Das House Kapital

Brown Bag Seminar, University of St.Gallen

 $Volker\ Grossmann,\ \textbf{Benjamin}\ \textbf{Larin},\ Thomas\ Steger$

March 18, 2020

University of St.Gallen, Swiss Institute for Empirical Economic Research, Globalization of Real Estate Network

work in progress, preliminary results

Introduction

Housing became the largest asset class

Housing became the largest asset class

 \rightarrow Economist (Special Report, 2020): How did housing become the largest asset class?

Research question: Why did the housing wealth-to-income ratio increase since 1950?

Research question: Why did the housing wealth-to-income ratio increase since 1950?

Method:

• Stylized facts on housing & macro for 4 developed economies

Research question: Why did the housing wealth-to-income ratio increase since 1950?

Method:

- Stylized facts on housing & macro for 4 developed economies
- Novel housing & macro model that is designed to think long term

Research question: Why did the housing wealth-to-income ratio increase since 1950?

Method:

- Stylized facts on housing & macro for 4 developed economies
- Novel housing & macro model that is designed to think long term
- Steady state insights and numerical experiments to answer research question and replicate stylized facts

Research question: Why did the housing wealth-to-income ratio increase since 1950?

Method:

- Stylized facts on housing & macro for 4 developed economies
- Novel housing & macro model that is designed to think long term
- Steady state insights and numerical experiments to answer research question and replicate stylized facts

Main results:

• Two mechanism, in a growing economy, push rent and house price up: i) housing uses the fixed factor intensively and ii) differential technological change

Research question: Why did the housing wealth-to-income ratio increase since 1950?

Method:

- Stylized facts on housing & macro for 4 developed economies
- Novel housing & macro model that is designed to think long term
- Steady state insights and numerical experiments to answer research question and replicate stylized facts

Main results:

- Two mechanism, in a growing economy, push rent and house price up: i) housing uses the fixed factor intensively and ii) differential technological change
- Some stylized facts can be explained in steady state, others not ightarrow transition

Research question: Why did the housing wealth-to-income ratio increase since 1950?

Method:

- Stylized facts on housing & macro for 4 developed economies
- Novel housing & macro model that is designed to think long term
- Steady state insights and numerical experiments to answer research question and replicate stylized facts

Main results:

- Two mechanism, in a growing economy, push rent and house price up: i) housing uses the fixed factor intensively and ii) differential technological change
- Some stylized facts can be explained in steady state, others not ightarrow transition
- Calibrated model replicates (overpredicts) increase in housing wealth to income ratio, in line with the stylized facts

Increasing housing wealth-to-income ratios implies that average household pays a
higher multiple of income to purchase a house
(if # of houses per household remained largely constant)

- Increasing housing wealth-to-income ratios implies that average household pays a
 higher multiple of income to purchase a house
 (if # of houses per household remained largely constant)
- Financial sector: rising wealth-to-income ratio and housing wealth-to-income ratio

- Increasing housing wealth-to-income ratios implies that average household pays a
 higher multiple of income to purchase a house
 (if # of houses per household remained largely constant)
- Financial sector: rising wealth-to-income ratio and housing wealth-to-income ratio
 - Contribute to an increase in the financial sector

Philippon (2015); Gennaioli et al. (2014)

- Increasing housing wealth-to-income ratios implies that average household pays a
 higher multiple of income to purchase a house
 (if # of houses per household remained largely constant)
- Financial sector: rising wealth-to-income ratio and housing wealth-to-income ratio
 - · Contribute to an increase in the financial sector

· Lead to more private debt via mortgage loans

Philippon (2015); Gennaioli et al. (2014)

- Increasing housing wealth-to-income ratios implies that average household pays a
 higher multiple of income to purchase a house
 (if # of houses per household remained largely constant)
- Financial sector: rising wealth-to-income ratio and housing wealth-to-income ratio
 - · Contribute to an increase in the financial sector

Philippon (2015); Gennaioli et al. (2014)

· Lead to more private debt via mortgage loans

Jordà et al. (2016)

• Declining labor income share \Leftrightarrow rising wealth income share

Gutierrez Gallardo and Piton (forth.)

- Increasing housing wealth-to-income ratios implies that average household pays a
 higher multiple of income to purchase a house
 (if # of houses per household remained largely constant)
- Financial sector: rising wealth-to-income ratio and housing wealth-to-income ratio
 - Contribute to an increase in the financial sector

Philippon (2015); Gennaioli et al. (2014)

· Lead to more private debt via mortgage loans

- Declining labor income share ⇔ rising wealth income share Gutierrez Gallardo and Piton (forth.)
 - Wealth share = housing wealth share + non-housing wealth share

- Increasing housing wealth-to-income ratios implies that average household pays a higher multiple of income to purchase a house (if # of houses per household remained largely constant)
- Financial sector: rising wealth-to-income ratio and housing wealth-to-income ratio
 - Contribute to an increase in the financial sector

Philippon (2015); Gennaioli et al. (2014)

· Lead to more private debt via mortgage loans

- Declining labor income share ⇔ rising wealth income share Gutierrez Gallardo and Piton (forth.)
 - Wealth share = housing wealth share + non-housing wealth share
 - Rognlie (2015): housing wealth share \uparrow and non-housing wealth share = const.

- Increasing housing wealth-to-income ratios implies that average household pays a higher multiple of income to purchase a house (if # of houses per household remained largely constant)
- Financial sector: rising wealth-to-income ratio and housing wealth-to-income ratio
 - · Contribute to an increase in the financial sector

Philippon (2015); Gennaioli et al. (2014)

· Lead to more private debt via mortgage loans

- Declining labor income share \Leftrightarrow rising wealth income share Gutierrez Gallardo and Piton (forth.)
 - Wealth share = housing wealth share + non-housing wealth share
 - Rognlie (2015): housing wealth share ↑ and non-housing wealth share = const.
 - Housing wealth share $=\left(r^{H}-\frac{\Delta P^{H}}{P^{H}}\right)\frac{W^{H}}{NNP}$

- Increasing housing wealth-to-income ratios implies that average household pays a
 higher multiple of income to purchase a house
 (if # of houses per household remained largely constant)
- Financial sector: rising wealth-to-income ratio and housing wealth-to-income ratio
 - Contribute to an increase in the financial sector

Philippon (2015); Gennaioli et al. (2014)

Lead to more private debt via mortgage loans

- Declining labor income share \Leftrightarrow rising wealth income share Gutierrez Gallardo and Piton (forth.)
 - Wealth share = housing wealth share + non-housing wealth share
 - Rognlie (2015): housing wealth share ↑ and non-housing wealth share = const.
 - Housing wealth share $=\left(r^{H}-\frac{\Delta P^{H}}{P^{H}}\right)\frac{W^{H}}{NNP}$
 - Jorda et al. (2019): declining/stable r^H and stable $\frac{\Delta P^H}{P^H}$

- Increasing housing wealth-to-income ratios implies that average household pays a higher multiple of income to purchase a house (if # of houses per household remained largely constant)
- Financial sector: rising wealth-to-income ratio and housing wealth-to-income ratio
 - Contribute to an increase in the financial sector

Philippon (2015); Gennaioli et al. (2014)

· Lead to more private debt via mortgage loans

- Declining labor income share ⇔ rising wealth income share Gutierrez Gallardo and Piton (forth.)
 - Wealth share = housing wealth share + non-housing wealth share
 - Rognlie (2015): housing wealth share ↑ and non-housing wealth share = const.
 - Housing wealth share $=\left(r^{H}-\frac{\Delta P^{H}}{P^{H}}\right)\frac{W^{H}}{NNP}$
 - Jorda et al. (2019): declining/stable r^H and stable $\frac{\Delta P^H}{P^H}$
 - \rightarrow Rising wealth share has to be explained by rising housing wealth-to-income ratio $\frac{W^H}{NNP}$

- Finance: financial liberalization, great mortgaging
 - \rightarrow this paper: fundamental forces

- Finance: financial liberalization, great mortgaging
 - \rightarrow this paper: fundamental forces
- · Inequality, heterogeneous agent models, homeownership
 - ightarrow this paper: simple theory

- Finance: financial liberalization, great mortgaging
 - \rightarrow this paper: fundamental forces
- · Inequality, heterogeneous agent models, homeownership
 - ightarrow this paper: simple theory
- VAR / reduced form econometrics
 - ightarrow this paper: model-based inference
 - ightarrow this paper: simple theory

- Finance: financial liberalization, great mortgaging
 - \rightarrow this paper: fundamental forces
- · Inequality, heterogeneous agent models, homeownership
 - ightarrow this paper: simple theory
- VAR / reduced form econometrics
 - → this paper: model-based inference
 - ightarrow this paper: simple theory
- · Regional economics, urbanization, spatial modeling

Related literature

- Early literature: Ricardo (1817); Nichols (1970)
- Housing wealth, house and land prices: Davis and Heathcote (2007); Piketty and Zucman (2014); Rognlie (2015); Stiglitz (2015); Knoll, Schularick, and Steger (2016)
- Short run: Davis and Heathcote (2005); Hornstein (2009), lacoviello, and Neri (2010); Favilukis et al. (2017); Piazzesi and Schneider (2016)
- Long run: Hansen and Prescott (2002); Borri and Reichlin (2018); Herkenhoff, Ohanian, and Prescott (2018); Miles and Sefton (2018); Bonnet et al. (2019)
- Declining labor income share: Karabarbounis and Neiman (2013); Piketty (2014);
 Rognlie (2015); Grossmann et al. (2017); Cette, Koehl, and Philippon (2019); Aghion et al. (2019); Gutierrez Gallardo and Piton (forthcoming)

Outline

- 1. Introduction
- 2. Facts
- 3. Model
- 4. Steady state
- 5. Transition
- 6. Discussion
- 7. Summary

Facts

- Wealth: Wealth-to-income ratio ↑, housing wealth-to-income ratio ↑↑
- 2. Prices: Real house price ↑↑, construction cost ↑, residential land prices ↑↑↑
- 3. Quantities: House quantity ↑↑, residential structures ↑↑↑, residential land ↑
- Land share: Residential land value as share of housing wealth ↑
- 5. Rent: Housing rent ↑

 Wealth: Wealth-to-income ratio ↑, housing wealth-to-income ratio ↑↑

 Wealth: Wealth-to-income ratio ↑, housing wealth-to-income ratio ↑↑

- Wealth: Wealth-to-income ratio ↑, housing wealth-to-income ratio ↑↑
- 2. Prices: Real house price ↑↑, construction cost ↑, residential land prices ↑↑↑

- Wealth: Wealth-to-income ratio ↑, housing wealth-to-income ratio ↑↑
- 2. Prices: Real house price ↑↑, construction cost ↑, residential land prices ↑↑↑

- Wealth: Wealth-to-income ratio ↑, housing wealth-to-income ratio ↑↑
- 2. Prices: Real house price ↑↑, construction cost ↑, residential land prices ↑↑↑
- 3. Quantities: House quantity ↑↑, residential structures ↑↑↑, residential land ↑

