FUNCTIONAL ANALYSIS II SUMMARY

YANNIS BÄHNI

Abstract. This is a rough summary of the course *Functional Analysis II* held at *ETH Zurich* by *Prof. Dr. Alessandro Carlotto* in spring 2018. The main focus of this summary is to give a neat preparation for the oral exam.

Contents

Introduction
Sobolev Space Theory
The Spaces $W^{k,p}(\Omega)$
Elliptic Operators
Sobolev Spaces on an Interval
Dirichlet and Neumann Boundary Problems on <i>I</i>
Sobolev Spaces on a Domain
Extension and Trace Operator
Sobolev Embeddings
$p < n \dots \dots$
p > n
References

Introduction

Theorem 1.1. Let $\Omega \subseteq \mathbb{R}^n$ be open and $1 \leq p < \infty$. Then $C_c^{\infty}(\Omega)$ is dense in $L^p(\Omega)$.

Proposition 1.1. If $\mu(X) < \infty$ and $0 . Then <math>L^q(\mu) \subseteq L^p(\mu)$.

Proposition 1.2 (Integration by Parts). Let (M, g) be a compact Riemannian manifold with boundary. Then

$$\int_{M} \langle \operatorname{grad} f, X \rangle_{g} dV_{g} = \int_{\partial M} f \langle X, N \rangle dV_{\widetilde{g}} - \int_{M} (f \operatorname{div} X) dV_{g}$$

(Yannis Bähni) University of Zurich, Rämistrasse 71, 8006 Zurich *E-mail address*: yannis.baehni@uzh.ch.

for $f \in C^{\infty}(M)$ and $X \in \mathfrak{X}(M)$. Moreover, **Green's identities** hold:

$$\int_{M} u \Delta v \, dV_{g} = \int_{M} \langle \operatorname{grad} u, \operatorname{grad} v \rangle_{g} \, dV_{g} - \int_{\partial M} u N v \, dV_{\widetilde{g}}$$

and

$$\int_{M} (u\Delta v - v\Delta u)dV_{g} = \int_{\partial M} (vNu - uNv)dV_{\tilde{g}}$$

for $u, v \in C^{\infty}(M)$.

Suppose $u \in \mathcal{A}$ is a minimizer of E_p and $\varphi \in C^2(\overline{\Omega})$ with $\varphi|_{\partial\Omega} = 0$. We compute

$$\begin{split} \frac{d}{dt}E_{p}(u+t\varphi) &= \frac{d}{dt}\int_{\Omega}\left|\nabla u + t\nabla\varphi\right|^{p} \\ &= \frac{d}{dt}\int_{\Omega}\left\langle\nabla u + t\nabla\varphi, \nabla u + t\nabla\varphi\right\rangle^{p/2} \\ &= p\int_{\Omega}\left|\nabla u + t\nabla\varphi\right|^{p-2}\left\langle\nabla\varphi, \nabla u + t\nabla\varphi\right\rangle. \end{split}$$

In particular

$$\frac{d}{dt}\bigg|_{t=0} E_p(u+t\varphi) = p \int_{\Omega} |\nabla u|^{p-2} \langle \nabla \varphi, \nabla u \rangle = -\int_{\Omega} \operatorname{div}(|\nabla u|^{p-2} \nabla u) \varphi.$$

Sobolev Space Theory

The Spaces $W^{k,p}(\Omega)$. In what follows, let $n \in \omega$, $n \ge 1$, and $1 \le p \le \infty$.

