刀具智能监控功能说明

一、本界面主要功能

- 1. 监控机台各个加工刀具的实时状态、刀具的实时设备负载和加工时的主轴振动情况
- 2. 刀具的异常实时报警
- 3. 历史加工信息、历史报警统计信息查看

二、功能使用说明

1. 各个功能模块介绍

整个界面分成几个部分,从上到下,从左到右,分别是"机台菜单栏"、"刀具异常报警"、"刀具菜单栏"、"刀具报警次数统计"、"刀具实时状态监控"、"设备负载"、"主轴振动"

机台菜单栏: 查看机台信息,可切换展示信息的机台;

刀具异常报警:实时预警发生异常的刀具,显示异常刀具的机台号和刀号,同时在本地生成日志文件;

刀具菜单栏: 查看刀具信息,可切换展示信息的刀具;

刀具报警次数统计: 展示当前刀具的近半年报警0次数,可切换查看统计数据的机台;

刀具实时状态监控: 监控刀具的实时状态, 可查阅历史记录和切换本机台其它刀具的状态;

设备负载: 监控在加工刀具实时的负载情况;

主轴振动: 监控在加工刀具实时的主轴振动情况;

2. 信息导入

配置文件填写项目有"模型选择"、"崩缺调整系数α"、"磨损调整系数β"

用户使用前需根据自身实际加工情况填写好配置文件。根据机台各个加工刀具的加工类型选择合适的模型;根据用户对于机台刀具磨损程度的预估来设定调整系数。

崩缺调整系数α: 用于调节刀具崩缺判定的阈值,填写的数值范围在0.1 – 0.8 之间,数值越大表示能够容忍的刀具崩缺程度越大,报警灵敏度越低。

磨损调整系数β: 用于调节刀具磨损判定的阈值,填写的数值范围在0-1之间,数值越大表示能够容忍的刀具磨损程度越小,报警灵敏度越高。

A	R	C	ע
数据分解		破损	磨损
刀号	模型 (客户选择)	崩缺调整系数α (0.1-0.8)	磨损调整系数β (0-1)
T01	AAAA	0.2	0.6
T02	AAAA	0.2	0.6
T03	AAAA	0.2	0.6
T04	AAAA	0.2	0.6
T05	AAAA	0.2	0.6
T06	AAAA	0.2	0.6
T07	AAAA	0.2	0.6
T08	AAAA	0.2	0.6
T09	AAAA	0.2	0.6
T10	AAAA	0.2	0.6
T11	AAAA	0.2	0.6
T12	AAAA	0.2	0.6
T13	AAAA	0.2	0.6
T14	AAAA	0.2	0.6
T15	AAAA	0.2	0.6
T16	AAAA	0.2	0.6
T17	AAAA	0.2	0.6
T18	AAAA	0.2	0.6
T19	AAAA	0.2	0.6
T20	AAAA	0.2	0.6

3. 操作流程

- 1. 右上角的"刀具实时状态监控"默认显示当前机台正在加工刀具的状态数据,并动态更新实时数据;当机台加工刀具切换时,实时状态图所显示的数据也会自动切换到当前的加工刀具的数据;拖动下方白色透明长条可以查看历史数据。
- 2. 右下角的"设备负载"和"主轴振动",显示这个机台的实时负载和主轴振动数据,并实时动态更新最新的数据。
- 3. 左上角的菜单栏点击可切换机台,显示对应机台的设备信息,并在右侧展示对应机台正在加工刀具的"刀具实时状态监控"、"设备负载"和"主轴振动"数据。
- 4 左下角菜单栏可以选择当前已选择机台的刀具中的一把,并在右上角"刀具实时状态监控"图中切换所选的刀具进行历史数据展示和实时数据更新。"刀具实时状态监控"初始默认展示正在加工的刀具数据,点击左下角菜单栏后可查看任意刀具的历史数据和实时数据更新。
- 5. 左侧中间的"刀具异常报警"会实时反映所有机台刀具加工时的异常。当出现异常时,会显示异常刀具的对应机台和刀号。

