```
▶ In [49]: import pandas as pd
                                                                                        import numpy as np
                                                                                      Mild", "Mild", "Hot", "Mild"],
"Humidity": ["High", "High", "High", "High", "Normal", "Normal", "Normal", "Normal", "Normal", "Normal", "High"],
"Normal", "Normal", "High", "Normal", "High"],
"Wind": ["Weak", "Strong", "Weak", "Weak", "Strong", "Strong", "Weak", "Weak", "Strong", "Strong", "Strong", "Yes", "Yes
                                                                                      df = pd.DataFrame(dictinary)
```

Out[49]:

	Day	OUTLOOK	Temperature	Humidity	Wind	PlayTennis
0	D1	Sunny	Hot	High	Weak	No
1	D2	Sunny	Hot	High	Strong	No
2	D3	Overcast	Hot	High	Weak	Yes
3	D4	Rain	Mild	High	Weak	Yes
4	D5	Rain	Cool	Normal	Weak	Yes
5	D6	Rain	Cool	Normal	Strong	No
6	D7	Overcast	Cool	Normal	Strong	Yes
7	D8	Sunny	Mild	High	Weak	No
8	D9	Sunny	Cool	Normal	Weak	Yes
9	D10	Rain	Mild	Normal	Weak	Yes
10	D11	Sunny	Mild	Normal	Strong	Yes
11	D12	Overcast	Mild	High	Strong	Yes
12	D13	Overcast	Hot	Normal	Weak	Yes
13	D14	Rain	Mild	High	Strong	No

```
In [50]: part1 = len(df.loc[(df.PlayTennis=="Yes")&(df.Humidity == "High"), :])
         part2 = len(df.loc[(df.PlayTennis=="Yes")&(df.Humidity == "Normal"), :])
         len_df = len(df)
         def frac(a, b):
             return r'$\frac{'+str(a)+'}{'+str(b)+'}$'
```

Question 1

 $\sum_{i} p(PlayTennis = Yes \cap Humidity_i) = p(PlayTennis = Yes \cap Humidity = High) + p(PlayTennis = Yes \cap Humidity = Normal)$ $=\frac{3}{14}+\frac{6}{14}=\frac{9}{14}$

```
In [51]: #yes
         Result_yes1 = len(df.loc[(df.OUTLOOK=="Sunny")&(df.PlayTennis == "Yes"), :])
         Result_yes2 = len(df.loc[(df.Humidity=="Normal")&(df.PlayTennis == "Yes"), :])
         Result_yes3 = len(df.loc[(df.PlayTennis=="Yes"), :])
         Result_no1 = len(df.loc[(df.OUTLOOK=="Sunny")&(df.PlayTennis == "No"), :])
         Result_no2 = len(df.loc[(df.Humidity=="Normal")&(df.PlayTennis == "No"), :])
         Result_no3 = len(df.loc[(df.PlayTennis=="No"), :])
```

Question 2

- Classify: (Outlook = Sunny, Humidity = Normal) $Result_{yes} = \frac{p(Outlook = Sunny \ \cap \ PlayTennis = Yes)}{p(PlayTennis = Yes)} \times \frac{p(Humidity = Normal \ \cap \ PlayTennis = Yes)}{p(PlayTennis = Yes)} \times p(PlayTennis = Yes)$

$$Result_{yes} = \frac{2}{9} \times \frac{6}{9} \times \frac{9}{14} = \frac{12}{126} = \frac{2}{21}$$

• $Result_{no} = \frac{p(Outlook=Sunny \ \cap \ PlayTennis=No)}{p(PlayTennis=No)} \times \frac{p(Humidity=Normal \ \cap \ PlayTennis=No)}{p(PlayTennis=No)} \times p(PlayTennis=No)$

$$Result_{No} = \frac{3}{5} \times \frac{1}{5} \times \frac{5}{14} = \frac{3}{70}$$

In []: