

Mining Massive Datasets Mining Data Stream

•Copyright Anand Rajaraman, Jure Leskovec, and Jeffrey D. Ullman, Stanford University

Outline

- 1.1 Intro of Data Stream?
- 1.2 Sampling from a Data Stream
- 1.3 Queries over a Sliding Window

Data Stream

- where dose it come from?
 - sensor data: hospital, ocean, war
 - image data: satellites, surveillance cameras
 - web site: Google, twitter

Application

■ Mining click streams

Google wants to know what queries are more frequent today than yesterday

■ Mining query streams

Yahoo wants to know which of its pages are getting an unusual number of hits in the past hour

■ Mining social network news feeds
look for trending topics on Twitter, Facebook

General Stream Processing Model

Data Streams

- feature: infinite (non-stop), non-stationary (the distribution changes over time)
- before: database—all data is available when and if we want
- now: data arrives so rapidly that we can't store it all if it's not processed immediately or stored, then it's lost forever

summarization

Data Streams cont'd

- summarization
 - sample
 - fixed-length window

Outline

1.1 Intro of Data Stream?

1.2 Sampling from a Data Stream

1.3 Queries over a Sliding Window

Sampling from a Data Stream

- Two different problems:
- (1) Sample a fixed proportion of elements in the stream (say 1 in 10)
- (2) Maintain a random sample of fixed size over a potentially infinite stream

Sampling a Fixed Proportion

- Scenario: Search engine query stream
 - Stream of tuples: (user, query, time)
 - questions: How often did a user run the same query in a single days

■ Naïve solution:

- Generate a random integer in [0..9] for each query
- Store the query if the integer is 0, otherwise discard
- fixed proportion: 1/10

Problem with Naïve Approach

- question: What fraction of queries by an average search engine user are duplicates?
- suppose: each user issues x queries once and d queries twice (total of x+2d queries), no search queries more than twice
- Correct answer: $\frac{d}{x+d}$
- sample-based answer: $\frac{d}{10x+19d}$

Problem with Naïve Approach cont'd

- of the x queries issued once
 - \blacksquare x/10 of the search queries appear once
- of the d queries issued twice
 - d/100 appear twice $\leftarrow C_2^2 \frac{1}{10} \times \frac{1}{10} \times d$
 - 18d/100 appear once $\leftarrow C_2^1 \frac{1}{10} \times \frac{9}{10} \times d$

$$\frac{d/100}{(d/100) + (x/10) + (18d/100)} = \frac{d}{10x + 19d}$$

$$\neq \frac{d}{x+d}$$

Maintaining a fixed-size sample

- we need to maintain a random sample S of size exactly s (e.g., main memory size constraint)
- suppose at time t we have seen n items, Each item is in the sample S with equal prob. s/n
- for example: s=2,stream: $a \times c y z k c d e g...$
- At t= 5, each of the fist 5 tuples is included in the sample S with equal prob = 2/5
- At t=7, each of the first 7 tuples is included in the sample S with equal prob = 2/7

Maintaining a fixed-size sample cont'd

- problem?
- Don't know length of stream in advance,
- so need to store all the *n* tuples seen so far
 - ■Ensure each item is in the sample S with equal prob. s/n

Solution: Fixed Size Sample

■ Algorithm:

- Store all the first s elements of the stream to S
- Suppose we have seen n-1 elements, and now the nth element arrives (n > s)
 - With probability s/n, keep the nth element, else discard it
 - If we picked the nth element, then it replaces one of the s elements in the sample S, picked uniformly at random
- Claim: This algorithm maintains a sample 5 with the desired property

Proof: By Induction

- Property: after n elements, the sample contains each element seen so far with probability s/n
- Base case:
 - After we see n=s elements, Each out of n=s elements is in the sample with probability s/s = 1
- Inductive hypothesis:
 - ■After n elements, the sample S contains each element seen so far with prob. s/n
- Now element n+1 arrives

