Calculus III Lecture 2

Todor Milev

https://github.com/tmilev/freecalc

2020

Outline

Vectors

Outline

Vectors

2 Dot product of vectors

License to use and redistribute

These lecture slides and their LaTEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work,

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/and the links therein

 A position vector v (simply - vector) is a point in a space where there's a fixed preferred point O.

- A position vector v (simply vector) is a point in a space where there's a fixed preferred point O.
- Preferred point O is called the origin.

- A position vector v (simply vector) is a point in a space where there's a fixed preferred point O.
- Preferred point O is called the origin.
- If not given by O, vector is depicted by arrow from O to defining point.

- A position vector v (simply vector) is a point in a space where there's a fixed preferred point O.
- Preferred point O is called the origin.
- If not given by O, vector is depicted by arrow from O to defining point.
- Vector given by origin = zero vector **0**.

- A position vector v (simply vector) is a point in a space where there's a fixed preferred point O.
- Preferred point O is called the origin.
- If not given by O, vector is depicted by arrow from O to defining point.
- Vector given by origin = zero vector 0.
- Points & vectors can be identified but:
 - use term "vector" ⇒ space has preferred origin point;

- A position vector v (simply vector) is a point in a space where there's a fixed preferred point O.
- Preferred point O is called the origin.
- If not given by O, vector is depicted by arrow from O to defining point.
- Vector given by origin = zero vector **0**.
- Points & vectors can be identified but:
 - use term "vector" ⇒ space has preferred origin point;

 We will soon equip vectors with two operations, vector addition and multiplication by scalars.

- A position vector v (simply vector) is a point in a space where there's a fixed preferred point O.
- Preferred point O is called the origin.
- If not given by O, vector is depicted by arrow from O to defining point.
- Vector given by origin = zero vector 0.
- Points & vectors can be identified but:
 - use term "vector" ⇒ space has preferred origin point;
 - if we specifically allow point/vector addition we use the term "vector" instead of "point";

 We will soon equip vectors with two operations, vector addition and multiplication by scalars.

- A position vector v (simply vector) is a point in a space where there's a fixed preferred point O.
- Preferred point O is called the origin.
- If not given by O, vector is depicted by arrow from O to defining point.
- Vector given by origin = zero vector **0**.
- Points & vectors can be identified but:
 - use term "vector" ⇒ space has preferred origin point;
 - if we specifically allow point/vector addition we use the term "vector" instead of "point";
 - when we do not intend to carry out addition operations we use the term "point" instead of "vector".
- We will soon equip vectors with two operations, vector addition and multiplication by scalars.

Definition

A displacement vector is an ordered pair of points (A, B).

Definition

A displacement vector is an ordered pair of points (A, B).

• When $A \neq B$, represent as arrow, A - tail B- head.

Definition

A displacement vector is an ordered pair of points (A, B).

- When $A \neq B$, represent as arrow, A tail B- head.
- Define displacement vector magnitude (A, B) to be the length of the segment |AB|.

Definition

A displacement vector is an ordered pair of points (A, B).

- When $A \neq B$, represent as arrow, A tail B- head.
- Define displacement vector magnitude (A, B) to be the length of the segment |AB|.
- If A ≠ B the direction of the displacement vector is defined as the ray starting at A and passing through B.

Definition

A displacement vector is an ordered pair of points (A, B).

- When $A \neq B$, represent as arrow, A tail B- head.
- Define displacement vector magnitude (A, B) to be the length of the segment |AB|.
- If A ≠ B the direction of the displacement vector is defined as the ray starting at A and passing through B.
- If A = B:

Todor Milev 2020

Definition

A displacement vector is an ordered pair of points (A, B).

- When $A \neq B$, represent as arrow, A tail B- head.
- Define displacement vector magnitude (A, B) to be the length of the segment |AB|.
- If A ≠ B the direction of the displacement vector is defined as the ray starting at A and passing through B.
- If A = B:
 - displacement vector has zero magnitude and non-specified direction

Definition

A displacement vector is an ordered pair of points (A, B).

- When $A \neq B$, represent as arrow, A tail B- head.
- Define displacement vector magnitude (A, B) to be the length of the segment |AB|.
- If A ≠ B the direction of the displacement vector is defined as the ray starting at A and passing through B.
- If A = B:
 - displacement vector has zero magnitude and non-specified direction
 - (A, A): zero displacement vector at point A.

• We define two displacement vectors (A, B) and (D, C) to be equal if A = D and B = C.

- We define two displacement vectors (A, B) and (D, C) to be equal if A = D and B = C.
- Equal displacement vectors → same magnitude and direction.

- We define two displacement vectors (A, B) and (D, C) to be equal if A = D and B = C.
- Equal displacement vectors → same magnitude and direction.

- We define two displacement vectors (A, B) and (D, C) to be equal if A = D and B = C.
- Equal displacement vectors → same magnitude and direction.
- Same magnitude and direction

 → equal displacement vectors.
- We define two displacement vectors to be equivalent if they have the same magnitude and direction. We write $(A, B) \equiv (D, C)$.

- We define two displacement vectors (A, B) and (D, C) to be equal if A = D and B = C.
- Equal displacement vectors → same magnitude and direction.
- Same magnitude and direction

 → equal displacement vectors.
- We define two displacement vectors to be equivalent if they have the same magnitude and direction. We write $(A, B) \equiv (D, C)$.

q

$$(A, B) \equiv (D, C) \iff ABCD$$
 is a parallelogram.

• Suppose we have space without chosen origin.

- Suppose we have space without chosen origin.
- To each displacement vector (A, B),

- Suppose we have space without chosen origin.
- To each displacement vector (A, B), assign position vector by choosing origin to be the tail A and giving the position vector by the head B.

- Suppose we have space without chosen origin.
- To each displacement vector (A, B), assign position vector by choosing origin to be the tail A and giving the position vector by the head B.
- We are ready to give "origin-free" alternative definition/interpretation of vector.

Definition (Alternative definition/interpretation of position vector)

Define a position vector as the set that consists all displacement vectors equivalent to one fixed displacement vector.

- Suppose we have space without chosen origin.
- To each displacement vector (A, B), assign position vector by choosing origin to be the tail A and giving the position vector by the head B.
- We are ready to give "origin-free" alternative definition/interpretation of vector.

Definition (Alternative definition/interpretation of position vector)

Define a position vector as the set that consists all displacement vectors equivalent to one fixed displacement vector.

Definitions are technically different but equivalent.

- Suppose we have space without chosen origin.
- To each displacement vector (A, B), assign position vector by choosing origin to be the tail A and giving the position vector by the head B.
- We are ready to give "origin-free" alternative definition/interpretation of vector.

Definition (Alternative definition/interpretation of position vector)

Define a position vector as the set that consists all displacement vectors equivalent to one fixed displacement vector.

- Definitions are technically different but equivalent.
- We choose which def. to use according to application.

- Suppose we have space without chosen origin.
- To each displacement vector (A, B), assign position vector by choosing origin to be the tail A and giving the position vector by the head B.
- We are ready to give "origin-free" alternative definition/interpretation of vector.

Definition (Alternative definition/interpretation of position vector)

Define a position vector as the set that consists all displacement vectors equivalent to one fixed displacement vector.

- Definitions are technically different but equivalent.
- We choose which def. to use according to application.
- The set of zero displacement vectors with arbitrary tail points = zero position vector, 0.

 In preceding slide: each position vector u can be thought of as a set of equivalent displacement vectors.

- In preceding slide: each position vector u can be thought of as a set of equivalent displacement vectors.
- So we can represent position vectors via displacement vectors.

- In preceding slide: each position vector u can be thought of as a set of equivalent displacement vectors.
- So we can represent position vectors via displacement vectors.
- For two points A, B define the position vector \overrightarrow{AB} or \overrightarrow{AB} as the vector represented by the displacement vector (A, B).

- In preceding slide: each position vector u can be thought of as a set of equivalent displacement vectors.
- So we can represent position vectors via displacement vectors.
- For two points A, B define the position vector \overrightarrow{AB} or \overrightarrow{AB} as the vector represented by the displacement vector (A, B).
- ⇒ it's allowed to represent position vectors as arrows with tails not necessarily at origin.