- Wealth: Wealth-to-income ratio ↑, housing wealth-to-income ratio ↑↑
- 2. Prices: Real house price ↑↑, construction cost ↑, residential land prices ↑↑↑
- 3. Quantities: House quantity ↑↑, residential structures ↑↑↑, residential land ↑

- Wealth: Wealth-to-income ratio ↑, housing wealth-to-income ratio ↑↑
- Prices: Real house price ↑↑, construction cost ↑, residential land prices ↑↑↑
- 3. Quantities: House quantity ↑↑, residential structures ↑↑↑, residential land ↑
- 4. Land share: Residential land value as share of housing wealth ↑

Stylized facts on housing & macro in the long run

- Wealth: Wealth-to-income ratio ↑, housing wealth-to-income ratio ↑↑
- Prices: Real house price ↑↑, construction cost ↑, residential land prices ↑↑↑
- 3. Quantities: House quantity ↑↑, residential structures ↑↑↑, residential land ↑
- Land share: Residential land value as share of housing wealth ↑
- 5. Rent: Housing rent ↑

Stylized facts on housing & macro in the long run

- Wealth: Wealth-to-income ratio ↑, housing wealth-to-income ratio ↑↑
- 2. Prices: Real house price ↑↑, construction cost ↑, residential land prices ↑↑↑
- 3. Quantities: House quantity ↑↑, residential structures ↑↑↑, residential land ↑
- Land share: Residential land value as share of housing wealth ↑
- 5. Rent: Housing rent ↑

Stylized facts: numbers

Fact #	Variable	US 1950-2015	UK 1950-2012	FR 1960-2012	DE 1962-2012
	wealth-to-income ratio	1.39	1.4	2.2	1.88
1	housing wealth-to-income ratio	1.42	2.4	3.2	1.93
	non-housing wealth-to-income ratio	1.38	0.9	1.2	1.79
	house price	1.9	4.0	6.0	1.6
2	residential land price	8.4	9.6	32.2	2.3
	residential structure price	1.2	2.1	1.1	1.4
	house quantity	4.4	3.3	2.2	4.2
3	residential land quantity	2.8	2.1	1.6	3.5
	residential structure quantity	5.5	4.3	6.3	4.3
4	land's share in housing wealth	2.8	1.5	3.8	1.2
5	housing rent	1.7	3.1	2.8	1.6

Model

General model characteristics

• Ramsey growth model (frictionless, neoclassical economy)

General model characteristics

- Ramsey growth model (frictionless, neoclassical economy)
- Two main sectors: numeraire sector & housing sector

General model characteristics

- Ramsey growth model (frictionless, neoclassical economy)
- Two main sectors: numeraire sector & housing sector
- Exogenous population growth & exogenous technological change

General model characteristics

- Ramsey growth model (frictionless, neoclassical economy)
- Two main sectors: numeraire sector & housing sector
- Exogenous population growth & exogenous technological change

Specific characteristics (relative to literature)

• Fixed quantity of overall land & endogenous land allocation

General model characteristics

- Ramsey growth model (frictionless, neoclassical economy)
- Two main sectors: numeraire sector & housing sector
- Exogenous population growth & exogenous technological change

Specific characteristics (relative to literature)

- Fixed quantity of overall land & endogenous land allocation
- Three stocks: capital K, residential structure X, fixed land Z (residential land N and non-residential land Z^Y)

General model characteristics

- Ramsey growth model (frictionless, neoclassical economy)
- Two main sectors: numeraire sector & housing sector
- Exogenous population growth & exogenous technological change

Specific characteristics (relative to literature)

- Fixed quantity of overall land & endogenous land allocation
- Three stocks: capital K, residential structure X, fixed land Z (residential land N and non-residential land Z^Y)
- Housing stock: two-dimensional object (reproducible X & non-reproducible N)

canonical model

Households

Representative household chooses $\{C_t\}_{t=0}^{\infty}$ and $\{S_t\}_{t=0}^{\infty}$ to maximize

$$U = \int_0^\infty e^{-\rho t} L_t \frac{\left[\left(\frac{C_t}{L_t} \right)^{1-\theta} \left(\frac{S_t}{L_t} \right)^{\theta} \right]^{1-\sigma} - 1}{1-\sigma} dt, \tag{1}$$

Households

Representative household chooses $\{C_t\}_{t=0}^{\infty}$ and $\{S_t\}_{t=0}^{\infty}$ to maximize

$$U = \int_0^\infty e^{-\rho t} L_t \frac{\left[\left(\frac{C_t}{L_t} \right)^{1-\theta} \left(\frac{S_t}{L_t} \right)^{\theta} \right]^{1-\sigma} - 1}{1-\sigma} dt, \tag{1}$$

subject to

$$\dot{W}_t = r_t W_t + w_t L_t + \Pi_t^N - C_t - q_t S_t, \ W_0 = given, \ NPGC.$$
 (2)

Notes: The measure of households is normalized to one. Each household consists of measure L_t members. Each household member supplies one unit of labor inelastically such that labor supply per household is L_t . Households maximize "the sum" of per-capita utility.

