Stroke Prediction

Motivation and Objective

Stroke is the **second leading cause of death globally**, responsible for **~11**% of total deaths ¹. Every **40 seconds**, someone in the US has a stroke. Every **3.5 minutes**, someone dies of stroke.

Stroke has major negative impacts to society and economy. Understanding key factors leading to stroke can potentially help reduce risk factors and improve early diagnosis.

Our **objective** is to predict a chance of stroke given health data to improve patient care.

Data

Stroke Prediction Dataset

11 clinical features for predicting stroke events

Source: kaggle

The data contains 5110 observations with 12 attributes (including patient id and stroke: Yes/No)

Data Pre-Processing

Update Representation

- Fill n/a. Save ~200 BMI nulls with KNN
- One hot encode. Convert categorical data columns into sparse representations.

Balance

- **Stratify.** Ensure sufficient minority class representation across train, validation & test sets.
- Balance. Balance train data with SMOTE (Synthetic Minority Over-sampling Technique)

Training and tuning of supervised ML options:

- Binary Logistic Regression
- Random Forest
- Deep Learning Keras Sequential
- Deep Learning with Hyper Parameters (Optuna)

Binary Logistic Regression

The model is biased towards missing actual stroke prediction

[Low False Positives at the cost of High False Negatives]

Validation Dataset		
Accuracy	0.95	
Precision	0.73	
Recall	0.53	
F-1 score	0.55	

Random Forest

The model improved in predicting actual stroke prediction at the cost of predicting of no stroke [Lower False Negatives at the cost of Higher False Positives]

Validation Dataset		
Accuracy	0.80	
Precision	0.56	
Recall	0.71	
F-1 score	0.56	

Deep Learning (improved accuracy experimentally)

Hidden layers = None, actv = tanh, opt = SGD, learning_rate=0.01, num_epochs=5

Hidden layers = 8, actv = relu, opt = SGD, learning rate=0.01, num epochs=5

Hidden layers = 16 actv = relu, opt = SGD, learning_rate=0.01, num_epochs=5

Hidden layers = 16, actv = tanh, opt = Adam, learning_rate=0.01, num_epochs=5

Keras Sequential

Deep Learning improved the key metrics, over RF, on the training and validation datasets (especially accuracy, 0.90 on the training data)

Validation Dataset		
Accuracy	0.86	
Precision	0.59	
Recall	0.76	
F-1 score	0.62	

Navigating and visualizing the Hyperparameter space

Keras Sequential (Optimized)

Improved model's accuracy, precision, recall and f-1 score, compared to other models.

Test Dataset		
Accuracy	0.92	
Precision	0.63	
Recall	0.67	
F-1 score	0.65	

Optuna Best Parameters

Hidden layers = 97, actv = tanh, opt = Adam, learning_rate=0.025342599583490992, num_epochs=5

Conclusion

Models predicted stroke with at least over 80% accuracy.

Similar performance of Random Forest and Keras Sequential models across all metrics.

Logistic Regression model predicted stroke with 95% accuracy, at cost of all other metrics.

Keras Sequential model + demonstrated the best performance.

Conclusion

Average cost of hospitalization of patients with stroke per year, per patient in the United States is nearly \$60,000.

Preventative measures include:

- Keep Average Glucose Level in normal range
- Be active
- Eat healthy
- Keep BMI in normal range

Thank you!