## Санкт-Петербургский Политехнический Университет <sub>им.</sub> Петра Великого

## Институт прикладной математики и механики Кафедра прикладной математики

## ЛАБОРАТОРНАЯ РАБОТА №5

3 курс, группа 33631/2

Студент Д. А. Плаксин

Преподаватель Баженов А. Н.

# Содержание

| 1.         | Список иллюстраций | 3 |
|------------|--------------------|---|
| 2.         | Список таблиц      | 3 |
| 3.         | Постановка задачи  | 4 |
| 4.         | Теория             | 4 |
| <b>5</b> . | Реализация         | 4 |
| 6.         | Результаты         | 5 |
| 7.         | Выводы             | 9 |
| 8.         | Список литературы  | 9 |
| 9.         | Приложения         | 9 |

# 1 Список иллюстраций

|         | 1 Графики двумерного нормального распределения(2) при $p=0.0$ 2 Графики двумерного нормального распределения(2) при $p=0.5$ 3 График двумерного нормального распределения (2) при $p=0.9$ 4 Графики смеси двумерных нормальных распределений |                                                                       |        |  |  |  |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------|--|--|--|
| ${f 2}$ | 2 Список таблиц                                                                                                                                                                                                                              |                                                                       |        |  |  |  |
| _       |                                                                                                                                                                                                                                              | THEOUX TOOMETH                                                        |        |  |  |  |
| _       | 1                                                                                                                                                                                                                                            |                                                                       | 5      |  |  |  |
| _       | 1 2                                                                                                                                                                                                                                          | Результаты для двумерного нормального распределения (2) при $p$ = 0.0 | 5<br>6 |  |  |  |
| _       | 1                                                                                                                                                                                                                                            |                                                                       | _      |  |  |  |

### 3 Постановка задачи

Необходимо построить выборки объёмом 20,60,100,1000 для двумерного нормального распределения с коэффициентами корреляции  $\rho = 0,0.5,0.9$ 

Вычислить коэффициент корреляции Пирсона, Спирмана и квадрантный коэффициент корреляции для каждой выборки. Эти же вычисления повторить для смеси двумерных нормальных распределений [4]:

$$f(x,y) = 0.9N(x,y,0,0,1,1,0.9) + 0.1N(x,y,0,0,10,10,-0.9)$$
(1)

На графике изобразить точки выборки и эллипс равновероятности.

### 4 Теория

1. Двумерное нормально распределение [5]:

$$N(x, y, 0, 0, 1, 1, \rho) = \frac{1}{2\pi\sqrt{1 - \rho^2}} e^{-\frac{1}{2(1-\rho^2)}(x^2 - 2\rho xy + y^2)}$$
(2)

2. Коэффициент корреляции Пирсона [6]:

$$r_{xy} = \left(\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})\right) \left(\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2\right)^{-\frac{1}{2}}$$
(3)

3. Коэффициент корреляции Спирмана [7]:

$$\rho_n = 1 - \frac{6}{n^3 - n} \sum_{i=1}^n d_i^2 \tag{4}$$

4. Квадрантный коэффициент корреляции [8]:

$$\stackrel{\wedge}{q} = \frac{1}{n} \sum_{i=1}^{n} sign(x_i - med \ x) sign(y_i - med \ y) \tag{5}$$

#### 5 Реализация

Работы была выполнена на языке *Python*3.7. Для генерации выборок использовался модуль [1]. Для построения графиков использовалась библиотека matplotlib [2]. Функции распределения обрабатывались при помощи библиотеки scipy.stats [3]

#### Результаты 6

Normal, n=20, p=0.0 Normal, n=60, p=0.02 1 -1Normal, n=100, p=0.0 Normal, n=1000, p=0.0 1 0 -1 -2 -2

Рис. 1: Графики двумерного нормального распределения<br/>(2) при  $p = 0.0\,$ 

Таблица 1: Результаты для двумерного нормального распределения (2) при p=0.0

| Normal $n = 20, p = 0.0$ |         |          |         |  |
|--------------------------|---------|----------|---------|--|
|                          | Pearson | Spearman | Quad    |  |
| E                        | 0.18892 | 0.14541  | 0.06000 |  |
| $E^2$                    | 0.05409 | 0.04186  | 0.02800 |  |
| D                        | 0.01840 | 0.02071  | 0.02440 |  |

