

Fundamental Quantum Computing Algorithms and Their Implementation in Qiskit

Michal Belina

 $\begin{array}{c} {\rm IT4Innovations} \\ {\rm VSB \text{ - Technical University of Ostrava} \end{array}$

18. - 19.3. 2025

VSB TECHNICAL | IT4INNOVATIONS | UNIVERSITY | NATIONAL SUPERCOMPUTING | CENTER

Aims of the training

- Familiarize you with the quantum computing
- Show the possible advantage of quantum computers on specific tasks

EURO

Table of Contents

- 1 Day 2
 - Grover's algorithm
 - Quantum Fourier Transform
 - Quantum Phase Estimation
 - Shor's algorithm
 - Q&A and Closing the event

Timetable of day 2

```
9:00-10:30 Grover's algorithm
```

10:30-10:45 Break

10:45-12:00 Quantum Fourier Transform

12:00-13:00 Lunch Break

13:00-14:00 Quantum Phase Estimation

14:00-14:15 Break

14:15-15:45 Shor's algorithm

15:45 Q&A and Closing the event

Probably we will end sooner.

Table of Contents

- 1 Day 2
 - Grover's algorithm
 - Quantum Fourier Transform
 - Quantum Phase Estimation
 - Shor's algorithm
 - Q&A and Closing the event

Unstructured search

Let $\Sigma = \{0, 1\}$ denote the binary alphabet (throughout the lesson). Suppose we're given a function

$$f:\Sigma^n \to \Sigma$$

that we can *compute efficiently*.

Our goal is to find a *solution*, which is a binary string $x \in \Sigma^n$ for which f(x) = 1.

Search

Input: $f: \Sigma^n \to \Sigma$

Output: a string $x \in \Sigma^n$ satisfying f(x) = 1, or "no solution" if no such strings exist.

This is unstructured search because f is arbitrary — there's no promise and we can't rely on it having a structure that makes finding solutions easy.

Algorithms for search

Search

Input: $f: \Sigma^n \to \Sigma$

Output: a string $x \in \Sigma^n$ satisfying f(x) = 1, or "no solution" if no such strings exist.

Hereafter let us write

$$N = 2^n$$

By iterating through all $x \in \Sigma^n$ and evaluating f on each one, we can solve Search with N queries.

This is the best we can do with a *deterministic* algorithm.

Probabilistic algorithms offer minor improvements, but still require a number of queries linear in N.

Grover's algorithm is a quantum algorithm for Search requiring $O(\sqrt{N})$ queries.

Phase query gates

We assume that we have access to the function $f: \Sigma^n \to \Sigma$ through a query gate:

$$\mathbf{U_f}: |a\rangle|x\rangle \mapsto |a \oplus f(x)\rangle|x\rangle$$
 (for all $a \in \Sigma$ and $x \in \Sigma^n$)

(We can build a circuit for U_f given a Boolean circuit for f.)

The phase query gate for f operates like this:

$$\mathbf{Z}_{\mathbf{f}}: |x\rangle \mapsto (-1)^{f(x)}|x\rangle \quad \text{(for all } x \in \Sigma^n)$$

Phase query gates

The phase query gate for f operates like this:

$$\mathbf{Z}_{\mathbf{f}}: |x\rangle \mapsto (-1)^{f(x)}|x\rangle \quad \text{(for all } x \in \Sigma^n)$$

We're also going to need a phase query gate for the n-bit OR function:

$$\mathrm{OR}(x) = \begin{cases} 0 & x = 0^n \\ 1 & x \neq 0^n \end{cases} \text{ (for all } x \in \Sigma^n)$$

$$Z_{\mathrm{OR}}|x\rangle = \begin{cases} |x\rangle & x = 0^n \\ -|x\rangle & x \neq 0^n \end{cases} \text{ (for all } x \in \Sigma^n)$$

Algorithm description

Grover's algorithm

- Initialize: set n qubits to the state $H^{\otimes n}|0^n\rangle$.
- ② Iterate: apply the Grover operation t times (for t to be specified later).
- 3 Measure: a standard basis measurement yields a candidate solution.

The Grover operation is defined like this:

$$G = H^{\otimes n} Z_{\mathrm{OR}} H^{\otimes n} Z_f$$

 Z_f is the phase query gate for f and Z_{OR} is the phase query gate for the n-bit OR function.

Algorithm description

Grover's algorithm

- Initialize: set n qubits to the state $H^{\otimes n}|0^n\rangle$.
- ② Iterate: apply the Grover operation t times (for t to be specified later).
- **3** Measure: a standard basis measurement yields a candidate solution.

The Grover operation is defined like this:

$$G = H^{\otimes n} Z_{\mathrm{OR}} H^{\otimes n} Z_f$$

 Z_f is the phase query gate for f and $Z_{\rm OR}$ is the phase query gate for the n-bit OR function.

Algorithm description

Grover's algorithm

- **1** Initialize: set n qubits to the state $H^{\otimes n}|0^n\rangle$.
- 2 Iterate: apply the Grover operation t times (for t to be specified later).
- 3 Measure: a standard basis measurement yields a candidate solution.

The Grover operation is defined like this:

$$G = H^{\otimes n} Z_{\mathrm{OR}} H^{\otimes n} Z_f$$

 Z_f is the phase query gate for f and Z_{OR} is the phase query gate for the n-bit OR function.

A typical way that Grover's algorithm can be applied:

- \bullet Choose the number of iterations t (next section).
- 2 Run Grover's algorithm with t iterations to get a candidate solution x.
- **3** Check the solution. If f(x) = 1 then output x, otherwise either run Grover's algorithm again (possibly with a different t) or report "no solutions."

Solutions and non-solutions

We'll refer to the n qubits being used for Grover's algorithm as a register \mathbf{Q} . We're interested in what happens when \mathbf{Q} is initialized to the state $H^{\otimes n}|0^n\rangle$ and the Grover operation G is performed iteratively.

$$G = H^{\otimes n} Z_{\mathrm{OR}} H^{\otimes n} Z_f$$

These are the sets of non-solutions and solutions:

$$\mathcal{A}_0 = \{ x \in \Sigma^n : f(x) = 0 \}$$

$$\mathcal{A}_1 = \{ x \in \Sigma^n : f(x) = 1 \}$$

We will be interested in *uniform superpositions* over these sets:

$$|\mathcal{A}_0\rangle = \frac{1}{\sqrt{|\mathcal{A}_0|}} \sum_{x \in \mathcal{A}_0} |x\rangle$$

$$|\mathcal{A}_1\rangle = \frac{1}{\sqrt{|\mathcal{A}_1|}} \sum_{x \in \mathcal{A}_1} |x\rangle$$

