Portfolio Optimization

High-Order Portfolios

Daniel P. Palomar (2025). *Portfolio Optimization: Theory and Application*. Cambridge University Press.

portfoliooptimizationbook.com

Latest update: 2025-10-13

Outline

- Introduction
- 2 High-Order Moments
- Portfolio Formulations
- 4 Algorithms*
- Summary

Executive Summary

- Markowitz mean-variance theory struggles with real financial data due to non-Gaussian distributions (asymmetry and heavy tails).
- Higher-order moments (skewness and kurtosis) can address these limitations but introduce significant computational challenges.
- Complexity grows exponentially at rate of N^4 with number of assets, making computation, storage, and manipulation difficult.
- Resulting portfolio formulations are nonconvex, complicating optimization.
- These slides explore recent advances in computational power and techniques have made high-order portfolios feasible for large-scale applications (hundreds to thousands of assets) (Palomar 2025, chap. 9)

Outline

- Introduction
- 2 High-Order Moments
- Portfolio Formulations
- 4 Algorithms*
- Summary

Markowitz's Mean-Variance Portfolio Optimization

- Balances expected return and risk (variance).
- Optimization problem:

$$\begin{array}{ll} \underset{\pmb{w}}{\text{maximize}} & \pmb{w}^{\mathsf{T}} \pmb{\mu} - \frac{\lambda}{2} \pmb{w}^{\mathsf{T}} \pmb{\Sigma} \pmb{w} \\ \text{subject to} & \pmb{w} \in \mathcal{W} \end{array}$$

where

- λ : risk-aversion hyper-parameter.
- \mathcal{W} : constraint set, e.g., $\mathcal{W} = \{ \mathbf{w} \mid \mathbf{1}^\mathsf{T} \mathbf{w} = 1, \mathbf{w} \geq \mathbf{0} \}.$

Beyond the Gaussian Assumption

- Empirical studies show financial data are not Gaussian.
- Portfolio optimization should include higher-order moments:
 - skewness (third moment)
 - kurtosis (fourth moment)
- Aim for higher skewness and lower kurtosis in portfolios.

Skewed t Distribution

- Next figure shows skewed t distribution with varying skewness (γ) and kurtosis (ν) .
- $\gamma = 0$: symmetric case.
- $\nu \to \infty$: non-heavy-tailed case.

Incorporating Higher Moments in Portfolio Optimization

- Investors may prefer to trade-off lower expected return/higher volatility for higher skewness/lower kurtosis.
- Measures can be skew-adjusted; example of Sharpe ratio:

skew-adjusted-SR = SR
$$\times \sqrt{1 + \frac{\text{skewness}}{3}} \text{SR}.$$

Illustration of skewness and kurtosis with the skewed t distribution:

High-Order Portfolios Overview

- Third and fourth moments of a portfolio:
 - third moment (skewness): $\mathbf{w}^{\mathsf{T}} \Phi(\mathbf{w} \otimes \mathbf{w})$.
 - fourth moment (kurtosis): $\mathbf{w}^{\mathsf{T}} \Psi (\mathbf{w} \otimes \mathbf{w} \otimes \mathbf{w})$.
- Co-skewness and co-kurtosis matrices: $\Phi \in \mathbb{R}^{N \times N^2}$, $\Psi \in \mathbb{R}^{N \times N^3}$.
- Challenges:
 - computation, storage, and manipulation of high-order moments are difficult.
 - nonconvex nature of the third moment complicates portfolio formulations.

Historical Perspective (Palomar 2025, chap. 9)

- Early attempts in the 1960s to incorporate high-order moments (Young and Trent 1969; Jean 1971).
- Dimensionality and computational issues hindered progress.
- Skepticism due to the impracticality of modeling high-order cross-moments (Brandt, Santa-Clara, and Valkanov 2009).
- Recent advancements in estimation methods and computational techniques (Boudt, Lu, and Peeters 2014; Zhou and Palomar 2021; Wang et al. 2023).

Estimation and Computational Challenges

- High-order portfolio design can negatively impact out-of-sample performance without improved estimators.
- Improved estimation methods introduce structure and shrinkage.
- Parametric multivariate distributions reduce parameter estimation complexity.

Algorithmic Developments

- Nonconvex problems can be addressed with meta-heuristic optimization, but have high computational cost.
- Local optimization methods offer practical solutions with acceptable costs.
- Difference-of-convex (DC) programming and DC-SOS decomposition techniques.
- Successive convex approximation (SCA) framework (Scutari et al. 2014) accelerates convergence for high-dimensional problems.

Advancements in High-Order Portfolio Optimization

- Significant reduction in computational cost through parametric models.
- Development of faster numerical methods for large-scale portfolio optimization.
- High-order portfolios now feasible for practical application.

Outline

- 1 Introduction
- 2 High-Order Moments
- Portfolio Formulations
- 4 Algorithms*
- Summary

High-Order Moments

Understanding High-Order Moments

- High-order moments are crucial for non-Gaussian distributions.
- First four moments of a random variable X:
 - mean (first moment): $\bar{X} \triangleq \operatorname{I\!E}[X]$
 - variance (second moment): $\mathbb{E}[(X \bar{X})^2]$
 - skewness (third moment): $\mathbb{E}[(X \bar{X})^3]$
 - kurtosis (fourth moment): $\mathbb{E}[(X \bar{X})^4]$

Interpretation

- Mean: indicates location.
- Variance: measures spread.
- Skewness: assesses asymmetry.
- Kurtosis: characterizes the tail thickness.

