МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3 по дисциплине «Информатика»

Тема: Машина Тьюринга

Студентка гр. 3343	 Лобова Е. И
Преподаватель	 Иванов Д. В

Санкт-Петербург

2023

Цель работы

Целью работы является реализация машины Тьюринга на Python для моделирования работы вычислительного устройства.

Задание

Вариант 3

На вход программе подается строка неизвестной длины. Каждый элемент является значением в ячейке памяти ленты Машины Тьюринга.

На ленте находится последовательность латинских букв из алфавита $\{a, b, c\}$.

							-		-							
	בו	C	C	l a	l h	C	b	a	b	a	la	C	בו	l h		
1 1 1 '	a		C	a	וטן	L	U	a	U	a	a	L	a	וטן		
_ _ _ _ '																

Напишите программу, которая заменяет в исходной строке символ, предшествующий первому встретившемуся символу 'с' на символ, следующий за первым встретившимся символом 'а'. Если первый встретившийся символ 'а' в конце строки, то используйте его в качестве заменяющего.

Указатель на текущее состояние Машины Тьюринга изначально находится слева от строки с символами (но не на первом ее символе). По обе стороны от строки находятся пробелы.

Для примера выше лента будет выглядеть так:

_																	
- 1										-					۱.		
					la	l h	C	l h	2	l h	a	2		2	l h		
- 1		C	l C	l C	l d	טו	l (ıυ	a	ιυ	l d	l d	l C	l d	ıυ		
- 1			_	_	_	_	_	_	_	_	_	_	_	_	_		
- 1																	

Алфавит:

- a
- b
- C
- "" (пробел)

Соглашения:

- 1. Направление движения автомата может быть одно из R (направо), L (налево), N (неподвижно).
 - 2. Гарантируется, что длинна строки не менее 5 символов и не более 15.
 - 3. В середине строки не могут встретиться пробелы.

- 4. При удалении или вставке символов направление сдвигов подстрок не принципиально (т. е. результат работы алгоритма может быть сдвинут по ленте в любую ее сторону на любое число символов).
- 5. Курсор по окончании работы алгоритма может находиться на любом символе.

Ваша программа должна вывести полученную ленту после завершения работы.

Выполнение работы

Таблица 1 - Таблица состояний

	'a'	'b'	'c'	11
q1	'a', R, 'q2'	'b', R, 'q1'	'c', R, 'q1'	'', R, 'q1'
q2	'a', L, 'q3'	'b', L, 'q4'	'c', L, 'q5'	'', L, 'q3'
q3	'a', L, 'q3'	'b', L, 'q3'	'c', L, 'q3'	' ', R, 'q9'
q4	'a', L, 'q4'	'b', L, 'q4'	'c', L, 'q4'	' ', R, 'q10'
q5	'a', L, 'q5'	'b', L, 'q5'	'c', L, 'q5'	' ', R, 'q11'
q6	'a', N, 'qT'	'a', N, 'qT'	'a', N, 'qT'	'a', N, 'qT'
q7	'b', N, 'qT'	'b', N, 'qT'	'b', N, 'qT'	'b', N, 'qT'
q8	'c', N, 'qT'	'c', N, 'qT'	'c', N, 'qT'	'c', N, 'qT'
q9	'a', R, 'q9'	'b', R, 'q9'	'c', L, 'q6'	
q10	'a', R, 'q10'	'b', R, 'q10'	'c', L, 'q7'	
q11	'a', R, 'q11'	'b', R, 'q11'	'c', L, 'q8'	

Описание состояний:

- q1 начальное состояние, которое необходимо, чтобы найти первый встретившийся символ 'a'.
- q2 состояние, которое определяет символ, следующий за первым встретившимся символом 'a'.
- q3 состояние для 'a', которое возвращает в начало строки.
- q4 состояние для 'b', которое возвращает в начало строки.
- q5 состояние для 'с', которое возвращает в начало строки.
- q6 состояние, которое заменяет символ, предшествующий первому встретившемуся символу 'с' на 'a'.
- q7 состояние, которое заменяет символ, предшествующий первому встретившемуся символу 'с' на 'b'.
- q8 состояние, которое заменяет символ, предшествующий первому встретившемуся символу 'c' на 'c'.
- q9 состояние, которое необходимо, чтобы найти первый встретившийся символ 'с' и впоследствии заменить предшествующий ему на 'a'.

- q10 состояние, которое необходимо, чтобы найти первый встретившийся символ 'с' и впоследствии заменить предшествующий ему на 'b'.
- q11 состояние, которое необходимо, чтобы найти первый встретившийся символ 'c' и впоследствии заменить предшествующий ему на 'c'.

Принцип работы Машины Тьюринга в коде:

- тетоту введенная строка;
- table таблица состояний, заданная словарем;
- state текущее состояние, изначально q1;
- index индекс текущей ячейки, изначально 0;
- С помощью цикла while и таблицы состояний строка изменяется согласно условию.

Разработанный программный код см. в приложении А.

Тестирование

Результаты тестирования представлены в табл. 2.

Таблица 2 – Результаты тестирования

№ п/п	Входные данные	Выходные данные	Комментарии
1.	abcabc	abcabc	Программа работает корректно для случая, когда 'с' после 'а' и между ними один символ.
2.	cbbaa	acbbaa	Программа работает корректно для случая, когда перед 'c'пробел.
3.	bbbbccca	bbbaccca	Программа работает корректно, для случая, когда после 'a'пробел.

Выводы

Была реализована машины Тьюринга на Python для моделирования работы вычислительного устройства.

С помощью словаря была создана таблица состояний, а с помощью цикла while сымитирована работа машины Тьюринга.

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: main.py

```
L, R, N = -1, 1, 0
     table = {'q1':{'a':['a', R, 'q2'], 'b': ['b', R, 'q1'], 'c': ['c',
'q5'], ' ':[' ', L, 'q3']},
               'q3':{'a':['a', L, 'q3'], 'b': ['b', L, 'q3'], 'c': ['c',
   'q3'], ' ': [' ', R, 'q9']},
   'q4':{'a':['a', L, 'q4'], 'b': ['b', L, 'q4'], 'c': ['c', 'q4'], ' ': [' ', R, 'q10']},

'q5':{'a':['a', L, 'q5'], 'b': ['b', L, 'q5'], 'c': ['c',
   'q5'], ' ': [' ', R, 'q11']},
                'q6':{'a':['a', N, 'qT'], 'b': ['a', N, 'qT'], 'c': ['a',
  'qT'], ' ': ['a', N, 'qT']},
                'q7':{'a':['b', N, 'qT'], 'b': ['b', N, 'qT'], 'c': ['b',
N, 'qT'], ' ': ['b', N, 'qT']},
  'q8':{'a':['c', N, 'qT'], 'b': ['c', N, 'qT'], 'c': ['c', 'qT'], ' ': ['c', N, 'qT']},
               'q9':{'a':['a', R, 'q9'], 'b': ['b', R, 'q9'], 'c': ['c',
L, 'q6']},
                 'q10':{'a':['a', R, 'q10'], 'b': ['b', R, 'q10'], 'c':
['c', L, 'q7']},
                 'q11':{'a':['a', R, 'q11'], 'b': ['b', R, 'q11'], 'c':
['c', L, 'q8']}}
     memory = list(input())
     state = 'q1'
     index = 0
     while state != 'gT':
         current_symbol = memory[index]
         future = table[state][current_symbol]
         memory[index] = future[0]
         index += future[1]
         state = future[2]
     print(*memory, sep='')
```