Inteligência Computacional

Luís A. Alexandre

UBI

Ano lectivo 2023-24

sistemas de inferência difusa

Alexandre (UBI)

Introdução

- Os operadores difusos estudados na aula anterior permitem efetuar algum raciocínio básico sobre factos.
- A = alto, B = bom atleta e C = bom jogador de basket. Consideremos ainda os seguintes valores da função de pertença para dois jogadores Vejamos o exemplo seguinte. Consideremos três conjuntos difusos:
- $\mu_A({
 m Pedro}) = 0.7, \ \mu_A({
 m Rui}) = 0.9, \ \mu_B({
 m Pedro}) = 0.8, \ \mu_B({
 m Rui}) = 0.6$
- Sabendo que um bom jogador de basket é alto e bom atleta, qual dos dois será o melhor jogador de basket? Temos que inferir o grau de pertença a C. A
 - Podemos usar o operador intersecção para obter

$$\mu_{A\cap B}(\mathrm{Pedro}) = \min\{0.7, 0.8\} = 0.7$$

$$\mu_{A\cap B}(\mathrm{Rui}) = \min\{0.9, 0.6\} = 0.6$$

logo inferimos a partir da informação que possuíamos, que o Pedro deverá ser melhor jogador de basket que o Rui.

Ano lectivo 2023-24 uís A. Alexandre (UBI)

3/37

Introdução

- Um controlador difuso é um dispositivo que é usado para efetuar o controlo de máquinas tendo por base um sistema difuso.
- O Japão é líder na aplicação deste tipo de controladores.
- Alguns exemplos:
- andando para trás e para a frente. O mesmo investigador colocou mais tarde um copo com água e até um rato vivo no topo da barra, tendo o 1987: Takeshi Yamakawa usou um controlador difuso para a controlar um pêndulo invertido: um veículo tenta manter uma barra vertical controlador sido capaz de manter ainda assim a barra vertical.
 - A Matsushita vende aspiradores com microcontroladores que executam algoritmos de controlo difuso para receberem informação de sensores de pó e ajustar a força de sucção.
- receber informação do peso da roupa, do tipo de tecidos e da sujidade e ajustar automaticamente o programa de lavagem de forma a poupar A Hitachi vende máquinas de lavar com controladores difusos para detergente, água e energia.

Conteúdo

Sistemas de inferência difusa

Sistema difuso baseado em regras Regras difusas Fuzificação

Inferência difusa Desfuzificação

Exercícios

Controladores Difusos

Componentes dum controlador difuso Componentes dum controlador difuso

Tipos de controladores difusos

Exercício

Leitura recomendada

lectivo 2023-24 uís A. Alexandre (UBI)

istemas de inferência difusa

Introdução

- O exemplo anterior é muito simplista.
- Em casos reais, como num controlador, o resultado é obtido a partir de um conjunto de regras se-então.
- Estas regras descrevem as ações a tomar se se encontrarem reunidas determinadas condições.
- simultaneamente e aí o problema passa a ser saber qual a melhor No entanto é possível que várias regras sejam ativadas ação a tomar.
- Para tal é necessário um mecanismo que permita inferir qual a melhor ação a tomar quando um conjunto de situações ocorre. \blacktriangle
- No caso dos controladores difusos, as situações são expressas em termos de funções de pertença e a inferência difusa sobre informação disponível determina a ação a tomar. \blacktriangle

Ano lectivo 2023-24 Inteligência Computacional Luís A. Alexandre (UBI)

Introdução

Alguns exemplos (continuação):

- A Canon tem um sistema de focagem baseado em controlo difuso. Usa movimento das lentes. A saída é a posição das lentes. O sistema usa 12 entradas: 6 para medir a claridade e 6 para medir a taxa de regras e 1.1 kilobytes de memória.
- aquecimento e 25 de arrefecimento. O sensor de temperatura fornece a motor da ventoinha. Quando comparado com uma versão anterior este modelo aquece e arrefece 5 vezes mais rápido, reduz o consumo energético em 24%, aumenta a estabilidade da temperatura 2 vezes e entrada, e as saídas controlam um inversor, a válvula do compressor e A Mitsubishi tem um ar condicionado industrial que usa 25 regras de usa menos sensores.

