$\begin{array}{c} SCRUM\ Domain\ Model-\ Mathematical\ Optimization\\ Formulation \end{array}$

${\bf Generated\ for\ TruelyMostWanted}$

$August\ 12,\ 2025$

Contents

1	1. Sets (Entities)	2
2	2. Indices	3
3	3. Goals	4
4	4. Conditions	6
5	5. DecisionVariables	8

1 1. Sets (Entities)

- \mathcal{P} : Projects (Project)
- \mathcal{T} : Teams (Team)
- W: Workers (Worker)
- : Features (Feature)
- K: Skills (Skill)
- \mathcal{R} : Roles (Role)
- \mathcal{PO} : Product Owners (ProductOwner)
- SM: Scrum Masters (ScrumMaster)
- \mathcal{PB} : Product Backlogs (ProductBacklog)
- \mathcal{SP} : Sprints (Sprint)
- \mathcal{SPP} : Sprint Plannings (SprintPlanning)
- \mathcal{DS} : Daily Scrums (DailyScrum)
- SR: Sprint Reviews (SprintReview)
- SRE: Sprint Retrospectives (SprintRetrospective)
- \mathcal{SBL} : Sprint Backlogs (SprintBacklog)
- SG: Sprint Goals (SprintGoal)
- \mathcal{E} : Epics (Epic)
- *US*: User Stories (UserStory)
- TSK: Tasks (Task)
- \mathcal{DEV} : Development Snapshots (DevelopmentSnapshot)
- \mathcal{BL} : Blockers (Blocker)
- \mathcal{SH} : Stakeholders (Stakeholder)
- VEL: Velocities (Velocity)
- \mathcal{REP} : Release Plans (ReleasePlan)
- \mathcal{RM} : Roadmaps (Roadmap)
- \mathcal{SCB} : Scrum Boards (ScrumBoard)
- \mathcal{FED} : Feature Documentations (FeatureDocumentation)

2 2. Indices

- $p \in \mathcal{P} \text{ (from P)}$
- $t \in \mathcal{T} \text{ (from T)}$
- $w \in \mathcal{W} \text{ (from W)}$
- $f \in (\text{from } F)$
- $s \in \mathcal{SP}$ (from SP)
- $r \in \mathcal{R} \text{ (from R)}$
- $po \in \mathcal{PO} \text{ (from PO)}$
- $sm \in \mathcal{SM}$ (from SM)
- $pb \in \mathcal{PB} \text{ (from PB)}$
- $spp \in \mathcal{SPP}$ (from SPP)
- $ds \in \mathcal{DS} \text{ (from DS)}$
- $sr \in \mathcal{SR} \text{ (from SR)}$
- $sre \in \mathcal{SRE}$ (from SRE)
- $sbl \in \mathcal{SBL}$ (from SBL)
- $sg \in \mathcal{SG} \text{ (from SG)}$
- $e \in \mathcal{E} \text{ (from E)}$
- $us \in \mathcal{US} \text{ (from US)}$
- $tsk \in \mathcal{TSK}$ (from TSK)
- $dev \in \mathcal{DEV}$ (from DEV)
- $bl \in \mathcal{BL}$ (from BL)
- $sh \in \mathcal{SH}$ (from SH)
- $vel \in \mathcal{VEL}$ (from VEL)
- $rep \in \mathcal{REP}$ (from REP)
- $rm \in \mathcal{RM} \text{ (from RM)}$
- $scb \in \mathcal{SCB}$ (from SCB)
- $fed \in \mathcal{FED}$ (from FED)

3 3. Goals

Notation (parameters used by goals). When needed, we refer to attributes from Entities.csv as parameters:

- $\bullet \ v_{vel}^{\mathrm{avg}}, \ v_{vel}^{\mathrm{max}}, \ v_{vel}^{\mathrm{min}} \ \mathrm{from} \ \mathtt{Velocity} \ (\mathtt{avg._story_points}, \ \mathtt{max_velocity}, \ \mathtt{min_velocity}).$
- B_p from Project (budget); B_p^{alloc} is decision (see Sec. 5).
- eff^{base} baseline task effort; eff_{tsk} decision refinement (Sec. 5).
- sp_{us} story points of a user story.
- g_{sq}^{ach} achievement status (numeric score) of a sprint goal.
- avail_w availability of a worker.
- π_f^F priority of a feature.
- sev_{bl} severity of a blocker.
- att $_{sr}$ attendees count of a sprint review.
- $TotEff_{sbl}$ total effort recorded for a sprint backlog.
- Binary incidence parameters to reflect Relationships.csv: $\alpha_{us,sbl} \in \{0,1\}$ for R11 ($is_in_sprint_backlog$), $\beta_{sbl,s} \in \{0,1\}$ for R12, $\gamma_{tsk,bl} \in \{0,1\}$ for R16, $\delta_{vel,t} \in \{0,1\}$ for R19, $\rho_{f,rep} \in \{0,1\}$ for R20, $\eta_{e,pb} \in \{0,1\}$ for R8, $\zeta_{us,e} \in \{0,1\}$ for R9, $\kappa_{us,tsk} \in \{0,1\}$ for R10.

Decision variables used by goals (see Sec. 5 for domains).

$$x_{t,p} \; (\mathrm{DV0}), \; y_{us,s} \; (\mathrm{DV1}), \; z_{tsk,w} \; (\mathrm{DV2}), \; r_{f,rep} \; (\mathrm{DV3}), \; b_{e,pb} \; (\mathrm{DV4}), \; a_s \; (\mathrm{DV5}), \; \pi_{us} \; (\mathrm{DV6}), \; B_p^{\mathrm{alloc}} \; (\mathrm{DV7}), \; C_s \; (\mathrm{DV8})$$

G0 maximize_velocity_avg_story_points

Logical: Prefer teams/sprints with higher historical average velocity.

Mathematical (KPI-driven, linked to active sprints via a_s and team via $\delta_{vel,t}$ and assignment $x_{t,p}$):

$$\max \sum_{vel \in \mathcal{VEL}} v_{vel}^{\text{avg}} \left(\sum_{t \in \mathcal{T}} \delta_{vel,t} \sum_{p \in \mathcal{P}} x_{t,p} \right) \left(\sum_{s \in \mathcal{SP}} a_s \right)$$

G1 maximize_velocity_max_velocity

Logical: Push historical peak velocity upward.

Mathematical:

$$\max \sum_{vel \in \mathcal{VEL}} v_{vel}^{\max} \left(\sum_{t} \delta_{vel,t} \sum_{p} x_{t,p} \right)$$

G2 minimize_velocity_min_velocity

Logical: Reduce low-end velocity dips.

Mathematical:

$$\min \sum_{vel \in \mathcal{VEL}} v_{vel}^{\min} \left(\sum_{t} \delta_{vel,t} \sum_{p} x_{t,p} \right)$$

G3 minimize_project_budget

Logical: Keep total allocated project budget low.

Mathematical:

$$\min \sum_{p \in \mathcal{P}} B_p^{\text{alloc}}$$

G4 minimize_task_effort

Logical: Minimize refined implementation effort for selected scope.

Mathematical (only tasks actually assigned are counted):

$$\min \sum_{tsk \in \mathcal{TSK}} \hat{\text{eff}}_{tsk} \left(\sum_{w \in \mathcal{W}} z_{tsk,w} \right)$$

G5 maximize_user_story_points

Logical: Maximize delivered story points by scheduling stories.

Mathematical:

$$\max \sum_{us \in \mathcal{US}} \operatorname{sp}_{us} \left(\sum_{s \in \mathcal{SP}} y_{us,s} \right)$$

G6 maximize_sprint_goal_achievement

Logical: Prefer plans where sprint goals are achieved (proxy by activating sprints).

Mathematical:

$$\max \sum_{sg \in \mathcal{SG}} g_{sg}^{\text{ach}} \left(\sum_{s \in \mathcal{SP}} a_s \right)$$

G7 maximize_worker_availability

Logical: Prefer assigning tasks to more available workers.

Mathematical:

$$\max \sum_{w \in \mathcal{W}} \operatorname{avail}_w \left(\sum_{tsk \in \mathcal{TSK}} z_{tsk,w} \right)$$

G8 maximize_feature_priority

Logical: Prefer including higher-priority features in release plans.

Mathematical:

$$\max \sum_{rep \in \mathcal{REP}} \sum_{f \in} \pi_f^F \; r_{f,rep}$$

G9 minimize_blocker_severity

Logical: Reduce overall severity exposure of blocked tasks.

