



Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal Grupo de Automática, Robótica y Visión Artificial

#### Modelos de color.

#### Pablo Gil Vázquez

Pablo.gil@ua.es

Grupo de Automática, Robótica y Visión Artificial Universidad de Alicante http://www.aurova.ua.es

Imagen y Vídeo por Computador Ingeniería Multimedia. Escuela Politécnica Superior.

# Índice

- Introducción
- Modelos de color

Fernando Torres y Pablo Gil

#### Introducción



El empleo del color mejora las tareas de alto nivel en el procesamiento de imágenes.



Tres veces más de información. Similitud con la visión humana.

# Especificación del color I



- Color percibido:
  - Se considera el color como un aspecto de la percepción visual.
    - Matiz
      Saturación
      Luminancia
- Color psicofísico
  - Se considera el color como una característica de las radiaciones visibles.
    - Con tres radiaciones es posible generar el resto de tonalidades del espectro cromático.

### Modelos de color



- Los espacios de color proporcionan un método para especificar, ordenar y manipular colores.
- Los espacios son n-dimensional ordenaciones de las sensaciones de color.
- La amplia mayoría de modelos se han desarrollado para aplicaciones específicas.
- Ejemplo de modelos:
  - RGB, XYZ, CMY, CIELAB,...

5

### RGB I



- Basado directamente en la síntesis aditiva.
- En el espacio RGB el color aparece especificado con cantidades positivas de rojo, verde y azul.
- Empleado en gran cantidad de dispositivos como cámaras, escáneres, monitores, etc.





## **RGB II**



- La codificación del color suele realizarse en rango [0,1] ó [0,255].
- Ejemplo de codificaciones de color en [0,255]:



Fernando Torres y Pablo Gil

# **RGB III**



• Ejemplo de codificación de una imagen en color en RGB:



8

## **RGB IV**



- El modelo de colores RGB es el empleado en la adquisición de las imágenes (cámaras CCD).
  - En estos sistemas existen actualmente dos alternativas:
    - CCD triple.
    - CCD único con exposición triple.



## RGB V



#### CCD triple:

- La luz es descompuesta por prismas ópticos y desviada a tres sensores CCD, uno para cada color básico.
- Las cámaras tri-CCD son la mejor opción, permiten capturar imágenes en movimiento con una gran resolución y calidad cromática.



## **RGB VI**

- Cámaras color:
  - 3 array de elementos:
    - . Uso de un prisma
    - Más caras
    - . Mejores que las de 1 CCD



## **RGB VII**



- CCD único con exposición triple:
  - Consiste en un único CCD que es expuesto sucesivamente a los tres colores básicos.
  - El método de exposición triple obtiene una calidad equivalente a un tri-CCD pero sólo en imágenes estáticas.



#### **RGB VIII**

- Cámaras color:
  - 1 array de elementos:
    - . Filtro Bayer o de mosaico





In conventional systems, color filters are applied to a single layer of photodetectors in a titled mosaic pattern. The filters let only one wavelength of light—red, green or blue—pass through to any given pixel, allowing it to record only one color.

As a result, typical mosaic sensors capture 50% of the green and only 25% of the red and blue light.

### CMY

- Espacio de color basado en la síntesis sustractiva del color:
  - Mezcla de colores restando o sustrayendo luz
- El espacio de coordenadas CMY se obtiene por transformación lineal del modelo RGB.
- Se emplea en dispositivos de impresión en los que se suele añadir una componente de tinta negra (K).-> CMYK





## XYZ I

- En XYZ los primarios empleados son imaginarios, no representan ninguna luz física.
  - Representa una estimación de la percepción media de los colores visibles por el ojo humano.
- El espacio XYZ fue introducido por la CIE para evitar los inconvenientes de los triestímulos espectrales R, G y B:
  - Algunos colores sólo pueden reproducirse con cantidades negativas de un estímulo
  - Para buscar la separación de brillo y cromaticidad (ej. blanco y gris misma cromaticidad pero distinto brillo)
  - Y mide la luminosidad del color (su brillo)



## XYZ III



- El modelo XYZ es independiente de dispositivo.
- Suele ser utilizado en la especificación normalizada del color y en los cálculos colorimétricos.
- En procesamiento de imágenes su uso es escaso.
- Suele requerirse para conversiones entre el RGB y otros modelos.
  - Los modelos de color CIELAB y CIELUV son espacios estandarizados por la CIE en 1.976 para lograr una representación perceptualmente uniforme del color.



