Foundation of Cryptography (0368-4162-01), Lecture 6 More on Zero Knowledge

Iftach Haitner, Tel Aviv University

December 20, 2011

Part I

Non-Interactive Zero Knowledge

Claim 1

Assume that $\mathcal{L}\subseteq\{0,1\}^*$ has a one-message CZKP proof, with standard completeness and soundness,^a then $\mathcal{L}\in BPP$.

^aThat is, the completeness is $\frac{2}{3}$ and soundness error is $\frac{1}{3}$.

Claim 1

Assume that $\mathcal{L}\subseteq\{0,1\}^*$ has a one-message CZKP proof, with standard completeness and soundness,^a then $\mathcal{L}\in BPP$.

^aThat is, the completeness is $\frac{2}{3}$ and soundness error is $\frac{1}{3}$.

Claim 1

Assume that $\mathcal{L}\subseteq\{0,1\}^*$ has a one-message CZKP proof, with standard completeness and soundness, a then $\mathcal{L}\in BPP$.

^aThat is, the completeness is $\frac{2}{3}$ and soundness error is $\frac{1}{3}$.

- To reduce interaction we relax the zero-knowledge requirement
 - Witness Indistinguishability $\{\langle (P(w_x^1), V^*)(x) \rangle\}_{x \in \mathcal{L}} \approx_c \{\langle (P(w_x^2), V^*)(x) \rangle\}_{x \in \mathcal{L}},$ for any $\{w_x^1 : (x, w_x) \in R_{\mathcal{L}}(x)\}_{x \in \mathcal{L}}$ and $\{w_x^2 : (x, w_x) \in R_{\mathcal{L}}(x)\}_{x \in \mathcal{L}}$

Claim 1

Assume that $\mathcal{L}\subseteq\{0,1\}^*$ has a one-message CZKP proof, with standard completeness and soundness, a then $\mathcal{L}\in BPP$.

^aThat is, the completeness is $\frac{2}{3}$ and soundness error is $\frac{1}{3}$.

- To reduce interaction we relax the zero-knowledge requirement
 - Witness Indistinguishability $\{\langle (P(w_x^1), V^*)(x) \rangle\}_{x \in \mathcal{L}} \approx_c \{\langle (P(w_x^2), V^*)(x) \rangle\}_{x \in \mathcal{L}},$ for any $\{w_x^1 : (x, w_x) \in R_{\mathcal{L}}(x)\}_{x \in \mathcal{L}}$ and $\{w_x^2 : (x, w_x) \in R_{\mathcal{L}}(x)\}_{x \in \mathcal{L}}$
 - Witness Hiding

Claim 1

Assume that $\mathcal{L}\subseteq\{0,1\}^*$ has a one-message CZKP proof, with standard completeness and soundness,^a then $\mathcal{L}\in BPP$.

^aThat is, the completeness is $\frac{2}{3}$ and soundness error is $\frac{1}{3}$.

- To reduce interaction we relax the zero-knowledge requirement
 - Witness Indistinguishability $\{\langle (P(w_x^1), V^*)(x) \rangle\}_{x \in \mathcal{L}} \approx_c \{\langle (P(w_x^2), V^*)(x) \rangle\}_{x \in \mathcal{L}},$ for any $\{w_x^1 : (x, w_x) \in R_{\mathcal{L}}(x)\}_{x \in \mathcal{L}}$ and $\{w_x^2 : (x, w_x) \in R_{\mathcal{L}}(x)\}_{x \in \mathcal{L}}$
 - Witness Hiding
 - Non-interactive "zero knowledge"eee

Non-Interactive Zero Knowledge (NIZK)

Definition 2 (NIZK)

The *non interactive* (P, V) is a NIZK for $\mathcal{L} \in NP$, if $\exists p \in poly s.t.$

Completeness: $\Pr[V(x,c), P(x,w,c)) = 1] \ge 2/3$, where $c \leftarrow \{0,1\}^{p(|x|)}$ and $w \in R_{\mathcal{L}}(x)$

Soundness: $\Pr[V(x, c, P^*(x, c))) = 1] \le 1/3$, for every P^* and $x \notin \mathcal{L}$

ZK: $\exists \text{ PPT S s.t. } \{(x, c, P(x, w_x, c))\}_{x \in \mathcal{L}, c \leftarrow \{0, 1\}^{p(|x|)}} \approx_c \{x, S(x)\}_{x \in \mathcal{L}}, \text{ for any } \{w_x \colon (x, w_x) \in R_{\mathcal{L}}(x)\}_{x \in \mathcal{L}}$

Non-Interactive Zero Knowledge (NIZK)

Definition 2 (NIZK)

The *non interactive* (P, V) is a NIZK for $\mathcal{L} \in NP$, if $\exists p \in poly s.t.$

Completeness:
$$\Pr[V(x,c), P(x,w,c)) = 1] \ge 2/3$$
, where $c \leftarrow \{0,1\}^{p(|x|)}$ and $w \in R_{\mathcal{L}}(x)$

Soundness: $\Pr[V(x, c, P^*(x, c))) = 1] \le 1/3$, for every P^* and $x \notin \mathcal{L}$

ZK:
$$\exists \text{ PPT S s.t. } \{(x, c, P(x, w_x, c))\}_{x \in \mathcal{L}, c \leftarrow \{0, 1\}^{p(|x|)}} \approx_c \{x, S(x)\}_{x \in \mathcal{L}}, \text{ for any } \{w_x \colon (x, w_x) \in R_{\mathcal{L}}(x)\}_{x \in \mathcal{L}}$$

