Minors of sets

Shigeo Hattori

November 10, 2019

 $First\ revision:\ September,\ 2019$ bayship.org@gmail.com https://github.com/bayship-org/mathematics

1 Contents

The first two pages are the main part. The first page gives the main definition by examples. The second page gives the main definitions formally. The rest pages give definitions used in propositions and proofs and prove the propositions which states that the main definitions are super classes or sub classes of standard notions of mathematics.

2 Main definition by examples

Some words or some notations in this page are possibly not clear for some readers. All of them will be formally defined in the next page. 2 Let (X, T^2, M^2) denote the 2-dimensional Euclidean space where T^2 is the topology and M^2 is the metric table. Let $S1 := \{L1 \mid L1 \text{ is a subspace of } X \text{ and } L1 \text{ is a closed straight line segment} \}$ of length 1 in terms of M^2 }. As a remark, L1 represents (a subset of X) and (the restriction of T^2 at (L1 as a subset of X)). Meanwhile L1 has no information in terms of M^2 . Let $S2 := \{L2 \mid \exists L1 \in S1 \text{ such that } L2 \text{ is homeomorphic to } L1\}.$ Then S1 and S2 are not topologically equivalent. For example, some distinct two members of S2 intersect to each other exactly at two or more many countable points whereas the same fails for S1 in place of S2. 12 Though there are needs to state that S1 and S2 are almost topologically equivalent. For example, it is true that (A1.) $S1 \subset S2$. And it is possibly true that

(A2.) for all three members $(L1,L2,L3)$ of $S1$, if $(S2,L1,L3)$ and $(S2,L2,L3)$	15
are topologically equivalent, then $(S1,L1,L3)$ and $(S1,L2,L3)$ are also topo-	16
logically equivalent.	17
If (*A1 and *A2) holds for $(S1, S2)$ then $S1$ is said a minor of $S2$.	18
	19
3 Main definitions	20
First of all, $\forall m$ is said a memBer if it is a member of some set.	21
Take $\forall \{c\}_{i \in [1,n] \subset \mathbb{N}}$ as a chain of set ¹ membership where the indexing is bijective.	22
Then the smallest member c_1 is said a deep member of the maximum member	23
c_n ; and c_1 is calculated ² the deep number relative to c_n as (if $n \geq 2$ then	24
$\prod_{i \in [2,n]} C_i $ else 0).	25
And all memBer m is said a constant-memBer if all deep member of m is not	26
a point. And all memBer m is said an 3 end-memBer if m is either a constant-	27
memBer or a point.	28
Needless to say all topological space is a memBer and all memBer m is expressed	29
as a deep graph. To ⁴ resolve "deep graph", take $\forall m$, then the deep graph of	30
m is defined as the directed graph (V, E) on the set V of all deep members of	31
$m \text{ such that } E = \{(v1, v2) \in V * V \mid v1 \in v2\}.$	32
Ultimately, two memBers are said isomorphic or isomorphic by f if (their	33
deep graphs are isomorphic by f as a graph isomorphism and relate-constant-	34
$memBer(f)$. To resolve "relate-constant-memBer", take $\forall L$ as a binary relation,	35
then it is written as relate-constant-memBer(L) if (take $\forall (x,y) :\in \mathcal{L}$ such	36
that either x or y is a constant-memBer, then $x = y$).	37
	38
Shifting to the notion of minors of memBers.	39
Take $\forall (m1, m2)$ such that $Space(m1) \subset Space(m2)$.	40
Then $m1$ is said a minor of $m2$ if *1 implies *2.	41
1 Take $\forall (d1, d2, d3)$ as deep members of $m1$ such that	42
((m2, d1, d3), (m2, d2, d3)) are isomorphic).	43
2 $((m1, d1, d3), (m1, d2, d3))$ are isomorphic.	44

¹The order implies that all member is smaller than the set.

²This word will not be used in the rest.

³This word will not be used in the rest.

 $^{^4\}mathrm{In}$ this article, "to resolve" means to define the meaning of words after using the words.

