DDDM - Project3 mathematical models

June 12, 2020

1 Model 1: Base Model

1.1 Problem data:

1.1.1 In python

M		Number of customer cities
N		Number of distribution cities
$P \leq M$		Number of airports
lat_k	$k \in [1, N]$	cities' latitude
lng_k	$k \in [1, N]$	cities' longitude
pop_k	$k \in [1, N]$	cities' population
$D_k = \left\lceil \frac{50pop_k}{1000} \right\rceil$	$k \in [1, N]$	demand at city k
R = 6371.009		earth radius (km)
c = 0.001		unit cost per km, from airport to DC
C = 0.01		unit cost per km, from DC to final dest
f = 100000		cost for opening a DC
Cap = 50000		DC's capacity
$\mathbf{w}_{ij} = c^{\frac{2\pi R(lat_i - lat_j + lng_i - lng_j)}{360}}$	$\mathbf{i} \in [1,P], j \in [1,M]$	air transport cost from i to j
$W_{jk} = C \frac{2\pi R(lat_j - lat_k + lng_j - lng_k)}{360}$	$\mathbf{j} \in [1,M], k \in [1,N]$	land transport cost from j to k

1.1.2 In AMPL

${ m M}$		Number of customer cities
N		Number of distribution cities
$P \leq M$		Number of airports
D_k	$k \in [1, N]$	demand at city k
f = 100000		cost for opening a DC (independently of city)
Cap = 50000		DC's capacity
w_{ij}	$i \in [1, P], j \in [1, M]$	air transport cost from i to j
W_{jk}	$j \in [1, M], k \in [1, N]$	land transport cost from j to k

1.2 Variables:

$$\begin{array}{lll} \mathbf{y}_j & & \mathbf{j} \in [1,M] & & 1 \text{ if a DC is placed in city j, 0 otherwise} \\ \mathbf{x}_{jk} & & \mathbf{j} \in [1,M], k \in [1,N] & & \text{quantity served by DC j to customer k} \\ \mathbf{t}_{ij} & & \mathbf{i} \in [1,P], j \in [1,M] & & \text{quantity served by airport i to DC j} \end{array}$$

1.3 formulation:

minimize cost =
$$\sum_{j=1}^{N} y_j f + \sum_{i=1}^{P} \sum_{j=1}^{N} t_{ij} w_{ij} + \sum_{j=1}^{M} \sum_{k=1}^{N} x_{jk} W_{jk}$$
 (1)

subject to:
$$\sum_{j=1}^{M} x_{jk} = D_k \qquad \forall k \in [1, N]$$
 (2)

$$\sum_{k=1}^{N} x_{jk} \le y_j Cap \qquad \forall j \in [1, M]$$
 (3)

$$\sum_{i=1}^{P} t_{ij} = \sum_{k=1}^{M} x_{jk} \qquad \forall j \in [1, M]$$

$$y_{j} \in \{0, 1\} \qquad \forall j \in [1, M] \qquad (5)$$

$$x_{jk}, tij \geq 0 \qquad \forall i \in [1, P], \forall j \in [1, M], k \in [1, N] \qquad (6)$$

$$y_j \in \{0, 1\} \qquad \forall j \in [1, M] \tag{5}$$

$$x_{jk}, tij \ge 0 \qquad \forall i \in [1, P], \forall j \in [1, M], k \in [1, N]$$
 (6)

Model 2: Optimized Model 1 2

2.1 Problem data:

2.1.1 In python

${ m M}$		Number of customer cities
N		Number of distribution cities
$P \leq M$		Number of airports
lat_k	$k \in [1, N]$	cities' latitude
\log_k	$\mathrm{k} \in [1,N]$	cities' longitude
pop_k	$\mathrm{k} \in [1,N]$	cities' population
$D_k = \left\lceil \frac{50pop_k}{1000} \right\rceil$	$k \in [1, N]$	demand at city k
R = 6371.009		earth radius (km)
c = 0.001		unit cost per km, from airport to
C = 0.01		unit cost per km, from DC to fina
f = 100000		cost for opening a DC
Cap = 50000		DC's capacity
$W_{j} = Min_{i=0}^{p} c^{\frac{2\pi R(lat_{i}-lat_{j} + lng_{i}-lng_{j})}{360}} W_{jk} = C^{\frac{2\pi R(lat_{j}-lat_{k} + lng_{j}-lng_{k})}{360}} + w_{j}$	$\mathbf{j} \in [1,M]$	min air transport cost to each DC
$W_{jk} = C \frac{2\pi R(lat_j - lat_k + lng_j - lng_k)}{360} + w_j$	$\mathbf{j} \in [1,M], k \in [1,N]$	transport cost from i to j

2.1.2 In AMPL

 $\begin{array}{lll} \mathbf{M} & & \mathbf{Number \ of \ customer \ cities} \\ \mathbf{N} & & \mathbf{Number \ of \ distribution \ cities} \\ \mathbf{D}_k & & \mathbf{k} \in [1,N] & \mathbf{demand \ at \ city \ k} \\ \mathbf{f} = 100000 & & \mathbf{cost \ for \ opening \ a \ DC \ (independently \ of \ city)} \\ \mathbf{Cap} = 50000 & & \mathbf{DC's \ capacity} \\ \mathbf{W}_{jk} & & \mathbf{j} \in [1,M], k \in [1,N] & \mathbf{land \ transport \ cost \ from \ j \ to \ k} \\ \end{array}$

