МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«Московский государственный технический университет имени Н.Э. Баумана» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ФН КАФЕДРА «ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА И МАТЕМАТИЧЕСКАЯ ФИЗИКА»

Дисциплина: Основы методов конечных элементов

Отчет по выполнению лабораторной работы №1

Группа: <u>ФН11-72Б</u> Вариант 6

> Студент: Ладыгина Л.В. Преподаватель:Захарова Ю.В.

Лабораторная работа 1. Дискретные одномерные элементы

Дана исследуемая область (см. вариант по списку в журнале) с граничными условиям (Тсреды или Тср равносильно теплообмену со средой). Геометрические параметры области A, B, L, a, b [см] задаются самостоятельно. Воздействие теплового потока принять равным q=150 [Bm/cM^2], коэффициент теплоотдачи от стенки к среде $\alpha_g=10$ [$Bm/(cM^2)\cdot {}^{\circ}C$]; T— заданная температура стенки, 150 [${}^{\circ}C$]; $T_{cpedu}=25$ [${}^{\circ}C$] - температура окружающей среды, $\lambda=75$ [$Bm/(cM)\cdot {}^{\circ}C$] - коэффициент теплопроводности материала.

Требуется:

- 1. Провести дискретизацию области дискретными одномерными элементами.
- 2. Выписать уравнения равновесия для нескольких элементов.
- 3. Записать несколько локальных матриц: для внутренних элементов, граничных элементов и локальных векторов правых частей.
- Описать процедуру формирования глобальной матрицы теплопроводности и правых частей.
- 5. Получить СЛАУ для решения методом Гаусса и Холецкого.
- Найти распределение температуры в исследуемой области, решив полученное СЛАУ.

Зададим параметры

Исследуемая область:

Разделим тело в силу симметрии на 2 половины секущей плоскостью.

И рассмотрим половину, считая ее толщину единичной(по заданному размеру L)

Рассмотрим

Номер элемента	начальный узел	конечный узел	Жесткость
1	T_g	T1	$h1 = \frac{\alpha B}{2}$
2	T_g	T2	$h2=h1=\frac{\alpha B}{2}$
3	T1	T2	$k1 = \frac{\lambda A}{6B}$
4	T1	Т3	$k2 = \frac{3\lambda B}{2A}$
5	T2	T4	$k3=k2=\frac{3\lambda B}{2A}$
6	Т3	T4	$k4=k1=\frac{\lambda A}{6B}$
7	Т3	T5	$k5=k2=\frac{3\lambda B}{2A}$
8	T5	Т6	$k6=k1=\frac{\lambda A}{6B}$

9	T4	Т6	$k7=k2=\frac{3\lambda B}{2A}$
10	T5	Т7	$k8=k2=\frac{3\lambda B}{2A}$
11	Т6	Т8	$k9=k2=\frac{3\lambda B}{2A}$
12	Т7	Т8	$k10=k1=\frac{\lambda A}{6B}$
13	T_g	T2	$h3 = \frac{\alpha A}{6}$
14	T_g	Т9	$h6 = \frac{\alpha b}{2}$
15	T_g	T4	$h4 = \frac{\alpha A}{6}$
16	T_g	T4	$h5 = \frac{\alpha b}{4}$
17	T4	Т9	$k11 = \frac{4\lambda A}{6b}$
18	Т6	T10	$k12=k11=\frac{4\lambda A}{6b}$
19	Т9	T10	$k13 = \frac{6\lambda b}{4A}$
20	Т9	T11	$k14 = k11 = \frac{4\lambda A}{6b}$
21	T10	T12	$k15 = k11 = \frac{4\lambda A}{6b}$
22	T11	T12	$k16 = k13 = \frac{6\lambda b}{4A}$
23	T_g	T11	$h7 = \frac{\alpha b}{4}$

Запишем матрицу жесткости К:

1	LO.									
. 1	-k2	0	0	0		0	0	0 (0	(
2+k1+k5+h3	0	-k5	0	0		0	0	0 (0	
0	k2+k8+k3	-k8	-k3	0		0	0	0 (0	
(5	-k8	k5+k6+k8+k11 +h4+h5		-k6		0	0 -k11	(0	
0	-k3	0	k3+k4+k9	-k9	-k4		0	0 (0	(
0	0	-k6	-k9	k6+k9+k7+k13		0 -k7		0 -k13	0	
0	0	0	-k4	0	k4+k10	-k10		0 0	0	(
0	0	0	0	-k7	-k10	k7+k10		0 0	0	
0	0	-k11	0	0		0	h6+k11 0 +k12+k15	-k15	-k12	
0	0	0	0	-k13		0	0 -k15	k13+k14+k15	0	-k14
0	0	0	0	0		0	0 -k12	(k16+h7+k12	-k16
0	0	0	0	0		0	0	0 -k14	-k16	k14+k16
	0 5 0 0 0 0	0 k2+k8+k3 5 -k8 0 -k3 0 0 0 0 0 0 0 0 0 0 0 0	0	0 k2+k8+k3	0 k2+k8+k3	0 k2+k8+k3	0 k2+k8+k3	0 k2+k8+k3	0 k2+k8+k3 -k8 -k3 -k3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 k2+k8+k3

