Dinâmica e Sistemas Dinâmicos – Formulário

1. Cinemática

$$\bar{v} = \frac{\Delta s}{\Delta t}$$
 $\bar{a}_{t} = \frac{\Delta v}{\Delta t}$ $v = \frac{\mathrm{d}s}{\mathrm{d}t}$ $a_{t} = \frac{\mathrm{d}v}{\mathrm{d}t}$ $a_{t} = v \frac{\mathrm{d}v}{\mathrm{d}s}$

2. Cinemática vetorial

$$v_x = \frac{\mathrm{d}x}{\mathrm{d}t} \quad (\text{ou } y \text{ ou } z) \qquad a_x = \frac{\mathrm{d}v_x}{\mathrm{d}t} \quad (\text{ou } y \text{ ou } z) \qquad a_x = v_x \frac{\mathrm{d}v_x}{\mathrm{d}x} \quad (\text{ou } y \text{ ou } z)$$

$$\vec{r} = x \,\hat{\imath} + y \,\hat{\jmath} + z \,\hat{k} \qquad \vec{v} = \frac{\mathrm{d}\vec{r}}{\mathrm{d}t} \qquad \vec{a} = \frac{\mathrm{d}\vec{v}}{\mathrm{d}t} \qquad \vec{r} = \vec{r}_i + \int_{t_i}^t \vec{v}(t') \,\mathrm{d}t' \qquad \vec{v} = \vec{v}_i + \int_{t_i}^t \vec{a}(t') \,\mathrm{d}t'$$

Movimento relativo: $\vec{r}_P = \vec{r}_{P/O} + \vec{r}_O$

$$\vec{r}_{\rm P} = \vec{r}_{\rm P/O} + \vec{r}_{\rm C}$$

$$\vec{v}_{\mathrm{P}} = \vec{v}_{\mathrm{P/O}} + \vec{v}_{\mathrm{O}}$$

$$\vec{a}_{\rm P} = \vec{a}_{\rm P/O} + \vec{a}_{\rm O}$$

Produto escalar:

$$\vec{a} \cdot \vec{b} = ab \cos \theta$$

$$\vec{a} \cdot \vec{b} = a b \cos \theta$$
 $\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z$ $a = \sqrt{\vec{a} \cdot \vec{a}}$

$$a = \sqrt{\vec{a} \cdot \vec{a}}$$

3. Movimento curvilíneo

$$\vec{v} = \dot{s} \, \hat{e}_{t}$$
 $\vec{a} = \dot{v} \, \hat{e}_{t} + \frac{v^{2}}{R} \, \hat{e}_{n}$ $a^{2} = a_{t}^{2} + a_{n}^{2}$

Movimento circular: $s = R\theta$ $v = R\omega$ $a_t = R\alpha$

$$s = R\theta$$

$$\nu = R \omega$$

$$a_{t} = R \alpha$$

Produto vetorial:

$$\vec{a} \times \vec{b} = ab \sin\theta \,\hat{n} \qquad \qquad \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix} \qquad \qquad \vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$$

$$\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$$

Rotação dos corpos rígidos: $\vec{v} = \vec{\omega} \times \vec{r}$ $\vec{\alpha} = \frac{\mathrm{d}\vec{\omega}}{\mathrm{d}\,t}$ $\vec{a} = \vec{\alpha} \times \vec{r} + \vec{\omega} \times \vec{v}$ Rotação plana: $v_{\mathrm{b/a}} = R_{\mathrm{b/a}}\omega$ $\vec{\omega} = \omega\,\hat{e}_{\mathrm{eixo}}$ $\omega = \frac{\mathrm{d}\theta}{\mathrm{d}\,t}$ $\alpha = \frac{\mathrm{d}\omega}{\mathrm{d}\,t}$ $\alpha = \omega\,\frac{\mathrm{d}\omega}{\mathrm{d}\,\theta}$

