

Modulhandbuch

Management und Engineering im Bauwesen (M. Eng.)

Masterstudiengang

JADE HOCHSCHULE
FB BAUWESEN GEOINFORMATION GESUNDHEITSTECHNOLOGIE
STUDIENORT OLDENBURG

Juli 2020

INHALTSVERZEICHNIS

MODULE GEMÄß PRÜFUNGSORDNUNG 2019 I. D. F. VOM 16.10.2018, VERKÜN	IDUNGSBLATT
120/2019 VOM 20. JUNI 2019	3
Ausgewählte Kapitel des Stahlbaus	4
Bauschäden und Sanierung	5
Beton- und Spannbetonbau / Ingenieurbauwerke	6
Juristisches Projektmanagement	7
Kanalnetze	8
Personalführung und strategische Unternehmensführung	9
Planung / Netzerkundung	10
Projekt Technische Infrastruktur / Interdisziplinäres Planen	12
Projekt Konstruktiver Ingenieurbau	13
Projekt Baubetrieb / Bauverfahrenstechnik	14
Spezialtiefbau	15
Planungen im Wasserbau	
Rechnungswesen und Controlling	
Verkehrsnetze und Mobilitätssysteme	19
MODULE, DIE GEMÄß BESCHLUSS DES FACHBREICHSRATES UNTER DEM VORBE	HALT
AUSREICHENDER KAPAZITÄTEN ÜBER DEN UMFANG DER PRÜFUNGSORDNUNG	HINAUS ZUR
VEBESSERUNG DER STUDIENQUALITÄT ANGEBOTEN WERDEN	21
AVA - Vertragsgestaltung	22
Holzbau (Energieeffizientes Bauen mit Holz)	
IT-Infrastruktur in Bauunternehmen	
Pipelines, Energie- und Datennetze	25

Module gemäß Prüfungsordnung 2019 i. d. F. vom 16.10.2018, Verkündungsblatt 120/2019 vom 20. Juni 2019.

Modulname	Modulname I						LP	SWS
Ausgewählte Kapitel des Stahlbaus						6	4	
Verwendbarkeit Studiengang	Art	Prüfungs- art	Prüfungs- form	Studentische Arbeitbelastung in St	unden	Lehr- und Lernmethoden	Daue Seme	er in estern
MEB	WPF	PL		Gesamt	180	Vorlesung		
			KA/K2/M	Präsenzstudium	54			1
				Selbststudium	126			
Modulverantwortlicher		Kompetenzk Vertiefungsi	•	Voraussetzungen		Empfohlenes Semester		ebots- igkeit
Prof. DrIng.		Konstr	uktiver			1/2/2	c	oSe
Oliver Bahr		Ingeni	eurbau			1/2/3	3	036

Die Studierenden erweitern ihre im Bachelor erworbenen stahlbaulichen Kenntnisse um praxisrelevante Sonderprobleme des Stahlbaus. Sie verstehen die damit verbundenen grundlegenden mechanischen Zusammenhänge und beherrschen die normengerechte Bemessung nach den maßgebenden Eurocodes. Zudem sind die Studierenden in der Lage, die wesentlichen konstruktiven Detailnachweise zu führen.

In der Vorlesung lernen die Studierenden den sinnvollen Einsatz aktueller Finite-Elemente-Programme kennen. So werden für den Nachweis des Plattenbeulens die Programme "EB-Plate" (Anbieter: CTICM) sowie "RFem" (Anbieter: Dlubal) und für den konstruktiven Brandschutz das Programm "Infograph" (Anbieter: Infograph) vorgestellt.

Lehrinhalte

Plattenbeulen, Ermüdungsnachweise, konstruktive Gestaltung und Bemessung von Kranbahnen, stahlbaulicher Brandschutz sowie weitere aktuelle Fragestellungen.

Dozent(in)	Lehrveranstaltung	Sprache	SWS
Prof. DrIng. Oliver Bahr	Ausgewählte Kapitel des Stahlbaus	deutsch	4

Modulname						Modulcode	LP	SWS
Bauschäden und Sanierung						6	4	
Verwendbarkeit Studiengang	Art	Prüfungs- art	Prüfungs- form	Studentische Arbeitbelastung in Stunden		Lehr- und Lernmethoden	Dauei Seme	
MEB	WPF	PL	KA/K2/M	Gesamt Präsenzstudium Selbststudium	180 54 126	Vorlesung Übung	í	1
Modulverantwortlicher		Kompetenzbereich/ Vertiefungsrichtung		Voraussetzungen		Empfohlenes Semester	Angel häufi	
Prof. DrIng. Heinrich Wigger		Konstruktiver Ingenieurbau				1/2/3	W	iSe

Die Studierenden kennen typische Schadenbereiche im Bauwesen. Sie können Bauschäden/-mängel dokumentieren und Schadensursachen untersuchen und eingrenzen. Sie sind in der Lage, Maßnahmen zur Mängel-/Schadensbeseitigung auszuwählen und Sanierungs- und Instandsetzungskonzepte unter Berücksichtigung technischer und wirtschaftlicher Aspekte zu erstellen. Sie sind fähig, Konstruktionen in Hinblick auf ihre Schadensanfälligkeit zu bewerten und Maßnahmen zur Schadensvermeidung zu planen.

Lehrinhalte

Anhand von Praxis-Beispielen wird ein tiefer Einblick in die Gutachtertätigkeit gewährt. Die Studierenden erhalten nützliche Hinweise zur Erstattung von Bauschadensgutachten und zur Planung von Instandsetzungs- und Sanierungsmaßnahmen. Sie erweitern ihre (bau-)konstruktiven Fachkenntnisse und lernen, wie Bauschäden erkannt und vermieden werden. Themenbereiche sind:

- 1) Bedeutung von Bauschäden / Baumängeln / Baufehlern in der Praxis, Gerichts-, Privat- und Schiedsgutachter, Durchführung eines Ortstermins, Anforderungen an ein Sachverständigengutachten
- 2) Schadensfeststellung und Eingrenzung der Ursachen, analysieren von Schadensbildern, Schadensaufnahme und Bauzustandsuntersuchung, Einsatz von Messtechniken zur Aufklärung von Schadensursachen
- 3) Schadensbeurteilung unter Berücksichtigung der Bausubstanz (z.B. Neubau, Altbau), kritische Auseinandersetzung mit den allgemein anerkannte Regeln der Technik, Bewertung von technischen und optischen Mängeln
- 4) Schadens-/Mängelbeseitigungsmaßnahmen und -kosten, Minderung, Festlegung von Maßnahmen, Ansetzen eines Minderungsbetrags, Ausarbeitung von Konzepten für Instandsetzung und Sanierung eines Bauwerks
- 5) Konstruktionsvorschläge und vorbeugende Maßnahmen zur Vermeidung von Bauschäden, Entwicklung von Strategien zur Schadensvermeidung

