## СОДЕРЖАНИЕ

| BBE | ДЕНИЕ                                                            | 2  |
|-----|------------------------------------------------------------------|----|
|     | ССАРИЙ                                                           |    |
|     | ПРОИЗВОДСТВЕННАЯ ПРАКТИКА                                        |    |
|     | Анализ вариатнов поставки информационно-технологического сервиса |    |
| 1.2 | Анализ вариантов компонентов ИТ-инфраструктуры                   | 8  |
| 1.3 | Системное программное обеспечение                                | 12 |
| 2   | Заключение                                                       | 12 |
| СПИ | ІСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ                                     | 14 |

#### **ВВЕДЕНИЕ**

Исследуемым объектом в рамках проекта является сервис хранения и обработки данных модуля потребительского кредитования. Этот модуль включает в себя ответственность за управление ипотечными и кредитными продуктами, так же за хранение и обработку данных клиентов и генерацию отчетов, как по клиентам так и работе модуля.

Актуальность темы исследования обусловлена стремительным развитием информационных технологий и их внедрением во все сферы социальноэкономической жизни, включая сектор финансовых технологий. Кредитные организации в настоящее время находятся в условиях сильной конкуренции, а это вынуждает активно внедрять новые технологии, в частности цифровые технологии, которые позволяют оптимизировать затраты и внутренние процессы, повышать качество обслуживания клиентов и обеспечивать устойчивость бизнес-моделеи. В этом ключе важное значение приобретает проектирование фунциольное моделирование ИТ-инфраструктуры И одного из ключевых элементов, который обеспечивает эффективаность функционирования автоматизированных кредитных систем, а именно модуля потребительского кредитования.

В отечественной и зарубежной литературе существует много работ, рассматриващих проблемы проектирования и моделирования ИТ-инфраструктуры в которых так же рассматриваются архитектурные подходы, выбор технических решений и методы оптимизации процессов. Однако в условиях быстро меняющейся регулятороной и потребительской среды задача создания адаптированной, масштабируемой и безопасной ИТ-инфраструктуры с учетом специфики бизнес-процессов конкретной организации остается актуальной.

Целью данной работы является проектирование и функциональное моделирование ИТ-инфраструктуры, поддерживающей модуль потребительского кредитования в кредитной организации, включающего описание архитектуры и обоснование выбранного программно-аппаратного решения.

Для достижения поставленной цели в работе решаются следующие задачи:

1. Анализ вариантов поставки информационно-технологического

сервиса;

- 2. Анализ вариантов компонентов ИТ-инфраструктуры и обоснование выбранного варианта;
- 3. Выбор системного программного обеспечения;
- 4. Моделирование топологии развертывания;
- 5. Составление спецификации рабочих станций;
- 6. Моделирование топологии развертывания инструментального программного обеспечения;
- 7. Анализ сетевой инфраструктуры и моделирование сетевой топологии.

Практическая значимость работы заключается в возможности использования представленных разработок для модернизации или внедрения модулей автоматизированных систем потребительского кредитования в ИТ-инфраструктуру кредитных организаций, что способствует повышению надежности, безопасности, отказаустойчивости и производительности.

## ГЛОССАРИЙ

VPC — Virtual Private Cloud (виртуальная частная сеть).

ЦОД — Центр обработки данных.

СХД — Система хранения данных.

СУБД — Система управления базами данных.

FC — Fiber Channel (оптоволоконный канал).

ИТ — Информационные технологии.

ИТ-инфраструктура — Информационно-технологическая инфраструктура.

UML — Unified Modeling Language (Унифицированный язык моделирования)

### 1 ПРОИЗВОДСТВЕННАЯ ПРАКТИКА

# 1.1 Анализ вариатнов поставки информационно-технологического сервиса

В работе произведен анализ четырех вариантов поставки информационнотехнологического сервиса, который включает в себя выбор между такими вариантами поставки, как полностью самостоятельный, облачный (SaaS, Paas, IaaS), мульти-облачный и гибридный. На основе анализа выбран, как самый оптимальный вариант поставки, полностью самостоятельный вариант.

Полностью облачный сервис [1] по одному из моделей SaaS, PaaS или IaaS, позволяет снизить затраты на создержание и поддержку ИТ-инфраструктуры, но не является лучшим решением, так как вводит за собой ряд ограничений, таких как сильная зависимость от поставщика, ограниченные возможности кастомизации и настройки, а также, что является критичным, возможные проблемы с безопасностью и сохранностью данных.

