Exercices de probabilités

Martin Andrieux, Nathan Maillet

Pile ou face

Soit $p \in]0;1[$ et $r \in \mathbb{N}, r \geq 2$. On effectue une suite infinie de tirages à pile ou face. Les tirages sont indépendants et la probabilité de tirer face, à chaque tirage, vaut p. Pour $n \in \mathbb{N}$, on note F_n l'évènement "face sort au nèième tirage" et P_n l'événement "pile sort au n-ième tirage". Pour $n \in \mathbb{N}^*$, on note E_n l'événement "au n-ième tirage, on obtient r faces consécutives pour la première fois".

- 1. (a) Déterminer $E_1 \cdots E_{r-1}$ et E_r
 - (b) Soit $n \in \mathbb{N}$. Montrer que :

$$\mathsf{E}_{n+r+1} = \left(\bigcap_{i=n+2}^{n+r+1} \mathsf{F}_i\right) \cap \mathsf{P}_{n+1} \cap \left(\bigcap_{i=1}^{n} \overline{\mathsf{E}_i}\right)$$

- (c) En déduire que chaque E_n est un événement.
- 2. On pose $p_0 = 0$ et, pour $n \in \mathbb{N}, p_n = P(E_n)$. Montrer que $\sum p_n$ converge.
- 3. (a) Montrer que

$$\forall n \in \mathbb{N}, p_{n+r+1} = p^r(1-p) \left(1 - \sum_{i=1}^n p_i\right)$$

- (b) Exprimer, pour $n \in \mathbb{N}$, p_{n+r+1} en fonction de $p_r + r$, p_n , p et q = 1 p
- 4. Soit

$$G:[-1;1]\to\mathbb{R}$$

$$x\mapsto\sum_{k=0}^{+\infty}p_kx^k$$

- (a) Montrer que G est bien définie et qu'elle est continue
- (b) Montrer que

$$\forall x \in]-1; 1[, \frac{G(x)}{1-x} = \sum_{n=0}^{+\infty} \left(\sum_{k=0}^{n} p_k\right) x^k$$

(c) Exprimer G(x)

Variable aléatoire

Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes définies sur un espace probabilisé (Ω, A, P) à

valeurs dans $\{-1;1\}$, telles que, pour $n \geqslant 1$:

$$P(X_n = 1) = P(X_n = -1) = \frac{1}{2}$$

Pour $n \geqslant 1$, on pose $S_n = \sum_{k=1}^n X_k$.

- 1. (a) Démontrer que, pour tout n dans \mathbb{N} , $\frac{1}{(2n)!} \leqslant \frac{1}{2^n n!}$.
 - (b) Calculer, pour n dans \mathbb{N} et t réel $\mathsf{E}\left(e^{tX_n}\right)$; en déduire $\mathsf{E}(e^{tX_n})\leqslant e^{t^2/2}$.
- 2. Soit a un nombre réel strictement positif.
 - (a) Montrer que pour tout réel t positif : $P(S_n \geqslant a) \leqslant e^{-t\alpha} E(e^{tS_n})$.
 - (b) En déduire que $P(S_n \geqslant \alpha) \leqslant e^{-\alpha^2/2n}$.
 - (c) En déduire un majorant de $P(|S_n| \ge a)$.

Inégalités - 1

Soit X une variable aléatoire suivant la loi de Poisson de paramètre $\lambda > 0$. On note G_X sa série génératrice.

- $1.\ \, \mathrm{Montrer}\ \mathrm{que}\ P\left(|X-\lambda|\geqslant\lambda\right)\leqslant\frac{1}{\lambda}\,;\,\mathrm{en}\ \mathrm{d\'eduire}\ l'in\'egalit\'e}\ P(X\geqslant2\lambda)\leqslant\frac{1}{\lambda}.$
- 2. Montrer que, pour tout t dans $]1;+\infty[$ et pour tout $\mathfrak a$ réel positif non nul, $P(X\geqslant \mathfrak a)\leqslant \frac{G_X(t)}{t^{\mathfrak a}}.$
- 3. Déterminer le minimum sur $[1; +\infty[$ de la fonction $g: x \mapsto \frac{e^{t-1}}{t^2}$.
- ${\rm 4. \ \, Calculer \, } \, G_X(t) \, ; \, {\rm en \, \, d\'eduire } \, P(X \geqslant 2\lambda) \leqslant \Big(\frac{e}{4}\Big)^{\lambda}.$
- 5. Montrer que cette inégalité est meilleure que la première dès que λ prend des valeurs assez grandes.

Inégalités - 2 —

- 1. Pour $t\in\mathbb{R},x\in[-1\,;1]\,,$ montrer que $e^{tx}\leq\frac{1}{2}(1-x)e^{-t}+\frac{1}{2}(1+x)e^{t}$
- 2. Soit X une variable aléatoire à valeurs dans [-1;1] et d'espérance nulle. Montrer que e^X est d'espérance finie et que $E(e^{tX}) \le \operatorname{ch}(t) \le e^{t^2/2}$
- 3. Soient $X_1 \cdots X_n$ des variables aléatoires centrées indépendantes telles que, pour tout $i, |X_i| \leq a_i$. On pose $S_n = \sum_{i=1}^n X_i$.
 - (a) Montrer que

$$E(e^{tS_{\mathfrak{n}}}) \leq \exp\left(\frac{t^2}{2} \sum_{i=1}^{\mathfrak{n}} \alpha_i^2\right)$$

(b) Soit $\epsilon > 0, t > 0$. Montrer que

$$P(S_n > \varepsilon) \le \exp\left(-t\varepsilon + \frac{t^2}{2}\sum_{i=1}^n \alpha_i^2\right)$$

(c) En choisissant une bonne valeur de t, montrer que

$$P(S_n > \varepsilon) \le \exp\left(-\frac{\varepsilon^2}{2\sum_{i=1}^n \alpha_i^2}\right)$$

Stage militaire à l'X

Le jeune polytechnicien Guillaume s'est perdu dans la fôret. Il cherche à retrouver le reste de l'équipe. À chaque pas de temps, Guillaume et l'équipe changent de camp avec probabilité uniforme en suivant les chemins si contre. Au bout de combien de temps Guillaume peut-il espérer retrouver ses camarades? Au départ, Guillaume est à l'ouest, l'équipe est au sud.

