# Κβαντοποίηση Διανυσμάτων σε Κωδικοποιητές Βίντεο

Καλός Πέτρος

Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και Δικτύων Πανεπιστήμιο Θεσσαλίας Ιούνιος 2013

- Περιγραφή Προβλήματος
- Ψηφιακό Βίντεο
- Θεωρία Πληροφοριών
- K-means
- VQ Training
- Τροποποίηση JM H.264
- Αποτελέσματα VQ H.264
- VQ H.264 vs. JM H.264
- Συμπεράσματα

## Περιγραφή Προβλήματος

- Βίντεο συνεπάγεται τεράστιος όγκος δεδομένων
- Τεχνικές Συμπίεσης
  - Με απώλειες
  - Χωρίς απώλειες
- Η ευαισθησία του ανθρώπινου ματιού είναι μικρότερη των 38dB

Μεγάλη πολυπλοκότητα σημερινών τεχνικών συμπίεσης

# Ασυμπίεστη Εικόνα



## 43.07dB



## 38.19dB



# 32.76dB



- Περιγραφή Προβλήματος
- Ψηφιακό Βίντεο
- Θεωρία Πληροφοριών
- K-means
- VQ Training
- Τροποποίηση JM H.264
- Αποτελέσματα VQ H.264
- VQ H.264 vs. JM H.264
- Συμπεράσματα

### Ψηφιακό Βίντεο

- Αποτελείται από μία σειρά καρέ που αναπαράγονται με σταθερό ρυθμό (25 ή 30Hz)
- Καρέ είναι μια σειρά από pixels τοποθετημένα στον δυσδιάστατο χώρο. Οι διαστάσεις του καθορίζουν την ανάλυση του βίντεο
- Κάθε pixel έχει ένα βάθος (8 14bits)
- Το κάθε καρέ απεικονίζεται σε ένα χώρο χρωμάτων που ονομάζεται YUV, οπού το Y είναι η φωτεινότητα και το U,V η χρωματικότητα

# Συνιστώσες YUV



# Τοποθέτηση των pixels

• Για να δημιουργήσουν ένα καρέ τα τοποθετούμε με διάφορους τρόπους (πχ YUV420, YUV444)

#### Single Frame YUV420:



#### Position in byte stream:

# Οργάνωση των pixels

• Οργάνωση σε macroblocks, blocks, subblocks



# Οργάνωση των καρέ

- Intra (Temporal)
  - I frames

- Inter (Special)
  - P,B frames

• Στόχος η δημιουργία διαφορών pixel (residuals)

#### **Intra frames**

- Χρήση πληροφορίας μόνο εντός καρέ
- Intra prediction modes



#### Inter frames

- P (predictive) frames
  - Δημιουργία διαφορών παίρνοντας ως pixels αναφοράς
    pixels από ένα συγκεκριμένο προηγούμενο καρέ
- B (bidirectional) frames
  - Δημιουργία διαφορών παίρνοντας ως pixels αναφοράς τον μέσο όρο των pixels από προηγούμενα ή επόμενα καρέ
- Motion Vectors

#### **GOP**



### **Encoding**

• Μετασχηματισμός DCT 4x4,8x8,16x16

✓ Κβαντοποίηση

Zigzag Scan

Run Length Encoding

Entropy encoding

# Κβαντοποίηση

• Εισαγωγή σφάλματος

 Ακέραια διαίρεση συντελεστών DCT με κάποια ακέραια τιμή, πιθανόν διαφορετική για κάθε συντελεστή

Quantization Parameter (QP) καθορίζει την ποιότητα

# ZigZag Scan



## **Run Length Encoding**

• Μείωση αριθμών προς κωδικοποίηση



# Ποιότητα Βίντεο

• PSNR = 
$$10 \times \log_{10} \left( \frac{MAX_i^2}{MSE} \right)$$

$$-MSE = \frac{\sum_{i=0}^{X*Y} (Source_i - Reconstructed_i)^2}{X*Y}$$

$$-MAX_i^2 = bitdepth^2 - 1$$

Υπολογίζεται για κάθε συνιστώσα YUV ξεχωριστά αλλά ως μετρική λαμβάνεται το PSNR του Y

# Δομή Η.264



- Περιγραφή Προβλήματος
- Ψηφιακό Βίντεο
- Θεωρία Πληροφοριών
- K-means
- VQ Training
- Τροποποίηση JM H.264
- Αποτελέσματα VQ H.264
- VQ H.264 vs. JM H.264
- Συμπεράσματα

# Θεωρία Πληροφοριών

• Εντροπία

$$-$$
 H(X)  $= -\sum_{i=1}^{n} (p(x_i) \times \log_b p(x_i))$ ,  $p(x_i)$  η πιθανότητα του ενδεχομένου  $x_i$ 

Το απόλυτο κάτω όριο που η πληροφορία μίας πηγής μπορεί να συμπιεστεί

# Κωδικοποιητές Εντροπίας

- Μέθοδος Huffman
  - Μικρή πολυπλοκότητα
  - $-H(X) \le L_c \le H(X) + 1bit$



- Αριθμητική Κωδικοποίηση
  - Context Adaptive Binary Arithmetic Encoding (CABAC)
  - Μεγάλη πολυπλοκότητα
  - Πλησιάζει "κοντά" στο όριο εντροπίας

- Περιγραφή Προβλήματος
- Ψηφιακό Βίντεο
- Θεωρία Πληροφοριών
- K-means
- VQ Training
- Τροποποίηση JM H.264
- Αποτελέσματα VQ H.264
- VQ H.264 vs. JM H.264
- Συμπεράσματα

