

Probeklausur Diskrete Mathematik 2 I168

Tutorium 2020 - Noah Peeters, Julian Burmester, Tim Schröder

Dauer: 90 min

Hilfsmittel: Nordakademie Taschenrechner, Stifte, aber kein roter Stabilo 88/40.

Bemerkungen: Diese Klausur enthält 10 Aufgaben. Es können 100 Punkte erreicht werden. Zum Bestehen der Klausur benötigen Sie 50 Punkte.

Trennen Sie nicht die Heftung. Bitte schreiben Sie Ihre Lösungen auf die jeweiligen Aufgabenblätter. Falls Sie mit dem Platz nicht auskommen, verwenden Sie auch die Rückseiten oder die Zusatzseiten am Ende des Klausurheftes.

Aufgabe 1 (8 Punkte)

In den folgenden Multiple Choice Aufgaben sind je 3 Antworten richtig.

Bewertungshinweis:

- Es gibt maximal vier Punkte pro Frage
- Wenn Sie mehr als drei Kreuze pro Frage ankreuzen, erhalten Sie keine Punkte
- Haben Sie ein Kreuz in einer Frage falsch gesetzt, erhalten Sie die halbe Punktzahl
- Haben Sie mehr als ein Kreuz in einer Frage falsch gesetzt, erhalten Sie keine Punkte

(1.1) (4	Punkte) Kreuzen Sie die drei richtigen Antworten an:
	Sei M eine Menge. Dann ist M × M im allgemeinen keine Relation.
	Jede Ordnungsrelation hat mindestens ein kleinstes oder mindestestens ein größtes Element.
	Seien a, b Elemente einer beliebigen Menge E mit einer beliebig zugehörigen Äquivalenzrelation \equiv . Es gilt: $a \equiv b \Rightarrow a = b$.
	Aus der Gleichheit von Äquivalenzklassen folgt die Äquivalenz der Repräsentanten und umgekehrt.
	Wenn R und S reflexiv sind, dann ist auch $R \cup S$ reflexiv.
	$(R_2 \circ R_1)^{-1} = R_1^{-1} \circ R_2^{-1}$
(4.5) (
(1.2)(4	Punkte) Kreuzen Sie die drei richtigen Antworten an:
	Sei R eine Relation. Aus der Asymmetrie von R folgt auch die Irreflexivität von R.
	Sei R_1 eine Relation. Es gilt: $R_1^{\circ} R_1^{-1} = R_1$.
	Auf der Menge M := {1, 2, 3, 4, 5} gibt es 5! = 120 Relationen.
	Sei R eine Relation. Wenn R nicht reflexiv ist, dann ist R irreflexiv
	Die leere Menge ist eine transitive Relation auf M, wobei M eine beliebige Menge sei.
	Aus der Gleichheit zweier Relationen folgt die Gleichheit der respektiven inversen

Aufgabe 2 (5 Punkte)

Gegeben sei das vereinfachte Pfeildiagramm der Relation R auf der sechs-elementigen Menge $M := \{a, b, c, d, e, f\}$:

(2.1) (1 Punkt) Warum ist R keine strikte Ordnungsrelation? Begründen Sie Ihre Antwort.

(2.2) (3 Punkte) S sei die strikte Ordnungsrelation auf M, die entsteht, wenn Sie aus R genau ein Paar entfernen und genau zwei Paare hinzufügen. Geben Sie das Hasse-Diagramm von S an.

(2.3) (1 Punkt) Gilt für die Relation S aus (2.2) die Gleichung $(S^N)^* = S$? Begründen Sie Ihre Antwort.

Aufgabe 3 (10 Punkte)

Gegeben sei das folgende Hasse-Diagramm der zehn-elementigen Menge $M := \{a, b, c, d, e, f, g, h, i, j\}$:

Geben Sie größte/kleinste und maximale/minimale Elemente sowie obere/untere Schranken, obere/untere Grenzen und Supremum/Infimum von {a, g, h} und {b, c, e} an, falls existent.

	{a, g, h}	{b, c, e}		{a, g, h}	{b, c, e}
Größte Elemente			Kleinste Elemente		
Maximale Elemente			Minimale Elemente		
Obere Schranken			Untere Schranken		
Obere Grenzen			Untere Grenzen		
Supremum			Infimum		

Aufgabe 4 (17 Punkte)

Gegeben sei die Relation ≡ auf der Menge der ganzen Zahlen, die durch a ≡ b : \Leftrightarrow a^2 − b^2 = 2a − 2b definiert wird.

(4.1) (10 Punkte) Zeigen Sie, dass ≡ eine Äquivalenzrelation ist.

(4.2) (4 Punkte) Geben Sie die Äquivalenzklassen [0], [1], [2] und [3] explizit an. Hinweis: Die Äquivalenz kann auch folgend dargestellt werden: $a \equiv b \Leftrightarrow (a - b) \cdot (a + b - 2) = 0$.

(4.3) (3 Punkte) Zeigen Sie, dass [a] \oplus [b] := [a + b] für alle x, y \in Z nicht wohldefiniert bzw. nicht unabhängig vom Repräsentanten ist.

Hinweis: Nutzen Sie dazu die Äquivalenzklassen [0] und [1].

Aufgabe 5 (7 Punkte)

Gegeben sei die Äquivalenzrelation \equiv auf \mathbb{Z} , die durch a \equiv b : \Leftrightarrow |a| = |b| definiert wird. Zeigen Sie, dass die Relation f := {([a] $_{\equiv}$,|a|) | a \in \mathbb{Z} } auf (\mathbb{Z}/\equiv) x \mathbb{Z} eine Abbildung ist.

