Zusammenfassung

Obwohl das Standardmodell der Teilchenphysik eine außerordentlich erfolgreiche Theorie darstellt, deuten einige Beobachtungen auf die Existenz neuer Physik jenseits dessen was im Rahmen des Standardmodells erklärt werden kann hin. Supersymmetrie ist der Oberbegriff für eine Klasse von Theorien, die einige der offenen Fragen des Standardmodells erklären könnten. Sie sagt die Existenz von supersymmetrischen Partnern für jedes Teilchen des Standardmodells voraus und könnte, unter anderem, einen Teilchenkandidaten für dunkle Materie liefern.

Diese Arbeit stellt eine Suche nach supersymmetrischen Teilchen, die über die elektroschwache Wechselwirkung paarproduziert werden, vor. Endzustände mit einem Lepton, fehlender Transversalenergie und einem Higgs Boson, welches in zwei b-Quarks zerfällt, werden untersucht. Insgesamt werden 139 fb⁻¹ an Daten aus Proton-Proton Kollisionen berücksichtigt, welche mit dem ATLAS Detektor bei einer Schwerpunktsenergie von $\sqrt{s} = 13$ TeV im Run 2 des Large Hadron Colliders aufgezeichnet wurden. Ein, auf einer Likelihood-Methode basierender, simultaner Fit in allen Suchregionen wird verwendet, um hohe Sensitivität zu möglichst vielen kinematischen Bereichen im untersuchten Parameterraum zu gewährleisten.

Keine signifikante Abweichung von den Standardmodellvorhersagen wird in den Daten beobachtet, weshalb die Ergebnisse in einem vereinfachten Modell für Paarproduktion von Elektroweakinos interpretiert werden. Für leichteste Neutralinos mit Massen von $\lesssim 100\,\text{GeV}$ ($\approx 250\,\text{GeV}$), können leichteste Charginos und zweitleichteste Neutralinos mit Massen von bis zu 740 GeV (600 GeV) ausgeschlossen werden.

Da heutige Teilchenphysik-Experimente aufgrund ihrer Komplexität und Größenordnung nicht trivial reproduzierbar sind, gleichzeitig aber eine Vielzahl an Modellen für Physik jenseits des Standardmodells existiert, wird ein besonderes Augenmerk auf die technische Durchführbarkeit einer Neuinterpretation der Suche gelegt. Die volle Likelihood-Funktion der Suche wird veröffentlicht und eine vollständig reproduzierbare Umsetzung der Suche anhand Container-Technologie und parametrisierter Job-Vorlagen wird diskutiert. Mit Hinblick auf rechenintensive Neuinterpretationen in hoch-dimensionalen Parameterräumen wird eine Methode eingeführt, um die Likelihood-Funktionen von ATLAS Suchen nach Supersymmetrie zu nähern. Mit Hilfe dieser Methode wird schlussendlich eine Neuinterpretation der Suche in einem Unterraum einer 19-dimensionalen Menge von vollständigeren supersymmetrischen Modellen durchgeführt und deren Ergebnisse diskutiert.

Abstract

Despite the success of the Standard Model of particle physics, a number of hints suggest the existence of new physics beyond the scope of phenomena that can be explained in the theoretical framework of the Standard Model. One class of theories that could be able to explain some of the open questions of the Standard Model is Supersymmetry. It introduces supersymmetric partners to each of the Standard Model particles, and could, for example, provide a candidate for Dark Matter.

This thesis presents a search for electroweak production of supersymmetric particles in events with a lepton, missing transverse momentum and a Higgs boson decaying into two b-quarks. The search analyses 139 fb⁻¹ of proton–proton collision data at a centre-of-mass energy of \sqrt{s} = 13 TeV, recorded by the ATLAS detector at the Large Hadron Collider. A likelihood-based simultaneous fit in all search regions is introduced in order to achieve sensitivity to a large variety of kinematic regimes. No significant deviation from the Standard Model predictions is seen in data in any of the search regions. The results are subsequently interpreted in a simplified model for electroweakino pair production. Lightest chargino and next-to-lightest neutralino masses of 740 GeV (600 GeV) can be excluded for lightest neutralino masses of $\lesssim 100$ GeV (≈ 250 GeV).

Given that the particle physics experiments at the Large Hadron Collider are not easily reproducible, and a large number of phenomenologically viable models for physics beyond the Standard Model exist, special focus is put on the reusability and reinterpretability of the search. The full likelihood function of the search is published in a readily available format, and a fully reusable implementation of the search using containerised workflows with parameterised job templates is provided. In light of conceptually interesting but computationally challenging reinterpretations in high-dimensional model spaces, a method for generically approximating the likelihood functions of ATLAS searches for Supersymmetry is introduced and validated. Using this approach, a reinterpretation of the search in a subspace of a 19-dimensional set of more complete supersymmetric models is performed and its results are discussed.

Introduction

Particle physics studies the fundamental constituents and interactions of matter with the ultimate goal of uncovering the laws of nature that govern the most fundamental building blocks of the universe. Over the course of more than a century, fundamental physics has continuously pushed the frontiers of knowledge, reaching ever-smaller length-scales on which the fundamental interactions of the building blocks of matter can be understood. The resulting theoretical framework, the Standard Model of particle physics (SM), provides answers to some of the deepest questions that can be asked about the universe and is the most fundamental, experimentally validated description of nature known to date.

Particle physics finds itself, however, at an interesting crossroad. On the one hand, the SM is very successful in describing nature at its smallest scales and—with the discovery of the Higgs boson in 2012 [1, 2]—has recently been experimentally completed. Through various particle physics experiments, the precision and predictive power of the SM have been tested to an unprecedented level, finding no significant deviations in experimental data so far. On the other hand, however, a number of cosmological observations as well as flavour and precision electroweak measurements are putting increasing pressure on the SM. For example, although the existence of dark matter (DM) is nowadays well-established, it cannot be suitably described within the theoretical framework of the SM. Over the course of the last decades, it has become increasingly clear that the SM is an effective theory, and thus only a low-energy approximation to a more fundamental theory of nature.

A plethora of theories able to explain some of the shortcomings of the SM exist. One class of such theories is Supersymmetry (SUSY), extending the SM by associating supersymmetric partners to the SM particles. SUSY could, for example, be able to provide a candidate particle for DM, or explain some of the tensions observed in electroweak precision measurements. Up until the discovery of the Higgs boson, the theory and experimental communities in particle physics were in a state of *symbiosis* with a clear pathway to follow: validating and completing the SM. This is, however, no longer the case and experimental particle physics faces an era where a large number of models for beyond the Standard Model (BSM) physics can be thought of, but no clear indication of where to start looking is available.

Although theoretical arguments suggest that supersymmetric particles could exist at the energies accessible with the Large Hadron Collider (LHC), no such particles have been found so far. Up until recently, searches for SUSY have, however, mostly focused on the production of the supersymmetric partners of quarks and gluons through the strong interaction. With the second run of the LHC recently come to an end, an unprecedented amount of proton—proton collision data has been recorded by the LHC experiments and is available for physics analysis. This allows to search for supersymmetric particles produced through the electroweak interaction that have previously not been accessible due to their low theoretical production rates, compared to those produced through the strong interaction.

2 Introduction

Due to their complexity and lifetimes approaching half a century, experiments like the ATLAS at the LHC are, in general, not easily repeatable, and thus challenge the scientific method. This precarious situation, coupled with the wide landscape of BSM models available to search for, requires efforts to not only preserve searches for BSM physics, but make them fully reusable in the context of new, additional BSM models.

This thesis presents a search for the supersymmetric partners of the SM Higgs and gauge bosons, collectively referred to as *electroweakinos*. The search uses 139 fb⁻¹ of proton–proton collision data recorded at a centre-of-mass energy of 13 TeV with the ATLAS detector. It is embedded in a larger effort within the ATLAS Collaboration, searching for SUSY in the context of a variety of theoretical models. This thesis is divided into four main parts. In part I, the fundamental concepts necessary for the remainder of the thesis are presented. This includes a theoretical introduction to the SM and SUSY, followed by a description of the experimental setup, and concluding with a discussion of the statistical concepts used. Part II introduces the aforementioned search for electroweakinos and discusses its results using 139 fb⁻¹ of proton–proton collision data recorded by ATLAS. In part III, preservation and reusability efforts are presented in chapter 9, aiming to make the search readily available to reinterpretation efforts both within and outside of the ATLAS Collaboration. Furthermore, a method for approximating the statistical models of SUSY searches is introduced and validated in chapter 10. These efforts culminate in a reinterpretation of the search in a subspace of a 19-dimensional set of more complete supersymmetric scenarios, the results of which are discussed in chapter 11. Finally, the thesis concludes with a brief summary in part IV.

Chapter 12

Summary and Outlook

This thesis presented a search for direct production of electroweakinos in events with one lepton, missing transverse momentum and a Higgs boson decaying into two b-quarks. The full dataset of Run 2 of the LHC, amounting to 139 fb⁻¹ of pp collisions at $\sqrt{s}=13$ TeV, recorded with the ATLAS experiment, was analysed. The search targets a simplified electroweakino ($\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$) pair production model with subsequent decays into W and Higgs bosons together with two lightest neutralinos ($\tilde{\chi}_1^0$). The $\tilde{\chi}_1^0$ is the LSP of the model, is electrically neutral and stable, and thus could be a good candidate for DM. It escapes the detector without leaving a measurable signal, resulting, in general, in a significant amount of missing transverse momentum that can be triggered on. The search further targets a W boson decay into a lepton–neutrino pair and a Higgs boson decay into a b-quark pair, appearing as b-tagged jets in the detector.

Both the lepton–neutrino and the b-jet pairs offer powerful discriminative handles, exploited through the use of a number of kinematic observables in order to maximise the signal-to-background ratio in the phase space targeted. Using a dedicated optimisation procedure, two sets of signal regions are defined, one targeting generic BSM scenarios (called *discovery* signal regions), and one optimised for the simplified model in question (called *exclusion* signal regions). The exclusion signal regions are designed to be mutually exclusive through their requirements on the transverse mass (m_T) and the contransverse mass (m_T). Contributions from SM background processes in the signal regions originate primarily from $t\bar{t}$ and single top production, as well as W + jets processes. They are estimated either with a semi-data-driven technique using dedicated control regions, or directly from MC simulation. A binned likelihood is constructed, statistically combining all exclusion signal regions into a two-dimensional shape-fit that exploits the varying shapes of the m_T and m_{CT} distributions of SUSY signal and SM background processes. This approach achieves sensitivity to a wide variety of kinematic regimes.

