SEMINAR 12: ARITMETICĂ ÎN INELELE \mathbb{Z} ŞI k[X](II)

Fie k un corp comutativ fixat $(\mathbb{Q}, \mathbb{R}, \mathbb{C} \text{ sau } \mathbb{F}_p)$. Precum în \mathbb{Z} , notăm cu (,) cel mai mare divizor comun și cu [,] cel mai mic multiplu comun. Algoritmul lui Euclid se transferă cuvânt cu cuvânt în k[X](relația de ordine fiind recuperată via noțiunea de grad). Spre exemplu:

1. Să se determine (f,g), [f,g] și să se scrie (f,g) ca și combinație liniară între f și g în următoarele cazuri:

(a)
$$f = X^4 + X^3 - 7X^2 - X + 6$$
, $g = X^3 - X^2 - 4X + 4$ in $\mathbb{Q}[X]$;

(a)
$$f = X^4 + X^3 - 7X^2 - X + 6$$
, $g = X^3 - X^2 - 4X + 4$ în $\mathbb{Q}[X]$; (b) $f = \frac{1}{3}X^3 - X^2 - \frac{1}{12}X + \frac{1}{4}$, $g = \frac{1}{9}X^3 - \frac{1}{18}X^2 - X + \frac{1}{2}$ în $\mathbb{Q}[X]$; (c) $f = X^3 + 2X^2 + X + 2$, $g = X^3 - iX^2 - 4X + 4i$ în $\mathbb{C}[X]$;

(c)
$$f = X^3 + 2X^2 + X^2 + 2$$
, $g = X^3 - iX^2 - 4X + 4i$ în $\mathbb{C}[X]$;

(d)
$$f = X^3 + \hat{3}X^2 + \hat{4}X + \hat{2}, g = X^3 + \hat{4}X^2 + X + \hat{1} \text{ in } \mathbb{F}_5[X].$$

Soluție. Aici aș putea să trec peste - ați făcut la liceu asemenea chestiuni... Vedem două metode pentru a determina (f, q).

(a) Mai întâi, folosim algoritmul lui Euclid (adică împărțim). Avem

$$X^4 + X^3 - 7X^2 - X + 6 = (X+2)(X^3 - X^2 - 4X + 4) + (-X^2 + 3X - 2)$$

Apoi, împărțim $X^3 - X^2 - 4X + 4$ la restul $X^2 - 3X + 2$ (nu contează că am schimbat semnul: c.m.m.d.c este unic până la o constantă nenulă). Avem

$$X^3 - X^2 - 4X + 4 = (X^2 - 3X + 2)(X + 2)$$

Astfel, ultimul rest nenul este $X^2 - 3X + 2$, și deci acesta este (f, g).

Pentru a determina [f,g], folosim faptul că f,g=fg. Dar, mai întâi, împărțim pe f și g la X^2-3X+2 : obținem

$$f = (X^2 - 3X + 2)(X^2 + 4X + 3)$$
$$g = (X^2 - 3X + 2)(X + 2)$$

de unde,

$$[f,g] = \frac{fg}{(f,g)} = (X^2 + 4X + 3)(X+2)(X^2 - 3X + 3)$$
$$= X^5 + 3X^4 - 5X^3 - 15X^2 + 4X + 12$$

În fine, pentru a depista combinația liniară, parcurgem drumul invers din algoritm: $X^2 - 3X + 2 = (X + 2)g - f$.

Însă observați și o a doua metodă: descompunem în factori ireductibili. Avem că

$$f = X^{3}(X+1) - 7X^{2} - X + 7 - 1$$

$$= X^{3}(X+1) - 7(X^{2} - 1) - (X+1)$$

$$= X^{3}(X+1) - 7(X+1)(X-1) - (X+1)$$

$$= (X+1)(X^{3} - 7X + 7 - 1)$$

$$= (X+1)((X-1)(X^{2} + X + 1) - 7(X-1))$$

$$= (X+1)(X-1)(X^{2} + X - 6)$$

$$= (X+1)(X-1)(X^{2} - 4 + X - 2)$$

$$= (X+1)(X-1)((X+2)(X-2) + X - 2)$$

$$= (X+1)(X-1)(X-2)(X+3)$$

iar

$$g = X^{2}(X - 1) - 4(X - 1)$$
$$= (X - 1)(X^{2} - 4)$$
$$= (X - 1)(X - 2)(X + 2)$$

și deci, luând factorii comuni la puterile cele mai mici,

$$(f,g) = (X-1)(X-2) = X^2 - 3X + 2$$

(De fapt, am lucrat numai în $\mathbb{Z}[X]$.)

