第一章 线性规划及单纯形法

1.5 单纯形法的进一步讨论

修贤超

机电工程与自动化学院 上海大学

xcxiu@shu.edu.cn

- 单纯形法计算步骤
 - □ 考虑求解线性规划问题

$$\max z = -3x_1 + x_3$$
s.t.
$$\begin{cases} x_1 + x_2 + x_3 \leq 4 \\ -2x_1 + x_2 - x_3 \geq 1 \\ 3x_2 + x_3 = 9 \\ x_1 & x_2 & x_3 \geq 0 \end{cases}$$

- 单纯形法计算步骤
 - □ 考虑求解线性规划问题

$$\max z = -3x_1 + x_3$$
s.t.
$$\begin{cases} x_1 + x_2 + x_3 \leq 4 \\ -2x_1 + x_2 - x_3 \geq 1 \\ 3x_2 + x_3 = 9 \\ x_1 & x_2 & x_3 \geq 0 \end{cases}$$

□ 没有可作为初始基的单位矩阵

■ 大 M 法

□ 第1步:标准化

$$\max \ z = -3x_1 + x_3 + 0x_4 + 0x_5$$
 s.t.
$$\begin{cases} x_1 + x_2 + x_3 + x_4 & = 4 \\ x_1 + x_2 + x_3 & - x_5 = 1 \\ -2x_1 + x_2 - x_3 & = 9 \\ x_1 & x_2 & x_3 & x_4 & x_5 \ge 0 \end{cases}$$

■ 大 M 法

□ 第1步:标准化

$$\max z = -3x_1 + x_3 + 0x_4 + 0x_5$$
s.t.
$$\begin{cases} x_1 + x_2 + x_3 + x_4 & = 4 \\ x_1 + x_2 + x_3 & - x_5 = 1 \\ -2x_1 + x_2 - x_3 & = 9 \\ x_1 & x_2 & x_3 & x_4 & x_5 \ge 0 \end{cases}$$

□ 第 2 步:增加人工变量 x₆, x₇

$$\max z = -3x_1 + x_3 + 0x_4 + 0x_5 - Mx_6 - Mx_7$$
s.t.
$$\begin{cases} x_1 + x_2 + x_3 + x_4 & = 4 \\ x_1 + x_2 + x_3 & - x_5 + x_6 & = 1 \\ -2x_1 + x_2 - x_3 & + x_7 = 9 \\ x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 \ge 0 \end{cases}$$

■ 大 *M* 法

□ 第 3 步:用单纯形法求解

$c_j \rightarrow$	-3	0	1	0	0	-M	-M
$lue{\mathbf{C}_B \mid \mathbf{X}_B \mid \mathbf{b}}$	x_1	x_2	x_3	$ x_4 $	x_5	$ x_6 $	$ x_7 $
$ \begin{array}{c cccc} 0 & x_4 & 4 \\ -M & x_6 & 1 \\ -M & x_7 & 9 \end{array} $	1 -2 0	1 [1] 3	1 -1 1	$\left \begin{array}{c}1\\0\\0\end{array}\right $	$\begin{array}{c} 0 \\ -1 \\ 0 \end{array}$	0 1 0	0 0 1
$c_j - z_j$	-3-2M	4M	1	0	-M	0	0
$ \begin{array}{c cccc} 0 & x_4 & 3 \\ 0 & x_2 & 1 \\ -M & \underline{x_7} & 6 \end{array} $	3 -2 [6]	0 [1] 0	2 -1 4	$\begin{array}{ c c } 1 \\ 0 \\ 0 \end{array}$	$\begin{array}{c} 1 \\ -1 \\ 3 \end{array}$	$ \begin{array}{c c} -1 \\ 1 \\ -3 \end{array} $	0 0 1
$c_j - z_j$	-3+6M	0	1+4M	0	3M	-4M	0

