

EXAMENUL DE BACALAUREAT – 2007 Proba scrisă la MATEMATICĂ

PROBA D

Varianta006

 $Profilul: Filiera\ Teoretică: sp.:\ matematică-informatică, Filiera\ Vocațională, profil\ Militar, Specializarea: specializarea\ matematică-informatică and profil\ Militar, Specializarea\ matematică-informatică and profil\ Militar, Specializarea\ matematică-informatică and profil\ Militar, Specializarea\ matematică and profil\ Militar and profil\ Mili$

◆ Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore. La toate subiectele se cer rezolvări cu soluții complete

SUBIECTUL I (20p)

- (4p) a) Să se calculeze distanța dintre punctele A(2,1,-2) și B(3,-3,1).
- **(4p) b)** Să se determine raza cercului $(x-2)^2 + (y+2)^2 = 16$.
- (4p) c) Să se determine ecuația tangentei la parabola $y^2 = 5x$ în punctul P(5,5).
- (4p) d) Să se calculeze modulul numărului complex $\frac{5-2i}{2-5i}$.
- (2p) e) Să se calculeze aria triunghiului cu vârfurile în punctele M(2,3), N(2,-2) și P(3,2).
- (2p) **f**) Să se afle $a, b \in \mathbf{R}$ astfel încât să se verifice egalitatea de numere complexe $\left(\cos \frac{3\pi}{10} + i \sin \frac{3\pi}{10}\right)^{10} = a + ib.$

SUBIECTUL II (30p)

1.

- (3p) a) Să se calculeze suma primilor 8 termeni dintr-o progresie aritmetică în care primul termen este 1 și rația este 3.
- (3p) b) Să se calculeze probabilitatea ca un element $n \in \{1, 2, 3, 4, 5\}$ să verifice relația $2^n \le 3 + \log_2 n$.
- (3p) c) Să se calculeze suma elementelor din grupul $(\mathbf{Z}_{11}, +)$.
- (3p) d) Să se calculeze expresia $E = C_5^1 C_5^2 + C_5^3 C_5^4$.
- (3p) e) Să se rezolve în mulțimea numerelor reale ecuația $x^3 x^2 + x 1 = 0$.
 - **2.** Se consideră funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = x^{2006} + 1$.
- (3p) a) Să se calculeze f'(x), $x \in \mathbb{R}$.
- (3p) b) Să se calculeze $\int_{0}^{1} f(x) dx$.
- (3p) c) Să se arate că funcția f este convexă pe \mathbf{R} .
- (3p) d) Să se calculeze $\lim_{x\to 0} \frac{f(x)-f(0)}{x}$.
- (3p) e) Să se scrie ecuația tangentei la graficul funcției f în punctul de abscisă $x_0 = 1$.

SUBIECTUL III (20p)

Se consideră matricele $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $J = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ și $O_2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.

Convenim că $rang(O_2) = 0$.

- (4p) a) Să se calculeze determinanții matricelor J și I_2 .
- (4p) b) Să se calculeze matricea J^2 .
- (4p) c) Să se arate că, dacă $A \in M_2(\mathbb{C})$, $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, atunci $A^2 (a+d)A + (ad-bc)I_2 = O_2$.
- (2p) d) Să se găsească o matrice $M \in M_2(\mathbb{C})$ pentru care $rang(M) \neq rang(M^2)$.
- (2p) e) Să se arate că, dacă matricea $B \in M_2(\mathbb{C})$ este inversabilă, atunci matricea B^n este inversabilă, $\forall n \in \mathbb{N}^*$.
- (2p) **f)** Utilizând eventual metoda inducției matematice, să se arate că, dacă matricea $C = \begin{pmatrix} p & q \\ r & s \end{pmatrix} \in M_2(\mathbf{C})$ nu este inversabilă, atunci $C^n = (p+s)^{n-1}C$, $\forall n \in \mathbf{N}$, $n \ge 2$.
- (2p) g) Să se arate că, dacă matricea $D \in M_2(\mathbf{C})$ verifică $rang(D) = rang(D^2)$, atunci $rang(D) = rang(D^n)$, $\forall n \in \mathbf{N}^*$.

SUBIECTUL IV (20p)

Se consideră funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = x - \ln(e^x + 1)$ și șirul $(a_n)_{n \ge 1}$, definit prin $a_n = \frac{1}{e+1} + \frac{1}{e^2 + 1} + \dots + \frac{1}{e^n + 1}$, $\forall n \in \mathbf{N}^*$.

- (4p) a) Să se verifice că $f'(x) = \frac{1}{e^x + 1}$, $x \in \mathbb{R}$.
- (4p) $| \mathbf{b} |$ Să se arate că funcția f' este strict descrescătoare pe \mathbf{R} .
- (2p) c) Utilizând teorema lui *Lagrange*, să se arate că $\forall k \in [0, \infty)$, există $c \in (k, k+1)$, astfel încât $f(k+1) f(k) = \frac{1}{e^c + 1}$.
- (2p) d) Să se arate că $\frac{1}{e^{k+1}+1} < f(k+1) f(k) < \frac{1}{e^k+1}, \ \forall k \in [0,\infty).$
- (4p) e) Să se arate că șirul $(a_n)_{n\geq 1}$ este strict crescător.
- (2p) | f) Să se arate că $f(n+1) f(1) < a_n < f(n) f(0)$, $\forall n \in \mathbb{N}^*$.
- (2p) g) Să se arate că șirul $(a_n)_{n\geq 1}$ este convergent și are limita un număr real din intervalul $\left[\ln\left(1+\frac{1}{e}\right), \ln 2\right]$.