AE 4803 Robotics and Autonomy Professor Evangelos Theodorou Homework 1

Luis Pimentel Jackson Crandell lpimentel3@gatech.edu jackcrandell@gatech.edu
October 2, 2020

Part 1.

1.1) First we linearize the dynamics $\frac{d\mathbf{x}}{dt} = f(\mathbf{x}, \mathbf{u}, t)$:

$$\begin{split} &\frac{d\boldsymbol{x}}{dt} = f(\boldsymbol{x}, \boldsymbol{u}, t) \\ &= f(\boldsymbol{x} + (\bar{\boldsymbol{x}} - \bar{\boldsymbol{x}}), \boldsymbol{u} + (\bar{\boldsymbol{u}} - \bar{\boldsymbol{u}}), t) \\ &= f(\bar{\boldsymbol{x}} + (\boldsymbol{x} - \bar{\boldsymbol{x}}), \bar{\boldsymbol{u}} + (\boldsymbol{u} - \bar{\boldsymbol{u}}), t) \\ &= f(\bar{\boldsymbol{x}} + \delta \boldsymbol{x}, \bar{\boldsymbol{u}} + \delta \boldsymbol{u}, t) \\ &= f(\bar{\boldsymbol{x}}, \bar{\boldsymbol{u}}, t) + \nabla_{\boldsymbol{x}} f \delta \boldsymbol{x} + \nabla_{\boldsymbol{u}} f \delta \boldsymbol{u} \\ &\frac{d\boldsymbol{x}}{dt} - f(\bar{\boldsymbol{x}}, \bar{\boldsymbol{u}}, t) = \nabla_{\boldsymbol{x}} f \delta \boldsymbol{x} + \nabla_{\boldsymbol{u}} f \delta \boldsymbol{u} \\ &\frac{d\delta \boldsymbol{x}}{dt} = \nabla_{\boldsymbol{x}} f \delta \boldsymbol{x} + \nabla_{\boldsymbol{u}} f \delta \boldsymbol{u} \end{split}$$

Then we time discretize the linearized dynamics:

$$\begin{split} &\frac{\delta \boldsymbol{x}(t_{k+1}) - \delta \boldsymbol{x}(t_k)}{t_{k+1} - t_k} = \nabla_{\boldsymbol{x}} f \delta \boldsymbol{x}(t_k) + \nabla_{\boldsymbol{u}} f \delta \boldsymbol{u}(t_k) \\ &\frac{\delta \boldsymbol{x}(t_{k+1}) - \delta \boldsymbol{x}(t_k)}{dt} = \nabla_{\boldsymbol{x}} f \delta \boldsymbol{x}(t_k) + \nabla_{\boldsymbol{u}} f \delta \boldsymbol{u}(t_k) \\ &\delta \boldsymbol{x}(t_{k+1}) - \delta \boldsymbol{x}(t_k) = \nabla_{\boldsymbol{x}} f dt \delta \boldsymbol{x}(t_k) + \nabla_{\boldsymbol{u}} f dt \delta \boldsymbol{u}(t_k) \\ &\delta \boldsymbol{x}(t_{k+1}) = \nabla_{\boldsymbol{x}} f dt \delta \boldsymbol{x}(t_k) + \delta \boldsymbol{x}(t_k) + \nabla_{\boldsymbol{u}} f dt \delta \boldsymbol{u}(t_k) \\ &\delta \boldsymbol{x}(t_{k+1}) = (\boldsymbol{I}_{n \times n} + \nabla_{\boldsymbol{x}} f dt) \delta \boldsymbol{x}(t_k) + (\nabla_{\boldsymbol{u}} f dt) \delta \boldsymbol{u}(t_k) \\ &\delta \boldsymbol{x}(t_{k+1}) = \boldsymbol{\Phi}(t_k) \delta \boldsymbol{x}(t_k) + \boldsymbol{B}(t_k) \delta \boldsymbol{u}(t_k) \end{split}$$

Where:

$$\mathbf{\Phi}(t_k) = \mathbf{I}_{n \times n} + \nabla_{\mathbf{x}} f(t_{k+1} + t_k)$$
$$\mathbf{B}(t_k) = \nabla_{\mathbf{u}} f(t_{k+1} + t_k)$$

1.2) Next we want to express the second-order expansion of $Q(\boldsymbol{x}(t_k), \boldsymbol{u}(t_k))$. First we consider the general 2nd Order Taylor Series Expansion of a single-variable function and a multi-variable function:

$$f(x) \approx f(a) + f'(a)(x - a)^2 + \frac{f''(a)}{2}(x - a)^2 a t x = a$$

$$f(x, y) \approx f(a, b) + f_x(a, b)(x - a) + f_y(a, b)(y - b)$$

$$+ \frac{1}{2} f_{xx}(a, b)(x - a)^2 + f_{xy}(a, b)(x - a)(y - b) + \frac{1}{2} f_{yy}(a, b)(y - b)^2$$

We can generalize these forms in matrix-algebra for our state-action value function.

$$Q(x(t_k), u(t_k)) = \mathcal{L}(x(t_k), u(t_k), t_k) + V(x(t_{k+1}), t_{k+1})$$

We will start by writing the expansion of the running cost and the value function individually.

