```
2/14/23, 7:26 PM
  In [1]:
  import numpy as np
  import pandas as pd
  import matplotlib.pyplot as plt
  import seaborn as sns
  In [2]:
  data = pd.read_excel(r'D:\Career\Udemy\DA 2\Finance Data Analysis/Bank.xlsx',1)
  data.head()
  Out[2]:
     ID Age Experience Income ZIP Code Family CCAvg Education Mortgage Personal Loan Securities Account CD Account Online CreditCard
  0
     1
         25
                     1
                            49
                                  91107
                                            4
                                                  1.6
                                                                      0
                                                                                   0
                                                                                                               0
                                                                                                                      0
                                                                                                                                0
                                                                                   0
     2
         45
                    19
                            34
                                  90089
                                            3
                                                  1.5
                                                             1
                                                                      0
                                                                                                    1
                                                                                                               0
                                                                                                                     0
                                                                                                                                0
     3
                    15
                            11
                                  94720
                                                  1.0
                                                                      0
                                                                                   0
                                                                                                    0
                                                                                                               0
                                                                                                                      0
                                                                                                                                0
                     9
                                                             2
                                                                      0
                                                                                   0
                                                                                                    0
                                                                                                               0
                                                                                                                     0
                                                                                                                                0
     4
         35
                           100
                                  94112
                                                  2.7
         35
                     8
                           45
                                  91330
                                                             2
                                                                      0
                                                                                   0
                                                                                                    0
                                                                                                               0
                                                                                                                     0
                                                                                                                                1
     5
                                                  1.0
  In [3]:
  data.shape
  Out[3]:
  (5000, 14)
  In [4]:
  data.isnull().sum()
  Out[4]:
  ID
                         0
                         0
  Age
  Experience
                         0
  Income
                         0
  ZIP Code
                         0
  Family
                         0
  CCAvg
                         0
  Education
                         0
  Mortgage
                         0
  Personal Loan
                         0
  Securities Account
                         0
  CD Account
                         0
  Online
                         0
  CreditCard
                         0
  dtype: int64
  In [5]:
  data.drop(['ID','ZIP Code'], axis = 1, inplace = True)
  In [6]:
  data.columns
  Out[6]:
```

```
dtype='object')
```

Five point summary concept for data description

In [7]:

```
import plotly.express as px
```

In [8]:

```
px.box(data, y = ['Age', 'Experience', 'Income'])
```


Distribution of Data

In [9]:

data.skew()

Out[9]:

Age	-0.029341
Experience	-0.026325
Income	0.841339
Family	0.155221
CCAvg	1.598457
Education	0.227093
Mortgage	2.104002
Personal Loan	2.743607
Securities Account	2.588268
CD Account	3.691714
Online	-0.394785
CreditCard	0.904589
dtype: float64	