Мульти-облачный вариант, подразумевает под собой так же использование облачной инфраструктуры, но в отличие от полностью облачного варианта, позволяет использовать разные облачные решения от разных поставщиков, что позволяет избежать некоторых проблем, связанных с безопасностью и кастомизацией. Однако, данный вариант так же не является оптимальным, так как требует высококвалифицированных специалистов для поддержки и настройки, а так же имеет риски конфликтов совместимости, что существенно сказывается на затратах.

Гибридный подход позволяет совместное исопльзование облачных решений и собственных ресурсов. Такой вариант позволяет наиболее гибко и без особых затруднений масштабировать инфраструктуру, но является более дорогим в долгосрочной перспективе, не исключает пенно данный подход явялется наиболее гибким, чтобы отвечать всем требованиям регуляторов и требованиям сранения персональных данных, например, Федеральный закона №152-ФЗ «О персональных данных».

В Таблице 1.1 приведено сравнение всех четырех вариантов поставки инфраструктуры. Таблица позволяет точечно рассмотреть все возможные

#### варианты, их преимущества и недостатки.

Таблица 1.1 — Сравнение вариантов поставки ИТ-инфраструктуры

| Вариант поставки            | Преимущества                | Недостатки                 |  |  |
|-----------------------------|-----------------------------|----------------------------|--|--|
| Полностью самостоятельный   | Частный контроль над        | Высокие первоначальные     |  |  |
|                             | чувствительныи данными      | затраты на развертывание;  |  |  |
|                             | и инфраструктурой;          | необходимость содержания   |  |  |
|                             | отсутствие зависимости      | ИТ-персонала; более        |  |  |
|                             | от облачных поставщиков;    | длительное внедрение.      |  |  |
|                             | гибгость в соответствии     |                            |  |  |
|                             | требованиям регуляторов     |                            |  |  |
|                             | (например, 152-ФЗ).         |                            |  |  |
| Облачный (SaaS, PaaS, IaaS) | Более низкие затраты на     | Сильная зависимость от     |  |  |
|                             | поддержку и обслуживание;   | поставщика; ограниченные   |  |  |
|                             | быстрое масштабирование     | возможности настройки;     |  |  |
|                             | и внедрение; меньшая        | риски утечки данных и      |  |  |
|                             | потребность в локальных     | проблемы с безопасностью.  |  |  |
|                             | pecypcax.                   |                            |  |  |
| Мульти-облачный             | Снижение зависимости        | Необходимость              |  |  |
|                             | от одного поставщика;       | высококвалифицированного   |  |  |
|                             | гибкость в выборе сервисов; | персонала; риски           |  |  |
|                             | потенциально лучшая         | несовместимости решений;   |  |  |
|                             | безопасность.               | повышенные затраты на      |  |  |
|                             |                             | администрирование; риски   |  |  |
|                             |                             | утечки данных и проблемы с |  |  |
|                             |                             | безопасностью.             |  |  |
| Гибридный                   | Гибкость масштабирования;   | Более высокая стоимость в  |  |  |
|                             | возможность совмещать       | долгосрочной перспективе;  |  |  |
|                             | преимущества облака и       | повышенные затраты         |  |  |
|                             | локальной инфраструктуры;   | на администрирование;      |  |  |
|                             | частичный контроль над      | не исключены риски         |  |  |
|                             | критичными компонентами.    | утечки данных; сложность   |  |  |
|                             |                             | интеграции компонентов.    |  |  |

На основе описанных выше данных становится понятно, что для модуля потребительского кредитования оптимальным вариантом является полностью самостоятельный вариант поставки, так как он позволяет иметь полный контроль над данными и инфраструктурой, окупается в долгосрочной песпектие, не требует высококвалифицированного персонала и позволяет избежать проблем с безопасностью.

Компоненты инфраструктуры размещены в серверной стойке внутри Центра обработки данных (ЦОД) предоставляемым Selectel [2]. Selectel это Россйская компания, которая предоставляет услуги облачных вычислений, выделенных серверов и услуги по размещению оборудования в ЦОД. Базовая тарификация серверной стойки включает в себя 5 кВА мощности и 30ТБ интернет трафика в месяц. Оба этих параметра предоставляются бесплатно при базовом тарифе, при необходимости большей мощности, трафика или же 10ГБит/с портов, Selectel предоставляет возможность доплатить. Вендор обеспечивает круглосуточную поддержку и мониторинг оборудования с базовым удаленным обслуживаем.

