ASSOCIATION MAPPING (GWAS) IN PLANTS

Sujan Mamidi Divyashree Nageswaran

MARKER ASSISTED SELECTION (MAS)

- Simpler/low cost compared to phenotypic screening
- Selection may be carried out at seedling stage
- Single plants may be selected with high reliability
- Accelerated line development in breeding programs
 - At least two but possibly three or even four backcross generations can be saved by using markers
- High throughput
- Makes pyramiding of genes easier
- Achieved through identification of markers/QTL/genes
 - QTL Mapping
 - Association Mapping

ASSOCIATION MAPPING

• Association mapping, also known as "linkage disequilibrium mapping", is a method of mapping quantitative trait loci (QTLs) that takes advantage of linkage disequilibrium (LD) to find associations between phenotypes to genotypes

LINKAGE DISEQUILIBRIUM

LD refers to the non random association between two markers or two

genes/QTLs

Fig. 1. Principles of linkage disequilibrium and association mapping. a. Linkage disequilibrium. Locus 1 and Locus 2 present an unusual pattern of association between alleles A-G and T-C, which deviate from Hardy-Weinberg expectations, but without any statistical correlation with a phenotype. b. Association mapping. Locus 1 and Locus 2 are in LD. Significant covariance with the seed colour phenotype is considered evidence of association.

 LD can occur between more distant sites or sites located in different chromosomes

LD MEASUREMENT

- D' Only reflects the recombination history
 - If two loci are in linkage equilibrium, then D = 0
 - If the two loci are in linkage disequilibrium, then $D \neq 0$

- r² Summarizes both recombinational and mutational history
 - Value between 0 and 1
 - r^2 = 0, Loci are in complete linkage equilibrium
 - $r^2 = 1$, Loci are in complete linkage disequilibrium
 - Correlation squared

Flint Garcia et al. 2003

PARTIAL LD

- LD calculation in presence of covariate
- Partial correlation because unlinked loci can be in LD simply because of population structure and/or kinship

LD DECAY & LD HEAT PLOTS

• LD Decay plots: The distance over which LD persists will determine the number and density of markers, and experimental design needed to perform an association analysis.

- Long distance LD
 - Mapping at the centimorgan cM/Mbp distances
- Short distance LD
 - Mapping at the base pair (gene) distance

LD DECAY EXAMPLE

- Two populations (~130)
 of Advanced Breeding
 lines in Soybean
- ~ 35000 markers
- Non Linear Regression

LD DECAY - GENETIC DISTANCE

- ~ 1500 markers
- ~130 advanced soybean breeding lines

- LD will tend to decay with distance
- LD decays by one-half with each generation of random mating
- LD declines as the number of generations increases, so in old populations LD is limited to small distances
 - Landraces/Wildtypes Limited LD
 - Cultivars long LD

LD HEAT MAPS

- Disequilibrium matrices or LD heat maps:
- Useful for visualizing the linear arrangement of LD between polymorphic sites within a gene or chromosome.

FACTORS INCREASING LD

- Mating system
 - •Selfing reduces opportunities for effective recombination

Domestication:

- After a
 bottleneck, some
 haplotypes will be
 lost
- Resulting in increased LD.

Genetic drift

 The effect of genetic drift in a small population results in the consistent loss of rare allelic combinations

Gene flow

• Gene flow introduces new individuals or gametes with different ancestries and allele frequencies among populations.

Selection

- Positive selection will increase LD between and in the vicinity of the selected loci, a phenomenon known as genetic hitchhiking
- If both loci are maintained by balancing selection, then LD can persist indefinitely

Population structure:

 Intentional or unintentional mixing of individuals with different allele frequencies creates LD.

