2020-2021-2 编译原理测试(2)答案

一、 $(25 \, f)$ 给定文法 G[S]: 其终结符集合为 $\{a, b, c\}$,开始符号为 S,产生式集合如下:

$$S \to b \ C \ S \ A \mid \varepsilon$$

$$A \to a \ S \mid \varepsilon$$

$$C \to c$$

1、(10分)下表给出各产生式右部文法符号串的 First 集合,各产生式左部非终结符的 Follow 集合。试填充其中空白表项的内容:

G中的规则 r	First	Follow	Select
$S \to bC S A$	b	#, a	b
$S \to \varepsilon$	ε		#, a
$A \rightarrow a S$	a	#, a	a
$A \rightarrow \varepsilon$	ε		#, a
$C \rightarrow c$	С	a, b, #	c

2、(10分)以下是文法 G[S]的预测分析表,试补充完整:

	a	b	С	#
S	$S \rightarrow \varepsilon$	$S \rightarrow bCSA$		$S \to \varepsilon$
A	$A \rightarrow a S$			$A \rightarrow \varepsilon$
	$A \rightarrow \varepsilon$			
С			$C \rightarrow c$	

3、(5分) G[S] 不是 LL(1) 文法, 试解释为什么?

不是,因为select $(A \to \varepsilon) \cap \text{select}(A \to a S) = \{a\} \neq \emptyset$

二、(10 分)设 G[S]为上下文无关文法,其终结符集合为 $\{a, b, c\}$,开始符号为 S,产生式集合如下:

$$S \to Ac \ S \mid c$$

$$A \to S \ b \mid a$$

试:消除文法的左递归。

解答: $A \rightarrow Sb \mid a$ 代入到S产生式中,得

$$S \rightarrow (Sb \mid a) cS \mid c$$

整理得到: S → SbcS | acS | c

消除S-产生式中的直接左递归: S → $(acS \mid c)S'$

$$S' \rightarrow bcSS' \mid \varepsilon$$

消除左递归后的文法为: $S \rightarrow acS S' cS'$

$$S' \rightarrow bcSS' \mid \epsilon$$

三 (15分)、 文法G[S]: S→S(T) |a T →T+S |S 中,

求各个非终结符 A 的 FirstVT(A)和 LastVT(A),指出优先关系 🛇 、< 、 🖨 。

1、各个非终结符 FirstVT 和 LastVT

	FirstVT	LastVT	
S	(, a), a	
T	+, (, a	+,), a	

2、优先关系

- S: LastVT(S) S(
 - LastVT(T) (S)
 - LastVT(T) \bigcirc +
 - LastVT(S) \bigcirc #
- S:(SFirstVT(T)
 - + (S) FirstVT(S)
 - # (S) FirstVT(S)
- ():()

四、(25分)给定如下文法 G[S]:

$$(1) S \rightarrow S [S]$$

$$(2) S \rightarrow (S)$$

(3)
$$S \to \varepsilon$$

为文法 G[S] 增加产生式 $S' \rightarrow S$,得到增广文法 G'[S'],下图是相应的 LR(0) 自动机:

- 1. 文法 G[S] 不是LR(0) 文法。指出 LR(0) 自动机中全部冲突状态及冲突类型
- 2. 文法 G[S] 是 SLR(1) 文法? 试解释为什么?
- 3. 若是 SLR(1) 文法,请为其构造SLR(1)分析表。

- 1. 文法 G[S] 不是LR(0) 文法。指出 LR(0) 自动机中全部冲突状态及冲突类型
 - I₀:移进-归约冲突
 - I1: 移进-接受冲突
 - I2:移进-归约冲突
 - I₃:移进-归约冲突
- 2. 文法 G[S] 是 SLR(1) 文法? 试解释为什么?

对于有冲突的状态,尝试用SLR(1)规则解决:

I₀:移进的符号为: {(}

归约的符号为: Follow(S)={ #,), [,]}

两者无交集,所以冲突可以解决

 I_1 :移进的符号为: { [}

归约的符号为: {#}

两者无交集,所以冲突可以解决

I₂:移进的符号为: {(}

归约的符号为: Follow(S)={ #,), [,]}

两者无交集,所以冲突可以解决

I₃:移进的符号为: {(}

归约的符号为: Follow(S)={ #,), [,]}

两者无交集,所以冲突可以解决

3. 若是 SLR(1) 文法,请为其构造SLR(1)分析表。

	İ					İ
	Action				GOTO	
	()	[]	#	
0	s3	r3	r3	r3	r3	1
1					acc	
2	s3	r3	r3	r3	r3	4
3	s3	r3	r3	r3	r3	5
4			s2	s6		
5			s2		S7	
6		r1	r1	r1	r1	
7		r2	r2	r2	r2	

五 (25)、给定如下文法 G[S]:

- $(1) \quad S \to A$
- (2) $S \rightarrow \varepsilon$
- (3) $A \rightarrow (S) S$
- (4) $A \rightarrow a$

为文法 G(S) 增加产生式 $P \rightarrow S$,得到增广文法 G'[P],

试:(1) 分给出该文法的 LR(1) 项目集规范族划分;

(2) 构造相应的 LR (1) 的分析表。

(1) 分给出该文法的 LR (1) 项目集规范族划分;

(2) 构造相应的 LR (1) 的分析表。

	Action			GOTO		
	()	a	#	S	A
0	S3		S4		1	2
1				acc		
2				r1		
3	S7		S8		5	6
4				r4		
5		S10				
6		r1				
7	S7		S8		9	6
8		r4				
9		S11				
10	S3		S3		12	2
11	S7		S8		13	6
12				r3		
13		r3				