1、图的存储

对图 1 所示的有向图,请给出:① 每个顶点的入度和出度;② 邻接矩阵;③ 邻接表;

对图 2 所示的无向网,请给出:① 每个顶点的度; ②邻接矩阵;③ 邻接表;

2、图的遍历

已知图的邻接矩阵如图 1 所示,请给出从顶点 v0 出发按广度优先遍历的结果和按深度优先遍历的结果。

VO V1 V2 V3

V0 V1 V2 V3 V4 V6 V5 V0 V1 V3 V4 V2 V5 V6

已知图的邻接表如图 2 所示,请给出从顶点 v0 出发按广度优先遍历的结果和按深度优先遍历的结果。

3、按照普利姆算法,从 a 点出发,求出下图无向网的最小生成树,给出添加到最小生成树顶点和边的序列,并完成数组数据的变化过程(连续画出多个数组)。

V0 V1 V2 V3

 ${\tt struct}$

{

VertexType adjvex; // 相邻顶点

VRType lowcost; // V-U 中各顶点到 U 的最短边的长度

} closedge[MAX_VERTEX_NUM];

结点的	勺下标	0	1	2	3	4	5
结点		A	В	С	D	Е	F
II— (A)	lowcost	0	45	28	10	8	∞
U={A}	adjvex	A	A	A	A	A	A
U={A, D}	lowcost	0	45	17	0	15	13
U-{A, D}	adjvex	A	A	D	A	D	D
U={A, D, F}	lowcost	0	45	17	0	11	0
U- (Α, D, Γ)	adjvex	A	A	D	A	F	D
U={A,	lowcost	0	21	17	0	0	0
D, F, E}	adjvex	A	Е	D	A	F	D
U={A,	lowcost	0	12	0	0	0	0
D, F, E, C}	adjvex	A	С	D	A	F	D
U={A,	lowcost	0	0	0	0	0	0
D, F, E, B}	adjvex	A	С	D	A	F	D

(A, D) 10, (D, F) 13, (F, E) 11, (D, C) 17, (C, B) 12

4、按照克鲁斯卡尔算法,求出下图无向网的最小生成树,给出添加边的次序。

(f, g)2 (e, f)3 (a, c)3 (a, b)4 (d, h)4 (c, d)5 (d, g)5

- 5、(1) 稠密图适合用什么存储结构?稀疏图适合用什么存储结构? (2) 求解最小生成树时,稠密图适合用什么算法?稀疏图适合用什么算法?
 - (1)邻接矩阵;邻接表;(2)普里姆算法;克鲁斯卡尔算法
- **6、**给出下图 AOV 网的邻接矩阵存储结构。运用数组存储结点的入度值,运用栈存储入度为 0 的结点,按照算法,给出求解下图 AOV 网的拓扑排序过程中数组和栈的变化,并给出 拓扑排序序列。

v1	v2	v3	v4	V5	v6	v7	v9
0	0	1-1	1-1	2-1-1	2-1-1	1-1	2-1-1

7、求每个结点的最早发生时间和最迟发生时间;求这个工程最早结束时间;求每个活动的最早开始时间和最迟开始时间;确定哪些活动是关键活动。

1 3 2 4 5 6

	1	2	3	4	5	6
Ve	0	19	15	29	38	43
V1	0	19	15	37	38	43

1.				15 Ve141=29	2. 7科锡卓结束时间:43
	Ver51=31	Y Vell	61=43		
	VIIbi= Ve	161=43	W141=37	7 VL157= 38	
	NIVI= mi	n {vuy)-	10, NIST	193=19	1, 1, 2, 2
	1131 = n	nin [VII51-	11, 1121-4	* = 15	4. 173. 3-72. 2-75
	M(1) = m	in Svill	-2-2131-	-15 =0	5一日为关键活动,
3			-	liki-eik)	
	1572	v	17	17	
	1-73		U	0	
	3-72	15	15	V	
	275	19	19	0	
	1-75	15	27	12	
	274	19	2.7	8	
4-4	476	29	37	8	
-	2-26	38	38	0	

8、给出下图有向网的邻接矩阵存储结构。求出从顶点 0 出发到其余顶点的最短路径,将求解过程用数组表示出来,并将结果填入表格。

9、按照弗洛伊德算法求出下图中顶点之间的最短路径,给出 D 矩阵和 P 矩阵的变化过程,最后给出顶点之间的最短路径长度和最短路径的结点序列。

+	A^{-1}				
		0	1	2	3
	0	0	1	∞	4
	1	∞	0	9	2
	2	3	5	0	8
	3	∞	∞	6	0

+	P ⁻¹				
		0	1	2	3
	0	-1	0	-1	0
	1	-1	-1	1	1
	2	2	2	-1	2
	3	-1	-1	3	-1

+	A^0					<u>+</u>	P	0				
T		0	1	2	3			0		1	2	3
	0	0	1	∞	4		0	-1	L	0	-1	. 0
	1	8	0	9	2		1	-1	L	-1	1	1
	2 ^{p-1}	3	4	0	7		2	2		0	-1	. 0
	3	8	∞	² 6	0		3	-1	ı	-1	3	-1
	A ¹ p ¹											
Đ	А	0	1	2	3	÷	•	0	1		2	3
	0	0	1	10	3		0	-1	0)	1	1
	1	∞	0	9	2		1	-1	-	1	1	1
	2	3	4	0	6		2	2	0)	-1	1
	3	∞	∞	6	0		3	-1	-:	1	3	-1
	A^2						p2					
		0	1	2	3			0	1		2	3
	0	0	1	10	3	()	-1	0	:	1	1
	1	12	0	9	2	-	1	2	-1	:	1	1
	2	3	4	0	6	-	2	2	0		-1	1
	3	9	10	6	0	3	3	2	0	3	3	-1
+	A^3					+	P ³					
*1		0	1	2	3			0		1	2	3
	0	0	1	9	3		0	-1		0	3	1
	1	11	0	8	2		1	2		-1	3	1
	2	3	4	0	6		2	2		0	-1	1
									_			_