

FCC ID: XL8WDLM914HP

Test Report

23, Headington Drive, Cambridge. CB1 9HE Tel: 01954 251974 (test site) or: 01223 241140 (accounts) Fax: 01954 251907 web: www.dbtechnology.co.uk email: mail@dbtechnology.co.uk

Page:

1 of 54

REPORT ON ELECTROMAGNETIC COMPATIBILITY TESTS

Performed at: TWENTY PENCE TEST SITE

> **Twenty Pence Road,** Cottenham, Cambridge U.K. **CB24 8PS**

> > on

Quatro Electronics Ltd

WDLM914HP

dated

10th December 2013

Document History

Issue	Date	Affected page(s)	Description of modifications	Revised by	Approved by
1	12/12/13		Initial release		
2	14/01/14	2	Frequency hopping changed to DSS	DB	PB
3	22/01/14	6,12,14,15,54	Added radiated measurements below 30MHz	DS	DB

Based on report template: v090319

dB)	Report No: Issue No:	R3295 3	FCC ID: XL8WDLM914HP		
	Test No:	T4651	Test Report	Page:	2 of 54

Equipment Under	Test (EUT):	WDLM914HP	
Test Commission	ned by:	Quatro Electronics Ltd Quatro House School Lane Lytham Lancashire FY8 5NL	
Representative:		Tim Forrester	
Test Started:		10th September 2013	
Test Completed:		21st November 2013	
Test Engineer:		Dave Smith	
Date of Report:		10th December 2013	
Written by:	Dave Smith	Checked by: Derek	Barlow
Signature:	D. A. Snitt	Signature:	Codra
Date:	10th December 2013	Date: 12th Dece	mber 2013

dB Technology can only report on the specific unit(s) tested at its site. The responsibility for extrapolating this data to a product line lies solely with the manufacturer.

Test Standards Applied

CFR 47	Code of Federal Regulations: Pt 15 Subpart C - Radio Frequency Devices - Intentional Radiators

In particular, the rules of part 15.247 for digital spread spectrum (DSS) devices were applied.

dB)	Report No: Issue No:	R3295 3	FCC ID: XL8WDLM914HP		
	Test No:	T4651	Test Report	Page:	3 of 54

Emissions Test Results Summary

CFR 47 - Subpart C PASS

OTT +7 Oubpart					1 700
Test	Port	Method	Limit	PASS/FAIL	Notes
Conducted Emissions	ac power	ANSI C63.4:2003	15.207	N/A	#1
Radiated Emissions		ANSI C63.4:2003	15.209	PASS	
Occupied Bandwidth		DA 00-705	15.247 (a)(1)(i)	PASS	
Channel Separation		DA 00-705	15.247 (a)(1)	PASS	
No. of Hopping Channels		DA 00-705	15.247 (a)(1)(i)	PASS	
Time of Occupation		DA 00-705	15.247 (a)(1)(i)	PASS	
Peak Output Power		DA 00-705	15.247 (b)(2)	PASS	
Conducted Spurious	Antenna	DA 00-705	15.247 (d)	PASS	

specs_fccv100412

CFR 47 - Subpart B PASS

OTT TO OUDDE					1 700
Test	Port	Method	Limit	PASS/FAIL	Notes
Conducted Emissions	ac power	ANSI C63.4:2003	FCC_B	N/A	#1
Radiated Emissions		ANSI C63.4:2003	FCC_B	PASS	

specs_fccv100412

#1 Test not applicable because the radio module will only be used in battery powered products.

Report No: R3295 Issue No: 3 Test No: T4651

FCC ID: XL8WDLM914HP

Test Report

Page: 4 of 54

Contents

1 EUT Details	. 6
1.1 General	. 6
1.2 Modifications to EUT and Peripherals	. 7
1.3 EUT Operating Modes	
Figure 1 General Arrangement of EUT and Peripherals	. 8
Photograph 1 Radiated Emissions	
Photograph 2 Radiated Emissions	. 9
Photograph 3 Radiated Emissions	10
Photograph 4 Radiated Emissions	10
Photograph 5 Radiated Emissions	11
Photograph 6 Conducted Antenna	11
2 Test Equipment	12
3 Test Methods	13
3.1 Radiated Emissions	13
3.2 Conducted Antenna Measurements	13
3.3 Radiated Emissions below 30MHz	14
4 Test Results	
4.1 Radiated Emissions Results - Below 30MHz - Transmit Mode	15
4.2 Radiated Emissions Results - Below 1GHz - Transmit Mode	16
4.3 Radiated Emissions Results - Below 1GHz - Receive Mode	17
4.4 Radiated Emissions Results - Above 1GHz - Vertical	
4.5 Radiated Emissions Results - Above 1GHz - Horizontal	19
4.6 Occupied Bandwith	20
4.7 Carrier Frequency Separatition	
4.8 Number of Hopping Frequencies	20
4.9 Time of Occupancy	20
4.10 Peak Output Power	21
4.11 Conducted Antenna Spurious - Band Edge	
4.12 Conducted Antenna Spurious	21
PLOT 1 Radiated Emissions - Tx - 25MHz to 550MHz	22
PLOT 2 Radiated Emissions - Tx - 500MHz to 1GHz	23
PLOT 3 Radiated Emissions - Tx - 1GHz to 2GHz	
PLOT 4 Radiated Emissions - Tx - 2GHz to 5GHz	25
PLOT 5 Radiated Emissions - Tx - 5GHz to 10GHz	
PLOT 6 Radiated Emissions - Rx - 25MHz to 1GHz	27
PLOT 7 Radiated Emissions - Rx - 1GHz to 2GHz	28
PLOT 8 Radiated Emissions - Rx - 2GHz to 5GHz	29
PLOT 9 Radiated Emissions - Rx - 5GHz to 10GHz	30
PLOT 10 Conducted Antenna - 20dB Bandwidth - Low Channel	31
PLOT 11 Conducted Antenna - 20dB Bandwidth - Mid Channel	32
PLOT 12 Conducted Antenna - 20dB Bandwidth - High Channel	33
PLOT 13 Conducted Antenna - Channel Separation	
PLOT 14 Conducted Antenna - Number of Channels - Part 1 of 2	
PLOT 15 Conducted Antenna - Number of Channels - Part 2 of 2	
PLOT 16 Conducted Antenna - Channel Dwell Time - Long Duration Data Sequence	37
PLOT 17 Conducted Antenna - Channel Dwell Time - Short Pulse Data Sequence	38
PLOT 18 Conducted Antenna - Channel Repetition Time - Long Data Sequence	39
PLOT 19 Conducted Antenna - Channel Repetition Time - Short Data Sequence	
PLOT 20 Conducted Antenna - Peak Power - Low Channel	
PLOT 21 Conducted Antenna - Peak Power - Mid Channel	
PLOT 22 Conducted Antenna - Peak Power - High Channel	
PLOT 23 Conducted Antenna - Spurious Emissions - Low Channel Band Edge	
PLOT 24 Conducted Antenna - Spurious Emissions - High Channel Band Edge	
PLOT 25 Conducted Antenna - Spurious Emissions - 9kHz to 1GHz - Fixed Freq	
PLOT 26 Conducted Antenna - Spurious Emissions - 850MHz to 1GHz Fixed Freq	
PLOT 27 Conducted Antenna - Spurious Emissions - 1GHz to 5GHz - Fixed Freq	
•	

dB)	Report No: Issue No:	R3295 3	FCC ID: XL8WDLM914HP		
	Test No:	T4651	Test Report	Page:	5 of 54

PLOT 28	Conducted Antenna - Spurious Emissions - 5GHz to 10GHz - Fixed Freq	49
PLOT 29	Conducted Antenna -Spurious Emissions - 9kHz to 1GHz - Hopping	50
PLOT 30	Conducted Antenna - Spurious Emissions - 850MHz to 1GHz Hopping	51
PLOT 31	Conducted Antenna - Spurious Emissions - 1GHz to 5GHz - Hopping	52
PLOT 32	Conducted Antenna - Spurious Emissions - 5GHz to 10GHz - Hopping	53
PLOT 33	Radiated Emissions - 20MHz to 30MHz	54

<u> </u>	Report No: Issue No:	R3295 3	FCC ID: XL8WDLM914HP		
	Test No:	T4651	Test Report	Page:	6 of 54

1 EUT Details

1.1 General

The EUT was a radio transceiver module operating in the 902MHz to 928MHz band using frequency hopping.

The module is intended to be used in a range of battery powered alarm systems. The frequency hopping is controlled by the circuitry on the main alarm control board. The system supplied for testing consisted of the radio module connected to a sample alarm control board via a ribbon cable. The alarm control board is normally battery powered, but for the purposes of these tests the battery was replaced with an external bench PSU to allow continuous transmissions to be made without draining the battery.

The unit was supplied with various test modes selected by switches. There were two basic hopping modes.

HOPPING MODE 1: Close to continuous tranmission - a pulse train of a duration in the order of 375msec on each channel

HOPPING MODE 2: Short pulse operation - a pulse of a duration in the order of 6.5msec on each channel.

The system was also supplied with test modes so that transmission could be fixed to just one of three frequencies covering the bottom, top and mid point of the used frequency range. These frequencies were:

Low Channel: 909 MHz

Mid Channel: 914.2 MHz

High Channel: 919.6 MHz

Radiated measurements were performed from 20MHz to 10GHz in order to cover the lowest frequency clock of 26MHz and the 10th harmonic of the highest transmit channel.

Details of the EUT and associated peripherals used during the tests are listed below. Figure 1 shows the interconnections between the EUT and peripherals.

	odel Description Serial No: Notes
1 Quatro WDLI	1914HP EUT Module
2 Quatro Test B	pard 914 alarm control board
3 TTI TS	022S Bench PSU

	Report No: Issue No:	R3295 3	FCC ID: XL8WDLM914HP		
(dB)	Test No:	T4651	Test Report	Page:	7 of 54

1.2 Modifications to EUT and Peripherals

Details of any modifications that were required to achieve compliance are listed below. The modification numbers are referred to in the results sections as appropriate.

Mod No:	Details	Implemented for
0	Original unmodified unit.	
1	Additional switch added to alarm control board to provide additional test mode.	
2	Ferrite and common mode choke added to alarm control board DC power cable. This was to decouple the bench PSU which would not normally be part of the battery powered system.	Radiated Emissions

1.3 EUT Operating Modes

The EUT was tested in the following operating mode or modes. Generally, operating modes are chosen that will exercise the functions of the EUT as fully as possible and in a manner likely to produce maximum emission levels or susceptibility. Individual test result sheets reference the operating mode of the EUT.

Operating Mode	Details					
1	Transmit mode. Fixed frequency. Pseudo random data with normal modulation.					
2	Transmit mode. Hopping Mode 1. Pseudo random data with normal modulation.					
3	Transmit mode. Hopping Mode 2. Pseudo random data with normal modulation.					
4	Receive mode. Fixed frequency					

	Report No: Issue No:	R3295 3	FCC ID: XL8WDLM914HP		
dB	Test No:	T4651	Test Report	Page:	8 of 54

Figure 1 General Arrangement of EUT and Peripherals

	Description	Туре	Length	Notes
#1	Mains	Unscreened	2m	
#2	DC power	Unscreened	0.6m	
#3	Ribbon cable	Unscreened	0.18m	

<u> </u>	Report No.
dB	Test No:

Report No: R3295 Issue No: 3

T4651

FCC ID: XL8WDLM914HP

Test Report

Page:

9 of 54

Photograph 1 Radiated Emissions

Photograph 2 Radiated Emissions

<u> </u>	Report No
dB	Test No:

Report No: R3295 ssue No: 3

T4651

FCC ID: XL8WDLM914HP

Test Report

Page:

10 of 54

Photograph 3 Radiated Emissions

Photograph 4 Radiated Emissions

A	Report No: Issue No:	R3295 3
dB	Test No:	T4651

FCC ID: XL8WDLM914HP

Test Report Page: 11 of 54

Photograph 5 Radiated Emissions

Photograph 6 Conducted Antenna

	Report No: Issue No:	R3295 3	FCC ID: XL8WDLM914HP		
dB	Test No:	T4651	Test Report	Page:	12 of 54

2 Test Equipment

The test equipment used during the tests was one or more of the items listed below. Individual test result sheets indicate which items were used.

Ref No:	Details	Cal Date	Cal Date	Cal Interval
A12	Chase Bilog CBL6111A	1012	30/01/2013	1 year
A24	Chase X-wing Bilog CBL6144 26MHz-3GHz	27590	28/10/2013	1 year
A8	EMCO 3115 DR Guide	6070	30/01/2013	1 year
Α9	EMCO 6502 Loop	2139	10/12/2013	1 year
PRE10	LUCIX 100M-20G pre-amp	10	20/08/2013	1 year
R4	R&S ESVS10	421872	17/12/2012	1 year
R8	Agilent E7405A Spectrum Analyser	MY44212494	24/09/2013	1 year
R9	Agilent E7405A Spectrum Analyser	MY45110758	19/11/2013	1 year
RFF15	Band Pass Filter 1GHz to 2GHz	15	20/08/2013	1 year
RFF16	500MHz to 1GHz Notch Filter	FF204-3	20/08/2013	1 year
RFF17	Low Pass RF Filter 550MHz	17	20/08/2013	1 year
RFF22	High Pass Filter - 1.35GHz (10GHz) MicroTronics HPM13017	33	20/08/2013	1 year

	Report No: Issue No:	R3295 3	FCC ID: XL8WDLM914HP		
(dB)	Test No:	T4651	Test Report	Page:	13 of 54

3 Test Methods

3.1 Radiated Emissions

This section describes the general method of performing this test. The specific method used and any deviations from this general method are listed in the appropriate results section.

Initial scans are performed in a semi-anechoic screened room. Scans are performed over the frequency range specified in the test standard with the antenna both horizontally and vertically polarised. During these scans the EUT and peripherals are rotated through 360°. Bench top EUTs are placed on a non-conducting bench at a height of 0.8m above the ground plane. Floor standing EUTs are placed 0.1m above the ground plane. The results of the scans are shown in the plots included at the end of the report.

Significant emissions identified by the scans are measured on an open area test site at the appropriate test distance using the type of detector specified in the standard. Maximised readings are obtained by rotating the EUT through 360° and adjusting the height of the antenna from 1m to 4m. Measurements are made with the antenna both horizontally and vertically polarised and the results tabulated.

Tabulated results show levels based on the following calculation:

Field Strength (dBuV) = receiver reading (dBuV) + CF (dB/m)

CF is the correction factor for the antenna and cable.

For example:

If at 434.478MHz the receiver reading was 58.8dBuV and combined correction factor = 20.4 (dB/m).

Total field strength = 58.8 + 20.4 = 79.2 dBuV/m.

3.2 Conducted Antenna Measurements

This section describes the general method of performing this test. The specific method used and any deviations from this general method are listed in the appropriate results section.

