Machine Learning:

"Una Máquina de Oportunidades"

WIQONN Technologies

"Datos e ingeniería para Humanos"

Ing. Wayner Barrios Bustamante

Acerca de mí ... Wayner Barrios Bustamante

- Ingeniero de Sistemas, Universidad del Norte 1991
- Especialista en Redes de Computadoras, Universidad del Norte 2002
- Experiencia: 27 años en el sector de la Tecnología de la Información y las Telecomunicaciones (TIC)
- <u>Historia Laboral</u>: Alcaldía Distrital de Barranquilla, Dirección de TIC de la Universidad del Norte, Unidad de Outsourcing en IBM, Gerente de Sistemas y Técnico en Metrotel.
- Miembro del Comité Directivo de Metrotel.
- Presidente de la Junta de Directiva de Optecom S.A.S.
- Docente Universitario, UN UAC USB
- Gerente General y co-fundador de WIQONN Technologies

WIQONN Tech: Una empresa de servicios TICs

Análisis de Datos

Nuestro objetivo es descubrir información útil, informar conclusiones y apoyar la toma de decisiones

Inteligencia Artificial

Agentes inteligentes que toman acciones que maximizan sus posibilidades de lograr su objetivo con éxito. Con aplicaciones en las áreas de: Machine Learning Computer Vision Natural Language Processing

Apps Web & Móviles

Nos enfocamos en crear soluciones adaptadas a los requisitos de nuestros clientes que utilizan tecnología de punta.

Networking

Apoyamos en proyectos de infraestructura en Redes de Acceso, de Sincronismo, IoT, Servicios de Red, IaaS, Cyberseguridad.

Proyectos de Electrónica

Soluciones de sistemas de sensores embebidos y remotos para múltiples aplicaciones.

INTELIGENCIA ARTIFICIAL

Un programa que puede sentir, razonar, actuar y adaptarse.

MACHINE LEARNING

Algoritmos cuyo rendimiento mejora a medida que se exponen a más datos a lo largo del tiempo

DEEP LEARNING

Subconjunto de Machine Learning en el que las Redes Neuronales Multicapas aprenden de una gran cantidad de datos

"La INTELIGENCIA ARTIFICIAL

Es el intento de que un dispositivo o una aplicación sea tan o más inteligente que un Humano"

"MACHINE LEARNING es una serie de algoritmos que hacen que tu dispositivo o aplicación sea artificialmente inteligente"

"... el 90% de los datos existentes en el mundo se han creado en los últimos 2 años a un ritmo de 2,5x10¹⁸ bytes diarios..."

The New York Times

4.0 Billones personas usan Internet

3.2 Billones personas usan Redes Sociales

5.1 Billones personas usan Teléfono Móvil

3.0 Billones personas usan Redes Sociales a través de su Móvil

"El conjunto de técnicas y tecnologías para el **tratamiento de datos**, en entornos de gran **VOLUMEN**, **VARIEDAD** de orígenes y en los que la **VELOCIDAD** de respuesta es crítica" (1)

"MODELO DE LAS 3VS DEL BIG DATA"

(1) Doug Laney, Gartner Group - 2001

Big Data en Colombia: CONPES 3920

Machine Learning: Identificando las oportunidades

ZooApp

Mi mascota

Determinar si un PACIENTE debe ser diagnosticado con **DIABETES** a partir de los datos obtenidos de sus Historias Clínicas.

ATRIBUTOS DE LA INFORMACIÓN

- # Embarazos
- Glucosa
- Presión Arterial
- Pliegue Cutáneo
- Insulina
- BMI
- Pedigree Diabetes
- Edad
- Diagnóstico

CONJUNTO DE DATOS

2, 148, 72, 35, 0, 33.6, 0.627, 50, 1

1, 85, 66, 29, 0, 26.6, 0.351, 31, 0

3, 183, 64, 0, 0, 23.3, 0.672, 32, 1

1, 89, 66, 23, 94, 28.1, 0.167, 21, 0

0, 137, 40, 35, 168, 43.1, 2.288, 33, 1

5, 116, 74, 0, 0, 25.6, 0.201, 30, 0

3, 78, 50, 32, 88, 31, 0.248, 26, 1

1, 115, 0, 0, 0, 35.3, 0.134, 29, 0

2, 197, 70, 45, 543, 30.5, 0.158, 53, 1

2, 125, 96, 0, 0, 0, 0.232, 54, 1

760 instancias9 atributos

Determina la edad de una Mujer

Desarrolla un programa que te permita determinar la edad a partir del rostro de una mujer

