Dhanamanjuri University

June - 2024

Name of Programme : B.A/B.Sc. Mathematics(Honours)

Semester : 6th

Paper Type : Core XIII (theory)

Paper code : CMA-313

Paper Tiltle : Metric Spaces and Complex Analysis

Full Marks : 100
Pass Marks : 40
Duration : 3 Hours

The figures in the margin indicate full marks for the questions

Answer all the questions:

1. Choose and rewrite the correct answer for each of the following:

 $(1\times 4=4)$

- (a) In a metric space (X, d), which of the following is true?
 - (i) Every sequence is a Cauchy sequence.
 - (ii) Every sequence is convergent.
 - (iii) Every convergent sequence is a Cauchy sequence.
 - (iv) Every Cauchy sequence is convergent.
- (b) Let A and B be two subsets of a metric space (X, d). If $B \subset \overline{A}$ then
 - (i) A is dense in X.
 - (ii) A is dense in B.
 - (iii) A is non-dense in B.
 - (iv) A is nowhere dense.
- (c) For f(z) = u(x, y) + iv(x, y), the Cauchy-Riemann equations are
 - (i) $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y} = \frac{\partial v}{\partial x}$
 - (ii) $\frac{\partial u}{\partial x} = -\frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y} = \frac{\partial v}{\partial x}$
 - (iii) $\frac{\partial u}{\partial x} = \frac{-\partial v}{\partial y}$ and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$
 - (iv) $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$
- (d) If \overline{z} and |z| are the conjugate and modulus of a complex number z, respectively, then
 - (i) $z\overline{z} = |z|^2$
 - (ii) $z\overline{z} = -|z|^2$
 - (iii) $z\overline{z} = |\overline{z}|^2$
 - (iv) $z\overline{z} = -|\overline{z}|^2$

2. Write very short answer for each of the following: $(1 \times 8 = 8)$

- (a) Write down the symmetry property satisfied by a metric "d" on a nonempty set X.
- (b) Give the reason for the boundedness of a discrete metric space.
- (c) When are two metric spaces said to be homeomorphic?
- (d) Define a contraction mapping.
- (e) Are the two sets $A = \{x : \infty < x < 0\}$ and $B = \{x : 0 \le x < \infty\}$ separated?
- (f) When is a complex function called harmonic?
- (g) Whether the limit $\lim_{z\to 0} \frac{\overline{z}}{z}$ exists?
- (h) Define the term isolated singular point.

3. Write short answer for each of the following:

 $(3 \times 10 = 30)$

- (a) Prove that in a metric space every closed sphere is a closed set.
- (b) Give one example each for an open and a closed set.
- (c) Define the terms:
 - (i) Neighbourhood
 - (ii) Adherent point in a metric space
- (d) For any non-empty subset A of a metric space (X, d), show that the function $f: X \to \mathbb{R}$ given by f(x) = d(x, A), for $x \in X$, is uniformly continuous.
- (e) Prove that the union of connected sets having non-empty intersection is connected.
- (f) Show that the real and imaginary components u(x,y) and v(x,y) of an analytic function f(z) = u(x,y) + iv(x,y) are harmonic.
- (g) Write down the Laplace equation in polar form. Show that $u(r,\theta) = (r + \frac{1}{r})\cos\theta$, $r \neq 0$ is harmonic.
- (h) Find f'(z) and f''(z) where $f(z) = e^{-x}e^{-iy}$.
- (i) Evaluate $\int_C \overline{z} dz$ where C is the circle |z| = 1.
- (j) Find all the points at which $f(x+iy) = 2xy + i(x^2 + y^2)$ is differentiable.

4. Answer the following questions:

- a) Define a metric space.
- b) Let $X = \mathbb{R}^n$ denote the set of all n-tuples of real numbers for a fixed $n \in \mathbb{N}$. Let $x = (x_1, x_2, \dots, x_n), y = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n$. A mapping d from $\mathbb{R}^n \times \mathbb{R}^n$ into \mathbb{R} is defined by:

$$(x,y) = \left(\sum_{i=1}^{n} (x_i - y_i)^2\right)^{1/2}$$

Show that d is a metric on \mathbb{R}^n .

Or

Prove that in a metric space every open sphere is an open set.

c) Derive the polar form of the Cauchy-Riemann equations:

$$ru_r = v_\theta$$
 and $rv_r = -u_\theta$

Show that the function defined by

$$f(z) = \begin{cases} \frac{z^5}{|z|^4}, & z \neq 0 \\ 0, & z = 0 \end{cases}$$

is not differentiable at z=0.

5. Answer the following questions:

a) State and prove Hölder's inequality.

Oı

State and prove Minkowski's inequality.

- b) Let A and B be any two subsets of metric spaces (X, d). Prove that:
- 1. $A \subseteq B$ implies $int(A) \subseteq int(B)$
- 2. $int(A \cap B) = int(A) \cap int(B)$
- 3. $int(A \cup B) \supseteq int(A) \cup int(B)$

Or

Let (X,d) be a complete metric space and let $\{F_n\}$ be a decreasing sequence of non-empty subsets of X such that $d(F_n) \to 0$ as $n \to \infty$. Prove that $F = \bigcap_{n=1}^{\infty} F_n$ contains exactly one point.

6. Answer any two questions from the following:

- a) Let Y be a subset of a metric space (X,d). Prove that the following statements are equivalent:
 - (i) Y is connected
 - (ii) Y cannot be expressed as a disjoint union of two non-empty closed sets in Y
 - (iii) Φ and Y are the only sets which are both open and closed sets in Y.
- b) Discuss the connectedness of the following subsets of the Euclidean space \mathbb{R}^2 :
 - a) $D = \{(x, y) : x \neq 0, \text{ and } y = \sin \frac{1}{x}\}$
 - b) $E = \{(x, y) : x = 0, \text{ and } -1 \le y \le 1\} \cup D$
- c) Define a uniformly continuous function in a metric space. Prove that the image of a Cauchy sequence under a uniform continuous function is again a Cauchy sequence.

7. Answer the following questions:

a) Prove that $u(x,y) = e^x(x\cos y - y\sin y)$ is harmonic. Also find its harmonic conjugate v(x,y) and express the corresponding analytic function f(z) in terms of z.

Or

If $v(r,\theta) = (r - \frac{1}{r})\sin\theta$, $r \neq 0$, then find an analytic function $f(z) = u(r,\theta) + iv(r,\theta)$. Also find the corresponding analytic function f(z) in terms of z.

b)

- 1. Find the harmonic conjugate of $u(x, y) = y^3 3x^2y$.
- 2. Find all the points at which $f(x+iy) = 2xy + i(x^2 + y^2)$ is differentiable.

Or

If f(z) is an analytic function of z, prove that:

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 2|f'(z)|^2$$

8. Answer any two questions:

- a) Evaluate the integral $\int_0^{2+i} (z^2) dz$ along $y = \frac{x}{2}$.
- b) Evaluate the integral $\int_C (z^2 + 3z) dz$, counterclockwise from (2, 0) to (0, 2) along the curve C_1 , where C is the circle |z| = 2.
 - c) Show that the function defined by

$$f(z) = \begin{cases} \frac{(1+i)(x^3 - (1-i)y^3)}{x^2 + y^2}, & x^2 + y^2 \neq 0\\ 0, & x^2 + y^2 = 0 \end{cases}$$

satisfies the Cauchy-Riemann equations at the origin, but f is not differentiable there.