The antenna port of the EUT is connected either directly, or using an appropriate attenuator, to the input of a spectrum analyser.

	Report No: Issue No:	R3295 3	FCC ID: XL8WDLM914HP		
dB	Test No:	T4651	Test Report	Page:	14 of 54

3.3 Radiated Emissions below 30MHz

This section describes the general method of performing this test. The specific method used and any deviations from this general method are listed in the appropriate results section.

Initial scans are performed in a semi-anechoic screened room at a distance of 3m. Scans are performed over the frequency range specified in the test standard with a loop antenna both co-axially and orthogonally orientated with respect to the EUT. During these scans the EUT and peripherals are rotated through 360°. Bench top EUTs are placed on a non-conducting bench at a height of 0.8m above the ground plane. Floor standing EUTs are placed 0.1m above the ground plane. The results of the scans are shown in the plots included at the end of the report.

Significant emissions identified by the scans are measured on an open area test site at the appropriate test distance using a CISPR16 quasi-peak receiver. Maximised readings are obtained by rotating the EUT through 360° with the antenna at a height of 1m. Measurements are made with the antenna both coaxially and orthogonally orientated with respect to the EUT and the results tabulated.

Tabulated results are obtained by adding the raw reading from the receiver (in dBuV) to the appropriate correction factors for the antenna and cables to give a reading in dBuV/m. For example:

Frequency Receiver reading Correction Factor Final level 126kHz 75.8 dBuV 8.0 dB/m 83.8 dBuV/m

Final reading = 75.8 + 8.0 = 83.8 dBuV/m

4 Test Results

The following sections contain tabulated test results. Plots of various scans are included at the back of this section.

	Report No: Issue No:	R3295 3	FCC ID: XL8WDLM914HP		
/	Test No:	T4651	Test Report	Page:	15 of 54

4.1 Radiated Emissions Results - Below 30MHz - Transmit Mode

A9_HI_V_13A CBL015_11A --Factor Set 1:

Factor Set 2: Factor Set 3: Test Equipment: R9 A9

Radia	ted En	nissions	S										
				lectr	onics Ltd			Prod	<i>uct:</i> V	VDLM91	4HP		
Date		22/0	1/201	4				Test	Eng:	ave Smit	n		
Port Test		ANSI	C63	.4:20	03 usina	limits	s of	15.	209				
Port		7											
Test	<u>:</u>				using	limits	s of						
Plot	Op Mode	Mod State	Dist m	Fact Set	Freq. MHz	Ant Pol	Rec. Level dBuV	Corr'n Factor dB/m	Corr'n Factor dB	Total Level dBuV/m	Limit FCC_B dBuV/m	Margin FCC_B dB	Notes
33	TMd	2 2	3 3	1 1	26.000 26.000	F	21.6 21.4	7.3		28.9 28.7	69.5 69.5	40.6 40.9	
	Resul	lts					Minimu		jin		40.6	dB	
No	tes					Comr	PASS/F		rvation	ne.	PASS		
140		Results of scans shown in plot 33. Measured with 9kHz RBW/ 30kHz VBW peak detector. F = loop antenna face on with EUT. E = loop antenna edge on with EUT. Limits extrapolated to 3m using 40dB/decade. TMd = transmitting on mid channel.											

4.2 Radiated Emissions Results - Below 1GHz - Transmit Mode

Factor Set 1: A12_FS_13B - - CBL015_11A 1 m cable

Page:

16 of 54

Factor Set 2: ----Factor Set 3: ----

Test Equipment: R4 A12 A24 R8 RFF16 RFF17

		nissions	S										
Com	pany:	Quat	tro E	lectr	onics Ltd			Prod	^{uct:} V	VDLM91	4HP		
Date	e <i>:</i>	21/1	1/201	3				Test	Eng:	ave Smitl	h		
Ports		4 1 101	000	4.00			,	4.5	000				
Test Ports		ANSI	C63	.4:20	03 using	limits	3 01	15	209				
Test					using	limits	of						
Dist	0.5	Mod	Dist	Fact	l		Do a	Carrin	Corr'n	Total	Limit	Marsin	Natas
Plot	Op Mode	State	m	Set	Freq. MHz	Ant Pol	Rec. Level	Factor	Factor	Level	15.209	Margin 15.209	Notes
	IVIOGO	Otato			IVIIIZ	101	dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	
1	THi	2	3	1	30.250	V	7.2	19.9		27.1	40.0	12.9	
1	THi	2	3	1	30.250	H	4.5	19.9		24.4	40.0	15.6	
1	THi	2	3	1	33.400	V	7.9	17.6		25.5	40.0	14.5	
1 1	THi THi	2 2	3 3	1 1	33.400 37.300	H V	5.0 5.7	17.6 15.0		22.6 20.7	40.0 40.0	17.4 19.3	
1	THi	2	3	1	37.300	H	6.0	15.0		20.7	40.0	19.3	
1	THi	2	3	'	133.700	V	-3.8	13.0		9.2	43.5	34.3	
1	THi	2	3	1	133.700	H	2.2	13.0		15.2	43.5	28.3	
1	THi	2	3	1	141.100	'.	-3.2	12.9		9.7	43.5	33.8	
1	THi	2	3	1	141.100	H	-0.2	12.9		12.7	43.5	30.8	
2	THi	2	3	1	385.900	V	-2.8	19.0		16.2	46.0	29.8	
2	THi	2	3	1	385.900	Н	-2.8	19.0		16.2	46.0	29.8	
2	THi	2	3	1	960.000	V	6.6	30.8		37.4	46.0	8.7	#1
2	THi	2	3	1	960.000	Н	-0.9	30.8		29.9	46.0	16.2	
	Resul	lts					Minimu PASS/F	-	jin		8.7 PASS	dB	
No	tes					Comr	ments aı	nd Obse	ervation	าร			
Т	Hi		Meas uprig Trans	surem ht and smittii	d laying flat	with t. chann	120kHz el. Pres	QP det	ector.		reading for		_
#	11				ontribution actually a								
K	ey:				oeak, av - a								

7	Report No: Issue No:	R3295 3	FCC ID: XL8WDLM914HP
(aB)	Test No:	T4651	Test Report

4.3 Radiated Emissions Results - Below 1GHz - Receive Mode

A12_FS_13B - - CBL015_11A Factor Set 1: 1 m cable

Page:

17 of 54

Factor Set 2: Factor Set 3:

Test Equipment: R4 A12 A24 R8

Radia	ted Fm	nissions	s										
				lectr	onics Ltd			Prod	<i>uct:</i> V	VDLM91	4HP		
Date		21/1						Test		ave Smith			
Port													
Test		ANSI	C63.	4:200	03 using	limits	s of	FCC	<u>B</u>				
Port: Test					using	limits	s of						
					acing		, 						
Plot	Op Mode	Mod State	Dist m	Fact Set	Freq. MHz	Ant Pol	Rec. Level dBuV	Corr'n Factor dB/m	Corr'n Factor dB	Total Level dBuV/m	Limit FCC_B dBuV/m	Margin FCC_B dB	Notes
666666666	RHI RHI RHI RHI RHI RHI RHI	2 2 2 2 2 2 2 2 2 2 2 2 2	3 3 3 3 3 3 3 3 3 3 3	1 1 1 1 1 1 1 1	33.770 33.770 44.500 44.500 133.700 133.700 141.100 408.100 408.100 878.100 878.100	>	7.0 4.5 8.1 4.9 -2.0 4.2 -3.3 4.1 -2.8 -2.7 -2.7	17.3 17.3 10.6 10.6 13.0 12.9 12.9 19.9 19.9 28.7 28.7		24.3 21.8 18.7 15.5 11.0 17.2 9.6 17.0 17.1 17.1 26.0 26.0	40.0 40.0 40.0 43.5 43.5 43.5 46.0 46.0 46.0	15.7 18.2 21.3 24.5 32.5 26.3 33.9 26.5 28.9 20.0 20.0	
	Resul	ults Minimum Margin 15.7 dB PASS/FAIL PASS											
No	tes	Comments and Observations											
RHi			Meas uprig Rece	surem ht and iving o	l laying flat	with :. nnel.	120kHz Presca	QP det			reading for I not differ s	unit standin significantly	g