■ 大 *M* 法

□ 第 3 步:用单纯形法求解

$c_j \rightarrow$	-3	0	1	0	0	-M	-M
$\mathbf{C}_B \mid \mathbf{X}_B \mid \mathbf{b}$	$ x_1 $	$ x_2 $	x_3	$ x_4 $	$ x_5 $	x_6	x_7
$ \begin{array}{c cccc} 0 & x_4 & 0 \\ 0 & x_2 & 3 \\ -3 & x_1 & 1 \end{array} $	0 0 1	$\left \begin{array}{c} 0\\1\\0\end{array}\right $	0 1/3 [2/3]	1 0 0	$\left \begin{array}{c} -1/2 \\ 0 \\ 1/2 \end{array}\right $	$-1/2 \\ 0 \\ -1/2$	1/2 1/3 1/6
$c_j - z_j$	0	0	3	0	3/2	-3/2-M	1/2 - M
$ \begin{array}{c cccc} 0 & x_4 & 0 \\ 0 & x_2 & 5/2 \\ 1 & x_3 & 3/2 \end{array} $	0 -1/2 3/2	$\left \begin{array}{c} 0\\1\\0\end{array}\right $	0 0 1	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	$\left \begin{array}{c} -1/2 \\ -1/4 \\ 3/4 \end{array} \right $	$1/2 \\ 1/4 \\ -3/4$	$ \begin{array}{c c} -1/2 \\ 1/4 \\ 1/4 \end{array} $
$c_j - z_j$	-9/2	0	0	0	-3/4	3/4 - M	-1/4 - M

- 例 3
 - □ 用大 M 法求解线性规划问题

$$\max z = 6x_1 + 4x_2$$
s.t.
$$\begin{cases} 2x_1 + 3x_2 \leq 100 \\ 4x_1 + 2x_2 \leq 120 \\ x_1 = 14 \\ x_2 \geq 22 \\ x_1 = x_2 \geq 0 \end{cases}$$

■ 例 3

□ 用大 M 法求解线性规划问题

$$\max \ z = 6x_1 + 4x_2$$
 s.t.
$$\begin{cases} 2x_1 + 3x_2 \leq 100 \\ 4x_1 + 2x_2 \leq 120 \\ x_1 = 14 \\ & x_2 \geq 22 \\ x_1 & x_2 \geq 0 \end{cases}$$

□ 标准化,增加人工变量

$$\max z = 6x_1 + 4x_2 + 0x_3 + 0x_4 + 0x_5 - Mx_6 - Mx_7$$

$$\text{s.t.} \begin{cases} 2x_1 + 3x_2 + x_3 & = 100 \\ 4x_1 + 2x_2 + x_4 & = 120 \\ x_1 + x_2 + x_5 + x_6 & = 14 \\ x_2 + x_5 + x_5 + x_6 + x_7 = 22 \\ x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 \ge 0 \end{cases}$$

■ 大 *M* 法

□ 用单纯形法求解

	$c_j \rightarrow$		6	4	0	0	0	- <i>M</i>	-M
\mathbf{C}_{B}	\mathbf{X}_{B}	b	x_1	$ x_2 $	x_3	x_4	$ x_5 $	x_6	$ x_7 $
0	x_3	100	2	3	1	0	0	0	0
0	x_4	120	4	2	0	1	0	0	0
-M	x_6	14	[1]	0	0	0	0	1	0
-M	x_7	22	0	1	0	0	-1	0	1
($c_j - z_j$		M+6	M+4	0	0	-M	0	0
0	x_3	72	0	3	1	0	0	-2	0
0	x_4	64	0	2	0	1	0	-4	0
6	x_1	14	1	0	0	0	0	1	0
-M	x_7	22	0	[1]	0	0	-1	0	1
	$z_i - z_i$		0	M+4	0	0	-M	-6-M	0

