Вопросы к экзамену

Ilya Yaroshevskiy

14 января 2021 г.

Содержание

1	Teo	ремы		
	1.1	Лемма о дифференцировании сдвига		
	1.2	FIXME Многомерная формула Тейлора (с остатком в форме Лагранжа и Пеано)		
	1.3	Теорема о пространстве линейных отображений		
	1.4	ТОРО Лемма об условиях, эквивалентных непрерывности линейного оператора		
2	Опр	Определения и формулировки		
	2.1	Мультииндекс и обозначения с ним		
	2.2	Формула Тейлора (различные виды записи)		
	2.3	n - й дифференциал		
	2.4	Норма линейного оператора		

1 Теоремы

1.1 Лемма о дифференцировании сдвига

Лемма 1. $f:E\subset\mathbb{R}^m\to\mathbb{R}$ $f\in C^r(E)$ - r раз дифференцируема на E, $a\in E$ $h\in\mathbb{R}^m$ $\forall t\in[-1,1]$ $a+th\in E$ $\varphi(t):=f(a+th)$ Тогда при $1\leq k\leq r$

$$\varphi^{(r)}(0) = \sum_{j:|j|=r} \frac{r!}{j!} h^j \frac{\partial^r f}{\partial x^j}(a) \tag{1}$$

$$\varphi^{(k)}(t) = \sum_{i_1=1}^m \sum_{i_2=1}^m \dots \sum_{i_r=1}^m \frac{\partial^r f}{\partial x_{i_1} \partial x_{i_2} \dots \partial x_{i_r}} (a+th) \cdot h_{i_1} h_{i_2} \dots h_{i_3}$$
 (2)

1.2 FIXME Многомерная формула Тейлора (с остатком в форме Лагранжа и Пеано)

Теорема 1.1. $f \in C^{r+1}(E)$ $E \subset \mathbb{R}^m$, $f: E \to \mathbb{R}$, $a \in E$ $x \in B(a,R) \subset E$ <u>Тогда</u> $\exists \theta \in (0,1)$

$$f(x) = \sum_{\alpha:0 \le |\alpha| \le r} \frac{f^{(\alpha)}(a)}{\alpha!} (x - a)^{\alpha} + \sum_{\alpha:|\alpha| = r+1} \frac{f^{(\alpha)}(a + \theta(x - a))}{\alpha!} (x - a)^{\alpha}$$

$$f(x) = \sum_{k=0}^{r} \left(\sum_{\substack{(\alpha_1 \dots \alpha_m): \alpha_i \geq 0 \\ \sum \alpha_1 = k}} \frac{1}{\alpha_1! \alpha_2! \dots \alpha_m!} \frac{\partial^k f(a)}{(\partial x_1)^{\alpha_1} \dots (\partial x_m)^{\alpha_m}} (x_1 - a_1)^{\alpha_1} \dots (x_m - a_m)^{\alpha_m}\right) +$$
аналогичный остаток

$$f(a+h) = \sum_{k=1}^r \sum_{\dots} \frac{1}{\alpha_1! \dots \alpha_m!} \frac{\partial^k f}{(\partial x_1)^{\alpha_1} \dots (\partial x_m)^{\alpha_m}} (a) h_1^{\alpha_1} \dots h_m^{\alpha_m} + \text{остаток}$$

Доказательство. $\varphi(t)=f(a+th),$ где h=x-a, $\varphi(0)=f(a),$ $\varphi(1)=f(x)$ Из цеммы

$$\varphi(t) = \varphi(0) + \frac{\varphi'(0)}{1!}t + \dots + \frac{\varphi^{(r)}(0)}{r!}t^r + \frac{\varphi^{(r+1)}(\bar{t})}{(r+1)!}t^{r+1}$$
(3)

$$f(x) = f(a) + \sum_{k=1}^{r} \frac{1}{k!} \qquad \sum_{\alpha: |\alpha| = k} k! \frac{f^{(\alpha)}(a)}{\alpha!} h^{\alpha} \qquad + \sum_{\alpha: |\alpha| = r+1} \frac{f^{(\alpha)}(a + \theta(x - a))}{\alpha!} h^{\alpha}$$
(4)

однородный многочлен степени *k*

$$f(x) = \sum \frac{f^{(\alpha)}(a)}{\alpha!} h^{\alpha} + o(|h|^r)$$
(5)

Где однородный многочлен степени k это k -ый дифференциал функции f в точке a, обозначается $d^k f(a,h)$

$$f(x) = \sum_{k=1}^{r} \frac{d^k f(a,h)}{k!} + \frac{1}{(k+1)!} d^{k+1} f(a+\theta h, h)$$

1.3 Теорема о пространстве линейных отображений

Примечание. 1. $\sup \leftrightarrow \max$, т.к. сфера компактна

- 2. $A=(a_{ij})\quad \|A\|\leq \sqrt{\sum a_{ij}^2}$ по Лемме об оценке нормы линейного отображения
- 3. $\forall x \in \mathbb{R}^m \quad |Ax| \leq \|A\| \cdot |x| \ x = 0$ тривиально $x \neq 0 \quad \tilde{x} = \frac{x}{|x|} \quad |Ax| = |A(|x| \cdot \tilde{x})| = \left||x| \cdot A\tilde{x}\right| = |x| \cdot |A\tilde{x}| \leq \|A\| \cdot |x|$
- 4. Если $\exists C > 0$: $\forall x \in \mathbb{R}^m |Ax| \leq C \cdot |x|$, то $||A|| \leq C$

Теорема 1.2.

