I1 Cálculo II

1 Definición de una integral impropia de tipo 1

a) Si $\int_a^t f(x) dx$ existe para todo número $t \ge a$, entonces

$$\int_{a}^{\infty} f(x) dx = \lim_{t \to \infty} \int_{a}^{t} f(x) dx$$

siempre que el límite exista (como un número finito).

b) Si $\int_{t}^{b} f(x) dx$ existe para todo número $t \le b$, entonces

$$\int_{-\infty}^{b} f(x) dx = \lim_{t \to -\infty} \int_{t}^{b} f(x) dx$$

siempre que este límite exista (como un número finito).

Las integrales impropias $\int_a^\infty f(x) dx$ y $\int_{-\infty}^b f(x) dx$ se llaman **convergentes** si el límite correspondiente existe, y **divergente** si el límite no existe.

c) Si ambas $\int_a^\infty f(x) dx$ y $\int_{-\infty}^a f(x) dx$ son convergentes, entonces definimos

$$\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{a} f(x) dx + \int_{a}^{\infty} f(x) dx$$

En el inciso c) puede utilizarse cualquier número real a (véase el ejercicio 74).

 $\int_{1}^{\infty} \frac{1}{x^{p}} dx \quad \text{es convergente si } p > 1 \text{ y divergente si } p \le 1.$

3 Definición de una integral impropia de tipo 2

a) Si f es continua sobre [a, b) y es discontinua en b, entonces

$$\int_a^b f(x) \, dx = \lim_{t \to b^-} \int_a^t f(x) \, dx$$

si este límite existe (como un número finito).

b) Si f es continua sobre (a, b] y es discontinua en a, entonces

$$\int_a^b f(x) \, dx = \lim_{t \to a^+} \int_t^b f(x) \, dx$$

si este límite existe (como un número finito).

La integral impropia $\int_a^b f(x) dx$ se llama **convergente** si existe el límite correspondiente, y **divergente** si el límite no existe.

c) Si f tiene una discontinuidad en c, donde a < c < b, y ambas $\int_a^c f(x) \, dx$ y $\int_c^b f(x) \, dx$ son convergentes, entonces definimos

$$\int_a^b f(x) \, dx = \int_a^c f(x) \, dx + \int_c^b f(x) \, dx$$

Teorema de comparación Suponga que f y g son funciones continuas con $f(x) \ge g(x) \ge 0$ para $x \ge a$.

- a) Si $\int_a^\infty f(x) dx$ es convergente, entonces $\int_a^\infty g(x) dx$ es convergente.
- b) Si $\int_a^\infty g(x) dx$ es divergente, entonces $\int_a^\infty f(x) dx$ es divergente.
- **1 Definición** Una sucesión $\{a_n\}$ tiene el **límite** L y lo expresamos como

$$\lim_{n\to\infty} a_n = L \qquad \text{o} \qquad a_n \to L \text{ cuando } n\to\infty$$

si podemos hacer que los términos a_n se aproximen a L tanto como se quiera tomando n lo suficientemente grande. Si $\lim_{n\to\infty} a_n$ existe, se dice que la sucesión **converge** (o que es **convergente**). De lo contrario, se dice que la sucesión **diverge** (o es **divergente**).

2 Definición Una sucesión $\{a_n\}$ tiene el **límite** L y lo expresamos como

$$\lim_{n\to\infty} a_n = L \quad \text{o bien} \quad a_n \to L \text{ cuando } n\to\infty$$

si para todo $\varepsilon > 0$ hay un correspondiente entero N tal que

si
$$n > N$$
 entonces $|a_n - L| < \varepsilon$

3 Teorema Si $\lim_{x\to\infty} f(x) = L$ y $f(n) = a_n$ cuando n es un entero, entonces $\lim_{n\to\infty} a_n = L$.

5 Definición $\lim_{n\to\infty} a_n = \infty$ significa que para todo número positivo M existe un entero N tal que

si
$$n > N$$
 entonces $a_n > M$

 $Si\{a_n\}$ y $\{b_n\}$ son sucesiones convergentes y c es una constante, entonces

$$\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n$$

$$\lim_{n \to \infty} (a_n - b_n) = \lim_{n \to \infty} a_n - \lim_{n \to \infty} b_n$$

$$\lim_{n \to \infty} ca_n = c \lim_{n \to \infty} a_n$$

$$\lim_{n \to \infty} (a_n b_n) = \lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} b_n$$

