Biostat 602 Winter 2017

Lecture Set 17

Hypothesis Testing Likelihood Ratio Test

Reading: CB 8.2

Likelihood Ratio Tests (LRT)

Definition Let $L(\theta|\mathbf{x})$ be the likelihood function of θ . The likelihood ratio test statistic for testing $H_0: \theta \in \Omega_0$ vs. $H_1: \theta \in \Omega_0^c$ is

$$\lambda(\mathbf{x}) = \frac{\sup_{\theta \in \Omega_0} L(\theta|\mathbf{x})}{\sup_{\theta \in \Omega} L(\theta|\mathbf{x})} = \frac{L(\hat{\theta}_0|\mathbf{x})}{L(\hat{\theta}|\mathbf{x})}$$

where $\hat{\theta}$ is the MLE of θ over $\theta \in \Omega$, and $\hat{\theta}_0$ is the MLE of θ over $\theta \in \Omega_0$ (restricted MLE).

The *likelihood ratio test* is a test that rejects H_0 if and only if $\lambda(\mathbf{x}) \leq c$ where $0 \leq c \leq 1$.

c is obtained from the size condition of the test, namely

$$\sup_{\theta \in \Omega_0} \beta(\theta) = \alpha$$

where $\beta(\theta) = \Pr(\mathbf{X} \in R | \theta) = \Pr(\text{reject } H_0 | \theta)$ is the power function of the test.

LRT based on sufficient statistics

Theorem 8.2.4: If $T(\mathbf{X})$ is a sufficient statistic for θ , $\lambda^*(t)$ is the LRT statistic based on T, and $\lambda(\mathbf{x})$ is the LRT statistic based on \mathbf{x} then

$$\lambda^*[T(\mathbf{x})] = \lambda(\mathbf{x})$$

for every \mathbf{x} in the sample space.

Proof: By Factorization Theorem, the joint pdf of \mathbf{x} can be written as

$$f(\mathbf{x}|\theta) = g(T(\mathbf{x})|\theta)h(\mathbf{x})$$

and we can choose $g(t|\theta)$ to be the pdf or pmf of $T(\mathbf{x})$. Then, the LRT statistic based on $T(\mathbf{X})$ is defined as

$$\lambda^*(t) = \frac{\sup_{\theta \in \Omega_0} L(\theta | T(\mathbf{x}) = t)}{\sup_{\theta \in \Omega} L(\theta | T(\mathbf{x}) = t)} = \frac{\sup_{\theta \in \Omega_0} g(t | \theta)}{\sup_{\theta \in \Omega} g(t | \theta)}$$

LRT statistic based on X is

$$\lambda(\mathbf{x}) = \frac{\sup_{\theta \in \Omega_0} L(\theta|\mathbf{x})}{\sup_{\theta \in \Omega} L(\theta|\mathbf{x})}$$

$$= \frac{\sup_{\theta \in \Omega_0} f(\mathbf{x}|\theta)}{\sup_{\theta \in \Omega} f(\mathbf{x}|\theta)}$$

$$= \frac{\sup_{\theta \in \Omega_0} g(T(\mathbf{x})|\theta)h(\mathbf{x})}{\sup_{\theta \in \Omega} g(T(\mathbf{x})|\theta)h(\mathbf{x})}$$

$$= \frac{\sup_{\theta \in \Omega_0} g(T(\mathbf{x})|\theta)}{\sup_{\theta \in \Omega} g(T(\mathbf{x})|\theta)} = \lambda^*(T(\mathbf{x}))$$

The simplified expression of $\lambda(\mathbf{x})$ should depend on \mathbf{x} only through $T(\mathbf{x})$, where $T(\mathbf{x})$ is a sufficient statistic for θ .

Example 1: Consider X_1, \dots, X_n i.i.d. $\mathcal{N}(\theta, \sigma^2)$ where σ^2 is known.

$$H_0$$
: $\theta = \theta_0$
 H_1 : $\theta \neq \theta_0$

Find a size α LRT.

Solution - Using sufficient statistics: Note that in this case, $T(\mathbf{X}) = \overline{X}$ is a sufficient statistic for θ .

$$T \sim \mathcal{N}\left(\theta, \frac{\sigma^2}{n}\right)$$

$$\lambda(t) = \frac{\sup_{\theta \in \Omega_0} L(\theta|t)}{\sup_{\theta \in \Omega} L(\theta|t)} = \frac{\sqrt{\frac{1}{2\pi\sigma^2/n}} \exp\left[-\frac{(t-\theta_0)^2}{2\sigma^2/n}\right]}{\sup_{\theta \in \Omega} \sqrt{\frac{1}{2\pi\sigma^2/n}} \exp\left[-\frac{(t-\theta)^2}{2\sigma^2/n}\right]}$$

The numerator is fixed, and MLE in the denominator is $\hat{\theta} = t$. Therefore the LRT statistic is

$$\lambda(t) = \exp\left[-\frac{n(t-\theta_0)^2}{2\sigma^2}\right]$$

LRT rejects H_0 if and only if

$$\lambda(t) = \exp\left[-\frac{n(t - \theta_0)^2}{2\sigma^2}\right] \le c$$

$$\implies \left|\frac{t - \theta_0}{\sigma/\sqrt{n}}\right| \ge \sqrt{-2\log c} = c^*$$

Note that

$$T = \overline{X} \sim \mathcal{N}\left(\theta, \frac{\sigma^2}{n}\right)$$

$$\frac{T - \theta_0}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1)$$

A size α test satisfies

$$\sup_{\theta \in \Omega_0} \Pr\left(\left| \frac{T - \theta}{\sigma / \sqrt{n}} \right| \ge c^* \right) = \alpha$$

$$\Pr\left(\left| \frac{T - \theta_0}{\sigma / \sqrt{n}} \right| \ge c^* \right) = \alpha$$

$$\Pr\left(|Z| \ge c^* \right) = \alpha$$

$$\Pr(Z \ge c^*) + \Pr(Z \le -c^*) = \alpha$$

$$|Z| = \left| \frac{T - \theta}{\sigma / \sqrt{n}} \right| \ge z_{\alpha/2}$$

LRT with nuisance parameters

Example 2: Let X_1, \dots, X_n be i.i.d $\mathcal{N}(\theta, \sigma^2)$ where both θ and σ^2 are unknown. Obtain a LRT for testing $H_0: \theta \leq \theta_0$ against $H_1: \theta > \theta_0$.

- 1. Specify Ω and Ω_0
- 2. Find size α LRT.

Solution - Ω and Ω_0

$$\Omega = \{(\theta, \sigma^2) : \theta \in \mathbb{R}, \sigma^2 > 0\}$$

$$\Omega_0 = \{(\theta, \sigma^2) : \theta \le \theta_0, \sigma^2 > 0\}$$

Size α LRT

$$\lambda(\mathbf{x}) = \frac{\sup_{\{(\theta,\sigma^2):\theta \leq \theta_0,\sigma^2 > 0\}} L(\theta,\sigma^2|\mathbf{x})}{\sup_{\{(\theta,\sigma^2):\theta \in \mathbb{R},\sigma^2 > 0\}} L(\theta,\sigma^2|\mathbf{x})}$$

For the denominator, the MLE of θ and σ^2 are

$$\begin{cases} \hat{\theta} = \overline{X} \\ \hat{\sigma}^2 = \frac{\sum (X_i - \overline{X})^2}{n} = \frac{n-1}{n} s_{\mathbf{X}}^2 \end{cases}$$

For numerator, we need to maximize $L(\theta, \sigma^2 | \mathbf{x})$ over the region $\theta \leq \theta_0$ and $\sigma^2 > 0$.

$$L(\theta, \sigma^2 | \mathbf{x}) = \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \exp\left[-\frac{\sum_{i=1}^n (x_i - \theta)^2}{2\sigma^2}\right]$$

Maximizing Numerator

Step 1: fix σ^2 , likelihood is maximized when $\sum_{i=1}^n (x_i - \theta)^2$ is minimized over $\theta \leq \theta_0$.

$$\hat{\theta}_0 = \begin{cases} \overline{x} & \text{if } \overline{x} \leq \theta_0 \\ \theta_0 & \text{if } \overline{x} > \theta_0 \end{cases}$$

Step 2: Now, we need to maximize likelihood (or log-likelihood) with respect to σ^2 and we substitute $\hat{\theta}_0$ for θ .

$$l(\hat{\theta}, \sigma^2 | \mathbf{x}) = -\frac{n}{2} \left(\log 2\pi + \log \sigma^2 \right) - \frac{\sum (x_i - \hat{\theta}_0)^2}{2\sigma^2}$$
$$\frac{\partial \log l}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{\sum (x_i - \hat{\theta}_0)^2}{2(\sigma^2)^2} = 0$$
$$\hat{\sigma}_0^2 = \frac{\sum_{i=1}^n (x_i - \hat{\theta}_0)^2}{n}$$

Combining the results together

$$\lambda(\mathbf{x}) = \begin{cases} 1 & \text{if } \overline{x} \le \theta_0 \\ \left(\frac{\hat{\sigma}^2}{\hat{\sigma}_0^2}\right)^{n/2} & \text{if } \overline{x} > \theta_0 \end{cases}$$

