EXAMEN-SOLUCIONES SÁBADO 2 DE FEBRERO DE 2019

Número de Parcial	Cédula	Nombre y Apellido					

RESPUESTAS

PREGUNTA	1	2	3	4	5	6	7	8	9	10
RESPUESTA										

Múltiple opción. Total: 100 puntos.

Respuesta correcta: 10 puntos, respuesta incorrecta: -2.5 puntos, no responde: 0 punto.

Indicar su respuesta correcta en el cuadro superior.

Ejercicio 1

Se consideran los planos π_1 , π_2 y la recta r definidas por π_1 : $(x, y, z) = (1, 0, 0) + \lambda(-1, 1, 0) + \mu(1, 2, 2)$; π_2 : 2x + y - z = 1; r: (1, 1, 1) + t(-1, 2, 0). Entonces

- **A.** $\pi_1 \cap \pi_2 = \emptyset$.
- **B.** $\pi_1 = \pi_2$.
- **C.** $\pi_1 \cap \pi_2$ es una recta paralela a r.
- **D.** $\pi_1 \cap \pi_2$ es una recta que corta a r en un solo punto.
- **E.** $\pi_1 \cap \pi_2$ es una recta que se cruza con r.

Ejercicio 2

Sea
$$A = \begin{pmatrix} 1 & b & 0 & 1 \\ 2 & 2b & a & 0 \\ 2 & 2 & a & 0 \\ 0 & 2 & a & 1 \end{pmatrix}$$
 con $a, b \in \mathbb{R}$.

Entonces

- **A.** rg(A) = 2 para algún valor de a y algún valor de b.
- **B.** rg(A) = 4 para todos los valores de a y b.
- **C.** rg(A) = 3 si y sólo si a = 0 o b = 1.
- **D.** Si b = 1, para algún valor de a el rango de A es 4.
- **E.** Si a = 0, para algún valor de b el rango de A es 4.

Ejercicio 3

Se consideran las matrices $n \times n$ A invertible, $B = A^{-1}$ y $C = A \cdot A^t$.

Entonces

A. C es invertible, det(C) = 1 y $C^{-1} = B \cdot B^t$.

B. C es invertible, $det(C) = det(A^2)$ y $C^{-1} = B \cdot B^t$.

C. C es invertible, $\det(C) = \det(A^2)$ y $C^{-1} = B^t \cdot B$.

 \mathbf{D} . C puede ser no invertible.

E. C es invertible, det(C) = 1 y $C^{-1} = B^t \cdot B$.

Ejercicio 4

Si B es una matriz 3×3 con entradas reales que cumple det(B) = 2 y

$$A = \left(\begin{array}{ccc} 2 & 1 & 3 \\ 1 & 1 & -1 \\ 1 & 1 & \gamma \end{array}\right).$$

Entonces $det(AB^{-1}) = 2$ cuando

A. $\gamma = 1$.

B. $\gamma = 2$.

C. $\gamma = 3$.

D. $\gamma = 4$.

E. $\gamma = -1$.

Ejercicio 5

Sea $T:\mathcal{P}_2\to\mathbb{R}^3$ una transformación lineal tal que cumple las tres igualdades siguientes

$$T(x^2 + x + 1) = (2, 0, 1); \ T(x^2 + 3x - 2) = (1, 1, 0); \ T(x^2 + 5x - 5) = (0, 2, 0) \ (*)$$

Entonces

A. Existen infinitas T que verifican las tres igualdades (*).

 $\mathbf{B.}\,$ No existe ninguna T que verifique a la vez las tres igualdades (*).

