「学习总结」整数模 n 乘法群

Jiayi Su (ShuYuMo)

2021-02-18 08:29:14

从这一点出发理解原根和阶往往有很多奇妙的感受...

几点补充

欧拉函数

 $n=\prod p_i^{e_i}$

$$\varphi(n) = \prod p_i^{e_i-1}(p_i-1)$$

欧拉函数是一个经典的积性函数。

群的直积

又名 笛卡尔 (Descartes) 积,其定义如下:

设
$$(G_1,*) \times (G_2,\cdot) = (G,\oplus)$$

其中

- × 为两个群的笛卡尔积。
- $G = \{(a,b) \mid a \in G_1, b \in G_2\}$

原根

若 g 为 n 的原根,等价于 $g\perp n, g^0\sim g^{\varphi(n)-1}\mod n$ 互不相同,等价于 $g\perp n,\ \forall i\in [1,\varphi(n)-1], g^i\neq 1.$ $(x\perp y$ 表示 x,y 互质)

一个数 n 有原根当且仅当 $n=2,4,p^k,2p^k$ 其中 p 为奇素数。

小结论:若一个正整数 n 有原根,则其原根数量恰好为 $\varphi(\varphi(n))$ 。

阶

若 $a\perp n$,则使 $a^k\equiv 1\pmod n$ 成立的 最小 正整数 k,称为 a 模 n 意义下的阶,记作 $\mathrm{ord}_n(a)$ 。可以发现若 g 为模 n 意义下原根,那么 $\mathrm{ord}_n(g)=\varphi(n)$ 。

整数模 n 乘法群

定义

对于 任意 一个正整数 n , $1 \sim n$ 中与 n 互质的 $\varphi(n)$ 个数字组成的集合记作 \mathbb{Z}_n^* 。

事实上,由 \mathbb{Z}_n^* 和模 n 意义下的乘法组成的代数系统 (\mathbb{Z}_n^*, \times) 是一个群。

这一点可以考虑 \mathbb{Z}_n^* 中元素所包含的质因子,可以发现是显然的。

因为任意一个处于 n 的剩余系中且不与 n 互质的元素 x ,都可以除掉 $\gcd(x,n)$ 放到 $\frac{n}{\gcd(n,x)}$ 的剩余系内考虑,所以这里只讨论 n 的剩余系中与 n 互质的元素组成的集合,即 \mathbb{Z}_n^* (称其为 n 的简化剩余系),当然也因为 我不会 \mathbb{Z}_n^* 的性质实在是太美了。

离散对数

若 n 存在原根,取任意一个 n 的原根 g ,则对于 \mathbb{Z}_n^* 中的一个每个元素 x ,都存在唯一的 $k \in [0, \varphi(n)-1]$,使得 $q^k = x$ 。

可以得出 $[0, \varphi(n)-1] \cap \mathbb{Z}$ 中的元素与 \mathbb{Z}_n^* 中的元素之间一一对应。

可以建立函数 f(x) 表示 \mathbb{Z}_n^* 向 $[0, \varphi(n)-1] \cap \mathbb{Z}$ 的映射。可以形象的称 f(x) 为 离散对数。这里满足很多实数定义下对数的性质。需要注意离散对数间的运算是定义在 $\mod \varphi(n)$ 意义下的。

原根不存在的剩余系下离散对数的定义

离散对数的取值依赖于原根的选取,所以只有 n 存在原根时, \mathbb{Z}_n^* 中的元素才存在 直接的 的离散对数。

可以利用类似于中国剩余定理的一般思想,将 n 分解为质数幂的形式,分别求出 x 在每个 p_i^k 剩余系下的离散对数 a_i ,则可以用 (a_0,a_1,a_2,\dots) 这样的"坐标"来类似地定义 x 在 n 剩余系下的"离散对数"。根据中国剩余定理,可以发现这样的"坐标"是能够实现和原数——对应的。

可以先考虑原根存在的 \mathbb{Z}_n^* ,对 \mathbb{Z}_n^* 中的每一个元素取离散对数(不妨设这里的原根取最小的原根)放入一个集合 G ,然后重新定义群 乘法运算为模 $\varphi(n)$ 意义下的 加法,这样 (G,\times) 也能够形成一个群。不妨用 G_n 来表示这个群。