4 Notations	45
Consider a proposition, e.g., a and b .	46
And consider a proposition, e.g., $a \wedge b$.	47
The two example propositions are unclear whether they are equivalent to each	48
other.	49
In this article, the two are possibly different.	50
Speaking simply, " a and b " are not checked by the author(me) if it can be commutative.	51 52
In this sense, "a and b" is written as "a $and \wedge b$ ".	53
And in this sense, "a or b" is written as "a $_{or} \lor b$ ".	54
As a remark, I don't have any actual example of " a and b " which is not com-	55
mutative.	56
	57
Definition 4.1 (Restriction of binary relation).	58
Take $\forall (L, X, Y)$ as a binary relation L and sets (X, Y) .	59
$L[X] := \{ (x, y) \in L \mid x \in X \}.$	60
$L[,Y] := \{(x,y) \in L \mid y \in Y\}.$	61
5 Properties of equivalence relation Proposition 1 (Reflexive symmetry transitive properties)	62
5 Properties of equivalence relation Proposition 1 (Reflexive, symmetry, transitive properties). The relation by isomorphisms of memBers has properties of reflexive, symmetry and transitive.	62636465
Proposition 1 (Reflexive, symmetry, transitive properties). The relation by isomorphisms of memBers has properties of reflexive, symmetry	63 64
Proposition 1 (Reflexive, symmetry, transitive properties). The relation by isomorphisms of memBers has properties of reflexive, symmetry and transitive.	63 64 65
Proposition 1 (Reflexive, symmetry, transitive properties). The relation by isomorphisms of memBers has properties of reflexive, symmetry and transitive. Proof.	63 64 65 66
Proposition 1 (Reflexive, symmetry, transitive properties). The relation by isomorphisms of memBers has properties of reflexive, symmetry and transitive. Proof. *1 has been proved in graph theory.	63 64 65 66
 Proposition 1 (Reflexive, symmetry, transitive properties). The relation by isomorphisms of memBers has properties of reflexive, symmetry and transitive. Proof. *1 has been proved in graph theory. It is trivial that (*2 and \(\cdot \cdot \cdot \cdot and \(\cdot \c	63 64 65 66 67
 Proposition 1 (Reflexive, symmetry, transitive properties). The relation by isomorphisms of memBers has properties of reflexive, symmetry and transitive. Proof. *1 has been proved in graph theory. It is trivial that (*2 and \wedge and \wedge *5) holds. Hence this proposition holds. 1 The relation by graph isomorphisms has properties of reflexive, symmetry 	63 64 65 66 67 68 69
 Proposition 1 (Reflexive, symmetry, transitive properties). The relation by isomorphisms of memBers has properties of reflexive, symmetry and transitive. Proof. *1 has been proved in graph theory. It is trivial that (*2 and \wedge and \wedge *5) holds. Hence this proposition holds. 1 The relation by graph isomorphisms has properties of reflexive, symmetry and transitive. 	63 64 65 66 67 68 69 70 71
 Proposition 1 (Reflexive, symmetry, transitive properties). The relation by isomorphisms of memBers has properties of reflexive, symmetry and transitive. Proof. *1 has been proved in graph theory. It is trivial that (*2 and \(^* \) and \(^* \)*5) holds. Hence this proposition holds. 1 The relation by graph isomorphisms has properties of reflexive, symmetry and transitive. 2 Take ∀f₁, f₂, f₃ as graph isomorphisms such that 	63 64 65 66 67 68 69 70 71

4 relate-constant-memBer (f_1) = relate-constant-memBer (f_1^{-1}) and \land	7 6
5 (relate-constant-memBer (f_1) and \land relate-constant-memBer (f_2)) \equiv relate-constant-memBer $(f_2 \circ f_1)$	77 78
	7 9
6 Homeomorphic topological spaces as isomor-	80
phic memBers	81
Definition 6.1.	82
Take $\forall (m1, m2, c)$ such that (83
c is a chain of set membership $and \land$	84
m1 is the ⁵ minimum member of c	85
m2 is the ⁶ maximum member of c .	86
).	87
Then define (*1 $and \wedge and \wedge *5$).	88
1 $m1$ is said a deep member of $m2$.	89
-	90
Hence all memBer is a deep member of itself.	91
2 c - 1 is said a power of $(m1, m2)$.	92
3 It is written as $m1 \in c -1$ $m2$.	93
4 Let p be the maximum power of $(m1, m2)$.	94
Then $depth(m1, m2) := p$.	95
5 Let $S := \{d \mid \text{there exists } \exists m \text{ such that } d = depth(m, m2)\}.$	96
Then $depth(m2) :=$ "the maixmum member of S ".	97
· ·	98
Definition 6.2 (Space of memBer).	99
Take $\forall m$.	100
Then define that	101
$Deep(m) := \{d \mid d \text{ is a deep member of } m \}.$	102
$Space(m) := \{ p \in Deep(m) \mid p \text{ is a point } \}.$	103

⁵No member of c is a member of m1.

