```
import time
st_time = time.time()
# !pip·install·autoviz
from autoviz.AutoViz_Class import AutoViz_Class
%matplotlib inline
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import f1_score, confusion_matrix, ConfusionMatrixDisplay
from sklearn.preprocessing import StandardScaler ,RobustScaler
from sklearn.svm import SVC,LinearSVC
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.pipeline import Pipeline, make pipeline
from sklearn.model_selection import train_test_split
trpath = '/content/drive/MyDrive/train.csv'
traindf = pd.read csv(trpath)
traindf
```

battery_power blue clock_speed dual_sim fc four_g int_memory m_dep mob

traindf.describe()

	battery_power	blue	clock_speed	dual_sim	fc	four_g	
count	2000.000000	2000.0000	2000.000000	2000.000000	2000.000000	2000.000000	1
mean	1238.518500	0.4950	1.522250	0.509500	4.309500	0.521500	
std	439.418206	0.5001	0.816004	0.500035	4.341444	0.499662	
min	501.000000	0.0000	0.500000	0.000000	0.000000	0.000000	
25%	851.750000	0.0000	0.700000	0.000000	1.000000	0.000000	
50%	1226.000000	0.0000	1.500000	1.000000	3.000000	1.000000	
75%	1615.250000	1.0000	2.200000	1.000000	7.000000	1.000000	
max	1998.000000	1.0000	3.000000	1.000000	19.000000	1.000000	

8 rows × 21 columns

traindf.isnull().sum()

```
battery_power
blue
                0
clock_speed
                0
dual_sim
fc
                0
four_g
int_memory
m dep
                0
mobile_wt
n_cores
рс
px_height
px_width
                0
ram
sc_h
SC_W
talk_time
                0
three_g
touch_screen
                0
wifi
                0
price_range
dtype: int64
```

```
# AV = AutoViz_Class()
# piz = AV.AutoViz(
# trpath,
# sep=',',
```

```
# chart_format = 'html', # 'server,'html,'png'
# verbose = 2
# )
# pez = AV.AutoViz(
# tspath,
# sep=',',
# chart_format = 'html', # 'server,'html,'png'
# verbose = 2
# )

y = traindf['price_range']
y = pd.DataFrame(y)
y
```

price_range						
1						
2						
2						
2						
1						
0						
2						
3						
0						
3						
	1 2 2 2 1 0 2 3					

2000 rows × 1 columns

```
x = traindf.drop(['price_range'],axis=1)
x
```

	batt	ery_power	blue	clock_speed	dual_sim	fc	four_g	int_memory	m_dep	ı
	0	842	0	2.2	0	1	0	7	0.6	
	1	1021	1	0.5	1	0	1	53	0.7	
	2	563	1	0.5	1	2	1	41	0.9	
	3	615	1	2.5	0	0	0	10	0.8	
	4	1821	1	1.2	0	13	1	44	0.6	
<pre>x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2)</pre>										
x_tra:	in.shape, x	_test.shap	e, y_t	rain.shape, y	/_test.shap	oe				
	((1600, 20)	, (400, 20), (16	00, 1), (400,	1))	-	1	+∪	V. 1	
my_s	r_scaler(my scaler.fit_ scaler.fit_	_scaler,my transform(_x_tra my_x_t	in,my_x_test) rain)	:					
_	y_modelfit(model.fit(m	- —		ain,my_y_trai train)	Ln):					
у_рі	y_predict(m red = my_mo urn y_pred			•						
f1 :	y_f1_score(= f1_score(urn f1			red): pred, average	e="micro")					
cm_i	norm = np.r heatmap(cm cb	_matrix(my ound(cm/np _norm,cmap	_y_tes .sum(c ='Gree	y_pred): t, my_y_pred) m,axis=1).res ns',annot=Tru tion' : 'vert	shape(-1,1) ue,	•	: 'Color	^ bar'},		
plt plt # cr # cr	.xlabel('Proceeds of the control of	tual') Confusion	Matrix	Display(cm)						
clf1 :	SVC(kernel = GaussianN = KNeighbor	B()		ighbors=5)						

