This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

CLIPPEDIMAGE= JP403120714A

PAT-NO: JP403120714A

DOCUMENT-IDENTIFIER: JP 03120714 A

TITLE: X-RAY EXPOSURE DEVICE

PUBN-DATE: May 22, 1991

INVENTOR-INFORMATION:

NAME

SUMIYA, MITSUO

ASSIGNEE-INFORMATION:

NAME

TOSHIBA CORP

COUNTRY N/A

APPL-NO: JP01257732

APPL-DATE: October 4, 1989

INT-CL (IPC): H01L021/027;G21K001/06;G21K005/02

US-CL-CURRENT: 378/64

ABSTRACT:

PURPOSE: To enlarge a radiation area of X-rays with a compact device by providing a parabolic cylindrical mirror for enlarging a lateral cross section of an X-ray beam radiated from an X-ray source and a exposure unit for holding an object to be exposed with the reflected X-rays from the parabolic cylindrical mirror radiated via an X-ray mask.

CONSTITUTION: A soft X-ray 1 is incident to a region enclosed by points M1, M2, M3 and M4. The soft X-ray 1 is reflected along a light path as if it is radiated from a focus 8. A lateral cross section area A of a beam of the soft X-ray 3 reflected at this time is several times larger than a lateral cross

section area A0 of the soft X-ray 1. Especially while widths W1', W2' of the reflected X-ray 1 are approximately equal to each other due to a remarkable increase in the width W2' while widths W1, W1' scarcely change. Then the soft X-ray 3 is radiated to a wafer 5 via an X-ray mask 12 to have a specific pattern exposed. Thus an X-ray exposure device can enlarge the lateral cross section area A0 of the soft X-ray 1 with a desired magnification by a parabolic cylindrical mirror 4.

COPYRIGHT: (C) 1991, JPO&Japio

⑩日本国特許庁(JP)

00特許出頗公開

⑫ 公 開 特 許 公 報 (A) 平3-120714

filnt, Cl. 5

識別記号

庁内整理番号

@公開 平成3年(1991)5月22日

H 01 L G 21 K 21/027 1/06 5/02

8805-2G 8805-2G 2104-5F B X

H 01 L 21/30

331 A

審査請求 未請求 請求項の数 2 (全4頁)

会発明の名称 X線露光装置

> 创特 願 平1-257732

20出 願 平1(1989)10月4日

79発 明者 住 谷 充 夫

神奈川県横浜市磯子区新杉田町8番地 株式会社東芝横浜

事業所内

る。 願人 株式会补東芝 神奈川県川崎市幸区堀川町72番地

分代 理人 弁理士 則近 憲佑 外1名

1. 発明の名称

X級氯光装置

- 2. 特許請求の範囲
 - X線を放射するX線源と、このX線源から 放射されたX線を入射して入射したX線の光束 横断面積を拡大する放物筒鏡と、X級マスクを 有し上配放物筒鏡にて反射したX線を上配X線 マスクを介して照射される被露光体を保持する 露光部とを具備することを特徴とするX線露光 装置。
 - (2) X線頭はシンクロトロンであることを特徴 とする請求項(1)記載のX線露光装置。
- 3. 発明の詳細な説明

〔発明の目的〕

(産業上の利用分野)

本発明は、半導体集積回路の製造における観 光工程に用いられるX級露光装置に関する。

(従来の技術)

21世紀初頭に量産化が始まると予想されてい

る1日ビット以降の超LSI半導体索子の最小線幅 は、 0.1 ~ 0.2 pmであるため、現在使用されている 紫外線露光に代わる新たな微細パターン転写技術 (リソグラフィ)として、X 触りソグラフィが、 解像度、生産性及び歩留の点から最有力視されて いる。すなわち、とのX線リソグラフィは、波長 が 0.5~1nmの軟X線を転写光とするもので、0.1 mm オーダの加工精度を容易に達成できる。しかも、 軟X線は、直進性と透過性に優れているので、パ ターンの微細化に伴って要求されるレジストの高 アスペクト比や有機物腐块を転写したいととたど の利点を有する。

