合肥工业大学(共创)考研辅导中心 Tel: 0551-62905018

绝密★启用前

2017年全国硕士研究生入学统一考试

数 学(三)

(科目代码:304)

(模拟试卷1)

考生注意事项

- 1. 答题前,考生须在答题纸指定位置上填写考生姓名、报考单位和考生编号.
- 2. 答案必须书写在答题纸指定的位置上,写在其他地方无效.
- 3. 填(书)写必须使用蓝(黑)色字迹钢笔、圆珠笔或签字笔.
- 4. 考试结束,将答题纸和试题一并装入试题袋中交回.

合肥工业大学(共创)考研辅导中心

2017 年全国硕士研究生入学统一考试

数学三 (模一)

考生注意:本试卷共二十三题,满分 150 分,考试时间为 3 小时.

一、选择题: 1~8 小题,每小题 4 分,共 32 分.下面每小题给出的四个选项中,只有一个选项符合要求,将所 选项前的字母填在答题纸指点位置上.

- (1).设 $x \to 0$ 时 $e^{x^2} e^{\sin^2 x}$ 与 x^m 是同阶无穷小,则m = ((C) 5
- (2).设函数 f(x) 在 x=0 的某个邻域内可导, g(x) 在 x=0 的某个邻域内连续,且 $\lim_{x\to 0} \frac{g(x)}{x} = 0$,又

 $f(x) = \ln(1+x^2) + \int_0^x g(x-t) dt$, M().

- (A) x = 0 是 f(x) 的极小值点
- (B) x = 0 是 f(x) 的极大值点
- (C)点(0, f(0))是曲线y = f(x)的拐点
- (D) x = 0 不是 f(x) 的极值点,点 (0, f(0)) 也不是曲线 y = f(x) 的拐点
- (3).若二阶常系数线性齐次微分方程 y'' + ay' + by = 0 的通解为 $y = (c_1 \cos x + c_2 \sin x)e^{-x}$,则非齐次方 程 $y'' + ay' + by = e^{-x} \sin x$ 的特解形式为()
 - (A) $y^* = x(A\cos x + B\sin x)e^{-x}$. (B) $y^* = (A\cos x + B\sin x)e^{-x}$.
 - (C) $y^* = Axe^{-x} \sin x$.
- (D) $y^* = Axe^{-x}\cos x$.

(4).设函数 f(x) 在 x = 0 的某邻域内二阶导数连续,且 $\lim_{x \to 0} \frac{f(x)}{x^2} = 1$,则下列结论正确的是(

- (A) $\sum_{n=1}^{\infty} f(\frac{(-1)^n}{n})$ 条件收敛. (B) $\sum_{n=1}^{\infty} f(\frac{(-1)^n}{n})$ 绝对收敛

- (C) $\sum_{n=0}^{\infty} f(\frac{(-1)^n}{n})$.发散 (D) $\sum_{n=0}^{\infty} f(\frac{(-1)^n}{n})$ 敛散不定

(5) 已知 5×4 矩阵 $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$,若 $\eta_1 = (3 \ 1 \ -2 \ 1)^T$, $\eta_2 = (0 \ 1 \ 0 \ 1)^T$ 是齐次线性方 程组Ax=0的基础解系,那么下列命题正确的个数为(

- $(1)\alpha_1,\alpha_3$ 线性无关;
- $(2)\alpha_1$ 可由 α_2,α_3 线性表出;
- (3) α_3 , α_4 线性无关; (4) 秩 $r(\alpha_1, \alpha_1, +\alpha_2, \alpha_3 \alpha_4) = 3$ 中正确的是 (A) (1)(3) (B) (2)(4) (C) (2)(3) (D) (1)(4)

(6).设 A, B 都是 3 阶矩阵,将 A 中的第一行的 2 倍加至第 2 行的得到矩阵, A_1 ,将 B 中的第 3 列乘以 $-\frac{1}{2}$

得到矩阵 B_1 ,如果 $A_1B_1=\begin{pmatrix}1&2&-1\\3&5&-2\\0&1&2\end{pmatrix}$,则 AB=() $(A)\begin{pmatrix}-3&2&-1\\-7&5&-2\\6&-3&-6\end{pmatrix} \qquad (B)\begin{pmatrix}1&2&3\\1&1&0\\0&1&-6\end{pmatrix} \qquad (C)\begin{pmatrix}1&2&-3\\1&1&0\\0&1&6\end{pmatrix} \qquad (D)\begin{pmatrix}1&2&3\\5&9&12\\0&1&6\end{pmatrix}$

(A)
$$\begin{pmatrix} -3 & 2 & -1 \\ -7 & 5 & -2 \\ 6 & -3 & -6 \end{pmatrix}$$

(B)
$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 0 \\ 0 & 1 & -6 \end{pmatrix}$$

(C)
$$\begin{pmatrix} 1 & 2 & -3 \\ 1 & 1 & 0 \\ 0 & 1 & 6 \end{pmatrix}$$

$$(D) \begin{pmatrix} 1 & 2 & 3 \\ 5 & 9 & 12 \\ 0 & 1 & 6 \end{pmatrix}$$

Tel: 0551-62905018

第2页共4页

2017 数学考研模拟试卷

合肥工业大学(共创)考研辅导中心

Tel: 0551-62905018

(7).设
$$X \sim N(\mu, \sigma^2)$$
,且有 $P\{X \le \sigma\} > P\{X > \sigma\}$,则有比值 $\frac{\mu}{\sigma}$ ()

(8).设随机变量
$$X \sim B(3, p)$$
, 且矩阵 $A = \begin{pmatrix} 1 & 0 & 0 \\ -2 & -X & 1/4 \\ 1 & -1 & 0 \end{pmatrix}$ 的特征值全为实数的概率为 $7/8$,则

p =.

二、填空题: 9~14 小题,每小题 4 分,共 24 分.请将答案写在答题纸指点位置上.

(9)
$$\lim_{x\to 0} \left(\frac{x}{\ln(1+x)}\right)^{\frac{1}{e^x-1}} = \underline{\hspace{1cm}}.$$

(10) .已知
$$f(x) = x^2 \ln(1+x)$$
, 当 n 为大于 2 的正整数时,则 $f^{(n)}(0) = \underline{\hspace{1cm}}$.

