Ve492: Introduction to Artificial Intelligence

PL Agents & First Order Logic

Paul Weng

UM-SJTU Joint Institute

Slides adapted from http://ai.berkeley.edu, AIMA, UM, CMU

Today

- Recap of logical agents and propositional logic (PL)
- Implementing a logical agent using PL
- First-order logic

Quiz: Entailment

The regions below visually enclose the set of models that satisfy the respective sentences γ or δ . For which of the following diagrams does γ entail δ ? Select all that apply.

Recap: Logical Agent

KB

Collection of sentences representing facts and rules we know about the world

Sentence

- Logical statement
- Composition of logic symbols and operators

Model vs Possible World

Complete assignment of symbols to True/False

Query

Sentence we want to know if it is provably True, provably False, or unsure.

Recap: Logical Agent

Satisfy

- * Input: model, sentence
- Does model satisfy sentence?
- * Is this sentence true in this model?
- *** PL-TRUE**

Entailment

- * Input: sentence1, sentence2
- If I know sentence1 holds, then do I know sentence2 holds?
- * Each model that satisfies sentence1 must also satisfy sentence2
- * How to compute entailment?
 - * Model checking, e.g., TT-ENTAILS
 - Theorem proving

Recap: Logical Agent

Valid

- * Input: sentence
- * Is sentence true in all possible models?

Satisfiable

- * Input: sentence
- Can find at least one model that satisfies this sentence?
 (We often want to know what that model is)
- * Is it possible to make sentence true?
- DPLL (efficient SAT solver)

Vocabulary: Propositional Logic

Literal

♦ Atomic sentence: True, False, Symbol, ¬Symbol

Clause

* Disjunction of literals: $A \lor B \lor \neg C$

Conjunctive Normal Form (CNF)

* Conjunction of clauses: $(A \lor B \lor \neg C) \land (\neg A \lor C \neg D)$

Definite clause

- Disjunction of literals, exactly one is positive
- $* \neg A \lor B \lor \neg C$

Horn clause

- Disjunction of literals, at most one is positive
- * All definite clauses are Horn clauses

Implementing a Logical Agent

TELL initial knowledge of agent

- * Initial state: $\neg P_{1,1}$, $\neg W_{1,1}$
- * "Physics" of the world: $\bigvee_{i,j} W_{i,j}$, $\neg (W_{i,j} \land W_{i',j'})$...
- Encode all these facts in PL; not easy!

* How to make decisions?

- Fully-based on PL
- Hybrid

Hybrid Example: Wumpus World

```
function Hybrid-Wumpus-Agent(percept) returns an action
  inputs: percept, a list, [stench, breeze, glitter, bump, scream]
  persistent: KB, a knowledge base, initially the atemporal "wumpus physics"
               t, a counter, initially 0, indicating time
               plan, an action sequence, initially empty
  Tell(KB, Make-Percept-Sentence(percept, t))
  TELL the KB the temporal "physics" sentences for time t
  safe \leftarrow \{[x, y] : Ask(KB, OK_{x,y}^t) = true\}
  if Ask(KB, Glitter^t) = true then
     plan \leftarrow [Grab] + PLAN-ROUTE(current, \{[1,1]\}, safe) + [Climb]
  if plan is empty then
     unvisited \leftarrow \{[x,y] : ASK(KB, L_{x,y}^{t'}) = false \text{ for all } t' \leq t\}
     plan \leftarrow PLAN-ROUTE(current, unvisited \cap safe, safe)
  if plan is empty and Ask(KB, HaveArrow^t) = true then
     possible\_wumpus \leftarrow \{[x, y] : Ask(KB, \neg W_{x,y}) = false\}
     plan \leftarrow PLAN-SHOT(current, possible\_wumpus, safe)
  if plan is empty then // no choice but to take a risk
     not\_unsafe \leftarrow \{[x, y] : Ask(KB, \neg OK_{x,y}^t) = false\}
     plan \leftarrow PLAN-ROUTE(current, unvisited \cap not\_unsafe, safe)
  if plan is empty then
     plan \leftarrow PLAN-ROUTE(current, \{[1, 1]\}, safe) + [Climb]
  action \leftarrow Pop(plan)
  Tell(KB, Make-Action-Sentence(action, t))
  t \leftarrow t + 1
  return action
```