Такой подход к размещению инфраструктуры позволяет избежать затрат на содержание, позволяет избавиться от затрат на сетевое оборудование, так как вендор предоставляет все необходимое оборудование и нужные каналы связи в аренду.

Структурная модель выбранного моделя поставки ИТ-инфраструктуры представлена на Рисунке 1.1.



Рисунок 1.1 — Структурная модель выбранного моделя поставки ИТ-инфраструктуры

#### 1.2 Анализ вариантов компонентов ИТ-инфраструктуры

В данном разделе произведен анализ возможных компонентов ИТ-инфраструктуры, которые могут быть использованы в проектируемой инфраструктуре. Основными компонентами являются серверы, системы хранения данных, сетевое оборудование, системы резервного копирования и восстановления и системы виртуализации.

Основным критерием для инфраструктуры модуля потребительского кредитования является отказаустойчивость, безопасность хранения данных и возможность масштабирования. В связи с этим основные модули инфрастуктури имеют дубликаты физических компонентов.

Анализ серверов показывает, что для проектируемой инфраструктуры хорошим решением является использование сервера средней мощности производителя пристутвивующего в реестре минцифры РФ, что упрощает поиск и содержвание персонала для обслуживания. Под указанные критерии подходит производитель оборудования «Гравитон» [3]. У произаводителя широкий выбор серверов, которые поддерживают имеется конфигурации, наиболее подходящим является Сервер «Гравитон» С2122ИУ [4]. Данный эземпляр имеет большой потенциал для увеличения объема оперативной памяти, в отличие от других серверов данной категории, поддерживает до двух процессоров Intel Xeon. Поддерживает горячую замену блоков питания и вентиляторов, имеет встроенный модуль управления ВМС и полностью соответствует требованиям регуляторов. Технические характеристики сервера приведены в Таблице 1.2.

Таблица 1.2 — Технические характеристики сервера Гравитон С2122ИУ

| Параметр                     | Значение                                           |  |  |
|------------------------------|----------------------------------------------------|--|--|
| Процессор                    | До 2× Intel Xeon Gold 4-го или 5-го поколения (TDP |  |  |
|                              | до 150 Вт)                                         |  |  |
| Сокет                        | 2× LGA 4677                                        |  |  |
| Чипсет                       | Intel C741                                         |  |  |
| Оперативная память           | До 8 ТБ DDR5; 32 слота DIMM                        |  |  |
| Поддерживаемые модули памяти | RDIMM: 8/16/32/64 ГБ; LRDIMM: 64/128/256 ГБ        |  |  |
| Форм-фактор                  | 2U, стойка 19"                                     |  |  |

Продолжение таблицы 1.2

| Параметр                             | Значение                                        |  |  |
|--------------------------------------|-------------------------------------------------|--|--|
| Дисковая подсистема                  | Передняя панель: 8× 3.5"SAS/SATA/NVMe U.2 +     |  |  |
|                                      | 4× 3.5"SAS/SATA; Задняя панель (опционально):   |  |  |
|                                      | до 4× 2.5"SATA/SAS; 2× M.2 (2280/22110 PCIe 4.0 |  |  |
|                                      | х4); microSD для BMC                            |  |  |
| Слоты расширения                     | 2× PCIe 4.0 x8 (низкопрофильные, опционально);  |  |  |
|                                      | 2× PCIe 5.0 x16 (полнопрофильные); 4× PCIe 5.0  |  |  |
|                                      | x8 (полнопрофильные); ОСР NIC                   |  |  |
| Сетевые интерфейсы                   | Выделенный порт управления (1 Гбит/с RJ-45); 1× |  |  |
|                                      | OCP 3.0                                         |  |  |
| Порты ввода-вывода (передняя панель) | Кнопка включения питания; UID-кнопка; 2× USB    |  |  |
|                                      | 3.0; Индикаторы: питания, сетевой активности,   |  |  |
|                                      | UID, состояния системы                          |  |  |
| Порты ввода-вывода (задняя панель)   | 1× COM4; 1× RJ-45; 1× VGA; 2× USB 3.0; UID-     |  |  |
|                                      | кнопка; Кнопка сброса                           |  |  |
| Модуль управления                    | BMC Aspeed AST2600; Поддержка IPMI 2.0 +        |  |  |
|                                      | iKVM; Выделенный порт IPMI (RJ-45)              |  |  |
| Операционные системы                 | Astra Linux, BaseALT, ROSA, RedOS               |  |  |
| Система охлаждения                   | 4× 80 мм вентиляторов с горячей заменой         |  |  |
| Блоки питания                        | 2× 800–2000 Вт, 80+ Platinum, с поддержкой      |  |  |
|                                      | горячей замены                                  |  |  |
| Безопасность                         | Intrusion Switch                                |  |  |
| Габариты (Д×Ш×В)                     | $763 \times 447 \times 87 \text{ mm}$           |  |  |

Количество физических серверов в проектируемой инфраструктуре составляет позволит наиболее корректно сформировать три, ЭТО отказаустойчивый системой И высокодоступный кластер В паре витруализации zVirt.

