Đặng Hữu Phước Vinh

1752052

Le rapport de TP3

Ex 1:

1.

a.

b.

c.

2.

a.

	Input = a		Input = b	
	State	Output	State	Output
Q0	Q1	1	Q0	0
Q1	Q2	1	Q1	1
Q2	Q2	1	Q0	0

b.

	Input = a		Input = b	
	State	Output	State	Output
Q0	Q0	0	Q3	0
Q1	Q1	1	Q0	0
Q2	Q3	0	Q2	1
Q3	Q2	1	Q1	1

c.

	Input = a		Input = b	
	State	Output	State	Output
Q0	Q0	1	Q1	1
Q1	Q0	1	Q3	0
Q2	Q2	0	Q3	0
Q3	Q1	1	Q2	0

Ex 2

1.

L1:

L2:

 $\text{L1} \, \cap \, \text{L2}$

Z0 = x1 ou y1

$$(Z0, b) = x2 \text{ ou } y2 = Z2$$

$$(Z1, a) = x4 \text{ ou } y3 = Z3$$

$$(Z1, b) = x3 \text{ ou } y3 = Z4$$

$$(Z2, a) = x4 \text{ ou } y2 = Z5$$

$$(Z2, b) = x3 \text{ ou } y2 = Z6$$

$$(Z3, a) = x4 \text{ ou } y3 = Z3$$

$$(Z3, b) = x4 \text{ ou } y3 = Z3$$

$$(Z4, a) = x3 \text{ ou } y3 = Z4$$

$$(Z4, b) = x3 \text{ ou } y3 = Z4$$

$$(Z5, a) = x4 \text{ ou } y2 = Z5$$

$$(Z5, b) = x4 \text{ ou } y2 = Z5$$

$$(Z6, a) = x3 \text{ ou } y2 = Z6$$

$$(Z6, b) = x3 \text{ ou } y2 = Z6$$

2.

L1:

L2:

$L1 \cap L2$

$$Z0 = x1 \text{ ou } y1$$

$$(Z0, a) = x2 \text{ ou } y1 = Z1$$

$$(Z0, b) = x2 \text{ ou } y2 = Z2$$

$$(Z1, a) = x4 \text{ ou } y1 = Z3$$

$$(Z1, b) = x3 \text{ ou } y2 = Z4$$

$$(Z2, a) = x4 \text{ ou } y1 = Z3$$

$$(Z2, b) = x3 \text{ ou } y2 = Z4$$

$$(Z3, a) = x4 \text{ ou } y1 = Z3$$

$$(Z3, b) = x4 \text{ ou } y2 = Z5$$

$$(Z4, a) = x3 \text{ ou } y1 = Z6$$

$$(Z4, b) = x3 \text{ ou } y2 = Z4$$

$$(Z5, a) = x4 \text{ ou } y1 = Z3$$

$$(Z5, b) = x4 \text{ ou } y2 = Z5$$

$$(Z6, a) = x3 \text{ ou } y1 = Z6$$

$$(Z6, b) = x3 \text{ ou } y2 = Z4$$

3.

L1:

L2:

L1 ∩ **L2**

$$Z0 = x1 \text{ ou } y1$$

$$(Z0, a) = x2 \text{ ou } y1 = Z1$$

$$(Z0, b) = x1 \text{ ou } y2 = Z2$$

$$(Z1, a) = x3 \text{ ou } y1 = Z3$$

$$(Z1, b) = x1 \text{ ou } y2 = Z2$$

$$(Z2, a) = x2 \text{ ou } y1 = Z1$$

$$(Z2, b) = x1 \text{ ou } y3 = Z4$$

$$(Z3, a) = x3 \text{ ou } y1 = Z3$$

$$(Z3, b) = x3 \text{ ou } y2 = Z5$$

$$(Z4, a) = x2 \text{ ou } y3 = Z6$$

$$(Z4, b) = x1 \text{ ou } y3 = Z4$$

$$(Z5, a) = x3 \text{ ou } y1 = Z3$$

$$(Z5, b) = x3 \text{ ou } y3 = Z7$$

$$(Z6, a) = x3 \text{ ou } y3 = Z7$$

$$(Z6, b) = x1 \text{ ou } y3 = Z4$$

$$(Z7, a) = x3 \text{ ou } y3 = Z7$$

$$(Z7, b) = x3 \text{ ou } y3 = Z7$$

Ex 3:

1. Soit L un langage régulier qui contient un nombre infini de mots, alors ils existent 3 mots x, y, z(y n'est pas le mot vide) tels que tout mot sous la forme : xy^nz pour n = 1, 2, 3,

$$w = a^9b^{2.9}$$
 AF : N = 10 états.

$$x = a^{i}, i >= 0$$

$$y = a^{j}, j > 0, i + j < 10$$

$$z = a^{9-i-j}b^{2.9}$$

$$w' = xyyz = a^{i}a^{j}a^{j}a^{9-i-j}b^{2.9} = a^{9+j}b^{18}$$
 n'appartient pas L

2. Soit L un langage régulier qui contient un nombre infini de mots, alors ils existent 3 mots x, y, z(y n'est pas le mot vide) tels que tout mot sous la forme : xy^nz pour $n = 1, 2, 3, 4, \ldots$ est dans le langage L.

$$w = a^9b^{2.9}c^9$$
 AF : N = 10 états.

$$x = a^{i}, i >= 0$$

$$y = a^{j}, j > 0, i + j < 10$$

$$z = a^{9-i-j}b^{2.9}c^9$$

$$w' = xyyz = a^{i}a^{j}a^{j}a^{9-i-j}b^{2.9}c^{9} = a^{9+j}b^{18}c^{9}$$
 n'appartient pas L

Ex 4:

a.

AF1':

AF2':

AF1 ∩ AF2':

$$(Z0, a) = q1 \text{ ou } p1 = Z1$$

$$(Z0, b) = q0 \text{ ou } p2 = Z2$$

$$(Z1, a) = q1 \text{ ou } p1 = Z1$$

$$(Z1, b) = q0 \text{ ou } p2 = Z2$$

$$(Z2, a) = q1 \text{ ou } p1 = Z1$$

$$(Z2, b) = q0 \text{ ou } p2 = Z2$$

AF2 ∩ AF1':

$$Z0 = p0 \text{ ou } q0$$

$$(Z0, a) = p1 ou q1 = Z1$$

$$(Z0, b) = p2 ou q0 = Z2$$

$$(Z1, a) = p1 ou q1 = Z1$$

$$(Z1, b) = p2 \text{ ou } q0 = Z2$$

$$(Z2, a) = p1 ou q1 = Z1$$

$$(Z2, b) = p2 \text{ ou } q0 = Z2$$

AF1 \cap AF2' et AF2 \cap AF1' sont vide, alors AF1 = AF2

b.

AF1':

AF2':

AF1 ∩ AF2':

$$Z0 = q0 \text{ ou } p0$$

$$(Z0, b) = q2 \text{ ou } p1 = Z2$$

$$(Z1, a) = q0 \text{ ou } p0 = Z0$$

$$(Z1, b) = q2 \text{ ou } p1 = Z2$$

$$(Z2, a) = q0 \text{ ou } p0 = Z0$$

$$(Z2, b) = q3 \text{ ou } p2 = Z3$$

$$(Z3, a) = q3 \text{ ou } p2 = Z3$$

$$(Z3, b) = q3 \text{ ou } p2 = Z3$$

AF2 ∩ AF1':

$$Z0 = p0$$
 ou $q0$

$$(Z0, a) = p0 \text{ ou } q1 = Z1$$

$$(Z0, b) = p1 ou q2 = Z2$$

$$(Z1, a) = p0 \text{ ou } q0 = Z0$$

$$(Z1, b) = p1 ou q2 = Z2$$

$$(Z2, a) = p0 \text{ ou } q0 = Z0$$

$$(Z2, b) = p2 \text{ ou } q3 = Z3$$

$$(Z3, a) = p2 \text{ ou } q3 = Z3$$

$$(Z3, b) = p2 \text{ ou } q3 = Z3$$

AF1 \cap AF2' et AF2 \cap AF1' sont vide, alors AF1 = AF2