C. Existe una única T que verifica las tres igualdades (*) y además cumple $T(2x^2 + 4x - 1) = (3, 1, 1)$.

D. Existe una única T que verifica las tres igualdades (*) y además cumple $T(2x^2 + 6x - 4) = (2, 2, 0)$.

E. Existe una única T que verifica las tres igualdades (*) y además cumple $T(2x^2 + 8x - 7) = (1, 0, 0)$.

Ejercicio 6

Se considera el espacio vectorial \mathbb{R}^4 y los subespacios S y R definidos como

$$S = \{(x, y, z, t) : z = t, 2x - y = t\},\$$

$$R = [(1, 2, -1, 0), (1, 1, 2, 2), (-1, -2, 0, 0)].$$

Entonces

- **A.** $S \subset R$ y dim(R + S) = dim(R) = 2.
- **B.** $S \subset R$ y dim(R + S) = dim(R) = 3.
- **C.** $\dim(R \cap S) = 1 \text{ y } \dim(R + S) = 3.$
- **D.** dim $(R \cap S) = 1$ y $R + S = \mathbb{R}^4$.
- **E.** $R \cap S = \{0\}$ y $R \oplus S = \mathbb{R}^4$.

Ejercicio 7

Sean U,W subespacios vectoriales de \mathbb{R}^4 tales que $\dim(U)=2$ y $\dim(W)=3$. Entonces la dimensión de $U\cap W$

- A. Necesariamente es 1.
- **B.** Necesariamente es 2.
- C. Únicamente puede tomar los valores 1 o 2.
- **D.** Únicamente puede tomar los valores 0, 1 o 2.
- E. Únicamente puede tomar los valores 1, 2 o 3.

Ejercicio 8

Se considera la transformación lineal $T:\mathbb{R}^3 \to \mathbb{R}^3$ definida como

$$T(x, y, z) = (x - y, x - y, z).$$

Entonces

- **A.** N(T) es un plano, Im(T) es una recta y la distancia entre ambos es 1.
- **B.** N(T) es una recta, Im(T) es un plano y la distancia entre ambos es 1.
- $\mathbf{C.}\ N(T)$ es un plano, Im(T)es una recta y la distancia entre ambos es 0.
- **D.** N(T) es una recta, Im(T) es un plano y la distancia entre ambos es 0.
- **E.** N(T) e Im(T) son ambos planos paralelos y la distancia entre ambos es 1.

Ejercicio 9

Se considera la transformación lineal $T: \mathcal{P}_3 \to \mathbb{R}^3$ definida como

$$T(ax^3 + bx^2 + cx + d) = (a + b, a + c, b + d)$$

y las bases $B = \{x^3, x^2 + x, x - 1, 1\}, C = \{(1, 0, 0), (1, 1, 0), (0, 0, 1)\}.$

Entonces $_{C}(T)_{B} =$

$$\mathbf{A.} \ \left(\begin{array}{cccc} 0 & 0 & -1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & -1 & 1 \end{array} \right).$$

$$\mathbf{B.} \left(\begin{array}{cccc} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{array} \right).$$

C.
$$\left(\begin{array}{cccc} 0 & 0 & 1 & 0 \\ 1 & 1 & -1 & 0 \\ 0 & 1 & 1 & 1 \end{array}\right).$$

$$\mathbf{D.} \left(\begin{array}{cccc} 0 & 0 & 2 & 0 \\ 1 & 1 & -1 & 0 \\ 0 & 1 & 1 & 1 \end{array} \right).$$

$$\mathbf{E.} \left(\begin{array}{cccc} 0 & 0 & 2 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{array} \right).$$

Ejercicio 10

Se consideran tres vectores u, v y w no nulos de \mathbb{R}^3 tales que $(u+v) \wedge w = 0$ y $(u-v) \wedge w = 0$. Se consideran las afirmaciones:

- (I) u y v son colineales.
- (II) u y v son ortogonales.
- (III) $\langle u \wedge v, w \rangle = 0$.

Entonces

- A. Solamente (I) es verdadera.
- **B.** Solamente (I) y (II) son verdaderas.
- C. Solamente (I) y (III) son verdaderas.
- D. Ninguna de las tres afirmaciones es verdadera.
- E. Solamente (III) es verdadera.