Constructing an UGM from a positive distribution using Local-CI

Definition: The Markov Blanket of a variable x_i , $MB(x_i)$ is the smallest subset of variables V that makes x_i CI of others given the Markov blanket.

$$x_i \perp V - MB(x_i) - \{x_i\} | MB(x_i)$$

Theorem

The MB of a variable is always unique for a positive distribution.

Proof of uniqueness of MB

Proof.

(Not in Syllabus) We will prove by contradiction. Let x_i be a variable and M_1 , M_2 be two MBs. Let $\alpha = M_1 - M_2$ and $\beta = M_2 - M_1$,

$$M = M_1 \cap M_2, W = V - (M_1 \cup M_2)$$

$$x_i \perp \!\!\!\perp V - M_2 | M_2, x_i \perp \!\!\!\perp V - M_1 | M_1,$$

This implies, $x_i \perp \!\!\! \perp W, \alpha | M, \beta, x_i \perp \!\!\! \perp W, \beta | M, \alpha$.

For positive distributions, this implies $x_i \perp \!\!\! \perp W, \alpha, \beta | M$ (Intersection property of distributions Sec 2.1)

This implies that M is also a MB. But then M_1 , M_2 were supposed to be minimal — a contradiction.

Popular undirected graphical models

- Interacting atoms in gas and solids [1900]
- Markov Random Fields in vision for image segmentation
- Conditional Random Fields for information extraction
- Social networks
- Bio-informatics: annotating active sites in a protein molecules.

Lessons Learned

- BNs not great for representing symmetric interactions among variables. MRFs are better suited.
- Potentials are arbitrary scores not conditional probabilities
- We can draw MRFs for positive distributions by finding the Markov Blanket for each variable.
- In practice, MRFs are often constructed starting from potentials where we just connect together all variables that appear together in a potential.
- Easy to read-off all Cls using graph separability

Comparing directed and undirected graphs

• Some distributions can only be expressed in one and not the

- Potentials 1, 11 x (7, 75)
 - Directed: conditional probabilities, more intuitive
 - Undirected: arbitrary scores, easy to set.
- Dependence structure
 - Directed: Complicated d-separation test
 - ▶ Undirected: Graph separation: $A \perp \!\!\!\perp B \mid C$ iff C separates A and B in G.
- Often application makes the choice clear.
 - Directed: Causality -
 - Undirected: Symmetric interactions.

Equivalent BNs

Two BN DAGs are said to be equivalent if they express the same set

Equivalent BNs

Theorem

Two BNs G_1 , G_2 are equivalent iff they have the same skeleton and the same set of immoralities. (An immorality is a structure of the form $x \to y \leftarrow z$ with no edge between x and z)

DOUBT - immoraity also when Y has children?

Converting BN to MRFs

Efficient: Using the Markov Blanket (MB) (also called the Local-CI) algorithm

The MB of a x_i in a BN can be shown to be:

$$MB(x_i) = Pa(x_i) \cup Ch(x_i) \cup Spouse(x_i)$$

This is essentially obtained by moralizing a BN and removing all directed edges.

For which BN can we create perfect MRFs?

A BN which has no immorality will not require any new edges to be added when converting to MRF. Such networks will have a perfect MRF. (Formal proof in Proposition 4.9 of KF book)

Converting MRFs to BNs

Use the BN construction algorithm (Discussed in the BN portion) starting with any random order of variables. Use the Global-Cl on the MRF to answer the conditional independence queries. Different orders will give rise to different BN.

Which MRFs have perfect BNs

Chordal or triangulated graphs

A graph is chordal if it has no minimal cycle of length ≥ 4 .

Theorem

A MRF can be converted perfectly into a BN iff it is chordal.

Proof.

Theorems 4.11 and 4.13 of KF book

Algorithm for constructing perfect BNs from chordal MRFs to be discussed later.