

Group Equivariant Deep Learning

Lecture 2 - Steerable group convolutions

Lecture 2.1 - Steerable kernels/basis functions

Definition and SO(2) example

Group Equivariant Deep Learning

Lecture 2 - Steerable group convolutions

Lecture 2.1 - Steerable kernels/basis functions

Definition and SO(2) example

Lecture 2.2 - Revisiting regular G-convs with steerable kernels | Template matching viewpoint

Motivating the Fourier transform on and showing we now no longer need a grid on the sub-group H!

Lecture 2.3 - Group Theory | Irreducible representations and Fourier transform

Preliminaries for steerable feature fields and steerable g-conv intuition with a focus on SO(2)

Lecture 2.4 - Group Theory Induced representations and feature fields

Preliminaries (and intuition) for steerable group convolutions

Lecture 2.5 - Steerable group convolutions

And how to use them

Lecture 2.6 - Activation functions for steerable G-CNNs

Examples of which we can and cannot use

Lecture 2.7 - Derivation of Harmonic networks from regular g-convs | Recalling g-convs are all you need!

Steerable basis

A vector
$$Y(x) = \begin{pmatrix} \vdots \\ Y_l(x) \\ \vdots \end{pmatrix} \in \mathbb{K}^L$$
 with (basis) functions $Y_l \in \mathbb{L}_2(X)$ is steerable if

$$\forall_{g \in G}: \quad Y(g x) = \rho(g)Y(x),$$

where gx denotes the action of G on X and $\rho(g) \in \mathbb{K}^{L \times L}$ is a representation of G.

I.e., we can transform all basis functions simply by taking a linear combination of the original basis functions.

 $Y_l(\alpha) = e^{i l \alpha}$ $\rho_l(\theta) = e^{i l \theta}$ Basis functions (for $\mathbb{L}_2(S^1)$):

Are steered by representations:

Proof:
$$Y_l(\alpha - \theta) = e^{il(\alpha - \theta)}$$

 $= e^{-il\theta} e^{il\alpha}$
 $= \rho_l(-\theta) Y_l(\alpha)$

 $Y_l(\alpha) = e^{i l \alpha}$ $\rho_l(\theta) = e^{i l \theta}$ Basis functions (for $\mathbb{L}_2(S^1)$):

Are steered by representations:

$$\rho_{l}(\theta) = e^{il\theta}$$

Proof:
$$Y_l(\alpha - \theta) = e^{i l (\alpha - \theta)}$$

 $= e^{-i l \theta} e^{i l \alpha}$
 $= \rho_l(-\theta) Y_l(\alpha)$

Basis functions (for $\mathbb{L}_2(S^1)$):

Form a complete orthonormal (Fourier) basis:

$$Y_{l}(\alpha) = e^{i l \alpha}$$

$$f(\alpha \mid \hat{\mathbf{w}}) = \sum_{l=-\infty}^{\infty} \overline{\hat{w}_{l}} Y_{l}(\alpha)$$

Basis functions (for $\mathbb{L}_2(S^1)$):

Form a complete orthonormal (Fourier) basis:

$$Y_{l}(\alpha) = e^{i l \alpha}$$

$$f(\alpha \mid \hat{\mathbf{w}}) = \sum_{l=-\infty}^{\infty} \hat{w}_{l} \, \overline{Y}_{l}(\alpha)$$

Basis functions (for $\mathbb{L}_2(S^1)$):

Form a complete orthonormal (Fourier) basis:

$$Y_{l}(\alpha) = e^{i l \alpha}$$

$$f(\alpha \mid \hat{\mathbf{w}}) = \sum_{l=-\infty}^{\infty} \hat{w}_{l} Y_{l}(-\alpha)$$

Basis functions (for $\mathbb{L}_2(S^1)$):

Form a complete orthonormal (Fourier) basis:

$$Y_{l}(\alpha) = e^{i l \alpha}$$

$$f(\alpha \mid \hat{\mathbf{w}}) = \sum_{l=-\infty}^{\infty} \overline{\hat{w}_{l}} Y_{l}(\alpha)$$

Basis functions (for $\mathbb{L}_2(S^1)$):

