DYNAMIC FEEDBACK LINEARIZATION WITH APPLICATION TO AIRCRAFT CONTROL

B. CHARLET[†], J. LEVINE

Centre d'Automatique et Informatique Ecole Nationale Supérieure des Mines de Paris 35 rue Saint Honoré, 77305 Fontainebleau cedex, France

R. MARINO

Dipartimento di Ingegneria Elettronica Seconda Università di Roma "Tor Vergata" Via O. Raimondo, 00173 Roma, Italia

ABSTRACT

We study the problem of linearization of a nonlinear system by dynamic state feedback. A necessary condition and a sufficient condition are presented and are shown to apply to a general aircraft model.

Keywords:

Aircraft control, Nonlinear systems, Feedback linearization,
Dynamic state feedback.

1. INTRODUCTION

A natural generalization of static feedback transformations for system (Σ)

$$\dot{z} = f(z) + \sum_{i=1}^{m} u_i(t) g_i(t) \quad z \in M, \quad u \in \mathbf{R}^m$$
 (\(\Sigma\)

is given by dynamic feedback transformations of type

$$\dot{w} = a(x,w) + b(x,w)v \quad w \in \mathbb{R}^q
 u = \alpha(x,w) + \beta(x,w)v$$
(1.1)

where the matrix $\begin{pmatrix} b(x, w) \\ \alpha(x, w) \end{pmatrix}$ has rank m.

Note that if state measurements are available, a dynamic feedback (1.1) is not necessarily more difficult to implement than a static one.

Dynamic compensation (1.1) was recently introduced in the study of nonlinear systems with outputs: it was used in [4] to achieve input-output decoupling and in [5] to solve the linear model matching problem. In [8], [9] sufficient conditions are given under which a system with outputs is simultaneously input-output decoupled and linearized by a dynamic compensator. Our approach is totally different than the one of [6] and [9] since we consider systems without output: even if the states are viewed as outputs, available results, which require right-invertibility, do not apply in general. In fact the transformations obtained by our state-space approach provide the right output functions that ensure input-output dynamic feedback linearization without zero-dynamics, and consequently with stability.

In this paper we investigate the transformation of system (Σ) into linear controllable system (L)

$$\dot{x} = Ax + Bv \quad x \in \mathbf{R}^{n'} , v \in \mathbf{R}^{m} \tag{L}$$

via dynamic compensation of type (1.1) and extended state diffeomorphism

$$x = \phi(z, w) \tag{1.2}$$

† On leave from D.G.A., Ministère de la Défense Nationale.

Two results are presented without proof:

- A necessary condition for complete linearization by a dynamic feedback with given simple particular structure (see (2.3)).
- A sufficient condition for complete dynamic feedback linearization.

Both conditions are given in terms of distributions directly c: mputable from system (Σ) . The necessary condition and the sufficient condition for dynamic feedback linearization are both generalizations of the well known necessary and sufficient condition of Jakubzyk-Respondek [10] and Hunt-Su-Meyer [7] for static feedback linearization.

We introduce two sets of distributions which play a crucial role in the analysis of dynamic feedback. They are obtained by an algorithm in a finite number of steps, with a bound depending only on the dimension of the state manifold.

We conclude with an example of aircraft control where we show that the above techniques work.

2. PRELIMINARIES, DEFINITIONS AND BASIC RESULTS

Consider the nonlinear system on a connected, paracompact analytic manifold of dimension n

$$\dot{z} = f(z) + \sum_{i=1}^{m} g_i(z)u_i(t) = f(z) + G(z)u \quad z \in M$$
 (\Sigma

where f, $g_1, ..., g_m$ are real analytic vector fields on U_o , a neighborhood of z_o , equilibrium of f, $g_1(0), ..., g_m(0)$ being linearly independent.

