Autovalores y Autovectores

El espacio vectorial C^n consiste de todos las n-tuplas complejas (vectores complejos) de la forma

$$x = (x_1, ..., x_n)^T$$
 donde $x_j \in C$ para $1 \le j \le n$.

Para
$$\lambda \in C$$
, $\lambda x = (\lambda x_1, \dots, \lambda x_n)^T$.

 C^n es un espacio vectorial sobre el campo escalar C.

En C^n definimos el producto interno y norma euclideana respectivamente por $\langle x,y\rangle = \sum_{i=1}^n x_j \overline{y_j}$ y $\|x\|_2 = \sqrt{\langle x,x\rangle}$

Obs. Para
$$x, y, z \in C^n$$
 y $\lambda \in C$

a)
$$\langle x, y \rangle = \overline{\langle y, x \rangle}$$

b)
$$\langle x, \lambda y \rangle = \overline{\lambda} \langle x, y \rangle$$

c)
$$\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$$

Autovalores y Autovectores

Obs. En *C*, se tiene el teorema fundamental del algebra

"Todo polinomio no constante con coeficientes complejos tiene al menos un cero en *C*".

De aquí,

"Todo polinomio de grado n puede expresarse como un producto de n factores lineales".

Definición. Si *A* es una matriz con elementos en *C*, la transpuesta conjugada de A, se denota por A^* y es $(a_{ii})^* = (a_{ii})$.

Si
$$x$$
 es una matriz $n \times 1$ (vector columna), entonces
$$\begin{cases} a) x^* = (\overline{x_j})_{1 \le j \le n} \\ b) y^* x = \langle x, y \rangle = \sum_{j=1}^n x_j \overline{y_j} \\ c) x^* x = \langle x, x \rangle = \|x\|_2^2 = \sum_{j=1}^n x_j \overline{x_j} = \sum_{j=1}^n |x_j|^2 \end{cases}$$

Autovalores y Autovectores

Sea *A* una matriz $n \times n$, $a_{ij} \in C$, sea $\lambda \in C$.

Si la ecuación

$$Ax = \lambda x \tag{1}$$

tiene una solución no trivial, es decir, $x \neq 0$, entonces λ se denomina un **autovalor** de A. El vector x no cero que satisface (1), se denomina **autovector** de *A* correspondiente al autovalor λ .

Ejemplo:

$$\begin{pmatrix} 2 & 0 & 1 \\ 5 & -1 & 2 \\ -3 & 2 & -5/4 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \\ -4 \end{pmatrix} = -2 \begin{pmatrix} 1 \\ 3 \\ -4 \end{pmatrix}$$
 -2 es un autovalor de la matriz 3×3 dada, y el vector (1,3,-4)^T es un autovector correspondiente.

Autovalores y Autovectores

La condición de que (1) tiene una solución no trivial es equivalente a

- $A-\lambda I$ mapea vectores no cero en el vector nulo (2)
- $A-\lambda I$ es singular (3)

La ecuación (4) se conoce como la **ecuación característica** de la matriz A.

El lado izquierdo de (4) es un polinomio de grado n en la variable λ y se denomina **polinomio característico** de A.

Obs. Toda matriz $n \times n$ tiene exactamente n autovalores, incluyendo aquí todos las posibles multiplicidades que estos poseen como raíces de la ecuación característica.

Obs. En matrices pequeñas, los autovalores pueden ser calculados resolviendo en λ la ecuación (4). Para matrices grandes, este método no se recomienda. Una razón es que las raíces del polinomio pueden ser sensitivas como función de los coeficientes del polinomio.

Autovalores y Autovectores

Ejemplo:

Cálculos con MATLAB: M = sym('[-1,10;0,-2]') determ = det(M) pc = poly(M) factores = factor(pc)

$$A = \left[\begin{array}{cc} -1 & 10 \\ 0 & -2 \end{array} \right]$$

$$\det(\lambda I - A) = 0 \Rightarrow \lambda_1 = -1, \lambda_2 = -2$$

$$\begin{bmatrix} -1 & 10 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = -1 \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \Rightarrow \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 10 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = -2 \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \Rightarrow \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} -10 \\ 1 \end{bmatrix}$$

Localizando autovalores.