No significant excess has been observed in any of the signal regions, and thus model-dependent exclusion limits and model-independent upper limits on the visible cross section of BSM processes have been derived. Due to the introduction of the two-dimensional shape-fit and the unprecedented amount of 139 fb⁻¹ of pp collision data analysed, the model-dependent exclusion limits set by previous searches targeting the same simplified model can be significantly extended. For a massless LSP, $\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$ masses up to 740 GeV can be excluded at 95% CL. In the case of a heavier LSP with $m(\tilde{\chi}_1^0) \approx 250$ GeV, the limits on the $\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$ masses weaken to about 600 GeV. At the time of writing, the limits obtained by this search are the most stringent constraints on $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ pair production set by ATLAS in the context of

the simplified model considered [257]. The model-independent 95% CL upper limits on the visible cross section of BSM processes vary between 0.26 fb and 0.11 fb, depending on the signal region considered.

The absence of physics beyond the SM in the Run 2 dataset of the LHC in the search presented herein, is in line with the results of other SUSY searches performed by ATLAS and CMS. While the existence of gluinos and squarks at the TeV-scale was already severely challenged by the end of Run 1 of the LHC, the limits on electroweakinos and sleptons were, in general, weaker because of their smaller production cross sections. Due to the large integrated luminosity available through the Run 2 dataset, and the improved analysis techniques and strategies developed over the last years, the limits on electroweakinos and sleptons are also significantly increasing, and in some cases start to approach the 1 TeV mark [257, 259].

Given these constraints, it might be tempting to discard the existence of SUSY at the LHC altogether. Such conclusions would, however, be drawn much too early. On the one hand, 139 fb⁻¹ of *pp* collision data only corresponds to a fraction of the total integrated luminosity the LHC is designed to deliver. By the end of the lifetime of the high-luminosity LHC upgrade, a projected amount of 3000 fb⁻¹ [260] will have been delivered to the particle physics experiments. Many supersymmetric models not accessible with the Run 2 dataset using today's analyses, will hence only come into reach in the upcoming runs of the LHC. On the other hand, most limits derived by SUSY searches assume specific simplified models and are thus only valid in the context of the assumptions made in these models. In any realistic SUSY scenario, assumptions like 100% branching ratios or small sets of participating, non-decoupled supersymmetric particles are, however, most likely not exactly fulfilled. Thus, simplified model limits can in general not be trivially interpreted as the true underlying constraints on the respective parameters of a realistic SUSY scenario.

Due to the rapidly changing landscape of models for physics beyond the SM and the limited scope of parameter limits quoted by the experiments, reinterpretations of searches for supersymmetry are highly desirable and see significant interest from both the experimental and theory communities. With this in mind, the search for SUSY presented herein was implemented to be fully reinterpretable in the light of new BSM models. This is achieved by using the Recast [263] cyber-infrastructure, relying on containerised workflows orchestrating parametrised job templates. Additionally, the full likelihood of the search was made publicly available in a readily available format, allowing it to be incorporated in a number of reinterpretation efforts outside of ATLAS [276, 277].

Large-scale reinterpretations in high-dimensional model spaces are especially interesting, but computationally extremely challenging, and thus require suitable approximations. In this thesis, a method to generically approximate the likelihoods of SUSY searches using binned distributions was introduced, and subsequently validated using a selection of ATLAS searches for SUSY. The search previously presented was reinterpreted in the pMSSM, a 19-dimensional parameter space containing more realistic SUSY scenarios (compared to simplified models). Due to the assumption of 100% branching fractions not being satisfied in many of these more complete SUSY scenarios, the sensitivity of the 1ℓ search was found to be noticeably reduced. Although a small fraction of models sampled could still be excluded, these results illustrate that it could be worth designing searches to be sensitive to several, complementary decay modes.

The impact of the 1ℓ search on the electroweakino masses in the pMSSM was investigated, revealing some sensitivity to $\tilde{\chi}_2^{\pm}\tilde{\chi}_2^0$ production with a wino-like LSP, in addition to sensitivity towards models phenomenologically close to the simplified model originally considered. Furthermore, the impact of the 1ℓ search on the DM relic density was discussed. While no conclusive statement could be made

for models with a bino-like $\tilde{\chi}_1^0$ because of the limited number of such models sampled in the relevant parameter space, some models with a wino-like $\tilde{\chi}_1^0$ with cosmological abundance satisfying the Planck constraint could still be excluded.

Although hopes of quickly finding supersymmetric particles with the LHC have not materialised, there is still a possibility of finding hints for physics beyond the SM in the collision data recorded by the LHC experiments. Considerable regions of the parameter space of realistic SUSY scenarios are still largely unconstrained and offer ample space for SUSY to hide in. In order to provide a comprehensive overview of the constrained parameter space, it is not only important to optimise searches to be sensitive to the complex phenomenology of realistic supersymmetric scenarios, but also to design the searches to be systematically reinterpretable, especially in light of more complete and realistic scenarios drawn from a high-dimensional parameter space. After all, searches for BSM physics are the tools that shine a light on the otherwise dark landscapes of the parameter spaces of BSM theories. Allowing these tools to be reusable significantly increases the area of parameter space they can shine a light onto, and hence significantly increases the scientific impact they can make.

- [1] ATLAS Collaboration, "Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC," *Phys. Lett. B* **716** (2012) 1, arXiv:1207.7214 [hep-ex].
- [2] CMS Collaboration, "Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC," *Phys. Lett. B* **716** (2012) 30, arXiv:1207.7235 [hep-ex].
- [3] I. C. Brock and T. Schorner-Sadenius, *Physics at the terascale*. Wiley, Weinheim, 2011. https://cds.cern.ch/record/1354959.
- [4] M. E. Peskin and D. V. Schroeder, *An Introduction to quantum field theory*. Addison-Wesley, Reading, USA, 1995. http://www.slac.stanford.edu/~mpeskin/QFT.html.
- [5] S. P. Martin, "A Supersymmetry primer," arXiv:hep-ph/9709356v7 [hep-ph]. [Adv. Ser. Direct. High Energy Phys.18,1(1998)].
- [6] M. Bustamante, L. Cieri, and J. Ellis, "Beyond the Standard Model for Montaneros," in 5th CERN Latin American School of High-Energy Physics. 11, 2009. arXiv:0911.4409 [hep-ph].
- [7] L. Brown, *The Birth of particle physics*. Cambridge University Press, Cambridge Cambridgeshire New York, 1986.
- [8] P. J. Mohr, D. B. Newell, and B. N. Taylor, "CODATA Recommended Values of the Fundamental Physical Constants: 2014," *Rev. Mod. Phys.* 88 no. 3, (2016) 035009, arXiv:1507.07956 [physics.atom-ph].
- [9] Particle Data Group, "Review of Particle Physics," *Progress of Theoretical and Experimental Physics* **2020** no. 8, (08, 2020), https://academic.oup.com/ptep/article-pdf/2020/8/083C01/34673722/ptaa104.pdf. https://doi.org/10.1093/ptep/ptaa104.083C01.
- [10] Super-Kamiokande Collaboration, "Evidence for oscillation of atmospheric neutrinos," *Phys. Rev. Lett.* **81** (1998) 1562–1567, arXiv:hep-ex/9807003 [hep-ex].
- [11] Z. Maki, M. Nakagawa, and S. Sakata, "Remarks on the unified model of elementary particles," *Prog. Theor. Phys.* **28** (1962) 870–880. [,34(1962)].
- [12] N. Cabibbo, "Unitary symmetry and leptonic decays," *Phys. Rev. Lett.* **10** (Jun, 1963) 531–533. https://link.aps.org/doi/10.1103/PhysRevLett.10.531.
- [13] M. Kobayashi and T. Maskawa, "CP Violation in the Renormalizable Theory of Weak Interaction," *Prog. Theor. Phys.* **49** (1973) 652–657.
- [14] E. Noether and M. A. Tavel, "Invariant variation problems," arXiv:physics/0503066.
- [15] J. C. Ward, "An identity in quantum electrodynamics," *Phys. Rev.* **78** (Apr, 1950) 182–182. https://link.aps.org/doi/10.1103/PhysRev.78.182.

[16] Y. Takahashi, "On the generalized ward identity," *Il Nuovo Cimento (1955-1965)* **6** no. 2, (Aug, 1957) 371–375. https://doi.org/10.1007/BF02832514.

