Localização de Pontos INF2604 – Geometria Computacional

Waldemar Celes

Departamento de Informática, PUC-Rio

Agenda

Localização de pontos

Par próximo

Teorema de Jordan

► Toda curva contínua fechada que não se cruza divide o plano em três regiões: interior, exterior, fronteira

Teorema de Jordan

► Toda curva contínua fechada que não se cruza divide o plano em três regiões: interior, exterior, fronteira

Problema

- ▶ Dado um polígono simples P e um ponto p, localizar p em relação a P:
 - ▶ No interior, no exterior ou na fronteira

Teorema de Jordan

► Toda curva contínua fechada que não se cruza divide o plano em três regiões: interior, exterior, fronteira

Problema

- ▶ Dado um polígono simples P e um ponto p, localizar p em relação a P:
 - ▶ No interior, no exterior ou na fronteira

Teorema de Jordan

► Toda curva contínua fechada que não se cruza divide o plano em três regiões: interior, exterior, fronteira

Problema

- ▶ Dado um polígono simples P e um ponto p, localizar p em relação a P:
 - ▶ No interior, no exterior ou na fronteira

Localização de ponto em relação a uma reta L definida pelos pontos ${\bf a}$ e ${\bf b}$

Localização de ponto em relação a uma reta L definida pelos pontos ${\bf a}$ e ${\bf b}$

Reta L divide o plano em 2 semi-planos

- ► À esquerda
- ► À direita

Localização de ponto em relação a uma reta *L* definida pelos pontos **a** e **b**

Reta L divide o plano em 2 semi-planos

- ► À esquerda
- ▶ À direita

Localizar **p** em relação a *L*:

- ► No semi-plano à esquerda
- ► No semi-plano à direita
- ► Sobre *L*

Localização de ponto em relação a uma reta *L* definida pelos pontos **a** e **b**

Reta L divide o plano em 2 semi-planos

- ► À esquerda
- ▶ À direita

Localizar **p** em relação a *L*:

- ► No semi-plano à esquerda
- ► No semi-plano à direita
- ► Sobre *L*
 - ► Antes de a
 - ► Em a
 - ► Entre **a** e **b**
 - **▶** Em **b**
 - ► Depois de **b**

Ponto \mathbf{p} estará à esquerda de L sse:

$$\vec{v} = \mathbf{b} - \mathbf{a}$$
 $\vec{w} = \mathbf{p} - \mathbf{a}$
 $v_{\perp} = [-v_y, v_x]^T$
 $v_{\perp} \cdot \vec{w} > 0$

Ponto \mathbf{p} estará à esquerda de L sse:

$$ec{v} = \mathbf{b} - \mathbf{a}$$
 $ec{w} = \mathbf{p} - \mathbf{a}$
 $v_{\perp} = [-v_y, v_x]^T$
 $v_{\perp} . ec{w} > 0$

Ou:

$$\mathit{orient} < \mathbf{a}, \mathbf{b}, \mathbf{p} > = \left| egin{array}{ccc} 1 & \mathit{a}_{\mathsf{x}} & \mathit{a}_{\mathsf{y}} \ 1 & \mathit{b}_{\mathsf{x}} & \mathit{b}_{\mathsf{y}} \ 1 & \mathit{p}_{\mathsf{x}} & \mathit{p}_{\mathsf{y}} \end{array}
ight| > 0$$

W. Celes

Ponto \mathbf{p} estará à esquerda de L sse:

$$\vec{v} = \mathbf{b} - \mathbf{a}$$
 $\vec{w} = \mathbf{p} - \mathbf{a}$
 $v_{\perp} = [-v_y, v_x]^T$

$$v_{\perp}.\vec{w}>0$$

Ou:

$$\mathit{orient} < \mathbf{a}, \mathbf{b}, \mathbf{p} > = \left| egin{array}{ccc} 1 & \mathit{a}_{\mathsf{x}} & \mathit{a}_{\mathsf{y}} \ 1 & \mathit{b}_{\mathsf{x}} & \mathit{b}_{\mathsf{y}} \ 1 & \mathit{p}_{\mathsf{x}} & \mathit{p}_{\mathsf{y}} \end{array}
ight| > 0$$

Ou:

$$\vec{u} = \vec{v} \times \vec{w}$$
$$u_z > 0$$

Ponto sobre L: caso degenerado

$$v_{\perp}.\vec{w}=0$$

Qual das 5 regiões?

Ponto sobre L: caso degenerado

$$v_{\perp}.\vec{w}=0$$

Qual das 5 regiões?

- ▶ Se $|v_x| > |v_y|$:
 - $ightharpoonup p_{x} < a_{x}$: antes de **a**
 - $p_x = a_x$: em **a**
 - $a_x < p_x < b_x$: entre **a** e **b**
 - $ho_x = b_x$: em **b**
 - $ho_x > b_x$: depois de **b**

- ▶ Se $|v_v| > |v_x|$:
 - $ightharpoonup p_v < a_v$: antes de **a**
 - $ightharpoonup p_y = a_y$: em **a**
 - ► $a_y < p_y < b_x$: entre **a** e **b**
 - $ightharpoonup p_y = b_y$: em **b**
 - $p_y > b_y$: depois de **b**

Localização de ponto em relação a um triângulo T definido pelos pontos ${\bf a},\,{\bf b}$ e ${\bf c}$

Considere triângulo $T < \mathbf{a}, \mathbf{b}, \mathbf{c} >$

Orientação positiva (anti-horária)

Localização de ponto em relação a um triângulo T definido pelos pontos ${\bf a},\,{\bf b}$ e ${\bf c}$

Considere triângulo $T < \mathbf{a}, \mathbf{b}, \mathbf{c} >$

Orientação positiva (anti-horária)

Uma solução:

► Classificar **p** em relação a cada uma das 3 retas

Localização de ponto em relação à triângulo $T < \mathbf{a}, \mathbf{b}, \mathbf{c} >$

Solução alternativa:

- Determinar as coordenadas baricêntricas
 - Identifica região onde ponto se encontra

$$\mathbf{p} = \lambda_a \mathbf{a} + \lambda_b \mathbf{b} + \lambda_c \mathbf{c}$$
 $\lambda_a + \lambda_b + \lambda_c = 1$

$$\lambda_a = \begin{vmatrix} p_x & b_x & c_x \\ p_y & b_y & c_y \\ 1 & 1 & 1 \end{vmatrix}$$
 $\begin{vmatrix} a_x & b_x & c_x \\ a_y & b_y & c_y \\ 1 & 1 & 1 \end{vmatrix}$

Localização de ponto em relação a um polígono convexo P

▶ Polígono convexo: interseção dos semi-planos definidos por suas arestas

Localização de ponto em relação a um polígono convexo P

 Polígono convexo: interseção dos semi-planos definidos por suas arestas

Uma solução:

- ► Classificar **p** em relação a cada uma das arestas
 - ▶ Tempo esperado: O(n)

Localização de ponto em relação a um polígono convexo P

 Polígono convexo: interseção dos semi-planos definidos por suas arestas

Uma solução:

- Classificar p em relação a cada uma das arestas
 - ▶ Tempo esperado: O(n)

Localização de ponto em relação a um polígono convexo P

Explorando convexidade

- ► Considere o polígono convexo $P = \mathbf{p}_1 \mathbf{p}_2...\mathbf{p}_n$
- ▶ Considere a reta $L = \mathbf{p}_1 \mathbf{p}_k$, onde $k = \lfloor n/2 \rfloor$, dividindo o polígono em dois polígonos menores:

$$\begin{cases}
P^{-} = \mathbf{p}_1 \mathbf{p}_2 ... \mathbf{p}_k \\
P^{+} = \mathbf{p}_1 \mathbf{p}_{k+1} \mathbf{p}_{k+2} ... \mathbf{p}_n
\end{cases}$$

Localização de ponto em relação a um polígono convexo P

Explorando convexidade

- ► Considere o polígono convexo $P = \mathbf{p}_1 \mathbf{p}_2 ... \mathbf{p}_n$
- ► Considere a reta $L = \mathbf{p}_1 \mathbf{p}_k$, onde $k = \lfloor n/2 \rfloor$, dividindo o polígono em dois polígonos menores:

$$\begin{cases}
P^{-} = \mathbf{p}_1 \mathbf{p}_2 ... \mathbf{p}_k \\
P^{+} = \mathbf{p}_1 \mathbf{p}_{k+1} \mathbf{p}_{k+2} ... \mathbf{p}_n
\end{cases}$$

- ▶ Se **p** estiver em L e entre \mathbf{p}_1 e \mathbf{p}_k : $\mathbf{p} \in P$
- ▶ Se **p** estiver em L e fora do segmento: $\mathbf{p} \notin P$
- ▶ Se **p** estiver à esquerda de L, localiza **p** em P^+
- Se **p** estiver à direita de L, localiza **p** em P^-

Localização de ponto em relação a um polígono convexo P

Explorando convexidade

- ► Considere o polígono convexo $P = \mathbf{p}_1 \mathbf{p}_2 ... \mathbf{p}_n$
- ► Considere a reta $L = \mathbf{p}_1 \mathbf{p}_k$, onde $k = \lfloor n/2 \rfloor$, dividindo o polígono em dois polígonos menores:

$$\begin{cases}
P^- = \mathbf{p}_1 \mathbf{p}_2 ... \mathbf{p}_k \\
P^+ = \mathbf{p}_1 \mathbf{p}_{k+1} \mathbf{p}_{k+2} ... \mathbf{p}_n
\end{cases}$$

- ▶ Se **p** estiver em *L* e entre \mathbf{p}_1 e \mathbf{p}_k : $\mathbf{p} \in P$
- ▶ Se **p** estiver em L e fora do segmento: $\mathbf{p} \notin P$
- ▶ Se **p** estiver à esquerda de L. localiza **p** em P^+
- ▶ Se **p** estiver à direita de L, localiza **p** em P^-
- ▶ Tempo esperado: $O(\log n)$

Localização de ponto em relação a uma subdivisão planar S

► Determinar se ponto pertence a uma face, a uma aresta, sobre um vértice ou fora

Localização de ponto em relação a uma subdivisão planar S

▶ Determinar se ponto pertence a uma face, a uma aresta, sobre um vértice ou fora

Solução: considere que não existem vértices com mesma abscissa x

- Ordena vértices em x e traça retas verticais
 - Retas originam fatias na subdivisão planar
- ▶ Determinar fatia que contém p

Localização de ponto em relação a uma subdivisão planar S

▶ Determinar se ponto pertence a uma face, a uma aresta, sobre um vértice ou fora

Solução: considere que não existem vértices com mesma abscissa x

- ▶ Ordena vértices em x e traça retas verticais : $O(n \log n)$
 - Retas originam fatias na subdivisão planar
- ▶ Determinar fatia que contém \mathbf{p} : $O(\log n)$

- ► Arestas dentro de fatias não se cruzam
 - ► Trapézios/triângulos podem ser ordenados em *y*
- ▶ Determinar trapézio/triângulo que contém **p**

- Arestas dentro de fatias não se cruzam
 - ► Trapézios/triângulos podem ser ordenados em *y*
- ▶ Determinar trapézio/triângulo que contém **p**: $O(\log n)$

- Arestas dentro de fatias não se cruzam
 - ► Trapézios/triângulos podem ser ordenados em *y*
- ▶ Determinar trapézio/triângulo que contém **p**: $O(\log n)$

Mapa trapezoidal

- ► Cria retângulo envolvente para eliminar regiões ilimitadas
- ▶ De cada vértice, traça duas semi-retas: para baixo e para cima
 - Semi-retas interrompidas até interceptar uma aresta
- ► Número de trapézios (ou triângulos) nas fatias limitado

Mapa trapezoidal

Propriedades de mapa trapezoidal

▶ Número de vértices: $\#v \le 6n + 4$

▶ Número de trapézios: $\#e \le 3n+1$

Mapa trapezoidal

Propriedades de mapa trapezoidal

▶ Número de vértices: $\#v \le 6n + 4$

Número de trapézios: #e < 3n + 1

Memória requerida: O(n)

Par próximo

Problema: Dado um conjunto de pontos P, determinar o par mais próximo

Problema: Dado um conjunto de pontos P, determinar o par mais próximo

▶ Algoritmo força bruta: $O(n^2)$

Problema: Dado um conjunto de pontos P, determinar o par mais próximo

▶ Algoritmo força bruta: $O(n^2)$

Como reduzir o esforço computacional?

