AMENDMENTS TO THE CLAIMS

1. (Currently Amended) For a digital television packet stream having a plurality of different types of tables, a method to determine issuance intervals for like types of said tables, respectively, that do not all have fixed issuance intervals set by a governing standard, the method comprising:

setting issuance intervals for like [[ones]] types of the non-qoverned said tables, respectively, to be non-uniform.

- 2. (Original) The method of claim 1, wherein each of the non-uniform issuance intervals is determined as a function of at least one of an amount of time in the future to which the table corresponds and a degree of probable interest to a viewer.
- 3. (Original) The method of claim 2, wherein said issuance intervals are weighted so that an issuance interval for a table corresponding to a time nearer the present is smaller than an issuance interval corresponding to a time further in the future.
- 4. (Original) The method of claim 1, wherein each issuance interval between any two instances of an ith table is determined according to the following equation:

interval(ith table) = root_time + (increment_time)*i,

wherein interval(ith table) is the interval between any two instances of the ith table, root_time is a predetermined interval for the table corresponding most closely in time to the present, increment time is a non-zero scalar and i is a non-zero integer.

- 5. (Currently Amended) The method of claim 1, wherein said tables are at least one of extended text tables (ETTs) or extended event information tables (EITs) defined within [[the]] program and system information protocol (PSIP).
- 6. (Currently Amended) A program and system information protocol (PSIP) generator to generate tables for a digital television system packet stream, the generator comprising:

an interface to receive at least one issuance parameter for like tables that do not all have an issue interval assigned by a governing standard; and

a non-uniform interval calculation unit to determine nonuniform issuance intervals for unassigned-interval-ones of said tables based upon said at least one issuance parameter.

- 7. (Original) The PSIP generator of claim 6, wherein each of the non-uniform issuance intervals is determined as a function of at least one of an amount of time in the future to which the table corresponds and a degree of probable interest to a viewer.
- 8. (Original) The PSIP generator of claim 7, wherein said issuance intervals are weighted so that an issuance interval for a

table corresponding to a time near the present is smaller than an issuance interval corresponding to a time further in the future.

9. (Original) The PSIP generator of claim 6, wherein each issuance interval between any two instances of an ith table is determined according to the following equation:

interval(ith table) = root time + (increment time)*i,

wherein interval(ith table) is the interval between any two instances of the ith table, root_time is a predetermined interval for the table corresponding most closely in time to the present, increment_time is a non-zero scalar and i is a non-zero integer, and

wherein said at least one issuance parameter is at least one of said root time and said increment time.

- 10. (Currently Amended) The PSIP generator of claim 6, wherein said tables are at least one of extended text tables (ETTs) or extended event information tables (EITs).
- 11. (Original) The PSIP generator of claim 6, wherein said PSIP generator is embodied in the form of a processor running software.
- 12. (Currently Amended) The PSIP generator of claim [[6]] $\underline{11}$, wherein said software is written in the computer language Java.

- 13. (Original) A processor-readable article of manufacture having embodied thereon software comprising a plurality of code segments to perform the method of any one of claim 1, respectively.
- 14. (Original) A processor-readable article of manufacture having embodied thereon software comprising a plurality of code segments to cause a processor to perform the functional aspects of the program and system information protocol (PSIP) generator of claim 6.