

PCTWORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : G01N 33/574, C12Q 1/68	A2	(11) International Publication Number: WO 98/53319 (43) International Publication Date: 26 November 1998 (26.11.98)
		(74) Agents: KAGAN, Sarah, A. et al.; Banner & Witcoff, Ltd., 11th floor, 1001 G Street, N.W., Washington, DC 20001-4597 (US).
(21) International Application Number: PCT/US98/10277 (22) International Filing Date: 20 May 1998 (20.05.98)		(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).
(30) Priority Data: 60/047,352 21 May 1997 (21.05.97) US (63) Related by Continuation (CON) or Continuation-in-Part (CIP) to Earlier Application US 60/047,352 (CON) Filed on 21 May 1997 (21.05.97)		(71) Applicant (for all designated States except US): THE JOHNS HOPKINS UNIVERSITY [US/US]; Suite 2-100, 2024 E. Monument Street, Baltimore, MD 21205 (US). (72) Inventors; and (75) Inventors/Applicants (for US only): VOGELSTEIN, Bert [US/US]; The Johns Hopkins University, Suite 2-100, 2024 E. Monument Street, Baltimore, MD 21205 (US). KINZLER, Kenneth, W. [US/US]; The Johns Hopkins University, Suite 2-100, 2024 E. Monument Street, Baltimore, MD 21205 (US).
(54) Title: GENE EXPRESSION PROFILES IN NORMAL AND CANCER CELLS (57) Abstract As a step towards understanding the complex differences between normal and cancer cells, gene expression patterns were examined in gastrointestinal tumors. More than 300,000 transcripts derived from at least 45,000 different genes were analyzed. Although extensive similarity was noted between the expression profiles, more than 500 transcripts that were expressed at significantly different levels in normal and neoplastic cells were identified. These data provide insights into the extent of expression differences underlying malignancy and reveal genes that are useful as diagnostic or prognostic markers.		

AM

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		

Gene Expression Profiles in Normal and Cancer Cells

This invention was made with support from the National Institutes of Health, Grant No. GM07309, CA57345, and CA62924. The U.S. government therefore retains certain rights in the invention.

5

TECHNICAL FIELD OF THE INVENTION

This invention is related to the diagnosis of cancer, and tools for carrying out such diagnosis.

BACKGROUND OF THE INVENTION

Much of cancer research over the past 50 years has been devoted to the analyses of genes that are expressed differently in tumor cells compared to their normal counterparts. Although hundreds of studies have pointed out differences in the expression of one or a few genes, no comprehensive study of gene expression in the cancer cell has been reported. It is therefore not known how many genes are expressed differentially in tumor versus normal cells, whether the bulk of these differences are cell autonomous rather than being dependent on the tumor microenvironment, and whether most differences are cell-type specific or tumor specific. Thus there is a need in the art for information on the molecular changes that occur in cells during cancer development and progression.

SUMMARY OF THE INVENTION

According to one embodiment of the invention, a method is provided for diagnosing colon cancer in a sample suspected of being neoplastic. The method comprises the steps of:

5 comparing the level of at least one transcript in a first sample of a tissue to a second sample, wherein the first sample is of a colonic tissue suspected of being neoplastic and the second sample is of a normal human colonic tissue, and wherein the transcript is identified by a tag selected from the group consisting of those shown in Table 3;

10 identifying the first sample as neoplastic when the level of the at least one transcript is found to be lower in the first sample than in the second sample.

According to another embodiment of the invention, another method is provided for diagnosing colon cancer in a sample suspected of being neoplastic. The method comprises the steps of:

15 comparing the level of at least one transcript in a first sample of a tissue to a second sample, wherein the first sample is of a colonic tissue suspected of being neoplastic and the second sample is of a normal human colonic tissue, and wherein the transcript is identified by a tag selected from the group consisting of those shown in Table 2;

20 identifying the first sample as neoplastic when the level of the at least one transcript is found to be higher in the first sample than in the second sample.

25 In another embodiment of the invention an isolated and purified human nucleic acid molecule is provided. The molecule comprises a SAGE tag selected from SEQ ID NO:1-732.

30 In yet another aspect of the invention an isolated nucleotide probe is provided. The probe comprises at least 12 nucleotides of a human nucleic acid molecule, wherein the human nucleic acid molecule comprises a SAGE tag selected from SEQ ID NO: 1-732.

According to another aspect of the invention a method is provided for diagnosing pancreatic cancer in a sample suspected of being neoplastic. The method comprises the steps of:

5 comparing the level of at least one transcript in a first sample of a tissue to a second sample, wherein the first sample is of a pancreatic tissue suspected of being neoplastic and the second sample is of a normal human colon tissue, wherein said transcript is identified by a tag selected from the group consisting of those shown Table 4;

10 identifying the first sample as neoplastic when the level of the at least one transcript is found to be higher in the first sample than in the second sample.

According to still another embodiment of the invention a method of diagnosing cancer in a sample suspected of being neoplastic is provided. The method comprises the steps of:

15 comparing the level of at least one transcript in a first sample of a tissue to a second sample, wherein the first sample is of a tissue suspected of being neoplastic and the second sample is of a normal human tissue, wherein said transcript is identified by a tag selected from the group consisting of those shown Table 5;

20 identifying the first sample as neoplastic when the level of the at least one transcript is found to be higher in the first sample than in the second sample.

According to another embodiment of the invention a method is provided to aid in the determination of a prognosis for a colon cancer patient. 25 The method comprises the steps of:

comparing the level of at least one transcript in a first sample of a tissue to a second sample, wherein the first sample is of a neoplastic colonic tissue and the second sample is of a normal human colonic tissue, and wherein the transcript is identified by a tag selected from the group consisting of those 30 shown in Table 3;

determining a poorer prognosis if the level of the at least one transcript is found to be lower in the first sample than in the second sample.

According to another aspect of the invention a method to aid in determining a prognosis for a patient with colon cancer is provided. The 5 method comprises the steps of:

comparing the level of at least one transcript in a first tissue sample to a second sample, wherein the first sample is of a colonic cancer tissue and the second sample is of a normal human colonic tissue, and wherein the transcript is identified by a tag selected from the group consisting of those shown in Table 2;

10 determining a poorer prognosis if the level of the at least one transcript is found to be higher in the first sample than in the second sample.

In yet another embodiment of the invention a method is provided for diagnosing colon cancer in a sample suspected of being neoplastic. The 15 method comprises the steps of:

comparing the level of expression of at least one protein in a first sample of a tissue to a second sample, wherein the first sample is of a colonic tissue suspected of being neoplastic and the second sample is of a normal human colonic tissue, and wherein the protein is encoded by a transcript 20 identified by a tag selected from the group consisting of those shown in Table 3;

identifying the first sample as neoplastic when the level of expression of the protein is found to be lower in the first sample than in the second sample.

25 In another aspect of the invention a method of diagnosing colon cancer in a sample suspected of being neoplastic is provided. The method comprises the steps of:

30 comparing the level of expression of at least one protein in a first sample of a tissue to a second sample, wherein the first sample is of a colonic tissue suspected of being neoplastic and the second sample is of a normal human colonic tissue, and wherein the protein is encoded by a transcript

identified by a tag selected from the group consisting of those shown in Table 2;

identifying the first sample as neoplastic when expression of the protein is found to be higher in the first sample than in the second sample.

5 According to another embodiment of the invention a method is provided to aid in determining a prognosis of a patient having pancreatic cancer. The method comprises the steps of:

10 comparing the level of at least one transcript in a first sample of a tissue to a second sample, wherein the first sample is of a neoplastic pancreatic tissue and the second sample is of a normal human colon tissue, wherein said transcript is identified by a tag selected from the group consisting of those shown Table 4;

15 determining a poorer prognosis if transcription is found to be higher in the first sample than in the second sample.

15 In yet another aspect of the invention a method to aid in providing a prognosis for a cancer patient is provided. The method comprises the steps of:

20 comparing the level of at least one transcript in a first sample of a tissue to a second sample, wherein the first sample is of a neoplastic tissue and the second sample is of a normal human tissue of the same tissue type, wherein said transcript is identified by a tag selected from the group consisting of those shown Table 5;

25 determining a poorer prognosis if transcription is found to be higher in the first sample than in the second sample.

According to still another aspect of the invention, a method is provided
25 for diagnosing pancreatic cancer in a sample suspected of being neoplastic. The method comprises the steps of:

30 comparing the level of expression of at least one protein encoded by a transcript in a first sample of a tissue to a second sample, wherein the first sample is of a pancreatic tissue suspected of being neoplastic and the second sample is of a normal human colon tissue, wherein said protein is

encoded by a transcript identified by a tag selected from the group consisting of those shown Table 4;

identifying the first sample as neoplastic when expression of the protein is found to be higher in the first sample than in the second sample.

5 According to yet another aspect of the invention a method is provided for diagnosing cancer in a sample suspected of being neoplastic. The method comprises the steps of:

10 comparing the level of expression of at least one protein in a first sample of a tissue to a second sample, wherein the first sample is of a tissue suspected of being neoplastic and the second sample is of a normal human tissue, wherein said protein is encoded by a transcript identified by a tag selected from the group consisting of those shown Table 5;

identifying the first sample as neoplastic when expression of the protein is found to be higher in the first sample than in the second sample.

15 In still another embodiment of the invention a method is provided to aid in the determination of a prognosis of a colon cancer patient. The method comprises the steps of:

20 comparing the level of expression of at least one protein in a first sample of a tissue to a second sample, wherein the first sample is of a neoplastic colonic tissue and the second sample is of a normal human colonic tissue, and wherein the protein is encoded by a transcript identified by a tag selected from the group consisting of those shown in Table 3;

determining a poorer prognosis if the level of expression is found to be lower in the first sample than in the second sample.

25 In still another embodiment of the invention a method is provided to aid in determining a prognosis for a patient with colon cancer. The method comprises the steps of:

30 comparing the level of expression of at least one protein in a first tissue sample to a second sample, wherein the first sample is of a colonic cancer tissue and the second sample is of a normal human colonic tissue, and

wherein the protein is encoded by a transcript identified by a tag selected from the group consisting of those shown in Table 2;

determining a poorer prognosis if the level of expression is found to be higher in the first sample than in the second sample.

5 In still another aspect of the invention a method is provided to aid in determining a prognosis of a patient having pancreatic cancer. The method comprises the steps of:

10 comparing the level of expression of at least one protein in a first sample of a tissue to a second sample, wherein the first sample is of a neoplastic pancreatic tissue and the second sample is of a normal human colon tissue, wherein said protein is encoded by a transcript identified by a tag selected from the group consisting of those shown Table 4;

determining a poorer prognosis if the level of expression is found to be higher in the first sample than in the second sample.

15 According to even a further aspect of the invention a method is provided to aid in providing a prognosis for a cancer patient. The method comprises the steps of:

20 comparing the level of expression of at least one protein in a first sample of a tissue to a second sample, wherein the first sample is of a neoplastic tissue and the second sample is of a normal human tissue of the same tissue type, wherein said protein is encoded by a transcript identified by a tag selected from the group consisting of those shown Table 5;

determining a poorer prognosis if the level of expression is found to be higher in the first sample than in the second sample.

25 In still another embodiment of the invention a method of treating a cancer cell is provided. The method comprises the step of:

30 administering to a cancer cell an antibody which specifically binds to a protein encoded by a transcript identified by a tag selected from the group consisting of those shown in Tables 2, 4, and 5, wherein the antibody is linked to a cytotoxic agent.

In another aspect of the invention an antibody linked to a cytotoxic agent is provided. The antibody specifically binds to a protein encoded by a transcript identified by a tag selected from the group consisting of those shown in Tables 2, 4, and 5.

5 According to another aspect of the invention, a method of detecting colon cancer in a patient is provided. The method comprises the steps of:

10 comparing the level of at least one protein or transcript in a first body sample to a second body sample, wherein the first sample is a body sample of the patient and the second sample is of a normal human, wherein the protein is encoded by a transcript and the transcript is identified by a tag selected from the group consisting of those shown in Table 2, wherein the first and second body sample is a sample selected from the group consisting of blood, urine, feces, sputum, and serum;

15 identifying neoplasia when the level of the at least one protein or transcript is found to be higher in the first sample than in the second sample.

In another aspect of the invention a method of detecting pancreatic cancer in a patient is provided. The method comprises the steps of:

20 comparing the level of at least one protein or transcript encoded by a transcript in a first sample of a tissue to a second sample, wherein the first sample is of the patient and the second sample is of a normal human, wherein said protein is encoded by a transcript and the transcript is identified by a tag selected from the group consisting of those shown Table 4, wherein the first and second sample is a sample selected from the group consisting of blood, urine, feces, sputum, and serum;

25 identifying neoplasia when the level of the at least one protein or transcript is found to be higher in the first sample than in the second sample.

Also provided by the present invention is a method of detecting cancer in a patient. The method comprises the steps of:

30 comparing the level of at least one protein or transcript in a first sample to a second sample, wherein the first sample is of patient and the second sample is of a normal human, wherein said protein is encoded by a

transcript and the transcript is identified by a tag selected from the group consisting of those shown Table 5, wherein the first and second body sample is a sample selected from the group consisting of blood, urine, feces, sputum, and serum;

5 identifying neoplasia when the level of the at least one protein or transcript is found to be higher in the first sample than in the second sample.

Additionally provided by the present invention is a method to aid in the determination of a prognosis for a colon cancer patient. The method comprises the steps of:

10 comparing the level of at least one protein or transcript in a first sample to a second sample, wherein the first sample is of a colon cancer patient and the second sample is of a normal human, wherein the protein is encoded by a transcript and the transcript is identified by a tag selected from the group consisting of those shown in Table 3, wherein the first and second body sample is a sample selected from the group consisting of blood, urine, feces, sputum, and serum;

15 determining a poorer prognosis if the level of the at least one protein or transcript is found to be lower in the first sample than in the second sample.

20 Provided by another embodiment of the invention is a method to aid in determining a prognosis for a patient with colon cancer. The method comprises the steps of:

25 comparing the level of at least one protein or transcript in a first sample to a second sample, wherein the first sample is of a colonic cancer patient and the second sample is of a normal human, wherein the protein is encoded by a transcript and the transcript is identified by a tag selected from the group consisting of those shown in Table 2, wherein the first and second sample is a sample selected from the group consisting of blood, urine, feces, sputum, and serum;

determining a poorer prognosis if the level of the at least one protein or transcript is found to be higher in the first sample than in the second sample.

5 According to still another aspect of the invention, a method to aid in determining a prognosis of a patient having pancreatic cancer is provided. The method comprises the steps of:

10 comparing the level of at least one protein or transcript in a first sample to a second sample, wherein the first sample is of a pancreatic cancer patient and the second sample is of a normal human, wherein said protein is encoded by a transcript and the transcript is identified by a tag selected from the group consisting of those shown Table 4, wherein said first and second sample is a sample selected from the group consisting of blood, urine, feces, sputum, and serum;

15 determining a poorer prognosis if the level of the at least one protein or transcript is found to be higher in the first sample than in the second sample.

Also provided by the present invention is a method to aid in providing a prognosis for a cancer patient. The method comprises the steps of:

20 comparing the level of expression of at least one protein or transcript in a first sample to a second sample, wherein the first sample is of a cancer patient and the second sample is of a normal human, wherein said protein is encoded by a transcript and the transcript is identified by a tag selected from the group consisting of those shown Table 5, wherein the first and second sample is a sample selected from the group consisting of blood, urine, feces, sputum, and serum;

25 determining a poorer prognosis if the level of the at least one protein or transcript is found to be higher in the first sample than in the second sample.

30 The present invention further includes antisense oligonucleotides complementary in whole or in part to SEQ ID NOS:1-732.

5

This invention also provides a method for screening for candidate agents that modulate the expression of a polynucleotide selected from the group consisting of the polynucleotides in SEQ ID NOS.1-732 or their respective complements, by contacting a test agent with a pancreatic or colon cell and monitoring expression of the polynucleotide, wherein the test agent which modifies the expression of the polynucleotide is a candidate agent.

10

The present invention provides the art with new methods and reagents for diagnosing and prognosing cancers. In addition, some of the newly disclosed genes may play an important role in the development of cancers.

15

20

25

30

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1. Comparison of expression patterns in colorectal cancers and normal colon epithelium. (FIG. 1A) A semi-logarithmic plot reveals 51 tags that were decreased more than 10 fold in primary CR cancer cells whereas 32 tags were increased more than 10 fold. 62,168 and 60,878 tags derived from normal colon epithelium and primary CR cancers, respectively, were used for this analysis. The relative expression of each transcript was determined by dividing the number of tags observed in tumor and normal tissue as indicated. To avoid division by 0, a tag value of 1 was used for any tag that was not detectable in one of the samples. These ratios were then rounded to the nearest integer and their distribution plotted on the abscissa. The number of genes displaying each ratio was plotted on the ordinate. Tu: CR tumors; NC: Normal colon. (FIG. 1B and FIG. 1C) Differentially expressed genes in colorectal cancers. The number of transcripts found to be differentially expressed ($P < 0.01$) are presented as Venn diagrams. Diagrams of transcripts that were decreased (FIG. 1B) or increased (FIG. 1C) in CR cancers compared to normal colon epithelium. Comparisons were between primary tumors and cells in culture as indicated.

Fig. 2. Northern blot analysis of genes differentially expressed in gastrointestinal neoplasia. Northern blot analysis was performed on total RNA (5 μ g isolated from primary CR carcinomas (T) and matching normal colon epithelium (N), or pancreatic carcinomas. The top panel in each case show an

example of the ethidium bromide stained gels prior to transfer. The number of SAGE tags observed in the original analysis is indicated to the right of each blot. (FIG. 2A) Examples of transcripts that were decreased or increased in CR cancers. (FIG.2B) Examples of transcripts increased in pancreatic cancers (10). (FIG.2C) Examples of transcripts elevated in cancer which were or were not cancer type specific. Probes used for Northern blot analysis were as follows (Human SAGE Tag unique identifier, gene name, (GenBank accession number)): (FIG. 2A) H204104, Guanylin (M95714); H259108, (see Table 2); H1000193, (see Table 2); H998030, (see Table 2). (FIG. 2B) H294155, RIG-E (U42376); H560056, TIMP-1 (S68252). (FIG. 2C) H802810, EST338411 (W52120); H85882, 1-8D (X57351); H618841, GA733-1 (X13425).

Tables 2-5. Transcripts Differentially Expressed in Human Cancer.
Tag sequence represents the NlaIII site plus the adjacent 11 bp SAGE tag.
Tag number indicates a SAGE UID (unique identifier). NC, TU, CL, PT, PC, refers to the number of the indicated tag observed in RNA isolated from normal colorectal epithelium, primary colorectal cancers, colorectal cancer cell lines, primary pancreatic cancers, or pancreatic cancer cell lines, respectively. The Accession and Gene Name refer to representative GenBank entries that contain the tag sequence.

Table 2 Transcripts increased in colorectal cancer.
Table 3 Transcripts decreased in colorectal cancer.
Table 4 Transcripts increased in pancreatic cancer.
Table 5 Transcripts increased in pancreatic and colorectal cancer.

DETAILED DESCRIPTION

The inventors have discovered sets of human genes which are either upregulated or downregulated in cancer cells, as compared to normal cells. Specifically, certain genes have been found to be upregulated or downregulated in colorectal and/or pancreatic cancer cells, when compared to normal colon

cells. These sets of differentially regulated genes can be used as diagnostic markers, either individually or in sets of, for example, 2, 5, 10, 20, or 30.

5 Genes whose expression was detected to be increased in colorectal cancer are shown in Table 2. Genes whose expression was detected to be decreased in colorectal cancer are shown in Table 3. Genes whose expression was detected as increased in pancreatic cancer are shown in Table 4. Genes whose expression was detected as increased in both pancreatic cancer and colorectal cancer are shown in Table 5. These latter genes likely play a role in neoplastic development generally.

10 Tag sequences, as provided herein, uniquely identify genes. This is due to their length, and their specific location (3') in a gene from which they are drawn. The full length genes can be identified by matching the tag to a gene data base member, or by using the tag sequences as probes to physically isolate previously unidentified genes from cDNA libraries. The methods by which 15 genes are isolated from libraries using DNA probes are well known in the art. See, for example, Veculescu et al., *Science* 270: 484 (1995), and Sambrook et al. (1989), MOLECULAR CLONING: A LABORATORY MANUAL, 2nd ed. (Cold Spring Harbor Press, Cold Spring Harbor, New York). Once a gene or transcript has been identified, either by matching to a data base entry, or by 20 physically hybridizing to a cDNA molecule, the position of the hybridizing or matching region in the transcript can be determined. If the tag sequence is not in the 3' end, immediately adjacent to the restriction enzyme used to generate the SAGE tags, then a spurious match may have been made. Confirmation of the identity of a SAGE tag can be made by comparing transcription levels of 25 the tag to that of the identified gene in certain cell types.

In addition to the sequences shown in SEQ ID NOS: 1-732, or their complements, this invention also provides the anti-sense polynucleotide stand, e.g. antisense RNA to these sequences or their complements. One can obtain 30 an antisense RNA using the sequences provided in SEQ ID NOS: 1-732 and the methodology described in Vander Krol et al. (1988) *BioTechniques* 6:958.

The invention also encompasses polynucleotides which differ from that of the polynucleotides described above, but which produce the same phenotypic effect, such as the allele. These altered, but phenotypically equivalent polynucleotides are referred to "equivalent nucleic acids." This invention also encompasses polynucleotides characterized by changes in non-coding regions that do not alter the phenotype of the polypeptide produced therefrom when compared to the polynucleotide herein. This invention further encompasses polynucleotides, which hybridize to the polynucleotides of the subject invention under conditions of moderate or high stringency.

The polynucleotides can be conjugated to a detectable marker, e.g., an enzymatic label or a radioisotope for detection of nucleic acid and/or expression of the gene in a cell. A wide variety of appropriate detectable markers are known in the art, including fluorescent, radioactive, enzymatic or other ligands, such as avidin/biotin, which are capable of giving a detectable signal. In preferred embodiments, one will likely desire to employ a fluorescent label or an enzyme tag, such as urease, alkaline phosphatase or peroxidase, instead of radioactive or other environmental undesirable reagents. In the case of enzyme tags, colorimetric indicator substrates are known which can be employed to provide a means visible to the human eye or spectrophotometrically, to identify specific hybridization with complementary nucleic acid-containing samples. Briefly, this invention further provides a method for detecting a single-stranded polynucleotide identified by SEQ ID NOS:1-732 or its complement, by contacting target single-stranded polynucleotides with a labeled, single-stranded polynucleotide (a probe) which is at least 10 nucleotides of the complement of SEQ ID NOS: 1-732 (or the corresponding complement) under conditions permitting hybridization (preferably moderately stringent hybridization conditions) of complementary single-stranded polynucleotides, or more preferably, under highly stringent hybridization conditions. Hybridized polynucleotide pairs are separated from un-hybridized, single-stranded polynucleotides. The hybridized polynucleotide

pairs are detected using methods well known to those of skill in the art and set forth, for example, in Sambrook et al. (1989) *supra*.

The polynucleotides of this invention can be isolated using the technique described in the experimental section or replicated using PCR. The PCR technology is the subject matter of United States Patent Nos. 4,683,195, 5 4,800,159, 4,754,065, and 4,683,202 and described in PCR: The Polymerase Chain Reaction (Mullis et al. eds, Birkhauser Press, Boston (1994)) or MacPherson et al. (1991) and (1994), *supra*, and references cited therein. Alternatively, one of skill in the art can use the sequences provided herein and 10 a commercial DNA synthesizer to replicate the DNA. Accordingly, this invention also provides a process for obtaining the polynucleotides of this invention by providing the linear sequence of the polynucleotide, nucleotides, appropriate primer molecules, chemicals such as enzymes and instructions for their replication and chemically replicating or linking the nucleotides in the 15 proper orientation to obtain the polynucleotides. In a separate embodiment, these polynucleotides are further isolated. Still further, one of skill in the art can insert the polynucleotide into a suitable replication vector and insert the vector into a suitable host cell (procaryotic or eucaryotic) for replication and amplification. The DNA so amplified can be isolated from the cell by methods 20 well known to those of skill in the art. A process for obtaining polynucleotides by this method is further provided herein as well as the polynucleotides so obtained.

RNA can be obtained by first inserting a DNA polynucleotide into a suitable host cell. The DNA can be inserted by any appropriate method, e.g., 25 by the use of an appropriate gene delivery vector or by electroporation. When the cell replicates and the DNA is transcribed into RNA, the RNA can then be isolated using methods well known to those of skill in the art, for example, as set forth in Sambrook et al. (1989) *supra*. For instance, mRNA can be isolated using various lytic enzymes or chemical solutions according to the procedures 30 set forth in Sambrook et al. (1989), *supra* or extracted by nucleic-acid-binding resins following the accompanying instructions provided by manufacturers.

5 Polynucleotides having at least 10 nucleotides and exhibiting sequence complementarity or homology to SEQ ID NOS: 1-732 find utility as hybridization probes. In some aspects, the full coding sequence of the transcript, i.e., for SEQ ID NOS: 1-732, are known. Accordingly, any portion of the known sequences available in GenBank, or homologous sequences, can be used in the methods of this invention.

10 It is known in the art that a "perfectly matched" probe is not needed for a specific hybridization. Minor changes in probe sequence achieved by substitution, deletion or insertion of a small number of bases do not affect the hybridization specificity. In general, as much as 20% base-pair mismatch (when optimally aligned) can be tolerated. Preferably, a probe useful for detecting the aforementioned mRNA is at least about 80% identical to the homologous region of comparable size contained in the previously identified sequences identified by SEQ ID NOS:1-732, which correspond to previously characterized genes or SEQ ID NOS:1-732, which correspond to known ESTs. More preferably, the probe is 85% identical to the corresponding gene sequence after alignment of the homologous region; even more preferably, it exhibits 90% identity.

15 20 These probes can be used in radioassays (e.g. Southern and Northern blot analysis) to detect, prognose, diagnose or monitor various pancreatic or colon cells or tissue containing these cells. The probes also can be attached to a solid support or an array such as a chip for use in high throughput screening assays for the detection of expression of the gene corresponding to one or more polynucleotide(s) of this invention. Accordingly, this invention also provides at least one of the transcripts identified as SEQ ID NOS:1-732, or its complement, attached to a solid support for use in high throughput screens.

25 30 The total size of fragment, as well as the size of the complementary stretches, will depend on the intended use or application of the particular nucleic acid segment. Smaller fragments will generally find use in hybridization embodiments, wherein the length of the complementary region may be varied,

such as between about 10 and about 100 nucleotides, or even full length according to the complementary sequences one wishes to detect.

5 Nucleotide probes having complementary sequences over stretches greater than 10 nucleotides in length are generally preferred, so as to increase stability and selectivity of the hybrid, and thereby improving the specificity of particular hybrid molecules obtained. More preferably, one can design polynucleotides having gene-complementary stretches of more than 50 nucleotides in length, or even longer where desired. Such fragments may be readily prepared by, for example, directly synthesizing the fragment by 10 chemical means, by application of nucleic acid reproduction technology, such as the PCR technology with two priming oligonucleotides as described in U.S. Pat. No. 4,603,102 or by introducing selected sequences into recombinant vectors for recombinant production. A preferred probe is about 50-75 or more preferably, 50-100, nucleotides in length.

15 The polynucleotides of the present invention can serve as primers for the detection of genes or gene transcripts that are expressed in pancreatic or colon cells. In this context, amplification means any method employing a primer-dependent polymerase capable of replicating a target sequence with reasonable fidelity. Amplification may be carried out by natural or recombinant 20 DNA-polymerases such as T7 DNA polymerase, Klenow fragment of E.coli DNA polymerase, and reverse transcriptase.

25 A preferred amplification method is PCR. However, PCR conditions used for each reaction are empirically determined. A number of parameters influence the success of a reaction. Among them are annealing temperature and time, extension time, Mg²⁺ ATP concentration, pH, and the relative concentration of primers, templates, and deoxyribonucleotides. After amplification, the resulting DNA fragments can be detected by agarose gel electrophoresis followed by visualization with ethidium bromide staining and ultraviolet illumination.

30 The invention further provides the isolated polynucleotide operatively linked to a promoter of RNA transcription, as well as other regulatory

sequences for replication and/or transient or stable expression of the DNA or RNA. As used herein, the term "operatively linked" means positioned in such a manner that the promoter will direct transcription of RNA off the DNA molecule. Examples of such promoters are SP6, T4 and T7. In certain 5 embodiments, cell-specific promoters are used for cell-specific expression of the inserted polynucleotide. Vectors which contain a promoter or a promoter/enhancer, with termination codons and selectable marker sequences, as well as a cloning site into which an inserted piece of DNA can be operatively linked to that promoter are well known in the art and commercially available.

10 For general methodology and cloning strategies, see Gene Expression Technology (Goeddel ed., Academic Press, Inc. (1991)) and references cited therein and Vectors: Essential Data Series (Gacesa and Ramji, eds., John Wiley & Sons, N.Y. (1994)), which contains maps, functional properties, commercial suppliers and a reference to GenEMBL accession numbers for various suitable 15 vectors. Preferable, these vectors are capable of transcribing RNA in vitro or in vivo.