Todor Milev 2020

Addition of Vectors

 Triangle Rule. Define sum of position vectors u and v as follows.

Addition of Vectors

- Triangle Rule. Define sum of position vectors u and v as follows.
- Attach representative displacement vectors head to tail.

Addition of Vectors

- Triangle Rule. Define sum of position vectors u and v as follows.
- Attach representative displacement vectors head to tail.
- Declare the sum to be the position vector with the tail of the first displacement vector and the head of the second displacement vector.

 Addition is commutative (parallelogram rule):

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
.

 Addition is commutative (parallelogram rule):

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
.

 Addition is commutative (parallelogram rule):

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
.

Todor Milev 2020

 Addition is commutative (parallelogram rule):

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
.

 Addition is commutative (parallelogram rule):

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
.

Addition is associative:

$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$

 Addition is commutative (parallelogram rule):

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
.

Addition is associative:

$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$

 Addition is commutative (parallelogram rule):

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
.

Addition is associative:

$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$

 Addition is commutative (parallelogram rule):

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
.

Addition is associative:

$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$

 Addition is commutative (parallelogram rule):

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
.

Addition is associative:

$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$

 Addition is commutative (parallelogram rule):

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
.

Addition is associative:

$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$

 Addition is commutative (parallelogram rule):

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
.

Addition is associative:

$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$

• As usual we write $\mathbf{u} + \mathbf{v} + \mathbf{w} = (\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w}).$

• Let $\mathbf{u} = \mathbf{AB}$.

Todor Milev 2020

- Let $\mathbf{u} = \mathbf{AB}$.
- We define $-\mathbf{u}$ to be a vector for which $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.

- Let u = AB.
- We define $-\mathbf{u}$ to be a vector for which $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.
- Since AB + BA = 0, it follows $-\mathbf{u} = \mathbf{BA}$.

- Let u = AB.
- We define $-\mathbf{u}$ to be a vector for which $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.
- Since AB + BA = 0, it follows $-\mathbf{u} = BA$.
- In other words -u is depicted using the arrow opposite to u.

Todor Milev 2020

- Let u = AB.
- We define $-\mathbf{u}$ to be the vector for which $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.
- Since AB + BA = 0, it follows $-\mathbf{u} = BA$.
- In other words -u is depicted using the arrow opposite to u.
- From picture, it's evident –u can be chosen one way only.

- Let u = AB.
- We define $-\mathbf{u}$ to be the vector for which $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.
- Since AB + BA = 0, it follows $-\mathbf{u} = BA$.
- In other words -u is depicted using the arrow opposite to u.
- From picture, it's evident -u can be chosen one way only.
- We define the difference of vectors
 v, u via

Todor Milev 2020

- Let u = AB.
- We define $-\mathbf{u}$ to be the vector for which $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.
- Since AB + BA = 0, it follows $-\mathbf{u} = BA$.
- In other words -u is depicted using the arrow opposite to u.
- From picture, it's evident -u can be chosen one way only.
- We define the difference of vectors
 v, u via v u = (-u) + v (triangle rule).

• Let **u** be vector, *c* be a real number (scalar).

• If c_1, \ldots, c_n are scalars and $\mathbf{u}_1, \ldots, \mathbf{u}_n$ are vectors, we say

$$\mathbf{v} = c_1 \mathbf{u}_1 + \cdots + c_n \mathbf{u}_n$$

is a *linear combination* of the vectors $\mathbf{u}_1, \dots, \mathbf{u}_n$.

- Let **u** be vector, *c* be a real number (scalar).
- Define the product of the vector u and the scalar c as follows.
 - If c > 0 define cu as the vector:
 - with the same direction
 - with magnitude proportional with coefficient c to the magnitude of u, i.e., |cu| = c|u|.

• If c_1, \ldots, c_n are scalars and $\mathbf{u}_1, \ldots, \mathbf{u}_n$ are vectors, we say

$$\mathbf{v} = c_1 \mathbf{u}_1 + \cdots + c_n \mathbf{u}_n$$

is a *linear combination* of the vectors $\mathbf{u}_1, \dots, \mathbf{u}_n$.

- Let **u** be vector, *c* be a real number (scalar).
- Define the product of the vector u and the scalar c as follows.
 - If c > 0 define cu as the vector:
 - with the same direction
 - with magnitude proportional with coefficient
 c to the magnitude of u, i.e., |cu| = c|u|.

• If c_1, \ldots, c_n are scalars and $\mathbf{u}_1, \ldots, \mathbf{u}_n$ are vectors, we say

$$\mathbf{v} = c_1 \mathbf{u}_1 + \cdots + c_n \mathbf{u}_n$$

is a *linear combination* of the vectors $\mathbf{u}_1, \dots, \mathbf{u}_n$.

- Let **u** be vector, c be a real number (scalar).
- Define the product of the vector u and the scalar c as follows.
 - If c > 0 define cu as the vector:
 - with the same direction
 - with magnitude proportional with coefficient c to the magnitude of \mathbf{u} , i.e., $|c\mathbf{u}| = c|\mathbf{u}|$.

• If c_1, \ldots, c_n are scalars and $\mathbf{u}_1, \ldots, \mathbf{u}_n$ are vectors, we say

$$\mathbf{v} = c_1 \mathbf{u}_1 + \cdots + c_n \mathbf{u}_n$$

is a *linear combination* of the vectors $\mathbf{u}_1, \dots, \mathbf{u}_n$.

- Let **u** be vector, *c* be a real number (scalar).
- Define the product of the vector u and the scalar c as follows.
 - If c > 0 define cu as the vector:
 - with the same direction
 - with magnitude proportional with coefficient c to the magnitude of \mathbf{u} , i.e., $|c\mathbf{u}| = c|\mathbf{u}|$.

• If c_1, \ldots, c_n are scalars and $\mathbf{u}_1, \ldots, \mathbf{u}_n$ are vectors, we say

$$\mathbf{v} = c_1 \mathbf{u}_1 + \cdots + c_n \mathbf{u}_n$$

is a *linear combination* of the vectors $\mathbf{u}_1, \dots, \mathbf{u}_n$.

- Let **u** be vector, *c* be a real number (scalar).
- Define the product of the vector u and the scalar c as follows.
 - If c > 0 define $c\mathbf{u}$ as the vector:
 - with the same direction
 - with magnitude proportional with coefficient c to the magnitude of \mathbf{u} , i.e., $|c\mathbf{u}| = c|\mathbf{u}|$.
 - If c < 0 define cu as the vector (-c)(-u),
 i.e, as the vector:
 - with opposite direction
 - with magnitude $|c\mathbf{u}| = |(-c)(-\mathbf{u})| = (-c)|-\mathbf{u}| = |c||\mathbf{u}|$
- If c_1, \ldots, c_n are scalars and $\mathbf{u}_1, \ldots, \mathbf{u}_n$ are vectors, we say

$$\mathbf{v} = c_1 \mathbf{u}_1 + \cdots + c_n \mathbf{u}_n$$

is a *linear combination* of the vectors $\mathbf{u}_1, \dots, \mathbf{u}_n$.

- Let **u** be vector, *c* be a real number (scalar).
- Define the product of the vector u and the scalar c as follows.
 - If c > 0 define cu as the vector:
 - with the same direction
 - with magnitude proportional with coefficient c to the magnitude of \mathbf{u} , i.e., $|c\mathbf{u}| = c|\mathbf{u}|$.
 - If c < 0 define cu as the vector (-c)(-u),
 i.e, as the vector:
 - with opposite direction
 - with magnitude

$$|c\mathbf{u}| = |(-c)(-\mathbf{u})| = (-c)|-\mathbf{u}| = |c||\mathbf{u}|$$

- If c = 0 then define $c\mathbf{u} = 0\mathbf{u} = \mathbf{0}$.
- If c_1, \ldots, c_n are scalars and $\mathbf{u}_1, \ldots, \mathbf{u}_n$ are vectors, we say

$$\mathbf{v} = c_1 \mathbf{u}_1 + \cdots + c_n \mathbf{u}_n$$

is a *linear combination* of the vectors $\mathbf{u}_1, \dots, \mathbf{u}_n$.

• Fix coordinate system Oxyz.

- Fix coordinate system Oxyz.
- Let I, J, K be the points giving the units on the x, y, z axes as indicated.