⁶No member of c has m2 as a member.

Proposition 2 (Isomorphism of vertices).	104
Take $\forall (m1, m2, f, v1)$ such that (105
$(m1, m2)$ are isomorphic by $f_{and} \land v1 \in Deep(m1)$	106
).	107
Then $v1, f(v1)$ are isomorphic by $f[Deep(v1)]$.	108
Proof.	109
• Let $v2 := f(v1)$.	110
• As C1, claim that $Deep(v2) \subset image(f[Deep(v1)])$.	111
• Assume that the claim fails.	112
• There exists $\exists w2 :\in Deep(v2)$	113
as a minimum counterexample to *C1 compared by $depth(w2, v2)$.	114
• It is trivial that $w2 \neq v2$.	115
• There exists $\exists x2 :\in Deep(v2)$ such that $w2 \in x2$.	116
• Hence x2 is not a counterexample to *C1	117
because $depth(w2, v2) < depth(x2, v2)$.	118
• Hence There exists $\exists x1 :\in Deep(v1)$ such that $f(x1) = x2$.	119
• Hence There exists $\exists w1 :\in x1$ such that	120
$(f(w1) = w2 and \land \ w1 \in Deep(v1)). \ A \ contradiction.$	121
• Hence The assumption on $(\neg *C1)$ is false.	122
• As C2, claim that ($Deep(v1) \subset image(\ f^{-1}[Deep(v2)]\)).$	123
• Though it is trivial that the same logic for the proof of *C1 proves *C2.	124
• Hence $Deep(v2) = image(f[Deep(v1)])$.	125
• Hence $f[Deep(v1)]$ is a graph isomorphism	126
from*to $Deep(v1) * Deep(v2)$.	127
A. J. 4 :- 4.::-:-1.414	1.00
• And it is trivial that	128
relate-constant-memBer $(f) \Rightarrow$ relate-constant-memBer $(f[Deep(v1)])$.	129
	130

Proposition 3 (Isomorphism of Spaces).	131
Take $\forall (m1, m2, f)$ such that $(m1, m2)$ are isomorphic by f .	132
Then $f[Space(m1)]$ is a bijection from*to $Space(m1) * Space(m2)$.	133
Proof.	134
• Assume it is false.	135
• $image(f[Space(m1)]) \neq Space(m2)$.	136
	137 138
	139 140 141 142 143
• Assume *A1 holds.	144
\bullet Then $f(p1)$ is either a constant-memBer (or a non-constant-memBer as a set).	145 146
\bullet Though $f(p1)$ can not be a constant-memBer by that relate-constant-memBer (f) .	147 148
• Hence $f(p1)$ is a non-constant-memBer as a set.	149
• Though it contradicts to that f is a graph isomorphism because $f(p1)$ has edge to some its member.	150 151
\bullet Hence the assumption of *A1 is false $_{and}\wedge$ *A2 holds.	152
• There exists $\exists c1 : \notin Space(m1)$ such that $f(c1) = p2$.	153
• Hence $f^{-1}(p2) = c1$	154
• Though this condition has been denied in the disproof of *A1.	155
• Hence the assumption of *A2 is false $_{and}\wedge$ the main assumption is false.	156

Proposition 4 (Pair of member's isomorphisms).	158
Take $\forall (I := \{1, 2, 3, 4\}, \{m_i\}_{i \in I}, f_{1,2}, f_{3,4})$	159
such that (*1 $_{and} \land \dots _{and} \land \ *4$) holds.	160
Then (*5 $_{and} \wedge$ *6) holds.	161
1 $(m1, m2)$ are isomorphic by $f_{1,2}$.	162
2 $(m3, m4)$ are isomorphic by $f_{3,4}$.	163
3 Let $f := f_{1,2} \cup f_{3,4}$ and $f_s := f[Space(f)]$.	164
4 Then f_s is a bijection.	165
5 f is a function.	166
$6 \ f$ is a bijection.	167
7 relate-constant-memBer (f) .	168
	169
Proof of *5.	170
• Let $(V, E)_{i:\in\{1,2,3,4\}}$ be the deep graph of m_i .	171
• Assume it is false.	172
• Then there exists $\exists ((m1, m3), (m2, m4))$ as a minimum counterexample by $depth((m1, m3))$ such that f is not a function.	173 174
ullet Let us make sure that f is a union of a set of bijections.	175
• There exists $\exists v :\in V_1 \cap V_3$ such that $ f[\{v\}] \geq 1$ and $v \notin \{m1, m3\}$.	176
• By the way, this proposition accepts the following $args_v$	177
in place of $(m1, m2, m3, m4, f_{1,2}, f_{3,4})$.	178
$ullet \ args_v := ($	179
v,	180
$f_{1,2}(v),$	181
v,	182
$f_{3,4}(v),$	183
$f_{1,2}[Deep(v)],$	184
$f_{3,4}[Deep(v)]$	185
).	186