Form a complete orthonormal (Fourier) basis:

$$Y_{l}(\alpha) = e^{i l \alpha}$$

$$f(\alpha \mid \hat{\mathbf{w}}) = \sum_{l=-\infty}^{\infty} \overline{\hat{w}_{l}} Y_{l}(\alpha)$$

Let

$$f(\alpha \mid \hat{\mathbf{w}}) = \hat{\mathbf{w}}^{\dagger} Y(\alpha)$$

Then we can steer/shift this function by transforming the weights $\hat{\mathbf{w}}$

$$f(\alpha - \theta | \hat{\mathbf{w}}) = f(\alpha | \rho(\theta) \hat{\mathbf{w}})$$

Proof:
$$f(\alpha - \theta \mid \hat{\mathbf{w}}) = \hat{\mathbf{w}}^{\dagger} Y(\alpha - \theta)$$

 $= \hat{\mathbf{w}}^{\dagger} \rho(-\theta) Y(\alpha)$
 $= \hat{\mathbf{w}}^{\dagger} \rho(\theta)^{\dagger} Y(\alpha)$
 $= (\rho(\theta) \hat{\mathbf{w}})^{\dagger} Y(\alpha)$
 $= f(\alpha \mid \rho(\theta) \hat{\mathbf{w}})$

Let

$$f(\alpha \mid \hat{\mathbf{w}}) = \hat{\mathbf{w}}^{\dagger} Y(\alpha)$$

Then we can steer/shift this function by transforming the weights $\hat{\mathbf{w}}$

$$f(\alpha - \theta | \hat{\mathbf{w}}) = f(\alpha | \rho(\theta) \hat{\mathbf{w}})$$

Proof:
$$f(\alpha - \theta \mid \hat{\mathbf{w}}) = \hat{\mathbf{w}}^{\dagger} Y(\alpha - \theta)$$

 $= \hat{\mathbf{w}}^{\dagger} \rho(-\theta) Y(\alpha)$
 $= \hat{\mathbf{w}}^{\dagger} \rho(\theta)^{\dagger} Y(\alpha)$
 $= (\rho(\theta) \hat{\mathbf{w}})^{\dagger} Y(\alpha)$
 $= f(\alpha \mid \rho(\theta) \hat{\mathbf{w}})$

• The previous functions $\rho_l(\theta)=e^{i\,l\,\theta}$ are (irreducible) representations of SO(2)

- The group SO(2) can also act on \mathbb{R}^2
 - Though not transitively...
 - It does act transitively on S^1 though

• Use polar coordinates $\mathbb{R}^2 \ni \mathbf{x} \leftrightarrow (r, \alpha) \in \mathbb{R}^+ \times S^1$ to come up with a rotation-steerable basis for $\mathbb{L}_2(\mathbb{R}^2)$!

• Consider a function $f(\mathbf{x}) = \bar{f}(r, \alpha)$ in polar coordinates

$$\mathbf{x} = (r\cos\alpha, r\sin\alpha)$$

• The action of SO(2) on \mathbb{R}^2 in polar coords translates to

$$\mathbf{x} \mapsto \mathbf{R}_{\theta} \mathbf{x} \quad \leftrightarrow \quad (r, \alpha) \mapsto (r, \alpha + \theta)$$

• Consider a function $f(\mathbf{x}) = \bar{f}(r, \alpha)$ in polar coordinates

$$\mathbf{x} = (r\cos\alpha, r\sin\alpha)$$

• The action of SO(2) on \mathbb{R}^2 in polar coords translates to

$$\mathbf{x} \mapsto \mathbf{R}_{\theta} \mathbf{x} \quad \leftrightarrow \quad (r, \alpha) \mapsto (r, \alpha + \theta)$$

• Then, functions are rotated simply by a shift in the angular axis

$$\mathscr{L}_{\theta}^{SO(2)} f(\mathbf{x}) = f(\mathbf{R}_{\theta}^{-1} \mathbf{x}) \quad \leftrightarrow \quad \mathscr{L}_{\theta}^{SO(2)} \bar{f}(r, \alpha) = \bar{f}(r, \alpha - \theta)$$

