Via http://www.usairnet.com/, the current atmospheric pressure in my area is 30.03 Hg. Converting inches of mercury to pound-force per square inch delivers us a value of 14.75 psi.

From the lab, gauge pressure at 20 degrees Celsius is 100 psi, so absolute pressure is 114.75 psi. For a constant volume, P / T is a constant, so for all temperatures, P / T should be equal to 114.75 psi / 293.15 Kelvins = 0.39144 psi / 500.00 Kelvin.

Temperature (°C)	Temperature (K)	Absolute Pressure (psi)	Gauge Pressure (psi)
100	373.15	146.07	131.32
20	293.15	114.75	100
0	273.15	106.92	92.17
-195.80 (boiling point of liquid nitrogen)	77.35	30.28	15.53

In the following graph, the blue line represents absolute pressure, while the red line represents gauge pressure.

Absolute and Gauge Pressures (psi) vs. Temperature (°C)

Finding the x-intercept of the blue trendline reveals that at zero absolute pressure, temperature is -273.35 °C, or -0.2 K. A negative value of Kelvin is impossible, but its closeness to zero indicates general accuracy.

After discussion with others in PHYS-151 lab sections, it was determined that it is not known by us how to account for the effects of intermolecular forces of non-ideal gases, so one may take the above graph to represent an ideal gas, as well as helium and air, assuming they are ideal gases. That statement is of course a bit of a tautology, but it is the best we could do.