This one is bad. Don't look please.

1 Define $r := \sqrt{x_1^2 + x_2^2 + x_3^2}$. Let $\omega := (\frac{1}{r})^3 (x_3 dx_1 \wedge dx_2 - x_2 dx_1 \wedge dx_3 + x_1 dx_2 \wedge dx_3)$ be a 2-form on $\mathbb{R}^3 \setminus (0,0,0)$.

(a) Show that $d\omega = 0$.

Note that

$$(dx_i \wedge dx_j) \wedge dx_i = -(dx_i \wedge dx_i) \wedge dx_j = 0,$$

so if $\{i, j, k\} = \{1, 2, 3\}$, then

$$d\left(\frac{x_i}{r^3}\right) \wedge dx_j \wedge dx_k = D_i \frac{x_i}{r^3} dx_i \wedge dx_j \wedge dx_k + D_j \frac{x_i}{r^3} dx_j \wedge dx_j \wedge dx_k + D_k \frac{x_i}{r^3} dx_k \wedge dx_j \wedge dx_k$$
$$= D_i \frac{x_i}{r^3} dx_i \wedge dx_j \wedge dx_k + 0 + 0.$$

Then

$$d\omega = d\left(\frac{x_3}{r^3}\right) \wedge dx_1 \wedge dx_2 + d\left(\frac{x_2}{r^3}\right) \wedge dx_1 \wedge dx_3 + d\left(\frac{x_1}{r^3}\right) \wedge dx_2 \wedge dx_3$$

$$= D_3 \frac{x_3}{r^3} dx_3 \wedge dx_1 \wedge dx_2 - D_2 \frac{x_2}{r^3} dx_2 \wedge dx_1 \wedge dx_3 + D_1 \frac{x_1}{r^3} dx_1 \wedge dx_2 \wedge dx_3$$

$$= \left(D_1 \frac{x_1}{r^3} + D_2 \frac{x_2}{r^3} + D_3 \frac{x_3}{r^3}\right) dx_1 \wedge dx_2 \wedge dx_3$$

$$= \left(\frac{-2x_1^2 + x_2^2 + x_3^2}{r^5} + \frac{x_1^2 - 2x_2^2 + x_3^2}{r^5} + \frac{x_1^2 + x_2^2 - 2x_3^2}{r^5}\right) dx_1 \wedge dx_2 \wedge dx_3$$

$$= 0 dx_1 \wedge dx_2 \wedge dx_3$$

$$= 0.$$

(b) Let $B := \{(x_1, x_2, x_3) : (x_1 - 2)^2 + x_2^2 + x_3^2 = 3\}$ be a sphere in \mathbb{R}^3 , find the integral $\int_B \omega$.

Note that y = Ix = x and det(I), so

$$dy = dx = \det(I) dx.$$

The wedge product satisfies the multilinearity and alternating of the determinant, which uniquely characterizes it

3 Let D be the closed unit disk in \mathbb{R}^2 and f be a continuous function on D. Show that for any $\epsilon > 0$, there exists a number n and functions f_1, f_2, \ldots, f_n such that $f = f_1 + \ldots + f_n$ on D and the support of f_i has Lebesgue measure less than ϵ , for any $i = 1, \ldots, n$. State any theorem you use.

Given $\varepsilon > 0$, choose $n \in \mathbb{N}$ with $n > 4\pi/\varepsilon$. For $k = 0, \ldots, n-1$, define the open annulus

$$A_k = \{x \in \mathbb{R}^2 : \frac{k-1}{n} < |x| < \frac{k+1}{n}\},\$$

Area in \mathbb{R}^2 coincides with the Lebesgue measure. By construction, for all k,

$$m(A_k) \le m(A_{n-1}) = \pi \left(\left(\frac{n}{n} \right)^2 - \left(\frac{n-2}{n} \right)^2 \right) = \pi \left(\frac{4}{n} - \frac{4}{n^2} \right) = \frac{4\pi}{n} (1 - \frac{1}{n}) \le \frac{4\pi}{n} < \varepsilon.$$

The collection $\{A_k\}_{k=0}^n$ forms an open cover of the unit disc in \mathbb{R}^2 . Then there exists a partition of unity $\{\psi_j\}_{j=1}^m$ with each ψ_j having its support contained in some A_k . Define $f_j = \psi_j f$, then $f = f_1 + \cdots + f_m$ and each f_j has its support in some A_k , in particular, the support of f_j has Lebesgue measure at most $m(A_k) < \varepsilon$.

5 Prove that a subset E of \mathbb{R}^n is Lebesgue measurable if and only if for any $\epsilon > 0$, there exists an open set $U \subset \mathbb{R}^n$ such that $E \subset U$ and $m(U \setminus E) < \epsilon$.

We know that m is regular on Lebesgue measurable sets, i.e., there exists an open set $U \subseteq \mathbb{R}^n$ containing E such that $m(U \setminus E) < \varepsilon$.

If such a U exists, then U and $U \setminus E$ are measurable, so $U \setminus (U \setminus E) = E$ is measurable.

5 Let $\{f_n\}$ be a sequence of measurable functions and define $f := \liminf_n f_n$. Is f measurable? If yes, justify your answer. If no, give a counterexample.

Yes.

Define $g_n = -f_n$ measurable for all $n \in \mathbb{N}$, then we have that $g = \limsup_n g_n$ is measurable function. Therefore, so is $f = \liminf_n f_n = -\lim \sup_n g_n = -g$.

6 Let $\{f_n\}$ be a uniformly convergent and uniformly bounded sequence of Lebesgue integrable functions on \mathbb{R}^1 and let $f := \lim_n f_n$ be the limit. Is it true that

$$\lim_{n} \int_{\mathbb{R}^{1}} f_{n} dm = \int_{\mathbb{R}^{1}} f dm?$$

If yes, justify your answer. If no, give a counterexample. All integrals are Lebesgue integrals.

No

$$f_n(x) = \begin{cases} 1/n & 0 \le x \le n, \\ 0 & \text{otherwise.} \end{cases}$$

Then $f_n \to 0$ uniformly on \mathbb{R}^1 and uniformly bounded by 1. But $\int_{\mathbb{R}^1} f_n = 1$ and $\int_{\mathbb{R}^1} 0 = 0$.