Provas e Exercícios

Ref. A Mathematical Introduction to Logic - H. B. Enderton Verão 2023

Xenônio

Discord: xennonio

Contents

1	Lóg	ica Sentencial	1
	1.1	A Linguagem da Lógica Sentencial	1
2	Lóg	ica de Primeira-Ordem	2
	2.2	Verdade e Modelos	2
	2.3	Um Algoritmo de Análise	16
	2.4	Um Cálculo Dedutivo	17
	2.5	Teorema da Correção e Completude	18
	2.6	Modelos de Teorias	20
	2.7	Interpretações entre Teorias	24
	2.8	Análise não Padrão	25

1 Lógica Sentencial

1.1 A Linguagem da Lógica Sentencial

PENDENTE

2 Lógica de Primeira-Ordem

2.2 Verdade e Modelos

```
Exercício 1. Mostre que:

a) \Gamma \cup \{\alpha\} \models \varphi \text{ sse } \Gamma \models (\alpha \to \varphi);

b) \varphi \models \exists \psi \text{ sse } \models (\varphi \leftrightarrow \psi).
```

Proof. a) (\Rightarrow) Seja (\mathfrak{A}, s) uma estrutura tq $\models_{\mathfrak{A}} \gamma[s], \gamma \in \Gamma$, sabemos que $\models_{\mathfrak{A}} \alpha[s]$ ou $\not\models_{\mathfrak{A}} \alpha[s]$, no último caso é claro que $\models_{\mathfrak{A}} (\alpha \to \varphi)[s]$ por definição. No primeiro, como $\Gamma \cup \{\alpha\} \models \varphi \in \mathfrak{A}$ é um modelo de cada sentença em $\Gamma \cup \{\alpha\}$, então $\models_{\mathfrak{A}} \varphi[s]$, portanto $\models_{\mathfrak{A}} (\alpha \to \varphi)[s]$.

- (\Leftarrow) Dado $\Gamma \vDash (\alpha \to \varphi)$, sabemos que se (\mathfrak{A}, s) é tq $\vDash_{\mathfrak{A}} \gamma, \gamma \in \Gamma$, portanto $\vDash_{\mathfrak{A}} (\alpha \to \varphi)[s]$, logo, se \mathfrak{A} é um modelo de Γ e α , então $\vDash_{\mathfrak{A}} \varphi[s]$, portanto $\Gamma \cup \{\alpha\} \vDash \varphi$.
- b) (\Rightarrow) Dado $\varphi \models \exists \psi$, se (\mathfrak{A}, s) é tq $\models_{\mathfrak{A}} \varphi[s]$, então $\models_{\mathfrak{A}} \psi[s]$, portanto $\models_{\mathfrak{A}} (\varphi \leftrightarrow \psi)[s]$, para o caso que $\not\models_{\mathfrak{A}} \varphi[s]$ temos $\not\models_{\mathfrak{A}} \psi[s]$, portanto $\models_{\mathfrak{A}} (\varphi \leftrightarrow \psi)[s]$, i.e., $\models (\varphi \leftrightarrow \psi)$;
- (\Leftarrow) Se $\vDash (\varphi \leftrightarrow \psi)$, então para um (\mathfrak{A}, s) arbitrário se $\vDash_{\mathfrak{A}} \varphi$, então $\vDash_{\mathfrak{A}} \psi$, i.e., $\varphi \vDash \psi$, e caso $\vDash_{\mathfrak{A}} \psi$, então $\vDash_{\mathfrak{A}} \varphi$, portanto $\varphi \vDash \vDash \psi$.

Exercício 2. Mostre que nenhuma das sentenças a seguir é logicamente implicada pelas outras duas:

```
\alpha := \forall x \forall y \forall z (Pxy \to (Pyz \to Pxz));
\beta := \forall x \forall y (Pxy \to (Pyx \to x = y));
\gamma := \forall x \exists y Pxy \to \exists y \forall x Pxy.
```

Proof. Sabemos que se $\varphi, \psi \models \chi$, então qualquer modelo de φ, ψ é também de χ , para mostrar que nenhuma das sentenças é logicamente implicada pelas outras basta criarmos um modelo que satisfaz cada combinação de duas fórmulas e a negação da outra. α diz que P é transitiva, β que P é antissimétrica e γ que se P for total, então ela colapsa todos os pontos no $\mathsf{Dom}(P)$ em um só. Com isso em mente sejam x, y, z elementos distintos:

$$\begin{aligned}
&\models_{\mathfrak{A}} (\alpha \wedge \beta \wedge \neg \gamma): \\
|\mathfrak{A}| &= \{x, y\}, P^{\mathfrak{A}} = \{(x, x), (y, y)\} \\
&\models_{\mathfrak{B}} (\alpha \wedge \neg \beta \wedge \gamma): \\
|\mathfrak{B}| &= \{x, y\}, P^{\mathfrak{B}} = \{(x, y), (y, y)\} \\
&\models_{\mathfrak{C}} (\neg \alpha \wedge \beta \wedge \gamma): \\
|\mathfrak{C}| &= \{x, y, z\}, P^{\mathfrak{C}} = \{(x, y), (y, z)\}
\end{aligned}$$

Exercício 3. Mostre que

$$\{\forall x(\alpha \to \beta), \forall x\alpha\} \models \forall x\beta$$

Proof. Seja (\mathfrak{A}, s) tq $\models_{\mathfrak{A}} \forall x(\alpha \to \beta)[s]$ e $\models_{\mathfrak{A}} \forall x\alpha[s]$, logo $\models_{\mathfrak{A}} (\alpha \to \beta)[s\frac{d}{x}]$ e $\models_{\mathfrak{A}} \alpha[s\frac{d}{x}]$ para todo $d \in |\mathfrak{A}|$, i.e., se $\models_{\mathfrak{A}} \alpha[s\frac{d}{x}]$, então $\models_{\mathfrak{A}} \beta[s\frac{d}{x}]$, visto que $\models_{\mathfrak{A}} \alpha[s\frac{d}{x}]$, então $\models_{\mathfrak{A}} \beta[s\frac{d}{x}]$, para todo $d \in |\mathfrak{A}|$, i.e., $\models_{\mathfrak{A}} \forall x\beta$.

Exercício 4. Mostre que se $x \notin free(\alpha)$, então $\alpha \models \forall x \alpha$.

Proof. Seja (\mathfrak{A},s) tq $\models_{\mathfrak{A}} \alpha[s]$, visto que para todo $d \in |\mathfrak{A}|$ temos que $s\frac{d}{x},s:V \to |\mathfrak{A}|$ discordam apenas em x que não ocorre livre em α , portanto concordam em todas as variáveis que ocorrem em α . Pelo **Teorema 22A** temos então que se $\models_{\mathfrak{A}} \alpha[s]$, então $\models_{\mathfrak{A}} \alpha[s\frac{d}{x}]$, para todo $d \in |\mathfrak{A}|$, i.e., $\models_{\mathfrak{A}} \forall x \alpha$.

Exercício 5. Mostre que a fórmula $x = y \to (Pzfx \to Pzfy)$ (onde f é um símbolo de função unário e P um símbolo de relação binário) é válida.

Proof. Assuma por contradição que $\varphi(x,y,z) := (x = y \to (Pzfx \to Pzfy))$ não seja válida, logo existe (\mathfrak{A},s) tq $\not\models_{\mathfrak{A}} \varphi(x,y,z)[s]$, i.e., $\models_{\mathfrak{A}} (x = y)[s]$, $\models_{\mathfrak{A}} Pzfx$ e $\not\models_{\mathfrak{A}} Pzfy$, portanto $\overline{s}(x) = \overline{s}(y)$, $(\overline{s}(z),\overline{s}(fx)) \in P^{\mathfrak{A}} = (\overline{s}(z),\overline{s}(fy)) \notin P^{\mathfrak{A}}$, mas $\overline{s}(fx) = f^{\mathfrak{A}}(\overline{s}(x)) = f^{\mathfrak{A}}(\overline{s}(y)) = \overline{s}(fy)$, contradição. \dashv

Exercício 6. Mostre que uma fórmula θ é válida sse $\forall x\theta$ é válida.

Proof. (\Rightarrow) Se $\models_{\mathfrak{A}} \theta[s]$, para todo (\mathfrak{A}, s), em particular $\models_{\mathfrak{A}} \theta\left[s\frac{d}{x}\right]$, para todo $d \in |\mathfrak{A}|$, visto que s é arbitrário, portanto $\models_{\mathfrak{A}} \forall x\theta$;

 (\Leftarrow) Se $\models_{\mathfrak{A}} \forall x \theta$, então $\models_{\mathfrak{A}} \theta\left[s\frac{d}{x}\right]$, para todo (\mathfrak{A},s) com $d \in |\mathfrak{A}|$, logo, em particular, vale para d = s(x). Visto que $s\frac{s(x)}{x} = s$, então $\models_{\mathfrak{A}} \theta[s]$.

Exercício 7. Redefina " $\mathfrak A$ satisfaz φ com s" por meio de uma função recursiva $\overline h$ to $\mathfrak A$ satisfaz φ com s sse $s \in \overline h(\varphi)$.

Proof. Fixando \mathfrak{A} e utilizando a definição de \overline{s} usual para cada termo τ , sejam: $(\wedge): \mathcal{L}^{\mathcal{S}} \times \mathcal{L}^{\mathcal{S}} \to \mathcal{L}^{\mathcal{S}}, (\neg): \mathcal{L}^{\mathcal{S}} \to \mathcal{L}^{\mathcal{S}}, (\forall v_n): \mathcal{L}^{\mathcal{S}} \to \mathcal{L}^{\mathcal{S}} \text{ e } h: \mathsf{At} \to |\mathfrak{A}|^V \text{ (com At sendo o conjunto de fórmulas atômicas) definido como:$

$$h(t_1 = t_2) = \{ s \in |\mathfrak{A}|^V \mid \overline{s}(t_1) = \overline{s}(t_2) \};$$

$$h(Pt_1 \dots t_n) = \{ s \in |\mathfrak{A}|^V \mid (\overline{s}(t_1), \dots, \overline{s}(t_n)) \in P^{\mathfrak{A}} \}$$

É fácil ver que $\mathcal{L}^{\mathcal{S}}$ é livremente gerado de At por $(\land), (\lnot), (\forall v_n)$, pra cada $v_n \in V$. Logo o Teorema da Recursão garante que existe um único $\overline{h}: \mathcal{L}^{\mathcal{S}} \to |\mathfrak{A}|^V$ satisfazendo:

$$\overline{h}(\varphi) = h(\varphi), \text{ para } \varphi \in \mathsf{At};$$

$$\overline{h}((\wedge)(\varphi, \psi)) = \{ s \in |\mathfrak{A}|^V \mid s \in \overline{h}(\varphi) \land s \in \overline{h}(\psi) \}$$

$$\overline{h}((\neg)(\varphi)) = \{ s \in |\mathfrak{A}|^V \mid s \notin \overline{h}(\varphi) \}$$

$$\overline{h}((\forall v_n)(\varphi)) = \{ s \in |\mathfrak{A}|^V \mid \forall d \left(d \in \mathfrak{A} \to s \frac{d}{x} \in \overline{h}(\varphi) \right) \}$$

Bastando agora verificar que $\models_{\mathfrak{A}} \varphi[s]$ sse $s \in \overline{h}(\varphi)$, o que é trivial por indução em fórmulas.

Exercício 8. Seja $\Sigma \subseteq \mathcal{L}_0^{\mathcal{S}}$ completo e \mathfrak{A} um modelo de Σ , prove que para qualquer $\tau \in \mathcal{L}_0^{\mathcal{S}}$ temos $\models_{\mathfrak{A}} \tau$ sse $\Sigma \models \tau$.

 \dashv

Proof. (⇐) Se $\Sigma \models \tau$, como \mathfrak{A} é um modelo de Σ , então $\models_{\mathfrak{A}} \tau$ por definição; (⇒) Se $\Sigma \not\models \tau$, como Σ é completo, então $\Sigma \models \neg \tau$, i.e., $\models_{\mathfrak{A}} \neg \tau$, portanto $\not\models_{\mathfrak{A}} \tau$. Por contraposição temos que se $\models_{\mathfrak{A}} \tau$, então $\Sigma \models \tau$.

Exercício 9. Seja $S = \{P\}$ sendo P um símbolo de relação binário. Para cada uma das condições abaixo, construa uma sentença σ tq $\models_{\mathfrak{A}} \sigma[s]$ sse a condição é satisfeita:

- a) |21| tem exatamente dois elementos;
- b) $P^{\mathfrak{A}}$ é uma função de $|\mathfrak{A}|$ em $|\mathfrak{A}|$
- c) $P^{\mathfrak{A}}$ é uma permutação em $|\mathfrak{A}|$.

Proof. a) $\exists v_1 \exists v_2 (\neg (v_1 = v_2) \land \forall x (x = v_1 \lor x = v_2));$

- b) Fun(P) := $\forall x \exists y (Pxy \land \forall z (Pxz \rightarrow z = y));$
- c) $\operatorname{Fun}(P) \wedge \forall y \exists x (Pxy \wedge \forall z (Pzy \rightarrow x = z)).$

Obs. Para um $n \in \mathbb{N}$ qualquer podemos formalizar " $|\mathfrak{A}|$ tem exatamente n elementos" como:

$$\varphi_{=n} := \exists v_1 \dots v_n \left(\varphi_{\geqslant n} \wedge \forall v \left(\bigwedge_{i=1}^n v = v_i \right) \right)$$

onde $\varphi_{\geqslant n}$ é a formalização de há no mínimo n elementos, dada por:

$$\varphi_{\geqslant n} := \bigwedge_{i,j \in \{1,\dots,n\}} \neg (v_i = v_j).$$

Exercício 10. Mostre que, para Q um símbolo de relação binário e c um símbolo de constante:

$$\models_{\mathfrak{A}} \forall v_2 Q v_1 v_2 \llbracket c^{\mathfrak{A}} \rrbracket$$
 sse $\models_{\mathfrak{A}} \forall v_2 Q c v_2$.

Proof.

$$\models_{\mathfrak{A}} \forall v_2 Q v_1 v_2 \llbracket c^{\mathfrak{A}} \rrbracket \text{ sse } \models_{\mathfrak{A}} Q v_1 v_2 \left[s \frac{d}{v_2} \right], \text{ com } s(v_1) = c^{\mathfrak{A}}, \text{ para todo } d \in |\mathfrak{A}|$$

$$\text{sse } \left(c^{\mathfrak{A}}, d \right) \in Q^{\mathfrak{A}}, \text{ para todo } d \in |\mathfrak{A}|$$

$$\text{sse } \models_{\mathfrak{A}} Q c v_2 \left[s \frac{d}{v_2} \right], \text{ para todo } d \in |\mathfrak{A}|$$

$$\text{sse } \forall v_2 Q c v_2.$$

 \dashv

Exercício 11. Para cada uma das relações a seguir, dê uma fórmula que a defina em $(\mathbb{N}, +, \cdot)$.