|       | Normal $n = 60, p = 0.0$ |          |          |  |
|-------|--------------------------|----------|----------|--|
|       | Pearson                  | Spearman | Quad     |  |
| Е     | -0.04642                 | -0.05109 | -0.03333 |  |
| $E^2$ | 0.01080                  | 0.00965  | 0.00667  |  |
| D     | 0.00865                  | 0.00704  | 0.00556  |  |

|                       | arman Quad<br>02805 -0.03200 |
|-----------------------|------------------------------|
| E -0.03469 -0.        | 02805 -0.03200               |
|                       | 02000   -0.00200             |
| $E^2 = 0.00531 = 0.0$ | 0.00864                      |
| D 0.00411 0.0         | 0.00762                      |

| Normal $n = 1000, p = 0.0$ |         |          |         |
|----------------------------|---------|----------|---------|
|                            | Pearson | Spearman | Quad    |
| Е                          | 0.00805 | 0.01039  | 0.00760 |
| $E^2$                      | 0.00094 | 0.00083  | 0.00094 |
| D                          | 0.00088 | 0.00073  | 0.00088 |

Рис. 2: Графики двумерного нормального распределения<br/>(2) при p = 0.5Normal, n=20, p=0.5Normal, n=60, p=0.52.0 2 1.5 1.0 1 0.5 0.0 0 -0.5 -1 -1.0-1.5-2 -2 0 2 Normal, n=100, p=0.5 -2 -1 0 1 Normal, n=1000, p=0.5 3 2 2 1 1 0 -1 -2 -2 -3 ż -2 ż -10 1 0

Таблица 2: Результаты для двумерного нормального распределения (2) при p=0.5

| Normal $n = 20, p = 0.5$ |         |          |         |
|--------------------------|---------|----------|---------|
|                          | Pearson | Spearman | Quad    |
| Е                        | 0.50363 | 0.52647  | 0.46000 |
| $E^2$                    | 0.27217 | 0.30152  | 0.22800 |
| D                        | 0.01853 | 0.02435  | 0.01640 |

| Normal $n = 60, p = 0.5$ |         |          |         |  |
|--------------------------|---------|----------|---------|--|
|                          | Pearson | Spearman | Quad    |  |
| E                        | 0.50847 | 0.47194  | 0.31333 |  |
| $E^2$                    | 0.26921 | 0.23710  | 0.12222 |  |
| D                        | 0.01067 | 0.01437  | 0.02404 |  |

| Normal $n = 100, p = 0.5$ |         |          |         |  |
|---------------------------|---------|----------|---------|--|
|                           | Pearson | Spearman | Quad    |  |
| Е                         | 0.49628 | 0.47702  | 0.33200 |  |
| $E^2$                     | 0.25200 | 0.23489  | 0.12048 |  |
| D                         | 0.00570 | 0.00734  | 0.01026 |  |

| Normal $n = 1000, p = 0.5$ |         |          |         |  |
|----------------------------|---------|----------|---------|--|
|                            | Pearson | Spearman | Quad    |  |
| E                          | 0.49458 | 0.47938  | 0.33320 |  |
| $E^2$                      | 0.24515 | 0.23052  | 0.11207 |  |
| D                          | 0.00054 | 0.00071  | 0.00105 |  |



Таблица 3: Результаты для двумерного нормального распределения (2) при p=0.9

| Normal $n = 20, p = 0.9$ |         |          |         |
|--------------------------|---------|----------|---------|
|                          | Pearson | Spearman | Quad    |
| E                        | 0.90154 | 0.85850  | 0.64000 |
| $E^2$                    | 0.81558 | 0.74275  | 0.44000 |
| D                        | 0.00281 | 0.00574  | 0.03040 |

| Normal $n = 100, p = 0.9$ |         |          |         |  |
|---------------------------|---------|----------|---------|--|
|                           | Pearson | Spearman | Quad    |  |
| Е                         | 0.89624 | 0.88888  | 0.71600 |  |
| $E^2$                     | 0.80360 | 0.79094  | 0.51728 |  |
| D                         | 0.00037 | 0.00082  | 0.00462 |  |

| Normal $n = 60, p = 0.9$ |         |          |         |
|--------------------------|---------|----------|---------|
|                          | Pearson | Spearman | Quad    |
| Е                        | 0.89761 | 0.88464  | 0.69333 |
| $E^2$                    | 0.80681 | 0.78457  | 0.48622 |
| D                        | 0.00112 | 0.00198  | 0.00551 |

| Normal $n = 1000, p = 0.9$ |         |          |         |
|----------------------------|---------|----------|---------|
|                            | Pearson | Spearman | Quad    |
| Е                          | 0.89971 | 0.88953  | 0.71120 |
| $E^2$                      | 0.80951 | 0.79132  | 0.50603 |
| D                          | 0.00004 | 0.00005  | 0.00022 |