Desarrolle una herramienta de tecnología de la información que brinde apoyo en el análisis de ECG para diagnosticar enfermedades cardíacas de manera oportuna (1)

Un **ECG** detecta:

- Las irregularidades en el ritmo cardíaco (arritmias)
- Defectos del corazón
- Problemas con las válvulas de su corazón.
- Arterias bloqueadas o estrechas de su corazón (enfermedad de la arteria coronaria)
- Un ataque al corazón, en situaciones de emergencia
- Un ataque al corazón previo

(1) A Real-Time QRS Detection Algorithm – 1985, Jiapu Pan & Willis J. Tompkins

Determinar el tipo de planta de flor de lris a partir de las dimensiones de sus sépalos y pétalos.

ATRIBUTOS DE LA INFORMACIÓN

- 1. sepal length in cm
- 2. sepal width in cm
- 3. petal length in cm
- 4. petal width in cm
- 5. class:
- -- Iris Setosa
- -- Iris Versicolour
- -- Iris Virginica

CONJUNTO DE DATOS

4.6, 3.2, 1.4, 0.2, Iris-setosa 5.3, 3.7, 1.5, 0.2, Iris-setosa 5.0, 3.3, 1.4, 0.2, Iris-setosa 7.0, 3.2, 4.7, 1.4, Iris-versicolor 6.4, 3.2, 4.5, 1.5, Iris-versicolor 5.7, 2.8, 4.1, 1.3, Iris-versicolor 6.3, 3.3, 6.0, 2.5, Iris-virginica 5.8, 2.7, 5.1, 1.9, Iris-virginica 7.1, 3.0, 5.9, 2.1, Iris-virginica

150 instancias5 atributos

A partir de las características de un artículo de Inteligencia Artificial intenta predecir, cuántas veces será compartido en Redes Sociales.

Title: Titulo del Artículo URL: Ruta al artículo

Word count: La cantidad de palabras del artículo, # of Links: Los enlaces externos que contiene,

of comments: Cantidad de comentarios,

Images video: Suma de imágenes (o videos),

Elapsed days: La cantidad de días transcurridos (al momento de crear el artículo)

Shares: Cantidad de veces que se compartió el artículo.

161 instancias8 atributos

	Title	url	Word count	# of Links	# of comments	# Images video	Elapsed days	# Shares
0	What is Machine Learning and how do we use it	https://blog.signals.network/what-is-machine-l	1888	1	2.0	2	34	200000
1	10 Companies Using Machine Learning in Cool Ways	NaN	1742	9	NaN	9	5	25000
2	How Artificial Intelligence Is Revolutionizing	NaN	962	6	0.0	1	10	42000
3	Dbrain and the Blockchain of Artificial Intell	NaN	1221	3	NaN	2	68	200000
4	Nasa finds entire solar system filled with eig	NaN	2039	1	104.0	4	131	200000

		Word count	# of Links	# of comments	# Images video	Elapsed days	# Shares
(count	161.000000	161.000000	129.000000	161.000000	161.000000	161.000000
1	mean	1808.260870	9.739130	8.782946	3.670807	98.124224	27948.347826
	std	1141.919385	47.271625	13.142822	3.418290	114.337535	43408.006839
	min	250.000000	0.000000	0.000000	1.000000	1.000000	0.000000
	25%	990.000000	3.000000	2.000000	1.000000	31.000000	2800.000000
	50%	1674.000000	5.000000	6.000000	3.000000	62.000000	16458.000000
	75%	2369.000000	7.000000	12.000000	5.000000	124.000000	35691.000000
	max	8401.000000	600.000000	104.000000	22.000000	1002.000000	350000.000000

REGRESIONES LINEALES

Terminología de Machine Learning

Los sistemas de Machine Learning aprenden cómo combinar entradas para producir predicciones útiles sobre datos nunca antes vistos.

