# **CS440/ECE448 Fall 2016**

# Artificial intelligence Assignment 3: Naive Bayes Classification

# **Work Distribution:**

Part 1: Yifei Li

Part 2: Bangqi Wang

13th Nov, 2016

# Part 1: Digit classification

The goal of this assignment is to implement Naive Bayes classifiers and to apply it to the task of classifying digit and face data.

# **General Implementation**

The basic idea of applying image classification is to first calculate likelihood and prior probability on the training set and then calculate posteriori probability according to the previous step. There are 28\*28 pixels in each training image and '+', '#' indicates it is foreground and '' denotes background. For this part, we don't distinguish between two foreground value but will differentiate them later.

In step 1, there are two probabilities that needs to be calculated, Prior and likelihood. The likelihood is defined as  $P(F_{ij} | class)$  for every pixel location (i, j) and for every digit class. More specifically:

 $P(F_{ij} = f \mid class) = (\# of times pixel (i, j) has value f in training examples from this class) / (Total # of training examples from this class)$ 

Note that in order to dealing with feature that were never seen or seen too few times, we experiment with few laplace smoothing constant for best accuracy. Finally, the constant k works best when it is equal to 1.

The prior probability is simply obtained by count frequencies of each digit in the example set.

In step 2, now we should use the likelihood and prior we have to predict the class of testing image. This is achieved by performing **maximum a posteriori (MAP)** classification of test images. We calculate:

$$P(class) \cdot P(f_{1,1} \mid class) \cdot P(f_{1,2} \mid class) \cdot ... \cdot P(f_{28,28} \mid class)$$

In order to avoid underflow, the log version should be used:

```
\log P(class) + \log P(f_{1,1} | class) + \log P(f_{1,2} | class) + ... + \log P(f_{28,28} | class)
(Note we need to calculate the posteriori probability for class 0-9)
```

After calculating probability for all classes, we pick the class with largest probability and use it as our prediction.

# **Classification results**

Our model achieves 77.1% overall accuracy on all digit classes. The classification result for each digit is reported as follows:

```
Overall: 0.771
Classification rate for digit 0: 0.844
Classification rate for digit 1: 0.963
Classification rate for digit 2: 0.777
Classification rate for digit 3: 0.79
Classification rate for digit 4: 0.766
Classification rate for digit 5: 0.674
Classification rate for digit 6: 0.758
Classification rate for digit 7: 0.726
Classification rate for digit 8: 0.602
Classification rate for digit 9: 0.8
```

Also, we calculate the confusion matrix and most/least prototypical instance for better understanding of the learning result. (the original confusion matrix from program output is messy...so we manually input the matrix here)

# **Confusion Matrix**

|   | 0     | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     |
|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 0 | 0.844 | 0.0   | 0.011 | 0.0   | 0.011 | 0.056 | 0.033 | 0.0   | 0.044 | 0.0   |
| 1 | 0.0   | 0.963 | 0.009 | 0.0   | 0.0   | 0.019 | 0.009 | 0.0   | 0.0   | 0.0   |
| 2 | 0.01  | 0.029 | 0.777 | 0.039 | 0.01  | 0.0   | 0.058 | 0.01  | 0.049 | 0.019 |
| 3 | 0.0   | 0.02  | 0.0   | 0.079 | 0.0   | 0.03  | 0.02  | 0.06  | 0.02  | 0.06  |
| 4 | 0.0   | 0.009 | 0.0   | 0.0   | 0.766 | 0.0   | 0.028 | 0.009 | 0.019 | 0.168 |
| 5 | 0.022 | 0.022 | 0.011 | 0.13  | 0.033 | 0.674 | 0.011 | 0.011 | 0.022 | 0.065 |
| 6 | 0.011 | 0.066 | 0.044 | 0.0   | 0.044 | 0.055 | 0.758 | 0.0   | 0.022 | 0.0   |
| 7 | 0.0   | 0.057 | 0.028 | 0.0   | 0.028 | 0.0   | 0.0   | 0.726 | 0.028 | 0.132 |
| 8 | 0.019 | 0.01  | 0.029 | 0.136 | 0.019 | 0.058 | 0.0   | 0.01  | 0.602 | 0.117 |
| 9 | 0.01  | 0.01  | 0.01  | 0.03  | 0.09  | 0.02  | 0.0   | 0.02  | 0.01  | 0.8   |

Row represents Truth, Column represents prediction

# Most/Least prototypical instance

| -2510 -2510 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -25105 -251 | +5+ +5+ +5+ +5+ +5+ +5+ +5+ +5+ +5+ +5+                                                                                | ++####################################  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Most (image: 723)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Most (image: 633)                                                                                                      | Most (image: 795)                       |
| Least (image: 610)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Least (image: 993)                                                                                                     | Least (image: 50)                       |
| +#####################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | + +# +# +# +# +# +## +## +## +## +## +## +### +## +### +## +### +### +### +### ### +### ### +###  ### +####  ### +#### | ++3+  ++3+  ++3+  ********************* |
| Most (image: 205)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Most (image: 111)                                                                                                      | Most (image: 471)                       |
| Least (image: 291)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Least (image: 253)                                                                                                     | Least (image: 70)                       |
| +##  +##  +###  +###  +###  +###  +###  +###  +###  +###  +###  +###  +###  +###  +###  +###  +###  +###  +###  +###  +###  +###  +###  +###  +###  +###  +###  +###  +###  +###  +###  +###  +###  +###  +###  +###  +###  +###  +###  +###  +###  +###  +###  +###  +###  +###  +###  +###  +###  +###  +###  +###  +###  +###  +###  +###  +####  +####  +######                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | *## + + + + + + + + + + + + + + + + + +                                                                                | **************************************  |
| Most (image: 632)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Most (image: 784)                                                                                                      | Most (image: 560)                       |
| Least (image: 362)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Least (image: 671)                                                                                                     | Least (image: 758)                      |



The images use 0-based index. Left is Most prototypical, Right is Least prototypical.

Most (image: 745) Least (image: 492)

For the most confusing pairs in the confusion matrix, I have generated odd ratios and displayed results here. Note that the deeper the color the lower probability is. Light color denotes higher odd ratios.

**odd ratio**: 0.168 (4,9)



**odd ratio**: 0.136 (8,3)



**odd ratio**: 0.132 (7,9)



**odd ratio**: 0.13 (5,3)



# Extra credit

In this part, we will perform classification on ternary features, which means treating '+' and '#' differently. Since we favor '#' more than '+', we will assign more weight when counting foreground. In this MP, we assign 1 to '#' and 0.5 to '+'. The accuracy is thus increased by 0.1%.

For facedata, we did some modification on the original code and achieve the following results. The output is satisfying:

### **Part 2: Text Document Classification**

-Bangqi Wang

This project uses two different Naïve Bayes classifiers, Multinomial Model and Bernoulli Model, to classify the text documents.

### **General Implementation**

The train and test files contains the label and the words in each review or topics. Each record is preprocessed and stored as:

```
label word 1:count 1 word 2:count 2 ... word n:count n
```

The basic idea of this project is calculating the conditional probability of each word in each class and the probability of each class. The conditional probability is *likelihood*, P(document | class). The probability of each class is *priors*, P(class). The likelihood of document is represented by a sequence of words in the document, known as *bag of words*,  $P(w_i | class)$ .

$$P(document \mid class) = P(w_1, \dots, w_n \mid class) = \prod_{i=1}^{n} P(w_i \mid class)$$

### prior

# spam: 0.33

### P(word | spam

| the  | :  | 0.0156 |
|------|----|--------|
| to   | :  | 0.0153 |
| and  | :  | 0.0115 |
| of   | :  | 0.0095 |
| you  | :  | 0.0093 |
| а    | :  | 0.0086 |
| with | ı: | 0.0080 |
| from | n: | 0.0075 |
|      |    |        |

# P(word | ¬spam)

| the : | 0.0210 |
|-------|--------|
| to :  | 0.0133 |
| of :  | 0.0119 |
| 2002: | 0.0110 |
| with: | 0.0108 |
| from: | 0.0107 |
| and : | 0.0105 |
| a :   | 0.0100 |
|       |        |

The algorithm will calculate the likelihood of document for each class and find the *maximum likelihood (ML)* as the predicted label for the documents. The main idea is to calculate the maximum likelihood estimate, but different models have different method to calculate the bag of words likelihood. To improve the accuracy and deal with the word that were never seen or seen too few times. The project uses the *Laplacian smoothing*. The smoothing method will introduce below for different models.

