Le génie logiciel

Qu'est-ce que c'est le génie logiciel et sa place dans les sujets d'informatique

Le contenu est basé sur les transparents de la 10^{ème} édition de "Software Engineering" de Ian Sommerville

Génie logiciel

de *bons* programmes

Logiciel (ou Programme)

- Programmes et la documentation associée cahier de charges, modèles, manuels
- Types
 - Générique
 - Individuel
 - Hérité

Questions de l'ingénierie de logiciel

- Qu'est ce que c'est logiciel?
- Qu'est ce que c'est génie logiciel?
- Quelle est la différence entre génie logiciel et informatique?
- Quelle est la différence entre génie logiciel et génie des systèmes?
- Qu'est ce que c'est processus unifié de logiciel?
- Qu'est ce que c'est modèle du processus de logiciel

Questions de l'ingénierie de logiciel

- Combien ça coûte?
- Quelles sont les méthodes du génie logiciel?
- Qu'est ce que c'est CASE (Computer-Aided Software Engineering)
- Quelles sont les propriétés du bon logiciel?

Projets Génie logiciel

Succès

.

Mitigé

.

• Échec

.

Projets Génie logiciel

Succès

 livré à temps, à l'intérieur des budgets et des spécifications originales

Mitigé

 livré et opérationnel mais avec moins de fonctions que prévu en dépassant le budget et/ou les échéanciers

Échec

 abandonné en cours de route, ou résultat livré mais jamais utilisé

Processus du logiciel

 Un ensemble d'activités dont l'objectif est le développement et l'évolution du logiciel.

Activités :

- Spécification ce que le logiciel doit faire et les contraintes posées au développement
- Développement production logiciel
- Validation vérification si le logiciel est celui qui est attendu du client.
- Évolution modification du logiciel en accordance avec les besoins.

Modèle du processus

- Le modèle une présentation simplifiée d'un point de vue différent
- Points de vue:
 - Flux d'activités
 - Flux des données
 - Rôles/activités
- Modèles génériques
 - Cascade (Waterfall)
 - Itérative
 - Composants

La vie du logiciel

Les coûts

Activités

- Spécification du logiciel
- Développement
- Validation
- Evolution

Production

Méthodes de génie logiciel

- Composants des méthodes
 - Modèles graphiques (objets, flux des données, machine d'états et c.)
 - Règles contraintes
 - Recommandations bonne pratique
 - Direction et gestion la séquence des activités

CASE (Computer-Aided Software Engineering)

Upper-CASE

 Support les activités de conception et de definition des besoins

Lower-CASE

 Support les activités tardives – programmer, déboguer, tester

Les propriétés du bon logiciel

- Avoir la fonctionnalité désirée.
- Facilement maintenu de couvre les besoins changés
- Sûr on doit avoir confiance en lui
- Efficace de ne pas gaspiller le ressources du système
- Accepté, compris par les usagers

Les défis devant le GL

- Hétérogénéité des plateformes
- Délivrance (respecter les termes et la qualité à la fois)
- Confiance des usagers
- Responsabilités professionnelles et éthiques

Les défis devant le GL

S.Baïna - Génie logiciel

Systèmes critiques

- Système critique : sécurité
 - Perdre la vie ou la santé. Ex. Usine chimique
- Système critique : mission spatiale
 - Une activité essentielle est échouée Navette Spatiale
- Système critique : finance
 - Grand pertes d'argent système de comptabilité d'une banque

Fiabilité

- Panne du matériel
- Échec du logiciel
- Erreur opérationnelle le plus souvent

Fiabilité : Origine de l'erreur (logiciel)

Fiabilité : Coût de réparation

Fiabilité

- Composants de la fiabilité (Dependability)
 - Disponibilité
 - Fiabilité (Reliability)

 l'habilité de assurer les services comme ils sont spécifiées
 - Sécurité
 - (Safety)De fonctionner sans échec catastrophique
 - (Security)De se protéger des attaques externes
 - Habilité de restauration après un échec
 - Habilité d'être maintenu à quel degré il s'adapter vers de nouvelles exigences
 - Habilité de survivre de quel degré il continue de fonctionner sous attaque
 - Tolérance d'erreurs à quel degré il tolère les erreur de l'utilisateur.

Exemple - Insuline pompe

Organisation

Exemple - Insuline pompe

Flux de données

Exigences de fiabilité

- Le système doit être capable de livrer l'insuline quand l'organisme a besoin et en quantité qui assez de neutraliser le glucose.
- L'exigence principale de sûreté et de ne pas livrer une surdose, qui peut être mortelle.

Les coûts de fiabilité

