Lecture 9: Integrating Learning and Planning

Lecture 9: Integrating Learning and Planning

Joseph Modayil

Outline

- 1 Introduction
- 2 Model-Based Reinforcement Learning
- 3 Model-Based Reinforcement Learning
- 4 Integrated Architectures
- 5 Simulation-Based Search

Model-Based Reinforcement Learning

- Last lecture: learn policy directly from experience
- Previous lectures: learn value function directly from experience
- This lecture:
 - Learn model directly from experience (or be given a model)
 - Plan with the model to construct a value function or policy
 - Integrate learning and planning into a single architecture

Model-Based and Model-Free RL

- Model-Free RL
 - No model
 - Learn value function (and/or policy) from experience
- Model-Based RL
 - Learn a model from experience OR be given a model
 - Plan value function (and/or policy) from model

Filling in the middle of algorithm space

Model-Free RL

Introduction

Model-Based RL

Model-Based RL

Model-Based RL

Learning a Model

What is a Model?

- A model \mathcal{M} is a representation of an MDP $\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R} \rangle$, parametrized by η
- A model $\mathcal{M} = \langle \mathcal{P}_{\eta}, \mathcal{R}_{\eta} \rangle$ approximates the state transitions $\mathcal{P}_{\eta} \approx \mathcal{P}$ and rewards $\mathcal{R}_{\eta} \approx \mathcal{R}$. e.g.

$$S_{t+1} \sim \mathcal{P}_{\eta}(S_{t+1} \mid S_t, A_t) \ R_{t+1} = \mathcal{R}_{\eta}(R_{t+1} \mid S_t, A_t)$$

This particular model imposes conditional independence between state transitions and rewards

$$\mathbb{P}\left[S_{t+1}, R_{t+1} \mid S_t, A_t\right] = \mathbb{P}\left[S_{t+1} \mid S_t, A_t\right] \mathbb{P}\left[R_{t+1} \mid S_t, A_t\right]$$

Conventionally a method is called model-based when the transition and reward dynamics are explicitly represented (to support planning), and as model-free otherwise. Some new methods lie in-between these extremes.

Model Learning

- Goal: estimate model \mathcal{M}_{η} from experience $\{S_1, A_1, R_2, ..., S_T\}$
- This is a supervised learning problem

$$S_1, A_1 \rightarrow R_2, S_2$$
 $S_2, A_2 \rightarrow R_3, S_3$
 \vdots
 $S_{T-1}, A_{T-1} \rightarrow R_T, S_T$

- Learn a function $s, a \rightarrow r$ and also learn a function $s, a \rightarrow s'$
- $lue{}$ Pick loss function (e.g. mean-squared error), and find parameters η that minimise empirical loss

Examples of Models

- Table Lookup Model
- Linear Expectation Model
- Linear Gaussian Model
- Gaussian Process Model
- Deep Belief Network Model
- **...**

Learning a Model

Table Lookup Model

- Model is an explicit MDP, $\hat{\mathcal{P}}, \hat{\mathcal{R}}$
- Count visits N(s, a) to each state action pair

$$\hat{\mathcal{P}}_{s,s'}^{a} = \frac{1}{N(s,a)} \sum_{t=1}^{T} \mathbf{1}(S_{t}, A_{t}, S_{t+1} = s, a, s')$$

$$\hat{\mathcal{R}}_{s}^{a} = \frac{1}{N(s,a)} \sum_{t=1}^{T} \mathbf{1}(S_{t}, A_{t} = s, a) R_{t}$$

- Alternatively
 - At each time-step t, record experience tuple $\langle S_t, A_t, R_{t+1}, S_{t+1} \rangle$
 - lacksquare To sample model, randomly pick tuple matching $\langle s,a,\cdot,\cdot
 angle$

AB Example

Two states A, B; no discounting; 8 episodes of experience

We have constructed a table lookup model from the experience

└─Planning with a Model

Planning with a Model

- lacksquare Given a model $\mathcal{M}_{\eta} = \langle \mathcal{P}_{\eta}, \mathcal{R}_{\eta} \rangle$
- Solve the MDP $\langle \mathcal{S}, \mathcal{A}, \mathcal{P}_{\eta}, \mathcal{R}_{\eta} \rangle$
- Using favourite planning algorithm
 - Value iteration
 - Policy iteration
 - Tree search
 - · ...

