Part III-B: Medicine AI

Lecture by None Note by THF

2024年10月20日

目录

0.1	核酸物	质表征														2
	0.1.1	碱基 .														2
0.2	数据预	〔处理 .														3
	0.2.1	标准化														3
	0.2.2	插补缺	失值													5

Learn 3

编码规则:

$$\begin{cases} \text{ = } \alpha 螺旋 \rightarrow (0,1,0) \\ \text{ = : } \beta 折叠 \rightarrow (1,0,0) \\ \text{ = : } \beta th \rightarrow (0,0,1) \\ \text{ = : exposed (a abs) } \rightarrow (0,1) \end{cases}$$

Example. 有一条 10 氨基酸长度的蛋白质序列:

PSSSA 使用 5×1000 的矩阵编码蛋白质,每一个氨基酸由一个 5 维向量表示

Pro	M	V	L	S	Р	A	D	K	Т	N	
Sec	С	С	С	С	Е	Н	Е	Е	Н	Н	
		0	0	0	0	1	0	1	1	0	0
	PSS PSA	0	0	0	0	0	1	0	0	1	1
PSSSA		1	1	1	1	0	0	0	0	0	0
		0	0	1	0	0	0	1	1	0	0
	IBA	1	1	0	1	1	1	0	0	1	1
S.A	e	е	b	е	e	b	b	е	е	e	

用 PSSSA 编码时,一般取序列羧基的一侧开始的 1000 个氨基酸编码,如不满 1000 个使用 0 向量补齐

0.1 核酸物质表征

Notation. 基本知识: 碱基与核酸

0.1.1 碱基

	表 1: 常见碱基					
种类	DNA	RNA				
嘌呤族 (R)	腺嘌呤 鸟嘌呤					
嘧啶族(Y)	胞嘧啶 胸腺嘧啶 (T)	` '				

Notation. 碱基配对方式:

$$\begin{cases} \text{DNA} & A = T \\ C \equiv G \end{cases}$$

$$\text{RNA} & C \equiv G$$

$$C \equiv G$$

Notation. K-mer

K: DNA 或 RNA 中一个长度为 K 的序列

以该序列为子序列,遍历核酸序列,计算该长度的所有子序列组合出现的频 率

Example. 长度为 K 的 K-mer 种类共有 4^k 种可能

如长度为 3 的子序列,子序列每个位置有 A,G,C,U 四种选择,共 4^3 种组合一段 15 个核酸的 RNA 序列如下:

所有可能的长度为3的子序列及其频率:

Learn 4

0.2 数据预处理

0.2.1 标准化

Notation. 变量离差标准化:标准化后所有变量范围都在[0,1]内

$$y_i = \frac{x_i - x_{\min}}{x_{\max} - x_{\min}}.$$

Example. 一组变量如下:

$$X = (1.5, 1.7, 2.2, 1.2, 1.6, 1.4, 1.1)$$
.

Learn 4

表 3: 3-mers RNA seq. freq. 1 CAT0.1112 ATC 0.0563 TCG 0.056CGG4 0.056. . . 12 CCA 0.05613 ATG 0 . . . 64 0

易得 $x_{\min} = 1.1, x_{\max} = 2.2$

$$y_i = \frac{x_i - x_{\min}}{x_{\max} - x_{\min}}$$

$$= \frac{x_i - 1.1}{2.2 - 1.1}$$

$$= \frac{x_i - 1.1}{1.1}$$

$$= \frac{x_i}{1.1} - 1$$

.

得 Y = (0.364, 0.545, 1, 0.091, 0.455, 0.273, 0)

Notation. Z-score (变量标准差)标准化 经过标准化后平均值为 0,标准差为 1

$$z_i = \frac{x_i - \bar{x}}{s}$$
 $s = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2}.$

可以看出 s 为原数据的标准差, z_i 值其实等同于标准正态分布中的 u 值:

$$u = \frac{x - \mu}{\sigma} \quad y = \frac{1}{\sigma\sqrt{2\pi}} e^{-u^2}/2.$$

Learn 4

0.2.2 插补缺失值

Notation. 均值插补

1. 数值性变量: 采用平均值插补

2. 离散型: 采用众数插补

Notation. 同类均值插补:使用层次聚类方法归类缺失值的样本,用该类别的特征均值插补

Notation. $KNN(K-nearest\ neighbor)$ 缺失值插补: 找到与含缺失值样本相似的 K 个样本,使用这 K 个样本在该缺失变量上的均值填充

K-nearest neighbor

基本思路

找到与新输入的待预测样本最临近的 K 个样本, 判断这 K 个样本中绝大多数的所属类别作为分类结果输出

条件:已经具有较大的样本量

Notation. KNN 算法的基本要素: 距离度量、K 值、分类决策规则

距离度量

Notation. KNN 算法能够分类:特征空间内的样本点之间的距离能够反映样本特征的相似程度

设有两个样本点 x_i, x_j ,以 n 维向量空间作为特征空间,将这两个点表示为:

$$\boldsymbol{x}_i, \boldsymbol{x}_j \in \boldsymbol{X}$$
.

Learn 4

$$\mathbf{x}_i = \left(x_i^1, x_i^2, \dots, x_i^n\right)^T.$$
$$\mathbf{x}_j = \left(x_j^1, x_j^2, \dots, x_j^n\right)^T.$$

特征点之间的距离定义为:

$$L_{p}\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right) = \left(\sum_{l=1}^{n}\left|x_{i}^{l} - x_{j}^{l}\right|^{p}\right)^{\frac{1}{p}}.$$

Example. 代入 p=2 ,易得 $L_2(\boldsymbol{x}_i,\boldsymbol{x}_j)$ 为平面上两点间的距离公式,该距离又称为欧氏距离:

$$L_2(\boldsymbol{x}_i, \boldsymbol{x}_j) = \sqrt{(x_{i_1} - x_{j_1})^2 + (x_{i_2} - x_{j_2})^2}.$$

代入 p=1: $L_1(x_i,x_j)$ 称为曼哈顿距离:

K 值的选择

使用交叉验证方法确定最合适的 K 值