Caminos rugosos y soluciones de ecuaciones diferenciales.

David Alejandro Alquichire Rincón

16 de marzo de 2025

Idea: Estudiar ecuaciones diferenciales estocásticas por medio de caminos rugosos.

¿Hasta dónde? Peter Fritz... soluciones a PDE estocásticas... ¿Métodos Numéricos?

Propuesta capítulos:

1. Introducción y Preliminares

- a) Conceptos de Probabilidad y Teoría de la medida (LB, D. Cohn, Protter y el otro libro).
- b) Conceptos en Convergencia de Procesos Estocásticos.
- c) Conceptos de Procesos Estocásticos (Notas de Freddy, apoyo de Capinski)
- d) Integración de Riemann Stieltjes
- e) Teoría de la medida y la integral de Lebesgue
- f) Análisis Funcional
- g) Ecuaciones Diferenciales Ordinarias (Existencia y Unicidad)
- h) Ecuaciones Diferenciales Parciales
- 2. Construcción del Movimiento Browniano
 - *a*) a
- 3. Construcción de la Integral de Itô
 - a) a
- 4. Ecuaciones Diferenciales Estocásticas por Itô -¿Oksendal
 - a) Integral de Itô, Cálculo Estocástico
 - b) Ecuaciones Diferenciales Estocásticas, Solución clásica de Itô.
 - c) Teoremas de Existencia y Unicidad.
- 5. Ecuaciones Diferenciales Estocásticas por caminos rugosos Pruebas de funciones α . Gráficas: Simulaciones de ecuaciones rugosos. α -Hölder. Caminos orden α , ¿Cómo luce?

- 6. EDP Estocásticas*
- 7. Métodos Numéricos y Aplicaciones*
- 8. Conclusiones
- 9. Bibliografía

η	Γ í t 11	lo

Caminos rugosos y soluciones de ecuaciones diferenciales.

Title

Rough paths and solutions to differential equations.

Resumen:

Abstract:

Palabras clave:

Keywords:

Índice general

1.	Preliminares			7
	1.1.	Conce	ptos de Probabilidad	7
		1.1.1.	Espacios de probabilidad	7
		1.1.2.	Variables aleatorias	10
		1.1.3.	Integración respecto a medida de probabilidad. Valor	
			esperado.	12
		1.1.4.	Variables aleatorias independientes	16
2.	Movimiento Browniano			23
	2.1.	Conce	ptos de Procesos Estocásticos	23
			rucción del Movimiento Browniano	
3.	La l	Integra	al de Itô	25

Capítulo 1

Preliminares

En este capítulo, nos dedicaremos a repasar conceptos de teoría de la probabilidad, teoría de integración y ecuaciones diferenciales.

1.1. Conceptos de Probabilidad.

En esta sección, daremos un breve repaso a conceptos esenciales en probabilidad, para poder entender mejor procesos estocásticos, y de igual forma, poder realizar la construcción de la integral de Itô. Para mayor información, puede consultar [2], del cuál se basará la gran parte de este capítulo.

1.1.1. Espacios de probabilidad.

Sea Ω un conjunto abstracto. Denotamos por 2^{Ω} el conjunto de partes de $\Omega.$

Definimos a \mathcal{F} una σ -álgebra de Ω , como un subconjunto de 2^{Ω} que cumple las siguientes propiedades:

- \emptyset , $\Omega \in \mathcal{F}$
- Si $A \in \mathcal{A}$, luego $A^c \in \mathcal{A}$
- Dado $\{A_i\}_{i\in I}$ una sucesión de subconjuntos de Ω a lo más contable. Luego, si para todo $i\in I,\ A_i\in\mathcal{A}$, entonces $\cup_{i\in I}A_i\in\mathcal{A}$

El espacio (Ω, \mathcal{A}) se llama **espacio medible**.

Los elementos en \mathcal{A} se llamarán *eventos*.

Ejemplo:

- Para Ω un conjunto abstracto, $\mathcal{A} = \{\emptyset, \Omega\}$ es la σ -álgebra trivial.
- Sea $A \subset \Omega$, entonces $\sigma(A) = \{\emptyset, A, A^c, \Omega\}$ también es una σ -álgebra, llamada la **menor** σ -álgebra que contiene a A, que se genera mediante la intersección de todas las σ -álgebras que contienen a A.
- Para $\Omega = \mathbb{R}$, una σ -álgebra para este conjunto es la σ -álgebra de **Borel**, que se puede generar con intervalos de la forma $(-\infty, a]$ para todo $a \in \mathbb{Q}$. También, es la generada por todos los conjuntos abiertos (O cerrados, o semiabiertos...). Para más información consulte [1] Y [2]

9

Una medida de probabilidad definida en una σ -álgebra \mathcal{A} de Ω , es una función $P: \mathcal{A} \to [0, 1]$ que cumple:

- $P(\Omega) = 1$
- Para toda colección contable $\{A_n\}_{n\geq 1}$ de elementos en \mathcal{A} que son disyuntos par a par, se tiene:

$$P\left(\bigcup_{n=1}^{\infty}\right) = \sum_{n=1}^{\infty} P\left(A_n\right)$$

Es decir, la función es contablemente aditiva. Se llama a P(A) como la probabilidad del evento A.

La tripla (Ω, \mathcal{A}, P) se conoce como **espacio de probabilidad**.

De forma general, la medida de probabilidad, es un caso específico de una función de medida, en este caso, tendremos un espacio de medida. Vea COHN.

Note que, podemos ver una propiedad más débil que el axioma (2) en la anterior definición. Para toda colección $\{A_k\}_{k=1}^n$ finita, de disyuntos par a par, si tenemos:

$$P(\bigcup_{k=1}^{n} A_k) = \sum_{k=1}^{n} P(A_k)$$

entonces la función P es aditiva (O finitamente aditiva).

Vamos a revisar algunas propiedades de las funciones de probabilidad, sin demostración. Para consultar los detalles, puede consultar PROTTER.

Teorema 1 Sea (Ω, \mathcal{A}) un espacio medible, y $P : \mathcal{A} \to [0, 1]$ una función finitamente aditiva y $P(\Omega) = 1$. Entonces, tenemos las siguientes equivalencias:

- La función es contablemente aditiva.
- $Si \ A_n \in \mathcal{A} \ y \ A_n \downarrow \emptyset$, luego $P(A_n) \downarrow 0$.

- $Si\ A_n \in \mathcal{A}\ y\ A_n \downarrow A,\ luego\ P(A_n) \downarrow P(A).$
- $Si \ A_n \in \mathcal{A} \ y \ A_n \uparrow \Omega, \ luego \ P(A_n) \uparrow 1.$
- $Si\ A_n \in \mathcal{A}\ y\ A_n \uparrow A$, luego $P(A_n) \uparrow P(A)$.

Más aún, si P es una medida de probabilidad, y dado $\{A_n\}$ sucesión de eventos que converge a A. Entonces $A \in \mathcal{A}$ y $\lim_{n\to\infty} P(A_n) = P(A)$

Finalmente, damos el concepto de sub- σ -álgebra.

Sea (Ω, \mathcal{A}, P) un espacio de probabilidad. Decimos que \mathcal{T} es una **sub-** σ -álgebra si $\mathcal{T} \subseteq \mathcal{A}$ y \mathcal{T} es σ -álgebra de Ω

1.1.2. Variables aleatorias.

En esta sección, tommaos a (Ω, \mathcal{A}, P) un espacio abstracto, donde Ω no es necesariamente contable.

Sean (E, \mathcal{E}) y (F, \mathcal{F}) dos espacios medibles (No necesariamente tienen una medida de probabilidad). Una función $X : E \to F$ es una función medible si $X^{-1}(\Lambda) \in \mathcal{E}$ para todo $\Lambda \in \mathcal{F}$.

Si (E, \mathcal{E}, P) es un espacio de probabilidad, X posee el nombre de variable aleatoria.

Nuevamente, tenemos varias propiedades para las funciones medibles, que enunciaremos acá, sin la demostración respectiva. Para esto, consulte, PROTTER.