Luís A. Alexandre (UBI)

sistemas de inferência difusa

Regras difusas

- Para sistemas difusos em geral (não apenas os controladores difusos referidos atrás), o comportamento dinâmico do sistema é gerido por um conjunto de regras difusas.
- Estas regras são obtidas normalmente a partir de um perito humano. \blacksquare
- As regras difusas (na abordagem Mamdani) são da forma se antecedente(s) então consequente(s)
- Os antecedentes são uma combinação de conjuntos difusos através da aplicação dos operadores lógicos (complemento, intersecção e \blacksquare
- O consequente é normalmente apenas um conjunto difuso, mas poderão ser vários combinados com os operadores lógicos.

lectivo 2023-24

1/37

Alexandre (UBI)

sistemas de inferência difusa

Fuzificação

- Os antecedentes das regras difusas formam o espaço difuso de entrada enquanto que os consequentes formam o espaço difuso de saída.
- O processo de fuzificação trata de arranjar uma representação difusa de valores de entrada não difusos.
- lsto é conseguido aplicando funções de pertença associadas aos conjuntos difusos do espaço difuso de entrada. \blacktriangle
- Para exemplificar podemos considerar o problema visto antes sobre os metros e ter que lhes atribuir um grau de pertença no conjunto A. Este passo resume-se à aplicação das funções de pertença a valores jogadores de basket. A ideia é receber p.ex. as suas alturas em do problema que não estejam originalmente na forma difusa

Inteligência Computacional Luís A. Alexandre (UBI)

Inferência difusa

- Existem várias possibilidades de combinação dos operadores difusos para a obtenção da força de disparo. Vamos considerar apenas a intersecção.
- Para a regra anterior, força de disparo seria então dada por \blacktriangle

$$\alpha = \min\{\mu_A(x), \mu_B(y)\}$$

- × Neste caso temos apenas uma regra mas em geral para cada regra teria de ser calculada a sua força de disparo, $\alpha_k.$ \blacktriangle
 - achando apenas um valor difuso para cada conj. difuso de saída C;. O passo seguinte consiste em acumular todos os valores de saída
- é obtido usando o Normalmente esse valor difuso β_i associado a C_i operador máximo

 $\beta_i = \max_{\forall k} \{\alpha_{k_i}\}$

onde $lpha_{k_i}$ é a força de disparo da regra k que tem como saída C_i .

Ano lectivo 2023-24

Luís A. Alexandre (UBI)

Sistema difuso Sistemas de inferência difusa

Sistema difuso baseado em regras

- Os conjuntos difusos e as regras difusas formam a base de conhecimento de um sistema difuso baseado em regras.
- Além da base de conhecimento, um sistema difuso baseado em regras é composto ainda por três outros componentes que realizam as seguintes tarefas: fuzificação, inferência e desfuzificação.

sistemas de inferência difusa

Inferência difusa

- sequencial, até uma disparar. No caso difuso todas as regras disparam ▶ Num sistema de regras não difuso, cada regra é avaliada de forma e são usadas para obter a resposta final.
- Consideremos dois conjuntos difusos A e B de entrada e um conjunto difuso de saída C. \blacktriangle
- As variáveis x e y são de variáveis de entrada enquanto que z é variável de saída.
- Consideremos ainda a seguinte regra

se $x \in A$ e $y \in B$ então $z \in C$

- Do processo de fuzificação sabemos os valores de $\mu_A(x)$ e $\mu_B(y)$ \blacktriangle
- Para efetuarmos os processo de inferência devemos começar por calcular a força de disparo de cada regra constante da base de regras.
- Isto é feito combinando os conjuntos antecedentes através dos operadores lógicos difusos.

lectivo 2023-24 Luís A. Alexandre (UBI)

9/37

lectivo 2023-24

10/37

Inferência difusa

- Os β_i são usados para modificar o conjunto difuso de saída C_i .
- Essa modificação pode ser feita de várias formas, mas iremos apenas considerar o uso do operador mínimo: achamos o mínimo entre o valor da função de pertença de C_i e o respetivo $eta_{i,i}$
- A saída do processo de inferência difusa é um conjunto difuso, para cada variável de saída. \blacktriangle
- As regras podem ainda ser pesadas a priori com pesos pertencentes a valores são normalmente definidos por peritos durante o desenho do [0,1] que representam o grau de confiança em cada regra. Estes
- β_{i} . Esses pesos multiplicam os α_k antes da determinação dos

