ITCS 111 Integration

Indefinite Integral & Integration by Substitution

Some of the material in these slides is from *Calculus* 9/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved.

Antiderivatives

5.2.1 DEFINITION A function F is called an *antiderivative* of a function f on a given open interval if F'(x) = f(x) for all x in the interval.

Example: $F(x) = (1/3)x^3$ is an *antiderivative* of x^2 on the interval $(-\infty, +\infty)$ because $F'(x) = \frac{d}{dx} [(1/3)x^3] = x^2 = f(x)$ The function $G(x) = (1/3)x^3 + c$ is also an *antiderivative* of f since $G'(x) = x^2$.

The process of finding antiderivatives is called antidifferentiation or integration.

$$\frac{d}{dx}[F(x)] = f(x)$$

The **integrating** (or **antidifferentiating**) the function f(x) produces an antiderivative of form F(x) + C

$$\int f(x)dx = F(x) + C$$

Integral Notation

Example:

$$\int x^2 dx = \frac{1}{3}x^3 + C$$

$$\frac{d}{dx}\left[\frac{1}{3}x^3\right] = x^2$$

Antiderivatives = Family of Functions

$$\int x^2 dx = \frac{1}{3}x^3 + C$$

$$y = \frac{1}{3}x^3 + C$$

Calculus, 9/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved.

Properties of the indefinite integral

- **5.2.3 THEOREM** Suppose that F(x) and G(x) are antiderivatives of f(x) and g(x), respectively, and that c is a constant. Then:
- (a) A constant factor can be moved through an integral sign; that is,

$$\int cf(x) \, dx = cF(x) + C$$

(b) An antiderivative of a sum is the sum of the antiderivatives; that is,

$$\int [f(x) + g(x)] dx = F(x) + G(x) + C$$

(c) An antiderivative of a difference is the difference of the antiderivatives; that is,

$$\int [f(x) - g(x)] dx = F(x) - G(x) + C$$

Basic integration formulas can be obtained directly from their companion differentiation formulas.

DIFFERENTIATION FORMULA	DIFFERENTIATION FORMULA
$1. \ \frac{d}{dx}[x] = 1$	8. $\frac{d}{dx}[-\csc x] = \csc x \cot x$
$2. \frac{d}{dx} \left[\frac{x^{r+1}}{r+1} \right] = x^r (r \neq -1)$	$9. \ \frac{d}{dx}[e^x] = e^x$
$3. \ \frac{d}{dx}[\sin x] = \cos x$	$10. \frac{d}{dx} \left[\frac{b^x}{\ln b} \right] = b^x (0 < b, b \neq 1)$
$4. \frac{d}{dx}[-\cos x] = \sin x$	11. $\frac{d}{dx} [\ln x] = \frac{1}{x}$
$5. \frac{d}{dx}[\tan x] = \sec^2 x$	12. $\frac{d}{dx}[\tan^{-1}x] = \frac{1}{1+x^2}$
$6. \frac{d}{dx}[-\cot x] = \csc^2 x$	13. $\frac{d}{dx}[\sin^{-1}x] = \frac{1}{\sqrt{1-x^2}}$ 14. $\frac{d}{dx}[\sec^{-1} x] = \frac{1}{x\sqrt{x^2-1}}$
7. $\frac{d}{dx}[\sec x] = \sec x \tan x$	14. $\frac{d}{dx}[\sec^{-1} x] = \frac{1}{x\sqrt{x^2 - 1}}$

Basic integration formulas can be obtained directly from their companion differentiation formulas.

