

FCC PART 27 FCC PART 22H, PART 24E TEST REPORT

For

INFINIX MOBILITY LIMITED

ROOM 604 6/F SOUTH TOWER WORLD FINANCE CTR HARBOUR CITY 17 CANTON ROAD TST KL, Hong Kong

FCC ID: 2AIZN-X5516B

Report Type: **Product Type:** Original Report Mobile phone **Report Number:** RSZ190123004-00D **Report Date:** 2019-02-28 Rocky Kang Rocky Kang Reviewed By: RF Engineer **Prepared By:** Bay Area Compliance Laboratories Corp. (Shenzhen) 6/F., West Wing, Third Phase of Wanli Industrial Building, Shihua Road, Futian Free Trade Zone, Shenzhen, Guangdong, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn

Note: This report must not be used by the customer to claim product certification, approval, or endorsement by A2LA* or any agency of the Federal Government. * This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "*".

The information marked # is provided by the applicant, the laboratory is not responsible for its authenticity.

TABLE OF CONTENTS

GENERAL INFORMATION	
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
RELATED SUBMITTAL(S)/GRANT(S) TEST METHODOLOGY	
MEASUREMENT UNCERTAINTY	'۔۔۔۔۔'
TEST FACILITY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EQUIPMENT MODIFICATIONS	
SUPPORT EQUIPMENT LIST AND DETAILS	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
TEST EQUIPMENT LIST	••••••
FCC §1.1307(B) & §2.1093 - RF EXPOSURE INFORMATION	
APPLICABLE STANDARD	
TEST RESULT	
FCC §2.1047 - MODULATION CHARACTERISTIC	10
FCC § 2.1046, § 22.913 (A) & § 24.232 (C); §27.50(C) (D) (H) - RF OUTPUT POWER	1
APPLICABLE STANDARD	1
TEST PROCEDURE	
TEST DATA	
FCC §2.1049, §22.917, §22.905 & §24.238 & §27.53 - OCCUPIED BANDWIDTH	30
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	
FCC §2.1051, §22.917(A) & §24.238(A); §27.53 (H) (M) - SPURIOUS EMISSIONS AT ANTENNA TERMINALS	6
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	69
FCC § 2.1053; § 22.917 (A);§ 24.238 (A); §27.53 (H)(M) SPURIOUS RADIATED EMISSIONS	10
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	10:
FCC § 22.917 (A); § 24.238 (A); §27.53 (H)(M) - BAND EDGES	109
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	
FCC § 2.1055; § 22.355; § 24.235; §27.54 - FREQUENCY STABILITY	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	164

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Product	Mobile phone
Model	X5516B
Frequency Range	Cellular: 824-849 MHz PCS: 1850-1910 MHz WCDMA B2/LTE B2: 1850-1910 MHz WCDMA B5/LTE B5: 824-849 MHz WCDMA B4/LTE B4: 1710- 1755 MHz LTE B7: 2500-2570 MHz
Transmit Power	GSM 850 : 32.7 dBm PCS 1900: 29.1 dBm WCDMA Band 2: 22.6 dBm; WCDMA Band 4: 22.6 dBm WCDMA Band 5: 22.6 dBm LTE Band 2: 23.1 dBm; LTE Band 4: 23.1 dBm LTE Band 5: 23.3 dBm; LTE Band 7: 23.9 dBm
Modulation Technique	2G: GMSK,8PSK 3G: BPSK, QPSK, 16QAM 4G: QPSK, 16QAM
Antenna Specification	2G/3G/4G: FPC Antennas
Voltage Range	Powered: DC 3.85V by internal rechargeable Li-ion polymer battery Recharged: DC 5.0V by adapter
Date of Test	2019/01/24~2019/01/25
Sample serial number	190123004
Received date	2019/01/23
Sample/EUT Status	Good condition
Adapter information	Model: CU-52JT Input: AC 100-240V, 50/60Hz, 200mA Output: DC 5.0V, 1.2A

Objective

This test report is prepared on behalf of *INFINIX MOBILITY LIMITED* in accordance with Part 2-Subpart J, Part 22-Subpart H and Part 24-Subpart E and Part 27 of the Federal Communication Commissions rules.

The objective is to determine the compliance of the EUT with FCC rules for output power, modulation characteristic, occupied bandwidth, and spurious emission at antenna terminal, spurious radiated emission, frequency stability and band edge.

Related Submittal(s)/Grant(s)

FCC Part 15.247 DSS&DTS, and Part 15B JBP submissions with FCC ID: 2AIZN-X5516B.

Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of Federal Regulations Title 47 Part 2-Subpart J as well as the following parts:

Part 22 Subpart H - Public Mobile Services

Part 24 Subpart E - Personal Communication Services

Part 27 – Miscellaneous wireless communications services

Applicable Standards: TIA/EIA 603-D.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

Parameter		Uncertainty
Occupied Char	nnel Bandwidth	±5%
RF output power, conducted		±0.5dB
Unwanted Emission, conducted		±1.5dB
Radiated	Below 1GHz	±4.75dB
Emissions	Above 1GHz	±4.88dB
Temperature		±3°C
Supply	voltages	±0.4%

Note: Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 6/F., West Wing, Third Phase of Wanli Industrial Building, Shihua Road, Futian Free Trade Zone, Shenzhen, Guangdong, China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 342867, the FCC Designation No.: CN1221.

The test site has been registered with ISED Canada under ISED Canada Registration Number 3062B.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The EUT was configured for testing according to TIA/EIA-603-D.

The final qualification test was performed with the EUT operating at normal mode.

Equipment Modifications

No modification was made to the EUT.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
Rohde & Schwarz	Universal Radio Communication Tester	CMU200	106891
Rohde & Schwarz	Wideband Radio Communication Tester	CMW500	1201.002K50- 146520-wh

Block Diagram of Test Setup

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§ 1.1307 , §2.1093	RF Exposure (SAR)	Compliance*
\$2.1046; \$ 22.913 (a); \$ 24.232 (c); \$27.50 (d) (h)	RF Output Power	Compliance
§ 2.1047	Modulation Characteristics	Not Applicable
§ 2.1049; § 22.905; § 22.917; § 24.238; §27.53	Occupied Bandwidth	Compliance
§ 2.1051; § 22.917 (a); § 24.238 (a); §27.53 (h)(m)	Spurious Emissions at Antenna Terminal	Compliance
§ 2.1053; § 22.917 (a); § 24.238 (a); §27.53 (h)(m)	Field Strength of Spurious Radiation	Compliance
§ 22.917 (a); § 24.238 (a); §27.53 (h)(m)	Band Edge	Compliance
§ 2.1055; § 22.355; § 24.235; §27.54;	Frequency stability	Compliance

Note: * Please refer to SAR report released by BACL, report number: RSZ190123004-20

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
		Radiated Emission	on Test		
Sunol Sciences	Horn Antenna	DRH-118	A052604	2017-12-22	2020-12-21
Rohde & Schwarz	Signal Analyzer	FSEM	845987/005	2018-06-23	2019-06-23
Sunol Sciences	Broadband Antenna	JB1	A040904-1	2017-12-22	2020-12-21
COM-POWER	Pre-amplifier	PA-122	181919	2018-11-12	2019-11-12
Sonoma Instrument	Amplifier	310N	186238	2018-11-12	2019-11-12
Anritsu	Signal Generator	68369B	004114	2018-12-24	2019-12-24
Rohde & Schwarz	I EMI Test Receiver I ESCI I 101170		2019-01-11	2020-01-11	
COM-POWER	Dipole Antenna	AD-100	41000	NCR	NCR
A.H. System	Horn Antenna	SAS-200/571	135	2018-09-01	2021-08-31
UTiFLEX MICRO-C0AX	DE Coblo		MFR64639 231029-003	2018-07-11	2021-07-10
Ducommun Technologies	DE Cable 10		218124002	2018-11-12	2019-11-12
Ducommun Technologies	RF Cable	RG-214	1	2018-11-19	2019-05-21
Ducommun Technologies	$\mathbf{R} = \mathbf{R} \cdot $		2	2018-11-12	2019-11-12
Ducommun Technologies	I Horn Antenna I ARH-4773-07 I 1007776-04		1007726-04	2017-12-29	2020-12-28
Ducommun Technologies	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1007726-03	2017-12-29	2020-12-28
Heatsink Required	Amplifier	QLW-18405536-J0	15964001002	2018-11-12	2019-11-12

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
		RF Conducted	Test		
Rohde & Schwarz	Spectrum Analyzer	FSU26	200120	2018-12-24	2019-12-24
ESPEC	ESPEC Temperature & Humidity Chamber		9107726	2018-12-21	2019-12-21
Long Wei	DC Power Supply	TPR-6420D	398363	NCR	NCR
Rohde & Schwarz	Universal Radio Communication Tester	CMU200	CMU200 106891		2019-12-14
Rohde & Schwarz	Wideband Radio Communication Tester	CMW500	1201.002K50-146520- wh	2018-06-23	2019-06-23
Ducommun Technologies	RF Cable	RG-214	3	Each Time	
WEINSCHEL	3dB Attenuator	6231	666	Each Time	
Unknown	Power Splitter	1620	129	Each	Time

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §1.1307(b) & §2.1093 - RF EXPOSURE INFORMATION

Applicable Standard

FCC§1.1310 and §2.1093.

Test Result

Compliance, please refer to the SAR report: RSZ190123004-20.

FCC §2.1047 - MODULATION CHARACTERISTIC

According to FCC \S 2.1047(d), Part 22H & 24E & 27 there is no specific requirement for digital modulation, therefore modulation characteristic is not presented.

FCC § 2.1046, § 22.913 (a) & § 24.232 (c); §27.50 (d) (h) - RF OUTPUT POWER

Applicable Standard

According to FCC §2.1046 and §22.913 (a), the ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 watts.

According to FCC §2.1046 and §24.232 (C), mobile and portable stations are limited to 2 watts EIRP and the equipment must employ a means for limiting power to the minimum necessary for successful communications.

The peak-to-average power ratio (PAPR) of the transmitter output power must not exceed 13 dB.

According to §27.50(d), the maximum EIRP must not exceed 1Watts (30dBm) for 1710-1755MHz.

According to §27.50(h), the maximum EIRP must not exceed 2Watts (33dBm) for 2500-2570MHz.

Test Procedure

Conducted method:

The RF output of the transmitter was connected to the CMW500/CMU200 through sufficient attenuation.

Radiated method:

TIA 603-D section 2.2.17

Test Data

Environmental Conditions

Temperature:	25 ℃	
Relative Humidity:	50 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Jason Liu on 2019-01-25.

Conducted Power

Cellular Band (Part 22H)

Mode	Channel	Frequency (MHz)	Average Output Power (dBm)	Limit (dBm)
	128	824.2	32.56	38.45
GSM	190	836.6	32.43	38.45
	251	848.8	32.12	38.45

Mode Channel Frequency				Limit			
Wilde Chamer	(MHz)	1 slot	2 slots	3 slots	4 slots	(dBm)	
	128	824.2	31.28	30.35	28.53	27.51	38.45
GPRS	190	836.6	31.42	30.60	28.77	27.52	38.45
	251	848.8	31.52	30.80	28.92	27.58	38.45

Mada Channal		Frequency		Average Output Power (dBm)			
Mode Channel	(MHz)	1 slot	2 slots	3 slots	4 slots	(dBm)	
	128	824.2	27.20	25.36	23.43	22.41	38.45
EGPRS	190	836.6	27.72	25.69	23.73	22.78	38.45
	251	848.8	27.81	25.79	23.86	22.83	38.45

Mode	Test Condition	Test	3GPP Sub	Average Output Power (dBm)			
		Mode	Test	Low Frequency	Middle Frequency	High Frequency	
		RMC	12.2k	22.51	22.42	22.25	
		HSDPA	1	21.56	21.33	21.15	
	Normal		2	21.73	21.93	21.34	
			3	21.82	22.08	21.43	
WCDMA			4	21.74	21.96	21.35	
(Band V)		HSUPA	1	21.56	21.25	21.13	
			2	21.72	21.92	21.26	
			3	21.86	22.08	21.43	
			4	21.66	21.92	21.27	
			5	21.84	22.08	21.42	

PCS Band (Part 24E)

Mode	Channel	Frequency (MHz)	Average Output Power (dBm)	Limit (dBm)
	512	1850.2	28.62	33
GSM	661	1880.0	28.81	33
	810	1909.8	28.95	33

Mode	Channel	Frequency		Limit			
		(MHz)	1 slot	2 slots	3 slots	4 slots	(dBm)
	512	1850.2	28.37	27.60	26.06	25.01	33
GPRS	661	1880.0	28.56	27.83	26.22	25.31	33
	810	1909.8	28.51	27.89	26.45	25.39	33

