/___ / ___ (R)
/__ / / ___ / / ___ /
Statistics/Data Analysis

User: Project Stunting Project: Project Stunting

- 1 . do "C:\Users\shimanto\AppData\Local\Temp\STD0000000.tmp"
- 2 . use "C:\Users\shimanto\Desktop\Stunting Papers\DATA\Stata\BDKR7RDT\childdata.dta", clear

3 .
 end of do-file

- 4 . do "C:\Users\shimanto\AppData\Local\Temp\STD00000000.tmp"
- 5 . svyset [pw=wgt],psu(v001) strata(v022)

pweight: wgt

VCE: linearized
Single unit: missing
Strata 1: v022
SU 1: v001
FPC 1: <zero>

6

7 . svy:tab stunted,count
 (running tabulate on estimation sample)

Number of strata = 22 Number of PSUs = 672 Number of obs = 7,902 Population size = 7,880.8346 Design df = 650

stunted
Not Stun Stunted
Total

Key: count = weighted count

8 . svy: tab mage1 stunted, col count
 (running tabulate on estimation sample)

Number of strata = 22 Number of PSUs = 672 Number of obs = 7,902 Population size = 7,880.8346 Design df = 650

mage1	Not Stun	stunted Stunted	Total
15-19	696.9	329.5	1026
	.1272	.1372	.1302
20-24	1914	818.3	2732
	.3492	.3407	.3466
25+	2869	125 4	4123
	.5236	.5221	.5231
Total	5479 1	2402	7881

Key: weighted count
column proportion

Pearson:

Uncorrected chi2(2) = 1.6484 Design-based F(1.98, 1283.84) = 0.5964

P = 0.5489

9.

10 . svy: tab areal stunted, col count (running tabulate on estimation sample)

Number of strata = 22 Number of PSUs = 672

Number of obs = 7,902 Population size = 7,880.8346 Design df = 650

area1	Not Stun	stunted Stunted	Total
Urban	1560 .2848	524.2 .2183	2085 . 2645
Rural	3919 .7152	1877 .7817	5796 .7355
Total	5 4 79 1	2402 1	7881

Key: weighted count column proportion

Pearson:

Uncorrected chi2(1) = 38.0600Design-based F(1, 650) = 19.2398 P = 0.0000

11 .

12 . svy: tab division1 stunted, col count (running tabulate on estimation sample)

Number of strata = 22 Number of PSUs = 672

Number of obs = 7,902 Population size = 7,880.8346 Design df = 650

NI-+ O+	stunted	m - + - 1
Not Stun	Stuntea	Total
299.7	145.2	444.8
.0547	.0604	.0564
1108	521 5	1629
.2022	.2172	.2067
1470	407.6	1070
.2687	. 20 / 2	.2499
550.7	188.6	739.3
.1005	.0785	.0938
437.7	232.2	669.9
.0799	.0967	.085
632 1	282 3	914.4
.1154	.1176	.116
E00 4	250	856.4
		.1087
.1092	.1074	.1067
380.7	276.2	656.9
.0695	.115	.0833
5479	2402	7881
1	1	1
	.0547 1108 .2022 1472 .2687 550.7 .1005 437.7 .0799 632.1 .1154 598.4 .1092 380.7 .0695	Not Stun Stunted 299.7 145.2 .0547 .0604 1108 521.5 .2022 .2172 1472 497.6 .2687 .2072 550.7 188.6 .1005 .0785 437.7 232.2 .0799 .0967 632.1 282.3 .1154 .1176 598.4 258 .1092 .1074 380.7 276.2 .0695 .115 5479 2402

Key: weighted count column proportion

Pearson:

Uncorrected chi2(7) = 83.9929Design-based F(5.43, 3527.02) = 8.3189 P = 0.0000

14 . svy: tab melevel1 stunted, col count (running tabulate on estimation sample)

Number of strata = 22 Number of PSUs = 672

Number of obs = 7,902 Population size = 7,880.8346 Design df = 650

melevel1	Not Stun	stunted Stunted	Total
No educa	325.3 .0594	239.7	565.1 .0717
Primary	1392	868.7	2261
	.254	.3617	.2868
Secondar	2734	1111	3846
	.499	.4628	.488
Higher	1028	181.8	1210
	.1876	.0757	.1535
Total	5479	2402	7881
	1	1	1

Key: weighted count column proportion

Pearson:

Uncorrected chi2(3) = 246.9032 Design-based F(2.96, 1926.47) = 59.7707 P = 0.0000

15 .

16 . svy: tab helevel stunted, col count (running tabulate on estimation sample)

Number of strata = 22 Number of PSUs = 672

Number of obs = 7,758 Population size = 7,739.281 Design df =

helevel1	Not Stun	stunted Stunted	Total
No educa	657.6	497.7	1155
	.1221	.2114	.1493
Primary	1729	953.8	2683
	.3211	.4051	.3466
Secondar	1877	689.6	2566
	.3485	.2929	.3316
Higher	1122	213	1335
	.2084	.0905	.1725
Total	5385	2354	7739
	1	1	1

Key: weighted count column proportion

Pearson:

Uncorrected chi2(3) = 268.7987Design-based F(2.99, 1942.26) = 70.2643 P = 0.0000

18 . svy: tab fage1 stunted, col count (running tabulate on estimation sample)

Number of strata = 22 Number of PSUs = 672 Number of obs = 7,774
Population size = 7,756.7318 Design df

fage1	Not Stun	stunted Stunted	Total
>= 24	293.3	146.1	439.4
	.0543	.0619	.0567
25-29	1172	548.3	1720
	.2171	.2324	.2217
30-34	1412	580.7	1993
	.2617	.2461	.2569
35+	2520	1084	3604
	.4669	.4596	.4647
Total	5397	2359	7757
	1	1	1

Key: weighted count column proportion

Pearson:

Uncorrected chi2(3) = 5.1540

Design-based F(2.98, 1936.01) = 1.3726 P = 0.2495

19 .