If we define the distribution

$$\Gamma = span \{ g_1, \ldots, g_m \},\$$

system (Σ) can be described in a coordinate free way by the couple (f, Γ) . On the other hand, (Σ) can be obtained from (f, Γ) by suitably choosing a basis of Γ , g_1, \ldots, g_m , and local coordinates (z_1, \ldots, z_n) . Thus, (Σ) is a local coordinatization for (f, Γ) .

We recall the classical intrisic definition of feedback equivalence ([8],[11]):

Definition 1.

Two systems (f, Γ) and (f, Γ) are said to be feedback equivalent if

(i)
$$\Gamma = \stackrel{\sim}{\Gamma}$$
;

(ii)
$$\exists g \in \Gamma$$
 such that $g(z_o) = 0$ and $f + g = f$.

The transformation $(f\ ,\Gamma)\to (f\ +g\ ,\Gamma),\ g\in \Gamma,$ is called a feedback transformation.

Consider the distributions

$$Q^{o} = span \{ g_1, \ldots, g_m \}$$

 $Q^{i+1} = span \{ \overline{Q}_i, ad_i^{i+1} Q^{o} \}$

where \overline{Q} denotes the involutive closure of the distribution Q. We recall the static feedback linearization result ([7],[10]).

Theorem 2.1 ([7],[10])

System (f, Γ) is static feedback linearizable if and only if

- (i) Q^i is involutive of constant rank for i = 0, ..., n-1.
- (ii) dim $Q^{n-1} = n$.

Let us now focus attention on dynamic feedbacks:

Definition 2.

- Let f be an analytic vector field on M. We say that an analytic vector field f on M×R^q is an extension of f if and only if Tπ₁(f) = f where π₁ is the first projection: M×R^q → M, and where Tπ₁ denotes its tangent application. More generally T will be used as the tangent operator for differentiable mappings or manifolds.
- A feedback extension of system (f, Γ) is a couple (f + g + g , Γ) satisfying:
 - Γ^e is a subdistribution of rank m of $\Gamma \times T \mathbf{R}^q$
 - f^e is an extension of f on $M \times \mathbb{R}^q$
 - $-g_{\epsilon} \in \Gamma \times T \mathbf{R}^{q}$ and $T \pi_{2}(g_{\epsilon}) = 0$ where π_{2} is the second projection: $M \times \mathbf{R}^{q} \to \mathbf{R}^{q}$.

In local coordinates a feedback extension of system (Σ) is given by

$$\dot{z} = f(z) + G(z)\alpha(z, w) + G(z)\beta(z, w)v
\dot{w} = a(z, w) + B(z, w)v$$
(2.1)

where

$$\dot{w} = a(z, w) + \sum_{i=1}^{m} b_i(z, w) v_i \quad w \in \mathbf{R}^{\ell}$$

$$u = \alpha(z, w) + \beta(z, w) v$$
(2.2)

is a (nonsingular) dynamic state feedback compensator of order \boldsymbol{q} with

$$rank \ \left(egin{aligned} B\left(z \,, w \, \right) \\ eta(z \,, w \,) \end{aligned} \right) = m. \quad \text{Obviously (2.2) generalizes the notion of static}$$

state feedback. The composition of such transformations is associative but not commutative. Since the inverse transformation is not generally defined, the set of feedback extensions does not form a group.

We now define a new set of distributions related to a special kind of compensator (2.2).

Let $N_m = \{0, \dots, m\}$ and $N_m' = \{1, \dots, m\}$ Let P be a subset of N_m' , $J_P = N_m - P$ and $K_P = N_m' - P$. If $P = \{p\}$ we shall write, with obvious abuse of notation, p instead of P. Let $\mu = card \ K_P$, let us assume that we have constructed a compensator of order $j\mu$ where all the inputs g_i , $i \in K_P$, are extended by a j^{th} order integrator, namely:

$$\begin{cases} \dot{w}_{1}^{i} = w_{2}^{i} \\ \vdots \\ \dot{w}_{j-1}^{i} = w_{j}^{i} & i \in K_{P} \\ \dot{w}_{j}^{i} = v_{i} \\ \end{cases}$$