Portfolio Moments

- Portfolio return with N assets: $\mathbf{w}^{\mathsf{T}}\mathbf{r}$.
- First four moments of portfolio return:
 - mean: $\phi_1(\mathbf{w}) = \mathbf{w}^\mathsf{T} \mu$
 - variance: $\phi_2(\mathbf{w}) = \mathbf{w}^\mathsf{T} \mathbf{\Sigma} \mathbf{w}$
 - skewness: $\phi_3(\mathbf{w}) = \mathbf{w}^\mathsf{T} \Phi(\mathbf{w} \otimes \mathbf{w})$
 - kurtosis: $\phi_4(\mathbf{w}) = \mathbf{w}^\mathsf{T} \Psi(\mathbf{w} \otimes \mathbf{w} \otimes \mathbf{w})$
- Parameters:
 - ullet μ : mean vector
 - \bullet Σ : covariance matrix
 - Φ: co-skewness matrix
 - ullet Ψ : co-kurtosis matrix

Computational Aspects

- We will optimize some combination of these four moments of the portfolio.
- This means that we will need to compute the gradient and Hessian of these moments.

Gradients and Hessians

- Gradients:
 - $\nabla \phi_1(\mathbf{w}) = \boldsymbol{\mu}$

 - $\bullet \ \nabla \phi_3(\mathbf{w}) = 3\Phi(\mathbf{w} \otimes \mathbf{w})$
 - ullet $abla \phi_4(oldsymbol{w}) = 4 \Psi(oldsymbol{w} \otimes oldsymbol{w} \otimes oldsymbol{w})$
 - Hessians:
 - $\nabla^2 \phi_1(\mathbf{w}) = \mathbf{0}$
 - $\mathbf{\Phi} \nabla^2 \phi_2(\mathbf{w}) = 2\mathbf{\Sigma}$
 - $\nabla^2 \phi_3(\mathbf{w}) = 6\Phi(\mathbf{I} \otimes \mathbf{w})$
 - $\nabla^2 \phi_4(\mathbf{w}) = 12 \hat{\mathbf{\Psi}} (\mathbf{I} \otimes \mathbf{w} \otimes \mathbf{w})$

Complexity Analysis

- Complexity of parameters and their computation grows with *N*:
 - μ : O(N)
 - Σ : $O(N^2)$
 - $\bullet \ \Phi \colon \ O(N^3)$
 - Ψ : $O(N^4)$
- Gradients and Hessians complexity:
 - \bullet $\nabla \phi_1(\mathbf{w})$ and $\nabla^2 \phi_1(\mathbf{w})$: O(1) and O(1)
 - $\nabla \phi_2(\mathbf{w})$ and $\nabla^2 \phi_2(\mathbf{w})$: $O(N^2)$ and O(1)
 - $\nabla \phi_3(\mathbf{w})$ and $\nabla^2 \phi_3(\mathbf{w})$: $O(N^3)$ and $O(N^3)$
 - $\nabla \phi_4(\mathbf{w})$ and $\nabla^2 \phi_4(\mathbf{w})$: $O(N^4)$ and $O(N^4)$
- Memory requirement example: storing Ψ for N=200 needs ~ 12 GB.

Implications for Practical Application

- Markowitz's portfolio complexity: $O(N^2)$.
- Incorporating third and fourth moments increases complexity to $O(N^4)$.
- High complexity limits practical application to portfolios with a small number of assets.

High-Order Moments: Structured Moments

Structured Moments in Portfolio Analysis

- Introducing structure to high-order moment matrices can reduce parameter estimation.
- Factor modeling introduces structure at the expense of higher complexity in the estimation procedure due to intricate matrix structures.

Single Market-Factor Model

Returns modeled as:

$$oldsymbol{r}_t = lpha + eta r_t^{\mathsf{mkt}} + \epsilon_t$$

- Moments expressed as:
 - mean vector: $\mu = \alpha + \beta \phi_1^{\mathsf{mkt}}$
 - ullet covariance matrix: $oldsymbol{\Sigma} = oldsymbol{eta}^\mathsf{T} \phi_2^\mathsf{mkt} + oldsymbol{\Sigma}_\epsilon$
 - ullet co-skewness matrix: $oldsymbol{\Phi} = oldsymbol{eta} \left(oldsymbol{eta}^{\mathsf{T}} \otimes oldsymbol{eta}^{\mathsf{T}}
 ight) \phi_3^{\mathsf{mkt}} + oldsymbol{\Phi}_{\epsilon}$
 - ullet co-kurtosis matrix: $oldsymbol{\Psi} = oldsymbol{eta} \left(oldsymbol{eta}^{\mathsf{T}} \otimes oldsymbol{eta}^{\mathsf{T}} \otimes oldsymbol{eta}^{\mathsf{T}}
 ight) \phi_4^{\mathsf{mkt}} + oldsymbol{\Psi}_{\epsilon}$
 - ϕ_i^{mkt} : ith moment of the market factor
 - $oldsymbol{\Sigma}_{\epsilon}, \ \Phi_{\epsilon}, \ \Psi_{\epsilon}$: covariance, co-skewness, and co-kurtosis matrices of residuals

Overview of Multivariate Distributions

- Multivariate normal distribution characterized by mean μ and covariance Σ .
- Financial data often exhibit non-Gaussian features like skewness and kurtosis.

Multivariate Normal Mixture Distributions

- Introduce randomness into covariance and mean for more general distributions.
- Variance mixtures affect covariance but not mean.
- Mean-variance mixtures affect both mean and covariance.