FACTORS DECREASING LD

Recombination

- LD is broken down by recombination
- GC-rich sequences may be associated with higher rates of recombination and/or mutation

Population

- In general, the larger the genetic variation, the faster the LD decay, a direct consequence of the broader historical recombination
- Ex: In corn,
 - LD decays within I kb in landraces
 - ~ 2kb in diverse inbred lines and
 - Several hundred kb in commercial elite inbred lines
- Mutation
- Gene conversion

INCREASED OR DECREASED LEVEL OF LD

- Populations with either rapid or slow LD decay can be useful in AM, depending on the purposes of the study.
- Populations with narrow genetic diversity and long extent of LD are amenable to coarse mapping with fewer markers <u>Few Markers needed</u>
- In more genetically diverse populations, and short LD decay for fine mapping – More Markers needed

ASSOCIATION MAPPING

- Genome wide
 Association Mapping
 (GWAS)
- Candidate gene
 Association Mapping

ADVANTAGES OF AM

Time saved in developing the population

Higher resolution

(Yu and Buckler, 2006)

RESOLUTION

ASSOCIATION EXAMPLE

	Genotype Data	Phenotype Data			
Genotyped Low LD SNP	NOT Genotyped Functional SNP	Genotyped High LD SNP	Berry N	lumber	
779 H.H.		C	W	15	
Α	т	С	T	14	
G	т	С	T	13	
Α	т	Т	T	12	
Α	т	С		11	
G	A	Т	P	10	
G	A	С	W	9	
Α	А	Т	A	8	
G	д	Т	W.	7	
Α	д	Т	W	6	

	ASSOCIATION RESULTS								
1	Functional SNP High LD SNP			Function	D SNP	Low L			
Alleles	Т	С	A	Т	Α	G			
Mean Berry Number	8.6	12.4	8.0	13.0	10.2	10.8			
P value of association tes	37	0.0	0.0011		0.77				
R ² - LD with functional SN	6	0.3	į.	0.04					

Myles et al. 2009

PROBLEMS OF AM:

I) Population structure

		Sub population 1							Sub population 2											
Height	10	10	12	11	13	9	11	10	13	12	4	6	5	7	6	6	4	5	9	5
Disease Resistance	S	S	S	Т	S	S	S	S	Т	S	Т	S	Т	Т	Т	Т	Т	S	Т	Т
SNP1	Т	Τ	Т	G	Τ	Т	Τ	Τ	G	Т	G	G	G	G	G	G	Τ	G	Т	G

2) Kinship

Family Relatedness

DIFFERENCES FROM QTLMAPPING

QTL mapping	Association Mapping
Uses bi-parental populations Ex: F ₂ , BC, RIL	Uses natural variation of the crop Ex: Landraces, Cultivars
Limited # of recombination events	Many recombination events from multiple lineages
Low resolution (QTL covers many cM)	High resolution (up to casual SNP)
Useful for discovering rare alleles	Common alleles

COMPARISON

- Linkage Correlated inheritance of loci through the physical connection on a chromosome,
- In QTL mapping, LD is generated by the mating design
- In a mapping population, LD is influenced only by recombination in the absence of segregation distortion,

- LD refers to the correlation between alleles in a population
- In AM, LD is a reflection of the germplasm collection under study.
- In AM, LD is influenced by selection, mutation, mating system, population structure as well as by recombination.

GWAS METHODOLOGY

GWAS METHODOLOGY

- I. Population and phenotyping
- 2. Genotyping (marker information)
- Imputation/ MAF Filtering
- 4. Covariates Population Structure/Kinship
- 5. Regression Multiple models
- 6. Model testing
- 7. QTL and significant markers
 - I. Significant markers for MAS
 - 2. Stepwise Regression
 - 3. Candidate genes
- 8. Validation

I. POPULATION

- Population with overall diversity
 - Ex: Landraces through out world
- Regional Population with local diversity
 - Cultivars used in ND

	Aspects of association mapping	Germplasm bank	Elite material
	Samples	Entries of a core collection	Inbred lines and cultivars
	Sample turnover	Static	Gradually substituted
	Source of phenotypic data	Phenotypic screenings	Replicated yield trials
	Type of traits	High heritability and domestication traits	Low heritability, yield
	Level of LD	Low	High
-	Population structuring	Medium	High
	Allele diversity among samples	High	Low
	Allele diversity within samples	Variable [†]	1 allele
-	Resolution of AM	High	Low
	Power of AM	Low	High
	Application of significant markers	Marker-assisted backcross	Marker-assisted selection

PHENOTYPING

- Data from multiple locations
 - Analysis for individual location
 - Analysis for combined locations
 - Using adjusted entry means (LS means)
 - Analysis is fast
 - Using location, replication etc as covariates in the linear model step
 - Data multiplied and analysis is slow

