Zaawansowana analityka z SAS Enterprise Miner

Edycja 6 - 2019/2020 Laboratorium

OPEN SOURCE INTEGRATION

- Ładowanie pakietów R
 - Otwarcie oprogramowania R ->

- W konsoli R wprowadzić polecenie

```
install.packages("package name")
```

- Wybrać lokalizację repozytorium, w którym pakiet ma zostać zainstalowany
- Wykorzystanie pakietu R możliwe jest po rozpakowaniu zawartych w nim funkcji

```
library(package_name)
```

Wykorzystanie R w SAS Enterprise Miner

- SAS nie dostarcza oprogramowania R
 - Oprogramowanie pobiera się ze strony http://cran.r-project.org.
- Oprogramowanie R musi być zainstalowane na tym samym serwerze /komputerze, co oprogramowanie SAS
- Kompatybilność wersji SAS, R, PMML

Enterprise Miner Version	R Version	PMML Version
13.1	2.13.0 – 3.0.2	pmml_1.4.1
13.2	2.15.3 – 3.0.3	pmml_1.4.1
14.1	3.0.1 - 3.1.2	pmml_1.4.2

- Weryfikacja komunikacji SAS i R z poziomu SAS Enterprise Miner
 - W węźle SAS Code użyć polecenia

```
proc options option=rlang;
run;
```

Rezultaty: RLANG – komunikacja SAS-R, NORLANG – brak komunikacji

Weryfikacja współpracy SAS Enterprise Miner i R

Użycie węzła SAS Code z zakładki Utility

Wybranie z opcji węzła edytora kodu

Wpisanie polecenia weryfikującego komunikację z SAS i R

Weryfikacja wyniku w Rezultatach węzła

Train	
Variables	
Code Editor	G.
Tool Type	Utility
Data Needed	No
Rerun	No
Use Priors	Yes

proc options option=rlang;
run;

SAS (r) Proprietary Software Release 9.4 TS1M3

RLANG Enables SAS to execute R language statements.

NOTE: PROCEDURE OPTIONS used (Total process time):
real time 0.00 seconds
cpu time 0.00 seconds

- Tryb działania węzła
 - Supervised
 - Unsupervised
- Tryb wyniku
 - PMML
 - MERGE
 - NONE

Train		
Variables		
Code Editor		
Language	R	
Training Mode	Supervised	
Output Mode	PMML	

	Tryb PMML	Tryb Merge
Kod scoringowy	Kod scoringowy typu Data Step jest generowany jedynie dla trybu wyniku PMML	Modele nie zawierają Kodu scoringowego SAS -> należy użyć funkcjonalności scoringu z R • Wykorzystanie funkcji predict()
Kompatybilność z pakietami R	Tryb PMML może zostać użyty jedynie dla poniższych pakietów R: • linear models (lm) {base} • generalized linear models (glm) {base} • multinomial log-linear models (multinom) {nnet} • decision trees (rpart) {rpart} • neural networks (nnet) {nnet} • K-means clustering (kmeans) {base}	Możliwość integracji z pakietami R, dla których PMML nie jest wspierany
Ocena modelu	Ocena modelu jest wykonywana automatycznie dla jednocześnie ustawionych opcji Supervised, PMML	Ocena modelu odbywa się po zastosowaniu po węźle Open Source integration węzła Model Import

Stosowanie odwołań w SAS Enterprise Miner

- Cel: wydajne odwołania do zmiennych w zbiorze danych
- Referencje automatycznie tworzone w SAS EM
 - Makrozmienne przechowujące teksty, np. listę zmiennych typu nominalnego ze zbioru

- Przydatne zmienne
 - &EMR_MODEL model R
 - &EMR_NUM_TARGET, &EMR_CLASS_TARGET zmienna objaśniana/zmienna celu
 - &EMR_NUM_INPUT, &EMR_CLASS_INPUT zmienne objaśniające
 - &EMR IMPORT DATA zbiór danych użyty w ścieżce modelowania
- Zmienne wymagane w trybie Merge
 - &EMR_EXPORT_TRAIN eksportuje wynik scoringu dla danych treningowych
 - &EMR_EXPORT_VALIDATE eksportuje wynik scoringu dla danych walidacyjnych
 - &EMR IMPORT VALIDATE import danych walidacyjnych do R