$$\begin{cases} u_{i} = w_{1}^{i} & i \in K_{P} \\ u_{k} = v_{k} & k \in P \end{cases}$$

$$(2.3)$$

The extended system has the form

$$\dot{\hat{x}} = \hat{f}(\hat{x}) + \sum_{i=1}^{m} v_i \, \hat{g}_i(\hat{x})$$

with $\hat{x} = (x, w) \in M \times \mathbb{R}^{j \mu}$ and, with an obvious abuse of notation,

$$\begin{split} \hat{f}\left(\hat{x}\right) &= f\left(x\right) + \sum_{i \in K_P} w_1^i g_i(x) + \sum_{i \in J_P} \sum_{r=1}^{j-1} w_{r+1}^i \frac{\partial}{\partial w_r^i} \\ \hat{g}_i(\hat{x}) &= \frac{\partial}{\partial w_j^i} \\ \hat{g}_k(\hat{x}) &= g_k(x) \end{split} \qquad i \in K_P$$

Let $\hat{Q}^o = span \ \{ \ \hat{g}_1, \dots, \ \hat{g}_m \ \}$ and $\hat{Q}^{i+1} = inv.$ clos. $\hat{Q}^i + ad_f^{i+1}\hat{Q}^o$. According to Theorem 2.1 the distributions \hat{Q}^i are the right tools to analyze the action of feedback transformations. However they are not directly computable in terms of the given vector fields f, g_1, \dots, g_m . For this purpose we introduce the distributions $Q_f^{i,j}(u)$ which are directly computable in terms of f, g_1, \dots, g_m and are related to the distributions \hat{Q}^i .

Definition 3.

Let A_1, \ldots, A_n , A be n+1 vector fields, we define

$$Sad_{A_{1}...A_{n}}A = \sum_{\sigma \in \Sigma_{n}} ad_{A_{\sigma(1)}}...ad_{A_{\sigma(n)}}A$$

where Σ_n is the set of all permutations of $\{1,...,n\}$. $Sad_{A_1...A_n}A$ is called the symmetric adjoint of order n of A with respect to A_1, \ldots, A_n . If n = 0, we set $Sad_4A = A$.

The symmetric adjoints have the following elementary properties:

$$Sad_{A_{\sigma(1)}\cdots A_{\sigma(n)}}A = Sad_{A_1\cdots A_n}A$$
 for every permutation $\sigma \in \Sigma_n$. (2.4)

$$Sad_{A_1,...A_{n+1}}A = \sum_{k=1}^{n+1} ad_{A_k}Sad_{A_1,...,A_{k-1},A_{k+1},...,A_{n+1}}A$$
 (2.5)

$$Sad_{A_1}A = ad_{A_1}A \tag{2.6}$$

$$Sad_A \dots_A B = n! ad_A^n B \tag{2.7}$$

For homogeneity of notations we set $g_o = f$ and $u_o = 1$.

Definition 4.

For each subset P of N_m we define two sets of distributions, namely:

$$\begin{split} Q_{P}^{0,1}(u) &= Q_{P}^{0,1} = span \; \left\{ \; g_{k} \; , \; k \in P \; \right\} \\ Q_{P}^{0,j+1}(u) &= \overline{Q}_{P}^{0,j}(u) \\ &+ span \; \left\{ \sum_{\tau_{1}, \ldots, \tau_{r} \in J_{P}} u_{\tau_{1}} \ldots u_{\tau_{r}} Sad_{\varrho_{\tau_{1}} \ldots \varrho_{\tau_{r}}} g_{k} \; , \; k \in P \; \right\} \end{split}$$

