분위수

정의

- X를 연속형 CDF를 갖는 확률변수라고 할 때 0 < P < 1에 대하여
- 1. $p_{!}$ $p_{!}$
- 1) 확률표본 $X_1, ..., X_n$ 의 순서통계량 $Y_1, ..., Y_k, ..., Y_n$ 중 k가 누적 확률 P에 해당하는 $p_{분위수}$ 인경우,
- (1) 그 기댓값을 구하면 $E[F(Y_k)] = \int_a^b F(Y_k)g(Y_k) dy_k$
- (2) 한편, $g(Y_k) = \int_{y_k}^b \cdots \int_{y_{n-1}}^b \int_a^{y_k} \cdots \int_a^{y_2} f(y_1) \cdots f(y_n) dy_1 \cdots dy_{k-1} dy_n \cdots dy_{k+1}$
- $= \frac{n!}{(k-1)!(n-k)!} [F(y_k)]^{k-1} [1 F(y_k)]^{n-k} f(y_k)$
- (3) $F(Y_k) = u$ 로 치환하면, $\frac{du}{dY_k} = f(y_k)$, $du = g(y_k)dY_k$ 이므로
- $(4) \int_{a}^{b} F(Y_{k}) g(Y_{k}) dy_{k} = \int_{a}^{b} u \frac{n!}{(k-1)!(n-k)!} u^{k-1} [1-u]^{n-k} du$ $= \frac{n!}{(k-1)!(n-k)!} \int_{a}^{b} u^{k} [1-u]^{n-k} du = \frac{n!(n-k)!}{(k-1)!(n-k)!(n-k)!} = \frac{k}{n+1}$

정의

• q-q 플롯

- 1. X의 CDF F(x)는 알려졌으나 모수 a,b는 모른다고 가정하자.
- 1) 이 때, $z = \frac{x-a}{b}$ 꼴의 관계를 갖는 확률변수를 정의하면, $cdf(z) = f(\frac{x-a}{b})$ 이다.
- 2) $\epsilon_{x,P}$ 가 X의 $p_{분위수}$ 이고, $\epsilon_{z,P}$ 가 z의 $p_{분위수}$ 라고 한다면
- (1) $p = p[x \le \varepsilon_{x,P}] = p\left[z \le \frac{\varepsilon_{x,P} a}{b}\right] \ 0 \ | \ \Box + C$
- 3) 한편, 순서통계량 $Y_1, ..., Y_k, ..., Y_n$ 이 존재할 때, Y_k 는 ε_{x,p_k} 에 대한 추정량이고, 같은 분위수 k에 대해 $\varepsilon_{z,p_k}=F^{-1}(p_k)$ 로 정의할 때
- 4) Y_k 에 대한 ε_{z,p_k} 의 그래프를 q-q 플롯 이라고 한다.
- 2. 이 때 , p $\left[z \leq \frac{\varepsilon_{x,p}-a}{b}\right]$ 에 대해서 $\varepsilon_{x,p_k} = b\varepsilon_{z,p_k} + a$ 를 유추할 수 있다. 즉, Y_k 와 ε_{z,p_k} 는 보통 선형관계이다.

정으

- 분위수와 신뢰구간
- 1. 성공 실패를 판별하는 이항분포의 pdf를 활용하여 신뢰구간을 정의한다.
- 2. X를 f(x)를 갖는 연속확률변수라고 할 때, ε_p 를 $F(\varepsilon_p) = P$ 를 만족하는 p분위수라 하자.
- 1) 이 때, $Y_1, \dots, Y_k, \dots, Y_n$ 에서 Y_k 를 ε_p 에 대한 점추정량이라고 할 때

- 2) $Y_i < \varepsilon_p < Y_j$ 일때, 적어도 i개가 ε_p 보다 작아야 하고 ε_p 를 포함한다 하더라도 J개를 넘지 않는다.
- 3) (1-a) = $p(Y_i < \varepsilon_p < Y_j)$ 일 때,이는 n회 시행에서 i와 j 사이의 성공을 얻는 이항 확률 실험과 같다. 즉

$$a = \sum_{w=i}^{j-1} \frac{n!}{(n-w)!} \cdot p^w (1-p)^{(n-w)}$$