ととろで、上配軟 X 級は、SOR (Synchrotron Orbital Radiation;シンクロトロン軌道放射) 軌道面に対して垂直な方向でほぼ均一な強度を持 つ面が小さく、とのままでは軟X盤の照射面積が 小さい。

(発明が解決しよりとする課題)

そのため、従来のX級露光装置においては、 軟X級の照射面積を拡大するために、例えば振動

ミラーなどを用いていた。とのよりな振動ミラー は、高真空外部に複雑な駆動機構を特徴せねばな らない。その結果、露光装置の構造が複雑化した。 り、設備費が高価となるなどの不具合を惹起して いた。

本発明は、上記事情を参酌してなされたもので、 装置をコンパクト化でき、しかも、 X 線の照射面 積の拡大が可能なX額賦光装置を提供するととを 目的とする。

〔発明の構成〕

(課題を解決するための手段と作用)

X線を放射するX線源と、とのX線源から放 射されたX線を入射して入射したX線の光束横断 面積を拡大する放物領鏡と、との放物筒鏡からの 反射X線をX線マスクを介して服射される被爆光 体を保持する露光部とからなり、コンパクトな装 催で、X額の照射面積の拡大をはかったものであ る。

(実施例)

以下、本発明の一與施例を図面を参照して鮮

(3)

の反射面(9)は、焦線(8)に直交する放物筒鏡(4)の機 断面輪郭である放物線ODの外側を向くよりに設け られている。さらに、放物筒鏡(4)の軸面(4a)は、 軟×線(1)の光路がのっている面に直交し、かつ、 第2図に示す、軟X線(1)の両偶部(1a),(1b)が軸 面(4a)と平行となるよりに設けられている。換言 すれば、放物筒鏡の簡軸方向と第2図にて後述す る幅W1方向とを一致させる。なお、放物線QOは、 x-y座領系では、次式①のように表わされる。

 $y^2 = 2px$

したがって、魚殻(8)上の1点の座額値は、(p/2. 0)となる。また、放物線(1)の準線(1)は、それぞ れ次式②で表わされる。

x = -p/2

よって、pの値を適宜選択するととにより、軟X 線(1)の光束横断面積の拡大率を変更できる。とと で、反射面(9)は、軟X線(1)を単線(1)個から入射す る位置に設けられている。他方、露光部(6)は、所 定のLSIパターンが形成され光束断面積が拡大さ れた教 X 線(3)を入射して選択的に軟 X 線(3)を透過

述する。

第1図は、との実施例のX級露光装置を示して いる。との装置は、SOR光である軟X線(1)を放射 するX級原(2)と、とのX級原(2)から放出されたほ 理平行光となっている数X級(I)を入射して光東断 面積が拡大された数 X 般(3)に変換する簡軸に直交 する横断面形状が放物線となる放物筒の一部をカ ットした形状の放物筒鏡(4)と、X線露光されるウ ェーハ(5)を保持して軟X線(3)により露光させる影 光郎(6)とからなっている。しかして、X 触原(2)は、 電子を加速するシンクロトロン(図示せず。)と、 とのシンクロトロンからの電子を導入して円軌道 に沿って加速し接線方向に軟X線(I)を放出する 80Rリング (7)とを有している。との軟X線(1)は、 スポット径と光強度の均一なピームとなっていて、 SORリンク(7)の特定位置における接線方向に放出 される。そして、軟X線(1)のスペクトルは、赤外 · 殻からX級まで連続した分布で、X級領域にピー ク値を有する。一方、放物筒鏡(4)は、第1図紙面 垂直方向の焦線(8)を有していて、凸曲面をなすそ

(4)

