

Trabajo Práctico Nº1

EAC1: ESTADÍSTICA DESCRIPTIVA EN ENFERMEDADES CORONARIAS

93.24 Probabilidad y Estadística Grupo N°5

Legajo N°	Nombre	
61428	Kevin Amiel Wahle	
61430	Francisco Basili	
61431	Nicolás Bustelo	
61433	Sergio Andrés Peralta	
61463	Bautista Schneeberger	

i lobabilidad y Estadistica Grapo s	Probabilidad y	Estadística -	Grupo	5
-------------------------------------	----------------	---------------	-------	---

ITBA

,				
ı	٦	:	_	_
				u

Α.	Primeras impresiones	2
В.	Características de los datos	2
C.	Boxplots	2
D.	Polígonos de frecuencia	3
Ε.	Gráfico de dispersión (sbp, ldl)	3
F.	Enfermedad cardíaca coronaria	4
G.	División por grupos A, B y C	5
н.	Boxplots de los grupos	5
ı.	Histograma de los grupos	6
J.	Análisis final de los grupos	7
K.	Anexo K.1. Código del ejercicio A	8
	K.2. Código del ejercicio B	9
	K.3. Código del ejercicio C	10
	K.4. Código del ejercicio D	11
	K.5. Código del ejercicio E	12
	K.6. Código del ejercicio F	13
	K.7. Código del ejercicio G	14
	K.8. Código del ejercicio H	15
	K.9. Código del ejercicio I	16
	K.10.Código del ejercicio J	17

A. Primeras impresiones

Figura 1: Representación de los valores SBP y LDL

En cuanto a las primeras impresiones podemos notar una similitud en los gráficos de la presión y el colesterol, teniendo este último una dispersión menor como se puede apreciar a simple vista en todos los gráficos. En particular, se puede notar una ligera asimetría positiva gracias a 1b en el cual se compara una constante contra los valores medidos.

El código del programa se encuentra en el anexo apartado K.1.

B. Características de los datos

El código del programa se encuentra en el anexo apartado K.2.

Aspecto	SBP	LDL
Mínimo Valor	101	0.98
Máximo Valor	218	15.33
Media	138.34	4.73
Mediana	134.0	4.33
Desvío Estandar	20.43	2.05
Cuartil 1	124.0	3.27
Cuartil 3	148.0	5.8
Rango Intercuartílico	24.0	2.52
Coef. Simetría	0.09	0.28
Coef. de Kurtosis	-1.15	-0.12

C. Boxplots

En cuanto a la representación de los datos en boxplots, podemos ver una marcada presencia de outliers por encima del límite de Tuckey superior. En particular hay un 3.3 % de outliers en el gráfico de SBP y un 2.86 % en el gráfico de LDL.

El código del programa se encuentra en el anexo apartado K.3.

Figura 2: Representación de los valores SBP y LDL con Boxplots.

D. Polígonos de frecuencia

El código del programa se encuentra en el anexo apartado K.4.

Figura 3: Representación de los valores SBP y LDL con polígonos de frecuencias relativas.

E. Gráfico de dispersión (sbp, ldl)

En el gráfico de la figura 4 podemos observar la relación de la presión arterial sistólica y el colesterol de baja densidad de los pacientes encuestados. En particular se indicó en rojo los valores para los cuales el valor sbp=130 y IdI=8. Debajo de esos valores nos encontramos con una zona a la cual muchos médicos consideran adecuada o saludable. De todas las personas presentes en el estudio, el 33.85% se encuentran en esa zona.

El código del programa se encuentra en el anexo apartado K.5.

Figura 4: SBP vs. LDL

F. Enfermedad cardíaca coronaria

A continuación se puede observar los datos según si las personas tienen enfermedad cardiaca coronaria (chd) o no.

Figura 5: Frecuencias acumuladas con datos no agrupados.

En particular se puede notar que las personas que tienen *chd* presentan una tendencia a tener mayor colesterol o una presión mas elevada, como se puede observar en la figura 6

Figura 6: Comparación de frecuencias acumuladas

El código del programa se encuentra en el anexo apartado K.6.

G. División por grupos A, B y C

A continuación, en lo que respecta del informe, vamos a analizar los datos separándolos en tres grupos: A) No tienen enfermedad coronaria y no tienen antecedentes familiares, B) Tienen una de las dos condiciones, C) tienen ambas condiciones.

Primero se calcularon los cuartiles 1 y 3 de los datos que se indican a continuación.

Grupo A	
---------	--

Aspecto	Cuartil 1	Cuartil 3
sbp	126	145
ldl	3	5
tipo A	48	58

Grupo B:

Aspecto	Cuartil 1	Cuartil 3
sbp	124	148
ldl	3	6
tipo A	47	60

Grupo C:

•		
Aspecto	Cuartil 1	Cuartil 3
sbp	126	151
ldl	4	5
tipo A	47	61

El código del programa se encuentra en el anexo apartado K.7.

H. Boxplots de los grupos

Acá ponemos una explicación/chamuyo de los gráficos El código del programa se encuentra en el anexo apartado K.8.

Figura 7: Boxplots con grupo A, B o C

I. Histograma de los grupos

En los gráficos de la figura 8 podemos apreciar los histogramas de las variables sbp, ldl y tipoA separando los datos en los tres grupos A, B y C. En

El código del programa se encuentra en el anexo apartado K.9.

Figura 8: Histogramas con grupo A, B o C

J. Análisis final de los grupos

El código del programa se encuentra en el anexo apartado K.10.

Grupo A:

Aspecto	Media	Coef. Simetria
sbp	136.68	0.98
ldl	4.42	0.79
tipo A	52.81	-0.33

Grupo B:

Aspecto	Media	Coef. Simetria
sbp	138.06	1.13
ldl	4.79	1.19
tipo A	52.88	-0.38

Grupo C:

Aspecto	Media	Coef. Simetria
sbp	142.21	1.23
ldl	4.94	1.9
tipo A	54.6	-0.2

PONER UNA CONCLUSIÓN FINAL DE LOS DATOS CORRESPONDIENTE A LOS GRUPOS

K. Anexo

K.1. Código del ejercicio A

```
1 import pandas as pd
2 import matplotlib.pyplot as plt
4 data = pd.read_table("heart2022.txt", sep=' ', names=['sbp', 'ldl', 'famhist', 'tipo A',
      'chd'],
                       dtype={'sbp': int, 'ldl': float, 'famhist': bool, 'tipo A': float, '
      chd': bool})
7 sbp = data['sbp']
8 ldl = data['ldl']
10 # Gráfico de constante vs variables
12 for x in range(0, len(sbp)):
     axx = plt.subplot(2,1,1)
13
14
      plt.plot(sbp[x], y, 'x',color='blue')
      plt.title("SBP")
15
      axx.set_xlabel('Presión arterial sistólica')
17
      axx2 = plt.subplot(2,1,2)
      plt.plot(ldl[x], y,'x', color='blue')
axx2.set_xlabel('Colesterol LDL')
18
     plt.title("LDL")
20
21
      plt.tight_layout()
22 plt.savefig("A Gráficos\\" + "CteVsVM" + ".png")
23 plt.show()
25 # Gráfico de variables vs. numero de muestra
26 ax = plt.subplot(2,1,1)
plt.plot(sbp, '.')
28 plt.title("SBP")
29 ax.set_ylabel('Presión arterial sistólica')
30 ax2 = plt.subplot(2,1,2)
31 plt.plot(ldl, '.')
32 ax2.set_xlabel('Número de muestras')
33 ax2.set_ylabel('Colesterol LDL')
34 plt.title("LDL")
35 plt.tight_layout()
36 plt.savefig("A Gráficos\\" + "SdTiempo" + ".png")
37 plt.show()
```

K.2. Código del ejercicio B

```
1 import pandas as pd
2 from tabulate import tabulate
4 file = open("B Resultados.txt","w")
6 data = pd.read_table("heart2022.txt", sep=' ', names=['sbp', 'ldl', 'famhist', 'tipo A',
        'chd'],
                            dtype={'sbp': int, 'ldl': float, 'famhist': bool, 'tipo A': float, '
        chd': bool})
9 file.write("Resultados:\n")
table = [["Aspecto", "Mínimo Valor", "Máximo Valor", "Media", "Mediana", "Desvío Estandar ", "Cuartil 1", "Cuartil 3", "Rango Intercuartílico", "Coef. Simetría", "Coef. de
        Kurtosis"]]
11
12 # Calcula los parametros de cada variable
13 for aspect in ['sbp', 'ldl']:
        mV = data[aspect].min()
       MV = data[aspect].max()
15
       m = data[aspect].mean()
16
17
        M = data[aspect].median()
       DE = data[aspect].std()
18
       q1, q3 = data[aspect].quantile([0.25, 0.75])
RI = q3 - q1
CS = (q3 - q1)/(q3 + q1)
19
20
21
        K = data[aspect].kurtosis()-3
       table.append([aspect, round(mV, 2), round(MV, 2), round(m, 2), round(M, 2), round(DE, 2), round(q1, 2), round(q3, 2), round(RI, 2), round(CS, 2), round(K, 2)])
24 file.write(tabulate(table))
25 file.write("\n\n")
```

K.3. Código del ejercicio C

```
1 import pandas as pd
2 import matplotlib.pyplot as plt
data = pd.read_table("heart2022.txt", sep=' ', names=['sbp', 'ldl', 'famhist', 'tipo A',
      'chd'],
                       dtype={'sbp': int, 'ldl': float, 'famhist': bool, 'tipo A': float, '
      chd': bool})
7 file = open("C Resultados.txt","w") # Se guardan los porcentajes de Outliers en un txt
8 file.write("Porcentajes de Outliers:\n")
9 outliersColor = dict(markerfacecolor='b', marker='X')
10 for aspecto in ['sbp','ldl']:
      q1, q3 = data[aspecto].quantile([0.25, 0.75])
RI = q3 - q1
12
13
      count=0
      for y in range(0, len(data[aspecto])):
14
          if data[aspecto][y] > q3 + 1.5*RI or data[aspecto][y] < q1 - 1.5*RI:
15
      count = count + 1
file.write(aspecto + ": " + str(round(count/len(data[aspecto])*100, 2)) + "%\n")
17
      plt.boxplot(data[aspecto], flierprops=outliersColor)
18
      plt.title(aspecto)
      plt.savefig("C Gráficos\\"+aspecto+".png")
20
plt.show()
```

K.4. Código del ejercicio D

```
1 import numpy as np
2 import pandas as pd
3 import matplotlib.pyplot as plt
5 data = pd.read_table("heart2022.txt", sep=' ', names=['sbp', 'ldl', 'famhist', 'tipo A',
      'chd'],
                        dtype={'sbp': int, 'ldl': float, 'famhist': bool, 'tipo A': int, 'chd
      ': bool},
                        skipinitialspace=True)
9 N = data.shape[0]
10
11 bins = {'sbp': 9, 'ldl': 9}
12
for aspecto in ['sbp','ldl']:
14
15
      h, f = np.histogram(data[aspecto], bins=bins[aspecto])
16
      amp = f[1] - f[0]
17
18
      h = h / N
19
20
21
      f -= amp / 2
                      # Puntos en el medio
      f = np.append(f, f[-1] + amp)
22
23
24
      h = np.append(h, 0)
                                # Agregado de Os en los bordes
25
      h = np.append([0], h)
26
27
      plt.title("Polígono de frecuencias relativas de " + aspecto)
      plt.plot(f, h, 'o-')
plt.xlabel("Valores de " + aspecto)
28
29
      plt.ylabel("Frecuencia relativa")
30
      plt.savefig("D Gráficos\\" + aspecto)
31
32
      plt.show()
```

K.5. Código del ejercicio E

```
1 import pandas as pd
2 import matplotlib.pyplot as plt
4 data = pd.read_table("heart2022.txt", sep=' ', names=['sbp', 'ldl', 'famhist', 'tipo A',
                         dtype={'sbp': int, 'ldl': float, 'famhist': bool, 'tipo A': float, '
       chd': bool})
7 sbp = data['sbp']
8 ldl = data['ldl']
9 \text{ count} = 0
10 for j in range(0, len(sbp)):
     if (sbp[j] < 130 and ldl[j] < 8):</pre>
          count = count + 1
12
13 file = open("E Resultados.txt","w")
14 file.write("Proporción de muestras:\n")
15 file.write(str(round(count/len(sbp)*100, 4)) + "%\n")
17 for i in range(0, len(sbp)):
     plt.plot(sbp[i], ldl[i], 'x',color='blue')
19 plt.xlabel('SBP')
plt.ylabel('LDL')
22 plt.axhline(y=8, xmin=0, xmax=0.3, color='r', linestyle='-.', linewidth=2) # Plot a
    horizontal line using axhline() in pyplot
23 plt.axvline(x=130, ymin=0, ymax=0.5, color='r', linestyle='-.', linewidth=2) # Plot a
vertical line using axvline() in pyplot
24 plt.savefig("E Gráficos\\"+"SBPvsLDL"+".png")
25 plt.show()
```

K.6. Código del ejercicio F

```
1 import numpy as np
2 import pandas as pd
3 import matplotlib.pyplot as plt
5 data = pd.read_table("heart2022.txt", sep=' ', names=['sbp', 'ldl', 'famhist', 'tipo A',
       'chd'],
                        dtype={'sbp': int, 'ldl': float, 'famhist': bool, 'tipo A': int, 'chd
      ': bool},
                        skipinitialspace=True)
9 N = data.shape[0]
10
11 i = 1
12
13 for aspecto in ['sbp', 'ldl', 'tipo A']:
      for cond in [False, True]:
14
15
           x = data[data.chd == cond][aspecto].values
17
          x.sort() # Ordenar los datos
18
19
          y = np.array(range(1, len(x)+1)) / len(x) # y = i/n
20
21
           plt.subplot(2, 3, i)
          plt.title("Distribución empírica de " + aspecto + (" con" if cond else " sin") +
22
      " chd")
23
          plt.xlabel(aspecto)
           plt.plot(x, y, 'o-', label=("con" if cond else " sin") + " chd")
# plt.savefig("F Gráficos\\" + aspecto + '_' + str(cond))
24
25
          # plt.show()
          i += 3
27
28
      # plt.legend()
      # plt.savefig("F Gráficos\\" + aspecto)
      # plt.show()
30
31
      i -= 5
32
# plt.get_current_fig_manager().full_screen_toggle()
34 plt.get_current_fig_manager().window.showMaximized()
35 plt.tight_layout()
36 # plt.savefig("F Gráficos\\Total")
37 plt.show()
```

K.7. Código del ejercicio G

```
1 import pandas as pd
2 from tabulate import tabulate
4 file = open("G Resultados.txt","w")
6 data = pd.read_table("heart2022.txt", sep=' ', names=['sbp', 'ldl', 'famhist', 'tipo A',
      'chd'],
                       dtype={'sbp': int, 'ldl': float, 'famhist': bool, 'tipo A': float, '
      chd': bool})
9 GrupoA=data[(data['chd'] == False) & (data['famhist'] == True)]
                                                                       # No tiene enfermedad
       ni antecedentes
10 GrupoB=data[((data['chd'] == False) & (data['famhist'] == False)) | # No tiene enfermedad
       pero sí antecedentes
              ((data['chd'] == True) & (data['famhist'] == True))]
                                                                        # Tiene enfermedad
     pero no antecedentes
12 GrupoC=data[(data['chd'] == True) & (data['famhist'] == False)]
                                                                       # Tiene antecedentes
      y la enfermedad
13
14 for Group in [GrupoA, GrupoB, GrupoC]:
      if Group.equals(GrupoA):
16
17
          file.write("Grupo A:\n")
18
      elif Group.equals(GrupoB):
          file.write("Grupo B:\n")
19
20
21
          file.write("Grupo C:\n")
22
23
      table = [["Aspecto", "Cuartil 1", "Cuartil 3"]]
24
      for aspect in ['sbp', 'ldl', 'tipo A']:
25
          q1, q3 = Group[aspect].quantile([0.25, 0.75])
26
          table.append([aspect, round(q1), round(q3)])
27
28
      file.write(tabulate(table))
29
30
      file.write("\n\n")
```

