Optimization and Computational Linear Algebra for Data Science Lecture 1: Vector spaces

Léo MIOLANE · leo.miolane@gmail.com

August 31, 2019

Warning: This material is not meant to be lecture notes. It only gathers the main concepts and results from the lecture, without any additional explanation, motivation, examples, figures...

1 General definitions

We present below the abstract mathematical definition of a vector space. **Please do not try to memorize it!** Simply remember that a vector space is a set whose elements are called *vectors*, that one can add vectors together and multiply them by real numbers called *scalars*.

Definition 1.1 (Vector space)

A vector space (over \mathbb{R}) consists of of a set V (whose elements are called vectors) and two operations + and \cdot that verify:

- 1. The sum of two vectors is a vector: for all $\vec{x}, \vec{y} \in V$ we have $\vec{x} + \vec{y} \in V$.
- 2. The vector sum is commutative and associative. For all $\vec{x}, \vec{y}, \vec{z} \in V$ we have

$$\vec{x} + \vec{y} = \vec{y} + \vec{x}$$
 and $\vec{x} + (\vec{y} + \vec{z}) = (\vec{x} + \vec{y}) + \vec{z}$.

- 3. There exists a zero vector $\vec{0} \in V$ that verifies $\vec{x} + \vec{0} = \vec{x}$ for all $\vec{x} \in V$.
- 4. For all $\vec{x} \in V$, there exists $\vec{y} \in V$ such that $\vec{x} + \vec{y} = \vec{0}$. Such \vec{y} is called the additive inverse of \vec{x} and is written $-\vec{x}$.
- 5. Scalar multiplication: for all $\vec{x} \in V$ and all $\alpha \in \mathbb{R}$, $\alpha \cdot \vec{x} \in V$.
- 6. Identity element for scalar multiplication: $1 \cdot \vec{x} = \vec{x}$ for all $\vec{x} \in V$.
- 7. Compatibility between scalar multiplication and the usual multiplication: for all $\alpha, \beta \in \mathbb{R}$ and all $\vec{x} \in V$, we have

$$\alpha \cdot (\beta \cdot \vec{x}) = (\alpha \beta) \cdot \vec{x}.$$

8. Distributivity: for all $\alpha, \beta \in \mathbb{R}$ and all $\vec{x}, \vec{y} \in V$,

$$(\alpha + \beta) \cdot \vec{x} = \alpha \cdot \vec{x} + \beta \cdot \vec{y}$$
 and $\alpha \cdot (\vec{x} + \vec{y}) = \alpha \cdot \vec{x} + \alpha \cdot \vec{y}$.

From now we will ignore \cdot and simply write $\alpha \vec{x}$ instead of $\alpha \cdot \vec{x}$. We will also remove the arrows and write x instead of \vec{x} .

Example 1.1.

• The set $V = \mathbb{R}^n$ endowed with the usual vector addition +

$$(x_1,\ldots,x_n)+(y_1,\ldots,y_n)=(x_1+y_1,\ldots,x_n+y_n)$$

and the usual scalar multiplication \cdot

$$\alpha \cdot (x_1, \dots, x_n) = (\alpha x_1, \dots, \alpha x_n)$$

is a vector space.

• The set $V = \mathcal{F}(\mathbb{R}, \mathbb{R}) \stackrel{\text{def}}{=} \{f \mid f : \mathbb{R} \to \mathbb{R}\}$ of all functions from \mathbb{R} to itself endowed with the addition + and the scalar multiplication \cdot defined by

$$f+g: \mathbb{R} \to \mathbb{R}$$
 and $\alpha \cdot f: \mathbb{R} \to \mathbb{R}$ $t \mapsto f(t) + g(t)$

is a vector space.

• On a probability space, the set of random variables that admits a finite second moment is a vector space.

Definition 1.2 (Subspace)

We say that a non-empty subset S of a vector space V is a subspace if it is stable by addition and multiplication by a scalar, that is if

- (i) for all $x, y \in S$ we have $x + y \in S$,
- (ii) for all $x \in S$ and all $\alpha \in \mathbb{R}$ we have $\alpha x \in S$.

Notice that a subspace is also a vector space!

2 Linear dependency

Definition 2.1 (Linear combination)

Let V be a vector space and $A \subset V$. We say that $y \in V$ is a linear combination of elements of A if there exist $k \in \mathbb{N}$, $x_1, \ldots, x_k \in A$ and $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$ such that

$$y = \sum_{i=1}^{k} \alpha_i x_i.$$

Remember that a linear combination is always a *finite* sum.

Remark 2.1. If S is a subspace of a vector space V, any linear combination of elements of S belongs to S.