$$Y = (K)^{\alpha} (B^{Y}L^{Y})^{\beta} (B^{Y}Z^{Y})^{1-\alpha-\beta}$$

Housing sector

• Housing services supply: S

$$S = X^{\gamma} N^{1-\gamma}$$

$$Y = (K)^{\alpha} (B^{Y}L^{Y})^{\beta} (B^{Y}Z^{Y})^{1-\alpha-\beta}$$

Housing sector

• Housing services supply: S

$$S = X^{\gamma} N^{1-\gamma}$$

• Real estate development: \dot{N}

$$Cost = P^{Z} \dot{N} + w \frac{\xi}{2} \left(\dot{N} \right)^{2}$$

$$Y = (K)^{\alpha} (B^{Y}L^{Y})^{\beta} (B^{Y}Z^{Y})^{1-\alpha-\beta}$$

Housing sector

• Housing services supply: S

$$S = X^{\gamma} N^{1-\gamma}$$

extensive

intensive

• Real estate development: \dot{N}

$$Cost = P^{Z} \dot{N} + w \frac{\xi}{2} \left(\dot{N} \right)^{2}$$

• Construction: \dot{X}

$$\dot{X} = (M)^{\eta} \left(B^{X} L^{X} \right)^{1-\eta} - \delta^{X} X$$

$$Y = (K)^{\alpha} (B^{Y}L^{Y})^{\beta} (B^{Y}Z^{Y})^{1-\alpha-\beta}$$

Housing sector

Housing services supply: S

$$S = X^{\gamma} N^{1-\gamma}$$

intensive

• Real estate development: \dot{N}

$$\begin{array}{l}
N & \text{extensive} \\
Cost = P^{Z} \dot{N} + w \frac{\xi}{2} \left(\dot{N} \right)^{2}
\end{array}$$

• Construction: \dot{X}

$$\dot{X} = (M)^{\eta} \left(B^{X} L^{X} \right)^{1-\eta} - \delta^{X} X$$

Numeraire sector

$$Y = (K)^{\alpha} (B^{Y}L^{Y})^{\beta} (B^{Y}Z^{Y})^{1-\alpha-\beta}$$

Resource constraints

• Labor:

$$L^Y + L^X + L^N = L$$

• Land:

$$N + Z^Y = Z$$

Asset market

• Wealth consists of 4 assets

$$W = \underbrace{P^{N}N + P^{X}X}_{\text{housing wealth}} + \underbrace{P^{Z}Z^{Y} + K}_{\text{non-housing wealth}}$$

Asset market

Wealth consists of 4 assets

$$W = \underbrace{P^{N}N + P^{X}X}_{\text{housing wealth}} + \underbrace{P^{Z}Z^{Y} + K}_{\text{non-housing wealth}}$$

• No-arbitrage conditions hold in equilibrium

$$r = \frac{\dot{P}^N}{P^N} + \frac{R^N}{P^N} = \frac{\dot{P}^X}{P^X} + \frac{R^X}{P^X} = \frac{\dot{P}^Z}{P^Z} + \frac{R^Z}{P^Z}$$

General equilibrium

A general equilibrium is a sequence of quantities and prices

$$\left\{Y_{t}, K_{t}, X_{t}, N_{t}, M_{t}, L_{t}^{Y}, L_{t}^{X}, L_{t}^{N}, Z_{t}^{Y}, C_{t}, S_{t}, W_{t}, q_{t}, w_{t}, r_{t}, P_{t}^{Z}, P_{t}^{N}, P_{t}^{X}, R_{t}^{Z}, R_{t}^{N}, R_{t}^{X}\right\}_{t=0}^{\infty}$$

for initial conditions K_0, N_0, X_0 and given $\left\{B_t^X, B_t^Y, L_t\right\}_{t=0}^{\infty}$ such that

- i) households maximize eq. (1) subject to eq. (2)
- ii) firms in construction sector, numeraire sector, real estate developers, and housing services producers maximize profits, taking prices as given
- iii) labor market clears: $L_t^X + L_t^Y + L_t^N = L_t$
- iv) land market clears: $N_t + Z_t^Y = Z$
- v) asset markets clears: $W_t = K_t + P_t^N N_t + P_t^X X_t + P_t^Z Z_t^Y$
- vi) perfect arbitrage across all assets holds
- vii) market for housing services clears
- viii) market for numeraire good clears: $Y_t = C_t + I_t^K + I_t^{Z^Y} + I_t^N + M_t$

redundant due to Walras' law

$$I_t^{Z^Y} \equiv P_t^Z \dot{Z}_t^Y, I_t^N \equiv P_t^N \dot{N}_t + wL^N$$

Steady state

Variables	Growth rate
r	0

Variables	Growth rate
r	0
$Y, K, M, w, R^Z, R^N, P^Z, P^N, C, NNP, W$	g ^Y

Variables	Growth rate
r	0
$Y, K, M, w, R^Z, R^N, P^Z, P^N, C, NNP, W$	$g^{^{\gamma}}$
X, I^X	$\eta \mathbf{g}^{Y} + (1-\eta) \mathbf{g}^{X}$

Variables	Growth rate
r	0
$Y,K,M,w,R^Z,R^N,P^Z,P^N,C,NNP,W$	g^{Y}
X, I^X	$\eta \mathbf{g}^{Y} + (1 - \eta) \mathbf{g}^{X}$
R^X, P^X	$(1-\eta)\left(\mathbf{g}^{Y}-\mathbf{g}^{X}\right)$

Variables	Growth rate
r	0
$Y, K, M, w, R^Z, R^N, P^Z, P^N, C, NNP, W$	g^{Y}
X, I^X	$\eta oldsymbol{g}^{ ext{Y}} + (1-\eta) oldsymbol{g}^{ ext{X}}$
R^{X}, P^{X}	$(1-\eta)\left(\mathbf{g}^{Y}-\mathbf{g}^{X}\right)$
S	$\gamma \left[\eta \mathbf{g}^Y + (1 - \eta) \mathbf{g}^X ight]$

