

Opis zbioru danych

- <u>Źródło:</u> nasze dane pobraliśmy ze strony https://www.kaggle.com/datasets/parulpandey/palmerarchipelago-antarctica-penguin-data
- Sposób gromadzenia: dane zbierane były przez badaczy. Monitorowali oni trzy gniazda pingwinów, znajdujące się na trzech różnych wyspach. Do zbierania danych zastosowano metody terenowe i specjalistyczne narzędzia.
- Zbiór danych składa się z 344 obserwacji dotyczących trzech gatunków pingwinów: Adelie, Chinstrap i Gentoo. Dane zawierają m. in. nazwę gatunku, wymiary dzioba, wagę pingwina, wyspę, z której pochodzi oraz płeć. Są 3 cech jakościowe (w tym gatunek) i 4 ilościowe.

Temat i cel analizy

Celem naszej analizy będzie <u>sklasyfikowanie</u>, do którego z trzech gatunków należy pingwin.

Metody użyte w projekcie:

- drzewo decyzyjne
- ► KNN
- naiwna klasyfikacja Bayesa

Potencjalne zastosowanie modelu: model może być pomocny w pracy badaczy, ornitologów etc.

Eksploracja i przygotowanie danych

<u>Braki w danych:</u> W zbiorze danych brakowało w sumie 18 wartości. Po eksploracji okazało się, że 10 wierszy zawiera NA. Wszystkie te wiersze zostały usunięte. Oprócz tego usunięto też wiersz, w którym zmienna sex przyjmowała wartość ".", nie mającą większego sensu i będącą prawdopodobnie pomyłką.

```
> summary(penguins)
                     island
                               culmen_length_mm culmen_depth_mm flipper_length_mm
                                                                                body_mass_q
     species
                                                                                                 sex
                                                              Min. :172.0
Adelie :152 Biscoe
                        :168
                              Min.
                                    :32.10
                                                      :13.10
                                               Min.
                                                                               Min.
                                                                                      :2700
Chinstrap: 68 Dream
                        :124
                              1st Qu.:39.23
                                               1st Qu.:15.60
                                                             1st Qu.:190.0
                                                                               1st Qu.:3550
Gentoo :124 Torgersen: 52
                               Median :44.45
                                               Median :17.30
                                                             Median :197.0
                                                                               Median :4050
                                                                                                  :168
                                                                                             MALE
                                                     :17.15
                                                                     :200.9
                                     :43.92
                                               Mean
                                                              Mean
                                                                               Mean
                                                                                      :4202
                                                                                             NA'S : 10
                               3rd Ou.:48.50
                                               3rd Qu.:18.70
                                                              3rd Qu.:213.0
                                                                               3rd Ou.:4750
                                     :59.60
                                                     :21.50
                                                                     :231.0
                                               Max.
                                                              мах.
                                                                               мах.
                                                                                      :6300
                               мах.
                               NA's
                                               NA'S
                                                              NA's
                                                                               NA's
                                                                                      : 2
```

Po tej modyfikacji w zbiorze danych pozostał 333 obserwacji — wystarczająco duży zbiór do przeprowadzenia analizy.

Zbiór testowy i uczący

Nasze dane podzieliśmy na dane uczące i testowe w proporcjach odpowiednio: 70% i 30%. W każdym z trzech modeli używamy tego samego zbioru uczącego i testowego.

Następnie sprawdziliśmy jakie są proporcje klas w każdym z tych zbiorów i porównaliśmy je do proporcji między klasami z wyjściowego zbioru — okazały się być zbliżone.

Model 1 Drzewo decyzyjne

Zastosowanie tego modelu nie wymagało żadnych modyfikacji danych. Zdecydowaliśmy się na jego zastosowanie ze względu na czytelną interpretacje jaką dają drzewa (rys. poniżej).

Ocena modelu

Nasz model poprawnie sklasyfikował 98 pingwinów, co daje skuteczność na poziomie około 95 %, zatem satysfakcjonująco wysoką.

actual default	predicted (Adelie	default Chinstrap	Gentoo	Row Total
Adelie	45 0.437	0.010	0.000	46
Chinstrap	0.029	20	0.000	23
Gentoo	0.000	0.010	33	34
Column Total	48 	22	33	 103

Poprawa modelu za pomocą AdaBoost

Postanowiliśmy poprawić poprzedni model, używając boostingu z parametrem trials = 10 (algorytm zbudował 10 drzew decyzyjnych, za pomocą których jest dokonywana klasyfikacja).

Skuteczość uległa poprawie i wyniosła około 99%. Przez to, że model jest bardziej skomplikowany, nie jest już tak łatwy w interpretacji jak pojedyncze drzewo.

actual default	predicted (Adelie	default Chinstrap	Gentoo	Row Total
Adelie	46 0.447	0.000	0.000	46
Chinstrap	0.010	22 0.214	0.000	23
Gentoo	0.000	0.000	34 0.330	34
Column Total	47 47	22	34	103

Model 2: Naiwny klasyfikator Bayesowski

actual default	predicted (Adelie	default Chinstrap	Gentoo	Row Total
Adelie	46 0.447	0.000	0.000	46
Chinstrap	0.000	0.223	0.000	23
Gentoo	0.000	0.000	34	34
Column Total	46 	23	34	103

Nasz model ma 100% skuteczność. Poprawnie sklasyfikował wszystkie gatunki pingwinów.

Naiwny klasyfikator Bayesowski lepiej poradził sobie z problemem klasyfikacji niż drzewo decyzyjne i AdaBoost.

Model 3: Metoda K-NN

- Do tego modelu musieliśmy specjalnie przygotować nasze dane.
- Nasze modyfikacje polegały na zakodowaniu danych jakościowych na ilościowe (za pomocą dummy-coding). Dotyczy to kolumn: płeć i wyspa.
- Następnie znormalizowaliśmy nasze dane, ponieważ tego wymaga nasza metoda.

Wnioski z KNN:

Dla k należącego do zbioru {3,5,7,8,9,10,11,12,13,14,15,18,19,20,22,23,24} dokładność wynosi 99.02913%.

actual default	predicted o	default Chinstrap	Gentoo	Row Total
accuar deraure	Aueile	Cirristi ap		KOW 10ca1
Adelie	46 0.447	0.000	0.000	46
Chinstrap	1	22	0	23
	0.010	0.214	0.000	
Gentoo	0.000	0.000	34	34
Column Total	47	22	34 	103

Dla k= 1 lub k=2 dokładność wyniosła 100%

predicted default				
actual default	Adelie	Chinstrap	Gentoo	Row Total
Adelie	46	0	0	46
	0.447	0.000	0.000	
Chinstrap	0	23	0	23
,	0.000	0.223	0.000	
Gentoo	0	0	34	34
	0.000	0.000	0.330	į
Column Total	46	23	34	103

Dla k powyżej 24 dokładność jest gorsza

Podsumowanie:

Udało nam się zbudować skuteczny model do klasyfikacji gatunków pingwinów.

Największą skuteczność miał model naiwnego klasyfikatora Bayesowskiego,

aż 100% dokładności. Za raz po nim jest Model KNN.

Najgorzej z tym problemem poradził sobie model drzewa decyzyjnego,

Natomiast był on dla nas najbardziej czytelny.