First we do the second order expansion of the running cost along the nominal trajectory \bar{x} and \bar{u} :

$$\mathcal{L}(\boldsymbol{x}(t_{k}), \boldsymbol{u}(t_{k}), t_{k})$$

$$= \mathcal{L}(\boldsymbol{x}(t_{k}) + (\bar{\boldsymbol{x}}(t_{k}) - \bar{\boldsymbol{x}}(t_{k})), \boldsymbol{u}(t_{k}) + (\bar{\boldsymbol{u}}(t_{k}) - \bar{\boldsymbol{u}}(t_{k})), t_{k})$$

$$= \mathcal{L}(\bar{\boldsymbol{x}}(t_{k}) + (\boldsymbol{x}(t_{k}) - \bar{\boldsymbol{x}}(t_{k})), \bar{\boldsymbol{u}}(t_{k}) + (\boldsymbol{u}(t_{k}) - \bar{\boldsymbol{u}}(t_{k})), t_{k})$$

$$= \mathcal{L}(\bar{\boldsymbol{x}}(t_{k}) + \delta \boldsymbol{x}(t_{k}), \bar{\boldsymbol{u}}(t_{k}) + \delta \boldsymbol{u}(t_{k}), t_{k})$$

$$= \underbrace{\ell(\bar{\boldsymbol{x}}(t_{k}), \bar{\boldsymbol{u}}(t_{k}), t_{k})dt}_{\mathcal{L}} + \underbrace{\left(\nabla_{\boldsymbol{x}}\ell(\boldsymbol{x}(t_{k}), \boldsymbol{u}(t_{k}), t_{k})dt\right)^{T}}_{\mathcal{L}_{\boldsymbol{x}}} \delta \boldsymbol{x}(t_{k}) + \underbrace{\left(\nabla_{\boldsymbol{u}}\ell(\boldsymbol{x}(t_{k}), \boldsymbol{u}(t_{k}), t_{k})dt\right)^{T}}_{\mathcal{L}_{\boldsymbol{u}}} \delta \boldsymbol{u}(t_{k})$$

$$+ \frac{1}{2}\delta \boldsymbol{x}(t_{k})^{T} \underbrace{\left(\nabla_{\boldsymbol{x}\boldsymbol{x}}\ell(\boldsymbol{x}(t_{k}), \boldsymbol{u}(t_{k}), t_{k})dt\right)}_{\mathcal{L}_{\boldsymbol{x}\boldsymbol{x}}} \delta \boldsymbol{x}(t_{k}) + \underbrace{\frac{1}{2}\delta \boldsymbol{u}(t_{k})^{T}}_{\mathcal{L}_{\boldsymbol{u}\boldsymbol{u}}} \underbrace{\left(\nabla_{\boldsymbol{u}\boldsymbol{u}}\ell(\boldsymbol{x}(t_{k}), \boldsymbol{u}(t_{k}), t_{k})dt\right)}_{\mathcal{L}_{\boldsymbol{u}\boldsymbol{u}}} \delta \boldsymbol{u}(t_{k})$$

$$+ \underbrace{\frac{1}{2}\delta \boldsymbol{u}(t_{k})^{T}}_{\mathcal{L}_{\boldsymbol{u}\boldsymbol{u}}} \underbrace{\left(\nabla_{\boldsymbol{x}\boldsymbol{u}}\ell(\boldsymbol{x}(t_{k}), \boldsymbol{u}(t_{k}), t_{k})dt\right)}_{\mathcal{L}_{\boldsymbol{x}\boldsymbol{u}}} \delta \boldsymbol{x}(t_{k}) + \underbrace{\frac{1}{2}\delta \boldsymbol{x}(t_{k})^{T}}_{\mathcal{L}_{\boldsymbol{u}\boldsymbol{x}}} \underbrace{\left(\nabla_{\boldsymbol{u}\boldsymbol{u}}\ell(\boldsymbol{x}(t_{k}), \boldsymbol{u}(t_{k}), t_{k})dt\right)}_{\mathcal{L}_{\boldsymbol{u}\boldsymbol{u}}} \delta \boldsymbol{u}(t_{k})$$

We denote:

$$\mathcal{L} = \ell(\bar{\boldsymbol{x}}(t_k), \bar{\boldsymbol{u}}(t_k), t_k)dt$$

$$\mathcal{L}_{\boldsymbol{x}} = \nabla_{\boldsymbol{x}}\ell(\boldsymbol{x}(t_k), \boldsymbol{u}(t_k), t_k)dt$$

$$\mathcal{L}_{\boldsymbol{u}} = \nabla_{\boldsymbol{u}}\ell(\boldsymbol{x}(t_k), \boldsymbol{u}(t_k), t_k)dt$$

$$\mathcal{L}_{\boldsymbol{x}\boldsymbol{x}} = \nabla_{\boldsymbol{x}\boldsymbol{x}}\ell(\boldsymbol{x}(t_k), \boldsymbol{u}(t_k), t_k)dt$$

$$\mathcal{L}_{\boldsymbol{u}\boldsymbol{u}} = \nabla_{\boldsymbol{u}\boldsymbol{u}}\ell(\boldsymbol{x}(t_k), \boldsymbol{u}(t_k), t_k)dt$$

$$\mathcal{L}_{\boldsymbol{x}\boldsymbol{u}} = \nabla_{\boldsymbol{x}\boldsymbol{u}}\ell(\boldsymbol{x}(t_k), \boldsymbol{u}(t_k), t_k)dt$$

$$\mathcal{L}_{\boldsymbol{x}\boldsymbol{u}} = \nabla_{\boldsymbol{x}\boldsymbol{u}}\ell(\boldsymbol{x}(t_k), \boldsymbol{u}(t_k), t_k)dt$$

$$\mathcal{L}_{\boldsymbol{u}\boldsymbol{x}} = \nabla_{\boldsymbol{u}\boldsymbol{x}}\ell(\boldsymbol{x}(t_k), \boldsymbol{u}(t_k), t_k)dt$$