Then the project assigns the document to the class with the highest posterior and avoid the underflow by using the logs of probabilities.

$$P(class \mid document) \propto P(class) \prod_{i=1}^{n} P(w_i \mid class)$$
$$L(class \mid document) = \log P(class) + \sum_{i=1}^{n} \log P(w_i \mid class)$$

### **Multinomial Model**

The Multinomial Model calculates the likelihood for each word by calculating the times of occurrences. The algorithm smooths the probabilities by pretending have seen every vocabulary one more time than actually did.

$$P(word \mid class) = \frac{\# \ of \ occurrences \ of \ this \ word \ in \ docs \ from \ this \ class}{total \ \# \ of \ words \ in \ docs \ from \ this \ class + 1}$$

$$P(word \mid class) = \frac{\# \ of \ occurrences \ of \ this \ word \ in \ docs \ from \ this \ class + 1}{total \ \# \ of \ words \ in \ docs \ from \ this \ class + V}$$

$$(V: total \ number \ of \ unique \ words)$$

### Bernoulli Model

The Bernoulli model calculates the likelihood for each word by counting whether the word appeared at least once. The algorithm smooths the probabilities by pretending have seen every vocabulary one more times than actually did.

$$P(word \mid class) = \frac{\# \ of \ documents \ this \ word \ appeared \ from \ this \ class}{total \ \# \ of \ documents \ from \ this \ class}$$

$$P(word \mid class) = \frac{\# \ of \ documents \ this \ word \ appeared \ from \ this \ class + 1}{total \ \# \ of \ documents \ from \ this \ class + 2}$$

# **Part 2.1: Classification Results**

The table below are the classification results for part 2.1.

# **Accuracy & Confusion Matrix**

The two tables contain the output for two different datasets. The overall accuracies on the sentiment analysis of movie review task are around 76% and the accuracies on the topical theme classification task are around 93%.

| Sentiment Analysis of Movie Review |                 |                |          |                  |          |          |  |  |  |  |  |  |
|------------------------------------|-----------------|----------------|----------|------------------|----------|----------|--|--|--|--|--|--|
|                                    | Accur           | acy            |          | Confusion Matrix |          |          |  |  |  |  |  |  |
|                                    | Overall         | Overall 76.00% |          |                  | Negative | Positive |  |  |  |  |  |  |
| Multinomial                        | Negative        | 75.00%         |          | Negative         | 75.00%   | 25.00%   |  |  |  |  |  |  |
|                                    | Positive 77.00% |                |          | Positive         | 23.00%   | 77.00%   |  |  |  |  |  |  |
|                                    |                 |                | <u> </u> |                  |          |          |  |  |  |  |  |  |
|                                    | Overall         | 76.00%         |          |                  | Negative | Positive |  |  |  |  |  |  |
| Bernoulli                          | Negative        | 72.80%         |          | Negative         | 72.80%   | 27.20%   |  |  |  |  |  |  |
|                                    | Positive 79.20% |                |          | Positive         | 20.80%   | 79.20%   |  |  |  |  |  |  |
|                                    |                 |                |          |                  |          |          |  |  |  |  |  |  |

(Table for dataset 1)

| Binary conversation topic classification |                                     |                            |                                                                                                                                   |                           |                             |  |  |  |  |  |  |
|------------------------------------------|-------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------|--|--|--|--|--|--|
|                                          | Accura                              | acy                        | Confusion Matrix                                                                                                                  |                           |                             |  |  |  |  |  |  |
| Multinomial                              | Overall<br>Life Partner<br>Min Wage | 90.82%<br>95.92%<br>85.71% | Life Partner         Min Wag           Life Partner         95.92%         4.08%           Min Wage         14.29%         85.71% |                           |                             |  |  |  |  |  |  |
| Bernoulli                                | Overall<br>Life Partner<br>Min Wage | 94.90%<br>91.84%<br>97.96% | Life Partner<br>Min Wage                                                                                                          | Life Partner 91.84% 2.04% | Min Wage<br>8.16%<br>97.96% |  |  |  |  |  |  |

(Table for dataset 2)

Top 10 Words with the Highest Likelihood
The tables below contain the words that are appear a lot in each classes.

| Sentiment Analysis of Movie Review |        |                   |  |          |          |  |  |  |  |  |
|------------------------------------|--------|-------------------|--|----------|----------|--|--|--|--|--|
|                                    |        | top 10 words with |  |          | d        |  |  |  |  |  |
|                                    | Neg    | gative            |  | Positive |          |  |  |  |  |  |
|                                    | Movie  | 0.009317          |  | Film     | 0.009054 |  |  |  |  |  |
|                                    | Film   | 0.007300          |  | Movie    | 0.005952 |  |  |  |  |  |
|                                    | Like   | 0.005251          |  |          | 0.004337 |  |  |  |  |  |
|                                    | One    | 0.004610          |  | One      | 0.003546 |  |  |  |  |  |
| Multinomial                        |        | 0.003782          |  | Like     | 0.003166 |  |  |  |  |  |
| Multinoimai                        | Bad    | 0.002817          |  | Story    | 0.003008 |  |  |  |  |  |
|                                    | Story  | 0.002753          |  | Good     | 0.002610 |  |  |  |  |  |
|                                    | Much   | 0.002689          |  | Comedy   | 0.002659 |  |  |  |  |  |
|                                    | Time   | Time 0.002433     |  | Way      | 0.002564 |  |  |  |  |  |
|                                    | Even   | 0.002273          |  | Even     | 0.002438 |  |  |  |  |  |
|                                    | Film   | 0.03891           |  | Film     | 0.03931  |  |  |  |  |  |
|                                    | Movie  | 0.03069           |  | Movie    | 0.02509  |  |  |  |  |  |
|                                    | One    | 0.02151           |  | One      | 0.01533  |  |  |  |  |  |
|                                    | Like   | 0.01891           |  | Like     | 0.01380  |  |  |  |  |  |
| Bernoulli                          |        | 0.01665           |  |          | 0.01366  |  |  |  |  |  |
| Dernoum                            | Story  | 0.01137           |  | Story    | 0.01268  |  |  |  |  |  |
|                                    | Comedy | 0.01110           |  | Comedy   | 0.01143  |  |  |  |  |  |
|                                    | Way    | 0.01055           |  | Way      | 0.0101   |  |  |  |  |  |
|                                    | Even   | 0.01000           |  | Even     | 0.01073  |  |  |  |  |  |
|                                    | Good   | 0.00959           |  | Good     | 0.01031  |  |  |  |  |  |

