Analiza wstępująca. Gramatyki operatorowe. Gramatyki LR(k)

Języki formalne i techniki translacji - Wykład 10

Maciek Gębala

11 grudnia 2018

Maciek Gebala

Analiza wsterujaca. Gramatyki operatorowe. Gramatyki / B(k)

Analiza redukująca

Analiza redukująca buduje drzewo wyprowadzenia dla wejścia, zaczynając od liści (od dołu) i przechodząc w górę, aż do korzenia (do góry). W każdym kroku redukcji pewien podciąg pasujący do prawej strony produkcji jest zastępowany symbolem z lewej strony tej produkcji. Jeśli podciągi wybieramy prawidłowo to otrzymujemy prawostronne wyprowadzenie.

- Metoda pierwszeństwa operatorów.
- Analiza LR.

Maciek Gębal

Analiza wstępująca. Gramatyki operatorowe. Gramatyki LR(k

Przykład

Weźmy gramatykę

 $\mathcal{S} \rightarrow \mathit{aABe}$

 $A \rightarrow Abc|b$

 $B \rightarrow d$

- Weźmy słowo abbcde.
- Pierwszym symbolem który możemy zredukować jest b i otrzymujemy aAbcde.
- Teraz możemy zredukować Abc i otrzymujemy aAde.
- Teraz d i aABe.
- Stąd mamy prawostronne wyprowadzenie

 $S \Rightarrow aABe \Rightarrow aAde \Rightarrow aAbcde \Rightarrow abbcde$

Maciek Gębala

Analiza wstępująca. Gramatyki operatorowe. Gramatyki LR(k

Uchwyty

Uchwyt γ to produkcja $A \to \beta$ i pozycja w γ , na której znajduje się ciąg symboli β , który po zastąpieniu przez A da nam ciąg poprzedzający γ w wyprowadzeniu prawostronnym.

- Jeśli $S \Rightarrow^* \alpha A w \Rightarrow \alpha \beta w$, to $A \to \beta$ na pozycji po α jest uchwytem $\alpha \beta w$.
- Ciąg symboli po prawej stronie uchwytu zawiera tylko terminale.
- Jeśli gramatyka jest jednoznaczna to w trakcie redukcji mamy zawsze tylko jeden uchwyt.

Notatki
Notatki
Notati
Navadii
Notatki
Notatki
Notatki
Notatki
Notatki
Notatki

Przykład - Shift-Reduce-Parsing

- $E \to E + E | E * E | (E) | id$
- Słowo $id_1 + id_2 * id_3$.
- Wyprowadzenie prawostronne

$$\begin{array}{ll} E & \Rightarrow & E+E \Rightarrow E+E*E \\ & \Rightarrow & E+E*id_3 \Rightarrow E+id_2*id_3 \Rightarrow id_1+id_2*id_3 \end{array}$$

Redukcja

Słowo	Uchwyt	Produkcja do redukcji
$id_1 + id_2 * id_3$	id ₁	E o id
$E + id_2 * id_3$	id ₂	$E \rightarrow id$
$E + E * id_3$	id ₃	$E \rightarrow id$
$E + E * \tilde{E}$	E * E	$E \rightarrow E * E$
E + E	E + E	$E \rightarrow E + E$
E		
	l	

Maciek Gebala

Analiza wstępująca, Gramatyki operatorowe, Gramatyki I R(k)

Parsowanie z użyciem stosu

Stos używamy do pamiętania symboli z gramatyki. Uchwyt jest zawsze na szczycie stosu.

