MA3705 Algoritmos Combinatoriales.

Profesor: Iván Rapaport.

Auxiliares: Antonia Labarca y Cristian Palma.

Auxiliar 3

Árboles Generadores de Costo Mínimo y Matroides

- **P1** Considere G = (V, E) conexo y $w : E \to \mathbb{Q}^+$ una función de peso.
 - a) Sea $\emptyset \neq U \subset V$. Sea $e \in \delta(U)$ tal que $w(e) \leq w(f), \forall f \in \delta(U)$. Pruebe que existe T^* MST de G tal que $e \in E(T^*)$.
 - b) Sea T^* un MST de G. Sea $e = uv \in E(T)$. Sea P un u-v-camino en G e. Pruebe que $w(e) \le w(f), \forall f \in E(P)$
- **P2** Para G = (V, E) grafo conexo se define **Minimum Bottleneck Spanning Tree**¹ como un árbol generador de G en el que la arista de mayor costo es lo más barata posible.
 - a) Pruebe que si T es MST de G también es MBST.
 - b) ¿Se puede asegurar que si T es MBST entonces también es MST?
- **P3** Considere $\mathcal{M} = (\mathcal{S}, \mathcal{I})$ una matroide. Se define un **circuito** como un conjunto dependiente minimal, es decir, un conjunto C tal que $C \notin \mathcal{I}, \forall e \in C, C e \in \mathcal{I}$.
 - a) Sean C,D circuitos no disjuntos y sea $e \in C \cap D$. Pruebe que $C \cup D e$ no es independiente.
 - b) Sea I independiente y sea $e \notin I$. Pruebe que I + e tiene a lo más 1 circuito.
- **P4** Sea $\tilde{\mathcal{M}} = (\tilde{\mathcal{S}}, \tilde{\mathcal{I}})$. Diremos que $\tilde{\mathcal{M}}$ es **de partición** si existe una partición de $\tilde{\mathcal{S}}$ en conjuntos S_1, \ldots, S_k no vacíos (llamados bloques) y existen $b_1, \ldots, b_k \in \mathbb{N}$ tales que $\forall X \subseteq \tilde{\mathcal{S}} \ (X \in \tilde{\mathcal{I}} \iff \forall i \in [k], X \cap S_i \leq b_i)$. Pruebe que si $\tilde{\mathcal{M}}$ es de partición, entonces es una matroide.
- **P5** Dado G = (V, E) grafo conexo, se define $I(G) := \{E' \subseteq E | (V, E \setminus E') \text{ es conexo} \}$. Pruebe que M(G) = (E, I(G)) es matroide².

¹También lo pueden encontrar como MinMax Spanning Tree.

 $^{^2}$ Se llama matroide cográfica de G