

## STP16NE06 STP16NE06FP

# N - CHANNEL 60V - 0.08 $\Omega$ - 16A - TO-220/TO-220FP STripFETTM POWER MOSFET

### **PRELIMINARY DATA**

| TYPE        | V <sub>DSS</sub> | R <sub>DS(on)</sub> | I <sub>D</sub> |
|-------------|------------------|---------------------|----------------|
| STP16NE06   | 60 V             | < 0.100 Ω           | 16 A           |
| STP16NE06FP | 60 V             | < 0.100 Ω           | 11 A           |

- TYPICAL  $R_{DS(on)} = 0.08 \Omega$
- AVALANCHE RUGGED TECHNOLOGY
- 100% AVALANCHE TESTED
- 175°C OPERATING TEMPERATURE
- HIGH dV/dt CAPABILITY
- APPLICATION ORIENTED CHARACTERIZATION

### **DESCRIPTION**

This Power Mosfet is the latest development of SGS-THOMSON unique "Single Feature Size" process whereby a single body is implanted on a strip layout structure. The resulting transistor shows extremely high packing density for low on-resistance, rugged avalance characteristics and less critical alignment steps therefore a remarkable manufacturing reproducibility.

### **APPLICATIONS**

- DC MOTOR CONTROL
- DC-DC & DC-AC CONVERTERS
- SYNCHRONOUS RECTIFICATION





### **ABSOLUTE MAXIMUM RATINGS**

| Symbol              | Parameter                                             | Value      |             | Unit |
|---------------------|-------------------------------------------------------|------------|-------------|------|
|                     |                                                       | STP16NE06  | STP16NE06FP |      |
| $V_{DS}$            | Drain-source Voltage (V <sub>GS</sub> = 0)            | 6          | 0           | V    |
| $V_{DGR}$           | Drain- gate Voltage ( $R_{GS} = 20 \text{ k}\Omega$ ) | 6          | 00          | V    |
| $V_{GS}$            | Gate-source Voltage                                   | ±          | 20          | V    |
| $I_D$               | Drain Current (continuous) at T <sub>c</sub> = 25 °C  | 16         | 11          | Α    |
| $I_D$               | Drain Current (continuous) at T <sub>c</sub> = 100 °C | 10         | 7           | Α    |
| I <sub>DM</sub> (•) | Drain Current (pulsed)                                | 64         | 64          | Α    |
| $P_{tot}$           | Total Dissipation at T <sub>c</sub> = 25 °C           | 60         | 30          | W    |
|                     | Derating Factor                                       | 0.4        | 0.2         | W/°C |
| V <sub>ISO</sub>    | Insulation Withstand Voltage (DC)                     | _          | 2000        | V    |
| dV/dt               | Peak Diode Recovery voltage slope                     | 6          |             | V/ns |
| T <sub>stg</sub>    | Storage Temperature                                   | -65 to 175 |             | °C   |
| Tj                  | Max. Operating Junction Temperature                   | 1          | 75          | °C   |

<sup>(•)</sup> Pulse width limited by safe operating area

New RDS (on) spec. starting from JULY 98

(1)  $I_{SD} \le 16$  A,  $di/dt \le 200$  A/ $\mu$ s,  $V_{DD} \le V_{(BR)DSS}$ ,  $T_j \le T_{JMAX}$ 

June 1998

### STP16NE06/FP

### THERMAL DATA

|                                                                 |                                                                                                                 |                       | TO-220         | TO-220FP |                    |
|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------|----------------|----------|--------------------|
| R <sub>thj-case</sub>                                           | Thermal Resistance Junction-case                                                                                | Max                   | 2.5            | 5        | °C/W               |
| R <sub>thj-amb</sub><br>R <sub>thc-sink</sub><br>T <sub>I</sub> | Thermal Resistance Junction-ambient<br>Thermal Resistance Case-sink<br>Maximum Lead Temperature For Soldering F | Max<br>Typ<br>Purpose | 62<br>0.<br>30 | 5        | °C/W<br>°C/W<br>°C |

### **AVALANCHE CHARACTERISTICS**

| Symbol          | Parameter                                                                                   | Max Value | Unit |
|-----------------|---------------------------------------------------------------------------------------------|-----------|------|
| I <sub>AR</sub> | Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T <sub>j</sub> max) | 16        | А    |
| E <sub>AS</sub> | Single Pulse Avalanche Energy (starting $T_i = 25$ °C, $I_D = I_{AR}$ , $V_{DD} = 25$ V)    | 80        | mJ   |

