第五节 正态总体均值与方差的 区间估计

- 一、单个总体的情况
- 二、两个总体的情况
- 三、小结

一、单个总体 $N(\mu,\sigma^2)$ 的情况

设给定置信水平为 $1-\alpha$, 并设 $X_1, X_2, ..., X_n$ 为总体 $N(\mu, \sigma^2)$ 的样本, \overline{X}, S^2 分别是样本均值和样本方差.

1.均值 μ的置信区间

(1) σ^2 为已知,由上节例1可知:

 μ 的一个置信水平为 $1-\alpha$ 的置信区间

$$\left(\overline{X}\pm\frac{\sigma}{\sqrt{n}}z_{\alpha/2}\right).$$

(2) σ^2 为未知,

$$\mu$$
的置信度为 $1-\alpha$ 的置信区间 $\left(\overline{X}\pm\frac{S}{\sqrt{n}}t_{\alpha/2}(n-1)\right)$.

推导过程如下:

由于区间
$$\left(\overline{X}\pm\frac{\sigma}{\sqrt{n}}z_{\alpha/2}\right)$$
中含有未知参数 σ ,

不能直接使用此区间,

但因为 S^2 是 σ^2 的无偏估计,可用 $S = \sqrt{S^2}$ 替换 σ ,

7.5 正态总体均值与方差的区向估计

又根据第六章定理三知 $\frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$,

则
$$P\left\{-t_{\alpha/2}(n-1) < \frac{\overline{X} - \mu}{S/\sqrt{n}} < t_{\alpha/2}(n-1)\right\} = 1 - \alpha,$$

即

$$P\left\{\overline{X}-\frac{S}{\sqrt{n}}t_{\alpha/2}(n-1)<\mu<\overline{X}+\frac{S}{\sqrt{n}}t_{\alpha/2}(n-1)\right\}=1-\alpha,$$

于是得 μ 的置信度为 $1-\alpha$ 的置信区间

$$\left(\overline{X}\pm\frac{S}{\sqrt{n}}t_{\alpha/2}(n-1)\right).$$

例1 有一大批糖果, 现从中随机地取16袋, 称得重量(克)如下:

设袋装糖果的重量服从正态分布, 试求总体均值μ的置信度 为 0.95 的置信区间.

 $\boldsymbol{\mu}$ σ^2 为未知,则 μ 的置信度为 $1-\alpha$ 的置信区间为 $\left(\overline{X}\pm\frac{S}{\sqrt{n}}t_{\alpha/2}(n-1)\right)$.

$$1-\alpha=0.95, \qquad \alpha/2=0.025$$

$$n-1=15,$$
 $t_{0.025}(15)=2.1315,$

计算得
$$\bar{x} = 503.75$$
, $s = 6.2022$,

得μ的置信度为95%的置信区间

$$\left(503.75 \pm \frac{6.2022}{\sqrt{16}} \times 2.1315\right)$$
 \$\Pi\$ (500.4, 507.1).

就是说估计袋装糖果重量的均值在500.4克与507.1克之间,这个估计的可信程度为95%。

若依此区间内任一值作 为μ的近似值,

其误差不大于
$$\frac{6.2022}{\sqrt{16}} \times 2.1315 \times 2 = 6.61$$
 (克).

这个误差的可信度为95%.

2. 方差 σ^2 的置信区间

根据实际需要, 只介绍 μ未知的情况.

方差 σ^2 的置信度为 $1-\alpha$ 的置信区间

$$\left(\frac{(n-1)S^2}{\chi_{\alpha/2}^2(n-1)}, \frac{(n-1)S^2}{\chi_{1-\alpha/2}^2(n-1)}\right).$$

推导过程如下:

因为 S^2 是 σ^2 的无偏估计,

根据第六章第二节定理二知
$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$
,

则

$$P\left\{\chi_{1-\alpha/2}^{2}(n-1)<\frac{(n-1)S^{2}}{\sigma^{2}}<\chi_{\alpha/2}^{2}(n-1)\right\}=1-\alpha,$$

$$\mathbb{P}\left\{\frac{(n-1)S^{2}}{\chi_{\alpha/2}^{2}(n-1)} < \sigma^{2} < \frac{(n-1)S^{2}}{\chi_{1-\alpha/2}^{2}(n-1)}\right\} = 1-\alpha,$$

于是得方差 σ^2 的置信度为 $1-\alpha$ 的置信区间

$$\left(\frac{(n-1)S^2}{\chi_{\alpha/2}^2(n-1)}, \frac{(n-1)S^2}{\chi_{1-\alpha/2}^2(n-1)}\right).$$

进一步可得:

标准差 σ 的一个置信度为 $1-\alpha$ 的置信区间

$$\left(\frac{\sqrt{n-1}S}{\sqrt{\chi_{\alpha/2}^2(n-1)}}, \frac{\sqrt{n-1}S}{\sqrt{\chi_{1-\alpha/2}^2(n-1)}}\right).$$

注意: 在密度函数不对称时,

如 χ^2 分布和 F分布,

习惯上仍取对称的分位点来确定置信区间(如图).