Mathematical:

$$\min \sum_{tsk \in \mathcal{TSK}} \sum_{bl \in \mathcal{BL}} \gamma_{tsk,bl} \operatorname{sev}_{bl} \left(\sum_{w} z_{tsk,w} \right)$$

G10 maximize_sprint_review_attendees

Logical: Increase stakeholder engagement in reviews (proxy via invitations weighted by relevance if desired).

Mathematical (two variants; choose one):

$$\max \sum_{sr \in \mathcal{SR}} \operatorname{att}_{sr} \quad \text{or} \quad \max \sum_{sr \in \mathcal{SR}} \sum_{sh \in \mathcal{SH}} i_{sh,sr}$$

G11 minimize_sprint_total_effort

Logical: Keep sprint workload manageable.

Mathematical:

$$\min \sum_{sbl \in \mathcal{SBL}} \text{TotEff}_{sbl}$$

4. Conditions 4

Notation (parameters used by conditions).

- ready_{us} $\in \{0, 1\}$ indicates acceptable status for a user story (C0).
- effEst_f ≥ 0 indicates presence of estimated_effort for a feature (C1).
- blocked_{tsk} $\in \{0,1\}$ from status or $\exists bl : \gamma_{tsk,bl} = 1$ (C2).
- dur_{ds} in minutes for DailyScrum (C4).
- hasGoal_s $\in \{0,1\}$ indicates that sprint s has an attached goal (C5 via R13).
- recent_{pb} $\in \{0,1\}$ indicates last_updated within policy window (C6).
- active_{sbl} $\in \{0,1\}$ allowed values of status (C7).
- B_p^{max} budget cap (from Project.budget) (C8).
- $rel_{sh} \in \{0, 1, ...\}$ stakeholder relevance score (C9).
- $\operatorname{start}_s < \operatorname{end}_s$ dates for sprint s (C10).
- $fbDoc_{sr} \in \{0,1\}$ whether review has feedback_documentation (C11).
- Capacity feasibility linking: for each s, capacity C_s (DV8) and story assignment $y_{us,s}$ with sp_{us} .

Feasibility/linking constraints from Relationships.csv.

(R1) Team
$$\rightarrow$$
 Project: $\sum_{p \in \mathcal{P}} x_{t,p} \le 1 \quad \forall t \in \mathcal{T}$ (1)

(R11&R12) US
$$\rightarrow$$
 SBL \rightarrow Sprint: $y_{us,s} \leq \sum_{sbl} \alpha_{us,sbl} \beta_{sbl,s} \quad \forall us, s$ (2)

(R10) US consists of Tasks:
$$\sum_{tsk} \kappa_{us,tsk} \ge 1 \quad \forall us$$
 (3)

(R20) ReleasePlan includes Features:
$$r_{f,rep} \le 1 \quad \forall f, rep$$
 (4)

(R19) Velocity refers to Team (activation requires a team on a project):
$$\sum_{t} \delta_{vel,t} \sum_{p} x_{t,p} \ge a_s \quad \forall vel, \ \forall s$$
(5)

C0 require_user_story_ready_status

Logical: Only ready stories may be scheduled.

Mathematical:

$$y_{us,s} \le \text{ready}_{us} \quad \forall us \in \mathcal{US}, \ \forall s \in \mathcal{SP}$$

C1 require_feature_defined_effort

Logical: Features must have an estimated effort to be selected for a release. Mathematical:

$$r_{f,rep} \leq \mathbf{1}[\text{effEst}_f > 0] \quad \forall f \in, \ \forall rep \in \mathcal{REP}$$

C2 disallow_blocked_tasks

Logical: Exclude currently blocked tasks from commitment.

Mathematical:

$$\sum_{w} z_{tsk,w} \le 1 - \text{blocked}_{tsk} \quad \forall tsk \in \mathcal{TSK}$$

C3 prefer_high_team_availability

Logical: Favor higher availability in assignment (soft constraint). Mathematical (modeled as upper bound on load vs. availability):

$$\sum_{t \neq k} z_{tsk,w} \, \hat{\text{eff}}_{tsk} \leq M \cdot \text{avail}_w \quad \forall w \in \mathcal{W}$$

with a sufficiently large M or calibrated capacity units.

C4 limit_daily_scrum_duration

Logical: Daily must respect 15-minute timebox.

