INTRODUCTION TO LINKED DATA AND GRAPH DATABASES

PHUSE CSS WORKSHOP

MARCH 19, 2017

WORKSHOP GOALS

HANDS-ON EXPERIENCE WITH:

- Labeled Propety Graphs (LPG)
- Resource Description Framework (RDF)

PREPARE YOU FOR:

- CSS breakout sessions & projects
- Use Graph data in your own work
- ...seeing graphs EVERYWHERE!

INSTRUCTOR AND ASSISTANTS

Tim Williams UCB BioSciences

Scott Bahlavooni d-Wise

Ian Fleming d-Wise

Links to Workshop Scripts and Presentation PDF: https://github.com/phuse-org/LinkedDataWorkshop

OUTLINE

- Server Login
- Introduction and Graph Overview
- Labeled Property Graph (LPG)
- Resource Description Framework (RDF)

Time Permitting:

- Federated Query
- Discussion

OUTLINE

- Server Login
- Introduction and Graph Overview
- Labeled Property Graph (LPG)
- Resource Description Framework (RDF)
- Discussion

SERVER LOGIN

HANDOUT:

- LoginInstructions.
- Exercises

Assistance provided while the next section is covered.

OUTLINE

- Server Login
- Introduction and Graph
 Overview
- Labeled Property Graph (LPG)
- Resource Description Framework (RDF)

WHY DATA AS A GRAPH?

ONE EXAMPLE: SDTM DOMAINS

SDTM DM DATA

	Α	В	С	D	Е	О	Р	Q	R	S	Т	U	V	W	Х
1		studyid	domain	usubjid	subjid	age	ageu	sex	race	ethnic	armcd	arm	actarmcd	actarm	country
2	1	CDISCPILOT01	DM	01-701-1015	1015	63	YEARS	F	WHITE	HISPANIC OR LATINO	Pbo	Placebo	Pbo	Placebo	USA
3	2	CDISCPILOT01	DM	01-701-1023	1023	64	YEARS	M	WHITE	HISPANIC OR LATINO	Pbo	Placebo	Pbo	Placebo	USA
4	3	CDISCPILOT01	DM	01-701-1028	1028	71	YEARS	M	WHITE	NOT HISPANIC OR LA	Xan_Hi	Xanomelir	Xan_Hi	Xanomelir	USA
5	4	CDISCPILOT01	DM	01-701-1033	1033	74	YEARS	M	WHITE	NOT HISPANIC OR LA	Xan_Lo	Xanomelir	Xan_Lo	Xanomelir	USA
6	5	CDISCPILOT01	DM	01-701-1034	1034	77	YEARS	F	WHITE	NOT HISPANIC OR LA	Xan_Hi	Xanomelir	Xan_Hi	Xanomelir	USA
7	6	CDISCPILOT01	DM	01-701-1047	1047	85	YEARS	F	WHITE	NOT HISPANIC OR LA	Pbo	Placebo	Pbo	Placebo	USA

What is wrong here?

- Inflexible, version specific row x column structure and format
- Mixture of concepts
- No integral metadata
- Data repetition
 HOW CAN GRAPH DATA FIX THIS??

DATA AS A GRAPH?

A Comparison

SCREEN SHOT OF INTERACTIVE GRAPH

OUTLINE

- Server Login
- Introduction and Graph Overview
- Labeled Property Graph (LPG)
- Resource Description Framework (RDF)

LABELED PROPERTY GRAPH (LPG)

SIMPSONS FAMILY IN NEO4J

WhiteBoard

SCREEN SHOT OF WHITEBOARD MODEL

NEO4J EXERCISES PART 1

EXERCISE

1. Simpsons Family in Neo4j

NEO4J: CREATE NODES AND RELATIONS

ADD HOMER AND THE RELATIONSHIPS TO HIS CHILDREN

Homer WhiteBoard

SCREEN SHOT OF WHITEBOARD MODEL

NEO4J EXERCISES PART 2

ADD HOMER AND RELATIONSHIPS TO HIS CHILDREN

EXERCISE

1.4 Create Nodes and Relations

END OF NEO4J SECTION

IN THIS SECTION YOU:

- Explored a graph visually and using Cypher
- Created nodes and relations
- Queried nodes, relations, and the properties of each

OUTLINE

- Server Login
- Introduction and Graph Overview
- Labeled Property Graph (LPG)
- Resource Description Framework (RDF)
- Discussion

CORE RDF CONCEPTS

- All things have a name
- All names are unique and addressable
 - HTTP URI
- Things are linked
 - Directed graphs
- Links have meaning
 - Semantics

TOOLS FOR CREATING AND EDITING RDF

Workshop:

Protege Ontology
 Editor

Others:

- SPARQL
- TopBraid, Ontorion Fluent Editor, Text Editor, R, Python, many others...