例2 (续例) 求例1中总体标准差 σ 的置信度为

0.95的置信区间.

解
$$\frac{\alpha}{2} = 0.025$$
, $1 - \frac{\alpha}{2} = 0.975$, $n - 1 = 15$,

查 $\chi^2(n-1)$ 分布表可知: 附表2-1

附表2-2

$$\chi^2_{0.025}(15) = 27.488, \qquad \chi^2_{0.975}(15) = 6.262,$$

计算得 s = 6.2022,

代入公式得标准差的置信区间(4.58, 9.60).

二、两个总体 $N(\mu_1,\sigma_1^2),N(\mu_2,\sigma_2^2)$ 的情况

设给定置信水平为 $1-\alpha$,并设 X_1,X_2,\cdots,X_{n_1} 为第一个总体 $N(\mu_1,\sigma_1^2)$ 的样本, Y_1,Y_2,\cdots,Y_{n_2} 为第二个总体 $N(\mu_2,\sigma_2^2)$ 的样本, $\overline{X},\overline{Y}$ 分别是第一、二个总体的样本均值, S_1^2,S_2^2 分别是第一、二个总体的样本方差.

- 1. 两个总体均值差 $\mu_1 \mu_2$ 的置信区间
- (1) σ_1^2 和 σ_2^2 均为已知

$\mu_1 - \mu_2$ 的一个置信度为 $1 - \alpha$ 的置信区间

$$\left(\overline{X}-\overline{Y}\pm z_{\alpha/2}\sqrt{\frac{{\sigma_1}^2}{n_1}+\frac{{\sigma_2}^2}{n_2}}\right).$$

推导过程如下:

因为 \overline{X} , \overline{Y} 分别是 μ_1 , μ_2 的无偏估计, 所以 $\overline{X} - \overline{Y}$ 是 $\mu_1 - \mu_2$ 的无偏估计, 由 \overline{X} , \overline{Y} 的独立性及

$$\overline{X} \sim N\left(\mu_1, \frac{{\sigma_1}^2}{n_1}\right), \ \overline{Y} \sim N\left(\mu_2, \frac{{\sigma_2}^2}{n_2}\right),$$

可知
$$\overline{X} - \overline{Y} \sim N \left(\mu_1 - \mu_2, \frac{{\sigma_1}^2}{n_1} + \frac{{\sigma_2}^2}{n_2} \right),$$

或
$$\frac{(\overline{X}-\overline{Y})-(\mu_1-\mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2}{n_2}}} \sim N(0,1),$$

于是得 $\mu_1 - \mu_2$ 的一个置信度为 $1-\alpha$ 的置信区间

$$\left(\overline{X}-\overline{Y}\pm z_{\alpha/2}\sqrt{\frac{{\sigma_1}^2}{n_1}+\frac{{\sigma_2}^2}{n_2}}\right).$$

(2)
$$\sigma_1^2 = \sigma_2^2 = \sigma^2$$
, 但 σ^2 为未知,

 $\mu_1 - \mu_2$ 的一个置信度为 $1-\alpha$ 的置信区间

$$\left(\overline{X} - \overline{Y} \pm t_{\alpha/2}(n_1 + n_2 - 2)S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}\right).$$

其中

$$S_{w}^{2} = \frac{(n_{1}-1)S_{1}^{2} + (n_{2}-1)S_{2}^{2}}{n_{1}+n_{2}-2}, \quad S_{w} = \sqrt{S_{w}^{2}}.$$

推导:由第六章第三节定理5知

$$\frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$$
, 可得结论

为比较I, II两种型号步枪子弹的枪口速度, 随机地取I型子弹10发,得到枪口速度的平均值为 $\bar{x}_1 = 500 (\text{m/s})$,标准差 $s_1 = 1.10 (\text{m/s})$,随机地取II 型子弹20发, 得枪口速度平均值为 $\bar{x}_2 = 496 (m/s)$, 标准差 $s_2 = 1.20 (m/s)$, 假设两总体都可认为近似 地服从正态分布,且由生产过程可认为它们的方差 相等, 求两总体均值差 $\mu_1 - \mu_2$ 的置信度为0.95的置 信区间.

解 由题意, 两总体样本是相互独立的.

