# Методы синтеза комбинационных схем в базисе $\{\&, \oplus, -, 1\}$

Перязева Юлия Валерьевна Доцент кафедры ВТ

Теория автоматов

Дискретные преобразователи без памяти

Полиномиальные формы

#### Содержание

- 1. Полиномиальные формы
- 2. Алгоритм  $A_4$ , основанный на построении полинома Жегалкина
- 3. Алгоритм  $A_5$  и метод, основанный на построении разложения Акерса

## Совершенная полиномиальная нормальная форма (СПНФ)

Рассмотрим теперь произвольную функцию  $f(x_1, \cdots, x_n)$  отличную от тождественного нуля и выразим ее посредством СДНФ

$$f(x_1, \dots, x_n) = \sum_{f(\sigma_1, \dots, \sigma_n) = 1} x_1^{\sigma_1} \cdot x_2^{\sigma_2} \cdot \dots \cdot x_n^{\sigma_n}$$

На каждом наборе  $(\alpha_1, \dots, \alpha_n)$  в 1 обращается не более одной из конъюнкций  $x_1^{\sigma_1} \cdot x_2^{\sigma_2} \cdot \dots \cdot x_n^{\sigma_n}$ , входящих в СДНФ.

Поэтому внешняя дизъюнкция может быть заменена сложением по  $mod\ 2$ ,  $C\Pi H\Phi$ :

$$f(x_1,\dots,x_n)=\bigoplus_{(\sigma_1,\dots,\sigma_n)f(\sigma_1,\dots,\sigma_n)=1}x_1^{\sigma_1}\cdot x_2^{\sigma_2}\cdot \dots \cdot x_n^{\sigma_n}$$

#### Полином Жегалкина

Еще одно важное представление булевых функций получается с использованием & и  $\oplus$ , 1, например:

$$f(x_1, x_2, x_3) = x_1 x_2 x_3 \oplus x_2 \oplus 1;$$

$$f(x_1, x_2, x_3) = x_1x_2 \oplus x_3.$$

Такое представление носит название полинома Жегалкина.

#### Полином Жегалкина

Определение. Монотонной конъюнкцией от переменных  $x_1,\dots,x_n$  называют либо просто 1, либо любое выражение вида  $x_{i_1}\cdot x_{i_2}\cdot x_{i_3}\cdots x_{i_s}$ , где  $s\geq 1,\ 1\leq i_j\leq n\ \forall j=1,2,\dots,s$  и все переменные различны  $(i_j\neq i_k,$  если  $j\neq k).$ 

**Определение.** Полином Жегалкина над  $x_1, \dots, x_n$  называется либо константа 0, либо любое выражение вида

$$K_1 \oplus K_2 \oplus \ldots \oplus K_l$$
,

где  $l \geq 1$  и все  $K_j$  суть различные монотонные конъюнкции над  $x_1, \dots, x_n$ .

#### Полином Жегалкина

**Теорема**. Всякая булева функция может быть представлена в виде полинома Жегалкина

$$f(x_1,\cdots,x_n)=\bigoplus_{i_1\ldots i_s}c_{i_1\ldots i_s}x_{i_1}\cdots x_{i_s},$$

где коэффициенты  $c_{i_1...i_s}$  равны 0 или 1.

**Теорема.** Всякая булева функция может быть представлена в виде полинома Жегалкина единственным образом.

Метод базирующийся на преобразовании формул над множеством  $\{\&,\lor,-\}$ .

Строят некоторую формулу над множеством  $\{\&, \lor, -\}$ , реализующую заданную функцию f.

Затем заменяют подформулы вида  $\overline{x}$  на  $x \oplus 1$ ,  $(x \cdot \overline{y}) \lor (\overline{x} \cdot y) = x \oplus y$ ,  $\overline{x} \lor \overline{y} = \overline{x} \cdot \overline{y}$ .

Раскрывают скобки, пользуясь дистрибутивным законом  $(x \oplus y)z = (xz) \oplus (yz)$ .