(11).设
$$\varphi(u)$$
可导,且 $\varphi(0)=1$,二元函数 $z=\varphi(x+y)e^{xy}$ 满足 $\frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}=0$,则 $\varphi(u)=$ ______

(12).交换二次积分次序序:
$$\int_{1}^{2} dx \int_{2-x}^{\sqrt{2x-x^2}} f(x,y) dy =$$

(14) 设
$$X$$
与 Y 相互独立,且 $X \sim P(\lambda)$,(Poisson 分布), Y 服从指数分布,对应概率密度函数为

$$f(y) = \begin{cases} \lambda e^{-\lambda x}, & x > 0 \\ 0, & x \le 0 \end{cases}, 则 方差 D(XY) = \underline{\qquad}.$$

三、解答题: 15~23 小题, 共94 分.解答应写出文字说明、证明过程或演算步骤.

(15) (本小题满分 10 分)

设函数
$$y = y(x)$$
 由参数方程
$$\begin{cases} x = t - \lambda \sin t, \\ y = 1 - \lambda \cos t \end{cases}$$
 确定,其中 $\lambda \in (0,1), t \in (0,2\pi)$.

(1) 求函数 y(x) 的极值; (2)求曲线 y = y(x) 的拐点

(16) (本小题满分 10 分)

设
$$u = u(\sqrt{x^2 + y^2})$$
 具有二阶连续偏导数,且满足: $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} - \frac{1}{x} \frac{\partial u}{\partial x} + u = x^2 + y^2$ 试求函数 u 的表达式。

(17) (本小题满分 10 分)

求幂级数
$$\sum_{n=0}^{\infty} (-1)^n \frac{n+1}{(2n+1)!} x^{2n+1}$$
 的收敛域与和函数 $S(x)$.

(18) (本小题满分 10 分)

设函数 f(x), g(x) 在区间 [a,b] 上连续且为严格单调递增的函数,证明:

$$\int_{a}^{b} f(x) dx \int_{a}^{b} g(x) dx < (b-a) \int_{a}^{b} f(x)g(x) dx.$$

2017 数学考研模拟试卷

合肥工业大学(共创)考研辅导中心

Tel: 0551-62905018

(19) (本小题满分 10 分)

求
$$\iint_D xy\sqrt{1-x^2-y^2}\,dxdy$$
 , D 是由 $x^2+y^2\leq 1$, $x\geq 0$ 及 $y\geq 0$ 围成的区域。

(20) (本小题满分 11 分)

设 A 是 3 阶实对称矩阵, R(A) = 1, $\lambda_1 = 2$ 是 A 的一个特征值.对应的一个特征向量 $\xi_1 = \begin{pmatrix} -1 & 1 & 1 \end{pmatrix}^T$, (1) 求 Ax = 0 通解, (2) 求矩阵 A.

(21) (本小题满分 11 分)

设二次型 $f(x_1,x_2,x_3) = x_1^2 + x_2^2 + x_3^2 + 2ax_1x_2 + 2x_1x_3 + 2bx_2x_3$ 的秩为 1,且 $(0,1,-1)^T$ 为二次型的矩阵 A 的特征向量.(1)求常数 a,b; (2)用正交变换 X = QY, 化二次型 X^TAX 为标准形.

(22) (本小题满分 11 分)

设 X与Y 相互独立,且服从[0,a]上服从均匀分布(其中a>0),试求: (1)方程 $t^2+Xt+Y=0$ 有实根的概率; (2) a=1 时, Z=2X-Y 的概率密度函数.

(23) (本小题满分 11 分)

设 X_1, \cdots, X_n 是来自正态总体 $N(0, \sigma^2)$ 的简单随机样本, $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i, S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$ 分别是样本均值与样本方差,令 $Y_i = X_i - \bar{X}$, $i = 1, 2, \cdots$,n, 试求: $(1) \sum_{i=1}^n Cov(X_i, Y_i)$; (2) 方差 $D(S^2)$; (3) 若 $\theta = \sum_{i=1}^n Y_i^2$,求均值 $E(\theta^2)$.

合肥工业大学(共创)考研辅导中心 Tel: 0551-62905018

绝密★启用前

2017年全国硕士研究生入学统一考试

数 学(三)

(科目代码:304)

(模拟试卷 2)

考生注意事项

- 1. 答题前,考生须在答题纸指定位置上填写考生姓名、报考单位和考生编号。
- 2. 答案必须书写在答题纸指定的位置上,写在其他地方无效。
- 3. 填(书)写必须使用蓝(黑)色字迹钢笔、圆珠笔或签字笔。
- 4. 考试结束,将答题纸和试题一并装入试题袋中交回。

2017 数学考研模拟试卷

合肥工业大学(共创)考研辅导中心

Tel: 0551-62905018

2017年全国硕士研究生入学统一考试

数学三(模拟2)

考生注意:本试卷共二十三题,满分150分,考试时间为3小时.

一、选择题: 1~8 小题, 每小题 4 分, 共 32 分. 下面每小题给出的四个选项中, 只有一个选项符合要求, 将所选项前的字母填在答题纸指点位置上. $(1) 函数 f(x) = \frac{(x+1)\ln\left|x^2-1\right|}{2}e^{-\frac{1}{x^2}}$ 的可去间断点个数为 ().