Система хранения данных (СХД) является наиболее важным звеном в инфраструктуре внутри ЦОД и отвечает за хранение персональных данных клиентов, их кредитной истории и данных сервисов.

Посколько общеприянтой хорошей практикой является использование одного вендора для всех компонентов инфраструктуры, так как это позволяет избежать проблем с совместимостью и обеспечить более простое администрирование. Исходя из этого, в качестве системы хранения данных выбрана СХД «Гравитон» СХ424И24БМ-РЭ. К конкурентным преимуществам данной модели можно отнести гибкую мультипротокольную архитектуру,

возможноть реализации сложных уровней RAID и поддержка WORK (write once, read many), что подходит для хранения персональных данных клиентов, программное обеспечение RAIDIX, которая является Россйской разработкой и имеет все необходимые сертификаты. Так же не менее важной особенностью является поддержка горячей замены дисков, блоков питания и вентиляторов. Выбранный СХД поддерживает до 24 дисков формата 2.5"/3.5 чего достаточно для организации отказаустойчивого RAID и учета роста объема данных, это определяет целесообразность использования одного экземпляра.

Таблица 1.3 — Технические характеристики СХД Гравитон СХ424И24БМ-РЭ

| Параметр                                        | Значение                             |  |  |  |
|-------------------------------------------------|--------------------------------------|--|--|--|
| Форм-фактор                                     | 4U, установка в 19"стойку            |  |  |  |
| Процессоры                                      | 4× Intel Xeon Gold Gen2              |  |  |  |
| Оперативная память                              | До 4 ТБ                              |  |  |  |
| Контроллеры                                     | Двухконтроллерная конфигурация       |  |  |  |
|                                                 | (Active-Active)                      |  |  |  |
| Дисковая подсистема                             | 24× 2.5"/3.5"SSD/HDD c               |  |  |  |
|                                                 | поддержкой горячей замены            |  |  |  |
| Максимальная емкость хранения                   | До 2 ПБ                              |  |  |  |
| Поддерживаемые интерфейсы дисков                | SAS, NL-SAS, SATA                    |  |  |  |
| Поддерживаемые уровни RAID                      | 0, 1, 5, 6, 7.3, 10, 50, 60, 70, N+M |  |  |  |
| Максимальное количество дисков в RAID           | 64                                   |  |  |  |
| Максимальное количество LUN                     | 447                                  |  |  |  |
| Поддерживаемые файловые протоколы               | SMB v2/v3, NFS v3/v4, AFP, FTP       |  |  |  |
| Поддерживаемые блочные протоколы                | FC 8/16/32 Гбит/с, iSCSI/iSER        |  |  |  |
|                                                 | 10/25/40/100 Гбит/с, InfiniBand      |  |  |  |
|                                                 | SRP 20/40/56/100 Гбит/с, SAS 12      |  |  |  |
|                                                 | Гбит/с                               |  |  |  |
| Поддерживаемые платформы виртуализации          | VMware ESXi, Microsoft Hyper-        |  |  |  |
|                                                 | V, KVM, XenServer, Proxmox VE,       |  |  |  |
|                                                 | RHEV                                 |  |  |  |
| Поддерживаемые операционные системы инициаторов | Windows Server 2016/2019/2022,       |  |  |  |
|                                                 | Ubuntu 18.04/20.04/22.04, RHEL       |  |  |  |
|                                                 | 7.x/8.x, Astra Linux 1.7, Альт       |  |  |  |
|                                                 | Сервер 10, РЕД ОС 7.3, macOS         |  |  |  |
| Программное обеспечение СХД                     | RAIDIX 5.X                           |  |  |  |
| Дополнительные функции                          | WORM, упреждающая и                  |  |  |  |
|                                                 | частичная реконструкция, защита      |  |  |  |
|                                                 | от скрытого повреждения данных,      |  |  |  |
|                                                 | SSD-кэш, QoSmic, SAN Optimizer       |  |  |  |

