

Sensores

Interactuando con nuestro con nuestro mundo

SENSOR ULTRASÓNICO

- Rango mínimo de medición: 2 cm.
- Rango máximo de medición: 450 cm.
- Angulo de medición: 30°
- Frecuencia de Trabajo: 40 Khz.
- Corriente Requerida 2mA.
- Voltaje Requerido: 5V.
- Trig (Disparo).
- Echo (Recepción).

¿CÓMO FUNCIONA?

El Sensor se basa simplemente en medir el tiempo entre el envio y la recepción de un pulso sonoro.

$$343\frac{m}{s} \cdot 100\frac{cm}{m} \cdot \frac{1}{10000000} \frac{s}{\mu s} = \frac{1}{29.2} \frac{cm}{\mu s}$$

El sonido tarda 29.2 microsegundos en recorrer un centímetro.

$$Distancia(cm) = \frac{Tiempo(\mu s)}{29.2 \cdot 2}$$

Se divide entre dos, porque hemos medido El tiempo que tarda el pulso en ir y volver

Tiempo = 2 * (Distancia / Velocidad)

Distancia = Tiempo · Velocidad / 2

Distancia = Tiempo · Velocidad / 2

ESQUEMA

CÓDIGO #define TRIGGER 5 #define ECHO 4 long duracion, distancia; void setup() { pinMode(TRIGGER, OUTPUT); // define el pin gpio 5 como salida (triger) pinMode(ECHO, INPUT); // define el pin gpio 4 como entrada (echo) Serial.begin(115200); // inicializa el puerto seria a 115200 baudios

CÓDIGO

```
void loop() {
  long duracion, distancia;
  digitalWrite(TRIGGER, LOW); // para generar el pulso limpio ponemos a LOW 2ms
  delayMicroseconds(2);
  digitalWrite(TRIGGER, HIGH); // genera el pulso de triger por 10ms
  delayMicroseconds(10);
  digitalWrite(TRIGGER, LOW);
  duracion = pulseIn(ECHO, HIGH); //medimos el tiempo entre pulsos, en microsegundos
  distancia = (duracion/2) / 29.2; // calcula la distancia en centimetros
   Serial.print("Centimetros:");
  Serial.println(distancia);
  delay (2000);
```


SENSOR DE MOVIM

- Sensor piroeléctrico (Pasivo) infrarrojo.
- Rango de detección: 3 m a 7 m, ajustable.
- Lente fresnel de 19 zonas, ángulo < 100°
- Tiempo en estado activo de la salida configurable.
- Redisparo configurable.
- Angulo de percepción 273°
- Consumo de corriente en reposo: < 50 μA
 - Voltaje de alimentación: 4.5 VDC a 20 VDC

ESQUEMA

ESQUEMA

```
#define lectura 5
int pir=0;
void setup() {
pinMode (lectura, INPUT); // definimos el sensor pir en el gpio 5 como entrada
  Serial.begin(115200);
void loop() {
  pir=digitalRead(lectura); //lectura del sensor pir
  if (pir==HIGH) {
      Serial.println("prendido");
    else{
      Serial.println("apagado");
   delay(1000);
```

SENSORES MQ

Voltaje de alimentación 5 V.

Temperatura de funcionamiento: -10 a 50 °C

Temperatura ambiente:-10°C to 65°C, Humedad:≤95% RH

Salida Analógica.

Salida Digital.

Requiere de un precalentamiento.

Sensor de gas combustible y humo MQ2

Estos sensores son adecuados para detectar GLP, propano, metano, alcohol, hidrógeno, humo. Siendo más sensible al GLP y propano.

Sensor de Alcohol MQ3

Es muy sensible al alcohol y de menor sensibilidad a la bencina, sensible a gases como GLP, Hexano, CO, CH4.

Sensor de Monóxido de Carbono MQ7

Este sensor es de alta sensibilidad al monóxido de carbono (CO), pero también es sensible al H2.

Sensor Calidad Aire MQ135

Se utilizan en equipos de control de calidad del aire para edificios y oficinas, son adecuados para la detección de NH3, NOx, alcohol, benceno, humo, CO2, etc.

ESQUEMA DEL CIRCUITO

FOTORESISTENCIA LDR

- Resistencia (con luz): ~1k Ohm.
- Resistencia (oscuridad): ~10k Ohm.
- Voltaje Max : 150V.
- Disipación: 100mW Max.

ESQUEMA CON ARDUINO

CÓDIGO

```
LDR§
 1 const int sensorLDR = A0 ;
 3 void setup()
 4
      Serial.begin(9600);
      pinMode(sensorLDR, INPUT);
 9 void loop()
10 | {
     Serial.println(analogRead(sensorLDR));
11
    delay(1000);
12
13|}
```

EJERCICIO PARA ENTREGA DEL AULA VIRTUAL

Utilizando el sensor ultrasónico encender un led si un objeto se encuentra a 10 cm de distancia, caso contrario deberá permanecer apagado.

EJERCICIO PARA ENTREGA DEL AULA VIRTUAL

Utilizando el sensor pir deberá iniciar un secuencia con 2 leds, el led rojo deberá encenderse y apagarse, inmediatamente debe encenderse el led azul y apagarse, ambos leds deben encenderse a razón de 100ms.(como las luces de una patrulla de policias); cada que se detecte un movimiento

EJERCICIO DE APLICACIÓN

