5. gyakorlat

Differenciálszámítás 3.

• Elemi függvények

1. feladat. Számítsuk ki az alábbi függvényértékeket:

$$\arcsin \frac{1}{2}$$
, $\arcsin (\sin 10)$, $\arccos \left(-\frac{\sqrt{2}}{2}\right)$, $\arctan \operatorname{tg} 1$, $\operatorname{arc} \operatorname{ctg} \sqrt{3}$, $\log_{1/4} \frac{1}{1024}$.

Megoldás.

• $\arcsin \frac{1}{2}$

Emlékeztetünk arra, hogy az arc sin := $\left(\sin_{\lfloor [-\frac{\pi}{2},\frac{\pi}{2}]}\right)^{-1}$ definícióból és a sin függvény tulajdonságaiból következik, hogy

$$\arcsin x = y \iff \sin y = x, \text{ ez\'ert}$$
 $\left(x \in [-1,1]\right) \quad \left(y \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\right)$

$$\arcsin \frac{1}{2} = y \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \quad \Longleftrightarrow \quad \sin y = \frac{1}{2} \quad \Longleftrightarrow \quad (y = 30^0) \quad y = \frac{\pi}{6}.$$

Így $\arcsin \frac{1}{2} = \frac{\pi}{6}$.

• arc sin (sin 10)

Az előzőhöz hasonlóan az adódik, hogy

$$\arcsin(\sin 10) = y \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \iff \sin y = \sin 10.$$

Arra is emlékeztetünk, hogy

$$\sin y = \sin z \iff y - z = 2k\pi \text{ vagy } y + z = (2l+1)\pi \ (k, l \in \mathbb{Z}).$$
 Így $\sin y = \sin 10 \iff y - 10 = 2k\pi \text{ vagy } y + 10 = (2l+1)\pi \ (k, l \in \mathbb{Z}).$

Mivel $y \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, ezért a $\pi \approx 3,14$ közelítést felhasználva azt kapjuk, hogy $y = 10 + 2k\pi \not\in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ ($\forall\, k \in \mathbb{Z}$). Az első eset tehát nem lehetséges. A második esetben $y \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ pontosan akkor teljesül, ha l = 1, azaz $y = -10 + 3\pi$ (≈ -0.58). Ezzel beláttuk, hogy arc sin (sin 10) = $-10 + 3\pi$.

• $\operatorname{arc} \cos \left(-\frac{\sqrt{2}}{2}\right)$

Emlékeztetünk arra, hogy az arc cos := $(\cos_{|[0,\pi]})^{-1}$ definícióból és a cos függvény tulajdonságaiból következik, hogy

$$\begin{tabular}{lll} $\operatorname{arc} \cos x &=& y &\iff & \cos y = x, & \text{ez\'ert} \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$$

$$\arccos\left(-\frac{\sqrt{2}}{2}\right) = y \in [0,\pi] \quad \Longleftrightarrow \quad \cos y = -\frac{\sqrt{2}}{2} \quad \Longleftrightarrow \quad (y = 135^{0}) \quad y = 3 \cdot \frac{\pi}{4}.$$

Így arc cos $\left(-\frac{\sqrt{2}}{2}\right) = \frac{3\pi}{4}$.

• arc tg 1

Emlékeztetünk arra, hogy az arc t
g := $\left(\operatorname{tg}_{\left|\left(-\frac{\pi}{2},\frac{\pi}{2}\right)\right.}\right)^{-1}$ definícióból és a t
g függvény tulajdonságaiból következik, hogy

Így arc tg $1 = \frac{\pi}{4}$.

• $\operatorname{arc} \operatorname{ctg} \sqrt{3}$

Emlékeztetünk arra, hogy az arc ctg := $\left(\operatorname{ctg}_{\mid (0,\pi)}\right)^{-1}$ definícióból és a ctg függvény tulajdonságaiból következik, hogy

$$\operatorname{arc} \operatorname{ctg} x = y \iff \operatorname{ctg} y = x, \operatorname{ez\acute{e}rt}$$

 $\left(x \in \mathbb{R}\right) \qquad \left(y \in (0,\pi)\right)$

$$\operatorname{arc} \operatorname{ctg} \sqrt{3} = y \in (0, \pi) \iff \operatorname{ctg} y = \sqrt{3} \iff (y = 30^{\circ}) \ y = \frac{\pi}{6}.$$

Így arc ctg $\sqrt{3} = \frac{\pi}{6}$.

