

(19) BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENTAMT

(12) Offenlegungsschrift
(11) DE 3309655 A1

(21) Aktenzeichen: P 33 09 655.4
(22) Anmeldetag: 17. 3. 83
(43) Offenlegungstag: 20. 9. 84

(51) Int. Cl. 3:
C07D 285/10

C 07 D 417/12
C 07 D 417/14
A 61 K 31/425

DE 3309655 A1

(21) Anmelder:
Bayer AG, 5090 Leverkusen, DE

(72) Erfinder:
Stegelmeier, Hartmut, Dipl.-Chem. Dr., 4010 Hilden, DE; Niemers, Ekkehard, Dipl.-Chem. Dr.; Rosentreter, Ulrich, Dipl.-Chem. Dr.; Knorr, Andreas, Dipl.-Biol. Dr., 5600 Wuppertal, DE; Garthoff, Bernward, Dr., 4010 Hilden, DE

Behördeneigentum

(54) 1,2,5-Thiadiazol-1-oxide und 1,1-Dioxide, Verfahren zu ihrer Herstellung und ihre Verwendung als Arzneimittel

Verbindungen der Formel

mit einem Amin der Formel R₁-X-NH₂ und gegebenenfalls anschließender Oxidation.

ihrer Verwendung zur Bekämpfung von Erkrankungen sowie
ihre Herstellung durch
a) Umsetzung eines Thiadiazols der Formel

mit einem Amin der Formel R₂NH₂, oder
b) Umsetzung eines Thiadiazols der Formel

1. A 61 K 31/425

- 47 -

Patentansprüche

1. Verbindungen der Formel (I)

5 R_1 einen C_1-C_{10} -Alkylrest oder einen gegebenenfalls substituierten Aryl- oder Heteroarylrest darstellt,

10 R_2 einen C_1-C_{10} -Alkyl- oder C_2-C_{10} -Alkenylrest darstellen, die gegebenenfalls durch C_1-C_8 -Alkoxy oder C_3-C_7 -Cycloalkyl substituiert sind, oder einen gegebenenfalls substituierten Aryl- oder Heterarylrest bedeutet,

n. für 1 oder 2 steht,

15 x eine Einfachbindung oder eine Methylengruppe darstellt, die gegebenenfalls C_1-C_8 -Alkyl substituiert ist,

sowie ihre physiologisch verträglichen Salze mit anorganischen oder organischen Säuren.

- 18 -

- 2 -

2. Verbindungen der Formel I gemäß Anspruch 1, in der

- 5 R₁ einen C₁-C₆-Alkylrest, einen C₆-C₁₀-Arylrest,
der gegebenenfalls 1-3fach substituiert ist
durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-
C₄-Alkylmercapto, Trifluormethyl, Nitro, Cyano,
Hydroxy, Amino, C₁-C₄-Alkylamino, C₁-C₄-Di-
alkylamino, Heteroarylreste aus der Gruppe
2-Thienyl, 3-Thienyl, 2-Furyl, 3-Furyl, 2-Pyri-
dyl, 3-Pyridyl, 4-Pyridyl, 2-Pyrimidyl, 4-
Pyrimidyl, 5-Pyrimidyl, die gegebenenfalls 1-2-
fach substituiert sind durch C₁-C₄-Alkyl,
C₁-C₄-Alkoxy, Hydroxy oder Halogen,
- 10 R₂ einen C₁-C₆-Alkylrest, einen C₃-C₈-Alkenyl-
rest, einen C₆-C₁₆-Arylrest, der gegebenen-
falls 1-3fach substituiert ist durch Halogen,
C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylmer-
capto, Trifluormethyl, Nitro, Cyano, Hydroxy,
Amino, C₁-C₄-Alkylamino, C₁-C₄-Dialkylamino,
Heteroarylreste aus der Gruppe 2-Thienyl,
3-Thienyl, 2-Furyl, 3-Furyl, 2-Pyridyl, 3-
Pyridyl, 3-Pyridyl, 2-Pyrimidyl, 4-Pyrimidyl,
5-Pyrimidyl, die gegebenenfalls 1-2fach sub-
stituiert sind durch C₁-C₄-Alkyl, C₁-C₄-
Alkoxy, Hydroxy oder Halogen.