12/37

sistemas de inferência difusa Inferência difus

Inferência difusa

- Resumo dos passos de fuzificação e inferência:
- Determinar os valores fuzificados de cada variável de entrada (são os valores das funções de pertença das variáveis a cada um dos conjuntos difusos de entrada);
 - 2. Achar a força de disparo de cada regra, α_k , $k=1,\ldots,R$, onde R é o número total de regras, usando o mínimo entre os valores fuzificados das variáveis de entrada que fazem parte dos antecedentes de cada
- 3. Achar os valores difusos associados a cada saída, β_i , $i=1,\ldots,S$, onde S é o número de conjuntos difusos das saídas, usando o máximo entre S é forma do disconsidio de S forma conjuntos difusos das saídas, usando o máximo entre S forma de S forma S forma S formal S
 - as forças de disparo que têm como consequentes o mesmo conjunto; 4. Criar o conjunto difuso de saída da inferência combinando através da reunião, os conjuntos C_l limitados pelos respectivos β_l (o mínimo entre α_l o β_l).

Luís A. Alexandre (UBI) Ano lectivo 2023-24

Sistemas de inferência difusa

| Inferência difusa: exemplo

- Consideremos que pretendemos controlar uma ventoinha num café em função da temperatura do ar.
- ► A temperatura x é medida e fuzificada em 3 conjuntos: FRIO, NORMAL e CALOR.
- A velocidade de rotação da ventoinha z é caracterizada por 2 conj. difusos: LENTA e RÁPIDA.
- As regras da base de conhecimento são as seguintes:
 - R1: Se x é FRIO então z é LENTA
- R2: Se x é NORMAL então z é RÁPIDA
 - R3: Se x é CALOR então z é RÁPIDA

► Usando as funções de pertença das figuras seguintes, queremos obter a saída da inferência difusa quando é lida a temperatura x₀.

Luís A. Alexandre (UBI) Inteligência Computacional Ano lectivo 2023-24 14

Inferência difusa: exemplo

istemas de inferência difusa

Conjuntos difusos para a variável x de entrada (temperatura):

Sistemas de inferência difusa Inferência dif

Inferência difusa: exemplo

- Começamos por determinar a força de disparo de cada regra. Para x_0 temos os seguintes valores das funções de pertença: $\mu_{FRIO}(x_0)=0.4$, $\mu_{NORMAL}(x_0)=0.8$ e $\mu_{CALOR}(x_0)=0$.
- Agora podemos obter os valores de α_k para cada regra (k=1,2,3): $\alpha_1(x_0)=0.4,\ \alpha_2(x_0)=0.8$ e $\alpha_3(x_0)=0.$
- \blacktriangleright Como todas as regras tinham apenas um conjunto no antecedente o valor dos α é igual aos valores difusos da temperatura.
- Para determinarmos os valores de β_{LENTA} e β_{RAPIDA} precisamos de achar o máximo entre as forças de ativação (os α) das regras que têm como consequente cada um destes conjuntos.

Luie Δ. Δlavandra. (TIRI) Intelirância Commitacional Δno lact

Sistemas de inferência difusa Infe

Inferência difusa: exemplo

Conjuntos difusos para a variável z de saída (velocidade da ventoinha):

Cintown on the instance of firms

Inferência difusa: exemplo

- Assim:
- $\beta_{LENTA} = \max\{\alpha_1(x_0)\} = \max\{0.4\} = 0.4$ $\beta_{RAPIDA} = \max\{\alpha_2(x_0), \alpha_3(x_0)\} = \max\{0.8, 0\} = 0.8$
- ▶ Agora podemos obter o conjunto difuso de saída da fase de inferência: {0.4/0,0.4/1,0.4/2,0.5/3,0.8/4,0.8/5,0.8/6}.

Luís A. Alexandre (UBI) Inteligência Computacional Ano lectivo 2023-24 18,

sistemas de inferência difusa

Desfuzificação

- A tarefa da desfuzificação consiste em transformar a saída do processo de inferência difusa em valores escalares para cada variável de saída. Ā
- Veremos de seguida várias abordagens embora existam muitas mais.
- Para facilitar a explicação, usaremos o exemplo do controlo da ventoinha, que acabámos de estudar.

