Robustness for Non-Parametric Classification: A Generic Attack and Defense

Yao-Yuan Yang*, Cyrus Rashtchian*, Yizhen Wang and Kamalika Chaudhuri

University of California, San Diego

July 2, 2020

Introduction (cont.)

Figure: Goodfellow et al. [4]

Attack $\mathbf{x}_{adv} = A(f, \mathbf{x}, r)$

- target classifier f
- target example x
- attack budget r

Optimal attack

$$\underset{\mathbf{x}_{adv}: f(\mathbf{x}) \neq f(\mathbf{x}_{adv})}{\operatorname{argmin}} \|\mathbf{x} - \mathbf{x}_{adv}\|_{p}$$

Non-parametric Methods

k nearest neighbor (k-NN)

take k closest training examples and output the majority label

Decision tree and tree ensembles

recursively split the data

 common classifiers: decision tree, random forest, gradient boosting trees, etc.

Region-Based Attack

key observation: decomposition into piece-wise convex regions

(a) 1-NN regions

(b) DT regions

Definition ((s, m)-decomposition)

The partition of \mathbb{R}^d into convex regions P_1, \ldots, P_s s.t. each P_i can be described by at most m linear constraints.

Region-Based Attack (cont.)

$$\min_{i:f(\mathbf{x})\neq y_i} \min_{\mathbf{x}_{adv}\in P_i} \|\mathbf{x} - \mathbf{x}_{adv}\|_{p}$$

- outer min: iterate through differently-labeled regions
- inner min: LP for $p = 1, \infty$ and QP for p = 2

Region-Based Attack (cont.)

$$\min_{i:f(\mathbf{x})\neq y_i} \min_{\mathbf{x}_{adv}\in P_i} \|\mathbf{x} - \mathbf{x}_{adv}\|_p$$

- outer min: iterate through differently-labeled regions
- inner min: LP for $p = 1, \infty$ and QP for p = 2

Region-Based Attack (Speeding up)

RBA-Approx: consider only a fix number of regions (let's say 3)

- P_i has at least one training example (\mathbf{x}_i) in it (ignore P_1 , P_3)
- sort each region with $\|\mathbf{x}_i \mathbf{x}\|_p$ (order: P_7 , P_6 , P_5 , P_4 , P_2)
- search only (P_7, P_6, P_5)

Region-Based Attack (Speeding up)

RBA-Approx: consider only a fix number of regions (let's say 3)

- P_i has at least one training example (\mathbf{x}_i) in it (ignore P_1 , P_3)
- sort each region with $\|\mathbf{x}_i \mathbf{x}\|_p$ (order: P_7 , P_6 , P_5 , P_4 , P_2)
- search only (P_7, P_6, P_5)

Attack Evaluation

Empirical robustness (ER)

average distance of the target example to the adversarial example

average ER over test examples that are correctly predicted

ER: smaller the better

Attack Results

	Direct	BBox	1-NN Kernel	RBA-Exact	Direct	BBox	3-NN Kernel	RBA-Approx
australian	.442	.336	.379	.151	.719	.391	.464	.278
cancer	.223	.364	.358	.137	.329	.376	.394	.204
covtype	.320	.207	.271	.076	.443	.265	.271	.120
diabetes	.074	.112	.165	.035	.130	.143	.191	.078
f-mnist 06	.259	.162	.187	.034	.233	.184	.213	.064
f-mnist 35	.354	.269	.288	.089	.355	.279	.295	.111
fourclass	.109	.124	.137	.090	.101	.113	.134	.096
halfmoon	.070	.129	.102	.059	.105	.132	.115	.096
mnist17	.330	.260	.239	.079	.302	.264	.247	.098

Attack Results

		DT		RF			
	Papernot's	BBox	RBA-Exact	BBox	RBA-Approx		
australian	.140	.139	.070	.364	.446		
cancer	.459	.334	.255	.451	.383		
covtype	.289	.117	.070	.256	.219		
diabetes	.237	.133	.085	.181	.184		
f-mnist06	.200	.182	.114	.222	.199		
f-mnist35	.287	.168	.112	.201	.246		
fourclass	.288	.197	.137	.159	.133		
halfmoon	.098	.148	.085	.182	.149		
mnist17	.236	.175	.117	.237	.244		

Parernot's: Papernot et al. [8]

Note that Kantchelian et al. [6] also achieves optimal attack on tree-based classifiers

Defense (motivation)

(c) 1-NN

(d) 1-NN with separation (less overlap)

Adversarial Pruning

a classifier with robust radius r (robust to attacks with an attack budget r)

Defense strategy

- 1 remove minimum # of examples s.t. distance between differently-labeled examples are $\geq 2r$ (minimum vertex cover problem)
- learn a non-parametric classifier on the modified dataset

