Toward Energy-Efficient Intelligence in Power-/Area-Constrained Hardware:

End-to-End Hardware Accelerator and Coarse-Grain Memory Compression for Deep Learning Algorithms

Jae-sun Seo

School of ECEE
Arizona State University

@ ASPDAC Tutorial January 16, 2017

Machine Learning Hardware – Why Now?

J. Gehlhaar, ASPLOS 2014 Keynote

DNN Training & Classification

- Training (back-propagation): typically done off-line w/ labeled data
 - Large networks take multiple days weeks using powerful GPUs
- Classification (feed-forward): target real-time operation
 - For portable applications, power/area constraints pose limits

Outline

- Introduction
- Image: FPGA Design on Convolutional Neural Networks
 - FPGA 2016, FPL 2016, FPGA 2017
- Speech: Deep Neural Networks w/ Coarse-Grain Sparsity
 - ICCAD 2016
- Summary

Outline

- Introduction
- Image: FPGA Design on Convolutional Neural Networks
 - FPGA 2016, FPL 2016, FPGA 2017
- Speech: Deep Neural Networks w/ Coarse-Grain Sparsity
 - ICCAD 2016
- Biomedical: Compressed Neural Networks for Wearables
 - 65nm prototype chip for ECG Biometric Authentication
- Summary

ImageNet: Image Classification & Localization

- ImageNet contest: 1,000 image categories
 - Top-1 & top-5 classification accuracy
 - Localization: exact area of the object

- Alexnet: 5 conv, 3 pool, 2 norm, 3 full-conn
- NIN: 4 conv, 8 cccp, 4 pool
- VGG: 16 conv, 4 pool, 3 full-conn

Our Recent Research on Deep CNN

- FPGA 2016 (Int. Symp. on Field Programmable Gate Arrays)
 - N. Suda, et al.
 - "Throughput-Optimized OpenCL-based FPGA Accelerator for Large-Scale Convolutional Neural Networks"
- FPL 2016 (Int. Conf. on Field Programmable Logic and Applications)
 - Y. Ma, et al.
 - "Scalable and Modularized RTL Compilation of Convolutional Neural Networks onto FPGA"
- FPGA 2017, in press
 - Y. Ma, et al.
 - "Optimizing Loop Operation and Dataflow in FPGA Acceleration of Deep Convolutional Neural Networks"

Precision Optimization

Accuracy vs. precision (w/ ImageNet ILSVRC2012_val 1~200 images)

	Floating- point	Integer/fraction fixed-point									
Data bits	-	13/2	13/2	13/2	13/2	13/2	13/2	13/2	13/2	13/2	13/2
Weight bits	-	0/15	0/14	0/13	0/12	0/11	0/10	0/9	0/8	0/7	0/6
VGG-19 Top1 error	32.0%	31.0%	31.5%	31.0%	31.0%	31.0%	32.5%	32.5%	33%	37.0%	94.0%
VGG-19 Top5 error	12.0%	12.0%	12.0%	12.5%	12.0%	12.0%	12.5%	12.5%	12.5%	17.0%	88.5%
VGG-16 Top1 error	35.5%	35.5%	34.5%	35.5%	35.0%	35.5%	35.5%	35.5%	36.5%	39.5%	95.0%
VGG-16 Top5 error	13.0%	13.0%	13.0%	13.0%	13.0%	13.0%	13.0%	13.0%	13.0%	15.0%	81%

Better to use diff. integer vs. fractional bits for neurons vs. weights

Convolution Loops in Deep CNNs


```
for (no = 0; no < \text{Nof}; no ++) \longrightarrow Loop-4

for (y = 0; y < \text{Noy}; y =+ S) \longrightarrow Loop-3

for (x = 0; x < \text{Nox}; x =+ S) \longrightarrow Loop-2

for (ni = 0; ni < \text{Nif}; ni ++) \longrightarrow Loop-2

for (ky = 0; ky < \text{Nky}; ky ++) \longrightarrow Loop-1

for (kx = 0; kx < \text{Nkx}; kx ++) \longrightarrow Loop-1

pixel_L(no; x, y) += pixel_{L-1}(ni; x + kx, y + ky) \times weight_{L-1}(ni, no; kx, ky);

pixel_L(no; x, y) = pixel_L(no; x, y) + bias(no);
```

 Four level of loops exist per image computation, unrolling and order of loops are crucial for memory, comm.

Convolution Loop Optimization

- Loop unrolling
 - Loop 1: parallelize k*k conv.
- Loop tiling
 - On-chip memory vs. DRAM
- Loop interchange
 - Sequential order of loops

	Kernel Window (width/height)		Input Feature Map (width/height)		Output Feature Map (width/height)		# of Input Feature Maps	# of Output Feature Maps	
Convolution Loops	Loop-1		Loop-3		Loop-3		Loop-2	Loop-4	
Convolution Dimensions	Nkx	Nky	Nix	Niy	Nox	Noy	Nif	Nof	
Loop Tiling	Tkx	Tky	Tix	Tiy	Tox	Toy	Tif	Tof	
Loop Unrolling	Pkx	Pky	Pix	Piy	Pox	Poy	Pif	Pof	

Design objectives:

 minimize computing latency, maximize data re-use, (min. on-chip mem. access) minimize partial sum storage, minimize DRAM access

Convolution Loop Optimization

Across the output feature maps of N_{of} Scan within one input feature map with $X \times Y$ Across the input feature maps of N_{if} MAC within a kernel window of $K \times K$

Loop-4 Loop-3

Loop-2

Loop-1

- Proposed strategy
 - Unroll Loop 3 & 4 to max. pixel / weight reuse, reduce on-chip buffer acc.
 - First compute intra-tiling Loop 1 & 2, serially, to minimize # of partial sums
 - Store the Loop 1 & 2 data in on-chip buffer
 - Compute Loop 4 before 3 in inter-tiling order, to re-use pixels in buffer
- Related work: Eyeriss (ISSCC 2016, ISCA 2016)
 - Unrolled Loop 1 & 3
 - Further pixel / weight reuse by unrolling Loop 4 cannot be achieved
 - Loop 1 unrolling: insufficient parallelism, kernel size difference

Dataflow in Convolution Layers

Number (e.g. 14) denote (y,x) location of pixels (e.g. y=1, x=4)

Cycle 1/2/4/5/7/8: pixel shift

→ sliding overlapped pixels reused
Cycle 3/6: new pixel transfer

- Loop-1: Nkx×Nky cycles
- Loop-1 & Loop-2: Nkx×Nky×Nif cycles

On-Chip Storage vs. Off-Chip Comm.

- Estimated results shown for various Toy & Tof values
- Altera Arria-10 FPGA (GX570-1150): 36-54Mb on-chip memory

Proposed Accelerator Architecture

- Pox*Poy*Pof PEs and Poy input pixel registers
- Maximize input data re-use across different output feat. maps

Top-Level CNN Acceleration System

- Implemented with parametrized Verilog scripts
- On-board: 2 banks of DDR3L SDRAM

Comparison with Prior Works

	[10] VGG	[9] VGG	[8] VGG	This work: VGG
FPGA	Zynq XC7Z045	Stratix-V GSD8	Virtex-7 VX690t	Arria-10 GX 1150
Frequency (MHz)	150	120	150	150
# Operations (GOP)	30.76	30.95	30.95	30.95
Number of Weights	50.18 M	138.3 M	138.3 M	138.3 M
Precision (all fixed)	16 bit	8-16 bit	16 bit	8-16 bit
DSP Utilization	780 (89%)	1,963 ^d	$3,600^{d}$	1,518 (100%)
Logic Utilizationa	183K (84%)	262K ^d	693K ^d	161K (38%)
On-chip RAM ^b	486 (87%)	2,567 ^d	1,470 ^d	1,900 (70%)
Latency/Image (ms)	224.6	262.9	151.8	47.97
Throughput (GOPS)	136.97	117.8	203.9	645.25

- VGG-16: 13 convolution layers, 5 pooling layers,
 3 FC layers, 138.3 million parameters
- For VGG model, lowest latency & highest throughput of 645 GOPS achieved for end-to-end operation

End-to-End Latency Breakdown

- Convolution layers dominates the total latency (70.0%)
- DMA_conv (SDRAM transaction delay of conv. weights & input/output pixels): 10.1% of the overall latency,
- FC computing time is hidden by FC weights transfer delay through DMA (DMA_FC)

Outline

- We are mainly focusing on the sorting function
 - Hardware and memory constraints
 - Distance based clustering [JSSC'13]
 - Pre-processing techniques for autonomous learning [DAC'15]
 - Boundary based clustering [VLSI'16]
 - Neuromorphic clustering [VLSI'16]
- Some of remaining questions in this area
- Conclusions
- Reference

Concept of Sparse Coding

- Learn an overcomplete dictionary by unsupervised training
- Encode an input using a small set of dictionary elements (sparse feature extraction)

Time-Multiplexing Bus

 A neuron spike is encoded by its address, called address event (AE)

Time-Multiplexing Bus

• Neuron 0 fires

Time-Multiplexing Bus

- Neuron 1 and 3 fire at the same time
- Collision needs to be resolved by an arbiter

Error Tolerance

