Verständnis Suchbäume

Wofür eignen sich die folgenden Baum-Datenstrukturen im Vergleich zu den anderen angeführten Baumstrukturen am besten, und warum. Sprechen Sie auch die Komplexität der wesentlichen Operationen und die Art der Speicherung an.

(a) Rot-Schwarz-Baum

(b) AVL-Baum

(c) Binärer-Heap

```
Verwendungszweck zum effizienten Sortieren von Elementen. ^a
Einfügen (Zeitkomplexität)
\mathcal{O}(1) (im Durchschnitt)
\mathcal{O}(\log n) (im schlechtesten Fall)

Löschen (Zeitkomplexität)
\mathcal{O}(\log n) (im Durchschnitt)
\mathcal{O}(\log n) (im schlechtesten Fall)

Suchen (Zeitkomplexität)
\mathcal{O}(n) (im Durchschnitt)
```

$\mathcal{O}(n)$ (im schlechtesten Fall) b

^adeut. Wikipedia

^bengl. Wikipedia

(d) B-Baum

Einfügen (Zeitkomplexität)

 $\mathcal{O}(\log n)$ (im Durchschnitt)

 $\mathcal{O}(\log n)$ (im schlechtesten Fall)

Löschen (Zeitkomplexität)

 $O(\log n)$ (im Durchschnitt)

 $\mathcal{O}(\log n)$ (im schlechtesten Fall)

Suchen (Zeitkomplexität)

 $\mathcal{O}(\log n)$ (im Durchschnitt)

 $\mathcal{O}(\log n)$ (im schlechtesten Fall) ^a

^atutorialspoint.com

(e) R-Baum

Verwendungszweck Ein R-Baum erlaubt die schnelle Suche in mehrdimensionalen ausgedehnten Objekten. ^a

Suchen (Zeitkomplexität)

 $\mathcal{O}(\log_M n)$ (im Durchschnitt) b $\mathcal{O}(n)$ (im schlechtesten Fall) c

^adeut. Wikipedia

^beng. Wikipedia

^cSimon Fraser University, Burnaby, Kanada