0
g ^Y
$\eta \mathbf{g}^{Y} + (1 - \eta) \mathbf{g}^{X}$
$(1-\eta)\left(\mathbf{g}^{Y}-\mathbf{g}^{X}\right)$
$\gamma \left[\eta \mathbf{g}^{Y} + (1 - \eta) \mathbf{g}^{X} \right]$
$(1-\eta\gamma)\mathbf{g}^{Y}-(1-\eta)\gamma\mathbf{g}^{X}$

Variables	Growth rate
r	0
$Y, K, M, w, R^Z, R^N, P^Z, P^N, C, NNP, W$	g^{γ}
X, I^X	$\eta \mathbf{g}^{Y} + (1 - \eta) \mathbf{g}^{X}$
R^X, P^X	$(1-\eta)\left(\mathbf{g}^{\mathrm{Y}}-\mathbf{g}^{\mathrm{X}}\right)$
5	$\gamma \left[\eta oldsymbol{g}^{ extsf{Y}} + (1-\eta) oldsymbol{g}^{ extsf{X}} ight]$
q	$(1-\eta\gamma)\mathbf{g}^{Y}-(1-\eta)\gamma\mathbf{g}^{X}$
$P_t^H \equiv \frac{P_t^N N_0 + P_t^X X_0}{P_0^N N_0 + P_0^X X_0}$	$\lambda_t \mathbf{g}^{Y} + (1 - \lambda_t)(1 - \eta)\left(\mathbf{g}^{Y} - \mathbf{g}^{X}\right)$

	Stylized fact		Steady state?	Condition / comments
#	explanation		, , , , , , , , , , , , , , , , , , , ,	
1	Wealth-to-income ratios	$\frac{P^HH+P^ZZ^Y+K}{NNP}\uparrow$ and $\frac{P^HH}{NNP}\uparrow$	no	wealth-to-income ratios constant in steady state

Stylized fact			Steady state?	Condition / comments
#	explanation			
1	Wealth-to-income ratios	$\frac{P^HH+P^ZZ^Y+K}{NNP}\uparrow$ and $\frac{P^HH}{NNP}\uparrow$	no	wealth-to-income ratios constant in steady state
2	Prices	$g_{P^N}, g_{P^X}, g_{P^H} > 0$ $g_{P^N} > g_{P^H} > g_{P^X}$	yes	$g^Y > \max\{g^X, 0\}$ $g^X > -rac{\eta}{1-\eta}g^Y$

Stylized fact			Steady state?	Condition / comments
#	explanation		,	
1	Wealth-to-income ratios	$\frac{P^H H + P^Z Z^Y + K}{NNP} \uparrow$ and $\frac{P^H H}{NNP} \uparrow$	no	wealth-to-income ratios constant in steady state
2	Prices	$g_{PN}, g_{PX}, g_{PH} > 0$ $g_{PN} > g_{PH} > g_{PX}$	yes	$g^Y > \max\{g^X, 0\}$ $g^X > -\frac{\eta}{1-\eta}g^Y$
3	Quantities	$g_X > g_N \ge 0$	yes	$g^X > -rac{\eta}{1-\eta}g^Y$

Stylized fact			Steady state?	Condition / comments	
#	explanation				
1	Wealth-to-income ratios	$\frac{P^H H + P^Z Z^Y + K}{NNP} \uparrow $ and $\frac{P^H H}{NNP} \uparrow$	no	wealth-to-income ratios constant in steady state	
2	Prices	$g_{PN},g_{PX},g_{PH}>0$ $g_{PN}>g_{PH}>g_{PX}$	yes	$g^Y > \max\{g^X, 0\}$ $g^X > -\frac{\eta}{1-\eta}g^Y$	
3	Quantities	$g_X > g_N \geq 0$	yes	$g^{X}>-rac{\eta}{1-\eta}g^{Y}$	
4	Land share	$\frac{P^NN}{P^NN+P^XX}$ \uparrow	no	land share constant in steady state	

Stylized fact			Steady state?	Condition / comments
#	explanation			
1	Wealth-to-income ratios	$rac{P^H H + P^Z Z^Y + K}{NNP} \uparrow$ and $rac{P^H H}{NNP} \uparrow$	no	wealth-to-income ratios constant in steady state
2	Prices	$g_{P^N}, g_{P^X}, g_{P^H} > 0$ $g_{P^N} > g_{P^H} > g_{P^X}$	yes	$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$
3	Quantities	$g_X > g_N \geq 0$	yes	$g^{X}>-rac{\eta}{1-\eta}g^{Y}$
4	Land share	$\frac{P^NN}{P^NN+P^XX}$ \uparrow	no	land share constant in steady state
5	Rents	$g_q > 0$	yes	$g^X < \frac{1-\eta\gamma}{(1-\eta)\gamma}g^Y$

Transition

Research question: Why did housing wealth increase since 1950?

• To answer this question, we must study transitional dynamics

Research question: Why did housing wealth increase since 1950?

- To answer this question, we must study transitional dynamics
- Can the calibrated model replicate the empirical data on housing wealth?

Research question: Why did housing wealth increase since 1950?

- To answer this question, we must study transitional dynamics
- Can the calibrated model replicate the empirical data on housing wealth?
- And: Is this explanation compatible with observations on prices, quantities, and the other remaining stylized facts?