	Report No: Issue No:	R3295 3	FCC ID: XL8WDLM914HP	
dB	Test No:	T4651	Test Report	Page:

4.4 Radiated Emissions Results - Above 1GHz - Vertical

A8_3m_12B PRE10_12A RFF22_12A CBL050_11A Factor Set 1:

18 of 54

1 m cable

Factor Set 2: Factor Set 3:

Test Equipment: R8 A8 PRE10 RFF22 RFF15

		nissions											
Com	pany:	Quat	tro E	lectr	onics Ltd			Proa	<i>uct:</i> V	VDLM91	4HP		
Date		10/09	9/201	3				Test	Eng: P	eter Barlo)W		
Ports Test		A NICI	000	4-20	00	1::		1 -	200				
Ports		ANSI	<u> </u>	.4:20	03 using	limits	5 ОТ	15	.209				
Test					using	limits	s of						
	ı	1	1	ı	ı	ı	I	1	ı			1	
Plot	Op	Mod	Dist	Fact	Freq.	Ant	Det.	Rec.	Corr'n	Total	Limit	Margin	Notes
	iviode	State	m	Set	MHz	Pol	Туре	dBuV	Factor dB	Level dBuV/m	15.209 dBuV/m	15.209 dB	
4	Lo	0	1.5	1	2726.000	V	pk	55.8	-6.9	48.9	80.0	31.1	Upright
4	Lo	0	1.5	1	2726.000	v	av	53.6	-6.9	46.7	60.0	13.4	Upright
4	Mid	0	1.5	1	2742.000	V	pk	55.4	-6.9	48.5	80.0	31.5	Upright
4	Mid	0	1.5	1	2742.000	V	av	53.3	-6.9	46.5	60.0	13.6	Upright
4	Hi 	0	1.5	1	2757.000 2757.000	V	pk	55.5 53.5	-6.8 -6.8	48.7 46.6	80.0 60.0	31.3 13.4	Upright Upright
4	Hi Lo	0	1.5 1.5	1	3635.000	V V	av pk	58.2	-0.6 -4.1	54.0	80.0	26.0	Flat
4	Lo	0	1.5	1	3635.000	v	av	56.5	-4.1	52.3	60.0	7.7	Flat
4	Mid	0	1.5	1	3656.000	V	pk	56.4	-4.0	52.4	80.0	27.6	Flat
4	Mid	0	1.5	1	3656.000	V	av	54.6	-4.0	50.6	60.0	9.4	Flat
4	Hi Hi	0	1.5 1.5	1 1	3676.000 3676.000	V V	pk	58.1 56.6	-3.8 -3.8	54.3 52.7	80.0 60.0	25.8 7.3	Flat Flat
4	""	0	1.5	'	3070.000	V	av	30.0	-3.0	52.7	60.0	7.3	liat
	Resul	ts						Minim PASS/	um Mai	rgin	7.3 PASS	dB	
NI-	.					0					rass		
INO	tes					Comr	ments a	na Obse	ervation	1S 			
			Resu	ts of	scans are s	shown	in plots	3 to 5	and 7	to 9.			
			The p	olots	showed no	signifi	cant en	nissions	in rece	ive mode			
			The k	niahor	t omissions	idon	tified in	tranom	it mada	wore me	vimicod wit	th a 1MHz R	D\A/
		l		•							tabulated 8		DVV
	o lid	•			ng on low o ng on mid o								
	li li	•			ng on high (
			Maxi	mised	for height	and r	otation.	EUT m	easure	d upright a	and flat wit	h vertical	
		l			ntal measu								

	Report No: Issue No:	R3295 3	FCC ID: XL8WDLM914HP		
dB	Test No:	T4651	Test Report	Page:	19 of 54

1 m cable

4.5 Radiated Emissions Results - Above 1GHz - Horizontal

A8_3m_12B PRE10_12A RFF22_12A CBL050_11A Factor Set 1:

Factor Set 2: Factor Set 3:

Test Equipment: R8 A8 PRE10 RFF22 RFF15

	Radiated Emissions Company: Quatro Electronics Ltd Product: WDLM914HP												
Com	pany:	Qua	tro E	lectr	onics Ltd			Proa	<i>luct:</i> V	VDLM91	4HP		
Date		10/09	9/201	3				Test	Eng: P	eter Barlo	<u> </u>		
Ports		A NICI	000	4 00	00	12 24		4.5	000				
Test. Ports		ANSI	C63.	.4:20	03 using	limits	5 ОТ	15	.209				
Test					using	limits	s of						
					1		ı	1	1			1	
Plot	Ор	Mod	Dist	Fact	Freq.	Ant	Det.	Rec.	Corr'n	Total	Limit	Margin	Notes
	iviode	State	m	Set	MHz	Pol	Type	Level	Factor dB	Level dBuV/m	15.209 dBuV/m	15.209 dB	
4	Lo	0	1.5	1	2726.000	Н	pk	59.0	-6.9	52.1	80.0	27.9	Upright
4	Lo	0	1.5	'	2726.000	'' H	av	57.6	-6.9	50.7	60.0	9.3	Upright
4	Mid	0	1.5	1	2742.000	Н	pk	59.1	-6.9	52.2	80.0	27.8	Upright
4	Mid	0										9.1	Upright
4	Hi	0	1.5	1	2757.000	Н	pk	59.5	-6.8	52.7	80.0	27.3	Upright
4	Hi	0	1.5	1	2757.000	H 	av	58.2	-6.8	51.3	60.0	8.7	Upright
4	Lo Lo	0	1.5	1 1	3635.000 3635.000	H H	pk	58.1 56.5	-4.1 -4.1	53.9 52.3	80.0 60.0	26.1 7.7	Flat Flat
4	Mid	0	1.5	1	3656.000	П Н	av pk	56.4	-4.0	52.3 52.4	80.0	27.6	Flat
4	Mid	0	1.5	1	3656.000	H	av	54.6	-4.0	50.6	60.0	9.4	Flat
4	Hi	0	1.5	1	3676.000	Н	pk	58.1	-3.8	54.3	80.0	25.7	Flat
4	Hi	0	1.5	1	3676.000	Н	av	56.6	-3.8	52.8	60.0	7.2	Flat
	Resul	ts						Minim	um Maı	rgin	7.2	dB	
								PASS/	FAIL		PASS		
No	tes					Comr	ments a	nd Obse	ervation	าร			
								<u> </u>					
			Resul	ts of	scans are s	shown	ın plots	3 to 5	and /	to 9.			
			The p	olots	showed no	signifi	cant em	nissions	in rece	ive mode			
			-										D) 4 /
		l		•							tabulated a	th a 1MHz R	BW
			pour	uotot	cor and in	Jui u v	rorage a	CtCCtCl	. 1110 1	osaits are	tabalatoa t	abovo.	
١,	•		Tron	omitti	na on low o	hann	al						
	Lo Transmitting on low channel Mid Transmitting on mid channel												
···					ng on high (
											1.61 - 20		
		Maximised for height and rotation. EUT measured upright and flat with vertical and horizontal measuring antenna. Highest reading recorded above.											
		I	and I	101 1201	inai moasui	ing a	incomia.	riigiio	, i caul	ing record	Ja above.		

