

یادگیری چند نمایی و کاربرد آن در کشف دارو





دانشجو ارشد هوش مصنوعي



# Deep Learning Workshops

Multi-view learning and its applications in drug discovery



Abbas Mehrbaniyan

MSc. Artificial Intelligence





# Representation learning

Representation of data matters!



Raw data Representation

- Feature engineering had a key role in ML
  - Hand-crafted features (e.g., word co-occurrence, term frequency)





### **Data driven features**

• Deep neural network (DNN) as feature/representation learner:

### **Convolution Neural Network (CNN)**





# **Data driven features**

• Deep neural network (DNN) as feature/representation learner





# Representation learning - Challenges

# • Training data for a DNN:



Label: Cow









# Representation learning - Challenges

### Testing model:







X Predicted: Polar Bear



✗ Predicted: Camel



# Representation learning - Challenges

DNNs may not always find relevant representation

### Challenges:

- Huge models, limited labels
- Black-box nature of DNNs
- What is a good representation?





# What is a good representation?

### A good representation:

- ✓ Should be invariant across different scenes (views)
- ✓ Should contain essential info, not the redundant info.









# What is a good representation?

Here's an idea:





### Multi-view data

### Natural multi-view data:



Multi language data



Data captured by multiple sensors (ex. Camera)



Multi-view shopping graphs



# **Multi-view data**

### Hand crafted multi-view data:

# Original









**Augmentation** 





Crop & Rotate

Add Noise



Original



Deletion







Edge Manipulation

Feature Manipulation

Sub Graph



### **Canonical Correlation Analysis (CCA)**

• To understand the relationship between two sets of variable

$$(w_x^*, w_y^*) = \arg\max_{w_x, w_y} \operatorname{corr}(Xw_x, Yw_y)$$

$$\operatorname{corr}(Xw_x, Yw_y) = \frac{w_x^T C_{xy} w_y}{\sqrt{w_x^T C_{xx} w_x} \sqrt{w_y^T C_{yy} w_y}}$$
Invariant to the scaling of  $w_x$  and  $w_y$ 

- $C_{xx}$  and  $C_{yy}$  are the covariance matrices of X and Y
- $C_{xy}$  is the cross-covariance matrix between X and Y



### **Canonical Correlation Analysis (CCA)**

• Constrained form:

$$\operatorname{corr}(Xw_{x}, Yw_{y}) = \underset{w_{x}, w_{y}}{\operatorname{arg max}} w_{x}^{T} C_{xy} w_{y}$$

$$s.t. \ w_{x}^{T} C_{xx} w_{x} = I, w_{y}^{T} C_{yy} w_{y} = I$$

• When the feature dimensionality is high, the covariance matrix  $C_{xx}$  (or  $C_{yy}$ ) is singular

$$C_{xx} = \frac{1}{N}XX^T + r_x I$$
$$C_{yy} = \frac{1}{N}YY^T + r_Y I$$



### **Canonical Correlation Analysis (CCA)**

- How to find  $w_x$  and  $w_y$ ?
- 1. Generalized eigenvalue decomposition problem:

$$\begin{bmatrix} \mathbf{0} & \Sigma_{xy} \\ \Sigma_{yx} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{w_x} \\ \mathbf{w_y} \end{bmatrix} = \lambda \begin{bmatrix} \hat{\Sigma}_{xx} & \mathbf{0} \\ \mathbf{0} & \hat{\Sigma}_{yy} \end{bmatrix} \begin{bmatrix} \mathbf{w_x} \\ \mathbf{w_y} \end{bmatrix} \qquad \begin{array}{c} \Sigma_{xy} = \frac{1}{N}XY^T \\ \Sigma_{yx} = \frac{1}{N}YX^T \end{array}$$

2. Preform singular value decomposition (SVD) on:

$$T = \Sigma_{xx}^{-1/2} \Sigma_{xy} \Sigma_{yy}^{-1/2}$$

 $\operatorname{corr}(Xw_x, Yw_y) \to \operatorname{K} \operatorname{largest singular values of} \operatorname{T}$ 

Let  $W_x'$  and  $W_y'$  be the K largest left and right singular vectors of T



### **Canonical Correlation Analysis (CCA)**

- How to find  $w_x$  and  $w_y$ ?
- 2. Preform singular value decomposition (SVD) on:

$$T = \Sigma_{xx}^{-1/2} \Sigma_{xy} \Sigma_{yy}^{-1/2}$$

 $\operatorname{corr}(Xw_x, Yw_y) \to \operatorname{K} \operatorname{largest singular values of} \operatorname{T}$ 

Let  $W_x'$  and  $W_y'$  be the K largest left and right singular vectors of T

### **Canonical matrices**

$$W_x = \Sigma_{xx}^{-1/2} W_x'$$
  $W_y = \Sigma_{yy}^{-1/2} W_y'$ 

### **Canonical variables**

$$Z_x = W_x^T X \qquad Z_y = W_y^T Y$$



### **Deep Canonical Correlation Analysis (DCCA)**

• Using DNNs as non-linear mappings.

$$(\theta_x, \theta_y) = \arg\max_{\theta_x, \theta_y} \operatorname{corr} (f(X; \theta_x), g(Y; \theta_y))$$



- $f(X; \theta_x)$  is a DNN that transforms X into a new representation, parameterized by  $\theta_x$
- $g(Y; \theta_y)$  is another DNN that transforms Y into a new representation, parameterized by  $\theta_y$



# **Deep Canonical Correlation Analysis (DCCA)**

$$T = \Sigma_{xx}^{-1/2} \Sigma_{xy} \Sigma_{yy}^{-1/2}$$

•  $\operatorname{corr}(Xw_x, Yw_y) \to \operatorname{K} \operatorname{largest singular values of T}$ 

$$T = \left(\frac{1}{N}f(X)f(X)^{T} + r_{x}I\right)^{1/2} + \left(\frac{1}{N}f(X)f(Y)^{T}\right) + \left(\frac{1}{N}g(Y)g(Y)^{T} + r_{y}I\right)^{1/2}$$

• CCA Loss function:

$$\underset{\theta_{x},\theta_{y},w_{x},w_{y}}{\text{maximize}} \sum_{k=1}^{K} \sigma_{k}(T)$$

s.t. 
$$w_x^T \left( \frac{1}{N} f(X) f(X)^T + r_x I \right) w_x = I, w_y^T \left( \frac{1}{N} f(Y) f(Y)^T + r_y I \right) w_y = I$$





### **Deep Canonical Correlation Analysis (DCCA)**

• If K = hidden dim, CCA Loss function:

$$\underset{\theta_x,\theta_y,w_x,w_y}{\text{maximize}} Tr(TT')^{1/2}$$

s.t. 
$$w_x^T \left( \frac{1}{N} f(X) f(X)^T + r_x I \right) w_x = I, w_y^T \left( \frac{1}{N} f(Y) f(Y)^T + r_y I \right) w_y = I$$





# CCA vs. DCCA





# Deep multi-view learning

A general framework architecture:





# Deep multi-view learning - DCCAE

Autoencoders are widely used in many applications!

$$L_{\text{recon X}} = \|X - D(E(X; \theta_x); \phi_x)\|^2$$

$$L_{\text{recon}_{Y}} = \|Y - D(E(Y; \theta_{y}); \phi_{y})\|^{2}$$

### Minimize:

$$\mathcal{L}(\theta_x, \theta_y, \phi_x, \phi_y) = -\text{corr}\left(E(X; \theta_x), E(Y; \theta_y)\right) + \lambda \left(L_{\text{recon}_X} + L_{\text{recon}_X}\right)$$











Drug discovery is an expensive, time-consuming process, with low success rates





Multi-view data of molecules/compounds (Textual)

### (a) Sequence-based

SMILES CN1C=NC2=C1C(=O)N(C(=O)N2C)C

InChl 1S/C8H10N4O2/c1-10-4-9-6-...3H3

SELFIES [C][N][C][=Branch1][C][=O][C][=C]...[N][=O]

Morgan [000000...00000001001000...000]

MACCS [000000...11100010101111111110]

IUPAC 1,3,7-trimethylpurine-2,6-dione

### caption

Caffeine is a trimethylxanthine in which the three methyl groups are located at positions 1, 3, and 7. A purine alkaloid that occurs naturally in tea and coffee.



Multi-view data of molecules/compounds (Graph)

### (b) Graph-based

### 2D molecular graph



### **Adjacent Matrix**

Shape: (n, n)

### 3D molecular graph



### **3D Coordinates**

Shape: (n,3)

| 311ape. (11,5 ) |                        |       |  |
|-----------------|------------------------|-------|--|
| 2.14            | 0.68<br>-0.30<br>-1.61 | -0.26 |  |
| -2.28           | 2.27<br>2.80<br>3.22   | -0.45 |  |



Multi-view data of molecules/compounds (Image)

### (c) Pixel-based

### molecular image

## Pixel Matrix



### molecular 3D grid



### **Voxel Array**

Shape: (m1, m2, m3, 3)



### **Dual-view Molecular Pre-training (DVMP)**

ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2023

Different molecular representations describe molecules from different aspects!

Transformer M GNN

DVMP Succeeds!





Dual-view Molecular Pre-training (DVMP)

### **Cosine similarity**





# Thanyous

Feel free to ask any question!



Presentation materials



### Abbas Mehrbaniyan







