Copyright © ECMS2017

Printed: ISBN: 978-0-9932440-4-9 **European Council for Modelling**

CD: and Simulation ISBN: 978-0-9932440-5-6

Cover pictures front side: © Kravka |

Dreamstime.com

back side: © Stefano Ferrario |

pixabay.com

Digitaldruck Pirrot GmbH 66125 Sbr.-Dudweiler, Printed by

Germany

PROCEEDINGS

31st European Conference on Modelling and Simulation ECMS 2017

May 23rd – May 26th, 2017 Budapest, Hungary

Edited by:

Zita Zoltay Paprika

Péter Horák

Kata Váradi

Péter Tamás Zwierczyk

Ágnes Vidovics-Dancs

János Péter Rádics

Organized by:

ECMS - European Council for Modelling and Simulation

Hosted by:

Corvinus University of Budapest, Corvinus Business School Budapest University of Technology and Economics

Sponsored by:

Budapest University of Technology and Economics

Central-European Training Center for Brokers / Közép-európai Brókerképző Alapítvány

Corvinus University of Budapest, Corvinus Business School KELER CCP Ltd.

MVM Group CLAAS Hungária Kft. FÉMALK Zrt.

International Co-Societies:

IEEE - Institute of Electrical and Electronics Engineers
ASIM - German Speaking Simulation Society
EUROSIM - Federation of European Simulation Societies
PTSK - Polish Society of Computer Simulation
LSS - Latvian Simulation Society

ECMS 2017 ORGANIZATION

Conference Chair

Zita Zoltay Paprika

Corvinus University of Budapest Corvinus Business School Hungary Conference Co-Chairs

Kata Váradi

Corvinus University of Budapest Corvinus Business School Hungary

Péter Tamás Zwierczyk

Budapest University of Technology and Economics Hungary

Programme Chair

Péter Horák

Budapest University of Technology and Economics Hungary **Programme Co-Chairs**

Ágnes Vidovics-Dancs

Corvinus University of Budapest Corvinus Business School Hungary

János Péter Rádics

Budapest University of Technology and Economics Hungary

President of European Council for Modelling and Simulation Khalid Al-Begain

University of South Wales, United Kingdom

Vice-President of European Council for Modelling and Simulation

Lars Nolle

Jade University of Applied Science, Wilhelmshaven, Germany

Managing Editor

Martina-Maria Seidel

St. Ingbert, Germany

EUROPEAN COUNCIL BOARD 2017

Khalid Al-Begain	President of European Council for Modelling and
University of South Wales, United Kingdom	Simulation and Past President of European Council for Modelling and Simulation (2006-2010)
Lars Nolle	Vice-President of European Council for Modelling and Simulation elected in 2016
Jade University of Applied Science, Wilhelmshaven, Germany	and Simulation elected in 2010
Evtim Peytchev	Past President of European Council for Modelling and Simulation (2012-2014) Treasurer (2015-today)
Nottingham Trent University	and diminiation (2012-2014) Treasurer (2010-today)
United Kingdom	
Andrzej Bargiela	Past President of European Council for Modelling and Simulation (2002-2004, 2004-2006, 2010-2012)
United Kingdom	
Eugène Kerckhoffs	Founder, Past President and Historian of ECMS
The Netherlands	
Kata Váradi	Conference Co-Chair of ECMS 2017
Corvinus University of Budapest, Corvinus Business School Hungary	
Peter T. Zwierczyk	Programme Co-Chair of ECMS 2017
Budapest University of Technology and Economics Hungary	
Frank Herrmann	Conference Chair of ECMS 2016
Ostbayerische Technische Hochschule Germany	
Michael Manitz	Programme Chair of ECMS 2016
Universität Duisburg-Essen Germnay	

INTERNATIONAL PROGRAMME COMMITTEE

Agent-Based Simulation

Track Chair: Michael Möhring

University of Koblenz-Landau, Germany

Co-Chair: **Ulf Lotzmann**

University of Koblenz-Landau, Germany

Simulation in Industry, Business, Transport and Services

Track Chair: Alessandra Orsoni

University of Kingston, United Kingdom

Co-Chair: Edward J. Williams

University of Michigan-Dearborn, USA

Simulation of Intelligent Systems

Track Chair: **Zuzana Kominková Oplatková** Tomas Bata University of Zlín, Czech Republic

Co-Chair: Roman Senkerik

Tomas Bata University of Zlín, Czech Republic

Finance and Economics and Social Science

Track Chair: Kata Váradi

Corvinus University of Budapest, Corvinus Business School, Hungary

Co-Chairs:

Barbara Dömötör

Corvinus University of Budapest, Corvinus Business School, Hungary

Agnes Vidovics-Dancs

Corvinus University of Budapest, Corvinus Business School, Hungary

Modelling, Simulation and Control of Technological Processes

Track Chair: Jiři Vojtěšek

Tomas Bata University in Zlín, Czech Republic

Co-Chairs: Petr Dostál

Tomas Bata University in Zlín, Czech Republic

František Gazdoš

Tomas Bata University in Zlín, Czech Republic

Simulation and Optimization

Track Chair: **Frank Herrmann** OTH Regensburg, Germany

Co-Chairs:

Thorsten Claus

Technical University Dresden, Germany

Michael Manitz

University of Duisburg-Essen, Germany

High Performance Modelling and Simulation

Track Chair: Mauro lacono

Seconda Università degli Studi di Napoli, Italy

Co-Chairs:

Daniel Grzonka

Cracow University of Technology, Poland

Agnieszka Jakobik

Cracow University of Technology, Poland

Rostislav V. Razumchik

Institute of Informatics Problems FRC CSC RAS, Russia

Honorary Track Chair:

Joanna Kolodziej

Cracow University of Technology, Poland

IPC Members in Alphabetical Order

Pavel Abaev, Peoples' Friendship University of Russia, Russia

Frederic Amblard, Université Toulouse 1 Capitole, France

Piotr Arabas, Warsaw University of Technology and NASK, Poland

Monika Bakosova, Slovak University of Technology in Bratislava, Slovakia

Hans-Peter Barbey, University of Applied Sciences in Bielefeld, Germany

Enrico Barbierato, Politecnico di Milano, Italy

Jan Bielanski, AGH University of Science and Technology, Poland

Vladimir Bobal, Tomas Bata University in Zlin, Czech Republic

Riccardo Boero, Los Alamos National Laboratory, USA

Aleksander Byrski, AGH University of Science and Technology, Poland

Petr Chalupa, Tomas Bata University in Zlin, Czech Republic

Emile Chappin, Delft University of Technology, The Netherlands

Adriana Chis, National College of Ireland Dublin, Ireland

Marina Chukalina, Russian Academy of Science, Russia

Franco Cicirelli, University of Calabria, Italy

Catherine Cleophas, RWTH Aachen, Germany

Gregoire Danoy, University of Luxembourg, Luxembourg

Ciprian Dobre, University Politehnica of Bucharest, Romania

František Dušek, University of Pardubice, Czech Republic

Nóra Ágota Felföldi-Szűcs, Corvinus University of Budapest, Hungary

Massimo Ficco, Seconda Università degli Studi di Napoli, Italy

Robert Forstner, SimPlan AG in Regensburg, Germany

Christopher Frantz, Otago Polytechnic, New Zealand

Amineh Ghorbani, Delft University of Technology, The Netherlands

Horacio Gonzalez-Velez, National College of Ireland, Ireland

Claudius Gräbner, (ICAE) Johannes Kepler University Linz, Austria

Marco Gribaudo, Politecnico di Milano, Italy

Alexander Grusho, Institute of Informatics Problems FRC CSC RAS, Russia

Magdalena Handerek, AGH University of Science and Technology, Poland

Stefan Hannig, ZF Friedrichshafen AG Passau, Germany

Benjamin Hildebrandt, University Duisburg-Essen, Germany

Daniel Honc, University of Pardubice, Czech Republic

Mark Hoogendorn, VU University of Amsterdam, The Netherlands

Thomas Hußlein, OptWare GmbH in Regensburg, Germany

Zsuzsa Huszár, National University of Singapore, Singapore

Teruaki Ito, The University of Tokushima, Japan

Michal Janosek, University of Ostrava, Czech Republic

Jácint Juhász, Babes-Bolyai University, Romania

Bogumil Kamiński, Warsaw School of Economics, Poland

Bart Kamphorst, VU University of Amsterdam, The Netherlands

Michał Konopczak, Warsaw School of Economics, Poland

Petia Koprinkova, Bulgarian Academy of Sciences, Bulgaria

Victor Korolev, Moscow State University, Russia

Ina Kortemeier, University Duisburg-Essen, Germany

Igor Kotenko, SPIIRAS, Russia

Martin Kotyrba, University of Ostrava, Czech Republic

Achyutha Krishnamoorthy, Cochin University of Science and Technology, India

Julia Kruk, Belarusian National Technical University, Belarus

Mateusz Krzysztoń, Warsaw University of Technology and NASK, Poland

Marek Kubalcik, Tomas Bata University in Zlin, Czech Republic

Frederick Lange, Maschinenfabrik Reinhausen Regensburg, Germany

Andrea Marin, Università Ca' Foscari di Venezia, Italy

Michal Marks, Research and Academic Computer Network (NASK), Poland

Stefano Marrone, Seconda Università degli Studi di Napoli, Italy

Agnieszka Mars, Jagiellonian University Cracow, Poland

Radek Matusu, Tomas Bata University in Zlin, Czech Republic

Nicolas Meseth, University of Applied Sciences in Osnabrueck, Germany

Christian Müller, University of Applied Sciences in Wildau, Germany

Maximilian Munninger, University of Applied Sciences in Regensburg, Germany

Tamas Nagy, Corvinus University of Budapest, Hungary

Valeriy Naumov, Service Innovation Research Institute, Finland

Catalin Negru, University Politehnica of Bucharest, Romania

Libero Nigro, University of Calabria, Italy

Dmitry P. Nikolaev, Russian Academy of Science, Russia

Igor Nikolic, Delft University of Technology, The Netherlands

Lars Nolle, Jade University of Applied Science Wilhelmshafen, Germany

Jakub Novak, Tomas Bata University in Zlin, Czech Republic

Beatrix Oravecz, Corvinus University of Budapest, Hungary

Francesco Palmieri, Università degli Studi di Salerno, Italy

Falk Stefan Pappert, Universität der Bundeswehr München, Germany

Libor Pekar, Tomas Bata University in Zlin, Czech Republic

Marc-Philip Piehl, University Duisburg-Essen, Germany

Michal Pluhacek, Tomas Bata University in Zlin, Czech Republic

Zoltan Pollak, Corvinus University of Budapest, Hungary

Florin Pop, University Politehnica of Bucharest, Romania

Simone Righi, Hungarian Academy of Sciences, Hungary

Boris Rohal-Ilkiv, Slovak University of Technology in Bratislava, Slovakia

Michael Römer, Martin-Luther-Universität Halle-Wittenberg, Germany

Juliette Rouchier, GREQAM-CNRS, France

Konstantin Samouylov, Peoples' Friendship University, Russia

Leonid Sevastyanov, Peoples' Friendship University, Russia

Oleg Shestakov, Moscow State University, Russia

Sergey Ya. Shorgin, Institute of Informatics Problems FRC CSC RAS, Russia

Markus Siegle, Universität der Bundeswehr München, Germany

Stelios Sotiriadis, University of Toronto, Canada

Grażyna Suchacka, Opole University, Poland

Katarzyna Sum, Warsaw School of Economics, Poland

Grzegorz Szafrański, Institute of Finance, Lodz University, Poland

János Száz, Corvinus University of Budapest, Hungary

Magdalena Szmajduch, Cracow University of Technology, Poland

Piotr Szuster, Cracow University of Technology, Poland

Pawel Szynkiewicz, Polish Academy of Science Warsaw, Poland

Armando Tacchella, Università degli Studi di Genova, Italy

Kristóf Tamás, Corvinus University of Budapest, Hungary

Enrico Teich, Technical University of Dresden, Germany

Marco Trost, Technical University of Dresden, Germany

Christopher Tubb, University of South Wales, United Kingdom

Tobias Uhlig, Universität der Bundeswehr München, Germany

Nikolai Ushakov, Norwegian University of Science and Technology, Norway

Ward van Breda, VU University of Amsterdam, The Netherlands

Enrico Vicario, Università degli Studi di Firenze, Italy

Andrea Vinci, CNR – National Research Council of Italy, Italy

Narayanan Viswanath, Government Engineering College Thrissur, India

Jaroslav Vitku, GoodAI, Czech Republic

Thorsten Vitzthum, University of Applied Sciences in Regensburg, Germany

Eva Volna, University of Ostrava, Czech Republic

Andrzej Wilczyński, Cracow University of Technology, Poland

Victor Zakharov, Institute of Informatics Problems FRC CSC RAS, Russia

Alexander Zeifman, Vologda State University, Russia

Bihary Zsolt, Corvinus University of Budapest, Hungary

PREFACE

It is a pleasure to welcome the more than 100 researchers at the 31st European Conference on Modelling and Simulation (ECMS) conference from May 23rd till May 26th 2017, and have their research collected in this proceedings.

