

Pneumonia Detection using X-Ray Images

Malin Rekdal 107929
Dennis Marinissen 107693
Siri Westgård Rusten 107899
Mina Mangseth Svorkmo 107882

Introduction

Normal chest

Bacterial pneumonia

Viral pneumonia

How is the problem addressed? Model Training

Label: Healthy Label: Pneumonia

How is the problem addressed? Model Inference

classification model input class prediction image normal pneumonia

Existing approaches

Convolutional Neural Networks [11, 10]

Transfer Learning ResNet [1, 5], DenseNet [7, 8], AlexNet [3] & VGG-16 [9]

Data Augmentation [10]

Ensemble Learning [6, 4]

One-shot Learning [2]

Existing approaches

Convolutional Neural Networks [11, 10]

Transfer Learning ResNet [1, 5] DenseNet [7, 8], AlexNet [3] & VGG-16 [9]

Data Augmentation [10]

Ensemble Learning [6, 4]

One-shot Learning [2]

Existing solution results [2]

Existing solution results [2]

Data availability

	Healthy	Pneumonia	Total
Train set Test set	1349 234	3883 390	5232 624
Total	1583	4273	5856

Data ava

Data availability

	Healthy	Pneumonia	Total
Train set Test set	1349 234	3883 390	5232 624
Total	1583	4273	5856

Data augmentation

Data augmentation

	Healthy	Pneumonia	Total
Train set	1349	3883	5232
Test set	234	390	624
Total	1583	4273	5856

Main modules

The architecture used

Existing solution results [2]

Results

	Precision	Recall	F1-score	Support
Healthy	0.98	0.91	0.94	234
Pneumonia	0.95	0.99	0.97	390

Accuracy: 0.96

Results

	Precision	Recall	F1-score	Support
Healthy	0.98	0.91	0.94	234
Pneumonia	0.95	0.99	0.97	390

Accuracy: 0.96

Soo.... can we replace medical professionals?

Soo.... can we replace medical professionals?

But.... can we ASSIST medical professionals?

But.... can we ASSIST medical professionals?