Mathematical:

$$dur_{ds} < 15 \quad \forall ds \in \mathcal{DS}$$

C5 ensure_sprint_with_goal

Logical: Each active sprint has a defined goal.

Mathematical:

$$a_s \leq \text{hasGoal}_s \quad \forall s \in \mathcal{SP}$$

C6 require_backlog_currency

Logical: Backlog must be recently updated before planning. Mathematical (activation of any story from *pb* implies recency):

$$\sum_{us,s} y_{us,s} \le U \cdot \sum_{pb} \operatorname{recent}_{pb} \quad (U \text{ big-M})$$

C7 limit_sprint_backlog_status

Logical: Only active/planned sprint backlogs may be used.

Mathematical:

$$\sum_{us} y_{us,s} \le U \cdot \sum_{sbl} \text{active}_{sbl} \, \beta_{sbl,s} \quad \forall s$$

C8 guard_budget_threshold

Logical: Allocation must not exceed project budget cap.

Mathematical:

$$B_p^{\text{alloc}} \le B_p^{\text{max}} \quad \forall p \in \mathcal{P}$$

C9 require_stakeholder_relevance

Logical: Invite only stakeholders relevant to presented features/reviews. Mathematical (threshold τ):

$$i_{sh.sr} \leq \mathbf{1}[rel_{sh} \geq \tau] \quad \forall sh \in \mathcal{SH}, \ \forall sr \in \mathcal{SR}$$

C10 ensure_sprint_dates_valid

Logical: Sprint start must precede end date.

Mathematical (data validation):

$$\operatorname{start}_s < \operatorname{end}_s \quad \forall s \in \mathcal{SP}$$

C11 prefer_review_feedback_captured

Logical: Favor reviews with documented feedback (soft feasibility). Mathematical (link invitations to documentation):

$$\sum_{sh} i_{sh,sr} \le U \cdot \text{fbDoc}_{sr} \quad \forall sr \in \mathcal{SR}$$

5 5. DecisionVariables

- DV0 assign_team_to_project $x_{t,p} \in \{0,1\}$ Whether team t is assigned to project p (maps to R1).
- DV1 assign_user_story_to_sprint $y_{us,s} \in \{0,1\}$ Whether user story us is scheduled in sprint s (uses R11, R12).
- DV2 **assign_task_to_worker** $z_{tsk,w} \in \{0,1\}$ Whether task tsk is assigned to worker w.
- DV3 select_feature_for_release $r_{f,rep} \in \{0,1\}$ Whether feature f is included in release plan rep (uses R20 and R21 for roadmap context).
- DV4 select_epic_for_backlog $b_{e,pb} \in \{0,1\}$ Whether epic e is included in product backlog pb (uses R8).
- DV5 **activate_sprint** $a_s \in \{0, 1\}$ Whether sprint s is active in the plan (links to R13 and R22).
- DV6 prioritize_user_story_rank $\pi_{us} \in \mathbb{Z}, 1 \leq \pi_{us} \leq 100$ Rank assigned to a user story us (use with ordering constraints if desired).
- DV7 allocate_budget_to_project $B_p^{\text{alloc}} \in \mathbb{R}_{\geq 0}$ Allocated budget amount to project p with $0 \leq B_p^{\text{alloc}} \leq 10^8$.
- DV8 set_sprint_capacity_points $C_s \in \mathbb{Z}_{\geq 0}$ Capacity (story points) planned for sprint $s, 0 \leq C_s \leq 1000$.
- DV9 set_task_effort_refinement $\hat{\text{eff}}_{tsk} \in \mathbb{Z}_{\geq 0}$ Refined effort estimate for task tsk, $0 \leq \hat{\text{eff}}_{tsk} \leq 100$.
- DV10 choose_scrum_master_for_team $m_{t,sm} \in \{0,1\}$ Whether Scrum Master sm is linked to team t (uses R6 and R18).
- DV11 invite_stakeholder_to_review $i_{sh,sr} \in \{0,1\}$ Whether stakeholder sh is invited to Sprint Review sr (uses R17).

Typical capacity coupling (illustrative, optional):

$$\sum_{us \in \mathcal{US}} \operatorname{sp}_{us} y_{us,s} \le C_s \quad \forall s \in \mathcal{SP}$$