Speranza condizionale

Sia $(\Omega, \mathcal{F}, \mathbb{P})$ uno spazio probabilizzato fissato e \mathcal{G} una sotto- σ -algebra di \mathcal{F} . La speranza condizionale di una variabile aleatoria X rispetto alla σ -algebra \mathcal{G} fornisce una valutazione ragionevole della speranza della variabile aleatoria X supponendo di conoscere l'informazione data dagli eventi della σ -algebra \mathcal{G} .

Definizione 6.1 Sia X una variabile aleatoria reale integrabile. Si chiama versione della speranza condizionale di X rispetto alla σ -algebra $\mathcal G$ ogni variabile aleatoria reale integrabile V, misurabile rispetto alla σ -algebra $\mathcal G$ tale che

$$\int_{G} X d\mathbb{P} = \int_{G} V d\mathbb{P} \tag{6.1}$$

 $per\ ogni\ insieme\ G\in\mathcal{G}.$

La variabile aleatoria V che verifica (6.1) è essenzialmente unica. Infatti, se V' è un'altra variabile aleatoria reale integrabile con la stessa proprietà, allora

$$\mathbb{E}\left[1_G V\right] = \mathbb{E}\left[1_G V'\right]$$

per ogni $G \in \mathcal{G}$ e quindi, essendo V e V' \mathcal{G} -misurabili, risulta $\mathbb{P}\{V \neq V'\} = 0$. Ogni versione della speranza condizionale di V rispetto a \mathcal{G} si denota $\mathbb{E}[V|\mathcal{G}]$.

Per sviluppare l'intuizione sulla speranza condizionale consideriamo alcuni esempi.

Esempio 6.1 Nel caso particolare in cui $\mathcal{G} = \mathcal{F}$ si può prendere V = X mentre, nel caso particolare in cui $\mathcal{F} = \{\emptyset, \Omega\}$, poiché ogni variabile aleatoria \mathcal{G} -misurabile è quasi certamente costante, basterà prendere $V = \mathbb{E}[X]$.

Esempio 6.2 Siano X,Y due variabili aleatorie reali indipendenti con X integrabile e sia \mathcal{G} la σ -algebra $\sigma(Y)$ generata da Y. Si ha allora $\mathbb{E}[X|\sigma(Y)] = \mathbb{E}[X]$. In questo caso la speranza condizionale di X rispetto a Y si denota anche con $\mathbb{E}[X|Y]$.

Esempio 6.3 Siano X_1, \ldots, X_n variabili aleatorie indipendenti con legge di Bernoulli B(1, p) e sia $S_n = X_1 + \ldots + X_n$. Partendo dal calcolo della probabilità condizionata

$$\mathbb{P}\left\{X_{\ell} = 1 \mid S_n = k\right\} = \frac{k}{n}$$

per ogni $\ell \in \{1, \dots, n\}$ si trova

$$\mathbb{E}[X_{\ell}|S_n] = \frac{S_n}{n}.$$

6.1 Speranza condizionale di variabili aleatorie integrabili

La speranza condizionale di una variabile aleatoria integrabile esiste sempre. Si dimostra infatti il seguente

Teorema 6.2 Sia $(\Omega, \mathcal{F}, \mathbb{P})$ uno spazio probabilizzato, \mathcal{G} una sotto σ -algebra di \mathcal{F} . Per ogni variabile aleatoria reale estesa X integrabile esiste $\mathbb{E}[X|\mathcal{G}]$.

Dimostrazione. Si può supporre che X sia non negativa. Infatti, se così non fosse, basterebbe decomporre X nella differenza $X^+ - X^-$, mostrare l'esistenza di $\mathbb{E}[X^+|\mathcal{G}]$ e $\mathbb{E}[X^-|\mathcal{G}]$ e porre $\mathbb{E}[X|\mathcal{G}] = \mathbb{E}[X^+|\mathcal{G}] - \mathbb{E}[X^-|\mathcal{G}]$.

Supponendo quindi X non negativa, chiamiamo Q la misura su $\mathcal G$ definita da

$$Q(G) = \int_G X d\mathbb{P}$$

e chiamiamo P la restrizione di $\mathbb P$ alla σ -algebra $\mathcal G$. È chiaro che Q è assolutamente continua rispetto a P quindi, per il Teorema di Radon-Nikodym, esiste una V non negativa e misurabile rispetto alla σ -algebra $\mathcal G$ tale che

$$Q(G) = \int_G V d\mathbb{P}.$$

La conclusione segue dalle identità

$$\int_G X d\mathbb{P} = Q(G) = \int_G V d\mathbb{P}. \qquad \Box$$

La dimostrazione precedente, una semplice applicazione del teorema di Radon-Nikodym, non è costruttiva cioè non fornisce un metodo per calcolare effettivamente $\mathbb{E}[X|\mathcal{G}]$. Mostreremo quindi il metodo di calcolo in due casi particolari notevoli.

Proposizione 6.3 Supponiamo che \mathcal{G} sia la σ -algebra $\sigma(X_1)$ generata da una variabile aleatoria reale X_1 e che X_1 e X_2 abbiano densità congiunta f rispetto alla misura di Lebesgue su $\mathcal{B}(\mathbb{R}^2)$. Siano f_1 e f_2 le densità marginali di f_1 e f_2 rispettivamente e f_2 e densità marginali di f_2 e f_3 rispettivamente e f_3 e f_4 e f_4 le densità marginali di f_4 e f_4 rispettivamente e f_4 e f_4 le densità marginali di f_4 e f_4 rispettivamente e f_4 e f_4 le densità marginali di f_4 e f_4 rispettivamente e f_4 e

$$g(x_2|x_1) = \begin{cases} f(x_1, x_2)/f_1(x_1) & \text{se } f_1(x_1) > 0, \\ 0 & \text{altrimenti.} \end{cases}$$

la densità condizionata di X_2 rispetto a X_1 . Si ha allora

$$\mathbb{E}[X_2 \mid \sigma(X_1)] = \int_{\mathbb{R}} x_2 g(x_2 | X_1) dx_2.$$

Analogamente, se X_1, X_2 sono variabili aleatorie con densità discreta p, allora, dette p_1 e p_2 le densità marginali di X_1 e X_2 e q la densità condizionata di X_2 rispetto a X_1

$$q(x_2|x_1) = \mathbb{P}\left\{X_2 = x_2 \mid X_1 = x_1\right\}$$

(definita per le x_1 tali che $\mathbb{P}\{X_1 = x_1\} > 0$) si ha

$$\mathbb{E}[X_2 \mid \sigma(X_1)] = \sum_{x_2} x_2 q(x_2 | X_1).$$

Proposizione 6.4 Sia $(X_n)_{n\geq 1}$ una catena di Markov con insieme degli stati E e matrice di transizione T. Per ogni funzione $f: E \to \mathbb{R}$ limitata si ha

$$\mathbb{E}\left[f(X_{n+1}) \mid \sigma\{X_n, \dots, X_0\}\right] = (Tf)(X_n).$$

6.2 Proprietà di monotonia e proiettività

Sia $(\Omega, \mathcal{F}, \mathbb{P})$ uno spazio probabilizzato fissato e \mathcal{G} una sotto σ -algebra di \mathcal{F} . La speranza condizionale ha molte proprietà analoghe a quelle della speranza

Proposizione 6.5 La speranza condizionale ha le proprietà seguenti:

1. (linearità) se X, Y sono due variabili aleatorie integrabili e $a, b \in \mathbb{R}$ allora

$$\mathbb{E}[\,aX+bY\mid\mathcal{G}\,]=a\mathbb{E}[\,X\mid\mathcal{G}\,]+b\mathbb{E}[\,Y\mid\mathcal{G}\,],$$

- 2. (normalizzazione) se X = x è una variabile aleatoria costante allora $\mathbb{E}[X \mid \mathcal{G}] = x$,
- 3. (positività) se X è una variabile aleatoria positiva e integrabile allora $\mathbb{E}[X \mid \mathcal{G}]$ è positiva,
- 4. (monotonia) se X,Y sono due variabili aleatorie integrabili tali che $\mathbb{P}\{X \geq Y\} = 1$ allora $\mathbb{E}[X \mid \mathcal{G}] \geq \mathbb{E}[Y \mid \mathcal{G}]$.

Dimostrazione. Verifichiamo la prima proprietà. La variabile aleatoria $a\mathbb{E}[X \mid \mathcal{G}] + b\mathbb{E}[Y \mid \mathcal{G}]$ è evidentemente \mathcal{G} -misurabile. Per ogni $G \in \mathcal{G}$ si ha

$$\begin{split} \int_G \left(a\mathbb{E}[X\mid\mathcal{G}\,] + b\mathbb{E}[Y\mid\mathcal{G}\,]\right) d\mathbb{P} &= a \int_G \mathbb{E}[X\mid\mathcal{G}\,] + b \int_G \mathbb{E}[Y\mid\mathcal{G}\,] d\mathbb{P} \\ &= a \int_G X d\mathbb{P} + b \int_G Y d\mathbb{P} \\ &= \int_G \left(aX + bY\right) d\mathbb{P}. \end{split}$$

Quindi la speranza condizionale è lineare.

Le altre proprietà si dimostrano in modo analogo. □

Anche la dimostrazione delle due proprietà seguenti è solo un esercizio sulla definizione di speranza condizionale.

Teorema 6.6 Sia X una variabile aleatoria integrabile e siano \mathcal{G} , \mathcal{H} due sotto σ-algebre di $\overline{\mathcal{F}}$ tali che $\mathcal{H} \subseteq \mathcal{G}$. Si Ha allora

$$\mathbb{E}\left[\mathbb{E}\left[X\mid\mathcal{G}\right]\middle|\mathcal{H}\right] = \mathbb{E}\left[X\mid\mathcal{H}\right]$$

Teorema 6.7 Sia X una variabile aleatoria integrabile. Per ogni variabile aleatoria V che sia \mathcal{G} -misurabile e limitata si ha

$$\mathbb{E}[VX \mid \mathcal{G}] = V\mathbb{E}[X \mid \mathcal{G}].$$

Osserviamo infine che se X è indipendente dalla σ -algebra $\mathcal G$ (e, naturalmente, integrabile) ovvero

$$\mathbb{P}\left(\left\{X \in A\right\} \cap G\right) = \mathbb{P}\left(\left\{X \in A\right\}\right) \cdot \mathbb{P}\left(G\right) \tag{6.2}$$

per ogni A boreliano e $G \in \mathcal{G}$, allora

$$\mathbb{E}[X \mid \mathcal{G}] = \mathbb{E}[X]. \tag{6.3}$$

Infatti dalla (6.2) segue subito che

$$\int_G f(X) d\mathbb{P} = \mathbb{E}[f(X)] \cdot \mathbb{P}(G) = \mathbb{E}[f(X)] \cdot \int_G d\mathbb{P}$$

per ogni funzione f semplice. Con un tipico procedimento di teoria dell'integrazione la formula precedente si estende alle funzioni f positive e poi a quelle tali che f(X) sia integrabile. Se X è integrabile, basterà per trovare la (6.2).

6.3 Diseguaglianza di Jensen

La diseguaglianza di Jensen si enuncia e si dimostra in modo analogo a quella per la speranza.

Proposizione 6.8 Sia X una variabile aleatoria reale integrabile $e \varphi : \mathbb{R} \to \mathbb{R}$ una funzione convessa. Supponiamo che anche la variabile aleatoria $\varphi(X)$ sia integrabile. Si ha allora

$$\varphi(\mathbb{E}[X|\mathcal{G}]) \le \mathbb{E}[\varphi(X)|\mathcal{G}]$$

Indichiamo con $\mathcal{L}^p(\Omega, \mathcal{F}, \mathbb{P})$ $(1 \leq p < \infty)$ lo spazio vettoriale delle variabili aleatorie X tali che $\mathbb{E}[|X|^p] < \infty$.

Proposizione 6.9 Se $X \in \mathcal{L}^p(\Omega, \mathcal{F}, \mathbb{P})$ allora $\mathbb{E}[X|\mathcal{G}] \in \mathcal{L}^p(\Omega, \mathcal{F}, \mathbb{P})$.

Dimostrazione. Basta applicare la diseguaglianza di Jensen prendendo la funzione convessa $\varphi(x)=|x|^p$. \square

Il Teorema 6.7 si può generalizzare un pò come segue

Proposizione 6.10 Sia X una variabile aleatoria e V una variabile aleatoria \mathcal{G} -misurabile. Supponiamo che $\mathbb{E}[|X|^p] < \infty$ e che $\mathbb{E}[|V|^q] < \infty$ con p,q numeri reali maggiori di 1 tali che 1/p + 1/q = 1. Si ha allora

$$\mathbb{E}[\,VX\mid\mathcal{G}\,] = V\mathbb{E}[\,X\mid\mathcal{G}\,]$$

Dimostrazione. (Cenno) Decomponendo $V = V^+ - V^-$ si vede che basta dimostrare la proposizione nel caso in cui V sia inoltre non negativa.

Per ogni $n \geq 1$ la variabile aleatoria $V_n = (V \wedge n)$ è limitata, dunque

$$\mathbb{E}[V_nX \mid \mathcal{G}] = V_n\mathbb{E}[X \mid \mathcal{G}]$$

grazie al Teorema 6.7. La conclusione segue facendo tendere n all'infinito. \square

6.4 Speranza condizionale e stima

La Proposizione 6.9 assicura, in particolare, che la speranza condizionale di una variabile aleatoria X di quadrato integrabile ha anch'essa quadrato integrabile.

Si può anzi vedere che la speranza condizionale di X rispetto a una sotto σ -algebra $\mathcal G$ di $\mathcal F$ è la migliore approssimazione di X con una variabile aleatoria $\mathcal G$ misurabile, di quadrato integrabile, nel senso seguente

Teorema 6.11 Per ogni variabile aleatoria Z, G-misurabile, di quadrato integrabile, si ha

$$\mathbb{E}\left[\,|X-Z|^2\right] = \mathbb{E}\left[\,|X-\mathbb{E}[\,X\mid\mathcal{G}\,]|^2\right] + \mathbb{E}\left[\,|\mathbb{E}[\,X\mid\mathcal{G}\,] - Z|^2\right].$$

In particolare

$$\min_{Z \in \mathcal{L}^2(\Omega,\mathcal{G},\mathbb{P})} \mathbb{E}\left[\,|X - Z|^2\right] = \mathbb{E}\left[\,|X - \mathbb{E}[\,X \mid \mathcal{G}\,]|^2\right].$$

Dimostrazione. Scriviamo

$$\mathbb{E}\left[|X-Z|^2\right] = \mathbb{E}\left[\left((X - \mathbb{E}[X \mid \mathcal{G}]) - (\mathbb{E}[X \mid \mathcal{G}] - Z)\right)^2\right]$$

$$= \mathbb{E}\left[\left(X - \mathbb{E}[X \mid \mathcal{G}]\right)^2\right] + \mathbb{E}\left[\left(\mathbb{E}[X \mid \mathcal{G}] - Z\right)^2\right]$$

$$+ 2\mathbb{E}\left[\left(X - \mathbb{E}[X \mid \mathcal{G}]\right)(\mathbb{E}[X \mid \mathcal{G}] - Z)\right].$$

Utilizzando le proprietà della speranza condizionale si verifica che l'ultimo termine della somma precedente è nullo. \Box