Definition 1.1 (Distributional and Weak Derivative). Let $\Omega \subseteq \mathbb{R}^n$ open and $u \in L^1_{loc}(\Omega)$. For any multiindex α , the distributional derivative of order α of u, written $D^{\alpha}u$, is defined to be the mapping $D^{\alpha}u: C_c^{\infty}(\Omega) \to \mathbb{R}$ defined by

$$\varphi \mapsto (-1)^{|\alpha|} \int_{\Omega} u D^{\alpha} \varphi dx.$$

Moreover, a function $D^{\alpha}u \in L^{p}(\Omega)$ is called weak derivative of order α of u with exponent p, iff

$$\forall \varphi \in C_c^{\infty}(\Omega) : \int_{\Omega} D^{\alpha} u \varphi dx = (-1)^{|\alpha|} \int_{\Omega} u D^{\alpha} \varphi dx.$$

Theorem 1.2 (Fundamental Lemma of Variational Calculus). Let $\Omega \subseteq \mathbb{R}^n$ open and $f \in L^1_{loc}(\Omega)$. If

$$\forall \varphi \in C_c^{\infty}(\Omega) : \int_{\Omega} f \varphi dx = 0,$$

then f = 0 a.e.

Remark 1.1. Let $\Omega \subseteq \mathbb{R}^n$ open. Then $L^p(\Omega) \subseteq L^1_{loc}(\Omega)$.

Remark 1.2. From the fundamental lemma of variational calculus 1.2 it follows that *weak derivatives, if they exist, are unique.*

Examples 1.1.

- (a) Consider $\Omega := (-1, 1)$ and u := |x|. Then $u' = \chi_{[0,1)} \chi_{(-1,0)}$.
- (b) Consider $\Omega := \mathbb{R}$ and $u := \chi_{(0,\infty)}$. Then the weak derivative u' does not exist. Indeed, the *Dirac distribution* is not representable as one may see by considering the smooth family $\varphi_{\varepsilon} : \mathbb{R} \to \mathbb{R}$ for $\varepsilon > 0$ defined by

$$\varphi_{\varepsilon}(x) := \begin{cases} e^{\varepsilon^2/(x^2 - \varepsilon^2)} & |x| < \varepsilon, \\ 0 & |x| \ge \varepsilon. \end{cases}$$

Definition 1.2 (Sobolev Space). Let $\Omega \subseteq \mathbb{R}^n$ open. For any $k \in \omega$, the **Sobolev space of index (k, p)**, written $W^{k,p}(\Omega)$, is defined to be the space

$$W^{k,p}(\Omega) := \{ f \in L^p(\Omega) : D^\alpha u \in L^p(\Omega) \text{ exists for all } |\alpha| \le k \},$$

with norm

$$\|-\|_{W^{k,p}(\Omega)} := \sum_{|\alpha| \le k} \|D^{\alpha} - \|_{L^p(\Omega)}.$$

Moreover, define

$$W_0^{k,p}(\Omega) := \overline{C_c^{\infty}(\Omega)}^{\|-\|_{W^{k,p}(\Omega)}}$$

and $H^k(\Omega) := W^{k,2}(\Omega)$ as well as $H_0^k(\Omega) := W_0^{k,2}(\Omega)$.

Theorem 1.3. Let $\Omega \subseteq \mathbb{R}^n$ open. Then $W^{k,p}(\Omega)$ is

- (a) a Banach space for all $1 \le p \le \infty$.
- (b) separable for all $1 \le p < \infty$.
- (c) reflexive for all 1 .*Proof.*
- (a) This follows from the fact that $L^p(\Omega)$ is a Banach space for all $1 \leq p \leq \infty$. Let $(f_i)_{i \in \omega}$ be a Cauchy sequence in $W^{k,p}$. By definition of the $W^{k,p}$ -norm, $(D^{\alpha}f_i)_{i \in \omega}$ is a Cauchy sequence in L^p . Thus we get $D^{\alpha}f_i \to f_{\alpha}$ in L^p , in particular, $f_i \to f$ in L^p . Using Hölder's inequality we compute

$$\int_{\Omega} f_{\alpha} \varphi dx = \lim_{i \to \infty} \int_{\Omega} D^{\alpha} f_{i} \varphi dx = (-1)^{|\alpha|} \lim_{i \to \infty} \int_{\Omega} f_{i} D^{\alpha} \varphi dx = (-1)^{|\alpha|} \int_{\Omega} f D^{\alpha} \varphi dx$$

for $\varphi \in C_c^{\infty}(\Omega)$.

