Lecture Summary: Introduction to Vector Spaces

Source: Lec27.pdf

Key Points

• Definition of Vector Spaces:

- A vector space is a set V with two operations:
 - 1. Vector addition: $+: V \times V \to V$.
 - 2. Scalar multiplication: $\cdot : \mathbb{R} \times V \to V$.
- These operations must satisfy 8 axioms, abstracted from \mathbb{R}^n .
- Axioms of Vector Spaces: For all $v, w, u \in V$ and scalars $a, b \in \mathbb{R}$:
 - 1. v + w = w + v (commutativity).
 - 2. (v+w) + u = v + (w+u) (associativity of addition).
 - 3. There exists a zero vector $0 \in V$ such that v + 0 = v.
 - 4. For every $v \in V$, there exists $-v \in V$ such that v + (-v) = 0.
 - 5. $1 \cdot v = v$, where 1 is the multiplicative identity in \mathbb{R} .
 - 6. $a \cdot (b \cdot v) = (a \cdot b) \cdot v$ (associativity of scalar multiplication).
 - 7. $a \cdot (v + w) = a \cdot v + a \cdot w$ (distributivity of scalar multiplication over vector addition).
 - 8. $(a+b) \cdot v = a \cdot v + b \cdot v$ (distributivity of scalar addition over scalar multiplication).

• Examples of Vector Spaces:

- $-\mathbb{R}^n$ with standard addition and scalar multiplication.
- The set of $m \times n$ matrices with real entries, where:
 - 1. Matrix addition is element-wise.
 - 2. Scalar multiplication is element-wise scaling.
- The solution set of a homogeneous system Ax = 0 forms a vector space.

• Non-Examples of Vector Spaces:

- Redefining addition or scalar multiplication in \mathbb{R}^2 can lead to violations of the axioms. For example:
 - 1. Redefining addition such that the second component subtracts instead of adding can break commutativity.
 - 2. Redefining scalar multiplication to ignore one component can break distributivity.

• Subspaces of a Vector Space:

- A subset $W \subseteq V$ is a subspace if:
 - 1. $0 \in W$.
 - 2. $v + w \in W$ for all $v, w \in W$.
 - 3. $a \cdot v \in W$ for all $v \in W$ and $a \in \mathbb{R}$.
- Example: The solution set of a homogeneous system Ax = 0 is a subspace of \mathbb{R}^n .

Simplified Explanation

Example 1: \mathbb{R}^2 as a Vector Space For $v = (v_1, v_2)$ and $w = (w_1, w_2)$:

$$v + w = (v_1 + w_1, v_2 + w_2), \quad a \cdot v = (a \cdot v_1, a \cdot v_2).$$

These operations satisfy all 8 axioms.

Example 2: Matrices as a Vector Space For $A, B \in \mathbb{R}^{m \times n}$:

$$A+B=(A_{ij}+B_{ij}), \quad c\cdot A=(c\cdot A_{ij}),$$

where A_{ij} represents the (i,j) entry of A. These operations satisfy the vector space axioms.

Example 3: Homogeneous System The solution set of Ax = 0:

- If $v, w \in V$, then $v + w \in V$ (closure under addition).
- If $v \in V$, then $a \cdot v \in V$ for $a \in \mathbb{R}$ (closure under scalar multiplication).

Conclusion

In this lecture, we:

- Defined vector spaces as a generalization of \mathbb{R}^n .
- Presented examples (e.g., \mathbb{R}^n , matrices, and homogeneous systems) and non-examples.
- Introduced subspaces and their properties.

Vector spaces provide a unified framework for understanding and manipulating linear algebra concepts. This abstraction is crucial for advanced topics such as vector calculus and linear transformations.