f(n) < cg(n) Jc, n.

$$2n^2 = O(n^3)$$
 $5n^2 = O(n^3)$
 $2n^2 \le Cn^3 \Rightarrow 2 \le Cn$
 $C = 2$
 $n_0 = 1$

$$n^2 = 0(n^2)$$
 $n^2 \le 0(n^2)$
 $n^2 \le 0(n^2)$

$$looo n^2 + looo n = O(n^2)$$
 $f \leq c \cdot n^2$

f 1000 n² + 1000 n 5 1000 n² + 1000 n²

$$C = 2000$$
 $N_0 = 1$

$$N = O(n^2)$$

$$N \leq C \cdot n^2$$

c.g(n) < f(n)

 $Sn^{2} = \Omega(n)$ $f \quad \partial C \quad Sn^{2} \Rightarrow C \quad Sn$ C = 1 No = 1

 $100n + 5 \neq Q(n^2)$ $\exists c_1 n_0 = 0 \le c n^2 \le 100n + 5 \le 105n$ $100n + 5 \le 100n + 5n = 105n$ $\forall n \ge 1$

 $c_{N_{5}} < 102N$ $c_{N_{5}} < 102N$

$$\frac{N^{2}}{2} - \frac{N}{2} = \Theta(N^{2})$$

$$\frac{N^{2}}{2} - \frac{N}{2} \leq \frac{N}{2} \leq \frac{N^{2}}{2} = \frac{1}{2} \leq \frac{N^{2}}{2} = \frac{1}{2} \leq \frac{1}{2}$$