Mode	Channel Frequency		Avo	Limit			
Mode	Chamiei	(MHz)	1 slot	2 slots	3 slots	4 slots	(dBm)
	512	1850.2	24.49	23.58	21.59	20.64	33
EGPRS	661	1880.0	24.69	23.80	21.95	20.95	33
	810	1909.8	25.30	24.25	22.52	21.52	33

Mode	Test	Test	3GPP Sub	Average Output Power (dBm)			
Wiode	Condition	Mode	Test	Low Frequency	Middle Frequency	High Frequency	
		RMC	12.2k	22.26	22.42	22.28	
			1	21.15	21.43	21.14	
		HSDPA	2	20.38	20.33	20.37	
			3	20.48	20.38	20.56	
WCDMA	27 1		4	20.36	20.35	20.34	
(Band II)	Normal	HSUPA	1	21.22	21.45	21.32	
			2	20.34	20.39	20.34	
			3	20.54	20.31	20.44	
			4	20.31	20.36	20.34	
			5	20.43	20.42	20.48	

AWS Band (Part 27)

Mode	Test	Test	3GPP Sub	Average Output Power (dBm)			
Wiode	Condition	Mode	Test	Low Frequency	Middle Frequency	High Frequency	
		RMC	12.2k	22.21	22.32	22.23	
			1	21.53	21.63	21.54	
		HSDPA	2	21.41	21.33	21.33	
			3	21.40	21.38	21.52	
WCDMA	37 1		4	21.33	21.35	21.37	
(Band IV)	Normal		1	20.40	20.45	20.37	
		HSUPA	2	20.34	20.33	20.34	
			3	20.54	20.32	20.47	
			4	20.31	20.39	20.32	
			5	20.43	20.42	20.42	

Peak-to-average ratio (PAR)

Cellular Band

Mode	Channel	PAR (dB)	Limit (dB)
	Low	1.20	13
GSM	Middle	1.25	13
	High	1.30	13

Mode	Channel	PAR (dB)	Limit (dB)
	Low	1.05	13
EGPRS	Middle	1.09	13
	High	1.24	13

Mode	Channel	PAR (dB)	Limit (dB)
D) (G	Low	3.59	13
RMC (BPSK)	Middle	3.61	13
(BI SIC)	High	3.82	13
HCDDA	Low	3.89	13
HSDPA (16QAM)	Middle	3.62	13
(100/11/1)	High	3.83	13
ANGLED A	Low	3.64	13
HSUPA (BPSK)	Middle	3.62	13
(BI SIK)	High	3.64	13

PCS Band

Mode	Channel	PAR (dB)	Limit (dB)
	Low	1.03	13
GSM	Middle	1.22	13
	High	1.21	13

Mode	Channel	PAR (dB)	Limit (dB)	
	Low	1.16	13	
EGPRS	Middle	1.09	13	
	High	1.23	13	

Mode	Channel	PAR (dB)	Limit (dB)
	Low	3.63	13
RMC (BPSK)	Middle	3.63	13
(Br Sik)	High	3.87 13	13
	Low	3.84	13
HSDPA (16QAM)	Middle	3.66	13
(10(211.11)	High	3.65	3.84 13 3.66 13 3.65 13
	Low	3.82	13
HSUPA (BPSK)	Middle	3.63	13
(Br Sit)	High	3.86	13

Radiated Power GSM Mode:

	Receiver	Turntable	Rx An	tenna	Substituted		ed	Absolute	Limit (dBm)	
Frequency (MHz) Reading (dBμV)	Angle Degree	Height (m)	Polar (H/V)	Level (dBm)	Cable loss (dB)	Antenna Gain (dBi)	Level (dBm)	Margin (dB)		
	ERP for Cellular Band (Part 22H), Middle Channel									
836.6	86.23	100	2.2	Н	26.9	1.90	0.0	25.00	38.45	13.45
836.6	91.08	279	2.0	V	31.1	1.90	0.0	29.20	38.45	9.25
		EII	RP for PC	S Band	(Part 24E)	, Middle	Channel			
1880.00	88.81	21	2.4	Н	18.8	1.30	9.40	26.90	33	6.10
1880.00	82.71	220	1.4	V	12.4	1.30	9.40	20.50	33	12.50

EDGE Mode:

Receiver		Turntable	Rx An	Rx Antenna		Substituted				
Frequency (MHz)	Frequency Reading Angle		Height (m)	Polar (H/V)	Level (dBm)	Cable loss (dB)	Antenna Gain (dBi)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
	ERP, Cellular Band (Part 22H), Middle Channe						Channel			
836.6	82.04	62	1.8	Н	19.6	1.9	0.0	20.10	38.45	18.35
836.6	86.17	164	2.4	V	25.7	1.9	0.0	26.20	38.45	12.25
		Е	IRP, PCS	Band (Part 24E),	Middle (Channel			
1880.00	83.65	120	1.2	Н	13.6	1.30	9.40	21.70	33	11.30
1880.00	78.42	211	2.0	V	8.2	1.30	9.40	16.30	33	16.70

WCDMA Mode:

	Receiver	Turntable	Rx An	tenna	S	Substitut	ed	Absolute			
Frequency (MHz)	Reading (dBµV)	Angle Degree	Height (m)	Polar (H/V)	Level (dBm)	Cable loss (dB)	Antenna Gain (dBi)	Level (dBm)	Limit (dBm)	Margin (dB)	
	ERP for WCDMA Band V (Part 22H), Middle Channel										
836.6	76.86	165	2.4	Н	17.5	1.90	0.0	15.60	38.35	22.75	
836.6	82.15	85	1.6	V	22.2	1.90	0.0	20.30	38.35	18.05	
		EIRP	for WCD	MA Ban	d II (Part	24E), M	iddle Chan	nel			
1880.00	81.36	99	1.4	Н	11.3	1.30	9.40	19.40	33	13.60	
1880.00	76.72	268	1.7	V	6.5	1.30	9.40	14.60	33	18.40	
		EIRP	for WCD	MA Bar	nd IV (Par	t 27), M	iddle Chan	nel			
1732.60	85.80	60	1.8	Н	12.6	1.30	8.90	20.20	30	9.80	
1732.60	80.74	98	1.3	V	8.2	1.30	8.90	15.80	30	14.20	

Note:

Absolute Level = Substituted Level - Cable loss + Antenna Gain Margin = Limit- Absolute Level

Maximum Output Power

Bandwidth (MHz)	Modulation	RB size/RB Offset	Low Channel (dBm)	Middle Channel (dBm)	High Channel (dBm)
		RB Size=1, RB Offset=0	22.66	22.60	22.58
		RB Size=1, RB Offset=2	22.63	22.62	22.70
		RB Size=1, RB Offset=5	22.34	22.73	22.62
	QPSK	RB Size=3, RB Offset=0	22.43	22.36	22.31
		RB Size=3, RB Offset=1	22.27	22.45	22.32
		RB Size=3, RB Offset=2	22.27	22.25	22.15
1.4		RB Size=6, RB Offset=0	22.24	22.21	22.13
1.4		RB Size=1, RB Offset=0	22.27	22.31	22.16
	16QAM	RB Size=1, RB Offset=2	22.04	22.18	21.94
		RB Size=1, RB Offset=5	22.04	21.91	23.00
		RB Size=3, RB Offset=0	21.80	21.71	22.78
		RB Size=3, RB Offset=1	21.80	21.86	21.99
		RB Size=3, RB Offset=2	21.87	21.82	21.69
		RB Size=6, RB Offset=0	21.80	21.80	21.88
		RB Size=1, RB Offset=0	22.85	22.70	22.94
		RB Size=1, RB Offset=7	22.73	22.80	22.79
		RB Size=1, RB Offset=14	22.55	22.57	22.81
	QPSK	RB Size=8, RB Offset=0	21.94	21.94	21.82
		RB Size=8, RB Offset=4	21.90	21.78	21.69
		RB Size=8, RB Offset=7	21.58	21.56	21.66
3.0		RB Size=15, RB Offset=0	21.90	21.86	21.76
3.0		RB Size=1, RB Offset=0	22.05	22.08	22.03
		RB Size=1, RB Offset=7	22.12	21.95	22.01
		RB Size=1, RB Offset=14	22.16	21.76	21.91
	16QAM	RB Size=8, RB Offset=0	20.97	20.81	20.99
		RB Size=8, RB Offset=4	20.72	20.80	20.92
		RB Size=8, RB Offset=7	20.47	20.57	20.78
		RB Size=15, RB Offset=0	20.67	20.81	20.75

Bandwidth (MHz)	Modulation	RB size/RB Offset	Low Channel (dBm)	Middle Channel (dBm)	High Channel (dBm)
		RB Size=1, RB Offset=0	22.83	22.76	22.86
		RB Size=1, RB Offset=12	22.77	22.84	22.58
		RB Size=1, RB Offset=24	22.47	22.92	22.36
	QPSK	RB Size=12, RB Offset=0	21.76	21.84	22.01
		RB Size=12, RB Offset=6	21.96	21.67	21.73
		RB Size=12, RB Offset=11	21.84	21.51	21.69
5.0		RB Size=25, RB Offset=0	21.74	21.77	21.79
3.0		RB Size=1, RB Offset=0	22.11	21.70	21.73
		RB Size=1, RB Offset=12	21.82	21.50	21.69
	16QAM	RB Size=1, RB Offset=24	21.79	21.39	21.55
		RB Size=12, RB Offset=0	20.88	20.78	20.91
		RB Size=12, RB Offset=6	20.77	20.58	20.72
		RB Size=12, RB Offset=11	20.69	20.59	20.59
		RB Size=25, RB Offset=0	20.79	20.64	20.81
		RB Size=1, RB Offset=0	22.89	22.78	22.74
		RB Size=1, RB Offset=24	22.78	22.81	22.58
		RB Size=1, RB Offset=49	22.65	22.74	22.63
	QPSK	RB Size=25, RB Offset=0	21.74	21.73	21.63
		RB Size=25, RB Offset=12	21.95	21.74	21.70
		RB Size=25, RB Offset=24	21.85	21.62	21.51
10.0		RB Size=50, RB Offset=0	21.64	21.55	21.68
10.0		RB Size=1, RB Offset=0	21.61	21.61	21.68
		RB Size=1, RB Offset=24	21.61	21.60	21.54
		RB Size=1, RB Offset=49	21.33	21.54	21.82
	16QAM	RB Size=25, RB Offset=0	22.70	20.66	20.79
		RB Size=25, RB Offset=12	22.45	20.40	20.60
		RB Size=25, RB Offset=24	22.53	20.26	20.30
		RB Size=50, RB Offset=0	20.53	20.57	20.51

Modulation	Middle Channel (dB)	PAR Limit (dB)	Result
QPSK (1RB Size)	6.38	13	Pass
QPSK (100RB Size)	6.47	13	Pass
16QAM (1RB Size)	6.38	13	Pass
16QAM (100RB Size)	6.47	13	Pass

QPSK:

	Receiver	Turn	Rx An	tenna	S	Substitut	ed	Absolute		
Frequency (MHz)	Reading (dBµV)	table Angle Degree	Height (m)	Polar (H/V)	Level (dBm)	Cable Loss (dB)	Antenna Gain (dBi)	Level (dBm)	Limit (dBm)	
				Middle	Channel					
	1.4 MHz Bandwidth									
1880.00	80.37	123	1.7	Н	10.3	1.30	9.40	18.40	33	
1880.00	74.54	177	2.1	V	4.3	1.30	9.40	12.40	33	
				3 MHz B	andwidth					
1880.00	80.36	265	2.1	Н	10.3	1.30	9.40	18.40	33	
1880.00	74.25	245	2.3	V	4.0	1.30	9.40	12.10	33	
				5 MHz B	andwidth					
1880.00	80.26	71	2.2	Н	10.2	1.30	9.40	18.30	33	
1880.00	74.13	10	2.3	V	3.9	1.30	9.40	12.00	33	
			1	0 MHz I	Bandwidth					
1880.00	80.42	312	2.0	Н	10.4	1.30	9.40	18.50	33	
1880.00	74.33	273	2.2	V	4.1	1.30	9.40	12.20	33	
			1	5 MHz I	Bandwidth					
1880.00	80.42	198	1.6	Н	10.4	1.30	9.40	18.50	33	
1880.00	74.15	212	1.2	V	3.9	1.30	9.40	12.00	33	
			2	20 MHz I	Bandwidth					
1880.00	80.26	3	2.3	Н	10.2	1.30	9.40	18.30	33	
1880.00	74.17	203	2.0	V	3.9	1.30	9.40	12.00	33	

16QAM:

	Receiver	Turn	Rx An	tenna	5	Substitut	ed	Absolute	
Frequency (MHz)	Reading (dBµV)	table Angle Degree	Height (m)	Polar (H/V)	Level (dBm)	Cable Loss (dB)	Antenna Gain (dBi)	Level (dBm)	Limit (dBm)
				Middle	Channel				
			1	.4 MHz	Bandwidth				
1880.00	81.57	123	1.7	Н	11.5	1.3	9.4	19.6	33
1880.00	75.66	177	2.1	V	5.4	1.3	9.4	13.5	33
				3 MHz E	Bandwidth				
1880.00	81.72	265	2.1	Н	11.7	1.3	9.4	19.8	33
1880.00	76.04	245	2.3	V	5.8	1.3	9.4	13.9	33
				5 MHz E	Bandwidth				
1880.00	81.99	71	2.2	Н	11.9	1.3	9.4	20	33
1880.00	76.11	10	2.3	V	5.9	1.3	9.4	14	33
			1	10 MHz I	Bandwidth				
1880.00	82.16	312	2.0	Н	12.1	1.3	9.4	20.2	33
1880.00	76.31	273	2.2	V	6.1	1.3	9.4	14.2	33
			1	15 MHz I	Bandwidth				
1880.00	82.39	198	1.6	Н	12.3	1.3	9.4	20.4	33
1880.00	76.55	212	1.2	V	6.3	1.3	9.4	14.4	33
			2	20 MHz I	Bandwidth				
1880.00	82.27	3	2.3	Н	12.2	1.3	9.4	20.3	33
1880.00	76.28	203	2.0	V	6.0	1.3	9.4	14.1	33

Maximum Output Power

Bandwidth (MHz)	Modulation	RB size/RB Offset	Low Channel (dBm)	Middle Channel (dBm)	High Channel (dBm)
		RB Size=1, RB Offset=0	22.40	22.36	22.63
		RB Size=1, RB Offset=2	22.42	22.26	22.61
		RB Size=1, RB Offset=5	22.57	22.03	22.67
	QPSK	RB Size=3, RB Offset=0	22.73	22.68	22.73
		RB Size=3, RB Offset=1	22.50	22.57	22.61
		RB Size=3, RB Offset=2	22.39	22.65	22.38
1.4		RB Size=6, RB Offset=0	21.44	21.46	21.36
1.4	1.4	RB Size=1, RB Offset=0	21.89	21.98	22.01
		RB Size=1, RB Offset=2	21.82	21.93	21.78
		RB Size=1, RB Offset=5	21.75	21.90	21.91
	16QAM	RB Size=3, RB Offset=0	22.84	21.85	21.67
		RB Size=3, RB Offset=1	22.93	21.75	21.92
		RB Size=3, RB Offset=2	22.66	21.80	21.68
		RB Size=6, RB Offset=0	20.71	20.58	20.73
		RB Size=1, RB Offset=0	22.52	22.40	22.56
		RB Size=1, RB Offset=7	22.28	22.48	22.32
		RB Size=1, RB Offset=14	22.25	22.14	22.22
	QPSK	RB Size=8, RB Offset=0	21.58	21.63	21.66
		RB Size=8, RB Offset=4	21.43	21.42	21.65
		RB Size=8, RB Offset=7	21.47	21.30	21.60
3.0		RB Size=15, RB Offset=0	21.57	21.51	21.81
3.0		RB Size=1, RB Offset=0	21.73	21.59	21.67
		RB Size=1, RB Offset=7	21.61	21.70	21.44
		RB Size=1, RB Offset=14	21.65	21.38	21.27
	16QAM	RB Size=8, RB Offset=0	20.68	20.70	20.78
		RB Size=8, RB Offset=4	20.61	20.48	20.79
		RB Size=8, RB Offset=7	20.61	20.72	20.63
		RB Size=15, RB Offset=0	20.87	20.83	20.76

Bandwidth (MHz)	Modulation	RB size/RB Offset	Low Channel (dBm)	Middle Channel (dBm)	High Channel (dBm)
		RB Size=1, RB Offset=0	22.71	22.63	22.85
		RB Size=1, RB Offset=12	22.64	22.50	22.62
		RB Size=1, RB Offset=24	22.50	22.51	22.59
	QPSK	RB Size=12, RB Offset=0	21.82	21.60	21.59
		RB Size=12, RB Offset=6	21.69	21.69	21.71
		RB Size=12, RB Offset=11	21.53	21.73	21.54
5.0		RB Size=25, RB Offset=0	21.68	21.71	21.69
5.0		RB Size=1, RB Offset=0	21.94	22.01	21.89
		RB Size=1, RB Offset=12	21.79	21.67	21.63
		RB Size=1, RB Offset=24	21.77	21.80	21.64
	16QAM	RB Size=12, RB Offset=0	20.96	20.98	21.07
		RB Size=12, RB Offset=6	20.79	20.95	20.81
		RB Size=12, RB Offset=11	20.74	20.68	20.85
		RB Size=25, RB Offset=0	20.87	20.66	20.67
		RB Size=1, RB Offset=0	22.60	22.75	22.79
		RB Size=1, RB Offset=24	22.75	22.53	22.73
		RB Size=1, RB Offset=49	22.45	22.71	22.65
	QPSK	RB Size=25, RB Offset=0	21.73	21.65	21.74
		RB Size=25, RB Offset=12	21.70	21.93	21.66
		RB Size=25, RB Offset=24	21.58	21.45	21.76
10.0		RB Size=50, RB Offset=0	21.78	21.71	21.74
10.0		RB Size=1, RB Offset=0	22.26	22.27	22.22
		RB Size=1, RB Offset=24	22.12	21.98	22.24
		RB Size=1, RB Offset=49	22.13	22.23	22.01
	16QAM	RB Size=25, RB Offset=0	20.77	20.76	20.79
		RB Size=25, RB Offset=12	20.61	20.62	20.85
		RB Size=25, RB Offset=24	20.53	20.72	20.72
		RB Size=50, RB Offset=0	20.96	20.84	20.87

RB Size=100, RB Offset=0

20.86

20.78

20.88

Modulation	Middle Channel (dB)	PAR Limit (dB)	Result
QPSK (1RB Size)	7.53	13	Pass
QPSK (100RB Size)	7.55	13	Pass
16QAM (1RB Size)	6.65	13	Pass
16QAM (100RB Size)	6.71	13	Pass

QPSK:

	Receiver	Turn	Rx An	tenna	5	Substitut	ed	Absolute		
Frequency (MHz)	Reading (dBµV)	table Angle Degree	Height (m)	Polar (H/V)	Level (dBm)	Cable Loss (dB)	Antenna Gain (dBi)	Level (dBm)	Limit (dBm)	
				Middle	Channel					
	1.4 MHz Bandwidth									
1732.50	87.26	347	2.4	Н	14.1	1.30	8.90	21.70	30	
1732.50	77.21	140	1.1	V	4.6	1.30	8.90	12.20	30	
				3 MHz B	andwidth					
1732.50	86.94	197	2.2	Н	13.8	1.30	8.90	21.40	30	
1732.50	76.89	303	2.3	V	4.3	1.30	8.90	11.90	30	
				5 MHz B	andwidth					
1732.50	87.13	325	1.7	Н	14.0	1.30	8.90	21.60	30	
1732.50	77.08	264	1.3	V	4.5	1.30	8.90	12.10	30	
			1	0 MHz I	Bandwidth					
1732.50	87.24	273	1.5	Н	14.1	1.30	8.90	21.70	30	
1732.50	77.19	28	2.0	V	4.6	1.30	8.90	12.20	30	
			1	5 MHz I	Bandwidth					
1732.50	87.26	293	2.3	Н	14.1	1.30	8.90	21.70	30	
1732.50	77.22	173	2.2	V	4.7	1.30	8.90	12.30	30	
			2	20 MHz I	Bandwidth					
1732.50	87.18	95	1.8	Н	14.0	1.30	8.90	21.60	30	
1732.50	77.13	117	1.9	V	4.6	1.30	8.90	12.20	30	

16QAM:

	Receiver	Turn	Rx An	tenna	S	Substitut	ed	Absolute	
Frequency (MHz)	Reading (dBµV)	table Angle Degree	Height (m)	Polar (H/V)	Level (dBm)	Cable Loss (dB)	Antenna Gain (dBi)	Level (dBm)	Limit (dBm)
				Middle	Channel				
			1	.4 MHz	Bandwidth				
1732.50	87.07	347	2.4	Н	13.9	1.3	8.9	21.5	30
1732.50	77.11	140	1.1	V	4.5	1.3	8.9	12.1	30
				3 MHz B	Bandwidth				
1732.50	86.95	197	2.2	Н	13.8	1.3	8.9	21.4	30
1732.50	77.08	303	2.3	V	4.5	1.3	8.9	12.1	30
				5 MHz B	Bandwidth				
1732.50	87.23	325	1.7	Н	14.1	1.3	8.9	21.7	30
1732.50	77.28	264	1.3	V	4.7	1.3	8.9	12.3	30
				10 MHz I	Bandwidth				
1732.50	87.35	273	1.5	Н	14.2	1.3	8.9	21.8	30
1732.50	77.46	28	2.0	V	4.8	1.3	8.9	12.4	30
				15 MHz I	Bandwidth				
1732.50	87.11	293	2.3	Н	14.0	1.3	8.9	21.6	30
1732.50	77.21	173	2.2	V	4.6	1.3	8.9	12.2	30
			2	20 MHz I	Bandwidth				
1732.50	87.36	95	1.8	Н	14.2	1.3	8.9	21.8	30
1732.50	77.49	117	1.9	V	4.9	1.3	8.9	12.5	30

LTE Band 5:

Maximum Output Power

Bandwidth (MHz)	Modulation	RB size/RB Offset	Low Channel (dBm)	Middle Channel (dBm)	High Channel (dBm)
		RB Size=1, RB Offset=0	22.91	23.13	22.92
		RB Size=1, RB Offset=2	23.07	23.00	22.99
		RB Size=1, RB Offset=5	22.97	23.01	22.98
	QPSK	RB Size=3, RB Offset=0	23.02	23.05	23.15
		RB Size=3, RB Offset=1	22.86	22.92	22.98
		RB Size=3, RB Offset=2	22.81	22.73	23.02
1.4		RB Size=6, RB Offset=0	21.92	22.07	22.00
1.4		RB Size=1, RB Offset=0	22.02	21.96	21.87
		RB Size=1, RB Offset=2	21.92	21.88	21.86
		RB Size=1, RB Offset=5	21.91	21.61	21.77
	16QAM	RB Size=3, RB Offset=0	22.08	22.16	22.32
		RB Size=3, RB Offset=1	22.12	22.27	22.25
		RB Size=3, RB Offset=2	21.85	22.14	22.07
		RB Size=6, RB Offset=0	20.88	21.11	21.02
		RB Size=1, RB Offset=0	23.09	22.97	23.01
		RB Size=1, RB Offset=7	22.74	23.12	23.00
		RB Size=1, RB Offset=14	22.56	22.82	22.66
	QPSK	RB Size=8, RB Offset=0	22.09	21.99	22.01
		RB Size=8, RB Offset=4	22.02	21.95	22.04
		RB Size=8, RB Offset=7	22.12	21.90	21.80
3.0		RB Size=15, RB Offset=0	22.03	22.09	22.05
3.0		RB Size=1, RB Offset=0	22.59	22.58	22.54
		RB Size=1, RB Offset=7	22.40	22.35	22.54
		RB Size=1, RB Offset=14	22.21	22.21	22.45
	16QAM	RB Size=8, RB Offset=0	21.10	21.20	21.12
		RB Size=8, RB Offset=4	21.03	21.14	21.13
		RB Size=8, RB Offset=7	21.18	21.12	21.29
		RB Size=15, RB Offset=0	21.15	21.01	21.15

Bandwidth (MHz)	Modulation	RB size/RB Offset	Low Channel (dBm)	Middle Channel (dBm)	High Channel (dBm)
		RB Size=1, RB Offset=0	22.14	22.06	22.01
		RB Size=1, RB Offset=12	22.02	21.86	21.79
		RB Size=1, RB Offset=24	21.88	21.86	21.88
	QPSK	RB Size=12, RB Offset=0	21.30	21.16	21.15
		RB Size=12, RB Offset=6	20.95	21.24	21.02
		RB Size=12, RB Offset=11	20.86	21.07	21.05
5.0		RB Size=25, RB Offset=0	22.12	22.12	22.04
5.0		RB Size=1, RB Offset=0	21.94	21.96	22.05
		RB Size=1, RB Offset=12	21.86	21.79	21.95
		RB Size=1, RB Offset=24	22.06	21.56	22.06
	16QAM	RB Size=12, RB Offset=0	21.29	21.08	21.32
		RB Size=12, RB Offset=6	20.91	21.12	21.07
		RB Size=12, RB Offset=11	20.89	21.04	20.84
		RB Size=25, RB Offset=0	21.09	21.04	21.08
		RB Size=1, RB Offset=0	23.03	23.03	23.19
		RB Size=1, RB Offset=24	23.00	22.96	22.97
		RB Size=1, RB Offset=49	23.05	22.99	22.88
	QPSK	RB Size=25, RB Offset=0	22.09	21.96	21.97
		RB Size=25, RB Offset=12	22.08	22.03	22.05
		RB Size=25, RB Offset=24	21.74	21.96	21.86
10.0		RB Size=50, RB Offset=0	22.12	22.01	22.13
10.0		RB Size=1, RB Offset=0	22.65	22.58	22.62
		RB Size=1, RB Offset=24	22.56	22.46	22.59
		RB Size=1, RB Offset=49	22.40	22.40	22.22
	16QAM	RB Size=25, RB Offset=0	21.02	21.12	21.18
		RB Size=25, RB Offset=12	21.03	21.12	21.11
		RB Size=25, RB Offset=24	20.92	21.40	20.92
		RB Size=50, RB Offset=0	21.09	21.12	21.06