The 31st ECMS conference will be hosted by Corvinus University of Budapest and Budapest University of Technology and Economics. Organizing ECMS 2017 is a great opportunity for these two long-established Hungarian universities to give rise to a fruitful cooperation – bringing the two geographically very close institutions even closer. Modelling and simulation are exciting and useful methodologies to study various problems in several research fields.

Besides the disciplines closely related to the two organizing universities (business, economics, finance, engineering, kinematics, mechanisms, mechanical simulations), we are eager to get acquainted with all the fields related to the conference. The main goal of the conference is to share your research questions and expertise with the ECMS community as well. It is always a nice experience to bring inspired researchers together. This conference is a forum to communicate and share new ideas and methods that will foster the development across all aspects of computational methods and their applications in modelling and simulation of different fields of applied science.

We hope you will find your field of interest in our conference tracks which cover exciting topics about intelligent systems, virtual prototyping, operating simulation, applied modelling, simulation and optimization, controlling of technological processes and the modelling and simulation of cases in finance, economics and social sciences.

The high prestige of the ECMS 2017 program is enhanced by our two keynote speakers, one from the field of economics, and the other from the field of engineering. István P. Székely – director of the European Commission, Economic and Financial Affairs, and honorary professor of Corvinus University of Budapest –will talk about the economic modelling and economic policy surveillance in Europe. Jin Ooi – professor of particulate solid mechanics at the University of Edinburgh – will give a lecture on discrete element modelling of granular materials.

The conference will also give you the opportunity to visit Budapest, one of the most exciting cities in Europe. In addition to a decent scientific program, we sincerely hope that you will take a chance to enjoy the culture of Budapest.

We are looking forward to welcoming you in Budapest!

Zita Zoltay Paprika, Péter Horák

Budapest, May 2017

TABLE OF CONTENTS

Plenary Talks - Abstracts

Challenges To Policy-Oriented Modelling And Model-Based Policy Formulation During The Crises: A User Perspective	n
Istvan P. Szekely	.5
Discrete Element Modelling Of Cohesionless, Cohesive And Bonded Granular Materials - From Model Conceptualisations To Industrial Scale Applications	
Jin Y. Ooi	.7
Agent-Based Simulation	
Statistical Model Checking Of Multi-Agent Systems	
Libero Nigro, Paolo F. Sciammarella1	1
Driving Behaviour Clustering For Realistic Traffic Micro-Simulators	
Alessandro Petraro, Federico Caselli, Michela Milano, Marco Lippi1	8
Finance and Economics and Social Science	
Simulation Models Of Two Duopoly Games	
Ingolf Stahl2	27
Determination Of Factors Influencing The Decision On Purchasing Organic Food	
Walailak Atthirawong3	34
Lifetime Probability Of Default Modeling For Hungarian Corporate Debt Instruments	
Tamas Kristof, Miklos Virag4	1
The Use Of Econometric Models In The Study Of Demographic Policy Measures (Based On The Example Of Fertility Stimulation In Russia)	
Oksana Shubat, Anna Bagirova4	₽7
The Use Of Cluster Analysis To Assess The Demographic Potential Of Russian Regions	
Oksana Shubat, Anna Bagirova, Irina Shmarova5	53

Simone Righi, Karoly Takacs	60
Modelling The Development Of Strategic Management	
Nikolett Deutsch, Tamas Meszaros, Lajos Szabo	67
Intermediary Activities On Decentralized Financial Markets	
Daniel Havran, Balazs Arpad Szucs	74
Indexed Bonds With Mean-Reverting Risk Factors	
Attila A. Vig, Agnes Vidovics-Dancs	81
Stress Test Modelling Of PD Risk Parameter Under Advanced IRB	
Zoltan Pollak, David Popper	87
Combination Of Time-Frequency Representations For Background Noise Suppression	
Eva Klejmova, Jitka Pomenkova, Jiri Blumenstein	93
A Margin Calculation Method For Illiquid Products	
Marcell Beli, Csilla Szanyi, Kata Varadi	100
Modelling Civil Society's Transformational Dynamism And Its Potential Effect	cts
lozact Vorace	106
Jozsef Veress	106
Jozsef Veress Determinants Of FX-Risk Management Evidence Of Hungary	106
Determinants Of FX-Risk Management Evidence Of Hungary Barbara Doemoetoer, Erzsebet Kovacs	
Determinants Of FX-Risk Management Evidence Of Hungary	113
Determinants Of FX-Risk Management Evidence Of Hungary Barbara Doemoetoer, Erzsebet Kovacs	113
Determinants Of FX-Risk Management Evidence Of Hungary Barbara Doemoetoer, Erzsebet Kovacs	113 120
Determinants Of FX-Risk Management Evidence Of Hungary Barbara Doemoetoer, Erzsebet Kovacs	113 120
Determinants Of FX-Risk Management Evidence Of Hungary Barbara Doemoetoer, Erzsebet Kovacs Model Of The State And EU Involvement In The Venture Capital Market Erika Jaki, Endre Mihaly Molnar Factors Associated With Thai Exporter's Interest In Using New Dawei Deep Seaport Kanogkan Leerojanaprapa, Kittiwat Sirikasemsuk, Komn Bhundarak	113 120 127
Determinants Of FX-Risk Management Evidence Of Hungary Barbara Doemoetoer, Erzsebet Kovacs Model Of The State And EU Involvement In The Venture Capital Market Erika Jaki, Endre Mihaly Molnar Factors Associated With Thai Exporter's Interest In Using New Dawei Deep Seaport Kanogkan Leerojanaprapa, Kittiwat Sirikasemsuk, Komn Bhundarak Valuation Of The Prepayment Option In The Banking Book	113 120 127

