ÜBUNGEN ZUR "EICHFELDTHEORIE" ABGABE: 18.05.2015

Aufgabe 16. (4 Punkte) Sei G eine zusammenhängende Lie-Gruppe mit Lie-Algebra \mathfrak{g} . Seien $a,b\in\mathfrak{g}$ fest. Sei $T=S^1\times S^1$ der Torus und sei dx_i $(i\in\{1,2\})$ die zum links-invarianten Vektorfeld des i-ten S^1 -Faktors duale 1-Form. Man zeige, dass die 1-Form

$$\omega = adx_1 + bdx_2 \in \Omega^1(T; \mathfrak{g})$$

einen G-Zusammenhang auf dem trivialen G-Prinzipalbündel $T \times G \to T$ definiert. Für $n, m \in \mathbb{Z}$ berechne man den horizontalen Lift $\tilde{\gamma} \colon [0,1] \to T \times G$ für die Schleife

$$\gamma \colon [0,1] \to T, \ \gamma(t) = (\exp(2\pi i t n), \exp(2\pi i t m))$$

mit Anfangsbedingung $\tilde{\gamma}(0) = (\gamma(0), e)$.

Aufgabe 17. (8 Punkte) Sei M eine Mannigfaltigkeit der Dimension n. In Aufgabe 13 wurde für jeden GL(n)-Zusammenhang auf GL(M) eine Trivialisierung $TGL(M) \to GL(M) \times (\mathbb{R}^n \times \mathfrak{gl}(n))$ konstruiert. Mit Hilfe von horizontalen Lifts konstruiere man direkt die dazu inverse Abbildung.

Hinweis: Auf $GL(M) \times \mathfrak{gl}(n)$ is die Inverse notwendigerweise durch die kanonische vertikale Distribution gegeben. Für $(f,v) \in GL(M) \times \mathbb{R}^n$ sei γ eine Kurve in M mit $\gamma'(0) = f(v) \in T_{\pi_{GL(M)}(f)}M$. Ist $\tilde{\gamma}$ ein horizontaler Lift mit Anfangsbedingung $\tilde{\gamma}(0) = f$, betrachte man $\tilde{\gamma}'(0) \in T_fGL(M)$.