- [17] G. 'tHooft, "Renormalization of massless yang-mills fields," *Nuclear Physics B* **33** no. 1, (1971) 173 199. http://www.sciencedirect.com/science/article/pii/0550321371903956.
- [18] J. Taylor, "Ward identities and charge renormalization of the yang-mills field," *Nuclear Physics B* **33** no. 2, (1971) 436 444. http://www.sciencedirect.com/science/article/pii/0550321371902975.
- [19] A. A. Slavnov, "Ward identities in gauge theories," *Theoretical and Mathematical Physics* **10** no. 2, (Feb, 1972) 99–104. https://doi.org/10.1007/BF01090719.
- [20] C. N. Yang and R. L. Mills, "Conservation of isotopic spin and isotopic gauge invariance," *Phys. Rev.* **96** (Oct, 1954) 191–195. https://link.aps.org/doi/10.1103/PhysRev.96.191.
- [21] K. G. Wilson, "Confinement of quarks," *Phys. Rev. D* **10** (Oct, 1974) 2445–2459. https://link.aps.org/doi/10.1103/PhysRevD.10.2445.
- [22] T. DeGrand and C. DeTar, *Lattice Methods for Quantum Chromodynamics*. World Scientific, Singapore, 2006. https://cds.cern.ch/record/1055545.
- [23] S. L. Glashow, "Partial-symmetries of weak interactions," *Nuclear Physics* **22** no. 4, (1961) 579 588. http://www.sciencedirect.com/science/article/pii/0029558261904692.
- [24] S. Weinberg, "A model of leptons," *Phys. Rev. Lett.* **19** (Nov, 1967) 1264–1266. https://link.aps.org/doi/10.1103/PhysRevLett.19.1264.
- [25] A. Salam and J. C. Ward, "Weak and electromagnetic interactions," *Il Nuovo Cimento* (1955-1965) **11** no. 4, (Feb, 1959) 568–577. https://doi.org/10.1007/BF02726525.
- [26] C. S. Wu, E. Ambler, R. W. Hayward, *et al.*, "Experimental test of parity conservation in beta decay," *Phys. Rev.* **105** (Feb, 1957) 1413–1415. https://link.aps.org/doi/10.1103/PhysRev.105.1413.
- [27] M. Gell-Mann, "The interpretation of the new particles as displaced charge multiplets," *Il Nuovo Cimento* (1955-1965) 4 no. 2, (Apr, 1956) 848-866. https://doi.org/10.1007/BF02748000.
- [28] K. Nishijima, "Charge Independence Theory of V Particles*," *Progress of Theoretical Physics* 13 no. 3, (03, 1955) 285-304, https://academic.oup.com/ptp/article-pdf/13/3/285/5425869/13-3-285.pdf. https://doi.org/10.1143/PTP.13.285.
- [29] T. Nakano and K. Nishijima, "Charge Independence for V-particles*," *Progress of Theoretical Physics* 10 no. 5, (11, 1953) 581-582, https://academic.oup.com/ptp/article-pdf/10/5/581/5364926/10-5-581.pdf. https://doi.org/10.1143/PTP.10.581.
- [30] F. Englert and R. Brout, "Broken symmetry and the mass of gauge vector mesons," *Phys. Rev. Lett.* **13** (Aug, 1964) 321–323. https://link.aps.org/doi/10.1103/PhysRevLett.13.321.
- [31] P. W. Higgs, "Broken symmetries and the masses of gauge bosons," *Phys. Rev. Lett.* **13** (Oct, 1964) 508–509. https://link.aps.org/doi/10.1103/PhysRevLett.13.508.
- [32] P. W. Higgs, "Spontaneous symmetry breakdown without massless bosons," *Phys. Rev.* **145** (May, 1966) 1156–1163. https://link.aps.org/doi/10.1103/PhysRev.145.1156.
- [33] Y. Nambu, "Quasiparticles and Gauge Invariance in the Theory of Superconductivity," *Phys. Rev.* **117** (1960) 648–663. [,132(1960)].
- [34] J. Goldstone, "Field Theories with Superconductor Solutions," Nuovo Cim. 19 (1961) 154-164.

[35] V. Brdar, A. J. Helmboldt, S. Iwamoto, and K. Schmitz, "Type-I Seesaw as the Common Origin of Neutrino Mass, Baryon Asymmetry, and the Electroweak Scale," *Phys. Rev. D* **100** (2019) 075029, arXiv:1905.12634 [hep-ph].

- [36] G. 't Hooft and M. Veltman, "Regularization and renormalization of gauge fields," *Nuclear Physics B* **44** no. 1, (1972) 189 213. http://www.sciencedirect.com/science/article/pii/0550321372902799.
- [37] G. L. Kane, *The supersymmetric world : the beginnings of the theory.* World Scientific, Singapore River Edge, N.J., 2000.
- [38] F. Zwicky, "Die Rotverschiebung von extragalaktischen Nebeln," *Helv. Phys. Acta* **6** (1933) 110–127. https://cds.cern.ch/record/437297.
- [39] V. C. Rubin and W. K. Ford, Jr., "Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions," *Astrophys. J.* **159** (1970) 379–403.
- [40] G. Bertone, D. Hooper, and J. Silk, "Particle dark matter: Evidence, candidates and constraints," *Phys. Rept.* **405** (2005) 279–390, arXiv:hep-ph/0404175.
- [41] D. Clowe, M. Bradac, A. H. Gonzalez, *et al.*, "A direct empirical proof of the existence of dark matter," *Astrophys. J.* **648** (2006) L109–L113, arXiv:astro-ph/0608407 [astro-ph].
- [42] A. Taylor, S. Dye, T. J. Broadhurst, *et al.*, "Gravitational lens magnification and the mass of abell 1689," *Astrophys. J.* **501** (1998) 539, arXiv:astro-ph/9801158.
- [43] C. Bennett *et al.*, "Four year COBE DMR cosmic microwave background observations: Maps and basic results," *Astrophys. J. Lett.* **464** (1996) L1–L4, arXiv:astro-ph/9601067.
- [44] G. F. Smoot *et al.*, "Structure in the COBE Differential Microwave Radiometer First-Year Maps," *ApJS* **396** (September, 1992) L1.
- [45] WMAP Collaboration, "Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results," *ApJS* **208** no. 2, (October, 2013) 20, arXiv:1212.5225 [astro-ph.CO].
- [46] WMAP Collaboration, "Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results," *ApJS* **208** no. 2, (October, 2013) 19, arXiv:1212.5226 [astro-ph.CO].
- [47] Planck Collaboration, "Planck 2018 results. I. Overview and the cosmological legacy of Planck," *Astron. Astrophys.* **641** (2020) A1, arXiv:1807.06205 [astro-ph.CO].
- [48] A. Liddle, *An introduction to modern cosmology; 3rd ed.* Wiley, Chichester, Mar, 2015. https://cds.cern.ch/record/1976476.
- [49] Planck Collaboration, "Planck 2018 results. VI. Cosmological parameters," *Astron. Astrophys.* **641** (2020) A6, arXiv:1807.06209 [astro-ph.CO].
- [50] H. Georgi and S. L. Glashow, "Unity of all elementary-particle forces," *Phys. Rev. Lett.* **32** (Feb, 1974) 438–441. https://link.aps.org/doi/10.1103/PhysRevLett.32.438.
- [51] I. Aitchison, *Supersymmetry in Particle Physics. An Elementary Introduction*. Cambridge University Press, Cambridge, 2007.
- [52] Muon g-2 Collaboration, "Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL," *Phys. Rev. D* **73** (2006) 072003, arXiv:hep-ex/0602035.
- [53] H. Baer and X. Tata, *Weak Scale Supersymmetry: From Superfields to Scattering Events*. Cambridge University Press, 2006.

[54] T. Aoyama *et al.*, "The anomalous magnetic moment of the muon in the Standard Model," *Phys. Rept.* **887** (2020) 1–166, arXiv:2006.04822 [hep-ph].

- [55] Muon g-2 Collaboration, "Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm," *Phys. Rev. Lett.* **126** no. 14, (2021) 141801, arXiv:2104.03281 [hep-ex].
- [56] A. Czarnecki and W. J. Marciano, "The Muon anomalous magnetic moment: A Harbinger for 'new physics'," *Phys. Rev. D* **64** (2001) 013014, arXiv:hep-ph/0102122.
- [57] J. L. Feng and K. T. Matchev, "Supersymmetry and the anomalous magnetic moment of the muon," *Phys. Rev. Lett.* **86** (2001) 3480–3483, arXiv:hep-ph/0102146.
- [58] S. Coleman and J. Mandula, "All possible symmetries of the *s* matrix," *Phys. Rev.* **159** (Jul, 1967) 1251–1256. https://link.aps.org/doi/10.1103/PhysRev.159.1251.
- [59] R. Haag, J. T. Lopuszanski, and M. Sohnius, "All Possible Generators of Supersymmetries of the s Matrix," *Nucl. Phys.* **B88** (1975) 257. [,257(1974)].
- [60] J. Wess and B. Zumino, "Supergauge transformations in four dimensions," *Nucl. Phys. B* **70** (1974) 39.
- [61] H. Georgi and S. L. Glashow, "Gauge theories without anomalies," *Phys. Rev. D* **6** (Jul, 1972) 429–431. https://link.aps.org/doi/10.1103/PhysRevD.6.429.
- [62] S. Dimopoulos and D. W. Sutter, "The Supersymmetric flavor problem," *Nucl. Phys. B* **452** (1995) 496–512, arXiv:hep-ph/9504415.
- [63] MEG Collaboration, T. Mori, "Final Results of the MEG Experiment," *Nuovo Cim. C* **39** no. 4, (2017) 325, arXiv:1606.08168 [hep-ex].
- [64] H. P. Nilles, "Supersymmetry, Supergravity and Particle Physics," *Phys. Rept.* 110 (1984) 1–162.
- [65] A. Lahanas and D. Nanopoulos, "The road to no-scale supergravity," *Physics Reports* **145** no. 1, (1987) 1 139. http://www.sciencedirect.com/science/article/pii/0370157387900342.
- [66] J. L. Feng, A. Rajaraman, and F. Takayama, "Superweakly interacting massive particles," *Phys. Rev. Lett.* **91** (2003) 011302, arXiv:hep-ph/0302215.
- [67] S. Y. Choi, J. Kalinowski, G. A. Moortgat-Pick, and P. M. Zerwas, "Analysis of the neutralino system in supersymmetric theories," *Eur. Phys. J. C* **22** (2001) 563–579, arXiv:hep-ph/0108117. [Addendum: Eur.Phys.J.C 23, 769–772 (2002)].
- [68] Super-Kamiokande Collaboration, "Search for proton decay via $p \to e^+\pi^0$ and $p \to \mu^+\pi^0$ in 0.31 megaton-years exposure of the Super-Kamiokande water Cherenkov detector," *Phys. Rev.* **D95** no. 1, (2017) 012004, arXiv:1610.03597 [hep-ex].
- [69] J. R. Ellis, "Beyond the standard model for hill walkers," in 1998 European School of High-Energy Physics, pp. 133–196. 8, 1998. arXiv:hep-ph/9812235.
- [70] J. R. Ellis, J. Hagelin, D. V. Nanopoulos, et al., "Supersymmetric Relics from the Big Bang," Nucl. Phys. B 238 (1984) 453–476.
- [71] D. O. Caldwell, R. M. Eisberg, D. M. Grumm, *et al.*, "Laboratory limits on galactic cold dark matter," *Phys. Rev. Lett.* **61** (Aug, 1988) 510–513. https://link.aps.org/doi/10.1103/PhysRevLett.61.510.
- [72] M. Mori, M. M. Nojiri, K. S. Hirata, *et al.*, "Search for neutralino dark matter heavier than the *w* boson at kamiokande," *Phys. Rev. D* **48** (Dec, 1993) 5505–5518. https://link.aps.org/doi/10.1103/PhysRevD.48.5505.

[73] CDMS Collaboration, D. S. Akerib *et al.*, "Exclusion limits on the WIMP-nucleon cross section from the first run of the Cryogenic Dark Matter Search in the Soudan Underground Laboratory," *Phys. Rev. D* **72** (2005) 052009, arXiv:astro-ph/0507190.