(1) 函数 f	$f(x) = \frac{(x+1)}{}$	$\frac{\ln x^2-1 }{x^2}e^{-\frac{1}{x^2}}$	的可去间断点	个数为().			
(A)		<i>x</i> (B) 1					
(2). 设 $f(x)$					$f(t)$ d t 在($-\infty$,	,+∞)内().	
	为有界的奇葩			力0 为有界的偶函数			
		必有界		偶函数但未必有			
(3) 级数 ∑	$\int_{0}^{\infty} u_n$ 收敛是统	及数 $\sum_{n=1}^{\infty} u_n^2$ 收敛的	勺 ().				
	=1 ☑分条件		/= \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	件			
(C) 充	E分必要条件		(D) 既非必	必要也非充分条	件		
(4) 若 f(x	x,y)在点(x ₀ ,	y_0) 处的偏导数	$(f_x'(x_0, y_0), f_y'(x_0, y_0))$	$G_y'(x_0, y_0)$ 均存	在,则()。		
(A) f	f(x, y) 在点((x_0, y_0) 处连续	(B)	f(x,y)在点	(x_0, y_0) 处可微		
(C) $\lim_{\substack{x-y=-y=-y=-}}$	$\lim_{\stackrel{\to}{\to} x_0} f(x,y) \bar{\eta}$	在	(D)	$\lim_{x\to x_0} f(x,y_0)$	$\lim_{y \to y_0} f(x_0, y) dy$	均存在	
			$(2,1)^T$, $\xi_2 = (2,1)^T$	$(1,-1)^T$, $\boldsymbol{\xi}_2 =$	(1,1, t) ^T 是线 ¹	性非齐次方利	星组的
		$(1,3,-2)^T$,则(, , ,			
				e=-1,必有 r(∠	$\mathbf{A})=2$		
(C) $t =$	≠-1,必有 r(.	$(\mathbf{A}) = 1$ $(\mathbf{A}) = 1$	(D) i	t≠-1,必有 r(z	(4) = 2		
(A) (C)	规范形与标准标准形相同位	《矩阵,则二次》 谁形都不一定相 旦规范形不一定 ‡,且 P(A) = (同 (B 相同 (D)规范形相同() 规范形与标》	旦标准形不一定)
	1 (B)	, ,			, , , , , , , , , , , , ,	, ,	,
(8) 在 n 次	独立试验中,	每次试验成功	的概率为 p ,	第3次试验时	第2次成功的相	既率为()
			-		(D) $2p($		
		-			题纸指点位置 上		
(9). 设y=	$= y(x) \pm x -$	$\int_1^{2x+y} e^{-u^2} \mathrm{d} u =$	0确定,则曲	线 $y = y(x)$ 在	点(0,1)处的法	线方程为	
	•						
(10).已知	$f(1+\ln x) \neq$	了一个原函数为	$\frac{e}{2}x^2 + x \ln x$	+5, 那么由由	自线 $y = f(x)$ 与	i直线 $x=1$ 以	及两个

坐标轴围成的图形面积为_____. (11) 微分方程 $2yy'-xy^2=x$ 满足条件 y(0)=0 的解为_____.

2017 数学考研模拟试卷

合肥工业大学(共创)考研辅导中心

Tel: 0551-62905018

(13) 设矩阵
$$\mathbf{B} = \begin{pmatrix} 1 & 3 & 0 \\ 1 & 1 & 2 \\ 0 & 0 & -1 \end{pmatrix}$$
, 矩阵 \mathbf{A} 满足 $\mathbf{B}^{-1} = \mathbf{B}^* \mathbf{A} + \mathbf{A}$,则 $\mathbf{A} = \underline{}$.

三、解答题: 15~23 小题, 共 94 分。解答应写出文字说明、证明过程或演算步骤。

(15). (本小题满分 10 分)

设 f(x) 为连续函数,且 $\lim_{x\to 0} \frac{f(x)+1-\sin x}{e^x-1} = 1$, $F(x) = \int_0^x t f(t) dt$,若 $x\to 0$ 时, $F(x) = \int_0^x t f(t) dt$,若 $x\to 0$ 时, $F(x) = \int_0^x t f(t) dt$, 若 $x\to 0$ 时, $F(x) = \int_0^x t f(t) dt$, 若 $t\to 0$ 时, $t\to 0$ 时, $t\to 0$ 年

(16). (本小题满分 10 分)

设某厂生产甲、乙两种产品,当这两种产品的产量分别为x 和y (单位:)时的总收益函数为 $R(x,y)=27x+42y-x^2-2xy-4y^2$ 和总成本函数为C(x,y)=36+12x+8y (单位:万元),除此以外生产甲种产品每吨还需支付排污费用 1万元,生产乙种产品每吨还需支付排污费用 2万元.

- (1) 在不限制排污费用的前提下,两种产品的产量各为多少吨时总利润最大?最大利润是多少?
- (Ⅱ)在限制排污费用支出总量为6万元的情况下,这两种产品的产量各为多少吨时总利润最大?最大利润是多少?

(17) (本小题满分10分)

(I)求函数 $f(x) = x \arctan x - \ln \sqrt{2 + x^2}$ 的麦克劳林级数展开式并指出展开式成立的范围;(II) 求级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n2^{n+1} - 2n + 1}{n(2n-1)2^{n+1}}$ 的和.

(18) (本小题满分 10 分)

设函数 f(x) 在 [0,1] 上连续,在 (0,1) 内可导,且 $\int_0^2 e^{f(x)} \arcsin x \, dx = 1$, f(1) = 0. 求证: $\exists \xi \in (0,1)$ 使得 $\sqrt{(1-\xi^2)} f'(\xi) \arcsin \xi = -1$.

(19) (本小题满分 10 分)

计算 $I = \iint_D \sin x \sin y \min\{x, y\} dxdy$, 其中区域 D: $0 \le x \le \pi$; $0 \le y \le \pi$.

(20) (本小题满分11分)

设 $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \beta$ 为4维列向量组,且 $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$

已知线性方程组 $\mathbf{A}\mathbf{x} = \boldsymbol{\beta}$ 的通解为: $\boldsymbol{\xi}_0 + k\boldsymbol{\xi}_1 = (-1,1,0,2)^T + k(1,-1,2,0)^T$, (I) 考察 $\boldsymbol{\beta}$ 是否可由 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$ 线性表出?可以时,写出表达式;不可以时,写出理由;(II) 求向量组 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4, \boldsymbol{\beta}$ 的一个极大无关组。

第3页共4页

2017 数学考研模拟试卷

合肥工业大学(共创)考研辅导中心

Tel: 0551-62905018

(21)(本小题满分11分)

设A 是n 阶矩阵,A 的第i 行,j 列元素 $a_{ij} = i \cdot j$ (I)求r(A);(II)求A 的特征值,特征向量,并问A 能否相似于对角阵,若能,求出相似对角阵,若不能,则说明理由.

(22) (本小题满分11分)

设 X 的分布函数为

$$F(x) = \begin{cases} 0, & x < -1\\ \frac{(x+1)^2}{2}, & -1 \le x < 0\\ \frac{x+2}{4}, & 0 \le x < 2\\ 1, & x \ge 2 \end{cases}$$

试求: (I) 概率 $P\{|X| > 5X - 2\}$; (II) E(2|X| - 1); (III) 函数 $Y = X^2$ 的概率密度 $f_Y(y)$.