させるX級マスク切と、このX級マスク切を透過 した軟X線(3)を入射する位置にてウェーハ(5)を支 持するウェーハ支持手段切とからなっている。

つぎに、上記構成のX線露光装置の作動につい て述べる。

まず、X線源(2)から軟X線(1)を放射させ、との 軟 X 級(1)を放物 篩鏡(4)の反射面(9)に入射させる。 ところで、とのSOR光である軟X線(I)は、シンク ロトロン軌道面内方向には十分を均一強度を有す る幅(W1) があるが、軌道面に対して垂直な方向 には均一な強度を持つ幅(W2)が小さい(第2図 参照)。なか、この傷W1は、前配两側部(1a),(1b) 間の距離である。その結果、軟X線(i)は、第2図 中の点 M1. M2. M3. M4 で囲まれる領域に入射する。 すると、軟X線(1)は、あたかも焦線(8)から放射さ れたときのよりな光路に沿って反射する。このと き反射された軟X線(3)の光束横断面積Aは、軟X 級(I)の光束横断面積 A0 に比べて数倍以上拡大する。 とくに、反射後の軟 X 線(1)の幅(W1), (W2) は、 偏 (W1)。(W1)がほとんど変化しないのにくらべ

(6)

---94 ---

て幅 (W2) が顕著に増加するととにより、任程等しくなる。つまり、軌道面に対して垂直な方向に均一な強度をもつ幅 (W2) が幅 (W1) に比べて小さいという SOR 光特有の欠点が解消する。ついて、この軟 X 線 (3) は、 X 線 マスク (3) を経由してウェーへ(5) に限射され、所定のパターンが露光される。

以上のように、この実施例のX線路光装置は、 放物筒鏡(4)により、軟X線(1)の光束模断面積A0を 所銀の拡大率で拡径することができる。また、装 置がコンパクト化し、振動ミラーを用いる場合に 比べて、装置価格が安い上に、X線の散乱がない ので、X線強度の低波がない。

なお、上記実施例において、放物筒鏡(4)の反射面(9)上に、多層膜部はを被着させてもよい(第3 図参照)。との多層膜部はは、第4図に示すように、厚さ(たとえば17.34Å)、dB(たとえば34.66Å)の一対の膜は、的からなる膜対的を繰返し積層してなり、人工格子を形成している。との人工格子を形成する膜対的の材質としては、回析面となる重元素(膜は)とスペーサとなる軽元素(膜は)

(7)

した場合、軌道面に対して垂直な方向に均一な強 度をもつ幅が小さいというSOR光特有の欠点を是 正することができる。

4. 図面の簡単な説明

第 1 図は本発明の一実施例のX線露光装置の構成図、第 2 図は同じく要部拡大説明図、第 3 図及 び第 4 図は本発明の他の実施例の説明図である。

(2): X 線 源,

(4): 放物筒鏡,

(5): ウェーハ(被露光体)。

(6): 露光部,

(8):焦点,

(9):反射面。

代理人 弁理士 則 近 意 佑 同 松 山 允 之 の組合せが一般的である。たとえば、炭素(C),金 (Au)と炭素等の組合せが好ましい。そりして、 段対07の膜厚 d ($=d_A+d_B$)は、次式③で示されるブラック (Bragg)条件を満足するように設定されている。

$m\lambda = 2d \sin \theta_m$ (3)

ただし、 A は、 板 X 線(1) の 夜 長, m は 次 数, 8m は 反射した 軟 X 線(3) が 最大と なるときの 入射角 で ある。 しかして、 このよう な 多層膜部 144 により、 軟 X 線(1) を入射して特定波 長の軟 X 線(3) に 変換する ととができるとともに、 軟 X 線(3) の 反射角 度を 急にして、 反射点からウェーハ(5) までの ビームライン を 短くする ことができるので、 装置の コンパクト化を 一層 促進することができる。

(発明の効果)

本発明のX線度光装置は、電光用のX線を、 X線強度の低波を惹起することなく、所望の拡大 事に調節することができる。また、装置構成がコ ンペクト化するとともに、保守が容易になる利点 を有する。とくに、本発明をSOB光に対して適用

(8)

第1回

第 4 🗵