- a) $\{0\}$;
- b) {1};
- c) $\{(m,n) \mid n \text{ \'e o sucessor de } m \text{ em } \mathbb{N}\};$
- d) $\{(m, n) | m < n \text{ em } \mathbb{N}\}.$

Proof. Para cada uma das relações X definiremos φ tq $X = \{x \in \mathbb{N} \mid \varphi(x)\}$:

- a) $\varphi_1(x) = \forall y(y = x + y);$
- b) $\varphi_2(x) = \forall y(y \cdot x = y);$
- c) $\varphi_3(n,m) = \exists y \forall x (xy = x \land n = m + y);$
- d) $\varphi_4(n,m) = \exists y (\neg \forall x (x=y+x) \land n=m+y) \text{ ou } \exists x \exists y (\varphi_3(x,y) \land n=x+m).$

Exercício 12. Seja $\mathfrak{R} = (\mathbb{R}, +, \cdot)$:

- a) Dê uma fórmula que defina em \Re o intervalo $[0, \infty)$;
- b) Dê uma fórmula que defina em \Re o conjunto $\{2\}$;
- c) Mostre que $\bigcup_{1 \leq i \leq n} I_n$, para quaisquer intervalos I_1, \ldots, I_n cujos extremos são números algébricos ou $\pm \infty$, é definível em \mathfrak{R} .

Proof. a) $\psi_1(x) = \exists y(y \cdot y = x)$ garante que $x \ge 0$, visto que $y \cdot y = y^2 \ge 0$;

- b) $\psi_2(x) = \exists y (\forall z (y \cdot z = z) \land x = y + y);$
- c) Sabemos que $\alpha \in \mathbb{R}$ é algébrico sse existe $p \in \mathbb{Z}[x]$ tq $p(\alpha) = 0$, equivalentemente, podemos descrever p(x) = 0 como $p_1(x) = p_2(x)$ onde $p_1, p_2 \in \mathbb{N}[x]$ (basta somar os termos negativos em p(x)), analogamente seria fácil descrever um inteiro negativo $x = -n \in \mathbb{N}$ como x + n = 0, o que nos permitiria descrever p(x) = 0 direto. Com isso em mãos, e sabendo que a relação de < é definível em \mathbb{R} como $(x \leq y \land x \neq y)$, sendo $x \leq y := \exists z(y + z \cdot z = x)$, podemos definir os números algébricos das seguintes formas:
- 1. Seja $p \in \mathbb{Z}[x]$ um polinômio com raízes de multiplicidade no máximo 1 tq $p = a_0 + a_1 x + \dots + a_n x^n$ cujas raízes, em ordem, são $\alpha_1, \dots, \alpha_{k-1}, x, \alpha_k, \dots, \alpha_{n-1}$, defina:

$$\varphi_{v_i} := \underbrace{(1 + \dots + 1)}_{a_0 \text{ vezes}} + \dots + \underbrace{(1 + \dots + 1)}_{a_n \text{ vezes}} \underbrace{(v_i \cdot \dots \cdot v_i)}_{n \text{ vezes}} = 0$$

Portanto o número algébrico x pode ser definido por

$$\psi(x) := \exists v_1 \dots v_{n-1} \left(\bigwedge_{1 \leqslant i < n} \varphi_i \right) \land \varphi_x \land (v_1 < \dots < v_{k-1} < x < v_k < \dots < v_{n-1});$$

2. Podemos também utilizar o fato de que $\mathbb Q$ é denso em $\mathbb R$ e tomar $\frac{p}{q},\frac{r}{s}\in\mathbb Q$ tq

$$\alpha_{k-1} < \frac{p}{q} < x < \frac{r}{s} < \alpha_k$$

portanto x pode ser definido como:

$$\psi(x) := \varphi_x \wedge (p < q \cdot x) \wedge (s \cdot x < r)$$

visto que tanto inteiros quanto naturais podem ser definidos em \Re .

De volta ao resultado inicial, para um intervalo meio aberto (a,b], com a,b algébricos podemos definir $(a,b] := \{x \in \mathbb{R} \mid \exists ab(\psi(a) \land \psi(b) \land a < x \land a \leq b)\}$, o caso para (a,b), [a,b] e [a,b) é análogo, se $b = \infty$ podemos definir (a,∞) por $\exists a(\psi(a) \land a < x)$, os outros casos para $\pm \infty$ também são análogos. Sejam agora I_1, I_2 intervalos definidos por φ, ψ , portanto $I_1 \cup I_2$ pode ser definido como $\varphi \lor \psi$, o que termina a prova.

Obs. De uma forma mais geral, uma estrutura infinita (M, <, ...) que é totalmente ordenada por <, é dita ser o-mínima se todo subconjunto definível $X \subseteq M$ é a união finita de pontos e intervalos abertos (ou, equivalentemente, intervalos quaisquer). Provamos que a união finita de intervalos cujos pontos extremos são algébricos são definíveis em \mathfrak{R} , mostrar que esses são os únicos é provar que \mathfrak{R} é uma estrutura o-mínima. Um exemplo clássico de teoria o-mínima são os corpos reais fechados, portanto em particular \mathfrak{R} é uma estrutura o-mínima, a teoria dos corpos reais fechados é particularmente importante para teóricos dos modelos, visto que Tarski provou que ela é decidível (em um tempo de complexidade terrível, mas teoricamente é).

Exercício 13. Prove que se h é um homomorfismo de \mathfrak{A} em \mathfrak{B} e $s:V\to |\mathfrak{A}|$, então para qualquer termo t, $h(\overline{s}(t))=\overline{h\circ s}(t)$, onde \overline{s} é calculado em \mathfrak{A} e $\overline{h\circ s}$ em \mathfrak{B} .

<u>Proof.</u> É fácil provar por indução, obviamente para $v \in V$ temos $\overline{s}(v) = s(v)$, portanto $h(\overline{s}(v)) = \overline{h \circ s}(v)$. Se c é um símbolo de constante $h(\overline{s}(c)) = h(c^{\mathfrak{A}}) = c^{\mathfrak{B}}$, por definição de homomorfismo. $\overline{h \circ s}(c) = c^{\mathfrak{B}}$ por definição da extensão da valoração $h \circ s : V \to |\mathfrak{B}|$.

Como hipótese indutiva temos $h(\overline{s}(t_i)) = \overline{h \circ s}(t_i)$, para $1 \le i \le n$. Para o passo indutivo seja f um símbolo de função n-ária, logo

$$h(\overline{s}(ft_1 \dots t_n)) = h\left(f^{\mathfrak{A}}(\overline{s}(t_1), \dots, \overline{s}(t_n))\right);$$

$$= f^{\mathfrak{B}}\left(h(\overline{s}(t_1)), \dots, h(\overline{s}(t_n))\right);$$

$$= f^{\mathfrak{B}}\left(\overline{h \circ s}(t_1), \dots, \overline{h \circ s}(t_n)\right) \text{ (Pela hipótese de indução)};$$

$$= \overline{h \circ s}(ft_1 \dots t_n).$$

 \dashv

Exercício 14. Liste os subconjuntos de \mathbb{R} que são definíveis em $\mathfrak{R} = (\mathbb{R}, <)$. Faça o mesmo para os em $\mathbb{R} \times \mathbb{R}$.

Proof. Seja $A \subseteq \mathbb{R}$ limitado superiormente, se $A \neq \emptyset$, então existe $x \in A$ e $\varepsilon > 0$ tal que $x = \sup(A) - \varepsilon$. Caso A seja definível, o **Teorema do Homomorfismo** garante que, o automorfismo $h(x) = x + 2\varepsilon$ (que é estritamente crescente, portanto é um homomorfismo) é tq se $x \in A$, então $h(x) = \sup(A) + \varepsilon > \sup(A)$ está em A, contradição. O caso em que A é limitado inferior é análogo. Portanto nenhum subconjunto não-vazio limitado é definível em \mathbb{R} , logo só nos resta \mathbb{R} e \emptyset , que de fato são definíveis por x = x e $x \neq x$, respectivamente.

Analogamente, se $A \subseteq \mathbb{R} \times \mathbb{R}$ for definível, então $\mathsf{Dom}(A) = \{x \in \mathbb{R} \mid \exists y(Axy)\}$ (e $\mathsf{Ran}(A)$, respectivamente), também é definível, logo se A é definível, seu domínio e imagem tem necessariamente de ser \emptyset ou \mathbb{R} . É intuitivo ver após algumas tentativas que os casos triviais são definíveis:

$$\mathbb{R} \times \mathbb{R} = \{(x,y) \mid x = x \land y = y\};$$

$$\varnothing = \{(x,y) \mid x \neq x \land y \neq y\};$$

$$< = \{(x,y) \mid x < y\};$$

$$\equiv = \{(x,y) \mid x = y\};$$

$$> = \{(x,y) \mid \neg(x = y) \land \neg(x < y)\};$$

$$\leq = \{(x,y) \mid x < y \lor x = y\};$$

$$\geq = \{(x,y) \mid \neg(x < y)\};$$

$$\mathbb{R} \times \mathbb{R} \setminus \equiv = \{(x,y) \mid x = x \land y = y \land \neg(x = y)\}$$

mas a priori não temos nenhuma condição forte o suficiente para saber se esses são os únicos subconjuntos definíveis, mas um pouco mais será explorado nas observações a seguir.

Obs. O Teorema do Homomorfismo garante que se h é um automorfismo em M, então se $A \subseteq M^n$ é definível temos $(a_1,\ldots,a_n) \in A$ sse $(h(a_1),\ldots,h(a_n)) \in A$, em um outro sentido, se definirmos a relação \sim tq $a \sim b$ sse existe um automorfismo h em M onde h(a) = b, é fácil ver que \sim é uma relação de equivalência. Além disso, se $a \in A$ e $a \sim b$, então $h(a) = b \in A$ e, portanto, todo conjunto definível em M^n vai ser a união dos conjuntos do conjunto quociente M^n/\sim . Vamos aplicar isso a \mathbb{R} , sabemos que os automorfismo são funções estritamente crescentes, logo se $a \in A$, então existe um h tal que h(a) = b, para todo $a \in A$ (basta pegar h(x) = x + (b - a)), logo $\mathbb{R}/\sim \mathbb{R}$, sendo as únicas combinações de uniões possíveis para o conjunto quociente \mathbb{R} próprio e \emptyset (a união de nenhum elemento).

Vamos repetir o processo para $\mathbb{R} \times \mathbb{R}$ que é mais interessante, se $(a,b) \in A \subseteq \mathbb{R} \times \mathbb{R}$ e A é definível, caso a=b, como h é um automorfismo, temos que $(a,a) \in A$ sse $(h(a),h(a))=(x,x) \in A$, equivalentemente, como h tem de ser estritamente crescente e sempre existe um h que mapeia a pra algum real então $[\equiv]=\{(x,x)\in \mathbb{R} \times \mathbb{R} \mid x=x\}$ é uma classe de equivalência. Se a< b, então $(h(a),h(b))\in A$ e h(a)< h(b), portanto é fácil ver que as outras duas classes são $[<]=\{(x,y)\in \mathbb{R} \times \mathbb{R} \mid x< y\}$ e $[>]=\{(x,y)\in \mathbb{R} \times \mathbb{R} \mid x \nmid y \land x \neq y\}$, logo se um conjunto é definível, ele é uma das possíveis uniões de $\mathbb{R} \times \mathbb{R} / \infty = \{[\equiv], [<], [>]\}$, que são exatamente os conjuntos descritos!

Portanto provamos que eles são os únicos:

```
\emptyset = união de nenhum elemento;

< = [<];

\equiv = [\equiv];

> = [>]

\leq = [<] \cup [\equiv];

\geqslant = [>] \cup [\equiv];

\mathbb{R} \times \mathbb{R} \setminus \equiv = [<] \cup [>];

\mathbb{R} \times \mathbb{R} = [\equiv] \cup [<] \cup [>].
```

Exercício 15. Mostre que a relação $R = \{(m, n, p) \mid p = m + n\}$ não é definível em (\mathbb{N}, \cdot) .

Proof. Defina um automorfismo $h: \mathbb{N} \to \mathbb{N}$ tq h(0) = 0, h(1) = 1, h(2) = 3, h(3) = 2, se x = y o Teorema Fundamental da Aritmética garante que ambos possuem a mesma fatoração em primos $2^{\alpha_1} \cdot 3^{\alpha_2} \dots p_n^{\alpha_n}$, portanto $h(x) = 2^{\alpha_2} \cdot 3^{\alpha_1} \dots p_n^{\alpha_n} = h(y)$, logo h é injetora, além disso, para todo $n = 2^{\beta_1} \cdot 3^{\beta_2} \dots q_m^{\beta_m}$, temos que $k = 2^{\beta_2} \cdot 3^{\beta_1} \dots q_m^{\beta_m}$ é tq h(k) = n, logo h é bijetora e, portanto, é um automorfismo em (\mathbb{N}, \cdot) , entretanto, se + fosse definível em (\mathbb{N}, \cdot) , então $(1, 1, 2) \in R$ sse $(h(1), h(1), h(2)) = (1, 1, 3) \in R$, contradição.

Exercício 16. Construa uma sentença φ que possua modelos de tamanho exatamente 2n, para qualquer inteiro positivo n.

Proof. Seja $S = \{R\}$ onde R é um símbolo de relação binário, defina

$$\varphi = \bigwedge \Phi_{\text{eq}} \wedge \exists v_1 v_2 \left(\varphi_{\geqslant 2} \wedge \forall v \left(Rvv_1 \vee Rvv_2 \right) \right)$$

onde $\varphi_{\geq n}$ é a formalização de "há no mínimo n elementos" definida na **Obs.** do **Exercício 9.** e $\bigwedge \Phi_{eq}$ é a conjunção dos axiomas da relação de equivalência definidos por:

$$\Phi_{\mathrm{eq}} := \{ \underbrace{\forall v_0 R v_0 v_0}_{\mathrm{Reflexiva}}, \underbrace{\forall v_0 v_1 (R v_0 v_1 \to R v_1 v_0)}_{\mathrm{Sim\acute{e}trica}}, \underbrace{\forall v_0 v_1 v_2 ((R v_0 v_1 \land R v_1 v_2) \to R v_0 v_2)}_{\mathrm{Transitiva}} \}$$

Isso garante não só que R seja uma relação de equivalência como também que o conjunto quociente $|\mathfrak{A}|/R$ de qualquer modelo de φ terá exatamente 2 classes de equivalência, como todas possuem a mesma cardinalidade tem de ser possível particionar o domínio em 2 conjuntos diferentes, i.e., ser um múltiplo de 2.

Obs. Podemos estender o raciocínio e, utilizando o termo modelo-teórico usual, definir o *spectrum* $\{n \in \mathbb{N} \setminus \{0\} \mid n \equiv 0 \pmod{m}\}$, para $m \ge 1$ da seguinte forma:

$$\varphi = \bigwedge \Phi_{\text{eq}} \wedge \exists v_1 \dots v_m \left(\varphi_{\geqslant m} \wedge \forall v \left(\bigvee_{i=1}^m Rvv_i \right) \right)$$

o raciocínio é o mesmo, garantimos que R é uma relação de equivalência e que o conjunto quociente de qualquer modelo sobre R terá exatamente m classes, i.e., pode ser particionado em m conjuntos de mesmo tamanho.

