

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code: EC303 Signals and Systems UPID: 003462

Time Allotted: 3 Hours

(b) aliasing(c) loss of signal

(d) loss of higher frequency component

Full Marks:70

The Figures in the margin indicate full marks.

Candidate are required to give their answers in their own words as far as practicable

	Group-A (Very Short Answer Type Question)	
	er any ten of the following:	$[1 \times 10 = 10]$
t	Convolution is	
	(a) commutative	
	(b) associative	
	(c) distributive	
	(d) All of the above	
(1	The Fourier series of a real, even, periodic signal will contain only	
	(a) cosine terms	
	(b) sine terms	
	(c) even terms (d) odd harmonics	
/11	, ·	
,,,	⁽¹⁾ Z transform of δ(n+2) is . (a) z	
	(b) z ⁻²	
	(c) z ²	
	(d) z^{-1}	
(IV)) Spectral overlapping can be termed as	
	(a) aperture effect	
	(b) aliasing effect	
	(c) Gibbs phenomenon	
	(d) inter symbol interference	
(V)	The porter signer has	
	(a) finite power content but infinite energy content	
	(b) infinite power content and infinite energy content	
	(c) infinite power content and finite energy content	
	(d) finite power content and finite energy content	
(VI)	Which of the following system, described by its impulse response h(n), is causal?	
	(a) $h(n) = u(n+1)$	
	(b) h(n)=u(n+3)	
	(c) $h(n)=u(n)$	
	(d) h(n)=u(-n)	
(VII)	The Fourier transform of unit step function is given by	
(2)	(a) 1/j2πf	
	(b) j2πf	
	(c) 1/(1+ j2πf)	
	(d) None of the above	
	(d) Notice of the above	
(VIII)	Laplace transform of $x(t)=\delta(t)-u(t)$ is	
	(a) (s-1)	
	(b) (s-1)/s	
	(c) s-(1/s)	
	(d) none of the above	
(IX)	Flat top sampling leads to	
(***)	(a) aperture effect	
	(a) aperture energy	

(X) What is width of the signal, x(t)=u(t)-u(t-3)? (a) 1 unit (b) 2 unit (c) 3 unit (d) 4 unit (xi) What will be the convolution of u(n) and $\delta(n-3)$? (a) u(n) (b) u(n-1) (c) u(n-2) The frequency response of a system with $h(n) = \delta(n) - \delta(n-1)$ will be (d) u(n-3) (a) $\delta(w) - \delta(w-1)$ (b) 1-exp(jw) (c) u(w)-u(w-1)(d) 1-exp(-jw) Group-B (Short Answer Type Question) [5 x 3 = 15] Answer any three of the following: /2. Impulse response of a system is given as $h(n)=(1/2)^n u(n-1)$. Comment on the stability and causalty of the [5] system. [5] 3. Determine and sketch the magnitude and frequency response of the system given below: y(n) = (1/2)[x(n+1)-x(n-1)][5] Evaluate y(t)=exp(at)*exp(bt) using the Laplace transform technique. [5] Explain the zero-order-hold Interpolation with the help of a proper diagram. [5] 6. Consider an LTI system with frequency response H(w)= 1/(3+jw) for a particular input x(t). The system produces the output, $y(t)=\exp(-3t)u(t) - \exp(-4t)u(t)$. Find out x(t). Group-C (Long Answer Type Question) $[15 \times 3 = 45]$ Answer any three of the following: ア (a) A system is described by the equation given below: [5] $y(n) = x(n).cos(w_0n)$ Comment on the time invariability and causality of the system. (b) Define power signal. Find out the power of the signal $x(n) = A.exp(jw_0n)$ where A is a constant. [2+3]How can you represent any arbitrary signal x(t) into odd and even component? Give an example of [2+3] an even signal with mathematical expression and sketch. 8. (a) Write down the sampling theorem. Draw a message signal, equivalent sampled signal and their [2+3+2]spectrum. Mention one sampling method in brief. https://www.makaut.com (b) Consider $x_1(t) = cos(20\pi t)$ and $x_2(t) = cos(100\pi t)$ which are sampled at Fs=40 Hz. Find out the [4+2]corresponding discrete time signal. Is there any aliasing present in any of the discrete time signal? (200 π t). [2] 9. (a) Find out the transfer function and the impulse response of a causal LTI system described by the [5] differential equation: $\frac{d^2y(t)}{dt^2} + 2\frac{dy(t)}{dt} + y(t) = \frac{dx(t)}{dt} - 2x(t)$ (b) Calculate the z-transform of the signal $x(n)=na^nu(n)$. [5] (c) Find out the inverse z-transform of the following: [5] $X(z) = \frac{1}{(1+z^{-1})(1+z^{-1})^2}$

- 10. (a) State and prove the Parseval's theorem. 🛷
 - (b) If x(t) and the X(w) form a Fourier pair, then what will be the Fourier transform of x(-t)?
 - (i) when x(t) is odd signal
 - (ii) when x(t) is even signal
 - (c) Find out the inverse Fourier transform of the following:
 X(w)= 1/(a+jw)²
 - (d) What is the difference between DTFT and DFT?
- 11. (a) Why DFT is used in signal processing? Comment on the periodicity of X(K) which is the DFT of x(n).
 - (b) Find out the DFT of a discrete time signal x(n)=(1,2,3,4).
 - (c) Find out the magnitude and phase spectrum of x(n). Sketch the spectrum.

*** END OF PAPER ***

https://www.makaut.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने पुराने पेपर्स भेजे और 10 रुपये पायें, Paytm or Google Pay से