Reinforcement learning

Advanced Machine Learning
Janosch Bajorath

- 1. Overview of reinforcement learning
- 2. Basic elements of reinforcement learning
- 3. Generalized policy iteration
- 4. Dynamic programming
- 5. Monte Carlo learning
- 6. Temporal difference learning TD(0)
 - SARSA
 - Q-learning

Supervised learner has an informed external supervisor, that provides information about the examples provided

→ Examples provided, learn patterns from them

Reinforced learner (RL agent) must learn from its interaction with the environment

→ World provided, learn patterns by exploring

Aspects of an RL-agent

Agent-Environment interface

• Discrete time steps with delayed reward (R_{t+1})

 $s_0, a_0, r_1, s_1, a_1, r_2, r_{T-1}, s_{T-1}, a_{T-1}, r_T, s_T$

- Trial and error search for optimal behavior
- Defined by characterizing learning problem (not method)

Agent

Possible actions - A(s) (deterministic or stochastic)

Terminal state - s_T

The Environment – $s \in S$

"Immediate, intrinsic desirability of a state or state-action"

- Mapping from perceived state (s) or state action pair (s, a) to a reward value
- Goal of a RL-agent: maximize cumulative Reward R

Pos. Feedback

Neg. Feedback

Important: Design of the reward structure is cruical for agent behaviour!

Return

$$R_t = r_{t+1} + r_{t+2} + r_{t+3} + \cdots + r_T$$

Discounted Return

Connetion between returns

$$R_{t} = r_{t+1} + \gamma r_{t+2} + \gamma^{2} r_{t+3} + \gamma^{3} r_{t+4} + \dots$$

$$= r_{t+1} + \gamma (r_{t+2} + \gamma r_{t+3} + \gamma^{2} r_{t+4} + \dots)$$

$$= r_{t+1} + \gamma R_{t+1}$$

Value Tables

 $V^{\pi}(s)$

State-Value Table

1	2	3
4	5	6
7	8	9

 \rightarrow Vector with $s \in S$ entries

 \rightarrow Matrix with $(a \in A) \times (s \in S)$ entries

The "Goodness of a state"

- Expected reward an agent can accumulate when starting from that state and complying with the policy (π)
- Long-term desirability of a state, taking possible following states and their reward into account
- Used in value-estimation based learning

State-Value function

Representation matters

- Image ratio 210, 160, 3
- Intensity range 256

256^{210x160x3} possible states ≈ 10^{182063} >> 10^{82} atoms in the universe

Environment Dynamics

Basic Elements of RL

- Function that mimics the behavior of the environment
- Given a state and action, model predicts resulting next state and reward

Deterministic Model

Stochastic Model

$$\mathcal{P}_{ss'}^{a} = \Pr \{ s_{t+1} = s' \mid s_t = s, a_t = a \}$$

State representation

• Physical world evolves through time from step to step with specific dynamics:

$$\Pr\left\{s_{t+1} = s', r_{t+1} = r \mid s_t, a_t, r_t, s_{t-1}, a_{t-1}, \dots, r_1, s_0, a_0\right\}$$

• Independence of path property:

$$\mathcal{R}_{ss'}^a = E\{r_{t+1} \mid s_t = s, a_t = a, s_{t+1} = s'\}$$

$$\mathcal{P}_{ss'}^a = \Pr\{s_{t+1} = s' \mid s_t = s, a_t = a\}$$

→ State signal that retains all relevant information is said to be Markov

Bellman expectation equation

 Recursive relationship between the value function of the current state s and the successor state s'

$$= \sum_{a} \pi(s, a) \sum_{s'} \mathcal{P}^{a}_{ss'} \left[\mathcal{R}^{a}_{ss'} + \gamma V^{\pi}(s') \right]$$

Optimal value functions

$$V^*(s) = \max_{\pi} V^{\pi}(s)$$

$$Q^*(s, a) = \max_{\pi} Q^{\pi}(s, a)$$

Bellman optimality equation

$$V^{*}(s) = \max_{a \in A(s)} Q^{\pi^{*}}(s, a)$$

$$= \max_{a} E_{\pi^{*}} \{ R_{t} \mid s_{t} = s, a_{t} = a \}$$

$$= \max_{a} E_{\pi^{*}} \{ r_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+2} \mid s_{t} = s, a_{t} = a \}$$

$$= \max_{a} E \{ r_{t+1} + \gamma V^{*}(s_{t+1}) \mid s_{t} = s, a_{t} = a \}$$

$$= \max_{a} \sum_{s'} \mathcal{P}_{ss'}^{a} \left[\mathcal{R}_{ss'}^{a} + \gamma V^{*}(s') \right].$$

$$Q^*(s,a) = E\{r_{t+1} + \gamma \max_{a'} Q^*(s_{t+1},a') \mid s_t = s, a_t = a\}$$

