Algorithmic Data Science - Exercise Series $2\,$

Konstantinos Papadakis Data Science and Machine Learning 03400149 konstantinospapadakis@mail.ntua.gr

June 24, 2022

Exercise 1

(a)

We have that

$$h_{a,b}(x) = h_{a,b}(y)$$

$$\iff ax + b \equiv ay + b \mod m$$

$$\iff a(x - y) \equiv 0 \mod m$$

which in the case of x = m, y = 0 is true $\forall a, b$ therefore

$$P(h_{a,b}(x) = h_{a,b}(y)) = 1 > \frac{1}{m}$$

meaning that the family is not universal.

(b)

This exercise is *Theorem 11.5* in [1]. Let $x, y \in \mathbb{Z}_p : x \neq y$. Define

$$u := ax + b \mod p$$
$$v := ay + b \mod p$$

Note that $u \neq v$ since $u - v \equiv a(x - y) \not\equiv 0 \mod p$ because $a \neq 0$ and $x \not\equiv y$ mod p, the later holding because by hypothesis $x \neq y$ and x, y < p Therefore, there are no collisions when we apply $x \mapsto ax + b \mod p$.

We proceed to show that $(a, b) \mapsto (ax+b \mod p, ax+b \mod p)$ is a bijection between the pairs $(a,b) \in \mathbb{Z}_p^* \times \mathbb{Z}_p$ and the pairs $(u,v) \in \mathbb{Z}_p \times \mathbb{Z}_p : u \neq v$. We can solve for a,b and get a unique solution

$$a = \frac{u - v}{x - y} \mod p$$
$$b = r - ak \mod p$$

Where $\frac{1}{t}$ is the inverse of t in \mathbb{Z}_p

Therefore the mapping is one to one. Since we also have that both the domain and the co-domain have p(p-1) elements, the mapping is a bijection. Thus, if (a, b) is uniformly distributed, so is (u, v).

Therefore, the probability that $x, y \in \mathbb{Z}_p : x \neq y$ collide is equal to the probability that $u \equiv v \mod m$ collide when $(u, v) \in \mathbb{Z}_p \times \mathbb{Z}_p : u \neq v$ are chosen uniformly randomly. We proceed to calculate that probability.

Given u, of the p-1 possible remaining values for v we have that at most $\lceil \frac{p}{m} \rceil - 1 \le \frac{p-1}{m}$ can collide with u. Therefore the probability of collision is $\le \frac{1}{m}$, meaning that the hash function

family is universal.

(c)

The proof in is still valid, since $x \in U \implies x < p$ is still valid. Therefore the hash function family remains universal.

Exercise 2

(a)

From what I understand, the expected number of probes for a successful search is not equal to the expected number of probes for an insertion. What [1] says in the proof of Corollary 11.7 is that the expected number of probes for an Unsuccessful search is equal to the expected number of probes for an insertion, and that number is bounded above by $\frac{1}{1-a}$ where a is the load factor.

The expected number of probes a for a successful search on the other hand

is bounded above by $\frac{1}{a} \ln \frac{1}{1-a}$, as shown in *Theorem 11.8*. If the expected values were equal, wouldn't the book bound them by the same number?

(b)

First we need to show that the expected number of probes in an unsuccessful search is bounded by $\frac{1}{1-a}$.

Let X be a random variable describing the number of probes in an unsuccessful search.

We have

$$E[X] = \sum_{i=0}^{\infty} i \Pr(X = i)$$
$$= \sum_{i=1}^{\infty} \Pr(X \ge i)$$

Now,

$$\Pr(X \ge i) = \frac{n}{m} \cdot \frac{n-1}{m-1} \cdots \frac{n-i+2}{m-i+2}$$
$$\le \left(\frac{n}{m}\right)^{i-1}$$
$$= a^{i-1}$$

Therefore,

$$\mathrm{E}[X] \leq \sum_{i=1}^{\infty} a^{i-1} = \frac{1}{1-a}$$

Since an element is inserted only if there is room in the table (thus a < 1), inserting a key requires an unsuccessful search followed by placing the key into the first empty slot found. Thus, the expected number of probes for an insertion is at most $\frac{1}{1-a}$. We now proceed to prove the result about the successful search.

A search for a key reproduces the same probe sequence as when the element with key was inserted. By the above result, if the element was the (i + 1)st element inserted, then the expected number of probes made in a search for it is at most $\frac{1}{1-1/m} = \frac{m}{m-i}$. Therefore the expected number of probes for a successful search is

$$\frac{1}{n} \sum_{i=0}^{n-1} \frac{m}{m-i} = \frac{1}{a} \sum_{i=0}^{n-1} \frac{1}{m-i}$$

$$= \frac{1}{a} \sum_{k=m-n+1}^{m} \frac{1}{k}$$

$$\leq \frac{1}{a} \int_{m-n}^{m} \frac{1}{x} dx$$

$$= \frac{1}{a} \ln \frac{m}{m-n}$$

$$= \frac{1}{a} \ln \frac{1}{1-a}$$

References

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, 3rd ed. MIT Press, 2009.