(23) (本小题满分11分)

设总体 X 的概率密度函数为 $f(x) = \begin{cases} C\theta^x \ln \theta, & x \geq 0 \\ 0, & x < 0 \end{cases}$,其中 θ $(0 < \theta < 1)$ 为未知参数,且 X_1, \dots, X_n 为 X 的简单随机样本。(I)求常数 C ;(II)求 θ 的最大似然估计 $\hat{\theta}_L$;(III)求 $E[\ln(\hat{\theta}_L)^{-1}]$.

合肥工业大学(共创)考研辅导中心 Tel: 0551-62905018

绝密★启用前

101: 0551 02705010

2017年全国硕士研究生入学统一考试

数 学(三)

(科目代码:304)

(模拟试卷3)

考生注意事项

- 1. 答题前,考生须在答题纸指定位置上填写考生姓名、报考单位和考生编号。
- 2. 答案必须书写在答题纸指定的位置上,写在其他地方无效。
- 3. 填(书)写必须使用蓝(黑)色字迹钢笔、圆珠笔或签字笔。
- 4. 考试结束,将答题纸和试题一并装入试题袋中交回。

合肥工业大学(共创)考研辅导中心

Tel: 0551-62905018

2017年全国硕士研究生入学统一考试

数学三(模拟3)

考生注意:本试卷共二十三题,满分150分,考试时间为3小时.

一、**选择题:** $1\sim8$ 小题, 每小题 4 分, 共 32 分. 下面每小题给出的四个选项中, 只有一个选项符合要求, 将所选项前的字母填在答题纸指点位置上.

(1). 设
$$f(x) = \lim_{n \to \infty} \frac{\sqrt[n]{1 + x^{2n}}}{1 + x^n} \sin \pi x$$
,则 $f(x)$ 在 $(-\infty, +\infty)$ 内 ()。

(A) 处处可导

- (B) 仅有一个点处不可导
- (C) 有两个点处不可导

(D) 至少有三个点处不可导

(2)
$$: \ \ \, \stackrel{\sim}{\mathcal{U}} I_1 = \int_0^{\frac{\pi}{2}} \frac{\sin x}{x} dx, I_2 = \frac{4}{\pi^2} \int_0^{\frac{\pi}{2}} \frac{x}{\sin x} dx, \ \, \mathbb{M}$$
 ().

- $(\ {\rm A}\) \ \ I_1 < 1 < I_2 \qquad (\ {\rm B}\) \ \ 1 < I_2 < I_1 \qquad (\ {\rm C}\) \ \ I_2 < I_1 < 1 \qquad (\ {\rm D}\) \ \ I_2 < 1 < I_1$
- (3) 下列结论中正确的是()。
 - (A) 若级数 $\sum_{n=1}^{\infty} u_n$ 收敛,且 $\lim_{n\to\infty} \frac{v_n}{u_n} = 1$,则级数 $\sum_{n=1}^{\infty} v_n$ 必收敛
 - (B) 若正项级数 $\sum_{n=1}^{\infty} u_n$ 满足 $\lim_{n\to\infty} \frac{u_{2n+2}}{u_{2n+1}} = 2017$,则级数 $\sum_{n=1}^{\infty} u_n$ 必发散
 - (C) 若 $\sum_{n=1}^{\infty} u_n$ 和 $\sum_{n=1}^{\infty} v_n$ 均为条件收敛级数,则 $\sum_{n=1}^{\infty} (u_n + v_n)$ 必为条件收敛级数
 - (D) 若级数 $\sum_{n=1}^{\infty} (u_{2n-1} + u_{2n})$ 发散,则级数 $\sum_{n=1}^{\infty} u_n$ 必发散
- (4) 设区域 D 由 $y \le 4 x^2$, $y \ge -3x$, $x \le 1$, 则积分 $\iint_{D} x[\ln(y + \sqrt{1 + y^2}) + 1] dx dy = ($

$$(A) \frac{2}{5} \qquad \qquad (B) \quad 0 \qquad \qquad (C) \frac{2}{3} \qquad D(-\frac{1}{2})$$

$$(5) \quad |A_{n\times n}| = \begin{vmatrix} 0 & 0 & \cdots & 0 & -1 \\ -1 & 0 & \cdots & 0 & 0 \\ 0 & -1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & -1 & 0 \end{vmatrix}, \quad A_{ij} 为元素 a_{ij} 的代数余子式,则 $\sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij}$ 等于($$

(A) -1

(B) n

(C) $-n^2$

(D) n^2

(6) 设
$$\alpha_1 = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} d_1 \\ d_2 \\ d_3 \end{pmatrix}$, 则三个平面 $a_1x + b_1y + c_1z + d_1 = 0$,

 $a_2x + b_2y + c_2z + d_2 = 0$, $a_3x + b_3y + c_3z + d_3 = 0$ 两两相交成三条平行直线的充分必要条件是(

(A)秩
$$r(\alpha_1,\alpha_2,\alpha_3)=1$$
; 秩 $r(\alpha_1,\alpha_2,\alpha_3,\alpha_4)=2$;

- (B) 秩 $r(\alpha_1, \alpha_2, \alpha_3) = 2$; 秩 $r(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = 3$;
- (C) α_1,α_2 , α_3 中任两个向量均线性无关,且 α_4 不能由 $\alpha_1,\alpha_2,\alpha_3$ 线性表出;

第2页共4页

2017 数学考研模拟试卷

合肥工业大学(共创)考研辅导中心

Tel: 0551-62905018

(D) α_1,α_2 , α_3 中任两个向量均线性无关,且 α_4 可由 $\alpha_1,\alpha_2,\alpha_3$ 线性表出。

(7) 设X与Y 为随机变量且 $P{X \le c} = P{Y \le c} = 0.4$, $P{\max{X,Y} > c} = 0.5$,则概率 $P{\min{X,Y} \le c} = ($).