Constructing LRT

LRT test rejects H_0 if and only if $\overline{x} > \theta_0$ and

$$\left(\frac{\hat{\sigma}^2}{\hat{\sigma}_0^2}\right)^{n/2} \leq c$$

$$\left(\frac{\sum (x_i - \overline{x})^2/n}{\sum (x_i - \theta_0)^2/n}\right)^{n/2} \leq c$$

$$\frac{\sum (x_i - \overline{x})^2}{\sum (x_i - \theta_0)^2} \leq c^*$$

$$\frac{\sum (x_i - \overline{x})^2}{\sum (x_i - \overline{x})^2 + n(\overline{x} - \theta_0)^2} \leq c^*$$

$$\frac{1}{1 + \frac{n(\overline{x} - \theta_0)^2}{\sum (x_i - \overline{x})^2}} \leq c^*$$

$$\frac{n(\overline{x} - \theta_0)^2}{\sum (x_i - \overline{x})^2} \ge c^{**}$$

$$\frac{\overline{x} - \theta_0}{s_{\mathbf{X}}/\sqrt{n}} \ge c^{***}$$

LRT test rejects H_0 if

$$\frac{\overline{x} - \theta_0}{s_{\mathbf{X}}/\sqrt{n}} \ge c^{***}$$

The next step is to specify c^{***} to get size α test (can you figure out?).

Unbiased Test

Definition: If a test always satisfies

 $\Pr(\text{reject } H_0 \text{ when } H_0 \text{ is false }) \geq \Pr(\text{reject } H_0 \text{ when } H_0 \text{ is true })$

Then the test is said to be unbiased.

Alternative Definition: Recall that $\beta(\theta) = \Pr(\text{reject } H_0)$. A test is unbiased if

$$\beta(\theta') \ge \beta(\theta)$$

for every $\theta' \in \Omega_0^c$ and $\theta \in \Omega_0$.

Example 3: Let X_1, \dots, X_n be i.i.d. $\mathcal{N}(\theta, \sigma^2)$ where σ^2 is known, testing $H_0: \theta \leq \theta_0$ vs $H_1: \theta > \theta_0$. LRT test rejects H_0 if

$$\frac{\overline{x} - \theta_0}{\sigma / \sqrt{n}} > c.$$

$$\beta(\theta) = \Pr\left(\frac{\overline{X} - \theta_0}{\sigma/\sqrt{n}} > c\right)$$

$$= \Pr\left(\frac{\overline{X} - \theta + \theta - \theta_0}{\sigma/\sqrt{n}} > c\right)$$

$$= \Pr\left(\frac{\overline{X} - \theta}{\sigma/\sqrt{n}} + \frac{\theta - \theta_0}{\sigma/\sqrt{n}} > c\right)$$

$$= \Pr\left(\frac{\overline{X} - \theta}{\sigma/\sqrt{n}} > c + \frac{\theta_0 - \theta}{\sigma/\sqrt{n}}\right)$$

Note that $X_i \sim \mathcal{N}(\theta, \sigma^2)$, $\overline{X} \sim \mathcal{N}(\theta, \sigma^2/n)$, and $\frac{\overline{X} - \theta}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1)$. Therefore, for $Z \sim \mathcal{N}(0, 1)$

$$\beta(\theta) = \Pr\left(Z > c + \frac{\theta_0 - \theta}{\sigma/\sqrt{n}}\right)$$

Because the power function is increasing function in θ ,

$$\beta(\theta') \ge \beta(\theta)$$

always holds when $\theta \leq \theta_0 < \theta'$. Therefore the LRTs are unbiased.

Question: Can the same test be biased when hypotheses change?

Example 4: Same framework as before.

- New hypotheses: $H_0: \theta = \theta_0, H_1: \theta \neq \theta_0.$
- Same test : $R = \left\{ \frac{\overline{x} \theta_0}{\sigma / \sqrt{n}} > c \right\}$.

Testing unbiasedness

The power function $\beta(\theta)$ is still an increasing function. Therefore, if $\theta_+ > \theta_0 > \theta_-$, then

$$\beta(\theta_{+}) > \beta(\theta_{0}) > \beta(\theta_{-})$$

where both $\beta(\theta_+)$ and $\beta(\theta_-)$ are power but $\beta(\theta_0)$ is Type I error.

Hence, power can be smaller than the Type I error when $\theta < \theta_0$, so the test is biased.

Uniformly Most Powerful Test (UMP)

Definition: Let \mathcal{C} be a class of tests between $H_0: \theta \in \Omega$ vs $H_1: \theta \in \Omega_0^c$. A test in \mathcal{C} , with power function $\beta(\theta)$ is uniformly most powerful (UMP) test in class \mathcal{C} if $\beta(\theta) \geq \beta'(\theta)$ for every $\theta \in \Omega_0^c$ and every $\beta'(\theta)$, which is a power function of another test in \mathcal{C} .

UMP level α test

Consider C to be the set of all the level α test. The UMP test in this class is called a UMP level α test.

UMP level α test has the smallest type II error probability for any $\theta \in \Omega_0^c$ in this class.

- A UMP test is "uniform" in the sense that it is most powerful for every $\theta \in \Omega_0^c$.
- For simple hypothesis such as $H_0: \theta = \theta_0$ and $H_1: \theta = \theta_1$, UMP level α test always exists.