Dozent(in)	Lehrveranstaltung	Sprache	SWS
Prof. DrIng. Heinrich Wigger	Bauschäden und Sanierung	deutsch	2
NN	Bauschäden und Sanierung	deutsch	2

Modulname	Modulname					Modulcode	LP	SWS
Beton- und Spann	betor	nbau / Ing	jenieurba	uwerke			6	4
Verwendbarkeit Studiengang	Art	Prüfungs- art	Prüfungs- form	Studentische Arbeitbelastung in Stu	nden	Lehr- und Lernmethoden	Daue Semi	er in estern
MEB	WPF	PL		Gesamt	180	Vorlesung		
			KA/K2/M	Präsenzstudium	54			1
				Selbststudium	126			
Modulverantwortlicher	Modulverantwortlicher Kompetenzbereich/ Vertiefungsrichtung		•	Voraussetzungen		Empfohlenes Semester		ebots- igkeit
Prof. DrIng.	Prof. DrIng.		uktiver	Bemessung von Ba	lken			
Hans-Hermann Prüse	er		eurbau	für Biegung und Querkraft		1/2/3	V	/iSe

Aufbauend auf den vorausgesetzten Basiswissen erhalten die Studierenden ein vertiefendes Verständnis zum sicheren und wirtschaftlichen Konstruieren im Stahlbetonbau hinsichtlich der Grenzzustände von Tragfähigkeit und Gebrauchstauglichkeit sowie der Dauerhaftigkeit der Bauteile.

Die Studierenden erkennen die fundamentalen Ansätze zur Ausführung vorgespannter Konstruktionen und erhalten dabei das Rüstzeug, um normengerecht alle erforderlichen Nachweise angehen zu können.

Hinsichtlich der Tragwerksplanung erwerben die Studierenden Kompetenzen zur Diskretisierung digitaler Zwillinge, an denen über Simulationen Ansatzpunkte für die Optimierng realer Bauteile gewonnen werden.

Lehrinhalte

Darstellung der technisch/physikalischen Grundsätze von Stahlbetonkonstruktionen und Ihre Abbildung in den Nachweisführungen des Eurocodes.

Plausibilisierung der Spannbetonbauweise mit der Darstellung ihrer Vorteile und Grenzen. Einsatz praxiserprobter EDV-Simulationsprogramme in der Nachweisführung und Verifikation der Ergebnisse durch Vergleichsrechnungen "Per Hand".

Behandlung ausgewählter Detailfragen des Stahlbetonbaus aus den Themenfeldern Lasteinleitung und/oder Stabwerkmodelle und/oder Durchstanzen und/oder Berechnung von Rissbreiten und/oder Berechnung von Verformungen und/oder Plastizitätstheorie und/oder etc.

Literatur

H.-H. Prüser / Konstruieren im Stahlbetonbau Band 1 + 2. / Hanser Verlag Leipzig

R. Avak und K. Meis / Spannbetonbau: Theorie, Praxis, Berechnungsbeispiele nach Eurocode 2 / Bauwerk-Basis-Bibliothek

EUROCODE als anzuwendende Normenfamilie

PCAE als Beispiel einer praxiserprobten EDV-Umgebung zur Simulation von Tragwerksplanung

Dozent(in)	Lehrveranstaltung	Sprache	SWS
Prof. Dr. Ing. HH. Prüser	Beton- u. Spannbetonbau/Ingenieurbauwerke	deutsch	4

Modulname						Modulcode	LP	SWS	
Juristisches Projektmanagement					6	4			
Verwendbarkeit Studiengang	Art	Prüfungs- art	Prüfungs- form	Studentische Lehr- und Arbeitbelastung in Stunden Lernmethoden			Daue. Seme	r in stern	
MEB	WPF	PL		Gesamt	180	Vorlesung			
			KA/K2/M	Präsenzstudium	54	Übung	1		
				Selbststudium	126				
Modulverantwortlicher '		Kompeten. Vertiefung	•	Voraussetzungen		Empfohlenes Semester	Ange häufi		
Prof. Dr.		Mana				1/2/2	١٨/	:C-	
Peter Fischer		iviana	gement	1/2/3			VV	WiSe	

Die Studierenden haben das für das richtige Projektmanagement notwendige Problembewusstsein und kennen die wesentlichen Schnittstellen vom juristischen zum technischen Teil der Bauleistung. Sie können die speziellen Werkzeuge des juristischen Baumanagements zutreffend einsetzen.

Lehrinhalte

Risikomanagement aus juristischer Sicht und Behandlung der unterschiedlichen Vertragsformen, Abwehr bzw. Durchsetzung von Nachträgen, Kündigung des Bauvertrages, gesamtschuldnerische Haftung zwischen den Verfahrensbeteiligten, Sicherheiten.

Dozent(in)	Lehrveranstaltung	Sprache	SWS
Prof. Dr. Peter Fischer	Juristisches Projektmanagement	deutsch	4

Modulname						Modulcode	LP	SWS
Kanalnetze							6	4
Verwendbarkeit Studiengang	Art	Prüfungs- art	Prüfungs- form	-		Lehr- und Lernmethoden	Daue Seme	
MEB	WPF	PL	KA/K2/M	Gesamt Präsenzstudium Selbststudium	180 54 126	Vorlesung Vorträge	ź	1
Modulverantwortlicher	Modulverantwortlicher		zbereich/ srichtung	Voraussetzungen		Empfohlenes Semester	Angei häufi	
Prof. Dr. Teuber		Infras	truktur			1/2/3	So	Se

In den Themen des Moduls erarbietn sich die Studierenmden die vielfältigen Aufgaben im Tiefbau zu Planung, Ausführung, Betrieb und nachhaltiger Pflege kommunaler Einrichtungen zur Wasserverteilung und Abwasserableitung sowie Abwasserbehandlung. Dabei agieren die Studierenden als Führungsperson und bereiten die Themen für Vorgesetzte und Entscheidungsträger sowie für die Aufgabenverteilung an eigene Mitarbeiter auf. Die Studierenden lernen dabei, wie Themen zu strukturieren sind, damit technische Inhalte gegenüber nicht vorinformierten oder fachfremden Personen dargestellt und argumentiert werden können. Ein besonderes Augenmerk liegt dabei auf den Themen der Nachhaltigkeit (Ökologie/Gewässerschutz, demographischer Wandel, ...). Die Studierenden lernen, moderne Sichtweisen des Umweltschutzes unter Kostensichtweise und Wirkung auf Gebühren zu bedenken und in vorhandene Strukturen einzuordnen.