- Fix coordinate system Oxyz.
- Let I, J, K be the points giving the units on the x, y, z axes as indicated.
- Define i, j, k to be the unit vectors OI, OJ, OK.

- Fix coordinate system Oxyz.
- Let I, J, K be the points giving the units on the x, y, z axes as indicated.
- Define i, j, k to be the unit vectors OI, OJ,
 OK.

- Fix coordinate system Oxyz.
- Let I, J, K be the points giving the units on the x, y, z axes as indicated.
- Define i, j, k to be the unit vectors OI, OJ, OK.

Let u = OU be a vector.

- Fix coordinate system Oxyz.
- Let *I*, *J*, *K* be the points giving the units on the *x*, *y*, *z* axes as indicated.
- Define i, j, k to be the unit vectors OI, OJ, OK.
- Let u = OU be a vector.
- Let *U* have coordinates (a, b, c).

- Fix coordinate system Oxyz.
- Let I, J, K be the points giving the units on the x, y, z axes as indicated.
- Define i, j, k to be the unit vectors OI, OJ, OK.
- Let u = OU be a vector.
- Let *U* have coordinates (a, b, c).
- Then $\mathbf{u} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$.

Todor Milev 2020

- Fix coordinate system Oxyz.
- Let I, J, K be the points giving the units on the x, y, z axes as indicated.
- Define i, j, k to be the unit vectors OI, OJ, OK.
- Let u = OU be a vector.
- Let *U* have coordinates (*a*, *b*, *c*).
- Then $\mathbf{u} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$.
- This follows from the point-vector identification.

- Fix coordinate system Oxyz.
- Let I, J, K be the points giving the units on the x, y, z axes as indicated.
- Define i, j, k to be the unit vectors OI, OJ, OK.
- Let u = OU be a vector.
- Let *U* have coordinates (*a*, *b*, *c*).
- Then $\mathbf{u} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$.
- This follows from the point-vector identification.

Vectors in Coordinates

- Fix coordinate system Oxyz.
- Let I, J, K be the points giving the units on the x, y, z axes as indicated.
- Define i, j, k to be the unit vectors OI, OJ, OK.
- Let u = OU be a vector.
- Let *U* have coordinates (*a*, *b*, *c*).
- Then $\mathbf{u} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$.
- This follows from the point-vector identification.

Vectors in Coordinates

- Fix coordinate system Oxyz.
- Let I, J, K be the points giving the units on the x, y, z axes as indicated.
- Define i, j, k to be the unit vectors OI, OJ, OK.
- Let u = OU be a vector.
- Let *U* have coordinates (*a*, *b*, *c*).
- Then $\mathbf{u} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$.
- This follows from the point-vector identification.

From preceding: arbitrary vector u = OU can be decomposed as u = ai + bj + ck, where (a, b, c): Cartesian coordinates of U.

- From preceding: arbitrary vector u = OU can be decomposed as u = ai + bj + ck, where (a, b, c): Cartesian coordinates of U.
- Thus u is identified with the triple of numbers (a, b, c).

- From preceding: arbitrary vector u = OU can be decomposed as u = ai + bj + ck, where (a, b, c): Cartesian coordinates of U.
- Thus u is identified with the triple of numbers (a, b, c).

 Under the first definition of vector, a vector is simply a point in a vector space (=space with a distinguished point).

- From preceding: arbitrary vector u = OU can be decomposed as u = ai + bj + ck, where (a, b, c): Cartesian coordinates of U.
- Thus u is identified with the triple of numbers (a, b, c).
- Under the first definition of vector, a vector is simply a point in a vector space (=space with a distinguished point).
- From now on, we assume the first definition of vector: we use the notation (a, b, c) both for points in vector spaces (vectors) and points in spaces not equipped with vector space structure.

- From preceding: arbitrary vector u = OU can be decomposed as u = ai + bj + ck, where (a, b, c): Cartesian coordinates of U.
- Thus u is identified with the triple of numbers (a, b, c).
- Under the first definition of vector, a vector is simply a point in a vector space (=space with a distinguished point).
- From now on, we assume the first definition of vector: we use the notation (a, b, c) both for points in vector spaces (vectors) and points in spaces not equipped with vector space structure.
- Under the second alternative definition of vector, there is a formal distinction between points and vectors.

- From preceding: arbitrary vector u = OU can be decomposed as u = ai + bj + ck, where (a, b, c): Cartesian coordinates of U.
- Thus u is identified with the triple of numbers (a, b, c).
- Under the first definition of vector, a vector is simply a point in a vector space (=space with a distinguished point).
- From now on, we assume the first definition of vector: we use the notation (a, b, c) both for points in vector spaces (vectors) and points in spaces not equipped with vector space structure.
- Under the second alternative definition of vector, there is a formal distinction between points and vectors.
- Some authors who use the second definition use the notation $\langle a, b, c \rangle$ to denote vectors and (a, b, c) to denote points.

Vector magnitude is given by

$$|(u_1, u_2, u_3)| = |OP| = \sqrt{u_1^2 + u_2^2 + u_3^2}$$

Vector magnitude is given by

$$|(u_1, u_2, u_3)| = |OP| = \sqrt{u_1^2 + u_2^2 + u_3^2}$$

Vector addition is given by:

$$(x_1, y_1, z_1) + (x_2, y_2, z_2) = (x_1 + x_2, y_1 + y_2, z_1 + z_2).$$

Vector magnitude is given by

$$|(u_1, u_2, u_3)| = |OP| = \sqrt{u_1^2 + u_2^2 + u_3^2}$$

Vector addition is given by:

$$(x_1, y_1, z_1) + (x_2, y_2, z_2) = (x_1 + x_2, y_1 + y_2, z_1 + z_2).$$

Vector magnitude is given by

$$|(u_1, u_2, u_3)| = |OP| = \sqrt{u_1^2 + u_2^2 + u_3^2}$$

Vector addition is given by:

$$(x_1, y_1, z_1) + (x_2, y_2, z_2) = (x_1 + x_2, y_1 + y_2, z_1 + z_2).$$

Scalar multiple is given by:

$$c(x, y, z) = (cx, cy, cz)$$
.

Vector magnitude is given by

$$|(u_1, u_2, u_3)| = |OP| = \sqrt{u_1^2 + u_2^2 + u_3^2}$$

Vector addition is given by:

$$(x_1, y_1, z_1) + (x_2, y_2, z_2) = (x_1 + x_2, y_1 + y_2, z_1 + z_2).$$

Scalar multiple is given by:

$$c(x,y,z)=(cx,cy,cz).$$

• Let $A(x_A, y_A, z_A)$ and $B(x_B, y_B, z_B)$ be points. Then

$$AB = AO + OB$$

Vector magnitude is given by

$$|(u_1, u_2, u_3)| = |OP| = \sqrt{u_1^2 + u_2^2 + u_3^2}$$

Vector addition is given by:

$$(x_1, y_1, z_1) + (x_2, y_2, z_2) = (x_1 + x_2, y_1 + y_2, z_1 + z_2).$$

Scalar multiple is given by:

$$c(x, y, z) = (cx, cy, cz).$$

• Let $A(x_A, y_A, z_A)$ and $B(x_B, y_B, z_B)$ be points. Then

$$AB = AO + OB = OB - OA$$

Vector magnitude is given by

$$|(u_1, u_2, u_3)| = |OP| = \sqrt{u_1^2 + u_2^2 + u_3^2}$$

Vector addition is given by:

$$(x_1, y_1, z_1) + (x_2, y_2, z_2) = (x_1 + x_2, y_1 + y_2, z_1 + z_2).$$

Scalar multiple is given by:

$$c(x,y,z)=(cx,cy,cz).$$

• Let $A(x_A, y_A, z_A)$ and $B(x_B, y_B, z_B)$ be points. Then

$$AB = AO + OB = OB - OA = (x_B - x_A, y_B - y_A, z_B - z_A).$$

Vector magnitude is given by

$$|(u_1, u_2, u_3)| = |OP| = \sqrt{u_1^2 + u_2^2 + u_3^2}$$

Vector addition is given by:

$$(x_1, y_1, z_1) + (x_2, y_2, z_2) = (x_1 + x_2, y_1 + y_2, z_1 + z_2).$$

Scalar multiple is given by:

$$c(x,y,z)=(cx,cy,cz).$$

• Let $A(x_A, y_A, z_A)$ and $B(x_B, y_B, z_B)$ be points. Then

$$AB = AO + OB = OB - OA = (x_B - x_A, y_B - y_A, z_B - z_A).$$

• Let \mathbf{u} , \mathbf{v} vectors, $\mathbf{v} \neq \mathbf{0}$.

