

CHISIAMO

- * SORESI MATTEO
- * SILVA TOMMASO
- * ZANGRANDI ALESSANDRO
- * MORGANTI ALESSANDRO
- * CARINI IACOPO

IL NOSTRO OBIETTIVO...

QUALI PIANETI
SONO SIMILI ALLA
TERRA E
POTREBBERO
OSPITARE LA VITA?

UN PO' DI PREMESSE

UN ESOPIANETA È UN CORPO CELESTE AL DI PUORI DEL NOSTRO SISTEMA SOLARE CHE ORBITA INTORNO A UNA MASSA CHE LO ATTRAE

Come vengono scoperti? Di che tipo sono?

ESPLORANDO I DATI-

Per quanto riguarda i metodi di scoperta...+

METODO DEI TRANSITI

· VELOCITÀ RADIALI

+ LENTE GRAVITAZIONALE

IMΔGING

ELABORAZIONE DATI

DAL SITO DELLA NASA ABBIAMO SCARICATO I DATI NECESSARI:

* DATASET 1: RIPETIZIONI E MISSING DATA

* DATASET 2: OSSERVAZIONI UNICHE E COMPLETO (ERRORI)

* DATASET 3: UTILIZZATO PER L'ANALISI

ELABORAZIONE DATI

- MA COME ABBIAMO PATTO A PASSARE DAL PRIMO AL SECONDO DATASET?
- * SCLCZIONC DCLLC VARIABILI
- * CALCOLO MISSING DATA

$$\mathcal{R} = \mathcal{C} + \mathcal{M} \times \mathcal{S}$$
, where

 $\mathcal{R} = \log_{10}(R_p/R_{\oplus})$, $\mathcal{C} =$ a constant term (in \log_{10} units), $\mathcal{M} = \log_{10}(M_p/M_{\oplus})$, $\mathcal{S} =$ the slope of the power-law relation, R_{\oplus} represents the radius of the Earth, and M_{\oplus} represents the mass of the Earth. We use the following parameters, which are provided in their Table 2 (or derived thereof), to compute a planet radius R_p given an input, empirically determined planet mass M_p :

$$\{\mathcal{C};\;\mathcal{S}\} = \begin{cases} \{0.00346; & 0.2790\} & \text{if} \quad M_p < 2.04M_\oplus \\ \{-0.0925; & 0.589\} & \text{if} \quad 2.04 \leq M_p/M_\oplus < 132 \\ \{1.25; & -0.044\} & \text{if} \quad 132 \leq M_p/M_\oplus < 26600 \\ \{-2.85; & 0.881\} & \text{if} \quad M_p \geq 26600M_\oplus. \end{cases}$$

IL DATASET CON GLI ERRORI

Dobbiamo sempre ricordarci che stiamo lavorando con dati soggetti a degli errori.

One Sample t-test

```
data: err_mass
t = 11.193, df = 2237, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
   262.7568 374.3883
sample estimates:
mean of x
   318.5725</pre>
```

One Sample t-test

```
data: err_rade
t = 25.536, df = 3616, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
    0.9200571 1.0730881
sample estimates:
mean of x
0.9965726</pre>
```

UTILIZZIAMO IL T-TEST, UN TEST CHE CI DICE IN QUALE INTERVALLO CADE L'ERRORE MEDIO CON UNA PROBABILITÀ DEL 95%. LO SVOLGIAMO PER LA MASSA E IL RAGGIO.

I DATI SONO APPROSSIMAZIONI E STIME

(IDEA DI) CLUSTERING

COME ABBIAMO OTTENUTO 4 DIVERSI GRUPPI?

ΔLGORITMO: K-MEΔNS

- 1) 4 PUNTI CASUALI SULLA RETTA,
- 2) CALCOLA LE DISTANZE DI TUTTI GLI ALTRI PUNTI DA QUESTI
- 4) I PIÙ VICINI SONO NELLO STESSO GRUPPO
- 3) CALCOLA LA MEDIA IN OGNI GRUPPO
- 4) RIPETE DA 2).

VISUALIZZARE I GRUPPI CON UN GRÁPICO - PCA (PRINCIPAL COMPONENT ΔΝΑLYSIS)

Superterre

GIGANTI GÄSSOSI

GRAPICI BASATI SUI RAGGI

OUTLIERS

CONPRONTO TRA MASSE + SOVRAPPOSIZIONI

CONCLUSIONI

CI SIAMO CONCENTRATI SUL SISTEMA TRAPPIST

CARATTERISTICHE SIMILI À QUELLE DELLA TERRA

GRAPICO "BUBBLE PLQT"

Temperature elevate (INABITABILI)

BIPERIMENTI

https://exoplanets.nasa.gov/