Görüntü İşleme

Slayt 2

Görüntü işlemek için neler yapılır?

Jeme Zgoritması

- Gürültü" Temizlemek
- Parlaklığı Ayarlamak
- Koyuluk Ayarlamak
- Görüntü keskinleştirmek va ba anıklaştırmak
- Doğru renk ayarlam k

Slayt

mage formation 29 Geometric primitives and transformations • Photometric image formation • The digital camera 99 3 Image processing Point operators • Linear filtering • More neighborhood operators • Fourier transforms • Pyramids and wavelets • Geometric transformations Global optimization 205 4 Feature detection and matching Points and patches • Edges • Lines 5 Segmentation 267 Active contours • Split and merge • Mean shift and mode finding • Normalized cuts • Graph cuts and energy-based methods 309 6 Feature-based alignment 2D and 3D feature-based alignment • Pose estimation Geometric intrinsic calibration 343 7 Structure from motion Triangulation • Two-frame structure from motion Factorization • Bundle adjustment • Constrained structure and motion

Slayt

Görüntü Şamenin Yararları- 1

Resimler genellikle analog ortamlardan dijital ortamlara geçirildiği için bozukluk (noise) içerir. Görüntü işleme bu hataları düzeltmek için kullanılabilir.

Bir görüntünün Koordinatla

-Bir görüntüdeki kan say sır O ymak.

-Zarfların üzerin Öp-Kodun okunması

Slayt 11

R=10	R=1	R=10	R=20
G=15	G=30	G=15	G=5
B=5	B=5	B=5	B=10
R=30	R=30	R=30	R=80
G=50	G=50	G=40	G=100
B=10	B=10	B=10	B=250
R=240	R=200	R=3	R=120
G=55	G=200	G=60	G=90
B=255	B=100	B=7	B=10
R=100	R=30	R=200	R=45
G=50	G=50	G=55	G=60
B=7	B=10	B=25	B=15

image

Red Histogram

image

Green Histogram

Blue Histogram 🤃

- Değişik renk paletleri kullanılarak aynı resim değişik şekillerde ifade edilir.
- •Renkli resimlerde ayrı ayrı RGB değerlerinin tutulması yerine palet tutulması, bu bakımdan daha avantajlıdır.

Grafik nedir?

Gerçek hayattaki görüntülerin ve değerlerin bilgisayar ortamına aktarılmış haline grafik denir. Hareketsiz dir. Digital veri biçimindedir

Slayt 16

Grafik 2 ye ayrılır

- -Bitmap tabanlı
- -Vektör tabanlı

• Büyütme küçültme

Yer değiştirme

Döndürme

Renk değiştirme

Eğdirme

GEOMETRIK DÖNÜŞÜMLER

--2 boyutlu düzlemde-

- Dönüşümler, nesnelerin koordinat tanımlarının değiştirilmesi için yapılan işlemlerdir.
- Nesnelerin konum, boyut, şekil gibi özelliklerinin değiştirilmesi gerektiğinde kullanılırlar.
- Temel geometrik dönüşümler kapsamına yer değiştirme (translation), döndürme (rotation) ve ölçeklendirme (scaling) (ir.

Slayt 20

1.Ölçeklendir ()

- Nesnelerin boyutunu de iş ren dönüşümdür.
 Noktaların koordinat a zerinin, ölçeklendirme faktörleri ile çanılma zere e.de edilir.
- $X' = X \cdot SX$
- y' = y . sy

Lineer-Non Lineer Ölçeklendirme

Dönüşüm denklemleri,

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x \cdot s_x \\ y \cdot s_y \\ 1 \end{bmatrix}$$

$$\mathbf{P'} \qquad \mathbf{S} \qquad \mathbf{P}$$
ölçeklendirme matrisi

s_x ve s_y'nin 1'den küçük değerleri nesnenin boyutunu küçültür (küçültme işlemi) s_x ve s_y 'nin 1'den büyük değerleri nesnenin boyutunu büyütür (büyütme işlemi) s_x ve s_y'nin 1'e eşit olması nesnenin boyutunu değiştirmez

 $s_x = s_y$ yani her ikisine de aynı değerin verilmesi ölçeklendirilmis nesiv (e) oranlarının aynı kalmasını sağlar ki buna düzgün ölçeklendirme deni

Slayt 22

- Sorular W=200, H=300 p² er sörüntü boyutu 0.5 büyütülürse ne ne ne
- W=400 F=60 görüntü 3 kez büyütülürse son boyu and olur?
- W=1600, l1=1200 görüntü 4 kez küçültülürse son boyutu ne olur?