Corolario 1 Sea (E, \mathcal{E}) un espacio medible aleatorio, $y (\mathbb{R}, \mathcal{B})$. Sea $X, X_n : E \to \mathbb{R}$ funciones:

- X es medible si y sólo si $\{X \leq a\} = X^{-1}((-\infty, a]) \in \mathcal{E}$, para todo $a \in \mathbb{R}$.
- Si cada X_n es medible, luego sup X_n , inf X_n , lim sup X_n y lim inf X_n son medibles.
- Si cada X_n es medible, y $\{X_n\}$ converge puntualmente a X, luego X es medible.

11

Teorema 2 Sea X medible de (E, \mathcal{E}) en (F, \mathcal{F}) , $y \ Y$ medible de (F, \mathcal{F}) en (G, \mathcal{G}) . Entonces, $Y \circ X$ es medible de (E, \mathcal{E}) en (G, \mathcal{G}) .

Teorema 3 Sean (E, \mathcal{U}) y (F, \mathcal{V}) espacios topológicos, y \mathcal{E} , \mathcal{F} sus σ -álgebras de Borel (generada por los abiertos), respectivamente. Entonces, cada función continua $X : E \to F$ es medible (O también llamada, función boreliana).

Recuerde que, la función indicadora, $f(x) = 1_A(x)$ se define como:

$$1_A(x) = \left\{ \begin{array}{ll} 0 & x \in A \\ 1 & x \notin A \end{array} \right\}$$

Teorema 4 Sea $(F, \mathcal{F}) = (\mathbb{R}, \mathcal{B})$ y (E, \mathcal{E}) un espacio medible.

- Función indicadora 1_A en E es medible si y sólo sí $A \in \mathcal{E}$
- Si X_1, \dots, X_n son funciones medibles de (E, \mathcal{E}) en $(\mathbb{R}, \mathcal{B})$, y si f es borel en \mathbb{R}^n , luego $f(X_1, \dots, X_n)$.
- $Si\ X, Y\ son\ medibles$, luego X+Y, XY, max(X,Y), $min\ X, Y\ y\ X/Y$ $con\ Y \neq 0\ son\ medibles$.

Recordemos, para X una variable aleatoria, será una función entre los espacios medibles (Ω, \mathcal{A}) y (E, \mathcal{E}) . Si dotamos al primer espacio de una probabilidad, P, de forma canónica podemos dotar al segundo espacio, de una medida de probabilidad, según X.

Si X es una variable aleatoria entre (Ω, \mathcal{A}, P) , con valores en (E, \mathcal{E}) , la **distribución** (O **medida de distribución**) de X, está definida por:

$$P^X(B) = P(X^{-1}(B)) = P(\{\omega: X(\omega) \in B\}) = P(X \in B)$$
para todo $B \in \mathcal{E}.$

Como la inversa se comporta bien bajo uniones e intersecciones, no es muy dificil probar que:

Teorema 5 La distribución de X es una medida de probabilidad en (E, \mathcal{E})

Si X es una variable aleatoria en $\mathbb{R},$ P^X es una probabilidad en los reales, caracterizada por la función:

$$F_X(x) = P^X((-\infty, x]) = P(X \le x)$$

por el hecho, que los elementos en los borelianos, \mathcal{B} , pueden ser generador por elementos de la forma $(-\infty, x]$. $F_X(x)$ se conoce como función de distribución cumulativa.

1.1.3. Integración respecto a medida de probabilidad. Valor esperado.

Dada una variable aleatoria, en un espacio de probabilidad (Ω, \mathcal{A}, P) , podríamos determinar un valor esperado, un promedio ponderado según la probabilidad, la imagen que se espera que tenga la variable aleatoria.

Para una variable aleatoria discreta, tenemos la definición:

Ahora, queremos hallar el valor esperado para variables aleatorias en general. Consideramos algunos casos especiales inicialmente:

Una variable aleatoria X es **simple** si su imagen es un conjunto finito, por ende, para una familia de conjuntos disyuntos medibles, $\{A_i\} \subset \mathcal{A}$, y constantes, $a_i \in \mathbb{R}$, para $1 \leq i \leq n$, veremos que la variable aleatoria tiene la forma:

$$X = \sum_{i=1}^{n} a_i 1_{A_i}$$

Para X variable aleatoria simple, podemos definir su **integral respecto a** P o **valor esperado** como:

$$\mathbb{E}[X] = \sum_{i=1}^{n} a_i P(A_i)$$

o también denotado por $\int XdP$.

