Redes de Computadores I

Prof Felipe Cunha felipe@uit.br

Software de Rede

O presidente da Specialty Paint Corp resolve trabalhar com uma cervejaria local com a finalidade de produzir uma lata de cerveja invisível (como uma medida higiênica). O presidente pede que o departamento jurídico analise a questão e este, por sua vez, entra em contato com o departamento de Engenharia. Como resultado, o engenheiro-chefe entra em contato com o funcionário de cargo equivalente na outra empresa para discutir os aspectos técnicos do projeto. Em seguida, os engenheiros enviam um relatório a seus respectivos departamentos jurídicos, que então discutem por telefone os aspectos legais. Por fim, os presidentes das duas empresas discutem as questões financeiras do negócio. Esse é um exemplo de protocolo em várias camadas no sentido utilizado pelas redes de computadores? Justifique.

Exemplo de Comunicação em Camadas

Comunicação em Camadas

- Para reduzir a complexidade do projeto, as redes são organizadas como uma pilha de camadas ou níveis, colocadas umas sobre as outras
- Número de camadas, nomes, conteúdo e funcionalidades de cada camada depende de cada rede
- Funcionalidade geral de cada camada:
 - Oferecer serviços para as camadas superiores
 - "Esconder" como os serviços são implementados

Pilha de Camadas

- •A camada *n*:
 - Provê um conjunto de serviços para as camadas superiores
 - Esconde detalhes da implementação dos serviços
 - É implementada baseando-se nos serviços oferecidos pela camada *n*-1
- A camada n de uma máquina se comunica com a camada n de outra máquina utilizando um protocolo

Protocolos de Comunicação

- Conjunto de regras e convenções para troca de informações entre duas ou mais entidades comunicantes
- Define o formato e a ordem das mensagens trocadas entre duas ou mais entidades comunicantes, bem como as ações realizadas na transmissão e/ou no recebimento de uma mensagem ou outro evento

Protocolos de Comunicação

Protocolo humano de computadores

Protocolo de rede

Interfaces

- Existe uma interface entre camadas adjacentes
- A interface define as operações e os serviços que a camada inferior tem a oferecer à camada que se encontra acima dela

Camadas, Protocolos e Interfaces

Comunicação é feita entre entidades pares (peer) que estão na mesma camada usando o protocolo dessa camada

Os pares podem ser processos, dispositivos de hardware ou mesmo seres humanos

Comunicação Virtual X Real

- •Comunicação direta (horizontal) entre entidades pares é virtual e executada através do protocolo da camada *n*
- Comunicação real (vertical) é feita entre entidades na mesma hierarquia
- Comunicação entre máquinas ocorre efetivamente na camada mais baixa através de um meio físico

Arquitetura de Rede

- Definição: conjunto de camadas e seus protocolos
- Detalhes de implementação e especificação de interfaces não fazem parte da arquitetura
- •Pilha de protocolos (*protocol stack*): protocolos usados em cada camada (um por camada) em um sistema

Comunicação em Camadas

Comunicação em Camadas

Exercício

3. Um sistema tem uma hierarquia de protocolos com **n** camadas. As aplicações geram mensagens com M bytes de comprimento. Em cada uma das camadas, é acrescentado um cabeçalho com h bytes. Qual é a fração da largura de banda da rede é preenchida pelos cabeçalhos?