$\bullet \, \log_{1/4} \tfrac{1}{1024}$

Emlékeztetünk arra, hogy tetszőleges $0 < a \neq 1$ esetén a $\log_a := (\exp_a)^{-1}$ definícióból és az \exp_a függvény tulajdonságaiból következik, hogy ha x > 0, akkor

$$\log_a x = y \in \mathbb{R} \iff \exp_a(y) = a^y = x. \text{ Így}$$

$$\log_{1/4} \frac{1}{1024} = y \in \mathbb{R} \iff \left(\frac{1}{4}\right)^y = \frac{1}{1024} \iff \left(\frac{1}{2^2}\right)^y = \frac{1}{2^{10}} \iff$$

$$\iff \frac{1}{2^{2y}} = \frac{1}{2^{10}} \iff 2y = 10 \iff y = 5,$$

ezért $\log_{1/4} \frac{1}{1024} = 5$.

2. feladat. Mutassuk meg, hogy

$$\arcsin x + \arccos x = \frac{\pi}{2} \quad (x \in [-1, 1]).$$

Milyen kapcsolat van az arc sin és az arc cos függvények garfikonjai között?

1. megoldás. Legyen

$$f(x) := \arcsin x + \arccos x \quad (x \in [-1, 1]).$$

Ekkor $f \in D(-1,1)$. Ha $x \in (-1,1)$, akkor

$$f'(x) = (\arcsin x + \arccos x)' = (\arcsin x)' + (\arccos x)' = \frac{1}{\sqrt{1 - x^2}} + \left(-\frac{1}{\sqrt{1 - x^2}}\right) = 0.$$

Így f'(x) = 0 ($\forall x \in (-1,1)$). A deriváltak egyenlőségére vonatkozó tételből következik, hogy $\exists c \in \mathbb{R}$, hogy f(x) = c ($\forall x \in (-1,1)$). Mivel $f(0) = \arcsin 0 + \arccos 0 = 0 + \frac{\pi}{2} = \frac{\pi}{2}$, ezért $f(x) = \frac{\pi}{2}$, ha $x \in (-1,1)$. Ez az egyenlőség a ± 1 pontokban is igaz, mert

$$f(1) = \arcsin 1 + \arccos 1 = \frac{\pi}{2} + 0 = \frac{\pi}{2},$$

$$f(-1) = \arcsin (-1) + \arccos (-1) = -\frac{\pi}{2} + \pi = \frac{\pi}{2}.$$

A feladat állítását tehát bebizonyítottuk.

Az arc sin és az arc cos függvény grafikonjai:

az arc sin függvény

az arc cos függvény

A bebizonyított egyenlőségből következik, hogy az arc sin és az arc cos függvények grafikonjai egymásból elemi függvénytranszformációkkal származtathatók. Mivel

$$\operatorname{arc} \cos x = \frac{\pi}{2} - \operatorname{arc} \sin x \quad (x \in [-1, 1]),$$

ezért az arc cos függvény grafikonját úgy kapjuk meg, hogy az arc sin függvény grafikonját először tükrözzük az x tengelyre, majd a y tengely irányában "felfele" toljuk $\frac{\pi}{2}$ -vel. Az arc sin függvény képe az arc cos függvény képéből hasonló módon adódik.

2. megoldás. Legyen $x \in [-1, 1]$ és

$$\alpha := \arcsin x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right], \quad \text{illetve} \quad \beta := \arccos x \in [0, \pi].$$

Ekkor

$$x = \sin \alpha = \cos \left(\frac{\pi}{2} - \alpha\right)$$
 és $x = \cos \beta$.

Mivel

$$-\frac{\pi}{2} \le \alpha \le \frac{\pi}{2} \quad \Longrightarrow \quad 0 \le \frac{\pi}{2} - \alpha \le \pi$$

és a cos függvény szigorúan monoton csökkenő a $[0,\pi]$ intervallumon, ezért az $x=\cos\left(\frac{\pi}{2}-\alpha\right)=\cos\beta$ egyenlőség csak úgy állhat fenn, ha $\frac{\pi}{2}-\alpha=\beta$, azaz $\alpha+\beta=\frac{\pi}{2}$. A feladatban szereplő azonosságot tehát igazoltuk.

