Locality-Sensitive Hashing (LSH) Additional Materials

Mining Massive Datasets

Prof. Carlos Castillo — https://chato.cl/teach

Source for this deck

• Mining of Massive Datasets 2nd edition (2014) by Leskovec et al. (Chapter 3) [slides ch3]

LSH involves a trade-off

- Pick:
 - $\overline{}$ The number of Min-Hashes (rows of M = K)
 - The number of bands b, and
 - The number of rows r per band to balance false positives/negatives
- Example: If we had only 15 bands of 5 rows, the number of false positives would go down, but the number of false negatives would go up

LSH: what we want

What 1 band of 1 row gives you

5/12

b bands, r rows/band

- Columns C₁ and C₂ have similarity t
- Pick any band (r rows)
 - Prob. that all rows in band equal = tr
 - Prob. that some row in band unequal = 1 tr
- Prob. that no band identical = $(1 t_r)^b$
- Prob. that at least 1 band identical = 1 (1 tr)b

What b bands of r rows give you

Example: b=20, r=5

- Similarity threshold s
- Prob. that at least 1 band is identical:

S	1-(1-s ^r) ^b
.2	.006
.3	.047
.4	.186
.5	.470
.6	.802
.7	.975
.8	.9996

Picking r and b: the S curve

Picking r and b to get the best S-curve

50 hash-functions (r=5, b=10)

Blue area: False Negative rate

Green area: False Positive rate

Summary

Things to remember

- Locality-Sensitive Hashing: Focus on pairs of signatures likely to be from similar documents
 - We used hashing to find candidate pairs of similarity s

Exercises for TT08-TT09

- Mining of Massive Datasets 2nd edition (2014) by Leskovec et al.
 - Exercises 3.1.4 (Jaccard similarity)
 - Exercises 3.2.5 (Shingling)
 - Exercises 3.3.6 (Min hashing)
 - Exercises 3.4.4 (Locality-sensitive hashing)