

SYLLABUS DE LA ASIGNATURA

1. Identificación de la Asignatura

CURSO: Programación para Física y Astronomía

CÓDIGO: PCFI161

PERÍODO: 1er Semestre año 2023.

COORDINADOR DEL CURSO: Fabián Gómez.

PROFESOR(ES): Claudia Loyola, Fabian Gómez, Felipe Moreno, Joaquín Peralta.

2. Descripción General

Tipo de Actividad¹	Teórica	Ayudantía	Laboratorio	Taller	Terreno	Clínica	Total	Horas Personales
N° horas			4				4	0
semanales ²			4				4	Ŏ

Tipo de Actividad	Horas por	Sesiones por	Semanas
	semana	semana	por
			semestre
Laboratorio	4	1	15

-

¹ Teórica, ayudantía, laboratorio, taller, terreno, clínica y trabajo personal.

² Considerar horas pedagógicas (Horas UNAB)

3. Aprendizajes Esperados y Unidades de Contenido.

I. Aprendizajes Esperados	II. Contenidos
 1 Comprender los elementos fundamentales de la programación haciendo consideraciones sobre los alcances numéricos de las CPU 2 Desarrollar programas elementales utilizando Python. 	UNIDAD I: ELEMENTOS BÁSICOS - Diseño de Programas Computacionales - Elementos básicos de GNU/Linux - Shell, Editores y Ejecución - El intérprete Python - Representación numérica & IEEE Floating Point Numbers, Machine Precision.
3Utilizar controladores en el diseño de programas haciendo consideraciones de uso de memoria y almacenamiento de datos en Python.	UNIDAD II: PROGRAMACIÓN EN PYTHON - Tipos de variables y asignación - Elementos I/O y manejo de ficheros - Aritmética - Funciones, paquetes, y módulos.
4Construir ciclos sobre elementos de memoria, y su uso en el diseño de algoritmos y gráficas de datos y simulaciones mediante el uso de la librería MatPlotLib 5Aplicar el paradigma de programación	UNIDAD III: CONTROLADORES Y ARREGLOS - El statement if & while - Break and continue - Listas y arreglos - Aritmética de arreglos
orientada a objetos al manejo elemental de datos y estadísticas.	- Slicing UNIDAD IV: EL CICLO FOR, GRÁFICAS
6 Diseñar algoritmos complejos, orientados a la resolución de problemas específicos tomando ventaja de las nuevas arquitecturas de hardware, a partir de cálculos de multiprocesamiento.	- Ciclos indefinidos - Loop interactivos - Matplotlib y Gráficos Simples - Gráficos tipo Scatter, Densidad, y 3D - UNIDAD V: CLASES & ANALISIS DE DATOS - Estructuras - Encapsulamiento - Listas y Diccionarios - Estadística Simple con listas - Elementos Avanzados de NUMPY
	UNIDAD VI: ALGORITMOS, & PERFORMANCE - Algoritmos de Búsquedas - Recursividad - Sorting - Elementos básicos de cálculo en paralelo en Python Utilización de hilos para problemas complejos Una visita a LaTEX.

4. Clase a clase (Calendario)³

N° de sesión	Tipo de actividad	Descripción de la actividad (didáctica o evaluativa)	A.E. Relacionado
Sesión 1 Semana10 06/03/2023	Laboratorio	1era Parte: Se presentará a los alumnos elementos fundamentales de computación y GNU/Linux. 2da Parte: Se realizará una actividad grupal, en donde los grupos deberán responder y practicar elementos básicos de computación.	AE 1
Sesión 2 Semana 11 13/03/2023	Laboratorio	1era Parte: Se presentará el intérprete de Python y representaciones numéricas en computación. 2da Parte: Se realizará una actividad grupal, en donde los grupos deberán responder y practicar las temáticas vistas en la primera parte.	AE1
Sesión 3 Semana 12 20/03/2023	Laboratorio	1era Parte: Se presentará: variables, elementos I/O, aritmética y funciones en Python. 2da Parte: Se realizará una actividad grupal.	AE2
Sesión 4 Semana 13 27/03/2023	Laboratorio	Actividad grupal donde se practicarán los contenidos previos.	AE1-AE2
Semana 15 10/04/2023	Solemne I	Evaluación de unidades I y II	
Sesión 5 Semana 16 17/04/2023	Laboratorio	1era Parte: Se presentará el uso de controladores y arreglos en Python 2da Parte: Se realizará una actividad grupal, en donde los grupos deberán	AE3

		responder y practicar las temáticas vistas en la primera parte.	
Sesión 6 Semana 17 24/04/2023	Laboratorio	1era Parte: Se presentará ciclos y su uso en Python. 2da Parte: Se realizará una actividad grupal, en donde los grupos deberán responder y practicar las temáticas vistas en la primera parte.	AE4
Sesión 7 Semana 18 01/05/2023	Laboratorio	1era Parte: Se presentará gráficas mediante la librería Matplotlib 2da Parte: Se realizará una actividad grupal, en donde los grupos deberán responder y practicar las temáticas vistas en la primera parte.	AE4
Sesión 8 Semana 19 08/05/2023	Laboratorio	Actividad grupal donde se practicarán los contenidos previos	AE3-AE4
Semana 20 15/05/2023	Laboratorio / Ejercicios	Pre – solemne. Preparación para la segunda solemne.	
Semana 21 22/05/2023	Solemne II	Unidades III y IV	
Sesión 9 Semana 22 29/05/2023	Laboratorio	1era Parte: Se presentará el uso de clases en Python. 2da Parte: Se realizará una actividad grupal, en donde los grupos deberán responder y practicar las temáticas vistas en la primera parte.	AE5
Sesión 10 Semana 23 05/06/2023	Laboratorio	1era Parte: Se presentará manejo de datos en Python 2da Parte: Se realizará una actividad grupal, en donde los grupos deberán	AE5