• *c* – common (random) reference string (CRRS)

Non-Interactive Zero Knowledge (NIZK)

Definition 2 (NIZK)

The *non interactive* (P, V) is a NIZK for $\mathcal{L} \in NP$, if $\exists p \in poly s.t.$

Completeness:
$$\Pr[V(x, c), P(x, w, c)) = 1] \ge 2/3$$
, where $c \leftarrow \{0, 1\}^{p(|x|)}$ and $w \in \mathcal{R}_{\mathcal{L}}(x)$

Soundness: $\Pr[V(x, c, P^*(x, c))) = 1] \le 1/3$, for every P^* and $x \notin \mathcal{L}$

ZK:
$$\exists \text{ PPT S s.t. } \{(x, c, P(x, w_x, c))\}_{x \in \mathcal{L}, c \leftarrow \{0, 1\}^{p(|x|)}} \approx_c \{x, S(x)\}_{x \in \mathcal{L}}, \text{ for any } \{w_x \colon (x, w_x) \in R_{\mathcal{L}}(x)\}_{x \in \mathcal{L}}$$

- *c* common (random) reference string (CRRS)
- CRRS is chosen by the simulator

Non-Interactive Zero Knowledge (NIZK)

Definition 2 (NIZK)

The *non interactive* (P, V) is a NIZK for $\mathcal{L} \in NP$, if $\exists p \in poly s.t.$

Completeness:
$$\Pr[V(x, c), P(x, w, c)) = 1] \ge 2/3$$
, where $c \leftarrow \{0, 1\}^{p(|x|)}$ and $w \in R_{\mathcal{L}}(x)$

Soundness: $\Pr[V(x, c, P^*(x, c))) = 1] \le 1/3$, for every P^* and $x \notin \mathcal{L}$

ZK:
$$\exists \text{ PPT S s.t. } \{(x, c, P(x, w_x, c))\}_{x \in \mathcal{L}, c \leftarrow \{0, 1\}^{p(|x|)}} \approx_c \{x, S(x)\}_{x \in \mathcal{L}}, \text{ for any } \{w_x \colon (x, w_x) \in R_{\mathcal{L}}(x)\}_{x \in \mathcal{L}}$$

- *c* common (random) reference string (CRRS)
- CRRS is chosen by the simulator
- What does the definition stands for?

Non-Interactive Zero Knowledge (NIZK)

Definition 2 (NIZK)

The *non interactive* (P, V) is a NIZK for $\mathcal{L} \in NP$, if $\exists p \in poly s.t.$

Completeness:
$$\Pr[V(x, c), P(x, w, c)) = 1] \ge 2/3$$
, where $c \leftarrow \{0, 1\}^{p(|x|)}$ and $w \in \mathcal{R}_{\mathcal{L}}(x)$

Soundness:
$$\Pr[V(x, c, P^*(x, c))) = 1] \le 1/3$$
, for every P^* and $x \notin \mathcal{L}$

ZK:
$$\exists \ \mathsf{PPT} \ \mathsf{S} \ \mathsf{s.t.} \ \{(x,c,\mathsf{P}(x,w_x,c))\}_{x\in\mathcal{L},c\leftarrow\{0,1\}^{p(|x|)}} \approx_c \{x,\mathsf{S}(x)\}_{x\in\mathcal{L}}, \ \mathsf{for} \ \mathsf{any} \ \{w_x\colon (x,w_x)\in R_{\mathcal{L}}(x)\}_{x\in\mathcal{L}}$$

- c common (random) reference string (CRRS)
- CRRS is chosen by the simulator
- What does the definition stands for?
- Soundness holds also against the simulated CRRS
- Composition?

Non-Interactive Zero Knowledge (NIZK)

Definition 2 (NIZK)

The *non interactive* (P, V) is a NIZK for $\mathcal{L} \in NP$, if $\exists p \in poly s.t.$

Completeness:
$$\Pr[V(x,c), P(x,w,c)) = 1] \ge 2/3$$
, where $c \leftarrow \{0,1\}^{p(|x|)}$ and $w \in R_{\mathcal{L}}(x)$

Soundness: $\Pr[V(x, c, P^*(x, c))) = 1] \le 1/3$, for every P^* and $x \notin \mathcal{L}$

ZK:
$$\exists \ \mathsf{PPT} \ \mathsf{S} \ \mathsf{s.t.} \ \{(x,c,\mathsf{P}(x,w_x,c))\}_{x\in\mathcal{L},c\leftarrow\{0,1\}^{p(|x|)}} \approx_c \{x,\mathsf{S}(x)\}_{x\in\mathcal{L}}, \ \mathsf{for} \ \mathsf{any} \ \{w_x\colon (x,w_x)\in R_{\mathcal{L}}(x)\}_{x\in\mathcal{L}}$$

- *c* common (random) reference string (CRRS)
- CRRS is chosen by the simulator
- What does the definition stands for?
- Soundness holds also against the simulated CRRS
- Composition? Amplification

Section 1

NIZK in HBM

A CRRS is chosen at random, but only the prover can see it. The prover chooses which bits to reveal as part of the proof.

