Advanced Topics in Biostatistics: Measuring Agreement

Prof. Dr. Annette Kopp-Schneider Biostatistics – C060 kopp@dkfz.de

Outline

- What is meant by 'Agreement'
- Measuring agreement for categorical data:
 - Cohen's Kappa
 - weighted Kappa
 - Fleiss' Kappa
- Measuring agreement for quantitative data
 - Bland-Altman Plot
 - Bland-Altman Plot using SigmaPlot
 - Shapes in Bland-Altman Plot
 - Alternative intervals: Prediction interval, Tolerance interval, Total Deviation Index, Coverage Probability
 - Scaled indices: Concordance Correlation Coefficient, Intraclass Correlation Coefficient

Agreement: The set-up

n items, e.g. patients

R raters or measurement methods (to assess the n items)

Ratings/measurements can be categorical or continuous.

Assumption:

There is no gold standard (true value) known.

Aim:

Explore degree of agreement between the raters/measurement methods on the items ("interrater/intermethod agreement").

Note: agreement ≠ correlation

Situations

Categorical outcome:

Raters categorize items into 2 or more categories.

Quantitative outcome:

Raters measure a continuous value.

Situations

Categorical outcome:

Raters categorize items into 2 or more categories.

Quantitative outcome:

Raters measure a continuous value.

Example

Doctor A and doctor B both independently see 100 patients and rate whether they have a disease:

Doctor A			
Doctor B	yes	no	total
yes	50	15	65
no	5	30	35
total	55	45	100

How well do Doctors A and B agree in their diagnosis?

Problem setup

- n patients
- Two raters, A and B.
- Each rater classifies each patient as belonging to one of two categories such as "yes"/"no"; e.g. "tumor present"/ "tumor absent"
- Assumption: The raters perform their ratings without knowledge of each other

Rater A			
Rater B	yes	no	total
yes	а	b	a+b
no	С	d	c+d
total	a+c	b+d	n=a+b+c+d

Naive approach

Question: What is the agreement between the two raters?

Naive approach: consider the proportion of observed agreement

$$p_{\rm O} = \frac{a+d}{n}$$

as a measure of agreement between the two raters

E				
	Rater A			
Rater B	yes	no	total	
yes	а	b	a+b	
no	С	d	c+d	
total	а+с	b+d	n=a+b+c+d	

Problem with naive approach

Rater A				
Rater B	yes	no	total	
yes	50	15	65	
no	5	30	35	
total	55	45	100	

Rater C				
Rater D	yes	no	total	
yes	0	20	20	
no	0	80	80	
total	0	100	100	

Problem with naive approach

How much agreement do we expect to occur by chance alone?

Rater A			
Rater B	yes	no	total
yes	50	15	65
no	5	30	35
total	55	45	100

Rater C				
Rater D	yes	no	total	
yes	0	20	20	
no	0	80	80	
total	0	100	100	

Agreement expected by chance

$$p_{A,yes} = \frac{a+c}{n}$$

$$p_{A,no} = \frac{b+d}{n}$$

$$p_{B,yes} = \frac{a+b}{n}$$

$$p_{B,no} = \frac{c+d}{n}$$

	Rater A				
Rater B	yes	no	total		
yes	а	b	a+b		
no	С	d	c+d		
total	a+c	b+d	n=a+b+c+d		

Agreement expected by chance:

$$p_{E} = p_{A, yes} \cdot p_{B, yes} + p_{A, no} \cdot p_{B, no}$$

Cohen's kappa

Cohen's kappa
$$\kappa = \frac{p_{O} - p_{E}}{1 - p_{E}}$$

p_o: observed agreement

p_F: agreement expected by chance

1: maximum possible agreement

Interpretation: κ is the agreement adjusted for agreement expected by chance

$$\kappa \le p_0$$

If
$$p_0 = 1$$
 then $\kappa = 1$

$$\kappa = 0 \leftrightarrow p_0 = p_F : \kappa = 0$$
 means no agreement

Cohen's kappa in example

For A, B:

$$p_0 = 0.8$$

$$p_E = \frac{55}{100} \cdot \frac{65}{100} + \frac{45}{100} \cdot \frac{35}{100} = 0.515$$

$$\kappa = \frac{0.8 - 0.515}{1 - 0.515} = 0.588$$

Rater A			
Rater B	yes	no	total
yes	50	15	65
no	5	30	35
total	55	45	100

For C, D:

$$p_0 = 0.8$$

$$p_{E} = \frac{0}{100} \cdot \frac{20}{100} + \frac{100}{100} \cdot \frac{80}{100} = 0.8$$

$$\kappa = \frac{0.8 - 0.8}{1 - 0.8} = 0$$

Rater C			
Rater D	yes	no	total
yes	0	20	20
no	0	80	80
total	0	100	100

Assessing the value of Cohen's kappa

Interpretation of Cohen's kappa according to Landis and Koch (1977):

Value of kappa	strength of agreement
<0.00	poor
0.00-0.20	slight
0.21-0.40	fair
0.41-0.60	moderate
0.61-0.80	substantial
0.81-1.00	almost perfect

Confidence interval for Cohen's kappa

The standard error for κ is given by

$$se(\kappa) = \sqrt{\frac{p_{o}(1-p_{o})}{n(1-p_{E})^{2}}}$$

The $100 \cdot (1-\alpha)\%$ Confidence Interval is given by

$$\left[\kappa - Z_{1-\alpha/2} \operatorname{se}(\kappa), \kappa + Z_{1-\alpha/2} \operatorname{se}(\kappa)\right]$$

where $z_{1-\alpha/2}$ is the $(1-\alpha/2)$ -quantile of the Standard Normal Distribution

e.g. for
$$\alpha = 0.05$$
: $z_{1-\alpha/2} = z_{0.975} = 1.96$

 \rightarrow test of kappa, e.g.

 H_0 : $\kappa = 0$ vs. H_1 : $\kappa \neq 0$ is significant (p < 0.05) if 95%-CI does not contain 0

 H_0 : $\kappa = c$ vs. H_1 : $\kappa \neq c$ is significant (p < 0.05) if 95%-CI does not contain c

Confidence interval for kappa in examples

$$p_{E} = 0.515, p_{O} = 0.8, \kappa = 0.588$$

$$se(\kappa) = \sqrt{\frac{p_{O}(1 - p_{O})}{n(1 - p_{E})^{2}}} = \sqrt{\frac{0.8(1 - 0.8)}{100(1 - 0.515)^{2}}} = 0.082$$

Rater A				
Rater B	yes	no	total	
yes	50	15	65	
no	5	30	35	
total	55	45	100	

95% Confidence Interval is given by

$$[\kappa - 1.96.0.082, \kappa + 1.96.0.082] = [0.588 - 1.96.0.082, 0.588 + 1.96.0.082]$$

$$= [0.427, 0.749]$$

$$p_F = 0.8, p_O = 0.8, \kappa = 0$$

$$se(\kappa)=0.2$$

95% Confidence Interval is given by

$$[\kappa - 1.96.0.2, \kappa + 1.96.0.2] = [-0.392, 0.392]$$

Rater C					
Rater D	yes	no	total		
yes	0	20	20		
no	0	80	80		
total	0	100	100		

Assessing the value of Cohen's kappa

Caveat: kappa depends on prevalence

Rater A					
Rater B	yes	no	total		
yes	1	1	2		
no	1	97	98		
total	2	98	100		

	Rater A					
Rater B	yes	no	total			
yes	0	1	1			
no	1	98	99			
total	1	99	100			

kappa=0.49

Rater A				
Rater B	yes	no	total	
yes	1	1	2	
no	0	98	98	
total	1	99	100	

kappa=-0.01

Rater A					
Rater B	yes	no	total		
yes	1	0	1		
no	0	99	99		
total	1	99	100		

kappa=0.67

kappa=1

Assessing the value of Cohen's kappa

Caveat: kappa depends on prevalence

Rater A					
Rater B	yes	no	total		
yes	40	9	49		
no	6	45	51		
total	46	54	100		

	Rater A					
Rater B	yes	no	total			
yes	80	10	90			
no	5	5	10			
total	85	15	100			

