# Álgebra Relacional

Operadores Modelo de Dados de Coleções Álgebra Estendida

Prof. Dr. Luis Mariano del Val Cura

# O que é uma "Álgebra"?

- Sistema matemático composto por:
  - Operandos --- variáveis ou valores a partir dos quais novos valores podem ser construídos.
  - Operadores --- símbolos que denotam as operações ou procedimentos para construir novos valores a partir de valores dados.

## O que é Álgebra Relacional?

- Uma álgebra onde os operandos são relações ou variáveis que representam relações.
- Operadores são projetados para realizar as operações mais comuns que precisamos realizar sobre relações em bancos de dados.
- O resultado é uma álgebra que pode ser usada como linguagem de consulta para relações.

#### SQL

SQL : Structured Query Language

 Padrão para manipulação e consulta de Bancos de Dados Relacionais

Baseada em Álgebra Relacional.

# Álgebra Relacional

 Existe um núcleo básico que tradicionalmente tem sido ensinado como A Álgebra Relacional.

#### MAS

 Existem muitas outras operações que adicionaremos ao núcleo básico para modelar mais facilmente a linguagem SQL

# Álgebra Relacional Básica

- União, interseção, e diferença.
  - Operadores de conjunto convencionais, mas exigem que ambos os operandos tenham o mesmo esquema relacional.
- Seleção: selecionar algumas linhas.
- Projeção: selecionar algumas colunas.
- Produtos e junções: composições de relações.
- Renomear relações e atributos.

## Seleção

- R<sub>1</sub> :=  $\sigma_{C}(R_2)$ 
  - C é um predicado (condição) que refere-se a atributos de R2.
  - R1 corresponde a todas as tuplas de R2 que satisfazem C.
  - O esquema relacional de R<sub>1</sub> é igual ao esquema relacional de R<sub>2</sub>

## Exemplo:

#### **Empregados (**

|   | RG,  | Nome,   | Sexo,   | Salario, | Codigo   |
|---|------|---------|---------|----------|----------|
|   | 2232 | João M  | 700.00  | 1        |          |
|   | 4050 | Pedro   | M 70    | 0.00 1   |          |
|   | 2245 | Ana F   | 1100.00 | 2        |          |
| ĺ | 8960 | Roberto | M 18    | 00.00 3  |          |
|   | 7865 | Claudia | F 11    | 00.00 2  |          |
|   | 0983 | Helena  | F 60    | 0.00 NUL | <u> </u> |
|   | 2348 | Jose M  | 700.0   | 3        |          |

R :=  $\sigma_{\text{sexo="F" &\& Salario > 1000}}$  (Empregados)

**R** (

| RG,  | Nome,   | Sexo,   | Salario, | Codigo |
|------|---------|---------|----------|--------|
| 2245 | Ana F   | 1100.00 | 2        |        |
| 7865 | Claudia | F 110   | 0.00 2   |        |

## Projeção

- $R_1 := \prod_{\ell} (R_2)$ 
  - L é uma lista de atributos do esquema de R2.
  - R1 é construída percorrendo cada tupla de R2, extraindo os atributos na lista L na ordem especificada e criando com eles uma tupla para R1.
  - Eliminar duplas duplicadas se existem.
  - O esquema relacional de R<sub>1</sub> está definido pelos atributos de L : R<sub>1</sub> (L)

### Exemplo

**Empregados (** 

| RG,                                                  | Nome,                                                              | Sexo,                   | Salario,                                             | CodDpto |
|------------------------------------------------------|--------------------------------------------------------------------|-------------------------|------------------------------------------------------|---------|
| 2232<br>4050<br>2245<br>8960<br>7865<br>0983<br>2348 | João M<br>Pedro<br>Ana F<br>Roberto<br>Claudia<br>Helena<br>Jose M | 1100.00<br>M 18<br>F 11 | 1<br>0.00 1<br>0 2<br>00.00 3<br>00.00 2<br>0.00 NUL | L       |

 $R := \prod_{Salario, Sexo}$  (Empregados)

700.00 M 1100.00 F 1800.00 M 600.00 F

#### Produto cartesiano

- $R_3 := R_1 \times R_2$ 
  - Para cada tupla t1 de R1 e cada tupla t2 de R2.
  - A concatenação t1 t2 é uma tupla de R3.
  - Note-se que se existe um atributo A em R<sub>1</sub> e
     R<sub>2</sub>: usamos R<sub>1</sub>.A e R<sub>2</sub>.A.
  - O esquema relacional de R<sub>3</sub> é formado pelos atributos de R<sub>1</sub> e os de R<sub>2</sub>.