Volatility Surface Calibration In Illiquid Market Environment	
Laszlo Nagy, Mihaly Ormos	148
Modelling Of Provision Under New International Financial And Reporting Standard (IFRS 9)	
Csaba Kadar	153
Enhancing Model Interchangeability For Powerflow Studies: An Example Of A New Hungarian Network Model In Powerfactory And eASiMOV	
Balint Hartmann, Hueseyin K. Cakmak, Uwe G. Kuehnapfel, Veit Hagenmeyer	158
Simulation in Industry, Business, Transport and	
Services	
No More Deadlocks – Applying The Time Window Routing Method To Shuttle Systems	
Thomas Lienert, Johannes Fottner	169
The Worker Allocation Planning Of A Medical Device Distribution Center Using Simulation Modelling	
Kittikhun lamsamai, Thananya Wasusri	176
Simulation Of A Queueing Model Useful In Crowdsourcing	
Srinivas R. Chakravarthy, Serife Ozkar	183
3D Simulation Modeling Of Apron Operation In A Container Terminal	
Jingjing Yu, Guolei Tang, Da Li, Baoying Mu	190
Container Terminals Capacity Evaluation Considering Port Service Level Based On Simulation	
Ningning Li, Jingjing Yu, Guolei Tang, Da Li, Yong Zhang	197
Hybrid Flow Shop Scheduling Of Automotive Parts	
Tuanjai Somboonwiwat, Chatkaew Ratcharak, Tuangyot Supeekit	204
Integrated Modelling Of Complex Processes On Basis Of BPMN	
Semyon A. Potryasaev	209

Modelling And Simulation Of Public Transport Safety And Scheduling Algorithm	
Anna Beinarovica, Mikhail Gorobetz, Anatoly Levchenkov21	5
A Design Pattern For Modelling And Simulation In Hospital Pharmacy Management	
Wirachchaya Chanpuypetch, Duangpun Kritchanchai22	2
Discrete Event Simulation – Production Model In SIMUL8	
Jakub Fousek, Martina Kuncova, Jan Fabry22	9
Context-Aware Multi-Objective Vehicle Routing	
Janis Grabis, Vineta Minkevica23	5
A Simulation Optimization Tool For The Metal Accessory Suppliers In The Fashion Industry: A Case Study	
Virginia Fani, Romeo Bandinelli, Rinaldo Rinaldi24	0
An Optimization Of Spray Coating Process To Minimize Coating Material Consumption	
Nitchakan Somboonwiwat, Suksan Prombanpong24	7
Simulation of Intelligent Systems	
On The Effect Of Neighborhood Schemes And Cell Shape On The Behaviour Of Cellular Automata Applied To The Simulation Of Submarine Groundwater Discharge	
Christoph Tholen, Lars Nolle, Oliver Zielinski25	5
Application Of Genetic Optimization Algorithms To Lumped Circuit Modelling Of Coupled Planar Coils	
Jens Werner, Lars Nolle, Jennifer Schuett26	2
Automatic Beam Hardening Correction For CT Reconstruction	
Marina Chukalina, Anastasia Ingacheva, Alexey Buzmakov, Igor Polyakov, Andrey Gladkov, Ivan Yakimchuk, Dmitry P. Nikolaev27	0
An Intelligent Winch Prototyping Tool	
Robin T. Bye, Ottar L. Osen, Webjoern Rekdalsbakken, Birger Skogeng Pedersen, Ibrahim A. Hameed	_' ۾

Russian License Plate Segmentation Based On Dynamic Time Warping
Mikhail A. Povolotskiy, Elena G. Kuznetsova, Timur M. Khanipov285
Evolutionary Winch Design Using An Online Winch Prototyping Tool
Ibrahim A. Hameed, Robin T. Bye, Birger Skogeng Pedersen, Ottar L. Osen292
SHADE Mutation Strategy Analysis Via Dynamic Simulation In Complex Network
Adam Viktorin, Roman Senkerik, Michal Pluhacek, Tomas Kadavy299
Uncovering Communication Density In PSO Using Complex Network
Michal Pluhacek, Roman Senkerik, Adam Viktorin, Tomas Kadavy306
Firework Algorithm Dynamics Simulated And Analyzed With The Aid Of Complex Network
Tomas Kadavy, Michal Pluhacek, Adam Viktorin, Roman Senkerik313
Simulation Of Chaotic Dynamics For Chaos Based Optimization – An Extended Study
Roman Senkerik, Michal Pluhacek, Adam Viktorin, Zuzana Kominkova Oplatkova, Tomas Kadavy319
Different Approaches For Constant Estimation In Analytic Programming
Zuzana Kominkova Oplatkova, Adam Viktorin, Roman Senkerik, Tomas Urbanek326

Modelling, Simulation and Control of Technological Processes

Modeling Of Continuous Ethanol Fermentation In Ideal Mixing Column Bioreactor	
Ivan Petelkov, Rositsa Denkova, Vesela Shopska, Georgi Kostov, Zapryana Denkova, Bogdan Goranov, Vasil Iliev	335
Predictive Control Of Two-Input Two-Output System With Non-Minimum Phase	
Marek Kubalcik, Vladimir Bobal, Tomas Barot	342
Verification Of Robust Properties Of Digital Control Closed-Loop Systems	
Vladimir Bobal, Lubos Spacek, Peter Hornak	348
Modeling Of Corn Ears By Discrete Element Method (DEM)	
Adam Kovacs, Gyoergy Kerenyi	355
Optimal Control With Disturbance Estimation	
Frantisek Dusek, Daniel Honc, Rahul Sharma K	362
Modelling And Model Predictive Control Of Magnetic Levitation Laboratory Plant	
Petr Chalupa, Jakub Novak, Martin Maly	367
Predictive Control Of A Series Of Multiple Liquid Tanks Substituted By A Single Dynamics With Time-Delay	
Stanislav Talas, Vladimir Bobal, Adam Krhovjak, Lukas Rusar	374
Compensation Of Valve Deadzone Using Mixed Integer Predictive Control	
Jakub Novak, Petr Chalupa	379
State-Space Predictive Control Of Inverted Pendulum Model	
Lukas Rusar, Adam Krhovjak, Stanislav Talas, Vladimir Bobal	384
1DOF Gain Scheduled PH Control Of CSTR	
Adam Krhovjak, Stanislav Talas, Lukas Rusar	391
Design Of A Simple Bandpass Filter Of A Third Octave Equalizer	
Martin Pospisilik	397

