Theorems

Theorem 2.5.1. Let $\phi \colon G \to H$ be a group homomorphism. Then

(a)
$$\phi(e_G) = e_H$$
 (ϕ preserves identities)

(b)
$$\phi(g^{-1}) = \phi(g)^{-1} \ \forall g \in G$$
 (ϕ preserves inverses)

(c)
$$\phi(g^k) = \phi(g)^k \ \forall g \in G, k \in \mathbb{Z}$$
 (ϕ preserves powers)

Corollary 1. Let $\phi: G \to H$ be a homomorphism. If $g \in G$ has $|g| = n < \infty$, then $|\phi(g)| < \infty$. Moreover $|\phi(g)|$ divides |g|.

Corollary 2. If $\alpha: G \to H$ is a homomorphism, write $\alpha(G) = \{\alpha(g) \mid g \in G\}$. Then $\alpha(G)$ is a subgroup of H.

Theorem 2.5.3. Let G, H, and K denote groups.

- 1. The identity map $1_G: G \to G$ is an isomorphism for every group G.
- **2.** If $\sigma: G \to H$ is an isomorphism then the inverse mapping $\sigma^{-1}: H \to G$ is an isomorphism.
- 3. If $\sigma: G \to H$ and $\tau: H \to K$ are isomorphisms then $\tau \sigma: G \to K$ is an isomorphism.

Corollary 1. This isomorphism relation, \cong is an equivalence relation on groups. That is

- 1. $G \cong G$,
- **2.** if $G \cong H$, then $H \cong G$, and
- 3. if $G \cong H$ and $H \cong K$, then $G \cong K$.

Corollary 2. If G is a group, then the set of all isomorphisms $G \to G$ forms a group under composition.

Theorem 2.5.4. Let $\sigma: G \to G_1$ be an isomorphism. Then $o(\sigma(g)) = o(g)$ for all $g \in G$.

Theorem 2.5.5. Every group G of order n is isomorphic to a subgroup of S_n .

Theorem 2.6.1. Let H be a subgroup of a group G and let $a, b \in G$.

- **1.** $H = He_G$.
- **2.** Ha = H if and only if $a \in H$.
- 3. Ha = Hb if and only if $ab^{-1} \in H$.

- **4.** If $a \in Hb$, then Ha = Hb.
- **5.** Either Ha = Hb or $Ha \cap Hb = \emptyset$.
- **6.** The distinct right cosets of H partition G.

Corollary 1. Corresponding statements hold for left cosets. In particular, part (3) becomes

$$aH = bH \Leftrightarrow a^{-1}b \in H \Leftrightarrow b^{-1}a \in H.$$

Lemma. If $H \leq G$ and $a, b \in G$, then |Ha| = |Hb|.

Theorem 2.6.2 (Lagrange's Theorem). Let H be a subgroup of a finite group G. Then |H| divides |G|.

Corollary 1. If G is a finite group and $q \in G$, then |q| divides |G|.

Corollary 2. If G is a group and |G| = n, then $g^n = e$ for all $g \in G$.

Corollary 3. If p is a prime, then every group of order p is cyclic. In fact, $G = \langle g \rangle$ for every non-identity element g in G, so the only subgroups of G are $\{e\}$ and G itself.

Corollary 4. Let H and K be finite subgroups of a group G. If |H| and |K| are relatively prime, then $H \cap K = \{e\}$.

Corollary 5. If H is a subgroup of a finite group G, then

$$|G:H| = \frac{|G|}{|H|}.$$

Theorem 2.6.3. Let G be a group of order 2p, where p is prime. Then either G is cyclic or $G \cong D_p$, where D_p is the dihedral group of order 2p.

Theorem 2.8.1. If G is a group, every subgroup of the center, Z(G) is normal in G. In particular, $Z(G) \subseteq G$.

Theorem 2.8.2. If G is abelian and $H \leq G$, then $H \subseteq G$.

Corollary 1. If $G = \langle X \rangle$, a subgroup H is normal in G if and only if $xHx^{-1} \subseteq H$ for all $x \in X$. Similarly, if $a \in G$, then $\langle a \rangle \subseteq G$ if and only if $gag^{-1} \in \langle a \rangle$ for all $g \in G$.

Corollary 2. If H is a subgroup of G, and if G has no other subgroups isomorphic to H, then H is normal in G.

Theorem 2.8.3 (Normality Test). The following conditions are equivalent for a subgroup H of a group G.

- 1. $H \subseteq G$.
- 2. $gHg^{-1} \subseteq H$ for all $g \in G$.
- 3. $gHg^{-1} = H$ for all $g \in G$.

Theorem 2.8.4. If $H \leq G$ with |G:H| = 2, then $H \leq G$.

Theorem 2.8.5. Let H and K be subgroups of a group G.

- 1. If H or K is normal in G, then HK = KH is a subgroup of G.
- **2.** If both H and K are normal in G, then $HK \subseteq G$ too.

Theorem 2.8.6. If $H \subseteq G$ and $K \subseteq G$ satisfy $H \cap K = \{e_G\}$, then $HK \cong H \times K$.

Corollary 1. If G is a finite group and $H, K \leq G$ with $H \cap K = \{e_G\}$, then |HK| = |H||K|.

Corollary 2. If G is a finite group and $H, K \subseteq G$ with $H \cap K = \{e_G\}$ and |HK| = |G|, then $G \cong H \times K$.

Corollary 3. If m and n are relatively prime integers and G is a cyclic group of order mn, then $G \cong C_m \times C_n$.

