A Generalized Approach to Ridge Regression

 ${\sf Kathryn}\ {\sf Vasilaky}^1$

December 7, 2016

- Applied economist with an interest in development economics, policy and information communication
- 2. RCTs, lab experiments in the field, natural experiments, as well as broader methods in data science
- Past work looked at how groups and social networks affect technology adoption and learning, particularly for females
- Recent work combines the use of crowd sourced and sensored data (IoT) for prediction and feedback to larger information systems
- As a complement to this applied work, I work on learning and improving applied statistical methodologies

Overview of talk

- Part I
 - 1.1 Review Standard Ridge
 - 1.2 Derivation of Generalized Ridge Results
- 2. Part II
 - 2.1 Test Generalized Ridge under simulated case
 - 2.2 Test Generalized Ridge with real data and cross validation
 - 2.3 Reconstruct an image from projections

Motivation of Inverse Problems

- Inverse problems: compute information about some "interior" properties using "exterior" measurements.
 - ▶ Inference: Covariates − > Coefficients − > Outcome
 - ▶ Tomography: Xray source -> Object -> X Ray Dampening
 - ▶ ML: Features − > Effect Size − > Classifier/Prediction

Kathryn Vasilaky

Why is Regularization Used?

- ▶ OLS is BLUE when the covariate matrix (A) is full rank
- ▶ But when A is ill-conditioned (covariates correlated), estimators will be sensitive to noise
- Regularization methods are used to dampen the effects of the sensitivity to noise
- ▶ I present a generalization to the frequently used Ridge Regression
 - ▶ Performs as well or better than Standard Ridge
 - Allows for a more flexible weighting of singular values than Standard Ridge
 - Useful for data where covariates are correlated: large consumer data sets, health data

Reviewing the Basics of Gauss Markov

Recall the Gauss Markov estimator for the least squares problem:

$$y = Ax + e$$

$$min_x||Ax-y||_2^2$$

A is nxp, with rank p,

$$\hat{x} = (A'A)^{-1}A'y$$

$$Var(\hat{x}) = \sigma^2 (A'A)^{-1}$$

and the MSE(\hat{x}) = $\sigma^2 Tr(A'A)^{-1} = \sigma^2 \sum_i \frac{1}{\sigma_i^2}$, where σ_i^2 is the *ith* eigenvalue of A'A

This will serve as a comparison later on.

- ▶ When A'A is ill-conditioned (nearly not full rank), the solution to OLS is sensitive to noise $(y = \bar{y} + \epsilon)$
- ► This can occur when covariates are highly correlated, the number of covariates exceeds the number observations, or A is sparse
 - ► OLS is still BLUE
 - ▶ But the standard errors of \hat{x} , and MSE, will be large $(\sigma_i$'s are small) $Var(\hat{x}) = \sigma^2 (A'A)^{-1}$ $MSE(\hat{x}) = \sigma^2 Tr(A'A)^{-1} = \sigma^2 \sum_i \frac{1}{\sigma_i^2}$
- And \hat{x} can deviate very far from the true solution x

Example: Noise is magnified if the covariate matrix is ill-conditioned

$$A = U\Sigma V' = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 10^{-6} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 (1)

$$(A'A)^{-1}A'y = \begin{bmatrix} 1 & 0 \\ 0 & 10^6 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 10^6 \end{bmatrix}$$
 Noiseless solution (2)

$$(A'A)^{-1}A'(y+e) = \begin{bmatrix} 1 & 0 \\ 0 & 10^6 \end{bmatrix} \begin{bmatrix} 1 \\ 1.1 \end{bmatrix} = \begin{bmatrix} 1 \\ 10^6 + 10^5 \end{bmatrix} \text{Naive solution (3)}$$

Regularization problems formulate a nearby problem, which has a more stable solution:

$$Min_x(||Ax - y||_2^2 + \lambda ||x||_2^2), \lambda > 0$$

where we introduce the term $\lambda ||x||_2^2$ perturbing the least-squares formulation.

▶ The estimated \hat{x} is no longer unbiased, however, the MSE = Variance + Bias^2 , may be smaller than BLUE.

The regularization can be L1 (Lasso) or L2. The objective is to choose a lambda that brings \times close to the noiseless solution.

