Inhaltsverzeichnis

	0.1	Stetigl	xeit in einer Dimension	
	0.2	Zwei S	onderfälle	
1	Diff	Differentialrechnung in höheren Dimensionen		
	1.1	Topologie		
		1.1.1	Korollar	
		1.1.2	Konvention	
		1.1.3	Definition der ε -Umgebung	
		1.1.4	Topologische Grundbegriffe	
		1.1.5	Definition von offen und abgeschlossen	
		1.1.6	Beispiele	
		1.1.7	Satz	
		1.1.8	Satz	
		1.1.9	Satz	
		1.1.10	Definition von beschränkt und kompakt	
	1.2	Folgen		
		1.2.1	Definition von Konvergenz und Beschränktheit	
		1.2.2	Bemerkung	
		1.2.3	Satz von Bolzano Weierstraß	
		1.2.4	Abschließende Bemerkungen	
	1.3	Funkti	onsgrenzwerte und Stetigkeit	
		1.3.1	Definition	
		$1 \ 3 \ 2$	Definition Grenzwert/Limes	

Einführung

Stetigkeit in einer Dimension 0.1

f ist stetig in x_0 $\Leftrightarrow \quad \lim_{x \to x_0} f(x) = f(x_0)$

 $\Leftrightarrow \forall (x_n) \text{ mit } \lim_{n \to \infty} x_n = x_0 \text{ gilt } \lim_{n \to \infty} f(x_n) = f(x_0)$ $\Leftrightarrow \forall \varepsilon > 0 \quad \exists \delta \quad \text{mit} \quad |f(x) - f(x_0)| < \varepsilon \quad \forall x \in (x_0 - \delta, x_0 + \delta)$

Bemerkung: Der Grenzwert von Funktionen ist über den Grenzwert von Folgen definiert und kann auch nur so überprüft werden.

0.2Zwei Sonderfälle

Skalarfeld

Sei $f: \mathbb{R}^2 \to \mathbb{R}$

Visualisierung durch Höhenlinien: $H_c := \{x \in \mathbb{R}^n : f(x) = c\}$ Beispiel: $f(x,y) = x^2 + y^2$

Vektorfeld

Sei $f: \mathbb{R}^2 \to \mathbb{R}^2$

Beispiel: $f(x,y) = \begin{pmatrix} x \\ y \end{pmatrix}$

Kapitel 1

Differentialrechnung in höheren Dimensionen

1.1 Topologie

Skalarprodukt

Definition: $\langle x, y \rangle := x^{\top} y = \sum_{k=1}^{n} x_k y_k$ für $x, y \in \mathbb{R}^n$

Euklidische Norm

Definition:
$$||x||_2 := \sqrt{\langle x, x \rangle} = \sqrt{\sum_{k=1}^n x_k^2}$$

1.1.1 Korollar

Sei
$$x \in \mathbb{R}^n$$
 mit $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$

1.

$$\max_{1\leqslant k\leqslant n}|x_k|\leqslant \|x\|\leqslant \sqrt{n}\max_{1\leqslant k\leqslant n}|x_k|$$

2. Cauchy-Schwarz-Ungleichung:

$$\forall x, y \in \mathbb{R}^n : |\langle x, y \rangle| \leqslant ||x|| \cdot ||y||$$

Begründung (nicht Beweis!) durch alternative Definition: $\langle x,y\rangle = \|x\|\cdot\|y\|\underbrace{\cos\alpha}_{\leqslant 1}$

Dabei ist α der Winkel der zwischen x und y eingeschlossen wird. Daraus folgt:

 $|\langle x,y\rangle|=\|x\|\cdot\|y\|\Leftrightarrow x,y$ sind lin. unabhängig : $x=\lambda y$ oder $y=\lambda x$ für $\lambda\in\mathbb{R}$

- 3. $\|\cdot\|$ ist eine Norm. Eine Norm hat folgende Eigenschaften:
 - (i) $||x|| \ge 0$ und $||x|| = 0 \Leftrightarrow x = 0$
 - (ii) $\|\lambda x\| = |\lambda| \cdot \|x\|$
 - (iii) $||x + y|| \le ||x|| + ||y||$ Dreiecksungleichung

1.1.2 Konvention

Für $A \subset \mathbb{R}^n$ gilt für das Komplement $A^c = \mathbb{R}^n \setminus A$

1.1.3 Definition der ε -Umgebung

Sei $x_0 \in \mathbb{R}^n$ und $\varepsilon > 0$, dann gilt für die ε -Umgebung $U_{\varepsilon}(x_0)$ von x_0 :

$$U_{\varepsilon}(x_0) := \{ x \in \mathbb{R}^n : ||x - x_0|| < \varepsilon \}$$

Bemerkung: Die punktierte ε -Umgebung ist definiert als: $\dot{U}_{\varepsilon} = U_{\varepsilon}(a) \setminus \{a\}$