Corollary 4. Let G be an abelian group of order p^2 for some prime p. Then either $G \cong C_{p^2}$ or $G \cong C_p \times C_p$.

Theorem 2.8.7. An abelian group $G \neq \{e_G\}$ is simple if and only if |G| is prime.

Theorem 2.8.8. If $n \geq 5$, then A_n is simple.

Theorem 2.9.1. Let $K \subseteq G$ and write $G/K = \{Ka \mid a \in G\}$, the set of right cosets of K. Then

- **1.** G/K is a group under the operation (Ka)(Kb) = Kab.
- **2.** The mapping $\varphi: G \to G/K$ defined by $\varphi(a) = Ka$ is an onto homorphism.
- 3. If G is abelian, then G/K is abelian.
- **4.** If $G = \langle a \rangle$, then G/K is also cyclic with $G/K = \langle Ka \rangle$.
- **5.** If |G:K| is finite then |G/K| = |G:K|. If |G| is finite, then $|G/K| = \frac{|G|}{|K|}$.

Theorem 2.9.2. If G is a group and G/Z(G) is cyclic, then G is abelian.

Theorem 2.9.3. Let G be a group and let H be a subgroup of G.

- 1. G' is a normal subgroup of G and G/G' is abelian.
- **2.** $G' \subseteq H$ if and only if H is normal in G and G/H is abelian.

Theorem 2.10.1. Let $\alpha \colon G \to H$ be a group homomorphism. Then

- **1.** $\alpha(G)$ is a subgroup of H.
- **2.** $\ker(\phi)$ is a normal subgroup of G

Theorem 2.10.2. If $K \subseteq G$, then $K = \ker \phi$ where $\phi \colon G \to G/K$ is the coset mapping.

Theorem 2.10.3. Let $\alpha \colon G \to H$ be a group homomorphism. Then α is injective if and only if $\ker(\alpha) = \{e_G\}$.

Theorem 2.10.4 (The First Isomorphism Theorem). Let $\alpha \colon G \to H$ be a group homomorphism and $K = \ker \alpha$ then $G/K \cong im(G) = \alpha(G)$.

Theorem 2.10.5. If G is any group then $G/Z(G) \cong \text{Inn}(G)$, where Inn(G) is the set if inner automorphisms of G.

Definitions

Definition. Let (G, *) and (H, \diamond) be groups. Then a mapping $\phi: G \to H$ is a [group] homomorphism if $\phi(g_1 * g_2) = \phi(g_1) \diamond \phi(g_2)$ for all $g_1, g_2 \in G$.

Definition. The trivial homomorphism,

$$\phi \colon G \to H, \quad \phi(g) = e_H \ \forall g \in G$$

Definition. A homomorphism that is both injective and surjective is called an *isomorphism*. If an isomorphism exists from G to H, we call G and H isomorphic and we write $G \cong H$.

Definition. Let $\phi: G \to H$ be a group homomorphism. The *image of* ϕ is denoted $\phi(G)$ or $\operatorname{im}(\phi)$ and is defined to be the set

$$\{\phi(g) \in H \mid g \in G\} = \{h \in H \mid \exists g \in G \text{ s.t. } \phi(g) = h\}.$$

Definition. Let $\phi: G \to H$ be a group homomorphism. The kernel of ϕ is denoted $\ker(\phi)$ and is defined to be the set

$$\{g \in G \mid \phi(g) = e_H\}.$$

Definition. Let G be a group. An *automorphism of* G is an isomorphism from G to itself. The set Aut(G) is the set of all automorphisms of G.

Definition. Let $H \leq G$ and let $a \in G$. Define the two sets

- **1.** $H * a = \{h * a | h \in H\}$ called the right coset of H by a.
- **2.** $a * H = \{a * h | h \in H\}$ called the *left coset of* H *by* a.

Definition. The *index* of H in G, denoted |G:H|, is defined to the number of distinct right (or left if you prefer) cosets of H in G.

Definition. A regular n-gon is an n-sided polygon whose sides are all congruent. Denote this figure by P_n .

Definition. A symmetry of P_n is any action on P_n by a sequence of flips and/or rotation which return P_n to its original position in the plane.

Definition. The dihedral group D_n is the group of symmetries of the figure P_n . (Operation is composition.)

Alternately, we may use the following definition.

Let $n \geq 2$. The dihedral group D_n is the group of order 2n presented as follows:

$$D_n = \{e, r, r^2, \dots, r^{n-1}, f, fr, fr^2, \dots, fr^{n-1}\},\$$

where |r| = n, |f| = 2, and $rf = fr^{-1}$.

Definition. A subgroup H of G is called a *normal subgroup* of G if gH = Hg for all $g \in G$. If H is a normal subgroup of G, we might say H is normal in G and write $H \subseteq G$.

Definition. If H is a subgroup of G and $g \in G$, we call gHg^{-1} a conjugate of H in G.

Definition. A group G is *simple* if its only normal subgroups are $\{e_G\}$ and G.

Definition. If K is a normal subgroup of the group G, then the group G/K is called the factor group, or quotient group, of G by K.

We call the homomorphism $\varphi: G \to G/K$ with $\varphi(a) = Ka$ the coset map.

Definition. For $a, b \in G$ we define the *commutator* of a and b to be

$$[a,b] = aba^{-1}b^{-1}.$$

Definition. The commutator subgroup of G is the group

 $G' = \{ \text{all finite products of commutators from } G \}$

$$= \langle [a,b] \mid a,b \in G \rangle.$$