Proof: By Induction cont'd

■ Inductive step: For elements already in S, probability of remaining in S is: $(1-\frac{s}{n+1})+(\frac{s}{n+1})(\frac{s-1}{s})=\frac{n}{n+1}$

- Time n to n+1, tuple stayed in S with prob. n/(n+1)
- so prob. Tuple is in s at time n+1 = $\frac{s}{n} \times \frac{n}{n+1} = \frac{s}{n+1}$

Outline

- 1.1 Intro of Data Stream?
- 1.2 Sampling from a Data Stream
- 1.3 Queries over a Sliding Window

Sliding Window

■ Model: queries are about a *window* of length N the N most recent elements received

■ Interesting case:

Nis so large it cannot be stored in memory or even on disk Or, there are so many streams that windows for all cannot be stored

Sliding Window: 1 Stream

■ Sliding window on a single stream: N=6

Counting Bits(1)

■ Problem:

Given a stream of 0s and 1s

Be prepared to answer queries of the form How many 1s are in the last k bits? where $k \le N$

■ Obvious solution:

Store the most recent Nbits

When new bit comes in, discard the N+1st bit

Suppose N=6

Counting Bits(2)

- You can not get an exact answer without storing the entire window
- Real Problem:

What if we cannot afford to store Nbits?

E.g., we're processing 1 billion streams and

N = 1 billion 010011011101010110

----Past Future

■ But we are happy with an approximate answer

An attempt: Simple solution

- How many 1s are in the last Nbits?
- Simple solution that does not really solve our

problem: Uniformity assumption

■ Maintain 2 counters:

5: number of 1s from the beginning of the stream

Z: number of Os from the beginning of the stream

■ How many 1s are in the last N bits $\frac{N}{S+Z}$

■ But, what if stream is non-uniform?
What if distribution changes over time?

DGIM Method

- DGIM solution that does <u>not</u> assume uniformity
- We store $O(\log^2 N)$ bits per stream
- Solution gives approximate answer
 Error factor can be reduced to any fraction > 0,
 with more complicated algorithm and
 proportionally more stored bits

DGIM: Timestamps

- Each bit in the stream has a timestamp, starting 1, 2, ...
- Record timestamps modulo N (the window size), so we can represent any relevant timestamp in $O(log_2N)$ bits

DGIM: Buckets

- A bucket in the DGIM method is a record consisting of:
- 1. The timestamp of its end [O(log N) bits]
- 2. The number of 1s between its beginning and end $[O(\log \log N)]$ bits
- Constraint on buckets:
 Number of 1s must be a power of 2
- That explains the O(log log N) in 2.

Representing a Stream by Buckets

- Either one or two buckets with the same power-of-2 number of 1s
- Buckets do not overlap in timestamps
- Buckets are sorted by size
 Earlier buckets are not smaller than later buckets
- Buckets disappear when their end-time is > N time units in the past

Example: Bucketized Stream

Three properties of buckets that are maintained:

- Either one or two buckets with the same power-of-2 number of 1s
- Buckets do not overlap in timestamps
- Buckets are sorted by size

Updating Buckets (1)

- When a new bit comes in, drop the last (oldest) bucket if its end-time is prior to Ntime units before the current time
- 2 cases: Current bit is 0 or 1
- If the current bit is 0: no other changes are needed

Updating Buckets (2)

- If the current bit is 1:
- (1) Create a new bucket of size 1, for just this bit End timestamp = current time
- (2) If there are now three buckets of size 1, combine the oldest two into a bucket of size 2
- (3) If there are now three buckets of size 2, combine the oldest two into a bucket of size 4
- (4) And so on ...

Example: Updating Buckets

Current state of the stream:

Bit of value 1 arrives

Two orange buckets get merged into a yellow bucket

Bit 1 arrives, new orange bucket is created, then 0 comes, then 1:

Buckets get merged...