Neyman-Pearson Lemma

Theorem 8.3.12 - Neyman-Pearson Lemma: Consider testing $H_0: \theta = \theta_0$ vs. $H_1: \theta = \theta_1$ where the pdf or pmf corresponding to θ_i is $f(\mathbf{x}|\theta_i)$, i = 0, 1, using a test with rejection region R that satisfies

$$\mathbf{x} \in R$$
 if $f(\mathbf{x}|\theta_1) > kf(\mathbf{x}|\theta_0)$ (8.3.1) $\mathbf{x} \in R^c$ if $f(\mathbf{x}|\theta_1) < kf(\mathbf{x}|\theta_0)$

for some $k \geq 0$ and

$$\alpha = \Pr(\mathbf{X} \in R | \theta_0). \tag{8.3.2}$$

Then,

- (Sufficiency) Any test that satisfies 8.3.1 and 8.3.2 is a UMP level α test
- (Necessity) If there exist a test satisfying 8.3.1 and 8.3.2 with k > 0, then every UMP level α test is a size α test (satisfies 8.3.2), and every UMP level α test satisfies 8.3.1 except perhaps on a set A satisfying $\Pr(\mathbf{X} \in A | \theta_0) = \Pr(\mathbf{X} \in A | \theta_1) = 0$.

Example 5: Let $X \sim Binomial(2, \theta)$, and consider testing $H_0: \theta = \theta_0 = 1/2$ vs. $H_1: \theta = \theta_1 = 3/4$.

Calculating the ratios of the pmfs given,

$$\frac{f(0|\theta_1)}{f(0|\theta_0)} = \frac{1}{4}, \qquad \frac{f(1|\theta_1)}{f(1|\theta_0)} = \frac{3}{4}, \qquad \frac{f(2|\theta_1)}{f(2|\theta_0)} = \frac{9}{4}$$

• Suppose that k < 1/4, then the rejection region $R = \{0, 1, 2\}$, and UMP level α test always rejects H_0 . Therefore

$$\alpha = \Pr(\text{reject } H_0 | \theta = \theta_0 = 1/2) = 1.$$

• Suppose that 1/4 < k < 3/4, then $R = \{1, 2\}$, and UMP level α test rejects H_0 if x = 1 or x = 2.

$$\alpha = \Pr(\text{reject } H_0 | \theta = \frac{1}{2}) = \Pr(x \neq 0 | \theta = 1/2) = \frac{3}{4}$$

• Suppose that 3/4 < k < 9/4, then UMP level α test rejects H_0 if x = 2

$$\alpha = \Pr(\text{reject}H_0|\theta = 1/2) = \Pr(x = 2|\theta = 1/2) = \frac{1}{4}$$

• If k > 9/4 the UMP level α test will always not reject H_0 , and $\alpha = 0$

Example 6 – Normal Distribution: $X_i \sim \mathcal{N}(\theta, \sigma^2)$ where σ^2 is known. Consider testing $H_0: \theta = \theta_0$ vs. $H_1: \theta = \theta_1$ where $\theta_1 > \theta_0$.

$$f(\mathbf{x}|\theta) = \prod_{i=1}^{n} \left[\frac{1}{2\pi\sigma^{2}} \exp\left\{ -\frac{(x_{i} - \theta)^{2}}{2\sigma^{2}} \right\} \right]$$

$$\frac{f(\mathbf{x}|\theta_{1})}{f(\mathbf{x}|\theta_{0})} = \frac{\exp\left\{ -\frac{\sum_{i=1}^{n} (x_{i} - \theta_{1})^{2}}{2\sigma^{2}} \right\}}{\exp\left\{ -\frac{\sum_{i=1}^{n} (x_{i} - \theta_{0})^{2}}{2\sigma^{2}} \right\}}$$

$$= \exp\left[-\frac{\sum_{i=1}^{n} (x_{i} - \theta_{1})^{2}}{2\sigma^{2}} + \frac{\sum_{i=1}^{n} (x_{i} - \theta_{0})^{2}}{2\sigma^{2}} \right]$$

$$= \exp\left[\frac{\sum_{i=1}^{n} (x_{i} - \theta_{0})^{2} - \sum_{i=1}^{n} (x_{i} - \theta_{1})^{2}}{2\sigma^{2}} \right]$$

$$= \exp\left[\frac{n(\theta_{0}^{2} - \theta_{1}^{2}) + 2\sum_{i=1}^{n} x_{i}(\theta_{1} - \theta_{0})}{2\sigma^{2}} \right]$$