Erinnerung: $\mathbb{Z}/\equiv := \{[a]_{\equiv} \mid a \in \mathbb{Z}\}$

Aufgabe 6 (13 Punkte)

Wir betrachten die Algebraische Struktur ($\mathbb{Z}_{25725}, \otimes$).

(6.1) (11 Punkte) Welche der Gleichungen

- 1. $[627]_{25725} \otimes x = [8575]_{25725}$
- 2. $[627]_{25725} \otimes x = [3675]_{25725}$

besitzt eine Lösung x in \mathbb{Z}_{25725} ? Falls Lösungen existieren, berechnen Sie alle Lösungen mit den in der Vorlesung verwendeten Verfahren. Falls keine Lösung existieren, begründen Sie dies. Zeigen SIe dazu mit dem erweiterten Euklidischen Algorithmus, dass t = -1436.

(6.2) (2 Punkte) Gibt es ein a ∈ N mit 1 < a < 11, für das die Gleichung
 [a]₂₅₇₂₅ ⊗ x = [3675]₂₅₇₂₅
genau eine Lösung besitzt? Begründen Sie ihre Antwort.

Aufgabe 7 (8 Punkte)

Geben Sie an, ob folgende Aussagen wahr oder falsch sind.

Hinweis: Inkorrekte Antworten führen nicht zu Abzügen. Punkte werden ab drei korrekten Antworten vergeben.

	Aussage	wahr	falsch
1.	Die Vigenere-Chiffre ist ein monoalphabetisches Substitutionsverfahren.		
2.	Sollen bei einem symmetrischen Kryptosystem 69 Teilnehmer mit jeweils unterschiedlichen Schlüsseln kommunizieren, so benötigt man 4208 Schlüssel.		
3.	In einem asymmetrischen Kryptosystem ist der Schlüssel zum Entschlüsseln komplett unabhängig vom Schlüssel zum Verschlüsseln.		
4.	Das Schutzziel "Integrität" besagt, dass die Nachricht tatsächlich von der angegebenen Quelle stammt.		
5.	Der Klartext "mathemachtspass" kann mit einer Caesar-Chiffre zu "THAOLTHJOAZWHPZ" verschlüsselt werden.		
6.	Die "A posteriori Wahrscheinlichkeit" ist die Wahrscheinlichkeit, mit der ein bestimmter Klartext übertragen wurde, ohne dass der Geheimtext bekannt ist.		
7.	Verschlüsselungsverfahren sollten stets geheim gehalten werden, da sie sonst von Experten geknackt werden.		
8.	Wenn eine Zahl zwei Runden des Miller-Rabin-Tests besteht, ist sie zu maximal 6,25% keine Primzahl.		

Aufgabe 8 (11 Punkte) (8.1) (3 Punkte) Ermitteln Sie, ob $[4]_7$ und $[5]_7$ in $(\mathbb{Z}_7 \setminus \{ [0]_7 \}, \otimes)$ erzeugende Elemente sind. Geben Sie dabei alle Rechenwege an.	
(8.2) (3 Punkte) Geben Sie die Anzahl der teilerfremden natürlichen Zahlen von 125 und 126 an. Geben Sie die Zwischenschritte Ihrer Berechnung an.	
(8.3) (5 Punkte) Prüfen SIe mit Hilfe des Miller-Rabin-Algorithmus, ob n = 89 eine Primzahl is Nutzen Sie hierfür die Basis a = 5. Geben Sie alle Zwischenschritte Ihrer Berechnung an.	it.
Hinweis: Sie dürfen annehmen, dass der ggt(5, 89) = 1 ist.	

Aufgabe 9 (9 Punkte)

Bob möchte zur Verschlüsselung das RSA Verfahren verwenden. Bei der Schlüsselgenerierung wählt er p = 31 und q = 43.

(9.1) (4 Punkte) Als nächstes muss Bob einen Wert für e festlegen. Welche Bedingungen muss e erfüllen? Welches is das kleinstmögliche e, das Bob verwenden kann?

(9.2) (2 Punkte) Bob wählt e = 17. Ermitteln Sie den öffentlichen und privaten Schlüssel. Geben Sle die Zwischenschritte Ihrer Berechnung an.

Hinweis: Das multiplikative Inverse von [17]₁₂₆₀ in \mathbb{Z}_{1260} is [593]₁₂₆₀.

(9.3) (3 Punkte) Verschlüsseln Sie die Nachricht m = 4. Erläutern Sie Ihren Rechenweg.

Aufgabe 10 (12 Punkte)

Alice und Bob möchten einen symmetrischen Schlüssel im Geheimen austauschen. Dazu verwenden sie das Diffie-Hellmann-Key-Exchange-Verfahren. Beide einigen sich auf p = 43 und g = 3.

(9.1) (1 Punkt) Welche Eigenschaft muss g erfüllen, damit dieses Verfahren funktioniert?

(9.2) (3 Punkte) Alice wählt im Geheimen a = 11 und verschickt x = 30 an Bob. Bob wiederum verschickt y = 32 an Alice. Wie lautet ihr gemeinsamer Schlüssel?

(9.3) (8 Punkte) Berechnen Sie die geheime Zahl b von Bob mithilfe des Babystep-Giantstep-Algorithmus. Geben Sie alle Zwischenschritte ihrer Berechnung an.

Hinweis: Ein Repräsentant des multiplikativ Inversen von $[g]_p$ ist 29.