(a) 1

example: the state like the second line state. The left bottom one only has 1 successor, that '6' moves down.

		1	2	3		
		4	5	6		
		7		8		
		1		\		
		/		\		
1	2	3		1	2	3
4	5	6		4	5	6
7	8				7	8

(b) 4

example: the blank is at the center of the puzzle. This state could have 4 successors: '2' moves down, '4' moves right, '5' moves left and '7' moves up.

(c) answer: the minimum number of moves needed to reach the goal state is 4.

g(n) = steps moved

h(n) = number of tiles in wrong position

$$f(n) = g(n) + h(n)$$

Prove:

Since you can only move one tile one step, in other words, only one tile can be fixed in one step, the h value only can be reduced by 1 with one move.

As the search tree below, when I found the goal, its f value is 4. The smallest f value besides 4 is 5. For example, f(n) = 1 + 4 = 5, that g(n) = 1, f(n) = 4, means there are 4 tiles in wrong position. Even in the best condition, it can make all 4 tiles in the right position. It still needs 4 steps. At that time g(n) = 1 + 4 = 5, f(n) = 5 + 0 = 5. So we can get that f(n) would not be reduced with the node expansion. Hence, no state can be found whose f value is less than 4, which means no solution can be found that is less than 4 steps.

Therefore, the minimum number of moves needed to reach the goal state is 4.

	1 2 3 4 5
	678
u	
1 3 4 2 5	123123123
678	678 678 6 8
fin)=1+3=	4 fin)=1+3=4 fin)=1+4=5 fin)=1+4=5
left right	up down
3 1 3 4 2 5 4 2 5 6 7 8 6 7 8	23 1 23 1 4 5 6 4 5 6 7 8 7 8
	1=6 fin=2+3=5 fin=2+4=6
4 1 3	
6 7 8	HE TAX
f(n)=3+1=4	douve
4 1 3 2 2 5 b 6 7 8	78
f(n) = 4+0=4	T(n)=4+2=17