SIMPSONS FAMILY AS RDF

Data model

SCREEN SHOT OF INTERACTIVE GRAPH

RDF EXERCISES PART 1

EXERCISE

2. Simpsons Family in RDF

CYPHER: 101-LisaGender.cql

```
MATCH (a:Person)
WHERE a.firstName = "Lisa"
RETURN a.gender
```

SPARQL: 201-LisaGender.rq

```
PREFIX simpsons: <http://www.example.org/Simpsons#>
SELECT ?gender
WHERE {
    simpsons:Lisa simpsons:hasGender ?gender
}
```

CYPHER: 102-MargeSon.cql

```
MATCH (pers1)-[:hasSon]-(pers2)
WHERE pers1.firstName='Marge'
RETURN pers2.firstName
```

SPARQL: 202-MargeSon.rq

CYPHER: 103-MaggieDoc.cql

```
MATCH (pers1) - [r:hasDaughter] - (pers2)
WHERE pers2.firstName='Maggie'
RETURN r.DeliveredBy as DeliveryDoctor
```

SPARQL: 203-MaggieDoc.rq

SIMPSONS FAMILY

MODEL HOMER AND THE RELATIONSHIPS TO HIS CHILDREN

Homer WhiteBoard

SCREEN SHOT OF INTERACTIVE GRAPH

RDF EXERCISES PART 2

ADD HOMER AND RELATIONSHIPS TO HIS CHILDREN

EXERCISE

2.5 Create Nodes and Relations

CYPHER: 107-HomerChildren.cql

SPARQL: 204-HomerChildren.rq

```
PREFIX simpsons: <http://www.example.org/Simpsons#>
SELECT ?child
WHERE
{
     {simpsons:Homer simpsons:hasDaughter ?child . }
     UNION
     {
          {simpsons:Homer simpsons:hasSon ?child . }
     }
}
```

CYPHER: 107-HomerChildren.cql (modified)

SPARQL: 205-HomerChildCount.rq

```
PREFIX simpsons: <http://www.example.org/Simpsons#>
SELECT (COUNT(?child) AS ?count)
WHERE
{
     {simpsons:Homer simpsons:hasDaughter ?child . }
     UNION
     {
          {simpsons:Homer simpsons:hasSon ?child . }
     }
}
```

CYPHER: 108-Parent.cql

SPARQL:206-Parent.rq

CYPHER: 110-LisaBrother-Name.cql

```
MATCH a = (brother)-[:hasSon]-(parent)-[:hasDaughter]
WHERE daughter.firstName='Lisa'
RETURN DISTINCT brother.firstName
```

SPARQL: 207-LisaBrother.rq

EXTEND THE KNOWLEDGEBASE WITH OWL

Asserted triple:

Marge

hasSon

Bart

Add rules for Inferencing:

- hasChild as parent property of hasSon, hasDaughter
- hasParent as inverse of hasChild

Then use these new properties in queries!

INFERRED TRIPLES

- Deduced by a reasoner applying rules on top of data
- Rules for relationships and data not in the original source!

OWL

Key Point:

- OWL rules usually applied on top of data.
- Exists separate from the instance data*

RDF EXERCISES PART 3

EXERCISE

2.5 Extend the Kowledgebase with OWL

FEDERATED QUERY

COMBINE DATA ACROSS (OFTEN REMOTE) GRAPHS!

THE ELUSIVE FEDERATED QUERY

MORE LIKELY SCENARIOS

- Download graph, upload to local triplestore
 - SDTM terminlogy, NCI thesaurus, Randomized Clinical Trials Ontology...
- Merge across graphs within your company using Thing1-->owl:sameAs-->ThingOne
 - Metadata repository
 - Clinical trials design
 - Company terminology/ontology
 - EHR... etc.

FEDERATED QUERY OF DRUG DATA

Paper: "Consolidating drug data on a global scale using Linked Data" - Jovanovik & Trajanov

- 5-star Linked drug data from 23 countries
- Links to DrugBank and DBpedia

Paper is included with the files for the exercises.

FEDERATED QUERY EXERCISE

EXECUTE A FEDERATED QUERY AT A SPARQL ENDPOINT

EXERCISE

3. Federated Query

OUTLINE

- Server Login
- Introduction and Graph Overview
- Labeled Property Graph (LPG)
- Resource Description Framework (RDF)
- Discussion

CHART THE PROS AND CONS BY CATETGORY

Interactive Discussion

PLANS FOR CSS

LINKATHON WITH EMERGING TECHNOLOGY'S "ALTERNATIVE TRANSPORT FORMAT" PROJECT.

- Monday afternoon, Tuesday morning.
- Workshop XPT versus RDF, LPG, XML, JSON-LD(?)
 ...others ??

KICKOFF OF LD&GD PROJECT: "SDTM DATA AS RDF", TUESDAY (1 HOUR)

CONTACT INFO

Tim Williams

tim.williams@PhUSE.eu

https://www.linkedin.com/in/timpwilliams/

RESOURCES

 Workshop materials, including the SPARQL and CYPHER scripts, plus PDF of this presentation: https://github.com/phuse-org/LinkedDataWorkshop

NEO4J RESOURCES

Recommended Overview https://neo4j.com/developer/graph-database/

Overview of graph db and Neo4j [optional]

https://youtu.be/U8ZGVx1NmQg [45min]

Intro to Cypher [optional]

https://www.youtube.com/watch? v=1TSBXZMv6tc [49min]

Graph Modeling [optional]

https://www.youtube.com/watch?v=AaJS-DGBQX4 [42min]

RDF in Neo4j [optional]

http://guides.neo4j.com/rdf-graphs/

RDF AND PROTEGE RESOURCES

Introduction to Semantic Web

http://www.cambridgesemantics.com/semanticuniversity/introduction-semantic-web

What is Linked Data?

http://www.cambridgesemantics.com/semanticuniversity/what-linked-data

Introduction to Linked data

http://www.cambridgesemantics.com/semanticuniversity/introduction-linked-data

Protege Application

https://www.youtube.com/watch?v=8Nf2xf5akoM

Thank you Er Good night!