PL-based Example

- Initial knowledge requires transition model
- \bullet How to encode the agent's location? Is it sufficient to add $L_{i,j}$ for all i and j?
 - * We need $L_{i,j}^t$ for all i, j, t!
 - Symbols that depend on time are called fluents
- We need symbols for actions:
 - * $Forward^t$, $TurnLeft^t$,...
- Transition model (successor-state axioms) expressed for all t:
 - * $F^{t+1} \Leftrightarrow (F^t \land \neg ActionCausesNotF^t) \lor ActionCausesF^t$
 - * E.g., $L_{1,1}^{t+1} \iff (L_{1,1}^t \land (\neg Forward^t \lor Bump^{t+1})) \lor$ $(L_{1,2}^t \land (South^t \land Forward^t)) \lor$ $(L_{2,1}^t \land (West^t \land Forward^t))$

PL-based Example

Construct a sentence that includes

- Initial state, domain knowledge
- * Transition model for all t = 1, ..., T
- Axioms about the world (e.g., preconditions and action exclusion)
- * Goal state: HaveGold_T \land ClimbOut_T
- Give the sentence to SAT solver
 - * If not satisfiable increment T, and repeat
- Extract plan by choosing action at timestep t if corresponding fluent is true
- Limitation: only works with fully observable problem

Pacman as a Logical Agent

First Order Logic

Pros and Cons of Propositional Logic

- Propositional logic is declarative: pieces of syntax correspond to facts
- Propositional logic allows partial/disjunctive/negated information (unlike most data structures and databases)
- * Propositional logic is compositional: e.g., meaning of $B_{1,1}$ Λ $P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$
- Meaning in propositional logic is context-independent (unlike natural language, where meaning depends on context)
- Propositional logic has very limited expressive power (unlike natural language)
- e.g., cannot say "pits cause breezes in adjacent squares" except by writing one sentence for each square

Pros and Cons of Propositional Logic

Rules of Chess:

- 100,000 pages in propositional logic
- 1 page in first-order logic

Rules of Wumpus World:

```
* \forall x, y \text{ Breezy}([x, y]) \Leftrightarrow \exists a, b \text{ Adjacent}([a, b], [x, y]) \land \text{Pit}([a, b])

* \forall x, y, a, b
* Adjacent([x, y], [a, b]) \Leftrightarrow
* [a, b] \in \{[x + 1, y], [x - 1, y], [x, y + 1], [x, y - 1]\}
```

First-Order Logic

- Whereas propositional logic assumes world contains facts, first-order logic assumes the world contains:
 - Objects: people, integers, body parts, JI courses, events, dates...
 - Constants: Donald Trump, 127, Ve492, French revolution
 - Relations: knows, is prime, is US president, prerequisite, occurred after, ...
 - Functions: best friend forever (BFF), successor, left leg of, end of, ...
- These define possible worlds

Syntax and Semantics: Terms

- A term refers to an object; it can be:
 - a constant symbol, e.g., A , B, EvilKingJohn
 - The possible world fixes these referents
 - a function symbol with terms as arguments,
 e.g., BFF(EvilKingJohn)
 - The possible world specifies the value of the function, given the referents of the terms
 - BFF(EvilKingJohn) -> BFF(2) -> 3
 - a variable, e.g., x

Syntax and Semantics: Atomic Sentences

- An atomic sentence is an elementary proposition (cf symbols in PL)
 - A predicate symbol with terms as arguments, e.g., Knows(A,BFF(B))
 - True iff the objects referred to by the terms are in the relation referred to by the predicate
 - * Knows(A,BFF(B)) -> Knows(1,BFF(2)) -> Knows(1,3) -> F
 - An equality between terms, e.g., BFF(BFF(B)))=B
 - True iff the terms refer to the same objects
 - BFF(BFF(B)))=B -> BFF(BFF(BFF(2)))=2 ->
 BFF(BFF(3))=2 -> BFF(1)=2 -> 2=2 -> T

Syntax and Semantics: Complex Sentences

- Sentences with logical connectives
 - $* \neg \alpha, \alpha \land \beta, \alpha \lor \beta, \alpha \Rightarrow \beta, \alpha \Leftrightarrow \beta$
- Sentences with universal or existential quantifiers, e.g.,
 - $\star \forall x \text{ Knows}(x, BFF(x))$
 - True in world w iff true in all extensions of w where x refers to an object in w
 - * x -> 1: Knows(1,BFF(1)) -> Knows(1,2) -> T
 - * x -> 2: Knows(2,BFF(2)) -> Knows(2,3) -> T
 - x -> 3: Knows(3,BFF(3)) -> Knows(3,1) -> F

