tf.talk()

An Introduction to Deep Learning with TensorFlow

Table of Catents

Table of Catents

Theory

Table of Catents

Theory

Practice

► CS Student @ TUM

- ► CS Student @ TUM
- ► Google & Bloomberg Intern

- CS Student @ TUM
- ► Google & Bloomberg Intern

Seminar Topic: Deep Learning With TensorFlow github.com/peter-can-write/tensorflow-paper

$$\begin{bmatrix} x_0 & x_1 \end{bmatrix} \times \begin{bmatrix} w_{0,0} & w_{0,1} \\ w_{1,0} & w_{1,1} \end{bmatrix} + \begin{bmatrix} b_0 \\ b_1 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}$$

$$\mathbf{W} \qquad \mathbf{b} \qquad \mathbf{y}$$

$$\begin{bmatrix} x_0 & x_1 \end{bmatrix} \times \begin{bmatrix} w_{0,0} & w_{0,1} \\ w_{1,0} & w_{1,1} \end{bmatrix} + \begin{bmatrix} b_0 \\ b_1 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix} \quad \leadsto \quad \hat{\mathbf{y}}$$

$$\mathbf{W} \qquad \mathbf{b} \qquad \mathbf{y}$$

Deep Learning assumes that data is structured

Deep Learning assumes that data is structured

hierarchically

9273738157593933 3 61485836703975
3877419151111 8 4931437053 0 7 9285
399053582651 5 50148057 5 79108193
913140 5 371976271869 1 40813861 6
9 71 1 19497436586528 5 38838245544
55665739539 5 49948366 6 21926293
34226340966297501092214128922020
55 7 9343 8 4357745786226096905917
5649661517745189 4 74267527997972
3076 8 54806597501468863319516319
20524951877249777131517192 9 7677
3076 8 54806597501668863319516319
99521 2 706610246668 0 37742 1287
7 4641 9 63595662 3 2056213 254648

ightharpoonup We want to classify images into one of k classes

- ▶ We want to classify images into one of *k* classes
- Extract hierarchical features

- \blacktriangleright We want to classify images into one of k classes
- Extract hierarchical features

Edges

- \blacktriangleright We want to classify images into one of k classes
- Extract hierarchical features

- \blacktriangleright We want to classify images into one of k classes
- Extract hierarchical features

- \blacktriangleright We want to classify images into one of k classes
- Extract hierarchical features

13	81	43
60	83	34
32	46	99

Why reinvent the wheel?

This is a cat ♥

Still a cat ♥♥

Half cat / half salad ♥♥♥

Many cats ♥♥♥♥

Weight Sharing

Convolutional Neural Networks: Mechanics

Convolutional Neural Networks: Mechanics

0.4	0.9	0.1
0.7	0.2	0.6
0.8	0.3	0.5

Image

Convolutional Neural Networks: Mechanics

0.4	0.9	0.1
0.7	0.2	0.6
0.8	0.3	0.5

Image

Kernel

$5.7 \cdot 0.4$	$2.4 \cdot 0.9$	0.1
$3.1 \cdot 0.7$	$0.9 \cdot 0.2$	0.6
0.8	0.3	0.5

Image

$5.7 \cdot 0.4$	2.4 · 0.9	0.1
$3.1 \cdot 0.7$	0.9 · 0.2	0.6
0.8	0.3	0.5

6.79

Image

6.79 6.53

Image

0.4	0.9	0.1
5.7 · 0.7	$2.4 \cdot 0.2$	0.6
$3.1 \cdot 0.8$	0.9 · 0.3	0.5

6.79 6.53 7.67

Image

Image

Recipe for a Convolutional Layer

► Ingredients

- ► Ingredients
 - 1. Image I with dimensions $w \times h \times d$

- Ingredients
 - 1. Image I with dimensions $w \times h \times d$
 - 2. A kernel (filter) K of size $k \times l \times m$

- Ingredients
 - 1. Image I with dimensions $w \times h \times d$
 - 2. A kernel (filter) K of size $k \times l \times m$
- Cooking

- ► Ingredients
 - 1. Image I with dimensions $w \times h \times d$
 - 2. A kernel (filter) K of size $k \times l \times m$
- Cooking
 - ▶ Put the image into the oven at 150°C

- Ingredients
 - 1. Image I with dimensions $w \times h \times d$
 - 2. A kernel (filter) K of size $k \times l \times m$
- Cooking
 - Don't put the image into the oven at 150°C

- Ingredients
 - 1. Image I with dimensions $w \times h \times d$
 - 2. A kernel (filter) K of size $k \times l \times m$
- Cooking
 - Don't put the image into the oven at 150°C
 - Slide the kernel across the image

- Ingredients
 - 1. Image I with dimensions $w \times h \times d$
 - 2. A kernel (filter) K of size $k \times l \times m$
- Cooking
 - ▶ Don't put the image into the oven at 150°C
 - Slide the kernel across the image
 - ► Compute the "dot product" for each configuration

66	2
6	32

66	2
6	32

50	17
66	2

5	19	69
66	2	79
6	32	128

5	19	69
66	2	79
6	32	128

5	19	69
66	2	79
6	32	128

66

5	19	69
66	2	79
6	32	128

66	79
66	79

5	19	69
66	2	79
6	32	128

66	79
66	

5	19	69
66	2	79
6	32	128

66	79
66	128

5	19	69
66	2	79
6	32	128

66	79
66	128

Pooling achieves translational invariance

5	19	69
66	2	79
6	32	128

66	79
66	128

- Pooling achieves translational invariance
- A form of downsampling

5	19	69
66	2	79
6	32	128

66	79
66	128

- Pooling achieves translational invariance
- A form of downsampling
- Other pooling functions possible

Convolutional Neural Networks: Architecture

An open source deep learning library

- An open source deep learning library
- ► Released by Google in November 2015

- An open source deep learning library
- ► Released by Google in November 2015
- ► Especially suited to:

"Large-scale machine learning on heterogeneous distributed systems"

$\hat{y} = \tanh(\mathbf{x}^{\mathsf{T}}\mathbf{w} + b)$

 $\hat{y} = \tanh(\mathbf{x}^{\mathsf{T}}\mathbf{w} + b)$

Computational Graphs

1. Operations

 $\hat{y} = \tanh(\mathbf{x}^{\top}\mathbf{w} + b)$

- 1. Operations
- 2. Tensors

- 1. Operations
- 2. Tensors
- 3. Variables

 $\hat{y} = session.run(tanh(\mathbf{x}^{\top}\mathbf{w} + b))$

- 1. Operations
- 2. Tensors
- 3. Variables
- 4. Sessions

client

1. Client

1. Client 2. Master

- 1. Client 2. Master 3. Workers

1. Client 2. Master 3. Workers 4. Devices

- 1. Client 2. Master 3. Workers 4. Devices

- 1. Client
- 2. Master 3. Workers
- 4. Devices

▶ Deep Neural Networks have the tendency of being . . . deep

- Deep Neural Networks have the tendency of being . . . deep
- ▶ Easy to drown in the complexity of an architecture

- Deep Neural Networks have the tendency of being . . . deep
- Easy to drown in the complexity of an architecture
- > 36,000 nodes for Google's *Inception* model

- Deep Neural Networks have the tendency of being . . . deep
- Easy to drown in the complexity of an architecture
- > 36,000 nodes for Google's *Inception* model

TensorBoard to the Rescue

Walkthrough

Walkthrough

LeNet5

INPUT \rightarrow [CONV \rightarrow POOL] $\{2\}$ \rightarrow FC \rightarrow OUTPUT

How do I continue?

Resources

Resources

- MOOCs
 - ► Machine Learning by Andrew Ng @ Coursera
 - ► Deep Learning by Google @ Udacity
 - Machine Learning Nanodegree @ Udacity

Resources

MOOCs

- Machine Learning by Andrew Ng @ Coursera
- Deep Learning by Google @ Udacity
- ► Machine Learning Nanodegree @ Udacity

Websites

- http://colah.github.io
- http://cs231n.github.io
- http://karpathy.github.io
- http://www.deeplearningbook.org
- https://www.kaggle.com
- https://www.tensorflow.org

See You Again

PyCon Germany

- 29-30 October in Munich
- ► Talks on machine learning, deep learning and data science
- ▶ 15% off: VISITMUC16

Stay in Touch!

- peter@goldsborough.me
- linkedin.com/in/petergoldsborough
- ▶ github.com/goldsborough

Stay in Touch!

- peter@goldsborough.me
- ▶ linkedin.com/in/petergoldsborough
- ▶ github.com/goldsborough

github.com/peter-can-talk/pycon-uk-2016

Q & A