por diversas aplicações.

A perda razoável de pacotes IP (devido ao congestionamento da rede) não é crítica, uma vez que perdendo informação, esta é retirada de algum lado (ou resolução de imagem ou resolução do som)... o ritmo de perda de pacotes tolerável pode ser entre 1 a 10%.

Os atrasos são críticos, apesar de que se o atraso for constante, as pessoas adaptamse. O máximo atraso tipicamente tolerável é de 400 ms. No entanto quando o atraso não é sempre o mesmo, as pessoas não se conseguem adaptar, o que torna assim as variações de atraso bastante críticas.

Exige estabelecimento de sessão, ou seja, a origem e o destino tem de aceitar as condições de estabelecimento.

P2P (Peer-to-Peer):

Rede onde cada computador presente nela pode agir como cliente ou servidor para outros computadores na rede, permitindo partilha de dados (audio, video, informação, etc).

SIP (Session Initiation Protocolo):

É um protocolo baseado em texto, similar ao HTTP (com pedidos num sentido equivalente aos métodos HTTP e respostas numéricas também equivalente).

- Permite criar, modificar, terminar sessões multimédia entre dois ou mais participantes.
- Transportado por UDP ou TCP.
- É um protocolo P2P.

UAs (user agents): pares numa sessão

UAC (user-agent client): aplicação cliente que inicia o pedido SIP

UAS (user-agent server) : aplicação servidor que contacta com o utilizador quando o pedido SIP é recebido e retorna uma resposta em nome do utilizador.

*** Em video-conferências muitas vezes faz-se chamadas diretas, ou seja, estabelece-se uma videoconferencia diretamente para o destino, por isso é que os sistemas de video-conferências têm endereços públicos. ***

O SIP possuiu as seguintes **funcionalidades** quanto ao estabelecimento e terminação de comunicações multimédia:

- User location: determinação da localização do sistema a ser usado para comunicação
- **User availability** : determinação do estado de comunicação. (verificar se está ocupado etc etc)
- User capabilities : definição das capacidades dos equipamentos
- **Session setup**: estabelecimento da chamada ("ringing")
- **Session management** : incluir ou modificar os parâmetros da sessão

Uma mensagem SIP é tanto um pedido do cliente para o servidor como uma resposta do servidor para o cliente.

Clientes

- Telemóveis;
- Gateways;
- User Agents;
 - o Atua como:
 - Cliente quando inicia um pedido (UAC);
 - Servidor quando responde a um pedido (UAS).

Servidores

Servidor proxy

- Recebe pedidos SIP de um cliente e encaminha-as pelo cliente.
- Recebe mensagens SIP e encaminha-as para o próximo servidor SIP na rede.
- Providência funções como autenticação, autorização, controlo de acesso à rede, *routing*, retransmissão de pedidos de forma fiável, e segurança.

Servidor de redireccionamento.

 Providencia ao cliente informação sobre o próximo salto que uma mensagem deve tomar e depois os próximos saltos dos contactos do cliente ou diretamente a UAS.

Registrar server

- Processa pedidos de UAC's para registar a localização atual.
- Frequentemente são *co-located* com um servidor de redireccionamento ou proxy.

REQUESTS (PEDIDOS)

O SIP usa o URI(uniform resource indicators) para indicar o utilizador ou serviço para o qual o pedido está sendo endereçado.

exemplo: sip: John@doe.com

request-line = **METHOD** (o que se quer fazer) space **REQUEST-URI** (quem se quer contactar) space **SIP-VERSION** (versão deverá ser SIP/2.0)

Os diferentes **métodos** são:

• **INVITE**: Estabelecer a chamada

• ACK: Fazer o reconhecimento

• **OPTIONS**: Definir opções da sessão

• BYE: Terminar a chamada já estabelecida

• **CANCEL:** Terminar a chamada que não foi estabelecida

• **REGISTER**: Registar o utilizador no servidor

• **SUBSCRIBE**: Subscrever as notificações do utilizador

• NOTIFY: Notificar o cliente

• PUBLISH: Mudar o estado do utilizador

• **MESSAGEM**: Enviar mensagens

Exemplo: INVITE sip:2001@192.168.56.101 SIP/2.0

SDP (Session Description Protocol)

Protocolo que descreve os parâmetros para se iniciar uma sessão multimédia (SIP), como o anuncio de uma sessão, pedidos para join, etc.

