

CYNTHIA TRISTÁN ÁLVAREZ

ÍNDICE:

1. Temática	1
2. Relación con la física	2
3. Manual de usuario	4
4. Extras	

1. TEMÁTICA

La idea del proyecto viene dada a raíz de una de las mecánicas aparentes en el videojuego Animal Well que refleja los puzles clásicos basados en colisiones y rebotes.

El juego contiene tres niveles distintos y la meta en cada uno de ellos es, a través de la rotación de distintas placas sólidas, hacer rebotar las partículas de tal manera que choquen contra el objetivo del nivel.

2. RELACIÓN CON LA FÍSICA

Todos los niveles cuentan con la misma estructura básica:

- 1. Un emisor de cuerpos estático que proporciona una velocidad inicial dada.
- 2. Una serie de planchas controlables por el jugador, fijas en posición pero rotables.
- 3. Un **objetivo** con forma de cápsula que cuelga de entre una y dos gomas atadas a puntos fijos.
- 4. Una masa de **agua** en la que pueden flotar los cuerpos.
- En el último nivel también aparecen **campos de fuerzas** que alteran la trayectoria de los actores, así como de paredes inamovibles.

Cada actor en escena es un **sólido rígido dinámico** de la librería *Physx* de *NVIDIA*, por lo que sus colisiones y movimientos se gestionan a través de ella con unas **masas**, **tamaños**, **formas** y **tensores de inercia** dados:

	Partículas			
	Masa	Volumen	Tensor	Velocidad Inicial
Nivel 1	1 Kg	1 m de radio	(1, 1, 1) Kg*m²	(-13, 20, 0) m/s
Nivel 2	10 Kg	2 m de radio	(2, 2, 2) Kg*m²	(-50, 50, 0) m/s
Nivel 3	1000 Kg	0'5 m de radio	(10, 10, 10) Kg*m²	(0, 0, 0) m/s

	Objetivos		
	Masa	Volumen	Tensor
Nivel 1	1 Kg	(3, 3, 3) m	(1, 1, 1) Kg/m ²
Nivel 2	10 Kg	(2, 10, 10) m	(1, 1, 1) Kg/m ²
Nivel 3	1000 Kg	(2, 1, 2) m	(1, 1, 1) Kg/m ²

Las densidades de los objetos que no tienen especificado un tensor de inercia se calculan en tiempo de compilación sabiendo que:

$$d=rac{m}{V} \hspace{1.5cm} V=rac{4}{3}\pi r^3 \hspace{1.5cm} V=abc$$

Son las fórmulas de la densidad, volumen de la esfera y volumen del paralelepipedo respectivamente.

Todas las planchas cuentan con un volumen de 20 metros de ancho, 0'5 de alto y 10 de largo y de, debido a su estatismo, una masa despreciable, y las formas de los objetos siguen:

	Partículas	Planchas	Objetivos	
Forma	Forma SPHERE		CAPSULE	

Sobre las fuerzas existentes a lo largo de los niveles, siempre están presentes la fuerza de **flotación** en el agua y las **gomas** que sujetan a los objetivos. Además, en el **tercer nivel** podrán actuar dos tipos de **fuerzas** distintas: **vientos** y **torbellinos**.

	Fuerza	К	Velocidad	
	Flotación	Gomas	Viento	Torbellino
Nivel 1	1 N	2 Kg/s ²	×	X
Nivel 2	1 N	20 y 20 Kg/s²	×	X
Nivel 3	1 N	1100 y 1100 Kg/s²	(0, 10000, 0) y (-1000, 0, 0)	(-10, 10, 100) para k = 1000

3. MANUAL DE USUARIO

4. EXTRAS

Dentro de las características del proyecto que no pertenecen a los requisitos se encuentran:

- 1. Sistema y gestión de **renderizado** de **objetos traslúcidos** en *OpenGL* de cara a representar la masa de agua y percibir las partículas sumergidas en ella.
- 2. Lógica para registar **entrada especial** (teclas de flechas y teclas *modificadoras*: *Ctrl* y *Shift*) para permitir el uso de las flechas así como de un control más preciso o rápido según la circunstancia a través de los modificadores.
- 3. Retroalimentación visual:
 - a. Controles visibles mediante texto en la esquina superior izquierda.
 - b. Selección de la **plancha activa**, diferenciada por su color específico (más claro) que el resto.
 - c. **Mensajes** y **temporizador** entre escenas para un flujo de juego más entendible y ameno.
- 4. Estado final de juego decorado con:
 - a. **Fuegos artificiales** de distintos colores, velocidades y masas con cierta variación aleatoria en las velocidades iniciales y trayectorias de los detonantes.
 - b. Un **círculo colorido** a través de un nuevo sistema generador de partículas específico que le proporciona la posición y velocidad a cada partícula en función de su ángulo.
 - c. Felicitación con texto de colores cambiantes.
- 5. **Efectos de arcoíris** de los sistemas de partículas, de sólidos rígidos y de textos, usado en el apartado anterior.
- 6. Conversor de colores en valores **HSV a RGB**, usado para los dos apartados anteriores, transformando números representando grados en el modelo cilíndrico HSV a un color en formato rojo/verde/azul/alfa (ref. <u>fairlight1337 @ GitHub</u>).