	Report No: Issue No:	R3295 3	FCC ID: XL8WDLM914HP		
(dB)	Test No:	T4651	Test Report	Page:	20 of 54

4.6 Occupied Bandwith

The spectrum analyser results for occupied bandwidth are shown in plots 10 to 12. The 20dB occupied bandwidth measurements were as follows:

Low channel: 77.5 kHz

Mid Channel: 78 kHz

High Channel: 77.6 kHz

According to 15.247 (a)(1)(i) the bandwidth must not exceed 500kHz and therefore the EUT is compliant.

PASS

4.7 Carrier Frequency Separatition

The spectrum analyser results for channel separation are shown in plot 13. The channel separation was measured as 200kHz.

According to 15.247 (a)(1) the channel separation must exceed the occupied bandwidth (and must not be lower than 25kHz). Since the maximum occupied bandwidth measured was 77.8kHz, and the channel separation was measured at 200kHz, the EUT is compliant.

PASS

4.8 Number of Hopping Frequencies

The spectrum analyser results for number of hopping frequencies are shown in plots 14 and 15. The number of hopping channels was measured as 54.

According to 15.247 (a)(1)(i), if the occupied bandwidth is less than 250kHz, the number of hopping frequencies must exceed 50. The EUT is compliant.

PASS

4.9 Time of Occupancy

The spectrum analyser results for time of occupancy are shown in plots 16 to 19.

Plot 16 shows that in HOPPING MODE 1 the dwell time is 374.8 msec.

Plot 17 shows that for HOPPING MODE 2 the dwell time is 6.502msec.

Plot 18 shows that in HOPPING MODE 1 the time between channel repetion is 20.25 seconds.

Plot 19 shows that in HOPPING MODE 2 the time between channel repetion is 20.25 seconds.

According to 15.247 (a)(1)(i), if the occupied bandwidth is less than 250kHz, the average time of occupancy must not be more than 400msec in a 20 second period.

PASS

	Report No: Issue No:	R3295 3	FCC ID: XL8WDLM914HP		
dB	Test No:	T4651	Test Report	Page:	21 of 54

4.10 Peak Output Power

The spectrum analyser results for peak output power are shown in plots 20 to 22. The measured results were as follows:

Low channel: 21.68 dBm

Mid Channel: 22.09 dBm

High Channel: 22.06 dBm

According to 15.247 (b)(2) the limit is 1 watt (30dBm) for systems employing at least 50 hopping channels.

PASS

4.11 Conducted Antenna Spurious - Band Edge

The spectrum analyser results for conducted antenna band edge spurious are shown in plots 23 and 24. The measured results are comfortably below the -20dBc limit of 15.247 (d).

(Note: the band edges do not coincide with restricted bands and therefore radiated measurements were not performed at the band edges).

PASS

4.12 Conducted Antenna Spurious

The spectrum analyser results for conducted antenna spurious are shown in plots 25 to 32. The measured results are more than 20dB below the -20dBc limit of 15.247 (d).

PASS

PLOT 1 Radiated Emissions - Tx - 25MHz to 550MHz

Company:	Quatro		Product:	Frequency Ho	pping Module
Date:	20/11/2013		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(RED)	FCC Restricte	ed Bands at 3m	Limit2:		
Limit3:			Limit4:		
Black: 909 MHz Carrier. Blue: 914 MHz Carrier. Red: 919 MHz Carrier. Antenna fitted. Upright and on side. Canned modules.					
Facility:	Anech_2	Height	1.1,1.5,1.9m	Mode:	1
Distance	3m	Polarisation	V+H	Modification State:	2
Angle	0-360	File:	H3A20806	Analyser:	R8

PLOT 2 Radiated Emissions - Tx - 500MHz to 1GHz

Company:	Quatro		Product:	Frequency Ho	pping Module
Date:	20/11/2013		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(RED)	FCC Restricted	Bands at 3m	Limit2:		
Limit3:			Limit4:		
Black: 909 MHz Carrier. Blue: 914 MHz Carrier. Red: 919 MHz Carrier. Antenna fitted. Upright and on side. Canned modules. Carrier filtered out with notch filter.					
Facility:	Anech_2	Height	1.5m	Mode:	1
Distance	3m I	Polarisation	V+H	Modification State:	2
Angle	0-360 I	File:	H3A207F1	Analyser:	R8

PLOT 3 Radiated Emissions - Tx - 1GHz to 2GHz

Company:	Quatro		Product:	Frequency Ho	pping Module HP
Date:	10/09/2013		Test Eng:	Peter Barlow	
Method:	ANSI C63.4		Method:		
Limit1:(RED)	FCC Restricted	I Bands at 3m	Limit2:		
Limit3:			Limit4:		
Black: 909 MHz Blue: 914 MHz (Red: 919 MHz (Antenna fitted. I Canned module	Carrier. Carrier. Jpright and on sid	le.			
Facility:	Anech_2	Height	1.1m,1.5m,1.9m	Mode:	1
Distance	3m	Polarisation	V+H	Modification State:	0
Angle	0-360	File:	H3810803	Analyser:	R8

PLOT 4 Radiated Emissions - Tx - 2GHz to 5GHz

Company:	Quatro		Product:	Frequency Ho	pping Module HP
Date:	10/09/2013		Test Eng:	Peter Barlow	
Method:	ANSI C63.4		Method:		
Limit1:(RED)	FCC Restricted	Bands@1.5m	Limit2:		
Limit3:			Limit4:		
Blue: 914 MHz Red: 919 MHz (Antenna fitted. Canned module	Carrier. Upright and on side	.			
Facility:	Anech_2 F	Height	1.1m,1.5m,1.9m	Mode:	1
Distance	1.5m F	Polarisation	V+H	Modification State:	0
Angle	0-360 F	File:	H38104B6	Analyser:	R8

PLOT 5 Radiated Emissions - Tx - 5GHz to 10GHz

Company:	Quatro		Product:	Frequency Ho	pping Module HP
Date:	10/09/2013		Test Eng:	Peter Barlow	
Method:	ANSI C63.4		Method:		
Limit1:(RED)	FCC Restricte	d Bands@1.5m	Limit2:		
Limit3:			Limit4:		
Black: 909 MHz Carrier. Blue: 914 MHz Carrier. Red: 919 MHz Carrier. Antenna fitted. Upright and on side. Canned modules.					
Facility:	Anech_2	Height	1.1m,1.5m,1.9m	Mode:	1
Distance	1.5m	Polarisation	V+H	Modification State:	0
Angle	0-360	File:	H38104E2	Analyser:	R8

PLOT 6 Radiated Emissions - Rx - 25MHz to 1GHz

Company:	Quatro		Product:	Frequency Ho	pping Module
Date:	20/11/2013	3	Test Eng:	Dave Smith	
Method:	ANSI C63.	4	Method:		
Limit1:(RED)	FCC(B)@3	Bm	Limit2:		
Limit3:			Limit4:		
Blue: 914 MHz Red: 919 MHz Antenna fitted. Canned modul	Carrier. Upright and o	n side.			
Facility:	Anech_2	Height	1.5m	Mode:	4
Distance	3m	Polarisation	V+H	Modification State:	2
Angle	0-360	File:	H3A213EB	Analyser:	R8

