BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI (RAJASTHAN) First Semester 2008-2009

AAOC C321 Control Systems Quiz (Closed Book)

H	

Date 20.11.2008 Total Time: 50 min Max Marks: 40

NOTE: Questions 1 to 8 of are 1 mark each and Questions 9 to 24 are of 2 marks each.

Name	e: ID No:	Sec. No.
Q.1	"Pointing finger towards an object" is an example of aloop cor	ntrol system.
Q.2	System described by equation $\frac{d^2y(t)}{dt^2} + a_1^2t \frac{dy(t)}{dt} + a_2y(t) = u(t)$, where y	is input and u
	is output is asystem (Non linear/line variant/invariant).	ar and Time
Q.3	Thesystem become sluggish at low temperatures (electri	cal/hydraulic).
Q.4	Thesystem essentially requires the return lines (hydrauli	ic/pneumatic).
Q.5	For a second order under damped system, the radial distance between origin givesfrequency of oscillation.	a pole and the
Q.6	Open loop transfer function of unity feedback control system is given by	$G(S) = \frac{K}{s(s+1)}$
	If the gain is increased to infinity, the damping ratio will tend to become	
Q.7	As compared to derivative error controller, the Integral error control meet the accuracy requirements.	ller is used to
Q.8	The corner frequencies of $G(s) = \frac{(s+1)}{s(1+0.5s)}$ are	
Q.9	The addition of only a zero in the closed loop transfer functirise time anddamping.	on results in
Q.10	For a unity negative feedback system, forward path gain is $\frac{30K}{s(s+5)}$. The	e magnitude of
	sensitivity S_K^T of the system, in case of open loop and closed loop to	changes in K,
	(K = 0.2) at ω = 0.5 rad/s isandrespective	ely.
Q.11	A 4-stack stepper motor has 45 numbers of teeth, assuming that states aligns with its stator, the angular displacement between stacks of stator	
Q.12	The output of a system with transfer function $\frac{5}{(s+2)}$ for an input e ^{-t} in t	cime domain is
Q.13	The open loop poles of a unity negative feedback control system are at 0 there is an increase of 22.5% in its natural frequency, the steady stat ramp input is decreased effectively by	·