ADJUSTED ENTRY MEANS (LSMEANS)

- Example: I43 genotypes, 3 locations, 4 reps, 2 ratings, scale I-5
- Significant difference between locations, has G X E interaction

Genotype	Mean	Adjusted entry mean
ID1	2.77	2.76
ID10	3.27	3.25
ID101	1.64	1.46
ID105	2.54	2.51
ID107	3.13	3.07

Adjusts for significant effects

PHENOTYPIC DATA

Adjusted entry means:

$$y_{ijk} = \mu + g_i + l_j + r_{jk} + (gl)_{ij} + \epsilon$$

- ith genotype
- kth replication
- jth location,
- μ is an intercept term,
- g_i was the genetic effect of the ith genotype,
- l_i is the effect of jth location,
- r_{jk} was the effect of kth replicate at jth location,
- $(gl)_{ij}$ was the effect of genotype × environment interaction,
- ε was the residual.
- g_i is considered to be a fixed effect.
- Adjusted entry means (Mi) = u' + g'i, where u' and g'i denote the generalized least square estimates of u and gi, respectively.

2. GENOTYPING

- Low density
 - Ex: 200 (few) SSRs
- Medium density
 - Golden gate assay 1536 markers
- High Density
 - Arabidopsis 250,000 SNPs on Affymetrix chip
 - Next generation sequencing: thousands/millions
 - Example: ~ Ix coverage in soybean, 79000 snp
 - ~ 3x coverage/individual in a wild bean pool 10 million snp

3. IMPUTATION

- Predicting missing genotypes based on likelihood
- Increases power of AM
- All markers considered in mixed model, since mixed model does not run with missing data variables
- Facilitates Meta analysis
- Before and after Imputation

- Likelihood based PHASE, fastPHASE, BEAGLE
- Bayesian based BIMBAM

A) Raw data

Ind1 A T T G C ? C T G C Ind2 G C C A T T G C A A ? Ind3 A ? T G C G C T G C Ind4 G ? C A T T G A A C Ind5 G ? C A T T G A ? C

B)Make Haplotypes

Ind1 A T T G C ? C T G C
Ind3 A ? T G C G C T G C
Ind2 G C C A T T G A A ?
Ind4 G ? C A T T G A A C
Ind5 G ? C A T T G A ? C

c) Impute Missing and estimate likelihood

Ind1 A T T G C G C T G C Ind3 A T T G C G C T G C Ind2 G C C A T T G A A C Ind5 G C C A T T G A ? C

Repeated 'n' times with different starts and finally outputs one with highest likelihood

MINOR ALLELE FREQUENCY (MAF)

- Sequencing errors
- Leads to biased LD calculations
- Rare variants have little effect to discover QTL

4. POPULATION STRUCTURE/KINSHIP

- Estimate covariates that control for population structure
- Structure (software)
 - Assumes Hardy Weinberg
 - Lots of time
- PCA
 - Easy and most used

To avoid false positives

Li et al. 2008, Science

•Use sub population membership as covariates

Genotype	Subpop 1	Subpop 2	Subpop 3
Ind 1	0.9	0.02	0.08
Ind 2	0.2	0.7	0.1
Ind 3	0.1	0.85	0.05

• Estimation:

- Using Bayesian approaches like STRUCTURE, Instruct, BAPS, Admixture
 - Assume Hardy-Weinberg equilibrium
 - Time consuming
 - Subset of markers selected
 - Based on LD or a random set

PRINCIPAL COMPONENTANALYSIS (PCA)

- Infer continuous axes of genetic variation.
- Data reduced to a small number of dimensions
- Summarizes the overall variability among individuals, which includes both
 - the divergence between groups (i.e., structured genetic variability), and
 - the variation occurring within groups ('random' genetic variability).

NUMBER OF PRINCIPAL COMPONENTS

- Based on amount of variation explained
 - **25 %**
 - **50 %**
- Statistically
 - Based on P-value from Tracy Widom distribution (Patterson et al. 2006, Plos genetics)
 - Velicers Minimum Average Partial test (MAP) (Shriner 2011, Heredity)
- Others
 - Top 10
 - Top 3
- Recently using stepwise to determine which PCs
 - PCI, PC3, PC7

KINSHIPS

- A random effect in mixed model
- Used to calculate Genetic variance and residual variance
- Population structure describes remote common ancestry of large groups of individuals,
- Relatedness refers to recent common ancestry among smaller groups (often just pairs) of individuals.