| Binary conversation topic classification |        |                    |  |          |         |  |  |  |  |
|------------------------------------------|--------|--------------------|--|----------|---------|--|--|--|--|
|                                          | · ·    | op 10 words with t |  |          | d       |  |  |  |  |
|                                          | Life P | artner             |  | Min Wage |         |  |  |  |  |
|                                          | Know   | 0.05446            |  | Know     | 0.05153 |  |  |  |  |
|                                          | Yeah   | 0.04535            |  | Yeah     | 0.04541 |  |  |  |  |
|                                          | Uh     | 0.03034            |  | Like     | 0.02889 |  |  |  |  |
|                                          | Like   | 0.02962            |  | Uh       | 0.02192 |  |  |  |  |
| Multinomial                              | Um     | 0.02310            |  | Um       | 0.01960 |  |  |  |  |
| Multinomiai                              | Right  | 0.01933            |  | Right    | 0.01848 |  |  |  |  |
|                                          | Just   | 0.01798            |  | Don      | 0.01733 |  |  |  |  |
|                                          | Think  | 0.01769            |  | Think    | 0.01707 |  |  |  |  |
|                                          | Oh     | 0.01623            |  | Just     | 0.01649 |  |  |  |  |
|                                          | Don    | 0.01590            |  | Oh       | 0.01482 |  |  |  |  |
|                                          | Like   | 0.03780            |  | Um       | 0.03907 |  |  |  |  |
|                                          | Know   | 0.03780            |  | Think    | 0.03907 |  |  |  |  |
|                                          | Just   | 0.03780            |  | Like     | 0.03907 |  |  |  |  |
|                                          | Yeah   | 0.03763            |  | Know     | 0.03907 |  |  |  |  |
| Bernoulli                                | Think  | 0.03763            |  | Just     | 0.03907 |  |  |  |  |
| Dernoum                                  | Don    | 0.03763            |  | Don      | 0.03907 |  |  |  |  |
|                                          | Um     | 0.03720            |  | Yeah     | 0.03898 |  |  |  |  |
|                                          | Right  | ght 0.03711        |  | People   | 0.03898 |  |  |  |  |
|                                          | Oh     | · ·                |  | Oh       | 0.03881 |  |  |  |  |
|                                          | Really | 0.03685            |  | Right    | 0.03872 |  |  |  |  |

**Top 10 Words with the Highest Odds Ration**The tables below contain the words that are more likely to appear in specific class.

| Sentiment Analysis of Movie Review |                   |                   |          |                      |         |  |  |  |  |  |
|------------------------------------|-------------------|-------------------|----------|----------------------|---------|--|--|--|--|--|
|                                    |                   | top 10 words with | the      | e highest odds ratio | )       |  |  |  |  |  |
|                                    | Neş               | gative            | Positive |                      |         |  |  |  |  |  |
|                                    | Flat              | 15.1695           |          | Disturbing           | 14.8324 |  |  |  |  |  |
|                                    | Stale             | 14.1582           |          | Refreshingly         | 10.8771 |  |  |  |  |  |
|                                    | Dull              | 13.6526           |          | Haunting             | 10.8771 |  |  |  |  |  |
|                                    | Tired             | 12.1356           |          | Grief                | 10.8771 |  |  |  |  |  |
| Multinomial                        | Plain             | 11.1243           |          | Engrossing           | 10.8771 |  |  |  |  |  |
| Multinomiai                        | Mediocre 11.1243  |                   |          | Refreshing           | 9.8882  |  |  |  |  |  |
|                                    | Unfunny           | 10.1130           |          | Polished             | 9.8882  |  |  |  |  |  |
|                                    | Poorly            | 10.1130           |          | Inventive            | 9.8882  |  |  |  |  |  |
|                                    | Pointless 10.1130 |                   |          | Gripping             | 9.8882  |  |  |  |  |  |
|                                    | Generic           | 10.1130           |          | Gem                  | 9.8882  |  |  |  |  |  |
|                                    | Flat              | 14.7431           |          | Disturbing           | 14.2439 |  |  |  |  |  |
|                                    | Stale             | 13.7602           | 1        | Refreshingly         | 11.1917 |  |  |  |  |  |
|                                    | Dull              | 12.7774           | 1        | Haunting             | 11.1917 |  |  |  |  |  |
|                                    | Tired             | 11.7945           | 1        | Grief                | 11.1917 |  |  |  |  |  |
| Bernoulli                          | Plain             | 10.8116           | 1        | Engrossing           | 11.1917 |  |  |  |  |  |
| Bernoulli                          | Mediocre          | 10.8116           | 1        | Refreshing           | 10.1742 |  |  |  |  |  |
|                                    | Unfunny           | 9.8288            | 1        | Polished             | 10.1742 |  |  |  |  |  |
|                                    | Poorly            | 9.8288            |          | Inventive            | 10.1742 |  |  |  |  |  |
|                                    | Pointless         | 9.8288            |          | Gripping             | 10.1742 |  |  |  |  |  |
|                                    | Generic           | 9.8288            |          | Gem                  | 10.1742 |  |  |  |  |  |

| Binary conversation topic classification |               |                   |      |                   |          |  |  |  |  |
|------------------------------------------|---------------|-------------------|------|-------------------|----------|--|--|--|--|
|                                          | to            | p 10 words with t | he h | ighest odds ratio |          |  |  |  |  |
|                                          | Life Pa       | artner            |      | Vage              |          |  |  |  |  |
|                                          | Relationship  | 198.1665          |      | Wage              | 150.4568 |  |  |  |  |
|                                          | Compatibility | 119.8154          |      | Minimum           | 150.3094 |  |  |  |  |
|                                          | Communication | 116.6344          |      | Welfare           | 128.7356 |  |  |  |  |
|                                          | Marriage      | 112.1281          |      | Wages             | 112.7026 |  |  |  |  |
| Multinomial                              | Partner       | 108.6063          |      | Inflation         | 90.5393  |  |  |  |  |
| Multinomiai                              | Relationships | 96.1350           |      | Waitresses        | 77.3357  |  |  |  |  |
|                                          | Friendship    | 95.4282           |      | Tax               | 76.3925  |  |  |  |  |
|                                          | Attracted     | 94.3679           |      | Waitress          | 68.8476  |  |  |  |  |
|                                          | Dating        | 89.0663           |      | Salary            | 65.0751  |  |  |  |  |
|                                          | Compatible    | 82.7044           |      | Increase          | 58.4733  |  |  |  |  |
|                                          | Attracted     | 62.1980           |      | Wage              | 79.2308  |  |  |  |  |
|                                          | Compatibility | 60.2543           |      | Wages             | 70.9990  |  |  |  |  |
|                                          | Relationship  | 55.3951           |      | Inflation         | 63.7962  |  |  |  |  |
|                                          | Relationships | 46.9725           |      | Waitresses        | 56.5934  |  |  |  |  |
| Bernoulli                                | Friendship    | 46.6485           |      | Minimum           | 56.5934  |  |  |  |  |
| Dernoulli                                | Attraction    | 46.6485           |      | Waitress          | 54.5355  |  |  |  |  |
|                                          | Marriage      | 44.2189           |      | Welfare           | 52.4775  |  |  |  |  |
|                                          | Communication | 44.2189           |      | Salary            | 46.8182  |  |  |  |  |
|                                          | Dating        | 43.0851           |      | Retail            | 41.1589  |  |  |  |  |
|                                          | Qualities     | 40.8175           |      | Increase          | 40.1299  |  |  |  |  |

### **Conclusion**

The top 10 words with highest likelihood are almost the same for both classes because the words with the most occurrences are similar to stop words. Those words cannot stand for any class because they have little meaning and they are more likely the general words around the topic. However, the top 10 words with highest odds ratio are high representative. The words with high odds ratio means that the words are more likely to appear in specific class only. The words with high likelihood I discussed above have similar high occurrences in any class. Therefore, the words with high likelihood not necessary have high odds ratio.

### **Part 2.2: Classification Results**

The dataset for this part is pretty large and contains 40 classes. Some classes might have common words but with different frequency. In this case, the multinomial model has more accuracy because the occurrences of words do matter in the topics. E.g. distributed system & database system.