Analysis: basic idea

$$\mathcal{A}_0 = \{ x \in \Sigma^n : f(x) = 0 \} \quad \mathcal{A}_1 = \{ x \in \Sigma^n : f(x) = 1 \}$$
$$|\mathcal{A}_0\rangle = \frac{1}{\sqrt{|\mathcal{A}_0|}} \sum_{x \in \mathcal{A}_0} |x\rangle \quad |\mathcal{A}_1\rangle = \frac{1}{\sqrt{|\mathcal{A}_1|}} \sum_{x \in \mathcal{A}_1} |x\rangle$$

The register \mathbf{Q} is first initialized to this state:

$$|u\rangle = H^{\otimes n}|0^n\rangle = \frac{1}{\sqrt{N}} \sum_{x \in \Sigma^n} |x\rangle$$

This state is contained in the subspace spanned by $|\mathcal{A}_0\rangle$ and $|\mathcal{A}_1\rangle$:

$$|u
angle = \sqrt{rac{|\mathcal{A}_0|}{N}} |\mathcal{A}_0
angle + \sqrt{rac{|\mathcal{A}_1|}{N}} |\mathcal{A}_1
angle$$

The state of \mathbf{Q} remains in this subspace after every application of the Grover operation G.

◆□ ト ◆□ ト ◆ 直 ト ◆ 直 ・ り へ ○

We can better understand the Grover operation by splitting it into two parts:

$$G = \left(H^{\otimes n} Z_{\mathrm{OR}} H^{\otimes n}\right) (Z_f)$$

1 Recall that Z_f is defined like this:

$$Z_f|x\rangle = (-1)^{f(x)}|x\rangle$$
 (for all $x \in \Sigma^n$)

Its action on $|A_0\rangle$ and $|A_1\rangle$ is simple:

$$Z_f |\mathcal{A}_0\rangle = |\mathcal{A}_0\rangle$$

 $Z_f |\mathcal{A}_1\rangle = -|\mathcal{A}_1\rangle$

We can better understand the Grover operation by splitting it into two parts:

$$G = \left(H^{\otimes n} Z_{\mathrm{OR}} H^{\otimes n}\right) (Z_f)$$

2 The operation Z_{OR} is defined like this:

$$Z_{\rm OR}|x\rangle = \begin{cases} |x\rangle & x = 0^n \\ -|x\rangle & x \neq 0^n \end{cases}$$
 (for all $x \in \Sigma^n$)

Here's an alternative way to express Z_{OR} :

$$Z_{\rm OR} = 2|0^n\rangle\langle 0^n| - I$$

Using this expression, we can write $H^{\otimes n}Z_{OR}H^{\otimes n}$ like this:

$$H^{\otimes n} Z_{\mathrm{OR}} H^{\otimes n} = H^{\otimes n} (2|0^n\rangle\langle 0^n| - I) H^{\otimes n} = 2|u\rangle\langle u| - I$$

$$Z_f |\mathcal{A}_0\rangle = |\mathcal{A}_0\rangle$$

$$Z_f |\mathcal{A}_1\rangle = -|\mathcal{A}_1\rangle$$

$$|u\rangle = \sqrt{\frac{|\mathcal{A}_0|}{N}} |\mathcal{A}_0\rangle + \sqrt{\frac{|\mathcal{A}_1|}{N}} |\mathcal{A}_1\rangle$$

$$G|\mathcal{A}_{0}\rangle = (2|u\rangle\langle u| - I)Z_{f}|\mathcal{A}_{0}\rangle$$

$$= (2|u\rangle\langle u| - I)|\mathcal{A}_{0}\rangle$$

$$= 2\sqrt{\frac{|\mathcal{A}_{0}|}{N}}|u\rangle - |\mathcal{A}_{0}\rangle$$

$$= 2\sqrt{\frac{|\mathcal{A}_{0}|}{N}}\left(\sqrt{\frac{|\mathcal{A}_{0}|}{N}}|\mathcal{A}_{0}\rangle + \sqrt{\frac{|\mathcal{A}_{1}|}{N}}|\mathcal{A}_{1}\rangle\right) - |\mathcal{A}_{0}\rangle$$

$$= \frac{|\mathcal{A}_{0}| - |\mathcal{A}_{1}|}{N}|\mathcal{A}_{0}\rangle + \frac{2\sqrt{|\mathcal{A}_{0}||\mathcal{A}_{1}|}}{N}|\mathcal{A}_{1}\rangle$$

17 / 76

$$Z_f |\mathcal{A}_0\rangle = |\mathcal{A}_0\rangle$$

$$Z_f |\mathcal{A}_1\rangle = -|\mathcal{A}_1\rangle$$

$$|u\rangle = \sqrt{\frac{|\mathcal{A}_0|}{N}} |\mathcal{A}_0\rangle + \sqrt{\frac{|\mathcal{A}_1|}{N}} |\mathcal{A}_1\rangle$$

$$G|\mathcal{A}_0\rangle = \frac{|\mathcal{A}_0| - |\mathcal{A}_1|}{N} |\mathcal{A}_0\rangle + \frac{2\sqrt{|\mathcal{A}_0||\mathcal{A}_1|}}{N} |\mathcal{A}_1\rangle$$

$$G|\mathcal{A}_{1}\rangle = (2|u\rangle\langle u| - I)Z_{f}|\mathcal{A}_{1}\rangle$$

$$= (1 - 2|u\rangle\langle u|)|\mathcal{A}_{1}\rangle$$

$$= |\mathcal{A}_{1}\rangle - 2\sqrt{\frac{|\mathcal{A}_{1}|}{N}}|u\rangle$$

$$= |\mathcal{A}_{1}\rangle - 2\sqrt{\frac{|\mathcal{A}_{0}|}{N}}\left(\sqrt{\frac{|\mathcal{A}_{0}|}{N}}|\mathcal{A}_{0}\rangle + \sqrt{\frac{|\mathcal{A}_{1}|}{N}}|\mathcal{A}_{1}\rangle\right)$$

$$Z_f |\mathcal{A}_0\rangle = |\mathcal{A}_0\rangle$$

$$Z_f |\mathcal{A}_1\rangle = -|\mathcal{A}_1\rangle$$

$$|u\rangle = \sqrt{\frac{|\mathcal{A}_0|}{N}} |\mathcal{A}_0\rangle + \sqrt{\frac{|\mathcal{A}_1|}{N}} |\mathcal{A}_1\rangle$$

$$G|\mathcal{A}_0\rangle = \frac{|\mathcal{A}_0| - |\mathcal{A}_1|}{N} |\mathcal{A}_0\rangle + \frac{2\sqrt{|\mathcal{A}_0||\mathcal{A}_1|}}{N} |\mathcal{A}_1\rangle$$
$$G|\mathcal{A}_1\rangle = -\frac{2\sqrt{|\mathcal{A}_0||\mathcal{A}_1|}}{N} |\mathcal{A}_0\rangle + \frac{|\mathcal{A}_0| - |\mathcal{A}_1|}{N} |\mathcal{A}_1\rangle$$