## Exemplo: $R3 := R1 \times R2$





| R3( A, | R1 | .B, | R2. | В, | С | ) |  |
|--------|----|-----|-----|----|---|---|--|
| 1      | 2  | 5   | 6   |    |   |   |  |
| 1      | 2  | 7   | 8   |    |   |   |  |
| 1      | 2  | 9   | 10  |    |   |   |  |
| 3      | 4  | 5   | 6   |    |   |   |  |
| 3      | 4  | 7   | 8   |    |   |   |  |
| 3      | 4  | 9   | 10  |    |   |   |  |
|        |    |     |     |    |   |   |  |

## Outro exemplo

| R1 ( | RG,  | Nome, | Sexo, | Salario, | Cod ] |
|------|------|-------|-------|----------|-------|
|      |      | João  | Μ     | 700.00   | 1     |
|      |      | Pedro | М     | 700.00   | 1     |
|      | 2245 | Ana   | F110  | 0.00 2   |       |

| <b>R2 (</b> | Cod, | Dpto ,   | Chefe |  |
|-------------|------|----------|-------|--|
|             | 1    | RH       | 2232  |  |
|             | 2    | Pesquisa | 7865  |  |

#### $R3 = R1 \times R2$

| R3 ( | <u>RG</u> ,  | Nome,          | Sexo   | Salario ,          | R1.Cod | , R2 <u>Cod</u> | , Dpto ,             | Chefe )              |
|------|--------------|----------------|--------|--------------------|--------|-----------------|----------------------|----------------------|
| 40   | 2232<br>2232 | João           | M<br>M | 700.00<br>700.00   | 1      | 1 2             | RH<br>Pesquisa<br>RH | 2232<br>7865<br>2232 |
| 405  | 50<br>4050   | Pedro<br>Pedro | M<br>M | 700.00<br>700.00   | 1<br>1 | 2               | Pesquisa             | 7865                 |
| 224  | 15<br>2245   | Ana<br>Ana     | F<br>F | 1100.00<br>1100.00 | 2 2    | 1<br>2          | RH<br>Pesquisa       | 2232<br>7865         |

## Junção Theta (Theta-Join)

- R3 := R1  $\bowtie_{\mathcal{C}}$  R2
- Aplique o produto cartesiano R<sub>1</sub> × R<sub>2</sub>.
- Posteriormente aplique σ no resultado.

# Junção Theta: Exemplo

| Empr ( | RG,  | Nome,   | Sexo | , Salario | , Cod |
|--------|------|---------|------|-----------|-------|
|        | 2232 | João    | М    | 700.00    | 1     |
|        | 4050 | Pedro   | М    | 700.00    | 1     |
|        | 2245 | Ana     | F    | 1100.00   | 2     |
| 89     | 60   | Roberto | М    | 1800.00   | 3     |
|        | 7865 | Claudia | F    | 1100.00   | 2     |
|        | 0983 | Helena  | F    | 600.00    | NULL  |
|        | 2348 | Jose    | М    | 700.00    | 3     |

| Dep ( | Cod,        | Dpto ,                       | RGChefe              | ) |
|-------|-------------|------------------------------|----------------------|---|
|       | 1<br>2<br>3 | RH<br>Pesquisa<br>Manutenção | 2232<br>7865<br>8960 |   |

| R | := Empr     | $\bowtie$ | Dep |
|---|-------------|-----------|-----|
|   | Empr. Cod = | Dep.      | Cod |

| ( | RG,  | Nome ,  | Sexo , | Salario, | Empr.<br>Cod , | _ | Dpto,      | RGChefe | ) |
|---|------|---------|--------|----------|----------------|---|------------|---------|---|
|   | 2232 | João    | М      | 700.00   | 1              | 1 | RH         | 2232    |   |
|   | 4050 | Pedro   | М      | 700.00   | 1              | 1 | RH         | 2232    |   |
|   | 2245 | Ana     | F      | 1100.00  | 2              | 2 | Pesquisa   | 7865    |   |
|   | 8960 | Roberto | М      | 1800.00  | 3              | 3 | Manutenção | 8960    |   |
|   | 7865 | Claudia | F      | 1100.00  | 2              | 2 | Pesquisa   | 7865    |   |
|   | 2348 | Jose    | М      | 700.00   | 3              | 3 | Manutenção | 8960    |   |

