

AXP2101 Single Cell NVDC PMU with E-gauge

1. Features

- 3.9V–5.5V Input Operating Range and Support single Cell Battery
- Battery fuel gauge: E gauge 3.0
- Support TWSI(Two Wire Serial Interface) and RSB(Reduced Serial Bus)
- 100mA-1A Linear charger, CV accuracy +/-0.5%
- Single input to support USB input
- High battery discharge efficiency with 50 mOhm
- High integration includes all MOSFETS, current sensing and loop compensation
- Power off current <20uA (BATFET off, RTCLDO output on)
- 4 DCDC

DCDC1:1.5~3.4V, IMAX=2A;

DCDC2: 0.5~1.2V, 1.22~1.54V, IMAX=2A

DCDC3: 0.5~1.2V, 1.22~1.54V, 1.6~3.4V, IMAX=2A

DCDC4: 0.5~1.2V, 1.22~1.84V, IMAX=1.5A

DCDC5: 1.2V, 1.4~3.7V, IMAX=1A.

11 LDOS

RTCLDO1~2: 1.8V/2.5V/3V/3.3V, 30mA; Support RTCLDO1 supplied by backup battery (button battery)

ALDO1~4: analog LDO,0.5~3.5V, 0.1V/step, IMAX=300mA

BLDO1~2: analog LDO,0.5~3.5V, 0.1V/step, IMAX=300mA

CPUSLDO: for CPUs, 0.5~1.4V, IMAX=30mA DLDO1~2: analog LDO or power switch, 0.5~3.5V/ 0.5~1.4V, IMAX=300mA

- startup sequence and default voltage of DCDC/LDO setting
- Protection

Input Over-Voltage Protection
Battery Thermal Sense Hot/Cold Charge Suspend
Programmable Safety Timer for Charger
Die Thermal Balance for Charger
Thermistor Shutdown

DCDC Over-Voltage/Under-Voltage Protection

2. Applications

SDV, Car DVR, IPC, smart doorbell, smart speaker

3. Description

AXP2101 is a highly integrated power management IC(PMIC) targeting at single cell Li-battery(Li-ion or Li-polymer) applications that require multi-channel power conversion outputs. It provides an easy and flexible power management solution for multi-core processors to meet the complex and accurate requirements of power control.

AXP2101 supports Linear charge. Besides, it supports 15 channel power outputs which include 5 channel DC-DC and 11 channel LDO. To ensure the security and stability of the system, AXP2101 provides multiple channels 14-bit ADC for voltage/temperature monitor and integrates protection circuits such as over-voltage protection(OVP), over-current protection(OCP) and over-temperature protection(OTP). Moreover, AXP2101 features a unique E-Gauge™ (Fuel Gauge) system, making power gauge easy and exact.

AXP2101 supports TWSI and RSB for system to dynamically adjust output voltages, charge current and configure interrupt condition.

Device Information

Part Number	Package	Body Size
AXP2101	QFN-40	5mm * 5mm

Simplified Application Diagram

Revision 0.2

4. Revision History

Revision	Date	Description
V 0.1	April 28,2019	Initial version
V 0.2	Jun 24,2019	Update DCDC5 Description,Register list, Package and
		Ordering Information

Contents

1. Features	1
2. Applications	1
3. Description.	1
4. Revision History	2
5. Pin Configuration and Functions.	
6. Specifications.	<i>6</i>
6.1 Absolute Maximum Ratings ⁽¹⁾	<i>6</i>
6.2 ESD Ratings	6
6.3 Recommended Operating Conditions	<i>6</i>
6.4 Thermal Information	<i>6</i>
7. Detail Description	7
7.1 Overview	7
7.3 Serial Interface Communication.	<u>9</u>
7.4 Power Path	9
7.5 Power On/Off and reset.	
7.5.1 Power on reset(POR)	9
7.5.2 Power up from BAT	9
7.5.3 Power up from VBUS	
7.5.4 System power on/off management	10
7.6 Multi-Power Outputs	12
7.7 Charger	13
7.7.1 Characteristics	
7.7.2 Charging condition	13
7.7.3 Charging process	
7.7.4 Charging protection	14
7.7.5 Charging indication	
7.8 BATFET	17
7.9 RBFET	17
7.10 ADC	17
7.11 E-Gauge	17
7.12 IRQ /BACKUP	18
7.12.1 IRQ	18
7.12.2 BACKUP	18
8. Register	18
8.1 Register List	18
8.2 Register Description.	20
10 Package and Ordering Information.	42
10.1 Package Information	42
10.2 Marking information	43
10.3 Carrier	43
10.4 Storage	44
10.5 Baking	45
10. Reflow Profile	45

5. Pin Configuration and Functions

Pin Description

NO.	Pin Name	Туре	Description	
1	CHGLED	AO	Charge status output to indicate various charger operation.	
2	VREF	P	Internal reference voltage	
3	GND	Al	Analog ground for interrupt analog and digital circuits.	
4	FB3	P	DCDC3 feedback pin	
5	LX3	Р	Inductor pin for DCDC3	
6	VIN3	Р	DCDC3 input source	
7	VIN4	Р	DCDC4 input source	
8	LX4	Р	Inductor pin for DCDC4	
9	FB4	Р	DCDC4 feedback pin and Switch input source	
10	CPULDOS	Р	Output pin of CPULDOS	
11			Output pin of DLDO2,and can be configured as the Output pin of	
11	DLDO2/DC4SW	DO	DC4SW	
12	BLDO1	Р	Output pin of BLDO1	
13	BLDOIN	Р	BLDO input source	
14	BLDO2	Р	Output pin of BLDO2	
15	ALDO4	Р	Output pin of ALDO4	
16	ALDO3	Р	Output pin of ALDO3	
17	ALDOIN	Р	ALDO input source	
18	ALDO1	Р	Output pin of ALDO1	
19	ALDO2	Р	Output pin of ALDO2	

20	DLDO1/DC1SW	Р	Output pin of DLDO1,and can be configured as the Output pin of DC1SW	
21	FB1	Р	DCDC1 feedback pin	
22	LX1	Р	Inductor pin for DCDC1	
23	VIN1	Р	DCDC1 input source	
24	VIN2	Р	DCDC2 input source	
25	LX2	Р	Inductor pin for DCDC2	
26	FB2	Al	DCDC2 feedback pin	
27	VBackup	Р	input pin of backup battery	
28	VRTC	Р	RTC power output	
29	PWROK	DIO	Power good indication output	
30	PWRON	DIO	Power On-Off key input,Internal 100k pull up to VINT	
			Temperature qualification voltage input.	
			Connect a negative temperature coefficient thermistor from TS to	
31	TS	AI	GND.	
31	13	AI	A current source is injected to TS pin and convert TS voltage to a	
			digital code. Charging suspends when TS pin is out of range.	
			Besides, TS can be connected to external input signal.	
32	GPIO1/FB5/RTC LDO2	DIO	Output pin of GPIO1 and can be configured as the Output pin of RTCLDO2 or DCDC5 feedback pin.	
	LDOZ		Battery connection point.	
33	BAT	P	The internal BATFET is connected between BAT and SYS.	
	D/II		Connect a 1uF capacitor closely to the BAT pin.	
			System connection point.	
34	VSYS	P	The internal BATFET is connected between BAT and SYS. Connect	
			two 22uF capacitors closely to the SYS pin.	
35	sw	Р	Inductor pin for DCDC5	
36	VMID	P	VMID Power output	
37	VBUS	Р	Vbus input	
			Open-drain interrupt Output.	
20	IDO	DIO	Connect the IRQ to a logic rail via a 4.7kΩ resistor. The IRQ pin	
38	IRQ	DIO	sends a low level signal to host to report charger device status and	
			fault.	
39	SDA	DIO	Data pin for serial interface, needs a 2.2KΩ Pull High.	
40	SCK	DI	SCK pin for serial interface, needs a 2.2KΩ Pull High.	
EP	EP	GND	Exposed Pad, needs to be connected to system ground	

6. Specifications

6.1 Absolute Maximum Ratings (1)

Over operating free-air temperature range (unless otherwise noted)

SYMBOL	DESCRIPTION	MIN	MAX	UNIT
VBUS		-0.3	12	V
Others pin (exp vbus,pgnd,	Valta as you salveith yourset to CND	-0.3	7	V
gnd)	Voltage range(with respect to GND)	-0.3	7	V
PGND to GND		-0.3	0.3	V
Та	Operating Temperature Range	-40	85	$^{\circ}$ C
Tı	Junction Temperature Range	-40	125	$^{\circ}$
Ts	Storage Temperature Range	-65	150	$^{\circ}$
T _{LEAD}	Maximum Soldering Temperature (at leads,		30	$^{\circ}$
	10sec)			

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

	•	VALUE	UNIT
V	Human body model(HBM) ⁽¹⁾	±4000	V
V_{ESD}	Charged device model(CDM) ⁽²⁾	±750	٧

⁽¹⁾ Reference: ESDA/JEDEC JS-001-2014. JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

SYMBOL	DESCRIPTION	MIN	MAX	UNIT
V _{IN}	Input voltage(VBUS)	3.9	5.5	V
I _{IN}	Input current(VBUS)		2	А
I _{SYS}	Output current		2	Α
V _{BAT}	Battery voltage		4.4	V
I _{BAT}	charging current		1	Α

6.4 Thermal Information

	Thermal Metric ⁽¹⁾	VALUE	UNIT	
θ_{JA}	Junction-to-ambient thermal resistance	30		
θ_{JB}	θ_{JB} Junction-to-board thermal resistance 10			
θ _{JC}	Junction-to-case(top) thermal resistance	22.8		

(1)Thermal metrics are calculated refer to JEDEC document JESD51.

⁽²⁾ Reference: ESDA/JEDEC JS-002-2014. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7. Detail Description

7.1 Overview

AXP2101 is a highly integrated power management IC(PMIC) targeting at single cell Li-battery (Li-ion or Li-polymer) applications that require multi-channel power conversion outputs. It provides an easy and flexible power management solution for multi-core processors to meet the complex and accurate requirements of power control. AXP2101 supports 100mA-1A Linear charge. Besides, it supports 15 channel power outputs which include 5 channel DC-DC and 11 channel LDO. To ensure the security and stability of the system, AXP2101 provides multiple channels 14-bit ADC for voltage/temperature monitor and integrates protection circuits such as over-voltage protection(OVP), over-current protection(OCP) and over-temperature protection(OTP). Moreover, AXP2101 features a unique E-Gauge™ (Fuel Gauge) system, making power gauge easy and exact.