 No knowledge about the environment's dynamics as well as states needed

- Defines behavior/action of an agent at a given state and timestep
- Function that maps from perceived states of the environment to actions taken (stimulus-response rules)
- Depending on the RL-Method policy is derived differently (Value-based, evolutionary)
- Optimal policy:

"Which action to take for the greatest reward"

Random deterministic policy

$$\pi_t(s) = a$$

Stochastic policy

$$\pi_t(a, s) = P[a_t = a | s_t = s]$$

Generalized Policy Iteration

A universal approach to solve a Markov decision process (RL-Problem)

Two simultaneous interacting processes

- 1. Predicting the value function for a policy **Policy evaluation**
 - → Making value-function consistent with the current policy
- 2. Improve the control of the agent Policy improvement
 - → Making the policy greedy with respect to the current value-function

University of Osnabrück

 Interaction between policy and value functions until both stabilize and optimal functions are reached

Reinforcement Learning

Model-based

Value-based

Policy-based

- Know/learn the model of the environment, then use the model for planning
- many re-planning calculations to generate optimal policy
- Learned model needs to be updated frequently

- Learn the state- or action-value function of an environment
- Decide among actions based on the value of a state / action
- Algorithms need to take active exploration into account

- Learn the imminent behavior of the agent, by approximating the optimal policy
- Samples from the policy space
- Exploration as inherent feature

Idea: Dividing a problem into sub-problems (divide and conquer) and using these solutions to solve similar sub-problems (bootstrapping)

$$V^*(s) = \max_{a} E\{r_{t+1} + \gamma V^*(s_{t+1}) \mid s_t = s, a_t = a\}$$

$$Q^*(s, a) = E\{r_{t+1} + \gamma \max_{a'} Q^*(s_{t+1}, a') \mid s_t = s, a_t = a\}$$

Perquisites:

- Assumes that the problem is defined by a finite MDP $\langle s, P, a, R, \gamma \rangle$
- Dynamics of the environment need to be known (transition probabilities and immediate rewards)

- Basically, the simplest implementation of GPI
- No need to sample from the environment as Model is known

The prediction problem – how to consider whether a policy is good?

Turning the Bellman expectation equation into an iterative update equation

$$V^{\pi}(s) = E_{\pi} \{ r_{t+1} + \gamma r_{t+2} + \gamma^{2} r_{t+3} + \cdots \mid s_{t} = s \}$$

$$= E_{\pi} \{ r_{t+1} + \gamma V^{\pi}(s_{t+1}) \mid s_{t} = s \}$$

$$= \sum_{a} \pi(s, a) \sum_{s'} \mathcal{P}_{ss'}^{a} \left[\mathcal{R}_{ss'}^{a} + \gamma V^{\pi}(s') \right]$$

$$V_{k+1}(s) = E_{\pi} \left\{ r_{t+1} + \gamma V_k(s_{t+1}) \mid s_t = s \right\}$$
$$= \sum_a \pi(s, a) \sum_{s'} \mathcal{P}_{ss'}^a \left[\mathcal{R}_{ss'}^a + \gamma V_k(s') \right]$$

- Updating expectations based on expectations
- Synchronous full backups in a step-by-step approach

$V_{k+1}(s) = E_{\pi} \{ r_{t+1} + \gamma V_k(s_{t+1}) \mid s_t = s \}$

 v_k for the Random Policy

$$k = 1$$

$$0.0 -1.0 -1.0 -1.0 -1.0$$

$$-1.0 -1.0 -1.0 -1.0$$

$$-1.0 -1.0 -1.0 -1.0$$

$$-1.0 -1.0 -1.0 0.0$$

 $oldsymbol{v}_k$ for the Random Policy

$$k = 10$$

$$0.0 | -6.1 | -8.4 | -9.0$$

$$-6.1 | -7.7 | -8.4 | -8.4$$

$$-8.4 | -8.4 | -7.7 | -6.1$$

$$-9.0 | -8.4 | -6.1 | 0.0$$

$$k = \infty$$

$$\begin{vmatrix}
0.0 & -14 & -20 & -22 \\
-14 & -18 & -20 & -20 \\
-20 & -20 & -18 & -14 \\
-22 & -20 & -14 & 0.0
\end{vmatrix}$$

The Control problem – how to improve the old policy?

