Θεωρία Υπολογισμού

Πρώτο σετ ασχήσεων

Σ ταυρόπουλος Αλέξανδρος Ανδρεας 2019030109

Διδάσκων: Μιχαήλ Λαγουδάκης

ΗΜΜΥ Πολυτεχνείο Κρήτης Εαρινό εξάμηνο 2022-2023

Πίναχας Περιεχομένων

1	Κανονικές Εκφράσεις	1
	1.1 Ερώτημα α	1
	1.2 Ερώτημα β	1
	1.3 Ερώτημα γ	1
2	Πεπερασμένα αυτόματα	2
	2.1 Ερώτημα α	2
	2.2 Ερώτημα β	2
	2.3 Ερώτημα γ	2
3	Μη ντετερμινισμός και κανονικότητα αυτομάτων	3
	3.1 Ερώτημα α	3
	3.2 Ερώτημα β	5
4	Κανονικές γλώσσες	8
	4.1 Ερώτημα α	8
	4.2 Ερώτημα β	8
	4.3 Ερώτημα γ	8
5	Ελαχιστοποίηση καταστάσεων	9
	5.1 Ερώτημα α	9
	5.2 Ερώτημα β	13
	5.3 Ερώτημα γ	13

1 Κανονικές Εκφράσεις

 $\mathbf{1.1}$ α) $\mathbf{L} = \{\mathbf{w} \in \{a,b\}^* : \mathbf{\eta} \ \mathbf{w} \ \text{περιέχει αχριβώς } 2 \ \text{εμφανίσεις του a και άρτιο αριθμό από b} \}$

$$L = \mathcal{L}\left((bb)^* \left(\left((ab \cup ba)(bb)^*(ab \cup ba)\right) \bigcup \left(aa\right)\right)(bb)^*\right)$$

1.2 β) $L = \{w \in a, b^* : η w αρχίζει και τελειώνει με το ίδιο σύμβολο και έχει περιττό μήκος}$

$$L = \mathcal{L}\left(\left(a\Big((a \cup b)(a \cup b)\Big)^*(a \cup b)a\right) \bigcup \left(b\Big((a \cup b)(a \cup b)\Big)^*(a \cup b)b\right)\right)$$

 ${\bf 1.3}$ γ) ${\bf L}=\{{\bf w}\in a,b^*:$ το πλήθος των ${\bf a}$ στην ${\bf w}$ είναι $4{\bf k}+1$ $({\bf k}\geq 0)$ και δεν εμφανίζονται συνεχόμενα ${\bf a}\}$

$$L = \mathcal{L}\bigg(b^*(ab^+ab^+ab^+ab^+)^*ab^*\bigg)$$

2 Πεπερασμένα αυτόματα

 $\mathbf{2.1}$ α) $\mathbf{L} = \{\mathbf{w} \in \{a,b\}^*: \mathbf{\eta} \ \mathbf{w} \ \text{έχει περιττό μήχος και τελειώνει σε ab}\}$

 $\mathbf{2.2}$ β) $\mathbf{L} = \{\mathbf{w} \in \{a,b\}^*: \mathbf{\eta} \ \mathbf{w} \ \text{έχει άρτιο μήχος και το πλήθος των b είναι } 3\mathbf{m} + 1 \ \mathbf{\gamma}$ ια κάποιο $\mathbf{m} \geq 0\}$

 $\mathbf{2.3}$ γ) $\mathbf{L} = \{\mathbf{w} \in \{a,b\}^* : \text{το πρώτο σύμβολο της } \mathbf{w} \text{ έχει περιττό αριθμό εμφανίσεων} \}$

3 Μη ντετερμινισμός και κανονικότητα αυτομάτων

Figure 1: Μη ντετερμινιστικό αυτόματο Μ

$\mathbf{3.1}$ α) Κατασχευάστε αναλυτιχά ένα ισοδύναμο ντετερμινιστιχό αυτόματο M'

