Question1

- (1) No,According to R's FD set F={AB→CE,D→GH,E→BCD, C →DI, H→G, EH→I} c + ={C,G,H,I,D},which isn't include J.
 In conclusion,"C→J" does not belong to F +
- (2) Candidate key: {A,B,J},{A,E,J}
- (3) $R = \{A,B,C,D,E,G,H,I,J\}$

Set $F = \{AB \rightarrow CE, D \rightarrow GH, E \rightarrow BCD, C \rightarrow DI, H \rightarrow G, EH \rightarrow I\}$

Step1:Reduce right side

 $F' = \{AB \rightarrow C, AB \rightarrow E, D \rightarrow G, D \rightarrow H, E \rightarrow B, E \rightarrow C, E \rightarrow D, C \rightarrow D, C \rightarrow D, C \rightarrow C, E \rightarrow C,$

 $C \rightarrow I, H \rightarrow G, EH \rightarrow I$

Step2:Reduce left side

For AB→C

 $A^+ = \{A\}$, thus, $A \rightarrow C$ is not inferred by F'. Hence, $AB \rightarrow C$ can not be replaced by $A \rightarrow C$

 B^+ ={B},thus, B \rightarrow C is not inferred by F'.Hence, AB \rightarrow C can not be replaced by B \rightarrow C

For AB→E

 $A^+ = \{A\}$, thus, $A \rightarrow E$ is not inferred by F'. Hence, $AB \rightarrow E$ can not be replaced by $A \rightarrow E$

 B^+ ={B},thus, B \rightarrow E is not inferred by F'.Hence, AB \rightarrow E can not be replaced by B \rightarrow E

For EH→I

 $E^+ = \{B,C,D,E,G,H,I\}$, thus, $E \rightarrow I$ is inferred by F'. Hence, $E \rightarrow I$ can not be replaced by $E \rightarrow I$

 $H^+ = \{G,H\}$, thus, $H \rightarrow I$ is not inferred by F'. Hence, $EH \rightarrow I$ can not be replaced by $H \rightarrow I$

In conclusion,

$$F'' = \{AB \rightarrow C, AB \rightarrow E, D \rightarrow G, D \rightarrow H, E \rightarrow B, E \rightarrow C, E \rightarrow D, C \rightarrow D, C \rightarrow I, H \rightarrow G, E \rightarrow I \}$$

Step3:Remove redundant FDs

 $AB^+|_{F''-\{AB\to C\}}$ ={A,B,C,D,E,G,H,I},thus AB \to C is redundant.Hence,we can remove AB \to C from F'' to obtain F'''.

 $AB^+|_{F''-\{AB\to E\}}$ ={A,B,C,D,G,H,I},thus AB \to E is not inferred by F''-{AB \to E},which shows that AB \to E is not redundant.

 $D^+|_{F''-\{D\to G\}}=\{D,G,H\}$, thus $D\to G$ is redundant. Thus, we can remove $D\to G$ from F'' to obtain F'''.

 $D^+|_{F''-\{D\to H\}}=\{D,G\}$, thus $D\to H$ is not inferred by $F''-\{D\to H\}$, which shows that $D\to H$ is not redundant.

 $E^+|_{F''-\{E\to B\}}$ ={E,C,D,G,H,I},thus E \to B is not inferred by F''-{E \to B},which shows that E \to B is not redundant.

 $E^+|_{F''-\{E\to C\}}=\{E,B,D,G,H,I\}$, thus $E\to C$ is not inferred

by $F''-\{E\rightarrow C\}$, which shows that $E\rightarrow C$ is not redundant.

$$E^+|_{F''-\{E\to D\}}$$
={E,B,C,D,G,H,I},thus E \to D is redundant.

Thus, we can remove E→D from F'' to obtain F'''.

 $C^+|_{F''-\{C\to D\}}=\{C,I\}$, thus $C\to D$ is not inferred by $F''-\{C\to D\}$, which shows that $C\to D$ is not redundant.

 $C^+|_{F''-\{C\to I\}}=\{C,D,H,G\}$, thus $C\to I$ is not inferred by $F''-\{C\to I\}$, which shows that $C\to I$ is not redundant.

 $H^+|_{F''-\{H\to G\}}=\{H\}$, thus $H\to G$ is not inferred by $F''-\{H\to G\}$, which shows that $H\to G$ is not redundant.

$$E^+|_{F''-\{E\rightarrow I\}}=\{E,B,C,D,G,H,I\}$$
, thus $E\rightarrow I$ is redundant.

Thus,we can remove E→I from F'' to obtain F'''.

In conclusion

$$F'''=\{AB\rightarrow E, D\rightarrow H, E\rightarrow B, E\rightarrow C, C\rightarrow D, C\rightarrow I, H\rightarrow G\}$$

(4)

From part(3) we have the minimal cover:

$$F''' = \{AB \rightarrow E, D \rightarrow H, E \rightarrow B, E \rightarrow C, C \rightarrow D, C \rightarrow I, H \rightarrow G\}$$

So, we can decompose R into

Decompositions	Inferred from
R_1 ={A,B,E}	AB→E
$R_2 = \{D,H\}$	D→H

R_3 ={B,C,E}	E→B, E→C,
R_4 ={C,D,I}	C→D, C→I
R_5 ={H,G}	H→G
R_6 ={A,B,J}	Nothing to infer J,
	A,B,J is super key

It is obvious that the decompositions are dependencypreserving since all of which are inferred from the minimal cover F'''

To prove the lossless-join we need to draw this table below ,we fill up "a" in the light of ${\it R}_1$ to ${\it R}_6$

	А	В	С	D	E	G	Н	I	J
R_1	а	а			а				
R_2				а			а		
R_3		а	а		а				
R_4			а	а				а	
R_5						а	а		
R_6	а	а							а

The column A and B have 'a' in R_1 and R_6 then,we seek a FD which contain A and B in the left side,obviously AB \rightarrow E is we looking for.Therefore,we can change the table.

