Multi-label classification

Multi-label classification is a machine learning task that involves predicting multiple binary target variables (called 'labels') $Y_1 \in \{0,1\}, Y_2 \in \{0,1\}, \dots, Y_K \in \{0,1\}$ simultaneously based on a feature vector x.

Example: Binary classification/Multi-class classification/Multi-label classification:

- Binary classification: Is there a mountain in the image (yes, no)?
- Multi-class classification: which object does the photo show: a mountain, a desert, or a car?
- Multi-label classification: Is there a mountain, trees, forests, lakes, sea, glaciers in the image? In this case label vector is Y = (1, 1, 1, 0, 0, 1).

Example: Medical diagnosis (a patient can have multiple conditions)

Tasks (Lab 10):

1. Download multi-label dataset emotions:

- 2. Compare the performance of 3 methods:
 - (a) BR (Binary Relevance) which involves fitting independent classification models for each binary target variable: Y_1, \ldots, Y_K . Each model estimates posterior probability:

$$P(Y_k = 1 | X = x)$$
, for $k = 1, ..., K$.

- (b) CC (Classifier chains), which involves fitting a chain of models:
 - Model 1: $Y_1 \leftarrow x$
 - Model 2: $Y_2 \leftarrow x, Y_1$
 - Model 3: $Y_3 \leftarrow x, Y_1, Y_2$
 - ...
 - Model K: $Y_K \leftarrow x, Y_1, Y_2, \dots, Y_{K-1}$

Analyze the impact of the order of fitting the models in the chain on their effectiveness.

- (c) ECC (Ensemble of Classifier chains), which is based on averaging CC models for different model fitting orders.
- 3. Use different evaluation scores:
 - (a) Subset accuracy: $I(y = \hat{y})$, averaged over all observations in testing data.
 - (b) Hamming score: $\frac{1}{K} \sum_{k=1}^{K} I(\hat{y}_k = y_k)$, averaged over all observations in testing data.

In the above formulas $y = (y_1, \ldots, y_K)$ and $\hat{y} = (\hat{y}_1, \ldots, \hat{y}_K)$.