3. feladat. Szemléltessük az

$$f(x) := \arcsin(\sin x) \quad (x \in \mathbb{R})$$

függvény grafikonját.

Megoldás. A sin függvény, következésképpen az f is 2π szerint periodikus. Így f-et elég megvizsgálni egy 2π hosszúságú intervallumon, például $\left[-\frac{\pi}{2}, \frac{3\pi}{2}\right]$ -n.

Az arc sin függvény definíciójából következik, hogy

$$\arcsin(\sin x) = y \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \iff \sin x = \sin y \ (\forall x \in \mathbb{R}).$$

Legyen $x\in\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$. A $\sin_{\left[-\frac{\pi}{2},\frac{\pi}{2}\right]}$ függvény \uparrow , ezért a $\sin x=\sin y$ egyenlőség csak x=y esetén teljesül. Így

$$f(x) = x$$
, ha $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

Tegyük fel, hogy $x \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$. Ekkor

$$\frac{\pi}{2} \le x \le \frac{3\pi}{2}$$
, azaz $-\frac{\pi}{2} \le \pi - x \le \frac{\pi}{2}$.

A $\sin x = \sin (\pi - x) = \sin y$ egyenlőség csak akkor igaz, ha $\pi - x = y$. Így

$$f(x) = \pi - x$$
, ha $x \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$.

A fentiek alapján az f függvény grafikonját az alábbi ábrán szemléltetjük:

4. feladat. Bizonyítsuk be, hogy

$$\arcsin x = \operatorname{arc} \operatorname{tg} \frac{x}{\sqrt{1 - x^2}} \quad (x \in (-1, 1)).$$

Megjegyzés. A feladat érdekessége a következő. Az előadáson megmutattuk, hogy az arc tg függvény 0 pont körüli Taylor-sora [-1,1]-en előállítja arc tg-t, ezért a helyettesítési értékeit tetszőleges pontossággal ki lehet számolni. A bizonyítandó azonosság alapján tehát az arc sin x értékeket is ki lehet számítani tetszőleges pontossággal. □

Megoldás. Legyen

$$f(x) := \arcsin x - \arctan \operatorname{tg} \frac{x}{\sqrt{1 - x^2}} \quad (x \in (-1, 1)).$$

Az elemi függvények deriválhatóságaiból és a deriválási szabályokból következik, hogy $f \in D(-1,1)$.

Most kiszámoljuk f'(x)-et. Ha $x \in (-1,1)$, akkor

$$f'(x) = \left(\arcsin x - \arctan \operatorname{tg} \frac{x}{\sqrt{1 - x^2}}\right)' = \left(\arctan x\right)' - \left(\arctan \operatorname{tg} \frac{x}{\sqrt{1 - x^2}}\right)' =$$

$$= \frac{1}{\sqrt{1 - x^2}} - \frac{1}{1 + \left(\frac{x}{\sqrt{1 - x^2}}\right)^2} \cdot \left(\frac{x}{\sqrt{1 - x^2}}\right)' =$$

$$= \frac{1}{\sqrt{1 - x^2}} - \left(1 - x^2\right) \cdot \frac{\sqrt{1 - x^2} + \frac{x^2}{\sqrt{1 - x^2}}}{1 - x^2} = \frac{1}{\sqrt{1 - x^2}} - \frac{1}{\sqrt{1 - x^2}} = 0.$$

Így f'(x) = 0 ($\forall x \in (-1,1)$). A deriváltak egyenlőségére vonatkozó tételből következik, hogy $\exists c \in \mathbb{R}$, hogy f(x) = c ($\forall x \in (-1,1)$). Mivel $f(0) = \arcsin 0 - \arctan g = 0$, ezért c = 0. A feladat állítását tehát bebizonyítottuk.