Exercício 17. a) Considere $S = \{P\}$ um símbolo de relação binário. Mostre que se \mathfrak{A} é finito e $\mathfrak{A} \equiv \mathfrak{B}$, então $\mathfrak{A} \cong \mathfrak{B}$;

b) Mostre que o resultado em a) vale independente de S.

Proof. a) Assuma que \mathfrak{A} possua n elementos, logo $\models_{\mathfrak{A}} \varphi_{=n}$. Seja agora s tq $s(v_1) \neq \cdots \neq s(v_n)$ e

$$\psi_{i,j}^{P} = \begin{cases} Pv_i v_j, \text{ se } \models_{\mathfrak{A}} Pv_i v_j[s]; \\ \neg Pv_i v_j, \text{ caso contrário.} \end{cases}$$

Obviamente $\models_{\mathfrak{A}} \bigwedge_{i,j \in \{1,\dots,n\}} \psi_{i,j}^{P}[s]$ por definição, logo $\models_{\mathfrak{A}} \chi := \varphi_{=n} \land \bigwedge_{i,j \in \{1,\dots,n\}} \psi_{i,j}^{P}[s]$. Visto que $\mathfrak{A} \equiv \mathfrak{B}$, então $\models_{\mathfrak{B}} \chi$, logo \mathfrak{B} tem exatamente n elementos, existe uma valoração $s' : V \to |\mathfrak{B}|$ tq $s(v_1) \neq \dots \neq s(v_n)$ e há uma única interpretação possível para $P^{\mathfrak{B}}$, visto que cada elemento de $|\mathfrak{A}|$ pode ser determinado unicamente por $s(v_i)$ e os em $|\mathfrak{B}|$ por $s'(v_i)$, portanto $h : |\mathfrak{A}| \to |\mathfrak{B}|$ tq $h(s(v_i)) = s'(v_i)$ é um isomorfismo, garantido pelas propriedades acima.

b) O caso em que possuímos $\{P_1,\ldots,P_n\}$ símbolos de relação de diversas aridades é trivial, basta, para P_i m-ário, tomar $\bigwedge_{i_1,\ldots,i_m\in\{1,\ldots,n\}}\psi^P_{i_1,\ldots,i_m}$, a conjunção de cada qual garante que toda estrutura elementarmente equivalente a $\mathfrak A$ também será isomórfica pelo mesmo h. Para o caso que possuímos um símbolo de função m-ária f construimos

$$\alpha_{i_1,\dots,i_m}^f = \begin{cases} fv_{i_1}\dots v_{i_{m-1}} = v_{i_m}, \text{ se } f^{\mathfrak{A}}(\overline{s}(v_{i_1}),\dots,\overline{s}(v_{i_{m-1}})) = \overline{s}(v_{i_m}); \\ \neg fv_{i_1}\dots v_{i_{m-1}} = v_{i_m}, \text{ caso contrário.} \end{cases}$$

e, analogamente

$$\beta_i^c = \begin{cases} c = v_i, \text{ se } c^{\mathfrak{A}} = \overline{s}(v_i); \\ \neg c = v_i, \text{ caso contrário.} \end{cases}$$

logo, defina

$$\gamma = \varphi_{=n} \wedge \bigwedge \psi^{P_{i_1}} \wedge \dots \wedge \bigwedge \psi^{P_{i_p}} \wedge \bigwedge \alpha^{f_{i_1}} \wedge \dots \wedge \bigwedge \alpha^{f_{i_q}} \wedge \bigwedge \beta^{c_{i_1}} \wedge \dots \wedge \bigwedge \beta^{c_{i_r}}$$

é fácil ver, pelo mesmo argumento, que a função h que identifica cada elemento de $\mathfrak A$ pela sua interpretação na valoração s define um isomorfismo entre $\mathfrak A$ e $\mathfrak B$, dado que $\models_{\mathfrak B} \gamma$.

Obs. Um resultado mais forte diz respeito a transformar uma S-estrutura $\mathfrak A$ arbitrária em uma S^r -estrutura $relacional \mathfrak A^r$, i.e., contendo apenas símbolos de relação, basta definirmos $|\mathfrak A| = |\mathfrak A^r|$; para cada $P \in S$, $P^{\mathfrak A^r} = P^{\mathfrak A}$; para cada símbolo P-ário de função $P \in S$, adicione $P \in S^r$ como o grafo de P, i.e., $P^{\mathfrak A^r} = P^{\mathfrak A} = P^{$

$$\models_{\mathfrak{A}} \psi[s] \text{ sse } \models_{\mathfrak{A}^r} \psi^r[s]$$

Analogamente, para todo $\psi \in \mathcal{L}^{\mathcal{S}^r}$, existe um $\psi^{-r} \in \mathcal{L}^{\mathcal{S}}$ tq para todo \mathcal{S} -estrutura (\mathfrak{A}, s) vale

$$\models_{\mathfrak{A}} \psi^{-r}[s] \text{ sse } \models_{\mathfrak{A}^r} \psi[s]$$

Em outras palavras, toda sentença em \mathfrak{A}^r possui um análogo em \mathfrak{A} , e vice-versa, um corolário direto é que $\mathfrak{A} \equiv \mathfrak{B}$ sse $\mathfrak{A}^r \equiv \mathfrak{A}^r$. A prova do teorema é fácil e feita da forma esperada, definindo $[fy_1 \dots y_n = x]^r := Fy_1 \dots y_n x, [c = x]^r := Cx, [\psi_1 \vee \psi_2]^r := \psi_1^r \vee \psi_2^r$ e os outros conectivos de forma análoga, sendo o caso contrário também trivial, $[Ft_1 \dots t_n t]^{-r} := ft_1 \dots t_n = t$, etc. A prova da equivalência sai de forma direta.

Exercício 18. Uma fórmula universal (Π_1) é uma da forma $\forall x_1 \dots x_n \theta$, onde θ é livre de quantificadores. Analogamente, uma existencial (Σ_1) é da forma $\exists x_1 \dots x_n \theta$. Seja $\mathfrak{A} \subseteq \mathfrak{B}$ e $s: V \to |\mathfrak{A}|$.

- a) Teorema da Preservação de Łoś–Tarski: Mostre que se $\models_{\mathfrak{A}} \psi[s]$, com $\psi \in \Sigma_1$, então $\models_{\mathfrak{B}} \psi[s]$. E se $\models_{\mathfrak{B}} \varphi[s]$, com $\varphi \in \Pi_1$, então $\models_{\mathfrak{A}} \varphi[s]$;
- b) Conclua que a sentença $\exists x P x$ não é logicamente válida a nenhuma sentença Π_1 , nem $\forall x P x$ a uma Σ_1 .

Proof. a) Se $\models_{\mathfrak{A}} \exists \overline{x} \psi(\overline{x}, \overline{y})[s]$, então existe $\overline{a} \in |\mathfrak{A}|^n$ tq $\models_{\mathfrak{A}} \psi(\overline{x}, \overline{y})[s\frac{\overline{a}}{\overline{x}}]$, logo o **Teorema do Homomorfismo** garante que $\models_{\mathfrak{B}} \psi(\overline{x}, \overline{y})[h \circ s\frac{\overline{a}}{\overline{x}}]$, mas como $h : |\mathfrak{A}| \to |\mathfrak{B}|$ é uma inclusão definida como h(a) = a, então $h \circ s\frac{\overline{a}}{\overline{x}} = s\frac{\overline{a}}{\overline{x}} : V \to |\mathfrak{B}|$, além disso, como $|\mathfrak{A}|^n \subseteq |\mathfrak{B}|^n$, então $\overline{a} \in |\mathfrak{B}|^n$, logo $\models_{\mathfrak{B}} \psi(\overline{x}, \overline{y})[s\frac{\overline{a}}{\overline{x}}]$, para $\overline{a} \in |\mathfrak{B}|^n$, portanto $\models_{\mathfrak{B}} \exists \overline{x} \psi(\overline{x}, \overline{y})[s]$.

O outro caso é análogo, se $\models_{\mathfrak{B}} \forall \overline{x} \varphi(\overline{x}, \overline{y})[s]$, então $\models_{\mathfrak{B}} \varphi(\overline{x}, \overline{y}) \left[s \frac{\overline{b}}{\overline{x}} \right]$, para todo $\overline{b} \in |\mathfrak{B}|^n$, por hipótese $v: V \to |\mathfrak{A}|$, e se vale para todo $\overline{b} \in |\mathfrak{B}|^n$ em particular vale para todo $\overline{a} \in |\mathfrak{A}|^n$, $\log_{\mathfrak{A}} \models_{\mathfrak{A}} \forall \overline{x} \varphi(\overline{x}, \overline{y})[s]$; b) Seja $|\mathfrak{A}| = \{a\}$, $|\mathfrak{B}| = \{a,b\}$ e defina $P^{\mathfrak{A}} = \emptyset$, $P^{\mathfrak{B}} = \{b\}$, $\log_{\mathfrak{A}} \mathfrak{A} \subseteq \mathfrak{B}$, visto que $|\mathfrak{A}| \subseteq |\mathfrak{B}|$ e $P^{\mathfrak{A}} = P^{\mathfrak{B}}|_{|\mathfrak{A}|}$. Assuma por contradição que exista $\varphi \in \Pi_1$ tq $\exists x Px \models_{\mathfrak{A}} \varphi$, como $\models_{\mathfrak{B}} \exists x Px$ (em particular Pb), então $\models_{\mathfrak{B}} \varphi$, o **Teorema da Preservação de Łoś-Tarski** garante que $\models_{\mathfrak{A}} \varphi$, $\log_{\mathfrak{A}} \varphi = \mathbb{A} \subseteq_{\mathfrak{A}} \emptyset$, contradição.

Exercício 19. Uma fórmula Σ_2 é da forma $\exists x_1 \dots x_n \theta$, com $\theta \in \Pi_1$.

- a) Mostre para toda sentença $\varphi \in \Sigma_2$ em uma assinatura sem símbolos de constante e função, se $\models_{\mathfrak{B}} \varphi$, então existe $\mathfrak{A} \subseteq \mathfrak{B}$ finita tq $\models_{\mathfrak{A}} \varphi$;
- b) Conclua que $\forall x \exists y Pxy$ não é logicamente equivalente a nenhuma sentença em Σ_2 .

Proof. a) Se $\models_{\mathfrak{B}} \exists x_1 \dots x_n \theta[s]$, então existem $d_1, \dots, d_n \in |\mathfrak{B}|$ tq $\models_{\mathfrak{B}} \theta\left[s\frac{d_1 \dots d_n}{x_1 \dots x_n}\right]$, defina $|\mathfrak{A}| = \{d_1, \dots, d_n\} \subseteq |\mathfrak{B}|$ e, para cada P_i defina $P_i^{\mathfrak{A}} = P_i^{\mathfrak{B}}|_{|\mathfrak{A}|}$, portanto $\mathfrak{A} \subseteq \mathfrak{B}$ e, como $\theta \in \Pi_1$, o **Teorema da Preservação de Łoś–Tarski** garante que $\models_{\mathfrak{A}} \theta\left[s\frac{d_1 \dots d_n}{x_1 \dots x_n}\right]$, com $d_1, \dots, d_n \in |\mathfrak{A}|$, portanto $\models_{\mathfrak{A}} \exists x_1 \dots x_n \theta[s]$;

b) Assuma por contradição que exista $\varphi \in \Sigma_2$ tq $\forall x \exists y Pxy \models \exists \varphi$, portanto, como $\mathfrak{N} = (\mathbb{N}, <)$ é tq $\models_{\mathfrak{N}} \forall x \exists y Pxy$, i.e., para todo $n \in \mathbb{N}$, existe um $m \in \mathbb{N}$ tq n < m, então $\models_{\mathfrak{N}} \varphi$ e, por a), temos que existe um $\mathfrak{A} \subseteq \mathfrak{N}$ finito tq $\models_{\mathfrak{A}} \varphi$, logo $\models_{\mathfrak{A}} \forall x \exists y Pxy$, o que é obviamente uma contradição em qualquer conjunto com finitos naturais, em particular, uma instância é que $\exists y (\max(|\mathfrak{A}|) < y)$, o que é claramente falso. \dashv

Exercício 20. Seja $S = \{P\}$, sendo R um símbolo de relação binária. Considere as S-estruturas $\mathfrak{N} = (\mathbb{N}, <)$ e $\mathfrak{R} = (\mathbb{R}, <)$.

- a) Encontre uma sentença verdadeira em uma e falsa na outra;
- b) Mostre que para qualquer sentença $\varphi \in \Sigma_2$ se $\models_{\Re} \varphi$, então $\models_{\Re} \varphi$.

Proof. a) $\models_{\mathfrak{N}} \varphi := \exists x \forall y (x \neq y \rightarrow Pxy)$, mas $\not\models_{\mathfrak{N}} \varphi$, uma vez que \mathbb{N} é limitado inferiormente e \mathbb{R} não. Ademais $\models_{\mathfrak{N}} \psi := \forall xy \exists z (Pxy \rightarrow (Pxz \land Pzy))$, mas $\not\models_{\mathfrak{N}} \psi$, visto que \mathbb{R} é denso em si mesmo e \mathbb{N} não.

b) Se $\models_{\mathfrak{R}} \exists \overline{x} \varphi(\overline{x})$ então existem $\overline{d} = d_1, \ldots, d_n \in \mathbb{R}$ tq $\models_{\mathfrak{R}} \varphi(\overline{x}) \left[s \frac{\overline{d}}{\overline{x}} \right]$, considere o automorfismo $h: \mathfrak{R} \to \mathfrak{R}$ que envia \overline{d} para os naturais $\overline{m} = m_1, \ldots, m_n$ (basta tomar $h([d_i, d_{i+1}]) = [i, i+1]$, para 1 < i < n-1 e $h((-\infty, d_1]) = (-\infty, 1]$ e $h([d_n, \infty)) = [n, \infty)$, é obviamente uma bijeção que é estritamente crescente), portanto $h \circ s \frac{\overline{d}}{\overline{x}} = h \circ s \frac{h(\overline{d})}{\overline{x}} = h \circ s \frac{\overline{m}}{\overline{x}}$, como $\exists \overline{x} \varphi(\overline{x})$ é uma sentença, então as únicas variáveis livres em φ são \overline{x} , portanto a função $s \frac{\overline{m}}{\overline{x}} : V \to \mathbb{N}$ concorda com $h \circ s \frac{\overline{m}}{\overline{x}}$ em todas variáveis livres de φ , logo $\models_{\mathfrak{R}} \varphi(\overline{x}) \left[s \frac{\overline{m}}{\overline{x}} \right]$. Pelo **Teorema da Preservação de Loś-Tarski**, como $\varphi \in \Pi_1$ e $\mathfrak{N} \subseteq \mathfrak{R}$ ($\mathbb{N} \subseteq \mathbb{R}$ e $<^{\mathfrak{N}} = <^{\mathfrak{N}} \mid_{\mathbb{N}}$), então $\models_{\mathfrak{N}} \varphi(\overline{x}) \left[s \frac{\overline{d}}{\overline{x}} \right]$, i.e., $\models_{\mathfrak{N}} \exists \overline{x} \varphi(\overline{x})$.