Accuracy

| Full 40 Topic Corpus |                       |          |  |  |  |  |  |  |  |  |  |
|----------------------|-----------------------|----------|--|--|--|--|--|--|--|--|--|
|                      | Accu                  | Accuracy |  |  |  |  |  |  |  |  |  |
|                      | Multinomial Bernoulli |          |  |  |  |  |  |  |  |  |  |
| Accuracy             | 83.88%                | 50.87%   |  |  |  |  |  |  |  |  |  |

### **Confusion Matrix**

The confusion matrix is too large and I will divide the table into 4 tables and display one by one.



(Multinomial Model)

# **Multinomial Model**

# **Confusion Matrix [0:20][0:20]**

|    | 0    | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   | 13 | 14  | 15   | 16 | 17   | 18   | 19   |
|----|------|------|------|------|------|------|------|------|------|------|------|------|------|----|-----|------|----|------|------|------|
| 0  | 0.84 | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0  | 0   | 0    | 0  | 0    | 0    | 0    |
| 1  | 0    | 0.89 | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0  | 0   | 0    | 0  | 0    | 0    | 0    |
| 2  | 0    | 0    | 0.92 | 0.02 | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0  | 0   | 0.02 | 0  | 0    | 0    | 0    |
| 3  | 0    | 0    | 0    | 0.84 | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0  | 0   | 0    | 0  | 0.02 | 0    | 0    |
| 4  | 0    | 0    | 0    | 0    | 0.95 | 0    | 0    | 0.02 | 0    | 0    | 0    | 0    | 0    | 0  | 0   | 0    | 0  | 0    | 0    | 0    |
| 5  | 0    | 0    | 0.23 | 0    | 0    | 0.54 | 0    | 0    | 0    | 0.15 | 0    | 0    | 0    | 0  | 0   | 0    | 0  | 0    | 0    | 0    |
| 6  | 0    | 0    | 0.08 | 0    | 0    | 0    | 0.08 | 0.08 | 0    | 0.58 | 0    | 0    | 0    | 0  | 0   | 0    | 0  | 0    | 0    | 0    |
| 7  | 0.04 | 0    | 0    | 0    | 0    | 0    | 0    | 0.86 | 0    | 0    | 0    | 0    | 0    | 0  | 0   | 0    | 0  | 0    | 0    | 0    |
| 8  | 0.03 | 0    | 0.06 | 0    | 0    | 0    | 0    | 0    | 0.82 | 0.03 | 0    | 0    | 0    | 0  | 0   | 0    | 0  | 0    | 0    | 0    |
| 9  | 0    | 0.03 | 0    | 0    | 0    | 0    | 0    | 0    | 0.03 | 0.88 | 0    | 0    | 0    | 0  | 0   | 0    | 0  | 0    | 0    | 0    |
| 10 | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0.97 | 0    | 0    | 0  | 0   | 0    | 0  | 0    | 0    | 0    |
| 11 | 0    | 0    | 0.06 | 0    | 0    | 0    | 0    | 0    | 0.06 | 0    | 0    | 0.83 | 0    | 0  | 0   | 0    | 0  | 0    | 0    | 0    |
| 12 | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 1    | 0  | 0   | 0    | 0  | 0    | 0    | 0    |
| 13 | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 1  | 0   | 0    | 0  | 0    | 0    | 0    |
| 14 | 0.04 | 0    | 0.04 | 0.04 | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0.04 | 0  | 0.8 | 0    | 0  | 0    | 0    | 0    |
| 15 | 0.04 | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0.04 | 0  | 0   | 0.86 | 0  | 0    | 0    | 0    |
| 16 | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0  | 0   | 0    | 1  | 0    | 0    | 0    |
| 17 | 0    | 0    | 0    | 0.19 | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0  | 0   | 0    | 0  | 0.13 | 0    | 0    |
| 18 | 0.07 | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0  | 0   | 0    | 0  | 0    | 0.57 | 0    |
| 19 | 0    | 0.08 | 0    | 0.08 | 0    | 0    | 0    | 0    | 0.08 | 0    | 0    | 0    | 0    | 0  | 0   | 0    | 0  | 0    | 0    | 0.67 |

(Multinomial Model)

# **Confusion Matrix [0:20][20:40]**

|    | 20 | 21 | 22   | 23   | 24   | 25   | 26 | 27 | 28   | 29   | 30   | 31   | 32 | 33   | 34   | 35 | 36   | 37   | 38 | 39   |
|----|----|----|------|------|------|------|----|----|------|------|------|------|----|------|------|----|------|------|----|------|
| 0  | 0  | 0  | 0    | 0.13 | 0.02 | 0    | 0  | 0  | 0    | 0    | 0    | 0    | 0  | 0    | 0    | 0  | 0    | 0    | 0  | 0    |
| 1  | 0  | 0  | 0    | 0.04 | 0    | 0.07 | 0  | 0  | 0    | 0    | 0    | 0    | 0  | 0    | 0    | 0  | 0    | 0    | 0  | 0    |
| 2  | 0  | 0  | 0    | 0    | 0    | 0    | 0  | 0  | 0    | 0    | 0    | 0    | 0  | 0    | 0    | 0  | 0    | 0    | 0  | 0.04 |
| 3  | 0  | 0  | 0    | 0.12 | 0    | 0    | 0  | 0  | 0    | 0    | 0    | 0    | 0  | 0    | 0    | 0  | 0    | 0.02 | 0  | 0    |
| 4  | 0  | 0  | 0    | 0    | 0    | 0    | 0  | 0  | 0    | 0.02 | 0    | 0    | 0  | 0    | 0    | 0  | 0    | 0    | 0  | 0    |
| 5  | 0  | 0  | 0    | 0.08 | 0    | 0    | 0  | 0  | 0    | 0    | 0    | 0    | 0  | 0    | 0    | 0  | 0    | 0    | 0  | 0    |
| 6  | 0  | 0  | 0    | 0.17 | 0    | 0    | 0  | 0  | 0    | 0    | 0    | 0    | 0  | 0    | 0    | 0  | 0    | 0    | 0  | 0    |
| 7  | 0  | 0  | 0.04 | 0    | 0    | 0    | 0  | 0  | 0    | 0    | 0    | 0.04 | 0  | 0.04 | 0    | 0  | 0    | 0    | 0  | 0    |
| 8  | 0  | 0  | 0    | 0.03 | 0    | 0    | 0  | 0  | 0    | 0    | 0    | 0    | 0  | 0    | 0    | 0  | 0    | 0.03 | 0  | 0    |
| 9  | 0  | 0  | 0    | 0    | 0    | 0    | 0  | 0  | 0    | 0.06 | 0    | 0    | 0  | 0    | 0    | 0  | 0    | 0    | 0  | 0    |
| 10 | 0  | 0  | 0    | 0    | 0    | 0    | 0  | 0  | 0.03 | 0    | 0    | 0    | 0  | 0    | 0    | 0  | 0    | 0    | 0  | 0    |
| 11 | 0  | 0  | 0    | 0    | 0    | 0    | 0  | 0  | 0    | 0    | 0    | 0    | 0  | 0    | 0    | 0  | 0    | 0.06 | 0  | 0    |
| 12 | 0  | 0  | 0    | 0    | 0    | 0    | 0  | 0  | 0    | 0    | 0    | 0    | 0  | 0    | 0    | 0  | 0    | 0    | 0  | 0    |
| 13 | 0  | 0  | 0    | 0    | 0    | 0    | 0  | 0  | 0    | 0    | 0    | 0    | 0  | 0    | 0    | 0  | 0    | 0    | 0  | 0    |
| 14 | 0  | 0  | 0    | 0    | 0    | 0    | 0  | 0  | 0    | 0    | 0.04 | 0    | 0  | 0    | 0    | 0  | 0    | 0    | 0  | 0    |
| 15 | 0  | 0  | 0    | 0    | 0    | 0    | 0  | 0  | 0    | 0    | 0    | 0.04 | 0  | 0    | 0    | 0  | 0.04 | 0    | 0  | 0    |
| 16 | 0  | 0  | 0    | 0    | 0    | 0    | 0  | 0  | 0    | 0    | 0    | 0    | 0  | 0    | 0    | 0  | 0    | 0    | 0  | 0    |
| 17 | 0  | 0  | 0    | 0.69 | 0    | 0    | 0  | 0  | 0    | 0    | 0    | 0    | 0  | 0    | 0    | 0  | 0    | 0    | 0  | 0    |
| 18 | 0  | 0  | 0    | 0.14 | 0    | 0    | 0  | 0  | 0    | 0    | 0    | 0    | 0  | 0    | 0    | 0  | 0.21 | 0    | 0  | 0    |
| 19 | 0  | 0  | 0    | 0    | 0    | 0    | 0  | 0  | 0    | 0    | 0    | 0    | 0  | 0    | 0.08 | 0  | 0    | 0    | 0  | 0    |

