神经网络与深度学习笔记(六) L_2 正则化

前言

前面提到过高方差问题主要的两种方式:

- 获取更多的数据去训练。然而这种方式局限在于,数据并不是总是很容易获得的或者数据获取的代价很大。
- 正则化。这就是这篇文章需要来讨论的主题。

最小化代价函数正则化

使用 L_2 正则化的最小化代价函数:

$$min_{(w,b)}\jmath(w,b) = rac{1}{m}\sum_{i=1}^{m}\jmath(\hat{y}^{(i)},y^{(i)}) + rac{\lambda}{2m}\|w\|_2^2 \eqno(1)$$

那么:

$$||w||_2^2 \tag{2}$$

到底是啥意思?

实际上, $\|w\|_2^2$ 被称为 L_2 正则化,又称为参数 w 的欧几里得范数, L_2 范数等

$$\|w\|_2^2 = \sum_{j=1}^{n_x} w_j^2 = w^T w \tag{3}$$

既然有 L_2 范数, 那么 L_1 范数是啥?

 L_1 范数即为:

$$||w||_1 = |w_1| + |w_2| + |w_3| + \dots + |w_n| \tag{4}$$

与此对应的 L_1 正则化

$$\sum_{j=1}^{n_x} |w_j| = ||w||_1 \tag{5}$$

使用 L_1 正则化的最小代价函数为:

$$min_{(w,b)}\jmath(w,b) = rac{1}{m}\sum_{i=1}^{m}\jmath(\hat{y}^{(i)},y^{(i)}) + rac{\lambda}{2m}\|w\|_{1} \hspace{1.5cm} (6)$$

然而使用 L_1 正则化的效果并不是太明显,主要是因为使用后会导致 w 稀疏,w 矢量中会有很多 0,虽然模型会有一定的压缩但是效果不大。

这就是为什么通常使用 L_2 正则化而不是 L_1 正则化的原因。

那么,b参数是否可以正则化呢?比如: $\frac{\lambda}{2m}b^2$

答案也是效果不大。

因为参数实际上大多数集中在 w 中,而不是 b ,即使对 b 进行了正则化,b 对模型的影响效果也不是太 大

在神经网络中的 L_2 正则化

$$\jmath(w^{[1]},b^{[1]},\cdots w^{[l]},b^{[l]}) = rac{1}{m}\sum_{i=1}^m L(\hat{y}^{(i)},y^{(i)}) + rac{\lambda}{2m}\sum_{i=1}^l \|w^{[l]}\|^2$$
 (7)

$$\|w^{[l]}\|_F^2 = \sum_{i=1}^{n^{[l]}} \sum_{i=1}^{n^{[l-1]}} (w_{ij}^{[l]})^2$$
 (8)

$$w^{[l]}:(n^{[l]},n^{[l-1]}) (9)$$

其中矩阵的 $\|w^{[l]}\|_F^2=\sum_{i=1}^{n^{[l]}}\sum_{j=1}^{n^{[l-1]}}(w^{[l]}_{ij})^2$,表示矩阵中元素平方和。又称为弗罗贝尼乌斯范数(Frobenius norm),这里就不叫 L_2 范数了。

在梯度下降的过程中, $dw^{[l]}$, $w^{[l]}$ 也会变化

$$dw^{[l]} = dz^{[l]} * a^{[l-1]} + \frac{\lambda}{m} w^{[l]}$$
 (10)

$$w^{[l]} = w^{[l]} - \alpha dw^{[l]} \tag{11}$$

$$= w^{[l]} - \alpha * (dz^{[l]} * a^{[l-1]} + \frac{\lambda}{m} w^{[l]})$$
 (12)

$$= w^{[l]} - \frac{\alpha \lambda}{m} w^{[l]} - \alpha (dz^{[l]} * a^{[l-1]})$$
 (13)

$$= w^{[l]} \left(1 - \frac{\alpha \lambda}{m} \right) - \alpha (dz^{[l]} * a^{[l-1]}) \tag{14}$$

故,在梯度下降过程中,w 是逐渐变小的,所以 L_2 正则化有时称之为权重衰减

为什么 L_2 正则化可以防止过拟合,减少方差?

Train Valid Test

Train 201 rest to meas many

$$\jmath(w^{[1]},b^{[1]},\cdots w^{[l]},b^{[l]}) = rac{1}{m}\sum_{i=1}^{m}L(\hat{y}^{(i)},y^{(i)}) + rac{\lambda}{2m}\sum_{i=1}^{l}\|w^{[l]}\|^2$$
 (15)

观察上图的公式:

当 $\lambda \uparrow$ 且 λ 足够大的时候 ——> w 就会 $\to 0$ ——> 从而将隐藏单元的影响削减 ——> 进一步使得神经网络简单化 ——> 最终使得神经网络接近逻辑回归

举个例子:

当激活函数是 tanh(z) 时,

因为 $w^{[l]}$ 变小会导致以 $w^{[l]}$ 为参数求出的 $z^{[l]}$ 的值变小,使得隐藏单元的影响削减,使得神经网络简单化,最后使得神经网络接近逻辑回归

就降低了方差

同时,在使用 L_2 正则化时建议画出 j 关于梯度下降迭代次数的图像

你会发现使用 L_2 正则化后,随着迭代次数的增加, \jmath 的值会逐渐减小