Таблица 4: Результаты для смеси двумерных нормальных распределений

| NormalMix $n = 20$ , $p_1 = 0.9$ , $p_2 = -0.9$ |         |          |         |
|-------------------------------------------------|---------|----------|---------|
|                                                 | Pearson | Spearman | Quad    |
| E                                               | 0.90154 | 0.85850  | 0.64000 |
| $E^2$                                           | 0.12784 | 0.14056  | 0.18000 |
| D                                               | 0.03603 | 0.04226  | 0.11240 |

| NormalMix $n = 100, p_1 = 0.9, p_2 = -0.9$ |         |          |         |
|--------------------------------------------|---------|----------|---------|
|                                            | Pearson | Spearman | Quad    |
| E                                          | 0.42503 | 0.39751  | 0.26400 |
| $E^2$                                      | 0.18615 | 0.16254  | 0.07584 |
| D                                          | 0.00550 | 0.00453  | 0.00614 |

| NormalMix $n = 60$ , $p_1 = -0.9$ , $p_2 = -0.9$ |         |          | $9, p_2 = -0.9$ |
|--------------------------------------------------|---------|----------|-----------------|
|                                                  | Pearson | Spearman | Quad            |
| Е                                                | 0.34444 | 0.33502  | 0.24000         |
| $E^2$                                            | 0.13330 | 0.12744  | 0.08711         |
| D                                                | 0.01466 | 0.01521  | 0.02951         |

| Nori  | NormalMix $n = 1000$ , $p_1 = 0.9$ , $p_2 = -0.9$ |          |         |
|-------|---------------------------------------------------|----------|---------|
|       | Pearson                                           | Spearman | Quad    |
| Е     | 0.38948                                           | 0.37427  | 0.25080 |
| $E^2$ | 0.15242                                           | 0.14103  | 0.06380 |
| D     | 0.00073                                           | 0.00095  | 0.00090 |

#### 7 Выводы

По таблицам 1, 2, 3, 4, видно, что, при увеличении объёма выборки, подсчитанные коэффициенты корреляции стремятся к теоретическим.

Ближе всех к данному коэффициенту корреляции находится коэффициент Пирсона.

По графикам видно, что при уменьшении корреляции эллипс равновероятности стремится к окружности, а при увеличении растягивается.

### 8 Список литературы

- [1] Модуль numpy https://physics.susu.ru/vorontsov/language/numpy.html
- [2] Модуль matplotlib https://matplotlib.org/users/index.html
- [3] Модуль scipy https://docs.scipy.org/doc/scipy/reference/
- [4] http://stu.sernam.ru/book stat3.php?id=55
- [5] Двумерное нормальное распределение: https://en.wikipedia.org/wiki/Multivariate normal distribution
- [6] Коэффициент корреляции Пирса: http://statistica.ru/theory/koeffitsient-korrelyatsii/
- [7] Коэффициент корреляции Спирмана: http://economic-definition.com/Exchange\_Terminology/Koefficient\_korrelyacii\_Correlation\_coefficient\_\_eto.html
- [8] Квадрантный коэффициент корреляции: https://www.researchgate.net/profile/Pavel\_Smirnov8/publication/-316973167\_Robastnye\_metody\_i\_algoritmy\_ocenivania\_korrelacionnyh\_harakteristik\_dannyh\_na\_osnove\_novyh\_vysokoeffektivnyh\_i\_bystryh\_robastnyh\_ocenok\_masstaba/links/591b019d458515695282-8a52/Robastnye-metody-i-algoritmy-ocenivania-korrelacionnyh-harakteristik-dannyh-na-osnove-novyh-vysokoeffektivnyh-i-bystryh-robastnyh-ocenok-masstaba.pdf#page=81

### 9 Приложения

Kод отчёта: https://github.com/MisterProper9000/MatStatLabs/blob/master/MatStatLab5/MatStatLab5.tex