Lehrinhalte

Werkstoffe in Kanalnetzen, Aufbau und Betrieb der Netze. Bauweisen im städtischen Umfeld und Ausschreibung/Vergabe/Abrechnung. Sanierungsmöglichkeiten unter Beachtung von Schadensentwicklungen, Nutzung von Datenbanken. Entscheidungskriterien für Reparatur, Renovierung und Erneuerung. Aufbau von kommunalen Gebührenkalkulationen.

Aktuelle und zu erwartende Entwicklungen im Bereich von Regen- und Schmutzwasser. Reduzierung von Einleitungen in Gewässer unter Nutzung vorhandener Anlagen.

Einbeziehung der Grundstücksentwässerung in gesamtheitliche Planungsansätze.

Wirkungen der demographischen Entwicklung auf den Ausbau der Infrastruktur.

Grundlagen der Anwendung von Wärmepumpen und des Umgangs mit anthropogenen Spurenstoffen.

Dozent(in)	Lehrveranstaltung	Sprache	SWS
Prof. Dr. Teuber	Kanalnetze	deutsch	4

Modulname	Modulname						LP	SWS
Personalführung und strategische Unternehmensführung						6	4	
Verwendbarkeit Studiengang	Art	Prüfungs- art	Prüfungs- form	Studentische Arbeitbelastung in Stunden		Lehr- und Lernmethoden	Dauei Seme	
MEB	WPF	PL		Gesamt	180	Seminar		
			KA/K2/M	Präsenzstudium	54	Vorträge	:	1
				Selbststudium	126	Workshop		
Modulverantwortlicher	Modulverantwortlicher		zbereich/ srichtung	Voraussetzungen		Empfohlenes Semester	Angei häufi	
Prof. Dr.		Mana				1/2/2		
Kirsten Plog		iviana	gement	ent 1/2		1/2/3	50	Se

Die Studierenden weisen nach dem Abschluss des Kurses Kenntnisse in Bezug auf Leitungsfunktionen in Unternehmen vor. Sie sind in der Lage Leitungsaufgaben qualifiziert zu erfüllen sowie Methoden der strategischen Unternehmensführung und Personalführung bewusst und zielorientiert anzuwenden.

Lehrinhalte

Strategische Unternehmensführung

Situation des Baumarktes und Perspektiven im Hochbau in Deutschland, Unternehmensrechtsformen und Mangement, Unternehmensorganisation, langfristige Unternehmensplanung, strategisches Management, Marketing, Erfolgsmessung mit Kennzahlen

Personalführung und Unternehmenskommunikation Unternehmenskultur/Kommunikationskultur; Kundenkommunikation/Marketing;

Strategien und Methoden zur Umsetzung von Unternehmenszielen; Personalmanagement, Führungstechniken, Fallstudien zur Rolle des Managers, Motivationstechniken; Changemanagement - Veränderungsprozesse begleiten, führen, steuern; Fehleranalyse, Arbeitsorganisation, Streßbewältigung

Literatur

Plog, Kirsten: Change Management, Münster 2011; Kraus, Georg/Becker-Kolle, Christel/Fischer, Thomas: Handbuch Change-Management, Berlin 2006

Dozent(in)	Lehrveranstaltung	Sprache	SWS
Prof. Dr. Thomas Weßels	Strategische Unternehmensführung	deutsch	2
Prof. Dr. Kirsten Plog	Personalführung und Unternehmenskommun.	deutsch	2

Modulname	Modulname						LP	SWS
Planung / Netzerki	Planung / Netzerkundung					6	4	
Verwendbarkeit Studiengang	Art	Prüfungs- art	Prüfungs- form	Studentische Arbeitbelastung in Stunden		Lehr- und Lernmethoden	Daue. Seme	
MEB	WPF	PL	KA/K2/M	Gesamt Präsenzstudium Selbststudium	180 54 126	Vorlesung		1
Modulverantwortlicher		Kompeten Vertiefung	•	Voraussetzungen		Empfohlenes Semester	Ange häufi	
Prof. DrIng. Thomas Priesemann		Infrastruktur				1/2/3	W	iSe

Die Studierenden haben antizipiert, dass für Planungen insbesondere der netzgebundenen Infrastruktur die Kenntnis über bereits vorhandene Transport- und Versorgungsleitungen, großräumige Boden- und Baugrundverhältnisse und vorhandene unterirdische Hindernisse eine herausragende Rolle spielt. Sie wissen, dass die vorhandenen Kartenwerke dabei teilweise lückenhaft oder im engen innerstädtischen Bereich ungenau sind, so dass planungsbegleitend eine umfangreiche Nacherkundung erfolgen muss. Unterschiedliche physikalische Verfahren, die in der Baugrunderkundung nicht zum Standard gehören, gehören zum Repertoire der Studentinnen und Studenten.

Damit ein Bauwerk im Bereich Infrastruktur Realität werden kann, muss es natürlich nicht nur technisch funktionieren: die Studierenden haben erkannt, dass sehr viele weitere Aspekte, welche nicht unbedingt technischer Natur sind, bedacht und erarbeitet werden müssen: das Objekt muss bezahlt werden, es muss in einen rechtlichen Ordnungsrahmen eingefügt werden und es muss auch den Minderheiten (Kindern, Senioren, geh- und sehbehinderten Mitmenschen) von Nutzen sein.

Die Studierenden wissen, dass Planung insbesondere in der Infrastruktur Dialog mit anderen Fachdisziplinen bedeutet, und dass Kompromisse in vielfacher Hinsicht gefunden werden müssen.

Lehrinhalte

Netzerkundung:

Grundlagen, Anwendung und Auswertung unterschiedlicher Erkundungsverfahren für Boden und unterirdische Infrastruktur (Bohren, Sondieren, Geo-Radar, Geo-Elektrik, Geo-Magnetik, Seismik etc., Verfahren der Darstellung: Profile, Schnitte 3D etc., Verknüpfung zu GIS).

Erläuterung der verwendeten Technik, Exkursion und praktische Übung.

Planung:

Rechtliche Grundlagen: Bauleitplanung, Flächennutzungsplanung, Plangenehmigung, Planfeststellung, NStrG, FStrG,

Finanzielle Grundlagen: Gemeindeverkehrsfinanzierungsgesetz Straße und ÖPNV, Dorferneuerung, landwirtschaftlicher Wegebau, EFRE, Kostenteilung nach StrG.