The action of G on span $\{|A_0\rangle, |A_1\rangle\}$ can be described by a 2 × 2 matrix:

$$M = \begin{pmatrix} \frac{|\mathcal{A}_0| - |\mathcal{A}_1|}{N} & -\frac{2\sqrt{|\mathcal{A}_0||\mathcal{A}_1|}}{N} \\ \frac{2\sqrt{|\mathcal{A}_0||\mathcal{A}_1|}}{N} & -\frac{|\mathcal{A}_0| - |\mathcal{A}_1|}{N} \end{pmatrix}$$

Rotation by an angle

The action of G on span $\{|\mathcal{A}_0\rangle, |\mathcal{A}_1\rangle\}$ can be described by a 2 × 2 matrix:

$$M = \begin{pmatrix} \frac{|\mathcal{A}_0| - |\mathcal{A}_1|}{N} & -\frac{2\sqrt{|\mathcal{A}_0||\mathcal{A}_1|}}{N} \\ \frac{2\sqrt{|\mathcal{A}_0||\mathcal{A}_1|}}{N} & -\frac{|\mathcal{A}_0| - |\mathcal{A}_1|}{N} \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} \sqrt{\frac{|\mathcal{A}_0|}{N}} & -\sqrt{\frac{|\mathcal{A}_1|}{N}} \\ \sqrt{\frac{|\mathcal{A}_1|}{N}} & \sqrt{\frac{|\mathcal{A}_0|}{N}} \end{pmatrix} \end{pmatrix}^2$$

This is a *rotation* matrix.

$$\begin{pmatrix} \sqrt{\frac{|\mathcal{A}_0|}{N}} & -\sqrt{\frac{|\mathcal{A}_1|}{N}} \\ \sqrt{\frac{|\mathcal{A}_1|}{N}} & \sqrt{\frac{|\mathcal{A}_0|}{N}} \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \quad \theta = \sin^{-1} \left(\sqrt{\frac{|\mathcal{A}_1|}{N}} \right)$$
$$M = \begin{pmatrix} \cos(2\theta) & -\sin(2\theta) \\ \sin(2\theta) & \cos(2\theta) \end{pmatrix}$$

4 D > 4 B > 4 E > 4 E > 4 O Q C

Rotation by an angle

$$M = \begin{pmatrix} \cos(2\theta) & -\sin(2\theta) \\ \sin(2\theta) & \cos(2\theta) \end{pmatrix} \quad \theta = \sin^{-1}\left(\sqrt{\frac{|\mathcal{A}_1|}{N}}\right)$$

After the initialization step, this is the state of the register **Q**:

$$|u\rangle = \sqrt{\frac{|\mathcal{A}_0|}{N}} |\mathcal{A}_0\rangle + \sqrt{\frac{|\mathcal{A}_1|}{N}} |\mathcal{A}_1\rangle = \cos(\theta) |\mathcal{A}_0\rangle + \sin(\theta) |\mathcal{A}_1\rangle$$

Each time the Grover operation G is performed, the state of \mathbf{Q} is rotated by an angle 2θ :

$$|u\rangle = \cos(\theta)|\mathcal{A}_0\rangle + \sin(\theta)|\mathcal{A}_1\rangle$$

$$G|u\rangle = \cos(3\theta)|\mathcal{A}_0\rangle + \sin(3\theta)|\mathcal{A}_1\rangle$$

$$G^2|u\rangle = \cos(5\theta)|\mathcal{A}_0\rangle + \sin(5\theta)|\mathcal{A}_1\rangle$$

$$\vdots$$

$$G^t|u\rangle = \cos((2t+1)\theta)|\mathcal{A}_0\rangle + \sin((2t+1)\theta)|\mathcal{A}_1\rangle$$

Geometric picture

Main idea

The operation $G = H^{\otimes n} Z_{OR} H^{\otimes n} Z_f$ is a composition of two reflections:

$$Z_f$$
 and $H^{\otimes n}Z_{OR}H^{\otimes n}$

Composing two reflections yields a rotation.

1. Recall that Z_f has this action on the 2-dimensional space spanned by $|A_0\rangle$ and $|A_1\rangle$:

$$Z_f|A_0\rangle = |A_0\rangle$$

 $Z_f|A_1\rangle = -|A_1\rangle$

This is a reflection about the line L_1 parallel to $|A_0\rangle$.

Geometric picture

The operation $G = H^{\otimes n} Z_{OR} H^{\otimes n} Z_f$ is a composition of two reflections:

$$Z_f$$
 and $H^{\otimes n}Z_{OR}H^{\otimes n}$

Composing two reflections yields a rotation.

2. The operation $H^{\otimes n}Z_{OR}H^{\otimes n}$ can be expressed like this:

$$H^{\otimes n} Z_{OR} H^{\otimes n} = 2|u\rangle\langle u| - \mathbb{I}$$

Again this is a reflection, this time about the line L_2 parallel to $|u\rangle$.

Geometric picture

Main idea

The operation $G = H^{\otimes n} Z_{OR} H^{\otimes n} Z_f$ is a composition of two reflections:

$$Z_f$$
 and $H^{\otimes n}Z_{OR}H^{\otimes n}$

Composing two reflections yields a rotation.

When we compose two reflections, we obtain a rotation by twice the angle between the lines of reflection.

Setting the target

Consider any quantum state of this form:

$$\alpha |A_0\rangle + \beta |A_1\rangle$$

Measuring yields a solution $x \in A_1$ with probability $|\beta|^2$.

$$\alpha |A_0\rangle + \beta |A_1\rangle = \frac{\alpha}{\sqrt{|A_0|}} \sum_{x \in A_0} |x\rangle + \frac{\beta}{\sqrt{|A_1|}} \sum_{x \in A_1} |x\rangle$$

$$p(x) = \begin{cases} \frac{|\alpha|^2}{|A_0|}, & x \in A_0\\ \frac{|\beta|^2}{|A_1|}, & x \in A_1 \end{cases}$$

Pr(outcome is in
$$A_1$$
) = $\sum_{x \in A_1} p(x) = |\beta|^2$

◆□ > ◆□ > ◆ = > ◆ = → へ ○ ○

Setting the target

Consider any quantum state of this form:

$$\alpha |A_0\rangle + \beta |A_1\rangle$$

Measuring yields a solution $x \in A_1$ with probability $|\beta|^2$.

The state of Q after t iterations in Grover's algorithm:

$$\cos((2t+1)\theta)|A_0\rangle + \sin((2t+1)\theta)|A_1\rangle \quad \theta = \sin^{-1}\left(\sqrt{\frac{|A_1|}{N}}\right)$$

Measuring after t iterations gives an outcome $x \in A_1$ with probability:

$$\sin^2((2t+1)\theta)$$

We wish to maximize this probability—so we may view that $|A_1\rangle$ is our target state.