### Junção Natural

- Um tipo de junção que conecta duas relações da seguinte forma:
  - Iguala os atributos do mesmo nome, e
  - Projeta uma cópia de cada par de atributos igualados.
- Denotada R₃ := R₁ ⋈ R₂.
- Os atributos de igual nome aparecem uma única vez no esquema relacional de R<sub>3</sub>

### No exemplo anterior

| Empr ( | RG,  | Nome,   | Sex | o , Salario | , Cod |
|--------|------|---------|-----|-------------|-------|
|        | 2232 | João    | М   | 700.00      | 1     |
|        | 4050 | Pedro   | М   | 700.00      | 1     |
|        | 2245 | Ana     | F   | 1100.00     | 2     |
| 89     | 60   | Roberto | М   | 1800.00     | 3     |
|        | 7865 | Claudia | F   | 1100.00     | 2     |
|        | 0983 | Helena  | F   | 600.00      | NULL  |
|        | 2348 | Jose    | М   | 700.00      | 3     |

| Dep | ( Cod       | , Dpto ,                     | RGChefe              |
|-----|-------------|------------------------------|----------------------|
|     | 1<br>2<br>3 | RH<br>Pesquisa<br>Manutenção | 2232<br>7865<br>8960 |
|     |             | ,                            |                      |

 $R := Empr \bowtie Dep R([$ 

| RG,  | Nome    | , Sexo | , Salario | , Cod , | Dpto,      | RGChefe |
|------|---------|--------|-----------|---------|------------|---------|
| 2232 | João    | М      | 700.00    | 1       | RH         | 2232    |
| 4050 | Pedro   | М      | 700.00    | 1       | RH         | 2232    |
| 2245 | Ana     | F      | 1100.00   | 2       | Pesquisa   | 7865    |
| 8960 | Roberto | M      | 1800.00   | 3       | Manutenção | 8960    |
| 7865 | Claudia | F      | 1100.00   | 2       | Pesquisa   | 7865    |
| 2348 | Jose    | М      | 700.0     | 3       | Manutenção | 8960    |

### Outro Exemplo

| Vendas | (ba | ır, | ce   | rv, | preço |
|--------|-----|-----|------|-----|-------|
|        |     |     | ıd   |     |       |
| Joe    | e's | M   | ller | 2.7 | 75    |
|        | e's |     |      | 2.5 |       |
| Su     | e's | Co  | ors  | 3.0 | 00    |

| Bares (    | bar,    | ender ) |
|------------|---------|---------|
| Joe's Map  | ole St. |         |
| Sue's Rive | er Rd.  |         |

BarInfo := Vendas Bares

| BarInfo( | bar,   | cerv, | preço, ender ) |
|----------|--------|-------|----------------|
|          |        |       | Maple St.      |
| Joe's    | Miller | 2.75  | Maple St.      |
| Sue's    | Bud    | 2.50  | River Rd.      |
| Sue's    | Coors  | 3.00  | River Rd.      |

### Operadores de Conjuntos

Cria uma relação como a operação de conjuntos em duas relações.

**União:** O resultado denotado por R1 ∪ R2 é a relação que inclui todas as tuplas em R1 ou R2. *Tuplas duplicadas são eliminadas*.

**Interseção**: O resultado denotado por R1 ∩ R2 é a relação que inclui todas as tuplas que estão em R1 e em R2

**Diferença:** O resultado denotado por R1 - R2 é a relação que inclui as tuplas que estão em R1 mas não em R2

#### Exemplos

| R1 | ( A , | В | ) |
|----|-------|---|---|
| 1  | 2     |   |   |
| 3  | 4     |   |   |
|    | 5     | 6 |   |
|    | 5     | 8 |   |

| R <sub>2</sub> | (B, | С | ) |
|----------------|-----|---|---|
| 5              | 6   |   |   |
| 7              | 8   |   |   |
| 9              | 10  |   |   |

| R <sub>1</sub> | $\cup$ R2 | ( X | , Y) |
|----------------|-----------|-----|------|
|                | 1         | 2   |      |
|                | 3         | 4   |      |
|                | 5         | 6   |      |
|                | 5         | 8   |      |
|                | 7         | 8   |      |
|                |           | 9   | 10   |

$$\begin{array}{c|c} R_1 \cap R_2 & (X, Y) \\ \hline 5 & 6 \end{array}$$

Requer Compatibilidade de Esquema

#### Renomear

- O operador ρ atribui um novo esquema relacional a uma relação.
- R1 :=  $\rho_{R1 (A1,...,An)}$  (R2) cria uma relação R1 com atributos A1,...,An e as mesmas tuplas que R2.
- Notação simplificada:

$$R1(A1,...,An) := R2.$$

#### Exemplo

```
Disciplinas ( nome , local )

Algebra Sala 13.

Programação Sala 15
```

Atribuição (disciplina, sala) = Disciplinas

```
Atribuição ( disciplina , sala )

Algebra Sala 13.

Programação Sala 15
```

