CORRECTED VERSION

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 22 December 2005 (22.12.2005)

PCT

(10) International Publication Number WO 2005/121331 A2

- (51) International Patent Classification: *C12N 9/10* (2006.01)
- (21) International Application Number:

PCT/US2005/019442

- (22) International Filing Date: 3 June 2005 (03.06.2005)
- (25) Filing Language: English
- (26) Publication Language: English
- (30) Priority Data:

60/576,530 3 June 2004 (03.06.2004) US 60/598,584 3 August 2004 (03.08.2004) US

- (71) Applicant (for all designated States except US): NEOSE TECHNOLOGIES, INC. [US/US]; 102 Witmer Road, Horsham, PA 19044 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): JOHNSON, Karl, F. [US/US]; 2941 Windsor Ave., Willow Grove, PA 19090 (US). CHEN, Xi [CN/US]; 997 Hunter Lane, Woodland, CA (US). TAUDTE, Susann [DE/US]; Pennsburg, PA (US). SARIBAS, Sami [TR/US]; 424 East Church Lane, Philadelphia, PA 19144 (US).
- (74) Agents: KELLY, Beth L. et al.; Townsend and Townsend and Crew LLP, 2 Embarcadero Center, 8th Floor, San Francisco, CA 94111 (US).

- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:

— of inventorship (Rule 4.17(iv))

Published:

- without international search report and to be republished upon receipt of that report
- (48) Date of publication of this corrected version:

1 June 2006

[Continued on next page]

(54) Title: TRUNCATED GALNACT2 POLYPEPTIDES AND NUCLEIC ACIDS

	Bam	н	T2-94			
	EooRi					
1	GAATTCOGAT CTTAAGCCTA	CCGGGCAGGA	CCCTTACGCC	CCCAACAAGT	TCAACCAGGT AGTTGGTCCA	GGAGAGTGAT CETETEACTA
	Hindill					
61	AAGCTTCGAA TTCGAAGCTT	TGGRCAGAGC ACCTGTCTCG	CATCCCTGAC GTAGGGACTG	ACCCGGCATG TGGGCCGTAC	ACCAGTOTCA TOGTCACAGT	CGCCTTCGTC
121	TOCCOCCIO	ATCTGCCGGA	CACCAGCGTG	CACTACTCA	TTCACAATGA	AGCCAGGTCG
181				MGAAAAGCC		
181	CCCCATCACT	CCTGGCACCA	GTCGCACGAA	TTCTTTTCGG	GCGGGGTAGA	GTATTTICTT
741	ATCATCTTGG	TOGATCACTA	CACCANTGAT	CCTCAGGACG	COCCTCTCTT	GGGGALAATT
	TAGTAGAACC	ACCTACTGAT	CTCCTTACTA	CONCTECTOR	CCCCAGAGAA	CCCCTTTTAA
301	CAGAAAGTGC	CAGTICITAC	AMITCATCCA	CCACAAACCC	TCATCCGCTC	ACCOUNTEGE
				OCTOTTCCCG:		
361	GGGGCCGATG	TOGACCCCCT	CAAGGTCCTG	ACCTTCCTGG TGGAAGGACC	ACAGTCACTG	CCAGTGTAAT
451	PAPPARATE	THE THE PERSON IN	CONTRACT ICO	GTGGGGGAGG	ACTOR CON	COTTO
421	CTCGTGACCG	ACCTOGGGGA	GGACCTTTCC	CACCGCCTCC	TGTCCTGAGC	CCAACACAGT
	Clai					
481	CCCATCATEG	AYGTCATTAA	TATEGACAAC	TTTCAGTATG	TOGGGGGATC	TGCTGACTTG
	GCGTAGTAGC	TACAGTAATS	ATACCTGTTC	AAAGTCATAC	ACCCCCCTAG	ACGACTGAAC
341	AAGGCCCTT	TTGATTGGAA	CTTGGTATTC	MAGTOGGATT	MEATGACGEC	TCACCAGAGA
				ATANANACOC		
601	TOTAGGGGGG	AUGGGAACCE PCCCCTTGCC	TEACHTERICA	TATTTTTGQ	CETACTERCE	ACCACOCCAC
661	TTTCTCATCC	ATANCTIC TE	TTITCALCA	CTCCCCAACT	ACCACATGAT	CATCCATCTC
•••	AAACACTACC	TATTCAAGAT	AMARCTICTI	GACCCCTTCA	TOCTOTACTA	CTACCTACAC
721	TOGGGAGGAG	AGAACCTACA	GATCTCGTTC	CCCCTGTGCC	AGTGTGGTGG	CAGCCTGGAG
				CCCCACACGC		
781	ATCATECECT	CCAGCCGTGT	CCCCCCCCCC	AAGGCCTTCG	ACCACIOCETA TOTAL COCCUAT	CAUGITECCI
841				ACCCCCCCCC		
841				TGGGCGGCCC		
901	CANTACAAAA	ATTECTATE	TOCAGCAGTO	CCTTCTGCTA	GAAACGTTCC	TEATGGAAAT
	CTTATGTTT	TAMBATAN	ACGTOSTOAC	GGAAGACGAT	TCGGAAAGTT	
						Konl
961	ATTCAGAGC	GATTEGACCT	TAGGANGAM	CTCAGCTGCA	AGCCTTTCA	ATGGTACCTY
				CAGTCGACGT		
1021	CAMATOTO	ATCCAGAGT	AAGGGTTCCA	CACCATCAGO	ATATAGETTI	TOGGGGCCTTG
1081				COCACACTTTC		
1	GICGICCCT	CATTCACGG	CCTCTCAAAC	CCTGTGAAAC	GACTACCACA	CCAACCTCAA

T2-94						
1141				GAATGGGCCT CTTAACCGGA		
1201				GACCGGGCAC CTGGCCCGTG		
1261				MAATGOGAAC TTTACCCTTG		
1321				CACAGTCGCA		
1381	AGCGTGGAGG TCGCACCTCC	MCACACCOOK	CCGSCAAAGC	CAGCAGTGGA	AGTTCACGCT TCAAGTGCGA	CAACCTGCAS GTTGGACGTC
	Xhx	EcoRi				
1441	CAGTAGCTCG					

В

(57) Abstract: The present invention features compositions and methods related to truncated mutants of GalNAcT2. In particular, the invention features truncated human GalNAcT2 polypeptides. The invention also features nucleic acids encoding such truncated polypeptides, as well as vectors, host cells, expression systems, and methods of expressing and using such polypeptides.

WO 2005/121331 A2

(15) Information about Corrections:

see PCT Gazette No. 22/2006 of 1 June 2006

Previous Correction:

see PCT Gazette No. 10/2006 of 9 March 2006

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

TRUNCATED GALNACT2 POLYPEPTIDES AND NUCLEIC ACIDS

CROSS-REFERENCES TO RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. Provisional Application No. 60/576,530, filed June 3, 2004 and U.S. Provisional Application No. 60/598,584, filed August 3, 2004; both of which are herein incorporated by reference for all purposes.

5

10

15

20

25

30

FIELD OF THE INVENTION

[0002] The present invention features compositions and methods related to truncated mutants of GalNAcT2. In particular, the invention features truncated human GalNAcT2 polypeptides. The invention also features nucleic acids encoding such truncated polypeptides, as well as vectors, host cells, expression systems, and methods of expressing and using such polypeptides.

BACKGROUND OF THE INVENTION

[0003] A great diversity of oligosaccharide structures and many types of glycopeptides are found in nature, and these are synthesized, in part, by a large number of glycosyltransferases. Glycosyltransferases catalyze the synthesis of glycolipids, glycopeptides, and polysaccharides, by transferring an activated mono- or oligosaccharide residue to an existing acceptor molecule for the initiation or elongation of the carbohydrate chain. A catalytic reaction is believed to involve the recognition of both the donor and acceptor by suitable domains, as well as the catalytic site of the enzyme.

[0004] Many peptide therapeutics, and many potential peptide therapeutics, are glycosylated peptides. The production of a recombinant glycopeptide, as opposed to a recombinant non-glycosylated peptide, requires that a recombinantly-produced peptide is subjected to additional processing steps, either within the cell or after the peptide is produced by the cell, where the processing steps are performed in vitro. The peptide can be treated enzymatically to introduce one or more glycosyl groups onto the peptide, using a glycosyltransferase. Specifically, the glycosyltransferase covalently attaches the glycosyl group or groups to the peptide.

[0005] The extra in vitro steps of peptide processing to produce a glycopeptide can be time consuming and costly. This is due, in part, to the burden and cost of producing recombinant glycosyltransferases for the in vitro glycosylation of peptides and glycopeptides to produce

glycopeptide therapeutics. As the demand and usefulness of recombinant glycotherapeutics increases, new methods are required in order to more efficiently prepare glycopeptides. Moreover, as more and mo4re glycopeptides are discovered to be useful for the treatment of a variety of diseases, there is a need for methods that lower the cost of their production. Further, there is also a need in the art to develop methods of more efficiently producing

recombinant glycopeptides for use in developing and improving glycopeptide therapeutics.

5

10

15

20

25

30

[0006] Glycosyltransferases are reviewed in general in International (PCT) Patent Application No. WO03/031464 (PCT/US02/32263), which is incorporated herein by reference in its entirety. One such particular glycosyltransferase that has utility in the development and production of therapeutic glycopeptides is GalNAcT2. GalNAcT2, or N-acetyl-D-galactosamine transferase, catalyzes the transfer of GalNAc from a GalNAc donor to a GalNAc acceptor. Full length human GalNAcT2 enzyme is disclosed by Bennett et al. (1996, J Biol Chem. 271:17006-17012). However, the identification of useful mutants of this enzyme, having enhanced biological activity such as enhanced catalytic activity or enhanced stability, has not heretofore been reported.

In the past, there have been efforts to increase the availability of recombinant [0007] glycosyltransferases for the in vitro production of glycopeptides. A limited amount of work has been done with respect to recombinant glycosyltransferases that may sometimes be suitable for small-scale production of oligosaccharides or glycopeptides. For example, White et al. have disclosed a soluble form of human GalNAcT2 (1995, J. Biol. Chem., 270:24156-24165). Additionally, Kurosawa et al. (1994, J Biol Chem. 269:1402-1409) describe a truncation mutant of chicken GalNAca2,6-sialyltransferase (ST6GalNAcI) lacking amino acid residues 1-232 from the full-length enzyme. However, the truncated enzyme described by Kurosawa et al. lacks the substrate specificity of other ST6GalNAcI enzymes. Therefore, a need still exists for recombinant glycosyltransferases having activity that is suitable for "pharmaceutical-scale" processes and reactions, including the production of glycopeptide therapeutics. In particular, there is a need for recombinant glycosyltranasferases having favorable functional and structural characteristics. Further, a need exists for efficient methods of identification and characterization of recombinant glycosyltransferases, as well as for the production of such glycosyltransferases. The present invention addresses and meets these needs.

BRIEF SUMMARY OF THE INVENTION

[0008] In one aspect, the present invention provides an isolated nucleic acid comprising a nucleic acid sequence that encodes a truncated human GalNAcT2 polypeptide. The truncated human GalNAcT2 polypeptide lacks all or a portion of the GalNAcT2 signal domain, or in addition lacks all or a portion the GalNAcT2 transmembrane domain, or in addition lacks all or a portion the GalNAcT2 stem domain; with the proviso that the encoded polypeptide is not a human GalNAcT2 truncation mutant polypeptide lacking amino acid residues 1-51.

5

10

[0009] In one embodiment, the isolated nucleic acid comprises a nucleic acid sequence having at least 90% identity with a nucleic acid selected from the group consisting of SEQ ID NO:3, SEQ ID NO:7 and SEQ ID NO:9. In another embodiment, the isolated nucleic acid comprises a nucleic acid sequence having at least 95% identity with a nucleic acid selected from the group consisting of SEQ ID NO:3, SEQ ID NO:7 and SEQ ID NO:9. In a further embodiment, the isolated nucleic acid comprises a nucleic acid sequence selected from SEQ ID NO:3, SEQ ID NO:7 and SEQ ID NO:7 and SEQ ID NO:9.

- 15 [0010] In some embodiments, the isolated nucleic acid is an isolated chimeric nucleic acid encoding a fusion polypeptide. The fusion polypeptide can include a tag polypeptide covalently linked to a truncated human GalNAcT2 polypeptide, as described herein. Examples of tag polypeptides include a maltose binding protein, a histidine tag, a Factor IX tag, a glutathione-S-transferase tag, a FLAG-tag, and a starch binding domain tag.
- 20 [0011] In another aspect, the invention provides an isolated truncated human GalNAcT2 polypeptide, that lacks all or a portion of the GalNAcT2 signal domain, or in addition lacks all or a portion the GalNAcT2 transmembrane domain, or in addition lacks all or a portion the GalNAcT2 stem domain; with the proviso that the encoded polypeptide is not a human GalNAcT2 truncation mutant polypeptide lacking amino acid residues 1-51. IN one embodiment, the isolated truncated human GalNAcT2 polypeptide has at least 90% or 95% identity with a polypeptide selected from the group consisting of SEQ ID NO:4, SEQ ID NO:8 and SEQ ID NO:10. In a further aspect, isolated truncated human GalNAcT2 polypeptide comprises an amino acid sequence selected from SEQ ID NO:4, SEQ ID NO:8 and SEQ ID NO:10.
- 30 [0012] In some embodiments, the isolated truncated GalNAcT2 polypeptide isolated chimeric polypeptide comprising a tag polypeptide covalently linked to the isolated truncated GalNAcT2. Examples of tag polypeptides include a maltose binding protein, a histidine tag,

a Factor IX tag, a glutathione-S-transferase tag, a FLAG-tag, and a starch binding domain tag.

[0013] The isolated nucleic acid encoding a truncated GalNAcT2 polypeptide can also be operably linked to a promoter/regulatory sequence, within *e.g.*, an expression vector. The invention also includes host cells that comprise such expression vectors. Host cells can be *e.g.*, eukaryotic or a prokaryotic cells. Eukaryotic cells include, *e.g.*, mammalian cells, an insect cells, and a fungal cells. Some preferred mammalian host cells are SF9 cells, an SF9+ cells, an Sf21 cells, a HIGH FIVE cells or Drosophila Schneider S2 cells. Prokaryotic host cells include, *e.g.*, *E. coli* cells and *B. subtilis* cells.

5

- 10 [0014] The host cells can be used to producing a truncated human GalNAcT2 polypeptide, by growing the recombinant host cells of under conditions suitable for expression of the truncated human GalNAcT2 polypeptide. In preferred embodiments, sufficient truncated human GalNAcT2 polypeptide is made to allow commercial scale production of a glycoprotein or glycopeptide.
- In a further aspect the invention includes a method of catalyzing the transfer of a 15 GalNAc moiety to an acceptor moiety comprising incubating the truncated human GalNAcT2 polypeptide with a GalNAc moiety and an acceptor moiety, wherein said polypeptide mediates the covalent linkage of said GalNAc moiety to said acceptor moiety, thereby catalyzing the transfer of a GalNAc moiety to an acceptor moiety to produce a product saccharide, or a product glycoprotein, or a product glycopeptide. In one embodiment, the 20 acceptor moiety is a granulocyte colony stimulating factor (G-CSF) protein. In another embodiment, the acceptor moiety is selected from erythropoietin, human growth hormone, granulocyte colony stimulating factor, interferons alpha, -beta, and -gamma, Factor IX, follicle stimulating hormone, interleukin-2, erythropoietin, anti-TNF-alpha, and a lysosomal hydrolase. In a further embodiment, the polypeptide acceptor is a glycopeptide. In some 25 embodiments, the GalNAc moiety comprises a polyethylene glycol moiety. In another embodiment, the product saccharide, product glycoprotein, or product glycopeptide is produced on a commercial scale.

BRIEF DESCRIPTION OF THE DRAWINGS

30 [0016] For purpose of illustrating the invention, there are depicted in the drawings certain embodiments of the invention. However, the invention is not limited to the precise arrangements and instrumentalities of the embodiments depicted in the drawings.

[0017] Figure 1 is an image of an electrophoretic gel illustrating the PCR amplification of ppGalNAcT2 genes. M, 1 kb DNA ladder; PCR1, PCR product for ppGalNAcT2-N41R (1596 bp); PCR2, PCR product for ppGalNAcT2-N52K (1563 bp); PCR3, PCR product for ppGalNAcT2-N74G (1497 bp); PCR4, PCR product for ppGalNAcT2-N95G (1434 bp).

- 5 [0018] Figure 2A is a plasmid restriction map for the pCWin2MBP vector.
 - [0019] Figure 2B is an image of an electrophoretic gel illustrating the fragments resulting from multiple samples of the pCWin2MBP vector digested by both BamHI and XhoI restriction enzymes.
- [0020] Figure 3 is an image of an electrophoretic gel illustrating the screening of DH5α
 10 (pCWin2MBP-ppGalNAcT2) colonies by restriction mapping (BamHI and XhoI digestion) for plasmid purified from twelve colonies. Lane M, bp ladder. Lanes 1-3, N41R; lanes 4-6, N52K; lanes 8-10, N74G; lanes 11-13, N95G.
- [0021] Figure 4 is an image of an electrophoretic protein gel illustrating SDS-PAGE for JM109 (pCWin2MBP-ppGalNAcT2) whole cell lysates after IPTG induction as described elsewhere herein. M, Pre-Stained MW Standard; Lane 13, IPTG-induced JM109 (pCWin2MBP); Lanes1-12, protein in whole cells for colonies 1-12; Lanes1-3, JM109 (pCWin2MBP-ppGalNAcT2N41R); Lanes 4-6, JM109 (pCWin2MBP-ppGalNAcT2N52K); Lanes 7-9, JM109 (pCWin2MBP-ppGalNAcT2N74G); Lanes 10-12, JM109 (pCWin2MBP-ppGalNAcT2N95G).
- [0022] Figure 5 is an image of an electrophoretic protein gel illustrating SDS-PAGE for JM109 (pCWin2MBP-ppGalNAcT2) cell lysates. M, Pre-Stained MW Standard; Lane 13, lysate from JM109 (pCWin2MBP); Lanes 1-12, lysates from colonies 1-12; Lanes 1-3, JM109 (pCWin2MBP-ppGalNAcT2N41R); Lanes 4-6, JM109 (pCWin2MBP-ppGalNAcT2N52K); Lanes 7-9, JM109 (pCWin2MBP-ppGalNAcT2N74G); Lanes 10-12, JM109 (pCWin2MBP-ppGalNAcT2N95G).
 - [0023] Figure 6 is an image of an electrophoretic protein gel illustrating SDS-PAGE for inclusion bodies isolated from JM109 (pCWin2MBP-ppGalNAcT2) cells. M, Pre-Stained MW Standard; Lane 13, inclusion bodies from JM109 (pCWin2MBP); Lanes 1-12, inclusion bodies from colonies 1-12; Lanes 1-3, JM109 (pCWin2MBP-ppGalNAcT2N41R); Lanes 4-6, JM109 (pCWin2MBP-ppGalNAcT2N52K); Lanes 7-9, JM109 (pCWin2MBP-ppGalNAcT2N74G); Lanes 10-12, JM109 (pCWin2MBP-ppGalNAcT2N95G).

[0024] Figure 7 is an image of an electrophoretic gel illustrating the protein expression pattern in lysates of cells containing human GalNAcT2 constructs. Lane 1, molecular weight marker; lane 2, construct 1 culture before induction; lane 3, construct 1 culture after induction; lane 4, construct 2 culture before induction; lane 5, construct 2 culture after induction; lane 6, construct 3 culture before induction; lane 7, construct 3 culture after induction; lane 8, construct 4 culture before induction; lane 9, construct 4 culture after induction; lane 10, empty.

5

10

- [0025] Figure 8 is an image of an electrophoretic protein gel illustrating the protein content of inclusion bodies from JM109 pCWin2 MBP-GalNAcT2 constructs. Lane 1, MW marker; lane 2, JM109 pCWin2 MBP-GalNAcT2 construct 1 inclusion bodies; lane 3, JM109 pCWin2 MBP-GalNAcT2 construct 2 inclusion bodies.
- [0026] Figure 9 is an image of an electrophoretic protein gel illustrating the glycoPEGylation of G-CSF by Δ51 GalNAcT2-MBP. Lane 1, glycoPEGylation in the presence of 1 mg/ml G-CSF; lane 2, glycoPEGylation in the presence of 0.7 mg/ml G-CSF; lane 3, glycoPEGylation in the presence of 0.4 mg/ml G-CSF; lane 4, glycoPEGylation in the presence of 0.2 mg/ml G-CSF. The glycoPEGylated G-CSF is visible around 60 kDa.
- [0027] Figures 10A and 10B depict a nucleic acid sequence encoding a $\Delta 40$ GalNAcT2 polypeptide.
- [0028] Figures 11A and 11B depict a nucleic acid sequence encoding a Δ51 GalNAcT2
 20 polypeptide.
 - [0029] Figures 12A and 12B depict a nucleic acid sequence encoding a Δ 73 GalNAcT2 polypeptide.
 - [0030] Figures 13A and 13B depict a nucleic acid sequence encoding a $\Delta 94$ GalNAcT2 polypeptide.
- 25 [0031] Figure 14A is an image of a chromatogram illustrating the elution of Δ51 GalNAcT2-MBP that was refolded at pH 5.5 and subsequently eluted from a Q-sepharose fast flow column. Fraction numbers are indicated on the X-axis and the relative absorbance of each fraction is indicated on the Y-axis.
- [0032] Figure 14B is an image of two electrophoretic gels used to visualize the eluted fractions set forth in Figure 14A. The contents of each lane on the gel are described in the

figure. Figure 14C is a table illustrating the relative GalNAc transferase activity of the fractions set forth in Figure 14A.

[0033] Figure 15A is an image of a chromatogram illustrating the elution of $\Delta 51$ GalNAcT2-MBP that was refolded at pH 6.5 and subsequently eluted from a Q-sepharose fast flow column. Fraction numbers are indicated on the X-axis and the relative absorbance of each fraction is indicated on the Y-axis.

5

- [0034] Figure 15B is an image of two electrophoretic gels used to visualize the eluted fractions set forth in Figure 15A. The contents of each lane on the gel are described in the figure.
- 10 [0035] Figure 15C is a table illustrating the relative GalNAc transferase activity of the fractions set forth in Figure 15A.
 - [0036] Figure 16A is an image of a chromatogram illustrating the elution of $\Delta 51$ GalNAcT2-MBP that was refolded at pH 8.0 and subsequently eluted from a Q-sepharose fast flow column. Fraction numbers are indicated on the X-axis and the relative absorbance of each fraction is indicated on the Y-axis.
 - [0037] Figure 16B is an image of two electrophoretic gels used to visualize the eluted fractions set forth in Figure 16A. The contents of each lane on the gel are described in the figure.
- [0038] Figure 16C is a table illustrating the relative GalNAc transferase activity of the fractions set forth in Figure 16A.
 - [0039] Figure 17A is an image of a chromatogram illustrating the elution of $\Delta 51$ GalNAcT2-MBP that was refolded at pH 8.5 and subsequently eluted from a Q-sepharose fast flow column. Fraction numbers are indicated on the X-axis and the relative absorbance of each fraction is indicated on the Y-axis.
- [0040] Figure 17B is an image of two electrophoretic gels used to visualize the eluted fractions set forth in Figure 17A. The contents of each lane on the gel are described in the figure.
 - [0041] Figure 17C is a table illustrating the relative GalNAc transferase activity of the fractions set forth in Figure 17A.

[0042] Figure 18A is an image of a chromatogram illustrating the elution of $\Delta 51$ GalNAcT2-MBP that was refolded at pH 8.0 and subsequently eluted from a Q-sepharose fast flow column. Fraction numbers are indicated on the X-axis and the relative absorbance of each fraction is indicated on the Y-axis.

- 5 [0043] Figure 18B is an image of two electrophoretic gels used to visualize the eluted fractions set forth in Figure 18A. The contents of each lane on the gel are described in the figure.
 - [0044] Figure 18C is a table illustrating the relative GalNAc transferase activity of the fractions set forth in Figure 18A.
- 10 [0045] Figure 19A is an image of a chromatogram illustrating the elution of $\Delta 51$ GalNAcT2-MBP from a Q-sepharose fast flow column. Fraction numbers are indicated on the X-axis and the relative absorbance of each fraction is indicated on the Y-axis.
 - [0046] Figure 19B is an image of two electrophoretic gels used to visualize the eluted fractions set forth in Figure 19A. The contents of each lane on the gel are described in the figure and correspond to the chromatogram of Figure 19A.
 - [0047] Figure 19C is a table illustrating the relative GalNAc transferase activity of the fractions set forth in Figure 19A.
 - [0048] Figure 20A is an image of a chromatogram illustrating the elution of $\Delta 51$ GalNAcT2-MBP from a Q-sepharose XL column, using 5 mM NaCl. Fraction numbers are indicated on the X-axis and the relative absorbance of each fraction is indicated on the Y-axis.
 - [0049] Figure 20B is an image of two electrophoretic gels used to visualize the eluted fractions set forth in Figure 20A. The contents of each lane on the gel are described in the figure and correspond to the chromatogram of Figure 20A.
- [0050] Figure 20C is a table illustrating the relative GalNAc transferase activity of the fractions set forth in Figure 20A.
 - [0051] Figure 21A is an image of a chromatogram illustrating the elution of $\Delta 51$ GalNAcT2-MBP from a Q-sepharose XL column, using 50 mM NaCl. Fraction numbers are indicated on the X-axis and the relative absorbance of each fraction is indicated on the Y-
- 30 axis.

15

[0052] Figure 21B is an image of two electrophoretic gels used to visualize the eluted fractions set forth in Figure 21A. The contents of each lane on the gel are described in the figure and correspond to the chromatogram of Figure 21A.

[0053] Figure 21C is a table illustrating the relative GalNAc transferase activity of the fractions set forth in Figure 21A.

- [0054] Figure 22A is an image of a chromatogram illustrating the elution of $\Delta 51$ GalNAcT2-MBP from a Q-sepharose XL column, using 100 mM NaCl. Fraction numbers are indicated on the X-axis and the relative absorbance of each fraction is indicated on the Y-axis.
- 10 [0055] Figure 22B is an image of two electrophoretic gels used to visualize the eluted fractions set forth in Figure 22A. The contents of each lane on the gel are described in the figure and correspond to the chromatogram of Figure 22A.
 - [0056] Figure 22C is a table illustrating the relative GalNAc transferase activity of the fractions set forth in Figure 22A.
- 15 [0057] Figure 23A is an image of a chromatogram illustrating the elution of $\Delta 51$ GalNAcT2-MBP from a Q-sepharose XL column, using 200 mM NaCl. Fraction numbers are indicated on the X-axis and the relative absorbance of each fraction is indicated on the Y-axis.
- [0058] Figure 23B is an image of two electrophoretic gels used to visualize the eluted fractions set forth in Figure 23A. The contents of each lane on the gel are described in the figure and correspond to the chromatogram of Figure 23A.
 - [0059] Figure 23C is a table illustrating the relative GalNAc transferase activity of the fractions set forth in Figure 23A.
- [0060] Figure 24A is an image of a chromatogram illustrating the elution of Δ51
 25 GalNAcT2-MBP from a Hydroxyapatite Type I column. Fraction numbers are indicated on the X-axis and the relative absorbance of each fraction is indicated on the Y-axis.
 - [0061] Figure 24B is an image of an electrophoretic gel used to visualize the eluted fractions set forth in Figure 24A. The contents of each lane on the gel are described in the figure and correspond to the chromatogram of Figure 24A.

[0062] Figure 24C is a table illustrating the relative GalNAc transferase activity of the fractions set forth in Figure 24A.

[0063] Figure 25 is a graph illustrating the relative GalNAc transferase activity of various preparations of refolded $\Delta 51$ GalNAcT2-MBP. The refolding conditions of each preparation is indicated on the x-axis, and the relative GalNAc transferase activity is illustrated on the Y-axis.

5

10

15

20

25

30

[0064] Figure 26 is a graph illustrating the relative GalNAc transferase activity of various preparations of refolded $\Delta 51$ GalNAcT2-MBP. The refolding conditions of each preparation is indicated on the x-axis, and the relative GalNAc transferase activity is illustrated on the Y-axis.

[0065] Figure 27 is an image of three MALDI-TOF spectra demonstrating GalNAc transfer to GCSF mediated by $\Delta 51$ GalNAcT2-MBP that has been refolded and purified according to the present invention.

[0066] Figure 28 is an image of three MALDI-TOF spectra demonstrating GalNAc transfer to GCSF mediated by $\Delta 51$ GalNAcT2-MBP that has been refolded and purified according to the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0067] The compositions and methods of the present invention encompass truncation mutants of human GalNAcT2 polypeptides, isolated nucleic acids encoding these proteins, and methods of their use. GalNAcT2 polypeptides catalyze the transfer of a GalNAc from a GalNAc donor to a GalNAc acceptor.

[0068] The glycosyltransferase GalNAcT2 is an essential reagent for glycosylation of therapeutic glycopeptides. Additionally, GalNAcT2 is an important reagent for research and development of therapeutically important glycopeptides and oligosaccharide therapeutics. GalNAcT2 enzymes are typically isolated and purified from natural sources, or from tedious and costly in vitro and recombinant sources. The present invention provides compositions and methods relating to simplified and more cost-effective methods of production of GalNAcT2 enzymes. In particular, the present invention provides compositions and methods relating to truncated GalNAcT2 enzymes that have improved and useful properties in comparison to their full-length enzyme counterparts.

[0069] Truncated glycosyltransferase enzymes of the present invention are useful for in vivo and in vitro preparation of glycosylated peptides, as well as for the production of oligosaccharides containing the specific glycosyl residues that can be transferred by the truncated glycosyltransferase enzymes of the present invention. This is because it is shown for the first time herein that truncated forms of GalNAcT2 polypeptides possess biological activities comparable to, and in some instances, in excess of their full-length polypeptide counterparts. The present application also discloses that such truncation mutants not only possess biological activity, but also that the truncation mutants may have enhanced properties of solubility, stability and resistance to proteolytic degradation.

10 Definitions

5

15

25

30

[0070] Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods and materials are described herein.

[0071] Certain abbreviations are used herein as are common in the art, such as: "Ac" for acetyl; "Glc" for glucose; "Glc" for glucosamine; "GlcA for glucuronic acid; "IdoA" for iduronic acid; "GlcNAc" for N-acetylglucosamine; "NAN" or "sialic acid" or "SA" for N-acetyl neuraminic acid; "UDP" for uridine diphosphate; "CMP" for cytidine monophosphate.

20 [0072] As used herein, each of the following terms has the meaning associated with it in this section.

[0073] The articles "a" and "an" are used herein to refer to one or to more than one (i.e. to at least one) of the grammatical object of the article. By way of example, "an element" means one element or more than one element.

[0074] "Encoding" refers to the inherent property of specific sequences of nucleotides in a nucleic acid, such as a gene, a cDNA, or an mRNA, to serve as templates for synthesis of other polymers and macromolecules in biological processes having either a defined sequence of nucleotides (i.e., rRNA, tRNA and mRNA) or a defined sequence of amino acids and the biological properties resulting therefrom. Thus, a gene encodes a protein if transcription and translation of mRNA corresponding to that gene produces the protein in a cell or other biological system. Both the coding strand, the nucleotide sequence of which is identical to the mRNA sequence and is usually provided in sequence listings, and the non-coding strand,

used as the template for transcription of a gene or cDNA, can be referred to as encoding the protein or other product of that gene or cDNA.

[0075] A "coding region" of a gene consists of the nucleotide residues of the coding strand of the gene and the nucleotides of the non-coding strand of the gene which are homologous with or complementary to, respectively, the coding region of an mRNA molecule which is produced by transcription of the gene.

5

10

15

25

30

[0076] A "coding region" of an mRNA molecule also consists of the nucleotide residues of the mRNA molecule which are matched with an anticodon region of a transfer RNA molecule during translation of the mRNA molecule or which encode a stop codon. The coding region may thus include nucleotide residues corresponding to amino acid residues which are not present in the mature protein encoded by the mRNA molecule (e.g., amino acid residues in a protein export signal sequence).

[0077] An "affinity tag" is a peptide or polypeptide that may be genetically or chemically fused to a second polypeptide for the purposes of purification, isolation, targeting, trafficking, or identification of the second polypeptide. The "genetic" attachment of an affinity tag to a second protein may be effected by cloning a nucleic acid encoding the affinity tag adjacent to a nucleic acid encoding a second protein in a nucleic acid vector.

[0078] As used herein, the term "glycosyltransferase," refers to any enzyme/protein that has the ability to transfer a donor sugar to an acceptor moiety.

20 [0079] A "sugar nucleotide-generating enzyme" is an enzyme that has the ability to produce a sugar nucleotide. Sugar nucleotides are known in the art, and include, but are not limited to, such moieties as UDP-Gal, UDP-GalNAc, and CMP-NAN.

[0080] An "isolated nucleic acid" refers to a nucleic acid segment or fragment which has been separated from sequences which flank it in a naturally occurring state, e.g., a DNA fragment which has been removed from the sequences which are normally adjacent to the fragment, e.g., the sequences adjacent to the fragment in a genome in which it naturally occurs. The term also applies to nucleic acids which have been substantially purified from other components which naturally accompany the nucleic acid, e.g., RNA or DNA or proteins, which naturally accompany it in the cell. The term therefore includes, for example, a recombinant DNA which is incorporated into a vector, into an autonomously replicating plasmid or virus, or into the genomic DNA of a prokaryote or eukaryote, or which exists as a

separate molecule (e.g, as a cDNA or a genomic or cDNA fragment produced by PCR or restriction enzyme digestion) independent of other sequences. It also includes a recombinant DNA which is part of a hybrid gene encoding additional polypeptide sequence.

[0081] In the context of the present invention, the following abbreviations for the commonly occurring nucleic acid bases are used. "A" refers to adenosine, "C" refers to cytidine, "G" refers to guanosine, "T" refers to thymidine, and "U" refers to uridine.

5

15

20

25

- [0082] A "polynucleotide" means a single strand or parallel and anti-parallel strands of a nucleic acid. Thus, a polynucleotide may be either a single-stranded or a double-stranded nucleic acid.
- 10 [0083] The term "nucleic acid" typically refers to large polynucleotides. However, the terms "nucleic acid" and "polynucleotide" are used interchangeably herein.
 - [0084] The term "oligonucleotide" typically refers to short polynucleotides, generally no greater than about 50 nucleotides. It will be understood that when a nucleotide sequence is represented by a DNA sequence (i.e., A, T, G, C), this also includes an RNA sequence (i.e., A, U, G, C) in which "U" replaces "T."
 - [0085] Conventional notation is used herein to describe nucleic acid sequences: the left-hand end of a single-stranded nucleic acid sequence is the 5' end; the left-hand direction of a double-stranded nucleic acid sequence is referred to as the 5'-direction.
 - [0086] A first defined nucleic acid sequence is said to be "immediately adjacent to" a second defined nucleic acid sequence when, for example, the last nucleotide of the first nucleic acid sequence is chemically bonded to the first nucleotide of the second nucleic acid sequence through a phosphodiester bond. Conversely, a first defined nucleic acid sequence is also said to be "immediately adjacent to" a second defined nucleic acid sequence when, for example, the first nucleotide of the first nucleic acid sequence is chemically bonded to the last nucleotide of the second nucleic acid sequence through a phosphodiester bond.
 - [0087] A first defined polypeptide sequence is said to be "immediately adjacent to" a second defined polypeptide sequence when, for example, the last amino acid of the first polypeptide sequence is chemically bonded to the first amino acid of the second polypeptide sequence through a peptide bond. Conversely, a first defined polypeptide sequence is said to be "immediately adjacent to" a second defined polypeptide sequence when, for example, the

first amino acid of the first polypeptide sequence is chemically bonded to the last amino acid of the second polypeptide sequence through a peptide bond.

[0088] The direction of 5' to 3' addition of nucleotides to nascent RNA transcripts is referred to as the transcription direction. The DNA strand having the same sequence as an mRNA is referred to as the "coding strand"; sequences on the DNA strand which are located 5' to a reference point on the DNA are referred to as "upstream sequences"; sequences on the DNA strand which are 3' to a reference point on the DNA are referred to as "downstream sequences."

5

10

15

20

25

30

[0089] Unless otherwise specified, a "nucleotide sequence encoding an amino acid sequence" includes all nucleotide sequences that are degenerate versions of each other and that encode the same amino acid sequence. Nucleotide sequences that encode proteins and RNA may include introns.

[0090] "Homology" as used herein, refers to nucleotide sequence similarity between two regions of the same nucleic acid strand or between regions of two different nucleic acid strands. When a nucleotide residue position in both regions is occupied by the same nucleotide residue, then the regions are homologous at that position. A first region is homologous to a second region if at least one nucleotide residue position of each region is occupied by the same residue. Homology between two regions is expressed in terms of the proportion of nucleotide residue positions of the two regions that are occupied by the same nucleotide residue. By way of example, a region having the nucleotide sequence 5'-ATTGCC-3' and a region having the nucleotide sequence 5'-TATGGC-3' share 50% homology. Preferably, the first region comprises a first portion and the second region comprises a second portion, whereby, at least about 50%, and preferably at least about 75%, at least about 90%, or at least about 95% of the nucleotide residue positions of each of the portions are occupied by the same nucleotide residue. More preferably, all nucleotide residue positions of each of the portions are occupied by the same nucleotide residue.

[0091] As used herein, "percent identity" is used synonymously with "homology." The determination of percent identity between two nucleotide or amino acid sequences can be accomplished using a mathematical algorithm. For example, a mathematical algorithm useful for comparing two sequences is the algorithm of Karlin and Altschul (1990, Proc. Natl. Acad. Sci. USA 87:2264-2268), modified as in Karlin and Altschul (1993, Proc. Natl. Acad. Sci. USA 90:5873-5877). This algorithm is incorporated into the NBLAST and XBLAST

programs of Altschul et al. (1990, J. Mol. Biol. 215:403-410), and can be accessed, for example, at the BLAST site of the National Center for Biotechnology Information (NCBI) world wide web site at the National Library of Medicine (NLM) at the National Institutes of Health (NIH). BLAST nucleotide searches can be performed with the NBLAST program (designated "blastn" at the NCBI web site), using the following parameters: gap penalty = 5; gap extension penalty = 2; mismatch penalty = 3; match reward = 1; expectation value 10.0; and word size = 11 to obtain nucleotide sequences homologous to a nucleic acid described herein. BLAST protein searches can be performed with the XBLAST program (designated "blastn" at the NCBI web site) or the NCBI "blastp" program, using the following parameters: expectation value 10.0, BLOSUM62 scoring matrix to obtain amino acid sequences homologous to a protein molecule described herein.

5

10

- [0092] To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul et al. (1997, Nucleic Acids Res. 25:3389-3402).

 Alternatively, PSI-Blast or PHI-Blast can be used to perform an iterated search which detects distant relationships between molecules (*id.*) and relationships between molecules which share a common pattern. When utilizing BLAST, Gapped BLAST, PSI-Blast, and PHI-Blast programs, the default parameters of the respective programs (*e.g.*, XBLAST and NBLAST) can be used as available on the website of the National Center for Biotechnology Information of the National Library of Medicine at the National Institutes of Health.
- 20 [0093] The percent identity between two sequences can be determined using techniques similar to those described above, with or without allowing gaps. In calculating percent identity, typically exact matches are counted.
 - [0094] "Polypeptide" refers to a polymer composed of amino acid residues, related naturally occurring structural variants, and synthetic non-naturally occurring analogs thereof linked via peptide bonds, related naturally occurring structural variants, and synthetic non-naturally occurring analogs thereof. Synthetic polypeptides can be synthesized, for example, using an automated polypeptide synthesizer. A "polypeptide," as the term is used herein, therefore refers to any size polymer of amino acid residues, provided that the polymer contains at least two amino acid residues.
- [0095] The term "protein" typically refers to large peptides, also referred to herein as "polypeptides." The term "peptide" typically refers to short polypeptides. However, the terms "peptide," "protein" and "polypeptide" are used interchangeably herein. For example,

the term "peptide" may refer to an amino acid polymer of three amino acids, as well as an amino acid polymer of several hundred amino acids.

[0096] As used herein, amino acids are represented by the full name thereof, by the three letter code corresponding thereto, or by the one-letter code corresponding thereto, as indicated in the following table:

	Full Name	Three-Letter Code	One-Letter Code
	Aspartic Acid	Asp	D
	Glutamic Acid	Glu	E
	Lysine	Lys	K
10	Arginine	Arg	R
	Histidine	His	H
	Tyrosine	Tyr	Y
	Cysteine	Cys	C
	Asparagine	Asn	N
15	Glutamine	Gln	Q
	Serine	Ser	S
	Threonine	Thr	T
	Glycine	Gly	G
	Alanine	Ala	A
20	Valine	Val	V
	Leucine	Leu	L
	Isoleucine	Ile	I
	Methionine	Met	M
	Proline	Pro	P
25	Phenylalanine	Phe	\mathbf{F}
	Tryptophan	Trp	W

5

30

[0097] Conventional notation is used herein to portray polypeptide sequences: the left-hand end of a polypeptide sequence is the amino-terminus; the right-hand end of a polypeptide sequence is the carboxyl-terminus.

[0098] A "therapeutic peptide" as the term is used herein refers to any peptide that is useful to treat a disease state or to improve the overall health of a living organism. A therapeutic

peptide may effect such changes in a living organism when administered alone, or when used to improve the therapeutic capacity of another substance. The term "therapeutic peptide" is used interchangeably herein with the terms "therapeutic polypeptide" and "therapeutic protein."

- 5 [0099] A "reagent peptide" as the term is used herein refers to any peptide that is useful in food biochemistry, bioremediation, production of small molecule therapeutics, and even in the production of therapeutic peptides. Typically, reagent peptides are enzymes capable of catalyzing a reaction to produce a product useful in any of the aforementioned areas. The term "reagent peptide" is used interchangeably herein with the terms "reagent polypeptide" and "reagent protein."
 - [0100] A "glycopeptide" as the term is used herein refers to a peptide having at least one carbohydrate moiety covalently linked thereto. It will be understood that a glycopeptide may be a "therapeutic glycopeptide," as described above. The term "glycopeptide" is used interchangeably herein with the terms "glycopolypeptide" and "glycoprotein."
- 15 [0101] A "vector" is a composition of matter which comprises an isolated nucleic acid and which can be used to deliver the isolated nucleic acid to the interior of a cell. Numerous vectors are known in the art including, but not limited to, linear nucleic acids, nucleic acids associated with ionic or amphiphilic compounds, plasmids, and viruses. Thus, the term "vector" includes an autonomously replicating plasmid or a virus. The term should also be construed to include non-plasmid and non-viral compounds which facilitate transfer of nucleic acid into cells, such as, for example, polylysine compounds, liposomes, and the like. Examples of viral vectors include, but are not limited to, adenoviral vectors, adeno-associated virus vectors, retroviral vectors, and the like.
 - [0102] "Expression vector" refers to a vector comprising a recombinant nucleic acid comprising expression control sequences operatively linked to a nucleotide sequence to be expressed. An expression vector comprises sufficient cis-acting elements for expression; other elements for expression can be supplied by the host cell or in an in vitro expression system. Expression vectors include all those known in the art, such as cosmids, plasmids (e.g., naked or contained in liposomes) and viruses that incorporate the recombinant nucleic acid.

25

[0103] A "multiple cloning site" as the term is used herein is a region of a nucleic acid vector that contains more than one sequence of nucleotides that is recognized by at least one restriction enzyme.

- [0104] An "antibiotic resistance marker" as the term is used herein refers to a sequence of nucleotides that encodes a protein which, when expressed in a living cell, confers to that cell the ability to live and grow in the presence of an antibiotic.
 - [0105] As used herein, the term "GalNAcT2" refers to N-acetyl-D-galactosamine transferase 2.

5

20

25

- [0106] As the term is used herein, a "truncated" form of a peptide refers to a peptide that is lacking one or more amino acid residues as compared to the full-length amino acid sequence of the peptide. For example, the peptide "NH2-Ala-Glu-Lys-Leu-COOH" is an N-terminally truncated form of the full-length peptide "NH2-Gly-Ala-Glu-Lys-Leu-COOH." The terms "truncated form" and "truncation mutant" are used interchangeably herein. By way of a non-limiting example, a truncated peptide is a GalNAcT2 polypeptide comprising an active domain, a stem domain, a transmembrane domain, and a signal domain, wherein the signal domain is lacking a single N-terminal amino acid residue as compared to the full length GalNAcT2.
 - [0107] The term "saccharide" refers in general to any carbohydrate, a chemical entity with the most basic structure of $(CH_2O)_n$. Saccharides vary in complexity, and may also include nucleic acid, amino acid, or virtually any other chemical moiety existing in biological systems.
 - [0108] "Monosaccharide" refers to a single unit of carbohydrate of a defined identity.
 - [0109] "Oligosaccharide" refers to a molecule consisting of several units of carbohydrates of defined identity. Typically, saccharide sequences between 2-20 units may be referred to as oligosaccharides.
 - [0110] "Polysaccharide" refers to a molecule consisting of many units of carbohydrates of defined identity. However, any saccharide of two or more units may correctly be considered a polysaccharide.

[0111] As used herein, a saccharide "donor" is a moiety that can provide a saccharide to a glycosyltransferase so that the glycosyltransferase may transfer the saccharide to a saccharide acceptor. By way of a non-limiting example, a GalNAc donor may be UDP-GalNAc.

[0112] As used herein, a saccharide "acceptor" is a moiety that can accept a saccharide from a saccharide donor. A glycosyltransferase can covalently couple a saccharide to a saccharide acceptor. By way of a non-limiting example, G-CSF may be a GalNAc acceptor, and a GalNAc moiety may be covalently coupled to a GalNAc acceptor by way of a GalNActransferase. In some embodiments, a saccharide acceptor is a protein or peptide comprising an O glycosylation site. In further embodiments, saccharide acceptors include, *e.g.*, erythropoietin, human growth hormone, granulocyte colony stimulating factor, interferons alpha, -beta, and -gamma, Factor IX, follicle stimulating hormone, interleukin-2, erythropoietin, anti-TNF-alpha, and a lysosomal hydrolase

5

10

15

25

- [0113] An oligosaccharide with a "defined size" is one which consists of an identifiable number of monosaccharide units. For example, an oligosaccharide consisting of 10 monosaccharide units is one which may consist of 10 identical monosaccharide units or 5 monosaccharide units of a first identity and 5 monosaccharide units of a second identity. Further, an oligosaccharide of defined size that consists of monosaccharide units of heterogeneous identity may have the monosaccharide units in any order from beginning to end of the oligosaccharide.
- 20 [0114] An oligosaccharide of "random size" is one which may be synthesized using methods that do not provide oligosaccharide products of defined size. For example, a method of oligosaccharide synthesis may provide oligosaccharides that range from two monosaccharide units to twenty-two saccharide units, including any or all lengths in between.
 - [0115] "Commercial scale" refers to gram scale production of a product saccharide, or glycoprotein, or glycopeptide in a single reaction. In preferred embodiments, commercial scale refers to production of greater than about 50, 75, 80, 90 or 100, 125, 150, 175, or 200 grams.
 - [0116] The term "sialic acid" refers to any member of a family of nine-carbon carboxylated sugars. The most common member of the sialic acid family is N-acetyl-neuraminic acid (2-keto-5-acetamido-3,5-dideoxy-D-glycero-D-galactononulopyranos-1-onic acid (often abbreviated as Neu5Ac, NeuAc, or NANA). A second member of the family is N-glycolyl-neuraminic acid (Neu5Gc or NeuGc), in which the N-acetyl group of NeuAc is hydroxylated.

A third sialic acid family member is 2-keto-3-deoxy-nonulosonic acid (KDN) (Nadano et al. (1986) J. Biol. Chem. 261: 11550-11557; Kanamori et al., J. Biol. Chem. 265: 21811-21819 (1990)). Also included are 9-substituted sialic acids such as a 9-O-C₁-C₆ acyl-Neu5Ac like 9-O-lactyl-Neu5Ac or 9-O-acetyl-Neu5Ac, 9-deoxy-9-fluoro-Neu5Ac and 9-azido-9-deoxy-Neu5Ac. For review of the sialic acid family, see, e.g., Varki, Glycobiology 2: 25-40 (1992); Sialic Acids: Chemistry, Metabolism and Function, R. Schauer, Ed. (Springer-Verlag, New York (1992)). The synthesis and use of sialic acid compounds in a sialylation procedure is disclosed in international application WO 92/16640, published October 1, 1992.

5

10

15

20

25

- [0117] A "method of remodeling a protein, a peptide, a glycoprotein, or a glycopeptide" as used herein, refers to addition of a sugar residue to a protein, a peptide, a glycoprotein, or a glycopeptide using a glycosyltransferase. In a preferred embodiment, the sugar residue is covalently attached to a PEG molecule.
 - [0118] An "unpaired cysteine residue" as used herein, refers to a cysteine residue, which in a correctly folded protein (i.e., a protein with biological activity), does not form a disulfide bind with another cysteine residue.
 - [0119] An "insoluble glycosyltransferase" refers to a glycosyltransferase that is expressed in bacterial inclusion bodies. Insoluble glycosyltransferases are typically solubilized or denatured using *e.g.*, detergents or chaotropic agents or some combination. "Refolding" refers to a process of restoring the structure of a biologically active glycosyltransferase to a glycosyltransferase that has been solubilized or denatured. Thus, a refolding buffer, refers to a buffer that enhances or accelerates refolding of a glycosyltransferase.
 - [0120] A "redox couple" refers to mixtures of reduced and oxidized thiol reagents and include reduced and oxidized glutathione (GSH/GSSG), cysteine/cystine, cysteamine/cystamine, DTT/GSSG, and DTE/GSSG. (See, e.g., Clark, Cur. Op. Biotech. 12:202-207 (2001)).
 - [0121] The term "contacting" is used herein interchangeably with the following: combined with, added to, mixed with, passed over, incubated with, flowed over, etc.
 - [0122] The term "PEG" refers to poly(ethylene glycol). PEG is an exemplary polymer that has been conjugated to peptides. The use of PEG to derivatize peptide therapeutics has been demonstrated to reduce the immunogenicity of the peptides and prolong the clearance time from the circulation. For example, U.S. Pat. No. 4,179,337 (Davis *et al.*) concerns non-

immunogenic peptides, such as enzymes and peptide hormones coupled to polyethylene glycol (PEG) or polypropylene glycol. Between 10 and 100 moles of polymer are used per mole peptide and at least 15% of the physiological activity is maintained.

[0123] The term "specific activity" as used herein refers to the catalytic activity of an enzyme, *e.g.*, a recombinant glycosyltransferase fusion protein of the present invention, and may be expressed in activity units. As used herein, one activity unit catalyzes the formation of 1 μmol of product per minute at a given temperature (*e.g.*, at 37°C) and pH value (*e.g.*, at pH 7.5). Thus, 10 units of an enzyme is a catalytic amount of that enzyme where 10 μmol of substrate are converted to 10 μmol of product in one minute at a temperature of, *e.g.*, 37 °C and a pH value of, *e.g.*, 7.5.

5

10

15

20

- [0124] "N-linked" oligosaccharides are those oligosaccharides that are linked to a peptide backbone through asparagine, by way of an asparagine-N-acetylglucosamine linkage. N-linked oligosaccharides are also called "N-glycans." All N-linked oligosaccharides have a common pentasaccharide core of Man₃GlcNAc₂. They differ in the presence of, and in the number of branches (also called antennae) of peripheral sugars such as N-acetylglucosamine, galactose, N-acetylgalactosamine, fucose and sialic acid. Optionally, this structure may also contain a core fucose molecule and/or a xylose molecule.
- [0125] "O-linked" oligosaccharides are those oligosaccharides that are linked to a peptide backbone through threonine, serine, hydroxyproline, tyrosine, or other hydroxy-containing amino acids.
- [0126] The term "substantially" in the above definitions of "substantially uniform" generally means at least about 60%, at least about 70%, at least about 80%, or more preferably at least about 90%, and still more preferably at least about 95% of the acceptor substrates for a particular glycosyltransferase are glycosylated.
- 25 [0127] A "fusion protein" refers to a protein comprising amino acid sequences that are in addition to, in place of, less than, and/or different from the amino acid sequences encoding the original or native full-length protein or subsequences thereof.
 - [0128] A "stem region" with reference to glycosyltransferases refers to a protein domain, or a subsequence thereof, which in the native glycosyltransferases is located adjacent to the trans-membrane domain, and has been reported to function as a retention signal to maintain the glycosyltransferase in the Golgi apparatus and as a site of proteolytic cleavage. Stem

regions generally start with the first hydrophilic amino acid following the hydrophobic transmembrane domain and end at the catalytic domain, or in some cases the first cysteine residue following the transmembrane domain. Exemplary stem regions include, but is not limited to, the stem region of eukaryotic ST6GalNAcI, amino acid residues from about 30 to about 207 (see *e.g.*, the murine enzyme), amino acids 35-278 for the h uman enzyme or amino acids 37-253 for the chicken enzyme; the stem region of mammalian GalNAcT2, amino acid residues from about 71 to about 129 (see *e.g.*, the rat enzyme).

[0129] A "catalytic domain" refers to a protein domain, or a subsequence thereof, that catalyzes an enzymatic reaction performed by the enzyme. For example, a catalytic domain of a sialyltransferase will include a subsequence of the sialyltransferase sufficient to transfer a sialic acid residue from a donor to an acceptor saccharide. A catalytic domain can include an entire enzyme, a subsequence thereof, or can include additional amino acid sequences that are not attached to the enzyme, or a subsequence thereof, as found in nature.

[0130] The term "isolated" refers to material that is substantially or essentially free from components which interfere with the activity of an enzyme. For a saccharide, protein, or nucleic acid of the invention, the term "isolated" refers to material that is substantially or essentially free from components which normally accompany the material as found in its native state. Typically, an isolated saccharide, protein, or nucleic acid of the invention is at least about 80% pure, usually at least about 90%, and preferably at least about 95% pure as measured by band intensity on a silver stained gel or other method for determining purity. Purity or homogeneity can be indicated by a number of means well known in the art. For example, a protein or nucleic acid in a sample can be resolved by polyacrylamide gel electrophoresis, and then the protein or nucleic acid can be visualized by staining. For certain purposes high resolution of the protein or nucleic acid may be desirable and HPLC or a similar means for purification, for example, may be utilized.

Description

5

10

15

20

25

30

I. Isolated nucleic acids

A. Generally

[0131] Exemplified herein are various truncation mutants of human GalNAcT2. However, the present invention should not be construed to cover a human GalNAcT2 truncation mutant polypeptide lacking amino acid residues 1-51.

[0132] Full-length GalNAcT2 nucleic acids encode polypeptides that have a domain structure similar to other glycosyltransferases, including an N-terminal signal domain, a transmembrane domain, a stem domain, and an active domain, wherein the active domain may comprise the majority of the amino acid sequence of such polypeptides. As will be understood by one of skill in the art, the presence of domain structure(s) extraneous to the active domain of recombinant GalNAcT2 polypeptides may have a negative effect on the solubility, stability and activity of the polypeptide in an aqueous or in vitro environment. For example, while not wishing to be bound by any particular theory, the presence of a hydrophobic transmembrane domain on a recombinant GalNAcT2 polypeptide used in an in vitro reaction mixture may render the polypeptide less soluble than a recombinant GalNAcT2 polypeptide without a hydryophobic transmembrane domain, and further, may even decrease the enzymatic activity of the polypeptide by affecting or destabilizing the folded structure.

5

10

15

20

25

- [0133] Therefore, it is desirable to produce recombinant GalNAcT2 nucleic acids that encode GalNAcT2 that is shorter than full-length GalNAcT2, for the purpose of enhancing the activity, stability and/or utility of GalNAcT2 polypeptides. The present invention provides such modified forms of GalNAcT2. More particularly, the present invention provides isolated nucleic acids encoding such truncated polypeptides.
- [0134] Nucleic acids of the present invention encode truncated forms of GalNacT2 polypeptides, as described in greater detail elsewhere herein. A truncated GalNAcT2 polypeptide encoded by a nucleic acid of the present invention, also referred to herein as a "truncation mutant," may be truncated in various ways, as would be understood by the skilled artisan. Examples of truncated polypeptides encoded by a nucleic acid of the present invention include, but are not limited to, a polypeptide lacking a single N-terminal residue, a polypeptide lacking as ingle N-terminal residue, a polypeptide lacking both an single N-terminal residue and a single C-terminal residue, a polypeptide lacking a contiguous sequence of residues from the N-terminus, a polypeptide lacking a contiguous sequence of residues from the C-terminus, and any combinations thereof.
- [0135] Therefore, it will be understood, based on the discloure set forth herein, that truncations of nucleic acids encoding GalNAcT2 polypeptides may be made for numerous reasons. In one embodiment of the invention, a truncation may be made in order to remove part or all of the nucleic acid sequence encoding the signal peptide domain of an GalNAcT2.

[0136] In another embodiment of the invention, a truncation may be made in order to remove part or all of a nucleic acid sequence encoding a transmembrane domain of an GalNAcT2. By way of a non-limiting example, removal of a part or all of a nucleic acid sequence encoding a transmembrane domain may increase the solubility or stability of the encoded GalNAcT2 polypeptide and/or may increase the level of expression of the encoded polypeptide.

[0137] In yet another embodiment of the invention, a truncation may be made in order to remove part or all of a nucleic acid sequence encoding a stem domain of an GalNAcT2. By way of a non-limiting example, removal of a part or all of a nucleic acid sequence encoding a stem domain may increase the solubility or stability of the encoded GalNAcT2 polypeptide and/or may increase the level of expression of the encoded polypeptide.

[0138] The skilled artisan, when armed with the disclosure set forth herein, will understand how to design and create a truncation mutant of GalNAcT2 as set forth in detail elsewhere herein. In one aspect of the invention, the nucleic acid residue at which a truncation is made may be a highly-conserved residue. In another aspect of the invention, the nucleic acid residue at which a truncation is made may be selected such that the encoded polypeptide has a new N-terminal amino acid residue that will aid in the purification of the expressed polypeptide. In yet another aspect, the nucleic acid residue at which a truncation is made may be selected such that the encoded truncated polypeptide does not contain a specific secondary and/or tertiary structure.

B. GalNAcT2 Isolated Nucleic Acids

5

10

15

20

25

30

[0139] The present invention features nucleic acids encoding smaller than full-length GalNAcT2. That is, the present invention features a nucleic acid encoding a truncated GalNAcT2 polypeptide, provided the polypeptide expressed by the nucleic acid retains the biological activity of the full-length protein. In one aspect of the invention, a truncated polypeptide is a human truncated GalNAcT2 polypeptide.

[0140] As would be understood by the skilled artisan, a nucleic acid encoding a full-length human GalNAcT2 may contain a nucleic acid sequence encoding one or more identifyable polypeptide domains in addition to the "active domain," the domain primarily responsible for the catalytic activity, of GalNAcT2. This is because it is known in that art that a full-length GalNAcT2 polypeptide, and in particular, a full-length human GalNAcT2 polypeptide, contains a signal domain, a transmembrane domain, and a stem domain, in addition to an

active domain. Accordingly, a nucleic acid encoding a full-length human GalNAcT2 may encode a polypeptide that has a signal domain at the amino-terminus of the polypeptide, followed by a transmembrane domain immediately adjacent to the signal domain, followed by a stem domain that is immediately adjacent to the transmembrane domain, followed by an active domain that extends to the carboxy-terminus of the polypeptide and is located immediately adjacent to the stem domain.

5

10

- [0141] Therefore, in one embodiment, an isolated nucleic acid of the invention may encode a truncated human GalNAcT2 polypeptide, wherein the truncated human GalNAcT2 polypeptide is lacking all or a portion of the GalNAcT2 signal domain. In another embodiment, an isolated nucleic acid of the invention may encode a truncated human GalNAcT2 polypeptide, wherein the truncated human GalNAcT2 polypeptide is lacking the GalNAcT2 signal domain and all or a portion of the GalNAcT2 transmembrane domain. In yet another embodiment, a nucleic acid of the invention may encode a truncated human GalNAcT2 polypeptide, wherein the truncated human GalNAcT2 polypeptide is lacking the GalNAcT2 signal domain, the GalNAcT2 transmembrane domain and all or a portion the GalNAcT2 stem domain.
- [0142] When armed with the disclosure of the present invention, the skilled artisan will know how to make and use these and other such truncation mutants of human GalNAcT2.
- [0143] The "biological activity of GalNAcT2" is the ability to transfer a GalNAc moiety from a GalNAc donor to an acceptor molecule. Full-length human GalNAcT2, the sequence of which is set forth in SEQ ID NO:1, exhibits such activity. The "biological activity of a GalNAcT2 truncated polypeptide" is similarly the ability to transfer a GalNAc moiety from a GalNAc donor to an acceptor molecule. That is, a truncated GalNAcT2 polypeptide of the present invention can catalyze the same glycosyltransfer reaction as the full-length
 25 GalNAcT2. By way of a non-limiting example, a truncated human GalNAcT2 polypeptide encoded by a GalNAcT2 nucleic acid of the invention has the ability to transfer a GalNAc moiety from a UDP-GalNAc donor to a granulocyte-colony stimulating factor (G-CSF) acceptor, wherein such a transfer results in the O-linked covalent coupling of a GalNAc moiety to a threonine residue of G-CSF.
- 30 [0144] Therefore, a nucleic acid encoding a smaller than full-length, or "truncated," GalNAcT2 is included in the present invention provided that the truncated GalNAcT2 has GalNAcT2 biological activity.

[0145] The methods and compositions of the invention should not be construed to be limited solely to a nucleic acid comprising a GalNAcT2 truncation mutant as disclosed herein, but rather, should be construed to encompass any nucleic acid encoding a GalNAcT2 truncated mutant, prepared in accordance with the disclosure herein, either known or unknown, which is capable of catalyzing transfer of a GalNAc to a GalNAc acceptor. Modified nucleic acid sequences, i.e. nucleic acid sequences having sequences that differ from the nucleic acid sequences encoding the naturally-occurring proteins, are also encompassed by methods and compositions of the invention, so long as the modified nucleic acid still encodes a truncated protein having the biological activity of catalyzing the transfer of a GalNAc to a GalNAc acceptor, for example. These modified nucleic acid sequences include modifications caused by point mutations, modifications due to the degeneracy of the genetic code or naturally occurring allelic variants, and further modifications that have been introduced by genetic engineering, i.e., by the hand of man. Thus, the term nucleic acid also specifically includes nucleic acids composed of bases other than the five biologically occurring bases (adenine, guanine, thymine, cytosine and uracil).

[0146] The present invention features an isolated nucleic acid comprising a nucleic acid sequence that is at least about 90%, 95%, 97%, 98%, or 99% identical to a nucleic acid sequence set forth in any one of SEQ ID NO:3, SEQ ID NO:7 or SEQ ID NO:9. The present invention also features an isolated nucleic acid sequence comprising any one of the sequences set forth in SEQ ID NO:3, SEQ ID NO:7 or SEQ ID NO:9, wherein the isolated nucleic acid encodes a truncated GalNAcT2 polypeptide.

[0147] The present invention also encompasses isolated nucleic acid molecules encoding a truncated GalNAcT2 polypeptide that contains changes in amino acid residues that are not essential for activity. Such polypeptides encoded by an isolated nucleic acid of the invention differ in amino acid sequence from any one of the sequences set forth in SEQ ID NO:4, SEQ ID NO:8 or SEQ ID NO:10, yet retain the biological activity of GalNAcT2. By way of a non-limiting example, an isolated nucleic acid of the invention may include a nucleotide sequence encoding a polypeptide having an amino acid sequence that is at least about 90%, 95%, 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:4. Further, by way of another non-limiting example, an isolated nucleic acid of the invention may include a nucleotide sequence encoding a polypeptide that has an amino acid sequence at least about 90%, 95%, 97%, 98%, or 99% identical to an amino acid sequence set forth in any one of SEQ ID NO:8 or SEQ ID NO:10.

The determination of percent identity between two nucleotide or amino acid [0148] sequences can be accomplished using a mathematical algorithm. For example, a mathematical algorithm useful for comparing two sequences is the algorithm of Karlin and Altschul (1990, Proc. Natl. Acad. Sci. USA 87:2264-2268), modified as in Karlin and Altschul (1993, Proc. Natl. Acad. Sci. USA 90:5873-5877). This algorithm is incorporated into the NBLAST and XBLAST programs of Altschul, et al. (1990, J. Mol. Biol. 215:403-410), and can be accessed, for example at the National Center for Biotechnology Information (NCBI) world wide web site. BLAST nucleotide searches can be performed with the NBLAST program (designated "blastn" at the NCBI web site), using the following parameters: gap penalty = 5; gap extension penalty = 2; mismatch penalty = 3; match reward = 1; expectation value 10.0; and word size = 11 to obtain nucleotide sequences homologous to a nucleic acid described herein. BLAST protein searches can be performed with the XBLAST program (designated "blastn" at the NCBI web site) or the NCBI "blastp" program, using the following parameters: expectation value 10.0, BLOSUM62 scoring matrix to obtain amino acid sequences homologous to a protein molecule described herein. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul et al. (1997, Nucleic Acids Res. 25:3389-3402). Alternatively, PSI-Blast or PHI-Blast can be used to perform an iterated search which detects distant relationships between molecules and relationships between molecules which share a common pattern. When utilizing BLAST, Gapped BLAST, PSI-Blast, and PHI-Blast programs, the default parameters of the respective programs (e.g., XBLAST and NBLAST) can be used. See, generally, the internet website for the National Center for Biotechnology Information, which is maintained by the National Library of Medicine and the National Institutes of Health.

5

10

15

20

25

30

[0149] In another aspect, a nucleic acid useful in the methods and compositions of the present invention and encoding a truncated GalNAcT2 polypeptide may have at least one nucleotide inserted into the nucleic acid sequence of such a truncated mutant. Alternatively, an additional nucleic acid encoding a truncated GalNAcT2 polypeptide may have at least one nucleotide deleted from the nucleic acid sequence. Further, a GalNAcT2 nucleic acid encoding a truncated mutant and useful in the invention may have both a nucleotide insertion and a nucleotide deletion present in a single nucleic acid sequence encoding the truncated polypeptide.

[0150] Techniques for introducing changes in nucleotide sequences that are designed to alter the functional properties of the encoded proteins or polypeptides are well known in the

art. Such modifications include the deletion, insertion, or substitution of bases, and thus, changes in the amino acid sequence. As is known to one of skill in the art, nucleic acid insertions and/or deletions may be designed into the gene for numerous reasons, including, but not limited to modification of nucleic acid stability, modification of nucleic acid expression levels, modification of expressed polypeptide stability or half-life, modification of expressed polypeptide activity, modification of expressed polypeptide properties and characteristics, and changes in glycosylation pattern. All such modifications to the nucleotide sequences encoding such proteins are encompassed by the present invention.

[0151] It is not intended that methods and compositions of the present invention be limited by the nature of the nucleic acid employed. The target nucleic acid encompassed by methods and compositions of the invention may be native or synthesized nucleic acid. The nucleic acid may be DNA or RNA and may exist in a double-stranded, single-stranded or partially double-stranded form. Furthermore, the nucleic acid may be found as part of a virus or other macromolecule. See, e.g., Fasbender et al., 1996, J. Biol. Chem. 272:6479-89.

15 II. Vectors and Expression Systems

5

10

20

25

30

[0152] In other related aspects, the invention includes an isolated nucleic acid encoding a truncated GalNAcT2 polypeptide operably linked to a nucleic acid comprising a promoter/regulatory sequence such that the nucleic acid is preferably capable of directing expression of the polypeptide encoded by the nucleic acid. Thus, the invention encompasses expression vectors and methods for the introduction of exogenous DNA into cells with concomitant expression of the exogenous DNA in those cells, as described, for example, in Sambrook et al. (Third Edition, 2001, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, New York), and in Ausubel et al. (1997, Current Protocols in Molecular Biology, John Wiley & Sons, New York).

[0153] Expression of a truncated GalNAcT2 polypeptide in a cell may be accomplished by generating a plasmid, viral, or other type of vector comprising a nucleic acid encoding the appropriate nucleic acid, wherein the nucleic acid is operably linked to a promoter/regulatory sequence which serves to drive expression of the encoded polypeptide, with or without tag, in cells in which the vector is introduced. In addition, promoters which are well known in the art which are induced in response to inducing agents such as metals, glucocorticoids, and the like, are also contemplated in the invention. Thus, it will be appreciated that the invention includes the use of any promoter/regulatory sequence, which is either known or unknown,

and which is capable of driving expression of the truncated GalNAcT2 polypeptide operably linked thereto.

[0154] In an expression system useful in the present invention, a nucleic acid encoding a truncated GalNAcT2 polypeptide may be fused to one or more additional nucleic acids encoding a functional polypeptide. By way of a non-limiting example, an affinity tag coding sequence may be inserted into a nucleic acid vector adjacent to, upstream from, or downstream from a truncated GalNAcT2 polypeptide coding sequence. As will be understood by one of skill in the art, an affinity tag will typically be inserted into a multiple cloning site in frame with the truncated GalNAcT2 polypeptide. One of skill in the art will also understand that an affinity tag coding sequence can be used to produce a recombinant fusion protein by concomitantly expressing the affinity tag and truncated GalNAcT2 polypeptide. The expressed fusion protein can then be isolated, purified, or identified by means of the affinity tag.

5

10

15

20

25

30

[0155] Affinity tags useful in the present invention include, but are not limited to, a maltose binding protein, a histidine tag, a Factor IX tag, a glutathione-S-transferase tag, a FLAG-tag, and a starch binding domain tag. Other tags are well known in the art, and the use of such tags in the present invention would be readily understood by the skilled artisan.

[0156] As would be understood by one of skill in the art, a vector comprising a truncated GalNAcT2 polypeptide of the present invention may be used to express the truncated polypeptide as either a non-fusion or as a fusion protein. Selection of any particular plasmid vector or other DNA vector is not a limiting factor in this invention and a wide plethora of vectors are well-known in the art. Further, it is well within the skill of the artisan to choose particular promoter/regulatory sequences and operably link those promoter/regulatory sequences to a DNA sequence encoding a truncated GalNAcT2 polypeptide. Such technology is well known in the art and is described, for example, in Sambrook et al. (Third Edition, 2001, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, New York), and in Ausubel et al. (1997, Current Protocols in Molecular Biology, John Wiley & Sons, New York). By way of a non-limiting example, a vector useful in one embodiment of the present invention is based on the pcWori+ vector (Muchmore et al., 1987, Meth. Enzymol. 177:44-73).

[0157] The invention thus includes a vector comprising an isolated nucleic acid encoding a truncated GalNAcT2 polypeptide. The incorporation of a nucleic acid into a vector and the

choice of vectors is well-known in the art as described in, for example, Sambrook et al. (Third Edition, 2001, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, New York), and in Ausubel et al. (1997, Current Protocols in Molecular Biology, John Wiley & Sons, New York).

- GalNAcT2 polypeptide is integrated into the genome of a host cell in conjunction with a nucleic acid encoding a truncated GalNAcT2 polypeptide. In another aspect of the invention, a cell is transiently transfected with an isolated nucleic acid encoding a truncated GalNAcT2 polypeptide. In yet another aspect of the invention, a cell is stably transfected with an isolated nucleic acid encoding a truncated with an isolated nucleic acid encoding a truncated with an isolated nucleic acid encoding a truncated GalNAcT2 polypeptide.
 - [0159] For the purpose of inserting an isolated nucleic acid into a cell, one of skill in the art would also understand that the methods available and the methods required to introduce an isolated nucleic acid of the invention into a host cell vary and depend upon the choice of host cell. Suitable methods of introducing an isolated nucleic acid into a host cell are well-known in the art. Other suitable methods for transforming or transfecting host cells may include, but are not limited to, those found in Sambrook, et al. (Molecular Cloning: A Laboratory Manual. 3rd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 2001), and other such laboratory manuals.

15

- [0160] A nucleic acid encoding a truncated GalNAcT2 polypeptide may be purified by any suitable means, as are well known in the art. For example, the nucleic acids can be purified by reverse phase or ion exchange HPLC, size exclusion chromatography or gel electrophoresis. Of course, the skilled artisan will recognize that the method of purification will depend in part on the size of the DNA to be purified.
- [0161] The present invention also features a recombinant bacterial host cell comprising,
 inter alia, a nucleic acid vector as described elsewhere herein. In one aspect, the recombinant cell is transformed with a vector of the present invention. The transformed vector need not be integrated into the cell genome nor does it need to be expressed in the cell. However, the transformed vector will be capable of being expressed in the cell. In one aspect of the invention, E. coli is used for transformation of a vector of the present invention and
 expression of protein therefrom. In another aspect of the invention, a K-12 strain of E. coli is useful for expression of protein from a vector of the present invention. Strains of E. coli

useful in the present invention include, but are not limited to, JM83, JM101, JM103, JM109, W3110, chi1776, and JA221.

It will be understood that a host cell useful in the present invention will be capable of growth and culture on a small scale, medium scale, or a large scale. For example, a host cell of the invention is useful for testing the expression of a protein from a vector of the invention equally as much as it is useful for large scale production of a reagent or therapeutic protein product. Techniques useful in culturing host cells and expressing protein from a vector contained therein are well known in the art and will therefore not be listed herein.

5

10

15

20

25

A host cell useful in methods of the present invention, as described above, may be prepared according to various methods, as would be understood by the skilled artisan when armend with the disclosure set forth herein. In one aspect, a host cell of the present invention may be transformed with a vector of the present invention to produce a transformed host cell of the invention. Transformation, as known to the skilled artisan, includes the process of inserting a nucleic acid vector into a host cell, such that the host cell containing the nucleic acid vector remains viable. Such transformation of nucleic acid into a bacterial cell is useful for purposes including, but not limited to, creation of a stably-transformed host cell, making a biological deposit, propagating the vector-containing host cell, propagating the vectorcontaining host cell for the production and isolation of additional vector, expression of target protein encoded by vector, and the like.

Methods of transforming a cell with a vector are numerous and well-known in the art, and will therefore not be listed here. By way of a non-limiting example, a competent bacterial cell of the invention may be transformed by a vector of the invention using electroporation. Methods of making bacterial cells "competent" are well-known in the art, and typically involve preparation of the bacterial cells so that the cells take up exogenous DNA. Similarly, methods of electroporation are known in the art, and detailed descriptions of such methods may be found, for example, in Sambrook et al. (1989, supra). The transformation of a competent cell with vector DNA may be also accomplished using chemical-based methods. One example of a well-known chemical-based method of bacterial transformation is described by Inoue, et al. (1990, Gene 96:23-28). Other methods of transformation will be known to the skilled artisan. 30

A transformed host cell of the present invention may be used to express a truncated [0165] GalNAcT2 polypeptide of the present invention. In an embodiment of the invention, a

transformed host cell contains a vector of the invention, which contains therein a nucleic acid sequence encoding an truncated polypeptide of the invention. The truncated polypeptide is expressed using any expression method known in the art (for example, IPTG). The expressed truncated polypeptide may be contained within the host cell, or it may be secreted from the host cell into the growth medium.

5

10

15

- [0166] Methods for isolating an expressed polypeptide are well-known in the art, and the skilled artisan will know how to determine the best method for isolation of an expressed polypeptide based on the characteristics of any given host cell expression system. By way of a non-limiting example, an expressed polypeptide that is secreted from a host cell may be isolated from the growth medium. Isolation of a polypeptide from a growth medium may include removal of bacterial cells and cellular debris. By way of another non-limiting example, an expressed polypeptide that is contained within a host cell may be isolated from the host cell. Isolation of such an "intracellular" expressed polypeptide may include disruption of the host cell and removal of cellular debris from the resultant mixture. These methods are not intended to be exclusive representations of the present invention, but rather, are merely for the purposes of illustration of various applications of the present invention.
- [0167] Purification of a truncated polypeptide expressed in accordance with the present invention may be effected by any means known in the art. The skilled artisan will know how to determine the best method for the purification of a polypeptide expressed in accordance with the present invention. A purification method will be chosen by the skilled artisan based on factors such as, but not limited to, the expression host, the contents of the crude extract of the polypeptide, the size of the polypeptide, the properties of the polypeptide, the desired end product of the polypeptide purification process, and the subsequent use of the end product of the polypeptide purification process.
- 25 [0168] In an embodiment of the invention, isolation or purification of a truncated polypeptide expressed in accordance with the present invention may not be desired. In an aspect of the present invention, an expressed polypeptide may be stored or transported inside the bacterial host cell in which the polypeptide was expressed. In another aspect of the invention, an expressed polypeptide may be used in a crude lysate form, which is produced by lysis of a host cell in which the polypeptide was expressed. In yet another embodiment of the invention, an expressed polypeptide may be partially isolated or partially purified according to any of the methods set forth or described herein. The skilled artisan will know

when it is not desirable to isolate or purify a polypeptide of the invention, and will be familiar with the techniques available for the use and preparation of such polypeptides.

5

10

15

20

25

30

[0169] When armed with the disclosure set forth herein, the skilled artisan would also know how to prepare a eukaryotic host cell of the invention. As set forth elsewhere herein, and as would be known to one of skill in the art based on the disclosure provided herein, an isolated nucleic acid encoding a truncated GalNAcT2 polypeptide may be introduced into a eukaryotic host cell, for example, using a lentivirus-based genomic integration or plasmid-based transfection (Sambrook et al., Third Edition, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, New York (2001)). In one embodiment of the invention, a eukaryotic host cell is a fungal cell. In another embodiment, a nucleic acid encoding a truncated polypeptide of the invention is cloned into a lentiviral vector containing a specific promoter sequence for expression of the truncated polypeptide. The truncated polypeptide-containing lentiviral vector is then used to transfect a host cell for expression of the truncated polypeptide. Methods of making and using lentiviral vectors, such as those useful in the present invention, are well-known in the art and are not described further herein.

[0170] In yet another embodiment, a nucleic acid encoding a truncated polypeptide of the invention is introduced into a host cell using a viral expression system. Viral expression systems are well-known in the art, and will not be described in detail herein. In one aspect of the invention, a viral expression system is a mammalian viral expression system. In another aspect of the invention, a viral expression system is a baculovirus expression system. Such viral expression systems are typically commercially available from numerous vendors.

[0171] The skilled artisan will know how to use a host cell-vector expression system for the expression of a truncated polypeptide of the invention. Appropriate cloning and expression vectors for use with eukaryotic hosts are described by Sambrook, et al., in Molecular Cloning: A Laboratory Manual, Third Edition, Cold Spring Harbor, N.Y. (2001), the disclosure of which is hereby incorporated in its entirety by reference.

[0172] Insect cells can also be used for expression of a truncated polypeptide of the present invention. In an aspect of the invention, Sf9, SF9⁺, Sf21, High Five™ or Drosophila Schneider S2 cells can be used. In yet another aspect of the invention, a baculovirus, or a baculovirus/insect cell expression system can be used to express a truncated polypeptide of the invention using a pAcGP67, pFastBac, pMelBac, or pIZ vector and a polyhedrin, p10, or

OpIE3 actin promoter. In another aspect of the invention, a Drosophila expression system can be used with a pMT or pAC5 vector and an MT or Ac5 promoter.

[0173] A truncated GalNAcT2 polypeptide of the invention can also be expressed in mammalian cells. In an aspect of the invention, 294, HeLa, HEK, NSO, Chinese hamster ovary (CHO), Jurkat, or COS cells can be used to express a truncated polypeptide of the invention. In the case of a mammalian cell expression of a truncated polypeptide, a suitable vector such as pT-Rex, pSecTag2, pBudCE4.1, or pCDNA/His Max vector can be used, along with, for example, a CMV promoter. As will be understood by the skilled artisan, the choice of promoter, as well as methods and strategies for introducing one or more promoters into a host cell used for expressing a truncated GalNAcT2 polypeptide of the invention are well-known in the art, and will vary depending upon the host cell and expression system used.

5

10

15

20

25

30

[0174] Various mammalian cell culture systems can be employed to express recombinant protein. Non-limiting examples of mammalian expression systems include the COS-7 lines of monkey kidney fibroblasts, described by Gluzman, Cell 23:175 (1981), and other cell lines capable of expressing a compatible vector, for example, the C127, 3T3, CHO, HeLa and BHK cell tines. Mammalian expression vectors may comprise an origin of replication, a suitable promoter and also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking nontranscribed sequences. DNA sequences derived from the SV40 viral genome, for example, SV40 origin, early promoter, enhancer, splice, and polyadenylation sites may be used to provide the required nontranscribed genetic elements.

[0175] The methods available and the methods required to introduce any isolated nucleic acid of the invention into a host cell vary and depend upon the choice of the host cell, as would be understoody by one of skill in the art. Suitable methods of introducing an isolated nucleic acid into a host cell are well-known in the art. By way of a non-limiting example, vector DNA can be introduced into a eukaryotic cell using conventional transfection techniques. As used herein, the term "transfection" refers to a variety of art-recognized techniques for introducing foreign nucleic acid (e.g., DNA) into a host cell, including, DEAE-dextran-mediated transfection, lipofection, or electroporation. Suitable methods for transforming or transfecting host cells can be found in Sambrook, *et al.* (Molecular Cloning:

A Laboratory Manual. 3nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 2001), and other such laboratory manuals.

[0176] For example, for stable transfection of mammalian cells, it is known that, depending upon the expression vector and transfection technique used, only a small fraction of cells may integrate the foreign DNA into their genome. In order to identify and select these transformants, a gene that encodes a selectable marker (e.g., resistance to antibiotics) is generally introduced into the host cells along with the gene of interest. Various selectable markers include those that confer resistance to drugs, such as G418, hygromycin and methotrexate. Nucleic acid encoding a selectable marker can be introduced into a host cell on the same vector as that encoding a truncated polypeptide of the invention or can be introduced on a separate vector. Cells stably transfected with the introduced nucleic acid can be identified by drug selection (e.g., cells that have incorporated the selectable marker gene will survive, while the other cells die).

III. Polypeptides

5

10

25

30

15 [0177] A truncated GalNAcT2 polypeptide of the present invention may be truncated in various ways, as would be known and understood by the skilled artisan, when armed with the present disclosure. Examples of truncated polypeptides of the present invention include, but are not limited to, a polypeptide lacking a single N-terminal residue, a polypeptide lacking a single C-terminal residue, a polypeptide lacking both an single N-terminal residue and a single C-terminal residue, a polypeptide lacking a contiguous sequence of residues from the N-terminus, a polypeptide lacking a contiguous sequence of residues from the C-terminus, and any such combinations thereof.

[0178] As would be understood by the skilled artisan, a full-length human GalNAcT2 polypeptide may contain one or more identifyable polypeptide domains in addition to the "active domain," the domain primarily responsible for the catalytic activity, of GalNAcT2. This is because it is known in that art that a full-length GalNAcT2 polypeptide, and in particular, a full-length human GalNAcT2 polypeptide, contains a signal domain, a transmembrane domain, and a stem domain, in addition to an active domain. Accordingly, a full-length human GalNAcT2 may have a signal domain at the amino-terminus of the polypeptide, followed by a transmembrane domain immediately adjacent to the signal domain, followed by a stem domain that is immediately adjacent to the transmembrane

domain, followed by an active domain that extends to the carboxy-terminus of the polypeptide and is located immediately adjacent to the stem domain.

5

10

15

20

25

30

[0179] Therefore, in one embodiment, a GalNAcT2 polypeptide of the invention is a truncated human GalNAcT2 polypeptide lacking all or a portion of the GalNAcT2 signal domain. In another embodiment, a GalNAcT2 polypeptide of the invention is a truncated human GalNAcT2 polypeptide lacking the GalNAcT2 signal domain and all or a portion of the GalNAcT2 transmembrane domain. In yet another embodiment, a GalNAcT2 polypeptide of the invention is a truncated human GalNAcT2 polypeptide lacking the GalNAcT2 signal domain, the GalNAcT2 transmembrane domain and all or a portion the GalNAcT2 stem domain. When armed with the disclosure of the present invention, the skilled artisan will know how to make and use these and other such truncation mutants of human GalNAcT2.

[0180] The size and identity of a truncated GalNAcT2 mutant of the present invention is based on the point at which the full-length polypeptide is truncated. By way of a non-limiting example, a " Δ 40 human truncated GalNAcT2" mutant of the invention refers to a truncated GalNAcT2 polypeptide of the invention in which amino acids 1 through 40, counting from the N-terminus of the full-length polypeptide, are deleted from the polypeptide. Therefore, the N-terminus of the Δ 40 human truncated GalNAcT2 mutant begins with the amino acid residue that would be referred to as "amino acid 41" of the full-length polypeptide. This nomenclature applies to all truncated GalNAcT2 polypeptides of the invention, including human GalNAcT2.

[0181] The present invention therefore also includes an isolated polypeptide comprising a truncated GalNAcT2 polypeptide. Preferably, an isolated truncated GalNAcT2 polypeptide of the present invention has at least about 90% identity to a polypeptide having the amino acid sequence of any one of the sequences set forth in SEQ ID NO:4, SEQ ID NO:8 or SEQ ID NO:10. More preferably, the isolated polypeptide is about 95% identical, and even more preferably, about 98% identical, still more preferably, about 99% identical, and most preferably, the isolated polypeptide comprising a truncated GalNAcT2 polypeptide is identical to the polypeptide set forth in one of SEQ ID NO:4, SEQ ID NO:8 or SEQ ID NO:10.

[0182] The present invention also provides for analogs of polypeptides which comprise a truncated GalNAcT2 polypeptide as disclosed herein. Analogs can differ from naturally

occurring proteins or peptides by conservative amino acid sequence differences or by modifications which do not affect sequence, or by both.

[0183] For example, conservative amino acid changes may be made, which although they alter the primary sequence of the protein or peptide, do not normally alter its function.

5 Conservative amino acid substitutions typically include substitutions within the following groups:

glycine, alanine;
valine, isoleucine, leucine;
aspartic acid, glutamic acid;
asparagine, glutamine;
serine, threonine;
lysine, arginine;
phenylalanine, tyrosine.

10

- 15 [0184] Modifications (which do not normally alter primary sequence) include in vivo, or in vitro chemical derivatization of polypeptides, e.g., acetylation, or carboxylation. Also included are modifications of glycosylation, e.g., those made by modifying the glycosylation patterns of a polypeptide during its synthesis and processing or in further processing steps; e.g., by exposing the polypeptide to enzymes which affect glycosylation, e.g., mammalian glycosylating or deglycosylating enzymes. Also embraced are sequences which have phosphorylated amino acid residues, e.g., phosphotyrosine, phosphoserine, or phosphothreonine.
 - [0185] Also included are polypeptides which have been modified using ordinary molecular biological techniques so as to improve their resistance to proteolytic degradation or to optimize solubility properties or to render them more suitable as a therapeutic agent. Analogs of such polypeptides include those containing residues other than naturally occurring Lamino acids, e.g., D-amino acids or non-naturally occurring synthetic amino acids. The peptides of the invention are not limited to products of any of the specific exemplary processes listed herein.
- 30 **[0186]** Fragments of a truncated GalNAcT2 polypeptide of the invention are included in the present invention, provided the fragment possesses the biological activity of the full-length polypeptide. That is, a truncated GalNAcT2 polypeptide of the present invention can

catalyze the same glycosyltransfer reaction as the full-length GalNAcT2. By way of a non-limiting example, a truncated human GalNAcT2 polypeptide has the ability to transfer a GalNAc moiety from a UDP-GalNAc donor to a granulocyte-colony stimulating factor (G-CSF) acceptor, wherein such a transfer results in the O-linked covalent coupling of a GalNAc moiety to a threonine residue of G-CSF. Therefore, a smaller than full-length, or "truncated," GalNAcT2 is included in the present invention provided that the truncated GalNAcT2 has GalNAcT2 biological activity.

[0187] In another aspect of the present invention, compositions comprising an isolated truncated GalNAcT2 polypeptide as described herein may include highly purified truncated GalNAcT2 polypeptides. Alternatively, compositions comprising truncated GalNAcT2 polypeptides may include cell lysates prepared from the cells used to express the particular truncated GalNAcT2 polypeptides. Further, truncated GalNAcT2 polypeptides of the present invention may be expressed in one of any number of cells suitable for expression of polypeptides, such cells being well-known to one of skill in the art, as described in detail elsewhere herein.

[0188] Substantially pure protein isolated and obtained as described herein may be purified by following known procedures for protein purification, wherein an immunological, enzymatic or other assay is used to monitor purification at each stage in the procedure. Protein purification methods are well known in the art, and are described, for example in Deutscher *et al.* (ed., 1990, <u>Guide to Protein Purification</u>, Harcourt Brace Jovanovich, San Diego).

IV. Methods

5

10

15

20

25

30

[0189] The present invention features a method of expressing a truncated polypeptide. Polypeptides which can be expressed according to the methods of the present invention include a truncated GalNAcT2 polypeptide. More preferably, polypeptides which can be expressed according to the methods of the present invention include, but are not limited to, a truncated human GalNAcT2 polypeptide. In a preferred embodiment, a polypeptide which can be expressed according to the methods of the present invention is a polypeptide comprising any one of the polypeptide sequences set forth in SEQ ID NO:4, SEQ ID NO:8 or SEQ ID NO:10.

[0190] In one embodiment, the present invention features a method of expressing a truncated GalNAcT2 polypeptide encoded by an isolated nucleic acid of the invention, as

described elsewhere herein, wherein the expressed truncated GalNAcT2 polypeptide has the property of catalyzing the transfer of a GalNAc moiety to an acceptor moiety. In one aspect of the invention, a method of expressing a truncated GalNAcT2 polypeptide includes the steps of cloning an isolated nucleic acid of the invention into an expression vector, inserting the expression vector construct into a host cell, and expressing a truncated GalNAcT2 polypeptide therefrom.

5

10

15

- [0191] Methods of expression of polypeptides, as well as construction of expression systems and recombinant host cells for expression of polypeptides, are discussed in extensive detail elsewhere herein. Methods of expression of a truncated polypeptide of the present invention will be understood to include, but not to be limited to, all such methods as described herein. In some expression systems, the truncated GalNAcT2 polypeptides of the invention are expressed as insoluble proteins, *e.g.*, in an inclusion protein in a bacterial host cell. Methods of refolding insoluble glycosyltransferases, including GalNAcT2 polypeptides, are disclosed in U.S. Provisional Patent Application Serial No. 60/542,210, filed February 4, 2004; U.S. Provisional Patent Application Serial No. 60/599,406, filed August 6, 2004; U.S. Provisional Patent Application Serial No. 60/627,406, filed November 12, 2004; and International Patent Application No. PCT/US05/03856, filed February 4, 2005; each of which are herein incorporated by reference for all purposes.
- [0192] The present invention also features a method of catalyzing the transfer of a GalNAc moiety to a GalNAc acceptor moiety, wherein the GalNAc-transfer reaction is carried out by incubating a truncated GalNAcT2 polypeptide of the invention with a GalNAc donor moiety and a GalNAc acceptor moiety. In one aspect, a truncated GalNAcT2 polypeptide of the invention mediates the covalent linkage of a GalNAc moiety to a GalNAc acceptor moiety, thereby catalyzing the transfer of a GalNAc moiety to an acceptor moiety.
- 25 [0193] In one embodiment of the invention, a truncated GalNAcT2 polypeptide useful in a glycosyltransfer reaction is a truncated human GalNAcT2 polypeptide. In one aspect, the human GalNAcT2 glycosyltransfer reaction involves the transfer of a GalNAc residue from a GalNAc donor to a GalNAc acceptor.
 - [0194] By way of a non-limiting example, a method of catalyzing the transfer of a GalNAc moiety to an acceptor moiety includes the steps of incubating a truncated GalNAcT2 polypeptide with UDP-GalNAc GalNAc donor and a granulocyte colony stimulating factor

(G-CSF) acceptor moiety, wherein the truncated GalNAcT2 polypeptide mediates the transfer of GalNAc from the UDP-GalNAc donor to the GCSF acceptor.

[0195] Therefore, in one embodiment, the present invention also features a polypeptide acceptor moiety. In one embodiment of the invention, a polypeptide acceptor moiety is a human growth hormone. In another embodiment, a polypeptide acceptor moiety is an erythropoietin. In yet another embodiment, a polypeptide acceptor moiety is an interferonalpha. In another embodiment, a polypeptide acceptor moiety is an interferon-beta. In another embodiment of the invention, a polypeptide acceptor moiety is an interferon-gamma. In still another embodiment of the invention, a polypeptide acceptor moiety is a lysosomal hydrolase. In another embodiment, a polypeptide acceptor moiety is a blood factor polypeptide. In still another embodiment, a polypeptide acceptor moiety is an anti-tumor necrosis factor-alpha. In another embodiment of the invention, a polypeptide acceptor moiety is follicle stimulating hormone.

5

10

In one embodiment, the present invention also features a method of transferring a [0196] GalNAc-polyethyleneglycol conjugate to an acceptor molecule. In one aspect, an acceptor 15 molecule is a polypeptide. In another aspect, an acceptor molecule is a glycopeptide. Compositions and methods useful for designing, producing and transferring a GalNAcpolyethyleneglycol conjugate to an acceptor molecule are discussed at length in International (PCT) Patent Application No. WO03/031464 (PCT/US02/32263) and U.S. Patent Application No. 2004/0063911, each of which is incorporated herein by reference in its 20 entirety. Methods of assaying for glycosyltransferase activity are well-known in the art. Various assays for detecting glycosyltransferases which can be used in accordance with the invention have been published. The following are illustrative, but should not be considered limiting, of those assays useful for detecting glycosyltransferase activity. Furukawa et al. (1985, Biochem. J., 227:573-582) describe a borate-impregnated paper electrophoresis assay 25 and a fluorescence assay. Roth et al. (1983, Exp'l Cell Research 143:217-225) describe application of the borate assay to glucuronyl transferases, previously assayed calorimetrically. Benau et al. (1990, J. Histochem. Cytochem., 38:23-30) describe a histochemical assay based on the reduction, by NADH, of diazonium salts. See also U.S. Patent No. 6,284,493 of Roth, incorporated herein by reference. 30

EXPERIMENTAL EXAMPLES

[0197] The invention is now described with reference to the following examples. These examples are provided for the purpose of illustration only and the invention should in no way be construed as being limited to these examples but rather should be construed to encompass any and all variations which become evident as a result of the teaching provided herein.

Example 1: Cloning, Expression, and Refolding of Human Polypeptide Nacetylgalactosaminyltransferase II (GalNAcT2) in E. coli JM109

5

10

15

20

25

30

[0198] Four constructs were designed and created in order to assess the sialyltransferase activity of truncation mutants of human GalNAcT2. The four mutants created included $\Delta 40$, a truncation mutant which has as its new N-terminal residue an lysine that corresponds to R41 of the full-length human GalNAcT2 set forth in SEQ ID NO:2, $\Delta 51$, a truncation mutant which has as its new N-terminal residue an lysine that corresponds to K52 of the full-length human GalNAcT2 set forth in SEQ ID NO:2, $\Delta 73$, a truncation mutant which has as its new N-terminal residue a glycine that corresponds to G74 of the full-length human GalNAcT2 set forth in SEQ ID NO:2, and $\Delta 94$, a truncation mutant which has as its new N-terminal residue a glycine that corresponds to G95 of the full-length human GalNAcT2 set forth in SEQ ID NO:2.

[0199] Truncated human polypeptide N-acetylgalactosaminyltransferase II (GalNAcT2) was expressed as maltose binding protein (MBP)-fusion proteins in inclusion bodies from *E. coli* JM109 cells. The production of active enzyme was examined by refolding and assaying against two polypeptide acceptors. Therefore, described herein is the generation of several truncated forms of human polypeptide GalNAcT2 as maltose binding protein fusion proteins in *E.coli* JM109 cells. The recombinant proteins are refolded from isolated inclusion bodies using the Hampton FoldIt screen kit (Hampton Research, Aliso Vieja, CA). All four constructs were expressed in JM109 *E.coli* at levels of approximately 2g/L culture media.

[0200] PCR (Polymerase Chain Reaction) amplifications were performed in a final reaction volume of 50 μl containing 5 μl of template DNA (11 μg/ml, 100-fold diluted pBKS-Full ppGalNAcT2), 40 pmol of 5'- primer and 3'- primer, 10 nmol of dNTP mixture, and 5 units of HerculaseTM Enhanced DNA Polymerase under the conditions of 31 cycles of denaturation at 95°C for 45 seconds, annealing at 62°C for 45 seconds, and extension at 74°C for 170 seconds. PCR products were subjected to 1% agarose gel electrophoresis. DNA fragments

were excised and purified by QIAEX II gel extraction kit (Qiagen, Valencia, CA). Table 1 illustrates the primers used in the PCR reactions.

Table 1: Primers used in cloning ppGalNAcT2

Sense Primers:

5

10

15

For N41R (relates to Δ 40):

5' CGC<u>GGATCC</u>AGGAAGGAGGACTGGAATG 3' (SEQ ID NO:11)

BamHI

For N52K (relates to Δ 51):

5' CGCGGATCCAAAAAGAAAGAACCTTCATCACAGC 3' (SEQ ID NO:12) BamHI

For N74G (relates to Δ 73):

5' CGCGGATCCGGGGAAAGTACGGTGGCCAGAC 3' (SEQ ID NO:13)

BamHI

For N95G (relates to Δ 94):

5' CGC<u>GGATCC</u>GGGCAGGACCCTTACGCC 3' (SEQ ID NO:14) BamHI

Antisense Primer with STOP codon:

5'-CTG<u>CTCGAGCTA</u>CTGCTGCAGGTTGAGCG 3' (SEQ ID NO:15) XhoI Stop

[0201] Gel-purified PCR products were digested with *BamH*I and *Xho*I, gel purified again and ligated into a pCWin2MBP vector previously digested by the same restriction enzymes. The ligated products were transformed into *E. coli* DH5α electrocompetent cells. The transformants were plated on LB Agar plates with 50 μg/ml Kanamycin and incubated at 37°C overnight. Three colonies were picked for each construct and cultured in LB medium containing 15 μg/ml kanamycin. Plasmid DNAs were purified by QIAprep Spin Miniprep Kit (Qiagen, Valencia, CA) and screened by restriction mapping with *BamH*I and *Xho*I. The plasmids having the correct digest patterns were transformed into JM109 chemical competent cell.

[0202] JM109 cells were cultured in a 15 ml culture tube containing 6 ml LB medium and 15 μ g/ml of kanamycin overnight at 37°C with rapid shaking (250 rpm). For each culture, two milliliters of starting culture was transferred to a 50 ml centrifuge tube containing 23 ml LB medium with 15 μ g/ml kanamycin and incubated at 37°C with rapid shaking for 3 hours. Isopropyl-1-thio- β -D-galactopyranoside (IPTG) was added to a final concentration of 0.4 mM to induce the protein expression. After shaking at 37°C (250 rpm) for another 3 hours, cells were harvested by centrifugation at 3,500 x g for 10 minutes. The cell pellets were then

resuspended in 0.6 ml of 20 mM Tris-HCl buffer (pH 8.5) containing 1% Triton X-100. Lysozyme (100 μ g) and DNaseI (2 μ g) were then added. The mixture was shaken at 37° C in an incubator shaker for 45 minutes before being transferred to a 1.5 ml microcentrifuge tube. Lysate was separated from inclusion bodies (IB) by centrifugation at 14,000 rpm for 5 minutes.

5

10

15

20

25

- [0203] Each sample for SDS-PAGE separation was prepared by mixing 5 µl of whole cells suspension, lysate, or inclusion bodies suspension with 5 µl of 2 x Tris-Glycine SDS sample buffer and 1.1 µl of DTT (1 M). The mixture was heated at 98°C for 5 minutes, cooled to room temperature, and loaded to each well of a 1.0 mm x 15 well 4-20% Tris-Glycine gradient gel. The electrophoresis was conducted at 120 V for 100 minutes. The gel was then stained for 2 hours and de-stained with distilled water (see Figures 4-6).
- [0204] Inclusion bodies were dissolved at 20 mg/ml (high protein concentration) or 2 mg/ml concentration (low protein concentration) in solubilizing buffer containing 4 M Guanidine-HCl, 100 mM Tris-HCl, pH 9.0, 5 mM EDTA, and 10 mM DTT. Refolding of inclusion bodies by Hampton FoldIt Screen Kit was carried out by following the manufacturer's protocol, except that a 10-fold less volume was used (100 μ l -scale) (Hampton Products, Aliso Viejo, CA).
- [0205] Non-radioactive enzyme activity assays for lysates were carried out in a 0.5 μl microcentrifuge tube at 37°C for overnight in a final volume of 10 μl containing 50 mM MES buffer, pH 6.0, MnCl₂ (15 mM), MgCl₂ (15 mM), NaCl (0.15 M), UDP-GalNAc (5 mM), 1.5 μg G-CSF (acceptor), and 2.15 μl of lysate sample. Enzyme was substituted by H₂O as a negative control. Purified recombinant ppGalNAcT2 (0.5 μl) from Sf9 baculovirus expression system was used as the positive control. An assay for refolded inclusion bodies was performed in a similar manner as described for the lysates, except that Interferon α2b (4 μg) was used as the acceptor for the enzyme and the volume of the sample added to the reaction mixture was 5.65 μl.
 - [0206] DNA fragments for ppGalNAcT2 genes (about 1.5 kb) were successfully amplified by PCR as shown in Figure 5. Vector plasmid DNA pCWin2MBP was digested by BamHI and XhoI, and purified on a 1% agarose gel. The gel purified DNA fragment was digested by the same two enzymes and purified. After digestion, the DNA fragments were clean as visualized on an agarose gel (Figure 2B).

[0207] BamHI and XhoI digestion of the plasmids purified from the selected twelve colonies showed predicted correct pattern on a 1% agarose gel. The size of the vector was around 6.2 kb, and the inserts were approximately 1.5 kb. Maltose-binding protein (MBP) expressed in the JM109 transformed with pCWin2MBP vector plasmid showed a band at around 43 kDa. Over 90% of the proteins in the whole cells are MBP. The #2 colony of the construct N41R expressed a shorter protein than expected, indicating the occurrence of mutation. All other eleven colonies showed a band at about 100 kDa for MBP-ppGalNAcT2 fusion proteins, with over 80% of the total proteins were the target fusion proteins.

5

10

15

20

25

30

[0208] Gel electrophoresis showed that most of the MBP was expressed as a soluble form in cell lysate (Figures 1 and 2). The overexpressed protein in the wrong construct (colony #2) for N41R was also observed in the cell lysate. However, most of the MBP-ppGalNAcT2 fusion proteins were in inclusion bodies (Lane 1 and 3 – 12 in Figures 1 and 2). Over 90% of the proteins in the inclusion bodies were the MBP fusion proteins of interest.

[0209] In summary, four truncated forms of human polypeptide GalNAcT2 were successfully cloned into pCWin2MBP vector and expressed in *E. coli* JM109 as MBP fusion proteins in inclusion bodies. The level of expression of enzyme in inclusion bodies was about 2 g/L. As estimated from the SDS-PAGE, over 80% of the inclusion bodies were the target MBP-ppGalNAcT2 fusion proteins.

Example 2: Development of Protein Refolding Conditions for E. Coli Expressed MBP-Human GalNAcT2

[0210] Refolding experiments on MBP-GalNAcT2 were carried out on a 1 ml scale, with four different MBP-GalNAcT2 DNA constructs and under 16 different possible refolding conditions. Refolding was performed using the Hampton Research Foldit kit (Hampton Research, Aliso Viejo, CA) and the assays were performed via radioactive detection of [3 H] UDP-GalNAc addition to a MuC-2 peptide and via matrix-assisted laser desorption ionization mass spectrometry (MALDI) analysis utilizing addition of GalNAc to Interferon α -2b and G-CSF. The data illustrates that E.coli-expressed MBP-GalNAcT2 can be refolded into an active enzyme. It appears that under refolding conditions 8 and 15, found in Hampton Research's Foldit kit (Hampton Research, Aliso Viejo, CA), active conformations of MBP-GalNAcT2, construct 1 and 2, were identified. Success was indicated by the [3 H] UDP-GalNAc assay and later confirmed by interferon α -2b (IF α -2b) and granulocyte-colony

stimulating factor (G-CSF) -based glycosyltransferase assays. The specific methods and data of this study are presented herein.

[0211] As described elsewhere herein, GalNAcT2 constructs used in the present invention comprised DNA encoding various amino terminal amino acid truncation mutants of the original human GalNAcT2 protein, including the following constructs, which begin with the N-terminal amino acid as indicated:

5

10

15

```
Construct 1-pCWin2 MBP-GalNAcT2 – R41 Arginine (924aa, 103682.5MW), Construct 2-pCWin2 MBP-GalNAcT2 – K52 Lysine (913aa, 102286.0MW), Construct 3-pCWin2 MBP-GalNAcT2 – G74 Glycine (891aa, 99799.3MW), and Construct 4-pCWin2 MBP-GalNAcT2 – G95 Glycine (870aa, 97419.8MW).
```

- [0212] Constructs were first expanded to 2 ml starter cultures by inoculating 2 ml of Martone L-Broth containing $10\mu g/ml$ Kanamycin sulfate with a pipette tip scraping from the particular glycerol stock culture. This procedure was performed on all four constructs for a total of four starter cultures. Starter cultures were incubated overnight at 37° C, with rotary shaking at 250rpm. From the overnight cultures, four 275 ml Martone L-Broth cultures containing $10\mu g/ml$ Kanamycin sulfate were prepared. Each of these cultures was inoculated with 275μ L of one of the 2 ml starter cultures of constructs 1 through 4. These 275 ml cultures were incubated overnight at 37° C, with shaking at 250rpm.
- [0213] Lastly, four 1L Martone L-Broth cultures containing 10μg/ml Kanamycin sulfate were prepared. Each of these cultures was inoculated with 40 ml of one of the 275 ml cultures of constructs 1 though 4. These 1L cultures were incubated at 37°C, with shaking at 250rpm, until the OD600 measured approximately 1.0. Upon reaching this point, IPTG was added to each of the four 1L cultures to a final concentration of 0.4mM. Cultures were then allowed incubate overnight at 37°C, with shaking at 250rpm.
- 25 [0214] One-liter cultures containing JM109 pCWin2 MBP-GalNAcT2 constructs, designated numbers 1 through 4, were transferred to 1L centrifuge bottles. Cultures were then centrifuged at 5000rpm for 30 minutes at 4°C. Supernatants were removed and the pellets were weighed. The pellets from each sample were then washed to isolate the inclusion bodies (IBs). The pellet of each construct was first resuspended in 15 ml of 20mM Tris-HCl pH=8.5, 5mM EDTA and then lysed by two passages through a french press at 12,000psi.
 - [0215] The lysates for each construct were then centrifuged at 5000rpm, 25°C for 5 minutes in 50 ml disposable tubes. The supernatants were removed and the pellets were resuspended in 25 ml of 20mM Tris-HCl pH=8.5, 1% Triton X-100. The suspensions

incubated at room temperature for 10 minutes. The suspensions were then centrifuged at 5000 rpm, 25°C for 5 minutes. The supernatants were then removed and the samples were resuspended for a second time in 25 ml of 20mM Tris-HCl pH=8.5, 1% Triton X-100 and allowed to incubate at room temperature for 10 minutes. The suspensions were again centrifuged at 5000 rpm, 25°C for 5 minutes. The supernatants were removed and a third wash was performed by resuspending the pellets in 25 ml of 20mM Tris-HCl pH=8.5, 1% Triton X-100. The suspensions sat at room temperature for 10 minutes and then were centrifuged at 5000 rpm, 25°C for 5 minutes. The supernatants from each sample were removed and the pellets were weighed. The pellets were then diluted to 20mg/ml by resuspending them in the appropriate volume of 20mM Tris-HCl pH=8.5, 5mM EDTA. One-ml aliquots were made from these suspensions for each of the four constructs and stored at -20°C. These aliquots represent the triple washed IBs or "TWIBs."

5

10

15

20

[0216] Solubilization buffer was prepared with the following constituents: 6M Guanidine HCl, 5mM EDTA, 50mM Tris-HCl pH=8 and 10mM DTT. 1 ml of this solution was added to a 20mg aliquot of TWIBs to yield a 20mg/ml solution. The solution was incubated overnight on the bench top to solubilize IBs. This procedure was performed on a TWIB aliquot of each MBP-GalNAcT2 construct to provide protein for refolding experiments.

[0217] To screen refolding conditions that may result in an active form of E.coli expressed MBP-GalNAcT2, a Hampton Foldit Screening kit was utilized (Hampton Products, Aliso Viejo, CA). The composition of each of the refold buffers is found in Table 2.

<u>Table 2: Refold Conditions from Hampton Research Foldit kit (Hampton Research, Aliso Viejo, CA)</u>

																Condition	Refold	The section of the se
16 X	5	4	13 X	12	≡ ×	X O	9	&	<u>7</u> X	8 ×	5	4 X	ن	2	 X	a E		and the state of t
	X	Х		><			×	Х			><		><	><		ð	NWS 2	30 - 30 C C C C C C C C C C C C C C C C C C
> <			×	><			×	×			×	×			×		264mW	1 - Andrew Calendaria (A.)
	><	Χ			×	×	A Section of the Sect		×	><			×	×		NaCII	10.56m Mm82.01	, 100 m
×		×			×		×	×		X			><		×	PEG	%250.0	
×			X	X			Х		Х	×			×	X		Guarridine	550mW	
	×		×	×		X		×		×			×	7	×	EDTA		ZJ
×		×			×		Х		Х		X	X		Х		MaCID!	22mM	Refold Matrix
×	×											×	×			Sucrose/	440mM	×
						×	×			×	×					Sucrose	440mM	
				×	×			×	×							Arginine	550mMIL.	
	×	×		×			×		\times	×		×			×	8		
\approx			\times		×	\times	- 1908 - 1908	$ \times $			×		×	×		经	2	
×			×		×	×		$ \times$			×		×	×		6886	0.1mM	
,	,4		4.5	0,1	2	9.1	Ç.					0,1	0,1	0.1	0.1	Concentration	Protein	

[0218] For a given refold condition, 950μL of refold buffer was combined with 50μL of solubilized protein (for high protein concentration conditions) or 995μL of refold buffer was combined with 5μL of solubilized protein (for low protein concentration conditions). Refolding reactions were placed on a rotary shaker in the cold room (4°C) overnight.

5

10

30

the purified refold samples.

- [0219] From results obtained in the screen, it was determined that refold conditions 3, 8, 11, 12, 15 and 16 yielded the most promising results for constructs 1 and 2. Additional refolding reactions were performed with under those conditions using G-50 gel filtration instead of dialysis to yield more concentrated protein refold samples (See Refold Purification section for methods). From those experiments, further refinement was achieved and conditions 8 and 11 were found to be optimal. More specifically, condition 15 was optimal in an overnight incubation rotating and condition 8 was found to be optimal remaining still in a 5 day incubation.
- [0220] Protein refold samples were first purified by dialysis against 20mM Tris-HCl,
 pH=8.5. 100μL of each refold sample was dialyzed. Dialysis was conducted in a beaker containing 20mM Tris-HCl pH=8.5 with slow stirring. Samples were placed at 4°C and allowed to dialyze overnight. Resulting retentate was used in a radioactive activity assay, as discussed elsewhere herein. As an alternative method to yield more concentrated protein samples, MBP-GalNAcT2 refold samples were purified by use of G-50 Macro Spin Columns
 (Harvard Bioscience, Holliston, MA). Caps were removed from the G-50 columns and columns were placed into 2 ml microcentrifuge tubes. H₂O (500 μl) was added to each column and the columns were allowed to incubate for 15 minutes to hydrate. The columns were then centrifuged at ~2000 x g for 4 minutes after which they were transferred to new 2 ml centrifuge tubes. Each refold solution (150μl) was applied to one of the columns.
 Columns were then centrifuged at 2000 x g for ~2 minutes. Resulting permeates represented
 - [0221] A radiolabeled [³H]-UDP-GalNAc assay was performed to determine the activity of the E.coli-expressed refolded MBP-GalNAcT2 by monitoring the addition of radiolabeled GalNAc to a peptide acceptor. The acceptor was a MuC-2 like peptide having the sequence MVTPTPTC (SEQ ID NO:16). The peptide was dissolved in 1M Tris-HCl pH=8.0. The initial screen was performed on refolded protein samples which had been purified by dialysis. Subsequent refold samples were freshly refolded and purified by G-50 gel filtration. The assay included protein refold samples, GalNAcT2 from Baculovirus as a positive control, a

negative control sample with all the components except enzyme and a maximum input sample which contained all components except enzyme. A total of 19 samples were tested. The assay solution consisted of the components listed in Table 3:

Table 3: GalNAcT2 assay reaction composition.

10

15

20

25

Component	Dilution	Volume (µl)	Final Concentration
0.25M Tris-HCl	N/A	5	25mM
2.5% Triton X-100	N/A	5	0.25%
100mM MnCl ₂	N/A	5	10 mM
[H³] UDP-GalNAc 0.1mCi/ml	0.5µl in 4.5µl	5	50nCi
1mM UDP-GalNAc	N/A	5	0.1mM
10mM MuC2 Peptide	0.5µl in 4.5µl	5	$0.1 \mathrm{mM}$
Enzyme		20	

[0222] For each of the refold samples, $30\mu L$ of the reaction mixture were combined with $20\mu L$ of the refold sample. For the negative control, $20\mu L$ H₂O was combined with $30\mu L$ of the reaction mixture. For the positive control, $1\mu L$ of GalNAcT2 Baculovirus enzyme was added in addition to $19\mu L$ of H₂O to form a $30\mu L$ reaction mixture. For the "maximum input" sample, $30\mu L$ of the reaction mixture was combined with $20\mu L$ of dH₂O. Reactions were incubated at 37° C for 30 minutes. 100 ml DOWEX AG 1X8 (chloride form) was washed by combining 100 ml of resin and 100 ml of H₂O and mixing well. The water was poured off the resin and another 100 ml of H₂O was added, mixed and removed. The resin was resuspended one final time in 100 ml of dH₂O. After the GalNAcT2 assay reaction had incubated for 30 minutes, 1 ml of resuspended resin in H₂O was added to each reaction (except for the maximum input sample). Samples were vortexed briefly and then loaded into filter columns and allowed to drain by gravity into scintillation vials. 5 ml of scintillation solution was added to each of the samples and standards. Samples were shaken briefly and loaded on the scintillation counter and radioactivity measured.

[0223] An IF α -2b assay was performed to determine whether E.coli-expressed refolded MBP-GalNAcT2 could transfer GalNAc to an interferon α -2b acceptor from a UDP-GalNAc donor. From data obtained in the refold screen (see the [3 H]UDP-GalNAcT2 assay description elsewhere herein), it was shown that MBP-GalNAc constructs 1 and 2 in refold buffers 8 and 15 yielded the most active enzymes, as determined by the radioactive assay. Therefore, in the IF α -2b assay, constructs 1 and 2 in refold buffers 8 and 15 were assayed for transferase activity. Additionally, as a positive control, GalNAcT2 from a Baculovirus system was assayed as well.

[0224] The assay consisted of reaction buffer (27mM MES, pH=7, 200mM NaCl, 20mM MgCl2, 20mM MnCl2, and 0.1% Tween 80), IFα-2b Protein (2mg/ml in 50mM MES pH=6, 150mM NaCl, 0.05% Tween 80, 0.05% NaN₃), and 100mM UDP-GalNAc. The assay solution was prepared as shown in Table 4 for each reaction.

5 Table 4: Parameters for IFα-2b acceptor GalNAcT2 activity assay

15

20

	Reaction Components	Reaction Component Volumes	Final Concentration
<u>.</u>	MES, $pH=7$		20 mM
Reaction Buffer	NaCl	5μl from Rxn Buffer	150mM
	MgCl_2	(additional concentration from IFα-2b dilution	5mM
	$MnCl_2$	buffer)	5mM
Re	Tween 80		0.05%
	2mg/ml IFα-2b Protein	$10\mu l$	1mg/ml
	100mM UDP-GalNAc	0.6μ1	$3 \mathrm{mM}$

[0225] For each refold sample, 4.4μL of sample were added to 15μL of reaction solution.

For the positive control, 1μL of standard GalNAcT2 Baculovirus was added along with 3.4μL of H₂O to one tube. Reactions were incubated at 32°C on a rotary shaker for several days, during which time an overnight time point and a 5 day time point were assayed by MALDI.

[0226] The above assay was performed to determine whether E.coli-expressed refolded MBP-GalNAcT2 could transfer GalNAc to G-CSF acceptor from a UDP-GalNAc donor. As above, construct 2 in refold buffer 8 was assayed for GalNAcT2 activity. Additionally, as a positive control, GalNAcT2 from Baculovirus was assayed. The assay consisted of reaction buffer (27mM MES, pH=7, 200mM NaCl, 20mM MgCl2, 20mM MnCl2, and 0.1% Tween 80), G-CSF Protein (2mg/ml in H₂O), and 100mM UDP-GalNAc. The assay solution was prepared for each reaction as shown in Table 5.

Table 5: Parameters for G-CSF acceptor GalNAcT2 activity assay

	Reaction Components	Reaction Component Volumes	Final Concentration
L	MES, pH=7		$20 \mathrm{mM}$
on Buffer	NaCl		150mM
	MgCl_2	5μl of Rxn Buffer	5mM
Reaction	$MnCl_2$,	5mM
R	Tween 80		0.05%
	2mg/ml G-CSF	10μ1	1mg/ml
	100mM UDP-GalNAc	0.6μ1	3mM

5 [0227] For the refold sample, 4.4μ L of sample were added to 15μ L of reaction solution. For the positive control, 1μ L of standard GalNAcT2 Baculovirus was added along with 3.4μ L of H₂O to one tube. Reactions were incubated at 32°C on a rotary shaker for 4 days, at the end of which a sample was taken and assayed by MALDI.

[0228] Pellet weights and inclusion body weight were determined for each of the four 1L JM109 pCWin2 MBP-GalNAcT2 constructs 1 through 4 cultures, as shown in Table 22.

Table 6: Cell pellet weights versus inclusion body weights

15

20

Pellet and Inclusion Body Weights from 1L JM109 pCWin2 MBP-GalNAcT2 Cultures								
JM109 pCWin2 MBP- GalNAcT2 Construct	Cell Pellet Weight (g)	Inclusion Body Weight (g)						
1	5.04	2.04						
2	5.24	2.19						
3	4.89	2.42						
4	4.30	2.44						

[0229] The expression of MBP-GalNAcT2 was observed by way of the SDS-Page gel analysis of JM109 pCWin2 MBP-GalNAcT2 whole cell samples before and after induction by IPTG (Figure 7). The protein gel shows a clear increase in protein expression in the induced state compared to the uninduced state. Furthermore there is a distinct band at ~100kDa that substantially increases after induction which correlates to the expected size of the MBP-GalNAcT2 band.

[0230] Protein samples were diluted by combining $950\mu L$ of H_2O with $50\mu L$ of protein sample. Samples were then analyzed using a UV spectrophotometer. Protein concentration

was calculated from absorption values and the molar extinction coefficients: Construct 1-0.65mg/ml per 1 A₂₈₀ unit, Construct 2-0.64mg/ml per 1 A₂₈₀ unit, as shown in Table 7.

<u>Table 7: Protein concentration of 1L JM109 pCWin2 MBP-GalNAcT2 Cultures after Solubilization and G-50 Purification</u>

5

10

15

JM109 pCWin2 MBP- GalNAcT2 Construct	A ₂₈₀ After Solubilization	Protein Concentration (mg/ml)	A ₂₈₀ After G-50 Purification	Protein Concentration (mg/ml)
1	0.2827	2.5	0.0100	0.156
2	0.2531	2.4	0.0160	0.102

[0231] Inclusion bodies obtained from JM109 pCWin2 MBP-GalNAcT2 constructs 1 and 2 were analyzed using SDS-PAGE to verify the presence of MBP-GalNAcT2. The protein was clearly observed in both lanes of the gel, running at approximately 100kDa (Figure 8).

[0232] All four constructs were tested in a [³H]UDP-GalNAcT2 assay under all 16 refold conditions available in the Hampton Foldit kit (Hampton Research, Aliso Viejo, CA). Refolded truncated enzymes were purified by dialysis and then tested for activity using the radioactive assay, as shown in Table 8.

Table 8: Results of the GalNAcT2 activity assay for refolded proteins

								Raw	CPM							
Refold Condition	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Colony 1	112	119	155	150	131	168	167	243	111	144	218	218	166	114	214	194
Colony 2	119	121	251	143	132	156	160	221	121	166	230	_ 184 .	139	137	224	222
Colony 3	125	113	207	139	96	123	143	170	100	110	134	184	143	114	174	180
Colony 4	122	123	125	150	132	120	119	135	127	121	148	154	121	95	157	165
Average for Refold Condition	119.5	119.0	184.5	145.5	122.8	141.8	147.3	192.3	114.8	135.3	182.5	185.0	142.3	115.0	192.3	190.3
Negative Control		102							TO The same							
Positive Cont	rol	1585						i.								
		1					<u> </u>		Longe			L		<u> </u>	i	
		,						Correct					40			40
Refold Condition	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Colony 1	10	17	53	48	29	66	65	141	9	42	116	116	64	. 12	112	92
Colony 2	17	19	149	41	30	54	58	119	19	64	128	82	37	35	122	120
Colony 3	23	11	105	37	-6	21	41	68	-2	8	32	82	41	12	72	78
Colony 4	20	21	23	48	30	18	_17	33	25	19	46	52	19	-7	55	63
Average for Refold Condition	17.5	17.0	82.5	43.5	20.8	39.8	45.3	90.3	12.8	33.3	80.5	83.0	40.3	13.0	90.3	88.3

20 [0233] Results from this assay indicated that refold conditions 3, 8, 11, 12, 15 and 16 provided the highest CPM and therefore the greatest potential GalNAcT2 activity. Furthermore it appeared that construct 2 yielded the greatest number of positive hits in this assay, therefore efforts were focused on this construct.

Table 9: Results from focused overnight refold of truncated enzymes

	Raw CMP3								
Refold Condition	33	8	11	12	15	16			
Construct 2	924	1197	689	1585	1701	1561			
Negative Contr	277								
Positive Contr	4919	(1µl of 200	ug/ml STD En	zvme)					

	Corrected CPM3										
Refold Condition	33	8	11	12	15	16					
Construct 2	647	920	412	1308	1424	1284					

Activity:

U/L= CMP x (nmoles Donor) x 100μl/ml
(Input CPM) x (0.35/0.55) x (Assay Incubation Time(minutes)) x Volume Enzyme (μl)

5	nmoles Donor (UDP-GalNAc)
	Assay Incubation Time
30	(minutes)
20	Volume Enzyme (μl)
48998	Maximum Input

		Activity U/L									
	3	8	11	12	15	16	Positive Control				
Construct 2	0.17	0.25	0.11	0.35	0.38	0.34	26.29				

[0234] In this assay, construct 2 was tested under refold conditions 3, 8, 11, 12, 15 and 16
from the Hampton Foldit kit (Hampton Research, Aliso Viejo, CA). These refolded enzymes were purified by G-50 gel filtration and then tested for activity by the radioactive assay.
Results indicate that after overnight incubation on a rotator, greatest activity was obtained from refold condition 15.

Table 10: GalNAcT2 activity results from 5 day refolding experiment

	Raw CMP3 - 5 Day Refold										
Refold Condition	3	8	11	12	15	16					
Construct 2	185	2288	186	226	496	270					
Negative Control		129	_								
Positive Control		3612_	(1μ1 of 200)	ug/ml STD En	izyme)						

	Corrected CPM3 - 5 Day Refold										
Refold Condition	3	8	11	12	15	16					
Construct 2	56	2159	57	97	367	141					

Activity:

5

10

15

/L= CMP x (nmoles Donor) x 100μl/ml

(Input CPM) x (0.35/0.55) x (Assay Incubation Time(minutes)) x Volume Enzyme (μl)

nmoles Donor (UDP-GalNAc)	5
Assay Incubation Time (minutes)	30
Volume Enzyme (μ1)	20
Maximum Input	47527

	Activity U/L - 5 Day Refold										
	3	8	11	12	15	16	Positive Control				
Construct 2	0.02	0.59	0.02	0.03	0.10	0.04	19.90				

[0235] In this assay, construct 2 was tested under refold conditions 3, 8, 11, 12, 15 and 16 from the Hampton Foldit kit (Hampton Research, Aliso Viejo, CA) after being rotated overnight at 4°C and left resting at 4°C for 5 days. These refolded enzymes were purified by G-50 gel filtration and then tested for activity by the radioactive assay. Results indicated that after 5 days in refold buffer 8, construct 8 displayed the highest activity. Therefore it was determined that conditions 8 and 15 had the greatest potential for producing a properly folded and active MBP-GalNAcT2.

[0236] An IF α -2b assay was performed on overnight refolds of constructs 1 and 2 in refold buffer 15 (1-15 and 2-15, respectively) and was incubated at 32°C for 5 days. Time points were taken of the IF α -2b reaction at 16 hours and 5 days. The results indicate that the parental peak for IF α -2b is at MW ~19267. A successful reaction would be indicated by addition of ~203 molecular weight to that peak. From the 5 day data for refolds 1-15 and 2-15, a developing peak was observed at ~119478 and ~19473 respectively, a difference of approximately 203 MW. This data illustrated that GalNAc was added to IF α -2b by the refolded GalNAcT2 protein, thereby confirming the activity that was reported elsewhere herein by the radioactive assay.

[0237] Additionally, the IF α -2b assay was performed with the 5-day refolded enzymes of constructs 1 and 2 in refold buffer 8 (1-8 and 2-8, respectively). The IF α -2b reactions were again allowed to incubate at 32°C for 3 days. Reactions were analyzed at the 3 day time point. The results indicated that the parental peak for IF α -2b is at MW \sim 19263. A successful reaction would be indicated by the addition of \sim 203 molecular weight to that peak. From the 3 day data for refolds 1-8 and 2-8 a developing peak is seen at \sim 19462 and 19469 respectively, again a difference of approximately 203 MW. This data again indicated that GalNAc was added to IF α -2b by the refolded GalNAcT2 protein and confirmed what was reported by the radioactive assay.

5

- 10 [0238] A G-CSF assay was performed on the 5-day refolded enzymes of construct 2 in refold buffer 8. The G-CSF reaction was allowed to incubate at 32°C for 4 days. The reaction was analyzed at the 4 day time point. The parental peak for G-CSF is expected at MW ~18786. A successful reaction would be indicated by addition of ~203 molecular weight to that peak. From the 3 day data for refolded enzymes 2-8, a developing peak was observed at ~19001, a difference of approximately 203 MW. This data again indicated that GalNAc was added to G-CSF by the refolded GalNAcT2 protein and confirmed what was reported by the radioactive assay and the IFα-2b assay as reported elsewhere herein.
 - [0239] In summary, the data presented herein illustrates that E.coli-expressed MBP-GalNAcT2 can be refolded into an active enzyme. Under refold conditions 8 and 15, found in Hampton Research's Foldit kit (Hampton Research, Aliso Viejo, CA), active conformations of MBP-GalNAcT2 construct 1 and 2 were obtained. The generation of a functional refolded protein was shown using radioactive, IF α -2b and G-CSF assays, which demonstrated the transfer of GalNAc to a polypeptide by GalNAcT2 truncation mutants of the present invention.
- 25 [0240] As discussed elsewhere herein, GalNAcT2 truncation mutants of the present invention are also useful for the transfer of a glycosyl-polyethyleneglycol ("glycosyl-PEG") conjugate to a polypeptide, also known as "glycoPEGylation" of a polypeptide. Using a purified, refolded Δ51 GalNAcT2-MBP fusion made according to the present invention, it was shown that Δ51 GalNAcT2-MBP is capable of transferring a GalNAc-sialic acid (SA)-30 PEG conjugate to G-CSF.
 - [0241] A glycoPEGylation reaction mixture was prepared in order to glycoPEGylate G-CSF. The reaction mixture contained 5 μ l of Δ 51 GalNAcT2-MBP (20 μ U), 2 μ l of GalNAc-

 α 2,6-sialyltransferase (ST6GalNAcI), 6.25 mM MnCl₂, 15 mM UDP-GalNAc, 0.75 mM CMP-SA-PEG (20K), and between 2 μ l and 10 μ l of 2 mg/ml G-CSF. Gel electrophoresis of the reaction products demonstrated that Δ 51 GalNAcT2-MBP transferred a GalNAc-sialic acid (SA)-PEG conjugate to G-CSF (Figure 9).

- Example 3: Optimization of Purification and Refolding of Δ51 GalNAcT2-MBP
 [0242] Δ51 GalNAcT2 refolding and purification development as set forth herein demonstrates the utility of a two column purification procedure for purification of GalNAcT2 mutants. The use of Q Sepharose Fast Flow in binding mode and Q Sepharose XL in binding and flow through mode as an initial purification step has been explored. Q Sepharose XL in flow through mode using a NaCl concentration of 100mM in the load led to best recovery and purity of active Δ51 GalNAcT2-MBP. The use of Hydroxyapatite Type I has been considered as a second column step. Initial data indicate Δ51 GalNAcT2-MBP binds to this resin and can be eluted as an active enzyme with a phosphate gradient.
- [0243] Δ51 GalNAcT2-MBP was cloned and expressed as set forth elsewhere herein. To produce double-washed inclusion bodies (DWIBs) containing the expressed Δ51 GalNAcT2-MBP, harvested cell pellet was resuspended in 10mM Tris/5mM EDTA pH 7.5 (5mL/g cells) and lysed in two passes using a microfluidizer at 12,000psi. Inclusion bodies were harvested by centrifugation at 6,000 rpm for 20 min in a Sorvall RC-3B. The pellet was washed twice by resuspension in above buffer at 5mL/g pellet followed by centrifugation at 6,000 RPM for 20min. DWIBs were aliquoted and stored at -20°C.
 - [0244] Initial studies indicated that urea solubilization leads to higher $\Delta 51$ GalNAcT2-MBP activities of refolded material than does guanidine hydrochloride solubilization. Therefore, $\Delta 51$ GalNAcT2-MBP was solubilized in 7M urea/ 50mM Tris/ 10mM DTT/ 5mM EDTA pH 8.0 for all subsequent experiments.
- 1. Refolding experiments pH scout
 [0245] A pH scout was performed to identify the best pH for Δ51 GalNAcT2-MBP refolding.

Table 11: Reaction parameters for pH scouting of $\Delta 51$ GalNAcT2-MBP refolding conditions

Sample ref. no.:	1b	1a	2a	2b	3
MES (mM)	50	50			
Tris (mM)	_		50	50	50
L-Arginine (mM)	550	550	550	550	550
NaCl (mM)	250	250	250	250	10
KCl (mM)	10	10	10	10	
PEG 3350 (%)	0.05	0.05	0.05	0.05	0.05
L-cysteine (mM)	4	4	4	4	4
L-cystamine dihydrochloride (mM)	1	1	1	1	1
MnCl ₂ (mM)					11
pН	5.5	6.5	8.0	8.5	8.0

[0246] Δ51 GalNAcT2-MBP refolds were performed by solubilizing 2.5g of DWIB's in 250 mL of 7M urea/ 50mM Tris/ 10mM DTT/ 5mM EDTA pH 8.0 at 4°C. 50mL solubilized Δ51 GalNAcT2-MBP DWIB's were added to 1L of refold buffer at 4°C while stirring (21-fold dilution – 0.5mg/mL). Refolding was allowed to proceed for 20.5h at 4°C with stirring.

5

10

15

20

[0247] Refolds were filtered using a Cuno Zeta Plus BioCap (Cuno, Meriden, CT), concentrated 4-fold and diafiltered on a 1 ft2 30kDa MWCO TFF (regenerated cellulose) filter at constant volume with 5 diavolumes of 10mM Tris/5mM NaCl pH 8.

[0248] Concentrated and diafiltered refolds were loaded onto a pre-equilibrated 48mL Q Sepharose Fast Flow column (Amersham Biosciences, Piscataway, NJ) and washed with 2 column volumes (CVs) of low salt buffer (10mM Tris/5mM NaCl pH 8.0). Protein was eluted with a 15CV gradient from 0 to 50% high salt buffer (10mM Tris/1M NaCl pH 8.0) followed by a 1CV gradient to 100% high salt buffer. The column was regenerated with 0.5M NaOH.

[0249] The highest $\Delta 51$ GalNAcT2-MBP activity was achieved using refold 2a conditions (pH 8.0) in combination with urea solubilization. Active $\Delta 51$ GalNAcT2-MBP eluted early during QSFF elution. The 1L refold yielded a total of 420mU $\Delta 51$ GalNAcT2-MBP.

[0250] Additional refolding conditions for Δ51 GalNAcT2-MBP were screened. Refolding buffer containing 55 mM MES pH 6.5, 264 mM NaCl, 11 mM KCl, 0.055% PEG 3350 and 550 mM L-Arginine and refolding buffer containing 55 mM Tris-HCl pH 8.0, 10.56 mM NaCl, 0.44 mM KCl, 0.055% PEG 3350 and 550 mM L-arginine were screened. Four conditions were screened using the two buffers, namely, solubilization at pH 6.5 followed by refolding at pH 6.5, solubilization at pH 6.5 followed by refolding at pH 8.0, solubilization at

pH 8.0 followed by refolding at pH 6.5, and solubilization at pH 8.0 followed by refolding at pH 8.0. Assays of Δ 51 GalNAcT2-MBP refolded under all four conditions demonstrated enzymatic activity, the ability to transfer GalNAc to GCSF.

2. \(\Delta 51 \) GalNAcT2-MBP Purification

5

10

15

20

25

- [0251] The use of Q Sepharose Fast Flow (QSFF) and Q Sepharose XL (QXL) (Amersham Biosciences, Piscataway, NJ) in Δ51 GalNAcT2-MBP purification was examined. QSFF was used in binding mode. For this purpose, concentrated diafiltered Δ51 GalNAcT2-MBP refolds (in 10mM Tris/5mM NaCl pH 8.0 A) were applied onto a pre-equilibrated 50mL QSFF column and eluted using a gradient from 10mM Tris/5mM NaCl pH 8.0 to 50% 10mM Tris/1M NaCl pH 8.0 (B) over 15 CV, followed by a second gradient from 50 to 100% B over 1CV.
 - [0252] QXL was used in binding and in flow through mode. The NaCl concentration in the concentrated diafiltered $\Delta 51$ GalNAcT2-MBP refold material (40mL each = 160mL refold volume) was adjusted to 5, 50, 100, and 200mM NaCl prior to application onto a 3.9mL QXL column. The column was washed with 2CV and bound protein was eluted with a 30CV gradient from A to B.
 - [0253] $\Delta 51$ GalNAcT2-MBP bound tightly to QSFF resin under above conditions with 5mM NaCl in load and equilibration buffers. Active $\Delta 51$ GalNAcT2-MBP eluted at the beginning of the major peak and appears as a doublet on a nonreduced 4-20% Tris-glycine gel. The major contaminant is a currently unidentified band running at a slightly lower molecular weight close to the 98kDa marker band. A variety of other contaminants elute with inactive $\Delta 51$ GalNAcT2-MBP in the remainder of the major peak.
 - [0254] Δ 51 GalNAcT2-MBP bound tightly to QXL resin if the same conditions as for QSFF binding were applied (i.e. 5mM NaCl). Increasing Δ 51 GalNAcT2-MBP activity was observed in flow through and wash at higher NaCl concentrations in the load. Interestingly, the major contaminating band observed in QSFF purification was not visible in the flow through if the load contained 50 and 100mM NaCl. At both NaCl concentrations the majority of active Δ 51 GalNAcT2-MBP could be found in flow through and wash; only some residual Δ 51 GalNAcT2-MBP activity was detected in the left shoulder of the elution peak. As observed with QSFF resin, the bulk of contaminating bands was observed in the major elution peak. Although the majority of active Δ 51 GalNAcT2-MBP was located in the flow through if the salt concentration of the load was adjusted to 200mM, no significant

purification was achieved under this condition. In conclusion, optimum NaCl concentration for the use of QXL in FT mode would be higher than 50mM NaCl, but below 200mM NaCl. On the basis of these data, 100mM NaCl is a suitable concentration in the load and in the equilibration buffer in order to use the anion exchange resin in flowthrough mode.

- [0255] Hydroxyapatite Type I (80μm) (BioRad, Hercules, CA) was examined as a second column step. Active Δ51 GalNAcT2-MBP partially purified over QSFF (using bind and elute mode) was used to investigate if active Δ51 GalNAcT2-MBP would bind to an HA Type I resin and would be useful to further purify the protein. For this purpose, a 2.25 mL HA Type I column was pre-equilibrated with 5mM NaPO4/5mM NaCl pH 7.0 (C). Active Δ51
 GalNAcT2-MBP eluted from QSFF was adjusted to pH 7.0 with 1M HCl and applied onto the HA Type I column. The protein was eluted using a 20 CV gradient from 0-50% 300mM NaPO4/5mM NaCl pH 7.0 (D), followed by a 5 CV gradient from 50-100% D. The column was regenerated using 0.5M NaOH. The data obtained indicate that Δ51 GalNAcT2-MBP binds to hydroxyapatite type I resin and can be eluted as an active enzyme.
- 15 **[0256]** The disclosures of each and every patent, patent application, and publication cited herein are hereby incorporated herein by reference in their entirety.

20

[0257] While this invention has been disclosed with reference to specific embodiments, it is apparent that other embodiments and variations of this invention may be devised by others skilled in the art without departing from the true spirit and scope of the invention. The appended claims are intended to be construed to include all such embodiments and equivalent variations.

SEQUENCE LISTING

5	<110>	Johr	se Technolog nson, Karl n, Xi	gies, Inc.										
	<120>	Trun	ncated GalNA	CT2 Polyper	otides and N	Nucleic Acid	ds							
10	<130>	0408	353-01-5149E	PR										
10	<160>	16												
	<170>	Pate	entIn versio	on 3.2										
15	<210><211><212><213>	211> 1713 212> DNA 213> human												
20	<220> <221> <223>	20> 21> misc_feature												
	<400>	1	gctcgcggat	aataatataa	ttagaattaa	tataaataat	aaacataaca	60						
25			actcgggggg					120						
								180						
30			actggaatga aagcacaaag					240						
30								300						
			aagcttatgt					360						
35			tcaaccaggt					420						
			accagtgtca					480						
40			ttcacaatga					540						
40			cgccccatct											
			gggctctctt					600						
45							caaggtcctg	660						
			acagtcactg					720						
7.0			acaggactcg					780						
50			tgggggcatc					840						
	aagtgg	gatt	acatgacgcc	tgagcagaga	aggtcccggc	aggggaaccc	agtcgcccct	900						
55	ataaaa	accc	ccatgattgc	tggtgggctg	tttgtgatgg	ataagttcta	ttttgaagaa	960						
	ctgggg	aagt	acgacatgat	gatggatgtg	tggggaggag	agaacctaga	gatctcgttc	1020						
	cgcgtg	tggc	agtgtggtgg	cagcctggag	atcatcccgt	gcagccgtgt	gggacacgtg	1080						
60	ttccgg	aagc	agcaccccta	cacgttcccg	ggtggcagtg	gcactgtctt	tgcccgaaac	1140						

	acccgccggg cagcagaggt ctggatggat gaatacaaaa atttctatta tgcagcagtg	1200
	ccttctgcta gaaacgttcc ttatggaaat attcagagca gattggagct taggaagaaa	1260
5	ctcagctgca agcctttcaa atggtacctt gaaaatgtct atccagagtt aagggttcca	1320
	gaccatcagg atatagettt tggggeettg cagcagggaa ctaactgeet cgacactttg	1380
10	ggacactttg ctgatggtgt ggttggagtt tatgaatgtc acaatgctgg gggaaaccag	1440
10	gaatgggcct tgacgaagga gaagtcggtg aagcacatgg atttgtgcct tactgtggtg	1500
	gaccgggcac cgggctctct tataaagctg cagggctgcc gagaaaatga cagcagacag	1560
15	aaatgggaac agatcgaggg caactccaag ctgaggcacg tgggcagcaa cctgtgcctg	1620
	gacagtegea eggecaagag egggggeeta agegtggagg tgtgtggeee ggeeettteg	1680
20	cagcagtgga agttcacgct caacctgcag cag	1713
25	<210> 2 <211> 571 <212> PRT <213> human <220> <221> MISC_FEATURE <223> wild-type GalNAcT2	
30	<400> 2	
	Met Arg Arg Arg Ser Arg Met Leu Leu Cys Phe Ala Phe Leu Trp Val 1 5 10 15	
35	Leu Gly Ile Ala Tyr Tyr Met Tyr Ser Gly Gly Gly Ser Ala Leu Ala 20 25 30	
40	Gly Gly Ala Gly Gly Ala Gly Arg Lys Glu Asp Trp Asn Glu Ile 35 40 45	
40	Asp Pro Ile Lys Lys Lys Asp Leu His His Ser Asn Gly Glu Glu Lys 50 55	
45	Ala Gln Ser Met Glu Thr Leu Pro Pro Gly Lys Val Arg Trp Pro Asp 70 75 80	
	Phe Asn Gln Glu Ala Tyr Val Gly Gly Thr Met Val Arg Ser Gly Gln 85 90 95	
50	Asp Pro Tyr Ala Arg Asn Lys Phe Asn Gln Val Glu Ser Asp Lys Leu 100 105 110	
c.c	Arg Met Asp Arg Ala Ile Pro Asp Thr Arg His Asp Gln Cys Gln Arg	
55	Lys Gln Trp Arg Val Asp Leu Pro Ala Thr Ser Val Val Ile Thr Phe 130 135 140	
60	His Asn Glu Ala Arg Ser Ala Leu Leu Arg Thr Val Val Ser Val Leu 145 150 155 160	

	Lys	Lys	Ser	Pro	Pro 165	His	Leu	Ile	Lys	Glu 170	Ile	Ile	Leu	Val	Asp 175	Asp
5	Tyr	Ser	Asn	Asp 180	Pro	Glu	Asp	Gly	Ala 185	Leu	Leu	Gly	Lys	Ile 190	Glu	Lys
	Val	Arg	Val 195	Leu	Arg	Asn	Asp	Arg 200	Arg	Glu	Gly	Leu	Met 205	Arg	Ser	Arg
10	Val	Arg 210	Gly	Ala	Asp	Ala	Ala 215	Gln	Ala	Lys	Val	Leu 220	Thr	Phe	Leu	Asp
15	Ser 225	His	Cys	Glu	Cys	Asn 230	Glu	His	Trp	Leu	Glu 235	Pro	Leu	Leu	Glu	Arg 240
10	Val	Ala	Glu	Asp	Arg 245	Thr	Arg	Val	Val	Ser 250	Pro	Ile	Ile	Asp	Val 255	Ile
20	Asn	Met	Asp	Asn 260	Phe	Gln	Tyr	Val	Gly 265	Ala	Ser	Ala	Asp	Leu 270	Lys	Gly
	Gly	Phe	Asp 275	Trp	Asn	Leu	Val	Phe 280	Lys	Trp	Asp	Tyr	Met 285	Thr	Pro	Glu
25	Gln	Arg 290	Arg	Ser	Arg	Gln	Gly 295	Asn	Pro	Val	Ala	Pro 300	Ile	Lys	Thr	Pro
30	Met 305	Ile	Ala	Gly	Gly	Leu 310	Phe	Val	Met	Asp	Lys 315	Phe	Tyr	Phe	Glu	Glu 320
50	Leu	Gly	Lys	Tyr	Asp 325	Met	Met	Met	Asp	Val 330	Trp	Gly	Gly	Glu	Asn 335	Leu
35	Glu	Ile	Ser	Phe 340	Arg	Val	Trp	Gln	Cys 345	Gly	Gly	Ser	Leu	Glu 350	Ile	Ile
	Pro	Cys	Ser 355	Arg	Val	Gly	His	Val 360	Phe	Arg	Lys	Gln	His 365	Pro	Tyr	Thr
40	Phe	Pro 370	Gly	Gly	Ser	Gly	Thr 375	Val	Phe	Ala	Arg	Asn 380	Thr	Arg	Arg	Ala
45	Ala 385	Glu	Val	Trp	Met	Asp 390	Glu	Tyr	Lys	Asn	Phe 395	Tyr	Tyr	Ala	Ala	Val 400
40	Pro	Ser	Ala	Arg	Asn 405	Val	Pro	Tyr	Gly	Asn 410	Ile	Gln	Ser	Arg	Leu 415	Glu
50	Leu	Arg	Lys	Lys 420	Leu	Ser	Cys	Lys	Pro 425	Phe	Lys	Trp	Tyr	Leu 430	Glu	Asn
	Val	Tyr	Pro 435	Glu	Leu	Arg	Val	Pro 440	Asp	His	Gln	Asp	Ile 445	Ala	Phe	Gly
55	Ala	Leu 450	Gln	Gln	Gly	Thr	Asn 455	Cys	Leu	Asp	Thr	Leu 460	Gly	His	Phe	Ala
60	Asp 465	Gly	Val	Val	Gly	Val 470	Tyr	Glu	Cys	His	Asn 475	Ala	Gly	Gly	Asn	Gln 480
60	Glu	Trp	Ala	Leu	Thr	Lys	Glu	Lys	Ser	Val	Lys	His	Met	Asp	Leu	Cys

		48	5				490					495		
5	Leu Thr Val	l Val As 500	p Arg	Ala	Pro	Gly 505	Ser	Leu	Ile	Lys	Leu 510	Gln	Gly	
3	Cys Arg Gli		p Ser		Gln 520	Lys	Trp	Glu	Gln	Ile 525	Glu	Gly	Asn	
10	Ser Lys Let 530	ı Arg Hi	s Val	Gly 535	Ser	Asn	Leu	Cys	Leu 540	Asp	Ser	Arg	Thr	
	Ala Lys Ser 545	c Gly Gl	y Leu 550	Ser	Val	Glu	Val	Cys 555	Gly	Pro	Ala	Leu	Ser 560	
15	Gln Gln Tr	o Lys Ph 56		Leu	Asn	Leu	Gln 570	Gln						
20 25				2										
	<400> 3 aggaaggagg	actogaa	itaa a	attaa	מממר	: att	aaaa	aga	aaqa	acctt	ca :	tcaca	agcaat	60
30	ggagaagaga													120
	tttaaccagg													180
	cgcaacaagt	tcaacca	ıggt g	gagag	tgat	aag	gatto	gaa	tgga	acaga	agc (catco	cctgac	240
35	acccggcatg	accagto	ıtca g	cggaa	.gcag	ı tgg	geggg	gtgg	atct	gaag	ggc	cacca	agcgtg	300
	gtgatcacgt	ttcacaa	ıtga aç	gccag	gtag	ga g	cctac	ctca	ggad	ccgts	ggt	cagco	gtgctt	360
40	aagaaaagcc	cgcccca	itct ca	ataaa	.agaa	ato	catct	tgg	tgga	atgad	cta ·	cagca	aatgat	420
	cctgaggacg	gggctct	ctt g	gggaa	.aatt	gag	gaaag	gtgc	gagt	tctt	cag	aaato	gatcga	480
45	cgagaaggcc	tcatgcg	jctc a	cgggt	tagg	999	ggccg	gatg	ctgo	cccaa	agc	caagg	gtcctg	540
-1 3	accttcctgg	acagtca	ictg c	gagtg	taat	gag	gcact	ggc	tgga	agcco	cct	cctgg	gaaagg	600
	gtggcggagg	acaggad	etcg g	gttgt	gtca	ı ccc	catca	ıtcg	atgt	catt	caa	tatg	gacaac	660
50	tttcagtatg	tggggg	atc to	gctga	.ctt <u>c</u>	g aag	gggcg	gtt	ttga	attgg	gaa	cttgg	gtattc	720
	aagtgggatt	acatgad	gaa t	gagca	.gaga	agg	gtccc	ggc	aggg	ggaad	ccc .	agtc	gcccct	780
55	ataaaaaccc	ccatgat	tgc t	ggtgg	gctg	, ttt	gtga	atgg	ataa	agtto	cta	ttttg	gaagaa	840
-	ctggggaagt	acgacat	gat g	atgga	tgtg	ı tgg	gggag	ggag	agaa	accta	aga (gatct	cgttc	900
	cgcgtgtggc	agtgtgg	gtgg c	agcct	ggag	g ato	catco	ccgt	gcag	gccgt	gt	gggad	cacgtg	960
60	ttccggaagc	agcacco	cta c	acgtt	acce	ggt	ggca	agtg	gcad	ctgto	tt	tgcc	cgaaac	1020

	accegeeggg cageagaggt etggatggat gaatacaaaa atttetatta tgeageagtg	1080
	ccttctgcta gaaacgttcc ttatggaaat attcagagca gattggagct taggaagaaa	1140
5	ctcagctgca agcctttcaa atggtacctt gaaaatgtct atccagagtt aagggttcca	1200
	gaccatcagg atatagettt tggggeettg cagcagggaa ctaactgeet cgacactttg	1260
10	ggacactttg ctgatggtgt ggttggagtt tatgaatgtc acaatgctgg gggaaaccag	1320
10	gaatgggcct tgacgaagga gaagtcggtg aagcacatgg atttgtgcct tactgtggtg	1380
	gaccgggcac cgggctctct tataaagctg cagggctgcc gagaaaatga cagcagacag	1440
15	aaatgggaac agatcgaggg caactccaag ctgaggcacg tgggcagcaa cctgtgcctg	1500
	gacagtegea eggeeaagag egggggeeta agegtggagg tgtgtggeee ggeeettteg	1560
20	cagcagtgga agttcacgct caacctgcag cag	1593
25	<210> 4 <211> 531 <212> PRT <213> human <220> <221> MISC_FEATURE <223> delta 40 GalNAcT2	
30	<400> 4	
	Arg Lys Glu Asp Trp Asn Glu Ile Asp Pro Ile Lys Lys Lys Asp Leu 1 5 10 15	
35	His His Ser Asn Gly Glu Glu Lys Ala Gln Ser Met Glu Thr Leu Pro 20 25 30	
40	Pro Gly Lys Val Arg Trp Pro Asp Phe Asn Gln Glu Ala Tyr Val Gly 35 40 45	
40	Gly Thr Met Val Arg Ser Gly Gln Asp Pro Tyr Ala Arg Asn Lys Phe 50 55 60	
45	Asn Gln Val Glu Ser Asp Lys Leu Arg Met Asp Arg Ala Ile Pro Asp 65 70 75 80	
	Thr Arg His Asp Gln Cys Gln Arg Lys Gln Trp Arg Val Asp Leu Pro 85 90 95	
50	Ala Thr Ser Val Val Ile Thr Phe His Asn Glu Ala Arg Ser Ala Leu 100 105 110	
55	Leu Arg Thr Val Val Ser Val Leu Lys Lys Ser Pro Pro His Leu Ile 115 120 125	
55	Lys Glu Ile Ile Leu Val Asp Asp Tyr Ser Asn Asp Pro Glu Asp Gly 130 135 140	
60	Ala Leu Leu Gly Lys Ile Glu Lys Val Arg Val Leu Arg Asn Asp Arg 145 150 155 160	

	Arg	Glu	Gly	Leu	Met 165	Arg	Ser	Arg	Val	Arg 170	Gly	Ala	Asp	Ala	Ala 175	Gln
5	Ala	Lys	Val	Leu 180	Thr	Phe	Leu	Asp	Ser 185	His	Cys	Glu	Cys	Asn 190	Glu	His
	Trp	Leu	Glu 195	Pro	Leu	Leu	Glu	Arg 200	Val	Ala	Glu	Asp	Arg 205	Thr	Arg	Val
10	Val	Ser 210	Pro	Ile	Ile	Asp	Val 215	Ile	Asn	Met	Asp	Asn 220	Phe	Gln	Tyr	Val
15	Gly 225	Ala	Ser	Ala	Asp	Leu 230	Lys	Gly	Gly	Phe	Asp 235	Trp	Asn	Leu	Val	Phe 240
13	Lys	Trp	Asp	Tyr	Met 245	Thr	Pro	Glu	Gln	Arg 250	Arg	Ser	Arg	Gln	Gly 255	Asn
20	Pro	Val	Ala	Pro 260	Ile	Lys	Thr	Pro	Met 265	Ile	Ala	Gly	Gly	Leu 270	Phe	Val
	Met	Asp	Lys 275	Phe	Tyr	Phe	Glu	Glu 280	Leu	Gly	Lys	Tyr	Asp 285	Met	Met	Met
25	Asp	Val 290	Trp	Gly	Gly	Glu	Asn 295	Leu	Glu	Ile	Ser	Phe 300	Arg	Val	Trp	Gln
30	Сув 305	Gly	Gly	Ser	Leu	Glu 310	Ile	Ile	Pro	Cys	Ser 315	Arg	Val	Gly	His	Val 320
50	Phe	Arg	Lys	Gln	His 325	Pro	Tyr	Thr	Phe	Pro 330	Gly	Gly	Ser	Gly	Thr 335	Val
35	Phe	Ala	Arg	Asn 340	Thr	Arg	Arg	Ala	Ala 345	Glu	Val	Trp	Met	Asp 350	Glu	Tyr
	Lys	Asn	Phe 355	Tyr	Tyr	Ala	Ala	Val 360	Pro	Ser	Ala	Arg	Asn 365	Val	Pro	Tyr
40	Gly	Asn 370	Ile	Gln	Ser	Arg	Leu 375	Glu	Leu	Arg	ГЛа	Lys 380	Leu	Ser	Cys	Lys
45	Pro 385	Phe	ГЛЗ	Trp	Tyr	Leu 390	Glu	Asn	Val	Tyr	Pro 395	Glu	Leu	Arg	Val	Pro 400
43	Asp	His	Gln	Asp	Tle 405	Ala	Phe	Gly	Ala	Leu 410	Gln	Gln	Gly	Thr	Asn 415	Cys
50	Leu	Asp	Thr	Leu 420	Gly	His	Phe	Ala	Asp 425	Gly	Val	Val	Gly	Val 430	Tyr	Glu
	Cys	His	Asn 435	Ala	Gly	Gly	Asn	Gln 440	Glu	Trp	Ala	Leu	Thr 445	Lys	Glu	Lys
55	Ser	Val 450	Lys	His	Met	Asp	Leu 455	Cys	Leu	Thr	Val	Val 460	Asp	Arg	Ala	Pro
60	Gly 465	Ser	Leu	Ile	Lys	Leu 470	Gln	Gly	Cys	Arg	Glu 475	Asn	Asp	Ser	Arg	Gln 480
00	Lys	Trp	Glu	Gln	Ile	Glu	Gly	Asn	Ser	Lys	Leu	Arg	His	Val	Gly	Ser

495 485 490 Asn Leu Cys Leu Asp Ser Arg Thr Ala Lys Ser Gly Gly Leu Ser Val 510 500 505 5 Glu Val Cys Gly Pro Ala Leu Ser Gln Gln Trp Lys Phe Thr Leu Asn 515 520 525 Leu Gln Gln 10 530 <210> 5 <211> 1560 15 <212> DNA <213> human <220> <221> misc feature <223> delta 51 GalNAcT2 20 <400> 5 aaaaagaaag accttcatca cagcaatgga gaagagaaag cacaaagcat ggagaccctc 60 cctccaggga aagtacggtg gccagacttt aaccaggaag cttatgttgg agggacgatg 120 25 gtccgctccg ggcaggaccc ttacgcccgc aacaagttca accaggtgga gagtgataag 180 cttcgaatgg acagagccat ccctgacacc cggcatgacc agtgtcagcg gaagcagtgg 240 30 cgggtggatc tgccggccac cagcgtggtg atcacgtttc acaatgaagc caggtcggcc 300 ctactcagga ccgtggtcag cgtgcttaag aaaagcccgc cccatctcat aaaagaaatc 360 atcttggtgg atgactacag caatgatcct gaggacgggg ctctcttggg gaaaattgag 420 35 480 aaagtgcgag ttcttagaaa tgatcgacga gaaggcctca tgcgctcacg ggttcggggg gccgatgctg cccaagccaa ggtcctgacc ttcctggaca gtcactgcga gtgtaatgag 540 40 cactggctgg agcccctcct ggaaagggtg gcggaggaca ggactcgggt tgtgtcaccc 600 atcatcgatg tcattaatat ggacaacttt cagtatgtgg gggcatctgc tgacttgaag 660 ggcggttttg attggaactt ggtattcaag tgggattaca tgacgcctga gcagagaagg 720 45 teceggeagg ggaacceagt egeceetata aaaaccecca tgattgetgg tgggetgttt 780 gtgatggata agttctattt tgaagaactg gggaagtacg acatgatgat ggatgtgtgg 840 50 ggaggagaga acctagagat ctcgttccgc gtgtggcagt gtggtggcag cctggagatc 900 atcccgtgca gccgtgtggg acacgtgttc cggaagcagc acccctacac gttcccgggt 960 ggcagtggca ctgtctttgc ccgaaacacc cgccgggcag cagaggtctg gatggatgaa 1020 55 tacaaaaatt tctattatgc agcagtgcct tctgctagaa acgttcctta tggaaatatt 1080 cagagcagat tggagcttag gaagaaactc agctgcaagc ctttcaaatq gtaccttgaa 1140 60 aatgtctatc cagagttaag ggttccagac catcaggata tagcttttgg ggccttgcag 1200

	cago	ggaac	cta a	ectgo	ctcg	ja ca	cttt	:ggga	ı cac	tttg	ıctg	atgg	ıtgtg	ıgt t	ggag	ıtttat
	gaat	gtca	aca a	atgct	.9999	g aa	acca	ıggaa	ı tgç	gcct	tga	cgaa	ıggaç	gaa g	gtagg	gtgaag
5	caca	atgga	att t	gtgc	ctta	ac to	jtggt	ggad	cgg	gcac	cgg	gcto	ctctt	at a	aago	tgcag
	ggct	geeg	gag a	aaat	gaca	ıg ca	ıgaca	ıgaaa	ı tgg	gaac	aga	tcga	gggc	aa c	ctcca	agctg
10	aggo	cacgt	gg 9	gcago	aacc	ct gt	gcct	ggad	agt:	cgca	cgg	ccaa	ıgago	gg s	gggc	ctaagc
10	gtgg	gaggt	gt g	gtggc	ccgc	ga ad	ettte	gcag	g cag	jtgga	agt	tcac	gcto	caa c	ctgo	agcag
15	<210 <211 <212 <213 <220	L> 5 2> E 3> h	520 PRT numar													,
20	<223		_	_FEAT a 51		IAcT2	2									
	<400)> 6	5													
25	Lys 1	Lys	Lys	Asp	Leu 5	His	His	Ser	Asn	Gly 10	Glu	Glu	Lys	Ala	Gln 15	Ser
	Met	Glu	Thr	Leu 20	Pro	Pro	Gly	Lys	Val 25	Arg	Trp	Pro	Asp	Phe 30	Asn	Gln
30	Glu	Ala	Tyr 35	Val	Gly	Gly	Thr	Met 40	Val	Arg	Ser	Gly	Gln 45	Asp	Pro	Tyr
35	Ala	Arg 50	Asn	Lys	Phe	Asn	Gln 55	Val	Glu	Ser	Asp	60 Lys	Leu	Arg	Met	Asp
33	Arg 65	Ala	Ile	Pro	Asp	Thr 70	Arg	His	Asp	Gln	Cys 75	Gln	Arg	Lys	Gln	Trp 80
40	Arg	Val	Asp	Leu	Pro 85	Ala	Thr	Ser	Val	Val 90	Ile	Thr	Phe	His	Asn 95	Glu
	Ala	Arg	Ser	Ala 100	Leu	Leu	Arg	Thr	Val 105	Val	Ser	Val	Leu	Lys 110	Lys	Ser
45	Pro	Pro	His 115	Leu	Ile	Lys	Glu	Ile 120	Ile	Leu	Val	Asp	Asp 125	Tyr	Ser	Asn
50	Asp	Pro 130	Glu	Asp	Gly	Ala	Leu 135	Leu	Gly	Lys	Ile	Glu 140	Lys	Val	Arg	Val
	Leu 145	Arg	Asn	Asp	Arg	Arg 150	Glu	Gly	Leu	Met	Arg 155	Ser	Arg	Val	Arg	Gly 160
55	Ala	Asp	Ala	Ala	Gln 165	Ala	Lys	Val.	Leu	Thr 170	Phe	Leu	Asp	Ser	His 175	Cys
	Glu	Cys	Asn	Glu 180	His	Trp	Leu	Glu	Pro 185	Leu	Leu	Glu	Arg	Val 190	Ala	Glu
60	Asp	Arg	Thr 195	Arg	Val	Val	Ser	Pro 200	Ile	Ile	Asp	Val	Ile 205	Asn	Met	Asp

	Asn	Phe 210	Gln	Tyr	Val	Gly	Ala 215	Ser	Ala	Asp	Leu	Lys 220	Gly	Gly	Phe	Asp
5	Trp 225	Asn	Leu	Val	Phe	Lys 230	Trp	Asp	Tyr	Met	Thr 235	Pro	Glu	Gln	Arg	Arg 240
10	Ser	Arg	Gln	Gly	Asn 245	Pro	Val	Ala	Pro	Ile 250	Lys	Thr	Pro	Met	Ile 255	Ala
	Gly	Gly	Leu	Phe 260	Val	Met	Asp	Lys	Phe 265	Tyr	Phe	Glu	Glu	Leu 270	Gly	Lys
15	Tyr	Asp	Met 275	Met	Met	Asp	Val	Trp 280	Gly	Gly	Glu	Asn	Leu 285	Glu	Ile	Ser
	Phe	Arg 290	Val	Trp	Gln	Cys	Gly 295	Gly	Ser	Leu	Glu	Ile 300	Ile	Pro	Cys	Ser
20	Arg 305	Val	Gly	His	Val	Phe 310	Arg	Lys	Gln	His	Pro 315	Tyr	Thr	Phe	Pro	Gly 320
25	Gly	Ser	Gly	Thr	Val 325	Phe	Ala	Arg	Asn	Thr 330	Arg	Arg	Ala	Ala	Glu 335	Val
	Trp	Met	Asp	Glu 340	Tyr	Lys	Asn	Phe	Туr 345	Tyr	Ala	Ala	Val	Pro 350	Ser	Ala
30	Arg	Asn	Val 355	Pro	Tyr	Gly	Asn	Ile 360	Gln	Ser	Arg	Leu	Glu 365	Leu	Arg	Lys
	Lys	Leu 370	Ser	Cys	Lys	Pro	Phe 375	Lys	Trp	Tyr	Leu	Glu 380	Asn	Val	Tyr	Pro
35	Glu 385	Leu	Arg	Val	Pro	Asp 390	His	Gln	Asp	Ile	Ala 395	Phe	Gly	Ala	Leu	Gln 400
40	Gln	Gly	Thr	Asn	Cys 405	Leu	Asp	Thr	Leu	Gly 410	His	Phe	Ala	Asp	Gly 415	Val
	Val	Gly	Val	Tyr 420	Glu	Cys	His	Asn	Ala 425	Gly	Gly	Asn	Gln	Glu 430	Trp	Ala
45	Leu	Thr	Lys 435	Glu	Lys	Ser	Val	Lys 440	His	Met	Asp	Leu	Cys 445	Leu	Thr	Val
	Val	Asp 450	Arg	Ala	Pro	Gly	Ser 455	Leu	Ile	Lys	Leu	Gln 460	Gly	Cys	Arg	Glu
50	Asn 465	Asp	Ser	Arg	Gln	Lys 470	Trp	Glu	Gln	Ile	Glu 475	Gly	Asn	Ser	Lys	Leu 480
55	Arg	His	Val	Gly	Ser 485	Asn	Leu	Cys	Leu	Asp 490	Ser	Arg	Thr	Ala	Lys 495	Ser
	Gly	Gly	Leu	Ser 500	Val	Glu	Val	Cys	Gly 505	Pro	Ala	Leu	Ser	Gln 510	Gln	Trp
60	Lys	Phe	Thr 515	Leu	Asn	Leu	Gln	Gln 520								

5	<210> 7 <211> 1494 <212> DNA <213> human <220> <221> misc_feature <223> delta 73 GalNAcT2												
10	<400> 7 gggaaagtac	ggtggccaga	ctttaaccag	gaagcttatg	ttggagggac	gatggtccgc	60						
	tccgggcagg	acccttacgc	ccgcaacaag	ttcaaccagg	tggagagtga	taagcttcga	120						
15	atggacagag	ccatccctga	cacccggcat	gaccagtgtc	agcggaagca	gtggcgggtg	180						
	gatctgccgg	ccaccagcgt	ggtgatcacg	tttcacaatg	aagccaggtc	ggccctactc	240						
20	aggaccgtgg	tcagcgtgct	taagaaaagc	ccgccccatc	tcataaaaga	aatcatcttg	300						
20	gtggatgact	acagcaatga	tcctgaggac	ggggctctct	tggggaaaat	tgagaaagtg	360						
	cgagttctta	gaaatgatcg	acgagaaggc	ctcatgcgct	cacgggttcg	gggggccgat	420						
25	gctgcccaag	ccaaggtcct	gaccttcctg	gacagtcact	gcgagtgtaa	tgagcactgg	480						
30	ctggagcccd	tcctggaaag	ggtggcggag	gacaggactc	gggttgtgtc	acccatcatc	540						
	gatgtcatta	atatggacaa	ctttcagtat	gtgggggcat	ctgctgactt	gaagggcggt	600						
20	tttgattgga	acttggtatt	caagtgggat	tacatgacgc	ctgagcagag	aaggtcccgg	660						
	caggggaacc	cagtcgcccc	tataaaaacc	cccatgattg	ctggtgggct	gtttgtgatg	720						
35	gataagttct	attttgaaga	actggggaag	tacgacatga	tgatggatgt	gtggggagga	780						
	gagaacctag	agatctcgtt	ccgcgtgtgg	cagtgtggtg	gcagcctgga	gatcatcccg	840						
40	tgcagccgtg	tgggacacgt	gttccggaag	cagcacccct	acacgttccc	gggtggcagt	900						
	ggcactgtct	ttgcccgaaa	cacccgccgg	gcagcagagg	tctggatgga	tgaatacaaa	960						
	aatttctatt	atgcagcagt	gccttctgct	agaaacgttc	cttatggaaa	tattcagagc	1020						
45	agattggagc	ttaggaagaa	actcagctgc	aagcctttca	aatggtacct	tgaaaatgtc	1080						
	tatccagagt	taagggttcc	agaccatcag	gatatagctt	ttggggcctt	gcagcaggga	1140						
50	actaactgcc	tcgacacttt	gggacacttt	gctgatggtg	tggttggagt	ttatgaatgt	1200						
	cacaatgctg	ggggaaacca	ggaatgggcc	ttgacgaagg	agaagtcggt	gaagcacatg	1260						
	gatttgtgcc	ttactgtggt	ggaccgggca	ccgggctctc	ttataaagct	gcagggctgc	1320						
55	cgagaaaatg	acagcagaca	gaaatgggaa	cagatcgagg	gcaactccaa	gctgaggcac	1380						
	gtgggcagca	acctgtgcct	ggacagtcgc	acggccaaga	gcgggggcct	aagcgtggag	1440						
60	gtgtgtggcc	cggccctttc	gcagcagtgg	aagttcacgc	tcaacctgca	gcag	1494						

5	<210> 8 <211> 498 <212> PRT <213> human <220> <221> MISC_FEATURE <223> delta 73 GalNAcT2															
10	<400>		8													
	Gly 1	ГÀЗ	Val	Arg	Trp 5	Pro	Asp	Phe	Asn	Gln 10	Glu	Ala	Tyr	Val	Gly 15	Gly
15	Thr	Met	Val	Arg 20	Ser	Gly	Gln	Asp	Pro 25	Tyr	Ala	Arg	Asn	Tys	Phe	Asn
	Gln	Val	Glu 35	Ser	Asp	Lys	Leu	Arg 40	Met	Asp	Arg	Ala	Ile 45	Pro	Asp	Thr
20	Arg	His 50	Asp	Gln	Cys	Gln	Arg 55	Lys	Gln	Trp	Arg	Val 60	Asp	Leu	Pro	Ala
25	Thr 65	Ser	Val	Val	Ile	Thr 70	Phe	His	Asn	Glu	Ala 75	Arg	Ser	Ala	Leu	Leu 80
	Arg	Thr	Val	Val	Ser 85	Val	Leu	Lys	Lys	Ser 90	Pro	Pro	His	Leu	Ile 95	Lys
30	Glu	Ile	Ile	Leu 100	Val	Asp	Asp	Tyr	Ser 105	Asn	Asp	Pro	Glu	Asp 110	Gly	Ala
	Leu	Leu	Gly 115	Lys	Ile	Glu	Lys	Val 120	Arg	Val	Leu	Arg	Asn 125	Asp	Arg	Arg
35	Glu	Gly 130	Leu	Met	Arg	Ser	Arg 135	Val	Arg	Gly	Ala	Asp 140	Ala	Ala	Gln	Ala
40	Lys 145	Val	Leu	Thr	Phe	Leu 150	Asp	Ser	His	Cys	Glu 155	Cys	Asn	Glu	His	Trp 160
	Leu	Glu	Pro	Leu	Leu 165	Glu	Arg	Val	Ala	Glu 170	Asp	Arg	Thr	Arg	Val 175	Val
45	Ser	Pro	Ile	Ile 180	Asp	Val	Ile	Asn	Met 185	Asp	Asn	Phe	Gln	Tyr 190	Val	Gly
	Ala	Ser	Ala 195	Asp	Leu	Lys	Gly	Gly 200	Phe	Asp	Trp	Asn	Leu 205	Val	Phe	Lys
50	Trp	Asp 210	Tyr	Met	Thr	Pro	Glu 215	Gln	Arg	Arg	Ser	Arg 220	Gln	Gly	Asn	Pro
55	Val 225	Ala	Pro	Ile	Lys	Thr 230	Pro	Met	Ile	Ala	Gly 235	Gly	Leu	Phe	Val	Met 240
	Asp	Lys	Phe	Tyr	Phe 245	Glu	Glu	Leu	Gly	Lys 250	Tyr	Asp	Met	Met	Met 255	Asp
60	Val	Trp	Gly	Gly 260	Glu	Asn	Leu	Glu	Ile 265	Ser	Phe	Arg	Val	Trp 270	Gln	Cys

	GTÀ	GTA	Ser 275	Leu	Glu	Ile	Ile	Pro 280	Cys	Ser	Arg	Val	Gly 285	His	Val	Pne	
5	Arg	Lys 290	Gln	His	Pro	Tyr	Thr 295	Phe	Pro	Gly	Gly	Ser 300	Gly	Thr	Val	Phe	
	Ala 305	Arg	Asn	Thr	Arg	Arg 310	Ala	Ala	Glu	Val	Trp 315	Met	Asp	Glu	Tyr	Lys 320	
10	Asn	Phe	Tyr	Tyr	Ala 325	Ala	Val	Pro	Ser	Ala 330	Arg	Asn	Val	Pro	Tyr 335	Gly	
15	Asn	Ile	Gln	Ser 340	Arg	Leu	Glu	Leu	Arg 345	Lys	Lys	Leu	Ser	Cys 350	Lys	Pro	
13	Phe	Lys	Trp 355	Tyr	Leu	Glu	Asn	Val 360	Tyr	Pro	Glu	Leu	Arg 365	Val	Pro	Asp	
20	His	Gln 370	Asp	Ile	Ala	Phe	Gly 375	Ala	Leu	Gln	Gln	Gly 380	Thr	Asn	Cys	Leu	
	Asp 385	Thr	Leu	Gly	His	Phe 390	Ala	Asp	Gly	Val	Val 395	Gly	Val	Tyr	Glu	Cys 400	
25	His	Asn	Ala	Gly	Gly 405	Asn	Gln	Glu	Trp	Ala 410	Leu	Thr	Lys	Glu	Lys 415	Ser	
30	Val	Lys	His	Met 420	Asp	Leu	Cys	Leu	Thr 425	Val	Val	Asp	Arg	Ala 430	Pro	Gly	
50	Ser	Leu	Ile 435	Lys	Leu	Gln	Gly	Cys 440	Arg	Glu	Asn	Asp	<i>S</i> er 445	Arg	Gln	Lys	
35	Trp	Glu 450	Gln	Ile	Glu	Gly	Asn 455	Ser	Lys	Leu	Arg	His 460	Val	Gly	Ser	Asn	
	Leu 465	Cys	Leu	Asp	Ser	Arg 470	Thr	Ala	Lys	Ser	Gly 475	Gly	Leu	Ser	Val	Glu 480	
40	Val	Cys	Gly	Pro	Ala 485	Leu	Ser	Gln	Gln	Trp 490	Lys	Phe	Thr	Leu	Asn 495	Leu	
45	Gln	Gln															
7.0																	
50	<210 <211 <212 <213	L> 1 ?> E	9 L431 DNA numar	1													
	<220 <221 <223	L> n	nisc_ lelta			IAcT2	2										
55	<400 gggc			ttac	gccc	g ca	ıacaa	gtto	c aac	cago	gtgg	agag	gtgat	aa 🤉	gctto	gaatg	60
	gaca	ıgago	ca t	ccct	gaca	c cc	ggca	itgad	cag	gtgto	cagc	ggaa	agcag	jtg 9	gcggg	gtggat	120
60																tcagg	180

71

	accgtggtca	gcgtgcttaa	gaaaagcccg	ccccatctca	taaaagaaat	catcttggtg	240
	gatgactaca	gcaatgatcc	tgaggacggg	gctctcttgg	ggaaaattga	gaaagtgcga	300
5	gttcttagaa	atgatcgacg	agaaggcctc	atgcgctcac	gggttcgggg	ggccgatgct	360
	gcccaagcca	aggtcctgac	cttcctggac	agtcactgcg	agtgtaatga	gcactggctg	420
10	gagcccctcc	tggaaagggt	ggcggaggac	aggactcggg	ttgtgtcacc	catcatcgat	480
10	gtcattaata	tggacaactt	tcagtatgtg	ggggcatctg	ctgacttgaa	gggcggtttt	540
	gattggaact	tggtattcaa	gtgggattac	atgacgcctg	agcagagaag	gtcccggcag	600
15	gggaacccag	tcgcccctat	aaaaaccccc	atgattgctg	gtgggctgtt	tgtgatggat	660
	aagttctatt	ttgaagaact	ggggaagtac	gacatgatga	tggatgtgtg	gggaggagag	720
20	aacctagaga	tctcgttccg	cgtgtggcag	tgtggtggca	gcctggagat	catcccgtgc	780
20	agccgtgtgg	gacacgtgtt	ccggaagcag	cacccctaca	cgttcccggg	tggcagtggc	840
	actgtctttg	cccgaaacac	ccgccgggca	gcagaggtct	ggatggatga	atacaaaaat	900
25	ttctattatg	cagcagtgcc	ttctgctaga	aacgttcctt	atggaaatat	tcagagcaga	960
	ttggagctta	ggaagaaact	cagctgcaag	cctttcaaat	ggtaccttga	aaatgtctat	1020
30	ccagagttaa	gggttccaga	ccatcaggat	atagcttttg	gggccttgca	gcagggaact	1080
50	aactgcctcg	acactttggg	acactttgct	gatggtgtgg	ttggagttta	tgaatgtcac	1140
	aatgctgggg	gaaaccagga	atgggccttg	acgaaggaga	agtcggtgaa	gcacatggat	1200
35	ttgtgcctta	ctgtggtgga	ccgggcaccg	ggctctctta	taaagctgca	gggctgccga	1260
	gaaaatgaca	gcagacagaa	atgggaacag	atcgagggca	actccaagct	gaggcacgtg	1320
40	ggcagcaacc	tgtgcctgga	cagtcgcacg	gccaagagcg	ggggcctaag	cgtggaggtg	1380
40	tgtggcccgg	ccctttcgca	gcagtggaag	ttcacgctca	acctgcagca	g	1431
45 50		an C_FEATURE Ca 94 GalNAG	cT2				
	<400> 10						
55	Gly Gln Asp 1	Pro Tyr A	la Arg Asn 1	Lys Phe Asn 10	Gln Val Glı	ı Ser Asp 15	
	Lys Leu Arg	g Met Asp Ai 20		Pro Asp Thr 25	Arg His Asp 30	Gln Cys	
60	Gln Arg Lys 35	Gln Trp Ai	g Val Asp 1 40	Leu Pro Ala	Thr Ser Val	l Val Ile	

	Thr	Phe 50	e His	8 Asn	ı Glu	. Ala	Arg	g Ser	Ala	Leu	ı Lev	Arg 60	Thr	· Val	. Val	. Ser
5	Val 65	. Lev	ı Lys	Lys	Ser	Pro	Pro	His	Leu	Ile	ь Lys 75	Glu	ıle	: Ile	. Lev	Val
10	Asp	Asp	Tyr	Ser	Asn 85	Asp	Pro	Glu	Asp	Gly 90	Ala	. Leu	. Leu	. Gly	Буз	lle
10	Glu	. Lys	. Val	Arg 100		Leu	Arg	ı Asn	Asp 105		Arg	Glu	. Gly	Leu 110		. Arg
15	Ser	Arg	Val 115		Gly	Ala	Asp	Ala 120		Gln	Ala	Lys	Val 125		Thr	Phe
	Leu	Asp		His	Cys	Glu	Cys 135		Glu	His	Trp	Leu 140	Glu	Pro	Leu	Leu
20	Glu 145	Arg	Val	Ala	Glu	Asp 150	Arg	Thr	Arg	Val	Val 155	Ser	Pro	Ile	Ile	Asp 160
25	Val	Ile	Asn	Met	Asp 165	Asn	Phe	Gln	Tyr	Val 170		Ala	Ser	Ala	Asp 175	Leu
23	ГЛа	Gly	Gly	Phe 180	Asp	Trp	Asn	Leu	Val 185	Phe	Lys	Trp	Asp	Tyr 190	Met	Thr
30	Pro	Glu	Gln 195	Arg	Arg	Ser	Arg	Gln 200	Gly	Asn	Pro	Val	Ala 205	Pro	Ile	Lys
	Thr	Pro 210		Ile	Ala	Gly	Gly 215	Leu	Phe	Val	Met	Asp 220	Lys	Phe	Tyr	Phe
35	Glu 225	Glu	Leu	Gly	Lys	Tyr 230	Asp	Met	Met	Met	Asp 235	Val	Trp	Gly	Gly	Glu 240
40	Asn	Leu	Glu	Ile	Ser 245	Phe	Arg	Val	Trp	Gln 250	Cys	Gly	Gly	Ser	Leu 255	Glu
	Ile	Ile	Pro	Cys 260	Ser	Arg	Val	Gly	His 265	Val	Phe	Arg	Lys	Gln 270	His	Pro
45	Tyr	Thr	Phe 275	Pro	Gly	Gly	Ser	Gly 280	Thr	Val	Phe	Ala	Arg 285	Asn	Thr	Arg
	Arg	Ala 290	Ala	Glu	Val	Trp	Met 295	Asp	Glu	Tyr	Lys	Asn 300	Phe	Tyr	Tyr	Ala
50	Ala 305	Val	Pro	Ser	Ala	Arg 310	Asn	Val	Pro	Tyr	Gly 315	Asn	Ile	Gln	Ser	Arg 320
55	Leu	Glu	Leu	Arg	Lуs 325	Lys	Leu	Ser	Cys	Lys 330	Pro	Phe	Lys	Trp	Tyr 335	Leu
	Glu	Asn	Val	Tyr 340	Pro	Glu	Leu	Arg	Val 345	Pro	Asp	His	Gln	Asp 350	Ile	Ala
60	Phe	Gly	Ala 355	Leu	Gln	Gln	Gly	Thr 360	Asn	Cys	Leu	Asp	Thr 365	Leu	Gly	His

73

```
Phe Ala Asp Gly Val Val Gly Val Tyr Glu Cys His Asn Ala Gly Gly
                             375
     Asn Gln Glu Trp Ala Leu Thr Lys Glu Lys Ser Val Lys His Met Asp
 5
                         390
                                             395
     Leu Cys Leu Thr Val Val Asp Arg Ala Pro Gly Ser Leu Ile Lys Leu
                                         410
10
     Gln Gly Cys Arg Glu Asn Asp Ser Arg Gln Lys Trp Glu Gln Ile Glu
                                     425
     Gly Asn Ser Lys Leu Arg His Val Gly Ser Asn Leu Cys Leu Asp Ser
             435
15
     Arg Thr Ala Lys Ser Gly Gly Leu Ser Val Glu Val Cys Gly Pro Ala
                             455
     Leu Ser Gln Gln Trp Lys Phe Thr Leu Asn Leu Gln Gln
20
                         470
     <210> 11
     <211> 28
25
     <212> DNA
     <213> artificial sequence
     <220>
     <223> N41R primer
30
     <400> 11
     cgcggatcca ggaaggagga ctggaatg
                                                                           28
     <210> 12
35
     <211> 33
     <212> DNA
     <213> artificial sequence
     <220>
     <223> N52K primer
40
     <400> 12
     cgcggatcca aaaagaaaga ccttcatcac agc
                                                                           33
45
    <210> 13
    <211> 30
     <212> DNA
     <213> artificial sequence
     <220>
50
     <223> N74G primer
    <400> 13
    cgcggatccg ggaaagtacg gtggccagac
                                                                           30
55
    <210> 14
    <211> 27
     <212> DNA
     <213> artificial sequence
60
    <220>
    <223> N95G primer
```

	<400>	14	
	cgcgga	teeg ggeaggaeee ttaegee	27
5			
_	<210>	15	
	<211>	29	
	<212>	DNA	
		artificial sequence	
10	<220>		
	<223>	Antisense Primer with STOP codon	
	<400>	15	
		gage tactgetqea ggttgageg	29
15	_		
	<210>	16	
	<211>	10	
	<212>		
20		artificial sequence	
	<220>		
	<223>	MuC-2 - like peptide	
	<400>	16	
25			
	Met Va	l Thr Pro Thr Pro Thr Cys	
	1	5 10	

WHAT IS CLAIMED IS:

1

2

3

4

1

2

3

4

1. An isolated nucleic acid comprising a nucleic acid sequence encoding a truncated human GalNAcT2 polypeptide, wherein said truncated human GalNAcT2 polypeptide is lacking all or a portion of the GalNAcT2 signal domain, with the proviso that the encoded polypeptide is not a human GalNAcT2 truncation mutant polypeptide lacking amino acid residues 1-51.

- 2. The isolated nucleic acid of claim 1, wherein said truncated human GalNAcT2 polypeptide is further lacking all or a portion the GalNAcT2 transmembrane domain, with the proviso that the encoded polypeptide is not a human GalNAcT2 truncation mutant polypeptide lacking amino acid residues 1-51.
- 3. The isolated nucleic of claim 2, wherein said truncated human
 GalNAcT2 polypeptide is further lacking all or a portion the GalNAcT2 stem domain, with
 the proviso that the encoded polypeptide is not a human GalNAcT2 truncation mutant
 polypeptide lacking amino acid residues 1-51.
 - 4. The isolated nucleic acid of claim 1, comprising a nucleic acid sequence encoding a truncated human GalNAcT2 polypeptide, said nucleic acid sequence having at least 90% identity with a nucleic acid selected from the group consisting of SEQ ID NO:3, SEQ ID NO:7 and SEQ ID NO:9
- 5. The isolated nucleic acid of claim 4, said isolated nucleic acid comprising a nucleic acid sequence selected from the group consisting of SEQ ID NO:3, SEQ ID NO:7 and SEQ ID NO:9.
- 6. An isolated nucleic acid of claim 4, e said isolated nucleic acid consisting of a nucleic acid sequence selected from the group consisting of SEQ ID NO:3, SEQ ID NO:7 and SEQ ID NO:9.
- 7. An isolated chimeric nucleic acid encoding a fusion polypeptide, said fusion polypeptide comprising a tag polypeptide covalently linked to a second polypeptide encoded by the isolated nucleic acid of claim 1.
- 1 8. The isolated chimeric nucleic acid of claim 7, wherein said tag
 2 polypeptide is selected from the group consisting of a maltose binding protein, a histidine tag,

3 a Factor IX tag, a glutathione-S-transferase tag, a FLAG-tag, and a starch binding domain

- 4 tag.
- 9. An isolated truncated human GalNAcT2 polypeptide, wherein said
- 2 truncated human GalNAcT2 polypeptide is lacking all or a portion of the GalNAcT2 signal
- domain, with the proviso that said polypeptide is not a human GalNAcT2 polypeptide
- 4 truncation mutant lacking amino acid residues 1-51.
- 1 The isolated truncated human GalNAcT2 polypeptide of claim 9,
- wherein said truncated human GalNAcT2 polypeptide is further lacking all or a portion the
- 3 GalNAcT2 transmembrane domain, with the proviso that said polypeptide is not a human
- 4 GalNAcT2 polypeptide truncation mutant lacking amino acid residues 1-51.
- 1 11. The isolated truncated human GalNAcT2 polypeptide of claim 10,
- 2 wherein said truncated human GalNAcT2 polypeptide is further lacking all or a portion the
- 3 GalNAcT2 stem domain, with the proviso that said polypeptide is not a human GalNAcT2
- 4 polypeptide truncation mutant lacking amino acid residues 1-51.
- 1 12. The isolated truncated human GalNAcT2 polypeptide of claim 9,
- 2 having at least 90% identity with a polypeptide selected from the group consisting of SEQ
- 3 ID NO:4, SEQ ID NO:8 and SEQ ID NO:10.
- 1 13. The isolated truncated human GalNAcT2 polypeptide of claim 9,
- 2 comprising an amino acid sequence selected from the group consisting of SEQ ID NO:4,
- 3 SEQ ID NO:8 and SEQ ID NO:10.
- 1 14. The isolated truncated human GalNAcT2 polypeptide of claim 9,
- 2 consisting of an amino acid sequence selected from the group consisting of SEQ ID NO:4,
- 3 SEQ ID NO:8 and SEQ ID NO:10.
- 1 15. An isolated chimeric polypeptide comprising a tag polypeptide
- 2 covalently linked to the isolated truncated GalNAcT2 polypeptide of claim 9.
- 1 16. The isolated chimeric polypeptide of claim 15, wherein said tag
- 2 polypeptide is selected from the group consisting of a maltose binding protein, a histidine tag,
- 3 a Factor IX tag, a glutathione-S-transferase tag, a FLAG-tag, and a starch binding domain
- 4 tag.

1 17. The isolated nucleic acid of any one of claim 1, said nucleic acid further comprising a promoter/regulatory sequence operably linked thereto.

- 1 18. An expression vector comprising the isolated nucleic acid of claim 1.
- 1 19. A recombinant cell comprising the isolated expression vector of claim

2 18.

1

2

3

4

5

6

- 1 20. A recombinant cell of claim 19, wherein said recombinant cell is a 2 eukaryotic cell or a prokaryotic cell.
- 1 21. The recombinant cell of claim 20, wherein said eukaryotic cell is 2 selected from the group consisting of a mammalian cell, an insect cell, and a fungal cell.
- 1 22. The recombinant cell of claim 21, wherein said insect cell is selected 2 from the group consisting of an SF9 cell, an SF9+ cell, an Sf21 cell, a HIGH FIVE cell or 3 Drosophila Schneider S2 cell.
- 1 23. The recombinant cell of claim 20, wherein said prokaryotic cell is selected from the group consisting of an E. coli cell and a B. subtilis cell.
- 1 24. A method of producing a truncated human GalNAcT2 polypeptide, the 2 method comprising growing the recombinant cell of claim 20 under conditions suitable for 3 expression of the truncated human GalNAcT2 polypeptide.
 - 25. A method of catalyzing the transfer of a GalNAc moiety to an acceptor moiety comprising incubating the polypeptide of claim 9 with a GalNAc moiety and an acceptor moiety, wherein said polypeptide mediates the covalent linkage of said GalNAc moiety to said acceptor moiety, thereby catalyzing the transfer of a GalNAc moiety to an acceptor moiety to produce a product saccharide, or a product glycoprotein, or a product glycopeptide.
- 1 26. The method of claim 25, wherein said acceptor moiety is a granulocyte colony stimulating factor (G-CSF) protein.
- 1 27. The method of claim 25, wherein said acceptor moiety is selected from 2 the group consisting of erythropoietin, human growth hormone, granulocyte colony

3 stimulating factor, interferons alpha, -beta, and -gamma, Factor IX, follicle stimulating

- 4 hormone, interleukin-2, erythropoietin, anti-TNF-alpha, and a lysosomal hydrolase.
- 1 28. The method of claim 25, wherein said polypeptide acceptor is a 2 glycopeptide.
- 1 29. The method of claim 25, further wherein said GalNAc moiety 2 comprises a polyethylene glycol moiety.
- 1 30. The method of claim 25, wherein the product saccharide, product 2 glycoprotein, or product glycopeptide is produced on a commercial scale.

FIG. 1

SUBSTITUTE SHEET (RULE 26)

FIG. 3

FIG. 4

FIG. 5

FIG. 6

7/42

FIG. 7

FIG. 8

GCSF (final) → 1 mg/ml 0.7 mg/ml 0.4 mg/ml 0.2 mg/ml

<u>ම</u> ම

10/42 T2-41R

Bam Hi

	EooRi ******					
1	GAATTCGGAT (CCAGGAAGGA	GGACTGGAAT	GAAATTGACC	CCATTAAAAA	GAAAGACCTT
_	CTTAAGCCTA	GGTCCTTCCT	CCTGACCTTA	CTTTAACTGG	GGTAATTTTT	CTTTCTGGAA
61	CATCACAGCA A				CCCTCCCTCC	AGGGAAAGTA
O.L	GTAGTGTCGT	TACCTCTTCT	CTTTCGTGTT	TCGTACCTCT	GGGAGGGAGG	TCCCTTTCAT
	0200		HindIII			
101	CGGTGGCCAG	አ ርጥጥጥ አ አ ሮር አ		GTTGGAGGGA	CGATGGTCCG	CTCCGGGCAG
121	GCCACCGGTC '	TCD D DTTCCT	CCTTCGAATA	CAACCTCCCT		GAGGCCCGTC
	GCCACCGGTC	IGHMITIGGT	00110011111	0,11001000	HindIII	
101	GACCGTTACG	CCCCCDDCDD	CTTC A A CCAG	GTGGAGAGTG		AATGGACAGA
181	CTGGGAATGC		CAAGTTGGTC	CACCTCTCAC		TTACCTGTCT
0.41		ACACCCGGCA	TGACCAGTGT			GGATCTGCCG
241				GTCGCCTTCG	TCACCGCCCA	CCTAGACGGC
		TGTTGATCAC				CAGGACCGTG
301		ACCACTAGTG			-	GTCCTGGCAC
			CCCGCCCCAT		AAATCATCTT	
361	GTCAGGGTGC CAGTCGCACG	TTAAGAAAAG	GGGCGGGGTA	-		CCACCTACTG
					TTGAGAAAGT	
421		ATCCTGAGGA	CGGGGGCTCTC	AACCCCTTTT		CGCTCAAGAA
	ATGTCGTTAC	TAGGACTCCT				
481	AGAAATGATC	GACGAGAAGG	CCTCATGCGC			ACGACGGGTT
	TCTTTACTAG					GCTGGAGCCC
541	GCCAAGGTCC	TGACCTTCCT				: CGACCTCGGG
	CGGTTCCAGG	ACTGGAAGGA	CCTGTCAGTG	ACGCICACAI		Clal
		~~~~~~~	00303000	, CCCC##C#C#		CGATGTCATT
601	CTCCTGGAAA	GGGTGGCGGA	CCTCTCTCTCT	CGGGTTGTGT GCCCAACACA		GCTACAGTAA
	GAGGACCTTT			TCTGCTGACT		
661	AATATGGACA	ACTTTCAGTA		A TOIGCIGACI B AGACGACTGA		
	TTATACCTGT	TGAAAGTCAT				G GCAGGGGAAC
721	AACTTGGTAT	TCAAGTGGGA				C CGTCCCCTTG
	<del></del>	AGTTCACCCT				
781	CCAGTCGCCC					
	GGTCAGCGGG					
841		AACTGGGGAA				
	ATAAAACTTC					
901						
	CTCTAGAGCA	AGGCGCACAC				
961	GTGGGACACG					
<del></del>	CACCCTGTGC	ACAAGGCCTT				
1021	TTTGCCCGAA					A AAATTTCTAT
	AAACGGGCTT					
1081		TGCCTTCTG				
	ATACGTCGTC	ACGGAAGAC(	S ATCTTTGCA	A GGAATACCT	T TATAAGTCT	C GTCTAACCTC

## **FIG. 10A**

11/42

T2-41R

#### Kpnl CTTAGGAAGA AACTCAGCTG CAAGCCTTTC AAATGGTACC TTGAAAATGT CTATCCAGAG 1141 GAATCCTTCT TTGAGTCGAC GTTCGGAAAG TTTACCATGG AACTTTTACA GATAGGTCTC TTAAGGGTTC CAGACCATCA GGATATAGCT TTTGGGGCCT TGCAGCAGGG AACTAACTGC 1201 AATTCCCAAG GTCTGGTAGT CCTATATCGA AAACCCCGGA ACGTCGTCCC TTGATTGACG CTCGACACTT TGGGACACTT TGCTGATGGT GTGGTTGGAG TTTATGAATG TCACAATGCT 1261 GAGCTGTGAA ACCCTGTGAA ACGACTACCA CACCAACCTC AAATACTTAC AGTGTTACGA GGGGGAAACC AGGAATGGGC CTTGACGAAG GAGAAGTCGG TGAAGCACAT GGATTTGTGC 1321 CCCCCTTTGG TCCTTACCCG GAACTGCTTC CTCTTCAGCC ACTTCGTGTA CCTAAACACG CTTACTGTGG TGGACCGGGC ACCGGGCTCT CTTATAAAGC TGCAGGGCTG CCGAGAAAAT 1381 **GGCTCTTTTA** GAATGACACC ACCTGGCCCG TGGCCCGAGA GAATATTTCG ACGTCCCGAC GACAGCAGAC AGAAATGGGA ACAGATCGAG GGCAACTCCA AGCTGAGGCA CGTGGGCAGC 1441 CTGTCGTCTG TCTTTACCCT TGTCTAGCTC CCGTTGAGGT TCGACTCCGT GCACCCGTCG AACCTGTGCC TGGACAGTCG CACGGCCAAG AGCGGGGGCC TAAGCGTGGA GGTGTGTGGC 1501 TTGGACACGG ACCTGTCAGC GTGCCGGTTC TCGCCCCCGG ATTCGCACCT CCACACACCG ...Xhol... ~ EooRI CCGGCCCTTT CGCAGCAGTG GAAGTTCACG CTCAACCTGC AGCAGTAGCT CGAGGAATTC 1561 GGCCGGGAAA GCGTCGTCAC CTTCAAGTGC GAGTTGGACG TCGTCATCGA GCTCCTTAAG

**FIG. 10B** 

#### 12/42

BamHi T2-52K

	EooRi *******	<b>~~</b>				
1	GAATTCGGAT (CTTAAGCCTA (	CCAAAAAGAA GGTTTTTCTT	AGACCTTCAT TCTGGAAGTA	CACAGCAATG GTGTCGTTAC	GAGAAGAGAA CTCTTCTCTT	AGCACAAAGC TCGTGTTTCG
						ndll
61	TACCTCTGGG A	AGGGAGGTCC	$\mathtt{CTTTCATGCC}_{_}$	TGGCCAGACT ACCGGTCTGA	TTAACCAGGA AATTGGTCCT	ÄĞČTTATGTT TCGAATACAA
121	GGAGGGACGA CCTCCCTGCT	TGGTCCGCTC ACCAGGCGAG	CGGGCAGGAC GCCCGTCCTG	CCTTACGCCC GGAATGCGGG	GCAACAAGTT CGTTGTTCAA	CAACCAGGTG GTTGGTCCAC
	Hi	ndIII				
181	GAGAGTGATÃ CTCTCACTAT	ÄĞCTTCGAAT TCGAAGCTTA	CCTGTCTCGG	TAGGGACTGT	GGGCCGTACT	GGTCACAGTC
241	GCCTTCGTCA	CCGCCCACCT	CTGGCACCAG		TGATCACGTT ACTAGTGCAA	
301		GGGATGAGTC	CTGGCACCAG	TCGCACGAAT	AGAAAAGCCC TCTTTTCGGG	CGGGGTAGAG
361		AGTAGAACCA	CCTACTGATG	AGCAATGATC TCGTTACTAG	GACTCCTGCC	
421	GGGAAAATTG CCCTTTTAAC	ATCCTGAGGA TCTTTCACGC	AGTTCTTAGA TCAAGAATCT	TTACTAGCTG		GTACGCGAGT
481			TGCCCAAGCC CCTCGGGGAG		CCTTCCTGGA GGAAGGACCT	
541	GAGTGTAATG CTCACATTAC	AGCACTGGCT TCGTGACCGA	GGAGCCCCTC CCTCGGGGAG	CTGGAAAGGG GACCTTTCCC		
601	GTTGTGTCAC	Clal.	Y TGTCATTAAT	ATGGACAACT	TTCAGTATGT	
901	CAACACAGTG	GGTAGTAGCT	ACAGTAATTA	. TACCTGTTGA	. AAGTCATACA	CCCCGTAGA
661	GCTGACTTGA CGACTGAACT	AGGGCGGTTT TCCCGCCAAA	TGATTGGAAC ACTAACCTTG	TTGGTATTCA ACCATAAGT		GTACTGCGGA
721	GAGCAGAGAA CTCGTCTCTT	GGTCCCGGCA CCAGGGCCGT				GTACTAACGA
781	GGTGGGCTGT CCACCCGACA	TTGTGATGGA AACACTACCT		TTTGAAGAAC AAACTTCTTG		
841	ATGGATGTGT TACCTACACA	GGGGAGGAGA CCCCTCCTCT		ATCTCGTTCC TAGAGCAAGG	GCGTGTGGCA GCGCACACCGT	CACACCACCG
901	AGCCTGGAGA TGCAAGGGCC	TCATCCCGTG CACCGTCACC		GGACACGTGT CCTGTGCACA	A AGGCCTTCG	CGTGGGGAGT
961	ACGTTCCCGG TGCAAGGGCC	GTGGCAGTGG	CACTGTCTT			G TCGTCTCCAG
1021	TGGATGGATG ACCTACCTAC			r GCAGCAGTGO A CGTCGTCACO	CTTCTGCTAG GAAGACGATG	
1081	TATGGAAATA ATACCTTTAT	TTCAGAGCAG AAGTCTCGTC	ATTGGAGCT' TAACCTCGA	r AGGAAGAAA( A TCCTTCTTT(	TCAGCTGCAI AGTCGACGT	A GCCTTTCAAA P CGGAAAGTTT

## **FIG. 11A**

### 13/42

#### T2-52K

Kpnl					
	• • • • • • • • • • • • • • • • • • • •	TCCAGAGTTA AGGTCTCAAT	AGGGTTCCAG TCCCAAGGTC	ACCATCAGGA TGGTAGTCCT	TATAGCTTTT ATATCGAAAA
00000		TAACTGCCTC ATTGACGGAG	GACACTTTGG CTGTGAAACC	GACACTTTGC CTGTGAAACG	TGATGGTGTG ACTACCACAC
	ATGAATGTCA TACTTACAGT			AATGGGCCTT TTACCCGGAA	GACGAAGGAG CTGCTTCCTC
AAGTCGGTGA TTCAGCCACT	AGCACATGGA TCGTGTACCT				
ATAAAGCTGC TATTTCGACG	AGGGCTGCCG TCCCGACGGC				
AACTCCAAGC TTGAGGTTCG	TGAGGCACGT ACTCCGTGCA		• • • • • • • •	TGTCAGCGTG	CCGGTTCTCG
GGGGGCCTAA CCCCCGGATT	GCGTGGAGGT CGCACCTCCA				
AACCTGCAGC TTGGACGTCG	AGTAGCTCGA	GGAATTC			
	TGGTACCTTG ACCATGGAAC GGGGCCTTGC CCCCGGAACG GTTGGAGTTT CAACCTCAAA AAGTCGGTGA TTCAGCCACT ATAAAGCTGC TATTTCGACG AACTCCAAGC TTGAGGTTCG GGGGGCCTAA CCCCCGGATT  AACCTGCAGC	TGGTACCTTG AAAATGTCTA ACCATGGAAC TTTTACAGAT GGGGCCTTGC AGCAGGGAAC CCCCGGAACG TCGTCCCTTG GTTGGAGTTT ATGAATGTCA CAACCTCAAA TACTTACAGT AAGTCGGTGA AGCACATGGA TTCAGCCACT TCGTGTACCT ATAAAGCTGC AGGGCTGCCG TATTTCGACG TCCCGACGGC AACTCCAAGC TGAGGCACGT TTGAGGTTCG ACTCCGTGCA GGGGGCCTAA GCGTGGAGGT CCCCCGGATT CGCACCTCCA  Xho  AACCTGCAGC AGTAGCTCGA	TGGTACCTTG AAAATGTCTA AGGTCTAACCATGGAAC TTTTACAGAT AGGTCTCAAT  GGGGCCTTGC AGCAGGGAAC TAACTGCCTC CCCCGGAACG TCGTCCCTTG ATTGACGGAG  GTTGGAGTTT ATGAATGTCA CAATGCTGGG CAACCTCAAA TACTTACAGT GTTACGACCC  AAGTCGGTGA AGCACATGGA TTTGTGCCTT AAACACCGAAC TTCAGCCACT TCGTGTACCT AAACACGGAA  ATAAAGCTGC AGGGCTGCCG AGAAAATGAC TATTTCGACG TCCCGACGGC TCTTTTACTG  AACTCCAAGC TGAGGCACGT GGGCAGCAAC TTGAGGTTCG ACTCCGTGCA CCCGTCGTTG  GGGGGCCTAA GCGTGGAGGT GTGTGGCCCG CCCCCGGATT CGCACCTCCA CACACCGGGC  Xhol  Kpnl  Kpnl  Kpnl	TGGTACCTTG AAAATGTCTA TCCAGAGTTA AGGGTTCCAG ACCATGGAAC TTTTACAGAT AGGTCTCAAT TCCCAAGGTC  GGGGCCTTGC AGCAGGGAAC TAACTGCCTC GACACTTTGG CCCCGGAACG TCGTCCCTTG ATTGACGGAG CTGTGAAACC  GTTGGAGTTT ATGAATGTCA CAATGCTGGG GCAAACCAGG CAACCTCAAA TACTTACAGT GTTACGACCC CCTTTGGTCC  AAGTCGGTGA AGCACATGGA TTTGTGCCTT ACTGTGGTGG TTCAGCCACT TCGTGTACCT AAACACGGAA TGACACCACC  ATAAAGCTGC AGGGCTGCCG AGAAAATGAC AGCAGACAGA TATTTCGACG TCCCGACGGC TCTTTTACTG TCGTCTCT  AACTCCAAGC TGAGGCACGT GGGCAGCAAC CTGTGCCTGG TTGAGGTTCG ACTCCGTGCA CCCGTCGTTG GACACGGACC  GGGGGCCTAA GCGTGGAGGT GTGTGGCCCG GCCCTTTCGC CCCCCGGATT CGCACCTCCA CACACCGGGC CGGGAAAGCG  Kpni  Kpni  Kpni  Kpni  GGAATTC	TGGTACCTTG AAAATGTCTA TCCAGAGTTA AGGGTTCCAG ACCATCAGGA ACCATGGAAC TTTTACAGAT AGGTCTCAAT TCCCAAGGTC TGGTAGTCCT  GGGGCCTTGC AGCAGGGAAC TAACTGCCTC GACACTTTGG GACACTTTGC CCCCGGAACG TCGTCCCTTG ATTGACGGAG CTGTGAAACC CTGTGAAACG  GTTGGAGTTT ATGAATGTCA CAATGCTGGG GCAAACCAGG AATGGGCCTT TACCTCAAACCTCAAA TACTTACAGT TTTGTGCCTT ACTGTGGTCC TTACCCGGAA  AAGTCGGTGA AGCACATGGA TTTGTGCCTT ACTGTGGTGG ACCGGGCACC TCGTGAACC TCGTGTACCT AAACACGGAA TGACACCACC TGGCCCGTGG  ATAAAGCTGC AGGGCTGCCG AGAAAATGAC AGCAGACAGA AATGGGAACA TCCCGACGC TCTTTTACTG TCGTCTGTT TTACCCCTTGT  AACTCCAAGC TGAGGCACGT GGGCAGCAAC CTGTGCCTGG ACAGTCGCAC TCGAGGTTCG ACTCCGTGCA CCCGTCGTTG GACACGGACC TGTCAGCGTG  GGGGGCCTAA GCGTGGAGGT GTGTGGCCCG GCCCTTTCGC AGCAGTGGAA CCCCCCGGATT CGCACCTCCA CACACCGGGC CGGGAAAGCG TCGTCACCTT   **Xhol**  **Kpnl**  **AACCTGCAGC AGTAGCTCGA GGAAATTC**

# FIG. 11B

### 14/42 T2-74G

			T2-74G	j		
	Bamh					
	EooRi ~~~~~	<b>ww</b>			Hindll	
1	GAATTCGGAT	CCGGGAAAGT A	ACGGTGGCCA	GACTTTAACC	AGGAAGCTTA	TGTTGGAGGG
Т.	TGCTACCAGG	GGCCCTTTCA :	IGCCACCGGT	CTGAAATTGG	TCCTTCGAAT	ACCACCTCCC
	ACGATGGTCC	CCTCCCCCCA C	CACCCTTAC	GCCCGCAACA	AGTTCAACCA	GGTGGAGAGT
61	TGCTACCAGG	CGAGGCCCGT (	CTGGGAATG	CGGGCGTTGT	TCAAGTTGGT	CCACCTCTCA
	.Hindll				2 mar agr ama	man cacanna
121	GATAAGCTTC	GAATGGACAG	AGCCATCCCT	GACACCCGGC	ATGACCAGTG	TCAGCGGAAG
	CTATTCGAAG	•				AGTCGCCTTC
181	CAGTGGCGGG		GGCCACCAGC	GTGGTGATCA	CGTTTCACAA	TGAAGCCAGG
	GTCACCGCCC	ACCTAGACGG	CCGGTGGTCG	CACCACTAGT		ACTTCGGTCC
241	TCGGCCCTAC	TCAGGACCGT	TCTGCCGGCC	CTTAAGAAAA	GCCCGCCCCA	TCTCATAAAA
241	AGCCGGGATG	AGTCCTGGCA	CTGGCACCAG	GAATTCTTTT	CGGGCGGGT	AGAGTATTTT
201		TGGTGGATGA		GATCCTGAGG	ACGGGGCTCT	CTTGGGGAAA
301	CALL CLICI	ACCACCTACT	GATGTCGTTA		TGGCCCGAGA	GAACCCCTTT
		TGCGAGTTCT			GCCTCATGCG	CTCACGGGTT
361	ATTGAGAAAG	ACGCTCAAGA	7100000000 7000000000000000000000000000		CGGAGTACGC	GAGTGCCCAA
					TGGACAGTCA	
421	CGGGGGGCCG	ATGCTGCCCA	AGCCAAGGTC			
	GCCCCCGGC		TCGGTTCCAG			
481	AATGAGCACT	GGCTGGAGCC	CCTCCTGGAA	AGGGTGGCGG		AGCCCAACAC
		CCGACCTCGG	GGAGGACC'I'I'	TCCCACCGCC	1001610010	HGCCCAACAC
	Cl	al				
541	TCACCCATCA	TCGATGTCAT	TAATATGGAC			
V	AGTGGGTAGT	AGCTACAGTA				
601	TTGAAGGGCG	GTTTTGATTG	GAACTTGGTA			
001	AACTTCCCGC		CTTGAACCAT	· AAGTTCACCC		
661	AGAAGGTCCC		CCCAGTCGCC	CCTATAAAAA		
001	TCTTCCAGGG		GGGTCAGCGG	GGATATTTT	GGGGGTACT	A ACGACCACCC
701	CTGTTTGTGA		CTATTTTGA	GAACTGGGG	AGTACGACA	T GATGATGGAT
721	GACAAACACT		GATAAAACTT		TCATGCTGT.	A CTACTACCTA
701		GAGAGAACCT	AGAGATCTC			G TGGCAGCCTG
781	CACACCCCTC		TCTCTAGAG			C ACCGTCGGAC
841		CGTGCAGCCG	TGTGGGACA( ACACCCTGT(			
	CTCTAGTAGG			• • • • • • • • • • • • • • • • • • • •		
901	CCGGGTGGCA	GTGGCACTGT	CTTTGCCCG	A AACACCCGC	CCCCTCCTC	
	GGCCCACCGT	CACCGTGACA	GAAACGGGC'	1 116166666	J CCCGICGIC	
961	GATGAATACA	AAAATTTCTA	TTATGCAGC	A GTGCCTTCT	G C'l'AGAAAGC	T AGCAGAGGTC
	CTACTTATGT	TTTTAAAGAT	AATACGTCG	r CACGGAAGA		G AGGAATACCT
						Kpnl
	* * # * * * * * * * * * * * * * * * * *		<u>ሮሮ</u> ሞሞአርሮአ አ	ር አአአሮሞሮኔርሮ	T GCAAGCCCT	T CAAATGGTAC
1021	AATATTCAGA	A GCAGATIGGA P CCCCCTAACCT	, CCVVACCAU	C TTTCACTCAGC	A CGTTCGGAA	A GTTTACCATG
	TTATAAGTU.	CGIGINACCI	COMMICCII	<u> </u>		
	Kpn					)
1001	<b>₩</b>	G TCTATCCAGA	Стт <u>а</u> ассст	T CCAGACCAT	C AGGATATAC	C TTTTGGGGCC
1081	CITGAMAATO	TOTATOCAGE  ACATACCTOT	CAATTCCCA	A GGTCTGGTA	G TCCTATATO	G AAAACCCCGG
	GUUCTITIU					

## **FIG. 12A**

#### 15/42

#### T2-74G

1141	TTGCAGGAGG AACGTCGTCC	GAACTAACTG CTTGATTGAC	CCTCGACACT GGAGCTGTGA	TTGGGACACT AACCCTGTGA	TTGCTGATGG AACGACTACC	ACACCAACCT
1201	GTTTATGAAT	GTCACAATGC	TGGGGGAAAC	CAGGAATGGG	CCTTGACGAA	GGAGAAGTCG
	CAAATACTTA	CAGTGTTACG	ACCCCCTTTG	GTCCTTACCC	GGAACTGCTT	CCTCTTCAGC
1261	GTGAAGCACA	TGGATTTGTG	CCTTACTGTG	GTGGACCGGG	CACCGGGCTC	TCTTATAAAG
	CACTTCGTGT	ACCTAAACAC	GGAATGACAC	CACCTGGCCC	GTGGCCCGAG	CCCGTTGAGG
1321	CTGCAGGGCT	TGGATTTGTG	TGACAGCAGA	CAGAAATGGG	AACAGATCGA	GGGCAACTCC
	GACGTCCCGA	ACCTAAACAC	ACTGTCGTCT	GTCTTTACCC	TTGTCTAGCT	CCCGTTGAGG
1381	TTCGACTCCG	TGCACCCGTC	GTTGGACACG	CTGGACAGTC GACCTGTCAG	CGTGCCGGTT	CTCGCCCCCG
1441	CTAAGCGTGG	AGGTGTGTGG	CCCGGCCCTT	TCGCAGCAGT	GGAAGTTCAC	GCTCAACCTG
	GATTCGCACC	TCCACACACC	GGGCCGGGAA	ACGCTCGTCA	CCTTCAAGTG	CGAGTTGGAC
	Xho	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
1501		TCGAGGAATT AGCTCCTTAA				

FIG. 12B

#### 16/42

T2-94 BamHi EooRi ********* GAATTCGGAT CCGGGCAGGA CCCTTACGCC CGCAACAAGT TCAACCAGGT GGAGAGTGAT CTTAAGCCTA GGCCCGTCCT GGGAATGCGG GCGTTGTTCA AGTTGGTCCA CCTCTCACTA AAGCTTCGAA TGGACAGAGC CATCCCTGAC ACCCGGCATG ACCAGTGTCA GCGGAAGCAG 61 TTCGAAGCTT ACCTGTCTCG GTAGGGACTG TGGGCCGTAC TGGTCACAGT CGCCTTCGTC TGGCGGTGG ATCTGCCGGA CACCAGCGTG GTGATCACGT TTCACAATGA AGCCAGGTCG 121 ACCGCCCACC TAGACGGCCG GTGGTCGCAC CACTAGTGCA AAGTGTTACT TCGGTCCAGC GCCCTACTCA GGACCGTGGT CAGCGTGCTT AAGAAAAGCC CGCCCCATCT CATAAAAGAA 181 CGGGATGAGT CCTGGCACCA GTCGCACGAA TTCTTTTCGG GCGGGGTAGA GTATTTTCTT ATCATCTTGG TGGATGACTA CAGCAATGAT CCTGAGGACG GGGCTCTCTT GGGGAAAATT 241 TAGTAGAACC ACCTACTGAT GTCGTTACTA GGACTCCTGC CCCGAGAGAA CCCCTTTTAA GAGAAAGTGC GAGTTCTTAG AAATGATCGA CGAGAAAGGC TCATGCGCTC ACGGGTTCGG 301 CTCTTTCACG CTCAAGAATC TTTACTAGCT GCTCTTCCGG AGTACGCGAG TGCCCAAGCC GGGGCCGATG TGGAGCCCCT CAAGGTCCTG ACCTTCCTGG ACAGTCACTG CGAGTGTAAT 361 CCCCGGCTAC GACGGGTTCG GACGGGTTCG TGGAAGGACC TGTCAGTGAC GCTCACATTA GAGCACTGGC TGGAGCCCCT CCTGGAAAGG GTGGCGGAGG ACAGGACTCG GGTTGTGTCA 421 CTCGTGACCG ACCTCGGGGA GGACCTTTCC CACCGCCTCC TGTCCTGAGC CCAACACAGT .Clal.... CCCATCATCG ATGTCATTAA TATGGACAAC TTTCAGTATG TGGGGGCATC TGCTGACTTG GGGTAGTAGC TACAGTAATT ATACCTGTTG AAAGTCATAC ACCCCCGTAG ACGACTGAAC 481 AAGGGCGGTT TTGATTGGAA CTTGGTATTC AAGTGGGATT ACATGACGCC TGAGCAGAGA 541 TTCCCGCCAA AACTAACCTT GAACCATAAG TTCACCCTAA TGTACTGCGG ACTCGTCTCT AGGTCCCGGC AGGGGAACCC AGTCGCCCCT ATAAAAACCC CCATGATTGC TGGTGGGCTG 601 TCCAGGGCCG TCCCCTTGGG TCAGCGGGGA TATTTTTGGG GGTACTAACG ACCACCCGAC TTTGTGATGG ATAAGTTCTA TTTTGAAGAA CTGGGGAAGT ACGACATGAT GATGGATGTG 661 AAACACTACC TATTCAAGAT AAAACTTCTT GACCCCTTCA TGCTGTACTA CTACCTACAC TGGGGAGGAG AGAACCTAGA GATCTCGTTC CGCGTGTGGC AGTGTGGTGG CAGCCTGGAG 721 ACCCCTCCTC TCTTGGATCT CTAGAGCAAG GCGCACACGC TCACACCACC GTCGGACCTC ATCATCCCGT GCAGCCGTGT GGGACACGTG TTCCGGAAGC AGCACCCCTA CACGTTCCCG 781 TAGTAGGGCA CGTCGGCACA CCCTGTGCAC AAGGCCTTCG TCGTGGGGAT GTGCAAGGGC GGTGGCAGTG GCACTGTCTT TGCCCGAAAC ACCCGCCGGG CAGCAGAGGT CTGGATGGAT 841 CCACCGTCAC CGTGACAGAA CTTGGATCTC TGGGCGGCCC GTCGTCTCCA GACCTACCTA CAATACAAAA ATTTCTATTA TGCAGCAGTG CCTTCTGCTA GAAACGTTCC TTATGGAAAT 901 CTTATGTTTT TAAAGATAAT ACGTCGTCAC GGAAGACGAT TCGGAAAGTT AATACCTTTA Kpnl ATTCAGAGCA GATTGGAGCT TAGGAAGAAA CTCAGCTGCA AGCCTTTCAA ATGGTACCTT 961 TAAGTCTCGT CTAACCTCGA ATCCTTCTTT GAGTCGACGT TCGGAAAGTT TACCATGGAA GAAAATGTCT ATCCAGAGTT AAGGGTTCCA GACCATCAGG ATATAGCTTT TGGGGCCTTG 1021 CTTTTACAGA TAGGTCTCAA TTCCCAAGGT CTGGTAGTCC TATATCGAAA ACCCCGGAAC CAGCAGGGAA CTAACTGCCT CGACACTTTG GGACACTTTG CTGTAGGTGT GGTTGGAGTT 1081 GTCGTCCCTT GATTGACGGA GCTGTGAAAC CCTGTGAAAC GACTACCACA CCAACCTCAA

**FIG. 13A** 

## 17/42

#### T2-94

1441	CAGTAGCTCG GTCATCGAGC					
	Xho	ol EccRI			-	
1381	AGCGTGGAGG TCGCACCTCC	TGTGTGGCCC ACACACCGGG	GGCCCTTTCG CCGGGAAAGC	CAGCAGTGGA GTCGTCACCT	AGTTCACGCT TCAAGTGCGA	CAACCTGCAG GTTGGACGTC
1321		TGGGCAGCAA ACCCGTCGTT		CTGTCAGGGT	GCCGGTTCTC	CGGGGGCCTA GCCCCCGGAT
1261	CAGGGCTGCC GTCCCGACGG	GAGAAAATGA CTCTTTTACT		AAATGGGAAC TTTACCCTTG	AGATCGAGGG TCTAGCTCCC	CAAGTCCAG GTTGAGTTC
1201		ATTTGTGCCT TAAACACGGA		GACCGGGCAC CTGGCCCGTG		TATAAAGCTG ATATTTCGAC
1141	TAGAATGTC ATACTTACAG	ACAATGCTGG TGTTACGACC	GGGAAACCAG CCCTTTGGTC	GAATGGGCCT CTTAACCGGA	TGACGAAGGA ACTGCTTCCT	CTTCAGCCAC

FIG. 13B



19/42

AC#	Sample Description	Activity (U/L)	%RSD	Volume (ml)	Activity (U)
AC04-08477	040603 1b A6	0.10	22.3	45	0.00
AC04-08478	040603 1b B7	0.20	42.4	45	0.01
AC04-08479	040603 1b B6	0.15	10.7	45	
AC04-08480	040603 1b B5	0.19	78.4	45	0.01
AC04-08481	040603 1b B4	0.06	0.0	45	0.00
AC04-08482	040603 1b B3	0.10	4.9	45	0.00
AC04-08483	040603 1b B2	0.39	76.4	45	
AC04-08484	040603 1b C6	0.02	35,1		0.00
AC04-08485	040603 1b FR	0.04	2.2	1000	0.04
AC04-08486	040603 1b cFR	0.09	2.3	250	0.02
AC04-08487	040603 1b CP	-0.01	8.4	750	0.00
AC04-08488	040603 1b DP	-0.02	9.0	1000	-0.02
AC04-08489	040603 1b QL	0.03	0.6	245	
AC04-08490	040603 1b QFT	-0.04	8.3	245	
AC04-08491	040603 1b QW	-0.02	19.8	48	

FIG. 14C

20/42



21/42

AC#	Sample Description	Activity (U/L)	%RSD	Volume (ml)	Activity (U)
Negative Control		0.00	14.6		Ì
(No Enzyme)	,				
AC04-08462	040603 1a FR	1.08	24.0	1000	
AC04-08463	040603 1a cFR	1.03	4.4	250	0.26
AC04-08464	040603 1a CP	0.13	17.8	750	0.09
AC04-08465	040603 1a DP	0.08	5.7	1000	0.08
AC04-08466	040603 1a QFT	0.07	34.0	270	0.02
AC04-08467	040603 1a QW	0.05	24.4	48	0.00
AC04-08468	040603 1a B12-10	1.60	9.0	45	0.07
AC04-08469	040603 1a B9-7	2.21	11.7	45	0.10
AC04-08470	040603 1a B6-4	0.88	17.0	45	0.04
AC04-08471	040603 1a B3-1	0.43	4.4	45	0.02
AC04-08472	040603 1a C1-3	0.36	22.2	45	0.02
AC04-08473	040603 1a C4-6	0.32	4.9	4:	0.01
AC04-08474	040603 1a C7-9	0.22	2 1.3	4.	0.01
AC04-08475	040603 1a C10-12	0.2	7 71.8	4	5 0.01
AC04-08476	040603 1a X1	0.0	4 6.3	2	9 0.00

FIG. 15C



pecif. Act. (U/mg)	0.186	0.099	0.028	<del>.</del>											
Mass (mg) Specif. Act. (U/mg)	908'0	1.908	2.862	33.3	<del></del>	<del></del>						114.2	1	16.92	2.16
Conc Ma (mg/mL)	0.0179	0.0424	0.0636	0.148								0.431	•	0.188	0.045
A280	0.027	0.064	960'0	0.223			,-					0.651	0.000	0.284	0.068
ctivity (U)	0.15	0.19	0.08	0.02	0.01	0.01	0.00	00.00	00.00	0.22	-0.05	0.33	-0.03	-0.02	-0.01
Volume (ml) Activity (U)	45	45	45	45	45	45	45	45	45	750	1000	265	130	06	48
%RSD √	9.6	0.2	3.7	15.0	8.1	18.6	18.4	1.4	24.8	73.3	1.26	5.0	4.3	8.5	2.3
Activity (U/L)	3.23	4.14	1.79	0.52	0.12	0.16	0.03	00:0	0.07	0.30	-0.05	1.24	-0.24	-0.22	-0.21
Sample Description	040603 2a A6	040603 2a B7	040603 2a B6	040603 2a B5	040603 2a B4	040603 2a B3	040603 2a B2	040603 2a B1	040603 2a C6	040603 2a CP	040603 2a DP	040603 2a QL	040603 2a QFT1	040603 2a QFT2	040603 2a QW
AC#	AC04-08492	AC04-08493	AC04-08494	AC04-08495	AC04-08496	AC04-08497	AC04-08498	AC04-08499	AC04-08500	AC04-08501	AC04-08502	AC04-08503	AC04-08504	AC04-08505	AC04-08506

FIG. 16C





Specif. Act. (U/mg)	0.127	0.098													
Mass Sp (mg)	0.864	1.728													
Conc (mg/mL)	0.0192	0.0384													
A280	0.029	0.058										0.497			
Activity (U)	0.11	0.17	0.05	0.00	-0.01	0.00	-0.01	-0.01	-0.01	-0.07	0.01	0.39	-0.03	0.00	0.00
Volume (ml)	45	45	45	45	45	45	45	45	45	750	1000	270	133	78	48
%RSD	14.76	11.14	3.84	2.06	3.21	33.30	30.69	19.19	7.25	1.89	3.26	4.13	46.04	28.76	9.12
Activity (U/L)	2.40	3.77	1.17	0.10	-0.13	-0.10	-0.18	-0.20	-0.24	-0.09	0.01	1.43	-0.23	-0.03	-0.01
Sample Descrip- tion	040603 2h A6	040603 2b B7	040603 2b B6	040603 2b B5	040603 2b B4	040603 2b B3	040603 2b B2	040603 2b B1	040603 2b C5	040603 2b CP	040603 2b DP	040603 2b QL	040603 2b QFT1	040603 2b QFT2	040603 2b QW
#DV	ACOA_08507	AC04-08508	AC04-08509	AC04-08510	AC04-08511	AC04-08512	AC04-08513	AC04-08514	AC04-08515	AC04-08516	AC04-08517	AC04-08518	AC04-08519	AC04-08520	AC04-08521

FIG. 17C





Activity (U)	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-0.02	-0.05	0.01	-0.01	00.0	0.00
Volume (ml)	45	45	45	45	45	45	45	45	45	750	1000	250	139	56	48
%RSD	14.4	0.0	1.9	29.8	0.0	7.4	2.2	33.7	21.6	7.0	8.3	19.7	3.1	18.4	47.1
Activity (U/L)	0.14	0.13	0.01	0.02	-0.05	-0.03	-0.01	-0.02	-0.03	-0.02	-0.05	0.05	-0.07	-0.07	0.04
Sample Description	040603 3 A6	040603 3 B7	040603 3 B6	040603 3 B5	040603 3 B4	040603 3 B3	040603 3 B2	040603 3 B1	040603 3 C1	040603 3 CP	040603 3 DP	040603 3 QL	040603 3 QFT1	040603 3 QFT2	040603 3 QW
AC#	AC04-08522	AC04-08523	AC04-08524	AC04-08525	AC04-08526	AC04-08527	AC04-08528	AC04-08529	AC04-08530	AC04-08531	A004-08532	AC04-08533	AC04-08534	AC04-08535	AC04-08536

FIG. 18C



29/42

	Volume (mL)	Activity (U/L)	A280	A280/ 1.51 (mg/ mL)	Activity (U)	Mass (mg)	Specific Activity (U/mg)
Load	576	2.73	0.581	0.385	1.57	222	0.007
I	929	0.02	0.155	0.103	0.01	29	
Wash	48	00.0	0.000		0	0	
A5	45		0.016	0.010	0	0.5	
A6	45	7.74	0.162	0.107	0.35	4.8	0.073
B7	45	10.90*	0.218	0.144	0.49	6.5	0.075
B6	45	1.15*	0.249	0.165	0.05	7.4	0.007
B5-B1	225	0.00	0.482	0.319	0	108	

* Adjusted by multiplication with 2.5 necessary due to 3H-label change

=1G. 19C



**SUBSTITUTE SHEET (RULE 26)** 

31/42

	Volume (mL)	Activity (U/L)	A280	A280/ 1.51 (mg/ mL)	Activity (mU)	Mass (mg)	Specific Activity (U/mg)
Load	40	1.23	0.550	0.364	49.2	14.6	0.003
Image: second content of the latest term of the latest t	40	-0.02	-0.017				
Wash	7.8	-0.01	-0.008				
A3	S	0.41	0.000				
A4	5	1.82	0.048	0.032	9.1	0.16	0.057
A5	5	2.14	0.100	0.066	10.7	0.33	0.032
A6-A9	20	1.12	0.422	0.279	22.4	5.58	0.004

## FIG. 20C



33/42

	Volume (mL)	Activity (U/L)	A280	A280/ 1.51 (mg/mL)	Activity (mU)	Mass (mg)	Specific Activity (U/mg)
Load	40	1.27	0.550	0.364	50.8	14.6	0.0035
丘	40	0.41	0.001	0.007	16.4	0.03	0.55
Wash	7.8	0.07	-0.007				
A2	5	0.40	-0.018			-	
A3	5	0.50	0.004	0.003	2.5	0.02	0.125
A4	5	0.87	0.049	0.032	4.4	0.16	0.0275
A5	5		0.136	060'0		0.45	
A6-A9	20	0.29	0.418	0.277	5.8	5.54	0.001

FIG. 21C



35/42

	Volume (mL.)	Activity (U/L)	A280	A280/ 1.51 (mg/mL)	Activity (mU)	Mass (mg)	Specific Activity (U/mg)
Load	40	1.25	0.561	0.372	50.0	14.9	0.0034
Ŀ	40	0.71	0.019	0.012	28.4	0.48	0.059
Wash	7.8	0.48	0.026	0.017	3.7	0.13	0.028
A3	5	0.13	0.011	0.007	9.0	0.04	0.015
A4	5	0.11	0.062	0.041	9.0	0.21	0.003
A5 -A9	25	0.04	0.311	0.206	1.0	5.15	0.0002

## FIG. 22C



37/42

	Volume (mL)	Activity (U/L)	A280	A280/ 1.51 (mg/ mL)	Activity (mU )	Mass (mg)	Specific Activity (U/mg)
Load	40	1.20	0.579	0.383	48.0	15.3	0.0031
L L	40	0.81	0.151	0.100	32.4	4.00	0.0081
Wash	7.8	0.01	0.128	0.085	0	0.66	
A3	5	1.65	0.158	0.105	8.25	0.53	0.0156
A4	5	3.76	0.273	0.181	18.8	0.91	0.0206
A5/6	10	0.01	0.093	0.062	0.1	0.62	0.0002

FIG. 23C





**SUBSTITUTE SHEET (RULE 26)** 

39/42

GalNAcT2 activities of refolded MBP-GalNAcT2(D51)



FIG. 25

## 40/42

## pH effort on the MBP-GalNAcT2( $^{\Delta}$ 51) specific activities



pH Solubiliz. - refold

FIG. 26

41/42



FIG. 27

42/42



FIG. 28