Exercício 21. Podemos enriquecer a linguagem adicionando um quantificador adicional. A fórmula $\exists!x\alpha$ (lê-se "há um único x tq α) tem (\mathfrak{A},s) como modelo sse existe um único $a \in |\mathfrak{A}|$ tq $\models_{\mathfrak{A}} \alpha \left[s\frac{a}{x}\right]$. Prove que esse aparentem enriquecimento é, na verdade, redundante, no sentido de que podemos encontrar uma fórmula ordinária na lógica equivalente a $\exists!x\alpha$.

Proof. Considere $\varphi = \exists x(\alpha(x) \land \forall y(\alpha(y) \to x = y))$, é fácil ver que $\models_{\mathfrak{A}} \varphi$ sse existe um $a \in |\mathfrak{A}|$ tq $\models_{\mathfrak{A}} \alpha(x) \left[s \frac{a}{x}\right]$ e, para todo $d \in |\mathfrak{A}|$ tq $\models_{\mathfrak{A}} \alpha(x) \left[s \frac{d}{x}\right]$ temos d = a, portanto há um único a que satisfaz α .

Obs. Para $n \ge 1$ podemos definir, analogamente, "existem no máximo n tq φ " ($\exists^{\le n}$) e "existem exatamente n tq φ " ($\exists^{=n}$) como:

$$\exists^{\leqslant n} v \varphi(v) := \exists v_1 \dots v_n \left(\bigwedge_{1 \leqslant i \leqslant n} \varphi(v_i) \wedge \forall v \left(\varphi(v) \to \bigvee_{1 \leqslant j \leqslant n} v = v_j \right) \right)$$

$$\exists^{=n} v \varphi(v) := \exists v_1 \dots v_n \left(\bigwedge_{x,y \in \{1,\dots,n\}} v_x \neq v_y \land \bigwedge_{1 \leqslant i \leqslant n} \varphi(v_i) \land \forall v \left(\varphi(v) \to \bigvee_{1 \leqslant j \leqslant n} v = v_j \right) \right)$$

Exercício 22. Seja $\mathfrak A$ uma estrutura e h uma função tq $\operatorname{ran}(h) = |\mathfrak A|$, mostre que existe uma estrutura $\mathfrak B$ tq h é um homomorfismo sobrejetor de $\mathfrak B$ em $\mathfrak A$.

Proof. Tomando uma das formas de AC, em particular a que para qualquer relação R, existe uma função $H \subseteq R$ tq dom(H) = dom(R), tome $R = h^{-1}$, portanto existe $H \subseteq h^{-1}$ com dom $(H) = \text{dom}(h^{-1}) = |\mathfrak{A}|$, logo dado qualquer $a \in |\mathfrak{A}|$, $(a, H(a)) \in h^{-1}$, i.e., $(H(a), a) \in h$, portanto h(H(a)) = a. Defina $|\mathfrak{B}| := \text{dom}(h)$ e

$$c^{\mathfrak{B}} := H(c^{\mathfrak{A}});$$

$$P^{\mathfrak{B}} := \{(x_1, \dots, x_n) \in |\mathfrak{B}|^n \mid (h(x_1), \dots, h(x_n)) \in P^{\mathfrak{A}}\};$$

$$f^{\mathfrak{B}} := \underbrace{\{(H(x_m), \dots, H(x_m)) \in |\mathfrak{B}|^m \mid (x_1, \dots, x_m) \in f^{\mathfrak{A}}\}}_{f_1} \cup f_2.$$

onde $f_2 = \{(x,y) \in |\mathfrak{B}|^2 \mid (H(h(x)),y) \in f_1\}$. Obviamente f_1 é uma função em ran(H), visto que H também é, entretanto f_1 não é necessariamente uma função em $|\mathfrak{B}|$, visto que H nem sempre é sobrejetora, portanto f_2 cobre os pontos restantes, associando cada ponto $x \in |\mathfrak{B}|$, a um único ponto y tq f(H(h(x))) = y, i.e., envia x ao mesmo ponto único escolhido por H na fibra que x pertence.

Basta agora provarmos que \mathfrak{B} é definido de tal forma que $h: |\mathfrak{B}| \to |\mathfrak{A}|$ é um homomorfismo: $h(c^{\mathfrak{B}}) = h(H(c^{\mathfrak{A}})) = c^{\mathfrak{A}}$; se $(b_1, \ldots, b_n) \in P^{\mathfrak{B}}$, por def. $(h(b_1), \ldots, h(b_n)) \in P^{\mathfrak{A}}$, para $(a_1, \ldots, a_n) \in P^{\mathfrak{A}}$, como h é sobrejetora existem $x_1, \ldots, x_n \in |\mathfrak{B}|$ tq $h(x_i) = a_i$, logo, como $(h(x_1), \ldots, h(x_n)) \in P^{\mathfrak{A}}$, por def. $(x_1, \ldots, x_n) \in P^{\mathfrak{B}}$; Seja $\bar{b} \in |\mathfrak{B}|^n$, considere $X = \{\bar{x} \in |\mathfrak{B}|^n \mid h(\bar{x}) = h(\bar{b})\}$ (onde $h(\bar{x}) = (h(x_1), \ldots, h(x_n))$, como $h(\bar{b}) \in |\mathfrak{A}|^n$, existe $y \in X$ tq $H(h(\bar{b})) = y$, logo se $f^{\mathfrak{A}}(h(\bar{b})) = m$, então por def. $(H(h(\bar{b})), H(m)) \in f_1$, e f_2 garante que para todo $k \in X$ temos $(H(h(\bar{k})), H(m)) = (H(h(\bar{b})), H(m)) \in f_1$, logo $(\bar{k}, H(m)) \in f_2$ e, portanto, todo elemento em X (uma das fibras de h^{-1}) está definido em $f^{\mathfrak{B}}$, portanto $f^{\mathfrak{B}}$ é uma função em \mathfrak{B}

Obs. É interessante notar que se $F:A\to B,$ com $A\neq\varnothing,$ então ZF prova que:

- a) Existe uma função $G: B \to A$ tq $G \circ F = \mathrm{id}_A$ sse F é injetora;
- b) Se existe uma função $H: B \to A$ to $F \circ H = \mathrm{id}_B$, então F é sobrejetora.

Mas, talvez não surpreendentemente, precisamos de AC para provar a conversa de b). Uma vez que F não é necessariamente injetiva, F^{-1} não será uma função, portanto AC nos garante que podemos escolher, para cada $y \in B$, um $x \in A$ tq f(x) = y, é por isso que o exercício acima, sobre a hipótese de que h é sobrejetora, não garante sem AC que existe uma função inversa à direita de h.

Ademais, o resultado do Exercício anterior garante que, como h é um homomorfismo sobrejetor, então o **Teorema do Homomorfismo** garante que $\models_{\mathfrak{A}} \varphi[s]$ sse $\models_{\mathfrak{B}} \varphi[h \circ s]$ onde φ não contém o símbolo de igualdade, i.e., para qualquer estrutura (\mathfrak{A}, s) , existe uma extensão elementarmente

equivalente para fórmulas sem igualdade para uma estrutura $(\mathfrak{B}, h \circ s)$ com qualquer cardinalidade, que seria um caso mais fraco do **Teorema de Löwenheim-Skolem Ascendente**.

Deixaremos uma pequena prova da volta de a), i.e., se $g:A\to B$ é injetora, então existe $G:B\to A$ tq $G\circ g=\mathrm{id}_A$, visto que a utilizaremos nos próximos exercícios:

Seja g uma função injetora, então g^{-1} : $\operatorname{ran}(g) \to |\mathfrak{A}|$ é uma função. A ideia é extendê-la a uma G definida em $|\mathfrak{B}|$. Como $|\mathfrak{A}| \neq \emptyset$ existe um $a \in |\mathfrak{A}|$, logo $G := g^{-1} \cup (|\mathfrak{B}| \setminus \operatorname{ran}(g)) \times \{a\}$ satisfaz o que queremos, visto que associa cada ponto fora $\operatorname{ran}(g)$ a a.

Exercício 23. Seja $\mathfrak A$ uma estrutura e g uma função injetora com $dom(g) = |\mathfrak A|$, mostre que há uma única estrutura $\mathfrak B$ tq g é um isomorfismo de $\mathfrak A$ em $\mathfrak B$.

Proof. Pela observação anterior sabemos que, por $g: |\mathfrak{A}| \to \operatorname{ran}(g)$ ser injetora, existe uma função G tq $G \circ g = \operatorname{id}_{|\mathfrak{A}|}$, portanto basta, de forma análoga ao exercício anterior, definir \mathfrak{B} tq $|\mathfrak{B}| = \operatorname{ran}(g)$ da seguinte forma:

$$c^{\mathfrak{B}} := g(c^{\mathfrak{A}});$$

$$f^{\mathfrak{B}}(b_1, \dots, b_n) := g\left(f^{\mathfrak{A}}(G(b_1), \dots, G(b_n))\right);$$

$$(b_1, \dots, b_n) \in P^{\mathfrak{B}} \text{ sse } (G(b_1), \dots, G(b_n)) \in P^{\mathfrak{A}}.$$

As verificações de que g é um homomorfismo são triviais, por definição $g(c^{\mathfrak{A}}) = c^{\mathfrak{B}}$; temos que $(g(a_1), \ldots, g(a_n)) \in P^{\mathfrak{B}}$ sse $(G \circ g(a_1), \ldots, G \circ g(a_n)) = (a_1, \ldots, a_n) \in P^{\mathfrak{A}}$ e, por fim

$$f^{\mathfrak{B}}(g(a_1),\ldots,g(a_n)) = g\left(f^{\mathfrak{A}}(G\circ g(a_1),\ldots,G\circ g(a_n))\right)$$
$$= g\left(f^{\mathfrak{A}}(a_1,\ldots,a_n)\right)$$

como g é injetora e $\operatorname{ran}(g) = |\mathfrak{B}|$, então ela é também sobrejetora, logo é um isomorfismo. O fato de que g é um isomorfismo implica que $G = g^{-1}$ é uma função e é única, portanto a estrutura \mathfrak{B} definida por ela também é, diferente do exercício anterior que depende da escolha que fazemos para H. As verificações adicionais como o fato de que $f^{\mathfrak{B}}$ é uma função em $|\mathfrak{B}|$ são triviais e serão omitidas.

Exercício 24. Seja h um homomorfismo injetor de \mathfrak{A} em \mathfrak{B} , mostre que existe uma estrutura \mathfrak{C} com $\mathfrak{C} \cong \mathfrak{B}$ e tq $\mathfrak{A} \subseteq \mathfrak{C}$.

Proof. Utilizando como base a ideia da prova da conversa de a) da observação do **Exercício 22.**, se h é injetora, então $h: |\mathfrak{A}| \to \operatorname{ran}(h)$ é uma função bijetora, logo $h^{-1}: \operatorname{ran}(h) \to |\mathfrak{A}|$ é também uma bijeção, vamos expandir h^{-1} para G, mas de forma que, para cada $x \in |\mathfrak{B}| \operatorname{ran}(h)$, G vai associar x a um único $y \notin A$ de forma que G será também injetora. Metateoricamente essa é uma tarefa fácil, conjunto-teoréticamente isso pode ser feito definindo $A_0 := \{|\mathfrak{A}|\}$, $A_n := A_{n-1} \cup \{A_{n-1}\}$, e repetindo o mesmo processo da construção dos ordinais, mas com A_0 no lugar de \emptyset como nosso

urelemento. O fato é que o Axioma da Fundação garante que $|\mathfrak{A}|$ é diferente de qualquer ordinal definido dessa forma. Além disso, ele junto com o Axioma da Substituição garantem que todo conjunto é isomorfo a um ordinal, em particular existe uma bijeção $f: |\mathfrak{B}| \operatorname{ran}(h) \to X$, onde $X \neq |\mathfrak{A}|$ é um dos novos ordinais, portanto a função $h^{-1} \cup f: |\mathfrak{B}| \to X \cup \{|\mathfrak{A}|\}$ é injetora e o **Exercício 23.** garante que existe uma única estrutura $\mathfrak{C} \cong \mathfrak{B}$ tq $|\mathfrak{C}| = X \cup \{|\mathfrak{A}|\} \supseteq |\mathfrak{A}|$, é fácil ver, portanto, que $\mathfrak{A} \subseteq \mathfrak{C}$.

PENDENTE (Provavelmente tem um jeito mais fácil de resolver)

Exercício 25. Considere uma S-estrutura fixa \mathfrak{A} . Expanda S para $S^+ := S \cup \{c_a \mid a \in |\mathfrak{A}|\}$ e seja \mathfrak{A}^+ uma S^+ -estrutura tq $c_a^{\mathfrak{A}^+} = a$ e concorde com a interpretação em \mathfrak{A} dos outros símbolos em S. Uma relação R é dita ser definível com parâmetros em \mathfrak{A} sse R é definível em \mathfrak{A}^+ . Seja $\mathfrak{R} = (\mathbb{R}, <, +, \cdot)$:

- a) Mostre que se $A \subseteq \mathbb{R}$ é a união finita de intervalos, então A é definível com parâmetros em \mathfrak{R} ;
- b) Assuma que $\mathfrak{A} \equiv \mathfrak{R}$, mostre que qualquer subconjunto de \mathfrak{A} não-vazio, limitado (utilizando $<^{\mathfrak{A}}$) e definível com parâmetros em \mathfrak{A} possui um supremo em $|\mathfrak{A}|$.

Proof. a) Para I = (a, b], como $a, b \in \mathbb{R}$, então existem $c_a, c_b \in \mathcal{S}$, portanto:

$$\varphi_I(x) := c_a < x \land (x < c_b \lor x = c_b)$$

define I. O caso para (a,b), [a,b) e [a,b] é análogo, portanto se $A = I_1 \cup \cdots \cup I_n$, então a fórmula $\varphi = \bigvee_{1 \leq i \leq n} \varphi_{I_i}(x)$ define A.

b) Se $A \subseteq |\mathfrak{A}|$ é não-vazio e limitado superiormente, e se A for definível por $A = \{x \in |\mathfrak{A}| \mid \models_{\mathfrak{A}} \varphi[\![x]\!]\}$, então, se $\psi(x) = "x \in B(B \neq \emptyset)$ e B é limitado superiormente" e $\chi(x) = (x = \sup(B))$, então $\models_{\mathfrak{A}} \psi(a)$, para algum $a \in |\mathfrak{A}|$. Visto que \mathfrak{R} satisfaz completude, então

$$\models_{\mathfrak{R}} \forall x(\psi(x) \to \exists y(\chi(y)))$$

i.e., se B é não-vazio e limitado superiormente, o supremo existe. Como $\mathfrak{A} \equiv \mathfrak{R}$, então

$$\models_{\mathfrak{A}} \forall x(\psi(x) \to \exists y(\chi(y)))$$

em particular $\models_{\mathfrak{A}} (\psi(a) \to \exists y(\chi(y)))$, uma instância em a, logo $\models_{\mathfrak{A}} \exists y(\chi(y))$.