### Expressões compostas

- Combinamos operadores com parênteses e regras de precedência.
- Três tipos de notação, como na aritmética:
  - 1. Sequências de comandos de atribuição.
  - 2. Expressões com múltiplos operadores.
  - 3. Árvores de expressões.

## Sequências de atribuições

- Criar relações temporárias.
- O Esquema relacional resultante pode ser deduzido da lista de atributos resultante.
- Exemplo: R<sub>3</sub> := R<sub>1</sub>⋈<sub>C</sub> R<sub>2</sub> pode ser escrita:

$$R_4 := R_1 \times R_2$$

$$R_3 := \sigma_{C}(R_4)$$

#### Expressões em uma atribuição simples

- Exemplo:  $\Pi_{RG}(\mathbf{O}_{sexo=f}(Empregados))$
- Exemplo: a junção theta R<sub>3</sub> := R<sub>1</sub>  $\bowtie_{\mathcal{C}}$  R<sub>2</sub> pode ser escrita:

$$R3 := \mathbf{\sigma}_{C}(R1 X R2)$$

- Precedência dos operadores relacionais:
  - 1.  $[\sigma, \Pi, \rho]$  (maior).
  - $2. \quad [X, \bowtie].$
  - $3. \cap$
  - **4**. [∪, —]

# Árvores de expressão

- Folhas são operandos --- nomes associados às relações ou relações constantes.
- Nós internos são operadores aplicados aos nós filhos.
- Árvores de expressão permitem manipular o Plano de Execução de uma consulta

#### Exemplo 1

#### Usando as relações

- Empregados ( RG , Nome , Sexo , Salario , Cod )
- Departamentos ( <u>Cod</u> , Dpto, Andar , RGChefe )

listar os nomes de todos os chefes de sexo feminino de departamentos no quinto andar.

#### Plano:

- Realizar junção theta de Empregados e Departamentos com condição RGChefe = RG
- Realizar seleção no resultado com condição sexo = F e Andar
   = 5
- Projetar o atributo nome.

#### Como árvore:

```
t3 (nome)
                                               nome
                                               t2 ( RG , Nome , Sexo , Salario , Cod , Cod , Dpto , Andar, RGChefe )
                                            sexo = "F" && Andar = 5
                                               t1 ( RG , Nome , Sexo , Salario , Cod , Cod , Dpto , Andar, RGChefe )
                                               RGChefe = RG
Empregados ( RG , Nome , Sexo )
                                                                      Departamentos ( <u>Cod</u> , Dpto, Andar, RGChefe )
           Salario, Cod)
                 Empregados
                                                                     Departamentos
```

# Árvore equivalente



### Como expressões

#### Expressões equivalentes

$$\Pi_{\text{nome}} \left( \mathbf{O}_{\text{sexo} = \text{"F" && Andar } = 5} \left( \text{Empregados} \stackrel{\triangleright}{\sim} \text{Departamentos} \right) \right)$$
RGChefe = RG

$$\Pi_{\text{nome}} \left( \left( \mathbf{O}_{\text{sexo} = \text{``F''}} \left( \text{Empregados} \right) \right) \bowtie \left( \mathbf{O}_{\text{Andar} = 5} \left( \text{Departamentos} \right) \right) \right)$$
RGChefe = RG

#### Exemplo 2

#### Usando as relações

- Bares (nome, ender)
- Vendem (bar , cerv , preço)

encontrar os nomes de todos os bares que estão na rua Guatemala. ou vendem Skoll por menos de R\$3.00

#### Plano:

- Realizar seleção de Bares que estão na rua Guatemala e projetar nomes desses Bares
- Realizar seleção de Vendas de cerveja de Skoll com preço menor que 3.00 e projetar bar dessas vendas.
- Renomear o atributo bar pelo atributo nome.
- União dos resultados anteriores

#### Como árvore:



## Como expressão

```
 (\Pi_{nome} (\sigma_{ender = "Guatemala"} (Bares))   (\rho_{R (nome)} (\Pi_{bar} (\sigma_{preço<3~AND~cerv="Skoll"} (Vendem)))) )
```

### Exemplo 3 : Auto Junção

 Usando Vendem (bar, cerv, preço), achar os bares que vendem duas cervejas diferentes pelo mesmo preço.

