Olefin polymerization catalyst component comprising an organometallic compound of general formula I

wherein:

M is a transition metal of groups 3, 4-10, lanthanide or actinide of the periodic table of the elements, preferably titanium, zirconium or hafnium;

each \mathbf{R} is independently a structural bridge rigidly connecting two ligands L_1 , L_2 and L_3 and is constituted by 1 to 4 chain atoms selected from carbon, silicon, germanium, oxygen, boron;

m, n and o are 0 or 1, with the proviso that m+n+o is 2 or 3;

L₁ is a ligand of the cyclopentadienyl type or is isolobal to cyclopentadienyl, preferably a cyclopentadienyl, indenyl or fluorenyl ring, cyclopenteno[b]tiophenyl cyclopenteno[b:b']-dithiophenyl cyclopenteno[b]pyrrolyl, boratabenzene, phospholyl, dihydroindeno[b]indolyl, optionally substituted by one or more R¹ groups; most preferably a cyclopentadienyl, indenyl or fluorenyl ring, optionally substituted by one or more R¹ groups;

 L_2 is a ligand of the cyclopentadienyl type or is isolobal to cyclopentadienyl, or a monovalent anionic ligand selected from the group consisting of N, P, B when m+n =2, it is selected from the group consisting of NR¹, PR¹, BR¹, O and S when m+n =1;

 L_3 is a monovalent anionic ligand selected from the group consisting of N, P, B when n+o=2, it is selected from the group consisting of NR^1 , PR^1 , BR^1 , O and S when n+o=1;

 \mathbf{R}^1 is hydrogen, C_1 - C_{20} alkyl, C_3 - C_{20} cycloalkyl, C_6 - C_{20} aryl, C_3 - C_{20} alkenyl, optionally comprising 1 to 5 heteroatoms such as Si, N, P, O, F, Cl, Br;

5

10

hard their mark holy of their the hard sollie

15

20

25

10

15

20

each X is independently selected from the group consisting of hydrogen, halogen, NR^2_2 , R^2 with R^2 equal to C_1 - C_{20} alkyl, C_3 - C_{20} cycloalkyl, C_6 - C_{20} aryl, C_3 - C_{20} alkenyl, optionally comprising 1 to 5 heteroatoms such as Si, N, P, O, F, Cl, Br;

q is a number whose value is: 0, 1, 2 or 3, depending on the valency of the metal M;

D is a neutral Lewis base,

p is a number whose value is: 0, 1, 2 or 3.

- 2. Catalyst component according to claim 1 wherein n is 0 and each R is independently selected from CR¹₂, SiR¹₂, CR¹₂-CR¹₂, CR¹₂-SiR¹₂, SiR¹₂-SiR¹₂; wherein R¹ is independently selected from hydrogen, C₁-C₂₀ alkyl, C₃-C₂₀ cycloalkyl, C₆-C₂₀ aryl, C₃-C₂₀ alkenyl, optionally comprising 1 to 5 heteroatoms such as Si, N, P, O, F, Cl, Br.
- 3. Catalyst component according to claim 1 wherein D is selected from the group consisting of linear or cyclic ethers, amines and phosphines.
- 4. Catalyst component according to claim 1 wherein the organometallic compound has formula (II)

wherein Cp is a cyclopentadienyl or indenyl ring, optionally substituted by one or more R^1 groups, M is selected from Ti, Zr and Hf

each \mathbf{R} is independently selected from CR_2^1 , SiR_2^1 , CR_2^1 - CR_2^1 , CR_2^1 - SiR_2^1 , SiR_2^1 - SiR_2^1 , wherein \mathbf{R}^1 is hydrogen, C_1 - C_{20} alkyl, C_3 - C_{20} cycloalkyl, C_6 - C_{20} aryl, C_3 - C_{20} alkenyl, optionally comprising 1 to 5 heteroatoms such as Si, N, P, O, F, Cl, Br.

 L_2 and L_3 are independently selected from the group consisting of NR¹, PR¹, BR¹, O and S;

10

15

X is independently selected from the group consisting of hydrogen, halogen, NR_2 , R^2 with R^2 equal to C_1 - C_{20} alkyl, C_3 - C_{20} cycloalkyl, C_6 - C_{20} aryl, C_3 - C_{20} alkenyl, optionally comprising 1 to 5 heteroatoms such as Si, N, P, O, F, Cl, Br.

