Algebra II

Relación 5

G-conjuntos, p-grupos y teoremas de Sylow

Ejercicio 1. Dado el conjunto $X = \{1, 2, 3, 4\}$, para cada subgrupo $H \leq S_4$ se considera la acción de H sobre X dada por $\sigma i = \sigma(i)$, $\sigma \in H$, $i \in X$. Encontrar la órbita y el estabilizador de cada punto $i \in X$ para los siguientes subgrupos:

i)
$$H = \langle (123) \rangle$$
; ii) $H = A_4$; iii) $H = V$; iv) $H = \langle (1234) \rangle$.

Ejercicio 2. Sea G un grupo y N un subgrupo normal abeliano de G. Demostrar que G/N actúa sobre N por conjugación y obtener un homomorfismo $G/N \to Aut(N)$.

Ejercicio 3. Sean S y T dos G-conjuntos. Se define la **acción diagonal** de G sobre el producto cartesiano $S \times T$ mediante $^x(s,t) = (^xs,^xt)$. Demostrar que, para la acción diagonal, el estabilizador de (s,t) es la intersección de los estabilizadores de s y t en las acciones dadas.

Ejercicio 4. Demostrar que si G contiene un elemento x que tiene exactamente dos conjugados, entonces G tiene un subgrupo normal propio. (**Pista:** Considerar el centralizador de x).

Ejercicio 5. Encontrar todos los grupos finitos que tienen exactamente dos clases de conjugación.

Ejercicio 6. Describir explícitamente las clases de conjugación del grupo D_4 .

Ejercicio 7. Se dice que la acción de un grupo finito G sobre un conjunto X es **transitiva** si hay una sola órbita para esta acción (es decir, si para cada $x, y \in X$ existe algún $g \in G$ tal que g = g). Demostrar que si G actúa transitivamente sobre un conjunto G0 con G1 elementos, entonces G2 es un múltiplo de G3.

Ejercicio 8. Un subgrupo $G \leq S_n$ se dice **transitivo** si la acción de G sobre $\{1, 2, \dots, n\}$ es transitiva. Encontrar todos los subgrupos transitivos de S_3 y S_4 .

Ejercicio 9. Si n > 0 es un entero positivo, una partición de n es una sucesión no decreciente de enteros positivos cuya suma es n. Dada una permutación $\sigma \in S_n$, la descomposición en ciclos disjuntos (incluyendo los ciclos

de longitud 1) de $\sigma = \gamma_1 \gamma_2 \cdots \gamma_r$ determina una partición n_1, n_2, \cdots, n_r de n donde cada n_i es la longitud del ciclo γ_i . Dos permutaciones en S_n se dice que son del mismo tipo si determinan la misma partición de n. Demostrar:

- 1. Dos elementos de S_n son conjugados si y solo si son del mismo tipo.
- 2. El número de clases de conjugación de S_n e igual l número de particiones de n.

Ejercicio 10. Calcular el número de clases de conjugación de S_5 . Dar un representante de cada una y encontrar el orden de cada clase. Calcular el estabilizador de (123) bajo la acción de conjugación de S_5 sobre sí mismo.

Ejercicio 11. Sea G un grupo finito y $\Phi: G \to \operatorname{Perm}(G)$ la representación regular izquierda (que corresponde a la acción de G sobre si mismo por traslación por la izquierda).

- 1. Demostrar que si x es un elemento de G de orden n y |G| = nm, entonces $\Phi(x)$ es un producto de n-ciclos. Deducir que $\Phi(x)$ es una permutación impar si y solo si el orden de x es par y el cociente del orden de G y el de x es impar.
- 2. Demostrar que si $Img(\Phi)$ contiene una permutación impar entonces G tiene un subgrupo de índice 2.
- 3. Demostrar que si |G| = 2k con k impar, entonces G tiene un subgrupo de índice 2. (**Pista:** Usar el Teorema de Cauchy para obtener un elemento de orden 2 y entonces usar los dos apartados anteriores).

Ejercicio 12. Sea G un p-grupo actuando sobre un conjunto finito X. Demostrar que

$$|X| \equiv |Fix_G(X)| \mod p$$
.