Teorema de Gerschgorin.

El espectro de una matriz A de orden n (conjunto de todos los autovalores de A) está contenido en la unión de los discos D_i , i=1,...,n en el plano complejo, donde

nde
$$D_i = \left\{z \in C: \left|z - a_{ii}\right| \leq \sum_{\substack{j=1 \ j \neq i}}^n \left|a_{ij}\right|
ight\} \quad ext{ para } 1 \leq i \leq n$$

Además, la unión de cualesquiera k de estos discos que no intersecte a los (n-k) restantes, debe contener exactamente k autovalores (contando multiplicidades)

Prueba.

 λ autovalor de A y sea x el autovector asociado con $||x||_{\infty} = 1$, entonces $Ax = \lambda x$ y existe i tal que $|x_i| = 1$. Como $(Ax)_i = \lambda x_i$ sigue

$$\sum_{j=1}^{n} a_{ij} x_{j} = \lambda x_{i} \iff a_{ii} x_{i} + \sum_{\substack{j=1 \\ j \neq i}}^{n} a_{ij} x_{j} = \lambda x_{i} \iff (\lambda - a_{ii}) x_{i} = \sum_{\substack{j=1 \\ j \neq i}}^{n} a_{ij} x_{j}$$

Localizando autovalores (cont.).

Tomado módulo, aplicando la desigualdad triangular y usando $\left|x_{j}\right| \leq 1 = \left|x_{i}\right|$ se tiene

$$|\lambda - a_{ii}| \le \sum_{\substack{j=1 \ j \ne i}}^{n} |a_{ij}| |x_{j}| \le \sum_{\substack{j=1 \ j \ne i}}^{n} |a_{ij}|$$

es decir, $\lambda \in D_i$.

Ejemplo. Si
$$A = \begin{pmatrix} -1+i & 0 & 1/4 \\ 1/4 & 1 & 1/4 \\ 1 & 1 & 3 \end{pmatrix}$$
 se tiene $\begin{cases} D_1 = \{z \in C : |z-(-1+i)| \le 1/4\} \\ D_2 = \{z \in C : |z-1| \le 1/2\} \\ D_3 = \{z \in C : |z-3| \le 2\} \end{cases}$

$$\lambda_1 = -1.0540 + 0.9888i$$

$$\lambda_3 = 3.1780 + 0.0141i$$

$$\lambda_2 = 0.8761 - 0.0030i$$

$$A = [-1+i,0,1/4; 1/4,1,1/4;1,1,3]$$

Localizando autovalores (cont.).

¿Existe alguna relación entre los autovalores de una matriz y los de su traspuesta?

¿Qué se puede comentar acerca de los círculos de A y de su traspuesta?

Método de la Potencia

Está diseñado para calcular el autovalor dominante y el autovector correspondiente.

(2)

Suposiciones: A una matriz $n \times n$, para la cual

- a) existe un autovalor simple de módulo máximo y
- b) hay independencia lineal del conjunto de n autovectores.

Según (a), los autovalores $\lambda_1, \ldots, \lambda_n$ pueden ser reordenados tal que

$$\left|\lambda_{1}\right| > \left|\lambda_{2}\right| \ge \cdots \ge \left|\lambda_{n}\right|.$$

Según (b), existe una base $\{u^{(1)},\cdots,u^{(n)}\}$ para C^n tal que $Au^{(j)}=\lambda_j u^{(j)} \quad \text{para } 1\leq j\leq n. \tag{5}$

Si $x^{(0)} \in C^n$ entonces

$$x^{(0)} = a_1 u^{(1)} + \dots + a_n u^{(n)} \quad \text{con } a_1 \neq 0.$$
 (6)

Método de la Potencia

Construimos la sucesión

$$x^{(1)} = Ax^{(0)}, \quad x^{(2)} = Ax^{(1)}, \dots, \quad x^{(k)} = Ax^{(k-1)}.$$

Entonces

$$x^{(k)} = A^k x^{(0)}. (7)$$

Podemos suponer en (6) sin perdida de generalidad que

$$x^{(0)} = u^{(1)} + \dots + u^{(n)}, \tag{8}$$

es decir, los coeficientes a_j son absorbidos por los vectores $u^{(j)}$.