16

### XYZ II



• El sistema XYZ permite la representación de todos los colores en un diagrama CIE en función de longitudes de onda



Anatomy of a CIE Chromaticity Diagram





## **CIELAB**



- Cada coordenada representa la luminosidad del color
  - La variable L\* es una medida de luminancia.
    - L \* = 0 negro y L \* = 100 indica blanco difuso; blanco especular puede ser mayor).
    - Si a\*=b\*=0 entonces L\* representa la escala de grises
  - a\* definen señales de color rojo/magenta-verde

• a \*, valores negativos indican verde mientras que los valores $X_n = 95.047, Y_n = 100.000, Z_n = 108.883$ positivos indican magenta

Fernando Torres y Pablo Gil

- b\* definen señales de color amarillo-cyan/azul
  - b \*, valores negativos indican cyan y los valores positivos indican amarillo



Valores de referencia del blanco en XYZ

$$A_n = 95.047, Y_n = 100.000, Z_n = 108.883$$

Conversión para cada valor

$$L^{\star} = 116 f(Y/Y_n) - 16$$

$$a^* = 500 [f(X/X_n) - f(Y/Y_n)]$$

$$b^* = 200 [f(Y/Y_n) - f(Z/Z_n)]$$

#### CIELAB II



h representa el ángulo de giro (tono o matiz)

Magenta/Rojo en 0°, Amarillo en 90°, Verde 180°, Cyan/Azul 270°

- Magenta/Rojo es +a, Verde es -a
- Amarillo es +b, Cyan/Azul es -b

C representa el radio o distancia al eje L (cromaticidad)

• Su representación es un cilindro en vez de una esfera



$$L^* = 116 (Y/Y_n)^{1/3} - 16$$

$$a^* = 500 [(X/X_n)^{1/3} - (Y/Y_n)^{1/3}]$$

$$b^* = 200 [(Y/Y_n)^{1/3} - (Z/Z_n)^{1/3}]$$

$$C^* = (a^2 + b^2)^{1/2}$$



Croma

Cyan

Amarillo

Matiz

Magenta

## **CIELAB III**



 Los modelos CIELAB y CIELUV son espacios empleados en sistemas industriales de medición del color.







# YIQ, YUV I







- Tienen sus origen en una recodificación del espacio RGB (es una transformación línea de aquel) para responder a una característica de la visión humana:
  - Más sensible a los cambios de luminancia que a los cambios de matiz o saturación.
  - Requiere un ancho de banda reducido para la cromaticidad (parámetros miden la diferencia de color)

# YIQ, YUV II

- Codificación de colores: Ambos modelos codifican el color en componente de luminancia Y y en señales IQ o UV, que definen señales de color magentaverde y amarillo-cyan, respectivamente.
- Sistema de televisión:
  - YIQ: Y(luminancia), I-Q (Cromaticidad).
    - I transmite rangos de color del naranja al azul, O transmite rangos del púrpura al verde.
    - Mantiene compatibilidad con tv blanco/negro. I y Q representan dos ejes ortogonales en un plano, con valores entre 0 y 1.
    - Sistema NTSC.
  - YUV: Y (luminancia), U-V (Coordenadas dentro del espacio de color)
    - Plano U-V rotado 33º respecto a I-Q









# YIQ, YUV III



#### De RGB a YUV

$$\begin{bmatrix} Y' \\ U \\ V \end{bmatrix} = \begin{bmatrix} 0,299 & 0,587 & 0,114 \\ -0,147 & -0,289 & 0,436 \\ 0,615 & -0,515 & -0,100 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

