Math 239 Reference

Theorem 1 For every $n \geq 1$, the number of lists of an n-element set S is

$$n(n-1)(n-2)...3 \cdot 2 \cdot 1$$

Theorem 2 For every $n \geq 0$, the number of subsets of an n-element set S is 2^n .

Theorem 3 For $n, k \geq 0$, the number of partial lists of length k of an n-element set is

$$n(n-1)...(n-k+2)(n-k+1)$$

Theorem 4 For $0 \le k \le n$, the number of k-element subsets of an n-element set is

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Definition 1 (Multiset) Let $n \ge 0$ and $t \ge 1$ be integers. A multiset of size n with elements of t types is a sequence of nonnegative integers $(m_1, ..., m_t)$ such that

$$m_1 + m_2 + \dots + m_t = n$$

Theorem 5 For any $n \ge 0$ and $t \ge 1$, the number of n-element multisets with elements of t types is

$$\binom{n+t-1}{t-1}$$

Definition 2 Let $f: A \to B$ be a function from set A to set B.

- The function f is surjective if for every $b \in B$, there exists an $a \in A$ such that f(a) = b.
- The function f is injective if for every $a, a' \in A$, if f(a) = f(a'), then a = a'
- The function f is bijective if it is both surjective and injective.
- The notation $A \rightleftharpoons B$ indicates there is a bijection between sets A and B.

Theorem 6 Let $f: A \to B$ and $g: B \to A$ be functions between two sets A and B. Assume the following:

- $\forall a \in A, g(f(a)) = a$
- $\forall b \in B, f(g(b)) = b$

Then both f and g are bijections. Moreover, for $a \in A$ and $b \in B$, we have f(a) = b iff g(b) = a.

Theorem 7 (Inclusion/Exclusion) Let $A_1, A_2, ..., A_m$ be finite sets. Then

$$|A_1 \cup A_2 \cup ... \cup A_m| = \sum_{\emptyset \neq S \subseteq \{1,...,m\}} (-1)^{|S|-1} |A_S|$$

Theorem 8 (Binomial Theorem) For any natural number $n \in \mathbb{N}$,

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$$

Theorem 9 (Binomial Series) For any positive integer $t \geq 1$,

$$\frac{1}{(1-x)^t} = \sum_{n=0}^{\infty} \binom{n+t-1}{t-1} x^n$$

Definition 3 (Weight Function) Let A be a set. A function $\omega : A \to \mathbb{N}$ is a weight function provided that for all $n \in \mathbb{N}$,

$$\mathcal{A}_n = \omega^{-1}(n) = \{ \alpha \in \mathcal{A} : \omega(\alpha) = n \}$$

is finite.

Definition 4 (Generating Series) Let A be a set with a weight function ω : $A \to \mathbb{N}$. The generating series of A with respect to ω is

$$A(x) = \Phi_{\mathcal{A}}^{\omega}(x) = \sum_{\alpha \in A} x^{\omega(\alpha)}$$

Theorem 10 Let A be a set with a weight function $\omega : A \to \mathbb{N}$, and let

$$\Phi_{\mathcal{A}}(x) = \sum_{n=0}^{\infty} a_n x^n$$

For every $n \in \mathbb{N}$, the number of elements of \mathcal{A} of weight n is $a_n = |\mathcal{A}_n|$.

Definition 5 Let $G(x) = \sum_{n=0}^{\infty} g_n x^n$ be any power series. Then for any $k \in \mathbb{N}$,

$$[x^k]G(x) = g_k$$

is the coefficient of x^k in the power series G(x).