Ahora, deseamos extender la definición para funciones más generales. Para esto, tendremos en cuenta los siguientes resultados:

Teorema 6 Para cada variable aleatoria positiva X, existe una sucesión de variables aleatorias simples $\{A_n\}_{n\geq 1}$ tal que X_n tiende a X de forma creciente, para $n\to\infty$

Demostración: Podemos tomar la sucesión:

$$X_n(\omega) = \begin{cases} k2^{-n} & \text{si } k2^{-n} \le X(\omega) < (k+1)2^{-n} \text{ y } 0 \le k \le n2^n - 1\\ n & \text{si } X(\omega) \ge n \end{cases}$$

AÑADIR UNA GRAFICA

Teorema 7 Sea X una variable aleatoria positiva. Si $\{X_n\}$ es sucesión de variables aleatorias simples que tienden de forma creciente a X, entonces $\mathbb{E}[X_n]$ tiende a $\mathbb{E}[X]$

Primero, podemos definir el valor esperado para variables aleatorias en positivas, esto es, que toma valores en $[0, \infty)$, como:

$$\int XdP = \mathbb{E}[X] = \sup \{ \mathbb{E}[Y] : Y \text{ es función simple con } 0 \le Y \le X \}$$

De este modo, podemos definir:

Sea $X^+ = \max(X, 0)$ y $X^- = -\min(X, 0)$. Una variable aleatoria X es **integrable** si $\mathbb{E}[X^+] < \infty$ y $\mathbb{E}[X^-] < \infty$. En este caso, el **valor esperado** de X se define como:

$$\int XdP = \mathbb{E}[X] = \int X^+dP + \int X^-dP = \mathbb{E}[X^+] + \mathbb{E}[X^-]$$

Tenemos que \mathcal{L}^1 o $\mathcal{L}^1(\Omega, \mathcal{A}, P)$, es el conjunto de variables aleatorias que son integrables.

Ya estamos listos para enunciar varias propiedades importantes de las variables aleatorias.

- **Teorema 8** \mathcal{L}^1 es espacio vectorial, donde \mathbb{E} es operador lineal, y para $X \in \mathcal{L}^1$ tal que $X \geq 0$, luego $\mathbb{E}[X] \geq 0$. Más aún, para $X \leq Y$, tenemos que $\mathbb{E}[X] \leq \mathbb{E}[Y]$.
 - $X \in \mathcal{L}^1$ si y sólo si $|X| \in \mathcal{L}^1$.
 - $|\mathbb{E}[X]| \leq \mathbb{E}[|X|]$. Mas aún, cualquier variable aleatoria acotada es integrable.
 - $Si X = Y \ casi \ siempre \ (Esto \ es, \ que \ P(X = Y) = P(\{\omega : X(\omega) = Y(\omega)\}) = 1), \ entonces, \ \mathbb{E}[X] = \mathbb{E}[Y].$

Teorema 9 (Teorema de la convergencia monótona.) Si las variables aleatorias X_n son positivas y tienden de forma creciente casi siempre a X, luego $\lim_{n\to\infty} \mathbb{E}[X_n] = \mathbb{E}[X]$.

En este caso, X_n tienden de forma creciente casi siempre a X, si $P(\{\omega : \lim_{n\to\infty} X_n(w) = X_n\}) = 1$.

Lema 1 (Lema de Fatou) Si las variables aleatorias X_n satisfacen $X_n \ge Y$ casi siempre ($P(X_n \le Y) = P(\{\omega : X_n(\omega) \le Y(\omega)\}) = 1$) con $Y \in \mathcal{L}^1$, para todo n, entonces:

$$\mathbb{E}\left[\liminf_{n\to\infty} X_n\right] \le \liminf_{n\to\infty} \mathbb{E}[X_n]$$

o se puede escribir como:

$$\int_{\Omega} \liminf_{n \to \infty} X_n \le \liminf_{n \to \infty} \int_{\Omega} X_n$$

En particular, si $X_n \leq 0$ casi siempre para todo n, entonces se cumple la designaldad.

