- I have tried to use a half-Normal prior on the "standard deviation" of the spline coefficients, $\lambda^{-1/2}$, but it failed to converge even for Zimbabwe
- all hyperpriors are now common between sexes, except for the dispersion parameters for the Negative Binomial (maybe will fix that too)
- simulating the posterior of the hyperparameters took extremely long time, given up on that at the moment
- Explored the PC priors and trimmed down the number of hyperparameters, as well as added spikes for TiPS at 5 and 10 that were previously missing, will add plots visualising the marginal prior distribution of the parameters soon (at the moment fitting the gumbel too all countries and don't want R to explode)
 - For the mortality model parameters, these are previously given GMRF with precision matrix $Q = \lambda_1(D_2'D_2 + \lambda_2 I)$. The ratio between λ_1 and λ_2 controls how much the linear extrapolation is shrunk towards 0. Writing the penalty (precision matrix) as $Q = \tau(D_2'D_2 + cI) = \tau R$, under the PC priors, we elicit information on the effective degrees of freedom (EDF) and translate this into a prior for λ . Following Ventrucci and Rue (2016), the EDF is approximated by the trace of the hat matrix under the classical linear regression model. Consider:

$$egin{aligned} m{y} &= m{B}m{eta} + m{arepsilon} \ & ext{where} \quad m{arepsilon} \sim N(0, au_{arepsilon}^{-1}) \ & ext{with penalty} \quad aum{eta}'m{R}m{eta}, \end{aligned}$$

the hat matrix is $({m B}'{m B} + \frac{\tau}{\tau_{\varepsilon}}{m R})^{-1}{m B}'{m B}$ and hence the EDF is $d(\tau) = tr({m I} + \frac{\tau}{\tau_{\varepsilon}}{m R}({m B}'{m B})^{-1})^{-1} = \sum_k (1 + \frac{\tau}{\tau_{\varepsilon}} v_k)^{-1}$. By setting a upper bound of the EDF U such that $P(d > U) = \alpha$ for some small probability α , the PC prior for τ can be obtained as a Gumbel Type $2(\frac{1}{2},\theta)$ where $\theta = -\log(\alpha)\sqrt{d^{-1}(U)}$.

There are several tuning parameters for this PC hyperprior, $\alpha, U, \tau_{\varepsilon}$ and c. I set $\alpha = 0.01$ and U = 1 for $\{\phi, A\}$, U = 1.5 for $\{\psi, B\}$ and U = 5 for $\{\lambda, \delta, \epsilon\}$, meaning that we don't really believe the EDF of the splines would be higher than 1, 1.5 or 5 for the respective parameters, which correspond to a constant (U = 1) and somewhere between a constant and a linear trend (U = 1.5).

c is also estimated as a parameter but now I have decided to fix it as a constant to remove the computational burden. A higher value of c allows a lower τ in order to reach a specific EDF. In the limiting case when $c \to \infty$, the penalty degenerates to a i.i.d precision matrix. Conventionally in Bayesian P-splines, c is chosen to be some small constant so that it completes the rank of the penalty matrix but leaves the null space minimally affected. I have chosen c to be a small value 1e-3 so that smoothness is prioritised before shrinking the spline to 0 or a constant, but thinking about increasing this value to allow more conservative priors on τ . Alternatively, I can increase U to be at least 2 so that c would have minimal effect on the limiting case under the 2nd order difference penalty.

 τ_{ε} is the precision of the 'observed data', here I interpret this as the precision of the 'observed' parameters that we expect from the data. I have set it to $(\log(1.3)/1.96)^{-2}$ for the parameters of the child and old age components and $(\log(3)/1.96)^{-2}$ for the hump components, roughly meaning that we expect majority of the mass would lie within 30% of the IGME derived estimates (or 300% for the hump components from the baseline estimates in 1960). I am thinking to increase this value to give a more conservative bound on τ , i.e. allowing more flexibility.

Alternatively c and τ_{ε} could also be given priors and together form a joint prior with τ , i.e. $f(\tau, c, \tau_{\varepsilon}) = f(\tau | c, \tau_{\varepsilon}) f(c) f(\tau_{\varepsilon})$ so that it would lower the risks of mis-specifying their values,

but this would require numerical methods within TMB arising from calculating $d^{-1}(U)$, i.e. the τ implied by the values of c and τ_{ε} at each iteration.