7.5 正态总体均值与方差的区向估计

又因为假设两总体的方差相等,但数值未知,

由于
$$1-\alpha=0.95$$
, $\alpha/2=0.025$, $n_1=10$, $n_2=20$, $n_1+n_2-2=28$, $t_{0.025}(28)=2.048$.
$$s_w^2=(9\times1.10^2+19\times1.20^2)/28$$
,

$$S_w = \sqrt{S_w^2} = 1.1688$$
,

故所求的两总体均值差 $\mu_1 - \mu_2$ 的一个置信度为 0.95的置信区间

$$\left(\overline{x}_{1} - \overline{x}_{2} \pm s_{w} \times t_{0.025}(28) \sqrt{\frac{1}{10} + \frac{1}{20}}\right) = (4 \pm 0.93),$$

即 (3.07, 4.93).

例4 为提高某一化学生产过程的得率, 试图采用 一种新的催化剂,为慎重起见,在实验工厂先进行 试验. 设采用原来的催化剂进 行了 $n_1 = 8$ 次试验, 得到得率的平均值 $\bar{x}_1 = 91.73$. 样本方差 $s_1^2 = 3.89$, 又采用新的催化剂进行 $n_2 = 8$ 次试验,得到得率 的平均值 $\bar{x}_2 = 93.75$, 样本方差 $s_2^2 = 4.02$, 假设两 总体都可认为近似地服从正态分布, 且方差相等, 求两总体均值差 $\mu_1 - \mu_2$ 的置信水平为 0.95 的置信 区间.

解 因为

$$s_w^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2} = 3.96,$$

于是得 $\mu_1 - \mu_2$ 的一个置信水平为0.95的置信区间

$$\left(\overline{x}_1 - \overline{x}_2 \pm s_w \times t_{0.025}(14)\sqrt{\frac{1}{8} + \frac{1}{8}}\right) = (-2.02 \pm 2.13),$$

即 所求置信区间为(-4.15, 0.11).

2. 两个总体方差比 $\frac{{\sigma_1}^2}{{\sigma_2}^2}$ 的置信区间

仅讨论总体均值 μ_1 , μ_2 为未知的情况.

由第六章第三节定理四

$$\frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2} \sim F(n_1-1,n_2-1),$$

并且分布 $F(n_1-1,n_2-1)$ 不依赖任何未知参数.

取
$$\frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2}$$
 为枢轴量得

$$P\left\{F_{1-\alpha/2}(n_1-1,n_2-1)<\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2}< F_{\alpha/2}(n_1-1,n_2-1)\right\}$$

$$=1-\alpha,$$

即

$$P\left\{\frac{S_1^2}{S_2^2} \frac{1}{F_{\alpha/2}(n_1-1,n_2-1)} < \frac{\sigma_1^2}{\sigma_2^2} < \frac{S_1^2}{S_2^2} \frac{1}{F_{1-\alpha/2}(n_1-1,n_2-1)}\right\}$$

$$=1-\alpha$$

$$=1-\alpha,$$
于是得 $\frac{{\sigma_1}^2}{{\sigma_2}^2}$ 的一个置信度为 $1-\alpha$ 的置信区间 $\left(\frac{{S_1}^2}{{S_2}^2} \frac{1}{F_{\alpha/2}(n_1-1,n_2-1)}, \frac{{S_1}^2}{{S_2}^2} \frac{1}{F_{1-\alpha/2}(n_1-1,n_2-1)}\right).$

研究由机器 A 和机器 B 生产的钢管内径, 随机抽取机器 A 生产的管子 18 只, 测得样本方差 为 $s_1^2 = 0.34 \text{(mm}^2$);抽取机器B生产的管子 13 只, 测得样本方差 $s_2^2 = 0.29 (mm^2)$. 设两样本相互独 立, 且设由机器A和机器B生产的钢管内径分别服 从正态分布 $N(\mu_1,\sigma_1^2), N(\mu_2,\sigma_2^2), \mu_i,\sigma_i^2$ (i=1,2) 均未知, 求方差比 σ_1^2/σ_2^2 的置信度为0.90的置信 区间.