Dataset

Conjunto de datos del modelo, que podemos expresar como $\{x_1, x_2, x_3, \ldots, x_{N_1}, y_1, y_2, \ldots\}$

Atributo

Es una variable de entrada, y corresponde a un campo (columna) del conjunto de datos. Un proyecto de aprendizaje automático simple podría usar un solo atributo, mientras que otro más sofisticado podría usar millones de atributos, especificados como $\{x_1, x_2, x_3, \dots, x_N\}$

Etiqueta

Es el valor que estamos prediciendo, expresado como $\{y_1, y_2, ...\}$. La etiqueta podría ser el precio futuro del café, el tipo de animal que se muestra en una imagen, el significado de un clip de audio o simplemente cualquier cosa.

Modelo

Un modelo define la relación entre los atributos y la etiqueta. Por ejemplo, un modelo para determinar el tipo de planta podría asociar de manera muy definida determinados atributos con "la longitud y el ancho" del pétalo o sépalo.

Definir como desde X podemos llegar a Y y encontrar la siguiente relación $Y \approx F(X, W)$ Identificamos las siguiente <u>fases</u> de un Modelo:

Entrenamiento significa crear o aprender el modelo. Es decir, le muestras ejemplos etiquetados al modelo y permites que este aprenda gradualmente las relaciones entre los atributos y la etiqueta:

$$(x_1, y_1), (x_2, y_2), (x_3, y_3), (x_4, y_4), (x_5, y_5), \dots$$
 y encontrar W ideal.

Inferencia significa aplicar el modelo entrenado a ejemplos sin etiqueta. Es decir, usas el modelo entrenado para realizar predicciones útiles Y'. Es decir $Y' = F(X, W) = w_N x_N + w_{N-1} x_{N-1} + w_{N-2} x_{N-2} + ... w_1 x_1 + w_0$

Parámetros de entrenamiento

Variables que permiten controlar la calidad del modelo resultante. $\{w_0, w_1, w_2, \dots, w_N\}$

Pérdida (L2)

También llamada error cuadrático (EC) se define como el cuadrado de la diferencia entre la predicción y la etiqueta. n modelo define la relación entre los atributos y la etiqueta.

 $(F(x_i, W) - y_i)^2$ de tal forma que $F(x_i, W)$ es llamada y_i la predicción

Costo de la función L(W)

$$\frac{1}{2n} \sum_{i=1}^{n} (Fx(x_i, W) - yi)^2$$

Objetivo

$$Min_w L(W)$$

Gradiente Descendente

$$w_0=w_0-lpha\,rac{dL(W)}{dw_0}$$
 y $w_1=w_1-lpha\,rac{dL(W)}{dw_1}$, donde $lpha$ es la tasa de aprendizaje

Secuencia típica de un Aprendizaje

- Dataset
- Training_data 80%
- Test_data 20%

Tipos de Machine Learning

Tipos de Aprendizajes Automáticos

Tipos de Aprendizajes Automáticos

Tipos de Aprendizajes Automáticos

¿Qué algoritmo de Aprendizaje Automático debo "USAR"?

La respuesta a la pregunta varía según muchos factores, entre ellos:

- ▶ El tamaño, la calidad y la naturaleza de los datos
- El tiempo computacional disponible
- La urgencia de la tarea
- ¿Qué quieres hacer con los datos?

Incluso un *científico de datos* experimentado no puede decir qué algoritmo funcionará mejor antes de probarlos.

Consideraciones al elegir un Algoritmo

- **Precisión:** No siempre es necesario obtener la respuesta más precisa posible. A veces, una aproximación ya es útil, según para lo que se desee usar.
- ▶ **Tiempo de entrenamiento:** La cantidad de minutos u horas necesarios para entrenar un modelo varía mucho según el algoritmo.
- Linealidad: Los algoritmos de clasificación lineal suponen que las clases pueden estar separadas mediante una línea recta (o su análogo de mayores dimensiones).
- Cantidad de parámetros: Los parámetros son los botones que un científico de datos activa al configurar un algoritmo. Son números que afectan al comportamiento del algoritmo, como la tolerancia a errores o la cantidad de iteraciones, o bien opciones de variantes de comportamiento del algoritmo.
- Cantidad de características: Para ciertos tipos de datos, la cantidad de características puede ser muy grande en comparación con la cantidad de puntos de datos.

