

EXAMEN DE FIN D'ÉTUDES SECONDAIRES 2018

BRANCHE	SECTION	ÉPREUVE ÉCRITE
Mathématiques II	В	Durée de l'épreuve : 4 heures
		Date de l'épreuve : 11 juin 2018

Question 1 (2+5+5+3+3=18 points)

Soit $f_m(x) = \ln \frac{2x}{|x^2 - m|}$ ($m \in \mathbb{R}$) et soit C_{f_m} sa courbe représentative dans un repère orthonormé.

Partie A Dans cette première partie on choisit $m \neq 0$

- 1) Déterminez, en fonction de m, le domaine de définition de f_m
- 2) Déterminez, il y en a, les aymptotes et les branches paraboliques de $C_{f_{\rm m}}$.
- 3) Discutez, en fonction de m, les variations de f_m .

Partie B Dans cette deuxième partie on choisit m = 0

- 4) Déterminez le domaine de définition, le comportement asymptotique et les branches paraboliques, les variations et la concavité de la fonction de f_0 .
- Tracez la représentation graphique C_{f_0} dans un repère orthonormé, puis déterminez l'aire de la partie du plan délimitée par la courbe C_{f_0} et les droites d'équation $x=\frac{1}{2}$ et x=4

Question 2 (5+(2,5+2,5) = 10 points)

1) Volume un solide

Soit
$$f$$
 la fonction définie par $f(x) = \log_3(2x+1)$

Esquissez la représentation graphique de la fonction f, puis calculez le volume du solide de révolution engendré par la rotation autour de l'axe y de la surface délimitée par la courbe représentative de f axe x et la droite d équation x = 4.

2) Calculez:

a)
$$\int_{-\frac{9\sqrt{3}}{2}}^{0} \frac{4-3x}{\sqrt{81-x^2}} dx$$

$$b) \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{2}{1 - \cos x} dx$$

Question 3 (1+1,5+3+(3,5+3,5+3,5+2)=18 points)

Soit la fonction
$$f$$
 définie par $f(x) = \begin{cases} x + \ln \frac{2x+1}{x+1} & \text{si } x \le 0 \\ 3^{-\frac{1}{2x}} & \text{si } x > 0 \end{cases}$

- 1) Déterminez le domaine de définition de la fonction f.
- 2) Etudiez la continuité de la fonction f en x = 0.
- 3) Etudiez la dérivabilité de la fonction f en x = 0. Interprétez géométriquement votre résultat!
- 4) Etudiez la fonction f:
 - a) Calculez les limites aux bornes du domaine de définition et étudiez le comportement asymptotique.
 - b) Calculez la dérivée première et établissez un tableau de variations.
 - c) Calculez la dérivée seconde de la fonction f, puis analysez la concavité de la courbe représentative C_f de la fonction f.
 - d) Tracez la représentation graphique C_f dans un repère orthonormé.

Question 4 (6+(4+4)= 14 points)

1) On donne la fonction f définie par $f(x) = \frac{2x^3 + 16x - 16}{x^4 - 16}$.

Déterminez la primitive F de f sur $2;+\infty$ qui prend la valeur $2\ln 5$ en 3 .

(Indication: déterminez les réels a, b, c et d tels que $f(x) = \frac{a}{x+2} + \frac{b}{x-2} + \frac{cx+d}{x^2+4}$)

2) Résolvez les (in)équations suivantes:

a)
$$2 + \log_x 2 - \frac{1}{2} \log_x 81 = \log_{x-2} (x-1) \log_x (x-2) - \log_x (4x-11)$$

b)
$$5\sqrt{5^{-x}} \cdot \left(2 + 5^{\frac{x}{2} + 1}\right) \le 3\sqrt{5^{x+2}}$$