Identity by Descent (IBD)

- Pedigree analysis
 - Pedigree is available for all genotypes
- Loiselle, Ritland coefficients
 - Genotypes are derived from a small subset of parents

Identity by State (IBS)

- Similarity matrix
 - % of shared alleles or distance
- Descent separated from Similarity
 - Similarity can be due to descent
 - Multiple steps of 'k'

5.REGRESSION-LINEAR MODELS

- GLM Only has fixed effects
- MLM Has both fixed and random effects

$$y = X\alpha + Q\beta + K\gamma + \epsilon$$

 ${f y}$ is a vector for phenotypic observations ${f \alpha}$ is the fixed effects related to the SNP marker ${f \beta}$ is a vector of the fixed effects related to the population structure, ${f \gamma}$ is a vector of the random effects related to the relatedness among the individuals, ${f \epsilon}$ is a vector of the residual effects. ${f X}$ is genotypes of the SNP markers, ${f Q}$ is the matrix of the subpopulation, ${f K}$ is the kinship matrix

The variances of the random effects were estimated as $Var(u) = 2KV_g$ and $Var(e) = IV_R$, where **K** is a kinship matrix, **I** is an identity matrix, V_g is the genetic variance, V_R is the residual variance.

- Regression analysis performed for one marker at a time
- V_g and V_R calculated for each marker **Exact Tests**
 - Implemented in SAS, EMMA, FAST-LMM, GEMMA, TASSEL
- If calculated only once to save computational burden –
 Approximate tests
 - Called as P3D/EMMAX algorithm
 - Implemented in TASSEL, EMMAX, GAPIT, GRAMMER

OTHER COMMON MODELS USED

- Wilcoxon test
 - A non parametric t-test
 - No effects included
- Logistic regression
 - When phenotype is logical (0 or 1)
- Generalized linear model
 - When phenotype is discrete (Ex: scale of I -5) or logical
 - Can include both fixed and random effects

K: Kinship

Arrow: adjustment Q: Population structure Population structure ö S: Pseudo QTNs

S_i: Testing marker

GAPIT Manual

MULTIPLE MODELS

- The best model is dependent of
 - Distribution of Phenotype
 - # of QTL governing Phenotype
 - Genotypes used
 - Sub population structure among individuals
 - Relatedness between individuals
 - Examples
 - Phenotype = Marker
 - Phenotype = Marker + Structure
 - Phenotype = Marker + Kinship
 - Phenotype = Marker + Structure + Kinship

Multiple Models suggested for every phenotype and/or population

6. MODEL SELECTION

- The residual errors follow a uniform distribution
 - MSD for each model for p-observed with p-expected
 - Q-Q Plot
 - MSD for each model
 - For each value sort p-values
 - Assign a rank (1,2...n), where n is number of markers
 - Expected p-value = Divide rank with 'n'
 - Subtract Expected p-value from Observed p-value
 - Square the difference and calculate mean

7. MARKER SIGNIFICANCE

- Bonferroni correction
 - 0.05 / # of markers
 - Multiple correction (FDR, pFDR)
 - Experimental error using permutations
 - · A simple regression model with 'n' permutations
 - Bootstrapping

STEPWISE REGRESSION

- To account for variation explained by all markers
- Minimize # of QTL/markers for MAS
- Considers LD (interchromosomal and intra chromosomal)
- No need of covariates
- Gives combined effect of all markers

EPISTASIS

Example:

- ml and m2 are significant
- In ANOVA include m I*m2 interaction effect
- Ex:With 33 significant markers at 0.1 percentile, 528 two way interactions were tested with a population structure component, and five interactions were significant at p-value<0.001.