- [74] A. Djouadi, J.-L. Kneur, and G. Moultaka, "SuSpect: A Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM," *Comput. Phys. Commun.* **176** (2007) 426–455, arXiv:hep-ph/0211331.
- [75] C. F. Berger, J. S. Gainer, J. L. Hewett, and T. G. Rizzo, "Supersymmetry without prejudice," *Journal of High Energy Physics* **2009** no. 02, (Feb, 2009) 023–023. http://dx.doi.org/10.1088/1126-6708/2009/02/023.
- [76] J. Alwall, P. Schuster, and N. Toro, "Simplified Models for a First Characterization of New Physics at the LHC," *Phys. Rev.* **D79** (2009) 075020, arXiv:0810.3921 [hep-ph].
- [77] L. N. P. W. Group, "Simplified Models for LHC New Physics Searches," J. Phys. G39 (2012) 105005, arXiv:1105.2838 [hep-ph].
- [78] D. S. Alves, E. Izaguirre, and J. G. Wacker, "Where the Sidewalk Ends: Jets and Missing Energy Search Strategies for the 7 TeV LHC," JHEP 10 (2011) 012, arXiv:1102.5338 [hep-ph].
- [79] F. Ambrogi, S. Kraml, S. Kulkarni, *et al.*, "On the coverage of the pMSSM by simplified model results," *Eur. Phys. J. C* **78** no. 3, (2018) 215, arXiv:1707.09036 [hep-ph].
- [80] O. Buchmueller and J. Marrouche, "Universal mass limits on gluino and third-generation squarks in the context of Natural-like SUSY spectra," *Int. J. Mod. Phys. A* **29** no. 06, (2014) 1450032, arXiv:1304.2185 [hep-ph].
- [81] ATLAS Collaboration, M. Aaboud *et al.*, "Dark matter interpretations of ATLAS searches for the electroweak production of supersymmetric particles in $\sqrt{s} = 8$ TeV proton-proton collisions," [hep-ex].
- [82] ATLAS Collaboration, "Summary of the ATLAS experiment's sensitivity to supersymmetry after LHC Run 1 interpreted in the phenomenological MSSM," JHEP 10 (2015) 134, arXiv:1508.06608 [hep-ex].
- [83] ATLAS Collaboration, "Mass reach of the atlas searches for supersymmetry." https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2020-020/fig_23.png, 2020.
- [84] CMS Collaboration, "Summary plot moriond 2017." https://twiki.cern.ch/twiki/pub/CMSPublic/SUSYSummary2017/Moriond2017_BarPlot.pdf, 2017.
- [85] L. S. W. Group, "Notes lepsusywg/02-04.1 and lepsusywg/01-03.1." http://lepsusy.web.cern.ch/lepsusy/, 2004. Accessed: 2021-02-11.
- [86] ATLAS Collaboration, "Searches for electroweak production of supersymmetric particles with compressed mass spectra in $\sqrt{s} = 13$ TeV pp collisions with the ATLAS detector," *Phys. Rev. D* **101** (2020) 052005, arXiv:1911.12606 [hep-ex].
- [87] W. Beenakker, C. Borschensky, M. Krämer, *et al.*, "NNLL-fast: predictions for coloured supersymmetric particle production at the LHC with threshold and Coulomb resummation," *JHEP* **12** (2016) 133, arXiv:1607.07741 [hep-ph].
- [88] M. Beneke, M. Czakon, P. Falgari, et al., "Threshold expansion of the $gg(q\bar{q}) \to Q\bar{Q} + X$ cross section at $\mathcal{O}(\alpha_s^4)$," *Phys. Lett. B* **690** (2010) 483, arXiv:0911.5166 [hep-ph].
- [89] J. Fiaschi and M. Klasen, "Neutralino-chargino pair production at NLO+NLL with resummation-improved parton density functions for LHC Run II," *Phys. Rev. D* **98** no. 5, (2018) 055014, arXiv:1805.11322 [hep-ph].

[90] B. Fuks, M. Klasen, D. R. Lamprea, and M. Rothering, "Gaugino production in proton-proton collisions at a center-of-mass energy of 8 TeV," *JHEP* **10** (2012) 081, arXiv:1207.2159 [hep-ph].

- [91] J. Fiaschi and M. Klasen, "Slepton pair production at the LHC in NLO+NLL with resummation-improved parton densities," JHEP 03 (2018) 094, arXiv:1801.10357 [hep-ph].
- [92] ATLAS Collaboration, "Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC," *Phys. Lett. B* **716** (2012) 1–29, arXiv:1207.7214 [hep-ex].
- [93] CMS Collaboration, "Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC," *Phys. Lett. B* **716** (2012) 30–61, arXiv:1207.7235 [hep-ex].
- [94] A. Buckley, "PySLHA: a Pythonic interface to SUSY Les Houches Accord data," *Eur. Phys. J. C* **75** no. 10, (2015) 467, arXiv:1305.4194 [hep-ph].
- [95] CERN, "About cern." https://home.cern/about. Accessed: 2021-01-21.
- [96] CERN, "CERN Annual report 2019," tech. rep., CERN, Geneva, 2020. https://cds.cern.ch/record/2723123.
- [97] O. S. Bruning, P. Collier, P. Lebrun, et al., LHC Design Report. CERN Yellow Reports: Monographs. CERN, Geneva, 2004. https://cds.cern.ch/record/782076.
- [98] M. Blewett and N. Vogt-Nilsen, "Proceedings of the 8th international conference on high-energy accelerators, cern 1971. conference held at geneva, 20–24 september 1971.," tech. rep., 1971, 1971.
- [99] L. R. Evans and P. Bryant, "LHC Machine," JINST 3 (2008) S08001. 164 p. http://cds.cern.ch/record/1129806. This report is an abridged version of the LHC Design Report (CERN-2004-003).
- [100] R. Scrivens, M. Kronberger, D. Küchler, *et al.*, "Overview of the status and developments on primary ion sources at CERN*,". https://cds.cern.ch/record/1382102.
- [101] M. Vretenar, J. Vollaire, R. Scrivens, et al., Linac4 design report, vol. 6 of CERN Yellow Reports: Monographs. CERN, Geneva, 2020. https://cds.cern.ch/record/2736208.
- [102] E. Mobs, "The CERN accelerator complex 2019. Complexe des accélérateurs du CERN 2019,". https://cds.cern.ch/record/2684277. General Photo.
- [103] ATLAS Collaboration, "The ATLAS Experiment at the CERN Large Hadron Collider," JINST 3 (2008) S08003.
- [104] CMS Collaboration, "The CMS Experiment at the CERN LHC," #INST 3 (2008) S08004.
- [105] ALICE Collaboration, "The ALICE experiment at the CERN LHC," #INST 3 (2008) S08002.
- [106] LHCb Collaboration, "The LHCb Detector at the LHC," 7INST 3 (2008) S08005.
- [107] TOTEM Collaboration, "The TOTEM experiment at the CERN Large Hadron Collider," JINST 3 (2008) S08007.
- [108] LHCf Collaboration, "Technical design report of the LHCf experiment: Measurement of photons and neutral pions in the very forward region of LHC,".
- [109] MoEDAL Collaboration, "Technical Design Report of the MoEDAL Experiment,".

[110] ATLAS Collaboration, "ATLAS Public Results - Luminosity Public Results Run 2,". https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResultsRun2. Accessed: 2021-01-17.

- [111] ATLAS Collaboration, Z. Marshall, "Simulation of Pile-up in the ATLAS Experiment," *J. Phys. Conf. Ser.* **513** (2014) 022024.
- [112] "First beam in the LHC accelerating science,". https://home.cern/news/news/accelerators/record-luminosity-well-done-lhc. Accessed: 2021-01-10.
- [113] ATLAS Collaboration, "Luminosity determination in pp collisions at \sqrt{s} = 13 TeV using the ATLAS detector at the LHC," Tech. Rep. ATLAS-CONF-2019-021, CERN, Geneva, Jun, 2019. https://cds.cern.ch/record/2677054.
- [114] ATLAS Collaboration, "Luminosity determination in pp collisions at $\sqrt{s} = 8$ TeV using the ATLAS detector at the LHC," *Eur. Phys. J. C* **76** no. 12, (2016) 653, arXiv:1608.03953 [hep-ex].
- [115] G. Avoni, M. Bruschi, G. Cabras, *et al.*, "The new LUCID-2 detector for luminosity measurement and monitoring in ATLAS," *Journal of Instrumentation* **13** no. 07, (Jul, 2018) P07017–P07017. https://doi.org/10.1088/1748-0221/13/07/p07017.
- [116] S. van der Meer, "Calibration of the effective beam height in the ISR," Tech. Rep. CERN-ISR-PO-68-31. ISR-PO-68-31, CERN, Geneva, 1968. https://cds.cern.ch/record/296752.
- [117] P. Grafström and W. Kozanecki, "Luminosity determination at proton colliders," *Progress in Particle and Nuclear Physics* **81** (2015) 97 148. http://www.sciencedirect.com/science/article/pii/S0146641014000878.
- [118] M. Bajko *et al.*, "Report of the Task Force on the Incident of 19th September 2008 at the LHC," Tech. Rep. LHC-PROJECT-Report-1168. CERN-LHC-PROJECT-Report-1168, CERN, Geneva, Mar, 2009. https://cds.cern.ch/record/1168025.
- [119] "New schedule for CERN's accelerators and experiments,". https://home.cern/news/press-release/cern/first-beam-lhc-accelerating-science. Accessed: 2021-01-10.
- [120] ATLAS Collaboration, "Luminosity Determination in *pp* Collisions at $\sqrt{s} = 7$ TeV Using the ATLAS Detector at the LHC," *Eur. Phys. J. C* **71** (2011) 1630, arXiv:1101.2185 [hep-ex].
- [121] ATLAS Collaboration, "Improved luminosity determination in pp collisions at \sqrt{s} = 7 TeV using the ATLAS detector at the LHC.," *Eur. Phys. J. C* **73** no. CERN-PH-EP-2013-026, (Feb, 2013) 2518. 27 p. https://cds.cern.ch/record/1517411.
- [122] "Record luminosity: well done LHC,". https: //home.cern/news/news/accelerators/new-schedule-cerns-accelerators-and-experiments. Accessed: 2021-01-10.
- [123] A. G., B. A. I., B. O., et al., High-Luminosity Large Hadron Collider (HL-LHC): Technical Design Report V. 0.1. CERN Yellow Reports: Monographs. CERN, Geneva, 2017. https://cds.cern.ch/record/2284929.
- [124] J. Pequenao, "Computer generated image of the whole ATLAS detector." Mar, 2008.
- [125] ATLAS Collaboration, "ATLAS: Detector and physics performance technical design report. Volume 1,".
- [126] J. Pequenao, "Computer generated image of the ATLAS inner detector." Mar, 2008.

