

Software Project Lab - 1

Implementation of PageRank Algorithm

Presented by

Shah Alam Abir

Roll: 1439

Session: 2021-2022

Supervised by

Dr. Ahmedul Kabir Associate Professor IIT, University of Dhaka

Table of Contents

1 Introduction

4 The Web as a Graph

2 Project Motivation

5 Random Surfer Model

3 Features

6 PageRank Formula

Introduction

- Google's PageRank Algorithm is an algorithm used by Google Search Engine to rank web pages in search engine results.
- It was developed by Larry Page and Sergey Brin, the co-founders of Google, while they were graduate students at Stanford University.

Introduction

- PageRank is designed to assess the importance and relevance of web pages in the context of search engine results.
- The underlying idea is that valuable and authoritative web pages are more likely to be linked to by other web pages.
- Therefore, a web page with many high-quality incoming links is considered more valuable and is likely to rank higher in search results.

Project Motivation

- Foundation of Modern Search Engines
- Refining Search Precision
- Impact on Accessibility
- Real-World Applications
- Academic and Research Value

Features

Main Feature:

 Implementation of PageRank Algorithm (that was developed by Larry Page & Sergey Brin) by solving 2 core page ranking problems.

Sub Feature:

- Can add new pages
- Can find neighbours of a particular page
- Show List of the dangling nodes
- Visualizing Pages ranking after every iterations of iterative model
- Showing Initial Transition Matrix (made from the web graph)
- Showing Gooogle Matrix (made of PageRank formula)

The Web as a Graph

The web as a Graph

We can represent WWW's structure as a huge directed graph, where node's
of that graph are the webpages and edges are the links between webpages.

The web as a Graph

- Inbound links are links that point from another website to the target website
- Outbound links are links that point to another websites from target website

The web as a Graph

- Dangling Nodes are the nodes with no outbound links
- Dangling Links are links that point to the dangling nodes

- Here **D** is a Dangling Node
- **BD** is a dangling Link

5

Random Surfer Model

Random Surfer Model

 The Random Surfer Model is a conceptual framework used in the context of web page ranking algorithms, particularly in understanding Google's PageRank algorithm. It is a simplified representation of how a hypothetical internet user behaves when navigating the web and is used to explain the concept of PageRank.

Random Surfer Model

Matrix Presentation

$$r_{(k+1)}(P_i) = \sum_{Pj \in B_{P_j}} \frac{r_k(P_j)}{|P_j|}$$

The PageRank of a page P_i , denoted $r(P_i)$, is the sum of the Page-Ranks of all pages pointing into P_i .

where B_{P_i} is the set of pages pointing into P_i and $|P_j|$ is the number of out-links from page P_j .

	Α	В	C	D
Α	0	0	0.5	0.5
В	1	0	0	0
С	0.5	0	0	0.5
D	0	1	0	0

Transition matrix **H**

Random Surfer Model (Iterative Calculation)

Initializing page rank for every page with 1/n. Where, n is the total number of webpages of the graph. Thus, we will have another matrix **X** with initialized page-rank value.

From previous slide we got Transition matrix **H**

We will perform matrix multiplication $\mathbf{X} = \mathbf{H}\mathbf{X}$ iteratively until it converge. Then we will get a modified page-rank matrix \mathbf{X} . Now, if we sort them according to probability, then we will get webpages in descending order.

А	1/4
В	1/4
С	1/4
D	1/4

Matrix X

Problems with Random Surfer Model

But, there is two major problem with this Random Surfer Model. These are –

- 1. If there is any dangling node [webpage], then all the elements of the final matrix will be 0.
- 2. If some nodes of the graph is highly connected, then probability of these particular group of nodes becomes significantly higher then other nodes. Because of this, a random surfer iterates through a group of nodes again and again.

