				_
	1/7	A 4 : .	-14	_ ^
Math	1/1 <			7 /
Math	143	14111	ulei II	-

Name:	

1. Find the parametric equations for the line in \mathbb{R}^3 that contains the point (1,2,3) and is perpendicular to both $\langle 1,0,4\rangle$ and $\langle -1,1,2\rangle$.

2. Find the values of t for which the parametric curve $\begin{cases} x=2t^2 \\ y=t^4-t^3/3 \end{cases}$ for $t\in\mathbb{R}$ is concave down.

3. Square both sides of $e^{it}=\cos t+i\sin t$. Then use that calculation to explain why this identity is true:

$$\cos(2t) = \cos^2 t - \sin^2 t$$

4. Find the equation of the line tangent to the polar curve $r=1/(1+\cos\theta)$ at $\theta=\pi/2$.

5. Find the area inside the polar curve $r = \cos(3\theta)$ but outside the polar curve $r = \sin(3\theta)$.

Do not evaluate the integrals, just set the integrals up!

