Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

Лабораторная №11

Предмет: Проектирование реконфигурируемых гибридных вычислительных систем

Тема: Latency

Задание 4

Студенты:

Соболь В.

Темнова А.С.

Группа: 13541/3

Преподаватель:

Антонов А.П.

Содержание

1.	Задание	3
2.	Исходный код	4
3.	Скрипт	5
4.	Моделирование	6
5 .	Решение 1а	6
	5.1. Директивы	6
	5.2. Синтез	7
	5.3. C/RTL моделирование	9
6.	Решение 2а	10
	6.1. Директивы	10
	6.2. Синтез	10
7.	Вывод	11

1. Задание

- 1. Создать проект lab11 4
- 2. Микросхема: ха7а12tcsg325-1q
- 3. Создать функцию по образцу (иерархия функций)

- 4. Создать тест lab11_4_test.c для проверки функции. Осуществить моделирование (с выводом результатов в консоль)
- 5. Исследование:
- 6. Solution 1a
 - задать: clock period 10; clock uncertainty 0.1
 - установить реализацию ПО УМОЛЧАНИЮ
 - осуществить синтез для:
 - привести в отчете:
 - * performance estimates=>summary (timing, latency)
 - * utilization estimates=>summary
 - * performance Profile
 - * Resource profile
 - * scheduler viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
 - * resource viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
 - Выполнить cosimulation и привести временную диаграмму
- 7. Solution 2a

- задать: clock period 10; clock uncertainty 0.1
- установить реализацию LOOP_MERGE
- осуществить синтез
 - привести в отчете:
 - * performance estimates=>summary (timing, latency)
 - * utilization estimates=>summary
 - * performance Profile
 - * Resource profile
 - * scheduler viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
 - * resource viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
- Выполнить cosimulation и привести временную диаграмму
- 8. Сравнить два решения (solution_1a и solution_2a) и сделать выводы: объяснить (посчитать) число циклов Latency, II...

2. Исходный код

Ниже приведен исходный код устройства и теста.

```
#include "lab11 4.h"
3
  void lab11 4(int a[N], int b[N], int c[N], int d[N])
4
5
6
     int i;
7
8
     Add: for (i = N - 1; i >= 0; i--)
9
10
       if (d[i])
11
         a[i] = b[i] + c[i];
12
13
14
15
     Sub: for (i = N - 1; i >= 0; i--)
16
17
       if (!d[i])
18
19
         a[i] = b[i] - c[i];
20
21
22
23 }
```

Рис. 2.1. Исходный код устройства

Рис. 2.2. Заголовочный файл

```
1 #include "lab11 4.h"
  #include <stdio.h>
3
4
  int main()
5
6
    int a_actual[N], a_expected[N], b[N], c[N], d[N];
7
8
    int i, passed = 1;
9
10
    for (i = N - 1; i >= 0; i--)
11
      b[i] = N*(i * i \% 3);
12
13
      c[i] = i;
      d[i] = i \% 2;
14
      if (d[i])
15
16
        a_expected[i] = b[i] + c[i];
17
18
      if (!d[i])
19
20
      {
21
        a \operatorname{expected}[i] = b[i] - c[i];
22
23
24
25
    lab11_4(a_actual,b,c,d);
26
    for (i = N - 1; i >= 0; i--)
27
28
      printf("Expected \c [\%d] \c actual \c [\%d] \c n", a \c expected \c [i], a \c actual \c [i]);
29
30
      if(a expected[i] != a actual[i])
31
        passed = -1;
32
33
34
35
    36
37
38
    } else {
      39
40
41
```

Рис. 2.3. Исходный код теста

3. Скрипт

Ниже приводится скрипт, для автоматизации выполнения лабораторной работы.

```
open project -reset lab11 4
2
3 add_files lab11_4.c
4 add_files -tb lab11_4_test.c
  set top lab11 4
7
  set solutions [list 1a 2a]
8
9
  foreach sol $solutions {
    open\_solution \ solution \ \$sol - reset
10
11
    set part \{xa7a12tcsg325-1q\}
12
     create clock -period 10ns
13
    set clock uncertainty 0.1
14
15
     if \{\$sol = "2a"\}
16
       set directive loop merge lab11 4
17
18
    csim\_design
19
20
     csynth design
     cosim design -trace level all
21
22
23
24
  exit
```

Рис. 3.1. Скрипт

4. Моделирование

Ниже приведены результаты моделирования.

Рис. 4.1. Результаты моделирования

По результатам моделирования видно, что устройство работает корректно.

5. Решение 1а

5.1. Директивы

В данном решения были установлены директивы, приведённые ниже.

Рис. 5.1. Директивы

5.2. Синтез

По оценке производительности видно, что устройство соответствует заданным критериям.

Рис. 5.2. Performance estimates

Utilization Estimates

□ Summary

Name	BRAM_18K	DSP48E	FF	LUT
DSP	-	-	-	-
Expression	-	-	0	120
FIFO	-	-	-	-
Instance	-	-	-	-
Memory	-	-	-	-
Multiplexer	-	-	-	134
Register	-	-	79	-
Total	0	0	79	254
Available	40	40	16000	8000
Utilization (%)	0	0	~0	3

Рис. 5.3. Utilization estimates

Performance Profile ≅							
	Pipelined	Latency	Iteration Latency	Initiation Interval	Trip count		
▼ • lab11_4	-	26	-	27	-		
Add	no	12	3	-	4		
Sub	no	12	3		4		

Рис. 5.4. Performance profile

Рис. 5.5. Scheduler viewer

	Resource\Control Step	C0	C1	C2	C3	C4	C5	C6	
1	⊡I/O Ports								
2	d(p0)		re	ad		re	ad		
3	c(p0)		read			read			
4	b(0q)d			read			read		
5	a(p0)				write			write	
6	⊡Memory Ports								
7	d(p0)		re	read read		ad			
8	b(0q)d			re	ad	r		ead	
9	c(p0)			read			read		
10	a(p0)				write			write	
11	⊡Expressions								
12	i_phi_fu_124		phi_mux						
13	grp_fu_144			icmp			icmp		
14	i_2_fu_174				+				
15	tmp_3_fu_167				+				
16	i_l_phi_fu_136					phi_mux			
17	i_3_fu_204							+	
18	tmp_8_fu_197							-	

Рис. 5.6. Resource viewer

5.3. C/RTL моделирование

Рис. 5.7. Временная диаграмма

Как видно из диаграммы, в устройстве имеются 2 цикла, на каждую итерацию цикла требуется 3 такта и 1 общий подготовительный такт Latency =4*3+4*3+1+1 такт между циклами =26 тактов. II = Latency + 1=27

6. Решение 2а

6.1. Директивы

В данном решения были установлены директивы, приведённые ниже.

Рис. 6.1. Директивы

6.2. Синтез

По оценке производительности видно, что устройство соответствует заданным критериям.

Рис. 6.2. Performance estimates

Данное решение полностью совпадает с предыдущим.

7. Вывод

Исходя из описания директивы LOOP_MERGE, циклы должны были объединится в один для избавления от дополнительных тактов, вызванных инициализацией. Не смотря на ожидаемое поведение, для описанного устройства циклы не объединились.