# **ELECTRICAL CHARACTERISTICS** ( $T_{case} = 25$ $^{\circ}C$ unless otherwise specified) OFF

| Symbol               | Parameter                                                | Test Conditions                                                       | Min. | Тур. | Max.    | Unit     |
|----------------------|----------------------------------------------------------|-----------------------------------------------------------------------|------|------|---------|----------|
| V <sub>(BR)DSS</sub> | Drain-source<br>Breakdown Voltage                        | $I_D = 250 \ \mu A$ $V_{GS} = 0$                                      | 60   |      |         | V        |
| I <sub>DSS</sub>     | Zero Gate Voltage<br>Drain Current (V <sub>GS</sub> = 0) | $V_{DS} = Max Rating$ $V_{DS} = Max Rating$ $^{\circ}C$ $T_{c} = 125$ |      |      | 1<br>10 | μΑ<br>μΑ |
| I <sub>GSS</sub>     | Gate-body Leakage<br>Current (V <sub>DS</sub> = 0)       | V <sub>GS</sub> = ± 20 V                                              |      |      | ± 100   | nA       |

### ON (\*)

| Symbol              | Parameter                         | Test Conditions                                                      | Min. | Тур.  | Max.  | Unit |
|---------------------|-----------------------------------|----------------------------------------------------------------------|------|-------|-------|------|
| V <sub>GS(th)</sub> | Gate Threshold<br>Voltage         | $V_{DS} = V_{GS}$ $I_D = 250 \mu A$                                  | 2    | 3     | 4     | ٧    |
| R <sub>DS(on)</sub> | Static Drain-source On Resistance | $V_{GS} = 10V  I_D = 8 A$                                            |      | 0.080 | 0.100 | Ω    |
| I <sub>D(on)</sub>  | On State Drain Current            | $V_{DS} > I_{D(on)} \times R_{DS(on)max}$<br>$V_{GS} = 10 \text{ V}$ | 16   |       |       | А    |

### **DYNAMIC**

| Symbol                                                   | Parameter                                                         | Test Conditions                                                 | Min. | Тур.             | Max.              | Unit           |
|----------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------|------|------------------|-------------------|----------------|
| gfs (*)                                                  | Forward<br>Transconductance                                       | $V_{DS} > I_{D(on)} \times R_{DS(on)max}$ $I_{D} = 8 \text{ A}$ |      | 6                |                   | Ø              |
| C <sub>iss</sub><br>C <sub>oss</sub><br>C <sub>rss</sub> | Input Capacitance Output Capacitance Reverse Transfer Capacitance | V <sub>DS</sub> = 25 V f = 1 MHz V <sub>GS</sub> = 0            |      | 760<br>100<br>30 | 1000<br>140<br>45 | pF<br>pF<br>pF |

### **ELECTRICAL CHARACTERISTICS** (continued)

### **SWITCHING ON**

| Symbol                                               | Parameter                                                    | Test Conditions                                                                               | Min. | Тур.         | Max.     | Unit           |
|------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------|--------------|----------|----------------|
| t <sub>d(on)</sub><br>t <sub>r</sub>                 | Turn-on Time<br>Rise Time                                    | $V_{DD} = 30 \text{ V}$ $I_{D} = 8 \text{ A}$ $R_{G} = 4.7 \text{ W}$ $V_{GS} = 10 \text{ V}$ |      | 10<br>35     | 80<br>40 | ns<br>ns       |
| $egin{array}{c} Q_{g} \ Q_{gs} \ Q_{gd} \end{array}$ | Total Gate Charge<br>Gate-Source Charge<br>Gate-Drain Charge | $V_{DD} = 40 \text{ V}$ $I_{D} = 16 \text{ A}$ $V_{GS} = 10 \text{ V}$                        |      | 20<br>5<br>7 | 30       | nC<br>nC<br>nC |

### www.DataSheet4USWITCHING OFF

| Symbol                         | Parameter                                             | Test Conditions                                                                             | Min. | Тур.          | Max.           | Unit           |
|--------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------|------|---------------|----------------|----------------|
| $t_{r(Voff)} $ $t_{f}$ $t_{c}$ | Off-voltage Rise Time<br>Fall Time<br>Cross-over Time | $V_{DD} = 48 \text{ V}$ $I_{D} = 16 \text{ A}$ $R_{G} = 4.7 \Omega$ $V_{GS} = 10 \text{ V}$ |      | 7<br>18<br>30 | 10<br>25<br>45 | ns<br>ns<br>ns |

### SOURCE DRAIN DIODE

| Symbol                                  | Parameter                                                | Test Conditions                            | Min. | Тур. | Max.     | Unit   |
|-----------------------------------------|----------------------------------------------------------|--------------------------------------------|------|------|----------|--------|
| I <sub>SD</sub><br>I <sub>SDM</sub> (•) | Source-drain Current<br>Source-drain Current<br>(pulsed) |                                            |      |      | 16<br>64 | A<br>A |
| V <sub>SD</sub> (*)                     | Forward On Voltage                                       | I <sub>SD</sub> = 16 A V <sub>GS</sub> = 0 |      |      | 1.5      | V      |
| t <sub>rr</sub>                         | Reverse Recovery<br>Time                                 | $I_{SD} = 16 \text{ A}$                    |      | 70   |          | ns     |
| $Q_{rr}$                                | Reverse Recovery                                         | is a second                                |      | 0.21 |          | μС     |
| $I_{RRM}$                               | Charge<br>Reverse Recovery<br>Current                    |                                            |      | 6    |          | Α      |