Sustituyendo (8) en (7) se tiene

$$x^{(k)} = A^k u^{(1)} + \dots + A^k u^{(n)}$$

y usando (5)

$$x^{(k)} = \lambda_1^k u^{(1)} + \cdots + \lambda_n^k u^{(n)}$$

factorizando

$$= \lambda_1^k \left[u^{(1)} + \left(\frac{\lambda_2}{\lambda_1} \right)^k u^{(2)} \cdots + \left(\frac{\lambda_n}{\lambda_1} \right)^k u^{(n)} \right]. \tag{9}$$

Método de la Potencia

Como $|\lambda_1| > |\lambda_j|$ para $2 \le j \le n$, se tiene

$$\left| \frac{\lambda_j}{\lambda_1} \right| < 1 \quad \text{para} \quad 2 \le j \le n \quad \text{y} \quad \left| \frac{\lambda_j}{\lambda_1} \right|^k \text{ tiende a cero cuando } k \to \infty.$$

Así, podemos escribir (9) como

$$\mathbf{x}^{(k)} = \lambda_1^k \left[u^{(1)} + \boldsymbol{\varepsilon}^{(k)} \right], \tag{10}$$

donde $\varepsilon^{(k)} \to 0$ cuando $k \to \infty$.

Sea φ una funcional lineal sobre C^n para el cual se satisface $\varphi(u^{(1)}) \neq 0$.

$$(\varphi: C^n \to C, \varphi \text{ es lineal si})$$

$$\varphi(\alpha x + \beta y) = \alpha \varphi(x) + \beta \varphi(y)$$
 para $\alpha, \beta \in C$ y $x, y \in C^n$

Método de la Potencia

Entonces, de (10)

$$\varphi(x^{(k)}) = \lambda_1^k \left[\varphi(u^{(1)}) + \varphi(\varepsilon^{(k)}) \right], \tag{11}$$

de donde, para $k \to \infty$ tomamos

$$r_k = \frac{\varphi(x^{(k+1)})}{\varphi(x^{(k)})} = \lambda_1 \frac{\left[\varphi(u^{(1)}) + \varphi(\varepsilon^{(k+1)})\right]}{\left[\varphi(u^{(1)}) + \varphi(\varepsilon^{(k)})\right]} \to \lambda_1.$$

Esto constituye el método de la potencia para calcular λ_1 .

Obs.

Como la dirección del vector $x^{(k)}$ tiende a la dirección de $u^{(1)}$ cuando $k \to \infty$ (usando (10)), el método nos permite calcular el autovector $u^{(1)}$.

Método de la Potencia

Algoritmo de la potencia

Leer
$$A=(a_{ij})$$
, n , x , $itmax$

Para $k=1$ hasta $itmax$
 $y = Ax$
 $r = \varphi(y) / \varphi(x)$
 $x = y / ||y||$

Escribir k , x , r

Fin para

Obs.

- La normalización del vector x se introduce aquí, para evitar que converja a cero o la sucesión de vectores x deje de estar acotado.
- Al final r es el autovalor mayor y x un autovector correspondiente unitario.
- Como funcional lineal φ podemos tomar la proyección sobre la componente $j: \varphi: C^n \to C, \varphi(x) = x_j$.
- Posible criterio de parada en el paso k: $\|x^{(k-1)} y/\|y\|_{\infty}\|_{\infty} < \varepsilon$.

Método de la Potencia

Ejemplo. Calcular el autovalor mayor y un autovector correspondiente para A

$$A = \begin{pmatrix} 6 & 5 & -5 \\ 2 & 6 & -2 \\ 2 & 5 & -1 \end{pmatrix}$$

$$A = \begin{bmatrix} 6.5, -5; 2.6, -2; 2.5, -1 \end{bmatrix}$$

$$Ax = \lambda x$$

$$x = (-1, 1, 1)^{T} \text{ vector inicial}$$

$$\varphi : C^{n} \to C, \quad \varphi(x) = x_{2}$$

$$k = 1$$
, $r^{(1)} = 2.0$, $x^{(1)} = (-1.00000 \ 0.333333 \ 0.33333)$
 $k = 2$, $r^{(2)} = -2.0$, $x^{(2)} = (-1.00000 \ -0.11111 \ -011111)$
 $k = 3$, $r^{(3)} = 22.0$, $x^{(3)} = (-1.00000 \ -0.40741 \ 0.40741)$
 $k = 4$, $r^{(4)} = 8.9091$, $x^{(4)} = (-1.00000 \ -0.60494 \ -0.60494)$
...
 $k = 28$, $r^{(28)} = 6.00007$, $x^{(28)} = (-1.00000 \ -0.99998 \ -0.99998)$

El mayor autovalor de A es 6 y su autovector es $(-1, -1, -1)^T$.

Método de la Potencia

Ejemplo. Calcular el autovalor mayor y un autovector correspondiente para *A*

$$A = \begin{bmatrix} 1.5, 0.5; 0.5, 1.5 \end{bmatrix} \qquad y \qquad x_0 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$y^{(1)} = Ax^{(0)} = [0.5, 1.5]^T$$

$$x^{(1)} = y^{(1)} / ||y^{(1)}||_{\infty} = [0.333, 1.000]^T$$

$$x^{(2)} = [0.600, 1.000]^T$$

$$x^{(3)} = [0.778, 1.000]^T$$

$$\vdots$$

$$x^{(10)} = [0.998, 1.000]^T$$

$$x^{(11)} = [0.999, 1.000]^T$$

$$||y^{(11)}||_{\infty} = 1.999 \Rightarrow |\lambda_1| \approx 1.999$$

$$u_1 \approx [0.999, 1.000]^T$$

$$Au_1 - \lambda_1 u_1 = \begin{bmatrix} 0.0005 \\ -0.0005 \end{bmatrix}$$

Prof. Saúl Buitrago Clase 13

Método de la Potencia

Obs. El algoritmo de la potencia visto presenta el inconveniente en la escogencia de la funcional lineal φ . Una manera de independizar el algoritmo en la escogencia de φ es como sigue:

Partiendo de (10) se tiene que para k grande, $\lim_{k\to\infty}\frac{x^{(k)}}{\lambda_1^k}=u^{(1)}$, de donde

$$Ax^{(k)} = x^{(k+1)} \approx \lambda_1^{k+1} u^{(1)} = \lambda_1(\lambda_1^k u^{(1)}) \approx \lambda_1 x^{(k)}$$

Es decir, para k grande, $Ax^{(k)} \approx \lambda_1 x^{(k)}$

lo cual significa que en el limite $x^{(k)}$ es un autovector asociado a λ_1 Además, normalizando en norma 2 al vector $x^{(k)}$ se obtiene un autovector unitario (esto garantiza que la sucesión generada por este método está acotada).

Al detener el algoritmo en un valor de k determinado por el criterio de convergencia, se calcula el autovalor dominante λ_1 como sigue:

$$\langle Ax^{(k)}, x^{(k)} \rangle \approx \langle \lambda_1 x^{(k)}, x^{(k)} \rangle = \lambda_1 \langle x^{(k)}, x^{(k)} \rangle$$
Prof. Saúl Buitrago

Método de la Potencia

Obs (cont.).
$$\lambda_1 = \frac{\left\langle Ax^{(k)}, x^{(k)} \right\rangle}{\left\langle x^{(k)}, x^{(k)} \right\rangle} = \left\langle Ax^{(k)}, x^{(k)} \right\rangle$$

La nueva versión del algoritmo de la potencia es la siguiente:

Leer
$$A=(a_{ij})$$
, x , $itmax$, tol

Para $k=1$ hasta $itmax$
 $y=x$
 $x=Ax$
 $\sin \|x\|_2 = 0$, el método no converge

 $x=x/\|x\|_2$
 $\sin \|y-x\|_2 < tol$, $\lambda = \langle Ax, x \rangle$

Fin para

Método de la Potencia

Teorema. Si λ es un autovalor de A y si A es no singular, entonces λ^{-1} es un autovalor de A^{-1} .