- (A) 0.1
- (B) 0.3
- (C) 0.5
- (D) 0.9

(8) 设二维随机变量 $(X,Y) \sim N(1,0; 1,1; 0)$,则方差D(XY-X) = (

- (A) 1
- (B) 0
- (C) 2
- (D) 3

二、填空题: 9~14 小题,每小题 4 分,共 24 分。请将答案写在答题纸指点位置上.

(9)
$$\lim_{n\to\infty} \left(\cos\frac{1}{e} + \cos\frac{2}{e^2} + \dots + \cos\frac{n}{e^n}\right)^{\frac{1}{n}} = \underline{\qquad}$$

(10). 设 f(x) 在[0,2]有定义,且对任给的 $x \in (0,2)$ 以及 $x + \Delta x \in (0,2)$,均有

$$f(x + \Delta x) - f(x) = \frac{1 - x}{\sqrt{2x - x^2}} \Delta x + o(\Delta x)$$
, $\coprod f(0) = 0$, $\coprod \int_0^2 f(x) dx = \underline{\qquad}$.

(11)、差分方程 $y_{t+1} - y_t = 2^t - 1$ 的通解为_____.

(13).设3阶实对称矩阵 A 满足 $A^2+A-2E=0$ 且 R(A-E)=1,则 |A-E|=_____.

(14) 设 $X_1, ..., X_n$ 来自 Pisson 分布 $P(\lambda)$ 的独立同分布样本,由大数定律可知, $Y_n = \frac{1}{n} \sum_{i=1}^n X_i^2$ 依概率收敛于

三、解答题: 15~23 小题, 共 94 分。解答应写出文字说明、证明过程或演算步骤。

(15)(本小题满分10分)

选择常数 a,b,c 的值,使得当 $x \to 0$ 时函数 $a+bx-(1+c\sin x)e^x$ 是 x^3 的高阶无穷小.

(16) (本小题满分 10 分)

求函数 f(x, y) = x(y-1) 在 $D = \{(x, y) | x^2 + y^2 \le 3, y-x \ge 0\}$ 上的最大值与最小值。

(17) (本小题满分 10 分)

设幂级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{4n-3}{n(2n-1)} x^{2n}$, 试求: (I) 收敛半径与收敛域; (II) 和函数 S(x).

(18) (本小题满分10分)

设 f(x) 在 [a,b] 上连续,在 (a,b) 内可导, f(a) = a ,且 $\int_a^b f(x) dx = \frac{1}{2} (b^2 - a^2)$ 。证明: (I) $\exists \xi \in (a,b)$ 内,使 $\xi = f(\xi)$; (II) 在 (a,b) 内存在与 (I) 中的 ξ 相异的点 η 使得 $f'(\eta) = f(\eta) - \eta + 1$

(19)(本小题满分 10 分)

计算积分 $I = \iint_D x^2(x^2+y^2)d\sigma$,其中 D 是由圆弧 $x^2+y^2=1$ $(x,y\geq 0)$ 与直线 x=1 和 y=1 所围成的闭区域.

2017 数学考研模拟试卷

合肥工业大学(共创)考研辅导中心

Tel: 0551-62905018

(20)(本小题满分11分)

设 A 是三阶矩阵, $b = (9,18,-18)^T$,方程组 Ax = b 有通解 $k_1(-2,1,0)^T + k_2(2,0,1)^T + (1,2,-2)^T$,其中 k_1,k_2 是任意常数. (1) 求 A。 (2) 求 A¹⁰⁰.

(21) (本小题满分11分)

已知三元二次型 $x^T A x$ 的平方项系数均为 0,设 $a = (1, 2, -1)^T$ 且满足 A a = 2a.

- (I) 求该二次型表达式; (II) 求正交变换x = Qy化二次形为标准型,并写出所用坐标变换;
- (III) 若A+kE正定,求k的取值.

(22) (本小题满分11分)

设口袋中有红球 2 个白球 1 个黑球 2 个,连续取 2 个球,令 X、Y、Z 分别表示其中红球、白球与黑球的个数,试求: 1)概率 $P\{Y=1/X=0\}$; 2)(X,Y) 的联合分布律; 3) $Z=\max\{X,2Y\}$ 分布律; 4)协方差 COV(2X+Y,X).

(23) (本小题满分11分)

设 $X_1, ..., X_n$ 是来自总体X的简单随机样本,且 $Y = \ln X$,而Y的概率密度函数为

$$f(y) = \begin{cases} \lambda y e^{-\lambda y}, & y \ge 0 \\ 0, & y < 0 \end{cases}, \quad (\text{\sharp \sharp $\lambda > 1$})$$

试求: (I) 均值 E(X); (II) λ 的最大似然估计; (III) b = E(X) 的最大似然估计.

合肥工业大学(共创)考研辅导中心 Tel: 0551-62905018

绝密★启用前

2017 年全国硕士研究生入学统一考试

数 学(三)

(科目代码:304)

(模拟试卷 4)

考生注意事项

- 1. 答题前,考生须在答题纸指定位置上填写考生姓名、报考单位和考生编号。
- 2. 答案必须书写在答题纸指定的位置上,写在其他地方无效。
- 3. 填(书)写必须使用蓝(黑)色字迹钢笔、圆珠笔或签字笔。
- 4. 考试结束,将答题纸和试题一并装入试题袋中交回。

第1页共4页

合肥工业大学(共创)考研辅导中心

Tel: 0551-62905018

2017 年全国硕士研究生入学统一考试

数学三(模拟四)

考生注意:本试卷共二十三题,满分150分,考试时间为3小时.