State of the buckets after merging

How to Query

- To estimate the number of 1s in the most recent Nbits:
- 1. Sum the sizes of all buckets but the last (note "size" means the number of 1s in the bucket)
- 2. Add half the size of the last bucket

■ Remember: We do not know how many 1s of the last bucket are still within the wanted window

Example: Bucketized Stream

Error Bound: Proof

- Why is error 50%? Let's prove it!
- Suppose the last bucket has size 2^r
- Then by assuming 2^{r-1} (i.e., half) of its 1s are still within the window, we make an error of at most 2^{r-1}
- Since there is at least one bucket of each of the sizes less than 2^r , the true sum is at least $1+2+4+...+2^{r-1}=2^r-1$
- Thus, error at most 50%

At least 16 1s

Extensions

■ Can we use the same trick to answer queries

How many 1's in the last k? where k < N?

■ A: Find earliest bucket B that at overlaps with k. Number of 1s is the sum of sizes of more recent buckets + $\frac{1}{2}$ size of B

■ Can we handle the case where the stream is not bits, but integers, and we want the sum of the last k elements?

Further Reducing the Error

- Instead of maintaining 1 or 2 of each size bucket, we allow either r-1 or r for r > 2
 - Except for the largest size buckets; we can have any number between 1 and r of those
- \blacksquare Error is at most 1/(r)
- By picking r appropriately, we can tradeoff between number of bits we store and the error

Extensions cont'd

- Stream of positive integers
- We want the sum of the last k elements
- Solution:
 - (1) If you know all integers have at most m bits Treat m bits of each integer as a separate stream Use DGIM to count 1s in each integer c_i ...estimated count for i-th bit
 - The sum is = $\sum_{i=0}^{m-1} c_i 2^i$
 - (2) Use buckets to keep partial sums
 Sum of elements in size b bucket is at most 2b

More Algorithms on Data Streams

Types of queries one wants on answer on a data stream:

Filtering a data stream: Bloom Filters

Select elements with property x from the stream

Counting distinct elements: Flajolet-Martin

Number of distinct elements in the last k elements of the stream

Estimating moments: AMS method

Estimate avg./std. dev. of last k elements

Finding frequent elements

Description

- Each element of data stream is a tuple
- Given a list of good keys S
- Determine which tuples of stream are in 5

- Obvious solution: Hash table
 - But suppose we do not have enough memory to store all of S in a hash table
 - E.g., we might be processing millions of filters on the same stream

Application

■ Email spam filtering

- We know 1 billion "good" email addresses
- If an email comes from one of these, it is **NOT** spam
- About 80% emails are spam

■ Publish-subscribe systems

- You are collecting lots of messages (news articles)
- People express interest in certain sets of keywords
- Determine whether each message matches user's interest

Application

- How many different words are found among the Web pages being crawled at a site?
- How many different Web pages does each customer request in a week?
- How many distinct products have we sold in the last week?

First Cut Solution

- Given a set of keys 5 that we want to filter
- Create a bit array B of n bits, initially all Os
- Choose a hash function h with range [0,n)
- Hash each member of $s \in S$ to one of n buckets, and set that bit to 1, i.e., B[h(s)]=1
- Hash each element a of the stream and output only those that hash to bit that was set to 1, i.e., output a if B[h(a)] == 1

First Cut Solution cont'd

- Creates false positives but no false negatives
- If the item is in S we surely output it, if not we may still output it

Prob. of False Negatives

■ |S| = 1 billion email addresses|B|= 1GB = 8 billion bits

- Approximately 1/8 of the bits are set to 1
- About 1/8 of the addresses not in S get through to the output (false positives)
- Actually, less than 1/8th, because more than one address might hash to the same bit