kappa=0.70

Rater A					
Rater B	yes	no	total		
yes	45	15	60		
no	25	15	40		
total	70	30	100		

kappa=0.32

Rater A					
Rater B	yes	no	total		
yes	25	35	60		
no	5	35	40		
total	30	70	100		

kappa=0.13

kappa=0.26

Cohen's kappa for more than two categories

- 50 cancer patients
- Two raters, A and B

For each patient both raters estimate the degree of spread to regional lymph

nodes (N0,N1,N2,N3)

Rater A						
Rater B	N0	N1	N2	N3	total	
N0	3	2	3	2	10	
N1	3	3	3	3	12	
N2	1	4	6	6	17	
N3	3	1	3	4	11	
Total	10	10	15	15	50	

$$p_0 = \frac{3+3+6+4}{50} = 0.32$$

$$p_E = \frac{10}{50} \cdot \frac{10}{50} + \frac{10}{50} \cdot \frac{12}{50} + \frac{15}{50} \cdot \frac{17}{50} + \frac{15}{50} \cdot \frac{11}{50} = 0.256$$

Cohen's kappa for more than two categories

$$p_0 = 0.32$$

$$p_{o} = 0.32$$

$$p_{E} = 0.256$$

$$\kappa = \frac{0.32 - 0.256}{1 - 0.256} = 0.086$$

$$se(\kappa) = \sqrt{\frac{0.32(1-0.32)}{50(1-0.256)^2}} = 0.089$$

Rater A					
Rater B	N0	N1	N2	N3	total
N0	3	2	3	2	10
N1	3	3	3	3	12
N2	1	4	6	6	17
N3	3	1	3	4	11
Total	10	10	15	15	50

95%-CI for κ : $[0.086 - 1.96 \cdot 0.089, 0.086 + 1.96 \cdot 0.089] = [-0.088, 0.260]$

Extensions of Cohen's Kappa

For more than two categories:

- κ does not take degree of disagreement into account
 - \rightarrow If appropriate, for ordinal measurement: Use weighted kappa κ_w with weights, e.g. quadratic weights

	Rater A						
Rater B	N0	N1	N2	N3			
N0	1	0.89	0.56	0			
N1	0.89	1	0.89	0.56			
N2	0.56	0.89	1	0.89			
N3	0	0.56	0.89	1			

- Calculate p_O and p_F using weights
- If weights are 1 for agreement and 0 for disagreement: $\kappa_w = \kappa$
- Decision about which weights to use before data collection!

For more than two raters:

Use Fleiss' kappa

Situations

Categorical outcome:

Raters categorize items into 2 or more categories.

Quantitative outcome:

Raters measure a continuous value.

Evaluation of diameter measurements for thoracic endovascular aortic repair

Figure 1. Diameter assessment based on axial (A), double oblique multiplanar reformation (MPR; D—F) and centerline (CL, B—C) techniques. Measuring on axial images, the course of the aorta can only be assessed visually (A), whereas MPR and centerline analysis allow for measurements in a plane perpendicular to the vessel course (C, F).

Müller-Eschner et al. 2013

Example

Data:

- 30 patients
- 3 evaluation methods:
 - Axial
 - Manual double-oblique multiplanar reformations (MPRs)
 - Semiautomatic centerline analysis (CL)
- Measured at several aortic positions: P1,..,P4
- Two experts

Question:

How well do measurements agree:

- from different methods for a given expert?
- from different experts for a given method?

Quantitative outcome

Scatterplots

Axial, P1

r=0.81

95%-CI: 0.72 to 0.93

p<<0.001

 \rightarrow Interpretation?

