자율주행과 레이더 센서의 이해

강사 소개

■ 김경석 연구위원

ㅇ 분야 : 차량통신 (LTE, 5G, BT/WiFi, Radar)

ㅇ 학력 : 울산대학교 대학원 전기공학 박사

ㅇ 약력 : 현) LG이노텍 연구위원

현) 과기정통부 자율주행분야 기획위원

한국원자력연구소 Post-Doc

울산과학대학교 겸임교수

ㅇ 수상 : 2010 CES Innovation Awards

2001 LG Skill Olympic 동상

M1 자율주행 시장동향

M2 Radar 제품 이해

M3 Radar 제조 공정

미래 모빌리티 메가 트렌드

1 Autonomous driving

운전자 개입없이 스스로 안전하게 주행이 가능한 자율주행 고도화

2 Connectivity

고도화된 연결형 자율주행을 통한 탑승자의 안전 및 교통관리 효과성 극대화

3 Electrification

높은 에너지 효율성 기반 1회 충전으로 최대 주행거리 확보

자율주행 단계 고도화

자율주행 자동차 시장 동향

Source: LMC Automotive, IHS Global Standards

자율주행 센서

※ Ford Escape crossover SUVs

자율주행 센서 방향

1 Camera

- 장거리 및 인식률 개선을 위한 고화소화 / 픽셀 사이즈 소형화 / 저조도 개선
- 고온 동작의 품질 확보를 위한 Lens / Housing 구조 최적화
- 생산에서 Active Alignment와 Calibration 공정 기술 차별화
- 2Mp 상용화 → Lv3) 5Mp ~ 8Mp → Lv4/5) 12Mp ~15Mp

2 Radar

- 고해상도 4D Imaging Radar 구현을 위한 안테나 및 신호처리 S/W 기술 발전
- Perception SW 고도화로 사물의 형상구분 및 상황예측까지 성능 발전
- 생산에서는 평탄도 관리 및 Calibration 및 EOL 공정 기술 고도화
- Lv2/3) ADAS용 3D Radar → Lv4/5) 4D Imaging Radar

3 LiDAR

- ADAS용 LiDAR는 차량신뢰성, 디자인, Cost 우선 순위로 진화
- Lv4/5를 위해 Redundancy를 고려한 Sensor Fusion 핵심부품으로 성장
- M-LiDAR (장거리 200m↑), S-LiDAR (단거리 80m)

자율주행 센서 채용 대수

자율주행 센서별 비교

● 자율주행 Level 2 / 3 기준

	감지성능			환경				소비
구분	탐지 거리	속도	형상 인식	악천 후	야간	색상	공간	전력
Radar	매우 우수	매우 우수	낮음	매우 우수	매우 우수	취약	취약	우수
카메라	낮음	취약	우수	취약	취약	매우 우수	우수	우수
LiDAR	우수	우수	매우 우수	취약	우수	취약	매우 우수	취약

O Radar O Camera O LiDAR

자율주행 플랫폼 동향

[Zoox]

[Waymo]

[Cruise]

자율주행 레벨	Level 5	Level 3~4 (군집 주행)	Level 5
평균 속도	-	50km/h ↓	-
최고 속도	120km/h ↓	120km/h ↓	50km/h ↓ (운행시간 제한)
센서구성	LiDAR + Radar + Camera + (열영상 카메라)	LiDAR + Radar + Camera + Audio	LiDAR + Radar + Camera

자율주행 SoC 동향

1 Tesla

- 카메라 2D 이미지만으로 실시간 3D 이미지 합성하는 기술
- Edge Case 중심의 서버를 통한 딥러닝과 시뮬레이션으로 정확도 향상
- 카메라(8개)+초음파(12개)

2 엔비디아

- ADAS 시스템(DRIVE AGX Orin)에서 자율주행용 Hyperion 시스템 발전
- 2D 카메라 중심에서 초음파, LiDAR, Radar 병행하는 3D 방식으로 전환
- Hyperion 9 기준 카메라(14개)+초음파(20개)+LiDAR(3개)+Radar(9개)

3 모빌아이

- 자율주행 EyeQ 시리즈 + 인포테인먼트 인텔 Atom C3000 솔루션
- SD맵과 HD맵의 하이브리드 방식인 AV맵(Autonomous Vehicle) 방식
- Level 4 / Level 5 기준 카메라(13개)+Radar(6개)+LiDAR(9개)