Ejercicio 13. Sea G un 2-grupo finito que actúa sobre un conjunto finito X cuya cardinalidad es un número impar. ¿Podemos afirmar que existe al menos un punto de X que queda fijo bajo la acción de G? ¿Podemos decir lo mismo si |X| es par?

Ejercicio 14. Sea $C_n = \langle a | a^n = 1 \rangle$ un grupo cíclico de orden n. Describir sus subgrupos de Sylow.

Ejercicio 15. Sea G un grupo finito y |G| = pn con p primo y p > n. Demostrar que G contiene un subgrupo normal de orden p y que todo subgrupo de G de orden p es normal en G

Ejercicio 16. Sea H un subgrupo de un grupo finito G con [G:H]=p primo y p el menor primo que divide a |G|. Demostrar que entonces H es normal en G.

Ejercicio 17. Sea p un número primo. Demostrar:

- 1. Todo grupo no abeliano de orden p^3 tiene un centro de orden p.
- 2. Existen únicamente dos grupos no isomorfos de orden p^2 .
- 3. Todo subgrupo normal de orden p de un p-grupo finito está contenido en el centro.

Ejercicio 18. Demostrar que si N es un subgrupo normal de G y N y G/N son p-grupos entonces G es un p-grupo.

Ejercicio 19. Si G es un grupo de orden p^n , p primo, demostrar que para todo k, $0 \le k \le n$, existe un subgrupo normal de G de orden p^k .

Ejercicio 20. Hallar todos los subgrupos de Sylow de los grupos S_3 y S_4 . (**Pista:** Para los 2–subgrupos de Sylow de S_4 , observar primero que todos deben contener al subgrupo de Klein V, y, al menos, una trasposición τ , y que como consecuencia se pueden obtener como producto de V por el grupo cíclico generado por τ .)

Ejercicio 21. Hallar todos los subgrupos de Sylow de los grupos \mathbb{Z}_{600} , Q_2 , D_5 , D_6 , A_4 , A_5 , S_5 .

Ejercicio 22. Demostrar que D_4 es isomorfo a los 2-subgrupos de Sylow de S_4 (**Pista:** Considerar la representación asociada a la acción de D_4 sobre los vértices del cuadrado.)

Ejercicio 23. Demostrar que todo grupo de orden 12 con más de un 3-subgrupo de Sylow es isomorfo al grupo alternado A_4 . (**Pista:** Considerar la acción por traslación de un tal grupo sobre el conjunto de clases módulo \mathcal{P} , siendo \mathcal{P} un 3-subgrupo de Sylow. Probar que dicha acción es fiel.)

- **Ejercicio 24.** 1. Demostrar que no existen grupos simples de orden 12. Más concretamente, demostrar que todo grupo de orden 12 admite un subgrupo normal de orden 3 o de orden 4.
 - 2. Demostrar que no existen grupos simples de orden 28. Más concretamente, probar que todo grupo de orden 28 contiene un subgrupo normal de orden 7.
 - 3. Demostrar que no existen grupos simples de orden 56. Más concretamente, probar que todo grupo de orden 56 contiene un subgrupo normal de orden 7 o de orden 8.
 - 4. Demostrar que no existen grupos simples de orden 148 ni de orden 200 ni de orden 351.

Ejercicio 25. Calcular el número de elementos de orden 7 que tiene un grupo simple de orden 168.

Ejercicio 26. Demuestra que todo p-grupo finito es resoluble.

Ejercicio 27. Demuestra que todo grupo de orden pq, con p y q primos, es un grupo resoluble.

Ejercicio 28. Demuestra que todo grupo de orden p^2q , con p y q primos, es un grupo resoluble.

Ejercicio 29. Demuestra que si p_1, p_2, p_3 son tres primos tales que $p_3 > p_1p_2$ entonces cualquier grupo de orden $p_1p_2p_3$ es resoluble.

Ejercicio 30. 1. Demuestra que todo grupo de orden 70 es resoluble.

- 2. Demuestra que todo grupo de orden 24 es resoluble.
- 3. Demuestra que todo grupo de orden 100 es resoluble.
- 4. Demuestra que todo grupo de orden 48 es resoluble.
- 5. Sea G un grupo de orden 200. Demuestra que $G \times D_{41}$ es resoluble.
- 6. Demuestra que todo grupo de orden 63 es resoluble (sin usar que es un caso particular de un grupo de orden p^2q con p y q primos).