Peak-to-average ratio (PAR)

Modulation	Middle Channel (dB)	PAR Limit (dB)	Result
QPSK(1RB Size)	7.49	13	Pass
QPSK(50RB Size)	7.51	13	Pass
16QAM (1RB Size)	6.30	13	Pass
16QAM (50RB Size)	6.37	13	Pass

QPSK:

	Receiver	Turn	Rx An	tenna	S	Substitut	ed	Absolute	
Frequency (MHz)	Reading (dBµV)	table Angle Degree	Height (m)	Polar (H/V)	Level (dBm)	Cable Loss (dB)	Antenna Gain (dBi)	Level (dBm)	Limit (dBm)
				Middle	Channel				
			1	.4 MHz	Bandwidth				
836.5	78.02	73	1.2	Н	18.6	1.90	0.0	16.70	38.45
836.5	82.24	219	1.1	V	22.2	1.90	0.0	20.30	38.45
			-	3 MHz B	andwidth	-			
836.5	78.26	187	1.1	Н	18.9	1.90	0.0	17.00	38.45
836.5	82.54	119	1.9	V	22.5	1.90	0.0	20.60	38.45
				5 MHz B	andwidth				
836.5	78.52	244	1.5	Н	19.1	1.90	0.0	17.20	38.45
836.5	82.71	247	2.2	V	22.7	1.90	0.0	20.80	38.45
			1	10 MHz I	Bandwidth				
836.5	78.35	153	1.8	Н	19.0	1.90	0.0	17.10	38.45
836.5	82.63	291	1.6	V	22.6	1.90	0.0	20.70	38.45

16QAM:

	Receiver	Turn	Rx An	tenna		Substitut	ed	Absolute	
Frequency (MHz)	MHz) Reading Ang	table Angle Degree	Height (m)	Polar (H/V)	Level (dBm)	Cable Loss (dB)	Antenna Gain (dBi)	Level (dBm)	Limit (dBm)
				Middle	Channel				
			1	.4 MHz	Bandwidth				
836.5	78.14	73	1.2	Н	18.7	1.9	0	16.8	38.45
836.5	82.39	219	1.1	V	22.4	1.9	0	20.5	38.45
	3 MHz Bandwidth								
836.5	78.36	187	1.1	Н	18.9	1.9	0	17	38.45
836.5	82.69	119	1.9	V	22.7	1.9	0	20.8	38.45
				5 MHz E	andwidth				
836.5	78.66	244	1.5	Н	19.2	1.9	0	17.3	38.45
836.5	82.88	247	2.2	V	22.8	1.9	0	20.9	38.45
			1	10 MHz I	Bandwidth				
836.5	78.71	153	1.8	Н	19.3	1.9	0	17.4	38.45
836.5	82.97	291	1.6	V	22.9	1.9	0	21	38.45

LTE Band 7:

Bandwidth (MHz)	Modulation	RB size/RB Offset	Low Channel (dBm)	Middle Channel (dBm)	High Channel (dBm)
		RB Size=1, RB Offset=0	23.17	22.86	22.59
		RB Size=1, RB Offset=12	22.78	22.40	22.30
		RB Size=1, RB Offset=24	23.37	23.04	22.93
	QPSK	RB Size=12, RB Offset=0	22.11	21.55	21.27
		RB Size=12, RB Offset=6	21.93	21.65	21.51
		RB Size=12, RB Offset=11	22.11	21.60	21.47
5		RB Size=25, RB Offset=0	21.94	21.59	22.20
3		RB Size=1, RB Offset=0	22.64	21.95	22.13
		RB Size=1, RB Offset=12	22.47	21.78	22.17
		RB Size=1, RB Offset=24	22.58	21.91	22.35
	16QAM	RB Size=12, RB Offset=0	21.80	21.00	21.29
		RB Size=12, RB Offset=6	21.65	21.05	21.30
		RB Size=12, RB Offset=11	21.67	20.98	21.47
		RB Size=25, RB Offset=0	21.00	20.72	20.58
		RB Size=1, RB Offset=0	22.64	22.38	22.86
		RB Size=1, RB Offset=24	22.82	22.34	22.70
		RB Size=1, RB Offset=49	22.51	22.27	22.78
	QPSK	RB Size=25, RB Offset=0	21.85	21.75	21.98
		RB Size=25, RB Offset=12	21.83	21.75	21.96
		RB Size=25, RB Offset=24	21.90	21.75	22.02
10		RB Size=50, RB Offset=0	22.11	21.45	21.58
10		RB Size=1, RB Offset=0	21.78	22.11	21.87
		RB Size=1, RB Offset=24	21.64	22.25	22.03
		RB Size=1, RB Offset=49	21.84	22.18	22.06
	16QAM	RB Size=25, RB Offset=0	21.10	21.28	21.24
		RB Size=25, RB Offset=12	21.29	21.18	21.07
		RB Size=25, RB Offset=24	21.10	21.35	21.30
		RB Size=50, RB Offset=0	21.12	20.47	20.63

Bandwidth (MHz)	Modulation	RB size/RB Offset	Low Channel (dBm)	Middle Channel (dBm)	High Channel (dBm)
		RB Size=1, RB Offset=0	22.70	22.67	23.89
		RB Size=1, RB Offset=37	22.54	22.69	23.61
		RB Size=1, RB Offset=74	22.72	22.66	23.76
	QPSK	RB Size=36, RB Offset=0	21.99	21.94	23.00
		RB Size=36, RB Offset=18	21.94	21.68	23.16
		RB Size=36, RB Offset=37	22.03	21.89	23.00
15		RB Size=75, RB Offset=0	22.02	21.37	22.25
15		RB Size=1, RB Offset=0	21.94	21.88	22.68
		RB Size=1, RB Offset=37	21.91	21.51	22.75
		RB Size=1, RB Offset=74	22.08	21.60	22.87
	16QAM	RB Size=36, RB Offset=0	21.22	21.05	21.95
		RB Size=36, RB Offset=18	21.23	21.06	21.79
		RB Size=36, RB Offset=37	21.18	21.08	21.80
		RB Size=75, RB Offset=0	20.67	20.45	21.46
		RB Size=1, RB Offset=0	22.74	23.03	23.55
		RB Size=1, RB Offset=49	22.68	22.95	23.32
		RB Size=1, RB Offset=99	22.97	23.08	23.67
	QPSK	RB Size=50, RB Offset=0	21.97	22.19	22.67
		RB Size=50, RB Offset=24	22.15	22.14	22.78
		RB Size=50, RB Offset=49	21.97	22.15	22.91
20		RB Size=100, RB Offset=0	22.27	21.72	22.42
20		RB Size=1, RB Offset=0	22.06	22.29	22.87
		RB Size=1, RB Offset=49	21.93	22.29	22.68
		RB Size=1, RB Offset=99	22.08	22.23	22.97
	16QAM	RB Size=50, RB Offset=0	21.22	21.42	22.11
		RB Size=50, RB Offset=24	21.45	21.47	22.05
		RB Size=50, RB Offset=49	21.24	21.47	22.04
		RB Size=100, RB Offset=0	21.23	20.63	21.47

Peak-to-average ratio (PAR)

Modulation	Middle Channel (dB)	PAR Limit (dB)	Result
QPSK (1RB Size)	7.79	13	Pass
QPSK (100RB Size)	7.85	13	Pass
16QAM (1RB Size)	7.03	13	Pass
16QAM (100RB Size)	7.09	13	Pass

EIRP:

QPSK:

	Receiver	Turn	Rx An	tenna	\$	Substitut	ed	Absolute	
Frequency (MHz)	Reading (dBµV)	table Angle Degree	Height (m)	Polar (H/V)	Level (dBm)	Cable Loss (dB)	Antenna Gain (dBi)	Level (dBm)	Limit (dBm)
]	Middle C	hannel				
			5	MHz Ba	ndwidth	-			
2535.00	80.69	92	1.9	Н	11.2	2.60	10.20	18.80	33
2535.00	74.16	94	1.5	V	5.3	2.60	10.20	12.90	33
			10	MHz Ba	ındwidth				
2535.00	80.03	340	1.4	Н	10.5	2.60	10.20	18.10	33
2535.00	73.89	160	1.2	V	5.0	2.60	10.20	12.60	33
			15	MHz Ba	ındwidth				
2535.00	80.91	209	2.1	Н	11.4	2.60	10.20	19.00	33
2535.00	73.59	85	2.1	V	4.7	2.60	10.20	12.30	33
	20 MHz Bandwidth								
2535.00	80.51	341	1.7	Н	11.0	2.60	10.20	18.60	33
2535.00	73.98	113	1.6	V	5.1	2.60	10.20	12.70	33

16QAM:

	Receiver	Turn	Rx An	tenna		Substitut	ed	Absolute	
Frequency (MHz)	HZ) Reading (dRuV)	table Angle Degree	Height (m)	Polar (H/V)	Level (dBm)	Cable Loss (dB)	Antenna Gain (dBi)	Level (dBm)	Limit (dBm)
				Middle	Channel				
				5 MHz E	Bandwidth				
2535.00	79.09	150	2.2	Н	9.6	2.60	10.20	17.20	33
2535.00	73.00	325	1.7	V	4.1	2.60	10.20	11.70	33
				10 MHz I	Bandwidth				
2535.00	79.05	78	2.1	Н	9.6	2.60	10.20	17.20	33
2535.00	72.56	221	2.1	V	3.7	2.60	10.20	11.30	33
				15 MHz I	Bandwidth				
2535.00	78.86	3	1.7	Н	9.4	2.60	10.20	17.00	33
2535.00	72.56	331	1.2	V	3.7	2.60	10.20	11.30	33
	20 MHz Bandwidth								
2535.00	78.87	81	2.2	Н	9.4	2.60	10.20	17.00	33
2535.00	72.62	167	1.3	V	3.7	2.60	10.20	11.30	33

Note:

All above data were tested with no amplifier
Absolute Level = Substituted Level - Cable loss + Antenna Gain
Margin = Limit- Absolute Level

FCC §2.1049, §22.917, §22.905 & §24.238 & §27.53 - OCCUPIED BANDWIDTH

Applicable Standard

FCC 47 §2.1049, §22.917, §22.905, §24.238 and §27.53.

Test Procedure

The RF output of the transmitter was connected to the simulator and the spectrum analyzer through sufficient attenuation.

The resolution bandwidth of the spectrum analyzer was set at 1% to 5% of the anticipated emission bandwidth and the 26 dB & 99% bandwidth was recorded.

Test Data

Environmental Conditions

Temperature:	25 ℃
Relative Humidity:	50 %
ATM Pressure:	101.0 kPa

The testing was performed by Jason Liu on 2019-01-24 and 2019-01-25.

EUT operation mode: Transmitting

Test Result: Compliance. Please refer to the following tables and plots.