Persönliches Netzwerk: Baugrund, Lärmschutz, Naturschutz, Planverfahren, Vermessung, ...

Andere rechtliche Grundlagen: NAGBNatSchG und BNatSchG, Verkehrslärmschutzverordnung, 16. BIMSchV

Die Inhalte werden anhand realer Projekte vermittelt und diskutiert.

Im Rahmen einer Gruppenhausaufgabe (gemeinsame Besichtigung vor Ort) wird dies an einem realen Objekt geübt.

Literatur

Vorlesungsskript.

PlafeR - Planfeststllungsrichtlinie.

Weitere Literatur wird in der Vorlesung bekannt gegeben.

Dozent(in)	Lehrveranstaltung	Sprache	SWS
Prof. DrIng. R. Schwerdhelm	Planung	deutsch	2
Prof. DrIng. Th. Priesemann	Netzerkundung	deutsch	2

Modulname	Modulname							SWS
Projekt Technisch	Projekt Technische Infrastruktur / Interdisziplinäres Planen						12	8
Verwendbarkeit Studiengang	Art	Prüfungs- art	Prüfungs- form	Studentische Arbeitbelastung in Stunden		Lehr- und Lernmethoden	Dauer in Semestern	
MEB	WPF	PL	PB/R	Gesamt Präsenzstudium Selbststudium	360 108 252	Gruppenarbeit Vorträge	ź	1
Modulverantwortlicher	Modulverantwortlicher		zbereich/ srichtung	Voraussetzungen		Empfohlenes Semester	Angel häufig	
Prof.		Infras	truktur			1/2	W	iSe

Die Studierenden lernen anhand unterschiedlicher Beispiele aus dem Bereich der Infrastruktur (Kanalnetze, Umwelt- und Gewässerschutz, Baugebiete, Pipelines, ÖPNV, ...) im Team ein Projekt inhaltlich und wirtschaftlich zu konzipieren und die gewählte Lösung gegenüber Dritten zu verteidigen (z.B. in Form eines Ingenieurwettbewerbes oder eines Vorentwurfes). Um die Aufgabe praxisnah zu gestalten, werden Externe (Ing.-Büros, Behörden, Unternehmen) in die Projekte eingebunden. Dadurch lernen die Studierenden an realen Fragestellungen aus der Praxis, innerhalb eines vorgegebenen Zeitrahmens sich eine Fragestellung zu erarbeiten, einen Lösungsansatz im Team zu entwickeln und die Ergebnisse in einer Form zu präsentieren, die von Dritten angenommen und weitergeführt werden können. Neben der technischen Tiefe erarbeiten sich die Studierenden vor allem, welche Sichtweisen zu beachten sind, damit Dritten die Thematik erläutert und Entscheidungsträger für angedachte Lösungen gewonnen werden können.

Lehrinhalte

Abhängig von der Aufgabenstellung. Die Studierenden eignen sich auch Grundkenntnisse in besonderen Themen im Verlauf des Projektes an und bereiten diese für das Team und die "Auftraggeber" auf. Die ermittelte Lösung muss in einer Form dargestellt und diskutiert werden, die in einem Gremium von Entscheidungsträgern anerkannt und als Grundlage für eigene Entscheidungen genutzt wird.

Im Rahmen der Veranstaltung werden je nach Kontext die jeweils angemessenen digitalen Technologien und Methoden verwendet (z. B. Simulationssoftware, GIS, Tabellenkalkulation etc.).

Literatur

Je nach Projekt

Dozent(in)	Lehrveranstaltung	Sprache	SWS
Wechselnde Dozent_innen	Projekt Techn. Infrastruktur / Interdisz. Planen	deutsch	8
aus Hochschule und Praxis			

Modulname	Modulname						LP	SWS
Projekt Konstruktiver Ingenieurbau					12	8		
Verwendbarkeit Studiengang	Art	Prüfungs- art	Prüfungs- form	Studentische Arbeitbelastung in Stunden		Lehr- und Lernmethoden	Dauei Seme	
MEB	WPF	PL	PB/R	Gesamt Präsenzstudium Selbststudium	Präsenzstudium 108 Vorträge		1	
Modulverantwortlicher		Kompetenz Vertiefung	•	Voraussetzungen		Empfohlenes Semester	Angel häufig	
Prof. DrIng. Hans Hermann Prüser					1/2	W	iSe	

Die Studierenden erhalten ein grundsätzliches Verständnis darüber, dass die Planung von Praxis-Projekten des Konstruktiven Ingenieurbaus immer ein Ergebnis der Interaktion und Optimierung unterschiedlicher Leistungen aus unterschiedlichen Gewerken ist. Sie erkennen das Leistungspotential des teamorientierten Arbeitens.

Die Studierenden erkennen den Zusammenhang zwischen der aktuell zu bearbeitenden Projektphase und dem zugehörigen Detaillierungsgrad der zu erbringenden Planungsleistung.

Die Studierenden erkennen Prozessabläufe und wenden digitale Verfahren an (BIM), um ihre Leistungen in die global ausgerichtete Wertschöpfungskette des Bauwesens einbringen zu können.

Die Studierenden sind in der Lage Ihre Arbeitsergebnisse zielgruppenorientiert zu vertreten und zu präsentieren.

Lehrinhalte

Bearbeitung einer komplexen Aufgabenstellung mit dem Fokus auf die Belange des Konstruktiven Ingenieurbaus.

Erfassen, Beschaffen und digitale Aufbereitung der Planungsgrundlagen für ein zu planendes Bauprojekt. Definition von Arbeitspaketen, die team- und prozessorientiert abzuwickeln sind.

Unterstützung bei der Selbstorganisation der studentischen Gruppe. Kommunikation der Arbeitsergebnisse. Simulation des Berufsalltages in einem Planungsbüro an der Hochschule.

Literatur

Projektunterlagen

Dozent(in)	Lehrveranstaltung	Sprache	SWS
Wechselnde Dozent_innen aus	Projekt Konstruktiver Ingenieurbau	deutsch	8
Hochschule und Praxis			

Modulname	Modulname						LP	SWS
Projekt Baubetrie	Projekt Baubetrieb / Bauverfahrenstechnik						12	8
Verwendbarkeit Studiengang	Art	Prüfungs- art	Prüfungs- form	Studentische Arbeitbelastung in Stunden		Lehr- und Lernmethoden	Daue. Seme	
MEB	WPF	PL	PB/R	Gesamt 360 C Präsenzstudium 108 Selbststudium 252		Gruppenarbeit Vorträge		1
Modulverantwortlicher	Modulverantwortlicher		zbereich/ srichtung	Voraussetzungen		Empfohlenes Semester	Angei häufi	
Prof. Erich Everts		Mana	gement			1/2	Wi+	SoSe

Die Studierenden sind nach Abschluss des Kurses in der Lage, die unterschiedlichen Einzeldisziplinen des Baubetriebs und der Bauverfahrenstechnik gleichzeitig auf komplexe Sachverhalte anzuwenden und adäquate Lösungsansätze zu erarbeiten.