- 一、选择题: 1~8 小题,每小题 4 分,共 32 分.下面每小题给出的四个选项中,只有一个选项符合要求, 将所选项前的字母填在答题纸指点位置上.
- (1) 设 f(u) 为可导函数,曲线 $y = f(1+x^2)$ 过点 (1,4),且它在点 (1,4) 处的切线过点 (0,0),那么函 数 f(u) 在 u=2 处当 u 取得增量 $\Delta u=0.01$ 时相应的函数值增量的线性主部是().
 - (A) -0.02
- (B) 0.02
- (C) -0.04
- (2). 设积分 $I = \int_0^{+\infty} \frac{1}{(1+x^a)\ln(1+x^b)} dx$, 其中 a > 0, b > 0, 若该积分收敛,则必有 ().
 - (A) a > 1, b > 1
- (B) a < 1, b > 1 (C) a > 1, b < 1 (D) a < 1, b < 1
- (3) 设函数 f(x) > 0, 区域 $D = \{(x, y) | x^2 + y^2 \le x + y \}$, 则积分 $\iint_D \frac{af(x) + bf(y)}{f(x) + f(y)} dxdy = \underline{\qquad}$

 - (A) $\frac{a+b}{2}$ (B) $\frac{\pi}{8}(a+b)$ (C) $\frac{\pi}{2}(a+b)$ (D) $\frac{\pi}{4}(a+b)$
- (4) 设 f(x,y) = g(x,y) | x-y|, g(x,y) 在点 (0,0) 的某邻域内连续,则 g(0,0) = 0 是 $f'_x(0,0)$, $f'_v(0,0)$ 存在的()条件。

- (A) 充分必要 (B) 必要非充分 (C) 充分非必要 (D) 非充分且非必要
- (5) 设三阶矩阵 A 的特征值为 0, 2, -2, 则下列结论中正确的个数为 ().
 - ① *A* 不可逆:

- ② A 的主对角线元素之和为0:
- ③ A 的特征值 2,-2 所对应的特征向量正交; ④ Ax=0 的基础解系中含有一个解向量.

- (B) 2 (C) 3 (D) 4
- (6) 设矩阵 $A = \begin{pmatrix} 1 & 1 & -2 \\ 1 & -2 & 1 \\ -2 & 1 & 1 \end{pmatrix}$,则下列矩阵中与矩阵 A 等阶、合同但不相似的是
 - $(A) \begin{pmatrix} 1 & -2 & 1 \\ -2 & 4 & -2 \\ 1 & 2 & 1 \end{pmatrix} \qquad (B) \begin{pmatrix} 1 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 1 \end{pmatrix} \qquad (C) \begin{pmatrix} 3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix} \qquad (D) \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$

- (7) 设随机事件 A, B 相互独立,且已知概率 P(A) = 0.4, 又 P(A B) = P(B A), 则条件概率

 $P(AB \mid A \cup B) = ($

- (A) 0.25
- (B) 0.44
- (C) 0.50 (D) 0.16
- (8)设 $X_1,...,X_n$ 为相互独立同分布随机变量序列,且f(x),F(x)是概率密度函数与分布函数,且f(x)连续,则随机变量 $Z = \min\{X_1, \dots, X_n\}$ 的密度函数 $f_z(z) = 0$
 - (A) $n[1-F(z)]^{n-1}f(z)$
- (B) $n[1-F(z)]^n f(z)$
- (C) $n[1-f(z)]^{n-1}F(z)$
- (D) $n[1-f(z)]^{n-1}f(z)$
- 二、填空题: 9~14 小题,每小题 4 分,共 24 分。请将答案写在答题纸指点位置上.
- (9). 设 y = y(x) 由 $(\cos y)^x = (\sin x)^y$ 确定,则 dy =

2017 数学考研模拟试卷

合肥工业大学(共创)考研辅导中心

Tel: 0551-62905018

(10). 设 f(x) 在[0,+∞) 上为连续函数, 且对于 x>0 满足等式

$$\int_0^{x^2+2x} f(u) du = \lim_{t \to x} \frac{e^{-t^2} \ln(1+t-x)}{\sin(x-t)},$$

则 f(3) =_____.

- (11) 设方程 $F(t^2-x^2,t^2-y^2,t^2-z^2)=0$ 确定了 t 为 x,y,z 的非零函数,其中 F 为可微函数,且 $F_1'+F_2'+F_3'\neq 0$,则当 $xyz\neq 0$ 时, $\frac{t}{x}\frac{\partial t}{\partial x}+\frac{t}{y}\frac{\partial t}{\partial y}+\frac{t}{z}\frac{\partial t}{\partial z}=$ ______.
- (12) 微分方程 $\frac{2x}{y^3} dx + \frac{y^2 3x^2}{y^4} dy = 0$ 的通解为_____.

- 三、解答题: 15~23 小题, 共 94 分。解答应写出文字说明、证明过程或演算步骤。

(15). (本小题满分10分)

过点(1,5)作曲线 $C: y = x^3$ 的切线,设切线为l.(I)求l的方程;(II)求l与曲线C所围成的图形D的面积;(III)求图形D位于y轴右侧部分绕y轴旋转一周所形成的旋转体的体积。

(16). (本小题满分 10 分)

已知 F(x) 是 f(x) 的一个原函数,而 F(x) 是微分方程 $xy'+y=e^x$ 满足初始条件 $\lim_{x\to 0}y(x)=1$ 的解,试将 f(x) 展开成 x 的幂级数,并求 $\sum_{i=(n+1)!}^n n$ 和。

(17)(本小题满分10分)

某厂生产的产品总成本 C 为月产量 x 的函数, $C=C(x)=\frac{1}{5}x^2+4x+20$,产品销售价格为 p, x=x(p)=160-5p,(I)求月产量 x 为多少时,才能使得平均单位成本 \overline{C} 最低?最低平均单位成本为多少? (II)求销售价格 p 为多少时,才能使得每月产品全部销售后获得的总收益 R 最高?最高收益值为多少?

(18) (本小题满分 10 分)

设
$$0 < a < b < 2$$
,证明: $be^{-b} - ae^{-a} > \frac{1}{e^2}(a - b)$.

(19) (本題满分 10 分) 设
$$f(x,y) = \begin{cases} xy^2, & x^2 + y^2 \ge 2y, \\ \sqrt{x^2 + y^2}, & \text{其他,} \end{cases}$$
 $D = \{(x,y) | 0 \le x \le 2, x \le y \le 2\},$

第3页共4页

2017 数学考研模拟试卷

合肥工业大学(共创)考研辅导中心

Tel: 0551-62905018

$$\vec{x}I = \iint_D f(x, y)d\sigma.$$

(20) (本小题满分 11 分)

己知线性方程组

(I)
$$\begin{cases} x_1 - x_2 + 3x_3 - 2x_4 = 0 \\ x_1 + x_2 - x_3 - 6x_4 = 0 \end{cases} = (II) \begin{cases} 3x_1 + ax_2 + x_3 - 2x_4 = 0 \\ 2x_2 - 5x_3 + (a - 1)x_4 = 0 \\ x_1 - x_2 + 2x_3 = 0 \end{cases}$$