• Teljes függvényvizsgálat

 $\underline{\mathbf{Eml\acute{e}keztet\~{o}}}$. Adott f valós-valós függvény **teljes függvényvizsgálatán** f analitikus és geometriai tulajdonságainak a megállapítását értjük. Ennek során a következőket kell meghatározni:

- 1º Kezdeti vizsgálatok. (Deriválhatóság, paritás, periodicitás megállapítása, stb.)
- 2^o Monotonitási intervallumok.
- 3° Lokális és abszolút szélsőértékek.
- 4º Konvexitási, konkávitási intervallumok.
- $\mathbf{5}^{o}$ A határértékek a $\mathcal{D}_{f}' \setminus \mathcal{D}_{f}$ pontokban.
- 6^{o} Aszimptota $(\pm \infty)$ -ben.
- ${\bf 7^o}$ A függvény grafikonjának felrajzolása. \Box
- 5. feladat. Teljes függvényvizsgálat végzése után vázoljuk az

$$f(x) := x^4 - 4x^3 + 10 \quad (x \in \mathbb{R})$$

függvény grafikonját.

Megoldás.

Kezdeti vizsgálatok: f polinomfüggvény, ezért $f \in D^{\infty}(\mathbb{R})$.

Monotonitás: Minden $x \in \mathbb{R}$ pontban

$$f'(x) = 4x^3 - 12x^2 = 4x^2(x-3).$$

Azokat az intervallumokat kell meghatározni, amelyeken az f' függvény állandó előjelű. Mivel

$$f'(x) \ge 0 \iff x^2(x-3) \ge 0,$$

ezért a következőket kapjuk:

Ha x < 0, akkor f'(x) < 0, ezért $f \downarrow a (-\infty, 0)$ intervallumon;

Ha 0 < x < 3, akkor f'(x) < 0, ezért $f \downarrow a(0,3)$ intervallumon;

Ha x > 3, akkor f'(x) > 0, ezért $f \uparrow a (3, +\infty)$ intervallumon.

Lokális szélsőértékek:

Az elsőrendű szükséges feltétel. Mivel

$$f'(x) = 0 \iff x = 0 \text{ vagy } x = 3,$$

ezért ezek a pontok lehetnek f-nek lokális szélsőértékhelyei.

Az elégséges feltétel. A fentiek alapján $f\downarrow a\ (-\infty,3)$ intervallumon, ezért az x=0 pont nem lokális szélsőértékhelye f-nek. Szintén a monotonitást figyelembe véve adódik az, hogy az x=3 pont az f függvény lokális minimumhelye és f(3)=-17 a lokális minimuma.

Konvexitás, inflexió: Mivel

$$f''(x) = 12x^2 - 24x = 12x(x-2) \quad (x \in \mathbb{R}), \text{ ezért}$$
$$f''(x) \ge 0 \iff x(x-2) \ge 0.$$

Az előjeleket az x(x-2) $(x \in \mathbb{R})$ másodfokú polinom grafikonjáról is leolvashatjuk. Azt kapjuk, hogy:

ha x < 0, akkor f''(x) > 0, ezért f szigorúan konvex $(-\infty, 0)$ -n;

ha 0 < x < 2, akkor f''(x) < 0, ezért f szigorúan konkáv (0,2)-n;

ha x > 2, akkor f''(x) > 0, ezért f szigorúan konvex $(2, +\infty)$ -en.

 $x_1 = 0$ és $x_2 = 2$ az f függvény inflexiós pontjai.

A határértékeket most $(\pm \infty)$ -ben kell megvizsgálni.

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(x^4 - 4x^3 + 10 \right) = \lim_{x \to +\infty} x^4 \cdot \left(1 - \frac{4}{x} + \frac{10}{x^4} \right) = +\infty,$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(x^4 - 4x^3 + 10 \right) = \lim_{x \to -\infty} x^4 \cdot \left(1 - \frac{4}{x} + \frac{10}{x^4} \right) = +\infty.$$

Aszimptoták: Mivel a

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{x^4 - 4x^3 + 10}{x} = \lim_{x \to +\infty} x^3 \cdot \left(1 - \frac{4}{x} + \frac{10}{x^4}\right) = +\infty$$

határérték létezik, de nem véges, ezért f-nek $(+\infty)$ -ben nincs aszimptotája. Mivel a

$$\lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{x^4 - 4x^3 + 10}{x} = \lim_{x \to -\infty} x^3 \cdot \left(1 - \frac{4}{x} + \frac{10}{x^4}\right) = -\infty,$$

ezért az f függvénynek $(-\infty)$ -ben sincs aszimptotája.