Syntax and Semantics: Complex Sentences

- Sentences with logical connectives
 - $* \neg \alpha, \alpha \land \beta, \alpha \lor \beta, \alpha \Rightarrow \beta, \alpha \Leftrightarrow \beta$
- Sentences with universal or existential quantifiers, e.g.,
 - * $\exists x \, Knows(x, BFF(x))$
 - True in world w iff true in some extension of w where x refers to an object in w
 - x -> 1: Knows(1,BFF(1)) -> Knows(1,2) -> T
 - x -> 2: Knows(2,BFF(2)) -> Knows(2,3) -> T
 - x -> 3: Knows(3,BFF(3)) -> Knows(3,1) -> F

Syntax of First Order Logic

```
    Sentence → AtomicSentence | ComplexSentence

    AtomicSentence → Predicate | Predicate(Term, ...)

                    Term = Term

♦ Term → Function(Term, ...) | Constant | Variable

    * ComplexSentence → (Sentence) | ¬ Sentence
                     Sentence ∧ Sentence
                     Sentence V Sentence
                     Sentence ⇒ Sentence
                     Sentence 

⇔ Sentence
                    | Quantifier variable,... Sentence
* Quantifier \rightarrow \forall \mid \exists
⋄ Constant \rightarrow A | X_1 | John | ...
* Variable \rightarrow a | x | s | ...
♦ Predicate → True | False | Even | Raining | NeighborOf | Loves |...

♦ Function → Successor | Temperature | Mother | LeftLeg | ...
```

Let's Have Fun with FOL!

Translate

- Everybody loves somebody
- Everybody's looking for something
- Some of them want to use you
- Some of them want to get used by you
- All greedy kings are evil
- Some greedy kings are evil

Models and Interpretations in FOL

- Given a set of objects, a model is defined by an interpretation:
 - Which object each constant refers to?
 - How to define each relation?
 - * How to define each function?

Let's Formalize Natural Numbers

- * Objects = \mathbb{O}
- Constant: 0
- * Function: $S: \mathbb{N} \to \mathbb{N}$
- * Predicates: NatNum : $\mathbb{O} \to \mathbb{B}$
 - NatNum(0)
 - * $\forall n \, \text{NatNum}(n) \Rightarrow \text{NatNum}(S(n))$
- * Addition: $+: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$
 - * $\forall n \, \text{NatNum}(n) \Rightarrow +(n, 0) = n$
 - * $\forall n, m \ \text{NatNum}(n) \land \text{NatNum}(m) \Rightarrow +(n, S(m)) = S(+(n, m))$

Quiz: FOL on M

- Choose the correct FOL sentence for "Any square number is not a prime."
 - 1. $\exists n \exists m \ n = m \times m \Rightarrow \neg Prime(n)$
 - 2. $\forall n \exists m \ n = m \times m \Rightarrow \neg Prime(n)$
 - 3. $\exists n \exists m \ (n = m \times m) \land (\neg Prime(n))$
 - 4. $\forall n \exists m \ (n = m \times m) \land (\neg Prime(n))$

Tarski's World

Book + software

https://web.stanford.edu/group/cslipublications/cslipublications/site/ 1575864843.shtml

Open source version:

https://courses.cs.washington.edu/courses/cse590d/03sp/tarski/tarski.html

Let's Formalize Wumpus World

Objects:

- * Wumpus
- Right, Left, Forward, Shoot, Grab, Release, Climb
- * N for location and time
- **...**

Functions:

- Turn(Right)
- **...**

Predicates:

- * Breezy([x, y]), Pit([a, b]), Adjacent([a, b], [x, y]), At([x, y], t), Action(a, t)
- West(t), East(t), North(t), South(t)
- ***** ...

