# Static-13

## **Title**

Cantilever plate subjected to a uniform pressure load

## **Description**

Determine the deflections and the bending moments of the structure.



(b) Finite element model

Structural geometry and analysis model

## Model

## Analysis Type

3-D static analysis

## Unit System

mm, N

#### Dimension

Length 300 mm Width 100 mm Thickness 25 mm

#### Element

Plate element (Thick type)

#### Material

Modulus of elasticity  $E = 2.1 \times 10^5 \text{ N/mm}^2$ 

## **Element Property**

Size  $a \times b = 50 \text{ mm} \times 50 \text{ mm}$ Thickness t = 25 mm

## **Boundary Condition**

Nodes 1, 3 and 10; Constrain all DOFs.

#### Load Case

A uniform pressure load, 5 N/mm<sup>2</sup> is distributed over the entire cantilever plate in the -Z direction.

## Results



*Z-displacements shape of the structure (Node 2)* 

## Element Forces

| Elem | Load  | Node | FX<br>(N) | FY<br>(N) | FZ<br>(N) | MX<br>(N·mm) | MY<br>(N·mm) | MZ<br>(N·mm) |
|------|-------|------|-----------|-----------|-----------|--------------|--------------|--------------|
| 1    | CASE1 | 1    | 0,00      | 0,00      | 37500,00  | 0,00         | -5625000,0   | 0,00         |
| 1    | CASE1 | 5    | 0,00      | 0,00      | -31250,00 | 0,00         | 3906250,00   | 0,00         |
| 1    | CASE1 | 11   | 0,00      | 0,00      | -31250,00 | 0,00         | 3906250,00   | 0,00         |
| 1    | CASE1 | 10   | 0,00      | 0,00      | 37500,00  | 0,00         | -5625000,0   | 0,00         |
| 7    | CASE1 | 10   | 0,00      | 0,00      | 37500,00  | 0,00         | -5625000,0   | 0,00         |
| 7    | CASE1 | 11   | 0,00      | 0,00      | -31250,00 | 0,00         | 3906250,00   | 0,00         |
| 7    | CASE1 | 17   | 0,00      | 0,00      | -31250,00 | 0,00         | 3906250,00   | 0,00         |
| 7    | CASE1 | 3    | 0,00      | 0,00      | 37500,00  | 0,00         | -5625000,0   | 0,00         |

## **Comparison of Results**

#### Theoretical calculation of the maximum deflection and bending moment

Maximum deflection 
$$(\delta_{max})$$
  

$$= \frac{\omega L^2}{8El} + \frac{\omega L^2}{2GAs} \text{ (at the free end)}$$

$$= \frac{(5 \times 100)(300)^4}{8 \times (210 \times 10^3)(100 \times 25^3 / 12)} + \frac{6/5 \times (5 \times 100)(300)^2}{2 \times 105 \times 5/6(100 \times 25)}$$

$$= 8.51 \text{ mm}$$

Maximum bending moment (
$$M_{max}$$
) =  $\omega L^2/2$  (at the fixed end)  
=  $(5 \times 100) (300)^2 / 2$   
=  $22.5 \times 10^6 \text{ N} \cdot \text{mm}$ 

#### FEM analysis of the maximum deflection and bending moment

Maximum deflection ( $\delta_{max}$ ) = 18.62 mm (nodes 2, 16 and 4 at the free end)

Maximum bending moment ( $M_{max}$ ) = Number of nodes pertaining to the fixed end elements × the bending moment at one node (nodes 1&10 of the element 1 and nodes 3 &10 of the element 7) = 4 × 5625000 N·mm = 22.5 × 10<sup>6</sup> N·mm

Unit: mm, KNm

|                                            |                     |                     | ·,                 |
|--------------------------------------------|---------------------|---------------------|--------------------|
| Result                                     | Theoretical         | SAP2000             | MIDAS/Civil        |
| Maximum deflection $(\delta_{max})$        | 18.617              | 18.788              | 18.789             |
| Maximum bending moment (M <sub>max</sub> ) | $22.50 \times 10^6$ | $22.50 \times 10^6$ | $22.5 \times 10^6$ |

## Reference

Gere & Timoshenko, "Mechanics of Material", 1984