BRANDON WONG – SG DAT 1

I. INTRODUCTION
II. APPROACH
III. CHALLENGES
IV. NEXT STEPS
V. Q&A

INTRODUCTION

\$40,000 prize

Timeline: 18/01/16 – 25/04/16 1,269 *teams*

Predict Relevance of Search Results

Home Depot: Home Depot is an American retailer of home improvement and construction products and services

Competition Basics: Improve customer's shopping experience by developing a model that can accurately predict the relevance of search results

INTRODUCTION (CONT)

Data Files

File Name	Available Formats			
sample_submission.csv	.zip (226.76 kb)			
train.csv	.zip (2.51 mb)			
test.csv	.zip (4.74 mb)			
product_descriptions.csv	.zip (34.77 mb)			
attributes.csv	.zip (27.21 mb)			
relevance_instructions	.docx (105.01 kb)			

Train and Test have similar columns

BUT

relevance score not provided in Test.

APPROACH

Picking a Model

I have:

- Labeled data (Classification?)
- Not a huge volume, classifiers (Random Forest?)

I need:

- Root words / Stems (Snowball Stemmer / PyStemmer?)
- Rank variable importance

id	product_uid	product_title	search_term	relevance
2	100001	Simpson Strong	angle bracket	3
3	100001	Simpson Strong	I bracket	2.5
9	100002	BEHR Premium	deck over	3
16	100005	Delta Vero 1-Ha	rain shower head	2.33
17	100005	Delta Vero 1-Ha	shower only fauce	2.67
18	100006	Whirlpool 1.9 cu	convection otr	3
20	100006	Whirlpool 1.9 cu	microwave over s	2.67
21	100006	Whirlpool 1.9 cu	microwaves	3
23	100007	Lithonia Lightin	emergency light	2.67
27	100009	House of Fara 3,	mdf 3/4	3

Relevance is a number between 1 (not relevant) and 3 (most relevant)

E.g. Search for Steel Saw

Steel Saw (R = 3) Steel Nails (R = 2) Shovel (R = 1)

Each pair was (search_term, product) evaluated by at least 3 human raters.

The provided relevance scores are the average value of the ratings

Sample text: Such an analysis can reveal features that are not easily visible from the variations in the individual genes and can lead to a picture of expression that is more biologically transparent and accessible to interpretation

Lovins stemmer: such an analys can reve featur that ar not east is from the variant in the individuagen and can lead to a pictur of expression that is more biological transpar and access to interpres

Porter stemmer: such an analysi can reveal featur that ar not easili visibl from the variat in the individu gene and can lead to a pictur of express that is more biolog transpar and access to interpret

Paice stemmer: such an analys can rev feat that are not easy vis from the vary in the individ gen and can lead to a pict of express that is mor biolog transp and access to interpret

Why Stemmer?

Messy!

Product Names vs Search Terms

APPROACH

There is one value in attributes.csv file that is not in either train or test files.

On further investigation there are 155 rows that do not have a *product_uid* value

Relevance Counts

Search Terms Dist (binned)

Playing around, yay or nah?

	id	product_uid	product_title	search_term	relevance	on_point
0	2	100001	Simpson Strong-Tie 12-Gauge Angle	angle bracket	3.00	yay
1	3	100001	Simpson Strong-Tie 12-Gauge Angle	I bracket	2.50	yay
2	9	100002	BEHR Premium Textured DeckOver 1-gal. #SC-141	deck over	3.00	yay
3	16	100005	Delta Vero 1-Handle Shower Only Faucet Trim Ki	rain shower head	2.33	nah
4	17	100005	Delta Vero 1-Handle Shower Only Faucet Trim Ki	shower only faucet	2.67	yay
5	18	100006	Whirlpool 1.9 cu. ft. Over the Range Convectio	convection otr	3.00	yay
6	20	100006	Whirlpool 1.9 cu. ft. Over the Range Convectio	microwave over stove	2.67	yay
7	21	100006	Whirlpool 1.9 cu. ft. Over the Range Convectio	microwaves	3.00	yay
8	23	100007	Lithonia Lighting Quantum 2-Light Black LED Em	emergency light	2.67	yay
9	27	100009	House of Fara 3/4 in. x 3 in. x 8 ft. MDF Flut	mdf 3/4	3.00	yay

```
MultinomialNB
Accuracy: 66.37%
Accuracy on training data: 0.76
BernoulliNB
Accuracy: 66.38%
Accuracy on training data: 0.76
Logistic Regression
Accuracy: 67.65%
Accuracy on training data: 0.77
"microwaves" is judged by clasifier to be...
... on point.
"what am I typing" is judged by clasifier to be...
... not on point.
"deck over" is judged by clasifier to be...
... on point.
```

```
df_all['search_term'] = df_all['search_term'].map(lambda x:str_stemmer(x))
df_all['product_title'] = df_all['product_title'].map(lambda x:str_stemmer(x))
df_all['product_description'] = df_all['product_description'].map(lambda x:str_stemmer(x))

df_all['len_of_query'] = df_all['search_term'].map(lambda x:len(x.split())).astype(np.int64)

df_all['product_info'] = df_all['search_term']+"\t"+df_all['product_title']+"\t"+df_all['product_description']

df_all['word_in_title'] = df_all['product_info'].map(lambda x:str_common_word(x.split('\t')[0],x.split('\t')[1]))
df_all['word_in_description'] = df_all['product_info'].map(lambda x:str_common_word(x.split('\t')[0],x.split('\t')[2]))
```

```
rf = RandomForestRegressor(n_estimators=20, max_depth=7, random_state=0)
clf = BaggingRegressor(rf, n_estimators=50, max_samples=0.1, random_state=25)
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
```

LEADERBOARD

#	Δ1w	Team Name * in the money	Score @	Entries	Last Submission UTC (Best – Last Submission)
1	_	Turing test 4 *	0.44014	113	Tue, 29 Mar 2016 16:06:47 (-4d)
2	_	.*	0.44222	69	Fri, 01 Apr 2016 07:00:18 (-29.9h)
3	†11	Alex&Andreas&Nurlan 🎩 *	0.44268	79	Thu, 31 Mar 2016 20:32:12
954	↓ 51	Ganapriya Kalavagunta	0.48720	1	Sun, 13 Mar 2016 16:38:06
955	new	Brandon Wong	0.48721	2	Fri, 01 Apr 2016 19:15:11

Your Best Entry ↑

You improved on your best score by 0.00000.

You just moved up 87 positions on the leaderboard.

Iqbal Hossain 956

0.48721

Fri, 12 Feb 2016 17:01:41 (-6.1d)

CHALLENGES

- 1. Not trying to predict the true relevancy of the product as a response to a search query
- 2. Instead, build program to mimic human raters, assuming they are the most efficient method of assessing relevancy
- 3. Have to teach the models/machines to act like humans? Need to "create a search system auditor that can help measure the efficacy of changes in algorithms preferably in real time"

NEXT STEPS

- 1. Check out winning strategies on Kaggle, improve on them
- 2. Keep competing in Kaggle competitions
- 3. Try out Natural Language Processing