Normal Variance Mixture

- \bullet Example: multivariate t distribution with inverse gamma distribution for w.
- Models heavy tails but not asymmetry.
- Hierarchical structure:

$$oldsymbol{x} \mid au \sim \mathcal{N}\left(oldsymbol{\mu}, rac{1}{ au} oldsymbol{\Sigma}
ight), \ au \sim \mathsf{Gamma}\left(rac{
u}{2}, rac{
u}{2}
ight).$$

Normal Mean-Variance Mixture

- Example: multivariate generalized hyperbolic (GH) distribution.
- Models both heavy tails and asymmetry.
- Hierarchical structure for skewed t distribution:

$$oldsymbol{x} \mid au \sim \mathcal{N}\left(oldsymbol{\mu} + rac{1}{ au}oldsymbol{\gamma}, rac{1}{ au}oldsymbol{\Sigma}
ight), \ au \sim \mathsf{Gamma}\left(rac{
u}{2}, rac{
u}{2}
ight).$$

Complexity in Fitting Distributions

- More complex distributions like unrestricted multivariate skewed t (uMST) are hard to fit due to computational complexity.
- Skewed *t* distribution offers a good balance between fitting financial data asymmetries and computational simplicity.

Goodness of Fit

• Empirical comparison shows skewed t distribution a good choice for financial data.

17 / 58

Maintains simplicity while fitting data well, unlike more complex distributions.

Likelihood of different fitted multivariate distributions for S&P 500 daily stock returns:

Simplified Moments under Multivariate Skewed t Distribution

- The parametric model simplifies moment computations significantly.
- First four moments (Wang et al. 2023):
 - $oldsymbol{\phi} \phi_1(oldsymbol{w}) = oldsymbol{w}^\mathsf{T} oldsymbol{\mu} + oldsymbol{a}_1 oldsymbol{w}^\mathsf{T} oldsymbol{\gamma}$
 - $\bullet \ \phi_2(\mathbf{w}) = a_{21}\mathbf{w}^\mathsf{T} \mathbf{\Sigma} \mathbf{w} + a_{22}(\mathbf{w}^\mathsf{T} \boldsymbol{\gamma})^2$
 - $\bullet \ \phi_3(\mathbf{w}) = a_{31}(\mathbf{w}^\mathsf{T} \boldsymbol{\gamma})^3 + a_{32}(\mathbf{w}^\mathsf{T} \boldsymbol{\gamma}) \mathbf{w}^\mathsf{T} \boldsymbol{\Sigma} \mathbf{w}$
- Coefficients a_1 , a_{21} , a_{22} , etc., are functions of the degrees of freedom ν .

Clarification on Parameters

- μ : location vector, not the mean.
- ullet Σ : scatter matrix, not the covariance matrix.

Gradients and Hessians

- Gradients:
 - $\bullet \
 abla \phi_1(\mathbf{w}) = \mu + a_1 \gamma$
 - $\nabla \phi_2(\mathbf{w}) = 2a_{21} \Sigma \mathbf{w} + 2a_{22} (\mathbf{w}^{\mathsf{T}} \gamma) \gamma$
 - $\nabla \phi_3(\mathbf{w}) = 3a_{31}(\mathbf{w}^\mathsf{T} \gamma)^2 \gamma + a_{32} ((\mathbf{w}^\mathsf{T} \Sigma \mathbf{w}) \gamma + 2(\mathbf{w}^\mathsf{T} \gamma) \Sigma \mathbf{w}).$
 - $\bullet \ \nabla \phi_4(\mathbf{w}) = 4a_{41}(\mathbf{w}^\mathsf{T} \boldsymbol{\gamma})^3 \boldsymbol{\gamma} + 2a_{42}\left((\mathbf{w}^\mathsf{T} \boldsymbol{\gamma})^2 \boldsymbol{\Sigma} \mathbf{w} + (\mathbf{w}^\mathsf{T} \boldsymbol{\Sigma} \mathbf{w}) (\mathbf{w}^\mathsf{T} \boldsymbol{\gamma}) \boldsymbol{\gamma} \right) + 4a_{43}(\mathbf{w}^\mathsf{T} \boldsymbol{\Sigma} \mathbf{w}) \boldsymbol{\Sigma} \mathbf{w}$
- Hessians:
 - $\nabla^2 \phi_1(\mathbf{w}) = \mathbf{0}$
 - $\bullet \nabla^2 \phi_2(\mathbf{w}) = 2a_{21}\Sigma + 2a_{22}\gamma\gamma^{\mathsf{T}}$
 - $\nabla^2 \phi_3(\mathbf{w}) = 6a_{31}(\mathbf{w}^\mathsf{T} \gamma) \gamma \gamma^\mathsf{T} + 2a_{32} (\gamma \mathbf{w}^\mathsf{T} \Sigma + \Sigma \mathbf{w} \gamma^\mathsf{T} + (\mathbf{w}^\mathsf{T} \gamma) \Sigma)$
 - $\nabla^2 \phi_4(\mathbf{w}) = 12a_{41}(\mathbf{w}^\mathsf{T} \gamma)^2 \gamma \gamma^\mathsf{T} + 2a_{42} \left(2(\mathbf{w}^\mathsf{T} \gamma) \Sigma \mathbf{w} \gamma^\mathsf{T} + (\mathbf{w}^\mathsf{T} \gamma)^2 \Sigma + 2(\mathbf{w}^\mathsf{T} \gamma) \gamma \mathbf{w}^\mathsf{T} \Sigma + (\mathbf{w}^\mathsf{T} \Sigma \mathbf{w}) \gamma \gamma^\mathsf{T} \right) + 4a_{43} \left(2\Sigma \mathbf{w} \mathbf{w}^\mathsf{T} \Sigma + (\mathbf{w}^\mathsf{T} \Sigma \mathbf{w}) \Sigma \right)$

Take-Home Message under Parametric Modeling

- No need to compute, store, and manipulate huge co-skewness and co-kurtosis matrices.
- ullet Can cheaply compute gradients and Hessians based on the parameters: μ , Σ , ν , and γ .