Fragment of the sequences shown in SEQ ID NOS:1-732 or their respective complements also are encompassed by this invention, preferably at least 10 nucleotides and more preferably having at least 18 nucleotides. Larger 20 polynucleotides, e.g., cDNA or genomic DNA, which hybridize under moderate or stringent conditions to the polynucleotide sequences shown in SEQ ID NOS:1-732, or their respective complements, also are encompassed by this invention.

In one embodiment, these fragments are polynucleotides that encode 25 polypeptides or proteins having diagnostic and therapeutic utilities as described herein as well as probes to identify transcripts of the protein which may or may not be present. These nucleic acid fragments can be prepared, for example, by restriction enzyme digestion of the polynucleotide of SEQ ID NOS:1-732, or their complements, and then labeled with a detectable marker. Alternatively, 30 random fragments can be generated using nick translation of the molecule. For

methodology for the preparation and labeling of such fragments, see Sambrook et al., (1989) supra.

Expression vectors containing these nucleic acids are useful to obtain host vector systems to produce proteins and polypeptides. It is implied that these expression vectors must be replicable in the host organisms either as episomes or as an integral part of the chromosomal DNA. Suitable expression vectors include viral vectors, including adenoviruses, adeno-associated viruses, retroviruses, cosmids, etc. Adenoviral vectors are particularly useful for introducing genes into tissues *in vivo* because of their high levels of expression and efficient transformation of cells both *in vitro* and *in vivo*. When a nucleic acid is inserted into a suitable host cell, e.g., a prokaryotic or a eucaryotic cell and the host cell replicates, the protein can be recombinantly produced. Suitable host cells will depend on the vector and can include mammalian cells, animal cells, human cells, simian cells, insect cells, yeast cells, and bacterial cells constructed using well known methods. See Sambrook et al. (1989) supra. In addition to the use of viral vector for insertion of exogenous nucleic acid into cells, the nucleic acid can be inserted into the host cell by methods well known in the art such as transformation for bacterial cells; transfection using calcium phosphate precipitation for mammalian cells; or DEAE-dextran; electroporation; or microinjection. See Sambrook et al. (1989) supra for this methodology. Thus, this invention also provides a host cell, e.g. a mammalian cell, an animal cell (rat or mouse), a human cell, or a prokaryotic cell such as a bacterial cell, containing a polynucleotide encoding a protein or polypeptide or antibody.

When the vectors are used for gene therapy *in vivo* or *ex vivo*, a pharmaceutically acceptable vector is preferred, such as a replication-incompetent retroviral or adenoviral vector. Pharmaceutically acceptable vectors containing the nucleic acids of this invention can be further modified for transient or stable expression of the inserted polynucleotide. As used herein, the term "pharmaceutically acceptable vector" includes, but is not limited to, a vector or delivery vehicle having the ability to selectively target

and introduce the nucleic acid into dividing cells. An example of such a vector is a "replication-incompetent" vector defined by its inability to produce viral proteins, precluding spread of the vector in the infected host cell. An example of a replication-incompetent retroviral vector is LNL6 (Miller, A.D. et al. (1989) BioTechniques 7:980-990). The methodology of using replication-incompetent retroviruses for retroviral-mediated gene transfer of gene markers is well established (Correll et al. (1989) PNAS USA 86:8912; Bordignon (1989) PNAS USA 86:8912-52; Culver, K. (1991) PNAS USA 88:3155; and Rill, D.R. (1991) Blood 79(10):2694-700. Clinical investigations have shown that there are few or no adverse effects associated with the viral vectors, see Anderson (1992) Science 256:808-13.

Compositions containing the polynucleotides of this invention, in isolated form or contained within a vector or host cell are further provided herein. When these compositions are to be used pharmaceutically, they are combined with a pharmaceutically acceptable carrier.

This invention further encompasses genes, either genomic or cDNA, which code for a polypeptide or protein in the cell of interest. The genes specifically hybridize under moderate or stringent conditions to a polynucleotide identified by SEQ ID NOS: 1-732 or their respective complements. The process of identification of larger fragment or the full-length coding sequence to which the partial sequence depicted in SEQ ID NOS:1-732 hybridizes preferably involves the use of the methods and reagents provided in this invention, either singularly or in combination.

Five methods are disclosed herein which allows one of skill in the art to isolate the gene or cDNA corresponding to the transcripts of the invention.

RACE-PCR Technique

One method to isolate the gene or cDNA which code for a polypeptide or protein and which corresponds to a transcript of this invention, involves the 5'-RACE-PCR technique. In this technique, the poly-A mRNA that contains the coding sequence of particular interest is first identified by hybridization to

a sequence disclosed herein and then reverse transcribed with a 3'-primer comprising the sequence disclosed herein. The newly synthesized cDNA strand is then tagged with an anchor primer of a known sequence, which preferably contains a convenient cloning restriction site attached at the 5'end. The tagged cDNA is then amplified with the 3'-primer (or a nested primer sharing sequence homology to the internal sequences of the coding region) and the 5'-anchor primer. The amplification may be conducted under conditions of various levels of stringency to optimize the amplification specificity. 5'-RACE-PCR can be readily performed using commercial kits (available from, e.g., BRL Life Technologies Inc, Clotech) according to the manufacturer's instructions.

Identification of known genes or ESTs

In addition, databases exist that reduce the complexity of ESTs by assembling contiguous EST sequences into tentative genes. For example, TIGR has assembled human ESTs into a datable called THC for tentative human consensus sequences. The THC database allows for a more definitive assignment compared to ESTs alone. Software programs exist (give examples) that allow for assembling ESTs into contiguous sequences from any organism.

Isolation of cDNAs from a library by probing with the SAGE transcript or tag

Alternatively, mRNA from a sample preparation was used to construct cDNA library in the ZAP Express vector following the procedure described in Velculescu et al. (1997) Science 270:484. The ZAP Express cDNA synthesis kit (Stratagene) was used accordingly to the manufacturer's protocol. Plates containing 250 to 2000 plaques are hybridized as described in Rupert et al. (1988) Mol. Cell. Bio. 8:3104 to oligonucleotide probes with the same conditions previously described for standard probes except that the hybridization temperature is reduced to room temperature. Washes are performed in 6X standard-saline-citrate 0.1% SDS for 30 minutes at room temperature. The probes are labeled with 32P-ATP through use of T4 polynucleotide kinase.

Table 2 - Transcripts increased in colon cancer
Transcripts increased in only colon primary tumors compared to normal colon (61 genes)

NC: Normal Colon
 TU: Colon Primary Tumor
 CL: Colon Cancer Cell Line
 PT: Pancreatic Primary Tumor
 PC: Pancreatic Cancer Cell Line

#	Tag Sequence	Tag Number	NC	TU	CL	PT	PC	Accession	Gene Name
1	CATGCCACCTAAATTGG	H285759	612	735	411	161	333	FI5516	<i>H.sapiens mitochondrial EST sequence (I-t-12) from Human cytochrome c oxidase subunit III (COIII) pse</i>
2	CATGTGATTCACTT	H933704	452	595	235	80	314	U35430	<i>Human cytochrome c oxidase subunit III (COIII) pse</i>
3	CATGCCCTGTAATCCC	H388150	433	549	380	443	197	Z70701	<i>H.sapiens mRNA (fetal brain cDNA c2_11).</i>
								X71347	<i>H.sapiens HNFl-C mRNA.</i>
								X71346	<i>H.sapiens HNFl-B mRNA.</i>
4	CATGCACTACTCACC	H291282	293	527	78	14	83	U09500	<i>Human mitochondrial cytochrome b gene, partial cds</i>
5	CATGGGTAAACCCCCAG(G)	H753750	392	517	389	453	194	X36785	<i>H.sapiens mRNA for transacylase (DBT).</i>
								X17648	<i>Human mRNA for granulocyte-macrophage colony-stimu</i>
								U09087	<i>Human thymopoietin beta mRNA, complete cds.</i>
								U09088	<i>Human thymopoietin gamma mRNA, complete cds.</i>
								U20770	<i>Human metastasis suppressor (KAI1) mRNA, complete</i>
6	CATGGGCCTTACCGGA	H687915	37	372	6	29	11	W15552	<i>zbp9h11.s1 Soares parathyroid tumor NbHPA Homo sap</i>
								W32091	<i>zc05d03.s1 Soares parathyroid tumor NbHPA Homo sap</i>
								R62866	<i>yii11d07.r1 Homo sapiens cDNA clone 138925 S.</i>
7	CAAGACTTCCAAA	H130369	32	272	32	23	20	X89839	<i>H.sapiens mitochondrial DNA for loop attachment se</i>
8	CATGTGGGTATTOCA	H965834	53	271	6	30	5	T11555	<i>A1486f Homo sapiens cDNA clone A1486 similar to Mi</i>
9	CATGAGGGTTTTTC	H175872	26	218	7	20	10	T15773	<i>IB1870 Homo sapiens cDNA 3'end similar to Human mi</i>
10	CATGAGGTAGGAGA(T)	H177315	93	213	113	148	58	X12544	<i>Human mRNA for HLA class II DR-beta (HLA-DR B).</i>
								S73483	<i>phosphorylase kinase catalytic subunit PHKG2 homol</i>
11	CATGTTGGCCAGGCT	H1025322	124	194	63	111	51	X74301	<i>H.sapiens mRNA for MHC class II transactivator.</i>
								U28867	<i>Human zinc finger containing protein ZNF157 (ZNF15</i>
								U29119	<i>Human leiomyoma LM-196.4 ectopic sequence from RMG</i>
								U56236	<i>Human Fc alpha receptor b mRNA, complete cds.</i>
12	CATGATCACGGCCCTC	H214616	97	186	17	41	49	W03751	<i>zae2h11.r1 Soares fetal liver spleen INF1S Homo sa</i>
								W03770	<i>zae63f10.r1 Soares fetal liver spleen INF1S Homo sa</i>

13	CATGGGGTCAGGGG	H699691	37	170	11	16	9	W04748	za2f09.r1 Soares fetal liver spleen INF15 Homo sa
14	CATGGCTAGCTTAT	H641789	38	144	13	25	13	T12078 W45641	A730R Homo sapiens cDNA clone A730 similar to Mito zc26a12.51 Soares senescent fibroblasts NbHSF Homo
15	CATGCCCGTACATC	H350996	56	132	35	0	18	D53694	Human fetal brain cDNA 3'-end GEN-117E01.
16	CATAGTAGGTGGCC	H183018	18	131	2	17	7	D51021	Unknown
								D51052	Human fetal brain cDNA 3'-end GEN-007D07.
								D52836	Human fetal brain cDNA 3'-end GEN-009C05.
17	CATGCCGTAGTCCC	H388278	79	124	61	71	23	D83195	Human fetal brain cDNA 3'-end GEN-089E01.
18	CATGAGACCCACAAC	H136465	64	121	28	24	15	D54113	Human DNA for Deoxyribonuclease I precursor.
19	CATOCATTTGAAATA	H327364	49	107	35	7	40	F15796	Human fetal brain cDNA 5'-end GEN-129B05.
20	CATGCCCCGTAACCT	H874182	28	78	14	0	13	Z59183	H.sapiens CpG island DNA genomic Mse I fragment, cl
21	CATGGCCAACCTCCCT	H606582	23	73	8	6	19	D52905	Human fetal brain cDNA 5'-end GEN-091D11.
22	CATGGCCATCCCTT	H609624	29	73	7	14	16	F16449	H.sapiens mitochondrial EST sequence (129-09) from
23	CATGTGGCTCAAGCT	H1027370	35	67	18	35	14	U06452	Human melanoma antigen recognized by T-cells (MART
24	CATGTCCTATTAAAG	H881603	20	49	17	15	26	D51004	Human fetal brain cDNA 3'-end GEN-006D02.
25	CATGTTACTTAACT	H991026	2	47	2	1	4	I49057	Homo sapiens retinal fovea EST HF0010904 sequence.
								DS1071	Human fetal brain cDNA 3'-end GEN-010E01.
26	CATGATGGCAGGAGT	H238755	13	45	1	4	2		
27	CATGCTAACGGCAGG	H461411	5	44	2	3	3		
28	CATGGTTOAGACACT	H713234	7	44	20	13	15	J03392	Human ADP/ATP translocase mRNA, 3' end, clone pHAT
29	CATGGTTOAGACACT	H97078	6	42	17	100	32	X57352	Human 1-8U gene from interferon-inducible gene fam
30	CATGACCTGATTCCT	H339302	0	39	0	1	0	H01571	yj33e06.r1 Homo sapiens cDNA clone J50562 5' simili
								H03072	yj6g12.r1 Homo sapiens cDNA clone J51846 5' simili
31	CATGTAATTTTGCC	H802810	1	37	0	1	0	T25155	EST730 Homo sapiens cDNA clone 34C11.
32	CATGTTAGCTGTT	H993264	6	37	2	3	5	D50972	Human fetal brain cDNA 3'-end GEN-004A05.
								D51211	Human fetal brain cDNA 3'-end GEN-017E08.
								D52162	Human fetal brain cDNA 3'-end GEN-059F04.
								T23865	seq2012 Homo sapiens cDNA clone C01374Fl-4HB3MA-3
33	CATGGCCACCCCCCTG	H607576	0	35	1	0	0	M32053	Human H19 RNA gene, complete cds.
34	CATGTAATAAAGGTG	H798164	13	35	19	33	51	X67247	H.sapiens tRNA gene for ribosomal protein S8.
35	CATGTTACTGCTGGGA	H817627	13	35	5	1	14	T11939	A953F Homo sapiens cDNA clone A953 similar to Mito

36	CATGGTGAACCCA	H753749	9	31	22	30	4	795857	y>4201.s1 Homo sapiens cDNA clone 170409 3' simili
								W03237	za35609.r1 Soares fetal liver spleen INFLS Homo sa
								W03326	za632g03.r1 Soares fetal liver spleen INFLS Homo sa
37	CATGAAACTGAAACA	H526210	6	26	17	5	3	X54195	Human line-1 element DNA, host sequence flanking t
								U299607	Human methionine aminopeptidase mRNA, complete cds
38	CATGACTTTTAAA	H131009	1	22	4	1	0		
39	CATGCACTCOTGCC	H555450	0	21	7	9	12	E229062	Human keratinocyte cDNA, clone 067.
								D29563	Human keratinocyte cDNA, clone 713.
40	CATGTCACTGGTAGT	H863923	4	21	2	2	1	103196	FB3B5 Homo sapiens cDNA clone FB3B5 3' end.
41	CATGAAACTOTGCTT	H7916	2	20	2	2	1	257093	H. sapiens CpG DNA, clone 164a10, reverse read cpg I
								Z60184	H. sapiens CpG island DNA genomic Mse I fragment, cl
								263649	H. sapiens CpG island DNA genomic Mse I fragment, cl
								W71349	zb9506.s1 Soares parathyroid tumor NbHPA Homo sap
42	CATGGGGGGGGGGGT	H699051	0	19	0	0	0		
43	CATGGTCCCCCTGCC	H72282	2	19	1	0	0	W71448	zb9601.s1 Soares parathyroid tumor NbHPA Homo sap
								W717282	zb9606.r1 Soares senescent fibroblasts NbHSF Homo
44	CATGGGGGTAACTA	H699144	3	19	15	12	5	X71428	H. sapiens fus mRNA.
								S62140	TLS=translocated in liposarcoma [human, mRNA, 1824
								W71782	zb96a06.r1 Soares parathyroid tumor NbHPA Homo sap
45	CATGTCCTGCCCAT	H883029	3	19	14	27	16	M24398	Human parathyrosin mRNA, complete cds.
46	CATGAACTGGCAAAGA	H47683	0	16	0	0	0		
47	CATGGTATTAAACCA	H7083558	0	16	0	0	0	U33317	Human defensin 6 (HD-6) gene, complete cds.
								M698331	Human mRNA for T cell receptor V beta 14 CDR3, par
48	CATGGGTACACCTT	H684312	2	16	0	2	1	D32027	Human mRNA for T cell receptor V beta 14 CDR3, par
								A1225F	A1225 similar to Mi
49	CATCAGGGTGTTC	H175870	1	15	0	0	0	D51783	Human fetal brain cDNA 5'-end GEN-051C02.
50	CATGCCAAGGACCAGC	H272467	0	13	0	2	0	D13138	Human mRNA for dipeptidase.
									MDP=microsomal dipeptidase
									RDP=renal dipeptidase [human, kidney, Genomic, 357
51	CATGTGAAATGACC	H950498	0	13	0	167	0	M10629	Human alpha-1 collagen gene, 3' end with polyA sit
52	CATGATCCGCTGCC	H219514	1	13	3	4	1	H11641	yml7e04.s1 Homo sapiens cDNA clone 47062 3' simila
								R95667	yq51a09.s1 Homo sapiens cDNA clone 1992388 3' simili
53	CATGTCCGTACAC	H875282	1	13	0	0	1		
54	CATGATGTAAATAAT	H241665	0	11	0	12	14	M74090	Human TB2 gene mRNA, 3' end.

					J03801	Human lysozyme mRNA, complete cds with an Alu repeat.
					M19045	Human lysozyme mRNA, complete cds.
55	CATGCCAGCCCCGTC	H337244	0	11	0	0
56	CATGACCCATTCTGCT	H83882	0	10	1	26
					3	X57351 Human I-3D gene from interferon-inducible gene family
						X02490 Human interferon-inducible mRNA (cDNA 1-8).
57	CATGAGGACCATCGC	H165175	0	10	0	0
58	CATGATGTGAAGAGTA	H243747	0	10	0	165
59	CATGCAAGTTGGTTGT	H310975	0	10	6	7
60	CATGGGCCCTCTGCCA	H613862	0	10	2	15
61	CATGTTAGATAAGCA	H992010	0	10	3	3
					6	M694083 Human chaperonin-like protein (HTR3) mRNA, complete
						L27706 Human chaperonin protein (Ccp20) gene complete cds

Transcripts increased in both colon primary tumors and colon cancer cell lines compared to normal colon (47 genes)

NC: Normal Colon
 TU: Colon Primary Tumor
 CL: Colon Cancer Cell Line
 PT: Pancreatic Primary Tumor
 PC: Pancreatic Cancer Cell Line

#	Tag Sequence	Tag Number	NC	CT	CL	PT	PC	Accession	Gene Name
1	CATGGCAGCCATCCG	H599350	87	180	230	72	138	U14969	Human ribosomal protein L28 mRNA, complete cds.
2	CATGATGGCTGCTTA	H239533	52	153	318	80	294	X17206	Human mRNA for L1Rep3.
3	CATGCCCTCTCGGAA	H355689	87	142	246	178	250	X66707	<i>H.sapiens</i> B8C1 mRNA
4	CATGAGGGCTACGGAA	H171113	44	117	167	86	147	X56932	<i>H.sapiens</i> mRNA for 23 kD highly basic protein
5	CATGAGGCCCTCCAG	H148949	42	116	197	103	190	Z11692	<i>H.sapiens</i> mRNA for elongation factor 2.
6	CATGCTQQGTTAATA	H502724	29	115	160	75	134	M81757	<i>H.sapiens</i> S19 ribosomal protein mRNA, complete cds
7	CATGGGATTGGCT	H671654	55	108	222	73	185	M17887	Human acidic ribosomal phosphoprotein P2 mRNA, com
8	CATOTACCATCAATA	H807748	46	107	98	64	189	X53778	<i>H.sapiens</i> long mRNA for uracil DNA glycosylase.
9	CATGTGGCAAAGCC	H959498	51	103	156	45	152	Z11531	Human glyceraldehyde 3-phosphate dehydrogenase mRNA
10	CATGAACTCCTGGGA	H55227	30	95	102	48	156	Z28407	Human pancreatic tumor-related protein mRNA, 3' en
11	CATGGGACCAACTGAA	H660601	36	92	114	43	63	X73460	Human mRNA for ribosomal protein L8.
12	CATGAGGGCTCCAA	H174037	47	91	167	91	155	M73791	<i>H.sapiens</i> mRNA for ribosomal protein L3.
13	CATGAAAGGTTGGAGGA	H44683	48	91	182	113	215	M61241	Human Wilms tumor-related protein (QW) mRNA, comp
14	CATGTGCACGTTTC	H935680	45	87	105	61	122	S55960	laminin receptor homolog (3' region) Human, mRNA
15	CATGTCAGATCTTG	H861056	37	81	93	50	92	X80822	<i>H.sapiens</i> mRNA for ORF
16	CATGTGGTGTGAGG	H965603	42	79	83	55	250	M22146	Human ribosomal protein SA (RPS2X) isoform mRNA, c
17	CATGCTTAGCTGGAT	H379369	28	77	80	46	143	X69150	Human scar protein mRNA, complete cds.
18	CATGCTTGGGTTTG	S18912	0	73	42	0	0	L66432	Human mRNA for insulin-like growth factor II (IGF-2);
19	CATGCTCCTCACCTG	H482284	12	72	41	34	50	Y00052	Human DNA for insulin-like growth factor II (IGF-2);
								U16811	Human Bak mRNA, complete cds.

20	CATGGCTGTTGGTGAT	H507577	17	65	116	48	103	D14530	Human homolog of yeast ribosomal protein S28, comp
21	CATGGGCCGGAACAC	H416261	28	62	183	55	94	X73974	H.sapiens HRPLA mRNA.
22	CATGCAAATAATGTT	H274492	9	60	73	55	119	D23661	Human mRNA for ribosomal protein L37, complete cds
23	CATGACATCATTCGAT	H79065	15	57	82	42	118	L06505	Human ribosomal protein L12 mRNA, complete cds.
24	CATGTTCAATAAAAAA	H1000193	12	56	154	49	99	M17886	Human acidic ribosomal phosphoprotein P1 mRNA, com
25	CATGGAAACACATCCA	H528694	24	56	71	24	146	X63527	H.sapiens mRNA for ribosomal protein L19.
26	CATGTTATGGATCT	H998030	7	55	78	35	77	M24194	Human MHC protein homologous to chicken B complex
27	CATGGCATAAATAGGT		18	53	50	19	61	U14967	Human ribosomal protein L21 mRNA, complete cds.
28	CATGATTCTCCAGTA	H253260	23	50	103	49	120	X55954	Human mRNA for HL23 ribosomal protein homologue.
29	CATGACTCCAAAAAA	H119809	15	49	64	21	64	X52839	Human mRNA for ribosomal protein L17.
								yp61a04.1	Homo sapiens cDNA clone 191836 5' simili
								ys15f12.1	Homo sapiens cDNA clone 214895 5'.
								H71935	
								Z33914	H. sapiens partial cDNA sequence; clone c-1cd03.
								T88545	hbc3221 Homo sapiens cDNA clone hbc3221 5' end.
30	CATGCTGTTGATTGC	H507455	9	44	54	22	40	X04347	Human liver mRNA fragment DNA binding protein UPI
31	CATGTACAAATCGA	802871	0	42	20	0	0	X00910	Human mRNA for IGF-I precursor (insulin-like grow
32	CATGGAAAAATGGTT	H524524	14	41	81	15	57	X61156	H. sapiens mRNA for laminin-binding protein mRNA
33	CATGAAGAAAGATAGA	H33331	9	39	69	30	56	U02032	Human colin carcinoma laminin-binding protein L23a mRNA, partial cds.
34	CATGCCCTTCGAGATC	H390692	12	36	51	25	86	U14970	Human ribosomal protein S5 mRNA, complete cds.
35	CATGACTGGGTCTAT	H125661	5	29	25	25	38	X58965	H.sapiens RNA for rnl23-H2 gene.
								M136981	Human putative NDP kinase (mnm23-H2S) mRNA, comple
								L16785	Homo sapiens c-myb transcription factor (puf) mRNA
36	CATGCAAGCTCACTGA	H302367	9	29	40	27	31	L10376	Human (clone CTG-B33) mRNA sequence.
								S80520	CA-G-is-1 7 trinucleotide repeat-containing sequenc
37	CATGGTGTGTTTGT	H769020	0	24	15	22	8	M177349	Human transforming growth factor-beta induced gene
38	CATGGTGGCGCTGAGC	H760291	0	22	17	44	18	X558536	Human mRNA for HLA class I locus C heavy chain.
39	CATGGTICACATTAG	H774461	3	22	25	141	10	X00497	Human mRNA for HLA-DR antigens associated invariant
40	CATGTGAAATAAAAC	H918273	2	18	37	8	22	X16934	Human hB23 gene for B23 nucleophosmin.
41	CATGAAAAAGAAACTT	H2056	1	16	27	11	25	Y00345	Human mRNA for polyA binding protein.
42	CATGTGCTGCCTGTT	H948604	1	15	16	11	3	X81005	H.sapiens HCG IV mRNA.
								D28137	Human mRNA for BST-2, complete cds.
									Seas senescent fibroblasts NbHSF Homo sapiens cDNA clone
43	CATGCTGATGGCAGA	H495251	0	14	15	8	6	W46476	324128 3'.
								X72718	H.sapiens DNA for orphan TCR V-beta segment (allel

44	CATGACTCGCTCTGT	H121311	0	12	16	5	7	H121311	Soares fetal heart NbHH19W Homo sapiens cDNA clone 342926 3'.
								AA305589	EST176663 Colon carcinoma (Caco-2) cell line II Homo sapiens cDNA 5' end
45	CAAGGGCCAAAGGACC	H610466	0	12	19	82	17	X53416	Human mRNA for actin-binding protein (filamin) (AB
46	CATGATCTTGTACT	H229106	0	11	28	67	0	X02761	Human mRNA for fibronectin (FN precursor).
47	CATGAAAGCTGCCTGGA	H40571	0	10	17	6	6	226305	H.sapiens isoform I gene for L-type calcium channel

**Transcripts increased in only colon cancer
cell lines compared to normal colon (181 genes)**

NC: Normal Colon
 TU: Colon Primary Tumor
 CL: Colon Cancer Cell Line
 PT: Pancreatic Primary Tumor
 PC: Pancreatic Cancer Cell Line

#	Tag Sequence	Tag Number	NC	TU	CL	PT	PC	Accession	Gene Name
1	CATGTGTGTTGAGAG	H978825	71	79	487	136	412	XI6369	Human mRNA for elongation factor 1-alpha
2	CATGCCGAGGAAGG	H615043	72	66	265	105	125	X53505	Human ribosomal protein S12.
3	CATGCAAACCATCCA	H263478	137	83	245	36	502	X12883	Human cytokeratin 18.
4	CATGACAAACGGTA	H278636	63	53	201	74	179	L19739	Homo sapiens metalopanstimulin (MPS1)
5	CATGAAAAAAAGAAA	H1	31	48	186	66	102	X83412	H.sapiens B1 mRNA for mucin.
								Z32564	H.sapiens FRGAMMA mRNA (819bp) for folate receptor
								X76180	H.sapiens mRNA for lung amilioride sensitive Na+ ch
								U08470	Human FR-gamma mRNA, complete cds.
								U08471	Human folate receptor 3 mRNA, complete cds.
6	CATGTGGCCTCTTG	H1027448	115	128	179	104	358	S64030	Human L41 ribosomal protein
7	CATGTCCTCATACCC	H906438	0	0	176	48	0	T91925	ye02102.11 Homo sapiens cDNA clone 116571_S'.
8	CATGAAGACAGTGGC	H133979	59	61	172	55	252	X66699	H.sapiens ribosomal protein L37a.
9	CATGCCGTCAAGGG	H374027	50	39	138	60	108	M60854	Human ribosomal protein S16
10	CATGGGGAAATCGC	H696375	90	90	136	203	231	M92381	Human thymosin beta 10
11	CATGAAGGAATGGG	H41511	30	37	133	38	161	X69181	H.sapiens mRNA for ribosomal protein L31.
12	CATGGGGAGTTTC	H567488	38	53	112	65	142	U14968	Human ribosomal protein L27a
13	CATCGCTGTTCCA	H424694	42	64	111	53	49	X79234	H.sapiens ribosomal protein L11.
14	CATGCCGTGTCGGC	H618199	56	39	109	28	120	J03337	Human ribosomal protein S6
15	CATGGACGACACGAG	H549143	32	59	105	44	70	U58682	Human ribosomal protein S28 mRNA, complete cds
16	CATGTCACCCACACC	H857362	36	48	103	44	65	X52839	Human mRNA for ribosomal protein L17
17	CATGCCGCCGGCT	H416106	39	43	90	52	184	U12465	Human ribosomal protein L35
18	CATGCTAACATCTC	H475448	27	41	89	27	145	M17885	Human acidic ribosomal phosphoprotein P0
19	CATGTGGCCCCACCC	H955718	20	30	80	46	55	M23725	Human M2-type pyruvate kinase mRNA, complete cds.
20	CATGCCCTGGGTCT	H359102	34	49	78	92	145	M11147	Human TCB gene encoding cytosolic thyroid hormone-ferritin L chain