In [10]:

```
data.hist(figsize = (15,15))
Out[10]:
array([[<AxesSubplot: title={'center': 'Age'}>,
           <AxesSubplot: title={'center':</pre>
                                                   'Experience'}>,
         <AxesSubplot: title={'center':
[<AxesSubplot: title={'center':</pre>
                                                    'Income'}>],
                                                    'Family'}>,
           <AxesSubplot: title={'center':</pre>
                                                    'CCAvg'}>,
           <AxesSubplot: title={'center':</pre>
                                                    'Education'}>],
         [<AxesSubplot: title={'center':</pre>
                                                    'Mortgage'}>,
           <AxesSubplot: title={'center':</pre>
                                                   'Personal Loan'}>,
         <AxesSubplot: title={'center':
[<AxesSubplot: title={'center':</pre>
                                                    'Securities Account'}>],
                                                   'CD Account'}>,
           <AxesSubplot: title={'center': 'Online'}>,
<AxesSubplot: title={'center': 'CreditCard'}>]], dtype=object)
                                                                         Experience
                                                                                                                               Income
                                                                                                          1200
  700
                                                       600
  600
                                                                                                          1000
                                                       500
  500
                                                                                                           800
                                                       400
  400
                                                                                                           600
  300
                                                       300
                                                                                                           400
  200
                                                       200
                                                       100
                                                                                                           200
  100
    0
                                                         0
                                                                                                             0
                      40
                              50
                                      60
                                                                      10
                                                                              20
                                                                                      30
                                                                                              40
                                                                                                                       50
                                                                                                                               100
                                                                                                                                       150
                                                                                                                                                200
                        Family
                                                                            CCAvg
                                                                                                                              Education
                                                     1750
 1400
                                                                                                          2000
                                                     1500
 1200
                                                     1250
                                                                                                          1500
 1000
                                                     1000
  800
                                                                                                          1000
                                                       750
  600
                                                       500
  400
                                                                                                           500
                                                       250
  200
                                                                                                             0
                   2.0
                         2.5
                                      3.5
             1.5
                                                                        Personal Loan
                                                                                                                          Securities Account
                      Mortgage
 3500
                                                                                                         4000
                                                     4000
 3000
 2500
                                                     3000
                                                                                                          3000
 2000
                                                     2000
                                                                                                          2000
 1500
 1000
                                                     1000
                                                                                                          1000
  500
    0
                                                                                                             0
            100
                   200
                        300
                              400
                                                                   0.2
                                                                                                                       0.2
        Ò
                                                           0.0
                                                                          0.4
                                                                                 0.6
                                                                                                1.0
                                                                                                               0.0
                                                                                                                              0.4
                                                                                                                                      0.6
                                                                                                                                             0.8
                                                                                                                                                    1.0
                     CD Account
                                                                            Online
                                                                                                                              CreditCard
                                                     3000
                                                                                                          3500
                                                                                                          3000
 4000
                                                     2500
                                                                                                         2500
                                                     2000
 3000
                                                                                                          2000
                                                     1500
                                                                                                         1500
 2000
                                                     1000
                                                                                                          1000
 1000
                                                       500
                                                                                                           500
                                                                                                             0
    0
              0.2
                      0.4
                                                                   0.2
                                                                          0.4
                                                                                        0.8
       0.0
                             0.6
                                    0.8
                                            1.0
                                                           0.0
                                                                                 0.6
                                                                                                1.0
                                                                                                                0.0
                                                                                                                       0.2
                                                                                                                              0.4
                                                                                                                                      0.6
                                                                                                                                             0.8
                                                                                                                                                    1.0
In [11]:
 import seaborn as sns
```

localhost:8888/notebooks/Finance DA.ipynb#

```
In [12]:
```

```
sns.displot(data['Experience'])
```

Out[12]:

<seaborn.axisgrid.FacetGrid at 0x238c6578250>

In [13]:

data['Experience'].mean()

Out[13]:

20.1046

In [14]:

neg_exp = data[data['Experience'] < 0]
neg_exp.head()</pre>

Out[14]:

_		Age	Experience	Income	Family	CCAvg	Education	Mortgage	Personal Loan	Securities Account	CD Account	Online	CreditCard
_	89	25	-1	113	4	2.30	3	0	0	0	0	0	1
	226	24	-1	39	2	1.70	2	0	0	0	0	0	0
	315	24	-2	51	3	0.30	3	0	0	0	0	1	0
	451	28	-2	48	2	1.75	3	89	0	0	0	1	0
	524	24	-1	75	4	0.20	1	0	0	0	0	1	0

In [15]:

sns.distplot(neg_exp['Age'])

 $\verb|C:\Pr| or amData\Anaconda3\lib\site-packages\seaborn\distributions.py: 2557: Future Warning: | or all packages and a substitution of the packages are also as a substitution of$

`distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

Out[15]:

<AxesSubplot: xlabel='Age', ylabel='Density'>

In [16]:

neg_exp['Experience'].mean()

Out[16]:

-1.4423076923076923

```
In [17]:
```

neg_exp.size

Out[17]:

624

In [18]:

print('There are around {} records which has negative values around {} %'. format(neg_exp.size, ((neg_exp.size/data.size)*100)))

There are around 624 records which has negative values around 1.04 %

In [19]:

```
data2 = data.copy()
data2.head()
```

Out[19]:

	Age	Experience	Income	Family	CCAvg	Education	Mortgage	Personal Loan	Securities Account	CD Account	Online	CreditCard
0	25	1	49	4	1.6	1	0	0	1	0	0	0
1	45	19	34	3	1.5	1	0	0	1	0	0	0
2	39	15	11	1	1.0	1	0	0	0	0	0	0
3	35	9	100	1	2.7	2	0	0	0	0	0	0
4	35	8	45	4	1.0	2	0	0	0	0	0	1

In [20]:

```
data2['Experience'] = np.where(data2['Experience']<0, data2['Experience'].mean(), data2['Experience'])</pre>
```

In [21]:

data2.head()

Out[21]:

	Age	Experience	Income	Family	CCAvg	Education	Mortgage	Personal Loan	Securities Account	CD Account	Online	CreditCard
0	25	1.0	49	4	1.6	1	0	0	1	0	0	0
1	45	19.0	34	3	1.5	1	0	0	1	0	0	0
2	39	15.0	11	1	1.0	1	0	0	0	0	0	0
3	35	9.0	100	1	2.7	2	0	0	0	0	0	0
4	35	8.0	45	4	1.0	2	0	0	0	0	0	1

Co-relation of data

In [22]:

```
plt.figure(figsize = (10,6))
sns.heatmap(data2.corr(),annot = True)
```

Out[22]:

<AxesSubplot: >


```
In [23]:
```

```
data2.drop(['Experience'], axis = 1, inplace = True)
data2.head()
```

Out[23]:

	Age	Income	Family	CCAvg	Education	Mortgage	Personal Loan	Securities Account	CD Account	Online	CreditCard
0	25	49	4	1.6	1	0	0	1	0	0	0
1	45	34	3	1.5	1	0	0	1	0	0	0
2	39	11	1	1.0	1	0	0	0	0	0	0
3	35	100	1	2.7	2	0	0	0	0	0	0
4	35	45	4	1.0	2	0	0	0	0	0	1

Education Status of Customers

```
In [24]:
```

```
def mark(x):
    if x==1:
        return 'UG'
    elif x==2:
        return 'PG'
    else:
        return 'Prof'
```

In [25]:

```
data2['Edu'] = data2['Education'].apply(mark)
```

In [26]:

```
data2.head()
```

Out[26]:

	Age	Income	Family	CCAvg	Education	Mortgage	Personal Loan	Securities Account	CD Account	Online	CreditCard	Edu
0	25	49	4	1.6	1	0	0	1	0	0	0	UG
1	45	34	3	1.5	1	0	0	1	0	0	0	UG
2	39	11	1	1.0	1	0	0	0	0	0	0	UG
3	35	100	1	2.7	2	0	0	0	0	0	0	PG
4	35	45	4	1.0	2	0	0	0	0	0	1	PG

In [27]:

```
Edu_dis = data2.groupby('Edu')['Age'].count()
Edu_dis
```

Out[27]:

Edu PG 1403 Prof 1501 UG 2096

Name: Age, dtype: int64

In [28]:

```
fig = px.pie(data2, values = Edu_dis, names = Edu_dis.index, title = 'Pie Chart')
fig.show()
```

Pie Chart

Account Holder Distribution

In [29]:

```
def security_cd(row):
    if(row['Securities Account']==1) & (row['CD Account'] == 1):
        return 'Holds Security and deposit'
    elif(row['Securities Account']==1) & (row['CD Account'] == 0):
        return 'Holds only Security'
    elif(row['Securities Account']==0) & (row['CD Account'] == 1):
        return 'Holds only deposit'
    elif(row['Securities Account']==0) & (row['CD Account'] == 0):
        return 'Does not Hold Security or deposit'
```

In [30]:

```
data2['Account_holder_category'] = data2.apply(security_cd,axis = 1)
```

In [31]:

data2.head()

Out[31]:

	Age	Income	Family	CCAvg	Education	Mortgage	Personal Loan	Securities Account	CD Account	Online	CreditCard	Edu	Account_holder_category
0	25	49	4	1.6	1	0	0	1	0	0	0	UG	Holds only Security
1	45	34	3	1.5	1	0	0	1	0	0	0	UG	Holds only Security
2	39	11	1	1.0	1	0	0	0	0	0	0	UG	Does not Hold Security or deposit
3	35	100	1	2.7	2	0	0	0	0	0	0	PG	Does not Hold Security or deposit
4	35	45	4	1.0	2	0	0	0	0	0	1	PG	Does not Hold Security or deposit

In [32]:

```
values = data2['Account_holder_category'].value_counts()
values.index
```

Out[32]:

In [33]:

```
fig = px.pie(data2, values = values, names = values.index, title = 'Account Holder Category')
fig.show()
```

Account Holder Category

Customers based on Educational Status, Income and Personal Loan status

In [34]:

```
px.box(data2, x = 'Education', y = 'Income', facet_col = 'Personal Loan')
```


In [35]:

```
plt.figure(figsize = (12,8))
sns.distplot(data2[data2['Personal Loan'] == 0]['Income'],hist = False, label = 'Income with no personal loan')
sns.distplot(data2[data2['Personal Loan'] == 1]['Income'],hist = False, label = 'Income with personal loan')
plt.legend()
```

 $\verb|C:\Pr| oranges a born in the content of the conte$

`distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `kdeplot` (an axes-level function for kernel density plots).