Folgende digitale Technologien und Methoden werden verwendet:

- Projektplanung mit Oracle Primavera P6 Professional
- Kalkulation mit BRZ
- 4D Simulation mit Synchro
- Pläne mit CAD (Autocad oder Nemetscheck)
- Vordimensionierung mit Statikprogrammen, z.B. DC-Baugrube
- Standardsoftware (MS Excel, MS Visio, MS Powerpoint, MS Word)

Lehrinhalte

Am Beispiel eines größeren und komplexen Bauvorhabens sollen baubetriebliche und bauverfahrenstechnische Aufgabenstellungen gelöst werden. Hierzu zählen insbesondere:

- Verfahrensauswahl / Verfahrensvergleiche
- Baublaufplanung- / Ablaufsteuerung
- Ablaufvisualisierung mit Bauphasenplänen
- Erarbeiten von Alternativen (Nebenangebote)
- Kalkulation
- Arbeitsvorbereitung
- Planung der Baustelleneinrichtung und logistische Fragen
- Ortung und Quantifizierung von Projektrisiken (Risikomanagement)
- Bearbeiten verschiedener Szenarien; z.B. Nachtragsforderungen, Umgang mit Leistungsstörungen etc.

Literatur

Aufgrund der unterschiedlichen Projekte kann keine generelle Literaturliste angegeben werden. Die jeweils benötigte und empfohlene Literatur wird im Zuge der Projektarbeit angegeben.

Dozent(in)	Lehrveranstaltung	Sprache	SWS
Prof. Erich Everts	Projekt Baubetrieb / Bauverfahrenstechnik	deutsch	8

Modulname	Modulname						LP	SWS
Spezialtiefbau	Spezialtiefbau					6	4	
Verwendbarkeit Studiengang	Art	Prüfungs- art	Prüfungs- form	Studentische Arbeitbelastung in Stunden		Lehr- und Lernmethoden	Daue. Seme	
MEB	WPF	PL	KA/K2/M	Gesamt Präsenzstudium Selbststudium	180 54 126	Vorlesung Übung		1
Modulverantwortlicher	Modulverantwortlicher		zbereich/ srichtung	Voraussetzungen		Empfohlenes Semester	Ange häufi	
Prof. DrIng. Konstruktiver Otfried Beilke Ingenieurbau					1/2/3	So	Se	

Den Studierenden sollen spezielle Kenntnisse zur Wechselwirkung Bauwerk/Baugrund vermittelt werden. Ferner werden vertiefte Kenntnisse zur Sicherung bestehender Bauwerke erworben. Anhand eines Fallbeispiels wird das Aufstellen eine prüffähigen Planung für eine Baugrubenwand und eine Unterfangung vermittelt. Hierzu erfolgt eine Schulung in der Anwendung der EDV-Programme DC-Baugrube, GGU-Retain, DC-Unterfangung ung GGU-Underpinning.

Lehrinhalte

Ausführung und Bemessung von Baugruben neben Nachbarbebauungen, Methoden der Unterfangung von Bauwerken, Bemessung von Unterfangungen, Injektionstechniken, Düsenstrahlverfahren, Soilfracturing, Planung und Ausführung von Sicherungsmaßnahmen (Nachgründung von Bauwerken), Sicherung bestehender Stützkonstruktionen, Tragverhalten und Bemessung von MICRO-Pfählen und Bodennägeln, Schadensarten und Schadenursachen im Gründungsbereich von Bauwerken, Wirkung und Beurteilung von Erschütterungen im Baugrund (Baugrunddynamik), Einführung in die Methode der finiten Elemente, Modellbildung, Parameteridentifikation, Durchführung von Verformuingsberechnungen und Standsicherheitsberechnungen mit dem Programmsystem PLAXIS einschl. Schulung in der Anwendung des Programmsystems.

Literatur

Empfehlungen des Arbeitsausschusses "Baugruben", Deutsche Gesellschaft für Geotechnik; Empfehlungen des Arbeitsausschusses "Numerik in der Geotechnik", Deutsche Gesellschaft für Geotechnik; Empfehlungen des Arbeitsausschusses "Pfähle", Deutsche Gesellschaft für Geotechnik; PLAXIS: Tutorial Manual, Referenz Manual, Material Model Manual; Grundbautaschenbuch Verlag, Ernst und Sohn

Dozent(in)	Lehrveranstaltung	Sprache	SWS
Prof. Dr. Ing. Otfried Beilke	Spezialtiefbau	deutsch	4

Modulname	Modulname						LP	sws
Planungen im Wasserbau						6	4	
Verwendbarkeit Studiengang	Art	Prüfungs- art	Prüfungs-form	Studentische Arbeitbelastung in Stunden		Lehr- und Lernmethoden	Daue Seme	er in Estern
MEB	WPF	PL	H(25%)+K1,5(75%)	Gesamt Präsenzstudium	180 54	Vorlesung Workshop	,	1
			(2076)****2,0(7076)	Selbststudium	126	· · · · · · · · · · · · · · · · · · ·		_
Modulverantwortlicher	odulverantwortlicher Kompetenzbereich/ Vertiefungsrichtung		•	Voraussetzungen		Empfohlenes Semester		bots- igkeit
Prof. Christoph Rau	Infrastruktur				1/2/3	W	iSe	

Die Studierenden wissen, dass der Nutzen von Infrastrukturmaßnahmen in der Regel nicht einem einzelnen Projektträger, sondern der gesamten Volkswirtschaft zu Gute kommt. Sie können die wesentlichen volkswirtschaftlichen Auswirkungen von Infrastrukturprojekten erkennen und bewerten.

Die Studierenden kennen und verstehen die Systematik des Planungsprozesses und sind in der Lage, Planungsziele zu definieren und mittels geeigneter Verfahren die jeweils günstigste Lösung zu ermitteln. Sie können das Potenzial von GIS-Systemen im räumlichen Planungsprozess abschätzen und können einfache räumliche Analysen mit einem GIS-Programm (ESRI) durchführen.

Die wesentlichen übergeordneten fachlichen Planungsgrundlagen im Wasserbau sind den Studierenden bekannt. Sie können diese in den Kontext konkreter Planungen integrieren.