AXP2101 supports TWSI and RSB for system to dynamically adjust output voltages, charge current and configure interrupt condition.

7.2 Function Block Diagram

7.3 Serial Interface Communication

AXP2101 supports TWSI protocol and performs as a TWSI slave device with default address 0x68/0x69. When AXP2101 powers on, SCK/SDA pin of TWSI will be pulled up to IO Power and then Host can adjust and monitor AXP2101 with rich feedback information.

Besides, AXP2101 supports RSB for Allwinner platform with address 0x01D1 or 0x0273 by customer.

Note: "Host" here refers to system processor.

7.4 Power Path

VBUS as the charger input, connecting to VSYS pin through a Linear charger, provides power to system and charges battery through BATFET. Charge current can be adjusted automatically according to the feedback current which is detected with an internal resistor. When system current (I_{SYS}) changes, the detected current will change, and then the current change signal will feed back to charge loop to adjust the charge current to the setting value.

When battery voltage is above V_{SYS} , BATFET is turned on and PMU enters supplement mode. When in supplement mode, if the discharge current is lower than 1A, PMU controls the voltage(V_{DS}) between system and battery and keeps V_{DS} at 30mV to avoid entering and exiting supplement mode repeatedly. As discharge current increases, PMU adjusts BATFET to be fully on and V_{DS} increases linearly. If an adapter is not inserted, system current is provided only by battery. At this time, BATFET is at fully on state.

7.5 Power On/Off and reset

7.5.1 Power on reset(POR)

AXP2101 is powered from the higher voltage between VBUS and BAT. When VBUS voltage(V_{VBUS}) is higher than V_{VBUS_UVLOZ} or BAT voltage(V_{BAT}) is higher than V_{BAT_UVLOZ} , the sleep comparator, battery depletion comparator and BATFET driver are be activated. All registers are reset to the default value. TWSI communication is active and Host can communicate with PMU.

7.5.2 Power up from BAT

If only battery is present and V_{BAT} is higher than depletion threshold (V_{BAT_DPLZ}), BATFET, connecting battery to system, is off by default and need to be turned on by pressing the PWRON key or inserting an adapter.

7.5.3 Power up from VBUS

When VBUS is inserted, PMU detects the input voltage to start up the reference voltage and the bias circuit. When V_{VBUS} is higher than V_{VBUS_UVLOZ} , the VBUS insertion IRQ is sent and the register bit reg49H[7] is set to 1 to indicate VBUS is inserted. Then PMU detects the input source whether it is good or not. If Vbus is good, the RBFET is open and Vsys is working.

7.5.3.1 Good source condition

PMU needs to check the current capability of the input source. Only when the input source meets the following

requirements can it start the buck converter.

- a. VBUS voltage is lower than VACOV
- b. VBUS voltage is higher than V_{VBUSMIN} when pulling I_{BADBUS}(typical 30mA)

Once the input source meets the requirements above, the register bit reg00H[5](VBUS_GD) is set to 1 to indicate the input source is good.

7.5.3.2 Set input voltage limit(V_{INDPM})

AXP2101 supports wide range of input voltage(3.9V \sim 5.5V). V_{INDPM} can be set through reg15H[3:0]. The range of V_{INDPM} is from 3.88V to 5.08V and the step is 80mV.

When VBUS voltage reaches V_{INDPM} , the charge current will decrease automatically until the current is zero. If I_{SYS} is over the input power supply capability, V_{SYS} will drop. If V_{BAT} is above V_{SYS} , PMU will enter the supplement mode.

7.5.4 System power on/off management

PMU has power off and power on status. When at off state, all voltage outputs are turned off except RTCLDO . At this time, the total power consumption is typically 25uA.

7.5.4.1. Power on-off Key (POK)

EN/PWRON pin can be configured as PWRON pin or EN pin by customization. The default is PWRON pin. The Power on-off Key (POK) can be connected between PWRON pin and GND of AXP2101. AXP2101 can automatically identify the four status (Long-press, Short-press, Negative edge, Positive edge) and then correspond respectively.

7.5.4.2.Power on

- 1. When EN/PWRON pin is configured as PWRON pin, power on sources include:
- (1). POK. AXP2101 can be powered on by pressing and holding POK for a period of time that longer than "ONLEVEL".
- (2). VBUS low go high. The function can be configured by customization.
- (3). VBAT low go high. The function can be configured by customization.
- (4). IRQ Low level. IRQ pin is low level for more than 16ms, AXP2101 will be powered on. The function can be configured by customization.
- (5). Battery is charged to normal (Vbat>3.3V and is charging). The function can be configured by customization.
- 2.When EN/PWRON pin is used as EN pin, AXP2101 can be powered on by EN pin from low go high(0.6V).

After power on, DC-DC and LDO will be soft booted in preset timing sequence. When IRQ low level power on, AXP2101 can be configured for fast power on by REG2B, and the DCDsC/LDOS start sequence can be configured by REG28~REG2B.

7.5.4.3.Power Off

1.When EN/PWRON pin is configured as PWRON pin, power off sources include:

(1). POK. AXP2101 can be powered off by pressing and holding POK for a period of time that longer than "OFFLEVEL". The function can be configured by REG22H [1] and REG22H [3:2] decides whether the PMU auto turns on or not when it shuts down after OFFLEVEL POK.

- (2). Write "1" to REG10H [0].
- (3). VSYSGOOD high go low. When VSYS<VOFF or VBUS>7V, AXP2101 will be powered off. The default of VOFF is 2.6V which can be configured by REG24H[2:0].
- (4). The output voltage of DCDC is 15% lower than the setting value. The function can be configured by REG23H [4:0].
- (5). The output voltage of DCDC is much larger than their setting. The function can be configured by REG23H [5].
- (6). Die temperature is over the warning level2(145 °C). The function can be configured by REG22H [2].

7.5.4.4.Sleep and wakeup

When the running system needs to enter Sleep mode, Maybe one or several power outputs should be disabled or changed to other voltage. Wakeup can be initiated by the following sources:

- 1.Software wakeup (REG26H [1] is set to 1)
- 2.IRQ pin wakeup (REG 26H [4] =1 and IRQ pin is low level for more than 16ms)

These sources will make the all the PMU power outputs resume to the default voltage or the setting voltage, which is configured by REG26H[2], and all shutdown powers will resume by the startup sequence.

See the control process under sleep and wakeup modes as below:

Write "1" to REG26H [0] to start the Wakeup, and PMU will record the configuration of REG80H, REG90H, REG90H, REG91H

Write REG80H, Disable corresponding power or modify the voltage

Sleep and wait to be Wakeup

N

Wakeup sources

Y

All power resume to the default or setting voltage

7.5.4.5.Reset

The PMU has system reset and power on reset.

System reset

System reset means the registers will be reset when PMU is powered on. at system reset state, all voltage outputs are turned off except RTCLDO and VREF. There are three ways of system reset.

(1). PWROK drive low.

The PWROK pin can be used as the reset signal of application system. During AXP2101 startup, PWROK outputs low level, which will be pulled up to startup the system after output voltage reaches the regulated value.

When application system works normally, If the PWROK pin is driven low by external key or other reasons, the PMU will be restarted. The function can be configured by REG10H [3].

- (2). Write "1" to REG10H [1] to restart the PMU.
- (3). Watchdog timeout. The function can be configured by REG18[0] and REG19[5:4]

Power on reset

Power on reset means the registers will be reset when PMU is powered up. at power on reset state, all voltage outputs are turned off including RTCLDO and VREF.

7.6 Multi-Power Outputs

The following table has listed the multi-power outputs and their functions of AXP2101.

Output Path	Time	Default Voltage	Startup	Application Suggestion	Load
Output Patri	Туре	Default voltage	Sequence	Application Suggestion	Capacity(Max)
DCDC1	BUCK	3.3V	3	IO/USB	2000mA
DCDC2	BUCK	0.9V	3	CPU	2000mA
DCDC3	BUCK	0.9V	2	VSYS	2000mA
DCDC4	BUCK	1.1V	1	DDR	1500mA
DCDC5	BUCK	1.2V	OFF	N/A	1000mA
ALDO1	LDO	1.8V	3	N/A	300mA
ALDO2	LDO	2.8V	OFF	N/A	300mA
ALDO3	LDO	3.3V	3	N/A	300mA
ALDO4	LDO	2.9V	OFF	N/A	300mA
BLDO1	LDO	1.8V	OFF	N/A	300mA
BLDO2	LDO	2.8V	OFF	N/A	300mA
DLDO1	LDO	3.3V	OFF	N/A	300mA
DLDO2	LDO	1.2V	OFF	N/A	300mA
VCPUS	LDO	0.9V	1	CPUs/Reference of DDR	30mA
RTC-LDO1	LDO	1.8V	Always on	RTC	30mA
RTC-LDO2	LDO	OFF	OFF	N/A	30mA

AXP2101 includes 5 synchronous step-down DCDCs, 11 LDOs and one switch. The work frequency of DC-DC 1/4 is 3MHz and DCDC2/3/5 is 1.5MHz. External small inductors and capacitors can be connected. In addition, 4-ch DCDCs can be set in fixed PWM mode or auto mode (automatically switchable according to the load). See register REG81H.

DCDC2/3 has DVM enable option. In DVM mode, when there is a change in the output voltage, DCDC will change to the new targeted value step by step. It supports two kinds of DVM slope: 1 step/15.625us and 1step/31.250us. The slope can be chosen by REG80H [5].

AXP2101 can configure the default voltage, the startup sequence and other control of all power output.

Startup sequence: The startup sequence has eight levels from 0 to 7. When the sequence is 0, it means the output is booted at the first step. When the sequence code is 1, it means the output is booted at the second step. When the sequence is 7, it means the output is not booted.

Default voltage setting: The default voltage of each channel can be set to each step within the output range.

7.7 Charger

7.7.1 Characteristics

- uers Range of input voltage:3.9V~5.5V, PWM charger, supports single cell Li-battery
- Pre-charge current settable (IPRE-CHG, reg61 [3:0]), default:125mA, range: 0mA~200mA, step:25mA
- Fast charge current settable (I_{CHG}, reg62[4:0]), default:1024mA, range: 0mA~200mA,step:64mA, 200~1000mA,step:100mA
- Target charge voltage settable (V_{REG}, reg64[2:0]), default:4.2V, range: 4.0v/4.1v/4.2v/4.35v/4.4v/4.6v
- Accuracy of target voltage: $\pm 0.5\%$ (testing ambient temperature: 25° C, target voltage: 4.2V)

7.7.2 Charging condition

- VBUS is present and available, V_{VBUS}>V_{BAT}+V_{SLEEPZ}
- Input source detection finishes (reg00H [5] =1)
- Charging is enabled (reg18H [1] =1)
- Die temperature is lower than T_{SHUT}
- When TS pin is used to detect battery temperature, battery temperature is within the chargeable range
- V_{BAT} is lower than V_{BAT} OVP
- No charger safety timer fault

7.7.3 Charging process

When PMU meets all charging conditions, it can complete the whole charging process without the participation of Host. The charging status can be known from the register bits reg01H[2:0]. The default values of charging parameters are shown as following. Host can modify registers to optimize the values through TWSI.

