Design of a 4-Bit Up-Counter

FSM in VHDL – Nexys 4 DDR Implementation
Tanner Roberson

Project Requirements

- 4-bit up-counter with synchronous active-low reset
- Count through sequence: $0 \rightarrow n \land 0 \rightarrow (n+1) \rightarrow (2n \land 2+2) \rightarrow (3n \land 3+3) \rightarrow ...$
- Behavioral VHDL modeling in AMD Vivado
- No adders or multipliers used
- Test with VHDL test bench and waveform verification
- FPGA Implementation on Nexys 4 DDR:

SW0: Clock

SW2–SW1: Input n (2 bits)

CPU Reset: Reset

LD3-LD0: Output

Learning Objectives

- Develop a finite state machine (FSM) using VHDL
- Create a state diagram
- Create an excitation table

General Approach

- 1. Write case statements for each n value (1, 2, 3)
- 2. Implement state transitions with if statements
- 3. Add synchronous active-low reset
- 4. Develop test bench for all states and inputs
- 5. Verify with captured waveforms
- 6. Implement design on FPGA

FSM Design Details

- Case statement for each n value
- State transitions based on n and clock input
- Synchronous reset to 0000
- Test bench demonstrates valid sequences and reset

Example State Table (n=01)

	n = 01	
Current State (q3q2q1q0)	Clock Input	Next State (Q3Q2Q1Q0)
0000	1 0	0001 0000
0001	1 0	0010 0000
0010	1 0	0100 0000
0100	1 0	0110 0000
0110	1 0	1000 0000
1000	1 0	1010 0000
1010	1 0	1100 0000
1100	1 0	1110 0000
1110	1 0	0000 0000

Example State Diagram(n=01)

Example State Table (n=10)

	n = 10	
Current State (q3q2q1q0)	Clock Input	Next State (Q3Q2Q1Q0)
0000	1 0	0001 0000
0001	1 0	0011 0000
0011	1 0	1010 0000
1010	1 0	0000 0000

Example State Diagram (n=10)

Example State Table (n=11)

	n = 11	
Current State (q3q2q1q0)	Clock Input	Next State (Q3Q2Q1Q0)
0000	1 0	0001 0000
0001	1 0	0100 0000
0100	1 0	0000 0000

Example State Diagram (n=11)

Simulation Results

- Verified for n=01, n=10, n=11
- Outputs followed specified sequence
- Reset returned counter to 0000

FPGA Implementation

- Nexys 4 DDR connections:
- SW0: Clock
- SW2–SW1: Input n
- CPU Reset: Reset
- LD3-LD0: Output

Observations & Challenges

- Clock must be managed carefully in test bench
- Reset must be synchronized with clock
- Behavioral modeling ensured flexibility

Summary & Takeaways

- Designed 4-bit up-counter FSM in VHDL
- Verified functionality with simulation waveforms
- Implemented successfully on Nexys 4
 DDR FPGA
- Learned FSM design, excitation tables, and reset handling