• In the rest, this $args_v$ is proved to be a counterexample smaller than a 187 minimal counterexample. • As the first step, the such-that clause of this proposition holds for $args_v$ 189 • Equivalently (*1 $_{and} \land$ $_{and} \land *4$) holds for $args_v$ as follows. • Assume *1 fails for $args_v$. • Hence $(v, f_{1,2}(v))$ is not isomorphic by $f_{1,2}[Deep(v)]$. • Though it contradicts to the proposition titled as "Isomorphism of ver- 194 tices". • Hence the last assumption is false. 196 • Hence *1 holds for $args_v$. 197 • Hence *2 holds for $args_v$ because (for $args_v$, *1 and *2 are logically equiv- 198 alent). • Assume *4 fails for $args_v$. 200 • Let $f_v := f_{1,2}[Deep(v)] \cup f_{3,4}[Deep(v)]$ and \land let $f_{v,s} := f_{1,2}[Deep(v)][Space(f_v)] \cup f_{3,4}[Deep(v)][Space(f_v)].$ • Then $f_{v,s}$ is not a bijection. • Though it is false because $f_{v,s} \subset f_s$. Hence *4 holds for $args_v$. 204 • Hence (*1 $_{and} \land$ $_{and} \land *4$) holds for $args_v$. 205 • Moreover *5 fails for $args_v$ as follows. 206 • Assume *5 holds for $args_v$. 207 • Then f_v is a function. 208 • Though 209 $v \in Deep(v) \quad and \land \quad$ 210 $f_v[\{v\}] = f[\{v\}] \quad and \land$ $|f_v[\{v\}]| = |f[\{v\}]| \ge 1.$ • Hence *5 fails for $args_v$. 213

• $args_v$ is a counterexample.

• And the size as a counterexample of $args_v$ equals to $depth((v, v))$.	215
• Though $depth((v,v)) < depth((m1,m3))$ ⁷ because $depth((v,v)) = depth(v) + 2 < depth(m1) + 2 \le depth(m1,m3)$.	216 217
• Hence arg_v is a counterexample smaller than a minimum counterexample	ple. 218
• Hence the main assumption is false.	219
	□ 220
Proof of *6.	221
Onsider the proposition *P $_{S}$ titled as "Reflexive, symmetry,transitive erties".	prop-222 223
\bullet Consider the proposition *P $_I$ titled as "Isomorphism of spaces".	224
• Then ((*P _{S and} \wedge *P _I) and \wedge (*1 and \wedge and \wedge *4)) implies (*S1 and \wedge and \wedge *S4).	225 226
S1 $(m2, m1)$ are isomorphic by $f_{1,2}^{-1}$ as an isomorphism.	227
S2 $(m4, m3)$ are isomorphic by $f_{3,4}^{-1}$ as an isomorphism.	228
S3 Let $f_{-1} := f_{1,2}^{-1} \cup f_{3,4}^{-1}$ and \land let $f_{s,-1} := f_{-1}[Space(f_{-1})]$.	229
S4 Then $f_{s,-1}$ is a bijection.	230
• For *S4, it holds because (it is trivial that ($f_{-1} = f^{-1}$ and $f_{s,-1} = f_s^{-1}$).	231 232
• Moreover *5 implies that f_{-1} is a function.	233
• Hence f^{-1} is a function.	234
• Hence *5 implies that f is an injection.	235
ullet By the way, f is surjective because f is not defined the codomain.	236
• Hence f is a bijection.	237
	□ 238
Proof of *7.	239
$7(x,y) := \{\{x\}, \{x,y\}\}$	