D is a neutral Lewis base;

p is a number whose value is: 0, 1, 2 or 3.

- 5. Catalyst component according to claim 1 wherein o is equal to 0.
- 6. Catalyst component according to claim 1 wherein at least one L group selected from L₁, L₂ and L₃ and/or one R group contains a -O-SiR²₃ group.
- Catalyst component comprising a compound according to claims 1-6 and a porous support.
- 8. Olefin polymerization catalyst comprising a catalyst component according to claims 1-7 and a cocatalyst selected from aluminoxanes and boron Lewis acids.
- 9. Process for the preparation of catalyst components according to claims 1-6 including reacting a compound of formula MX_{q+3} wherein M is a transition metal of groups 3, 4-10, lanthanide or actinide of the periodic table of the elements, X is a monovalent anionic ligand and q is 0, 1, 2, or 3 depending on the valence of the metal M, with a compound of formula III

$$\begin{bmatrix} R \end{bmatrix}_{0} \begin{bmatrix} R \end{bmatrix}_{1}$$

$$\begin{bmatrix} R \end{bmatrix}_{m} \begin{bmatrix} R \end{bmatrix}_{m}$$

$$\begin{bmatrix} R \end{bmatrix}_{m} \begin{bmatrix} R \end{bmatrix}_{m}$$

$$H$$

20

wherein

10

15

each \mathbf{R} is independently a structural bridge rigidly connecting L_1 , L_2 and L_3 and is constituted by 1 to 4 chain atoms selected from carbon, silicon, germanium, oxygen, boron; these atoms can be part of fused rings, aromatics rings or spiro rings;

m, n and o are 0 or 1, with the proviso that m+n+o is 2 or 3.

 $L_{\rm I}$ is a group of the cyclopentadienyl type or is isolobal to cyclopentadienyl, optionally substituted by one or more $R^{\rm I}$ groups;

 L_2 is a group of the cyclopentadienyl type or is isolobal to cyclopentadienyl, or it is selected from the group consisting of N, P, B when m+n =2, it is selected from the group consisting of NR¹, PR¹, BR¹, O and S when m+n =1;

L₃ is selected from the group consisting of N, P, B when n+o=2, it is selected from the group consisting of NR^1 , PR^1 , BR^1 , O and S when n+o=1;

 \mathbf{R}^1 is hydrogen. C_1 - C_{20} alkyl, C_3 - C_{20} cycloalkyl, C_6 - C_{20} aryl, C_3 - C_{20} alkenyl, optionally comprising 1 to 5 heteroatoms such as Si, N, P, O, F. Cl. Br.

10. Compounds formula III

$$\begin{bmatrix} R \\ n \end{bmatrix}_{n} \begin{bmatrix} R \\ l \end{bmatrix}_{o}$$

$$\begin{bmatrix} R \\ l \end{bmatrix}_{m} \begin{bmatrix} R \\ l \end{bmatrix}_{o}$$

$$H$$

$$H$$

wherein

each \mathbf{R} is independently a structural bridge rigidly connecting L_1 , L_2 and L_3 and is constituted by 1 to 4 chain atoms selected from carbon, silicon, germanium, oxygen, boron; these atoms can be part of fused rings, aromatics rings or spiro rings;

 \mathbf{m} , \mathbf{n} and \mathbf{o} are 0 or 1, with the proviso that $\mathbf{m}+\mathbf{n}+\mathbf{o}$ is 2 or 3.

20

10

 L_1 is a group of the cyclopentadienyl type or is isolobal to cyclopentadienyl, optionally substituted by one or more R^1 groups;

 L_2 is a group of the cyclopentadienyl type or is isolobal to cyclopentadienyl, or it is selected from the group consisting of N, P, B when m+n =2, it is selected from the group consisting of NR¹, PR¹, BR¹, O and S when m+n =1;

 L_3 is selected from the group consisting of N, P, B when n+o =2, it is selected from the group consisting of NR^1 , PR^1 , BR^1 , O and S when n+o =1;

 \mathbf{R}^1 is hydrogen, C_1 - C_{20} alkyl. C_3 - C_{20} cycloalkyl. C_6 - C_{20} aryl. C_3 - C_{20} alkenyl. optionally comprising 1 to 5 heteroatoms such as Si, N, P, O, F, Cl, Br.

- 11. Process for the polymerization of olefins characterized by the use of a catalyst according to claim 8.
- 12. Polyolefins obtainable by the process of claim 11.