Throwing Darts

- Consider: Throw m darts into n targets equally, what is the probability that a target gets at least one dart?
- In our case:
 - Targets = bits/buckets
 - Darts = hash values of items
- Prob. a given dart will not hit a given target: (n-1)/n
- Prob. None of the m darts will hit a given target:

$$(\frac{n-1}{n})^m - > (1-\frac{1}{n})^{n(\frac{m}{n})} \approx e^{-m/n}$$

Throwing Darts cont'd

- Fraction of 1s in the array $B == probability of false positive == <math>1 e^{-m/n}$
- |S| = 1 billion email addresses |B|= 1GB = 8 billion bits

$$1 - e^{-\frac{m}{n}} = 1 - e^{-\frac{1}{8}} = 0.1175 \approx 0.125$$

Bloom Filter

- \blacksquare Consider: |S| = m, |B| = n
- Use k independent hash functions h1,..., hk
- Initialization:
 - Set B to all Os
 - Hash each element $s \in S$ using each hash function hi ,set B[hi(s)] = 1 (for each i = 1,..., k)

■Run-time:

- When a stream element with key x arrives Hash
- If B[hi(x)] = 1 for all i = 1,..., k then x is in S
- Otherwise discard the element

Bloom Filter cont'd

- What fraction of the bit vector B are 1s?
 - Throwing k·m darts at n targets
 - So fraction of 1s is (1 e^{-km/n})
- But we have k independent hash functions
- So, false positive probability = $(1 e^{-km/n})^k$

Bloom Filter cont'd

- \blacksquare m = 1 billion, n = 8 billion
 - = k = 1: (1 e 1/8) = 0.1175
 - = k = 2: (1 e 1/4)2 = 0.0493
- What happens as we keep increasing k?

- "Optimal" value of k: (n/m) ln(2)
 - In our case: Optimal $k = 8 \ln(2) = 5.54 \approx 6$

Chapter 4: Mining Data Stream 2

Outline

- 1.1 Filtering a data stream?
- 1.2 Counting distinct elements
- 1.3 Estimating moments
- 1.4 Counting frequent items

Description

- Data stream consists of a universe of elements chosen from a set
- Maintain a count of the number of distinct elements seen so far
- Obvious solution:
 maintain the set of elements seen so far
 - That is, keep a hash table of all the distinct elements seen so far
 - What if we do not have space to maintain the set of elements seen so far?
 - estimate the count in unbiased way
 - Accept that the count may have a little error but limit the probability that the error is large
 1-4

Flajolet-Martin Algorithm

- Pick a hash function h that maps each of the N elements to at least log₂N bits
- For each stream element a, let r(a) be the number of trailing 0s in h(a)
 - say h(a) = 12, then 12 is 1100 in binary, so r(a) = 2
- \blacksquare Record R = the maximum r(a) seen
- Estimated number of distinct elements = 2^R

Why it works: Intuition

- h(a) hashes a with equal prob. to any of N values
- Then h(a) is a sequence of log_2N bits, where 2^{-r} fraction of all a have a tail of r zeros
 - About 50% of as hash to ***0
 - About 25% of as hash to **00
 - So, if we saw the longest tail of r=2 (i.e., item hash ending *100) then we have probably seen about 4 distinct items so far
- \blacksquare So, it takes to hash about 2^r items before we see one with zero-suffix of length r

Why it works: Formally

- Now we show why M-F works
- Formally, we will show that probability of NOT finding a tail of r zeros:
 - Goes to 1 if $m \gg 2^r$
 - Goes to 0 if $m \ll 2^r$
 - where *m* is the number of distinct elements seen so far in the stream

Why it works: Formally cont'd

- h(a) hashes elements uniformly at random
- \blacksquare Prob. that a random number ends in at least r zeros is 2^{-r}
- The, the probability of NOT seeing a tail of length r among m elements:

Why it works: Formally cont'd

- Note: $(1-2^{-r})^m = (1-2^{-r})^{2^{r(m2^{-r})}} \approx e^{-m2^{-r}}$
- If m $<< 2^r$, $(1-2^{-r})^m \approx e^{-m2^{-r}} = 1$
 - So, the probability of finding a tail of length r tends to 0
- If m >> 2^r, $(1-2^{-r})^m \approx e^{-m2^{-r}} = 0$
 - So, the probability of finding a tail of length r tends to 1