(Multinomial Model)

# **Confusion Matrix [20:40][0:20]**

|    | 0    | 1    | 2    | 3    | 4 | 5 | 6 | 7    | 8    | 9    | 10 | 11 | 12   | 13 | 14 | 15   | 16   | 17 | 18 | 19 |
|----|------|------|------|------|---|---|---|------|------|------|----|----|------|----|----|------|------|----|----|----|
| 20 | 0    | 0    | 0.71 | 0    | 0 | 0 | 0 | 0    | 0    | 0    | 0  | 0  | 0    | 0  | 0  | 0    | 0    | 0  | 0  | 0  |
| 21 | 0    | 0    | 0    | 0    | 0 | 0 | 0 | 0    | 0    | 0    | 0  | 0  | 0    | 0  | 0  | 0    | 0    | 0  | 0  | 0  |
| 22 | 0    | 0    | 0    | 0    | 0 | 0 | 0 | 0    | 0    | 0    | 0  | 0  | 0    | 0  | 0  | 0    | 0    | 0  | 0  | 0  |
| 23 | 0    | 0    | 0    | 0    | 0 | 0 | 0 | 0    | 0.03 | 0    | 0  | 0  | 0    | 0  | 0  | 0    | 0    | 0  | 0  | 0  |
| 24 | 0.07 | 0.04 | 0    | 0    | 0 | 0 | 0 | 0    | 0    | 0    | 0  | 0  | 0    | 0  | 0  | 0.04 | 0    | 0  | 0  | 0  |
| 25 | 0    | 0.04 | 0    | 0    | 0 | 0 | 0 | 0    | 0    | 0    | 0  | 0  | 0    | 0  | 0  | 0    | 0    | 0  | 0  | 0  |
| 26 | 0    | 0    | 0    | 0    | 0 | 0 | 0 | 0    | 0    | 0    | 0  | 0  | 0    | 0  | 0  | 0    | 0    | 0  | 0  | 0  |
| 27 | 0    | 0    | 0    | 0.07 | 0 | 0 | 0 | 0    | 0    | 0    | 0  | 0  | 0    | 0  | 0  | 0    | 0    | 0  | 0  | 0  |
| 28 | 0    | 0    | 0    | 0    | 0 | 0 | 0 | 0    | 0    | 0    | 0  | 0  | 0    | 0  | 0  | 0    | 0    | 0  | 0  | 0  |
| 29 | 0    | 0.03 | 0    | 0    | 0 | 0 | 0 | 0    | 0    | 0    | 0  | 0  | 0    | 0  | 0  | 0    | 0    | 0  | 0  | 0  |
| 30 | 0    | 0    | 0    | 0.12 | 0 | 0 | 0 | 0    | 0    | 0    | 0  | 0  | 0    | 0  | 0  | 0    | 0.04 | 0  | 0  | 0  |
| 31 | 0.04 | 0.04 | 0    | 0    | 0 | 0 | 0 | 0    | 0    | 0    | 0  | 0  | 0.08 | 0  | 0  | 0.04 | 0    | 0  | 0  | 0  |
| 32 | 0    | 0    | 0.13 | 0    | 0 | 0 | 0 | 0    | 0    | 0.04 | 0  | 0  | 0    | 0  | 0  | 0    | 0    | 0  | 0  | 0  |
| 33 | 0    | 0    | 0.03 | 0    | 0 | 0 | 0 | 0    | 0    | 0    | 0  | 0  | 0    | 0  | 0  | 0    | 0    | 0  | 0  | 0  |
| 34 | 0    | 0    | 0    | 0    | 0 | 0 | 0 | 0.03 | 0    | 0    | 0  | 0  | 0    | 0  | 0  | 0    | 0    | 0  | 0  | 0  |
| 35 | 0    | 0    | 0    | 0    | 0 | 0 | 0 | 0    | 0    | 0    | 0  | 0  | 0    | 0  | 0  | 0    | 0.04 | 0  | 0  | 0  |
| 36 | 0    | 0    | 0    | 0    | 0 | 0 | 0 | 0    | 0    | 0    | 0  | 0  | 0    | 0  | 0  | 0    | 0    | 0  | 0  | 0  |
| 37 | 0    | 0    | 0    | 0    | 0 | 0 | 0 | 0    | 0    | 0    | 0  | 0  | 0    | 0  | 0  | 0    | 0    | 0  | 0  | 0  |
| 38 | 0    | 0.04 | 0    | 0    | 0 | 0 | 0 | 0    | 0    | 0    | 0  | 0  | 0    | 0  | 0  | 0    | 0    | 0  | 0  | 0  |
| 39 | 0    | 0    | 0.22 | 0    | 0 | 0 | 0 | 0    | 0    | 0    | 0  | 0  | 0    | 0  | 0  | 0    | 0    | 0  | 0  | 0  |

(Multinomial Model)

# **Confusion Matrix [20:40][20:40]**

|    | 20   | 21 | 22   | 23   | 24   | 25  | 26   | 27   | 28   | 29   | 30   | 31   | 32   | 33   | 34   | 35   | 36   | 37   | 38   | 39   |
|----|------|----|------|------|------|-----|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 20 | 0.07 | 0  | 0    | 0    | 0    | 0   | 0    | 0    | 0    | 0.21 | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 21 | 0    | 1  | 0    | 0    | 0    | 0   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 22 | 0    | 0  | 1    | 0    | 0    | 0   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 23 | 0    | 0  | 0    | 0.9  | 0    | 0   | 0    | 0.03 | 0.03 | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0.03 | 0    | 0    |
| 24 | 0    | 0  | 0    | 0    | 0.85 | 0   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 25 | 0    | 0  | 0    | 0.26 | 0    | 0.7 | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 26 | 0    | 0  | 0    | 0.14 | 0    | 0   | 0.24 | 0.1  | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0.52 | 0    | 0    |
| 27 | 0    | 0  | 0    | 0.03 | 0    | 0   | 0    | 0.83 | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0.07 | 0    | 0    |
| 28 | 0    | 0  | 0    | 0    | 0    | 0   | 0    | 0    | 1    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 29 | 0    | 0  | 0    | 0    | 0    | 0   | 0    | 0    | 0    | 0.97 | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 30 | 0    | 0  | 0    | 0.04 | 0    | 0   | 0    | 0.04 | 0    | 0    | 0.76 | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 31 | 0    | 0  | 0    | 0    | 0    | 0   | 0    | 0    | 0    | 0    | 0    | 0.81 | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 32 | 0    | 0  | 0    | 0    | 0    | 0   | 0    | 0    | 0    | 0.04 | 0    | 0.08 | 0.71 | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 33 | 0    | 0  | 0    | 0    | 0    | 0   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0.97 | 0    | 0    | 0    | 0    | 0    | 0    |
| 34 | 0    | 0  | 0    | 0    | 0    | 0   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0.97 | 0    | 0    | 0    | 0    | 0    |
| 35 | 0    | 0  | 0.04 | 0    | 0    | 0   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0.04 | 0.85 | 0.04 | 0    | 0    | 0    |
| 36 | 0    | 0  | 0    | 0    | 0    | 0   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 1    | 0    | 0    | 0    |
| 37 | 0    | 0  | 0    | 0.11 | 0    | 0   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0.89 | 0    | 0    |
| 38 | 0    | 0  | 0    | 0    | 0    | 0   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0.96 | 0    |
| 39 | 0    | 0  | 0    | 0.3  | 0    | 0   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0.04 | 0    | 0.43 |

(Multinomial Model)

### Bernoulli Model



(Bernoulli Model)

### **Confusion Matrix [0:20][0:20]**

|    | 0    | 1    | 2    | 3    | 4    | 5    | 6 | 7 | 8 | 9    | 10   | 11   | 12   | 13 | 14 | 15   | 16   | 17 | 18 | 19 |
|----|------|------|------|------|------|------|---|---|---|------|------|------|------|----|----|------|------|----|----|----|
| 0  | 0.84 | 0    | 0    | 0.04 | 0    | 0    | 0 | 0 | 0 | 0    | 0    | 0    | 0    | 0  | 0  | 0    | 0    | 0  | 0  | 0  |
|    |      | _    | _    |      | _    | _    |   | _ | _ | _    | _    | _    |      | _  | _  | _    | _    | _  | _  |    |
| 1  | 0    | 0.91 | 0    | 0.02 | 0    | 0    | 0 | 0 | 0 | 0    | 0    | 0    | 0    | 0  | 0  | 0    | 0    | 0  | 0  | 0  |
| 2  | 0    | 0    | 0.92 | 0.08 | 0    | 0    | 0 | 0 | 0 | 0    | 0    | 0    | 0    | 0  | 0  | 0    | 0    | 0  | 0  | 0  |
| 3  | 0    | 0    | 0    | 0.92 | 0    | 0    | 0 | 0 | 0 | 0    | 0    | 0    | 0    | 0  | 0  | 0    | 0    | 0  | 0  | 0  |
| 4  | 0    | 0    | 0.02 | 0.02 | 0.95 | 0    | 0 | 0 | 0 | 0    | 0    | 0    | 0    | 0  | 0  | 0    | 0    | 0  | 0  | 0  |
| 5  | 0    | 0    | 0.54 | 0.38 | 0    | 0.08 | 0 | 0 | 0 | 0    | 0    | 0    | 0    | 0  | 0  | 0    | 0    | 0  | 0  | 0  |
| 6  | 0    | 0    | 0.08 | 0.83 | 0    | 0    | 0 | 0 | 0 | 0.08 | 0    | 0    | 0    | 0  | 0  | 0    | 0    | 0  | 0  | 0  |
| 7  | 0.04 | 0.07 | 0    | 0.82 | 0    | 0    | 0 | 0 | 0 | 0    | 0    | 0    | 0    | 0  | 0  | 0    | 0    | 0  | 0  | 0  |
| 8  | 0    | 0    | 0.59 | 0.38 | 0    | 0    | 0 | 0 | 0 | 0    | 0    | 0    | 0    | 0  | 0  | 0    | 0    | 0  | 0  | 0  |
| 9  | 0    | 0.03 | 0.12 | 0.44 | 0    | 0    | 0 | 0 | 0 | 0.38 | 0    | 0    | 0    | 0  | 0  | 0    | 0    | 0  | 0  | 0  |
| 10 | 0    | 0    | 0    | 0.09 | 0    | 0    | 0 | 0 | 0 | 0    | 0.86 | 0    | 0    | 0  | 0  | 0    | 0    | 0  | 0  | 0  |
| 11 | 0    | 0.06 | 0    | 0.83 | 0    | 0    | 0 | 0 | 0 | 0    | 0    | 0.11 | 0    | 0  | 0  | 0    | 0    | 0  | 0  | 0  |
| 12 | 0    | 0    | 0    | 0.3  | 0.39 | 0    | 0 | 0 | 0 | 0    | 0    | 0    | 0.17 | 0  | 0  | 0    | 0    | 0  | 0  | 0  |
| 13 | 0.38 | 0    | 0    | 0    | 0    | 0    | 0 | 0 | 0 | 0    | 0    | 0    | 0    | 0  | 0  | 0    | 0    | 0  | 0  | 0  |
| 14 | 0.04 | 0    | 0.04 | 0.8  | 0    | 0    | 0 | 0 | 0 | 0    | 0    | 0    | 0    | 0  | 0  | 0    | 0    | 0  | 0  | 0  |
| 15 | 0.07 | 0.04 | 0.29 | 0.43 | 0    | 0    | 0 | 0 | 0 | 0    | 0    | 0    | 0    | 0  | 0  | 0.04 | 0    | 0  | 0  | 0  |
| 16 | 0    | 0    | 0    | 0.13 | 0    | 0    | 0 | 0 | 0 | 0    | 0    | 0    | 0    | 0  | 0  | 0    | 0.87 | 0  | 0  | 0  |
| 17 | 0    | 0    | 0    | 0.69 | 0    | 0    | 0 | 0 | 0 | 0    | 0    | 0    | 0    | 0  | 0  | 0    | 0    | 0  | 0  | 0  |
| 18 | 0    | 0    | 0    | 0.57 | 0    | 0    | 0 | 0 | 0 | 0    | 0    | 0    | 0    | 0  | 0  | 0    | 0    | 0  | 0  | 0  |
| 19 | 0    | 0    | 0    | 1    | 0    | 0    | 0 | 0 | 0 | 0    | 0    | 0    | 0    | 0  | 0  | 0    | 0    | 0  | 0  | 0  |

(Bernoulli Model)