21	CATGAGCCATCTTCCAG	H150997	0	0	77	0	0	H09058	yJ96f11.r1 Homo sapiens cDNA clone 45943 5'.
								Z44640	H. sapiens partial cDNA sequence; clone c-266b5.
22	CATGGCCTGTATGAG	H621369	24	32	77	33	99	N75111	yJ29e01.r1 Homo sapiens cDNA clone 284472 5'.
								M31520	Human ribosomal protein S24 mRNA.
23	CATGAGCTCTCCCTG	H161624	33	39	76	21	67	X53777	Human L23 mRNA for putative ribosomal protein.
								BBfAA223340 AA223340	Homo sapiens cDNA clone 630651 3' similar to H. sapiens EST sequence (135-18) from skeletal muscle
24	CATGCCAGGGAAATT	H338081	27	12	74	23	87	AA223340	BB:Y00371 rna1 HEAT SHOCK COGNATE 71 KD PROTEIN (HUMAN)
								UJ2404	Human Csa-19
25	CATGGCCAAGCCCCA	H672342	30	55	72	27	61	X12404	Human Cs-19
26	CATGAGGAAAAGCTGC	H163999	31	42	70	32	146	F16378	H. sapiens EST sequence (135-18) from skeletal muscle
27	CATGAAACGGGCCAA	H26261	29	46	69	54	79	223063	Homo sapiens macrophage migration inhibitory factor
28	CATGCCAGAACAGAC	H335945	23	39	66	42	148	X79238	H. sapiens ribosomal protein L30.
29	CATGGCGCCATCTC	H615736	7	10	65	10	22	U55017	Human transketolase (TKT)
30	CATGGGTTAACCG	H769045	16	19	65	17	76	U25899	Human ribosomal protein L10
31	CATGCCCTCGGAAAAAT	H383489	9	13	64	23	46	226876	H. sapiens ribosomal protein L38.
32	CATGAGGTCTAGCC	H177610	15	27	63	43	41	X06547	Human class PI glutathione S-transferase
33	CATGGTTCCCTGGCC	H775658	31	26	63	32	96	X55923	H. sapiens fau mRNA.
34	CATGTAAGGAGCTGA	H796831	32	58	62	42	68	X77770	H. sapiens RPS26
35	CATGAACATAAAAAAA	H28673	7	14	60	17	39	W52460	zc5ell1.r1 Soares senescent fibroblasts NbHSF Homo
								N92893	zb71h02.51 Homo sapiens cDNA clone 309077 3'.
36	CATGATTGTCGCCAG	H266949	17	13	57	9	91	X14957	Human hmg mRNA for high mobility group protein 1.
37	CATGATAATTCTTGT	H200576	13	27	53	30	69	U14973	Human ribosomal protein S29
38	CATGCCAGGCCAGT	H348756	18	23	53	5	85	U14990	Human XP10 ribosomal protein S3 (rpS3)
39	CATGGGACTGAGCAT	H667269	15	13	49	13	45	L11566	Homo sapiens ribosomal protein L18 (RPL18)
40	CATGTAAAAAAAA	H785433	13	8	48	10	26	H08238	Human mRNA for Epstein-Barr virus small RNAs (EBER)
41	CATGGGTGTTGCCACAA	H769605	19	21	48	21	47	X79239	H. sapiens ribosomal protein S13.
42	CATGGCCAGCCCCAGC	H603595	6	21	47	11	15	U31657	Human unknown protein mRNA, partial cds.
								H41030	yN92a01.r1 Homo sapiens cDNA clone 175866 5'.
43	CATGGGCTCCCACTG	H685384	14	24	47	23	15	M16660	Human 90-kDa heat-shock protein
44	CATGTCAACTCTGG	H855983	0	0	46	2	0	N57419	yW8204.r1 Homo sapiens cDNA clone 258750 5' simili
45	CATGGATGCTGCCAA	H585573	6	12	46	27	18	X59357	Human mRNA for Epstein-Barr virus small RNAs (EBER)
								L21736	Homo sapiens acute myeloid leukemia associated protein
46	CATGAAATAGGTCCAA	H51925	13	31	46	47	53	M64716	Human ribosomal protein S25
47	CATGGCTTTAAAGGA	H6555115	8	26	45	22	63	L06498	Homo sapiens ribosomal protein S20 (RPS20)
48	CATGAAATGCCAGGCCAG	H585533	2	12	44	6	27	M61831	Human S-Adenosylhomocysteine hydrolase (AHCY)

49	CATGGCCCAAGCTGGA	H610939	8	18	43	0	22	221507	Human elongation factor 1 delta (EF 1 delta)
50	CATGGCCCCCGCTTCG	H678334	6	6	42	8	18	M13932	Human ribosomal protein S17 mRNA
51	CATGTGAGGAATAA	H928269	14	26	42	15	42	M10036	Human triosephosphate isomerase
52	CATGTGTACCTGTAA	H968173	14	24	42	35	49	K005558	human alpha-tubulin
53	CATGGCCAAGAAGAA	H672265	8	7	41	12	87	L195271	Hom sapiens ribosomal protein L27 (RPL27)
54	CATGAACTAACAAAAA	H28737	6	14	40	14	15	X63237	H.sapiens Uba80 mRNA for ubiquitin.
55	CATGTATAACGCTCAG	H837237	0	0	38	0	9	Unknown	
56	CATGTACAAAGGGAA	H803369	7	17	38	14	42	X69391	H.sapiens ribosomal protein L6.
57	CATGGTTAACGGTCCC	H770486	8	17	38	12	25	H11182	ym14a02.r1 Homo sapiens cDNA clone 47866 5'
								T40302	ya31g04.r5 Homo sapiens cDNA clone 62262 5'
								Y89480	yd58a05.r1 Homo sapiens cDNA clone 116240 5'
58	CATGGAGACTCCCTGC	H558943	13	12	38	32	10	H01362	y199c06.r1 Homo sapiens cDNA clone 147370 5'
59	CATGATCCACATCGC	H217399	3	10	37	10	14	H94371	yw54e05.r1 Homo sapiens cDNA clone 256064 5'.
								T49412	ya75b09.r1 Homo sapiens cDNA clone 67481 5'.
								T51058	y655a12.r1 Homo sapiens cDNA clone 75070 5'.
60	CATGGAAGCTTGGCA	H534522	11	13	37	14	25	X077270	Human heat shock protein hsp86.
61	CATGCTGGGAGGCC	H501287	2	9	36	3	18	M91670	Human ubiquitin carrier protein (E2-EFP)
62	CATGCTGAGACAAG	H493633	13	8	36	8	26	X74070	H.sapiens transcription factor BTf3.
63	CATGAACGACCTCGT	H24951	7	13	35	22	40	Y00599	Human beta-tubulin
64	CATGCCATAGGCTGC	H602783	9	16	35	2	17	X84694	H.sapiens mRNA for elongations factor Tu-mitochondria
								L38995	Homo sapiens nuclear-encoded mitochondrial elongation factor
								S75463	P43=mitochondrial elongation factor homolog [human
65	CATGCATCTTCACCA	H319302	12	14	35	9	16	H48893	yq80b12.r1 Homo sapiens cDNA clone 202079 5'
66	CATGGCCTGCTGGGC	H621035	10	5	32	18	107	X71973	H.sapiens GPx-4 mRNA for phospholipid hydroliperoxidase
67	CATGACAGGCTACGG	H76231	0	5	31	64	0	M99787	Human 23kDa smooth muscle protein (SM22).
68	CATGAAAATGTAAGA	H558067	5	12	31	14	25	H80294	ya59g01.r1 Homo sapiens cDNA clone 230448 3'.
								R74294	y157f06.r1 Homo sapiens cDNA clone 143363 5'.
69	CATGGAAAGCAGCCA	H533798	1	3	30	9	11	L36055	Human 4E-binding protein 1
70	CATGTTACCATATCA	H988366	10	28	30	19	86	F17005	H.sapiens EST sequence (III-T1-I8) from skeletal muscle
71	CATGTTGGCTACAAA	H1023249	1	2	29	1	2	H10519	y190g4.r1 Homo sapiens cDNA clone 45563 5'.
72	CATGTCCTGGCTCGA	H874103	0	6	29	0	0	Unknown	
73	CATGATTAACAAAGC	H246019	8	9	29	25	26	X04409	Human coupling protein G(s) alpha-a-subunit
74	CATGCAAGATCTTGT	H298495	2	7	28	8	24	X56998	Human UbAS2 adrenal mRNA for ubiquitin-52 amino acid
75	CATGGTTGGTGCCAA	H777109	9	28	28	17	46	F19234	H.sapiens EST sequence (005-X3-16) from skeletal m
76	CATGGACCTGGTGGCC	H552683	3	4	27	2	16	X52317	Human histone H2A.Z.

77	CATOCATAAAAAAA	H458753	4	8	27	19	8	M235680	Human 26-kDa cell surface protein TAPA-1
78	CATGGGGTTTATT	H704500	4	1	27	6	18	L28809	Homo sapiens dblB-like protein
79	CATGCCGATCCCGG	H363799	7	9	27	7	15	M29536	Human translational initiation factor 2 beta subunit
80	CATGGACAAAGAAGA	H594051	6	9	26	7	29	W07137	za92a11.1 Soares fetal lung NbHL19W Homo sapiens
								D20503	Human HL60 3'directed MboI cDNA, HUMGS01477, clone
								N91592	Soares fetal lung NbHL19W Homo sapiens cDNA clone 303055 3'
								yv84c07.s1	Homo sapiens cDNA clone 249420 3' similar to contains Alu repetitive element.
								H83884	
81	CATGCTCTACCCAC	H908373	7	11	26	11	13	Z22572	H.sapiens CIDE1 binding protein mRNA.
								L09209	Homo sapiens amyloid protein homologe mRNA, comp1
								L19397	Human binding protein mRNA, partial cds.
								S60099	APPH=amyloid precursor protein homolog [human, pla
82	CATGGTTCCCAAG	H783697	1	0	25	3	0	W07387	zb69102.r1 Soares fetal lung NbHL19W Homo sapiens
								N28302	yx36106.s1 Homo sapiens cDNA clone 263843 5'
								N33630	yx62a03.r1 Homo sapiens cDNA clone 266284 5'
83	CATGCCGTGCCAGCC	H388426	2	3	25	3	13	Z40265	H. sapiens partial cDNA sequence; clone c-1xcl3.
								W02723	zc65cb3.s1 Soares fetal heart NbHL19W Homo sapiens
								N24893	yx92h09.s1 Homo sapiens cDNA clone 269921 3'
								N32178	yx23h09.s1 Homo sapiens cDNA clone 272249 3'
84	CATGTCATCATCTGA	H865503	5	15	25	5	7	H21873	yd24b10.s1 Homo sapiens cDNA clone 160123 3' simili
								H26594	yl48c12.s1 Homo sapiens cDNA clone 161518 3' simili
								H69857	yr88d02.s1 Homo sapiens cDNA clone 212355 3' simili
								H70714	yu69b11.s1 Homo sapiens cDNA clone 239037 3' simili
85	CATGCCCTGCCCTGT	H358783	5	8	25	16	31	X55110	Human mRNA for neurite outgrowth-promoting protein
86	CATGGCCGGGCCCTC	H617048	1	1	24	0	1	X03168	Human mRNA for S protein.
								zo32d09.s1	Stratagene clone #937204) Homo sapiens cDNA clone 588593
87	CATGGTGCCTCAAAAA	H1023233	2	1	24	2	2	AA143561	3' similar to contains LTR7.1L LTR7 repetitive element
								zo01g11.s1	Stratagene clone #937204) Homo sapiens cDNA clone 5664668
								AA152342	3' similar to contains LTR7.13 LTR7 repetitive element;
								AA115727	3' similar to contains LTR7.1L LTR7 repetitive element
								z186h11.s1	Stratagene clone (#937204) Homo sapiens cDNA clone 511557
88	CATGCAAAATCAGGA	H262987	6	2	24	5	15	R76502	yi61f19.rl Homo sapiens cDNA clone 143753 5'
								T32681	EST722468 Homo sapiens cDNA 5' end similar to None.
89	CATGGAAAGATGTGGG	H5333435	1	5	23	4	7	H04634	yi99h03.r1 Homo sapiens cDNA clone 152117 5'.

90	CATGGTGTCTATTCA	H761150	0	8	23	6	4	F00364	H. sapiens partial cDNA sequence; clone 76D12; ver
								H01503	yJ16c05.s1 Homo sapiens cDNA clone 149384 3'.
								H84813	yJ86c02.s1 Homo sapiens cDNA clone 249602 3' simili
								H84956	yv88f07.s1 Homo sapiens cDNA clone 249829 3' simili
91	CATGGCTTACCTTGT	H634464	4	5	23	9	5	L38961	Homo sapiens putative transmembrane protein (BS)
92	CATGTTTCTAAAAA	H1046401	6	13	23	10	10	J04026	Human thioredoxin (TXN) mRNA
93	CATGTTGCTCACACA	H1023250	1	4	22	0	4	D11078	Human RGH2 gene.
94	CATGGATTTCTAGC	H589267	0	0	22	0	19	X53279	Human mRNA for placental-like alkaline phosphatase
95	CATGAGGAGGAGGC	H1665339	2	3	22	2	4	M77836	Human pyrrolidine-5-carboxylate reductase mRNA,
96	CA TGGCTTAACCTGG	H651359	3	4	22	2	4	X07674	Human glutamate dehydrogenase
97	CA TGCTCTCCAGAA	H490889	4	8	22	27	19	Y00433	Human mRNA for glutathione peroxidase
98	CA TGAGAACAAACC	H132098	1	7	21	9	6	X67951	H. sapiens mRNA for proliferation-associated gene
99	CA TGCCCCAGGGAGAA	H346761	3	3	21	2	24	U38846	Human stimulator of TAR RNA binding (SRB)
								D16933	Human HepG2 3' region cDNA, clone hmd4f11.
								U42376	Human retinoic acid induced RIG-E
								Unknown	
100	CATGCCACTTCAGGG	H294155	0	3	20	47	107		
101	CATGGCGGGAGAGGG	H631331	2	3	20	4	1		
102	CATGTGTTACCTCTTC	H989024	4	7	20	3	22	F17524	H. sapiens EST sequence (0/0-T2-32) from skeletal m
103	CATGGACTCTGCCAAG	H122449	4	7	20	3	7	Unknown	
104	CATGTCAGATGGCGT	H861095	1	6	19	12	7	W52942	zc03h05.r1 Soares parathyroid tumor NbHPA_Homo sap
105	CATGGGCCCTTTTT	H679936	1	3	19	5	3	R21316	yg48h11.r1 Homo sapiens cDNA clone 35917 5' similia
106	CATG'TGAGCGCGCTG	H951912	0	0	19	0	0	X00566	Human lipoprotein apoA1.
107	CATGCCCTGCTCCCTG	H386904	0	5	19	6	5	M80244	Human E16 mRNA
108	CATGGCCACACCCCA(C)	H607318	2	6	18	18	15	H27927	yl58c11.s1 Homo sapiens cDNA clone 162452 3' simili
109	CATGATTATTTCT	H249854	2	3	18	5	20	X57959	H.sapiens ribosomal protein L7.
110	CATGCCAACCTGGGA	H528992	2	7	18	5	15	AA29988	EST125309 Uterus tumor 1 Homo sapiens cDNA 5' end
111	CATGGGCTGATGTGG	H686319	3	5	18	8	17	U09510	Human glycyl-tRNA synthetase.
112	CATGTCAAATAAGAA	H8553049	3	10	18	4	4	X76013	H.sapiens QRSHs mRNA for glutaminylytRNA synthetas
113	CATGAAAAGTGAAAT	H11785	0	7	17	0	5	W16529	zb10a11.r1 Soares fetal lung NbHL19W Homo sapiens
								W35192	zc07b05.r1 Soares fetal heart NbHL19W Homo sapiens
								W52451	zc45d09.r1 Soares senescent fibroblasts NbHSF_Homo
114	CATGCCACGGCGCTCAA	H2883373	0	1	17	0	3	D38251	Human mRNA for RBPS (XAP4)
115	CATGAACTAACTACTA	H28872	1	6	17	13	31	D25250	Human fetal brain cDNA 5'-end GEN-08IG12.
								D27258	Human fetal brain cDNA 5'-end GEN-08TA08.
116	CAIGCTGTACCTGGAA	H504187	1	0	17	12	6	D55953	Human bone morphogenetic protein-2B (BMP-2B).
								M22490	Human bone morphogenetic protein-2B (BMP-2B).

117	CATGCGACCCACGC	H398663	2	6	17	48	0	M12529	Human apolipoprotein E
118	CATGTAGAAAAATAAA	H819213	0	1	16	2	7	X165339	H.sapiens RNA for neuroleukin gene.
								M27691	Human transactivator protein (CREB) mRNA, complete
								M86667	H.sapiens NAP (nucleosome assembly protein)
119	CATGATCTTGAAGG	H228867	0	0	16	5	3	X53743	H.sapiens mRNA for fibulin-1 C.
120	CATGCCAGCTGGCCAT	H307241	0	1	16	14	0	X53743	H.sapiens mRNA for fibulin-1 C.
121	CATGATCTTGAAGG	H228867	0	0	16	5	3	Z26328	H.sapiens partial cDNA sequence; clone HEC059
121	CATGATCTTGAAGG	H228867	0	0	16	5	3	Z26328	H.sapiens partial cDNA sequence; clone HEC059
122	CATGGTGGAGGTGG	H762534	2	10	16	3	5	U22055	Human 100 kDa coactivator mRNA
123	CATGGTGGACCCAA	H762197	1	5	15	7	10	R91724	yp98e02.r1 Homo sapiens cDNA clone 195482 5' simili
								W51770	za48a02.r1 Soares senescent fibroblasts NbHSF Homo
								N42086	yp05b03.r1 Homo sapiens cDNA clone 270317 5'
124	CATGGAGCACGTGGA	H561787	0	5	15	2	4	R80990	yp94c02.r1 Homo sapiens cDNA clone 146882 5'
								R95036	yg44f01.r1 Homo sapiens cDNA clone 198649 5' simili
125	CATGGCGGGAGGGCT	H633002	·	1	6	15	8	F16507	H.sapiens EST sequence (147-09) from skeletal muscle
								T50201	yb77h05.r1 Homo sapiens cDNA clone 77241 5' similia
126	CATGATTGGCTTAAA	H226497	1	8	15	0	16	S85653	Human prohibitin
127	CATGGAAAAATTAA	H524541	0	3	15	4	0	M38188	Human unknown protein from clone pHGRT4 mRNA, comp
128	CATGGATCACAGTT	H577840	0	5	15	0	0	Y00711	Human lactate dehydrogenase B (LDH-B).
129	CATGAGCCCTTGTTG	H155632	1	2	15	23	5	D83174	Human collagen binding protein 2.
130	CATGTCCTGACCTCC	H910430	0	0	15	0	2	X70940	H.sapiens elongation factor 1 alpha-2.
131	CATGAAACAGAAGCAA	H18469	0	2	15	3	11	T30623	EST19638 Homo sapiens cDNA 5' end similar to None.
								C01011	HUMGGS004747, Human Gene Signature, 3'-directed cDNA sequence.
								zm62d06.s1	Stratagene fibroblast (#937212) Homo sapiens cDNA clone
								AA111865	zg02193
								W56516	zdl6c08.r1 Soares fetal heart NbHH19W Homo sapiens
132	CATGTTCTAGGACC	H980130	1	1	14	5	11	H30299	yo77dd04.r1 Homo sapiens cDNA clone 183943 5' simili
								H50265	yo728cd22.r1 Homo sapiens cDNA clone 179234 5'.
133	CATGTAGATAATGGC	H822331	1	4	14	6	14	W01702	zb37a06.r1 Soares fetal liver spleen INFELS Homo sa
								W04495	za58b10.r1 Soares fetal liver spleen INFELS Homo sa
								W73528	zc71g11.s1 Soares fetal heart NbHH19W Homo sapiens
								D11838	Human HepG2 3'-directed MboI cDNA, clone hm02-09.
								H.sapiens nm23H1 gene.	
134	CATGCTTAATCCTGA	H508767	0	6	14	6	12	T35470	EST80580 Homo sapiens cDNA 5' end similar to None.
135	CATGGGCAAGGGACC	H673954	0	6	14	5	11	T35536	EST86951 Homo sapiens cDNA 5' end similar to None.
136	CATGTGACTGAAGCC	H925194	0	5	14	3	0	T35556	EST86951 Homo sapiens cDNA 5' end similar to None.

				T35545	EST87066 Homo sapiens cDNA 5' end similar to None.
137	CATGGATAGTTGTGG	H576495	0 1 14 2 1	H01694 N75851	yJ33g11.s1 Homo sapiens cDNA clone 150596 5'. zb7d03.s1 Homo sapiens cDNA clone 302319 3'.
				N78931	za92h05.s1 Homo sapiens cDNA clone 300659 3'.
138	CATGGCTGGTGCACAC	H765373	1 4 13 6 13	H90469 R76765	yv01e06.r1 Homo sapiens cDNA clone 241474 5' simili yf63g01.r1 Homo sapiens cDNA clone 143952 5' simili
				T35045	EST779335 Homo sapiens cDNA similar to None.
139	CATGGGGGTACCTT	H961304	0 6 13 2 9	H51447 W46469	y031a05.r1 Homo sapiens cDNA clone 179504 5'. z232c05.r1 Soares senescent fibroblasts NbHSF Homo
				W51800	z248e04.r1 Soares senescent fibroblasts NbHSF Homo
				R33196	yh77f08.r1 Homo sapiens cDNA clone 135783 5'.
140	CATGTTCAATTAAAT	H1003313	1 10 13 8 10	J04799	Human prothymosin-alpha
141	CATGGC1TCGTGTACTT	H515821	0 5 13 8 12	D80012	Human KIAA0190 protein
142	CATGACTGGGAAGT	H125315	1 5 13 2 5	U023389	Human filON ATP-dependent protease mRNA
				T29819	EST196617 Homo sapiens cDNA 5' end similar to ATP-d
143	CATGGAAAGAGCTGA	H526495	1 3 13 1 6	X14850	Human histone H2A.X.
144	CATGCCAACTCTATGG	H269775	0 1 13 1 2	J04088	Human DNA topoisomerase II (top2) mRNA
145	CATGAAAATTGGTGC	H16303	0 0 13 0 0	K01891	Human beta Globin retrovirus-like repetitive element
				H88396	EST28e05 Homo sapiens cDNA clone 28e05
146	CATGCTGCACTTACT	H496114	1 2 13 1 8	X74796	H.sapiens p85Mc m RNA.
				D28480	Human mRNA for hMCM2, complete cds.
				D55716	Human B lymphoma mRNA for P1cd47, complete cds.
147	CATGAAATTGGAGAA	H53129	0 5 13 6 11	T30327	EST14849 Homo sapiens cDNA 5' end similar to None.
				T34394	EST66942 Homo sapiens cDNA 5' end similar to None.
				T47475	yb14c03.r1 Homo sapiens cDNA clone 71140 5'.
				T50289	yb14h08.r1 Homo sapiens cDNA clone 71199 5'.
148	CATGTCGCCGGGGCC	H890335	0 1 13 2 1	Unknown	
149	CATGGGGGGAGGCC	H697495	0 2 13 2 7	H59914	Unknown
150	CA1GCCAAGAAAGAA	H329737	0 6 12 4 4	U33818	Human inducible poly(A)-binding protein
151	CATGTTTTGATAAA	H1048113	0 5 12 4 12	D16891	Human HepG2 5' region cDNA, clone hm2dc11.
152	CATGCTGGAGGCC	H977034	0 0 12 0 0	M29882	Human apolipoprotein A-II
153	CATGCCAACGGTTAG	H345789	0 5 12 5 4	Z49216	H.sapiens mitoxauromycin-resistance associated mRNA.
154	CATGAATCTCTAA	H63325	0 1 12 1 1	Unknown	
155	CATGGACCTCCGGGC	H548203	0 0 12 0 0	Unknown	
156	CATGTGAAATCTUGGT	H921067	0 2 11 7 8	M93651	Human set gene

157	CATGTCCTTCTCCAC	H884181	0	5	11	14	8	X15804	Human alpha-actinin
158	CATGTATCTGTCCTAC	H843495	0	4	11	2	3	T19969	609F Homo sapiens cDNA clone 609 similar to SET protein
159	CATGACGGTTCTTC	H114144	0	0	11	1	17	Z36249	HHEA18W H. sapiens partial cDNA sequence; clone HEA18W;
160	CATGCCCTAGTCAG	H358381	0	0	11	0	0	AA207189	zq73e077.r1 Stratagene neuroepithelium (#93723) Homo sapiens cDNA clone 647268 5' similar to TR:EB16910 E169 10 ENDONUCLEASE; ;
161	CATGGAAATTCTCGA	H540023	0	3	11	3	1	[N]80776	za98f04.s1 Homo sapiens cDNA clone 300631 3';
								ze90d01.s1 Soares fetal heart NbHH19W Homo sapiens cDNA clone	3666241 3';
								za85h05.s1 Soares NbHTOBC Homo sapiens cDNA clone	AA025809 704313
								AA279492 3'	
162	CATGGACGCCGAACCT	H550274	0	1	11	6	0	Unknown	
163	CATGGCGGACTCGGG	H631275	0	0	11	1	0	AA098867	zk84fd4.s1 Soares pregnant uterus NbHPU Homo sapiens cDNA clone
164	CATGGAAACACACAG	H656453	0	1	11	0	2	R48460	489535 3' similar to SW-A5 XENIA P28824 A5 PROTEIN PRECURSOR
								yj67c12.r1 Homo sapiens cDNA clone 153814 5';	
								zp01c02.r1 Stratagene ovarian cancer (#937219) Homo sapiens cDNA	
								clone 592106 5';	
165	CATGTTGGGAGCCC	H1022502	0	2	11	2	1	L19183	HUMMAC30X Human MAC30 mRNA, 3' end.
								H67110	yr24a07.s1 Homo sapiens cDNA clone 206196 3';
								H77330	yu1fl2.s1 Homo sapiens cDNA clone 233519 3';
								NG9482	za18d05.s1 Homo sapiens cDNA clone 292905 3';
166	CATGGCAGACATTGA	H598335	0	7	10	4	9	H41078	yp52e1.s1 Homo sapiens cDNA clone 191060 3'; simil
167	CATGCACCTGAAAA	H294401	0	1	10	5	0	H04630	yj9g03.r1 Homo sapiens cDNA clone 152116 5';
168	CATGGGTGGCAGG	H719435	0	0	10	24	0	R77027	yj66e12.r1 Homo sapiens cDNA clone 144238 5';
169	CATGTCCTCGGGC	H1007018	0	1	10	4	12	R32231	yh68g02.s1 Homo sapiens cDNA clone 134930 3'; simil
170	CATGCTGCCAGCT	-497192	0	8	10	1	10	T86566	yd77g07.r1 Homo sapiens cDNA clone 114300 5'; simil
171	CATGGTGAAAAAA	H753665	0	2	10	3	7	S77357	transcript 111 [human, RF1, RF48 stomach cancer c
172	CATGCTGTOAGCA	H506149	0	6	10	6	1	M34338	Human spermidine synthase
173	CATGTACCTTGTGG	-835515	0	1	10	0	2	U03911	Human mutator gene (hMSH12)
174	CATGATOTAGTAGTG	H242280	0	5	10	9	7	D55671	Human heterogeneous nuclear ribonucleoprotein
175	CATGGACCCACTACC	H545906	0	1	10	3	1	J03569	Human lymphocyte activation antigen 4f2 large subunit
176	CATGAAATAGGTTT	H12992	0	1	10	6	3	D53402	Human fetal brain cDNA 5'-end GEN-108D03.
								T61971	yb96f02.r1 Homo sapiens cDNA clone 79035 5';
								D61243	Human fetal brain cDNA 5'-end GEN-171G06.
								N77240	yv44d02.r1 Homo sapiens cDNA clone 245571 5';
177	CATGGGGGGGGTGGT	H271131	0	0	10	1	2	T35761	EST90898 Homo sapiens cDNA 5' end similar to EST c

178	CATGGACTGAGCTTG	H555168	0	8	10	3	3	T31901	EST140719 Homo sapiens cDNA 5' end similar to None.
179	CATGAAACGCCAAT	H6481	0	2	10	1	3	X98264	[HS]MPP41 H.sapiens mRNA for M-phase phosphoprotein, mpp4, 1523bp
180	CATGATCGGCCGG	H232027	0	4	10	7	1	Unknown	
181	CATGGCCCACATCCG(A)	H610614	0	9	10	6	2	D87433	Human mRNA for KIAA0246 gene, partial cds

Table 3 - Transcripts decreased in colon cancer
Transcripts decreased in only colon primary tumors compared to normal colon (51 genes)

#	Tag sequence	Tag Number	NC	CT	CL	PT	PC	Accession	Gene Name
1	CATGGCTTATTTG	H654591	184	110	185	203	111	X00351	Human mRNA for beta-actin.
2	CATGGCTAGCCCTACG	H468434	170	61	130	80	75	X04098	Human mRNA for cytoskeletal gamma-actin.
3	CATGCCAACCAATCCA	H263478	137	83	245	36	502	X12883	Human mRNA for cytokeratin 18.
4	CATGGCTCCACGCTAA	H513181	64	23	36	53	104	D00017	Human lipocortin II mRNA.
5	CATGCCCGCAGTTGCT	H348922	61	27	38	37	46	X04106	Human mRNA for calcium dependent protease (small subunit)
6	CATGGATGACCCCCC	H581974	53	4	42	6	32	X65513	H.sapiens CpG island DNA genomic Mse I fragment, cl
7	CATGGCTGACAGACA	H504098	50	22	26	6	32	W61077	zd3002.r1 Soares fetal heart N6HH19W Homo sapiens
8	CATGGGGACTCACCTG	H427848	47	15	26	18	4	D63944	Human fetal brain cDNA 5'-end GEN-141D02.
9	CATGCCCGCGGAA	H349801	47	10	21	15	8	Unknown	
10	CATGCCCTGGAAAGAGG	H387107	46	19	39	47	14	J02783	Human thyroid hormone binding protein (p55) mRNA.
11	CATGGCCCTGCCCATC	H621140	46	19	24	16	20	N33642	yy05d05.s1 Homo sapiens cDNA clone 270345 3'
12	CATGAGCAGGAGCAG	H150653	43	12	26	24	20	W07627	zb06a05.r1 Soares fetal lung N6HH19W Homo sapiens
13	CATGAACGTGAGGG	H28235	42	6	57	2	10	X01639	Human mRNA for arginosuccinate synthetase.
14	CATGGCCGCCCTTGCA	H615802	40	12	16	17	8	D43682	Human mRNA for very-long-chain acyl-CoA dehydrogen
15	CATGTGGGGAGAGGA	H960651	40	5	36	10	5	D29146	Human keratinocyte cDNA, clone 173.
16	CATGGCTGCCCTTGA	H648375	38	10	20	6	39	K00537	human alpha-tubulin mRNA, 3' end.
17	CATGTGGCCATCTGC	H953615	37	5	15	19	18	AA341633	AA341633 EST747188 Fetal kidney II Homo sapiens cDNA 5' end
18	CATGGCTTCCTGCCG	H456167	35	4	36	8	0	X77956	H.sapiens ldl mRNA.
19	CATGTGCACTGGTG	H937452	33	9	14	13	10	X87949	H.sapiens mRNA for BIP protein.
20	CATGGTGACCTCCCT	H755160	33	7	12	6	31	J04823	Human cytochrome c oxidase subunit VIII (COX8) mRNA
21	CATGTAGCTCATGG	H826831	33	5	18	9	13	U16798	Human Na,K-ATPase alpha-1 subunit mRNA, complete c
22	CATGGTGCGCTAGGG	H760267	29	7	26	19	27	R50350	gb R50350 R50350 y59e04.s1 Homo sapiens cDNA clone 153030 3'
								R50013	Y59e04.r1 Homo sapiens cDNA clone 153030 5'
								C02981	Human Heart cDNA, clone 3NHC0642.