LQ Digital Control Of Ball & Plate System	
Lubos Spacek, Vladimir Bobal, Jiri Vojtesek	403
An Embedded System Implementation Of A Predictive Algorithm For A Bioprocess	
Florin Stinga, Marius Marian, Valentin Kese, Lucian Barbulescu, Emil Petre	409
Wireless Radiation Monitoring System	
Camelia Avram, Silviu Folea, Dan Radu, Adina Astilean	416
SIMTONIA – A Framework Of SIMulation TOols For Nuclear Industrial Applications	
Jozsef Pales, Aron Vecsi, Gabor Hazi	423
Nuclear Industrial Applications Of SIMTONIA	
Jozsef Pales, Aron Vecsi, Gabor Hazi	429
CAE/VR Integration – A Path To Follow? A Validation Based On Industrial Use	
Holger Graf, Andre Stork	436
Simulation Study Of 1DOF Hybrid Adaptive Control Applied On Isothermal Continuous Stirred-Tank Reactor	
Jiri Vojtesek, Lubos Spacek, Petr Dostal	446
Teaching Process Modelling And Simulation At Tomas Bata University In Zli Using MATLAB And Simulink	n
Frantisek Gazdos	453
Biometric Identification Of Persons	
Milan Adamek, Petr Neumann, Dora Lapkova, Martin Pospisilik,	
Miroslav Matysek	460

Simulation and Optimization

Application Of Two Phase Multi-Objective Optimization To Design Of Biosensors Utilizing Cyclic Substrate Conversion	
Linas Litvinas, Romas Baronas, Antanas Zilinskas	469
Evidence Of The Relevance Of Master Production Scheduling For Hierarchical Production Planning	
Thorsten Vitzthum, Frank Herrmann	475
Influence Of Random Orders On The Bullwhip Effect	
Hans-Peter Barbey	482
A Discrete Element Model For Agricultural Decision Support	
Adam Kovacs, Janos Peter Radics, Gyoergy Kerenyi	488
Integrated Optimization Of Transportation And Supply Concepts In The Automotive Industry	
Corinna Maas, Andreas Tisch, Carsten Intra, Johannes Fottner	495
Modeling And Simulation Of Cooperation And Learning In Cyber Security Defense Teams	
Pasquale Legato, Rina Mary Mazza	502
Numerical Discrete Element Simulation Of Soil Direct Shear Test	
Krisztian Kotrocz, Gyoergy Kerenyi	510
Modelling Preference Ties And Equal Treatment Policy	
Kolos Cs. Agoston, Peter Biro	516
Calibration Of Railway Ballast DEM Model	
Akos Orosz, Janos Peter Radics, Kornel Tamas	523
Backbone Strategy For Unconstrained Continuous Optimization	
Michael Feldmeier, Thomas Husslein	529
Generation Algorithms Of Fast Generalized Hough Transform	
Egor I. Ershov, Evgeny A. Shvets, Timur M. Khanipov,	
Dmitry P. Nikolaev	534

High Performance Modelling and Simulation

Modelling and Simulation of Data Intensive Systems - Special Session -

Computer Intensive Vs. Heuristic Methods In Automated Design Of Elevator Systems
Leopoldo Annunziata, Marco Menapace, Armando Tacchella54
Extension Of Bank Application Scoring Model With Big Data Analysis
Laszlo Madar55
Improving Message Delivery In Vehicular Ad-Hoc Networks
Nnamdi Anyameluhor, Evtim Peytchev, Javad Akhlaghinia55
Supporting Pension Pre-Calculation With Dynamic Microsimulation Technologies
David Burka, Laszlo Mohacsi, Jozsef Csicsman, Benjamin Soos56
Data Fusion In Cloud Computing: Big Data Approach
Piotr Szuster, Jose M. Molina, Jesus Garcia-Herrero, Joanna Kolodziej56
Profiling And Rating Prediction From Multi-Criteria Crowd-Sourced Hotel Ratings
Fatima Leal, Horacio Gonzalez–Velez, Benedita Malheiro, Juan Carlos Burguillo57
Security Supportive Energy Aware Scheduling And Scaling For Cloud Environments
Agnieszka Jakobik, Daniel Grzonka, Joanna Kolodziej58
A Low-cost Distributed IoT-based Augmented Reality Interactive Simulator For Team Training
Pietro Piazzolla, Marco Gribaudo, Simone Colombo, Davide Manca, Mauro Iacono59
Performance Evaluation Of Massively Distributed Microservices Based Applications
Marco Gribaudo, Mauro Iacono, Daniele Manini59
Modeling A Session-Based Bots' Arrival Process At A Web Server
Grazyna Suchacka, Daria Wotzka60

Probability and Statistical Methods for Modelling and Simulation of High Performance Information Systems - Special Session -

Modelling Of The Underwater Targets Tracking With The Aid Of Pseudomeasurements Kalman Filter	
Alexander B. Miller, Boris M. Miller	615
Approaches To Stochastic Modeling Of Wind Turbines	
Migran N. Gevorkyan, Anastasiya V. Demidova, Ivan S. Zaryadov, Robert A. Sobolewski, Anna V. Korolkova, Dmitry S. Kulyabov, Leonid A. Sevastianov	622
Bounds For Markovian Queues With Possible Catastrophes	
Alexander Zeifman, Anna Korotysheva, Yacov Satin, Ksenia Kiseleva, Victor Korolev, Sergey Shorgin	628
Two-Sided Truncations For The Mt/Mt/S Queueing Model	
Yacov Satin, Anna Korotysheva, Galina Shilova, Alexander Sipin, Elena Fokicheva, Ksenia Kiseleva, Alexander Zeifman, Victor Korolev, Sergey Shorgin	635
Generalized Gamma Distributions As Mixed Exponential Laws And Related Limit Theorems	
Victor Korolev, Andrey Gorshenin, Alexander Korchagin, Alexander Zeifman	642
System Performance Of A Variable-Capacity Batch-Service Queue With Geometric Service Times And Customer-Based Correlation	
Jens Baetens, Bart Steyaert, Dieter Claeys, Herwig Bruneel	649
Modelling For Ensuring Information Security Of The Distributed Information Systems	
Alexander A. Grusho, Elena E. Timonina, Sergey Shorgin	656
On Asymptotic Approximations To The Distributions Of Statistics Constr From Samples With Random Sizes	ucted
Vladimir Bening, Victor Korolev, Alexander Zeifman	661
Using Inter-Arrival Times For Scheduling In Non-Observable Queues	
Mikhail Konovalov, Rostislav Razumchik	667

