CHE 362 Exam #1 2/19/20

Part II – Open Notes

#5 (50 pts) Water in a fish hatchery is to be oxygenated by bubbling air through the water. For a bubble of gas rising through a liquid, the mass transfer coefficient on the liquid side has been correlated with the following equation:

$$Sh_L = 2 + 0.6 \operatorname{Re}_L^{1/2} Sc_L^{1/3}$$

where the characteristic length is the bubble diameter.

For the gas side, the correlation is $Sh_G = 10$, where the characteristic length is the bubble diameter.

Estimate the liquid phase and gas phase mass transfer coefficient for a 1 cm bubble of air rising at a rate of 0.2 m/s through water at a temperature of 298 K and pressure of 1 atm.

Properties of the liquid and gas:

	Liquid	Gas
Density (kg/m ³)	1000	1.184
Viscosity (kg/m sec)	9.227*10 ⁻⁴	1.845*10 ⁻⁵
Diffusivity (m ² /sec)	2.10*10 ⁻⁹	2.10*10 ⁻⁵
Molecular weight (gm/mol)	18	29

$$R = 8.206*10^{-5} \text{ m}^3 \text{ atm /mol K}$$

 $k_x = 2.5 \text{ mol/m}^2 \cdot \text{s}$

 $k_y = 0.859 \; mol/m^2 \cdot s$

#6 (36 pts) In a tank used to absorb O_2 from air into water, the following mass transfer coefficients have been predicted:

$$k_x = 3 \text{ mol/m}^2 \text{ sec}$$

$$k_y = 1 \text{ mol/m}^2 \text{ sec}$$

At one point in the column, the mole fraction of O_2 in the water is 10^{-6} and in the gas is 0.2. The column is operated at 1 atm pressure and the Henry's Law (pp = H x) coefficient for O_2 in water is H = 43,800 atm. You can assume a low mass transfer rate.

a) Find the mole fraction of O₂ in each phase at the interface.

$$x_i = 4.566 \cdot 10^{-6}$$

$$y_i = 0.1999$$

b) Calculate the flux of O₂ from the gas to the liquid.

$$N_A = 1.07 \cdot 10^{-5} \text{ mol/m}^2 \text{ sec}$$

c) Find the % resistance to mass transfer in each phase.

$$K_x = 3 \text{ mol/m}^2 \cdot s$$

$$K_v = 6.85 \cdot 10^{-5} \text{ mol/m}^2 \text{ sec}$$

Liquid phase = 99.993% resistant Gas phase = 0.007% resistance