Aprendizagem Aplicada à Segurança

(Mestrado em Cibersegurança-DETI-UA)

Petia Georgieva (petia@ua.pt)

DETI/IEETA University of Aveiro

AI - the new Electricity

Artificial Intelligence (AI) will influence every industry.

McKinsey estimated 13 trillion dolars of global GDP value creation by 2030 due to AI.

Software Industry (strongly affected by AI): Web Search; On-line Advertysing; Language translation; Social Media

Non-Software Industry (still long way to go): Manifacture, Agriculture,

Retail, Transportation, Logistics, etc.

AAS - Machine Learning (ML) module Starts on 26/Nov/2021 (7th week)

- Anomaly Detection
- Supervised learning –regression
- Supervised learning classification
- Unsupervised learning clustering
- Deep Learning introduction

Why ML?

- Grew out of work in Artificial Intelligence and increasing computational resources.
- Exponential growth of data need for data mining (IoT, medical records, biology, engineering, etc.)
- Applications can't be explicitly programed by hand.
 - ✓ Autonomous driving;
 - ✓ Computer Vision;
 - ✓ Natural Language Processing (Speech recognition, Machine translation)
 - ✓ User behaviour monitoring (Sentiment classification, Video activity recognition) .

ML advance is due to the rise of

- **Data** (lots of sensors) + Computational resourses
- **Talents** (Easy to access AI courses on MOOC, Coursera, University)
- Ideas (100 AI papers/per day)
- **Tools** (open source platforms Pytorch, Kerras, Tensorflow, mxnet, etc.)

Machine Learning - "definition"

"A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E." **(T. Mitchell 1998)**

Given

- a task T (e.g. classify spam/regular emails)
- a performance measure P (weighted sum of mistakes)
- some experience E with the task (e.g. hand-sorted emails)

Goal

- generalize the experience in a way that allows to improve the machine performance on the task

Learning to classify documents

Web page:

Company, Personal, University, etc.

Articles:

Sport, Political, History, etc.

Computer Vision (1)

Learning to detect & recognize faces

Computer Vision (2)

Image classification: input a picture into the model and get the class label (e.g. person, bike, car, background, etc.)

Classification & localization: the model outputs not only the class label of the object but also draws a bounding box (the coordinates) of its position in the image.

Detection: the model detects and outputs the position of several objects.

Time Series (TS) Data

<u>Time Series</u> - collection of data points indexed based on the time they were collected . Most often, data are recorded at regular time intervals.

Sarker, I.H., Kayes, A.S.M., Badsha, S. *et al.* Cybersecurity data science: an overview from machine learning perspective. *Journal of Big Data* 7, 41 (2020).

ML workflow

Train: Iterate until achieve satisfactory performance.

Predict: Integrate trained models into applications.

All starts with data collection

- Plan data recording to cover all sources of variation related to
- ✓ target (different events, anomalies)
- ✓ background (noise, different environments and conditions)
- ✓ equipment (different sensors, placement).

Collect iteratively

ML works best as an iterative process.

- ✓ Collect data to build a basic model that proves the effectiveness of the technique, even if not yet for the full range of expected variations.
- ✓ Take more data and build a model to get acceptable accuracy in wide range of variations.
- ✓ Take more data and focus on model optimization to get the best possible performance.

All starts with data collection

Data collection and labelling is the most expensive, most timeconsuming aspect of any ML project.

- ✓ **Use rich data.** Collect the least pre-processed signal data from sensors. Compression algorithms often discard important information.
- ✓ **Use too high sample rates.** Collect at the highest sample rate possible in the early stages. Down-sampling in software is easy and cheap. Going back and recollecting data is difficult and expensive.

Data Preprocessing & Feature Extraction

Data preprocessing

Remove outliers, impute missing data, normalize data

Feature extraction (hand-crafted features by domain experts)

Traditional statistics: mean, median, standard deviation, auto-correlation

More parameters : Skewness, Kurtosis

Frequency domain: power spectrum, dominant frequency

Tme series: time related features trend, seasonality, residuals per month, day of week, hour.

Feature Engineering

Ex. Monitoring computers in a data center

Basic features:

- memory use of computer
- number of disc accesses /sec
- CPU load
- network traffic

New features:

- CPU load /network traffic
- (CPU load)^2 /network traffic

Feature Engineering

Anomaly detection often assume the feature has a Gaussian distribution

....and if not?

Feature Engineering

Popular feature transformations =>

- log(x)• log(x+c)• \sqrt{x}

for example:

$$\rightarrow \log(x)$$

Machine Learning Approaches

Supervised Learning

Given examples with "correct answer" (labeled examples)

(e.g. given dataset with spam/not-spam labeled emails)

Unsupervised Learning

Given examples without answers (no labels).

Reinforcement Learning

On-line learning by taking actions and getting rewards/penalties. (intelligent robotics =>

19

Deep Learning

Automatically extract hidden features (in contrast to hand-crafted features). Need a lot of data (Big data). Need for very high computational resources

Supervised Learning

Requires labeled data (examples with "correct answer").

Regression: The model output is a real number

Ex. Time series forecasting (predict the network traffic)

Classification: The model output is a label (e.g. 0, 1).

Ex. Learn to predict normal (0) or abnormal (1) state of data center computers:

- memory use of computer; number of disc accesses /sec;
- CPU load; network traffic

Unsupervised Learning

Given unlabeled data (examples without answers).

Social network analysis

Clustering: Given a collection of examples (e.g. user profiles with a number of features). Each example is a point in the multidimensional space of features. Find a similarity measure that separates the points into clusters.

-K-means clustering

Raw Data Clustering

Preprocessing: Group data into clusters with similar patterns

Data Types

Numeric (Quantitative) features - Integer / Real numbers

Boolean – True/False

Categorical features - days of the week, seasons, country, colors, etc.

How to deal with categorical features? -

One-hot encoding (1,0) transforms n categories into n features

Color	Red	Yellow	Green
Red			
Red	1	0	0
Yellow	1	0	0
Green	0	1	0
Yellow	0	0	1

Data Visualization

• Histograms

- Show the distribution of values of a single feature
- Divide the range of values of a single feature into bins and show bar plots of the number of examples in each bin.
- Histogram shape depends on the number of bins

Data Visualization

• **Histograms** with class distribution notation

Data Visualization

Box Plots

Another way of displaying the distribution of data

ML Lab framework

1) Install Anaconda 3 for Python 3:

https://www.anaconda.com/distribution/

2) Learn how to use Jupyter Notebook (part of Anaconda)

https://www.dataquest.io/blog/jupyter-notebook-tutorial/

Recommended BIBLIOGRAPHY

Books:

- Andrew Ng, "Machine Learning Yearning", 2018
 https://www.deeplearning.ai/machine-learning-yearning
- Ian Goodfellow, Yoshua Bengio, Deep Learning, MIT Press, 2016.
 http://faculty.neu.edu.cn/yury/AAI/Textbook/DeepLearningBook.pdf

ML courses:

- http://cs229.stanford.edu/
- MOOC (Massive Open Online Courses)
 https://www.coursera.org/

