Zadanie: KOL Kolacje

XXVI OI, etap II, dzień pierwszy. Plik źródłowy kol.* Dostępna pamięć: 512 MB.

13.02.2019

Bajtek i Bajtyna już od wielu lat są parą i mają tradycję wspólnego spędzania wieczorów na romantycznych kolacjach w wyśmienitych i przytulnych restauracjach Bitowa. Niestety, dość problematyczne jest to, że oboje pracują jako agenci ubezpieczeniowi i dzień kończą późno, w różnych dzielnicach miasta, przez co dojazd do miejsca spotkania często zajmuje im dużo czasu, a kosztuje jeszcze więcej.

Bitowo jest dość dobrze przemyślanym miastem. Łączy je sieć komunikacyjna, składająca się z n przystanków oraz n-1 łączących je tras. Każda trasa łączy dwa przystanki, a na przejazd nią trzeba kupić osobny bilet. Pomiędzy każdą parą przystanków można przejechać bezpośrednio lub pośrednio.

Przy każdym przystanku znajduje się restauracja. Restauracje specjalizują się w różnych kuchniach (śródziemnomorska, orientalna itd.); dla wygody rodzaje restauracji będziemy reprezentować przez liczby od 1 do r.

Twoim zadaniem będzie napisanie programu, który pomoże Bajtkowi i Bajtynie wybrać, gdzie powinni się spotkać, aby zminimalizować koszt biletów, jeśli wiemy, przy których przystankach kończą pracę i na który rodzaj kuchni mają ochotę.

Wejście

W pierwszym wierszu standardowego wejścia znajdują się dwie liczby całkowite n oraz r ($2 \le n \le 100\,000$, $1 \le r \le 100\,000$) oddzielone pojedynczym odstępem, oznaczające odpowiednio liczbę przystanków w Bitowie oraz liczbę rodzajów restauracji. Przystanki numerujemy liczbami od 1 do n.

Drugi wiersz wejścia zawiera ciąg n liczb całkowitych t_1, t_2, \ldots, t_n $(1 \le t_i \le r)$ pooddzielanych pojedynczymi odstępami; liczba t_i oznacza rodzaj kuchni w restauracji przy przystanku numer i.

Następne n-1 wierszy zawiera opis tras pomiędzy przystankami; j-ty z nich zawiera trzy liczby całkowite a_j, b_j, c_j ($1 \le a_j, b_j \le n, a_j \ne b_j, 0 \le c_j \le 10^6$) oddzielone pojedynczymi odstępami, oznaczające, że przystanki o numerach a_j oraz b_j są połączone trasą, na którą bilet kosztuje c_j .

Kolejny wiersz zawiera pojedynczą liczbę całkowitą q ($1 \le q \le 100\,000$) oznaczającą liczbę dni, przez które chcemy odpowiedzieć na zapytania Bajtyny i Bajtka. Ostatnie q wierszy zawiera opis tych dni; k-ty z tych wierszy składa się z trzech liczb całkowitych p_k, q_k, s_k ($1 \le p_k, q_k \le n, 1 \le s_k \le r$) oddzielonych pojedynczymi odstępami, oznaczających kolejno: przystanek, przy którym dzień kończy Bajtyna, oraz rodzaj kuchni, na którą oboje mają ochotę danego dnia.

Wyjście

Na standardowe wyjście należy wypisać dokładnie q wierszy; k-ty z nich powinien zawierać jedną liczbę całkowitą, oznaczającą minimalny koszt przemieszczenia się do restauracji spełniającej wymagania pary k-tego dnia. Jeżeli taka restauracja nie istnieje, należy wypisać -1.

Przykład

Dla danych wejściowych:	poprawnym wynikiem jest:
5 4	7
1 2 3 1 3	8
1 2 3	7
2 3 4	-1
2 4 5	
3 5 0	(4)1
4	1
1 3 3	5
1 4 2	$3 \stackrel{\downarrow}{\bigcirc} 4 \stackrel{\frown}{\bigcirc} 0 \stackrel{\frown}{\bigcirc}$
1 5 1	(1) (2) (3) (5)
3 3 4	$\stackrel{\smile}{1}$ $\stackrel{\smile}{2}$ $\stackrel{\smile}{3}$ $\stackrel{\smile}{3}$

Wyjaśnienie do przykładu:

Na rysunku liczby w kółkach oznaczają numery restauracji, pogrubione liczby oznaczają rodzaje kuchni serwowanej w restauracjach, krawędzie oznaczają trasy łączące restauracje, a liczby przy krawędziach oznaczają ceny biletu na odpowiednie połaczenia.

- Pierwszego dnia para chce zjeść w restauracji trzeciego rodzaju. Mamy dwie takie restauracje: przy przystankach numer 3 i 5. Koszt dojazdu do obu wynosi 7 dla Bajtka i 0 dla Bajtyny. Sumaryczny koszt wynosi zatem 7.
- Drugiego dnia Bajtek i Bajtyna wybrali restaurację drugiego rodzaju. Jedyna taka restauracja znajduje się przy przystanku numer 2, a koszt dotarcia do niej wynosi 3 + 5 = 8.
- Trzeciego dnia para chce odwiedzić restaurację pierwszego rodzaju. Mamy dwie takie restauracje: przy przystankach 1 oraz 4. Koszt dotarcia do nich wynosi odpowiednio 0 + 7 = 7 oraz 8 + 9 = 17.
- Niestety, w Bitowie nie wybudowano jeszcze restauracji czwartego rodzaju, stąd odpowiedź dla ostatniego dnia to -1.

Testy "ocen":

10cen: 10 losowo połączonych przystanków, r=2, wszystkie możliwe zapytania;

20cen: 100 przystanków, przy *i*-tym jest restauracja rodzaju *i*; po dwa zapytania o każdy rodzaj restauracji;

3ocen: $10\,000$ przystanków połączonych kolejno w linię, wszystkie restauracje są rodzaju 1; 10 zapytań, i-te zapytanie o przystanki o numerach i oraz n.

Ocenianie

Zestaw testów dzieli się na następujące podzadania. Testy do każdego podzadania składają się z jednej lub większej liczby osobnych grup testów.

Limity czasowe obowiązujące w poszczególnych podzadaniach są opublikowane w SIO.

Podzadanie	Dodatkowe warunki	Liczba punktów
1	$n, q, r \le 100$	7
2	$n, q \le 1000$	9
3	$n \le 1000$	19
4	r=1	10
5	r=n, jest dokładnie jedna restauracja każdego rodzaju	10
6	r=2	10
7	brak dodatkowych ograniczeń	35