		responder y practicar las temáticas vistas en la primera parte.	
Sesión 11 Semana 24 12/06/2023	Laboratorio	1era Parte: Se presentarán algoritmos clásicos y performance mediante el uso de sistemas multi-core y Python. 2da Parte: Se realizará una actividad grupal, en donde los grupos deberán responder y practicar las temáticas vistas en la primera parte.	AE6
Sesión 12 Semana 25 19/06/2023	Laboratorio	Actividad grupal donde se practicarán los contenidos previos.	AE5-AE6
Semana 26 26/06/2023	Solemne III	Unidades V y VI	
Semana 28 10/07/23	Examen	Unidades I, II, III, IV, V y VI	AE1- AE2- AE3- AE4- AE5- AE6

5. Evaluación

N° Evaluación	Tipo de evaluación⁴	Grupo (indicar "SI" o "NO"	Ponderación de la evaluación	N° de sesión	Aprendizaje esperado	Indicador (es) de logro (lo que se espera que el estudiante demuestre en la evaluación)
1	Solemne	NO	33%	5	1 Comprender los elementos fundamentales de la programación haciendo consideraciones sobre los alcances numéricos de las CPU 2 Desarrollar programas elementales utilizando Python.	
2	Solemne	NO	33%	10	1Utilizar controladores en el diseño de programas haciendo consideraciones de uso de memoria y almacenamiento de datos en Python. 2Construir ciclos sobre elementos de memoria, y su uso en el diseño de algoritmos y gráficas de datos y simulaciones mediante el uso de la librería MatPlotLib.	
3	Solemne	NO	34%	15	3Aplicar el paradigma de programación orientada a objetos al manejo elemental de datos y estadísticas. 4 Diseñar algoritmos complejos, orientados a la resolución de problemas específicos tomando ventaja de las nuevas arquitecturas de hardware, a partir de cálculos de multiprocesamiento.	

⁴ Tipo de evaluación, (solemnes, seminarios, controles, ensayos, presentaciones, análisis de un caso, etc.)

Escuela:

6. Sistema de Evaluación de la Asignatura y condiciones de aprobación

La nota de presentación a examen (NP) se calculará como sigue:

$$NP = (0.33 * S_1) + (0.33 * S_2) + (0.34 * S_3)$$

La nota final se calcula con la siguiente fórmula:

$$NF = (0.7 * NP) + (0.3 * NE)$$

- A. Puede eximirse del Examen aquel estudiante que obtiene nota de presentación mayor o igual a 5, con no más de **una** evaluación parcial (Solemne) o promedios de controles bajo 4.0. De lo contrario, debe rendir Examen.
- B. En caso de ausentarse a una de las solemnes de forma **debidamente justificada**, el/la estudiante deberá rendir el examen, cuya nota será utilizada como reemplazo a la evaluación faltante.
- C. Si el/la estudiante se ausenta alguna solemne, sin una justificación válida, su nota en la evaluación será calificada con la nota mínima de 1.0.
- D. Quien se haya eximido de rendir el examen; obteniendo nota de presentación mayor o igual a 5; su nota final será igual a su nota de presentación, sin embargo, le será permitido de igual forma rendir el examen y de esta manera mejorar su nota final.
- E. La asistencia a clases prácticas de laboratorio es de un 100%. No obstante, es posible ausentarse al 20% de las clases de forma **debidamente justificada**. En caso de inasistencias que no cumplan con lo recién mencionado el/la estudiante reprobará la asignatura de manera automática.
- F. El curso está regulado, además, por el Reglamento del Alumno de Pregrado vigente.
- G. Calendario de Evaluaciones:

Sección	Solemne 1	Solemne 2	Solemne 3	Examen
1	13 de Abril	25 de Mayo	29 de Junio	
2	13 de Abril	25 de Mayo	29 de Junio	12 de Julio
3	14 de Abril	26 de Mayo	30 de Junio	12 de Julio
4	14 de Abril	26 de Mayo	30 de Junio	

7. Bibliografía

7.1 Obligatoria

- 1.- Computational Physics, Mark Newman, Ed 2013, University of Michigan. ISBN 978-148014551-1
- 2.- Computational Physics, Problem Solving with Python, Third Edition. Landau R H, Páez J, and Bordeianu C. Wiley-VCH Physics Textbook.
 ISBN 978-3-527-41315-7
- 3.- Python Programming: An introduction to computer science, Zelle J. Second Edition 2010.
 Franklin, Beedle & Associates Inc.
 ISBN 978-1-59028-241-0

7.2 Complementaria

1.- Programming in Python 3. A complete introduction to the Python Language. Summerfield M. Second Edition.

ISBN 978-0-321-68056-3

2.- Python Pocket Reference. Lutz M, 5th Edición. O'reilly. ISBN 978-1-449-35701-6

Nota: Este documento está sujeto a modificaciones en función de la contingencia semestral.