Stos	input	czynność
\$	$id_1 + id_2 * id_3$ \$	shift
\$ <i>id</i> ₁	$+id_2*id_3$ \$	redukcja przez $E o id$
\$ <i>E</i>	$+id_2*id_3$ \$	shift
\$ <i>E</i> +	$id_2 * id_3$ \$	shift
$E + id_2$	* <i>id</i> ₃ \$	redukcja przez $E o id$
E + E	* <i>id</i> ₃ \$	shift
\$ <i>E</i> + <i>E</i> ∗	id ₃ \$	shift
$E + E * id_3$	\$	redukcja przez $E o id$
E + E * E	\$	redukcja przez $E \rightarrow E * E$
\$ <i>E</i> + <i>E</i>	\$	redukcja przez $E \rightarrow E + E$
\$ <i>E</i>	\$	Accept

Maciek Gębala

Analiza wstępująca. Gramatyki operatorowe. Gramatyki LR(F

Problemy w trakcie analizy

- Konflikt przesunięcie/redukcja mimo znajomości całego stosu i następnego symbolu wejściowego nie można zdecydować, czy wykonać przesunięcie czy redukcję.
- Konflikt redukcja/redukcja możemy wykonać kilka możliwych redukcji.

Maciek Gebala

naliza wstepujaca. Gramatyki operatorowe. Gramatyki LR(k

Gramatyki operatorowe

Gramatyka jest operatorowa jeśli żadna prawa strona produkcji nie zawiera dwóch sąsiednich nieterminali.

Gramatyka nie-operatorowa

$$E \rightarrow EAE \mid id$$

 $A \rightarrow + \mid - \mid * \mid /$

Równoważna gramatyka operatorowa

$$E \rightarrow E + E \mid E - E \mid E * E \mid E / E \mid id$$

Notatki
North
Notatki
Notatki
Notatki
Notatki
Notatki
Notatki
Notatki

Priorytety operatorów

Między pewnymi parami terminali definiujemy trzy rozłączne relacje $a \lessdot b$ a ma mniejszy priorytet niż b

- $a \doteq b$ a ma taki sam priorytet jak b
- a ma większy priorytet niż b a > b

Przykład relacji operatorów

	+	-	*	/	id	\$
+	>	⊳	<	<	<	⊳
-	⊳	>	<	∀		>
*	⊳	>	⊳	\diamond	<	⊳
/	⊳	>	⊳	>	<	⊳
id	⊳	⊳	⊳	⊳		⊳
\$	< −	<	<	<	<	

Analiza dla gramatyki operatorowej

- Weźmy słowo do wyprowadzenia \$ id + id * id \$
- Wstawmy relacje między terminale $\$ \lessdot id > + \lessdot id > * \lessdot id > \$$
- $\bullet \ \$ \lessdot E \gtrdot + \lessdot E \gtrdot * \lessdot E \gtrdot \$$
- (ignoruj znaki nieterminalne)
- \$ < + < * > \$
- $\bullet \ \$ \lessdot + \mathbin{>} \$$
- \$\$

Obliczanie relacji <, ≐ i >

- ullet Zbiór LEADING(A) (pierwsze terminale wyprowadzane z A).
 - $a \in LEADING(A)$ jeśli mamy produkcję $A \to Ba\beta$ lub $A \to a\beta$. Jeśli istnieje produkcja $A \to B\alpha$ i $a \in LEADING(B)$ to
 - $a \in LEADING(A)$.
 - Ola wszystkich nieterminali liczymy 1 i powtarzamy 2 aż nic się nie
- Analogicznie TRAILING(A) (ostatnie terminale wyprowadzane

Obliczanie relacji <, ≐ i >

Dla każdej produkcji $A o x_1 \dots x_k$

- **1** Jeśli x_i i x_{i+1} są terminalami to $x_i \doteq x_{i+1}$.
- 3 Jeśli x_i i x_{i+2} są terminalami a x_{i+1} nieterminalem to $x_i \doteq x_{i+2}$.
- Jeśli x_i jest terminalem a x_{i+1} nieterminalem to dla każdego $a \in LEADING(x_{i+1})$ mamy $x_i \lessdot a$.
- **3** Jeśli x_i jest nieterminalem a x_{i+1} terminalem to dla każdego $a \in TRAILING(x_i)$ mamy $a > x_{i+1}$.