Dostosowanie kodu R do wykorzystania w SAS Enterprise Miner

```
library(rpart)
mytree <- rpart(Y ~ X1 + X2 + X3 +
C1 + C2 + C3, data=mydata)

Tryb PMML

Tryb Merge

library(rpart)
&EMR_MODEL <- rpart(&EMR_NUM_TARGET ~
&EMR_NUM_INPUT + &EMR_CLASS_INPUT,
data=&EMR_IMPORT_DATA)
```

```
library(rpart)
&EMR_MODEL <- rpart(&EMR_NUM_TARGET ~
&EMR_NUM_INPUT + &EMR_CLASS_INPUT,
data=&EMR_IMPORT_DATA)
&EMR_EXPORT_TRAIN <-
    predict(&EMR_MODEL, &EMR_IMPORT_DATA)</pre>
```

- Czy jest konieczne dostosowywanie kodu R do wykorzystania w SAS Enterprise Miner?
 - Wymagane jest użycie
 - &EMR_MODEL
 - &EMR_IMPORT_DATA
 - Do zmiennych objaśniających można odwoływać się po nazwach (uwaga: R – case sensitive)
 - Zmienna objaśniana, jeżeli jest wymieniana z nazwy, musi być poprzedzona literą \boldsymbol{r}

```
library(rpart)
&EMR_MODEL <- rpart(rY ~ X1 + X2 + X3 +
C1 + C2 + C3, data=&EMR_IMPORT_DATA)</pre>
```

Ilustracja modelu w R

```
png("Rplot.png")
plot(&EMR_MODEL)
```

 Wynik dostępny w Rezultatach węzła Open Source Integration Node

- Przydatne informacje o R
 - Case Sensitive

my lm <- LM(height ~ Weight, data=mydata)

Częste błędy

Powód:

- ,literówki' w makrozmiennych
- Błędne użycie makrozmiennej
- Błędy składni R

Ćwiczenie 5

Ćwiczenie 5

Rozszerzyć proces modelowania na zbiorze PMAD_PVA (diagram Donation_Analysis_2) o model dostępny w R

Zaimportować diagram:
OpenSourceIntegration_DIAG_start.x
ml

- a) Zweryfikować, czy
 możliwa jest komunikacja
 SAS Enterprise Miner R
- b) Dodać model R do przebiegu modelowania
- c) Porównać model z utworzonymi wcześniej

02.05.2019 www.**ii.pw**.edu.pl 15

Zweryfikować, czy komunikacja SAS Enterprise Miner – R jest dostępna W węźle SAS Code -> Code Editor wpisać polecenie:

```
proc options option=rlang;
run;
```

 W rezultatach węzła zweryfikować wynik procedury.

02.05.2019 www.**ii.pw**.edu.pl 16

Użycie węzła SAS Code z zakładki Utility

Wybranie z opcji węzła edytora kodu

Wpisanie polecenia weryfikującego komunikację z SAS i R

Weryfikacja wyniku w Rezultatach węzła (View->SAS Results->Log)

Train		
Variables		
Code Editor		
Tool Type	Utility	
Data Needed	No	
Rerun	No	
Use Priors	Yes	

proc options option=rlang;
run;

SAS (r) Proprietary Software Release 9.4 TS1M3

RLANG Enables SAS to execute R language statements.

NOTE: PROCEDURE OPTIONS used (Total process time):

real time 0.00 seconds cpu time 0.00 seconds

Pytania kontrolne:

Wybierz prawidłowe stwierdzenie/stwierdzenia:

- Są 3 tryby wyniku dla węzła Open Source Integration: PMML, Merge, None
- PMML tworzy kod scoringowy automatycznie bez ingerencji użytkownika
- PMML jest wspierany przez wszystkie pakiety R
- Tryb Merge wymaga dodatkowej funkcjonalności R do utworzenia kodu scoringowego

Dodać model R do przebiegu modelowania

Zwrócić uwagę z jakich zmiennych korzysta model i na tej podstawie zidentyfikować odpowiednie miejsce przebiegu modelowania.

