Estatística para Ciências de Dados

Aula 2: Probabilidade

Mariana Cúri ICMC/USP mcuri@icmc.usp.br

Conteúdo

- 1. Conceitos básicos
- 2. Probabilidade: independência e probabilidade condicional
- 3. Distribuições de probabilidade
- 4. Esperança e variância
- 5. Distribuições conjuntas
- 6. Covariância e correlação

São Paulo, sábado, 14 de fevereiro de 2009 **FOLHA DE S.PAU**

FOLHA DE S.PAULO ilustrada

Texto Anterior | Próximo Texto | Índice

Livros/Crítica/"Uma Senhora Toma Chá"

Professor conta bons casos sobre paradoxos da ciência

"... A tal senhora do título dizia que o gosto do chá fica diferente se alguém põe antes o leite na xícara e depois derrama o chá, ou se alguém põe antes o chá e depois derrama o leite. Ouvindo isso, naquela tarde de verão em Cambridge, Ronald Aymler Fisher propôs que se testasse a proposição: oferecer diferentes xícaras de chá com leite àquela senhora, convenientemente vendados os seus olhos, e verificar se ela era capaz de acertar a ordem da mistura."

Experimento aleatório

Um experimento cujo resultado não se conhece com certeza, mesmo se repetido exatamente da mesma maneira.

Espaço amostral (Ω)

Conjunto cujos elementos são todos os possíveis resultados do experimento. Pode ser discreto (finito ou infinito enumerável) ou contínuo.

Evento (A, B, ...)

Qualquer subconjunto de Ω .

Oferecer uma xícara de chá com leite à senhora e verificar se ela acerta ou não a ordem da preparação.

Desenho do Experimento

- sorteia-se um dos 2 tratamentos (tipos de preparo)
- olhos vendados
- repete-se 4 vezes o experimento

acerta acerta

erra erra

- mesma quantidade de chá e de leite nos 2 tratamentos
- xícara com camada dupla para isolamento térmico

QUANTO SE ESPERA DE ACERTO AO ACASO?

ao acaso: P(acerto)=0,5

acerta acerta

erra erra

Conceitos básicos: espaço amostral contínuo

Encontrar os valores de referência de normalidade para exames laboratoriais de hemograma da população brasileira.

Desenho do Experimento

- amostra de brasileiros sem doenças prévias
- limites estratificados por sexo, faixa etária
- 24h sem exercício físico e 48h sem álcool

Valores normais para eritrócitos, hemoglobina, hematócrito^[3]

valores hermals para entirestics, nomegicuma, nomatecine				
Tipo de indivíduo	Eritrócitos (x 10 ⁶ /mm³)	Hemoglobina (g/100mL)	Hematócrito (%)	
Recém nascidos (a termo)	4 - 5,6	13,5 - 19,6	44 - 62	
Crianças (3 meses)	4,5 - 4,7	9,5 - 12,5	32 - 44	
Crianças (1 ano)	4,0 - 4,7	11,0 - 13	36 - 44	
Crianças (10 a 12 anos)	4,5 - 4,7	11,5 - 14,8	37 - 44	
Mulheres (gestantes)	3,9 - 5,6	11,5 - 16,0	34 - 47	
Mulheres	4,0 - 5,6	12 - 16,5	35 - 47	
Homens	4,5 - 6,5	13,5 - 18	40 - 54	

Espaço amostral

(Hemoglobina)

$$\Omega$$
 = \mathfrak{R}_+

A = [12; 16,5]

B = [11; 13]

C = [13,5; 18]

eventos mutuamente exclusivos B \(\text{C} = \varnothing

Fonte: Wikipedia: https://pt.wikipedia.org/wiki/Hemograma

Variável aleatória (X)

Função que associa um valor real a cada elemento de Ω . Também podem ser <u>discretas</u> ou <u>contínuas</u>.

$$X:\omega o \mathfrak{R}\ X(\omega)=x$$

X: resposta da senhora sobre a ordem de preparo

da bebida se acerta ao acaso: p=0,5

$$x=0,1$$
 $\int_{\mathbf{Y}_{-}}^{0,\text{ se erra}} \mathbf{P(X=0)} = \mathbf{(1-p)}$

1, se acerta **P(X=1) = p**

função de probabilidade (ou função massa de probabilidade)

$$P(X_1=0,...,X_4=1) = [(3.(1)p)^1]$$
 suposições?