• Consider a function $f(\mathbf{x}) = \overline{f}(r, \alpha)$ in polar coordinates

$$\mathbf{x} = (r\cos\alpha, r\sin\alpha)$$

• The action of SO(2) on \mathbb{R}^2 in polar coords translates to

$$\mathbf{x} \mapsto \mathbf{R}_{\theta} \mathbf{x} \quad \leftrightarrow \quad (r, \alpha) \mapsto (r, \alpha + \theta)$$

• Then, functions are rotated simply by a shift in the angular axis

$$\mathscr{L}_{\theta}^{SO(2)} f(\mathbf{x}) = f(\mathbf{R}_{\theta}^{-1} \mathbf{x}) \quad \leftrightarrow \quad \mathscr{L}_{\theta}^{SO(2)} \bar{f}(r, \alpha) = \bar{f}(r, \alpha - \theta)$$

 Now, let's use this to paramatrize polar-separable conv kernels and focus on the angular part

$$k(\mathbf{x} \mid \mathbf{w}) = k^{\rightarrow}(r \mid \mathbf{w}) k^{\circlearrowleft}(\alpha \mid \mathbf{w})$$

A function on S^1 !!!

$$k_m^{\rightarrow}(r)$$

• Consider polar-separable convolution kernel:

$$k(\mathbf{x} \mid \mathbf{w}) = k^{\rightarrow}(r \mid \mathbf{w}) k^{\circlearrowleft}(\alpha \mid \mathbf{w}),$$

$$k^{\circlearrowleft}(\alpha \,|\, \mathbf{w}) = \sum_{l} \overline{w}_{l} Y_{l}(\alpha),$$
 e.g., with $Y_{l}(\alpha) = e^{i\, l\, \alpha},$ $k^{\to}(r \,|\, \mathbf{w}) = \sum_{m} w_{m} \phi_{m}(r)$

• Consider polar-separable convolution kernel:

$$k(\mathbf{x} \mid \mathbf{w}) = k^{\rightarrow}(r \mid \mathbf{w}) k^{\circlearrowleft}(\alpha \mid \mathbf{w}),$$

$$k^{\circlearrowleft}(\alpha \,|\, \mathbf{w}) = \sum_{l} \overline{w}_{l} Y_{l}(\alpha),$$
 e.g., with $Y_{l}(\alpha) = e^{i\, l\, \alpha},$ $k^{\to}(r \,|\, \mathbf{w}) = \sum_{m} w_{m} \phi_{m}(r)$

• Consider polar-separable convolution kernel:

$$k(\mathbf{x} \mid \mathbf{w}) = k^{\rightarrow}(r \mid \mathbf{w}) k^{\circlearrowleft}(\alpha \mid \mathbf{w}),$$

$$k^{\circlearrowleft}(\alpha \,|\, \mathbf{w}) = \sum_{l} \overline{w}_{l} Y_{l}(\alpha),$$
 e.g., with $Y_{l}(\alpha) = e^{i\, l\, \alpha},$ $k^{\to}(r \,|\, \mathbf{w}) = \sum_{m} w_{m} \phi_{m}(r)$

• Consider polar-separable convolution kernel:

$$k(\mathbf{x} \mid \mathbf{w}) = k^{\rightarrow}(r \mid \mathbf{w}) k^{\circlearrowleft}(\alpha \mid \mathbf{w}),$$

$$k^{\circlearrowleft}(\alpha \,|\, \mathbf{w}) = \sum_{l} \overline{w}_{l} Y_{l}(\alpha),$$
 e.g., with $Y_{l}(\alpha) = e^{i\, l\, \alpha},$ $k^{\to}(r \,|\, \mathbf{w}) = \sum_{m} w_{m} \phi_{m}(r)$

• Consider polar-separable convolution kernel:

$$k(\mathbf{x} \mid \mathbf{w}) = k^{\rightarrow}(r \mid \mathbf{w}) k^{\circlearrowleft}(\alpha \mid \mathbf{w}),$$

• with k^{\circlearrowleft} in an SO(2) steerable basis, and k^{\to} in some radial basis:

$$k^{\circlearrowleft}(\alpha \,|\, \mathbf{w}) = \sum_{l} \overline{w}_{l} Y_{l}(\alpha),$$
 e.g., with $Y_{l}(\alpha) = e^{i\, l\, \alpha},$ $k^{\to}(r \,|\, \mathbf{w}) = \sum_{m} w_{m} \phi_{m}(r)$

