TD03 - ANALYSE SLR

L'objectif de ce TD est de construire des analyseurs SLR à partir des grammaires suivantes :

 G_1 : parenthèses équilibrées

- (1) $P \rightarrow$ (P) P
- (2) $P \to \varepsilon$

 G_2 : déclarations simplifiées en L, dv = déclaration de variable, df = déclaration de fonction

- (1) $P \rightarrow V$; F
- (2) $V \to \operatorname{dv} V'$
- $\stackrel{\smile}{(3)}V' o$, dv V'
- (4) $V' \to \varepsilon$
- (5) $F \rightarrow df F$
- (6) $F \to \varepsilon$

Suivez les étapes ci-dessous pour chacune des grammaires G_1 et G_2 .

Exercice 1. Augmentation de la grammaire

Créez une grammaire augmentée G' en rajoutant un nouvel axiome S dont la seule production est $S \to P$ vers l'ancien axiome P de la grammaire originale G.

Exercice 2. Articles/FERMETURE

Un *article* est une production avec un marqueur spécial • en partie droite de la production. Ce marqueur indique la partie du manche qui a déjà été observée sur la pile.

Construisez l'ensemble d'articles initial FERMETURE($\{S \to \bullet P\}$). La fonction FERMETURE(I) prend un ensemble d'articles et, pour tout article $A \to \alpha \bullet B \gamma$ dans FERMETURE(I), ajoute $B \to \bullet \beta$ pour toute règle $B \to \beta$ de la grammaire

Exercice 3. Fonction $ALLER_A(I,X)$

À partir d'un ensemble d'articles I, et d'un symbole X terminal ou non terminal de la grammaire, la fonction Aller_A(I, X) est la Fermeture de l'ensemble de tous les articles $A \to \alpha X \bullet \beta$ tels que $A \to \alpha \bullet X\beta$ est dans I. C'est-à-dire, la fonction Aller_A(I, X) fait avancer le marqueur \bullet pour tous les articles de I dont le prochain symbole après le marqueur est X.

Calculez la collection d'ensembles d'articles de la grammaire à l'aide de la fonction Aller_A(I, X) à partir de l'ensemble initial déjà calculé, pour tous les symboles X après le marquer •. Itérez ce processus jusqu'à ce qu'aucun nouvel ensemble d'articles ne soit ajouté à la collection.

Exercice 4. Automate LR(0)

Dessinez l'automate LR(0) de la grammaire de la façon suivante :

- Les états sont les ensembles d'articles I calculés précédemment
- Les transitions sont données par les valeurs de Aller_A(I,X)
- L'état initial est FERMETURE($\{S \rightarrow \bullet P\}$)
- Une transition étiquetée \$ depuis l'état FERMETURE($\{S \rightarrow P \bullet\}$) mène à l'état accept

Exercice 5. PREMIER(X)/SUIVANT(X)

Pour chaque symbole non terminal X de la grammaire, calculez PREMIER(X) et SUIVANT(X). Pour calculer PREMIER(X), appliquer les règles suivantes jusqu'à ce qu'aucun symbole ne puisse être ajouté à PREMIER(X).

- (1) Si $X \to \varepsilon$ est une production de la grammaire, on ajoute ε à PREMIER(X).
- (2) Si $X \to Y_1 \dots Y_k \in P$, mettre a dans $\operatorname{PREMIER}(X)$ s'il existe i tel que a est dans $\operatorname{PREMIER}(Y_i)$ et que ε est dans tous les $\operatorname{PREMIER}(Y_1) \dots \operatorname{PREMIER}(Y_{i-1})$. Si $\varepsilon \in \operatorname{PREMIER}(Y_j) \forall j$, $1 \le j \le k$, on ajoute ε à $\operatorname{PREMIER}(X)$.

^{1.} PREMIER(a)= {a} pour a terminal.

Pour calculer SUIVANT(X), appliquer les règles suivantes jusqu'à ce qu'aucun symbole ne puisse être ajouté à SUIVANT(X).

- (1) Mettre \perp dans Suivant(S).
- (2) si $X \to \alpha B\beta$, le contenu de PREMIER(β), excepté ε , est ajouté à SUIVANT(B).
- (3) s'il existe une règle $X \to \alpha B$ ou une règle $X \to \alpha B\beta$ telle que $\varepsilon \in \text{PREMIER}(\beta)$ (c'est à dire $\beta \stackrel{*}{\Rightarrow} \varepsilon$), les éléments de SUIVANT(X) sont ajoutés à SUIVANT(B).

Exercice 6. Construction de la table SLR

Construisez la table d'analyse SLR pour la grammaire comme suit.

- (1) Construire $C = \{I_0, I_1, \dots, I_n\}$ la collection d'ensemble d'articles LR(0) pour G'
- (2) L'état i est construit à partir de I_i . Les actions d'analyse syntaxique pour l'état i sont déterminées comme suit :
 - (a) Si $A \to \alpha \bullet a\beta$ est dans I_i et si Aller_A $(I_i, a) = I_j$, alors ACTION[i, a] = dj. Dans ce cas, a doit être un terminal.
 - (b) Si $A \to \alpha \bullet$ est dans I_i , alors $\operatorname{ACTION}[i,a] = rj$ où j est le numéro de la règle $A \to \alpha$ pour tout $a \in \operatorname{SUIVANT}(A)$, à l'exception de S'
 - (c) Si $S' \to S \bullet$ est dans I_i , alors ACTION[i, \$] = acc

Si un conflit entre différentes actions résulte de ces règles, la grammaire n'est pas SLR.

- (3) Les transitions de transfert GOTO[i, A] pour l'état i sont construites pour tout non terminal A comme suit : si Aller_A(I_i, A) = I_i alors GOTO[i, A] = j
- (4) Toutes les entrées non remplies par les règles 2 et 3 sont positionnées à err (cellules vides)
- (5) L'état initial est celui construit à partir de l'ensemble d'items contenant $S' \to \bullet S$

Exercice 7. Analyse LR

L'analyseur se sert de la table SLR pour déterminer la prochaine action en fonction de l'état au sommet de la pile i et du prochain symbole sous la tête de lecture a de la façon suivante :

- Si ACTION[i, a] = dj, où j est un état. L'analyseur effectue un décalage : il empile j et consomme une unité lexicale
- Si ACTION[i,a]=rk, où k est le numéro de la règle $A\to\beta$. L'analyseur effectue une réduction :
 - il dépile $|\beta|$ symboles de la pile
 - l'état l est maintenant au sommet de la pile
 - il empile l'état m, qui correspond à l'entrée GOTO[l, A]
- Si ACTION[i, a] = acc : l'analyseur accepte l'entrée
- Si ACTION[i, a] = err : l'analyseur signale une erreur

Utilisez la table d'analyse pour simuler l'analyse des mots suivants :

- Pour $G_1: w_1 = (())$ et $w_2 = ())$
- Pour $G_2:w_1=\mathtt{dv}$; $\mathtt{df},\,w_2=\mathtt{dv}$; $\mathtt{dv}\,\operatorname{et}\,w_3=\mathtt{dv}$, \mathtt{dv} ;

Détaillez l'état de la pile, de la bande de lecture et l'action de l'analyseur à chaque étape.