Prueba.

Se tiene que $Ax = \lambda x \operatorname{con} x \neq 0$.

Entonces $x = A^{-1}(\lambda x) = \lambda A^{-1}x$, como $\lambda \neq 0$ sigue $A^{-1}x = \lambda^{-1}x$, de donde λ^{-1} es un autovalor de A^{-1} .

Obs.

El teorema anterior sugiere una manera de calcular el autovalor más pequeño de A. Supongamos que los autovalores de A satisfacen

$$|\lambda_1| \ge |\lambda_2| \ge \cdots \ge |\lambda_{n-1}| > |\lambda_n| > 0.$$

Esto garantiza que A es no singular, ya que 0 no es un autovalor de A.

Tenemos que los autovalores de A^{-1} son los números λ_j^{-1} , y estos se pueden reordenar así

$$\left|\lambda_n^{-1}\right| > \left|\lambda_{n-1}^{-1}\right| \ge \cdots \ge \left|\lambda_2^{-1}\right| \ge \left|\lambda_1^{-1}\right| > 0.$$

Método de la Potencia

Obs. (cont.)

Ahora podemos aplicar el método de la potencia a A^{-1} para calcular su autovalor más grande λ_n^{-1} , es decir, hemos calculado λ_n el autovalor más pequeño de A.

En este caso no es buena idea calcular la inversa de A, es decir A^{-1} , para luego calcular $x^{(k+1)}$ usando la iteración

$$x^{(k+1)} = A^{-1}x^{(k)}.$$

En lugar de esto, procedemos así:

Obtenemos $x^{(k+1)}$ resolviendo el sistema $Ax^{(k+1)} = x^{(k)}$,

mediante el método de descomposición *LU* (esto se lleva a cabo una sola vez), seguido por la resolución de 2 sistemas triangulares, donde el vector de la derecha cambia en cada iteración.

Este procedimiento se conoce como el método de la potencia inverso.

Método de la Potencia

Algoritmo de la Calcular L y U tal que A = LU potencia inverso Para k = 1 hasta itmax resolver LUy = x $r = \varphi(y)/\varphi(x)$ $x = y/\|y\|$ Escribir k, x, r Fin para

Al final, r es el mayor autovalor para A^{-1} , de donde, usando el teorema, 1/r es el menor autovalor para A y x es un autovector asociado.

Método de la Potencia

Ejemplo. Calcular el autovalor menor y un autovector correspondiente para A

$$A = \begin{pmatrix} 6 & 5 & -5 \\ 2 & 6 & -2 \\ 2 & 5 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 1/3 & 1 & 0 \\ 1/3 & 10/13 & 1 \end{pmatrix} \begin{pmatrix} 6 & 5 & -5 \\ 0 & 13/3 & -1/3 \\ 0 & 0 & 12/13 \end{pmatrix} \qquad \begin{aligned} Ax &= \lambda x \\ x &= (3 & 7 & -13)^T \text{ vector inicial } \\ \varphi &: C^n \to C, \quad \varphi(x) = x_1 \end{aligned}$$

En cada paso del algoritmo se calcula $x^{(k+1)}$ a partir de $LUx^{(k+1)} = x^{(k)}$.

A continuación se calcula en $r^{(k+1)} = x_1^{(k+1)} / x_1^{(k)}$.

Antes de continuar con el siguiente iterado, se normaliza $x^{(k+1)}$ dividiendo entre su norma infinito.

$$k = 1, \ r^{(1)} = -5.8889, \ x^{(1)} = (-0.80165 -0.00826 -1.00000)$$

 $k = 2, \ r^{(2)} = 1.19759, \ x^{(2)} = (-0.95089 -0.01774 -1.00000)$
 $k = 3, \ r^{(3)} = 1.02750, \ x^{(3)} = (-0.98759 -0.00712 -1.00000)$
 $k = 6, \ r^{(6)} = 1.00012, \ x^{(6)} = (-0.99980 -0.00017 -1.00000)$
 $k = 11, \ r^{(11)} = 1.00000, \ x^{(11)} = (-1.00000 0.00000 -1.00000)$

El menor autovalor de A es 1 y un autovector es $(-1, 0, -1)^T$.

