Cálculo 1 - Limites

Wandeson Ricardo

9 de outubro de $2020\,$

0.1 Definição Intuitiva de Limite

Um objeto percorre uma distância ao longo do tempo t. Em um instante t qualquer desejamos saber a velocidade do objeto. Sabemos que a velocidade média escalar deste objeto é dada por $V_m = \frac{\Delta s}{\Delta t}$ onde Δs é a variação do espaço e Δt a variação do tempo ao longo daquela distância percorrida.

Observamos que no instante de tempo $t_{inicial}$ e t_{final} o objeto objeto percorreu uma distância Δs onde s_{incial} e s_{final} fornecem sua posição. Podemos escrever da seguinte forma,

$$V_m := \frac{s_{final} - s_{inicial}}{t_{final} - t_{inicial}} \tag{1}$$

Em (1) observamos que a velocidade escalar média é a razão entre a variação do espaço percorrido Δs em um determinado intervalo de tempo Δt . Mas contudo e se desejássemos saber a velocidade num instante t ao invés do intervalo Δt .

Imaginemos o seguinte, temos um instante qualquer t_0 e tomamos um incremento nesse tempo o qual chamaremos de ε .

Seja f(t) = y uma função de \mathbb{R} em \mathbb{R} que define a posição de um carro no instante t. A posição após t segundos é medida em metros. Podemos ver de (1) que a inclinação da reta secante r que contém os pontos P e Q nos fornece a velocidade média no intervalo de tempo $[t_0, t_1]$. Logo,

$$v_m = \frac{f(t_1) - f(t_0)}{t_1 - t_0} \tag{2}$$

que é exatamente a inclinação m_{PQ} da reta secante r.

Tomemos agora um P' qualquer sobre a curva cujas coordenadas são $(t_0 + \varepsilon, f(t_0 + \varepsilon))$ onde ε significa um pequeno incremento em t_0 .

A inclinação da reta secante s por PP' é dada por,

$$m_{PP'} = \frac{f(t_0 + \varepsilon) - f(t_0)}{(t_0 + \varepsilon) - t_0}$$

ou

$$m_{PP'} = \frac{f(t_0 + \varepsilon) - f(t_0)}{\varepsilon} \tag{3}$$

Tomando-se ε cada vez menor, teremos um um $t_0 + \varepsilon$ cada vez mais próximo de t_0 . Esse valor tomado cada vez menor é o que chamaremos de limite para o qual ε ficará bem próximo de 0 mas $\varepsilon \neq 0$. Em símbolos teríamos,

$$\varepsilon \longrightarrow 0 \quad talque \quad t_0 + \varepsilon \longrightarrow 0$$

Assim definimos o limite de forma intuitiva como,

$$\lim_{\varepsilon \to 0} \frac{f(t_0 + \varepsilon) - f(t_0)}{\varepsilon} = L \tag{4}$$

que nos fornecerá a velocidade no instante exato t_0 . No gráfico acima de f(t) estariamos tomando o ponto P' cada vez mais proximo de P.

Temos também que,

$$m = \lim_{\varepsilon \to 0} \frac{f(t_0 + \varepsilon) - f(t_0)}{\varepsilon} = L$$

é nada mais que a equação da reta tangente da função f no ponto $P=(t_0,f(t_0)).$

E a velocidade no instante t_0 , ou seja, a velocidade instantânea seria dada por

$$v(t) := \lim_{\varepsilon \to 0} \frac{f(t_0 + \varepsilon) - f(t_0)}{\varepsilon} \tag{5}$$