25 3. Verbindungen der Formel I gemäß Ansprüche 1 und 2,
in der

- 19 -

- 3 -

R¹ für C₁-C₆-Alkyl oder für Phenyl steht, welches gegebenenfalls 1-3 mal substituiert ist durch gleiche oder verschiedene Substituenten aus der Gruppe Halogen, Hydroxy, Trifluormethyl,

5 C₁-C₄-Alkyl, C₁-C₄-Alkoxy und C₁-C₄-Alkylmercapto oder für Pyridyl oder Pyrimidyl steht,

R² für Phenyl steht, welches gegebenenfalls 1- oder 2-fach substituiert ist durch gleiche oder verschiedene Substituenten aus der Gruppe

10 Halogen, Trifluormethyl, C₁-C₄-Alkyl oder C₁-C₄-Alkoxy oder für geradkettiges, verzweigtes oder cyclisches Alkyl mit 1 bis 8 Kohlenstoffatomen oder für geradkettiges, verzweigtes oder cyclisches C₃-C₈-Alkenyl steht, welches gegebenenfalls substituiert ist durch Alkoxy mit 1 bis 4 Kohlenstoffatomen oder durch C₃-C₇-Cycloalkyl,

n für 1 oder 2 und

20 X für eine Methylengruppe oder eine einfache Bindung steht,

sowie ihre physiologisch unbedenklichen Säure-additionssalze.

4. Verbindungen der Formel I gemäß Ansprüche 1-3 zur Bekämpfung von Kreislauferkrankungen.

- 20 -

4.

5. Verbindungen der Formel I gemäß Ansprüche 1-4 zur Bekämpfung von Herzkrankheiten, zur Therapie des Hochdruckes sowie zur Behandlung von Durchblutungsstörungen.

5 6. Verfahren zur Herstellung der Verbindungen gemäß Ansprüchen 1-3, dadurch gekennzeichnet, daß man

a) Thiadiazol-1-oxide der Formel II

in welcher

10 Y eine abspaltende Gruppe wie beispielsweise C_1-C_4 -Alkylthio, C_1-C_4 -Alkylsulfinyl oder C_1-C_4 -Alkoxy darstellt und

R_1 und X die bereits in Formel I angegebene Bedeutung haben

15 mit Aminen der Formel III

in welcher

- 24 -

- 5 -

R₂ die in Formel I angegebene Bedeutung aufweist, oder

b) Thiadiazol-1-oxide der Formel IV.

5 in welcher

R₂ und Y die oben angegebene Bedeutung haben

mit Aminen der Formel V

10 in welcher R₁ und X die oben angegebene Bedeutung haben,

15 gegebenenfalls in Gegenwart von inerten organischen Lösungsmitteln bei Temperaturen von 0 bis 180°C umsetzt und gegebenenfalls die nach Verfahren a oder b erhaltenen 1-Oxide mit einem Oxidationsmittel zu den 1,1-Dioxiden oxidiert.

7. Verfahren gemäß Anspruch 6, dadurch gekennzeichnet, daß man bezogen auf 1 Mol Thiadiazol-1-oxid der For-

330965

- 22 -
- 6 .

meln II oder IV 1-5 Mol Amin der Formeln III oder V einsetzt und gegebenenfalls man auf 1 Mol des erhaltenen 1-Oxides 1-3 Mol eines Oxidationsmittels einsetzt.

- 5 8. Verfahren gemäß Ansprüchen 6 und 7, dadurch gekennzeichnet, daß man die Umsetzung bei Temperaturen von 20-140°C durchführt.
9. Arzneimittel enthaltend mindestens eine Verbindung der allgemeinen Formel (I) gemäß Ansprüchen 1 bis 3.
- 10 10. Verfahren zur Herstellung von Arzneimitteln, dadurch gekennzeichnet, daß man Verbindungen der allgemeinen Formel (I) gemäß Ansprüchen 1-3 gegebenenfalls unter Verwendung von üblichen Hilfs- und Trägerstoffen in eine geeignete Applikationsform überführt.