• Assume it is false.	240
• There exists $\exists (x,y) :\in f$ such that (either x or y is a constant-memBer) $and \land (x \neq y)$.	241 242
• Though $f = f_{1,2} \cup f_{3,4}$.	243
• Hence $(x, y) \in f_{1,2}$ or $(x, y) \in f_{3,4}$.	244
• There exists $\exists g :\in \{f_{1,2}, f_{3,4}\}$ such that \neg (relate-constant-memBer (g)).	245 246
• It contradicts to (*1 $_{and} \land$ *2).	247
• The assumption is false.	248
	249
Definition 6.3 (Constant space). A constant space D is most likely a function to be used to state conditions on variables.	252
For example, let D be a function and let $x, y, z \in Z * Z * Z$ such that $x = D(z)$ and $y = D(z)$. Then $x = y$. In this case, D is used to make sure that variables hold equal values. Be careful that all constant space is just a usual variable but a global constant.	254255256
Proposition 5 (Isomorphism by member's isomorphisms). Let *P_P denote the proposition titled as "Pair of member's isomorphisms". Take $\forall (S1, S2, f, F)$ as sets $(S1, S2)$ such that $(^*A1 \ _{and} \land \ldots \ _{and} \land ^*A7)$. Then $(^*10 \ _{and} \land \ldots \ _{and} \land 12)$ holds.	258 259 260 261
A1 $Deep(\{S1, S2\})$ \leq continuum.	262
A2 f is a bijection from*to $S1 * S2$.	263
A3 There exists $\exists D$ as a function and as a constant space.	264
A4 Take $\forall ((m1, m2), (m3, m4)) :\in f^2$.	265
A5 There exists $\exists f_{1,2}, f_{3,4}$ such that $f_{1,2} = D((m1, m2))$ $A = D((m3, m4))$	266 267
some real $11.0 - 10.170 + 10.211 - 0.37 + 10.4 = 10.1703 + 10.411$	20 TO 4

A5 Let $args := ($	268
m1, m2, m3, m4,	269
$f_{1,2},$	270
$f_{3,4}$	271
).	272
Then ${}^*\mathbf{P}_P$ accepts $args$	273
in place of $(m1, m2, m3, m4, f_{1,2}, f_{3,4})$.	274
A6 *P _P .(*1 $and \wedge and \wedge *4$) holds for $args$.	275
A7 Let $D_{1,2} := \{D((m1, m2)) \mid (m1, m2) \in f\}.$ Then $F = \text{union } D_{1,2}.$	276 277
C10 $F[Space(F)]$ is bijective.	278
C11 F is a function.	279
\mathbf{C} 12 F is bijective.	280
C13 relate-constant-memBer (F) .	281
C14 $(S1, S2)$ are isomorphic by $F \cup \{S1, S2\}$.	282
	283
Proof of $*C10$.	284
• First of all, it is trivial that	285
$domain(F[Space(F)]) = Space(S1)$ and \land	286
image(F[Space(F)]) = Space(S2).	287
• Assume it is false.	288
• There exists $\exists (p1, p2) :\in Space(S1) * Space(S2)$ such that	289
$ F(p1) \ge 1$ or $ F^{-1}(p2) \ge 1$.	290
\bullet Though it implies that the antecedent of this proposition have failed.	291
• Namely, there exists $\exists ((m1, m2), (m3, m4))$	292
which has been taken as $\forall ((m1, m2), (m3, m4))$ in *A4	293
such that, of *A6, *P _P .(*4) have failed for $((m1, m2), (m3, m4))$.	294
• Hence the assumption is false.	295
	296

