

Learning Implicit Templates for Point-Based Clothed Human Modeling

Siyou Lin, Hongwen Zhang, Zerong Zheng, Ruizhi Shao, Yebin Liu

Department of Automation, Tsinghua University

INTRODUCTION & MOTIVATION

Our Goal:

Learning to model animatable humans in diverse clothing with high-fidelity pose-dependent details from unregistered scans.

Major challenges of this task:

- · Learning the clothing topology;
- · Learning the pose-dependent deformations with fine details.

Existing clothed human representations:

Туре	SOTA	Pros	Cons
Mesh	CAPE [1]	Efficient Compatible with the rendering pipeline	Fixed topology Supports only tight clothing or requires clothing-specific templates
Point cloud	POP [2]	Efficient Topologically Flexible	Requires a base-template (usually SMPL [5]), leading to nonuniform distribution for loose clothing
Implicit field	SNARF [3] SCANimate [4]	Topologically Flexible	Computationally heavy Less details

Our motivation:

Incorporate the merits of implicit and explicit representations using a
 First-Implicit-Then-Explicit (FITE) two-stage pipeline.

KEY IDEAS

Method overview:

- A two-stage pipeline that involves both implicit and explicit modeling.
- Stage 1: Learn implicit templates for different types of clothing.
- Stage 2: Learn pose-dependent deformations based on the learned implicit templates using a point-based representation.

Benefits:

Stage 1:

- · captures the coarse topology of different types of clothing;
- avoids artifacts brought by a minimal body model for loose clothing.
 Stage 2:
- · models details with a point-based representation;
- · Achieves higher geometric quality than purely implicit methods.

Our pipeline:

METHOD DETAILS: STAGE 1

Task:

Learning canonical-space implicit templates for different types of clothing.

Challenges:

- The canonical-to-posed (C2P) mapping is a many-to-one mapping.
- There is no well-defined skinning weights far from the SMPL surface.
- kNN-based/learned skinning often leads to discontinuity/local minima.

Key contribution (diffused skinning):

A smooth skinning field diffused from the SMPL [5] surface.

METHOD DETAILS: STAGE 2

Task:

Learning pose-dependent deformations for previously learned templates.

Challenges:

- Encode pose information into the learned templates.
- The learned templates have no predefined UV map. UV encoding as done in POP [2] is not applicable.

Key contributions (projection-based pose encoding, PPE):

- Attach the posed vertex coordinates as features to the canonical template;
- Encode these features with 2D U-Nets by rendering the canonical template above with multiview projections.
- The features encoded by the 2D U-Nets are decoded to residuals and normals that produce the final pose-dependent deformations.

RESULTS ON THE RESYNTH DATASET

Comparison with POP [2], SNARF [3] and SCANimate [4]:

Advantages of FITE:

• Better details compared with implicit methods [3,4].

FITE (Ours)

- Better topology for dresses and skirts compared with POP [2].
- · More continuous and uniform outputs compared with POP [2].

REFERENCE

- [1] Ma et al. Learning to dress 3d people in generative clothing. CVPR 2020
- [2] Ma et al. The power of points for modeling humans in clothing. ICCV 2021
- [3] Chen et al. SNARF: Differentiable forward skinning for animating non-rigid neural implicit shapes. ICCV 2021

POP [2]

- [4] Saito et al. SCANimate: Weakly supervised learning of skinned clothed avatar networks. CVPR 2021
- [5] Loper et al. SMPL: A skinned multi-person linear model. ACMTOG 2015