■ Thus, 2^R will almost always be around m

Combining Estimates

- \blacksquare Consider, using many hash functions hi and getting many samples of R_i
- \blacksquare How are samples R_i combined?
 - Average? What if one very large value 2^{Ri}?
 - Median? All estimates are a power of 2

■ Solution:

- Partition your samples into small groups
- Take the average of groups
- Then take the median of the averages

Chapter 4: Mining Data Stream 2

Outline

- 1.1 Filtering a data stream?
- 1.2 Counting distinct elements
- 1.3 Estimating moments
- 1.4 Counting frequent items

Generalization

- What is moment?
- Suppose a stream has elements chosen from a set A of N ordered values
- Let m; be the number of times value i occurs in the stream
- The kth-order moment is

$$\sum\nolimits_{i\in A} {{{(m_i)}^k}}$$

Special case

$$\sum\nolimits_{i\in A}{(m_i)^k}$$

- 0th moment = number of distinct elements
 - The problem just considered
- 1st moment = count of the numbers of elements = length of the stream
 - Easy to compute
- 2nd moment = surprise number S = a measure of how uneven the distribution is

Surprise Number

- Stream of length 100
- 11 distinct values
- Item counts: 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9Surprise 5 = 910
- Item counts: 90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1Surprise S = 8,110

Alon-Matias-Szegedy Algorithm

- We will begin with the 2nd moment S
- We keep track of many variables X
- For each variable X we store X.el and X.val
 - X.el corresponds to the item i
 - X.val corresponds to the count of item i
 - Note this requires a count in main memory, so number of Xs is limited
- Our goal is to compute:

$$S = \sum_{i} m_{i}^{2}$$

Alon-Matias-Szegedy Algorithm

- How to set X.val and X.el?
 - Assume stream has length n (we relax this later)
 - Pick some random time t (t<n) to start, so that any time is equally likely
 - Let at time t the stream have item i. We set X.el = i
 - Then we maintain count c(X.val = c) of the number of is in the stream starting from the chosen time t
- Then the estimate of the 2nd moment is:

$$S = f(x) = n(2c-1)$$

■ Note, we keep track of multiple Xs, (X1, X2,...Xk), and our final estimate will be

$$S = \frac{1}{k} \sum_{j} f(X_{j})$$

Expectation Analysis

 $c_t \dots$ number of times record at time t appears from that time on $(c_1=m_a, c_2=m_a-1, c_3=m_b)$

$$E[f(x)] = \frac{1}{n} \sum_{t=1}^{n} n(2c_t - 1)$$

$$= \frac{1}{n} \sum_{a} n(1 + 3 + 5 + \dots + 2m_a - 1)$$

$$= \sum_{a} (m_a)^2$$

$$\sum_{a=1}^{m_a} (2i-1) = 2 \frac{m_a (m_a + 1)}{2} - m_a = (m_a)^2$$

Example

- Stream: a,b,c,b,d,a,c,d,a,b,d,c,a,a,b
- length of the stream n = 15
- \blacksquare a: 5, b: 4, c: 3, d: 3, surprise num: $5^2 + 4^2 + 3^2 + 3^2 = 59$
- Three variables X1, X2, X3
- Random pick 3rd, 8th, 13th position to define X1,X2,X3
 - \blacksquare X1.el = c, X1.val = 3
 - X2.el = d, X2.val = 2
 - \blacksquare X3.el = a, X3.val = 2
 - an estimate for any variable X: n*(2*X.val 1)
 - **■** 75,45,45→55

Higher Order Moment

- For estimating kth moment we essentially use the same algorithm but change the estimate:
 - For k=2 we used $n(2\cdot c 1)$
 - For k=3 we use: $n(3 \cdot c^2 3c + 1)$
- Why?
 - For k=2: Remember we had $1+3+5+\cdots+2m_i-1$ and we showed terms 2c-1 (for c=1,...,m) sum to m^2