Todor Milev 2020

- Let \mathbf{u} , \mathbf{v} vectors, $\mathbf{v} \neq \mathbf{0}$.
- Denote by proj_vu the projection of u along v.

- Let \mathbf{u} , \mathbf{v} vectors, $\mathbf{v} \neq \mathbf{0}$.
- Denote by proj_vu the projection of u along v.
- Denote by comp_vu the magnitude of proj_vu, i.e., |proj_vu| = comp_vu

- Let \mathbf{u} , \mathbf{v} vectors, $\mathbf{v} \neq \mathbf{0}$.
- Denote by proj_vu the projection of u along v.
- Denote by comp_vu the magnitude of proj_vu, i.e., |proj_vu| = comp_vu

Denote by orth_vu the projection of u in direction orthogonal to v.

- Let \mathbf{u} , \mathbf{v} vectors, $\mathbf{v} \neq \mathbf{0}$.
- Denote by proj_vu the projection of u along v.
- Denote by comp_vu the magnitude of proj_vu, i.e., |proj_vu| = comp_vu
- Denote by orth_vu the projection of u in direction orthogonal to v.
- $\mathbf{u} = \mathbf{orth_vu} + \mathbf{proj_vu}$.

- Let \mathbf{u} , \mathbf{v} vectors, $\mathbf{v} \neq \mathbf{0}$.
- Denote by proj_vu the projection of u along v.
- Denote by comp_vu the magnitude of proj_vu, i.e., |proj_vu| = comp_vu
- Denote by orth_vu the projection of u in direction orthogonal to v.
- $\mathbf{u} = \mathbf{orth_vu} + \mathbf{proj_vu}$.
- We have $\hat{\mathbf{v}} = \frac{1}{|\mathbf{v}|} \mathbf{v}$ is the unit vector along \mathbf{v} .

- Let \mathbf{u} , \mathbf{v} vectors, $\mathbf{v} \neq \mathbf{0}$.
- Denote by proj_vu the projection of u along v.
- $$\begin{split} \bullet & \text{ Denote by comp}_v u \text{ the } \\ & \text{ magnitude of } \textbf{proj}_v u, \text{ i.e., } \\ & |\textbf{proj}_v u| = \text{comp}_v u \end{split}$$
- Denote by orth_vu the projection of u in direction orthogonal to v.
- $\mathbf{u} = \operatorname{orth}_{\mathbf{v}} \mathbf{u} + \operatorname{proj}_{\mathbf{v}} \mathbf{u}$.
- We have $\hat{\mathbf{v}} = \frac{1}{|\mathbf{v}|} \mathbf{v}$ is the unit vector along \mathbf{v} .
- Let α : angle between **v** and **u**.

- Let \mathbf{u} , \mathbf{v} vectors, $\mathbf{v} \neq \mathbf{0}$.
- Denote by proj_vu the projection of u along v.
- Denote by comp_vu the magnitude of proj_vu, i.e., |proj_vu| = comp_vu
- Denote by orth_vu the projection of u in direction orthogonal to v.
- $\mathbf{u} = \operatorname{orth}_{\mathbf{v}} \mathbf{u} + \operatorname{proj}_{\mathbf{v}} \mathbf{u}$.
- We have $\hat{\mathbf{v}} = \frac{1}{|\mathbf{v}|} \mathbf{v}$ is the unit vector along \mathbf{v} .
- Let α : angle between **v** and **u**.
- Then $comp_{\mathbf{v}}\mathbf{u} = cos \alpha |\mathbf{u}|$.

- Let \mathbf{u} , \mathbf{v} vectors, $\mathbf{v} \neq \mathbf{0}$.
- Denote by proj_vu the projection of u along v.
- $$\begin{split} \bullet & \text{ Denote by comp}_v u \text{ the } \\ & \text{ magnitude of } \textbf{proj}_v u, \text{ i.e., } \\ & |\textbf{proj}_v u| = \text{comp}_v u \end{split}$$
- Denote by orth_vu the projection of u in direction orthogonal to v.
- $\mathbf{u} = \operatorname{orth}_{\mathbf{v}} \mathbf{u} + \operatorname{proj}_{\mathbf{v}} \mathbf{u}$.
- We have $\hat{\mathbf{v}} = \frac{1}{|\mathbf{v}|} \mathbf{v}$ is the unit vector along \mathbf{v} .
- Let α : angle between **v** and **u**.
- Then $comp_{\mathbf{v}}\mathbf{u} = \cos \alpha |\mathbf{u}|$. Therefore $\mathbf{proj}_{\mathbf{v}}\mathbf{u} = \cos \alpha |\mathbf{u}| \widehat{\mathbf{v}}$.

- Let \mathbf{u} , \mathbf{v} vectors, $\mathbf{v} \neq \mathbf{0}$.
- Denote by proj_vu the projection of u along v.
- $$\begin{split} \bullet & \text{ Denote by comp}_v u \text{ the } \\ & \text{ magnitude of } \textbf{proj}_v u, \text{ i.e., } \\ & |\textbf{proj}_v u| = \text{comp}_v u \end{split}$$
- Denote by orth_vu the projection of u in direction orthogonal to v.
- $\mathbf{u} = \operatorname{orth}_{\mathbf{v}} \mathbf{u} + \operatorname{proj}_{\mathbf{v}} \mathbf{u}$.
- We have $\hat{\mathbf{v}} = \frac{1}{|\mathbf{v}|} \mathbf{v}$ is the unit vector along \mathbf{v} .
- Let α : angle between **v** and **u**.
- Then $comp_{\mathbf{v}}\mathbf{u} = \cos \alpha |\mathbf{u}|$. Therefore $\mathbf{proj}_{\mathbf{v}}\mathbf{u} = \cos \alpha |\mathbf{u}| \widehat{\mathbf{v}}$.
- Define dot product of **u** and **v**:

$$\mathbf{u} \cdot \mathbf{v} = \cos \alpha |\mathbf{u}| |\mathbf{v}|.$$

- If $\mathbf{v} = \mathbf{0}$ or $\mathbf{u} = \mathbf{0}$, then $\mathbf{u} \cdot \mathbf{v} = \mathbf{0}$.
- If $\mathbf{u} \neq \mathbf{0} \neq \mathbf{v}$

$$\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}||\mathbf{v}|\cos\alpha,$$

where α is any angle between **u** and **v**.

- If $\mathbf{v} = \mathbf{0}$ or $\mathbf{u} = \mathbf{0}$, then $\mathbf{u} \cdot \mathbf{v} = \mathbf{0}$.
- If $\mathbf{u} \neq \mathbf{0} \neq \mathbf{v}$

$$\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}||\mathbf{v}|\cos \alpha$$

where α is any angle between **u** and **v**.

• If $\mathbf{u} \neq \mathbf{0} \neq \mathbf{v}$, then

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{0} \Longleftrightarrow \mathbf{u} \perp \mathbf{v}$$
.

- If $\mathbf{v} = \mathbf{0}$ or $\mathbf{u} = \mathbf{0}$, then $\mathbf{u} \cdot \mathbf{v} = \mathbf{0}$.
- If $\mathbf{u} \neq \mathbf{0} \neq \mathbf{v}$

$$\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}||\mathbf{v}|\cos\alpha$$

where α is any angle between **u** and **v**.

• If $\mathbf{u} \neq \mathbf{0} \neq \mathbf{v}$, then

$$\mathbf{u} \cdot \mathbf{v} = 0 \Longleftrightarrow \mathbf{u} \perp \mathbf{v}$$
.

• The dot product is commutative: $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$

- If $\mathbf{v} = \mathbf{0}$ or $\mathbf{u} = \mathbf{0}$, then $\mathbf{u} \cdot \mathbf{v} = \mathbf{0}$.
- If $\mathbf{u} \neq \mathbf{0} \neq \mathbf{v}$

$$\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}||\mathbf{v}|\cos\alpha$$

where α is any angle between **u** and **v**.