UMP level α test rejects H_0 if

$$\exp\left[\frac{n(\theta_0^2 - \theta_1^2) + 2\sum_{i=1}^n x_i(\theta_1 - \theta_0)}{2\sigma^2}\right] > k$$

$$\iff \frac{n(\theta_0^2 - \theta_1^2) + 2\sum_{i=1}^n x_i(\theta_1 - \theta_0)}{2\sigma^2} > \log k$$

$$\iff \sum_{i=1}^n x_i > k^*$$

$$\alpha = \Pr\left(\sum_{i=1}^n X_i > k^* | \theta_0\right)$$

Under H_0 ,

$$X_i \sim \mathcal{N}(\theta_0, \sigma^2)$$

$$\overline{X} \sim \mathcal{N}(\theta_0, \sigma^2/n)$$

$$\frac{\overline{X} - \theta_0}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1)$$

$$\alpha = \Pr\left(\sum_{i=1}^n X_i > k^* | \theta_0\right)$$

$$= \Pr\left(Z > \frac{k^*/n - \theta_0}{\sigma/\sqrt{n}}\right)$$

where $Z \sim \mathcal{N}(0, 1)$.

$$\frac{k^*/n - \theta_0}{\sigma/\sqrt{n}} = z_{\alpha}$$

$$k^* = n \left(\theta_0 + z_{\alpha} \frac{\sigma}{\sqrt{n}}\right)$$

Thus, the UMP level α test rejects H_0 if $\sum X_i > k^*$, or equivalently, rejects H_0 if $\overline{X} > k^*/n = \theta_0 + z_\alpha \sigma/\sqrt{n}$

Neyman-Pearson Lemma on Sufficient Statistics

Corollary 8.3.13: Consider $H_0: \theta = \theta_0$ vs $H_1: \theta = \theta_1$. Suppose $T(\mathbf{X})$ is a sufficient statistic for θ and $g(t|\theta_i)$ is the pdf or pmf of T. Corresponding $\theta_i, i \in \{0, 1\}$. Then any test based on T with rejection region S is a UMP level α test if it satisfies

$$t \in S$$
 if $g(t|\theta_1) > k \cdot g(t|\theta_0)$ and $t \in S^c$ if $g(t|\theta_1) < k \cdot g(t|\theta_0)$

for some k > 0 and $\alpha = \Pr(T \in S | \theta_0)$

Proof: The rejection region in the sample space is

$$R = \{\mathbf{x} : T(\mathbf{x}) = t \in S\}$$
$$= \{\mathbf{x} : g(T(\mathbf{x})|\theta_1) > kg(T(\mathbf{x})|\theta_0)\}$$

By Factorization Theorem:

$$f(\mathbf{x}|\theta_i) = h(\mathbf{x})g(T(\mathbf{x})|\theta_i)$$

$$R = \{\mathbf{x} : g(T(\mathbf{x})|\theta_1)h(x) > kg(T(\mathbf{x})|\theta_0)h(x)\}$$

$$= \{\mathbf{x} : f(\mathbf{x}|\theta_1) > kf(\mathbf{x}|\theta_0)\}$$

By Neyman-Pearson Lemma, this test is the UMP level α test, and

$$\alpha = \Pr(\mathbf{X} \in R) = \Pr(T(\mathbf{X}) \in S | \theta_0)$$

Revisiting the Example of Normal Distribution

 $X_i \sim \mathcal{N}(\theta, \sigma^2)$ where σ^2 is known. Consider testing

$$H_0: \theta = \theta_0 \ vs. \ H_1: \theta = \theta_1, \ where \ \theta_1 > \theta_0.$$

It is known that $T = \overline{X}$ is a sufficient statistic for θ , where $T \sim \mathcal{N}(\theta, \sigma^2/n)$.

$$g(t|\theta_{i}) = \frac{1}{\sqrt{2\pi\sigma^{2}/n}} \exp\left\{-\frac{(t-\theta_{i})^{2}}{2\sigma^{2}/n}\right\}$$

$$\frac{g(t|\theta_{1})}{g(t|\theta_{0})} = \frac{\exp\left\{-\frac{(t-\theta_{1})^{2}}{2\sigma^{2}/n}\right\}}{\exp\left\{-\frac{(t-\theta_{0})^{2}}{2\sigma^{2}/n}\right\}}$$

$$= \exp\left\{-\frac{1}{2\sigma^{2}/n}\left[(t-\theta_{1})^{2}-(t-\theta_{0})^{2}\right]\right\}$$

$$= \exp\left\{-\frac{1}{2\sigma^{2}/n}\left[\theta_{1}^{2}-\theta_{0}^{2}-2t(\theta_{1}-\theta_{0})\right]\right\}$$

UMP level α test rejects H_0 if

$$\exp\left\{-\frac{1}{2\sigma^2/n}\left[\theta_1^2 - \theta_0^2 - 2t(\theta_1 - \theta_0)\right]\right\} > k$$

$$\iff \frac{1}{2\sigma^2/n}\left[-(\theta_1^2 - \theta_0^2) + 2t(\theta_1 - \theta_0)\right] > \log k$$

$$\iff \overline{X} = t > k^*$$

Under H_0 , $\overline{X} \sim \mathcal{N}(\theta_0, \sigma^2/n)$. Now,

$$\Pr(\text{reject } H_0|\theta_0) = \alpha$$

$$\alpha = \Pr(\overline{X} > k^*|\theta_0)$$

$$= \Pr\left(\frac{\overline{X} - \theta_0}{\sigma/\sqrt{n}} > \frac{k^* - \theta_0}{\sigma/\sqrt{n}}\right)$$

$$= \Pr\left(Z > \frac{k^* - \theta_0}{\sigma/\sqrt{n}}\right)$$

$$\frac{k^* - \theta_0}{\sigma/\sqrt{n}} = z_\alpha$$

$$k^* = \theta_0 + z_\alpha \frac{\sigma}{\sqrt{n}}$$

Monotone Likelihood Ratio (Karlin-Rubin)