Sample-Based Planning

- A simple but powerful approach to planning
- Use the model only to generate samples
- Sample experience from model

$$s_{t+1} \sim \mathcal{P}_{\eta}(s_{t+1} \mid s_t, a_t)$$

 $r_{t+1} = \mathcal{R}_{\eta}(r_{t+1} \mid s_t, a_t)$

- Apply model-free RL to samples, e.g.:
 - Monte-Carlo control
 - Sarsa
 - Q-learning
- Sample-based planning methods are often more efficient

Back to the AB Example

- Construct a table-lookup model from real experience
- Apply model-free RL to sampled experience

Sampled experience

e.g. Monte-Carlo learning: V(A) = 1, V(B) = 0.75

Planning with an Inaccurate Model

- Given an imperfect model $\langle \mathcal{P}_{\eta}, \mathcal{R}_{\eta} \rangle \neq \langle \mathcal{P}, \mathcal{R} \rangle$
- Performance of model-based RL is limited to optimal policy for approximate MDP $\langle \mathcal{S}, \mathcal{A}, \mathcal{P}_{\eta}, \mathcal{R}_{\eta} \rangle$
- i.e. Model-based RL is only as good as the estimated model
- When the model is inaccurate, planning process will compute a suboptimal policy
- Approach 1: when model is wrong, use model-free RL
- Approach 2: reason explicitly about model uncertainty over η (e.g. Bayesian methods)
- Approach 3: Combine model-based and model-free methods in a safe way.

Real and Simulated Experience

We consider two sources of experience

Real experience Sampled from environment (true MDP)

$$s' \sim \mathcal{P}_{s,s'}^{\mathsf{a}}$$

 $r = \mathcal{R}_s^{\mathsf{a}}$

Simulated experience Sampled from model (approximate MDP)

$$s' \sim \mathcal{P}_{\eta}(s' \mid s, a)$$

 $r = \mathcal{R}_{\eta}(r \mid s, a)$

Integrating Learning and Planning

- Model-Free RL
 - No model
 - Learn value function (and/or policy) from real experience
- Model-Based RL (using Sample-Based Planning)
 - Learn a model from real experience
 - Plan value function (and/or policy) from simulated experience
- Dyna
 - Learn a model from real experience
 - Learn AND plan value function (and/or policy) from real and simulated experience
 - Treat real and simulated experience equivalently. Conceptually, the updates from learning or planning are not distinguished.

Dyna Architecture

Dyna-Q Algorithm

```
Initialize Q(s, a) and Model(s, a) for all s \in \mathcal{S} and a \in \mathcal{A}(s)
Do forever:
```

- (a) $s \leftarrow \text{current (nonterminal) state}$
- (b) $a \leftarrow \varepsilon$ -greedy(s, Q)
- (c) Execute action a; observe resultant state, s', and reward, r
- (d) $Q(s, a) \leftarrow Q(s, a) + \alpha [r + \gamma \max_{a'} Q(s', a') Q(s, a)]$
- (e) $Model(s, a) \leftarrow s', r$ (assuming deterministic environment)
- (f) Repeat N times:
 - $s \leftarrow \text{random previously observed state}$
 - $a \leftarrow \text{random action previously taken in } s$

$$s', r \leftarrow Model(s, a)$$

$$Q(s,a) \leftarrow Q(s,a) + \alpha[r + \gamma \max_{a'} Q(s',a') - Q(s,a)]$$

Dyna-Q on a Simple Maze

Dyna-Q with an Inaccurate Model

■ The changed environment is harder

└ Dyna

Dyna-Q with an Inaccurate Model (2)

■ The changed environment is easier

Linear Dyna

- What can we do when the actual states are not known?
- Suppose we have features vectors for states $\phi(s)$.
- Consider the expectation models of the next reward and of the next feature vector.

$$\hat{\mathcal{R}}_s^a = \mathbb{E}_{\pi} \left[R_{t+1} | S_t = s, A_t = a \right]$$

$$\hat{\mathcal{F}}_s^a = \mathbb{E}_{\pi} \left[\phi(S_{t+1}) | S_t = s, A_t = a \right]$$

- We can make linear approximations to the expectation models.
- Equivalent fixed points with linear function approximation when learning model-free or planning with the linear expectation model.

