For determining whether a number n_1 is a multiplication of the other number n_2 , a simplest way is to use the mod operator. A faster way is to check if there is a constant c so that $n_1 = cn_2$ or $n_1 - cn_2 = 0$. For every positive integer c, the number of possible pairs of n_1 and n_2 is infinite. However, if we add some constraints on the two numbers n_1 and n_2 , the number of pairs may be limited or even not exist. Now consider the following two constraints: 1) the two numbers n_1 and n_2 are five-digit numbers (including the prefix 0), and 2) concatenating the two numbers forms a permutation of zero to nine. Write a program to search for all pairs of n_1 and n_2 for an arbitrary constant c. (Hint: n_1 must in the range [1234,98765].)

Input

The input contains several cases and ends with zero. Each case contains one integer value c.

Output

For each case, output all pairs of n_1 and n_2 for such c with increasing n_1 in the following format:

$$n_1 = c * n_2$$

Each two consecutive cases should be separated by a newline character. If there is no pair for such c, output "No pair for c = xx."

Sample Input

11

12

13

0

No pair for c = 11.

Sample Output

45792 = 12 * 03816

73548 = 12 * 06129

89532 = 12 * 07461

91584 = 12 * 07632

67392 = 13 * 05184

81549 = 13 * 06273

94653 = 13 * 07281