Cellular Band (Part 22H)

Mode	Frequency (MHz)	99% Occupied Bandwidth (kHz)	26 dB Emission Bandwidth (kHz)
GSM(GMSK)	836.6	245.2	312.5
EGPRS(8PSK)	836.6	251.6	317.3

Mode	Frequency (MHz)	99% Occupied Bandwidth (MHz)	26 dB Emission Bandwidth (MHz)
RMC (BPSK)	836.6	4.183	4.712
HSUPA (BPSK)	836.6	4.199	4.776
HSDPA (16QAM)	836.6	4.199	4.776

PCS Band (Part 24E)

Mode	Frequency (MHz)	99% Occupied Bandwidth (kHz)	26 dB Emission Bandwidth (kHz)
GSM(GMSK)	1880.0	243.6	315.7
EGPRS(8PSK)	1880.0	248.4	322.1

Mode	Frequency (MHz)	99% Occupied Bandwidth (MHz)	26 dB Emission Bandwidth (MHz)
RMC (BPSK)	1880.0	4.183	4.728
HSUPA (BPSK)	1880.0	4.215	5.032
HSDPA (16QAM)	1880.0	4.199	4.776

AWS Band (Part27)

Mode	Frequency (MHz)	99% Occupied Bandwidth (MHz)	26 dB Emission Bandwidth (MHz)
RMC (BPSK)	1732.6	4.167	4.712
HSUPA (BPSK)	1732.6	4.231	5.160
HSDPA (16QAM)	1732.6	4.183	4.728

Cellular Band (Part 22H) 26 dB Emissions &99% Occupied Bandwidth for GSM (GMSK) Mode

Date: 25.JAN.2019 08:19:13

26 dB Emissions &99% Occupied Bandwidth for EDGE Mode

Date: 25.JAN.2019 08:54:52

26 dB Emissions &99% Occupied Bandwidth for RMC (BPSK) Mode

Date: 25.JAN.2019 13:27:48

26 dB Emissions &99% Occupied Bandwidth for HSUPA (BPSK) Mode

Date: 25.JAN.2019 13:19:23

26 dB Emissions &99% Occupied Bandwidth for HSDPA (16QAM) Mode

Date: 25.JAN.2019 13:21:03

PCS Band (Part 24E)

26 dB Emissions &99% Occupied Bandwidth for GSM (GMSK) Mode

Date: 25.JAN.2019 09:31:41

26 dB Emissions &99% Occupied Bandwidth for EDGE Mode

Date: 25.JAN.2019 09:51:04

26 dB Emissions &99% Occupied Bandwidth for RMC (BPSK) Mode

Date: 25.JAN.2019 12:11:16

26 dB Emissions &99% Occupied Bandwidth for HSUPA (BPSK) Mode

Date: 25.JAN.2019 12:48:09

26 dB Emissions &99% Occupied Bandwidth for HSDPA (16QAM) Mode

Date: 25.JAN.2019 12:39:16

AWS Band (Part 27)
26 dB Emissions &99% Occupied Bandwidth for RMC (BPSK) Mode

Date: 25.JAN.2019 12:55:28

26 dB Emissions &99% Occupied Bandwidth for HSUPA (BPSK) Mode

Date: 25.JAN.2019 13:11:27

26 dB Emissions &99% Occupied Bandwidth for HSDPA (16QAM) Mode

Date: 25.JAN.2019 13:09:20

LTE Band 2: (Middle Channel)

Bandwidth (MHz)	Modulation	99% Occupied Bandwidth (MHz)	26 dB Emission Bandwidth (MHz)
1.4	QPSK	1.106	1.313
1.4	16QAM	1.106	1.313
2.0	QPSK	2.692	2.885
3.0	16QAM	2.692	2.962
5.0	QPSK	4.519	4.952
5.0	16QAM	4.519	4.968
10.0	QPSK	8.974	9.679
	16QAM	8.974	9.615
15.0	QPSK	13.462	14.615
15.0	16QAM	13.462	14.567
20.0	QPSK	17.885	19.038
	16QAM	17.885	19.103

Report No.: RSZ190123004-00D

QPSK (1.4 MHz) - 26 dB Bandwidth & 99% Occupied Bandwidth, Middle channel

Date: 24.JAN.2019 18:31:29

16-QAM (1.4 MHz) - 26 dB Bandwidth & 99% Occupied Bandwidth, Middle channel

Date: 24.JAN.2019 18:32:59

QPSK (3.0 MHz) - 26 dB Bandwidth & 99% Occupied Bandwidth, Middle channel

Date: 24.JAN.2019 18:36:16

16-QAM (3.0 MHz) - 26 dB Bandwidth & 99% Occupied Bandwidth, Middle channel

Date: 24.JAN.2019 18:38:29

QPSK (5.0 MHz) - 26 dB Bandwidth & 99% Occupied Bandwidth, Middle channel

Date: 24.JAN.2019 18:40:29

16-QAM (5.0 MHz) - 26 dB Bandwidth & 99% Occupied Bandwidth, Middle channel

Date: 24.JAN.2019 18:42:12

QPSK (10.0 MHz) - 26 dB Bandwidth & 99% Occupied Bandwidth, Middle channel

Date: 24.JAN.2019 18:47:26

16-QAM (10.0 MHz) - 26 dB Bandwidth & 99% Occupied Bandwidth, Middle channel

Date: 24.JAN.2019 18:44:36

QPSK (15.0 MHz) - 26 dB Bandwidth & 99% Occupied Bandwidth, Middle channel

Date: 24.JAN.2019 18:50:13

16-QAM (15.0 MHz) - 26 dB Bandwidth & 99% Occupied Bandwidth, Middle channel

Date: 24.JAN.2019 18:51:39

QPSK (20.0 MHz) - 26 dB Bandwidth & 99% Occupied Bandwidth, Middle channel

Date: 24.JAN.2019 18:54:22

16-QAM (20.0 MHz) - 26 dB Bandwidth & 99% Occupied Bandwidth, Middle channel

Date: 24.JAN.2019 18:56:02

10.0

15.0

20.0

Bandwidth (MHz)	Modulation	99% Occupied Bandwidth (MHz)	26 dB Emission Bandwidth (MHz)
1.4	QPSK	1.101	1.313
1.4	16QAM	1.106	1.322
2.0	QPSK	2.683	2.885
3.0	16QAM	2.683	2.894
5.0	QPSK	4.535	5.144

4.519

8.974

8.942

13.510

13.462

17.949

17.949

16QAM

QPSK

16QAM

QPSK

16QAM

QPSK

16QAM

Report No.: RSZ190123004-00D

5.385

9.712

9.551

14.760

14.856

19.038

19.103

QPSK (1.4 MHz) - 26 dB Bandwidth & 99% Occupied Bandwidth, Middle channel

Date: 24.JAN.2019 18:59:42

16-QAM (1.4 MHz) - 26 dB Bandwidth & 99% Occupied Bandwidth, Middle channel

Date: 24.JAN.2019 18:58:08

QPSK (3.0 MHz) - 26 dB Bandwidth & 99% Occupied Bandwidth, Middle channel

Date: 24.JAN.2019 19:03:00

16-QAM (3.0 MHz) - 26 dB Bandwidth & 99% Occupied Bandwidth, Middle channel

Date: 24.JAN.2019 19:01:27

QPSK (5.0 MHz) - 26 dB Bandwidth & 99% Occupied Bandwidth, Middle channel

Date: 24.JAN.2019 19:10:32

16-QAM (5.0 MHz) - 26 dB Bandwidth & 99% Occupied Bandwidth, Middle channel

Date: 24.JAN.2019 19:08:54

QPSK (10.0 MHz) - 26 dB Bandwidth & 99% Occupied Bandwidth, Middle channel

Date: 24.JAN.2019 19:12:50

16-QAM (10.0 MHz) - 26 dB Bandwidth & 99% Occupied Bandwidth, Middle channel

Date: 24.JAN.2019 19:14:26

QPSK (15.0 MHz) - 26 dB Bandwidth & 99% Occupied Bandwidth, Middle channel

Date: 24.JAN.2019 19:17:51

16-QAM (15.0 MHz) - 26 dB Bandwidth & 99% Occupied Bandwidth, Middle channel

Date: 24.JAN.2019 19:15:54

QPSK (20.0 MHz) - 26 dB Bandwidth & 99% Occupied Bandwidth, Middle channel

Date: 24.JAN.2019 19:20:27

16-QAM (20.0 MHz) - 26 dB Bandwidth & 99% Occupied Bandwidth, Middle channel

Date: 24.JAN.2019 19:19:02

Bandwidth (MHz)	Modulation	99% Occupied Bandwidth (MHz)	26 dB Emission Bandwidth (MHz)
1.4	QPSK	1.106	1.313
1.4	16QAM	1.106	1.322
3.0	QPSK	2.692	2.885
	16QAM	2.683	2.885
5.0	QPSK	4.519	4.968
3.0	16QAM	4.503	4.952
10.0	QPSK	8.974	9.583
	16QAM	8.974	9.679

Report No.: RSZ190123004-00D

QPSK (1.4 MHz) - 26 dB Bandwidth & 99% Occupied Bandwidth, Middle channel

Date: 24.JAN.2019 19:22:24

16-QAM (1.4 MHz) - 26 dB Bandwidth & 99% Occupied Bandwidth, Middle channel

Date: 24.JAN.2019 19:24:19

QPSK (3.0 MHz) - 26 dB Bandwidth & 99% Occupied Bandwidth, Middle channel

Date: 24.JAN.2019 19:25:47

16-QAM (3.0 MHz) - 26 dB Bandwidth & 99% Occupied Bandwidth, Middle channel

Date: 24.JAN.2019 19:27:26

QPSK (5.0 MHz) - 26 dB Bandwidth & 99% Occupied Bandwidth, Middle channel

Date: 24.JAN.2019 19:30:07

16-QAM (5.0 MHz) - 26 dB Bandwidth & 99% Occupied Bandwidth, Middle channel

Date: 24.JAN.2019 19:32:42

QPSK (10.0 MHz) - 26 dB Bandwidth & 99% Occupied Bandwidth, Middle channel

Date: 24.JAN.2019 19:34:44

16-QAM (10.0 MHz) - 26 dB Bandwidth & 99% Occupied Bandwidth, Middle channel

Date: 24.JAN.2019 19:36:18

LTE Band 7: (Middle Channel)

Bandwidth (MHz)	Modulation	99% Occupied Bandwidth (MHz)	26 dB Emission Bandwidth (MHz)
5.0	QPSK	4.519	4.984
5.0	16QAM	4.487	4.952
10.0	QPSK	8.974	9.647
	16QAM	8.974	9.615
15.0	QPSK	13.510	14.856
15.0	16QAM	13.510	14.519
20.0	QPSK	17.885	19.103
	16QAM	17.885	19.167

Report No.: RSZ190123004-00D

QPSK (5.0 MHz) - 26 dB Bandwidth & 99% Occupied Bandwidth, Middle channel

Date: 24.JAN.2019 19:42:20

16-QAM (5.0 MHz) - 26 dB Bandwidth & 99% Occupied Bandwidth, Middle channel

Date: 24.JAN.2019 19:40:53

QPSK (10.0 MHz) - 26 dB Bandwidth & 99% Occupied Bandwidth, Middle channel

Date: 24.JAN.2019 19:43:48

16-QAM (10.0 MHz) - 26 dB Bandwidth & 99% Occupied Bandwidth, Middle channel

Date: 24.JAN.2019 19:46:16

QPSK (15.0 MHz) - 26 dB Bandwidth & 99% Occupied Bandwidth, Middle channel

Date: 24.JAN.2019 19:49:27

16-QAM (15.0 MHz) - 26 dB Bandwidth & 99% Occupied Bandwidth, Middle channel

Date: 24.JAN.2019 19:51:16

QPSK (20.0 MHz) - 26 dB Bandwidth & 99% Occupied Bandwidth, Middle channel

Date: 24.JAN.2019 19:53:08

16-QAM (20.0 MHz) - 26 dB Bandwidth & 99% Occupied Bandwidth, Middle channel

Date: 24.JAN.2019 19:54:44

FCC §2.1051, §22.917(a) & §24.238(a); §27.53 (h) (m) - SPURIOUS EMISSIONS AT ANTENNA TERMINALS

Applicable Standard

FCC §2.1051, §22.917(a) and §24.238(a) and §27.53(h) (m).

The spectrum was to be investigated to the tenth harmonics of the highest fundamental frequency as specified in § 2.1051.

Test Procedure

The RF output of the transceiver was connected to a spectrum analyzer and simulator through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 1MHz. Sufficient scans were taken to show any out of band emissions up to 10th harmonic.

Test Data

Environmental Conditions

Temperature:	25 ℃
Relative Humidity:	50 %
ATM Pressure:	101.0 kPa

The testing was performed by Jason Liu on 2019-01-24 and 2019-01-25.

Test result: Compliance.

EUT operation mode: transmitting

Please refer to the following plots.

