中国科学技术大学

2021—2022学年第一学期考试试卷

考试科目 概率论与数理统计 得分 ______

考试时间: 2022 年 1 月 12 日上午 8:30-10:30; 可使用简单计算器

(1) 设将ABC三个字母之一输入某信道, 独立地输出结果为原字母的概率是 0.8, 而输出为其它一字母的概率都是 0.1. 现等可能地将字母串AAAA, BBBB和CCCC之一输入该信道, 若已知输出结果为ABCA, 则输入的结果为AAAA的概率是 ...

所在院系 姓名 学号

(2) 设 A, B, C 三个事件两两独立,则它们相互独立的充分必要条件是()

-、(30分,每小题3分)填空题或单选题,答案可以直接写在试卷上.

, ,	(A) $A 与 B \cap C$ 独立(B) $A \cap B 与 A \cup C$ 独立(C) $A \cap B 与 A \cap C$ 独立(D) $A \cup B 与 A \cup C$ 独立
(3)	设随机变量 $X \sim N(0,1), Y$ 服从参数为 0.5 的 Bernoulli 分布, 且相互独立, 则 $Z = XY$ 的分布函数的间断点个数为() (A) 0 (B) 1 (C) 2 (D) 3
(4)	设随机变量 X 和 Y 相互独立且都服从区间 $(0,1)$ 上的均匀分布,则对任一正整数 n ,概率 $\mathrm{P}(X^n+Y>1)=$
(5)	设在单位正方形内部随机取一点, 然后以该点为圆心画一个单位圆, 若以 X 表示落在该圆内正方形顶点的个数, 则 $\mathbf{E}X = \underline{\hspace{1cm}}$.
(6)	设 X_1, X_2, \cdots, X_n 是来自参数 $\lambda = 3$ 的指数分布总体的一组简单随机样本, 若对任一 $\varepsilon > 0$, 都有 $\lim_{n \to \infty} P\left(\left \frac{1}{n}\sum_{i=1}^n X_i^2 - a\right \ge \varepsilon\right) = 0$ 成立, 则常数 $a = ($) (A) $\frac{1}{9}$ (B) $\frac{2}{9}$ (C) $\frac{1}{3}$ (D) $\frac{4}{9}$
(7)	设 X_1, X_2, \cdots, X_{10} 是来自标准正态总体的一组简单随机样本, 且记统计量 $Y = \frac{1}{2} \sum_{i=1}^{10} X_i^2 + \sum_{i=1}^{5} X_{2i-1} X_{2i}$, 则 Y 的分布为() (A) χ_4^2 (B) χ_5^2 (C) χ_9^2 (D) χ_{10}^2
(8)	设 X_1, X_2, \cdots, X_n 是来自均匀总体 $U(\theta, 2\theta)$ 的一组简单随机样本, 其中 $\theta > 0$ 为一未知参数, 则 $X_{(1)} = \min\{X_1, X_2, \cdots, X_n\}$ 为 θ 的() (A) 矩估计 (B) 极大似然估计 (C) 无偏估计 (D) 相合估计
(9)	设 X_1,X_2,\cdots,X_{36} 是来自正态总体 $N(\mu,8)$ 的一组简单随机样本, 且记 \overline{X} 为样本均值. 若以区间 $[\overline{X}-1,\overline{X}+1]$ 作为 μ 的置信区间, 则其置信水平为
(10)	设 X_1, X_2, X_3 是来自总体 $X \sim \begin{pmatrix} 1 & 2 & 3 \\ \theta^2 & 2\theta(1-\theta) & (1-\theta)^2 \end{pmatrix}$ 的一组简单随机样本,若假设检验 $H_0: \theta = 0.1 \leftrightarrow H_1: \theta = \theta_1$ 的拒绝域为 $\{X_1 = X_2 = X_3 = 1\}$, 其中 $0.5 < \theta_1 < 1$ 是一个给定的常数,则此检验犯第二类错误的概率为