[127] ATLAS Collaboration, K. Potamianos, "The upgraded Pixel detector and the commissioning of the Inner Detector tracking of the ATLAS experiment for Run-2 at the Large Hadron Collider," Tech. Rep. ATL-PHYS-PROC-2016-104, CERN, Geneva, Aug, 2016. https://cds.cern.ch/record/2209070. 15 pages, EPS-HEP 2015 Proceedings.

- [128] ATLAS IBL Collaboration, "Production and Integration of the ATLAS Insertable B-Layer," JINST 13 no. 05, (2018) T05008, arXiv:1803.00844 [physics.ins-det].
- [129] ATLAS Collaboration, "ATLAS Insertable B-Layer Technical Design Report," Tech. Rep. CERN-LHCC-2010-013. ATLAS-TDR-19, Sep, 2010. http://cds.cern.ch/record/1291633.
- [130] ATLAS Collaboration, "ATLAS b-jet identification performance and efficiency measurement with $t\bar{t}$ events in pp collisions at $\sqrt{s} = 13$ TeV," *Eur. Phys. J. C* **79** no. 11, (2019) 970, arXiv:1907.05120 [hep-ex].
- [131] ATLAS Collaboration, "Particle Identification Performance of the ATLAS Transition Radiation Tracker." ATLAS-CONF-2011-128, 2011. https://cds.cern.ch/record/1383793.
- [132] J. Pequenao, "Computer Generated image of the ATLAS calorimeter." Mar, 2008.
- [133] J. Pequenao, "Computer generated image of the ATLAS Muons subsystem." Mar, 2008.
- [134] S. Lee, M. Livan, and R. Wigmans, "Dual-Readout Calorimetry," *Rev. Mod. Phys.* **90** no. arXiv:1712.05494. 2, (Dec, 2017) 025002. 40 p. https://cds.cern.ch/record/2637852. 44 pages, 53 figures, accepted for publication in Review of Modern Physics.
- [135] M. Leite, "Performance of the ATLAS Zero Degree Calorimeter," Tech. Rep. ATL-FWD-PROC-2013-001, CERN, Geneva, Nov, 2013. https://cds.cern.ch/record/1628749.
- [136] S. Abdel Khalek *et al.*, "The ALFA Roman Pot Detectors of ATLAS," JINST **11** no. 11, (2016) P11013, arXiv:1609.00249 [physics.ins-det].
- [137] U. Amaldi, G. Cocconi, A. Diddens, *et al.*, "The real part of the forward proton proton scattering amplitude measured at the cern intersecting storage rings," *Physics Letters B* **66** no. 4, (1977) 390 394. http://www.sciencedirect.com/science/article/pii/0370269377900223.
- [138] L. Adamczyk, E. Banaś, A. Brandt, *et al.*, "Technical Design Report for the ATLAS Forward Proton Detector," Tech. Rep. CERN-LHCC-2015-009. ATLAS-TDR-024, May, 2015. https://cds.cern.ch/record/2017378.
- [139] ATLAS Collaboration, A. R. Martínez, "The Run-2 ATLAS Trigger System," *J. Phys. Conf. Ser.* **762** no. 1, (2016) 012003.
- [140] ATLAS Collaboration, *ATLAS level-1 trigger: Technical Design Report*. Technical Design Report ATLAS. CERN, Geneva, 1998. https://cds.cern.ch/record/381429.
- [141] ATLAS Collaboration, "Operation of the ATLAS trigger system in Run 2," JINST 15 no. 10, (2020) P10004, arXiv:2007.12539 [physics.ins-det].
- [142] ATLAS Collaboration, P. Jenni, M. Nessi, M. Nordberg, and K. Smith, *ATLAS high-level trigger, data-acquisition and controls: Technical Design Report.* Technical Design Report ATLAS. CERN, Geneva, 2003. https://cds.cern.ch/record/616089.
- [143] ATLAS Collaboration, "The ATLAS Simulation Infrastructure," Eur. Phys. J. C 70 (2010) 823-874, arXiv:1005.4568 [physics.ins-det].
- [144] T. Gleisberg, S. Hoeche, F. Krauss, *et al.*, "Event generation with SHERPA 1.1," *JHEP* **02** (2009) 007, arXiv:0811.4622 [hep-ph].

[145] A. Buckley *et al.*, "General-purpose event generators for LHC physics," *Phys. Rept.* **504** (2011) 145–233, arXiv:1101.2599 [hep-ph].

- [146] V. N. Gribov and L. N. Lipatov, "Deep inelastic e p scattering in perturbation theory," *Sov. J. Nucl. Phys.* **15** (1972) 438–450.
- [147] J. Blumlein, T. Doyle, F. Hautmann, et al., "Structure functions in deep inelastic scattering at HERA," in Workshop on Future Physics at HERA (To be followed by meetings 7-9 Feb and 30-31 May 1996 at DESY). 9, 1996. arXiv:hep-ph/9609425.
- [148] A. Buckley, J. Ferrando, S. Lloyd, *et al.*, "LHAPDF6: parton density access in the LHC precision era," *Eur. Phys. J. C* **75** (2015) 132, arXiv:1412.7420 [hep-ph].
- [149] M. Bengtsson and T. Sjostrand, "Coherent Parton Showers Versus Matrix Elements: Implications of PETRA PEP Data," *Phys. Lett. B* **185** (1987) 435.
- [150] S. Catani, F. Krauss, R. Kuhn, and B. R. Webber, "QCD matrix elements + parton showers," *JHEP* 11 (2001) 063, arXiv:hep-ph/0109231.
- [151] L. Lonnblad, "Correcting the color dipole cascade model with fixed order matrix elements,"

 ##EP 05 (2002) 046, arXiv:hep-ph/0112284.
- [152] B. Andersson, G. Gustafson, G. Ingelman, and T. Sjostrand, "Parton Fragmentation and String Dynamics," *Phys. Rept.* **97** (1983) 31–145.
- [153] B. Andersson, *The Lund Model*. Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology. Cambridge University Press, 1998.
- [154] D. Amati and G. Veneziano, "Preconfinement as a Property of Perturbative QCD," *Phys. Lett. B* **83** (1979) 87–92.
- [155] D. Yennie, S. Frautschi, and H. Suura, "The infrared divergence phenomena and high-energy processes," *Annals of Physics* **13** no. 3, (1961) 379–452. https://www.sciencedirect.com/science/article/pii/0003491661901518.
- [156] M. Dobbs and J. B. Hansen, "The HepMC C++ Monte Carlo event record for High Energy Physics," *Comput. Phys. Commun.* **134** (2001) 41–46.
- [157] GEANT4 Collaboration, "GEANT4: A Simulation toolkit," *Nucl. Instrum. Meth.* **A506** (2003) 250–303.
- [158] ATLAS Collaboration, "The new Fast Calorimeter Simulation in ATLAS," Tech. Rep. ATL-SOFT-PUB-2018-002, CERN, Geneva, Jul, 2018. https://cds.cern.ch/record/2630434.
- [159] K. Cranmer, "Practical Statistics for the LHC," in 2011 European School of High-Energy Physics, pp. 267–308. 2014. arXiv:1503.07622 [physics.data-an].
- [160] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, "Asymptotic formulae for likelihood-based tests of new physics," *Eur. Phys. J.* C71 (2011) 1554, arXiv:1007.1727 [physics.data-an]. [Erratum: Eur. Phys. J.C73,2501(2013)].
- [161] ATLAS Collaboration, "Reproduction searches for new physics with the ATLAS experiment through publication of full statistical likelihoods." ATL-PHYS-PUB-2019-029, 2019. https://cds.cern.ch/record/2684863.
- [162] ROOT Collaboration, K. Cranmer, G. Lewis, L. Moneta, *et al.*, "HistFactory: A tool for creating statistical models for use with RooFit and RooStats," Tech. Rep. CERN-OPEN-2012-016, New York U., New York, Jan, 2012. https://cds.cern.ch/record/1456844.

[163] W. Verkerke and D. P. Kirkby, "The RooFit toolkit for data modeling," *eConf* **C0303241** (2003) MOLT007, arXiv:physics/0306116 [physics]. [,186(2003)].