 $\verb| C:\Pr| orange = Anaconda $$ \lib : packages : eaborn $$ distributions.py: 2557: Future $$ Warning: $$ and $$ anaconda $$ \lib : packages : eaborn $$ distributions.py: 2557: Future $$ anaconda $$$

`distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `kdeplot` (an axes-level function for kernel density plots).

Out[35]:

<matplotlib.legend.Legend at 0x238d6fe2520>

Automation of Analysis

In [36]:

```
def plot(col1,col2,lab1,lab2,title):
   plt.figure(figsize = (12,8))
   sns.distplot(data2[data2[col2] == 0][col1],hist = False, label = lab1)
   sns.distplot(data2[data2[col2] == 1][col1],hist = False, label = lab2)
   plt.legend()
   plt.title(title)
```

In [37]:

plot('Income','Personal Loan','Income with no personal loan','Income with personal loan','Income Distribution')

 $\verb|C:\Pr| or amData\Anaconda3\lib\site-packages\seaborn\distributions.py: 2557: Future \textit{Warning}: and \textit{Warnin$

`distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `kdeplot` (an axes-level function for kernel density plots).

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning:

`distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `kdeplot` (an axes-level function for kernel density plots).

In [38]:

plot('CCAvg','Personal Loan','CCAvg with no personal loan','CCAvg with personal loan','CCAvg Distribution')

 $\verb|C:\Pr| oranges a born in the content of the conte$

`distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `kdeplot` (an axes-level function for kernel density plots).

 $\verb|C:\Pr| oranges a born in the content of the conte$

`distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `kdeplot` (an axes-level function for kernel density plots).

In [39]:

plot('Mortgage','Personal Loan','Mortgage with no personal loan','Mortgage with personal loan','Mortgage Distribution')

 $\verb|C:\Pr| orange = \color= C:\Pr| orange = \color= \color$

`distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `kdeplot` (an axes-level function for kernel density plots).

 $\verb|C:\Pr| oranges a born in the content of the conte$

`distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `kdeplot` (an axes-level function for kernel density plots).

Categories of customers on the basis of security account, online, Account holder category and credit card

In [40]:

col_names = ['Securities Account','Online','Account_holder_category','CreditCard']

In [41]:

```
for i in col_names:
   plt.figure(figsize = (12,8))
   sns.countplot(x=i, hue = 'Personal Loan', data = data2)
```



```
import scipy.stats as stats
Ho = 'Age does not have impact on personal loan'
Ha = 'Age has impact on personal loan'
```

In [44]:

```
Age_no = np.array(data2['Personal Loan']==0]['Age'])
Age_yes = np.array(data2['Personal Loan']==1]['Age'])
```

In [45]:

```
t,p_value = stats.ttest_ind(Age_no, Age_yes, axis = 0)
if p_value < 0.05:
    print(Ha,'with a p_value {} which is lesser than 0.05'.format(p_value))
if p_value > 0.05:
    print(Ho,'with a p_value {} which is greater than 0.05'.format(p_value))
```

Age does not have impact on personal loan with a p_value 0.584959263705325 which is greater than 0.05 $\,$

In [46]:

```
def hypo(col1,col2,ha,ho):
    arr1 = np.array(data2[col1]==0][col2])
    arr2 = np.array(data2[data2[col1]==1][col2])
    t,p_value = stats.ttest_ind(arr1, arr2, axis = 0)
    if p_value < 0.05:
        print('{},with a p_value {} which is lesser than 0.05'.format(ha,p_value))
    if p_value > 0.05:
        print('{},with a p_value {} which is greater than 0.05'.format(ho,p_value))
```

In [47]: hypo('Personal Loan','Age',ho = 'Age does not have impact on personal loan',ha = 'Age has impact on personal loan') Age does not have impact on personal loan,with a p_value 0.584959263705325 which is greater than 0.05 In [48]: hypo('Personal Loan','Income',ho = 'Income does not have impact on personal loan',ha = 'Income has impact on personal loan') Income has impact on personal loan,with a p_value 0.0 which is lesser than 0.05 In [49]: hypo('Personal Loan','Family',ho = 'Family size does not have impact on personal loan',ha = 'Family size has impact on personal loan')

Family size has impact on personal loan, with a p_value 1.4099040685673807e-05 which is lesser than 0.05