Report No.: RSZ190123004-00D

Cellular Band (Part 22H)

30 MHz – 1 GHz (GSM Mode)

Date: 25.JAN.2019 08:30:44

1 GHz - 10 GHz (GSM Mode)

Date: 25.JAN.2019 09:07:52

30 MHz – 1 GHz (WCDMA Mode)

Date: 25.JAN.2019 13:29:55

1 GHz – 10 GHz (WCDMA Mode)

Date: 25.JAN.2019 13:30:56

PCS Band (Part 24E)

30 MHz – 1 GHz (GSM Mode)

Date: 25.JAN.2019 09:27:48

1 GHz – 2 GHz (GSM Mode)

Date: 25.JAN.2019 09:14:08

2 GHz – 20 GHz (GSM Mode)

Date: 25.JAN.2019 09:27:10

30 MHz – 1 GHz (WCDMA Mode)

1 GHz – 2 GHz (WCDMA Mode)

Date: 25.JAN.2019 12:14:24

2 GHz – 20 GHz (WCDMA Mode)

AWS Band (Part 27)

30 MHz – 1 GHz (WCDMA Mode)

Date: 25.JAN.2019 13:01:15

1 GHz – 2 GHz (WCDMA Mode)

Date: 25.JAN.2019 12:59:13

2 GHz – 20 GHz (WCDMA Mode)

Date: 25.JAN.2019 13:02:05

LTE Band 2:

30 MHz - 1 GHz (1.4 MHz, Middle Channel)

Date: 24.JAN.2019 20:42:50

1 GHz – 2 GHz (1.4 MHz, Middle Channel)

2 GHz - 20 GHz (1.4 MHz, Middle Channel)

Date: 24.JAN.2019 20:31:15

30 MHz - 1 GHz (3.0 MHz, Middle Channel)

1 GHz - 2 GHz (3.0 MHz, Middle Channel)

Date: 24.JAN.2019 20:39:20

2 GHz - 20 GHz (3.0 MHz, Middle Channel)

30 MHz - 1 GHz (5.0 MHz, Middle Channel)

Date: 24.JAN.2019 20:43:30

1 GHz – 2 GHz (5.0 MHz, Middle Channel)

2 GHz - 20 GHz (5.0 MHz, Middle Channel)

Date: 24.JAN.2019 20:32:03

30 MHz - 1 GHz (10.0 MHz, Middle Channel)

1 GHz - 2 GHz (10.0 MHz, Middle Channel)

Date: 24.JAN.2019 20:34:47

2 GHz - 20 GHz (10.0 MHz, Middle Channel)

30 MHz - 1 GHz (15.0 MHz, Middle Channel)

Date: 24.JAN.2019 20:43:57

1 GHz – 2 GHz (15.0 MHz, Middle Channel)

2 GHz - 20 GHz (15.0 MHz, Middle Channel)

Date: 24.JAN.2019 20:32:29

30 MHz - 1 GHz (20.0 MHz, Middle Channel)

1 GHz - 2 GHz (20.0 MHz, Middle Channel)

Date: 24.JAN.2019 20:33:24

2 GHz -20 GHz (20.0 MHz, Middle Channel)

LTE Band 4:

30 MHz - 1 GHz (1.4 MHz, Middle Channel)

Date: 24.JAN.2019 20:22:54

1 GHz – 2 GHz (1.4 MHz, Middle Channel)

2 GHz - 20 GHz (1.4 MHz, Middle Channel)

Date: 24.JAN.2019 20:28:43

30 MHz - 1 GHz (3.0 MHz, Middle Channel)

1 GHz - 2 GHz (3.0 MHz, Middle Channel)

Date: 24.JAN.2019 20:27:08

2 GHz - 20 GHz (3.0 MHz, Middle Channel)

30 MHz - 1 GHz (5.0 MHz, Middle Channel)

Date: 24.JAN.2019 20:23:32

1 GHz – 2 GHz (5.0 MHz, Middle Channel)

2 GHz - 20 GHz (5.0 MHz, Middle Channel)

Date: 24.JAN.2019 20:29:09

30 MHz - 1 GHz (10.0 MHz, Middle Channel)

1 GHz - 2 GHz (10.0 MHz, Middle Channel)

Date: 24.JAN.2019 20:25:36

2 GHz - 20 GHz (10.0 MHz, Middle Channel)

30 MHz - 1 GHz (15.0 MHz, Middle Channel)

Date: 24.JAN.2019 20:24:00

1 GHz – 2 GHz (15.0 MHz, Middle Channel)

2 GHz - 20 GHz (15.0 MHz, Middle Channel)

Date: 24.JAN.2019 20:29:36

30 MHz - 1 GHz (20.0 MHz, Middle Channel)

1 GHz - 2 GHz (20.0 MHz, Middle Channel)

Date: 24.JAN.2019 20:24:51

2 GHz – 20 GHz (20.0 MHz, Middle Channel)

LTE Band 5:

30 MHz - 1 GHz (1.4 MHz, Middle Channel)

Date: 24.JAN.2019 20:19:29

1 GHz – 10 GHz (1.4 MHz, Middle Channel)

30 MHz - 1 GHz (3.0 MHz, Middle Channel)

Date: 24.JAN.2019 20:20:03

1 GHz – 10 GHz (3.0 MHz, Middle Channel)

30 MHz - 1 GHz (5.0 MHz, Middle Channel)

Date: 24.JAN.2019 20:20:43

1 GHz – 10 GHz (5.0 MHz, Middle Channel)

30 MHz - 1 GHz (10.0 MHz, Middle Channel)

Date: 24.JAN.2019 20:21:25

1 GHz – 10 GHz (10.0 MHz, Middle Channel)

LTE Band 7:

30 MHz - 1 GHz (5.0 MHz, Middle Channel)

Date: 24.JAN.2019 20:08:08

1 GHz – 3.0 GHz (5.0 MHz, Middle Channel)

3.0 GHz - 26 GHz (5.0 MHz, Middle Channel)

Date: 24.JAN.2019 20:13:26

30 MHz - 1.0 GHz (10.0 MHz, Middle Channel)

1 GHz - 3 GHz (10.0 MHz, Middle Channel)

Date: 24.JAN.2019 20:10:05

3 GHz - 26 GHz (10.0 MHz, Middle Channel)

30 MHz - 1 GHz (15.0 MHz, Middle Channel)

Date: 24.JAN.2019 20:06:58

1 GHz – 3 GHz (15.0 MHz, Middle Channel)

3 GHz - 26 GHz (15.0 MHz, Middle Channel)

Date: 24.JAN.2019 20:12:47

30 MHz - 1 GHz (20.0 MHz, Middle Channel)

1 GHz - 3 GHz (20.0 MHz, Middle Channel)

Date: 24.JAN.2019 20:11:34

3 GHz - 26 GHz (20.0 MHz, Middle Channel)

FCC § 2.1053; § 22.917 (a); § 24.238 (a); §27.53 (h)(m) SPURIOUS RADIATED EMISSIONS

Applicable Standard

FCC § 2.1053, §22.917(a) and § 24.238(a) and § 27.53(h)(m)

Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the receiving antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to tenth harmonic of the fundamental frequency was investigated.

Test Data

Environmental Conditions

Temperature:	25 ℃
Relative Humidity:	50 %
ATM Pressure:	101.0 kPa

The testing was performed by Jason Liu on 2019-01-25.

EUT operation mode: Transmitting

Pre-scan with Low, Middle and High channel, the worst case as below:

30 MHz ~ **10 GHz**:

Cellular Band (Part 22H)

	Receiver Reading (dBµV)	Turntable Angle Degree	Rx An	tenna	Substituted			Absolute	FCC Part 22H	
Frequency (MHz)			Height (m)	Polar (H/V)	Level (dBm)	Cable Loss (dB)	Antenna Gain (dBi)	Level (dBm)	Limit (dBm)	Margin (dB)
GSM Mode, middle channel										
263.18	31.75	137	2.0	Н	-65.3	0.32	0	-65.62	-13	52.62
263.18	30.98	164	1.5	V	-66.0	0.32	0	-66.32	-13	53.32
1673.20	47.74	140	1.8	Н	-59.3	1.30	8.90	-51.70	-13	38.70
1673.20	49.91	55	1.2	V	-56.6	1.30	8.90	-49.00	-13	36.00
2509.80	57.49	77	1.4	Н	-46.0	2.60	10.20	-38.40	-13	25.40
2509.80	57.75	321	1.8	V	-45.2	2.60	10.20	-37.60	-13	24.60
3346.40	64.50	81	1.0	Н	-35.8	1.50	11.70	-25.60	-13	12.60
3346.40	63.47	154	1.2	V	-36.9	1.50	11.70	-26.70	-13	13.70
			WCI	OMA Mo	de, Middl	e channel				
263.18	32.05	3	1.9	Н	-65.0	0.32	0	-65.32	-13	52.32
263.18	31.47	326	2.1	V	-65.5	0.32	0	-65.82	-13	52.82
1673.20	64.80	118	1.5	Н	-42.3	1.30	8.90	-34.70	-13	21.70
1673.20	64.32	20	2.4	V	-42.2	1.30	8.90	-34.60	-13	21.60
2509.80	66.08	180	2.4	Н	-37.4	2.60	10.20	-29.80	-13	16.80
2509.80	64.77	49	1.8	V	-38.1	2.60	10.20	-30.50	-13	17.50
3346.40	55.37	351	2.4	Н	-45.0	1.50	11.70	-34.80	-13	21.80
3346.40	56.08	155	1.4	V	-44.3	1.50	11.70	-34.10	-13	21.10

30 MHz ~ 20 GHz:

PCS Band (Part 24E)

Frequency (MHz)	Receiver Reading (dBµV)	Turntable Angle Degree	Rx Antenna			Substitut	ed	Absolute	FCC Part 24E	
			Height (m)	Polar (H/V)	Level (dBm)	Cable Loss (dB)	Antenna Gain (dB)	Level (dBm)	Limit (dBm)	Margin (dB)
	GSM Mode, middle channel									
263.18	32.18	188	2.3	Н	-64.8	0.32	0	-65.12	-13	52.12
263.18	31.47	336	1.6	V	-65.5	0.32	0	-65.82	-13	52.82
3760.00	45.88	193	1.5	Н	-55.3	1.50	11.80	-45.00	-13	32.00
3760.00	46.14	46	1.2	V	-54.6	1.50	11.80	-44.30	-13	31.30
			WCDMA	Mode E	Band II, M	iddle chai	nnel			
263.18	32.00	150	1.1	Н	-65.0	0.32	0	-65.32	-13	52.32
263.18	31.26	171	1.1	V	-65.7	0.32	0	-66.02	-13	53.02
3760.00	44.13	28	2.1	Н	-57.1	1.50	11.80	-46.80	-13	33.80
3760.00	44.32	239	2.3	V	-56.4	1.50	11.80	-46.10	-13	33.10

30 MHz ~ 20 GHz:

AWS Band (Part 27)

Frequency (MHz)	Receiver Reading (dBµV)	Turntable Angle Degree	Rx Antenna		Substituted			Absolute	FCC Part 27	
			Height (m)	Polar (H/V)	Level (dBm)	Cable Loss (dB)	Antenna Gain (dBi)	Level (dBm)	Limit (dBm)	Margin (dB)
	WCDMA Mode Band IV, Middle channel									
263.18	32.45	42	1.6	Н	-64.6	0.32	0	-64.92	-13	51.92
263.18	31.18	180	1.6	V	-65.8	0.32	0	-66.12	-13	53.12
3465.20	65.35	303	2.3	Н	-35.0	1.50	12.00	-24.50	-13	11.50
3465.20	64.46	7	2.2	V	-36.7	1.50	12.00	-26.20	-13	13.20

LTE Band: (Pre-scan with all the bandwidth, and worse case as below)

Frequency	Receiver	Turntable	Rx Ant	tenna	Substituted			Absolute		
(MHz)	Reading (dBμV)	Angle Degree	Height (m)	Polar (H/V)	Level (dBm)	Cable Loss (dB)	Antenna Gain (dBi)	Level (dBm)	Limit (dBm)	Margin (dB)
					Band 2					
Test frequency range:30 MHz ~ 20 GHz										
263.18	32.67	72	1.1	Н	-64.3	0.32	0	-64.62	-13	51.62
263.18	31.53	285	1.0	V	-65.5	0.32	0	-65.82	-13	52.82
3760.00	44.53	68	1.6	Н	-56.7	1.50	11.80	-46.40	-13	33.40
3760.00	44.21	25	1.2	V	-56.5	1.50	11.80	-46.20	-13	33.20
					Band 4					
			Test fro	equency	range:30 N	/IHz ~ 18 (GHz			
263.18	32.81	155	2.4	Н	-64.2	0.32	0	-64.52	-13	51.52
263.18	31.74	132	1.4	V	-65.3	0.32	0	-65.62	-13	52.62
3465.00	55.09	357	2.1	Н	-45.3	1.50	12.00	-34.80	-13	21.80
3465.00	53.60	102	1.6	V	-47.5	1.50	12.00	-37.00	-13	24.00
					Band 5					
			Test fro	equency	range:30 N	/IHz ~ 10 C	GHz			
263.18	32.16	188	1.8	Н	-64.8	0.32	0	-65.12	-13	52.12
263.18	31.47	9	2.4	V	-65.5	0.32	0	-65.82	-13	52.82
1673.00	54.15	190	1.7	Н	-52.9	1.30	8.90	-45.30	-13	32.30
1673.00	54.06	32	2.4	V	-52.4	1.30	8.90	-44.80	-13	31.80
2509.50	54.61	290	1.3	Н	-48.9	2.60	10.20	-41.30	-13	28.30
2509.50	56.27	147	1.8	V	-46.6	2.60	10.20	-39.00	-13	26.00
3346.00	45.23	67	2.5	Н	-55.1	1.50	11.70	-44.90	-13	31.90
3346.00	44.55	348	2.2	V	-55.8	1.50	11.70	-45.60	-13	32.60
	Band 7									
Test frequency range:30 MHz ~ 26 GHz										
223.18	52.36	228	1.5	Н	-44.6	0.32	0	-44.92	-25	19.92
223.18	51.02	110	2.4	V	-46.0	0.32	0	-46.32	-25	21.32
5070.00	44.32	354	2.2	Н	-53.5	1.60	12.10	-43.00	-25	18.00
5070.00	44.06	103	1.6	V	-53.8	1.60	12.10	-43.30	-25	18.30

Note:

¹⁾ Absolute Level = Substituted Level - Cable loss + Antenna Gain

²⁾ Margin = Limit- Absolute Level

FCC § 22.917 (a); § 24.238 (a); §27.53 (h)(m) - BAND EDGES

Applicable Standard

According to § 22.917(a), the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB.

