Análises de Mutações e Conservações na Proteína Spike

Alessandra Gomes Cioletti - 2020730930

Breno de Castro Pimenta - 2017114809

Daniel Victor Ferreira da Silva - 2019006523

Larissa Aline Fenandes Vieira - 2019006868

Vitor Pimentel dos Santos - 2019021840

Para este estudo vamos usar como base a proteína Spike do SARS-Cov-2 e sua funcionalidade quando comparada com as demais.

A proteína Spike (S) é uma homotrimérica glicoproteína transmenbrana presente na superfície do coronavírus, usada pelo vírus para entrar nas células dos hospedeiros (humanos ou animais), sendo também, alvo dos anticorpos produzidos pelo sistema imunológico.

Cada monômero da proteína S é composto por duas subunidades funcionais, a subunidade S1 e a subunidade S2. A subunidade S1 é responsável pela ligação ao receptor da célula do hospedeiro. Ela é formada pelas porções: domínio N-terminal(NTD) um peptídeo sinal , e pelo domínio de ligação ao receptor (RBD), este último contém o motivo de ligação ao receptor(RBM). A subunidade S2 é responsável pela fusão das membranas celular e viral. Ela é constituída de peptído de fusão (FP), dois heptad-repeats (HR1 e HR2), domínio transmembrana (TM), e um domínio citoplasmático (IC).

O RDB pode sofre mudanças conformacionais que escondem ou expõem os determinantes da ligação ao receptor. Após a ligação do RBD aos receptores celulares, a proteína S é clivada por proteases e o peptídeo signal é liberado. Esta clivagem provoca mudanças conformacionais nas subunidades S1 e S2, levando à exposição do loop de fusão (peptídeo de fusão) e sua interação na membrana da célula alvo, o que permite a entrada de nucleocapsídeos virais na célula hospedeira para iniciar a replicação.

A clivagem da proteína S é feita na fronteira entre as subunidades S1 e S2, que permanecem não covalentemente ligadas na conformação de pré-fusão. A subunidade S1 distal compreende o domínio de ligação ao receptor e contribui para a estabilização do estado de profusão da subunidade S2 ancorada na membrana que contém a maquinaria de fusão.

Um estudo demonstrou que o RBD compreende os resíduos de Thr333 ao Gly526. Este é formado por cinco folhas beta antiparalelas conectadas por pequenas hélices e loops, formando o que chamamos de core. O core apresenta 9 resíduos de cisteínas, desses, oito formam 4 ligações de dissulfeto que sendo que 3 ajudam a estabilizar a estrutura do core (C336-C361, C379-C432, C391-C525), e um faz ligação entre o loop e a porção distal do RBM (C480-C488).

O RBM é a parte que interage com o receptor ACE2 no SARS-Cov-2, esta porção compreende os aminoácidos de S438 e Q506. Os principais aminoácidos de interação são apresentados na tabela abaixo.

Resíduo	Pontos de interação do ACE2
G446	Lig de hidrogênio com Q42
Y449	Lig de hidrogênio com Q42
L455	D30, K3, H34
V483	Aumenta a afinidade pelo receptor
F486	Q24, L79, M82, Y83
N487	Lig de hidrogênio com Q24, Y83
Q493	K31, H34, forma ligação de hidrogênio com E35
Q498	D58, Y41, Q42, L45 e K353
T500	Lig de hidrogênio com Y41
N501	K353, G354, D355, forma ligação de hidrogênio com Y41
G502	Lig de hidrogênio com K353
Y505	Lig de hidrogênio com E37, R393

Outros pontos fora do RBM

Resíduo	Pontos de interação do ACE2
V367F	Aumenta a afinidade pelo receptor ACE2
R408	Importante ponto de interação com N-glycans, perde atividade se trocado por I
K417	Ponte salina com D30
R685-S686	Sítio de clivagem S1/S2
R815-S816	Sítio de clivagem S2/S2'

Sequência da proteína Spike do SARS-Cov-2

MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNAT NVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYS LYNSAS FSTFK<mark>C</mark>YGVSPTKLNDL<mark>C</mark>FTNVYADSFVIRGDEV<mark>I</mark>QIAPGQTG<mark>I</mark>IADYNYKLPDDFTG<mark>C</mark>VIAWNSNNLDSKV<mark>GGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPUNGVEGFNLYFPLQSYGF</mark> QPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTE $VPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPRRA\underline{\textbf{RS}} VASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICG$ $DSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSK\underline{\textbf{RS}}FIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMI$ AQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDKVEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQ IITTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKWPWYIWLGFIAGLIAIVMVTIMLCCMT SCCSCLKGCCSCGSCCKFDEDDSEPVLKGVKLHYT

A Sequencia de aminoácidos da proteína spike S do SARS-Cov-2 apresenta as seguintes marcações: PS (cinza), S1(azul), S2(verde), S2'(verde-escuro), RBD(roxo), RBM(vermelho)., marcadores amarelo (cisteínas), verde (aminoácidos importantes para interação com ACE2 no RBD) e em azul no RBM.

Para análise iremos considerar somente a porção que interage com o receptor.

Resultado das Análises

```
SPIKE SARS-COV-2/ SPIKE MURIN
```

```
TNL<mark>C</mark>PFGEVFNATRFASVYAWNRKRISN<mark>C</mark>VADYS<mark>V</mark>LYNSASFSTFK<mark>C</mark>YGVSPTKLNDL<mark>C</mark>F
PD-<mark>C</mark>KIEEWLTAKSVPSPLNWERRTFQN<mark>C</mark>NFNLS<mark>S</mark>LLRYVQAESLS<mark>C</mark>NNIDASKVYGM<mark>C</mark>F
TNVYADSFVI-RGDEV-RQIA-PG-QT-G-KI---A-DYN--YKLP-DDFT--GC-VIA
GSVSVDKFAIPRSRQID<mark>L</mark>QIGNSGFLQTANY<mark>K</mark>IDTAATSCQLYYSLPKNNVTINN<mark>Y</mark>NPSS
WNSN-NL-DSKV-G-GNYN--YLYRLF-RKSNLKP-FERDI-S--TEIYQAGSTPC-NGV
WNRRYGFNDAGVF<mark>G</mark>KSK<mark>H</mark>DVAYAQQ<mark>C</mark>FIVRPSYCPCAQPDIVSACTSQTKPMSAY<mark>C</mark>PTG<mark>T</mark>
EG<mark>FNC</mark>-YF--P-LQS--Y--G-F--QP<mark>T</mark>---NGVG-<mark>Y</mark>--Q--PYRVVV-L-SF-ELLHAP
IHRECSLWNGPHLRSARVGSGTYTCECTCKPNPFDTYDLRCGQIKTIVNVGDHCEGLGVL
ATVCG---PKK--S-T--NLV--K-NKC-VN----F-N--FNGL-TG-T-G--V-L-T
EDKCGNSDPHKGCSCAHDSFIGWSHDTCLVNDHSQIFANILLNGINSGTTCSTDLQLPNT
```

```
SPIKE SARS-COV-2/SPIKE SARS
SETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRK
AELKCSVKSFEIDKGIYQTSNFRVVPSGDVVRFPNITNLCPFGEVFNATKFPSVYAWERK
RISNCVADYS LYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEV QIAPGQTG
KISN<mark>C</mark>VADYS<mark>V</mark>LYNSTFFSTFK<mark>C</mark>YGVSATKLNDL<mark>C</mark>FSNVYADSFVVKGDDV<mark>R</mark>QIAPGQTG
IADYNYKLPDDFTG<mark>C</mark>VIAWNSNNLDSKV<mark>G</mark>GN<mark>Y</mark>NYLYR<mark>L</mark>FRKSNLKPFERDISTEIYQAG
<mark>W</mark>IADYNYKLPDDFMG<mark>C</mark>VLAWNTRNIDATS<mark>T</mark>GN<mark>Y</mark>NYKYR<mark>Y</mark>LRHGKLRPFERDISNVPFSPD
STPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKN
GKP<mark>C</mark>T-PPA<mark>LNC</mark>YWPL<mark>N</mark>DYGF<mark>Y</mark>T<mark>TTG</mark>IG<mark>Y</mark>QPYRVVVLSFELLNAPATV<mark>C</mark>GPKLSTDLIKN
```

SPIKE SARS-COV-2/SPIKE-MERS

QTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSULYNSAS
SVSSFEAKPSGSVVEQAEGVE-CDFSPLLSGTP-PQVYNFKRLVFTNCNYNLTKLLSLFS

FSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVTQIAPGQTGTADYNYKLP-DDFTGC
VNDFTCSQISPAAIASNCYSSLILDYFSYPLSMKSDLSVSSAGPISQFNYKQSFSNPT-C

-VIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFER-DISTEIYQAGS-TPC-N---G-VLILATVPHNL-TTITKPLKYSY-INKCSRLLSDDRTEV-PQLVNANQYSPCVSIVPSTVW

E-G--FNCYF-PLQSYGFQPTNGVGYQPYRVVVLSFEL-L-HAPAT--VCGPK-K--S-T
EDGDYYRKQLSPLEGGGWLVASGSTVAMTEQLQMGFGITVQYGTDTNSVC-PKLEFANDT

SPIKE SARS-COV-2/ SPIKE OC43

LLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIV-RFPNITN
LLAFNQDGIIFNAEDCMSDFMSEIKCKTQSIAPPTGVYELNGYTVQPIADVYRRKPNLPN

LCPFGEVF-NATRFASVYAWNRKRISNCVADYS LYNSASFSTFKCYGVSPTKLNDLCFT
-CNI-EAWLNDKSVPSPLNWERKTFSNCNFNMSSLMSFIQADSFTCNNIDAAKIYGMCFS

NVYADSFVI-RGDEV QIAPGQTG IADYNYKLPDDFTGCVIAWN-SNNLD-SKVG-GN
SITIDKFAIPNGRKV-DLQLGNLGYLQSFNYRIDTTATSCQLYYNLPAANVSVSRFNPST

YNYLYRLFRKSNLKPFERDISTEIYQAGSTPC-NGVEGFNCYFPLQ-S-YGFQP-TNGV
WNKRFGFIEDSVFKPRPAGVLTNHDVVYAQHCFKAPKNF-CPCKLNGSCVGSGPGKNNGI

GYQPYRVVVLSFE-LLHA-PATVCGP-K-KST-NLVK-NK-C----VNFNF---NGLT--GTCPAGTNYLTCDNLCTPDPITFTGTYKCPQTKSLVGIGEHCSGLAVKSDYCGGNSCTCR

Ligações de Dissulfeto

SARS-Cov2	C336	C361	C379	C391	C432	C480	C488	C525
Murin	С	С	С	С	Υ	С	С	С
SARS-Cov	С	С	С	С	С	С	С	С
MERS	С	С	С	С	С	С	K	С
OC43	С	С	С	С	С	С	С	Т

Comparando todos os dados, observamos a conservação de grande parte cisteínas e possivelmente, das ligações de dissulfeto e da estabilização de folhas beta nestes pontos, sugerindo haver uma semelhança estrutural entre o core do RBD em todos, principalmente quando se compara SARS-Cov-2 com a SARS-Cov. Também observamos que todos os resíduos de cisteína que sofreram alteração, foram substituídos por resíduos contendo hidroxila, podendo ocorrer, embora mais fraca, uma ligação de hidrogênio.

Alterações no RBM

SARS-Cov2	G446	Y449	L455	V483	F486	N487	Q493	Q498	T500	N501	G502	Y505
Murin	G	Н	С	T	R	Е	R	Ε	Т	N	Р	Υ
SARS-Cov	T	Υ	Υ	Р	L	N	N	Υ	Т	T	G	Υ
MERS	Т	L	- 1	V	Υ	R	Ε	L	Α	S	G	V
OC43	N	W	F	Р	F	gap	N	G	N	N	G	Т

Dentre as proteínas analisadas, as que observaram maior semelhança foi o SARS-Cov-2 com a SARS-Cov, o que seria esperado uma vez que ambos interagem com a mesma célula do hospedeiro. A MERS foi quem teve o sítio de ligação com menos similaridade, o que se esperava interagem a célula CD-26.

G446, L455, N501 apresenta interações similares quando alterados por T, Y, T respectivamente. Alteração do Q493 por N, F486 por L também apresentam similaridade bioquímica.

SARS-Cov2	V367	R408	K417	R685	S686	R815	S816
Murin	S	L	K	R	S	R	S
SARS-Cov	V	R	V	R	S	R	S
MERS	K	S	Р				
OC43	S	gap	Υ				

Na porção RBD, a troca do R408 por outro aminoácido apresenta perda de atividade na interação com o ACE2. Foram observados sítios de clivagem para o Murin, Sars-Cov e Sars-Cov-2.

Fontes:

Walls, Alexandra C., et al. "Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein." Cell (2020).

Lan, Jun, et al. "Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor." *Nature* 581.7807 (2020): 215-220.