SR02: TD 9

TD Exercices sur une séance de 2h

Objectifs

- Analyser les techniques d'ordonnancement de processus

Exercice 1. (Ordonnancement de processus)

Soient les processus suivants :

Processus	Date d'arrivée	Temps d'exécution	
A	0	3	
В	1,001	6	
c	4,001	4	
b	6.001	2	

Processus

- Elaborer le diagramme d'exécution des processus selon l'algorithme d'ordonnancement :
- 1. FCFS (First Come First Served)
- 2. SJF (Shortest Job First)
- 3. SRT (Shortest Remaining Time) avec un quantum = 1
- 4. Tourniquet (quantum=2)
- 5. Tourniquet (quantum=1)
- Pour chaque cas calculer (arrondir au centième) le temps de traitement moyen

Exercice 2. (Ordonnancement avec plusieurs files)

Un ordonnanceur utilise 3 files d'attente, la file n° 3 étant hiérarchiquement la plus élevée. Les processus ont un numéro de priorité fixé une fois pour toutes, entre 1 et 3, et ils entrent directement dans la file d'attente correspondant à leur numéro. Chaque file est gérée par un algorithme d'ordonnancement. Cet algorithme n'est activé que si les files des niveaux supérieurs sont toutes vides et que la file à laquelle il s'applique n'est pas elle-même vide.

On considère le système de tâches défini par le tableau suivant :

Processus	Temps Exec	Arrivée	Priorité
P1	7	(2
P2	4	. (3
P3	6	-	1
P4	1		1 2
P5	2		L 3
P6	4		2 1
P7	1		2 2

Système de tâches

- Un processus peut-il être victime d'un phénomène de famine ?
- Quel est le temps de traitement moyen (à un centième prêt) si on utilisait l'algorithme d'ordonnancement "Plus Court d'abord : SJF (Shortest Job First)" au niveau de chacune des trois files ?
- Quel est le temps de traitement moyen (à un centième prêt) si on utilisait l'algorithme d'ordonnancement "Tourniquet : RR (Round Robin)" avec quantum=2, au niveau de chacune des trois files ?
- Quel est le temps de traitement moyen (à un centième prêt) si on utilisait l'algorithme d'ordonnancement "Temps Restant Plus court d'abord : SRT (Shortest Remaining Time)" avec quantum=1, au niveau de chacune des trois fils ?

Exercice 3. (Ordonnancement avec priorité)

Un algorithme d'ordonnancement avec priorité fonctionne de la façon suivante :

- 1. Chaque processus reçoit une priorité de base quand il rejoint la file d'attente ;
- 2. Toutes les secondes, la priorité est recalculée avec la formule :

Priorité = (temps de CPU utilisé / 2) + priorité de base

- 3. Toutes les secondes, le CPU est attribué au processus ayant le plus grand numéro de priorité (les processus ayant la même priorité sont départagés selon l'algorithme FCFS)
- Donner le schéma d'exécution correspondant au système suivant :

Processus	Date d'arrivée	Temps d'exécution	Priorité de base
P1	0	4	2
P2	1	4	3
P3	1	3	1
P4	4	2	5
P5	5	2	1
P6	6	2	1

Processus