Matrix Multiplication and PDE via Wavelets

Proposal:

Date December 4, 2003	Time: 1:30 pm
11	Location: Computer Science Building Room 206

Download Proposal at

http://dione.cs.ttu.edu/wavelet/wavelets.pdf

Committee:

Eric Sinzinger, Ph.D.	Noe Lopez-Benitez, Ph.D
Assistant Professor, Computer Science Department	Associate Professor, Computer Science Department
Committee Chair	Selence Department
Alan Sill, Ph.D.	Philip Smith, Ph.D
Research Professor, Physics Department	Director, High Performance Computing Center

Abstract:

One overwhelming question drives computational science; how fast can the answer be computed. In this thesis, the questions are for two computational areas of mathematics. One is how fast can matrix multiplication be computed. Second is how quickly can a partial differential equation be solved. Of course there are already conventional algorithms to compute them. This thesis contributes a simple analysis of the wavelet operator as it applies to these numerical operations.

wavelet	matrix multiplication	partial differential
demonstration	demonstration	equations demonstration