Proof of (*C11 $_{and} \land \ ^*C12 \ _{and} \land \ ^*C13$).	297
• First of all, consider the proposition titled as "Pair of member's isomorphisms".	298 299
\bullet The proposition implies that the antecedent of this proposition implies that *A6 can be modified as the following *A6 typed in red.	300 301
• That is, the original "*4" has been replaced with "*7".	302
• A6 *P _P .(*1 $_{and} \land \dots _{and} \land *7$) holds for $args$.	303
• Call this modified antecedent as the modified antecedent.	304
• By the way, assume (*C11 $_{and}\wedge$ *C12 $_{and}\wedge$ *C13) is false.	305
• (*B1 $_{or} \lor$ *B2) holds.	306
• B1 There exists $\exists (x1, x2) :\in S1 * S2$ such that $ F(x1) \ge 1$ or $\lor F^{-1}(x2) \ge 1$.	307 308
• B2 There exists $\exists f_{1,2} :\in D_{1,2}$ such that \neg relate-constant-memBer $(f_{1,2})$.	309 310
• Though it implies that the modified antecedent have failed.	311
• Namely, there exists $\exists ((m1, m2), (m3, m4))$ which has been taken as $\forall ((m1, m2), (m3, m4))$ in *A4 such that, of *A6, $P_P.(*5_{and} \land *6_{and} \land *7)$ have failed for $((m1, m2), (m3, m4))$.	312 313 314 315
• Hence the assumption is false.	316
	317
Proof of *C14.	318
• Assume it is false.	319
• Let $F_+ := F \cup \{S1, S2\}$, Then (*B1 $_{or} \lor$ *B2) holds.	320
• As B1 , $(S1, S2)$ are not graph-isomorphic by F_+ .	321
• As B2 , \neg relate-constant-memBer(F_+).	322
• Assume *B2 holds.	323
• Hence \neg relate-constant-memBer($\{S1, S2\}$).	324