20 . svy: tab mwork stunted, col count (running tabulate on estimation sample)

Number of strata = Number of PSUs = 672 Number of obs = 7,902 Population size = 7,880.8346 Design df = 650

mwork1	Not Stun	stunted Stunted	Total
No	3373	1322	4695
	.6156	.5504	.5958
Yes	2106	1080	3186
	.3844	.4496	.4042
Total	5479	2402	7881
	1	1	1

Key: weighted count column proportion Pearson:

Uncorrected chi2(1) = 29.6307Design-based F(1, 650) = 19.2110 P = 0.0000Uncorrected chi2(1)

21 .

22 . svy: tab hhocu stunted, col count (running tabulate on estimation sample)

Number of strata = 22Number of PSUs = 672

Number of obs = 7,766 Population size = 7,751.0612 Design df

hhocu1	Not Stun	stunted Stunted	Total
Jobless	38.97	17.06	56.03
	.0072	.0072	.0072
Farmer	544.6	300.4	845.1
	.1009	.1275	.109
Agricult	350.3	241	591.3
	.0649	.1023	.0763
Business	1218	416.8	1635
	.2258	.1769	.2109
Others	3243	1381	4624
	.6011	.5861	.5966
Total	5395	2356	7751
	1	1	1

Key: weighted count column proportion

Pearson:

Uncorrected chi2(4) = 59.9064 Design-based F(3.89, 2527.06) = 12.0469 P = 0.0000

23 . *insig

24 . svy: tab religion stunted, col count (running tabulate on estimation sample)

Number of strata = 22Number of PSUs = 672

Number of obs = 7,902 Population size = 7,880.8346 Design df

7 ' ' 1	N	stunted	m . 1
religion1	Not Stun	Stunted	Total
Islam	5016	2215	7231
	.9154	.9224	.9176
Others	463.3	186.4	649.7
0011010	.0846	.0776	.0824
Total	5479	2402	7881
Total	54/9	2 4 02 1	7881
		_	

Key: weighted count column proportion Pearson:

Uncorrected chi2(1) = 1.0669 Design-based F(1, 650) = 0.7381 Uncorrected chi2(1) P = 0.3906

25 . *Sig

26 . svy: tab wind stunted, col count (running tabulate on estimation sample)

Number of strata = Number of Strata = 22 Number of PSUs = 672 Number of obs = 7,902 Population size = 7,880.8346 Design df

wind1	Not Stun	stunted Stunted	Total
Poorest	1031 .1881	685.4 .2854	1716 .2178
Poorer	1015 .1853	597.4 .2488	1613 .2046
Middle	1061 .1937	450.5 .1876	1512 .1918
Richer	1159	419.4	1578
Richest	1213	.1746	1462
Total	.2215 5479	.1036 2402 1	.1855 7881 1
		1	1

Key: weighted count column proportion

Pearson:

Uncorrected chi2(4) = 242.7486 Design-based F(3.94, 2559.16) = 41.1220 P = 0.0000

27 . *insig

28 . svy: tab hhmembers stunted, col count (running tabulate on estimation sample)

Number of strata = Number of PSUs = 672 Number of obs = 7,902 Population size = 7,880.8346 Design df

hhmembers	Not Stun	stunted Stunted	Total
less equ	684 .1248	282.4 .1176	966.4 .1226
greater	4795 .8752	2119 .8824	6914 .8774
Total	5479 1	2402 1	7881

Key: weighted count column proportion All Output Wednesday February 2 00:20:14 2022 Page 7

Pearson:

Uncorrected chi2(1) = 0.8202Design-based F(1, 650) = 0.5610 P = 0.4541Uncorrected chi2(1)

29 . *insig

30 . svy: tab hhsex stunted, col count (running tabulate on estimation sample)

Number of strata = 22 Number of PSUs = 672

Number of obs = 7,902 Population size = 7,880.8346 Design df

hhsex1	Not Stun	stunted Stunted	Total
Male	4732	2091	6823
	.8636	.8706	.8658
Female	747.2	310.8	1058
	.1364	.1294	.1342
Total	5479	2402	7881
	1	1	1

Key: weighted count column proportion

Pearson:

Uncorrected chi2(1) = 0.6998Design-based F(1, 650) = 0.4960 P = 0.4815

31 . *insig

32 . svy: tab hhmembers stunted, row count (running tabulate on estimation sample)

Number of strata = 22 Number of PSUs = 672

Number of obs = 7,902 Population size = 7,880.8346 Design df = 650 Design df

hhmembers	Not Stun	stunted Stunted	Total
less equ	684 .7078	282.4 .2922	966.4
greater	4795	2119	6914
	. 6935	.3065	1
Total	5479	2402	7881
	.6953	.3047	1

Key: weighted count row proportion

Pearson:

Uncorrected chi2(1) = 0.8202Design-based F(1, 650) = 0.5610 P = 0.4541

34 . svy: tab hhsex stunted, row count (running tabulate on estimation sample)

Number of strata = 22 Number of PSUs = 672

Number of obs = 7,902 Population size = 7,880.8346 Design df = 650

hhsex1	Not Stun	stunted Stunted	Total
Male	4732	2091	6823
	.6936	.3064	1
Female	747.2	310.8	1058
	.7063	.2937	1
Total	5 4 79	2402	7881
	. 6953	.3047	1

Key: weighted count row proportion

Pearson:

Uncorrected chi2(1) = 0.6998Design-based F(1, 650) = 0.4960 P = 0.4815Uncorrected chi2(1)

35 .

36 . svy: tab anc stunted, row count (running tabulate on estimation sample)

Number of strata = 22 Number of PSUs = 671

Number of obs = 4,682 Population size = **4,690.4205** Design df =

anc1	Not Stun	stunted Stunted	Total
less4	1633 .6618	834.5 .3382	2468
4above	1653 .7437	569.7 .2563	2223 1
Total	3286 .7006	1404 .2994	4690 1

Key: weighted count row proportion

Pearson:

Uncorrected chi2(1) = 37.2651Design-based F(1, 649) = 30.2551 P = 0.0000

37 .

38 . svy: tab media stunted, row count (running tabulate on estimation sample)

Number of strata = 22 Number of PSUs = 672

Number of obs = 7,902 Population size = 7,880.8346 Design df = 650

Total	stunted Stunted	Not Stun	medial
4549	1580	2969	No
1	.3473	. 6527	
3332	821.5	2510	Yes
1	.2466	.7534	
7881	2402	5479	Total
1	.3047	.6953	

Key: weighted count row proportion

Pearson:

Uncorrected chi2(1) = 92.3911Design-based F(1, 650) = 65.6642 P = 0.0000

39 .