#### De RGB a YIQ

$$\begin{bmatrix} Y \\ I \\ Q \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ 0.596 & -0.274 & -0.322 \\ 0.211 & -0.523 & 0.312 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

#### De YUV a RGB

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1,14 \\ 1 & -0,396 & -0,581 \\ 1 & 2,029 & 0 \end{bmatrix} \begin{bmatrix} Y' \\ U \\ V \end{bmatrix}$$

#### De YIQ a RGB

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 1 & 0.956 & 0.621 \\ 1 & -0.272 & -0.647 \\ 1 & -1.106 & 1.703 \end{bmatrix} \begin{bmatrix} Y \\ I \\ Q \end{bmatrix}$$



**RGB** 





## **HSII**



• Las componentes de estos espacios representan a los atributos perceptuales con los que los seres humanos especifican el color percibido: luminancia (Intensity), matiz (Hue) y saturación (Saturation).

En el espacio, los modelos HSI adquieren representación

cilíndrica.

 La familia HSI también suele denominarse como intuitiva u orientada a usuario.



#### HSI II

- El modelo general HSI no es el único de la familia intuitiva. Existen otros sistemas específicos:
  - HLS (matiz, luminancia y saturación) y HSV (matiz, saturación y valor).



#### HSI III



#### Transformaciones (para HSV):

#### De RGB a HSV

$$\begin{cases} \text{no definido,} & \text{si } MAX = MIN \\ 60^{\circ} \times \frac{G-B}{MAX-MIN} + 0^{\circ}, & \text{si } MAX = R \\ & \text{y } G \ge B \end{cases}$$

$$H = \begin{cases} 60^{\circ} \times \frac{G - B}{MAX - MIN} + 360^{\circ}, & \text{si } MAX = R \\ & \text{y } G < B \end{cases}$$
$$60^{\circ} \times \frac{B - R}{MAX - MIN} + 120^{\circ}, & \text{si } MAX = G$$
$$60^{\circ} \times \frac{R - G}{MAX - MIN} + 240^{\circ}, & \text{si } MAX = B \end{cases}$$

$$60^{\circ} \times \frac{B-R}{MAX-MIN} + 120^{\circ}$$
, si  $MAX = G$   
 $60^{\circ} \times \frac{R-G}{MAX-MIN} + 240^{\circ}$ , si  $MAX = B$ 

$$S = egin{cases} 0, & ext{si } MAX = 0 \ 1 - rac{MIN}{MAX}, & ext{en otro caso} \end{cases}$$

$$V = MAX$$







#### De HSV a RGB

$$H_i = \left\lfloor \frac{H}{60} \right\rfloor \mod 6; H \le 360$$

$$f = \left(\frac{H}{60} \mod 6\right) - H_i$$

$$f = \left(\frac{H}{60} \bmod 6\right) - H_i$$

$$p = V(1 - S)$$
  

$$q = V(1 - fS),$$

$$q = V(1 - fS),$$

$$t = V(1 - (1 - f)S)$$

B = q

#### Pseudocolor I



- Asignar falsos colores a imágenes en escala de gris:
  - Método de las rodajas de intensidad:
    - Es la más sencilla.
    - La imagen en grises se interpreta como una función bidimensional en la que los ejes X e Y son la anchura y altura de la imagen en pixeles y el eje Z la intensidad de gris (entre 0 y 255 si usamos un byte por píxel).
    - El método consiste en dividir con una serie de planos paralelos al XY distintos niveles de intensidad de gris y a cada nivel que queda entre los espacios interplanos (capas) se le asigna un color arbitrario.
    - No conviene, sin embargo, usar un número de planos excesivo





#### Pseudocolor II



- Asignar falsos colores a imágenes en escala de gris:
  - Transformación del nivel de gris a color:
    - Consiste en realizar tres transformaciones independientes del nivel de gris en colores separados de rojo, verde y azul.





Fuente: Victor Image Processing Library is a trademark of Catenary Systems.

### Resumen de modelos de color







© Grupo de Automática, Robótica y Visión Artificial