According to $\S24.238(a)$, the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB.

According to FCC §27.53 (h)(m), the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB.

Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

The center of the spectrum analyzer was set to block edge frequency

Test Data

Environmental Conditions

Temperature:	25 ℃
Relative Humidity:	50 %
ATM Pressure:	101.0 kPa

The testing was performed by Jason Liu on 2019-01-24 and 2019-01-25.

EUT operation mode: Transmitting

Test Result: Compliance. Please refer to the following plots.

Report No.: RSZ190123004-00D

Cellular Band, Left Band Edge for GSM (GMSK) Mode

Date: 25.JAN.2019 08:27:14

Cellular Band, Right Band Edge for GSM (GMSK) Mode

Date: 25.JAN.2019 08:28:16

Cellular Band, Left Band Edge for EDGE Mode

Date: 25.JAN.2019 08:50:51

Cellular Band, Right Band Edge for EDGE Mode

Date: 25.JAN.2019 08:51:36

Cellular Band, Left Band Edge for WCDMA (BPSK) Mode

Date: 25.JAN.2019 13:24:29

Cellular Band, Right Band Edge for WCDMA (BPSK) Mode

Date: 25.JAN.2019 13:23:54

Cellular Band, Left Band Edge for HSDPA (16QAM) Mode

Date: 25.JAN.2019 13:22:05

Cellular Band, Right Band Edge for HSDPA (16QAM) Mode

Date: 25.JAN.2019 13:22:49

Cellular Band, Left Band Edge for HSUPA (BPSK) Mode

Date: 25.JAN.2019 13:16:41

Cellular Band, Right Band Edge for HSUPA (BPSK) Mode

Date: 25.JAN.2019 13:15:53

PCS Band, Left Band Edge for GSM (GMSK) Mode

Date: 25.JAN.2019 09:39:39

PCS Band, Right Band Edge for GSM (GMSK) Mode

Date: 25.JAN.2019 09:38:39

PCS Band, Left Band Edge for EDGE Mode

Date: 25.JAN.2019 09:47:37

PCS Band, Right Band Edge for EDGE Mode

Date: 25.JAN.2019 09:46:41

PCS Band, Left Band Edge for WCDMA (BPSK) Mode

Date: 25.JAN.2019 10:52:32

PCS Band, Right Band Edge for WCDMA (BPSK) Mode

Date: 25.JAN.2019 10:51:59

PCS Band, Left Band Edge for HSDPA (16QAM) Mode

Date: 25.JAN.2019 12:21:00

PCS Band, Right Band Edge for HSDPA (16QAM) Mode

Date: 25.JAN.2019 12:31:27

PCS Band, Left Band Edge for HSUPA (BPSK) Mode

Date: 25.JAN.2019 12:49:29

PCS Band, Right Band Edge for HSUPA (BPSK) Mode

Date: 25.JAN.2019 12:50:11

AWS Band, Left Band Edge for WCDMA (BPSK) Mode

Date: 25.JAN.2019 12:53:41

AWS Band, Right Band Edge for WCDMA (BPSK) Mode

Date: 25.JAN.2019 12:52:54

AWS Band, Left Band Edge for HSDPA (16QAM) Mode

Date: 25.JAN.2019 13:06:18

AWS Band, Right Band Edge for HSDPA (16QAM) Mode

Date: 25.JAN.2019 13:07:11

AWS Band, Left Band Edge for HSUPA (BPSK) Mode

Date: 25.JAN.2019 13:12:46

AWS Band, Right Band Edge for HSUPA (BPSK) Mode

Date: 25.JAN.2019 13:14:19

Band 2:

Date: 24.JAN.2019 20:57:28

QPSK (1.4 MHz, FULL RB) - Right Band Edge

Date: 24.JAN.2019 20:59:05

16-QAM (1.4 MHz, FULL RB) - Left Band Edge

Date: 24.JAN.2019 20:49:47

16-QAM (1.4 MHz, FULL RB) - Right Band Edge

Date: 24.JAN.2019 21:00:20

QPSK (3.0 MHz, FULL RB) - Left Band Edge

Date: 24.JAN.2019 21:03:51

QPSK (3.0 MHz, FULL RB) - Right Band Edge

Date: 24.JAN.2019 21:03:07

16-QAM (3.0 MHz, FULL RB) - Left Band Edge

Date: 24.JAN.2019 21:04:32

16-QAM (3.0 MHz, FULL RB) - Right Band Edge

Date: 24.JAN.2019 21:01:49

QPSK (5.0 MHz, FULL RB) - Left Band Edge

Date: 24.JAN.2019 21:05:34

QPSK (5.0 MHz, FULL RB) - Right Band Edge

Date: 24.JAN.2019 21:09:51

16-QAM (5.0 MHz, FULL RB) - Left Band Edge

Date: 24.JAN.2019 21:07:09

16-QAM (5.0 MHz, FULL RB) - Right Band Edge

Date: 24.JAN.2019 21:08:08

QPSK (10.0 MHz, FULL RB) - Left Band Edge

Date: 24.JAN.2019 21:28:42

QPSK (10.0 MHz, FULL RB) - Right Band Edge

Date: 24.JAN.2019 21:27:32

16-QAM (10.0 MHz, FULL RB) - Left Band Edge

Date: 24.JAN.2019 21:29:09

16-QAM (10.0 MHz, FULL RB) - Right Band Edge

Date: 24.JAN.2019 21:26:50

QPSK (15.0 MHz, FULL RB) - Left Band Edge

Date: 24.JAN.2019 21:32:04

QPSK (15.0 MHz, FULL RB) - Right Band Edge

Date: 24.JAN.2019 21:34:32

16-QAM (15.0 MHz, FULL RB) - Left Band Edge

Date: 24.JAN.2019 21:31:24

16-QAM (15.0 MHz, FULL RB) - Right Band Edge

Date: 24.JAN.2019 21:35:22

QPSK (20.0 MHz, FULL RB) - Left Band Edge

Date: 24.JAN.2019 21:43:29

QPSK (20.0 MHz, FULL RB) - Right Band Edge

Date: 24.JAN.2019 21:44:15

16-QAM (20.0 MHz, FULL RB) - Left Band Edge

Date: 24.JAN.2019 21:37:54

16-QAM (20.0 MHz, FULL RB) - Right Band Edge

Date: 24.JAN.2019 21:45:06

Band 4:

Date: 24.JAN.2019 21:49:15

QPSK (1.4 MHz, FULL RB) - Right Band Edge

Date: 24.JAN.2019 21:55:07

16-QAM (1.4 MHz, FULL RB) - Left Band Edge

Date: 24.JAN.2019 21:51:11

16-QAM (1.4 MHz, FULL RB) - Right Band Edge

Date: 24.JAN.2019 21:52:01

QPSK (3.0 MHz, FULL RB) - Left Band Edge

Date: 24.JAN.2019 21:59:05

QPSK (3.0 MHz, FULL RB) - Right Band Edge

Date: 24.JAN.2019 22:01:36

16-QAM (3.0 MHz, FULL RB) - Left Band Edge

Date: 24.JAN.2019 21:56:12

16-QAM (3.0 MHz, FULL RB) - Right Band Edge

Date: 24.JAN.2019 22:02:09

QPSK (5.0 MHz, FULL RB) - Left Band Edge

Date: 24.JAN.2019 22:07:56

QPSK (5.0 MHz, FULL RB) - Right Band Edge

Date: 24.JAN.2019 22:03:33

16-QAM (5.0 MHz, FULL RB) - Left Band Edge

Date: 24.JAN.2019 22:06:13

16-QAM (5.0 MHz, FULL RB) - Right Band Edge

Date: 24.JAN.2019 22:04:44

QPSK (10.0 MHz, FULL RB) - Left Band Edge

Date: 24.JAN.2019 22:10:18

QPSK (10.0 MHz, FULL RB) - Right Band Edge

Date: 24.JAN.2019 22:10:54

16-QAM (10.0 MHz, FULL RB) - Left Band Edge

Date: 24.JAN.2019 22:09:35

16-QAM (10.0 MHz, FULL RB) - Right Band Edge

Date: 24.JAN.2019 22:11:53

QPSK (15.0 MHz, FULL RB) - Left Band Edge

Date: 24.JAN.2019 22:15:55

QPSK (15.0 MHz, FULL RB) - Right Band Edge

Date: 24.JAN.2019 22:15:13

16-QAM (15.0 MHz, FULL RB) - Left Band Edge

Date: 24.JAN.2019 22:16:57

16-QAM (15.0 MHz, FULL RB) - Right Band Edge

Date: 24.JAN.2019 22:12:56

QPSK (20.0 MHz, FULL RB) - Left Band Edge

Date: 24.JAN.2019 22:19:40

QPSK (20.0 MHz, FULL RB) - Right Band Edge

Date: 24.JAN.2019 22:20:36

16-QAM (20.0 MHz, FULL RB) - Left Band Edge

Date: 24.JAN.2019 22:18:33

16-QAM (20.0 MHz, FULL RB) - Right Band Edge

Date: 24.JAN.2019 22:21:05

Band 5:

Date: 24.JAN.2019 22:23:39

QPSK (1.4 MHz, FULL RB) - Right Band Edge

Date: 24.JAN.2019 22:26:45

16-QAM (1.4 MHz, FULL RB) - Left Band Edge

Date: 24.JAN.2019 22:24:54

16-QAM (1.4 MHz, FULL RB) - Right Band Edge

Date: 24.JAN.2019 22:25:43

QPSK (3.0 MHz, FULL RB) - Left Band Edge

Date: 24.JAN.2019 22:30:38

QPSK (3.0 MHz, FULL RB) - Right Band Edge

Date: 24.JAN.2019 22:29:19

16-QAM (3.0 MHz, FULL RB) - Left Band Edge

Date: 24.JAN.2019 22:31:40

16-QAM (3.0 MHz, FULL RB) - Right Band Edge

Date: 24.JAN.2019 22:28:29

QPSK (5.0 MHz, FULL RB) - Left Band Edge

Date: 24.JAN.2019 22:32:41

QPSK (5.0 MHz, FULL RB) - Right Band Edge

Date: 24.JAN.2019 22:35:06

16-QAM (5.0 MHz, FULL RB) - Left Band Edge

Date: 24.JAN.2019 22:33:25

16-QAM (5.0 MHz, FULL RB) - Right Band Edge

Date: 24.JAN.2019 22:34:30

QPSK (10.0 MHz, FULL RB) - Left Band Edge

Date: 24.JAN.2019 22:39:24

QPSK (10.0 MHz, FULL RB) - Right Band Edge

Date: 24.JAN.2019 22:38:22

16-QAM (10.0 MHz, FULL RB) - Left Band Edge

Date: 24.JAN.2019 22:40:48

16-QAM (10.0 MHz, FULL RB) - Right Band Edge

Date: 24.JAN.2019 22:37:26

Band 7:

Date: 24.JAN.2019 22:42:12

QPSK (5.0 MHz, FULL RB) - Right Band Edge

Date: 24.JAN.2019 22:46:18

16-QAM (5.0 MHz, FULL RB) - Left Band Edge

Date: 24.JAN.2019 22:43:36

16-QAM (5.0 MHz, FULL RB) - Right Band Edge

Date: 24.JAN.2019 22:44:38

QPSK (10.0 MHz, FULL RB) - Left Band Edge

Date: 24.JAN.2019 22:49:32

QPSK (10.0 MHz, FULL RB) - Right Band Edge

Date: 24.JAN.2019 22:48:44

16-QAM (10.0 MHz, FULL RB) - Left Band Edge

Date: 24.JAN.2019 22:50:02

16-QAM (10.0 MHz, FULL RB) - Right Band Edge

Date: 24.JAN.2019 22:47:34

QPSK (15.0 MHz, FULL RB) - Left Band Edge

Date: 24.JAN.2019 22:52:24

QPSK (15.0 MHz, FULL RB) - Right Band Edge

Date: 24.JAN.2019 22:53:18

16-QAM (15.0 MHz, FULL RB) - Left Band Edge

Date: 24.JAN.2019 22:51:46

16-QAM (15.0 MHz, FULL RB) - Right Band Edge

Date: 24.JAN.2019 22:54:28

QPSK (20.0 MHz, FULL RB) - Left Band Edge

Date: 24.JAN.2019 22:56:36

QPSK (20.0 MHz, FULL RB) - Right Band Edge

Date: 24.JAN.2019 22:56:00

16-QAM (20.0 MHz, FULL RB) - Left Band Edge

Date: 24.JAN.2019 22:57:43

16-QAM (20.0 MHz, FULL RB) - Right Band Edge

Date: 24.JAN.2019 22:55:17

FCC § 2.1055; § 22.355; § 24.235; §27.54 - FREQUENCY STABILITY

Applicable Standard

FCC § 2.1055, §22.355, §24.235 and & §27.54.

