ASSIGNMENT 2

Name: Pola Gnana Shekar

Roll No: 21CS10052

```
In [8]: import pandas as pd
        #import the data
        train_data = pd.read_csv('./data_train.csv')
        test_data = pd.read_csv('./data_test.csv')
        output_data = pd.read_csv('./Copy of actual.csv')
        #manipulating the data
        train_data.drop(train_data.columns[0], axis=1, inplace=True)
        test data.drop(test data.columns[0],axis=1,inplace=True)
        num columns train = len(train data.columns)
        num_columns_test = len(test_data.columns)
        for i in range(1,num_columns_train-1,2):
            train data[train data.columns[i]]=train data[train data.columns[i+1]]
        for i in range(1,num_columns_test-1,2):
            test_data[test_data.columns[i]]=test_data[test_data.columns[i+1]]
        train_data.drop(train_data.columns[2::2], axis=1, inplace=True)
        test data.drop(test data.columns[2::2], axis=1, inplace=True)
        train data=train data.T
        test_data=test_data.T
        train_data.reset_index(inplace=True)
        train data.columns=train data.iloc[0]
        train_data=train_data[1:]
        train_data = train_data.rename(columns={'Gene Accession Number': 'patient'}
        test_data.reset_index(inplace=True)
        test_data.columns=test_data.iloc[0]
        test_data=test_data[1:]
        test_data = test_data.rename(columns={'Gene Accession Number': 'patient'})
        train_data['patient'] = train_data['patient'].astype('int64')
        test_data['patient'] = test_data['patient'].astype('int64')
        trainD=pd.merge(train_data,output_data,on='patient',how='inner')
        testD=pd.merge(test data,output data,on='patient',how='inner')
        # The final data set has each patient as a sample data(rows) and each gene
        # column represent the target value (cancer)
        print("Train data: \n")
        print(trainD)
        print("Test data: \n")
        print(testD)
```

Train data:

	patient	AFFX-BioB-5_at	AFFX-Bi	.oB-M at	AFFX-Bio	oB-3 at	AFFX-Bio	C-5 at
\		_						_
0	1	Α		Α		Α		Α
1	2	A		Α		A		A
2 3	3 4	A A		A A		A		A A
4	5	A		A		A A		A
5	6	A		A		A		Ā
6	7	A		A		Α		Α
7	8	А		А		Α		Α
8	9	А		Α		Α		Α
9	10	Α		Α		Α		М
10	11	А		Α		Α		Α
11	12	A		А		Α		Α
12	13	A		A		A		A
13	14 15	A		A		A		М
14 15	15 16	A A		A A		A A		A A
16	10 17	A		A		A		A
17	18	A		Ā		A		Ā
18	19	A		A		A		A
19	20	A		Α		Α		Α
20	21	А		Α		Α		Α
21	22	А		Α		Α		Α
22	23	Α		Α		Α		Α
23	24	Α		Α		Α		Α
24	25	А		Α		Α		Α
25	26	Α		Α		Α		Α
26	27	A		A		Α		Α
27	34	A		A		Α		A
28 29	35 36	A		A		A		A
30	37	A A		A A		A A		A A
31	38	A		Ā		Ā		P
32	28	A		A		A		А
33	29	A		A		Α		A
34	30	А		А		Α		Α
35	31	Α		Α		Α		Р
36	32	А		Α		Α		Α
37	33	Α		Α		Α		Α
	AFFX-Bio0	C-3_at AFFX-Bio	On-5 at	AFFX-Bio	Dn-3 at	AFFX-Cr	reX-5 at	\
0		_ A	_ A		_ A		_ A	
1		Α	Α		Α		Α	
2		Α	Α		Α		Α	
3		Α	Α		Α		Α	
4		A	Α		Α		Α	
5		A	A		Α		A	
6		A	A		A		A	
7 8		A A	A A		A A		A	
9		A	A		A		A A	
10		A	A		A		A	
11		A	A		A		A	
12		A	Α		Α		Α	
13		Α	Α		А		Α	
14		Α	Α		Α		Α	
15		Α	Α		Α		Α	
16		Λ	٨		Λ.		Λ.	