VBW 3 MHz

Sweep 4mS (401 pts)

PLOT 7 Radiated Emissions - Rx - 1GHz to 2GHz

RBW 1 MHz

Company:	Quatro		Product:	Frequency Ho	pping Module HP
Date:	10/09/2013	3	Test Eng:	Peter Barlow	
Method:	ANSI C63.	4	Method:		
Limit1:(BLU)	FCC(B)@3	3m	Limit2:		
Limit3:			Limit4:		
Blue: 914 MHz Red: 919 MHz Antenna fitted. Canned modul	Carrier. Upright and o	n side.			
Facility:	Anech_2	Height	1.1m,1.5m,1.9m	Mode:	4
Distance	3m	Polarisation	V+H	Modification State:	0
Angle	0-360	File:	H38107AE	Analyser:	R8

PLOT 8 Radiated Emissions - Rx - 2GHz to 5GHz

Company:	Quatro		Product:	Frequency Ho	pping Module HP
Date:	10/09/2013	3	Test Eng:	Peter Barlow	
Method:	ANSI C63.	4	Method:		
Limit1:(BLU)	FCC(B)@1	1.5m	Limit2:		
Limit3:			Limit4:		
Blue: 914 MHz Red: 919 MHz Antenna fitted. Canned modul	Carrier. Upright and o	n side.			
Facility:	Anech_2	Height	1.1m,1.5m,1.9m	Mode:	4
Distance	1.5m	Polarisation	V+H	Modification State:	0
Angle	0-360	File:	H381075C	Analyser:	R8

PLOT 9 Radiated Emissions - Rx - 5GHz to 10GHz

Company:	Quatro		Product:	Frequency Ho	pping Module HP
Date:	10/09/2013		Test Eng:	Peter Barlow	
Method:	ANSI C63.4		Method:		
Limit1:(BLU)	FCC(B)@1.5	ōm	Limit2:		
Limit3:			Limit4:		
Black: 909 MHz Blue: 914 MHz (Red: 919 MHz (Antenna fitted. I Canned module	Carrier. Carrier. Jpright and on	side.			
Facility:	Anech_2	Height	1.1m,1.5m,1.9m	Mode:	4
Distance	1.5m	Polarisation	V+H	Modification State:	0
Angle	0-360	File:	H381077D	Analyser:	R8

CF1:10dB_PAD

PLOT 10 Conducted Antenna - 20dB Bandwidth - Low Channel

Company:	Quatro	Product:	Frequency Hopp	oing Module
Date:	10/10/2013	Test Eng:	Dave Smith	
Method:	DA 00-705	Method:		
Limit1:		Limit2:		
Limit3:		Limit4:		
20dB bandwidth : Continuous modu	= 77.5kHz ulation - Low Channel.			
Facility:			Mode:	1
			Modification State:	1
	File:	H3910749	Analyser:	R8

	Report No: Issue No:	R3295 3	FCC ID: XL8WDLM914HP		
dB	Test No:	T4651	Test Report	Page:	32 of 54

CF1:10dB_PAD

PLOT 11 Conducted Antenna - 20dB Bandwidth - Mid Channel

Company:	Quatro	Product:	Frequency Ho	pping Module
Date:	10/10/2013	Test Eng:	Dave Smith	
Method:	DA 00-705	Method:		
Limit1:		Limit2:		
Limit3:		Limit4:		
20dB bandwidth Continuous mod	= 78kHz ulation - Mid Channel.			
Facility:			Mode:	1
			Modification State:	1
	File:	H391073D	Analyser:	R8

A	Report No: Issue No:	R3295 3	FCC ID: XL8WDLM914HP		
dB	Test No:	T4651	Test Report	Page:	33 of 54

CF1:10dB_PAD

*VBW 3 kHz

Sweep 207.2mS (2001 pts)

PLOT 12 Conducted Antenna - 20dB Bandwidth - High Channel

*RBW 1 kHz

Company:	Quatro	Product:	Frequency Hopp	oing Module
Date:	10/10/2013	Test Eng:	Dave Smith	
Method:	DA 00-705	Method:		
Limit1:		Limit2:		
Limit3:		Limit4:		
20dB bandwidth Continuous mod	= 77.6kHz ulation - High Channel.			
Facility:			Mode:	1
			Modification State:	1
	File:	H3910768	Analyser:	R8

<u> </u>	Report No: Issue No:	R3295 3	FCC ID: XL8WDLM914HP		
dB	Test No:	T4651	Test Report	Page:	34 of 54

Marker 1: 914.3MHz

CF1:10dB_PAD

PLOT 13 Conducted Antenna - Channel Separation

Company:	Quatro		Product:	Frequency Hop	pping Module
Date:	10/10/2013		Test Eng:	Dave Smith	
Method:	DA 00-705		Method:		
Limit1:			Limit2:		
Limit3:			Limit4:		
Channel Sepa Continuous ho	ration = 200kHz pping mode.				
Facility:				Mode:	2
				Modification State:	1
		File:	H39106B6	Analyser:	R8

	Report No: Issue No:	R3295 3	FCC ID: XL8WDLM914HP		
dB	Test No:	T4651	Test Report	Page:	35 of 54

Marker 1: 914.6MHz

PLOT 14 Conducted Antenna - Number of Channels - Part 1 of 2

CF1:10dB_PAD

Company:	Quatro	Product:	Frequency Hopp	oing Module				
Date:	10/10/2013	Test Eng:	Dave Smith					
Method:	DA 00-705	Method:						
Limit1:		Limit2:						
Limit3:		Limit4:						
29 channels betw	29 channels between 908.997MHz and 914.615MHz							
Continuous hopp	Continuous hopping mode.							
Facility:		N	lode:	2				
		N	Nodification State:	1				
	File:	H3910825 A	nalyser:	R8				

Report No: Issue No:		R3295 3	FCC ID: XL8WDLM914HP		
dB	Test No:	T4651	Test Report	Page:	36 of 54

CF1:10dB_PAD

Sweep 5mS (401 pts)

*VBW 300 kHz

PLOT 15 Conducted Antenna - Number of Channels - Part 2 of 2

*RBW 100 kHz

Company:	Quatro		Product:	Frequency Hop	ping Module
Date:	10/10/2013		Test Eng:	Dave Smith	
Method:	DA 00-705		Method:		
Limit1:			Limit2:		
Limit3:			Limit4:		
25 channels betw Total of 54 chann Continuous hopp	nels	z and 919.6MHz			
Facility:				Mode:	2
				Modification State:	1
		File:	H3910828	Analyser:	R8

dB	Report No: Issue No:	R3295 3	FCC ID: XL8WDLM914HP		
	Test No:	T4651	Test Report	Page:	37 of 54

CF1:10dB_PAD

Sweep 500mS (2001 pts)

VBW 3 MHz

*RBW 1 MHz

PLOT 16 Conducted Antenna - Channel Dwell Time - Long Duration Data Sequence

Company:	Quatro	Product:	Frequency Hopp	oing Module
Date:	10/10/2013	Test Eng:	Dave Smith	
Method:	DA 00-705	Method:		
Limit1:		Limit2:		
Limit3:		Limit4:		
Continuous hopp	l.8msec (ignoring short gaps in ing mode.	pulse train)		
Facility:			Mode:	2
			Modification State:	1
	File:	H3910701	Analyser:	R8

dB	Report No: Issue No:	R3295 3	FCC ID: XL8WDLM914HP		
	Test No:	T4651	Test Report	Page:	38 of 54