- 二、 (20分) 设随机变量 $X \sim N(0,1)$, 而对任一实数 x, 在 X = x 条件下, $Y \sim N(x,1)$.
 - (1) 试求随机变量 Y 的密度函数 $f_Y(y)$, 并指出 Y 服从何种分布.
 - (2) 试求条件期望 E[XY|X=x].
 - (3) 试求 X 和 Y 的相关系数.
 - (4) 试求常数a, 使得随机变量 aX + Y 和 aX Y 相互独立.
- 三、(15分) 设随机变量 X_1, X_2, X_3 相互独立且都服从区间 (0,1) 上的均匀分布.
 - (1) 若随机变量 $Y = -a \ln X_1$, 其中 a > 0 为一给定常数, 试求 Y 的概率密度函数.
 - (2) 试求随机变量 $Z = X_2/X_1$ 的分布函数.
 - (3) 试求随机变量 $U = 1/(X_1X_2X_3)$ 的概率密度函数.
- 四、(20分) 设一列随机变量 Y_1, Y_2, \cdots, Y_n 满足

$$Y_i = \beta x_i + \varepsilon_i, \quad i = 1, 2, \cdots, n,$$

其中 x_1, x_2, \dots, x_n 为给定非负常数且不全相等, $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ 相互独立且均服从正态分布 $N(0, \sigma^2)$, 而 β 和 σ^2 为两个未知参数.

- (1) 根据 Y_1, Y_2, \dots, Y_n 的分布, 请写出似然函数 $L(\beta, \sigma^2)$.
- (2) 试求 β 的极大似然估计量 $\hat{\beta}$, 并证明 $\hat{\beta}$ 为 β 的一个无偏估计.
- (3) 证明 $\hat{\beta}^* = \sum_{i=1}^n Y_i / \sum_{i=1}^n x_i$ 也为 β 的一个无偏估计, 并比较 $\hat{\beta}$ 和 $\hat{\beta}^*$ 哪个更有效.
- 五、(15分)在 2021年日本东京举行的第 32 届夏季奥运会中, 我国运动员杨倩和杨皓然获得了射击混合双人团体 10米气步枪金牌.决赛中 15轮射击结果如下(单位:环):

 杨 倩
 10.5
 9.7
 10.0
 10.5
 10.3
 10.2
 10.1
 10.6
 10.4
 9.9
 10.8
 10.8
 10.4
 10.4
 10.4

 杨皓然
 10.3
 10.4
 10.9
 10.2
 10.5
 10.4
 10.2
 10.8
 10.6
 10.0
 10.5
 10.7
 10.4
 10.1
 10.7

设两位运动员的每次射击结果相互独立, 且均服从正态分布. 利用你所学的统计知识并结合上述决赛数据, 回答如下问题 (显著性水平 $\alpha = 0.05$):

- (1) 两位运动员在比赛中射击成绩的方差是否可以认为是相等的?
- (2) 假设"杨皓然平均射击水平高于杨倩"是否显著成立?

附录

标准正态分布函数: $\Phi(1.645) = 0.95$, $\Phi(1.96) = 0.975$, $\Phi(2.121) = 0.983$

上分位数: $t_{28}(0.025) = 2.048$, $t_{28}(0.05) = 1.701$, $F_{14,14}(0.025) = 2.979$, $F_{14,14}(0.05) = 2.484$

(完)

参考答案

一、每小题3分.

 $\frac{4}{5}$; A; B; $\frac{1}{n+1}$; π ; B; B; D; 0.966; $1-\theta_1^6$.

- 二、 每小题 5 分.
 - (1) 由

$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, \quad f_{Y|X}(y|x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(y-x)^2}{2}},$$

可知随机向量 (X,Y) 的联合密度为

$$f(x,y) = f_X(x)f_{Y|X}(y|x) = \frac{1}{2\pi}e^{-\frac{x^2+(y-x)^2}{2}}.$$

从而, 随机变量 Y 的密度函数为

$$f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx = \frac{1}{2\sqrt{\pi}} e^{-\frac{y^2}{4}},$$

即 Y 服从正态分布 N(0,2). [没指明具体分布扣 1 分.]

- (2) 由题目条件, $E[XY|X = x] = xE[Y|X = x] = x^2$.
- (3) 由 (1) 知 Var(Y) = 2, 而由 (2) 知 $E[XY] = E[E(XY|X)] = E[X^2] = 1$. 从而,

$$\rho_{X,Y} = \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X) \cdot \operatorname{Var}(Y)}} = \frac{\operatorname{E}[XY]}{\sqrt{2}} = \frac{\sqrt{2}}{2}.$$

- (4) 易知, (aX + Y, aX Y) 服从二维正态分布, 且 $Cov(aX + Y, aX Y) = a^2 2$. 由于二维正态随机向量的不相关性和独立性等价, 故所求常数 $a = \pm \sqrt{2}$.
- 三、 每小题 5 分.
 - (1) 对任一 y > 0, 由于

$$P(Y \le y) = P(-a \ln X_1 \le y) = P(X_1 \ge e^{-y/a}) = 1 - e^{-y/a},$$

故 Y 服从参数为 1/a 的指数分布, 从而其概率密度函数为

$$f_Y(y) = \frac{1}{a} e^{-\frac{y}{a}}, \quad y > 0.$$
 [缺少或写错取值范围扣 2 分.]