Посчитаем коэффициенты k и h:

```
h1=float(alpha*B)/2
h2=float(alpha*B)/2
h3=float(alpha*A)/6
h4=float(alpha*A)/6
h5=float(alpha*b)/4
h6=float(alpha*b)/2
h7=float(alpha*b)/4
k1=float(1*A)/(6*B)
k2=float(1*B*3)/(2*A)
k3=k2
k4=k2
k5=k2
k6=k2
k7=k2
k8=k1
k9=k1
k10=k1
k11=float(l*A*4)/(6*b)
k12=k11
k13=float(l*b*6)/(4*A)
k14=k11
k15=k3
k16=k13
```

Полученная матрица:

85.0	-37.5	-37.5	0	0	0	0	0	0	0	0	0
-37.5	95.0	0	-37.5	0	0	0	0	0	0	0	0
-37.5	0	112.5	-37.5	-37.5	0	0	0	0	0	0	0
0	-37.5	-37.5	170.0	0	-37.5	0	0	-37.5	0	0	0
0	0	-37.5	0	112.5	-37.5	-37.5	0	0	0	0	0
0	0	0	-37.5	-37.5	150.0	0	-37.5	0	-37.5	0	0
0	0	0	0	-37.5	0	75.0	-37.5	0	0	0	0
0	0	0	0	0	-37.5	-37.5	75.0	0	0	0	0
0	0	0	-37.5	0	0	0	0	132.5	-37.5	-37.5	0
0	0	0	0	0	-37.5	0	0	-37.5	112.5	0	-37.5
0	0	0	0	0	0	0	0	-37.5	0	122.5	-75.0
0	0	0	0	0	0	0	0	0	-37.5	-75.0	112.5

Выпишем Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8,Q9:

```
Q1=q*float(A)/6
Q2=q*float(A)/3
Q3=q*float(A)/3
Q4=q*float(A)/3
Q5=q*float(B)/2
Q6=q*float(B)/2
Q7=q*float(b)/4
Q8=q*float(b)/2
Q9=q*float(b)/4
```

И выпишем вектор Q- правую часть матричного уравнения :

```
Q[0]=Q1+h1*T_g
Q[1]=h3*T_g+h2*T_g
Q[2]=Q2
Q[3]=h4*T_g+h5*T_g
Q[4]=Q3
Q[5]=Q7
Q[6]=Q4+Q6
Q[7]=Q5
Q[8]=h6*T_g
Q[9]=Q8
Q[10]=h7*T_g
Q[11]=Q9
print(Q)
```

Полученный вектор Q:

```
[400.0, 500.0, 300.0, 500.0, 300.0, 150.0, 450.0, 150.0, 500.0, 300.0, 250.0, 150.0]
```

Метод Гаусса:

```
import sys
a = np.zeros((n,n+1))
x = np.zeros(n)
print('Enter Augmented Matrix Coefficients:')
for i in range(n):
   for j in range(n):
       a[i][j] = K[i][j]
       a[i][12]=Q[i]
for i in range(n):
   if a[i][i] == 0.0:
        sys.exit('Divide by zero detected!')
    for j in range(i+1, n):
       ratio = a[j][i]/a[i][i]
        for k in range(n+1):
            a[j][k] = a[j][k] - ratio * a[i][k]
# Back Substitution
x[n-1] = a[n-1][n]/a[n-1][n-1]
for i in range(n-2,-1,-1):
   x[i] = a[i][n]
    for j in range(i+1,n):
        x[i] = x[i] - a[i][j]*x[j]
   x[i] = x[i]/a[i][i]
print('\nRequired solution is: ')
for i in range(n):
   print('T%d = %0.2f' %(i,x[i]), end = '\t')
```

```
Required solution is:

T1 = 51.01

T2 = 45.45

T3 = 59.51

T4 = 50.79

T5 = 68.73

T6 = 62.65

T7 = 76.04

T8 = 71.34

T9 = 50.05

T10 = 59.19

T11 = 51.41

T12 = 56.30
```

Проверка методом обратной матрицы: Запишем СЛАУ и найдем вектор Т:

$$K \cdot T = Q$$
$$T = K^{-1} \cdot Q$$

```
K_inv=np.linalg.inv(K)
T=np.dot(K_inv,Q)
print(T)

[51.0118636     45.44824845     59.5119757     50.79036581     68.7336977     62.64998919     76.0391282     71.3445587     50.04823874     59.19066188     51.41443041     56.30254615]
```

Полученный вектор температур Т:

	1
1	51.01
2	45.44
3	59.51
4	50.79
5	68.73
6	62.64
7	76.03
8	71.34
9	50.04
10	59.19
11	51.41
12	56.30