CT1.2.3 The time-scaled version of a waveform x(t), is defined as x(at), where a is a nonzero constant. Consider the waveform

$$\dot{x}(t) = \begin{cases} 0; & t < 0 \\ t; & 0 \le t < 1 \\ 0; & 1 \le t \end{cases}$$
 (20)

Plot:

a) x(t) versus t.

x(t) =1t

b) x(at) versus t, where a = 0.5. X(t) = 6.5t

c) x(at) versus t, where a = 2. x(t) = 2t

d) x(at) versus t, where a is shown as an arbitrary parameter on the plot. Assume that a > 0. x(at) = 0

Ans:

For each of the following systems, the system output and input are related as below. Determine whether the system is i) linear, ii) time-invariant or not.

Please justify your answers.

a) $S_1: e^{j5t} \stackrel{S_1}{\rightarrow} t \cdot e^{j5t}$

 $\chi_{i}(t) = e^{\frac{1}{3}5t} \rightarrow \square \rightarrow t e^{\frac{1}{3}5t} = y_{i}(t) = t \chi_{i}(t)$

$$\chi_{i}(t) \rightarrow \bigcap \rightarrow y_{i}(t) = t \chi_{i}(t)$$

b)
$$S_2$$
: $e^{j5t} \stackrel{S_2}{\rightarrow} e^{j5(t-1)}$

$$\chi_{\mathbf{z}}(t) \rightarrow | \longrightarrow y_{\mathbf{z}}(t) = t \chi_{\mathbf{z}}(t)$$

Ans:

$$\chi(t) = d\chi_1(t) + \beta \chi_2(t) \rightarrow 1 \longrightarrow \chi(t) = d\chi_1(t) + \beta \chi_2(t)$$

$$= t \left[d\chi_1(t) + \beta \chi_2(t) \right]$$

a)
$$\chi(t) = e \rightarrow [] \rightarrow \chi(t) = \chi \cdot e^{-\xi \cdot t}$$

$$= \chi \cdot \chi(t)$$

$$X_{i}(t) \rightarrow \square \rightarrow Y_{i}(t)$$

$$A \cdot X_{1}(x) + b \times x_{1}(x) \rightarrow \boxed{\longrightarrow} y(x)$$

$$y(t) = t \cdot [a \times (1t) + b \times x_{2}(x)]$$

$$= a \cdot y(x) + b \cdot y_{2}(x)$$

. Linear.

Now,
$$\chi(t) \rightarrow \int f(t) = t \cdot \chi(t)$$
 $\chi(t) = \chi(t-2) \rightarrow \int f(t) = t \cdot \chi(t)$
 $= t \cdot \chi(t-2)$

in not time-invariant

 $f(t) = \int f(t-2)$
 $f(t) = \int f(t-2)$

3. Consider a LTI system with input x(t), output y(t) and impulse response h(t). It is known that y(t) = x(t) * h(t), where '*' is the convolution operator.

Assume
$$\mathbf{x}(t) = \begin{cases} t+1 & 0 \le t \le 1 \\ 2-t & 1 < t \le 2 \\ 0 & elsewhere \end{cases}$$
 and $\mathbf{h}(t) = \delta(t+0.5) + 2\delta(t-0.5)$

- a) Plot x(t) and h(t)
- b) Is this system BIBO stable? Is this system causal? Justify your answer.
- c) Find the range of t where $y(t) \neq 0$. using sliding tape method
- d) Find expression for y(t)

1 time-invariant

e) Plot y(t)

Ans:

a)

b) This system is BIBO stable.

This is because
$$\int_{t=-\infty}^{\infty} |h(t)| dt = \int_{t=-\infty}^{\infty} \delta(t+0.5) + 2\delta(t-0.5) dt = 3 < \infty$$

This system is not causal.

This is because $h(t) \neq 0$ when t = -0.5 < 0

c) For CTLTI system,
$$y(t) = x(t) * h(t) = \int_{\lambda = -\infty}^{\infty} h(\lambda) \cdot x(t - \lambda) d\lambda$$

To find the range of t where $y(t) \neq 0$, we can plot range of $x(\lambda)$ and $h(t - \lambda)$ using tape method first.

The following plot shows how the range of $x(\lambda)$ and $h(t - \lambda)$ can be derived.

From the red and blue tape, we found as long as $-0.5 \le t \le 2.5$ => $h(\lambda) \cdot x(t - \lambda) \ne 0$.

d) Now we want to calculate y(t) from convolution integral of h(t)*x(t). One can always calculate y(t) directly by performing convolution integral using $y(t) = x(t) * h(t) = \int_{\lambda = -\infty}^{\infty} h(\lambda) \cdot x(t - \lambda) d\lambda$

However, there may exist other easier ways to calculate the above.

Noticing that $h(t) = \delta(t + 0.5) + 2\delta(t - 0.5)$.