Calibration strategy

The model is calibrated to the US (and the UK) over 1950-2015 at an annual frequency

- · We do not impose that the economy is in steady state
- Calibrated outside the model: θ , σ , δ^K , δ^X , β , and $\{L_t\}_{t=0}^{\infty}$
- Calibrated jointly inside the model: 10 parameters to match 10 moments

exogenous parameters targeted moments endogenous parameters

Stylized fact 1: housing wealth

Notes: Overall wealth-to-income and housing wealth-to-income ratio.

 $\frac{\text{wealth}}{\text{income}} \uparrow$

$$\frac{\text{wealth}}{\text{income}} \uparrow = \frac{\text{housing wealth}}{\text{income}} \uparrow + \frac{\text{non-housing wealth}}{\text{income}}$$

$$\frac{\text{wealth}}{\text{income}} \uparrow = \frac{\text{housing wealth}}{\text{income}} \uparrow + \frac{\text{non-housing wealth}}{\text{income}}$$

housing wealth income

$$\frac{\text{wealth}}{\text{income}} \uparrow = \frac{\text{housing wealth}}{\text{income}} \uparrow + \frac{\text{non-housing wealth}}{\text{income}}$$

$$\frac{\text{housing wealth}}{\text{income}} = \frac{\textit{P}^{\text{housing}} \uparrow \times \textit{Q}^{\text{housing}}}{\text{income}}$$

Notation: *P* is price, *Q* is quantity

$$\frac{\text{wealth}}{\text{income}} \uparrow = \frac{\text{housing wealth}}{\text{income}} \uparrow + \frac{\text{non-housing wealth}}{\text{income}}$$

$$\frac{\text{housing wealth}}{\text{income}} = \frac{P^{\text{housing}} \uparrow \times Q^{\text{housing}}}{\text{income}} = \frac{P^{\text{structures}} \times Q^{\text{structures}}}{\text{income}} + \frac{P^{\text{land}} \uparrow \times Q^{\text{land}}}{\text{income}}$$

Notation: *P* is price, *Q* is quantity

Prices & quantities - stylized facts 2 & 3

Prices & quantities - stylized facts 2 & 3

stylized	variable	data	model (4)
fact		(US)	baseline
1	$\frac{\frac{W}{NNP}}{\frac{P^{N}N+P^{X}X}{NNP}}$	1.39 1.42	1.55 1.80
2	P ^H	1.93	2.75
	P ^N	8.45	4.82
	P ^X	1.16	2.47
3	N	2.80	2.29
	X	5.49	4.36
4	$\frac{P^NN}{P^NN+P^XX}$	2.84	1.02
5	9	1.70	1.70

stylized fact	variable	data (US)	model (1) Ramsey
1	$\frac{\frac{W}{NNP}}{\frac{P^{N}N+P^{X}X}{NNP}}$	1.39 1.42	1.24
2	P ^H P ^X	1.93 8.45 1.16	- - -
3	N X	2.80 5.49	- -
4	$\frac{P^NN}{P^NN+P^XX}$	2.84	-
5	9	1.70	-

stylized fact	variable	data (US)	model (1) Ramsey	model (2) + exog. X & N
1	$\frac{W}{NNP} \\ \frac{P^{N}N + P^{X}X}{NNP}$	1.39 1.42	1.24	1.22 1.14
2	P ^H P ^N P ^X	1.93 8.45 1.16	- - -	6.85 6.84 6.86
3	N X	2.80 5.49	-	1.00 1.00
4	$\frac{P^NN}{P^NN+P^XX}$	2.84	-	1.00
5	9	1.70	-	6.48

stylized fact	variable	data (US)	model (1) Ramsey	model (2) + exog. X & N	model (3) + endog. X
1	$\frac{W}{NNP} \\ \frac{P^{N}N + P^{X}X}{NNP}$	1.39 1.42	1.24	1.22 1.14	4.91 10.44
2	P ^H P ^N P ^X	1.93 8.45 1.16	- - -	6.85 6.84 6.86	57.18 496.83 1.89
3	N X	2.80 5.49	-	1.00 1.00	1.00 4.25
4	$\frac{P^NN}{P^NN+P^XX}$	2.84	-	1.00	7.93
5	9	1.70	-	6.48	1.70

stylized fact	variable	data (US)	model (1) Ramsey	model (2) + exog. X & N	model (3) + endog. X	model (4) baseline
1	W NNP	1.39	1.24	1.22	4.91	1.55
'	$\frac{P^NN+P^XX}{NNP}$	1.42	-	1.14	10.44	1.80
	P^H	1.93	_	6.85	57.18	2.75
2	P^N	8.45	-	6.84	496.83	4.82
	P^X	1.16	-	6.86	1.89	2.47
3	N	2.80	-	1.00	1.00	2.29
3	X	5.49	-	1.00	4.25	4.36
4	$\frac{P^NN}{P^NN+P^XX}$	2.84	-	1.00	7.93	1.02
5	9	1.70	-	6.48	1.70	1.70

Discussion

Discussion

The model underestimates the surge in the land share in housing. What's missing?