Lehrinhalte

Überblick über rechtliche Grundlagen

Theorie der Planung

Systematik volkswirtschaftlicher Betrachtung

Wirtschaftlichkeitsuntersuchungen

Volkswirtschaftlicher Nutzen im Wasserbau

Risikobetrachtungen am Beispiel Hochwasser unter Vewendung einer Tabellenkalkulation.

Anwendungen der Warteschlangentheorie im Verkehrswasserbau

Literatur

Fürst, D.; Scholles, F.: Handbuch Theorie und Methoden der Raum und Umweltplanung Maniak, U.: Hydrologie und Wasserwirtschaft, 5. Auflage, Berlin 2005
Länderarbeitsgemeinschaft Wasser (Hrsg.): Leitlinien zur Durchführung dynamischer Kostenvergleichsrechnungen (KVR-Leitlinien), 6. Auflage, Kulturbuchverlage Berlin, Berlin 1998. Vorlesungsskript.

Dozent(in)	Lehrveranstaltung	Sprache	SWS
Prof. Christoph Rau	Planungen im Wasserbau	deutsch	4

Modulname	1odulname						LP	SWS
Rechnungswesen und Controlling						6	4	
Verwendbarkeit Studiengang	Art	Prüfungs- art	Prüfungs- form	Studentische Arbeitbelastung in Stu	ınden	Lehr- und Lernmethoden	Daue Seme	er in Estern
MEB	WPF	PL		Gesamt	180	Vorlesung		
			KA/K2/M	Präsenzstudium	54			1
				Selbststudium	126			
Modulverantwortlicher		Kompeten. Vertiefung	•	Voraussetzungen		Empfohlenes Semester		bots- igkeit
Prof. Dr.		Manag	rom ont			1/2/2	٠.	Se
Franz Diemand		iviana	gement			1/2/3	50	136

Ziel der Vorlesung ist es, ein allgemeines Verständnis von betrieblichen Zusammenhängen zu schaffen. Die Bedetung des Rechnungswesens in einem Bauunternehmen wird beispielhaft erläutert. Die Studierenden kennen die Grundlagen und Bestandteile des externen und internen Rechnungswesens. Die holistische bzw. ganzheitliche Betrachtung auf ein Bauunternehmen mit Projekt-, Multiprojekt- und Unternehmensebene wird verstanden und findet Anwendung für die notwendige Kostenrechnung. Das Verständnis für die Ermittlung der Projektleistungen anhand der "Leistungsmeldung" inkl. Auftragssummenermittlung, Leistungsabgrenzung, Kostenabgrenzung, Berücksichtigung der Restauftragssumme sowie der Nachtragsbewertung in einem bauspezifischen Unternehmen wird verstanden. Das Projektcontrolling mit der mitlaufenden Vertrags- und Kostenprognosekalkulation kann beispielhaft nachvollzogen werden. Die Ableitung projektspezifischer Daten in die Multiprojekt- und Unternehmensebene können die Studierenden wiedergeben. Das auf die Organisation des Bauunternehmens abgeleitete Berichtswesen wird verstanden. Darüber hinaus werden Themen, wie das operative und strategische Unternehmenscontrolling erläutert. Die Inhalte für die Projektanalysegespräche können die Studierenden ermitteln und wiedergeben.

Lehrinhalte

Bauwirtschaft und Baumarkt / Definition von bauspezifischen Begrifflichkeiten / Beschreibung des Baumarktes (Absatz- und Beschaffungsmarkt) / Beschreibung der Bauproduktion / Kooperationsformen in der Bauwirtschaft / Prozess- und Organisationsstrukturen in Bauunternehmen / Beschreibung branchenspezifischer Strukturen von Bauunternehmen / Prozesse und Organisation der Unternehmensebene / Prozesse und Organisation auf Einzel- und Multiprojektebene / Aufgaben des Bauleiters / Aufgaben des Baukaufmanns / Zieldefinition eines Bauunternehmens Zieldefinition / Bestimmungs- und Einflussfaktoren für die Zielbildung / externes und internes Rechnungswesen im Bauunternehmen / Grundsätze der Kostenrechnungssysteme / Bauspezifische Verrechnungsstrukturen / bauspezifische Deckungsbeitragsrechnung / Leistungsmeldung im Bauwesen / Erläuterung des Abgrenzungsprozesses und seinen Besonderheiten der Leistungsmeldung / Bilanzierung im Bauwesen / Problematiken mit unfertiger Bauten / Darstellung des Bewertungsprozesses zu Herstellkosten / Einführung in das Themengebiet des Controllings / Historische Entwicklung des Controllings / Darstellung der Controllingaufgaben / Organisatorische Eingliederung des Controllings /

Darstellung der typischen Ausprägung einer Controllinginstanz / Erläuterung der projektspezifischen

Controllingbesonderheiten / Erläuterung des Kosten/Nutzen eines eigenständigen Controllingsystems in Abhängigkeit von der Unternehmensgröße / Unternehmensführung / Erläuterung des allgemeinen Controllingprozesses / Strategisches und operatives Controlling / Projektcontrolling mit Vertrags- und Kostenprognosekalkulation / Gestaltung des Berichtswesens für Bauunternehmen / Organisationsänderung /

Literatur

Wöhe: Einführung in die allgemeine Betriebswirtschaftslehre Thommen/Achleitner: Allgemeiner Betriebswirtschaftslehre

Schulte-Zurhausen: Organisation

Rudolf Fiedler - Controlling von Projekten Lachnit / Müller - Unternehmenscontrolling

Horvath - Controlling

Reichmann - Controlling mit Kennzahlen Weber - Einführung in das Controlling

Dozent(in)	Lehrveranstaltung	Sprache	SWS
Prof. Dr. Franz Diemand	Rechnungswesen und Controlling	deutsch	4

Modulname						Modulcode	LP	sws
Verkehrsnetze un	Verkehrsnetze und Mobilitätssysteme					6	4	
Verwendbarkeit Studiengang	Art	Prüfungs- art	Prüfungs- form	Studentische Arbeitbelastung in Stu	ınden	Lehr- und Lernmethoden	Daue Seme	r in estern
MEB	WPF	PL		Gesamt	180	Vorlesung		
			KA/K2/M	Präsenzstudium	54			1
				Selbststudium	126			
Modulverantwortlicher		Kompeten. Vertiefung	•	Voraussetzungen		Empfohlenes Semester	Ange häufi	
Prof. DrIng.		Infras	truktur			1/2/2	١٨/	iSe
Rainer Schwerdhelm	1	iiiiias	uktur			1/2/3	VV	ise

Die Studierenden erkennen, dass Mobilität mehr ist als die Bewegung eines technischen Gerätes auf einem befestigten Weg: Mobilität lebt von seiner Wechselhaftigkeit, von intermodalen Wegeketten und multimodalem Nutzerverhalten.