With this we write second order expansion of the running cost as:

$$\mathcal{L}(\boldsymbol{x}(t_k), \boldsymbol{u}(t_k), t_k)$$

$$= \mathcal{L} + \mathcal{L}_{\boldsymbol{x}}^T \delta \boldsymbol{x}(t_k) + \mathcal{L}_{\boldsymbol{u}}^T \delta \boldsymbol{u}(t_k)$$

$$+ \frac{1}{2} \delta \boldsymbol{x}(t_k)^T \mathcal{L}_{\boldsymbol{x}\boldsymbol{x}} \delta \boldsymbol{x}(t_k) + \frac{1}{2} \delta \boldsymbol{u}(t_k)^T \mathcal{L}_{\boldsymbol{u}\boldsymbol{u}} \delta \boldsymbol{u}(t_k)$$

$$+ \frac{1}{2} \delta \boldsymbol{u}(t_k)^T \mathcal{L}_{\boldsymbol{x}\boldsymbol{u}} \delta \boldsymbol{x}(t_k) + \frac{1}{2} \delta \boldsymbol{x}(t_k)^T \mathcal{L}_{\boldsymbol{u}\boldsymbol{x}} \delta \boldsymbol{u}(t_k)$$

Next we do the second order expansion of the value function along the nominal trajectory \bar{x} :

$$V(\boldsymbol{x}(t_{k+1}), t_{k+1})$$

$$= V(\boldsymbol{x}(t_{k+1}) + (\bar{\boldsymbol{x}}(t_{k+1}) - \bar{\boldsymbol{x}}(t_{k+1})), t_{k+1})$$

$$= V(\bar{\boldsymbol{x}}(t_{k+1}) + (\boldsymbol{x}(t_{k+1}) - \bar{\boldsymbol{x}}(t_{k+1})), t_{k+1})$$

$$= V(\bar{\boldsymbol{x}}(t_{k+1}) + \delta \boldsymbol{x}(t_{k+1}), t_{k+1})$$

$$= V(\bar{\boldsymbol{x}}(t_{k+1}) + \delta \boldsymbol{x}(t_{k+1}), t_{k+1})$$

$$= V(\bar{\boldsymbol{x}}(t_{k+1}), t_{k+1}) + \nabla_{\boldsymbol{x}} V(\bar{\boldsymbol{x}}(t_{k+1}), t_{k+1})^{T} \delta \boldsymbol{x}(t_{k+1}) + \frac{1}{2} \delta \boldsymbol{x}(t_{k+1})^{T} \nabla_{\boldsymbol{x}\boldsymbol{x}} V(\bar{\boldsymbol{x}}(t_{k+1}), t_{k+1}) \delta \boldsymbol{x}(t_{k+1})$$

We denote:

$$\begin{split} \delta \boldsymbol{x}(t_{k+1}) &= \boldsymbol{x}(t_{k+1}) - \bar{\boldsymbol{x}}(t_{k+1}) \\ V(t_{k+1}) &= V(\bar{\boldsymbol{x}}(t_{k+1}), t_{k+1}) \\ V_{\boldsymbol{x}}(t_{k+1}) &= \nabla_{\boldsymbol{x}} V(\bar{\boldsymbol{x}}(t_{k+1}), t_{k+1}) \\ V_{\boldsymbol{x}\boldsymbol{x}}(t_{k+1}) &= \nabla_{\boldsymbol{x}\boldsymbol{x}} V(\bar{\boldsymbol{x}}(t_{k+1}), t_{k+1}) \end{split}$$

Therefore:

$$= V(t_{k+1}) + V_{\boldsymbol{x}}(t_{k+1})^T \delta \boldsymbol{x}(t_{k+1}) + \frac{1}{2} \delta \boldsymbol{x}(t_{k+1})^T V_{\boldsymbol{x} \boldsymbol{x}}(t_{k+1}) \delta \boldsymbol{x}(t_{k+1})$$

We recall from the linearized dynamics in Part 1.1 that $\delta x(t_{k+1}) = \Phi(t_k)\delta x(t_k) + B(t_k)\delta u(t_k)$. Therefore:

$$= V(t_{k+1}) + V_{\boldsymbol{x}}(t_{k+1})^T \Big(\boldsymbol{\Phi}(t_k) \delta \boldsymbol{x}(t_k) + \boldsymbol{B}(t_k) \delta \boldsymbol{u}(t_k) \Big)$$

$$+ \frac{1}{2} \Big(\boldsymbol{\Phi}(t_k) \delta \boldsymbol{x}(t_k) + \boldsymbol{B}(t_k) \delta \boldsymbol{u}(t_k) \Big)^T V_{\boldsymbol{x}\boldsymbol{x}}(t_{k+1}) \Big(\boldsymbol{\Phi}(t_k) \delta \boldsymbol{x}(t_k) + \boldsymbol{B}(t_k) \delta \boldsymbol{u}(t_k) \Big)$$

$$= V(t_{k+1}) + V_{\boldsymbol{x}}(t_{k+1})^T \boldsymbol{\Phi}(t_k) \delta \boldsymbol{x}(t_k) + V_{\boldsymbol{x}}(t_{k+1})^T \boldsymbol{B}(t_k) \delta \boldsymbol{u}(t_k)$$

$$+ \frac{1}{2} \delta \boldsymbol{x}(t_k)^T \boldsymbol{\Phi}(t_k)^T V_{\boldsymbol{x}\boldsymbol{x}}(t_{k+1}) \boldsymbol{\Phi}(t_k) \delta \boldsymbol{x}(t_k) + \frac{1}{2} \delta \boldsymbol{u}(t_k)^T \boldsymbol{B}(t_k)^T V_{\boldsymbol{x}\boldsymbol{x}}(t_{k+1}) \boldsymbol{B}(t_k) \delta \boldsymbol{u}(t_k)$$

$$+ \frac{1}{2} \delta \boldsymbol{u}(t_k)^T \boldsymbol{B}(t_k)^T V_{\boldsymbol{x}\boldsymbol{x}}(t_{k+1}) \boldsymbol{\Phi}(t_k) \delta \boldsymbol{x}(t_k) + \frac{1}{2} \delta \boldsymbol{x}(t_k)^T \boldsymbol{\Phi}(t_k)^T V_{\boldsymbol{x}\boldsymbol{x}}(t_{k+1}) \boldsymbol{B}(t_k) \delta \boldsymbol{u}(t_k)$$