$$Q_P^{i+1,j}(u) = \overline{Q}_P^{i,j}$$

$$\begin{array}{l} + \; span \; \left\{ \begin{array}{l} \sum\limits_{\tau_{1}, \dots, \tau_{i} \in I_{P}} u_{\; \tau_{1}} \dots u_{\; \tau_{i}} Sad_{g_{\; \tau_{1}} \dots g_{\; \tau_{i}}} g_{\; \tau} \;, \; \tau \in K_{P} \;, \\ \\ \sum\limits_{\tau_{1}, \dots, \tau_{i+j} \in I_{P}} u_{\; \tau_{1}} \dots u_{\; \tau_{i+j}} Sad_{g_{\; \tau_{1}} \dots g_{\; \tau_{i+j}}} g_{k} \;\;, \; k \; \in P \;\; \right\} \end{array}$$

$$Q_P^{i,j} = \bigcup_{u \in \mathbb{R}^m} Q_P^{i,j}(u)$$

We also define the distribution $Q_p^{i,0}$ as $Q_p^{0,0} = Q_p^{0,0}(u) = \{0\},$ $Q_{P}^{i,0} = Q_{P}^{i,0}(u) = Q^{i-1} \quad \forall i > 1.$

Remark

The preceding distributions are related by the following obvious inclusions:

$$\overline{Q}_P^{i,j}(u) \subset Q_P^{i+1,j}(u)$$
 , $\overline{Q}_P^{i,j} \subset Q_P^{i+1,j}$ (2.8)

$$\overline{Q}_P^{i,j}(u) \subset Q_P^{i,j+1}(u) , \quad \overline{Q}_P^{i,j} \subset Q_P^{i,j+1}$$

$$\tag{2.9}$$

These distributions can be computed in a finite number of steps as shown in the following:

Theorem 2.2

Let \overline{j} be the smallest integer such that, for every u, $Q_{P}^{0,\vec{j}+1}(u) = Q_{P}^{0,\vec{j}}(u)$; we have

$$\overline{j} \leq n. \tag{2.10}$$

For every integers i, j, $i \ge 0$, $j \ge \overline{j}$, we have

$$Q_{P}^{i,j}(u) = Q_{P}^{i,\bar{j}}(u)$$

 $Q_{P}^{i,j} = Q_{P}^{i,\bar{j}}$
(2.11)

For every i, j such that $i + j \ge n$, $0 \le j \le \overline{j}$, we have

$$Q_{P}^{i,j} = Q^{n-1} (2.12)$$

Therefore for every P, we need to compute at most $\frac{(n+1)(n+2)}{2}$ distributions $Q_p^{i,j}$, namely

$$0 \le j \le \overline{j} \le n$$

$$0 \le i + j \le n$$

$$(2.13)$$

The relationships between the distributions $Q_P^{i,j}(u)$ and particular dynamic extensions are displayed in the next lemma.

Lemma 2.3

We have

$$(i) \quad Q_{p}^{0,i+1}|_{s} \qquad \qquad = \bigcup_{w \in \mathbf{R}^{j,p}} T \, \pi_{1}(\hat{Q}^{i}|_{\{g,w\}}) \qquad 0 \leq i \leq j-1$$

(iii)
$$\hat{Q}^i$$
 $\subset Q_p^{0,i+1} \times T \mathbf{R}^{(i+1)\mu}$ $0 \le i \le j-1$

$$\begin{array}{lll} (iv) & \hat{Q}^{i+j-1} & = & Q_p^{i,j}(u) \times TR^{j\mu} & i \geq 1 \\ (v) & inv. & clos. & \hat{Q}^{i+j-1} & = & \overline{Q}_p^{i,j} \times TR^{j\mu} & i \geq 0 \end{array}$$

(v) inv. clos.
$$\hat{Q}^{i+j-1} = \overline{Q}_p^{i,j} \times T \mathbf{R}^{j\mu}$$
 $i \ge 0$

where π_1 is the first projection $M \times \mathbf{R}^{j\mu} \to M$ and $T \mathbf{R}^{k\mu}$ stands for

span
$$\left\{\frac{\partial}{\partial w^{\tau}}, \tau \in K_P, j-k \leq \nu \leq j\right\}$$
.

