Combinação de Modelos

1001513 – Aprendizado de Máquina 2 Turma A – 2023/2 Prof. Murilo Naldi

Agradecimentos

- Pessoas que colaboraram com a produção deste material: Diego Silva, Ricardo Cerri, Moacir Ponti
- Intel IA Academcy

Discussão

Conhecemos diversos algoritmos de AM, mas qual deles é o melhor?

- Cada algoritmo explora estratégias diferentes
- Como explorar essas diferenças?

Discussão

Modelos múltiplos são preditores individuais que são combinados ou agregados de alguma maneira para (tentar) "fortalecer" uma predição única.

Hansen e Salamon (1990)

- Modelos múltiplos são bons apenas se os modelos individuais cometem erros independentes
- Os autores provam que a taxa de **erro** decresce linearmente com o número de modelos se:
 - Todos os modelos têm a mesma taxa de erro
 - A taxa de erro é menor que 0,5
 - Todos cometem erros independentes

fonte: http://conteudo.icmc.usp.br/pessoas/moacir/papers/Ponti_TutorialMCS_SIBGRAPI2011.pdf

Conclusões "gerais"

- Os erros devem ser independentes
 - Ou, melhor ainda, negativamente correlacionados

Conclusões "gerais"

 Cada modelo deve ser melhor do que o modelo de escolhas aleatórias

Duas questões centrais:

- Como **combinar** previsões de modelos diferentes?
- Como **gerar** modelos diferentes?

Modelos heterogêneos vs. Homogêneos

- É preciso garantir diversidade
 - Mas como?

- Sabemos que os erros tem que ser independentes
 - Como medir? Ex: inter-rated agreement

$$\kappa=rac{2(ad-bc)}{(a+c)(c+d)+(a+b)(b+d)}$$

a = os dois acertaram

b = apenas o primeiro acertou

c = apenas o segundo acertou

d = os dois erraram

Podemos dividir os métodos de combinação em categorias:

- Votação vs. seriação
- Estáticos vs. dinâmicos

- Votação é o método mais comum
 - Votação simples/uniforme
 - Votação ponderada
 - Todos são independentes!

- Seriação considera os componentes em série
 - Possui "scores" na combinação
 - Scores tem que "se comportar como probabilidades"
 - Na maioria dos cados existe uma "ordem"

Regras para *m* modelos com *K* classes:

- → Soma
- → Média
- → Média geométrica

$$S_k = \sum_{i=1}^m P_{ik}$$

$$S_k = rac{1}{m} \sum_{i=1}^m P_{ik}$$

$$S_k = \sqrt[m]{\prod_{i=1}^m P_{ik}}$$

KITTLER, J. et al. On combining classifiers. IEEE Trans. on Pattern Analysis and Machine Intelligence, v. 20, n. 3, p. 226-239, 1998

Regras para *m* modelos com *K* classes:

- → Produto
- → Máximo
- → Mínimo

$$S_k = \prod_{i=1}^m P_{ik}$$

$$S_k = max_i P_{ik}$$

$$S_k = min_i P_{ik}$$

KITTLER, J. et al. On combining classifiers. IEEE Trans. on Pattern Analysis and Machine Intelligence, v. 20, n. 3, p. 226-239, 1998

Métodos dinâmicos vs estáticos

- Métodos estáticos consideram todos os modelos na combinação
 - A escolha não muda
 - Ou seja, é isso aí que a gente viu até agora

Métodos dinâmicos vs estáticos

- Métodos dinâmicos realizam uma seleção de modelos para cada exemplo a ser classificado
 - Baseado na hipótese que modelos diferentes erram mais em determinadas regiões do espaço que outros
 - Objetivo: melhorar resultado

Métodos dinâmicos

Model Applicability Induction (MAI)

 Utiliza meta-aprendizado para determinar se utiliza ou n\u00e3o cada um dos modelos induzidos