Pytania kontrolne:

- Jakie węzły utworzyły zmienne G_?

#Random Forest Model
#Using the randomForest R Package and Function

library(randomForest)

set.seed(12345)

myForest <- randomForest(TARGET_B ~ G_DemCluster + G_StatusCat96NK + GiftAvg36 + GiftCnt36 + GiftCntCard36 + GiftTimeLast + StatusCatStarAll, data = PVA, ntree = 500, mtry = 5, importance = TRUE)

importance(myForest)

png("RPlot.png")
plot(myForest, main='randomForest MSE Plot in R')

Dostosowanie kodu modelu R do wymagań SAS Enterprise Miner

Jaki tryb wyniku należy użyć w węźle Open Source Integration?

Czy w związku z trybem wyniku konieczne jest zastosowanie dodatkowych węzłów?

library(randomForest)

set.seed(12345)

&EMR_MODEL <- randomForest(&EMR_CLASS_TARGET ~ &EMR_CLASS_INPUT + &EMR_NUM_INPUT, data = &EMR_IMPORT_DATA, ntree = 500, mtry = 5, importance = TRUE)

importance(&EMR_MODEL)

 Dodatkowe instrukcje wynikające z trybu MERGE &EMR_EXPORT_TRAIN <- predict(&EMR_MODEL, &EMR_IMPORT_DATA, type="prob")

&EMR_EXPORT_VALIDATE <- predict(&EMR_MODEL, &EMR_IMPORT_VALIDATE, type="prob")

png("RPlot.png")
plot(&EMR MODEL, main='randomForest MSE Plot in R')

- Dodatkowe węzły wynikające z instrukcji MERGE: Model Import
- Zmapowanie wyników scorowania dla obu poziomów zmiennej celu
- Zmiana nazwy węzła na R Forest

Pytania kontrolne:

- Czy las losowy jest dobrej jakości?
- Zweryfikować statystyki dla zbioru treningowego i walidacyjnego

Wynik węzła Open Source Integration

Wynik węzła Open Source Integration

Wyniki węzła Model Import

Zastosować węzeł Model Import po węźle Open Source Integration

Porównać nowy model z pozostałymi

- Kryterium:
 - Średni błąd kwadratowy (ASE)
- Tabela:
 - Walidacyjna
- Zinterpretować wyniki porównania

 Wykorzystać węzeł Model Comparison

Diagram wynikowy

02.05.2019 www.ii.pw.edu.pl 27

Ćwiczenie 6

Opis zbioru danych - Organics

Supermarket wprowadza nową linię produktów Organicznych.

Oczekuje informacji, którzy klienci będą skłonni do zakupu nowych produktów.

Sklep posiada program lojalnościowy, w którym klienci otrzymują kupony na zakup produktów Organicznych.

Nazwa zmiennej	Etykieta	Rola, Poziom
AFFL	Ocena zamożności	INPUT, INTERVAL
AGE	Wiek	INPUT, INTERVAL
AGEGRP1	Grupa wiekowa 1	REJECTED
AGEGRP2	Grupa wiekowa 2	REJECTED
BILL	Kwota płatności	INPUT, INTERVAL
CLASS	Status lojalnościowy klienta	INPUT, NOMINAL
CUSTID	Identyfikator klienta	ID
DOB	Data urodzenia	REJECTED
EDATE	Data danych	REJECTED
GENDER	Płeć (F,M,U)	INPUT, NOMINAL
LCDATE	Data wniosku o kartę lojalnościową	REJECTED
LTIME	Liczba lat w programie lojalnościowym	INPUT, INTERVAL
NEIGHBORHOOD	Typ sąsiedztwa	REJECTED
NGROUP	Grupa sąsiedztwa	INPUT, NOMINAL
ORGANICS	Liczba zakupionych produktów Organicznych	REJECTED
ORGYN	Flaga zakupu produktów Organicznych (1- tak, 0 – Nie)	TARGET, BINARY
REGION	Region geograficzny	INPUT, NOMINAL
TV_REG	Region telewizyjny	INPUT, NOMINAL

Ćwiczenie 6

W zespole tworzone są modele za pomocą narzędzi:

- SAS Enterprise Miner
- R

Należy porównać ich jakość z użyciem SAS Enterprise Miner.

