

Jul 14, 2021

© Piezo proteins: incidence and abundance in the enteric nervous system with immunohistochemical techniques

Forked from Piezo proteins: incidence and abundance in the enteric nervous system with immunohistochemical techniques

Michael Schemann¹, Gemma Mazzuoli-Weber²

¹Technische Universitaet Muenchen; ²University of Veterinary Medicine Hannover

1	Works for me	≪	Share	dx.doi.org/10.17504/protocols.io.bwj5pcq6
PARC ch. sup	port email: info@neuinfo.or	g		
М	anmeet Bains			

ABSTRACT

This protocol is to quantify the presence of both Piezo1 and 2 in enteric neurons throughout the gastrointestinal tract using immunohistochemistry on human samples that were obtained from patients undergoing surgery. The samples were taken from macroscopically unaffected areas. Using immunohistochemical techniques to determine the expression of Piezo channels in the ENS we investigated the co-expression of Piezo1 and 2 channels with a wide range of markers for enteric neuronal populations.

DO

dx.doi.org/10.17504/protocols.io.bwj5pcq6

EXTERNAL LINK

https://doi.org/10.1007/s00441-018-2926-7

PROTOCOL CITATION

Michael Schemann, Gemma Mazzuoli-Weber 2021. Piezo proteins: incidence and abundance in the enteric nervous system with immunohistochemical techniques. **protocols.io** https://dx.doi.org/10.17504/protocols.io.bwj5pcq6

MANUSCRIPT CITATION please remember to cite the following publication along with this protocol

Mazzuoli-Weber, G., Kugler, E.M., Bühler, C.I. et al. Cell Tissue Res (2019) 375: 605. https://doi.org/10.1007/s00441-018-2926-7 Published Erratum: Mazzuoli-Weber, G., Kugler, E.M., Bühler, C.I. et al. Correction to: Piezo proteins: incidence and abundance in the enteric nervous system. Is there a link with mechanosensitivity?. Cell Tissue Res 377, 281 (2019). https://doi.org/10.1007/s00441-019-03040-8

FORK NOTE

FORK FROM

Forked from Piezo proteins: incidence and abundance in the enteric nervous system with immunohistochemical techniques, Manmeet Bains

KEYWORDS

Enteric nervous system, Gastrointestinal, Mechanosensitivity, Piezo channels, Immunohistochemistry

LICENSE

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Citation: Michael Schemann, Gemma Mazzuoli-Weber (07/14/2021). Piezo proteins: incidence and abundance in the enteric nervous system with immunohistochemical techniques. https://dx.doi.org/10.17504/protocols.io.bwj5pcq6

CREATED

Jul 13, 2021

LAST MODIFIED

Jul 14, 2021

PROTOCOL INTEGER ID

51549

MATERIALS TEXT

a. Human samples of large and small intestines

b.Krebs solution containing (in mM): 117 NaCl, 11 Glucose, 4.7 KCl, 1.2 MgCl₂, 1.2 NaH₂PO₄, 25 NaHCO₃, 2.5 CaCl₂; Sigma-

Aldrich (Schnelldorf, Germany)

c.4% paraformaldehyde;Sigma- Aldrich

d.0.002% picric acid; Sigma- Aldrich

e.0.1 mol/l phosphate buffer; Sigma- Aldrich

f.Phosphate-buffered saline (PBS): H₂O, Sodium Phosphate Monobasic, Sodium Phosphate Dibasic, NaCl; Sigma-Aldrich

g.0.1% NaN3, Sigma- Aldrich

h.4% horse serum (HS) Sigma- Aldrich

i.poly-I-lysine- coated slides; Menzel (Braunschweig, Germany)

j.Glycerol; Sigma-Aldrich

I.epifluorescence microscope (Olympus, Germany)

m.Scion image software (Scion Corp., Frederick, MD, USA) on the computer

k. Antibodies:

Antibody	Source	Diluition
Rabbit anti- PIEZO1 (NBP1- 78446)	Novus Biological, Cambridge, UK	1:20000/2000
Rabbit anti- PIEZO2 (NBP1- 78624)	Novus Biological, Cambridge, UK	1:2000
Human: Mouse Anti-HU Biotin (A- 21272) Guinea pig/Mouse: Human anti-Hu	Thermo Fisher Scientific	1:50 1:10000
Goat anti-choline acetyltransferase (ChAT; AB144P)	Chemicon, Limburg, Germany	1:100
Guinea pig: Sheep anti-nitric oxide synthase (NOS; AB1529)	Chemicon, Limburg, Germany	1:1000
Guinea pig: Rabbit anti-vasoactive intestinal peptide (VIP; RIN-7161)	Peninsula laboratories international, Inc., USA	1:5000
Mouse/Human: Mouse Anti- vasoactive intestinal peptide (VIP; MaVIP)	East Acres Biological, Southbridge, MA, USA	1:6000/1:2000
Mouse/Human: Rabbit Anti- nitric oxide synthase (210 501R025)	Alexis, Enzo Life Sciences GmbH, Lörrach Germany	1:5000/1:2000
Goat anti- VR1(P19) (SC- 12503)	Santa Cruz, Heidelberg, Germany	1:500/1:1000
Sheep anti-TH (AB1542)	Chemicon, Limburg, Germany	1:5000
Mouse anti- calbindin (300)	SWant, Marly, Switzerland	1:200
Rabbit anti-CGRP (CA-08-220)	Genosys, Cambridgeshire, UK	1:6000

Table 1. List of primary antibodies used.

Antibody	Source	Diluition
Donkey Anti-	Dianova,	1:200
Rabbit Cy2 (711-	Hamburg,	
225-152)	Germany	
Donkey Anti-	Dianova	1:500
Rabbit Cy3 (711-		
165-152)		
Donkey Anti-Goat	Dianova	1:500
Cy5 (705-175-147)		
Donkey Anti-Goat	Dianova	1:500
Cy3 (705-165-147)		
Donkey Anti-	Dianova	1:50
Human AMCA		
(709-155-149)		
Streptavidin Cy3	Dianova	1:500
(016-160-084)		
Donkey Anti-	Dianova	1:500
Mouse Cy3 (715-		
165-151)		
Donkey Anti-	Dianova	1:200
Sheep Cy2 (713-		
225-147)		

Table 2. List of secondary antibodies used.

- 1 Human samples of large and small intestines were taken from macroscopically unaffected areas and placed in an ice-cold-oxygenated sterile Krebs solution and immediately transferred to the laboratory. Tissues were then dissected in the ice-cold oxygenated sterile Krebs solution to obtain whole-mount submucosal and myenteric plexus preparations.
- Tissue specimens were fixed overnight at room temperature in a solution containing 4% paraformaldehyde and 0.002% picric acid in 0.1 mol/l phosphate buffer and then washed (3 × 10 min) in phosphate buffer.
- 3 The preparations were then incubated in phosphate-buffered saline (PBS)/ NaN3 (0.1%)/horse serum (HS, 4%) for 1 h at room temperature followed by 48 h and 12 h incubation with the primary and secondary antibody, respectively. For the Piezo1 antibody, double and triple staining for the co-localization study was performed.
- 4 Specimens were washed in PBS, mounted on poly-l-lysine- coated slides and cover slipped with a solution of PBS (pH 7.0)/NaN3 (0.1) containing 65% glycerol.
- 5 The preparations were examined with an epifluorescence microscope (Olympus) equipped with appropriate filter blocks. Pictures were acquired with a video camera connected to a computer and controlled by Scion image software (Scion Corp., Frederick, MD, USA). Frame integration and contrast enhancement were employed for image processing.
- 6 Neurons stained with the antibodies were manually counted and picture of the stained ganglia were acquired.