23	CATGGGCCGCTGTGG	H694767	28	6	20	6	26	T31329	ESTJ0445 Homo sapiens cDNA 5' end similar to ubiquinol cytochrome-c reductase, 6.4 kDa.
24	CATGCCCTCCAGTAC	H32130	27	6	12	3	19	Unknown	
25	CATGCCCTGTGACAGC	H3188627	27	3	14	8	7	H63643	Y34d11.r1 Homo sapiens cDNA clone 207189 5' simili
26	CATGCCACAGTGCT	H836806	24	5	8	17	11	W60324	zD27c08.r1 Soares fetal heart NbHH19/W Homo sapiens
27	CATGAATAAACGGCTA	H49320	23	5	7	11	13	L25081	Human GTPase (rhoC) mRNA, complete cds.
28	CATGTTGGTGTGAA	H1031929	23	5	13	15	25	D45887	Human mRNA for calmodulin, complete cds.
29	CATGAAGGTAGCAGA	H44179	23	4	10	16	12	N62815	Y966b11.s1 Homo sapiens cDNA clone 278493 3'.
30	CATGGTGTGGGGGT	H769707	21	2	5	14	10	R68653	Y14b06.s1 Homo sapiens cDNA clone 139187 3'.
31	CATGGCAGGCCCTG	H936344	21	1	5	7	13	X90858	H.sapiens mRNA for uridine phosphorylase.
32	CATGATGGCACGGAG	H238697	20	2	4	0	3	H19458	Y554c02.s1 Homo sapiens cDNA clone 17226 3' simili
33	CATGGCCAGACACC	H608326	20	1	6	1	9	T30468	EST17149 Homo sapiens cDNA 5' end similar to None.
34	CATGGCTCTTGGCCC	H515990	20	0	17	3	0	V00491	Human gene for alpha 1 globin.
35	CATGACCCACGTCAG	H86453	19	2	7	22	9	X51345	Human jun-B mRNA for JUND-B protein.
36	CATGGCTGCCGTGCC	H686438	18	3	4	5	8	R72429	Y190408.s1 Homo sapiens cDNA clone 156038 3'.
								R484491	Y167b10.s1 Homo sapiens cDNA clone 153787 3'.
								R52128	Y172b03.s1 Homo sapiens cDNA clone 154253 3'.
37	CATGGAGGGCGGTG	H367660	18	2	14	6	16	X12910	Human Na+ K+ ATPase gene exons 1 - 3 (alpha III) is
38	CATGGATGAATCCGG	H581847	17	1	3	2	2	Unknown	
39	CATGAGCCGACAC	H153109	16	2	11	7	5	X81006	H.sapiens HCG 1 mRNA.
40	CATGGTTCACTGTGTC	H774780	16	2	12	3	12	L08666	Homo sapiens porin (por) mRNA, complete cds and tr
41	CATGCCCTCGCTCAGT	H383443	16	1	8	6	7	J04627	Human 73 kDa gastrin-binding protein mRNA, complet
42	CATGCCAAATAAAAGT	H265219	15	1	8	9	0	U17077	Human BENE mRNA, partial cds.
43	CATGGCCGGCCGCA	H940378	15	1	8	0	3	U28369	Human semaphorin V mRNA, complete cds.
44	CATGGCACTGGGCCCTC	H601752	15	0	6	4	3	D12038	Human HepG2 3'-directed Mbol cDNA, clone s150.
45	CATGCTGGCCCTGAA	H302137	14	0	3	3	18	U77396	Human TNF-alpha inducible responsive element mRNA,
46	CATGGCCATTGGAG	H611305	13	1	6	13	17	Z229093	H.sapiens EDDR1 gene for receptor tyrosine kinase.
47	CATGAAGAAAACCTC	H32792	12	0	2	2	0	T94990	Y63804.s1 Homo sapiens cDNA clone 119982 3'.
								N69310	z225a05.s1 Soares senescent fibroblasts NbHSF Homo sapiens cDNA clone 293624 3'.
								N08502	z0886c03.s1 Soares senescent fibroblasts NbHSF Homo sapiens cDNA clone 310492 3'.
48	CATGGAATGATTCT	H538878	12	0	6	6	14	F18838	H.sapiens EST sequence (007-X-01) from skeletal m
49	CA1GGCCTGGTCCCT	H621272	12	0	3	3	8	A2226928	zC21b10.s1 Stratagene NT2 neuronal precursor 937230 Homo sapiens
50	CCA1GGCCACACAG	H610579	11	0	1	1	0	M60047	cDNA clone 664027 3'.

S1	CAATGGGATTCCAGTT	H671052	11	0	4	3	2	WS2456	2245609-11 Soares senescent fibroblasts NbHSP Homo
----	------------------	---------	----	---	---	---	---	--------	--

Transcripts decreased in both colon primary tumors and colon cancer cell lines compared to normal colon (130 genes)

NC: Normal Colon

TU: Colon Primary Tumor

CL: Colon Cancer Cell Line

PT: Pancreatic Primary Tumor

PC: Pancreatic Cancer Cell Line

#	Tag Sequence	Tag Number	NC	TU	CL	PT	PC	Accession	Gene Name
1	CATGCCCTCAGCTAC	H382109	803	191	304	136	663	X12882	Human mRNA for cytokeratin 8.
2	CATGCTTAAGACTTCA	H460926	708	282	402	142	497	FJ5636	H.sapiens mitochondrial EST sequence (002T15)
3	CA TGCCCCAAGTCAC	H610997	705	38	2	2	1	Unknown	
4	CATGACCCCTGGCCA	H90022	512	348	93	43	235	FJ6940	H.sapiens mitochondrial EST sequence (009-T1-21) f
5	CATGACATTTGGGTGA	H81583	504	92	4	0	0	M10050	Human liver fatty acid binding protein (FABP) mRNA
6	CATGGCGAAACCTG	H622680	486	108	27	30	13	S61953	c-erbB3=receptor tyrosine kinase (alternatively sp
7	CATGAGCCCTAACAA	H153361	367	242	132	71	204	FJ5506	H.sapiens mitochondrial EST sequence (1-t-02) from
8	CATGGACCCAGATA	H545828	276	131	0	7	0	T39321	Y040112 Homo sapiens cDNA clone 60480 5'
								H24673	y141a01.s1 Homo sapiens cDNA clone 160776 3'.
								HUMGS02/706	Human colon 3'directed Mbol cDNA, HUMGS02/706, clone cm1673.
								D25586	yc09b02.s1 Homo sapiens cDNA clone 117195 3'.
								T96160	yc09b02.s1 Homo sapiens cDNA clone 117195 3'.
9	CATGGCCGGGGGGGC	H617195	256	88	148	144	178	X64364	H.sapiens mRNA for M6 antigen.
10	CATGTTGGGTTC	H1026814	202	75	84	235	369	M11146	Human ferritin H chain mRNA, complete cds.
11	CATGCTCCACCCGAA (or G)	H479577	201	120	0	11	3	L15203	Human secretory protein (P1.B) mRNA, complete cds.
12	CATQQCAGGGCTCA	H600670	196	68	6	32	19	X930316	H.sapiens mRNA for MAT8 protein.
								yy07h09.r1	Homo sapiens cDNA clone 24208 5' similar to SP-A39484
13	CATGATCGGGGGGG	H224923	194	24	97	40	39	H93844	A39484 ANDROGEN-WITHDRAWAL APOPTOSIS PROTEIN RVPI,
14	CATGCAAGCATCCCC	H271574	190	59	101	30	139	FJ7001	H.sapiens mitochondrial EST sequence (011-T1-13) f
15	CATGGACATCAAGTC	H544012	189	33	76	57	219	Y00503	Human mRNA for keratin 19.
16	CATGCTTGTGGTTAA	H782013	178	110	14	340	139	WJ6632	z605ai1..71 Soares fetal lung N6HL19W Homo sapiens cDNA clone 301148 5' similar to gb:V00567 BETA-2-MICROGLOBULIN PRECURSOR (HUMAN);
								z031h04.s1	Stratagene colon (#37204) Homo sapiens cDNA clone AA143804 5885335 3'

71	CATGCCAAAGCTATA	H328308	38	11	6	2	18	M35252 Human CO-029.
72	CATGCCGGAGTCCGGG	H434907	38	8	6	0	0	R87448 Ym89e10.s1 Homo sapiens cDNA clone 166098 3'.
73	CATGGGCCGTGGAGAG	H618121	38	9	5	17	26	X79882 H.sapiens lrp mRNA. Unknown
74	CATGCCCGGAAGCC	H349706	37	6	0	0	0	J03037 Human carbonic anhydrase II mRNA, complete cds.
75	CATGATTCAAGATG	H259108	37	1	0	0	0	Unknown
76	CATGGCCAGTGCGCT	H611050	37	3	0	2	10	M92843 H.sapiens zinc finger transcriptional regulator mRNA
77	CATGATGTTGGGGAA	H241323	36	2	6	25	2	X60188 Human ERK1 mRNA for protein serine/threonine kinase
78	CATGCCCTGCCGCCCT	H386190	35	12	7	5	5	V01512 Human cellular oncogene c-fos (complete sequence).
79	CTAGTGGAAAGTCAA	H950457	34	1	1	12	0	U34279 Human urogyanulin mRNA, complete cds.
80	CATGGTCATCACCAC	H740629	34	0	0	0	0	
81	CATOCCTATGGTCCC	H511670	34	1	0	3	1	A.A287021 T2557e03.s1 Soares NbHTGBC Homo sapiens cDNA clone 701572 3'
82	CATGCTGGCCTCTG	H5021136	34	3	4	11	5	T55226 repetitive element
								yf56e10.s1 Homo sapiens cDNA clone 261129 3' similar to gb:X07173
								R37446 INTER-ALPHA-TRYPSIN INHIBITOR COMPLEX COMPONENT II
								AA406180 zu65e08.s1 Soares testis NHT Homo sapiens cDNA clone 742862 3'
83	CATGGCCAGGGCCC	H610982	33	3	0	0	2	R09752 Unknown
84	CATGTTTFACTGAT	H11047673	33	7	0	4	2	R81530 Y02b10.r1 Homo sapiens cDNA clone 147547 5'.
								T32348 EST747211 Homo sapiens cDNA 3' end similar to None..
								zd17g02.s1 Soares fetal heart NbHH19W Homo sapiens cDNA clone
								W57810 340946 3'
								z47412.s1 Soares ovary tumor NbHOT Homo sapiens cDNA clone
								AA398327 722518 3'
85	CATGCCCTGCTTGTGCG	H387054	32	2	1	6	32	X63187 H.sapiens HE4 mRNA for extracellular protease inhibitor homologue
86	CATGACCTGGGGAGG	H96931	32	6	4	8	6	Unknown
87	CATGCCCTCAAATCA	H390158	31	1	0	0	0	Yg22g07.s1 Homo sapiens cDNA clone 36232 3' similar to gb:M33987
88	CATGTCGGAACTGTT	H893564	30	1	4	7	1	R46266 CARBONIC ANHYDRASE I H98618 Yx12a06.s1 Homo sapiens cDNA clone 2611490 3'.
								z097h01.s1 Stratagene ovarian cancer (#937219) Homo sapiens cDNA
								AA171705 clone 594865 3'
								H99212 Yx12e08.s1 Homo sapiens cDNA clone 2611854 3'

99	CATGTACCTCTGATT	H810468	27	5	7	11	12	X55614	H.sapiens mRNA for calcium-binding protein S100B.
100	CATGATGATGGCACC	H233106	26	0	2	0	2		emb Z69881 HSERCAJ3M H.sapiens mRNA for adenosine triphosphatase, calcium
101	CATGTTCTGTAGCCC	H1014566	25	5	0	4	0		ye65c02.r1 Homo sapiens cDNA clone 122594 5'.
102	CATGCCCTGTCGCCA	H385582	24	1	2	1	3	T99568	T87539 yds8fb09.s1 Homo sapiens cDNA clone 115433 3'.
103	CATGTATGAGGCA	H844682	23	4	0	1	0		gb AA347726 AA347726 EST54132 Fetal heart II Homo sapiens cDNA 5' end similar to transmembrane secretory component
104	CATGCTGGCAAAGGT	H500747	23	0	0	0	0		Homo sapiens bone-derived growth factor (BPGF-1) m
105	CATGCTGATTCCCA	H517073	23	4	4	17	7	L42379	H.sapiens CL_100 mRNA for protein tyrosine phosphatase
106	CATGCTTGACATACC	H516402	22	0	0	7	2	X68277	Human N-benzoyl-L-tyrosyl-p-aminobenzoic acid hydrolase alpha subunit (PPH alpha) mRNA, complete cds
107	CATGGCTGGCACATT	H649492	22	5	0	0	0	M622962	Human I-plastin mRNA, complete cds
108	CATGCTCTGAATTATG	H909556	21	1	1	1	1	X16334	Human mRNA for transmembrane carcinoembryonic antigen (CEA)
109	CATGGAAAGACACT	H657534	21	1	1	3	3	X74570	H.sapiens mRNA for Gal-beta(1-3/1-4)GalNAcalpha-2,3-sialyltransferase
110	CATGGCTCTCCCCA	H646998	20	2	0	1	0	R87768	y045cd01.s1 Homo sapiens cDNA clone 180865 3' similar to contains PTR5 repetitive element
								R85880	PTR5 repetitive element
111	CATGAAATCTGGCAC	H114245	20	2	0	4	3	L20826	Human I-plastin mRNA, complete cds.
112	CATGTAATTGGATT	H802708	19	2	0	1	7	Z50751	HSB4BMR H.sapiens mRNA for B4B
								U77085	Human epithelial membrane protein (CL-20) mRNA, complete cds
113	CATGGTGGGGGCC	H764570	18	1	1	8	2	Y07909	HSPAPR H.sapiens mRNA for Progression Associated Protein
								R48579	yf64g10r1 Homo sapiens cDNA clone 153570 5'.
									EST10s24 Clontech adult human fat cell library HL1108A Homo sapiens cDNA clone 10a24.
114	CATGTTATGGGTGA	H998127	17	0	0	1	0	T27534	
115	CATGGGAGAACAGC	H663571	17	1	2	4	0	T86124	yds8fb04.s1 Homo sapiens cDNA clone 114895 3'.
								zo15gb05.s1	Stratagene colon (#937204) Homo sapiens cDNA clone
								AA131008	5870700 3'
								R49945	yf58g11.s1 Homo sapiens cDNA clone 152996 3'.
								T57044	ya84h10r1 Homo sapiens cDNA clone 68401 3'.
116	CAYGCCAACACAGC	H328787	17	1	0	0	0		
117	CATGGGTGACTGG	H178299	17	0	0	0	0		gg R73013 R73013 yf94s09.r1 Homo sapiens cDNA clone 156376 5'.
118	CATGGCCATCCCCA	H609654	16	0	0	0	0		

119	CATGTTCTCGTCGC	H1039769	15	1	0	4	4	M65013	Human guanine nucleotide-binding regulatory protein
120	CATGTCAAGGGCTG	H860776	15	1	1	0	0	Unknown	
								Y72h06.s1 Soares fetal liver spleen INF1S Homo sapiens cDNA clone 2483153 similar to contains element PTR7 repetitive element	
121	CATGTTCCGGTTC	H1006014	14	1	0	0	2	N58523	
122	CATGTACGGGTGG	H814011	14	1	0	0	0	Unknown	
123	CATGCTAGAACTTG	H477216	14	0	1	4	13	Unknown	
124	CATGGGACTAAATGA	H662543	13	1	0	1	0	M29540	Human carcinoembryonic antigen mRNA (CEA), complete cds.
125	CATGGCTGGGATT	H653988	12	0	0	0	1	D25786	HUMGS04154 Human colon 3'directed MboI cDNA, HUMGS04154, clone cm0215.
								T73613	LIVER CARBOXYLESTERASE PRECURSOR
126	CATGACCCAAC TGCC	H86138	12	0	0	0	1	Unknown	
127	CATGCTGAA CCTCCC	H491894	12	0	0	2	2	BbTP95615f95615.ye40e03.s1	Homo sapiens cDNA clone 120220 3'
128	CATGCAAAGAGTTCT	H271102	11	0	0	2	0	zr19611.s1 Stratagene NT2 neuronal precursor 937230 Homo sapiens cDNA clone 6633837 3'	
								zg97h01.s1 Stratagene NT2 neuronal precursor 937230 Homo sapiens cDNA clone 649693 3'	
								AA218730	
129	CATGGTCCGAGTGCA	H743610	11	0	0	8	5	yp5f10.r1	Homo sapiens cDNA clone 191563 5' similar to gb:M90657
130	CATGTTGGTTCAC	H1043445	11	0	0	0	0	Unknown	TUMOR-ASSOCIATED ANTIGEN L6 (HUMAN);

**Transcripts decreased in only colon cancer
cell lines compared to normal colon (78 genes)**

NC: Normal Colon

TU: Colon Primary Tumor

CL: Colon Cancer Cell Line

PT: Pancreatic Primary Tumor

PC: Pancreatic Cancer Cell Line

#	Tag sequence	Tag Number	NC	TU	CL	PT	PC	Accession	Gene Name
1	CATGCCACCTAAATTGG	H283759	612	755	411	161	333	FI5516	<i>H.sapiens mitochondrial EST sequence (1-t-12)</i>
2	CATGAAITTGAGAACG	H260227	603	566	158	249	173	F12396	<i>H.sapiens partial cDNA sequence; clone e-39e04.</i>
3	CATGTGAITTCACIT	H933704	452	595	235	80	314	L08441	<i>Human autonomously replicating sequence (ARS) mRNA</i>
4	CATGTTCCATAACACCT	H1002566	444	357	114	64	191	FI5553	<i>H.sapiens mitochondrial EST sequence (001T14)</i>
5	CATGCCACIQCACCTC	H335432	385	402	223	278	132	X51525	<i>Human cortex mRNA containing an Alu repetitive element</i>
6	CATGACTAACACCCCT	H114966	369	446	171	76	161	F16402	<i>H.sapiens mitochondrial EST sequence (141-20)</i>
7	CATGCACTACTCACCC	H291282	293	527	78	14	83	U09500	<i>Human mitochondrial cytochrome b gene, partial cds</i>
8	CATGAAAACATCTCTC	H1272	200	169	98	17	223	FI5744	<i>H.sapiens mitochondrial EST sequence (101-03)</i>
9	CATGCTCATAAAGGAA	H478249	184	127	70	21	75	FI5511	<i>H.sapiens mitochondrial EST sequence (1-t-07)</i>
10	CATGTCGAAGCCCCCC	H883334	147	183	94	49	57	FI8587	<i>H.sapiens mitochondrial EST sequence (022T19)</i>
11	CATGACCGCAGGGAGA	H103075	145	160	91	69	47	H03983	<i>yf7ad8s1 Homo sapiens cDNA clone 151862 3;</i>
12	CATGTTGGCCAGGGCT	H1025322	124	194	63	111	51	X74301	<i>H.sapiens mRNA for MHC class II transactivator.</i>
13	CATGTTGGTGAAGGA	H1027595	98	106	17	183	107	M17733	<i>Human thymosin beta-4 mRNA, complete cds.</i>
14	CATGATCACGCCCTC	H214616	97	186	17	41	49	U46913	<i>Human EST overexpressed in pancreatic cancer (xs31)</i>
15	CATGTCCTGCACCA	H941638	67	48	25	75	34	X05607	<i>Human mRNA for cysteine proteinase inhibitor precursor</i>
16	CATGAGACCCACAAC	H136465	64	121	28	24	15	D54113	<i>Human fetal brain cDNA 5'-end GEN-1129B05.</i>
17	CATGAGTTGTAGT	H196339	60	33	17	13	15	X14758	<i>Human mRNA for adenocarcinoma-associated antigen</i>
18	CATGGGAACAAACAG	H656389	56	41	4	31	3	L33930	<i>Homo sapiens CD24 signal transducer mRNA</i>
19	CATGTTGGTATGCA	H965434	53	271	6	30	5	D50954	<i>Human fetal brain cDNA 3'-end GEN-002A10.</i>
20	CATGGAAATAACAGTT	H527436	49	35	10	100	36	M111233	<i>Human cathepsin D mRNA, complete cds.</i>
21	CATGGTGGCTCACCG	H763719	49	37	21	27	15	U25801	<i>Human Tax1 binding protein mRNA, partial cds.</i>
22	CATGGTGGTGCACAC	H765509	45	26	18	23	15	U31215	<i>Human metabotropic glutamate receptor 1 alpha</i>
23	CATGGGGTGGCTTGG	H704160	44	56	2	6	1	S79597	<i>tRNA Ser(UNC) [human, muscle, MERRF/MELAS overlap s</i>
24	CATGGTGGGGTGG	H763567	42	32	15	20	5	T48309	<i>yb03c03-1 Homo sapiens cDNA clone 70276 5' contai</i>
25	CATGGTAGACTAGCAA	H821029	39	23	1	23	10	M6923	<i>Human globin gene.</i>

26	CATGGCTAGGTTTAT	H641789	38	144	13	25	13	D51017	Human fetal brain cDNA 3'-end GEN007C04.
27	CATGGCTTAGGGA	H687915	37	372	6	29	11	W15552	z691h11.s1 Soares parathyroid tumor NbHPV1 Homo sapiens mitochondrial EST sequence (132-20) from skeletal muscle
28	CATGGGGTCAGGG	H699691	37	170	11	16	9	F16326	EST18695 HCC cell line (metastasis to liver in mouse) II Homo sapiens cDNA 5' end
29	CATGATTTCTAAAA	H261569	33	13	11	8	2	AA315049	EST18695 HCC cell line (metastasis to liver in mouse) II Homo sapiens cDNA 5' end
30	CATGCCACTGCCCT	H294488	33	18	11	17	36	F01150	H. sapiens partial cDNA sequence; clone A6A03; ver
31	CATGCCCTGCTGCAGG	H386963	32	13	0	6	2	N29971	yw53h01.s1 Homo sapiens cDNA clone 255985 3'.
32	CATGAGAACCTTCCA	H132398	32	14	3	16	12	K02883	Human MHC class I HLA-A2 gene, complete cds.
33	CATGCCCTGCTGCCTC	H483822	32	32	7	20	5	R09140	yf25f12.s1 Homo sapiens cDNA clone 127919 3'.
34	CATGCCCATCCCCCTT	H609624	29	73	7	14	16	R76005	yf22g10.s1 Homo sapiens cDNA clone 158994 3'.
35	CATGCCCAAGGGCCC	H610922	28	9	1	1	7	AA292959	z154f10.s1 Soares ovary tumor NbHOT Homo sapiens cDNA clone z311c11.r1 Soares ovary tumor NbHOT Homo sapiens cDNA clone
36	CATGTGGCGCGTGTG	H956860	26	8	1	1	2	AA292466	z311c11.r1 Soares ovary tumor NbHOT Homo sapiens cDNA clone z311c11.r1 Soares ovary tumor NbHOT Homo sapiens cDNA clone
								z311c11.r1 Soares ovary tumor NbHOT Homo sapiens cDNA clone	z311c11.r1 Soares ovary tumor NbHOT Homo sapiens cDNA clone
								G205838 RA1 ORF	G205838 RA1 ORF
								z662807.s1 Soares fetal lung NbHL19W Homo sapiens cDNA clone	z662807.s1 Soares fetal lung NbHL19W Homo sapiens cDNA clone
								308173 3' similar to PIR:A39484 A39484 androgen-withdrawal	308173 3' similar to PIR:A39484 A39484 androgen-withdrawal
								NP92384	apoptosis protein RVP1, prostate - rat
								zb19c06.s1 Homo sapiens cDNA clone 302506 3' similar to	zb19c06.s1 Homo sapiens cDNA clone 302506 3' similar to
								PIR:A39484 A39484 androgen-withdrawal apoptosis protein RVP1,	PIR:A39484 A39484 androgen-withdrawal apoptosis protein RVP1,
								N80203	prostatic - rat ;
								z439d06.s1 Soares pregnant uterus NbHPV1 Homo sapiens cDNA clone 485195 3' similar to PIR:A39484 A39484 androgen-	z439d06.s1 Soares pregnant uterus NbHPV1 Homo sapiens cDNA clone 485195 3' similar to PIR:A39484 A39484 androgen-
								AA039323 withdrawal apoptosis protein RVP1	AA039323 withdrawal apoptosis protein RVP1
37	CATGAGGGTTTTC	H175872	26	218	7	20	10	U21468	Human partial cDNA sequence with CCA repeat region
38	CATGCCCTGGGAAGTG	H387596	25	10	0	45	17	M34088	Human epistatin variant A mRNA, 3' end.
39	CATGAGTCGTCTGGA	H188027	24	9	1	0	0	Unknown	Unknown
40	CATGCCCGCTCTC	H353760	24	11	2	3	4	T10098	seq816 Homo sapiens cDNA clone b4HB3MA-COT8-HAP-FR
41	CATGAAAAGAGTGGT	H2225	22	9	2	0	7	X83228	H. sapiens mRNA for L1-cadherin.
42	CATGCCACGTGGAG	H607977	21	7	1	2	2	L27415	Homo sapiens huntingtin (HD) gene, exon 66.
43	CATGAGGATGTGG	H167659	21	5	4	1	3	C00470	dbJJC00470/C00470 HUMGS0007620, Human Gene Signature, 3'-directed cDNA sequence.
								NP65531	yf62g08.s1 Homo sapiens cDNA clone 278174 3'.