40 . svy: tab csection stunted, row count (running tabulate on estimation sample)

Number of strata = Number of strata = 22 Number of PSUs = 671 Number of obs = 4,879 Population size = **4,884.1536** Design df =

Total	stunted Stunted	Not Stun	csection1
3260	1128	2132	No
1	.346	.654	
1624	358.4	1265	Yes
1	.2207	.7793	
4884	1487	3398	Total
1	.3044	.6956	

Key: weighted count row proportion

Pearson:

Uncorrected chi2(1) = 80.3238Design-based F(1, 649) = 59.0922 P = 0.0000

42 . svy: tab csex stunted, row count (running tabulate on estimation sample)

Number of strata = 22Number of PSUs = 672

Number of obs = 7,902 Population size = 7,880.8346 Design df = 650

Total	stunted Stunted	Not Stun	csex1
4122	1255 .3045	2867 .6955	male
3759 1	1146 .3049	2612 .6951	Female
7881 1	2402 .3047	5479 . 6953	Total

Key: weighted count row proportion

Pearson:

Uncorrected chi2(1) = 0.0014Design-based F(1, 650) = 0.0011 P = 0.9735

43 .

44 . *insig

45 . svy: tab tfl stunted, row count (running tabulate on estimation sample)

Number of strata = 22 Number of PSUs = 672

Number of obs = 7,902 Population size = 7,880.8346 Design df = 650

tf1	Not Stun	stunted Stunted	Total
modern t	1539 .7676	466 . 2324	2005
Other	3940	1935	5876
	.6706	.3294	1
Total	5479	2402	7881
	.6953	.3047	1

Key: weighted count row proportion

Pearson:

Uncorrected chi2(1) = 66.5485Design-based F(1, 650) = 37.6695 P = 0.0000

47 . svy: tab pschtype stunted, row count (running tabulate on estimation sample)

Number of strata = 22Number of PSUs = 67222 Number of obs = 6,618 Population size = 6,608.16 Design df = 650

		stunted	
pschtype1	Not Stun	Stunted	Total
School	4503	1753	6255
	.7198	.2802	1
Madrasha	243.1	109.8	352.9
	.6888	.3112	1
Total	4746	1862	6608
	.7182	.2818	1

Key: weighted count row proportion

Pearson:

Uncorrected chi2(1) = 1.5888Design-based F(1, 650) = 1.1994 P = 0.2739Uncorrected chi2(1)

48 .

49 . svy: tab cage1 stunted, row count (running tabulate on estimation sample)

Number of strata = 22 Number of Strata = 22 Number of PSUs = 672 Number of obs = 7,902 Population size = 7,880.8346 Design df = 650

cage1	Not Stun	stunted Stunted	Total
0-11	1375	338.3	1713
	.8025	.1975	1
12-23	1082	553.9	1636
	.6614	.3386	1
24-35	944	594.6	1539
	.6136	.3864	1
36-47	990.4	486.5	1477
	.6706	.3294	1
48-59	1088	428.3	1516
	.7176	.2824	1
Total	5479	2402	7881
	.6953	.3047	1

Key: weighted count row proportion

Pearson:

Uncorrected chi2(4) = 158.5781Design-based F(3.94, 2562.78) = 31.0446 P = 0.0000

50 .

51 . svy: tab Place_delivery stunted, row count (running tabulate on estimation sample)

Number of strata = 22Number of PSUs = 671

Number of obs = 4,883 Population size = 4,889.3782 Design df = 649

Place_del ivery1	Not Stun	stunted Stunted	Total
Home	1580 .6419	881.6 .3581	2462
HF	1821	606	2427
	.7503	.2497	1
Total	3402	1488	4889
	.6958	.3042	1

Key: weighted count row proportion

Pearson:

Uncorrected chi2(1) = 67.7819Design-based F(1, 649) = 52.8371 P = 0.0000

52 .

53 . svy: tab birthord stunted, row count (running tabulate on estimation sample)

Number of strata = Number of PSUs = 672 Number of obs = 7,902 Population size = 7,880.8346 Design df =

Total	stunted Stunted	Not Stun	birthord1
6903	2004	4899 .7097	1-3
919.9	370.7	549.2	4-6
1	.403	.597	
57.09	26.76	30.33	7-10
1	.4687	.5313	
.5651	.2168	.3483	11
1	.3837	.6163	
7881	2402	5479	Total
1	.3047	.6953	

Key: weighted count row proportion

Pearson:

Uncorrected chi2(3) = 56.1334Design-based F(2.38, 1545.65) = 19.3796 P = 0.0000

55 . svy: tab fever stunted, row count (running tabulate on estimation sample)

Number of strata = 22 Number of PSUs = 672 22 Number of obs = 7,899 Population size = 7,876.1177 Design df = 650

Total	stunted Stunted	Not Stun	fever
5218	1571	3647	0
1	.3011	.6989	
2657	828.7	1828	1
1	.3119	.6881	
1.559	1.559	0	8
1	1	0	
7876	2402	5475	Total
1	.3049	. 6951	

Key: weighted count row proportion

Uncorrected chi2(2) = 4.5345 Design-based F(1.95, 1267.52) = 1.5640 P = 0.2102

56 . *insig

57 . svy: tab cough stunted, row count (running tabulate on estimation sample)

Number of strata = 22 Number of PSUs = 672

cough	Not Stun	stunted Stunted	Total
0	3469 .6939	1530 .3061	4999
1	2005 .6971	871.4 .3029	2877 1
Total	5475 .6951	2402 .3049	7876 1

Key: weighted count row proportion

Pearson:

Uncorrected chi2(1) = 0.0839Design-based F(1, 650) = 0.0585 P = 0.8090

59 . svy: tab diarrhea stunted, row count (running tabulate on estimation sample)

Number of strata = 22Number of PSUs = 672 Number of obs = 7,899 Population size = 7,876.1177 Design df = 650

Total	stunted Stunted	Not Stun	diarrhea
7498	2300 .3068	5198 . 6932	0
378.4 1	101.3 .2678	277 .7322	1
7876 1	2402 .3049	5475 . 6951	Total

Key: weighted count
row proportion

Pearson:

Uncorrected chi2(1) = 2.5878Design-based F(1, 650) = 1.8967 P = 0.1689

62 . **Univariate Logistic regression

64 . 65 .