Table 7-1

Parameter	Default value
Charging voltage	4.208V
Charging current	1.024A

Pre-charging current	125mA
Termination current	125mA
Temperature profile	Cold/hot
Safety timer	12hours

7.7.3.1. Pre-charge

When V_{BAT} is lower than $V_{BATLOWV}(3V)$, the charger is under pre-charge mode where charging current is limited to a value of $I_{PRE-CHG}$. Safety time is set through reg67H [1:0] and its default value is 50 minutes. If pre-charge process times out, PMU will stop charging and send a corresponding IRQ to Host. The function of safety timer can be disabled through reg67H [2].

7.7.3.2. Constant current charge

Once V_{BAT} is higher than $V_{BATLOWV}$ and lower than V_{REG} , the charger is under constant current charge mode. It will charge with constant current I_{CHG} .

7.7.3.3. Constant voltage charge

When V_{BAT} reaches target voltage (V_{REG}), the charger enters constant voltage charge mode. In this stage, the charger keeps the output voltage constant and step down charging current gradually, in order to fully charge battery.

When V_{BAT} is above V_{RECHG} and the charging current reduces under termination current (I_{TERM}), AXP2101 reports charger done, stops charging (charger enable bit is still 1) and turns off BATFET. Meanwhile, IRQ is sent to Host.

When AXP2101 is in regulation of input current, input voltage or temperature, the function of charging termination configured through reg63 [4] is temporarily disabled and the speed of safety timer slows down. Whether to set safety timer during DPM or thermal regulation depends on reg67H [7].

7.7.3.4. Re-charge

After charge done, if V_{BAT} falls below V_{RECHG} , PMU will automatically enable charger without reinserting adapter. No matter whether V_{BAT} is above V_{RECHG} or not, the charger is enabled when an adapter is inserted.

7.7.3.5. Battery detection

As long as an AC adapter is present and usable, battery detection will be enabled to detect whether battery is connected. Battery detection function is enabled by default and can be disabled through reg68H [0]. If the function is disabled, PMU considers that battery is always present. The detection result is saved in reg00H [3]

7.7.4 Charging protection

7.7.4.1. charger safety timer

Once starting pre-charge mode, PMU will enable timer1. If PMU cannot enter constant current charge mode from pre-charge within 50min (set through reg67H [1:0]), PMU will enter battery safe mode and send IRQ to indicate the battery may be damaged.

When the charger enters into constant current charge mode, PMU will enable timer2. If PMU cannot finish the whole charge cycle within 12 hours (set through reg67H [5:4]), PMU will enter battery safe mode and send IRQ to indicate the battery may be damaged.

Timing speed of timer1 or timer2 is relevant with actual charge current. The smaller the actual charge current, the slower timing speed is.

7.7.4.2. Battery safe mode

In battery safe mode, the charger always charges with 10mA current. PMU can quit battery safe mode with one of the following methods:

- V_{BAT}>V_{RECHG}
- Adapter removal
- Charger enable bit (reg18H [1]) is reset to 1
- Safety timer1 enable bit or safety timer2 enable bit is reset to 1

7.7.4.3. PMU die temperature protection

AXP2101 has built-in temperature protection function through ADC to monitor internal temperature.

Under charging mode, the temperature point of thermal regulation can be set through reg65H [1:0]. When die temperature rises up to the setting point, the charging current will be decreased to decrease heat. When thermal regulation works, actual charge current is lower than the setting value and thermal regulation status(reg00H [1]) is set to 1. If die temperature rises up to T_{SHUT} (145°C), IRQ is sent, PMU is poweroff. When die temperature falls below hysteretic threshold (120°C), PMU is not poweron automatically.

7.7.4.4. Battery temperature protection

AXP2101 can monitor battery temperature, when TS pin is used to detect battery temperature and parallel with charger(reg50H[4]=0). The battery temperature sensitive resistor is connected between TS pin and GND. The suggestion resistance should be 10Kohm at 25°C ambient temperature. Through TS pin, PMU outputs constant current which can set through reg50H [1:0] to adapt different resistance. When the resistance is 10Kohm, the current should be set to 50uA. The enable bit of TS current source is configured through reg50H [3:2]. When current passes through the temperature sensitive resistor, PMU gets a detected voltage and calculates its value through ADC circuit. Take for example, TH11-3H103F temperature sensitive resistor of Mitsubishi Company. Using 50uA current source, the relationship among temperature, equivalent resistance, detected voltage and ADC data is as following.

Table 7-2

Temperature	equivalent resistance	detected voltage	ADC DATA
-20℃	63.00Kohm	3.150V	189Ch
-15℃	50.15Hohm	2.508V	1398h
-10℃	40.26Kohm	2.013V	FBAh
-5℃	32.55Kohm	1.628V	CB8h
0℃	26.49Kohm	1.325V	A5Ah
5℃	21.68Kohm	1.084V	878h
10℃	17.78Kohm	0.889V	6F2h
15℃	14.63Kohm	0.732V	5B8h
20℃	12.07Kohm	0.604V	4B8h
25℃	10.00Kohm	0.500V	3E8h

30℃	8.320Kohm	0.416V	340h
35℃	6.954Kohm	0.348V	2B8h
40℃	5.839Kohm	0.292V	248h
45℃	4.924Kohm	0.246V	1ECh
50℃	4.171Kohm	0.209V	1A2h
55°C	3.549Kohm	0.177V	162h
60℃	3.032Kohm	0.152V	130h

During battery charging process, if TS pin voltage is lower than VHTF-CHG or higher than VLTF-CHG (VHTF-CHG and VLTF-CHG can be set through reg55H and reg54H. The default value of VLTF-CHG is set around 0° C and VHTF-CHG around 45° C), which indicates battery temperature is too high or too low, then the charger is paused and IRQ is sent to notify Host. When battery temperature is back to the normal range, the charger will recovery automatically.

During battery discharging mode, if TS pin voltage is lower than VHTF-WORK or higher than VLTF-WORK (VHTF-WORK and VLTF-WORK can be set through reg57H and reg56H. The default value of VLTF-WORK is set around -10° C and VHTF-WORK around 55° C), which indicates battery temperature is too high or too low, then the boost is paused and IRQ is sent to notify Host. When battery temperature is back to the normal range, the boost will recovery automatically.

High temperature protection threshold hysteresis for VHTF-CHG and VHTF-WORK can be set through reg53H. Low temperature protection threshold hysteresis for VLTF-CHG and VLTF-WORK can be set through reg52H. The range of temperature detection can be expanded by adding more resistors.

Some battery may have no temperature sensitive resistor. Under this situation, TS pin can be pulled down to GND with a 10Kohm resistor externally or set as external input of ADC through register.

7.7.5 Charging indication

CHGLED pin uses open-drain/push-pull output method. It is internally pulled up to LDO. Its output drive capability is above 10mA. Detail function control is shown as the following table.

Table 7-4

	Hi-Z	No charging(conditions are not met or battery
		charged)
REG69H [2:1] = 00		Charger internal abnormal alarm(including timer
(Type A CHGLED)	25% 1Hz pull low/Hi-Z jump	out 、 die temperature over temperature 、 battery
Open Drain		temperature out of charging range)
	25% 4Hz pull low/Hi-Z jump	Input source or battery over voltage
	Pull low	Charging
	Hi-Z	No VBUS, and power supply by battery
REG69H [2:1] = 01	25% 1Hz pull low/Hi-Z jump	Charging
(Type B CHGLED)	25% 4Hz pull low/Hi-Z jump	Alarm, including input source or battery over
Open Drain		voltage, battery temperature out of charging range,
		timer out ,die temperature over temperature

	Pull low	No battery or charge finished, and power supply by VBUS
REG90H[2:0]=10 Cfg chgled	The output status is controlled	by REG69H[5:4]

Note: LED is on when CHGLED is low.

7.8 BATFET

BATFET connects system and battery. The on-resistance is low to 50mohm (point to point).

7.9 RBFET

RBFET connects VMID and VBUS. The on-resistance is low to 100mOhm (point to point). It supports input and output current limit function. In charger mode, the input current limit value of RBFET is set through reg16H [2:0].

7.10 ADC

AXP2101 has a low speed 14 Bits SAR ADC for measuring BAT voltage, Vbus voltage, Vsys voltage, TS voltage and die temperature.

000H 001H 002H No. **Channel function FFFH** 0 **BAT** voltage 0mV 1mV 2mV 8.192V ... 0mV 1mV 2mV 8.192V 1 Vbus voltage 2 Vsys voltage 0mV 1mV 2mV 8.192V 3 TS voltage 0mV 0.5mV 1mV 4.096V ... die temperature 0mV 0.1mV 2mV 0.8192V

Table 7-5

Note: ADC data is 14 bits. In order to get the complete data, TWSI must read the high 6 bits firstly and then the low 8 bits.

7.11 E-Gauge

The Fuel Gauge comprises of 3 modules: Rdc calculation module; OCV (Open Circuit Voltage) and Coulomb counter module; and calibration module. The Fuel Gauge system is able to export information about battery capacity percentage (regA4H), Battery Voltage (reg34H, reg35H). The Fuel Gauge can be enabled or disabled through reg18H [3]. The Battery low warning level can be set through reg1AH, and IRQ will be sent out to alert the platform when the battery capacity percentage is lower than the warning level set through reg1AH.

Once a default battery is selected for a particular design, it is highly recommended to calibrate the battery to achieve better Fuel Gauge accuracy. Once the calibration data are available, user can write the calibration information to battery parameter (REGA1) on each boot. Additionally, the Fuel Gauge system is capable to learn the battery characteristic on each full charge cycle. Information such as battery maximum capacity and Rdc will be updated automatically over time.

7.12 IRQ/BACKUP

7.12.1 IRQ

AXP2101 has an IRQ pin which is used to indicate whether there interrupt events occur.