A CRRS is chosen at random, but only the prover can see it. The prover chooses which bits to reveal as part of the proof. Let c^H be the "hidden" CRSS:

- Prover sees c^H , and outputs a proof π and a set on indices \mathcal{I}
- ullet Verifier only sees the bits in c^H that are indexed by ${\mathcal I}$
- Simulator outputs a proof π , a set of indices $\mathcal I$ and a partially hidden CRSS c^H

A CRRS is chosen at random, but only the prover can see it. The prover chooses which bits to reveal as part of the proof. Let c^H be the "hidden" CRSS:

- Prover sees c^H , and outputs a proof π and a set on indices $\mathcal I$
- ullet Verifier only sees the bits in c^H that are indexed by ${\mathcal I}$
- Simulator outputs a proof π , a set of indices $\mathcal I$ and a partially hidden CRSS c^H

Soundness, completeness and ZK are naturally defined.

A CRRS is chosen at random, but only the prover can see it. The prover chooses which bits to reveal as part of the proof. Let c^H be the "hidden" CRSS:

- Prover sees c^H , and outputs a proof π and a set on indices $\mathcal I$
- ullet Verifier only sees the bits in c^H that are indexed by ${\mathcal I}$
- Simulator outputs a proof π , a set of indices $\mathcal I$ and a partially hidden CRSS c^H

Soundness, completeness and ZK are naturally defined. We give a NIZK for HC - Graph Hamiltonicity in the HBM, and then transfer it into the standard model.

• Permutation matrix: an $n \times n$ Boolean matrix, where each row/column contains a single 1

- Permutation matrix: an $n \times n$ Boolean matrix, where each row/column contains a single 1
- Hamiltonian matrix: an n × n adjacency matrix of a directed graph that consists of a single Hamiltonian cycle (note that this is also a permutation matrix)

- Permutation matrix: an n × n Boolean matrix, where each row/column contains a single 1
- Hamiltonian matrix: an n x n adjacency matrix of a directed graph that consists of a single Hamiltonian cycle (note that this is also a permutation matrix)
- An $n^3 \times n^3$ Boolean matrix is called *useful*: if it contains a generalized $n \times n$ Hamiltonian sub matrix, and all the other entries are zeros

- Permutation matrix: an n × n Boolean matrix, where each row/column contains a single 1
- Hamiltonian matrix: an n x n adjacency matrix of a directed graph that consists of a single Hamiltonian cycle (note that this is also a permutation matrix)
- An $n^3 \times n^3$ Boolean matrix is called *useful*: if it contains a generalized $n \times n$ Hamiltonian sub matrix, and all the other entries are zeros

Claim 3

Let T be a random $n^3 \times n^3$ Boolean matrix where each entry is 1 w.p n^{-5} . Hence, $\Pr[T \text{ is useful}] \in \Omega(n^{-3/2})$.

• The expected one entries in T is $n^6 \cdot n^{-5} = n$ and by extended Chernoff bound, w.p. $\theta(1/\sqrt{n})$ T contains exactly n ones.

- The expected one entries in T is $n^6 \cdot n^{-5} = n$ and by extended Chernoff bound, w.p. $\theta(1/\sqrt{n})$ T contains exactly n ones.
- Each row/colomn of T contain more than a single one entry with probability about $\binom{n^3}{2} \cdot n^{-10} < n^{-4}$.

- The expected one entries in T is $n^6 \cdot n^{-5} = n$ and by extended Chernoff bound, w.p. $\theta(1/\sqrt{n})$ T contains exactly n ones.
- Each row/colomn of T contain more than a single one entry with probability about $\binom{n^3}{2} \cdot n^{-10} < n^{-4}$. Hence, wp at least $1 2 \cdot n^3 \cdot n^{-4} = 1 O(n^{-1})$, no raw or column of T contains more than a single one entry.

- The expected one entries in T is $n^6 \cdot n^{-5} = n$ and by extended Chernoff bound, w.p. $\theta(1/\sqrt{n})$ T contains exactly n ones.
- Each row/colomn of T contain more than a single one entry with probability about $\binom{n^3}{2} \cdot n^{-10} < n^{-4}$. Hence, wp at least $1 2 \cdot n^3 \cdot n^{-4} = 1 O(n^{-1})$, no raw or column of T contains more than a single one entry.
- Hence, wp $\theta(1/\sqrt{n})$ the matrix T contains a permutation matrix and all its other entries are zero.

- The expected one entries in T is $n^6 \cdot n^{-5} = n$ and by extended Chernoff bound, w.p. $\theta(1/\sqrt{n})$ T contains exactly n ones.
- Each row/colomn of T contain more than a single one entry with probability about $\binom{n^3}{2} \cdot n^{-10} < n^{-4}$. Hence, wp at least $1 2 \cdot n^3 \cdot n^{-4} = 1 O(n^{-1})$, no raw or column of T contains more than a single one entry.
- Hence, wp $\theta(1/\sqrt{n})$ the matrix T contains a permutation matrix and all its other entries are zero.
- A random permutation matrix forms a cycle wp 1/n (there are n! permutation matrices and (n 1)! of them form a cycle)

• Common input: a directed graph G = ([n], E)

- Common input: a directed graph G = ([n], E)
- Common reference string T viewed as a $n^3 \times n^3$ Boolean matrix, where each entry is 1 w.p n^{-5}

- Common input: a directed graph G = ([n], E)
- Common reference string T viewed as a $n^3 \times n^3$ Boolean matrix, where each entry is 1 w.p n^{-5} ?

- Common input: a directed graph G = ([n], E)
- Common reference string T viewed as a $n^3 \times n^3$ Boolean matrix, where each entry is 1 w.p n^{-5} ?