• If $\mathbf{u} \neq \mathbf{0} \neq \mathbf{v}$, then

$$\mathbf{u} \cdot \mathbf{v} = 0 \Longleftrightarrow \mathbf{u} \perp \mathbf{v}$$
.

- The dot product is commutative: $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$
- $\mathbf{u} \cdot \mathbf{v} = (\mathbf{proj}_{\mathbf{v}}\mathbf{u}) \cdot \mathbf{v}$.

- If $\mathbf{v} = \mathbf{0}$ or $\mathbf{u} = \mathbf{0}$, then $\mathbf{u} \cdot \mathbf{v} = \mathbf{0}$.
- If $\mathbf{u} \neq \mathbf{0} \neq \mathbf{v}$

$$\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}||\mathbf{v}|\cos\alpha$$

where α is any angle between **u** and **v**.

• If $\mathbf{u} \neq \mathbf{0} \neq \mathbf{v}$, then

$$\mathbf{u} \cdot \mathbf{v} = 0 \Longleftrightarrow \mathbf{u} \perp \mathbf{v}$$
.

- The dot product is commutative: $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$
- $\mathbf{u} \cdot \mathbf{v} = (\mathbf{proj}_{\mathbf{v}}\mathbf{u}) \cdot \mathbf{v}$.
- The dot product is linear in each argument:

$$(a\mathbf{u} + b\mathbf{w}) \cdot \mathbf{v} = a\mathbf{u} \cdot \mathbf{v} + b\mathbf{w} \cdot \mathbf{v}$$

 $\mathbf{u} \cdot (a\mathbf{v} + b\mathbf{w}) = a\mathbf{u} \cdot \mathbf{v} + b\mathbf{u} \cdot \mathbf{w}$

Todor Milev 2020

- If $\mathbf{v} = \mathbf{0}$ or $\mathbf{u} = \mathbf{0}$, then $\mathbf{u} \cdot \mathbf{v} = \mathbf{0}$.
- If $\mathbf{u} \neq \mathbf{0} \neq \mathbf{v}$

$$\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}||\mathbf{v}|\cos\alpha$$

where α is any angle between **u** and **v**.

• If $\mathbf{u} \neq \mathbf{0} \neq \mathbf{v}$, then

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{0} \Longleftrightarrow \mathbf{u} \perp \mathbf{v}$$
.

- The dot product is commutative: $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$
- $\mathbf{u} \cdot \mathbf{v} = (\mathbf{proj}_{\mathbf{v}}\mathbf{u}) \cdot \mathbf{v}$.
- The dot product is linear in each argument:

Lecture 2

$$(a\mathbf{u} + b\mathbf{w}) \cdot \mathbf{v} = a\mathbf{u} \cdot \mathbf{v} + b\mathbf{w} \cdot \mathbf{v}$$

 $\mathbf{u} \cdot (a\mathbf{v} + b\mathbf{w}) = a\mathbf{u} \cdot \mathbf{v} + b\mathbf{u} \cdot \mathbf{w}$

Dot product is positive definite:

$$\mathbf{v} \cdot \mathbf{v} = |\mathbf{v}|^2 \ge 0$$

 $\mathbf{v} \cdot \mathbf{v} = 0 \Leftrightarrow \mathbf{v} = \mathbf{0}$

Todor Milev

• Let i, j, k unit vectors along axes.

- Let i, j, k unit vectors along axes.
- Distinct unit vectors are $\perp \Rightarrow \cos$ of angle b-n them is $0 = \cos \frac{\pi}{2}$.

- Let i, j, k unit vectors along axes.
- Distinct unit vectors are $\perp \Rightarrow \cos$ of angle b-n them is $0 = \cos \frac{\pi}{2}$.
- Therefore $\mathbf{i} \cdot \mathbf{j} = \mathbf{j} \cdot \mathbf{i} = \mathbf{j} \cdot \mathbf{k} = \mathbf{k} \cdot \mathbf{j} = \mathbf{i} \cdot \mathbf{k} = \mathbf{k} \cdot \mathbf{i} = 0$.

- Let i, j, k unit vectors along axes.
- Distinct unit vectors are $\perp \Rightarrow \cos$ of angle b-n them is $0 = \cos \frac{\pi}{2}$.
- Therefore $\mathbf{i} \cdot \mathbf{j} = \mathbf{j} \cdot \mathbf{i} = \mathbf{j} \cdot \mathbf{k} = \mathbf{k} \cdot \mathbf{j} = \mathbf{i} \cdot \mathbf{k} = \mathbf{k} \cdot \mathbf{i} = 0$.
- \bullet $\mathbf{i} \cdot \mathbf{i} = \mathbf{j} \cdot \mathbf{j} = \mathbf{k} \cdot \mathbf{k} = 1$

- Let i, j, k unit vectors along axes.
- Distinct unit vectors are $\perp \Rightarrow \cos$ of angle b-n them is $0 = \cos \frac{\pi}{2}$.
- Therefore $\mathbf{i} \cdot \mathbf{j} = \mathbf{j} \cdot \mathbf{i} = \mathbf{j} \cdot \mathbf{k} = \mathbf{k} \cdot \mathbf{j} = \mathbf{i} \cdot \mathbf{k} = \mathbf{k} \cdot \mathbf{i} = 0$.
- \bullet $\mathbf{i} \cdot \mathbf{i} = \mathbf{j} \cdot \mathbf{j} = \mathbf{k} \cdot \mathbf{k} = 1$

Theorem (Can be taken as definition)

$$\mathbf{u} \cdot \mathbf{v} = (u_1, u_2, u_3) \cdot (v_1, v_2, v_3) = u_1 v_1 + u_2 v_2 + u_3 v_3.$$

Proof.

- Let i, j, k unit vectors along axes.
- Distinct unit vectors are $\perp \Rightarrow \cos$ of angle b-n them is $0 = \cos \frac{\pi}{2}$.
- Therefore $\mathbf{i} \cdot \mathbf{j} = \mathbf{j} \cdot \mathbf{i} = \mathbf{j} \cdot \mathbf{k} = \mathbf{k} \cdot \mathbf{j} = \mathbf{i} \cdot \mathbf{k} = \mathbf{k} \cdot \mathbf{i} = 0$.
- $\bullet \ \mathbf{i} \cdot \mathbf{i} = \mathbf{j} \cdot \mathbf{j} = \mathbf{k} \cdot \mathbf{k} = 1$

Theorem (Can be taken as definition)

$$\mathbf{u} \cdot \mathbf{v} = (u_1, u_2, u_3) \cdot (v_1, v_2, v_3) = u_1 v_1 + u_2 v_2 + u_3 v_3.$$

Proof.

$$\mathbf{u} \cdot \mathbf{v} = (u_{1}\mathbf{i} + u_{2}\mathbf{j} + u_{3}\mathbf{k}) \cdot (v_{1}\mathbf{i} + v_{2}\mathbf{j} + v_{3}\mathbf{k})$$

$$= u_{1}v_{1}\mathbf{i} \cdot \mathbf{i} + u_{1}v_{2}\mathbf{i} \cdot \mathbf{j} + u_{1}v_{3}\mathbf{i} \cdot \mathbf{k}$$

$$+ u_{2}v_{1}\mathbf{j} \cdot \mathbf{i} + u_{2}v_{2}\mathbf{j} \cdot \mathbf{j} + u_{2}v_{3}\mathbf{j} \cdot \mathbf{k}$$

$$+ u_{3}v_{1}\mathbf{k} \cdot \mathbf{i} + u_{3}v_{2}\mathbf{k} \cdot \mathbf{j} + u_{3}v_{3}\mathbf{k} \cdot \mathbf{k}$$

$$= u_{1}v_{1} + u_{2}v_{2} + u_{3}v_{3} .$$

- Let i, j, k unit vectors along axes.
- Distinct unit vectors are $\perp \Rightarrow \cos$ of angle b-n them is $0 = \cos \frac{\pi}{2}$.
- Therefore $\mathbf{i} \cdot \mathbf{j} = \mathbf{j} \cdot \mathbf{i} = \mathbf{j} \cdot \mathbf{k} = \mathbf{k} \cdot \mathbf{j} = \mathbf{i} \cdot \mathbf{k} = \mathbf{k} \cdot \mathbf{i} = 0$.
- \bullet $\mathbf{i} \cdot \mathbf{i} = \mathbf{j} \cdot \mathbf{j} = \mathbf{k} \cdot \mathbf{k} = 1$

