Master - Arbeit

Title of Master Thesis

vorgelegt von

David Symhoven

an der

FACHBEREICH PHYSIK LEHRSTUHL FÜR PLASMA AND COMPUTATIONAL PHYSICS

Gutachter:

PROF.DR.HARTMUT RUHL

München, 2017

T 1	1 1	• •			
\mathbf{Er}	Z	ar	11	n	or
	7.1	$\alpha_{\mathbf{I}}$	u	ш	ج

Hiermit erkläre ich, die vorliegende Arbeit selbständig verfasst zu haben und keine anderen als die in der Arbeit angegebenen Quellen und Hilfsmittel benutzt zu haben.

München, Datum der Abgabe

München, 31.03.2017, David Symhoven

Abstract: Blah Blah Mr. Freeman

Symbole und Konstanten

Plank'sches Wirkungsquantum Plank'sches Wirkungsquantum	h ħ	$6.62606957(29) \cdot 10^{-34} \text{ J s}$ $1.054571726(47) \cdot 10^{-34} \text{ J s}$
Boltzmann - Konstante	k_B	$1.3806488(13) \cdot 10^{-23} \text{ J K}^{-1}$
Avogadro - Konstante	N_A	$6.02214129(27) \cdot 10^{23} \text{ mol}^{-1}$
Permitivität des Vakuums	ϵ_0	$8.85418781762 \cdot 10^{-12} \text{ As V}^{-1} \text{ m}^{-1}$
atomare Masseneinheit	u	$1.660538921(73) \cdot 10^{-27} \text{ kg}$
Elektronenvolt	eV	$1.602176565(35) \cdot 10^{-19} \text{ J}$
1 Angström	Å	10^{-10} m
1 Nanosekunde	ns	10^{-9} s
1 Pikosekunde	ps	10^{-12} s
1 Femtosekunde	fs	10^{-15} s
Ort	$ec{r}$	[m]
Geschwindigkeit	$ec{v}$	$[m s^{-1}]$
Beschleunigung	\vec{a}	$[{\rm m}{\rm s}^{-2}]$
Impuls	$ec{p}$	$[\mathrm{kg}\mathrm{m}\mathrm{s}^{-1}]$
Kraft	$ec{F}$	[N]
Masse	m	[kg]
Energie	\mathbf{E}	[J]
Temperatur	Τ	[K]
Druck	p	$[\mathrm{Nm^{-2}}]$
Entropie	S	$[{ m J}{ m K}^{-1}]$
Potential	V	nicht eindeutig
chemisches Potential	μ	nicht eindeutig
Zeit	\mathbf{t}	[s]
diskretisierte Zeit	Δt	$[\mathbf{s}]$
Frequenz	ω	$[s^{-1}]$
Gesamtteilchenanzahl	N	
Anzahl der Freiheitsgerade	f	
Nabla - Operator	∇	$\left(\frac{\partial}{\partial r_1}, \dots, \frac{\partial}{\partial r_n}\right)$
Laplace - Operator	Δ	$\sum_{i=1}^{n} \frac{\partial^2}{\partial r_i^2}$
Hamilton - Operator	${\cal H}$	$\mathcal{H} = -rac{\hbar^2}{2m}\Delta + V(ec{r})$
Lagrange - Funktion	${\cal L}$	$\mathcal{L} = T - V$

Inhaltsverzeichnis

De	eklara	tion		ii				
1	Einleitung							
2	Grui	undlagen						
	2.1 Liénard-Wiechert Potentiale							
	2.2	Numer	rik	3				
		2.2.1	Bewegungsgleichung	3				
		2.2.2	Euler-Verfahren	3				
		2.2.3	Leap-Frog-Verfahren	3				
		2.2.4	Boris-Pusher	3				
		2.2.5	Vay-Pusher	3				
	2.3 Hybride Felder							
		2.3.1	Maxwell-Gleichungen	3				
		2.3.2	Maxwell-Solver	3				
		2.3.3	Nah-und Fernfelder	3				

Einleitung

Now it's going loose ...

Grundlagen

2.1 Liénard-Wiechert Potentiale

2.2 Numerik

- 2.2.1 Bewegungsgleichung
- 2.2.2 Euler-Verfahren
- 2.2.3 Leap-Frog-Verfahren
- 2.2.4 Boris-Pusher
- 2.2.5 Vay-Pusher

2.3 Hybride Felder

- 2.3.1 Maxwell-Gleichungen
- 2.3.2 Maxwell-Solver
- 2.3.3 Nah-und Fernfelder