Summary

- ┛ 미래 모빌리티 메가 트렌드는 A.C.E 이다
- 고 자율주행단계는 현재 Lv.3, `25년 Lv4, '30년 이후 Lv5 완전자율주행화 예상
- 3 자율주행 완성차는 `35년까지 CAGR 3%, 자율주행 센서는 CAGR 7% 성장 예상
- ▲ 자율주행 센서는 카메라, 레이다, 라이다, 5G C-V2X 통신, 오디오 등이 필요
- 5 기존 개별 센서 역량의 한계를 극복하기 위해 센서 Pod 기술로 발전
- 6 자율주행솔루션업체별Lv4/Lv5의상용차중심의자율주행을개발중

M1 자율주행 시장동향

M2 Radar 제품 이해

M3 Radar 제조 공정

● Radar 란?

- Radar는 Radio Detection And Ranging 의 약어이며 Radio Wave를 이용한 사물 감지하는 기술
- 차량 Radar는 차량/보행자/도로 인프라를 인식하여 차량과의 거리, 상대속도, 각도, 높이 등의 정보를 수집

Measure the time of flight (ToF) in order to calculate the distance:

$$d = \frac{c_0 t}{2}$$

With c_0 being the speed of light and t the ToF.

Having a pulsed radar ...

Transmitted pulseReceived pulse

... and a FMCW radar

🏓 속도 측정

Speed – the Doppler Effect

higher frequency

lower frequency

Pulsed Radar - two successive measurements

FMCW Radar – exploit the Doppler shift

$$f_d = \frac{2f_T}{c_0} \cdot v$$

● 각도 측정

(a) Reflection from different targets

(b) angle estimation from array antenna

Radar 필요 기술

- High Gain / 광각 / 고해상도
- Peak Gain / 방사 패턴 최적화
- Array 안테나 설계
- 저손실 / EMC 최소화 설계
- Main IC 기반 플랫폼 설계
- Transition 최소화 및 RF 매칭
- System SW
- Radar 신호처리 (High SNR / 고해상도)
- Perception 알고리즘
- Radome 전파 투과율 최적화
- 고신뢰성 및 방수/방진/방열 설계
- Simulation (HFSS, ANSYS)

Radar 종류

● 자율주행 Level 2 / 3 기준

^{1) &}lt;u>L</u>ong <u>R</u>ange <u>R</u>adar 2) <u>M</u>id <u>R</u>ange <u>R</u>adar 3) <u>S</u>hort <u>R</u>ange <u>R</u>adar

Radar 기술 동향

Radar 칩셋

주파수	Chipset	감지 거리	B.W	Resol	utions	ons FoV	소모	주요 응용 분야					
(GHz)	Vendor	(m)		거리	각도		전력	보안	조명	가전	차량	바이오	로봇
UWB (6~8)	XETHRU SY NOVELDA	10 ~15	2GHz	75 mm	10°	90 ~110°	3~5 W (Module)	0	Δ	Δ	-	0	0
10	-	25 ~30	25Mhz	6m	NA	90 ~110°	5 mW (Module)	0	0	Δ	-	Δ	Δ
24	ANALOG DEVICES	10 ~20	250Mhz	1m	NA	110°	155 mW (FEM)	©	©	Δ	0	0	Δ
60	TEXAS INSTRUMENTS NOVELIC Infineon Vayyar KalkuTek Staal. technologies	10 ~15	7GHz	21 mm	10°	80 ~90°	1~5 mW (FEM)	©	0	0	©	0	0
77	TEXAS INSTRUMENT	150 ~200	1GHz	1 m	±2°	±5°	500 mW (FEM)	-	-	-	©	-	-
79	arbe))) **CALTERAH ROBOTICS **CALTERAH UHNDER	30 ~60	4GHz	75 mm	10°	80 ~90°	500 mW (FEM)	-	-	-	©	-	-
120	GILICON radar	~3m	1GHz	150mm	-	-	-	-	-	0	-	0	Δ
140	ımec	~2m	10GHz	15mm	1.5	-	500mW	-	-	-	0	0	Δ

Radar 시장 동향

□ 시장 규모

- 차량 제어를 위해 AEB 기능 채용 확대
- 일본 `20년 / EU `22년 이후 신차 AEB 의무 장착
- 북미 `22년 부터 OEM의 신차 AEB 장착 합의
- Front Radar의 고해상도化로 채용률 성장
- Corner Radar의 Low Cost 化
- 차량당 4개 이상 적용되어 360도 서라운드 센싱
- 안전과 편의 기능으로 강화를 위한 In-Cabin용 신규 Application 개화

Summary

- 🚹 Radar 이해에서 거리, 속도, 각도 측정 방법
- 2 Radar 필요기술은 안테나, mmWave 회로, SW, 기구, PCB, 공정설계
- 3 Radar 종류는 SRR, MRR, LRR이고 향후 4D Imaging Radar로 고도화
- ___ 차량용 Radar는 Infineon, TI, NXP 가주로사용

M1 자율주행 시장동향

M2 Radar 제품 이해

M3 Radar 제조 공정

Radar 제품 소개

In-Cabin Radar

Iten	LGIT				
Operating F	Operating Frequency				
Modul	Modulation				
Ran	Range				
FOV	Azimuth	104°			
FOV	Elevation	41°			
Angle	Azimuth	8.3°			
Resolution	Elevation	-			
Antenna	Single	10.2 dBi			
Gain	Array	14.6 dBi			
Siz	45 x 50mm				
Operating	9V ~ 16V				

Radar 제품 소개

In-Cabin Radar

Radar 제품 소개

MRR30 Radar

Iten	LGIT		
Operating F	77GHz		
Modul	ation	FMCW	
Ran	ge	Max. 180m	
Range Re	Range Resolution		
FOV	Azimuth	20°	
FUV	Elevation	-	
Angle	Azimuth	7°	
Resolution	Elevation	-	
Spe	~ 180 kph		
Speed Re	5 kph		
Siz	e	72 x 82mm	

Process Flow

✓ 가인자 공정

TIM DISPENSING

항목	관리 항목	관리 방안
Pin 검사	• 수평/수직 높이 측정(mm)	• Pin 휨 상태 확인 안착 (Error proof)
도포량	• Housing-Metal plate 사이 도포량 (g) • PCB~Metal plate 사이 도포량 (g)	• 도포 형상 OK/NG SPL 일상점검
기타	 Main Air 압력 / 노즐 및 이물 점검 Base plate 안착 (Error proof) 도포 형상 및 넓이 확인 (Vision) 	• TIM Lot 변경 시 설비 교체 또는 세척

형상

PRESS FIT

항목	관리규격	관리방안
압입력	• PCB 체결시 하중 압력 (Kgf)	• PCB Hole Min./Max. 고려한 공차 적용
PIN 높이	• 수직 높이 측정 (mm)	• 3D Laser 변위센서로 단자 높이 검사
기타	• Servo Press 거리	• 거리 구간별 압입력 관리 (Graph)
형상		PRESS FIT

Screw 체결

항목	관리규격	관리방안
Torque	• Screw 체결 Torque (kgf.cm)	• Torque Tester로 주기적 확인
Screw 높이	• 수직 높이 측정 (mm)	• LVDT 이용 Screw 높이 검사 동시 진행
PCB 평탄도	• PCB 높이 측정	• 3D Laser scan (5 점 MaxMin. 값)
형상		Screw 체결 후 PCB 평탄도 측정

Radome Assembly

항목	관리규격	관리방안
도포량	• 실란트 도포량 (g)	• 무게 검증 일상점검
압착시간	• Radome 접합 시간(sec)	• 커버 안착 시 누름
평행도	• Radome 높이 측정 (㎜)	• Vision 검사 (4점 높이 MaxMin.)

형상

Calibration & Test

항목	관리규격	관리방안
안테나 패턴	• Squint Angle (degree)	• 각 안테나 별 수평/수직 패턴 틀어짐
TX Gain	• Tx 1 / 2 / 3 Gain (dB)	• 동작 범위 내에서 각도 별, TX 안테나 별 편차 보정
RX Gain	• Rx 1 / 2 / 3 / 4 Gain (dB)	• 동작 범위 내에서 각도 별, RX 안테나 별 편차 보정
Noise	Noise Level (dBm)	• 각도 별, Noise 성분 확인
형상		※ 독일 Noffz 사의 무반사 챔버 예시

Calibration & Test

- Load Sample to Radar Test process
- Calibrate Radar module in Calibration Chamber
- Write Calibration Value into the Module
- Measure Radar Signal in Active Test Chamber
 Test system check if radar signal is detected by each distance and angle.
- Unload Sample to Outside Chamber

Cal. 공정 불량 자동분석 시스템

Summary

- 1 LG이노텍 Radar 제품 소개
- 2 Radar 수율에 영향을 미치 가인자 공정
- 3 Cal 공정 불량 자동분석 시스템 이해 (헤커톤 과제 연계)

감사합니다