CIRCLE ONE:	STA447	STA2006	Student #:	
C			Circon name (a).	
Surname:			Given name(s): $\underline{\hspace{1cm}}$	

STA 447/2006S, Winter 2008: In-Class Test

(February 28, 2008, 6:10 p.m. Time: 130 minutes.)

(Questions: 6; Pages: 6; Total points: 65.)

NO AIDS ALLOWED - NOT EVEN CALCULATORS.

1. [8 points] Let (p_{ij}) be the transition probabilities for random walk on the graph whose vertices are $V = \{1, 2, 3, 4\}$, with a single edge between each of the four pairs (1,2), (2,3), (3,1), and (3,4), and no other edges. Compute (with full explanation) $\lim_{n\to\infty} p_{13}^{(n)}$.

- **2.** Consider the Markov chain with state space $S = \{1, 2, 3\}$, and transition probabilities given by $p_{11} = 1/6$, $p_{12} = 1/3$, $p_{13} = 1/2$, $p_{22} = p_{33} = 1$, and $p_{ij} = 0$ otherwise.
- (a) [4 points] Compute (with explanation) f_{12} (i.e., the probability, starting from 1, that the chain will eventually visit 2).

(b) [3 points] Prove that $p_{12}^{(n)} \ge 1/3$, for any positive integer n.

(c) [2 points] Compute $\sum_{n=1}^{\infty} p_{12}^{(n)}$.

(d) [3 points] Relate the answers in parts (a) and (c) to theorems from class about when $f_{ij} = 1$ and when $\sum_{n=1}^{\infty} p_{ij}^{(n)} = \infty$.

- **3.** Let $S=\mathbf{Z}$ (the set of all integers), and let $h:S\to [0,1]$ with $\sum_{i\in S}h(i)=1$. Consider the transition probabilities on S given by $p_{ij}=(1/4)\min(1,\,h(j)/h(i))$ if j=i-2,i-1,i+1, or i+2, and $p_{ii}=1-p_{i,i-2}-p_{i,i-1}-p_{i,i+1}-p_{i,i+2}$, and $p_{ij}=0$ whenever $|j-i|\geq 3$.
- (a) [10 points] Assuming that h(i) > 0 for all i, prove that $\lim_{n\to\infty} p_{ij}^{(n)} = h(j)$ for all $i, j \in S$. (Carefully justify each step.)

(b) [5 points] Show by example that part (a) might be false if we do not assume that h(i) > 0 for all i. [For definiteness, we take $\min(1, h(j)/h(i)) \equiv 1$ whenever h(i) = 0.]

- **4.** Consider a Markov chain $\{X_n\}$ with state space $S=\{1,2,3,4,5\}, X_0=4$, and transition probabilities specified by $p_{11}=p_{55}=1, p_{21}=5/7, p_{24}=p_{25}=1/7, p_{31}=p_{32}=p_{33}=p_{34}=p_{35}=1/5,$ and $p_{43}=p_{45}=1/2.$ Let $T=\min\{n\geq 1: X_n=1 \text{ or } 5\}.$
- (a) [8 points] Determine (with full explanation) whether or not $\{X_n\}$ is a martingale.

(b) [4 points] Compute $P(X_T = 5)$. [Hint: part (a) might help.]

- **5.** Consider a Markov chain $\{X_n\}$ on the state space $S = \{0, 1, 2, 3, \ldots\}$, with $X_0 = 100$, and $p_{ij} = 1/(2i+1)$ if $0 \le j \le 2i$, otherwise $p_{ij} = 0$.
- (a) [5 points] Prove that $\{X_n\}$ is a martingale. (You may assume without proof that $\mathbf{E}|X_n|<\infty$ for all n.)

(b) [5 points] Prove that $\mathbf{P}(\exists n \geq 1 : X_n = 1000) < 1/6$. [Hint: the martingale maximal inequality might help.]

C	$T \rightarrow (M(4))$	L D.:			Ω
υ.	Let $\{N(t)\}_{t>0}$	be a roisson	process with	rate \wedge	U.

(a) [6 points] Compute the conditional probability $q_{\lambda} \equiv \mathbf{P}(N(4) = 1 \mid N(5) = 3)$.

(b) [2 points] Compute $q_{2\lambda}/q_{\lambda}$. (That is, determine the fraction by which the probability in part (a) changes if we replace λ by 2λ .)

[END]