- (b) Din nou, ca să fie calculul mai lejer, țineți cont de faptul că (f,g) e unic până la o constantă (astea-s elementele inversabile dintr-un k[X]). Astfel, în locul lui f luăm $12f = 4X^3 12X^2 X + 3$, iar în locul lui g, $18g = 2X^3 X^2 18X + 9$ și începem algoritmul.
- (c) La al doilea pas va trebui să împărțiți pe g la $(2+i)X^2+5X+2-4i$; nu faceți asta din prima: înlocuiți-l pe g cu (2+i)g și apoi continuați.
- 2. Pentru orice $n \in \mathbb{N}$, polinomul $X^2 X + 1$ divide polinomul $X^{12n+2} X^{6n+1} + 1$ în $\mathbb{C}[X]$.

Soluţie. Notăm $f = X^{12n+2} - X^{6n+1} + 1$ şi $g = X^2 - X + 1$. Observăm că rădăcinile lui g sunt simple $(\Delta \neq 0)$, așa că e suficient să arătăm că rădăcinile lui g se află printre cele ale lui f. Fie $\alpha \in \mathbb{C}$ cu $g(\alpha) = 0$.

Înmulțim egalitatea $\alpha^2-\alpha+1=0$ cu $\alpha+1$ și obținem $\alpha^3+1=0$ sau $\alpha^3=-1$; deci $\alpha^6=1$. Astfel,

$$f(\alpha) = \alpha^{12n+2} - \alpha^{6n+1} + 1 = (\alpha^6)^{2n} \alpha^2 - (\alpha^6)^n \alpha + 1$$
$$= \alpha^2 - \alpha + 1 = 0$$

- 3. Pentru orice $m, n \in \mathbb{N}^*$ avem următorarele proprietăți în k[X]:
- (a) $X^m 1 \mid X^n 1$ dacă și numai dacă $m \mid n$.

$$(b)$$
 $(X^m - 1, X^n - 1) = X^{(m,n)} - 1.$

Soluție. (a) Dacă $m \mid n$, n = lm, atunci

$$X^{n} - 1 = (X^{m})^{l} - 1 = (X^{m} - 1)(X^{m(l-1)} + \dots + X^{m} + 1)$$

şi deci $X^m - 1 \mid X^n - 1$.

Reciproca reiese din (b): dacă $X^m-1\mid X^n-1$, atunci $X^m-1\mid X^{(m,n)}-1$, de unde m=(m,n) (din motive de grade), așa că $m\mid n$. (b) Să zicem că $m\leq n$. Atunci scriem $n=qm+r,\,0\leq r< m$, și avem

$$X^{n} - 1 = X^{qm+r} - X^{r} + X^{r} - 1 = X^{r}(X^{qm} - 1) + X^{r} - 1$$
$$= X^{r}(X^{m} - 1)((X^{m})^{q-1} + \dots + X^{m} + 1) + X^{r} - 1$$

iar $deg(X^r-1) < deg(X^m-1)$. Cu alte cuvinte, restul împărțirii lui X^n-1 la X^m-1 este X^r-1 .

Astfel, continuând algoritmul lui Euclid pentru n şi m în \mathbb{Z} , obţinând resturile r_1, r_2, \ldots , în algoritmul lui Euclid pentru $X^n - 1$ şi $X^m - 1$ din k[X] se contorizează resturile $X^{r_1} - 1$, $X^{r_2} - 1$, În particular, ultimul rest nenul va fi $X^{r_j} - 1$, r_j fiind ultimul rest nenul din algoritmul pentru n şi m, adică $r_j = (n, m)$.

Ca o aplicație, vedem:

4. Fie $f = X^{23} + X^{22} + \ldots + X + 1$ şi $g = X^{15} + X^{14} + \ldots + X + 1$ în $\mathbb{Q}[X]$. Să se determine (f, g).

Soluţie. Observăm că $(X-1)f=X^{24}-1$ şi $(X-1)g=X^{16}-1$, iar $((X-1)f,(X-1)g)\sim (X-1)(f,g)$ (sunt asociate în divizibilitate). Dar

$$((X-1)f, (X-1)g) = X^{(24,16)} - 1 = X^8 - 1$$
$$= (X-1)(X^7 + \dots + X + 1)$$

(cf. ex. 2. (b)), şi deci $(f,g) = X^7 + \ldots + X + 1$.

Problema centrală, atât în \mathbb{Z} , cât şi în k[X], e de a găsi criterii de primalitate, respectiv de ireductibilitate. În k[X] ați văzut criteriul cel mai important: cel al lui Eisenstein. Sunt multe alte criterii, însă nu trebuie mereu să săriți imediat la acestea. De exemplu:

5. Să se cerceteze ireductibilitatea lui $f \in k[X]$ în următoarele cazuri:

(a)
$$f = X^4 + 1$$
, $k = \mathbb{Q}$, $k = \mathbb{R}$, $k = \mathbb{C}$, $k = \mathbb{F}_3$.

(b)
$$f = X^4 + 3X^2 + 2, k \in \{\mathbb{Q}, \mathbb{R}, \mathbb{C}\}.$$

(c)
$$f = X^3 + X + \hat{3}, k = \mathbb{F}_5.$$

Soluţie. (a) Observăm că

$$f = X^4 + 2X^2 + 1 - 2X^2 = (X^2 + 1)^2 - (\sqrt{2}X)^2$$
$$= (X^2 + \sqrt{2}X + 1)(X^2 - \sqrt{2}X + 1)$$
$$= (X - x_1)(X - x_2)(X - x_3)(X - x_4)$$

unde $x_1 = \frac{-1-i}{\sqrt{2}}$, $x_3 = \frac{1-i}{\sqrt{2}}$, $x_2 = \overline{x}_1$, $x_4 = \overline{x}_3$. Deoarece f nu are rădăcini în \mathbb{Q} , acesta nu poate fi scris ca un produs f = gh cu deg(g) = 1 și deg(h) = 3, $g, h \in \mathbb{Q}[X]$, așa că mai rămâne posibilitatea de a scrie f ca produs de polinoame de grad 2; însă această scriere a lui f e $(X^2 + \sqrt{2}X + 1)(X^2 - \sqrt{2}X + 1)$, iar aceste polinoame nu au coeficienți în \mathbb{Q} . Așadar, f este ireductibil peste \mathbb{Q} .

Scrierea $f = (X^2 + \sqrt{2}X + 1)(X^2 - \sqrt{2}X + 1)$ arată că, în schimb, f e reductibil în $\mathbb{R}[X]$. Mai mult, acești factori sunt ireductibili în $\mathbb{R}[X]$, căci discriminantul lor e -2 < 0. Apoi, f e reductibil în $\mathbb{C}[X]$ având descompunerea $f = (X - x_1)(X - \overline{x_1})(X - x_3)(X - \overline{x_3})$ (așa cum asigură teorema funadamentală a algebrei).

În fine, peste $\mathbb{F}_3 = \frac{\mathbb{Z}}{3\mathbb{Z}}$ avem

$$X^{4} + \hat{1} = X^{4} + \hat{2}^{2} = X^{4} + \hat{4}X^{2} + \hat{2}^{2} - \hat{4}X^{2} = (X^{2} + \hat{2})^{2} - (\hat{2}X)^{2}$$
$$= (X^{2} - \hat{2}X + \hat{2})(X^{2} + \hat{2}X + \hat{2}) = (X^{2} + X + \hat{2})(X^{2} + \hat{2}X + \hat{2})$$

iar $X^2+X+\hat{2}$ și $X^2+\hat{2}X+\hat{2}$ sunt irreductibile peste \mathbb{F}_3 căci nu au rădăcini în \mathbb{F}_3 .

(c) Observăm că $f(\hat{1})=\hat{0},$ și deci $f=(X-\hat{1})g=(X+\hat{4})g,$ pentru un $g\in\mathbb{F}_5[X].$ Atunci 3=deg(f)=deg(g)+1, și scriem $g=\hat{a}X^2+\hat{b}X+\hat{c}.$ Avem

$$X^{3} + X + \hat{3} = (X + \hat{4})(\hat{a}X^{2} + \hat{b}X + \hat{c})$$
$$= \hat{a}X^{3} + \widehat{b + 4a}X^{2} + \widehat{4b + c}X + \hat{4c}$$

de unde $\hat{a}=\hat{1}, \hat{b}+\hat{4a}=0$ (şi deci $\hat{b}=\hat{1}$) şi $\hat{4b}+\hat{c}=\hat{1}$ (deci $\hat{c}=-\hat{3}=\hat{2}$). Astfel, $f=(X+\hat{4})(X^2+X+\hat{2})$. Însă g e de grad 2 şi nu are rădăcini în \mathbb{F}_5 : $g(\hat{0})=\hat{2}, g(\hat{1})=\hat{4}, g(\hat{2})=\hat{3}, g(\hat{3})=\hat{4}$ şi $g(\hat{4})=\hat{2}$. Aşadar, f e reductibil, iar $f=(X+\hat{4})(X^2+X+\hat{2})$ e descompunerea sa în factori ireductibili peste \mathbb{F}_5 .

6. Polinomul
$$f = X^4 + X^3 - X^2 + X + \hat{1}$$
 e ireductibil în $\mathbb{F}_2[X]$.

Soluţie. Să presupunem că avem f = gh, cu $g, h \in \mathbb{F}_2[X]$, $deg(g) \ge 1$ şi $deg(h) \ge 1$. Observăm că f nu are rădăcini în \mathbb{F}_2 , aşa că trebuie să avem $deg(g) \ne 1$ şi $deg(h) \ne 1$. Atunci scriem $g = X^2 + aX + b$ şi $h = X^2 + cX + d$ (fiind peste \mathbb{F}_2 , g şi h sunt monice automat, neavând gradul 1) şi avem

$$X^{4} + X^{3} + X^{2} + X + \hat{1} = X^{4} + (a+c)X^{3} + (ac+d+b)X^{2} + (bc+ad)X + bd$$

Astfel,

$$\begin{cases}
bd = \hat{1} \\
bc + ad = \hat{1} \\
ac + b + d = \hat{1} \\
a + c = \hat{1}
\end{cases}$$

Din prima obţinem $b = d = \hat{1}$ şi deci a treia oferă $ac = \hat{1}$, de unde $a = c = \hat{1}$, aşa că a patra oferă contradicția $\hat{0} = \hat{1}$.

De precizat că, în general, dacă un polinom nu are rădăcini, nu rezultă neapărat că e ireductibil. De exemplu, $X^4 + X^2 + \hat{1}$ nu are rădăcini în \mathbb{F}_2 , însă e clar reductibil: $X^4 + X^2 + \hat{1} = (X^2 + X + \hat{1})^2$ (char = 2). Totuși, implicația e adevărată când gradul polinomului e 2 sau 3 (evident, cele de grad 1 având mereu o rădăcină).

Până acum am folosit doar definiția. Ne uităm la:

7. Următoarele polinoame sunt ireductibile în $\mathbb{Q}[X]$:

(a)
$$f = X^n - 2, n \in \mathbb{N}$$

(b) $f = X^{p-1} + X^{p-2} + \ldots + X + 1, p \in \mathbb{N}$ find prim.

Soluţie. (a) Observăm că $2 \mid -2, 2^2 \nmid -2$ şi $2 \nmid 1$. Cum 2 e prim în \mathbb{Z} , criteriul Eisenstein spune că $X^n - 2$ e ireductibil în $\mathbb{Q}[X]$.

(b) Încă o dată, dacă suntem în cadrul unei teorii, nu facem distincție între două obiecte izomorfe: orice fenomen petrecut într-un obiect, are loc și în celălalt, și invers.

Aici observăm automorfismul de \mathbb{Q} - algebră $\varphi: \mathbb{Q}[X] \to \mathbb{Q}[X]$, dat prin $\varphi(X) = X + 1$, $\varphi|_{\mathbb{Q}} = id_{\mathbb{Q}}$. Într-adevăr, φ^{-1} există : e dat prin $\varphi^{-1}(X) = X - 1$ (φ e doar o translație...). Astfel, f e ireductibil dacă și numai dacă $\varphi(f)$ e ireductibil. Dar

$$\varphi(f) = \varphi(\frac{X^p - 1}{X - 1}) = \frac{(X + 1)^{p-1} - 1}{X}$$
$$= X^{p-1} + C_p^1 X^{p-2} + \dots + C_p^i X^{p-i-1} + \dots + C_p^{p-1}$$

 $(\varphi \text{ se extinde evident la } \mathbb{Q}(X))$, iar pentru orice $1 \leq i \leq p-1$, avem $p \mid C_p^i$ (din formula $i(i-1)\ldots 1 \cdot C_p^i = p(p-1)\ldots (p-i+1)$ şi din faptul că p e prim - cf. Seminar 11, ex. 4), $p^2 \nmid C_p^{p-1} = p$ şi $p \nmid 1$. Aşadar, criteriul Eisenstein spune că $\varphi(f)$ e ireductibil în $\mathbb{Q}[X]$.

Iată un alt criteriu:

<u>Teoremă</u> (Criteriul reducției). Fie A un inel comutativ (unitar) şi $\varphi : \mathbb{Z} \to A$ un morfism de inele. Acesta se extinde la morfismul $\overline{\varphi} : \mathbb{Z}[X] \to A[X]$, prin $\overline{\varphi}(a_0 + a_1X + \ldots + a_nX^n) = \varphi(a_0) + \varphi(a_1)X + \ldots + \varphi(a_n)X^n$. Dat un $f \in \mathbb{Z}[X]$, dacă $\overline{\varphi}(f)$ e ireductibil în A[X] şi $deg(\overline{\varphi}(f)) = deg(f)$, atunci f e ireductibil în $\mathbb{Q}[X]$.

De obicei, testarea se face pentru un morfism canonic $\mathbb{Z} \to \frac{\mathbb{Z}}{p\mathbb{Z}}$.

Dacă până acum s-a pus în evidență legătura aritmetică dintre \mathbb{Z} și inelele k[X], trebuie să fim conștienți că, atunci când $k=\mathbb{C}$, intervine și ciclotomia în aceste aspecte aritmetice.

Ne amintim că pentru orice $n \in \mathbb{N}^*$, μ_n notează grupul rădăcinilor de ordin n ale unității din \mathbb{C} . Probabil ați văzut în semestrul 1 următorul rezultat:

Teoremă. Pentru $m, n \in \mathbb{N}^*$ oarecare, avem:

- (a) $\mu_m \subseteq \mu_n \Leftrightarrow m \mid n$
- (b) $\mu_m \cap \mu_n = \mu_{(m,n)}$.

Acum, luând în discuție polinomul $X^n - 1 \in \mathbb{Z}[X]$, (a) şi (b) din teorema anterioară se traduc exact în (a) şi (b) din ex. 3 (într-adevăr, rădăcinile din \mathbb{C} ale lui $X^n - 1$ sunt exact elementele lui μ_n).

Pentru $n \in \mathbb{N}^*$, vom nota cu P_n mulțimea rădăcinilor primitive de ordin n ale unității (generatorii lui μ_n). Polinomul

$$\Phi_n = \prod_{\zeta \in P_n} (X - \zeta)$$

se numește al n-lea polinom ciclotomic (se numește astfel pentru că "ciclotomie" înseamnă diviziune circulară, și avem în vedere interpretarea geometrică a elementelor lui μ_n : sunt vârfurile unui poligon regulat înscris în cercul unitate).

Continuăm data viitoare pe acest drum sublim deschis de către Gauss, anume cel dat de metodele ciclotomice.