The proofs can be found in [3].

3. COMPLETE DYNAMIC FEEDBACK LINEARIZATION

We say that system (Σ) is dynamic feedback linearizable by compensator (2.3) if there exist a static feedback and a diffeomorphism on the extended space defined by compensator (2.3) such that system (Σ) is transformed into a linear controllable system (L).

We state the following necessary and sufficient results without proof. The interested reader can find detailed proofs in [3].

Theorem 3.1

Let j be a given integer and P a subset of N_m . A necessary condition for system (S) to be dynamic feedback linearizable by compensator (2.3) is:

$$Q_P^{i,j}(u) = Q_P^{i,j}, \quad Q_P^{i,j} = \overline{Q}_P^{i,j} \quad \forall i \ge 0.$$
 (3.1)

Theorem 3.2

Assume that there exist an integer j and a subset P of N_m such that:

$$Q_p^{0,i}(u) = Q_p^{0,i}$$
, $Q_p^{0,i} = \overline{Q}_p^{0,i}$ for every $i, 1 \le i \le j$ (3.2)

$$Q_P^{i,j}(u) = Q_P^{i,j}$$
, $Q_P^{i,j} = \overline{Q}_P^{i,j}$ for every $i, i \ge 0$ (3.3)

then system (Σ) is dynamic feedback linearizable by compensator (2.3). The extended space being $M \times \mathbb{R}^{j\mu}$.

Remark.

If we specialize to the case j = 0, Theorems 3.1 and 3.2 become equivalent and we recover the necessary and sufficient condition of static feedback linearization (see Theorem 2.1).

4. APPLICATION TO AIRCRAFT CONTROL

We consider the following nonlinear aircraft model.

- (x,y,z) are the coordinates of the centre of mass in an absolute frame, the vertical z-axis is oriented downward.
- (u,v,w) are the velocity components in a relative frame linked to the plane.
- (p,q,r) are the components of the kinetic moment in the relative frame.
- (Ψ,Θ,Φ) are the yaw, pitch and roll angles respectively.

We consider p, q, r and ρ as control variables where ρ is the thrust. We

$$\dot{x} = u \cos\Psi \cos\Theta + v (\cos\Psi \sin\Theta \sin\Phi - \sin\Psi \cos\Phi) + w (\cos\Psi \sin\Theta \cos\Phi + \sin\Psi \sin\Phi)$$

$$\dot{y} = u \sin \Psi \cos \Theta + v (\sin \Psi \sin \Theta \sin \Phi + \cos \Psi \cos \Phi) + w (\sin \Psi \sin \Theta \cos \Phi - \cos \Psi \sin \Phi)$$

$$\dot{z} = u \sin\Theta - v \cos\Theta \sin\Phi - w \cos\Theta \cos\Phi$$

$$\dot{u} = -g \sin\Theta + r v - q w + \frac{X}{m}$$

$$\dot{v} = g \cos\Theta \sin\Phi - r u + p w + \frac{Y}{m}$$

$$\dot{w} = g \cos\Theta \cos\Phi + q u - p v + \frac{Z}{m}$$

$$\dot{\Phi} = p + \operatorname{tg}\Theta(g \sin\Phi + r \cos\Phi)$$
(4.1)

$$\dot{\Theta} = q \cos \Phi - r \sin \Phi$$

$$\dot{\Psi} = \frac{q \sin \Phi + r \cos \Phi}{\cos \Theta}$$

where X, Y, Z are the components of the resultant of the forces, gravity excepted. We assume that $Y = Y(x, y, z, u, v, w, \Psi, \Theta, \Phi)$, $Z = Z(x, y, z, u, v, w, \Psi, \Theta, \Phi)$ and $X = X_{\bullet}(x, y, z, u, v, w, \Psi, \Theta, \Phi) + J\rho$.