Teorema 10 (Teorema de la convergencia dominada de Lebesgue) Si las variables aleatorias X_n convergen casi siempre a X y si $|X_n| \leq Y$ casi siempre para $Y \in \mathcal{L}^1$, para todo n, entonces, $X_n, X \in \mathcal{L}^1$, y:

$$\lim_{n\to\infty} \mathbb{E}[X_n] = \mathbb{E}[X]$$

0

$$\lim_{n \to \infty} \int_{\Omega} X_n = \int_{\Omega} X_n$$

Para consultar las pruebas, sugerimos consultar [2]. Ahora, estos teoremas poderosos, van a traer una serie de consecuencias, que serán útiles en la práctica. Enunciamos sin demostración.

Teorema 11 Sea X_n una sucesión de variables aleatorias.

• Si para todo n, X_n es positiva, entonces:

$$\mathbb{E}\left[\sum_{n=1}^{\infty} X_n\right] = \sum_{n=1}^{\infty} \mathbb{E}[X_n]$$

0

$$\int_{\Omega} \sum_{n=1}^{\infty} X_n dP = \sum_{n=1}^{\infty} \int_{\Omega} X_n dP$$

■ $Si \sum_{n=1}^{\infty} \mathbb{E}[|X_n|] < \infty$, luego $\sum_{n=1}^{\infty} X_n$ converge casi siempre y la suma de esta serie es integrable.

Antes de enunciar más propiedades, definimos los espacios \mathcal{L}^p .

Para $1 , definimos <math>\mathcal{L}^p$ el espacio de variables aleatorias tal que $|X|^p \in \mathcal{L}^1$.

Teorema 12 \blacksquare Si $X, Y \in \mathcal{L}^2$, entonces $XY \in \mathcal{L}^1$ y se cumple la designal dad de Cauchy-Schwarz:

$$|\mathbb{E}[XY]| \le \sqrt{\mathbb{E}[X^2]\mathbb{E}[Y^2]}$$

- $\mathcal{L}^2 \subset \mathcal{L}^1$. Si, $X \in \mathcal{L}^2$, luego $(\mathcal{E}[X])^2 \leq \mathbb{E}[X^2]$.
- \mathcal{L}^2 es un espacio vectorial.

El siguiente resultado, permite calcular el valor esperado de cualquier función medible de una variable aleatoria.

Teorema 13 (Regla del valor esperado.) Sea X una variable aleatoria en (Ω, \mathcal{A}, P) , con valores en (E, \mathcal{E}) y distribución P^X . Sea $h: (E, \mathcal{E}) \to (\mathbb{R}, \mathcal{B})$ una función medible.

- $h(X) \in \mathcal{L}^1(\Omega, \mathcal{A}, P)$ si y sólo si $h \in \mathcal{L}^1(E, \mathcal{E}, P^X)$.
- Si, h es positiva, o se tienen las condiciones del inciso anterior, entonces:

$$\mathbb{E}[h(X)] = \int_{\Omega} h(x) P^{X}(dx)$$

Finalmente, definimos varianza y mostramos una desigualdad conocida y bastante útil.

Si $X \in \mathcal{L}^2$, la **varianza** de X, denotada por σ_X^2 , está dada por:

$$\sigma_X^2 = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

También llamado segundo momento alrededor de la media μ_2 .

Teorema 14 (Desigualdad de Chebyshev - Bienaymé)

$$P(|X| \ge a) \le \frac{\mathbb{E}[X^2]}{\sigma^2}$$

1.1.4. Variables aleatorias independientes.

Al tener dos variables aleatorias independientes, nos dará varias propiedades, por ejemplo, al tener la esperanza del producto de esas dos variables. De igual forma, vamos a definir σ -álgebras en \mathbb{R}^n .

Dado (Ω, \mathcal{A}, P) un espacio de probabilidad. Dados eventos $A, B \in \mathcal{A}$, definimos la **probabilidad condicional** de B dado A, como:

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

siempre que P(B) > 0.