62	CATGGGGCTAACGTCC	H692406	14	4	0	0	M25629	Human kallikrein mRNA, complete cds, clone clone p
63	CATGCCCGGCTCCCTC	H1354776	14	7	1	5	2	ym45d10.s1 Homo sapiens cDNA clone S1262.3'
								zK01e10.s1 Soares pregnant uterus NbHPU Homo sapiens cDNA clone 469290.3'
							A4026974	
								zu12c12.r1 Soares testis NHT Homo sapiens cDNA clone 731638.5
								similar to gb:M61900 Human prostaglandin D synthase gene,
							AA405031	complete cds. (HUMAN).
							gb J66894 HSU66894 Human epithelium-restricted Ets protein ESX	
64	CATGAGGTACTACTA	H176584	13	9	0	9	8	U66894 mRNA,
								Human epithelial-specific transcription factor ESE-1b (ESE-1)
65	CATGCAAATAAAATTA	H265232	13	3	0	1	0	U73843 mRNA, complete cds
								U73843 mRNA, complete cds
66	CATGCTGTAAAAAAA	H503809	13	6	0	1	1	Unknown
								ze88g07.s1 Soares fetal heart NbHH19W Homo sapiens cDNA clone
67	CATGGTCAATCCCT	H774358	13	3	0	2	0	AA071520.366108.3'
								za90h10.s1 Soares fetal lung NbHL19W Homo sapiens cDNA clone
							N90742	299875.3'.
								299875.3'.
							AA086292	zn52h06.s1 Stratagene muscle 937209 Homo sapiens cDNA clone
								561851.3'
68	CATGAATAAAAGCCTT	H49304	12	4	0	0	0	DI1499 Human HepG2 3'-directed MboI cDNA, clone a-35.
69	CATGGGAAGGGTTAC	H658173	12	2	0	1	0	T16031 IB2474 Homo sapiens cDNA 3'end.
70	CATGGGATGGCTTAT	H670333	12	1	0	6	1	T74426 yc82e01.r1 Homo sapiens cDNA clone 22306.5.
71	CATGGGTTGGCCGGG	H715099	12	2	0	3	2	N73771 za61h02.s1 Homo sapiens cDNA clone 297075.3.
								zh7503.s1 Soares fetal liver spleen INFSL S1 Homo sapiens cDNA
								clone 417927.3'
								W90388
								F03766 H. sapiens partial cDNA sequence; clone c-29h08.
72	CATGTTACTGACTTC	H817952	12	2	0	0	0	U14631 Human 11 beta-hydroxysteroid dehydrogenase type II
								ya31a06.s2 Homo sapiens cDNA clone 62194.3' contains Alu
73	CATGCCCTGCACTC	H360008	11	6	0	3	3	T41121 repetitive element.
74	CATOCGGTGGGACCA	H440966	11	4	0	2	0	Unknown
75	CATGGCCCCAACCA	H611590	11	2	0	0	0	Unknown
76	CATGGCCGGCGCTC	H616862	11	2	0	0	0	ZS8466 Unknown
77	CATGGGAGGGCTCA	H666014	11	1	0	0	0	Unknown

78	CATGTCCCCGTTACA	H874226	11	11	0	0	0	W68073	z442c12.s1 Soares fetal heart NbIIH9W Homo sapiens cDNA clone 343318' similar to contains Alu repetitive element;
----	-----------------	---------	----	----	---	---	---	--------	--

Table 4 - Transcripts increased in pancreas cancer
SAGE Tags elevated only in Pancreatic Tumor

NC: Normal Colon	Tu: Colon Tumor	CC: Colon Cancer Cell Line	PT: Pancreatic Tumor	PC: Pancreatic Cell Line	Tag Sequence	Tag Number	NC	Tu	CC	PT	PC	Accession	Gene Name
					1 CATGAAAGCAAACCA	H9222	0	6	1	3	11	Examples R38305	yh93604.s1 Homo sapiens cDNA clone 137455 3'
												AA126719	2k9b03.s1 Soares pregnant uterus NbHPV Homo sapiens cDNA clone 490541 3'
												AA044296	2k51c03.s1 Soares pregnant uterus NbHPV Homo sapiens cDNA clone 486340 3'
												AA131586	z133c08.s1 Soares pregnant uterus NbHPV Homo sapiens cDNA clone 503726 3'
												AA157983	z07lh17.s1 Stratagene pancreas (#937208) Homo sapiens cDNA clone 592391 3'
												z154e04.s1 Soares ovary tumor NbHOT Homo sapiens cDNA clone 726174 3'	
												AA229299	
												AA159306	z078c07.s1 Stratagene pancreas (#937208) Homo z078c07.s1 Stratagene pancreas (#937208) Homo
												RS4012	yj70h01.s1 Homo sapiens cDNA clone 154129 3'
												T62936	yb59g018.s1 Homo sapiens cDNA clone 79335 3'
												X32426	H. sapiens mRNA for cytokeratin 13
												X51698	H. sapiens spasmolytic polypeptide (SP) mRNA.
												N70419	za61d12.s1 Homo sapiens cDNA clone 297047 3'
												AA411599	zv16g011.s1 Soares NHMPu S1 Homo sapiens cDNA clone 753840 5'
												AA410508	zv16g01.s1 Soares NHMPu S1 Homo sapiens cDNA clone 753840 3'
												Z86g12.s1	Stratagene colon (#937204) Homo sapiens cDNA clone 511558
												AA115723	z019e04.s1 Stratagene colon (#937204) Homo sapiens cDNA clone 587558 3'
												AA132875	z014ad06.s1 Stratagene endothelial cell 937223 Homo sapiens cDNA clone 589714 3'
												AA147677	

15	CATGAACTGATA	H67396	2	7	16	37	Examples Z:38016	AA279290 AA046253	zg84a06.s1 Soares NbH19C Homo sapiens cDNA clone 704146 3' zfl12402.s1 Soares fetal heart NbH19W Homo sapiens cDNA clone 376682 3'
16	CATGACACCCGTGC	H71151	0	1	0	14	Examples AA1556464	AA151668 W02958	zg29e02.s1 Stratagene colon (#937204) Homo sapiens cDNA clone 588290 3' similar to SW:BI3 MOUSE P28662 BRAIN PROTEIN 13 zg07e06.s1 Soares melanocyte 2NBHM Homo sapiens cDNA clone 291874 5'
17	CATGACCATGGATT	H85924	0	8	5	13	4 Examples X02491	A0025673 NT0895	zg89h12.s1 Homo sapiens cDNA clone 259783 3' Human interferon-inducible mRNA (cDNA 9-27); membrane 104164
18	CATGACCCCTTAACA	H90050	1	4	2	13	7 Examples X56841	X84953	H.sapiens mRNA for interferon-induced 17kDa membrane H.sapiens HLA-B gene.
19	CATGACGCCCTGGT	H91579	49	22	45	70	94 Examples M21186	X64879 M61107	H.sapiens mRNA for HLA-E heavy chain (exons 4 - 7) Human neutrophil cytochrome b light chain p22A Human P22-phox (CYB) gene, exons 3 and 4
20	CATGACTGTGACCA	H97158	0	3	0	28	17 Examples D00244	K02286 M15476	Human Pro-urokinase gene, Human pro-urokinase mRNA, complete cds X02419
21	CATGACGCCCTGCTC	H103912	0	1	0	11	2 Examples L08835	M87313 AA157329	Human myotonic dystrophy kinase (DM kinase) gene Homo sapiens myotonin protein kinase (DM) mRNA y07506.s1 Homo sapiens cDNA clone 183779 3' zg4207.s1 Stratagene endothelial cell 937223 Homo sapiens cDNA clone 589573 3' similar to SW:L10K_RAT Q05310 LEYDIG CELL TUMOR 10 KD PROTEIN
22	CATGACGTGGTATG	H113380	2	4	4	5	20 Examples H44451	W46455	zg32b06.s1 Soares senescent fibroblasts NbHSF Homo sapiens cDNA clone 324058 3' similar to SW:L10K_RAT Q05310 LEYDIG CELL TUMOR 10 KD PROTEIN

23	CATGACTCAGCCGG	H119383	0	0	3	21	3	Examples M92357	Homo sapiens BO4 protein mRNA, complete cds.
24	CATGACTGAGGAAG	H1123521	0	0	53	22	Examples X64876	H. sapiens mRNA for insulin-like growth factor binding protein 3 Human growth hormone-dependent insulin-like growth factor binding protein 3	
							M31159		
							M31159	Human insulin-like growth factor-binding protein-3	
							M35878	insulin-like growth factor binding protein 3 (3' region)	
25	CATGACTGCCGGTG	H124264	1	0	22	9	Examples U65932	Human extracellular matrix protein 1 (ECM1) mRNA	
							U65937	Human extracellular matrix protein 1 (ECM1) gene, exon 9	
26	CATGACTGTATTTC	H126208	3	4	9	2	22	Examples AA148916	z00309.s1 Stratagene colon (#937204) Homo sapiens cDNA clone 566633
							AA129137	z012a1.s1 Stratagene colon (#937204) Homo sapiens cDNA clone 586652	
							AA1115437	z185g9.s1 Stratagene colon (#937204) Homo sapiens cDNA clone 511456	
							AA126967	z187e07.s1 Stratagene colon (#937204) Homo sapiens cDNA clone 511620	
27	CATGGCACTGAGC	H149395	1	2	6	3	16	Examples R24613	yJ36c03.r1 Homo sapiens cDNA clone 131812
28	CATGGCAGGACCT	H150055	1	0	0	0	15	Examples H43243	yP05e05.r1 Homo sapiens cDNA clone 186560
29	CATGGCTGTATTCT	H167622	0	2	0	1	11	Examples X54942	H.sapiens cksh2 mRNA for Cks1 protein homologue
30	CATGGGGATGACCC	H167446	1	7	12	10	13	Examples AA044081	zL50g7.s1 Soares pregnant uterus NbHPV Homo sapiens cDNA clone 486300
									3' similar to PIR: A40533, A40533 cAMP-dependent protein kinase major membrane substrate
31	CATGGGTCTCAAAT	H178129	4	2	0	60	2	Examples X14787	Class A, Human mRNA for thrombospondin.
32	CATGGGTGCCGGG	H178603	0	2	2	1	11	Examples R27738	yR4f11.s1 Homo sapiens cDNA clone 134541
									3' similar to SP: ZK637.5
							H00276	yJ22f12.s1 Homo sapiens cDNA clone 149519	
									3' similar to SP: ZK637.5
							CE00436 ARSA		
33	CATGGTATCTGGGA	H183787	3	3	1	15	73	Examples AA076235	zml19d07.s1 Stratagene pancreas (#937208) Homo sapiens cDNA clone 526093
									3'
									AA146632
									592364
34	CATGATACTTTAATT	H204740	1	0	3	18	9	Examples X80062	H.sapiens SA mRNA.
									U01691
									Human annexin V (ANX5) gene

			X12454	Human mRNA for vascular anticoagulant
			M18366	Human placental anticoagulant protein (PAP) mRNA
			M21731	Human lipocortin-V mRNA, complete cds
			J03745	Human endoneitin II mRNA, complete cds
15	CATGATCAAAGAATCC	H213518	2 1 5 25 1 Examples J03909	GAMMA-INTERFERON-INDUCIBLE PROTEIN IF-30 PRECURSOR (HUMAN) ES797384 Thymus II Homo sapiens cDNA 3' end similar to interferon, gamma transducer 1
16	CATGATCAGGGGT	H213579	12 9 25 12 156 Examples U09953	Human ribosomal protein L9 mRNA, complete cds
			U21138	Human ribosomal protein L9 mRNA, complete cds
			D14531	Human mRNA for human homologue of rat ribosomal protein zmo3a05.s1 Stratogene corneal stroma #937222 Homo sapiens cDNA clone 513008 3'
17	CATGATCAGTTCGA	H213751	0 2 8 3 10 Examples AA063259	
18	CATGATCGGGGCCA	H219750	16 7 14 12 40 Examples L42856	RNA polymerase II transcription factor SIII p18 subunit mRNA
19	CATGATGAACCTCG	H229502	1 0 0 17 4 Examples Z59742	H.sapiens CpG DNA, clone 13a10, reverse read cpg1
40	CATGATCGGAAAGGC	H235331	2 3 12 3 22 Examples Z225820	H.sapiens mRNA for mitochondrial dodecenoyl-CoA dehydrogenase
				L24774 Homo sapiens delta3, delta2-CoA-isomerase mRNA
41	CATGATCTCTTCGTT	H243676	0 0 1 0 14 Examples M84711	40S RIBOSOMAL PROTEIN S3A (HUMAN)
42	CATGATCTCTTCTCT	H243710	1 2 1 14 2 Examples M624403	Human insulin-like growth factor binding protein 4
				Human insulin-like growth factor binding protein-4 (IGFBP4) gene, promoter and complete cds
43	CATGATGTAAAGA	H24487	0 4 5 44 94 Examples Z33457	H.sapiens mts 1 gene
			M80563	Human CAPII protein mRNA, complete cds
			YX70109	Human ovaries cDNA clone 267065 3' similar to g: L12350 THROMBOSPONDIN 2 PRECURSOR (HUMAN)
44	CATGGAACTTAAAGC	H270083	0 1 2 10 1 Examples N23207	z25e11.s1 Soares ovary tumor NbHOT Homo sapiens cDNA clone 714188
45	CATGGACCTGTCCTT	H286424	0 4 2 10 1 Examples AA285023	3' similar to g: M33680 CD81 ANTIGEN (HUMAN)
46	CATGGCACTCAATATA	H291889	0 0 2 3 19 Examples M33680	CD81 antigen
			D78203	Neurosin
			U62801	protease M

47 CATGCCACCTGGGGC	H300971	0	0	0	10	Examples AA149942	zp68d04.s1 Stratagene pancreas (#937208) Homo sapiens cDNA clone 592039 3' similar to TR: E218488 E218488 TRYPTASE
48 CATGCCACCGGCCCT	H301462	4	11	12	10	21 Examples AA187553	zp66b09.r1 Stratagene endothelial cell 937223 Homo sapiens cDNA clone 625145 5' similar to gb:MI6937 HOMEOBOX PROTEIN HOX-B7 (HUMAN); contains element MER22 repetitive element
49 CATGAGGTGTCCT	H307126	0	0	4	0	10 No Match	MI6937 Homeobox protein HOX-B7
50 CATGAGGTCTCAA	H309109	2	6	6	2	17 Examples U14972	Human ribosomal protein S10 mRNA
51 CATGGATCCGTGAC	H316857	0	3	3	3	13 Examples U27293	Human leukotriene A4 hydrolase gene
							J03459 Human leukotriene A4 hydrolase mRNA, complete cds
							J02939 Human leukotriene A4 hydrolase mRNA, complete cds
52 CATGGATTCCCTCCTT	H322080	0	2	5	13	3 Examples X82434	H.sapiens mRNA for zearin
53 CATGCCACCCCAACC	H323138	3	7	17	18	2 Examples M88358	Human serum constituent protein (MSE55) mRNA
54 CATGCCAGTGGCCCG	H339606	23	11	37	22	56 Examples U14971	Human ribosomal protein S9 mRNA
55 CATGCCATTCTGG	H344031	0	2	6	1	10 Examples L01697	Homo sapiens alpha-1 type XV collagen mRNA
56 CATGCCAAGCTAGC	H344691	19	8	9	18	44 Examples X56079	Human mRNA for heat shock protein HSP27.
						233090	H.sapiens mRNA for 28 kDa heat shock protein
						X16477	Human mRNA fragment for estrogen-regulated 24k protein
						S74571	estrogen receptor-related protein=27-kda heat shock protein
57 CATGCCCATCCGAA	H347489	20	15	43	19	61 Examples X69392	H.sapiens mRNA for ribosomal protein L26.
58 CATGCCCTGCGAGA	H350099	0	1	6	14	25 Examples U40434	Human ribosomal protein L26 (RPL26) gene
						D49441	Human mesothelin or CAK1 antigen precursor mRNA
							Human mRNA for pre-pro-megakaryocyte potentiating factor, complete cds.
59 CATGCCGCATAGAT	H353481	0	0	0	8	11 Examples U12819	Human p16INK4 (p16) gene
						U38945	Human hypothetical 18.1 kDa protein (CDKN2A) mRNA
							M1S1=multiple tumor suppressor 1/cyclin-dependent kinase 4 inhibitor p16
						S69804	CDK4=cyclin-dependent kinase 4 inhibitor
						S39822	tumor suppressor gene, P16MTS1/CDKN2=cell cycle negative regulator beta form
60 CATGCCCTCCGGGG	H357867	8	2	5	14	34 Examples Z47319	H.sapiens mRNA for expressed sequence tag (clone 21f7119)

61	CATGCCGCCCCCTACC	H370034	4	4	1	14	19	Examples U21049	AA398406	zic60h12.s1 Soates testis NHT Homo sapiens cDNA clone 726191 3'				
62	CATGCCGCGTCCCAA	H387955	0	2	1	30	99	Examples X03212		Human DD96 mRNA KERATIN, TYPE II CYTOSKELETON 7				
										ZP7301.s1 Stratagene HeLa cell s5 937216 Homo sapiens cDNA clone 611492				
63	CATGCCCTTTGAAACAG	H392709	5	3	6	2	23	Examples AA176657		zp3561.s1 Stratagene muscle 937209 Homo sapiens cDNA clone 611492				
										3' similar to TR:G663269 G663269 BOLA				
64	CATGCCCGGACGGATG	H415844	21	13	45	75	7	Examples AA176541		zp3561.s1 Stratagene muscle 937209 Homo sapiens cDNA clone 611492				
65	CATGCCAACAGCAA	H475629	2	5	10	6	17	Examples X02492		3' similar to TR:G663269 G663269 BOLA.				
										Human interferon-inducible mRNA fragment				
										ya83g0.s1 Homo sapiens cDNA clone 68792 3'				
											zd47g08.s1 Soares fetal heart NbH19W Homo sapiens cDNA clone			
										343838 3 similar to PIR:S24168 S24168 hypothetical protein - human				
66	CATGCTAACCCCCC	H475478	1	4	2	23	1	Examples W69493		Human mRNA for LDL-receptor related protein				
67	CATGCTGAGAAGACTG	H493376	2	3	1	8	18	Examples X13916		H.sapiens (24) Feritin H pseudogene.				
68	CATGCTGAGTCCTCC	H494454	1	4	4	21	13	Examples X80335		Human mRNA for Gl(I) protein alpha-subunit				
69	CATGCTCTATACGA	H498387	16	30	28	30	44	Examples X04828		Human ribosomal protein L5 mRNA				
70	CATGCTGCTGAGTGA	H499247	1	3	4	13	13	Examples U14966		Human mRNA for Gl(I) protein L5 mRNA				
										jd41g0.s1 Homo sapiens cDNA clone 110846 3'				
										EST43791 Fetal brain I Homo sapiens cDNA 3' end similar to steroid				
										hERRI1				
										jd41g0.s1 Homo sapiens cDNA clone 110846 3'				
										yr93806.s1 Homo sapiens cDNA clone 250739 3'				
										H97226				
										AA338799				
										hERRI1				
71	CATGCTGGCGCGAT	H501337	0	0	4	0	10	Examples C14084		yr93806.s1 Homo sapiens cDNA clone 250739 3'				
72	CATGCTCCAGCTAA	H513181	64	23	36	53	104	Examples D00017		Human fetal brain cDNA 3'-end GEN-018D10				
73	CATGCTCTCTTGGCT	H514022	0	3	4	89	7	Examples Z19574		Human lipocortin II mRNA				
										H.sapiens gene for cytokeratin 17.				
										X62571				
										H.sapiens mRNA for keratin-related protein				
										X05803				
										Human radiated keratinocyte mRNA 266				
										X79067				
										H.sapiens ERK-1 mRNA 3' end.				
										X51779				
										Human mRNA containing an Alu repeat				
										X82240				
										H.sapiens mRNA for T-cell leukemia/syphymoma 1				
										X82240				
										V00572				
										D29018				
										L00160				
										X05344				
										Human mRNA for cathepsin D				
										X05344				

							M11233	Human cathepsin D mRNA, complete cds
v1 CATGAAATGAG	H527929	4	7	5	14	26	Examples T30296	yad2f03.s1 Homo sapiens cDNA clone 110909 3' similar to SP-R151.9 CE00827
v1 CATGGAAAGATGTG	H533436	3	7	16	6	28	Examples AA18111	EST23523 Adipose tissue, brown Homo sapiens cDNA 3' end 2p64f07.s1 Stratagene endothelial cell 937223 Homo sapiens cDNA clone
v1 CATGGAATTTTATAA	H540621	6	3	10	9	28	Examples L21950	AA148508 491530 3' similar to WP-ZK652.2 CE00448 624997.31 Soares pregnant uterus NbHPU Homo sapiens cDNA clone
v1 CATGGACAAAAAAA	H540673	1	2	10	3	17	No Match	AA148508 491530 3' similar to WP-ZK652.2 CE00448 2p64f07.s1 Stratagene endothelial cell 937223 Homo sapiens cDNA clone
v1 CATGGACACCTTAA	H545152	0	1	0	11	2	Examples U19718	AA148508 491530 3' similar to WP-ZK652.2 CE00448 M36035 Human peripheral benzodiazepine receptor related mRNA
v1 CATGGACAGCCCTTA	H545430	0	3	0	20	18	Examples M75165	AA148508 491530 3' similar to WP-ZK652.2 CE00448 M36035 Human peripheral benzodiazepine receptor (rbp8) mRNA
v1 CATGGACCAAGCCCT							AA148508 491530 3' similar to WP-ZK652.2 CE00448 M12125 Human fibroblast muscle-type tropomyosin mRNA	
v1 CATGGACCCCCAACGC	H546059	2	5	9	16	10	Examples M74817	AA148508 491530 3' similar to WP-ZK652.2 CE00448 M74817 Human tropomyosin-1 (TM-beta) mRNA, complete cds
v1 CATGGACCCCTGCCCT	H546710	31	36	20	71	65	Examples L37033	AA148508 491530 3' similar to WP-ZK652.2 CE00448 2p37f02.s1 Soares parathyroid tumor NbHPU Homo sapiens cDNA clone
v1 CATGGACCTATCTCT	H548062	0	1	0	13	1	Examples N90046	AA148508 491530 3' similar to WP-ZK652.2 CE00448 303810.3' Soares pregnant uterus NbHPU Homo sapiens cDNA clone
v1 CATGGACCTATCTCT								AA148508 491530 3' similar to WP-ZK652.2 CE00448 2p37f02.s1 Soares parathyroid tumor NbHPU Homo sapiens cDNA clone
v1 CATGGACGGCGCAGG	H551315	3	4	5	32	3	Examples M63193	AA148508 491530 3' similar to WP-ZK652.2 CE00448 Human platelet-derived endothelial cell growth factor
v1 CATGGACCTCTGTG	H554876	1	4	3	0	14	Examples M61764	AA148508 491530 3' similar to WP-ZK652.2 CE00448 Human gamma-tubulin mRNA,
v1 CATGGACGCTTGGC	H559615	0	0	0	2	10	Examples D17793	AA148508 491530 3' similar to WP-ZK652.2 CE00448 Human mRNA (HA1753) for ORF
v1 CATGGAGGTGCTG	H560056	0	5	8	32	11	Examples S68252	AA148508 491530 3' similar to WP-ZK652.2 CE00448 TIMP-1 = metalloproteinase inhibitor
v1 CATGGAGGTGCTG							X02598	AA148508 491530 3' similar to WP-ZK652.2 CE00448 EPA glycoprotein (erythroid-potentiating activity)
v1 CATGGAGGTGCTG							X03124	AA148508 491530 3' similar to WP-ZK652.2 CE00448 tissue inhibitor of metalloproteinase 2
v1 CATGGAGGTGCTG	H561807	0	0	1	12	No Match		
v2 CATGGAGGTGCTG	H567486	1	1	0	4	13	Examples AA214573	AA214573 Human platelet-derived endothelial cell growth factor
v2 CATGGAGGTGCTG							N30324	N30324 Human platelet-derived endothelial cell growth factor
v3 CATGGAGTCGGAGC	H570787	0	0	2	1	10	Examples X70070	X70070 Human platelet-derived endothelial cell growth factor
v4 CATGGAGGTGCTG	H572656	0	0	3	0	10	Examples H57673	H57673 Human platelet-derived endothelial cell growth factor

						M73239	Human (clone SF1) hepatocytic growth factor (HGF)
						M73240	Human (clone SF2) hepatocyte growth factor (HGF)
(109) CATGGAAAAGTGGT	H655547	18	13	3	70	1 Examples X02920	Human mRNA for alpha 1-antitrypsin carboxyterminal, 0
						X01683	Human mRNA for alpha 1-antitrypsin
						V00496	Human messenger RNA for alpha 1-antitrypsin
						J00067	Human alpha-1 antitrypsin gene, 3' end
						z122b01.s1 Soares pregnant uterus NbHPU Homo sapiens cDNA clone	
(110) CATGGAAAGGGAGCC	H658059	0	0	4	6	16 Examples AA127040	z122b01.s1 Soares fetal heart NbHH19W Homo sapiens cDNA clone
						W81387	zd86f06.s1 Soares fetal heart NbHH19W Homo sapiens cDNA clone
						H45477	347535.3'
(111) CATGGGAGTCATTTGT	H665943	6	5	6	10	32 Examples D26598	Y072b08.s1 Homo sapiens cDNA clone 183519 3'
(112) CATGGGAGTGCGCT	H667367	9	0	1	1	10 Examples N74310	Human mRNA for proteasome subunit HsC10-IL, 0
						z278c01.s1 Homo sapiens cDNA clone 298656 3'	
						H92750	Y092e01.s1 Homo sapiens cDNA clone 231768 3'
						T24084	seq2272 Homo sapiens cDNA clone ssb4HB3MA(extended-ft-6) 3'
(113) CATGGGATTTCCTCG	H671455	3	7	13	5	21 Examples X17567	H.sapiens RNA for snRNP protein B
						M34081	Human small nuclear ribonucleoprotein particle SmB
(114) CATGGCCCCCTCAC	H677330	0	0	2	9	22 Examples M69054	Human insulin-like growth factor binding protein 6, 0
(115) CATGGGGCCTCTGAG	H677753	0	1	4	7	14 Examples N74323	M62402 Human insulin-like growth factor binding protein 6
						H46766	za78a08.s1 Homo sapiens cDNA clone 298671 3'
						H41102	Y01808.s1 Homo sapiens cDNA clone 178311 3'
						Y088a08.s1 Homo sapiens cDNA clone 175478 3'	
(116) CATGGGCTGGTCGG	H686815	0	1	3	13	22 Examples AA074777	Zm84609.s1 Stratagene ovarian cancer (#937219) Homo sapiens cDNA clone 544601 3'
						AA062735	Zm04a04.s1 Stratagene cortical stroma (#937222) Homo sapiens cDNA clone 513102 3'
						AA112905	Zm63f12.s1 Stratagene fibroblast (#937212) Homo sapiens cDNA clone
						530351.3'	
(117) CATGGGGAGGAGAT	H688713	25	7	9	0	72 No Match	
(118) CATGGGGAGGGTGG	H690863	2	3	1	16	2 No Match	
(119) CATGGGGAGGTRGCA	H690890	1	0	1	14	1 No Match	
(120) CATGGGGCATCTCT	H693112	1	1	3	39	2 Examples Y00593	Human mRNA for histocompatibility antigen HLA-DR
						X00274	Human gene for HLA-DR alpha heavy chain a class II
						K01171	Human HLA-DR alpha-chain mRNA

1:1	CATGGGTGGGAGAT	H715401	1	4	10	10	14	Examples UI8009	J00202	human hla-dr heavy chain gene; 3' flank
1:2	CATGGTACTGTAGCA	H728778	3	3	1	16	30	Examples T33413	T33413	Human chromosome 17q11 mRNA clone LF113.
1:3	CATGGTACTGTGCT	H728810	23	10	16	15	50	Examples X87689	ES757778	Homo sapiens cDNA 3' end similar to None
1:4	CATGGTAAATTTC	H737344	0	0	0	10	1	Examples L12350	ES757474	Homo sapiens cDNA 3' end similar to None
1:5	CATGGTGGGGCTT	H752296	25	35	45	76	29	Examples D21261	Human integrin alpha-3 chain mRNA	
1:6	CATGGTCTGTGAG	H752521	0	5	7	12	2	Examples H51290	Y070705.s1	Homo sapiens cDNA clone 186704 3'
								AA158771	N20338	YX44812.s1 Homo sapiens cDNA clone 264646 3'
										2076309.s1 Stratagene pancreas (#937208) Homo sapiens cDNA clone
										AA158771
										592840 3'
1:7	CATGGTCTGTGAGG	H752531	0	0	0	1	13	No Match		
1:8	CATGGTCTTGAAACC	H753162	0	1	2	1	10	No Match		
1:9	CATGGTGAAGCAGT	H753323	25	14	42	15	89	Examples X87373		Class C, H sapiens RP53a gene
1:10	CATGGTAAATGACGG	H754567	0	2	8	1	10	Examples X08038		GLUTATHIONE S-TRANSFERASE P (HUMAN)
1:11	CATGGTGGAGAAC	H760361	0	3	2	11	25	Examples X51439		Human mRNA for serum amyloid A (SAA) protein
1:12	CATGGTCTGGGAA	H761481	2	9	9	13	26	Examples U15008		Human SnRNP core protein Sm D2 mRNA
1:13	CATGGTGGGGAC	H762533	1	1	3	6	34	Examples U62800		Cystatin M (CST16)
1:14	CATGGTGTACGGA	H765003	14	17	15	39	30	Examples H46430	Y012612.s1 Homo sapiens cDNA clone 177767 3'	
										Zf13a06.s1 Soares fetal heart NbHH19W Homo sapiens cDNA clone
										201302.s1 Stratagene colon (#937204) Homo sapiens cDNA clone 586779
								AA130701		3'
1:15	CATGGTTCACTGCA	H774629	0	2	1	13	3	Examples X59258		H. sapiens gene for intercellular adhesion molecule
									M24283	Human major group rhinovirus receptor (HRV) mRNA
									J03132	Human intercellular adhesion molecule-1 (ICAM-1)
									M55100	Human cell surface glycoprotein P3,58 mRNA
									K02765	Human complement component C3 mRNA, alpha and beta
									M17987	Human beta-2-microglobulin gene
1:17	CATGGTTGGGTAA	H782013	178	110	14	340	139	Examples D00760		Human mRNA for proteasome subunit HC3
1:18	CATGGTTAAATCGA	H782391	1	6	12	4	14	Examples X57025		INSULIN-LIKE GROWTH FACTOR IA PRECURSOR (HUMAN)
1:19	CATGTAAGGTTAAC	H797169	0	0	6	1	12	Examples X57025		
1:20	CATGTAAGGTTGGAA	H802793	0	2	5	2	10	No Match		

111	CATGTAATTTCGGAT	H802793			No Match		
112	CATGTACATTTCAT	H805901	1	4	3	14	Examples X85573 H.sapiens mRNA for Sm protein G
113	CATGTACCCGTCACA	H805370	0	1	4	0	No Match
114	CATGTACCCCTCTAT	H808925	0	0	17	7	No Match
115	CATGTACCTCTCTAT	H827437	1	0	5	24	Examples J02931 Human placental tissue factor (two forms) mRNA
116	CATGTAGGAAGTAA						M16553 Human tissue factor mRNA, complete cds
117	CATGTAGGTGTCTA	H831416	49	61	89	130	Examples X64899 H.sapiens mRNA homologous to mouse P21 mRNA.
118	CATGTAGGTGTCTA	H831416	49	61	89	130	Examples X16064 Human mRNA for translationally controlled tumor protein
119	CATGTATTTCTTC	H859672	1	0	3	8	L12806 Homo sapiens (clone 04) translationally controlled tumor protein
120	CATGTATTTCTGCC	H851834	0	1	2	16	Examples M98479 Human transglutaminase mRNA
121	CATGTATTTCTGCCT	H856209	10	28	27	48	Examples D12149 Human HepG2 3'-directed MboI cDNA, clone #247
122	CATGTCAACAGCAA	H868569	0	1	0	43	Examples X80909 H.sapiens alpha NAC mRNA
123	CATGTCCAATCGAT	H868569					Z19554 Human mRNA for vimentin.
124	CATGTCCACTGGCT	H870310	0	0	1	12	2 Examples N92906 M14144 Human vimentin gene, complete cds
125	CATGTCCACTGGCT	H870310	0	0	1	12	2 Examples N92906 M25246 Human vimentin (HuVim3) mRNA, 3' end
126	CATGTCCACTGGCT						Zb57a08.s1 Homo sapiens cDNA clone 307670 3'
127	CATGTCCACTGGCT						T117488 NIBB978 Normalized infant brain, Bent Soares Homo sapiens cDNA 3' end
128	CATGTCCACTGGCT	H871920	6	6	10	25	AA349906 EST5690 Infant brain Homo sapiens cDNA 3' end
129	CATGTCCACTGGCT	H871920	6	6	10	25	5 Examples X67016 H.sapiens mRNA for amphiglycan
130	CATGTCGCTTTATC	H899060	2	5	15	1	D13292 Human mRNA for ryacodecan core protein
131	CATGTCGCTTTATC	H908858	1	5	2	46	Examples M77233 Human ribosomal protein S7 mRNA
132	CATGTCGCTTGATGCT	H908858	1	5	2	46	S45568 tissue inhibitor of metalloproteinase 2 (3'-end region)
133	CATGTCGCTTGATGCT						
134	CATGTCGCTTGACTG	H916232	0	4	3	1	13 Examples N71680 YZ93605.s1 Homo sapiens cDNA clone 290573 3'
135	CATGTCGCTGCGATA	H916372	14	22	15	20	45 Examples X03083 Human lactate dehydrogenase-A gene
136	CATGTGAAGTCACTG	H920392	1	1	6	0	X02152 Human mRNA for lactate dehydrogenase-A
137	CATGTGAAGTCATAC	H920525	0	1	3	6	11 Examples X07979 X07979 Human pseudogene for lactate dehydrogenase-A
138	CATGTGAAGTCATAC	H920525	0	1	3	6	11 Examples CTCGG, Class A, Human mRNA for fibronectin receptor beta subunit.

