KHẢO SÁT CHUYỂN ĐỘNG CỦA CON LẮC VẬT LÝ - XÁC ĐỊNH GIA TỐC TRỌNG TRƯỜNG

BẢNG SỐ LIỆU

Xác định ví trí x1

<i>L</i> =	700	±	1	(mm)		
Vị trí gia trọng C (mm)				$50T_1(s)$	$50T_2(s)$	
	$x_0 =$	0	mm	83.51	83.81	
χ	$c_0 + 40 =$	40	mm	84.37	84.11	
	$x_1 =$	21	mm	83.94	83.95	

Ở bài này có đồ thị nên thông thường ta phải vẽ ô sai số. Để xác định ô sai số thì các bạn phải xác định được kích thước của ô sai số. Để xác định ô sai số thì ta phải xác định sai số tuyệt đối theo từng trục. Ở trong bài này là trục 50T và trục x. Dễ thấy:

. $\Delta x = 1 mm$

 $\Delta(50T) = \Delta(50T)dc = 0.01s$

 \mathring{O} đây không có giá trị $\Delta(50T)$ trung bình vì đo 1 lần thì đào đầu ra trung bình. Kích thước mỗi cạnh của ô sai số sẽ là $2.\Delta x$ và $2.\Delta(50T)$

Tuy nhiên việc vẽ đúng kích thước ô sai số đôi khi là việc không tưởng lý do là kích thước của nó quá nhỏ do đó ta chỉ vẽ tượng trưng và phóng to ô sai số để khi chú kích thước trên đó.

Sau khi mò cı	ua bắt ốc một lúc ta sẽ thu được	giá trị tối ưu của x_1 =	= 21 ± 1	(mm)
Lần đo	$50T_1(s)$	$50\Delta T_1(s)$	$50T_2(s)$	$50\Delta T_2(s)$
1	83.93	0.003	83.93	0.010
2	83.94	0.007	83.95	0.010
3	83.93	0.003	83.94	0.000
Trung bình	83.933	0.004	83.940	0.007

XỬ LÝ SỐ LIỆU

Xác định chu kỳ dao động của con lắc thuận nghịch

Giá trị chu kỳ dao động trung bình:

$$\bar{T} = \frac{1}{50} \cdot \frac{\left(\overline{50T_1} + \overline{50T_2}\right)}{2} = XXX =$$
 1.67873 (s)

Sai số ngẫu nhiên của phép đo T:
$$\overline{\Delta T} = \frac{1}{50} \cdot \frac{\left(\overline{\Delta 50}T_1 + \overline{\Delta 50}T_2\right)}{2} = XXX =$$
0.00011 (s)

Sai số dụng cụ của phép đo T: $(\Delta T)_{dc} = \frac{0.01}{50} =$ **0.0002** (s)

Sai số của phép đo T:
$$\Delta T = (\Delta T)_{dc} + \overline{\Delta T} =$$
0.0002 +

0.00011

= 0.00031 (s)

Xác định gia tốc trọng trường

$$\bar{g} = \frac{4\pi^2 L}{\bar{T}^2} = XXX =$$

 (m/s^2)

Sai số tương đối của gia tốc trong trường:

$$\delta = \frac{\Delta g}{g} = \frac{\Delta L}{L} + \frac{2\Delta T}{\overline{T}} + 2.\frac{\Delta \pi}{\pi} =$$

0.0018 + $2\frac{\Delta\pi}{\pi}$

0.0018 + $2.\frac{0.0001}{3.1415}$ =

0.19%

Cách lấy sai số của hằng số $\pi \to \text{tham khảo báo cáo mẫu 1}$

Sai số tuyệt đối của gia tốc trọng trường:

$$\Delta g = \delta. \bar{g} =$$
 0.02 (m/s^2)

Viết kết quả phép đo gia tốc trọng trường:

$$g = \bar{g} \pm \Delta g =$$
 9.81

 $0.02 (m/s^2)$

Chú ý riêng với bài này chúng ta làm tròn sai số tuyệt đối của g chỉ hai số sau dấu phẩy. Thực ra 3 số cũng chả sai, nhưng vì một số giáo viên không thích hay bắt lỗi này nên tốt nhất cứ làm về 2 số cho yên tâm

P/S:

TẤT CẢ NHỮNG CHỗ XXX CÁC BẠN PHẢI GHI CHI TIẾT CÁC SỐ RA NHÉ => ĐỪNG CÓ MÀ VÁC NGUYÊN XXX VÀO BÀI BÁO CÁO *_*

CẢM ƠN BẠN SINH VIÊN ĐÃ GỬI SỐ LIỆU CHO TÔI THAM KHẢO CHÚC CÁC BẠN HOÀN THÀNH TỐT BÀI NÀY