Zur Lösung der in Zukunft anstehenden Herausforderungen im Bereich der Personenbeförderung und des Warentransportes verfügen die Studierenden über die Fähigkeit zur integrativen Betrachtung der Problemlage, welche aus den Kenntnissen der Systemzusammenhänge erwachsen.

Neben den rein technischen und finanziellen Aspekten neuer oder weiter entwickelter Verkehrssysteme können die Studierenden auch die Dimensionen der Verhaltensänderung, der demografischen Entwicklung und vieler anderer "weicher" Einflussgrößen in die Überlegungen einbeziehen.

Die Studierenden können die Entscheidungsträger hinsichtlich der Weiterentwicklung nachhaltiger Mobilitätssystem beraten und können die Argumente durch die Arbeit mit den entsprechenden RIN hinterlegen.

Lehrinhalte

Geschichte der Mobilität, Netze der verschiedenen Verkehrsträger: Schiene, Straße, Wasser, Luft, Pipeline.

Beurteilung der Anbindungsqualität eines Siedlungszentrums auf der Basis der RIN.

Verantwortlichkeit, Entscheidungskompetenzen und Haftungsrisiken für die Planerin / den Planer.

Neue Mobilität: Fahrzeuge, Schiffe und Fluggeräte mit Elektroantrieb - Wasserstoff -

Brennstoffzelle - Segel; Schadstoffausstoß und Ressourcenverbrauch, Nachhaltigkeit,

Auswirkungen auf die Ökosphäre. Möglichkeiten und Grenzen des Geoengineering.

Herausforderungen der Multi- und Intermodalität: BeBo-Ticketing, Inzentivierungsmodelle zur Erweiterung der menschlichen Akzeptanz.

Kooperative und autonome Systeme: Verkehrsvermeidung und bessere Auslastung vorhandener Strukturen durch gesteigerten Informationsaustausch.

Veränderung des Nutzungsverhaltens: Verkehrsvermeidung durch Bestellung vom heimischen Sofa? Videokonferenz vs. Dienstreise? Folgen des Generationenwandels.

Sondersysteme der Beförderung: Seilbahn, Magnetbahn, Drohnen, autonome Systeme. Integration der Mobilität in die Idee einer Smart City. Mobilität und BIM: wie kann das gehen?

Vorlesungsskript.

RIN – Richtlinie für integrierte Netzgestaltung.

Tagespresse.

Weitere Literatur wird in der Vorlesung bekannt gegeben

Dozent(in)	Lehrveranstaltung	Sprache	SWS
Prof. DrIng. R. Schwerdhelm	Verkehrsnetze und Mobilitätssysteme	deutsch	4

Module, die gemäß Beschluss des Fachbreichsrates unter dem Vorbehalt ausreichender Kapazitäten über den Umfang der Prüfungsordnung hinaus zur Vebesserung der Studienqualität angeboten werden.

Modulname	lodulname						LP	SWS
AVA - Vertragsgestaltung						6	4	
Verwendbarkeit Studiengang	Art	Prüfungs- art	Prüfungs- form	Studentische Arbeitbelastung in Stu	unden	Lehr- und Lernmethoden	Daue Seme	er in estern
MEB	WPF	PL		Gesamt	180	Vorlesung		
			KA/K2/M	Präsenzstudium	54			1
				Selbststudium	126			
Modulverantwortlicher		Kompetenzk Vertiefungsi	•	Voraussetzungen		Empfohlenes Semester	_	ebots- igkeit
Prof. DrIng.		Manag	romont			1/2/2	c	oSe
Hermann Müffelman	n	iviana	gement			1/2/3	3	ose

AVA: Die Studierenden sollen in die Lage versetzt werden, die schwierige rechtliche Systematik des öffentlichen Vergabeverfahrens für die praktische Anwendung zu erfassen und umzusetzen. Sie sollen die nationalen und europäischen Verfahren und Rechtsgrundlagen sicher erkennen und differenziert betrachten und anwenden. Zur Vervollständigung sollen die Studierenden das Nachprüfungsverfahren bei EU-Vergaben, sowie mögliche Sekundäransprüche bei schuldhaften Vergabefehlern in Grundzügen erfassen und werten können.

Vertragsgestaltung: Auf- und Zusammenstellung der Verdingungsunterlagen nach VOB/A/. Entwicklung von Sicherheiten beim Erkennen von Risiken und Schnittstellenproblematiken bei zusätzlichen, besonderen und zusätzlich technischen Vertragsbedingungen

Lehrinhalte

AVA: Öffentliche Vergabeverfahren; Erläuterung der Auftragsarten und Arten der Vergabe (VOB/A; VOL/A; VOF; SektVO; Schwellenwertbestimmung für EU-Vergabe); Verfahren und Ablauf der Ausschreibung mit allen Verfahrensschritten unter vertiefender Darstellung der Angebotsprüfung und -wertung; Erläuterungen zum GWB, § 101a und §§ 102 ff.

Vertragsgestaltung: Aufforderung zu Angebotsabgabe, Vergabeunterlagen, Bewerbungsbedingungen und Vertragsunterlagen nach VOB/A und VOB/B, zusätzliche und besondere Vertragsbedingungen, VOB/C, zusätzliche technische Vertragsbedingungen, Leistungsbeschreibung / Angebot / Angebotsannahme / Bauvertrag. Beispiele aus der Praxis, wie z. B.: Verhandlungsprotokoll, LV und Leistungsbeschreibungen einzelner Projekte / Schnittstellenproblematiken und Lösungen

Dozent(in)	Lehrveranstaltung	Sprache	SWS
Prof. Dr. Müffelmann	Ausschreibung, Vergabe und Abrechnung (AVA)	deutsch	2
Felgner	Vertragsgestaltung	deutsch	2

Modulname						Modulcode	LP	SWS
Holzbau (Energie	effizientes Bauen mit Holz) 6			6	4			
Verwendbarkeit Studiengang	Art	Prüfungs- art	Prüfungs- form	Studentische Arbeitbelastung in Stu	ınden	Lehr- und Lernmethoden	Daue Seme	er in estern
MEB	WPF	PL	KA/K2/M	Gesamt Präsenzstudium Selbststudium	180 54 126	Vorlesung Guppenarbeit		1
Modulverantwortlicher		Kompetenzi Vertiefungs	•	Voraussetzungen		Empfohlenes Semester	_	ebots- igkeit
Prof. DrIng. Jörg Härtel			uktiver eurbau			1/2/3	W	/iSe

Zeitgemäße Konstruktionen des Wohn- und Geschossbaus werden energieeffizient und nachhaltig geplant. Hierbei spielen ökologische Bau- und Dämmstoffe aus natürlichen Holz- und Holzwerkstoffen eine zunehmende Rolle. Die Herstellung von Energieeffizienzhäusern und Passivhäusern aus Holz liegt dabei auf der Hand.

