PH126 Logic I · Lecture 7

Lecturer: s.butterfill@warwick.ac.uk

Proof example with \rightarrow

- 1. P→Q 2. ¬Q
- 6. ¬P

How to determine the truth of sentences involving \forall

- 1. Give every object a name.
- 2. For each name in turn, create a new sentence like this: delete the quantifier and replace all instances of the variable it binds with that name
- 3. If ALL of the new sentences are true, so is the original.

Quantifiers

Everything is broken: ∀x Broken(x)

Something is broken: $\exists x \text{ Broken}(x)$

What does \exists mean? We give the meaning of \exists by specifying what it takes for a sentence containing \exists to be true:

- 1. Give every object a name.
- 2. For each name in turn, create a new sentence like this: delete the quantifier and replace all instances of the variable it binds with that name
- 3. If ANY OF the new sentences are true, so is the original.

∀Elim	∃Intro
$\forall x S(x)$	S(a)
S(c)	∃x S(x)

First quantifier rule of proof: ∀Elim

Proof example: ∀Elim, ∃Intro

Exercises 04

For your fifth seminar

Not for fast groups

(Bit more than usual this week because reading week gives you two weeks to complete these)