■ So:
$$\sum_{c=1}^{m} 2c - 1 = \sum_{c=1}^{m} c^2 - \sum_{c=1}^{m} (c-1)^2 = m^2$$

- For k=3: $c^3 (c-1)^3 = 3c^2 3c + 1$
- Generally: Estimate = $n(c^k (c-1)^k)$

Combining Samples

■ In practice:

- For k=2 we used $n(2\cdot c 1)$
- In practice, Compute f(X) = n(2c-1) for as many variables X as you can fit in memory
- Average them in groups
- Take median of averages
- Problem: Streams never end
 - •We assumed there was a number n, the number of positions in the stream
 - But real streams go on forever, so n is a variable the number of inputs seen so far

Stream never ends

- ■The variables X have n as a factor keep n separately; just hold the count in X
- Suppose we can only store k counts. We must throw some Xs out as time goes on:
- Objective: Each starting time t is selected with probability k/n
- Solution: (fixed-size sampling!)
 - Choose the first k times for k variables
 - When the nth element arrives (n > k), choose it with probability k/n
 - If you choose it, throw one of the previously stored variables X out, with equal probability

Chapter 4: Mining Data Stream 2

Outline

- 1.1 Filtering a data stream?
- 1.2 Counting distinct elements
- 1.3 Estimating moments
- 1.4 Counting frequent items

Counting items

■ New Problem: Given a stream, which items appear more than s times in the window?

- Possible solution
 - Think of the stream of baskets as one binary stream per item,1 = item present; 0 = not present
 - Use DGIM to estimate counts of 1s for all items
 - One stream per itemset, Number of itemsets is way too big

Exponentially Decaying Windows

- Exponentially decaying windows:
 - What are "currently" most popular movies?
 - Instead of computing the raw count in last N elements
 - Compute a smooth aggregation over the whole stream
- If stream is a1, a2,... and we are taking the sum of the stream, take the answer at time t to be: $\sum_{i=1}^{t} a_i (1-c)^{t-i}$ c is a constant, presumably tiny, like 10^{-6} or 10^{-9}
- When new at+1 arrives:
 Multiply current sum by (1-c) and add at+1

Example: Counting Items

- Imagine that for each item x we have a binary stream (1 if x appears, 0 if x does not appear)
- Calculate: $\sum_{i=1}^{t} \delta_i (1-c)^{t-i}$ where δ_i =1 if a_i =x, and 0 otherwise
- New item x arrives:
 - Multiply all counts by (1-c)
 - Add +1 to count for element x
- Call this sum the "weight" of item x

Decaying Window

Finding the Most Popular Elements

- Score Threshold: $\frac{1}{2}$
- When a new element m comes in:
 - Multiply all counts by (1-c)
 - Add 1 to count of element m
 - For uncounted element m, create one and initialize it to 1
 - Drop score $< \frac{1}{2}$
- There cannot be more than 2/c movies with weight of $\frac{1}{2}$ or more

Data Stream Application

■ MOA(Massive Online Analysis): ree open-source software specific for mining data streams

Data Stream Application

■ Monitoring IP addresses

Exercise 4. We have a stream of financial transactions including securities, options etc. collected from multiple sources. What are interesting data analysis queries on such data streams?

Exercise 5. We have continuous physical observations – temperature, pressure, EMG/ECG/EEG signals from humans, humidity – from an ad hoc network of sensors. What are interesting data analysis queries on such data streams?

Short Review of course part II

Review of Mining Massive Datasets

- Data Science: automatically extracting knowledge from data
 - Mathematics & Statistics
 - Machine Learning
 - Domain Expertise
- Applications in Business
 - Lots and lots
- Applications in the Sciences
 - Astronomy, Cosmology
 - High-energy Physics
 - Biology, Genomics
 - Neuroscience
 - The Social Sciences
- Medicine, education
- Government

What have been?