(2) 将 (X_1, X_2) 视为单位正方形上的均匀分布, 利用几何概型可知, 当 $0 \le z < 1$ 时,

$$P(Z \le z) = P(X_2 \le zX_1) = z/2;$$

而当z > 1时,

$$P(Z \le z) = P(X_2 \le zX_1) = 1 - 1/(2z).$$

故 Z 的分布函数为

$$F_Z(z) = \begin{cases} 0, & z < 0; \\ z/2, & 0 \le z < 1; \\ 1 - 1/(2z), & z \ge 1. \end{cases}$$

[漏了z < 0的部分扣1分.]

(3) (此小题也可用其它方法计算, 但稍繁) 由 $V := \ln U = -\sum_{i=1}^{3} \ln X_i$ 及 (1) 可知, V 为 3 个独立 $\exp(1)$ 随机变量之和, 故 V 服从 $\Gamma(1,3)$ 分布, 即其概率密度函数为

$$f_V(v) = \frac{1}{2}v^2 e^{-v}, \quad v > 0.$$

再由 $U = e^V$ 及密度函数变换公式可知, U 的概率密度函数为

$$f_U(u) = \frac{\ln^2 u}{2u^2}, \quad u > 1.$$
 [缺少或写错取值范围扣 2 分.]

四、 第1小题4分,后面两个小题都涉及两个结论,各8分.

(1) 由 $Y_i \sim N(\beta x_i, \sigma^2), i = 1, 2, \dots, n$ 及它们相互独立可知,

$$L(\beta, \sigma^2) = \frac{1}{(\sqrt{2\pi}\sigma)^n} \exp\Big\{-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \beta x_i)^2\Big\}.$$

(2) 记对数似然函数 $l(\beta, \sigma^2) = \ln L(\beta, \sigma^2)$, 并令 $\frac{\partial l}{\partial \beta} = 0$ 可得, $\sum_{i=1}^n (y_i - \beta x_i) x_i = 0$, 即 β 的极大似然估计量为

$$\hat{\beta} = \frac{\sum_{i=1}^{n} x_i Y_i}{\sum_{i=1}^{n} x_i^2}.$$

由 $\hat{\beta}$ 为一列独立正态随机变量的线性组合, 故 $\hat{\beta}$ 也服从正态分布, 且其期望和方差为

$$E(\hat{\beta}) = \frac{\sum_{i=1}^{n} \beta x_i^2}{\sum_{i=1}^{n} x_i^2} = \beta, \quad Var(\hat{\beta}) = \frac{\sigma^2}{\sum_{i=1}^{n} x_i^2}.$$

从而 $\hat{\beta}$ 为 β 的一个无偏估计.

(3) 与 $\hat{\beta}$ 类似, 估计量 $\hat{\beta}$ * 也是一列独立正态随机变量的线性组合, 且

$$E(\hat{\beta}^*) = \frac{\sum_{i=1}^n \beta x_i}{\sum_{i=1}^n x_i} = \beta, \quad Var(\hat{\beta}^*) = \frac{n\sigma^2}{\left(\sum_{i=1}^n x_i\right)^2}.$$

故 $\hat{\beta}^*$ 也为 β 的一个无偏估计, 且由 Cauchy-Schwarz 不等式可知, 当 x_1, x_2, \dots, x_n 不全相等时, $Var(\hat{\beta}) < Var(\hat{\beta}^*)$, 从而 $\hat{\beta}$ 更有效.

- 五、 先做一些计算. 杨倩: $n_1=15$, $\overline{x}=10.333$, $(n_1-1)S_1^2=1.353$; 杨皓然: $n_2=15$, $\overline{y}=10.447$, $(n_2-1)S_2^2=0.957$; $S_w^2=0.287^2$. [上面的计算 3 分, 后面每小题各 6 分.]
 - (1) $H_0: \sigma_1^2 = \sigma_2^2 \leftrightarrow H_1: \sigma_1^2 \neq \sigma_2^2$.

$$0.336 = \frac{1}{F_{14,14}(0.025)} < \frac{S_1^2}{S_2^2} = 1.414 < F_{14,14}(0.025) = 2.979,$$

接受 H₀, 即可以认为他们的发挥稳定性相同.

$$t = \frac{\overline{X} - \overline{Y}}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = -1.08 > -t_{28}(0.05) = -1.701,$$

故接受 H₀, 即不能认为杨皓然的比赛成绩显著高于杨倩.