Применяют эквивалентности  $x \oplus x = 0$   $x \oplus 0 = x$   $x \cdot x = x$   $x \cdot 1 = x$ 

Построим полином Жегалкина для функции:

| <i>x</i> <sub>1</sub> <i>x</i> <sub>2</sub> <i>x</i> <sub>3</sub> | f |
|-------------------------------------------------------------------|---|
| 0 0 0                                                             | 0 |
| 0 0 1                                                             | 1 |
| 0 1 0                                                             | 0 |
| 0 1 1                                                             | 0 |
| 100                                                               | 1 |
| 101                                                               | 0 |
| 1 1 0                                                             | 0 |
| 1 1 1                                                             | 0 |

$$f(x_1, x_2, x_3) = \overline{x_1} \ \overline{x_2} x_3 \lor x_1 \overline{x_2} \ \overline{x_3} = \overline{x_2} (\overline{x_1} x_3 \lor x_1 \overline{x_3}) = \overline{x_2} (x_1 \oplus x_3) = (x_2 \oplus 1) (x_1 \oplus x_3) = x_1 x_2 \oplus x_1 \oplus x_2 x_3 \oplus x_3$$

#### Метод треугольника.

Записываем вектор значений функции в столбец. Затем, в каждом следующем столбце между каждыми двумя соседними числами из вектора значений находим их сумму по модулю два, до тех пор пока не останется одно значение, в итоге получим  $2^n$  столбцов, где n - количество переменных в исходной булевой функции.

Каждое первое значение в столбце, есть значение коэффициентов  $a_0, a_1, ..., a_{2^n}$  в полиноме.

Для 
$$n=3$$
  $P(F)=a_0\oplus a_1x_3\oplus a_2x_2\oplus a_3x_2x_3\oplus a_4x_1\oplus a_5x_1x_3\oplus a_6x_1x_2\oplus a_7x_1x_2x_3$ 

# Построим полином Жегалкина для функции:

|                |                                             | <i>x</i> <sub>1</sub> <i>x</i> <sub>2</sub> <i>x</i> <sub>3</sub> | f |   |   |   |   |   |   |   |
|----------------|---------------------------------------------|-------------------------------------------------------------------|---|---|---|---|---|---|---|---|
| a <sub>0</sub> | 1                                           | 0 0 0                                                             | 0 |   |   |   |   |   |   |   |
| $a_1$          | <i>X</i> <sub>3</sub>                       | 0 0 1                                                             | 1 | 1 |   |   |   |   |   |   |
| $a_2$          | <i>x</i> <sub>2</sub>                       | 0 1 0                                                             | 0 | 1 | 0 |   |   |   |   |   |
| a <sub>3</sub> | X <sub>2</sub> X <sub>3</sub>               | 0 1 1                                                             | 0 | 0 | 1 | 1 |   |   |   |   |
| a <sub>4</sub> | <i>x</i> <sub>1</sub>                       | 100                                                               | 1 | 1 | 1 | 0 | 1 |   |   |   |
| a <sub>5</sub> | <i>X</i> <sub>1</sub> <i>X</i> <sub>3</sub> | 101                                                               | 0 | 1 | 0 | 1 | 1 | 0 |   |   |
| a <sub>6</sub> | $x_1x_2$                                    | 110                                                               | 0 | 0 | 1 | 1 | 0 | 1 | 1 |   |
| a <sub>7</sub> | $x_1x_2x_3$                                 | 1 1 1                                                             | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |

$$f = x_3 \oplus x_2 x_3 \oplus x_1 \oplus x_1 x_2$$

# Алгоритм $A_4$ , основанный на построении полинома

Жегалкина

#### Содержание

- 1. Полиномиальные формы
- 2. Алгоритм  $A_4$ , основанный на построении полинома Жегалкина
- 3. Алгоритм  $A_5$  и метод, основанный на построении разложения Акерса

#### **А**лгоритм $A_4$

Алгоритм  $A_4$  синтеза схем в базисе  $\{\oplus,1,\&\}$  на основе полинома Жегалкина:

- получаем полином Жегалкина;
- на основе полученной формулы строим схему.