The last two terms can be combined as they evaluate to equal scalars. Therefore, we can simplify the second order expansion of the value function as:

$$V(\boldsymbol{x}(t_{k+1}), t_{k+1})$$

$$= V(t_{k+1}) + V_{\boldsymbol{x}}(t_{k+1})^T \boldsymbol{\Phi}(t_k) \delta \boldsymbol{x}(t_k) + V_{\boldsymbol{x}}(t_{k+1})^T \boldsymbol{B}(t_k) \delta \boldsymbol{u}(t_k)$$

$$+ \frac{1}{2} \delta \boldsymbol{x}(t_k)^T \boldsymbol{\Phi}(t_k)^T V_{\boldsymbol{x}\boldsymbol{x}}(t_{k+1}) \boldsymbol{\Phi}(t_k) \delta \boldsymbol{x}(t_k) + \frac{1}{2} \delta \boldsymbol{u}(t_k)^T \boldsymbol{B}(t_k)^T V_{\boldsymbol{x}\boldsymbol{x}}(t_{k+1}) \boldsymbol{B}(t_k) \delta \boldsymbol{u}(t_k)$$

$$+ \delta \boldsymbol{u}(t_k)^T \boldsymbol{B}(t_k)^T V_{\boldsymbol{x}\boldsymbol{x}}(t_{k+1}) \boldsymbol{\Phi}(t_k) \delta \boldsymbol{x}(t_k)$$

We can now consider the second order expansion of the action-value function itself:

$$Q(\boldsymbol{x}(t_k), \boldsymbol{u}(t_k), t_k)$$

$$= Q(\boldsymbol{x}(t_k) + (\bar{\boldsymbol{x}}(t_k) - \bar{\boldsymbol{x}}(t_k)), \boldsymbol{u}(t_k) + (\bar{\boldsymbol{u}}(t_k) - \bar{\boldsymbol{u}}(t_k)), t_k)$$

$$= Q(\bar{\boldsymbol{x}}(t_k) + (\boldsymbol{x}(t_k) - \bar{\boldsymbol{x}}(t_k)), \bar{\boldsymbol{u}}(t_k) + (\boldsymbol{u}(t_k) - \bar{\boldsymbol{u}}(t_k)), t_k)$$

$$= Q(\bar{\boldsymbol{x}}(t_k) + \delta \boldsymbol{x}(t_k), \bar{\boldsymbol{u}}(t_k) + \delta \boldsymbol{u}(t_k), t_k)$$

$$= Q(\bar{\boldsymbol{x}}(t_k) + \delta \boldsymbol{x}(t_k), \bar{\boldsymbol{u}}(t_k) + \delta \boldsymbol{u}(t_k), t_k)$$

$$= Q(\bar{\boldsymbol{x}}(t_k) + Q_{\boldsymbol{x}}^T \delta \boldsymbol{x}(t_k) + Q_{\boldsymbol{u}}^T \delta \boldsymbol{u}(t_k) + \frac{1}{2} \delta \boldsymbol{x}(t_k)^T Q_{\boldsymbol{x}\boldsymbol{x}} \delta \boldsymbol{x}(t_k) + \frac{1}{2} \delta \boldsymbol{u}(t_k)^T Q_{\boldsymbol{u}\boldsymbol{u}} \delta \boldsymbol{u}(t_k)$$

$$+ \frac{1}{2} \delta \boldsymbol{u}(t_k)^T Q_{\boldsymbol{x}\boldsymbol{u}} \delta \boldsymbol{x}(t_k) + \frac{1}{2} \delta \boldsymbol{x}(t_k)^T Q_{\boldsymbol{u}\boldsymbol{x}} \delta \boldsymbol{u}(t_k)$$

Similiarly to the value function expansion, the last two terms can be combined as they evaluate to equal scalars, we can simplify the second order expansion of the state-action value function as:

$$Q(\bar{\boldsymbol{x}}(t_k) + \delta \boldsymbol{x}(t_k), \bar{\boldsymbol{u}}(t_k) + \delta \boldsymbol{u}(t_k), t_k)$$

$$= Q_0 + Q_{\boldsymbol{x}}^T \delta \boldsymbol{x}(t_k) + Q_{\boldsymbol{u}}^T \delta \boldsymbol{u}(t_k) + \frac{1}{2} \delta \boldsymbol{x}(t_k)^T Q_{\boldsymbol{x}\boldsymbol{x}} \delta \boldsymbol{x}(t_k) + \frac{1}{2} \delta \boldsymbol{u}(t_k)^T Q_{\boldsymbol{u}\boldsymbol{u}} \delta \boldsymbol{u}(t_k)$$

$$+ \delta \boldsymbol{x}(t_k)^T Q_{\boldsymbol{u}\boldsymbol{x}} \delta \boldsymbol{u}(t_k)$$

Finally we can combine the second order expansions of the running cost and value function to express the second order expansion of the state-action value function:

$$Q(\bar{\boldsymbol{x}}(t_k) + \delta \boldsymbol{x}(t_k), \bar{\boldsymbol{u}}(t_k) + \delta \boldsymbol{u}(t_k), t_k)$$

$$= \mathcal{L} + \mathcal{L}_{\boldsymbol{x}}^T \delta \boldsymbol{x}(t_k) + \mathcal{L}_{\boldsymbol{u}}^T \delta \boldsymbol{u}(t_k) + \frac{1}{2} \delta \boldsymbol{x}(t_k)^T \mathcal{L}_{\boldsymbol{x}\boldsymbol{x}} \delta \boldsymbol{x}(t_k) + \frac{1}{2} \delta \boldsymbol{u}(t_k)^T \mathcal{L}_{\boldsymbol{u}\boldsymbol{u}} \delta \boldsymbol{u}(t_k)$$