De manera intuitiva, podemos ver que si A y B son dos eventos, tal que la ocurrencia de uno, no afecta a otro, o dicho de otra forma, son independientes, entonces, sería razonable pensar que:

$$P(B|A) = P(B)$$

porque el hecho que el evento A ocurra, no afectará en nada a B. Formalizando, damos la siguiente definición:

Dado (Ω, \mathcal{A}, P) y $\{A_i\}_{i\in I}$ una colección (a lo más contable) de conjuntos medibles, que pertenecen a \mathcal{A} (También llamados *eventos*). Se dice que la colección es **colección independiente**, o **mutuamente independiente**, si dado $J \subset I$ conjunto finito de índices, se cumple que:

$$P\left(\cap_{j\in J}A_{j}\right) = \prod_{j\in J}P(A_{j})$$

La colección es **independiente de a parejas**, si para todo $i, j \in I$, se tiene que $P(A_j \cap A_i) = P(A_j)P(A_i)$.

Tenga en cuenta, que si la colección $\{A_i\}_{i\in I}$ es mutuamente independiente, entonces es independiente de a parejas. Sin embargo, la recíproca no se tiene.

Damos algunas propiedades y teoremas importantes acerca de eventos independientes.

Teorema 15 Si A, B son independientes, entonces:

- \blacksquare A, B^c
- $\blacksquare A^c, B$
- $\blacksquare A^c, B^c$

son también independientes.

Teorema 16 (Ley de la probabilidad total.) Dado (Ω, \mathcal{A}, P) un espacio de probabilidad. Sea $\{E_n\}_{n\geq 1}$ una partición a lo más contable de Ω . Luego, para un evento $A \in \mathcal{A}$, se cumple:

$$P(A) = \sum_{n} P(A|E_n)P(E_n)$$

Teorema 17 (Teorema de Bayes.) Dado (Ω, \mathcal{A}, P) un espacio de probabilidad. Sea $\{E_n\}_{n\geq 1}$ una partición a lo más contable de Ω , y sea P(A)>0. Entonces:

$$P(E_n|A) = \frac{P(A|E_n)P(E_n)}{\sum_m P(A|E_m)P(E_m)}$$

Ahora, podemos generalizar el concepto de independencia a σ -álgebras, e inclusive, a variables aleatorias.

Sea (Ω, \mathcal{A}, P) un espacio de probabilidad.

■ Dadas sub- σ -álgebras $\{A_i\}_{i\in I}$ de \mathcal{A} . Decimos que esta colección es **independiente** si para todo $J\subseteq I$ con J finito, y todo $A_i\in\mathcal{A}_i$, se cumple que:

$$P\left(\cap_{j\in J}A_{j}\right)=\prod_{j\in J}P(A_{j})$$

En este caso, hablamos de independencia de σ -álgebras.

• Sea $\{X_i\}_{i\in I}$ un conjunto de variables aleatorias en el espacio de probabilidad dado, tal que la imagen de X_i es $(E_i, \mathcal{E}_{\rangle})$. Decimos que las variables aleatorias son **independientes** si $\sigma(X_i) = X_i^{-1}(\mathcal{E}_{\rangle})$ (Esto es, las σ -álgebras generadas por X_i) son independientes.

Enunciamos algunas propiedades para X y Y variables aleatorias independientes. De forma canónica, se puede extender el enunciado a un número a lo más contable de variables aleatorias independientes, $\{X_i\}_{i\in I}$.

Teorema 18 Sea X, Y variables aleatorias cuya imagen son los espacios (E, \mathcal{E}) y (F, \mathcal{F}) , respectivamente. X y Y son independientes si y sólo sí, se tiene algunas de las siguientes condiciones:

- $P(X \in A, Y \in B) = P(X \in A)P(Y \in B)$ para todo $A \in \mathcal{E}$ y $B \in \mathcal{F}$.
- $P(X \in A, Y \in B) = P(X \in A)P(Y \in B)$, para todo $A \in C$, $B \in D$ donde C, D son clases de conjuntos cerrados bajo intersecciones finitas, tal que $\sigma(C) = \mathcal{E}$ y $\sigma(D) = \mathcal{F}$

- Para f, g functiones medibles, f(X) y g(X) son independientes.
- Para f, g functiones medibles positivas, o medibles acotadas, $\mathbb{E}[f(X)g(Y)] = \mathbb{E}[f(X)]\mathbb{E}[g(Y)]$.
- Sean E, F espacios métricos, $y \, \mathcal{E}, \mathcal{F}$ sus σ -álgebras de Borel. Entonces, $\mathbb{E}[f(X)g(Y)] = \mathbb{E}[f(X)]\mathbb{E}[g(Y)]$ para todas f, g funciones acotadas y continuas.