Problema: Dado um conjunto de pontos P, determinar o par mais próximo

▶ Algoritmo força bruta: $O(n^2)$

Como reduzir o esforço computacional?

- Se calcularmos a menor distância δ considerando $\mathbf{p}_1...\mathbf{p}_{k-1}$, ao considerar \mathbf{p}_k , temos duas situações:
 - $|\mathbf{p}_k \mathbf{p}_i| < \delta$, ou
 - ▶ O par mais próximo não se altera

Problema: Dado um conjunto de pontos P, determinar o par mais próximo

▶ Algoritmo força bruta: $O(n^2)$

Como reduzir o esforço computacional?

- Se calcularmos a menor distância δ considerando $\mathbf{p}_1...\mathbf{p}_{k-1}$, ao considerar \mathbf{p}_k , temos duas situações:
 - $|\mathbf{p}_k \mathbf{p}_i| < \delta$, ou
 - ▶ O par mais próximo não se altera
- ▶ Então: só precisamos considerar pontos a uma distância menor que δ de \mathbf{p}_k .

Algoritmo de varredura

- ► Manter lista *L* de candidatos, ordenados em *y*
- Ordenar pontos em x
 - Só precisamos verificar pontos $x_k x_i < \delta$
- ► Inicializar varredura
 - $\delta = d(\mathbf{p}_1, \mathbf{p}_2)$, faixa $[x_1, x_2]$ e $L = {\mathbf{p}_1, \mathbf{p}_2}$
- ightharpoonup Processar \mathbf{p}_k
 - ► Atualizar faixa para x_k
 - Remover candidatos da faixa: $x_k x_i > \delta$
 - ightharpoonup Acrescentar ightharpoonup à faixa, em ordem de y
 - ightharpoonup Verificar distância de pontos em L vizinhos a \mathbf{p}_k

- 1. Ordenar pontos em x
- 2. Inicializar varredura
- 3. Processar \mathbf{p}_k (n-2 vezes)
 - ► Atualizar faixa para *x_k*
 - Remover candidatos da faixa: $x_k x_i > \delta$
 - Acrescentar \mathbf{p}_k à faixa, em ordem de y
 - ightharpoonup Verificar distância de pontos em L a \mathbf{p}_k

- 1. Ordenar pontos em x: $O(n \log n)$
- 2. Inicializar varredura: O(1)
- 3. Processar \mathbf{p}_k (n-2 vezes)
 - ▶ Atualizar faixa para x_k : O(1)
 - ▶ Remover candidatos da faixa: $x_k x_i > \delta$: O(1) (amortizado)
 - Acrescentar \mathbf{p}_k à faixa, em ordem de y: $O(\log n)$
 - ▶ Verificar distância de pontos em L a \mathbf{p}_k : O(1)

- 1. Ordenar pontos em x: $O(n \log n)$
- 2. Inicializar varredura: O(1)
- 3. Processar \mathbf{p}_k (n-2 vezes)
 - ▶ Atualizar faixa para x_k : O(1)
 - ▶ Remover candidatos da faixa: $x_k x_i > \delta$: O(1) (amortizado)
 - ▶ Acrescentar \mathbf{p}_k à faixa, em ordem de y: $O(\log n)$
 - ▶ Verificar distância de pontos em L a \mathbf{p}_k : O(1)

- 1. Ordenar pontos em x: $O(n \log n)$
- 2. Inicializar varredura: O(1)
- 3. Processar \mathbf{p}_k (n-2 vezes)
 - ▶ Atualizar faixa para x_k : O(1)
 - ▶ Remover candidatos da faixa: $x_k x_i > \delta$: O(1) (amortizado)
 - ► Acrescentar \mathbf{p}_k à faixa, em ordem de y: $O(\log n)$
 - ▶ Verificar distância de pontos em L a \mathbf{p}_k : O(1)

- $ightharpoonup O(n \log n)$: tempo ótimo
 - ► No máximo 8 candidatos para verificar distância

