Exercice 1:

- 1. Factoriser sur \mathbb{R} le polynôme $X^2 + 3X + 2$.
- 2. (a) Déterminer quatre réels a, b, c, d tels que :

$$\forall x \in \mathbb{R}, \ 5 + 7x + 11x^2 + 8x^3 + 2x^4 = (x^2 + 3x + 2)(ax^2 + bx + c) + d.$$

(b) Déterminer deux réels u, v tels que :

$$\forall x \in \mathbb{R} \setminus \{-1, -2\}, \ \frac{1}{(x+1)(x+2)} = \frac{u}{x+1} + \frac{v}{x+2}.$$

3. Soit $n \in \mathbb{N}$. Calculer la somme

$$\sum_{k=0}^{n} \frac{5+7k+11k^2+8k^3+2k^4}{k^2+3k+2}.$$

Exercice 2:

Pour tout entier naturel n non nul, on pose $u_n = \prod_{k=1}^n \left(1 + \frac{k}{n^2}\right)$.

- 1. Montrer: $\forall x \in \mathbb{R}_+^*, x \frac{x^2}{2} < \ln(1+x) < x$.
- 2. En déduire un encadrement de $\ln(u_n)$ valable pour tout $n \in \mathbb{N}^*$ puis montrer que (u_n) converge vers une limite que l'on précisera.
- 3. En déduire que la suite (u_n) converge et déterminer sa limite.

Exercice 3:

Pour $n \in \mathbb{N}^*$, on pose

$$S_n = \sum_{k=1}^n \frac{(-1)^{k-1}}{k} \binom{n}{k}.$$

1. Montrer que

$$\forall n \in \mathbb{N}^*, \ \sum_{k=1}^{n+1} \frac{(-1)^{k-1}}{k} \binom{n}{k-1} = \frac{1}{n+1}.$$

2. En déduire :

$$\forall n \in \mathbb{N}^*, \ S_{n+1} - S_n = \frac{1}{n+1}$$

3. En déduire :

$$\forall n \in \mathbb{N}^*, \ S_n = \sum_{k=1}^n \frac{1}{k}.$$