有非零公共解,(1)求常数 a。(2)求所有非 0公共解。

(21)(本小题满分11分)

已知矩阵
$$A = \begin{pmatrix} 2 & 2 & 0 \\ 8 & 2 & 0 \\ 0 & a & 6 \end{pmatrix}$$
 与对角矩阵相似. (I) 求坐标变换 $X = CY$,化二次型 $f = X^TAX$ 为标

准形: (II) 指出 $X^T A X = 0$ 表示什么曲面。

(22) (本小题满分11分)

设随机变量
$$X\sim e(\lambda)$$
 ($\lambda=1$ 的指数分布),且 $Y=\begin{cases} X,&|X|\leq 1\\ -X,&|X|>1 \end{cases}$,试求:(I)概率 $P\{Y\leq \frac{1}{2}\}$

(II) Y 的分布函数 $F_{\nu}(y)$; (III) 数学期望 E(XY)

(23) (本小题满分11分)

设正态总体 $X \sim N(\mu_0, \sigma^2)$,其中 μ_0 为已知常数, X_1, \dots, X_n 是 X 的简单随机样本,而 $\Phi(x)$ 是标准正态分布的分布函数,试求(I) 参数 σ^2 的最大似然估计 $\hat{\sigma}^2$; (II) $\theta = P\{X - \mu_0 \le 1\}$ 最大似然估计; (III) 方差 $D(\hat{\sigma}^2)$

合肥工业大学(共创)考研辅导中心 Tel: 0551-62905018

绝密★启用前

2017 年全国硕士研究生入学统一考试

数 学(三)

(科目代码:304)

(模拟试卷 5)

考生注意事项

- 1. 答题前,考生须在答题纸指定位置上填写考生姓名、报考单位和考生编号。
- 2. 答案必须书写在答题纸指定的位置上,写在其他地方无效。
- 3. 填(书)写必须使用蓝(黑)色字迹钢笔、圆珠笔或签字笔。
- 4. 考试结束,将答题纸和试题一并装入试题袋中交回。

第1页共4页

合肥工业大学(共创)考研辅导中心

Tel: 0551-62905018

2017 年全国硕士研究生入学统一考试

数学三(模拟 5)L

考生注意:本试卷共二十三题,满分150分,考试时间为3小时.

— 、	选择题:	1~8 小题	,每小题4	分,共32分.	下面每小	题给出的四/	卜选项中 ,	只有一个	卜选项符台	}要求 ,
将所	选项前的	的字母填在答	\$题纸指点	位置上.						

- (1). 设有曲线 $y = \ln x$ 与 $y = kx^2$, 当 $k > \frac{1}{2a}$ 时,它们之间 ().
 - (A) 没有交点
- (B) 仅有一个交点 (C) 有两个交点 (D) 有三个交点

- (2). 积分 $I = \int_{a}^{a+2\pi} \ln(1+e^{\cos x}) \cos x \, dx$ 的值 ()。
 - (A) 是与 a 无关的正常数
- (B) 是与 a 无关的负常数

(C) 恒为零

- (D) 不为常数
- (3) 设正项数列 $\left\{a_{n}\right\}$ 单增有界,则下列结论正确的是(
 - (A) $\sum_{n=1}^{\infty} (1 \frac{a_n}{a_{n+1}})$ 收敛. (B) $\sum_{n=1}^{\infty} (\frac{a_{n+1}}{a_n} 1)$ 发散. (C) $\sum_{n=1}^{\infty} \frac{a_n}{a_{n+1}}$ 收敛 (D) $\sum_{n=1}^{\infty} (a_n a_{n+1})$ 发散.

- (4) 设f(x,y)在 (x_0,y_0) 处偏导数 $f_x(x_0,y_0)=0$, $f_y(x_0,y_0)=0$,则(
 - (A) $\lim_{\substack{x \to x_0 \\ y \to y_0}} f(x, y)$ 存在
- (B) $f(x, y_0)$ 在 x_0 连续, $f(x_0, y)$ 在 y_0 连续
- (C) 全微分 $df(x,y)|_{(x_0,y_0)} = 0$ (D) f(x,y) 在 (x_0,y_0) 一定存在极值.
- (5) 已知 $\alpha_1, \alpha_2, \alpha_3$ 为3维列向量, $A = (\alpha_1 \quad \alpha_2 \quad \alpha_3)$,且|A| = -1

 $B = (\alpha_1 + \alpha_2 + \alpha_3, \quad \alpha_1 + 3\alpha_2 + 9\alpha_3 \quad \alpha_1 + 4\alpha_2 + 16\alpha_3), \quad \emptyset |B| = ($

(6) .设A 是三阶方阵, $\lambda_1=1,\lambda_2=-2,\lambda_3=-1$ 为其三个特征值,对应的特征向量依次为 $\alpha_1,\alpha_2,\alpha_3$ 令 $P = (3a_2, 2a_3, -a_1), \text{ } \text{ } \text{ } \text{ } \text{ } P^{-1}(A^* + E)P = ()$

$$(A) \begin{pmatrix} 0 & & \\ & -1 & \\ & & 3 \end{pmatrix} \qquad (B) \begin{pmatrix} 3 & & \\ & 0 & \\ & & -1 \end{pmatrix} \qquad (C) \begin{pmatrix} 1 & & \\ & 2 & \\ & & -1 \end{pmatrix} \qquad (D) \begin{pmatrix} -2 & & \\ & -1 & \\ & & 1 \end{pmatrix}$$

(7)设口袋中有10个球,其中有3个红球其它均为白球,先任取一个球后,在剩下的球中任取两个均 为白球,则先取的为红球的概率为(

- (A) $\frac{7}{10}$ (B) $\frac{7}{12}$ (C) $\frac{3}{10}$ (D) $\frac{5}{12}$

(8) 已知随机变量X与Y独立,其分布函数分别是

2017 数学考研模拟试卷

合肥工业大学(共创)考研辅导中心

Tel: 0551-62905018

$$F_1(x) = \begin{cases} 0, & x < 0 \\ \frac{1}{2}, & 0 \le x < 1 \end{cases} \qquad F_2(y) = \int_{-\infty}^{y} \frac{1}{\sqrt{2\pi}} e^{\frac{y^2}{2}} dy - \infty < \text{ symmetry},$$

$$1, \quad x \ge 1$$

则 Z = X + Y 的分布函数 $F_{z}(x) = ($

- (A) $F_1(x) + F_2(x)$, (B) $\frac{1}{2}F_1(x) + \frac{1}{2}F_2(x)$, (C) $\frac{1}{2}F_1(x) + \frac{1}{2}F_2(x-1)$, (D) $\frac{1}{2}F_2(x) + \frac{1}{2}F_1(x-1)$,

二、填空题: 9~14 小题,每小题 4 分,共 24 分。请将答案写在答题纸指点位置上.