Probabilidade

Probabilidade: definição 1

Se os elementos de Ω são equiprováveis, a probabilidade de um evento A (subconjunto de Ω) é: $P(A) = \frac{n^{\circ} \text{ de elementos em } A}{n^{\circ} \text{ de elementos em } \Omega}$

$$\Omega$$
 = {acertar, errar}
 A = {acertar}
 $P(A) = \frac{1}{2}$?
Apenas se $P(acertar) = P(errar)$

Probabilidade: definição 2

Frequência relativa de vezes que ocorre o evento A em infinitas repetições do experimento.

 $P(A) = \lim_{n \to \infty} n^{\circ} de vezes que ocorre A$

Independência

Eventos independentes

 A_1 e A_2 são eventos independentes se:

$$P(A_1 \cap A_2) = P(A_1). P(A_2)$$

Consequência:

 $A_1^c e A_2 são independentes$

 $A_1^c e A_2^c$ são independentes

 $A_1 e A_2^c$ são independentes

Y: número de acertos y = 0, 1, 2, 3, 4

$$P(Y=3) + P(Y=4) = 1-P(Y \le 2)$$

<u>Sob a condição de independência</u>:

$$P(X_1=0, X_2=1, X_3=1, X_4=1) = p^3 .(1-p)^1$$

$$P(A_1^c \cap A_2 \cap A_3 \cap A_4) = Y(A_1^c) \cdot P(A_2) \cdot P(A_3) \cdot P(A_4)$$

função de distribuição conjunta

função de distribuição acumulada

Qual a probabilidade de ela acertar 3 ou mais ao acaso?

$$P(\mathbf{X}=(0,1,1,1)) + P(\mathbf{X}=(1,0,1,1)) + P(\mathbf{X}=(1,1,0,1)) + P(\mathbf{X}=(1,1,1,0)) + P(\mathbf{X}=(1,1,1,1))$$

= 4. $(0,5)^3$. $(0,5)^1 + (0,5)^4 = 0,25 + 0,0625 = 31,25\%$

Funções de distribuição

X é uma variável aleatória discreta, com possíveis valores em $R_X = \{x_1, x_2, \dots\}$

f(x) é sua função de probabilidade se:

- ullet $0 \leq f(x_i) \leq 1$, para todo i
- ullet $P(X=x_i)=f(x_i)$, para ${f x}_{f i}\in {f R}_{f x}$
- $\bullet \quad \sum_{x_i:f(x_i)>0} f(x_i) = 1$

A função de distribuição conjunta de uma amostra $\mathbf{X}=(X_1, X_2, ..., X_n)$ é:

$$f_{\boldsymbol{X}}(\boldsymbol{x}) = P(\boldsymbol{X} = \boldsymbol{x})$$

para \boldsymbol{x} em $(R_x)^n$

F(x) é sua função de distribuição acumulada é:

$$ullet$$
 $F(x) = P(X \leq x) = \sum_{x_i < x} f(x_i)$, em que $\mathsf{x}_\mathsf{i} \in \mathsf{R}_\mathsf{x}$

Probabilidade condicional

Se A_1 e $A_2 \subseteq \Omega$, eventos, a probabilidade condicional de A_2 dado que ocorreu A_1 é:

$$P(A_2|A_1) = P(A_2 \cap A_1)$$
, se $P(A_1) > 0$. $P(A_2 \cap A_1) = P(A_2|A_1).P(A_1)$

NOTE QUE SE
$$A_1 e A_2$$
 SÃO INDEPENDENTES, ENTÃO:
 $P(A_1|A_2)=P(A_1) e P(A_2|A_1)=P(A_2)$

Se 2 xícaras de cada tratamento fossem aleatoriamente servidas à senhora (esta sabendo deste número), comunicando, após cada degustação, qual era a ordem de preparo da bebida.

Probabilidade condicional: árvore de probabilidades

Probabilidade condicional

Probabilidade condicional

Decisão: acertar 3 ou mais?