L-Moments Overview

- L-moments characterize the distribution of a random variable and describe its properties such as location, dispersion, asymmetry, and tail thickness.
- They are linear functions of order statistics, making them easier to estimate than traditional moments.

Definition of L-Moments

- Let X be a random variable and $X_{1:n} < X_{2:n} < \cdots < X_{n:n}$ be the *order statistics* of a random sample of size n drawn from the distribution of X.
- L-moments for a random variable X are defined as:

$$\lambda_r = \frac{1}{r} \sum_{k=0}^{r-1} (-1)^k \binom{r-1}{k} \mathbb{E}[X_{r-k:r}], \quad r = 1, 2, \dots$$

- First four L-moments:
 - $\lambda_1 = \mathbb{E}[X]$
 - $\lambda_2 = \frac{1}{2} \mathbb{E}[X_{2:2} X_{1:2}]$

 - $\lambda_3 = \frac{1}{3} \mathbb{E}[X_{3:3} 2X_{2:3} + X_{1:3}]$ $\lambda_4 = \frac{1}{4} \mathbb{E}[X_{4:4} 3X_{3:4} + 3X_{2:4} X_{1:4}]$

Descriptive Information Provided by L-Moments

- L-location (λ_1) is identical to the mean.
- L-scale (λ_2) measures expected difference between any two realizations (like variance).
- L-skewness (λ_3) provides a measure of asymmetry less sensitive to extreme tails.
- L-kurtosis (λ_4) measures tail thickness, less sensitive to extreme tails.

Estimation of L-Moments

- Direct estimation from observations is computationally demanding.
- Simplified estimators in terms of sample values in ascending order $x_{(i)}$:

$$\hat{\lambda}_1 = \frac{1}{n} \sum_{i=1}^n x_{(i)}$$

•
$$\hat{\lambda}_2 = \frac{1}{2} \frac{1}{C_2^n} \sum_{i=1}^n \left(C_1^{i-1} - C_1^{n-i} \right) x_{(i)}$$

•
$$\hat{\lambda}_3 = \frac{1}{3} \frac{1}{C_3^n} \sum_{i=1}^n \left(C_2^{i-1} - 2C_1^{i-1}C_1^{n-i} + C_2^{n-i} \right) x_{(i)}$$

• $\hat{\lambda}_4 = \frac{1}{4} \frac{1}{C_3^n} \sum_{i=1}^n \left(C_3^{i-1} - 3C_2^{i-1}C_1^{n-i} + 3C_1^{i-1}C_2^{n-i} - C_3^{n-i} \right) x_{(i)}$

Comparison with Traditional Moments

- L-moments convey similar information to traditional moments but are more stable.
- This stability makes L-moments particularly useful for analyzing financial data, where they exhibit fewer jumps and provide a clearer picture.

Moments and L-moments of the S&P 500 index in a rolling-window fashion:

Moments and L-moments of the S&P 500 index in a rolling-window fashion:

Moments and L-moments of the S&P 500 index in a rolling-window fashion:

Outline

- Introduction
- 2 High-Order Moments
- Portfolio Formulations
- 4 Algorithms*
- Summary

Portfolio Formulations

Formulations Involving High-Order Moments

- Higher-order moments introduce nonconvexity into portfolio formulations.
- Different expressions for moments $\phi_1(\mathbf{w})$, $\phi_2(\mathbf{w})$, $\phi_3(\mathbf{w})$, and $\phi_4(\mathbf{w})$ offer various formulation options.
- MVSK portfolio: mean-variance-skewness-kurtosis.

Moment Expression Options

- Non-parametric: direct calculations from returns; computationally demanding and may need large data.
- Factor model structured: utilizes market or multiple factors to structure moments, reducing parameter count.
- Parametric: uses multivariate skewed t distribution, easing moment computations and balancing distributional capture with feasibility.
- L-moments: linear in order statistics, offering easier estimation and robustness to extremes, while conveying distribution insights.

MVSK Portfolios

MVSK Portfolio Formulation

Optimize a weighted combination of the first four moments:

minimize
$$-\lambda_1\phi_1(\mathbf{w}) + \lambda_2\phi_2(\mathbf{w}) - \lambda_3\phi_3(\mathbf{w}) + \lambda_4\phi_4(\mathbf{w})$$
 subject to $\mathbf{w} \in \mathcal{W}$

where λ_i are hyper-parameters reflecting risk aversion.

Investor Preferences

- Seek higher mean and skewness: $\phi_1(\mathbf{w})$, $\phi_3(\mathbf{w})$.
- Prefer lower variance and kurtosis: $\phi_2(\mathbf{w})$, $\phi_4(\mathbf{w})$.

MVSK Portfolios

Alternative Formulations

Constraints on moments:

$$\begin{array}{ll} \text{find} & \textbf{\textit{w}} \\ \text{subject to} & \phi_1(\textbf{\textit{w}}) \geq \alpha_1 \\ & \phi_2(\textbf{\textit{w}}) \leq \alpha_2 \\ & \phi_3(\textbf{\textit{w}}) \geq \alpha_3 \\ & \phi_4(\textbf{\textit{w}}) \leq \alpha_4, \end{array}$$

where the α_i 's are hyper-parameters denoting investor's targets.

Numerical Algorithms

- General-purpose solvers are always an option.
- Specialized algorithms for solving MVSK have been recently developed (Zhou and Palomar 2021; Wang et al. 2023).