■ 大 *M* 法

□ 用单纯形法求解

	$c_j \rightarrow$		6	4	0	0	0	-M	- <i>M</i>
\mathbf{C}_{B}	$ \mathbf{X}_B $	b	$ x_1 $	$ x_2 $	x_3	$ x_4 $	x_5	x_6	$ x_7$
0	x_3	6	0	0	1	0	[3]	-2	-3
0	x_4	20	0	0	0	1	2	-4	-2
6	x_1	14	1	0	0	0	0	1	0
4	x_2	22	0	1	0	0	-1	0	1
($c_j - z_j$		0	0	0	0	4	-6-M	-4-M
0	$ x_5 $	2	0	0	1/3	0	1	-2/3	-1
0	x_4	16	0	0	-2/3	1	0	-8/3	0
6	x_1	14	1	0	0	0	0	1	0
4	x_2	24	0	1	1/3	0	0	-2/3	0
	$z_i - z_i$		0	0	-4/3	0	0	-10/3 - M	-M

- 两阶段法: 克服计算机处理 M 的困难(精度—误差)
 - □ 求解线性规划问题

$$\max z = -3x_1 + x_3$$
s.t.
$$\begin{cases} x_1 + x_2 + x_3 \leq 4 \\ -2x_1 + x_2 - x_3 \geq 1 \\ 3x_2 + x_3 = 9 \\ x_1 & x_2 & x_3 \geq 0 \end{cases}$$

□ 第一阶段 寻找原问题的一个基本可行解

$$\min \ w = x_6 + x_7$$

□ 第二阶段 得到原问题的最优解

$$\min \ z = -3x_1 + 0x_2 + x_3 + 0x_4 + 0x_5$$

■ 两阶段法

□ 第一阶段

$c_j \rightarrow$	-3	0	1	0	0	-1	-1
$\mathbf{C}_B \mid \mathbf{X}_B \mid \mathbf{b}$	$ x_1$	x_2	x_3	$ x_4 $	x_5	x_6	x_7
$ \begin{array}{c c c c} 0 & x_4 & 4 \\ -1 & x_6 & 1 \\ -1 & x_7 & 9 \end{array} $	1 -2 0	1 [1] 3	1 -1 1	1 0 0	$\begin{vmatrix} 0 \\ -1 \\ 0 \end{vmatrix}$	0 1 0	0 0 1
$c_j - z_j$	-2	4	0	0	-1	0	0
$ \begin{array}{c cccc} 0 & x_4 & 3 \\ 0 & x_2 & 1 \\ -1 & x_7 & 6 \end{array} $	3 -2 [6]	$\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$	2 -1 4	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	$\begin{array}{c c} 1 \\ -1 \\ 3 \end{array}$	$\begin{vmatrix} -1\\1\\-3 \end{vmatrix}$	0 0 1
$c_j - z_j$	6	0	4	0	3	-4	0
$ \begin{array}{c ccccc} 0 & x_4 & 0 \\ 0 & x_2 & 3 \\ 0 & x_7 & 1 \end{array} $	0 0 1	0 1 0	0 1/3 2/3	1 0 0	$\begin{array}{c c} -1/2 \\ 0 \\ 1/2 \end{array}$	$\begin{array}{c c} 1/2 \\ 0 \\ -1/2 \end{array}$	$ \begin{array}{c c} -1/2 \\ 1/3 \\ 1/6 \end{array} $
$c_j - z_j$	0	0	0	0	0	-1	1

■ 两阶段法

□ 第二阶段

	$c_j \rightarrow$		-3	0	1	0	0
\mathbf{C}_{B}	$ \mathbf{X}_B $	b	$ x_1 $	$ x_2 $	x_3	x_4	$ x_5 $
0 0	x_4 x_2	0 3	0	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$	0 1/3	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	$\begin{array}{ c c c } -1/2 \\ 0 \end{array}$
0	x_7	1	1	0	[2/3]	0	1/2
	$c_j - z_j$		0	0	3	0	3/2
0	x_4	0	0	0	0	1	-1/2
0	$\begin{array}{c c} x_2 \\ x_3 \end{array}$	$\frac{5/2}{3/2}$	-1/2 3/2	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	0 1	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	$\begin{vmatrix} -1/4 \\ 3/4 \end{vmatrix}$
	$c_j - z_j$		-9/2	0	4	0	-3/4

- 小结
 - □大州法
 - □ 两阶段法
- 课后作业: P44, 习题 1.6

$Q\&\mathcal{A}$

Thank you! 感谢您的聆听和反馈