

Reguläre Augmentierung von planaren Graphen mit geringem Grad

Bachelorabschlussvortrag · October 1, 2013 Chau Nguyen

Reguläre planare Augmentierungen

Gegeben: Planarer Graph

Reguläre planare Augmentierungen

Gegeben: Planarer Graph

Gesucht: Kanten (Augmentierung), sodass Graph regulär wird

Reguläre planare Augmentierungen

Gegeben: Planarer Graph

Gesucht: Kanten (Augmentierung), sodass Graph regulär wird

und planar bleibt

Beispiel: 4-regulärer planarer Graph

3-Reguläre Augmentierung von Graph mit zwei Dreiecken und einem 4-Kreis

3-Reguläre Augmentierung von Graph mit zwei Dreiecken und einem 4-Kreis

mit variabler Einbettung:

3-Reguläre Augmentierung von Graph mit zwei Dreiecken und einem 4-Kreis

mit variabler Einbettung:

3-Reguläre Augmentierung von Graph mit zwei Dreiecken und einem 4-Kreis

mit variabler Einbettung:

mit fester Einbettung:

3-Reguläre Augmentierung von Graph mit zwei Dreiecken und einem 4-Kreis

mit variabler Einbettung:

mit fester Einbettung:

Der Graph soll zusätzlich c-zusammenhängend sein

- Der Graph soll zusätzlich c-zusammenhängend sein
- k-regulärer Graph ist höchstens k-zusammenhängend

- Der Graph soll zusätzlich c-zusammenhängend sein
- k-regulärer Graph ist höchstens k-zusammenhängend

- Der Graph soll zusätzlich c-zusammenhängend sein
- k-regulärer Graph ist höchstens k-zusammenhängend

- Der Graph soll zusätzlich c-zusammenhängend sein
- k-regulärer Graph ist höchstens k-zusammenhängend

$\setminus k$	1	2	2		3	4	5
c	VE = FE	VE	FE	VE	FE	VE FE	VE FE
0	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)	$\in \mathcal{NPC}$	$\in O(n^{1.5})$	$\in \mathcal{NPC}$	$\in \mathcal{NPC}$
1	<i>O</i> (<i>n</i>)	0(n)	$\in \mathcal{NPC}$	$\in O(n^{1.5})$	$\in \mathcal{NPC}$	$\in \mathcal{NPC}$
2		0(n)	$\in \mathcal{NPC}$	$\in O(n^{1.5})$	$\in \mathcal{NPC}$	$\in \mathcal{NPC}$
3	_		_	$\in \mathcal{NPC}$	$\in \mathcal{NPC}$	$\in \mathcal{NPC}$	$\in \mathcal{NPC}$
4	_			_	_	$\in \mathcal{NPC}$	$\in \mathcal{NPC}$
5	_		_		_	_	$\in \mathcal{NPC}$

$\setminus k$	1		2		3	4	5
c	VE = FE	VE	FE	VE	FE	VE FE	VE FE
0	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)	$\in \mathcal{NPC}$	$\in O(n^{1.5})$	$\in \mathcal{NPC}$	$\in \mathcal{NPC}$
1	<i>O</i> (<i>n</i>)	0((n)	$\in \mathcal{NPC}$	$\in O(n^{1.5})$	$\in \mathcal{NPC}$	$\in \mathcal{NPC}$
2	_	0((n)	$\in \mathcal{NPC}$	$\in O(n^{1.5})$	$\in \mathcal{NPC}$	$\in \mathcal{NPC}$
3	_		_	$\in \mathcal{NPC}$	$\in \mathcal{NPC}$	$\in \mathcal{NPC}$	$\in \mathcal{NPC}$
4		_		_	_	$\in \mathcal{NPC}$	$\in \mathcal{NPC}$
5		_			_	_	$\in \mathcal{NPC}$

$\setminus k$	1	2	2		3	4	5
c	VE = FE	VE	FE	VE	FE	VE FE	VE FE
0	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)	$\in \mathcal{NPC}$	$\in O(n^{1.5})$	$\in \mathcal{NPC}$	$\in \mathcal{NPC}$
1	<i>O</i> (<i>n</i>)	0((n)	$\in \mathcal{NPC}$	$\in O(n^{1.5})$	$\in \mathcal{NPC}$	$\in \mathcal{NPC}$
2		0(n)	$\in \mathcal{NPC}$	$\in O(n^{1.5})$	$\in \mathcal{NPC}$	$\in \mathcal{NPC}$
3	_		_	$\in \mathcal{NPC}$	$\in \mathcal{NPC}$	$\in \mathcal{NPC}$	$\in \mathcal{NPC}$
4		_		_	_	$\in \mathcal{NPC}$	$\in \mathcal{NPC}$
5			_		_	_	$\in \mathcal{NPC}$

