# Lindblad

Projekt

nature 12016

Sander Stammbach Prof. Patrick Plotts 12 Oktober 2021

## Contents

| 1 | Introduction             | 2             |
|---|--------------------------|---------------|
| 2 | <b>Theory</b> 2.1 Model  | <b>2</b><br>2 |
| 3 | Calculation 3.1 Software | <b>4</b><br>4 |

### 1 Introduction

The most important question in thermodynamics is, how to convert thermal energy into work. For such tasks it exist many classical engines, as example the steam-machine. To quantify heat-engines, its commen to look at the ergotropy. In my master-project I will quantify the a three level maser. The three-level maser is a Quantum heat engine (short: QHE). The work extraction from a classicle heat engine is a moving piston. But in this case it is a driving field.. Experimentally we need two different reservoir. The high-temperature reservoir can be realized by a gas noise lamp and the filter by a wave guide cutting off the lower frequencies.

### 2 Theory

#### 2.1 Model

The efficiency is given by the formula:

$$\eta_M = \frac{\nu_s}{\nu_p} \tag{1}$$

The master equation is:

$$\dot{\rho}(t) = \frac{1}{i\hbar}[H, \rho] + \mathcal{L}\rho \tag{2}$$

The first part is the vonNeuman equation. The von Neuman equation is the analog of the Schrödinger-equation but for density matrices. This part of the equation is unitary and therefore the process is reversible. The non-unitary part of the equation  $\mathcal{L}$  have three parts.  $\mathcal{L}_h$  describe the interaction with the hot bath.  $\mathcal{L}_c$  Describe the interaction with the cold bath.  $\mathcal{L}_{cav}$  Describe the Photons which leaves the cavity. so if we have a small  $\kappa$  means less photons will leave and stay in the cavity. we see that in the Fockplott.

The interaction Hamiltonian or Jaynes-Cummings Hamiltonian is:

$$H_{int} = \hbar g(\sigma_{12}a^{\dagger} + \sigma_{21}a) \tag{3}$$

The Hamiltonian of the photons is, which describes the phonons in the cavity:

$$H_{free} = \sum_{i=1}^{3} \hbar \omega_i |i\rangle \langle i| + \hbar \omega_f a^{\dagger} a \tag{4}$$

The total Hamiltonian

$$H = H_{free} + H_{int} \tag{5}$$

The interaction with the various environmental heat baths is described by the Liouvillian:

$$\mathcal{L}\hat{\rho} = \frac{\gamma_h}{2} \left[ \frac{1}{\exp\left[\frac{\hbar\omega_h}{k_b T_h}\right] - 1} + 1 \right] \cdot \left( 2\sigma_{13} \cdot \rho \cdot \sigma_{13}^{\dagger} - \sigma_{13}^{\dagger}\sigma_{13}\rho - \rho\sigma_{13}^{\dagger}\sigma_{13} \right)$$

$$+ \frac{\gamma_h}{2} \left[ \frac{1}{\exp\left[\frac{\hbar\omega_h}{k_b T_H}\right] - 1} \right] \cdot \left( 2\sigma_{31} \cdot \rho \cdot \sigma_{31}^{\dagger} - \sigma_{31}^{\dagger}\sigma_{31}\rho - \rho\sigma_{31}^{\dagger}\sigma_{31} \right)$$

$$+ \frac{\gamma_c}{2} \left[ \frac{1}{\exp\left[\frac{\hbar\omega_c}{k_b T_c}\right] - 1} + 1 \right] \cdot \left( 2\sigma_{23} \cdot \rho \cdot \sigma_{23}^{\dagger} - \delta_{23}^{\dagger}\sigma_{23}\rho - \rho\sigma_{23}^{\dagger}\sigma_{23} \right)$$

$$+ \frac{\gamma_c}{2} \left[ \frac{1}{\exp\left[\frac{\hbar\omega_c}{k_b T_c}\right] - 1} \right] \cdot \left( 2\sigma_{32} \cdot \rho \cdot \sigma_{32}^{\dagger} - \sigma_{32}^{\dagger}\sigma_{32}\rho - \rho\sigma_{32}^{\dagger}\sigma_{32} \right)$$

$$\kappa \left[ \frac{1}{\exp\left[\frac{\hbar\omega_f}{k_b T_f}\right] - 1} + 1 \right] \cdot \left( 2a\rho a^{\dagger} - a^{\dagger}a\rho - \rho a^{\dagger}a \right)$$

$$\kappa \left[ \frac{1}{\exp\left[\frac{\hbar w_f}{k_b T_f}\right] - 1} \right] \cdot \left( 2a^{\dagger} \rho a - aa^{\dagger} \rho - \rho aa^{\dagger} \right)$$

(6)

When we work with density matrices, its commen Since we are working with density matrices here, it is easy to work with expectation values with  $< A >= Tr[A * \rho]$ .

## 3 Calculation

#### 3.1 Software

For the hole implementation of the tree-level-system in a cavity I used qutip. Qutip is library in python, which allows to solve Masterequation pretty fast.