Alexandre (UBI)

Desfuzificação: Método bisector da área

- ▶ Método bisector da área: determina-se o valor z₀ que separa a área da função de pertença em duas regiões com a mesma área.
 - Mais formalmente \blacktriangle

$$\int_a^{z_0} \mu_C(z) dz = \int_{z_0}^b \mu_C(z) dz$$

onde $z \in [a, b]$

lectivo 2023-24 Inteligência Computacional

Luís A. Alexandre (UBI)

Desfuzificação: Método do centróide

- função de pertença e a saída do controlador é a abcissa do centróide. Método do centróide: determina-se o centróide da área debaixo da \blacktriangle
- O cálculo do centróide das áreas trapezoidais depende de o domínio das funções de pertença ser discreto ou contínuo:
 - 1. Para o caso discreto em que as funções de pertença só possam tomar um de n valores, a saída do processo de desfuzificação é dada por

$$z_0 = rac{\sum_{i=1}^n z_i \mu_C(z_i)}{\sum_{i=1}^n \mu_C(z_i)}$$

No caso contínuo a saída do processo de desfuzificação é dada por 6

$$z_0 = \frac{\int_{z \in Z} z \mu(z) dz}{\int_{z \in Z} \mu(z) dz}$$

onde tanto os somatórios como os integrais têm o seu significado

algébrico comum.

Sistemas de inferência difusa

Desfuzificação: Método da média dos máximos

- Método da média dos máximos: determina-se o valor médio de todos os valores em que a função de pertença atinja o máximo.
- Para o exemplo, temos

$$z_0 = (4+5+6)/3 = 5$$

lectivo 2023-24 Alexandre (UBI)

19/37

lectivo 2023-24

Desfuzificação: Método do primeiro máximo

- ▶ Método do primeiro máximo: determina-se o valor z₀ que corresponde ao primeiro máximo da função de pertença.
- Para o exemplo, temos máximos= $\{4,5,6\}$, logo z_0 =4.

Luís A. Alexandre (UBI)

21/37

Inteligência Computacional

22/37

Ano lectivo 2023-24

Exercícios

- Considere as seguintes regras
- R1: se x é Pequeno então y é Grande R2: se x é Médio então y é Pequeno
 - R3: se x é Grande então y é Médio

Responda às seguintes questões, usando as funções de pertença que se representam abaixo e considerando um valor de entrada x=1.5:

$$' = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$$

Controladores Difusos

Controladores Difusos

- O primeiro controlador difuso foi implementado por Mamdani e Assilian em 1975 para o controlo dum motor a vapor.
- ► Hoje em dia existem inúmeras aplicações dos controladores difusos, tanto em aplicações de consumo como industriais: máquinas de lavar roupa, câmaras de vídeo, ar condicionados, controlo de robots, nas barragens, em cimenteiras, etc.

Luís A. Alexandre (UBI) Inteligência Computacional Ano lectivo 2023-24 27/37

Componentes dum controlador difuso

- Os componentes de um controlador difuso são os mesmos de um sistema de inferência difusa, pois o controlador é um caso particular dum detec cirtamas
- Assim sendo, os seus componentes são: fuzificador, motor de inferência, base de conhecimento (composta pelos conj. difusos e pelas regras difusas) e o desfuzificador.

uís A. Alexandre (UBI) Inteligência Computacional Ano lectivo 2023-24 29/3

Exercícios

2. Apresente a saída do processo de desfuzificação (usando o método do centróide) para o exemplo do controlador da ventoinha, considerando que a mesma só pode rodar com as seguintes velocidades: {0,1,2,3,4,5,6} m/s.

s A. Alexandre (UBI) Inteligência Computacional Ano lectivo 2023-24

Controladores Difusos Componentes dum cor

Componentes dum controlador difuso

- ► Um controlador é usado para controlar algum sistema ou processo.
- Um controlador pode ser visto como uma função não-linear que mapeia as entradas nas saídas.
- O sistema sob controlo tem de apresentar um determinado comportamento independentemente dos valores recebidos nas entradas.
- Exemplo: manter temperatura numa máquina de extrusão de plástico.

Componentes dum controlador difuso

Luís A. Alexandre (UBI) Inteligência Computacional Ano lectivo 2023

Controladores Difusos

Tipos de controladores difusos

- As diferenças principais entre os vários tipos de controladores difusos são ao nível do motor de inferência e do desfuzificador.
- Independentemente do tipo, todos os controladores difusos partilham os seguintes passos em termos da sua construção: A
- os conjuntos difusos e as respetivas funções de pertença têm de ser definidos tanto para o espaço de entrada como para o de saída
 - têm de ser definidas as regras com a ajuda de um perito humano
- tem de ser decidido como efetuar a implementação do fuzificador, do motor de inferência e do desfuzificador, dadas as possibilidades discutidas anteriormente.

lectivo 2023-24 Alexandre (UBI)