- Policy encoded in the state-value function $V^{\pi}(s)$
- Acting greedy in respect to the state-value function results in deterministic policy

$$\pi'(s) = \arg \max_{a} Q^{\pi}(s, a)$$

$$= \arg \max_{a} E\{r_{t+1} + \gamma V^{\pi}(s_{t+1}) \mid s_{t} = s, a_{t} = a\}$$

$$= \arg \max_{a} \sum_{s'} \mathcal{P}_{ss'}^{a} \left[\mathcal{R}_{ss'}^{a} + \gamma V^{\pi}(s')\right],$$

Policy improvement theorem

$$Q^{\pi}(s, \pi'(s)) \geq V^{\pi}(s), \forall s \in S$$

If True, then:

$$V^{\pi'}(s) \ge V^{\pi}(s).$$

$$\pi'(s) = \arg\max_{a} Q^{\pi}(s, a)$$

	${oldsymbol v}_k$ for the Random Policy	Greedy Policy w.r.t. v_k		v_k for the Random Policy	Greedy Policy w.r.t. v_k
k = 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	randon policy	k = 3	0.0 -2.4 -2.9 -3.0 -2.4 -2.9 -3.0 -2.9 -2.9 -3.0 -2.9 -2.4 -3.0 -2.9 -2.4 0.0	
<i>k</i> = 1	0.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 0.0		<i>k</i> = 10	0.0 -6.1 -8.4 -9.0 -6.1 -7.7 -8.4 -8.4 -8.4 -8.4 -7.7 -6.1 -9.0 -8.4 -6.1 0.0	optimal policy
<i>k</i> = 2	0.0 -1.7 -2.0 -2.0 -1.7 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -1.7 -2.0 -2.0 -1.7 0.0		$k = \infty$	0.0 -142022. -14182020. -20201814. -222014. 0.0	

- Application of policy evaluation and policy improvement until value and policy function converge to their respective optima
- Finite MDP has finite set of policies, hence convergence is guaranteed in finite steps

$$\pi^0 \xrightarrow{\mathsf{E}} \mathsf{V}^{\pi 0} \xrightarrow{\mathsf{I}} \pi^1 \xrightarrow{\mathsf{E}} \mathsf{V}^{\pi 1} \xrightarrow{\mathsf{I}} \dots \xrightarrow{\mathsf{E}} \mathsf{V}^{\pi^*} \xrightarrow{\mathsf{I}} \pi^*$$

1. Initialization

 $V(s) \in \Re$ and $\pi(s) \in A(s)$ arbitrarily for all $s \in R$

2. Policy Evaluation

Repeat

$$\Delta \leftarrow 0$$

For each $s \in S$:

$$v \leftarrow V(s)$$

$$V(s) \leftarrow \sum_{s'} \mathcal{P}_{ss'}^{\pi(s)} \left[\mathcal{R}_{ss'}^{\pi(s)} + \gamma V(s') \right]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

until $\Delta < \theta$ (a small positive number)

3. Policy Improvement

policy-stable \leftarrow true

For each $s \in S$:

$$b \leftarrow \pi(s)$$

$$\pi(s) \leftarrow \arg\max_{a} \sum_{s'} \mathcal{P}_{ss'}^{a} \left[\mathcal{R}_{ss'}^{a} + \gamma V(s') \right]$$

If $b \neq \pi(s)$, then *policy-stable* \leftarrow false

If policy-stable, then stop; else go to 2

Problem: Knowledge of entire dynamics most of the time not given

$$\mathcal{P}_{ss'}^{a} = \Pr\left\{ s_{t+1} = s' \mid s_t = s, a_t = a \right\}$$

 $\mathcal{R}_{ss'}^{a} = E\left\{ r_{t+1} \mid s_t = s, a_t = a, s_{t+1} = s' \right\}$

→ Estimate action-value function and discover policies based on average returns

Estimate
$$Q^{\pi}(s,a) = E_{\pi}\{R_t \mid s_t = s, a_t = a\}$$

$$Q^{\pi}(s,a) \leftarrow \frac{1}{k} \sum_{k=0}^{\infty} R_k$$

- Only suited for episodic MDPs, as Return needs to be well defined
- Updates are made in an episode-by-episode sense
- Extension of DP where only sample experience is available

- 1. Every visit MC prediction
 - Update $Q^{\pi}(s)$ every time we encounter state s
- 2. First visit MC prediction
 - Update $Q^{\pi}(s)$ the first time we encounter state s

$$V(s_t) = V(s_t) + \alpha(R_t - V(S_t))$$

→ No bootstrapping, estimated Value functions are independent of each other

Problem: no guarantee of exploration

Solution: Exploring starts

When to update the expected return?