Correlation coefficient?

Correlation ≠ Agreement:

Evaluating the difference

Focus of interest: difference between measurements $Y_1 - Y_2$

For Axial, P1, Reader1 and Reader2:

$$\overline{d}$$
 = mean($Y_1 - Y_2$) = -0.3 mm, s = sd($Y_1 - Y_2$) = 1.6 mm,

95%-CI for difference [-0.9,0.3] indicates no systematic bias between measurements.

Evaluating the difference

How to interpret Confidence interval?

Artificial examples:

Plotting the difference versus average: **Bland-Altman Plot**

Idea: Plot Difference of measurements vs. Average of measurements

Aim: Identify outliers, identify trends

Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 8476, 307-10.

Plotting the difference versus average: **Bland-Altman Plot**

Idea: Plot Difference of measurements vs. Average of measurements, indicate mean difference

Mean difference $ar{d}$

Plotting the difference versus average: **Bland-Altman Plot**

Idea: Plot Difference of measurements vs. Average of measurements Indicate mean difference Show upper and lower limits of agreement (LoA). Grey zones: 95%-Cls.

Upper limit of agreement $\bar{d} + 1.96 s$

Mean difference \bar{d}

Lower limit of agreement $\bar{d} + 1.96 s$

Quantitative outcome

Plotting the difference versus average:

Bland-Altman Plot

Upper limit of agreement $\bar{d} + 1.96 s$

Mean difference \bar{d}

Lower limit of agreement $\bar{d} + 1.96 s$

Interpretation of LoA:

Limits define a range within which most differences between measurements will lie.

Justification:

For normally distributed measurements from $N(\mu, \sigma^2)$:

95% measurements are expected in the range $\mu \pm 1.96 \sigma$

Note:

The decision whether the LoA are acceptable is left to the investigator, it is not a decision for the statistician!

If LoA are clinically acceptable, the measurement methods can be used interchangeably.

Bland-Altman plot with SigmaPlot

Bland-Altman plot with SigmaPlot

Quantitative outcome

Bland-Altman Plot

What if size of difference changes with size of average?

Reader 1, CL and MPR at P4

Bland-Altman Plot

What if size of difference changes with size of average?

Reader 1, CL and MPR at P4

Bland-Altman Plot

What if size of difference changes with size of average?

Reader 1, CL and MPR at P4

→ log-transformation of measurements

Bland-Altman Plot

What if size of difference changes with size of average?

Reader 1, Axial and CL at P1

Trend indicates that Axial has more variability than CL.

Bland-Altman Plot: Extensions

- Until now: one measurement per subject and method/rater.
- Sometimes multiple measurements per subject:
 - equal number of replicates
 - different number of replicates
 - paired replicates
- Bland-Altman Plots can be drawn for multiple measurements per subject.
- Limits of Agreement can be derived.

Quantitative outcome

Alternative Intervals

 LoA are not suited as interval to predict where a future observation will lie, this would be a prediction interval, limits of this:

$$\bar{d} \pm t_{n-1.0.975} \sqrt{(n+1)/n} \ s$$

 Tolerance interval: Interval in which 95% of the future observations will lie with 95% probability.

Intervals symmetric around 0:

• Total Deviation Index, e.g. $TDI_{0.95}$:

$$P(|Y_1 - Y_2| < TDI_{\pi}) = \pi$$

Coverage Probability:

$$P(|Y_1 - Y_2| < d) = CP_d$$

e.g. $CP_3 = 0.92$

Francq and Govaerts (2016), Lin (2000)

Scaled indices:

Concordance Correlation Coefficient (CCC)

Summarize agreement in one number:

$$CCC = 1 - \frac{\text{Expected squared perpendicular deviation from 45}^{\circ} \text{ line}}{\text{Expected square perpendicular deviation from 45}^{\circ} \text{ line if uncorrelated}}$$

CCC=1: complete agreement, CCC=0: no agreement

Scaled indices: Intraclass Correlation Coefficient (ICC)

Summarize agreement in one number:

- ICC based on ANOVA model
- assumes identical precision of the methods
- Different ICCs exist: identify the one that reflects the research question
- If interest is in the interchangeability of measurements
 - → use ICC measuring the so-called absolute agreement rather than just consistency, which ignores systematic shifts between raters.