CF1:10dB_PAD

VBW 3 MHz

Sweep 15mS (2001 pts)

*RBW 1 MHz

PLOT 17 Conducted Antenna - Channel Dwell Time - Short Pulse Data Sequence

Company:	Quatro		Product:	Frequency Hop	ping Module
Date:	10/10/2013		Test Eng:	Dave Smith	
Method:	DA 00-705		Method:		
Limit1:			Limit2:		
Limit3:			Limit4:		
Dwell Time = 6.5 Short pulse hopp					
Facility:				Mode:	3
				Modification State:	1
		File:	H3910707	Analyser:	R8

₩ dB	Report No: Issue No:	R3295 3	FCC ID: XL8WDLM914HP		
	Test No:	T4651	Test Report	Page:	39 of 54

CF1:10dB_PAD

PLOT 18 Conducted Antenna - Channel Repetition Time - Long Data Sequence

Company:	Quatro		Product:	Frequency Hop	ping Module
Date:	10/10/2013		Test Eng:	Dave Smith	
Method:	DA 00-705		Method:		
Limit1:			Limit2:		
Limit3:			Limit4:		
Time between tra Continuous hopp	ansmissions per ing mode.	r channel = 20.25 se	econds		
Facility:				Mode:	2
				Modification State:	1
		File: H	3910724	Analyser:	R8

<u> </u>	Report No: Issue No:	R3295 3	FCC ID: XL8WDLM914HP		
dB	Test No:	T4651	Test Report	Page:	40 of 54

CF1:10dB_PAD

Sweep 50S (2001 pts)

VBW 300 kHz

PLOT 19 Conducted Antenna - Channel Repetition Time - Short Data Sequence

*RBW 120 kHz

Company:	Quatro		Product:	Frequency Hop	ping Module
Date:	10/10/2013		Test Eng:	Dave Smith	
Method:	DA 00-705		Method:		
Limit1:			Limit2:		
Limit3:			Limit4:		
Short pulse hopp		channel = 20.25 se	econds		
Facility:				Mode:	3
				Modification State:	1
		File: H3	3910729	Analyser:	R8

dB	Test No:	T4651			Test	t Report			Page:	41 of 54
								Ma	arker 1:	909MHz
Ref 40 dl	.Bm		Atten	30 dB				· · · · · · · · · · · · · · · · · · ·	2	21.68dBm
						1			ĺ	
log 10		+				 		 		+
dB/					\Diamond					
										The second second
		+				-		-		
					1				ĺ	
		+			+					+
		\perp							<u> </u>	
									 [
V1 S2		+		 		-		-		+
83					1				ĺ	
				<u> </u>			!			1
									ĺ	
		++++								+
Start 908				—						09.2MHz
*RBW 300				*VBW 1 MHz				Sweep 20)mS (≿∪	01 pts)
CF1:10dB	3_PAD									
	~ ^ ^ .				-	- c				
PLOT 2	20 Co	onducted A	ıntenna	а - Реак ——	Power	- Low C	hannei			
Compar	ny:	Quatro			Pro	oduct:	Fre	quency Ho	opping M	lodule
Date:		10/10/2013	i		Te	est Eng:	Dav	ve Smith		
Method:	ı :	DA 00-705				ethod:				
Limit1:		30dBm				nit2:				
Limit3:		_			Lim	nit4:				
Continu	moc	dulation - Low	· Channe							
Comme	Uus mes	illianon =5	Unam	л.						
1										
İ										
4										

FCC ID: XL8WDLM914HP

Report No: Issue No:

Facility:

R3295

3

H3910798

File:

Mode:

Analyser:

Modification State:

1

R8

/ <u>*</u>	Issue No:	3			CC ID. ALO	N DLIVIS I	401			
dB	Test No:	T4651			Test F	Report		Pa	ige:	42 of 5
								Marker	1: 9:	14.2MHz
ef 40 dl	Bm		Atten	30 dB					22	2.09dBn
og										
) B/						\Diamond				
)/										
l S2										
3 3										
art 914	1MHz							C+	on 01	l4.4MHz
BW 300				<i>J</i> *	VBW 1 MHz		Sw	eep 20ms		
				<u> </u>) P(0)
CF1:10dB	_PAD									
OT (24 0	1 41	۸ 4	- DI	- D	N/I:-I OI:-				
LOT 2	21 Cor	iducted 7	Antenn	a - Pear	k Power -	iviia Cr	iannei			
Compar	ny:	Quatro			Prod	uct:	Freque	ncy Hopp	ing M	odule
Date:		10/10/2013	3		Test	Eng:	Dave S	Smith		
Method:		DA 00-705	;		Meth	od:				
		30dBm			Limit	2:				
Limit1:					Limit					

FCC ID: XL8WDLM914HP

Report No:

Issue No:

Facility:

R3295

H3910796

File:

Mode:

Analyser:

Modification State:

1

R8

→	Report No: Issue No:	R3295 3		FC	CC ID: XI	_8WDLM91	14HP		
dB	Test No:	T4651			Tes	t Report		Page:	43 of 54
							Mar		19.6MHz
Ref 40 d	Bm		Atten 3	0 dB		1		2	2.06dBm
Log									
10					,				
dB/						>			
									- to the state of
V1 S2									
S3									
Start 91	 9.4MHz							Stop 9	19.8MHz
*RBW 300				*V]	BW 1 MH	Z	Sweep 20		
CF1:10dE	R PAD								
0	/								
PLOT :	22 Con	ducted Ar	ntenna	- Peak	Power	- High C	Channel		
Compa	ny: (Quatro			Pr	oduct:	Frequency Ho	pping M	lodule
Date:		10/10/2013			Te	est Eng:	Dave Smith	-	
Method	: [DA 00-705			M	ethod:			

Company.	Qualio	Product.	rrequency mop	ping wodule
Date:	10/10/2013	Test Eng:	Dave Smith	
Method:	DA 00-705	Method:		
Limit1:	30dBm	Limit2:		
Limit3:		Limit4:		
Continuous mod	ulation - High Channel.			
Facility:		Mo	ode:	1
		Mo	odification State:	1
	File: H	3910793 Ar	alyser:	R8

	Report No: Issue No:	R3295 3	FCC ID: XL8WDLM914HP		
(dB)	Test No:	T4651	Test Report	Page:	44 of 54

Marker 1: 904.3MHz Ref 40 dBm Atten 30 dB -35.95dBm Log 10 dB/ V1 V2 S3Start 901MHz $Stop\ 909.5MHz$ *RBW 100 kHz *VBW 300 kHz Sweep 20mS (2001 pts) CF1:10dB_PAD

PLOT 23 Conducted Antenna - Spurious Emissions - Low Channel Band Edge

Company:	Quatro		Product:	Frequency Hop	oping Module
Date:	10/10/2013		Test Eng:	Dave Smith	
Method:	DA 00-705		Method:		
Limit1:(RED)	-20dBc		Limit2:		
Limit3:			Limit4:		
Black: Hopping Blue: Low Chan Continuous mod					
Facility:				Mode:	1
				Modification State:	1
		File:	H39107BD	Analyser:	R8

	Report No: Issue No:	R3295 3	FCC ID: XL8WDLM914HP		
(dB)	Test No:	T4651	Test Report	Page:	45 of 54

Marker 1: 922.9MHz

Ref 40 dBm Atten 30 dB -35.95dBm

Log
10
dB/

V1 V2
S3

Start 919MHz

*VBW 300 kHz

*VBW 300 kHz

*Sweep 20mS (2001 pts)

CF1:10dB_PAD

PLOT 24 Conducted Antenna - Spurious Emissions - High Channel Band Edge

Company:	Quatro		Product:	Frequency Ho	pping Module
Date:	10/10/2013		Test Eng:	Dave Smith	
Method:	DA 00-705		Method:		
Limit1:(RED)	-20dBc		Limit2:		
Limit3:			Limit4:		
Black: Hopping Blue: High Char Continuous mod					
Facility:				Mode:	1
				Modification State:	1
		File:	H39107C3	Analyser:	R8

PLOT 25 Conducted Antenna - Spurious Emissions - 9kHz to 1GHz - Fixed Freq.