Initialize:

Every visit

 $\pi \leftarrow$ policy to be evaluated

 $V \leftarrow$ an arbitrary state-value function

 $Returns(s) \leftarrow \text{an empty list, for all } s \in \mathcal{S}$

Repeat forever:

- (a) Generate an episode using π
- (b) For each state s appearing in the episode:

 $R \leftarrow$ return following the first occurrence of sAppend R to Returns(s)

 $V(s) \leftarrow \text{average}(Returns(s))$

- → Make policy greedy with respect to the current value function
 - Update policy that was used for sampling from the environment

Monte Carlo with exploring starts:

$$\pi(s) = \arg \max_{a} Q(s, a)$$
 Deterministic policy

Monte Carlo with ε-soft policy improvement

• No need for exploring starts, as exploration is encoded in policy

$$\pi(s,a) = \frac{\varepsilon}{A(s)}$$

Probability of taking an action under policy π

$$\pi(s, a) \ge \frac{\epsilon}{|\mathcal{A}(s)|}$$

$$\pi(s,a) = 1 - \varepsilon + \frac{\varepsilon}{A(s)}$$

Bootstrapping

→ update estimated based on other learned estimates (like DP-Methods)

Episode sampling

→ no prior knowledge of the environment dynamics (like MC-Methods)

Adjust expectation based on the actual Return

Adjust expectation based on the estimated Return

• one step lookahead search

Implementation:

iterative procedure, where Value of next state $V_k(s_{t+1})$ is estimate of previous calculation $V_{k-1}(s_{t+1})$

Iterative approach which encapsules GPI idea:

- Apply TD to action-value function (policy evaluation)
- Change policy towards greediness with respect to Q^{π} (e.g. e-greedy)

Action-value function updates

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left[r_{t+1} + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t) \right]$$

$$(s_t)$$
 s_{t+1} s_{t+1} s_{t+1} s_{t+2} s_{t+2} s_{t+2} s_{t+2} s_{t+2}

Convergence under the condition that every state- action pair is visited an infinite number of times (exploration)

Off policy approach to solve the RL control problem by the TD-learning

Behavior policy – used to sample from the environment (ϵ -soft policy)

Estimation policy – used for control after training (greedy policy)

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left[r_{t+1} + \gamma \max_{a} Q(s_{t+1}, a) - Q(s_t, a_t) \right]$$

- Both policies derived from Q(s, a)
- Exploration encoded in behavior policy
 s. t. estimation policy can be optimal/greedy with respect to Q (s, a)

$$\pi'(s) = \arg\max_{a} Q^{\pi}(s, a)$$

$$\pi(s,a) = \frac{\varepsilon}{A(s)}$$
 $\pi(s,a) = 1 - \varepsilon + \frac{\varepsilon}{A(s)}$

Backup diagrams

Dynamic programming

$$V(s_t) \leftarrow E_{\pi}[R_{t+1} + V(S_{t+1})]$$

Monte Carlo Methods

$$V(s_t) \leftarrow V(s_t) + \alpha(R_t - V(S_t))$$

Temporal difference (0)

$$V(s_t) \leftarrow V(s_t) + \alpha \left[r_{t+1} + \gamma V(s_{t+1}) - V(s_t) \right]$$

D'	mamia	nrogra	mmina
レハ	mamic	progra	111111111111111111111111111111111111111
_	,		

$$V(s_t) \leftarrow E_{\pi}[R_{t+1} + V(S_{t+1})]$$

$$V(s_t) \leftarrow V(s_t) + \alpha(Rt - V(St))$$

$$V(s_t) \leftarrow V(s_t) + \alpha \left[r_{t+1} + \gamma V(s_{t+1}) - V(s_t) \right]$$

- Bootstraps
- Does not sample

- Does not Bootstrap
- Samples

- Bootstraps
- Samples

- 1. Where is the boundary between agent and environment?
- 2. How does the course of dimensionality effect reinforcement learning?