Applications of derivatives 10 Nov 2021 If $f:[a,b] \rightarrow \mathbb{R}$ cts & differentiable on (a,b) then Rolle's Theorem If f(a) = f(b)then $\exists c \in (a, b)$ such that f'(c) = 0i.e. the function has
a burning point. 1) If Fis not constant Extreme Value Theorem (f continuous)

f altains its min f(c) & max F(d) We need to prove f'(c) = 0 $\lim_{x \to c} \frac{f(x) - f(c)}{x - c} = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$ $\lim_{x \to c} \frac{f(x) - f(c)}{x - c} = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$ $\lim_{x \to c} \frac{f(x) - f(c)}{x - c} = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$ $\lim_{x \to c} \frac{f(x) - f(c)}{x - c} = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$ $\lim_{x \to c} \frac{f(x) - f(c)}{x - c} = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$ $\lim_{x \to c} \frac{f(x) - f(c)}{x - c} = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$ $\lim_{x \to c} \frac{f(x) - f(c)}{x - c} = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$ $\lim_{x \to c} \frac{f(x) - f(c)}{x - c} = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$

Mean Value Theorem:
similar to Rolle's Theorem
Suppose f: [a,6] -> 12 cts
& differentiable of (a,6)
We do not assume $f(a) = f(6)$ (case $m=0$
but we let $m = \frac{f(b) - f(a)}{1}$
2 mean slope (average gradient (6) f (c) = m
f(a) gradient m
a > 6
$\frac{\text{MVT}}{\text{Jc} \in (a,b)} \text{ such that}$ $\frac{\text{f'(c)} = m = \frac{f(b) - f(a)}{f(b)}$
Proof Rolle (MVT
Given f , let $g(x) = f(x) - mx$
g(b) = f(b) - mb f continuous => $g(a) = f(a) - mc$ f differentiable => so is $g(a) = f(a) - mc$
g(b)-g(a) = f(b)-f(a) - m(b-a) = g(a)=g(a) $= f(b)-f(a) - f(a) - f(a) - f(a) = g(a)$
= +(6) - +(0)

Applying Rolle's Theorem to g

$$\exists c \in (a,b) \ g'(c) = 0$$
 $g'(c) = f'(c) - m = 0$

Leven more "general" version:

[Cauchy Mean Value Theorem

Consider now $f,g:[a,b] \longrightarrow \mathbb{R}$

continuous & differentiable on (a,b)

Then $\exists c \in (a,b)$ such that

 $f'(c) (g(b) - g(a))$
 $= g'(c) (f(b) - f(a))$

Special case: $g(a) = g(b)$

Rolle $\Rightarrow \exists c: g'(c) = 0$

If $g(a) \neq g(b)$ we can write

 $\exists c: f'(c) = m g'(c)$ where $m = \frac{f(b) - f(a)}{g(b) - g(a)}$

Why is this brue?

Consider
$$k(x) = f(x) - m g(x)$$
 f,g cts ldiff $= > k$ is too

 $k(6) = f(6) - m \cdot g(6)$
 $k(6) = f(6) - m \cdot g(6)$
 $k(6) = k(6) - m \cdot g(6)$
 $k(6) = k(6) - m \cdot g(6)$
 $f(6) = m \cdot g(6)$
 f

