HKALE 2006 AL Pure Mathematics Paper 2 Q5

Pag

15. HKALE 2006 AL Pure Mathematics Paper 2 Q5

- (a) Find $\int \ln y \, dy$.
- **(b)** Find the volume of the solid of revolution generated by revolving the region bounded by the curve $y = 2^{x^2}$ and the straight line y = 2 about the y-axis. (6 marks)

[a)
$$\int \ln y \, dy$$

= $\left[y \ln y \right] - \int y \, dy$

= $\left[y \ln y \right] - \int y \, dy$

= $\left[y \ln y \right] - \int dy$

= $\left[y \ln y \right] - \int dy$

= $\left[y \ln y \right] - \int dy$

= $\left[y \ln y \right] - \int dy$

= $\left[y \ln y \right] - \int dy$

= $\left[x \ln \left(x \right) \left(2 - y \right) \right] dx$

= $\left[x \ln \left(x \right) \left(2 - y \right) \right] dx$

= $\left[x \ln \left(x \right) \left(2 - x \right) \right] dx$

= $\left[x \ln \left(x \right) \left(2 - x \right) \right] dx$

= $\left[x \ln \left(x \right) \left(2 - x \right) \right] dx$

= $\left[x \ln \left(x \right) \left(2 - x \right) \right] dx$

= $\left[x \ln \left(x \right) \left(2 - x \right) \right] dx$

$$= 2\pi \left[\frac{1}{x} \right]_{0}^{1} - 2\pi \int_{0}^{1} \frac{2}{x^{2}} \frac{d(x^{2})}{2x}$$

$$= 2\pi \left[(1) - (0) \right] - \pi \int_{0}^{1} \frac{2}{x^{2}} \frac{d(x^{2})}{d(x^{2})}$$

$$= 2\pi - \pi \left[\frac{2}{\ln(x)} - \frac{2}{\ln(x)} \right]$$

$$= 2\pi - \pi \left[\frac{2}{\ln(x)} - \frac{2}{\ln(x)} \right]$$

$$= 2\pi - \pi \left[\frac{2}{\ln(x)} - \frac{1}{\ln(x)} \right]$$

$$= 2\pi - \pi \left[\frac{1}{\ln(x)} - \frac{1}{\ln(x)} \right]$$

$$= 2\pi - \pi \left[\frac{1}{\ln(x)} - \frac{1}{\ln(x)} \right]$$

$$= 2\pi - \pi \left[\frac{1}{\ln(x)} - \frac{1}{\ln(x)} \right]$$