		Α	В	С	D	Е	G	Н	1	J	
--	--	---	---	---	---	---	---	---	---	---	--

R_1	а	а			а				
R_2				а			а		
R_3		а	а		а				
R_4			а	а				а	
R_5						а	а		
R_6	а	а			а				а

We can redo the same thing . This time we look at the column E, we can use $E \rightarrow C$ to change this table

	А	В	С	D	Е	G	Н	I	J
R_1	а	а			а				
R_2				а			а		
R_3		а	а		а				
R_4			а	а				а	
R_5						а	а		
R_6	а	а	а		а				а

Iteratively, for R_4 and R_6 we use C \rightarrow D, C \rightarrow I to fill up 'a'

	А	В	С	D	Е	G	Н	I	J
R_1	а	а			а				
R_2				а			а		
R_3		а	а		а				
R_4			а	а				а	
R_5						а	а		

R_6 a a a	а	a a
-------------	---	-----

Iteratively, for R_2 and R_6 we use D \rightarrow H fill up 'a'

	А	В	С	D	Е	G	Н	I	J
R_1	а	а			а				
R_2				а			а		
R_3		а	а		а				
R_4			а	а				а	
R_5						а	а		
R_6	а	а	а	а	а		а	а	а

Iteratively, for R_5 and R_6 we use $H\rightarrow G$ fill up 'a'

	А	В	С	D	Е	G	Н		J
R_1	а	а			а				
R_2				а			а		
R_3		а	а		а				
R_4			а	а				а	
R_5						а	а		
R_6	а	а	а	а	а	а	а	а	а

For row R_6 ,this row can be filled up with 'a' in all columns Hence,this decomposition is lossless-join

Question2

- (1) The number of super keys is 96.
 List 5 of them: {A,B,J},{A,B,C,J},{A,B,D,J},{A,E,J},{A,E,C,J}
- (2) 2NF

Every attributes in R are atomic and all non-prime attributes are fully functionally dependent on the relation keys.But for FDs $E\rightarrow BCD$ and $C\rightarrow D$,where exist $E\rightarrow C\rightarrow D$, $C\rightarrow E$.Hence the attributes of D are transitively dependent on E.Thus,R is not satisfy 3NF .Hence,the highest normal form of R with respect to F is 2NF.

- (3) No,from Question1 Part(3),we can have minimal cover $F''' = \{AB \rightarrow E, D \rightarrow H, E \rightarrow B, E \rightarrow C, C \rightarrow D, C \rightarrow I, H \rightarrow G \}$, it is obvious that function dependency $D \rightarrow H$ and $C \rightarrow I$ cannot be preserved after this decomposition because R_1 , R_2 and R_3 don't have C and I or D and H at same time.
- (4) To prove the lossless-join we need to draw this table below ,we fill up "a" according to R_1 , R_2 , R_3

	А	В	С	D	Е	G	Н	I	J
R_1	а	а	а	а	а				
R_2					а	а	а		
R_3					а			а	а

Firstly,we seek for column E ,and we use $E\rightarrow BCD$ to fill up 'a' in this table

	А	В	С	D	Е	G	Н	I	J
R_1	а	а	а	а	а				
R_2		Α	а	а	а	а	а		
R_3		а	а	а	а			а	а

And then, we seek for column C, and we use $C \rightarrow I$ to fill up 'a' in this table

	А	В	С	D	Е	G	Н	I	J
R_1	а	а	а	а	а			а	
R_2		а	а	а	а	а	а	а	
R_3		а	а	а	а			а	а

And then, we seek for column D, and we use $D \rightarrow GH$ to fill up 'a' in this table

	А	В	С	D	Е	G	Н	I	J
R_1	а	а	а	а	а	а	а	а	
R_2		а	а	а	а	а	а	а	
R_3		а	а	а	а	а	а	а	а

Finally,we cannot find any rows which can be filled up with 'a' in all columns. Hence, this decomposition is not lossless-join.

(5) From Question1 Part4 we have such 3NF decomposition:

$$\begin{split} &R_1 \!=\! \{\text{A}, \text{B}, \text{E}\}, &R_2 \!=\! \{\text{D}, \text{H}\}, &R_3 \!=\! \{\text{B}, \text{C}, \text{E}\}, &R_4 \!=\! \{\text{C}, \text{D}, \text{I}\}, &R_5 \!=\! \{\text{H}, \text{G}\} \quad R_6 \\ &=\! \{\text{A}, \text{B}, \text{J}\} \end{split}$$

Which is dependency-preserving and lossless-join.

For R_1 ={A,B,E}, AB \rightarrow E is non-trivial and AB is superkey For R_2 ={D,H}, D \rightarrow H is non-trivial and D is superkey For R_3 ={E,C,B}, E \rightarrow B and E \rightarrow C are non-trivial and E is superkey

For $R_4 = \{C,D,I\}$, $C \rightarrow D$, $C \rightarrow I$ are non-trivial and C is superkey

For R_5 ={G,H}, H \rightarrow G is non-trivial and H is superkey Thus,each FD in this decomposition are non-trivial and left-side is superkey.Hence,this decomposition can satisfy BCNF