511 assignment

1Q

(a)

The binary relation Eq_k is first-order definable in $\mathbb N$ using the equality relation =.

Step 1: Define $\varphi_{\text{mod}}(x, d, y)$

Define the well-formed formula (WFF) $\varphi_{\text{mod}}(x,d,y)$ for the modulo operation:

$$\varphi_{\text{mod}}(x, d, y) \equiv \exists q(x = q \cdot d + y \land 0 \le y < d)$$

This WFF states that for any $x, d, y, x \mod d = y$ if and only if there exists some q such that x = qd + y and $0 \le y < d$.

Step 2: Define Eq_k (x_1, x_2)

Using φ_{mod} , define Eq_k (x_1, x_2) :

$$\text{Eq}_k(x_1, x_2) \equiv \exists y_1 \exists y_2 (\varphi_{\text{mod}}(x_1, 2^k, y_1) \land \varphi_{\text{mod}}(x_2, 2^k, y_2) \land y_1 = y_2)$$

This formula asserts that x_1 and x_2 are related by Eq_k if their remainders when divided by 2^k are equal.

Conclusion

By defining φ_{mod} and using it to express Eq_k , we have shown that Eq_k is first-order definable in \mathbb{N} using the equality relation.

(b)

Part 1: Prove that Eq_k is a Congruence Relation

To show that Eq_k is a congruence relation, we need to demonstrate that it is an equivalence relation and compatible with the operations in the structure N.

Equivalence Relation:

- Reflexivity: For any $i \in \mathbb{N}$, $\operatorname{Eq}_k(i,i)$ holds as $i \mod 2^k = i \mod 2^k$.
- Symmetry: If $\operatorname{Eq}_k(i,j)$, then $i \mod 2^k = j \mod 2^k$ which implies $j \mod 2^k = i \mod 2^k$, hence $\operatorname{Eq}_k(j,i)$.
- Transitivity: If $Eq_k(i, j)$ and $Eq_k(j, k)$, then $i \mod 2^k = k \mod 2^k$, so $Eq_k(i, k)$.

Compatibility with Operations:

- Addition: For all $a, b, c \in \mathbb{N}$, if $\operatorname{Eq}_k(a, b)$, then $(a + c) \mod 2^k = (b + c) \mod 2^k$.
- Multiplication: Similarly, if Eq_k(a, b), then $(a \times c) \mod 2^k = (b \times c) \mod 2^k$.

Part 2: Eq_{k+1} is a Finer Congruence Than Eq_k

Every Eq_k -congruence class is the union of two disjoint Eq_{k+1} -congruence classes. Hence, Eq_{k+1} is a finer congruence than Eq_k .

Part 3: Conditions Under Which Eq_k Coincides with Equality

For Eq_k to coincide with equality, we restrict the range of variables such that their differences are less than 2^k . Specifically, if $i, j < 2^k$, then Eq_k(i, j) holds if and only if i = j. Therefore, in any well-formed formula ϕ involving \approx (used here to represent "), we can replace \approx with Eq_k without changing the truth value of the formula, provided we restrict the domain of the quantified variables to be less than 2^k .

2Q

- 1. Wff's for $\{0\}$, $\{1\}$, and $\{2\}$
 - $\phi_{\{0\}}(x)$ defines $\{0\}$ as the additive identity:

$$\phi_{\{0\}}(x) = \forall y(x+y=y)$$

• $\phi_{\{1\}}(x)$ defines $\{1\}$ as the multiplicative identity (excluding 0):

$$\phi_{\{1\}}(x) = \forall y(x \cdot y = y) \land \neg \phi_{\{0\}}(x)$$

• $\phi_{\{2\}}(x)$ defines $\{2\}$ as the sum of two 1s:

$$\phi_{\{2\}}(x) = \phi_{\{1\}}(x+x)$$

2. Wff for the Usual Ordering ";"

 $\phi_{<}(x,y)$ defines the usual ordering "less than" using the existence of a positive number:

$$\phi_{<}(x,y) = \exists c(\phi_{\{0\}}(c) \land x + c = y)$$

3. Polynomials of Odd Degree

The set Γ contains sentences asserting the existence of a real root for every polynomial of odd degree. Each sentence in Γ for a polynomial of degree n (odd) is:

$$\forall a_0 \forall a_1 \dots \forall a_n \exists x (a_0 + a_1 \cdot x + a_2 \cdot x \cdot x + \dots + a_n \cdot x^n = 0)$$

4. Defining Positive Integers in $R_{\rm sin}$

To define positive integers, we use the sine function's property that $\sin(a) = 0$ if and only if a is an integer multiple of π .

• $\phi_{\{\pi\}}(x)$ uniquely defines π :

$$\phi_{\{\pi\}}(x) = \forall y(\sin(y) = 0 \rightarrow (x \cdot y = y \lor \phi_{\{0\}}(y)))$$

• $\phi_{pos}(x)$ defines positive integers as those for which $\sin(x \cdot \pi) = 0$ and $x \neq 0$:

$$\phi_{\text{DOS}}(x) = \exists y (\phi_{\{\pi\}}(y) \land \sin(x \cdot y) = 0 \land \neg \phi_{\{0\}}(x))$$

3Q

a

Use first-order resolution to show that $\Gamma \models \varphi$, where

$$\Gamma = \forall x \forall y \forall z (P(x,y) \land P(y,z) \rightarrow P(x,z)), \forall x \forall y (P(x,y) \rightarrow P(y,x))$$

and

$$\varphi = \forall x \forall y \forall z (P(x, y) \land P(z, y) \rightarrow P(x, z)).$$

Conversion to Clausal Form:

The clausal form of Γ and $\neg \varphi$ is given as:

- 1. From Γ :
- Clause 1: $\{\neg P(x, y), \neg P(y, z), P(x, z)\}$
- Clause 2: $\{\neg P(x,y), P(y,x)\}$
- 2. From $\neg \varphi$:
 - Clause 3: $\{P(x,y), P(z,y), \neg P(x,z)\}$

Applying Resolution:

We attempt to find a resolution between these clauses:

- Resolve Clause 1 and Clause 3 on P(x, z):
- New clause: $\{\neg P(x,y), \neg P(y,z), P(x,y), P(z,y)\}$

- Simplification: $\{\neg P(y,z), P(z,y)\}$ (since P(x,y) and $\neg P(x,y)$ cancel each other)
- Resolve this new clause with Clause 2 on P(y, x):
 - New clause: $\{\neg P(y, z), \neg P(x, y)\}$
 - This does not directly lead to a contradiction.
- Other combinations do not seem to directly lead to an empty clause or a contradiction.

Conclusion:

Based on this analysis, we cannot conclude that Γ and $\neg \varphi$ are unsatisfiable together, and thus we cannot conclude that $\Gamma \models \varphi$. This does not necessarily mean that Γ does not imply φ ; it just means that the resolution method did not find a contradiction in this specific approach. Further investigation or alternative strategies might be required.

4Q and 5Q

https://github.com/rainbowfly29/hwsolutions511/blob/main/hw11.lean