A compromise would then be to use a discrete mixture of the Gumbel priors evaluated at a range of pre-specified values for c and τ_{ε} . Would this be an overkill? Or should I simply increase c or τ_{ε} to have a more conservative prior on τ ?

- For f_{xt} , the spline coefficients are simply given i.i.d MVN with U=4 (approximately 2 in each direction, age and time), $\alpha=0.01$ and $\tau_{\varepsilon}=(\log(1.5)/1.96)^{-2}$
- For g_{xt} , previously it is estimated as a 2D tensor P-splines with penalty on the coefficients in the form $\mathbf{Q} = \lambda_{1x} \mathbf{D_1'}_x \mathbf{D_1} + \lambda_{2t} \mathbf{D_1'}_t \mathbf{D_1} + \lambda_{3xt} \mathbf{D_1'}_{xt} \mathbf{D_1} + \lambda_4 \mathbf{I}$. I have swapped to using 2nd order differences penalty for smoothness, removed penalty for age-time and trimmed down the number of estimable parameters to $\mathbf{Q} = \tau(0.5_x \mathbf{D_2'}_x \mathbf{D_2} + 0.5_t \mathbf{D_2'}_t \mathbf{D_2} + c\mathbf{I})$. For some small constant c, this would mean that the smoothness is split equally in the age and time direction. Priors for τ is obtained using $\tau_{\varepsilon} = (0.08/1.96)^{-2}$, c = 1e 3, U = 7 and $\alpha = 0.01$. U = 7 means that the upper bound is approximately having 2-3 EDF in each direction, age and time.
- The PC priors do seem to work well in preventing under-smoothing, especially in B that was previously problematic, probably because of the potentially overly tight priors given? However, the D_2 penalties still imply a strong linear trend in the hump parameters outside the data range as the given upper bound of EDF is 5. I have also used a D_1 penalty on the mortality model parameters.
 - in the following, the results using D_2 penalty will be shown first, then D_1
 - estimated smoothing parameters
 - parameters using D_2 penalties are sometimes insensible, especially for ϵ (location of the hump), which went down to 0 in the earliest period due to the linear smoothness induce by the D_2 penalty. Variance estimates are also implausible for λ (level of the hump). Uncertainty around other parameters, especially A maybe be too low? Also for f_{xt} and possibly g_{xt} .
 - when using D_1 penalty, parameter estimates seem to be more sensible, however, uncertainty around the child/old age component parameters are again seem to be too low, as well as f_{xt} and possibly g_{xt} . In addition, asymmetric uncertainty range around the mode is obtained for females $_5q_0$ and the population counts (will check it on log-scale).
 - * when using D_1 penalty, it is possible to elicit information on the expected variation in $B\beta$ for each parameter as the variance structure is much more uniform than the D_2 penalty, hence I can consider acting directly on the expected variance for $B\beta$ to derive the PC prior, removing the need to estimate precision of the pseudo data τ_{ε}
 - * Tried to do this last night, uncertainty around parameters are still similar, showing that the priors are kind of robust