Notatki
Notatki
Manado:
Notatki

Uproszczenie

Dla każdego terminala a definiujemy $f(a), g(a) \in \mathbb{N}$ tak aby

 $f(a) < g(b) \iff a \leqslant b$ $f(a) = g(b) \iff a \doteq b$

 $f(a) > g(b) \iff a > b$

Przykład

Maciek Gebala

Analiza wsterujaca Gramatyki operatorowe Gramatyki I R(k

Algorytm analizy metodą pierwszeństwa operatorów

- Wejście: Tekst wejściowy w i tablica relacji priorytetów.
- Wyjście: Jeśli w jest poprawny to poprawny ciąg produkcji prawostronnego wyprowadzenia, w p.p. informacje o błędzie.
- Nieterminale są ignorowane w porównaniach operacjach na stosie a wykorzystywane w redukcjach.

Maciek Gęba

Analiza wstępująca. Gramatyki operatorowe. Gramatyki LR(F

Algorytm analizy metodą pierwszeństwa operatorów

```
repeat forever

if top(stack) = $ and first(in) = $ then
	return ACCEPT

else

if top(stack) < first(in) or top(stack) \doteq first(in) then
	przenie$ first(in) na stack

else

if !(top(stack) > first(in)) then error()

else

while top(stack) > first(in) do /* redukcja */
	pop(stack)
```

Maciek Gębala

naliza wstępująca. Gramatyki operatorowe. Gramatyki LR(k)

Analiza LR(k)

- Wejście przeglądamy od lewej do prawej (L).
- Otrzymujemy wyprowadzenie prawostronne (R).
- k ilość symboli wejścia potrzebnych do podjęcia decyzji. Jeśli k=1 to jest często pomijane.

Prawie wszystkie języki programowania można opisać gramatyką bezkontekstową typu LR(1).

Notatki
Notatki
Notatki
Notatki
Notatki

Algorytm analizy LR

- Analizator LR składa się z wejścia, wyjścia, stosu, programu sterującego i tablicy analizatora.
- Na stosie zapamiętywane są symbole z gramatyki i specjalne symbole zwane stanami.
- Symbole stanu podsumowują informacje zawarte na stosie po
- Symbol stanu i aktualny symbol wejściowy są używane do podejmowania decyzji na podstawie tablicy analizatora.

Tablica analizatora

- Tablica składa się z dwóch części: akcji i przejść.
- Na podstawie s stanu z wierzchołka stosu i a symbolu na wejściu wykonujemy akcja[s, a]

 - przesuń, na stos a i s'=akcja[s,a],• redukuj zgodnie z produkcją $A\to \beta$, na stos A i stan wyliczony przez przejście,
 - akceptuj,błąd.
- Konfiguracja analizatora LR to zawartość stosu i nieprzetworzone wejście

$$(s_0X_1s_1X_2s_2...X_ms_m, a_ia_{i+1}...a_n$$
\$)

i odpowiada prawostronnej formie wyprowadzenia

$$X_1X_2...X_ma_ia_{i+1}...a_n$$

Działanie analizatora LR

- **1** $akcja[s_m, a_i] = shift s(s_0X_1s_1X_2s_2...X_ms_m, a_ia_{i+1}...a_n)$ $(s_0X_1s_1X_2s_2...X_ms_ma_is, a_{i+1}...a_n$ \$)
- gdzie $s = \text{przejście}[s_{m-r}, A]$ i $\beta = X_{m-r+1} \dots X_m$ $(r = |\beta|)$.
- $akcja[s_m, a_i] = accept koniec analizy.$
- $akcja[s_m, a_i] = error wykryto błąd.$

Przykład

Gramatyka

 $E \rightarrow E + T (1) \mid T (2)$ \rightarrow T * F (3) | F (4)

 $F \quad \rightarrow \quad (E) \ (5) \mid \textit{ID} \ (6)$

Akcje kodujemy następująco:

- \circ s_i przesunięcie i, wstawiamy na stos stan s_i ,
- r_j redukcja według produkcji o numerze j
- acc akceptacja,
- puste miejsce oznacza błąd.

