Introduction to Data Management CSE 344

Lecture 22: Parallel Databases

Announcements

- WQ7 due tomorrow (Tuesday), HW7 due on Thursday
- Please fill out the survey and give feedback
 - If possible by 5:30 pm today, but do submit even later.
 - Thanks to all who already did!
 - We will let know what will be covered in the remaining sections a day ahead, and details of the review sessions soon.
- Extra office hours (Sudeepa, cse 344, Thursdays, 4:30-5:30)
- Today: transaction wrap up, parallel databases (next four lectures)
 - Traditional, MapReduce+PigLatin

Parallel Computation Today

Two Major Forces Pushing towards Parallel Computing:

Change in Moore's law

Cloud computing

Parallel Computation Today

Change in Moore's law*

(exponential growth in transistors per chip density) no longer results in increased clock speeds

- Increased hardware performance available only through parallelism
- Think multicore: 4 cores today, perhaps 64 in a few years

Microprocessor Transistor Counts 1971-2011 & Moore's Law

fig. source: wiki

* Moore's law says that the number of transistors that can be placed inexpensively on an integrated circuit doubles approximately every two years [Intel co-founder Gordon E. Moore described the trend in his 1965 paper and predicted that it will last for at least 10 years]

Parallel Computation Today

- Cloud computing commoditizes access to large clusters
 - Ten years ago, only Google could afford 1000 servers;
 - Today you can rent this from Amazon Web Services (AWS)

Jeff Dean, SOCC'2010:

Numbers Everyone Should Know

L1 cache reference Branch mispredict L2 cache reference Mutex lock/unlock Main memory reference Compress 1K w/cheap compression algorithm Send 2K bytes over 1 Gbps network 20,000 ns 250,000 ns Read 1 MB sequentially from memory

Disk seek Read 1 MB sequentially from disk Send packet CA->Netherlands->CA

Round trip within same datacenter

Memory access

Local access is significantly faster than communication

Communication

Google

0.5 ns

5 ns

7 ns

25 ns

100 ns

3,000 ns

500,000 ns

10,000,000 ns

20,000,000 ns 150,000,000 ns

Big Data

 Companies, organizations, scientists have data that is too big, too fast, and too complex to be managed without changing tools and processes

Science is Facing a Data Deluge!

Astronomy: Large
 Synoptic Survey
 Telescope LSST:
 30TB/night (high-resolution, high-frequency sky surveys)

 $10^9 B = GB, 10^{12}B = TB, 10^{15}B = PB$

Science is Facing a Data Deluge!

- Biology: lab automation, highthroughput sequencing
- Oceanography: high-resolution models, cheap sensors, satellites

 Medicine: ubiquitous digital records, MRI, ultrasound

3070 Floats

120°W

Industry is Facing a Data Deluge!

Clickstreams, search logs, network logs, social networking data, RFID data, etc.

- Facebook:
 - 15PB of data in 2010
 - 60TB of new data every day
- Google:
 - In May 2010 processed 946PB of data using MapReduce
- Twitter, Google, Microsoft, Amazon, Walmart, etc.

 $10^9 B = GB, 10^{12}B = TB, 10^{15}B = PB$

Big Data

- Companies, organizations, scientists have data that is too big, too fast, and too complex to be managed without changing tools and processes
- 3Vs: Volume, Velocity, Variety
- Relational algebra and SQL are easy to parallelize and parallel DBMSs have already been studied in the 80's!

Data Analytics Companies

As a result, we are seeing an explosion of and a huge success of db analytics companies (massive-scale parallel data processing)

- Greenplum founded in 2003 acquired by EMC in 2010; A parallel shared-nothing DBMS (this lecture)
- Vertica founded in 2005 and acquired by HP in 2011; A parallel, column-store shared-nothing DBMS (see 444 for discussion of column-stores)
- DATAllegro founded in 2003 acquired by Microsoft in 2008; A parallel, shared-nothing DBMS
- Aster Data Systems founded in 2005 acquired by Teradata in 2011; A parallel, shared-nothing, MapReduce-based data processing system (next lecture). SQL on top of MapReduce
- Netezza founded in 2000 and acquired by IBM in 2010. A parallel, shared-nothing DBMS.