#### K-means

• Επαναληπτικός αλγόριθμος που χωρίζει με το ελάχιστο σφάλμα n σημεία σε διάσταση χώρου  $R^d$ σε k περιοχές  $k \leq d$ 



# Αρχικοποίηση K-means

- Random η με κάποια στρατηγική
  - n=100000,k=65536,d=16





# Αναζήτηση κοντινότερου cluster

Mε Full Search η με FastNN



- Περιγραφή Προβλήματος
- Ψηφιακό Βίντεο
- Θεωρία Πληροφοριών
- K-means
- VQ Training
- Τροποποίηση JM H.264
- Αποτελέσματα VQ H.264
- VQ H.264 vs. JM H.264
- Συμπεράσματα

#### **K-means Training**

• Επιλογή των residuals ως training set

• Υπάρχουν τόσα residuals όσα και pixels

• Διαίρεση των καρέ σε mxm κομμάτια με m=4

 Χρησιμοποιήθηκαν 2600 καρέ από 10 βίντεο με διαφορετικό περιεχόμενο

#### Εξαγωγή του training set από τον Η.264

Τροποποίηση Decoder

- Βήματα για την εξαγωγή
  - Encoding σε lossless mode με δύο διαφορετικά GOP
    - 1. I-I-I-....
    - 2. I-P-P-B-P-B-...
  - Decoding
    - Keepl = 1, 1° GOP
    - KeepP = 1, 2° GOP
    - KeepB = 1, 2° GOP

#### Codebooks

#### Codebooks για IntraY, UV και InterY, UV

| Τύπος   | d      | n            | k     | Εντροπία | PSNR(dB) | Επαναλήψεις | Διάρκεια<br>(minutes) |
|---------|--------|--------------|-------|----------|----------|-------------|-----------------------|
| IntraY  | 16,000 | 56160000,000 | 65536 | 0,712229 | 33,6     | 3249        | 12154                 |
| IntraUV | 16,000 | 28080000,000 | 65536 | 0,743071 | 42,1     | 2697        | 3119                  |
| InterY  | 16,000 | 42117616,000 | 65536 | 0,692577 | 40,5     | 3270        | 9120                  |
| InterUV | 16,000 | 21058808,000 | 65536 | 0,707785 | 48,1     | 4221        | 8509                  |

# Εντροπία υπό συνθήκη

 Η πληροφορία για μια τυχαία μεταβλητή Υ μπορεί μόνο να μας μειώσει την εντροπία της μεταβλητής Χ

$$H(X|Y) \leq H(X)$$

- Δημιουργία 8 ισοπίθανων περιοχών με βάση την ενέργεια των codewords
- Παραγωγή στατιστικών των 8 contexts με βάση την ενέργεια των γειτόνων

#### **Contexts**

| I Y entropy | I UV Entropy | P Y Entropy | P UV Entropy |
|-------------|--------------|-------------|--------------|
| 0,5400      | 0,6434       | 0,5443      | 0,6314       |



- Περιγραφή Προβλήματος
- Ψηφιακό Βίντεο
- Θεωρία Πληροφοριών
- K-means
- VQ Training
- Τροποποίηση JM H.264
- Αποτελέσματα VQ H.264
- VQ H.264 vs. JM H.264
- Συμπεράσματα

#### VQ H.264 Encoder



#### VQ H.264 Decoder



- Περιγραφή Προβλήματος
- Ψηφιακό Βίντεο
- Θεωρία Πληροφοριών
- K-means
- VQ Training
- Τροποποίηση JM H.264
- Αποτελέσματα VQ H.264
- VQ H.264 vs. JM H.264
- Συμπεράσματα

## VQ H.264 vs. JM H.264











# Αποτελέσματα VQ H.264

|       | ΥI   | YU    | YV    | PI   | PU    | PV    | ВІ    | BU   | BV    |
|-------|------|-------|-------|------|-------|-------|-------|------|-------|
| test1 | 35,2 | 39,72 | 39,67 | 41,2 | 43,91 | 43,87 | 43,00 | 45,1 | 45,22 |
| test2 | 35,5 | 41,1  | 42,83 | 38,9 | 41,53 | 43,28 | 40,38 | 43   | 44,71 |
| test3 | 30,7 | 39,86 | 41    | 36,7 | 42,64 | 43,76 | 38,00 | 43,7 | 44,90 |
| test4 | 44,1 | 47,36 | 47,91 | 46   | 47,2  | 47,75 | 46,55 | 47,4 | 48,05 |
| test5 | 37   | 50,12 | 48,7  | 44   | 49,9  | 49,65 | 44,78 | 50,5 | 50,29 |

- Περιγραφή Προβλήματος
- Ψηφιακό Βίντεο
- Θεωρία Πληροφοριών
- K-means
- VQ Training
- Τροποποίηση JM H.264
- Αποτελέσματα VQ H.264
- VQ H.264 vs. JM H.264
- Συμπεράσματα

# Σύγκριση Mbits



#### Σύγκριση Πολυπλοκότητας Encoding



### Σύγκριση Πολυπλοκότητας Decoding



- Περιγραφή Προβλήματος
- Ψηφιακό Βίντεο
- Θεωρία Πληροφοριών
- K-means
- VQ Training
- Τροποποίηση JM H.264
- Αποτελέσματα VQ H.264
- VQ H.264 vs. JM H.264
- Συμπεράσματα

## Συμπεράσματα

- ✓ Καλύτερη απόδοση του VQ και ιδιαίτερα στα δύσκολα βίντεο
- ✓ Εύκολη και γρήγορη βελτίωση των codebooks
- ✓ Μείωση πολυπλοκότητας του decoder
- Μεγάλη αύξηση της πολυπλοκότητας του encoder
- Μεγάλη απόκλιση του PSNR κάθε συνιστώσας