Компьютерное моделирование

Системы массового обслуживания (Queueing theory)

Кафедра ИВТ и ПМ

2018

План

Прошлые темы

DES

Теория массового обслуживания

Системы массового обслуживания

Outline

Прошлые темы

DES

Теория массового обслуживания

Системы массового обслуживания

Прошлые темы

- ▶ Опишите метод Монте Карло
- Какие СВ величины модно моделировать с помощью распределения Пуассона?

Прошлые темы

- Опишите метод Монте Карло
- Какие СВ величины модно моделировать с помощью распределения Пуассона?
- Какие СВ величины модно моделировать с помощью экспоненциального распределения?

Прошлые темы

- Опишите метод Монте Карло
- Какие СВ величины модно моделировать с помощью распределения Пуассона?
- Какие СВ величины модно моделировать с помощью экспоненциального распределения?
- Какие СВ величины модно моделировать с помощью нормального распределения?
- Что такое поток?
- Что такое поток Пуассона?
- Что такое поток Эрланга?

Outline

Прошлые темь

DES

Теория массового обслуживания

Системы массового обслуживания

DES

В дискретно-событийном моделировании (Discrete-Event Sumulation, DES) функционирование системы представляется как хронологическая последовательность событий. Событие происходит в определенный момент времени и знаменует собой значительное изменение состояния системы.

DES. Упрощённый алгоритм моделирования

Инициализация

```
t\_current = t0 # текущее время s\_i = s\_i(t\_current) # состояние системы
```

Изменение состояний системы

```
while not end_condition(t_current, s_i):
    events = f(s_i)
    #compute all next events
    e_next = g(events) #Choose the closest in time
    t_next = e_next.t
    s_i = e_next.action( s_i ) #Execute the action
    t_current = t_next
#Jump to next time
```

DES

- Определить список событий
- Определить список соответствующих действий
- ▶ Моделировать одно действие за итерацию

Outline

Прошлые темь

DES

Теория массового обслуживания

Системы массового обслуживания

Теория массового обслуживания. Зачем?

При планировании системы обслуживания клиентов возникают вопросы...

- Как минимизировать время обслуживания клиента (заявки)?
- Сколько каналов обслуживания нужно?
- Какое расписание работы каналов наиболее эффективно?
- Как минимизировать время работы каналов?
- Как организовать очереди?
- Какая длинна очереди наиболее вероятна? Сколько места нужно для организации очереди?
- Велики ли потери клиентов из-за размеров очередей?
- Каково время простоя каналов?
- Сколько клиентов можно обслужить за единицу времени?

Outline

Прошлые темы

DES

Теория массового обслуживания

Системы массового обслуживания

Системы массового обслуживания

Система массового обслуживания (СМО) — система, которая производит обслуживание поступающих в неё требований.

Требование (заявка) — запрос на обслуживание.

Заявки поступают на каналы обслуживания.

Системы массового обслуживания

Примеры?

Примеры

СМО	Заявки	Каналы
Автобусный маршрут и перевозка пассажиров	Пассажиры	Автобусы
Производственный конвейер по обработке деталей	Детали, узлы	Станки, склады
Влетающая на чужую территорию эскадрилья самолетов, которая «обслуживается» зенитками ПВО	Самолеты	Зенитные орудия, радары, стрелки, снаряды
Ствол и рожок автомата, которые «обслуживают» патроны	Патроны	Ствол, рожок
Электрические заряды, перемещающиеся в некотором устройстве	Заряды	Каскады технического устройства

Каналы — то, что обслуживает;

- **горячие**. начинают обслуживать заявку в момент ее поступления в канал
- холодные. каналу для начала обслуживания требуется время на подготовку.

Источники заявок — порождают заявки в случайные моменты времени, согласно заданному статистическому закону.

Источник заявок как правило является внешним элементов СМО.

Классифицируем СМО по времени ожидания:

- ▶ системы с потерями. требования, не нашедшие в момент поступления ни одного свободного прибора, теряются
- системы с ожиданием. имеется накопитель бесконечной ёмкости для буферизации поступивших требований, при этом ожидающие требования образуют очередь;
- системы с накопителем конечной ёмкости (ожиданием и ограничениями)
 - длина очереди не может превышать ёмкости накопителя; при этом требование, поступающее в переполненную СМО (отсутствуют свободные места для ожидания), теряются.

Что может происходить с заявками?

Заявки (клиенты), входят в систему (порождаются источниками заявок), проходят через ее элементы (обслуживаются), покидают ее обслуженными или неудовлетворенными.

Заявки могут покидать систему сами, не дождавшись обслуживания.

Заявки могут покидать очередь не дожидаясь обслуживания

Заявки образуют потоки:

- поток заявок на входе системы,
- поток обслуженных заявок,
- поток отказанных заявок.

Заявки образуют потоки:

- поток заявок на входе системы,
- поток обслуженных заявок,
- поток отказанных заявок.

Как характеризовать поток?

Числом заявок (определённого вида) в определённом месте СМО за единицу времени.

Например: μ_i - число обслуживаемых заявок в час на і-м канале; λ - число заявок на входе в СМО

Дисциплина обслуживания

Очереди характеризуются правилами стояния в очереди - дисциплиной обслуживания.

Дисциплина обслуживания характеризуется количеством мест в очереди, структурой очереди (связь между местами в очереди).

Дисциплина обслуживания

- First in first out (FIFO)
- Last in first out (LIFO)
- Priority
- Shortest job first
- **.**..

Пример

FIFO

Среднее время ожидания: (0+2+4+6+8)/5 = 4 мин.

Shortest first

Среднее время ожидания: (0+0.5+2.5+4.5+6.5)/5 = 2.8 мин.

Как охарактеризовать эффективность работы СМО?

- вероятность обслуживания клиента системой;
- пропускная способность системы;
- вероятность отказа клиенту в обслуживании;
- вероятность занятости каждого из канала и всех вместе;
- среднее время занятости каждого канала;
- вероятность занятости всех каналов;
- среднее количество занятых каналов;
- вероятность простоя каждого канала;
- вероятность простоя всей системы;
- среднее количество заявок, стоящих в очереди;
- среднее время ожидания заявки в очереди;
- среднее время обслуживания заявки;
- среднее время нахождения заявки в системе.

Задание

- Смоделировать СМО с одним каналом, без очереди
- ▶ Смоделировать СМО с одним каналом и ограниченной очередью

Пример 2. Описание задачи

Колонка 1 обслуживает в среднем 1 машину в час; колонка 2 - 3 машины; для заправки в среднем заезжают 5 машин в час.

Пример 2. Схема

Пример 2. Временная диаграмма

Ссылки

Использованы материалы http://stratum.ac.ru/education/textbooks/modelir/lection30.html

Ссылки

Материалы курса

github.com/ivtipm/computer-simulation