#### Plano:

- Com o operador ρ definir uma cópia de Vendem chamada S(bar, cerv1, preço).
- Junção natural de Vendem e S formada por quádruplas (bar, cerv, cerv1, preço) cria combinações de duas cervejas vendidas ao mesmo preço.
- Eliminação de tuplas com repetição da mesma cerveja.
- Projeção do bar

#### A árvore



## Como expressão

$$\Pi_{\text{bar}} (\sigma_{\text{cerv} \neq \text{cerv1}} ( (\rho_{\text{S(bar, cerv1, preço)}} (\text{Vendem})) \bowtie \text{Vendem}))$$

### Esquemas Relacionais dos resultados

- União, interseção e diferença: Os esquemas dos operandos devem ser iguais, assim como o esquema resultante.
- Seleção: O esquema do resultado é o mesmo que o esquema do operando.
- Projeção: A lista de atributos define o esquema resultante.

### Esquemas dos resultados --- (2)

- Produto: O esquema está formado pelos atributos das duas relações.
  - Usamos R.A, para distinguir vários atributos de nome A.
- Junção theta: Igual que o produto.
- Junção natural : união dos atributos das duas relações.
  - Atributos do mesmo nome aparecem somente uma vez
- Renomear : O operador define o esquema.

### Para relaxar. Exercício

```
PROPRIETARIOS ( <u>CPF</u>, Nome, Idade, Telefone, Sexo )

CARROS ( <u>Chassi</u>, Placa, Marca, Ano, CPF <u>ref</u> PROPRIETARIOS (CPF) )

CORRETORES ( <u>CPF</u>, Nome, Telefone, Idade, Sexo )

APOLICES ( <u>Numero</u>, Valor, Chassi <u>ref</u> CARROS (Chassi) ,

Corretor <u>ref</u> CORRETORES (CPF) )
```

- 1. Fornecer Chassi e Placa dos carros de marca Ford
- 2. Fornecer CPF e nome dos usuários de sexo masculino donos de carros do ano 2010
- 3. Fornecer chassi e Placa dos carros de marca *Renault* junto com os números das suas apólices e os nomes dos seus proprietários.
- 4. Fornecer CPF e nome dos proprietários e corretores de sexo feminino.
- 5. Fornecer Placa dos carros que são de ano posterior a 2005 ou que são da marca *Fiat*

# Álgebra Estendida

- 1.  $\Pi$  = projeção estendida
- 2.  $\tau$  = ordena as tuplas.
- 3.  $\gamma$  = agrupamento e agregação.
- 4. Junção externa = junção com inclusão de tuplas não relacionadas

## Projeção estendida

- Usamos o mesmo operador Π<sub>L</sub>
   permitimos a lista L conter expressões
   arbitrárias envolvendo atributos como
   por exemplo:
  - 1. Aritmética com atributos, e.g., A + B.
  - 2. Ocorrências duplicadas do mesmo atributo.

## Exemplo: Projeção estendida

$$\pi_{A+B, A, A}(R) = A+B A_1 A_2$$
3 1 1
7 3 3

## Ordenação

- R<sub>1</sub> :=  $\tau$  , (R<sub>2</sub>).
  - L é uma lista de alguns atributos de R2.
- R1 é a lista de tuplas de R2 ordenadas inicialmente pelo primeiro atributo de L, depois pelo segundo atributo de L e assim sucessivamente.

## Exemplo: Ordenação

$$\tau_{B,A}(R) = [(1,2), (5,2), (3,4)]$$

## Exemplo: Ordenação

**Empregados** ( Sexo, Salario, Codigo RG, Nome, João M 2232 700.00 4050 Pedro M 700.00 Primeiro critério 2245 Ana F 1100.00 (salário) 8960 Roberto 1800.00 3 М 7865 Claudia 1100.00 0983 600.00 NULL Helena 2348 Jose M 700.0  $R := \tau$  Salario, Nome (Empregados) R Codigo RG, Nome, Sexo Salario/ 600.00 0983 Helena NULL Segundo critério 700.00 2232 João (Nome) 2348 700.0 Jose 4050 700.00 Pedro 1100.00 2 Ana 7865 1100.00 2 Claudia 8960 Roberto 1800.00 3

## Operadores de Agregação

- Operadores de agregação não são operadores na álgebra relacional.
- São aplicados a colunas inteiras de uma tabela e produzem um resultado simples.
- Exemplos mais importantes: SUM,
   AVG, COUNT, MIN, e MAX.

