Attention Guided Graph Convolutional Networks for Relation Extraction

Zhijiang Guo

Joint work with Yan Zhang, Wei Lu

Relation Extraction

Sentence-level Relation Extraction

Cross-sentence n-ary Relation Extraction

Relation Extraction

Sentence-level Relation Extraction

Input

Carey will succeed Jack, who held the position for 15 years and will take on a new role as chairman.

Relation

per:title

Relation Extraction

Cross-sentence n-ary Relation Extraction

Input

The deletion mutation on exon-19 of EGFR gene was present in 16 patients, while the L858E point mutation on exon-21 was noted.

All patients were treated with getfitnib and showed a partial response.

Relation

sensitivity

Neural Approaches

Sequence-based Model

Dependency-based Model

Neural Approaches

Sequence-based Model

Operates only on the given text sequences

CNNs

Zeng et al., 2014, Wang et al., 2016

RNNs

Zhou et al., 2016, Zhang et al., 2017

CNNs + RNNs

Vu et al., 2016

Neural Approaches

Dependency-based Model

Incorporates the dependency tree into the model

Graph-LSTM

Peng et al., 2017

GCNs

Zhang et al., 2018

GRNs

Song et al., 2018

Pruning and Encoder

Remove irrelevant information from the tree while keeping relevant content

SDP + RNNs/CNNs

Xu et al., 2015ab

LCA Subtree + Tree-LSTM

Miwa et al., 2016

Pruned Tree + GCNs

Zhang et al., 2018

Example Graph

SDP + RNNs/CNNs (Xu et al., 2015ab)

Shortest dependency path between entities

LCA Subtree + Tree-LSTM (Miwa et al., 2016)

Subtree below lowest common ancestor (LCA) of entities

Pruned Tree + GCNs (Zhang et al., 2018)

Includes tokens distance *K* away from the LCA subtree

$$K = 0$$
 (LCA subtree)

Pruned Tree + GCNs

The pruned tree grows when *K* increases

$$K =$$

Pruned Tree + GCNs

A proper *K* value is required to maintain a balance between keeping and removing information

$$K = 2$$

Pruning	Encoder	Pros	Cons
SDP	RNNs/ CNNs	Computationally Efficient	Not a Structural Encoder May exclude information
LCA Subtree	Tree- LSTM	Structural Encoder	Hard to Parallelize May exclude information
Pruned Tree	GCNs	Computationally Efficient	Hard to find an optimal <i>K</i>

Pruning	Encoder	Pros	Cons
SDP	RNNs/ CNNs	Computationally Efficient	Not a Structural Encoder May exclude information
LCA Subtree	Tree- LSTM	Structural Encoder	Hard to Parallelize May exclude information
Pruned Tree	GCNs	Computationally Efficient	Hard to find an optimal <i>K</i>

Motivation: Is it possible to *learn* a pruning strategy *without* additional computational overhead?

Attention Guided GCNs (AGGCNs)

Consists of **M** identical blocks, each has 3 types of layers

М

- Attention Guided Layer
- Densely Connected Layer
- Linear Combination Layer

Attention Guided GCNs (AGGCNs)

Consists of **M** identical blocks, each has 3 types of layers

М

- Attention Guided Layer
- Densely Connected Layer
- Linear Combination Layer

Model GCNs Input

An adjacency matrix that represents the input graph

Attention Guided Layer

Rule-based pruning can be viewed as hard attention

V1	V2	V 3	V 4
1	1	0	0
1	1	1	0
0	1	1	1
0	0	1	1
	1 1	1 1 1 1 0 1	1 1 1 0 1 1

Attention Guided Layer

Rule-based pruning can be viewed as hard attention

	V1	V 2	V 3	V4	
V1	1	1	0	0	
V 2	1	1	1	0	l
V 3	0	1	1	1	
V 4	0	0	1	1	

Remove Node V1

		• —			
V1	1	0	0	0	
V 2	0		1	0	
V 3	0	1	1	1	
V 4	0	0	1	1	

V1 V2 V3 V4

Attention Guided Layer

Soft pruning: assign different weights to different edges

	V1	V2	V 3	V 4
V1	1	1	0	0
V 2	1	1	1	0
V 3	0	1	1	1
V 4	0	0	1	1

Attention Guided Layer

Soft pruning: assign different weights to different edges

	V1	V2	V 3	V4	
V1	1	1	0	0	
V 2	1	1	1	0	l
V 3	0	1	1	1	l
V 4	0	0	1	1	l

Assign Weights

	•
V1	0.9 0.1 0.0 0.0
V 2	0.1 0.2 0.7 0.0
V 3	0.1 0.2 0.7 0.0 0.0 0.5 0.1 0.4
374	0000000

V1 V2 V3 V4

Attention Guided Layer

Fully connected weighted graphs can capture **multihop** relations between nodes in a large graph

	V1 V2 V3 V4
V1	0.9 0.1 0.0 0.0
V 2	0.1 0.2 0.7 0.0
V 3	0.0 0.5 0.1 0.4
V4	0.0 0.0 0.8 0.2

Attention Guided Layer

Fully connected weighted graphs can capture **multihop** relations between nodes in a large graph

	V1 V2 V3 V4
V1	0.9 0.1 0.0 0.0
V 2	0.1 0.2 0.7 0.0
V 3	0.0 0.5 0.1 0.4
V 4	0.0 0.0 0.8 0.2

V1	0.6 0.1 0.1 <mark>0.2</mark>
V 2	0.1 0.1 0.7 0.1
V3	0.1 0.4 0.1 0.4
V4	0.1 0.0 0.8 0.2

V1 V2 V3 V4

Attention Guided Layer

Use **multi-head** (**N** head) **attention** (Vaswani et al., 2017) to construct **N** fully connected weighted graphs

	V1	V2	V 3	V4	
V1	1	1	0	0	l
V 2	1	1	1	0	l
	0	1	1	1	l
V 4	0	0	1	1	
V3 V4	0 0	1 0	1 1	1 1	

Attention Guided Layer

Use **multi-head** (**N** head) **attention** (Vaswani et al., 2017) to construct **N** fully connected weighted graphs

	V1	V2	V 3	V4
V1	1	1	0	0
V2	1	1	1	0
V 3	0	1	1	1
V4	0	0	1	1
				ı

	0.1	0.2	0.1	0.6
$\tilde{A}^{(1)}$	0.3	0.4	0.2	0.1
, ,	0.7	0.1	0.1	0.1
	0.3	0.3	0.3	0.6 0.1 0.1 0.1

N •

Attention Guided GCNs (AGGCNs)

Consists of **M** identical blocks, each has 3 types of layers

M

- Attention Guided Layer
- Densely Connected Layer
- Linear Combination Layer

Model Densely Connected Layer

Use densely connected **graph convolutional layers** (Guo et al., 2019) to better encode large graph

Attention Guided GCNs (AGGCNs)

Consists of **M** identical blocks, each has 3 types of layers

- Attention Guided Layer
- Densely Connected Layer
- Linear Combination Layer

1.30

Linear Combination Layer

Integrate resulting representations from **N** densely connected layers

Experiments

Cross-sentence n-ary relation extraction

PubMed (Peng et al., 2017)

Sentence-level relation extraction

TACRED (Zhang et al., 2017)

SemEval-10 Task 8 (Hendrickx et al., 2010)

Experiments

Cross-sentence n-ary relation extraction

PubMed (Peng et al., 2017)

Sentence-level relation extraction

TACRED (Zhang et al., 2017)

SemEval-10 Task 8 (Hendrickx et al., 2010)

PubMed Settings Types of Classification

Multi-Class

resistance or non-response, sensitivity, response, resistance and none

Binary-Class

binarize labels by grouping 4 relation as *yes* and treating none as *no*

PubMed Settings Number of Entities Per Relation

Ternary

3 entities are given for each relation

Binary

2 entities are given for each relation

PubMed: Binary-Class Baselines

Structural Encoder + Full tree/Pruned tree

Model	Input	Tenary-Acc	Binary-Acc
Graph-LSTM	full tree	82.0	78.5
DAG-LSTM	full tree	77.3	76.4
GRNs	full tree	83.2	83.6
GCNs	full tree	84.8	83.6
GCNs	pruned tree (<i>K</i> =0)	85.8	82.7
GCNs	pruned tree (<i>K</i> =1)	85.7	83.4
GCNs	pruned tree (<i>K</i> =2)	85.0	83.7

