Artificial Intelligence Lab 1: Python Introduction

import numpy as np

Q1) [20 Marks] Random Number Generation

Using commands np.random.randint and np.random.rand, generate:

- (i) 100 random integers in the interval -10 to 10.
- (ii) uniform random numbers in the interval [0, 1].

Q2) [40 Marks] Operations with Vectors

- a) [20 Marks]: Write a function which accepts integer n as input and outputs a data set of n points of form $(x_i, y_i)_{i=1}^n$ in the 2-dimensional plane (chosen at random) in the interval $[-1, 1) \times [-1, 1)$. Here (x, y) means points are in 2-dimensions, and the subscript i in (x_i, y_i) means it is the ith data point.
- b) [10 Marks]: Given a point (x_{new},y_{new}) find k=5,10,15 nearest point in the data set generated in part a). Distance between point in data set and the new point is given by $\sqrt{(x_i-x_{new})^2+(y_i-y_{new})^2}$. Can you find a better command in numpy to do this? (Hint: Search in np.linalg).
- c) [10 Marks]: Given a point (x_{new}, y_{new}) find k = 5, 10, 15 points in the data set generated in part a) that make a positive angle with the new point. Implement this as a separate function.

Q3) **Plotting** [30 Marks]

- a) [10 Marks] Plot the data set in blue and the k points obtained in Q2 a) and Q2 b) in red.
- b) [10 Marks] Generate n = 100 random integers and plot their histogram.
- Q4)[10 Marks] Generate n=100 random points in the interval [-0.5,0.5]. Plot the sample mean given by

$$y_k = \frac{x_1 + \dots + x_k}{k} \tag{1}$$

as a function of k.

Also plot the functions $f_1=\sqrt{rac{1}{k}}, f_2=-\sqrt{rac{1}{k}}$

AI Lab 1

Q1) Generating random numbers (Basic Question) a) integer b) Real

Notation!

n' - points ; each point is in 2-dim (13,193) (12,192) (12,192) (12,194)

n = 4 $(x_1, y_1), (x_2, y_2), (x_3, y_3), (x_4, y_4)$ para

Collection n points (χ, γ)

(a) using function in R2 to plot (b) Histogram plot Qh $y_k = \frac{x_1 + x_2 + \dots x_k}{k}$ $y_1 = \frac{\chi_1}{1}, \quad y_2 = \frac{\chi_1 + \chi_2}{2}, \quad y_3 = \frac{\chi_1 + \chi_2 + \chi_3}{2}$ funning average