Series in a Normed Space

Definition: Infinite Series

Let E be a normed space and let $S = \sum_{n=1}^{\infty} \vec{x}_n$ be an *infinite series* in E. To say that S converges in

E means the sequence of partial sums (S_N) where $S_N = \sum_{n=1}^N \vec{x}_n$ converges in the norm to some value $\vec{x} \in E$:

$$||S_n - S|| = \left\| \sum_{n=1}^N \vec{x}_n - \vec{x} \right\| \to 0$$

To say that S converges *absolutely* in E means:

$$\sum_{n=1}^{\infty} \|\vec{x}_n\| < \infty$$

Examples

1). $E = \mathbb{R}$ and $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ converges, but not absolutely.

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n} = \ln 2$$

$$\sum_{n=1}^{\infty} \left| \frac{(-1)^n}{n} \right| = \sum_{n=1}^{\infty} \frac{1}{n} = \infty$$

2). $E = \mathcal{P}[0,1]$ and $f_n(t) = \sum_{n=1}^{\infty} \frac{t^n}{n!}$ converges absolutely but does not converge in the norm.

$$f_n \to f = e^t \notin \mathcal{P}[0,1]$$

$$\sum_{n=1}^{\infty} \left\| \frac{t^n}{n!} \right\| = \sum_{n=1}^{\infty} \max_{t \in [0,1]} \left| \frac{t^n}{n!} \right| = \sum_{n=1}^{\infty} \frac{1}{n!} = e < \infty$$

Theorem

Let ${\cal E}$ be a normed space. ${\cal E}$ is Banach iff every ACV series in ${\cal E}$ converges in ${\cal E}.$

Proof

 \implies Assume E is Banach.

Assume
$$\sum_{n=1}^{\infty} \vec{x}_n$$
 is ACV in E .

Thus,
$$\sum_{n=1}^{\infty} \| \vec{x}_n \| < \infty$$
.

Let
$$S_N = \sum_{n=1}^N \|\vec{x}_n\|$$
.

Let
$$s_N = \sum_{i=1}^N \vec{x}_i$$
.

AWLOG:
$$N < M$$
.

$$||s_M - s_N|| = \left|\left|\sum_{n=1}^M \vec{x}_n - \sum_{n=1}^N \vec{x}_n\right|\right| = \left|\left|\sum_{n=N+1}^M \vec{x}_n\right|\right| \le \sum_{n=N+1}^M ||\vec{x}_n|| = S_M - S_N \to 0$$

Therefore, (s_n) is Cauchy in E.

But E is complete, therefore (s_n) converges in E.

 \longleftarrow Assume every ACV series in E converges in E.

Assume (\vec{x}_n) is Cauchy in E.

$$\forall k \in \mathbb{N}, \exists N_k > 0, m, n > N_k \implies \|\vec{x}_n - \vec{x}_m\| < \frac{1}{2^k}$$

Let (n_k) be a strictly increasing sequence in \mathbb{N} .

Thus, for all $n_k > N_k$:

$$\sum_{k=1}^{\infty} \left\| \vec{x}_{n_{k+1}} - \vec{x}_{n_k} \right\| \le \sum_{k=1}^{\infty} \left(\frac{1}{2} \right)^k < \infty$$

Thus $\sum_{k=1}^{\infty} (\vec{x}_{n_{k+1}} - \vec{x}_{n_k})$ is ACV, and by assumption, converges to some element $\vec{x} \in E$.

Let
$$S_N = \sum_{k=1}^N (\vec{x}_{n_{k+1}} - \vec{x}_{n_k}).$$

Note that this sum is telescoping, so:

$$S_N = \vec{x}_{n_{N+1}} - \vec{x}_{n_1} \to \vec{x}$$

And so $\vec{x}_{n_{N+1}} \rightarrow \vec{x} + \vec{x}_{n_1}$.

This means that (\vec{x}_{n_k}) is a convergent subsequence of (\vec{x}_n) that converges to $\vec{x} \in E$.

Therefore, by previous lemma, $\vec{x}_n \to \vec{x} \in E$ and thus E is complete.