Algoritmos según el Tipo de Aprendizaje

Tipo de Aprendizaje	Algoritmo
APRENDIZAJE SUPERVISADO	Linear Regression Logistic Regression k-Nearest Neighbors Support Vector Machines (SVM) Bayesian Classifiers Decision Trees and Random Forest Neural Networks / Deep Learning
APRENDIZAJE NO SUPERVISADO	K-Means Principal Component Analysis (PCA) Anomaly Detection

¿Qué quiero "HACER"?

- Si lo que necesitas es agrupar o establecer categorías o grupos, puedes utilizar algoritmos de clasificación
- Si quieres predecir un importe, cantidad, ventas, etc... deberás usar algoritmos de regresión
- Si quieres detectar datos incongruentes, incorrectos, fallos, etc... usa detección de anomalías
- ▶ Si lo que tienes es un montón de datos, aparentemente inconexos y sin ninguna relación entre ellos, pues utilizar "clustering", de forma que se establezcan estructuras y grupos con patrones comunes

Áreas de Aplicación de Machine Learning

Áreas de aplicación de Machine Learning

- Seguridad Física e Informática
- Atención a Clientes
- Segmentación de Audiencia
- Transporte Masivo
- Salud
- Juegos
- Economía y Finanzas
- Conducción autónoma
- Motores de recomendación

Plataformas de software de Machine Learning

Plataformas de Machine Learning

Principales Frameworks para Machine Learning

Ejemplo Python para aplicación Planta Flor de Iris

```
#---- DECLARACION DE LIBRERIAS
      import numpy as np
      import pandas as pd
      import matplotlib.pyplot as plt
      #----- CARGUE DEL DATASET - IMPORTAR DATOS DE ENTRADA EN FORMATO CSV
      iris = pd.read csv("file-iris.csv")
      #---- GRAFICAR Pétalo - Longitud vs Ancho
      fig = iris[iris.Species == 'Iris-setosa'].plot(kind='scatter', x='PetalLengthCm', y='PetalWidthCm', color='blue', label='Setosa')
     iris[iris.Species == 'Iris-versicolor'].plot(kind='scatter', x='PetalLengthCm', y='PetalWidthCm', color='green', label='Versicolor', ax=fig)
     iris[iris.Species == 'Iris-virginica'].plot(kind='scatter', x='PetalLengthCm', y='PetalWidthCm', color='red', label='Virginica', ax=fig)
13
      fig.set xlabel('Pétalo - Longitud')
     fig.set ylabel('Pétalo - Ancho')
     fig.set title('Pétalo Longitud vs Ancho')
     plt.show()
18
19
      #---- APLICACIÓN DE ALGORITMOS DE MACHINE LEARNING
      from sklearn.model selection import train test split
20
      from sklearn.tree import DecisionTreeClassifier
23
      #---- SEPARAR EL DATASET EN datos de "train" en entrenamiento v "test" para probar los algoritmos
     X train, X test, y train, y test = train test split(X, y, test size=0.2)
     print('Son {} datos para entrenamiento y {} datos para prueba'.format(X train.shape[0], X test.shape[0]))
28
      #---- APLICACIÓN DEL ALGORITMO DE CLASIFICADOR DE ARBOL DE DECISIÓN
30
      algoritmo = DecisionTreeClassifier()
      algoritmo.fit(X train, y train)
     Y pred = algoritmo.predict(X test)
     print('Precisión Árboles de Decisión Clasificación: {}'.format(algoritmo.score(X train, y train)))
```


-- FIN DE LA PRESENTACIÓN --

¿Inquietudes y/o Preguntas?

E-mail: wiqonn@gmail.com

Twitter: @wiqonn