Exercício

3. Um sistema tem uma hierarquia de protocolos com **n** camadas. As aplicações geram mensagens com M bytes de comprimento. Em cada uma das camadas, é acrescentado um cabeçalho com h bytes. Qual é a fração da largura de banda da rede é preenchida <u>pełoś ca</u>becalhos? M + (n * h)

Tipos de Serviço

- As camadas podem oferecer tipos diferentes de serviços às camadas superiores
 - Orientado à conexão (connection oriented service) ou Sem conexão (connectionless service)
 - Confiável ou Não confiável
- Afetam fundamentalmente o projeto de protocolos

Serviço Orientado à Conexão X Sem Conexão

Serviço Orientado à Conexão

- Similar ao sistema telefônico
- Possui basicamente três fases:
 - Estabelecimento da conexão
 - Transferência de dados
 - Término da conexão
 - Assume-se que o protocolo só entra numa fase após ter passado pela anterior com sucesso

Serviço Orientado à Conexão

- Transmissor empurra objetos (bits) em uma extremidade e esses objetos são recebidos na outra extremidade
- Conexão preserva a ordem dos dados transmitidos

Serviço Sem Conexão

- Similar ao sistema postal
- Cada mensagem deve possuir o endereço do destinatário
- Controle de fluxo é mais complexo
- Cada mensagem é roteada independentemente das outras

Serviço Confiável X Não Confiável

Serviço Confiável

- Dados não são perdidos (do ponto de vista do receptor)
- Pode ser implementado através da confirmação de cada mensagem recebida
- Confirmações introduzem overhead e atrasos que podem ser tolerados ou não
- Voz digitalizada e vídeo são aplicações que não devem ter atrasos

Serviço Não Confiável

- Para algumas aplicações, os retardos introduzidos pelas confirmações são inaceitáveis
- Exemplo: tráfego de voz digital ou transmissão de uma conferência de vídeo

Exercícios

- 4. Dê um exemplo de um serviço orientado a conexão confiável. Justifique sua resposta.
- 5. Em alguns casos, quando uma conexão é estabelecida, o transmissor e o receptor conduzem uma "negociação" sobre os parâmetros a serem usados. Dê um exemplo do uso de negociação pelos protocolos de rede.
- Como seria o tipo de serviço que um usuário de uma aplicação de tempo real precisaria? Justifique.

Exercícios

7. Quando um arquivo é transferido entre dois computadores, são possíveis duas estratégias de confirmação. Na primeira, o arquivo é dividido pacotes, que são confirmados individualmente pelo receptor, mas transferência do arquivo como um todo não é confirmada. Na segunda, os pacotes não são confirmados individualmente mas, ao chegar a seu destino, o arquivo inteiro é confirmado. Analise essas duas abordagens.

Modelos de Referência

Modelos de Referência

- São propostas concretas de arquiteturas de rede
- Duas arquiteturas de rede importantes:
 - Modelo OSI-Open Systems Interconnection da ISO
 - Não é uma arquitetura em si porque não especifica os protocolos em cada nível
 - Informa apenas o que cada camada deve fazer
 - •TCP/IP

O Modelo de Referência OSI

- Trata da interconexão de sistemas abertos
- Aberto no sentido que qualquer sistema que seguir os padrões será capaz de se interconectar
- Possui sete camadas

_	
7	Aplicação
6	Apresentação
5	Sessão
4	Transporte
3	Rede
2	Enlace de dados
1	Física

O Modelo de Referência TCP/IP

- Modelo de referência usado na "avó" de todas as redes de computadores geograficamente distribuídas, a ARPANET, e sua sucessora, a Internet mundial
- Surgiu como um conjunto de protocolos que deveriam ter certas características para uso militar
- Os protocolos propostos precisavam ser flexíveis para suportar diferentes aplicações
- O modelo surge "oficialmente" com o re-projeto dos protocolos TCP/IP no início da década de 80

O Modelo de Referência TCP/IP

O Departamento de Defesa dos EUA queria que as conexões permanecessem intactas enquanto as máquinas de origem e de destino estivessem funcionando, mesmo que algumas máquinas ou linhas de transmissão intermediárias deixassem de operar repentinamente

REDE DE COMUTAÇÃO DE PACOTES BASEADA EM UMA SUB-REDE DE COMUNICAÇÃO SEM CONEXÃO

O Modelo de Referência TCP/IP

TCP/IP: Camada Hospedeiro/rede

- Protocolo n\u00e3o definido pelo modelo TCP/IP
- Responsável por transmitir os pacotes
 IPs
- Protocolo varia em função do hospedeiro e rede

