

Swiss Federal Institute of Technology Zurich

Signal Behaviour of Poly-Crystalline CVD Diamonds on Incident Particle Flux

- M. Reichmann, ¹. D. Hits, ¹ H. Kagan, ² J. Beacham, ² B. Tannenwald, ² W. Trischuk, ³ R. Wallny, ¹ C. Dorfer, ¹ D.A. Sanz Becerra, ¹ F. Bachmair, ¹ G. Kasieczka, ¹ and M. Dünser¹
- ETH Zürich, Zürich, Switzerland.
 The Ohio State University, Columbus, OH, USA
 University of Toronto, Toronto, ON, Canada
- (Dated: 28 January 2020)

We have measured the signals in poly-crystalline Chemical Vapour Deposition (CVD) (pcVD) diamonds induced by incident charged particles for fluxes from $5kHz/cm^2$ up to $20kHz/cm^2$. It was found that the signals of irradiated pcVD diamond detectors, show no variation greater than 2% up to the maximum flux. This was measured for irradiations with fast reactor neutrons with fluences ranging from $5 \cdot 10^{14} \text{ a}/\text{cm}^2$ up to a maximum of $8 \cdot 10^{19} \text{ a}/\text{cm}^2$.

Keywords: diamond, poly-crystalline diamond, CVD diamond, particle detector, pad detector, rate behaviour

Discussion of the Pad Rate Paper

RD42 Analysis Meeting

Michael Reichmann 28th January 2020

Table of Contents

- Introduction
- Measurements
- Analysis
- 4 Results
- Conclusion

Introduction

Introduction + Content

- detector fabrication
 - cleaning
 - ► RIE
 - ► photo-lithography
 - metallisation
 - ▶ pre-tests with source
 - amplifier
- setup
 - ► HIPA PSI stats
 - ▶ piM1 stats -> site plan + collimators
 - ▶ beam telescope specs
 - ► DAQ & Trigger

Measurements

Measurements

Name	S [mm]	T [µm]	CCD [µm]	Irr _{max}
poly-b2	\sim 5 \times 5	455	?	$8 \cdot 10^{15}$
poly-97	\sim 5 \times 5	510	?	$3.5 \cdot 10^{15}$

Table: Properties of poly-b2 and poly-97. S - lateral size, T - thickness, CCD - Charge Collection Distance, Irr_{max} - maximal irradiation.

	poly-b2	poly-97
August 2015	0	0
October 2015	$5 \cdot 10^{14}$	0
August 2016	$1\cdot 10^{15}$	$5 \cdot 10^{14}$
October 2016	$2\cdot 10^{15}$	$1.5\cdot 10^{15}$
July 2017	$2\cdot 10^{15}$	$1.5\cdot 10^{15}$
August 2017	$4\cdot 10^{15}$	$3.5\cdot 10^{15}$
August 2018	$8 \cdot 10^{15}$	X

Table: Irradiations in n/cm^2 of the pCVD diamond detectors during the various beam tests.

• describe rate scan procedure

Analysis

Analysis

- ullet raw o root conversion
- event alignment
- tracking
 - physical alignment of the telescope
 - plane uncertainties
 - ► track building
- waveforms
- cuts
- rate dependence parameters
- **1 relative standard deviation** of all points *x*:

$$\sigma_{\text{rel}} = \frac{\sqrt{\frac{1}{N-1} \cdot \sum_{i=1}^{N} (x_i - \overline{x})^2}}{\overline{x}}$$
 (1)

Prelative spread between the highest and the lowest signal:

$$s_{\text{rel}} = \frac{x_{\text{max}} - x_{\text{min}}}{\bar{x}} \tag{2}$$

M. Reichmann (FTH zürich) 28th Janua

Results

Results

- pedestal & noise
- signal
- uniformity
- rate studies
 - ► random scans
 - nonirradiated

Name	σ_{rel} [%]		s _{rel} [%]	
	+1000 V	$-1000{\sf V}$	+1000 V	$-1000{\sf V}$
poly-b2	1.1	1.8	4.5 ± 0.1	5.5 ± 0.1
poly-97	-	4.0	-	13.8 ± 0.1

Table: Results of the nonirradiated detectors.

Irradiation	σ_{rel} [%]		s _{rel} [%]	
$[n/cm^2]$	+1000 V	$-1000{ m V}$	$+1000\mathrm{V}$	$-1000\mathrm{V}$
$5 \cdot 10^{14}$	1.0	0.9	3.8 ± 0.1	3.6 ± 0.1
$1\cdot 10^{15}$	0.8	0.7	2.9 ± 0.2	2.4 ± 0.2
$2 \cdot 10^{15}$	0.8	0.9	3.1 ± 0.2	3.3 ± 0.2
$2\cdot 10^{15}$	1.0	2.3	4.2 ± 0.4	12.7 ± 2.1
$4\cdot 10^{15}$	0.6	0.8	2.8 ± 0.3	3.0 ± 0.3
$8 \cdot 10^{15}$	0.7	0.8	3.0 ± 0.5	3.4 ± 0.5

Table: Results of the irradiated poly-b2 detector.

Irradiation	σ_{rel} [%]		S _{rel} [%]	
$[n/cm^2]$	+1000 V	$-1000{ m V}$	+1000 V	$-1000\mathrm{V}$
$5 \cdot 10^{14}$	1.3	1.1	4.9 ± 0.2	4.0 ± 0.2
$1\cdot 10^{15}$	1.6	1.0	5.5 ± 0.2	3.6 ± 0.2
$2\cdot 10^{15}$	1.6	2.2	6.7 ± 0.4	8.1 ± 0.4
$8 \cdot 10^{15}$	1.3	1.1	5.2 ± 0.2	4.8 ± 0.3

Table: Results of the irradiated poly-97 detector.

97 & B2 @ -1000 V

Conclusion

Conclusion

empty

moreempty

moremoreempty

