18 | Spectral Sequences

18.1 Motivation. Hurewicz Isomorphism Theorem 17.4 lets us compute the first non-trivial homotopy group of a space X using homological methods. In order to extend this to to higher homotopy groups of X, one can attempt the following approach. Assume that $\pi_k(X) = 0$ for k < n and that we know homology groups of X. This in particular gives us $\pi_n(X) \cong H_n(X)$. We can construct a map $f_n \colon X \to K(\pi_n(X), n)$ which induces an isomorphism on n-th homotopy groups. Let X_n denote the homotopy fiber of f_n . The long exact sequence of a fibration shows that $\pi_k(X_n) = 0$ for k < n + 1 and $\pi_k(X) \cong \pi_k(X_n)$ for $k \ge n + 1$. In particular using the Hurewicz Isomorphism Theorem we obtain

$$\pi_{n+1}(X) \cong \pi_{n+1}(X_n) \cong H_{n+1}(X_n)$$

Thus computations of $\pi_{n+1}(X)$ are reduced to computing a homology group of the space X_n .

This procedure can be repeated: once we know $\pi_{n+1}(X_n)$, we can construct a map $f_{n+1}\colon X_n\to K(\pi_{n+1}(X_n),n+1)$ that induces an isomorphism on (n+1)-st homotopy groups. Taking X_{n+1} to be the homotopy fiber of this map we obtain isomorphisms

$$\pi_{n+2}(X) \cong \pi_{n+2}(X_n) \cong \pi_{n+2}(X_{n+1}) \cong H_{n+2}(X_{n+1})$$

Proceeding recursively, we obtain that in order to compute homotopy groups of X it suffices to compute homology groups of spaces X_k for $k \ge n-1$ such that $X_{n-1} = X$ and which are connected by fibration sequences

$$X_{k+1} \rightarrow X_k \rightarrow K(\pi_{k+1}(X), k+1)$$

In order to carry out this program we would need to;

- calculate homology groups of Eilenberg-MacLane spaces K(G, k);
- given a fibration sequence $F \to E \to B$ find a relationship between homology groups of the spaces F, E, and B.

Spectral sequences provide a tool for achieving the second of these objectives. They are helpful with the first one as well.

In this chapter we give the definition of a spectral sequence and some examples how spectral sequences are used. Explanation in which circumstances spectral sequences occur is left for later.

- **18.2 Definition.** A bigraded abelian group G_{**} is a collection of abelian groups $G_{p,q}$ for $p,q \in \mathbb{Z}$.
- **18.3 Definition.** A (first quadrant, homological) spectral sequence (E_{**}^r, d^r) is a sequence of bigraded abelian groups E_{**}^r for $r = 1, 2, \ldots$ such that:
 - 1) $E_{p,q}^r = 0$ if p < 0 or q < 0.
 - 2) Each E^r_{**} is equipped with homomorphisms (differentials)

$$d^r \colon E^r_{p,q} \to E^r_{p-r,q+r-1}$$

satisfying $d^r d^r = 0$.

3) For each $r \ge 0$ we have $E_{p,q}^{r+1} \cong H_{p,q}(E_{**}^r)$ where

$$H_{p,q}(E_{**}^r) = \frac{\text{Ker}(d^r : E_{p,q}^r \to E_{p-r,q+r-1}^r)}{\text{Im}(d^r : E_{p+r,q-r+1}^r \to E_{p,q}^r)}$$

18.4 Note. The bigraded group E_{**}^r is called the *r-th page* of the spectral sequence.

Below are pictures of the first three pages of a spectral sequence. Notice that the differentials d^r always go between groups $E^r_{p,q}$ where p+q=n for some n and groups where p+q=n-1.

Since all groups $E^r_{p,q}$ with negative p or q are trivial, the differentials d^r originating at $E^r_{p,q}$ are trivial for r > p. Likewise, the differentials d^r terminating at $E^r_{p,q}$ are trivial if r > q + 1. As a consequence, for $r \le \max(p+1, q+2)$ we get

$$E_{p,q}^r = E_{p,q}^{r+1} = E_{p,q}^{r+2} = \dots$$

For each p, q, let $E_{p,q}^{\infty}$ denote this recurring group. These groups form a bigraded group E_{**}^{∞} .

In typical applications of spectral sequences, E_{**}^{∞} is related to some object of interest, e.g. homology groups of some space. This is done as follows. We start with a graded abelian group H_* i.e. a collection of abelian groups H_n for $n \in \mathbb{Z}$. A filtration of H_* is a sequence of graded subgrops:

$$0 = F_{-1}H_* \subseteq F_0H_* \subseteq F_1H_* \subseteq \ldots \subseteq H_*$$

such that $\bigcup_{p=0}^{\infty} F_p H_* = H_*$.

18.5 Definition. We say that a spectral sequence (E_{**}^r, d^r) converges to a graded group H_* if there exists a filtration of H_* such that

$$E_{p,q}^{\infty} \cong F_p H_{p+q} / F_{p-1} H_{p+q}$$

for all p, q.

Results on existence spectral sequences usually say that there exists a spectral sequence for which we can say describe in some useful way groups $E_{p,q}^r$ for some fixed r, and that this sequence converges to some interesting graded group H_* . Here is one example of such a statement:

18.6 Theorem. Let $p: E \to B$ be a Serre fibration and let $F = p^{-1}(b_0)$ for some $b_0 \in B$. If the space B is simply connected then there exists a spectral sequence (E_{**}^r, d^r) such that

$$E_{p,q}^2 \cong H_p(B, H_q(F))$$

for all p, q, and which converges to $H_*(E)$.

The spectral sequence described in this theorem is called the *Serre spectral sequence* of the fibration *p*.

The next result provides an example how spectral sequences are used in computations.

18.7 Theorem. *If* n > 2 *then*

$$H_m(\Omega S^n) \cong \begin{cases} \mathbb{Z} & \text{if } (n-1)|m \\ 0 & \text{otherwise} \end{cases}$$

Proof. The space ΩS^n is the fiber of a Serre fibration $p \colon P \to S^n$ with a contractible space P. Consider the Serre spectral sequence of this fibration. We have

$$E_{p,q}^2 \cong H_p(S^n, H_q(\Omega S^n)) \cong \begin{cases} H_q(\Omega S^n) & \text{if } p = 0, n \\ 0 & \text{otherwise} \end{cases}$$

For example, for n = 4 the second page of this spectral sequence looks as follows:

	0	1	2	3	4	
0	$H_0(\Omega S^4)$				$H_0(\Omega S^4)$	
1	$H_1(\Omega S^4)$				$H_1(\Omega S^4)$	
2	$H_2(\Omega S^4)$		d_4		$H_2(\Omega S^4)$	
3	$H_3(\Omega S^4)$		d_4		$H_3(\Omega S^4)$	
4	$H_4(\Omega S^4)$		d_4		$H_4(\Omega S^4)$	
5	$H_5(\Omega S^4)$				$H_5(\Omega S^4)$	

All differentials in the spectral sequence are trivial, except, possibly $d^n \colon E^n_{p,q} \to E^n_{0,q+n-1}$. It follows that $E^2_{**} = E^n_{**}$ and $E^{n+1}_{**} = E^\infty_{**}$. The total space P of the fibration is contractible, so $H_0(P) = \mathbb{Z}$ and $H_p(P) = 0$ for p > 0. By Theorem 18.6 we have $E^\infty_{p,q} \cong F_p H_{p+q}(P)/F_{p-1} H_{p+q}(P)$ for some filtration $\{F_p H_*(P)\}$ of $H_*(P)$. It follows that

$$E_{p,q}^{n+1} = E_{p,q}^{\infty} \cong \begin{cases} \mathbb{Z} & \text{if } (p,q) = (0,0) \\ 0 & \text{otherwise} \end{cases}$$

Since $E_{p,q}^{n+1} \cong H_{p,q}(E_{**}^2)$ we obtain that $H_0(\Omega S^n) \cong \mathbb{Z}$ and $H_p(\Omega S^n) = 0$ for $0 . Also, all differentials <math>d^n$ must be isomorphisms. This gives:

$$H_p(\Omega S^n) \cong H_{p+(n-1)}(\Omega S^n) \cong H_{p+2(n-1)}(\Omega S^n) \cong H_{p+3(n-1)}(\Omega S^n) \cong \dots$$

Taking p=0 we obtain that $H_m(\Omega S^n) \cong \mathbb{Z}$ if (n-1)|m. In all other cases $H_m(\Omega S^n) \cong H_p(\Omega S^n)$ for some 0 , and so it is a trivial group.

18.8 Note. The proof of Theorem 18.7 used the observation that all differentials d^r in the Serre spectral sequence of the fibration $p: P \to S^n$ were trivial for $r \ge n+1$. A situation like this appears frequently in computations involving spectral sequences, which motivates the next definition.

18.9 Definition. We say that a spectral sequence *collapses* at the page r_0 if all differentials d^r are trivial for $r \ge r_0$.

If a spectral sequence collapses at the page r_0 then we have $E_{p,q}^{r_0}=E_{p,q}^{r_0+1}=\ldots=E_{p,q}^{\infty}$.