Zimbabwe

```
## [1] "Census Females"
## # A tibble: 86 x 6
        age `1969` `1982`
##
                            1992
                                     `2002` `2012`
##
      <dbl>
             <dbl>
                     <dbl>
                            <dbl>
                                     <dbl>
                                              <dbl>
##
              215. 137199. 169638. 170997. 215623.
   1
          0
##
              200. 134655. 159190. 172117. 211071.
##
              219. 133815. 158420. 168708. 198666.
##
          3
              229. 131120. 158291. 164925. 190736.
##
   5
              240. 128619. 160494. 162274. 183611.
          4
##
              251. 126617. 162425. 159507. 177197.
   6
          5
              258. 125956. 164145. 156778. 173472.
##
   7
          6
              261. 125351. 166412. 155377. 171651.
##
   8
          7
              262. 124105. 167841. 153895. 169450.
##
   9
          8
## 10
          9
              259. 118378. 165018. 153789. 171475.
## # ... with 76 more rows
## [1] "Census Females 5-year"
## # A tibble: 18 x 2
        age `1969`
##
##
      <dbl>
              <dbl>
##
   1
          0 1100.
   2
##
          5 1252.
##
   3
         10 1181.
##
   4
         15 935.
##
   5
         20
            709.
##
   6
            541.
         25
   7
##
         30
            437.
##
   8
         35
            379.
##
   9
         40
             303.
## 10
         45
             227.
## 11
         50
            168.
## 12
         55
            124.
## 13
         60
              95.4
## 14
         65
              67.1
## 15
         70
              35.5
## 16
         75
              17.0
## 17
         80
               9.26
## 18
         85
              13.4
## [1] "Census Males"
## # A tibble: 86 x 6
        age '1969' '1982' '1992' '2002' '2012'
##
                            <dbl>
##
      <dbl>
             <dbl> <dbl>
                                     <dbl>
              238. 133357. 168079. 170637. 213895.
##
   1
          0
##
   2
              232. 129754. 158096. 172216. 210140.
          1
##
              231. 129163. 156962. 168433. 197420.
   3
          2
##
              235. 127343. 157057. 164960. 189835.
   4
          3
##
   5
              242. 125798. 159247. 162197. 182613.
```

6

248. 124587. 161170. 159217. 176094.

```
## 8
        7
             265. 124146. 164082. 154419. 170262.
## 9
             271. 122838. 164791. 152264. 167883.
## 10
         9
             271. 117620. 161620. 152041. 170380.
## # ... with 76 more rows
## [1] "Census Males 5-year"
## # A tibble: 18 x 2
      age `1969`
##
##
     <dbl>
            <dbl>
##
   1
        0 1156.
        5 1278.
##
   2
## 3
      10 1207.
## 4
        15 931.
## 5
        20 636.
## 6
        25 459.
## 7
        30 389.
## 8
        35 341.
## 9
        40 280.
## 10
        45 229.
        50 186.
## 11
        55 142.
## 12
## 13
        60
            97.1
## 14
        65
            60.0
## 15
        70
            32.4
## 16
        75
            15.2
## 17
        80
            8.24
## 18
        85
            7.21
```

255. 124714. 162716. 156209. 172218.

$Thiele\ log\text{-}Normal\ Hump\ Spline$

7

[1] "relative convergence (4)"

## ##	log_tau2_logpop 4.188311709	log_tau2_logpop 6.003080052	log_tau2_logpop 4.348179163	log_tau2_logpop 5.757824367
##	log lambda fx	log lambda gx	log dispersion	log_dispersion
##	10.634214243	10.881303496	1.188040609	1.182731942
##	log_lambda_tp	tp_slope	tp_params_5	tp_params_10
##	3.589509963	-0.006255899	0.225700924	0.421151124
##	log_lambda_phi	log_lambda_psi	log_lambda_A	log_lambda_B
##	15.275057021	14.654590261	15.252392419	14.444144593
##	log_lambda_lambda	log_lambda_delta	log_lambda_epsilon	
##	2.922373903	5.739305891	3.906946997	

