Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

Revisiting Neural Networks for Continual Learning: An Architectural Perspective

Aojun Lu¹, Tao Feng², Hangjie Yuan³, Xiaotian Song¹ and Yanan Sun^{1*}

¹Sichuan University

²Tsinghua University

³Zhejiang University

aojunlu@stu.scu.edu.cn, fengtao.hi@gmail.com, hj.yuan@zju.edu.cn songxt@stu.scu.edu.cn, ysun@scu.edu.cn

https://arxiv.org/pdf/2404.14829

SIN5006 - INTELIGÊNCIA COMPUTACIONAL ENTREGA PARCIAL

NILTON TADASHI ENTA - 12730911 VITOR CAMARGO PINHEIRO - 12693156

ArchCraft | Definição do problema

Apesar dos avanços em Continous Learning (CL), o autor ressalta que há menos atenção dada à análise do papel do design da arquitetura de rede na contribuição da área

ArchCraft | Métodos (Visão Geral)

ArchCraft é um novo método de Neural Architecture Search (NAS).

Focado em Aprendizado Contínuo (CL) para preencher a lacuna entre o design da arquitetura de rede e o CL.

- I. <u>Search Space</u>: Espaço de busca personalizado obtido a partir de **busca empírica** [1].
- II. <u>Friendly Search Strategy</u>: Uma estratégia baseada em algoritmos genéticos para explorar o Search Space [2].

ArchCraft | Métodos (Visão Geral)

ArchCraft | Prometido vs Obtido

Prometido

 Executar o projeto sob a mesma base de dados utilizada pelo autor **Obtido**

EXECUTADO

 Reproduzir o experimento do autor, seguindo os passos descritos no artigo

PARCIAL: Não foi reproduzido a comparação do ArchCarft com outros métodos para a tarefa de classificação

ArchCraft | Dificuldades

- Estudo e entendimento de conceitos e técnicas relacionadas à Redes Neurais
- Entendimento da AlexNet e ResNet
- Entendimento dos benchmarks
- Entendimento do código

ArchCraft | Desenho dos Experimentos

Conjunto de Dados

- CIFAR100
- Incremento de 5 classes (de 100)
 para CL

Medida de Avaliação

- Acurácia Incremental Média (AIA)
- Catastrophic Forgetting
- Benchmark

Seleção de Hiperparametros

- SGD
 - ∘ Ir: 0.01,
 - o momentum: 0.9,
 - dampening: 0,
 - weight_decay: 0.0002,
 - nesterov: False,
 - o maximize: False,
 - o foreach: None,
 - o differentiable: False

ArchCraft | Discussão dos Resultados

Medida	AlexNet	AlexAC	Resultado	
Acurácia Final	49,35	80,76	31,41	63,65 %
Cat. Forgetting	34,86	5,10	-29,77	-85,39 %
Params	6,71	6,28	-0,43	-6,43 %

Network	#P (M)	Method	C100-inc5	C100-inc10		
AlexNet		Upper Bound	81.86	73.07		
		SGD	53.78	56.92		
	6.71	SI	70.3	62.9		
		HAT	71.8	62.8		
		SPG	75.9	67.7		
		WSN	76.9	69.3		
AlexAC-A	6.28↓ 6%	Upper Bound	83.59	75.09		
		SGD	82.38 (+5.48)	73.91 (+4.61)		
AlexAC-B	0.92↓ 86%	Upper Bound	83.58	74.72		
		SGD	79.32 (+2.42)	70.87 (+1.57)		

Table 3: The last accuracy of the AlexAC and AlexNet in *Task IL*. '#P' represents the number of parameters of the network used. **Bolded** indicates best performance. <u>Underline</u> indicates second best.

ArchCraft | Discussão dos Resultados

ArchCraft | Entrega Final e Cronograma

^{*}Delimitar as análises para AlexNet

Arch Craft | Referências

LU, Aojun; FENG, Tao; YUAN, Hangjie; SONG, Xiaotian; SUN, Yanan. Revisiting neural networks for continual learning: an architectural perspective. arXiv:2404.14829, 2024. Disponível em: https://arxiv.org/abs/2404.14829. Acesso em: 30 abr. 2025.