Setting the target

The state of Q after t iterations in Grover's algorithm:

$$\cos((2t+1)\theta)|A_0\rangle + \sin((2t+1)\theta)|A_1\rangle \quad \theta = \sin^{-1}\left(\sqrt{\frac{|A_1|}{N}}\right)$$

Measuring after t iterations gives an outcome $x \in A_1$ with probability:

$$\sin^2((2t+1)\theta)$$

To make this probability close to 1 and minimize t, we will aim for:

$$(2t+1)\theta \approx \tfrac{\pi}{2} \quad \Leftrightarrow \quad t \approx \tfrac{\pi}{4\theta} - \tfrac{1}{2} \quad \text{closest integer} \quad \Rightarrow \quad t = \left\lfloor \tfrac{\pi}{4\theta} \right\rfloor$$

Important considerations:

- \bullet t must be an integer
- θ depends on the number of solutions $s = |A_1|$

Unique search

$$(2t+1)\theta \approx \frac{\pi}{2} \quad \Leftrightarrow \quad t = \left\lfloor \frac{\pi}{4\theta} \right\rfloor$$

Unique search

Input: $f: \Sigma^n \to \Sigma$

Promise: There is exactly one string $z \in \Sigma^n$ for which f(z) = 1,

with f(x) = 0 for all strings $x \neq z$

Output: The string z

For Unique search we have $s = |A_1| = 1$ and therefore:

$$\theta = \sin^{-1}\left(\sqrt{\frac{1}{N}}\right) \approx \sqrt{\frac{1}{N}}$$

Substituting $\theta \approx 1/\sqrt{N}$ into our expression for t gives:

$$t \approx \left| \frac{\pi}{4\sqrt{N}} \right| \quad \Leftarrow \quad \mathcal{O}(\sqrt{N}) \text{ queries}$$

4□ > 4□ > 4 = > 4 = > = 990

Unique search

Example: N = 128

$$\theta = \sin^{-1}\left(\frac{1}{\sqrt{N}}\right) = 0.0885...$$
$$t = \left\lfloor \frac{\pi}{4\theta} \right\rfloor = 8$$

Unique search

$$\theta = \sin^{-1}\left(\sqrt{\frac{1}{N}}\right) \quad t = \left\lfloor \frac{\pi}{4\theta} \right\rfloor$$

Measuring after t iterations gives the (unique) outcome $x \in A_1$ with probability:

$$p(N,1) = \sin^2((2t+1)\theta)$$

Success probabilities for Unique search

N	p(N, 1)	N	p(N,1)
2	0.5	128	0.9956199
4	1.0	256	0.9999470
8	0.9453125	512	0.9994480
16	0.9613190	1024	0.9994612
32	0.9991823	2048	0.9999968
64	0.9965857	4096	0.9999453

It can be proved analytically that $p(N, 1) \ge 1 - \frac{1}{N}$. Michal Belina (VSB-TUO)

Multiple solutions

Example: N = 128, s = 4

$$\theta = \sin^{-1}\left(\sqrt{\frac{s}{N}}\right) = 0.1777 \cdots t = \left\lfloor \frac{\pi}{4\theta} \right\rfloor = 4$$

Multiple solutions

$$\theta = \sin^{-1}\left(\sqrt{\frac{s}{N}}\right) \quad t = \left\lfloor \frac{\pi}{4\theta} \right\rfloor$$

For every $s \in \{1, ..., N\}$, the probability p(N, s) to find a solution satisfies:

$$p(N, s) \ge \max\left\{1 - \frac{s}{N}, \frac{s}{N}\right\}$$

Number of queries

$$\theta = \sin^{-1}\left(\sqrt{\frac{s}{N}}\right) \quad t = \left\lfloor \frac{\pi}{4\theta} \right\rfloor$$

Each iteration of Grover's algorithm requires 1 query (or evaluation of f). How does the number of queries t depend on N and s?

$$\sin^{-1}(x) \ge x \quad \text{(for every } x \in [0, 1])$$

$$\theta = \sin^{-1}\left(\sqrt{\frac{s}{N}}\right) \ge \sqrt{\frac{s}{N}}$$

$$t \le \frac{\pi}{4\theta} \le \frac{\pi}{4}\sqrt{\frac{N}{s}}$$

$$t = \mathcal{O}\left(\sqrt{\frac{N}{s}}\right)$$

Unknown number of solutions

What do we do if we don't know the number of solutions in advance? A simple approach

Choose the number of iterations $t \in \{1, ..., |\pi\sqrt{N}/4|\}$ uniformly at random.

- The probability to find a solution (if one exists) will be at least 40%. (Repeat several times to boost success probability.)
- The number of queries (or evaluations of f) is $O(\sqrt{N})$.

A more sophisticated approach

- 1. Set T = 1.
- 2. Run Grover's algorithm with $t \in \{1, \dots, T\}$ chosen uniformly at random.
- 3. If a solution is found, output it and stop. Otherwise, increase T and return to step 2 (or report "no solution".
 - The rate of increase of T must be carefully balanced: slower rates require more queries, higher rates decrease success probability. $T \leftarrow \left\lceil \frac{5}{4}T \right\rceil$ works.
 - If the number of solutions is $s \ge 1$, then the number of queries (or evaluations of f) required is $O(\sqrt{N/s})$. If there are no solutions, $O(\sqrt{N})$ queries are required.

Table of Contents

- 1 Day 2
 - Grover's algorithm
 - Quantum Fourier Transform
 - Quantum Phase Estimation
 - Shor's algorithm
 - Q&A and Closing the event

Spectral theorem for unitary matrices

The spectral theorem is an important fact in linear algebra. Here is a statement of a special case of this theorem, for unitary matrices.

Spectral theorem for unitary matrices

Suppose U is an $N \times N$ unitary matrix. There exists an orthonormal basis $\{|\psi_1\rangle, \dots, |\psi_N\rangle\}$ of vectors along with complex numbers

$$\lambda_1 = e^{2\pi i \theta_1}, \dots, \lambda_N = e^{2\pi i \theta_N}$$

such that

$$U = \sum_{k=1}^{N} \lambda_k |\psi_k\rangle \langle \psi_k|$$

4□ > 4回 > 4 = > 4 = > = 9 < ○</p>

Spectral theorem for unitary matrices

The *spectral theorem* is an important fact in linear algebra. Here is a statement of a special case of this theorem, for *unitary matrices*.

Spectral theorem for unitary matrices

Suppose U is an $N \times N$ unitary matrix.

