Домашнее задание

Если вы оформили лабораторный журнал в электронном виде, принесите на практикум распечатанный вариант.

1. Оформить практикум **«1. Кислотно-основное титрование»**, руководствуясь текстом методички, здравым смыслом и схемой, указанной в правилах:

Записи в тетради для отчетов по лабораторным работам должны быть краткими, четкими. Отчет о выполненной лабораторной работе должен быть аккуратно оформлен и содержать следующие сведения:

- дату выполнения лабораторной работы,
- тему лабораторной работы,
- методику эксперимента, включающую в себя схему опытной установки,
- полученные данные и наблюдения,
- обработку результатов с необходимыми расчетами, уравнения всех необходимых химических реакций,
- краткое обсуждение полученного результата,
- выводы.

Не забывайте, что в тетради должны содержаться ответы на вопросы:

- а) Как экспериментальная концентрация (которую вы получили в результате титрования) соотносится с расчетной концентрацией NaOH в 0,1M? Почему возникает различие? (В ответе используйте химические формулы, уравнения реакций.)
- б) Как выглядит уравнение реакции нейтрадизации соляной кислоты гидроксидом натрия? Какой рН должен быть у раствора NaCl в воде? Какое значение рН вы получили в конце титрования с фенолфталеином или метиловым оранжевым? Почему рН в вашем растворе отличается от рН раствора NaCl?
- 2. К следующему занятию (методика дана ниже) нужно сделать предварительный расчет навесок NaH₂PO₄ и NaOH для приготовления буферного раствора.

Практическая работа 2. Кислотно-основное равновесие в растворах. Гидролиз. Буферные растворы.

Опыт 1. Гидролиз солей

Реактивы

Сухие соли: CH_3COONa , $MgCl_2$, Na_2CO_3 , $(NH_4)_2CO_3$, NaCl, CH_3COONH_4 , Na_2SO_3 , $ZnCl_2$; раствор универсального индикатора.

Оборудование

Пробирки, шпатель для реактивов, стеклянная палочка.

Прядок работы

В восемь пробирок внесите по 1 микрошпателю кристаллов следующих солей: в первую – ацетата натрия; во вторую – хлорида магния; в третью – карбоната натрия; в четвертую – карбоната аммония; в пятую – хлорида натрия; в шестую – ацетата аммония; в седьмую – сульфита натрия, в восьмую — хлорида цинка и прилейте в каждую пробирку по 1 мл дистиллированной воды. К полученным растворам добавьте по 2-3 капли универсального индикатора. Девятая пробирка используется в качестве контрольной, налейте в нее 1 мл дистиллированной воды и прибавьте 2-3 капли универсального индикатора. Все растворы следует размешать (стеклянные палочки не переносить из одного раствора в другой!).

По изменению окраски индикатора сделайте вывод о кислотности среды в растворе каждой соли. Какие из исследованных солей подвергаются гидролизу? Напишите ионные и молекулярные уравнения реакций их гидролиза и укажите вид гидролиза каждой соли. Объясните различную степень протекания реакций гидролиза по аниону.

Опыт 2. Факторы, влияющие на степень гидролиза

Реактивы

Сухие соли CH_3COONa , $MgCl_2$, Na_2CO_3 , $NaHCO_3$, Na_2SO_3 , $ZnCl_2$; индикаторная бумага, раствор универсального индикатора.

Оборудование

Пробирки, шпатель для реактивов, стеклянная палочка, спиртовка.

Прядок работы

а) Влияние силы кислоты и основания, образующих соль, на степень ее гидролиза

В две пробирки внести по одному микрошпателю кристаллов: в первую – сульфита натрия, в другую – карбоната натрия. Растворите соли прилив в каждую пробирку по 1 мл дистиллированной воды, а затем добавьте по одной капле универсального индикатора. Проведите аналогичный опыт с растворами солей ZnCl₂ и MgCl₂. *При желании можно провести аналогичный опыт, используя в качестве индикаторов фенолфталеин и метиловый оранжевый*.

Какая из солей в каждой паре в большей степени подвержена гидролизу? Ответ обоснуйте, написав ионные уравнения гидролиза изучаемых солей. Сделайте общий вывод о влиянии силы кислоты и основания, образующих соль, на степень гидролиза.

б) Влияние температуры на степень гидролиза

В пробирку внесите 2 микрошпателя ацетата натрия и растворите в 2 мл дистиллированной воды, а затем добавьте в раствор каплю фенолфталенина. Отметьте наблюдение. Пробирку с раствором аккуратно нагрейте на спиртовке и зафиксируйте изменение его окраски. Охладите пробирку в холодной воде.

Изменяется ли окраска при нагревании и охлаждении раствора? Почему?

в) Гидролиз средних и кислых солей

Возьмите две пробирки и внесите в одну из них один микрошпатель кристаллов карбоната натрия, а в другую столько же гидрокарбоната натрия. В каждую пробирку налейте по 1 мл дистиллированной воды и перемещайте их содержимое. Нанесите полученные растворы на универсальную индикаторную бумагу с помощью стеклянной палочки и определите значение рН каждого из полученных растворов.

Объясните наблюдаемые результаты опытов. Напишите ионные и молекулярные уравнения реакций гидролиза.

Опыт 3. Буферные растворы

Реактивы

Сухие $NaH_2PO_4 \times 2H_2O$ и NaOH, растворы HCl и NaOH, индикаторная бумага.

Оборудование

Мерная колба 100 мл, весы, шпатель для реактивов, стеклянная палочка.

Прядок работы

а) Приготовление буферного раствора

Запишите уравнении реакции частичной нейтрализации дигидрофосфата натрия до гидрофосфата гидроксидом натрия. Рассчитайте навески кристаллогидрата дигидрофосфата натрия ($NaH_2PO_4\times 2H_2O$) и гидроксида натрия для приготовления 100 мл 0,01M (то есть содержащего суммарно 0,01M солей ортофосфорной кислоты) буферного раствора, образованного равными концентрациями дигидрофосфата и гидрофосфата натрия. Рассчитайте значение pH буферного раствора с таким составом.

Внесите навески дигидрофосфата и гидроксида натрия в мерную колбу на 100 мл и доведите водой до метки, следя за тем, чтобы вещества полностью растворились. Проверьте значение рН полученного буферного раствора с помощью универсальной индикаторной бумаги.

б) Исследование свойств буферного раствора

Приготовленный буферный раствор разлейте в два стаканчика на 100 мл и добавьте в оба 1-2 капли универсального индикатора. В один стакан прибавляйте по каплям раствор щелочи, в другой – кислоты.

 Меняется ли окраска резко? Оцените объемы и количества вещества добавленных щелочи и кислоты до заметного изменения окраски от первоначальной. Сравните с концентрацией буферного раствора.