Intermediate report

Raw sequencing data QC

Read mapping QC
Variant calling summary
Basic population structure (PCA)
Mitochondrial tree (COI)

Raw sequencing data QC

10-85M (single outlier 2.5M) of sequences reads obtained, most of the high quality GC content in large proportion of the samples appeared abnormal (37% is expected)

Read mapping QC

Read mapping revealed difference in insert sizes (length of sequences fragments) between historical and contemporary samples

2%

1.5%

1%

0.5%

0%

0 50

100

150

200

250

Insert size

Created with MultiQCC

"Contemporary" samples

input GC < 50%

Fastp: Insert Size Distribution

Read mapping QC

Historical samples showed lower coverage / mapping depth, variant calling strategy adjusted to accommodate

"Historical" samples input GC > 50%

input GC < 50%

Read mapping QC

Historical samples showed lower coverage / mapping depth, variant calling strategy adjusted to accommodate

"Historical" samples input GC > 50%

input GC < 50%

Variant calling QC

At the first step samples are called individually (freeBayes), sufficient number of SNPs recovered

"Historical" samples input GC > 50%

Variant calling QC

Conclusion: distribution of substitution types doesn't indicate strong signatures of deamination

Variant calling QC

Joined variant calling performed with settings from GenErode* pipeline

Stringient filtering applied:

Quality filter: MQ < 30

Missingness filter: variants are required to be present in at least 70 individuals

Total number of SNPs: 220,333

Population structure analysis

Basic principle component analysis (PCA) revealed unexpected grouping of samples based on geography and sampling year

Population structure analysis

Excluding mtDNA, sex-chromosomes and lower quality (historical) samples did not change overall structure of the plot

Melitaea britomartis

Mitochondrial tree (COI)

PCA outlier samples grouped with sister species

SNP calling #3:

(GenErode + custom settings, whole genome, all individuals)

PCA:

- contemporary
- missing max 3
- autosomes only

- BAJK
- KAZA
- SLOV
- URAL
- RUSS
- JAPA
- CHEH
- KRAS
- STOC
- VAST
- SMAL
- ALTA
- KALM
- POLA
- VORO
- BELA
- GAST
- UPPS
- DALA
- ITAL

Mapping and quality control

Sarek is used to map and call two sets separately

"Historical" samples input GC > 50%

"Contemporary" samples input GC < 50%

Summary of SNP calling with freebayes

Conclusion: low quality/depth of coverage for historical samples, careful filtering needed

"Contemporary" samples input GC < 50%

Variant depth

SNP filtering attempt #1: stringent filtering of merged file

Conclusion: after applying stringent quality filters (below) number of SNPs reduced dramatically

number of samples:	73
number of records:	2203
number of no-ALTs:	0
number of SNPs:	2203
number of MNPs:	0
number of indels:	0
number of others:	0
number of multiallelic sites:	334

--remove-indels

--max-missing-count 10

--minQ 30

--min-meanDP 10

--max-meanDP 40

LD pruning applied

SNP filtering attempt #1: stringent filtering of merged file

Conclusion: samples group together in unusual pattern, no segregation based on geography, however no bias towards historical samples is observed

SNP filtering attempt #1: stringent filtering of merged file

Conclusion: closer look at the main cluster confirms conclusions from the previous slide

SNP filtering attempt #2: relaxed filtering of merged and subsampled files

Number of SNPs is low, biological signal might be uninterpretable

Filtring approaches:

1. Removing individuals with low coverage from analysis (contemporary set, chromosome 1, --max-missing-count 10)

```
[3]key [4]value
        [2]id
# SN
                number of samples:
SN
                                         39
                number of records:
                                         4071
SN
                number of no-ALTs:
                number of SNPs: 4071
SN
SN
                number of MNPs: 0
                number of indels:
                number of others:
SN
SN
                number of multiallelic sites:
                                                 611
        0
```

```
[2]id
                [3]key [4]value
# SN
                number of samples:
SN
                                         39
                number of records:
                                         19175
                number of no-ALTs:
                number of SNPs: 19175
SN
                number of MNPs: 0
SN
                number of indels:
                                         0
SN
                number of others:
                number of multiallelic sites:
                                                 3137
```

--max-missing-count 10

--max-missing-count 30

Conclusion: number of retained SNPs is alarmingly low for high coverage/quality data, technical bias is suspected. Freebayes produced individual vcf files (within sarek) which are merged, possible joint genotyping is needed

SNP calling mpileup, reduced sample set

Effect of calling approach is tested on a reduced sample set: 10 individuals with the best coverage, considering only chromosome 1 (~10Mb)

Filtering (--max-missing-count 3 --min-alleles 2 --max-alleles 2 --minQ 30 + LD prune) produced more realistic results:

```
# SN [2]id [3]key [4]value
SN 0 number of samples: 10
SN 0 number of records: 665439
SN 0 number of no-ALTs: 0
SN 0 number of SNPs: 665439
SN 0 number of MNPs: 0
SN 0 number of indels: 0
SN 0 number of others: 0
SN 0 number of multiallelic sites: 0
```

mpileup consensus caller, identical to GenErode

```
# SN [2]id [3]key [4]value
SN 0 number of samples: 10
SN 0 number of records: 521907
SN 0 number of no-ALTs: 0
SN 0 number of SNPs: 521907
SN 0 number of MNPs: 0
SN 0 number of indels: 0
SN 0 number of others: 0
SN 0 number of multiallelic sites: 0
```

mpileup multiallelic caller, other settings from GenErode

SNP calling mpileup (GenErode settings, reduced sample set)

Conclusion: grouping is still unusual

mpileup consensus caller, identical to GenErode

mpileup multiallelic caller, other settings from GenErode

SNP calling mpileup #2 (GenErode settings, multiple chromosomes)

Conclusion: grouping is still unusual

mpileup multiallelic caller, other settings from GenErode

Calling strategy accepted!

SNP calling #3:

(GenErode + custom settings, whole genome, all individuals)

Testing PCA bias:

(PCA with only Swedish samples)

Testing PCA bias:

(contemporary and historical are plotted separately, mtDNA)

PCA:

- contemporary and historical
- missing max 3
- autosomes only
- ~100.000 SNP

BAJK

KAZA

SLOV

URAL

RUSS

JAPA

CHEH

KRAS

STOC

VAST

SMAL

ALTA

KALMPOLA

VORO

BELA

GAST

UPPS

DALAITAL

