- 1. (Jan-10.3) Let $F \subseteq E$ be finite fields where |F| = q and [E : F] = n.
 - (a) Show that every monic irreducible polynomial in F[x] of degree dividing n is the minimal polynomial over F of some element of E.
 - (b) Compute the product of all the monic irreducible polynomials in F[x] of degree dividing n.
 - (c) If |F| = 2, find the number of monic irreducible polynomials of degree 10 in F[x].
- 2. (Jan-09.3): Suppose $f(x) = x^m + 1$ is irreducible over $\mathbb{F}_p[x]$ where p is an odd prime.
 - (a) Show that every root of f in a splitting field of f has multiplicative order 2m.
 - (b) Show that 2m divides $p^m 1$ but does not divide $p^n 1$ for any n with 0 < n < m.
 - (c) Show that $m \neq 4$.
- 3. (Jan-13.2): Let k be a field. We say a polynomial $f(x) \in k[x]$ is "consecutive-root" if it has two roots x_0, x_1 (not necessarily in k) such that $x_1 x_0 = 1$.
 - (a) Show that there is no irreducible consecutive-root polynomial in $\mathbb{Q}[x]$.
 - (b) Let p be a prime. Show that $x^p x 1$ is consecutive-root and irreducible in $\mathbb{F}_p[x]$.
 - (c) Characterize all irreducible monic consecutive-root polynomials in $\mathbb{F}_p[x]$ of degree $\leq p$.
- 4. (Jan-89.3) Prove that x^9-2 is an irreducible factor of $x^{27}-1$ over \mathbb{F}_7 .
- 5. (Aug-08.3): Let $E \subseteq \mathbb{C}$ be the splitting field of $x^3 2$ over \mathbb{Q} .
 - (a) Show that $[E:\mathbb{Q}]=6$
 - (b) If $\alpha \in E$ and $\alpha^5 \in \mathbb{Q}$ show that $\alpha \in \mathbb{Q}$.
 - (c) Show that there exists $\beta \in E$ with $\beta^2 \in \mathbb{Q}$ but $\beta \notin \mathbb{Q}$.
- 6. (Aug-96.3): Let $f(x) = x^6 + 3 \in \mathbb{Q}[x]$, let α be a root of f over \mathbb{C} , and set $E = \mathbb{Q}[\alpha]$.
 - (a) Show that E contains a primitive 6th root of unity.
 - (b) Show that E is Galois over \mathbb{Q} .
 - (c) Find the number of intermediate fields F with $\mathbb{Q} \subset F \subset E$ with $[F : \mathbb{Q}] = 3$.
- 7. (Aug-09.3): Let F be a field and $f(x) \in F[x]$ irreducible with splitting field E. Choose $\alpha \in E$ with $f(\alpha) = 0$ and a positive integer n and let $g(x) \in F[x]$ irreducible polynomial with $g(\alpha^n) = 0$.
 - (a) Show that $\deg(g)$ divides $\deg(f)$ and $\deg(f)/\deg(g) \leq n$.
 - (b) If $\deg(f)/\deg(g) = n$ and the characteristic of F does not divide n, show E contains a primitive nth root of unity.