The regularized least squares problem problem becomes:

$$\begin{aligned} \textit{Min}_x || \textit{A}x - y ||_2^2 + \lambda || x - x_0 ||_2^2 \\ \hat{x} &= \left(\textit{A}' \textit{A} + \lambda \textit{I}_n \right)^{-1} \textit{A}' y \\ \\ \mathsf{MSE} &= \sigma^2 \sum_{n=1}^{\infty} \frac{\sigma_i^2}{(\sigma_i^2 + \lambda)^2} + \lambda^2 \sum_{n=1}^{\infty} \frac{\alpha_i^2}{(\sigma_i^2 + \lambda)^2} \\ \\ &\quad (\mathsf{Hoerl and Kennard, 1970})^2 \end{aligned}$$

Other regularization methods include:

- lacktriangle Lasso, with a L1 penalty weighted by λ
- ► Truncated SVD
- ▶ Elastic Net, a weighted sum of L1 and L2
- 'Generalized' Tikhanov

- Rather than computing one solution I will compute a sequence of solutions which approximates the noiseless solution $(A'A)^{-1}A'\bar{y}$ on its way to the naive solution $(A'A)^{-1}A'(\bar{y}+e)$.
- ► Since the operator $(A'A + \lambda I)^{-1} = UDiag(\frac{1}{\sigma_i^2 + \lambda})V'$ has eigenvalues that are less than one, it is contracting.
- ▶ I show that repeated application of this operator will converge to the naive solution.

New normal equations with added constraint become:

$$(A'A + \lambda I)x_1 = A'y + \lambda x_0$$

$$(A'A + \lambda I)x_1 = A'y + \lambda x_0$$

The solution for x_1 is:

$$\hat{x}^1_{\lambda}=(A'A+\lambda I)^{-1}A'y+\lambda(A'A+\lambda I)^{-1}x_0$$
 (Regular Ridge, $x_0=0$)

Then substituting \hat{x}^1_{λ} into x_0 , we obtain \hat{x}^2_{λ} , and if we substitute \hat{x}^{k-1}_{λ} into \hat{x}^{k-2}_{λ} , we obtain:

$$\hat{x}_{\lambda}^{k} = \sum_{i=1}^{k} \lambda^{i-1} ((A'A + \lambda I)^{-i} (A'y) + \lambda^{k} (A'A + \lambda I)^{-k} x_{0})$$

where, $\sum_{i=1}^{k} \lambda^{i-1} ((A'A + \lambda I)^{-i} (A'y))$, is a contracting opearator.

Generalized Iterative Solution, x_{λ}^{k} Now we sum the geometric series using single value decomposition (SVD) of A: $A = U\Sigma V^{T}$, where $\Sigma = \mathrm{Diag}[\sigma_{1},..,\sigma_{n},0....0] \in \mathbb{R}^{m\times n}$ with $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n} > 0$, and where n is the rank of A. The iterative solution after k iterations, we have:

$$V\begin{bmatrix} \frac{1}{\sigma_1} - \frac{1}{\sigma_1} (\frac{\lambda}{\lambda + \sigma_1^2})^k & \dots & 0 & \dots & 0 \\ \vdots & \ddots & & \vdots & & & \\ 0 & \dots & \frac{1}{\sigma_n} - \frac{1}{\sigma_n} (\frac{\lambda}{\lambda + \sigma_n^2})^k & 0 & \dots & 0 \end{bmatrix} U^T y$$

For practical ease we can set x_0 =0. It does not affect the solution, as the last term attached to x_0 is pulled quickly towards 0.

The limits of Generalized Iterative Ridge (GIR)

The GIR solution tends towards the naive solution as

$$k - > \infty$$
:
 $(A'A)^{-1}A'y = V \sum^{-1} U'y$, or

$$V\begin{bmatrix} \frac{1}{\sigma_1} & \dots & 0 & \dots & 0 \\ \vdots & \ddots & & \vdots & & \\ 0 & \dots & & \frac{1}{\sigma_n} & 0 & \dots & 0 \end{bmatrix} U^T y$$

The limits of Generalized Iterative Ridge (GIR)

When k = 1, GIR collapses to Standard Ridge:

$$V\begin{bmatrix} \frac{\sigma_1}{\lambda + \sigma_1^2} & \dots & 0 & \dots & 0 \\ \vdots & \ddots & & \vdots & & \\ 0 & \dots & & \frac{\sigma_n}{\lambda + \sigma_n^2} & 0 & \dots & 0 \end{bmatrix} U^T y$$

The diagonal entries are the filters for the singular values, and it is clear that the iterative solution's filter is a generalization of the two extremes.