En este punto, vemos que estamos comenzando a tomar conjuntos de dos o más variables aleatorias. Sería deseable hablar de una noción de conjuntamente medible. Sean (E,\mathcal{E}) y (F,\mathcal{F}) espacios medibles. En general, $\mathcal{E} \times \mathcal{F} = \{A \subseteq E \times F | A = \Lambda \times \Gamma, \Lambda \in \mathcal{E}, \Gamma \in \mathcal{F}\}$ no será una σ -álgebra, por ejemplo, si tomamos el producto $\mathcal{B}(\mathbb{R}) \times \mathcal{B}(\mathbb{R})$ (Producto de los conjuntos de Borel en \mathbb{R}), es tentador pensar que tal producto es σ -álgebra de \mathbb{R}^2 , sin embargo, note que el elemento $[0,1] \times [0,1] \cup [-1,-1/2] \times [0,1]$ debe estar en la σ -álgebra de \mathbb{R}^2 , pero no está en $\mathcal{B}(\mathbb{R}) \times \mathcal{B}(\mathbb{R})$, falla la estabilidad bajo uniones.

Por tanto, denotaremos a:

$$\mathcal{E} \otimes \mathcal{F} = \sigma(\mathcal{E} \times \mathcal{F})$$

como la menor σ -álgebra que contiene a $\mathcal{E} \times \mathcal{F}$. Tal cuál como las anteriores definiciones, enunciamos algunas propiedades y teoremas que serán de utilidad.

Teorema 19 Sea $f: (E \times F, \mathcal{E} \otimes \mathcal{F}) \to (\mathbb{R}, \mathcal{R})$ función medible. Entonces, las secciones $y \to f(x, y)$ (Para todo $x \in E$) $y \to f(x, y)$ (Para todo $y \in F$) son, respectivamente, \mathcal{F} -medible $y \in F$ -medible.

Teorema 20 (Tonelli-Fubini) Sea (E, \mathcal{E}, P) y $(F, \mathcal{F}), Q$ espacios de probabilidad.

■ Sea $R(A \times B) = P(A)Q(B)$, para $A \in \mathcal{E}$ y $B \in \mathcal{F}$. Entonces, R se extiende de forma unívoca a una probabilidad en $(E \times F, \mathcal{E} \otimes \mathcal{F})$, denotada por $P \otimes Q$.

■ Cada función f que es $\mathcal{E} \otimes \mathcal{F}$ -medible, positiva o integrable, respecto a $P \otimes Q$, tenemos que $x \to \int f(x,y)Q(dy)$ es \mathcal{E} -medible, $y \to \int f(x,y)P(dx)$ es \mathcal{F} -medible. Además:

$$\int f dP \otimes Q = \int \left\{ \int f(x,y) Q(dy) \right\} P(dx) = \int \left\{ \int f(x,y) P(dx) \right\} Q(dy)$$

Antes de acabar esta sección, vamos a ver dos teoremas importantes en probabilidad. Primero damos una definiciones:

• Sea A_n una sucesión de eventos en \mathcal{A} . Definimos:

$$\limsup_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} (\bigcup_{m \ge n}) A_m = \lim_{n \to \infty} (\bigcup_{m \ge n} A_m)$$

De manera probabilística, podemos interpretar este evento como:

$$\limsup_{n\to\infty} A_n = A_n$$
 ocurre infinitamente seguido

o del inglés, infinitely often (i.o). Esto es, que el evento A_n ocurre para un número infinito de n. Podemos escribir:

$$\limsup_{n\to\infty} A_n = \{A_n \text{ i.o } \}$$

• Sean X_n variables aleatorias definidas en (Ω, \mathcal{A}, P) . Defina las σ -álgebras:

$$B_n = \sigma(X_n)$$

$$C_n = \sigma(\cup_{p \ge n} B_n)$$

$$C_\infty = \bigcap_{n=1}^\infty C_n$$

 C_{∞} es la σ -álgebra cola.