Infinite-Server Queueing Tandem With MMPP Arrivals And Random Capacity Of Customers	
Alexander Moiseev, Svetlana Moiseeva, Ekaterina Lisovskaya	673
Analysis Of Unreliable Multi-Server Queueing System With Breakdowns Spread And Quarantine	
Alexander Dudin, Sergei Dudin, Olga Dudina, Konstantin Samouylov	680
Asymptotic Analysis Of Markovian Retrial Queue With Two-Way Communication Under Low Rate Of Retrials Condition	
Anatoly Nazarov, Svetlana Paul, Irina Gudkova	687
Modelling Of Vertical Handover From Untrusted WLAN Network To LTE	
Alexander Grebeshkov, Elvira Zaripova, Alexander Roslyakov, Konstantin Samouylov	694
Modeling And Simulation Of Reliability Function Of A Homogeneous Hot Double Redundant Repairable System	
Vladimir Rykov, Dmitry Kozyrev, Elvira Zaripova	701
Modelling And Response Time Analysis For Web Browsing Under Interruptions In LTE Network	
Evgeny Mokrov, Eduard Sopin, Ekaterina Markova, Dmitry Poluektov, Irina Gudkova, Pavel Masek, Jiri Hosek	706
On An Exact Solution Of The Rate Matrix Of Quasi-Birth-Death Process With Small Number Of Phases	
Rama Murthy Garimella, Alexander Rumyantsev	713
SIR Distribution In D2D Environment With Non-Stationary Mobility Of Users	
Sergey Fedorov, Yurii Orlov, Andrey Samuylov, Dmitri Moltchanov, Yuliya Gaidamaka, Konstantin Samouylov, Sergey Shorgin	720
Time-Dependent SIR Modeling For D2D Communications In Indoor Deployments	
Yurii Orlov, Dmitry Zenyuk, Andrey Samuylov, Dmitri Moltchanov, Sergey Andreev, Oxana Romashkova, Yuliya Gaidamaka, Konstantin Samouylov	726
,	
Author Index	733

APPROACHES TO STOCHASTIC MODELING OF WIND TURBINES

Migran N. Gevorkyan, Anastasiya V. Demidova Department of Applied Probability and Informatics, **RUDN** University (Peoples' Friendship University of Russia),

6 Miklukho-Maklaya str., Moscow, 117198, Russia Email: gevorkyan_mn@rudn.university, demidova_av@rudn.university

Robert A. Sobolewski Department of Power Engineering, Fotonics and Lighting Technology, Bialystok University of Technology, 45D Wiejska str., 15-351 Bialystok, Poland Email: r.sobolewski@pb.edu.pl Dmitry S. Kulyabov

Department of Applied Probability and Informatics, Department of Applied Probability and Informatics, **RUDN** University

(Peoples' Friendship University of Russia), 6 Miklukho-Maklaya str., Moscow, 117198, Russia and Laboratory of Information Technologies Joint Institute for Nuclear Research 6 Joliot-Curie, Dubna, Moscow region, 141980, Russia Email: kulyabov_ds@rudn.university

Ivan S. Zaryadov Department of Applied Probability and Informatics, **RUDN** University

(Peoples' Friendship University of Russia), 6 Miklukho-Maklaya str., Moscow, 117198, Russia and Institute of Informatics Problems, FRC CSC RAS, IPI FRC CSC RAS,

44-2 Vavilova str., Moscow, 119333, Russia Email: zaryadov_is@rudn.university

Anna V. Korolkova

Department of Applied Probability and Informatics, **RUDN** University

(Peoples' Friendship University of Russia), 6 Miklukho-Maklaya str., Moscow, 117198, Russia Email: korolkova av@rudn.university Leonid A. Sevastianov

RUDN University

(Peoples' Friendship University of Russia), 6 Miklukho-Maklaya str., Moscow, 117198, Russia and Bogoliubov Laboratory of Theoretical Physics Joint Institute for Nuclear Research 6 Joliot-Curie, Dubna, Moscow region, 141980, Russia Email: sevastianov_la@rudn.university

KEYWORDS

Weibull distribution, approximation, lognormal distribution, gamma distribution, beta distribution, wind speed, statistics

ABSTRACT

Background. This paper study statistical data gathered from wind turbines located on the territory of the Republic of Poland. The research is aimed to construct the stochastic model that predicts the change of wind speed with time. Purpose. The purpose of this work is to find the optimal distribution for the approximation of available statistical data on wind speed. Methods. We consider four distributions of a random variable: Log-Normal, Weibull, Gamma and Beta. In order to evaluate the parameters of distributions we use method of maximum likelihood. To assess the the results of approximation we use a quantile-quantile plot. Results. All the considered distributions properly approximate the available data. The Weibull distribution shows the best results for the extreme values of the wind speed. Conclusions. The results of the analysis are consistent with the common practice of using the Weibull distribution for wind speed modeling. In the future we plan to compare the results obtained with a much larger data set as well as to build a stochastic model of the evolution of the wind speed depending on time.

INTRODUCTION

This work is devoted to the problem of stochastic modeling of speed of wind, which is used to generate electrical power in wind plants located on the territory of the Republic of Poland. As a first step several distributions for accuracy of the wind speed approximation will be examined. For this purpose Lognormal, Weibull, Gamma and Beta are chosen. All these distributions have shape-location-scale parametrisation. For statistical data processing the authors used Python 3 with numpy, scipy.stats (see Jones et al. (2001)) and matplotlib (see Droettboom et al. (2017)) libraries and also Jupyter (see Project Jupyter home (2017))—an interactive shell. We used books (see Norman L. Johnson (1994, 1995); Nelson (1982)) as reference materials for distributions properties. Articles (see Frchet (1927); Weibull (1951)) are the primary sources in which the Weibull distribution is presented for the first time. Articles (see Lun and Lam (2000); Seguro and Lambert (2000); Bowden et al. (1983); Yeh and Wang (2008); Islam et al. (2011); Garcia et al. (1998)) describe the use of the Weibull distribution in the modeling of wind turbines and wind speed.

