- 1. (15 поена) Низ x_n је задат са: $x_1 \in (0,\pi), x_{n+1} = x_n \sin x_n$, за $n \ge 1$.
- (а) Показати да је x_n низ са позитивним члановима и испитати његову конвергенцију. Ако конвергира одредити $\lim_{n\to\infty}x_n$.
 - (б) Доказати да важи $x_{n+1} = \frac{x_n^3}{6} + o(x_n^3)$, кад $n \to \infty$.
 - (в) Одредити $\lim_{n\to\infty} \frac{x_n^3}{x_{n+1}}$.
- **2.** (15 поена) Нека је $f: \mathbb{R} \to \mathbb{R}$ функција задата на следећи начин:

$$f(x) = \begin{cases} x^3 \cdot \cos \frac{1}{x^2}, & x \neq 0 \\ b, & x = 0. \end{cases}$$

- (a) Одредити $b \in \mathbb{R}$ тако да функција f буде непрекидна на \mathbb{R} .
- (б) Испитати диференцијабилност функције f.
- (в) Уколико је функција f диференцијабилна у тачки x=0, испитати да ли постоји $\lim_{x\to 0}f'(x)$. Да ли је f' непрекидна функција ?
- **3.** (20 поена) Дата је функција $f(x) = \frac{x^2}{x-1} \cdot e^{\frac{1}{x}}$.
 - (a) Испитати ток и скицирати график функције f.
- (б) Да ли график функције f сече y-осу? Ако не сече, одредити под којим углом прилази y-оси са леве стране.
 - (в) Скицирати график функције g(x) = f(-x).
- **4.** (10 поена)
 - (a) Доказати да једначина $x^3 15x + 1 = 0$ има 3 решења на скупу (-4,4).
 - (б) Колико решења може имати једначина $x^3 15x + \lambda = 0$ (у зависности од параметра $\lambda \in \mathbb{R}$)?

(Писмени испит укупно вреди 60 поена. Време за рад је 3 сата.)