Then we may as well write it as

$$\begin{split} k(\mathbf{x} \,|\, \mathbf{w}) &= \sum_{l} \sum_{m} w_{m} \overline{w}_{l} \, \phi_{m}(r) \, Y_{l}(\alpha) \\ &= \sum_{l} \sum_{m} \overline{w}_{ml} \, \phi_{m}(r) \, Y_{l}(\alpha) \qquad \qquad \text{("absorb" weights)} \\ &= \sum_{l} \overline{\hat{w}}_{l}(r) \, Y_{l}(\alpha) \qquad \qquad \text{with radius dependent weights } \hat{w}_{l}(r) = \sum_{m} w_{ml} \, \phi_{m}(r) \end{split}$$

• Then such kernel is clearly rotation steerable!

$$k(\mathbf{R}_{\theta}^{-1}\mathbf{x} \mid \hat{\mathbf{w}}(r)) = k(\mathbf{x} \mid \rho(\theta)\hat{\mathbf{w}}(r))$$

Consider polar-separable convolution kernel:

$$k(\mathbf{x} \mid \mathbf{w}) = k^{\rightarrow}(r \mid \mathbf{w}) k^{\circlearrowleft}(\alpha \mid \mathbf{w}),$$

• with k^{\circlearrowleft} in an SO(2) steerable basis, and k^{\rightarrow} in some radial basis:

$$k^{\circlearrowleft}(\alpha \,|\, \mathbf{w}) = \sum_{l} \overline{w}_{l} Y_{l}(\alpha),$$
 e.g., with $Y_{l}(\alpha) = e^{i\, l\, \alpha},$ $k^{\to}(r \,|\, \mathbf{w}) = \sum_{m} w_{m} \phi_{m}(r)$

Then we may as well write it as

$$k(\mathbf{x} \mid \mathbf{w}) = \sum_{l} \sum_{m} w_{m} \overline{w}_{l} \phi_{m}(r) Y_{l}(\alpha)$$

$$= \sum_{l} \sum_{m} \overline{w}_{ml} \phi_{m}(r) Y_{l}(\alpha) \qquad \text{("absorb" weights)}$$

$$= \sum_{l} \overline{\hat{w}}_{l}(r) Y_{l}(\alpha) \qquad \text{with radius dependent weights } \hat{w}_{l}(r) = \sum_{m} w_{ml} \phi_{m}(r)$$
and is clearly rotation steerable!

• Then such kernel is clearly rotation steerable!

$$k(\mathbf{R}_{\theta}^{-1}\mathbf{x} \mid \hat{\mathbf{w}}(r)) = k(\mathbf{x} \mid \rho(\theta)\hat{\mathbf{w}}(r))$$

Or directly parametrize as $\hat{\mathbf{w}}(r) = \text{MLP}(r \mid \mathbf{w})$!

Complex (irreducible) representations

Complex (irreducible) representations

Complex (irreducible) representations

$$Y(\mathbf{R}_{\theta}^{-1}\mathbf{x}) = \rho(\mathbf{R}_{\theta}^{-1}) \qquad Y(\mathbf{x})$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & \cos\theta & \sin\theta & 0 & 0 & 0 \\ 0 & -\sin\theta & \cos\theta & 0 & 0 & 0 \\ 0 & 0 & \cos2\theta & \sin2\theta & 0 & 0 \\ 0 & 0 & -\sin2\theta & \cos2\theta & 0 & 0 \\ 0 & 0 & 0 & \cos3\theta & \sin3\theta \\ 0 & 0 & 0 & -\sin3\theta & \cos3\theta \end{pmatrix}$$

$$Y(\mathbf{R}_{\theta}^{-1}\mathbf{x}) = \rho(\mathbf{R}_{\theta}^{-1}) \qquad Y(\mathbf{x})$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & \cos\theta & \sin\theta & 0 & 0 & 0 \\ 0 & -\sin\theta & \cos\theta & 0 & 0 & 0 \\ 0 & 0 & \cos2\theta & \sin2\theta & 0 & 0 \\ 0 & 0 & -\sin2\theta & \cos2\theta & 0 & 0 \\ 0 & 0 & 0 & \cos3\theta & \sin3\theta \\ 0 & 0 & 0 & -\sin3\theta & \cos3\theta \end{pmatrix}$$

