ミクロ経済学I演習 第3回 解答

作成日 | 2017年4月26日

問題 1

(1) 証明. 縁付きヘシアンの符号を考えるため, u の 1 次と 2 次の導関数を求める.

$$u_i = 1 + x_j$$
 for each $i = 1, 2$
 $u_{ij} = u_{ji} = 1$ for each i, j $(i \neq j)$
 $u_{ii} = 0$ for each $i = 1, 2$

縁付きヘシアン:

$$|\overline{H}| = \begin{vmatrix} 0 & u_1 & u_2 \\ u_1 & u_{11} & u_{12} \\ u_2 & u_{21} & u_{22} \end{vmatrix} = \begin{vmatrix} 0 & 1 + x_2 & 1 + x_1 \\ 1 + x_2 & 0 & 1 \\ 1 + x_1 & 1 & 0 \end{vmatrix}$$
$$= 2(1 + x_1)(1 + x_2)$$

 $\mathbf{x}\geqslant 0$ より , $|\overline{H}|>0$ である .

縁付きヘシアンの第2首座小行列式:

$$|\overline{H}_2| = \begin{vmatrix} 0 & 1 + x_2 \\ 1 + x_2 & 0 \end{vmatrix} = -(1 + x_2)^2$$

 $x \geqslant 0$ より $|\overline{H}_2| < 0$.

よって и は狭義準凹関数である.

(2) $\mathbf{x}^* \neq \mathbf{0}$ であることの証明。ある i=1,2 について $x_i^*=0$ とする消費プラン \mathbf{x}^* が解であるとする.このとき, $u(\mathbf{x}^*)=0$ である.一方で各 i=1,2 について $x_i'=y/2p_i$ と \mathbf{x}' を定義すると,

$$\mathbf{p}\mathbf{x}' = p_i \frac{y}{2p_i} + p_j \frac{y}{2p_j} = y$$

となるので x' は予算制約を満たす. さらに,

$$u(\mathbf{x}') = \frac{y}{2p_1} + \frac{y}{2p_2} + \frac{y^2}{p_1p_2} > 0 = u(\mathbf{x}^*)$$

なので x* が解であることに矛盾.

解 x^* において $x_i^*=0$ のとき, $x_j^*=y/p_j$ となることの証明.解 x^* において $x_i^*=0$ かつ $x_j^*< y/p_j$ とすると, $u(\mathbf{x}^*)=x_j^*$ である.これに対し消費プラン \mathbf{x}' を $x_i'=0$, $x_j'=x_j^*+(y/p_j-x_j^*)/2$ とする.このとき,

$$\mathbf{p}\mathbf{x}' = p_j \left(x_j^* + \frac{y/p_j - x_j^*}{2} \right) = p_j \frac{x_j^* + y/p_j}{2} = \frac{p_j x_j^* + y}{2} < y$$

となるので x' は予算制約を満たす. さらに,

$$u(\mathbf{x}') = x_j^* + \frac{y/p_j - x_j^*}{2} > x_j^* = u(\mathbf{x}^*)$$

となるので x^* が解であることに矛盾.

解 x^* において $x^*\gg 0$ となることの証明。 $x^*\neq 0$ は証明済みなので,ある i=1,2 について $x_i^*=0$ とする. $x_j^*< y/p_j$ なら解になり得ないので $x_j^*=y/p_j$ のみ考えれば良い.ここで,実数 $\varepsilon>0$ を

$$x_j^* - \frac{p_i}{p_j} \varepsilon > 0$$
 and $\varepsilon < \frac{p_j}{2p_i} \left(1 - \frac{p_i}{p_j} + x_j^* \right)$

を満たすように取る. $x_j^*=y/p_j>p_i/p_j0$ なのでこのような $\varepsilon>0$ は存在する.これを用いて, $x_i'=\varepsilon$, $x_j'=x_j^*-\frac{p_i}{p_i}\varepsilon$ と定義する.このとき,

$$\mathbf{p}\mathbf{x}' = p_i \varepsilon + p_j \left(x_j^* - \frac{p_i}{p_j} \varepsilon \right) = p_j x_j^* = y$$

なので \mathbf{x}' は予算制約を満たす.ここで $f(\varepsilon) \equiv u(\mathbf{x}') - u(\mathbf{x}^*)$ と定義すると,

$$f(\varepsilon) = u(\mathbf{x}') - u(\mathbf{x}^*) = \left\{ \varepsilon + x_j^* - \frac{p_i}{p_j} \varepsilon + \varepsilon \left(x_j^* - \frac{p_i}{p_j} \varepsilon \right) \right\} - x_j$$
$$= \varepsilon - \frac{p_i}{p_j} \varepsilon + \varepsilon \left(x_j^* - \frac{p_i}{p_j} \varepsilon \right)$$

である .f の導関数を求めると ,

$$f'(\varepsilon) = 1 - \frac{p_i}{p_j} + \left(x_j^* - \frac{p_i}{p_j}\varepsilon\right) - \frac{p_i}{p_j}\varepsilon = 1 - \frac{p_i}{p_j} + x_j^* - \frac{2p_i}{p_j}\varepsilon$$

となるが, ε の作り方から $f'(\varepsilon)>0$ である.よって平均値の定理よりある $\hat{\varepsilon}\in(0,\varepsilon)$ が存在して,

$$f'(\hat{\varepsilon}) = \frac{f(\varepsilon) - f(0)}{\varepsilon - 0} = \frac{f(\varepsilon)}{\varepsilon} \to f(\varepsilon) = f'(\varepsilon)\varepsilon$$

を満たす. $\hat{\epsilon}<\epsilon$ なので $f'(\epsilon)>0$ となり, $f(\epsilon)=f'(\epsilon)\epsilon>0$ を得る.すなわち $u(\mathbf{x}')>u(\mathbf{x}^*)$ であるから \mathbf{x}^* が解であることに矛盾.

(3) (2) より, 内点だけを考えれば良い. ラグランジュ関数は,

$$L = x_1 + x_2 + x_1 x_2 - \lambda (\mathbf{px} - y)$$

なので,クーンタッカー条件を満たす消費プラン x^* について,以下が成り立つ.

$$1 + x_j^* - \lambda^* p_i = 0 \text{ for all } i = 1, 2$$
 (1)

$$\lambda^*(\mathbf{p}\mathbf{x}^* - y) = 0 \tag{2}$$

u が連続 *1 な狭義準凹関数であり,内点で微分可能 *2 なのでこれらを満たす x^* が一意の解である.(1) 式より, $\lambda^*>0$ であるから,(2) 式より $px^*-y=0$ を得る.これを利用して x^* を求めると,

$$x_i^* = \frac{y - p_i + p_j}{2p_i}$$
 for all $i = 1, 2$

となる.

(4) $u(\mathbf{x})$ に得られた \mathbf{x}^* を代入すると間接効用関数は,

$$v(\mathbf{p}, y) = \frac{y - p_1 + p_2}{2p_1} + \frac{y - p_2 + p_1}{2p_2} + \frac{y - p_1 + p_2}{2p_1} \frac{y - p_2 + p_1}{2p_2}$$
$$= \frac{1}{4p_1p_2} \left[p_1^2 + 2(y - p_2)p_1 + (y + p_2)^2 \right]$$

となる.

 $^{^{}st 1}$ 証明せよ .

^{*&}lt;sup>2</sup> 証明せよ.