A függvény grafikonja:

6. feladat. Teljes függvényvizsgálat végzése után szemléltessük az

$$f(x) := \left(\frac{x+2}{x-3}\right)^2 \quad (x \in \mathbb{R} \setminus \{3\})$$

függvény grafikonját.

Megoldás.

<u>Kezdeti vizsgálatok</u>: Mivel f racionális törtfüggvény, ezért a műveletekre vonatkozó tételekből következik, hogy f akárhányszor deriválható az értelmezési tartományának minden pontjában.

Világos, hogy $f(x) \ge 0$ $(x \in \mathbb{R} \setminus \{3\})$ és $f(x) = 0 \iff x = -2$

Monotonitás: Minden $x \in \mathbb{R} \setminus \{3\}$ pontban

$$f'(x) = 2 \cdot \left(\frac{x+2}{x-3}\right) \cdot \frac{1 \cdot (x-3) - (x+2) \cdot 1}{(x-3)^2} = \frac{-10(x+2)}{(x-3)^3}.$$

Azokat az intervallumokat kell meghatározni, amelyeken az f' függvény állandó előjelű. (Ne feledkezzünk meg arról, hogy a 3 pontban a függvény nincs értelmezve.)

Ha $x \in (-\infty, -2)$, akkor f'(x) számlálója pozitív, a nevezője pedig negatív, ezért f'(x) < 0, következésképpen $f \downarrow$ a $(-\infty, -2)$ intervallumon.

Ha $x \in (-2,3)$, akkor f'(x) számlálója negatív, a nevezője is negatív, ezért f'(x) > 0, következésképpen $f \uparrow a (-2,3)$ intervallumon.

Ha $x \in (3, +\infty)$, akkor f'(x) számlálója negatív, a nevezője pozitív, ezért f'(x) < 0, következésképpen $f \downarrow a (3, +\infty)$ intervallumon.

<u>Lokális szélsőértékek</u>: Az elsőrendű szükséges feltétel. Mivel

$$f'(x) = 0 \qquad \Longleftrightarrow \qquad \text{ha} \quad x = -2,$$

ezért az f függvénynek csak ebben a pontban lehet lokális szélsőértéke.

Az elsőrendű elégséges feltétel. A monotonitási intervallumok alapján az f függvénynek az $x_1 = -2$ pontban lokális minimuma van.

Konvexitás, inflexió:

$$f''(x) = -10\frac{1 \cdot (x-3)^3 - (x+2) \cdot 3(x-3)^2 \cdot 1}{(x-3)^6} = -10\frac{(x-3) - 3(x+2)}{(x-3)^4} = 10 \cdot \frac{2x+9}{(x-3)^4}.$$

Ha $x<-\frac{9}{2},$ akkor f''(x)<0,ezért f konkáv a $(-\infty,-\frac{9}{2})$ intervallumon.

Ha $-\frac{9}{2} < x < 3$, akkor f''(x) > 0, ezért f konvex a $\left(-\frac{9}{2}, 3\right)$ intervallumon.

Ha x > 3, akkor f''(x) > 0, ezért f konvex $a(3, +\infty)$ intervallumon.

Az $x_2 = -\frac{9}{2}$ pont az f függvény inflexiós pontja.

<u>A határértékeket</u> most $(+\infty)$ -ben, $(-\infty)$ -ben, valamint a 3 pontban kell megvizsgálni:

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{(x+2)^2}{(x-3)^2} \stackrel{\stackrel{+\infty}{=}}{=} (L'Hospital) =$$

$$= \lim_{x \to +\infty} \frac{2(x+2)}{2(x-3)} \stackrel{\stackrel{+\infty}{=}}{=} (L'Hospital) = \lim_{x \to +\infty} \frac{1}{1} = 1.$$

A $(-\infty)$ -ben vett határértéket az előzőhöz hasonlóan a L'Hospital-szabállyal kaphatjuk meg, de a következőképpen is kiszámolhatjuk:

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(\frac{x+2}{x-3} \right)^2 = \lim_{x \to -\infty} \left(\frac{1+\frac{2}{x}}{1-\frac{3}{x}} \right)^2 = 1.$$

A 3 pontban $\frac{1}{0}$ típusú határértékről van szó, ezért külön vizsgáljuk a jobb, ill. a bal oldali határértéket:

$$\lim_{x \to 3+0} f(x) = \lim_{x \to 3+0} \frac{(x+2)^2}{(x-3)^2} = +\infty; \qquad \lim_{x \to 3-0} f(x) = \lim_{x \to 3-0} \frac{(x+2)^2}{(x-3)^2} = +\infty.$$

Aszimptoták: $(+\infty)$ -ben és $(-\infty)$ -ben: $(+\infty)$ -ben: Mivel

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{1}{x} \cdot \frac{(x+2)^2}{(x-3)^2} = \left(\frac{1}{+\infty} \cdot 1\right) = 0,$$
$$\lim_{x \to +\infty} \left(f(x) - 0 \cdot x\right) = \lim_{x \to +\infty} f(x) = 1,$$

ezért az y = 1 egyenletű egyenes f aszimptotája a $(+\infty)$ -ben.

 $(-\infty)$ -ben: A fenti határértékeket most $(-\infty)$ -ben kell venni. Ugyanazok az értékek adódnak, ezért az y=1 egyenletű egyenes f aszimptotája a $(-\infty)$ -ben is.

A függvény képe:

7. feladat. Teljes függvényvizsgálat végzése után ábrázoljuk az

$$f(x) := e^{-x^2} \quad (x \in \mathbb{R})$$

függvény grafikonját (az ún. "Gauss-görbét").

Megoldás.

Kezdeti vizsgálatok: f páros függvény, $f \in D^{\infty}(\mathbb{R})$ és mindenütt pozitív.

Monotonitás: Minden $x \in \mathbb{R}$ pontban

$$f'(x) = -2x \cdot e^{-x^2}$$
, ezért

ha x < 0, akkor $f'(x) > 0 \implies f \uparrow (-\infty, 0)$ -n;

ha
$$x > 0$$
, akkor $f'(x) < 0 \implies f \downarrow (0, +\infty)$ -en.

<u>Lokális szélsőértékek</u>: Világos, hogy $f'(x) = 0 \iff x = 0$, és ez a pont lokális maximumhely.

Konvexitás, inflexió:

$$f''(x) = -2e^{-x^2} + 4x^2e^{-x^2} = 2(2x^2 - 1)e^{-x^2} \quad (x \in \mathbb{R}).$$

Egyszerűen adódik, hogy

ha $x < -\frac{1}{\sqrt{2}}$, akkor f''(x) > 0, ezért f szigorúan konvex $\left(-\infty, -\frac{1}{\sqrt{2}}\right)$ -n;

ha $-\frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}$, akkor f''(x) < 0, ezért f szigorúan konkáv $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ -n;

ha $x>\frac{1}{\sqrt{2}},$ akkor f''(x)>0, ezért f szigorúan konvex $\left(\frac{1}{\sqrt{2}},+\infty\right)$ -en.

 $x_1 = -\frac{1}{\sqrt{2}}$ és $x_2 = \frac{1}{\sqrt{2}}$ az f függvény inflexiós pontjai.

A határértékeket most $(\pm \infty)$ -ben kell megvizsgálni.

$$\lim_{\pm \infty} f = \lim_{\pm \infty} e^{-x^2} = \lim_{\pm \infty} \frac{1}{e^{x^2}} = 0.$$

Aszimptoták: Mivel a

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{e^{-x^2}}{x} = \lim_{x \to +\infty} \frac{1}{xe^{x^2}} = 0 =: A,$$

$$\lim_{x \to +\infty} (f(x) - Ax) = \lim_{x \to +\infty} f(x) = 0 =: B,$$

ezért az y = Ax + b = 0 egyenletű egyenes (vagyis az x tengely) a függvény aszimptotája $(+\infty)$ -ben.

f páros, ezért az y=0 egyenletű egyenes $(-\infty)$ -ben is aszimptotája f-nek.

A függvény grafikonja:

