**Задача 1:** Существует ли отношение эквивалентности на отрезке, факторпространство по которому гомеоморфно объединению 3 отрезков с общим концом? Строго обоснуйте ответ.

*Решение.* На отрезке *AE* выберем точки *B*, *C*, *D* так, чтобы *AB*  $\subset$  *AC*  $\subset$  *AD*  $\subset$  *AE*. Введем такое отображение

$$f \colon AE \to AE, \qquad \begin{array}{c} AB \mapsto AB \\ BC \mapsto BC \\ CD \mapsto BC \\ DE \mapsto DE \end{array}$$



Рис. 1: Отрезок AE и f(AE).

Такое отображение является непрерывной сюръекцией  $^{1}$ . Отрезок AE является компактом, а f(AE) хаусдорфово. Тогда

$$\frac{AE}{\sim_f}\cong$$
 объединение 3 отрезков с общим концом.

Ответ: Да. □

 $<sup>^1</sup>$ Прообразами открытых являются либо одно, либо два открытых множества в AE; а объединение двух открытых множеств открыто.

**Задача 2:** Факторпространство топологического пространства по некоторому отношению эквивалентности является хаусдорфовым тогда и только тогда, когда любые два класса эквивалентности обладают непересекающимися насыщенными открытыми окрестностями. Докажите.

Останется ли данное утверждение верным, если удалить слово "открытыми"?

Напомним, что окрестность подмножества  $A \subset X$  топологического пространства X — это такое подмножество  $O \subset A$ , в котором есть открытое подмножество  $U \supset A$ , так что  $A \subset U \subset O \subset X$ .

*Решение.*  $\Longrightarrow$  Пусть  $\frac{x}{-}$  хаусдорфово. Тогда докажем, что для любых двух классов эквивалентности, существуют две непересекающиеся, насыщенные открытые окрестности.

По определению хаусдорфовости  $^X/_\sim$  для любых  $[x_1],[x_2]$  существуют открытые U,V такие, что

$$U \ni [x_1], V \ni [x_2], \quad U \cap V = \emptyset, \quad U, V \in \mathcal{T}_{X/_{\sim}}.$$

И пусть  $\pi\colon X\to {}^X\!/_\sim$  есть каноническая проекция на факторпространство. Тогда докажем, что  $\pi^{-1}(U)$  и  $\pi^{-1}(V)$  – подходящие окрестности.

(i)  $\mathit{Открытость}.$  Следует из непрерывности  $\pi$ 

$$U, V \in \mathcal{T}_{X/_{\sim}} \implies \pi^{-1}(U), \pi^{-1}(V) \in \mathcal{T}_X.$$

- (ii) Пустое пересечение. Пусть  $\pi^{-1}(U) \cap \pi^{-1}(V) \ni x$ . Тогда  $\pi(x) \in U$  и  $\pi(x) \in V$ . Получаем противоречие с  $U \cap V = \emptyset$ .
- (iii) Насыщенность. Пусть  $a \in \pi^{-1}(U)$  и  $a \sim b$ . Тогда

$$\underbrace{\pi(a)}_{=\overline{\pi(b)}} \in U \implies \pi^{-1}(U) \ni b.$$

Аналогичное рассуждение проделывается для V.

Пусть  $x_1$  и  $x_2$  обладают непересекающимися открытыми насыщенными окрестностями U,V соответственно. Докажем, что  $[x_1],[x_2]$  обладают непересекающимися открытыми окрестностями. Докажем, что  $\pi(U)$ ,  $\pi(V)$  подходят.

- (i) Открытость. Следует из определения фактортопологии.
- (ii) Пустое пересечение. Пусть  $x \in \pi(U) \cap \pi(V)$  Тогда  $\pi^{-1}(x) \in U \cap V$ , что противоречит  $U \cap V = \emptyset$ .

Таким образом  $X/_{\sim}$  хаусдорфово, так как  $[x_1] \in pi(U), [x_2] \in \pi(V)$ .

Утверждение задачи не останется верным. Существует контрпример.

**Задача 3:** Проективная прямая  $\mathbb{R}^P$  вкладывается в проективную плоскость  $\mathbb{R}^P$  следующим образом: точке из  $\mathbb{R}^P$  с однородными координатами  $[x_0:x_1]$  соответствует точка  $[x_0:x_1:0]\in\mathbb{R}^P$ . Докажите, что дополнение  $\mathbb{R}^P$   $\setminus \mathbb{R}^P$  гомеоморфно плоскости  $\mathbb{R}^2$  со стандартной топологией.

*Решение.*  $\mathbb{R}P^2 \setminus \mathbb{R}P^1 = \{[x_0 : x_1 : x_2] \mid x_2 \neq 0\}$ . Тогда рассмотрим

$$f\colon \mathbb{R}P^2\setminus \mathbb{R}P^1\hookrightarrow R^2,\quad [x_0:x_1:x_2]\mapsto \left(\frac{x_0}{x_2},\frac{x_1}{x_2}\right)^{\color{red}1}.$$

Проверим что оно является сюръективным и инъеквтиным, а следовательно биективным.

(i) Инъективность. Пусть  $f([x_0:x_1:x_2])=f([\tilde{x}_0:\tilde{x}_1:\tilde{x}_2])$ . Тогда

$$\frac{x_0}{x_2} = \frac{\tilde{x}_0}{\tilde{x}_2} = \frac{\lambda \tilde{x}_0}{x_2}, \quad \frac{x_1}{x_2} = \frac{\tilde{x}_1}{\tilde{x}_2} = \frac{\lambda \tilde{x}_1}{x_2}, \qquad \exists \lambda \in \mathbb{R} \setminus \{0\} : \quad \lambda \tilde{x}_2 = x_2.$$

Ну и понятно, что

$$[x_0: x_1: x_2] = [\lambda x_0: \lambda x_1: \lambda x_2].$$

(ii) Сюръективность.

$$f^{-1}((a,b)) \ni [a:b:1].$$

<sup>&</sup>lt;sup>1</sup>Отображение f корректно определено, так как  $x_2 ≠ 0$ .

Осталось проверить существование и непрерывность обратного.

Определим отображение

$$g: \mathbb{R}^2 \to \mathbb{R}P^2 \setminus \mathbb{R}P^1$$
,  $(a,b) \mapsto [a:b:1]$ .  
 $(f \circ g)(a,b) = f([a:b:1]) = (a,b)$ .  
 $(g \circ f)([a:b:1]) = g(a,b) = [a:b:1]$ .

Получаем, что f и g обратны друг другу, а также f, g являются непрерывными. Таким образом f – гомеоморфизм пространств  $\mathbb{R}P^2\setminus\mathbb{R}P^1$  и  $\mathbb{R}^2$ .