158	CATGTGATGGTCTGGT	H932731	0	8	3	11	12	Examples AA027860 469693 3'	zK03h07.s1 Soares pregnant uterus NbHPU Homo sapiens cDNA clone
159	CATGTGCCATTCTATA	H938876	1	3	7	3	16	Examples M25753 G2/MITOTIC-SPECIFIC CYCLIN B1 (HUMAN)	T60151
									yc22c04.s1 Homo sapiens cDNA clone 81414 3'
									R67969
									yL9g08.s1 Homo sapiens cDNA clone 140702 3'
160	CATGTGCCCTCAAAA	H939841	11	13	3	13	43	Examples AA169614 z091f03.s1 Stratagene ovarian cancer (#937219) Homo sapiens cDNA clone 594269 3' similar to SW:NGAL_HUMAN P80188 NEUTROPHIL GELATINASE-ASSOCIATED LIPOCALIN PRECURSOR	zB15d08.s1 Homo sapiens cDNA clone 302177 3' similar to SW:NGAL_HUMAN P80188 NEUTROPHIL GELATINASE-ASSOCIATED LIPOCALIN PRECURSOR
161	CATGTGCCCTCAGAA	H939849	3	4	0	11	19	Examples N79823 zm90104.s1 Stratagene ovarian cancer (#937219) Homo sapiens cDNA clone 545239 3' similar to SW:NGAL_HUMAN P80188 NEUTROPHIL GELATINASE-ASSOCIATED LIPOCALIN PRECURSOR	zm90104.s1 Stratagene ovarian cancer (#937219) Homo sapiens cDNA clone 545239 3' similar to SW:NGAL_HUMAN P80188 NEUTROPHIL GELATINASE-ASSOCIATED LIPOCALIN PRECURSOR
162	CATGTGCCCTCAGGA	H939851	13	31	10	25	83	Examples AA073896 No Match	zB1607.s1 Stratagene colon (#937204) Homo sapiens cDNA clone 511044
162	CATGTGCCCTCAGGC	H920392							
163	CATGTGCCCTPACTTT	H941856	0	3	1	2	12	Examples AA100279 3'	zN10a01.s1 Soares pregnant uterus NbHPU Homo sapiens cDNA clone
164	CATGTGCCGCTGGCC	H944038	2	5	2	17	3	No Match	zK10a01.s1 Soares pregnant uterus NbHPU Homo sapiens cDNA clone
165	CATCTGCTTCATCTC	H949560	2	6	6	4	16	Examples AA029262 470088 3'	yy66e10.s1 Soares fetal liver spleen INF-LS Homo sapiens cDNA clone
									N54281 247722 3'
									AA114075 zn76c07.s1 Stratagene NT2 neuronal precursor 937230 Homo sapiens cDNA clone 564098 3'
166	CATCTGGAGTGGAGG	H952251	18	15	7	22	48	Examples L76200 Hom sapiens guanylate kinase (GUK1) mRNA	L76200
167	CATCTGGCCCCAGGT	H955723	0	3	3	37	4	Examples X00570 Human mRNA for precursor of apolipoprotein C1	X00570
168	CATCTGGGTGACCCA	H962086	13	15	13	76	27	Examples L16510 Hom sapiens cathepsin B mRNA	L16510
									M14221 Human cathepsin B proteinase mRNA, complete cds
169	CATCTGGAGGCCCT	H975446	3	3	3	22	8	Examples L35240 Human enigma gene	L35240
170	CATCTGGCTAAATG	H976644	8	21	26	18	50	Examples L38941 Hom sapiens ribosomal protein L34 (RPL34) mRNA	L38941
171	CATCTGGGTGTTGT	H978687	6	7	16	25	15	Examples X03473 Human gene for histone H1(0).	X03473
									2k23g08.s1 Soares pregnant uterus NbHPU Homo sapiens cDNA clone
172	CATCTTATGGATCTC	H997944	0	1	1	21	1	Examples AA034505 471422 3'	

S1	CATGTTTCCTTCCCTT	H103896	0	6	3	7	17	Examples M20471	Human brain-type clathrin light-chain mRNA
								M20472	Human lymphocyte clathrin light-chain A mRNA
IS2	CATGTTGCACCTT	H1041504	2	0	0	16	1	Examples X78947	H. sapiens mRNA for connective tissue growth factor
								U14750	Human connective tissue growth factor mRNA
IS4	CATGTTGTTAAAA	H1044225						H06492	yJ78308.s1 Homo sapiens cDNA clone 44273 3'
								T35952	ES194173 Homo sapiens cDNA 3' end similar to None
								AA255218	zr53E10.s1 Soares NHHMPu S1 Homo sapiens cDNA clone 667170 3'

Table 5 - Transcripts increased in pancreas and colorectal cancer
**SAGE tag that were elevated in both in colorectal and pancreatic tumor,
and are likely to be specific for tumor in general.**

Tag Sequence	Tag Number	Accession	Description
1 CATG TGGAAATGAC	C	-950498 M10629	Human alpha-1 collagen gene, 3' end with polyA sit
2 CATG CACTCAAGG	G	-294155 U42376	Human retinoic acid induced RIG-E precursor (E) mRNA
		U56145	Human thymic shared antigen-1/stem cell antigen-2
3 CATG ATGTGAGAG	T(A)	-243747 J03040	Human SPARC/osteonectin mRNA, complete cds.
		M25746	Human osteonectin gene exon 10, complete cds.
4 CATG GCCCAAGGAC	C	-610466 X53416	Human mRNA for actin-binding protein (filamin) (AB
5 CATG ATCTGTTAC	T	-229106 X02761	Human mRNA for fibronectin (FN precursor).
		K00799	human fibronectin (fn) 3' coding region and flank,
6 CATG GTGCCCTGAG	C	-760291 X538536	Human mRNA for HLA class I locus C heavy chain.
		M26432	Human MHC class I HLA-C1 gene, complete cds.
7 CATG ACAGGCCTAG	G	-76231 M95787	Human 22kDa smooth muscle protein (SM22) mRNA, com
		M83106	Human SM22 mRNA, 5' end.
8 CATG GTGTGTTGT	A	-769020 M77349	Human transforming growth factor-beta induced gene
9 CATG GATTCTCTAG	C	-589267 X53279	Human mRNA for placental-like alkaline phosphatase
		X55958	H. sapiens mRNA for alkaline phosphatase.
		J04948	Human alkaline phosphatase (ALP-1) mRNA, complete
10 CATG ACCATTCTCGC	T	-85882 X57351	Human 1-8D gene from interferon-inducible mRNA (cdNA 1-8).
		X02490	Human interferon-inducible mRNA (cdNA 1-8).
11 CATG TCCTCTCTCA	C	-884181 X15804	Human mRNA for alpha-actinin.
12 CATG CTTCCTGTGA	C,T	-515821 D80012	Human mRNA for KIAA0190 protein.
13 CATG ATGAAAAAA	T	-241665 M74090	Human TB2 gene mRNA, 3' end.
		J03801	Human lysozyme mRNA, complete cds with an Alu repe
		M19045	Human lysozyme mRNA, complete cds.
14 CATG GCGAGGGAC	C	-673954 X17620	Human mRNA for Nm23 protein, involved in developme
		X75598	H. sapiens rm23H1 gene.
15 CATG AATATTGAGA	A	-53129 U62962	Human Int-6 mRNA, complete cds.
16 CATG TTTTGATAA	A	-1048113 D16891	Human HepG2 3' region cDNA, clone hmd2cell.
17 CATG CACCTGGCCA	T	-302741 X53743	H. sapiens mRNA for fibulin-1 C.

18	CATG GTTCACATTA	G	-774461	X00497	Human mRNA for HLA-DR antigens associated invariant
			M13560		Human Ia-associated invariant gamma-chain gene, ex
19	CATG AAAAGAAACT	T	-2056	Y00345	Human mRNA for polyA binding Protein.
20	CATG AATGCAGGCCA	G	-58533	M61831	Human S-adenosylhomocysteine hydrolase (AHCY) mRNA
			M61832		Human S-adenosylhomocysteine hydrolase (AHCY) mRNA
21	CATG TGAATTTAAA	C	-918273	X16334	Human hb23 gene for B23 nucleophosmin.
			M28699		Homo sapiens nucleolar phosphoprotein B23 (NPM1) m
			M23613		Human nucleophosmin mRNA, complete cds.
			M26697		Human nucleolar protein (B23) mRNA, complete cds.
22	CATG TTATGGGATC	T	-998030	M21194	Human MHC protein homologous to chicken B complex
23	CATG CAATAATGTT	T	-274492	D23561	Human mRNA for ribosomal protein L37, complete cds
			L11567		Homo sapiens ribosomal protein L37 mRNA, complete
24	CATG AGCCCTTGTGTT	G	-155632	D81174	Human mRNA for collagen binding protein 2.
25	CATG ACCTGATATCC	C	-970178	X57352	Human 1-8U gene from interferon-inducible gene fam
26	CATG TTCAATTTAA	A	-1000193	M17886	Human acidic ribosomal phosphoprotein P1 mRNA, com
			J05068		human transcobalamin I mRNA, complete cds.
27	CATG CGACCCCCACG	C	-3986633	M12529	Human apolipoprotein E mRNA, complete cds.
			K00396		Human apolipoprotein E (epsilon 2 and 3 alleles) m
28	CATG CAGATCTTGC	T	-298495	X56398	Human UBA52 adrenal mRNA for ubiquitin-52 amino ac
			X56399		Human UBA52 placental mRNA for ubiquitin-52 amino
29	CATG CTGGCGAGCG	C	-501287	X07191	Human DNA insects showing sperm-specific hypomethyl
			M91670		Human ubiquitin carrier protein (E2-E6P) mRNA, com
30	CATG ATTGGCTTAA	A	-256497	L14272	Human prohibitin (PHB) gene, exons 1-7.
			S35655		prohibitin [human, mRNA, 1043 nt].
31	CATG GTGGTGACCA	C	-765573	U62435	Human nicotinic acetylcholine receptor alpha6 subu
			U68041		Human breast and ovarian cancer susceptibility pro
32	CATG TCCTGCCCA	T	-883029	M224398	Human parathymosin mRNA, complete cds.
33	CATG ACTGGGTCTA	T	-125661	X58265	H. sapiens RNA for rna23-H2 gene.
			M36381		Human putative NDP kinase (rn23-H2S) mRNA, complet
			L16785		Homo sapiens c-myc transcription factor (puf) mRNA
34	CATG AAGAGATAG	A	-33331	U02032	Human ribosomal protein L23a mRNA, partial cds.
			U37230		Human ribosomal protein L23a mRNA, complete cds.
			U43701		Human ribosomal protein L23a mRNA, complete cds.

		L13799	Homo sapiens (clone 01) liver expressed protein mRNA
35	CATG ACATCATCGA	T	-79065 L06505 Human ribosomal protein L12 mRNA, complete cds.
36	CATG CTGGTGGTGA	T	-501577 D14530 Human homolog of yeast ribosomal protein S28, complete cds.
37	CATG ATTAATTTC	T	-243854 X57959 H.sapiens mRNA for ribosomal protein L7.
		X57958	H.sapiens mRNA for ribosomal protein L7.
		X52967	Human mRNA for ribosomal protein L7.
38	CATG GCCTTAAAGG	A	L16558 Human ribosomal protein L7 (RPL7) mRNA, complete cds.
39	CATG GCGAGAAGAA	A	-655115 L06498 Homo sapiens ribosomal protein S20 (RPS20) mRNA, complete cds.
		L19527	Homo sapiens ribosomal protein L27 (RPL27) mRNA, complete cds.
40	CATG CTCCTCGAGA	A	-672265 L25346 Homo sapiens ribosomal protein L27 (homologue of r
		Y00433	Human mRNA for glutathione peroxidase (EC 1.11.1.9)
		Y00483	Human gene for glutathione peroxidase.
		X13710	H.sapiens unspliced mRNA for glutathione peroxidase
		X13709	Human GPx1 mRNA for glutathione peroxidase.
		M21304	Human Glutathione Peroxidase (GPx1) mRNA, complete cds.
41	CATG CTCTTGATTG	C	-507455 X04347 Human liver mRNA fragment DNA binding protein UpI
		U00947	Human clone C4E 3.2 (CACIn/(GTG)n repeat-containing
42	CATG CTGGGTTAAT	A	-502724 M81757 H.sapiens S19 ribosomal protein mRNA, complete cds
43	CATG ATGGCTGGTA	T	-233533 X17206 Human mRNA for L1Rsp3.
44	CATG GATGCTGCCA	A	-5033573 X59357 Human mRNA for Epstein-Barr virus small RNAs (EBER
		L21756	Homo sapiens acute myeloid leukemia associated pro
		D17652	Human mRNA for HBp15/L22, complete cds.
		S76343	AML1...EAP (translocation breakpoint) [human, chro
45	CATG CCTTCGAGAT	C	-390692 U14970 Human ribosomal Protein S5 mRNA, complete cds.
46	CATG CTCCACCT	G	-402584 U16811 Human Bak mRNA, complete cds.
		U23765	Human Bak protein mRNA, complete cds.
47	CATG TGCTTGAGA	G	-978825 X16869 Human mRNA for elongation factor 1-alpha (clone CE
		X16872	Human DNA for elongation factor 1-alpha (clone lam
		X03558	Human mRNA for elongation factor 1 alpha subunit (
		D17182	Human HepG2 3' region MboI DNA, clone hmd2h03m3.
		D17245	Human HepG2 3' region MboI DNA, clone hmd4h05m3.
		D17259	Human HepG2 3' region MboI DNA, clone hmd5cl07m3.
		D17276	Human HepG2 3' region MboI DNA, clone hmd6a12m3.

		M27364	Human elongation factor 1 alpha mRNA, 3' end.
		M29548	Human e' elongation factor 1-alpha (EEF1A) mRNA, parti
		L41490	Homo sapiens oncogene PTI-1 mRNA, complete cds.
		L41498	Homo sapiens oncogene PTI-1 mRNA, complete cds.
48	CATG TTACCATATC	A	-988366 U57846 Human ribosomal protein L39 mRNA, complete cds.
49	CATG GCGTGTGGG	C	-621035 X71973 H.sapiens GPx-4 mRNA for Phospholipid hydroperoxid
50	CATG CCTGGAAAAA	T	-383489 Z26876 H.sapiens gene for ribosomal Protein L38.
51	CATG TACAGAGGA	A	-803369 X69391 H.sapiens mRNA for ribosomal Protein L6.
			-803369 D17554 Human mRNA for DNA-binding protein, TAXR8B107, com
			-803369 S71022 neoplasm-related C140 Product [human, thyroid carc
52	CATG AACGACCTCG	T	-24951 V00598 Human beta-tubulin Pseudogene.
			-24951 V00599 Human mRNA fragment encoding beta-tubulin. (from c
53	CATG CCCGCCCTTG	T	-358783 X55110 Human mRNA for neurite outgrowth-promoting protein
54	CATG CCCAGGGAGA	A	-346761 U38846 Human stimulator of TAR RNA binding (SRB) mRNA, co
			D16933 Human HepG2 3' region cDNA, clone hmd4f11.
55	CATG AGCACCTCCA	G	-148949 Z111692 H.sapiens mRNA for elongation factor 2.
56	CATG CGCCGAAACA	C	-416261 X73974 H.sapiens HRPL4 mRNA.
			D23660 Human mRNA for ribosomal protein, complete cds.
57	CATG CTAAAAAAA	A	-458753 M33680 Human 26-kDa cell surface protein TAPA-1 mRNA, com
58	CATG GGC TGATGTG	G	-686319 U09510 Human glycyl-tRNA synthetase mRNA, complete cds.
			D09587 Human glycyl-tRNA synthetase mRNA, complete cds.
			D30658 Human T-cell mRNA for glycyl tRNA synthetase, comp
59	CATG ATTCTCCAGT	A	-253260 X55954 Human mRNA for HL23 ribosomal protein homologue.
			X52839 Human mRNA for ribosomal protein L17.
60	CATG GAAATAATGGT	T	-524524 X61156 H.sapiens mRNA for laminin-binding Protein.
			X15005 Human mRNA for potential laminin-binding protein (
			U43901 Human 37 kD laminin receptor precursor/p40 ribosom
			J03799 Human colin carcinoma laminin-binding protein mRNA
			M14199 Human laminin receptor (2H5 epitope) mRNA, 5' end.
61	CATG CAGCTCACTG	A	-302367 D87735 Human mRNA for ribosomal protein L14, complete cds
			L110376 Human (clone CTG-B33) mRNA sequence.
			S80520 CAG-1s1 7 (trinucleotide repeat-containing sequenc
62	CATG ATAATTCCTT	G	-200576 U14973 Human ribosomal protein S29 mRNA, complete cds.

			L31610	Homo sapiens (clone cori-1c15) S29 ribosomal prote
63	CATG AATCCCTGG	A	-55227	Z28407 H.sapiens mRNA for ribosomal Protein L8.
64	CATG AATGGTCCA	A	-51925	M64716 Human ribosomal protein S25 mRNA, complete cds.
65	CATG AAAAARAAA	A (C, G,T)	-1	X03412 H.sapiens B1 mRNA for mucin.
			232564	H.sapiens FRGAMMA mRNA (819bp) for folate receptor
			232633	H.sapiens FRGAMMA' mRNA for folate receptor (817bp
			X76180	H.sapiens mRNA for lung amiloride sensitive Na+ ch
			U08470	Human FR-gamma' mRNA, complete cds.
			U08471	Human folate receptor 3 mRNA, complete cds.
			U48697	Human marinier-like element-containing mRNA, clone
			D28532	Human mRNA for renal Na+-dependent phosphate cotra
			M55914	Human c-myc binding Protein (MBP-1) mRNA, complete
			LG6175	Homo Sapiens P5-1 mRNA, complete cds.
			S13775	calmitine=mitochondrial calcium-binding protein [h
			S77393	transcript chi38 [human, RFL, RF48 stomach cancer C
			X50036	H.sapiens mRNA for mitochondrial phosphate carrier
66	CATG CCAGACAGA	C	-335945	X79238 H.sapiens mRNA for ribosomal Protein L30.
			L16991	Human thymidylylate kinase (CDC8) mRNA, complete cds
67	CATG AAGGTGGAGG	A	-44683	X00822 H.sapiens mRNA for ORF.
68	CATG CCTAGCTGGA	T	-379369	X52856 Human cyclophilin-related processed pseudogene.
			X52857	Human cyclophilin-related processed pseudogene.
			X52854	Human cyclophilin-related processed pseudogene.
			X52851	Human cyclophilin gene for cyclophilin (EC 5.2.1.8
			Y00052	Human mRNA for T-cell cyclophilin.
69	GAACACATCC	A	-528694	X63527 H.sapiens mRNA for ribosomal Protein L19.
			S56985	ribosomal protein L19 [human, breast cancer cell 1
			-41531	X65181 H.sapiens mRNA for ribosomal Protein L31.
70	CATG AAGGAGATGG	G		X15940 Human mRNA for ribosomal Protein L31.
71	CATG AGGCATCGGA	A	-171113	Z22650 H.sapiens SMCX mRNA.
			D17233	Human HEPG2 3' region MboI cDNA, clone hmddc12m3.
72	CATG AGGTCCCTAGC	C	-177610	X05096 Human GST pi gene for glutathione S-transferase pi

	X06547	Human mRNA for class Pi Glutathione S-transferase
	X15180	Human mRNA for anionic glutathione S-transferase Pi gene.
	X08058	Human glutathione S-transferase Pi gene.
	U12472	Human glutathione S-transferase (GST Phi) gene, complete
	D21689	Human glutathione S-transferase-Pi gene, complete
	D62589	Human glutathione S-transferase PiC (GSTpiC) mRNA,
	M69113	Human fatty acid ethyl ester synthase-LII mRNA seq
	M24485	Homo sapiens (clone pGST-pi) glutathione S-transferase
73	CATG TGGTGTTCAG G	-965603 X69150 H. sapiens mRNA for ribosomal protein S18.
		M96153 Homo sapiens apolipoprotein B gene sequence.
		L06432 Homo sapiens 18S ribosomal protein (HKE3) mRNA seq
74	CATG CTCAACATCT C	-475448 M17885 Human ribosomal protein L10 mRNA, complete cds.
75	CATG GTGTTAACCA G	-769045 L25899 Human (D9S55) DNA segment containing (TG)24 repeat
76	CATG AGGGCTTCCA A	-174037 X58125 Human HepG2 3' region MboI cDNA, clone hmd5hd9m3.
		D17268
		M73791 Human novel gene mRNA, complete cds.
		M61241 Human Wilms tumor-related protein (QM) mRNA, comp
		S35960 Laminin receptor homolog (3' region) [human, mRNA
77	CATG GGATTGGCC T	-671654 M17687 Human acidic ribosomal Phosphoprotein P2 mRNA, com
		M11147 Human ferritin L chain mRNA, complete cds.
		M12338 Human ferritin light subunit mRNA, partial cds.
		M10119 Human ferritin light subunit mRNA, complete cds.
78	CATG ATTAAACAG C	-246019 X044109 Human mRNA for coupling protein G(s) alpha-subunit
		X044108 Human mRNA for coupling protein G(s) alpha subunit
		X56009 Human GSA mRNA for alpha subunit of GsGTP binding
		X07036 Human mRNA stimulatory GTP-binding Protein alpha s
		M21142 Human guanine nucleotide-binding Protein alpha-sub
		M14631 Human guanine nucleotide-binding protein G-s, alph
79	CATG TGTAACCTGTA A	-968173 Z36532 H. sapiens (xs31) mRNA, 835bp.
		K00558 Human alpha-tubulin mRNA, complete cds.
80	CATG TGGCCCCACC C	-955718 X56194 H. sapiens M gene for M1-type and M2-type Pyruvate
		M23725 Human M2-type Pyruvate kinase mRNA, complete cds.
		M26252 Human TCB gene encoding cytosolic thyroid hormone-

81	CATG TAATAAGGT	G	-798764 X67247	H. sapiens rps8 gene for ribosomal protein S8.
82	CATG GCATATTCG	T	-602315 X839401	H. sapiens mRNA for large subunit of ribosomal prot
			U14967	Human ribosomal Protein L21 mRNA, complete cds.
			U25789	Human ribosomal Protein L21 mRNA, complete cds.
83	CATG TACCATCAT	A	-807718 X53778	H. sapiens hnRNP for uracil DNA glycosylase.
			U34995	Human normal keratinocyte subtraction library mRNA
			L38326	Homo sapiens L21 ribosomal protein gene, partial c
			J02642	Human glyceraldehyde-3-phosphate dehydrogenase mRNA
			M36164	Human glyceraldehyde-3-phosphate dehydrogenase mRNA
			M33197	Human glyceraldehyde-3-phosphate dehydrogenase (GA
84	CATG ATTTGTCCCCA	G	~260949 X14957	Human hnRNP mRNA for high mobility group protein I.
			X14958	Human hnRNP mRNA for high mobility group protein Y.
			M23614	Human HMG-I protein isoform mRNA (HMG-I gene), clon
			M23619	Human HMG-I protein isoform mRNA (HMG-I gene), clon
			J17131	Human high mobility group protein (HMG-I(X)) gene
			M23615	Human HMG-Y protein isoform mRNA (HMG-I gene), clon
			M23616	Human HMG-Y protein isoform mRNA (HMG-I gene), clon
			M23617	Human HMG-Y protein isoform mRNA (HMG-I gene), clon
			M23618	Human HMG-Y protein isoform mRNA (HMG-I gene), clon
85	CATG GAGGAGTT	C	~567488 U14968	Human ribosomal protein L27a mRNA, complete cds.
86	CATG CGCCGCCGC	T	-416106 U12465	Human ribosomal protein L35 mRNA, complete cds.
87	CATG GTGAAACCCA	ALL	-753749 Z630712	H. sapiens Cpg island DNA Genomic MseI fragment, cl
88	CATG GTGAAACCCA	ALL	-753749 X16294	Human repetitive DNA containing interspersed repea
89	CATG AAGCAGTGG	C	-33979 X66699	H. sapiens mRNA for ribosomal Protein L37a.
			I06199	Homo sapiens ribosomal Protein L37a (RPL37A) mRNA,
			I22154	Human ribosomal Protein L37a mRNA sequence.
90	CATG CCCAGCCGAG	T	-348755 X55715	Human Hmns3 mRNA for 40S ribosomal Protein S3.
			U14990	Human XP1PO ribosomal Protein S3 (rPS3) mRNA, comp
			U14991	Human XP2NE ribosomal protein S3 (rPS3) mRNA, comp
			U14992	Human IMR-90 ribosomal protein S3 (rPS3) mRNA, comp
			S42658	S3 ribosomal protein (human, colon, mRNA, 826 nt).
91	CATG TGGCCAAGC	C	~959498 X63526	H. sapiens mRNA for protein homologous to elongatio
			211531	H. sapiens mRNA for elongation factor-1-gamma.