BAYER AKTIENGESELLSCHAFT 5090 Leverkusen, Bayerwerk

Zentralbereich
Patente, Marken und Lizenzen E/ABC 16. März 1983

1,2,5-Thiadiazol-1-oxide und 1,1-Dioxide, Verfahren zu ihrer Herstellung und ihre Verwendung als Arzneimittel

Die vorliegende Erfindung betrifft neue 1,2,5-Thiadiazol-1-oxid- und 1,1-Dioxid-Derivate, mehrere Verfahren zu ihrer Herstellung sowie ihre Verwendung als kreislaufbeeinflussende Arzneimittel.

- 5 Es ist bereits bekannt geworden, daß man 1,2,5-Thiadiazol-1-oxid-3,4-diamino-Derivate erhält, wenn man die Alkoxi- oder Alkylthio-Analogen mit Aminen zur Reaktion bringt (S. Karady, J.S. Amato, D. Dortmund, L.M. Weinstock, Heterocycles 16, 1651 (1981)).
- 10 Weiterhin ist bekannt, daß bestimmte 1,2,5-Thiadiazol-1-oxide und 1,1-Dioxide interessante pharmakologische Eigenschaften aufweisen (A.A. Algieri, G.M. Luke, R.T. Standridge, M. Brown, R.A. Partyka, R.R. Crenshaw, J. Med. Chem. 1982, 25, 210)).
- 15 Die erfindungsgemäßen Verbindungen sind durch folgende Formel I näher gekennzeichnet:

~~- 2 -~~
~~- 8 -~~

in welcher

R_1 einen $\text{C}_1\text{-C}_{10}$ -Alkylrest oder einen gegebenenfalls substituierten Aryl-, oder einen Heteroarylrest darstellt,

5 R_2 für geradkettiges, verzweigtes oder cyclisches $\text{C}_1\text{-C}_{10}$ -Alkyl oder $\text{C}_2\text{-C}_{10}$ -Alkenyl, die gegebenenfalls durch $\text{C}_1\text{-C}_8$ -Alkoxy oder $\text{C}_3\text{-C}_7$ -Cycloalkyl substituiert sind, steht oder für einen gegebenenfalls substituierten Aryl- oder Heteroarylrest steht,

10 n für 1 oder 2 steht,

X für eine Einfachbindung oder eine Methylengruppe steht, die gegebenenfalls durch $\text{C}_1\text{-C}_8$ -Alkyl substituiert ist,

sowie ihre physiologisch verträglichen Salze anorganischer und organischer Säuren und ihre isomeren Formen, insbesondere die cis- und trans-Isomeren.

Diese Salze sind beispielsweise Hydrochloride, Hydrogensulfate, Sulfate, Hydrogenphosphate, Acetate, Maleate, Benzoate, Citronate, Tartrate oder Lactate.

- 3 -

- 9 -

In R₁ besitzt der Alkylrest bevorzugt 1-6 C-Atome, in R₂ weisen die Alkylreste bevorzugt 1-8 C-Atome, die Alkenylreste bevorzugt 3-8 C-Atome auf.

Beispielsweise seien genannt, n- und i-Propyl, n-, i- und t-Butyl, 1,1-Dimethylpropyl, 2,2-Dimethylpropyl, n-Pentyl, 1,2,2-Trimethylpropyl, 1,1-Dimethylbutyl, 1,1,2-Trimethylpropyl, 1-Ethyl-1-methylpropyl, n-Hexyl, 1,1,3-Trimethylbutyl, 1,1-Diethylpropyl, n-Heptyl, n-Octyl.