VARIATION EXPLAINED

- Regression R²
- Likelihood based including effects (R²_{LR}; Sun et al. 2010)

$$R_{LR}^2 = 1 - \exp(-\frac{2}{n}(\log L_{\rm M} - \log L_0))$$

Log L_M is likelihood of Full model

Ex:
$$y = m_1 + PCA + kinship + \epsilon$$

Log L₀ is likelihood of reduced model

Ex:
$$y = PCA + kinship + \epsilon$$

EFFECT OF ALLELE

• The additive effect of the variant allele is calculated as half the difference between mean of the variant allele and mean of the reference allele.

- Ref allele mean = 10
- Var allele mean = 16
- Additive effect = 3

SIGNIFICANT MARKER ALLELIC COMBINATIONS

- Lets assume 3 significant markers
- 8 possible combinations (for SNP)
 - AAA 2.5
 - AAB 2.7
 - ABA 3.9
 - ABB 4.6
 - BAA 3
 - BAB 3.1
 - BBA 1.9
 - BBB 4.2

FUNCTIONAL ASPECTS

Annotate SNP - snpEff

QTLs

- A QTL region is defined as the region around significant stepwise markers that has a partial LD (r2) >0.6 with the adjacent marker (corresponds to partial correlation of 0.77).
- Adjacent blocks were combined if the distance is less than 10 kb and includes up to four markers that are not in LD with either of the block.

Phenotype

Means/Adjusted Means

Markers

Imputation

MAF

PCA and Kinship

- Regression (Multiple Models)
- Model Selection (MSD)
- Significant Markers (Bootsrap/Bonferroni/FDR)
- Stepwise Regression
- Allelic Effects; QTL regions; SNP Annotation

WHAT IS NEXT AFTER AM

- Evaluation: Markers should be evaluated on several different genetic backgrounds
- **Verification:** The association reported should be verified either through re-evaluation in an independent population sample or through allelic silencing / knock-outs.
- **Breeding:** The best alleles obtained through the study can be used for MAS.

I) CD ACCUMULATION IN DURUM WHEAT

- 96 near inbred lines (NILs) grown in the field in 2009 and 2010
- Screened for Illumina iSelect BeadChip platform for 9000 markers

2009		2010		
Model	MSD†	Model	MSD [†]	
PC16	0.00093	IBS	0.00688	
IBS	0.001166	Naive	0.005768	
PC6+IBS*	0.000283	PC16	0.000971	
PC6	0.001708	PC16+IBS*	0.000539	
Naive	0.050978	PC4	0.006497	
PC16+IBS	0.237218	PC4+IBS	0.004963	

Year	SNP marker	Chrom	Genetic position (cM)	- log10(p)	_R 2	MAF
	Ex-c1996-3754394	2B	7.25	3.52	3.04	47.92
	Ra-rep-c106727- 90434958	2B	7.25	3.52	3.04	47.92
2009	Ex_c2098_3934284	-	_	3.52	3.04	47.92
	Ex-c17754-26503892	5B	165.7	5.26	33.74	12.50
2010	Ex-c20019-29052512	5B	178.3	3.99	26.96	11.45

2) GERMINATION INBARLEY: DR. HORSLEY, ANA MARIA, SUJAN

- 8 breeding programs
- 4 years
- 96 lines each
- 4 regression models

3) SEED WEIGHT IN LUPINUS

- 122 Plant introductions (PI) lines
- 2277 AFLP bands, 892 polymorphic

Marker	MAF	Minor allele mean	Major allele mean	p value	\mathbb{R}^2
ECAGMCGC76	0.148	24.65	30.65	1.53E-04	22.69
ECACMCGC105	0.459	27.99	31.3	2.30E-04	20.50

4) FHB IN WHEAT

- 171 BC₁F₇ and 169 BC₁F₆ lines
- 2300 Dart markers

5) IRON DEFICIENCY CHLOROSIS (IDC) IN SOYBEAN

- ~ I40 advanced breeding lines of ND
- 1536 golden gate assay

Model	Statistical model
Naïve	$y = X + \varepsilon$
K	$y = X\alpha + K\nu + \varepsilon$
K *	$y = X\alpha + K^*\nu + \varepsilon$
Q	$y = X\alpha + Q\beta + \varepsilon$
PCA	$y = X\alpha + P\beta + \epsilon$
Q + K	$y = X\alpha + Q\beta + K\nu + \varepsilon$
Q + K*	$y = X\alpha + Q\beta + K^*\nu + \varepsilon$
PCA + K	$y = X\alpha + P\beta + K\nu + \varepsilon$
PCA + K*	$y = X\alpha + P\beta + K^*\nu + \varepsilon$