PubMed: Binary-Class

Pruned tree: hard to find an optimal K

Model	Input	Tenary-Acc	Binary-Acc
Graph-LSTM	full tree	82.0	78.5
DAG-LSTM	full tree	77.3	76.4
GRNs	full tree	83.2	83.6
GCNs	full tree	84.8	83.6
GCNs	pruned tree (<i>K</i> =0)	85.8	82.7
GCNs	pruned tree (<i>K</i> =1)	85.7	83.4
GCNs	pruned tree (K=2)	85.0	83.7

PubMed: Binary-Class

AGGCNs learns how to automatically select information

Model	Input	Tenary-Acc	Binary-Acc
Graph-LSTM	full tree	82.0	78.5
DAG-LSTM	full tree	77.3	76.4
GRNs	full tree	83.2	83.6
GCNs	full tree	84.8	83.6
GCNs	pruned tree (<i>K</i> =0)	85.8	82.7
GCNs	pruned tree (<i>K</i> =1)	85.7	83.4
GCNs	pruned tree (<i>K</i> =2)	85.0	83.7
AGGCNs	full tree	87.0	85.7

PubMed: Multi-Class

Pruned Tree or Full Tree?

Model	Input	Ternary-Acc	Binary-Acc
DAG-LSTM	full tree	51.7	50.7
GRNs	full tree	71.7	71.7
GCNs	full tree	77.5	74.3
GCNs	pruned tree (<i>K</i> =0)	75.6	72.3
GCNs	pruned tree (<i>K</i> =1)	78.1	73.6
GCNs	pruned tree (<i>K</i> =2)	77.9	73.1

PubMed: Multi-Class

AGGCNs: learn how to select and discard information

Model	Input	Tenary-Acc	Binary-Acc
DAG-LSTM	full tree	51.7	50.7
GRNs	full tree	71.7	71.7
GCNs	full tree	77.5	74.3
GCNs	pruned tree (<i>K</i> =0)	75.6	72.3
GCNs	pruned tree (<i>K</i> =1)	78.1	73.6
GCNs	pruned tree (<i>K</i> =2)	77.9	73.1
AGGCNs	full tree	79.7	77.4

Experiments

Cross-sentence n-ary relation extraction

PubMed (Peng et al., 2017)

Sentence-level relation extraction

TACRED (Zhang et al., 2017)

SemEval-10 Task 8 (Hendrickx et al., 2010)

TACRED

Model	Туре	Prec	Rec	F1
LR (Zhang et al., 2017)	Seq	73.5	49.9	59.4
PA-LSTM (Zhang et al., 2017)	Seq	65.7	64.5	65.1
SDP-LSTM (Xu et al., 2015)	Dep	66.3	52.7	58.7
Tree-LSTM (Tai et al., 2016)	Dep	66.0	59.2	62.4
C-GCNs (Zhang et al., 2018)	Dep	69.9	63.3	66.4
C-AGGCNs	Dep	72.3	64.6	68.2

SemEval

Model	Туре	F1
SVM (Rink and Harabagiu, 2010)	Seq	82.2
PA-LSTM (Zhang et al., 2017)	Seq	82.7
SDP-LSTM (Xu et al., 2015)	Dep	83.7
SDPTree (Miwa et al., 2016)	Dep	84.4
C-GCNs (Zhang et al., 2018)	Dep	84.8
C-AGGCNs	Dep	85.7

Ablation Test

Model	F1
C-AGGCNs	68.2
- Attention Guided Layer (AG)	66.9
- Densely Connected Layer (DC)	67.2
- AG, DC	66.7
- Feed Forward Network	67.8

Ablation Test

Model	F1
C-AGGCNs	68.2
- Attention Guided Layer (AG)	66.9
- Densely Connected Layer (DC)	67.2
- AG, DC	66.7
- Feed Forward Network	67.8

Results vs Training Size

Results vs Training Size

Conclusion

Contribution

A novel GCN model that is able to learn a soft pruning strategy for better relation extraction.

Future Work

Explore the connections between the proposed model with other neural models for modelling global structural information.

Thank You

Code Available

http://statnlp.org/research/ie/

Performance against Sentence Length