$$+ \frac{1}{2} \delta \boldsymbol{u}(t_k)^T \mathcal{L}_{\boldsymbol{x}\boldsymbol{u}} \delta \boldsymbol{x}(t_k) + \frac{1}{2} \delta \boldsymbol{x}(t_k)^T \mathcal{L}_{\boldsymbol{u}\boldsymbol{x}} \delta \boldsymbol{u}(t_k)$$

$$+ V(t_{k+1}) + V_{\boldsymbol{x}}(t_{k+1})^T \boldsymbol{\Phi}(t_k) \delta \boldsymbol{x}(t_k) + V_{\boldsymbol{x}}(t_{k+1})^T \boldsymbol{B}(t_k) \delta \boldsymbol{u}(t_k)$$

$$+ \frac{1}{2} \delta \boldsymbol{x}(t_k)^T \boldsymbol{\Phi}(t_k)^T V_{\boldsymbol{x}\boldsymbol{x}}(t_{k+1}) \boldsymbol{\Phi}(t_k) \delta \boldsymbol{x}(t_k) + \frac{1}{2} \delta \boldsymbol{u}(t_k)^T \boldsymbol{B}(t_k)^T V_{\boldsymbol{x}\boldsymbol{x}}(t_{k+1}) \boldsymbol{B}(t_k) \delta \boldsymbol{u}(t_k)$$

$$+ \delta \boldsymbol{u}(t_k)^T \boldsymbol{B}(t_k)^T V_{\boldsymbol{x}\boldsymbol{x}}(t_{k+1}) \boldsymbol{\Phi}(t_k) \delta \boldsymbol{x}(t_k)$$

We can group the zero, first, and second order terms as:

$$= \underbrace{\left(\mathcal{L} + V(t_{k+1})\right)}_{Q_0} + \underbrace{\left(\mathcal{L}_{\boldsymbol{x}} + \boldsymbol{\Phi}(t_k)^T V_{\boldsymbol{x}}(t_{k+1})\right)^T}_{Q_{\boldsymbol{x}}} \delta \boldsymbol{x}(t_k) + \underbrace{\left(\mathcal{L}_{\boldsymbol{u}} + \boldsymbol{B}(t_k)^T V_{\boldsymbol{x}}(t_{k+1})\right)^T}_{Q_{\boldsymbol{u}}} \delta \boldsymbol{u}(t_k)$$

$$+ \frac{1}{2} \delta \boldsymbol{x}(t_k)^T \underbrace{\left(\mathcal{L}_{\boldsymbol{x}\boldsymbol{x}} + \boldsymbol{\Phi}(t_k)^T V_{\boldsymbol{x}\boldsymbol{x}}(t_{k+1}) \boldsymbol{\Phi}(t_k)\right)}_{Q_{\boldsymbol{x}\boldsymbol{x}}} \delta \boldsymbol{x}(t_k)$$

$$+ \frac{1}{2} \delta \boldsymbol{u}(t_k)^T \underbrace{\left(\mathcal{L}_{\boldsymbol{u}\boldsymbol{u}} + \boldsymbol{B}(t_k)^T V_{\boldsymbol{x}\boldsymbol{x}}(t_{k+1}) \boldsymbol{B}(t_k)\right)}_{Q_{\boldsymbol{u}\boldsymbol{u}}} \delta \boldsymbol{u}(t_k)$$

$$+ \delta \boldsymbol{u}(t_k)^T \underbrace{\left(\frac{1}{2}\mathcal{L}_{\boldsymbol{u}\boldsymbol{x}} + \frac{1}{2}\mathcal{L}_{\boldsymbol{x}\boldsymbol{u}}^T + \frac{1}{2}\boldsymbol{B}(t_k)^T \left(V_{\boldsymbol{x}\boldsymbol{x}}(t_{k+1}) + V_{\boldsymbol{x}\boldsymbol{x}}(t_{k+1})^T\right) \boldsymbol{\Phi}(t_k)\right)}_{Q_{\boldsymbol{u}\boldsymbol{x}}} \delta \boldsymbol{x}(t_k)$$

Where we denote:

$$Q_0 = \mathcal{L} + V(t_{k+1})$$

$$Q_x = \mathcal{L}_x + \mathbf{\Phi}(t_k)^T V_x(t_{k+1})$$

$$Q_u = \mathcal{L}_u + \mathbf{B}(t_k)^T V_x(t_{k+1})$$

$$Q_{xx} = \mathcal{L}_{xx} + \mathbf{\Phi}(t_k)^T V_{xx}(t_{k+1}) \mathbf{\Phi}(t_k)$$

$$Q_{uu} = \mathcal{L}_{uu} + \mathbf{B}(t_k)^T V_{xx}(t_{k+1}) \mathbf{B}(t_k)$$

$$Q_{ux} = \mathcal{L}_{ux} + \mathbf{B}(t_k)^T V_{xx}(t_{k+1}) \mathbf{\Phi}(t_k)$$

1.3) Next we compute the optimal control corrections $\delta u^*(t_k)$. We do this by minimizing $\delta u(t_k)$ with respect to the state-action value function $Q(x(t_k), u(t_k))$. This is the same as minimizing $u(t_k)$ to compute the locally optimal control $u^*(t_k)$ in the Bellman Principle. This so since $u^*(t_k) = \bar{u}(t_k) + \delta u^*(t_k)$.

