# Data\_Analysis

#### March 13, 2022

# Data Fields and Types attrname attrtype factororresponse O SepalLength numeric factor SepalWidth numeric factor 2 PetalLength numeric factor 3 PetalWidth numeric factor IrisClass nominal response 4 attribute\_datas None Getting a Response Column response\_attributes: IrisClass Getting a Non-Factor Column non\_factor\_attributesname: [] Getting a Factor Column factor\_attributesname: ['SepalLength' 'SepalWidth' 'PetalLength' 'PetalWidth'] Getting a Nominal Type Column nominal\_attributes: ['IrisClass'] Getting a Numeric Type Column numeric\_attributes: ['SepalLength' 'SepalWidth' 'PetalLength' 'PetalWidth'] Getting a Binary Type Column binary\_attributes: [] Sample Data ImportError Traceback (most recent call\_

<ipython-input-63-46693af4ac07> in <module>

ناهخ)

```
1 #Loading our dataset in the dataset.xlsx file.
   ----> 2 data = pd.read_excel(const__.getConstValue("DATASET_FILE_PATH"))
       ~\AppData\Roaming\Python\Python37\site-packages\pandas\util\ decorators.
→py in wrapper(*args, **kwargs)
      309
                               stacklevel=stacklevel,
      310
   --> 311
                      return func(*args, **kwargs)
       312
       313
                  return wrapper
       ~\AppData\Roaming\Python\Python37\site-packages\pandas\io\excel\_base.py_u
→in read excel(io, sheet name, header, names, index col, usecols, squeeze,
→dtype, engine, converters, true_values, false_values, skiprows, nrows, __
→na_values, keep_default_na, na_filter, verbose, parse_dates, date_parser, __

→thousands, comment, skipfooter, convert_float, mangle_dupe_cols,

□

→storage_options)
              if not isinstance(io, ExcelFile):
       362
      363
                  should_close = True
   --> 364
                  io = ExcelFile(io, storage_options=storage_options,__
→engine=engine)
              elif engine and engine != io.engine:
      365
       366
                  raise ValueError(
       ~\AppData\Roaming\Python\Python37\site-packages\pandas\io\excel\_base.py_
→in __init__(self, path_or_buffer, engine, storage_options)
                  self.storage_options = storage_options
      1231
      1232
  -> 1233
                  self._reader = self._engines[engine](self._io,_
→storage_options=storage_options)
      1234
      1235
              def __fspath__(self):
\rightarrow~\AppData\Roaming\Python\Python37\site-packages\pandas\io\excel\_openpyxl.py_
→in __init__(self, filepath_or_buffer, storage_options)
                      passed to fsspec for appropriate URLs (see
520
   --> 521
                  import_optional_dependency("openpyxl")
       522
                  super(). init (filepath or buffer,
→storage_options=storage_options)
      523
```

```
~\AppData\Roaming\Python\Python37\site-packages\pandas\compat\_optional.

→py in import_optional_dependency(name, extra, errors, min_version)

116    except ImportError:

117    if errors == "raise":

--> 118        raise ImportError(msg) from None

119    else:

120    return None
```

|   | SepalLength | SepalWidth | PetalLength | PetalWidth | IrisClass   |
|---|-------------|------------|-------------|------------|-------------|
| 0 | 5.1         | 3.5        | 1.4         | 0.2        | Iris-setosa |
| 1 | 4.9         | 3.0        | 1.4         | 0.2        | Iris-setosa |
| 2 | 4.7         | 3.2        | 1.3         | 0.2        | Iris-setosa |
| 3 | 4.6         | 3.1        | 1.5         | 0.2        | Iris-setosa |
| 4 | 5.0         | 3.6        | 1.4         | 0.2        | Iris-setosa |

data head None

Data Columns

data columns: Index(['SepalLength', 'SepalWidth', 'PetalLength', 'PetalWidth',
'IrisClass'], dtype='object')

#### Summary Statistics

Data Describe

|             | count | mean     | std      | min | 25% | 50%  | 75% | max |
|-------------|-------|----------|----------|-----|-----|------|-----|-----|
| SepalLength | 150.0 | 5.843333 | 0.828066 | 4.3 | 5.1 | 5.80 | 6.4 | 7.9 |
| SepalWidth  | 150.0 | 3.054000 | 0.433594 | 2.0 | 2.8 | 3.00 | 3.3 | 4.4 |
| PetalLength | 150.0 | 3.758667 | 1.764420 | 1.0 | 1.6 | 4.35 | 5.1 | 6.9 |
| PetalWidth  | 150.0 | 1.198667 | 0.763161 | 0.1 | 0.3 | 1.30 | 1.8 | 2.5 |

data.describe None

#### Data Count and Values

data count:

SepalLength 150
SepalWidth 150
PetalLength 150
PetalWidth 150
IrisClass 150

dtype: int64

Data Shape

data shape (150, 5)

Displaying Counted Unique Values of Nominal Attributes

Column > IrisClass < unique values</pre>

['Iris-setosa' 'Iris-versicolor' 'Iris-virginica']

Column > IrisClass < unique values count:3</pre>

Index(['IrisClass'], dtype='object')

data head:

|   | SepalLength | SepalWidth | PetalLength | PetalWidth | IrisClass   |
|---|-------------|------------|-------------|------------|-------------|
| 0 | 5.1         | 3.5        | 1.4         | 0.2        | Iris-setosa |
| 1 | 4.9         | 3.0        | 1.4         | 0.2        | Iris-setosa |
| 2 | 4.7         | 3.2        | 1.3         | 0.2        | Iris-setosa |
| 3 | 4.6         | 3.1        | 1.5         | 0.2        | Iris-setosa |
| 4 | 5.0         | 3.6        | 1.4         | 0.2        | Iris-setosa |

None

Columns to be Dropped

dropping\_columns : []

processing\_columns : ['SepalLength', 'SepalWidth', 'PetalLength', 'PetalWidth']

Univariate Analysis

Box Plots for Numeric Attributes









## Frequency Charts for Nominal(Categorical) Attributes



IrisClass :

Iris-setosa 50 Iris-versicolor 50 Iris-virginica 50

Name: IrisClass, dtype: int64

A number of Class : 3

Displaying Binary Variables

Pie Charts for Nominal(Categorical) Attributes

Display Nominal Features Value Counts on pie graph
Displaying IrisClass in pie graph.



Correlation Between Numeric Column

numeric\_values\_for\_correlation: ['SepalLength' 'SepalWidth' 'PetalLength'
'PetalWidth']



Matrix that involves correlation values between numeric columns

|             | SepalLength | SepalWidth | PetalLength | PetalWidth | IrisClass |
|-------------|-------------|------------|-------------|------------|-----------|
| SepalLength | 1.000000    | -0.109369  | 0.871754    | 0.817954   | 0.782561  |
| SepalWidth  | -0.109369   | 1.000000   | -0.420516   | -0.356544  | -0.419446 |
| PetalLength | 0.871754    | -0.420516  | 1.000000    | 0.962757   | 0.949043  |
| PetalWidth  | 0.817954    | -0.356544  | 0.962757    | 1.000000   | 0.956464  |
| IrisClass   | 0.782561    | -0.419446  | 0.949043    | 0.956464   | 1.000000  |

corr table: None

Analysis for Values of Nominal Attributes

Nominal Features: IrisClass - Mean Of Numeric Features (First 10)

|   | IrisClass | SepalLength | SepalWidth | PetalLength | PetalWidth |
|---|-----------|-------------|------------|-------------|------------|
| 0 | 0         | 5.006       | 3.418      | 1.464       | 0.244      |
| 1 | 1         | 5.936       | 2.770      | 4.260       | 1.326      |
| 2 | 2         | 6.588       | 2.974      | 5.552       | 2.026      |

None

Nominal Features: IrisClass - Count Of Numeric Features (First 10)

|   | IrisClass | SepalLength | SepalWidth | PetalLength | PetalWidth |
|---|-----------|-------------|------------|-------------|------------|
| 0 | 0         | 50          | 50         | 50          | 50         |
| 1 | 1         | 50          | 50         | 50          | 50         |
| 2 | 2         | 50          | 50         | 50          | 50         |

### None

Frequency Charts for Nominal(Categorical) Attributes

Analysis of Missing(Null) Values

Check null values and processing on data

data null sum each attribute:

SepalLength 0
SepalWidth 0
PetalLength 0
PetalWidth 0
IrisClass 0
dtype: int64

data null sum : 0



|             | Null | Values | Sum | % | Value |
|-------------|------|--------|-----|---|-------|
| SepalLength |      |        | 0   |   | 0.0   |
| SepalWidth  |      |        | 0   |   | 0.0   |
| PetalLength |      |        | 0   |   | 0.0   |
| PetalWidth  |      |        | 0   |   | 0.0   |
| IrisClass   |      |        | 0   |   | 0.0   |

```
data shape : (150, 5)
data null sum:
SepalLength
                0
SepalWidth
               0
PetalLength
               0
PetalWidth
               0
IrisClass
               0
dtype: int64
Encoding Nominal Attributes
data columns Index(['SepalLength', 'SepalWidth', 'PetalLength', 'PetalWidth',
'IrisClass'], dtype='object')
data columns after dropping Index(['SepalLength', 'SepalWidth', 'PetalLength',
'PetalWidth', 'IrisClass'], dtype='object')
Splitting our data as test and train
   SepalLength SepalWidth PetalLength PetalWidth
0
      0.222222
                  0.625000
                               0.067797
                                           0.041667
1
      0.166667
                  0.416667
                               0.067797
                                           0.041667
                               0.050847
2
     0.111111
                  0.500000
                                           0.041667
3
     0.083333
                  0.458333
                               0.084746
                                           0.041667
4
     0.194444
                  0.666667
                               0.067797
                                           0.041667
train data head table: None
Decision Tree Classification
decision_tree_regression_model DecisionTreeClassifier(ccp_alpha=0.0,
class_weight=None, criterion='gini',
                       max_depth=None, max_features=None, max_leaf_nodes=None,
                       min_impurity_decrease=0.0, min_impurity_split=None,
                       min_samples_leaf=1, min_samples_split=2,
                       min_weight_fraction_leaf=0.0, presort='deprecated',
                       random_state=None, splitter='best')
[[15 0 0]
 [ 0 11 0]
 [ 0 0 12]]
```

accuracy\_score 1.0



|          |        | precision    | recall | f1-score     | support  |
|----------|--------|--------------|--------|--------------|----------|
|          | 0<br>1 | 1.00<br>1.00 | 1.00   | 1.00<br>1.00 | 15<br>11 |
|          | 2      | 1.00         | 1.00   | 1.00         | 12       |
| accur    | acy    |              |        | 1.00         | 38       |
| macro    | avg    | 1.00         | 1.00   | 1.00         | 38       |
| weighted | avg    | 1.00         | 1.00   | 1.00         | 38       |

Fitting 10 folds for each of 30 candidates, totalling 300 fits

```
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
```

[Parallel(n\_jobs=-1)]: Done 25 tasks | elapsed: 2.4s

[Parallel(n\_jobs=-1)]: Done 285 out of 300 | elapsed: 2.8s remaining: 0.1s

[Parallel(n\_jobs=-1)]: Done 300 out of 300 | elapsed: 2.8s finished

model\_cv\_name: best\_score : 0.928030303030303

model\_cv\_name: best\_params : {'max\_depth': 3, 'min\_samples\_split': 5}
model\_cv\_name: best\_estimator : DecisionTreeClassifier(ccp\_alpha=0.0,

class\_weight=None, criterion='gini',

max\_depth=3, max\_features=None, max\_leaf\_nodes=None,
min\_impurity\_decrease=0.0, min\_impurity\_split=None,
min\_samples\_leaf=1, min\_samples\_split=5,
min\_weight\_fraction\_leaf=0.0, presort='deprecated',
random\_state=None, splitter='best')

### accuracy\_score 1.0

#### Decision tree rules

X[2] <= 0.246 gini = 0.666 samples = 112 value = [35, 39, 38] X[2] <= 0.636 gini = 0.5 samples = 77 value = [0, 39, 38] gini = 0.0 samples = 35 value = [35, 0, 0] X[3] <= 0.646 gini = 0.056 samples = 35 value = [0, 34, 1] X[3] <= 0.688 gini = 0.21 samples = 42 value = [0, 5, 37] X[2] <= 0.669 gini = 0.5 samples = 8 value = [0, 4, 4] X[2] <= 0.653 gini = 0.057 samples = 34 value = [0, 1, 33] samples = 34 value = [0, 34, 0] X[3] <= 0.604 gini = 0.444 samples = 6 value = [0, 2, 4] gini = 0.0 gini = 0.0 samples = 31 value = [0, 0, 31] gini = 0.444 samples = 3 value = [0, 1, 2] samples = 2 value = [0, 2, 0]

> X[2] <= 0.754 gini = 0.444 samples = 3 value = [0, 2, 1] gini = 0.0 samples = 2 value = [0, 2, 0]

gini = 0.0 samples = 3 value = [0, 0, 3]

gini = 0.0 samples = 1 value = [0, 0, 1]

gini = 0.0 samples = 1 value = [0, 1, 0]

gini = 0.0 samples = 2 value = [0, 0, 2]

0