Die Studenten/innen erwerben durch die projektorientierte Arbeitsweise vertiefte Kenntnisse zur Planung, Berechnung und Umsetzung von energieeffizienten Gebäuden aus Holz.

Lehrinhalte

Statische, konstruktive und bauphysikalische Bearbeitung von ein- und mehrgeschossigen Wohngebäuden in Holztafelbauweise. Vertikaler und horizontaler Lastabtrag, Aussteifungen im Holztafelbau, konstruktive Durchbildung von Anschlussdetails, insbesondere aussteifende Scheiben und Windverankerungen. Brandschutz im Zusammenhang mit Holz im Wohn- und Geschossbau.

Verwendung ökologischer Bau- und Dämstoffe, insbesondere aus natürlichen Holz- und Holzwerkstoffen. Untersuchung alternativer Bauweisen aus Holz (Massivholz, Brettsperrholz, etc.). Bauphysikalische Grundlagen (Schallschutz, Wärmeschutz, Feuchteschutz, Brandschutz) für moderne Holzkonstruktionen. Planung modernster Haustechnik (z.B. Solarenergie, Wärmepumpen, Heiztechnik, etc.), Planung von Energieeffizienzhäusern und Passivhäusern aus Holz, EnEV, Förderprogramme, Ökologie und Nachhaltigkeit.

Dozent(in)	Lehrveranstaltung	Sprache	SWS
Prof. DrIng. Jörg Härtel	Holzbau /Energieeffizientes Bauen mit Holz)	deutsch	4

Modulname						Modulcode	LP	SWS
IT-Infrastruktur in	Bauui	nternehm	en				6	4
Verwendbarkeit Studiengang	Art	Prüfungs- art	Prüfungs- form	Studentische Arbeitbelastung in Stu	ınden	Lehr- und Lernmethoden	Daue Seme	er in estern
MEB	WPF	PL		Gesamt	180	Vorlesung		
			KA	Präsenzstudium	54			1
				Selbststudium	126			
Modulverantwortlicher		Kompetenzk Vertiefungsi		Voraussetzungen		Empfohlenes Semester	_	bots- igkeit
Prof. Dr.						4 / 2 / 2	_	- C -
Franz Diemand		ıvıanag	gement			1/2/3	5	oSe

Die Studierenden kennen den aktuellen Stand der Digitalisierung bei deutschen Bauunternehmen. Das Verständnis über die typischen Organiationsformen und -strukturen bei Bauunternehmen ist vorhanden. Die Anwendung von Aufbau-, Ablauf und Prozessorganisation können die Studierenden wiedergeben und anwenden. Ein Überblick des ganzheitlichen Führungs- und Controllingsystems wird vermittelt. Prinzipien der modernen Informationstechnologie können anwendungsorientiert angewandt werden (z.B. E-V-A-Prinzip). Die geschäftsfeldspezifikschen Ausprägungen von Bauunternehmen werden von den Studierenden systematisch erarbeitet und können wiedergegeben werden. Studierende können die Grundlagen einer IT-Infrastruktur für ein Bauunternehmen benennen und wiedergeben. Risiken und Chancen für eine Softwareeinführung sind bekannt.

Lehrinhalte

Aufbau- und Ablauforganisation, Trends der Informationstechnologie (Mobilität, Cloud Computing, Echtzeitverarbeitung, Self-Service-Möglichkeiten, Big Data), IT-Bau-Haus mit anwendungsorientierten Bereichen (Kommunikations und Information,

Analyse/Auswertung/Darstellung, technische, fachübergreifende und kaufmännische Bereiche, Datenbanken, Anwendungen, Softwarelösung, Konditionen, Anbieter), IT-Anwendungsbereiche des Zentralbereiches, des Unterstützungsbereiches und der Projektabwicklung bei Bauunternehmen, integrierte und serviceorientierte Plattform für Bauprojekte, BIM bei Bauunternehmen, Enterprise Ressource Planning (ERP), Business Intelligence (BI), miltlaufende Kalkulatinssoftware, korrekte Softwareeinführungen

Literatur

Skript, ansonsten je nach Bedarf

Dozent(in)	Lehrveranstaltung	Sprache	SWS
Prof. Dr. Franz Diemand	IT-Infrastruktur in Bauunternehmen	deutsch	4

Modulname						Modulcode	LP	SWS
Pipelines, Energie	Pipelines, Energie- und Datennetze						6	4
Verwendbarkeit Studiengang	Art	Prüfungs- art	Prüfungs- form	Studentische Arbeitbelastung in Stu	unden	Lehr- und Lernmethoden	Daue Seme	er in estern
MEB	WPF	PL		Gesamt	180	Vorlesung		
			KA/K2/M	Präsenzstudium	54			1
				Selbststudium	126			
Modulverantwortlicher		Kompetenzk Vertiefungsi	•	Voraussetzungen		Empfohlenes Semester		bots- igkeit
Prof.			uktiver			1/2/3	V	/iSe
Thomas Wegener		ingeni	eurbau					

Erkennen der wesentlichen Zusammenhänge und Bedeutung der Verflechtungen von Pipelines, Energie- und Datennetzen für die Infrastruktur als Grundlage zur Entwicklung einer modernen Industrie- und Dienstleistungsgesellschaft. Grundlegende Erkenntnisse zum Energietransport, zum Energiemanagement, zur Steuerung der Energieströme am Beispiel des Erdgasnetzes sollen die Einkaufs- und Verkaufspolitik, die Speicherphilosophie der Energieversorgungsunternehmen verdeutlichen.

Lehrinhalte

Pipelinenetze, Energiewege, Grundlagen der Thermodynamik, Gastransport, Erdgas als Energieträger, Biogas, Leitungsauslegungen, Hochdruck-, Mitteldruck-, Niederdrucknetze, LNG, Aufbau und Funktion von Kavernenspeichern, Engineering zur Planung von Anlagen und Fernleitungen, Genehmigungsverfahren

Dozent(in)	Lehrveranstaltung	Sprache	SWS
Prof. Thomas Wegener	Pipelines, Energie- und Datennetze	deutsch	4