7.5 正态总体均值与方差的区向估计

解
$$n_1 = 18$$
, $s_1^2 = 0.34 \text{(mm}^2)$, $n_2 = 13$, $s_2^2 = 0.29 \text{(mm}^2)$, $\alpha = 0.10$, $F_{\alpha/2}(n_1 - 1, n_2 - 1) = F_{0.05}(17, 12) = 2.59$,

$$F_{1-\alpha/2}(17,12)=F_{0.95}(17,12)=\frac{1}{F_{0.05}(12,17)}=\frac{1}{2.38}$$

于是得 $\frac{\sigma_1^2}{\sigma_2^2}$ 的一个置信度为0.90的置信区间为

$$\left(\frac{0.34}{0.29} \times \frac{1}{2.59}, \frac{0.34}{0.29} \times 2.38\right) = (0.45, 2.79).$$

补充例题

三、小结

(1)单个总体均值 μ的置信区间

$$\left\{ egin{aligned} \sigma^2$$
为已知, $\left(ar{X} \pm rac{\sigma}{\sqrt{n}} z_{lpha/2}
ight) . \ \sigma^2$ 为未知, $\left(ar{X} \pm rac{S}{\sqrt{n}} t_{lpha/2} (n-1)
ight) . \end{aligned}
ight.$

(2) 单个总体方差 σ^2 的置信区间

$$\left(\frac{(n-1)S^2}{\chi_{\alpha/2}^2(n-1)}, \frac{(n-1)S^2}{\chi_{1-\alpha/2}^2(n-1)}\right).$$

(3) 两个总体均值差 $\mu_1 - \mu_2$ 的置信区间

$$\sigma_1^2$$
和 σ_2^2 均为已知, $\left(\overline{X} - \overline{Y} \pm z_{\alpha/2} \sqrt{\frac{{\sigma_1}^2}{n_1} + \frac{{\sigma_2}^2}{n_2}}\right)$.

$$\sigma_1^2$$
和 σ_2^2 均为未知, $\left(\overline{X} - \overline{Y} \pm z_{\alpha/2} \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}\right)$.

$$\sigma_1^2 = \sigma_2^2 = \sigma^2$$
, 但 σ^2 为未知,

$$(\overline{X} - \overline{Y} \pm t_{\alpha/2}(n_1 + n_2 - 2)S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}).$$

(4) 两个总体方差比 $\frac{{\sigma_1}^2}{{\sigma_2}^2}$ 的置信区间

总体均值 μ, μ, 为未知

$$\left(\frac{S_1^2}{S_2^2} \frac{1}{F_{\alpha/2}(n_1-1,n_2-1)}, \frac{S_1^2}{S_2^2} \frac{1}{F_{1-\alpha/2}(n_1-1,n_2-1)}\right).$$

7.5 正态总体均值与方差的区向估计

附表2-1

χ²分布表

n	α =0.25	0.10	0.05	0.025	0.01	0.005
1	1.323	2.706	3.841	5.024	6.635	7.879
2	2.773	4.605	5.991	7.378	9.210	10.597
3	4.108	6.251	7.815	9.348	11.345	12.838
4	5.385	7.779	9.488	11.143	13.277	14.860
5	6.626	9.236	11.071	12.833	15.086	16.750
6	7.841	10.645	12.592	14.449	16.812	18.548
7	9.037	12.017	14.067	16.013	18.475	20.278
8	10.219	13.362	15.507	17.535	20.090	21.955
9	11.389	14.684	16.919	19.023	21.666	23.589
10	12.549	15.987	18.307	20.483	23.209	25.188
11	13.701	17.2	- 400	21.920	24.725	26.757
12	14.845	18.ŧ 7 .′	7.488	23.337	26.217	28.299
13	15.984	19.8	7.100	24.736	27.688	29.891
14	17.117	20.064	23.685	26.119	29.141	31.319
15	18.245	22.307	24.996	27.488	30.578	32.801
16	19.369	23.542	26.296	28.845	32.000	34.267

7.5 正态总体均值与方差的区向估计

附表2-2

χ^2 分布表

١.							
	n	α =0.995	0.99	0.975	0.95	0.90	0.75
1	1	-		0.001	0.004	0.016	0.102
ı	2	0.010	0.020	0.051	0.103	0.211	0.575
ı	3	0.072	0.115	0.216	0.352	0.584	1.213
ı	4	0.207	0.297	0.484	0.711	1.064	1.923
ı	5	0.412	0.554	0.831	1.145	1.610	2.675
1	6	0.676	0.872	1.237	1.635	2.204	3.455
ı	7	0.989	1.239	1.690	2.167	2.833	4.255
ı	8	1.344	1.646	2.180	2.733	3.490	5.071
ı	9	1.735	2.088	2.700	3.325	4.168	5.899
ı	10			3.247	3.940	4.865	6.737
ı	11	6	262	3.816	4.575	5.578	7.584
	12	U	.262	4.404	5.226	6.304	8.438
I	13			5.009	5.892	7.042	9.299
I	14	4.075	4.660	5.629	6.571	7.790	10.165
	15	4.601	5.229	6.262	7.261	8.547	11.037
l	16	5.142	5.812	6.908	7.962	9.312	11.912