Algorithm 4 (P)

Input: G and a cycle C in G. A CRRS $T \in \{0, 1\}_{n^3 \times n^3}$

- If T not useful, reveal all the entries of T. Otherwise, let H be (generalized) $n \times n$ sub matrix containing the hamiltonian cycle in T.
- 2 Reveal all the entries in $T \setminus H$
- **3** Output $\phi \in \Pi_n$ s.t. C is mapped to the cycle in H
- **3** Reveal all the entries in H corresponding to non edges in G (with respect to ϕ)

Algorithm 5 (V)

Input: a graph G, a CRRS $T \in \{0,1\}_{n^3 \times n^3}$, index set $\mathcal{I} \subseteq [n^3] \times [n^3]$, ordered set $\{T_i\}_{i \in \mathcal{I}}$ and a mapping ϕ

- If all the bits of T are revealed and T is not useful, accept.
 Otherwise,
- **2** Verify that $\exists n \times n$ submatrix $H \subseteq T$ with all entries in $T \setminus H$ are zeros.
- **③** Verify that ϕ ∈ Π _n, and that all the entries of H not corresponding (according to ϕ) to edges of G are zeros

Algorithm 5 (V)

Input: a graph G, a CRRS $T \in \{0, 1\}_{n^3 \times n^3}$, index set $\mathcal{I} \subseteq [n^3] \times [n^3]$, ordered set $\{T_i\}_{i \in \mathcal{I}}$ and a mapping ϕ

- If all the bits of *T* are revealed and *T* is not useful, accept. Otherwise,
- **2** Verify that $\exists n \times n$ submatrix $H \subseteq T$ with all entries in $T \setminus H$ are zeros.
- **3** Verify that $\phi \in \Pi_n$, and that all the entries of H not corresponding (according to ϕ) to edges of G are zeros

Claim 6

The above protocol is a perfect NIZK for HC in the HBM, with perfect completeness and soundness error $1 - \Omega(n^{-3/2})$

Completeness: Clear

- Completeness: Clear
- Soundness: Assume T is useful and V accepts. Then ϕ^{-1} maps the unrevealed "edges" of H to the edges of G.

- Completeness: Clear
- Soundness: Assume T is useful and V accepts. Then ϕ^{-1} maps the unrevealed "edges" of H to the edges of G. Hence, ϕ^{-1} maps the the cycle in H to an Hamiltonian cycle in G

Proving Claim 6

- Completeness: Clear
- Soundness: Assume T is useful and V accepts. Then ϕ^{-1} maps the unrevealed "edges" of H to the edges of G. Hence, ϕ^{-1} maps the the cycle in H to an Hamiltonian cycle in G
- Zero knowledge?

- Choose *T* at random, according to the right dist. of the CRRS.
- 2 If T is not useful, reveal all its bits. Otherwise,
- Reveal the bits of T outside of H,
- **1** Let $\phi \leftarrow \Pi_n$. Replace all the entries of H not corresponding to edges of G (according to ϕ) with zeros, and reveal them.

- Choose T at random, according to the right dist. of the CRRS.
- 2 If T is not useful, reveal all its bits. Otherwise,
- Reveal the bits of T outside of H,
- **1** Let $\phi \leftarrow \Pi_n$. Replace all the entries of H not corresponding to edges of G (according to ϕ) with zeros, and reveal them.
 - Perfect simulation for non useful T's.

- Choose T at random, according to the right dist. of the CRRS.
- 2 If T is not useful, reveal all its bits. Otherwise,
- Reveal the bits of T outside of H,
- Let $\phi \leftarrow \Pi_n$. Replace all the entries of H not corresponding to edges of G (according to ϕ) with zeros, and reveal them.
 - Perfect simulation for non useful T's.
 - For useful T, the location of H is uniform in the real and simulated case.

- Choose T at random, according to the right dist. of the CRRS.
- 2 If T is not useful, reveal all its bits. Otherwise,
- Reveal the bits of T outside of H,
- Let $\phi \leftarrow \Pi_n$. Replace all the entries of H not corresponding to edges of G (according to ϕ) with zeros, and reveal them.
 - Perfect simulation for non useful T's.
 - For useful T, the location of H is uniform in the real and simulated case.
 - ϕ is a random element in Π_n is both cases

- Choose T at random, according to the right dist. of the CRRS.
- ② If *T* is not useful, reveal all its bits. Otherwise,
- Reveal the bits of T outside of H,
- Let $\phi \leftarrow \Pi_n$. Replace all the entries of H not corresponding to edges of G (according to ϕ) with zeros, and reveal them.
 - Perfect simulation for non useful T's.
 - For useful T, the location of H is uniform in the real and simulated case.
 - ϕ is a random element in Π_n is both cases
 - Hence, the simulation is perfect

Section 2

From HBM to Standard NIZK

trapdoor permutations

Definition 8 (trapdoor permutations)

A triplet of PPT's (G, f, Inv) is called (enhanced) family of trapdoor permutation (TDP), if the following holds:

- **①** *G*: $\{0,1\}^n \mapsto \{0,1\}^n$ for every *n* ∈ \mathbb{N} .
- 2 $f_{pk} = f(pk, \cdot)$ is a permutation over $\{0, 1\}^n$, for every $pk \in \{0, 1\}^n$.
- 1 Inv $(sk, \cdot) \equiv f_{G(sk)}^{-1}$ for every $sk \in \{0, 1\}^n$
- $\Pr[A(U_n, G(U_n)) = f_{U_n}^{-1}(U_n)] = \text{neg}(n)$, for any PPT A.

trapdoor permutations

Definition 8 (trapdoor permutations)

A triplet of PPT's (G, f, Inv) is called (enhanced) family of trapdoor permutation (TDP), if the following holds:

- **①** *G*: $\{0,1\}^n \mapsto \{0,1\}^n$ for every *n* ∈ N.
- 2 $f_{pk} = f(pk, \cdot)$ is a permutation over $\{0, 1\}^n$, for every $pk \in \{0, 1\}^n$.
- 1 Inv $(sk, \cdot) \equiv f_{G(sk)}^{-1}$ for every $sk \in \{0, 1\}^n$
- $\Pr[A(U_n, G(U_n)) = f_{U_n}^{-1}(U_n)] = \text{neg}(n)$, for any PPT A.
 - Somewhat less restrictive requirements will do for our purposes

example, RSA

example, RSA

•
$$\mathbb{Z}_n = [n]$$
 and $\mathbb{Z}_n^* = \{x \in \{0,1\}^n : \gcd(x,n) = 1\}$

example, RSA

- $\mathbb{Z}_n = [n]$ and $\mathbb{Z}_n^* = \{x \in \{0,1\}^n : \gcd(x,n) = 1\}$
- $\phi(n) = |\mathbb{Z}_n^*|$ (equals (p-1)(q-1) for n = pq with $p, q \in P$)

example, RSA

- $\mathbb{Z}_n = [n]$ and $\mathbb{Z}_n^* = \{x \in \{0,1\}^n : \gcd(x,n) = 1\}$
- $\phi(n) = |\mathbb{Z}_n^*|$ (equals (p-1)(q-1) for n = pq with $p, q \in P$)
- For any $e \in \mathbb{Z}_{\phi(n)}^*$, the function $f(x) \equiv x^e$ is a permutation over \mathbb{Z}_n^* .

example, RSA

- $\mathbb{Z}_n = [n]$ and $\mathbb{Z}_n^* = \{x \in \{0,1\}^n : \gcd(x,n) = 1\}$
- $\phi(n) = |\mathbb{Z}_n^*|$ (equals (p-1)(q-1) for n = pq with $p, q \in P$)
- For any $e \in \mathbb{Z}_{\phi(n)}^*$, the function $f(x) \equiv x^e$ is a permutation over \mathbb{Z}_n^* .

 In particular, $(x^e)^d \equiv x \mod n$, for every $x \in \mathbb{Z}_n^*$, where $d \equiv e^{-1} \mod \phi(n)$

example, RSA

In the following $n \in \mathbb{N}$ and all operations are modulo n.

- $\mathbb{Z}_n = [n]$ and $\mathbb{Z}_n^* = \{x \in \{0,1\}^n : \gcd(x,n) = 1\}$
- $\phi(n) = |\mathbb{Z}_n^*|$ (equals (p-1)(q-1) for n = pq with $p, q \in P$)
- For any $e \in \mathbb{Z}_{\phi(n)}^*$, the function $f(x) \equiv x^e$ is a permutation over \mathbb{Z}_n^* . In particular, $(x^e)^d \equiv x \mod n$, for every $x \in \mathbb{Z}_n^*$, where

In particular, $(x^{\circ})^{\circ} \equiv x \mod n$, for every $x \in \mathbb{Z}_n^{\circ}$, where $d \equiv e^{-1} \mod \phi(n)$

Definition 9 (RSA)

- G(p,q) sets pk=(n=pq,e) for some $e\in \mathbb{Z}_{\phi(n)}^*$, and $sk=(n,d\equiv e^{-1}\ \text{mod}\ \phi(n))$
- $f(pk, x) = x^e \mod n$
- $Inv(sk, x) = x^d \mod n$

example, RSA

In the following $n \in \mathbb{N}$ and all operations are modulo n.

- $\mathbb{Z}_n = [n]$ and $\mathbb{Z}_n^* = \{x \in \{0,1\}^n : \gcd(x,n) = 1\}$
- $\phi(n) = |\mathbb{Z}_n^*|$ (equals (p-1)(q-1) for n = pq with $p, q \in P$)
- For any $e \in \mathbb{Z}_{\phi(n)}^*$, the function $f(x) \equiv x^e$ is a permutation over \mathbb{Z}_n^* .

 In particular, $(x^e)^d \equiv x \mod n$, for every $x \in \mathbb{Z}_n^*$, where $d \equiv e^{-1} \mod \phi(n)$

$\mathbf{a} = \mathbf{c} \quad \text{mod } \varphi(n)$

Definition 9 (RSA)

- G(p,q) sets pk=(n=pq,e) for some $e\in\mathbb{Z}_{\phi(n)}^*$, and $sk=(n,d\equiv e^{-1}\ \mathrm{mod}\ \phi(n))$
- $f(pk, x) = x^e \mod n$
- $Inv(sk, x) = x^d \mod n$

Factoring is easy \implies RSA is easy.

example, RSA

In the following $n \in \mathbb{N}$ and all operations are modulo n.

- $\mathbb{Z}_n = [n]$ and $\mathbb{Z}_n^* = \{x \in \{0,1\}^n : \gcd(x,n) = 1\}$
- $\phi(n) = |\mathbb{Z}_n^*|$ (equals (p-1)(q-1) for n = pq with $p, q \in P$)
- For any $e \in \mathbb{Z}_{\phi(n)}^*$, the function $f(x) \equiv x^e$ is a permutation over \mathbb{Z}_n^* .
 In particular, $(x^e)^d \equiv x \mod n$, for every $x \in \mathbb{Z}_n^*$, where

In particular, $(x^{\circ})^{\circ} \equiv x \mod n$, for every $x \in \mathbb{Z}_n^{\circ}$, where $d \equiv e^{-1} \mod \phi(n)$

Definition 9 (RSA)

- G(p,q) sets pk=(n=pq,e) for some $e\in \mathbb{Z}_{\phi(n)}^*$, and $sk=(n,d\equiv e^{-1}\ \text{mod}\ \phi(n))$
- $f(pk, x) = x^e \mod n$
- $Inv(sk, x) = x^d \mod n$

Factoring is easy \implies RSA is easy. Other direction?

