

Fig. 1

Fig. 3

Fig. 4

Figure 5

Production of synthesis gas without addition of hydrogen					
$CO_2 + CH_4 \rightarrow 2 CO + 2 H_2$			$Ar/CO_2/CH_4 = 68/18/13 \%$		
P = 4500 W $V = 40 l/min$			No catalyst		
Conversion			Yield		
CO	CH ₄	H_2	CO	H ₂	
0.91	0.99	-	0.83	0.93	

Droductio	n of synthesis	gas with additi	on of hydrogen	
Production of synthesis gas with addition $CO_2 + CH_4 \rightarrow 2 CO + 2 H_2$			Ar/CO ₂ /CH ₄ /H2=70/15/11/4 %	
P = 5000 W $V = 40 l/min$		No catalyst		
Conversion			Yield	
<u> </u>	CH ₄	H_2	CO	H_2
CO ₂ 0.95	0.99	0.10	0.96	0.95
0.93				

Producti	on of acetyl	ene		
Production of acetylene $CO_2 + C_2H_4 \rightarrow C_2H_2 + CO + H_2O$			$Ar/CO_2/C2H_4 = 73/21/6\%$	
P = 3500 W $V = 38.5 l/min$		No catalyst		
Conversion			Yield	
<u></u>	C ₂ H ₄	$\rm H_2$	CO	C_2H_2
$\frac{CO_2}{0.21}$	0.55	-	0.17	0.07

Production	on of henze	ne on copper catalyst	is	
2 CO2 +	$\frac{2 \text{ C}_2 \text{H}_4 + 3}{2 \text{ C}_2 \text{H}_4 + 3}$	$H_2 \rightarrow C_6H_6 + 4 H_2O$	$Ar/CO_2/C_2H_4/H_2 = 66/19/9/6\%$	
P = 4500 W		V = 42.5 l/min	Copper catalyst	
Conversion			Yield	
CO ₂	C_2H_4	H_2	CO	C_6H_6
0.37	0.23	0.65	0.25	0.02