MVSK Portfolios

Expected Utility in Portfolio Design

- Focuses on maximizing the expected value of a utility function $\mathbb{E}\left[U(\mathbf{w}^\mathsf{T}\mathbf{r})\right]$.
- Moves beyond the mean-variance objective.

Historical Context

- High-order portfolios considered since 1969.
- Geometric mean approximation of returns:

$$\mathbb{E}\left[\log\left(1+\boldsymbol{w}^{\mathsf{T}}\boldsymbol{r}\right)\right] \approx \log\left(1+\phi_{1}(\boldsymbol{w})\right) - \frac{\phi_{2}(\boldsymbol{w})}{2\phi_{1}^{2}(\boldsymbol{w})} + \frac{\phi_{3}(\boldsymbol{w})}{3\phi_{1}^{3}(\boldsymbol{w})} - \frac{\phi_{4}(\boldsymbol{w})}{4\phi_{1}^{4}(\boldsymbol{w})}$$

Mean-variance portfolio arises from using the first two terms of the log-approximation.

Advancements in High-Order Approximations

- High-order expansions for arbitrary expected utilities can be now considered.
- Recent work includes high-order approximations with structured estimators for moments.

Making Portfolios Efficient

Shortage Function in Multi-Objective Optimization

- Measures the distance between a portfolio's moments and the efficient frontier.
- Utilized to optimize portfolios towards Pareto-optimal points.

Optimization Using the Shortage Function

- Given a reference portfolio \mathbf{w}^0 and direction vector \mathbf{g} .
- ullet Objective: maximize δ , representing movement towards the efficient frontier.
- ullet Constraints ensure improvement in desired moments along $oldsymbol{g}$.

Feasibility and Efficiency

- Formulation is always feasible.
- If \mathbf{w}^0 is on the efficient frontier, the solution is $\mathbf{w} = \mathbf{w}^0$ and $\delta = 0$.

Portfolio Tilting

Extending Portfolio Improvement with Optimality Measure

- Obtained by minimizing a cost function $\xi(\mathbf{w})$.
- Examples of $\xi(\cdot)$ include Herfindahl index, risk contributions equalization, diversification ratio, and tracking error.

MVSK Portfolio Tilting Formulation

- Objective: maximize δ to make the reference portfolio \mathbf{w}^0 more optimal.
- Constraints include maintaining or improving moment values and allowing a controlled loss of optimality (κ) for closer efficient frontier alignment.
- Formulation:

Portfolio Tilting

Cost Function Examples for Portfolio Tilting

- Herfindahl index: $\xi(\mathbf{w}) = \sum_{i=1}^{N} w_i^2$; encourages diversity.
- Risk parity: $\xi(\mathbf{w}) = \sum_{i=1}^{N} \left(\frac{w_i(\Sigma \mathbf{w})_i}{\mathbf{w}^T \Sigma \mathbf{w}} \frac{1}{N} \right)^2$; equalizes risk contributions.
- Diversification ratio: $\xi(w) = -\frac{w^T \sigma}{\sqrt{w^T \Sigma w}}$; maximizes return-to-risk ratio.
- Tracking error: $\xi(w) = \sqrt{(w w^{\text{benchmark}})^T \Sigma(w w^{\text{benchmark}})}$; minimizes benchmark deviation.

Optimization Parameters

- $g_i(\delta)$: functions increasing with δ .
- κ : allows optimality loss for efficient frontier approach, set as $0.01 \times \xi(\mathbf{w}^0)$.

Numerical Algorithms

- General-purpose solvers are always an option.
- Efficient algorithms developed for solving the MVSK tilting portfolio formulation (Zhou and Palomar 2021).

Polynomial Goal Programming MVSK Portfolio

Polynomial Goal Programming for Moment Trade-Off

- Objective: minimize distance to reference moments with a polynomial.
- Formulation:

$$\begin{array}{ll} \underset{\boldsymbol{w},\boldsymbol{d} \geq \boldsymbol{0}}{\text{minimize}} & \left| \frac{d_1}{\phi_1^0} \right|^{\lambda_1} + \left| \frac{d_2}{\phi_2^0} \right|^{\lambda_2} + \left| \frac{d_3}{\phi_3^0} \right|^{\lambda_3} + \left| \frac{d_4}{\phi_4^0} \right|^{\lambda_4} \\ \text{subject to} & \phi_1(\boldsymbol{w}) + d_1 \geq \phi_1^0 \\ & \phi_2(\boldsymbol{w}) - d_2 \leq \phi_2^0 \\ & \phi_3(\boldsymbol{w}) + d_3 \geq \phi_3^0 \\ & \phi_4(\boldsymbol{w}) - d_4 \leq \phi_4^0 \end{array}$$

- **d**: deviation from aspired moment levels ϕ_i^0 .
- Aspired levels represent extreme values and are not jointly achievable.

Minkovski Distance Case

- Special case of polynomial goal programming with exponents $\lambda_i = 1/p$.
- Objective becomes a Minkovski distance minimization.