$$\min_{\delta \boldsymbol{u}(t_k)} \left[Q(\boldsymbol{x}(t_k), \boldsymbol{u}(t_k)) \right] \\
= \min_{\delta \boldsymbol{u}(t_k)} \left[\left(\mathcal{L} + V(t_{k+1}) \right) + \left(\mathcal{L}_{\boldsymbol{x}} + \boldsymbol{\Phi}(t_k)^T V_{\boldsymbol{x}}(t_{k+1}) \right)^T \delta \boldsymbol{x}(t_k) + \left(\mathcal{L}_{\boldsymbol{u}} + \boldsymbol{B}(t_k)^T V_{\boldsymbol{x}}(t_{k+1}) \right)^T \delta \boldsymbol{u}(t_k) \right. \\
+ \frac{1}{2} \delta \boldsymbol{x}(t_k)^T \left(\mathcal{L}_{\boldsymbol{x}\boldsymbol{x}} + \boldsymbol{\Phi}(t_k)^T V_{\boldsymbol{x}\boldsymbol{x}}(t_{k+1}) \boldsymbol{\Phi}(t_k) \right) \delta \boldsymbol{x}(t_k) + \frac{1}{2} \delta \boldsymbol{u}(t_k)^T \left(\mathcal{L}_{\boldsymbol{u}\boldsymbol{u}} + \boldsymbol{B}(t_k)^T V_{\boldsymbol{x}\boldsymbol{x}}(t_{k+1}) \boldsymbol{B}(t_k) \right) \delta \boldsymbol{u}(t_k) \\
+ \delta \boldsymbol{u}(t_k)^T \left(\frac{1}{2} \mathcal{L}_{\boldsymbol{u}\boldsymbol{x}} + \frac{1}{2} \mathcal{L}_{\boldsymbol{x}\boldsymbol{u}}^T + \frac{1}{2} \boldsymbol{B}(t_k)^T \left(V_{\boldsymbol{x}\boldsymbol{x}}(t_{k+1}) + V_{\boldsymbol{x}\boldsymbol{x}}(t_{k+1})^T \right) \boldsymbol{\Phi}(t_k) \right) \delta \boldsymbol{x}(t_k) \right]$$

To solve this take the gradient of $Q(\boldsymbol{x}(t_k), \boldsymbol{u}(t_k))$ with respect to $\delta \boldsymbol{u}(t_k)$ and set it equal to zero:

$$0 = \underbrace{\left(\mathcal{L}_{\boldsymbol{u}} + \boldsymbol{B}(t_{k})^{T} V_{\boldsymbol{x}}(t_{k+1})\right)}_{Q_{\boldsymbol{u}}} + \underbrace{\left(\frac{1}{2} \mathcal{L}_{\boldsymbol{u}\boldsymbol{x}} + \frac{1}{2} \mathcal{L}_{\boldsymbol{x}\boldsymbol{u}}^{T} + \frac{1}{2} \boldsymbol{B}(t_{k})^{T} \left(V_{\boldsymbol{x}\boldsymbol{x}}(t_{k+1}) + V_{\boldsymbol{x}\boldsymbol{x}}(t_{k+1})^{T}\right) \boldsymbol{\Phi}(t_{k})\right)}_{Q_{\boldsymbol{u}\boldsymbol{u}}} \delta \boldsymbol{x}(t_{k})$$

$$+ \underbrace{\left(\mathcal{L}_{\boldsymbol{u}\boldsymbol{u}} + \boldsymbol{B}(t_{k})^{T} V_{\boldsymbol{x}\boldsymbol{x}}(t_{k+1}) \boldsymbol{B}(t_{k})\right)}_{Q_{\boldsymbol{u}\boldsymbol{u}}} \delta \boldsymbol{u}(t_{k})$$

Therefore:

$$0 = Q_{u} + Q_{ux}\delta x(t_{k}) + Q_{uu}\delta u(t_{k})$$
$$-Q_{uu}\delta u(t_{k}) = Q_{u} + Q_{ux}\delta x(t_{k})$$
$$\delta u(t_{k}) = \underbrace{-Q_{uu}^{-1}Q_{u}}_{l_{u}(t_{k})} + \underbrace{\left(-Q_{uu}^{-1}Q_{ux}\right)}_{l_{w}(t_{k})}\delta x(t_{k})$$

Further, we denote $l_{\boldsymbol{u}}(t_k)$ as the feedforward term and $L_{\boldsymbol{u}}(t_k)$ as the feedback term:

$$\begin{aligned} \boldsymbol{l}_{\boldsymbol{u}}(t_k) &= -Q_{\boldsymbol{u}\boldsymbol{u}}^{-1}Q_{\boldsymbol{u}} \\ \boldsymbol{L}_{\boldsymbol{u}}(t_k) &= -Q_{\boldsymbol{u}\boldsymbol{u}}^{-1}Q_{\boldsymbol{u}\boldsymbol{x}} \end{aligned}$$

And determine the optimal control corrections to be:

$$\delta \boldsymbol{u}^*(t_k) = \boldsymbol{l}_{\boldsymbol{u}}(t_k) + \boldsymbol{L}_{\boldsymbol{u}}(t_k)\delta \boldsymbol{x}(t_k)$$

1.4) We can compute the equations $V(t_k)$, $V_{\boldsymbol{x}}(t_k)$, $V_{\boldsymbol{x}\boldsymbol{x}}(t_k)$ in backward time by substituting in our optimal control correction $\delta \boldsymbol{u}^*(t_k)$ into the expanded state-action value function $Q(\boldsymbol{x}(t_k), \boldsymbol{u}(t_k))$.

$$Q(\boldsymbol{x}(t_k), \boldsymbol{u}(t_k)) \Big|_{\delta \boldsymbol{u}^*(t_k) = \boldsymbol{l}_{\boldsymbol{u}}(t_k) + \boldsymbol{L}_{\boldsymbol{u}}(t_k) \delta \boldsymbol{x}(t_k)}$$

$$= Q_0 + Q_{\boldsymbol{x}}^T \delta \boldsymbol{x}(t_k) + Q_{\boldsymbol{u}}^T \Big(\boldsymbol{l}_{\boldsymbol{u}}(t_k) + \boldsymbol{L}_{\boldsymbol{u}}(t_k) \delta \boldsymbol{x}(t_k) \Big)$$

