Half-Lives of Common Rate Laws for $R \rightarrow P$

The table below shows how to derive the half-life expression for the three common types of rate laws. In addition, there also are some observations about how to use the pattern of successive half-lives to identify a reaction's rate law. You are responsible for knowing the half-life equations (although they are relatively easy to derive if needed).

	Zero-Order Reaction	First-Order Reaction	Second-Order Reaction
Begin by writing the linear form of the rate law	$\left[\mathbf{R}\right]_{\mathbf{t}} = \left[\mathbf{R}\right]_{\mathbf{o}} - kt$	$\ln[R]_{t} = \ln[R]_{o} - kt$	$\frac{1}{[R]_t} = \frac{1}{[R]_o} + kt$
Next, substitute $[R]_t = \frac{1}{2}[R]_o$ at time $t = t_{1/2}$	$^{1}/_{2}[R]_{o} = [R]_{o} - kt_{1/_{2}}$	$ln(\frac{1}{2}[R]_{o}) = ln[R]_{o} - kt_{1/2}$	$\frac{1}{\frac{1}{2}[R]_{o}} = \frac{1}{[R]_{o}} + kt_{\frac{1}{2}}$
Then, solve for $t_{1/2}$		$kt_{1/2} = \ln[R]_{o} - \ln(1/2[R]_{o})$	$kt_{\frac{1}{2}} = \frac{1}{\frac{1}{2}[R]_{o}} - \frac{1}{[R]_{o}}$
	$kt_{1/2} = [R]_{O} - \frac{1}{2}[R]_{O}$ $kt_{1/2} = \frac{1}{2}[R]_{O}$	$kt_{\frac{1}{2}} = \ln \frac{[R]_{o}}{\frac{1}{2}[R]_{o}}$	$kt_{\frac{1}{2}} = \frac{2}{[R]_{o}} - \frac{1}{[R]_{o}}$
	$t_{\frac{1}{2}} = \frac{[R]_o}{2k}$	$kt_{1/2} = \ln 2$	$kt_{\frac{1}{2}} = \frac{1}{[R]_o}$
		$t_{\frac{1}{2}} = \frac{0.693}{k}$	$t_{\frac{1}{2}} = \frac{1}{k[R]_{o}}$
How to use information about half-lives to determine the rate law for a reaction	For a zero-order reaction, each successive half-life is exactly ½ of the previous half-life. Thus, if the first half-life is 50 seconds, then the next two half-lives are 25 seconds and 12.5 seconds	For a first-order reaction, each successive half-life is exactly the same as the preceding half-life. Thus, if the first half-life is 50 seconds, then the second and third half-lives also are 50 seconds	For a second-order reaction, each successive half-life is exactly twice as large as the previous half-life. For example, if the first half-life is 50 seconds, then the second half-life is 100 seconds and the third half-life is 200 seconds.