医学統計学第2回

データの整理:ヒストグラムと確率分布

芳賀 昭弘

:(前期)月曜日6講時 15:30 - 16:30

1-1. 測定尺度

データは、必ず何らかの「尺度」で測定される。数学的水準で分類すると一般に次のように分類できる;

1-2. データの表現

5	データー	表 1.2 キュウリの	加量
/	ポット番号	表 1.2 キュララの 栽培法 A(g)	栽培法 B(g)
	1	3 063	3 157
	2	2 275	2 707
	3	2 089	3 270
	4	2 855	3 181
	5	2 836	3 633
	6	3 2 1 9	3 404
	7	2 817	2 2 1 9
	8	2 136	2 730
	9	2 540	3 408
	10	2 263	3 203
	11	2 140	2 938
	12	1 757	3 286
	13	2 499	2 920
	14	2 093	3 332
	15	2 073	3 478

度数分布表(ヒストグラム)

まとめ

表 1.3 キュウリ収量の度数分布表

総収量(g)	階級値(g)	度数 (ポット数)	相対度数(%)	累積相対度数 (%)
1700以上~2000未満	1 850	1	3.3	3.3
2 000 ~ 2 300	2 150	8	26.7	30.0
2 300 ~ 2 600	2 450	2	6.7	36.7
2 600 ~ 2 900	2 750	5	16.7	53.3
2 900 ~ 3 200	3 050	5	16.7	70.0
3 200 ~ 3 500	3 350	8	26.7	96.7
3 500 ~ 3 800	3 650	1	3.3	100.0

図 1.3 キュウリ収量のヒストグラム

1-2. データの表現

- ・ヒストグラムを作成することで、データのばらつきが直感的に捉えることができる。
- 一方、区切りの間隔(ビン幅、ビンサイズ)を変えると印象が変わるので注意

データ数をnとすると、ビン幅として

$$\lceil \frac{\max(x) - \min(x)}{\kappa} \rceil$$

とすることができる(つまり κ をビン幅(ヒストグラムの棒の数)とする)。ビン幅の取り方として

1.
$$\kappa = \sqrt{n}$$

$$2. \qquad \kappa = 1 + \log_2 n$$

などがある。後者はスタージェスの公式と呼ばれ、後述する二項分布において理論的な根拠を与える。

ヒストグラムと確率

ある病気の患者 5 人のうち 4 人は介護が必要ということが全国調査で分かっているとする。実際にその病気の患者 5 人を集めてみると、その中に介護が必要な人が何人いるでしょうか?

患者5人を10000グループ集めてみて集計してみました

確率密度と密度推定

ヒストグラム: サンプルされたデータが区分分けされた範囲内 に入る頻度 (確率分布のこと)

実際の分布が連続だったら?

(「確率密度」という)

サンプルされて得られたデータから 確率密度分布を推定しよう!

密度推定

ヒストグラムも密度推定の1つの手法である。 (区分分けした範囲にデータの値が来たらカウントする)

確率密度と密度推定

ヒストグラム密度推定

演習問題 選択肢

- 1. 比率データ
- 2.間隔データ
- 3.順位データ
- 4.カテゴリデータ

として、以下の問題に答えよ。

問題1.

アンケートで「体調が優れている」という問いに対して、回答が 1. 当てはまる, 2. 少し当てはまる, 3. 少し当てはまらない, 4. 当てはまらない となっている。番号でデータを集めた場合、どの測定尺度であるか?

問題2.

複数の患者の検体から遺伝子変異割合を調べた。このデータは、どの測定尺度であるか?

問題3.

血液のCRP(炎症反応, [mg/dL])を肝臓がんの患者100名から採取し,ある値以上を「炎症あり」それ未満を「炎症なし」と分類した。このデータは、どの測定尺度であるか?