ANEXOS

P S E U D O C O D I G O

DEFINE VARIÁVEIS LOCAIS

```
incremento <- 50
individuo_id <- 0
code <- [profundidade, largura, pool[1, ..., 5], double[1, ..., 5]]
chosen_network <- 'arch_craft'</pre>
```

Algoritmo TrainModel:

```
grad_clip <- 10
epoch <- 2
learning_rate <- 0.01
```

Carrega os dados CIFAR-100 divididos em tarefas incrementais

Se rede == 'arch_craft': importa e instancia arquitetura Net personalizada

Se rede == 'alexnet': importa e instancia versão AlexNet

Mostra o número total de parâmetros do modelo

Inicializa o treinamento com otimizador SGD (Gradiente Descendente Estocástico)

Imprime a função de perda e o otimizador

Inicializa matrizes para armazenar acurácias, perdas, e medidas por tarefa

for tarefa in classes:

Treina o modelo

Salva os resultados

for conjunto in range(tarefas já processadas):

Testa a conjunto

Salva os resultados

Calcula a acurácia média após a tarefa

Calcula forgetting <- sum(acurácia máxima - t[x])/ len(t)

Imprime matriz de acurácia

Calcula e imprime métrica média ap (AIA)

Calcula e imprime acurácia

Retorna a acurácia final

ArchCraft | Métodos (Visão Geral)

ArchCraft é um novo método de Neural Architecture Search (NAS).

Focado em Aprendizado Contínuo (CL) para preencher a lacuna entre o **design da arquitetura de rede e o CL.**

I. <u>Search Space</u>: Espaço de busca personalizado obtido a partir de **busca empírica** [1].

II. <u>Friendly Search Strategy</u>: Uma estratégia baseada em algoritmos genéticos para explorar o Search Space [2].

[1] O ArchCraft ele é projetado com base em **observações empíricas sobre seus componentes arquitetônicos**.

O experimento consistiu com uma ResNet. Partindo de configurações consideradas ótimas para essas tarefas (Incremental Learning (IL)): Max Pooling, Skip connection e Global Avg. Pooling

[2] **Inicialização:** Uma população de arquiteturas é gerada aleatoriamente

Avaliação da performance: durante as iterações evolutivas os indivíduos são avaliados por <u>Acurácia Incremental Média</u> (<u>AIA)</u>.

Geração de novos indivíduos: novas arquiteturas são geradas a partir de dois indivíduos, escolhidos aleatoriamente, chamados de filho. O filho é resultado da mutação dessas duas arquiteturas.

Nova população: É gerada a partir dos filhos com melhor aptidão.

Anexos | Resultados

Anexos | Resultados

Method	Network	#P (M)	C100-inc5		C100-inc10		I100-inc5		I100-inc10		Max Improvement	
			LA	AIA	LA	AIA	LA	AIA	LA	AIA	LA	AIA
Replay -	ResNet-32 ResAC-B	0.46 0.44(\dagger 4%)	39.10 40.45	58.17 59.67	40.02 42.79	58.21 59.99	-	-	-	-	+2.77	+1.78
	ResNet-18 ResAC-A	11.17 8.63↓ 23%	40.04 42.99	58.80 62.52	43.23 46.62	60.42 63.36	36.30 36.78	57.30 57.40	41.00 42.44	59.21 60.07	+3.39	+3.72
iCaRL -	ResNet-32 ResAC-B	0.46 0.44↓ 4%	46.67 47.94	63.47 64.17	48.80 50.11	64.18 64.42	-	-	-	-	+1.31	+0.70
	ResNet-18 ResAC-A	11.17 8.63↓ 23%	47.32 52.6	64.13 68.71	52.77 55.52	66.04 69.62	44.10 45.12	62.36 63.98	50.98 52.46	67.11 68.42	+5.28	+4.58
WA -	ResNet-32 ResAC-B	0.46 0.44↓ 4%	46.95 51.31	62.93 66.39	53.35 54.89	66.61 67.73	-	-	-	-	+4.36	+3.46
	ResNet-18 ResAC-A	11.17 8.63↓ 23%	45.11 53.23	62.06 69.19	56.59 59.79	68.89 71.40	46.06 49.94	62.96 67.20	55.04 58.86	68.60 71.56	+8.12	+7.13
Foster	ResNet-32 ResAC-B	0.46 0.44↓ 4%	47.78 53.50	62.36 67.34	54.36 58.17	67.14 69.44	-	-	-	-	+5.72	+4.98
	ResNet-18 ResAC-A	11.17 8.63↓ 23%	49.03 57.22	61.97 69.99	55.98 61.44	68.38 72.54	53.26 54.32	65.20 66.41	60.58 61.94	69.36 71.16	+8.19	+8.02

Table 5: The CL performance of ArchCraft in Class IL. '#P' represents the number of parameters of the network used.