Satellite Imagery Classification with Deep Learning

Lisa Taylor
Completed as Capstone Assignment 2
Springboard Data Science Bootcamp

Overview

Satellite imagery

- Rapid growth in data acquisition
- Applications
 - o Agriculture
 - Insurance
 - Disaster Response
 - Land Use Management
 - o Environmental Management
- Common use-case: classify land uses within area of interest

Raw data → Process→ Interpret → Decisions

Screen captures from Google Earth

About Satellite Imagery

- Resolution
- Bands/Spectra
- Extent
- Temporal

Satellite Imagery - Computer Vision Tasks

- Patch-based classification
- Semantic segmentation (per-pixel classification)
- Object counting
- Object detection (presence/absence, bounding box)
- Change detection

Satellite Image Classification with ML

GOAL: Group image pixels into meaningful categories

Satellite Imagery Analysis With ML

Challenges:

Big data

Significant intra-class variability

Why Deep Learning?

Traditional supervised learning methods like random forest do not scale well to big data.

CNNs can use the underlying structure in images for classification. Context.

DeepSat-6 (Basu et al, 2015)

Labelled satellite imagery dataset, used for benchmarking classification models

405,000 patches sampled from NAIP

No spatial context

28x28 pixel tiles

1 meter resolution

4 bands: R,G,B,IR

6 class labels: building, barren land, tree, grassland, road, water

Training: 324,000 tiles (80%), Test: 81,000 tiles (20%)

Deep Learning for Computer Vision

Convolutional Neural Network (CNN)

Deep learning model widely used in computer vision applications

Convolution

- Small tensor multiplied over sections of a larger image, like a filter
- Learn local patterns
- Convolutional layer applies multiple convolutions to the input
- Training learns weights of the convolutions that are most informative

Computer Vision Approaches

- Basic Architecture
 - Convolutional Base
 - Dense Classifier
- Approaches
 - Build and train CNN from scratch
 - Transfer Learning
 - Repurpose pre-trained CNN base (VGG16, Resnet) + custom classifier
 - Training options:
 - Apply convolutional base to dataset, fit classifier to numpy array output
 - Attach classifier to frozen convolutional base, train classifier model
 - Like prior, also re-train top layers of base (fine-tuning)
 - Unfreeze base and retrain entire

Baseline CNN - Architecture

Input

ImageDataGenerator (train,val)

Convolutional Base

- Maxpooling downsampling
- Relu nonlinearity
- Learns patterns at different scales
- Translation invariant

Dense Classifier

- Learn global pattern
- Softmax
- Dropout
- Output classification

Baseline CNN - Training

Backpropagation - gradient descent from output to input

Loss Function	How performance is measured on training data	Categorical Cross-Entropy (Softmax Loss) -log(softmax(s)) for positive class
Optimizer	How network parameters are updated during training	SGD (Ir=0.01)
Output Metrics	What measures to record during training	Accuracy

Deep Learning Platform: Keras on Colab

Keras

- High-level library for building deep learning models
- Multiple backend deep learning frameworks (Tensorflow, Theano, CNTK) for handling tensor operations
- Modular approach
- Leverage backend engine to compute on GPU

Colab

- Jupyter notebook environment running python in cloud
- Access to GPU resources
- Free

Baseline Model - Training Performance

Baseline Model - Test Performance

Overall accuracy on test dataset: 0.975

Classification Report:

	precision	recall	f1-score	support	
barren land	0.99	0.95	0.97	18367	
building	0.95	0.97	0.96	3714	
grassland	0.93	0.95	0.94	12596	
road	0.93	0.87	0.90	2070	
trees	0.97	0.99	0.98	14185	
water	1.00	1.00	1.00	30068	
accuracy			0.97	81000	
macro avg	0.96	0.96	0.96	81000	
weighted avg	0.98	0.97	0.97	81000	

Transfer Learning with VGG16

Architecture:

VGG16 - Training Performance

VGG16 Model - Test Performance

Overall accuracy on test dataset: 0.964

Classificatio	ssification Report:				
	precision	recall	f1-score	support	
barren_land	0.94	0.94	0.94	18367	
building	0.95	0.96	0.95	3714	
grassland	0.91	0.91	0.91	12596	
road	0.96	0.93	0.94	2070	
trees	0.97	0.97	0.97	14185	
water	1.00	1.00	1.00	30068	
accuracy			0.96	81000	
macro avg	0.95	0.95	0.95	81000	
weighted avg	0.96	0.96	0.96	81000	
Considered existence find as become lead	Graceland misclassified as building	g Grandand m	irelarcified as mad	Graceland mirelaccified as tro	

Misclassifications - Class Probabilities

Class Probabilities							
building	barren_land	trees	grassland	road	water	Actual	Predicted
0.482	0.505	0.000	0.012	0.001	0.000	building	barren_land
0.000	0.151	0.022	0.827	0.000	0.000	barren_land	grassland
0.000	0.598	0.001	0.402	0.000	0.000	grassland	barren_land
0.000	0.125	0.003	0.872	0.000	0.000	barren_land	grassland
0.000	0.119	0.001	0.881	0.000	0.000	barren_land	grassland
0.101	0.891	0.000	0.000	0.007	0.000	building	barren_land
0.000	0.816	0.002	0.182	0.000	0.000	grassland	barren_land
0.763	0.000	0.000	0.000	0.237	0.000	road	building
0.000	0.113	0.059	0.828	0.000	0.000	trees	grassland
0.001	0.257	0.003	0.740	0.000	0.000	barren_land	grassland

Apply Baseline Model to New Image

Download new NAIP image

Split into tiles, Reshape to channels-first ndarray

Input to model.predict()

Reassemble Classified Image

Summary of Results

- Applied Deep Learning with CNN to classify satellite image tiles
- Used DeepSat6 benchmarking dataset
- Two methods:
 - Simple Baseline CNN (97.5% accuracy)
 - Transfer learning with VGG16 (96.4% accuracy)
- Applied Baseline CNN to new NAIP imagery

Follow-on Work

- Additional testing on NAIP tiles
- Georeference output tile for additional spatial analysis
- Address resolution loss
 - Classify overlapping tiles, assign class to central pixels
 - Image segmentation with U-Net