# **Confusion Matrix [0:20][20:40]**

|    | 20 | 21 | 22   | 23   | 24 | 25 | 26 | 27   | 28   | 29 | 30 | 31 | 32 | 33   | 34 | 35 | 36   | 37 | 38 | 39 |
|----|----|----|------|------|----|----|----|------|------|----|----|----|----|------|----|----|------|----|----|----|
| 0  | 0  | 0  | 0    | 0.11 | 0  | 0  | 0  | 0    | 0    | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0    | 0  | 0  | 0  |
| 1  | 0  | 0  | 0    | 0.07 | 0  | 0  | 0  | 0    | 0    | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0    | 0  | 0  | 0  |
| 2  | 0  | 0  | 0    | 0    | 0  | 0  | 0  | 0    | 0    | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0    | 0  | 0  | 0  |
| 3  | 0  | 0  | 0    | 0.06 | 0  | 0  | 0  | 0.02 | 0    | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0    | 0  | 0  | 0  |
| 4  | 0  | 0  | 0    | 0    | 0  | 0  | 0  | 0    | 0    | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0    | 0  | 0  | 0  |
| 5  | 0  | 0  | 0    | 0    | 0  | 0  | 0  | 0    | 0    | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0    | 0  | 0  | 0  |
| 6  | 0  | 0  | 0    | 0    | 0  | 0  | 0  | 0    | 0    | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0    | 0  | 0  | 0  |
| 7  | 0  | 0  | 0.04 | 0    | 0  | 0  | 0  | 0    | 0    | 0  | 0  | 0  | 0  | 0.04 | 0  | 0  | 0    | 0  | 0  | 0  |
| 8  | 0  | 0  | 0    | 0    | 0  | 0  | 0  | 0    | 0.03 | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0    | 0  | 0  | 0  |
| 9  | 0  | 0  | 0    | 0    | 0  | 0  | 0  | 0    | 0    | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0.03 | 0  | 0  | 0  |
| 10 | 0  | 0  | 0    | 0    | 0  | 0  | 0  | 0    | 0.06 | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0    | 0  | 0  | 0  |
| 11 | 0  | 0  | 0    | 0    | 0  | 0  | 0  | 0    | 0    | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0    | 0  | 0  | 0  |
| 12 | 0  | 0  | 0    | 0    | 0  | 0  | 0  | 0    | 0    | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0.13 | 0  | 0  | 0  |
| 13 | 0  | 0  | 0    | 0    | 0  | 0  | 0  | 0    | 0.63 | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0    | 0  | 0  | 0  |
| 14 | 0  | 0  | 0    | 0.08 | 0  | 0  | 0  | 0    | 0    | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0.04 | 0  | 0  | 0  |
| 15 | 0  | 0  | 0.04 | 0    | 0  | 0  | 0  | 0    | 0.07 | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0.04 | 0  | 0  | 0  |
| 16 | 0  | 0  | 0    | 0    | 0  | 0  | 0  | 0    | 0    | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0    | 0  | 0  | 0  |
| 17 | 0  | 0  | 0    | 0.31 | 0  | 0  | 0  | 0    | 0    | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0    | 0  | 0  | 0  |
| 18 | 0  | 0  | 0    | 0    | 0  | 0  | 0  | 0    | 0    | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0.43 | 0  | 0  | 0  |
| 19 | 0  | 0  | 0    | 0    | 0  | 0  | 0  | 0    | 0    | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0    | 0  | 0  | 0  |

(Bernoulli Model)

# **Confusion Matrix [20:40][0:20]**

|    | 0    | 1    | 2    | 3    | 4    | 5 | 6 | 7 | 8 | 9 | 10   | 11 | 12 | 13 | 14 | 15 | 16   | 17 | 18 | 19 |
|----|------|------|------|------|------|---|---|---|---|---|------|----|----|----|----|----|------|----|----|----|
| 20 | 0    | 0    | 1    | 0    | 0    | 0 | 0 | 0 | 0 | 0 | 0    | 0  | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0  |
| 21 | 0    | 0    | 0    | 0.07 | 0    | 0 | 0 | 0 | 0 | 0 | 0.03 | 0  | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0  |
| 22 | 0.03 | 0    | 0    | 0.09 | 0    | 0 | 0 | 0 | 0 | 0 | 0    | 0  | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0  |
| 23 | 0    | 0    | 0.03 | 0.28 | 0    | 0 | 0 | 0 | 0 | 0 | 0    | 0  | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0  |
| 24 | 0.3  | 0.04 | 0    | 0.33 | 0    | 0 | 0 | 0 | 0 | 0 | 0    | 0  | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0  |
| 25 | 0    | 0.26 | 0    | 0.26 | 0    | 0 | 0 | 0 | 0 | 0 | 0    | 0  | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0  |
| 26 | 0    | 0    | 0.05 | 0.81 | 0    | 0 | 0 | 0 | 0 | 0 | 0    | 0  | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0  |
| 27 | 0    | 0    | 0.03 | 0.45 | 0    | 0 | 0 | 0 | 0 | 0 | 0    | 0  | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0  |
| 28 | 0    | 0    | 0    | 0    | 0    | 0 | 0 | 0 | 0 | 0 | 0    | 0  | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0  |
| 29 | 0    | 0.03 | 0.08 | 0.17 | 0    | 0 | 0 | 0 | 0 | 0 | 0    | 0  | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0  |
| 30 | 0    | 0    | 0    | 1    | 0    | 0 | 0 | 0 | 0 | 0 | 0    | 0  | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0  |
| 31 | 0.15 | 0.42 | 0.04 | 0.15 | 0.08 | 0 | 0 | 0 | 0 | 0 | 0    | 0  | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0  |
| 32 | 0    | 0    | 0.92 | 0    | 0    | 0 | 0 | 0 | 0 | 0 | 0    | 0  | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0  |
| 33 | 0    | 0    | 0    | 0.06 | 0    | 0 | 0 | 0 | 0 | 0 | 0    | 0  | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0  |
| 34 | 0    | 0.15 | 0    | 0.15 | 0    | 0 | 0 | 0 | 0 | 0 | 0    | 0  | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0  |
| 35 | 0    | 0.04 | 0.08 | 0.23 | 0    | 0 | 0 | 0 | 0 | 0 | 0    | 0  | 0  | 0  | 0  | 0  | 0.04 | 0  | 0  | 0  |
| 36 | 0    | 0    | 0    | 0    | 0    | 0 | 0 | 0 | 0 | 0 | 0    | 0  | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0  |
| 37 | 0    | 0    | 0.04 | 0.86 | 0    | 0 | 0 | 0 | 0 | 0 | 0    | 0  | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0  |
| 38 | 0    | 0.04 | 0.08 | 0.15 | 0    | 0 | 0 | 0 | 0 | 0 | 0    | 0  | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0  |
| 39 | 0    | 0    | 0.22 | 0.65 | 0    | 0 | 0 | 0 | 0 | 0 | 0    | 0  | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0  |

(Bernoulli Model)

