

თამაში

n ცალი პლანეტის აღმოჩენის შემდეგ, რომლებიც გადანომრილია 0-დან (n-1)-მდე, ფარაონებმა დაიწყეს მათ შორის სატრანსპორტო სისტემის აგება **ცალმხრივი ტელეპორტერების** საშუალებით. ყოველ ტელეპორტერს აქვს საწყისი და საბოლოო პლანეტა. როცა ტურისტი იყენებს ტელეპორტერს საწყის პლანეტაზე, ის ტელეპორტირდება საბოლოო პლანეტაზე. შევნიშნოთ, რომ საწყისი და საბოლოო პლანეტები ტელეპორტის დროს შეიძლება ემთხვეოდნენ ერთმანეთს. ტელეპორტერი საწყისი u პლანეტით და საბოლოო v პლანეტით აღინიშნება როგორც (u,v).

ფარაონებს სურთ, რომ წაახალისონ ტელეპორტაციის გამოყენება, ამიტომ მათ შექმნეს თამაში, რომელსაც ითამაშებენ ტურისტები სატრანსპორტო სისტემაში მოგზაურობის დროს.ტურისტს შეუძლია დაიწყოს ნებისმიერი პლანეტიდან. პლანეტები $0,1,\ldots,k-1$ $(k\leq n)$ წარმოადგენენ **სპეციალურ პლანეტებს** და თუ ტურისტი მოხვდება ასეთ პლანეტაზე, ის ჭილდოდ საფოსტო მარკას მიიღებს.

მოცემულ მომენტში ყოველი i-სთვის ($0 \le i \le k-2$), არსებობს (i,i+1) ტელეპორტერი. ამ k-1 ტელეპორტერს უწოდებენ **საწყის ტელეპორტერებს**.

ახალი ტელეპორტერები ემატება რიგრიგობით. რომელიმე მათგანის დამატების შემდეგ ტურისტმა შეიძლება მიიღოს მარკების უსასრულო რაოდენობის მიღების შესაძლებლობა. უფრო ზუსტად რომ ვთქვათ, ეს ხდება მაშინ, როცა პლანეტების $w[0],w[1],\ldots,w[t]$ თანმიმდევრობა აკმაყოფილებს შემდეგ პირობებს:

- $1 \le t$
- $0 \le w[0] \le k-1$
- w[t] = w[0]
- ullet ყოველი i $(0 \leq i \leq t-1)$, არსებობს ტელეპორტერი (w[i],w[i+1]).

მიაქციეთ ყურადღება, რომ ტურისტს შეუძლია გამოიყენოს სასტარტო ტელეპორტერები და **ნებისმიერი** ტელეპორტერი, რომელიც მოცემულ მომენტამდე იქნა დამატებული. თქვენი ამოცანაა, ყოველი ტელეპორტერის დამატების შემდეგ დაეხმაროთ ფარაონებს იმის შემოწმებაში, ხომ არ შეუძლია ტურისტს მიიღოს უსასრულო რაოდენობის მარკა.

იმპლემენტაციის დეტალები

თქვენ უნდა მოახდინოთ შემდეგი პროცედურის იმპლემენტაცია:

```
init(int n, int k)
```

- n: პლანეტების რაოდენობა.
- k: სპეციალური პლანეტების რაოდენობა.
- ეს პროცედურა გამოძახებული იქნება მხოლოდ ერთხელ, პროცედურა add_teleporter-ის ნებისმიერ გამოძახებამდე.

```
int add_teleporter(int u, int v)
```

- u და v: დამატებული ტელეპორტერის საწყისი და საბოლოო პლანეტები.
- ეს ფუნქცია გამოძახებული იქნება არაუმეტეს m-ჯერ (m-ის მნიშვნელობები იხილეთ შეზღუდვებში).
- ამ ფუნქციამ უნდა დააბრუნოს 1, თუ (u,v) ტელეპორტერის დამატების შემდეგ ტურისტს შეუძლია უსასრულო რაოდენობის მარკის მიღება. სხვა შემთხვევაში ფუნქციამ უნდა დააბრუნოს 0.
- თუ ფუნქცია დააბრუნებს 1-ს, თქვენმა პროგრამა დაასრულებს მუშაობას.

მაგალითები

მაგალითი 1

განვიხილოთ შემდეგი გამოძახება:

```
init(6, 3)
```

ამ მაგალითში მოცემულია 6 პლანეტა და 3 სპეციალური პლანეტა. $0,\ 1,\$ და 2 სპეციალური პლანეტებია. საწყისი ტელეპორტერები არის (0,1) და (1,2).