- a) Zbudować drzewo decyzyjne
 - a) Zastosować metodę
 imputacji wymaganą dla
 modeli R
- b) Zaimportować model zbudowany w języku R
- c) Porównać modele

02.05.2019 www.ii.pw.edu.pl 30

Ćwiczenie 6a

- Projekt
 - Enterprise_Miner_projekt_lab_n azwisko
- Zbiór źródłowy
 - Organics
 - Zmienna celu: Orgyn
- Diagram
 - Organics

Pytania kontrolne:

 Jaki % osób kupuje produkty z linii Organicznej?

- Budowa drzewa decyzyjnego:
 - Dodać do projektu zbiór Organics
 - Ustawić role i poziomy zmiennych zgodnie z tabelą opisu zbioru
 - Wykonać eksplorację zbioru
 - Zmienić sposób losowania próby z Top na Random
 - Dokonać podziału zbioru na część treningową i walidacyjną (w proporcji 70/30)
 - Zastosować metodę uzupełniania braków danych (średnia dla zmiennych ciągłych)
 - Utworzyć zmienne (indykatory) dla zmiennych zawierających braki danych, dopuścić je jako zmienne wejściowe w dalszej części modelowania
 - Zbudować model drzewa decyzyjnego z domyślnymi parametrami
 - Zmienić metodę wyboru najlepszego drzewa z domyślnej na Assessment

Ćwiczenie 6a

Pytania kontrolne:

- Jaki % osób kupuje produkty z linii Organicznej?
- Które zmienne zostały użyte do budowy drzewa
- W jak wielu podziałach zostały użyte poszczególne zmienne?

Impute

 Indykatory dla zmiennych z brakami danych

- Dodać do projektu kod modelu utworzony w R
 - Model został utworzony z wykorzystaniem pakietu rpart wspieranego przez PMML
- Przekształcić skrypt, tak aby był czytelny dla SAS Enterprise Miner
- Dodać instrukcje wymagane do zilustrowania drzewa

Oryginalna postać skryptu:

#Create an R Decision Tree #Use the rpart R Package

library(rpart)

mytree <- rpart(ORGYN ~ AFFL + AGE + BILL + LTIME + NGROUP + GENDER + REGION + TV_REG + CLASS, data=organics)

Dodatkowe instrukcje:

png("RPlot.png")
plot(mytree , main='R Object Plot')

Zastosować finalny kod w węźle Open Source Integration

Ćwiczenie 6c

Wykorzystać węzeł Model Comparison

Porównać utworzone modele

Pytania kontrolne:

- Który model ma lepszą jakość?
 - Zinterpretować miary ASE i Liftu skumulowanego

TECHNIKI GRUPOWANIA DANYCH

Metody określania liczby skupień

- Clustering Cubic Criterion CCC
- pseudo-F
- pseudo-T²

Clustering Cubic Criterion - CCC

- Kryterium wyboru optymalnej liczby skupień
- Kryterium bazuje na porównaniu oczekiwanej i obserwowanej sumy kwadratów odległości obserwacji wewnątrz skupień
- Formuła liczenia kryterium CCC została ustalona eksperymentalnie

$$CCC = ln \left[\frac{1 - E(R^2)}{1 - R^2} \right] \frac{\sqrt{\frac{np^*}{2}}}{(.001 + E(R^2))^{1.2}}$$

- Wizualizowane jest na wykresie:
 - Oś X przedstawia liczbę skupień (w zakresie od 1 do N/10, gdzie N to liczba obserwacji)
 - Oś Y przedstawia wartość CCC
- Kryterium nie nadaje się do oceny skupień jeśli są:
 - Mało liczne (mniej niż 10 obserwacji w skupieniu)
 - Nieregularne lub wydłużone

Interpretacja kryterium CCC

Należy szukać lokalnych maksimów dla CCC ≥ 2(3)

