Heap Sort

Sheng Li 229221

April 6, 2022

1 / 11

Sheng Li Heap Sort April 6, 2022

Overview

Data structure: Binary Heap

Heap Operations

Heap Sort

2 / 11

Binary Heap

- ► An array, visualized as a nearly complete binary tree.
- ▶ Lay out the nodes of the tree in breadth-first order.
- ▶ Max-Heap Property: The key of a node is ≥ than the keys of its children for any given node.

A max-heap viewed as (a) a binary tree and (b) an array

Heap as a Tree

root of tree: first element in the array, corresponding to i = 1.

 $parent(i) = \lfloor i/2 \rfloor$: returns index of node's parent.

left(i) = 2i: returns index of node's left child.

right(i) = 2i + 1: returns index of node's right child.

A.length: number of elements in the array A.

A.heap-size: elements of the heap stored in the array A.(\leq

A.length)

A max-heap viewed as (a) a binary tree and (b) an array

Heap Operations

 $Max_Heapify(A, i)$: make the subtree rooted at index i a max-heap by assuming that the binary trees rooted at LEFT(i) and RIGHT(i) are max-heaps.

 $Build_Max_Heap(A)$: produce a max-heap from an unordered array A.

$Max_Heapify(A, i)$ (Example)

The action of $Max_Heapify(A,2)$ where A.heap-size = 10. (a) The initial configuration with 4 at node i=2. (b)Restore the max-heap for node 2 by exchanging A[2] with A[4] and recursively call $Max_Heapify(A,4)$. (c)node 4 is fixed up, the recursive call $Max_Heapify(A,9)$ yields no further change

4 日 5 4 周 5 4 3 5 4 3


```
MAX-HEAPIFY (A, i)
 1 \quad l = \text{Left}(i)
 2 r = RIGHT(i)
 3 if l \leq A. heap-size and A[l] > A[i]
         largest = l
    else largest = i
    if r \leq A.heap-size and A[r] > A[largest]
         largest = r
    if largest \neq i
         exchange A[i] with A[largest]
10
         MAX-HEAPIFY (A, largest)
```

$Max_Heapify(A, i)$ Time Complexity Analysis

The running time of $Max_Heapify(A, i)$ is $\underline{\theta(1)}$ time to compare, plus the time to $\underline{\text{run } Max_Heapify}$ on a subtree (assuming that the recursive call occurs).

Worst case: occurs when the bottom level of the tree is exactly half full (The subtrees of children each have size at most 2n/3) Running time of $Max_Heapify$ by the recurrence:

$$T(n) \le T(2n/3) + \theta(1)$$

According to master theorem, T(n) = O(log n).

$\overline{\textit{Build_Max_Heap}(A)}$ (Example & Pseudocode)

A 4 1 3 2 16 9 10 14 8 7

BUILD-MAX-HEAP(A)

- $1 \quad A.heap\text{-size} = A.length$
- 2 **for** $i = \lfloor A.length/2 \rfloor$ **downto** 1
- MAX-HEAPIFY (A, i)

$Build_Max_Heap(A)$ Time Complexity Analysis

Observation:

- 1. $Max_Heapify$ takes O(1) time for nodes that are 1 level above the leaves, and in general, O(k) for the nodes that are k levels above the leaves.
- 2. We have n/4 nodes with level 1, n/8 with level 2, and so on till we have the root node that is $\lg n$ levels above the leaves. Total amount of work in the for loop can be summed as:

$$T(n) = n/4(1c) + n/8(2c) + \dots + 1(Ignc) = cn/2(1/2^{1} + 2/2^{2} + \dots + (k+1)/2^{k+1})$$

$$\sum_{h=1}^{\infty} \frac{h}{2^h} = \frac{1/2}{(1-1/2)^2} = 2$$

$$T(n) = O\left(n\sum_{h=0}^{\infty} \frac{h}{2^h}\right) = O(n)$$

HeapSort Pseudocode

HEAPSORT(A)

- 1 BUILD-MAX-HEAP(A)
- 2 for i = A.length downto 2
- 3 exchange A[1] with A[i]
- 4 A.heap-size = A.heap-size 1
- 5 MAX-HEAPIFY(A, 1)

Running time:

The call to $Build_Max_Heap(A)$ takes time O(n).

After (n-1) iterations the Heap is empty. Every iteration involves a swap and a $Max_Heapify(A, i)$ operation which takes $O(\log n)$ time.

Overall, the HeapSort procedure takes time O(nlogn).