Definition: A family of pdfs or pmfs $\{g(t|\theta) : \theta \in \Omega\}$ for a univariate random variable T with real-valued parameter θ have a monotone likelihood ratio if $\frac{g(t|\theta_2)}{g(t|\theta_1)}$ is an increasing (or non-decreasing) function of t for every $\theta_2 > \theta_1$ on $\{t : g(t|\theta_1) > 0 \text{ or } g(t|\theta_2) > 0\}$.

Note: we may define MLR using decreasing function of t. But all following theorems are stated according to the definition.

Examples of Monotone Likelihood Ratio

- Normal, Poisson, Binomial have the MLR Property (Exercise 8.25)
- If T is from an exponential family with the pdf or pmf

$$g(t|\theta) = h(t)c(\theta)\exp[w(\theta) \cdot t]$$

Then T has an MLR if $w(\theta)$ is a non-decreasing function of θ .

Proof: Suppose that $\theta_2 > \theta_1$.

$$\frac{g(t|\theta_2)}{g(t|\theta_1)} = \frac{h(t)c(\theta_2)\exp[w(\theta_2)t]}{h(t)c(\theta_1)\exp[w(\theta_1)t]}$$
$$= \frac{c(\theta_2)}{c(\theta_1)}\exp[\{w(\theta_2) - w(\theta_1)\}t]$$

If $w(\theta)$ is a non-decreasing function of θ , then

- 1. $w(\theta_2) w(\theta_1) \ge 0$ and
- 2. $\exp[\{w(\theta_2) w(\theta_1)\}t]$ is an increasing function of t.

Therefore, $\frac{g(t|\theta_2)}{g(t|\theta_1)}$ is a non-decreasing function of t, and T has MLR if $w(\theta)$ is a non-decreasing function of θ .

Karlin-Rubin Theorem

Theorem 8.3.17: Suppose $T(\mathbf{X})$ is a sufficient statistic for θ and the family $\{g(t|\theta): \theta \in \Omega\}$ is an MLR family. Then

- 1. For testing $H_0: \theta \leq \theta_0$ vs $H_1: \theta > \theta_0$, the UMP level α test is given by rejecting H_0 is and only if $T > t_0$ where $\alpha = \Pr(T > t_0 | \theta_0)$.
- 2. For testing $H_0: \theta \geq \theta_0$ vs $H_1: \theta < \theta_0$, the UMP level α test is given by rejecting H_0 if and only if $T < t_0$ where $\alpha = \Pr(T < t_0 | \theta_0)$.

Example 7: Let $X_i \sim \mathcal{N}(\theta, \sigma^2)$ where σ^2 is known, Find the UMP level α test for $H_0: \theta \leq \theta_0$ vs $H_1: \theta > \theta_0$.

Solution: Here $T(\mathbf{X}) = \overline{X}$ is a sufficient statistic for θ , and $T \sim \mathcal{N}(\theta, \sigma^2/n)$. Therefore

$$g(t|\theta) = \frac{1}{\sqrt{2\pi\sigma^2/n}} \exp\left\{-\frac{(t-\theta)^2}{2\sigma^2/n}\right\}$$

$$= \frac{1}{\sqrt{2\pi\sigma^2/n}} \exp\left\{-\frac{t^2+\theta^2-2t\theta}{2\sigma^2/n}\right\}$$

$$= \frac{1}{\sqrt{2\pi\sigma^2/n}} \exp\left\{-\frac{t^2}{2\sigma^2/n}\right\} \exp\left\{-\frac{\theta^2}{2\sigma^2/n}\right\} \exp\left\{\frac{t\theta}{\sigma^2/n}\right\}$$

$$= h(t)c(\theta) \exp[w(\theta)t]$$

where $w(\theta) = \frac{\theta}{\sigma^2/n}$ is an increasing function in θ . Therefore T has an MLR property.

