Álgebra Moderna Tarea 2.8

Tomás Ricardo Basile Álvarez 316617194

4 de noviembre de 2020

- a) Sea $K \triangleleft G$. Prueba que son equivalentes:
 - a1) Si $K \le H \le G$, entonces H = K ó H = G
 - a2) |G/K| = p con p primo

Por el teorema de correspondencia, si consideramos el conjunto $X := \{H \leq G \mid K \leq H\}$ y el conjunto $Y := \{\mathcal{H} \mid \mathcal{H} \leq G/K\}$. Entonces la correspondencia $\phi : X \to Y$ definida por $\phi(H) = H/K$ es una función biyectiva.

Es decir, hay una correspondencia biyectiva entre los subgrupos H de G que contienen a K y los subgrupos de G/K.

Por otro lado, debemos recordar tambień que un grupo M es de orden p primo si y sólo si no tiene subgrupos distintos de los triviales. Pues si M es de orden primo, por el teorema de Lagrange, no puede tener subgrupos no triviales.

Y para el regreso, si el grupo M no tiene subgrupos no triviales, esto implica que el generado de cualquier elemento m es igual todo el grupo M (sino sería un subgrupo no trivial), lo que implica que M es cíclico. Pero los grupos cíclicos tienen un subgrupo (no trivial) por cada divisor (no trivial) de |M|, por lo que la única forma de que no tenga subgrupos triviales es que el orden de M no tenga divisores fuera es los triviales, que |M| sea primo.

 \Leftarrow) Si G/K tiene orden primo \Rightarrow no tiene subgrupos no triviales \Rightarrow los únicos subgrupos de G/K son el neutro y el propio G/K. Entonces G/K tiene solamente dos subgrupos.

Luego, como hay una correspondencia biyectiva entre los subgrupos de G/K y los grupos H que cumplen $K \leq H \leq G$ por el teorema de correspondencia, entonces solamente existen dos grupos H con $K \leq H \leq G$. Y estos tienen que ser claramente el propio K y todo G.

 \Rightarrow) Si los únicos grupos H que cumplen que $K \leq H \leq G$ son K y G, entonces eso implica que G solamente tiene dos subgrupos que contienen a K.

Por el teorema de correspondencia, esto implica que solamente hay dos subgrupos de

|G/K|, que tienen que ser los triviales. Lo cual, por lo visto arriba, implica que |G/K| tiene orden primo.

b) Prueba que $S_4/V_0 \simeq S_3$ (da por hecho que V_0 es normal)

 V_0 es isomorfo a $\mathbb{Z}_2 \times \mathbb{Z}_2$. Por lo tanto, $|V_0| = |\mathbb{Z}_2 \times \mathbb{Z}_2| = 4$. Por otro lado, $|S_4| = 24$. Por lo tanto, $|S_4/V_0| = |S_4|/|V_0| = 24/4 = 6$.

Por lo que S_4/V_0 es isomorfo a algún grupo de orden 6. En la clase 10 vimos que los grupos de orden 6 son necesariamente isomorfos a $D_{2(3)}$ o bien a \mathbb{Z}_6 . También hemos visto que $D_{2(3)} \simeq S_3$.

Por lo que S_4/V_0 es necesariamente isomorfo a S_3 o a \mathbb{Z}_6 .

Sin embargo, para que S_4/V_0 fuera isomorfo a \mathbb{Z}_6 , tendría que ser cíclico, lo cual es imposible, porque si suponemos que S_4/V_0 es cíclico, entonces $S_4/V_0 = \langle aV_0 \rangle$ para $a \in S_4$. Pero esto implica que aV_0 tiene orden 6 y por tanto, a tiene orden de por lo menos 6 (porque si a tuviera orden m menor a 6, entonces el conjunto $\langle aV_0 \rangle = \{V_0, aV_0, (aV_0)^2 = a^2V_0, ...\}$ se empezaría a repetir cuando lleguemos a $(aV_0)^m = a^mV_0 = V_0$, lo que implica que aV_0 tiene menos de 6 elementos).

Pero que a tenga orden mayor o igual a 6 es una contradicción, porque los elementos de S_4 tienen a lo sumo orden 4.

Por tanto, S_4/V_0 no es isomorfo a \mathbb{Z}_6 y debe de entonces ser isomorfo a S_3 .

c) Si $f:G\to\mathbb{Z}_6$ es morfismo sobreyectivo y |Ker(f)|=3, prueba que |G|=18

Por el primer teorema de isomorfismos, sabemos que $G/K \simeq Im(f)$. Pero como f es sobreyectiva, entonces $Im(f) = \mathbb{Z}_6$. Por lo tanto, $G/K \simeq \mathbb{Z}_6$.

Pero entonces, $|G/K| = |Z_6| \Rightarrow |G|/|K| = |Z_6|$

Y entonces $|G| = |K||Z_6| = 3 \cdot 6 = 18$

d) Si G es cíclico de orden n > 1, describe todos los subgrupos maximales de G (decimos que $H \subseteq G$ es normal maximal si no existe $K \subseteq G$ tal que $H \subsetneq K \subsetneq G$)

Como G es cíclico, entonces es abeliano. Por lo tanto, todos los subgrupos de G son normales. Entonces para encontrar un subgrupo normal maximal, hay que encontrar un $H \leq G$ tal que no existe $K \leq G$ con $H \subsetneq K \subsetneq G$ (los \unlhd se pueden cambiar por \leq porque todo subgrupo es normal).

Sabemos que un grupo cíclico de orden n se puede asociar con el grupo \mathbb{Z}_n y de ahora en adelante veremos a G como Z_n . Y sabemos que los únicos subgrupos de \mathbb{Z}_n son aquéllos generados por los factores de n. Además, si $\overline{p}, \overline{q} \in \mathbb{Z}_n$, entonces se cumple que $\langle \overline{p} \rangle \subset \langle \overline{q} \rangle$ si y sólo si q divide a p.

Queremos encontrar un subgrupo H de \mathbb{Z}_n tal que no haya un subgrupo propio más grande que lo contenga. Pero todos los subgrupos de \mathbb{Z}_n son cíclicos generados por un factor de n, por lo que queremos encontrar un $H = \langle \overline{p} \rangle$ tal que no exista ningún $K = \langle \overline{q} \rangle$ con $H \leq K \leq G$.

Por lo dicho en el párrafo anterior, esto es lo mismo que pedir que ningún q divida a p.

Por lo tanto p debe de ser primo. Y los grupos maximales normales de \mathbb{Z}_n son aquéllos generados por un factor primo de n.