

United States Patent and Trademark Office

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450 Alexandria, Virginia 22313-1450 www.uspto.gov

APPLICATION NO. FILING DATE		ILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO
09/745,104 12/20/2000		12/20/2000	Ryo Inoue	10559-391001/P10256-ADI	6933
20985	7590	04/02/2004		EXAMINER	
FISH & RICHARDSON, PC				HARKNESS, CHARLES A	
	12390 EL CAMINO REAL SAN DIEGO, CA 92130-2081		· ·	ART UNIT	PAPER NUMBER
				2183	8
				DATÉ MAILED: 04/02/2004	. 0

Please find below and/or attached an Office communication concerning this application or proceeding.

		Λ
-	Application No.	Applicant(s)
Office Action Summany	09/745,104	INOUE ET AL.
Office Action Summary	Examiner	Art Unit
The MAIL INC DATE of this communication con	Charles A Harkness	2183
The MAILING DATE of this communication apprend for Reply	ears on the cover sneet with the c	orrespondence address
A SHORTENED STATUTORY PERIOD FOR REPLY THE MAILING DATE OF THIS COMMUNICATION. - Extensions of time may be available under the provisions of 37 CFR 1.13 after SIX (6) MONTHS from the mailing date of this communication. - If the period for reply specified above is less than thirty (30) days, a reply - If NO period for reply is specified above, the maximum statutory period w - Failure to reply within the set or extended period for reply will, by statute, Any reply received by the Office later than three months after the mailing earned patent term adjustment. See 37 CFR 1.704(b).	66(a). In no event, however, may a reply be time within the statutory minimum of thirty (30) days ill apply and will expire SIX (6) MONTHS from cause the application to become ABANDONE	nely filed s will be considered timely. the mailing date of this communication. D (35 U.S.C. § 133).
Status	*	
 1) Responsive to communication(s) filed on 20 Ja 2a) This action is FINAL. 2b) This 3) Since this application is in condition for alloware closed in accordance with the practice under E 	action is non-final. nce except for formal matters, pro	
Disposition of Claims		
4) ☐ Claim(s) 1,2 and 4-30 is/are pending in the approach 4a) Of the above claim(s) is/are withdraw 5) ☐ Claim(s) is/are allowed. 6) ☐ Claim(s) 1,2 and 4-30 is/are rejected. 7) ☐ Claim(s) is/are objected to. 8) ☐ Claim(s) are subject to restriction and/or	vn from consideration.	
Application Papers		
9) The specification is objected to by the Examine 10) The drawing(s) filed on is/are: a) acce Applicant may not request that any objection to the of Replacement drawing sheet(s) including the correction 11) The oath or declaration is objected to by the Ex	epted or b) objected to by the I drawing(s) be held in abeyance. See ion is required if the drawing(s) is ob	e 37 CFR 1.85(a). jected to. See 37 CFR 1.121(d).
Priority under 35 U.S.C. § 119		•
12) Acknowledgment is made of a claim for foreign a) All b) Some * c) None of: 1. Certified copies of the priority documents 2. Certified copies of the priority documents 3. Copies of the certified copies of the priorical application from the International Bureau * See the attached detailed Office action for a list	s have been received. s have been received in Applicati ity documents have been receive u (PCT Rule 17.2(a)).	on No ed in this National Stage
Attachment(s) 1) Notice of References Cited (PTO-892) 2) Notice of Draftsperson's Patent Drawing Review (PTO-948) 3) Information Disclosure Statement(s) (PTO-1449 or PTO/SB/08) Paper No(s)/Mail Date	4) Interview Summary Paper No(s)/Mail Do 5) Notice of Informal F 6) Other:	

Art Unit: 2183

DETAILED ACTION

1. In view of the amendment to the title, the objection to the specification has been withdrawn.

Claim Rejections - 35 USC § 102

The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless -

- (b) the invention was patented or described in a printed publication in this or a foreign country or in public use or on sale in this country, more than one year prior to the date of application for patent in the United States.
- 2. Claims 1-18 and 20-25 are rejected under 35 U.S.C. 102(b) as being anticipated by Atkins et al., U.S. Patent Number 5,898,866 (herein referred to as Atkins).
- 3. Referring to claim 1 Atkins has taught a method comprising:

defining, within a computer program, conditions for a hardware loop (Atkins column 2 lines 14-50; the conditions are in the SETLOOP instruction, which is software being run as part of the program);

first propagating a first of said loop conditions of said hardware loop via a first pipeline of a pipelined processor (Atkins figure 2 reference 20A, column 2 lines 14-50; shows that Atkins has taught a pipelined processor); and

second propagating in parallel with said first propagating a second of said loop conditions (Atkins column 4 lines 12-44, column 3 lines 1-20; Atkins has several pipelines, where several different loops can be executed in parallel with each other, since more than one SETLOOP instruction could be present and each one can be present in a different pipeline) via a second

Art Unit: 2183

pipeline of the pipelined processor (Atkins figure 2 reference 20B, column 2 lines 14-50; shows that Atkins has taught a pipelined processor).

4. Referring to claim 2 Atkins has taught further comprising:

writing the loop conditions to a first set of registers prior to propagating the loop conditions (Atkins figure 2 reference 20, figure 4, column 2 lines 14-50, column 9 line 66-column 10 line 55; figure 4 is the hardware for the setloop, which is present in all of the execution units, 20A-C), and using said registers to begin calculating parameters based on said loop conditions prior to said propagating (Atkins figure 4; the registers included in the loop hardware shown in figure 4, are used to calculate the current parameters for the loop, before propagating the loop conditions again, i.e. the counts are decremented before the new values are propagated to determine if the process is at the end of the loop, and if it is, the TOP register 50 is then propagated to start the next loop; the 'propagating' is not clearly defined and can be broadly interpreted to mean propagating any of conditions at any time in the process), and

writing the loop conditions to a second set of registers after propagating the loop conditions (Atkins figure 2 reference 20, figure 4, column 2 lines 14-50, column 9 line 66-column 10 line 55; figure 4 is the hardware for the setloop, which is present in all of the execution units, 20A-C).

- 5. Referring to claim 4 Atkins has taught further comprising propagating a third loop of said conditions via a third pipeline (Atkins figure 2 reference 20C, column 2 lines 14-50; shows that Atkins has taught a pipelined processor).
- 6. Referring to claim 5 Atkins has taught further comprising generating the loop conditions of the hardware loop prior to writing the loop conditions to the first set of registers (Atkins

Application/Control Number: 09/745,104

Art Unit: 2183

column 2 lines 14-49; the conditions would have to be generated before being stored in a register, otherwise the hardware would not know the value to store).

- Referring to claim 6 Atkins has taught wherein generating the loop conditions comprise calculating at least one of the loop conditions from program counter relative data in a loop setup instruction (Atkins column 10 lines 16-24; the value of the program counter after it has been incremented is stored as the top of the loop value).
- 8. Referring to claim 7 Atkins has taught a method comprising:

first calculating a first loop condition of a hardware loop from a loop setup instruction using a first arithmetic logic unit in a first pipeline (Atkins figures 2-4, column 2 lines 14-50, column 9 line 66-column 10 line 55; figure 4 is the hardware for the setloop, which is present in all of the execution units, 20A-C); and

second calculating a second loop condition of the hardware loop from the loop setup instruction using a second arithmetic logic unit in a second pipeline (Atkins figures 2-4, column 2 lines 14-50, column 9 line 66-column 10 line 55; figure 4 is the hardware for the setloop, which is present in all of the execution units, 20A-C);

using results of said first calculating and said second calculating for propagating loop information to hardware registers associated with calculating parameters of the hardware loop; and beginning to calculate said parameters using said hardware loop, based on said loop conditions, prior to said propagating (Atkins figure 4; the registers included in the loop hardware shown in figure 4, are used to calculate the current parameters for the loop, before propagating the loop conditions again, i.e. the counts are decremented before the new values are propagated to determine if the process is at the end of the loop, and if it is, the TOP register 50 is then

Art Unit: 2183

propagated to start the next loop; the 'propagating' is not clearly defined and can be broadly interpreted to mean propagating any of conditions at any time in the process).

- 9. Referring to claim 8 Atkins has taught further comprising writing the first and second loop conditions to a first set of registers (Atkins figure 2 reference 20, figure 4, column 2 lines 14-50, column 9 line 66-column 10 line 55; figure 4 is the hardware for the setloop, which is present in all of the execution units, 20A-C; all of the registers used for the setloop hardware in all of the processors is a set of 3 setloop hardware registers).
- 10. Referring to claim 9 Atkins has taught further comprising:

calculating a third loop condition of the hardware loop from the loop setup instruction using a third arithmetic logic unit in a third pipeline (Atkins figures 2-4, column 2 lines 14-50, column 9 line 66-column 10 line 55; figure 4 is the hardware for the setloop, which is present in all of the execution units, 20A-C); and

writing the first, second and third loop conditions to a first set of registers (Atkins figure 2 reference 20, figure 4, column 2 lines 14-50, column 9 line 66-column 10 line 55; figure 4 is the hardware for the setloop, which is present in all of the execution units, 20A-C; all of the registers used for the setloop hardware in all of the processors is a set of 3 setloop hardware registers).

- 11. Referring to claim 10 Atkins has taught wherein calculating the first loop condition and calculating the second loop condition occur in parallel (Atkins column 4 lines 12-44, column 3 lines 1-20).
- 12. Referring to claim 11 Atkins has taught further comprising propagating the first loop condition to a second set of registers via a first pipeline (Atkins figure 4 reference 50, column 10

Application/Control Number: 09/745,104

Art Unit: 2183

lines 16-24; the instruction-address registers for all of the execution units together are a set of 3 instruction-address registers for the system, the value of the TOP register is propagated to the instruction-address register set in all of the pipelines when necessary by the hardware performing a loop operation).

- Referring to claim 12 Atkins has taught further comprising propagating the second loop condition to the second set of registers via a second pipeline (Atkins figure 4 reference 50, column 10 lines 16-24; the instruction-address registers for all of the execution units together are a set of 3 instruction-address registers for the system, the value of the TOP register is propagated to the instruction-address register set in all of the pipelines when necessary by the hardware performing a loop operation).
- Referring to claim 13 Atkins has taught an apparatus comprising:
 a first pipeline including a first arithmetic logic unit and a second pipeline including a second arithmetic logic unit (Atkins figure 2 and figure 3 reference 20-4C), and

a control unit coupled to the pipelines (Atkins figure 2 reference 26, column 4 lines 12-44), the control unit adapted to:

obtain loop setup instructions for a hardware loop from a computer program (Atkins column 2 lines 14-50; the conditions are in the SETLOOP instruction);

first calculate a first loop condition of a hardware loop from one of said loop setup instructions using the first arithmetic logic unit in the first pipeline (Atkins figures 2-4, column 2 lines 14-50, column 9 line 66-column 10 line 55; figure 4 is the hardware for the setloop, which is present in all of the execution units, 20A-C); and

Application/Control Number: 09/745,104

Art Unit: 2183

second calculate a second loop condition of the hardware loop from a loop setup instruction using the second arithmetic logic unit in the second (Atkins figures 2-4, column 2 lines 14-50, column 9 line 66-column 10 line 55; figure 4 is the hardware for the setloop, which is present in all of the execution units, 20A-C;), pipeline in parallel with said first calculate (Atkins column 4 lines 12-44, column 3 lines 1-20; Atkins has several pipelines, where several different loops can be executed in parallel with each other, since more than one SETLOOP instruction could be present and each one can be present in a different pipeline).

- Referring to claim 14 Atkins has taught further comprising a first set of registers coupled to the control unit, wherein the control unit is further adapted to write the first and second loop conditions of the hardware loop to the first set of registers (Atkins figure 2 reference 20, figure 4, column 2 lines 14-50, column 9 line 66-column 10 line 55; figure 4 is the hardware for the setloop, which is present in all of the execution units, 20A-C; all of the registers used for the setloop hardware in all of the processors is a set of 3 setloop hardware registers; the registers are coupled to the control unit indirectly from the execution units, since the registers are a part of the execution units and the execution units are coupled to the control unit).
- 16. Referring to claim 15 Atkins has taught further comprising a third pipeline coupled to the control unit, the third pipeline including a third arithmetic logic unit (Atkins figure 2 and figure 3 reference 20-4C), the control unit further adapted to:

calculate a third loop condition of the hardware loop from the loop setup instruction using the third arithmetic logic unit in the third pipeline (Atkins figures 2-4, column 2 lines 14-50, column 9 line 66-column 10 line 55; figure 4 is the hardware for the setloop, which is present in all of the execution units, 20A-C); and

Art Unit: 2183

write the first, second and third loop conditions of the hardware loop to the first set of registers (Atkins figure 2 reference 20, figure 4, column 2 lines 14-50, column 9 line 66-column 10 line 55; figure 4 is the hardware for the setloop, which is present in all of the execution units, 20A-C, all of the registers used for the setloop hardware in all of the processors is a set of 3 setloop hardware registers).

- 17. Referring to claim 16 Atkins has taught further comprising a second set of registers coupled to the control unit, wherein the control unit is further adapted to propagate at least one of the loop conditions to the second set of registers via the first pipeline (Atkins figure 4 reference 50, column 10 lines 16-24; the instruction-address registers for all of the execution units together are a set of 3 instruction-address registers for the system, the value of the TOP register is propagated to the instruction-address register set in all of the pipelines when necessary by the hardware performing a loop operation).
- Referring to claim 17 Atkins has taught further adapted to propagate at least one of the loop conditions to the second set of registers via the second pipeline (Atkins figure 4 reference 50, column 10 lines 16-24; the instruction-address registers for all of the execution units together are a set of 3 instruction-address registers for the system, the value of the TOP register is propagated to the instruction-address register set in all of the pipelines when necessary by the hardware performing a loop operation).
- 19. Referring to claim 18 Atkins has taught further comprising a second set of registers coupled to the control unit, the control unit further adapted to:

propagate at least one of the loop conditions to the second set of registers via the first pipeline, propagate at least one of the loop conditions to the second set of registers via the second

Art Unit: 2183

pipeline, and propagate at least one of the loop conditions to the second set of registers via the third pipeline(Atkins figure 4 reference 50, column 10 lines 16-24, the instruction-address registers for all of the execution units together are a set of 3 instruction-address registers for the system, the value of the TOP register is propagated to the instruction-address register set in all of the pipelines when necessary by the hardware performing a loop operation).

- 20. Referring to claim 20 Atkins has taught wherein at least one of the pipelines is a data address generation pipeline (Atkins column 6 lines 33-48, figure 3 reference D-BUS; at least a part of the pipeline is concerned with data address generation).
- 21. Referring to claim 21 Atkins has taught wherein at least one of the pipelines is a system pipeline (Atkins figures 2-3, column 4 lines 13-44; all of the pipelines are a part of the system).
- 22. Referring to claim 22 Atkins has taught an apparatus comprising a set of registers, a first pipeline, and a second pipeline (Atkins figure 2 column 2 lines 14-50); and

a control unit coupled to the set of registers, the first pipeline and the second pipeline (Atkins figure 2 reference 26, column 4 lines 12-44), the control unit adapted to:

first propagate at least one loop condition of a hardware loop to the set of registers via the first pipeline (Atkins figure 4 reference 50, column 10 lines 16-24; the instruction-address registers for all of the execution units together are a set of 3 instruction-address registers for the system, the value of the TOP register is propagated to the instruction-address register set in all of the pipelines when necessary by the hardware performing a loop operation); and

second propagate at least one loop condition of the hardware loop to the set of registers via the second pipeline (Atkins figure 4 reference 50, column 10 lines 16-24, the instruction-address registers for all of the execution units together are a set of 3 instruction-address registers

Art Unit: 2183

for the system, the value of the TOP register is propagated to the instruction-address register set in all of the pipelines when necessary by the hardware performing a loop operation); and

begin calculating using said hardware loop, prior to completing said first and second propagate (Atkins figure 4; the registers included in the loop hardware shown in figure 4, are used to calculate the current parameters for the loop, before propagating the loop conditions again, i.e. the counts are decremented before the new values are propagated to determine if the process is at the end of the loop, and if it is, the TOP register 50 is then propagated to start the next loop; the 'propagating' is not clearly defined and can be broadly interpreted to mean propagating any of conditions at any time in the process).

Referring to claim 23 Atkins has taught wherein the set of registers are a second set of registers, the apparatus further including a first set of registers coupled to the control unit (Atkins figure 2 reference 20, figure 4, column 2 lines 14-50, column 9 line 66-column 10 line 55; figure 4 is the hardware for the setloop, which is present in all of the execution units, 20A-C; all of the registers used for the setloop hardware in all of the processors is a set of 3 setloop hardware registers; the registers are coupled to the control unit indirectly from the execution units, since the registers are a part of the execution units and the execution units are coupled to the control unit), wherein the control unit is further adapted to:

write the loop conditions of the hardware loop to the first set of registers prior to propagating at least one of the loop conditions to the second set of registers (Atkins figure 2 reference 20, figure 4, column 2 lines 14-50, column 9 line 66-column 10 line 55; figure 4 is the hardware for the setloop, which is present in all of the execution units, 20A-C; all of the registers used for the setloop hardware in all of the processors is a set of 3 setloop hardware registers).

Art Unit: 2183

24. Referring to claim 24 Atkins has taught wherein at least one of the pipelines is a data address generation pipeline (Atkins column 6 lines 33-48, figure 3 reference D-BUS; at least a part of the pipeline is concerned with data address generation).

25. Referring to claim 25 Atkins has taught wherein at least one of the pipelines is a system pipeline (Atkins figures 2-3, column 4 lines 13-44, all of the pipelines are a part of the system).

Claim Rejections - 35 USC § 103

The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

- (a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.
- 26. Claim 19 is rejected under 35 U.S.C. 103(a) as being unpatentable over Atkins in view of Tran U.S. Patent Number 6,003,128 (herein referred to as Tran).
- 27. Referring to claim 19 Atkins has not taught wherein the first set of registers are speculative registers. Tran has taught wherein the first set of registers are speculative registers (Tran abstract). Tran has taught that using speculative processing with predictions reduces the processing time needed by the system to complete a program (Tran column 2 line 34-column 3 line 5). One of ordinary skill in the art at the time of the invention would have recognized that adding speculative loop prediction and execution to Atkins would increase the speed of the loop execution taking place in the system of Atkins. Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to implement speculative loop processing to increase the speed of execution of the instructions.

Art Unit: 2183

- 28. Claims 26-30 are rejected under 35 U.S.C. 103(a) as being unpatentable over Atkins.
- 29. Referring to claim 26 Atkins has taught a system comprising:

wherein a processor includes a first set of registers (Atkins figures 2 and 4; fig. 4 is the hardware for the setloop, which is present in all of the execution units, 20A-C, all of the registers used for the setloop hardware in all of the processors is a set of 3 setloop hardware registers), a first pipeline, a second pipeline, and a control unit (Atkins figure 2 reference 26, column 4 lines 12-44) adapted to

first calculate a first loop condition of a hardware loop from a loop setup instruction using a first arithmetic logic unit in the first pipeline (Atkins figures 2-4, column 2 lines 14-50, column 9 line 66-column 10 line 55; figure 4 is the hardware for the setloop, which is present in all of the execution units, 20A-C; figure 2 and figure 3 reference 20-4C), second calculate a second loop condition of the hardware loop from the loop setup instruction using a second arithmetic logic unit in the second pipeline (Atkins figures 2-4, column 2 lines 14-50, column 9 line 66-column 10 line 55; figure 4 is the hardware for the setloop, which is present in all of the execution units, 20A-C; figure 2 and figure 3 reference 20-4C), in parallel with the first calculate (Atkins column 4 lines 12-44, column 3 lines 1-20; Atkins has several pipelines, where several different loops can be executed in parallel with each other, since more than one SETLOOP instruction could be present and each one can be present in a different pipeline); and write the first and second loop conditions of the hardware loop to the first set of registers

(Atkins figure 2 reference 20, figure 4, column 2 lines 14-50, column 9 line 66-column 10 line 55; figure 4 is the hardware for the setloop, which is present in all of the execution units, 20A-C;

Art Unit: 2183

all of the registers used for the setloop hardware in all of the processors is a set of 3 setloop hardware registers).

- 30. Atkins has not taught a static random access memory device and a processor coupled to the static random access memory device. Atkins has taught a cache and a processor coupled to the cache (Atkins figure 1). Official Notice is taken that it is well known in the art that caches are implemented using static random access memory. One of ordinary skill in the art at the time of the rejection would recognize that using static random access memory would allow the cache memory to provide the instructions and data to the processor faster that dynamic random access memory, thus making static random access memory a more desirable memory for caches. Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to use static random access memory as the cache memory of Atkins to provide the instructions and data more quickly to the processor, which reduces the time required by execution.
- 31. Referring to claim 27 Atkins has taught including a third pipeline, the control unit further adapted to:

calculate a third loop condition of the hardware loop from the loop setup instruction using a third arithmetic logic unit in the third pipeline (Atkins figures 2-4, column 2 lines 14-50, column 9 line 66-column 10 line 55; figure 4 is the hardware for the setloop, which is present in all of the execution units, 20A-C; figure 2 and figure 3 reference 20-4C); and

write the first, second and third loop conditions of the hardware loop to the first set of registers (Atkins figure 2 reference 20, figure 4, column 2 lines 14-50, column 9 line 66-column 10 line 55; figure 4 is the hardware for the setloop, which is present in all of the execution units,

Art Unit: 2183

20A-C; all of the registers used for the setloop hardware in all of the processors is a set of 3 setloop hardware registers).

32. Referring to claim 28 Atkins has taught a system comprising:

wherein the processor includes a first set of registers (Atkins figures 2 and 4; fig. 4 is the hardware for the setloop, which is present in all of the execution units, 20A-C; all of the registers used for the setloop hardware in all of the processors is a set of 3 setloop hardware registers), a second set of registers (Atkins figure 4 reference 50, column 10 lines 16-24; the instruction-address registers for all of the execution units together are a set of 3 instruction-address registers for the system), a first pipeline, a second pipeline, and a control unit (Atkins figure 2 reference 26, column 4 lines 12-44) adapted to:

write loop conditions of a hardware loop to the first set of registers (Atkins figure 2 reference 20, figure 4, column 2 lines 14-50, column 9 line 66-column 10 line 55; figure 4 is the hardware for the setloop, which is present in all of the execution units, 20A-C; all of the registers used for the setloop hardware in all of the processors is a set of 3 setloop hardware registers);

propagate at least one of the loop conditions to the second set of registers via the first pipeline (Atkins figure 4 reference 50, column 10 lines 16-24; the instruction-address registers for all of the execution units together are a set of 3 instruction-address registers for the system, the value of the TOP register is propagated to the instruction-address register set in all of the pipelines when necessary by the hardware performing a loop operation); and

propagate at least one of the loop conditions to the second set of registers via the second pipeline (Atkins figure 4 reference 50, column 10 lines 16-24; the instruction-address registers for all of the execution units together are a set of 3 instruction-address registers for the system,

Art Unit: 2183

the value of the TOP register is propagated to the instruction-address register set in all of the pipelines when necessary by the hardware performing a loop operation); and

begin calculating data using said hardware loop prior to completing said first and second propagate (Atkins figure 4; the registers included in the loop hardware shown in figure 4, are used to calculate the current parameters for the loop, before propagating the loop conditions again, i.e. the counts are decremented before the new values are propagated to determine if the process is at the end of the loop, and if it is, the TOP register 50 is then propagated to start the next loop; the 'propagating' is not clearly defined and can be broadly interpreted to mean propagating any of conditions at any time in the process).

- 33. Atkins has not taught a static random access memory device and a processor coupled to the static random access memory device. Atkins has taught a cache and a processor coupled to the cache (Atkins figure 1). Official Notice is taken that it is well known in the art that caches are implemented using static random access memory. One of ordinary skill in the art at the time of the rejection would recognize that using static random access memory would allow the cache memory to provide the instructions and data to the processor faster that dynamic random access memory, thus making static random access memory a more desirable memory for caches. Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to use static random access memory as the cache memory of Atkins to provide the instructions and data more quickly to the processor, which reduces the time required by execution.
- Referring to claim 29 Atkins has taught further including a third pipeline, the control unit further adapted to propagate at least one of the loop conditions to the second set of registers via

Art Unit: 2183

the third pipeline (Atkins figure 4 reference 50, column 10 lines 16-24; the instruction-address registers for all of the execution units together are a set of 3 instruction-address registers for the system, the value of the TOP register is propagated to the instruction-address register set in all of the pipelines when necessary by the hardware performing a loop operation).

35. Referring to claim 30. Atkins has taught further adapted to:

calculate a first loop condition of the hardware loop from a loop setup instruction using a first arithmetic logic unit in the first pipeline (Atkins figures 2-4, column 2 lines 14-50, column 9 line 66-column 10 line 55; figure 4 is the hardware for the setloop, which is present in all of the execution units, 20A-C); and

calculate a second loop condition of the hardware loop from the loop setup instruction using a second arithmetic logic unit in the second pipeline (Atkins figures 2-4, column 2 lines 14-50, column 9 line 66-column 10 line 55; figure 4 is the hardware for the setloop, which is present in all of the execution units, 20A-C).

Response to Arguments

- 36. Applicant's arguments filed 1/20/04, paper number 7, have been fully considered but they are not persuasive.
- 37. In the remarks, in regard to the rejection of claim 1, Applicant argues in essence that:

 "...the conditions for the hardware lop are defined within a program and then used in two different pipelines to propagate two different conditions... Atkins does not teach or suggest this feature..."
- This is not found persuasive. As shown in the rejections of the claims, Atkins has more than one pipeline present, where different loop conditions can be executed at the same time

Application/Control Number: 09/745,104

Art Unit: 2183

(Atkins column 4 lines 12-44, column 3 lines 1-20; Atkins has several pipelines, where several different loops can be executed in parallel with each other, since more than one SETLOOP instruction could be present and each one can be present in a different pipeline).

- 39. In the remarks, in regard to the rejection of claim 1, Applicant argues in essence that:

 "Claim 2 has also been amended to define additional aspects whereby the registers are used to begin calculating parameters based on those loop conditions prior to the propagate. In this way, the loop hardware begins to operate before the calculations are complete."
- This is not found persuasive. In response to applicant's argument that the references fail to show certain features of applicant's invention, it is noted that the features upon which applicant relies (i.e., hardware begins to operate before the calculations are complete) are not recited in the rejected claim(s). Although the claims are interpreted in light of the specification, limitations from the specification are not read into the claims. See *In re Van Geuns*, 988 F.2d 1181, 26 USPQ2d 1057 (Fed. Cir. 1993). The propagating that is discussed in the claims is broadly interpreted as any propagation happening in the loop hardware, as shown in the rejections of the claims above (Atkins figure 4; the registers included in the loop hardware shown in figure 4, are used to calculate the current parameters for the loop, before propagating the loop conditions again, i.e. the counts are decremented before the new values are propagated to determine if the process is at the end of the loop, and if it is, the TOP register 50 is then propagated to start the next loop; the 'propagating' is not clearly defined and can be broadly interpreted to mean propagating any of conditions at any time in the process).

Art Unit: 2183

Conclusion

THIS ACTION IS MADE FINAL. Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the mailing date of this final action.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Charles A Harkness whose telephone number is 703-305-7579. The examiner can normally be reached on 8:00 A.M. – 5:30 P.M. with every other Friday off.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Eddie Chan can be reached on 703-305-9712. The fax phone numbers for the organization where this application or proceeding is assigned are 703-746-7239 for regular communications and 703-746-7238 for After Final communications.

Any inquiry of a general nature or relating to the status of this application or proceeding should be directed to the receptionist whose telephone number is 703-305-7579.

Charles Allen Harkness

Patent Examiner

Art Unit 2183

March 29, 2004

EDDIE CHAN
SUPERVISORY PATENT EXAMINER

Selie 1K

TECHNOLOGY CENTER 2100