- (b) For simplicity, we consider k = 1 only. Consider $\iota : W^{1,p} \hookrightarrow (L^p)^{n+1}$ defined in the obvious way. Then ι is an isometry and the statement follows.
- (c) Same argument as in part (b).

Elliptic Operators.

Lemma 1.1 (Poincaré Inequality). Let $\Omega \subseteq \mathbb{R}^n$ open and bounded. Then for any $u \in C_c^{\infty}(\Omega)$ we have that

$$||u||_{L^2} \leq C ||\nabla u||_{L^2}$$
.

Proof. Let n=1. Since Ω is bounded, we get that $\Omega\subseteq [a,b]$ and we may extend u on [a,b]=:I to be zero. Hence an application of Jensen's inequality (or Cauchy-Schwarz) yields

$$|u(x)|^2 = |u(x) - u(a)|^2 = \left| \int_a^x u'(t)dt \right|^2 \le (x - a) \int_a^x |u'(t)|^2 dt \le (b - a) \|u'\|_{L^2(I)}^2.$$

Thus

$$\|u\|_{L^{2}(\Omega)}^{2} \le \|u\|_{L^{2}(I)}^{2} \le (b-a)^{2} \|u'\|_{L^{2}(I)}^{2} = (b-a)^{2} \|u'\|_{L^{2}(\Omega)}^{2}$$

where the last equality follows due to the fact that u and thus u' is compactly supported in Ω . If n > 1, we have $\Omega \subseteq [a, b] \times \mathbb{R}^{n-1}$ and thus the claim follows by reduction to the previous case.

Theorem 1.4 (Riesz Representation Theorem). *Let* H *be a real Hilbert space. Then the mapping* $J: H \to H^*$ *defined by* $J(x) := \langle x, - \rangle$ *is an isometric isomorphism.*

Theorem 1.5. Let $\Omega \subseteq \mathbb{R}^n$ and consider the elliptic operator

$$L := \frac{\partial}{\partial x^i} \left(a^{ij} \frac{\partial}{\partial x^j} \right),$$

for $a^{ij} \in L^{\infty}(\Omega)$ symmetric. Then: Given $f \in L^{2}(\Omega)$, the homogenous Dirichlet problem

$$\begin{cases}
-Lu = f & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega
\end{cases}$$
(1)

admits a unique weak solution $u \in H_0^1(\Omega)$. Proof.

Step 1: Derivation of Weak Formulation. Suppose $u \in C^2(\overline{\Omega})$ is a solution of (1). Let $\varphi \in C_c^{\infty}(\Omega)$. Then integration by parts (see [Lee13, p. 436]) yields

$$-\int_{\Omega} L(u)\varphi = -\sum_{j=1}^{n} \int_{\Omega} \operatorname{div}(X_{j})\varphi = \int_{\Omega} a^{ij} \frac{\partial u}{\partial x^{j}} \frac{\partial \varphi}{\partial x^{i}} = \int_{\Omega} a^{ij} \frac{\partial u}{\partial x^{i}} \frac{\partial \varphi}{\partial x^{j}},$$

where $X_j := \left(a^{ij} \frac{\partial}{\partial x^j}\right)_i$. Thus we get the weak formulation:

$$\forall \varphi \in C_c^{\infty}(\Omega) : \int_{\Omega} a^{ij} \frac{\partial u}{\partial x^i} \frac{\partial \varphi}{\partial x^j} = \int_{\Omega} f \varphi.$$
 (2)