The real basis functions
$$Y_l(\mathbf{x}) = \begin{pmatrix} \cos(l\alpha) \\ \sin(l\alpha) \end{pmatrix}$$
 are steerable using $\rho_l(\mathbf{R}_{\theta}) = \begin{pmatrix} \cos l\theta & -\sin l\theta \\ \sin l\theta & \cos l\theta \end{pmatrix}$

Proof:

$$\begin{split} Y_{l}(\mathbf{R}_{\theta}^{-1}\mathbf{x}) &= \begin{pmatrix} \cos(l(\alpha - \theta)) \\ \sin(l(\alpha - \theta)) \end{pmatrix} \\ &= \begin{pmatrix} \cos(l\alpha + -l\theta) \\ \sin(l\alpha + -l\theta) \end{pmatrix} = \begin{pmatrix} \cos(l\alpha)\cos(-l\theta) - \sin(l\alpha)\sin(-l\theta) \\ \sin(l\alpha)\cos(-l\theta) + \cos(l\alpha)\sin(-l\theta) \end{pmatrix} \\ &= \begin{pmatrix} \cos-l\theta & -\sin-l\theta \\ \sin-l\theta & \cos-l\theta \end{pmatrix} \begin{pmatrix} \cos(l\alpha) \\ \sin(l\alpha) \end{pmatrix} \\ &= \rho_{l}(\mathbf{R}_{\theta}^{-1}) Y_{l}(\mathbf{x}) \end{split}$$

The real basis functions
$$Y_l(\mathbf{x}) = \begin{pmatrix} \cos(l\alpha) \\ \sin(l\alpha) \end{pmatrix}$$
 are steerable using $\rho_l(\mathbf{R}_{\theta}) = \begin{pmatrix} \cos l\theta & -\sin l\theta \\ \sin l\theta & \cos l\theta \end{pmatrix}$

Proof:

$$\begin{split} Y_{l}(\mathbf{R}_{\theta}^{-1}\mathbf{x}) &= \begin{pmatrix} \cos(l(\alpha - \theta)) \\ \sin(l(\alpha - \theta)) \end{pmatrix} \\ &= \begin{pmatrix} \cos(l\alpha + -l\theta) \\ \sin(l\alpha + -l\theta) \end{pmatrix} = \begin{pmatrix} \cos(l\alpha)\cos(-l\theta) - \sin(l\alpha)\sin(-l\theta) \\ \sin(l\alpha)\cos(-l\theta) + \cos(l\alpha)\sin(-l\theta) \end{pmatrix} \\ &= \begin{pmatrix} \cos-l\theta & -\sin-l\theta \\ \sin-l\theta & \cos-l\theta \end{pmatrix} \begin{pmatrix} \cos(l\alpha) \\ \sin(l\alpha) \end{pmatrix} \\ &= \rho_{l}(\mathbf{R}_{\theta}^{-1}) Y_{l}(\mathbf{x}) \end{split}$$

Representing interesting convolution kernels in a steerable basis!

Exercise:

- 1. Tune the weights $\hat{\mathbf{w}}$ until you get something interesting.
- 2. Add more detail by increasing maximum frequency!

 $k(\mathbf{x} \mid \hat{\mathbf{w}}(r))$

Representing interesting convolution kernels in a steerable basis!

Exercise:

- 1. Tune the weights $\hat{\mathbf{w}}$ until you get something interesting.
- 2. Add more detail by increasing maximum frequency!

 $k(\mathbf{x} \mid \hat{\mathbf{w}}(r))$

Representing interesting convolution kernels in a steerable basis!

Exercise:

- 1. Tune the weights $\hat{\mathbf{w}}$ until you get something interesting.
- 2. Add more detail by increasing maximum frequency!

 $k(\mathbf{x} \mid \hat{\mathbf{w}}(r))$

3. Go crazy and steer it by transforming the weights!

 $k(\mathbf{x} | \rho(\theta) \hat{\mathbf{w}}(r))$