PageRank Algorithm appeared to solve these 2 core problem and sum up with a satisfactory ranking of webpages

Figure 4.1 Directed graph representing web of six pages

$$\mathbf{H} = \begin{pmatrix} P_1 & P_2 & P_3 & P_4 & P_5 & P_6 \\ P_2 & 0 & 1/2 & 1/2 & 0 & 0 & 0 \\ P_2 & 0 & 0 & 0 & 0 & 0 & 0 \\ P_3 & 0 & 0 & 0 & 0 & 0 & 0 \\ P_4 & 0 & 0 & 0 & 0 & 1/3 & 0 \\ P_5 & 0 & 0 & 0 & 0 & 1/2 & 1/2 \\ P_6 & 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

Initial Transition Matrix of the graph

To solve first problems-

We have to convert **H** matrix to a *Stochastic* matrix. This *Stochastic* matrix solves the problem of dangling node by initializing nodes probability with a value. If **S** is a *Stochastic* matrix, then-

$$S = H + a(1/ne^T)$$

Here,

S, Stochastic Matrix

H, Transition Matrix

a, is a (nx1) matrix. Value of a_i is 1 if a dangling node else 0 e^T , is a (1xn) matrix. Every element is 1.

$$\begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \qquad \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ e^T \text{ Matrix} & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & &$$

$$\mathbf{S} = \begin{pmatrix} 0 & 1/2 & 1/2 & 0 & 0 & 0 \\ 1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 \\ 1/3 & 1/3 & 0 & 0 & 1/3 & 0 \\ 0 & 0 & 0 & 0 & 1/2 & 1/2 \\ 0 & 0 & 0 & 1/2 & 0 & 1/2 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}.$$

S Matrix

To solve second problems-

We have to make *GOOGLE* (*G*) matrix from *S* matrix & *H* matrix. This *G* matrix ensures teleportation from the dense part to the sparse part of the graph. If *G* is a *GOOGLE* matrix, then-

$$G = \alpha S + (1 - \alpha) \frac{1}{\alpha} e e^T = \alpha H + (\alpha a + (1 - \alpha)e) \frac{1}{n} e^T$$

Here,

G, GOOGLE Matrix

S, Scholastic Matrix

H, Transition Matrix

a, is a (nx1) matrix. Value of a_i is 1 if a dangling node else 0

e, is a (nx1) matrix. Every element is 1

 e^T , is a (1xn) matrix. Every element is 1.

 α , is the damping factor. It ensures the teleportation.

Damping Factor

The damping factor in the PageRank algorithm is a parameter that represents the probability that a random surfer, navigating the web by clicking on links, will continue to browse and click on links within the current web page rather than jumping to a completely random page.

Now, we got our final formula to make a *GOOGLE matrix* by doing *Stochastic adjustment* & *Primitive adjustment* of the initial *Transition matrix*, **H**.

$$G = \alpha S + (1 - \alpha) \frac{1}{\alpha} e e^T = \alpha H + (\alpha \alpha + (1 - \alpha) e) \frac{1}{n} e^T$$

$$\mathbf{G} = \begin{pmatrix} 1/60 & 7/15 & 7/15 & 1/60 & 1/60 & 1/60 \\ 1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 \\ 19/60 & 19/60 & 1/60 & 1/60 & 19/60 & 1/60 \\ 1/60 & 1/60 & 1/60 & 1/60 & 7/15 & 7/15 \\ 1/60 & 1/60 & 1/60 & 1/60 & 1/60 & 7/15 \\ 1/60 & 1/60 & 1/60 & 11/12 & 1/60 & 1/60 \end{pmatrix} \qquad \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \qquad \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \qquad (1 & 1 & 1 & 1 & 1) \\ \mathbf{e} \ \mathsf{Matrix} \qquad \mathbf{e}^T \ \mathsf{Matrix}$$

Now, We will perform Iterative matrix multiplication **X** = **HX** until it converges. Then we will get a modified page-rank matrix, **X**. Then, by sorting \ matrix **X** according to probabilistic value, we will get webpages in descending order.

Thank you