Για την κατασκευή του ισοδύναμου ντετερμινιστικού αυτόματου, αρχικά είναι απαραίτητο να υπολογιστούν τα E κάθε κατάστασης. Στο E μίας κατάστασης τοποθετούνται όλες οι καταστάσεις προς τις οποίες υπάρχει κενή μετάβαση, ενώ είναι προφανές πως πάντα θα περιέχεται η ίδια η κατάσταση που εξετάζεται.

$$E(q_1) = \{q_1, q_3\}$$

$$E(q_2) = \{q_2\}$$

$$E(q_3) = \{q_3\}$$

$$E(q_4) = \{q_1, q_4\}$$

Έχοντας κατασκευάσει τα E, κατασκευάζεται η νέα αρχική κατάσταση η οποία ισούται με το E της προηγούμενης αρχικής κατάστασης, δηλαδή της q_1 :

start
$$\rightarrow (q_1, q_3)$$

Στην συνέχεια, εξετάζονται όλες οι πιθανές μεταβάσεις από την αρχική κατάσταση:

$$q_1 \xrightarrow{a} X$$

$$q_3 \xrightarrow{a} E(q_3) \bigcup E(q_4)$$
 Άρα η μετάβαση a οδηγεί στο $E(q_3) \cup E(q_4)$

$$q_1 \xrightarrow{b} E(q_2)$$

$$q_3 \xrightarrow{b} E(q_2)$$
 Άρα η μετάβαση b οδηγεί στο $E(q_2)$ (1)

οπότε, το σχήμα μετασχηματίζεται ως εξής:

Ομοίως, εξετάζονται όλες οι πιθανές μεταβάσεις από την κατάσταση $\{q_1,q_3,q_4\}$

$$\begin{array}{c} q_1 \stackrel{a}{\to} X \\ q_3 \stackrel{a}{\to} \mathrm{E}(q_3) \bigcup \mathrm{E}(q_4) \\ q_4 \stackrel{a}{\to} X \end{array} \right\} \text{Ara h metábash a odhyel sto } E(q_3) \cup E(q_4) \\ \\ q_4 \stackrel{a}{\to} X \\ \end{array}$$

$$\begin{array}{c} q_1 \stackrel{b}{\to} \mathrm{E}(q_2) \\ q_3 \stackrel{b}{\to} \mathrm{E}(q_2) \\ q_4 \stackrel{b}{\to} X \end{array} \right\} \text{Ara h metábash b odhyel sto } E(q_2)$$

οπότε, το σχήμα μετασχηματίζεται ως εξής:

Ακολουθώντας την ίδια διαδικασία για την κατάσταση $\{q_2\}$

$$q_2 \stackrel{a}{\to} \mathrm{E}(q_3) \Big\}$$
 Άρα η μετάβαση a οδηγεί στο $E(q_3)$

$$q_2 \xrightarrow{b} X \Big\}$$
Άρα η μετάβαση b οδηγεί σε καταβόθρα

Ακολουθώντας την ίδια διαδικασία για την κατάσταση $\{q_3\}$

$$q_3 \xrightarrow{a} E(q_3) \bigcup E(q_4)$$
 Άρα η μετάβαση a οδηγεί στο $E(q_3) \bigcup E(q_4)$

$$q_3 \xrightarrow{b} \! \! \mathrm{E}(q_2) \Big\}$$
Άρα η μετάβαση b οδηγεί στο $E(q_2)$

οπότε το τελικό σχήμα προκύπτει ως εξής:

Τελική κατάσταση θεωρείται μόνο η κατάσταση που περιέχει την κατάσταση q_2

3.2 β) Κατασχευάστε αναλυτικά την κανονική έκφραση για την L(M??) με σειρά απαλοιφής q4, q2, q1, q3.

Για την απαλοιφή μίας κατάστασης, είναι απαραίτητο να αντικατασταθούν όλες οι μεταβάσεις που αξιοποιούν την εκάστοτε κατάσταση, είτε δημιουργώντας νέες είτε ανανεώνοντας τις ήδη υπάρχουσες.

Για την μετατροπή του μη ντετερμινιστικού αυτόματου (figure 1) απαιτείται η εισαγωγή 2 επιπλέον καταστάσεων οι οποίες αντικαθιστούν την υπάρχουσα αρχική και την υπάρχουσα τελική κατάσταση. Μεταξύ των νέων και των παλιών καταστάσεων δημιουργείται κενή μετάβαση.

\mathbf{A} παλοιφή της κατάστασης q_4

Είναι απαραίτητο να αντικατασταθούν οι εξής μεταβάσεις: η μετάβαση $q_3 \xrightarrow{q_4} q_1$. Η αντικατάσταση γίνεται με δημιουργία νέας μετάβασης από την κατάσταση q_3 στην κατάσταση q_4 όταν το (σύμβολο???) είναι a:

Απαλοιφή της κατάστασης q_2

Είναι απαραίτητο να αντικατασταθούν οι εξής μεταβάσεις:

$$q_1 \xrightarrow{q_2} q_3 \Rightarrow ba$$

$$q_1 \xrightarrow{q_2} q_5 \Rightarrow b$$

$$q_3 \xrightarrow{q_2} q_3 \Rightarrow ba$$

$$q_3 \xrightarrow{q_2} q_5 \Rightarrow b$$

Η πρώτη μετάβαση προστίθεται στην ήδη υπάρχουσα κενή μετάβαση που υπήρχε μεταξύ της κατάστασης q_1 και της q_3 ενώ η δεύτερη μετάβαση δημιουργείται καθώς δεν προϋπάρχει μετάβαση. Αντίστοιχα, η τρίτη μετάβαση προστίθεται στο ήδη υπάρχον self loop της κατάστασης q_3 ενώ για την τέταρτη μετάβαση δημιουργεί και πάλι νέα.

Απαλοιφή της κατάστασης q_1

Ομοίως, είναι απαραίτητο να αντικατασταθούν οι εξής μεταβάσεις:

$$q_0 \xrightarrow{q_1} q_3 \Rightarrow ba$$

$$q_0 \xrightarrow{q_1} q_5 \Rightarrow b$$

$$q_3 \xrightarrow{q_1} q_3 \Rightarrow a(e \cup ba)$$

$$q_3 \xrightarrow{q_1} q_4 \Rightarrow ab$$

Για την πρώτη μετάβαση δημιουργείται νέα μετάβαση μεταξύ της q_0 και q_3 ενώ νέα μετάβαση δημιουργείται και για την δεύτερη μετάβαση μεταξύ της q_0 και q_5 . Αντίστοιχα, η τρίτη μετάβαση προστίθεται στο ήδη υπάρχον self loop της κατάστασης q_3 ενώ το ίδιο γίνεται και για την τέταρτη μετάβαση.

Απαλοιφή της κατάστασης q_3

Τέλος, είναι απαραίτητο να αντικατασταθεί η μετάβαση $q_0 \xrightarrow{q_3} q_4$. Η αντικατάσταση γίνεται προσθέτοντας την εξής έκφραση στην ήδη υπάρχουσα μετάβαση μεταξύ q_0 και q_5 :

$$\left(e \cup ba\right) \left(\left(a \cup ba\right) \cup \left(a(e \cup ba)\right)\right)^* \left(b \cup ab\right) \tag{2}$$

Στην παραπάνω έχφραση ο πρώτος όρος προέρχεται από την μετάβαση μεταξύ της q_0 και q_3 , ο δεύτερος αποτελεί το self loop στην q_3 , για αυτό και χρησιμοποιήθηκε αστερίσκος και ο τρίτος όρος προέρχεται από την μετάβαση μεταξύ της q_3 και q_5 .

start
$$\rightarrow Q_0$$
 $((e \cup ba)((a \cup ba) \cup (a(e \cup ba)))^*(b \cup ab)) \cup b$

Έτσι, η τελιχή κανονική έχφραση είναι η εξής : $\left(\left(e \cup ba \right) \left((a \cup ba) \cup \left(a(e \cup ba) \right) \right)^* b \cup ab \right) \bigcup b$

4 Κανονικές γλώσσες

4.1 α) Η τομή μιας κανονικής γλώσσας με μια μη κανονική γλώσσα είναι πάντα κανονική γλώσσα.