PMU Interrupt Controller monitors the trigger events such as over voltage, over current, PWRON pin signal, over temperature and so on. When the events occur and their IRQ enabled bits are set to 1 (Refer to registers reg40H/41H/42H), corresponding IRQ status will be set to 1 (Refer to registers reg48H/49H/4AH), and IRQ pin will be pulled down. When Host detects triggered IRQ signal, Host will scan through the IRQ Status registers and respond accordingly. Meanwhile, Host will reset the IRQ status by writing "1" to status bit.

7.12.2 BACKUP

AXP2101 has a backup pin which is used to connect backup battery. It is the source of RTCLDO1 when pmu has only backup battery.

When PMU is poweron, the backup battery also cancan be charged by configuring reg18H[2]. The charger is working under linear mode with 100uA charge current and the termination voltage can be configured by reg6AH in range from 2.6V to 3.3V (default 2.9V).

The backup pin can also be configured for the RTCLDO2 by customization.

8. Register

8.1 Register List

Address	Description	R/W
0X00	PMU status1	R
0X01	PMU status2	R
0X04-0X07	DATA BUFFER	RW
0X10	PMU common configure	RW
0X12	BATFET control	RW
0X13	Die temperature control	RW
0X14	Minimum system voltage control	RW
0X15	Input voltage limit control	RW
0X16	Input current limit control	RW
0X17	Reset the fuel gauge	RW
0X18	Charger, fuel gauge , watchdog on/off control	RW
0X19	Watch dog control	RW
0X1A	Low Battery warning threshold setting	RW
0X20	PWRON status	R
0X21	PWROFF status	R
0X22	PWROFF_EN	RW
0X23	PWROFF of DCDC OVP/UVP control	RW

Address	Description	R/W
0X24	Vsys voltage for PWROFF threshold setting	RW
0X25	PWROK setting and PWROFF sequence control	RW
0X26	Sleep and wakeup control	Rw
0X27	IRQLEVEL/OFFLEVEL/ONLEVEL setting	RW
0X28	Fast pwron setting 0	Rw
0X29	Fast pwron setting 1	RW
0X2A	Fast pwron setting 2	RW
0X2B	Fast pwron setting and control	RW
0X30	ADC Channel enable control	RW
0X34-3D	ADC data	RW
0X40-0X42	IRQ Enable	RW
0X48-0X4A	IRQ Status	RW
0X50	TS pin CTRL	RW
0X52	TS_HYSL2H setting	RW
0X53	TS_HYSH2L setting	RW
0X54	VLTF_CHG setting	RW
0X55	VHTF_CHG setting	RW
0X56	VLTF_WORK setting	Rw
0X57	VHTF_WORK setting	Rw
0X58	JIETA standard Enable control	Rw
0x59-0X5B	JIETA standard setting	Rw
0X61	Iprechg charger setting	RW
0X62	ICC charger setting	RW
0X63	Iterm charger setting and control	RW
0X64	CV charger voltage setting	RW
0X65	Thermal regulation threshold setting	RW
0X67	Charger timeout setting and control	RW
0X68	Battery detection control	RW
0X69	CHGLED setting and control	RW
0X6A	Button battery charge termination voltage setting	RW
0X80	DCDCS ON/OFF and DVM control	RW
0X81	DCDCS force PWM control	RW
0X82-0X86	DCDCs voltage setting	RW
0X90-0X91	LDOS ON/OFF control	RW
0X92-0X9A	LDOS voltage setting	RW
0XA1	Battery parameter	RW
0XA2	Fuel gauge control	RW
0XA4	Battery percentage data	R

8.2 Register Description

REG 00: PMU status1

Bit	Description	R/W	Reset	Default	
7:6		RO	/	0	
5	VBUS good indication	RO	POR	0	
Э	0: not good 1: good	NO	TOR	Ü	
4	BATFET state	RO	POR	0	
1	0: close 1: open	NO	TOR	Ü	
3	Battery present state	RO	POR	0	
5	0: absent 1: present	I NO	TOK	0	
2	Battery in Active Mode	RO	POR	0	
J	0: in Normal 1: in Active Mode	I NO	TOK	0	
1	Thermal regulation status	RO PO	RO POR	0	
1	0: normal 1: in thermal regulation	RO	TOK	0	4
0	Current Limit state	RO	POR	0	47 50
0	0: not in current limit state 1: in current limit state	I NO	TOK		
REG (01: PMU status2		All		-
Bit	Description	R/W	Reset	Default	
7		RO	1	0	
	Pottony Cumport Direction				

REG 01: PMU status2

Bit	Description	on	R/W	Reset	Default
7	©		RO	/	0
	Battery Current Direction				
6:5	00: Standby 01:	charge	RO	POR	0
	10: discharg 11: re	eserved			
4	System status indication		RO	POR	0
4	0: System is power off. 1:	System is power on.	NO	TOK	0
3	VINDPM status		RO	POR	0
J	0: not in VINDPM 1:	VINDPM	NO		0
	charging status				
	000: tri_charge 001	: pre_charge			
2:0	010: constant charge(CC) 011	: constant voltage(CV)	RO	POR	0
	100: charge done 101	: not charging			
	11X: reserved				

REG 04: DATA_BUFFER 0

Bit	Description	R/W	Reset	Default
7:0	data buffer	RW	POR	00h

REG 05: DATA_BUFFER 1

Bit	Description	R/W	Reset	Default
7:0	data buffer	RW	POR	00h

REG 06: DATA_BUFFER 2

Bit	Description	R/W	Reset	Default	

Г					
	7:0	data buffer	RW	POR	00h

REG 07: DATA_BUFFER 3

Bit	Description	R/W	Reset	Default
7:0	data buffer	RW	POR	00h

REG 10: PMU common configuration

Bit	Description	R/W	Reset	Default
7:6		RW	/	0b
5	Internal off-discharge enable for DCDC & LDO & SWITCH 0: disable 1: enable	RW	POR	1b
4		RW	/	1b
3	PWROK PIN pull low to Restart the System 0: disable 1: enable	RW	POR	0b
2	PWRON 16s to shut the PMIC enable 0: disable	RW	POR	0b
1	Restart the SoC System, POWOFF/POWON and reset the related registers O: normal 1: reset	RWAC	POR	0b
0	Soft PWROFF 0: Normal 1: PWROFF	RWAC	POR	0b

REG 12: BATFET control

Bit	Description	R/W	Reset	Default
7:3		RO	/	0
	DIE Over Temperature Protection Levell Configuration			
2:1	00: 115deg 01: 125deg	RW	POR	01b
	10: 135deg 11: reserved			
0	DIE Temperature Detect Enable	RW	POR	1b
	0: disable 1: enable			10

REG 13: Die temperature control

Bit	Description	R/W	Reset	Default
7:3		RO	/	0
	DIE Over Temperature Protection Levell Configuration			
2:1	00: 115deg 01: 125deg	RW	POR	01b
	10: 135deg 11: reserved			
0	DIE Temperature Detect Enable	RW	DOD	1h
	0: disable 1: enable	I KW	POR	1b

REG 14: Minimum system voltage control

Bit	Description	R/W	Reset	Default
7		RO	/	0

	Linear Charger	· Vsys voltage dp	m			
	4. 1+N*0. 1 V					
6:4	000: 4.1V	001: 4.2V	010: 4.3V	RW	POR	110b
	011: 4.4V	100: 4.5V	101: 4.6V			
	110: 4.7V	111: 4.8V				
3:0				RO	/	0

REG 15: Input voltage limit control

Bit		Description	on	R/W	Reset	Default
7:4				RO	/	
	VINDPM configu	ration:				
	3. 88+N*0. 08 V					
	0000: 3.88V	0001: 3.96V	0010: 4.04V			
2.0	0011: 4.12V	0100: 4.20V	0101: 4.28V	DW	DOD	01101
3:0	0110: 4.36V	0111: 4.44V		RW	POR	0110b
	1000: 4.52V	1001: 4.60V	1010: 4.68V			
	1011: 4.76V	1100: 4.84V	1101: 4.92V			10
	1110: 5.00V	1111: 5.08V				

REG 16: Input current limit control

Bit	Description	R/W	Reset	Default
7:3		RO	/	
2:0	Input current limit 000: 100mA	RW	POR	001b

REG 17: Reset the fuel gauge

Bit	Description	R/W	Reset	Default
7:4		RO	/	0
3	reset the gauge	RWAC	POR	0b
J	0: normal 1: reset	NWAC	FOR	UD U
2	reset the gauge besides registers	RW	POR	0b
Δ	0: normal 1: reset	I(W	FOR	UD U
1:0		RO	/	0

REG 18: Charger, fuel gauge, watchdog on/off control

Bit	Description	R/W	Reset	Default
7:4		RO	/	0
3	Gauge Module enable 0: disable 1: enable	RW	POR	1b
2	Button Battery charge enable 0: disable 1: enable	RW	System Reset	0b

1	Cell Battery charge enable	RW	System	1 h	
1	0: disable 1: enable		Reset	1b	
0	Watchdog Module enable	DW	System	0b	
	0: disable 1: enable	RW	Reset		

REG 19: Watchdog control

Bit	Description	R/W	Reset	Default
7:6		RO	/	0
	Watchdog Reset Configuration			
5:4	00: IRQ only 01: IRQ and System Reset	RW	POR	0b
0.4	10: IRQ, System Reset and Pull down PWROK 1s	KW	FUK	
	11: IRQ, System Reset, DCDC/LDO PWROFF & PWRON			
3	watchdog clear signal	RWAC	POR	0b
J	0: normal 1: clear	RWAC		
	TWSI watchdog timer configuration			
2:0	000: 1s	RW	POR	110b
2:0	011: 8s 100: 16s 101: 32s	I.W	TOK	1100
	110: 64s 111: 128s			

REG 1A: Low Battery warning threshold setting

Bit	Description	R/W	Reset	Default
7:4	low battery warning threshold 5-20%, 1% per step 0000: 5% 0001: 6% 1111: 20%	RW	POR	1010b
3:0	1ow battery shutdown threshold 0-15%, 1% per step 0000: 0% 0001: 1% 1111: 15%	RW	POR	0001b

REG 20: PWRON status

Bit	Description	R/W	Reset	Default
7:6		RO	/	0
5	POWERON always high when EN Mode as POWERON Source	RO	System	0b
J J	0: no 1: yes	KO	Reset	Ob
4	Battery Insert and Good as POWERON Source	RO	System	0b
4	0: no 1: yes	кU	Reset	UD
3	Battery Voltage > 3.3V when Charged as Source	RO	System	0b
J	0: no 1: yes	KO	Reset	
2	Vbus Insert and Good as POWERON Source	RO	System	0b
2	0: no 1: yes	KO	Reset	
1	IRQ PIN Pull-down as POWERON Source	RO	System	0b
1	0: no 1: yes	NU	Reset	do
0	POWERON low for on level when POWERON Mode as POWERON	RO	System	0b