Table 5.2.1
INTEGRATION FORMULAS

DIFFERENTIATION FORMULA	INTEGRATION FORMULA	DIFFERENTIATION FORMULA	INTEGRATION FORMULA
$1. \ \frac{d}{dx}[x] = 1$	$\int dx = x + C$	8. $\frac{d}{dx}[-\csc x] = \csc x \cot x$	$\int \csc x \cot x dx = -\csc x + C$
2. $\frac{d}{dx} \left[\frac{x^{r+1}}{r+1} \right] = x^r (r \neq -1)$	$\int x^r dx = \frac{x^{r+1}}{r+1} + C (r \neq -1)$	$9. \ \frac{d}{dx}[e^x] = e^x$	$\int e^x dx = e^x + C$
$3. \ \frac{d}{dx}[\sin x] = \cos x$	$\int \cos x dx = \sin x + C$	10. $\frac{d}{dx} \left[\frac{b^x}{\ln b} \right] = b^x (0 < b, b \neq 1)$	$\int b^x dx = \frac{b^x}{\ln b} + C (0 < b, b \neq 1)$
$4. \ \frac{d}{dx}[-\cos x] = \sin x$	$\int \sin x dx = -\cos x + C$	11. $\frac{d}{dx}[\ln x] = \frac{1}{x}$	$\int \frac{1}{x} dx = \ln x + C$
$5. \frac{d}{dx}[\tan x] = \sec^2 x$	$\int \sec^2 x dx = \tan x + C$	12. $\frac{d}{dx}[\tan^{-1}x] = \frac{1}{1+x^2}$	$\int \frac{1}{1+x^2} dx = \tan^{-1} x + C$
$6. \ \frac{d}{dx}[-\cot x] = \csc^2 x$	$\int \csc^2 x dx = -\cot x + C$	13. $\frac{d}{dx}[\sin^{-1}x] = \frac{1}{\sqrt{1-x^2}}$	$\int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1}x + C$
7. $\frac{d}{dx}[\sec x] = \sec x \tan x$	$\int \sec x \tan x dx = \sec x + C$	14. $\frac{d}{dx}[\sec^{-1} x] = \frac{1}{x\sqrt{x^2 - 1}}$	$\int \frac{1}{x\sqrt{x^2 - 1}} dx = \sec^{-1} x + C$

Example: Calculate

$$\int x^8 dx$$
$$\int x(1+x^3) dx$$
$$\int (2+y^2)^2 dy$$

Example:

Calculate
$$\int \left[5x^{3/2} - 2\csc^2 x\right] dx$$

Example:

Calculate
$$\int \left[5x^{3/2} - 2\csc^2 x\right] dx$$

Solution

$$\begin{aligned}
& \int \left[5x^{3/2} - 2\csc^2 x \right] dx \\
&= 5 \int x^{3/2} dx - 2 \int \csc^2 x \, dx \\
&= 5 \left(\frac{2}{5} \right) x^{5/2} + C_1 - 2(-\cot x) + C_2 \\
&= 2x^{5/2} + 2\cot x + C
\end{aligned}$$

Example: Evaluate the following

$$\int \frac{dx}{\sqrt{4-x^2}}$$

$$\int \frac{dx}{x^2+36}$$

Exercise #12

Substitution can often be used to transform complicated integration problems into simple ones.

U-substitution

Guidelines for u-Substitution

- Step 1. Look for some composition f(g(x)) within the integrand for which the substitution u = g(x), du = g'(x) dx
 - produces an integral that is expressed entirely in terms of u and its differential du. This may or may not be possible.
- **Step 2.** If you are successful in Step 1, then try to evaluate the resulting integral in terms of u. Again, this may or may not be possible.
- Step 3. If you are successful in Step 2, then replace u by g(x) to express your final answer in terms of x.

Example: Evaluate $\int (x^2 - 1)^4 x \, dx$

Example: Evaluate $\int (x^2 - 1)^4 x \, dx$

We know that
$$\frac{d}{dx}[(x^2-1)^5] = 10(x^2-1)^4x$$

We just work back

$$\int (x^2 - 1)^4 x \, dx = \frac{1}{10} \int 10(x^2 - 1)^4 x \, dx = \frac{1}{10}(x^2 - 1)^5 + C$$

Example: Evaluate
$$\int \frac{1}{(3+5x)^2} dx$$
.

Example: Evaluate
$$\int x^2 \sqrt{4 + x^3} dx$$

Example: Evaluate
$$\int_0^2 (x^2 - 1)(x^3 - 3x + 2)^3 dx$$
.

Exercise #13