- · section 3e products & protient spaces is being skipped.
- " M(T)(i,g) is the coefficient in that of wi of the vector Tuj.

· inewise, we can define MLU) or M(w) for NEV and weW.

• so our actions can be purely understood by matrix multiplication!

MITY) = MIT) MIV).

I can split enings column by column or now by now.

Ex: $V=W=P_{\leq 3}(\mathbb{R})$. With the same basis for V and W $(1, x, x^2, x^3)$.

$$T=0: \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad P(x) = -\pi t + ex + \frac{\pi^3}{3}.$$

$$T_{p}(x) = \frac{dp}{dx} = 0 + e + x^2.$$

$$M(p) : \begin{bmatrix} -7 \\ e \\ 0 \\ 1/3 \end{bmatrix} \qquad M(Tp) = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \qquad \begin{bmatrix} 0 & 0.00 \\ 0 & 0.00 \\ 0 & 0.00 \end{bmatrix} \begin{bmatrix} -7 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

o The spine of (V, F) is a.k.a. the dual space to v and is denoted by u'.

dim f(V, F) = dim v.

Dual Basis: suppose dim
$$V < \infty$$
 and $V_1 \dots V_m$ is a basis for V .

We say $\Psi_1, \dots, \Psi_n \in V^1$ is the dual basis if

$$\Psi_i(\nabla_j) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

a not clear why q's even form a basis or why it's unique-

· huj greness

- · (, (V,) = 1, (, (V anything are) = 0.
- . It is descried by its actions and the out a commin way on vi so and the unique
- · linear independence
 - · Suppose we have scalars a, ... an sil. a, 4, 7 az vz + ... + an en = 0.

9, = 0 for V, +> 0.

· so for a linear combination wib, v, + ... + burn, we would need all $\alpha_i = 0$ to guarantee $\omega = 0$.

- · Spenning
 - · dimension is no so limited set of size of is synaming to must be a base

FEX. V = P62 (1R). basis 1, x, x2 x3.

· find dual basis.

Find dual basis.

$$Q_1 \in I_1 = 1 \longrightarrow Q_1 = S_0$$
 $Q_2 \in S_0$
 $Q_3 \in S_0^{1/2}$
 $Q_4 \in S_0^{1/2}$

$$\sqrt{\frac{1}{2}} = \frac{1}{2} =$$

$$\psi(\pi) = \frac{1}{2} = \mu,$$

The June nap,

Setup!
$$T \in \mathcal{L}(V_1W)$$
, $\dim V = 00$, $\dim W = 00$. The map dual to $T(T)$ is defined as