2.2 Variables:

 $\begin{array}{lll} \mathbf{y}_j & & \mathbf{j} \in [1,M] & & 1 \text{ if a DC is placed in city } \mathbf{j}, \, 0 \text{ otherwise} \\ \mathbf{x}_{jk} & & \mathbf{j} \in [1,M], k \in [1,N] & & \text{quantity served by DC } \mathbf{j} \text{ to customer } \mathbf{k} \end{array}$

2.3 formulation:

minimize cost =
$$\sum_{j=1}^{N} y_j f + \sum_{j=1}^{M} \sum_{k=1}^{N} x_{jk} W_{jk}$$
 (7)

subject to: $\sum_{i=1}^{M} x_{jk} = D_k$ $\forall k \in [1, N]$ (8) $\sum_{k=1}^{N} x_{jk} \le y_j Cap$ $\forall j \in [1, M]$ (9) $\sum_{j=1}^{M} y_j \ge \left[\sum_{k=1}^{M} \frac{D_k}{Cap} \right]$ (10) $\sum_{i=1}^{M} y_{j} \leq Max(\sum_{k=1}^{N} Max_{j=1}^{M} W_{jk} D_{k} / f, \left[\sum_{k=1}^{N} D_{k} Cap \right])$ (11) $y_i \in \{0, 1\}$ $\forall j \in [1, M]$ (12) $x_{ik} \ge 0$ $\forall j \in [1, M], \forall k \in [1, N]$ (13)

3 Model 3: Greedy Model 1

The problem is slit into several optimization problems. Each is the same and described below.

3.1 Problem data:

3.1.1 In python

M		Number of customer cities
N		Number of distribution cities
$P \leq M$		Number of airports
lat_k	$k \in [1, N]$	cities' latitude
\log_k	$k \in [1, N]$	cities' longitude
pop_k	$k \in [1, N]$	cities' population
$D_k = \left\lceil \frac{50pop_k}{1000} \right\rceil$	$k \in [1, N]$	demand at city k
R = 6371.009		earth radius (km)
c = 0.001		unit cost per km, from airport to
C = 0.01		unit cost per km, from DC to fina
f = 100000		cost for opening a DC
Cap = 50000		DC's capacity
$w_j = Min_{i=0}^p c^{\frac{2\pi R(lat_i - lat_j + lng_i - lng_j)}{360}}$	$j \in [1, M]$	min air transport cost to each DC
$W_{jk} = C^{\frac{2\pi R(lat_j - lat_k + lng_j - lng_k)}{360} + w_j$	$j \in [1, M], k \in [1, N]$	transport cost from i to j

3.1.2 In AMPL

M		Number of customer cities
N		Number of distribution cities
D_k	$k \in [1, N]$	demand at city k
f = 100000		cost for opening a DC (independently of city)
Cap = 50000		DC's capacity
W_{jk}	$\mathbf{j} \in [1, M], k \in [1, N]$	land transport cost from j to k

3.2 Variables:

y_j	$j \in [1, M]$	1 if a DC is placed in city j, 0 otherwise
\mathbf{x}_{ik}	$j \in [1, M], k \in [1, N]$	quantity served by DC j to customer k

3.3 formulation:

minimize cost =
$$f + \sum_{j=1}^{M} \sum_{k=1}^{N} x_{jk} W_{jk}$$
 (14)

subject to:
$$\sum_{j=1}^{M} x_{jk} \leq D_k \qquad \forall k \in [1, N] \qquad (15)$$

$$\sum_{k=1}^{N} x_{jk} = y_j Cap \qquad \forall j \in [1, M] \qquad (16)$$

$$\sum_{j=1}^{M} y_j = 1 \qquad \qquad (17)$$

$$y_j \in \{0, 1\} \qquad \forall j \in [1, M] \qquad (18)$$

$$x_{jk} \geq 0 \qquad \forall j \in [1, M], \forall k \in [1, N] \qquad (19)$$

4 Model 3: Greedy Model 2

The problem is slit into several optimization problems. Each is the same and described below.