1.1.4 Topologische Grundbegriffe

Sei $A \subset \mathbb{R}^n$, dann heißt ein Punkt $x_0 \in \mathbb{R}^n$

- (i) ein **innerer Punkt**, wenn gilt $\exists \ \varepsilon > 0$ mit $U_{\varepsilon}(x_0) \subset A$ Menge aller inneren Punkte: $\mathring{A} = \{x \in \mathbb{R}^n : \exists \ \varepsilon > 0 \text{ mit } U_{\varepsilon}(x) \subset A\}$
- (ii) ein **Berührungspunkt**, wenn $\forall \varepsilon > 0$ gilt $U_{\varepsilon}(x_0) \cap A \neq \emptyset$ abgeschlossene Hülle: $\overline{A} = \{x \in \mathbb{R}^n : \forall \varepsilon > 0 \text{ gilt } U_{\varepsilon}(x_0) \neq \emptyset\}$
- (iii) ein **Häufungspunkt**, wenn $\forall \varepsilon > 0$ gilt $(U_{\varepsilon}(x_0) \setminus \{x_0\}) \cap A \neq \emptyset$ Die Menge aller Häufungspunkte wird mit A' bezeichnet.
- (iv) ein **Randpunkt**, wenn $\forall \varepsilon > 0$ gilt $U_{\varepsilon}(x_0) \cap A \neq \emptyset$ und $U_{\varepsilon}(x_0) \cap A^c \neq \emptyset$ Menge aller Randpunkte oder auch **Rand** von A wird mit ∂A bezeichnet.

Korollar

- (i) $\mathring{A} \subset A$
- (ii) $\mathring{A} \subset \overline{A}$
- (iii) $\partial A \subset \overline{A}$
- (iv) $\overline{A} = \mathring{A} \cup \partial A$
- (v) $\overline{A} = A \cup \partial A$ (schwächere Aussage als (iv))

1.1.5 Definition von offen und abgeschlossen

Eine Menge $A \subset \mathbb{R}^n$ heißt

- (i) **offen**, wenn $A = \mathring{A}$ gilt (A besteht nur aus inneren Punkten)
- (ii) **abgeschlossen**, wenn $\partial A \subset A$ gilt (wenn der Rand in der Menge enthalten ist)

1.1.6 Beispiele

- 1. Jede ε -Umgebung $U_{\varepsilon}(x_0 \in \mathbb{R}^n)$ ist offen
- 2. Sei $I \subset \mathbb{R}$, dann gilt
 - (i) I ist offen, wenn I=(a,b) mit $-\infty \leqslant a \leqslant b \leqslant \infty$ für a=b gilt $I=\varnothing$ mit I offen und für $a=-\infty, b=\infty$ ist I auch offen

1.1. TOPOLOGIE 7

(ii)
$$I$$
 ist abgeschlossen, wenn $I = [a, b]$ mit $a, b \in \mathbb{R}$ oder $I = (-\infty, b]$ oder $I = [a, \infty)$ oder $I = (-\infty, \infty) = \mathbb{R}$

(die reellen Zahlen sind offen und abgeschlossen zugleich)

1.1.7 Satz

für $A \subset \mathbb{R}^n$ sind folgenden Aussagen äquivalent:

- (i) A ist abgeschlossen $A = \overline{A}$
- (ii) A enthält alle Häufungspunkte, $A' \subset A$
- (iii) A enthält alle Randpunkte, $\partial A \subset A$
- (iv) A^c ist offen

1.1.8 Satz

- (i) \varnothing und \mathbb{R}^n sind offen.
- (ii) Die Vereinigung beliebig vieler offene Mengen ist offen:

$$\bigcup_{j \in J} (O_j \text{ offen}) = O \text{ offen}$$

(iii) Der Durchschnitt endlich vieler offener Mengen ist offen:

$$\bigcap_{j=1}^{n} (O_j \text{ offen}) = O \text{ offen}$$

Bemerkung: Für unendlich viele offene Mengen gilt dies nicht immer:

$$\bigcap_{k=1}^{\infty} \left(-\frac{1}{k}, \frac{1}{k} \right) = (-1, 1) \cap \left(-\frac{1}{2}, \frac{1}{2} \right) \cap \left(-\frac{1}{3}, \frac{1}{3} \right) \cap \dots = \{0\} \text{ abgeschlossen}$$

1.1.9 Satz

- (i) \varnothing und \mathbb{R}^n sind abgeschlossen.
- (ii) Der Durchschnitt beliebig vieler abgeschlossener Mengen ist abgeschlossen:

$$\bigcap_{j \in J} (A_j \text{ abgeschlossen}) = A \text{ abgeschlossen}$$

(iii) Die Vereinigung endlich vieler abgeschlossenen Mengen ist abgeschlossen:

$$\bigcup_{j=1}^{n} (A_j \text{ abgeschlossen}) = A \text{ abgeschlossen}$$

Bemerkung: Für unendlich viele abgeschlossene Mengen gilt dies nicht immer:

$$\bigcup_{n=1}^{\infty} \left[-1 + \frac{1}{n}, 1 - \frac{1}{n} \right] = \{0\} \cup \left[-\frac{1}{2}, \frac{1}{2} \right] \cup \left[-\frac{2}{3}, \frac{2}{3} \right] \cup \dots = (-1, 1) \text{ offen}$$

1.1.10 Definition von beschränkt und kompakt

Eine Menge $A \subset \mathbb{R}^n$ heißt:

- (i) **beschränkt** wenn $\exists c > 0 \text{ mit } ||x|| < c \quad \forall x \in A$
- (ii) kompakt, wenn A abgeschlossen und beschränkt ist.

1.2 Folgen

1.2.1 Definition von Konvergenz und Beschränktheit

Eine Folge $(a_k)_{k=1}^{\infty}$ heißt

(i) konvergent, wenn gilt

$$\exists a \in \mathbb{R}^n \quad \text{mit} \quad \forall \varepsilon > 0 \quad \exists N(\varepsilon) : \quad ||a_k - a|| \quad \forall k \geqslant N(\varepsilon)$$

Dann ist a der Grenzwert der Folge:

$$a = \lim_{k \to \infty} a_k$$
 oder $a_k \stackrel{k \to \infty}{\to} a$

(ii) **beschränkt**, wenn $\exists c > 0 \text{ mit } ||a_k|| < c \quad \forall k$

1.2.2 Bemerkung

Wenn eine Folge
$$(a_k) = \begin{pmatrix} a_1^{(k)} \\ \vdots \\ a_n^{(k)} \end{pmatrix} \in \mathbb{R}^n$$
 konvergiert, so gilt

(i) \Leftrightarrow jede Komponente $\left(a_1^{(k)}\right),...,\left(a_n^{(k)}\right)$ konvergiert:

$$\lim_{k \to \infty} a_k = a \quad \Leftrightarrow \quad \lim_{k \to \infty} a_i^{(k)} = a_i \quad \text{für } i = 1, ..., n$$

(ii) \Leftrightarrow (a_k) erfüllt das Cauchy-Kriterium:

$$\forall \varepsilon > 0 \quad \exists N(\varepsilon) : \quad ||a_k - a_l|| < \varepsilon \quad \forall k, l \geqslant N(\varepsilon)$$

- (iii) \Leftrightarrow jede Teilfolge von (a_k) konvergiert gegen $a: a_{l_k} \overset{k \to \infty}{\to} a$ für $l_1 \geqslant 1, l_2 \geqslant 2, \dots$
- (iv) der Grenzwert a ist eindeutig.

1.2.3 Satz von Bolzano Weierstraß

Jede beschränkte Folge im \mathbb{R}^n besitzt einen konvergente Teilfolge.

Beispiel: Sei
$$(a_k) = \begin{pmatrix} (x_k) \\ (y_k) \end{pmatrix}$$
 eine beschränkte Folge im \mathbb{R}^2 $\Rightarrow (x_k), (y_k)$ sind beschränkte Folgen Satz von Bolzano Wierstraß $\exists (x_k), (y_k)$ sind konvergent

1.2.4 Abschließende Bemerkungen

(i) Grenzwert Rechenregeln können aus dem $\mathbb R$ für $\mathbb R^n$ übernommen werden.

$$z.b. \ a_k \overset{k \to \infty}{\to} a, \quad b_k \overset{k \to \infty}{\to} b \quad \Rightarrow \quad a_k^\top b_k \overset{k \to \infty}{\to} a^\top b$$

- (ii) Es gibt viele Zusammenhänge zwischen den Eigenschaften von Folgen und den topologischen Eigenschaften von Mengen.
 - z.b. Sei $A\subset\mathbb{R}^n$ und $a\in\mathbb{R}^n$ ein Häufungspunkt

$$\Leftrightarrow \exists (a_k)_{k=1}^{\infty} \text{ mit } a_k \in A \setminus \{a\} \, \forall \, k \quad \text{ und } \quad a_k \stackrel{k \to \infty}{\to} a$$

1.3 Funktionsgrenzwerte und Stetigkeit

1.3.1 Definition

Eine Funktion $f:A\subset\mathbb{R}^n\to\mathbb{R}^m$ nennt man eine Funktion mit n-Veränderlichen.

$$f(x_1, ..., x_n) = f\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}) = \begin{pmatrix} f_1(x_1, ..., x_n) \\ \vdots \\ f_m(x_1, ..., x_n) \end{pmatrix} \quad \text{mit} \quad f_1, ..., f_m : \mathbb{R}^n \to \mathbb{R}$$

1.3.2 Definition Grenzwert/Limes

Sei $f:A\subset\mathbb{R}^n\to\mathbb{R}^m$ und $a\in\overline{A}$. Ein $b\in\mathbb{R}^m$ heißt Grenzwert von f für $x\to a$, wenn gilt:

$$\forall \varepsilon > 0 \quad \exists \ \delta(\varepsilon) > 0 : \quad ||f(x) - b|| < \varepsilon \quad \forall \ x \in \dot{U}_{\delta(\varepsilon)} \cap A$$