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n} \quad \text{si } \lim_{n \to \infty} b_n \neq 0$$

$$\lim_{n \to \infty} a_n^p = \left[\lim_{n \to \infty} a_n \right]^p \text{ si } p > 0 \text{ and } a_n > 0$$

Si $a_n \le b_n \le c_n$ para $n \ge n_0$ y $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$, entonces $\lim_{n \to \infty} b_n = L$.

Teorema Si
$$\lim_{n\to\infty} |a_n| = 0$$
, entonces $\lim_{n\to\infty} a_n = 0$.

Teorema Si $\lim_{n\to\infty} a_n = L$ y la función f es continua en L, entonces

$$\lim_{n\to\infty} f(a_n) = f(L)$$

9 La sucesión $\{r^n\}$ es convergente si $-1 < r \le 1$ y divergente para todos los otros valores de r.

$$\lim_{n \to \infty} r^n = \begin{cases} 0 & \text{si } -1 < r < 1 \\ 1 & \text{si } r = 1 \end{cases}$$

10 Definición Una sucesión $\{a_n\}$ se llama **creciente** si $a_n < a_{n+1}$, para toda $n \ge 1$, es decir, $a_1 < a_2 < a_3 < \cdots$. Si $a_n > a_{n+1}$ para toda $n \ge 1$ se denomina **decreciente**. Una sucesión es **monótona** si es creciente o decreciente.

11 Definición Una sucesión $\{a_n\}$ está **acotada por arriba** si existe un número M tal que

$$a_n \leq M$$
 para toda $n \geq 1$

Está acotada por abajo si existe un número m tal que

$$m \le a_n$$
 para toda $n \ge 1$

Si está acotada por arriba y por abajo, entonces $\{a_n\}$ es una **sucesión acotada**.

Teorema de la sucesión monótona Toda sucesión acotada y monótona es convergente.

Principio de inducción matemática Sea S_n una proposición acerca del entero positivo n. Supongamos que

- **1.** S_1 es verdadera.
- **2.** S_{k+1} es verdadera cuando S_k es verdadera.

Entonces S_n es verdadera para todos los enteros positivos n.

2 Definición Dada una serie $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \cdots$, sea s_n la n-ésima suma parcial:

$$s_n = \sum_{i=1}^n a_i = a_1 + a_2 + \cdots + a_n$$

Si la sucesión $\{s_n\}$ es convergente y lím $_{n\to\infty}$ $s_n=s$ existe como un número real, entonces la serie Σ a_n se dice **convergente** y se escribe

$$a_1 + a_2 + \cdots + a_n + \cdots = s$$
 o $\sum_{n=1}^{\infty} a_n = s$

El número s se llama **suma** de la serie. Si la sucesión $\{s_n\}$ es divergente, entonces la serie es **divergente**.

4 La serie geométrica

$$\sum_{n=1}^{\infty} ar^{n-1} = a + ar + ar^2 + \cdots$$

es convergente si |r| < 1 y su suma es

$$\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r} \qquad |r| < 1$$

Si $|r| \ge 1$, la serie geométrica es divergente.

$$\sum_{i=1}^{n} S_i = \sum_{i=1}^{n} (a_i - a_{i-1}) = a_n - a_0 = a_n$$

- **Teorema** Si la serie $\sum_{n=1}^{\infty} a_n$ es convergente, entonces $\lim_{n\to\infty} a_n = 0$.
- 7 La prueba de la divergencia Si $\lim_{n\to\infty} a_n$ no existe o si $\lim_{n\to\infty} a_n \neq 0$, entonces la serie $\sum_{n=1}^{\infty} a_n$ es divergente.
- **8 Teorema** Si Σ a_n y Σ b_n son series convergentes, entonces también lo son las series Σ ca_n (donde c es una constante), Σ $(a_n + b_n)$ y Σ $(a_n b_n)$, y

$$i) \sum_{n=1}^{\infty} ca_n = c \sum_{n=1}^{\infty} a_n$$

ii)
$$\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$$

iii)
$$\sum_{n=1}^{\infty} (a_n - b_n) = \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{\infty} b_n$$