As fórmulas $\psi(x)$ e $\chi(x)$ podem ser formuladas como:

$$\psi(x) := \exists x (\varphi(x)) \land \exists y \forall x (\varphi(x) \to x \leqslant y)$$

$$\chi(s) := \forall y x ((\varphi(x) \to x \leqslant y) \to s \leqslant y) \land \forall y (\varphi(y) \to y \leqslant s)$$

onde, intuitivamente ψ expressa que há no mínimo um x em B e que há um y tq para todo $x \in B$, y é uma cota superior de B ($x \le y$). χ por sua vez expressa que para todo y que é uma cota superior de B temos $s \le y$ e, além disso, que s é uma cota superior de B, portanto é claro que $\chi(s)$ expressa que s é a menor das cotas.

Exercício 26. a) Seja $\mathfrak A$ uma estrutura fixa, defina seu *tipo elementar* como $\mathfrak t(\mathfrak A) := \{\mathfrak B \mid \mathfrak B \equiv \mathfrak A\}$. Mostre que $\mathcal K = \mathfrak t(\mathfrak A)$ é EC_{Δ} ;

- b) Uma classe \mathcal{K} é dita ser elementarmente fechada ou ECL se, sempre que $\mathfrak{A} \in \mathcal{K}$, $\mathfrak{t}(\mathfrak{A}) \subseteq \mathcal{K}$. Mostre que toda classe ECL é a união de classes EC_{Δ} ;
- c) Conversamente, mostre que toda classe que é a união de classes EC_{Δ} é ECL.

Proof. a) Considere $\operatorname{Th}(\mathfrak{A}) = \{ \varphi \in \mathcal{L}^{\mathcal{S}} \mid \models_{\mathfrak{A}} \varphi \}$, portanto $\mathfrak{B} \in \mathfrak{t}(\mathfrak{A})$ sse $(\models_{\mathfrak{A}} \varphi \text{ sse } \models_{\mathfrak{B}} \varphi)$, i.e., $\operatorname{Th}(\mathfrak{A}) = \operatorname{Th}(\mathfrak{B})$, que é equivalente a $\mathfrak{B} \in \operatorname{Mod}^{\mathcal{S}}(\operatorname{Th}(\mathfrak{A}))$, visto que $\models_{\mathfrak{B}} \operatorname{Th}(\mathfrak{B}) = \operatorname{Th}(\mathfrak{A})$. Logo $\mathfrak{t}(\mathfrak{A}) = \operatorname{Mod}^{\mathcal{S}}(\operatorname{Th}(\mathfrak{A}))$

b) Como \equiv é uma relação de equivalência entre estruturas, considere o conjunto quociente $\mathcal{K}/_{\equiv}$, obviamente se temos $[\mathfrak{A}] \in \mathcal{K}/_{\equiv}$, então $\mathfrak{B} \in [\mathfrak{A}]$ sse $\mathfrak{B} \equiv \mathfrak{A}$, como \mathcal{K} é ECL, então em particular todo $\mathfrak{B} \equiv \mathfrak{A}$ está em \mathcal{K} , i.e., $\mathfrak{t}(\mathfrak{A}) \subseteq \mathcal{K}$, portanto $\mathfrak{B} \in \mathfrak{t}(\mathfrak{A})$ sse $\mathfrak{B} \equiv \mathfrak{A}$ sse $\mathfrak{B} \in [\mathfrak{A}]$, logo $\mathfrak{t}(\mathfrak{A}) = [\mathfrak{A}]$. Sob posse de AC, considere a função $h : \mathcal{K} \to \mathcal{K}/_{\equiv}$ definida como $h(\mathfrak{A}) = [\mathfrak{A}]$, sabemos portanto que existe uma função $f \subseteq h^{-1}$ tq dom $(f) = \mathcal{K}/_{\equiv}$, uma função de escolha, portanto

$$\mathcal{K} = \bigcup_{\mathfrak{A} \in \operatorname{ran}(f)} \mathfrak{t}(\mathfrak{A}) = \bigcup_{\mathfrak{A} \in \operatorname{ran}(f)} \operatorname{Mod}^{\mathcal{S}} (\operatorname{Th}(\mathfrak{A}))$$

onde cada $\mathfrak{t}(\mathfrak{A})$ é EC_{Δ} .

c) Se $\mathcal{K} = \bigcup_{\Sigma \in X} \operatorname{Mod}(\Sigma)$, então $\mathfrak{A} \in \mathcal{K}$ implica que $\models_{\mathfrak{A}} \Sigma$, para algum $\Sigma \in X$, obviamente se $\mathfrak{B} \equiv \mathfrak{A}$, então, por def. $\models_{\mathfrak{B}} \Sigma$, logo $\mathfrak{B} \in \operatorname{Mod}^{\mathcal{S}}(\Sigma)$, i.e., $\mathfrak{B} \in \mathcal{K}$, o que prova que $\mathfrak{t}(\mathfrak{A}) \subseteq \mathcal{K}$. Em particular, b) e c) juntos provam que $EC_{\Delta\Sigma} = ECL$.

Exercício 27. Seja $S = \{P\}$ com P um símbolo de relação binária. Liste todas as estruturas não-isomórficas de tamanho 2.

Proof. Como $P^{\mathfrak{A}} \subseteq |\mathfrak{A}|^2$, e $|\mathfrak{A}|$ contém 2 elementos, então basta testar todos $P \in \mathcal{P}(|\mathfrak{A}|^2)$, i.e., $2^4 = 16$ possibilidades, e listar as que são não-isomórficas.

PENDENTE (Trivial)

Exercício 28. Para cada par de estruturas a seguir, mostre que eles não são elementarmente equivalentes:

- a) $\mathfrak{R} = (\mathbb{R}, \times)$ e $\mathfrak{R}^* = (\mathbb{R}^*, \times^*)$;
- b) $\mathfrak{N} = (\mathbb{N}, +) \in \mathfrak{Z} = (\mathbb{Z}^+, +^*);$
- c) Para cada uma das quatro estruturas aprensetadas, construa uma sentença verdadeira em uma e falsa nas outras três.

Proof. a) Se $\varphi := \exists x \forall y (x \cdot y = x)$, então $\models_{\mathfrak{R}} \varphi$, mas $\not\models_{\mathfrak{R}^*} \varphi$, intuitivamente φ expressa que 0 existe; Se $\psi := \neg \varphi$, então $\models_{\mathfrak{R}^*}$, mas $\not\models_{\mathfrak{R}} \varphi$, intuitivamente ψ expressa que 0 não existe;

- b) Se $\chi := \exists x \forall y (x + y = y)$, então $\models_{\mathfrak{N}} \chi$, mas $\not\models_{\mathfrak{J}} \chi$, intuitivamente χ expressa que 0 existe; Se $\gamma := \neg \chi$, então $\models_{\mathfrak{J}} \gamma$, mas $\not\models_{\mathfrak{N}} \gamma$, intuitivamente γ expressa que 0 não existe.
- c) \mathfrak{R} : Note que φ se interpretada em \mathfrak{N} diz que existe um x tq x+y=x para todo $y\in\mathbb{N}$, o que é claramente falso, é fácil ver que em \mathfrak{Z} também;
- \mathfrak{R}^* : A estrutura ($\mathbb{R}^*, \times^*, 1$) é a única das 4 que é um grupo, todas $\mathfrak{N}, \mathfrak{J}, \mathfrak{R}$ falham em ter inversa, portanto $\psi' := \forall x \exists y (x \cdot y = x)$ só é verdadeira em \mathfrak{R}^* ;
- \mathfrak{N} : Algumas propriedades algébricas apresentadas por \mathfrak{R} e \mathfrak{R}^* que \mathfrak{N} não possui é a de que todo elemento da última possui inversa, e um único elemento da primeira não, portanto:

$$\varphi := \exists x (\forall y (x \cdot y = y) \land \exists ! y \not\exists z (y \cdot z = x))$$

é t
q $\models_{\mathfrak{R},\mathfrak{R}^*,\mathfrak{Z}} (\varphi \vee \psi' \vee \gamma),$ mas $\not\models_{\mathfrak{N}} (\varphi \vee \psi' \vee \gamma).$

3: γ se interpretada em \Re diz que não existe x tq $x \times y = y$ para todo $y \in \mathbb{R}$, o que é claramente falso, x = 1 satisfaz, o mesmo raciocínio se aplica a \Re^* , logo γ só é verdadeira em \Im .

Exercício Bônus. Para cada $n \in \mathbb{N}$, construa um modelo \mathfrak{A}_n em uma linguagem $\mathcal{L}^{\mathcal{S}}$ tq \mathcal{S} é finito, onde exatamente n elementos de $|\mathfrak{A}|$ não são definíveis, i.e., existem $a_1, \ldots, a_n \in |\mathfrak{A}|$ tq, para cada $1 \leq i \leq n$, não existe φ tq $\{a_i\} = \{x \in |\mathfrak{A}| \mid \varphi(x)\}$.

Proof. Para n=0 basta tomar $|\mathfrak{A}_0|=\varnothing$, portanto todo subconjunto é definível por vacuidade, caso não seja permitido estruturas com domínio vazio basta tomarmos $|\mathfrak{A}_0|=\{a\}$ e $c\in S$ tq $c^{\mathfrak{A}_0}=a$, logo $\{a\}=\{x\in |\mathfrak{A}_0|\mid x=c\}$. Para n>1 note que $|\mathfrak{A}_n|=\{x_1,\ldots,x_n\}$ não possui nenhum elemento definível, assuma por contradição que x_i é definível por φ , logo o teorema do homomorfismo garante que qualquer permutação $h: |\mathfrak{A}_n| \to |\mathfrak{A}_n|$ é tq se $\{x_i\}$ é definível, para todo $x\in \{x_i\}$ temos $h(x)\in \{x_i\}$, portanto se $R\neq\varnothing$ é definível, então $R=|\mathfrak{A}_n|$, portanto em \mathfrak{A}_n é impossível definir todos seus elementos, i.e., possui exatamente n elementos indefiníveis.

Note que o raciocínio anterior não vale para n=1, visto que o único automorfismo de $\{x\}$ em $\{x\}$ é a identidade, considere portanto $\mathfrak{A}_1=(\omega+1,0,R,<)$, onde $0^{\mathfrak{A}_1}=0$ e $R=\{(i,i+1)\mid i\in\mathbb{N}\}$, portanto podemos definir $\{0\}=\{x\mid x=0\}, \{1\}=\{x\mid R0x\}, \{2\}=\{x\mid \exists y(R0y\wedge Ryx)\}, \ldots$ Em geral, temos $\{n\}=\{x\mid \exists x_1(R0x_1\wedge\exists x_2(Rx_1x_2\wedge\ldots\exists x_{n-1}(Rx_{n-1}x)\ldots)\}$, portanto todo $n\in\omega$ é definível, mas $\omega\in\omega+1$ não é.

2.3 Um Algoritmo de Análise

Exercício 1. Mostre que para qualquer segmento inicial próprio α' de uma wff α , temos $K(\alpha') < 1$.

Proof. Lema. 1. Para qualquer wff α , $K(\alpha) = 1$. Proof. Caso base: se $\alpha = (t_1 = t_2)$, por def.

$$K(\alpha) = K(() + K(t_1) + K(=) + K(t_2) + K())$$

$$= -1 + 1 - 1 + 1 + 1$$

$$= 1$$

se $\alpha = (Pt_1 \dots t_n)$, temos também por def.

$$K(\alpha) = K(() + K(P) + K(t_1) + \dots + K(t_n) + K())$$

= -1 + (1 - n) + n + 1
= 1.

Assuma como hipótese indutiva que para cada wff α temos $K(\alpha)=1$, logo, como passo indutivo: Se $\alpha=(\varphi \wedge \psi)$, então

$$K(\alpha) = K(() + K(\varphi) + K(\wedge) + K(\psi) + K())$$

= -1 + 1 - 1 + 1 + 1
= 1.

Para $\alpha = (\neg \varphi)$

$$K(\alpha) = K(() + K(\neg) + K(\varphi) + K())$$

= -1 + 0 + 1 + 1
= 1.

Por fim, se $\alpha = (\forall x \varphi)$, então

$$K(\alpha) = K(() + K(\forall) + K(x) + K(\varphi) + K())$$

= -1 - 1 + 1 + 1 + 1
= 1.

Agora é fácil mostrar que para todo segmento inicial próprio α' de α temos $K(\alpha') < 1$. Se α for $(t_1 = t_2)$ ou $(Pt_1 \dots t_n)$ é fácil ver que para qualquer segmento inicial α' temos $K(\alpha') < 1$, assuma portanto como hipótese indutiva que vale para qualquer wff, logo se $\alpha = (\varphi \wedge \psi)$, basta testarmos seus possíveis segmentos iniciais próprios: $(, (\varphi', (\varphi, (\varphi \wedge \psi', (\varphi \wedge \psi', (\varphi \wedge \psi, onde \varphi' e \psi'$ são segmentos iniciais próprios de φ e ψ , respectivamente, é fácil ver, utilizando a hipótese indutiva, que cada qual é tq $K(\alpha') < 1$, o caso para os outros símbolo lógicos é análogo.

Exercício 2. Seja ε uma expressão consistindo de variáveis, símbolos de constantes e funções. Mostre que ε é um termo see $K(\varepsilon) = 1$ e que para todo segmento terminal próprio ε' de ε temos $K(\varepsilon') > 0$.

Proof. Se ε for um termo, sabemos que $K(\varepsilon)=1$, assuma portanto que $K(\varepsilon)=1$, teríamos que mostrar que ε é um termo, entretanto $\varepsilon=v_1\dots v_n f$ satisfaz $K(\varepsilon)=1$, mas não é um termo (wtf). Seja agora ε' um segmento terminal próprio de ε , logo $\varepsilon=\varepsilon_1+\varepsilon'$ com ε_1 um segmento inicial próprio de ε , queremos mostrar que $K(\varepsilon')>0$, se ε for uma concatenção de símbolos quaisquer como no caso anterior, então isso não é necessariamente verdade, tome $\varepsilon=v_1\dots v_n f$ novamente, então f é um segmento terminal próprio de ε e, se for n-ária, com n>1, então K(f)<0. Assuma portanto que ε seja um termo, logo sabemos que $K(\varepsilon_1)<1$, visto que é um segmento inicial próprio, logo $K(\varepsilon')=K(\varepsilon)-K(\varepsilon_1)>0$.

2.4 Um Cálculo Dedutivo

PENDENTE

Exercício 3. a) Seja $\mathfrak A$ uma estrutura e $s:V\to |\mathfrak A|$. Defina v no conjunto de fórmulas primas por

$$v(\alpha) = \top \text{ sse } \models_{\mathfrak{A}} \alpha[s]$$

e prove que para qualquer wff α , $\overline{v}(\alpha) = \top$ sse $\models_{\mathfrak{A}} \alpha[s]$;

b) Correção Fraca. Conclua que se $\Gamma \vDash_S \varphi$ (implica tautologicamente), então $\Gamma \vDash_F \varphi$ (implica logicamente).

