<u>Turma:</u>	Nota:

MA 327 Álgebra Linear

Segundo Semestre de 2008

Segunda Chamada

Nome:	RA:
1101116.	1021.

$Quest\~oes$	Pontos
Questão 1	
Questão 2	
Questão 3	
Total	

Questão 1. (4.0 Pontos)

Considere o espaço vetorial real $\mathcal{P}_2(\mathbb{R})$ e o subconjunto U definido por:

$$U = \left\{ p(x) \in \mathcal{P}_2(\mathbb{R}) / \int_{-1}^1 p(x) dx + 2p'(0) = 0_{\mathbb{R}} \right\}.$$

- (a) Mostre que o subconjunto U é um subespaço vetorial de $\mathcal{P}_2(\mathbb{R})$.
- (b) Determine uma base para o subespaço U.
- (c) Determine um subespaço W de $\mathcal{P}_2(\mathbb{R})$ de modo que $\mathcal{P}_2(\mathbb{R}) = U \oplus W$.
- (d) Dado o polinômio p(x) = 2 x, determine um polinômio $q(x) \in U$ e um polinômio $r(x) \in W$ de modo que p(x) = q(x) + r(x).

Questão 2. (3.0 Pontos)

Seja $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ a transformação linear tal que

$$T(1,2) = (1,0,1)$$
 e $T(2,1) = (1,1,0)$.

- (a) Mostre que T é uma transformação linear injetora.
- (b) Determine a matriz $[T]^{\beta}_{\gamma}$, onde $\beta = \{(1,2), (2,1)\}$ é a base ordenada de \mathbb{R}^2 e γ é a base canônica de \mathbb{R}^3 .
- (c) Exiba uma transformação linear $P: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ tal que Ker(P) = Im(T).

Questão 3. (3.0 Pontos)

(a) Mostre que a aplicação $\langle \cdot, \cdot \rangle : \mathcal{P}_2(\mathbb{R}) \times \mathcal{P}_2(\mathbb{R}) \longrightarrow \mathbb{R}$ dada por:

$$\langle p, q \rangle = p(-1)q(-1) + p(0)q(0) + p(1)q(1)$$

define um produto interno no espaço vetorial real $\mathcal{P}_2(I\!\!R)$.

- (b) Determine uma base para o complemento ortogonal do subespaço U = [1 + x] em $\mathcal{P}_2(\mathbb{R})$ com relação ao produto interno $\langle \cdot, \cdot \rangle$ definido acima.
- (c) Utilizando o Processo de Ortogonalização de Gram-Schmidt, determine uma base ortogonal para o espaço vetorial real $\mathcal{P}_2(\mathbb{R})$ com relação ao produto interno $\langle \cdot, \cdot \rangle$ definido acima.