Α

16

17	А		А		Α		Α
18	А		А		Α		Α
19	A		A		A		A
20	Ā		Ā		A		A
21	Ā		A		Ā		A
22	A		A		A		A
23	Α		Α		Α		Α
24	А		Α		Α		Α
25	А		Α		Α		Α
26	Α		Α		Α		Α
27	Α		Α		Α		Α
28	Α		Α		Α		Α
29	А		А		Α		Α
30	A		A		Α		A
31	A		A		A		A
32	Ā		Ā		Ā		A
33	A		A		A		A
34	А		Α		Α		Α
35	А		Α		Α		Α
36	Α		Α		Α		Α
37	А		Α		Α		Α
	AFFX-CreX-3_at		U58516_at U7	3738 at	X06956 at	X16699 at	X83863 at
\			<u>-</u>				
ò	А		А	А	Р	А	А
		• • •					
1	A	• • •	A	A	A	A	A
2	A	• • •	Α	Α	Α	Α	Α
3	Α	• • •	Α	Α	А	Α	Α
4	А	• • •	Α	Α	Р	Α	Α
5	А		Α	Α	Α	Α	Α
6	А		Α	Α	Α	Α	Α
7	Α		Α	Α	Α	Α	Α
8	А		Α	Α	А	А	Α
9	А		Р	А	А	А	А
10	A		А	Α	A	A	A
11	Ā	• • •	Ā	A	A	A	A
		• • •					
12	A	• • •	A	A	P	A	A
13	А	• • •	A	Α	A	Α	Α
14	А	• • •	Р	Α	Р	Α	Α
15	Α		Α	Α	Α	Α	Α
16	Α		Α	Α	Α	Α	Α
17	А		Α	Α	Р	Α	Α
18	Α		Α	Α	Р	Α	Α
19	А		Α	Α	А	Α	А
20	A		P	Α	Α	А	А
21	A		A	A	P	A	A
22	Ā	•••	Ā	Ā	A	Ā	A
		• • •					
23	A	• • •	Α	Α	A	Α	А
24	А	• • •	Α	Α	Р	Α	А
25	А		Α	Α	Р	Α	Α
26	Α		Α	Α	А	Α	Α
27	А		Α	Α	Α	Α	Α
28	А		Α	Α	А	Α	Α
29	А		Α	Α	Р	А	Α
30	A		A	Α	A	Α	А
31	Ā		Ā	Ā	A	Ā	A
32	A	• • •	A	A	P	A	A
		• • •					
33	A	• • •	A	Α	P	A	A
34	А	• • •	Α	Α	P	Α	А
35	А	• • •	Α	Α	А	А	А
36	А	• • •	Α	Α	Α	Α	Α

Α

Α

 AML

AML

AML

AML

 AML

Α

37

	Z17240_at	L49218_f_at	M71243_f_at	Z78285_f_at	cancer
0	Α	Α	Α	Α	ALL
1	Α	Α	Α	Α	ALL
2	Р	Α	Α	Α	ALL
3	Α	Α	Α	Α	ALL
4	Α	Α	Α	Α	ALL
5	Α	Α	Α	Α	ALL
6	Α	Α	Р	Α	ALL
7	Р	Α	Р	Α	ALL
8	Α	Р	Α	Α	ALL
9	Р	Α	M	Α	ALL
10	Α	Α	Α	Α	ALL
11	Α	Α	Α	Α	ALL
12	Α	Α	Α	Α	ALL
13	Α	Α	Α	Α	ALL
14	Α	Α	Α	Α	ALL
15	Р	Α	Р	Α	ALL
16	Р	Α	Α	Α	ALL
17	Р	Α	Α	Α	ALL
18	Α	Α	Α	Α	ALL
19	Α	Α	Р	Α	ALL
20	Α	Α	Α	Α	ALL
21	Α	Α	M	Α	ALL
22	Α	Α	M	Α	ALL
23	Α	Α	Α	Α	ALL
24	Α	Α	Р	Α	ALL
25	Р	Α	Α	Α	ALL
26	Α	Α	Α	Α	ALL
27	Α	Α	M	Α	AML
28	Α	Α	Р	Α	AML
29	Α	А	А	Α	AML
30	Α	А	Р	А	AML
31	Α	А	Р	А	AML
32	Α	А	Р	Α	AML

[38 rows x 7131 columns]

Test data:

33

34

35

36

37

	patient	AFFX-BioB-5_at	AFFX-BioB-M_at	AFFX-BioB-3_at	AFFX-BioC-5_at
\					
0	39	А	А	А	Α
1	40	А	А	А	А
2	42	А	А	А	А
3	47	А	А	А	Α
4	48	А	Α	Α	А
5	49	Α	Α	Α	А
6	41	А	А	А	Α
7	43	А	А	А	А
8	44	А	А	А	А
9	45	А	А	А	А
10	46	А	А	А	А
11	70	А	А	А	А
12	71	А	А	А	А
13	72	А	А	А	Α

		Asgn2_2	1CS10052 - Jupyter Not	ebook		
14	- 68	Α	Α	Α		Α
15		Α	Α	Α		Α
16		Α	Α	A		Α
17		A	A	A		Α
18		Ā	Ä	Ā		A
19		A	A	A		Α
20		Α	Α	Α		Α
21		Α	Α	Α		Α
22		Α	Α	Α		Α
23	50	Α	Α	Α		Α
24	. 54	Α	Α	Α		Р
25	5 57	Α	Α	Α		Α
26		Α	Α	Α		Α
27		Α	Α	Α		Α
28		A	A	A		Α
29						
		A	A	A		A
30		A	A	A		Α
31		Α	Α	Α		Α
32		Α	Α	Α		Α
33	62	Α	Α	Α		Α
	AFFX-BioC-3_at	AFFX-BioDn-5_at	AFFX-BioDn-3_a	t AFFX-CreX-5	5_at \	
0	A	_ A		А	_ A	
1	Α	А		Α	Α	
2	A	A		A	Α	
3	Ä	Ā		A	Ā	
4	A	A		Α	A	
5	Α	Α		Α .	Α	
6	Α	А		А	Α	
7	А	А		А	Α	
8	А	Α		А	Α	
9	Α	А		Д	Α	
10	Α	А		А	Α	
11		А		А	Α	
12		А		Α	Α	
13		A		A	Α	
14		Ā		A	A	
15		Ā		Α		
					A	
16		A		Α .	A	
17		Α		A	Α	
18		А		А	Α	
19		А	1	А	Α	
20	Α	А	,	А	Α	
21	. А	А	,	Д	Α	
22	. A	А	,	А	Α	
23	A	А		Д	Α	
24		А		А	Α	
25		A		A	Α	
26		Ā		A	A	
27		A		Α	A	
28		A		Α .	A	
29		А		A	Α	
30		А		А	Α	
31	. А	Α	,	А	Α	
32	Α.	А	,	А	Α	
33		А		А	Α	
	AFFX-CreX-3_at	U58516 at I	J73738_at X0695	6 at X16699 a	at X8386	3 at
\	cr cx 3_ac	5565 <u>1</u> 6_66 (2. 2. 20 <u>u</u> a e 70023	ac /\10077_c	7.0500	- <u>_</u>
0	٨	А	٨	٨	٨	٨
U	Α	· · · · · · · · · · · · · · · · · · ·	Α	A	Α	Α

Α

1

Р

		7.0g <u></u> 1.00 1	occ capyton	Hotobook		
2	Α	Α	Α	Р	Α	Р
3	Α	Α	Α	Α	Α	Α
4	Α	Α	Α	Р	Α	Α
5	Α	Α	Α	Α	Α	Α
6	Α	Р	Α	Α	Α	Α
7	Α	Α	Α	Р	Α	Α
8	Α	Р	Α	Р	Α	Α
9	Α	Α	Α	Α	Α	Α
10	Α	Р	Α	Α	Α	Α
11	Α	Α	Α	Α	Α	Α
12	Α	Α	Α	Р	Α	Α
13	Α	Α	Α	Р	Α	Α
14	Α	Α	Α	Р	Α	Α
15	Α	Α	Α	Р	Α	Α
16	Α	Α	Α	Α	Α	Α
17	Α	Α	Α	Α	Α	Α
18	Α	Α	Α	Р	Α	Α
19	Α	Α	Α	Р	Α	Α
20	Α	Α	Α	Α	Α	Α
21	Α	Α	Α	Α	Α	Α
22	Α	Α	Α	Α	Α	Α
23	Α	Α	Α	Α	Α	Α
24	Α	Α	Α	Α	Α	Α
25	Α	Α	Α	Α	Α	Α
26	Α	Α	Α	Α	Α	Α
27	Α	Α	Α	Α	Α	Α
28	Α	Α	Α	Α	Α	Α
29	Α	Α	Α	Р	Α	Α
30	Α	Α	Α	Р	Α	Α
31	Α	Α	Α	Р	Α	Α
32	Α	Α	Α	Α	Α	Α
33	Α	Α	Α	Р	Α	Α

	Z17240 at	L49218 f at	M71243_f_at	Z78285 f at	cancer
0	_ A	1 — — A	A	A	ALL
1	Α	А	Α	Α	ALL
2	Α	А	Р	Α	ALL
3	Α	А	Р	А	ALL
4	Α	Α	Α	Α	ALL
5	Α	Α	Α	Α	ALL
6	Α	Α	Α	Α	ALL
7	Α	А	Р	Α	ALL
8	Α	Α	Α	Α	ALL
9	Α	Α	Α	Α	ALL
10	Α	Α	Α	Α	ALL
11	Α	Α	Р	Р	ALL
12	Α	Α	Α	Α	ALL
13	Р	Α	Α	Α	ALL
14	Α	Α	Α	Α	ALL
15	Α	Α	Α	Α	ALL
16	Α	Α	Α	Α	ALL
17	Α	Α	Α	Α	ALL
18	Α	Α	Р	Α	ALL
19	Α	Α	Α	Α	ALL
20	Α	Α	Α	Α	AML
21	Р	Α	Α	Α	AML
22	Α	Α	Р	Α	AML
23	Α	Α	Р	Α	AML
24	Α	Α	Α	Α	AML
25	Α	Α	Α	Α	AML
26	Р	Α	Α	Α	AML