Proof. a) Obviamente para cada fórmula prima α temos que $\overline{v}(\alpha) = v(\alpha) = \top$ por hipótese, provando portanto o caso base. Assuma agora que valha para φ e ψ , portanto $\overline{v}(\varphi \to \psi) = \top$ see se $\overline{v}(\varphi) = \top$, então $\overline{v}(\psi) = \top$, pela hipótese indutiva isso é equivalente a se $\models_{\mathfrak{A}} \varphi[s]$, então $\models_{\mathfrak{A}} \psi[s]$, i.e., $\models_{\mathfrak{A}} (\varphi \to \psi)[s]$.

b) Com isso é fácil concluir que se existe um v que satisfaz cada fórmula em Γ , no sentido da lógica sentencial, então ele satisfaz também φ no mesmo sentido, podemos concluir que isso também vale no sentido da lógica de primeira ordem.

Exercício 12. Teorema de Lindenbaum. Prove que todo conjunto consistente de fórmulas Γ pode ser estendido a um conjunto consistente e completo (ou maximal) Δ .

Proof. Seja Γ consistente, como a linguagem é contável, enumere as wffs em $\varphi_1, \varphi_2, \ldots$ e defina $\Delta_0 := \Gamma$ e

$$\Delta_n := \begin{cases} \Delta_{n-1} \cup \{\varphi_n\} \text{ se } \operatorname{Con}(\Delta_{n-1} \cup \{\varphi_n\}); \\ \Delta_{n-1} \cup \{\neg \varphi_n\} \text{ caso contrário.} \end{cases}$$

logo $\Delta := \bigcup_{i \geqslant 0} \Delta_i$, obviamente para cada φ_i teremos $\varphi_i \in \Delta_i \subseteq \Delta$ ou $\neg \varphi_i \in \Delta_i \subseteq \Delta$, portanto Δ é completo. Assuma por contradição que $\operatorname{Inc}(\Delta)$, logo $\Delta \vdash \beta \land \neg \beta$, i.e., existe uma sequência finita de fórmulas $(\psi_1, \ldots, \psi_n, \beta \land \neg \beta)$ tq cada $\psi_i \in \Delta \cup \Lambda$ ou foi obtida por MP de fórmulas anteriores, seja Ψ o conjunto de $\psi_i \in \Delta \cup \Lambda$, portanto existe Δ_i tq $\Psi \subseteq \Delta_i \cup \Gamma$, bastando, portanto, repetir a prova de $\beta \land \neg \beta$, logo $\Delta_i \vdash \beta \land \neg \beta$, i.e., $\operatorname{Inc}(\Delta_i)$, contradição.

2.5 Teorema da Correção e Completude

Exercício 1. (Regra Semântica El) Assuma que o símbolo de constante c não ocorra em φ, ψ ou Γ , e que $\Gamma \cup \{\varphi \frac{c}{x}\} \models \psi$. Prove, sem utilizar Correção e Completude, que $\Gamma \cup \{\exists x \varphi\} \models \psi$.

Proof. Sabemos pelo Teorema da Dedução em $\vDash \text{que } \Gamma \cup \{\varphi \frac{c}{x}\} \vDash \psi \text{ sse } \Gamma \vDash \varphi \frac{c}{x} \to \psi, \text{ i.e., se } \mathfrak{A}$ é tq $\vDash_{\mathfrak{A}} \gamma[s], \gamma \in \Gamma$, então $\vDash_{\mathfrak{A}} (\varphi \frac{c}{x} \to \psi)[s]$, sendo este último equivalente a: se $\vDash_{\mathfrak{A}} \varphi \frac{c}{x}[s]$, então $\vDash_{\mathfrak{A}} \psi[s]$, basta mostrarmos que $\vDash_{\mathfrak{A}} \varphi \frac{c}{x}[s]$ é equivalente a $\vDash_{\mathfrak{A}} \exists x \varphi[s]$. O Lema da Substituição garante, portanto, que $\vDash_{\mathfrak{A}} \varphi \frac{c}{x}[s]$ sse $\vDash_{\mathfrak{A}} \varphi \left[s \frac{\overline{s}(c)}{x}\right]$, i.e., $\vDash_{\mathfrak{A}} \varphi \left[s \frac{c^{\mathfrak{A}}}{x}\right]$, logo existe um $d = c^{\mathfrak{A}} \in |\mathfrak{A}|$ tq $\vDash_{\mathfrak{A}} \varphi \left[s \frac{d}{x}\right]$, logo, por definição, $\vDash_{\mathfrak{A}} \exists x \varphi[s]$, o que termina a prova.

Exercício 2. Prove que $Con(\Phi) \Rightarrow Sat(\Phi)$ é equivalente a $\Phi \models \varphi \Rightarrow \Phi \vdash \varphi$.

Proof. (⇐) Se Con(Φ), por definição $\Phi \not\vdash \beta \land \neg \beta$, portanto a conversa do Teorema da Completude garante que $\Phi \not\models \beta \land \neg \beta$, que é equivalente a Sat(Φ ∪ {β ∨ ¬β}), uma vez que $\models \beta \lor \neg \beta$, então $\Phi \cup \{\beta \lor \neg \beta\}$ é satisfatível sse Φ também é.

(\Rightarrow) Se $\Phi \models \varphi$, então $\neg \mathsf{Sat}(\Phi \cup \{\neg \varphi\})$, portanto $\neg \mathsf{Con}(\Phi \cup \{\neg \varphi\})$, i.e., $\Phi \cup \{\neg \varphi\} \vdash \beta \land \neg \beta$, logo, por contrapositiva, $\Phi \cup \{\beta \lor \neg \beta\} \vdash \varphi$, pelo teorema da dedução $\Phi \vdash (\beta \lor \neg \beta) \to \varphi$, obviamente $\beta \lor \neg \beta$ é uma tautologia, logo $\Phi \vdash \beta \lor \neg \beta$, por modus ponens temos $\Phi \vdash \varphi$.

Exercício 3. Assuma que $\Gamma \vdash \varphi$, e seja P um símbolo de relação que não ocorre nem em Γ , nem em φ , prove que existe uma dedução de φ por Γ em que P não ocorre em nenhum passo.

Proof. Se $\Gamma \vdash \varphi$, Correção garante que $\Gamma \vDash \varphi$, basta provar o fato trivial de que se em uma assinatura \mathcal{S} tq $P \in \mathcal{S}$ temos $\Gamma \vDash \varphi$, então o mesmo vale em $\mathcal{S}' = \mathcal{S} \setminus \{P\}$, i.e., as estruturas concordam nas sentenças que não possuem P.

PENDENTE (Trivial)

Exercício 4. Seja $\Gamma = \{ \neg \forall v_1 P v_1, P v_2, P v_3, \dots \}$, prove que Con (Γ) .

Proof. Seja $|\mathfrak{A}| = V$, o conjunto de variáveis e $P^{\mathfrak{A}} = V \setminus \{v_1\}$, se $\beta(v_i) = v_i, 1 \leq i$, então obviamente todo subconjunto finito de Γ é satisfatível por (\mathfrak{A}, β) , portanto compacidade garante que $\mathsf{Sat}(\Gamma)$ e Correção e Completude que $\mathsf{Con}(\Gamma)$.

Exercício 5. Mostre que um mapa infinito pode ser colorido com 4 cores sse todo submapa finito também pode.

Proof. A prova é análoga a do caso sentencial, basta tomar $S = \{R, B, G, Y, c_1, c_2, \dots\}$, onde R, B, G, Y são símbolos de relação unários e $c_i, 1 \leq i$ símbolos de constante, e repetir os mesmos axiomas, mas com c_i no lugar dos símbolos sentenciais. O Teorema das Quatro Cores garante que para o caso finito sempre é possível colorir o mapa, portanto compacidade garante que também vale para o caso infinito.

Exercício 6. Prove que classes EC_Δ disjuntas podem ser separadas em classes EC , i.e., se Φ, Ψ são tq $\mathsf{Mod}(\Phi) \cap \mathsf{Mod}(\Psi) = \emptyset$, então existe τ tq $\mathsf{Mod}(\Phi) \subseteq \mathsf{Mod}(\tau)$ e $\mathsf{Mod}(\Psi) \subseteq \mathsf{Mod}(\neg \tau)$.

Proof. Se $\operatorname{Mod}(\Phi) \cap \operatorname{Mod}(\Psi) = \emptyset$, então $\neg \operatorname{Sat}(\Phi \cup \Psi)$, portanto Compacidade garante que existe $\Phi_0 \cup \Psi_0 \subseteq \Phi \cup \Psi$ tq $\neg \operatorname{Sat}(\Phi_0 \cup \Psi_0)$, seja $\varphi = \bigwedge \Phi_0$ e $\psi = \bigwedge \Psi_0$, que estão bem definidas, visto que Φ_0, Ψ_0 são finitas. Como $\neg \operatorname{Sat}(\varphi \wedge \psi)$, i.e., $\neg \operatorname{Con}(\varphi \wedge \psi)$, então $\neg (\varphi \wedge \psi) = \varphi \rightarrow \neg \psi$ é uma tautologia, como $\Phi_0 \models \varphi$, então $\Phi_0 \models \neg \psi$. Como este é consistente, então $\Phi_0 \not\models \neg \psi$, além disso $\Psi_0 \models \psi$, logo $\Phi \models \Phi_0 \models \neg \psi$ e $\Psi \models \Psi_0 \models \psi$, i.e., $\tau = \neg \psi$ satisfaz.

Exercício 8. Seja $S = \{P\}$, onde P é um símbolo de relação binário, e seja $|\mathfrak{A}| = \mathbb{Z}$ com $P^{\mathfrak{A}} := \{(a,b) \in \mathbb{Z}^2 \mid |a-b| = 1\}$. Prove que existe $\mathfrak{B} \equiv \mathfrak{A}$ que não é conexa, i.e., existem $a,b \in |\mathfrak{B}|$ tq não existe (p_0,\ldots,p_n) , com $a=p_0,b=p_n$ e $(p_i,p_{i+1}) \in P^{\mathfrak{A}}, 0 \leq i < n$.

Proof. Considere

$$\Phi := \operatorname{Th}(\mathbb{Z}) \cup \left\{ \nexists x_1 \dots x_n \left(Pax_1 \wedge \bigwedge_{1 \leq i < n} Px_i x_{i+1} \wedge Pbx_n \right) : n \in \mathbb{N} \right\}$$

Para todo $\Phi_0 \subseteq \Phi$ finito temos $\models_{\mathfrak{A}} \Phi_0$, seja m a maior quantidade de variáveis nas fórmulas de Φ , basta tomar $\overline{s}(a) = 0, \overline{s}(b) = n + 1$, portanto compacidade garante que existe \mathfrak{B} tq $\models_{\mathfrak{B}} \Phi$, o que

garante que $\models_{\mathfrak{B}} \operatorname{Th}(\mathbb{Z})$, i.e., $\mathfrak{B} \in \operatorname{Mod}(\operatorname{Th}(\mathfrak{A})) = \mathfrak{t}(\mathfrak{A})$, logo $\mathfrak{A} \equiv \mathfrak{B}$, mas \mathfrak{B} contém dois elementos $\overline{s}(a), \overline{s}(b)$ que não são conectados por nenhuma sequência finita de elementos em $|\mathfrak{B}|$.

Exercício 9. a) Mostre que se adicionarmos $\psi \in \Lambda$ tq $\not\models \psi$, então o Teorema da Correção falha;

- b) Mostre que se $\Lambda = \emptyset$, então o Teorema da Completude falha;
- c) Suponha que modifiquemos Λ para incluir uma nova fórmula válida, mostre porque ambos Correção e Completude ainda valem.

Proof. a) Se $\not\models \psi$, então existe \mathfrak{A} tq $\not\models_{\mathfrak{A}} \psi$, entretanto, como $\psi \in \Lambda$, então Th(\mathfrak{A}) $\vdash \psi$, mas Th(\mathfrak{A}) $\not\models \psi$;

- b) Sabemos que $\{\varphi \land \psi\} \models \varphi$, mas $\{\varphi \land \psi\} \not\models \varphi$, visto que as únicas deduções possíveis incluem $\varphi \land \psi$ e modus ponens, que nada pode fazer nesse caso;
- c) Sendo $\Gamma' = \Gamma \cup \{\psi\}$ tq $\models \psi$, temos $\Gamma \vdash \varphi$, i.e., $\Gamma \cup \Lambda \models \varphi$, sse $\Gamma \cup \Lambda' \models \varphi$, visto que $\Gamma \cup \Lambda \models \exists \Gamma \cup \Lambda'$.

2.6 Modelos de Teorias

Exercício 1. Mostre que $\varphi, \psi \notin \Phi_{\text{fv}}$, onde

$$\varphi = \exists xyz((Pxf(x) \to Pxx) \lor (Pxy \land Pyz \land \neg Pxz));$$

$$\psi = \exists x \forall y \exists z((Qzx \to Qzy) \to (Qxy \to Qxx)).$$

Proof. Se $\varphi, \psi \in \Phi_{\text{fv}}$, então para todo \mathfrak{A} finito temos $\models_{\mathfrak{A}} \varphi, \psi$, portanto $\varphi, \psi \notin \Phi_{\text{fv}}$ sse os modelos de $\neg \varphi, \neg \psi$ são infinitos.

$$\neg \varphi = \exists xyz((Pxf(x) \to Pxx) \lor (Pxy \land Pyz \land \neg Pxz))$$

$$= \forall xyz(\neg (Pxf(x) \to Pxx) \land \neg (Pxy \land Pyz \land \neg Pxz))$$

$$= \forall xyz((Pxf(x) \land \neg Pxx) \land (Pxy \land Pyz \to Pxz))$$

i.e., P é transitivo, não reflexivo e para cada x, Pxf(x). Assuma por contradição que $\models_{\mathfrak{A}} \neg \varphi$ onde $|\mathfrak{A}| = \{a_1, \ldots, a_n\}$, $f(a_1) \neq a_1$, caso contrário $Pa_1f(a_1) = Pa_1a_1$, contradição, portanto $f(a_1) = a_{i_1}, i_1 \neq 1$, se $f(a_{i_1}) = a_{i_2}$, não podemos ter $a_{i_2} = a_{i_1}, a_{i_2}$, caso contrário a transitividade de P garante que Pxx, em geral é fácil ver por indução que $f(a_{i_k}) \neq a_{i_1}, \ldots, a_{i_k}$, entretanto, para a_{i_n} teremos $f(a_{i_n}) \notin \{a_{i_1}, \ldots, a_{i_n}\} = |\mathfrak{A}|$, contradição, visto que f é uma função, portanto \mathfrak{A} precisa ser infinito.