Theorem (Can be taken as definition)

$$\mathbf{u} \cdot \mathbf{v} = (u_1, u_2, u_3) \cdot (v_1, v_2, v_3) = u_1 v_1 + u_2 v_2 + u_3 v_3.$$

Proof.

$$\mathbf{u} \cdot \mathbf{v} = (u_{1}\mathbf{i} + u_{2}\mathbf{j} + u_{3}\mathbf{k}) \cdot (v_{1}\mathbf{i} + v_{2}\mathbf{j} + v_{3}\mathbf{k})$$

$$= u_{1}v_{1}\mathbf{i} \cdot \mathbf{i} + u_{1}v_{2}\mathbf{i} \cdot \mathbf{j} + u_{1}v_{3}\mathbf{i} \cdot \mathbf{k}$$

$$+ u_{2}v_{1}\mathbf{j} \cdot \mathbf{i} + u_{2}v_{2}\mathbf{j} \cdot \mathbf{j} + u_{2}v_{3}\mathbf{j} \cdot \mathbf{k}$$

$$+ u_{3}v_{1}\mathbf{k} \cdot \mathbf{i} + u_{3}v_{2}\mathbf{k} \cdot \mathbf{j} + u_{3}v_{3}\mathbf{k} \cdot \mathbf{k}$$

$$= u_{1}v_{1} + u_{2}v_{2} + u_{3}v_{3} .$$

- Let i, j, k unit vectors along axes.
- Distinct unit vectors are $\perp \Rightarrow \cos$ of angle b-n them is $0 = \cos \frac{\pi}{2}$.
- Therefore $\mathbf{i} \cdot \mathbf{j} = \mathbf{j} \cdot \mathbf{i} = \mathbf{j} \cdot \mathbf{k} = \mathbf{k} \cdot \mathbf{j} = \mathbf{i} \cdot \mathbf{k} = \mathbf{k} \cdot \mathbf{i} = 0$.
- \bullet $\mathbf{i} \cdot \mathbf{i} = \mathbf{j} \cdot \mathbf{j} = \mathbf{k} \cdot \mathbf{k} = 1$

Theorem (Can be taken as definition)

$$\mathbf{u} \cdot \mathbf{v} = (u_1, u_2, u_3) \cdot (v_1, v_2, v_3) = u_1 v_1 + u_2 v_2 + u_3 v_3$$
.

Proof.

$$\mathbf{u} \cdot \mathbf{v} = (u_{1}\mathbf{i} + u_{2}\mathbf{j} + u_{3}\mathbf{k}) \cdot (v_{1}\mathbf{i} + v_{2}\mathbf{j} + v_{3}\mathbf{k})$$

$$= u_{1}v_{1}\mathbf{i} \cdot \mathbf{i} + u_{1}v_{2}\mathbf{i} \cdot \mathbf{j} + u_{1}v_{3}\mathbf{i} \cdot \mathbf{k}$$

$$+ u_{2}v_{1}\mathbf{j} \cdot \mathbf{i} + u_{2}v_{2}\mathbf{j} \cdot \mathbf{j} + u_{2}v_{3}\mathbf{j} \cdot \mathbf{k}$$

$$+ u_{3}v_{1}\mathbf{k} \cdot \mathbf{i} + u_{3}v_{2}\mathbf{k} \cdot \mathbf{j} + u_{3}v_{3}\mathbf{k} \cdot \mathbf{k}$$

$$= u_{1}v_{1} + u_{2}v_{2} + u_{3}v_{3} .$$

Length via dot product

Let
$$\mathbf{u} = (u_1, u_2, u_3)$$
. Recall $|\mathbf{u}| = \sqrt{u_1^2 + u_2^2 + u_3^2}$.

Observation

$$|\mathbf{u}| = \sqrt{\mathbf{u} \cdot \mathbf{u}}$$
.

$$|\mathbf{u}|^2 = \mathbf{u} \cdot \mathbf{u}$$
.

Example
$$(1,2,3) \cdot (6,5,4) =$$

$$(1,2,3)\cdot(6,5,4)=$$
?

$$(1,2,3)\cdot(6,5,4)=1\cdot6+2\cdot5+3\cdot4=28$$

Are the vectors $(1, -2, 3) \cdot (1, -1, -1)$ perpendicular?

Are the vectors $(1, -2, 3) \cdot (1, -1, -1)$ perpendicular?

$$(1,-2,3)\cdot(1,-1,-1) =$$

Are the vectors $(1, -2, 3) \cdot (1, -1, -1)$ perpendicular?

$$(1,-2,3)\cdot(1,-1,-1) = 1\cdot 1 + (-1)\cdot(-2) + 3\cdot(-1) = 0,$$

Are the vectors $(1, -2, 3) \cdot (1, -1, -1)$ perpendicular?

$$(1,-2,3)\cdot(1,-1,-1)=1\cdot 1+(-1)\cdot(-2)+3\cdot(-1)=0,$$

therefore the vectors are perpendicular.

Are the vectors $(1, -2, 3) \cdot (1, -1, -1)$ perpendicular?

$$(1,-2,3)\cdot(1,-1,-1)=1\cdot 1+(-1)\cdot(-2)+3\cdot(-1)=0,$$

therefore the vectors are perpendicular. Is this apparent from the picture? Not unless the two vectors lie in a plane parallel to the surface of the page/computer screen.

Are the vectors $(1, -2, 3) \cdot (1, -1, -1)$ perpendicular?

$$(1,-2,3)\cdot (1,-1,-1)=1\cdot 1+(-1)\cdot (-2)+3\cdot (-1)=0,$$

therefore the vectors are perpendicular. Is this apparent from the picture? Not unless the two vectors lie in a plane parallel to the surface of the page/computer screen.

Are the vectors $(1, -2, 3) \cdot (1, -1, -1)$ perpendicular?

$$(1,-2,3)\cdot(1,-1,-1)=1\cdot 1+(-1)\cdot(-2)+3\cdot(-1)=0,$$

therefore the vectors are perpendicular. Is this apparent from the picture? Not unless the two vectors lie in a plane parallel to the surface of the page/computer screen.

Are the vectors $(1, -2, 3) \cdot (1, -1, -1)$ perpendicular?

$$(1,-2,3)\cdot(1,-1,-1)=1\cdot 1+(-1)\cdot(-2)+3\cdot(-1)=0,$$

therefore the vectors are perpendicular. Is this apparent from the picture? Not unless the two vectors lie in a plane parallel to the surface of the page/computer screen.

Are the vectors $(1, -2, 3) \cdot (1, -1, -1)$ perpendicular?

$$(1,-2,3)\cdot(1,-1,-1)=1\cdot 1+(-1)\cdot(-2)+3\cdot(-1)=0,$$

therefore the vectors are perpendicular. Is this apparent from the picture? Not unless the two vectors lie in a plane parallel to the surface of the page/computer screen.

Are the vectors $(1, -2, 3) \cdot (1, -1, -1)$ perpendicular?

$$(1,-2,3)\cdot(1,-1,-1)=1\cdot 1+(-1)\cdot(-2)+3\cdot(-1)=0,$$

If therefore the vectors are perpendicular. Is this apparent from the picture? Not unless the two vectors lie in a plane parallel to the surface of the page/computer screen.

Are the vectors $(1, -2, 3) \cdot (1, -1, -1)$ perpendicular?

$$(1,-2,3)\cdot (1,-1,-1)=1\cdot 1+(-1)\cdot (-2)+3\cdot (-1)=0,$$

therefore the vectors are perpendicular. Is this apparent from the picture? Not unless the two vectors lie in a plane parallel to the surface of the page/computer screen.

