Likelihood (and Seals)

STAT 245

Harp Seal Strandings

Johnston et al., "Effects of Climate Change on Harp Seals"

Harp seals use seasonal sea ice as a place to breed. Does climate change affect their survival? How many young-of-year are found stranded (dead) annually?

Annual Strandings

Normal probability density function (PDF)

$$f(x)=rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{(x-\mu)^2}{2\sigma^2}}$$

A simple model

• Stranding distribution description:

```
df_stats(~strandings, data = harp_seals, mean, sd)
## response mean sd
## 1 strandings 46.27334 26.47133
```

Model-based Predictions

- Guess the number of strandings that will happen this year.
- Is it more likely that there will be 40 or 80 strandings?
- How much more likely?
- What is the *probability* of there being 47 strandings this year?

Likelihood to the Rescue!

Which is more likely?

- Three years with 36, 41, and 43 strandings
- Three years with 60, 41, and 40 strandings

Likelihood approach

- How did you:
 - Find the likelihood of each observation?
 - Combine the likelihoods of a set of three observations?
 - What did you have to assume about the set of observations?

How does all this seal stuff relate to linear regression?

Likelihood and lm()

How can we rewrite our model as a linear regression?

Model Equation

summary(lm_version)

```
##
## Call:
## lm(formula = strandings \sim 1, data = harp_seals)
##
## Residuals:
##
      Min
           10 Median
                         30
                                 Max
## -36.481 -20.676 -1.391 7.150 47.737
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 46.273
                      6.239 7.416 1.01e-06 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 26.47 on 17 degrees of freedom
```

Compare models w/Likelihood

it's likelihood of the data, given a particular model

Compare Models

w/Likelihood - Class example (teamwork problem)


```
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 84.2728 8.3397 10.105 2.37e-08
***
## ice cover -0.9848
                           0.1906 -5.168 9.33e-05
***
##
## Residual standard error: 16.7 on 16 degrees of
```

Multiple R-squared: 0.6254, Adjusted R-squared:

freedom

Model Comparison Challenge

joint likelihood of residuals given σ

```
harp_seals <- harp_seals |>
  mutate(resid1 = resid(lm_version),
    resid2 = resid(lm_version_2))
```

https://cutt.ly/seal-likelihood

https://www.danielsoper.com/statcalc/calculator.aspx?id=54

Likelihood...

- Can be used to measure model-data match
- (...and then as ingredient to AIC/BIC)
- What about other probability distributions?
- [Next...] Can be used to *fit* one model: which parameter estimates are "best"?