$$\vec{v} = \vec{\omega} \times \vec{r}$$

$$\vec{\alpha} = \frac{\mathrm{d}\vec{\omega}}{\mathrm{d}t}$$

$$\vec{a} = \vec{\alpha} \times \vec{r} + \vec{\omega} \times \vec{v}$$

$$v_{\rm b/a} = R_{\rm b/a} \omega$$

$$\vec{\omega} = \omega \, \hat{e}_{\text{eixo}}$$

$$\omega = \frac{\mathrm{d}\theta}{\mathrm{d}t}$$

$$\alpha = \frac{\mathrm{d}\,\omega}{\mathrm{d}\,t}$$

$$\alpha = \omega \frac{\mathrm{d}\omega}{\mathrm{d}\theta}$$

4. Mecânica vetorial

$$\vec{p} = m \vec{v}$$
 $\int_{t_1}^{t_2} \vec{F} \, dt = \vec{p}_2 - \vec{p}_1$ $\vec{F} = m \vec{a}$ $\vec{P} = m \vec{g}$ $F_e \le \mu_e R_n$ $F_c = \mu_c R_n$

$$N_{\mathrm{R}} = r \ \upsilon \left(\frac{\rho}{\eta}\right)$$

$$F_{\rm f} = 6 \pi \eta r v \quad (N_{\rm R} < 1)$$

Esfera num fluido:
$$N_{\rm R} = r \, v \left(\frac{\rho}{\eta} \right)$$
 $F_{\rm f} = 6 \, \pi \, \eta \, r \, v \quad (N_{\rm R} < 1)$ $F_{\rm f} = \frac{\pi}{4} \, \rho \, r^2 \, v^2 \quad (N_{\rm R} > 10^3)$

5. Dinâmica dos corpos rígidos

$$M_{0} = Fb \qquad \vec{M}_{0} = \vec{r} \times \vec{F} \qquad M_{z} = \begin{vmatrix} x & y \\ F_{x} & F_{y} \end{vmatrix} \qquad \vec{r}_{cm} = \frac{1}{m} \int \vec{r} \, dm \qquad \vec{v}_{cm} = \frac{1}{m} \int \vec{v} \, dm$$

$$\vec{a}_{cm} = \frac{1}{m} \int \vec{a} \, dm \qquad \sum_{i=1}^{n} \vec{F}_{i} = m \, \vec{a}_{cm} \qquad \sum_{i=1}^{n} M_{z,i} = I_{z} \, \alpha \qquad I_{z} = \int R^{2} \, dm$$

6. Trabalho e energia

$$W_{12} = \int_{s_1}^{s_2} F_t \, \mathrm{d} \, s \quad W_{12} = E_c(2) - E_c(1) \quad E_c = \frac{1}{2} m \, v_{\mathrm{cm}}^2 + \frac{1}{2} I_{\mathrm{cm}} \, \omega^2 \quad U = -\int_{\vec{r}_0}^{\vec{r}} \vec{F} \cdot \mathrm{d} \, \vec{r} \quad W_{12} = U(1) - U(2)$$

$$U_g = m \, g \, z \qquad U_e = \frac{1}{2} k \, s^2 \qquad E_m = E_c + U \qquad \int_{s_1}^{s_2} F_t^{\mathrm{nc}} \, \mathrm{d} \, s = E_m(2) - E_m(1)$$

Oscilador harmónico simples: $\Omega = \sqrt{\frac{k}{m}} = 2\pi f$ $s = A \sin(\Omega t + \phi_0)$ $E_{\rm m} = \frac{1}{2} m v^2 + \frac{1}{2} k s^2$

7. Sistemas dinâmicos

$$\dot{x}_1 = f_1(x_1, x_2)$$

$$\dot{x}_2 = f_2(x_1, x_2)$$

$$\dot{x}_2 = f_2(x_1, x_2)$$
 $\vec{u} = f_1(x_1, x_2) \,\hat{e}_1 + f_2(x_1, x_2) \,\hat{e}_2$

Equações diferenciais de segunda ordem: $\ddot{x} = f(x, \dot{x})$ $y = \dot{x}$ $\vec{u} = y \hat{\imath} + f(x, y) \hat{\jmath}$

$$\ddot{x} = f(x, \dot{x})$$

$$y = \dot{x}$$

$$\vec{u} = y\,\hat{\imath} + f(x,y)\,\hat{\jmath}$$

$$\frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2} = 0$$

$$f_1 = \frac{\partial H}{\partial x_2}$$

$$f_2 = -\frac{\partial H}{\partial x_1}$$

Sistemas conservativos: $\frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2} = 0$ $f_1 = \frac{\partial H}{\partial x_2}$ $f_2 = -\frac{\partial H}{\partial x_1}$ Evolução: H = constante

