Reconstrucción de audio a partir de MRI Proyecto SGBI

Por Pablo González Santamarta

Table of contents

01

Definición del problema

Definición de los objetivos del problema

04

Investigación

Medios por los que se han adquirido los conocimientos

02

Ideas generadas

Subdivisión del problema en tareas

05

Solución al problema

Solución final del problema

03

Objetivos de aprendizaje

Conocimientos por adquirir para solucionar el problema

06

Resultado

Resultados obtenidos

O1 Definición del problema

Definición de los objetivos del problema

Reconstrucción de audio a partir de MRI

¿Qué es un MRI?

Un MRI es una imágen médica obtenida por la técnica de Resonancia Magnética. En éste caso hablamos específicamente de MRIs del cerebro

¿Qué quiere decir reconstrucción de audio?

La idea es utilizar un MRI tomado a un sujeto mientras éste escucha un audio para reconstruir ese audio.

Si el MRI se toma mientras el sujeto escucha un ladrido, el programa debe reconstruir ese ladrido a partir del MRI

O2 Ideas Generadas

Subdivisión del problema en tareas

Representación y procesamiento del audio

Se debe representar el audio de una forma adecuado que permite extraer sus características correctamente

Representación y procesamiento de los MRI

Hay que encontrar una forma adecuada de leer y representar los datos de MRI que muestre la actividad relacionada con el audio

Reconstrucción del audio a partir de representación MRI

En lo relevante al problema:

- Programación en python
- Programación en Matlab
- Visión por computador básica
- Procesamiento de imágenes
- Deep Learning básico

Necesarios para el problema

O4 Investigación

Medios por los que se ha adquirido el conocimiento

Artículos de investigación I

- Vaswani, A., et al. (2017). Attention is all you need. Advances in neural information processing systems, 30.
 - Redes neuronales transformer, capas de atención.
- Yuan, L., et al. (2021). Tokens-to-token vit: Training vision transformers from scratch on imagenet. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 558-567).
 - Aplicación de transformadores a problemas de visión
- Huo, Y. (ed). (2021). Sec. Brain Imaging Methods. Front. Neurosci., 15 2021.
 https://doi.org/10.3389/fnins.2021.795488
 - Métodos de reconstrucción de imágenes a partir de MRI
- Ren, Z., et al. (2021). Reconstructing seen image from brain activity by visually-guided cognitive representation and adversarial learning. NeuroImage, 228, 117602.
 - Aplicación de arquitectura VAE-GAN a reconstrucción de imágenes a partir de MRI. Transfer Learning

Artículos de investigación II

- Razghandi, M., et al. (2022). Variational autoencoder generative adversarial network for Synthetic Data Generation in smart home. In ICC 2022-IEEE International Conference on Communications (pp. 4781-4786).
 - Arquitectura VAE-GAN y usos.
- Oord, A. V. D., Vinyals, O., & Kavukcuoglu, K. (2017). *Neural discrete representation learning*. arXiv preprint arXiv:1711.00937.
 - Extensión de la arquitectura VAE usando Cuantización Vectorial
- lashin, V., et al. (2021). Taming visually guided sound generation. arXiv preprint arXiv:2110.08791.
 - Aplicación de la arquitectura VQ-GAN a la generación de audio

O5 Solución del problema

Solución final al problema

Herramientas utilizadas

Google Colab

Programación en python utilizando cuadernos y ejecución cloud en una T4

Librería con la que he desarrollado la arquitectura y el entrenamiento

OpenNeuro

Repositorio de datos experimentales de neurología

Dataset utilizado

Michelle Moerel and Essa Yacoub (2023). *High-res gradient echo EPI and 3D GRASE data of auditory cortex*. OpenNeuro. [Dataset] doi: doi:10.18112/openneuro.ds004814.v1.0.0

Sujetos

Es dataset está compuesto de MRIs de 6 sujetos distintos

Sonidos

Los sujetos escuchan sonidos de entre 144 sonidos naturales de 1 segundo

Experimento

En cada ejecución del experimento se toma un MRI del sujeto mientras escucha sonidos marcados por la tabla de eventos de la ejecución

Arquitectura utilizada

Entrenamiento

Fase	Encoder MRI	Encoder Audio	Codebook	Reconstructor	Discriminador
1					
2					
3					
Eval					

O6 Resultados

Resultado del proyecto

Resultados del proyecto

¿Hasta dónde he llegado?

Debido a limitaciones en mi conocimiento, el hardware que utilizo y los datos de los que dispongo, no he conseguido crear un prototipo que funcione de la solución.

Lo que he conseguido es:

- Procesar el dataset
- Implementar una arquitectura VQ-GAN
- Entrenar la fase 1

1 Problemas a solucionar

- El tamaño del espectrograma reconstruido depende del tamaño del input.
- El espectrograma reconstruido tiene pocos detalles

2 Objetivos de futuro

- Sustituir el discriminador por uno mejor
- Utilizar SPM para preprocesar los MRI.

iGracias!

¿Alguna pregunta?

pgonzs08@estudiantes.unileon.es +34 650 11 34 32