## Exemplo: Agregação

$$SUM(A) = 8$$

$$MAX(B) = 4$$

$$AVG(B) = 3$$

$$COUNT(*) = 3$$

## Operador de agrupamento

- R1 :=  $\gamma_L$  (R2). L é a lista de elementos que são:
  - 1. Atributos individuais (agrupados).
  - 2. AGR(A), onde AGR é um dos operadores e agregação e A é um atributo.

# Aplicação de γ<sub>L</sub>(R)

- Agrupar R de acordo com todos os atributos de agrupamento em L.
  - Isto é: formar um grupo para cada combinação de valores diferentes em R dos atributos em L.
- Em cada grupo, calcular AGR(A) para cada agregação na lista L.
- O resultado tem uma tupla para cada grupo:
  - 1. Os atributos de agrupamento, e
  - As agregações dos grupos.

| RG,  | Nome,   | Sexo,   | Salario, | Codigo |
|------|---------|---------|----------|--------|
| 2232 | João M  | 700.00  | 1        |        |
| 4050 | Pedro M | 700.00  | 1        |        |
| 2245 | Ana F   | 1100.00 | 2        |        |
| 8960 | Roberto | M 180   | 0.00 3   |        |
| 7865 | Claudia | F 110   | 0.00 2   |        |
| 0983 | Helena  | F 600   | .00 NU   | LL     |
| 2348 | Jose M  | 700.0 3 |          |        |

$$R := \gamma$$
 Sexo, Count (), MAX (Salario) (Empregados)

| RG,  |   | Nome,   | Sex | (O ,  | Salari | ο,  | Codigo | )        |
|------|---|---------|-----|-------|--------|-----|--------|----------|
| 2232 |   | João M  | 700 | 0.00  | 1      |     |        |          |
| 4050 |   | Pedro M | 700 | 0.00  | 1      |     |        |          |
| 2245 | ſ | Ana F   | 110 | 00.00 | 2      |     |        | 4/1      |
| 8960 |   | Roberto | М   | 180   | 0.00   | 3   |        |          |
| 7865 |   | Claudia | F   | 110   | 0.00   | 2   |        |          |
| 0983 |   | Helena  | F   | 600   | .00    | NUI | -L     |          |
| 2348 |   | Jose M  | 700 | 0.0 3 |        |     |        | <b>/</b> |
|      |   |         |     |       |        |     |        |          |

$$R := \gamma$$
 Sexo, Count (), MAX (Salario) (Empregados)

| R ( | Sexo , | Count () | , MAX(Salario) | ) |
|-----|--------|----------|----------------|---|
|     | М      | 4        | 1800,00        |   |
|     | F      | 3        | 1100,00        |   |

| RG,  | Nome,   | Sexo,   | Salario, | Codigo |
|------|---------|---------|----------|--------|
| 2232 | João M  | 700.00  | 1        |        |
| 4050 | Pedro M | 700.00  | 1        |        |
| 2245 | Ana F   | 1100.00 | 2        |        |
| 8960 | Roberto | M 180   | 0.00 3   |        |
| 7865 | Claudia | F 110   | 0.00 2   |        |
| 0983 | Helena  | F 600   | .00 NUI  | LL     |
| 2348 | Jose M  | 700.0 3 |          |        |

$$R := \gamma$$
 Sexo, Salario, Count () (Empregados)

| RG,  | Nome,   | Sexo,   | Salario, | Codigo | )        |
|------|---------|---------|----------|--------|----------|
| 2232 | João M  | 700.00  | 1        |        | M 700    |
| 4050 | Pedro M | 700.00  | 1        |        | F 1100   |
| 2245 | Ana F   | 1100.00 | 2        |        | F 1100   |
| 8960 | Roberto | M 180   | 0.00 3   |        | ✓ M 1800 |
| 7865 | Claudia | F 110   | 0.00 2   |        |          |
| 0983 | Helena  | F 600   | .00 NU   | LL     | F 600    |
| 2348 | Jose M  | 700.0 3 |          |        | <b>/</b> |
|      |         |         |          |        |          |

$$R := \gamma$$
 Sexo, Salario, Count () (Empregados) R (

| Sexo, | Salario, | Count () |
|-------|----------|----------|
| М     | 700,00   | 3        |
| M     | 1800,00  | 1        |
| F     | 1100,00  | 2        |
| F     | 600,00   | 1        |

## Junção externa (Outerjoin)

- Suponha que aplicamos  $R \bowtie S$ .
- Uma tupla em R que não tenha tupla em S com a qual realizar junção não aparece no resultado final
  - Similarmente para as tuplas de S.
- Junção externa preserva estas tuplas combinado-as com NULL no resultado.