Tal como o SIP não transfere informação, mas entra no papel de negociação de uma sessão.

Quando são iniciadas teleconferências, chamadas VoIP, streaming de video, ou outras sessões, é necessário transmitir detalhes dos participantes, endereços de transporte e outros metadados da descrição da sessão.

SDP é um formato para descrição da sessão.

É desenhado para ser generalista, para que possa ser usado numa vasta gama de tipos de redes e aplicações.

Não suporta negociação de conteúdo ou media da sessão.

Registrar Server

Regista a localização das endpoints SIP.

Um utilizador tem uma conta criada que lhe permita registar contactos com um servidor em particular.

A conta especifica um Address of Record (AOR) do SIP.

Cada endpoint regista-se a um Registrar com um pedido SIP REGISTER.

• Usando o seu AOR e endereço de Contacto.

AOR está no cabeçalho do From

• From: <sip:<u>Vieira@192.168.56.102</u>>

O cabeçalho do contacto diz ao servidor Registrar para onde enviar as mensagens:

Contact: <sip:<u>Vieira@192.168.56.102</u>:5060>

•

Servidores SIP Proxy fazem *queries* ao SIP Registrar por informação de *routing*. Registo usualmente requer autenticação.

Se não houver credenciais de autenticação, o SIP Registrar respond com 401. O *endpoint* reenvia *REGISTER* com um cabeçalho de autorização com as credenciais.

Locating SIP Servers

Define um conjunto de procedimentos DNS para localiza servidores SIP. Elementos SIP precisam de enviar pedidos/respostas para um recurso identificado por um SIP URI.

- O SIP URI pode identificar o destino desejado ou um salto intermédio para o recurso.
- Necessita de protocolo de transporte, endereço IP e porta.
 - Se o URI especificar algum deles, então deve ser usado.
- Se não for possível, deve ser devolvido de um servidor DNS.
 - Usando Service (SRV) e registos DNS Name Authority Pointer (NAPTR).

Registos NAPTR providenciam um mapeamento de um nome de domínio para:

- Registo SRV (que contem o nome de servidor com recurso responsável).
- Protocolo de transporte específico.

•

Exemplo

Um cliente/servidor que deseja resolver "sip:<u>user@example.com</u>" Efetua uma *query* NAPTR pelo domínio "<u>example.com</u>"

• IN NAPTR 100 50 "S" "SIP+D2U" "" sip.udp.example.com.

Tem UDP como um possível protocolo de transporte, efetua uma *quert* SRV pelo "_sip._udp.example.com"

- IN SRV 0 1 5060 <u>server1.example.com</u>
- IN SRV 0 1 5060 <u>server2.example.com</u>

Tem dois servidores possíveis, efetua um query A ou AAAA pelo servidor escolhido.

VoIP and PSTN Connectivity

Proxy SIP

Com interface PSTN (para ISP or PBX local)

- Requer múltiplas linhas PSTN.
- Não escalável.

Com trunk SIP para um proxy SIP remoto.

- Interfaces Proxy/gateway remotos com rede PSTN.
- Interfaces Proxy/gateway remotos detidos por ISPs PSTN ou por uma entidade terceira
- Usualmente transporte TCP/IP com camada de segurança TLS.
- Escalável.

WebRTC

WebRTC (Web Real Time Communications) é uma comunicação de tecnologia *open source*.

Tipicamente utilizado para comunicações real-time de áudio e vídeo.

Fornece:

- Conexões peer-to-peer.
 - Uma instância permite a uma aplicação que estabeleça comunicações peer-to-peer com outra instância noutro *browser*, ou com outro endpoint que esteja a implementar o protocolo necessário.
- Transport RTP Media.
 - Permite a uma aplicação web, enviar e receber stream de media através de uma conexão peer-to-peer.
- Transporte de informação peer-to-peer.
 - Permite a uma aplicação web enviar e receber informação genérica da aplicação através de uma conexão peer-to-peer.
- Peer-to-peer DTMF.