Notatki
Notatki
Notatki
Notatki

Przykład - Tablica analizatora

stan			а	kcja			pi	zejś	cie
	id	+	*	()	\$	E	Τ	F
s ₀	S 5			S ₄			S ₁	S ₂	S 3
s_1		s_6				acc			
s ₂		r_2	S 7		r_2	r_2			
s_3		r_4	r_4		r_4	r_4			
s_4	s ₅			s_4			<i>S</i> ₈	s ₂	s 3
S 5		<i>r</i> ₆	<i>r</i> ₆		<i>r</i> ₆	<i>r</i> ₆			
s ₆	s ₅			s_4				S 9	s_3
S 7	s ₅			s_4					s_{10}
s 8		s_6			S ₁₁				
S 9		r_1	S 7		<i>r</i> ₁	<i>r</i> ₁			
s ₁₀		r_3	<i>r</i> ₃		r ₃	<i>r</i> ₃			
S ₁₁		<i>r</i> ₅	<i>r</i> ₅		r ₅	<i>r</i> ₅			

Przykład

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	stos	wejście	akcja
$\begin{array}{llllllllllllllllllllllllllllllllllll$	S ₀	id + id * id\$	S 5
$\begin{array}{llll} s_0Ts_2 & +id*id\$ & it^\$ & \\ s_0Es_1+s_6 & +id*id\$ & s_6 \\ s_0Es_1+s_6ids_6 & *id*id\$ & s_5 \\ s_0Es_1+s_6ids_6 & *id*id\$ & s_5 \\ s_0Es_1+s_6Fs_3 & *id\$ & s_6 \\ s_0Es_1+s_6Ts_9 & *id\$ & s_7 \\ s_0Es_1+s_6Ts_9*s_7ids_5 & *id\$ & s_7 \\ s_0Es_1+s_6Ts_9*s_7fs_{10} & *id\$ & s_7 \\ s_0Es_1+s_6Ts_9 & *id\$ & s_7 \\ s_1(E\to E+T), p[s_6, T] = s_9 \\ s_1(E\to E+T), p[s_0, E] = s_1 \\ \end{array}$	s_0 id s_5	+id*id\$	$r_6 (F \to id), p[s_0, F] = s_3$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$s_0 \digamma s_3$	+id*id\$	$r_4 (T \to F), p[s_0, T] = s_2$
$\begin{array}{lll} s_0Es_1+s_6 & id*id\$ & s_5 \\ s_0Es_1+s_6ids_5 & *id\$ & s_6 \\ s_0Es_1+s_6Fs_3 & *id\$ & s_6 \\ s_0Es_1+s_6Fs_3 & *id\$ & s_7 \\ s_0Es_1+s_6Ts_9*s_7 & *id\$ & s_7 \\ s_0Es_1+s_6Ts_9*s_7Fs_{10} & *id\$ & s_7 \\ s_1G(F\to id), p[s_7, F]=s_{10} \\ s_1G(F\to id), p[$		+id*id\$	$r_2 (E \to T), p[s_0, E] = s_1$
$\begin{array}{lll} s_0Es_1+s_6ids_5 & *id\$ & f_6 \ (F\to id), \ p[s_6,F]=s_3 \\ s_0Es_1+s_6Fs_3 & *id\$ & r_4 \ (T\to F), \ p[s_6,T]=s_9 \\ s_0Es_1+s_6Ts_9 *s_7ids_5 & *id\$ & s_5 \\ s_0Es_1+s_6Ts_9*s_7ids_5 & *f_6 \ (F\to id), \ p[s_7,F]=s_{10} \\ s_0Es_1+s_6Ts_9*s_7ids_5 & *f_6 \ (F\to id), \ p[s_7,F]=s_{10} \\ s_0Es_1+s_6Ts_9*s_7Fs_{10} & *f_7 \ (T\to F), \ p[s_6,T]=s_9 \\ s_0Es_1+s_6Ts_9 & *f_1 \ (E\to E+T), \ p[s_6,E]=s_1 \end{array}$	$s_0 E s_1$	+id*id\$	S ₆
