Course Code: PGDS103

	: (1) (2)	ARKS: 60 All questions are compulsory Figures to the right indicate marks. Mixing of sub-questions is not allowed.	Ain.
Q1.	An	swer the following. (Any TWO)	12
	1)	i. Let $A = \begin{pmatrix} 4 & 1+i & 2+5i \\ 1-i & -3 & 7+3i \\ 2-5i & 7-3i & -6 \end{pmatrix}$. Find the conjugate transpose of the matrix A . Is A a Hermitian matrix? Justify.	03
		ii. Let $A = \begin{pmatrix} -1 & 2 & 3 \\ 0 & 7 & 9 \\ 11 & 3 & -2 \end{pmatrix}$. Evaluate the determinant of A and deduce whether the matrix is singular or not.	03
	2)	Determine the value of real number k for which the following system has no solution. $x-2y=1\\ x-2y+kz=-2\\ ky+4z=6$	06
	3)	Write a program in python to do the following: i. Find the transpose of the matrix of M . ii. Find the scalar multiplication of M with a scalar α .	06
	4)	Find the eigen values and bases of corresponding eigen spaces of the matrix $A = \begin{pmatrix} -9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7 \end{pmatrix}$.	06
Q2.	An	swer the following. (Any TWO)	12
	1)	Define the following: i. Vector space over a field <i>K</i> . ii. Linearly dependent set of vectors. iii. Sparse vectors. iv. Basis of a vector space.	06
	2)	For the vector space \mathbb{R}^3 over \mathbb{R} , express the vector, $(2,3,1)$ as a linear combination of $(1,0,0), (0,2,-1)$ and $(1,0,-1)$.	06
	3)	i. Check whether $\left\{ \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 5 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 2 & 1 \end{pmatrix} \right\}$ is linearly independent.	03
		ii. Write a program in python to enter two vectors u and v as a n –list and find the linear combination of u and v .	03
	4)	Define a linear function. Determine whether $T: \mathbb{R}^2 \to \mathbb{R}$, defined by $T(x,y) = 2x + y$ is a linear function.	06
Q3.	An	swer the following. (Any TWO)	12
	1)	Find an orthonormal basis of \mathbb{R}^3 corresponding to $\{(1,0,0),(0,2,1),(-1,0,1)\}$ using Gram-Schmidt orthogonalization process with respect to usual dot product.	06

2) If u, v and w are any three vectors in an inner product space V and k is any scalar then show that

i.
$$\langle u, 0 \rangle = 0 = \langle 0, u \rangle$$

ii.
$$\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$$

iii.
$$\langle u, k, v \rangle = k, \langle u, v \rangle$$

- i. Verify Cauchy-Schwarz inequality for the vectors x = (-1, -1, 0, 2) and y = (-1, -1, 0, 2)3) 03 (2, -3, 1, -2) with respect to the inner product $(x, y) = x_1y_1 + 2x_2y_2 + x_3y_3 + 4x_4y_4$.
 - ii. Find the value of k for which the vectors x = (1,4,k) and y = (0,-1,k) are orthogonal. 03
- i. Find the orthogonal projection of the vector v = (1, -2, 0, 3) along u = (1, 0, 2, -1) with 4) 03 respect to usual dot product.
 - ii. Define orthogonal set. Check whether $S = \{(2,3,-1), (0,1,3), (1,0,0)\}$ is orthogonal set 03 of vectors? Justify.

Answer the following. (Any TWO) Q4.

- Explain the problem of least-squares. Further give a solution to the least-square problem.
- 2) Find the least-square solution of Ax = b, where $A = \begin{pmatrix} 2 & 0 \\ -1 & 1 \\ 0 & 2 \end{pmatrix}$ and $b = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$. What 06 quantity is being minimized?
- 3) Find the line that best approximates the data points, (2,1), (-1,0) and (0,-1). 06
- 4) Find the linear function that best approximated the following data:

х	у	f(x,y)
0	1	-5
1	0	2
1	1	-3
2	-1	9

06

12

06

12

06

Q5. Answer the following. (Any TWO)

- Define a matrix. Explain any three types of matrices with example. 06
- Check whether the set $V = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} : a, b, c \in \mathbb{R} \right\}$ forms a vector space over \mathbb{R} . 06
- Write a program in python to do the following:
 - Find the dot product of two vectors u and v. i.
 - ii. Find the orthogonal projection of v along u.
- 4) Find the least-square solution of Ax = b, where $A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ -1 & 0 & 1 \\ 0 & 0 & 2 \end{pmatrix}$ and $b = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$. 06