

Midterm exam 2018, questions

Software Quality Assurance (University of Ottawa)

Scan to open on Studocu

Question 1 (15 marks)

Suppose a C function find_tax used as part of a software for income tax calculation. The header of the function is as follow:

Each parameters (*taxable_income*, *age* and *number_of_dependents*) must be greater or equal to 0. find_tax returns the *net income tax* (NET_TAX) according to following calculations:

- NET TAX = BASE TAX CREDITS
- BASE TAX is found as follow
 - if taxable_income ≤ 42707 BASE TAX = taxable_income * 15%
 - if 42707 < taxable_income ≤ 85414 BASE TAX = 6406 + (taxable_income - 42707) * 22%
 - if 85414 < taxable_income ≤ 132406 BASE_TAX = 15802 + (taxable_income - 85414) * 26%
 - if taxable_income > 132406 BASE_TAX = 28020 + (taxable_income - 132406) * 29% CREDITS = 10822 + AGE_CREDIT + DEPENDANTS CREDIT
 - if age ≥ 65, AGE_CREDIT = 6720, otherwise AGE_CREDIT = 0
 - if number_of_dependents * 4300 ≤ 12900, DEPENDANTS_CREDIT = number_of_dependents * 4300 otherwise DEPENDANTS_CREDIT = 12900

<i>i</i>) Using the Equivalence Class Partitioning approach,	partition find_	_tax inputs in Equ	ivalence Classes (8	marks).

Page 3 of 9

ii) Provide a minimum number of test cases covering all valid equivalence classes, and two invalid equivalence class listed in i). Use boundary values when possible (7 marks).

Test Case	bossible (7 marks). Test Data	Equivalence Classes
number		

Question 2 (15 marks)

Consider the following description of an automated tomato/tulip dispensing machine:

If the user pushes button A on the machine, (s)he receives a tomato, unless the machine is out of tomatoes, in which case the message "choose B or C" is displayed for two seconds. If the user pushes button B and the machine is not out of tulips, (s)he receives a tulip. If the user pushes button C, (s)he receives a mild electric shock. Also, if the user pushes button B and the machine is out of tulips, (s)he gets a tomato, unless the machine is also out of tomatoes, in which case (s)he receives a mild electric shock.

Consider that only one button can be pushed at the same time.

The following causes and effects have been identified for this problem:

- c1: user pushes button A
- c2: user pushes button B
- c3: user pushes button C
- c4: machine is out of tomatoes
- c5: machine is out of tulips
- e1: user receives a tomato
- e2: machine displays message "choose B or C" for two seconds
- e3: user receives a tulip
- e4: user receives a mild electric shock

i) Complete the following causes-effects graph according to the automated tomato/tulip dispensing machine description (6 marks).

ii) Give a boolean formula corresponding to effects *e1* (user receives a tomato) and *e4* (user receives a mild electric shock) (*4 marks*).

Page 6 of 9		
i) Give variants for effect e4 using the each-condition/all-conditions approach (4 marks)		

Question 3 (12 marks)

Consider the following method.

```
int computeVal(int x, int y) {
1 z = 0;
2 if (x > y) {
3 if (y > 5) {
4 z = x;
5 } else {
   z = y;
7
8 }
9 if ((z == 4) || (z < 0)) {|}
10 z = z * x;
11 }
12 if (x \le y) {
13 z = z + 1;
14 } else {
15 z = z - 1;
16 }
17 return z;
18 }
```

i) Provide a simplified flowchart for method compute Val annotated with data flow actions (4 marks)

Page 9 of 9

ii) Provide a *minimum* number of test cases such that 100% instruction coverage of method *computeVal* is achieved. (4 marks).

Test	Test Data	Path Covered
Case		

iii) Provide a <u>minimum</u> number of test cases that satisfy the minimum loop coverage of method *computeVal*. You can re-use test cases from ii) by referring to them. (4 marks).

Test	Test Data	Path Covered
Case		