## $\mathsf{BQP/qpoly} \subseteq \mathsf{PP/poly}$

**Daniel Tobias** 

University of California, Davis

January 10, 2023



Review
GNP
PP/poly and BQP/qpoly
Proof serior

 $BQP/qpoly \subseteq PP/poly$  means that we can simulate a quantum computer with access to quantum advice with a classical machine that has access to short classical advice.

Recall the **Group Non-Membership Problem (GNP)**. Given group  $G_n$  and some subgroup  $H_n \leq G_n$  is  $x \notin H_n$ ? We start with a quantum advice state

$$|H_n\rangle = \frac{1}{\sqrt{|H_n|}} \sum_{y \in H_n} |y\rangle$$

which can be sent to

$$|xH_n\rangle = \frac{1}{\sqrt{|H_n|}} \sum_{y \in H_n} |xy\rangle$$

Map  $|H_n\rangle$  to  $|xH_n\rangle$  by:  $|y\rangle|0\rangle \to |y\rangle|xy\rangle \to |y\oplus x^{-1}xy\rangle|xy\rangle = |0\rangle|xy\rangle$  for each  $y\in H_n$ .

Next we prepare a state with  $(|0\rangle|H_n\rangle+|1\rangle|H_n\rangle)$  / $\sqrt{2}$ , apply Hadamard to the first qubit, and measure it in the computational basis to distinguish the cases  $|H_n\rangle=|xH_n\rangle$  (which means  $x\in H_n$ ) and  $\langle H_n|xH_n\rangle=0$  (which means  $x\not\in H_n$ ).

After applying the hadamard we're in state

$$\frac{1}{2}\left[\left(|0\rangle|H_{n}\rangle+|xH_{n}\rangle\right)+|1\rangle\left(|H_{n}\rangle-|xH_{n}\rangle\right)\right]$$

Notice that if  $|H_n\rangle=|xH_n\rangle$  that (ignoring renormalization) this state is really just  $|0\rangle|H_n\rangle$  otherwise we'll have a state like  $|0\rangle\left(|H_n\rangle+|xH_n\rangle\right)+|1\rangle\left(|H_n\rangle-|xH_n\rangle\right)$ . The remaining registers besides the first one don't really matter, since repeated experiments will be enough to tell you if this is a superposition or not, which then tells you the status of  $|xH_n\rangle$ .

As we saw, the quantum advice  $|H_n\rangle$  acts like additional input and does not depend on x, the group element which we're asking about. The advice only depends on size of the input, since by definition  $G_n$  is a group whose members can be uniquely labeled by n-bit strings. Advice acts like initializing your quantum computer in a state that is more favorable than just the all  $|0\rangle$  state.

### PP/poly (probabilistic polynomial time)

The class of decision problems in NP such that if the answer is 'yes' then  $\geq 2/3$  of the computation paths accept and if the answer is 'no' then  $\leq 1/3$  of the computation paths accept with polynomial sized classical advice.

### BQP/qpoly

There exists a polynomial sized quantum circuit with a polynomial sized family of quantum advice states  $|\psi_n\rangle$  such that a 'yes' instance accepts with probability  $\geq 2/3$  and a 'no' instead accepts with a probability  $\leq 2/3$ .

**Sketch of simulation BQP/qpoly**  $\subseteq$  **PP/poly**. For convenience say  $L_n(x)=1$  if the input x is in the language L and 0 otherwise.  $L_n(x)$  is computed by a BQP machine with polynomial sized quantum advice. Then all we need is a PP machine that computes  $L_n(x)$  using poly sized classical advice.

What is the classical advice? The adviser (who has access to the BQP machine) provides inputs  $x_1,...,x_T$  (where  $T \leq O(p(n)\log p(n))$  and p(n) is the length of the quantum advice) along with  $L_n(x_1),...,L_n(x_T)$  which is the "acceptance status" of the input  $x_t$ . Notice that this already solves half the puzzle, for if  $x \in \{x_1,...,x_T\}$  then we simply can return  $L_n(x)$ .

#### Continued.

If x is not in our list of inputs, we we pick the largest t such that  $x_t < x$  (where < is lexicographical ordering) and prepare the maximally mixed state I. We then condition I to  $I_t$  by running the quantum algorithm A (the one which decides  $L_n(x)$  for input x) on  $x_1,...,x_t$  in this order and postselect on A correctly outputting  $L_n(x_1),...,L_n(x_t)$ . If  $P_x(\rho)$  is the probability that A outputs 1 with advice state  $\rho$  then we will return round  $(P_x(I_t))$ .

Review GNP PP/poly and BQP/qpoly Proof sketch

An interesting improvement on the theorem is  $BQP/qpoly \subseteq QMA/poly$  meaning we can assume a quantum advice state is simply just a witness state in QMA.

# The end!