Kод лаборатрной: https://github.com/MisterProper9000/MatStatLabs/blob/master/MatStatLab5/MatStatLab5.py

```
import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as stats
from matplotlib.patches import Ellipse
import sys

linalg = np.linalg

selection = [20, 60, 100, 1000]
cor = [0, 0.5, 0.9]
def E(x):
    return np.mean(x)
```

```
def D(x):
    return np.var(x)
def sqE(x):
    length = len(x)
    sum = 0
    for x_i in x:
    \begin{array}{c} \overset{-}{\text{sum}} \; + = \; x \_ i \; * * \; 2 \\ \text{return sum} \; / \; \text{length} \end{array}
def pearson(x, y):
    res = stats.pearsonr(x, y)
    return res[0]
def spearman(x, y):
    res = stats.spearmanr(x, y)
    return res[0]
def quad(x, y):
    length = len(x)
    med_x = np.median(x)
    med_y = np.median(y)
    sum = 0
    for i in range(0, length):
        sum = sum + np. sign(x[i] - med_x) * np. sign(y[i] - med_y)
    return sum / length
cor_coef_dict = {
    "Pearson": pearson,
    "Spearman": spearman,
    "Quad": quad
}
mean = [0, 0]
    return 0.9 * np.random.multivariate_normal(mean, cov1, N) + 0.1 * np.
    random.multivariate_normal(mean, cov2, N)
def normal_dist(p, N):
    cov = \overline{[[1, p], [p, 1]]}
    mean = [0, 0]
    return np.random.multivariate_normal(mean, cov, N)
dist_dict = {
    "Normal": normal_dist,
    "NormalMix": mix\_normal\_dist
}
def eigsorted(cov):
    vals, vecs = np.linalg.eigh(cov)
    order = vals.argsort()[::-1]
```

```
return vals [order], vecs [:, order]
def dist_ellips(x, y, ax):
    nstd = 2.5
    \#ax = plt.subplot(111)
    cov = np.cov(x, y)
    vals, vecs = eigsorted(cov)
    theta = np.degrees(np.arctan2(*vecs[:, 0][::-1]))
    w, h = 2 * nstd * np.sqrt(vals)
    ell = Ellipse(xy=(np.mean(x), np.mean(y)),
                   width=w, height=h,
                    angle=theta, color='black')
    ell.set_facecolor('none')
    ax.add artist(ell)
    plt.scatter(x, y)
def research (p, N, dist, ax):
    pears = []
    spear = []
quads = []
    for i in range (0, 10):
        data = dist(p, N)
        pears.append(pearson(data[:, 0], data[:, 1]))
        spear.append(spearman(data[:, 0], data[:, 1]))
        \mathtt{quads.append} \left( \mathtt{quad} \left( \mathtt{data} \left[ : \,, \quad 0 \right], \quad \mathtt{data} \left[ : \,, \quad 1 \right] \right) \right)
    plt.scatter(data[:, 0], data[:, 1], c='green')
    dist_ellips(data[:, 0], data[:, 1], ax)
print("name;", end="")
    for name in cor_coef_dict:
        print ("%-12s; " % name, end="")
    print()
    print("\t\tE ;%.51f;%.51f;%.51f" % (E(pears), E(spear), E(quads)))
    print("\t\tE^2; %.51f; %.51f; %.51f" % (sqE(pears), sqE(spear), sqE(quads))
    print("\t\tD ;%.51f;%.51f;%.51f" % (D(pears), D(spear), D(quads)))
#print("\t\tE : pears = %.51f, spear = %.51f, quad = %.51f" % (E(pears))
    , E(spear), E(quads)))
    \# print("\t\tE^2 : pears = \%.5lf, spear = \%.5lf, quad = \%.5lf" \% (sqE(
    pears), sqE(spear), sqE(quads)))
    #print("\t\tD : pears = %.51f, spear = %.51f, quad = %.51f" % (D(pears)
    , D(spear), D(quads)))
    print()
def draw(dist name, p):
    plt.figure(p)
    sector = 1
    for N in selection:
        ax = plt.subplot(220 + sector)
         sector += 1
         if (dist name == "NormalMix"):
             plt.title(dist_name + " n=%i " % N + " p1=%.1f" % p + " p2=%.1f" %
     (-p))
             (-p))
        else:
             plt.title(dist_name + ", n=%i" % N + ", p=%.1f" % p)
             print(dist_name + ", n=%i" % N + ", p=%.1f" % p)
```

```
research(p, N, dist_dict[dist_name], ax)
plt.show()

f = open('out.csv', 'w')
sys.stdout = f

for p in cor:
    draw("Normal", p)
    print()

draw("NormalMix", 0.9)
```