Método de la Potencia

Ejemplo. Calcular el autovalor menor y el autovector correspondiente para *A*

$$A = \begin{bmatrix} 1.5 & 0.5 \\ 0.5 & 1.5 \end{bmatrix} \quad \text{y} \quad x_0 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$x^{(10)} = \begin{bmatrix} -0.998, 1.000 \end{bmatrix}^T$$

$$x^{(11)} = \begin{bmatrix} -0.999, 1.000 \end{bmatrix}^T$$

$$\|y^{(11)}\|_{\infty} = \begin{bmatrix} 1.000 \Rightarrow |\lambda_n| \approx 1 \\ u_n \approx \begin{bmatrix} -0.999, 1.000 \end{bmatrix}^T$$

$$Au_n - \lambda_n u_n = \begin{bmatrix} 0.0005 \\ 0.0005 \end{bmatrix}$$

Método de la Potencia

Hasta el momento hemos cubierto

- el método de la potencia para calcular el autovalor dominante de una matriz A y
- el método de la potencia inverso para calcular el autovalor más pequeño en módulo de *A*.

Consideremos la matriz desplazada A- μI , de aquí podemos generar un procedimiento para calcular el autovalor de A más cercano a un valor dado μ .

Supongamos que un autovalor de A, digamos λ_i , satisface la desigualdad

$$0 < |\lambda_i - \mu| < \varepsilon$$

donde μ es un número complejo dado y $\epsilon > 0$.

Supongamos que los otros autovalores de A satisfacen la desigualdad

$$\left|\lambda_{j}-\mu\right|>\varepsilon$$
 para $j\neq i$.

Método de la Potencia

Como los autovalores de $A-\mu I$ son los números de la forma (probarlo) $\lambda_i - \mu$, aplicando el método de la potencia inverso a $A-\mu I$, se puede aproximar el autovalor dominante de $(A-\mu I)^{-1}$ que es de la forma

$$\xi_k = (\lambda_k - \mu)^{-1}.$$

Aquí, el autovector asociado se obtiene resolviendo la ecuación

$$(A - \mu I)x^{(k+1)} = x^{(k)},$$

donde se usa el método de descomposición *LU* (este se aplica una sola vez en este algoritmo).

Como el procedimiento calcula

$$\xi_k = (\lambda_k - \mu)^{-1},$$

el λ_k (autovalor mas cercano a μ) puede ser recuperado despejando $\lambda_k = \xi_k^{-1} + \mu$.

Este procedimiento se conoce como el **método de la potencia inverso desplazado.**

Método de la Potencia

De manera similar, podemos calcular el autovalor, digamos λ_k , mas lejano de un valor dado μ .

Supongamos que existe $\varepsilon > 0$ tal que

$$|\lambda_k - \mu| > \varepsilon$$

para un autovalor λ_k de A, y para los otros autovalores λ_j , $j \neq k$, se tiene

$$0 < |\lambda_j - \mu| < \varepsilon \quad j \neq k.$$

Usando el método de la potencia aplicado a A- μI (autovalores $\lambda_k - \mu$), podemos calcular su autovalor dominante

$$\xi_k = \lambda_k - \mu,$$

de donde podemos recuperar λ_k , el autovalor mas lejano, como

$$\lambda_k = \xi_k + \mu.$$

Este procedimiento se conoce como el método de la potencia desplazado.