Finding a UMP level α test

By Karlin-Rubin Theorem, UMP level α test rejects H_0 iff $T>t_0$

$$\alpha = \Pr(T > t_0 | \theta_0)$$

$$= \Pr\left(\frac{T - \theta_0}{\sigma / \sqrt{n}} > \frac{t_0 - \theta_0}{\sigma / \sqrt{n}} \middle| \theta_0\right)$$

$$= \Pr\left(Z > \frac{t_0 - \theta_0}{\sigma / \sqrt{n}}\right)$$

where $Z \sim \mathcal{N}(0, 1)$.

$$\frac{t_0 - \theta_0}{\sigma / \sqrt{n}} = z_{\alpha}$$

$$\Rightarrow t_0 = \theta_0 + \frac{\sigma}{\sqrt{n}} z_{\alpha}$$

UMP level α test rejects H_0 if $T = \overline{X} > \theta_0 + \frac{\sigma}{\sqrt{n}} z_{\alpha}$.

Testing $H_0: \theta \geq \theta_0$ vs. $H_1: \theta < \theta_0$

UMP level α test rejects H_0 if $T < t_0$ where

$$\alpha = \Pr(T < t_0 | \theta_0) = \Pr\left(\frac{T - \theta_0}{\sigma / \sqrt{n}} < \frac{t_0 - \theta_0}{\sigma / \sqrt{n}}\right)$$

$$= \Pr\left(Z < \frac{t_0 - \theta_0}{\sigma / \sqrt{n}}\right)$$

$$1 - \alpha = \Pr\left(Z \ge \frac{t_0 - \theta_0}{\sigma / \sqrt{n}}\right)$$

$$\frac{t_0 - \theta_0}{\sigma / \sqrt{n}} = z_{1-\alpha}$$

$$t_0 = \theta_0 + \frac{\sigma}{\sqrt{n}} z_{1-\alpha} = \theta_0 - \frac{\sigma}{\sqrt{n}} z_{\alpha}$$

Therefore, the test rejects H_0 if $T < t_0 = \theta_0 - \frac{\sigma}{\sqrt{n}} z_\alpha$

Example 8: Normal Example with Known Mean Let $X_i \sim \mathcal{N}(\mu_0, \sigma^2)$ where σ^2 is unknown and μ_0 is known. Find the UMP level α test for testing $H_0: \sigma^2 \leq \sigma_0^2$ vs. $H_1: \sigma^2 > \sigma_0^2$. Let $T = \sum_{i=1}^n (X_i - \mu_0)^2$ is sufficient for σ^2 .

To check whether T has MLR property, we need to find $g(t|\sigma^2)$.

$$\frac{X_i - \mu_0}{\sigma} \sim \mathcal{N}(0, 1)$$

$$\left(\frac{X_i - \mu_0}{\sigma}\right)^2 \sim \chi_1^2$$

$$Y = T/\sigma^2 = \sum_{i=1}^n \left(\frac{X_i - \mu_0}{\sigma}\right)^2 \sim \chi_n^2$$

$$f_Y(y) = \frac{1}{\Gamma\left(\frac{n}{2}\right) 2^{n/2}} y^{\frac{n}{2} - 1} e^{-\frac{y}{2}}$$

$$f_T(t) = \frac{1}{\Gamma\left(\frac{n}{2}\right) 2^{n/2}} \left(\frac{t}{\sigma^2}\right)^{\frac{n}{2} - 1} e^{-\frac{t}{2\sigma^2}} \left|\frac{dy}{dt}\right|$$

$$= \frac{1}{\Gamma\left(\frac{n}{2}\right) 2^{n/2}} \left(\frac{t}{\sigma^2}\right)^{\frac{n}{2} - 1} e^{-\frac{t}{2\sigma^2}} \frac{1}{\sigma^2}$$

$$= \frac{t^{\frac{n}{2} - 1}}{\Gamma\left(\frac{n}{2}\right) 2^{n/2}} \left(\frac{1}{\sigma^2}\right)^{\frac{n}{2}} e^{-\frac{t}{2\sigma^2}}$$

$$= h(t)c(\sigma^2) \exp[w(\sigma^2)t]$$

where $w(\sigma^2) = -\frac{1}{2\sigma^2}$ is an increasing function in σ^2 . Therefore, $T = \sum_{i=1}^n (X_i - \mu_0)^2$ has the MLR property.

By Karlin-Rubin Theorem, UMP level α rejects s H_0 if and only if $T > t_0$ where t_0 is chosen such that $\alpha = \Pr(T > t_0 | \sigma_0^2)$. Note that $\frac{T}{\sigma^2} \sim \chi_n^2$. Hence

$$\Pr(T > t_0 | \sigma_0^2) = \Pr\left(\frac{T}{\sigma_0^2} > \frac{t_0}{\sigma_0^2} \middle| \sigma_0^2\right)$$

$$\frac{T}{\sigma_0^2} \sim \chi_n^2$$

$$\Pr\left(\chi_n^2 > \frac{t_0}{\sigma_0^2}\right) = \alpha$$

$$\frac{t_0}{\sigma_0^2} = \chi_{n,\alpha}^2$$

$$t_0 = \sigma_0^2 \chi_{n,\alpha}^2$$

where $\chi_{n,\alpha}^2$ satisfies $\int_{\chi_{n,\alpha}^2}^{\infty} f_{\chi_n^2}(x) dx = \alpha$.