Analogamente, temos

$$\neg \psi = \neg \exists x \forall y \exists z ((Qzx \to Qzy) \to (Qxy \to Qxx))$$
$$= \forall x \exists y \forall z ((Qzx \to Qzy) \land Qxy \land \neg Qxx)$$

 $\neg \psi$ expressa que existe um y tq para todo z em que zQx, temos zQy, que sempre existe um y tq Qxy e e que Q é não reflexiva. Assuma $\models_{\mathfrak{A}} \neg \psi$, com $|\mathfrak{A}| = \{a_1, \ldots, a_n\}$, como para todo x_1 existe

 x_2 tq Qx_1x_2 , visto que Q é não-reflexivo $x_1 \neq x_2$, analogamente existe x_3 tq Qx_2x_3 , com $x_3 \neq x_2$, se $x_3 = x_1$, como Qx_1x_2 e Qx_2x_1 , então Qx_1x_1 , contradição, é fácil ver por indução, portanto, que isso forma uma sequência (x_i) tq Qx_ix_{i+1} e $x_i \neq x_j, i \neq j$, entretanto, se $Qx_1x_2, \ldots, Qx_{n-1}x_n$, então tem de existir um $x_{n+1} \neq x_i, i \leq n+1$ tq Qx_nx_{n+1} , o que é impossível, visto que $|\mathfrak{A}|$ só possui n elementos distintos, contradição, logo \mathfrak{A} é infinito.

Exercício 2. Sejam T_1, T_2 teorias na mesma linguagem tq $T_1 \subseteq T_2, T_1$ é completa e $Sat(T_2)$, prove que $T_1 = T_2$.

Proof. Seja $\varphi \in T_2$, como T_1 é completa, φ ou $\neg \varphi$ está em T_1 , no último caso, como $T_1 \subseteq T_2$, temos $\varphi, \neg \varphi \in T_2$, logo $T_2 \vdash \varphi, \neg \varphi$, i.e., $\neg \text{Con}(T_2)$ que, por Correção, implica em $\neg \text{Sat}(T_2)$, contradição, logo $\varphi \in T_1$, i.e., $T_2 \subseteq T_1$, como por hipótese $T_1 \subseteq T_2$, então $T_1 = T_2$.

```
Exercício 3. Prove que:

a) \Sigma_1 \subseteq \Sigma_2 \Rightarrow \operatorname{Mod}(\Sigma_2) \subseteq \operatorname{Mod}(\Sigma_1);

b) \mathcal{K}_1 \subseteq \mathcal{K}_2 \Rightarrow \operatorname{Th}(\mathcal{K}_2) \subseteq \operatorname{Th}(\mathcal{K}_1);

c) \operatorname{Mod}(\Sigma) = \operatorname{Mod}(\operatorname{Th}(\operatorname{Mod}(\Sigma))) e \operatorname{Th}(\mathcal{K}) = \operatorname{Th}(\operatorname{Mod}(\operatorname{Th}(\mathcal{K}))).
```

Proof. a) Se $\models_{\mathfrak{A}} \Sigma_2$, então $\models_{\mathfrak{A}} \sigma, \sigma \in \Sigma_2$, como $\Sigma_1 \subseteq \Sigma_2$, então também $\models_{\mathfrak{A}} \sigma, \sigma \in \Sigma_1$, i.e., $\models_{\mathfrak{A}} \Sigma_1$, portanto todo modelo de Σ_2 é também modelo de Σ_1 : Mod $(\Sigma_2) \subseteq \operatorname{Mod}(\Sigma_1)$; b) Analogamente, se $\models_{\mathfrak{A}} \varphi$ para toda $\mathfrak{A} \in \mathcal{K}_2$, visto que $\mathcal{K}_2 \subseteq \mathcal{K}_1$, então $\models_{\mathfrak{A}} \varphi$ para toda $\mathfrak{A} \in \mathcal{K}_1$; c) Se $\varphi \in \Sigma$, então $\Sigma \models \varphi$, i.e., todos os modelos \mathfrak{A} de Σ são modelos de φ , portanto $\varphi \in \operatorname{Th}(\operatorname{Mod}(\Sigma))$,

c) Se $\varphi \in \Sigma$, então $\Sigma \models \varphi$, i.e., todos os modelos \mathfrak{A} de Σ são modelos de φ , portanto $\varphi \in \operatorname{Th}(\operatorname{Mod}(\Sigma))$, por a) temos então que $\operatorname{Mod}(\operatorname{Th}(\operatorname{Mod}(\Sigma))) \subseteq \operatorname{Mod}(\Sigma)$. Para a conversa, se \mathfrak{A} é um modelos de Σ , sabemos que $\varphi \in \operatorname{Th}(\operatorname{Mod}(\Sigma))$ sse todo modelo de Σ é modelos de φ , em particular $\models_{\mathfrak{A}} \varphi$, logo $\operatorname{Mod}(\Sigma) \subseteq \operatorname{Mod}(\operatorname{Th}(\operatorname{Mod}(\Sigma)))$;

Se $\varphi \in \operatorname{Th}(\mathcal{K})$, então $\models_{\mathfrak{A}} \varphi$ para todo $\mathfrak{A} \in \mathcal{K}$, então em particular $\mathfrak{A} \in \operatorname{Mod}(\operatorname{Th}(\mathcal{K}))$ para todo $\mathfrak{A} \in \mathcal{K}$, i.e., $\mathcal{K} \subseteq \operatorname{Mod}(\operatorname{Th}(\mathcal{K}))$, por b) temos $\operatorname{Th}(\operatorname{Mod}(\operatorname{Th}(\mathcal{K}))) \subseteq \operatorname{Th}(\mathcal{K})$. Seja $\varphi \in \operatorname{Th}(\mathcal{K})$, logo para todo $\mathfrak{A} \in \operatorname{Mod}(\operatorname{Th}(\mathcal{K}))$ temos $\models_{\mathfrak{A}} \varphi$, portanto $\varphi \in \operatorname{Th}(\operatorname{Mod}(\operatorname{Th}(\mathcal{K})))$, i.e., $\operatorname{Th}(\mathcal{K}) \subseteq \operatorname{Th}(\operatorname{Mod}(\operatorname{Th}(\mathcal{K})))$. \dashv

Exercício 4. Prove que a teoria das ordenações lineares densas sem pontos limites é \aleph_0 -categórica.

Proof. Sejam $\mathfrak{A}, \mathfrak{B}$ estruturas contáveis tq $\models_{\mathfrak{A},\mathfrak{B}} \delta$, enumere $|\mathfrak{A}| = \{a_0, a_1, \dots\}, |\mathfrak{B}| = \{b_0, b_1, \dots\}$, defina $f(a_0) = b_0$ e siga o procedimento: para o menor $a_i \in |\mathfrak{A}|$ que ainda não foi associado a nenhum elemento por f, escolha o menor $b_j \in |\mathfrak{B}|$ tq f preserve a ordem, i.e., se $a_{i_0} < \dots < a_i < \dots < a_{i_n}$, então $f(a_{i_0}) < \dots < b_j < \dots < f(a_{i_n})$, onde cada $a_{i_k}, 0 \leq k \leq n$ já foi associado, após isso, escolha o menor $b_i \in |\mathfrak{B}|$ que ainda nenhum $a \in |\mathfrak{A}|$ se associou e escolha o menor $a_j \in |\mathfrak{A}|$ para associar tq f preserve a ordem, e repita o procedimento. Para provar que f é um isomorfismo e que o procedimento anterior é válido, basta notar que para todo a_i , podemos encontrar um b_j que preserva a ordem, se a_i estiver entre os pontos já associados, densidade garante que existe um b_j entre os pontos de $|\mathfrak{B}|$ que preserve a ordem, se a_i estiver a direita ou a esquerda de todos os pontos, a propriedade de não haver pontos limites garante que vai existir um b_j maior ou menor

que todos os outros, e tricotomia permite que testemos em cada passo qual a relação de a_i com os pontos anteriormente associados para garantir que f preserva a ordem.

Obs. O processo descrito acima é uma das técnicas modelo-teóricas mais comuns para provar que duas estruturas são isomórficas, é conhecida como **ir-e-vir** (ou back-and-forth), e reside no fato de que se $\mathfrak{A} \cong_p \mathfrak{B}$ (são parcialmente isomórficas), com $|\mathfrak{A}|, |\mathfrak{B}| \leq \aleph_0$, então $\mathfrak{A} \cong \mathfrak{B}$. Isomorfismos parciais são, além de técnicas importantes, fatos essenciais nas provas do **Teorema de Fraïssé** e no **Jogo de Ehrenfeucht-Fraïssé**, que por sua vez são usados nas provas dos **Teoremas de Lindström**, então vamos dar um sketch do teorema acima, um mapeamento p de \mathfrak{A} em \mathfrak{B} é denominado isomorfismo parcial se $\mathrm{Dom}(p) \subseteq |\mathfrak{A}|, \mathrm{Ran}(p) \subseteq |\mathfrak{B}|$ e

- a) $p \in injetor;$
- b) para todo $a_1, \ldots, a_n, a \in \text{Dom}(p)$ e símbolos $P, f, c \in \mathcal{S}$:

$$P^{\mathfrak{A}}a_1 \dots a_n \text{ sse } P^{\mathfrak{B}}p(a_1) \dots p(a_n);$$

 $f^{\mathfrak{A}}(a_1, \dots, a_n) = a \text{ sse } f^{\mathfrak{B}}(p(a_1), \dots, p(a_n)) = p(a);$
 $c^{\mathfrak{A}} = a \text{ sse } c^{\mathfrak{B}} = p(a).$

O ponto principal é que isomorfismos parciais, embora em geral não preservem fórmulas com quantificadores, se puderem ser extendidos podem preservar, o que é capturado pela definição de estruturas parcialmente isomórficas ($\mathfrak{A} \cong_p \mathfrak{B}$): se existe I tq

- a) $I \neq \emptyset$ é um conjunto de isomorfismos parciais de \mathfrak{A} em \mathfrak{B} ;
- b) (propriedade de ir) Para todo $p \in I$ e $a \in |\mathfrak{A}|$, existe $q \in I$ to $p \subseteq q$ e $a \in Dom(p)$;
- c) (propriedade de vir) Para todo $p \in I$ e $b \in |\mathfrak{B}|$, existe $q \in I$ to $p \subseteq q$ e $a \in \operatorname{Ran}(p)$.

Vamos agora a prova do teorema enunciado no início, suponha que $I: \mathfrak{A} \cong_p \mathfrak{B}, A = \{a_0, a_1, \ldots\}$, $B = \{b_0, b_1, \ldots\}$. Inicie com um $p_0 \in I$ e, aplicando repetidamente as propriedades de ir e vir, obtemos extensões $p_1, p_2, \cdots \in I$ tq $a_0 \in \mathrm{Dom}(p_1), b_0 \in \mathrm{Ran}(p_2), a_1 \in \mathrm{Dom}(p_3), b_1 \in \mathrm{Ran}(p_4), \ldots$, portanto $p = \bigcup_{n \in \mathbb{N}} p_n$ é um isomorfismo parcial de \mathfrak{A} em \mathfrak{B} tq $\mathrm{Dom}(p) = |\mathfrak{A}|$ e $\mathrm{Ran}(p) = |\mathfrak{B}|$, logo $p: \mathfrak{A} \cong \mathfrak{B}$. Com isso em mãos, a prova de que a teoria das ordenações lineares densas sem pontos limites é \aleph_0 -categórica se resume a encontrar um conjunto I de isomorfismo parciais entre quaisquer estruturas no máximo contáveis $\mathfrak{A}, \mathfrak{B}$ que as torna parcialmente isomórficas. Com algumas definições adicionais como finitamente isomórficas ($\mathfrak{A} \cong_f \mathfrak{B}$) que não será explicada em detalhes aqui, conseguimos provar o **Teorema de Fraïssé**, que diz que $\mathfrak{A} \cong \mathfrak{B}$ sse $\mathfrak{A} \cong_f \mathfrak{B}$, para S-estruturas com S finito, sabendo que $\mathfrak{A} \cong_p \mathfrak{B} \Rightarrow \mathfrak{A} \cong_f \mathfrak{B}$ é fácil mostrar que $(\mathbb{R}, <^R) \equiv (\mathbb{Q}, <^Q)$ e que a teoria é completa e R-decidível.

Exercício 5. Encontre a forma normal prenex de:

- a) $(\exists xAx \land \exists xBx) \rightarrow Cx$;
- b) $\forall xAx \leftrightarrow \exists xBx$.

Proof. a)
$$\exists x \exists y ((Ax \land By) \rightarrow Cz);$$

b) $\forall x \exists y (Ax \leftrightarrow By).$

Exercício 6. Prove que uma teoria R-enumerável (em uma linguagem razoável) é axiomatizável.

Proof. Se T é uma teoria R-enumerável seja $\{\sigma_0, \sigma_1, \dots\}$ uma enumeração, considere

$$\Sigma := \left\{ \bigwedge_{0 \leqslant i \leqslant n} \sigma_i : n \in \mathbb{N} \right\} = \left\{ \sigma_0, \sigma_0 \land \sigma_1, \sigma_0 \land \sigma_1 \land \sigma_2, \dots \right\}$$

é fácil ver que o n-ésimo elemento de Σ satisfaz σ_n e que, equivalentemente, pra todo $\bigwedge_{0 \leq i \leq k} \sigma_k$ temos que T satisfaz, portanto $T \models \exists \Sigma$, i.e., $\operatorname{Mod}(T) = \operatorname{Mod}(\Sigma)$, do Exercício 3. dessa seção sabemos que $\operatorname{Th}(T) = \operatorname{Th}(\operatorname{Mod}(\operatorname{Th}(T)))$, visto que T é uma teoria, $\operatorname{Th}(T) = T$, portanto

$$T = \operatorname{Th}(\operatorname{Mod}(T))$$
$$= \operatorname{Th}(\operatorname{Mod}(\Sigma))$$
$$= \operatorname{Cn}(\Sigma)$$

para provar que T é axiomatizável basta, portanto, provar que Σ é decidível.

Como T é enumerável, basta, para um $\varphi \in \Sigma$ qualquer, verificar se o segmento inicial de φ é igual a σ_0 , visto que todas as sentenças em Σ assim começam, caso não combine, então não pertence a Σ , se combinar e a string não tiver acabado teste para $\wedge \sigma_1$, e assim por diante.

Exercício 7. Seja $\mathfrak{N} = (\mathbb{N}, <)$, mostre que existe $\mathfrak{A} \equiv \mathfrak{N}$ tq $<^{\mathfrak{A}}$ tem uma cadeia descendente, i.e., existem $a_0, a_1, \dots \in |\mathfrak{A}|$ tq $(a_{i+1}, a_i) \in <^{\mathfrak{A}}, i \geq 0$.

Proof. Seja

$$\sigma_n := \exists x_1 \dots x_n \left(\bigwedge_{r,s \in \{1,\dots,n\}} v_r \neq v_s \land \bigwedge_{0 \leqslant i < n} <^{\mathfrak{A}} x_{i+1} x_i \right)$$

considere $\Sigma = \text{Th}(\mathfrak{N}) \cup \{\sigma_1, \sigma_2, \dots\}$, obviamente todo subconjunto finito $\Sigma_0 \subseteq \Sigma$ é t $q \models_{\mathfrak{N}} \Sigma_0$, por compacidade existe $\mathfrak{B} \equiv \mathfrak{A}$ t $q \models_{\mathfrak{B}} \Sigma$.

Exercício 8. Assuma que $\models_{\mathfrak{A}} \sigma$ para todo modelo infinito \mathfrak{A} de uma teoria T. Mostre que existe $k \in \mathbb{N}$ tq σ é verdade em todos os modelos \mathfrak{B} de T que possuem k ou mais elementos no domínio.

Proof. Se $\models_{\mathfrak{A}} \sigma$ para todo modelo infinito de T, então $\models_{\mathfrak{B}} \neg \sigma$ se \mathfrak{B} é um modelo finito, considere

$$\Sigma := T \cup \{\neg \sigma\} \cup \{\varphi_{\geqslant i} \mid i \geqslant 0\}$$

onde $\varphi_{\geq n}$ expressa "há no mínimo n elementos" (veja a Observação do Exercício 9. da Seção 2.2.), Assuma por contradição que para cada $\Sigma_0 \subseteq \Sigma$ existe \mathfrak{A} tq $\models_{\mathfrak{A}} \Sigma_0$, portanto compacidade garante que existe um modelo \mathfrak{B} de Σ , contradição, visto que \mathfrak{B} tem de ser infinito para satisfazer Σ , e $\models_{\mathfrak{B}} \neg \sigma$, portanto existe um Σ_0 tq $\neg \operatorname{Sat}(\Sigma_0)$, seja $\varphi_{\geq k}$ a fórmula com maior k que esteja em Σ_0 , como Σ_0 não é satisfatível, nenhum outro modelo que contém mais de k elementos pode satisfazer $\neg \sigma$, portanto σ é verdadeiro para todo modelo que possui k ou mais elementos. Exercício 9. Dizemos que um conjunto de sentenças Σ possui a propriedade de modelo finito sse para cada $\sigma \in \Sigma$, se $\operatorname{Sat}(\sigma)$, então σ possui um modelo finito. Assuma que Σ é um conjunto de sentenças em uma linguagem finita e que possui a propriedade de modelo finito. Crie um procedimento que decida se, dado um $\sigma \in \Sigma$, este é ou não satisfatível.

Proof. Pelo Teorema de Kleene, basta provarmos que $\Phi := \{\sigma \in \Sigma \mid \operatorname{Sat}(\sigma)\}\ e \ \Sigma \setminus \Phi$ são ambos R-enumeráveis, o que implica que Σ por si só é R-enumerável, algo que não foi dado como hipótese no enunciado, portanto assumiremos que Σ é R-enumerável. Se $\sigma \in \Sigma$, pela propriedade do modelo finito, se σ for satisfatível, então possui um modelo finito, portanto basta utilizarmos o procedimento que testa, para cada $\sigma \in \Sigma$, se a estrutura $|\mathfrak{A}_n| = \{1, \ldots, n\}$ de tamanho n é tq $\models_{\mathfrak{A}_n} \sigma$, utilizando o algoritmo descrito no livro. Portanto enumeramos Σ e testamos se \mathfrak{A}_1 é modelo de σ_1 , depois se \mathfrak{A}_1 , \mathfrak{A}_2 são modelos de $\sigma_1, \sigma_2, \ldots$, se algum σ_i for satisfeito, printamos, caso contrário não, visto que cada sentença satisfatível possui um modelo finito ela eventualmente será printada, logo Φ é R-enumerável pelo procedimento \mathfrak{P}_1 . Se σ , por outro lado, não for satisfatível, então ele prova uma contradição, sabemos que $\{\sigma\}$ é decidível, portanto seus teoremas são enumeráveis, se este for uma contradição, printamos, caso contrário não, portanto o procedimento \mathfrak{P}_2 enumera fórmulas não satisfatíveis, visto que a contradição que σ prova tem de ser finita, logo eventualmente será um teorema que aparecerá na enumeração.

Exercício 10. Assuma que temos uma linguagem finita sem símbolos de função:

- a) Prove que o conjunto de sentenças Σ_2 satisfatíveis é decidível;
- b) Prove que o conjunto de sentenças Π_2 válidas é decidível.

Proof. a) Devido ao Exercício 19. da seção 2.2. sabemos que uma sentença Σ_2 , se satisfatível, possui um modelo finito, i.e., o conjunto Φ de sentenças Σ_2 satisfatíveis goza da propriedade de modelo finito, logo, pelo exercício anterior, Φ é decidível;

b) Se $\varphi \in \Pi_2$, então $\varphi = \forall x_1 \dots x_n \exists y_1 \dots y_m \theta$, onde θ é livre de quantificadores. Se φ é válida, então $\neg \varphi$ não é satisfatível, note que $\neg \varphi = \exists x_1 \dots x_n \forall y_1 \dots y_m \neg \theta$, i.e., $\neg \varphi \in \Sigma_2$, de a) sabemos que o conjunto de sentenças Σ_2 satisfatíveis é decidível, portanto seu complementar em Σ_2 também é, logo, dado $\varphi \in \Pi_2$, para saber se φ é válida basta determinar se $\neg \sigma$ é não satisfatível utilizando o processo de decisão de a).

2.7 Interpretações entre Teorias

PENDENTE. Ambos os exercícios 1. e 2. são corolários diretos do fato maçante de que toda linguagem L_0 pode ser reduzida a uma linguagem relacional L_1 , i.e., uma linguagem somente com símbolos de relação.

Exercício 3. Prove que uma interpretação π de uma teoria completa T_0 em uma teoria satisfatível T_1 é sempre fiel.

Proof. Assuma por contradição que existe $\pi: L_0 \to T_1$ tq $T_0 \subset \pi^{-1}[T_1]$, logo existe $\varphi \in \pi^{-1}[T_1] \setminus T_0$, mas como T_0 é completo, então $\neg \varphi \in T_0 \subseteq \pi^{-1}[T_1]$, i.e., $\varphi, \neg \varphi \in \pi^{-1}[T_1]$, por definição existe \mathfrak{B} tq $\models_{\mathfrak{B}} T_1$ e $\models_{\pi\mathfrak{B}} \varphi, \neg \varphi$, contradição, logo não existe tal π .

2.8 Análise não Padrão

Exercício 1. (\mathbb{Q} é denso em \mathbb{R}). Mostre que para todo $x \in \mathbb{R}^*$ existe $y \in \mathbb{Q}^*$ to $x \cong y$.

Proof. Como

$$\models_{\mathfrak{R}} \forall xy (x \neq y \rightarrow \exists p (Qp \land x$$

então

$$\models_{\Re^*} \forall xy(x \neq y \to \exists p(\mathbb{Q}^*p \land x <^* p <^* y))$$

portanto, em particular, para $y = x + \varpi$, com $\varpi \in \mathcal{I}$, temos que existe $p \in \mathbb{Q}^*$ tq $x <^* p <^* x + \varpi$, i.e., $0 <^* p - x <^* \varpi$, por definição $|\varpi| < y$, para todo $y \in \mathbb{R}$, visto que $0 <^* |p - x| <^* |\varpi| < y$, então obviamente $p - x \in \mathcal{I}$, i.e., $p \cong x$.

Exercício 2. a) Seja $A \subseteq \mathbb{R}$ e $F : A \to \mathbb{R}$, mostre que $F^* : A^* \to \mathbb{R}^*$;

- b) Seja $S: \mathbb{N} \to \mathbb{R}$. Mostre que $\lim_{n\to\infty} S(n) = b$ sse $S^*(x) \cong b$ para todo $x \in \mathbb{N}^*$ infinito;
- c) Se $S_i : \mathbb{N} \to \mathbb{R}$ converge para b_i , com i = 1, 2. Mostre que $(S_1 + S_2) \to (b_1 + b_2)$ e $(S_1 \cdot S_2) \to (b_1 \cdot b_2)$.

Proof. a) Como $F \subseteq \mathbb{R}^2$, então $F : A \to \mathbb{R}$ sse $\models_{\mathfrak{R}} \forall x (Ax \to \exists! y (Fxy))$, portanto em \mathfrak{R}^* temos que $\models_{\mathfrak{R}^*} \forall x (A^*x \to \exists! y (Fxy))$, i.e., $F^* : A^* \to \mathbb{R}^*$;

b) $\lim S(n) = b$ sse para todo $\varepsilon > 0$, existe k tq para todo n > k temos $|S(n) - k| < \varepsilon$. Portanto em \Re^* sabemos que $|S^*(n) - k| < \varepsilon$, para todo $\varepsilon > 0$ sse $S^*(n) - k \in \mathcal{I}$, i.e., $S^*(n) \cong k$, para todo n > k, portanto em particular para todo $x \in \mathbb{N}^*$ infinito. Analogamente, se para todo $x \in \mathbb{N}^*$ infinito, $S^*(x) \cong b$, então para todo x tq para todo $x \in \mathbb{N}^*$ infinito obviamente existe um k tq se x > k, temos $|S^*(x) - b| < \varepsilon$, para todo $\varepsilon > 0$.

PENDENTE (prova feia :c, refazer mais elegantemente)

c) Do resultado anterior para todo $x \in \mathbb{N}^*$ infinito temos $S_1^*(x) \cong b_1$ e $S_2^*(x) \cong b_2$, logo segue-se diretamente do **Teorema 28B** b) e c) que $(S_1 + S_2) \cong (b_1 + b_2)$ e $(S_1 \cdot S_2) \cong (b_1 \cdot b_2)$.

Exercício 3. Seja $F: A \to \mathbb{R}$ injetora, com $A \subseteq \mathbb{R}$, mostre que se $x \in A^* \backslash A$, então $F^*(x) \notin \mathbb{R}$.

Exercício 4. Seja $A \subseteq \mathbb{R}$. Mostre que $A = A^*$ sse A é finito.

Proof. (\Leftarrow) Se $A = \{x_1, \dots, x_n\}$ é finito, então

$$\models_{\mathfrak{R}} \varphi(A) := \bigwedge_{1 \leqslant i \leqslant n} A_{x_i} \wedge \forall x \left(Ax \to \bigvee_{1 \leqslant j \leqslant n} x = x_j \right)$$

como cada $x_i \in \mathbb{R}$, então $x_i^* = x_i$, logo $\models_{\mathfrak{R}^*} \varphi(A^*)$ com os mesmos x_i , i.e., $A = A^*$. (\Rightarrow) Assuma que A é ilimitado em \mathbb{R} , como A é infinito então $\models_{\mathfrak{R}} \forall n(n \in \mathbb{N} \to \exists x(x \in A \land x > n))$, logo $\models_{\mathfrak{R}^*} \forall n(n \in \mathbb{N}^* \to \exists x(x \in A^* \land x >^* n))$, em particular $\models_{\mathfrak{R}^*} \exists x(x \in A^* \land x > \omega)$, com $\omega \in \mathbb{N}^*$ infinito, e portanto A^* possui um hiperreal infinito que não tem como estar em A, logo $A \neq A^*$; Assuma agora que A é limitado e infinito, pelo exercício seguinte existe $p \in \mathbb{R}$ tq $p \cong a$ e $p \neq a$ para algum $a \in A^*$, mas se $p, a \in \mathbb{R}$ e $p \cong a$, então p = a, logo $a \notin \mathbb{R}$, i.e., $A \neq A^*$.

Exercício 5. (Teorema de Bolzano-Weierstrass) Seja $A \subseteq \mathbb{R}$ limitado e infinito. Mostre que existe $p \in \mathbb{R}$ tq $p \cong a$, mas $p \neq a$, para algum $a \in A^*$.

Proof. Se A é infinito existe $S: \mathbb{N} \to A$ injetora, uma vez que A é limitado em \mathbb{R} , então Bolzano-Weierstrass garante que existe uma subsequência $(s_n)_{n\in\mathbb{N}}$ de $(S(n))_{n\in\mathbb{N}}$ convergente, digamos para $p \in \mathbb{R}$. Do **Exercício 2. b)** $\lim s_n = p$ ses $s_x^* \cong p$, para todo $x \in \mathbb{N}^*$ infinito, como $S^*: \mathbb{N}^* \to A^*$, em particular existe um $\omega \in \mathbb{N}^*$ infinito tq $\omega \in \mathrm{Dom}(s^*)$, $S^*(\omega) \in A^* \in S^*(\omega) = s_\omega^* = a \cong p$, para garantir que existe ω tq $s_\omega^* = a \neq p$, i.e., $a \notin \mathbb{R}$ assuma por contradição que $s_x^* = s_y^* = a$ para todo $x, y \in \mathbb{N}^*$ infinito, isso contradiz o fato de que S^* é injetora (visto que S é), para completar, é óbvio que não podemos ter $s_x^*, s_y^* \in \mathbb{R}$ e $s_x^* \neq s_y^*$, visto que nesse caso $s_x^* \ncong s_y^*$.

Exercício 6. a) Mostre que $|\mathbb{Q}^*| \geq 2^{\aleph_0}$; b) Mostre que $|\mathbb{N}^*| \geq 2^{\aleph_0}$.

Proof. a) Do **Exercício 1.** sabemos que para todo $x \in \mathbb{R}^*$ existe $y \in \mathbb{Q}^*$ tal que $x \cong y$. Como para todo $x, y \in \mathbb{R}$ se $x \neq y$, então $x \not\cong y$, logo st $|_{\mathbb{R}} : \mathbb{R} \to \mathbb{Q}^*$ é injetora, portanto $\mathbb{Q}^* \geq 2^{\aleph_0}$; b) como $|\mathbb{Q}| = |\mathbb{N}|$, então existe $f : \mathbb{Q} \to \mathbb{N}$ bijetora, em particular

$$\models_{\mathfrak{R}} \forall xy (P_{\mathbb{Q}}x \land P_{\mathbb{Q}}y \land x \neq y \to F_f(x) \neq F_f(y)) \land \forall y (P_{\mathbb{N}}y \to \exists x (P_{\mathbb{Q}}x \land F_f(x) = y))$$

i.e., f é uma bijeção de \mathbb{Q} em \mathbb{N} , portanto \mathfrak{R}^* prova o mesmo para $f^*:\mathbb{Q}^*\to\mathbb{N}^*$.

Exercício 7, Seja $A \subseteq \mathbb{R}$ sem máximo, logo, com respeito a \mathbb{R}^* e $<^*$, A terá um limite superior em \mathbb{R}^* , mas prove que $\sup(A)$ não existe.

Proof. Assuma que sup(A) exista, como A não possui máximo obviamente sup(A) \notin A. Seja $\varpi \in \mathcal{I}$ positivo, logo para todo $y \in A$ temos que $0 < \varpi < \sup(A) - y$, uma vez que sup(A) > y, $\forall y \in A$, i.e., sup(A) − y > 0. Logo $y - \sup(A) < -\varpi < 0$ e $y < \sup(A) - \varpi < \sup(A)$, $\forall y \in A$, i.e., sup(A) − ϖ é um limite superior menor que o supremo, contradição, logo sup(A) não existe (< é interpretado como <* na prova).