Source		Reset	
0: no	1: yes		

REG 21: PWROFF status

Bit	Description	R/W	Reset	Default
7	Die Over Temperature as POWEROFF Source 0: no	RO	POR	0b
6	DCDC Over Voltage as POWEROFF Source 0: no 1: yes	RO	POR	0b
5	DCDC Under Voltage as POWEROFF Source 0: no	RO	POR	0b
4	VBUS Over Voltage as POWEROFF Source 0: no 1: yes	RO	POR	0b
3	Vsys Under Voltage as POWEROFF Source 0: no	RO	POR	0b
2	POWERON always low when EN Mode as POWEROFF Source 0: no	RO	POR	0b
1	Software configuration as POWEROFF Source 0: no	RO	POR	0b
0	POWERON Pull down for off level when POWERON Mode as POWEROFF Source 0: no 1: yes	RO	POR	0b

REG 22: PWROFF_EN

Bit	Description	R/W	Reset	Default
7:3		RO	/	0
2	DIE Over-Temperature(LEVEL2) as POWEROFF Source enable 0: disable 1: enable	RW	POR	1b
1	PWRON > OFFLEVEL as POWEROFF Source enable 0: disable	RW	POR	EFUSE
0	Function Select when btn_pwroff_en=1 and button power-off occur 0: Power-off 1: Restart	RW	POR	EFUSE

REG 23: PWROFF of DCDC OVP/UVP control

Bit	Description	R/W	Reset	Default
7:6		RO	/	0
5	DCDC 120%(130%) high voltage turn off PMIC function	RW	POR	1b
0	0: disable 1: enable	IW	FOR	10
4	DCDC5 85% low voltage turn off PMIC function	RW	POR	1b
4	0: disable 1: enable	KW	FUK	10
3	DCDC4 85% low voltage turn off PMIC function	RW	POR	1b
J	0: disable 1: enable	I/W	TON	10
2	DCDC3 85% low voltage turn off PMIC function	RW	POR	1b

		0: disable 1: enable			
1	DCDC2 85% low voltage turn off PMIC function	RW POR	DOD	1b	
	0: disable 1: enable		FUK	10	
	0	DCDC1 85% low voltage turn off PMIC function	DW	DOD	1b
0	0: disable 1: enable	RW POR	FUN	10	

REG 24: Vsys voltage for PWROFF threshold setting

Bit	Description	R/W	Reset	Default
7:3		RO	/	0
	Battery Voltage for POWEROFF		POR	EFUSE
0.0	2.6~3.3V, 0.1V/step, 8steps	DW		
2:0	000: 2.6V 001: 2.7V	RW		
	111: 3.3V			

REG 25: PWROK setting and PWROFF sequence control

Bit	Description	R/W	Reset	Default
7:5		R0	/	0
	Check the PWROK Pin enable after all dcdc/ldo output valid		. 1	
4	128ms	RW	POR	1b
	0: disable 1: enable			
3	POWEROFF Delay 4ms after PWROK disable	RW	POR	1b
J	0: disable 1: enable	I(W	FOR	10
2	POWEROFF Sequence Control	RW	POR	0b
	0: At the same time 1: the reverse of the Startup	I(W	FOR	ΟD
1:0	Delay of PWROK after all power output good			
	00: 8ms 01: 16ms	RW	POR	EFUSE
	10: 32ms 11: 64ms			

REG 26: Sleep and wakeup control

Bit	Description	R/W	Reset	Default
7:5		R0	/	0
4	IRQ Pin low to Wakeup 0: disable 1: enable	RW	POR	0b
3	PWROK be low-level enable when Wakeup 0: disable 1: enable	RW	POR	1b
2	DCDC/LDO Voltage Select when Wakeup O: The Default 1: The voltage before wakeup	RW	POR	0b
1	Wake Up enable 0: disable 1: enable	RWLC	System Reset	0b
0	SLEEP enable 0: disable 1: enable	RWLC	System Reset	0b

REG 27: IRQLEVEL/OFFLEVEL/ONLEVEL setting

Bit Description	R/W	Reset	Default
-----------------	-----	-------	---------

7:6		RO	/	0
	IRQLEVEL configuration			
5:4	00: 1s 01: 1.5s	RW	POR	01b
	10: 2s 11: 2.5s			
	OFFLEVEL configuration			
3:2	00: 4s 01: 6s	RW	POR	01b
	10: 8s 11: 10s			
	ONLEVEL configuration			
1:0	00: 128ms 01: 512ms	RW	POR	EFUSE
	10: 1s 11: 2s			

REG 28: Fast pwron setting 0

Bit	Description	R/W	Reset	Default
7:6	DCDC4 Fast Power On Start Sequence	DW	DOD	Ola
7:0	00~10: Start Sequence Code 11: disable	RW	POR	0b
E . 4	DCDC3 Fast Power On Start Sequence	RW	POR	Ol-
5:4	00~10: Start Sequence Code 11: disable			0b
3:2	DCDC2 Fast Power On Start Sequence	DW	POR	Oh
3:2	00~10: Start Sequence Code 11: disable	RW	POR	0b
1.0	DCDC1 Fast Power On Start Sequence	RW	POR	Ola
1:0	00~10: Start Sequence Code 11: disable	KW	FUR	0b

REG 29: Fast pwron setting 1

Bit	Description	R/W	Reset	Default
5 .0	ALDO3 Fast Power On Start Sequence	DW	DOD	Ola
7:6	00~10: Start Sequence Code 11: disable	RW	POR	0b
E . 4	ALDO2 Fast Power On Start Sequence	DW	POR	0b
5:4	00~10: Start Sequence Code 11: disable	RW	PUR	
0.0	ALD01 Fast Power On Start Sequence	RW	POR	Ola
3:2	00~10: Start Sequence Code 11: disable			0b
1:0	DCDC5 Fast Power On Start Sequence	RW	POR	Ob
	00~10: Start Sequence Code 11: disable	I W	FUR	0b

REG 2A: Fast pwron setting 2

Bit	Description	R/W	Reset	Default
7:6	CPUSLDO Fast Power On Start Sequence	RW	POR	Ob
7.0	00~10: Start Sequence Code 11: disable	KW	POR	0b
5:4	BLD02 Fast Power On Start Sequence	RW	POR	0b
0.4	00~10: Start Sequence Code 11: disable			
0.0	BLD01 Fast Power On Start Sequence	RW POR	DOD	0b
3:2	00~10: Start Sequence Code 11: disable		POR	
1.0	ALDO4 Fast Power On Start Sequence	RW	POR	0b
1:0	00~10: Start Sequence Code 11: disable	I.M.	FUR	Ob

REG 2B: Fast pwron setting 3

Bit	Description	R/W	Reset	Default
7	Fast Power On Enable	RW	POR	0b
'	0: disable 1: enable	ΝW	FUN	Ob
6	Fast Wake up Enable	RW	POR	0b
0	0: disable 1: enable	NW FOR	UD	
5:4		RO	/	0b
3:2	DLDO2 Fast Power On Start Sequence	RW POR	01	
3:2	00~10: Start Sequence Code 11: disable		PUK	0b
1:0	DLD01 Fast Power On Start Sequence	RW	POR	0b
1:0	00~10: Start Sequence Code 11: disable	IV.W	FUR	00

REG 30: ADC Channel enable control 0

Bit	Description	R/W	Reset	Default
7:6		R0	/	0
5	general purpose ADC channel enable 0: disable	RW	POR	0b
4	die temperature measure ADC channel enable 0: disable	RW	POR	0b
3	system voltage voltage measure ADC channel enable 0: disable	RW	POR	0b
2	vbus voltage measure ADC channel enable 0: disable	RW	POR	0b
1	TS pin measure ADC channel enable 0: disable 1: enable	RW	POR	1b
0	battery voltage measure ADC channel enable 0: disable	RW	POR	1b

REG 34: vbat_h

Bit	Description	R/W	Reset	Default
	ch_dbg_en_1 is ch_dbg_en[1:0]			
	ch_dbg_en:			
7:6	000: disable 001: vbat use all channels	RW	POR	0b
	010: ts use all channels 011: vbus use all channels			
	100: vsys use all channels 101: tdie use all channels			
	110: gpadc use all channels 111: reserved			
5:0	vbat[13:8]	RO	POR	0b

REG 35: vbat_1

Bit	Description	R/W	Reset	Default
7:0	vbat[7:0]	RO	POR	0b

REG 36: ts_h

Bit	Description	R/W	Reset	Default

	ADC in low frequency sample mode when PWROFF and Battery			
7	only enable(64s)	RW	POR	1b
	0: disable 1: enable			
6	ch_dbg_en_h is ch_dbg_en[2]	RW	POR	0b
5:0	ts[13:8]	RO	POR	0b

REG 37: ts_1

Bit	Description	R/W	Reset	Default
7:0	ts[7:0]	RO	POR	0b

REG 38: vbus_h

Bit	Description	R/W	Reset	Default
7:6		RO	/	0
5:0	vbus[13:8]	RO	POR	0b

REG 39: vbus_1

Bit	Description	R/W	Reset	Default
7:0	vbus[7:0]	RO	POR	0b

REG 3A: vsys_h

				100	107	
Bit		Description		R/W	Reset	Default
7:6				RO	/	0
5:0	vsys[13:8]			RO	POR	0b

REG 3B: vsys_1

Bit	Description	R/W	Reset	Default
7:0	vsys[7:0]	RO	POR	0b

REG 3C: tdie_h

Bit	Description	R/W	Reset	Default
7:6		RO	/	0
5:0	tdie[13:8]	RO	POR	0b

REG 3D: tdie_1

Bit	Description	R/W	Reset	Default
7:0	tdie[7:0]	RO	POR	0b

REG 40: IRQ Enable 0

Bit	Description	R/W	Reset	Default
7	SOC drop to Warning Level2 IRQ(socwl2_irq) enable	RW	System	1b
	0: disable 1: enable	KW	Reset	
6	SOC drop to Warning Levell IRQ(socwll_irq) enable	RW	System	1b