k	1	2			3	4	5
c	VE = FE	VE	FE	VE	FE	VE FE	VE FE
0	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)	$\in \mathcal{NPC}$	$\in O(n^{1.5})$	$\in \mathcal{NPC}$	$\in \mathcal{NPC}$
1	<i>O</i> (<i>n</i>)	0((n)	$\in \mathcal{NPC}$	$\in O(n^{1.5})$	$\in \mathcal{NPC}$	$\in \mathcal{NPC}$
2	_	0((n)	$\in \mathcal{NPC}$	$\in O(n^{1.5})$	$\in \mathcal{NPC}$	$\in \mathcal{NPC}$
3	_			$\in \mathcal{NPC}$	$\in \mathcal{NPC}$	$\in \mathcal{NPC}$	$\in \mathcal{NPC}$
4				_	_	$\in \mathcal{NPC}$	$\in \mathcal{NPC}$
5	_				_	_	$\in \mathcal{NPC}$

→ Einschränkung der Eingabe auf 2-reguläre Graphen

$\setminus k$	1	2		(3	4	5
c	VE = FE	VE	FE	VE	FE	VE FE	VE FE
0	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)	$\in \mathcal{NPC}$	$\in O(n^{1.5})$	$\in \! \mathcal{NPC}$	$\in \mathcal{NPC}$
1	<i>O</i> (<i>n</i>)	0((n)	$\in \mathcal{NPC}$	$\in O(n^{1.5})$	$\in \mathcal{NPC}$	$\in \mathcal{NPC}$
2		0((n)	$\in \mathcal{NPC}$	$\in O(n^{1.5})$	$\in \mathcal{NPC}$	$\in \mathcal{NPC}$
3			_	$\in \mathcal{NPC}$	$\in \mathcal{NPC}$	$\in \mathcal{NPC}$	$\in \mathcal{NPC}$
4				_	_	$\in \mathcal{NPC}$	$\in \mathcal{NPC}$
5					_	_	$\in \mathcal{NPC}$

Ergebnisse für 2-reguläre Graphen

k	3				
c	VE	Tunnel	FE		
0	Char. √	Char. √	Char. √		
1	Char. √	Char. √	<i>∈O</i> (<i>n</i>)		
2	Char. √	Char. √	Char. √		
3	Char. √	Char. √	Char. √		

Ergebnisse für 2-reguläre Graphen

k	3				
c	VE	Tunnel	FE		
0	Char. √	Char. √	Char. √		
1	Char. √	Char. √	<i>∈O(n)</i>		
2	Char. √	Char. √	Char. √		
3	Char. √	Char. √	Char. √		

Ergebnisse für 2-reguläre Graphen

k	3				
c	VE	Tunnel	FE		
0	Char. √	Char. √	Char. √		
1	Char. √	Char. √	<i>∈O(n)</i>		
2	Char. √	Char. √	Char. √		
3	Char. √	Char. √	Char. √		

... und für allg. Graphen

k	3		
c	VE	FE	
0	$\in \mathcal{NPC}$	$\in O(n^{1.5})$	
1	$\in \mathcal{NPC}$	$\in O(n^{1.5})$	
2	$\in \mathcal{NPC}$	$\in O(n^{1.5})$	
3	$\in \mathcal{NPC}$	$\in \mathcal{NPC}$	

Ergebnisse für 2-reguläre Graphen

k	3				
c	VE	Tunnel	FE		
0	Char. √	Char. √	Char. √		
1	Char. √	Char. √	<i>∈O</i> (<i>n</i>)		
2	Char. √	Char. √	Char. √		
3	Char. √	Char. √	Char. √		

... und für allg. Graphen

k	3		
c	VE	FE	
0	$\in \mathcal{NPC}$	$\in O(n^{1.5})$	
1	$\in \mathcal{NPC}$	$\in O(n^{1.5})$	
2	$\in \mathcal{NPC}$	$\in O(n^{1.5})$	
3	$\in \mathcal{NPC}$	$\in \mathcal{NPC}$	

Gerade Kreise

- Gerade Kreise
- Ungerade Kreise

- Gerade Kreise
- Ungerade Kreise
- Dreiecke

Wahle k Knoten mit |V| - k gerade

Wahle k Knoten mit |V| - k gerade

Ein 3-regulärer Graph hat immer eine gerade Anzahl an Knoten. (Grund: $\frac{n\cdot 3}{2}$ Kanten)

Ein 2-reg. Graph mit einer geraden Anzahl an Knoten besitzt eine planare 3-reg. Augmentierung

Ein 2-reg. Graph mit einer geraden Anzahl an Knoten besitzt eine planare 3-reg. Augmentierung

Ein 2-reg. Graph mit einer geraden Anzahl an Knoten besitzt eine planare 3-reg. Augmentierung

Spezialfall:

Ein 2-reg. Graph mit einer geraden Anzahl an Knoten besitzt eine planare 3-reg. Augmentierung

Graph bestehend aus s Dreiecken

Graph bestehend aus s Dreiecken

Graph bestehend aus s Dreiecken

Graph bestehend aus s Dreiecken und t großen Kreisen

Graph bestehend aus s Dreiecken und t großen Kreisen

Graph bestehend aus s Dreiecken und t großen Kreisen

Graph bestehend aus s Dreiecken und t großen Kreisen

Ein 2-reg. Graph mit einer geraden Anzahl an Knoten besitzt eine planare 3-reg. und 3-zusammenhängende Augmentierung

Graph mit fester Einbettung, bei der jede Facette zu höchstens zwei Zusammenhangskomponenten inzident ist

Drei Kanten zu jedem Nachbarn

Graph mit fester Einbettung, bei der jede Facette zu höchstens zwei Zusammenhangskomponenten inzident ist

Drei Kanten zu jedem Nachbarn

- Drei Kanten zu jedem Nachbarn
- Mittlere Kreise brauchen mindestens sechs Knoten

- Drei Kanten zu jedem Nachbarn
- Mittlere Kreise brauchen mindestens sechs Knoten

- Drei Kanten zu jedem Nachbarn
- Mittlere Kreise brauchen mindestens sechs Knoten

- Drei Kanten zu jedem Nachbarn
- Mittlere Kreise brauchen mindestens sechs Knoten
- Kreise mit gerader Anzahl
 Knoten im Inneren brauchen
 mindestens sieben Knoten

Graph mit fester Einbettung, bei der jede Facette zu höchstens zwei Zusammenhangskomponenten inzident ist

Ein Tunnel besitzt Augmentierung, wenn

- alle mittleren Kreise aus min.
 sechs Knoten bestehen
- alle mittleren Kreise, die eine gerade Anzahl an Knoten im Inneren haben, aus min. sieben Knoten bestehen

Ein Graph mit fester Einbettung ist augmentierbar, wenn

- mittlere Kreise aus min. sechs Knoten bestehen
- mittlere Kreise mit gerader
 Anzahl Knoten im Inneren
 aus min. sieben Knoten
 bestehen

k	3		
c	VE	Tunnel	FE
0	Char. √	Char. √	Char. √
1	Char. √	Char. √	<i>∈O(n)</i>
2	Char. √	Char. √	Char. √
3	Char. √	Char. √	Char. √

k	3		
c	VE	Tunnel	FE
0	Char. √	Char. √	Char. √
1	Char. √	Char. √	<i>∈O(n)</i>
2	Char. √	Char. √	Char. √
3	Char. √	Char. √	Char. √

Offene Fragen

k	3		
c	VE	Tunnel	FE
0	Char. √	Char. √	Char. √
1	Char. √	Char. √	<i>∈O(n)</i>
2	Char. √	Char. √	Char. √
3	Char. √	Char. √	Char. √

Offene Fragen

k	3		
c	VE	Tunnel	FE
0	Char. √	Char. √	Char. √
1	Char. √	Char. √	<i>∈O</i> (<i>n</i>)
2	Char. √	Char. √	Char. √
3	Char. √	Char. √	Char. √

Offene Fragen

k	3		
c	VE	Tunnel	FE
0	Char. √	Char. √	Char. √
1	Char. √	Char. √	<i>∈O(n)</i>
2	Char. √	Char. √	Char. √
3	Char. √	Char. √	Char. √

Offene Fragen

k	3		
c	VE	Tunnel	FE
0	Char. √	Char. √	Char. √
1	Char. √	Char. √	<i>∈O(n)</i>
2	Char. √	Char. √	Char. √
3	Char. √	Char. √	Char. √

Offene Fragen

- 3-Reguläre Augmentierungen für planare Graphen mit höchstens Grad 2
- 4-Reguläre Augmentierung von 3-regulären Graphen

k	3		
c	VE	Tunnel	FE
0	Char. √	Char. √	Char. √
1	Char. √	Char. √	<i>∈O(n)</i>
2	Char. √	Char. √	Char. √
3	Char. √	Char. √	Char. √

Offene Fragen

- 3-Reguläre Augmentierungen für planare Graphen mit höchstens Grad 2
- 4-Reguläre Augmentierung von 3-regulären Graphen