Λάθος Ακολουθεί αντιπαράδειγμα:

Έστω μία κανονική γλώσσα $L_1 = \{a^*\}$ και μία μη κανονική γλώσσα $L_2 = \{a^nb^n, n > 0\}$ και έστω ότι η τομή των δύο γλωσσών παράγει μία κανονική γλώσσα:

$$L_1 \cap L_2 = \{a^n, n > 0\}$$

Άτοπο το αποτέλεσμα της τομής δεν είναι κανονικό.

4.2 β) Το συμπλήρωμα μιας πεπερασμένης γλώσσας είναι πάντα κανονική γλώσσα.

Σωστό

Κάθε πεπερασμένη γλώσσα είναι κανονική και επίσης το συμπλήρωμα μίας κανονικής γλώσσας είναι επίσης κανονική γλώσσα λόγω κλειστότητας της πράξης.

4.3 γ) Κάθε μη κανονική γλώσσα περιέχει μη μετρήσιμο πλήθος συμβολοσειρών.

Λάθος

Kάθε κανονική γλώσσα είναι υποσύνολο του Σ^* το οποίο είναι ένα μετρήσιμα άπειρο σύνολο.

5 Ελαχιστοποίηση καταστάσεων

5.1 α) Κατασχευάστε αναλυτικά το ισοδύναμο πρότυπο αυτόματο

 Σ χέση Ξ_o) Χωρίζουμε τις τελιχές με τις μη τελιχές καταστάσεις οπότε προχύπτουν ως εξής:

$$\{q_4\} \{q_1, q_2, q_3, q_5, q_6, q_7, q_8\} \tag{3}$$

Σχέση Ξ₁) Εξετάζεται αν είναι εφικτό να σπάσει μία κλάση σε υποκλάσεις. Προφανώς ελέγχεται μόνο η δεύτερη κλάση εφόσον η πρώτη έχει μόνο ένα μία κατάσταση.

Ο έλεγχος γίνεται εξετάζοντας τις διαδρομές για όλα τα σύμβολα της γλώσσας (a,b) από ένα συγκεκριμένο q με τις αντίστοιχες διαδρομές ενός διαφορετικού q που ανήκει σε μία από τις υποκλάσεις. Στην περίπτωση που καταλήγουν σε κατάσταση της ίδια υποκλάσεις για όλα τα σύμβολα, τότε ανήκουν και στην ίδια υποκλάση αλλιώς το επιλεγμένο q εξετάζεται αν θα τοποθετηθεί σε μία από τις άλλες ήδη υπάρχουσες υποκλάσεις ή θα δημιουργηθεί μία νέα υποκλάση γι αυτό.

Εξετάζεται το q_1 με το q_2

$$\begin{array}{l} q_1 \stackrel{a}{\rightarrow} q_7 \\ q_2 \stackrel{a}{\rightarrow} q_3 \end{array} \end{array} \\ \begin{array}{l} \text{Tdio uposúvolo} \\ q_1 \stackrel{b}{\rightarrow} q_8 \\ q_2 \stackrel{b}{\rightarrow} q_5 \end{array} \\ \end{array} \\ \begin{array}{l} \text{Tdio uposúvolo} \end{array} \\ \end{array} \\ \begin{array}{l} \text{Ara ta } q_1, \ q_2 \ \text{antroposition} \\ \end{array} \\ \end{array}$$

Εξετάζεται το q_1 με το q_3

Εξετάζεται το q_1 με το q_5

$$\begin{array}{l} q_1 \stackrel{a}{\to} q_7 \\ q_5 \stackrel{a}{\to} q_6 \\ q_1 \stackrel{b}{\to} q_6 \\ q_5 \stackrel{b}{\to} q_2 \end{array} \\ \text{Tdio uposúvoλo} \end{array} \right\} \\ \text{Ara ta } q_1, \ q_5 \ \text{analysis} \text{analysis} \text{tous stous} \text{ is uposúvoλo}$$