27	Α	Α	M	Α	AML
28	Α	Α	Α	Α	AML
29	Α	Α	Α	Α	AML
30	Α	Α	Р	Α	AML
31	Α	Α	Α	Α	AML
32	Α	Α	Α	Α	AML
33	Α	Α	Α	Α	AML

[34 rows x 7131 columns]

```
In [2]:
        #encoding the data values to make it processable to train the models
        import pandas as pd
        from sklearn.preprocessing import LabelEncoder
        # Split the data into features (X) and target labels (y)
        X_train = trainD.drop(['patient', 'cancer'], axis=1)
        y_train = trainD['cancer']
        X_test = testD.drop(['patient', 'cancer'], axis=1)
        y test = testD['cancer']
        # Initialize the LabelEncoder
        encoder = LabelEncoder()
        # Concatenate X_train and X_test to ensure all categories are seen
        combined_data = pd.concat([X_train, X_test], axis=0)
        # Apply label encoding to combined_data
        for column in combined data.columns:
            combined_data[column] = encoder.fit_transform(combined_data[column])
        # Split the encoded data back into X train encoded and X test encoded
        X_train_encoded = combined_data.iloc[:len(X_train)]
        X_test_encoded = combined_data.iloc[len(X_train):]
        # Print X_train_encoded
        print("X_train_encoded:\n")
        print(X_train_encoded)
        # Print X test encoded
        print("\nX_test_encoded:\n")
        print(X_test_encoded)
        37
                          0
                                           0
                                                            0
            AFFX-BioC-3_at AFFX-BioDn-5_at AFFX-BioDn-3_at AFFX-CreX-5_at
        \
        0
                          0
                                            0
                                                              0
                                                                              0
        1
                          0
                                            0
                                                              0
                                                                              0
                          0
                                            0
                                                              0
                                                                              0
        2
        3
                          0
                                            0
                                                              0
                                                                              0
        4
                          0
                                            0
                                                              0
                                                                              0
        5
                          0
                                            0
                                                              0
                                                                              0
        6
                          0
                                            0
                                                              0
                                                                              0
        7
                          0
                                            0
                                                              0
                                                                              0
        8
                          0
                                            0
                                                              0
                                                                              0
        9
                          0
                                            0
                                                              0
                                                                              0
        10
                          0
                                            0
                                                              0
                                                                              0
                          0
                                            0
                                                              0
                                                                              0
        11
                          0
                                            0
                                                              0
                                                                              0
        12
        13
                          0
                                            0
                                                              0
                                                                              0
                          0
                                                              0
        14
                                            0
                                                                              0
```

```
In [4]: #SVM model
        from sklearn.preprocessing import StandardScaler
        from sklearn.svm import SVC
        from sklearn.metrics import accuracy score, precision score, recall score,
        # Define a list of kernel names
        kernels = ['linear', 'rbf', 'poly', 'sigmoid']
        for kernel in kernels:
            # Create an SVM model with the specified kernel
            model = SVC(kernel=kernel)
            # Scale the features
            scaler = StandardScaler()
            X_train_scaled = scaler.fit_transform(X_train_encoded)
            X_test_scaled = scaler.transform(X_test_encoded)
            # Train the model
            model.fit(X_train_scaled, y_train)
            # Make predictions on the test data
            y_pred = model.predict(X_test_scaled)
            # Evaluate the model
            accuracy = accuracy_score(y_test, y_pred)
            precision = precision_score(y_test, y_pred, pos_label='ALL')
            recall = recall_score(y_test, y_pred, pos_label='ALL')
            f1 = f1 score(y test, y pred, pos label='ALL')
            confusion = confusion_matrix(y_test, y_pred)
            # Print the evaluation metrics
            print(f"SVM Model with {kernel} kernel")
            print(f"Accuracy: {accuracy}")
            print(f"Precision: {precision}")
            print(f"Recall: {recall}")
            print(f"F1 Score: {f1}")
            print(f"Confusion Matrix:\n{confusion}\n")
```

SVM Model with linear kernel Accuracy: 0.9117647058823529 Precision: 0.8695652173913043

Recall: 1.0

F1 Score: 0.9302325581395349

Confusion Matrix:

[[20 0] [3 11]]

SVM Model with rbf kernel Accuracy: 0.5882352941176471 Precision: 0.5882352941176471

Recall: 1.0

F1 Score: 0.7407407407407407

Confusion Matrix:

[[20 0] [14 0]]

SVM Model with poly kernel Accuracy: 0.5882352941176471 Precision: 0.5882352941176471

Recall: 1.0

F1 Score: 0.7407407407407407

Confusion Matrix:

[[20 0] [14 0]]

SVM Model with sigmoid kernel Accuracy: 0.8529411764705882

Precision: 0.8 Recall: 1.0

F1 Score: 0.88888888888889

Confusion Matrix:

[[20 0] [5 9]]

```
In [5]:
        #Random Forest
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.metrics import accuracy_score, precision_score, recall_score,
        # Create a Random Forest model
        rf_model = RandomForestClassifier(n_estimators=100, random_state=42)
        # Train the model
        rf_model.fit(X_train_encoded, y_train)
        # Make predictions on the test data
        y_pred_rf = rf_model.predict(X_test_encoded)
        # Evaluate the model
        accuracy_rf = accuracy_score(y_test, y_pred_rf)
        precision_rf = precision_score(y_test, y_pred_rf, pos_label='ALL')
        recall rf = recall score(y test, y pred rf, pos label='ALL')
        f1_rf = f1_score(y_test, y_pred_rf, pos_label='ALL')
        confusion_rf = confusion_matrix(y_test, y_pred_rf)
        # Print the evaluation metrics
        print("Random Forest Model")
        print(f"Accuracy: {accuracy_rf}")
        print(f"Precision: {precision_rf}")
        print(f"Recall: {recall_rf}")
        print(f"F1 Score: {f1_rf}")
        print(f"Confusion Matrix:\n{confusion_rf}\n")
```

Random Forest Model
Accuracy: 0.8823529411764706
Precision: 0.8333333333333334
Recall: 1.0
F1 Score: 0.9090909090909091
Confusion Matrix:
[[20 0]
 [4 10]]

```
In [7]:
        #Neural Network
        from sklearn.neural_network import MLPClassifier
        from sklearn.preprocessing import StandardScaler
        from sklearn.metrics import accuracy score, precision score, recall score,
        from sklearn.model selection import GridSearchCV
        # Create a Neural Network model
        nn model = MLPClassifier()
        # Define the hyperparameter grid to search through
        param grid = {
            'hidden_layer_sizes': [(100, 50), (50, 25), (200, 100), (150, 75)],
            'alpha': [0.0001, 0.001, 0.01],
            'max_iter': [500, 1000, 1500],
            'solver': ['adam', 'lbfgs'],
            'learning rate init': [0.001, 0.01, 0.1]
        }
        # Create a grid search object
        grid_search = GridSearchCV(estimator=nn_model, param_grid=param_grid, cv=5,
        # Scale the features
        scaler = StandardScaler()
        X_train_scaled = scaler.fit_transform(X_train_encoded)
        X_test_scaled = scaler.transform(X_test_encoded)
        # Perform the grid search
        grid_search.fit(X_train_scaled, y_train)
        # Get the best model and its hyperparameters
        best_model = grid_search.best_estimator_
        best_params = grid_search.best_params_
        # Make predictions on the test data with the best model
        y_pred_nn = best_model.predict(X_test_scaled)
        # Evaluate the best model
        accuracy_nn = accuracy_score(y_test, y_pred_nn)
        precision_nn = precision_score(y_test, y_pred_nn, pos_label='ALL')
        recall_nn = recall_score(y_test, y_pred_nn, pos_label='ALL')
        f1_nn = f1_score(y_test, y_pred_nn, pos_label='ALL')
        confusion_nn = confusion_matrix(y_test, y_pred_nn)
        # Print the evaluation metrics and best hyperparameters
        print("Neural Network Model with Hyperparameter Tuning")
        print(f"Best Hyperparameters: {best params}")
        print(f"Accuracy: {accuracy nn}")
        print(f"Precision: {precision nn}")
        print(f"Recall: {recall_nn}")
        print(f"F1 Score: {f1 nn}")
        print(f"Confusion Matrix:\n{confusion_nn}\n")
```

```
Neural Network Model with Hyperparameter Tuning
Best Hyperparameters: {'alpha': 0.001, 'hidden_layer_sizes': (200, 100),
'learning_rate_init': 0.01, 'max_iter': 1000, 'solver': 'lbfgs'}
Accuracy: 0.9117647058823529
Precision: 0.9047619047619048
Recall: 0.95
F1 Score: 0.9268292682926829
Confusion Matrix:
[[19 1]
  [2 12]]
```