4.1 Problem data:

4.1.1 In python

M		Number of customer cities
N		Number of distribution cities
$P \leq M$		Number of airports
lat_k	$k \in [1, N]$	cities' latitude
\log_k	$\mathrm{k} \in [1,N]$	cities' longitude
pop_k	$\mathrm{k} \in [1,N]$	cities' population
$D_k = \left\lceil \frac{50pop_k}{1000} \right\rceil$	$k \in [1, N]$	demand at city k
R = 6371.009		earth radius (km)
c = 0.001		unit cost per km, from airport to
C = 0.01		unit cost per km, from DC to fina
f = 100000		cost for opening a DC
Cap = 50000		DC's capacity
$\mathbf{w}_j = Min_{i=0}^p c^{\frac{2\pi R(lat_i - lat_j + lng_i - lng_j)}{360}}$	$\mathbf{j} \in [1, M]$	min air transport cost to each DC
$W_{jk} = C \frac{2\pi R(lat_j - lat_k + lng_j - lng_k)}{360} + w_j$	$\mathbf{j} \in [1,M], k \in [1,N]$	transport cost from i to j

4.1.2 In AMPL

M		Number of customer cities
N		Number of distribution cities
D_k	$k \in [1, N]$	demand at city k
f = 100000		cost for opening a DC (independently of city)
Cap = 50000		DC's capacity
W_{jk}	$j \in [1, M], k \in [1, N]$	land transport cost from j to k
m		Number of facilities to select

4.2 Variables:

 $\begin{array}{lll} \mathbf{y}_j & & \mathbf{j} \in [1,M] \\ \mathbf{x}_{jk} & & \mathbf{j} \in [1,M], k \in [1,N] \end{array} \qquad \begin{array}{ll} 1 \text{ if a DC is placed in city j, 0 otherwise} \\ \text{quantity served by DC j to customer k} \end{array}$

4.3 formulation:

minimize cost =
$$f * m + \sum_{j=1}^{M} \sum_{k=1}^{N} x_{jk} W_{jk}$$
 (20)

$$\sum_{k=1}^{N} x_{jk} = y_j Cap \qquad \forall j \in [1, M] \qquad (22)$$

$$\sum_{j=1}^{M} y_j = m \tag{23}$$

$$y_j \in \{0, 1\} \qquad \forall j \in [1, M] \qquad (24)$$

$$x_{jk} \ge 0 \qquad \forall j \in [1, M], \forall k \in [1, N] \qquad (25)$$

5 Model 4: Optimized Model 2

The problem is slit into several optimization problems. Each is the same and described below.

5.1 Problem data:

5.1.1 In python

M		Number of customer cities
N		Number of distribution cities
$P \leq M$		Number of airports
lat_k	$k \in [1, N]$	cities' latitude
lng_k	$k \in [1, N]$	cities' longitude
pop_k	$k \in [1, N]$	cities' population
$D_k = \left\lceil \frac{50pop_k}{1000} \right\rceil$	$k \in [1, N]$	demand at city k
R = 6371.009		earth radius (km)
c = 0.001		unit cost per km, from airport to
C = 0.01		unit cost per km, from DC to fina
f = 100000		cost for opening a DC
Cap = 50000		DC's capacity
$\mathbf{w}_{j} = Min_{i=0}^{p} c^{\frac{2\pi R(lat_{i} - lat_{j} + lng_{i} - lng_{j})}{360}}$	$\mathbf{j} \in [1, M]$	min air transport cost to each DO
$W_{jk} = C \frac{2\pi R(lat_j - lat_k + lng_j - lng_k)}{360} + w_j$	$j \in [1, M], k \in [1, N]$	transport cost from i to j
LB		total cost from transport model
UB		total cost from greedy 2 model

5.1.2 In AMPL

M		Number of customer cities
N		Number of distribution cities
D_k	$k \in [1, N]$	demand at city k
f = 100000		cost for opening a DC (independently of city)
Cap = 50000		DC's capacity
W_{jk}	$j \in [1, M], k \in [1, N]$	land transport cost from j to k
LB		total cost from transport model plus min facility cost
UB		total cost from greedy 2 model

5.2 Variables:

y_j	$j \in [1, M]$	1 if a DC is placed in city j, 0 otherwise
\mathbf{x}_{jk}	$j \in [1, M], k \in [1, N]$	quantity served by DC j to customer k

5.3 formulation:

minimize cost =
$$\sum_{j=1}^{N} y_j f + \sum_{j=1}^{M} \sum_{k=1}^{N} x_{jk} W_{jk}$$
 (26)

subject to:
$$\sum_{j=1}^{M} x_{jk} = D_k \qquad \forall k \in [1, N]$$

$$\sum_{k=1}^{N} x_{jk} \leq y_j Cap \qquad \forall j \in [1, M]$$

$$(28)$$

$$\left[\sum_{k=1}^{N} \frac{D_k}{Cap}\right] \leq \sum_{j=1}^{M} y_j \leq \left[\frac{UB}{f}\right] \qquad (29)$$

$$LB \leq \sum_{j=1}^{M} y_j f + \sum_{j=1}^{M} \sum_{k=1}^{N} x_{jk} W_{jk} \leq UB \qquad (30)$$

$$LB \leq \sum_{j=1}^{M} \sum_{k=1}^{N} x_{jk} W_{jk} + \left[\sum_{k=1}^{N} \frac{D_k}{Cap} \right] * f \leq UB$$

$$x_{jk} \leq Cap * y_{j}$$

$$\forall j \in [1, M], \forall k \in [1, N]$$

$$\forall j \in [1, M], \forall k \in [1, N]$$

$$\forall j \in [1, M]$$

$$(32)$$

$$\forall j \in [1, M]$$

$$(33)$$

 $x_{jk} \ge 0 \qquad \forall j \in [1, M], \forall k \in [1, N]$ (34)