Let
$$\xi = \begin{pmatrix} x \\ y \\ z \\ v \\ w \\ \Phi \\ \Psi \end{pmatrix}$$
, the system takes the form

$$\dot{\xi} = f(\xi) + pg_1(\xi) + qg_2(\xi) + rg_3(\xi) + \rho g_4(\xi) \tag{4.2}$$

with

$$f = f_{x} \frac{\partial}{\partial x} + f_{y} \frac{\partial}{\partial y} + f_{z} \frac{\partial}{\partial z} + f_{y} \frac{\partial}{\partial u} + f_{y} \frac{\partial}{\partial w} + f_{y} \frac{\partial}{\partial w} + f_{y} \frac{\partial}{\partial w} + f_{y} \frac{\partial}{\partial w} + \frac{\partial}{\partial w} +$$

where

$$\begin{array}{lll} f_z & = & u \; \cos\Psi \; \cos\Theta + v \; (\cos\Psi \; \sin\Theta \; \sin\Phi - \sin\Psi \; \cos\Psi) \\ & & + w \; (\cos\Psi \; \sin\Theta \; \cos\Phi + \sin\Psi \; \sin\Phi) \\ f_y & = & u \; \sin\Psi \; \cos\Theta + v \; (\sin\Psi \; \sin\Theta \; \sin\Phi + \cos\Psi \; \cos\Phi) \\ & & + w \; (\sin\Psi \; \sin\Theta \; \cos\Phi - \cos\Psi \; \sin\Phi) \\ f_z & = & u \; \sin\Theta - v \; \cos\Theta \; \sin\Phi - w \; \cos\Theta \; \cos\Phi \end{array} \right. \tag{4.4}$$

We remark that

$$L_{q_i} f_z = L_{q_i} f_y = L_{q_i} f_z = 0 \quad i = 1, 2, 3,$$
 (4.5)

span { g 1, g 2, g 3, g 4, adg 4 2, adg 4 3 }

$$= inv .clos \{ g_1, g_2, g_3, g_4 \}$$
 (4.6)

$$= span \ \{ \frac{\partial}{\partial u}, \frac{\partial}{\partial v}, \frac{\partial}{\partial w}, \frac{\partial}{\partial \Phi}, \frac{\partial}{\partial \Theta}, \frac{\partial}{\partial \Psi} \}$$

and that span $\{g_1, g_2, g_3\}$ is involutive. We deduce that Q^0 is not involutive, dim $Q^0 = 4$ and dim $\overline{Q}^0 = 6$. The reader can check that Q^2 is the whole tangent space. According to Theorem 2.1, the system is not static feedback linearizable.

Let
$$P = \{1, 2, 3\}$$
, we have

$$Q_p^{0,1}(u) = Q_p^{0,1} = span \{ g_1, g_2, g_3 \}$$
 (4.7)

 $Q_P^{0,1}$ is involutive.

$$Q_P^{1,1}(u) = Q_P^{0,1} + span \{ g_A, ad_f g_1 + u_A ad_g g_1,$$
 (4.8)

$$ad_{f} g_{2} + u_{4}ad_{g_{2}}g_{2}, ad_{f} g_{3} + u_{4}ad_{g_{2}}g_{3}$$

The equalities (4.5) imply that the vector fields $ad_f g_i$, i=1,2,3, according to (4.6), belong to \overline{Q}^0 , we thus deduce that for almost every u

$$Q_{P}^{1,1}(u) = Q_{P}^{1,1} = \overline{Q}^{0}. \tag{4.9}$$

In particular, $Q_P^{1,1}$ is involutive. The reader can check that

$$Q_{p}^{2,1}(u) = Q_{p}^{2,1} = Q^{1} (4.10)$$

i.e. $Q_P^{2,1}$ is the whole tangent space.

