Q1
(a) confidence =
$$\frac{15}{20} = 75\%$$

However, in total the coffee frequency is $\frac{90}{100} = 90\%$ larger than the confidence, therefore the confidence isn't a useful measure for the Rule.

(b)
$$\mathcal{D}$$
 when $Lift(x, T) = \frac{P(Y|X)}{P(Y)} = \frac{P(x, T)}{P(x)P(Y)} = 1$

P(X, Y) = P(X) P(Y) X and Y are independent

The probability of ? event happen in condition of X happen is Larger than the probability of Y happen itself.

Shows that
$$X \rightarrow Y$$
 Similarly $Y \rightarrow X$, They are positively related

The probability of Y event happen in condition of X happen is Smaller them the probability of Y happen itself. Shows that $X \rightarrow Y'$. Similarly $Y \rightarrow X'$

They are negatively related

	Y	Y'
X	5	5/2
X,	25)4 24	<u>5</u> 8

(c) Let
$$X = \text{Tea}$$
, $T = \text{coffee}$. Lift(x, T) = $\frac{\sqrt{20}}{90/(00)} = \frac{5}{6}$

Lift(X, Y')=
$$\frac{5/20}{\frac{10}{100}} = \frac{5}{2}$$

Lift
$$(X', Y) = \frac{75/80}{90/100} = \frac{25}{24}$$

$$\angle \text{ift } (X,Y') = \frac{5/80}{10/100} = \frac{5}{8}$$

$$C = \angle ift(x, 7) = \frac{5}{6}, < 1$$

there fore they are negatively related.

Consignment	cluster	
1	1	
2)	
3	2	
4	2	
5	3	
б	ſ	

the cluster center is _ C1= (7.0, 4.667)

- C2= (2.0, f.0)

_ C3 = (2-0.8.0)

Se Cond

	Consignment	cluster
	1	1
	2	2
	3	2
	4	2
	3	3
-	б	1

the cluster center is

Third.

Consignment	cluster
1	1
2	2
_ 3	2
4	3
5	3
6	
	•

the cluster center is

		P(B=1 15,A)	P(B=0 (S,A)
Q Z (a)	P(B S=0,A=0)	0	1.0
	P(B S=0,A=1)	0-8	0.2
P(BIS,A)	P(B S=1,A=0)	0-9	0-1
	P(B S=1,A=1)	0-99	0.0]
		P(S=1 A)	P(S=0 A)
	D(C1A-n)	0.71.	

 $\begin{array}{c|cccc}
P(S=1|A) & P(S=0|A) \\
\hline
P(S|A=0) & 0.4 & 0.6 \\
\hline
P(S|A=1) & 0.01 & 0.99
\end{array}$

$$P(A)$$
 $P(A=0)$ $O-2$ $O-8$

$$P(A=T \mid B=T) = \frac{P(A,B)}{P(B)} = \frac{0.1584 + 0.00198}{0.288 + 0.00198 + 0.1584 + 0}$$
$$= \frac{0.3577}{0.288 + 0.00198 + 0.1584 + 0}$$

(b)
$$(2^{N}-1)\cdot N = 2^{N}\cdot N - N$$

$$\begin{array}{ll} \text{Gob} & \text{ScA} = \frac{5}{6} \\ \text{S(B)} = \frac{1}{2} \\ \text{S(C)} = \frac{5}{6} \\ \text{S(D)} = \frac{1}{3} \\ \text{S(E)} = \frac{1}{3} \\ \text{Co%} & \text{Cdiscard} \end{array}$$

$$C(A \rightarrow B) = \frac{3}{5} = 70\% \text{ (discard)}$$

$$C(A \rightarrow C) = \frac{4}{5}$$

$$C(B \rightarrow A) = \frac{3}{4}$$

$$C(B \rightarrow C) = \frac{3}{4}$$

$$C(C \rightarrow A) = \frac{3}{5}$$

$$C(C \rightarrow B) = \frac{3}{5} = 270\% \text{ (discard)}$$