		M55409	Human pancreatic tumor-related protein mRNA, 3' end
92	CATG TGAGGGATA	A	-928268 M10036 Human triosephosphate isomerase mRNA, complete cds.
93	CATG GACGACRCGA	G	-549145 U58682 Human ribosomal protein S28 mRNA, complete cds.
			M58458 Human ribosomal protein S4 (RPS4X) isoform mRNA, c
			M722146 Human scar protein mRNA, complete cds.
94	CATG AACGGGCCA	A	-26261 223063 Homo sapiens macrophage migration inhibitory factor mRNA, complete cds.
			L10612 Human glycosylation-inhibiting factor mRNA, complete
			M95775 Homo sapiens macrophage migration inhibitory factor
			L19686 Homo sapiens macrophage migration inhibitory factor
			M25639 Human migration inhibitory factor (MIF) mRNA, comp
95	CATG TGCACGTTT	C	-935680 X03342 Human mRNA for ribosomal protein L32.
			E03002 Human mRNA from chromosome 15 gene with homology t
96	CATG CACAAACGGT	A	-278636 U57847 Human ribosomal Protein S27 mRNA, complete cds.
			L19739 Homo sapiens metallopanstimulin (MPS1) mRNA, compl
97	CATG GGATGTGACA	T	-667269 L11566 Homo sapiens ribosomal protein L18 (RPL18) mRNA, c
98	CATG GCCGCGAAAG	G	-615043 Z54999 H.sapiens Cpg island DNA genomic MseI fragment, c1
			Z57572 H.sapiens Cpg island DNA genomic MseI fragment, c1
			Z56073 H.sapiens Cpg island DNA genomic MseI fragment, c1
			X53505 Human mRNA for ribosomal protein S12.
99	CATG GGGAAATCG	C	-696375 M92381 Human thymosin beta 10 mRNA, complete cds.
			M20259 Human thymosin beta-10 mRNA, complete cds.
100	CATG GCAGCCATCC	G	-599350 D14969 Human ribosomal protein L28 mRNA, complete cds.
			D17257 Human HepG2 3' region MboI cDNA, clone hmd5d04m3.
101	CATG TRAGGAGCTG	A	-796831 X77770 H.sapiens RPS26 mRNA.
			X69654 H.sapiens mRNA for ribosomal Protein S26.
102	CATG GGCAAGCCCC	A	-672342 D12404 Human Csa-19 mRNA, complete cds.
			X79239 H.sapiens mRNA for ribosomal Protein S13.
			L01124 Human ribosomal Protein S13 (RPS13) mRNA, complete
103	CATG GTTCCCCGGC	C	-775658 X65323 H.sapiens fau mRNA.
			U02523 Human FAU1P pseudogene, trinucleotide repeat regio
104	CATG CCGTCGCAAGG	G	-3740271 M60854 Human ribosomal protein S16 mRNA, complete cds.
			H.sapiens mRNA for homologue to yeast ribosomal pr
			CATG TTGGTCCTCT G -1027448 Z12962 S64030 141 ribosomal protein homolog (clone 7B6) [human,

105	CATG CAACCATCC A	- 263478	X12883	Human mRNA for cytokeratin 18.
		X12876		Human mRNA fragment for cytokeratin 18.
		X12881		Human mRNA for cytokeratin 18.
		M24842		Human keratin 18 (K18) gene, complete cds.
		M26325		Human cytokeratin 18 mRNA, 3' end.
		M26326		Human keratin 18 mRNA, complete cds.
		M26327		Human cytokeratin 18 mRNA, 3' end.
106	CATG AGCTCTCCCT G	- 161624	X53777	Human L23 mRNA for putative ribosomal protein.
107	CATG AGCTCAGGAG A(T)	- 17731	D86979	Human male bone marrow myeloblast mRNA for KIA022
		X55923		Human DNA for Alu element PIN6.
		X79699		H.sapiens Alu repeat, 230bp.
		X12544		Human mRNA for HLA class II DR-beta (HLA-DR B).
		Z77989		H.sapiens flow-sorted chromosome 6 HindIII fragment
		U11831		Human clone 2102Y-1 chromosome 18p telomeric sequence
		U12580		Human Alu repeat sequence A3.
		U12582		Human Alu repeat sequence B2.
		U12583		Human Alu repeat sequence D1.
		U14694		Human Alu-Sb2 repeat, clone HALUSB08.
		U14695		Human Alu-Sb2 repeat, clone HALUSB15.
		U14696		Human Alu-Sb2 repeat, clone HALUSB27.
		U14697		Human Alu-Sb2 repeat, clone HUM-11.
		U14698		Human Alu-Sb2 repeat, clone HSB-9P.
		U14699		Human Alu-Sb2 repeat, clone HUM-9.
		U14700		Human Alu-Sb2 repeat, clone HALUSB35.
		U14701		Human Alu-Sb2 repeat, clone HSB-2P.
		U14704		Human Alu-Sb2 repeat, clone HUM-3.
		U14706		Human Alu-Sb2 repeat, clone HUM-10.
		U14707		Human Alu-Sb2 repeat, clone HUM-7.
		J00120		Human (Lawn) c-myc proto-oncogene, complete coding
		L34653		Homo sapiens platelet/endothelial cell adhesion mo
		M37521		Human XV2c gene.
		S61789		NFL-neurofibromatosis type 1 (deletion breakpoint,
		S73483		Phosphorylase kinase catalytic subunit PHKG2 homol

		S75201	cholinesterase (lalu element) [human, Insertion Mut
		S75337	{ Y Alu polymorphism, YAP, polymorphic subfamily 3 }
108	CATG GGGCTGGGT	C	-695980 Z49148 H-sepiens mRNA for ribosomal protein L29.
			U10248 Human ribosomal protein L29 (humrpL29) mRNA, comp1
			U49083 Human cell surface heparin binding protein HIP mRNA
			D16992 Human HepG2 partial cDNA, clone hmd2d2m5.
			D16911 Human HepG2 3' region cDNA, clone hmd3b09.
			J03537 Human ribosomal protein S6 mRNA, complete cds.
		M20020	Human ribosomal Protein S6 mRNA, complete cds.
109	CATG ACGTCTCTT	C	-114144 EST
110	CATG TCTCCATACC	C	-906438 EST
111	CATG GACTGCGTGC	C	-555450 EST
112	CATG CTTATCCCTG	A	-508767 EST
113	CATG GCTTGGCAGG	G	-719435 EST
114	CATG GCCCTCTGCC	A	-613862 EST
115	CATG AACAGAACCA	A	-18469 EST
116	CATG CTGCCGAGCT	C	-497192 EST
117	CATG TICCTCGGGC	A	-1007018 EST
118	CATG AACATAACT	A	-28872 EST
119	CATG TAGATRATGG	C	-822331 EST
120	CATG GCCACACCCC	A, C	-607318 EST
121	CATG GAACCTGGG	A	-529899 EST
122	CATG AACAAAAAA	A	-28673 EST
123	CATG GAAATGTAAAG	A	-528067 EST
124	CATG ACTCCAAAAA	A	-119809 EST
125	CATG GTTCGTGCCA	A	-777109 EST
126	CATG TTACCTCCCTT	C	-989024 EST
127	CATG GCACAAAGAG	A	-594051 EST
128	CATG CCCTGGGTC	T	-359102 EST
129	CATG GCC1GTATGA	G	-621369 EST
130	CATG CCCGTCGGGA	A	-355689 EST
131	CATG AGCAAGCTG	C	-163999 EST
132	CATG TCAGATCTT	G	-861056 EST

			EST
133	CATG	CGAGGAGGA	T
			-338081
134	CATG	TCACCCACAC	C
			-857362
135	CATG	GTGTTGCACA	A
			-769605
136	CATG	GCCGGTGTCCG	C
			-618199

Isolation of partial cDNA (3' fragment) by 3' directed PCR reaction

This procedure is a modification of the protocol described in Polyak et al. (1997) Nature 389:300. Briefly, the procedure uses SAGE tags in PCR reaction such that the resultant PCR product contains the SAGE tag of interest as well as additional cDNA, the length of which is defined by the position of the tag with respect to the 3' end of the cDNA. The cDNA product derived from such a transcript driven PCR reaction can be used for many applications.

RNA from a source believed to express the cDNA corresponding to a given tag is first converted to double-stranded cDNA using any standard cDNA protocol. Similar conditions used to generate cDNA for SAGE library construction can be employed except that a modified oligo-dT primer is used to drive the first strand synthesis. For example, the oligonucleotide of composition 5'-B-TCC GGC GCG CCG TTT T CC CAG TCA CGA(30)-3', contains a poly-T stretch at the 3' end for hybridization and priming from poly-A tails, an M13 priming site for use in subsequent PCR steps, a 5' Biotin label (B) for capture to streptavidin-coated magnetic beads, and an AscI restriction endonuclease site for releasing the cDNA from the streptavidin-coated magnetic beads. Theoretically, any sufficiently-sized DNA region capable of hybridizing to a PCR primer can be used as well as any other 8 base pair recognizing endonuclease.

cDNA constructed utilizing this or similar modified oligo-dT primer is then processed exactly as described in U.S. Patent No. (insert) up until adapter ligation where only one adapter is ligated to the cDNA pool. After adapter ligation, the cDNA is released from the streptavidin-coated magnetic beads and is then used as a template for cDNA amplification.

Various PCR protocols can be employed using PCR priming sites within the 3' modified oligo-dT primer and the SAGE tag. The SAGE tag-derived PCR primer employed can be of varying length dictated by 5' extension of the tag into the adaptor sequence. cDNA products are now available for a variety of applications.

This technique can be further modified by: (1) altering the length and/or content of the modified oligo-dT primer; (2) ligating adaptors other than that previously employed within the SAGE protocol; (3) performing PCR from template retained on the streptavidin-coated magnetic beads; and (4) priming first strand cDNA synthesis with non-oligo-dT based primers.

Isolation of cDNA using GeneTrapper or modified GeneTrapper Technology

The reagents and manufacturer's instructions for this technology are commercially available from Life Technologies, Inc., Gaithersburg, Maryland. Briefly, a complex population of single-stranded phagemid DNA containing directional cDNA inserts is enriched for the target sequence by hybridization in solution to a biotinylated oligonucleotide probe complementary to the target sequence. The hybrids are captured on streptavidin-coated paramagnetic beads. A magnet retrieves the paramagnetic beads from the solution, leaving nonhybridized single-stranded DNAs behind. Subsequently, the captured single-stranded DNA target is released from the biotinylated oligonucleotide. After release, the cDNA clone is further enriched by using a nonbiotinylated target oligonucleotide to specifically prime conversion of the single-stranded target to double-stranded DNA. Following transformation and plating, typically 20% to 100% of the colonies represent the cDNA clone of interest. To identify the desired cDNA clone, the colonies may be screened by colony hybridization using the 32P-labeled oligonucleotide as described above for solution hybridization, or alternatively by DNA sequencing and alignment of all sequences obtained from numerous clones to determine a consensus sequence.

The genes which are identified herein as being differentially expressed in normal and cancer cells can be used diagnostically and prognostically. Transcription levels in a test sample suspected of being neoplastic can be determined and compared to the levels in normal colon cells. The test sample may be from any tissue suspected of neoplasia, and particularly from either suspected colorectal or suspected pancreatic cancer cells. The control cells for

the purposes of comparison are normal cells, preferably of the same tissue type as the test sample, e.g., colon cells, or pancreatic duct epithelial cells. Upregulation of transcription or downregulation of transcription is therefore diagnostic of the neoplastic state, depending on what gene is used as a test reagent. Similarly, transcription levels can be monitored to assess patient responses to anti-tumor therapies. Transcription levels will also provide prognostic information. For example, the level of transcription in a test sample can be compared to levels found in *bona fide* normal and tumor cells. More extreme deviations from normal expression levels indicate a poorer prognosis.

Transcription levels can be determined according to any means known in the art. These include, without limitation, Northern blots, nuclear run-on assays, *in vitro* transcription assays, primer extension assays, quantitative reverse transcriptase-polymerase chain reactions (RT-PCR), and hybrid filter binding assays. These techniques are well known in the art. See J.C. Alwine, D.J. Kemp, G.R. Stark, *Proc. Natl. Acad. Sci. U.S.A.* **74**, 5350 (1977); K. Zinn, D. Di-Maio, T. Maniatis, *Cell* **34**, 865 (1983); G. Veres, R.A. Gibbs, S.E. Scherer, C.T. Caskey, *Science* **237**, 415 (1987).

Similarly, upregulated genes and downregulated genes can be detected by measuring expression of their protein products. This can be done by any means known in the art, including but not limited to Western (immuno) blot, enzyme linked immunoassay, radioimmunoassay, and enzyme assay. Such techniques are well known in the art. Protein products can be detected in tissue samples of a test patient, using a suspect sample as a test sample, and a matched normal tissue sample from the same tissue type as a control. If normal tissue is not available then a closely related tissue type can be used. Desirably both the samples being compared will be from the same individual. Alternatively, aberrant expression levels of protein products can be detected in body samples, such as blood, serum, feces, urine, sputum. As a control, a normal matched sample can be used from a healthy individual. Aberrant expression levels of transcripts can also be detected in such body samples, particularly in blood and serum.

5

Probes for use in the assays for transcription levels of particular genes or sets of genes may be RNA or DNA. The probes will be isolated substantially free of other cellular RNAs or DNAs. If the reagent contains one probe then it will comprise at least 50% of the nucleic acids in the reagent composition. If the reagent contains more than one probe, then the proportion will decrease accordingly, so that specific probes will still comprise at least 50% of the nucleic acids in the reagent composition.

10

Probes can be labeled according to any means known in the art. These may include radioactive labels, fluorescent labels, enzymatic labels, and binding partner labels such as biotin. Means for labeling and detecting probes are well known in the art. Probes comprise at least 10, 11, 12, 15, 20, or 30 contiguous nucleotides of a selected gene.

15

This invention provides proteins or polypeptides expressed from the polynucleotides of this invention, which is intended to include wild-type and recombinantly produced polypeptides and proteins from prokaryotic and eucaryotic host cells, as well as muteins, analogs and fragments thereof. In some embodiments, the term also includes antibodies and anti-idiotypic antibodies.

20

It is understood that functional equivalents or variants of the wild-type polypeptide or protein also are within the scope of this invention, for example, those having conservative amino acid substitutions. Other analogs include fusion proteins comprising a protein or polypeptide.

25

The proteins and polypeptides of this invention are obtainable by a number of processes well known to those of skill in the art, which include purification, chemical synthesis and recombinant methods. Full length proteins can be purified from a colon or pancreatic cell or tissue lysate by methods such as immunoprecipitation with antibody, and standard techniques such as gel filtration, ion-exchange, reversed-phase, and affinity chromatography using a fusion protein as shown herein. For such methodology, see for example Deutscher et al. (1999) Guide To Protein Purification: Methods In Enzymology (Vol. 182, Academic Press). Accordingly, this invention also

provides the processes for obtaining these proteins and polypeptides as well as the products obtainable and obtained by these processes.

5 The proteins and polypeptides also can be obtained by chemical synthesis using a commercially available automated peptide synthesizer such as those manufactured by Perkin Elmer/Applied Biosystems, Inc., Model 430A or 431A, Foster City. The synthesized protein or polypeptide can be precipitated and further purified, for example by high performance liquid chromatography (HPLC). Accordingly, this invention also provides a process for chemically synthesizing the proteins of this invention by providing the 10 sequence of the protein and reagents, such as amino acids and enzymes and linking together the amino acids in the proper orientation and linear sequence.

15 Alternatively, the proteins and polypeptides can be obtained by well-known recombinant methods as described, for example, in Sambrook et al., (1989), *supra*, using the host cell and vector systems described above.

20 Also provided by this application are the polypeptides and proteins described herein conjugated to a detectable agent for use in the diagnostic methods. For example, detectably labeled proteins and polypeptides can be bound to a column and used for the detection and purification of antibodies. They also are useful as immunogens for the production of antibodies as 25 described below. The proteins and fragments of this invention are useful in an *in vitro* assay system to screen for agents or drugs, which modulate cellular processes.

25 The proteins of this invention also can be combined with various liquid phase carriers, such as sterile or aqueous solutions, pharmaceutically acceptable carriers, suspensions and emulsions. Examples of non-aqueous solvents include propyl ethylene glycol, polyethylene glycol and vegetable oils. When used to prepare antibodies, the carriers also can include an adjuvant that is useful to non-specifically augment a specific immune response. A skilled artisan can easily determine whether an adjuvant is required and select one. 30 However, for the purpose of illustration only, suitable adjuvants include, but

are not limited to Freund's Complete and Incomplete, mineral salts and polynucleotides.

This invention also provides a pharmaceutical composition comprising any of a protein, analog, mutein, polypeptide fragment, antibody, antibody fragment or anti-idiotypic antibody of this invention, alone or in combination with each other or other agents, and an acceptable carrier. These compositions are useful for various diagnostic and therapeutic methods.

Antibodies can be generated using the proteins encoded by the transcripts identified by the tags disclosed herein. Use of all or portions of the protein as immunogens is routine in the art. Similarly, fusion proteins can be used as immunogens. Antibodies can be affinity purified using the proteins or portions thereof used as immunogens. Similarly, monoclonal antibodies specifically immunoreactive with the protein sequences of the invention can be generated according to techniques which are well known in the art.

Antibodies can be used analytically to quantitate the expression of particular transcripts identified herein as upregulated or downregulated in cancer. In addition, antibodies can be conjugated or non-covalently linked to cytotoxic agents, such as cytotoxins, radionuclides, chemotherapeutic drugs, etc. Such antibodies can be used therapeutically to specifically target cancer cells in which the protein antigens are upregulated. These include the proteins encoded by the transcripts identified by the tags shown in Tables 2, 4, and 5. Means of making such linked cytotoxic antibodies and of administering the same are well known in the art.

Also provided by this invention is an antibody capable of specifically forming a complex with the proteins or polypeptides as described above. The term "antibody" includes polyclonal antibodies and monoclonal antibodies. The antibodies include, but are not limited to mouse, rat, and rabbit or human antibodies.

Laboratory methods for producing polyclonal antibodies and monoclonal antibodies, as well as deducing their corresponding nucleic acid sequences, are known in the art, see Harlow and Lane (1988) *supra* and

5

Sambrook et al. (1989) *supra*. The monoclonal antibodies of this invention can be biologically produced by introducing protein or a fragment thereof into an animal, e.g., a mouse or a rabbit. The antibody producing cells in the animal are isolated and fused with myeloma cells or heteromyeloma cells to produce hybrid cells or hybridomas. Accordingly, the hybridoma cells producing the monoclonal antibodies of this invention also are provided.

10

Thus, using the protein or fragment thereof, and well known methods, one of skill in the art can produce and screen the hybridoma cells and antibodies of this invention for antibodies having the ability to bind the proteins or polypeptides.

15

If a monoclonal antibody being tested binds with the protein or polypeptide, then the antibody being tested and the antibodies provided by the hybridomas of this invention are equivalent. It also is possible to determine without undue experimentation, whether an antibody has the same specificity as the monoclonal antibody of this invention by determining whether the antibody being tested prevents a monoclonal antibody of this invention from binding the protein or polypeptide with which the monoclonal antibody is normally reactive. If the antibody being tested competes with the monoclonal antibody of the invention as shown by a decrease in binding by the monoclonal antibody of this invention, then it is likely that the two antibodies bind to the same or a closely related epitope. Alternatively, one can pre-incubate the monoclonal antibody of this invention with a protein with which it is normally reactive, and determine if the monoclonal antibody being tested is inhibited in its ability to bind the antigen. If the monoclonal antibody being tested is inhibited then, in all likelihood, it has the same, or a closely related, epitopic specificity as the monoclonal antibody of this invention.

20

The term "antibody" also is intended to include antibodies of all isotypes. Particular isotypes of a monoclonal antibody can be prepared either directly by selecting from the initial fusion, or prepared secondarily, from a parental hybridoma secreting a monoclonal antibody of different isotype by using the sib selection technique to isolate class switch variants using the

25

30

procedure described in Steplewski et al. (1985) Proc. Natl. Acad. Sci. 82:8653 or Spira et al. (1984) J. Immunol. Methods 74:307.

5 This invention also provides biological active fragments of the polyclonal and monoclonal antibodies described above. These "antibody fragments" retain some ability to selectively bind with its antigen or immunogen. Such antibody fragments can include, but are not limited to:

- (1) Fab,
- (2) Fab',
- (3) F(ab')2,
- 10 (4) Fv, and
- (5) SCA

A specific example of "a biologically active antibody fragment" is a CDR region of the antibody. Methods of making these fragments are known in the art, see for example, Harlow and Lane, (1988) *supra*.

15 The antibodies of this invention also can be modified to create chimeric antibodies and humanized antibodies (Oi, et al. (1986) BioTechniques 4(3):214). Chimeric antibodies are those in which the various domains of the antibodies' heavy and light chains are coded for by DNA from more than one species.

20 The isolation of other hybridomas secreting monoclonal antibodies with the specificity of the monoclonal antibodies of the invention can also be accomplished by one of ordinary skill in the art by producing anti-idiotypic antibodies (Herlyn, et al. (1986) Science 232:100). An anti-idiotypic antibody is an antibody which recognizes unique determinants present on the monoclonal antibody produced by the hybridoma of interest.

25 Idiotypic identity between monoclonal antibodies of two hybridomas demonstrates that the two monoclonal antibodies are the same with respect to their recognition of the same epitopic determinant. Thus, by using antibodies to the epitopic determinants on a monoclonal antibody it is possible to identify other hybridomas expressing monoclonal antibodies of the same epitopic specificity.

It is also possible to use the anti-idiotype technology to produce monoclonal antibodies which mimic an epitope. For example, an anti-idiotypic monoclonal antibody made to a first monoclonal antibody will have a binding domain in the hypervariable region which is the mirror image of the epitope bound by the first monoclonal antibody. Thus, in this instance, the anti-idiotypic monoclonal antibody could be used for immunization for production of these antibodies.

As used in this invention, the term "epitope" is meant to include any determinant having specific affinity for the monoclonal antibodies of the invention. Epitopic determinants usually consist of chemically active surface groupings of molecules such as amino acids or sugar side chains and usually have specific three dimensional structural characteristics, as well as specific charge characteristics.

The antibodies of this invention can be linked to a detectable agent or label. There are many different labels and methods of labeling known to those of ordinary skill in the art.

The antibody-label complex is useful to detect the protein or fragments in a sample, using standard immunochemical techniques such as immunohistochemistry as described by Harlow and Lane (1988) *supra*. Competitive and non-competitive immunoassays in either a direct or indirect format are examples of such assays, e.g., enzyme linked immunoassay (ELISA) radioimmunoassay (RIA) and the sandwich (immunometric) assay. Those of skill in the art will know, or can readily discern, other immunoassay formats without undue experimentation.

The coupling of antibodies to low molecular weight haptens can increase the sensitivity of the assay. The haptens can then be specifically detected by means of a second reaction. For example, it is common to use haptens such as biotin, which reacts avidin, or dinitrophenyl, pyridoxal, and fluorescein, which can react with specific anti-hapten antibodies. See Harlow and Lane (1988) *supra*.

5 The monoclonal antibodies of the invention also can be bound to many different carriers. Thus, this invention also provides compositions containing the antibodies and another substance, active or inert. Examples of well-known carriers include glass, polystyrene, polypropylene, polyethylene, dextran, nylon, amylases, natural and modified celluloses, polyacrylamides, agaroses and magnetite. The nature of the carrier can be either soluble or insoluble for purposes of the invention. Those skilled in the art will know of other suitable carriers for binding monoclonal antibodies, or will be able to ascertain such, using routine experimentation.

10 Compositions containing the antibodies, fragments thereof or cell lines which produce the antibodies, are encompassed by this invention. When these compositions are to be used pharmaceutically, they are combined with a pharmaceutically acceptable carrier.

15 The present invention also provides a screen for various agents which modulate the expression of a gene in a pancreatic or colon cell. To practice the method *in vitro*, suitable cell cultures or tissue cultures are first provided. The cell can be a cultured cell or a genetically modified cell in which a transcript from SEQ ID NOS:1-732, or their complements, is expressed. Alternatively, the cells can be from a tissue biopsy. The cells are cultured under conditions (temperature, growth or culture medium and gas (CO₂)) and for an appropriate amount of time to attain exponential proliferation without density dependent constraints. It also is desirable to maintain an additional separate cell culture; one which does not receive the agent being tested as a control.

20 As is apparent to one of skill in the art, suitable cells may be cultured in microtiter plates and several agents may be assayed at the same time by noting genotypic changes, phenotypic changes or cell death.

25 When the agent is a composition other than a DNA or RNA, the agent may be directly added to the cell culture or added to culture medium for addition. As is apparent to those skilled in the art, an "effective" amount must be added which can be empirically determined. When the agent is a polynucleotide, it may be directly added by use of a gene gun or

electroporation. Alternatively, it may be inserted into the cell using a gene delivery vehicle or vector as described above.

5 An agent is a potential therapeutic if it alters the expression of gene in the cell. Altered expression can be detected by assaying for altered mRNA expression or protein expression using the probes, primers and antibodies as described herein.

10 For the purposes of this invention, an "agent" is intended to include, but not be limited to a biological or chemical compound such as a simple or complex organic or inorganic molecule, a peptide, a protein (e.g. antibody) or a polynucleotide (e.g. anti-sense). A vast array of compounds can be synthesized, for example polymers, such as polypeptides and polynucleotides, and synthetic organic compounds based on various core structures, and these are also included in the term "agent". In addition, various natural sources can provide compounds for screening, such as plant or animal extracts, and the like. It should be understood, although not always explicitly stated that the agent is used alone or in combination with another agent, having the same or different biological activity as the agents identified by the inventive screen. The agents and methods also are intended to be combined with other therapies.

15

20 The above disclosure generally describes the present invention. A more complete understanding can be obtained by reference to the following specific examples which are provided herein for purposes of illustration only, and are not intended to limit the scope of the invention.

EXAMPLE 1

25 This example demonstrates the characterization of the general transcription of human colorectal epithelium, colorectal cancers, and pancreatic cancers.

30 We used the recently developed SAGE (serial analysis of gene expression) method to identify and quantify a total of 303,706 transcripts derived from human colorectal (CR) epithelium, CR cancers or pancreatic cancers (Table 1A) (3). These transcripts represented approximately 48,741

different genes (4) that ranged in average expression from 1 copy per cell to as many as 5,300 copies per cell (5). The number of different transcripts observed in each cell population varied from 14,247 to 20,471. The bulk of the mRNA mass (75%) consisted of transcripts expressed at more than five copies per cell 5 on average (Table 1B). In contrast, the majority (86%) of transcripts were expressed at less than 5 copies per cell, but in aggregate this low abundance class represented only 25% of the mRNA mass. This distribution was consistently observed among the different samples analyzed and was consistent with previous studies of RNA abundance classes based on RNA-DNA reassocation kinetics (Rot curves). Monte Carlo simulations revealed that our 10 analyses had a 92% probability of detecting a transcript expressed at an average of three copies per cell (7).

Table 1 - Summary of SAGE Analysis

A. Overall Summary

	Normal	Colon	Pancreatic	Pancreatic	Total
	Colon	Tumors	Cell Lines	Tumors	Cell Lines
Total Tags	62,168	60,878	60,373	61,592	58,695
Unique Genes ¹	14,721	19,690	17,092	20,471	14,247
GenBank ²	8,753 (59)	10,490 (53)	10,193 (60)	11,547 (56)	8,922 (63)
					26,339 (54)

¹ Indicates the number of different genes represented by the total tags analyzed (4).

² Indicates the number of genes that matched an entry in GenBank. The number in parentheses indicates the corresponding percentage of total unique tags.

Table 1 - Summary of SAGE Analysis

B. Summarized by Abundance Classes*

Copies/Cell	Normal Colon	Colon Tumors	Colon Cell Lines	Pancreatic Tumors	Pancreatic Cell Lines	Total
> 500						
Unique Genes	62 (29)	54 (25)	54 (19)	32 (11)	70 (26)	55 (19)
GenBank	59 (95)	52 (96)	53 (98)	32 (100)	70 (100)	54 (98)
> 50 and ≤ 500						
Unique Genes	645 (28)	470 (21)	618 (27)	657 (29)	585 (27)	595 (26)
GenBank	545 (84)	429 (91)	579 (94)	609 (93)	529 (90)	553 (93)
> 5 and ≤ 50						
Unique Genes	4,569 (27)	5,011 (29)	5,733 (34)	6,146 (36)	4,895 (31)	6,209 (30)
GenBank	2,893 (63)	3,204 (64)	3,682 (64)	4,054 (66)	3,168 (65)	4,241 (68)

≤ 5	Unique Genes	9,445 (16)	14,155 (25)	10,687 (20)	13,636 (24)	8,697 (16)	41,882 (25)
GenBank	5,256 (56)	6,805 (48)	5,879 (55)	6,852 (50)	5,155 (59)	21,491 (51)	

*For unique genes, the first number denotes the number of different genes (4) represented in the indicated abundance class. The number in parentheses indicates the mass fraction (X100) of total transcripts represented by the indicated abundance class. For GenBank entries, the first number indicates the number of different genes that matched an entry in GenBank in the indicated abundance class. The number in parentheses indicates the corresponding percentage of total genes.

Many of the SAGE tags appeared to represent previously undescribed transcripts, as only 54% of the tags matched entries in GenBank (Table 1). Twenty percent of these matching transcripts corresponded to characterized mRNA sequence entries in GenBank, whereas 80% matched uncharacterized
5 EST entries. As expected, the likelihood of a tag being present in the databases was related to abundance; GenBank matches were identified for 98% of the transcripts expressed at more than 500 copies per cell but for only 51% of the transcripts expressed at \leq 5 copies per cell. Because the SAGE data provide a quantitative assay of transcript abundance, unaffected by differences
10 in cloning or PCR efficiency, these data provide an independent and relatively unbiased estimate of the current completeness of publicly available EST databases.

EXAMPLE 2

This example demonstrates a comparison of the expression pattern of
15 normal colon epithelium and primary colon cancers.