Step 2: Existence and Uniqueness of Weak Solutions. Since L is uniformly elliptic, there exists $\lambda > 0$ such that

$$a^{ij}(x)\xi_i\xi_j \ge \lambda |\xi|^2$$

holds for any $x \in \Omega$ and $\xi \in \mathbb{R}^n$. Moreover, since $a^{ij} \in L^{\infty}(\Omega)$, we get that L is uniformly bounded, i.e. there exists $\Lambda > 0$ such that

$$a^{ij}(x)\xi_i\xi_j \leq \Lambda |\xi|^2$$

holds for any $x \in \Omega$ and $\xi \in \mathbb{R}^n$. Now define a bilinear form $\langle \cdot, \cdot \rangle_a : H_0^1(\Omega) \times H_0^1(\Omega) \to \mathbb{R}$ by

$$\langle u, v \rangle_a := \int_{\Omega} a^{ij} \frac{\partial u}{\partial x^i} \frac{\partial v}{\partial x^j} \tag{3}$$

Then it is easy to see, that $\langle \cdot, \cdot \rangle_a$ is symmetric. Also, $\langle \cdot, \cdot \rangle_a$ is positive definite since

$$\langle u, u \rangle_a = \int_{\Omega} a^{ij} \frac{\partial u}{\partial x^i} \frac{\partial u}{\partial x^j} \ge \lambda \int_{\Omega} |\nabla u|^2 \ge C\lambda \int_{\Omega} |u|^2$$

using ellipticity and Poincaré's inequality. Moreover by Poincaré's inequality we have that

$$\lambda \|u\|_{H_0^1(\Omega)}^2 \le \|u\|_a^2 \le \Lambda \|u\|_{H_0^1(\Omega)}^2$$

for the induced norm $\|\cdot\|_a$. Hence the induced norm is equivalent to the standard norm on $H_0^1(\Omega)$ and thus $(H_0^1(\Omega), \|\cdot\|_a)$ is a Hilbert space. Thus an application of Riesz representation theorem 1.4 yields the existence of a unique $u \in H_0^1(\Omega)$, such that

$$\langle u, \varphi \rangle_a = l(\varphi) := \int_{\Omega} f \varphi$$

holds for all $\varphi \in H_0^1(\Omega)$, since $l \in (H_0^1(\Omega))^*$.

Sobolev Spaces on an Interval. In what follows, let $-\infty \le a < b \le \infty$ and I := (a, b).

Lemma 1.2 (Du Bois-Reymond). Let $f \in L^1_{loc}(I)$ such that

$$\forall \varphi \in C_c^{\infty}(I) : \int_I f \varphi' dx = 0.$$

Then f is almost everywehere constant.

Proof. Let $v:=w-c_0\psi$ for $w,\psi\in C_c^\infty(I)$ such that $\int_I\psi=1$ and $\int_Iv=0$. This implies $c_0=\int_Iw$. By the fundamental theorem of calculus, the function $\varphi:I\to\mathbb{R}$ defined by

$$\varphi(x) := \int_{I} v(t)dt$$

belongs to $C_c^{\infty}(I)$ with $\varphi' = v$. Thus we compute

$$0 = \int_{I} f \varphi' = \int_{I} f v = \int_{I} f w - c_{0} \int_{I} f \psi = \int_{I} f w - \int_{I} w \int_{I} f \psi = \int_{I} (f - c) w,$$

where $c := \int_I f \psi$. Since w was arbitrary, we conclude by the fundamental lemma of variational calculus 1.2.

Lemma 1.3. Let $f \in L^1_{loc}(I)$ and $x_0 \in I$. Then $u : I \to \mathbb{R}$ defined by

$$u(x) := \int_{x_0}^{x} f(t)dt$$

is absolutely continuous and belongs to $W_{loc}^{1,1}(I)$ with u' = f a.e.

