Übungsblatt 5

Felix Kleine Bösing, Juri Ernesto Humberg, Leonhard Meyer November 13, 2024

Aufgabe 1

Zeigen Sie, dass für alle $k \in \mathbb{N}$ die Folge $\left(\sqrt[n]{n^k}\right)_{n \in \mathbb{N}}$ gegen 1 konvergiert. (Hinweis: Betrachten Sie zunächst den Fall k=1.)

Teil (a)

Beweis: Wir zeigen zunächst, dass die Folge $\left(\sqrt[n]{n^k}\right)_{n\in\mathbb{N}}$ für k=1 gegen 1 konvergiert.

1. Betrachte die allgemeine Form der n-ten Wurzel von n:

$$a_n = \sqrt[n]{n} = n^{\frac{1}{n}}.$$

2. Um zu zeigen, dass $a_n \to 1$ für $n \to \infty$, betrachten wir den natürlichen Logarithmus von a_n :

$$\ln(a_n) = \ln\left(n^{\frac{1}{n}}\right) = \frac{1}{n}\ln(n).$$

3. Nun untersuchen wir das Verhalten von $\frac{\ln(n)}{n}$ für $n \to \infty$:

$$\lim_{n \to \infty} \frac{\ln(n)}{n} = 0.$$

Dies folgt aus der Anwendung der Regel von de l'Hôpital, da die Ableitung des Zählers $\ln(n)$ und die Ableitung des Nenners n wie folgt sind:

$$\lim_{n \to \infty} \frac{\ln(n)}{n} = \lim_{n \to \infty} \frac{\frac{1}{n}}{1} = \lim_{n \to \infty} \frac{1}{n} = 0.$$

4. Daraus folgt:

$$\lim_{n\to\infty} \ln(a_n) = 0.$$

Da der Logarithmus eine stetige Funktion ist, erhalten wir $\lim_{n\to\infty} a_n = e^0 = 1$.

Damit ist gezeigt, dass $(\sqrt[n]{n})_{n\in\mathbb{N}}$ für k=1 gegen 1 konvergiert.

Teil (b)

Beweis für allgemeines k: Nun zeigen wir die Konvergenz der Folge $\binom{\sqrt[n]{n^k}}{n\in\mathbb{N}}$ für beliebiges $k\in\mathbb{N}.$

1. Die Folge hat die Form:

$$a_n = \sqrt[n]{n^k} = (n^k)^{\frac{1}{n}} = n^{\frac{k}{n}}.$$

2. Betrachten wir den natürlichen Logarithmus von a_n :

$$\ln(a_n) = \ln\left(n^{\frac{k}{n}}\right) = \frac{k}{n}\ln(n).$$

3. Analog zum Fall k=1 betrachten wir das Verhalten von $\frac{k \ln(n)}{n}$ für $n \to \infty$:

$$\lim_{n\to\infty}\frac{k\ln(n)}{n}=k\cdot\lim_{n\to\infty}\frac{\ln(n)}{n}=k\cdot 0=0.$$

4. Also gilt:

$$\lim_{n \to \infty} \ln(a_n) = 0 \Rightarrow \lim_{n \to \infty} a_n = e^0 = 1.$$

Damit haben wir gezeigt, dass die Folge $\left(\sqrt[n]{n^k}\right)_{n\in\mathbb{N}}$ für beliebiges $k\in\mathbb{N}$ gegen 1 konvergiert.

Aufgabe 2

Aufgabe 4

Beweisen Sie, dass eine beschränkte reelle oder komplexe Folge genau dann konvergiert, wenn sie genau einen Häufungspunkt besitzt.

Beweis:

Wir beweisen die Aussage in zwei Richtungen.

1. Richtung: (Wenn die Folge konvergiert, hat sie genau einen Häufungspunkt)

Sei $(a_n)_{n\in\mathbb{N}}$ eine beschränkte, konvergente reelle oder komplexe Folge mit Grenzwert L. Da die Folge konvergiert, bedeutet dies, dass für jedes $\epsilon>0$ nur endlich viele Folgenglieder außerhalb des ϵ -Umkreises um L liegen, also

$$\forall \epsilon > 0 \ \exists N \in \mathbb{N} \text{ sodass } |a_n - L| < \epsilon \ \forall n > N.$$

Da L der einzige Punkt ist, dem sich die Folge beliebig nahe annähert, ist L ein Häufungspunkt von (a_n) .

Angenommen, die Folge hätte noch einen weiteren Häufungspunkt $L' \neq L$. Dann müsste es für L' ebenfalls ein $\epsilon' > 0$ geben, sodass unendlich viele Folgenglieder in dem ϵ' -Umkreis um L' liegen. Dies widerspricht jedoch der Definition der Konvergenz, da die Folge (a_n) nur um L häuft". Daher kann L der einzige Häufungspunkt der Folge sein.

Also hat eine konvergente Folge genau einen Häufungspunkt.

2. Richtung: (Wenn die Folge genau einen Häufungspunkt hat, dann konvergiert sie)

Sei $(a_n)_{n\in\mathbb{N}}$ eine beschränkte Folge, die genau einen Häufungspunkt L besitzt. Da die Folge beschränkt ist, existiert nach dem Satz von Bolzano-Weierstraß eine konvergente Teilfolge $(a_{n_k})_{k\in\mathbb{N}}$, die gegen L konvergiert, da L der einzige Häufungspunkt ist.

Angenommen, die gesamte Folge (a_n) konvergiert nicht gegen L. Dann müsste es ein $\epsilon > 0$ geben, sodass unendlich viele Folgenglieder a_n den ϵ -Umkreis um L verlassen. Diese Folgenglieder könnten eine weitere Teilfolge bilden, die nicht gegen L konvergiert, was im Widerspruch dazu steht, dass L der einzige Häufungspunkt ist.

Daher muss die gesamte Folge gegen L konvergieren.

Damit ist gezeigt, dass eine beschränkte Folge genau dann konvergiert, wenn sie genau einen Häufungspunkt besitzt. \square