Lab. 08

```
Logic Design Lab.
Spring 2022
```

Prof. ChangGun Lee

(cglee@snu.ac.kr)

TA. Hayeon Park

TA. Haejoo Jeon

TA. Seohwan Yoo

(rubis.ld.ta@gmail.com)

Contents

- Finite state machine
- Moore/Mealy machine
- Implementation on Logic Design Board
- Vending machine

Announcement

- There will be an announcement of the final project in next lab session.
- Please make sure your board is working correctly

Finite state machine

Moore/Mealy machine

Implementation on Logic Design Board (Review)

- ① Power Input: Molex Connector (DC 5V Only)
- 2 Power, DONE LED
- ③ FPGA: XC3S50AN-4TQG144C
- 4 User I/O Ports (P1): 16X2 2,54mm Pitch
- ⑤ User I/O Ports (P2): 16X2 2,54mm Pitch
- 6 User I/O Ports (P3, P4): 2 8X2 2.54mm Pitch
- 7 User Output LEDs : 6 output LEDs
- 8 User Output LEDs: 6 7-segment LEDs
- 9 User Input Switches: 10pin Dip Switch
- 10 User Input Switches: 6 Tactile Swiltches
- 1 Oscillator: 50MHz
- 12 Mode Select Switch
- 13 JTAG Header

• Pin Number Mapping

Pin	Num	Component	
- 83	3	3	A
	4	1	В
	5	7-Segment	C
	6	Display	D
	7	[J1]	Е
	8		F
	10		G
	11		A
	12		В
	13	7-Segment	C
	15	Display [J2]	D
	16		Е
	18		F
	19	3	G
	20		A
P1	21		В
•	24	7-Segment	C
	25	Display	D
	27	[13]	E
	28		F
	29		G
	30		1
	31	9	2
	32	6	3
	33	DIP	4
	41	Switch	5
	42		6
	43	[DipSW1]	7
	44		8
	45		9
	46		10
	47	Tactile Switch [SW1]	120

Pin Num		Comp	onent	
- 52	48	Tactile Switch	[SW2]	
	49	Tactile Switch	[SW3]	
	50	Tactile Switch	[SW4]	1
	51	Tactile Switch	[SW5])
	54	Tactile Switch	[SW6]	
	55	-transition	4.0	A
	58	7-Segment Display [J4]		В
	59			C
	60			D
	62			E
	63			F
	64			G
	68	/		A
P2	69	7-Segment Display [15]		В
	70			C
	71			D
	72			E
	75	LI-1		F
	76			G
	77			A
	78	7-Segment Display []6]		В
	79			С
	82			D
	83			E
	84			F
	85			G
	87	LED [D1]		Red
	88	LED [D2]		Yellow
İ	90	LED [D3]		Green
	91	LED [D4]		Red
	92	LED [D5]		Yellow
	93	LED [D6]	,	Green

Pin Num		Pin Num	
	96	9	120
	98		121
- [99	1 1	124
1	101	[125
	102		126
1	103		127
ı	104	P4	129
Р3	105		130
13	110		131
1	111		132
- 1	112		134
1	113		135
1	114		138
ı	115		139
- 1	116		141
1	117	1 1	142

Pi	n	Compone	nt	
Î	1		TMS	
JP101	2	JTAG	TDI	
	107		TDO	
	109		TCK	
Mode SW	37	Mode SW	M1	
	38		MO	
	39		M2	
	144		PROG	
FPGA	67	Configuration	INIT	
	73		DONE	
	74		SUSPEND	
FPGA	35	Not Connected (Input Only/VREF)		
	53			
	80			
	97			
	123			
	140			

Pin		Component	
	57	Clock 50MHz	
3	14	0.5000000000000000000000000000000000000	
- 3	23		
	40	vcco	
3	61		
8	86		
8	95		
1	119		
88	136		
1	36	VCCAUX	
	66		
1	108		
1	133		
	22	VCCINT	
FPGA	52		
*****	94		
	122		
	9		
83	17		
- 8	26		
1	34	GND	
-	56		
	65		
	81		
- 3	89		
1	100		
	106		
	118		
	128		
- 8	137		

• Assign I/O pins for the half adder

• Boundary Scan > Initialize Chain

• Choose the schematic source you've written.

