Analyse complexe Fonctions

méromorphes

Question 1/14

Image de f au voisinage de z_0 qui est une singularité essentielle

Réponse 1/14

Si V est un voisinage de z_0 dans U alors $f(V \setminus \{z_0\})$ est dense dans \mathbb{C}

Question 2/14

Grand théorème de Picard

Réponse 2/14

Si f a une singularité essentielle en z_0 alors il existe $F \subset \mathbb{C}$, $|F| \leq 1$ telle que pour tout V voisinage de z_0 dans U, $\mathbb{C} \setminus F \subset f(V \setminus \{z_0\})$

Question 3/14

Théorème de Mittag-Leffler

Réponse 3/14

Soit U un ouvert de \mathbb{C} et F une partie discrète et fermée de U, alors pour $(P_a)_{a\in F}$ des polynômes non nuls sans termes constants, il existe une fonction méromorphe suc C qui a exactement F comme pôles et qui admet $P_a\left(\frac{1}{z-a}\right)$ comme partie singulière en tout

$$\in I$$

Question 4/14

f est méromorphe en z_0

Réponse 4/14

f admet une singularité illusoire ou un pôle en z_0

Question 5/14

$$\sum_{\alpha \in A} u_{\alpha}(z)$$
 converge normalement sur tout compact de U

Réponse 5/14

Pour tout compact K de U, il existe une partie F_K finie de A telle que pour tout $\alpha \in A \setminus F_K$, u_{α} n'a pas de pôles dans K et $\sum_{\alpha \in A \setminus F_K} u_{\alpha}(z)$ converge normalement sur K

Question 6/14

Coefficients de la DSE de
$$u(z) = \sum_{\alpha \in A} u_{\alpha}(z)$$
 en z_0

Réponse 6/14

Si pour tout
$$\alpha \in A$$
, $u_{\alpha}(z) = \sum_{n \in \mathbb{Z}} a_{\alpha,n} (z - z_0)^n$

alors $a_n = \sum a_{\alpha,n}$ qui converge absolument

 $\alpha \in A$

Question 7/14

Partie singulière de f en z_0

Réponse 7/14

Partie négative du développement en série de Laurent de f holomorphe sur $U \setminus \{z_0\}$ où $z_0 \in U$

Question 8/14

f admet une singularité essentielle en z_0

Réponse 8/14

f est holomorphe sur $U \setminus \{z_0\}$ et la singularité en z_0 n'est ni illusoire ni un pôle

Question 9/14

f admet un pôle d'ordre k en z_0

Réponse 9/14

$$|f(z)| \xrightarrow[\substack{z \to z_0 \\ z \neq z_0}]{} + \infty$$
 Il existe $k \geqslant 1$ tel que $a_{-k} \neq 0$ et pour tout
$$n < -k, \ a_n = 0$$
 Il existe $P \in \mathbb{C}[X]$ tel que $f(z) - P\left(\frac{1}{z - z_0}\right)$

est bornée au voisinage de z_0

Question 10/14

Pôles de $\sum u_{\alpha}(z)$ qui converge normalement sur tout compact

Réponse 10/14

Pour F_{α} les pôles de u_{α} alors $F = \bigcup F_{\alpha}$ est une partie discrète fermée de U et $u(z) = \sum u_{\alpha}(z)$ converge absolument sur $\alpha \in A$ $U \setminus F$

Question 11/14

Convergence de
$$\sum_{\alpha \in A} u_{\alpha}^{(n)}(z)$$

Réponse 11/14

 $\alpha \in A$

Si $\sum_{\alpha \in A} u_{\alpha}(z)$ converge normalement vers u sur tout compact de \mathbb{C} alors u est méromorphe et $\sum u_{\alpha}^{(n)}(z)$ converge normalement vers $u^{(n)}(z)$

Question 12/14

f est méromorphe sur U

Réponse 12/14

 $f: U \setminus F \to \mathbb{C}$ est holomorphe avec F une partie discrète et fermée de U et f est méromorphe en tout point de F

Question 13/14

Identité d'Euler

Réponse 13/14

$$\cot(z) = \frac{1}{z} + \sum_{n=1}^{+\infty} \left(\frac{1}{z + n\pi} + \frac{1}{z - n\pi} \right)$$

Question 14/14

f admet une singularité illusoire en z_0

Réponse 14/14

f est bornée au voisinage de z_0 Pour tout n < 0, $a_n = 0$ f se prolonge en \widetilde{f} folomorphe sur U