mob

```
clf3 = DecisionTreeClassifier()
clf4 = RandomForestClassifier()
clf5 = SVC(kernel= 'rbf',C=5)
clf5 = LinearSVC()
Sscaler = StandardScaler()
Rscaler = RobustScaler()
my_pipe = make_pipeline(cr_scaler(Sscaler, x_train, x_test), my_modelfit(clf, x_train, y_t
y_pred_res = my_predict(clf,x_test)
print(my_f1_score(y_test,y_pred_res))
my_conf_matrix(y_test,y_pred_res)
my_pipe1 = make_pipeline(cr_scaler(Sscaler, x_train, x_test), my_modelfit(clf1, x_train, y
y_pred_res1 = my_predict(clf1,x_test)
print(my_f1_score(y_test,y_pred_res1))
my_conf_matrix(y_test,y_pred_res1)
my_pipe2 = make_pipeline(cr_scaler(Sscaler, x_train, x_test), my_modelfit(clf2, x_train, y
y_pred_res2 = my_predict(clf2,x_test)
print(my_f1_score(y_test,y_pred_res2))
my_conf_matrix(y_test,y_pred_res2)
my_pipe3 = make_pipeline(cr_scaler(Sscaler, x_train, x_test), my_modelfit(clf3, x_train, y
y_pred_res3 = my_predict(clf3,x_test)
print(my_f1_score(y_test,y_pred_res3))
my_conf_matrix(y_test,y_pred_res3)
my_pipe4 = make_pipeline(cr_scaler(Sscaler, x_train, x_test), my_modelfit(clf4, x_train, y
y_pred_res4 = my_predict(clf4,x_test)
print(my_f1_score(y_test,y_pred_res4))
my_conf_matrix(y_test,y_pred_res4)
my_pipe5 = make_pipeline(cr_scaler(Sscaler, x_train, x_test), my_modelfit(clf5, x_train, y
y_pred_res5 = my_predict(clf5,x_test)
print(my_f1_score(y_test,y_pred_res5))
my_conf_matrix(y_test,y_pred_res5)
```


0.8075

0.8975

0.8225


```
my_pipe6 = make_pipeline(cr_scaler(Rscaler, x_train, x_test), my_modelfit(clf, x_train, y_
y_pred_res6 = my_predict(clf,x_test)
print(my_f1_score(y_test,y_pred_res6))
my_conf_matrix(y_test,y_pred_res6)
my_pipe7 = make_pipeline(cr_scaler(Rscaler, x_train, x_test), my_modelfit(clf1, x_train, y
y_pred_res7 = my_predict(clf1,x_test)
print(my_f1_score(y_test,y_pred_res7))
my_conf_matrix(y_test,y_pred_res7)
my_pipe8 = make_pipeline(cr_scaler(Rscaler, x_train, x_test), my_modelfit(clf2, x_train, y
y_pred_res8 = my_predict(clf2,x_test)
print(my_f1_score(y_test,y_pred_res8))
my_conf_matrix(y_test,y_pred_res8)
my_pipe9 = make_pipeline(cr_scaler(Rscaler, x_train, x_test), my_modelfit(clf3, x_train, y
y pred res9 = my predict(clf3,x test)
print(my_f1_score(y_test,y_pred_res9))
my_conf_matrix(y_test,y_pred_res9)
my_pipe10 = make_pipeline(cr_scaler(Rscaler, x_train, x_test), my_modelfit(clf4, x_train,
y_pred_res10 = my_predict(clf4,x_test)
print(my_f1_score(y_test,y_pred_res10))
my_conf_matrix(y_test,y_pred_res10)
my pipe11 = make pipeline(cr scaler(Rscaler, x train, x test), my modelfit(clf5, x train,
y_pred_res11 = my_predict(clf5,x_test)
print(my_f1_score(y_test,y_pred_res11))
my conf matrix(y test,y pred res11)
```


0.8075

0.8975

0.8275