- CES in housing services production: N and X being weak substitutes
 - \rightarrow preliminary results on next slide
- \bullet Zoning regulation: supply of residential land, constraining N
- Urbanization: supply of residential land, constraining N
- Homeownership "revolution" and great mortgaging: demand for housing services, θ , increases

stylized fact	variable	data (US)	model (4) baseline	model (5) $g^X = -\frac{\eta}{1-\eta}g^Y$
1	$\frac{W}{NNP}$ $\frac{P^{N}N+P^{X}X}{NNP}$	1.39 1.42	1.55 1.80	1.70 2.01
2	P ^H P ^N P ^X	1.93 8.45 1.16	2.75 4.82 2.47	3.37 5.56 3.07
3	N X	2.80 5.49	2.29 4.36	2.08 3.94
4	$\frac{P^NN}{P^NN+P^XX}$	2.84	1.02	0.96
5	9	1.70	1.70	1.93

Notes. All values are growth factors of the respective variable between 1950 and 2015. Bold numbers highlight targeted moments. Model (5) is re-calibrated while model (6) applies the same parameters from (5) except the elasticity of substitution between N and X in the production function of S.

stylized fact	variable	data (US)	model (4) baseline	model (5) $g^X = -\frac{\eta}{1-\eta}g^Y$	model (6) <i>EoS</i> = 0.25
1	$\frac{W}{NNP} \\ \frac{P^{N}N + P^{X}X}{NNP}$	1.39 1.42	1.55 1.80	1.70 2.01	1.97 2.58
2	P ^H P ^X	1.93 8.45 1.16	2.75 4.82 2.47	3.37 5.56 3.07	6.42 8.45 2.79
3	N X	2.80 5.49	2.29 4.36	2.08 3.94	1.97 4.84
4	$\frac{P^NN}{P^NN+P^XX}$	2.84	1.02	0.96	1.07
5	9	1.70	1.70	1.93	2.58

Notes. All values are growth factors of the respective variable between 1950 and 2015. Bold numbers highlight targeted moments. Model (5) is re-calibrated while model (6) applies the same parameters from (5) except the elasticity of substitution between N and X in the production function of S.

• Our explanation for the long term increase in housing wealth rests on fundamental principles

- Our explanation for the long term increase in housing wealth rests on fundamental principles
 - · The overall land endowments is fixed

- Our explanation for the long term increase in housing wealth rests on fundamental principles
 - · The overall land endowments is fixed
 - Housing is land intensive & there is differential technological change

- Our explanation for the long term increase in housing wealth rests on fundamental principles
 - · The overall land endowments is fixed
 - Housing is land intensive & there is differential technological change
 - \bullet Housing wealth comprises a reproducible component & a non-reproducible component

- Our explanation for the long term increase in housing wealth rests on fundamental principles
 - · The overall land endowments is fixed
 - Housing is land intensive & there is differential technological change
 - Housing wealth comprises a reproducible component & a non-reproducible component
- Main takeaways

- Our explanation for the long term increase in housing wealth rests on fundamental principles
 - · The overall land endowments is fixed
 - Housing is land intensive & there is differential technological change
 - Housing wealth comprises a reproducible component & a non-reproducible component
- Main takeaways
 - Our theory offers a candidate explanation for rising housing wealth and the other stylized facts on housing & macro

- Our explanation for the long term increase in housing wealth rests on fundamental principles
 - · The overall land endowments is fixed
 - Housing is land intensive & there is differential technological change
 - Housing wealth comprises a reproducible component & a non-reproducible component
- Main takeaways
 - Our theory offers a candidate explanation for rising housing wealth and the other stylized facts on housing & macro
 - Two mechanism, in a growing economy, push the rent and the house price up: i) housing uses the fixed factor intensively and ii) differential technological change

- Our explanation for the long term increase in housing wealth rests on fundamental principles
 - · The overall land endowments is fixed
 - Housing is land intensive & there is differential technological change
 - Housing wealth comprises a reproducible component & a non-reproducible component
- Main takeaways
 - Our theory offers a candidate explanation for rising housing wealth and the other stylized facts on housing & macro
 - Two mechanism, in a growing economy, push the rent and the house price up: i) housing uses the fixed factor intensively and ii) differential technological change
 - The resulting surge in housing wealth manifests itself primarily as an increase of the residential land price (non-reproducible component of housing wealth)

Firm problem: numeraire

Mass one of identical firms that act under perfect competition and maximize

$$\max_{K,L^{Y},Z^{Y}}(K)^{\alpha}\left(B^{Y}L^{Y}\right)^{\beta}\left(B^{Y}Z^{Y}\right)^{1-\alpha-\beta}-wL^{Y}-(r+\delta^{K})K-R^{Z}Z^{Y}$$

FOC

$$r = \alpha \frac{Y}{K} - \delta^K$$
, $w = \beta \frac{Y}{L^Y}$, and $R^Z = (1 - \alpha - \beta) \frac{Y}{Z^Y}$

Aggregate capital stock evolves according to

$$\dot{K}_t = I_t^K - \delta^K K_t$$

Firm problem: housing services

Mass one of identical firms that act under perfect competition and maximize

$$\max_{X,N} q \underbrace{X^{\gamma} N^{1-\gamma}}_{=S} - (R^X + \delta^X P^X) X - R^N N$$

FOC

$$R^X = \gamma \frac{qS}{X} - \delta^X P^X$$
, and $R^N = (1 - \gamma) \frac{qS}{N}$

Firm problem: real estate development (I/II)

Mass one of identical firms take prices as given and face the production function

$$\dot{N} = f(Z^N, L^N) = \begin{cases} \min\left\{Z^N, \sqrt{\frac{2}{\xi}L^N}\right\} & \text{if } Z^N \ge 0\\ \max\left\{Z^N, -\sqrt{\frac{2}{\xi}L^N}\right\} & \text{if } Z^N < 0 \end{cases}$$