THE DESCRIPTION OF THE STATISTICAL DATA STRUCTURE

The set of statistical data is stored in the file csv consisting of the following columns:

- T time of fixation of wind speed and direction by sensors installed on the wind power turbine (hh:mm format);
- X₁ output power of wind turbine [kW] (the negative values mean the power is consumed rather then generated);
- 3) X_2 wind speed [m/s] (measured by an emometer installed at the top of wind turbine nacelle);
- 4) X₃ wind direction [deg] (measured by anemometer installed at the top of wind turbine nacelle; measured clockwise, the value 0 to the N):
- 5) X_4 wind speed 10 m [m/s] obtained at 10 m above the ground m;
- 6) X₅ wind direction 10 m [deg] (obtained at 10 m above the ground; measured clockwise, the value from 0 to the N);
- 7) X_6 wind speed 50 m [m/s] (obtained at 50 m above the ground);
- 8) X_7 wind direction 50 m [deg] (obtained at 50 m above the ground; measured clockwise, the value from 0 to the N).

The indicators of wind speed and direction were read out from the sensors every 10 minutes for about 9 months. In total, the table contains 39606 entries.

To make an initial choice of distributions that may be suitable for wind speed approximation, the histograms of wind speed are drawn. Visual assessment of these histograms suggest that the adequate choice will be a "heavy-tailed" distribution. But for the wind direction approximation these distributions are not suitable, as can be seen from the figure 1.

To read out the data we used the function genfromtxt from numpy (see Jones et al. (2001)) lib:

where 'data.csv' is data file, delimiter=';' is columns separator, skip_header = True specifies ignoring of the first line as the names of the columns, usecols=(2, 4, 6) makes function to use only 2, 4, 6 columns (numbering begins with zero) and unpack=True — contents of each column should be

Fig. 1. Histogram of wind direction at three levels of height

written in separate arrays ws1, ws2 and ws3 for further analysis of the data separately.

PROBABILITY DISTRIBUTIONS

Each of distributions is parameterized by three parameters: α — shape factor, l — location factor and s — scale factor. In the case of the beta distribution the second scale factor is added, denoted by β -letter. All distributions parameters are positive real numbers: $\alpha, \beta, s, l \in \mathbb{R}, \alpha, \beta, s > 0, l \geqslant 0$.

The probability density function (PDF) of a Log-Normal random variable \boldsymbol{X} is:

$$f_{LN}(x; \alpha, l, s) = \begin{cases} \frac{1}{(x - l)\alpha\sqrt{2\pi}} \\ \cdot \exp\left(-\frac{1}{2}\left(\frac{\ln(x - l) - \ln s}{\alpha}\right)^{2}\right), & x \geqslant l. \\ 0, & x < l. \end{cases}$$

The probability density function of a Weibull (see Frchet (1927); Weibull (1951)) random variable X is:

$$f_W(x; \alpha, l, s) = \begin{cases} \frac{\alpha}{s} \left(\frac{x-l}{s}\right)^{\alpha-1} \exp\left[-\left(\frac{x-l}{s}\right)^{\alpha}\right], & x \geqslant l, \\ 0, & x < l. \end{cases}$$

The probability density function of a Gamma random variable X is:

$$f_{\Gamma}(x; \alpha, l, s) = \begin{cases} \frac{(x - l)^{\alpha - 1} \exp\left(-\frac{(x - l)}{s}\right)}{s^{\alpha} \Gamma(\alpha)}, & x \geqslant l, \\ 0, & x < l. \end{cases}$$

where $\Gamma(\alpha)$ is gamma-function.

The probability density function of a Beta random variable X is:

$$f_{\mathcal{B}}(x;\alpha,\beta,l,s) = \begin{cases} \frac{\Gamma(\alpha+\beta)}{s\Gamma(\alpha)\Gamma(\beta)} \left(\frac{x-l}{s}\right)^{\alpha-1} \left(1 - \frac{x-l}{s}\right)^{\beta-1}, & x \geqslant l, \\ 0, & x < l. \end{cases}$$

If in PDF formulas of Log-Normal, Weibull and Gamma distributions let l=0, and for Beta distribution let s=1, we get the formulas of distributions most frequently used in Norman L. Johnson (1994); Nelson (1982).

DETERMINATION OF DISTRIBUTIONS PARAMETERS

In scipy.stats (see Jones et al. (2001)) following objects are defined: lognorm, weibull_min, gamma and beta. These objects implement distributions we work with. Every one of these objects has PDF function pdf(x, a, [b,] loc, scale) and CDF (cumulative distribution) function cdf(x, a, [b,] loc, scale), where x — function argument, a, b — shape parameters α , (and β for Beta-distribution), loc and scale are location and scale parameters.

For parameters estimation of our distributions the library scipy.stats provides the function fit(data), which calculates the parameters of distributions by maximum likelihood method and the empirical data. We used this function to calculate parameters of the considered distributions. Then we used pdf and cdf functions to compute values of the probability density function and cumulative distribution function.

There is the example of the code for the case of Log-Normal distribution:

```
s, loc, scale =
    scipy.stats.lognorm.fit(ws1)

xs = np.linspace(np.min(ws1),
    np.max(ws1), 1000)

logN_PDF =
    scipy.stats.lognorm.pdf(xs, s,
    loc, scale)

logN_CDF =
    scipy.stats.lognorm.cdf(xs, s,
    loc, scale)
```

The results are presented graphically on figures 2–9.

The figures were plotted for theoretical distributions, the parameters of which have been determined on the basis of the entire dataset. From the analysis of the quantile-quantile plots (Q-Q plots) we can conclude that the Weibull distribution is best suited for approximation of available data (although only slightly), outmatching them only in the approximation of extreme values of a random variable.

We also performed computations with the considered distributions parameterized by only two parameters

Fig. 2. PDF of **Log-Normal** distribution compared with data histogram

Fig. 3. CDF of **Log-Normal** distribution compared with empirical distribution function

Fig. 4. PDF of Weibull distribution compared with data histogram

Fig. 5. CDF of Weibull distribution compared with empirical distribution function

(let l=0, and for Beta distribution an addition let s=1). After plotting the results of calculations we found out that the two-parameter Weibull distribution has superiority over other two-parameters distributions (Log-Normal, Gamma and Beta), which is not true for

Fig. 6. PDF of Gamma distribution compared with data histogram

Fig. 7. CDF of Gamma distribution compared with empirical distribution function

Fig. 8. PDF of Beta distribution compared with data histograms

Fig. 9. CDF of **Beta** distribution compared with empirical distribution function

three-parameter case (Fig. 10-13).