Proof
$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{g(x)}$$

$$g'(c) = \lim_{x \to c} \frac{x - c}{g(x)} = \lim_{x \to c} \frac{f(x)}{g(x)}$$

$$2) f(x), g(x) \to 0 \text{ as } x \to c + t$$

$$1 f \frac{f'(x)}{g'(x)} \to L \text{ as } x \to c + t$$

$$1 f \frac{f'(x)}{g'(x)} \to L \text{ as } x \to c + t$$

$$1 f \frac{f'(x)}{g'(x)} \to L \text{ as } x \to c + t$$

$$1 f \frac{f'(x)}{g'(x)} \to L \text{ as } x \to c + t$$

$$1 f \frac{f'(x)}{g'(x)} \to L \text{ as } x \to c + t$$

$$1 f \frac{f'(x)}{g'(x)} \to L \text{ as } x \to c + t$$

$$1 f \frac{f'(x)}{g'(x)} \to L \text{ as } x \to c + t$$

$$1 f \frac{f'(x)}{g'(x)} \to L \text{ as } x \to c + t$$

$$1 f \frac{f'(x)}{g'(x)} \to L \text{ as } x \to c + t$$

$$1 f \frac{f'(x)}{g'(x)} \to L \text{ as } x \to c + t$$

$$1 f \frac{f'(x)}{g'(x)} \to L \text{ as } x \to c + t$$

$$1 f \frac{f'(x)}{g'(x)} \to L \text{ as } x \to c + t$$

$$1 f \frac{f'(x)}{g'(x)} \to L \text{ as } x \to c + t$$

$$1 f \frac{f'(x)}{g'(x)} \to L \text{ as } x \to c + t$$

$$1 f \frac{f'(x)}{g'(x)} \to L \text{ as } x \to c + t$$

$$1 f \frac{f'(x)}{g'(x)} \to L \text{ as } x \to c + t$$

$$1 f \frac{f'(x)}{g'(x)} \to L \text{ as } x \to c + t$$

$$1 f \frac{f'(x)}{g'(x)} \to L \text{ as } x \to c + t$$

$$1 f \frac{f'(x)}{g'(x)} \to L \text{ as } x \to c + t$$

$$1 f \frac{f'(x)}{g'(x)} \to L \text{ as } x \to c + t$$

$$1 f \frac{f'(x)}{g'(x)} \to L \text{ as } x \to c + t$$

$$1 f \frac{f'(x)}{g'(x)} \to L \text{ as } x \to c + t$$

$$1 f \frac{f'(x)}{g'(x)} \to L \text{ as } x \to c + t$$

$$1 f \frac{f'(x)}{g'(x)} \to L \text{ as } x \to c + t$$

$$1 f \frac{f'(x)}{g'(x)} \to L \text{ as } x \to c + t$$

$$1 f \frac{f'(x)}{g'(x)} \to L \text{ as } x \to c + t$$

$$1 f \frac{f'(x)}{g'(x)} \to L \text{ as } x \to c + t$$

$$1 f \frac{f'(x)}{g'(x)} \to L \text{ as } x \to c + t$$

$$1 f \frac{f'(x)}{g'(x)} \to L \text{ as } x \to c + t$$

$$1 f \frac{f'(x)}{g'(x)} \to L \text{ as } x \to c + t$$

$$1 f \frac{f'(x)}{g'(x)} \to L \text{ as } x \to c + t$$

$$1 f \frac{f'(x)}{g'(x)} \to L \text{ as } x \to c + t$$

$$1 f \frac{f'(x)}{g'(x)} \to L \text{ as } x \to c + t$$

$$1 f \frac{f'(x)}{g'(x)} \to L \text{ as } x \to c + t$$

$$1 f \frac{f'(x)}{g'(x)} \to L \text{ as } x \to c + t$$

$$1 f \frac{f'(x)}{g'(x)} \to L \text{ as } x \to c + t$$

$$1 f \frac{f'(x)}{g'(x)} \to L \text{ as } x \to c + t$$

$$1 f \frac{f'(x)}{g'(x)} \to L \text{ as } x \to c + t$$

$$1 f \frac{f'(x)}{g'(x)} \to L \text{ as } x \to c + t$$

$$1 f \frac{f'(x)}{g'(x)} \to L \text{ as } x \to c + t$$

$$1 f \frac{f'(x)}{g'(x)} \to L \text{ as } x \to c + t$$

$$1 f \frac{f'(x)}{g'(x)} \to L \text{ as } x \to c + t$$

$$1 f \frac{f'(x)}{g'(x)} \to L \text{ as } x \to c + t$$

$$1 f \frac{$$