Als gegebenenfalls substituiertes Aryl in der Definition von R¹ und R² steht Aryl mit vorzugsweise 6 bis 10 Kohlenstoffatomen im Arylteil, insbesondere Phenyl oder Naphthyl. Die Arylreste können 1- bis 3-mal durch folgende Substituenten substituiert sein: Halogen, (Fluor, Chlor, Brom) Alkyl, Alkoxy, Alkylmercapto mit jeweils 1-4 C-Atomen, Trifluormethyl, Nitro, Cyano, Hydroxy, Amino, C₁-C₄-Alkylamino, C₁-C₄-Dialkylamino.

Als gegebenenfalls substituiertes Hetaryl in der Definition von R¹ und R² stehen vorzugsweise 2-Thienyl, 3-Thienyl, 2-Furyl, 3-Furyl, 2-Pyridyl, 3-Pyridyl, 4-Pyridyl, 2-Pyrimidyl, 4-Pyrimidyl, 5-Pyrimidyl. Diese Reste können durch C₁-C₄-Alkyl, Alkoxy mit 1 bis 4 C-Atomen, Hydroxy oder Halogen (Fluor, Chlor, Brom) ein- oder zweifach substituiert sein.

In der Formel I steht X unter anderem für eine Methylenbrücke, die ein- oder zweifach durch Alkylreste substituiert sein kann. Diese Alkylreste können geradkettig oder verzweigt sein und vorzugsweise jeweils 1 bis 4 Kohlenstoffatome enthalten.

- 4 -
- 10 -

Von besonderem Interesse sind erfindungsgemäße Verbindungen der Formel (I), in welcher

- R¹ für C₁-C₆-Alkyl oder für Phenyl steht, welches gegebenenfalls 1-3 mal substituiert ist durch gleiche oder verschiedene Substituenten aus der Gruppe Halogen, Hydroxy, Trifluormethyl, C₁-C₄-Alkyl, C₁-C₄-Alkoxy und C₁-C₄-Alkylmercapto oder für Pyridyl oder Pyrimidyl steht,
- R² für Phenyl steht, welches gegebenenfalls 1- oder 2-fach substituiert ist durch gleiche oder verschiedene Substituenten aus der Gruppe Halogen, Trifluormethyl, C₁-C₄-Alkyl oder C₁-C₄-Alkoxy oder für geradkettiges, verzweigtes oder cyclisches Alkyl mit 1 bis 8 Kohlenstoffatomen oder für geradkettiges, verzweigtes oder cyclisches C₃-C₈-Alkenyl steht, welches gegebenenfalls substituiert ist durch Alkoxy mit 1 bis 4 Kohlenstoffatomen oder durch C₃-C₇-Cycloalkyl
- n für 1 oder 2 und
- X für eine Methylengruppe oder eine einfache Bindung steht,
- sowie ihre physiologisch unbedenklichen Säureadditions-salze.

- 5 -
- M -

Beispielsweise seien genannt:

- 3-Anilino-4-(1,2,2-trimethylpropyl-amino)-1,2,5-thiadiazol-1-oxid,
 3-(2-Ethoxyanilino)-4-(1,2,2-trimethyl-propylamino)-
 5 1,2,5-thiadiazol-1-oxid,
 3-(3-Pyridylamino)-4(1,2,2-trimethyl-propylamino)-1,2,5-thiadiazol-1-oxid.

Die erfindungsgemäßen Verbindungen der Formel I können hergestellt werden, in dem man

10 a) Thiadiazol-1-oxide der Formel II

in welcher

- Y eine abspaltende Gruppe wie beispielsweise
 C₁-C₄-Alkylthio, C₁-C₄-Alkylsulfinyl oder
 15 C₁-C₄-Alkoxy darstellt und

R₁ und X die bereits in Formel I angegebene Bedeutung haben

mit Aminen der Formel III

17.07.87

3309655

-6-

-12-

R₂-NH₂

(III)

in welcher

R₂ die in Formel I angegebene Bedeutung aufweist,
oder

5 b) Thiadiazol-1-oxide der Formel IV

(IV)

in welcher

R₂ und Y die oben angegebene Bedeutung haben,

mit Aminen der Formel V

10

R₁-X-NH₂

(V)

in welcher

R₁ und X die oben angegebene Bedeutung haben,

15

gegebenenfalls in Gegenwart von inerter organischer Lösungsmitteln bei Temperaturen von 0 bis 180°C umgesetzt und gegebenenfalls die nach Verfahren a oder b erhaltenen 1-Oxide mit einem Oxidationsmittel wie beispielsweise n-Chlorperoxybenzoësäure zu den 1,1-Dioxiden oxidiert.

