UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450 Alexandria, Virginia 22313-1450 www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/719,759	11/20/2003	Chin-Ta Su	P910229	3129
STOUT, UXA, BUYAN & MULLINS LLP 4 VENTURE, SUITE 300 IRVINE, CA 92618			EXAM	IINER
		, 222	MCDONALD, R	ODNEY GLENN
			ART UNIT	PAPER NUMBER
			1795	
			MAIL DATE	DELIVERY MODE
			08/20/2009	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES

Ex parte CHIN-TA SU

Appeal 2009-2986 Application 10/719,759 U.S. Patent Publication 2005/0109608

Decided: August 20, 2009

Before: FRED E. McKELVEY, *Senior Administrative Patent Judge*, and RICHARD TORCZON and MICHAEL P. TIERNEY, *Administrative Patent Judges*.

McKELVEY, Senior Administrative Patent Judge.

DECISION ON APPEAL

1 A. Statement of the case

- 3 Macronix International Co., Ltd, of Hsinchu, Taiwan ("Macronix"),
- 4 the real party in interest, seeks review under 35 U.S.C. § 134(a) of a final
- 5 rejection (mailed 7 September 2007).
- The application on appeal was filed on 20 November 2003.
- 7 Claim 1-2, 6-8, 12-13 and 17 are in the application.
- 8 The Examiner relies on the following prior art:

Besser	U.S. Patent 5,970,370	19 Oct. 1999
Giewont	U.S. Patent 6,388,327	14 May 2002

16

17

1	The reader should know that "et al" is not used in this opinion.
2	Besser and Giewont are prior art under 35 U.S.C. § 102(b).
3	We have jurisdiction under 35 U.S.C. § 134(a).
4	B. Findings of fact
5	The following findings of fact are supported by a preponderance of
6	the evidence.
7	References to the specification are to U.S. Patent Publication
8	2005/0109608 A1.
9	To the extent that a finding of fact is a conclusion of law, it may be
10	treated as such.
11	Additional findings appear in the Discussion portion of the opinion
12	The invention
13	The invention can be understood with reference to (1) Fig. 1, Fig. 2
14	and Fig. 4—all of which are reproduced below—and (2) an annotated
15	version of claim 1.

Fig. 1 depicts a cross-section of a semiconductor

FIG. 2

Fig. 2 depicts a cross-section of a semiconductor after a first thermal process

1

2

Fig. 4 depicts a flow chart diagram illustrating the method steps

1	Claim 1, reproduced from the claims appendix of the Appeal Brief,
2	reads as follows [bracketed matter, drawing numbers and some indentation
3	added]:
4	Claim 1
5	A method of improving a thermal stability for cobalt salicide,
6	comprising:
7	[1] providing [Fig. 4 152] a substrate [Fig. 1 102] having a
8	silicon layer [Fig. 1 104] thereon;
9	[2] forming [Fig. 4 154] a cobalt layer [Fig. 1 106] over the
10	silicon layer [Fig. 1 104];
11	[3] forming [Fig. 4 156] a TiN _x layer [Fig. 1 108] over the
12	cobalt layer [Fig. 1 106];
13	[4] performing a first [Fig. 4 158] thermal process to form a
14	cobalt salicide layer [Fig. 2 110]over the silicon layer [Fig 2
15	104], the performing of the first thermal process including:
16	[a] diffusing cobalt into the silicon layer to form the
17	cobalt salicide layer [compare Fig. 1 with Fig. 2];
18	[b] diffusing nitrogen in the TiN _x layer into the cobalt
19	salicide layer [specification \P 0011 and \P 0024]; and
20	[c] minimizing a diffusion of the Ti from the TiN_x layer
21	into the silicon layer [specification ¶ 0024];
22	and
23	[5] removing [Fig. 4 160] a non-reactive cobalt layer;
24	wherein

1	[a] the TiN _x layer is formed by a sputtering process
2	[using a gas mixture including at least N2 and Ar
3	(argon)], [and]
4	[b] a [sic—the] ratio of N ₂ to Ar [argon] in a [sic—the]
5	gas used in the sputtering process is approximately 3:1.
6	Comments on claim 1
7	Claim 1 is not a model of clarity.
8	(1)
9	We are not sure what is meant by "improving". The claim does not
10	specify improvement over "what". We have considered part of ¶ 0006 and
11	all of ¶ 0007 of the Specification:
12	Therefore, in conventional semiconductor manufacturing
13	processes, cobalt salicide processing is typically only
14	used in mid- and back-end processes to avoid process
15	temperatures that are too high. In some conventional
16	applications, a titanium (Ti) or a titanium nitride (TiN)
17	layer is formed on the cobalt layer to avoid cobalt
18	oxidation, but thermal stability remains a challenge.
19	[0007] In consideration of the foregoing, what is needed
20	is a method of improving the thermal stability of cobalt
21	salicide to enable use of desirable cobalt salicide
22	processes in front-end processing.
23	Based on ¶¶ 0006 and 0007, we guess Macronix means improvement
24	of the thermal stability such that the product of the process of claim 1 can be