Método de la Potencia

Resumen. Supongamos que los autovalores de *A* satisfacen

$$\left|\lambda_{1}\right| > \left|\lambda_{2}\right| \ge \cdots \ge \left|\lambda_{n-1}\right| > \left|\lambda_{n}\right| > 0.$$

Método	Ecuación	Objetivo
potencia	$x^{(k+1)} = Ax^{(k)}$	autovalor dominante $\lambda_{\scriptscriptstyle 1}$
potencia inverso	$Ax^{(k+1)} = x^{(k)}$	autovalor más pequeño λ _n
potencia desplazado	$x^{(k+1)} = (A - \mu I)x^{(k)}$	autovalor más lejano a μ
potencia inverso desplazado	$(A-\mu I)x^{(k+1)}=x^{(k)}$	autovalor más cercano a μ

Método de la Potencia

Ejercicio.

Dados una matriz A de dimensión $n \times n$, μ un número complejo, escribir procedimientos para MATLAB que permita calcular el autovalor más cercano y más alejado de μ , usando los métodos de la potencia inverso desplazado y de la potencia desplazado. Aplicarlo a la matriz A dada para calcular el autovalor más cercano a 3.

$$A = \begin{pmatrix} 6 & 5 & -5 \\ 2 & 6 & -2 \\ 2 & 5 & -1 \end{pmatrix}$$

 $X^{(0)} = (1,1/2,1)^T$

Autovalores: 6, 4 y 1

Método de la Potencia. Localizando autovalores.

Ejemplo. Calcular el autovalor que tiene parte real más negativa

$$A = \begin{pmatrix} -3 & 1 & 0 \\ -2 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

Utilizando los círculos de Gerschgorin, se deduce que el autovalor de parte real más negativa será aquel más cercano a $\sigma = -4$.

Aplicar método a
$$A + 4I$$
: $x^{(0)} = (1,1,1)^T$

$$x^{(6)} = [1.0000, 1.000, 0.0005]^T$$

 $x^{(7)} = [1.0000, 1.0000, 0.0001]^T$

$$||y^{(7)}||_{\infty} = 0.5 \Rightarrow |\lambda_n + 4| \approx 2 \Rightarrow \lambda_n = -2 \text{ o } -6$$

 $u_n \approx [1.0000, 1.0000, 0.0001]^T$
 $(A+2I)x^{(7)} = [0, 0, 0.0008]^T \Rightarrow \lambda_n = -2$

Descomposición QR de una matriz.

Definición. Una matriz Q se dice que es ortogonal si cumple Q $Q^t = Q^t$ Q = I**Obs**. Para una matriz Q ortogonal se cumple $Q^{-1} = Q^t$

Teorema. Sea $A \in \mathbb{R}^{n \times n}$ no singular, entonces ésta puede ser expresada como A = OR

donde Q es ortogonal y R triangular superior.

En Matlab:

Ejemplo. Encontrar Q ortogonal y R triangular superior para $A = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix}$

$$Q = \begin{pmatrix} -0.7071 & -0.7071 \\ -0.7071 & 0.7071 \end{pmatrix} \qquad R = \begin{pmatrix} -1.4142 & -3.5355 \\ 0 & 0.7071 \end{pmatrix}$$

$$Q * Q^T = Q^T * Q = I$$
 R es triangular superior

Matrices similares.

Definición. Sean $A y B \in \mathbb{R}^{n \times n}$ no singular, decimos que A y B son similares si existe un matriz M no singular tal que se cumple $A = M^{-1} B M$

Obs. Si A y B son matrices similares, entonces tienen el mismo polinomio característico. Sigue del hecho:

$$A - \lambda I = M^{-1}BM - \lambda I = M^{-1}(B - \lambda I)M$$

Ejemplo. Sean
$$A = \begin{pmatrix} 8 & 2 \\ 2 & 5 \end{pmatrix}$$
 $y B = \begin{pmatrix} 8.7647 & -1.0588 \\ -1.0588 & 4.2353 \end{pmatrix}$

A y B son similares, ya que existe M tal que $A = M^{-1} B M$

$$M = \begin{pmatrix} -0.9701 & -0.2425 \\ -0.2425 & 0.9701 \end{pmatrix} \qquad \begin{array}{l} \text{en MATLAB:} \\ \text{A = sym('[8,2;2,5]')} \\ \text{pcA = poly(A)} \\ \text{B = sym('8.7647,-1.0588;-1.0588,4.2353')} \\ \text{pcB = poly(B)} \end{array}$$

$$M^{-1} B M = \begin{pmatrix} -0.9701 & -0.2425 \\ -0.2425 & 0.9701 \end{pmatrix}^{-1} \begin{pmatrix} 8.7647 & -1.0588 \\ -1.0588 & 4.2353 \end{pmatrix} \begin{pmatrix} -0.9701 & -0.2425 \\ -0.2425 & 0.9701 \end{pmatrix} = \begin{pmatrix} 8 & 2 \\ 2 & 5 \end{pmatrix}$$

Método QR para cálculo de autovalores.