- Based on different types of data:
 - Data is high dimensional
 - Data is never-ending
 - Data is Graph
- We learned various "tools" and how to solve real-world problems:
 - DHT
 - Recommender systems,
 - Linear algebra (SVD, Rec. Sys., Communities)
 - Optimization (stochastic gradient descent)
 - Hashing (LSH, Bloom filters)

What we have been? DHT

- How do you search in O(log(n)) time?
 - Binary search
- You need an ordered array
- How can you order nodes in a network and data items?

Hash function

What we have been? DHT

- Hash table spread over many nodes
 - Distributed over a wide area
- Main design goals
 - Decentralization
 - no central coordinator
 - Scalability
 - efficient even with large # of nodes
 - Fault tolerance
 - tolerate nodes joining/leaving

What Makes a Good DHT Design

- For each object, the node(s) responsible for that object should be reachable via a "short" path (small diameter)
 - The different DHTs differ fundamentally only in the routing approach
- The number of neighbors for each node should remain "reasonable" (small degree)
- DHT routing mechanisms should be decentralized (no single point of failure or bottleneck)
- Should gracefully handle nodes joining and leaving
 - Repartition the affected keys over existing nodes
 - Reorganize the neighbor sets
 - Bootstrap mechanisms to connect new nodes into the DHT
- To achieve good performance, DHT must provide low stretch
 - Minimize ratio of DHT routing vs. unicast latency

CAN: Zone and Key

Use a virtual d-dimensional coordinate space

$$-[0, 1]^d = [0, 1] \times [0, 1] \times ... \times [0, 1]$$

- called a d-torus
- A peer is mapped to a "zone" of this d-torus and said to "own this zone"
- Each file F is identified with key
 K_F
- A hash function h maps a key to a point in the d-torus $K \rightarrow (x_1, x_2, ..., x_d) \in [0, 1]^d$, where $0 \le x_2 \le 1$.

2-torus

Data is High-dimensional

- 1. Shingling: Convert documents to sets
- 2. Min-Hashing: Convert large sets to short signatures, while preserving similarity
- 3. Locality-Sensitive Hashing: Focus on pairs of signatures likely to be from similar documents

Locality - Sensitive(LS) Families

- Suppose we have a space S of points with a distance measure d(x,y)
- A family H of hash functions is said to be (d1, d2, p1, p2)sensitive if for any x and y in S:
 - 1. If d(x, y) < d1, then the probability over all $h \in H$, that h(x) = h(y) is at least p1
 - 2. If d(x, y) > d2, then the probability over all $h \in H$, that h(x) = h(y) is at most p2

Dimensionality Reduction

- Assumption: Data lies on or near a low d-dimensional subspace
- Axes of this subspace are effective representation of the data

SVD

$$\mathbf{A} \approx \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \sum_{i} \sigma_i \mathbf{u}_i \circ \mathbf{v}_i^\mathsf{T}$$

$$\mathbf{A} \approx \mathbf{m} \mathbf{v}^\mathsf{T}$$

m.

SVD-Properties

- It is always possible to decompose a real matrix A into $A = U \sum V^T$, where
 - \blacksquare U, Σ , V: unique
 - U, V: column orthonormal
 - $U^T U = I^T V^T V = I (I^T identity matrix)$
 - (Columns are orthogonal unit vectors)
 - Σ: diagonal
 - Entries (singular values) are positive, and sorted in decreasing order ($\sigma_1 \geq \sigma_2 \geq ... \geq 0$)

SVD-Best Low Rank Approx.

- $\mathbf{A} = \mathbf{U} \sum \mathbf{V}^{\mathsf{T}}$, $\mathbf{B} = \mathbf{U} \mathbf{S} \mathbf{V}^{\mathsf{T}}$ $(\sigma_1 \ge \sigma_2 \ge ... \ge 0, \operatorname{rank}(A) = \mathbf{r})$
 - S = diagonal $n \times n$ matrix where $s_i = \sigma_i$ (i = 1...k) else $s_i = 0$ then B is solution to $\min_B \|A B\|_F$, $\operatorname{rank}(B) = k$
- Why?