- [164] F. James and M. Roos, "MINUIT: a system for function minimization and analysis of the parameter errors and corrections," *Comput. Phys. Commun.* **10** no. CERN-DD-75-20, (Jul, 1975) 343–367. 38 p. https://cds.cern.ch/record/310399.
- [165] L. Moneta, K. Belasco, K. S. Cranmer, *et al.*, "The RooStats Project," *PoS* **ACAT2010** (2010) 057, arXiv:1009.1003 [physics.data-an].
- [166] R. Brun and F. Rademakers, "ROOT: An object oriented data analysis framework," *Nucl. Instrum. Meth.* **A389** (1997) 81–86.
- [167] I. Antcheva *et al.*, "ROOT A C++ framework for petabyte data storage, statistical analysis and visualization," *Computer Physics Communications* **182** no. 6, (2011) 1384 1385. http://www.sciencedirect.com/science/article/pii/S0010465511000701.
- [168] M. Baak, G. J. Besjes, D. Côte, A. Koutsman, J. Lorenz, D. Short, "HistFitter software framework for statistical data analysis," *Eur. Phys. J.* C75 (2015) 153, arXiv:1410.1280 [hep-ex].
- [169] L. Heinrich, M. Feickert, G. Stark, and K. Cranmer, "pyhf: pure-python implementation of histfactory statistical models," *Journal of Open Source Software* 6 no. 58, (2021) 2823. https://doi.org/10.21105/joss.02823.
- [170] L. Heinrich, M. Feickert, and G. Stark, "pyhf: v0.6.0," Version 0.6.0. https://github.com/scikit-hep/pyhf.
- [171] C. R. Harris, K. J. Millman, S. J. van der Walt, *et al.*, "Array programming with NumPy," *Nature* **585** no. 7825, (Sept., 2020) 357–362. https://doi.org/10.1038/s41586-020-2649-2.
- [172] A. Paszke, S. Gross, F. Massa, *et al.*, "Pytorch: An imperative style, high-performance deep learning library," in *Advances in Neural Information Processing Systems 32*, H. Wallach, H. Larochelle, A. Beygelzimer, *et al.*, eds., pp. 8024–8035. Curran Associates, Inc., 2019. http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.
- [173] M. Abadi, A. Agarwal, P. Barham, *et al.*, "TensorFlow: Large-scale machine learning on heterogeneous systems," 2015. https://www.tensorflow.org/. Software available from tensorflow.org.
- [174] J. Bradbury, R. Frostig, P. Hawkins, *et al.*, "JAX: composable transformations of Python+NumPy programs," Version 0.1.46, 2018. http://github.com/google/jax.
- [175] S. S. Wilks, "The large-sample distribution of the likelihood ratio for testing composite hypotheses," *Ann. Math. Statist.* **9** no. 1, (03, 1938) 60–62. https://doi.org/10.1214/aoms/1177732360.
- [176] A. Wald, "Tests of statistical hypotheses concerning several parameters when the number of observations is large," *Transactions of the American Mathematical Society* **54** no. 3, (1943) 426–482. https://doi.org/10.1090/S0002-9947-1943-0012401-3.
- [177] G. Cowan, "Statistics for Searches at the LHC," in 69th Scottish Universities Summer School in Physics: LHC Physics, pp. 321–355. 7, 2013. arXiv:1307.2487 [hep-ex].
- [178] A. L. Read, "Presentation of search results: the CL_S technique," J. Phys. G 28 (2002) 2693.
- [179] R. D. Cousins, J. T. Linnemann, and J. Tucker, "Evaluation of three methods for calculating statistical significance when incorporating a systematic uncertainty into a test of the background-only hypothesis for a Poisson process," *Nucl. Instrum. Meth. A* **595** no. 2, (2008) 480, arXiv:physics/0702156 [physics.data-an].

[180] K. Cranmer, "Statistical challenges for searches for new physics at the LHC," in Statistical Problems in Particle Physics, Astrophysics and Cosmology (PHYSTAT 05): Proceedings, Oxford, UK, September 12-15, 2005, pp. 112–123. 2005. arXiv:physics/0511028 [physics.data-an]. http://www.physics.ox.ac.uk/phystat05/proceedings/files//Cranmer LHCStatisticalChallenges.ps.

- [181] ATLAS Collaboration, "Search for direct pair production of a chargino and a neutralino decaying to the 125 GeV Higgs boson in $\sqrt{s} = 8$ TeV pp collisions with the ATLAS detector," *Eur. Phys. J. C* **75** (2015) 208, arXiv:1501.07110 [hep-ex].
- [182] ATLAS Collaboration, "Search for chargino and neutralino production in final states with a Higgs boson and missing transverse momentum at $\sqrt{s} = 13$ TeV with the ATLAS detector," *Phys. Rev. D* **100** (2019) 012006, arXiv:1812.09432 [hep-ex].
- [183] CMS Collaboration, "Search for electroweak production of charginos and neutralinos in *WH* events in proton–proton collisions at $\sqrt{s} = 13 \text{ TeV}$," *HEP* **11** (2017) 029, arXiv: 1706.09933 [hep-ex].
- [184] ATLAS Collaboration, "Search for direct production of electroweakinos in final states with one lepton, missing transverse momentum and a Higgs boson decaying into two *b*-jets in *pp* collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector," *Eur. Phys. J. C* **80** (2020) 691, arXiv:1909.09226 [hep-ex].
- [185] ATLAS Collaboration, "Improvements in $t\bar{t}$ modelling using NLO+PS Monte Carlo generators for Run 2." ATL-PHYS-PUB-2018-009, 2018. https://cds.cern.ch/record/2630327.
- [186] ATLAS Collaboration, "Modelling of the $t\bar{t}H$ and $t\bar{t}V(V=W,Z)$ processes for $\sqrt{s}=13$ TeV ATLAS analyses." ATL-PHYS-PUB-2016-005, 2016. https://cds.cern.ch/record/2120826.
- [187] ATLAS Collaboration, "ATLAS simulation of boson plus jets processes in Run 2." ATL-PHYS-PUB-2017-006, 2017. https://cds.cern.ch/record/2261937.
- [188] ATLAS Collaboration, "Multi-Boson Simulation for 13 TeV ATLAS Analyses." ATL-PHYS-PUB-2017-005, 2017. https://cds.cern.ch/record/2261933.
- [189] J. Alwall, R. Frederix, S. Frixione, *et al.*, "The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations," *JHEP* **07** (2014) 079, arXiv:1405.0301 [hep-ph].
- [190] R. Frederix and S. Frixione, "Merging meets matching in MC@NLO," JHEP 12 (2012) 061, arXiv:1209.6215 [hep-ph].
- [191] "Parton distributions with LHC data," *Nucl. Phys. B* **867** (2013) 244, arXiv:1207.1303 [hep-ph].
- [192] T. Sjöstrand, S. Ask, J. R. Christiansen, *et al.*, "An Introduction to PYTHIA 8.2," *Comput. Phys. Commun.* **191** (2015) 159–177, arXiv:1410.3012 [hep-ph].
- [193] ATLAS Collaboration, "ATLAS Pythia 8 tunes to 7 TeV data." ATL-PHYS-PUB-2014-021, 2014. https://cds.cern.ch/record/1966419.
- [194] L. Lönnblad and S. Prestel, "Matching tree-level matrix elements with interleaved showers," <code>JHEP 03 (2012) 019, arXiv:1109.4829 [hep-ph].</code>
- [195] D. J. Lange, "The EvtGen particle decay simulation package," *Nucl. Instrum. Meth. A* **462** (2001) 152.
- [196] ATLAS Collaboration, "The Pythia 8 A3 tune description of ATLAS minimum bias and inelastic measurements incorporating the Donnachie–Landshoff diffractive model." ATL-PHYS-PUB-2016-017, 2016. https://cds.cern.ch/record/2206965.

[197] B. Fuks, M. Klasen, D. R. Lamprea, and M. Rothering, "Precision predictions for electroweak superpartner production at hadron colliders with RESUMMINO," *Eur. Phys. J. C* **73** (2013) 2480, arXiv:1304.0790 [hep-ph].

- [198] S. Alioli, P. Nason, C. Oleari, and E. Re, "A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX," JHEP 06 (2010) 043, arXiv:1002.2581 [hep-ph].
- [199] S. Frixione, P. Nason, and G. Ridolfi, "A Positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction," *JHEP* **09** (2007) 126, arXiv:0707.3088 [hep-ph].
- [200] P. Nason, "A New method for combining NLO QCD with shower Monte Carlo algorithms," *JHEP* **11** (2004) 040, arXiv:hep-ph/0409146.
- [201] E. Bothmann *et al.*, "Event generation with Sherpa 2.2," *SciPost Phys.* 7 no. 3, (2019) 034, arXiv:1905.09127 [hep-ph].
- [202] NNPDF Collaboration, "Parton distributions for the LHC run II," JHEP 04 (2015) 040, arXiv:1410.8849 [hep-ph].
- [203] M. Czakon and A. Mitov, "Top++: A program for the calculation of the top-pair cross-section at hadron colliders," *Comput. Phys. Commun.* **185** (2014) 2930, arXiv:1112.5675 [hep-ph].
- [204] M. Cacciari, M. Czakon, M. Mangano, *et al.*, "Top-pair production at hadron colliders with next-to-next-to-leading logarithmic soft-gluon resummation," *Phys. Lett. B* **710** (2012) 612–622, arXiv:1111.5869 [hep-ph].
- [205] P. Kant, O. M. Kind, T. Kintscher, *et al.*, "HatHor for single top-quark production: Updated predictions and uncertainty estimates for single top-quark production in hadronic collisions," *Comput. Phys. Commun.* **191** (2015) 74–89, arXiv:1406.4403 [hep-ph].
- [206] N. Kidonakis, "Two-loop soft anomalous dimensions for single top quark associated production with a W^- or H^- ," *Phys. Rev. D* **82** (2010) 054018, arXiv:1005.4451 [hep-ph].
- [207] J. M. Campbell and R. K. Ellis, " $t\bar{t}W^{+-}$ production and decay at NLO," JHEP **07** (2012) 052, arXiv:1204.5678 [hep-ph].
- [208] A. Lazopoulos, T. McElmurry, K. Melnikov, and F. Petriello, "Next-to-leading order QCD corrections to $t\bar{t}Z$ production at the LHC," *Phys. Lett. B* **666** (2008) 62–65, arXiv:0804.2220 [hep-ph].
- [209] R. Gavin, Y. Li, F. Petriello, and S. Quackenbush, "FEWZ 2.0: A code for hadronic *Z* production at next-to-next-to-leading order," arXiv:1011.3540 [hep-ph].
- [210] LHC Higgs Cross Section Working Group Collaboration, "Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector," arXiv:1610.07922 [hep-ph].
- [211] ATLAS Collaboration, "Example ATLAS tunes of Pythia8, Pythia6 and Powheg to an observable sensitive to Z boson transverse momentum." ATL-PHYS-PUB-2013-017, 2013. https://cds.cern.ch/record/1629317.
- [212] ATLAS Collaboration, "Performance of the ATLAS track reconstruction algorithms in dense environments in LHC Run 2," *Eur. Phys. J. C* 77 (2017) 673, arXiv:1704.07983 [hep-ex].
- [213] R. Frühwirth, "Application of Kalman filtering to track and vertex fitting," *Nucl. Instrum. Methods Phys. Res.*, *A* **262** no. HEPHY-PUB-503, (Jun, 1987) 444. 19 p. https://cds.cern.ch/record/178627.
- [214] T. Cornelissen, M. Elsing, I. Gavrilenko, *et al.*, "The new ATLAS track reconstruction (NEWT)," *J. Phys.: Conf. Ser.* **119** (2008) 032014. https://cds.cern.ch/record/1176900.

[215] ATLAS Collaboration, "Vertex Reconstruction Performance of the ATLAS Detector at \sqrt{s} = 13 TeV." ATL-PHYS-PUB-2015-026, 2015. https://cds.cern.ch/record/2037717.