$$+ \frac{1}{2} \delta \boldsymbol{x}(t_k)^T Q_{\boldsymbol{x}\boldsymbol{x}} \delta \boldsymbol{x}(t_k) + \frac{1}{2} \Big(\boldsymbol{l}_{\boldsymbol{u}}(t_k) + \boldsymbol{L}_{\boldsymbol{u}}(t_k) \delta \boldsymbol{x}(t_k) \Big)^T Q_{\boldsymbol{u}\boldsymbol{u}} \Big(\boldsymbol{l}_{\boldsymbol{u}}(t_k) + \boldsymbol{L}_{\boldsymbol{u}}(t_k) \delta \boldsymbol{x}(t_k) \Big)$$

$$+ \frac{1}{2} \Big(\boldsymbol{l}_{\boldsymbol{u}}(t_k) + \boldsymbol{L}_{\boldsymbol{u}}(t_k) \delta \boldsymbol{x}(t_k) \Big)^T Q_{\boldsymbol{u}\boldsymbol{x}} \delta \boldsymbol{x}(t_k) + \frac{1}{2} \delta \boldsymbol{x}(t_k)^T Q_{\boldsymbol{x}\boldsymbol{u}} \Big(\boldsymbol{l}_{\boldsymbol{u}}(t_k) + \boldsymbol{L}_{\boldsymbol{u}}(t_k) \delta \boldsymbol{x}(t_k) \Big)$$

To compute the backward terms we can denote:

$$V(\bar{\boldsymbol{x}}(t_k) + \delta \boldsymbol{x}(t_k), t) = V(t_k) + V_{\boldsymbol{x}}(t_k)^T \delta \boldsymbol{x}(t_k) + \frac{1}{2} \delta \boldsymbol{x}(t_k)^T V_{\boldsymbol{x}\boldsymbol{x}}(t_k) \delta \boldsymbol{x}(t_k)$$

Therefore the zero order terms of the state-action value function in δx are equal to $V(t_k)$, the first order terms are equal to $V_{xx}(t_k)$, and the second order terms are equal to $V_{xx}(t_k)$.

First can group the zero order terms that equate to $V(t_k)$:

$$V(t_k) = Q_0 + Q_{\boldsymbol{u}}^T \boldsymbol{l}_{\boldsymbol{u}}(t_k) + \frac{1}{2} \boldsymbol{l}_{\boldsymbol{u}}(t_k)^T Q_{\boldsymbol{u}\boldsymbol{u}} \boldsymbol{l}_{\boldsymbol{u}}(t_k)$$

Next we can group the first order terms that equate to $V_x(t_k)$:

$$V_{\boldsymbol{x}}(t_k) = Q_{\boldsymbol{x}} + Q_{\boldsymbol{u}}^T \boldsymbol{L}_{\boldsymbol{u}}(t_k) + Q_{\boldsymbol{x}\boldsymbol{u}} \boldsymbol{l}_{\boldsymbol{u}}(t_k) + \boldsymbol{L}_{\boldsymbol{u}}(t_k)^T Q_{\boldsymbol{u}\boldsymbol{u}} \boldsymbol{l}_{\boldsymbol{u}}(t_k)$$

Finally we can group the first order terms that equate to $V_{xx}(t_k)$:

$$V_{\boldsymbol{x}\boldsymbol{x}}(t_k) = Q_{\boldsymbol{x}\boldsymbol{x}} + \boldsymbol{L}_{\boldsymbol{u}}(t_k)^T Q_{\boldsymbol{u}\boldsymbol{u}} \boldsymbol{L}_{\boldsymbol{u}}(t_k) + \boldsymbol{L}_{\boldsymbol{u}}(t_k)^T Q_{\boldsymbol{u}\boldsymbol{x}} + Q_{\boldsymbol{x}\boldsymbol{u}} \boldsymbol{L}_{\boldsymbol{u}}(t_k)$$

In summary, the backward equations can be expressed as:

$$V(t_k) = Q_0 + Q_u^T \boldsymbol{l}_u(t_k) + \frac{1}{2} \boldsymbol{l}_u(t_k)^T Q_{uu} \boldsymbol{l}_u(t_k)$$

$$V_x(t_k) = Q_x + Q_u^T \boldsymbol{L}_u(t_k) + Q_{xu} \boldsymbol{l}_u(t_k) + \boldsymbol{L}_u(t_k)^T Q_{uu} \boldsymbol{l}_u(t_k)$$

$$V_{xx}(t_k) = Q_{xx} + \boldsymbol{L}_u(t_k)^T Q_{uu} \boldsymbol{L}_u(t_k) + \boldsymbol{L}_u(t_k)^T Q_{ux} + Q_{xu} \boldsymbol{L}_u(t_k)$$

Further we can express these simply as functions of state-action value function by substituting in $l_{u}(t_{k})$ and $L_{u}(t_{k})$:

We do this for the value function:

$$V(t_k) = Q_0 + Q_u^T \left(-Q_{uu}^{-1} Q_u \right) + \frac{1}{2} \left(-Q_{uu}^{-1} Q_u \right)^T Q_{uu} \left(-Q_{uu}^{-1} Q_u \right)$$

$$= Q_0 - Q_u^T Q_{uu}^{-1} Q_u + \frac{1}{2} Q_u^T Q_{uu}^{-1} \underbrace{Q_{uu} Q_{uu}^{-1}}_{I} Q_u$$

$$= Q_0 - Q_u^T Q_{uu}^{-1} Q_u + \frac{1}{2} Q_u^T Q_{uu}^{-1} Q_u$$

$$= Q_0 - \frac{1}{2} Q_u^T Q_{uu}^{-1} Q_u$$

$$= Q_0 - \frac{1}{2} Q_u^T Q_{uu}^{-1} Q_u$$

Then, we do this for the gradient of the value function:

$$V_{x}(t_{k}) = Q_{x} + Q_{u}^{T} \left(-Q_{uu}^{-1}Q_{ux} \right) + Q_{xu} \left(-Q_{uu}^{-1}Q_{u} \right) + \left(-Q_{uu}^{-1}Q_{ux} \right)^{T} Q_{uu} \left(-Q_{uu}^{-1}Q_{u} \right)$$