Company:	Quatro		Product:	Frequency Ho	pping Module
Date:	10/10/2013		Test Eng:	Dave Smith	
Method:	DA 00-705		Method:		
Limit1:(RED)	-20dBc		Limit2:		
Limit3:			Limit4:		
Black: fixed at log Blue: fixed at hig Red: fixed at hig Continuous mod	h channel h channel				
Facility:		Height		Mode:	1
Distance		Polarisation		Modification State:	1
Angle		File:	H39145D4	Analyser:	R8

Marker 1: 909MHz

Ref 40 dBm Atten 30 dB 21.64dBm

Log
10
dB/

V1 V2
V3

Start 850MHz

*RBW 100 kHz

*VBW 300 kHz

*Sweep 20mS (2001 pts)

PLOT 26 Conducted Antenna - Spurious Emissions - 850MHz to 1GHz Fixed Freq.

CF1:10dB_PAD

Company:	Quatro		Product:	Frequency Hopping Module
Date:	10/10/2013		Test Eng:	Dave Smith
Method:	DA 00-705		Method:	
Limit1:(RED)	-20dBc		Limit2:	
Limit3:			Limit4:	
Black: fixed at lo Blue: fixed at hig Red: fixed at hig Continuous mod	h channel gh channel			
Facility:		Height		Mode: 1
Distance		Polarisation		Modification State: 1
Angle		File:	H39145D6	Analyser: R8

A	Report No: Issue No:	R3295 3	FCC ID: XL8WDLM914HP		
/	Test No:	T4651	Test Report	Page:	48 of 54

Marker 1: 2.574GHz

PLOT 27 Conducted Antenna - Spurious Emissions - 1GHz to 5GHz - Fixed Freq.

CF1:10dB_PAD

Company:	Quatro		Product:	Frequency Hopping Module
Date:	10/10/2013		Test Eng:	Dave Smith
Method:	DA 00-705		Method:	
Limit1:(RED)	-20dBc		Limit2:	
Limit3:			Limit4:	
Black: fixed at log Blue: fixed at hig Red: fixed at hig Continuous mod	h channel h channel			
Facility:		Height		Mode: 1
Distance		Polarisation		Modification State: 1
Angle		File:	H39145D7	Analyser: R8

	<u> </u>	Report No: Issue No:	R3295 3	FCC ID: XL8WDLM914HP		
1	dB	Test No:	T4651	Test Report	Page:	49 of 54

Marker 1: 6.968GHz

CF1:10dB_PAD

PLOT 28 Conducted Antenna - Spurious Emissions - 5GHz to 10GHz - Fixed Freq.

Company:	Quatro		Product:	Frequency Hopping Module
Date:	10/10/2013		Test Eng:	Dave Smith
Method:	DA 00-705		Method:	
Limit1:(RED)	-20dBc		Limit2:	
Limit3:			Limit4:	
Black: fixed at lo Blue: fixed at hig Red: fixed at hig Continuous mod	h channel gh channel			
Facility:		Height		Mode: 1
Distance		Polarisation		Modification State: 1
Angle		File:	H39145D8	Analyser: R8

PLOT 29 Conducted Antenna -Spurious Emissions - 9kHz to 1GHz - Hopping

Company:	Quatro		Product:	Frequency Ho	pping Module
Date:	10/10/2013		Test Eng:	Dave Smith	
Method:	DA 00-705		Method:		
Limit1:(RED)	-20dBc		Limit2:		
Limit3:			Limit4:		
Hopping Continuous mod	lulation				
Facility:				Mode:	2
				Modification State:	1
		File:	H39107CA	Analyser:	R8

CF1:10dB_PAD

PLOT 30 Conducted Antenna - Spurious Emissions - 850MHz to 1GHz Hopping

Company:	Quatro		Product:	Frequency Hop	ping Module
Date:	10/10/2013		Test Eng:	Dave Smith	
Method:	DA 00-705		Method:		
Limit1:(RED)	-20dBc		Limit2:		
Limit3:			Limit4:		
Hopping Continuous modu	ulation				
Facility:				Mode:	2
				Modification State:	1
		File: I	H39107B7	Analyser:	R8

A	Report No: Issue No:	R3295 3	FCC ID: XL8WDLM914HP			
dB	Test No:	T4651	Test Report	Page:	52 of 54	

CF1:10dB_PAD

PLOT 31 Conducted Antenna - Spurious Emissions - 1GHz to 5GHz - Hopping

Company:	Quatro		Product:	Frequency Hop	ping Module
Date:	10/10/2013		Test Eng:	Dave Smith	
Method:	DA 00-705		Method:		
Limit1:(RED)	-20dBc		Limit2:		
Limit3:			Limit4:		
Hopping Continuous modu	ulation				
Facility:				Mode:	2
				Modification State:	1
		File: I	H39107DA	Analyser:	R8

<u> </u>	Report No: Issue No:	R3295 3	FCC ID: XL8WDLM914HP		
dB	Test No:	T4651	Test Report	Page:	53 of 54

Marker 1: 6.968GHz

Ref 40 dBm Atten 30 dB -34.2dBm

Log
10
dB/

V1 S2
S3

Start 5GHz
**RBW 100 kHz

*VBW 300 kHz

Sweep 518mS (2001 pts)

CF1:10dB_PAD

PLOT 32 Conducted Antenna - Spurious Emissions - 5GHz to 10GHz - Hopping

Company:	Quatro		Product:	Frequency Ho	pping Module
Date:	10/10/2013		Test Eng:	Dave Smith	
Method:	DA 00-705		Method:		
Limit1:(RED)	-20dBc		Limit2:		
Limit3:			Limit4:		
Hopping Continuous mod	lulation				
Facility:				Mode:	2
				Modification State:	1
		File:	H39107E4	Analyser:	R8

	Report No: Issue No:	R3295 3	FCC ID: XL8WDLM914HP		
(dB)	Test No:	T4651	Test Report	Page:	54 of 54

PLOT 33 Radiated Emissions - 20MHz to 30MHz

Company:	Quatro		Product:	Frequency Ho	oping Module		
Date:	22/01/2014		Test Eng:	Dave Smith			
Method:	ANSI C63.4		Method:				
Limit1:(RED)	FCC 15.209		Limit2:				
Limit3:			Limit4:				
Black: 909 MHz Carrier. Blue: 914 MHz Carrier. Red: 919 MHz Carrier. High power. Antenna fitted. Upright and on side. Maximum with receiving antenna face on and edge on. Limits extrapolated to 3m using 40dB/decade.							
Facility:	Anech_1	Height	1m	Mode:	Tx Mode		
Distance	3m	Polarisation	F+E	Modification State:	2		
Angle	0-360	File:	H402241B	Analyser:	R8		