- 2 (a) Let F and G be two non-empty proper subsets of \mathbb{R} such that F is closed and G is open. If $F\Delta G$ is both open and closed then show that $F^c=G$.
 - (b) Let (X, d) be a metric space. If $x \in X$ then show that $\{x\}$ is closed. [3]
 - (c) Let $G = \{x \in \mathbb{R} \setminus \mathbb{Q} : x \le 0\}$ and $F = \{x \in \mathbb{Q} : x \ge 0\}$. Show that
 - (i) G is a G_{δ} set.
 - (ii) $F \cup G$ is neither F_{σ} nor G_{δ}