Εξετάζεται το q_1 με το q_6

$$\begin{array}{l} q_1 \stackrel{a}{\rightarrow} q_7 \\ q_6 \stackrel{a}{\rightarrow} q_6 \end{array} \right\} \text{ Τδιο υποσύνολο} \\ q_1 \stackrel{b}{\rightarrow} q_8 \\ q_6 \stackrel{b}{\rightarrow} q_1 \end{array} \right\} \text{ Τδιο υποσύνολο} \right\} \text{ Άρα τα } q_1, \, q_6 \, \text{ ανήκουν στο } \underline{\text{(διο υποσύνολο)}}$$

Εξετάζεται το q_1 με το q_7

Εξετάζεται το q_7 με το q_3

$$\begin{array}{c} q_7 \stackrel{a}{\rightarrow} q_7 \\ q_3 \stackrel{a}{\rightarrow} q_3 \end{array} \end{array} \\ \begin{array}{c} \text{Τδιο υποσύνολο} \\ q_7 \stackrel{b}{\rightarrow} q_4 \\ q_3 \stackrel{b}{\rightarrow} q_4 \end{array} \\ \begin{array}{c} \text{Τδιο υποσύνολο} \end{array} \\ \end{array}$$

Εξετάζεται το q_1 με το q_8

$$\begin{array}{l} q_1 \xrightarrow{a} q_7 \\ q_8 \xrightarrow{a} q_5 \end{array} \text{ Τδιο υποσύνολο} \\ q_1 \xrightarrow{b} q_8 \\ q_8 \xrightarrow{b} q_1 \end{array} \text{ Τδιο υποσύνολο}$$
 Άρα τα $q_1, \, q_8$ ανήκουν στο ίδιο υποσύνολο

Τελικά, τα υποσύνολα είναι τα εξής:

$$\{q_4\} \{q_3, q_7\} \{q_1, q_2, q_5, q_6, q_8\}$$
 (4)

Σχέση Ξ_2) Ομοίως με την προηγούμενη περίπτωση, εξετάζονται οι κλάσεις $\{q_3,q_7\}$ και $\{q_1,q_2,q_5,q_6,q_8\}$

Εξετάζεται το q_3 με το q_7

$$\begin{array}{c} q_3 \stackrel{a}{\rightarrow} q_3 \\ q_7 \stackrel{a}{\rightarrow} q_7 \end{array} \right\} \text{ Tôio uposúvoλo}$$

$$\begin{array}{c} q_3 \stackrel{b}{\rightarrow} q_4 \\ q_7 \stackrel{b}{\rightarrow} q_4 \end{array} \right\} \text{ Tôio uposúvoλo}$$

$$\begin{array}{c} \text{Υρα τα } q_3, \ q_7 \ \text{ anheomorphism of to the to } q_2 \end{array}$$

Εξετάζεται το q_1 με το q_2

$$\begin{array}{l} q_1 \stackrel{a}{\to} q_7 \\ q_2 \stackrel{a}{\to} q_3 \end{array} \end{array} \\ \begin{array}{l} \text{Tdio uposúvolo} \\ q_1 \stackrel{b}{\to} q_8 \\ q_2 \stackrel{b}{\to} q_5 \end{array} \\ \end{array} \\ \begin{array}{l} \text{Tdio uposúvolo} \end{array} \\ \end{array} \\ \begin{array}{l} \text{Ara ta } q_1, \ q_2 \ \text{antroposition} \\ \end{array} \\ \end{array}$$

Εξετάζεται το q_1 με το q_5

$$\left. \begin{array}{l} q_1 \stackrel{a}{\to} q_7 \\ q_5 \stackrel{a}{\to} q_6 \end{array} \right\}$$
 Διαφορετικό υποσύνολο \Rightarrow Άρα τα $q_1,\,q_5$ ανήκουν στο διαφορετικό υποσύνολο

