Sphere-Plane Resistance Tensor

The resistance tensor for a sphere moving and rotating near a plane surface relates the translational and rotational velocities to the force and torque on the sphere as

$$\begin{bmatrix} \mathbf{A} & \tilde{\mathbf{B}} \\ \mathbf{B} & \mathbf{C} \end{bmatrix} \begin{bmatrix} \mathbf{U} \\ \Omega \end{bmatrix} = \begin{bmatrix} \mathbf{F} \\ \mathbf{L} \end{bmatrix}. \tag{1}$$

To determine the various pieces of the resistance tensor, we can break the problem up into the following sub-problems:

- 1) Translation normal to the plane surface.
- 2) Translation parallel to the plane surface.
- 3) Rotation normal to the plane surface.
- 4) Rotation parallel to the plane surface.

Let the plane be oriented in the e_3 direction. The resistance tensors take the following forms

$$\mathbf{A} = X^{A} \mathbf{e}_{3} \mathbf{e}_{3} + Y^{A} (\mathbf{\delta} - \mathbf{e}_{3} \mathbf{e}_{3}), \qquad (2)$$

$$B_{ij} = \tilde{B}_{ji} = Y^B \varepsilon_{ij3} e_3, \qquad (3)$$

$$\mathbf{C} = X^{C} \mathbf{e}_{3} \mathbf{e}_{3} + Y^{C} (\mathbf{\delta} - \mathbf{e}_{3} \mathbf{e}_{3}), \tag{4}$$

where the resistance functions X^A , Y^A , Y^B , X^C , and Y^C depend on the distance h between the plane and the sphere center. Below lengths are scaled by the sphere radius a and resistance functions by $6\pi\eta a^n$ where n=1,2, or 3.

Problem 1. Translation normal to the plane surface gives the function X^A . This problem has been worked out exactly by Brenner¹

$$X^{A} = \frac{4}{3}\sinh\alpha\sum_{n=1}^{\infty} \frac{n(n+1)}{(2n-1)(2n+3)} \left[\frac{2\sinh(2n+1)\alpha + (2n+1)\sinh2\alpha}{4\sinh^{2}(n+\frac{1}{2})\alpha - (2n+1)^{2}\sinh^{2}\alpha} - 1 \right],$$
 (5)

where $\alpha = \cosh^{-1}(h)$. At small surface separations, this exact result can be approximated as

$$X^{A} = \xi^{-1} - \frac{1}{5} \ln \xi + 0.97128, \tag{6}$$

where $\xi = h - 1$ is the (dimensionless) surface separation.^{2,3}

Problem 2. Translation parallel to the plane surface gives the functions Y^A and Y^B . This problem has been worked out exactly by O'Neill⁴ (see MATLAB function *CalcYAYB*). At small surface separations, this exact result can be approximated^{2,3} as

$$Y^{A} = -\frac{8}{15} \ln \xi + 0.9588, \qquad (7)$$

$$Y^{B} = -\frac{2}{15} \ln \xi - 0.2526. \tag{8}$$

Problem 3. Rotation parallel to the plane surface gives the functions Y^B and Y^C . This problem has been worked out exactly by Dean & O'Neill⁵ (see MATLAB function *CalcYBYC*). At small surface separations, this exact result can be approximated³ as

$$Y^B = -\frac{2}{15} \ln \xi - 0.2526 \tag{9}$$

$$Y^{C} = -\frac{8}{15} \ln \xi + 0.5089 \tag{10}$$

Problem 4. Rotation normal to a place surface gives the function X^c . This problem has been worked out exactly by Jeffrey⁶

$$X^{C} = \frac{3}{4}\sinh^{3}\alpha \sum_{m=0}^{\infty} \operatorname{csch}^{3}((m+1)\alpha).$$
 (11)

At small surface separations, this exact result can be approximated³ as

$$X^{C} = \frac{4}{3} \left[\zeta(3) - \frac{1}{2} \xi \ln \xi \right]. \tag{12}$$

References

¹ H. Brenner, Chem. Eng. Sci. **16**, 242 (1961).

² A.J. Goldman, R.G. Cox, and H. Brenner, Chem. Eng. Sci. **22**, 637 (1967).

³ G. Bossis, A. Meunier, and J.D. Sherwood, Phys. Fluids A Fluid Dyn. **3**, 1853 (1991).

⁴ M.E. O'Neill, Mathematika **11**, 67 (1964).

⁵ W.R. Dean and M.E. O'Neill, Mathematika **10**, 13 (1963).

⁶ G.B. Jeffrey, Proc. London Math. Soc. **14**, 327 (1915).