Datenbanken

Einführung/Repetition

Single/Multiuser

Unterschiede

Single-User Database	Multi-User Database
SQLite	Oracle DBMS
MS Access	MS Sql Server
DBase	Mysql / MariaDB
	MongoDB
	Neo4J

Datenbanksystem Anforderungen Merkmale eines Datenbanksystems

- Datenunabhängigkeit
- Effizienter Speicherzugriff
- Paralleler Datenzugriff
- Datenkonsistenz
- Gemeinsame Datenbasis

- Datenintegrität
- Datensicherheit
- Wiederherstellungsverfahren
- Abfragesprache
- •Keine / kontrollierte Redundanz

Noser Young 24.02.2022

ACID-Prinzip

Atomicity (Atomarität)

Consistency (Konsistenz)

Isolation (Isolation)

Durability (Dauerhaftigkeit)

Atomacy

Man spricht dann von atomaren (atomacy) Operationen, wenn eine Sequenz von Datei-Operationen entweder ganz oder gar nicht ausgeführt wird.

Atomacy	Man spricht dann von atomaren (atomacy) Operationen, wenn eine Sequenz von Datei-Operationen entweder ganz oder gar nicht ausgeführt wird.
Consistency	Man spricht von einer vorhandenen Datenkonsistenz (consistency), wenn nach einer Sequenz von Datei-Operationen der Datenzustand in einem konsistenten Zustand hinterlassen wird.

Atomacy	Man spricht dann von atomaren (atomacy) Operationen, wenn eine Sequenz von Datei-Operationen entweder ganz oder gar nicht ausgeführt wird.
Consistency	Man spricht von einer vorhandenen Datenkonsistenz (consistency), wenn nach einer Sequenz von Datei-Operationen der Datenzustand in einem konsistenten Zustand hinterlassen wird.
Isolation	Die Isolation (isolation) verhindert, dass sich parallele Ausführungen auf befindliche Datei-Operationen gegenseitig beeinflussen können.

Atomacy	Man spricht dann von atomaren (atomacy) Operationen, wenn eine Sequenz von Datei-Operationen entweder ganz oder gar nicht ausgeführt wird.
Consistency	Man spricht von einer vorhandenen Datenkonsistenz (consistency), wenn nach einer Sequenz von Datei-Operationen der Datenzustand in einem konsistenten Zustand hinterlassen wird.
Isolation	Die Isolation (isolation) verhindert, dass sich parallele Ausführungen auf befindliche Datei-Operationen gegenseitig beeinflussen können.
Durability	Die Dauerhaftigkeit (durability) gewährleistet, dass die Datei-Operationen dauerhaft auf einem Datenträger gesichert sind.

Atomacity

Eine Transaktion ist eine Folge von Datenbank-Operationen, die entweder ganz oder gar nicht ausgeführt wird.

```
START TRANSACTION;
INSERT INTO konto (id, inhaber_id, betrag)
VALUES (1, "4711", 50);
INSERT INTO konto (id, inhaber_id, betrag):
VALUES (1, "4711", -50);
COMMIT;
```


Consistency

In Datenbanken werden Regeln festgelegt, wie die Daten strukturiert sein müssen.

```
START TRANSACTION;
INSERT INTO konto (id, inhaber_id, betrag)
VALUES (1, "FALSCH", 50);
COMMIT;
```


Isolation

Oft werden viele Transaktionen gleichzeitig durchgeführt; Datenbanken müssen jedoch gewährleisten, dass die Transaktionen voneinander **isoliert** sind; das heißt, das Endergebnis muss das gleiche sein, als ob die Transaktionen hintereinander durchgeführt würden.

```
START TRANSACTION;
INSERT INTO konto (id, inhaber_id, betrag)
VALUES (1, "4711", 50);
INSERT INTO konto (id, inhaber_id, betrag):
VALUES (1, "4711", -50);
COMMIT;
```

```
START TRANSACTION;
INSERT INTO konto (id, inhaber_id, betrag)
VALUES (1, "4711", 50);
INSERT INTO konto (id, inhaber_id, betrag):
VALUES (1, "4711", -50);
COMMIT;
```


Durability

Datenbanken sollten vor Stromausfällen sicher sein. Das heißt, sie sind zwar während eines Stromausfalls nicht erreichbar, aber es gehen keine gespeicherten Daten verloren; dazu müssen die Daten auf einer Festplatte gespeichert werden, und diese Daten müssen immer konsistent sein.