We can see that Theorem 3.2 applies, system (4.2) is dynamic feedback linearizable, more precisely we consider the extended system

$$\dot{\xi} = f(\xi) + wg_4(\xi) + v_1g_1(\xi) + v_2g_2(\xi) + v_3g_3(\xi)
\dot{w} = v.$$
(4.11)

where

$$\rho = w$$

$$p = v_1$$

$$q = v_2$$

$$r = v_2$$
(4.12)

System (4.11) is static feedback linearizable. The diffeomorphism and static state feedback on the extended system (4.11) are finally obtained by the classical method of [7],[10].

REFERENCES:

 R.W. BROCKETT, Feedback invariants for nonlinear systems, Proc. VII IFAC Congress, Helsinki (1978), pp. 1115-1120.

(4.3)

- B.CHARLET, J. LEVINE, R. MARINO, On dynamic feedback linearization, to appear in Systems and Control Letter.
- B.CHARLET, J. LEVINE, R. MARINO, Partial and complete dynamic feedback linearization, submitted.
- [4] J.DESCUSSE, C.H. MOOG, Decoupling with dynamic compensation for strong invertible affine nonlinear systems, Int. J. Control (1985) vol. 42, n. 6, pp. 1387-1398.
- [5] M.D. DI BENEDETTO, A. ISIDORI, The matching of nonlinear models via dynamic state feedback, Decision and Control Conference (Las Vegas, 1984) pp. 416-420.
- [6] M. FLIESS, Some remarks on nonlinear invertibility and dynamic state feedback, Theory and Application of nonlinear Control systems (C.I. Byrnes and A. Lindquist, eds.), NORTH-HOLLAND (1986), pp. 115-122.
- [7] L.R. HUNT, R. SU, G. MEYER, Design for multi-input nonlinear systems, in R. Brockett, R. Millmann, H. Sussmann, Eds., Differential Geometric Control Theory (Birkhauser, Basel-Boston, 1983) pp. 268-298.
- [8] A. ISIDORI, Control of nonlinear systems via dynamic state feed-back, Algebraic and Geometric Methods in nonlinear control theory (M. Hazewinkel and M. Fliess, eds.), Reidel (1986).
- [8] A. ISIDORI, C.H. MOOG, A. DE LUCA, A sufficient condition for full linearization via dynamic state feedback, Proc. 25th IEEE CDC (Athens, 1986).
- [10] B. JAKUBCZYK, W. RESPONDEK, On linearization of control systems, Bull. Acad. Pol. Sci. Set. Sci. Math. 28 (9-10) (1980) pp. 517-522.
- [11] A.J. KRENER, On the equivalence of control systems and the linearization of nonlinear systems, SIAM J. Control 11 (4) (1973) pp. 670-676.
- [12] A.J. KRENER, A. ISIDORI, W. RESPONDEK, Partial and robust linearization by feedback, Proc. 22nd IEEE CDC (Dec. 1983) pp. 126-130.
- [13] J.H. LEWIS, The Kronecker indices of affine nonlinear control systems, Proc. 24th IEEE CDC (1985) pp. 371-374.
- [14] R.MARINO, On the largest feedback linearizable subsystem, Systems & Control Letters 6 (1986) pp. 345-351.
- [15] W. RESPONDEK, Partial linearization, decomposition and fibre linear systems. In Theory and Applications of nonlinear Control Systems, C.I. Byrnes, A. Lindquist, Eds. Elsevier (North-Holland) pp. 137-154.
- [16] H.J. SUSSMANN, Lie brackets, real analyticity and geometric control, in Differential Geometric Control Theory, R.W. Brockett, R.S. Millmann, H.J. Sussmann editors, Birkhäuser, Boston, pp.2-116,
- [17] H.J.SUSSMANN, A general theorem on local controllability, SIAM J. Control & Optimisation, 25, 1, pp. 158-194, 1987.

[18] A.J. VAN DER SCHAFT, Linearization and input-output decoupling for general nonlinear systems, Systems & Control letters, 5, pp. 27-33, 1984.