V1	V2	V3	V4	V5	Classe	V1	V2	V3	V4	V_5	Erro
t	a	c	t	a	membro	t	a	c	t	a	+
t	g	c	t	a	membro	t	g	c	t	a	-
g	t	a	\mathbf{c}	t	não membro	g	t	a	\mathbf{c}	t	+
a	a	t	t	g	membro	a	a	t	t	g	+
t	c	g	a	t	não membro	t	c	g	a	t	-
a	g	g	g	g	membro	a	g	g	g	g	+

Métodos dinâmicos

Model Applicability Induction (MAI)

- Utiliza **meta-aprendizado** para determinar se utiliza ou não cada um dos modelos induzidos (metamodelo) vs=(b,c) v3=(b,'d')

V1={'a','c'}

Acerta

- Diferentes modelos são induzidos por diferentes algoritmos
- Há diversas formas de combinar resultados
 - Já vimos algumas
- Há maneiras mais "complexas"
 - Vamos ver um exemplo

Generalização por pilha

Generalização por pilha

Score do modelo 3 para a classe 1

V1	V2	V3	V4	V5	Classe	$\mathbf{P}_{1,1}$	$\mathbf{P}_{1,2}$	$\mathbf{P}_{2,1}$	$\mathbf{P}_{2,2}$	$\mathbf{P}_{3,1}$	$P_{3,2}$	Classe
t	a	c	t	a	Membro	0,51	0,49	0,13	0,87	0,12	0,88	Membro
t	g	c	t	a	Membro	0,19	0,81	0,07	0,93	0,81	0,19	Membro
g	t	a	c	t	Não Membro	0,68	0,32	0,55	0,45	0,69	0,31	Não Membro
a	a	t	t	g	Membro	0,74	0,26	0,66	0,34	0,94	0,06	Membro
t	c	g	a	t	Não Membro	0,62	0,38	0,01	0,99	0,78	0,22	Não Membro
a	g	g	g	g	Membro	0,65	0,35	0,90	0,10	0,55	0,45	Membro

Conjunto de dados original

Conjunto de dados de Nível₁

 Há várias estratégias de combinar resultados de modelos gerados pelo mesmo algoritmo de aprendizado

Mas... cadê a diversidade?

- Geralmente, isso é feito por manipulações no conjunto de treinamento
- Funciona bem para algoritmos instáveis
 - Aqueles que mudam bastante com pouca alteração nos dados (lembram algum?)

Manipulações nos dados estão relacionadas ao conceito de **reamostragem**

- De exemplos, de atributos

Ou injeção de aleatoriedade e perturbação de exemplos

Injeção de aleatoriedade

Injetar aleatoriedade é uma técnica comum em AM

- Ex: inicializar uma rede neural com diferentes pesos

Vamos ver outros exemplos

Bootstrap aggregating - Bagging

- Cria conjuntos de exemplos por amostragem com reposição
- O tamanho dos conjuntos de dados originados são o mesmo que do conjunto original

Bootstrap aggregating - Bagging

- Portanto, o novo conjunto pode conter repetições, enquanto alguns exemplos ficam "de fora"
 - Cada amostra, para n grande, tem aproximadamente 36,8% de duplicações
- Um classificador é gerado para cada amostragem

Bootstrap aggregating - Bagging

- Por que isso funciona?
 - Exemplo em árvores de decisão:
 - Pode mudar os atributos selecionados
 - Pode mudar os pontos de corte
 - Em cada mudança, pode afetar a distribuição dos dados nos filhos de cada nó de decisão

Ilustração Bagging

Asha Ponraj - https://medium.com/analytics-vidhya/how-random-forest-works-why-we-need-random-forest-e8eb5f3d6577

- Considere um conjunto de dados D, com m atributos.
- Realizamos uma amostragem por bagging

- Considere um conjunto de dados D, com *m* atributos.
- Realizamos uma amostragem por bagging
- Criamos uma árvore de decisão a partir desse conjunto