8. Mecânica lagrangiana

$$\frac{\mathrm{d}}{\mathrm{d}\,t} \left(\frac{\partial E_{\mathrm{c}}}{\partial \dot{q}_{i}} \right) - \frac{\partial E_{\mathrm{c}}}{\partial q_{i}} + \frac{\partial U}{\partial q_{i}} = Q_{j}$$

$$Q_j = \sum_{i} \vec{F}_i \cdot \frac{\partial \vec{r}_i}{\partial q_i}$$

Multiplicadores de Lagrange:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial E_{\mathrm{c}}}{\partial \dot{q}_{i}} \right) - \frac{\partial E_{\mathrm{c}}}{\partial q_{i}} + \frac{\partial U}{\partial q_{i}} - \lambda \frac{\partial f}{\partial q_{i}} = Q_{j}$$

$$\frac{\mathrm{d}}{\mathrm{d}\,t} \left(\frac{\partial E_\mathrm{c}}{\partial \dot{q}_j} \right) - \frac{\partial E_\mathrm{c}}{\partial q_j} + \frac{\partial U}{\partial q_j} - \lambda \, \frac{\partial f}{\partial q_j} = Q_j \qquad \lambda \, \frac{\partial f}{\partial q_j} = \mathrm{comp.} \\ j \, \mathrm{da} \, \mathrm{força/momento} \, \mathrm{de} \, \mathrm{ligação}$$

9. Sistemas lineares

$$\frac{\mathrm{d}\,\vec{r}}{\mathrm{d}\,t} = \mathbf{A}\,\vec{r}$$

$$\vec{r} = \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

$$\frac{\mathrm{d}\,\vec{r}}{\mathrm{d}\,t} = \mathbf{A}\,\vec{r} \qquad \qquad \vec{r} = \begin{bmatrix} x \\ y \end{bmatrix} \qquad \qquad \mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \qquad \qquad \lambda^2 - \mathrm{tr}(\mathbf{A})\,\lambda + \mathrm{det}(\mathbf{A}) = 0$$

Valores próprios λ	Tipo de ponto	Tipo de equilíbrio
2 reais; sinais opostos	ponto de sela	instável
2 reais, positivos	nó repulsivo	instável
2 reais, negativos	nó atrativo	estável
2 complexos; parte real positiva	foco repulsivo	instável
2 complexos; parte real negativa	foco atrativo	estável
2 imaginários	centro	estável
1 real, positivo	nó impróprio	instável
1 real, negativo	nó impróprio	estável

10. Sistemas não lineares

$$\dot{x}_1 = f_1(x_1, x_2) \qquad \dot{x}_2 = f_2(x_1, x_2) \qquad (f_1 \text{ e } f_2 \text{ funções contínuas}) \qquad \mathbf{J}(x_1, x_2) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix}$$

$$\ddot{\theta} = -\frac{g}{l}\sin\theta \qquad l = \frac{r_{\rm g}^2}{I_{\rm cm}}$$

$$l = \frac{r_{\rm g}^2}{r_{\rm cm}}$$

11. Ciclos limite e dinâmica populacional

Sistemas de duas espécies:

$$\dot{x_1} = f_1(x_1, x_2)$$

$$\dot{x}_2 = f_2(x_1, x_2)$$

$$\lim_{x_1 \to 0} f_1(x_1, x_2) = 0$$

$$\dot{x_1} = f_1(x_1, x_2)$$
 $\dot{x_2} = f_2(x_1, x_2)$ $\lim_{x_1 \to 0} f_1(x_1, x_2) = 0$ $\lim_{x_2 \to 0} f_2(x_1, x_2) = 0$

$$\lim_{x_1 \to 0} f_1(x_1, x_2) = 0$$

$$\lim_{x_2 \to 0} f_2(x_1, x_2) = 0$$

Sistema com cooperação: $\frac{\partial f_1}{\partial x_2}$ e $\frac{\partial f_2}{\partial x_1}$ positivas.

$$\partial f_1$$

$$x_1 \rightarrow 0$$

$$\lim_{x_2 \to 0} f_2(x_1, x_2) = 0$$

$$\frac{\partial f_1}{\partial f_2}$$
 e

$$\frac{\partial f_2}{\partial r_1}$$
 po

Sistema com competição:
$$\frac{\partial f_1}{\partial x_2}$$
 e $\frac{\partial f_2}{\partial x_1}$ negativas.

Sistema predador presa: $\frac{\partial f_1}{\partial x_2}$ e $\frac{\partial f_2}{\partial x_1}$ com sinais opostos.

$$\frac{f_1}{f_2}$$
 e