Statystyka pseudo-F

- Statystyka pseudo-F (PSF) mierzy różnorodność między grupami na zadanym poziomie hierarchii
- Wysokie wartości statystyki oznaczają, że występują różnice między zidentyfikowanymi grupami (średnie wartości zmiennych różnią się)
- Statystyka nie ma rozkładu F-Snedecora

Statystyka pseudo-F

Cluster History											
										T	
	NCL Clust	ers Joined	FREQ	SPRSQ	RSQ	ERSQ	ссс	PSF	PST2	i e	
	15 CL16	OB94	22	0.0015	.921	.975	-11	68.4	1.4		
	14 CL19	OB49	28	0.0021	.919	.972	-11	72.4	1.8		
	13 CL15	OB52	23	0.0024	.917	.969	-10	76.9	2.3		
	12 CL13	OB96	24	0.0018	.915	.966	-9.3	83.0	1.6		
	11 CL12	OB93	25	0.0025	.912	.962	-8.5	89.5	2.2		
	10 CL11	OB78	26	0.0031	.909	.957	-7.7	96.9	2.5		
	9 CL10	OB76	27	0.0026	.907	.951	-6.7	107	2.1		
	8 CL9	OB77	28	0.0023	.904	.943	-5.5	120	1.7		
	7 CL8	OB43	29	0.0022	.902	.933	-4.1	138	1.6		
	6 CL7	OB87	30	0.0043	.898	.920	-2.7	160	3.1		
•	5 CL6	OB82	31	0.0055	.892	.902	-1.1	191	3.7		
>	4 CL22	OB61	37	0.0079	.884	.875	0.93	237	10.6		
4	3 CL14	OB23	29	0.0126	.872	.827	2.60	320	10.4		
	2 CL4	CL3	66	0.2129	.659	.697	-1.3	183	172		
	1 CL2	CL5	97	0.6588	.000	.000	0.00		183		

Potencjalne liczby segmentów

Statystyka pseudo-T²

- Statystyka pseudo-T² jest odmianą testu
 T² Hotellinga
- Duża wartość statystyki oznacza, że średnie wartości zmiennych w grupach różnią się istotnie -> grupy nie powinny być łączone

Statystyka pseudo-T²

					Clus	ster History	y				
											т
	NCL	Cluster	rs Joined	FREQ	SPRSQ	RSQ	ERSQ	CCC	PSF	PST2	i e
	15	CL16	OB94	22	0.0015	.921	.975	-11	68.4	1.4	
	14	CL19	OB49	28	0.0021	.919	.972	-11	72.4	1.8	
	13	CL15	OB52	23	0.0024	.917	.969	-10	76.9	2.3	
	12	CL13	OB96	24	0.0018	.915	.966	-9.3	83.0	1.6	
	11	CL12	OB93	25	0.0025	.912	.962	-8.5	89.5	2.2	
	10	CL11	OB78	26	0.0031	.909	.957	-7.7	96.9	2.5	
	9	CL10	ОВ76	27	0.0026	.907	.951	-6.7	107	2.1	
	8	CL9	ОВ77	28	0.0023	.904	.943	-5.5	120	1.7	
	7 (CL8	OB43	29	0.0022	.902	.933	-4.1	138	1.6	
	6	CL7	OB87	30	0.0043	.898	.920	-2.7	160	3.1	
>	5 (CL6	OB82	31	0.0055	.892	.902	-1.1	191	3.7	
	4	CL22	OB61	37	0.0079	.884	.875	0.93	237	10.6	
>	3 (CL14	OB23	29	0.0126	.872	.827	2.60	320	10.4	
	2 (CL4	CL3	66	0.2129	.659	.697	-1.3	183	172	
	1	CL2	CL5	97	0.6588	.000	.000	0.00		183	

Potencjalne liczby (klastrów

Ćwiczenie 8

DODATKOWE

Opis zbioru danych - Hotel Dane o średnich wydatkach klientów w sieci hoteli.