The transformation

Let (P_H, V_H) be a HBP NIZK for \mathcal{L} , and let p(n) be the length of the CRRS used for $x \in \{0, 1\}^n$. Let (G, f, Inv) be a TDP and let b be an hardcore bit for f.

The transformation

Let (P_H, V_H) be a HBP NIZK for \mathcal{L} , and let p(n) be the length of the CRRS used for $x \in \{0, 1\}^n$.

Let (G, f, Inv) be a TDP and let b be an hardcore bit for f. We construct a NIZK (P, V) for \mathcal{L} , with the same completeness and "not too large" soundness error.

The protocol

Algorithm 10 (P)

Input: $x \in \mathcal{L}$, $w \in R_{\mathcal{L}}(x)$ and CRRS $c = (c_1, \dots, c_p) \in \{0, 1\}^{np}$, where n = |x| and p = p(n).

- Choose $sk \leftarrow U_n$, set pk = G(sk) and compute $c^H = (b(z_1 = f_{pk}^{-1}(c_1)), \dots, b(z_{p(n)} = f_{pk}^{-1}(c_p)))$
- **2** Set $(\pi, \mathcal{I}) \leftarrow P_H(x, w, c^H)$ and output $(\pi, \mathcal{I}, pk, \{z_i\}_{i \in \mathcal{I}})$

The protocol

Algorithm 10 (P)

Input: $x \in \mathcal{L}$, $w \in R_{\mathcal{L}}(x)$ and CRRS $c = (c_1, \dots, c_p) \in \{0, 1\}^{np}$, where n = |x| and p = p(n).

- Choose $sk \leftarrow U_n$, set pk = G(sk) and compute $c^H = (b(z_1 = f_{pk}^{-1}(c_1)), \dots, b(z_{p(n)} = f_{pk}^{-1}(c_p)))$
- **2** Set $(\pi, \mathcal{I}) \leftarrow P_H(x, w, c^H)$ and output $(\pi, \mathcal{I}, pk, \{z_i\}_{i \in \mathcal{I}})$

Algorithm 11 (V)

Input: $x \in \mathcal{L}$, CRRS $c = (c_1, \ldots, c_p) \in \{0, 1\}^{np}$, and $(\pi', \mathcal{I}, pk, \{z_i\}_{i \in \mathcal{I}})$, where n = |x| and p = p(n).

- Verify that $pk \in \{0,1\}^n$ and that $f_{pk}(z_i) = c_i$ for every $i \in \mathcal{I}$
- **2** Return $V_H(x, \pi, \mathcal{I}, c^H)$, where $c_i^H = b(z_i)$ for every $i \in \mathcal{I}$.

Claim 12

Assuming that (P_H, V_H) is a NIZK for \mathcal{L} in the HBM with soundness error $2^{-n} \cdot \alpha$, then (P, V) is a NIZK for \mathcal{L} with the same completeness, and soundness error α .

Claim 12

Assuming that (P_H, V_H) is a NIZK for \mathcal{L} in the HBM with soundness error $2^{-n} \cdot \alpha$, then (P, V) is a NIZK for \mathcal{L} with the same completeness, and soundness error α .

Proof: Assume for simplicity that b is unbiased (i.e., $Pr[b(U_n) = 1] = \frac{1}{2}$).

Claim 12

Assuming that (P_H, V_H) is a NIZK for \mathcal{L} in the HBM with soundness error $2^{-n} \cdot \alpha$, then (P, V) is a NIZK for \mathcal{L} with the same completeness, and soundness error α .

Proof: Assume for simplicity that b is unbiased (i.e., $\Pr[b(U_n) = 1] = \frac{1}{2}$). Hence, $f_{pk}^{-1}(C_1), \ldots, f_{pk}^{-1}(C_p)$ is uniformly distributed in $\{0, 1\}^p$, for every $pk \in \{0, 1\}$.

Claim 12

Assuming that (P_H, V_H) is a NIZK for \mathcal{L} in the HBM with soundness error $2^{-n} \cdot \alpha$, then (P, V) is a NIZK for \mathcal{L} with the same completeness, and soundness error α .

Proof: Assume for simplicity that b is unbiased (i.e., $\Pr[b(U_n)=1]=\frac{1}{2}$). Hence, $f_{pk}^{-1}(C_1),\ldots,f_{pk}^{-1}(C_p)$ is uniformly distributed in $\{0,1\}^p$, for every $pk \in \{0,1\}$.

Completeness: clear

Claim 12

Assuming that (P_H, V_H) is a NIZK for \mathcal{L} in the HBM with soundness error $2^{-n} \cdot \alpha$, then (P, V) is a NIZK for \mathcal{L} with the same completeness, and soundness error α .

Proof: Assume for simplicity that b is unbiased (i.e., $\Pr[b(U_n) = 1] = \frac{1}{2}$). Hence, $f_{pk}^{-1}(C_1), \ldots, f_{pk}^{-1}(C_p)$ is uniformly distributed in $\{0, 1\}^p$, for every $pk \in \{0, 1\}$.

- Completeness: clear
- Soundness: follows by a union bound over all possible choice of pk ∈ {0,1}ⁿ.