There exists an orthonormal basis $\{|\psi_1\rangle, \ldots, |\psi_N\rangle\}$ of vectors along with complex numbers

$$\lambda_1 = e^{2\pi i \theta_1}, \dots, \lambda_N = e^{2\pi i \theta_N}$$

such that

$$U = \sum_{k=1}^{N} \lambda_k |\psi_k\rangle \langle \psi_k|$$

Each vector $|\psi_k\rangle$ is an eigenvector of U having eigenvalue λ_k :

$$U|\psi_k\rangle = \lambda_k|\psi_k\rangle = e^{2\pi i\theta_k}|\psi_k\rangle$$

← 4 □ ト ← □ ト ← □ ト ← □ ・ ○ へ ○

Phase estimation problem

In the phase estimation problem, we're given two things:

lacktriangledown A description of a unitary quantum circuit on n qubits.

2 An *n*-qubit quantum state $|\psi\rangle$.

We're promised that $|\psi\rangle$ is an eigenvector of the unitary operation U described by the circuit, and our goal is to approximate the corresponding eigenvalue.

Phase estimation problem

Input: A unitary quantum circuit for an n-qubit operation U

and an *n*-qubit quantum state $|\psi\rangle$

Promise: $|\psi\rangle$ is an eigenvector of U

Output: An approximation to the number $\theta \in [0, 1]$ satisfying

$$U|\psi\rangle = e^{2\pi i\theta}|\psi\rangle$$

4日 → 4団 → 4 三 → 4 三 → 9 Q ○

Phase estimation problem

In the phase estimation problem, we're given two things:

 \bullet A description of a unitary quantum circuit on n qubits.

2 An *n*-qubit quantum state $|\psi\rangle$.

We're promised that $|\psi\rangle$ is an eigenvector of the unitary operation U described by the circuit, and our goal is to approximate the corresponding eigenvalue.

Phase estimation problem

Input: A unitary quantum circuit for an n-qubit operation U

and an *n*-qubit quantum state $|\psi\rangle$

Promise: $|\psi\rangle$ is an eigenvector of U

Output: An approximation to the number $\theta \in [0, 1]$ satisfying

$$U|\psi\rangle = e^{2\pi i\theta}|\psi\rangle$$

We can approximate θ by a fraction:

$$\theta pprox rac{y}{2^m}$$

for $y \in \{0, 1, \dots, 2^m - 1\}$. This approximation is taken modulo 1.

(ロ) (回) (巨) (巨) (巨) の(0

Warm-up: using the phase kickback

Given a circuit for U, we can create a circuit for a controlled-U operation:

Warm-up: using the phase kickback II

$$\begin{split} |\pi_1\rangle &= |\psi\rangle|0\rangle \\ |\pi_2\rangle &= \frac{1}{\sqrt{2}}|\psi\rangle|0\rangle + \frac{1}{\sqrt{2}}|\psi\rangle|1\rangle \\ |\pi_3\rangle &= \frac{1}{\sqrt{2}}|\psi\rangle|0\rangle + \frac{1}{\sqrt{2}}(U\,|\psi\rangle)\,|1\rangle = |\psi\rangle \otimes \left(\frac{1}{\sqrt{2}}\,|0\rangle + \frac{e^{2\pi i\theta}}{\sqrt{2}}\,|1\rangle\right) \\ |\pi_4\rangle &= |\psi\rangle \otimes \left(\frac{1+e^{2\pi i\theta}}{2}|0\rangle + \frac{1-e^{2\pi i\theta}}{2}|1\rangle\right) \end{split}$$

Warm-up: using the phase kickback III

$$|\pi_4\rangle = |\psi\rangle \otimes \left(\frac{1 + e^{2\pi i\theta}}{2}|0\rangle + \frac{1 - e^{2\pi i\theta}}{2}|1\rangle\right)$$

$$p_0 = \left|\frac{1 + e^{2\pi i\theta}}{2}\right|^2 = \cos^2(\pi\theta) \quad p_1 = \left|\frac{1 - e^{2\pi i\theta}}{2}\right|^2 = \sin^2(\pi\theta)$$

Measuring the top qubit yields the outcomes 0 and 1 with these probabilities:

Iterating the unitary operation

How can we learn more about θ ? One possibility is to apply the controlled-U operation twice (or multiple times):

Performing the controlled-U operation twice has the effect of squaring the eigenvalue:

Michal Belina (VSB-TUO)

$$|\pi_1\rangle = |\psi\rangle \otimes \frac{1}{2} \sum_{a_0=0}^1 \sum_{a_1=0}^1 |a_1 a_0\rangle$$
$$|\pi_2\rangle = |\psi\rangle \otimes \frac{1}{2} \sum_{a_1=0}^1 \sum_{a_1=0}^1 e^{2\pi i a_0 \theta} |a_1 a_0\rangle$$

←ロト ←団 ト ← 三 ト ・ 三 ・ りへ ○

$$|\pi_3\rangle = |\psi\rangle \otimes \frac{1}{2} \sum_{a_0=0}^1 \sum_{a_1=0}^1 e^{2\pi i (2a_1 + a_0)\theta} |a_1 a_0\rangle$$
 (1)

$$= |\psi\rangle \otimes \frac{1}{2} \sum_{x=0}^{3} e^{2\pi i x \theta} |x\rangle \tag{2}$$

What can we learn about θ from this state? Suppose we're promised that $\theta = \frac{y}{4}$ for $y \in \{0, 1, 2, 3\}$. Can we figure out which one it is?

Define a two-qubit state for each possibility:

$$|\Phi_{y}\rangle = \frac{1}{2} \sum_{x=0}^{3} e^{2\pi i \frac{xy}{4}} |x\rangle$$

$$|\Phi_{0}\rangle = \frac{1}{2} |0\rangle + \frac{1}{2} |1\rangle + \frac{1}{2} |2\rangle + \frac{1}{2} |3\rangle \qquad |\Phi_{1}\rangle = \frac{1}{2} |0\rangle + \frac{i}{2} |1\rangle - \frac{1}{2} |2\rangle - \frac{i}{2} |3\rangle$$

$$|\Phi_{2}\rangle = \frac{1}{2} |0\rangle - \frac{1}{2} |1\rangle + \frac{1}{2} |2\rangle - \frac{1}{2} |3\rangle \qquad |\Phi_{3}\rangle = \frac{1}{2} |0\rangle - \frac{i}{2} |1\rangle - \frac{1}{2} |2\rangle + \frac{i}{2} |3\rangle$$

These vectors are *orthonormal*—so they can be discriminated perfectly by a projective measurement.