	0: disable 1: enable		Reset			
5	Gauge Watchdog Timeout IRQ(gwdt_irq) enable	RW	System	1b		
	0: disable 1: enable		Reset			
4	Gauge New SOC IRQ(lowsoc_irq) enable	RW	System	l 1b		
	0: disable 1: enable	24.11	Reset	10		
	Battery Over Temperature in Charge mode IRQ(bcot_irq)		System			
3	enable	RW	Reset	1b		
	0: disable 1: enable		Keset			
	Battery Under Temperature in Charge mode IRQ(bcut_irq)		System			
2	enable	RW		1b		
	0: disable 1: enable		Reset			
	Battery Over Temperature in Work mode IRQ(bwot_irq)		System			
1	enable	RW	Reset	1b		
	0: disable 1: enable		Keset			
	Battery Under Temperature in Work mode IRQ(bwut_irq)		System		100	
0	enable	RW	Reset	1b	47 50	
	0: disable 1: enable		Keset	10		
REG 4	41: IRQ Enable 1		AII			
Bit	Description	R/W	Reset	Default		
	VIDUO T TDO (1)	300	0			

REG 41: IRQ Enable 1

Bit	Description	R/W	Reset	Default
7	VBUS Insert IRQ(vinsert_irg) enable	RW	System	11.
1	0: disable 1: enable	I.W	Reset	1b
6	VBUS Remove IRQ(vremove_irq) enable	RW	System	1b
0	0: disable 1: enable	I.W	Reset	10
5	Battery Insert IRQ(binsert_irq) enable	RW	System	16
5	0: disable 1: enable	I.W	Reset	1b
4	Battery Remove IRQ(bremove_irq) enable	RW	System	1b
4	0: disable 1: enable		Reset	
3	POWERON Short PRESS IRQ(ponsp_irq_en) enable	RW	System	1b
J	0: disable 1: enable	I.W	Reset	
2	POWERON Long PRESS IRQ(ponlp_irq) enable	RW	System	11
۷	0: disable 1: enable	I(W	Reset	1b
1	POWERON Negative Edge IRQ(ponne_irq_en) enable	RW	System	0b
1	0: disable 1: enable	I.W	Reset	
0	POWERON Positive Edge IRQ(ponpe_irq_en) enable	RW	System	Oh.
0	0: disable 1: enable	I.W	Reset	0b

REG 42: IRQ Enable 2

Bit	Description	R/W	Reset	Default
7	Watchdog Expire IRQ(wdexp_irq) enable	RW	System	0b
,	0: disable 1: enable		Reset	
6	LDO Over Current IRQ(ldooc_irq) enable	RW	System	1b
	0: disable 1: enable	KW	Reset	
5	BATFET Over Current Protection IRQ(bocp_irq) enable	RW	System	0b

	0: disable 1: enable		Reset	
4	Battery charge done IRQ(chgdn_irq) enable	RW	System	1b
4	0: disable 1: enable	I.W	Reset	10
3	Charger start IRQ(chgst_irq) enable	RW	System	1b
J	0: disable 1: enable		Reset	10
2	DIE Over Temperature level1 IRQ(dotl1_irq) enable	RW	System	1b
۷	0: disable 1: enable	I\W	Reset	
1	Charger Safety Timer1/2 expire IRQ(chgte_irq) enable	RW	System	1b
1	0: disable 1: enable	IVW	Reset	
0	Battery Over Voltage Protection IRQ(bovp_irq) enable	RW	System	1b
0	0: disable 1: enable	I/W	Reset	

REG 48: IRQ Status 0

Bit	Description	R/W	Reset	Default
7	SOC drop to Warning Level IRQ 0: no irq	RW1C	POR	0b
6	SOC drop to Shutdown Level IRQ 0: no irq	RW1C	POR	0b
5	Gauge Watchdog Timeout IRQ 0: no irq	RW1C	POR	0b
4	Gauge New SOC IRQ 0: no irq 1: irq	RW1C	POR	0b
3	Battery Over Temperature in Charge mode IRQ O: no irq Battery Temperature to normal to clear it	RW1C	POR	0b
2	Battery Under Temperature in Charge mode IRQ 0: no irq	RW1C	POR	0b
1	Battery Over Temperature in Work mode IRQ O: no irq	RW1C	System Reset	0b
0	Battery Under Temperature in Work mode IRQ 0: no irq	RW1C	System Reset	0b

REG 49: IRQ Status 1

Bit	Description	R/W	Reset	Default
	VBUS Insert IRQ			
7	0: no irq 1: irq	RW1C	POR	0b
	VBUS Remove to clear it			
6	VBUS Remove IRQ	RW1C	POR	0b

REG 4	4A: IRQ Status 2 Description	R/W	Reset	Default		
0	0: no irq 1: irq	RW1C	Reset	0b	415	
	POWERON Positive Edge IRQ		System			
1	0: no irq 1: irq	RW1C	Reset	0b		
	POWERON Negative Edge IRQ		System		1	
2	0: no irq 1: irq	RW1C	Reset	0b		
0	POWERON Long PRESS IRQ	DW1 C	System	01		
3	0: no irq 1: irq	RW1C	Reset	0b		
0	POWERON Short PRESS IRQ	DW1 C	System	01		
	Battery Insert to clear it					
4	0: no irq 1: irq	RW1C	POR	0b		
	Battery Remove IRQ					
	Battery Remove to clear it					
5	0: no irq 1: irq	RW1C	POR	0b		
	Battery Insert IRQ					
	VBUS Insert to clear it					
	0: no irq 1: irq					

REG 4A: IRQ Status $\,2\,$

Bit	Description	R/W	Reset	Default
7	Watchdog Expire IRQ 0: no irq 1: irq	RW1C	POR	0b
6	LDO Over Current IRQ 0: no irq 1: irq LDO Current to normal to clear it	RW1C	System Reset	0b
5	BATFET Over Current Protection IRQ 0: no irq 1: irq	RW1C	POR	0b
4	Battery charge done IRQ 0: no irq 1: irq Battery charge start to clear it	RW1C	POR	0b
3	Battery charge start IRQ 0: no irq	RW1C	POR	0b
2	DIE Over Temperature level1 IRQ 0: no irq	RW1C	POR	0b
1	Charger Safety Timer1/2 expire IRQ 0: no irq	RW1C	POR	0b
0	Battery Over Voltage Protection IRQ O: no irq Battery Voltage to normal to clear it	RW1C	POR	0b

REG 50: TS pin CTRL

Bit	Description	R/W	Reset	Default
7:5		RO	/	0

	TS PIN function select:			
	0: TS pin is the battery temperature sensor input and will			
4	affect the charger	RW	POR	EFUSE
	1: TS pin is the external fixed input and doesn't affect			
	the charger			
	TS current source on/off enable			
	00: off	RW	POR	EFUSE
3:2	01: on when TS channel of ADC is enabled			
3:2	10: on only when TS channel is working and off when others			
	channel is working			
	11: always on			
	current source to TS pin configuration			
1:0	00: 20uA 01: 40uA	RW	POR	10b
	10: 50uA 11: 60uA			

REG 52: TS_HYSL2H setting

Bit	Description	R/W	Reset	Default
7:0	hysteresis for TS from low go to normal	RW	POR	2h
7:0	Thys = N*16mV (default 32mV)	KW	POR	ZII

REG 53: TS_HYSH2L setting

			de.	
Bit	Description	R/W	Reset	Default
7:0	hysteresis for TS from high go to normal Thys = N*4mV (default 4mV)	RW	POR	1h

REG 54: VLTFCHG setting

Bit	Description	R/W	Reset	Default
	VLTF in voltage of charge configuration			
7:0	VLTF = N*32 mV (default is about 0deg)	RW	POR	29h
	This is also T1 of JEITA			

REG 55: VHTFCHG setting

Bit	Description	R/W	Reset	Default
	VHTF in voltage of charge configuration			
7:0	VHTF = N*2 mV (default is about 55deg)	RW	POR	58h
	This is also T4 of JEITA			

REG 56: VLTFWORK setting

Bit	Description	R/W	Reset	Default
	VLTF in voltage of work configuration	DW	DOD	3Eh
7:0	VLTF = N*32 mV (default is about -10deg)	RW	POR	

REG 57: VHTFWORK setting

Bit	Description	R/W	Reset	Default
-----	-------------	-----	-------	---------

7:0	VHTF in voltage of work configuration	RW	POR	4Ch
	VHTF = N*2 mV (default is about 60deg)			

REG 58: JIETA standard Enable control

Bit	Description	R/W	Reset	Default
7:1		RO	/	0
0	JEITA Standard Enable	RW	POR	EDUCE
	0: disable 1: enable		FUR	EFUSE

REG 59: JEITA CV configuration

Bit	Description	R/W	Reset	Default
7		RO	/	0
6	Current fall of Warm in JEITA Standard 0: 100% 1: 50%	RW	POR	0b
5		RO	/	0
4	Current fall of Cool in JEITA Standard 0: 100% 1: 50%	RW	POR	1b
3:2	Voltage fall of Warm in JEITA Standard 00: 0mV	RW	POR	01b
1:0	Voltage fall of Cool in JEITA Standard 00: 0mV	RW	POR	00b

REG 5A: JIETA Cool configuration

Bit	Description	R/W	Reset	Default
7:0	Cool Temperature (T2) in voltage of charge configuration VHTF = N*16 mV (default is about 10deg)	RW	POR	37h

REG 5B: JIETA Warm configuration

Bit	Description	R/W	Reset	Default
7:0	Warm Temperature(T3) in voltage of charge configuration	RW	POR	1.171.
7.0	VHTF = N*8 mV (default is about 45deg)	ΝW	FUK	1Eh

REG 5C: ts_cfg_data_h

Bit	Description	R/W	Reset	Default
7:6		RO	/	0
5:0	ts_cfg_data[13:8]	RW	POR	2h

REG 5D: ts_cfg_data_1

	_ ~			
Bit	Description	R/W	Reset	Default
7:0	ts_cfg_data[7:0], ts_cfg_data is TS Voltage configured	RO	POR	58h
7.0	by MCU when ts_ch_en = 0b	NO	TOK	3011

REG 61: Iprechg charger setting

Bit		Description		R/W	Reset	Default
7:4				RO	/	0
	Precharge currer	nt limit:				
	25*N mA					
2.0	0000: OmA	0001: 25mA	0010: 50mA	RW	DOD	0101b
3:0	0011: 75mA	0100: 100mA	0101: 125mA		POR	
	0110: 150mA	0111: 175mA	1000: 200mA			
	1001~1111: reser	rved				

