Python Linked Lists

Every Node has 2 parts: data and a pointer to the next Node

Linked Lists

Attributes:

root - pointer to the

beginning of the List

size - number of nodes in List

Operations:

find(data)

add(data)

remove(data)

print_list()

add(10)

Python Circular Linked Lists

Regular Linked List

add(8)

add(8)

Advantage over regular (singly) linked lists:

 Ideal for modeling continuous looping objects, such as a Monopoly board or a race track.

Python Doubly Linked Lists

Regular Linked List

Doubly Linked List

Every Node has 3 parts: data and pointers to previous and next Nodes

Doubly Linked List

Doubly Linked List

Advantages over regular (singly) linked lists:

- Can iterate the list in either direction
- Can delete a node without iterating through the list (if given a pointer to the node)