Εξετάζεται το q_5 με το q_3

$$\left. \begin{array}{l} q_5 \stackrel{a}{\to} q_6 \\ q_3 \stackrel{a}{\to} q_3 \end{array} \right\}$$
 Διαφορετικό υποσύνολο \Rightarrow Άρα τα $q_5, \, q_3$ ανήκουν στο διαφορετικό υποσύνολο

Άρα, δημιουργείται νέο υποσύνολο για το q_5

Εξετάζεται το q_1 με το q_6

Εξετάζεται το q_6 με το q_3

Εξετάζεται το q_6 με το q_5

$$q_6 \stackrel{a}{\rightarrow} q_6 \\ q_5 \stackrel{a}{\rightarrow} q_6 \\ To io υποσύνολο \\ q_6 \stackrel{b}{\rightarrow} q_1 \\ q_5 \stackrel{b}{\rightarrow} q_2 \\ To io υποσύνολο \\ To io υποσύνολο$$

Εξετάζεται το q_1 με το q_8

$$\frac{q_1 \stackrel{a}{\to} q_7}{q_8 \stackrel{a}{\to} q_5} \Delta$$
ιαφορετικό υποσύνολο \Rightarrow Άρα τα q_1, q_8 ανήκουν στο ίδιο υποσύνολο

Εξετάζεται το q_8 με το q_3

$$\left. \begin{array}{c} q_1 \stackrel{a}{\to} q_7 \\ q_8 \stackrel{a}{\to} q_1 \end{array} \right\}$$
 Διαφορετικό υποσύνολο \Rightarrow Άρα τα $q_1, \ q_8$ ανήκουν στο ίδιο υποσύνολο

Εξετάζεται το q_8 με το q_5

$$q_8 \stackrel{a}{\to} q_1 \\ q_5 \stackrel{a}{\to} q_6$$
 Τδιο υποσύνολο
$$q_8 \stackrel{b}{\to} q_1 \\ q_5 \stackrel{b}{\to} q_2$$
 Τδιο υποσύνολο
$$\begin{cases} \text{Υρα τα } q_8, \ q_5 \ \text{ ανήκουν στο } \underline{\text{(διο υποσύνολο)}} \end{cases}$$

Τελικά, τα υποσύνολα είναι τα εξής:

$$\{q_4\} \{q_3, q_7\} \{q_1, q_2\} \{q_5, q_6, q_8\} \tag{5}$$

 Σ χέση Ξ_3) Ομοίως με την προηγούμενη περίπτωση, εξετάζονται οι κλάσεις $\{q_3,q_7\}$ $\{q_1,q_2\}$ $\{q_5,q_6,q_8\}$

Εξετάζεται το q_1 με το q_2

$$\begin{array}{l} q_1 \stackrel{a}{\to} q_7 \\ q_2 \stackrel{a}{\to} q_3 \end{array} \\ \text{Tôio uposúvoλo} \\ q_1 \stackrel{b}{\to} q_8 \\ q_2 \stackrel{b}{\to} q_5 \end{array} \\ \text{Tôio uposúvoλo} \end{array}$$
 Άρα τα q_1, q_2 ανήχουν στο ίδιο uposúvoλo

\mathbf{E} ξετάζεται το q_3 με το q_7

$$\left. \begin{array}{l} q_3 \stackrel{a}{\rightarrow} q_3 \\ q_7 \stackrel{a}{\rightarrow} q_7 \end{array} \right\} \text{ Tdio uposúvolo} \\ \left. \begin{array}{l} q_3 \stackrel{b}{\rightarrow} q_4 \\ q_7 \stackrel{b}{\rightarrow} q_4 \end{array} \right\} \text{ Tdio uposúvolo} \right\} \text{ Ara ta } q_3, \ q_7 \text{ anheous sto } \underline{\text{(dio uposúvolo)}}$$

