Question Number	Answer	Notes	Marks
9	(a) $s = t(t^2 - 6t + 5) = 0$		
	$ \begin{vmatrix} s = t(t - 6t + 5) = 0 \\ = t(t - 1)(t - 5) \end{vmatrix} $	M1	
	t = 0, 1, 5	A2,1,0	
	(b)	3.61	
	$v = 3t^2 - 12t + 5$	M1	
	t = 0 v = 5	A1	
	t=1 $v=3-12+5=-4$, Speed = 4	A1, A1	
	t = 5 v = 75 - 60 + 5 = 20	A1	
	(c)		
	$\frac{\mathrm{d}v}{\mathrm{d}t} = 6t - 12 \text{(or } \frac{\mathrm{d}_2 s}{\mathrm{d}t^2} = 6t - 12\text{)}$	M1	
	$\text{Max/min } \frac{dv}{dt} = 0 t = 2$	A1	
	t = 2 v = 12 - 24 + 5 = -7	A1	
	from (b) $t = 5 \Rightarrow v = 20$ \therefore max speed in interval is 20 m/s	A1ft	(12)

Notes

(a)

M1 for setting s = 0, taking t out as a common factor, and attempting to solve the quadratic $t^2 - 6t + 5$

A1 for a correct complete factorisation of s to give t(t-1)(t-5) = 0

A1 for t = 0, 1, 5

(b)

M1 for an attempt to differentiate $\frac{ds}{dt}$

A1 for a fully correct $v = 3t^2 - 12t + 5$

A1 for v = 5

A1 for $v = -4 \Rightarrow \text{speed} = 4$

A1 for v = 20

Award 3 A marks for all three correct, 2 marks for two and 1 mark for only one correct speed. Order not important (One mark for each correct speed)

(c)

EITHER

M1 for differentiating their v wrt t to give $\frac{dv}{dt} = 6t - 12$ (or $\frac{d_2s}{dt^2} = 6t - 12$)

A1 for setting their $\frac{dv}{dt} = 0$ for a max/min and solving 6t - 12 = 0 so t = 2

A1 when t = 2 v = -7

A1ft therefore max speed in interval is 20 (ms⁻¹) or their '20' in part (a)

OR

M1 for an attempt at completing the square on $v = 3t^2 - 12t + 5$ (usual rules)

A1 for a fully correct expression for $v = 3(t-2)^2 - 7$

A1 for v = -7

A1ft therefore max speed in interval is 20 (ms⁻¹) or their '20' in part (a).