

Art of Problem Solving 2012 TSTST

 $TSTST\ 2012$

Day 1	
1	Find all infinite sequences a_1, a_2, \ldots of positive integers satisfying the following properties: (a) $a_1 < a_2 < a_3 < \cdots$, (b) there are no positive integers i, j, k , not necessarily distinct, such that $a_i + a_j = a_k$, (c) there are infinitely many k such that $a_k = 2k - 1$.
2	Let $ABCD$ be a quadrilateral with $AC = BD$. Diagonals AC and BD meet at P . Let ω_1 and O_1 denote the circumcircle and the circumcenter of triangle ABP . Let ω_2 and O_2 denote the circumcircle and circumcenter of triangle CDP . Segment BC meets ω_1 and ω_2 again at S and T (other than S and S are S and S and S and S and S are S and S and S and S and S are S and S are S and S are S and S are S are S and S are S are S are S are S and S are S and S are S are S are S are S and S are S and S are S and S are S are S and S are S and S are S are S are S are S and S are S are S and S are S and S are S are S are S are S are S and S are S are S and S are S are S and S are S are S are S
3	Let $\mathbb N$ be the set of positive integers. Let $f:\mathbb N\to\mathbb N$ be a function satisfying the following two conditions: (a) $f(m)$ and $f(n)$ are relatively prime whenever m and n are relatively prime. (b) $n \leq f(n) \leq n + 2012$ for all n .
	Prove that for any natural number n and any prime p , if p divides $f(n)$ then p divides n .
Day 2	
4	In scalene triangle ABC , let the feet of the perpendiculars from A to BC , B to CA , C to AB be A_1, B_1, C_1 , respectively. Denote by A_2 the intersection of lines BC and B_1C_1 . Define B_2 and C_2 analogously. Let D, E, F be the respective midpoints of sides BC , CA , AB . Show that the perpendiculars from D to AA_2 , E to BB_2 and F to CC_2 are concurrent.
5	A rational number x is given. Prove that there exists a sequence x_0, x_1, x_2, \ldots of rational numbers with the following properties: (a) $x_0 = x$; (b) for every $n \ge 1$, either $x_n = 2x_{n-1}$ or $x_n = 2x_{n-1} + \frac{1}{n}$; (c) x_n is an integer for some n .

Contributors: v_Enhance, rrusczyk

Art of Problem Solving

2012 TSTST

6

Positive real numbers x, y, z satisfy xyz + xy + yz + zx = x + y + z + 1. Prove that

$$\frac{1}{3} \left(\sqrt{\frac{1+x^2}{1+x}} + \sqrt{\frac{1+y^2}{1+y}} + \sqrt{\frac{1+z^2}{1+z}} \right) \leq \left(\frac{x+y+z}{3} \right)^{5/8}.$$

Day 3

7

Triangle ABC is inscribed in circle Ω . The interior angle bisector of angle A intersects side BC and Ω at D and L (other than A), respectively. Let M be the midpoint of side BC. The circumcircle of triangle ADM intersects sides AB and AC again at Q and P (other than A), respectively. Let N be the midpoint of segment PQ, and let H be the foot of the perpendicular from L to line ND. Prove that line ML is tangent to the circumcircle of triangle HMN.

8

Let n be a positive integer. Consider a triangular array of nonnegative integers as follows:

Row 1: $a_{0,1}$

Row 2: $a_{0,2}$ $a_{1,2}$

: : :

Row n-1: $a_{0,n-1}$ $a_{1,n-1}$ \cdots $a_{n-2,n-1}$

Row $n: a_{0,n}$ $a_{1,n}$ $a_{2,n}$ \cdots $a_{n-1,n}$

Call such a triangular array stable if for every $0 \le i < j < k \le n$ we have

$$a_{i,j} + a_{j,k} \le a_{i,k} \le a_{i,j} + a_{j,k} + 1.$$

For $s_1, \ldots s_n$ any nondecreasing sequence of nonnegative integers, prove that there exists a unique stable triangular array such that the sum of all of the entries in row k is equal to s_k .

9

Given a set S of n variables, a binary operation \times on S is called *simple* if it satisfies $(x \times y) \times z = x \times (y \times z)$ for all $x, y, z \in S$ and $x \times y \in \{x, y\}$ for all $x, y \in S$. Given a simple operation \times on S, any string of elements in S can be reduced to a single element, such as $xyz \to x \times (y \times z)$. A string of variables in S is called *full* if it contains each variable in S at least once, and two strings are *equivalent* if they evaluate to the same variable regardless of which simple

Art of Problem Solving 2012 TSTST

 \times is chosen. For example xxx, xx, and x are equivalent, but these are only full if n=1. Suppose T is a set of strings such that any full string is equivalent to exactly one element of T. Determine the number of elements of T.

These problems are copyright © Mathematical Association of America (http://maa.org).

www.artofproblemsolving.com/community/c4184 Contributors: v_Enhance, rrusczyk