Fourier sorok.

3. rész.

2018. február 22.

Fourier sor komplex alakja

Euler formula

Euler formula: szerint minden $x \in \mathbb{R}$ -re:

$$e^{ix} = \cos x + i \sin x$$
.

x helyett -x:

$$e^{i(-x)} = e^{-ix} = \cos(-x) + i\sin(-x) = \cos(x) - i\sin(x).$$

Összeadva és kivonva a két egyenletet

$$e^{ix} + e^{-ix} = 2\cos x$$
, $e^{ix} - e^{-ix} = 2i\sin x$.

Ezért a trigonometrikus függvények komplex alakja:

$$\cos(x) = \frac{e^{ix} + e^{-ix}}{2}, \qquad \sin(x) = \frac{e^{ix} - e^{-ix}}{2i}.$$

Fourier polinom

Az n-dik Fourier polinom:

$$s_n(x) = \frac{a_0}{2} + \sum_{k=1}^n a_k \cos(kx) + \sum_{k=1}^n b_k \sin(kx).$$

Helyettesítsük be az alábbi összefüggéseket:

$$\cos(kx) = \frac{e^{ikx} + e^{-ikx}}{2}, \qquad \sin(kx) = \frac{e^{ikx} - e^{-ikx}}{2i}.$$

Így azt kapjuk, hogy

$$s_n(x) = \frac{a_0}{2} + \sum_{k=1}^n a_k \frac{e^{ikx} + e^{-ikx}}{2} + \sum_{k=1}^n b_k \frac{e^{ikx} - e^{-ikx}}{2i} =$$

$$= \sum_{k=1}^n \alpha_k e^{ikx},$$

Fourier polinom komplex alakja

$$\frac{a_0}{2} + \sum_{k=1}^{n} a_k \frac{e^{ikx} + e^{-ikx}}{2} + \sum_{k=1}^{n} b_k \frac{e^{ikx} - e^{-ikx}}{2i} = \sum_{k=-n}^{n} \alpha_k e^{ikx},$$

ahol az α_k együtthatók

$$lpha_k = \left\{ egin{array}{ll} \dfrac{a_k - ib_k}{2}, & \mathrm{ha} & k > 0 \ \\ \dfrac{a_0}{2}, & \mathrm{ha} & k = 0, \ \\ \dfrac{a_j + ib_j}{2}, & \mathrm{ha} & k = -j < 0. \end{array}
ight.$$

Látható, hogy $\alpha_k = \overline{\alpha_{-k}}$, egymás konjugáltjai.

e^{imx} függvények

Lemma (ortogonalitás)

Az (e^{imx}) függvényrendszer, $x\epsilon[-\pi,\pi]$, rendelkezik az alábbi tulajdonsággal:

Bizonyítás. Következik e^{imx} trigonometrikus alakjából:

$$e^{imx} = \cos(mx) + i\sin(mx)$$
.

Fourier polinom együtthatói

Tétel.

(A korábbi Tétel komplex megfelelője, véges összegre) Tegyük fel, hogy f előáll ilyen alakban:

$$f(x) = \sum_{k=-n}^{n} \alpha_k e^{ikx}.$$

Ekkor az együtthatók:

$$\alpha_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-ikx} dx.$$

Fourier polinomban: $\alpha_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-ikx} dx$.

Bizonyítás. A tétel állítása következik a 1. Lemmából.

$$f(x) = \sum_{k=-n}^{n} \alpha_k e^{ikx}.$$

Szorozzuk meg az egyenletet e^{-imx} -el, és integráljunk:

$$\int_{-\pi}^{\pi} f(x)e^{-imx}dx = \sum_{k=-n}^{n} \alpha_k \int_{-\pi}^{\pi} e^{ikx}e^{-imx}dx =$$

$$\sum_{k=0}^{m} \alpha_k \int_{-\pi}^{\pi} e^{i(k-m)x} dx = \alpha_m \cdot 2\pi.$$

Következmény

Tétel.

Tegyük fel, hogy

$$f(x) = \sum_{k=-\infty}^{\infty} \alpha_k e^{ikx}, \qquad x \in [-\pi, \pi].$$

egyenletes konvergenciával. Ekkor

$$\alpha_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-ikx}dx.$$
 $k = 0, \pm 1, \pm 2, \ldots$

Fourier sor, komplex alak

Definíció.

Legyen f 2π szerint periodikus függvény, mely integrálható $[-\pi,\pi]$ -ben. Az f függvény **komplex Fourier sorát** így értelmezzük:

$$f \sim \sum_{k=-\infty}^{\infty} \alpha_k e^{ikx},$$

ahol

$$\alpha_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-ikx} dx.$$

Fourier sorok alaptétele, komplex alak

Tétel.

 $f: \mathbb{R} \to \mathbb{R}$ 2 π szerint periodikus függvény, mely $[-\pi, \pi]$ -ben

- szakaszonként folytonosan differenciálható,
- max véges sok első fajú szakadási hellyel,

- az
$$x_0$$
 szakadási pontban $f(x_0) = \frac{f(x_0 + 0) + f(x_0 - 0)}{2}$.

Ekkor

$$f(x) = \sum_{k=1}^{\infty} \alpha_k e^{ikx},$$

ahol

$$\alpha_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-ikx} dx.$$

A Tételt nem bizonyítjuk.

Parseval egyenlőség, komplex alak.

Tétel.

Tfh az f függvényt előállítja Fourier sora:

$$f(x) = \sum_{k=-\infty}^{\infty} \alpha_k e^{ikx}, \qquad \alpha_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-ikx} dx.$$

Ekkor a Fourier együtthatókra teljesül az alábbi egyenlőség:

$$\sum_{k=-\infty}^{\infty} |\alpha_k|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f^2(x) dx.$$

"Energia megmaradás" jellegű állítás.

Összefoglalás. Fourier sor

Legyen f 2π szerint periodikus függvény, mely integrálható $[-\pi,\pi]$ -ben. Az f függvény valós ill. komplex Fourier sora:

$$f \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos(kx) + b_k \sin(kx)) = \sum_{k=-\infty}^{\infty} \alpha_k e^{ikx},$$

ahol egyrészt

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(kx) dx, \qquad b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) dx,$$

másrészt

$$\alpha_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-ikx} dx.$$

Összefoglalás. Fourier sorok alaptétele

Legyen $f: \mathbb{R} \to \mathbb{R}$ olyan 2π szerint periodikus függvény, mely $[-\pi,\pi]$ -ben szakaszonként folytonosan differenciálható, max véges sok első fajú szakadási helye van, és az x_0 szakadási pontban $f(x_0) = \frac{f(x_0+0)+f(x_0-0)}{2}$.

Ekkor f egy-egyértelműen megadható

- két valós számsorozattal, (a_n) és (b_n) , melyekre $\sum a_n^2 < \infty$ és $\sum b_n^2 < \infty$.
- (vagy) egy komplex számsorozattal, (α_n) , melyre $\sum |\alpha_n|^2 < \infty$.