66 . svy: logit stunted i.areal, or
 (running logit on estimation sample)

Survey: Logistic regression

Number of strata = 22 Number of PSUs = 672 Number of obs = 7,902
Population size = 7,880.8346
Design df = 650
F(1, 650) = 19.13
Prob > F = 0.0000

stunted	Odds Ratio	Linearized Std. Err.	t	P> t	[95% Conf.	Interval]
areal Rural _cons	1.42599 .3359408	.1156933 .0239683	4.37 -15.29	0.000	1.215984 .2920243	1.672264

67 . svy: logit stunted ib3.division1, or
 (running logit on estimation sample)

Survey: Logistic regression

Number of strata = 22 Number of PSUs = 672

Number of obs = 7,902 Population size = 7,880.8346 Design df = 650 F(7, 644) = 10.09 Prob > F = 0.0000

stunted	Odds Ratio	Linearized Std. Err.	t	P> t	[95% Conf.	Interval]
division1						
Barisal	1.432799	.1785089	2.89	0.004	1.121859	1.82992
Chittagong	1.392558	.1773636	2.60	0.010	1.08442	1.788254
Khulna	1.013049	.1360012	0.10	0.923	.7782944	1.318611
Rajshahi	1.568915	.1976076	3.58	0.000	1.225149	2.009138
Rangpur	1.321384	.1669947	2.21	0.028	1.03099	1.693571
Sylhet	1.275304	.1536436	2.02	0.044	1.006637	1.615676
Mymensingh	2.145988	.2454813	6.68	0.000	1.714257	2.686448
_cons	.3380427	.0318893	-11.50	0.000	.2808818	.4068361

68 . svy: logit stunted ib3.melevel, or (running logit on estimation sample)

Survey: Logistic regression

22 672 Number of obs = 7,902 Population size = 7,880.8346 Number of strata = Number of PSUs = Design df = 650 F(3, 648) = 56.60 Prob > F = 0.0000

stunted	Odds Ratio	Linearized Std. Err.	t	P> t	[95% Conf.	Interval]
melevel1 No education Primary Secondary	4.165832 3.527703 2.297559	.5601155 .3660447 .2280107	10.61 12.15 8.38	0.000 0.000 0.000	3.199192 2.877425 1.890756	5.424545 4.324938 2.791888
_cons	.1769045	.0159764	-19.18	0.000	.1481572	.2112296

69 . svy: logit stunted ib3.helevel, or (running logit on estimation sample)

Survey: Logistic regression

Number of strata = 22 Number of PSUs = 672

Number of obs = 7,758 Population size = 7,739.281

Design df = 650F(3, 648) = 67.73Prob > F = 0.0000

stunted	Odds Ratio	Linearized Std. Err.	t	P> t	[95% Conf.	. Interval]
helevel1 No education Primary Secondary	3.987612 2.906123 1.936035	.4256189 .2802433 .1953238	12.96 11.06 6.55	0.000 0.000 0.000	3.233629 2.404793 1.588095	4.917401 3.511965 2.360206
_cons	.1898154	.0164322	-19.20	0.000	.1601423	.2249867

70 . svy: logit stunted i.mwork, or
 (running logit on estimation sample)

Survey: Logistic regression

Number of strata = 22 Number of PSUs = 672 Number of obs = 7,902
Population size = 7,880.8346
Design df = 650
F(1, 650) = 19.17
Prob > F = 0.0000

stunted	Odds Ratio	Linearized Std. Err.	t	P> t	[95% Conf.	Interval]
mwork1 Yes _cons	1.308636 .3918158	.0804018 .0175253	4.38 -20.95	0.000	1.159909 .3588707	1.476433 .4277854

/ <u>T</u>

72 . svy: logit stunted ib3.hhocu, or (running logit on estimation sample)

Survey: Logistic regression

Number of strata = 22 Number of PSUs = 672 Number of obs = 7,766
Population size = 7,751.0612
Design df = 650
F(4, 647) = 9.87
Prob > F = 0.0000

stunted	Odds Ratio	Linearized Std. Err.	t	P> t	[95% Conf.	Interval]
hhocul Jobless Farmer Agriculture Others	1.27917 1.612048 2.0103 1.244192	.3681188 .16981 .2437747 .0915166	0.86 4.53 5.76 2.97	0.393 0.000 0.000 0.003	.7269638 1.310831 1.584343 1.076863	2.250834 1.982482 2.550777 1.437521
_cons	.3421935	.0243465	-15.07	0.000	.2975755	.3935014

73 . svy: logit stunted ib2.anc, or (running logit on estimation sample)

Survey: Logistic regression

Number of strata = 22 Number of PSUs = 671 Number of obs = 4,682
Population size = 4,690.4205
Design df = 649
F(1, 649) = 30.11
Prob > F = 0.0000

stunted	Odds Ratio	Linearized Std. Err.	t	P> t	[95% Conf.	Interval]
anc1 less4 _cons	1.482349 .3446763	.1063414 .0190704	5.49 -19.25	0.000	1.287575 .3091917	1.706587 .3842334

74 . svy: logit stunted ib4.wind, or (running logit on estimation sample)

Survey: Logistic regression

Number of strata = 22 Number of PSUs = 672 Number of obs = 7,902
Population size = 7,880.8346
Design df = 650
F(4, 647) = 34.15
Prob > F = 0.0000

stunted	Odds Ratio	Linearized Std. Err.	t	P> t	[95% Conf.	Interval]
windl Poorest Poorer Middle Richest	1.836755 1.625662 1.172892 .5662996	.1663163 .1530774 .11465 .0634426	6.71 5.16 1.63 -5.08	0.000 0.000 0.103 0.000	1.53756 1.351229 .9680505 .4544731	2.194171 1.955832 1.421078 .7056418
_cons	.3619926	.026756	-13.75	0.000	.3130887	.4185351