• Hence there exists $\exists (T1, T2) :\in \{(S1, S2), (S2, S1)\}$ such that	325
$T1$ is a constant-memBer $_{and} \land \ T2$ is not a constant-memBer.	326
• There exists $\exists (c_1, p_2) :\in F$ such that	327
$(c_1 \text{ is a constant-memBer } a_{nd} \land p_2) \text{ is not a point.}$	328
By this contradiction, the assumption on *B2 is false.	329
• Hence *B1 holds.	330
• Hence Bi holds.	000
• There exists $\exists (v1, v2) :\in S1 * S2$ such that	331
$F(v1) \notin S2$ or $\vee F^{-1}(v2) \notin S1$.	332
• Though there exists $\exists f_{1,2} :\in D_{1,2}$ such that (333
$(v1, F(v1)) \in f_{1,2}$ and \land	334
$f_{1,2}$ is a bijection from to $\text{Deep}(v1)$ Deep $(F(v1))$	335
).	336
• Moreover $F \supset f_{1,2}$.	337
• Hence the assumption on *B1 is false.	338
• The main assumption is false.	339
	340
Definition 6.4 (Variations of Indexed set).	340341342
	341
Definition 6.4 (Variations of Indexed set). As you know, for example, $\{x_i\}_{i\in\{1,2\}} := \{x_1, x_2\}$, in mathematics.	341 342
Definition 6.4 (Variations of Indexed set). As you know, for example, $\{x_i\}_{i\in\{1,2\}} := \{x_1,x_2\}$, in mathematics. In this article,	341 342 343
Definition 6.4 (Variations of Indexed set). As you know, for example, $\{x_i\}_{i\in\{1,2\}}:=\{x_1,x_2\}$, in mathematics. In this article, analogously, $(x_i)_{i\in\{1,2\}}:=(x_1,x_2)$.	341 342 343 344
Definition 6.4 (Variations of Indexed set). As you know, for example, $\{x_i\}_{i\in\{1,2\}}:=\{x_1,x_2\}$, in mathematics. In this article, analogously, $(x_i)_{i\in\{1,2\}}:=(x_1,x_2)$. As an alternative simplified form, $(x)_{i\in\{1,2\}}:=(x_1,x_2)$.	341 342 343 344 345 346
Definition 6.4 (Variations of Indexed set). As you know, for example, $\{x_i\}_{i\in\{1,2\}}:=\{x_1,x_2\}$, in mathematics. In this article, analogously, $(x_i)_{i\in\{1,2\}}:=(x_1,x_2)$. As an alternative simplified form, $(x)_{i\in\{1,2\}}:=(x_1,x_2)$. As one of many variations, $(\{x\})_{i\in\{1,2\}}:=(\{x_1\},\{x_2\})$.	341 342 343 344 345 346
Definition 6.4 (Variations of Indexed set). As you know, for example, $\{x_i\}_{i\in\{1,2\}}:=\{x_1,x_2\}$, in mathematics. In this article, analogously, $(x_i)_{i\in\{1,2\}}:=(x_1,x_2)$. As an alternative simplified form, $(x)_{i\in\{1,2\}}:=(x_1,x_2)$. As one of many variations, $(\{x\})_{i\in\{1,2\}}:=(\{x_1\},\{x_2\})$. As a comment, the order on the composed sequence should respect the most natural order on the index set.	341 342 343 344 345 346 347
Definition 6.4 (Variations of Indexed set). As you know, for example, $\{x_i\}_{i\in\{1,2\}}:=\{x_1,x_2\}$, in mathematics. In this article, analogously, $(x_i)_{i\in\{1,2\}}:=(x_1,x_2)$. As an alternative simplified form, $(x)_{i\in\{1,2\}}:=(x_1,x_2)$. As one of many variations, $(\{x\})_{i\in\{1,2\}}:=(\{x_1\},\{x_2\})$. As a comment, the order on the composed sequence should respect the most natural order on the index set.	341 342 343 344 345 346 347 348
Definition 6.4 (Variations of Indexed set). As you know, for example, $\{x_i\}_{i\in\{1,2\}}:=\{x_1,x_2\}$, in mathematics. In this article, analogously, $(x_i)_{i\in\{1,2\}}:=(x_1,x_2)$. As an alternative simplified form, $(x)_{i\in\{1,2\}}:=(x_1,x_2)$. As one of many variations, $(\{x\})_{i\in\{1,2\}}:=(\{x_1\},\{x_2\})$. As a comment, the order on the composed sequence should respect the most natural order on the index set.	341 342 343 344 345 346 347 348
Definition 6.4 (Variations of Indexed set). As you know, for example, $\{x_i\}_{i\in\{1,2\}}:=\{x_1,x_2\}$, in mathematics. In this article, analogously, $(x_i)_{i\in\{1,2\}}:=(x_1,x_2)$. As an alternative simplified form, $(x)_{i\in\{1,2\}}:=(x_1,x_2)$. As one of many variations, $(\{x\})_{i\in\{1,2\}}:=(\{x_1\},\{x_2\})$. As a comment, the order on the composed sequence should respect the most natural order on the index set. $ \blacksquare $ Proposition 6 (Isomorphisms by spaces). Take $\forall (S)_{i:\in\{1,2\}}, \forall (f,g) \text{ such that } ($	341 342 343 344 345 346 347 348 349 350
Definition 6.4 (Variations of Indexed set). As you know, for example, $\{x_i\}_{i\in\{1,2\}}:=\{x_1,x_2\}$, in mathematics. In this article, analogously, $(x_i)_{i\in\{1,2\}}:=(x_1,x_2)$. As an alternative simplified form, $(x)_{i\in\{1,2\}}:=(x_1,x_2)$. As one of many variations, $(\{x\})_{i\in\{1,2\}}:=(\{x_1\},\{x_2\})$. As a comment, the order on the composed sequence should respect the most natural order on the index set.	341 342 343 344 345 346 347 348 349 350 351
Definition 6.4 (Variations of Indexed set). As you know, for example, $\{x_i\}_{i\in\{1,2\}}:=\{x_1,x_2\}$, in mathematics. In this article, analogously, $(x_i)_{i\in\{1,2\}}:=(x_1,x_2)$. As an alternative simplified form, $(x)_{i\in\{1,2\}}:=(x_1,x_2)$. As one of many variations, $(\{x\})_{i\in\{1,2\}}:=(\{x_1\},\{x_2\})$. As a comment, the order on the composed sequence should respect the most natural order on the index set. Proposition 6 (Isomorphisms by spaces). Take $\forall (S)_{i:\in\{1,2\}}, \forall (f,g)$ such that $((S)_{i:\in\{1,2\}} \text{ are isomorphic by } f \text{ and also by } g \text{ and } \land f[\operatorname{Space}(f)] = g[\operatorname{Space}(g)]$	341 342 343 344 345 346 347 348 350 351 352
Definition 6.4 (Variations of Indexed set). As you know, for example, $\{x_i\}_{i\in\{1,2\}}:=\{x_1,x_2\}$, in mathematics. In this article, analogously, $(x_i)_{i\in\{1,2\}}:=(x_1,x_2)$. As an alternative simplified form, $(x)_{i\in\{1,2\}}:=(x_1,x_2)$. As one of many variations, $(\{x\})_{i\in\{1,2\}}:=(\{x_1\},\{x_2\})$. As a comment, the order on the composed sequence should respect the most natural order on the index set.	341 342 343 344 345 346 347 348 349 350 351 352 353

