Paper presentation: Limiting Byzantine Influence in Multihop Asynchronous Networks

Author:

Ben Ayad, Mohamed Ayoub

Supervisor:

Maurer, Alexandre

Outline

- General context and problematic
- Related work
- Contribution
 - The protocol
 - The guarantees
- Evaluation
 - Methodology
 - Testing topology
 - Results
- Conclusion and perspectives

General Context and problematic

Modes of failures:

- Crash failure
- Performance failure (e.g Omission failure)
- Byzantine Failures

General Context and problematic

Byzantine Failures:

General Context and problematic

Why Byzantine Failures are dangerous.

Related Work

There are mainly two types of approaches to deal with this problem:

- Cryptographic operations
- Connectivity based approaches

Related Work - Cryptographic based

• Enabling nodes to use cryptographic operations

Cons:

- High ressources.
- Trusted infrastructure.

Related Work - High connectivity based

- The graph needs to be highly connected (e.g 2k+1 connected)
- Graph topology knowledge

Cons:

- Not practical
- Heavy constraints

Related Work - Key points recap

Other methods:

- Cryptographic based
- Relies on high connectivity && Byzantine proportions assumptions

The Paper's method:

- Does not assume a trusted infrastructure
- Supports low-connectivity networks

The protocol relies on the notion of **control zone** and **authorizations**:

- A **control zone** is acts like a filter.
- Each message leaving the control zone should be authorized.

Intuition?

Intuition?

Intuition?

Principal:

• Defining a large number of Control Zones.

Hypothesis:

- All sent messages are received
- Knowledge of local topology
- "Most"

Contribution - Guarantees

A set of nodes is **Reliable if:**

- Safe: no node accepts false messages
- **Communicating:** all its correct nodes always communicate (all correct messages are received)

Therefore the <u>objective</u> is to **determine** a **reliable set of nodes**.

Contribution - Guarantees

<u>Three theorems</u> are presented and proven in the paper:

- 1. Determining safe nodes
- 2. Constructing a communicating node set
- 3. A safe and communicating set achieved a reliable communication

Guarantees - Theorem 1

If there exists a set of control zones Z verifying:

- 1. The node sets Cores(Z) and Borders(Z) are disjoint.
- 2. All Byzantine nodes are in Cores(Z).

Then any node **out of Cores** is **safe**

Guarantees - Theorem 2

Incrementally constructing a communicating node set.

If S is a communicating node set and v is a correct node verifying:

- v has a neighbor u ∈ S
- Let Z be the set of control zones $z \in Ctr$, such that $(u,v) \in (core(z),border(z))$.
 - Then $\forall z \in Z$, there exists a correct path on **border(z)** between v and a node w \in S.

Then $S \cup \{v\}$ is also communicating.

Guarantees - Theorem 3

The intersection of a safe node set and another communicating node set is a reliable set.

Evaluation - Methodology

To **evaluate** a network, we need to **define**:

- The network topology
- The sets of control zones

Evaluation - Testing topology

For testing purposes, they chose to run simulations on a **grid/torus** structure.

- Grid network?
- Order of the protocol?

Evaluation - Results

Evaluation - Results

Evaluation - Results

Conclusion and perspectives

The protocol tolerates **reliable communication** between **most correct nodes** in the presence of Byzantine nodes in **low-connectivity** networks.

Open questions:

Designing optimal sets of control zones

Thank you very much.