Are the vectors $(1, -2, 3) \cdot (1, -1, -1)$ perpendicular?

$$(1,-2,3)\cdot (1,-1,-1)=1\cdot 1+(-1)\cdot (-2)+3\cdot (-1)=0,$$

therefore the vectors are perpendicular. Is this apparent from the picture? Not unless the two vectors lie in a plane parallel to the surface of the page/computer screen.

$$\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j} + u_3 \mathbf{k} = (u_1, u_2, u_3)$$

$$\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k} = (v_1, v_2, v_3)$$

$$\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j} + u_3 \mathbf{k} = (u_1, u_2, u_3)$$

$$\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k} = (v_1, v_2, v_3)$$

Theorem

$$comp_{\mathbf{v}}\mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|} = \frac{u_1 v_1 + u_2 v_2 + u_3 v_3}{\sqrt{v_1^2 + v_2^2 + v_3^2}}$$

$$\text{proj}_{\textbf{v}}\textbf{u} \ = \ (\textit{comp}_{\textbf{v}}\textbf{u})\,\widehat{\textbf{v}} = \frac{\textbf{u}\cdot\textbf{v}}{|\textbf{v}|}\frac{\textbf{v}}{|\textbf{v}|} = \frac{\textbf{u}\cdot\textbf{v}}{|\textbf{v}|^2}\textbf{v} = \frac{\textbf{u}\cdot\textbf{v}}{\textbf{v}\cdot\textbf{v}}\textbf{v} \quad .$$

$$\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j} + u_3 \mathbf{k} = (u_1, u_2, u_3)$$

$$\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k} = (v_1, v_2, v_3)$$

Theorem

$$comp_{\mathbf{v}}\mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|} = \frac{u_1 v_1 + u_2 v_2 + u_3 v_3}{\sqrt{v_1^2 + v_2^2 + v_3^2}}$$

$$\text{proj}_{\textbf{v}}\textbf{u} \ = \ (\textit{comp}_{\textbf{v}}\textbf{u})\,\widehat{\textbf{v}} = \frac{\textbf{u}\cdot\textbf{v}}{|\textbf{v}|}\frac{\textbf{v}}{|\textbf{v}|} = \frac{\textbf{u}\cdot\textbf{v}}{|\textbf{v}|^2}\textbf{v} = \frac{\textbf{u}\cdot\textbf{v}}{\textbf{v}\cdot\textbf{v}}\textbf{v} \quad .$$

$$\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j} + u_3 \mathbf{k} = (u_1, u_2, u_3)$$

$$\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k} = (v_1, v_2, v_3)$$

Theorem

$$comp_{\mathbf{v}}\mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|} = \frac{u_1 v_1 + u_2 v_2 + u_3 v_3}{\sqrt{v_1^2 + v_2^2 + v_3^2}}$$

$$\text{proj}_{\textbf{v}} u \ = \ (\textit{comp}_{\textbf{v}} u) \, \widehat{\textbf{v}} = \frac{\textbf{u} \cdot \textbf{v}}{|\textbf{v}|} \frac{\textbf{v}}{|\textbf{v}|} = \frac{\textbf{u} \cdot \textbf{v}}{|\textbf{v}|^2} \textbf{v} = \frac{\textbf{u} \cdot \textbf{v}}{\textbf{v} \cdot \textbf{v}} \textbf{v} \quad .$$

$$\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j} + u_3 \mathbf{k} = (u_1, u_2, u_3)$$

$$\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k} = (v_1, v_2, v_3)$$

Theorem

$$comp_{\mathbf{v}}\mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|} = \frac{u_1 v_1 + u_2 v_2 + u_3 v_3}{\sqrt{v_1^2 + v_2^2 + v_3^2}}$$

$$\text{proj}_{\textbf{v}}\textbf{u} \ = \ (\textit{comp}_{\textbf{v}}\textbf{u})\,\widehat{\textbf{v}} = \frac{\textbf{u}\cdot\textbf{v}}{|\textbf{v}|}\frac{\textbf{v}}{|\textbf{v}|} = \frac{\textbf{u}\cdot\textbf{v}}{|\textbf{v}|^2}\textbf{v} = \frac{\textbf{u}\cdot\textbf{v}}{\textbf{v}\cdot\textbf{v}}\textbf{v} \quad .$$

$$\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j} + u_3 \mathbf{k} = (u_1, u_2, u_3)$$

$$\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k} = (v_1, v_2, v_3)$$

Theorem

$$comp_{\mathbf{v}}\mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|} = \frac{u_1 v_1 + u_2 v_2 + u_3 v_3}{\sqrt{v_1^2 + v_2^2 + v_3^2}}$$

$$\text{proj}_{\textbf{v}}\textbf{u} \ = \ (\underbrace{\textit{comp}_{\textbf{v}}\textbf{u}}) \, \widehat{\textbf{v}} = \frac{\textbf{u} \cdot \textbf{v}}{|\textbf{v}|} \frac{\textbf{v}}{|\textbf{v}|} = \frac{\textbf{u} \cdot \textbf{v}}{|\textbf{v}|^2} \textbf{v} = \frac{\textbf{u} \cdot \textbf{v}}{\textbf{v} \cdot \textbf{v}} \textbf{v} \quad .$$

$$\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j} + u_3 \mathbf{k} = (u_1, u_2, u_3)$$

$$\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k} = (v_1, v_2, v_3)$$

Theorem

$$comp_{\mathbf{v}}\mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|} = \frac{u_1 v_1 + u_2 v_2 + u_3 v_3}{\sqrt{v_1^2 + v_2^2 + v_3^2}}$$

$$\text{proj}_{\mathbf{v}}\mathbf{u} = (comp_{\mathbf{v}}\mathbf{u})\widehat{\mathbf{v}} = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|} \frac{\mathbf{v}}{|\mathbf{v}|} = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^2} \mathbf{v} = \frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v} \quad .$$

$$\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j} + u_3 \mathbf{k} = (u_1, u_2, u_3)$$

$$\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k} = (v_1, v_2, v_3)$$

Theorem

$$comp_{\mathbf{v}}\mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|} = \frac{u_1 v_1 + u_2 v_2 + u_3 v_3}{\sqrt{v_1^2 + v_2^2 + v_3^2}}$$

$$\text{proj}_{\textbf{v}} u \ = \ (\textit{comp}_{\textbf{v}} u) \, \widehat{\textbf{v}} = \frac{\textbf{u} \cdot \textbf{v}}{|\textbf{v}|} \frac{\textbf{v}}{|\textbf{v}|} = \frac{\textbf{u} \cdot \textbf{v}}{|\textbf{v}|^2} \textbf{v} = \frac{\textbf{u} \cdot \textbf{v}}{\textbf{v} \cdot \textbf{v}} \textbf{v} \quad .$$

Let $\mathbf{u} = (1, 2, 3)$, $\mathbf{v} = (6, 5, 4)$.

- Compute the scalar projection comp_vu of u onto v.
- Compute the vector projection **proj**_v**u** of **u** onto **v**.
- Compute the orthogonal component orth_vu.

Let
$$\mathbf{u} = (1, 2, 3), \mathbf{v} = (6, 5, 4).$$

- ullet Compute the scalar projection comp_v**u** of **u** onto **v**.
- Compute the vector projection proj_vu of u onto v.
- Compute the orthogonal component orth_vu.

$$\mathsf{comp}_{\boldsymbol{v}}\boldsymbol{u} = \frac{\boldsymbol{u} \cdot \boldsymbol{v}}{|\boldsymbol{v}|}$$

$$comp_{(6.5.4)}(1,2,3) =$$

Let
$$\mathbf{u} = (1, 2, 3), \mathbf{v} = (6, 5, 4).$$

- Compute the scalar projection comp_vu of u onto v.
- Compute the vector projection proj_vu of u onto v.
- Compute the orthogonal component orth_vu.

$$\mathsf{comp}_{\boldsymbol{v}}\boldsymbol{u} = \frac{\boldsymbol{u} \cdot \boldsymbol{v}}{|\boldsymbol{v}|}$$

$$\mathsf{comp}_{(6,5,4)}(1,2,3) = \frac{(6,5,4) \cdot (1,2,3)}{\sqrt{(6,5,4) \cdot (6,5,4)}} = \frac{6 \cdot 1 + 5 \cdot 2 + 4 \cdot 3}{\sqrt{6^2 + 5^2 + 4^2}} = \frac{28}{\sqrt{77}}$$

Let
$$\mathbf{u} = (1, 2, 3)$$
, $\mathbf{v} = (6, 5, 4)$.