Michal Belina (VSB-TUO)

Unitary Matrix Representation

$$V = \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{pmatrix}$$

(3)

Action of the Unitary Matrix

$$V|y\rangle = |\Phi_y\rangle$$
 (for every $y \in \{0, 1, 2, 3\}$)

Inverse Operation

We can identify y by performing the inverse of V and then a standard basis measurement:

$$V^{\dagger}\ket{\Phi_y}=\ket{y}\quad ext{(for every }y\in\{0,1,2,3\})$$

(5)

Table of Contents

- 1 Day 2
 - Grover's algorithm
 - Quantum Fourier Transform
 - Quantum Phase Estimation
 - Shor's algorithm
 - Q&A and Closing the event

Two-qubit phase estimation

This matrix is associated with the *discrete Fourier transform* (for 4 dimensions). When we think about this matrix as a unitary operation, we call it the *quantum Fourier transform*.

The complete circuit for learning $y \in \{0, 1, 2, 3\}$ when $\theta = y/4$:

Two-qubit phase estimation

The outcome probabilities when we run the circuit, as a function of θ :

The quantum Fourier transform is defined for each positive integer N:

$$QFT_N = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} e^{2\pi i \frac{xy}{N}} |x\rangle\langle y|$$

$$\mathrm{QFT}_N |y\rangle = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} e^{2\pi i \frac{xy}{N}} |x\rangle$$

$$QFT_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix} = H$$

$$QFT_3 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1\\ 1 & \frac{-1+i\sqrt{3}}{2} & \frac{-1-i\sqrt{3}}{2}\\ 1 & \frac{-1-i\sqrt{3}}{2} & \frac{-1+i\sqrt{3}}{2} \end{pmatrix}$$

←□ → ←□ → ← □ → □ ● の へ ○

The quantum Fourier transform is defined for each positive integer N as follows.

$$\begin{aligned} \text{QFT}_N &= \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} e^{2\pi i \frac{xy}{N}} |x\rangle \langle y| \\ \text{QFT}_N |y\rangle &= \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} e^{2\pi i \frac{xy}{N}} |x\rangle \end{aligned}$$

$$QFT_4 = \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{pmatrix}$$

Michal Belina (VSB-TUO)

$$\mathrm{QFT}_8 = \frac{1}{2\sqrt{2}} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \frac{1+i}{\sqrt{2}} & i & \frac{-1+i}{\sqrt{2}} & -1 & \frac{-1-i}{\sqrt{2}} & -i & \frac{1-i}{\sqrt{2}} \\ 1 & i & -1 & -i & 1 & i & -1 & -i \\ 1 & \frac{-1+i}{\sqrt{2}} & -i & \frac{1+i}{\sqrt{2}} & -1 & \frac{1-i}{\sqrt{2}} & i & \frac{-1-i}{\sqrt{2}} \\ 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\ 1 & \frac{-1-i}{\sqrt{2}} & -i & \frac{1-i}{\sqrt{2}} & -1 & \frac{1+i}{\sqrt{2}} & i & \frac{-1+i}{\sqrt{2}} \\ 1 & -i & -1 & i & 1 & -i & -1 & i \\ 1 & \frac{1-i}{\sqrt{2}} & -i & \frac{-1-i}{\sqrt{2}} & -1 & \frac{-1+i}{\sqrt{2}} & i & \frac{1+i}{\sqrt{2}} \end{pmatrix}$$

Michal Belina (VSB-TUO)

The quantum Fourier transform is defined for each positive integer N as follows.

$$QFT_N = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} e^{2\pi i \frac{xy}{N}} |x\rangle \langle y| = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} \omega_N^{xy} |x\rangle \langle y|$$

Useful shorthand notation:

$$\omega_N = e^{\frac{2\pi i}{N}} = \cos\left(\frac{2\pi}{N}\right) + i\sin\left(\frac{2\pi}{N}\right)$$

Circuits for the QFT

We can implement \mathbf{QFT}_N efficiently with a quantum circuit when N is a power of 2.

The implementation makes use of ${f controlled-phase}$ gates:

Circuits for the QFT

Cost analysis

Let s_m denote the number of gates we need for m qubits.

- For m = 1, a single Hadamard gate is required.
- For $m \geq 2$, these are the gates required:
 - s_{m-1} gates for the QFT on m-1 qubits
 - m-1 controlled phase gates
 - m-1 swap gates
 - 1 Hadamard gate

$$s_m = \begin{cases} 1 & m = 1\\ s_{m-1} + 2m - 1 & m \ge 2 \end{cases}$$

This is a *recurrence relation* with a closed-form solution:

$$s_m = \sum_{k=1}^m (2k - 1) = m^2$$

Additional remarks:

- The number of swap gates can be reduced.
- Approximations to QFT_{2m} can be done at lower cost (and lower depth).
 Michal Belina (VSB-TUO)

Phase estimation procedure

The general phase-estimation procedure, for any choice of m:

Warning

If we perform each U^k -operation by repeating a controlled-U operation k times, increasing the number of control qubits m comes at a **high cost**.

Phase estimation procedure

The general phase-estimation procedure, for any choice of m:

$$|\pi\rangle = |\psi\rangle \otimes \frac{1}{2^m} \sum_{y=0}^{2^m - 1} \sum_{x=0}^{2^m - 1} e^{2\pi i x (\theta - y/2^m)} |y\rangle$$
 (6)

$$p_y = \left| \frac{1}{2^m} \sum_{x=0}^{2^m - 1} e^{2\pi i x (\theta - y/2^m)} \right|^2 \tag{7}$$

(ロ) (回) (巨) (巨)

Michal Belina (VSB-TUO)

Phase estimation procedure

$$p_y = \left| \frac{1}{2^m} \sum_{x=0}^{2^{m-1}} e^{2\pi i x (\theta - y/2^m)} \right|^2 \tag{8}$$

Best approximations

Suppose $\frac{y}{2^m}$ is the **best approximation** to θ :

$$\left|\theta - \frac{y}{2^m}\right|_1 \le 2^{-(m+1)}$$

Then the probability to measure y will be relatively high:

$$p_y \ge \frac{4}{\pi^2} \approx 0.405$$

Worse approximations

Suppose there's a **better approximation** to θ between $\frac{y}{2m}$ and θ :

$$\left|\theta - \frac{y}{2^m}\right|_1 \ge 2^{-m}$$

Then the probability to measure y will be relatively low:

$$p_y \le \frac{1}{4}$$

Phase Estimation Accuracy

To obtain an approximation $\frac{y}{2m}$ that is **very likely** to satisfy

$$\left|\theta - \frac{y}{2^m}\right|_1 < 2^{-m}$$

we can run the phase estimation procedure using m control qubits several times and take y to be the *mode* of the outcomes.

(The eigenvector $|\psi\rangle$ is unchanged by the procedure and can be reused as many times as needed.)

Michal Belina (VSB-TUO) 60 / 76

Table of Contents

- 1 Day 2
 - Grover's algorithm
 - Quantum Fourier Transform
 - Quantum Phase Estimation
 - ullet Shor's algorithm
 - Q&A and Closing the event

The order-finding problem

For each positive integer N, we define

$$\mathbb{Z}_N = \{0, 1, \dots, N-1\}$$

For instance, $\mathbb{Z}_1 = \{0\}$, $\mathbb{Z}_2 = \{0, 1\}$, $\mathbb{Z}_3 = \{0, 1, 2\}$, and so on.