- [216] ATLAS Collaboration, "Reconstruction of primary vertices at the ATLAS experiment in Run 1 proton-proton collisions at the LHC," *Eur. Phys. J. C* 77 (2017) 332, arXiv:1611.10235 [hep-ex].
- [217] ATLAS Collaboration, "Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1," *Eur. Phys. J. C* 77 (2017) 490, arXiv:1603.02934 [hep-ex].
- [218] ATLAS Collaboration, "Electron and photon performance measurements with the ATLAS detector using the 2015–2017 LHC proton–proton collision data," JINST 14 (2019) P12006, arXiv:1908.00005 [hep-ex].
- [219] ATLAS Collaboration, "Measurement of the photon identification efficiencies with the ATLAS detector using LHC Run 2 data collected in 2015 and 2016," *Eur. Phys. J. C* **79** (2019) 205, arXiv:1810.05087 [hep-ex].
- [220] ATLAS Collaboration, "Electron reconstruction and identification in the ATLAS experiment using the 2015 and 2016 LHC proton–proton collision data at $\sqrt{s} = 13$ TeV," *Eur. Phys. J. C* **79** (2019) 639, arXiv:1902.04655 [hep-ex].
- [221] ATLAS Collaboration, "Muon reconstruction performance of the ATLAS detector in proton–proton collision data at $\sqrt{s} = 13$ TeV," *Eur. Phys. J. C* **76** (2016) 292, arXiv:1603.05598 [hep-ex].
- [222] ATLAS Collaboration, "Muon reconstruction and identification efficiency in ATLAS using the full Run 2 pp collision data set at $\sqrt{s} = 13$ TeV," arXiv: 2012.00578 [hep-ex].
- [223] M. Cacciari, G. P. Salam, and G. Soyez, "The anti- k_t jet clustering algorithm," *JHEP* **04** (2008) 063, arXiv:0802.1189 [hep-ph].
- [224] M. Cacciari, G. P. Salam, and G. Soyez, "FastJet user manual," *Eur. Phys. J. C* **72** (2012) 1896, arXiv:1111.6097 [hep-ph].
- [225] M. Cacciari, "FastJet: A Code for fast k_t clustering, and more," in *Deep inelastic scattering*. *Proceedings*, 14th International Workshop, DIS 2006, Tsukuba, Japan, April 20-24, 2006, pp. 487–490. 2006. arXiv:hep-ph/0607071 [hep-ph]. [,125(2006)].
- [226] ATLAS Collaboration, "Jet energy scale and resolution measured in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector," arXiv: 2007.02645 [hep-ex].
- [227] M. Cacciari and G. P. Salam, "Pileup subtraction using jet areas," *Phys. Lett. B* **659** (2008) 119–126, arXiv:0707.1378 [hep-ph].
- [228] ATLAS Collaboration, "Jet energy measurement with the ATLAS detector in proton-proton collisions at $\sqrt{s} = 7$ TeV," *Eur. Phys. J. C* **73** (2013) 2304, arXiv:1112.6426 [hep-ex].
- [229] ATLAS Collaboration, "Determination of jet calibration and energy resolution in proton–proton collisions at $\sqrt{s} = 8$ TeV using the ATLAS detector," arXiv:1910.04482 [hep-ex].
- [230] ATLAS Collaboration, "Performance of pile-up mitigation techniques for jets in pp collisions at $\sqrt{s} = 8$ TeV using the ATLAS detector," *Eur. Phys. J. C* **76** (2016) 581, arXiv:1510.03823 [hep-ex].
- [231] ATLAS Collaboration, "Optimisation and performance studies of the ATLAS *b*-tagging algorithms for the 2017-18 LHC run." ATL-PHYS-PUB-2017-013, 2017. https://cds.cern.ch/record/2273281.

[232] ATLAS Collaboration, "ATLAS *b*-jet identification performance and efficiency measurement with $t\bar{t}$ events in *pp* collisions at $\sqrt{s} = 13$ TeV," *Eur. Phys. J. C* **79** (2019) 970, arXiv:1907.05120 [hep-ex].

- [233] ATLAS Collaboration, "Measurements of *b*-jet tagging efficiency with the ATLAS detector using $t\bar{t}$ events at $\sqrt{s} = 13 \text{ TeV}$," *JHEP* **08** (2018) 089, arXiv:1805.01845 [hep-ex].
- [234] ATLAS Collaboration, "Performance of missing transverse momentum reconstruction with the ATLAS detector using proton–proton collisions at $\sqrt{s} = 13$ TeV," *Eur. Phys. J. C* **78** (2018) 903, arXiv:1802.08168 [hep-ex].
- [235] ATLAS Collaboration, " $E_{\rm T}^{\rm miss}$ performance in the ATLAS detector using 2015-2016 LHC p-p collisions," Tech. Rep. ATLAS-CONF-2018-023, CERN, Geneva, Jun, 2018. http://cds.cern.ch/record/2625233.
- [236] D. Adams *et al.*, "Recommendations of the Physics Objects and Analysis Harmonisation Study Groups 2014," Tech. Rep. ATL-PHYS-INT-2014-018, CERN, Geneva, Jul, 2014. https://cds.cern.ch/record/1743654.
- [237] M. Cacciari, G. P. Salam, and G. Soyez, "The Catchment Area of Jets," *JHEP* **04** (2008) 005, arXiv:0802.1188 [hep-ph].
- [238] UA1 Collaboration, "Experimental Observation of Isolated Large Transverse Energy Electrons with Associated Missing Energy at $\sqrt{s} = 540$ GeV," *Phys. Lett. B* **122** (1983) 103–116.
- [239] Aachen-Annecy-Birmingham-CERN-Helsinki-London(QMC)-Paris(CdF)-Riverside-Rome-Rutherford-Saclay(CEN)-Vienna Collaboration, G. Arnison *et al.*, "Further evidence for charged intermediate vector bosons at the SPS collider," *Phys. Lett. B* **129** no. CERN-EP-83-111, (Jun, 1985) 273–282. 17 p. https://cds.cern.ch/record/163856.
- [240] U. Baur, "Measuring the W boson mass at hadron colliders," in *Mini-Workshop on Electroweak Precision Data and the Higgs Mass.* 4, 2003. arXiv:hep-ph/0304266.
- [241] J. Smith, W. L. van Neerven, and J. A. M. Vermaseren, "The Transverse Mass and Width of the W Boson," *Phys. Rev. Lett.* **50** (1983) 1738.
- [242] D. R. Tovey, "On measuring the masses of pair-produced semi-invisibly decaying particles at hadron colliders," JHEP 04 (2008) 034, arXiv:0802.2879 [hep-ph].
- [243] G. Polesello and D. R. Tovey, "Supersymmetric particle mass measurement with the boost-corrected contransverse mass," *JHEP* 03 (2010) 030, arXiv:0910.0174 [hep-ph].
- [244] ATLAS Collaboration, "Performance of the missing transverse momentum triggers for the ATLAS detector during Run-2 data taking," JHEP 08 (2020) 080, arXiv: 2005.09554 [hep-ex].
- [245] ATLAS Collaboration, "Performance of algorithms that reconstruct missing transverse momentum in $\sqrt{s} = 8$ TeV proton-proton collisions in the ATLAS detector," *Eur. Phys. J. C* 77 no. 4, (2017) 241, arXiv:1609.09324 [hep-ex].
- [246] ATLAS Collaboration, "ATLAS data quality operations and performance for 2015–2018 data-taking," JINST 15 (2020) P04003, arXiv:1911.04632 [physics.ins-det].
- [247] ATLAS Collaboration, "Selection of jets produced in 13 TeV proton–proton collisions with the ATLAS detector." ATLAS-CONF-2015-029, 2015. https://cds.cern.ch/record/2037702.
- [248] N. Hartmann, "ahoi." https://gitlab.com/nikoladze/ahoi, 2018.

[249] ATLAS Collaboration, "Object-based missing transverse momentum significance in the ATLAS detector," Tech. Rep. ATLAS-CONF-2018-038, CERN, Geneva, Jul, 2018. https://cds.cern.ch/record/2630948.

- [250] A. Roodman, "Blind analysis in particle physics," *eConf* **C030908** (2003) TUIT001, arXiv:physics/0312102.
- [251] W. Buttinger, "Using Event Weights to account for differences in Instantaneous Luminosity and Trigger Prescale in Monte Carlo and Data," tech. rep., CERN, Geneva, May, 2015. https://cds.cern.ch/record/2014726.
- [252] ATLAS Collaboration, "Measurement of the Inelastic Proton-Proton Cross Section at $\sqrt{s} = 13$ TeV with the ATLAS Detector at the LHC," *Phys. Rev. Lett.* **117** (2016) 182002, arXiv:1606.02625 [hep-ex].
- [253] ATLAS Collaboration, "A method for the construction of strongly reduced representations of ATLAS experimental uncertainties and the application thereof to the jet energy scale." ATL-PHYS-PUB-2015-014, 2015. https://cds.cern.ch/record/2037436.
- [254] J. Bellm *et al.*, "Herwig 7.0/Herwig++ 3.0 release note," *Eur. Phys. J.* **C76** no. 4, (2016) 196, arXiv:1512.01178 [hep-ph].
- [255] ATLAS Collaboration, "Simulation of top-quark production for the ATLAS experiment at \sqrt{s} = 13 TeV." ATL-PHYS-PUB-2016-004, 2016. https://cds.cern.ch/record/2120417.
- [256] S. Frixione, E. Laenen, P. Motylinski, *et al.*, "Single-top hadroproduction in association with a *W* boson," *JHEP* **07** (2008) 029, arXiv: 0805.3067 [hep-ph].
- [257] ATLAS Collaboration, "SUSY July 2020 Summary Plot Update," Tech. Rep. ATL-PHYS-PUB-2020-020, CERN, Geneva, Jul, 2020. http://cds.cern.ch/record/2725258.
- [258] CMS Collaboration, "Search for chargino-neutralino production in final states with a Higgs boson and a W boson," Tech. Rep. CMS-PAS-SUS-20-003, CERN, Geneva, 2021. https://cds.cern.ch/record/2758360.
- [259] ATLAS Collaboration, "Search for electroweak production of charginos and sleptons decaying into final states with two leptons and missing transverse momentum in $\sqrt{s} = 13 \text{ TeV } pp$ collisions using the ATLAS detector," *Eur. Phys. J. C* **80** (2020) 123, arXiv:1908.08215 [hep-ex].
- [260] G. Apollinari, I. Béjar Alonso, O. Brüning, et al., High-Luminosity Large Hadron Collider (HL-LHC): Preliminary Design Report. CERN Yellow Reports: Monographs. CERN, Geneva, 2015. https://cds.cern.ch/record/2116337.
- [261] LHC Reinterpretation Forum Collaboration, W. Abdallah *et al.*, "Reinterpretation of LHC Results for New Physics: Status and Recommendations after Run 2," *SciPost Phys.* **9** no. 2, (2020) 022, arXiv: 2003.07868 [hep-ph].
- [262] ATLAS Collaboration, "RECAST framework reinterpretation of an ATLAS Dark Matter Search constraining a model of a dark Higgs boson decaying to two *b*-quarks." ATL-PHYS-PUB-2019-032, 2019. https://cds.cern.ch/record/2686290.
- [263] K. Cranmer and I. Yavin, "RECAST: Extending the Impact of Existing Analyses," JHEP 04 (2011) 038, arXiv:1010.2506 [hep-ex].
- [264] D. Dercks, N. Desai, J. S. Kim, *et al.*, "CheckMATE 2: From the model to the limit," *Comput. Phys. Commun.* **221** (2017) 383–418, arXiv:1611.09856 [hep-ph].