• Program FPGA Only > Program Succeeded

LAB

Vending Machine Structure

LAB 1

1. Implement **core logic of vending machine** in Verilog. It accept nickels(5 cent) and dimes(10 cent). It has only single coin slot for nickels and dimes. The cost of a drink is 15 cents. It release item without change after 15 cents are deposited. Additionally, your implementation should handle external asynchronous reset signal, it should set the deposit back to 0 when the signal is HIGH. If the deposit is greater than 15 cents, consider it as 15 cents.

LAB 2

Implement the **Vending machine** in Verilog and upload implementation to the Logic Design Board. It accept nickels(5 cent) and dimes(10 cent). It has only single coin slot for nickels and dimes. The cost of a drink is 15 cents. It release item without change after 15 cents are deposited. Additionally, your implementation should handle external asynchronous reset signal, it should set the deposit back to 0 when the signal is HIGH. If the deposit is greater than 15 cents, consider it as 15 cents. Use 50MHz oscillator as clock input, and a tactile switch as reset button and coin inputs. For outputs, use two 7-segment displays as your deposit status, and led as release status.

Report

Core logic of vending machine

- 1. Result of simulation
 - All possible case of coin inputs
 - Deposit and release status should be 0 when reset = 1

Vending machine

- 1. All Verilog source code
 - should include code for module, submodule
 (i.e., Vending machine, core logic, BCD-7 seg decoder)
 - only module code, no test bench code
- 2. Result of implementation
 - Pictures of all possible states that you design

Discussion

(Optional) Study and compare Moore and Mealy machine

Sample Code (Behavioral Description)

```
`timescale 1ns / 1ps
module freq divider(
    input clr,
    input clk,
    output reg clkout
         reg[31:0] cnt;
         always@ (posedge clk) begin
                if(clr) begin
                        cnt <=32'd0;
                        clkout <= 1'b0;
                end
                else if (cnt == 32'd25000000) begin
                        cnt <= 32'd0;
                        clkout <= ~clkout;
                end
                else begin
                        cnt <= cnt + 1;
                end
        end
endmodule
```

Frequency Divider

```
timescale lns / lps
 2
 3
    module bcd to 7(
        input [3:0] bcd,
        output reg [6:0] seg
        always@(bcd) begin
8
9
          case (bcd)
             4'd0: seg <= 7'b0111111;
10
             4'dl: seg <= 7'b00000110;
11
12
             4'd2: seg <= 7'b1011011;
13
             4'd3: seg <= 7'b1001111;
             4'd4: seg <= 7'bl100110;
14
15
             4'd5: seg <= 7'bl101101;
             4'd6: seg <= 7'bllllll01;
16
17
             4'd7: seg <= 7'b00000111;
18
             4'd8: seg <= 7'bllllllll;
19
             4'd9: seg <= 7'bl101111;
20
          endcase
21
       end
22
23 endmodule
```

BCD to 7-segment Decoder

Homework

Simulating 50MHz clock in test bench

50MHz : period is 20ns(So we should flip clock every 10ns)


```
'timescale lns / lps
module counter sim;
   // Inputs
   reg clk;
   reg reset;
   // Outputs
  wire [6:0] cnt;
   // Instantiate the Unit Under Test (UUT)
   counter uut (
      .clk(clk),
      .reset (reset),
      .cnt(cnt)
  );
   always #10 clk=~clk;
   initial begin
      // Initialize Inputs
      clk = 0;
      reset = 1;
   end
endmodule
```

Report

- Write a report
 - Either in Korean or in English
 - Your report should include
 - Discussion
 - Homework
 - # of pages doesn't matter
 - Documents should be submitted as PDF file(less than 25Mb)
 - Attach source code and waveform screenshot
 - Due :

```
Class 001 - May, 23th (Before class begin at 7:00pm)
```

Class 002 - May, 24th (Before class begin at 7:00pm)

Class 003 - May, 25th (Before class begin at 7:00pm)