## Junção Natural

(1,2) realiza junção com (2,3), mas as outras duas tuplas não tem como se relacionar

$$R \bowtie S = \begin{bmatrix} A & B & C \\ 1 & 2 & 3 \end{bmatrix}$$

## Exemplo: Junção externa

(1,2) realiza junção com (2,3), mas as outras duas tuplas não tem como se relacionar

### Exemplo: Junção externa esquerda

### Exemplo: Junção externa

**Empregados** 

| (  | RG,  | Nome,   | Sexo | , Salario | Cod  |
|----|------|---------|------|-----------|------|
|    | 2232 | João    | М    | 700.00    | 1    |
|    | 4050 | Pedro   | М    | 700.00    | 1    |
|    | 2245 | Ana     | F    | 1100.00   | 2    |
| 89 | 60   | Roberto | М    | 1800.00   | 3    |
|    | 7865 | Claudia | F    | 1100.00   | 2    |
|    | 0983 | Helena  | F    | 600.00    | NULL |
|    | 2348 | Jose    | М    | 700.00    | 3    |

**Departamentos** 

| Cod, | Dpto ,     | RGChefe |  |
|------|------------|---------|--|
| 1    | RH         | 2232    |  |
| 2    | Pesquisa   | 7865    |  |
| 3    | Manutenção | 8960    |  |
| 4    | Transporte | NULL    |  |
|      |            |         |  |

R := Empregados Departamentos

| <b>R</b> ( | RG,  | Nome,   | Sexo , | Salario, | Cod, | Dpto,      | RGChefe |
|------------|------|---------|--------|----------|------|------------|---------|
|            | 2232 | João    | М      | 700.00   | 1    | RH         | 2232    |
|            | 4050 | Pedro   | М      | 700.00   | 1    | RH         | 2232    |
|            | 2245 | Ana     | F      | 1100.00  | 2    | Pesquisa   | 7865    |
|            | 8960 | Roberto | М      | 1800.00  | 3 1  | Manutenção | 8960    |
|            | 7865 | Claudia | F      | 1100.00  | 2    | Pesquisa   | 7865    |
|            | 2348 | Jose    | М      | 700.00   | 3    | Manutenção | 8960    |
|            | 0983 | Helena  | F      | 600,00   | NULL | NULL       | NULL    |
|            | NULL | NULL    | NULL   | NÚLL     | 4    | Transporte | NULL    |
|            |      |         |        |          |      |            |         |

### Exemplo: Junção externa esquerda

| Em | nro   | and | OC. |
|----|-------|-----|-----|
|    | ם וקו | gad | 103 |
|    | -     |     |     |

| (  | RG,  | Nome,   | Sexo | , Salario | Cod  |
|----|------|---------|------|-----------|------|
|    | 2232 | João    | М    | 700.00    | 1    |
|    | 4050 | Pedro   | М    | 700.00    | 1    |
|    | 2245 | Ana     | F    | 1100.00   | 2    |
| 89 | 60   | Roberto | М    | 1800.00   | 3    |
|    | 7865 | Claudia | F    | 1100.00   | 2    |
|    | 0983 | Helena  | F    | 600.00    | NULL |
|    | 2348 | Jose    | М    | 700.00    | 3    |

#### **Departamentos**

| Cod, | Dpto ,     | <b>RGChefe</b> |
|------|------------|----------------|
| 1    | RH         | 2232           |
| 2    | Pesquisa   | 7865           |
| 3    | Manutenção | 8960           |
| 4    | Transporte | NULL           |
|      |            |                |