Example 9: Let $X_1, \dots, X_n \sim \mathcal{N}(\theta, \sigma^2)$ where σ^2 is known. Consider testing $H_0: \theta = \theta_0$ versus an alternative hypothesis.

- 1. When the alternative hypothesis is $H_1: \theta_1 < \theta_0$, does UMP level α test exist? If yes, what is it?
- 2. When the alternative hypothesis is $H_1: \theta_1 > \theta_0$, does UMP level α test exist? If yes, what is it?
- 3. When the alternative hypothesis is $H_1: \theta_1 \neq \theta_0$, does UMP level α test exist? If yes, what is it?
- 4. Are the tests above unbiased?

 $H_1: \theta < \theta_0$

A level α test should satisfy $\Pr(\mathbf{X} \in R | \theta_0) \leq \alpha$.

As \overline{X} is sufficient and its distribution has an MLR as shown in the previous example, by Karlin-Rubin Theorem, the rejection region of UMP level α test is

$$\overline{X} < -\frac{\sigma z_{\alpha}}{\sqrt{n}} + \theta_0$$

 $H_1: \theta > \theta_0$

As \overline{X} is sufficient and its distribution has an MLR as shown in the previous example, by Karlin-Rubin Theorem, the rejection region of UMP level α test is

$$\overline{X} > \frac{\sigma z_{\alpha}}{\sqrt{n}} + \theta_0$$

 $H_1: \theta \neq \theta_0$

- 1. When $\theta < \theta_0$, $\beta_1(\theta) = \Pr(\mathbf{X} \in R_1) = \Pr\left(\overline{X} < -\frac{\sigma z_{\alpha}}{\sqrt{n}} + \theta_0\right)$ is the largest among level α tests.
- 2. If UMP level α test exists, the rejection region must be R_1 by the necessity condition of Neyman-Pearson Lemma.
- 3. When $\theta > \theta_0$, $\beta_2(\theta) = \Pr(\mathbf{X} \in R_2) = \Pr\left(\overline{X} > \frac{\sigma z_{\alpha}}{\sqrt{n}} + \theta_0\right)$ is the largest among level α tests.
- 4. Accordingly, $\beta_1(\theta)$ is not the power function of a UMP level α test.
- 5. Therefore, UMP level α test does not exist.

Are these tests unbiased?

Test based on $\overline{X} < -\frac{\sigma z_{\alpha}}{\sqrt{n}} + \theta_0$

- 1. When $\theta < \theta_0$, $\beta_1(\theta) > \beta_1(\theta_0)$.
- 2. When $\theta > \theta_0$, $\beta_1(\theta) < \beta_1(\theta_0)$.
- 3. Therefore, the test is not unbiased.

Test based on $\overline{X} > \frac{\sigma z_{\alpha}}{\sqrt{n}} + \theta_0$

- 1. When $\theta > \theta_0$, $\beta_2(\theta) > \beta_2(\theta_0)$.
- 2. When $\theta < \theta_0$, $\beta_2(\theta) < \beta_2(\theta_0)$.
- 3. Therefore, the test is not unbiased.

UMPU test

What is the optimal test for the two-sided test?

Consider a class of unbiased tests. Define a rejection region

$$|\overline{X} - \theta_0| > \frac{\sigma z_{\alpha/2}}{\sqrt{n}}$$

- 1. The test is unbiased. $\beta_3(\theta) > \beta_3(\theta_0)$ for all $\theta \neq \theta_0$.
- 2. The test is indeed the UMP test in the class of unbiased level α test.
- 3. This test is called a UMPU level α test.
- 4. Proving that the test is UMPU level α test is a little more complicated than UMP.

Example 8: Let $X_1, X_2, \ldots, X_n \sim Uniform(0, \theta)$. Consider testing $H_0: \theta \leq \theta_0 \ vs. \ H_1: \theta > \theta_0$.

- (a) Show that the family of $Uniform(0,\theta)$ has MLR in $X_{(n)}$.
- (b) Find a size α UMP test for the above testing problem.

Example 9: Suppose that X_1, \dots, X_n are i.i.d. observations from Exponential(θ), and Y_1, \dots, Y_m are i.i.d. observations from Exponential(μ). Assume that X_1, \dots, X_n and Y_1, \dots, Y_m are independent between them.

- (a) Find the LRT statistic of $H_0: \theta = \mu$ versus $H_1: \theta \neq \mu$
- (b) Show that the LRT from part (a) can be represented as a function of the following statistic T.

$$T = \frac{\sum_{i=1}^{n} X_i}{\sum_{i=1}^{n} X_i + \sum_{i=1}^{m} Y_i}$$

(Note that it is possible to construct a size α LRT using the fact that T follows a beta distribution under the null hypothesis.)

```
x=c(seq(0,1,by=0.0001))
z=(x^5)*((1-x)^15)
plot(x,z)
abline(h=.000002)
```