K.8. Código del ejercicio H

```
1 import pandas as pd
2 import matplotlib.pyplot as plt
  data = pd.read_table("heart2022.txt", sep=' ', names=['sbp', 'ldl', 'famhist', 'tipo A',
                      dtype={'sbp': int, 'ldl': float, 'famhist': bool, 'tipo A': float, '
      chd': bool})
7 GrupoA=data[(data['chd'] == False) & (data['famhist'] == True)]
                                                                       # No tiene enfermedad
       ni antecedentes
8 GrupoB=data[((data['chd'] == False) & (data['famhist'] == False)) | # No tiene enfermedad
       pero sí antecedentes
              ((data['chd'] == True) & (data['famhist'] == True))]
      pero no antecedentes
10 GrupoC=data[(data['chd'] == True) & (data['famhist'] == False)]
                                                                      # Tiene antecedentes
      y la enfermedad
11
12 for aspecto in ["sbp","ldl",'tipo A']:
      data = pd.concat([GrupoA[aspecto].rename("Grupo A"), GrupoB[aspecto].rename("Grupo B"
13
      ), GrupoC[aspecto].rename("Grupo C")],
14
                      ignore_index=False, axis=1)
      boxplot=data.boxplot()
15
16
      boxplot.plot()
      plt.title(aspecto)
17
      plt.savefig("H Gráficos\\"+aspecto+".png")
18
  plt.show()
```

K.9. Código del ejercicio I

```
1 import pandas as pd
2 import matplotlib.pyplot as plt
3 import math
5 data = pd.read_table("heart2022.txt", sep=' ', names=['sbp', 'ldl', 'famhist', 'tipo A',
      'chd'],
                      dtype={'sbp': int, 'ldl': float, 'famhist': bool, 'tipo A': float, '
      chd': bool})
8 GrupoA=data[(data['chd'] == False) & (data['famhist'] == True)]
                                                                      # No tiene enfermedad
       ni antecedentes
9 GrupoB=data[((data['chd'] == False) & (data['famhist'] == False)) | # No tiene enfermedad
       pero sí antecedentes
              ((data['chd'] == True) & (data['famhist'] == True))]
                                                                       # Tiene enfermedad
10
      pero no antecedentes
11 GrupoC=data[(data['chd'] == True) & (data['famhist'] == False)]
                                                                       # Tiene antecedentes
      y la enfermedad
for aspecto in ["sbp","ldl",'tipo A']:
      data = pd.concat([GrupoA[aspecto].rename("Grupo A"), GrupoB[aspecto].rename("Grupo B"
14
      ), GrupoC[aspecto].rename("Grupo C")],
                      ignore_index=False, axis=1)
15
16
      shape = data.shape
      hist=data.plot.hist(bins=math.ceil(math.log(shape[0])), alpha=0.25)
17
      hist.set_ylabel("Frecuencia")
18
      hist.set_xlabel(aspecto)
      hist.plot()
20
21
      plt.title(aspecto)
      plt.savefig("I Gráficos\\" + aspecto + ".png")
     plt.show()
```

K.10. Código del ejercicio J

```
1 import pandas as pd
2 import matplotlib.pyplot as plt
3 from tabulate import tabulate
5 file = open("J Resultados.txt","w")
  data = pd.read_table("heart2022.txt", sep=' ', names=['sbp', 'ldl', 'famhist', 'tipo A',
      'chd'],
                       dtype={'sbp': int, 'ldl': float, 'famhist': bool, 'tipo A': float, '
      chd': bool})
10 GrupoA=data[(data['chd'] == False) & (data['famhist'] == True)]
                                                                      # No tiene enfermedad
11 GrupoB=data[((data['chd'] == False) & (data['famhist'] == False)) | # No tiene enfermedad
       pero sí antecedentes
              ((data['chd'] == True) & (data['famhist'] == True))]
                                                                       # Tiene enfermedad
      pero no antecedentes
                                                                       # Tiene antecedentes
13 GrupoC=data[(data['chd'] == True) & (data['famhist'] == False)]
      y la enfermedad
14
15 for Group in [GrupoA, GrupoB, GrupoC]:
16
17
      if Group.equals(GrupoA):
          file.write("Grupo A:\n")
18
      elif Group.equals(GrupoB):
19
          file.write("Grupo B:\n")
21
      else:
          file.write("Grupo C:\n")
22
23
      table = [["Aspecto", "Media", "Coef Simetria"]]
24
25
      for aspect in ['sbp', 'ldl', 'tipo A']:
26
          media = Group[aspect].mean()
27
28
          simetria = Group[aspect].skew(axis = 0, skipna = True)
          table.append([aspect, round(media, 2), round(simetria,2)])
29
30
31
      file.write(tabulate(table))
     file.write("\n\n")
32
```