

Proyecto final del curso de Programación Nivel Explorador.

Análisis Exploratorio de Datos sobre Costos Energéticos en Colombia - 2023

Exploración de costos de generación, distribución y comercialización de energía con base en datos reales del año 2023

Introducción

Importancia del análisis de datos en el sector energético.

Este proyecto busca comprender la estructura de costos energéticos, sostenibilidad y rentabilidad en Latinoamérica desde los años 2018 a 2023

Planteamiento del problema

¿Por qué es importante analizar los costos energéticos?

La variabilidad en los costos de generación, distribución y comercialización puede afectar significativamente la economía y el acceso de la población a la energía. Analizar estos datos permite mejorar la eficiencia del sistema y

proponer mejoras regulatorias o técnicas.

Objetivo general:

Analizar los costos energéticos registrados y brindar una información al usuario de forma sencilla y dinámica

Objetivos específicos:

- ·Limpiar y preparar los datos de costos energéticos.
- •Realizar un análisis exploratorio detallado.
- •Identificar correlaciones entre las variables.
- •Proponer recomendaciones basadas en los hallazgos.

Justificación

Este tipo de análisis permite a todos los usuarios hacer un análisis del impacto energético con los distintos tipos de energía principalmente buscando alternativas a combustibles fósiles

Comparativa de Sostenibilidad					
País	% Renovable	Emisiones CO ₂ (kT)	Inversión (USD millones)		
Colombia	20.0%	90,000	500		
Brazil	30.0%	380,000	-100		
Ecuador	20.0%	51,000	260		
Peru	20.0%	61,000	310		
Mexico	18.2%	118,000	820		
Argentina	18.5%	81,000	420		

Rentabilidad

- 1. Flujograma:
- Importación de datos
- Limpieza
- Exploración
- Visualización
- Análisis y Conclusión
- 2. Variables cuantitativas:

Energía Total, Energía Renovable, Emisiones de CO2, Inversión(USD), Participación Renovable.

- 3. Análisis exploratorio (EDA): Cálculo de estadísticas descriptivas, visualización con histogramas y análisis de correlaciones.
- 4. Limpieza de datos:
- Eliminación de duplicados
- Normalización de nombres

Modelado de los datos

```
document.addEventListener("DOMContentLoaded", async () => {
const response = await fetch("../energy transition dirty.json");
const data = await response.json();
const rentabilidadPorPais = {};
data.forEach((d) => {
 const pais = d.Country;
 const energia = parseFloat(d.Total Energy GWh);
 const inversion = parseFloat(d.Investment USD m);
 if (!isNaN(energia) && !isNaN(inversion) && inversion > 0) {
   if (!rentabilidadPorPais[pais]) {
      rentabilidadPorPais[pais] = { energia: 0, inversion: 0 };
   rentabilidadPorPais[pais].energia += energia;
   rentabilidadPorPais[pais].inversion += inversion;
});
// Calcular rentabilidad y crear lista
const listaRentabilidad = Object.entries(rentabilidadPorPais).map(
 ([pais, val]) => ({
   pais,
   rentabilidad: val.energia / val.inversion,
 })
const top5 = listaRentabilidad
  .sort((a, b) => b.rentabilidad - a.rentabilidad)
  .slice(0, 5);
const ctx = document.getElementById("graficoCo2").getContext("2d");
```



```
document.addEventListener("DOMContentLoaded", async () => {
const response = await fetch("../energy_transition_dirty.json");
const data = await response.json();
const tabla = document.querySelector("#tablaSostenibilidad tbody");
// Crear un mapa de país -> registro más reciente con datos válidos
const datosPorPais = {};
data.forEach((entry) => {
  const pais = entry.Country;
  const anio = entry.Year;
  if (!datosPorPais[pais] || entry.Year > datosPorPais[pais].Year) {
      typeof entry.Renewable Share percent === "number" &&
      typeof entry.CO2 Emissions kT === "number" &&
      typeof entry.Investment_USD_m === "number"
      datosPorPais[pais] = entry;
Object.values(datosPorPais).forEach((entry) => {
  const tr = document.createElement("tr");
  tr.innerHTML =
          ${entry.Country}
          ${entry.Renewable_Share_percent.toFixed(1)}%
          ${entry.CO2 Emissions kT.toLocaleString()}
          ${entry.Investment_USD_m.toLocaleString()}
  tabla.appendChild(tr);
```

Comparativa de Sostenibilidad

País	% Renovable	Emisiones CO ₂ (kT)	Inversión (USD millones)
Colombia	20.0%	90,000	500
Brazil	30.0%	380,000	-100
Ecuador	20.0%	51,000	260
Peru	20.0%	61,000	310
Mexico	18.2%	118,000	820
Argentina	18.5%	81,000	420