Proof. Absolute continuity follows from real analysis. Let $\varphi \in C_c^\infty(I)$. Then Fubini yields

$$\int_{I} u\varphi' = \int_{a}^{x_{0}} \int_{x_{0}}^{x} f(t)\varphi'(x)dtdx + \int_{x_{0}}^{b} \int_{x_{0}}^{x} f(t)\varphi'(x)dtdx$$

$$= -\int_{a}^{x_{0}} \int_{x}^{x_{0}} f(t)\varphi'(x)dtdx + \int_{x_{0}}^{b} \int_{x_{0}}^{x} f(t)\varphi'(x)dtdx$$

$$= -\int_{a}^{x_{0}} \int_{a}^{t} f(t)\varphi'(x)dxdt + \int_{x_{0}}^{b} \int_{t}^{b} f(t)\varphi'(x)dxdt$$

$$= -\int_{a}^{x_{0}} f(t)\varphi(t)dt - \int_{x_{0}}^{b} f(t)\varphi(t)dt$$

$$= -\int_{I} f\varphi.$$

Theorem 1.6. Let $u \in W^{1,p}(I)$. Then there exists an absolutely continuous representant \tilde{u} of u on \bar{I} , such that

$$\widetilde{u}(x) = \widetilde{u}(x_0) + \int_{x_0}^x u'(t)dt$$

holds for all $x, x_0 \in I$.

Proof. By lemma 1.3, the function $v(x) := \int_{x_0}^x u'(t) dt$ is in $W_{\text{loc}}^{1,1}(I)$ with weak derivative u'. Moreover, for any $\varphi \in C_c^{\infty}(I)$ we compute

$$\int_I (u-v)\varphi' = \int_I u\varphi' - \int_I v\varphi' = -\int_I u'\varphi + \int_I u'\varphi = 0.$$

Thus lemma 1.2 yields u = c + v, for some $c \in \mathbb{R}$. But $c = u(x_0)$ and we conclude by setting

$$\widetilde{u}(x) := u(x_0) + \int_{x_0}^x u'(t)dt.$$

Theorem 1.7 (Characterization of $W^{1,p}(I)$ **).** Let $1 and <math>u \in L^p(I)$. Then the following statements are equivalent:

- (a) $u \in W^{1,p}(I)$.
- (b) There exists $C \geq 0$ such that

$$\forall \varphi \in C_c^{\infty}(I) : \left| \int_I u \varphi' \right| \le C \|\varphi\|_{L^q}.$$

(c) There exists $C \ge 0$ such that for all $I' \subseteq \subseteq I$ and $|h| < \operatorname{dist}(I', \partial I)$ holds

$$\|\tau_h u - u\|_{L^p(I')} \leq C|h|,$$

where $\tau_h u(x) := u(x+h)$.

Proof. The implication $(a) \Rightarrow (b)$ follows immediately from Hölder's inequality. To prove $(b) \Rightarrow (a)$, we observe that $l: C_c^{\infty}(I) \to \mathbb{R}$ defined by

$$L(\varphi) := \int_{I} u \varphi'$$

is continuous. Since $C_c^{\infty}(I)$ is dense in $L^q(I)$, we get that $l \in (L^q(I))^*$. Hence we find $g \in L^p$, such that $\int_I g\varphi = l(\varphi)$ and so u' = -g.

Next we show $(a) \Rightarrow (c)$. By theorem 1.6, we find an absolutely continuous representant \tilde{u} of u. Thus

$$\widetilde{u}(x+h) - \widetilde{u}(x) = h \int_0^1 u'(x+th)dt$$

Hence Jensen's inequality yields

$$\|\tau_h u - u\|_{L^p(I')} \le |h| \int_0^1 \|u'(\cdot + th)\|_{L^p(I')} dt \le |h| \|u'\|_{L^p(I)}.$$

Lastly, we prove $(c) \Rightarrow (b)$. Let $\varphi \in C_c^{\infty}(I)$. Then we may find $I' \subseteq I$ such that $\sup \varphi \subseteq I'$. Hence we compute

$$\left| \int_{I} u\varphi' \right| = \lim_{h \to 0} \frac{1}{|h|} \left| \int_{I} u(x) \left(\varphi(x+h) - \varphi(x) \right) dx \right|$$

$$= \lim_{h \to 0} \frac{1}{|h|} \left| \int_{I} \left(u(x-h) - u(x) \right) \varphi(x) dx \right|$$

$$= \lim_{h \to 0} \frac{1}{|h|} \left| \int_{I} \left(\tau_{-h} u - u \right) \varphi \right|$$

$$\leq \lim_{h \to 0} \frac{1}{|h|} \|\tau_{-h} u - u\|_{L^{p}(I')} \|\varphi\|_{L^{q}(I)}$$

$$\leq C \|\varphi\|_{L^{q}(I)}.$$

Theorem 1.8 (Extension Theorem). There exists a continuous linear operator

$$E: W^{1,p}(I) \to W^{1,p}(\mathbb{R})$$

such that:

- (*i*) $Eu|_{I} = u$.
- $(ii) \|Eu\|_{L^p(\mathbb{R})} \le C \|u\|_{L^p(I)}.$
- $(iii) \| (Eu)' \|_{L^p(\mathbb{R})} \le C \| u \|_{W^{1,p}(I)}.$

Proof. First we consider the case $I = (0, \infty)$. We extend u by continuity to 0 and then we extend u by means of even symmetry. If I is bounded we can without loss of generality assume that I = (0, 1). Now use a cut-off function.

Theorem 1.9 (Approximation Theorem). Let $1 \leq p < \infty$ and $u \in W^{1,p}(I)$. Then there exists a sequence $(u_i)_{i \in \omega}$ in $C_c^{\infty}(\mathbb{R})$ such that

$$||u_i|_I - u||_{W^{1,p}(I)} \to 0.$$

Proof. The main idea of the proof is to use convolutions. Moreover, it is enough to consider the case $I = \mathbb{R}$ only, due to the extension theorem 1.8.

Theorem 1.10 (Sobolev Embedding). *There is a continuous embedding*

$$W^{1,p}(I) \hookrightarrow L^{\infty}(I)$$
.

Proof. Without loss of generality, consider $|I| \leq 1$. By theorem 1.6 we get that

$$||u||_{L^{\infty}} = \sup_{x \in I} |u(x)| \le |u(y)| + \sup_{x \in I} \left| \int_{y}^{x} u'(t)dt \right| \le |u(y)| + ||u'||_{L^{1}},$$

for any $y \in I$. Hence

$$||u||_{L^{\infty}} \leq \inf_{y \in I} |u(y)| + ||u'||_{L^{1}} \leq \frac{1}{|I|} \int_{I} |u(y)| + ||u'||_{L^{1}} \leq C ||u||_{W^{1,1}} \leq C ||u||_{W^{1,p}}.$$

Corollary 1.1. Let I be unbounded and $u \in W^{1,p}(I)$ for $1 \le p < \infty$. Then $u \to 0$ as $|x| \to \infty$.

Dirichlet and Neumann Boundary Problems on *I***.** In what follows, let us consider $-\infty < a < b < \infty$ and I := (a, b).

Proposition 1.3. Let $f \in C^0(\overline{I})$. Then the weak solution u of the homogenous Dirichlet problem

$$\begin{cases} -u'' = f & \text{in } I, \\ u(a) = 0 = u(b). \end{cases}$$

is a classical solution, i.e. $u \in C^2(\overline{I})$.

Proof. \Box

Proposition 1.4. Let $f \in C^0(\overline{I})$. Then the weak solution u of the homogenous Neumann problem

$$\begin{cases} -u'' + u = f & \text{in } I, \\ u'(a) = 0 = u'(b). \end{cases}$$

is a classical solution, i.e. $u \in C^2(\overline{I})$.

Proof. \Box

Sobolev Spaces on a Domain.

Example 1.1 (Vanishing $W^{1,p}$ **-Capacity).** For $n \in \omega$, n > 1, and $1 \le p \le n$, the set $\{0\}$ has vanishing $W^{1,p}$ -capacity.

Theorem 1.11 (Meyers-Serrin). Let $\Omega \subseteq \mathbb{R}^n$ be open. Then $C^{\infty}(\Omega) \cap W^{1,p}(\Omega)$ is dense in $W^{1,p}(\Omega)$ for every 1 .