Let's Formalize Wumpus World

Physics of the world:

```
\forall x, y, a, b \qquad \text{Adjacent}([x, y], [a, b]) \Leftrightarrow \\ [a, b] \in \{[x+1, y], [x-1, y], [x, y+1], [x, y-1]\} \\ \forall x, y \text{ Breezy}([x, y]) \Leftrightarrow \exists a, b \text{ Adjacent}([a, b], [x, y]) \land \text{Pit}([a, b]) \\ \forall x, y, t \text{ At}([x, y], t) \land \text{Breeze}(t) \Rightarrow \text{Breezy}([x, y]) \\ \forall x, y, t \text{ At}([x, y], t) \Leftrightarrow \qquad (\text{At}([x+1, y], t-1) \land \text{West}(t-1) \land \text{Action}(Forward, t-1)) \\ \lor (\text{At}([x-1, y], t-1) \land \text{East}(t-1) \land \text{Action}(Forward, t-1)) \\ \lor (\text{At}([x, y-1], t-1) \land \text{North}(t-1) \land \text{Action}(Forward, t-1)) \\ \lor (\text{At}([x, y+1], t-1) \land \text{South}(t-1) \land \text{Action}(Forward, t-1)) \\ \lor (\text{At}([x, y], t-1) \land (\exists a \neg (a = Forward) \land \text{Action}(a, t-1))) \\ \lor (\text{At}([x, y], t-1) \land (\exists x, y, t-1) \land (x, y, t-1)
```

٠...

Inference in FOL

- Entailment is defined exactly as for PL:
 - * $\alpha \vDash \beta$ iff in every model where α is true, β is also true
 - ♦ E.g., ∀x Knows(x,Obama) entails ∃y∀x Knows(x,y)
- If asked "Do you know what time it is?", it's rude to say "Yes"
- Similarly, given an existentially quantified query, it's polite to provide an answer in the form of a substitution (or binding) for the variable(s):
 - ⋆ KB = \forall x Knows(x,Obama)
 - ⋄ Query = $\exists y \forall x \text{ Knows}(x,y)$
 - Answer = Yes, {y/Obama}
- Applying the substitution should produce a sentence that is entailed by KB

Inference in FOL: Propositionalization

- * Convert (KB $\land \neg \alpha$) to PL, use a PL SAT solver to check (un)satisfiability
 - Trick: replace variables with ground terms, convert atomic sentences to symbols
 - ♦ ∀x Knows(x,Obama) and Democrat(Hillary_Clinton)
 - Knows(Obama,Obama) and Knows(Hillary_Clinton,Obama) and Democrat(Hillary_Clinton)
 - * K_O_O \wedge K_C_O \wedge D_C
 - * and $\forall x \, Knows(Mother(x),x)$
 - Knows(Mother(Obama), Obama), Knows(Mother(Mother(Obama)), Mother(Obama)), ...
 - Real trick: for k = 1 to infinity, use terms of function nesting depth k
 - If entailed, will find a contradiction for some finite k; if not, may continue for ever; semidecidable

Inference in FOL: Lifted Inference

- Apply inference rules directly to first-order sentences, e.g.,
 - ⋆ KB = Person(Socrates), \forall x Person(x) \Rightarrow Mortal(x)
 - conclude Mortal(Socrates)
 - The general rule is a version of Modus Ponens:
 - * Given $\alpha[x] \Rightarrow \beta[x]$ and α' , where $\alpha' \sigma = \alpha[x] \sigma$ for some substitution σ conclude $\beta[x] \sigma$
 - * σ is {x/Socrates}
 - ♦ Given Knows(x,Obama) and Knows(y,z) ⇒ Likes(y,z)
 - * σ is {y/x, z/Obama}, conclude Likes(x,Obama)
- Examples: Prolog (backward chaining), Datalog (forward chaining), production rule systems (forward chaining), resolution theorem provers

Gödel's Incompleteness Theorem

- For any logic and consistent KB beyond very simple, some true statements are unprovable.
 - * "beyond very simple" means "capable of expressing the theory of numbers", which requires the mathematical induction schema.
- Gödel showed how to express the statement, "This sentence is not provable."
- The two difficult parts are to express, in logic:
 - "This sentence S" (self-referentiality)
 - * provable(S)
- The paradox of the sentence proves the theorem.

Summary and Pointers

- FOL is a very expressive formal language
- Many domains of common-sense and technical knowledge can be written in FOL (see AIMA Ch. 12)
 - circuits, software, planning, law, network and security protocols, product descriptions, ecommerce transactions, geographical information systems, Google Knowledge Graph, Semantic Web, etc.
- Inference is semidecidable in general; many problems are efficiently solvable in practice
- Inference technology for logic programming is especially efficient (see AIMA Ch. 9)