Mamidi et al. 2011

			2005		2006								
BARC SNP marker	Chromosome	-log10(<i>p</i>)	pFDR [†]	R ² (%)	Minor allele frequency	Minor allele mean	Major allele mean	-log10(p)	pFDR	R ² (%)	Minor allele frequency	Minor allele mean	Major allel mean
BARC-029969-06762	2	2.707	0.046	11.8	49.0	3.0	2.7	7.531	0.000	24.3	40.4	2.9	2.5
BARC-044603-08734	3	3.661	0.022	14.9	40.6	2.7	3.0	4.898	0.001	15.7	45.4	2.5	2.8
BARC-060109-16388	3	3.321	0.024	16.3	46.2	2.7	3.0	3.781	0.003	13.9	47.5	2.5	2.8
BARC-016535-02085	3	2.886	0.046	15.3	46.9	2.7	3.0	3.781	0.003	13.9	47.5	2.5	2.8
BARC-010457-00640	6	2.185	0.076	0.1	39.9	2.8	2.9	4.018	0.002	2.6	44.7	2.6	2.7
BARC-039383-07310	7	3.114	0.034	17.8	21.7	2.5	3.0	4.548	0.002	13.5	21.3	2.3	2.7
BARC-025897-05144	13	2.309	0.067	15.2	38.5	3.1	2.7	4.008	0.002	15.9	37.6	2.9	2.5
BARC-055499-13329	13	2.420	0.058	9.4	31.5	3.1	2.8	2.602	0.021	13.4	27.0	2.9	2.6
BARC-059723-16418	19	3.415	0.022	15.4	44.8	2.7	3.0	4.124	0.002	10.7	31.2	2.4	2.8

All 9 markers combined explain 43.7 % in 2005 and 47.6 % in 2006

				2005			2006							
BARC marker	Chromosome	SNP [†] position (bp)	-log10 (p)	pFDR	R ² (%)	-log10 (p)	pFDR	R ² (%)	At [‡] gene	Gm§ gene model	Start of model (bp)	Distance from SNP (bp)	E-value	Percent identity
BARC-060109-16388	3	45,391,018	3.32	0.02	16.26	3.78	0.00	13.94	NAS3	Glyma03g39050	45,279,921	111,097	5.00 E × 10 ⁻¹⁰⁹	62.9
BARC-053261-11776	5	937,302	2.21	0.08	0.72				AHA2	Glyma05g01460	960,820	23,518	0	81.1
BARC-021775-04203	5	41,114,078	0.08	0.53	0.07	2.47	0.03	9.30	BTI2-ITP	Glyma05g37300	40,906,083	207,995	$1.00 \text{ E} \times 10^{-95}$	65.7
BARC-054331-12480	7	8,652,831				1.72	0.09	4.78	BTI2-ITP	Glyma07g10870	9,082,076	429,245	$2.00 \text{ E} \times 10^{-45}$	36.8
BARC-049147-10810	9	35,895,343	0.44	0.38	0.73	2.07	0.05	1.50	YSL7	Glyma09g29410	36,298,317	402,974	0	54.6
BARC-062275-17736	11	38,020,165	0.02	0.56	1.64	2.63	0.02	0.18	FER4	Glyma11g35610	37,245,783	774,382	$7.00 \text{ E} \times 10^{-103}$	73.2
BARC-017917-02456	13	30,457,599	2.17	0.08	7.83				FRD3	Glyma13g27300	30,477,485	19,886	$2.00 \text{ E} \times 10^{-137}$	54.7
BARC-043041-08509	15	48,694,193	2.71	0.05	12.66	0.94	0.26	9.24	IRTI	Glyma15g41620	48,764,845	70,652	$8.00 \text{ E} \times 10^{-80}$	43.5
BARC-030595-06910	16	3,039,691	0.09	0.53	4.55	1.93	0.06	7.72	FR02	Glyma16g03770	3,142,668	102,977	0	57.7
BARC-011625-00310	16	36,544,010	0.26	0.45	0.47	2.28	0.04	2.79	YSL7	Glyma16g33840	36,609,082	65,072	0	73.4
BARC-043087-08524	17	4,899,023	3.44	0.02	0.25	1.37	0.16	1.35	AHA2	Glyma17g06930	4,977,823	78,800	0	87.7
BARC-012289-01799	18	1,957,710				1.78	0.08	2.07	FER4	Glyma18g02800	1,821,344	136,366	$6.00 \text{ E} \times 10^{-102}$	75.1
BARC-016867-02359	18	56,429,447	1.26	0.19	2.77	2.11	0.05	6.63	FRO2	Glyma18g47060	56,712,622	283,175	0	52.2
BARC-059723-16418	19	40,357,687	3.42	0.02	15.41	4.12	0.00	10.68	OPT1	Glyma19g32400	40,140,993	216,694	$3.00 \text{ E} \times 10^{-146}$	47.4
BARC-042281-08231	20	343,106	0.22	0.47	2.33	1.96	0.06	8.58	YSL7	Glyma20g00690	418,225	75,119	0	62.8