## **А**лгоритм $A_4$ . Пример

$$f(x, y, z) = (01101001)$$

Получаем полином Жегалкина из СДНФ элементарными преобразованиями:

$$f(x,y,z) = \overline{x}\,\overline{y}z \vee x\overline{y}\,\overline{z} \vee \overline{x}y\overline{z} \vee xyz = \overline{y}(\overline{x}\,z \vee x\overline{z}) \vee y \cdot (\overline{x}\,\overline{z} \vee xz) = \overline{y}(x \oplus z) \vee y \cdot \overline{x \oplus z} = y \oplus x \oplus z.$$

Строим схему, сложность схемы L=2:



## Сравнение алгоритмов $A_1$ , $A_3$ и $A_4$

Для функции f(x,y,z)=(01101001) построим схемы алгоритмами  $A_1$  и  $A_3$ .

СДНФ функции:  $f(x, y, z) = \overline{x} \overline{y}z \lor x\overline{y} \overline{z} \lor \overline{x}y\overline{z} \lor xyz$ .

Алгоритмом  $A_1$  получаем схему сложности L=14:



# Сравнение алгоритмов $A_1$ , $A_3$ и $A_4$

$$f(x,y,z) = (01101001)$$
. Получим разложение Шеннона:  $f(x,y,z) = \overline{x} f_x^0 \lor x f_x^1 = \overline{x} \, \overline{yz} (y \lor z) \cdot \lor x \cdot (\overline{y} \lor \overline{z} (yz))$   $f_x^0 = (0110) = \overline{yz} (y \lor z)$   $f_x^1 = (1001) = \overline{y} \lor \overline{z} (yz)$ 

Алгоритмом  $A_3$  получаем схему сложности L=12:



## Линейные функции

Функция называется линейной, если ей соответствует полином Жегалкина первой степени, т.е. без конъюнкций.

Функция f(x,y,z)= (01101001) является линейной, так как  $f(x,y,z)=y\oplus x\oplus z.$ 

Число линейных функций от n аргументов равно  $2^{n+1}$ .

Для линейной функций от n аргументов мы можем построить схему в базасе  $\{\&, \oplus, 1\}$ , основанную на полиноме Жегалкина, сложность которой не превышающей n.

# разложения Акерса

Алгоритм  $A_5$  и метод,

основанный на построении

#### Содержание

- 1. Полиномиальные формы
- 2. Алгоритм  $A_4$ , основанный на построении полинома Жегалкина
- 3. Алгоритм  $A_5$  и метод, основанный на построении разложения Акерса

#### Производные булевых функций. Разложение Акерса

**Определение.** Производной функции по i-му аргументу называется функция от оставшихся аргументов, равная сумме остаточных функций по i-му аргументу.

$$f_{x}^{'}=f_{x}^{0}\oplus f_{x}^{1}$$

Используя понятие производной, можно показать справедливость следующего полиномиального представления, разложения Акерса:

$$f = \overline{x}f_{x}^{0} \oplus xf_{x}^{1} = (x \oplus 1)f_{x}^{0} \oplus xf_{x}^{1} = x(f_{x}^{0} \oplus f_{x}^{1}) \oplus f_{x}^{0} = xf_{x}^{'} \oplus f_{x}^{0} = \overline{x}f_{x}^{'} \oplus f_{x}^{1}$$
$$f = xf_{x}^{'} \oplus f_{x}^{0} = \overline{x}f_{x}^{'} \oplus f_{x}^{1}$$

## **А**лгоритм $A_5$ . Пример

Раскладываем функцию в ряд Акерса, строим схему:

$$f(x, y, z) = (10010101)$$

$$f(x,y,z) = \overline{x}f_{x}'(y,z) \oplus f_{x}^{1}(y,z)$$

$$f_{\scriptscriptstyle X}^{'}(y,z)=(1100)=\overline{y}$$

$$f_x^1(y,z) = (0101) = z$$



Сложность схемы L=4.

Данный алгоритм позволяет строить схемы без получения формул.

Двухбитовое число  $x_1x_0$  может принимать любые значения (00,01,10,11). Точно так же  $y_1y_0$  представляет второе двоичное число. Требуется спроектировать логическую схему, использующую входы  $x_1,x_0,y_1,y_0$ , на выходе которой будет 1 токда, когда числа  $x_1x_0$  и  $y_1y_0$  будут равны.

Первый шаг решения – построение таблицы истинности.

Таблица истинности:

| гаолица истинности:                                                                     |   |  |  |  |  |
|-----------------------------------------------------------------------------------------|---|--|--|--|--|
| <i>x</i> <sub>1</sub> <i>x</i> <sub>0</sub> <i>y</i> <sub>1</sub> <i>y</i> <sub>0</sub> | f |  |  |  |  |
| 0000                                                                                    | 1 |  |  |  |  |
| 0001                                                                                    | 0 |  |  |  |  |
| 0010                                                                                    | 0 |  |  |  |  |
| 0011                                                                                    | 0 |  |  |  |  |
| 0100                                                                                    | 0 |  |  |  |  |
| 0 1 0 1                                                                                 | 1 |  |  |  |  |
| 0 1 1 0                                                                                 | 0 |  |  |  |  |
| 0 1 1 1                                                                                 | 0 |  |  |  |  |
| 1000                                                                                    | 0 |  |  |  |  |
| 1001                                                                                    | 0 |  |  |  |  |
| 1010                                                                                    | 1 |  |  |  |  |
| 1011                                                                                    | 0 |  |  |  |  |
| 1100                                                                                    | 0 |  |  |  |  |
| 1101                                                                                    | 0 |  |  |  |  |
| 1110                                                                                    | 0 |  |  |  |  |
| 1111                                                                                    | 1 |  |  |  |  |

Втророй шаг – построим разложение Акерса. 
$$f(x_1,x_0,y_1,y_0)=\overline{x_1}f_{x_1}'\oplus f_{x_1}^1=\overline{x_1}(\overline{x_0}\oplus y_0)\oplus \overline{x_0}y_1\oplus y_1y_0$$
 
$$g(x_0,y_1,y_0)=f_{x_1}'=f_{x_1}^1\oplus f_{x_1}^0=(10100101)$$
 
$$g(x_0,y_1,y_0)=\overline{x_0}g_{x_0}'\oplus g_{x_0}^1=\overline{x_0}\oplus y_0$$
 
$$g_{x_0}'=(1111)\ g_{x_0}^1=(0101)=y_0$$
 
$$h(x_0,y_1,y_0)=f_{x_1}^1=(00100001)$$
 
$$h(x_0,y_1,y_0)=\overline{x_0}h_{x_0}'\oplus h_{x_0}^1=\overline{x_0}y_1\oplus y_1\cdot y_0$$
 
$$h_{x_0}'=(0011)=y_1\ h_{x_0}^1=(0001)=y_1\cdot y_0$$
 
$$f(x_1,x_0,y_1,y_0)=\overline{x_1}(\overline{x_0}\oplus y_0)\oplus \overline{x_0}y_1\oplus y_1y_0$$

Шаг 3 – упрощаем с помощью элементарных преобразований. 
$$f(x_1,x_0,y_1,y_0)=\overline{x_1}(\overline{x_0}\oplus y_0)\oplus \overline{x_0}y_1\oplus y_1y_0=\overline{x_1}(\overline{x_0}\oplus y_0)\oplus y_1(\overline{x_0}\oplus y_0)=\\ (\overline{x_0}\oplus y_0)(\overline{x_1}\oplus y_1)=\overline{(x_0\oplus y_0)}\cdot \overline{(x_1\oplus y_1)}$$

Шаг 4 – строим схему. Схемы сложности 5 и 3:

