Borsuk-Ulam in real-cohesive homotopy type theory

Daniel Cicala, University of New Haven Amelia Tebbe, Indiana University Kokomo Chandrika Sadanand, University of Illinois Urbana Champaign

Thanks to

- 2017 MRC in HoTT program
- Mike Shulman for his guidance and patience with three non-experts
- Univalence, which I'll be recklessly using without mentioning I'm doing so

What's this talk about?

Borsuk-Ulam is a result in **classical algebraic topology**. We want to import it into HoTT.

Outline of this talk

- 1. real-cohesive homotopy type theory
- 2. Borsuk-Ulam: algebraic topology vs. HoTT
- 3. proof sketch

real-cohesive homotopy type theory

Algebraic topology has many proofs that involve discontinuous constructions

For instance, Brouwer fixed-pt theorem

$$\left\| \prod_{f \colon D^2 \to D^2} \sum_{x \colon D^2} f(x) = x \right\|_0$$

No continuous way to pick x

However, we don't merely have HoTT...

we have real-cohesive HoTT

For spaces X and Y, how can we make a **discontinuous** map

$$X \rightarrow Y$$

into a continuous map?

Retopologize!

$$\operatorname{discrete}(X) \to Y$$
 or $X \to \operatorname{codiscrete}(Y)$

There's a ready-made theory for this...Lawvere's cohesive topoi

Discontinuity via cohesive topoi

$$\flat X \to X \to \sharp X$$

Interpret $\flat X \to Y$ or $X \to \sharp Y$ as not necessarily continuous maps from $X \to Y$.

Two concerns importing this to HoTT:

- 1) Algebraic topology trades in spaces not higher inductive types.
- 2) How can we retopologize when HoTT doesn't have topologies (open sets)?

higher inductive types vs. spaces in HoTT

Lawvere's theory of cohesive topoi has more to offer!

gives modality \int : SPACES \rightarrow SPACES

- Cohesive topos: ∫ is connected components
- ullet HoTT: \int is fundamental ∞ -groupoid

$$\int \dashv \flat \dashv \sharp$$

Notation

- $\mathbb{S}^1 := \{(x, y) : x^2 + y^2 = 1\}$
- S¹ := higher inductive type

We want $\int \mathbb{S}^1 = \mathbb{S}^1$, but we're not there yet.

 $incorporating\ topology\ into\ HoTT$

The topology of a type X is encoded in the type of "continuous paths" $\mathbb{R} \to X$.

Needed to define ∫:

An axiom ensuring that \int is constructed from continuous paths indexed by intervals in $\mathbb{R}.$

Axiom *R***b**:

A type X is discrete iff const: X o ($\mathbb{R} o$ X) is an equivalence.

-equals-

real-cohesive homotopy type theory, a place where $\int \mathbb{S}^1 = \mathbb{S}^1$.

Borsuk-Ulam

Three related statements in classical algebraic topology:

BU-classic	For any continuous map $f:S^n o \mathbb{R}^n$, there exists
	an $x \in S^n$ such that $f(x) = f(-x)$.
BU-odd	For any continuous map $f\colon S^n o \mathbb{R}^n$ with the
	property that $f(-x) = -f(x)$, there is an $x \in S^n$
	such that $f(x) = 0$
BU-retract	There is no continuous map $f\colon S^n o S^{n-1}$ with
	the property that there exists an $x \in S^n$ such that
	f(-x) = -f(x).

Proof of BU-classic involves proving that

- 1. show (BU-classic) \simeq (BU-odd)
- 2. show \neg (BU-odd) $\Rightarrow \neg$ (BU-retract)
- 3. hence (BU-retract) \Rightarrow (BU-classic).
- 4. prove (BU-retract)
- 5. conclude (BU-classic)

BU-* in real-cohesive homotopy type theory:

BU-classic
$$\left\| \prod_{f \colon \mathbb{S}^n \to \mathbb{R}^n} \sum_{x \colon \mathbb{S}^n} f(-x) = f(x) \right\|$$

$$\text{BU-odd} \qquad \left\| \prod_{f \colon \mathbb{S}^n \to \mathbb{R}^n} \prod_{x \colon \mathbb{S}^n} f(-x) = -f(x) \to \sum_{x \colon \mathbb{S}^n} f(x) = 0 \right\|$$

$$\text{BU-retract} \qquad \left\| \prod_{f \colon \mathbb{S}^n \to \mathbb{S}^{n-1}} \sum_{x \colon \mathbb{S}^n} f(-x) = -f(x) \to 0 \right\|$$

Proof of BU-classic, strategy:

- 1. show (BU-classic) \simeq (BU-odd)
- 2. show \neg (BU-odd) $\Rightarrow \neg$ (BU-retract)
- 3. hence (BU-retract) $\Rightarrow \neg \neg$ (BU-odd)
- 4. prove (BU-retract)
- 5. conclude ¬¬ (BU-classic)

$$eg \neg \neg \ (\mathsf{BU}\text{-classic})
eq (\mathsf{BU}\text{-classic}) \ \mathsf{continuously}$$

$$\mathsf{but}$$

$$eg \neg \neg \ (\mathsf{BU}\text{-classic}) = (\mathsf{BU}\text{-classic}) \ \mathsf{discontinuously}$$

Lemma: (Shulman) For P a proposition, $\sharp P = \neg \neg P$

It follows that

$$\neg\neg \left| \left| \prod_{f \colon \mathbb{S}^n \to \mathbb{R}^n} \sum_{x \colon \mathbb{S}^n} f(-x) = f(x) \right| \right| = \sharp \left| \left| \prod_{f \colon \mathbb{S}^n \to \mathbb{R}^n} \sum_{x \colon \mathbb{S}^n} f(-x) = f(x) \right| \right|$$

Hence (BU-retract) $\Rightarrow \sharp$ (BU-classic).

Real-cohesive HoTT supports the **sharp Borsuk-Ulam theorem**.

Borsuk-Ulam

Sharp Borsuk-Ulam

To prove BU-retract

$$\left\| \prod_{f \colon \mathbb{S}^n \to \mathbb{S}^{n-1}} \sum_{x \colon \mathbb{S}^n} f(-x) = -f(x) \to 0 \right\|$$

we will model the classical proof, which is

- Assume $f: \mathbb{S}^n \to \mathbb{S}^{n-1}$ is odd and continuous
- Pass to orbits under $\mathbb{Z}/2\mathbb{Z}$ -action: $\hat{f}: \mathbb{R}\mathrm{P}^n \to \mathbb{R}\mathrm{P}^{n-1}$
- ullet This induces isomorphism on fundamental groups, $\mathbb{Z}/2\mathbb{Z}$
- Hurewicz theorem gives an isomorphism on H^1 , hence we get a ring map $\hat{f}^* \colon H^*(\mathbb{R}\mathrm{P}^{n-1}, \mathbb{Z}/2\mathbb{Z}) \to H^*(\mathbb{R}\mathrm{P}^n, \mathbb{Z}/2\mathbb{Z})$ such that

$$a: \mathbb{Z}/2\mathbb{Z}[a]/(a^{n-1}) \mapsto b: \mathbb{Z}/2\mathbb{Z}[b]/(b^n)$$

• But then $0 = a^{n-1} \mapsto b^{n-1} \neq 0$. Contradiction.

Proof by contradiction are not permitted in intuitionistic logic

$$\frac{\neg p, \Gamma \vdash p}{\Gamma \vdash \neg p \to 0}$$

$$\frac{\Gamma \vdash \neg \neg p}{\Gamma \vdash \neg \neg p}$$

This is actually a proof by negation, not contradiction

$$\frac{p,\Gamma\vdash\neg p}{\Gamma\vdash p\to 0}$$

which is allowed.

Four chunks of the real-cohesive HoTT proof:

- Define topological \mathbb{S}^n
- Define topological $\mathbb{R}P^n$
- Define cohomology of \mathbb{S}^n and $\mathbb{R}\mathrm{P}^n$ with $\mathbb{Z}/2\mathbb{Z}$ -coefficients
- odd $f: \mathbb{S}^n \to \mathbb{S}^{n-1}$ induces contradiction (or, rather, negation).

Define \mathbb{S}^n topologically.

Per Shulman, \mathbb{S}^1 is the coequalizer of

$$\mathsf{id}, +1 \colon \mathbb{R} \to \mathbb{R}$$

giving
$$S^1 = \{(x, y) : x^2 + y^2 = 1\}$$

Define higher dimensional spheres as pushouts:

$$\mathbb{S}^{n-1} \times \mathbb{R} \xrightarrow{\text{fat } \partial} \mathbb{D}^n$$

$$\text{fat } \partial \downarrow \qquad \qquad \downarrow$$

$$\mathbb{D}^n \longrightarrow \mathbb{S}^n$$

Lemma: \mathbb{S}^n is a set.

Define $\mathbb{R}P^n$ topologically using pushouts.

Lemma: The pushout of three sets over an injection is a set.

Corollary: $\mathbb{R}P^n$ is a set.

$\mathbb{Z}/2\mathbb{Z}$ -Cohomology for \mathbb{S}^n and $\mathbb{R}\mathrm{P}^n$

For a type X and ring R:

$$H^n(X,R) := ||X \to K(R,n)||_0$$

Goals:

- Define a ring structure on H^* for \mathbb{S}^n and $\mathbb{R}P^n$
- Compute H^* for \mathbb{S}^n and $\mathbb{R}\mathrm{P}^n$

Out strategy is inspired by Brunerie's doctoral thesis. Namely, work with EM-spaces K(R, n) then lift to cohomology.

Define a *cup product* on EM-spaces:

$$K(\mathbb{Z}/2\mathbb{Z}, n) \times K(\mathbb{Z}/2\mathbb{Z}, m) \xrightarrow{\pi} K(\mathbb{Z}/2\mathbb{Z}, n + m)$$

$$K(\mathbb{Z}/2\mathbb{Z}, n) \wedge K(\mathbb{Z}/2\mathbb{Z}, m) =$$

$$||-||_{n+m} \downarrow$$

$$||K(\mathbb{Z}/2\mathbb{Z}, n) \wedge K(\mathbb{Z}/2\mathbb{Z}, m)||_{n+m} \xrightarrow{=} K(\mathbb{Z}/2\mathbb{Z} \otimes \mathbb{Z}/2\mathbb{Z}, n + m)$$

Lift to H^* :

$$\smile : H^n(X, \mathbb{Z}/2\mathbb{Z}) \times H^m(X, \mathbb{Z}/2\mathbb{Z}) \to H^{n+m}(X, \mathbb{Z}/2\mathbb{Z})$$

$$\left(X \xrightarrow{\alpha} K(\mathbb{Z}/2\mathbb{Z}, n), X \xrightarrow{\beta} K(\mathbb{Z}/2\mathbb{Z}, m)\right)$$

is mapped to

$$X \xrightarrow{\langle \alpha, \beta \rangle} K(\mathbb{Z}/2\mathbb{Z}, n) \times K(\mathbb{Z}/2\mathbb{Z}, m) \xrightarrow{\smile} K(\mathbb{Z}/2\mathbb{Z}, n + m)$$

The remaining operations on $H^*(X, \mathbb{Z}/2\mathbb{Z})$ give a graded ring.

Use

- $K(\mathbb{Z}/2\mathbb{Z},0) := \mathbb{Z}/2\mathbb{Z}$
- $H^k(\mathbb{R}\mathrm{P}^n, \mathbb{Z}/2\mathbb{Z}) := ||\mathbb{R}\mathrm{P}^n \to \mathbb{Z}/2\mathbb{Z}||_0$

to compute $H^0(\mathbb{R}\mathrm{P}^n,\mathbb{Z}/2\mathbb{Z})$

Use

- ullet that $\mathbb{R}\mathrm{P}^n$ is a pushout
- induction with Mayer-Vietoris

to compute $H^k(\mathbb{R}\mathrm{P}^n,\mathbb{Z}/2\mathbb{Z})$, for $k\geq 1$

(req's cohomology of \mathbb{S}^n and \mathbb{D}^n which are computed using MV and $\mathbb{D}^n=1$)

The results are in:

$$H^k(\mathbb{S}^n, \mathbb{Z}/2\mathbb{Z}) = egin{cases} \mathbb{Z}/2\mathbb{Z}, & k = 0, n; \ 0, & ext{else} \end{cases}$$
 $H^k(\mathbb{D}^n, \mathbb{Z}/2\mathbb{Z}) = egin{cases} \mathbb{Z}/2\mathbb{Z}, & k = 0; \ 0, & ext{else} \end{cases}$
 $H^k(\mathbb{R}P^n, \mathbb{Z}/2\mathbb{Z}) = egin{cases} \mathbb{Z}/2\mathbb{Z}, & k = 2, 3, \cdots, n; \ 0, & k \ge n+1 \end{cases}$
 $(note \ n > 2)$

In particular:

$$H^*(\mathbb{R}\mathrm{P}^n, \mathbb{Z}/2\mathbb{Z}) = \mathbb{Z}/2\mathbb{Z}[x]/(x^{n+1})$$

Prove BU-retract

Recall,

- $f: \mathbb{S}^n \to \mathbb{S}^{n-1}$ is continuous and odd
- ullet $\hat{f}: \mathbb{R}\mathrm{P}^n o \mathbb{R}\mathrm{P}^{n-1}$ is the induced map

Apply
$$H^1(-,\mathbb{Z}/2\mathbb{Z})$$
 to \hat{f} to get

$$\hat{f}^* \colon H^1(\mathbb{R}\mathrm{P}^n, \mathbb{Z}/2\mathbb{Z}) \to H^1(\mathbb{R}\mathrm{P}^{n-1}, \mathbb{Z}/2\mathbb{Z})$$

More concretely

$$\hat{f}^* \colon \left| \left| \mathbb{R}P^n \to \mathbb{R}P^2 \right| \right| \to \left| \left| \mathbb{R}P^{n-1} \to \mathbb{R}P^2 \right| \right|$$

$$\alpha \mapsto \hat{f}\alpha$$

Note: α non-trivial implies $\hat{f}\alpha$ non-trivial.

The generator of

$$H^*(\mathbb{R}\mathrm{P}^n,\mathbb{Z}/2\mathbb{Z})=\mathbb{Z}/2\mathbb{Z}[x]/(x^{n+1})$$

live in H^1 .

If follows: $f: \mathbb{S}^n \to \mathbb{S}^{n-1}$ induces a map on cohomology

$$\mathbb{Z}/2\mathbb{Z}[x]/(x^{n-1}) \to \mathbb{Z}/2\mathbb{Z}[y]/(y^n)$$

preserving the generator: $x \mapsto y$

But then $0 = x^{n-1} \mapsto y^{n-1} \neq 0$.

Contradiction (or rather, negation).

We have proved BU-retract, hence sharp Borsuk-Ulam as desired.

Thank you.