Leer
$$A$$
, $itmax$

$$A_0 = A$$
Para $k = 1$ hasta $itmax$
Calcular Q_k y R_k tal que $A_{k-1} = Q_k R_k$
Calcular $A_k = R_k Q_k$
Fin para

Obs. La matriz que genera el método, es decir A_k , converge bajo ciertas condiciones, a una matriz triangular superior, donde los autovalores aparecen sobre la diagonal principal.

Obs.
$$A_k = Q_k^T A_{k-1} Q_k$$

 $A_k = R_k A_{k-1} R_k^{-1}$

Los A_k todos tienen los mismos autovalores.

Todas son matrices similares.

Método QR para cálculo de autovalores.

Ejemplo.
$$A = \begin{pmatrix} 8 & 2 \\ 2 & 5 \end{pmatrix}$$
 con autovalores $\lambda_1 = 9$, $\lambda_2 = 4$

Descomponer
$$Q_1 = \begin{pmatrix} -0.9701 & -0.2425 \\ -0.2425 & 0.9701 \end{pmatrix}$$
 $A_0 = A = Q_1 R_1$ $R_1 = \begin{pmatrix} 8.2462 & -3.1530 \\ 0 & 4.3656 \end{pmatrix}$ $A_1 = R_1 Q_1 \cong \begin{pmatrix} 8.7647 & -1.0588 \\ -1.0588 & 4.2353 \end{pmatrix}$

Descomponer
$$A_1 = Q_2 R_2$$
 $Q_2 = \begin{pmatrix} -0.9928 & 0.1199 \\ 0.1199 & 0.9928 \end{pmatrix}$ $A_1 = Q_2 R_2$ $A_2 = \begin{pmatrix} -8.8284 & 1.5591 \\ 0 & 4.0777 \end{pmatrix}$ \Rightarrow $A_2 = R_2 Q_2 \cong \begin{pmatrix} 8.9517 & 0.4891 \\ 0.4891 & 4.0483 \end{pmatrix}$

Descomponer
$$A_4 = Q_5 R_5$$

$$R_5 = \begin{pmatrix} -0.9999 & -0.108 \\ -0.0108 & 0.9999 \end{pmatrix} \Rightarrow A_5 = R_5 Q_5 \cong \begin{pmatrix} 8.996 & -0.0434 \\ -0.0434 & 4.0004 \end{pmatrix}$$

Método QR para cálculo de autovalores.

Obs.

- En el algoritmo del método QR se puede utilizar como criterio de parada la verificación de que la matriz A_k es triangular superior.
- Si todos los autovalores de A tienen distinto módulo, es decir

$$|\lambda_1| > |\lambda_2| > \cdots > |\lambda_{n-1}| > |\lambda_n| > 0,$$

el límite de la sucesión es una matriz triangular superior en la que los elementos de su diagonal son los autovalores de la matriz.

 Si existen autovalores de A de igual módulo la matriz límite es una matriz triangular superior por bloques, en la que cada bloque de orden k de su diagonal es una matriz cuyos autovalores son todos los k autovalores de igual módulo de la matriz A.

$$A = \begin{pmatrix} 2 & 3 & 5 \\ 1 & 4 & 6 \\ -1 & 3 & 1 \end{pmatrix} \quad \text{autovalores:} \quad 1.4142, -1.4142, \quad A_{1000} = \begin{pmatrix} 7 & -3.8378 & -5.5850 \\ 0 & 1.4456 & -0.0527 \\ 0 & 1.7021 & -1.4456 \end{pmatrix}$$