Claim 12

Assuming that (P_H, V_H) is a NIZK for \mathcal{L} in the HBM with soundness error $2^{-n} \cdot \alpha$, then (P, V) is a NIZK for \mathcal{L} with the same completeness, and soundness error α .

Proof: Assume for simplicity that b is unbiased (i.e., $\Pr[b(U_n) = 1] = \frac{1}{2}$). Hence, $f_{pk}^{-1}(C_1), \ldots, f_{pk}^{-1}(C_p)$ is uniformly distributed in $\{0, 1\}^p$, for every $pk \in \{0, 1\}$.

- Completeness: clear
- Soundness: follows by a union bound over all possible choice of pk ∈ {0,1}ⁿ.

Proving zero knowledge

Algorithm 13 (S)

Input: $x \in \{0, 1\}^n$ of length n.

- Let $(\pi', \mathcal{I}, c^H) = S_H(x)$, where S_H is the simulator of (P_H, V_H)
- Output $(c, (\pi', \mathcal{I}, pk, \{z_i\}_{i \in \mathcal{I}}))$, where
 - $pk \leftarrow G(U_n)$
 - Each z_i is chosen at random in $\{0,1\}^n$ such that $b(z_i) = c_i^H$
 - $c_i = f_{pk}(z_i)$ for $i \in \mathcal{I}$, and a random value in $\{0,1\}^n$ otherwise.

Adaptive NIZK

Adaptiveness

x is chosen after the CRRS.

Adaptive NIZK

Adaptiveness

x is chosen after the CRRS.

Completeness:
$$\forall$$
 f: {0,1}^{*p*(*n*)} \mapsto {0,1}^{*n*} \cap \mathcal{L} : Pr[V(*f*(*c*), *c*), P(*f*(*c*), *w*, *c*)) = 1] ≥ 2/3,

Adaptive NIZK

Adaptiveness

```
x is chosen after the CRRS.
```

Completeness:
$$\forall$$
 $f: \{0,1\}^{p(n)} \mapsto \{0,1\}^n \cap \mathcal{L}$:

$$\Pr[V(f(c), c), P(f(c), w, c)) = 1] \ge 2/3,$$

Soundness:
$$\forall f : \{0,1\}^{p(n)} \mapsto \{0,1\}^n \text{ and } \mathsf{P}^*$$

$$\Pr[\mathsf{V}(f(c),c,\mathsf{P}^*((f(c),c)))=1 \land f(c) \notin \mathcal{L}] \leq 1/3$$

Adaptiveness

```
x is chosen after the CRRS.
```

Completeness:
$$\forall f : \{0,1\}^{p(n)} \mapsto \{0,1\}^n \cap \mathcal{L}: Pr[V(f(c), c), P(f(c), w, c)) = 1] > 2/3,$$

Soundness:
$$\forall f : \{0,1\}^{p(n)} \mapsto \{0,1\}^n \text{ and } P^*$$

$$\Pr[\mathsf{V}(f(c),c,\mathsf{P}^*((f(c),c)))=1 \land f(c) \notin \mathcal{L}] \leq 1/3$$

ZK:
$$\exists$$
 pair of PPT's (S_1, S_2) s.t. $\{(f(c), c, P(f(c), w_{f(c)}, c)\}_{n \in \mathbb{N}} \approx_c \{S^f(n)\}_{n \in \mathbb{N}}, \text{ for any } f \colon \{0, 1\}^{p(n)} \mapsto \{0, 1\}^n \cap \mathcal{L}. \text{ Where } S^f(n) \text{ is the output of}$

- \bullet $(t,s) \leftarrow S_1(1^n)$
- $x \leftarrow f(t)$
- Output $(x, t, S_2(x, t, s))$

Adaptiveness

x is chosen after the CRRS.

 Adaptive completeness and soundness are easy to achieve from any non-adaptive NIZK.

Adaptiveness

```
x is chosen after the CRRS.
```

```
Completeness: \forall f : \{0,1\}^{p(n)} \mapsto \{0,1\}^n \cap \mathcal{L}:
                   Pr[V(f(c), c), P(f(c), w, c)) = 1] > 2/3,
Soundness: \forall f : \{0,1\}^{p(n)} \mapsto \{0,1\}^n \text{ and } P^*
                   \Pr[V(f(c), c, P^*((f(c), c))) = 1 \land f(c) \notin \mathcal{L}] < 1/3
            ZK: \exists pair of PPT's (S_1, S_2) s.t.
                   \{(f(c), c, P(f(c), w_{f(c)}, c)\}_{n \in \mathbb{N}} \approx_c \{S^t(n)\}_{n \in \mathbb{N}}, \text{ for }
                   anv f: \{0,1\}^{p(n)} \mapsto \{0,1\}^n \cap \mathcal{L}. Where S^f(n) is the
                   output of
                     1 (t, s) ← S_1(1^n)
                     x \leftarrow f(t)
                     Output (x, t, S_2(x, t, s))
```

- Adaptive completeness and soundness are easy to achieve from any non-adaptive NIZK.
- Not every NIZK is adaptive (but the above is).

Part II

Proof of Knowledge

The protocol (P, V) is a *proof of knowledge* for $\mathcal{L} \in NP$, if P convinces V to accepts x, only if it "knows" $w \in R_{\mathcal{L}}(x)$.

The protocol (P, V) is a *proof of knowledge* for $\mathcal{L} \in NP$, if P convinces V to accepts x, only if it "knows" $w \in R_{\mathcal{L}}(x)$.