Summary, Generalized Iterative Ridge

- ► Falls between Standard Ridge and OLS
- ▶ The filter is more general than Standard Ridge

Choosing k, and λ using the Residual Error

We can use this simple and nice expression for the residual error, $||A\hat{x}_k - y||$, as a function of k and λ , and choose it's lowest point or maximum curvature in convexity.

$$RE(\lambda, k) = || \begin{bmatrix} (\frac{\lambda}{\lambda + \sigma_1^2})^k & \dots & 0 & \dots & 0 \\ \vdots & \ddots & & \vdots & & & \\ 0 & \dots & & (\frac{\lambda}{\lambda + \sigma_n^2})^k & 0 & \dots & 0 \end{bmatrix} U'y ||$$

Choosing k, and λ using the Residual Error

We can see that the residual error, $||Ax_k - y||$, is convex and decreases as k increases, for a given lambda.

Residual error as a function of k, given lambda. Choose k at the elbow.

Residual error's convexity can be seen when we take the difference of \hat{x}^k_{λ} and the noiseless OLS solution \hat{x} .

- lacktriangle First term, iteration error declines monotonically as $k->\infty$
- Second term, noise term, increases monotonically with k (to the OLS residual).

(S1)
$$-V \begin{bmatrix} \frac{1}{\sigma_1} \left(\frac{\lambda}{\lambda + \sigma_1^2}\right)^k & \dots & 0 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & & & & \\ 0 & \dots & \frac{1}{\sigma_n} \left(\frac{\lambda}{\lambda + \sigma_n^2}\right)^k & 0 & \dots & 0 \end{bmatrix} U^T \bar{y}$$

(S2) V
$$\begin{bmatrix} \frac{1}{\sigma_1} - \frac{1}{\sigma_1} \left(\frac{\lambda}{\lambda + \sigma_1^2}\right)^k & \dots & 0 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & & & \\ 0 & \dots & \frac{1}{\sigma_n} - \frac{1}{\sigma_n} \left(\frac{\lambda}{\lambda + \sigma_n^2}\right)^k & 0 & \dots & 0 \end{bmatrix} U^T e$$

Summary, Choosing k and λ

- ▶ Grid search over λ
- ► Choose k at the elbow

- ▶ A key contribution of the iterative solution is in the filters.
- ▶ The filters dampen the effects of small singular values.

Blue $\frac{1}{\sigma_i}$

Standard Ridge
$$\frac{1}{\sigma_i} (1 - (\frac{\lambda}{\lambda + \sigma_1^2})) = \frac{\sigma_i^2}{\lambda + \sigma_i^2}$$

Iterative Ridge
$$\frac{1}{\sigma_i} (1 - (\frac{\lambda}{\lambda + \sigma_1^2})^k)$$

What is the extra advantage of the k iteration parameter in the filter?

Kathryn Vasilaky

- With Standard Ridge/Tikhanov, even medium valued sigma's are heavily penalized (for lambda = 0.1)
- Notice $\lambda=0.0001$ Standard Ridge and Iterative Ridge $\lambda=0.01, k=20$ have similar shapes, however, a small λ increases the noise.

Last but not least, I have the generalized MSE for Iterative Ridge, exposes the variance and the bias:³

MSE OLS

$$\sigma^2 \sum_i \frac{1}{\sigma_i^2}$$

MSE Ridge

$$\sigma^2 \sum_{n=1}^{\infty} \frac{\sigma_i^2}{(\sigma_i^2 + \lambda)^2} + \lambda^2 \sum_{n=1}^{\infty} \frac{\alpha_i^2}{(\sigma_i^2 + \lambda)^2}$$

MSE Iterative Ridge

$$\sigma^2 \sum_{n=1}^{\infty} \frac{1}{\sigma_i^2} (1 - (\frac{\lambda}{\lambda + \sigma_i^2})^k)^2 + \lambda^2 k \sum_{n=1}^{\infty} \alpha_i^2 (\frac{1}{\sigma_i^2 + \lambda})^{2k}$$

³Note: where $\alpha = Vx$, $A'A = V\Sigma^2V'$

Kathryn Vasilaky

Part II

How do we know we can do better with Generalized Ridge?