75 . svy: logit stunted ib1.media, or (running logit on estimation sample)

Survey: Logistic regression

Number of strata = 22 Number of PSUs = 672 Number of obs = 7,902
Population size = 7,880.8346
Design df = 650
F(1, 650) = 65.15
Prob > F = 0.0000

stunted	Odds Ratio	Linearized Std. Err.	t	P> t	[95% Conf.	Interval]
medial No _cons	1.626062 .3272672	.0979418 .0171105	8.07 -21.36	0.000	1.44468 .2953358	1.830218 .3626509

76 . *Csec ommited

77 . svy: logit stunted ib1.csection, or (running logit on estimation sample)

Survey: Logistic regression

Number of strata = 22 Number of PSUs = 671 Number of obs = 4,879
Population size = 4,884.1536
Design df = 649
F(1, 649) = 58.16
Prob > F = 0.0000

stunted	Odds Ratio	Linearized Std. Err.	t	P> t	[95% Conf.	Interval]
csection1 No _cons	1.868301 .2832021	.1531172 .0200528	7.63 -17.82	0.000	1.590582 .2464407	2.194511 .3254472

78 . svy: logit stunted i.cage1, or (running logit on estimation sample)

Survey: Logistic regression

Number of strata = 22Number of PSUs = 672

 Number of obs
 =
 7,902

 Population size
 =
 7,880.8346

 Design df
 =
 650

 F(4, 647)
 =
 27.49

 Prob > F
 =
 0.0000

stunted	Odds Ratio	Linearized Std. Err.	t	P> t	[95% Conf.	Interval]
cage1						
12-23	2.080246	.194352	7.84	0.000	1.731573	2.499129
24-35	2.559724	.2424703	9.92	0.000	2.125262	3.083001
36-47	1.996501	.18378	7.51	0.000	1.666362	2.392047
48-59	1.599612	.1448962	5.19	0.000	1.338958	1.911006
_cons	.2460596	.0172147	-20.04	0.000	.2144757	.2822946

79 . svy: logit stunted ib2.Place_delivery, or
 (running logit on estimation sample)

Survey: Logistic regression

Number of strata = 22 Number of PSUs = 671 Number of obs = 4,883
Population size = 4,889.3782
Design df = 649
F(1, 649) = 52.40
Prob > F = 0.0000

stunted	Odds Ratio	Linearized Std. Err.	t	P> t	[95% Conf.	Interval]
Place_delivery1 Home _cons	1.676504 .3327175	.1196651 .01835	7.24 -19.95	0.000	1.45725 .2985675	1.928746 .3707737

80 . svy: logit stunted i.birthord, or (running logit on estimation sample)

Survey: Logistic regression

Number of strata = 22 Number of PSUs = 672 Number of obs = 7,902
Population size = 7,880.8346
Design df = 650
F(3, 648) = 14.14
Prob > F = 0.0000

stunted	Odds Ratio	Linearized Std. Err.	t	P> t	[95% Conf.	Interval]
birthord1 4-6 7-10 11	1.650368 2.15698 1.522079	.1364608 .6583226 2.152887	6.06 2.52 0.30	0.000 0.012 0.767	1.403033 1.184595 .0946714	1.941305 3.927555 24.47121
_cons	.4090013	.0145636	-25.11	0.000	.3813808	. 4386222

83 . **Multivariate Logistic regression

84 . *************************

85 .

86 . svy: logit stunted ib2.areal ib3.division1 ib3.melevel ib3.helevel i.mwork ib3.hhocu ib4.wind ib (running logit on estimation sample)

Survey: Logistic regression

	T					
stunted	Odds Ratio	Linearized Std. Err.	t	P> t	[95% Conf.	Interval]
area1						
Urban	1.034397	.0943617	0.37	0.711	.8647537	1.23732
division1						
Barisal	1.219796	.1695982	1.43	0.153	.9283609	1.602719
Chittagong	1.278924	.1698561	1.85	0.064	.9853362	1.659989
Khulna	.9320216	.1361035	-0.48	0.630	. 6996692	1.241536
Rajshahi	1.22798	.1660295	1.52	0.129	.9416501	1.601375
Rangpur	1.116241	.1565404	0.78	0.433	.8475472	1.470119
Sylhet	.9918965	.135521	-0.06	0.953	.7584925	1.297124
Mymensingh	1.65839	.2083763	4.03	0.000	1.295788	2.12246
melevel1						
No education	1.922573	.3259295	3.86	0.000	1.378197	2.681973
Primary	1.802889	.2399966	4.43	0.000	1.388185	2.34148
Secondary	1.536143	.1779528	3.71	0.000	1.223605	1.928511
helevel1						
No education	1.896696	.2594099	4.68	0.000	1.449981	2.481037
Primary	1.588708	.1880273	3.91	0.000	1.259258	2.004351
Secondary	1.33947	.1495521	2.62	0.009	1.075768	1.667812
mwork1						
Yes	1.057249	.0759353	0.78	0.439	.9181788	1.217384
hhocu1						
Jobless	1.347716	.4380501	0.92	0.359	.7118931	2.551419
Farmer	1.243516	.1385431	1.96	0.051	.9991715	1.547614
Agriculture	1.284888	.165444	1.95	0.052	.9978357	1.654519
Others	1.133483	.0875776	1.62	0.105	.9739238	1.319183
wind1						
Poorest	1.228472	.1413894	1.79	0.074	.9799744	1.539984
Poorer	1.247973	.133076	2.08	0.038	1.012206	1.538655
Middle	1.065082	.1085391	0.62	0.536	.8719225	1.301032
Richest	.7050587	.0850161	-2.90	0.004	.5564111	.8934182
medial						
No	1.109427	.0794391	1.45	0.147	.9639085	1.276914
cage1						
12-23	2.164407	.2111079	7.92	0.000	1.787151	2.6213
24-35	2.64688	.2636193	9.77	0.000	2.176705	3.218614
36-47	1.995646	.1970016	7.00	0.000	1.643993	2.422519
48-59	1.529508	.1499607	4.33	0.000	1.261653	1.854229
birthord1						

