

INTERNSHIP PROGRESS

Modeling curriculum learning

TABLE OF CONTENTS

3 WEEKLY OBJECTIVES

4 LAST WEEK'S OBJECTIVES

5 CURRENT STATE

10 QUESTIONS

13 THIS WEEK'S OBJECTIVES

WEEKLY OBJECTIVES

	FEBRUARY	MARCH	APRIL	MAY
W1	/	Level 2: accuracy RL Level 2: learning progress RL	Unify the Level 1 models Account for catastrophic interference	Finishing touches Written report
W2	/	Create hypotheses and model ideas for Level 2 & 3	Level 3: integrate both accuracy and learning progress	Written report
W3	Level 1: implement tasks and neural network	Prepare the presentation	Level 3: explore more options (chaining effect? Between-task learning?)	(exams)
W4	Finish 3 models for Level 1 Level 2: accuracy RL learning	LAB PRESENTATION Integrate all suggestions	Level 3: adjust and compare model performances	(exams)

Past week

Upcoming week

LAST WEEK'S OBJECTIVES

IMPLEMENT ALL 3 TASKS

Easy - Hard - Impossible Give them the same structure

LEARN TO TRACK MODEL **PARAMETERS**

Such as accuracy, loss, performance

START LEVEL 2: REINFORCEMENT **LEARNING**

Research teacher level networks, and implement them using accuracy

UPLOAD CODE TO GITHUB

Improve understanding of the current model, search for potential improvements.

(3)

SUMMARISE FINDINGS

Write a short summary of findings, questions and plan for next week.


```
n_input, n_output = train_x.shape[1], 1
model = Sequential()
model.add(Dense(
    units=4, activation='tanh', input_shape=(n_input,)))
model.add(Dense(
    n_output, activation='sigmoid'))
model.build()
model.compile(
    optimizer = tf.keras.optimizers.Adam(learning_rate=0.1),
    loss = tf.keras.losses.BinaryCrossentropy(),
    metrics = ['accuracy'])
##Y_DATA SET + FIT
###AND task
 if model_name == 'AND_model':
    train_y = np.array([0, 0, 0, 1])
    train_y = train_y.reshape(4, 1)
    history = model.fit(train_x, train_y, batch_size = 1, epochs=epochs)
    loss_history = history.history["loss"]
###XOR task
elif model_name == 'XOR_model':
   train_y = np.array([0, 1, 1, 0])
   train_y = train_y.reshape(4, 1)
   history = model.fit(train_x, train_y, batch_size = 1, epochs=epochs)
   loss_history = history.history["loss"]
###RM loop
elif model_name == 'RM_model':
   loss_history = []
   accuracy_history = []
   for epoch in range(epochs):
       train_y = np.random.randint(0, 2, size=(4, 1))
       print(f"Epoch {epoch+1}/{epochs}")
       history = model.fit(train_x, train_y, batch_size = 1, epochs=1, verbose=1)
       loss_history.append(history.history["loss"][0])
       accuracy_history.append(history.history["accuracy"][0])
```


QUESTIONS

QUESTION 1	■ Q value network (value-based method) or policy network (policy-based methods)? And other variables	
QUESTION 2	Which learning equation to use?	
NOTES	 I need help to check my understanding of reinforcement learning (see next page) 	

	•
I Savaral variables affect the rilles that shape reinforcement is	zarnina
Several variables affect the rules that shape reinforcement le	<i>-</i> aiiiiiq.

	Effect on reinforcement learning	Advantages and disandvages	
Value-based vs Policy-based	Value-based: algorithm stores and updates values through a value function Policy-based: algorithm learns and updates a policy	Value-based: efficient in discrete spaces, but struggles in more complex spaces, harder to adapt. Policy-based: complex spaces, stochastic (exploration and uncertainty), flexibility, requires more data.	
Model-based vs Model-free	Model-based: models the environment through a transition and reward model. Model-free: uses estimates and updates based on prediction error.	Model-based: faster learning, better for limited data Model-free: better for rich data and uncertainty, flexibility	
Sampling type	Bootstrapping: update estimates based on estimates of future values. Monte Carlo sampling: only updates after actual returns (full episodes).	Bootstrapping: faster learning but higher bias Monte Carlo sampling: slower learning but lower bias.	
On-policy vs off-policy	•••		

There are two steps in	reinforcement learning:	action choice and
learning	_	

Base: Rescorla-Wagner rule

 V_t [option] = V_{t-1} [option] + α (R_{t-1} - V_{t-1} [option])

	LEARNING	ACTION CHOICE	
VALUE	Temporal Difference rule (Q) Incorporate temporal differences when multiple t exist.	Highest Q-value?	
	$Q_{\pi}(s,a) = \mathbb{E}\left[\sum_{k=0}^{+\infty} \gamma^{\pi} R_{t+k+1} s, a, \pi\right]$ $\Pi = policy$ $\Gamma = discount$		
POLICY	Temporal Difference rule (V)	Softmax function : calculating values based on	
	$V_{\pi}(s) = E\left[\sum_{k=0}^{+\infty} \gamma^{\pi} R_{t+k+1} s, \pi\right]$	expectations of value (probabilities)	
	$\mathcal{H} = [\mathbf{\Delta} \mathbf{k} = 0]$	$P_t[option == A] = \frac{\exp(\beta \ v_t[option == A])}{\sum_i \exp(\beta \ v_t[option == i])}$	
	Solution: the Bellman equation		
	$V(s) = max_a \left(R(s, a) + \gamma V(s') \right)$		

RL modelling concepts

NEXT WEEK'S OBJECTIVES

CREATE A RL MODEL

Using a basic n-bandit task and

Using a basic n-bandit task and a Rescorla-Wagner algorithm

INTEGRATE LVL 2

Using accuracy

INTEGRATE LVL 2

Using learning progress

2

 $\overline{(4)}$

. . .

. . .

SUMMARISE FINDINGS

Write a short summary of findings, questions and plan for next week.

(3)