

Visoko-propustna računska okolja v gradbeništvu

Ljubljana, 18.4.2008

dr. Matevž Dolenc mdolenc@itc.fgg.uni-lj.si

Vsebina

- Uvod
- Visoko-propustno računsko okolje
- Uporabniški scenariji
- Projekt: Visoko-propustno računsko okolje za analizo potresnega tveganja
- Zaključek

Potrebe po novih računskih virih

- Raziskave in računske metode postajajo vse bolj zapletene
 - Novi, natančnejši modeli
 - Časovna omejenost raziskav
- Integracija raznolikih podatkov
- Delo na daljavo

$HPC \neq HTC$

- ▶ HPC High-performance computing
 - Visoko-zmogljivo računsko okolje
 - statična računska okolja (gruče); enoviti problemi
 - protokoli: MPI, PVM, ...
- HTC High-throughput computing
 - Visoko-propustno računsko okolje
 - dinamična računska okolja; parametrične študije možnost paralelizacije
 - programski sistemi: Condor, Torque, SGE, Xgrid

Vir: http://grmada.fgg.uni-lj.si/condor-view

Računalnik prost Računalnik zaseden Računalnik ni vklopljen

Računalniška ućilnica I/5, UL-FGG

Problem

- Peter mora opraviti parametrično študijo
- Parametrična študija F(x, y, z), kjer x lahko zavzame 20 vrednosti, y 10 vrednosti in z 3 vrednosti
 - število kombinacij: 20*10*3=600
 - za izračun funkcije F(x, y, z) so potrebne ≈ 3 ure
 - prenos podatkov: $(x,y,z) \approx 5$ MB, $F(x,y,z) \approx 50$ MB

Rešitev?

- BAT procedure
 - zaporedno izvajanje na enem računalniku
 - "vzporedno" izvajanje na večih računalnikih
- Programiranje svoje rešitve
- Obstaja še kaj?

Javno računsko okolje

- Različna imena
 - Volunteer computing, Public Resource Computing, Meta Computing, Internet computing
- Uporabniki donirajo proste računske cikle za različne projekte
 - SETI@Home, Einstein@Home, ...
- Berkeley Open Infrastructure for Network Computing (BOINC)
 - http://boinc.berkeley.edu

Rešitev: osebni Condor

- ▶ Kje dobim Condor?
 - http://www.cs.wisc.edu/condor
- Operacijski sistemi:
 - Windows XP, Windows Vista, Linux, Mac OS X
- Za namestitev osebnega Condor-ja ne potrebujete administratorskega gesla
- Po namestitvi lahko Peter pošlje naloge parametrične študije na svoj osebni Condor

Petrov Condor računalnik

- Kakšne so prednosti?
- Osebni Condor bo ...
 - nadzoroval potek izvajanja nalog
 - naloge izvajal v predpisanem vrstnem redu
 - hranil dnevnik dogodkov
- Seveda se naloge še vedno izvajajo zaporedno.

Kako Condor-ju pošljemo nalogo

Paketna naloga

- Naloga ne zahteva interakcije z uporabnikom
- Naloga uporablja STDIN, STDOUT, STDERR
- Nalogo opišemo
 - Tekstovna datoteka
 - Opišemo lahko več nalog
 - Naloge imajo lahko različne vhodne/izhodne argumente

Podpora različnim programom

- Condor definira različna okolja za podporo raznovrstnih programov
 - Okolje določa osnovne parametre v katerih se program izvaja
- Definirana okolja (angl. universe)
 - Standard: podpora za checkpointing
 - Vanilla: za programe, ki jih ne moremo povezati s Condor knjižnicami
 - PVM: paralelno izvajanje programov
 - Java: izvajanje Java programov

Primer naloge


```
= vanilla
universe
requirements
                        = OpSys == "WINNT51"
environment
                        = path=c:\winnt\system32
should_transfer_files
                        = YES
when_to_transfer_output = ON_EXIT
executable
                        = print-ip.bat
                        = print-ip.out
output
                        = print-ip.err
error
                        = print-ip.log
log
queue
```

print-ip.sub

```
@echo off
echo Start.
echo Here is the output from "ipconfig" command:
c:\windows\system32\ipconfig
echo End.
```

print-ip.bat

Petrova Condor skupina računalnikov

- 1. Peter svoj računalnik določi za "centralni manager"
- 2. Na preostale računalnike namesti Condor
- Peter lahko sedaj izvaja sočasno več nalog na različnih računalnikih

Petrova Condor skupina računalnikov

- V Petrovi organizaciji kupijo namenske Condor strežnike
 - 1. Za "centralni manager" se določi enega izmed namenskih strežnikov
 - 2. Na namenske strežnike se namesti Condor
- Peter in sodelovci lahko sedaj še bolj učinkovito uporabljajo Condor

Soodvisne naloge

- Directed Acyclic Graph Manager (DAGMan)
 - podsistem Condor-ja omogoča določitev odvisnoti med nalogami
 - posamezna naloga predstavlja vozlišče grafa

- naloga ima lahko poljubno število staršev oz. otrok (ne sme biti zank)

```
Job A a.sub
Job B b.sub
Job C c.sub
Job D d.sub
Parent A Child B C
Parent B C Child D
```


Distributed Resource Management Application API (DRMAA)

- Programski vmesnik za različne programske jezike (C/C++, Java, Python, Perl, Ruby)
- OpenDSP: WS implementacija DRMAA API-ja

Migracija nalog in "checkpointing"

- Condor samodejno poskrbi za migracijo nalog, ki se niso dokončale
- Checkpointing
 - Condor lahko nalogo nadaljuje od mesta v programu, kjer se je naloga ustavila
 - Program mora biti povezan s Condor knjižnicami (program ni potrebno spreminjati)
 - Checkpointing ne deluje na operacijskem sistemu Windows.

Uporaba Condor-ja v Europi

Condor na UL-FGG

Condor skupina računalnikov:

- ▶ Računalniški učilnici I/5 in III/6
- ▶ 50 računalnikov, Windows XP
- onemogočeno pošiljanje Condor nalog

Condor na UL-FGG - želje/načrti

Condor skupina računalnikov:

- ▶ Računalniški učilnici I/5 in III/6 + vklučitev preostalih učilnic (skupaj je 114 računalnikov v računalniških učilnicah)
- ▶ 50 računalnikov, Windows XP
- onemogočeno pošiljanje Condor nalog

Condor in MATLAB

- Zagon programa lokalno na računalniku
 - matlab.bat
- Možni razlogi za težave
 - pridobitev licence ob zagonu
- Rešitve
 - Prevajanje m-datotek v samostojno izvedljive programe
 - Test MATLAB "kompatibilnih" programov (SciLAB, Octave)

Condor in MATLAB


```
universe = vanilla
```

requirements = OpSys == "WINNT51"

environment = path=c:\winnt\system32

should_transfer_files = YES
when_to_transfer_output = ON_EXIT

Arguments = -r testrun transfer_input_files = testrun.m

queue

matlab.sub

"c:\Program Files\MATLAB\R2007a\bin\win32\matlab.exe" -nodesktop -nosplash %1 %2

matlab.bat

Condor na UL-FGG - ocena stanja

- Prva namestitev: 2005
- Namestitev v računalniških učilnicah: 2006
- Uporaba
 - Projekt InteliGrid
 - Projekt DataMiningGrid
 - Raziskovalci IKPIR
- Slabosti
 - Dokumentacija
 - Zaračunavanje, prioritete, uporabniški vmesnik, ...

Uporabniški scenarij: parametrične študije v potresnem inženirstvu

- ▶ IDA (Incremental Dynamic Analysis) analiza
 - parametrična analiza s katero za skupino akcelerogramov in za različne stopnje potresne intenzitete določimo potresni odziv konstrukcije
 - večja kot je skupina akcelerogramov bolj zanesljivo se lahko določi potresno tveganje
 - proporcionalno z večanje skupine akcelerogramov se povečujejo tudi računski časi

Testna konstrukcija

Postopek IDA analize

- 1. numerično modeliranje
- 2. izbira potresov
- 3. priprava opisana naloge
- 4. nelinearna analiza
- 5. analiza rezultatov

Ocena učinkovitosti uporabe visokopropustnega računskega okolja

- Število analiz: 280
- Povprečno trajanje analize: 13 min

Število računalnikov	Trajanje izračuna [ur]	Faktor
1	61.3	1
5	14.7	4.17
10	7.1	8.63
25	2.5	24.52

Projekt: Visoko-propustno računsko okolje za analizo potresnega tveganja

Naslov:

- Visoko-propustno računsko okolje za analizo potresnega tveganja
- Trajanje:
 - februar 2008 januar 2011
- Obseg:
 - 1550 raziskovalnih ur letno

Projekt: Visoko-propustno računsko okolje za analizo potresnega tveganja

Partnerji

- UL-FGG: IKPIR (nosilec doc. dr. Matjaž Dolšek)
- dr. Jaka Zevnik (ELEA iC d.o.o.)
- dr. Peter Kante (Primorje d.d.)
- dr. Iztok Peruš

Ključne besede

- potresno tveganje, verjetnostna potresna analiza, potresnoodporno projektiranje, visoko-propustna računska okolja, tehnologija grid, Web 2.0

Projekt: Visoko-propustno računsko okolje za analizo potresnega tveganja

Predvideni rezultati

- izboljšati postopke za določitev potresnega tveganja
- razviti uporabniško prijazna orodja za oceno potresnega tveganja na različnih nivojih
- vzpostaviti prijazno visoko-propustno računsko okolje
- prenos pridobljenih znanj v prakso

Zaključki

- Izkoriščenost računalnikov
- Računska okolja
 - HPC \neq HTC
 - Condor, Condor na UL-FGG
- Primeri uporabe
 - Parametrične študije
- Kako naprej
 - Delo v okviru projekta
 - Strojna oprema