All Output Wednesday February 2 00:20:17 2022 Page 20

4-6	1.154847	.108199	1.54	0.125	.9607831	1.388108
7-10	1.171124	.3939238	0.47	0.639	.6049999	2.266994
11	. 4575288	.8813153	-0.41	0.685	.0104167	20.09579
_cons	.0708176	.0139163	-13.47	0.000	.048146	.104165

87 . logit stunted ib2.areal ib3.division1 ib3.melevel ib3.helevel i.mwork ib3.hhocu ib4.wind ib1.med

Iteration 0: $\log \text{ likelihood} = -4801.3561$ Iteration 1: log likelihood = -4472.8174

Iteration 2: log likelihood = -4463.7277

Iteration 3: log likelihood = -4463.7135

Iteration 4: log likelihood = -4463.7135

Number of obs = 7,745 LR chi2(31) = 675.29 Prob > chi2 = 0.0000 Pseudo R2 = 0.0703 Logistic regression

Log li	kelihood	= -4463	.7135
--------	----------	---------	-------

stunted	Odds Ratio	Std. Err.	Z	P> z	[95% Conf.	Interval]
area1						
Urban	1.040093	.0647294	0.63	0.528	.920658	1.175022
division1						
Barisal	1.173953	.1297487	1.45	0.147	.9453081	1.457901
Chittagong	1.270798	.1235691	2.46	0.014	1.050287	1.537606
Khulna	. 9478732	.1072167	-0.47	0.636	.7593962	1.183129
Rajshahi	1.28199	.1356015	2.35	0.019	1.041956	1.57732
Rangpur	1.051197	.1171327	0.45	0.654	.8449611	1.307772
Sylhet	. 9812669	.1093602	-0.17	0.865	.7887193	1.22082
Mymensingh	1.662331	.162671	5.19	0.000	1.372212	2.013788
melevel1						
No education	1.946845	.2781945	4.66	0.000	1.471293	2.576107
Primary	1.742016	.1942576	4.98	0.000	1.400013	2.167566
Secondary	1.521655	.1512036	4.22	0.000	1.252374	1.848835
helevel1						
No education	1.85021	.2203591	5.17	0.000	1.465019	2.336677
Primary	1.674841	.1728767	5.00	0.000	1.368084	2.05038
Secondary	1.359041	.1323777	3.15	0.002	1.122848	1.644917
mwork1						
Yes	1.054458	.0589887	0.95	0.343	.9449549	1.17665
hhocu1						
Jobless	1.042828	.3203313	0.14	0.891	.5711426	1.904062
Farmer	1.129235	.1103578	1.24	0.214	.9323913	1.367636
Agriculture	1.171467	.1287575	1.44	0.150	.9444378	1.453071
Others	1.067811	.0715818	0.98	0.328	.9363391	1.217743
wind1						
Poorest	1.247484	.1195352	2.31	0.021	1.033885	1.505213
Poorer	1.321691	.1179822	3.12	0.002	1.109549	1.574394
Middle	1.096152	.0942957	1.07	0.286	.9260762	1.297462
Richest	.6904462	.0669923	-3.82	0.000	.5708735	.8350642
medial						
No	1.1003	.0714694	1.47	0.141	.9687729	1.249685
cage1						
12-23	2.245716	.1848289	9.83	0.000	1.911166	2.638828
24-35	2.55619	.2129808	11.26	0.000	2.171058	3.009643
36-47	2.079472	.1767948	8.61	0.000	1.760292	2.456526

All Output Wednesday February 2 00:20:18 2022 Page 21

48-59	1.520101	.1305657	4.88	0.000	1.284578	1.798807
birthord1						
4-6	1.15597	.092575	1.81	0.070	.9880493	1.352429
7-10	1.165883	.3006678	0.60	0.552	.7032988	1.932725
11	.8979575	1.319897	-0.07	0.942	.0503599	16.01132
_cons	.0736081	.011473	-16.74	0.000	.0542317	.0999076

88 . estat ic

Akaike's information criterion and Bayesian information criterion

Model	Obs	ll(null)	ll(model)	df	AIC	BIC
•	7,745	-4801.356	-4463.713	32	8991.427	9213.981

Note: N=Obs used in calculating BIC; see [R] BIC note.

89 . end of do-file

90 . do "C:\Users\shimanto\AppData\Local\Temp\STD00000000.tmp"

91 . *******************

92 . * Stage A *** Compile parameters/inputs for Level-weights calculations

94 . * a_c_h completed clusters by strata

95 . gen a_c_h=.

(8,759 missing values generated)

96 . quietly levelsof v022, local(lstrata)

97 . quietly foreach ls of local lstrata $\{$

98 . * A_h total number of census clusters by strata

99 . $gen A_h = 0$

100 . replace $A_h = 96$ if v022 == 1 (73 real changes made)

101 . replace A_h = 44 if v022 == 2 (200 real changes made)

102 . replace $A_h = 532$ if v022 == 3 (633 real changes made)

103 . replace $A_h = 96$ if v022 == 4 (190 real changes made)

104 . replace $A_h = 138$ if v022 == 5 (314 real changes made)

- 105 . replace $A_h = 918$ if v022 == 6 (942 real changes made)
- 106 . replace $A_h = 96$ if v022 == 7 (292 real changes made)
- 107 . replace $A_h = 167$ if v022 == 8 (458 real changes made)
- 108 . replace $A_h = 1081$ if v022 == 9 (554 real changes made)
- 109 . replace $A_h = 96$ if v022 == 10 (89 real changes made)
- 110 . replace $A_h = 101$ if v022 == 11 (248 real changes made)
- 111 . replace $A_h = 863$ if v022 == 12 (567 real changes made)
- 112 . replace $A_h = 37$ if v022 == 13 (261 real changes made)
- 113 . replace $A_h = 343$ if v022 == 14 (764 real changes made)
- 114 . replace $A_h = 96$ if v022 == 15 (40 real changes made)
- 115 . replace $A_h = 104$ if v022 == 16 (233 real changes made)
- 116 . replace $A_h = 664$ if v022 == 17 (639 real changes made)
- 117 . replace $A_h = 70$ if v022 == 18 (293 real changes made)
- 118 . replace $A_h = 698$ if v022 == 19 (678 real changes made)
- 119 . replace $A_h = 96$ if v022 == 20 (126 real changes made)
- 120 . replace $A_h = 26$ if v022 == 21 (240 real changes made)
- 121 . replace $A_h = 358$ if v022 == 22 (925 real changes made)
- 122 .
- 123 .
- 124 . * M_h average number of households per cluster by strata
- $125 \cdot gen M_h = 0$

- 126 . replace $M_h = 7$ if v022 == 1 (73 real changes made)
- 127 . replace $M_h = 15$ if v022 == 2 (200 real changes made)
- 128 . replace $M_h = 49$ if v022 == 3 (633 real changes made)
- 129 . replace $M_h = 16$ if v022 == 4 (190 real changes made)
- 130 . replace $M_h = 17$ if v022 == 5 (314 real changes made)
- 131 . replace $M_h = 59$ if v022 == 6 (942 real changes made)
- 132 . replace $M_h = 26$ if v022 == 7 (292 real changes made)
- 133 . replace M_h = 26 if v022 == 8 (458 real changes made)
- 134 . replace $M_h = 52$ if v022 == 9 (554 real changes made)
- 135 . replace $M_h = 9$ if v022 == 10 (89 real changes made)
- 136 . replace $M_h = 19$ if v022 == 11 (248 real changes made)
- 137 . replace $M_h = 58$ if v022 == 12 (567 real changes made)
- 138 . replace $M_h = 19$ if v022 == 13 (261 real changes made)
- 139 . replace $M_h = 58$ if v022 == 14 (764 real changes made)
- 140 . replace $M_h = 6$ if v022 == 15 (40 real changes made)
- 141 . replace $M_h = 21$ if v022 == 16 (233 real changes made)
- 142 . replace $M_h = 62$ if v022 == 17 (639 real changes made)
- 143 . replace $M_h = 24$ if v022 == 18 (293 real changes made)
- 144 . replace $M_h = 61$ if v022 == 19 (678 real changes made)

```
All Output Wednesday February 2 00:20:18 2022 Page 24
145 . replace M h = 9 if v022 == 20
   (126 real changes made)
146 . replace M_h = 13 if v022 == 21
    (240 real changes made)
147 . replace M h = 49 if v022 == 22
    (925 real changes made)
148 . * m c total number of completed households (added from the HR dataset)
149 \cdot gen m_c = 20160
150 . * M total number of households in country
151 . gen M = 32067700
152 . * S h households selected per stratum
153 . gen S h = 120
154 .
155 . * Steps to approximate Level-1 and Level-2 weights from Household or Individual
157 . * Stage B *** Approximate Level-weights ***
159 . * Steps to approximate Level-1 and Level-2 weights from Household or Individual Weights
160 . *Step 1. De-normalize the final weight, using approximated normalization factor
161 . gen d HH = wgt * (M/m c)
162 . *Step 2. Approximate the Level-2 weight
163 . * f the variation factor
164 . gen f = d_HH / ((A_h/a_c_h) * (M_h/S_h))
165 . * Calculating the level-weights based on different values of alpha
166 . local alphas 0 0.1 .25 .50 .75 0.90 1
167 \cdot local i = 1
168 . foreach dom of local alphas{    2. gen wt2_`i' = (A_h/a_c_h)*(f^`dom')    3. gen wt1_`i' = d_HH/wt2_`i'
      4. local ++i
      5. }
169 .
170 . *svyset using alpha 0.5
171 . svyset v001, weight(wt2_3) strata(v022) , singleunit(centered) || _n, weight(wt1_3)
   Note: Stage 1 is sampled with replacement; further stages will be ignored for variance estimation.
          pweight: <none>
             VCE: linearized
      Single unit: centered
         Strata 1: v022
            SU 1: v001
            FPC 1: <zero>
         Weight 1: wt2 3
         Strata 2: <one>
```

SU 2: <observations>

FPC 2: <zero>
Weight 2: wt1 3

172 .

174 . **Multilevel binary logistic Logistic regression

176 . svy: melogit stunted ib2.areal ib3.division1 ib3.melevel ib3.helevel i.mwork ib3.hhocu ib4.wind (running melogit on estimation sample)

Survey: Mixed-effects logistic regression

Number of strata = 22Number of PSUs = 672 Number of obs = 7,745
Population size = 12,290,793
Design df = 650
F(31, 620) = 11.61
Prob > F = 0.0000

		Linearized				
stunted	Odds Ratio	Std. Err.	t	P> t	[95% Conf.	. Interval]
areal						
Urban	.9472949	.1203634	-0.43	0.670	.7381247	1.21574
division1						
Barisal	1.650415	.3566542	2.32	0.021	1.079706	2.522788
Chittagong	1.588777	. 3535462	2.08	0.038	1.026346	2.459415
Khulna	.9637594	.2323008	-0.15	0.878	.6003653	1.547112
Rajshahi	1.583396 1.188506	.3394592 .2653397	2.14 0.77	0.032 0.439	1.039352 .7666763	2.412217 1.842429
Rangpur Sylhet	1.109096	.2426818	0.77	0.439	.7217218	1.704388
Mymensingh	2.423994	.4969037	4.32	0.000	1.620746	3.625335
Mymensingn	2.423334	. 4909037	4.52	0.000	1.020740	3.023333
melevel1						
No education	1.971187	.3941263	3.39	0.001	1.331122	2.919024
Primary	1.909316	.2919134	4.23	0.000	1.414151	2.577864
Secondary	1.661242	.2217111	3.80	0.000	1.278259	2.158973
1 1 11						
helevel1 No education	1.924663	.2970237	4.24	0.000	1.421503	2.605922
Primary	1.591872	.216178	3.42	0.000	1.219265	2.078346
Secondary	1.364998	.1765352	2.41	0.016	1.058866	1.759638
Secondary	1.304330	.1703332	2.41	0.010	1.030000	1.733030
mwork1						
Yes	1.063877	.088698	0.74	0.458	.9032173	1.253114
hhocu1						
Jobless	1.305196	.4956196	0.70	0.483	.6192234	2.751084
Farmer	1.259039	.1627574 .2205889	1.78 2.09	0.075 0.037	.9767829 1.020777	1.622857 1.90111
Agriculture Others	1.117934	.0995295	1.25	0.037	.9386261	1.331497
Others	1.11/334	.0993293	1.25	0.211	. 3300201	1.551457
wind1						
Poorest	1.391219	.1970481	2.33	0.020	1.053438	1.837309
Poorer	1.406622	.1744942	2.75	0.006	1.102522	1.7946
Middle	1.120979	.1401262	0.91	0.361	.8769922	1.432844
Richest	. 6449255	.0923589	-3.06	0.002	.486836	.854351
media1						
No	1.027553	.0879518	0.32	0.751	.8685823	1.215619
110	1.027333	.0073310	0.32	0.751	.0003023	1.213013
cage1						
12-23	2.531003	.277602	8.47	0.000	2.040602	3.13926
24-35	3.081317	.3610728	9.60	0.000	2.447966	3.878532
36-47	2.29423	.2589261	7.36	0.000	1.838195	2.863404
48-59	1.670027	.1813546	4.72	0.000	1.349322	2.066955
birthord1						
4-6	1.162346	.1257539	1.39	0.165	. 93988	1.437469
- U	1.102540	. 1237333	1.39	0.105	. 93900	1.43/403

All Output Wednesday February 2 00:20:18 2022 Page 26

	7-10 11	1.116192 .4826677	.4082898 1.010296	0.30 -0.35	0.764 0.728	.5442503 .0079183	2.289176 29.4215
	_cons	.0424738	.0117804	-11.39	0.000	.0246373	.073223
v001	var(_cons)	1.386637	.1980263			1.047551	1.835481

177 . melogit stunted ib2.areal ib3.division1 ib3.melevel ib3.helevel i.mwork ib3.hhocu ib4.wind ib1.m

Fitting fixed-effects model:

Iteration 0: log likelihood = -4469.7983 Iteration 1: log likelihood = -4463.7183 Iteration 2: log likelihood = -4463.7135 Iteration 3: log likelihood = -4463.7135

Refining starting values:

Grid node 0: log likelihood = -4557.9287

Fitting full model:

log likelihood = -4557.9287 (not concave)
log likelihood = -4464.2399 Iteration 0:

Iteration 1: Iteration 2: log likelihood = -4457.1048

Iteration 3: log likelihood = -4456.8997 Iteration 4: log likelihood = -4456.8995

Number of obs = 7,745 Number of groups = 672 Mixed-effects logistic regression Group variable:

Obs per group:

1 min =11.5 avg = max =

Integration method: mvaghermite Integration pts. =

Wald chi2(31) = 537.09 Prob > chi2 = 0.0000

Log likelihood = -4456.8995

Log likelihood .	4430.0333			PIOD / CHIZ	_	0.0000
stunted	Odds Ratio	Std. Err.	Z	P> z	[95% Conf.	Interval]
area1						
Urban	1.038664	.07227	0.55	0.586	.9062516	1.190424
division1						
Barisal	1.168263	.1439903	1.26	0.207	.9175474	1.487485
Chittagong	1.269134	.138985	2.18	0.030	1.023979	1.572983
Khulna	.9332815	.1160964	-0.56	0.579	.7313524	1.190964
Rajshahi	1.263314	.1496174	1.97	0.048	1.001616	1.593387
Rangpur	1.036865	.1276225	0.29	0.769	.8146145	1.319752
Sylhet	.9640189	.1189417	-0.30	0.766	.7569433	1.227744
Mymensingh	1.675034	.186938	4.62	0.000	1.345945	2.084586
melevel1						
No education	1.941736	.2835449	4.54	0.000	1.458452	2.585164
Primary	1.740659	.1978743	4.88	0.000	1.392999	2.175086
Secondary	1.531933	.1546209	4.23	0.000	1.256974	1.867038
helevel1						
No education	1.867038	.2268958	5.14	0.000	1.471326	2.369176
Primary	1.680179	.1766482	4.94	0.000	1.367298	2.064657
Secondary	1.363659	.1350718	3.13	0.002	1.123035	1.655839

All Output Wednesday February 2 00:20:19 2022 Page 27

v001 var(_cor	.0951414	.0307231			.0505242	.1791595
_cor	ns .0710336	.0116087	-16.18	0.000	.0515652	.0978523
11	.9372618	1.39641	-0.04	0.965	.0505441	17.38007
7-10	1.155556	.3046567	0.55	0.583	.6892482	1.937341
4 – 6	-	.0944371	1.76	0.079	.9835367	1.355311
birthord						
48-59	1.542112	.1346509	4.96	0.000	1.299548	1.82995
36-47		.1839356	8.70	0.000	1.792072	2.516554
24-35		.221426	11.29	0.000	2.208002	3.079988
12-23		.1931445	9.93	0.000	1.951928	2.71246
cage						
INC	1.003451	.0723356	1.27	0.203	. 9331113	1.240321
media No		.0725356	1.27	0.203	.9551773	1.240321
Richest	.6853503	.0683414	-3.79	0.000	.5636803	.8332825
Middle	1.105921	.0976233	1.14	0.254	.9302202	1.314808
Poorer	1.347348	.1245254	3.23	0.001	1.124112	1.614916
Poorest		.1272871	2.40	0.016	1.044857	1.547021
winc	31					
Others	1.068124	.0732134	0.96	0.336	.9338494	1.221705
Agriculture		.1343738	1.53	0.127	.9523317	1.483388
Farmer		.1142665	1.31	0.190	.9368702	1.387672
Jobless		.3235419	0.11	0.910	.5617051	1.910663
hhocu	11					
res	1.056567	.0010457	0.95	0.341	. 9434451	1.163232
mwor: Yes		.0610457	0.95	0.341	.9434451	1.183252
mwork	-1					

LR test vs. logistic model: chibar2(01) = 13.63 Prob >= chibar2 = 0.0001

178 . estat ic

Akaike's information criterion and Bayesian information criterion

Model	Obs	ll(null)	ll(model)	df	AIC	BIC
•	7,745	•	-4456.9	33	8979.799	9209.308

Note: N=Obs used in calculating BIC; see [R] BIC note.

179 .

end of do-file

180 .