Cost minimization

$$\min_{Z^N,L^N} P^Z Z^N + wL^N$$

subject to

$$f(Z^N,L^N)=\overline{\dot{N}}$$

yields the cost function

$$C(\dot{N}; P^Z, w) = P^Z \dot{N} + \frac{\xi w}{2} (\dot{N})^2$$

Firm problem: real estate development (II/II)

Profit maximization

$$\max_{\dot{N}} P^N \dot{N} - \mathcal{C}(\dot{N}; P^N, P^Z, w)$$

FOC

$$\dot{N} = Z^N = \frac{P^N - P^Z}{\xi w}$$
 and $L^N = \frac{(P^N - P^Z)^2}{2\xi w^2}$

Profits

$$\Pi^N = \frac{(P^N - P^Z)^2}{2\xi w} = wL^N$$

Firm problem: construction sector

Mass one of identical firms that act under perfect competition and maximize

$$\max_{M,L^X} P^X \underbrace{M^{\eta} \left(B^X L^X\right)^{1-\eta}}_{=I^X} - M - wL^X$$

FOC (interior solution)

$$w = (1 - \eta) \frac{P^X I^X}{L^X}$$
 and $1 = \eta \frac{P^X I^X}{M}$

Canonical model

- Merits & features
 - Suitable for business cycle phenomena
 - · Limited land scarcity
 - · No land rivalry
 - Long-run inconsistency: replacement investment require land: $\int_0^\infty \bar{Z} dt = \infty$!

Davis and Heathcote (2005), Hornstein (2009), Iacoviello and Neri (2010), Favilukis, Ludvigson and Van Nieuwerburgh (2017), Borri and Reichlin (2018), ...

Canonical model (cont')

Numeraire good	$Y_t = B_t^{Y} (K_t^{Y})^{\alpha} (L_t^{Y})^{1-\alpha}$	non-residential rent missing
Construction	$X_t = B_t^X (K_t^X)^{\gamma} (L_t^X)^{1-\gamma}$	intermediate input
Housing services	$\underbrace{B_t^H X_t^\beta \frac{\mathbf{Z}^{1-\beta}}{\mathbf{Z}^{1-\beta}}}_{gross} = \underbrace{\dot{H}_t}_{net} + \underbrace{\delta^H H_t}_{replacement}$ investment investment	$ar{Z}$ is (time-invariant) flow variable
Housing market clearing	$S_t = q_t H_t$	housing consumption
Capital market clearing	$K_t^X + K_t^X = K_t$	
Labor market clearing	$L_t^X + L_t^Y = L_t$	

Relation of g^X and g^Y and steady state growth rates

- If $g^X = -\frac{\eta}{1-\eta}g^Y$, then X, I^X , and S are constant while R^X, P^X , and q all grow at the rate g^Y
- If $g^Y = g^X$, then X, I^X grow at the rate g^Y , while R^X , P^X are constant and rents grow at $(1 \gamma)g^Y$ and S at $\gamma g^Y \to$ large spread in growth rates of P^N (g^Y) and P^X (0)
- Region 1: X, I^X, 5 decline 4
- Region 2: no variable declining in the long run
- Region 3: P^X, R^X decline ∉
- Region 4: P^X , R^X , q decline $\mspace{1mu}$

Calibrated outside of the model (US)

Parameter	Value	Explanation/Target
θ	0.19	housing expenditure share
σ	10/3	intertemporal elasticity of substitution
δ^{K}	ln(1+0.056)	capital depreciation rate
δ^{X}	ln(1+0.015)	structure depreciation rate
β	0.613	labor income share in Y sector
$\{L_t\}_{t=0}^{\infty}$	logistic difference equation	population dynamics

Population dynamics

Endogenously calibrated parameters (US)

#	Parameter	Explanation	Value
1	ρ	time preference rate	0.040
2	K_0/K	initial capital stock (share of final)	0.227
3	γ	structure's elasticity in S	0.906
4	η	materials elasticity in I^X	0.556
5	X_0/X	initial stock of residential structures (share of final)	0.191
6	α	capital elasticity in Y	0.275
7	g^Y	technical growth in numeraire sector	0.017
8	g^X	technical growth in construction sector	-0.014
9	ξ	intensity of convex adjustment cost in residential land development	759.06
10	N_0/N	initial stock of residential land	0.403

Notes: Initial states, K_0 , N_0 , X_0 , are expressed relative to their respective final steady state values (normalized).

Targeted moments (US)

#	Moment	Data	Model	rel difference in %
1	<u>₩</u> _{NNP} , 1950	3.6	3.6	0.000
2	$\frac{P^{N}N+P^{X}X}{W}$, 1950	32.6	32.6	0.000
3	$\frac{P^{N}N}{P^{N}N+P^{X}X}$, 1950	11.8	11.8	0.000
4	long-run $\frac{L^X + L^N}{L}$	2.5	2.5	0.000
5	$\frac{RESI}{GDP}$, 1950	5.6	5.6	0.000
6	$\frac{R^ZZ^Y}{NNP}$, 1950	10.0	10.0	0.001
7	NNP ₂₀₁₅ NNP ₁₉₅₀	6.0	6.0	0.000
8	<u>92015</u> 91953	1.7	1.7	0.000
9	Half-life of N (years)	22.6	22.6	0.001
10	$\frac{X_{2015}/N_{2015}}{X_{1950}/N_{1950}}$	2.8	2.8	0.000

Transition (I/III)

Notes: All variables are normalized.

Transition (II/III)

Notes: All variables are normalized.

Transition (III/III)

Notes: All variables are normalized.

Housing rents and interest rates