• There exists $\exists v_1 :\in Deep(S1)$ as a minimum counterexample	357
compared by $depth(v_1)$ such that	358
$f(v_1) \neq g(v_1).$	359
• It is trivial that $depth(v_1) > 0$.	360
• Hence v_1 is a set.	361
• $f[v_1] = g[v_1]$ because (362
take $\forall w_1 :\in v_1$,	363
then $(\operatorname{depth}(w_1) < \operatorname{depth}(v_1) and \land w_1 \text{ is not a counterexample})$	364
).	365
• Hence $f(v_1) = image(f[v_1]) = image(g[v_1]) = g(v_1)$.	366
• The assumption is false.	367
	□ 368
Definition 6.5 (Isomorphism by spaces).	369
Take $\forall (S)_{i:\in\{1,2\}}, \forall (f,F)$ such that	370
$(S)_{i:\in\{1,2\}}$ are isomorphic by F and \wedge $Space(F) \subset f \subset F$.	371
Then $(S)_{i:\in\{1,2\}}$ are also said isomorphic by f .	372
Proposition 7 (Homeomorphism as isomorphism).	373
As you know, the set theory defines that	374
$(x,y) := \{\{x\}, \{x,y\}\}.$	375
Take $\forall ((X,T))_{i:\in\{1,2\}}, \forall H$ such that (376
$((X,T))_{i:\in\{1,2\}}$ is a pair of topological spaces $and \land$	377
H is a bijection from*to $X_1 * X_2$ and \land	378
$((X,T))_{i:\in\{1,2\}}$ are homeomorphic by H	379
).	380
Then (*1 $_{and} \wedge \dots _{and} \wedge *5$) holds.	381
1. $(X)_{i:\in\{1,2\}}$ are isomorphic by H .	382
2. Take $\forall (t_1, t_2) :\in T1 * T2$ such that $t_2 = image(H[t_1])$.	383
Then $(t)_{i:\in\{1,2\}}$ are isomorphic by $H[t_1]$.	384
3. $(T)_{i:\in\{1,2\}}$ are isomorphic by H .	385
4. $(\{X\})_{i:\in\{1,2\}}$ are isomorphic by H .	386
5. $(\{X,T\})_{i:\in\{1,2\}}$ are isomorphic by H .	387

6. $(\{\{X\}, \{X, T\}\})_{i:\in\{1,2\}}$ are isomorphic by H .	388
•	389
Proof of *1.	390
\bullet Consider the proposition titled as "Isomorphism by member's isomorphisms".	391 392
• $(X)_{i:\in\{1,2\}}$ are isomorphic by $H \cup \{(X1, X2)\}.$	393
	394
Proof of *2.	395
\bullet Consider the proposition titled as "Isomorphism by member's isomorphisms".	396 397
• $(t)_{i:\in\{1,2\}}$ are isomorphic by $H[t_1] \cup \{(t1,t2)\}.$	398
	399
Proof of *3.	400
\bullet Consider the proposition titled as "Isomorphism by member's isomorphisms".	401 402
• Consider *2.	403
• Let $t_{1,2} := \{(t_1, t_2) \in T1 * T2 \mid t_2 = image(H[t_1])\}.$	404
• $(T)_{i:\in\{1,2\}}$ are isomorphic by $H \cup t_{1,2} \cup \{(T1,T2)\}.$	405
	406
Proof of *4.	407
• Consider the proposition titled as "Isomorphism by member's isomorphisms".	408 409
• Consider *1.	410
• $(\{X\})_{i:\in\{1,2\}}$ are isomorphic by $H \cup \{(X1, X2), (\{X1\}, \{X2\})\}.$	411
	412
Proof of *5.	413

 Consider the proposition titled as "Isomorphism by member's phisms". 	isomor- 414 415
• Consider *1 and *3.	416
• $(\{X,T\})_{i:\in\{1,2\}}$ are isomorphic by $H \cup \{(X1,X2),(T1,T2),(\{X1,T1\},\{X2,T2\})\}.$	417 418
	□ 419
Proof of *6.	420
• Consider the proposition titled as "Isomorphism by member's phisms".	isomor- 421 422
• Consider *4 and *5.	423
• $(\{\{X\},\{X,T\}\})_{i:\in\{1,2\}}$ are isomorphic	424
• by $H \cup \{$	425
(X1, X2), $(T1, T2),$	426 427
$(\{X1,T1\},\{X2,T2\}),$	428
$(\{\{X1\},\{X1,T1\}\},\{\{X2\},\{X2,T2\}\})$	429
}.	430
	431