Comparison of several approaches

Dependence on variability of subjects

	Full data set	Restricted data set
	(n=30)	(n=18, ,middle' 60%)
Standard deviation of differences d	1.60	1.58
95%-Limits of Agreement (bias)	-3.47;2.82 (-0.33)	-3.56;2.62 (-0.47)
95%-CIs of LoAs	LL: -4.50;-2.43 UL:1.78;3.85	LL:-4.92;-2.20 UL:1.26;3.97
95%-Prediction interval	-3.66;3.01	-3.89;2.94
95%-Tolerance interval (with 95%	-4.41;3.76	-4.91;3.97
confidence)		
TDI with $\pi = 95\%$ (95%-CI)	3.21 (2.30;4.05)	3.23 (2.14;4.19)
CP at d _{max} =3	92%	91%
Correlation r (95%-CI)	0.86 (0.72;0.93)	0.49 (0.03;0.78)
CCC (95%-CI)	0.85 (0.72;0.93)	0.45 (0.04;0.74)
ICC (95%-CI)	0.86 (0.72;0.93)	0.47 (0.04;0.76)

Summary Categorical outcome

- Explore degree of agreement between raters/measurement methods on the items
- Cohen's kappa
 - Derive κ and 95%-Cl
 - Assessment of Kappa value on a heuristic scale
- for ordinal ratings: weighted Kappa
- for more raters: Fleiss' Kappa

Summary Quantitative outcome

- Always plot the data!
- Bland-Altman Plot
 - Identify extreme differences and shapes/ trends
 - Identify bias by 95%-CI for mean difference
 - LoA to assess whether agreement is acceptable
 - Extensions to multiple measurements per subject
- Various other intervals exist:
 - Prediction interval
 - Tolerance interval
 - Symmetric around 0: Total Deviation Index, Coverage Probability
- Scaled indices:
 - Concordance Correlation Coefficient (CCC)
 - Intraclass Correlation Coefficients (ICC)
 - careful: CCC and ICC values depend on variability of subjects
 - → comparison between different data sets is difficult!

Software

Kappa:

- GraphPad
- http://vassarstats.net/kappa.html
- R packages psych and irr

Bland-Altman Plot + some further analyses

- SigmaPlot
- GraphPad
- MedCalc
- R package MethComp
- R package biostatUZH

Page 46

References

- Bland JM, Altman DG (1986). Statistical methods for assessing agreement between two methods of clinical measurement. Lancet Feb 8;1:307-10.
- Francq BG, Govaerts B (2016). How to regress and predict in a Bland–Altman plot? Review and contribution based on tolerance intervals and correlated-errorsin-variables models. Statistics in Medicine 35: 2328-2358.
- Kopp-Schneider A, Hielscher T (2019). How to evaluate agreement between quantitative measurements. Radiotherapy and Oncology 141:321-326.
- Kwiecien R, Kopp-Schneider A, Blettner M(2011). Concordance analysis: part 16 of a series on evaluation of scientific publications. Dtsch Arztebl Int. Jul; 108(30):515-21.
- Lin LI (1989). A concordance correlation coefficient to evaluate reproducibility. Biometrics 45; 255-268.
- Lin L (2000). Total deviation index for measuring individual agreement with applications in laboratory performance and bioequivalence. Statistics in Medicine 19: 255-270.

Next lextures

Change in schedule

Thomas Hielscher

18 November: Survival analysis: Kaplan-Meier, logrank

25 November: Survival analysis: Cox PH regression

Dr. Diana Tichy:

2 December: Diagnostic tests