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$s_0 E s_1 + s_6$	id * id\$	S 5
$\begin{array}{lll} s_0Es_1+s_6Ts_9 & *id\$ & s_7 \\ s_0Es_1+s_6Ts_9*s_7 & id\$ & s_7 \\ s_0Es_1+s_6Ts_9*s_7ids_5 & s_5 \\ s_0Es_1+s_6Ts_9*s_7Fs_{10} & \$ & r_3 \ (T \to T*F), p[s_6, T] = s_9 \\ s_0Es_1+s_6Ts_9 & \$ & r_1 \ (E \to E+T), p[s_0, E] = s_1 \end{array}$	$s_0 E s_1 + s_6 ids_5$	*id\$	$r_6 (F \to id), p[s_6, F] = s_3$
$\begin{array}{lll} s_0Es_1+s_6Ts_9*s_7 & id\$ & s_5 \\ s_0Es_1+s_6Ts_9*s_7fs_{10} & \$ & r_6 \ (F\to id), \ p[s_7,F]=s_{10} \\ s_0Es_1+s_6Ts_9*s_7Fs_{10} & \$ & r_3 \ (T\to T*F), \ p[s_6,T]=s_9 \\ s_0Es_1+s_6Ts_9 & \$ & r_1 \ (E\to E+T), \ p[s_0,E]=s_1 \end{array}$	$s_0 E s_1 + s_6 F s_3$	* <i>id</i> \$	$r_4 (T \to F), p[s_6, T] = s_9$
$\begin{array}{lll} s_0Es_1+s_6Ts_3*s_7ids_5 & s_0Es_1+s_6Ts_3*s_7Fs_{10} \\ s_0Es_1+s_6Ts_9*s_7Fs_{10} & s_0Es_1+s_6Ts_9 \end{array}$ $\begin{array}{lll} f_0(F\to id), p[s_7,F]=s_{10} \\ s_1(T\to T*F), p[s_6,T]=s_9 \\ r_1(E\to E+T), p[s_0,E]=s_1 \end{array}$	$s_0 E s_1 + s_6 T s_9$	* <i>id</i> \$	S ₇
$\begin{array}{lll} s_0 E s_1 + s_6 T s_9 * s_7 F s_{10} \\ s_0 E s_1 + s_6 T s_9 \end{array} \qquad \begin{array}{lll} & & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$	$s_0 E s_1 + s_6 T s_9 * s_7$	id\$	S ₅
$s_0 E s_1 + s_6 T s_9$	$s_0 E s_1 + s_6 T s_9 * s_7 id s_5$	\$	$r_6 (F \rightarrow id), p[s_7, F] = s_{10}$
	$s_0 E s_1 + s_6 T s_9 * s_7 F s_{10}$	\$	$r_3 (T \to T * F), p[s_6, T] = s_9$
$s_0 E s_1$ \$ acc	$s_0 E s_1 + s_6 T s_9$	\$	$r_1 (E \to E + T), p[s_0, E] = s_1$
	$s_0 E s_1$	\$	acc

Budowanie tablic analizatorów

- Aby zbudować analizator typu LR wystarczy zbudować tablicę analizatora dla podanej gramatyki.
- Rozpatrzymy trzy metody (typy), od najprostszego i najsłabszego

 - SLR prosty LR;kanoniczny LR;LALR podglądające LR.
- Budowa poszczególnych analizatorów na kolejnych wykładach.

Notatki
Mark Wall
Notatki
Notatki
Notatki
Notatki
Notatki
Notatki