Aula 8 Entrada e Saída Hardware

Introdução

- Tarefas centrais em SO
 - Emite comandos, processa interrupções e trata erros
 - Esconde detalhes específicos dos dispositivos
 - Paralelizar E/S do processamento e acesso a memória
 - Controle de acesso e concorrência

Introdução

- Dispositivos de bloco
 - Blocos de tamanho fixo
 - Cada bloco possui um endereço
 - Podem ser acessados independentemente
- Dispositivo de caractere
 - Lê ou escreve uma sequencia de caracteres
 - Interrupção por caracter (ou uma sequencia)

Introdução

- Classificação genérica
 - Nem todos os dispositivos se enquadram
 - Exemplo: clock, interface de rede, etc.

Dispositivos

Exemplos

Device	Data rate
Keyboard	10 bytes/sec
Mouse	100 bytes/sec
56K modem	7 KB/sec
Scanner at 300 dpi	1 MB/sec
Digital camcorder	3.5 MB/sec
4x Blu-ray disc	18 MB/sec
802.11n Wireless	37.5 MB/sec
USB 2.0	60 MB/sec
FireWire 800	100 MB/sec
Gigabit Ethernet	125 MB/sec
SATA 3 disk drive	600 MB/sec
USB 3.0	625 MB/sec
SCSI Ultra 5 bus	640 MB/sec
Single-lane PCIe 3.0 bus	985 MB/sec
Thunderbolt 2 bus	2.5 GB/sec
SONET OC-768 network	5 GB/sec

Dispositivos

Controlador

- Partes de dispositivos de E/S
 - Componente eletro-mecânico
 - Circuito integrado ou processador
- A interface física (pinos) entre o controlador e a componente mecânica é padronizada (ISO, SCSI, IDE)

Controlador

- Tarefas do controlador
 - converter fluxo serial de bits para conjuntos de bytes
 - Verificação da consistência dos dados (checksum) e correção de erros
 - Bufferização: agrupar bloco de bytes para transferência para a memória principal

Controlador

- Possui registradores
 - para fazer o controle da E/S
 - para emitir informações sobre status e condições de erro

Formas distintas de mapeamento:

- a) Espaços separados
 - Endereços reservados
 - Registradores específicos: associados a um número de porta de E/S
 - Instruções específicas
- b) Endereço único
 - Instruções podem referenciar memória ou registrador associado a um periférico

c) Híbrido

- Acesso a memória: instruções (mov)
- Acesso a E/S: instruções (in, out)
- Numericamente o endereço pode ser o mesmo
- Pode ter parte alocada na memória

Arquitetura

Leitura de Bloco

- Passos:
 - CPU escreve comando (ler bloco de endereço)
 - Controlador aciona dispositivo, transfere dados para buffer, verifica os dados, levanta interrupção
 - Driver copia os dados do bloco do controlador para a memória principal
 - Obs: Driver executa na CPU

DMA

- Direct Memory Access
 - Componente dedicado a transferência de dados do controlador para a memória
 - Evitar que a CPU execute a transferência de dados

DMA

Interrupções

Controlador de Interrupções

Exemplo

Entrada e Saída → Impressão

E/S Programada

Polling

E/S Orientada a Interrupção

- Código de chamada ao sistema de impressão
- Rotina de tratamento de interrupção

```
copy_from_user(buffer, p, count);
enable_interrupts();
while (*printer_status_reg != READY);
*printer_data_register = p[0];
scheduler();

(a)

if (count == 0) {
    unblock_user();
    } else {
        *printer_data_register = p[i];
        count = count - 1;
        i = i + 1;
    }
    acknowledge_interrupt();
    return_from_interrupt();
```

E/S via DMA

Simplifica operação da CPU

```
copy_from_user(buffer, p, count); acknowledge_interrupt(); set_up_DMA_controller(); unblock_user(); scheduler(); return_from_interrupt(); (b)
```

Exercício

https://bit.ly/3drtv97