Also from homework, we learn that $x(t) * \delta(t \pm \tau) = x(t \pm \tau)$

We can rewrite the system output $y(t) = x(t) * \{\delta(t + 0.5) + 2\delta(t - 0.5)\}\$

This results in y(t) = x(t + 0.5) + 2x(x - 0.5).

Where x(t + 0.5) is x(t) shift to the left by 0.5, and x(t - 0.5) is x(t) shift to the right by 0.5

We can now write equation for x(t + 0.5) and 2x(x - 0.5)

$$\mathbf{x}(\mathsf{t} + 0.5) = \begin{cases} (t + 0.5) + 1 & -0.5 < t \le 0.5 \\ 2 - (t + 0.5) & 0.5 < t \le 1.5 \\ 0 & elsewhere \end{cases}$$

$$2 \cdot x(t - 0.5) = \begin{cases} 2 \cdot \{(t - 0.5) + 1\} & 0.5 < t \le 1.5 \\ 2 \cdot \{2 - (t - 0.5)\} & 1.5 < t \le 2.5 \\ 0 & elsewhere \end{cases}$$

$$y(t) = \begin{cases} t + 1.5 & -0.5 < t \le 0.5 \\ t + 2.5 & 0.5 < t \le 1.5 \\ 5 - 2t & 1.5 < t \le 2.5 \\ 0 & else \end{cases}$$

e)

4. Find the impulse response of the system below

Ans:

$$h(t) = \frac{1}{\tau}[u(t) - u(t-\tau)]$$

2CT.9.3 Use the graphical method of convolution to show that

$$\sqcap \left(\frac{t}{\tau}\right) * \sqcap \left(\frac{t}{\tau}\right) = \tau \wedge \left(\frac{t}{\tau}\right)$$

Ans:

$$\sqcap \left(\frac{t}{\tau}\right) * \sqcap \left(\frac{t}{\tau}\right) = \int_{-\infty}^{\infty} \sqcap \left(\frac{t-\lambda}{\tau}\right) \sqcap \left(\frac{\lambda}{\tau}\right) d\lambda$$

The stated result follows by plotting $\sqcap \left(\frac{t-\lambda}{\tau}\right)$, $\sqcap \left(\frac{\lambda}{\tau}\right)$ and $\sqcap \left(\frac{t-\lambda}{\tau}\right) \sqcap \left(\frac{\lambda}{\tau}\right)$ versus λ for different values of t. For example, plot these functions for $0 \le t < \tau$ to show that

$$\int_{-\infty}^{\infty} \sqcap \left(\frac{t-\lambda}{\tau}\right) \sqcap \left(\frac{\lambda}{\tau}\right) d\lambda = \tau - t$$

when $0 \le t < \tau$. Plot the functions for $\tau < t$ to show that

$$\int_{-\infty}^{\infty} \sqcap \left(\frac{t-\lambda}{\tau}\right) \sqcap \left(\frac{\lambda}{\tau}\right) d\lambda = 0$$

when $\tau < t$ and so on.

- 6. Let $x(t) = rect(\frac{t-4}{2})$ and $h(t) = e^{-3t} \cdot u(t)$
 - a) Plot x(t) and h(t)
 - b) Compute $y_1(t) = x(t) \otimes h(t)$ where \otimes is convolution operation
 - c) Compute and plot $y_2(t) = (\frac{dx(t)}{dt}) \otimes h(t)$
 - d) How is $y_2(t)$ related to $y_1(t)$?

Ans:

a)

b)

when
$$t < 3$$
 $f(t) = \chi(t) \otimes f(t) = \int_{-\infty}^{\infty} \chi(z) f(t-z) dz = 0$

When
$$3 \le t < 5$$
 $f(t) = \int_{3}^{t} \frac{1}{e^{-3}} \frac{1}{e^{$

When
$$\pm 75$$
 $y(t) = \int_{3}^{5} e^{-3(t-2)} dz = e^{-3t} \int_{3}^{32} e^{3t} \left(e^{-\frac{9}{2}}\right)$

$$\frac{dx(t)}{dt} = 8(t-3) - 8(t-5), \quad f_2(t) = \left[8(t-3) - 8(t-5)\right] \oplus h(t)$$

$$= e^{-3(t-3)} (1-3) - e^{-3(t-5)} u(t-5)$$

$$\frac{d}{dt}\left[x(t)\otimes h(t)\right] = \frac{dJ_1(t)}{dt}$$

- 7. For each of the following systems, the output y(t) and input x(t) are related as y(t) = T(x(t)). Determine whether the system is i) linear, ii) time-invariant or not. Please justify your answers.
- c) $y(t) = T(x(t)) = \int_{-\infty}^{2t} x(\tau) d\tau$
- d) $y(t) = T(x(t)) = e^{-x(t)}$