$$\min_{B, rank(B) = k} \left\| A - B \right\|_F = \min \left\| \Sigma - S \right\|_F = \min_{s_i} \sum_{i=1}^r (\sigma_i - s_i)^2$$
 We used: U Σ V^T - U S V^T = U (Σ - S) V^T

- We want to choose s_i to minimize $\sum_i (\sigma_i s_i)^2$
- Solution is to set $s_i = \sigma_i$ (i = 1...k) and other $s_i = 0$

$$= \min_{s_i} \sum_{i=1}^k (\sigma_i - s_i)^2 + \sum_{i=k+1}^r \sigma_i^2 = \sum_{i=k+1}^r \sigma_i^2$$

Content based

Collaborative Filtering

- Consider user x
- Find set Nof other users whose ratings are "similar" to x's ratings
- Estimate x's ratings based on ratings of users in N

Bellkor Recommender System

- The winner of the Netflix Challenge
- Multi-scale modeling of the data:

Combine top level, "regional" modeling of the data, with a refined, local view:

Global:

Overall deviations of users/movies

- Factorization:
 - Addressing "regional" effects
- Collaborative filtering:
 - Extract local patterns

Fitting the New Model

Solve:

$$\min_{\mathcal{Q},P} \sum_{(x,i)\in R} (r_{xi} - (\mu + b_x + b_i + q_i p_x^T))^2$$
goodness of fit

$$+\lambda \left(\sum_{i} \|q_{i}\|^{2} + \sum_{x} \|p_{x}\|^{2} + \sum_{x} \|b_{x}\|^{2} + \sum_{i} \|b_{i}\|^{2} \right)$$
regularization

 λ is selected via gridsearch on a validation set

- Stochastic gradient decent to find parameters
 - Note: Both biases b_u , b_i as well as interactions q_i , p_u are treated as parameters (we estimate them)

General Stream Processing Model

Sample data from stream

■ Algorithm:

- Store all the first s elements of the stream to S
- Suppose we have seen n-1 elements, and now the nth element arrives (n > s)
 - With probability s/n, keep the nth element, else discard it
 - If we picked the nth element, then it replaces one of the s elements in the sample S, picked uniformly at random

Claim: Each element is included with prob. s/n

Queries from Sliding Window

■ Model: queries are about a *window* of length N the N most recent elements received

■ Interesting case:

Nis so large it cannot be stored in memory or even on disk Or, there are so many streams that windows for all cannot be stored

How many 1s are in last k bits?

Filtering a data stream: Bloom filters

- Given a set of keys 5 that we want to filter
- Create a bit array B of n bits, initially all Os
- Choose a hash function h with range [0,n)
- Hash each member of $s \in S$ to one of n buckets, and set that bit to 1, i.e., B[h(s)]=1
- Hash each element x of the stream and output only those that hash to bit that was set to 1, i.e., output x if B[h(a)] == 1

Filtering a data stream: Bloom filters

- Creates false positives but no false negatives
- If the item is in S we surely output it, if not we may still output it

Counting distinct elements in data stream

- Data stream consists of a universe of elements chosen from a set
- Maintain a count of the number of distinct elements seen so far
- Flajolet-Martin Algorithm
 - ■For each stream element a, let r(a) be the number of railing 0s in h(a) say h(a) = 12, then 12 is 1100 in binary, so r(a) = 2
 - \blacksquare Record R = the maximum r(a) seen so far
 - ■Estimated number of distinct elements = 2^R

We are producing more data than we are able to store!

[The economist, 2010]

Big Data trends

- The rise of the Industrial Internet
 - The faster you analyze data the great the predictive value
 - Using more diverse data, not just more data
- It is going to be cloudy: Big-Data-as-a-Service solutions
- Businesses get serious about big data privacy and security.
- Education and Medicine will be essential for success

How do you want that data?

Tell me and I forget.

Show me and I remember.

Involve me and I understand.

 \bullet \bullet \bullet \bullet \bullet \bullet \bullet

Thank you! Q&A

