

AHI

Linear Regressor

(Huber Regressor)

Final Diagnosis

If AHI ≥ 15: OSA

RA count

PSG AHI

 $100 \mid \rho = 0.74$

SlAction: Non-intrusive, Lightweight Obstructive Sleep Apnea Detection using Infrared Video

You Rim Choi^{†1} Gyeongseon Eo^{†1} Wonhyuck Yoon³ Hyojin Lee¹ Haemin Jang¹ Dongyoon Kim⁴ Hyunwoo Shin*^{2,3} Hyung-Sin Kim*¹ Seoul National University¹ Seoul National University College of Medicine² OuarLab³ Columbia University³

INTRODUCTION

Obstructive sleep apnea (OSA) is one of the most common sleep disorders

Hypopnea **Partially Open Airway** blocked

Polysomnography (PSG): Gold standard for sleep evaluation

(2) Single-night stay (No consideration of night-to-night variability)

√ Expensive / Time-consuming / Interscorer discrepancy

✓ PSG-based OSA diagnoses can be inaccurate due to

Total sleep time (hours)

PRELIMINARY STUDY

Advantages

daily sleep monitoring

✓ Subjects can sleep without sensors; useful for

√ Available anywhere and familiar with users

√ Measuring equipment is not expensive.

across hospitals 640 x 480, 5 fps

Challenges

- √ Low quality and noisy video ✓ Static overall view
 - ✓ Not much movement discernible to the naked eyes
 - ✓ Blurred information (e.g. subject's face)

False Positive Rate

METHOD

SlAction estimates AHI by counting the occurrence of RA during the total sleep time.

PSG AHI

EVALUATION

Evaluation Dataset

Train	A Hospital, 449 patients				
Valid	Α	В	С	Total	
	50	0	35	85	
	✓ AHI Estimator fitting				
Test	Α	В	С	Total	
	50	115	80	245	

AHI Estimator & OSA Prediction

High Spearman Correlation coefficient values between the estimated AHI and PSG AHI

NVIDIA Jetson Nano

- quard-core ARM A57 CPU

- 4GB 64-bit LPDDR4 memory

- Good OSA prediction performance on hospital A (F1 score 0.876) and B (F1 score 0.891)
- However, the performance for hospital C was relatively lower
- → Refine the AHI estimator using A valid set and C valid set → Shows improved performance

Dataset	Estimator fitting dataset	AHI Estimation		OSA Prediction			
		Spearman correlation coefficient (ρ)	P-value	Accuracy (%)	Precision	Recall	F1 Score
A valid (50 patients)	A valid	0.827	1.37e-13	84.0	0.886	0.886	0.886
A test (50 patients)	A valid	0.744	5.89e-10	82.0	0.842	0.914	0.876
B test (115 patients)	A valid	0.756	8.60e-23	83.4	0.867	0.918	0.891
C test (80 patients)	A valid	0.834	8.16e-22	65.0	1.000	0.594	0.745
C test (80 patients)	A & C valid	0.834	8.16e-22	83.7	0.924	0.884	0.903

Edge Device

RA Detector: Inference

On-device Performance

Model size (FP16)	Model load Frame capture ready	Frame processing (1 min. clip)	Inference	Total Operation	Peak Memory (RSS)	Peak Memory (Runtime)
5.1 (MB)	1.035 ± 0.007 (s)	0.224 ± 0.042 (s)	3.040 ± 0.046 (s)	3.264±0.088 (s)	839±15.5 (MB)	2.67±0.016 (GB)

CONCLUSION

- We propose a **practical approach** to address PSG limitations for OSA diagnosis, utilizing **human motion** during sleep.
- Our research pioneers the use of sleep video to detect OSA events, identifying unique features with clinical expertise and empirical analysis.
- We introduce effective input data curation for identifying slow and long-term motions in a lightweight manner. SlAction is implemented on the resource constrained device for fast AHI estimation.
- Through extensive experiments, we demonstrate that SIAction maintains robust accuracy regardless of various environmental changes such as camera location, sleeping position, blanket occlusion. These results highlight the broad applicability of SIAction in diverse real-world settings.