- 1 -
- 13 -

Pro Mol 1-Oxid werden bei letzterer Reaktion 1-3 Mol, bevorzugt 1,5 bis 2,5 Mol des Oxidationsmittels zugegeben. Gegebenenfalls kann man ein inertes Lösungsmittel einsetzen.

- 5 Verwendet man 3-Anilino-4-methylthio-1,2,5-thiadiazol-1-oxid und 1,2,2-Trimethylpropylamin als Ausgangsstoffe, so kann der Reaktionsablauf durch das folgende Formelschema wiedergegeben werden:

- 10 Die als Ausgangsmaterial verwendeten 1,2,3-Thiadiazol-1-oxide der Formeln (II) und (IV) sind entweder literaturbekannt oder nach bekannten Verfahren herstellbar (vgl. Heterocycles 10, 1561 (1981), J. Med. Chem. 1982, 25, 210).

3309655

- 8 -
- 14 -

Die Amine der allgemeinen Formeln (III) und (V) sind ebenfalls bekannt oder können nach bekannten Methoden hergestellt werden (vgl. Houben-Weyl XI/1 (1957)).

Als Lösungsmittel kommen alle inerten organischen Lösungsmittel in Frage. Hierzu gehören vorzugsweise Kohlenwasserstoffe, wie Hexan, Toluol, Xylol, Chlorkohlenwasserstoffe, wie Methylchlorid, Chloroform, Chlorbenzol, Ether, wie Diethylether, Dioxan, Tetrahydrofuran, Alkohole, Pyridin, DMSO und DMF. Gelegentlich ist es jedoch von Vorteil kein Lösungsmittel zu verwenden. Die Reaktionstemperaturen können in einem größeren Bereich variiert werden. Im allgemeinen arbeitet man zwischen etwa 0°C und eta 180°C vorzugsweise zwischen 20°C und 140°C. Die Umsetzung kann bei Normaldruck aber auch bei erhöhtem Druck durchgeführt werden.

Bei der Durchführung des erfindungsgemäßen Verfahrens setzt man vorzugsweise auf 1 Mol Thiadiazol-1-oxid der Formeln II und IV 1 bis 5 Mol Amin ein.

Die neuen Verbindungen haben ein breites und vielseitiges pharmakologisches Wirkungsspektrum und überraschend lange Wirkungsdauer.

Im einzelnen konnten im Tierexperiment folgende Hauptwirkungen nachgewiesen werden:

- 9 -

- 15 -

1. Der Tonus der glatten Muskulatur der Gefäße wird unter der Wirkung der Verbindungen stark vermindert.

5 Diese gefäßspasmolytische Wirkung kann im gesamten Gefäßsystem stattfinden, oder sich mehr oder weniger isoliert in umschriebenen Gefäßgebieten (wie z.B. dem Zentralnervensystem) manifestieren. Die Verbindungen eignen sich daher besonders als Cerebraltherapeutika.

10 2. Die Verbindungen senken den Blutdruck von normotonen und hypertonen Tieren und können somit als antihypertensive Mittel verwendet werden.

15 Die erfindungsgemäßen Verbindungen eignen sich aufgrund dieser Eigenschaften zur Prophylaxe der akuten und chronischen ischämischen Herzkrankheit im weitesten Sinne, zur Therapie des Hochdrucks sowie zur Behandlung von cerebralen und peripheren Durchblutungsstörungen.

20 Die neuen Wirkstoffe können in bekannter Weise in die üblichen Formulierungen übergeführt werden, wie Tabletten, Kapseln, Dragees, Pullen, Granulate, Aerosole, Sirupe, Emulsionen, Suspensionen und Lösungen, unter Verwendung inerter, nicht-toxischer pharmazeutisch geeigneter Trägerstoffe oder Lösungsmittel. Hierbei soll die therapeutisch wirksame Verbindung jeweils in einer Konzentration von etwa 0,5 bis 90 Gew.-% der 25 Gesamtmasse vorhanden sein, d.h. in Mengen, die ausreichend sind, um den angegebenen Dosierungsspielraum zu erreichen.

- 10 -

- 16 -

Die Formulierungen werden beispielsweise hergestellt durch Verstrecken der Wirkstoffe mit Lösungsmitteln und/oder Trägerstoffen, gegebenenfalls unter Verwendung von Emulgiermitteln und/oder Dispergiermitteln, wobei
5 z.B. im Fall der Benutzung von Wasser als Verdünnungsmittel gegebenenfalls organische Lösungsmittel als Hilfs-lösungsmittel verwendet werden können.

Als Hilfsstoffe seien beispielsweise aufgeführt:

Wasser, nicht-toxische organische Lösungsmittel, wie
10 Paraffine (z.B. Erdölfraktionen), pflanzliche Öle (z.B. Erdnuß-/Sesam-Öl), Alkohole (z.B. Ethylalkohol, Glycerin), Glykole (z.B. Propylenglykol, Polyethylenglykol), feste Trägerstoffe, wie z.B. natürliche Gesteinsmehle (z.B. Kaoline, Tonerden, Talkum, Kreide), synthetische Gesteinsmehle (z.B. hochdisperse Kieselsäure,
15 Silikate), Zucker, (z.B. Roh-, Milch- und Traubenzucker), Emulgiermittel (z.B. Polyoxyethylen-Fettsäure-Ester, Polyoxyethylen-Fettalkohol-Ether, Alkylsulfonate und Arylsulfonate), Dispergiermittel (z.B. Lignin, Sulfitablaugen, Methylcellulose, Stärke und Polyvinylpyrrolidon) und Gleitmittel (z.B. Magnesiumstearat, Talkum, Stearinsäure und Natriumlaurylsulfat).

Die Applikation erfolgt in üblicher Weise, vorzugsweise oral oder parenteral, insbesondere perlingual oder intravenös. Im Falle der oralen Anwendung können
25 Tabletten selbstverständlich außer den genannten Trägerstoffen auch Zusätze, wie Natriumcitrat, Calciumcarbonat und Dicalciumphosphat zusammen mit verschiedenen Zuschlagstoffen, wie Stärke, vorzugsweise Kartoffel-

- 11 -
- 12 -

stärke, Gelatine und dergleichen enthalten. Weiterhin können Gleitmittel, wie Magnesiumstearat, Natriumlaurylsulfat und Talkum zum Tablettieren mitverwendet werden. Im Falle wässriger Suspensionen und/oder Elixieren, die 5 für orale Anwendungen gedacht sind, können die Wirkstoffe außer mit den obengenannten Hilfsstoffen mit verschiedenen Geschmacksaufbesserern oder Farbstoffen versetzt werden.

Für den Fall der parenteralen Anwendung können Lösungen 10 der Wirkstoffe unter Verwendung geeigneter flüssiger Trägermaterialien eingesetzt werden.

Im allgemeinen hat es sich als vorteilhaft erwiesen, bei intravenöser Applikation Mengen von etwa 0,001 bis 10 mg/kg, vorzugsweise etwa 0,05 bis 5 mg/kg Körpergewicht pro Tag zur Erzielung wirksamer Ergebnisse zu verabreichen, und bei oraler Applikation beträgt die Dosierung etwa 0,05 bis 20 mg/kg, vorzugsweise 0,5 bis 5 mg/kg Körpergewicht pro Tag.

Trotzdem kann es gegebenenfalls erforderlich sein, 20 von den genannten Mengen abzuweichen, und zwar in Abhängigkeit vom Körpergewicht des Versuchstieres bzw. der Art des Applikationsweges, aber auch aufgrund der Tierart und der individuellem Verhalten gegenüber dem Medikament bzw. der Art von dessen Formulierung 25 und dem Zeitpunkt bzw. Intervall, zu welchem die Verabreichung erfolgt. So kann es in einigen Fällen ausreichend sein, mit weniger als der vorgenannten Mindestmenge auszukommen, während in anderen Fällen die genannte obere Grenze überschritten werden muß. Im Falle

17.01.87

3309655

- 12 -

- 18 -

der Applikation größerer Mengen kann es empfehlenswert sein, diese in mehrere Einzelgaben über den Tag zu verteilen. Für die Applikation in der Humanmedizin ist der gleiche Dosierungsspielraum vorgesehen. Sinngemäß gelten hierbei auch die obigen Ausführungen.

- 13 -
A

Beispiel 1

3-Anilino-4-(1,2,2-trimethylpropyl-amino)-1,2,5-thiadiazol-1-oxid

- 5 1,94 g (0,01 Mol) 3,4-Dimethylthio-1,2,5-thiadiazol-1-oxid und 0,93 g (0,01 Mol) Anilin wurden in 50 ml abs. Ethanol gelöst und 4 h unter Rückfluß erhitzt. Nach dem Erkalten wurde die Mischung zur Trockne eingeengt und der Rückstand aus Ethanol umkristallisiert.
- 10 Fp. 172-73°C, Ausbeute 1,75 g (73 %).

Die bei obigem Ansatz erhaltenen Methylthioverbindung wurde mit 1,52 g (0,015 Mol) 1,2,2-Trimethylpropylamin versetzt und 15 min auf 100°C erhitzt. Nach dem Abkühlen kristallisiert man die entstandene feste Masse aus Ethanol um. Fp. 231-33°C, Ausb. 1,45 g (68 %).

Nach den in Beispiel 1 beschriebenen Verfahren wurden weiterhin hergestellt:

3309655

17.10.65
-20-
-14-

Beispiel	R¹	R²	n	Fp.
----------	----	----	---	-----

2			1	235 °C
---	--	--	---	--------

3		"	1	210 °C	
---	--	---	---	--------	--

4		"	1	122 °C /Zers./7	
---	--	---	---	--------------------	--

5		"	1	260 °C	
---	--	---	---	--------	--

6		"	1	198 °C
---	--	---	---	--------

7		"	1	223 °C
---	--	---	---	--------

8			1	218 °C
---	--	--	---	--------

Le A 22 166

3309655

- 15 -

- 24 -

Beispiel	R ¹	R ²	n	Fp.
9		"	1	214 °C
10			1	260 °C
11		"	1	268 °C
12		"	1	285 °C
13			1	231 °C
14		"	1	
15		"	1	
16		"	1	

Le A 22 166

- 16 -

- 22 -

Beispiel 17

4-Anilino-3-(1,2,2-trimethylpropylamino)-1,2,5-thiadiazol-1,1-dioxid

5 0,58 g (0,022 Mol) 4-Anilino-3-(1,2,2-trimethylpropylamino)-1,2,5-thiadiazol-1-oxid werden in 30 ml absolutem Ethanol gelöst und mit 0,82 g (0,004 Mol) 80 %ige 3-Chlorperoxidbenzoësäure 9 h unter Rückfluß erhitzt.
Nach dem Abkühlen wird die Reaktionsmischung zur Trockne eingeeengt, der feste Rückstand mit Ether extrahiert und aus Ethanol umkristallisiert.
10 Fp. 283-85°C, Ausbeute 0,5 g (81 %).

Nach dem im Beispiel 17 beschriebenen Verfahren wurden weiterhin hergestellt:

Beispiel 18

15 4-(3-Ethoxianilino)-3-(1,2,2-trimethylpropylamino)-1,2,5-thiadiazol-1,1-dioxid

Fp. = 265-67°C.

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.