Definition 14 (knowledge extractor)

Let (P,V) be an interactive proof $\mathcal{L} \in NP$. A probabilistic machine E is a knowledge extractor for (P,V) and $R_{\mathcal{L}}$ with error $\eta \colon \mathbb{N} \mapsto \mathbb{R}$, if $\exists t \in \text{poly s.t. } \forall x \in \mathcal{L}$ and deterministic algorithm P^* , $E^{P^*}(x)$ runs in expected time bounded by $\frac{t(|x|)}{\delta(x) - \eta(|x|)}$ and outputs $w \in R_{\mathcal{L}}(x)$, where $\delta(x) = \Pr[(P^*, V)(x) = 1]$.

The protocol (P, V) is a *proof of knowledge* for $\mathcal{L} \in NP$, if P convinces V to accepts x, only if it "knows" $w \in R_{\mathcal{L}}(x)$.

Definition 14 (knowledge extractor)

Let (P,V) be an interactive proof $\mathcal{L}\in NP$. A probabilistic machine E is a knowledge extractor for (P,V) and $R_{\mathcal{L}}$ with error $\eta\colon \mathbb{N}\mapsto \mathbb{R}$, if $\exists t\in \mathsf{poly}$ s.t. $\forall x\in \mathcal{L}$ and deterministic algorithm P^* , $E^{P^*}(x)$ runs in expected time bounded by $\frac{t(|x|)}{\delta(x)-\eta(|x|)}$ and outputs $w\in R_{\mathcal{L}}(x)$, where $\delta(x)=\Pr[(P^*,V)(x)=1]$.

If (P, V) is a proof of knowledge (with error η), is it has a knowledge extractor with such error.

A property of V

The protocol (P, V) is a *proof of knowledge* for $\mathcal{L} \in NP$, if P convinces V to accepts x, only if it "knows" $w \in R_{\mathcal{L}}(x)$.

Definition 14 (knowledge extractor)

Let (P,V) be an interactive proof $\mathcal{L}\in NP$. A probabilistic machine E is a knowledge extractor for (P,V) and $R_{\mathcal{L}}$ with error $\eta\colon \mathbb{N}\mapsto \mathbb{R}$, if $\exists t\in \mathsf{poly}$ s.t. $\forall x\in \mathcal{L}$ and deterministic algorithm P^* , $E^{P^*}(x)$ runs in expected time bounded by $\frac{t(|x|)}{\delta(x)-\eta(|x|)}$ and outputs $w\in R_{\mathcal{L}}(x)$, where $\delta(x)=\Pr[(P^*,V)(x)=1]$.

If (P, V) is a proof of knowledge (with error η), is it has a knowledge extractor with such error.

- A property of V
- Why do we need it?

The protocol (P, V) is a *proof of knowledge* for $\mathcal{L} \in NP$, if P convinces V to accepts x, only if it "knows" $w \in R_{\mathcal{L}}(x)$.

Definition 14 (knowledge extractor)

Let (P,V) be an interactive proof $\mathcal{L}\in NP$. A probabilistic machine E is a knowledge extractor for (P,V) and $R_{\mathcal{L}}$ with error $\eta\colon \mathbb{N}\mapsto \mathbb{R}$, if $\exists t\in \text{poly s.t. } \forall x\in \mathcal{L}$ and deterministic algorithm $P^*, E^{P^*}(x)$ runs in expected time bounded by $\frac{t(|x|)}{\delta(x)-\eta(|x|)}$ and outputs $w\in R_{\mathcal{L}}(x)$, where $\delta(x)=\Pr[(P^*,V)(x)=1]$.

If (P, V) is a proof of knowledge (with error η), is it has a knowledge extractor with such error.

- A property of V
- Why do we need it? Proving that your applet is signed

The protocol (P, V) is a *proof of knowledge* for $\mathcal{L} \in NP$, if P convinces V to accepts x, only if it "knows" $w \in R_{\mathcal{L}}(x)$.

Definition 14 (knowledge extractor)

Let (P,V) be an interactive proof $\mathcal{L}\in NP$. A probabilistic machine E is a knowledge extractor for (P,V) and $R_{\mathcal{L}}$ with error $\eta\colon \mathbb{N}\mapsto \mathbb{R}$, if $\exists t\in \text{poly s.t.}\ \forall x\in \mathcal{L}$ and deterministic algorithm $P^*, E^{P^*}(x)$ runs in expected time bounded by $\frac{t(|x|)}{\delta(x)-\eta(|x|)}$ and outputs $w\in R_{\mathcal{L}}(x)$, where $\delta(x)=\Pr[(P^*,V)(x)=1]$.

If (P, V) is a proof of knowledge (with error η), is it has a knowledge extractor with such error.

- A property of V
- Why do we need it? Proving that your applet is signed
- Relation to ZK

Claim 15

The ZK proof we've seen in class for GI, has a knowledge extractor with error $\frac{1}{2}$.

Claim 15

The ZK proof we've seen in class for GI, has a knowledge extractor with error $\frac{1}{2}$.

Proof: ?

Claim 15

The ZK proof we've seen in class for GI, has a knowledge extractor with error $\frac{1}{2}$.

Proof: ?

Claim 16

The ZK proof we've seen in class for 3COL, has a knowledge extractor with error $\frac{1}{|E|}$.

Claim 15

The ZK proof we've seen in class for GI, has a knowledge extractor with error $\frac{1}{2}$.

Proof: ?

Claim 16

The ZK proof we've seen in class for 3COL, has a knowledge extractor with error $\frac{1}{|F|}$.

Proof: ?