[265] M. Drees, H. Dreiner, D. Schmeier, *et al.*, "CheckMATE: Confronting your Favourite New Physics Model with LHC Data," *Comput. Phys. Commun.* **187** (2015) 227–265, arXiv:1312.2591 [hep-ph].

- [266] E. Conte, B. Fuks, and G. Serret, "MadAnalysis 5, A User-Friendly Framework for Collider Phenomenology," *Comput. Phys. Commun.* **184** (2013) 222–256, arXiv:1206.1599 [hep-ph].
- [267] E. Maguire, L. Heinrich, and G. Watt, "HEPData: a repository for high energy physics data," J. Phys. Conf. Ser. 898 no. 10, (2017) 102006, arXiv:1704.05473 [hep-ex].
- [268] ATLAS Collaboration, "Simpleanalysis." https://gitlab.cern.ch/atlas-sa/simple-analysis, 2021.
- [269] S. Ovyn, X. Rouby, and V. Lemaitre, "DELPHES, a framework for fast simulation of a generic collider experiment," arXiv:0903.2225 [hep-ph].
- [270] A. Buckley, J. Butterworth, D. Grellscheid, *et al.*, "Rivet user manual," *Comput. Phys. Commun.* **184** (2013) 2803–2819, arXiv:1003.0694 [hep-ph].
- [271] A. Buckley, D. Kar, and K. Nordström, "Fast simulation of detector effects in Rivet," *SciPost Phys.* **8** (2020) 025, arXiv:1910.01637 [hep-ph].
- [272] S. Kraml, S. Kulkarni, U. Laa, *et al.*, "SModelS: a tool for interpreting simplified-model results from the LHC and its application to supersymmetry," *Eur. Phys. J. C* **74** (2014) 2868, arXiv:1312.4175 [hep-ph].
- [273] F. Ambrogi, S. Kraml, S. Kulkarni, *et al.*, "SModelS v1.1 user manual: Improving simplified model constraints with efficiency maps," *Comput. Phys. Commun.* **227** (2018) 72–98, arXiv:1701.06586 [hep-ph].
- [274] ATLAS Collaboration, "Search for direct production of electroweakinos in final states with one lepton, missing transverse momentum and a higgs boson decaying into two b-jets in pp collisions at $\sqrt{s} = 13$ tev with the atlas detector," 2021. https://www.hepdata.net/record/ins1755298?version=4.
- [275] ATLAS Collaboration, "1lbb-likelihoods-hepdata.tar.gz," 2020. https://www.hepdata.net/record/resource/1408476?view=true.
- [276] G. Alguero, S. Kraml, and W. Waltenberger, "A SModelS interface for pyhf likelihoods," arXiv: 2009.01809 [hep-ph].
- [277] M. D. Goodsell, "Implementation of the ATLAS-SUSY-2019-08 analysis in the MadAnalysis 5 framework (electroweakinos with a Higgs decay into a $b\bar{b}$ pair, one lepton and missing transverse energy; 139 fb⁻¹)," *Mod. Phys. Lett. A* **36** no. 01, (2021) 2141006.
- [278] J. Y. Araz *et al.*, "Proceedings of the second MadAnalysis 5 workshop on LHC recasting in Korea," *Mod. Phys. Lett. A* **36** no. 01, (2021) 2102001, arXiv:2101.02245 [hep-ph].
- [279] M. Feickert, L. Heinrich, G. Stark, and B. Galewsky, "Distributed statistical inference with pyhf enabled through funcX," in *25th International Conference on Computing in High-Energy and Nuclear Physics.* 3, 2021. arXiv:2103.02182 [cs.DC].
- [280] R. Chard, Y. Babuji, Z. Li, *et al.*, "funcx: A federated function serving fabric for science," ACM, Jun, 2020. http://dx.doi.org/10.1145/3369583.3392683.
- [281] D. Merkel, "Docker: Lightweight linux containers for consistent development and deployment," *Linux J.* **2014** no. 239, (Mar., 2014) .

[282] S. Binet and B. Couturier, "docker & HEP: Containerization of applications for development, distribution and preservation," *J. Phys.: Conf. Ser.* **664** no. 2, (2015) 022007. 8 p. https://cds.cern.ch/record/2134524.

- [283] K. Cranmer and L. Heinrich, "Yadage and Packtivity analysis preservation using parametrized workflows," J. Phys. Conf. Ser. 898 no. 10, (2017) 102019, arXiv:1706.01878 [physics.data-an].
- [284] ATLAS Collaboration, "Electron and photon energy calibration with the ATLAS detector using 2015–2016 LHC proton–proton collision data," JINST 14 (2019) P03017, arXiv:1812.03848 [hep-ex].
- [285] Schanet, Eric, "simplify," Version 0.1.5. https://github.com/eschanet/simplify.
- [286] Schanet, Eric, "SUSY-2019-08 simplified likelihood," Version 0.0.1. https://github.com/eschanet/simplify/blob/master/examples/ANA-SUSY-2019-08/simplify BkgOnly.json.
- [287] P. C. Bryan and M. Nottingham, "Javascript object notation (json) patch," Version RFC 6902, Apr, 2013. https://www.rfc-editor.org/rfc/rfc6902.txt.
- [288] ATLAS Collaboration, "Search for direct stau production in events with two hadronic τ -leptons in $\sqrt{s} = 13$ TeV pp collisions with the ATLAS detector," *Phys. Rev. D* **101** (2020) 032009, arXiv:1911.06660 [hep-ex].
- [289] ATLAS Collaboration, "Search for bottom-squark pair production with the ATLAS detector in final states containing Higgs bosons, *b*-jets and missing transverse momentum," *JHEP* **12** (2019) 060, arXiv:1908.03122 [hep-ex].
- [290] W. Porod, "SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e+ e- colliders," *Comput. Phys. Commun.* **153** (2003) 275–315, arXiv:hep-ph/0301101.
- [291] W. Porod and F. Staub, "SPheno 3.1: Extensions including flavour, CP-phases and models beyond the MSSM," *Comput. Phys. Commun.* **183** (2012) 2458–2469, arXiv:1104.1573 [hep-ph].
- [292] S. Heinemeyer, W. Hollik, and G. Weiglein, "FeynHiggs: A Program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM," *Comput. Phys. Commun.* **124** (2000) 76–89, arXiv:hep-ph/9812320.
- [293] H. Bahl, T. Hahn, S. Heinemeyer, *et al.*, "Precision calculations in the MSSM Higgs-boson sector with FeynHiggs 2.14," *Comput. Phys. Commun.* **249** (2020) 107099, arXiv:1811.09073 [hep-ph].
- [294] T. Hahn, S. Heinemeyer, W. Hollik, *et al.*, "High-Precision Predictions for the Light CP -Even Higgs Boson Mass of the Minimal Supersymmetric Standard Model," *Phys. Rev. Lett.* **112** no. 14, (2014) 141801, arXiv:1312.4937 [hep-ph].
- [295] B. C. Allanach, "SOFTSUSY: a program for calculating supersymmetric spectra," *Comput. Phys. Commun.* **143** (2002) 305–331, arXiv:hep-ph/0104145 [hep-ph].
- [296] G. Belanger, F. Boudjema, A. Pukhov, and A. Semenov, "MicrOMEGAs 2.0: A Program to calculate the relic density of dark matter in a generic model," *Comput. Phys. Commun.* **176** (2007) 367–382, arXiv:hep-ph/0607059.
- [297] G. Belanger, F. Boudjema, A. Pukhov, and A. Semenov, "micrOMEGAs: A Tool for dark matter studies," *Nuovo Cim. C* **033N2** (2010) 111–116, arXiv:1005.4133 [hep-ph].
- [298] W. Beenakker, R. Hopker, and M. Spira, "PROSPINO: A Program for the Production of Supersymmetric Particles in Next-to-leading Order QCD," Tech. Rep. hep-ph/9611232, Nov, 1996. https://cds.cern.ch/record/314229. 12 pages, latex, no figures, Complete postscript file and FORTRAN source codes available from http://www.cern.ch/mspira/prospino/.

[299] W. Beenakker, M. Klasen, M. Kramer, *et al.*, "The Production of charginos / neutralinos and sleptons at hadron colliders," *Phys. Rev. Lett.* **83** (1999) 3780–3783, arXiv:hep-ph/9906298. [Erratum: Phys.Rev.Lett. 100, 029901 (2008)].

- [300] ATLAS Collaboration, "Search for long-lived charginos based on a disappearing-track signature using 136 fb⁻¹ of pp collisions at \sqrt{s} = 13 TeV with the ATLAS detector," Tech. Rep. ATLAS-CONF-2021-015, CERN, Geneva, Mar, 2021. https://cds.cern.ch/record/2759676.
- [301] A. Arbey, M. Battaglia, and F. Mahmoudi, "Higgs Production in Neutralino Decays in the MSSM The LHC and a Future e^+e^- Collider," *Eur. Phys. J. C* **75** no. 3, (2015) 108, arXiv:1212.6865 [hep-ph].
- [302] M. E. Cabrera, J. A. Casas, A. Delgado, *et al.*, "Naturalness of MSSM dark matter," *JHEP* **08** (2016) 058, arXiv:1604.02102 [hep-ph].