We can view arithmetic operations on \mathbb{Z}_N as being defined modulo N.

Example

Let N = 7. We have $3 \cdot 5 = 15$, which leaves a remainder of 1 when divided by 7.

This is often expressed like this:

$$3 \cdot 5 \equiv 1 \pmod{7}$$

We can also simply write $3 \cdot 5 = 1$ when it's clear we're working in \mathbb{Z}_7 .

The elements $a \in \mathbb{Z}_N$ that satisfy gcd(a, N) = 1 are special.

$$\mathbb{Z}_N^* = \{ a \in \mathbb{Z}_N : \gcd(a, N) = 1 \}$$

$$\mathbb{Z}_{21}^* = \{ 1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20 \}$$

The order-finding problem

Fact

For every $a \in \mathbb{Z}_N^*$ there must exist a positive integer k such that $a^k = 1$. The smallest such k is called the **order** of a in \mathbb{Z}_N^* .

Example

For N = 21, these are the smallest powers for which this works:

$$1^1 = 1$$
 $5^6 = 1$ $11^6 = 1$ $17^6 = 1$
 $2^6 = 1$ $8^2 = 1$ $13^2 = 1$ $19^6 = 1$
 $4^3 = 1$ $10^6 = 1$ $16^3 = 1$ $20^2 = 1$

Order-finding problem

Input: Positive integers a and N with gcd(a, N) = 1.

Output: The smallest positive integer r such that $a^r \equiv 1 \pmod{N}$.

No efficient classical algorithm for this problem is known — an efficient algorithm for order-finding implies an efficient algorithm for integer factorization.

Order-finding by phase-estimation

To connect the order-finding problem to phase estimation, consider a system whose classical state set is \mathbb{Z}_N .

For a given element $a \in \mathbb{Z}_N^*$, define an operation as follows:

$$\mathcal{M}_a|x\rangle = |ax\rangle$$
 (for each $x \in \mathbb{Z}_N$)

This is a *unitary operation*—but only because gcd(a, N) = 1! Example

Let N = 15 and a = 2. The operation \mathcal{M}_a has this action:

$$\begin{split} \mathcal{M}_2|0\rangle &= |0\rangle \quad \mathcal{M}_2|5\rangle = |10\rangle \quad \mathcal{M}_2|10\rangle = |5\rangle \\ \mathcal{M}_2|1\rangle &= |2\rangle \quad \mathcal{M}_2|6\rangle = |12\rangle \quad \mathcal{M}_2|11\rangle = |7\rangle \\ \mathcal{M}_2|2\rangle &= |4\rangle \quad \mathcal{M}_2|7\rangle = |14\rangle \quad \mathcal{M}_2|12\rangle = |9\rangle \\ \mathcal{M}_2|3\rangle &= |6\rangle \quad \mathcal{M}_2|8\rangle = |1\rangle \quad \mathcal{M}_2|13\rangle = |11\rangle \\ \mathcal{M}_2|4\rangle &= |8\rangle \quad \mathcal{M}_2|9\rangle = |3\rangle \quad \mathcal{M}_2|14\rangle = |13\rangle \end{aligned}$$

Michal Belina (VSB-TUO)

Order-finding by phase-estimation

To connect the order-finding problem to phase estimation, consider a system whose classical state set is \mathbb{Z}_N .

For a given element $a \in \mathbb{Z}_N^*$, define an operation as follows:

$$\mathcal{M}_a|x\rangle = |ax\rangle$$
 (for each $x \in \mathbb{Z}_N$)

This is a *unitary operation*—but only because gcd(a, N) = 1! Main idea

The *eigenvalues* of \mathcal{M}_a are closely connected with the *order* of a.

By approximating certain eigenvalues with enough precision using phase estimation, we'll be able to compute the order.

◆□ ト ◆□ ト ◆ □ ト ◆

Eigenvectors and eigenvalues

This is an eigenvector of \mathcal{M}_a :

$$|\psi_0\rangle = \frac{|1\rangle + |a\rangle + \dots + |a^{r-1}\rangle}{\sqrt{r}}$$

The associated eigenvalue is 1:

$$\mathcal{M}_a |\psi_0\rangle = \frac{|a\rangle + |a^2\rangle + \dots + |a^r\rangle}{\sqrt{r}} = \frac{|a\rangle + \dots + |a^{r-1}\rangle + |1\rangle}{\sqrt{r}} = |\psi_0\rangle$$

To identify more eigenvectors, first recall that

$$\omega_r = e^{2\pi i/r}$$

This is another eigenvector of \mathcal{M}_a :

$$|\psi_1\rangle = \frac{|1\rangle + \omega_r^{-1}|a\rangle + \dots + \omega_r^{-(r-1)}|a^{r-1}\rangle}{\sqrt{r}}$$

Eigenvectors and eigenvalues

$$\mathcal{M}_{a}|\psi_{1}\rangle = \frac{|a\rangle + \omega_{r}^{-1}|a^{2}\rangle + \dots + \omega_{r}^{-(r-1)}|a^{r}\rangle}{\sqrt{r}}$$

$$= \frac{\omega_{r}|1\rangle + |a\rangle + \omega_{r}^{-1}|a^{2}\rangle + \dots + \omega_{r}^{-(r-2)}|a^{r-1}\rangle}{\sqrt{r}}$$

$$= \omega_{r}\left(\frac{|1\rangle + \omega_{r}^{-1}|a\rangle + \omega_{r}^{-2}|a^{2}\rangle + \dots + \omega_{r}^{-(r-1)}|a^{r-1}\rangle}{\sqrt{r}}\right)$$

$$= \omega_{r}|\psi_{1}\rangle$$

Additional eigenvectors can be identified by similar reasoning...