TCP/IP: Camada Inter-redes

- Normalmente chamada de "camada de rede"
- Baseada numa rede comutada por pacotes sem conexão
- Ponto fundamental de toda a arquitetura

TCP/IP: Camada Inter-redes

- Define o protocolo IP Internet Protocol
 - "Cola" da Internet
- Roteamento de pacotes e controle de congestionamento são as duas maiores questões

TCP/IP: Camada de Transporte

- Nome dado atualmente a camada acima do nível IP
- Responsável pela comunicação fim-afim
- Dois dos protocolos mais usados são:
 - •TCP Transmission Control Protocol
 - UDP User Datagram Protocol

TCP/IP: Camada de Transporte

- Protocolo TCP
 - Protocolo orientado à conexão confiável
 - Usa byte stream
 - Normalmente fragmenta um byte stream já que o pacote IP tem um tamanho máximo
 - Hospedeiro destinatário faz o processo contrário
 - Faz controle de fluxo

TCP/IP: Camada de Transporte

- Protocolo UDP
 - Protocolo não orientado à conexão e não confiável
 - •É usado normalmente em aplicações que somente interagem uma única vez com outra aplicação (one-shot)
 - Exemplo, request-reply no paradigma cliente-servidor

TCP/IP: Camada de Aplicação

 Protocolos: http, smtp, telnet, ftp, email, etc.

Modelo de Referência Híbrido

5	Camada de Aplicação
4	Camada de Transporte
3	Camada de Rede
2	Camada de Enlace
1	Camada Física

Exercícios

- 8. Determine qual das camadas do modelo TCP/IP trata de cada uma das tarefas a seguir:
 - a) Dividir o fluxo de bits transmitidos em quadros.
 - b) Definir a rota que será utilizada na sub-rede.
- 9. Cite dois aspectos em que o modelo de referência OSI e o modelo de referência TCP/IP são iguais. Agora cite dois aspectos em que eles são diferentes.
- 10. Qual é a principal diferença entre o TCP e o UDP?

Internet

- •O que é a Internet?
 - Não é uma rede, mas sim um vasto conjunto de redes diferentes que utilizam certos protocolos comuns e fornecem determinados serviços comuns
 - Não foi planejada
 - Não é controlada por ninguém
- Quando a Internet nasceu?

- •Final da década de 1950:
 - Em 1957, a União Soviética suplantou os EUA na corrida espacial com o lançamento do Sputnik
 - Criação da ARPA (Advanced Research Projects Agency) como única organização de pesquisa de defesa
 - Não tinha cientistas e nem laboratórios
 - Realizava seu trabalho oferecendo concessões a universidades e empresas cujas idéias lhe pareciam promissoras

- •Final da década de 1950:
 - No auge da Guerra Fria, o Departamento de Defesa (DoD) dos EUA queria uma rede de controle e comando capaz de sobreviver a uma guerra nuclear
 - Todas as comunicações militares passavam pela rede de telefonia pública, considerada vulnerável

Estrutura do sistema de telefonia

- •Década 1960:
 - Paul Baran investigou o uso de comutação de pacotes para a segurança da transmissão de voz pelas redes militares
 - Baran apresentou ao DoD dos EUA um projeto altamente distribuído e tolerante a falhas
 - Propôs o uso da tecnologia digital de comutação de pacotes em todo os sistema

Sistema distribuído de comutação de pacotes proposto por Baran

- Idéias de Baran foram descartadas pela AT&T
- •1964:
 - Donald Davies e Roger Scantlebury (National Physical Laboratory, Inglaterra) estudaram comutação por pacote
- •1967:
 - Roberts, diretor da ARPA, apresentou um documento do que seria a ARPANET