- Considere um conjunto de dados D, com m atributos.
- Realizamos uma amostragem por bagging
- Criamos uma árvore de decisão a partir desse conjunto
- Mas, selecionamos i (i << m) atributos aleatoriamente para determinar os nós de decisão em cada nível
 - Não utilizamos quaisquer estratégias de poda

- Considere um conjunto de dados D, com m atributos.
- Realizamos uma amostragem por bagging
- Criamos uma árvore de decisão a partir desse conjunto
- Mas, selecionamos i (i << m) atributos aleatoriamente para determinar os nós de decisão em cada nível
 - Não utilizamos quaisquer estratégias de poda
- Repetimos o processo T vezes (em que T é o número de árvores de decisão)

id	Att1	Att2	Att3	Att4	Classe
1					
2					
3					
4					
5					

id	Att1	Att2	Att3	Att4	Classe
1					
2					
3					
4					
5					

id	Att1	Att2	Att3	Att4	Classe
1					
2					
3					
4					
5					

id	Att1	Att3	Classe
1			

id	Att1	Att2	Att3	Att4	Classe
1					
2					
3					
4					
5					

id	Att1	Att3	Classe
1			
4			

id	Att1	Att2	Att3	Att4	Classe
1					
2					
3					
4					
5					

id	Att1	Att3	Classe
1			
4			
3			

id	Att1	Att2	Att3	Att4	Classe
1					
2					
3					
4					
5					

id	Att1	Att3	Classe
1			
4			
3			
3			

id	Att1	Att2	Att3	Att4	Classe
1					
2					
3					
4					
5					

id	Att1	Att3	Classe
1			
4			
3			
3			
1			

id	Att1	Att2	Att3	Att4	Classe
1					
2					
3					
4					
5					

id	Att1	Att3	Classe
1			
4			
3			
3			
1			

id	Att1	Att2	Att3	Att4	Classe
1					
2					
3					
4					
5					

Out-of-bag

id	Att1	Att3	Classe
1			
4			
3			
3			
1			

id	Att1	Att2	Att3	Att4	Classe
1					
2					
3					
4					
5					

Combinação de modelos homogêneos

- Sendo um classificador fraco um classificador cuja capacidade de generalização seja pouco melhor que a escolha aleatória
 - Poderia um conjunto de classificadores fracos ter a performance de um classificador forte?

Combinação de modelos homogêneos

- Sendo um classificador fraco um classificador cuja capacidade de generalização seja pouco melhor que a escolha aleatória
 - Poderia um conjunto de classificadores fracos ter a performance de um classificador forte?
 - Sim, com boosting!

Boosting

- Ao associar um peso adequado para cada exemplo de treinamento, o classificador pode alcançar uma acurácia relativamente elevada
- O algoritmo é iterativo:
 - A cada iteração o peso de cada exemplo é alterado
 - Se o exemplo for classificado corretamente, seu peso diminui segundo uma função
 - Se for classificado errado, seu peso aumenta
 - Constrói-se um novo classificador com esses pesos e repete-se o procedimento

Boosting

- A classificação é dada pela combinação de todos esses modelos aprendidos nas diferentes iterações
- Exemplo iteração #2

Boosting

- A classificação é dada pela combinação de todos esses modelos aprendidos nas diferentes iterações
- Exemplo iteração #2

AdaBoost

- Bom exemplo de boosting: AdaBoost
 - Baseado em amostragem aleatória
 - Cada exemplo é ponderado pela técnica de boosting descrita anteriormente para construir "stumps"
 - Os pesos influenciam na probabilidade de selecionar o exemplo e na construção da árvore
 - O erro dos stumps são utilizados para recalcular os pesos e ponderar a votação (na combinação)

Gradient Boosting

- Inicia-se com uma "folha de decisão"
- Ajusta os pesos, constrói uma árvore...
 - Muito parecido, mas a limitação é diferente
 - O cálculo do erro parece mais com redes neurais

T.Hanks

Em agradecimento ao Diego Silva, temos

