"Machine Learning and Computational Statistics"

5th Homework

Exercise 1:

Consider the **regression problem** $y=g(x)+\eta$

It is known that E[y|x] is the minimum MSE estimate of y given x. Consider the estimator f(x;D).

- (a) Under what conditions (theoretically) the quantity $\mathbf{E}_D[(f(x;D)-E[\mathbf{y}\,|\,\mathbf{x}])^2]$ becomes zero?
- (b) Why this cannot be achieved in practice?

Exercise 2:

Consider a regression task modelled by the relation $y=g(x)+\eta$. Let f_{θ} be an estimator of g, parameterized by the vector $\boldsymbol{\theta}$. Let $Tr=\{(x_n,y_n),n=1,...,N_1\}$ be the training set (the set that will be used for the estimation of $\boldsymbol{\theta}$) and $Te=\{(x_n,y_n),n=1,...,N_2\}$ be the test (which will be used for testing the performance of $f_{\widehat{\boldsymbol{\theta}}}$ (where $\widehat{\boldsymbol{\theta}}$ is the estimate of $\boldsymbol{\theta}$ based on Tr)).

- (a) What indicates a **large** error value on the training set *Tr*?
- (b) What may indicate a large error value on the test set *Te*?
- (c) What indicates a **small** error value on the training set *Tr*?
- (d) What may indicate a **small** error value on the test set *Te*?

Exercise 3:

Consider a regression task $y = g(x) + \eta$, where y and x are modeled by the random variables y and x. The joint pdf of y and x is:

$$p(x,y) = \frac{3}{2}$$
, for $x \in (0,1), y \in (x^2, 1)$.

Determine the optimum MSE estimate E[y|x], for a given x, by performing the following steps:

- (a) Verify that p(x, y) is a pdf (prove that it integrates to 1).
- (b) Compute the marginal pdf of x, $p_x(x)$.
- (c) Compute the conditional pdf of y, given x.
- (d) Compute and plot E[y|x].

Hint: It is
$$\int_a^b x^n dx = \left[\frac{1}{n+1}x^{n+1}\right]_a^b = \frac{1}{n+1}b^{n+1} - \frac{1}{n+1}a^{n+1}$$

Exercise 4 (python code + text):

Consider the regression problem (1-dep., 1-indep. variables)

$$y=g(x)+\eta$$

where y and x are jointly distributed according to the normal distribution $p(y, x) = N(\mu, \Sigma)$

with
$$\mu = \begin{bmatrix} \mu_y \\ \mu_x \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

$$\Sigma = \begin{bmatrix} \sigma_y^2 & \sigma_{yx} \\ \sigma_{yx} & \sigma_x^2 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 2 & 4 \end{bmatrix}$$

- (a) Determine $\mathbf{E}[y|x]$ and plot the corresponding curve (recall the relevant theory concerning the normal distribution case).
- (b) Generate 100 data sets D_i , i=1,...100, each one consisting of N=50 randomly selected pairs (y_n,x_n) , n=1,...,N, from p(y,x).
- (c) Adopt a linear estimator f(x;D) and determine its instances $f(x;D_1),..., f(x;D_{100})$, utilizing the LS criterion.
- (d) Plot in a single figure (i) the lines corresponding to the above 100 estimates (blue color) and (ii) the line corresponding to the optimal MSE estimate (green color).
- (e) Repeat steps (b)-(d) where now each data set consists of N=5000 points.
- (f) Discuss the results (in your discussion, take into account the decomposition of the MSE to a variance and a bias term).

Exercise 5 (python code + text):

Consider the set up of exercise 3 and recall the E[y|x] determined there.

- (a) Generate a single data set D of 100 pairs (y_n,x_n) , $n=1,\ldots,100$ from p(y,x).
- (b) Determine the linear estimate f(x;D) that minimizes the MSE criterion, based on D.
- (c) Generate randomly a set D' of additional 50 points (y'_n,x'_n) , n=1,...,50. For each x'_n determine the estimate $y_{n'}=f(x_n;D')$ (50 numbers (estimates) should be finally computed).
- (d) Again, for the 50 x_n' 's determine the associated estimates $\hat{y} = E[y|x]$.
- (e) Based on the previous derived estimates for the 50 points from both $f(x_n; D)$ and E[y|x], propose and use a (practical) way for quantifying the performance of the two estimators $f(x_n; D')$ and E[y|x].

Exercise 6 (python code + text): Consider the setup of exercise 3. Generate a set D of N = 100 data pairs $\mathbf{z}_n = (y_n, x_n)$.

(a) For each x_n compute the optimal MSE estimate (use the results of exercise 3).

(b) Compute
$$\boldsymbol{\mu} = \begin{bmatrix} \mu_{\mathcal{X}} \\ \mu_{\mathcal{Y}} \end{bmatrix} = \begin{bmatrix} \frac{1}{N} \sum_{n=1}^{N} x_n \\ \frac{1}{N} \sum_{n=1}^{N} y_n \end{bmatrix}$$
 and $\boldsymbol{\Sigma} = \frac{1}{N} \sum_{n=1}^{N} (\boldsymbol{\mu} - \boldsymbol{z}_n) (\boldsymbol{\mu} - \boldsymbol{z}_n)^T$.

- (c) Pretend that you do not know the true distribution that generates the data and you (erroneously) assume that the joint pdf of x and y is a normal one with mean and covariance matrix those computed in (b). Derive the optimum MSE estimate for this case and compute the MSE estimate for each one of the $100 x_n$'s.
- (d) Discuss the results obtained from (a) and (c).

NOTE: Please give **brief explanations** in all **exercises**.