31/37

Controlador Mamdani

- Este tipo de controladores usa os seguintes passos: \blacksquare
- Identificar e dar nome às variáveis de entrada e definir a suas gamas H
- ldem para as variáveis de saída
- Definir os conjuntos difusos relativos às variáveis de entrada e saída 2 6 7 . 6 . 7
 - Construir as regras difusas
- Fuzificar as variáveis de entrada
- Efetuar a inferência difusa
- Desfuzificar usando a regra do centróide
- Uma desvantagem destes controladores é o custo computacional pois usam formas bidimensionais (as funções de pertença) e por vezes é necessário efetuar integrações. \blacktriangle

Inteligência Computacional Luís A. Alexandre (UBI)

33/37

Ano lectivo 2023-24

Controlador Takagi-Sugeno

A força de disparo de cada uma das K regras é obtida usando

$$\alpha_k = \min_{\forall i: a_i \in Ant_k} \{\mu_{A_i}(a_i)\}$$

оп

$$\alpha_k = \prod_{\forall i: a_i \in Ant_k} \mu_{A_i}(a_i)$$

Ä. onde Ant_k é o conjuntos dos antecedentes da regra

A saída do controlador é dada por Ā

$$= \frac{\sum_{k=1}^{K} \alpha_k f_{2,k}(a_1, \dots, a_n)}{\sum_{k=1}^{K} \alpha_k}$$

onde $f_{2,k}$ é a função dos consequentes da regra k.

Controladores Difusos

Controlador baseado em tabela

- Estes controladores são usados em universos discretos onde é prático calcular todas as combinações possíveis para as entradas do
- controlador. As duas entradas servem para se escolher uma célula da matriz que contém o valor a apresentar na saída do controlador. saída, uma matriz bidimensional serve para guardar a informação do numa tabela: p. ex., se o sistema tiver apenas duas entradas e uma As saídas para cada combinação das entradas são então colocadas
- necessitarem de pouca capacidade de processamento, uma vez que a Uma vantagem destes controladores é serem muito rápidos e tabela esteja construida. \blacktriangle
- complicado criar as tabelas para os casos em que o número de O problema destes controladores reside no facto de se tornar combinações possíveis é elevado.

lectivo 2023-24 nteligência Computaciona uís A. Alexandre (UBI)

Controladores Difusos

Controlador Takagi-Sugeno

- 0 Os controladores do tipo Mamdani são bons para capturar conhecimento de peritos quando esse conhecimento não é representável de forma analítica.
- Quando o conhecimento pode ser representado analiticamente deve usar-se um controlador Takagi-Sugeno. \blacktriangle
- diferente das regras difusas permitindo que as saídas fossem obtidas a Takagi e Sugeno sugeriram que se efetuasse uma representação partir das entradas através de funções matemáticas. \blacktriangle
- entradas; C é o consequente, os a_i são as variáveis de entrada e A_i os Para este tipo de controladores as regras apresentam a seguinte forma: se $f_1(a_1 \notin A_1, a_2 \notin A_2, \ldots, a_n \notin A_n)$ então $C = f_2(a_1, a_2, \ldots, a_n)$ onde f_1 é um operador lógico difuso e f_2 uma função linear das conjuntos difusos de entrada. \blacktriangle

34/37 Ano lectivo 2023-24 Inteligência Computacional Luís A. Alexandre (UBI)

Exercício

Dadas as seguintes regras dum sistema Takagi-Sugeno:

se
$$x \notin A_1$$
 e $y \notin B_1$ então $z_1 = x + y + 1$
se $x \notin A_2$ e $y \notin B_1$ então $z_2 = 2x + y + 1$
se $x \notin A_1$ e $y \notin B_2$ então $z_3 = 2x + 3y$
se $x \notin A_2$ e $y \notin B_2$ então $z_4 = 2x + 5$

disparo e considerando x = 1, y = 4 e os seguintes conjuntos difusos ache o valor de z usando a regra do mínimo para achar as forças de antecedentes:

$$A_1 = \{0.1/1, 0.6/2, 1.0/3\}$$

$$A_2 = \{0.9/1, 0.4/2, 0.0/3\}$$

$$B_1 = \{1.0/4, 1.0/5, 0.3/6\}$$

$$B_2 = \{0.1/4, 0.9/5, 1.0/6\}$$

Leitura recomendada
► Engelbrecht, caps. 19 e 20.
► Introduction to Fuzzy Logic using MATLAB, S.Sivanandam, S.Sumathi, S.Deepa, Springer 2007