Sieci antycypacyjne Piotr Zając

Ćw1. Punkty niezdominowane:

Stage 0: 2, 3, 4

stage 1:5

stage 2: 1, 2

stage 3: 3, 5

stage 4: 1, 3, 4, 5

Ćw2. Możliwe łańcuchy dopuszczalne startujące punkcie U12:

$2 \rightarrow 2 \rightarrow 2 \rightarrow 3 \rightarrow 1$	$2 \rightarrow 2 \rightarrow 3 \rightarrow 2 \rightarrow 2$	$2 \rightarrow 4 \rightarrow 2 \rightarrow 3 \rightarrow 1$
$2 \rightarrow 2 \rightarrow 2 \rightarrow 3 \rightarrow 3$	$2 \rightarrow 2 \rightarrow 3 \rightarrow 2 \rightarrow 3$	$2 \rightarrow 4 \rightarrow 2 \rightarrow 3 \rightarrow 3$
$2 \rightarrow 2 \rightarrow 2 \rightarrow 3 \rightarrow 5$	$2 \rightarrow 2 \rightarrow 3 \rightarrow 2 \rightarrow 5$	$2 \rightarrow 4 \rightarrow 2 \rightarrow 3 \rightarrow 5$
$2 \rightarrow 2 \rightarrow 2 \rightarrow 5 \rightarrow 1$	$2 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 4$	$2 \rightarrow 4 \rightarrow 2 \rightarrow 5 \rightarrow 1$
$2 \rightarrow 2 \rightarrow 2 \rightarrow 5 \rightarrow 4$	$2 \rightarrow 2 \rightarrow 4 \rightarrow 1 \rightarrow 2$	$2 \rightarrow 4 \rightarrow 2 \rightarrow 5 \rightarrow 4$
$2 \rightarrow 2 \rightarrow 4 \rightarrow 2 \rightarrow 2$	$2 \rightarrow 2 \rightarrow 4 \rightarrow 3 \rightarrow 5$	$2 \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 2$
$2 \rightarrow 2 \rightarrow 4 \rightarrow 2 \rightarrow 3$	$2 \rightarrow 2 \rightarrow 5 \rightarrow 3 \rightarrow 1$	$2 \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 3$
$2 \rightarrow 2 \rightarrow 4 \rightarrow 2 \rightarrow 5$	$2 \rightarrow 2 \rightarrow 5 \rightarrow 3 \rightarrow 3$	$2 \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 5$
$2 \rightarrow 2 \rightarrow 4 \rightarrow 3 \rightarrow 1$	$2 \rightarrow 2 \rightarrow 5 \rightarrow 3 \rightarrow 5$	$2 \rightarrow 4 \rightarrow 3 \rightarrow 4 \rightarrow 4$
$2 \rightarrow 2 \rightarrow 4 \rightarrow 3 \rightarrow 3$		
$2 \rightarrow 2 \rightarrow 2 \rightarrow 3 \rightarrow 1$	$2 \rightarrow 2 \rightarrow 3 \rightarrow 2 \rightarrow 2$	$2 \rightarrow 4 \rightarrow 2 \rightarrow 3 \rightarrow 3$
$2 \rightarrow 2 \rightarrow 2 \rightarrow 3 \rightarrow 3$	$2 \rightarrow 2 \rightarrow 3 \rightarrow 2 \rightarrow 3$	$2 \rightarrow 4 \rightarrow 2 \rightarrow 3 \rightarrow 5$
$2 \rightarrow 2 \rightarrow 2 \rightarrow 3 \rightarrow 5$	$2 \rightarrow 2 \rightarrow 3 \rightarrow 2 \rightarrow 5$	$2 \rightarrow 4 \rightarrow 2 \rightarrow 5 \rightarrow 1$
$2 \rightarrow 2 \rightarrow 2 \rightarrow 5 \rightarrow 1$	$2 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 4$	$2 \rightarrow 4 \rightarrow 2 \rightarrow 5 \rightarrow 4$
$2 \rightarrow 2 \rightarrow 2 \rightarrow 5 \rightarrow 4$	$2 \rightarrow 2 \rightarrow 4 \rightarrow 1 \rightarrow 2$	$2 \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 2$

Ćw3. Elementy macierzy, które spełniają przewidywalne warunki sprzężenia zwrotnego:

- a) V₄ := {u₅} Zaznaczone wyżej na zielono
- b) $V_1 := \{u_3, u_4\}$ Zaznaczone wyżej na niebiesko

Ćw4. Macierze określające związki kauzalne pomiędzy optymalizatorami na podstawie grafu:

ф2	X21	X22	X23	X24	ф3	X31	X32	X33	X34
X11	1	0	1	0	X21	1	1	0	1
X12	0	1	0	0	X22	0	0	1	0
X13	0	0	1	1	X23	0	1	0	0
					X24	0	0	1	1

Zadanie 5

Schemat sieci:

Schemat sieci ze sprzężeniami zwrotnymi:

Dopuszczalne łańcuchy decyzji, bez brania pod uwagę sprzężeń:

Dodatkowo:

Dla każdego $s \in \{i, j, t1, t2, k, m\}$ $Us = \{xs1, xs2, xs3, xs4, xs5\}$, każdy optymalizator Os ma 5-elementowe zbiory decyzji.

 O_i wybiera decyzję ze zbioru $U_i = \{x_{i1}, x_{i2}, x_{i3}, x_{i4}, x_{i5}\}$,

 O_j wybiera decyzję ze zbioru $U_j = \varphi_j(u_i)$,

 O_{t1} wybiera decyzję ze zbioru $U_{t1} = \varphi_{t1}(u_i)$,

 O_{t2} wybiera decyzję ze zbioru $U_{t2} = \varphi_{t2}(u_j)$,

O_k wybiera decyzję ze zbioru $U_k = \phi_{k1}(u_{t1}) \cup \varphi_{k2}(u_{t2})$, O_m wybiera decyzję ze zbioru $U_m = \phi_{m1}(u_{t1}) \cup \varphi_{m2}(u_{t2})$,

Definicje funkcji φ przedstawione są w poniższych tabelach:

φј	xj1	xj2	хј3	xj4	xj5
xi1	0	1	1	1	0
xi2	1	0	1	0	1
хіЗ	1	1	0	1	1
xi4	1	0	1	0	1
xi5	0	1	1	1	0

φt1	xt11	xt12	xt13	xt14	xt15
xj1	0	1	0	1	1
xj2	1	0	1	0	1
хј3	0	1	0	1	0
xj4	1	0	1	0	1
xj5	1	1	0	1	0

φt2	xt21	xt22	xt23	xt24	xt25
xj1	1	0	1	1	0
xj2	0	1	0	1	1
хј3	1	0	1	0	1
xj4	1	1	0	1	0
xj5	0	1	1	0	1

φk1	xk1	xk2	xk3	xk4	xk5
xt11	1	1	0	0	0
xt12	1	1	1	0	0
xt13	0	1	1	1	0
xt14	0	0	1	1	1
xt15	0	0	0	1	1

φk2	xk1	xk2	xk3	xk4	xk5
xt21	1	0	0	1	1
xt22	0	1	0	0	1
xt23	0	0	1	0	0
xt24	1	0	0	1	0
xt25	1	1	0	0	1

φm1	xm1	xm2	xm3	xm4	xm5
xt11	1	0	1	0	1
xt12	0	1	0	1	0
xt13	1	0	1	0	1
xt14	0	1	0	1	0
xt15	1	0	1	0	1

φm2	xm1	xm2	xm3	xm4	xm5
xt21	1	1	0	0	1
xt22	1	0	1	0	1
xt23	0	0	1	1	1
xt24	1	0	1	1	0
xt25	0	1	0	0	1

Analizując pierwszy łańcuch dopuszczalny:

Zbiór decyzji Uk jest 5-elementowy i (tak przyjmuję) oceniany przez 3 kryteria Fk, których wartości podane są w poniższej tabeli.

Zbiory V definiuję następująco:

$$\begin{aligned} V_{kt1} &= \{xk1, xk2, xk4, xk5\}, \\ V_{kt2} &= \{xk3, xk4\}, \end{aligned}$$

	xk1	xk2	xk3	xk4	xk5
Fk(uk)	(0.3, 0.35,0.1)	(0.5, 0.15, 0.05)	(0.45, 0.2,0.05)	(0.4,0.05,0.1)	(0.1, 0.3, 0.05)
Niezdominowane	0	1	1	1	1
Element z Vkt1	1	1	0	1	1
Element z Vkt2	0	0	1	1	0

$$V_{kt1} \cap V_{kt2} = \{xk4\}$$

Dodatkowo, jako ograniczenie zewnętrzne, przyjmuję:

$$V_i = \{xi5\}, \ V_{t1} = \{xt15, xt11\}$$

Biorąc pod uwagę wymienione wcześniej założenia dotyczące rozważanego łańcucha dopuszczalnego, możliwe łańcuchy antycypacyjne są następujące:

Teraz dokonajmy analizy drugiego łańcucha dopuszczalnego:

Zbiór decyzji Um jest 5-elementowy i (tak przyjmuję) oceniany przez 3 kryteria Fm, których wartości podane są w poniższej tabeli.

Zbiory V definiuję następująco:

$$V_{mj} = \{xk1, xk2, xk5\},$$

	xm1	xm2	xm3	xm4	xm5
Fm(um)	(0.5, 0.6, 0.2)	(0.8, 0.5, 0.2)	(0.3, 0.9, 0.1)	(0.1, 0.2, 0.8)	(0.2, 0.2, 0.2)
Niezdominowane	0	0	1	1	1
Element z Vmj	1	1	0	0	1

Decydenci starają się wybierać rozwiązanie niezdominowane, dlatego:

$$V_{mj} = \{xm5\}$$

Dodatkowo, jako ograniczenie zewnętrzne, przyjmuję:

$$V_i = \{xj2, xj3, xj5\}, \ V_i = \{xi1, xi2\}, \ V_{t1} = \{xt12, xt13, xt14\}$$

Biorąc pod uwagę wymienione wcześniej założenia dotyczące rozważanego łańcucha dopuszczalnego, możliwe łańcuchy antycypacyjne są następujące:

Teraz dokonajmy analizy trzeciego łańcucha dopuszczalnego:

Zbiór decyzji Uk jest 5-elementowy i (tak przyjmuję) oceniany przez 3 kryteria Fk, których wartości podane są w poniższej tabeli.

Zbiory V są zdefiniowane:

$$\begin{aligned} V_{kt1} &= \{xk1, xk2, xk4, xk5\}, \\ V_{kt2} &= \{xk3, xk4\}, \end{aligned}$$

	xk1	xk2	xk3	xk4	xk5
Fk(uk)	(0.3, 0.35,0.1)	(0.5, 0.15, 0.05)	(0.45, 0.2,0.05)	(0.4,0.05,0.1)	(0.1, 0.3, 0.05)
Niezdominowane	0	1	1	1	1
Element z Vkt1	1	1	0	1	1
Element z Vkt2	0	0	1	1	0

$$V_{kt1} \cap V_{kt2} = \{xk4\}$$

Dodatkowo, jako ograniczenie zewnętrzne, przyjmuję:

$$V_i = \{xi1, xi2, xi3\}, V_j = \{xj1, xj2, xj3, xj4\}$$

Biorąc pod uwagę wymienione wcześniej założenia dotyczące rozważanego łańcucha dopuszczalnego, możliwe łańcuchy antycypacyjne są następujące:

Teraz dokonajmy analizy czwartego łańcucha dopuszczalnego:

Zbiór decyzji Um jest 5-elementowy i (tak przyjmuję) oceniany przez 3 kryteria Fm, których wartości podane są w poniższej tabeli.

Zbiory V są zdefiniowane:

$$V_{mj} = \{xk1, xk2, xk5\},\$$

	xm1	xm2	xm3	xm4	xm5
Fm(um)	(0.5, 0.6, 0.2)	(0.8, 0.5, 0.2)	(0.3, 0.9, 0.1)	(0.1, 0.2, 0.8)	(0.2, 0.2, 0.2)
Niezdominowane	0	0	1	1	1
Element z Vmj	1	1	0	0	1

Decydenci starają się wybierać rozwiązanie niezdominowane, dlatego:

$$V_{mj} = \{xm5\}$$

Dodatkowo, jako ograniczenie zewnętrzne, przyjmuję:

$$V_i = \{xi4\}$$

Biorąc pod uwagę wymienione wcześniej założenia dotyczące rozważanego łańcucha dopuszczalnego, możliwe łańcuchy antycypacyjne są następujące: