The correlation of a weight with the sum of a series of *k* identically, independently, distributed weights of which it is one

Theory

We assume that the weights are identically, independently distributed according to some distribution for which all moments are defined and that the variance of this distribution is σ_W^2 .

Thus, we require to establish the correlation of $W_{i'}$ with $T = \sum_{i=1}^k W_i$, where i' is some integer

between 1 and $\,k$. Given the assumptions, the following is true

$$Var(W_{i'}) = \sigma_W^2$$

$$Var(T) = Var\left(\sum_{i=1}^k X_i\right) = k\sigma_W^2$$

$$Cov(W_i, W_{i'}) = \sigma_W^2, = 0$$

$$\sum_{i=i'}^k Cov(W_{i'}, T) = \sigma_W^2 + (k-1)0 = \sigma_W^2,$$

It thus follows that

$$Corr(W_{i'},T) = \frac{Cov(W_{i'},T)}{\sqrt{Var(W_{i'})Var(T)}} = \frac{\sigma_w^2}{\sqrt{\sigma_W^2 k \sigma_W^2}} = \frac{1}{\sqrt{k}}.$$

Simulation

The attached simulations have been carried out in Mathcad® and in Genstat®. Mathcad is much faster but is more limited statistically and as regards plotting. It has been used to do a couple of simulations with larger run numbers. Genstat is slower but has more statistical and plotting capabilities. It has been used to do a number of plots with smaller run numbers but with empirically established confidence intervals. Both sets of plots support that the simple formula above is correct.

To investigate the correlation of a given weight with the sum of weights

Programming language is Mathcad

Theory

$$\mbox{Theory}(k) \coloneqq \frac{1}{\sqrt{k}} \qquad \qquad \mbox{This is the function that theory suggests applies}.$$

Define various functions

Define function to calculate weight for k trials in a meta-analysis where all trials are of equal size n

$$\begin{aligned} \text{Weight}(k,n) \coloneqq & \text{ for } i \in 1 ... k \\ & X \leftarrow \text{rnorm}(n,0,1) & \text{ Values for } n \text{ patients in trial } i \\ & V\text{mean}_i \leftarrow \frac{V\text{ar}(X)}{n} & \text{ Variance of the mean for trial } i \\ & \text{Weight}_i \leftarrow \frac{1}{V\text{mean}_i} & \text{ Weight for trial } i \end{aligned}$$

Define function to calculate correlation over m simulations

m is the number of simulations

Function to carry out 1 to k such correlations

$$\begin{aligned} Rho(k,n,m) \coloneqq & & \text{for } i \in 1 .. \, k \\ & & & \text{Rho}_i \leftarrow corrW(i,n,m) \\ & & & & & & & & \\ Rho & & & & & & & \end{aligned}$$

Plot results

Set parameter values

set values for k k:=1...20 set value for m m:=20000 set value for n n:=10 degrees of freedom $\nu:=n-1$ $\nu=9$

Theoretical and simulated correlations

Theory
*** Simulation

set value for n

n := 20

m := 10000

degrees of freedom

 $\nu\coloneqq n-1$

 $\nu = 19$

Theoretical and simulated correlations

Number of trials

Theory
XXX Simulation

Empirical

Empirical