类似地定义原根不存在的 \mathbb{Z}_m^* ,设 $m = \prod_{i=1}^s P_i^{e_i}$ 。

他们的"离散对数"形成的群可以表示为 $G_{P_s^{e_1}} imes G_{P_s^{e_2}} imes G_{P_s^{e_3}} imes \dots imes G_{P_s^{e_s}}$,其中 imes 为定义在群上的直积。

值得一提的是:可以发现,两个群做直积,得到的群的阶为之前两个群的阶的乘积,可以发现,这和欧拉函数的积性是相符的。

这好像没有什么用,只是可以帮助理解或者得到一些小结论吧。

模 $2^k(k>2)$ 意义下的离散对数

注意到, $2^k(k>2)$ 也是没有原根的。

定义 $2^k(k>2)$ 意义下的"离散对数"需要如下两个结论

$$\operatorname{ord}_{2^k}(5) = 2^{k-2}$$

而且对于任意一个 2^k 的简化剩余系下能表示成形如 5^{α} 的元素 x , -x 一定不能表示成形如 5^{α} 的元素。

一个栗子

当 k = 4 时,即 $16 = 2^4$ 。

 $\mathbb{Z}_{16}^* = \{1, 3, 5, 7, 9, 11, 13, 15\}$

 $5^0 = 1, 5^1 = 5, 5^2 = 9, 5^3 = 13, 5^4 = 1$

 $\operatorname{ord}_{16}(5) = 4 = 2^{k-2} = 2^2$

且 $-1 \equiv 15, -5 \equiv 11, -9 \equiv 7, -15 \equiv 2$ 这些数字都没有在上面出现过。

简单来说就是 2^k 的简化剩余系下 (大小为 $2^{k-1})$,有恰好一半的数字可以表示成 $5^{\alpha} \mod 2^k$,恰好一半不可以,这两部分元素一一对应,互为剩余系下的相反数。

所以,可以把模 $2^k(k>2)$ 意义下的循环群看成是两个原根为 5 和 -1 的乘法群的直积。

其中的元素 x 的离散对数形如 (a,b) 表示 $5^a \times (-1)^b$ 。

从乘法群的角度考虑原根和阶

对于任意正整数 n , n 的简化剩余系中的取任意一个数字 x 。

设 $S_x=\{x^0,x^1,x^2,\cdots\}$,可以发现如果定义集合 S 的乘法运算为模 n 意义下的乘法,那么这东西就是 (\mathbb{Z}_n^*,\times) 的一个子群…这里 $|S_x|$ (群 (S_x,\times) 的阶)就可以称为 x 在模 n 意义下的阶。

把剩余系的环和群的环结合着理解一下,可以发现这个定义和原先的定义是等价的。

根据这个东西,不难发现:

$$|S_x| = \frac{\varphi(n)}{\gcd(f(x), \varphi(n))}$$

这里的 f(x) 为 x 在任意原根意义下的离散对数。

存在一个显然的事实:一个常数 x 的所有倍数模 m 能够取到所有形如 $k \cdot \gcd(x,m)$ 的数 $(k \in \mathbb{Z}^*)$ 。

从 n 的某个原根意义下离散对数的角度考虑, S_x 可以看作"所有离散对数为 $\gcd(f(x),\varphi(n))$ 的倍数的元素"组成的集合,这样的数字显然有 $\frac{\varphi(n)}{\gcd(f(x),\varphi(n))}$ 个,也就是循环子群的阶数。

之后的问题中,如果不好考虑某个引理,可以转化为选取一个原根后,对每个元素,求其离散对数,然后扔到一个剩余系环上考虑。即使是关于原根本身的引理,也可以用这样的方法证明。

可以发现,我们想要的原根 x,满足 x 的循环子群能够取遍原来群中所有元素,即 $f(x) \perp \varphi(n)$ 。

考虑一下原根的数量,对于任意一个正整数 n ,其简化剩余系阶为 $\varphi(n)$,每个数字取离散对数,指数和 $\varphi(n)$ 互质的即可成为原根,这样的数字有 $\varphi(\varphi(n))$ 个。事实上,这是原根数量的精确值。

对于 任意 一个正整数 n ,若其剩余系存在原根,则原根数恰好为 $\varphi(\varphi(n))$.