Linear Dyna Model Updates

- Consider a single transition $\langle \phi(s), a, r, \phi(s') \rangle$
- lacksquare Learn vector b_a for a reward model. $b_a^ op\phi(s)pprox\hat{\mathcal{R}}_s^a$

$$b_a \leftarrow b_a + \alpha (r - b_a^{\top} \phi(s)) \phi(s)$$

lacksquare Learn matrix F_a for a transition model. $F_a^ op\phi(s)pprox\hat{\mathcal{F}}_s^a$

$$F_a \leftarrow F_a + \alpha(\phi(s') - F_a\phi(s))\phi(s)^{\top}$$

Linear Dyna Value Function Updates

- We consider a linear approximation for the action value function with $\theta_a^\top \phi(s) \approx q(s,a)$
- Learning uses an observed transition $\langle \phi(s), a, r, \phi(s') \rangle$,

$$\delta \leftarrow \max_{\mathbf{a}'} r + \gamma \theta_{\mathbf{a}'}^{\top} \phi(\mathbf{s}') - \theta_{\mathbf{a}}^{\top} \phi(\mathbf{s})$$
$$\theta_{\mathbf{a}} \leftarrow \theta_{\mathbf{a}} + \alpha \delta \phi(\mathbf{s})$$

■ Planning uses the model for an expected transition from an arbitrary feature vector ψ , $\langle \psi, a, b_a^\top \psi, F_a \psi \rangle$

$$\begin{split} \delta &\leftarrow \max_{\mathbf{a}'} \, \mathbf{b}_{\mathbf{a}}^{\top} \psi + \gamma \boldsymbol{\theta}_{\mathbf{a}'}^{\top} \mathbf{F}_{\mathbf{a}} \psi - \boldsymbol{\theta}_{\mathbf{a}}^{\top} \psi \\ \boldsymbol{\theta}_{\mathbf{a}} &\leftarrow \boldsymbol{\theta}_{\mathbf{a}} + \alpha \delta \psi \end{split}$$

Linear Dyna Algorithm

- We consider a linear approximation for the action value function with $\theta_a^\top \phi(s) \approx q(s,a)$
- Learning uses an observed transition $\langle \phi(s), a, r, \phi(s') \rangle$,

$$\delta \leftarrow \max_{\mathbf{a}'} r + \gamma \theta_{\mathbf{a}'}^{\top} \phi(\mathbf{s}') - \theta_{\mathbf{a}}^{\top} \phi(\mathbf{s})$$
$$\theta_{\mathbf{a}} \leftarrow \theta_{\mathbf{a}} + \alpha \delta \phi(\mathbf{s})$$

■ Planning uses the model for an expected transition from an arbitrary feature vector ψ , $\langle \psi, a, b_a^\top \psi, F_a \psi \rangle$

$$\delta \leftarrow \max_{\mathbf{a}'} \mathbf{b}_{\mathbf{a}}^{\top} \psi + \gamma \theta_{\mathbf{a}'}^{\top} \mathbf{F}_{\mathbf{a}} \psi - \theta_{\mathbf{a}}^{\top} \psi$$
$$\theta_{\mathbf{a}} \leftarrow \theta_{\mathbf{a}} + \alpha \delta \psi$$

Simulation-Based Search

- We have been learning a model and planning with it.
- Now consider that setting where the model is given (fixed), and we want to use it.