Lemma 11 (Sum Lemma) Let \mathcal{A} and \mathcal{B} be disjoint sets, so that $\mathcal{A} \cap \mathcal{B} = \emptyset$. Assume that $\omega : (\mathcal{A} \cup \mathcal{B}) \to \mathbb{N}$ is a weight function on the union of \mathcal{A} and \mathcal{B} . We may regard ω as a weight function on each of \mathcal{A} or \mathcal{B} separately (by restriction). Under these conditions,

$$\Phi_{\mathcal{A} \cup \mathcal{B}}(x) = \Phi_{\mathcal{A}}(x) + \Phi_{\mathcal{B}}(x)$$

Lemma 12 (Infinite Sum Lemma) Let $A_0, A_1, ...$ be pairwise disjoint sets (so that $A_i \cap A_j = \emptyset$ if $i \neq j$), and let $\mathcal{B} = \bigcup_{j=0}^{\infty} A_j$. Assume that $\omega : \mathcal{B} \to \mathbb{N}$ is a weight function. We may regard ω as a weight function on each of the sets A_j separately (by restriction). Under these conditions,

$$\Phi_{\mathcal{B}}(x) = \sum_{j=0}^{\infty} \Phi_{\mathcal{A}_j}(x)$$

Lemma 13 (Product Lemma) Let \mathcal{A} and \mathcal{B} be sets with weight functions $\omega : \mathcal{A} \to \mathbb{N}$ and $v : \mathcal{B} \to \mathbb{N}$, respectively. Define $\eta : \mathcal{A} \times \mathcal{B} \to \mathbb{N}$ by putting $\eta(\alpha, \beta) = \omega(\alpha) + v(\beta)$ for all $(\alpha, \beta) \in \mathcal{A} \times \mathcal{B}$. Then η is a weight function on $\mathcal{A} \times \mathcal{B}$, and

$$\Phi^{\eta}_{\mathcal{A}\times\mathcal{B}}(x) = \Phi^{\omega}_{\mathcal{A}}(x) \cdot \Phi^{v}_{\mathcal{B}}(x)$$

Lemma 14 Let A be a set with weight function $\omega : A \to \mathbb{N}$, and define

$$\mathcal{A}^* = \bigcup_{k=0}^{\infty} \mathcal{A}^k$$

with $\omega^* : \mathcal{A}^* \to \mathbb{N}$ where $\omega^* = \omega_k$ for each $k \in \mathbb{N}$. Then ω^* is a weight function on \mathcal{A}^* if and only if there are no elements in \mathcal{A} of weight zero (that is, $\mathcal{A}_0 = \emptyset$).

Lemma 15 (String Lemma) Let A be a set with a weight function $\omega : A \to \mathbb{N}$ such that there are no elements of A of weight zero. Then

$$\Phi_{\mathcal{A}^*}(x) = \frac{1}{1 - \Phi_{\mathcal{A}}(x)}$$

Definition 6 (Composition) A composition is a finite sequence of positive integers

$$\gamma = (c_1, c_2, ..., c_k)$$

in which $k \in \mathbb{N}$ and each $c_i \geq 1$. The entries c_i are called the parts of the composition. The length of the composition is $l(\gamma) = k$, the number of parts. The size of the composition is

$$|\gamma| = c_1 + \dots + c_k,$$

the sum of the parts.

Theorem 16 Let $P = \{1, 2, 3, ...\}.$

- 1. The set C of all compositions is $C = P^*$
- 2. The generating series for C with respect to size is

$$\Phi_{\mathcal{C}}(x) = 1 + \frac{x}{1 - 2x}$$

3. For each $n \in \mathbb{N}$, the number of compositions of size n is

$$|\mathcal{C}_n| = \begin{cases} 1 & n = 0\\ 2^{n-1} & n \ge 1 \end{cases}$$

Definition 7 (Binary String) A binary string is a finite sequence $\sigma = b_1b_2...b_n$ in which each bit b_i is either 0 or 1. The number of bits is the length of the string, denoted $l(\sigma) = n$. Thus, a binary string of length n is an element of the Cartesian power $\{0,1\}^n$. A binary string of arbitrary length is an element of the set $\{0,1\}^*$. There is exactly one binary string $\epsilon = 0$ of length zero, the empty string with no bits.

Definition 8 (Regular Expression) A regular expression is defined recursively, as follows.

- All of ϵ , 0, and 1 are regular expressions.
- ullet If R and S are regular expressions, then so is R \smile S
- If R and S are regular expressions, then so is RS
- If R is a regular expression, then so is R*

Definition 9 (Concatenation Product) Let $\alpha = a_1 a_2 ... a_m, \beta = b_1 b_2 ... b_n \in \{0,1\}^*$ be binary strings. The concatenation of α and β is

$$\alpha\beta = a_1 a_2 ... a_m b_1 b_2 ... b_n$$

Let $\mathcal{A}, \mathcal{B} \subseteq \{0,1\}^*$ be sets of binary strings. The concatenation product \mathcal{AB} is the set

$$\mathcal{AB} = \{\alpha\beta : \alpha \in \mathcal{A}, \beta \in \mathcal{B}\}\$$

Definition 10 (Rational Language) A rational language is a set $\mathcal{R} \subseteq \{0,1\}^*$ of binary strings that is produced by a regular expression; this is defined recursively as follows.

- ϵ produces $\{\epsilon\}$, 1 produces $\{1\}$, and 0 produces $\{0\}$
- If R produces \mathcal{R} and S produces \mathcal{S} , then $R \smile S$ produces $\mathcal{R} \cup \mathcal{S}$
- ullet If R produces $\mathcal R$ and S produces $\mathcal S$, then RS produces $\mathcal R\mathcal S$
- If R produces \mathcal{R} , then R^* produces \mathcal{R}^*

Definition 11 (Unambiguous Expression) Let R be a regular expression that produces a rational language \mathcal{R} . Then R is unambiguous if every string in \mathcal{R} is produced exactly once by R. If an expression is not unambiguous then it is ambiguous.

Lemma 17 Let R and S be unambiguous expressions producing the sets \mathcal{R} and \mathcal{S} , respectively.

- The expressions 0, 1, and ϵ are unambiguous
- The expression $R \smile S$ is unambiguous if and only if $R \cap S = \emptyset$
- The expression RS is unambiguous if and only if there is a bijection $\mathcal{RS} \rightleftharpoons \mathcal{R} \times \mathcal{S}$
- The expression R^* is unambiguous if and only if each of the concatenation products R^k are unambiguous and the union $\bigcup_{k=0}^{\infty} \mathcal{R}^k$ is a disjoint union of sets.

Definition 12 A regular expression leads to a rational function; this is defined recursively, as follows. Assume that R and S are regular expressions that lead to R(x) and S(x), respectively.

- \bullet ϵ leads to 1, 1 leads to x, and 0 leads to x
- The expression $R \smile S$ leads to R(x) + S(x)
- The expression RS leads to R(x)S(x)
- The expression R^* leads to $\frac{1}{1-R(x)}$

Theorem 18 Let R be a regular expression producing the rational language \mathcal{R} and leading to the rational function R(x). If R is an unambiguous regular expression for \mathcal{R} then $R(x) = \Phi_{\mathcal{R}}(x)$, the generating series for \mathcal{R} with respect to length.

Definition 13 (Block Decompositions) The regular expressions

$$0^*(1^*10^*0)^*1^*$$
 and $1^*(0^*01^*1)0^*$

are unambiguous expressions for the set $\{0,1\}^*$ of all binary strings.

Theorem 19 Let $\kappa \in \{0,1\}^*$ be a non-empty string of length n, and let $\mathcal{A} = \mathcal{A}_{\kappa}$ be the set of binary strings that avoid κ . Let \mathcal{C} be the set of all nonempty suffixes γ of κ such that $\kappa \gamma = \eta \kappa$ for some non-empty prefix η of κ . Let $C(x) = \sum_{\gamma \in \mathcal{C}} x^{l(\gamma)}$. Then,

$$A(x) = \frac{1 + C(x)}{(1 - 2x)(1 + C(x)) + x^n}$$

Definition 14 (Homogeneous Linear Recurrence Relation) Let $\mathbf{g} = (g_0, g_1, ...)$ be an infinite sequence of complex numbers. Let $a_1, a_2, ..., a_d$ be in \mathbb{C} , and let $N \geq d$ be an integer. We say that \mathbf{g} satisfies a homogeneous linear recurrence relation provided that

$$g_n + a_1 g_{n-1} + \dots + a_d g_{n-d} = 0$$

for all $n \geq N$. The values $g_0, ..., g_{N-1}$ are initial conditions of the recurrence. The relation is linear because the LHS is a linear combination of the entries of the sequence \mathbf{g} ; it is homogeneous because the RHS of the equation is zero.

Theorem 20 Let $\mathbf{g} = (g_0, g_1, ...)$ be an infinite sequence of complex numbers, and let $G(x) = \sum_{n \geq 0} g_n x^n$ be the corresponding generating series. The following are equivalent.

• The sequence **g** satisfies a homogeneous linear recurrence relation

$$g_n + a_1 g_{n-1} + \dots + a_d g_{n-d} = 0$$

for all $n \geq N$ with initial conditions $g_0, g_1, ..., g_{N-1}$

• The series G(x) = P(x)/Q(x) is a quotient of two polynomials. The denominator is

$$Q(x) = 1 + a_1 x + \dots + a_d x^d$$

and the numerator is

$$P(x) = b_0 + b_1 x + \dots + b_{N-1} x^{N-1}$$

in which $b_k = g_k + a_1 g_{k-1} + ... + a_d g_{k-d}$ for all $0 \le k \le N-1$, with the convention that $g_n = 0$ for all n < 0.

Theorem 21 Let G(x) = P(x)/Q(x) be a rational function in which deg $P < \deg Q$ and the constant term of Q(x) is 1. Factor the denominator to obtain its inverse roots:

$$Q(x) = (1 - \lambda_1 x)^{d_1} ... (1 - \lambda_s x)^{d_s}$$

in which $\lambda_1, ..., \lambda_s$ are distinct nonzero complex numbers and $d_1 + ... + d_s = d = \deg Q$. Then, there are d complex numbers

$$C_1^{(1)},...,C_1^{(d_1)};...;C_s^{(1)},...,C_s^{(d_s)}$$

such that

$$G(x) = \frac{P(x)}{Q(x)} = \sum_{i=1}^{s} \sum_{j=1}^{d_s} \frac{C_i^{(j)}}{(1 - \lambda_i x)^j}$$

Theorem 22 Let $\mathbf{g} = (g_0, g_1, ...)$ be an infinite sequence of complex numbers, and let $G(x) = \sum_{n \geq 0} g_n x^n$ be the corresponding generating series. Assume that the equivalent conditions of Theorem 20 hold, and that

$$G(x) = R(x) + \frac{P(x)}{Q(x)}$$

for some polynomials P(x), Q(x), and R(x) with deg $P < \deg Q$ and Q(0) = 1. Factor Q(x) to obtain its inverse roots and their multiplicities:

$$Q(x) = (1 - \lambda_1 x)^{d_1} ... (1 - \lambda_s x)^{d_s}$$

Then there are polynomials $p_i(n)$ for $1 \le i \le s$ with $\deg p_i < d_i$ such that for all $n > \deg R(x)$,

$$g_n = p_1(n)\lambda_1^n + \dots + p_s(n)\lambda_s^n$$

Theorem 23 Let $\mathbf{g} = (g_0, g_1, ...)$ be an infinite sequence of complex numbers. The following are equivalent.

- The sequence **g** satisfies a homogeneous linear recurrence relation (with initial conditions)
- The sequence **g** satisfies a possibly inhomogeneous linear recurrence relation (with initial conditions) in which the RHS is an eventually polyexp function
- The generating series $G(x) = \sum_{n>0} g_n x^n$ is a rational function
- The sequence **g** is an eventually polyexp function

Definition 15 The sequence \mathbf{g} satisfies a quadratic recurrence if its generating series G(x) satisfies a quadratic equation:

$$A(x)G(x)^{2} + B(x)G(x) + C(x) = 0$$

where A, B, and C are power series in x.

Definition 16 (Graph) A graph G is a finite non-empty set, V(G), of vertices, together with a set, E(G), of unordered pairs of distinct vertices called edges.

Definition 17 (Isomorphism) Two graphs G_1 and G_2 are isomorphic if there exists a bijection $f: V(G_1) \to V(G_2)$ such that vertices f(u) and f(v) are adjacent in G_2 if and only if u and v are adjacent in G_1 .

Theorem 24 (Handshaking Lemma) For any graph G we have

$$\sum_{v \in V(G)} \deg v = 2|E(G)|$$

Corollary 24.1 The number of vertices of odd degree in a graph is even.

Corollary 24.2 The average degree of a vertex in the graph G is

$$\frac{2|E(G)|}{|V(G)|}$$

Definition 18 (Complete Graph) A complete graph is one in which all pairs of distinct vertices are adjacent. The complete graph with p vertices is denoted by K_p , $p \ge 1$.

Definition 19 (Bipartite Graph) A graph in which the vertices can be partitioned into two sets A and B, so that all edges join a vertex in A to a vertex in B, is called a bipartite graph, with bipartition (A, B).

Definition 20 (Complete Bipartite Graph) The complete bipartite graph $K_{m,n}$ has all vertices in A adjacent to all vertices in B, with |A| = m, |B| = n.

Definition 21 (N-cube) For $n \geq 0$, the n-cube is the graph whose vertices are the $\{0,1\}$ -strings of length n, and two strings are adjacent iff they differ in exactly one position.

Definition 22 (Adjacency Matrix) The adjacency matrix of graph G having vertices $v_1, ..., v_p$ is the $p \times p$ matrix $A = [a_{ij}]$ where

$$a_{ij} = \begin{cases} 1 & \text{if } v_i \text{ and } v_j \text{ are adjacent} \\ 0 & \text{otherwise} \end{cases}$$

Definition 23 (Incidence Matrix) The incidence matrix of graph G having vertices $v_1, ..., v_p$ and edges $e_1, ..., e_q$ is the $p \times q$ matrix $B = [b_{ij}]$ where

$$b_{ij} = \begin{cases} 1 & \text{if } v_i \text{ is incident with } e_j \\ 0 & \text{otherwise} \end{cases}$$

Definition 24 (Subgraph) A subgraph of G is a graph whose vertex set is a subset U of V(G) and whose edge set is a subset of those edges of G that have both vertices in U. If subgraph H has all vertices of graph G, then H is a spanning subgraph of G. If subgraph H is not equal to G, then H is a proper subgraph of G.

Definition 25 (Walk) A walk in graph G from v_0 to v_n for $n \geq 0$ is an alternating sequence of vertices and edges of G. The length of a walk is the number of edges in it. We say a walk is closed if $v_0 = v_n$.

Definition 26 (Path) A path is a walk in which all the vertices (and edges) are distinct.

Theorem 25 If there is a walk from vertex x to vertex y in G, then there is also a path from x to y in G.

Theorem 26 Let x, y, and z be vertices of G. If there is a path from x to y in G and a path from y to z in G, then there is a path from x to z in G.

Definition 27 (Cycle) A cycle in graph G is a subgraph with n distinct vertices $v_0, v_1, ..., v_{n-1}$ for $n \ge 1$, and n distinct edges $\{v_0, v_1\}, \{v_1, v_2\}, ..., \{v_{n-1}, v_0\}$. Equivalently, a cycle is a connected graph that is regular of degree two. A spanning cycle is called a Hamiltonian cycle.

Theorem 27 If every vertex in G has degree at least 2, then G contains a cycle.

Definition 28 (Girth) The girth of a graph G is the length of the shortest cycle in G, and is denoted by g(G).

Definition 29 (Connected) A graph G is connected if, for each two vertices x and y, there is a path from x to y.

Theorem 28 Let G be a graph and let v be a vertex in G. If for each vertex w in G there is a path from v to w in G, then G is connected.

Definition 30 (Component) A component of G is a subgraph C of G such that C is connected and is maximal subject to being connected.

Definition 31 (Cut) Given a subset X of the vertices of graph G, the cut induced by X is the set of edges that have exactly one end in X.

Theorem 29 A graph G is not connected iff there exists a proper non-empty subset X of V(G) such that the cut induced by X is empty.

Definition 32 (Eulerian Circuit) An Eulerian circuit of a graph G is a closed walk that contains every edge of G exactly once.

Theorem 30 Let G be a connected graph. Then G has an Eulerian circuit iff every vertex has even degree.

Definition 33 (Bridge) An edge e of G is a bridge if G - e has more components than G.

Theorem 31 If $e = \{x, y\}$ is a bridge of a connected graph G, then G - e has precisely two components; furthermore, x and y are in different components.

Theorem 32 An edge e is a bridge of a graph G iff it is not contained in any cycle of G.

Theorem 33 If there are two distinct paths from vertex u to vertex v in G, then G contains a cycle.

Definition 34 (Tree) A tree is a connected graph with no cycles.

Definition 35 (Forest) A forest is a graph with no cycles.

Theorem 34 If u and v are vertices in a tree T, then there is a unique u, v-path in T.

Theorem 35 Every edge of a tree T is a bridge.

Theorem 36 If T is a tree, then |E(T)| = |V(T)| - 1.

Theorem 37 If G is a forest with k components, then |E(G)| = |V(G)| - k.

Definition 36 (Leaf) A leaf in a tree is a vertex of degree 1.

Theorem 38 A tree with at least two vertices has at least two leaves.

Theorem 39 A graph G is connected iff it has a spanning tree.

Theorem 40 If G is connected, with p vertices and q = p - 1 edges, then G is a tree.

Theorem 41 If T is a spanning tree of G and e is an edge not in T, then T+e contains exactly one cycle C. Moreover, if e' is any edge on C, then T+e-e' is also a spanning tree of G.

Theorem 42 If T is a spanning tree of G and e is an edge in T, then T-e has 2 components. If e' is in the cut induced by one of the components, then T-e+e' is also a spanning tree of G.

Theorem 43 An odd cycle is not bipartite.

Theorem 44 A graph is bipartite iff it contains no odd cycles.

Definition 37 (Planar) A graph G is planar if it has a drawing in the plane so that its edges intersect only at their ends, and so that no two vertices coincide. The actual drawing is called a planar embedding of G, or a planar map.

Theorem 45 If we have a planar embedding of a connected graph G with faces $f_1, ..., f_s$, then

$$\sum_{i=1}^{s} \deg(f_i) = 2|E(G)|$$

Theorem 46 If the connected graph G has a planar embedding with f faces, the average degree of a face in the embedding is

$$\frac{2|E(G)|}{f}$$

Theorem 47 (Euler's Formula) Let G be a connected graph with p vertices and q edges. If G has a planar embedding with f faces, then

$$p - q + f = 2$$

Theorem 48 A graph is planar if and only if it can be drawn on the surface of a sphere.

Theorem 49 There are exactly 5 platonic graphs.

Theorem 50 Let G be a planar embedding with p vertices, q edges, and s faces, in which each vertex has degree $d \ge 3$ and each face has degree $d^* \ge 3$. Then (d, d^*) is one of the 5 pairs

$$\{(3,3),(3,4),(4,3),(3,5),(5,3)\}$$

Theorem 51 If G is a platonic graph with p vertices, q edges, and f faces, where each vertex has degree d and each face has degree d^* , then

$$q=\frac{2dd^*}{2d+2d^*-dd^*}$$

Theorem 52 If G contains a cycle, then in a planar embedding of G, the boundary of each face contains a cycle.

Theorem 53 Let G be a planar embedding with p vertices and q edges. If each face of G has degree at least d^* , then

$$(d^* - 2)q \le d^*(p - 2)$$

Theorem 54 In a planar graph G with $p \geq 3$ vertices and q edges, we have

$$q \leq 3p - 6$$

Theorem 55 K_5 is not planar.

Theorem 56 A planar graph has a vertex of degree at most five.

Theorem 57 In a bipartite planar graph G with $p \geq 3$ vertices and q edges, we have

$$2 < 2p - 4$$

Theorem 58 $K_{3,3}$ is not planar.

Definition 38 (Edge Subdivision) An edge subdivision of graph G is obtained by replacing each edge e of G:

- Replace e with a path of length $m \ge 1$
- If m = 1, then e is unchanged.
- If m > 1, then there are m 1 new vertices and m 1 new edges.

Theorem 59 (Kuratowski's Theorem) A graph is not planar iff it has a subgraph that is an edge subdivision of K_5 or $K_{3,3}$.

Definition 39 (k-colouring) A k-colouring of graph G is a function from V(G) to a set of size k whose elements are called colours. Adjacent vertices have different colours. A graph with a k-colouring is called a k-colourable graph.

Theorem 60 A graph is 2-colourable iff it is bipartite.

Theorem 61 K_n is n-colourable and not k-colourable for any k < n.

Theorem 62 Every planar graph is 6-colourable.

Definition 40 (Contracting) Let G be a graph and let $e = \{x, y\}$ be an edge of G. The graph G/e obtained from G by contracting the edge e is the graph with vertex set $V(G) \setminus \{x, y\} \cup \{z\}$ where z is a new vertex, and edge set

$$\{\{u,v\} \in E(G) : \{u,v\} \cap \{x,y\} = \emptyset\} \cup \{\{u,z\} : u \notin \{x,y\}, \{u,w\} \in E(G) \text{ for some } w \in \{x,y\}\}$$

Intuitively, we can think of the operation of contracting e as allowing the "length" of e to decrease to 0, so that the vertices x and y are identified into a new vertex z. Any other vertex that was adjacent to one (or both) of x and y is adjacent to z in the new graph G/e.

Theorem 63 Every planar graph is 5-colourable.

Theorem 64 Every planar graph is 4-colourable.

Definition 41 (Matching) A matching of graph G is a set of M edges of G such that no two edges in M have a common end. We say that vertex $v \in V(G)$ is saturated by M if v is incident to an edge in M. A perfect matching saturates every vertex.

Definition 42 (Alternating Path) A path is alternating with respect to matching M of graph G if edges alternate between being in M and not being in M.

Definition 43 (Augmenting Path) An augmenting path is an alternating path that joins two distinct vertices, neither of them being saturated by M.

Theorem 65 If M has an augmenting path, it is not a maximum matching.

Definition 44 (Cover) A cover of graph G is a set C of vertices such that every edge of G has at least one end in C.

Theorem 66 If M is a matching of graph G and C is a cover of G, then $|M| \leq |C|$.

Theorem 67 If M is a matching and C is a cover and |M| = |C|, then M is a maximum matching and C is a minimum cover.

Theorem 68 (Konig's Theorem) In a bipartite graph the maximum size of a matching is the minimum size of a cover.

Theorem 69 Let X_0 be the set of vertices in A not saturated by M and let Z denote the set of vertices in G that are joined by to a vertex in X_0 by an alternating path. Let M be a matching of bipartite graph G with bipartition A, B, and let $X = A \cap Z$ and $Y = B \cap Z$. Then,

- 1. There is no edge of G from X to B-Y
- 2. $C = Y \cup (A X)$ is a cover of G
- 3. There is no edge of M from Y to A-X
- 4. |M| = |C| |U| where U is the set of unsaturated vertices in Y
- 5. There is an augmenting path to each vertex in U

Theorem 70 (Hall's Theorem) A bipartite graph G with bipartition A, B has a matching saturating every vertex in A, if and only if every subset D of A satisfies

$$|N(D)| \ge |D|$$
.

Theorem 71 (Hall's SDR Theorem) The collection $Q_1, Q_2, ..., Q_n$ of subsets of the finite set Q has an SDR if and only if, for every subset J of $\{1, 2, ..., n\}$, we have

 $\left| \bigcup_{i \in J} Q_i \right| \ge |J|$

Theorem 72 A bipartite graph G with bipartition A, B has a perfect matching if and only if |A| = |B| and every subset D of A satisfies

$$|N(D)| \ge |D|$$

Theorem 73 If G is a k-regular bipartite graph with $k \geq 1$, then G has a perfect matching.

Theorem 74 A bipartite graph with maximum degree Δ has an edge Δ -colouring.

Theorem 75 Let G be a bipartite graph having at least one edge. Then G has a matching saturating each vertex of maximum degree.

Theorem 76 Let G be a graph with q edges, and suppose k, m are positive integers such that G has an edge k-colouring and $q \leq km$. Then G has an edge k-colouring in which every colour is used at most m times.

Theorem 77 In a bipartite graph G, there is an edge k-colouring in which each colour is used at most m times if and only if $\Delta \leq k$ and $q \leq km$.