Definition 2.2 (Span)

Let V be a vector space and $A \subset V$. The linear span of A is the set of all linear combinations of elements of A:

$$\operatorname{Span}(A) = \left\{ y \mid \exists k \in \mathbb{N}, \ x_1, \dots, x_k \in A, \ \alpha_1, \dots, \alpha_k \in \mathbb{R}, \ y = \sum_{i=1}^k \alpha_i x_i \right\}.$$

Given vectors $x_1, \ldots x_k \in V$ we will simply write

$$\operatorname{Span}(x_1,\ldots,x_k) = \operatorname{Span}(\{x_1,\ldots,x_k\}) = \{\alpha_1 x_1 + \cdots + \alpha_k x_k \mid \alpha_1,\ldots,\alpha_k \in \mathbb{R} \}.$$

One can easily verify (exercise!) that $\mathrm{Span}(A)$ is a subspace of V. One can also verify (exercise!) that

$$\operatorname{Span}(A) = \bigcap_{S \text{ subspace of } V} S,$$

 $\operatorname{Span}(A)$ is therefore the smallest (for the inclusion \subset) subspace of S that contains A.

Definition 2.3 (Linear dependency)

Vectors $x_1, \ldots x_k \in V$ are linearly dependent is there exists $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$ that are not all **zero** such that

$$\alpha_1 x_1 + \dots + \alpha_k x_k = 0.$$

They are said to be linearly independent otherwise.

Saying that x_1, \ldots, x_k are linearly dependent precisely means that one of the vectors x_1, \ldots, x_k can be obtained as a linear combination of the others. Indeed if x_1, \ldots, x_k are linearly dependent, then we can find $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$ that are not all zero (there exists i such that $\alpha_i \neq 0$) such that $\alpha_1 x_1 + \cdots + \alpha_k x_k = 0$. This leads to

$$x_i = \sum_{j \neq i} \frac{-\alpha_j}{\alpha_i} x_j,$$

i.e. the vector x_i can be expressed as a linear combinations of the vectors x_j for $j \neq i$. Conversely if we have for some i, and $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$

$$x_i = \alpha_1 x_1 + \dots + \alpha_{i-1} x_{i-1} + \alpha_{i+1} x_{i+1} + \dots + \alpha_k x_k = 0.$$

then $\alpha_1 x_1 + \dots + \alpha_{i-1} x_{i-1} - x_i + \alpha_{i+1} x_{i+1} + \dots + \alpha_k x_k = 0$ which gives that x_1, \dots, x_k are linearly dependent.

Theorem 2.1

Let $v_1, \ldots, v_n \in V$ and suppose that we have vectors $x_1, \ldots, x_k \in V$ such that k > n and $x_i \in \text{Span}(v_1, \ldots, v_n)$ for all $i \in \{1, \ldots, k\}$. Then x_1, \ldots, x_k are linearly dependent.

Theorem 2.1 will be proved in Section 3.

Definition 2.4 (Basis)

A family (x_1, \ldots, x_n) of vectors of V is a basis of V if

- (i) x_1, \ldots, x_n are linearly independent,
- (ii) $\operatorname{Span}(x_1,\ldots,x_n)=V.$

Definition 2.5 (Dimension)

Let V be a vector space.

- If V admits a basis (v_1, \ldots, v_n) , then every basis of V has also n vectors. We say that V has dimension n and write $\dim(V) = n$.
- Otherwise, we say that V has infinite dimension: $\dim(V) = +\infty$.

The dimension is therefore the minimum number of vector needed to span the vector space. In this course we are going to focus mostly on finite dimensional spaces and \mathbb{R}^n in particular.

Proof. We proceed by contradiction and assume that there exists two basis (v_1, \ldots, v_n) and (x_1, \ldots, x_k) of V such that $k \neq n$. Without loss of generality we can assume that k > n. For $i = 1, \ldots, k$ we have

$$x_i \in V = \operatorname{Span}(v_1, \dots, v_n),$$

because (v_1, \ldots, v_n) is a basis of V. We can therefore apply Theorem 2.1 to get that x_1, \ldots, x_{n+1} are linearly dependent. This contradicts the fact that (x_1, \ldots, x_k) is a basis.

Example 2.1. Let us define the vectors $e_1, \ldots, e_n \in \mathbb{R}^n$ by

$$e_1 = (1, 0, 0, \dots, 0)$$

 $e_2 = (0, 1, 0, \dots, 0)$
 \vdots
 $e_n = (0, 0, 0, \dots, 1).$

One can verify (exercise!) that the family (e_1, \ldots, e_n) is a basis of \mathbb{R}^n . This basis is called the "canonical basis" of \mathbb{R}^n . We conclude that \mathbb{R}^n has dimension n.

Proposition 2.1 (Coordinates)

Let (v_1, \ldots, v_n) be a basis of V. Then for every $x \in V$ there exists a unique vector $(\alpha_1, \ldots, \alpha_n) \in \mathbb{R}^n$ such that

$$x = \alpha_1 v_1 + \dots + \alpha_n v_n.$$

We say that $(\alpha_1, \ldots, \alpha_n)$ are the coordinates of x in the basis (v_1, \ldots, v_n) .

Proof. Existence. (v_1, \ldots, v_n) forms a basis of V therefore $V = \operatorname{Span}(v_1, \ldots, v_n)$. We get that $x \in \operatorname{Span}(v_1, \ldots, v_n)$ which gives that there exists $\alpha_1, \ldots, \alpha_n$ such that $x = \alpha_1 v_1 + \cdots + \alpha_n v_n$. Uniqueness. Let $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_n \in \mathbb{R}$ such that

$$x = \alpha_1 v_1 + \dots + \alpha_n v_n = \beta_1 v_1 + \dots + \beta_n v_n.$$

This leads to

$$(\alpha_1 - \beta_1)v_1 + \dots + (\alpha_n - \beta_n)v_n = 0.$$

The vectors v_1, \ldots, v_n are linearly independent because they forms a basis. Consequently $\alpha_1 - \beta_1 = \alpha_2 - \beta_2 = \cdots = \alpha_n - \beta_n = 0$, i.e. $(\alpha_1, \ldots, \alpha_n) = (\beta_1, \ldots, \beta_n)$.

Definition 2.6 (Lines, hyperplanes)

Let S be a subspace of \mathbb{R}^n .

- We call S a line if $\dim(S) = 1$.
- We call S an hyperplane if $\dim(S) = n 1$.

Proposition 2.2

Let U and V be two subspaces of \mathbb{R}^n . Assume that $U \subset V$. Then

$$\dim(U) \le \dim(V) \le n.$$

If **moreover** $\dim(U) = \dim(V)$, then U = V.

3 Proof of Theorem 2.1

Notice that it suffices to prove the theorem for k = n + 1 because if x_1, \ldots, x_{n+1} are linearly dependent, so are $x_1, \ldots, x_{n+1}, \ldots x_k$. We will therefore show for all $n \ge 1$

$$\mathcal{H}_n$$
: « For all $v_1, \ldots, v_n \in V$ and all $x_1, \ldots, x_{n+1} \in \operatorname{Span}(v_1, \ldots, v_n)$, the vectors x_1, \ldots, x_{n+1} are linearly dependent. »

Base case: \mathcal{H}_1 is true. Indeed, if $x_1, x_2 \in \operatorname{Span}(v_1)$, then there exists $\alpha_1, \alpha_2 \in \mathbb{R}$ such that $x_1 = \alpha_1 v_1$ and $x_2 = \alpha_2 v_1$. If $\alpha_1 = 0$ then $x_1 = 0$ and x_1, x_2 are therefore linearly dependent. Otherwise if $\alpha_1 \neq 0$ then $v_1 = \frac{1}{\alpha_1} x_1$ which then gives $x_2 = \frac{\alpha_2}{\alpha_1} x_1$: x_1, x_2 are linearly dependent.

Induction step: We assume now that \mathcal{H}_{n-1} holds for some $n \geq 2$ and we will show that \mathcal{H}_n holds. We consider therefore $x_1, \ldots, x_{n+1} \in \operatorname{Span}(v_1, \ldots, v_n)$. We can find real numbers $\alpha_{i,j}$ such that

$$\begin{array}{rclcrcrcr} x_1 & = & \alpha_{1,1}v_1 & + & \cdots & + & \alpha_{1,n}v_n \\ x_2 & = & \alpha_{2,1}v_1 & + & \cdots & + & \alpha_{2,n}v_n \\ \vdots & & & & & & \\ x_{n+1} & = & \alpha_{n+1,1}v_1 & + & \cdots & + & \alpha_{n+1,n}v_n. \end{array}$$

We have to show that x_1, \ldots, x_{n+1} are linearly dependent. Let us consider the first line. If $\alpha_{1,1} = \alpha_{1,2} = \cdots = \alpha_{1,n} = 0$, then $x_1 = 0$ which gives then that x_1, \ldots, x_{n+1} are linearly dependent. Otherwise, there exists j such that $\alpha_{1,j} \neq 0$. Without loss of generality we can assume that $\alpha_{1,1} \neq 0$.

If we define $y_i \stackrel{\text{def}}{=} x_i - \frac{\alpha_{i,1}}{\alpha_{1,1}} x_1$ for $i = 2, \ldots, n+1$ we obtain have $y_i \in \text{Span}(v_2, \ldots, v_n)$. We can now apply the induction hypothesis \mathcal{H}_{n-1} to get that y_2, \ldots, y_{n+1} are linearly dependent. This means that there exists $\beta_2, \ldots, \beta_{n+1}$ that are not all zero, such that $\beta_2 y_2 + \cdots + \beta_{n+1} y_{n+1} = 0$ which finally gives

$$\left(-\beta_2 \frac{\alpha_{2,1}}{\alpha_{1,1}} - \dots - \beta_{n+1} \frac{\alpha_{n+1,1}}{\alpha_{1,1}}\right) x_1 + \beta_2 x_2 + \dots + \beta_{n+1} x_{n+1} = 0.$$

Since $\beta_2, \ldots, \beta_{n+1}$ are not all zero we get that x_1, \ldots, x_{n+1} are linearly dependent. \mathcal{H}_n is proved.