Outline

- Introduction
- 2 High-Order Moments
- Operation of the second of
- 4 Algorithms*
- Summary

Algorithms

MVSK Portfolio Formulation and Objective Function

- Focus on MVSK portfolio with nonconvex objective due to higher-order moments.
- Objective function:

$$f(\mathbf{w}) = -\lambda_1 \phi_1(\mathbf{w}) + \lambda_2 \phi_2(\mathbf{w}) - \lambda_3 \phi_3(\mathbf{w}) + \lambda_4 \phi_4(\mathbf{w})$$

Decomposing MVSK Objective into Convex and Nonconvex Terms

$$f_{ ext{cvx}}(\mathbf{w}) = -\lambda_1 \phi_1(\mathbf{w}) + \lambda_2 \phi_2(\mathbf{w})$$

 $f_{ ext{ncvx}}(\mathbf{w}) = -\lambda_3 \phi_3(\mathbf{w}) + \lambda_4 \phi_4(\mathbf{w}).$

Efficient Numerical Methods beyond General Nonlinear Solvers

- Developing ad-hoc methods for greater efficiency based on the successive convex approximation (SCA) framework (Scutari et al. 2014) and the majorization-minimization (MM) framework (Sun, Babu, and Palomar 2017).
- R package highOrderPortfolios (Zhou and Palomar 2021; Wang et al. 2023).

SCA: Preliminaries

Successive Convex Approximation (SCA) Method (Scutari et al. 2014)

- SCA approximates a difficult optimization problem with a series of simpler convex problems.
- Iteratively produces a sequence x^0, x^1, x^2, \ldots converging towards a solution x^* .

SCA Iterative Process

- ullet At each iteration k, uses a surrogate function $\tilde{f}\left(oldsymbol{x};oldsymbol{x}^{k}
 ight)$ to approximate objective $f(oldsymbol{x})$.
- The update rule includes a smoothing step to ensure convergence:

$$\begin{split} \hat{\boldsymbol{x}}^{k+1} &= \arg\!\min_{\boldsymbol{x} \in \mathcal{X}} \tilde{\boldsymbol{f}}\left(\boldsymbol{x}; \boldsymbol{x}^k\right) \\ \boldsymbol{x}^{k+1} &= \boldsymbol{x}^k + \gamma^k \left(\hat{\boldsymbol{x}}^{k+1} - \boldsymbol{x}^k\right) \end{split} \qquad k = 0, 1, 2, \dots \end{split}$$

where $\{\gamma^k\}$ is a sequence with $\gamma^k \in (0, 1]$.

Convergence Conditions

- Surrogate function $\tilde{f}(x; x^k)$ must be strongly convex on \mathcal{X} .
- Surrogate function must be differentiable with gradient equal to that of f(x) at x^k .

SCA: Algorithm

SCA Framework for Nonconvex Optimization

- Leave convex term $f_{cvx}(\mathbf{w})$ unchanged.
- Approximate nonconvex term $f_{ncvx}(\mathbf{w})$ quadratically around $\mathbf{w} = \mathbf{w}^k$:

$$\begin{split} \tilde{f}_{\text{ncvx}}\left(\boldsymbol{w};\boldsymbol{w}^{k}\right) = & f_{\text{ncvx}}\left(\boldsymbol{w}^{k}\right) + \nabla f_{\text{ncvx}}\left(\boldsymbol{w}^{k}\right)^{\mathsf{T}}\left(\boldsymbol{w} - \boldsymbol{w}^{k}\right) \\ & + \frac{1}{2}\left(\boldsymbol{w} - \boldsymbol{w}^{k}\right)^{\mathsf{T}}\left[\nabla^{2} f_{\text{ncvx}}\left(\boldsymbol{w}^{k}\right)\right]_{\text{PSD}}\left(\boldsymbol{w} - \boldsymbol{w}^{k}\right) \end{split}$$

ullet Projection onto positive semidefinite matrices: $[oldsymbol{\Xi}]_{\mathsf{PSD}} = oldsymbol{U} \mathsf{Diag}(oldsymbol{\lambda}^+) oldsymbol{U}^\mathsf{T}.$

Quadratic Convex Approximation of
$$f(w)$$

$$\widetilde{f}\left(\boldsymbol{w};\boldsymbol{w}^{k}\right)=rac{1}{2}\boldsymbol{w}^{\mathsf{T}}\boldsymbol{Q}^{k}\boldsymbol{w}+\boldsymbol{w}^{\mathsf{T}}\boldsymbol{q}^{k}+\mathsf{constant},$$

where:

$$\mathbf{Q}^{k} = \lambda_{2} \nabla^{2} \phi_{2}(\mathbf{w}) + \left[\nabla^{2} f_{\mathsf{ncvx}} \left(\mathbf{w}^{k} \right) \right]_{\mathsf{PSD}}
\mathbf{q}^{k} = -\lambda_{1} \nabla \phi_{1}(\mathbf{w}) + \nabla f_{\mathsf{ncvx}} \left(\mathbf{w}^{k} \right) - \left[\nabla^{2} f_{\mathsf{ncvx}} \left(\mathbf{w}^{k} \right) \right]_{\mathsf{PSD}} \mathbf{w}^{k}.$$

SCA: Algorithm

SCA-Q-MVSK method for MVSK portfolio optimization (Zhou and Palomar 2021)

Initialization:

- Choose initial point $\mathbf{w}^0 \in \mathcal{W}$ and sequence $\{\gamma^k\}$.
- Set iteration counter $k \leftarrow 0$.

Repeat (kth iteration):

- Calculate $\nabla f_{\text{ncvx}}\left(\boldsymbol{w}^{k}\right)$ and $\left[\nabla^{2}f_{\text{ncvx}}\left(\boldsymbol{w}^{k}\right)\right]_{\text{PSD}}$.
- ② Solve the QP approximation problem and keep solution as $\hat{\boldsymbol{w}}^{k+1}$.
- $0 k \leftarrow k+1$

Until: convergence

MM: Preliminaries

Majorization-Minimization (MM) Method Overview (Hunter and Lange 2004; Sun, Babu, and Palomar 2017) (Palomar 2025, Appendix B)

- MM simplifies complex optimization problems through iterative surrogate minimization.
- Iteratively produces a sequence x^0, x^1, x^2, \dots converging towards a solution x^* .