Savepoints

Commit und Rollback

Datenberechtigung / Trennung

Database Schema

There are two main database schema types that define different parts of the schema: logical and physical.

here you see a logical schema

Physical Schema

Views

Views can provide advantages over tables:

Views can represent a subset of the data contained in a table.

Consequently, a view can limit the degree of exposure of the underlying tables to the outer world: a given user may have permission to query the view, while denied access to the rest of the base table.

Views can join and simplify multiple tables into a single virtual table.

Views can act as aggregated tables, where the database engine aggregates data (sum, average, etc.) and presents the calculated results as part of the data.

Views can hide the complexity of data. For example, a view could appear as Sales2000 or Sales2001, transparently partitioning the actual underlying table.

Views take very little space to store; the database contains only the definition of a view, not a copy of all the data that it presents.

Depending on the SQL engine used, views can provide extra security.

View example


```
• • •
CREATE OR REPLACE
VIEW v_custorders AS
SELECT
    c.first_name,
    c.last_name,
    count(*) AS orders
FROM
    customer c,
    cust_order co
WHERE
    co.customer_id = c.customer_id
GROUP BY
    c.customer_id ;
```


Vertical Slicing

	17 customer_id	T‡	ABC first_name	T:	ABC last_name	T:	ABC email	T:	ABC company	τı
1		1	Ursola		Purdy		upurdy0@cdbaby.com		Firma A	
2		2	Ruthanne		Vatini		rvatini1@fema.gov		Firma A	
3		3	Reidar		Turbitt		rturbitt2@geocities.jp		Firma A	
4		4	Rich		Kirsz		rkirsz3@jalbum.net		Firma A	
5		5	Carline		Kupis		ckupis4@tamu.edu		Firma A	
6		6	Kandy		Adamec		kadamec5@weather.com		Firma A	
7		7	Jermain		Giraudeau		jgiraudeau6@elpais.com		Firma A	
8		8	Nolly		Bonicelli		nbonicelli7@examiner.com		Firma A	-
9		9	Phebe		Curdell		pcurdell8@usa.gov		Firma A	
10		10	Euell		Guilder		eauilder9@themeforest.net		Firma A	
11		11	Teriann		Marritt		tmarritta@va.gov		Firma B	
12		12	Filmer		Douse		fdouseb@foxnews.com		Firma B	
13		13	Daisey		Lamball		dlamballc@skyrock.com		Firma B	
14		14	Gusella		Quogan		gquogand@whitehouse.gov		Firma B	
15		15	Lonnie		Cambden		lcambdene@gmpg.org		Firma B	
16		16	Debbi		Huyghe		dhuyghef@dot.gov		Firma B	
17		17	Ignace		Fursey		ifurseyg@hatena.ne.jp		Firma B	
18		18	Andrei		Jefferson		ajeffersonh@live.com		Firma B	
19		19	Sanford		Gillbe		sgillbei@telegraph.co.uk		Firma B	
20		20	Kali		Sedgebeer		ksedgebeerj@bbc.co.uk		Firma B	
21		21	Krishnah		Traite		ktraitek@state.gov		Firma C	
22		22	Alley		Selbie		aselbiel@moonfruit.com		Firma C	
23		23	Gilligan		Betteson		gbettesonm@paypal.com		Firma C	
24		24	Raul		Pentelow		rpentelown@zimbio.com		Firma C	
25		25	Garrek		Emnoney		gemnoneyo@nyu.edu		Firma C	
26		26	Mathilde		Kleanthous		mkleanthousp@tamu.edu		Firma C	
27		27	Dacy		Mabe		dmabeq@cloudflare.com		Firma C	
28		28	Rob		Handes		rhandesr@arstechnica.com		Firma C	
29		29	Rafaello		Boniface		rbonifaces@marriott.com		Firma C	
30		30	Matthiew		Donizeau		mdonizeaut@rakuten.co.jp		Firma C	