For each $j \in \{0, ..., r-1\}$, this is an eigenvector of \mathcal{M}_a :

$$|\psi_j\rangle = \frac{|1\rangle + \omega_r^{-j}|a\rangle + \dots + \omega_r^{-j(r-1)}|a^{r-1}\rangle}{\sqrt{r}}$$
$$\mathcal{M}_a|\psi_j\rangle = \omega_r^j|\psi_j\rangle$$

Michal Belina (VSB-TUO)

A convenient eigenvector

Michal Belina (VSB-TUO)

$$|\psi_1\rangle = \frac{|1\rangle + \omega_r^{-1}|a\rangle + \dots + \omega_r^{-(r-1)}|a^{r-1}\rangle}{\sqrt{r}}$$
$$\mathcal{M}_a|\psi_1\rangle = \omega_r|\psi_1\rangle = e^{2\pi i \frac{1}{r}}|\psi_1\rangle$$

Suppose we're given $|\psi_1\rangle$ as a quantum state. We can attempt to learn r as follows:

- Perform phase estimation on the state $|\psi_1\rangle$ and a quantum circuit implementing \mathcal{M}_a . The outcome is an approximation $y/2^m \approx 1/r$.
 - ② Output $2^m/y$ rounded to the nearest integer:

round
$$\left(\frac{2^m}{y}\right) = \left|\frac{2^m}{y} + \frac{1}{2}\right|$$

How much precision do we need to correctly determine r?

$$\left| \frac{y}{2^m} - \frac{1}{r} \right| \le \frac{1}{2N^2} \quad \Rightarrow \quad \text{round} \left(\frac{2^m}{y} \right) = r$$

Choosing $m = 2\log(N) + 1$ in phase estimation makes such an approximation likely.

A random eigenvector

$$|\psi_{j}\rangle = \frac{|1\rangle + \omega_{r}^{-j}|a\rangle + \dots + \omega_{r}^{-j(r-1)}|a^{r-1}\rangle}{\sqrt{r}}$$

$$\mathcal{M}_{a}|\psi_{i}\rangle = \omega_{r}^{j}|\psi_{i}\rangle = e^{2\pi i \frac{j}{r}}|\psi_{i}\rangle$$

Suppose we're given $|\psi_j\rangle$ as a quantum state for a *random choice* of $j \in \{0, ..., r-1\}$. We can attempt to learn j/r as follows:

- **①** Perform phase estimation on the state $|\psi_j\rangle$ and a quantum circuit implementing \mathcal{M}_a . The outcome is an approximation $y/2^m \approx j/r$.
- ② Among the fractions u/v in lowest terms satisfying $u, v \in \{0, ..., N-1\}$ and $v \neq 0$, output the one closest to $y/2^m$. This can be done efficiently using the *continued fraction algorithm*.

How much precision do we need to correctly determine u/v = j/r?

$$\left| \frac{y}{2^m} - \frac{j}{r} \right| \le \frac{1}{2N^2} \quad \Rightarrow \quad \frac{u}{v} = \frac{j}{r}$$

Choosing $m=2\log(N)+1$ for phase estimation makes such an approximation likely. We might get unlucky: j could have common factors with r.

4 ロ ト 4 団 ト 4 重 ト 4 重 ・ 夕 Q ()

A random eigenvector

$$|\psi_j\rangle = \frac{|1\rangle + \omega_r^{-j}|a\rangle + \dots + \omega_r^{-j(r-1)}|a^{r-1}\rangle}{\sqrt{r}}$$
$$\mathcal{M}_a|\psi_j\rangle = \omega_r^j|\psi_j\rangle = e^{2\pi i \frac{j}{r}}|\psi_j\rangle$$

Suppose we're given $|\psi_j\rangle$ as a quantum state for a **random choice** of $j \in \{0, ..., r-1\}$. We can attempt to learn j/r as follows:

- Perform phase estimation on the state $|\psi_j\rangle$ and a quantum circuit implementing \mathcal{M}_a . The outcome is an approximation $y/2^m \approx j/r$.
- Among the fractions u/v in lowest terms satisfying $u, v \in \{0, ..., N-1\}$ and $v \neq 0$, output the one closest to $y/2^m$. This can be done efficiently using the **continued fraction algorithm**.

How much precision do we need to correctly determine u/v = j/r?

$$\left| \frac{y}{2^m} - \frac{j}{r} \right| \le \frac{1}{2N^2} \quad \Rightarrow \quad \frac{u}{v} = \frac{j}{r}$$

If we can draw *independent samples*, for $j \in \{0, ..., r-1\}$ is chosen uniformly, we can recover r with high probability by computing the *least common multiple* of the values of v we observed.

Implementation

To find the order of $a \in \mathbb{Z}_N^*$, we apply phase estimation to the operation \mathcal{M}_a . Let's measure the cost as a function of $n = \lg(N)$.

Cost for each controlled unitary

We can implement \mathcal{M}_a at cost $O(n^2)$.

We need to implement \mathcal{M}_a^k for each $k=1,2,4,8,\ldots,2^{m-1}$. Each \mathcal{M}_a^k can be implemented as follows:

- Compute $b = a^k \mod N$.
- Use a circuit for \mathcal{M}_b .

The cost to implement $\mathcal{M}_b = \mathcal{M}_a^k$ is $O(n^2)$.

Michal Belina (VSB-TUO)

Implementation

To find the order of $a \in \mathbb{Z}_N^*$, we apply phase estimation to the operation \mathcal{M}_a . Let's measure the cost as a function of $n = \lg(N)$.

Cost for phase estimation

- m Hadamard gates: cost O(n)
- m controlled unitary operations: cost $O(n^3)$
- Quantum Fourier transform: cost $O(n^2)$

Total cost: $O(n^3)$

Implementation

Remaining issue: getting one of the eigenvectors $|\psi_0\rangle, \dots, |\psi_{r-1}\rangle$.

Solution: replace the eigenvector $|\psi\rangle$ with the state $|1\rangle$.

This works because of the following equation:

$$|1\rangle = \frac{|\psi_0\rangle + \dots + |\psi_{r-1}\rangle}{\sqrt{r}}$$

The outcome is the same as if we chose $j \in \{0, 1, \dots, r-1\}$ uniformly and used $|\psi\rangle \equiv |\psi_j\rangle$

Michal Belina (VSB-TUO) 73 / 76

Factoring through order-finding

The following method succeeds in finding a factor of N with probability at least 1/2, provided N is odd and not a prime power.

Factor-finding method

- ① Choose $a \in \{2, \ldots, N-1\}$ at random.
- **2** Compute $d = \gcd(a, N)$. If $d \ge 2$, then output d and stop.
- **6** Compute the order r of a modulo N.
- If r is even, then compute $d = \gcd(a^{r/2} 1, N)$. If $d \ge 2$, output d and stop.
- 6 If this step is reached, the method has failed.

Main idea

By the definition of the order, we know that

$$a^r \equiv 1 \pmod{N} \iff N \text{ divides } a^r - 1$$

2 If r is even, then

$$a^{r} - 1 = (a^{r/2} + 1)(a^{r/2} - 1)$$

Each prime dividing N must therefore divide either $(a^{r/2} + 1)$ or $(a^{r/2} - 1)$.

For a random a, at least one of the prime factors of N is likely to divide $(a^{r/2}-1)$.

Table of Contents

- 1 Day 2
 - Grover's algorithm
 - Quantum Fourier Transform
 - Quantum Phase Estimation
 - Shor's algorithm
 - Q&A and Closing the event

Q&A and Closing the day

Thank you for your attention
Thanks to the IBM Quantum for great learning materials.