1	used in "front-end processing" (a phrase with which we are not familiar).
2	Giewont also describes improved thermal stability. Col. 2:35-36
3	The general steps set out in claim 1 are discussed in the prior art and
4	because the "preamble" in no way breathes life into the meaning of the
5	claim, the precise nature of any "improvement" is not a consideration in
6	evaluating the obviousness of the subject matter claimed. We note that
7	independent claim 7 does not contain the confusing language of the
8	preamble of claim 1.
9	(2)
10	Improving "a thermal stability" is also confusing due to the presence
11	of the word "a". The word "a" suggests that there are different thermal
12	stabilities which might be improved. Insofar as were are aware, "thermal
13	stability" is a single property. Accordingly, we are not sure what is mean by
14	"a" thermal stability. We will construe "a" to mean "the." Cf. Specification
15	¶ 0007.
16	(3)
17	Some limitations in [5] give us pause. There is no clear antecedent
18	requirement that the sputtering process use a mixture of nitrogen and argon.
19	The word "a" in "a ratio" and "a gas" is confusing. For the purpose of
20	deciding the appeal, we will construe limitation [5] as set out above
21	including the bracketed clarifications.
22	(4)
23	To resolve the appeal, we have construed claim 1 consistent with our
24	bracketed annotations in claim 1 as reproduced above.

1	Examiner's rejection
2	The Examiner rejected the claims on appeal as being unpatentable
3	under 35 U.S.C. § 103 over Giewont and Besser.
4	C. Discussion
5	Claim 1, as interpreted above, requires a sputtering process using a
6	gas comprising nitrogen (N_2) and argon (Ar) where in the ratio of nitrogen to
7	argon is "approximately 3:1."
8	The Examiner found that Giewont describes the general process
9	claimed by Macronix.
10	With respect to the nitrogen to argon ratio, the Examiner relies
11	on Fig 2. of Giewont, reproduced below.

Giewont Fig. 2 depicts a graph illustrating the relationship between target voltage and nitrogen flow in a sputtering process

1	Fig. 2 explicitly describes the use of a ratio of nitrogen to argon from
2	0.5:1 (when nitrogen is 20 and argon is 40) to 1.5:1 (when nitrogen is 60 and
3	argon is 40).
4	The precise meaning of "approximately" in the phrase "approximately
5	3:1" is not apparent. Moreover, we find no guidance in the specification to
6	assist one skilled in the art to determine the meets and bounds of
7	"approximately" in the context of the invention. Nevertheless, the Examiner
8	determined that a ratio of "approximately 3:1" differs from a ratio of "1.5:1"
9	explicitly described by Giewont. Examiner's Answer, page 4:3-4.
10	To overcome the difference, the Examiner relies on the following
11	general teaching of Giewont (col. 2:28-31) (italics added):
12	[a]s noted above, the conventional TiN in capping layer 3
13	is generally not truly stoichiometric, but includes
14	additional nitrogen. Nitrogen atoms may thus diffuse out
15	of the capping layer 3 into and through the cobalt layer 2.
16	Based on Giewont's statement, the Examiner reasoned that it would
17	have been obvious to use a nitrogen to argon ratio of approximately 3:1.
18	Examiner Answer's, page 4. Why? Because a high nitrogen to argon ratio
19	(1) would allow formation of a film that has excess nitrogen (id.) and (2) can
20	lead to thermal stability (col. 2:35-36).
21	Responding to the Examiner's findings and conclusions, Macronix,
22	points out that Giewont also teaches (col. 2:33-56):
23	[a]lthough possible beneficial effects of introducing
24	nitrogen into a self-aligned CoSi ₂ are known (for
25	example, improving thermal stability to agglomeration),