Next, some theoretical justifications

Similar technique has been used by Gottlieb et al. [5] for the consistency of 1-NN, but not for robustness

Adversarial Pruning (r-Optimal Classifier)

Bayes-optimal classifier

$$\max_{S_1,...,S_c} \sum_{j=1}^c \int_{\mathbf{x} \in S_j} Pr(y = j \mid \mathbf{x}) d\mu(\mathbf{x})$$

r-Optimal classifier

$$\max_{S_1,\dots,S_c} \sum_{j=1}^c \int_{\mathbf{x} \in S_j} Pr(y = j \mid \mathbf{x}) d\mu(\mathbf{x})$$

s.t.
$$d(S_j, S_{j'}) \ge 2r \quad \forall j \ne j'$$

 $d(S_j, S_{j'}) := \min_{u \in S_i, v \in S_{i'}} ||u - v||_p$

Defense Evaluation

Recall: Empirical robustness

average distance of the target example to the adversarial example

defscore: the ratio of ER w/ and w/o defense

$$\textit{defscore} = \frac{\text{defended ER}}{\text{undefended ER}} = \frac{\text{defended dist. to adv. example}}{\text{undefended dist. to adv. example}}$$

- defscore: higher the better
- $defscore > 1 \rightarrow more robust after defense$
- $defscore < 1 \rightarrow less robust after defense$

average *defscore* over test examples that are correctly predicted

Defense Results

	AT	1-NN Wang's	AP	3-3 AT	NN AP	AT	DT RS	AP	AT	RF RS	AP
australian	0.64	1.65	1.65	0.68	1.20	2.36	5.86	2.37	1.07	1.12	1.04
cancer	0.82	1.05	1.41	1.06	1.39	0.85	1.09	1.19	0.87	1.54	1.26
covtype	0.61	3.17	3.17	0.81	2.55	1.07	2.90	4.84	0.93	1.59	2.10
diabetes	0.83	4.69	4.69	0.87	2.97	0.93	1.53	2.22	1.19	1.25	2.22
f-mnist06	0.94	2.09	2.12	0.86	1.47	0.82	3.91	1.85	0.97	1.17	1.81
f-mnist35	0.80	1.02	1.08	0.77	1.05	1.11	2.64	2.07	0.90	1.23	1.32
fourclass	0.93	3.09	3.09	0.89	3.09	1.06	1.23	3.04	1.03	1.92	3.59
halfmoon	1.03	1.98	2.73	0.93	1.92	1.54	1.98	2.58	1.04	1.01	1.82
mnist17	0.78	1.01	1.20	0.81	1.13	1.14	2.91	1.54	0.93	1.11	1.29

Defense Results (cont.)

Conclusion

- an attack algorithm based on decomposing feature space into convex regions then attack each region independently
- a defense algorithm by modifying the dataset so the dataset is more separated
- r-Optimal classifier as a robust analog to the Bayes optimal classifier

future work

- some more classifier specific attack/defense algorithm
- r-Optimal classifier (Bhattacharjee and Chaudhuri [1])

Thank you for listening.

More information

- Paper: https://arxiv.org/abs/1906.03310
- Code: https://git.io/JfyXo
- Blog: https://ucsdml.github.io/

Contact

• Website: http://yyyang.me/

References I

- [1] Robi Bhattacharjee and Kamalika Chaudhuri. When are non-parametric methods robust? *arXiv preprint arXiv:2003.06121*, 2020.
- [2] Hongge Chen, Huan Zhang, Duane Boning, and Cho-Jui Hsieh. Robust Decision Trees Against Adversarial Examples. In ICML, 2019.
- [3] Minhao Cheng, Thong Le, Pin-Yu Chen, Jinfeng Yi, Huan Zhang, and Cho-Jui Hsieh. Query-efficient Hard-label Black-box Attack: An Optimization-based Approach. In *ICLR*, 2019.
- [4] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. In *ICLR*, 2015.
- [5] Lee-Ad Gottlieb, Aryeh Kontorovich, and Pinhas Nisnevitch. Near-optimal sample compression for nearest neighbors. In Advances in Neural Information Processing Systems, pages 370–378, 2014.

References II

- [6] Alex Kantchelian, JD Tygar, and Anthony Joseph. Evasion and Hardening of Tree Ensemble Classifiers. In *ICML*, pages 2387–2396, 2016.
- [7] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards deep learning models resistant to adversarial attacks. In *ICLR*, 2018.
- [8] Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. Transferability in machine learning: from phenomena to black-box attacks using adversarial samples. arXiv preprint arXiv:1605.07277, 2016.
- [9] Yizhen Wang, Somesh Jha, and Kamalika Chaudhuri. Analyzing the Robustness of Nearest Neighbors to Adversarial Examples. In *ICML*, pages 5120–5129, 2018.