6) IDC – 9 LOCI CONFIRMATION -SUJAN MAMIDI

	Orig Popul		Confirmation Population					
	2005	2006	2008	2009	2010			
# of Genotypes	143	141	265	201	245			
# of Locations	5	4	5	3	5			
# of Reps	4	4	4	4	4			
Range of IDC score	1.5-3.8	1.6-3.8	1.9-4.1	1.6-4.2	1.6-3.1			
Average IDC Score	2.9	2.7	3.1	3	2.3			

Marke Ch	r	029969- 06762	016535- 02085	044603- 08734	060109- 16388	010457- 00640	039383- 2 07310	025897- 5144	055499- E 13329	059723-
Mbp		2.45	45.42	45.00	45.39	45.28	7.15	27.14	31.47	40.35
	p-val	2.71	3.66	3.32	2.89	2.19	3.11	2.31	2.42	3.42
2005	R-sq	11.80	14.90	16.30	15.30	0.10	17.80	15.20	9.40	15.40
	p-val	7.53	4.90	3.78	3.78	4.02	4.55	4.01	2.60	4.12
2006	R-sq	24.30	15.70	13.90	13.90	2.60	13.50	15.90	13.40	10.70
	p-val	3.15	11.39	8.11	11.39	1.35	3.77	8.27	3.06	6.65
2008	R-sq	8.71	14.28	12.75	14.28	0.85	11.11	17.13	10.75	10.97
	p-val	0.75		2.68		0.26	0.77	1.95	1.12	1.74
2009	R-sq	6.74	9.54	3.78	9.54	0.59	5.93	4.86	4.26	6.88
	p-val	0.71	6.13	5.47	6.13	0.44	0.55	1.39	4.15	7.85
2010	R-sq	3.71	16.49	14.73	16.49	3.19	6.74	3.02	9.98	18.07

7) IDC – GBS DATA -PHILLIP MCCLEAN AND SUJAN MAMIDI

- •# of Genotypes: 132 and 138 in 2005 and 2006
- 79000 data points obtained
- 34,435 and 35185 SNP at 0.05 MAF

IDC-BULK SEGREGANT ANALYSIS

- •15 resistant (IDC range 1.13 2.6)
- 16 susceptible (IDC range 2.3 4.7)
- 100bp paired end reads from Illumina GAII®
- SNPs between Resis and Susc
 - All 1,706,873
 - Fixed 37,885

REFERENCES:

- Abdurakhmonov and Abdukarimov 2008.International Journal of Plant Genomics: 574927
- Astle and Balding. 2009. Statistical Science 24: 451-471
- Balding 2006. Nature Reviews Genetics 7:781
- Flint-Garcia et al. 2003. Annu. Rev. Plant Biol. 54:357-74
- Gupta et al. 2005. Plant Molecular Biology 57:461-485
- Hamblin et al.2011. Trends in Genetics 27: 98
- Myles et al. 2009. The Plant Cell, 21: 2194-2202
- Rosyara UR and Joshi BK, 2012. Nepal Journal of Biotechnology, 2: 72-89
- Zhu et al. 2008. The Plant Genome 1:5-20