Εξετάζεται το q_5 με το q_6

$$\begin{array}{l} q_5 \stackrel{a}{\rightarrow} q_6 \\ q_6 \stackrel{a}{\rightarrow} q_6 \end{array} \end{array} \\ \begin{array}{l} \text{Tdio uposúvolo} \\ q_5 \stackrel{b}{\rightarrow} q_2 \\ q_6 \stackrel{b}{\rightarrow} q_1 \end{array} \\ \end{array} \\ \text{Tdio uposúvolo} \end{array} \right\} \\ \text{Ara ta } q_5, \ q_6 \ \text{analyse} \\ \text{analyse} \\ \end{array}$$

Εξετάζεται το q_5 με το q_8

$$q_5 \stackrel{a}{\to} q_6 \\ q_8 \stackrel{a}{\to} q_5$$
 Τδιο υποσύνολο
$$q_5 \stackrel{b}{\to} q_2 \\ q_8 \stackrel{b}{\to} q_1$$
 Τδιο υποσύνολο
$$q_5 \stackrel{b}{\to} q_2$$
 Τδιο υποσύνολο

Εφόσον μεταξύ της Ξ_2 και της Ξ_3 δεν μεταβλήθηκε κανένα από τα υποσύνολα, δεν μπορούν να γίνουν άλλες απλοποιήσεις και άρα η ελαχιστοποιημένες καταστάσεις είναι οι εξής:

$$\{q_4\}\ \{q_3,q_7\}\ \{q_1,q_2\}\ \{q_5,q_6,q_8\}$$

5.2β) Πόσες κλάσεις ισοδυναμίας έχει κάθε μία από τις παρακάτω σχέσεις; $(\sim M \sim M' \approx L(M) \approx L(M'))$

Ο αριθμός της σχέση $\sim M$ είναι ίσος με τον αριθμός των κλάσεων του αυτομάτου M, δηλαδή ίσος με 8 ενώ ο αριθμός της σχέσης $\sim M'$ είναι ίσος με 4 αντίστοιχα. Οι σχέσεις $\approx L(M) \approx L(M')$ παρουσιάζουν ίδιο αριθμό εφόσον και τα δύο αυτόματα έχουν την ίδια γλώσσα και ως αποτέλεσμα, ισούται με τον αριθμό των κλάσεων του ελαχιστοποιημένου αυτομάτου, δηλαδή 4.

 $m{\gamma}$) Περιγράψτε τις κλάσεις ισοδυναμίας της σχέσης pprox L(M') συναρτήσει των κλάσεων της σχέσης $\sim M.$

 Δ εδομένου του ότι η σχέση $\sim M$ αποτελεί εκλέπτυνση της $\sim M'$ καθώς και πως για τα E ισχύουν οι εξής σχέσης, σύμφωνα με το υποερώτημα 5.1:

$$E_{q_4}^{M'} = E_{q_4}^M$$

$$E_{q_1,q_2}^{M'} = E_{q_1}^M \cup E_{q_2}^M$$

$$E_{q_3,q_7}^{M'} = E_{q_3}^M \cup E_{q_7}^M$$

$$E_{q_5,q_6,q_8}^{M'} = E_{q_5}^M \cup E_{q_6}^M \cup E_{q_8}^M$$

συμπεραίνεται πως οι κλάσεις ισοδυναμίας της σχέσης pprox L(M') ταυτίζονται με τις $\sim M'$.

Έτσι, οι 4 κλάσεις ισοδυναμίας της σχέσης $\approx L(M')$ προκύπτουν ως εξής:

$$Class_1 = E_{q_4}^M \tag{6}$$

$$Class_1 = E_{q_4}^M$$

$$Class_2 = E_{q_1}^M \cup E_{q_2}^M$$

$$(6)$$

$$(7)$$

$$Class_{3} = E_{q_{3}}^{M} \cup E_{q_{7}}^{M}$$

$$Class_{4} = E_{q_{5}}^{M} \cup E_{q_{6}}^{M} \cup E_{q_{8}}^{M}$$
(8)
$$(9)$$

$$Class_4 = E_{q_5}^M \cup E_{q_6}^M \cup E_{q_8}^M$$
 (9)

(10)