Nazwa zmiennej	Etykieta					
CUST_ID	Identyfikator klienta					
SEX	Płeć					
AVG_AGE	Średni wiek					
AVG_DURATION	Średni czas pobytu					
SUM_Babysitting_childcare	Wartość usług opieki nad dzieckiem					
SUM_Beauty_services	Wartość usług salunu piekności					
SUM_Business_center	Wartość usług centrum biznesowego					
SUM_Business_services	Wartość usług biznesowych					
SUM_Bar_lounge	Wartość wydatków w barze					
SUM_Casino	Wartość wydatków w kasynie					
SUM_Hair_salon	Wartość wydatków fryzjerskich					
SUM_Full_service_health_spa	Wartość wydatków spa					
SUM_Sauna	Wartość wydatków na saunę					
SUM_Room	Wartość wydatków na pokój					
SUM_Spa_services_on_site	Wartość wydatków spa w hotelu					

Sortowanie zbiorów danych

```
proc sort data = zbiór_wejściowy
          out = zbiór_wejściowy;
          by zmienna;
run;
```

Nazwa zbioru wejściowego jest zapisywana w konwencji: nazwa_biblioteki.nazwa_zbioru Jeżeli zbiór znajduje się w bibliotece WORK, to poniższe zapisy są sobie równoważne: WORK.nazwa_zbioru = nazwa_zbioru

Łączenie posortowanych zbiorów danych

Obliczanie liczebności przecięć wartości 2 zmiennych

Lokalizacja zbiorów wynikowych z analiz

Ćwiczenie 8

Sieć hoteli chce dopasować ofertę do profilu swoich klientów Jakie segmenty klientów można wyróżnić na podstawie danych zebranych przez sieć?

Wykonać segmentację klientów

- Projekt
 - Enterprise_Miner_unsup_lab_na zwisko
- Zbiór źródłowy
 - Hotel do nauki modeli
 - Hotel score do scoringu
- Diagram
 - SEGM Hotel
- Model
 - Cluster

- a) Zdecydować, czy/jak należy uzupełnić wartości brakujące
- b) Zdecydować, czy występują wartości odstające
- c) Wykonać standaryzację zmiennych wejściowych
- d) Wykonać segmentację
- e) Wykonać profilowanie
- f) Dla 3 klientów, którzy nie brali udziału w segmentacji, zweryfikować, do których segmentów należą

Ćwiczenie 8a

Zdecydować, czy i jak należy uzupełnić wartości brakujące

- Wczytać zbiór z domyślnymi ustawieniami
- Zastosować węzeł
 StatExplore lub DMDB i
 zweryfikować wartości
 statystyk

Interva	l Variables												
Ordered Inputs	Data Role	Variable	Median	Missing	Non Missing	Minimum	Maximum	Mean	Standard Deviation	Skewness	Kurtosis	Role	Label
	1TRAIN	SUM_Busin	0			0	98.25	1.58982	6.950135	5.625829	36.52547	INPUT	Wartosc usl
	2TRAIN	SUM_Baby	0			0	914.9	20.88847	77.2036	5.066172	28.61411	INPUT	Wartosc usl
	3TRAIN	SUM_Bar_I	5.369			0	3438.75	73.91309	241.0405	5.559344	36.27598	INPUT	Wartosc wy
	4TRAIN	SUM_Hair	0			0	3151.05	126.5566	363.2727	3.319181	11.94421	INPUT	Wartosc wy
	5TRAIN	SUM_Busin	3.388			0	343.875	8.701193	23.79675	5.620522	37.085	INPUT	Wartosc usl
	6TRAIN	SUM_Spa	0			0	272.7	29.96305	47.44435	1.607941	2.106739	INPUT	Wartosc wy
	7TRAIN	SUM_Beaut	68.88			0	1050.35	112.2314	137.2387	1.546082	3.184935	INPUT	Wartosc usl
	8TRAIN	SUM_Full	249.9			0	2863.35	416.3481	496.4386	1.22662	1.235098	INPUT	Wartosc wy
	9TRAIN	SUM_Casino	933.45			0.574	9235.8	1303.55	1362.35	1.542833	2.50822	INPUT	Wartosc wy
	10TRAIN	SUM_Room	426.006			7.455	6267.065	592.1835	564.7322	2.759209	11.78415	INPUT	Wartosc wy
	11TRAIN	SUM_Sauna	3.92			0	19.54667	4.077237	3.591057	0.723448	0.156311	INPUT	Wartosc wy
	12TRAIN	AVG_AGE	47			19	97	50.25194	18.9724	0.365937	-0.90215	INPUT	Sredni wiek
	13TRAIN	AVG_DURA	8.666667			1	14.6	8.020647	2.315407	-0.53896	-0.46375	INPUT	Sredni czas

Ćwiczenie 8b

Zdecydować, czy występują wartości odstające

 Obejrzeć rozkłady zmiennych (po jednokrotnym uruchomieniu) w węźle Filter

Ćwiczenie 8b

Wykonać segmentację bez i z filtrowaniem

 W metodzie filtrowania wybrać metodę percentyli

Ćwiczenie 8c

Wykonać standaryzację zmiennych wejściowych

 Zastosować metodę standaryzacji dostępną w węźle Cluster

Ćwiczenie 8d

Wykonać segmentację

Pytania kontrolne:

- Który z węzłów najbardziej jednoznacznie wskazuje liczbę segmentów?
 - Które kryteria należy zweryfikować?
- Która zmienna jest najbardziej istotna w poszczególnych segmentach najlepszej segmentacji?
- Które z segmentów są najmniej do siebie podobne?
- Który z segmentów jest najbardziej liczny?
- W których segmentach przeważają mężczyźni, a w których kobiety?

- Zastosować węzły Cluster
- We wszystkich przypadkach określić liczbę potencjalnych skupień

Ćwiczenie 8e

Wykonać profilowanie

- Zastosować węzeł Profile do scharakteryzowania poszczególnych segmentów wybranej segmetacji
- Opcjonalnie: W
 dokumencie .doc opisać
 poszczególne segmenty,
 ilustrując swe wnioski
 wykresami i statystykami
 dostępnymi w węźle Profile

Ćwiczenie 8f

Dla 3 klientów, którzy nie brali udziału w segmentacji, zweryfikować, do których segmentów należą

 b) Opcjonalnie: Zapisać w dokumencie, do których segmentów należą klienci

Ćwiczenie 8*

Wykonać segmentację po wcześniejszym zgrupowaniu zmiennych ciągłych

Zweryfikować, czy statystyki CCC, pseudo F, pseudo T2 jednoznacznie wskazują na liczbę segmentów Połączyć zbiory wynikowe z 2 segmentacji i porównać przypisanie poszczególnych klientów do segmentów

Pytania kontrolne:

- Czy uzyskane segmenty są zbliżone do poprzednio uzyskanych
- Czy zmieniły się zmienne najbardziej istotne w poszczególnych segmentach?

Ćwiczenie 8*

Użyć edytora kodu w SAS EM:

- Przed połączeniem zbiorów danych należy je posortować po identyfikatorze klienta
- Wykorzystać procedurę SORT
- Do połączenia zbiorów wykorzystać DATA STEP z instrukcję MERGE.
- Do wyliczenia statystyk wykorzystać procedurę FREQ.
- Wszystkie nowoutworzone zbiory zapisać w bibliotece tymczasowej WORK

```
proc sort data = biblioteka.nazwa zbioru wejściowego (keep =
zmienna w której odbywa sie sortowanie
nazwa zmiennej wynikowej z segmentacji)
                   out = biblioteka.nazwa zbioru wyjściowego
(rename=(nazwa zmiennej wynikowej z segmentacji=nowa nazwa zmiennej
wynikowej z segmentacji));
        by zmienna w której odbywa sie sortowanie;
run;
data biblioteka.nazwa zbioru wyjściowego;
        merge biblioteka.nazwa zbioru wejściowego1
                   biblioteka.nazwa zbioru wejściowego2;
        by zmienna w której odbywa sie łączenie;
run;
proc freq data=biblioteka.nazwa zbioru wejściowego;
        tables
nowa nazwa zmiennej wynikowej z segmentacji1*nowa nazwa zmiennej wy
nikowej z segmentacj2/out= biblioteka.nazwa zbioru wyjściowego;
run;
```