Suppose that the grader calls:

- (0) add teleporter (3, 4): თქვენ უნდა დააბრუნოთ 0.
- (1) add teleporter (5, 0): თქვენ უნდა დააბრუნოთ 0.
- (2) add teleporter (4, 5): თქვენ უნდა დააბრუნოთ 0.
- (3) add teleporter (5, 3): თქვენ უნდა დააბრუნოთ 0.
- (4) add_teleporter (1, 4): ამ მომენტიდან შესაძლებელია მივიღოთ მარკების უსასრულო რაოდენობა. მაგალითად, თუ ტურისტი დაიწყებს 0 პლანეტიდან და შემოივლის პლანეტებს $1,4,5,0,1,4,5,0,\ldots$ თანმიმდევრობით. შესაბამისად, თქვენ უნდა დააბრუნოთ 1, და თქვენი პროგრამა შეწყვეტს მუშაობას.

ქვემოთ მოცემული ნახატი აღწერს ამ მაგალითს. სპეციალური პლანეტები და სასტარტო ტელეპორტერები გამუქებულია. add_teleporter-ის მიერ დამატებული ტელეპორტერები მონიშნულია 0-დან 4-მდე, თანმიმდევრულად.

მაგალითი 2

განვიხილოთ შემდეგი გამოძახება:

```
init(4, 2)
```

ამ მაგალითში მოცემულია 4 პლანეტა და 2 სპეციალური პლანეტა. 0 და 1 სპეციალური პლანეტებია. საწყისი ტელეპორტერია (0,1).

დავუშვათ, გრადერმა მოახდინა შემდეგი გამოძახება:

• $add_teleporter(1, 1): (1,1)$ ტელეპორტერის დამატების შემდეგ შესაძლებელია მარკების უსასრულო რაოდენობის მიღებ. ტურისტი სტარტს აიღებს 1 პლანეტიდან და უსასრულო რაოდენობით შევა 1 პლანეტაზე (1,1) ტელეპორტერის საშუალებით. შესაბამისად, თქვენ უნდა დააბრუნოთ 1 და თქვენმა პროგრამამ უნდა დაასრულოს მუშაობა.

თანდართულ ფაილში არის შეტანა-გამოტანის სხვა მაგალითიც.

შეზღუდვები

- $1 \le n \le 300\,000$
- $1 \le m \le 500\,000$
- $1 \le k \le n$

add teleporter პროცედურის ყოველი გამოძახებისათვის:

- $0 \le u \le n-1$ და $0 \le v \le n-1$
- არ არსებობს ტელეპორტერი u პლანეტიდან v პლანეტამდე (u,v) ტელეპორტერის დამატებამდე.

ქვეამოცანები

- 1. (2 ქულა) n=k, $n\leq 100$, $m\leq 300$
- 2. (10 ქულა) $n \leq 100, \, m \leq 300$
- 3. (18 ქულა) $n \leq 1\,000$, $m \leq 5\,000$

- 4. (30 ქულა) $n \leq 30\,000,\, m \leq 50\,000,\, k \leq 1\,000$
- 5. (40 ქულა) დამატებითი შეზღუდვის გარეშე

სანიმუშო გრადერი

სანიმუშო გრადერი კითხულობს შესატან მონაცემებს შემდეგი ფორმატით:

- ullet სტრიქონი $1\colon\ n\ m\ k$
- ullet სტრიქონი 2+i ($0\leq i\leq m-1$): $u[i]\,v[i]$

სანიმუშო გრადერი ჭერ იძახებს <code>init-</code>ს და შემდეგ <code>add_teleporter-</code>ს, for u=u[i] და v=v[i] $i=0,1,\ldots,m-1$ -თვის თანმიმდევრულად.

მას გამოაქვს $add_teleporter-ის$ პირველი გამოძახების ინდექსი, რომელიც აბრუნებს 1-ს (მოთავსებულია 0-სა და (m-1)-ს შორის მათი ჩათვლით), ან m-ს, თუ $add_teleporter-ის$ ყველა გამოძახებამ დააბრუნა 0.

თუ $add_teleporter$ -მა დააბრუნა რაიმე მთელი რიცხვი 0-ის ან 1-ის გარდა, სანიმუშო გრადერი დაბეtდავს -1-ს და თქვენი პროგრამა შეწყვეტს მუშაობას.