Prueba de la integral Suponga que f es una función continua, positiva y decreciente sobre $[1, \infty)$ y sea $a_n = f(n)$. Entonces la serie $\sum_{n=1}^{\infty} a_n$ es convergente si y sólo si la integral impropia $\int_{1}^{\infty} f(x) dx$ es convergente. En otras palabras:

- i) Si $\int_{1}^{\infty} f(x) dx$ es convergente, entonces $\sum_{n=1}^{\infty} a_n$ es convergente.
- ii) Si $\int_{1}^{\infty} f(x) dx$ es divergente, entonces $\sum_{n=1}^{\infty} a_n$ es divergente.

NOTA: No es necesario empezar en 1 al utilizar la prueba de la integral.

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx \text{ converge si } p > 1 \text{ y diverge si } p \le 1$$

- 1 La serie $p \sum_{n=1}^{\infty} \frac{1}{n^p}$ es convergente si p > 1 y divergente si $p \le 1$.
- **1** Estimación del residuo para la prueba de la integral Supongamos que $f(k) = a_k$, donde f es una función continua, positiva y decreciente para $x \ge n$ y $\sum a_n$ es convergente. Si $R_n = s s_n$, entonces

$$\int_{n+1}^{\infty} f(x) \, dx \le R_n \le \int_{n}^{\infty} f(x) \, dx$$

$$s_n + \int_{n+1}^{\infty} f(x) dx \le s \le s_n + \int_{n}^{\infty} f(x) dx$$

La prueba por comparación Supongamos que $\sum a_n$ y $\sum b_n$ son series con términos positivos.

- i) Si $\sum b_n$ es convergente y $a_n \le b_n$ para toda n, entonces $\sum a_n$ también es convergente.
- ii) Si $\sum b_n$ es divergente y $a_n \ge b_n$ para toda n, entonces $\sum a_n$ también es divergente.

Prueba por comparación del límite Suponga que $\sum a_n$ y $\sum b_n$ son series con términos positivos. Si

$$\lim_{n\to\infty}\frac{a_n}{b_n}=c$$

donde c es un número finito y c>0, entonces ambas series convergen o ambas divergen.

Prueba de la serie alternante Si la serie alternante

$$\sum_{n=1}^{\infty} (-1)^{n-1}b_n = b_1 - b_2 + b_3 - b_4 + b_5 - b_6 + \cdots \qquad b_n > 0$$

cumple con

i)
$$b_{n+1} \le b_n$$
 para toda n

ii)
$$\lim_{n\to\infty}b_n=0$$

entonces la serie es convergente.

Teorema de estimación para series alternantes Si $s = \sum (-1)^{n-1}b_n$ es la suma de una serie alternante que cumple con

i)
$$b_{n+1} \leq b_n$$
 y ii) $\lim_{n \to \infty} b_n = 0$

entonces

$$|R_n| = |s - s_n| \leq b_{n+1}$$

Teorema 1.2 (Criterio de comparación al límite)

Sean f(x), g(x) funciones continuas, positivas y supongamos que

$$K = \lim_{x \to +\infty} \frac{f(x)}{g(x)}.$$

. Entonces, para $x \ge a$ tenemos que:

• Si $K \neq 0$, entonces ambas integrales impropias sobre $[a, +\infty[$

$$\int_{a}^{+\infty} f(x) dx \qquad \text{y} \qquad \int_{a}^{+\infty} g(x) dx$$

convergen o ambas divergen.

- Si K=0, entonces la convergencia de $\int_a^{+\infty} g(x) \, dx$ implica la convergencia de $\int_a^{+\infty} f(x) \, dx$.
- Si $K = +\infty$, entonces la divergencia de $\int_a^{+\infty} g(x) dx$ implica la divergencia de $\int_a^{+\infty} f(x) dx$.