Teorema 21 (Lema de Borel-Cantelli.) Sea A_n una sucesión de eventos en (Ω, \mathcal{A}, P) .

- $Si \sum_{n=1}^{\infty} P(A_n) < \infty$, luego P(Ai.o) = 0.
- Si $P(A_n i.o) = 0$ y si los eventos A_n son mutuamente independientes, entonces $\sum_{n=1}^{\infty} P(A_n) < \infty$.

Teorema 22 (Ley cero-uno de Kolmogorov.) Sea X_n una sucesión de variables aleatorias independientes, definidas en $(\Omega, \mathcal{A}, \mathcal{P})$, y sea C_{∞} la σ -álgebra cola correspondiente. Si $C \in C_{\infty}$, entonces P(C) = 0 o P(C) = 1.

Capítulo 2

Movimiento Browniano

En 1828, el botánico Sueco, *Robert Brown*, observó que los granos de polen en un líquido se movian de forma irregular.... más contexto histórico.

2.1. Conceptos de Procesos Estocásticos

2.2. Construcción del Movimiento Browniano

Primero, damos la definición de un movimiento Browniano, y luego, se hará la construcción. Esta, se puede hacer por dos maneras distintas:

- 1. Teoremas de existencia y continuidad de Kolmogorov.
- 2. Teorema de Donsker (Caso más general).

En el presente trabajo, haremos la construcción usando el Teorema de Donsker, y más tarde, se enunciarán los teoremas de Kolmogorov (Sin demostración).

Dado $\{W_t\}$ un proceso estocástico, en el espacio de probabilidad (Ω, \mathcal{F}, P) . El proceso $\{W_t\}$ es un **movimiento Browniano** en una dimensión, si se cumplen las siguientes condiciones:

- Para casi todo ω , los caminos $W_t(\omega)$ son continuos (En el sentido de la probabilidad).
- $\{W_t\}$ es un proceso Gaussiano, es decir, para $k \geq 1$, y todo $0 \leq t_1 \leq \cdots \leq t_k$, el vector aleatorio, $Z = (W_{t_1}, \cdots, W_{t_k}) \in \mathbb{R}^n$ tiene distribución multinormal (O Gaussiana).

Capítulo 3

La Integral de Itô

En este capítulo, comenzaremos la construcción de la integral de Itô. Para cumplir este objetivo, usaremos fuertemente los hechos vistos en el capítulo anterior del movimiento Browniano.

Ahora, ¿Por qué es necesario construir una nueva integral? Veamos el objetivo inicial, solucionar una ecuación diferencial que tiene cierto ruido:

$$\frac{dX}{dt} = b(t, X_t) + \sigma(t, X_t) \cdot W_t$$

Note que el ruido se puede representar como el proceso estocástico W_t . Bajo experimentación, se interponen las siguientes condiciones sobre el ruido:

- Dos variables del proceso W_{t_1} y W_{t_2} con $t_1 \neq t_2$ son independientes.
- $\{W_t\}$ es un proceso estacionario.
- $\mathbb{E}[W_t] = 0$ para todo t.

No hay algún proceso estocástico tradicional que cumpla las condiciones dadas. Por ende, lo podemos ver como un proceso estocástico generalizado, un **proceso de ruido blanco**, esto es, un proceso que se puede construir como medida de probabilidad en cierto espacio sútil de funcionales $C[0,\infty)$.

Por ende, se nos sugiere que el proceso $\{W_t\}$ será el movimiento Browniano. Discretizando la ecuación inicial...

$$\int_0^t f(s, w) dB_s(w)$$

Bibliografía

- [1] Donald L. Cohn, Measure theory, Springer-Brikhäuser, 2013.
- [2] Protter Philip and Jean Jacob, *Probability essentials*, Springer-Verlag, 2004.