实现上的相关问题

什么求原根、求阶和求离散对数之类的人间烟火,可以查看 「学习总结」数论

相关栗题

debris

给定素数 P,求满足 $1 \le n, m \le P(P-1)$ 且 $n^m \equiv m^n \pmod{P}$ 的数对 (n, m) 个数。

答案对素数 M 取模。数据组数 $T \le 100, P \le 10^{12}, M \le 10^9$

如果 n, m 一个为 P 的倍数,另一个不是,那么显然这些方案都不合法。

分两种情况:

如果 n,m 都是 P 的倍数,那么这一部分的贡献是平凡的,就是 $(P-1)^2$ 。

如果 n, m 都不是 P 的倍数,可以取其离散对数:

$$n^{m} \equiv m^{n} \pmod{P}$$

$$\Rightarrow g^{am} \equiv g^{bn} \pmod{P}$$

$$\Rightarrow am \equiv bn \pmod{\varphi(P)}$$

$$\Rightarrow ad \equiv bc \pmod{P-1}$$

定义 n=(a,c), m=(b,d)。任何一个数字 n,m 都可以用形如 (x,y) 的数对表示。

同时 $\forall x,y \in [0,P-2]$ (x,y) 的数对都唯一的对应一个在 [1,P(P-1)] 的数字。

原式化简:

$$n^{m} \equiv m^{n} \pmod{P}$$

$$\Rightarrow g^{am} \equiv g^{bn} \pmod{P}$$

$$\Rightarrow am \equiv bn \pmod{\varphi(P)}$$

$$\Rightarrow ad \equiv bc \pmod{P-1}$$

问题转化为:

若 a,b,c,d 可以在 [0,P-1) 内任取,方程 $ad \equiv bc \pmod{P-1}$ 的解 (a,b,c,d) 的数量。

根据乘法群的理论,把 $(\mathbb{Z}_{P-1}^*, \times)$ 拆分成多个 p^k 的群的直积。"坐标"每一维行为独立。

分别求出每一个 $ad \equiv bc \pmod{p^k}$ 的解数量相乘即可。

考虑如何求出形如 $ab \equiv bc \pmod{p^k}$ 的方程解数量。

仍然可以分两种情况:

- 方程两边都与 p 互质,这样答案也是平凡的可以考虑其中三个数字任取,然后最后一个数字算逆元即可,答案就 是 $\omega(p^k)^3$ 。
- 方程两边与 p 不互质,可以考虑方程一边的取值个数,考虑枚举 a,b 中 p 的次数,同时除去这个值,转化为互质的情况。需要注意如果其次数和大于 p^k 两边 p 的幂次没必要相等。

子

求 $x^k \mod m$ (x 为非负整数) 的不同值个数,答案对 $10^9 + 7$ 取模。

$$m = \prod_{i=1}^{m_s} p_i^{a_i}$$

$$k = \prod_{i=1}^{k_s} q_i^{b_i}$$

 $m_s, k_s \leq 2 \times 10^5, p_i, q_i \leq 10^7, 1 \leq a_i, b_i \leq 10^9$

下辈子再学。

小 A 与两位神仙

给定一个奇质数次幂m。

n 组询问,每组给定 (x,y) 满足 $x\perp m,y\perp m$

判定是否存在 $x^a \equiv y \pmod{m}$

 $n \le 2 \times 10^4, m \le 10^{18}$

显然求离散对数非常舒服,直接算倍数即可。只可惜 m 有亿点点大。

但是可以通过离散对数考虑,设u,v分别为x,y的离散对数。

显然我们希望:

$$t \in \mathbb{Z} \quad \text{s.t.} \quad ut = v \pmod{\varphi(m)}$$

即:

$$\gcd(u,\varphi(m))|v$$

其等价于:

$$\gcd(u,\varphi(m))|\gcd(v,\varphi(m))$$

由上面乘法群的推论:

$$|S_x| = \frac{\varphi(m)}{\gcd(\varphi(m), f(x))}$$

于是可以转化为:

$$\frac{\varphi(m)}{|S_x|} \mid \frac{\varphi(m)}{|S_y|}$$

即:

$$|S_y|$$
 $|S_x|$

所以只需要对原数 x,y 分别求阶,然后判断 $\operatorname{ord}_m(y)|\operatorname{ord}_m(x)$ 即可。