Ans:

a)

$$y_1(t) = T(x_1(t)) = \int_{-\infty}^{2t} x_1(\tau) d\tau$$

$$y_2(t) = T(x_2(t)) = \int_{-\infty}^{2t} x_2(\tau) d\tau$$

$$y(t) = T(ax_1(t) + bx_2(t)) = \int_{-\infty}^{2t} ax_1(\tau) + bx_2(\tau)d\tau = ay_1(t) + by_2(t)$$

System is linear

$$y_1(t) = T(x_1(t)) = \int_{-\infty}^{2t} x_1(\tau) d\tau$$

$$y(t) = T(x_1(t-\lambda)) = \int_{-\infty}^{2t} x_1(\tau-\lambda)d\tau \neq y_1(t-\lambda)$$

System is not time-invariant

b)
$$y_1(t) = T(x_1(t)) = e^{-x_1(t)}$$

$$y_2(t) = T(x_2(t)) = e^{-x_2(t)}$$

$$y(t) = T(ax_1(t) + bx_2(t)) = e^{-ax_1(t) - bx_2(t)} \neq ay_1(t) + by_2(t)$$

System is not linear

$$y_1(t) = T(x_1(t)) = e^{-x_1(t)}$$

$$y(t) = T(x_1(t-\tau)) = e^{-x_1(t-\tau)} = y_1(t-\tau)$$

System is time-invariant

8. Consider a LTI system with input x(t) and output y(t).

It is known that y(t) = x(t) * h(t), where '* is the convolution operator.

Assume
$$y(t) = \int_{-\infty}^{t} [x(\tau) - x(\tau - 4)] d\tau$$
, and $x(t) = 2 \cdot \Lambda(t - 1)$

- a) Plot x(t)
- b) Find h(t) and plot h(t)
- c) Find expression for y(t)
- d) Plot y(t)
- e) Is this system BIBO stable? Is this system causal? Justify your answer.

Ans:

(a)

$$y(t) = \int_{-\infty}^{t} [x(\tau) - x(\tau - 4)] d\tau$$

$$= \int_{-\infty}^{t} x(\tau) d\tau - \int_{-\infty}^{t} x(\tau - 4) d\tau \qquad (s = \tau - 4, s = -\infty \sim t - 4)$$

$$= \int_{-\infty}^{\infty} x(\tau) u(t - \tau) d\tau - \int_{-\infty}^{t - 4} x(s) ds$$

$$= x(t) \otimes u(t) - \int_{-\infty}^{+\infty} x(s) u(t - s - 4) ds$$

$$= x(t) \otimes u(t) - x(t) \otimes u(t - 4)$$

$$= x(t) \otimes [u(t) - u(t - 4)]$$

$$= x(t) \otimes rect\left(\frac{t - 2}{4}\right)$$

$$h(t)$$

$$\Rightarrow h(t) = rect\left(\frac{t-2}{4}\right)$$
 #

 \Rightarrow Because h(t<0)=0, the system is causal.

 \Rightarrow Because $\int_{-\infty}^{\infty} |h(t)| dt = 4 < \infty$, the system is BIBO stable.

(c)(d)

②
$$0 \le t < 1$$

$$\Rightarrow y(t) = \int_0^t (2\lambda) \cdot (1) d\lambda = t^2$$

$$31$$
 ≤ t < 2

$$\Rightarrow y(t) = \int_0^1 (2\lambda) \cdot (1) d\lambda + \int_1^t (-2\lambda + 4) \cdot (1) d\lambda = -t^2 + 4t - 2$$

4
$$t \ge 2$$
 & $(t-4) < 0$ i.e., $2 \le t < 4$

$$\Rightarrow y(t) = \int_0^1 2 \cdot tri(\lambda - 1) d\lambda = 2$$

⑤
$$0 \le (t-4) < 1$$
 i.e., $4 \le t < 5$

$$\Rightarrow y(t) = \int_{t-4}^{1} (2\lambda) \cdot (1) d\lambda + \int_{1}^{2} (-2\lambda + 4) \cdot (1) d\lambda = -t^{2} + 8t - 14$$

6)
$$1 \le (t-4) < 2$$
 i.e., $5 \le t < 6$

$$\Rightarrow$$
 $y(t) = \int_{t-4}^{2} (-2\lambda + 4) \cdot (1) d\lambda = t^2 - 12t + 36$

$$\Rightarrow$$
 $y(t) = 0$

$$y(t) = \begin{cases} t^2 &, & 0 \le t < 1 \\ -t^2 + 4t - 2 &, & 1 \le t < 2 \\ 2 &, & 2 \le t < 4 \\ -t^2 + 8t - 14 &, & 4 \le t < 5 \\ t^2 - 12t + 36 &, & 5 \le t < 6 \\ 0 &, & otherwise \end{cases}$$