CONCLUSIONS

The results of statistical data processing correspond to the results presented in the literature, where Weibull distribution is the most often used distribution for the

Fig. 10. Q-Q plot for LogNormal distribution

Fig. 11. Q-Q plot for Weibull distribution

wind speed approximation (see Lun and Lam (2000); Seguro and Lambert (2000); Bowden et al. (1983); Yeh and Wang (2008); Islam et al. (2011); Garcia et al. (1998)).

Our future work will be aimed at the construction of stochastic models that can approximate the wind speed depending on time (see Miano and Milano (2015)). On the other hand, we expect to verify the results of this work by using more dilated and large data array.

ACKNOWLEDGMENT

The work is partially supported by RFBR grants No's 15-07-08795 and 16-07-00556. Also the publication was supported by the Ministry of Education

Fig. 12. Q-Q plot for Gamma distribution

Fig. 13. Q-Q plot for Beta distribution

and Science of the Russian Federation (the Agreement No 02.a03.21.0008). The computations were carried out on the Felix computational cluster (RUDN University, Moscow, Russia) and on the HybriLIT heterogeneous cluster (Multifunctional center for data storage, processing, and analysis at the Joint Institute for Nuclear Research, Dubna, Russia).

REFERENCES

Bowden, G. J., Barker, P. R., Shestopal, V. O. and Twidell, J. W. (1983), The weibull distribution function and wind power statistics, *Wind Engineering* 7, 85–98. Provided by the SAO/NASA Astrophysics Data System.

Droettboom, M., Caswell, T. A., Hunter, J., Firing, E., Nielsen, J. H., Root, B., Elson, P., Dale, D., Lee, J.-J., Varoquaux, N., Seppnen, J. K., McDougall, D., May, R., Straw, A., de Andrade, E. S., Lee, A., Yu, T. S., Ma, E., Gohlke, C., Silvester, S., Moad, C., Hobson, P., Schulz, J., Wrtz, P., Ariza, F., Cimarron, Hisch, T., Kniazev, N., Vincent, A. F. and Thomas, I. (2017), matplotlib/matplotlib: v2.0.0. https://doi.org/10.5281/zenodo.248351

Frchet, M. R. (1927), Sur la loi de probabilit de l'cart maximum, *Annales de la Socit Polonaise de Mathematique* pp. 93–116.

Garcia, A., Torres, J., Prieto, E. and de Francisco, A. (1998), Fitting wind speed distributions: a case study, *Solar Energy* 62(2), 139–144.

Islam, M., Saidur, R. and Rahim, N. (2011), Assessment of wind energy potentiality at kudat and labuan, malaysia using weibull distribution function, *Energy* 36(2), 985–992.

Jones, E., Oliphant, T., Peterson, P. et al. (2001), SciPy: Open source scientific tools for Python. [Online; accessed 19.01.2017]. http://www.scipy.org/

Lun, I. Y. and Lam, J. C. (2000), A study of weibull parameters using long-term wind observations, *Re-newable Energy* 20(2), 145–153.

Miano, R. Z. and Milano, F. (2015), Construction of sde-based wind speed models with exponential auto-correlation.

Nelson, W. B. (1982), Applied Life Data Analysis (Wiley Series in Probability and Statistics).

Norman L. Johnson, Samuel Kotz, N. B. (1994), *Continuous Univariate Distributions*, Vol. 1 of *Wiley Series in Probability and Statistics*, Wiley-Interscience.

Norman L. Johnson, Samuel Kotz, N. B. (1995), Continuous Univariate Distributions, Vol. 2, Vol. 2 of Wiley Series in Probability and Statistics, Wiley-Interscience.

Project Jupyter home (2017). [Online; accessed 19.01.2017]. https://jupyter.org

Seguro, J. and Lambert, T. (2000), Modern estimation of the parameters of the weibull wind speed distribution for wind energy analysis, *Journal of Wind Engineering and Industrial Aerodynamics* 85(1), 75–84.

Weibull, W. (1951), A statistical distribution function of wide applicability, *Journal of Applied Mechanics* pp. 293–297.

Yeh, T. H. and Wang, L. (2008), A study on generator capacity for wind turbines under various tower heights and rated wind speeds using weibull distribution, *IEEE Transactions on Energy Conversion* 23(2), 592–602.

AUTHOR BIOGRAPHIES

MIGRAN N. GEVORKYAN received his Ph.D. in Mathematics in 2013. Since then, he has worked as associate professor in RUDN University (Peoples' Friendship University of Russia). His current research activity

focuses on mathematical modeling. His email address is gevorkyan_mn@rudn.university.

ANASTASIYA V. DEMIDOVA received her Ph.D. in Mathematics in 2014. Since then, she has worked as associate professor in RUDN University (Peoples' Friendship University of Russia). Her email address is demidova_av@rudn.university.

IVAN S. ZARYADOV received his Ph.D. in Mathematics in 2010. Since then, he has worked as associate professor in RUDN University (Peoples' Friendship University of Russia). His current research activity focuses on probability theory. His email address is zaryadov_is@rudn.university.

ROBERT A. SOBOLEWSKI He has worked in Department of Power Engineering, Fotonics and Lighting Technology in Bialystok University of Technology. His email address is r.sobolewski@pb.edu.pl.

ANNA V. KOROLKOVA received her Ph.D. in Mathematics in 2010. Since then, she has worked as associate professor in RUDN University (Peoples' Friendship University of Russia). Her current research activity focuses on mathematical modeling. Her email address is korolkova_av@rudn.university.

DMITRY S. KULYABOV received his Ph.D. in Physics in 2000. Since then, he has worked as associate professor in RUDN University (Peoples' Friendship University of Russia). His current research activity focuses on mathematical modeling. His email address is kulyabov_ds@rudn.university.

LEONID A. SEVASTIANOV received his D.Sc. in Phys.-Math. in 1999. Since then, he has worked as full professor in RUDN University (Peoples' Friendship University of Russia). His current research activity focuses on mathematical modeling. His email address is sevastianov_la@rudn.university.