- 1. Отображение $A \to \|A\|$ в $\mathcal{L}(\mathbb{R}^m, \mathbb{R}^n)$ является нормой, т.е выполнятеся
 - (a) ||A|| > 0, если $||A|| = 0 \Rightarrow A = 0_m$ л
 - (b) $\forall \lambda \in \mathbb{R} \quad ||\lambda A|| = |\lambda| \cdot ||A||$
 - (c) $||A + B|| \le ||A|| + ||B||$
- 2. $A \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^n)$, $B \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^k)$ $||AB|| < ||B|| \cdot ||A||$

Доказательство.

- 1. (a) $||A|| = \sup_{|x|=1} |Ax|$, очев
 - (b) очев
 - (c) $|(A+B)\cdot x| = |Ax+Bx| \le |Ax|+|Bx| \le (\|A\|+\|B\|)\cdot |x|$ по замечанию $3\|A+B\| \le \|A\|+\|B\|$
- 2. $|BAx| = |B \cdot (Ax)| \le ||B|| \cdot |Ax| \le ||B|| \cdot ||A|| \cdot |x|$ по замечанию 3

1.4 TODO Лемма об условиях, эквивалентных непрерывности линейного оператора

Лемма 2. X,Y - линейные нормированные пространства $A \in \mathcal{L}(X,Y)$

- 1. A ограниченый оператор, т.е. ||A|| конечное
- 2. А непрерывен в нуле
- $3. \ A$ непрерывен всюду в X

4. А - равномерно непрерывен

f:X o Y - метрические пространства, равномерно непрерывно

$$\forall \varepsilon > 0 \ \exists \delta > 0: \ \forall x, x_0 : \rho(x, x_0) < \delta \quad \rho(f(x), f(x_0)) < \varepsilon$$

$$\forall \varepsilon > 0 \ \exists \delta > 0: \ \forall x_0, x_1 : \ |x_1 - x_0| < \delta \quad |Ax_1 - Ax_2| < \varepsilon$$

Доказательство.

 $(4 \Rightarrow 3 \Rightarrow 2)$ очевидно

 $(2 \Rightarrow 1)$ непрерывность в нуле:

для
$$\varepsilon=1$$
 $\exists \delta: \forall x: |x-0| \leq \delta \quad |Ax-A\cdot 0| < 1$ при $|x|=1 \quad |Ax|=|A\frac{1}{\delta}(\delta\cdot x)|=\frac{1}{\delta}\cdot |A\cdot \delta x| \leq \frac{1}{\delta}$

(1
$$\Rightarrow$$
 4) $|Ax_1 - Ax_0| = |A(x_1 - x_0)| \le ||A|| \cdot |x_1 - x_0|$
 $\forall \varepsilon > 0 \ \exists \delta := \frac{\varepsilon}{||A||} \ \forall x_1, x_0 \ |x_1 - x_0| < \delta \ |Ax_1 - Ax_0| \le ||A|| \cdot |x_1 - x_0| < \varepsilon$

2 Определения и формулировки

2.1 Мультииндекс и обозначения с ним

Обозначение.

$$(a_1 + a_2 + \dots + a_n)^m = \sum_{c_1=1}^m \sum_{c_2=1}^m \dots \sum_{c_n=1}^m a_{c_1} a_{c_2} \dots a_{c_n}$$
(6)

 $\alpha = (\alpha_1 \alpha_2 \dots \alpha_m)$ — мультииндекс

$$|\alpha| = \alpha_1 + \alpha_2 + \dots + \alpha_m \tag{7}$$

$$x \in \mathbb{R}^m \ x^{\alpha} = x_1^{\alpha_1} x_2^{\alpha_2} \dots x_m^{\alpha_m} \tag{8}$$

$$\alpha! = \alpha_1! \alpha_2! \dots \alpha_m! \tag{9}$$

$$f^{(\alpha)} = \frac{\partial^{|\alpha|} f}{(\partial x_1)^{\alpha_1} \dots (\partial x_m)^{\alpha_m}}$$
(10)

$$(6) = \sum_{\alpha: |\alpha| = r} \frac{r!}{\alpha!} a^{\alpha} \tag{11}$$

2.2 Формула Тейлора (различные виды записи)

Смотри формула Тейлора

2.3 n - й дифференциал

Смотри однородный многочлен степени k, в доказательстве

Примечание.
$$d^2f = f''_{x_1x_1}(a)h_1^2 + f''_{x_2x_2}(a)h_2^2 + \dots + f''_{x_mx_m}(a)h_m^2 + 2\sum_{i < j} f''_{x_ix_j}(a)h_ih_j \ d^{k+1}f = d(d^kf)$$
 $df = f'_{x_1}h_1 + f'_{x_2}h_2 + \dots + f'_{x_m}h_m$ $d^2f = (f''_{x_1x_1}h_1 + f''_{x_1x_2}h_2 + \dots + f''_{x_1x_m}h_m)h_1 + (f''_{x_2x_1}h_1 + f''_{x_2x_2}h_2 + \dots + f''_{x_2x_m}h_m)h_2 + \dots$

2.4 Норма линейного оператора

Определение. $\mathcal{L}(\mathbb{R}^m,\mathbb{R}^n)$ - множество линейных отображений $\mathbb{R}^m \to \mathbb{R}^n$ - это линейное простарнство

$$A \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^n) \quad ||A|| \stackrel{\text{def}}{=} \sup_{x \in \mathbb{R}^m: |x|=1} |Ax|$$