Proof. Convolutions and a partition of unity argument.

Theorem 1.12 (Characterization of W^{1,p}(Ω)). Let $1 and <math>u \in L^p(\Omega)$. Then the following statements are equivalent:

- (a) $u \in W^{1,p}(\Omega)$.
- (b) There exists $C \ge 0$ such that

$$|\forall |\alpha| \leq 1 \forall \varphi \in C_c^{\infty}(\Omega) : \left| \int_I u D^{\alpha} \varphi \right| \leq C \|\varphi\|_{L^q}.$$

(c) There exists $C \geq 0$ such that for all $\Omega' \subseteq \subseteq \Omega$ and $|h| < \operatorname{dist}(I', \partial I)$ holds

$$\|\tau_h u - u\|_{L^p(\Omega')} \le C|h|,$$

where $\tau_h u(x) := u(x+h)$.

Proof. The proof $(c) \Rightarrow (b) \Rightarrow (a)$ is almost the same as the one given in the characterization theorem for Ω an interval. For proving $(a) \Rightarrow (c)$, use Meyers-Serrin.

Corollary 1.2. Let $u \in L^{\infty}(\Omega)$. Then $u \in W^{1,\infty}(\Omega)$ if and only if u admits a locally Lipschitz continuous representant. Moreover, if Ω is convex, then $u \in W^{1,\infty}(\Omega)$ if and only if u admits a Lipschitz continuous representant.

Extension and Trace Operator. We start off with local theory. In what follows, define

$$Q := \{ (x', x_n) \in \mathbb{R}^{n-1} \times \mathbb{R} : |x'| < 1, |x_n| < 1 \}.$$

Moreover

$$Q_+ := \{(x', x_n) \in Q : x_n > 0\}$$
 and $Q_0 := \{(x', x_n) \in Q : x_n = 0\}$.

Lemma 1.4. *Let* $u \in W^{1,p}(Q_+)$. *Set*

$$u^*(x', x_n) := \begin{cases} u(x', x_n) & x_n > 0, \\ u(x', -x_n) & x_n < 0. \end{cases}$$

Then $u^* \in W^{1,p}(Q)$ and $||u^*||_{W^{1,p}(Q)} \le C ||u||_{W^{1,p}(Q_+)}$

Now to the *global theory*.

Theorem 1.13 (Extension). Let $\Omega \subseteq \subseteq \mathbb{R}^n$ of class C^1 . Then there exists a continuous linear operator

$$E: W^{1,p}(\Omega) \to W^{1,p}(\mathbb{R}^n)$$

such that:

- (i) $Eu|_{\Omega}=u$.
- $(ii) \|Eu\|_{L^p(\mathbb{R}^n)} \le C \|u\|_{L^p(\Omega)}.$
- $(iii) \|Eu\|_{W^{1,p}(\mathbb{R}^n)} \leq C \|u\|_{W^{1,p}(\Omega)}.$

Corollary 1.3. Let $\Omega \subseteq \subseteq \mathbb{R}^n$ of class C^1 and $1 \leq p < \infty$. Then $C^{\infty}(\overline{\Omega})$ is dense in $W^{1,p}(\Omega)$.

Again, we tackle first the *local theory*.

Lemma 1.5. Let $u \in W^{1,p}(Q_+)$. Then $u|_{Q_0} \in L^p(Q_0)$ is well defined and the induced trace operator $W^{1,p}(Q_+) \to L^p(Q_0)$ is linear and continuous.

Proof. We consider the case $\underline{1 \leq p < \infty}$. The main idea is to show this for $u \in C^{\infty}(Q)$, then for $u \in W^{1,p}(Q)$ and then finally for $u \in W^{1,p}(Q_+)$ by extension.

Consider now $\underline{p} = \infty$. Since Q_+ is convex, $u \in W^{1,\infty}(Q_+)$ admits a Lipschitz continuous representant and the result follows by extending via continuity.