REG 62: ICC charger setting

Bit		Description		R/W	Reset	Default
7:5				RO	/	0
4:0	constant curren 25*N mA if N<=8 200+100*(N-8) m 00000: 0mA 00110: 150mA 01001: 300mA 01100: 600mA 01111: 900mA		00101: 125mA 01000: 200mA 01011: 500mA 01110: 800mA others: reserved	RW	POR	{EFUSE, 0b, EFUSE}

REG 63: Iterm charger setting and control

Bit	Description		R/W	Reset	Default	
7:5				RO	/	0b
4	Charging terminat	ion of current enab	ole	RW	System	1b
1	0: disable	1: enable		1("	Reset	10
	Termination curre	nt limit:				
	25*N mA					
3:0	0000: OmA	0001: 25mA	0010: 50mA	RW	DOD	01011
3:0	0011: 75mA	0100: 100mA	0101: 125mA		POR	0101b
	0110: 150mA	0111: 175mA	1000: 200mA			
	1001~1111: reserv	ed				

REG 64: CV charger voltage setting

Bit		Description		R/W	Reset	Default
7:3				RO	/	0
	Charge voltage	limit				
2:0	000: 4.6V	001: 4.0V	010: 4.1V	RW	POR	011b
2:0	011: 4.2V	100: 4.35V	101: 4.4V			
	11X: reserved					

REG 65: Thermal regulation threshold setting

Bit		Description	R/W	Reset	Default
7:2			RO	/	0
	Thermal regulation	threshold		System	
1:0	00: 60deg	01: 80deg	RW		10b
	10: 100deg	11: 120deg		Reset	

REG 67: Charger timeout setting and control

Bit	Description	R/W	Reset	Default
	safety timer1/2 setting during DPM or thermal regulation			
	0: safety timer not slowed during input DPM or thermal			
7	regulation	RW	POR	1b
	1: safety timer slowed during input DPM or thermal			
	regulation			
6	charge done safe timer enable	RW	POR	1b
0	0: disable 1: enable	I\W	FOR	10
	charge done safety timer configuration			
5:4	00: 5hours 01: 8hours	RW	POR	10b
	10: 12hours 11: 20hours			
3		RO		0
2	pre-charge safe timer enable	RW	POR	11.
2	0: disable 1: enable	KW	POR	1b
	pre-charge safe timer configuration			
1:0	00: 40mins 01: 50mins	RW	POR	10b
	10: 60mins 11: 70mins			

REG 68: Battery detection control

Bit	Description	R/W	Reset	Default
7:1		RO	/	0
0	battery detection enable 0: disable	RW	POR	1b

REG 69: CHGLED setting and control

Bit	Description	R/W	Reset	Default
7:6		RO	/	0
5:4	CHGLED pin output when the register of chgled_func is set to 10b O0: Hiz; O1: Low/Hiz 25%/75% duty 1Hz; 10: Low/Hiz 25%/75% duty 4Hz; 11: drive low;	RW	System Reset	00ъ
3		RO	/	0
2:1	CHGLED pin display function configuration 00: display with type A function 01: display with type B function 10: output controlled by the register of chgled_out_ctrl	RW	POR	EFUSE

	11: reserved				
	CHGLED pin enable				
0	0: disable CHGLED pin function	RW	POR	1b	
	1: enable CHGLED pin function				

$REG\ 6A\colon$ Button battery charge termination voltage setting

Bit	Description		R/W	Reset	Default	
7:3				RO	/	0
		charge termination	voltage			
2:0	000: 2.6V	001: 2.7V	010: 2.8V	RW	POR	011b
	011: 2.9V	100: 3.0V	101: 3.1V			
	110: 3.2V	111: 3.3V				

REG 80: DCDCS ON/OFF and DVM control

Bit	Description	R/W	Reset	Default
7		RO	/	0b
6	force DCDC work in CCM mode	RW	System	0b
	0: disable 1: enable		Reset	
5	DVM voltage ramp control	RW	System	0b
J	0: 15.625 us/step 1: 31.250 us/step	I(W	Reset	UD U
4	DCDC5 enable	RW	System	EFUSE
4	0: disable 1: enable	KW	Reset	
3	DCDC4 enable	RW	System	EFUSE
3	0: disable 1: enable	I.W	Reset	
2	DCDC3 enable	RW	System	EFUSE
2	0: disable 1: enable	I.W	Reset	
1	DCDC2 enable	RW	System	EFUSE
1	0: disable 1: enable		Reset	EFUSE
0	DCDC1 enable	RW	System	EEUCE
0	0: disable 1: enable	I.W	Reset	EFUSE

REG 81: DCDCS force PWM control

Bit	Description	R/W	Reset	Default
7	DCDC frequency spread enable	RW	System	0b
1	0: disable 1: enable	I.W	Reset	Ob
6	DCDC frequency spread range control	RW	System	Ob
0	0: 50KHz 1: 100kHz	I.W	Reset	0b
5	DCDC4 PWM/PFM Control	RW	System	0b
J	0: Auto Switch 1: Always PWM	I\W	Reset	
4	DCDC3 PWM/PFM Control	RW	System	01
4	0: Auto Switch 1: Always PWM		Reset	0b
3	DCDC2 PWM/PFM Control	RW	System	Ob
3	0: Auto Switch 1: Always PWM	IVW	Reset	0b

0	DCDC1 PWM/PFM Control	RW	System	Ol-
2	0: Auto Switch 1: Always PWM		Reset	0b
	DCDC UVP debounce time configuration			
1:0	00: 60us 01: 120us	RW	POR	00b
	10: 180us 11: 240us			

REG 82: DCDC1 voltage setting

Bit	Description	R/W	Reset	Default
7:5		RO	/	0
4:0	DCDC1 output voltage configuration 1.5~3.4V, 100mV/step, 20steps 00000: 1.5V	RW	System Reset	EFUSE
	10100~11111: reserved			

REG 83: DCDC2 voltage setting

Bit	Description	R/W	Reset	Default
7	DCDC2 DVM enable control 0: disable 1: enable	RW	System Reset	0b
6:0	DCDC2 output voltage configuration 0.5~1.2V, 10mV/step, 71steps 1.22~1.54V, 20mV/step, 17steps 0000000: 0.50V 0000001: 0.51V 1000110: 1.20V 1000111: 1.22V 1001000: 1.24V 1010111: 1.54V 1011000~111111: reserved	RW	System Reset	EFUSE

REG 84: DCDC3 voltage setting

Bit	Description	R/W	Reset	Default
7	DCDC3 DVM enable control	RW	System	01
,	0: disable 1: enable	I.W	Reset	0b
	DCDC3 output voltage configuration			
	0.5~1.2V, 10mV/step, 71steps			EFUSE
	1.22~1.54V,20mV/step,17steps	RW		
	1.6~3.4V, 100mV/step, 19steps		Creation	
6:0	0000000: 0.50V		System Reset	
	0000001: 0.51V		Reset	
	1000110: 1.20V			
	1000111: 1.22V			

				_
	1001000: 1.24V			
	1010111: 1.54V			
	1011000: 1.60V			
	1011001: 1.70V			
	•••••			
	1101011: 3.40V	$1101100^{\sim}11111111$: reserved		

REG 85: DCDC4 voltage setting

Bit	Description	R/W	Reset	Default
7		RO	/	0
6:0	DCDC4 output voltage configuration 0.5~1.2V, 10mV/step, 71steps 1.22~1.84V, 20mV/step, 32steps 0000000: 0.50V 0000001: 0.51V 1000110: 1.20V 1000111: 1.22V 1001000: 1.24V	RW	System Reset	EFUSE
	1100110: 1.84V 1100111 [~] 1101000: reserved			

REG 86: DCDC5 voltage setting

Bit	Description	R/W	Reset	Default
7:6		RO	/	0
5	slow down dcdc5 frequency compensation enable 0: disable	RW	System Reset	0b
4:0	DCDC5 output voltage configuration 1. 4~3.7V, 100mV/step, 24steps 11001: 1.2V 00000: 1.4V 00001: 1.5V 10111: 3.7V 11000~11111: reserved	RW	System Reset	EFUSE

REG 90: LDOS ON/OFF control 0

Bit	Description	R/W	Reset	Default
7	dldo1 enable	RW	System	EFUSE
,	0: disable 1: enable		Reset	EFUSE
C	cpusldo enable	DW	System	EFUSE
6	0: disable 1: enable	RW	Reset	
5	bldo2 enable	RW	System	EFUSE

	0: disable	1: enable		Reset	
4	aldo1 enable		RW	System	EFUSE
4	0: disable	1: enable	I.W	Reset	ELUSE
3	aldo4 enable		RW	System	EFUSE
J	0: disable	1: enable	I(W	Reset	ELOSE
2	aldo3 enable		RW	System	EFUSE
۷	0: disable	1: enable	I(W	Reset	EFUSE
1	aldo2 enable		RW	System	EFUSE
1	0: disable	1: enable	I(W	Reset	ELOSE
0	aldo1 enable		RW	System	EFUSE
	0: disable	1: enable	I.W	Reset	FLOSE

REG 91: LDOS ON/OFF control 1

Bit	Description	R/W	Reset	Default	
7:1		RO	/	0	100
0	dldo2 enable	RW	System	EFUSE	475
U	0: disable 1: enable	KW	Reset	Eruse	
			. 4		
REG 9	92: ALDO1 voltage setting		All		
Bit	Description	R/W	Reset	Default	
7:5	•	RO	/	0	

REG 92: ALDO1 voltage setting

Bit	Description	R/W	Reset	Default
7:5	•	RO	/	0
4:0	aldo1 output voltage configuration 0.5~3.5V, 100mV/step, 31steps 00000: 0.5V 00001: 0.6V 11110: 3.5V 11111: reserved	RW	System Reset	EFUSE

REG 93: ALDO2 voltage setting

Bit	Description	R/W	Reset	Default
7:5		RO	/	0
4:0	aldo2 output voltage configuration 0.5~3.5V, 100mV/step, 31steps 00000: 0.5V 00001: 0.6V 11110: 3.5V 11111: reserved	RW	System Reset	EFUSE

REG 94: ALDO3 voltage setting

Bit	Description	R/W	Reset	Default
7:5		RO	/	0
4:0	aldo3 output voltage configuration $0.5^{\sim}3.5V$, 100mV/step , 31steps 00000 : $0.5V$	RW	System Reset	EFUSE

_	00001: 0.6V			
	•••••			
	11110: 3.5V	11111: reserved		

REG 95: ALDO4 voltage setting

Bit	Description	R/W	Reset	Default
7:5		RO	/	0
4:0	aldo4 output voltage configuration 0.5~3.5V, 100mV/step, 31steps 00000: 0.5V 00001: 0.6V 11110: 3.5V 11111: reserved	RW	System Reset	EFUSE

