— QUIZ 3 —

AMATH 352: Applied Linear Algebra & Numerical Analysis

© Ryan Creedon, University of Washington

Due to Gradescope February 21, 2023 at 11:59pm PST

This quiz should take ~ 1 hour to complete, but you have all day to turn it in.

Follow all directions carefully. Credit will not be given for work that does not follow directions. You are $\underline{\text{not}}$ allowed to work with other students or use your notes, homework assignments, MATLAB, or external sources. Please submit your work to Quiz 3 on Gradescope. Only .pdf files will be accepted.

Sally wishes you the best of luck!

Name:		
Student ID:		

Problem	Points	Score
1	10	
2	5	
3	5	
4	5	
5	5	

Total

1. (10 points total) Answer the following true-false questions. (Think carefully!)
(a) (1 point) Given any $\mathbf{u} \in \mathbb{R}^n$, $ \mathbf{u} _{\infty} \le \mathbf{u} _1$.
True False
(b) (1 point) Given any $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, $ \mathbf{u} \cdot \mathbf{v} \le \mathbf{u} _2 \mathbf{v} _2$.
True False
(c) (1 point) If a set of vectors is orthonormal, then the vectors are linearly independent.
True False
(d) (1 point) There exists an orthonormal basis for every subspace of \mathbb{R}^n except the trivial subspace
True False
(e) (1 point) If \mathbf{Q} is a $n \times n$ orthogonal matrix, then $(\mathbf{Q}\mathbf{u}) \cdot (\mathbf{Q}\mathbf{v}) = \mathbf{u} \cdot \mathbf{v}$ for all $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$.
True False
(f) (1 point) If \mathbf{u} and \mathbf{v} are unit vectors in \mathbb{R}^n , then $\mathbf{u} - \mathbf{v}$ and $\mathbf{u} + \mathbf{v}$ are orthogonal.
True False

For (g)-(j), consider the following matrix:

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 2 & 1 \\ 3 & 2 & 2 \\ 5 & 4 & 3 \end{pmatrix}.$$

(g) (1 point) The columns of **A** form a basis for a 3-dimensional subspace of \mathbb{R}^4 .

True False

(h) (1 point) The matrix $\mathbf{A}^T \mathbf{A}$ is invertible.

True \Box False \Box

(i) (1 point) The Gram-Schmidt algorithm can be applied to the columns of ${\bf A}$ without dividing by zero.

True \square False \square

(j) (1 point) For the linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$, there is a unique \mathbf{x} that minimizes $||\mathbf{A}\mathbf{x} - \mathbf{b}||_2$.

True False

2. (5 points total) Consider the following matrix:

$$\mathbf{A} = \begin{pmatrix} 3 & 0 \\ 4 & 5 \end{pmatrix}.$$

(a) (4 points) Obtain the QR factorization of A. Show each step of Gram-Schmidt!

$$\mathbf{Q} = \begin{pmatrix} \Box & \Box \\ \Box & \Box \end{pmatrix}, \quad \mathbf{R} = \begin{pmatrix} \Box & \Box \\ \Box & \Box \end{pmatrix}$$

(b) (1 point) Use your QR factorization to solve the system $\mathbf{A}\mathbf{x} = \mathbf{b}$, where $\mathbf{b} = \begin{pmatrix} 5 & 5 \end{pmatrix}^T$.

- 3. (5 points total) Consider the set of all vectors $\mathbf{x}=(x,y,z,w)^T\in\mathbb{R}^4$ that lie on the hyperplane x-w=0.
 - (a) (2 points) Obtain three vectors \mathbf{p}_1 , \mathbf{p}_2 , and \mathbf{p}_3 that form a basis for this hyperplane. These vectors need not be orthonormal. (Be sure to check your vectors satisfy the definition of a basis.)

$$\mathbf{p}_1 = \begin{pmatrix} \square \\ \square \\ \square \end{pmatrix}, \quad \mathbf{p}_2 = \begin{pmatrix} \square \\ \square \\ \square \end{pmatrix}, \quad \mathbf{p}_3 = \begin{pmatrix} \square \\ \square \\ \square \end{pmatrix}$$

(b) (3 points) Using your answer from (a), obtain vectors \mathbf{q}_1 , \mathbf{q}_2 , and \mathbf{q}_3 that form an orthonormal basis for this hyperplane.

$$\mathbf{q}_1 = egin{pmatrix} \square \\ \square \\ \square \end{pmatrix}, \quad \mathbf{q}_2 = egin{pmatrix} \square \\ \square \\ \square \end{pmatrix}, \quad \mathbf{q}_3 = egin{pmatrix} \square \\ \square \\ \square \end{pmatrix}$$

4. (5 points total) Consider the linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$, where

$$\mathbf{A} = \begin{pmatrix} 3 \\ 2 \\ -\sqrt{3} \end{pmatrix} \quad \text{and} \quad \mathbf{b} = \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}.$$

(a) (2 points) Find \mathbf{x} that solves the least-squares problem using the normal equation.

$$\mathbf{x} = \left(\Box\right)$$

(b) (2 points) Find ${\bf x}$ that solves the least-squares problem using the QR equation.

$$\mathbf{x} = \left(\Box\right)$$

(c) (1 point) Using the normal equations to solve least-squares problems is less expensive than using the QR equation to solve least-squares problems.

True False

5. (5 points total) The temperature on a chilly Seattle day is modeled by

$$T(t) = a\sin(\pi t) + b,$$

where the coefficients a and b are to be determined and t is time. Suppose we have the following data:

\overline{t}	T	
0	1	
1/6	-1/2	
1/2	0	

(a) (1 point) Based on the data above, construct a 3×2 linear system for a and b.

(b) (4 points) Find the least-squares solution of your system in (a).