2.Yer Değiştirme

- Bir nesnenin bir doğru üzerinde bir noktadan bir noktaya getirilmesidir.
- İki boyutlu bir uzayda bir noktanın yeri, noktanın ilk konumuna P(x,y), yer değiştirme uzaklıkları eklenerek (tx, ty) değiştirilir.
- Noktanın yeni konumu P'(x',y') olur.

Slayt 24

Yer değiştirme de vo etrik gösterimi

: Noktanın ilk kor uml P(x,y)

: Noktanın v iştirin işleminden sonraki konumu P'(x',y')

: Yer Zaklıkıarı $T(t_x, t_y)$

olmak üze

$$x' = x + t_x$$
$$y' = y + t_y$$

olarak hesaplanır.

Sekil 2.1 : Bir noktanın P konumundan P'

konumuna getirilmesi

$$P = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \qquad P' = \begin{bmatrix} x_1' \\ x_2' \end{bmatrix}$$

$$P' = \begin{bmatrix} x_1' \\ x_2' \end{bmatrix}$$

$$T = \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

Nesneler Merkez Noktaları

Slayt 26

Yer değiştin ve 🔌 🔭

- P' = T + P eklinde ifade ♥
- Yer değiştirme dönüşünde nesnelerin her noktası eşit miktarlarda hare ket attirildiğinden nesnelerde bozulma olmazı
- Çokgenlerin Laşınmı tüm köşelerine yer değiştirme dönüşüm anün uygulanması yeterli olur.
- Daire gibi eğrisel nesnelerin hareketinde sadece merkez koordinatlarının yeri değiştirilerek nesne yeniden çizdirilir.

3.Döndürme

- Döndürme bir noktanın dairesel bir vo üzerinde hareket ettirilmesi işlemo.
- Döndürme işlemi için q (döndür ne açısı) ve döndürme işleminin yapın ça'ç xr, yr) sabit (pivot) noktasının (dön n m > noktası) belirtilmesi gerekir.

Döndürmenin Geometrik Gösterimi

Şekil 2.2 : P noktasının sabit bir nokta etrafında döndürülmesi

Döndürme işleminden sonraki koordinatlar θ ve ϕ açıları cinsinden ifade edileb ir χ kir χ 3).

Sekil 2.3 : P(x,y) noktasının orijin (kor în,)aşl^a gıç noktası) etrafında döndürülmesi

Slayt 30

Döndürmenin fan Siyonel gösterim

- P(x,y) noktasır n riji) (koordinat başlangıç noktası) etran o döndürülmesi sonucunda noktarılı yen konumu P'(x',y') bu şekilde hesaple vir.
- x' = r cos(f+q) = r cosf cosq r sinf sinq
- $y' = r \sin(f+q) = r \cos f \sin q + r \sin f \cos q$
- Noktanın kutupsal koordinatlarda ilk konumu
- $x = r \cos f$, $y = r \sin f$

Döndürmenin matrissel gösterim.

x ve y yerine konulduğunda,

$$x' = x \cos\theta - y \sin\theta$$

 $y' = x \sin\theta + y \cos\theta$

$$R = \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

R döndürme matrisi olmak üzere döndürme denklemlerinin var şekin leki ifadesi aşağıdaki gibidir :

$$P' = \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ -1 \end{bmatrix} = \begin{bmatrix} \cos y & \sin\theta \\ -1 & \cos\theta \end{bmatrix}$$

Slayt 32

Nesnele, Pivot Noktaları

Pixel nedir.

Pixel: Ekranda kontrol edilebilen ve resimleri tanımlayabilen en küçük noktalara (ki bu noktalar kare şeklindedir) pixel denir.

**Bir pixel kırmızı, yeşil ve mavi renklerin karışımından oluşur.

**Pixellerin sayısı ve renk derinliği resmin kalitesini belirler.

**Pixel tek başına bir ölçüyü ifade etmez.

**Verilen pixel sayısı belirtilen alan içerim de pixel sayısıdır.

Slayt 34

Pixel üzerine hesaplamalar

- Soru:10 cm de 10 piksel bulunursa 1 pikselin boyutu kaç mm'dir?
- Örneğin;
- 10 cm'deki pixel sayısı 10 denilirse;
- 10 cm = 100 mm,
- Sonuç→
- pixel boyutu: 100/10= 10mm'dir

Slayt 36

Piksel işlemleri

- Bir mesafede kaç Piksel buluzur.
- Bir alanda kaç Piksel 🗥 nu

Örnek Soru

- 1 pixelin bir kenarının boyutu 0,12 cm ise
- 20 adet pixelin yatayda oluşturabileceği mesafe kaç mm'dir?

1 cm 10 mm 0,12 cm x mm'dir

X =1,2 mm --→

Slayt 38

- → 1 pixel 1, 2 mm genişliğe sahipse 20 pixel X mm genişliğe sahiptir.
- •
- X=20*1,2 =24 mm'dir.
- Yukarıdaki soruyla ilgili..: eldeki değerlere göre
- 96 mm'lik mesafede kaç piksel bulunur?

→ 36 mm*12 mm de kaç piksel bulunur?

Örnek Soru

- 1 pixelin yatay kenarı 0,6 mm dir. 48 mm'lik dikey mesafeye kaç adet pixel yerleştirilebilir? (varsayılan değerleri kullanın)
- 1 pixelin yatay kenarı 0,6 mm ise varsayılan değerlere göre kare biçimlidir.
- Yüksekliği de 0,6 mm dir.

Slayt 40

- 0,6 mm de 1 pixel var ise
- 48 mm de X pixel v ardi

 $X*0,6 = 48 - \rightarrow x = 480/6 = 80$ piksel bulunur.

b-)Sorunun devamı olarak 72mm*36mm lik görüntü üzerinde kaç piksel vardır?

72 mm

36 mm

Örnek Sorular

- 240 mm dikey uzunlukta 480 adet pixel var ise bir pixelin genişliği kaç cm dir?
- Bir pixelin yüksekliği 0,125 cm ise 400 adet pixelin yatayda oluşturduğu mesafe kaç mm dir?
- 640 mm'lik dikey mesafede 0,320 cm bir kenarı olan kaç pixel yerleştirilebilir?

Slayt 42

Pixel Satır ve Sütunlar...

Görüntü Ortalaması

50	40
40	80
100	20
70	80
60	200
240	200

Görüntü Ortalaması

60 95 140	60 95 140
60	60
95	95
140	140

 $Red_{ort} = 50+40+70+80=240/4=60$

 $Green_{ort} = 40+80+60+200=380/4=95$

Blue_{ort} =100+20+240+200=560 /4 =140

Slayt 44

RGB			
100	20	30	
30	20	30	
80	20	90	
60	180	40	
60	200	40	
120	100	100	
80	150	210	
90	180	120	
40	120	150	

Örnek Soru Görüntü 🦳 əlan

RGB -> Gri tonları

• RGB değerleri, gri tonlarına şu formülle dönüştürülür:

$$\mathbf{I}_{grey}(\mathbf{p}) = \frac{\mathbf{I}_R(\mathbf{p}) + \mathbf{I}_G(\mathbf{p}) + \mathbf{I}_B(\mathbf{p})}{3}$$

Slayt 46

Gri Tonları -> İkili Cesimler

• Gri tonları ise iki^v re simler şu formülle dönüştürülür:

$$\mathbf{I}_{bin}(\mathbf{p}) = \begin{cases} 1 & \text{if } \mathbf{I}_{grey}(\mathbf{p}) \ge d \\ 0 & \text{otherwise} \end{cases}$$

- Burada d belirli bir eşik değeridir ve bu değer, çevirim için ana noktadır. (Threshold)
- Eşik noktalarının kullanılması hesaplama işlemini kolaylaştırırken bilgiyi yeterli kullanmaması ve genellikle elle girilen bir değer oluşturması bir dezavantajdır.

Slayt 49	RGB		Grayscale			
	5 5 5	10 10 10	50 50 50	5	10	50
	80 80 80	70 70 70	50 50 50	80	70	50
	90 90 90	105 105 105	140 140 140	90	105	140
Threshold (>=80)						
	0	0	0	0	0	0
	255	0	0	255	0	0
	255	255	255	255	255	255