- •Sub-rede com minicomputadores chamados IMPs (processadores de mensagens de interface) conectados por linhas de transmissão de 56 Kbps
- Cada IMP seria conectado a pelo menos dois outros IMPs
- Se algumas linhas ou IMPs fossem destruídos, as mensagens seriam roteadas automaticamente para caminhos alternativos

- Cada IMP seria conectado a um host
- •Um host poderia enviar mensagens de até 8.063 bits para seu IMP
- Cada IMP dividiria a mensagem em pacotes de no máximo 1.008 bits e os encaminha de forma independente ao destino

Primeira rede eletrônica de comutação de pacotes do tipo store-and-forward

Projeto Original da ARPANET

- •Dezembro de 1968:
 - ARPA assinou um contrato para montar a sub-rede e desenvolver software para ela
- •Dezembro de 1969:
 - Entrou no ar uma rede experimental com quatro nós instalados nas seguintes instituições: UCLA, Stanford Research Institute (SRI), UC Santa Barbara e University of Utah

Crescimento da ARPANET

Dezembro de 1969

Julho de 1970

Março de 1971

Crescimento da ARPANET

Abril de 1972

Setembro de 1972

- Início da década de 1970:
 - Os protocolos da ARPANET não eram adequados para a execução em redes múltiplas
- 1973:
 - Tese de doutorado de Metcalfe propõe a rede Ethernet

- •1974:
 - Cerf e Kahn propuseram uma arquitetura para interconexão de redes (TCP/IP)
 - Minimalismo, autonomia não se exigem mudanças internas para interconexão de redes
 - Modelo de serviço: melhor esforço
 - Roteadores sem estado
 - Controle descentralizado

Define a arquitetura da Internet de hoje

- •TCP/IP é integrado ao sistema operacional UNIX de Berkeley
- •Final da década de 1970:
 - ARPANET estava causando um enorme impacto nas pesquisas científicas
 - Para entrar na ARPANET, uma universidade precisava ter um contrato com o DoD dos EUA (nem todas tinham)

- •Final da década de 1970:
 - NSF (National Science Foundation)
 desenvolveu a NSFNET que seria a
 sucessora da ARPANET aberta a todos os
 grupos de pesquisa universitários
 - Criou uma rede de backbone para conectar seus seis centros de supercomputadores localizados em San Diego, Boulder, Champaign, Pittsburgh, Ithaca e Princeton

Backbone da NSFNET em 1988

- •Década de 1980:
 - NSF também financiou cerca de 20 redes regionais que foram conectadas ao backbone para os usuários de milhares de universidades, laboratórios de pesquisa, bibliotecas e museus
 - Novas redes, em particular as LANs, foram conectadas à ARPANET
 - 1982: SMTP (Correio eletrônico) é definido
 - •1983: NSFNET se conecta à ARPANET

- •Década de 1980:
 - 1983: DNS definido para translação de nomes em endereços IP
 - 1985: FTP é definido
 - 1988: Controle de congestionamento do TCP
- 1990:
 - Segundo backbone da NSFNET foi atualizado para 1.5 Mbps

- •Início da década de 1990:
 - NSFNET estava crescendo muito, o governo não podia mais continuar a financiar a rede para sempre
 - Organizações comerciais queriam participar da rede, mas eram proibidas pelo estatuto da NSF de utilizar redes mantidas com verbas da fundação
- 1991:
 - NSF retira restrições sobre o uso comercial da NSFNET

Internet

- •Início dos anos 90:
 - www: hypertext, HTML, HTTP, Mosaic, Netscape
- Final dos anos 90:
 - Comercialização da www
 - Estimativa de 50 milhões de computadores na Internet e de 100 milhões de usuários
 - Enlaces de backbone operando a Gbps

Evolução e Tendência de Crescimento da Internet

• Fonte: https://www.isc.org/solutions/survey

Internet Domain Survey Host Count

