LECTURER: TAILE QUY

INTRODUCTION TO DATA SCIENCE

TOPIC OUTLINE

Introduction to Data Science	1
Data	2
Data Science in Business	3
Statistics	4
Machine Learning	5
Summary session	6

UNIT 2

DATA

On completion of this unit, you will have learned ...

- what is meant by data and information.
- the different types and shapes of data.
- the typical sources of data.
- the 5Vs of big data.
- the issues concerning data quality.
- the challenges associated with the data engineering process.

- What do "data" and "information" mean?
- What data types and data shapes are there?
- Where can data be collected?
- What are the important criteria for data quality?
- What are the issues concerning data quality? How to fix them?
- What are the challenges and benefits of data processing?

DATA

Facts, observations, assumptions, or incidences

Data describe quantity, quality, statistics, symbols, or other units of meaning

Data are processed to return information

DEFINITION

TYPES OF DATA

Qualitative Data

Describe qualities or characteristics

Cannot be counted

Words, objects, pictures, observations, and symbols

Answer to questions: What characteristics? What property?

Identify conceptual framework in an area of study

Quantitative Data

Can be quantified or expressed as a number

Can be counted

Numbers and statistics

Answer to questions: How much? How often?

Test hypotheses, analyses the connection between cause and effect.

SHAPES OF DATA

	Structured Data	Unstructured Data	Streaming Data
Characteristics	predefined data modelsusually, text or numericaleasy to search	 no predefined data models can be text, images, audio, or other formats difficult to search 	continuously generatedby sensorslarge amountprocessed incrementally
Applications	inventory controlairline reservationsystems	word processingtools for editing media	state monitoringprocess control
Examples	phone numberscustomer namestransaction information	reportsimageryemail/messages	real-time sensor valuesstock updates

SOURCES OF DATA

THE 5VS OF BIG DATA

1 Volume: amount, scale

2 Variety: structured/unstructured

3 Velocity: frequency

4 Veracity: quality

5 Validity: suitability

DATA QUALITY

Issues	Causes	Solutions
Missing values and outliers	not observedincorrectly observed	removalreplacement
Duplicate records	- duplicate observation	- removal
Redundancy	 collected more than needed 	correlation analysisremoval

DATA ENGINEERING

DATA ENGINEERING

Benefits of data processing

Improvement of analysis & demonstration of data

Reduction of meaningless data

Easier storage and distribution of data

Simplified **report** creation

Enhanced **productivity** and increased **profits**

Accurate **decision**-making

Data Transformation Methods

Variable scaling

- Scaled values: {0,1} or {-1,1}
- To ensure equal weighting

Variable decomposition

- One variable → multiple variables
- To improve data representation

Variable aggregation

- Some variables → one variable
- To reduce data volume

Source of the text: Zöller, 2022

DATA ENGINEERING

REVIEW STUDY GOALS

- what is meant by data and information
- the different types and shapes of data
- the typical sources of data
- the 5Vs of big data
- the issues concerning data quality
- the challenges associated with the data engineering process

SESSION 2

TRANSFER TASK

TRANSFER TASK PRESENTATION OF THE RESULTS

Please present your results.

The results will be discussed in plenary.

TRANSFER TASKS CASE STUDY

Scenario

You are going to apply data science at an online shop to analyze and optimize the customer experience.

Questions

- 1. What data should be collected?
- 2. Which data from your dataset are quantitative, and which are qualitative?
- 3. Which types of data are there in your dataset?
- 4. Where can you collect your data?
- 5. How to guarantee the quality of your data? Give an example of your data quality issues and your solution.
- 6. How do you schedule your time for the task of data processing?
- 7. Which data transformation methods do you need for data engineering in your project?
- 8. Which benefits can you get from the data processing results?

- 1. Which shape of data has these characteristics: Easy to search, predefined data models, and numerical data?
 - a) structured data
 - b) unstructured data
 - c) streaming
 - d) all of the above

2. Which of the following is incorrect regarding data transformation methods?

- a) variable scaling
- b) variable decomposition
- c) variable aggregation
- d) none of the above

3. Which activity consumes most of the data processing time?

- a) collecting data
- b) cleaning and organizing data
- c) building training sets
- d) mining data for patterns

LIST OF SOURCES

João Batista Neto. (2015). File: Data_types_-_en.svg. Wikimedia Commons. https://en.wikipedia.org/wiki/Data#Meaning

Wikipedia. (2023, May 14). Data. Wikipedia Commons. https://en.wikipedia.org/wiki/Data#Meaning

Zöller, T. (2022). *Introduction to Data Science*. IU International University of Applied Science.

