Einführung in die Technische Informatik

Prof. Dr.-Ing. Stefan Kowalewski

WS 22/23

Kapitel 8: Speichertechnologien

Speichertechnologien

Quelle: commons.wikimedia.org/wiki/File:Nec_02716_EPROM.jpg

Speicher

- Der Begriff Speicher (v. lat.: spicarium) bezeichnet in seiner ursprünglichen Bedeutung eine Einrichtung zur Lagerung von Gütern jeglicher Art
 - Beispiel: Speicher in einem Gebäude
- In der Informatik wird dieser Begriff synonym zu Datenspeicher genutzt
- Der Begriff "Speicher" hat in der Informatik abhängig vom aktuellen Kontext unterschiedliche Bedeutungen
- Wir betrachten in dieser Veranstaltung nur Halbleiterspeicher
 - Beispiel: RAM, ROM, DRAM etc.
 - Gegenbeispiel: Festplatten, CDs, DVD etc.

"logische" <-> "technische" Sicht

"logische Sicht"

- Einfache Speicherkonzepte
- Abstraktionsniveau: ≥ D-Flipflop
- Fragestellung: Wie werden Daten im Speicher verwaltet?

"technische Sicht"

- Schwerpunkt auf der Realisierung moderner Speicher
- Fragestellung: Wie ist ein bestimmter Speichertyp technisch aufgebaut?

Logische Sicht

Quelle: Technische Informatik 2, W. Schiffmann und R. Schmitz

Technologien

Technologien

Quelle: Technische Informatik 2, W. Schiffmann und R. Schmitz

Abschnitt 8.1

Random access memory

- ► Statische RAM
- Dynamische RAM

RAM-Speicher

RAM = Random Access Memory

- SRAM (Static RAM)
 - Verwendung von Flipflops/Latches (wie in Kap. 6.2: "4 x 3 Speicher")
 - sehr schnell (<10ns Zugriffszeit)
 - Verwendung als Level 2 Cache (L2-Cache)
- DRAM (Dynamic RAM)
 - Pro Speicherzelle 1 Transistor und 1 Kondensator
 - dadurch hohe Speicherdichte und geringe Kosten
 - Speicherinhalte müssen "aufgefrischt" werden
 - langsamer als SRAM (ca. 50ns Zugriffszeit)
 - Verwendung als Hauptspeicher

© G. Lakemeyer, W. Oberschelp, G. Vossen

Statische RAMs (SRAM)

 SRAM gehört zu den flüchtigen Speichern,
 d.h. die enthaltenen Informationen gehen bei Verlust der Versorgungsspannung verloren

- SRAMs werden in Bipolarer- oder in MOS-Technik hergestellt
 - Bipolare SRAMs werden wegen ihrer hohen Geschwindigkeit oft als Cache-Speicher eingesetzt

Rückgekoppelte Transistorschalter

Quelle: Technische Informatik 1, W. Schiffmann und R. Schmitz

Rückgekoppelte Transistorschalter

Quelle: Technische Informatik 1, W. Schiffmann und R. Schmitz

Bipolares SRAM

Quelle: Technische Informatik 2, W. Schiffmann und R. Schmitz

Dynamische RAMs (DRAM)

DRAMs sind nur in MOS-Technik realisierbar

- Durch dynamische Speicherung kann die Anzahl der Transistoren reduziert werden
- Es werden nur ein Transistor und ein Kondensator zur Abbildung der Speicherzelle benötigt
- Aber der Kondensator muss alle 2-5 ms nachgeladen werden, sonst werden die Informationen beim Lesen zerstört

Ein-Transistor-Speicherzelle

Quelle: Technische Informatik 1, W. Schiffmann und R. Schmitz

Prinzip eines 4Mbit DRAM Speichers

Abschnitt 8.2

Read-Only Memory

- Festwertspeicher
- Programmable ROM
- Erasable Programmable ROM
- Electrically Erasable Programmable ROM
- ► Flash-Speicher

Festwertspeicher

- Festwertspeicher (auch Read-Only Memory kurz ROM genannt) ist ein nichtflüchtiger Speicher, d.h. die Informationen bleiben auch nach Abschalten der Versorgungsspannung erhalten
- Das Eintragen von Informationen in den ROM wird
 Programmierung (vs. Speichern beim RAM) genannt
- Je nach Anwendungsbereich werden unterschiedliche Programmierverfahren genutzt:
 - Maskenprogrammierung (ROM)
 - Elektrische Programmierung (PROM)
 - Löschbare, elektrische Programmierung (EPROM, EEPROM, Flash)

Maskenprogrammierung (ROM)

 Die Programmierung ist irreversibel

 Beim Herstellungsprozess wird die Information durch eine Metallisierungsmaske auf den Chip übertragen.

 Als Speicherelemente dienen MOS-Transistoren

Quelle: Technische Informatik 2, W. Schiffmann und R. Schmitz

Maskenprogrammierung (ROM)

- Speicherorganisation -

Quelle: Technische Informatik 2, W. Schiffmann und R. Schmitz

PROM-Speicher (Programmable ROM)

 PROMs können vom Anwender programmiert werden

 Sogenannte Programmiergeräte zerstören gezielt in dem PROM eingebaute NiCr-Sicherungen durch Anlegen einer hohen

Quelle: howstuffworks.com

EPROM-Speicher (Erasable Programmable ROM)

EPROMs nutzen als
 Speicherelemente
 selbstsperrende
 Feldeffekttransistoren (mit zusätzlichem Floating Gate)

 EPROMs können durch energiereiche, ultraviolette Strahlung gelöscht werden

- Funktionsprinzip -

Quelle: Technische Informatik 1, W. Schiffmann und R. Schmitz

- Funktionsprinzip -

Speicherzellenaufbau (Eintransistor-Zelle)

Quelle: Technische Informatik 1, W. Schiffmann und R. Schmitz

- Funktionsprinzip -

- Anlegen einer großen positiven Spannung am Gate
- Negative Ladungsträger bewegen sich aus dem Kanal zum Floating-Gate
- Logische 0 wird gespeichert

- Funktionsprinzip -

- Beleuchten des Gates mit UV-Strahlung
- Negative Ladungsträger bewegen sich zum Kanal
- Logische 1 wird wiederhergestellt

EEPROM-Speicher (Electrically Erasable Programmable ROM)

- Electrically Erasable Programmable ROM (EEPROM oder E²PROM) kann elektrisch gelöscht werden
- Einzelne Speicherzellen können gelöscht werden (im Gegensatz zum EPROM, wo zur Löschung alle Informationen zerstört werden müssen)

- Funktionsprinzip -

Quelle: Technische Informatik 1, W. Schiffmann und R. Schmitz

Flash-Speicher

- Die genaue Bezeichnung ist Flash-EEPROM Speicher
- Teilt sich das Funktionsprinzip mit dem EEPROM Speicher
- Arbeitet blockorientiert: nur Speicherzellen-Blöcke (meist Bytes) können gelöscht werden (im Gegensatz zum EEPROM, wo einzelne Bits gelöscht werden können)

Abschnitt 8.3

Bauelemente

Beispiel für ein RAM-Bauelement HM6264

Beispiel für ein RAM-Bauelement HM6264

Beispiel für einen ROM-Baustein 27C256

Beispiel für einen RAM-Baustein TC55V2325FF