Продолжение таблицы 1.3

| Параметр               | Значение                          |  |  |  |  |
|------------------------|-----------------------------------|--|--|--|--|
| Сетевые интерфейсы     | до 32× 10 Гбит/с Ethernet, до 16× |  |  |  |  |
|                        | 32 Гбит/с Fibre Channel, до 32×   |  |  |  |  |
|                        | 8/16 Гбит/с Fibre Channel, 4× 1   |  |  |  |  |
|                        | Гбит/с RJ-45, выделенный порт     |  |  |  |  |
|                        | управления 1 Гбит/с RJ-45         |  |  |  |  |
| Блоки питания          | 2× 1300 Br, 80+ Platinum, c       |  |  |  |  |
|                        | поддержкой горячей замены         |  |  |  |  |
| Температурный диапазон | Эксплуатация: 10°C 35°C,          |  |  |  |  |
|                        | хранение: -20°C 45°C              |  |  |  |  |

Операционная система RAIDX [5] используемая в СХД позволяет реализовать автоматический перенос на разные уровни хранения. Все уровни хранения используемые в инфраструктуре представлены в Таблице 1.4.

Таблица 1.4 — Уровни хранения данных СХД

| Уровень хранения данных | Тип Дисков | Назначение   | Модель     |     | Описание      |
|-------------------------|------------|--------------|------------|-----|---------------|
|                         |            |              |            |     | модели        |
| Горячие данные          | 4–6 × SSD  | Базы данных, | Intel I    | D3- | Стабилен в    |
|                         | SAS / NVMe | кэш, логи    | S4610      |     | работу, имеет |
|                         |            |              |            |     | большой       |
|                         |            |              |            |     | pecypc DWPD   |
|                         |            |              |            |     | и сертиф      |
|                         |            |              |            |     | ицирован под  |
|                         |            |              |            |     | RAIDIX        |
| Операционные данные     | 8–12 × HDD | Справочники, | Seagate Ex | xos | Лучшие        |
|                         | 10K SAS    | актуальные   | 10K.2      |     | по цене и     |
|                         |            | документы    |            |     | надежности,   |
|                         |            |              |            |     | широко        |
|                         |            |              |            |     | поддер        |
|                         |            |              |            |     | живаются      |
| Архив/бэкап             | 8–12 × NL- | Архивы,      | Seagate Ex | xos | Очень         |
|                         | SAS 7.2K   | резервы,     | X16        |     | популярные,   |
|                         |            | исторические |            |     | высокая       |
|                         |            | данные       |            |     | плотность,    |
|                         |            |              |            |     | поддержка     |
|                         |            |              |            |     | PowerChoice   |

Автоматизированные работчие места (АРМ) сотрудников - это корпоративные ноутбуки, которые являются опциольными для сотрудников,

так как все сотрудники компании работют удаленно. В связи с этим, для проектируемой инфраструктуры выбраны ноутбуки «Aquarius AQbook NE355» [6]. Ноутбук поддерживает процессор AMD ryzen 5600, до 64 ГБ оперативной памяти и от 256 ГБ постоянной памяти. Тот факт, что это ноутубки Российского производства позволяет иметь быстрое сервисоное обслуживание и поддержку.

Общая топология развертывания приведена на Рисунке 1.2.



Рисунок 1.2 — Топология развертывания ИТ-инфраструктуры

## 1.3 Системное программное обеспечение

## 2 Заключение

#### СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

- 1. Shanan R., Collier M. Основы Micrasoft Azure. 2015. 268 с.
- Selectel: Аренда места под сервер в дата-центре // URL: https://selectel.ru/services/colocation/?section=products (дата обращения: 18.04.2025).
- 3. Гравитон: О компании // URL: https://graviton.ru (дата обращения: 18.04.2025).
- 4. Технические характеристики сервера «Гравитон» C2122ИУ // URL: https://graviton.ru/catalog/servery-i-khranenie-dannykh/servery/server-graviton-s2122iu (дата обращения: 18.04.2025).
- 5. RAIDIX: Облачные решения // URL: https://www.raidix.com/solutions/cloud (дата обращения: 18.04.2025).
- 6. Описание и характеристики ноутбука Aquarius AQbook NE355 // URL: https://www.aq.ru/product/aquarius-cmp-ne355 (дата обращения: 17.03.2025).