- (9) $\lim_{x\to 0} \frac{e^{\sin x} e^{\tan x}}{x(\sec x \cos x)} = \underline{\qquad}$
- (10). 设 $f'(e^x) = \begin{cases} x+1, & x \in (-\infty, 0], \\ 1, & x \in (0, +\infty), \end{cases}$ 又 f(1) = 0,则 f(x) =______.
- (11) 已知 f(x) 是微分方程 $xf'(x) f(x) = \sqrt{2x x^2}$ 满足初始条件 f(1) = 0 的特解,则 $\int_0^1 f(x)dx = \underline{\qquad}.$
- (12) 将直角坐标系下的二次积分 $I = \int_0^1 dy \int_{-\sqrt{y}}^{\sqrt{y}} f(x,y) dx + \int_1^{+\infty} dy \int_{-y}^{y} f(x,y) dx$ 化为极坐标系下的二
- (13) 已知三阶方阵 A, B满足关系式 E + B = AB, A的三个特征值分别为 3, -3, 0, 则
- (14) 设 X_1, \dots, X_{10} 为正态总体 $X \sim N(1,4)$ 的简单随机样本,则统计量 $Y = C \sum_{i=1}^{10} (X_i 1)^2 \sim \chi^2(n)$, 则常数C与n分别为
- 三、解答题: 15~23 小题, 共 94 分。解答应写出文字说明、证明过程或演算步骤。

设
$$f(x) = \begin{cases} ax + x^c \sin \frac{1}{x}, & x > 0, \\ \lim_{n \to \infty} (\frac{n+2x}{n-x})^n + b, & x \le 0, \end{cases}$$
, 若 $f(x)$ 在 $(-\infty, +\infty)$ 内可导,试确定常数 a, b, c 的取值情况.

(16). (本小题满分10分)

设函数 f(u,v) 具有二阶连续偏导数,若函数 z=z(x,y) 由方程 $z-f(x^2+y^2,z)=xy$ 决定,且 $f_{\nu}'(u,v) \neq 1$ 时,(I)求全微分 dz;(II) 若函数 z = z(x,y)在(1,1)处取得极值,求 $\frac{\partial^2 z}{\partial x \partial y}$.

2017 数学考研模拟试卷

合肥工业大学(共创)考研辅导中心

Tel: 0551-62905018

(17) (本小题满分 10 分)

设 f(x) 在 $(-\infty, +\infty)$ 连续,且满足 $f(x) = \sin x + \int_0^x t f(x-t) dt$.求证(I)级数 $\sum_{n=1}^{\infty} (-1)^n f(\frac{1}{n})$ 收敛;(II)级数 $\sum_{n=1}^{\infty} f(\frac{1}{n})$ 发散。

(18) (本小题满分 10 分)

设 f(x) 在 [0,1] 上连续,在 (0,1) 内可导,且 f(0) f(1) > 0,f(0) $f(\frac{1}{2}) < 0$,证明: (I) 在 (0,1) 内存在两个不同的点 ξ , η 使得 $f(\xi) = f(\eta) = 0$;(II) $\exists \zeta \in (0,1)$ 使得 $f'(\xi) + \xi f(\xi) = 0$.

(19) (本小题满分 10 分)

某商品的需求量Q对价格 p 的弹性为 $\eta = -\frac{2p^2}{b-p^2}(0 ,又已知该商品的最大需求量为<math>a(a>0)$,(I)求需求量Q的价格 p 的函数关系;(II)在需求量为Q时,价格多少时,此种商品市场总价值 f(p) = pQ达到最大,求此最大总值.

(20)(本小题满分11分)

已知齐次方程组 Ax=0为 $\begin{cases} x_1+a_2x_2+a_3x_3+a_4x_4=0\\ a_1x_1+4x_2+a_2x_3+a_3x_4=0\\ 2x_1+7x_2+5x_3+3x_4=0 \end{cases}$,有矩阵 B 是 2×4 矩阵, Bx=0的基础

解系为 $a_1 = (1 -2 3 -1)^T$, $a_2 = (0 1 -2 1)^T$,(I) 求矩阵 B; (II) 若Ax = 0与Bx = 0同解,求 a_1, a_2, a_3, a_4 的值;III)求方程组Ax = 0满足 $x_3 = -x_4$ 所有解。

(21) (本小题满分 11 分)

已知二次型 $f(x_1 \ x_2 \ x_3) = x^T A x$ 通过正交变换 x = U y 化为标准形: $2y_1^2 + 2y_2^2$, 且线性方程组 A x = 0 有解 $\xi_3 = \begin{pmatrix} 1 & 0 & 1 \end{pmatrix}^T$ (I) 求所作的正交变换; (II) 求该二次型

(22) (本小题满分 11 分)

设二维随机变量 (X,Y) 的联合密度函数为 $f(x,y)=\begin{cases} Cy, & x^2 < y < x \\ 0, & others \end{cases}$,试求:(I)边缘密度函数 $f_{X}(x)$;(II)条件密度函数 $f_{Y/X}(y/x)$;(III) Z=X-Y 的密度函数 $f_{Z}(z)$;

(23) (本小题满分 11 分)

设总体 X 的概率密度函数为 $f(x; \theta) = \begin{cases} 2e^{-2(x-\theta)}, & x \geq \theta \\ 0, & x < \theta \end{cases}$,且 X_1, \ldots, X_n 是 X 的简单随机样本,试求: (I) 参数 θ 的矩估计; (II) θ 的最大似然估计 $\hat{\theta}_L$; (III) 概率 $P\{\hat{\theta}_L \leq 2\theta\}$.