Forward Search

- Forward search algorithms select the best action by lookahead
- They build a search tree with the current state s_t at the root
- Using a model of the MDP to look ahead

■ No need to solve whole MDP, just sub-MDP starting from now

Simulation-Based Search

- Forward search paradigm using sample-based planning
- Simulate episodes of experience from now with the model
- Apply model-free RL to simulated episodes

Simulation-Based Search (2)

Simulate episodes of experience from now with the model

$$\{S_t^k, A_t^k, R_{t+1}^k, ..., S_T^k\}_{k=1}^K \sim \mathcal{M}_{\nu}$$

- Apply model-free RL to simulated episodes
 - lacktriangle Monte-Carlo control ightarrow Monte-Carlo search
 - \blacksquare Sarsa \rightarrow TD search

Monte-Carlo Simulation

- lacksquare Given a parameterized model \mathcal{M}_{ν} and a simulation policy π
- Simulate K episodes from current state S_t

$$\{S_t^k = S_t, A_t^k, R_{t+1}^k, S_{t+1}^k, ..., S_T^k\}_{k=1}^K \sim \mathcal{M}_{\nu}, \pi$$

Evaluate state by mean return (Monte-Carlo evaluation)

$$V(S_t) = \frac{1}{K} \sum_{k=1}^{K} G_t^k \stackrel{P}{\leadsto} V^{\pi}(S_t)$$

Monte-Carlo Tree Search (Evaluation)

- lacksquare Given a model $\mathcal{M}_{
 u}$
- Simulate K episodes from current state S_t using current simulation policy π

$$\{S_t^k = S_t, A_t^k, R_{t+1}^k, S_{t+1}^k, ..., S_T^k\}_{k=1}^K \sim \mathcal{M}_{\nu}, \pi$$

- Build a search tree containing visited states and actions
- **Evaluate** states Q(s, a) by mean return of episodes from s, a

$$Q(s,a) = \frac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{u=t}^{T} \mathbf{1}(S_{u}^{k}, A_{u}^{k} = s, a) G_{u} \stackrel{P}{\leadsto} Q^{\pi}(s,a)$$

 After search is finished, select current (real) action with maximum value in search tree

$$a_t = \underset{a \in \mathcal{A}}{\operatorname{argmax}} Q(S_t, a)$$

Monte-Carlo Tree Search (Simulation)

- In MCTS, the simulation policy π improves
- lacktriangle The simulation policy π has two phases (in-tree, out-of-tree)
 - Tree policy (improves): pick actions from Q(s, a) (e.g. ϵ greedy(Q(s, a)))
 - Default policy (fixed): pick actions randomly
- Repeat (for each simulated episode)
 - Select actions in tree according to tree policy.
 - Expand search tree by one node
 - Rollout to termination with default policy
 - Update action-values Q(s,a) in the tree
- Output best action when simulation time runs out.
- With some assumptions, converges to the optimal values, $Q(s,a) \rightarrow Q^*(s,a)$

Case Study: the Game of Go

- The ancient oriental game of Go is 2500 years old
- Considered to be the hardest classic board game
- Considered a grand challenge task for AI (John McCarthy)
- Traditional game-tree search has failed in Go

Rules of Go

- Usually played on 19x19, also 13x13 or 9x9 board
- Simple rules, complex strategy
- Black and white place down stones alternately
- Surrounded stones are captured and removed
- The player with more territory wins the game

Position Evaluation in Go

- How good is a position *s*?
- Reward function (undiscounted):

$$R_t = 0$$
 for all non-terminal steps $t < T$ $R_T = \left\{ egin{array}{ll} 1 & ext{if Black wins} \\ 0 & ext{if White wins} \end{array}
ight.$

- Policy $\pi = \langle \pi_B, \pi_W \rangle$ selects moves for both players
- Value function (how good is position *s*):

$$V^{\pi}(s) = \mathbb{E}_{\pi} \left[R_T \mid s
ight] = \mathbb{P} \left[\mathsf{Black \ wins} \mid s
ight] \ V^{*}(s) = \max_{\pi_B} \min_{\pi_W} V^{\pi}(s)$$

Monte-Carlo Evaluation in Go

MCTS in Go

Applying Monte-Carlo Tree Search (1)

└MCTS in Go

Applying Monte-Carlo Tree Search (2)

└MCTS in Go

Applying Monte-Carlo Tree Search (3)

MCTS in Go

Applying Monte-Carlo Tree Search (4)

└MCTS in Go

Applying Monte-Carlo Tree Search (5)

Advantages of MC Tree Search

- Highly selective best-first search
- Evaluates states dynamically (unlike e.g. DP)
- Uses sampling to break curse of dimensionality
- Works for "black-box" models (only requires samples)
- Computationally efficient, anytime, parallelisable

Example: MC Tree Search in Computer Go