$$= Q_{x} - Q_{u}^{T} Q_{uu}^{-1} Q_{ux} - Q_{xu} Q_{uu}^{-1} Q_{u} + Q_{ux}^{T} Q_{uu}^{-1} Q_{uu} Q_{uu}^{-1} Q_{u}$$

$$= Q_{x} - Q_{u}^{T} Q_{uu}^{-1} Q_{ux} - Q_{xu} Q_{uu}^{-1} Q_{u} + Q_{u}^{T} Q_{uu}^{-1} Q_{ux}$$

$$= Q_{x} - Q_{xu} Q_{uu}^{-1} Q_{u}$$

$$= Q_{x} - Q_{xu} Q_{uu}^{-1} Q_{u}$$

Finally, we do this for the Hessian of the value function:

$$\begin{split} V_{xx}(t_k) &= Q_{xx} + \boldsymbol{L}_{\boldsymbol{u}}(t_k)^T Q_{\boldsymbol{u}\boldsymbol{u}} \boldsymbol{L}_{\boldsymbol{u}}(t_k) + \boldsymbol{L}_{\boldsymbol{u}}(t_k)^T Q_{\boldsymbol{u}\boldsymbol{x}} + Q_{x\boldsymbol{u}} \boldsymbol{L}_{\boldsymbol{u}}(t_k) \\ &= Q_{xx} + \left(-Q_{\boldsymbol{u}\boldsymbol{u}}^{-1} Q_{\boldsymbol{u}\boldsymbol{x}} \right)^T Q_{\boldsymbol{u}\boldsymbol{u}} \left(-Q_{\boldsymbol{u}\boldsymbol{u}}^{-1} Q_{\boldsymbol{u}\boldsymbol{x}} \right) + \left(-Q_{\boldsymbol{u}\boldsymbol{u}}^{-1} Q_{\boldsymbol{u}\boldsymbol{x}} \right)^T Q_{\boldsymbol{u}\boldsymbol{x}} + Q_{x\boldsymbol{u}} \left(-Q_{\boldsymbol{u}\boldsymbol{u}}^{-1} Q_{\boldsymbol{u}\boldsymbol{x}} \right) \\ &= Q_{xx} + Q_{\boldsymbol{u}\boldsymbol{x}}^T Q_{\boldsymbol{u}\boldsymbol{u}} \underbrace{Q_{\boldsymbol{u}\boldsymbol{u}}Q_{\boldsymbol{u}\boldsymbol{u}}^{-1}}_{\boldsymbol{I}} Q_{\boldsymbol{u}\boldsymbol{x}} - Q_{\boldsymbol{u}\boldsymbol{x}}^T Q_{\boldsymbol{u}\boldsymbol{u}}^{-1} Q_{\boldsymbol{u}\boldsymbol{x}} - Q_{x\boldsymbol{u}} Q_{\boldsymbol{u}\boldsymbol{u}}^{-1} Q_{\boldsymbol{u}\boldsymbol{x}} \\ &= Q_{xx} + Q_{\boldsymbol{u}\boldsymbol{x}}^T Q_{\boldsymbol{u}\boldsymbol{u}}^{-1} Q_{\boldsymbol{u}\boldsymbol{x}} - Q_{\boldsymbol{u}\boldsymbol{x}}^T Q_{\boldsymbol{u}\boldsymbol{u}}^{-1} Q_{\boldsymbol{u}\boldsymbol{x}} - Q_{x\boldsymbol{u}} Q_{\boldsymbol{u}\boldsymbol{u}}^{-1} Q_{\boldsymbol{u}\boldsymbol{x}} \\ &= Q_{xx} - Q_{x\boldsymbol{u}} Q_{\boldsymbol{u}\boldsymbol{u}}^{-1} Q_{\boldsymbol{u}\boldsymbol{x}} \end{split}$$

In summary, the backward equations can be expressed as functions of the state-action value function as:

$$V(t_k) = Q_0 - \frac{1}{2} Q_u^T Q_{uu}^{-1} Q_u$$
$$V_x(t_k) = Q_x - Q_{xu} Q_{uu}^{-1} Q_u$$
$$V_{xx}(t_k) = Q_{xx} - Q_{xu} Q_{uu}^{-1} Q_{ux}$$

Part 2.

2.1) See MATLAB code implementation.

To run this simulation run the Inverted Pendulum/main.m file.

2.2) See MATLAB code implementation.

To run this simulation run the CartPole/main.m file.

2.3) See MATLAB code implementation.

To run this simulation run the Inverted Pendulum/main robustness test.m file.

In this problem we are asked to test the robustness of our DDP policy against stochastic forces that act as disturbances in our dynamics.

$$I\ddot{\theta} + b\dot{\theta} + mglsin(\theta) = u + f_{stochastic}$$

We do this by running the DDP optimization until it converges. This results in an optimal trajectory $\mathbf{x}^*(t_k)$, optimal control input $\mathbf{u}^*(t_k)$, and optimal feeback gains $\mathbf{L}^*(t_k)$. We then initialize a new trajectory and propagate the dynamics forward, perturbed by a stochastic force term, using the following controller: $\mathbf{u}(t_k) = \mathbf{u}^*(t_k) + \mathbf{L}^*(t_k)(\mathbf{x}(t_k) - \mathbf{x}^*(t_k))$

This process is repeated for many trajectories throught the following algorithm:

Algorithm 1: DDP Robustness Test Against Stochastic Forces

The following plot shows the results of DDP after optimization:

Figure 1: DDP optimal results.

The following plot shows the results of running the Robustness Test algorithm for 20 trajectories using the optimal DDP trajectory, controller, and feedback gains with a noise level of $\sigma = 1.0$:

Figure 2: Robustness Test results.