MM Iterative Process

- At each iteration k, MM uses a surrogate function $u(x; x^k)$ to approximate f(x).
- The update rule is:

$$\mathbf{x}^{k+1} = \operatorname{argmin}_{\mathbf{x} \in \mathcal{X}} u\left(\mathbf{x}; \mathbf{x}^{k}\right) \qquad k = 0, 1, 2, \dots$$

Convergence Conditions for MM: Surrogate function $u(x; x^k)$ must satisfy:

- Upper bound property: $u(\mathbf{x}; \mathbf{x}^k) \ge f(\mathbf{x})$.
- Touching property: $u(\mathbf{x}^k; \mathbf{x}^k) = f(\mathbf{x}^k)$.
- Tangent property: differentiable with $\nabla u(\mathbf{x}; \mathbf{x}^k) = \nabla f(\mathbf{x})$.

Role of the Surrogate Function

- Acts as a majorizer, providing an upper bound to the original function.
- The name MM stems from the process of constructing and minimizing the majorizer._{40/58}

MM: Algorithm

MM Framework for Nonconvex Optimization

- Convex term $f_{cvx}(\mathbf{w})$ remains as is.
- Construct a majorizer for nonconvex term $f_{ncvx}(\mathbf{w})$ around $\mathbf{w} = \mathbf{w}^k$:

$$\tilde{f}_{\mathsf{ncvx}}\left(\boldsymbol{w};\boldsymbol{w}^{k}\right) = f_{\mathsf{ncvx}}\left(\boldsymbol{w}^{k}\right) + \nabla f_{\mathsf{ncvx}}\left(\boldsymbol{w}^{k}\right)^{\mathsf{T}}\left(\boldsymbol{w}-\boldsymbol{w}^{k}\right) + \frac{\tau_{\mathsf{MM}}}{2}\|\boldsymbol{w}-\boldsymbol{w}^{k}\|_{2}^{2}$$

where τ_{MM} is a positive constant ensuring $\tilde{f}_{\text{ncvx}}\left(\boldsymbol{w};\boldsymbol{w}^{k}\right)$ is an upper-bound of $f_{\text{ncvx}}(\boldsymbol{w})$.

Quadratic Convex Approximation of f(w)

Formulated as:

$$\tilde{f}\left(\boldsymbol{w};\boldsymbol{w}^{k}\right) = -\lambda_{1}\phi_{1}(\boldsymbol{w}) + \lambda_{2}\phi_{2}(\boldsymbol{w}) + \nabla f_{\mathsf{ncvx}}\left(\boldsymbol{w}^{k}\right)^{\mathsf{T}}\boldsymbol{w} + \frac{\tau_{\mathsf{MM}}}{2}\|\boldsymbol{w} - \boldsymbol{w}^{k}\|_{2}^{2} + \mathsf{constant},$$

gradient of f_{ncvx} obtained from gradients of $\phi_3(\mathbf{w})$ and $\phi_4(\mathbf{w})$.

MM: Algorithm

MM-Based Algorithm Implementation

Solve convex problems successively:

$$\underset{\boldsymbol{w}}{\mathsf{minimize}} - \lambda_1 \phi_1(\boldsymbol{w}) + \lambda_2 \phi_2(\boldsymbol{w}) + \nabla f_{\mathsf{ncvx}} \left(\boldsymbol{w}^k\right)^{\mathsf{T}} \boldsymbol{w} + \frac{\tau_{\mathsf{MM}}}{2} \|\boldsymbol{w} - \boldsymbol{w}^k\|_2^2,$$

denote solution as $MM(\boldsymbol{w}^k)$, with $\boldsymbol{w}^{k+1} = MM(\boldsymbol{w}^k)$.

Acceleration Technique - SQUAREM

Instead of direct update, use two steps and combine:

difference first update:
$$\mathbf{r}^k = \mathsf{MM}(\mathbf{w}^k) - \mathbf{w}^k$$
,

difference of differences:
$$\mathbf{v}^k = R(MM(\mathbf{w}^k)) - R(\mathbf{w}^k)$$
,

stepsize:
$$\alpha^k = -\max\left(1, \|\boldsymbol{r}^k\|_2 / \|\boldsymbol{v}^k\|_2\right)$$
,

actual step taken:
$$\mathbf{y}^k = \mathbf{w}^k - \alpha^k \mathbf{r}^k$$
,

final update on actual step:
$$\mathbf{w}^{k+1} = MM(\mathbf{y}^k)$$
.

Stepsize α^k can be refined for robustness and faster convergence.

MM: Algorithm

Acc-MM-L-MVSK method for MVSK portfolio optimization (Wang et al. 2023)

Initialization:

- Choose initial point $\mathbf{w}^0 \in \mathcal{W}$ and proper constant τ_{MM} for the majorized problem.
- Set iteration counter $k \leftarrow 0$.

Repeat (kth iteration):

- Calculate $\nabla f_{\text{ncvx}} \left(\boldsymbol{w}^k \right)$.
- ② Compute the quantities \mathbf{r}^k , \mathbf{v}^k , α^k , \mathbf{y}^k , and current solution \mathbf{w}^{k+1} , which requires solving the majorized problem three times.
- \bullet $k \leftarrow k+1$

Until: convergence

Empirical Study Summary

- Assess computational efficiency of SCA-Q-MVSK versus Acc-MM-L-MVSK methods.
- Both non-parametric and parametric calculations for gradients and Hessians were used.

Findings

- ullet Parametric calculations are faster and necessary for large N.
- At N = 100, parametric is quicker (0.5s) than non-parametric (5s).
- At N = 400, only parametric (1 min) is viable.
- \bullet Enhanced Acc-MM-L-MVSK method omits $\tau_{\rm MM}$ calculation, offering the quickest convergence.

Convergence of different MVSK portfolio optimization algorithms for N = 100:

Convergence of different MVSK portfolio optimization algorithms for N = 400:

Computation time of different (parametric) MVSK portfolio optimization algorithms:

Numerical Experiments: Portfolio Backtest

Portfolios

- Global Maximum Return (GMRP).
- Global Minimum Variance (GMVP).
- Modified MVSK (like GMVP with $\lambda_1 = 0$).

Evaluation

- Period: 2016-2019.
- Universe: 20 S&P 500 stocks.

Metrics

- Cumulative P&L.
- Drawdown.

Results

- Cumulative P&L and drawdown shown in figure and table.
- MVSK shows slight improvement over GMVP.

Insights

- Incorporating skewness and kurtosis enhances performance.
- Highlights the value of higher-order moments in optimization.

Numerical Experiments: Portfolio Backtest

Backtest of high-order portfolios: cumulative P&L and drawdown:

Numerical Experiments: Portfolio Backtest

Backtest of high-order portfolios: performance measures:

Portfolio	Sharpe	annual	annual	Sortino	max	CVaR
	ratio	return	volatility	ratio	drawdown	(0.95)
GMRP	-0.01	0%	27%	-0.02	39%	4%
GMVP	1.47	16%	11%	2.12	13%	2%
MVSK	1.56	17%	11%	2.26	12%	2%

Numerical Experiments: Multiple Portfolio Backtests

Multiple Randomized Backtests Overview

- Dataset: N = 20 stocks, 2015-2020.
- Method: 100 resamples with N=8 stocks and random 2-year periods.
- Backtest: walk-forward with 1-year lookback, monthly reoptimization.

Results Presentation

- Performance measures for each portfolio across all backtests in next table.
- Boxplots of Sharpe ratio and maximum drawdown.

Key Observations

- Modest performance improvement of MVSK portfolio over GMVP.
- Highlights the potential benefits of incorporating higher-order moments in portfolio optimization strategies.

Numerical Experiments: Multiple Portfolio Backtests

Multiple randomized backtest of high-order portfolios: performance measures:

Portfolio	Sharpe	annual	annual	Sortino	max	CVaR
	ratio	return	volatility	ratio	drawdown	(0.95)
GMRP	0.33	9%	26%	0.45	20%	4%
GMVP	1.05	13%	13%	1.48	12%	2%
MVSK	1.15	14%	13%	1.58	12%	2%

Numerical Experiments: Multiple Portfolio Backtests

Multiple randomized backtest of high-order portfolios: Sharpe ratio and maximum drawdown:

Outline

- Introduction
- 2 High-Order Moments
- 3 Portfolio Formulations
- 4 Algorithms*
- **5** Summary

Summary

- Markowitz's portfolio, based on mean and variance, may not fully capture financial data's non-Gaussian traits, suggesting a need for higher moments.
- High-order portfolios include skewness and kurtosis to address the asymmetry and heavy tails in financial distributions.
- Initially conceptualized in the 1960s, high-order portfolios faced challenges due to the exponential increase in parameters (N^4) and nonconvex formulations, making early estimation and optimization difficult.
- Various high-order portfolio strategies exist, including MVSK portfolios and polynomial-goal formulations.
- Modern algorithms now facilitate efficient high-order portfolio management.
- Decades of research have made high-order portfolio design feasible for managing extensive asset collections, leaving the adoption of higher moments to traders' discretion.

References I

- Boudt, K., W. Lu, and B. Peeters. 2014. "Higher Order Comoments of Multifactor Models and Asset Allocation." *Finance Research Letters* 13: 225–33.
- Brandt, M. W., P. Santa-Clara, and R. Valkanov. 2009. "Parametric Portfolio Policies: Exploiting Characteristics in the Cross Section of Equity Returns." *Review of Financial Studies* 22 (9): 3411–47.
- Hunter, D. R., and K. Lange. 2004. "A Tutorial on MM Algorithms." *The American Statistician* 58: 30–37.
- Jean, W. H. 1971. "The Extension of Portfolio Analysis to Three or More Parameters." Journal of Financial and Quantitative Analysis 6 (1): 505–15.
- Palomar, D. P. 2025. *Portfolio Optimization: Theory and Application*. Cambridge University Press.

References II

- Scutari, G., F. Facchinei, P. Song, D. P. Palomar, and J.-S. Pang. 2014. "Decomposition by Partial Linearization: Parallel Optimization of Multi-Agent Systems." *IEEE Transactions on Signal Processing* 62 (3): 641–56.
- Sun, Y., P. Babu, and D. P. Palomar. 2017. "Majorization-Minimization Algorithms in Signal Processing, Communications, and Machine Learning." *IEEE Transactions on Signal Processing* 65 (3): 794–816.
- Wang, X., R. Zhou, J. Ying, and D. P. Palomar. 2023. "Efficient and Scalable Parametric High-Order Portfolios Design via the Skew-t Distribution." *IEEE Transactions on Signal Processing* 71 (October): 3726–40.
- Young, W. E., and R. H. Trent. 1969. "Geometric Mean Approximations of Individual Security and Portfolio Performance." *Journal of Financial and Quantitative Analysis* 4 (2): 179–99.

References III

Zhou, R., and D. P. Palomar. 2021. "Solving High-Order Portfolios via Successive Convex Approximation Algorithms." *IEEE Transactions on Signal Processing* 69 (February): 892–904.