Theorem 1.14 (Characterization of $H^1(\Omega)$ **).** Let $\Omega \subseteq \subseteq \mathbb{R}^n$ of class C^1 . Then

$$H^{1}(\Omega) = H_0^{1}(\Omega) \oplus \{ u \in H^{1}(\Omega) : \Delta u = 0 \}.$$

Corollary 1.4 (Characterization of $H_0^1(\Omega)$). Let $\subseteq \subseteq \mathbb{R}^n$. Then

$$H^1_0(\Omega)=\left\{u\in H^1(\Omega): u|_{\partial\Omega}=0\right\}.$$

Sobolev Embeddings.

p < n.

Theorem 1.15 (Sobolev-Gagliardo-Nirenberg). Let $1 \leq p < n$ and let $p^* := \frac{np}{n-p}$. Then $W^{1,p}(\mathbb{R}^n) \hookrightarrow L^{p^*}(\mathbb{R}^n)$ with

$$||u||_{L^{p^*}} \leq C ||\nabla u||_{L^p}$$
.

Theorem 1.16 (Sobolev-Gagliardo-Nirenberg Compactness). Let $\Omega \subseteq \mathbb{R}^n$ and $1 \leq p < n$. Then $W^{1,p}(\Omega) \hookrightarrow L^q(\Omega)$ for $1 \leq q \leq p^*$ and the embedding is compact if $q < p^*$.

p > n.

Theorem 1.17. Let p > n. Then $W^{1,p}(\mathbb{R}^n) \hookrightarrow C^{0,\alpha}(\mathbb{R}^n)$ with $\alpha := 1 - \frac{n}{p}$ and

$$||u||_{C^{0,\alpha}(\mathbb{R}^n)} \leq ||u||_{W^{1,p}(\Omega)}.$$

Remark 1.3. For $p = \infty$, the statement is trivially true, since any function in $W^{1,\infty}(\mathbb{R}^n)$ is Lipschitz continuous since \mathbb{R}^n is convex, and thus belongs to $C^{0,1}(\mathbb{R}^n)$.

The proof uses the notion of so-called *Morrey-Campanato spaces*.

Theorem 1.18. Let $\Omega \subseteq \mathbb{R}^n$ of type A for some A > 0 and $1 \le p < \infty$, $\lambda > n$, $\alpha := \frac{\lambda - n}{p}$. Then

$$\mathcal{L}^{p,\lambda}(\Omega) \cong C^{0,\alpha}(\overline{\Omega}).$$

Proof. The inclusion $\mathcal{L}^{p,\lambda}(\Omega) \cong C^{0,\alpha}(\overline{\Omega})$ follows from the Campanato-theorem and does also hold for general $\Omega \subseteq \mathbb{R}^n$ open.

Theorem 1.19 (Poincaré-Wirtinger Inequality). Let $u \in W^{1,p}(\mathbb{R}^n)$, $1 \le p < \infty$. Then for all $x_0 \in \mathbb{R}^n$ and r > 0 we have that

$$||u - u_{x_0,r}||_{L^p(B_r(x_0))}^p \le Cr^p ||\nabla u||_{L^p(B_r(x_0))}^p$$
.

Proof. \Box

<++>

Now the proof of the Sobolev embedding theorem for p > n is immediaty by considering

$$W^{1,p}(\mathbb{R}^n) \stackrel{\mathrm{P.W.}}{\longleftrightarrow} \mathcal{L}^{p,p}(\mathbb{R}^n) \stackrel{\mathrm{Campanato}}{\longleftrightarrow} C^{0,\alpha}(\mathbb{R}^n)$$

and observing that \mathbb{R}^n is of type $\frac{\pi^{n/2}}{\Gamma(n/2+1)} > 0$.

References

[Lee13] John M. Lee. *Introduction to Smooth Manifolds*. Second Edition. Graduate Texts in Mathematics. Springer, 2013.