REG 96: BLDO1 voltage setting

Bit	Description	R/W	Reset	Default
7:5		RO	/	0
4:0	bldo1 output voltage configuration 0.5~3.5V, 100mV/step, 31steps 00000: 0.5V 00001: 0.6V 11110: 3.5V 11111: reserved	RW	System Reset	EFUSE

REG 97: BLDO2 voltage setting

Bit	Description	R/W	Reset	Default
7:5		RO	/	0
4:0	bldo2 output voltage configuration 0.5~3.5V, 100mV/step, 31steps 00000: 0.5V 00001: 0.6V 11110: 3.5V 11111: reserved	RW	System Reset	EFUSE

REG 98: CPUSLDO voltage setting

Bit	Description	R/W	Reset	Default
7:5		RO	/	0
4:0	cpusldo output voltage configuration 0.5~1.4V, 50mV/step, 20steps 00000: 0.50V 00001: 0.55V 10011: 1.40V 10100~11111: reserved	RW	System Reset	EFUSE

REG 99: DLDO1 voltage setting

Bit	Description	R/W	Reset	Default
7:5		RO	/	0
4:0	dldo1 output voltage configuration 0.5~3.5V, 100mV/step, 31steps 00000: 0.5V 00001: 0.6V 11110: 3.5V 11111: reserved	RW	System Reset	EFUSE

REG 9A: DLDO2 voltage setting

Bit	Description	R/W	Reset	Default
7:5		RO	/	0
	dldo2 output voltage configuration 0.5~1.4V, 50mV/step, 20steps			
4:0	00000: 0.50V 00001: 0.55V 10011: 1.40V 10100~11111: reserved	RW	System Reset	EFUSE

REG A1: Battery parameter

Bit	Description	R/W	Reset	Default
7:0	Battery parameter ROM	RO	POR	xx

REG A2: Fuel gauge control

Bit	Description	R/W	Reset	Default
7:6	reserved	RO	/	0b
5	reserved	RW	POR	0b
4	ROM or SRAM select 1: select sram;	RW	POR	0b
3:1	reserved	RO	/	0b
0	brom writer control 1:enable 0:disable	RW	POR	0b

REG A4: Battery percentage data

Bit	Description	R/W	Reset	Default
7:0	battery percentage	RO	POR	00h

9. Application Information

9.1 Typical Application

10.Package and Ordering Information

10.1 Package Information

AXP2101 package is QFN5*5, 40-pin. Figure 10-1 shows AXP2101 package.

SYMBOL	MILLIMETER		
SIMBOL	MIN	NOM	MAX
A	0.70	0.75	0.80
A1	_	0.02	0.05
b	0.15	0.20	0. 25
С	0.18	0.20	0. 25
D	4. 90	5.00	5. 10
D2	3. 30	3. 40	3. 50
е	(). 40BSC	
Nd	3	. 60BSC	į.
Е	4. 90	5.00	5. 10
E2	3. 30	3. 40	3. 50
Ne	3	. 60BSC	
Ľ	0.35	0.40	0.45
K	0. 20	3-31	7725
h	0.30	0.35	0.40
L/F载体尺寸 (mil)		150*15	0

Figure 10-1 Package Information

10.2 Marking information

Figure 10-2 shows AXP2101 marking.

Figure 10-2 AXP2101 Marking

Table 10-1 describes AXP2101 marking information.

Table 10-1 AXP2101 Marking Definitions

No.	Marking	Description	Fixed/Dynamic
1	AXP2101	Product name	Fixed
2	LLLLLXX	Lot number	Dynamic
3	XXX1	Date code	Dynamic
4		X-POWERS logo	Fixed
5	White dot	Package pin 1	Fixed

10.3 Carrier

Table 10-2 shows AXP2101 tray carrier information

Table 10-2 Tray Carrier Information

Item	Color	Sizo
iteiii	Coloi	Size

Aluminum foil bags	Silvery white	540mm x 300mm x 0.14mm
Pearl cotton cushion(Vacuum bag)	White	12mm x 680mm x 185mm
Pearl cotton cushion (The Gap between vacuum bag and inside box)	White	Left-Right:12mm x 180mm x 85mm Front-Back:12mm x 350mm x 70mm
Inside Box	White	396mm x 196mm x 96mm
Outside Box	White	420mm x 410mm x 320mm

Figure 10-3 shows tray dimension drawing of AXP2101.

Figure 10-3 Tray Dimension Drawing

Table 10-3 shows AXP2101 packing quantity.

Table 10-3 Packing Quantity Information

Туре	Quantity	Part Number
Tray	490pcs/Tray 10Trays/package	AXP2101

10.4 Storage

10.4.1 Moisture Sensitivity Level(MSL)

A package's MSL indicates its ability to withstand exposure after it is removed from its shipment bag, a low MSL device sample can be exposed on the factor floor longer than a high MSL device sample. ALL MSL are defined in Table 10-4.

Table 10-4 MSL Summary

MSL	Out-of-bag floor life	Comments
1	Unlimited	≤30°C/85%RH

2	1 year	≤30°C/60%RH
2a	4 weeks	≤30°C/60%RH
3	168 hours	≤30°C/60%RH
4	72 hours	≤30°C/60%RH
5	48 hours	≤30°C/60%RH
5a	24 hours	≤30°C/60%RH
6	Time on Label(TOL)	≤30°C/60%RH

AXP2101 device samples are classified as MSL3.

10.4.2 Bagged Storage Conditions

The shelf life of AXP2101 are defined in Table 10-5.

Table 10-5

Packing mode	Vacuum packing	
Storage temperature	20℃~26℃	
Storage humidity	40%~60%RH	486
Shelf life	6 months	1019

10.4.3 Out-of-bag Duration

It is defined by the device MSL rating. The out-of-bag duration of AXP2101 is as follows.

Table 10-6 Out-of-bag Duration

Storage temperature	20°C~26°C
Storage humidity	40%~60%RH
Moisture Sensitivity Level(MSL)	3
Floor life	168 hours

For no mention of storage rules in this document, please refer to the latest IPC/JEDEC J-STD-020C.

10.5 Baking

It is not necessary to bake AXP2101 if the conditions specified in Section 16.4.2 and Section 16.4.3 have not been exceeded. It is necessary to bake AXP2101 if any condition specified in Section 10.4.2 and Section 10.4.3 have been exceeded.

It is necessary to bake AXP2101 if the storage humidity condition has been exceeded. We recommend that the device sample removed from its vacuum bag more than 2 days should be baked to guarantee production.

Table 10-7 Baking Conditions

Surrounding	Bake@125℃	Note
Nitrogen	8 hours	Recommended condition. Not exceed 3 times.
Air	2 hours	Acceptable condition. Not exceed 3 times.

CAUTION: If baking is required, the devices must be transferred into trays that can be baked to at least 125°C. Devices should not be baked in tape and reel carriers at any temperature

11. Reflow Profile

The reflow profile recommended in this document is a lead-free reflow profile that is suitable for pure lead-free technology of lead-free solder paste.

Figure 10-1 shows the typical reflow profile of AXP2101 device sample.

Figure 11-1 AXP2101 Typical Reflow Profile

Reflow profile conditions of AXP2101 device sample is given in Table 11-1.

Table 11-1 AXP2101 Reflow Profile Conditions

	QTI typical SMT reflow profile conditions (for reference only)		
	Step	Reflow condition	
Environment	N2 purge reflow usage (yes/no)	Yes, N2 purge used	
	If yes, O2 ppm level	O2 < 1500 ppm	
Α	Preheat ramp up temperature range	25 ℃ -> 150 ℃	
В	Preheat ramp up rate	1.5~2.5 °C/sec	
С	Soak temperature range	150℃ -> 190℃	
D	Soak time	80~110 sec	
E	Liquidus temperature	217℃	
F	Time above liquidus	60-90 sec	
G	Peak temperature	24 0-250℃	
H	Cool down temperature rate	≤4°C/sec	

Declaration

THIS DOCUMENTATION IS THE ORIGINAL WORK AND COPYRIGHTED PROPERTY OF X-POWERS. REPRODUCTION IN WHOLE OR IN PART MUST OBTAIN THE WRITTEN APPROVAL OF X-POWERS AND GIVE CLEAR ACKNOWLEDGEMENT TO THE COPYRIGHT OWNER.

THE PURCHASED PRODUCTS, SERVICES AND FEATURES ARE STIPULATED BY THE CONTRACT MADE BETWEEN X-POWERS AND THE CUSTOMER. PLEASE READ THE TERMS AND CONDITIONS OF THE CONTRACT AND RELEVANT INSTRUCTIONS CAREFULLY BEFORE USING, AND FOLLOW THE INSTRUCTIONS IN THIS DOCUMENTATION STRICTLY. X-POWERS ASSUMES NO RESPONSIBILITY FOR THE CONSEQUENCES OF IMPROPER USE(INCLUDING BUT NOT LIMITED TO OVERVOLTAGE, OVERCLOCK, OR EXCESSIVE TEMPERATURE).

THE INFORMATION FURNISHED BY X-POWERS IS PROVIDED JUST AS A REFERENCE OR TYPICAL APPLICATIONS. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS DOCUMENT DO NOT CONSTITUTE A WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. X-POWERS RESERVES THE RIGHT TO MAKE CHANGES IN CIRCUIT DESIGN AND/OR SPECIFICATIONS AT ANY TIME WITHOUT NOTICE.

NOR FOR ANY INFRINGEMENTS OF PATENTS OR OTHER RIGHTS OF THE THIRD PARTIES WHICH MAY RESULT FROM ITS USE. NO LICENSE IS GRANTED BY IMPLICATION OR OTHERWISE UNDER ANY PATENT OR PATENT RIGHTS OF X-POWERS. THIRD PARTY LICENCES MAY BE REQUIRED TO IMPLEMENT THE SOLUTION/PRODUCT. CUSTOMERS SHALL BE SOLELY RESPONSIBLE TO OBTAIN ALL APPROPRIATELY REQUIRED THIRD PARTY LICENCES. X-POWERS SHALL NOT BE LIABLE FOR ANY LICENCE FEE OR ROYALTY DUE IN RESPECT OF ANY REQUIRED THIRD PARTY LICENCE. X-POWERS SHALL HAVE NO WARRANTY, INDEMNITY OR OTHER OBLIGATIONS WITH RESPECT TO MATTERS COVERED UNDER ANY REQUIRED THIRD PARTY LICENCE.