1	the involvement of nitrogen in the cobalt salicide
2	formation process has an undesirable effect. Specifically,
3	diffusion of N atoms from the TiN capping layer 3 to the
4	oxide layer 11 (see FIG. 4A [not reproduced]) may result
5	in formation of an oxynitride layer 21, which blocks
6	diffusion of Si atoms 10 to the cobalt layer 2 (FIG. 4B;
7	compare FIG. 3B [neither Fig. reproduced]). A thick
8	oxynitride may also inhibit transport of Co atoms. This
9	results in incomplete formation of the CoSi, with a layer
10	22 of unreacted Co above the oxynitride 21 after the first
11	anneal (FIG. 4C [not reproduced]; compare FIG. 3C [not
12	reproduced]). This Co layer 22 is stripped away with the
13	TiN capping layer 3, leaving a thin layer of CoSi. This in
14	turn results in a thin layer 25 of CoSi ₂ being formed in
15	the second anneal (FIG. 4D [not reproduced]).
16	Discontinuities in the CoSi ₂ layer 25 (that is, incomplete
17	coverage of the Si gate 1) have been observed.
18	There is therefore a need for a capping layer for
19	the cobalt metal which in general controls the
20	introduction of N into the cobalt prior to formation of the
21	CoSi ₂ , and in particular avoids formation of an oxynitride
22	between the cobalt and silicon, thereby permitting
23	complete formation of the CoSi.

1	Macronix reasons that the quoted portion of Giewont would
2	discourage the use of the claimed nitrogen to argon ratio to avoid formation
3	of oxynitride between the cobalt and silicon. Appeal Brief, page 11.
4	The Examiner was not impressed. The Examiner found that Giewont
5	tells one skilled in the art that additional nitrogen has a benefit—"improving
6	thermal stability to agglomeration" (col. 2:35-36). Examiner's Answer,
7	page 6, second full paragraph. Moreover, the Examiner correctly found that
8	the claims on appeal do not exclude the presence of an oxynitride layer.
9	Examiner's Answer, page 6, first full paragraph.
10	On the one hand, Giewont states that more nitrogen can be used, but
11	only explicitly describes up to 1.5:1 nitrogen to argon ratio. On the other
12	hand, Giewont also teaches why too much nitrogen is not a good thing. But,
13	Giewont says additional nitrogen provides a benefit of adding additional
14	nitrogen and the claims on appeal do not exclude the presence of
15	oxynitrides. In addition, since Giewont advises one skilled in the art when
16	to stop increasing the nitrogen to argon ratio (i.e., when oxynitrides become
17	a problem) and suggests that additional nitrogen may be added, we feel
18	comfortable finding that one skilled in the art would have used any suitable
19	nitrogen to argon ratio which would avoid unacceptable oxynitride
20	formation. Based on our review of the record (and giving Macronix the
21	benefit of the doubt that its claimed process does not result in a product with
22	unacceptable oxynitrides), one skilled in the art would know to use a ratio of
23	nitrogen to argon which is "approximately 3:1" (as well as perhaps other
24	lower or higher acceptable ratios).

1	Macronix does not ten us (1) why the approximately 3:1 ratio is
2	significant vis-à-vis formation of oxynitrides or (2) what result, if any, is
3	obtained using that ratio that is not otherwise obtained. Cf. In re Woodruff,
4	919 F.2d 1575, 1578 (Fed. Cir. 1990) (where the difference between the
5	claimed process invention and the prior art is some range or other variable
6	within the claims, the applicant must show that the particular range is
7	critical, generally by showing that the claimed range achieves unexpected
8	results relative to the prior art range); In re Aller, 42 CCPA 824, 826, 220
9	F.2d 454, 456 (CCPA 1955) (normally, it is to be expected that a change in
10	concentration would be an unpatentable modification unless a new and
11	unexpected result is obtained).
12	Macronix does not single out other limitations for consideration.
13	Accordingly, Macronix has failed to show on appeal that the Examiner erred
14	in rejecting the claims on appeal over the prior art.
15	D. Decision
16	Macronix has not sustained its burden on appeal of showing that the
17	Examiner erred in rejecting the claims on appeal as being unpatentable under
18	§ 103 over the prior art.
19	Upon consideration of the appeal, and for the reasons given herein,
20	it is
21	ORDERED that the decision of the Examiner rejecting
22	claims 1-2, 6-8, 12-13 and 17 the prior art is affirmed.

- 1 FURTHER ORDERED that no time period for taking any
- 2 subsequent action in connection with this appeal may be extended under
- 3 37 C.F.R. § 1.136(a)(1)(iv) (2008).

AFFIRMED

ack

cc (via First Class mail)

STOUT, UXA, BUYAN & MULLINS LLP 4 VENTURE, SUITE 300 IRVINE CA 92618