- Provide a small simulated example with known x, noisy y, and ill-conditioned A
- Provide a real data example where we test our out-of-sample predictions
- ▶ Provide an image example where we recover an image

Kathryn Vasilaky

 ${\sf Example \ 1: \ Simulated \ Data}$

Let's take the Golub matrix. An III conditioned matrix.

$$\begin{bmatrix} 1 & 3 & 11 & 0 & -11 & -15 \\ 18 & 55 & 209 & 15 & -198 & -277 \\ -23 & -33 & 144 & 532 & 259 & 82 \\ 9 & 55 & 405 & 437 & -100 & -285 \\ 3 & -4 & -111 & -180 & 39 & 219 \\ -13 & -9 & 202 & 346 & 401 & 253 \end{bmatrix}$$

The singular values are:

$$s = [9.545 e + 02, \ 7.240 e + 02, \ 1.767 e + 02, \ 7.301 e + 01, \ 3.536 e - 01, \\ 3.169 e - 10]$$

So the matrix's condition is $\frac{9.545e+02}{3.169e-10}$, or 3 quadrillion.

Framework of Simulated Problem

Suppose we know the true x = [1, 1, 1, 1, 1, 1].

So we also know true $\bar{y} = A * x$

We add a small normally distributed error to \bar{y} , with s.d. 0.1

Now, we would like to recover known x, but with the presence of noise.

Recall, the noiseless solution, x = [1, 1, 1, 1, 1, 1], is:

$$V\begin{bmatrix} \frac{1}{\sigma_1} & \dots & 0 & \dots & 0 \\ \vdots & \ddots & & \vdots & & \\ 0 & \dots & & \frac{1}{\sigma_n} & 0 & \dots & 0 \end{bmatrix} U^T \bar{y}$$

And the naive solution, $(A'A)^{-1}A'(\bar{y}+e)$:

$$V\begin{bmatrix} \frac{1}{\sigma_1} & \dots & 0 & \dots & 0 \\ \vdots & \ddots & & \vdots & & & \\ 0 & \dots & & \frac{1}{\sigma_n} & 0 & \dots & 0 \end{bmatrix} U^T(\bar{y} + e)$$

Solutions to Simulated Problem

 \hat{x} with OLS, Ridge, and Iterative Ridge:

OLS with noise

$$[3.08e+08, -1.44e+08, 1.12e+07, 1.36e+06, -9.11e+04, -1.49e+04]$$

 $||\hat{x} - x|| = 340, 863, 251!$

Ridge,
$$\lambda = 0.1$$

[0.067, 0.24, 1.25, 0.89, 0.88, 1.054]
 $||\hat{x} - x|| = 0.92$

Iterative Ridge,
$$\lambda = 0.1$$
, k =5 [0.08, 0.29, 1.23, 0.89, 0.89, 1.05] $||\hat{x} - x|| = 0.68$

 λ was chosen through a grid search, and k via the elbow algorithm.

Kathryn Vasilaky

Example 2: Real Data

- Using Body Fat (Carnegie Mellon Data Statistics Library)
- Predict body fat based on 17 variables
- Covariates include: neck, chest, abdomen, hip, thigh, wrist circumference, and hence correlated
- ▶ The data are ill conditioned with $\sigma_{17} = .000027$
- ▶ We split data into training [202:17] and test [50:17]

Results

- ▶ BLUE unperturbed MSPE = 0.7740
- ▶ With added error, $N(0,1)^4$. , MSPE = 2.47 a 302% increase.⁵
- ▶ Ridge, $\lambda = 100$, k = 1, MSPE = 2.16, about 15% improvement over BLUE.
- ▶ Iterative Ridge k = 2 MSP = 1.73, about 30% improvement over BLUE.
- ▶ Iterative Ridge $\lambda = 300$, k=5, MSP=1.72
- ▶ Iterative Ridge $\lambda = 500 \text{ k=7}$, MSP= 1.71

 $^{^{4}}$ std(v) = 7.7509 so that e with std=1 is not excessive

Kathryn Vasilaky

Example 3: Image Data

Example of an image that is 64 by 64 square pixels, where A is sparse:

Kathryn Vasilaky

Ridge, $\lambda=0.0034^6$

Iterative Ridge, $\lambda=1$, k = 20

Summary

- Developed a generalization of ridge regression
- The additional parameter k provides more flexibility in balancing bias and noise
- Iterative Ridge performs better when there are number of small singular values, A is sparse, and y is noisy

Future Work

- \blacktriangleright Improve on the grid search for λ and k
- Prove conditions when Generalized Ridge does better for any given lambda.
- Apply to "big" data problem consumer data (FB); weather & sensored data
- Overall research is converging to using larger data sets for applied problems