采集振动数据

程序位置

D:\VibrationSensorMongoDB\VibrationSensorMongoDB.exe

配置文件

D:\VibrationSensorMongoDB\Config.xml

运行程序前,建议检查配置文件,并配置好相关参数(如串口名,存储数据的数据库名、表名等),配置文件说明如下

```
<?xml version="1.0" encoding="utf-8"?>
<Application>
 <MongoDB ip="localhost" port="27017" timeout="5" deletetime="-1">
   <SensorDataBase enabled="true" name="VibrationData">
     <Collection>Sensor04</Collection>
   </SensorDataBase>
 </MongoDB>
 <SerialPort>
   <Port portname="COM6" baudrate="921600" />
 </SerialPort>
 <Others>
   <DataProtocol>private/DataProtocol>
 <Signature>Ce4KkAg7y0jpn6ScXL8wd4uic1fPjMWgt+jfKMIMhiVeFxQHFi5IpVjwfOZ
fExE8T94eCFFpAFFpFE9gcpODYN2mYBVE3JobcQukCaGiIdlwa83h5HLKhDBB69F1sRKhwJP
FXt5qDK5EnQweEPB8XUeDhy2B7C4hIPSkNfUKUSk=</signature>
  </Others>
</Application>
<!--说明-->
<!--
MongoDB:
   ip:数据库ip
   port:数据库端口
   timeout: 连接数据库时间(单位秒)
   deletetime: 定期删除数据库数据(单位秒),负数则表示不删除
SensorDataBase:
   enabled: 是否使用数据库保存数据(默认启用, false表示不存储数据)
   name: 数据库名称
   Collection: 表名
SerialPort:
   portname: 串口名(一般不为COM1)
   baudrate:波特率(不用改)
```

DataProtocol:数据协议(不用改)
Signature:签名(不用改。用于验证程序,由厂家提供。客户提供电脑UUID,cmd中输入:
【wmic csproduct get UUID】获取)
-->

运行程序

双击VibrationSensorMongoDB.exe,会提示检测到的计算机串口,如下图,选择相应的串口(如COM6,一般不为COM1)填入上述的配置文件中,保存。

```
>> 已加载配置文件!
>> 检测到计算机串口 :
>> COM1
>> COM6
>> 请修改【Config.xml】文件中相关参数,保存后按【Enter】继续运行程序...
```

按【Enter】键继续运行,会检查程序签名(Signature),并连接数据库,如下图

若窗口有输出数据,数据库中有存储数据,则表示程序运行成功。

采集机台数据

程序位置

D:\FanucMongoDB\FanucMongoDB.exe

配置文件

```
D:\FanucMongoDB\Config.xml
```

运行程序前,建议检查配置文件,并配置好相关参数(如机台ip、端口,存储数据的数据库名、表名等),配置文件说明如下

```
<?xml version="1.0" encoding="utf-8"?>
<Application>
 <MongoDB ip="localhost" port="27017" timeout="5" deletetime="-1">
   <FanucDataBase enabled="true" name="FanucData">
     <Collection>Machine01</Collection>
   </FanucDataBase>
 </MongoDB>
 <FanucMachine>
   <Machine ip="10.143.60.119" port="8193" />
 </FanucMachine>
 <Others />
</Application>
<!--说明-->
<!--
MongoDB:
   ip: 数据库ip
   port: 数据库端口
   timeout: 连接数据库时间(单位秒)
   deletetime: 定期删除数据库数据(单位秒),负数则表示不删除
FanucDataBase:
   enabled: 是否使用数据库保存数据(默认启用, false表示不存储数据)
   name: 数据库名称
   Collection: 表名
Machine:
   ip: 机台IP地址
   port: 机台端口
```

运行程序

双击FanucMongoDB.exe,如需修改配置文件,需保存后按【Enter】键继续运行程序(如不用修改,则直接按【Enter】键)。若窗口有输出数据,数据库中有存储数据,则表示程序运行成功。

运行算法程序

基础:

1. 项目根路径

2. MongoDB数据库中振动数据表名

3. MongoDB数据库中机台数据表名

4. 配置文件

5. 程序运行文件

[D:\znmx_xc\]
[table name1]

[table name2]

项目根目录下【settings.py】文件

项目目录下【start1.bat】

运行:

1. 找到项目根路径

2. 用记事本打开【settings.py】

3. 找到【vibdata mangodb info】和【machineInfo mangodb info】两项

4. 修改【vibdata_mangodb_info】下【tb_name": "val"】中val的值为对应机台数据库表 名如: table name1

5. 修改【machineInfo_mangodb_inf】下【tb_name": "val"】中val的值为对应机台数据库表名如: table name2

6. 打开【start1.bat】,检查并修改第四行cd后的路径为项目根路径

7. 双击【start1.bat】运行