In The Name of God. The Merciful, The Compassionate.

Linear Equations

notes on Gilbert Strang videos, Lecture 07,08

1 Solutions to Ax = b

- Rank r is the number of pivots in elimination.
- Number of free variables equals to the number of columns without pivot.
- R = [IF; 00], reduced echelon form.
- N is null space matrix (columns are special sol'n): $RN = 0 \Rightarrow N = [-F; I]$
- $Rx = 0 \Rightarrow [IF][x_{pivot}; x_{free}] = 0 \Rightarrow x_{pivot} = -Fx_{free}$
- $r \leq M, r \leq N$
- If A is an $M \times N$ matrix, use the following rules to know about the solutions:
 - 1. if r = N < M (Full column rank matrix):
 - $-N(A) = \{\text{zero vector}\}, \text{ because we have zero free variables.}$
 - $-x_{complete} = x_{particular}$ if a solution exists.
 - -R = [I; 0]
 - zero or one solution
 - 2. if r = M < N (Full row rank matrix):
 - -N-M free variables.
 - -R = [IF]
 - has solution for every b!
 - infinite number of solutions
 - 3. if r = M = N:
 - -R = I
 - invertible

```
 \begin{array}{l} - \text{ unique solution} \\ 4. \text{ if } r < M, r < N \\ - R = [IF;00] \\ - \text{ if solution exists: } x_{complete} = x_{particular} + x_{null space} \end{array}
```

- zero or infinite solutions

• In finding special solutions we have r pivot columns and n-r free variables. we can set the free variables. e.g. to 1-hot encoding and find the other variables' values. Any combination of special solutions are also a special solution (they are solutions of Ax = 0)