Partição: $(C_1C_2L_3L_4)$, $(C_1L_2C_3L_4)$, $(C_1L_2L_3C_4)$, $(L_1C_2C_3L_4)$, $(L_1C_2L_3C_4)$

Fórmula da Probabilidade Total

Se $(B_1, B_2, B_3, ..., B_k)$ uma partição de Ω e A $\subseteq \Omega$, então:

$$P(A) = P(B_1) \cdot P(A|B_1) + P(B_2) \cdot P(A|B_2) + ... + P(B_k) \cdot P(A|B_k)$$

Fórmula da Bayes

$$P(B_i \mid A) = rac{P(A|B_i)P(B_i)}{\sum_{i=1}^k P(A|B_i)P(B_i)}$$

$$\begin{split} \mathsf{P}(\mathsf{Y} = \mathsf{4}) &= \mathsf{P}((\mathsf{Y} = \mathsf{4}) \cap (\mathsf{C}_1 \mathsf{C}_2 \mathsf{L}_3 \mathsf{L}_4)) \ + \mathsf{P}((\mathsf{Y} = \mathsf{4}) \cap (\mathsf{C}_1 \mathsf{L}_2 \mathsf{C}_3 \mathsf{L}_4)) + \mathsf{P}((\mathsf{Y} = \mathsf{4}) \cap (\mathsf{L}_1 \mathsf{C}_2 \mathsf{C}_3 \mathsf{L}_4)) \ + \mathsf{P}((\mathsf{Y} = \mathsf{4}) \cap (\mathsf{L}_1 \mathsf{C}_2 \mathsf{C}_3 \mathsf{C}_4)) \ + \mathsf{P}((\mathsf{Y} = \mathsf{4}) \cap (\mathsf{L}_1 \mathsf{C}_2 \mathsf{C}_3 \mathsf{C}_4)) \ + \mathsf{P}((\mathsf{Y} = \mathsf{4}) \cap (\mathsf{L}_1 \mathsf{C}_2 \mathsf{C}_3 \mathsf{C}_4)) \ \\ &= \mathsf{O} + \mathsf{O}, \mathsf{O} \mathsf{A} \mathsf{1} \mathsf{7} + \mathsf{O}, \mathsf{O} \mathsf{A} \mathsf{1} \mathsf{7} + \mathsf{O}, \mathsf{O} \mathsf{A} \mathsf{1} \mathsf{7} + \mathsf{O} = \mathsf{16}, \mathsf{68} \% \end{split}$$

"Árvore" de probabilidades

Esperança

Qual o número de acertos esperados, no caso de ela "chutar" a ordem de preparação (p=0,5)?

No caso de independência

(não se revela qual bebida provou)

2?

Y: número de acertos

$$y = 0, 1, 2, 3, 4$$

$$P(Y=3) = 0.25$$

$$P(Y=4) = 0.0625$$

$$P(Y=0) = (1-0.5)^4 = 0.0625$$

$$P(Y=1) = 4.0,5^{1}.(1-0,5)^{3} = 0,25$$

$$P(Y=2) = 6.0,5^{2}.(1-0,5)^{2} = 0,375$$

Esperança (ou valor esperado)

$$E(Y) = \sum_{i=1}^n y_i . f(y_i)$$

No caso de dependência

(sabe-se que são 2 de cada tipo e revela-se qual bebida provou, após cada resposta da senhora)

$$E(Y)=2,8$$

Esperança

Esperança (ou valor esperado) & a midia teórica

$$\overline{Y} = \sum_{i=1}^{n} \frac{Y_i}{n}$$
 peobabilidades = 0.00625 + 1 0.25 + 2 0.375 + 3 0.25 + 4 0.0625 = 2

$$E_{\times}$$
: Ome amostre, $n = 16$
 $X_1 = 4$
 $X_2 = 1$
 $X_3 = 2$
 $X_4 = 3$
 $X_{10} = 1$
 $X_{10} = 2$
 $X_{10} = 1$
 $X_{10} = 2$
 $X_{10} = 3$
 $X_{10} = 2$
 $X_{11} = 2$
 $X_{12} = 2$

Variância

$$\sigma^2$$
 ou $V(X)=E[(X-\mu)^2], ext{ em que } \mu=E[X]$

Se Y = h(X), o valor esperado de Y é: $E[h(X)] = \sum_{x:f(x)>0} h(x).f(x)$, em que f(x) é a função de probabilidade de X.

Assim:
$$V(X) = \sum_{x:f(x)>0} (x-\mu)^2 . f(x)$$

$$= \sum_{x:f(x)>0} (x^2 - 2\mu x + \mu^2) . f(x)$$

$$= \sum_x x^2 . f(x) - 2\mu \sum_x x . f(x) + \mu^2 \sum_x f(x)$$

$$= E(X^2) - E^2(X)$$

X variável alcatória discreta

$$E(x) = (-1).0.3 + 0.0.4 + 1.0.3$$
 $E(y) = 0.0.4 + 1.0.6 = 0.6$

$$E(Y) = E(X^{2}) = \sum_{x \in J(x)} x^{2} \cdot J(x) = (-1)^{2} \cdot 0.3 + 0^{2} \cdot 0.4 + 1^{2} \cdot 0.3$$

$$= 0.3 + 0.3 = 0.6$$

Propriedades da Esperança e da Variância

Se X e Y são variáveis aleatórias e a e b são números reais:

- E(a)=a
- E(aX + b) = aE(X) + b
- E(aX + bY) = aE(X) + bE(Y)
- V(a)=0
- $V(aX)=a^2V(X)$
- Se X e Y são **independentes**, então: $V(aX + bY) = a^2V(X) + b^2V(Y)$

Covariância e Correlação

A covariância entre duas variáveis aleatórias X e Y é:

$$\sigma_{XY}$$
 ou $Cov(X,Y) = E[(X-\mu_X)(Y-\mu_Y)] \ = E(X,Y) - E(X).\,E(Y)$

A correlação entre duas variáveis aleatórias X e Y é:

$$ho_{XY} = rac{Cov(X,Y)}{\sqrt{V(X).V(Y)}} = rac{\sigma_{XY}}{\sigma_{X}.\sigma_{Y}} \qquad -1 \leq
ho_{XY} \leq 1$$

• Se X e Y são **dependentes**, então: V(X + Y) = V(X) + V(Y) + 2Cov(X,Y)

Covariância e Correlação

X_2			
	0	1	distribuição marginal de X ₁
0	1/6	1/3	1/2
X ₁ 1	1/3	1/6	1/2
marginal de X_2	1/2	1/2	1

•
$$E(X_1) = E(X_2) = \frac{1}{2}$$

•
$$VX_1$$
) = $V(X_2)$ = $(0-\frac{1}{2})^2$. $\frac{1}{2}$ + $(1-\frac{1}{2})^2$. $\frac{1}{2}$ = $\frac{1}{4}$

• Cov
$$(X_1, X_2) = E(X_1, X_2) - E(X_1) \cdot E(X_2) = \% - \frac{1}{4} = -\frac{1}{12}$$

Covariância e Correlação

Figure 5-13 Joint probability distributions and the sign of covariance between X and Y.

Se X e Y são **independentes**:

$$\sigma_{XY} = \rho_{XY} = 0$$

Fonte: Montgomery, Douglas C., Hubele, Norma Francis, Runger, George C. (2004). **Estatística Aplicada à Engenharia**. 2a edição

Variáveis Contínuas

Definições análogas às apresentadas para variáveis discretas,

com ∑ substituído por ∫. Se X é uma variável aleatória contínua:

ullet função <u>densidade</u> de probabilidade: $\int_{-\infty}^{\infty}f(x)dx=1$

$$P(a \leq X \leq b) = \int_a^b f(x) dx$$

- ullet função de distribuição acumulada: $F(x)=P(X\leq x)=\int_{-\infty}^x f(t)dt$ do teorema fundamental de Cálculo: $f(x)=rac{d}{dx}F(x)$
- esperança: $E(X) = \int_{-\infty}^{\infty} x. f(x) dx$

Variáveis Contínuas

- $E[h(X)] = \int_{-\infty}^{\infty} h(x). f(x) dx$
- $egin{aligned} ullet V(X) &= E[(X-\mu)^2] = \int_{-\infty}^{\infty} (x-\mu)^2.\,f(x)dx \ &= E(X^2) E^2(X) \end{aligned}$
- Cov(X,Y) = E(X.Y)-E(X).E(Y) $=
 ho_{XY}.\sqrt{V(X).V(Y)}$

Variáveis contínuas: exemplo

Valores de referência para hemoglobina

$$f(x)=rac{1}{\sqrt{2\pi 1,28^2}}exp\{-rac{(x-15,75)^2}{2.1,28^2}\}dx$$

$$P(13, 2 \le X \le 18, 3) = \int_{13, 2}^{18, 3} \frac{1}{\sqrt{2\pi 1, 28^2}} exp\{-\frac{(x-15, 75)^2}{8^2}\} dx$$
 = 95%

$$E(X)=\int_{-\infty}^{\infty}x.\,rac{1}{\sqrt{2\pi1,28^2}}exp\{-rac{(x-15,75)^2}{2.1,28^2}\}dx$$
 = 15,75

Intervalo de normalidade: [13,2; 18,3]

Variáveis contínuas: exemplo

Valores de referência para hemoglobina

$$f(x)=rac{1}{\sqrt{2\pi 1,28^2}}exp\{-rac{(x-15,75)^2}{2.\,1,\,28^2}\}dx$$