### R := Empregados Departamentos

| <b>R</b> ( | RG,  | Nome,   | Sexo , | Salario, | Cod  | , Dpto ,   | RGChefe |  |
|------------|------|---------|--------|----------|------|------------|---------|--|
|            | 2232 | João    | М      | 700.00   | 1    | RH         | 2232    |  |
|            | 4050 | Pedro   | М      | 700.00   | 1    | RH         | 2232    |  |
|            | 2245 | Ana     | F      | 1100.00  | 2    | Pesquisa   | 7865    |  |
|            | 8960 | Roberto | М      | 1800.00  | 3    | Manutenção | 8960    |  |
|            | 7865 | Claudia | F      | 1100.00  | 2    | Pesquisa   | 7865    |  |
|            | 2348 | Jose    | М      | 700.00   | 3    | Manutenção | 8960    |  |
|            | 0983 | Helena  | F      | 600,00   | NULL | NULL       | NULL    |  |

### Exemplo: Junção externa direita

**Empregados** 

| (  | RG,  | Nome,   | Sexo | , Salario | Cod  |
|----|------|---------|------|-----------|------|
|    | 2232 | João    | М    | 700.00    | 1    |
|    | 4050 | Pedro   | М    | 700.00    | 1    |
|    | 2245 | Ana     | F    | 1100.00   | 2    |
| 89 | 60   | Roberto | М    | 1800.00   | 3    |
|    | 7865 | Claudia | F    | 1100.00   | 2    |
|    | 0983 | Helena  | F    | 600.00    | NULL |
|    | 2348 | Jose    | М    | 700.00    | 3    |

**Departamentos** 

| Cod, | Dpto ,     | RGChefe |
|------|------------|---------|
| 1    | RH         | 2232    |
| 2    | Pesquisa   | 7865    |
| 3    | Manutenção | 8960    |
| 4    | Transporte | NULL    |
|      |            |         |

 $R := Empregados \bigvee Departamentos$ 

Empregados.Cod = Departamentos.Cod

| <b>R</b> ( | RG,                                                  | Nome,                              | Sexo,                              | Salario,                                                            | Cod,                            | Dpto,                                                                      | RGChefe |
|------------|------------------------------------------------------|------------------------------------|------------------------------------|---------------------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------|---------|
|            | 2232<br>4050<br>2245<br>8960<br>7865<br>2348<br>NULL | Pedro<br>Ana<br>Roberto<br>Claudia | M<br>M<br>F<br>M<br>F<br>M<br>NULL | 700.00<br>700.00<br>1100.00<br>1800.00<br>1100.00<br>700.00<br>NULL | 1<br>1<br>2<br>3<br>2<br>3<br>4 | RH<br>RH<br>Pesquisa<br>Manutenção<br>Pesquisa<br>Manutenção<br>Transporte | 7865    |

### Mais exercícios

```
Empregados ( <u>RG</u>, Nome, Salário, Sexo, Codigo <u>ref</u> Departamentos (Codigo) )

Departamentos (<u>Codigo</u>, Nome, Local, Chefe <u>ref</u> Empregado (RG) )

Projetos (<u>Num</u>, Nome, Orçamento, Dpto <u>ref</u> Departamentos (Codigo) ,

Coordenador <u>ref</u> Empregado (RG) )

EmpregadoXProjeto(<u>RG ref</u> Empregado (RG) , <u>Num ref</u> Projetos (<u>Num</u>), Horas)
```

- 1. Fornecer nome de empregado e nome do seu departamento ordenados alfabeticamente pelo nome do empregado
- 2. Fornecer Nome do departamento e nome do chefe. Deseja-se a recuperação dos nomes de departamentos sem chefe.
- 3. Fornecer por cada RG de empregado a quantidade de projetos em que participa.

### Mais exercícios

```
Empregados ( <u>RG</u>, Nome, Salário, Sexo, Codigo <u>ref</u> Departamentos (Codigo) )

Departamentos ( <u>Codigo</u>, Nome, Local, Chefe <u>ref</u> Empregado (RG) )

Projetos ( <u>Num</u>, Nome, Orçamento, Dpto <u>ref</u> Departamentos (Codigo) ,

Coordenador <u>ref</u> Empregado (RG) )

EmpregadoXProjeto( <u>RG ref</u> Empregado (RG) , <u>Num ref</u> Projetos ( <u>Num</u>), Horas)
```

- 1. Fornecer nome de empregado e nome do seu departamento ordenados alfabeticamente pelo nome do empregado
- 2. Fornecer Nome do departamento e nome do chefe. Deseja-se a recuperação dos nomes de departamentos sem chefe.
- 3. Fornecer por cada RG de empregado a quantidade de projetos em que participa.