

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058, India (Autonomous College Affiliated to University of Mumbai)

ESE Examination

Max. Marks: 60 Duration: 120 min. November 2020 Class: T.E. (V) Computer/IT Course Code: CE55/IT54

Name of the Course: Theoretical Computer Science

Instructions:

(1) All questions are compulsory

(2) Draw neat diagrams

(3) Assume suitable data if necessary

Q. No.		Max	CO-BL-PI
0.1		Marks	1 2 1 1 1
Q.1	Design finite automata for the language (Attempt any Two)	16	1-3-1.1.1
	1. $\Sigma = \{a,b\}$ L= $\{w \mid w \text{ contains odd number of 'a' and ends with 'ab'}\}$		
	2. $\Sigma = \{0,1\}$ L= $\{w \mid w \text{ contains an equal number of occurrences of } 01$		
	and 10 }		
	3. $\Sigma = \{a,b,c\}\ L = \{w \mid w _a + w _b \equiv 0 \text{ or } 2 \text{ mod } 3 \}$		
	4. $\Sigma = \{a,b\}$ L= $\{w \mid w = 2+3n, n \ge 0\}$		
Q.2	Using pumping lemma determine whether the languages	10	2-3-1.1.1
	$L_{rev} = \{ ww^r \mid w \in \{0,1\}^* \}$ where, a word w^r be reverse of w is regular		
	or non-regular		
Q.3	Design Turing Machine for the language $L = \{ \ a^i b^j c^k \ \ i,j,k \ \geq 1 \ , \ i=j+k \ \}$	14	4-3-1.1.1
Q.4	Construct a push down automata to recognize the language	10	4-4-2.2.3
	$L = \{a^n b^{2m} c^m d^{3n} m, n \ge 1. \text{ Check the output of PDA with valid \& invalid input given by user.} $		
	OR		
	Construct the Context free grammar equivalent to following PDA δ (q ₀ , b, Z ₀) = (q ₀ , ZZ ₀)		
	$\delta (q_0, \varepsilon, Z_0) = (q_0, \varepsilon)$		
	$\delta (q_0, b, Z) = (q_0, ZZ)$		
	$\delta (q_0, a, Z) = (q_1, Z)$		
	$\delta (q_1, b, Z) = (q_0, \varepsilon)$		
	$\delta (q_1, a, Z_0) = (q_0, Z_0)$		

Q.5	Simplify the following grammar and convert it into CNF	10	3-3-1.4.1
	$S \rightarrow a / aA / B / C$		
	$A \rightarrow aB / \epsilon$		
	$B \rightarrow Aa$		
	$C \rightarrow aCD$		
	$D \rightarrow ddd$		