Here is a list of all of the information pertaining to covering spaces, which you can use freely on the midterm.

- 1° A covering space is a continuous map $p: \tilde{X} \to X$ with the property that for every point $x \in X$, we have an open neighborhood U containing x with $p^{-1}(U) = \coprod_{\alpha} U$. In this document, I will denote all covering spaces in this way.
- 2° **Homotopy Lifting Property:** If $f_t: Y \to X$ is a family (homotopy) of maps, and $\tilde{f}_0: Y \to \tilde{X}$ with $f_0 = p \circ \tilde{f}_0$, then $\exists \tilde{f}_t: Y \to \tilde{X}$ such that $f_t = p \circ \tilde{f}_t$.

Some simple cases are that in which Y is assumed a point, and $f_t(y)$ is thus a path. So paths lift from X to \tilde{X} . If Y = I, this gives the homotopy of paths lifting property.

- 3° 2 Corollaries that follow immediately are listed here:
 - $\circ p_*$ is an injective map. It's image in $\pi_1(X, x_0)$ are exactly loops at x_0 that lift to loops in \tilde{X} .
 - \circ If X and \tilde{X} are assumed PC, then $n_X = \#$ sheets of $p = [\pi_1(X, x_0) : p_*\pi_1(\tilde{X}, \tilde{x}_0)]$.
- 4° The Lifting Criterion: If $f: Y \to X$ is a map such that $f_*\pi_1(Y, y_0) \subseteq p_*\pi_1(\tilde{X}, \tilde{x}_0)$, then there exists \tilde{f} factoring $f: p \circ \tilde{f} = f$.

Moreover, two lifts \tilde{f} , \hat{f} that agree at a single point are equal everywhere.

- 5° The path connected covering spaces of $X = S^1$ are either S^1 with a map $\theta \mapsto \theta \cdot n$ for some integer n, or \mathbb{R} the universal cover.
- 6° For X any PC, LPC, SLSC (think locally simply connected) space, there exists \tilde{X}_u a simply connected space, and a covering space $\tilde{p}: \tilde{X}_u \to X$.
- 7° This gives us that any subgroup is realized by a path connected covering space. If $H \subset \pi_1(X)$, we can consider $\tilde{X}_H = \tilde{X}_u / \sim_H$ where two path classes (points in \tilde{X}_u) are equivalent, $\gamma_0 \sim_H \gamma_1$, if and only if $\gamma_0 \cdot \overline{\gamma_1} \in H$. One can check $p_*\pi_1(\tilde{X}_H) \cong \pi_1(\tilde{X}_H) = H$.
- 8° Any two path connected covering spaces with the same fundamental group are isomorphic as covering spaces. This means that $\exists q: \tilde{X} \to \tilde{X}'$ a homeomorphism (obtained by the lifting criterion) such that $p = p' \circ q$. Therefore
 - $\{\text{PC Covering Spaces } p: (\tilde{X}, \tilde{x}_0) \to (X, x_0)\}/\cong \leftrightarrow \{\text{Subgroups of } \pi_1(X, x_0)\}$

If we ignore basepoints, they differ by a change of basepoint map:

- $\{\text{PC Covering Spaces } p: \tilde{X} \to X\}/\cong \leftrightarrow \{\text{Subgroups of } \pi_1(X,x_0)\}/\text{Conjugation}\}$
- 9° A deck transformation is exactly one of the isomorphisms of covering spaces listed above.
- 10° The group of Deck Transformations (yes, it is a group) is given by

$$G(\tilde{X}) = N(H)/H$$

where $H = \pi_1(\tilde{X})$ as above, and N(H) is the normalizer of H (all elements $g \in \pi_1(X)$ such that $gHg^{-1} \subseteq H$. Therefore, if the covering space is normal,

$$G(\tilde{X}) = \pi_1(X, x_0) / p_* \pi_1(\tilde{X}, \tilde{x}_0)$$

11° Andrew's Why Covering spaces Are Great Theorem

{Sheets of a covering space $p: \tilde{X} \to X$ } \leftrightarrow $[\pi_1(X, x_0): p_*\pi_1(\tilde{X}, \tilde{x_0})]$

$$\{p: (\tilde{X}, \tilde{x_0}) \to (X, x_0)\}/\cong \leftrightarrow \{\text{Subgroups } H \subseteq \pi_1(X, x_0)\}$$

 $\{p: \tilde{X} \to X\}/\cong \leftrightarrow \{\text{Conjugacy classes of Subgroups } gHg^{-1} \subseteq \pi_1(X, x_0)\}$

$$G(\tilde{X}) = \{ \text{Deck Transformations } \phi : \tilde{X} \to \tilde{X} \} = N(\pi_1(\tilde{X}))/\pi_1(\tilde{X})$$

Therefore, in the case that you have a normal cover, and thus a normal subgroup,

$$G(\tilde{X}) = \pi_1(X, x_0) / p_*(\pi_1(\tilde{X}, \tilde{x_0}))$$

So combining several of the above correspondences:

$$\{G(\tilde{X}) : p : \tilde{X} \to X \text{ a normal cover}\} \leftrightarrow \{\text{Quotients of } \pi_1(X, x_0)\}$$