Figure 1: Estimated parameters $\,$

Figure 2: Thiele Decomposed

Figure 3: Thiele Decomposed

Figure 4: Estimated $_5q_0$

Figure 5: Estimated $_{45}q_{15}$

Figure 6: Mortality Schedules

Figure 7: Mortality Schedules

Figure 8: Mortality Schedules

Figure 9: Population

Figure 10: Population

Figure 11: Population

Figure 12: Population

year

Figure 13: Population

Figure 14: Migration

Figure 15: Migration

Figure 16: Migration

Figure 17: Migration

Figure 18: Total Fertility

Figure 19: Mean age at births

Figure 20: Fertility

Figure 21: Fertility

Zimbabwe

```
## [1] "Census Females"
## # A tibble: 86 x 6
        age `1969` `1982`
##
                            1992
                                     `2002` `2012`
##
      <dbl>
             <dbl>
                     <dbl>
                            <dbl>
                                     <dbl>
                                              <dbl>
##
              215. 137199. 169638. 170997. 215623.
   1
          0
##
              200. 134655. 159190. 172117. 211071.
##
              219. 133815. 158420. 168708. 198666.
##
          3
              229. 131120. 158291. 164925. 190736.
##
   5
              240. 128619. 160494. 162274. 183611.
          4
##
              251. 126617. 162425. 159507. 177197.
   6
          5
              258. 125956. 164145. 156778. 173472.
##
   7
          6
              261. 125351. 166412. 155377. 171651.
##
   8
          7
              262. 124105. 167841. 153895. 169450.
##
   9
          8
## 10
          9
              259. 118378. 165018. 153789. 171475.
## # ... with 76 more rows
## [1] "Census Females 5-year"
## # A tibble: 18 x 2
        age `1969`
##
##
      <dbl>
              <dbl>
##
   1
          0 1100.
   2
##
          5 1252.
##
   3
         10 1181.
##
   4
         15 935.
##
   5
         20
            709.
##
   6
            541.
         25
   7
##
         30
            437.
##
   8
         35
            379.
##
   9
         40
             303.
## 10
         45
             227.
## 11
         50
            168.
## 12
         55
            124.
## 13
         60
              95.4
## 14
         65
              67.1
## 15
         70
              35.5
## 16
         75
              17.0
## 17
         80
               9.26
## 18
         85
              13.4
## [1] "Census Males"
## # A tibble: 86 x 6
        age '1969' '1982' '1992' '2002' '2012'
##
                            <dbl>
##
      <dbl>
             <dbl> <dbl>
                                     <dbl>
              238. 133357. 168079. 170637. 213895.
##
   1
          0
##
   2
              232. 129754. 158096. 172216. 210140.
          1
##
              231. 129163. 156962. 168433. 197420.
   3
          2
##
              235. 127343. 157057. 164960. 189835.
   4
          3
##
   5
              242. 125798. 159247. 162197. 182613.
```

6

248. 124587. 161170. 159217. 176094.

```
## 7
         6
             255. 124714. 162716. 156209. 172218.
## 8
         7
             265. 124146. 164082. 154419. 170262.
## 9
             271. 122838. 164791. 152264. 167883.
## 10
         9
             271. 117620. 161620. 152041. 170380.
## # ... with 76 more rows
## [1] "Census Males 5-year"
## # A tibble: 18 x 2
       age `1969`
##
##
     <dbl>
            <dbl>
##
   1
        0 1156.
##
   2
         5 1278.
##
  3
        10 1207.
## 4
        15 931.
## 5
        20 636.
## 6
        25 459.
## 7
        30 389.
## 8
        35 341.
## 9
        40 280.
## 10
        45 229.
        50 186.
## 11
## 12
        55 142.
## 13
        60
            97.1
## 14
        65
             60.0
## 15
        70
             32.4
## 16
        75
            15.2
## 17
        80
             8.24
## 18
        85
              7.21
```

$Thiele\ log\text{-}Normal\ Hump\ Spline$

[1] "relative convergence (4)"

##	log_tau2_logpop	log_tau2_logpop	log_tau2_logpop	log_tau2_logpop
##	4.206964445	6.003090142	4.362942390	5.740807419
##	log_lambda_fx	log_lambda_gx	log_dispersion	log_dispersion
##	10.545033588	10.874594772	1.192539799	1.184173835
##	log_lambda_tp	tp_slope	tp_params_5	tp_params_10
##	3.591096962	-0.004455636	0.226154565	0.426490737
##	log_lambda_phi	log_lambda_psi	log_lambda_A	log_lambda_B
##	13.740352556	12.768610775	13.693942532	12.041326087
##	log_lambda_lambda	log_lambda_delta	log_lambda_epsilon	
##	1.828135883	4.703624972	3.376302654	

Figure 1: Estimated parameters $\,$

Figure 2: Thiele Decomposed

Figure 3: Thiele Decomposed

Figure 4: Estimated $_5q_0$

Figure 5: Estimated $_{45}q_{15}$

Figure 6: Mortality Schedules

Figure 7: Mortality Schedules

Figure 8: Mortality Schedules

Figure 9: Population

Figure 10: Population

Figure 11: Population

Figure 12: Population

year

Figure 13: Population

Figure 14: Migration

Figure 15: Migration

Figure 16: Migration

Figure 17: Migration

Figure 18: Total Fertility

Figure 19: Mean age at births

Figure 20: Fertility

Figure 21: Fertility