# **Confusion Matrix [20:40][20:40]**

|    | 20 | 21   | 22   | 23   | 24   | 25 | 26   | 27   | 28   | 29   | 30 | 31   | 32 | 33   | 34   | 35   | 36   | 37   | 38   | 39 |
|----|----|------|------|------|------|----|------|------|------|------|----|------|----|------|------|------|------|------|------|----|
| 20 | 0  | 0    | 0    | 0    | 0    | 0  | 0    | 0    | 0    | 0    | 0  | 0    | 0  | 0    | 0    | 0    | 0    | 0    | 0    | 0  |
| 21 | 0  | 0.83 | 0    | 0    | 0    | 0  | 0    | 0    | 0.07 | 0    | 0  | 0    | 0  | 0    | 0    | 0    | 0    | 0    | 0    | 0  |
| 22 | 0  | 0    | 0.88 | 0    | 0    | 0  | 0    | 0    | 0    | 0    | 0  | 0    | 0  | 0    | 0    | 0    | 0    | 0    | 0    | 0  |
| 23 | 0  | 0    | 0    | 0.68 | 0    | 0  | 0    | 0    | 0.03 | 0    | 0  | 0    | 0  | 0    | 0    | 0    | 0    | 0    | 0    | 0  |
| 24 | 0  | 0    | 0    | 0    | 0.33 | 0  | 0    | 0    | 0    | 0    | 0  | 0    | 0  | 0    | 0    | 0    | 0    | 0    | 0    | 0  |
| 25 | 0  | 0    | 0    | 0.48 | 0    | 0  | 0    | 0    | 0    | 0    | 0  | 0    | 0  | 0    | 0    | 0    | 0    | 0    | 0    | 0  |
| 26 | 0  | 0    | 0    | 0.1  | 0    | 0  | 0.05 | 0    | 0    | 0    | 0  | 0    | 0  | 0    | 0    | 0    | 0    | 0    | 0    | 0  |
| 27 | 0  | 0    | 0    | 0.24 | 0    | 0  | 0    | 0.28 | 0    | 0    | 0  | 0    | 0  | 0    | 0    | 0    | 0    | 0    | 0    | 0  |
| 28 | 0  | 0    | 0    | 0    | 0    | 0  | 0    | 0    | 1    | 0    | 0  | 0    | 0  | 0    | 0    | 0    | 0    | 0    | 0    | 0  |
| 29 | 0  | 0    | 0    | 0    | 0    | 0  | 0    | 0    | 0    | 0.72 | 0  | 0    | 0  | 0    | 0    | 0    | 0    | 0    | 0    | 0  |
| 30 | 0  | 0    | 0    | 0    | 0    | 0  | 0    | 0    | 0    | 0    | 0  | 0    | 0  | 0    | 0    | 0    | 0    | 0    | 0    | 0  |
| 31 | 0  | 0    | 0.04 | 0    | 0    | 0  | 0    | 0    | 0    | 0    | 0  | 0.12 | 0  | 0    | 0    | 0    | 0    | 0    | 0    | 0  |
| 32 | 0  | 0    | 0    | 0    | 0    | 0  | 0    | 0    | 0    | 0.08 | 0  | 0    | 0  | 0    | 0    | 0    | 0    | 0    | 0    | 0  |
| 33 | 0  | 0    | 0    | 0    | 0    | 0  | 0    | 0    | 0    | 0    | 0  | 0    | 0  | 0.94 | 0    | 0    | 0    | 0    | 0    | 0  |
| 34 | 0  | 0    | 0    | 0    | 0    | 0  | 0    | 0    | 0    | 0    | 0  | 0    | 0  | 0    | 0.71 | 0    | 0    | 0    | 0    | 0  |
| 35 | 0  | 0    | 0    | 0    | 0    | 0  | 0    | 0    | 0    | 0    | 0  | 0    | 0  | 0    | 0    | 0.58 | 0.04 | 0    | 0    | 0  |
| 36 | 0  | 0    | 0    | 0    | 0    | 0  | 0    | 0    | 0    | 0    | 0  | 0    | 0  | 0    | 0    | 0    | 1    | 0    | 0    | 0  |
| 37 | 0  | 0    | 0    | 0.04 | 0    | 0  | 0    | 0.04 | 0    | 0    | 0  | 0    | 0  | 0    | 0    | 0    | 0    | 0.04 | 0    | 0  |
| 38 | 0  | 0    | 0    | 0    | 0    | 0  | 0    | 0    | 0    | 0.19 | 0  | 0    | 0  | 0    | 0    | 0    | 0    | 0    | 0.54 | 0  |
| 39 | 0  | 0    | 0    | 0.13 | 0    | 0  | 0    | 0    | 0    | 0    | 0  | 0    | 0  | 0    | 0    | 0    | 0    | 0    | 0    | 0  |

(Bernoulli Model)

# Confused Topic in Multinomial Model The table below shows the most confused topic for each topic.

Multinomial

The overall accuracy for multinomial model is around 83.88%.

| Real Topic | Accuracy | Confused Topic | Percentage |
|------------|----------|----------------|------------|
| 0          | 84.44%   | 23             | 13.33%     |
| 1          | 89.29%   | 25             | 7.14%      |
| 2          | 91.84%   | 39             | 4.08%      |
| 3          | 83.67%   | 23             | 12.24%     |
| 4          | 95.45%   | 7              | 2.27%      |
| 5          | 53.85%   | 2              | 23.08%     |
| 6          | 58.33%   | 23             | 16.67%     |
| 7          | 85.71%   | 0              | 3.57%      |
| 8          | 82.35%   | 2              | 5.88%      |
| 9          | 88.24%   | 29             | 5.88%      |
| 10         | 97.14%   | 28             | 2.86%      |
| 11         | 83.33%   | 2              | 5.56%      |
| 12         | 100.00%  | 0              | 0.00%      |
| 13         | 100.00%  | 0              | 0.00%      |
| 14         | 80.00%   | 0              | 4.00%      |
| 15         | 85.71%   | 0              | 3.57%      |
| 16         | 100.00%  | 0              | 0.00%      |
| 17         | 68.75%   | 3              | 18.75%     |
| 18         | 57.14%   | 36             | 21.43%     |
| 19         | 66.67%   | 1              | 8.33%      |
| 20         | 71.43%   | 29             | 21.43%     |
| 21         | 100.00%  | 0              | 0.00%      |
| 22         | 100.00%  | 0              | 0.00%      |
| 23         | 90.00%   | 8              | 2.50%      |
| 24         | 85.19%   | 0              | 7.41%      |
| 25         | 69.57%   | 23             | 26.09%     |
| 26         | 52.38%   | 26             | 23.81%     |
| 27         | 82.76%   | 3              | 6.90%      |
| 28         | 100.00%  | 0              | 0.00%      |
| 29         | 97.22%   | 1              | 2.78%      |
| 30         | 76.00%   | 3              | 12.00%     |
| 31         | 80.77%   | 12             | 7.69%      |
| 32         | 70.83%   | 2              | 12.50%     |
| 33         | 96.88%   | 2              | 3.13%      |
| 34         | 97.06%   | 7              | 2.94%      |
| 35         | 84.62%   | 16             | 3.85%      |
| 36         | 100.00%  | 0              | 0.00%      |
| 37         | 89.29%   | 23             | 10.71%     |
| 38         | 96.15%   | 1              | 3.85%      |
| 39         | 43.48%   | 23             | 30.43%     |

**Bernoulli** The overall accuracy for Bernoulli model is 50.87%

| Real Topic | Accuracy | Confused Topic | Percentage |
|------------|----------|----------------|------------|
| 0          | 84.44%   | 23             | 11.11%     |
| 1          | 91.07%   | 23             | 7.14%      |
| 2          | 91.84%   | 3              | 8.16%      |
| 3          | 91.84%   | 23             | 6.12%      |
| 4          | 95.45%   | 2              | 2.27%      |
| 5          | 53.85%   | 3              | 38.46%     |
| 6          | 83.33%   | 2              | 8.33%      |
| 7          | 82.14%   | 1              | 7.14%      |
| 8          | 58.82%   | 3              | 38.24%     |
| 9          | 44.12%   | 9              | 38.24%     |
| 10         | 85.71%   | 3              | 8.57%      |
| 11         | 83.33%   | 11             | 11.11%     |
| 12         | 39.13%   | 3              | 30.43%     |
| 13         | 62.50%   | 0              | 37.50%     |
| 14         | 80.00%   | 23             | 8.00%      |
| 15         | 42.86%   | 2              | 28.57%     |
| 16         | 86.96%   | 3              | 13.04%     |
| 17         | 68.75%   | 23             | 31.25%     |
| 18         | 57.14%   | 36             | 42.86%     |
| 19         | 100.00%  | 0              | 0.00%      |
| 20         | 100.00%  | 0              | 0.00%      |
| 21         | 83.33%   | 3              | 6.67%      |
| 22         | 87.50%   | 3              | 9.38%      |
| 23         | 67.50%   | 3              | 27.50%     |
| 24         | 33.33%   | 3              | 33.33%     |
| 25         | 47.83%   | 1              | 26.09%     |
| 26         | 80.95%   | 23             | 9.52%      |
| 27         | 44.83%   | 27             | 27.59%     |
| 28         | 100.00%  | 0              | 0.00%      |
| 29         | 72.22%   | 3              | 16.67%     |
| 30         | 100.00%  | 0              | 0.00%      |
| 31         | 42.31%   | 0              | 15.38%     |
| 32         | 91.67%   | 29             | 8.33%      |
| 33         | 93.75%   | 3              | 6.25%      |
| 34         | 70.59%   | 1              | 14.71%     |
| 35         | 57.69%   | 3              | 23.08%     |
| 36         | 100.00%  | 0              | 0.00%      |
| 37         | 85.71%   | 2              | 3.57%      |
| 38         | 53.85%   | 29             | 19.23%     |
| 39         | 65.22%   | 2              | 21.74%     |