Great time to be in the data management, data mining/statistics, or machine learning!

Two Kinds to Parallel Data Processing

- Parallel databases, developed starting with the 80s (this lecture)
 - OLTP (Online Transaction Processing)
 - OLAP (Online Analytic Processing, or Decision Support)
- MapReduce, first developed by Google, published in 2004 (next lecture)
 - Only for Decision Support Queries

Today we see convergence of the two approaches (Greenplum, Dremmel)

http://technet.microsoft.com/en-us/library/aa933056%28v=sql.80%29.aspx

Parallel DBMSs

Goal

Improve performance by executing multiple operations in parallel

Key benefit

Cheaper to scale than relying on a single increasingly more powerful processor

Key challenge

 Ensure overhead and contention do not kill performance

Performance Metrics for Parallel DBMSs

- P = the number of nodes (processors, computers)
- Speedup:
 - More nodes, same data → higher speed
- Scaleup:
 - More nodes, more data → same speed

- OLTP: "Speed" = transactions per second (TPS)
- Decision Support: "Speed" = query time

Linear v.s. Non-linear Speedup

Linear v.s. Non-linear Scaleup

Linear v.s. Non-linear Scaleup (alternative plot) Why not li

Challenges to Linear Speedup and Scaleup

- Startup cost
 - Cost of starting an operation on many nodes

- Interference
 - Contention for resources between nodes

- Skew
 - Slowest node becomes the bottleneck

Architectures for Parallel Databases

Shared memory

Shared disk

Shared nothing

Shared Memory

Shared Memory

- Interconnection Network

 Global Shared Memory

 D
 D
- Nodes share both RAM and disk
- Dozens to hundreds of processors

Example: SQL Server runs on a single machine and can leverage many threads to get a query to run faster (can be seen in query plans)

- Easy to use and program
- But very expensive to scale: last remaining cash cows in the hardware industry

Shared Disk

Shared Disk

- All nodes access the same disks
- Found in the largest "single-box" (non-cluster) multiprocessors

e.g. Oracle dominates this class of systems.

Characteristics:

 Also hard to scale past a certain point: existing deployments typically have fewer than 10 machines

Shared Nothing

Shared Nothing

- Cluster of machines on high-speed network
- Called "clusters" or "blade servers"
- Each machine has its own memory and disk: lowest contention.

NOTE: Because all machines today have many cores and many disks, then shared-nothing systems typically run many "nodes" on a single physical machine.

Characteristics:

- Today, this is the most scalable architecture.
- Most difficult to administer and tune.

We discuss only Shared Nothing in class

A Professional Picture...

Figure 1 - Types of database architecture

From: Greenplum Database Whitepaper

SMP= "Symmetric Multi-Processing"

SAN = "Storage Area Network"

In Class

You have a parallel machine. Now what?

How do you speed up your DBMS?

- Inter-query parallelism
 - Transaction per node
 - OLTP

- Inter-query parallelism
 - Transaction per node
 - OLTP

- Inter-operator parallelism
 - Operator per node
 - Both OLTP and Decision Support

- Inter-query parallelism
 - Transaction per node
 - OLTP
- Inter-operator parallelism
 - Operator per node
 - Both OLTP and Decision Support
- Intra-operator parallelism
 - Operator on multiple nodes
 - Decision Support

- Inter-query parallelism
 - Transaction per node
 - OLTP
- Inter-operator parallelism
 - Operator per node
 - Both OLTP and Decision Support
- Intra-operator parallelism
 - Operator on multiple nodes
 - Decision Support

We study only intra-operator parallelism: most scalable