- Compute the scalar projection comp_vu of u onto v.
- Compute the vector projection proj_vu of u onto v.
- Compute the orthogonal component orth_vu.

$$\mathsf{comp}_{\boldsymbol{v}}\boldsymbol{u} = \frac{\boldsymbol{u} \cdot \boldsymbol{v}}{|\boldsymbol{v}|}$$

$$\mathsf{comp}_{(6,5,4)}(1,2,3) = \frac{(6,5,4) \cdot (1,2,3)}{\sqrt{(6,5,4) \cdot (6,5,4)}} = \frac{6 \cdot 1 + 5 \cdot 2 + 4 \cdot 3}{\sqrt{6^2 + 5^2 + 4^2}} = \frac{28}{\sqrt{77}}$$

$$proj_{\mathbf{v}}\mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^2}\mathbf{v}$$

$$proj_{(6.5.4)}(1,2,3) =$$

Let
$$\mathbf{u} = (1, 2, 3), \mathbf{v} = (6, 5, 4).$$

- Compute the scalar projection comp_vu of u onto v.
- Compute the vector projection proj_vu of u onto v.
- Compute the orthogonal component orth_vu.

$$\text{comp}_{\boldsymbol{v}}\boldsymbol{u} = \frac{\boldsymbol{u} \cdot \boldsymbol{v}}{|\boldsymbol{v}|}$$

$$\mathsf{comp}_{(6,5,4)}(1,2,3) = \frac{(6,5,4) \cdot (1,2,3)}{\sqrt{(6,5,4) \cdot (6,5,4)}} = \frac{6 \cdot 1 + 5 \cdot 2 + 4 \cdot 3}{\sqrt{6^2 + 5^2 + 4^2}} = \frac{28}{\sqrt{77}}$$

$$proj_{\mathbf{v}}\mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^2}\mathbf{v}$$

$$\textbf{proj}_{(6,5,4)}(1,2,3) = \tfrac{28}{77}(6,5,4) = \left(\tfrac{24}{11},\tfrac{20}{11},\tfrac{16}{11}\right)$$

Let
$$\mathbf{u} = (1, 2, 3), \mathbf{v} = (6, 5, 4).$$

- Compute the scalar projection comp_vu of u onto v.
- Compute the vector projection proj_vu of u onto v.
- Compute the orthogonal component orth_vu.

$$\text{comp}_{\boldsymbol{v}}\boldsymbol{u} = \frac{\boldsymbol{u} \cdot \boldsymbol{v}}{|\boldsymbol{v}|}$$

$$\mathsf{comp}_{(6,5,4)}(1,2,3) = \frac{(6,5,4) \cdot (1,2,3)}{\sqrt{(6,5,4) \cdot (6,5,4)}} = \frac{6 \cdot 1 + 5 \cdot 2 + 4 \cdot 3}{\sqrt{6^2 + 5^2 + 4^2}} = \frac{28}{\sqrt{77}}$$

$$proj_{\mathbf{v}}\mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^2}\mathbf{v}$$

$$\begin{array}{l} \textbf{proj}_{(6,5,4)}(1,2,3) = \frac{28}{77}(6,5,4) = \left(\frac{24}{11},\frac{20}{11},\frac{16}{11}\right) \\ \textbf{orth}_{(6,5,4)}(1,2,3) = \end{array}$$

Let
$$\mathbf{u} = (1, 2, 3), \mathbf{v} = (6, 5, 4).$$

- Compute the scalar projection $comp_v u$ of u onto v.
- Compute the vector projection proj_vu of u onto v.
- Compute the orthogonal component orth_vu.

$$\text{comp}_{\boldsymbol{v}}\boldsymbol{u} = \frac{\boldsymbol{u} \cdot \boldsymbol{v}}{|\boldsymbol{v}|}$$

$$\text{comp}_{(6,5,4)}(1,2,3) = \frac{(6,5,4) \cdot (1,2,3)}{\sqrt{(6,5,4) \cdot (6,5,4)}} = \frac{6 \cdot 1 + 5 \cdot 2 + 4 \cdot 3}{\sqrt{6^2 + 5^2 + 4^2}} = \frac{28}{\sqrt{77}}$$

$$proj_{\mathbf{v}}\mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^2}\mathbf{v}$$

$$\begin{array}{l} \textbf{proj}_{(6,5,4)}(1,2,3) = \frac{28}{77}(6,5,4) = \left(\frac{24}{11},\frac{20}{11},\frac{16}{11}\right) \\ \textbf{orth}_{(6,5,4)}(1,2,3) = (1,2,3) - \textbf{proj}_{(6,5,4)}(1,2,3) = \left(-\frac{13}{11},\frac{2}{11},\frac{17}{11}\right) \end{array}$$

$$\mathbf{u}\cdot\mathbf{v} \ = \ |\mathbf{u}||\mathbf{v}|\cos\alpha$$

Let
$$\alpha = \angle(\mathbf{u}, \mathbf{v})$$
.

Example

$$\begin{array}{rcl} \mathbf{u}\cdot\mathbf{v} & = & |\mathbf{u}||\mathbf{v}|\cos\alpha \\ \cos\alpha & = & \frac{\mathbf{u}\cdot\mathbf{v}}{|\mathbf{u}|\,|\mathbf{v}|} \end{array}$$

Let
$$\alpha = \angle(\mathbf{u}, \mathbf{v})$$
.

Example

Let
$$\alpha = \angle(\mathbf{u}, \mathbf{v})$$
.

$$\begin{array}{rcl} \mathbf{u} \cdot \mathbf{v} & = & |\mathbf{u}| |\mathbf{v}| \cos \alpha \\ \cos \alpha & = & \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}| |\mathbf{v}|} \\ \alpha & = & \arccos \left(\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}| |\mathbf{v}|} \right) \end{array}$$

Example

Let
$$\alpha = \angle(\mathbf{u}, \mathbf{v})$$
.

$$\begin{array}{rcl} \mathbf{u} \cdot \mathbf{v} & = & |\mathbf{u}| |\mathbf{v}| \cos \alpha \\ \cos \alpha & = & \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}| |\mathbf{v}|} \\ \alpha & = & \arccos \left(\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}| |\mathbf{v}|} \right) \end{array}$$

Example

Compute the angle $\angle((1,2,3),(6,5,4))$.

$$\begin{array}{rcl} \mathbf{u}\cdot\mathbf{v} & = & |\mathbf{u}||\mathbf{v}|\cos\alpha\\ \cos\alpha & = & \frac{\mathbf{u}\cdot\mathbf{v}}{|\mathbf{u}|\,|\mathbf{v}|}\\ & \alpha & = & \arccos\left(\frac{\mathbf{u}\cdot\mathbf{v}}{|\mathbf{u}|\,|\mathbf{v}|}\right) \end{array}$$

Let
$$\alpha = \angle(\mathbf{u}, \mathbf{v})$$
.

Example

Compute the angle $\angle((1,2,3),(6,5,4))$.

$$\begin{array}{lcl} \alpha & = & \arccos\left(\frac{(1,2,3)\cdot(6,5,4)}{|(1,2,3)||(6,5,4)|}\right) \\ & = & \arccos\left(\frac{28}{\sqrt{14}\sqrt{77}}\right) = \arccos\left(\frac{4}{\sqrt{22}}\right) \\ & \approx & 0.549467 \approx 31.482^{\circ} \end{array}$$

Direction Angles

Definition

The direction angles α, β, γ of the vector **u** are defined as the angles between **u** and the unit vectors **i**, **j**, **k** (in the same order).

$$\mathbf{u} = (u_1, u_2, u_3)$$

$$\alpha = \angle(\mathbf{u}, \mathbf{i})$$

$$\beta = \angle(\mathbf{u}, \mathbf{j})$$

$$\gamma = \angle(\mathbf{u}, \mathbf{k})$$

$$\cos \alpha = \frac{\mathbf{u} \cdot \mathbf{i}}{|\mathbf{u}| |\mathbf{i}|} = \frac{u_1}{\sqrt{u_1^2 + u_2^2 + u_3^2}}$$

Similarly for $\cos \beta$ and $\cos \gamma$. Then:

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1.$$