According to FCC §2.1055, the frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.

According to §22.355, the carrier frequency of each transmitter in the Public Mobile Services must be maintained within the tolerances given in Table below:

Frequency Tolerar	ice for T	ransmitters in	1 the	Public	Mobile Services
-------------------	-----------	----------------	-------	--------	-----------------

Frequency Range (MHz)	Base, fixed (ppm)	Mobile ≤3 watts (ppm)	Mobile > 3 watts (ppm)
25 to 50	20.0	20.0	50.0
50 to 450	5.0	5.0	50.0
450 to 512	2.5	5.0	5.0
821 to 896	1.5	2.5	2.5
928 to 929.	5.0	N/A	N/A
929 to 960.	1.5	N/A	N/A
2110 to 2220	10.0	N/A	N/A

According to §24.235, the frequency stability shall be sufficient to ensure that the fundamental emissions stays within the authorized frequency block.

Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to communication test set via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the communication test set.

Frequency Stability vs. Voltage: For hand carried, battery powered equipment; reduce primary supply voltage to the battery operating end point which shall be specified by the manufacturer.

Test Data

Environmental Conditions

Temperature:	25 ℃
Relative Humidity:	50 %
ATM Pressure:	101.0 kPa

The testing was performed by Jason Liu on 2019-01-25.

EUT operation mode: Transmitting

Test Result: Compliance. Please refer to the following tables.

Cellular Band (Part 22H)

GSM Mode

	Midd	lle Channel, f _o =836.6M	IHz	_
Temperature (°C)	Voltage Supplied (V _{DC})	Frequency Error (Hz)	Frequency Error (ppm)	Limit (ppm)
-30		2	0.0024	2.5
-20		1	0.0012	2.5
-10		3	0.0036	2.5
0		1	0.0012	2.5
10	3.85	-2	-0.0024	2.5
20		2	0.0024	2.5
30		2	0.0024	2.5
40		1	0.0012	2.5
50		0	0.0000	2.5
20	V min.= 3.6	-1	-0.0012	2.5
20	V max.= 4.35	3	0.0036	2.5

EDGE Mode

	Middle Channel, f _o =836.6MHz					
Temperature (°C)	Voltage Supplied (V _{DC})	Frequency Error (Hz)	Frequency Error (ppm)	Limit (ppm)		
-30		6	0.0072	2.5		
-20		5	0.0060	2.5		
-10		4	0.0048	2.5		
0		4	0.0048	2.5		
10	3.85	3	0.0036	2.5		
20		5	0.0060	2.5		
30		4	0.0048	2.5		
40		5	0.0060	2.5		
50		3	0.0036	2.5		
20	V min.= 3.6	6	0.0072	2.5		
20	V max.= 4.35	4	0.0048	2.5		

Report No.: RSZ190123004-00D

	Middle Channel, f _o =836.6MHz					
Temperature (°C)	Voltage Supplied (V _{DC})	Frequency Error (Hz)	Frequency Error (ppm)	Limit (ppm)		
-30		-8	-0.0096	2.5		
-20		-9	-0.0108	2.5		
-10		-10	-0.0120	2.5		
0		-9	-0.0108	2.5		
10	3.85	-8	-0.0096	2.5		
20		-9	-0.0108	2.5		
30		-9	-0.0108	2.5		
40		-7	-0.0084	2.5		
50		-8	-0.0096	2.5		
20	V min.= 3.6	-7	-0.0084	2.5		
20	V max.= 4.35	-8	-0.0096	2.5		

PCS Band (Part 24E)

GSM Mode

	Middle Channel, f _o =1880.0 MHz					
Temperature (°C)	Voltage Supplied (V _{DC})	Frequency Error (Hz)	Frequency Error (ppm)	Result		
-30		29	0.0154	pass		
-20		25	0.0133	pass		
-10	3.85	28	0.0149	pass		
0		26	0.0138	pass		
10		27	0.0144	pass		
20		28	0.0149	pass		
30		28	0.0149	pass		
40		29	0.0154	pass		
50		27	0.0144	pass		
	V min.= 3.6	26	0.0138	pass		
20	V max.= 4.35	28	0.0149	pass		

	Middle Channel, f _o =1880.0 MHz					
Temperature (°C)	Voltage Supplied (V _{DC})	Frequency Error (Hz)	Frequency Error (ppm)	Limit (ppm)		
-30		27	0.0144	pass		
-20		26	0.0138	pass		
-10		27	0.0144	pass		
0		29	0.0154	pass		
10	3.85	25	0.0133	pass		
20		28	0.0149	pass		
30		26	0.0138	pass		
40		27	0.0144	pass		
50		25	0.0133	pass		
20	V min.= 3.6	26	0.0138	pass		
20	V max.= 4.35	27	0.0144	pass		

WCDMA Mode

	Middle Channel, f _o =1880.0 MHz						
Temperature (°C)	Voltage Supplied (V _{DC})	Frequency Error (Hz)	Frequency Error (ppm)	Result			
-30		-13	-0.0069	pass			
-20		-12	-0.0064	pass			
-10	3.85	-11	-0.0059	pass			
0		-14	-0.0074	pass			
10		-13	-0.0069	pass			
20		-14	-0.0074	pass			
30		-10	-0.0053	pass			
40		-11	-0.0059	pass			
50		-12	-0.0064	pass			
20	V min.= 3.6	-13	-0.0069	pass			
20	V max.= 4.35	-10	-0.0053	pass			

AWS Band (Part 27)

WCDMA Mode

Temperature (°C)	Power Supplied (V_{DC})	F _L (MHz)	F _H (MHz)	F _L Limit (MHz)	F _H Limit (MHz)
-30		1710.0412	1754.8753	1710.0000	1755.0000
-20		1710.0554	1754.8080	1710.0000	1755.0000
-10		1710.0462	1754.7575	1710.0000	1755.0000
0		1710.0135	1754.7532	1710.0000	1755.0000
10	3.85	1710.9845	1754.6890	1710.0000	1755.0000
20		1710.9839	1754.0160	1710.0000	1755.0000
30		1710.0862	1754.8386	1710.0000	1755.0000
40		1710.0846	1754.7870	1710.0000	1755.0000
50		1710.0364	1754.7608	1710.0000	1755.0000
20	V min.= 3.6	1710.9913	1754.7250	1710.0000	1755.0000
20	V max.= 4.35	1710.9754	1754.6812	1710.0000	1755.0000

LTE: QPSK:

Band 2:

	10.0 MHz Middle Channel, f _o =1880MHz						
Temperature (°C)	Voltage Supplied (V _{DC})	Frequency Error (Hz)	Frequency Error (ppm)	Result			
-30		-14	-0.0074	pass			
-20		-15	-0.0080	pass			
-10		-12	-0.0064	pass			
0	3.85	-10	-0.0053	pass			
10		-8	-0.0043	pass			
20		-7	-0.0037	pass			
30		-5	-0.0027	pass			
40		-3	-0.0016	pass			
50		-2	-0.0011	pass			
20	V min.= 3.6	3	0.0016	pass			
20	V max.= 4.35	4	0.0021	pass			

Band 4:

	10 MHz Bandwidth						
Temperature (°C)	Power Supplied (V _{DC})	F _L (MHz)	F _H (MHz)	F _L Limit (MHz)	F _H Limit (MHz)		
-30		1710.4283	1754.5508	1710	1755		
-20		1710.2239	1754.8091	1710	1755		
-10		1710.1619	1754.0946	1710	1755		
0		1710.1013	1754.2444	1710	1755		
10	3.85	1710.7814	1754.5399	1710	1755		
20		1710.2290	1754.1379	1710	1755		
30		1710.3131	1754.6892	1710	1755		
40		1710.4963	1754.5075	1710	1755		
50		1710.5052	1754.8710	1710	1755		
20	V min.= 3.6	1710.9263	1754.1857	1710	1755		
20	V max.= 4.35	1710.1197	1754.2390	1710	1755		

Ban	d	5	:

10.0 MHz Middle Channel, f ₀ =836.5 MHz							
Temperature (°C)	Voltage Supplied (V _{DC})	Frequency Error (Hz)	Frequency Error (ppm)	Limit (ppm)			
-30		-18	-0.0215	2.5			
-20		-14	-0.0167	2.5			
-10		-11	-0.0132	2.5			
0		-9	-0.0108	2.5			
10	3.85	-8	-0.0096	2.5			
20		-5	-0.0060	2.5			
30		-2	-0.0024	2.5			
40		-4	-0.0048	2.5			
50		-1	-0.0012	2.5			
20	V min.= 3.6	4	0.0048	2.5			
	V max.= 4.35	6	0.0072	2.5			

Band 7:

10 MHz Bandwidth						
Temperature (°C)	Power Supplied (V _{DC})	F _L (MHz)	F _H (MHz)	F _L Limit (MHz)	F _H Limit (MHz)	
-30		2500.1259	2569.3883	2500	2570	
-20		2500.0470	2569.5153	2500	2570	
-10		2500.3178	2569.1574	2500	2570	
0		2500.3427	2569.1857	2500	2570	
10	3.85	2500.2667	2569.1891	2500	2570	
20		2500.1126	2569.5318	2500	2570	
30		2500.3168	2569.2985	2500	2570	
40		2500.4074	2569.6392	2500	2570	
50		2500.5500	2569.5658	2500	2570	
20	V min.= 3.6	2500.5425	2569.5352	2500	2570	
	V max.= 4.35	2500.5309	2569.5453	2500	2570	

16QAM:

Band 2:

10.0 MHz Middle Channel, f _o =1880MHz						
Temperature (°C)	Voltage Supplied (V _{DC})	Frequency Error (Hz)	Frequency Error (ppm)	Result		
-30		-13	-0.0069	pass		
-20		-11	-0.0059	pass		
-10		-8	-0.0043	pass		
0	3.85	-5	-0.0027	pass		
10		-4	-0.0021	pass		
20		-9	-0.0048	pass		
30		-6	-0.0032	pass		
40		-3	-0.0016	pass		
50		-1	-0.0005	pass		
20	V min.= 3.6		0.0021	pass		
20	V max.= 4.35	7	0.0037	pass		

Band 4:

10 MHz Bandwidth						
Temperature (°C)	Power Supplied (V _{DC})	F _L (MHz)	F _H (MHz)	F _L Limit (MHz)	F _H Limit (MHz)	
-30		1710.8836	1754.2775	1710	1755	
-20		1710.1912	1754.1508	1710	1755	
-10		1710.8623	1754.5581	1710	1755	
0		1710.4389	1754.9940	1710	1755	
10	3.85	1710.2817	1754.5593	1710	1755	
20		1710.2716	1754.5987	1710	1755	
30		1710.7459	1754.1345	1710	1755	
40		1710.3211	1754.8977	1710	1755	
50		1710.7643	1754.3778	1710	1755	
V min.= 3.6	V min.= 3.6	1710.7209	1754.4362	1710	1755	
20	V max.= 4.35	1710.6996	1754.4335	1710	1755	

D	а	П	u	Э,

10.0 MHz Middle Channel, f _o =836.5 MHz						
Temperature (°C)	Voltage Supplied (V _{DC})	Frequency Error (Hz)	Frequency Error (ppm)	Limit (ppm)		
-30		-17	-0.0203	2.5		
-20		-16	-0.0191	2.5		
-10		-12	-0.0143	2.5		
0		-8	-0.0096	2.5		
10	3.85	-5	-0.0060	2.5		
20		-4	-0.0048	2.5		
30		-2	-0.0024	2.5		
40		-1	-0.0012	2.5		
50		2	0.0024	2.5		
20	V min.= 3.6	5	0.0060	2.5		
20	V max.= 4.35	8	0.0096	2.5		

Band 7:

10 MHz Bandwidth					
Temperature (°C)	$\begin{array}{c} Power \\ Supplied \\ (V_{DC}) \end{array}$	F _L (MHz)	F _H (MHz)	F _L Limit (MHz)	F _H Limit (MHz)
-30		2500.4654	2569.5212	2500	2570
-20		2500.4725	2569.4989	2500	2570
-10		2500.4800	2569.4851	2500	2570
0		2500.4587	2569.4850	2500	2570
10	3.85	2500.4758	2569.5045	2500	2570
20		2500.4676	2569.5388	2500	2570
30		2500.4695	2569.5093	2500	2570
40		2500.4619	2569.4905	2500	2570
50		2500.4694	2569.5007	2500	2570
V min.= 3.6	2500.4893	2569.5054	2500	2570	
20	V max.= 4.35	2500.4580	2569.4997	2500	2570

***** END OF REPORT *****