<sup>(\*)</sup> Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %

### Safe Operating Area for TO-220



### Safe Operating Area for TO-220FP



<sup>(•)</sup> Pulse width limited by safe operating area

### Thermal Impedance for TO-220

# $\begin{array}{c} \text{K} \\ \delta = 0.5 \\ \hline \\ 0.2 \\ \hline \\ 0.02 \\ \hline \\ 0.05 \\ \hline \\ 0.02 \\ \hline \\ 0.05 \\ \hline \\ 0.001 \\$

### Thermal Impedance for TO-220FP



### **Output Characteristics**



**Transfer Characteristics** 



### Transconductance



### Static Drain-source On Resistance



### Gate Charge vs Gate-source Voltage



### Capacitance Variations



# Normalized Gate Threshold Voltage vs



Normalized On Resistance vs Temperature



### Source-drain Diode Forward Characteristics



Fig. 1: Unclamped Inductive Load Test Circuit



**Fig. 3:** Switching Times Test Circuits For Resistive Load



**Fig. 5:** Test Circuit For Inductive Load Switching And Diode Recovery Times



Fig. 2: Unclamped Inductive Waveform



Fig. 4: Gate Charge test Circuit



47/

### **TO-220 MECHANICAL DATA**

|                  | DIM.  |       | mm   |       |       | inch  |       |
|------------------|-------|-------|------|-------|-------|-------|-------|
|                  | DIWI. | MIN.  | TYP. | MAX.  | MIN.  | TYP.  | MAX.  |
|                  | А     | 4.40  |      | 4.60  | 0.173 |       | 0.181 |
|                  | С     | 1.23  |      | 1.32  | 0.048 |       | 0.051 |
|                  | D     | 2.40  |      | 2.72  | 0.094 |       | 0.107 |
| www.DataSheet4U  | D1    |       | 1.27 |       |       | 0.050 |       |
| www.DataSileet40 | E     | 0.49  |      | 0.70  | 0.019 |       | 0.027 |
|                  | F     | 0.61  |      | 0.88  | 0.024 |       | 0.034 |
|                  | F1    | 1.14  |      | 1.70  | 0.044 |       | 0.067 |
|                  | F2    | 1.14  |      | 1.70  | 0.044 |       | 0.067 |
|                  | G     | 4.95  |      | 5.15  | 0.194 |       | 0.203 |
|                  | G1    | 2.4   |      | 2.7   | 0.094 |       | 0.106 |
|                  | H2    | 10.0  |      | 10.40 | 0.393 |       | 0.409 |
|                  | L2    |       | 16.4 |       |       | 0.645 |       |
|                  | L4    | 13.0  |      | 14.0  | 0.511 |       | 0.551 |
|                  | L5    | 2.65  |      | 2.95  | 0.104 |       | 0.116 |
|                  | L6    | 15.25 |      | 15.75 | 0.600 |       | 0.620 |
|                  | L7    | 6.2   |      | 6.6   | 0.244 |       | 0.260 |
|                  | L9    | 3.5   |      | 3.93  | 0.137 |       | 0.154 |
|                  | DIA.  | 3.75  |      | 3.85  | 0.147 |       | 0.151 |



47/

### **TO-220FP MECHANICAL DATA**

| DIM.   |      | mm   |      |       | inch  |       |
|--------|------|------|------|-------|-------|-------|
| DIIVI. | MIN. | TYP. | MAX. | MIN.  | TYP.  | MAX.  |
| А      | 4.4  |      | 4.6  | 0.173 |       | 0.181 |
| В      | 2.5  |      | 2.7  | 0.098 |       | 0.106 |
| D      | 2.5  |      | 2.75 | 0.098 |       | 0.108 |
| .com E | 0.45 |      | 0.7  | 0.017 |       | 0.027 |
| F      | 0.75 |      | 1    | 0.030 |       | 0.039 |
| F1     | 1.15 |      | 1.7  | 0.045 |       | 0.067 |
| F2     | 1.15 |      | 1.7  | 0.045 |       | 0.067 |
| G      | 4.95 |      | 5.2  | 0.195 |       | 0.204 |
| G1     | 2.4  |      | 2.7  | 0.094 |       | 0.106 |
| Н      | 10   |      | 10.4 | 0.393 |       | 0.409 |
| L2     |      | 16   |      |       | 0.630 |       |
| L3     | 28.6 |      | 30.6 | 1.126 |       | 1.204 |
| L4     | 9.8  |      | 10.6 | 0.385 |       | 0.417 |
| L6     | 15.9 |      | 16.4 | 0.626 |       | 0.645 |
| L7     | 9    |      | 9.3  | 0.354 |       | 0.366 |
| Ø      | 3    |      | 3.2  | 0.118 |       | 0.126 |



nunu DataChaat411 aan

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

© 1998 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

47/