Comparison of expression patterns between normal colon epithelium and primary colon cancers revealed that the majority of transcripts were expressed at similar levels (Fig. 1A). However, the expression profiles also revealed 289 transcripts that were expressed at significantly different levels [$P < 0.01$, (8)]. Of these 289, 181 were decreased in colon tumors compared to
20 normal colon (average decrease 10-fold; Fig. 1B; examples in Fig. 2A). Conversely, 108 transcripts were expressed at higher levels in the colon cancers than in normal colon (average increase 13-fold; Fig. 1C; examples in Fig. 2A). Monte Carlo simulations indicated that the analysis would have
25 detected over 95% of those transcripts expressed at a 6-fold or greater level in normal vs. tumor cells or vice versa (9). Because relatively stringent criteria were used for defining differences [$P < 0.01$, (8)], the number of differences reported above is likely to be an underestimate.

EXAMPLE 3

This example demonstrates the similarities and differences between cancer cell line transcription and transcription of primary cancer tissues.

To determine how many of the 289 differences were independent of the cellular microenvironment of cancers *in vivo*, SAGE data from CR cancer cell lines was compared to that from primary CR cancer tissues (Fig. 1B, 1C). Perhaps surprisingly, the majority of transcripts (130 of 181) that were expressed at reduced levels in cancer cells *in vivo* were also expressed at significantly lower levels in the cell lines (Fig. 1B). Likewise, a significant fraction of the transcripts expressed at increased levels in primary cancers were also expressed at higher levels in the CR cancer cell lines (Fig. 1C). Thus, many of the gene expression differences that distinguish normal from tumor cells *in vivo* persist during *in vitro* growth. However, despite these similarities there were also many differences. For example, only 47 of 228 genes expressed at higher levels in CR cancer cell lines were also expressed at high levels in the primary CR cancers.

In combination, comparing the expression pattern of CR cancer cells (*in vivo* or *in vitro*) to normal colon revealed 548 differentially expressed transcripts (Fig. 1B,C, Tables 2 and 3). The average difference in expression for these transcripts was 15 fold. Although the ability to detect differences is influenced by the magnitude of the variance with the power to detect smaller differences being less, 92 transcripts that were less than three fold different were identified among the 548 transcripts. However, those genes exhibiting the greatest differences in expression are likely to be the most biologically important.

EXAMPLE 4

This example demonstrates the similarities and differences between colorectal cancer transcription and pancreatic cancer transcription.

5 To determine whether the changes noted in CR cancers were neoplasia or cell type specific, we performed SAGE on mRNA derived from pancreatic cancers. A total of 404 transcripts were expressed at higher levels in pancreatic cancers compared to normal colon epithelium (examples in Fig. 2B). The majority (268) of these transcripts were pancreas-specific (10) (Example in Fig. 2C) although 136 were also expressed at high levels in CR cancers. These 136 transcripts constituted 47% of the 289 transcripts increased in CR cancers relative to normal colon and are likely to be related to the neoplastic process 10 rather than to the specific cell type of origin.

EXAMPLE 5

15 This example demonstrates the reproducibility of the transcription patterns observed among a larger number of cancer samples.

One question that arose from these data is the potential heterogeneity 20 of expression between individual tumors. The SAGE data were acquired from two examples of each tissue type (normal colon, primary CR cancer, CR cancer cell line, etc.). To examine the generality of these expression profiles, we arbitrarily selected 27 differentially expressed transcripts and evaluated them in six to twelve samples of normal colon and primary cancers by Northern blot analysis (11). In general, expression patterns were very reproducible among 25 different samples. Of 10 genes with elevated expression in normal colon relative to CR cancers as determined by SAGE, each was detected in the normal colon samples and was expressed at considerably lower levels in tumors (examples in Fig. 2A). Similarly, most of the genes identified by SAGE as increased in CR or pancreatic cancers were confirmed to be reproducibly expressed in the majority of primary cancers examined by Northern blot 30 (examples in Fig. 2A). It is important to note, however, that there were differences among the cancers, with a few cancers exhibiting particularly high or low levels of individual transcripts. Such differences in gene expression

undoubtedly contribute to the observed heterogeneity in biological properties of cancers derived from the same organ.

EXAMPLE 6

This example demonstrates the identities of some of the transcripts which were found to be differentially expressed in tumor and normal tissues. What are the identities of the differentially expressed genes? Of the 548 differentially expressed transcripts, 337 were tentatively identified through database comparisons. When tested, the great majority (93%) of these identifications proved to be legitimate (13), as expected from previous SAGE analyses . Although a large number of differentially expressed genes were identified, some simple patterns did emerge. For example, genes that were expressed at higher levels in normal colon epithelium than in CR tumors were often differentiation-related. These genes included liver fatty acid binding protein , cytokeratin 20 , carbonic anhydrase , guanylin and uroguanylin , which are known to be important for the normal physiology or architecture of the colon epithelium (Table 2). On the other hand, genes that were increased in CR cancers were often related to the robust growth characteristics that these cells exhibit. For example, gene products associated with protein synthesis, including 48 ribosomal proteins, five elongation factors, and five genes involved in glycolysis were observed to be elevated in both CR and pancreatic cancers compared to normal colon cells. Although the majority of the transcripts could not have been predicted to be differentially expressed in cancers, several have previously been shown to be dysregulated in neoplastic cells. The latter included IGFII , B23 nucleophosmin, the Pi form of glutathione S-transferase, and several ribosomal proteins which were all increased in cancer cells as previously reported. Likewise, Dra and gelsolin were both decreased in cancer as previously reported. Surprisingly, two widely studied oncogenes, *c-fos* and *c-erbB3*, were expressed at much higher levels in normal colon epithelium than CR cancers, in contrast to their up-regulation in transformed cells .

In summary, these data provide basic information necessary for understanding the gene expression differences that underlie cancer phenotypes. They additionally provide a necessary framework for interpreting the significance of individual differentially expressed genes. Although this study 5 demonstrated that a large number of such differences exist (approximately 500 at the depth of analysis employed), it was equally remarkable that the fraction of transcripts exhibiting significant differences was relatively small, representing 1.5 % of the transcripts detected in any given cell type (26). The fact that many, but not all, of the differences were preserved during in vitro 10 culture demonstrates the utility of cultured lines for examination of some aspects of gene expression, but also provides a note of caution in relying on such lines to perfectly mimic tumors in their natural environment. Finally, the finding that hundreds of specific genes are expressed at different levels in CR cancers, and that some of these are also expressed differentially in pancreatic 15 cancers, provides a wealth of new reagents for future biologic and diagnostic experimentation.

REFERENCES AND NOTES

1. M. D. Adams, *et al.*, *Nature* **377**, supp. **28**, 3 (1995); M. Schena, D. Shalon, R. W. Davis, P. O. Brown, *Science* **270**, 467 (1995); J. Derisi, *et al.*, *Nature Genetics* **14**, 457 (1996); T. M. Gress, *et al.*, *Oncogene* **13**, 1819 (1996); D. J. Lockhart, *et al.*, *Nature Biotechnology* **14**, 1675 (1996); M. Schena, *et al.*, *Proc Natl Acad Sci U S A* **93**, 10614 (1996).
2. V. E. Velculescu, L. Zhang, B. Vogelstein, K. W. Kinzler, *Science* **270**, 484 (1995); V. E. Velculescu, *et al.*, *Cell* **88**, 243 (1997).
3. To minimize individual variation, approximately equal numbers of tags (30,000) were derived from two different patients for each tissue. For primary tumors (two CR carcinomas and two pancreatic adenocarcinomas), RNA was isolated from portions of tumors judged to contain 60%-90% tumor cells by histopathology. The cells grown in vitro were derived from CR (SW837, Caco2) and pancreatic (ASPC-1, PL45) cancer cell lines. CR epithelial cells were isolated from sections of normal colon mucosa from two patients using EDTA as previously described [S. Nakamura, I. Kino, S. Baba, *Gut* **34**, 1240 (1993)]. Histopathology confirmed that the isolated cells were greater than 90% epithelial. Isolation of Poly-A RNA and SAGE was performed as previously described (2). SAGE data was analyzed by means of SAGE software and GenBank Release 95 as previously described (2).
4. A total of 69,393 different SAGE tags were identified among the 303,706 tags analyzed. A small fraction of these different tags were likely due to sequencing errors. SAGE analysis of yeast (2), wherein the entire genomic sequence is known, demonstrated a sequencing error rate of ~ 0.7%, translating to a SAGE tag error rate of 6.8% ($1 - 0.993^{10}$). Because these sequencing mistakes are essentially random, they do not substantially affect the analysis although they could artificially inflate the number of unique genes identified. Therefore, to be conservative, we reduced our estimate of unique genes identified by this maximum tag error rate (e.g., 6.8% of 303,706 total tags). The number of different tags derived from the same gene due to alternative splicing was assumed to be negligible.

5. Abundances can be simply determined by dividing the observed number of tags for a given transcript by the total number of tags obtained. An estimate of approximately 300,000 transcripts per cell was used to convert the abundances to copies per cell [N. D. Hastie, J. O. Bishop, *Cell* 9, 761 (1976)].

5 6. J. O. Bishop, J. G. Morton, M. Rosbash, M. Richardson, *Nature* 250, 199 (1974); B. Lewin, *Gene Expression* Vol 2 (John Wiley and sons, New York 1980).

10 7. Computer simulations indicated that analysis of 300,000 tags would yield a 92 % chance of detecting a tag for a transcript whose expression was at least three copies per cell on average among the tissues examined and assuming 300,000 transcripts per cell.

15 8. To minimize the number of assumptions and to account for the large number of comparisons being made, Monte Carlo analysis was used for determining statistical significance. The null hypothesis was that the level, kind, and distribution of transcripts were the same for cancer and normal cells. For each transcript, 100,000 simulations were performed to determine the relative likelihood due to chance alone ("p-chance") of obtaining a difference in expression equal to or greater than the observed difference, given the null hypothesis. This likelihood was converted to an absolute probability value by simulating 40 experiments in which a representative number of transcripts (27,993 transcripts in each experiment) was identified and compared. The distribution of transcripts used for these simulations was derived from the average level of expression observed in the original samples. The distribution of the p-chance scores obtained in the 40 simulated experiments (false positives) was then compared to those obtained experimentally. Based on this comparison, a maximum value of 0.0005 was chosen for p-chance. This yielded a false positive rate that was no higher than 0.01 for the least significant p-chance value below the cutoff.

20 25

9. Two hundred simulations assuming an abundance of 0.0001 in one sample and 0.0006 in a second sample revealed a significant difference ($P < 0.01$, [8]) 95% of the time.

10. It is not possible to obtain pancreatic ductal epithelium, from which pancreatic carcinomas arise, in sufficient quantities to perform SAGE. It is therefore not possible to determine whether these transcripts were derived from genes that were highly expressed only in pancreatic cancers or were also expressed in pancreatic duct cells.
- 5
11. Total RNA isolation and Northern blot analysis was performed as described [W. S. el-Deiry, *et al.*, *Cell* **75**, 817 (1993)].
12. A. H. Owens, D. S. Coffey, S. B. Baylin, Eds., *Tumor Cell Heterogeneity: Origins and Implications* (Academic Press, New York, 1982).
- 10 13. Northern blot analyses were done on 45 of the 337 differentially expressed transcripts with tentative database matches. In three cases, the pattern of expression was not differentially expressed as predicted by SAGE and, for the purposes of this calculation, were presumed to represent incorrect database matches.
- 15 14. D. C. Rubin, D. E. Ong, J. I. Gordon, *Proc Natl Acad Sci U S A* **86**, 1278 (1989); K. Okubo, J. Yoshii, H. Yokouchi, M. Kameyama, K. Matsubara, *DNA Res* **1**, 37 (1994).
- 15 15. R. Moll, *et al.*, *Differentiation* **53**, 75 (1993).
16. J. Sowden, S. Leigh, I. Talbot, J. Delhanty, Y. Edwards, *Differentiation* **53**, 67 (1993).
- 20 17. F. J. de Sauvage, *et al.*, *Proc Natl Acad Sci U S A* **89**, 9089 (1992).
18. R. C. Wiegand, *et al.*, *FEBS Lett* **311**, 150 (1992).
19. J. V. Tricoli, *et al.*, *Cancer Res* **46**, 6169 (1986); S. Lambert, J. Vivario, J. Boniver, R. Gol-Winkler, *Int J Cancer* **46**, 405 (1990).
- 25 20. W. Y. Chan, *et al.*, *Biochemistry* **28**, 1033 (1989).
21. J. D. Hayes, D. J. Pulford, *Crit Rev Biochem Mol Biol* **30**, 445 (1995).
22. G. F. Barnard, *et al.*, *Cancer Res* **52**, 3067 (1992); P. J. Chiao, D. M. Shin, P. G. Sacks, W. K. Hong, M. A. Tainsky, *Mol Carcinog* **5**, 219 (1992); N. Kondoh, C. W. Schweinfest, K. W. Henderson, T. S. Papas,
- 30

Cancer Res **52**, 791 (1992); G. F. Barnard, *et al.*, *Cancer Res* **53**, 4048 (1993); M. G. Denis, *et al.*, *Int J Cancer* **55**, 275 (1993); J. M. Frigerio, *et al.*, *Hum Mol Genet* **4**, 37 (1995).

5 23. C. W. Schweinfest, K. W. Henderson, S. Suster, N. Kondoh, T. S. Papas, *Proc Natl Acad Sci U S A* **90**, 4166 (1993).

24. M. Tanaka, *et al.*, *Cancer Res* **55**, 3228 (1995); D. Medina, F. S. Kittrell, C. J. Oborn, M. Schwartz, *Cancer Res* **53**, 668 (1993).

10 25. A. D. Miller, T. Curran, I. M. Verma, *Cell* **36**, 51 (1984); M. H. Kraus, W. Issing, T. Miki, N. C. Popescu, S. A. Aaronson, *Proc Natl Acad Sci U S A* **86**, 9193 (1989).

26. In the case of normal and neoplastic colon cancer tissue, 548 differentially transcripts were identified among the 36,125 unique transcripts.

27. All references cited are hereby incorporated by reference herein.

15 28. Sequences tags in Tables 2-4 are consecutively numbered to form SEQ ID NOS: 1-732.

CLAIMS

1. A method of diagnosing colon cancer in a sample suspected of being neoplastic, comprising the steps of:

5 comparing the level of at least one transcript in a first sample of a tissue to a second sample, wherein the first sample is of a colonic tissue suspected of being neoplastic and the second sample is of a normal human colonic tissue, and wherein the transcript is identified by a tag selected from the group consisting of those shown in Table 3;

10 identifying the first sample as neoplastic when the level of the at least one transcript is found to be lower in the first sample than in the second sample.

2. A method of diagnosing colon cancer in a sample suspected of being neoplastic, comprising the steps of:

15 comparing the level of at least one transcript in a first sample of a tissue to a second sample, wherein the first sample is of a colonic tissue suspected of being neoplastic and the second sample is of a normal human colonic tissue, and wherein the transcript is identified by a tag selected from the group consisting of those shown in Table 2;

20 identifying the first sample as neoplastic when the level of the at least one transcript is found to be higher in the first sample than in the second sample.

3. The method of claim 1 wherein a comparison of at least two of said transcripts is performed.

25 4. The method of claim 2 wherein a comparison of at least two of said transcripts is performed.

5. The method of claim 1 wherein a comparison of at least five of said transcripts is performed.
6. The method of claim 2 wherein a comparison of at least five of said transcripts is performed.
- 5 The method of claim 1 wherein a comparison of at least ten of said transcripts is performed.
8. The method of claim 2 wherein a comparison of at least ten of said transcripts is performed.
9. The method of claim 1 wherein a comparison of at least twenty of said transcripts is performed.
- 10 10. The method of claim 2 wherein a comparison of at least twenty of said transcripts is performed.
11. The method of claim 1 wherein a comparison of at least thirty of said transcripts is performed.
- 15 12. The method of claim 2 wherein a comparison of at least thirty of said transcripts is performed.
13. An isolated and purified human nucleic acid molecule which comprises a SAGE tag selected from SEQ ID NO:1-732.
14. The nucleic acid molecule of claim 13 which is a cDNA molecule.

15. The nucleic acid molecule of claim 13 wherein the SAGE tag is located at the 3' end of the molecule, adjacent to the 3'-most NlaIII restriction enzyme site.
16. An isolated nucleotide probe comprising at least 10 nucleotides of a human nucleic acid molecule, wherein the human nucleic acid molecule comprises a SAGE tag selected from SEQ ID NO: 1-732.
5
17. The probe of claim 16 which comprises the selected SAGE tag.
18. A diagnostic reagent for evaluating neoplasia of a colorectal tissue, comprising at least 2 probes according to claim 16.
19. The diagnostic reagent of claim 18 which comprises at least 5 probes according to claim 16.
10
20. The diagnostic reagent of claim 18 which comprises at least 10 probes according to claim 16.
21. The diagnostic reagent of claim 18 which comprises at least 20 probes according to claim 16.
15
22. The diagnostic reagent of claim 18 which comprises at least 30 probes according to claim 16.
23. A diagnostic reagent for evaluating neoplasia of a colorectal tissue, comprising at least 2 probes according to claim 17.
20
24. A method of diagnosing pancreatic cancer in a sample suspected of being neoplastic, comprising the steps of:

5 comparing the level of at least one transcript in a first sample of a tissue to a second sample, wherein the first sample is of a pancreatic tissue suspected of being neoplastic and the second sample is of a normal human colon tissue, wherein said transcript is identified by a tag selected from the group consisting of those shown Table 4;

identifying the first sample as neoplastic when the level of the at least one transcript is found to be higher in the first sample than in the second sample.

10 25. A method of diagnosing cancer in a sample suspected of being neoplastic, comprising the steps of:

15 comparing the level of at least one transcript in a first sample of a tissue to a second sample, wherein the first sample is of a tissue suspected of being neoplastic and the second sample is of a normal human tissue of the same tissue type, wherein said transcript is identified by a tag selected from the group consisting of those shown Table 5;

identifying the first sample as neoplastic when the level of the at least one transcript is found to be higher in the first sample than in the second sample.

20 26. A method to aid in the determination of a prognosis for a colon cancer patient, comprising the steps of:

25 comparing the level of at least one transcript in a first sample of a tissue to a second sample, wherein the first sample is of a neoplastic colonic tissue and the second sample is of a normal human colonic tissue, and wherein the transcript is identified by a tag selected from the group consisting of those shown in Table 3;

determining a poorer prognosis if the level of the at least one transcript is found to be lower in the first sample than in the second sample.

27. A method to aid in determining a prognosis for a patient with colon cancer, comprising the steps of:

5

comparing the level of at least one transcript in a first tissue sample to a second sample, wherein the first sample is of a colonic cancer tissue and the second sample is of a normal human colonic tissue, and wherein the transcript is identified by a tag selected from the group consisting of those shown in Table 2;

determining a poorer prognosis if the level of the at least one transcript is found to be higher in the first sample than in the second sample.

10

28. A method of diagnosing colon cancer in a sample suspected of being neoplastic, comprising the steps of:

15

comparing the level of expression of at least one protein in a first sample of a tissue to a second sample, wherein the first sample is of a colonic tissue suspected of being neoplastic and the second sample is of a normal human colonic tissue, and wherein the protein is encoded by a transcript identified by a tag selected from the group consisting of those shown in Table 3;

identifying the first sample as neoplastic when the level of expression of the protein is found to be lower in the first sample than in the second sample.

20

29. A method of diagnosing colon cancer in a sample suspected of being neoplastic, comprising the steps of:

25

comparing the level of expression of at least one protein in a first sample of a tissue to a second sample, wherein the first sample is of a colonic tissue suspected of being neoplastic and the second sample is of a normal human colonic tissue, and wherein the protein is encoded by a transcript identified by a tag selected from the group consisting of those shown in Table 2;

identifying the first sample as neoplastic when expression of the protein is found to be higher in the first sample than in the second sample.

30. A method to aid in determining a prognosis of a patient having pancreatic cancer, comprising the steps of:

5 comparing the level of at least one transcript in a first sample of a tissue to a second sample, wherein the first sample is of a neoplastic pancreatic tissue and the second sample is of a normal human colon tissue, wherein said transcript is identified by a tag selected from the group consisting of those shown Table 4;

determining a poorer prognosis if the level of the at least one transcript is found to be higher in the first sample than in the second sample.

10 31. A method to aid in providing a prognosis for a cancer patient, comprising the steps of:

15 comparing the level of at least one transcript in a first sample of a tissue to a second sample, wherein the first sample is of a neoplastic tissue and the second sample is of a normal human tissue of the same tissue type, wherein said transcript is identified by a tag selected from the group consisting of those shown Table 5;

determining a poorer prognosis if the level of the at least one transcript is found to be higher in the first sample than in the second sample.

20 32. A method of diagnosing pancreatic cancer in a sample suspected of being neoplastic, comprising the steps of:

25 comparing the level of expression of at least one protein encoded by a transcript in a first sample of a tissue to a second sample, wherein the first sample is of a pancreatic tissue suspected of being neoplastic and the second sample is of a normal human colon tissue, wherein said protein is encoded by a transcript identified by a tag selected from the group consisting of those shown Table 4;

identifying the first sample as neoplastic when expression of the protein is found to be higher in the first sample than in the second sample.

33. A method of diagnosing cancer in a sample suspected of being neoplastic, comprising the steps of:

5 comparing the level of expression of at least one protein in a first sample of a tissue to a second sample, wherein the first sample is of a tissue suspected of being neoplastic and the second sample is of a normal human tissue, wherein said protein is encoded by a transcript identified by a tag selected from the group consisting of those shown Table 5;

identifying the first sample as neoplastic when expression of the protein is found to be higher in the first sample than in the second sample.

10 34. A method to aid in the determination of a prognosis for a colon cancer patient, comprising the steps of:

15 comparing the level of expression of at least one protein in a first sample of a tissue to a second sample, wherein the first sample is of a neoplastic colonic tissue and the second sample is of a normal human colonic tissue, and wherein the protein is encoded by a transcript identified by a tag selected from the group consisting of those shown in Table 3;

determining a poorer prognosis if the level of expression is found to be lower in the first sample than in the second sample.

20 35. A method to aid in determining a prognosis for a patient with colon cancer, comprising the steps of:

25 comparing the level of expression of at least one protein in a first tissue sample to a second sample, wherein the first sample is of a colonic cancer tissue and the second sample is of a normal human colonic tissue, and wherein the protein is encoded by a transcript identified by a tag selected from the group consisting of those shown in Table 2;

determining a poorer prognosis if the level of expression is found to be higher in the first sample than in the second sample.

36. A method to aid in determining a prognosis of a patient having pancreatic cancer, comprising the steps of:

comparing the level of expression of at least one protein in a first sample of a tissue to a second sample, wherein the first sample is of a neoplastic pancreatic tissue and the second sample is of a normal human colon tissue, wherein said protein is encoded by a transcript identified by a tag selected from the group consisting of those shown Table 4;

determining a poorer prognosis if the level of expression is found to be higher in the first sample than in the second sample.

10 37. A method to aid in providing a prognosis for a cancer patient, comprising the steps of:

comparing the level of expression of at least one protein in a first sample of a tissue to a second sample, wherein the first sample is of a neoplastic tissue and the second sample is of a normal human tissue of the same tissue type, wherein said protein is encoded by a transcript identified by a tag selected from the group consisting of those shown Table 5;

determining a poorer prognosis if the level of expression is found to be higher in the first sample than in the second sample.

15 38. A method of treating a cancer cell, comprising the step of:

20 administering to a cancer cell an antibody which specifically binds to a protein encoded by a transcript identified by a tag selected from the group consisting of those shown in Tables 2, 4, and 5, wherein the antibody is linked to a cytotoxic agent.

25 39. An antibody linked to a cytotoxic agent, wherein the antibody specifically binds to a protein encoded by a transcript identified by a tag selected from the group consisting of those shown in Tables 2, 4, and 5.

40. A method of detecting colon cancer in a patient, comprising the steps of:

5 comparing the level of at least one protein in a first body sample to a second body sample, wherein the first sample is a body sample of the patient and the second sample is of a normal human, wherein the protein is encoded by a transcript identified by a tag selected from the group consisting of those shown in Table 2, wherein the first and second body sample is a sample selected from the group consisting of blood, urine, feces, sputum, and serum;

10 identifying neoplasia when the level of the at least one protein is found to be higher in the first sample than in the second sample.

41. A method of detecting pancreatic cancer in a patient, comprising the steps of:

15 comparing the level of at least one protein encoded by a transcript in a first sample of a tissue to a second sample, wherein the first sample is of the patient and the second sample is of a normal human, wherein said protein is encoded by a transcript identified by a tag selected from the group consisting of those shown Table 4, wherein the first and second sample is a sample selected from the group consisting of blood, urine, feces, sputum, and serum;

20 identifying neoplasia when the level of the at least one protein is found to be higher in the first sample than in the second sample.

42. A method of detecting cancer in a patient, comprising the steps of:

25 comparing the level of at least one protein in a first sample to a second sample, wherein the first sample is of patient and the second sample is of a normal human, wherein said protein is encoded by a transcript identified by a tag selected from the group consisting of those shown Table 5, wherein the first and second body sample is a sample selected from the group consisting of blood, urine, feces, sputum, and serum;

identifying neoplasia when the level of the at least one protein is found to be higher in the first sample than in the second sample.

43. A method to aid in determining a prognosis for a patient with colon cancer, comprising the steps of:

5 comparing the level of at least one protein in a first sample to a second sample, wherein the first sample is of a colonic cancer patient and the second sample is of a normal human, wherein the protein is encoded by a transcript identified by a tag selected from the group consisting of those shown in Table 2, wherein the first and second sample is a sample selected from the group consisting of blood, urine, feces, sputum, and serum;

10 determining a poorer prognosis if the level of the at least one protein is found to be higher in the first sample than in the second sample.

44. A method to aid in determining a prognosis of a patient having pancreatic cancer, comprising the steps of:

15 comparing the level of at least one protein in a first sample to a second sample, wherein the first sample is of a pancreatic cancer patient and the second sample is of a normal human, wherein said protein is encoded by a transcript identified by a tag selected from the group consisting of those shown in Table 4, wherein said first and second sample is a sample selected from the group consisting of blood, urine, feces, sputum, and serum;

20 determining a poorer prognosis if the level of the at least one protein is found to be higher in the first sample than in the second sample.

45. A method to aid in providing a prognosis for a cancer patient, comprising the steps of:

25 comparing the level of expression of at least one protein in a first sample to a second sample, wherein the first sample is of a cancer patient and the second sample is of a normal human, wherein said protein is encoded by a transcript identified by a tag selected from the group consisting of those

shown Table 5, wherein the first and second sample is a sample selected from the group consisting of blood, urine, feces, sputum, and serum;

determining a poorer prognosis if the level of the at least one protein is found to be higher in the first sample than in the second sample.

- 5 46. A method of detecting colon cancer in a patient, comprising the steps of:

comparing the level of at least one transcript in a first body sample to a second body sample, wherein the first sample is a body sample of the patient and the second sample is of a normal human, wherein the transcript is identified by a tag selected from the group consisting of those shown in Table 2, wherein the first and second body sample is a sample selected from the group consisting of blood, urine, feces, sputum, and serum;

identifying neoplasia when the level of the at least one transcript is found to be higher in the first sample than in the second sample.

- 15 47. A method of detecting pancreatic cancer in a patient, comprising the steps of:

comparing the level of at least one transcript in a first sample of a tissue to a second sample, wherein the first sample is of the patient and the second sample is of a normal human, wherein said transcript is identified by a tag selected from the group consisting of those shown Table 4, wherein the first and second sample is a sample selected from the group consisting of blood, urine, feces, sputum, and serum;

identifying neoplasia when the level of the at least one transcript is found to be higher in the first sample than in the second sample.

- 25 48. A method of detecting cancer in a patient, comprising the steps of:

comparing the level of at least one transcript in a first sample to a second sample, wherein the first sample is of patient and the second sample is of a normal human, wherein said transcript is identified by a tag selected

from the group consisting of those shown Table 5, wherein the first and second body sample is a sample selected from the group consisting of blood, urine, feces, sputum, and serum;

5 identifying neoplasia when the level of the at least one transcript is found to be higher in the first sample than in the second sample.

49. A method to aid in determining a prognosis for a patient with colon cancer, comprising the steps of:

10 comparing the level of at least one transcript in a first sample to a second sample, wherein the first sample is of a colonic cancer patient and the second sample is of a normal human, wherein the transcript is identified by a tag selected from the group consisting of those shown in Table 2, wherein the first and second sample is a sample selected from the group consisting of blood, urine, feces, sputum, and serum;

15 determining a poorer prognosis if the level of the at least one transcript is found to be higher in the first sample than in the second sample.

50. A method to aid in determining a prognosis of a patient having pancreatic cancer, comprising the steps of:

20 comparing the level of at least one transcript in a first sample to a second sample, wherein the first sample is of a pancreatic cancer patient and the second sample is of a normal human, wherein said transcript is identified by a tag selected from the group consisting of those shown Table 4, wherein said first and second sample is a sample selected from the group consisting of blood, urine, feces, sputum, and serum;

25 determining a poorer prognosis if the level of the at least one transcript is found to be higher in the first sample than in the second sample.

51. A method to aid in providing a prognosis for a cancer patient, comprising the steps of:

5

comparing the level of expression of at least one transcript in a first sample to a second sample, wherein the first sample is of a cancer patient and the second sample is of a normal human, wherein said transcript is identified by a tag selected from the group consisting of those shown Table 5, wherein the first and second sample is a sample selected from the group consisting of blood, urine, feces, sputum, and serum;

determining a poorer prognosis if the level of the at least one transcript is found to be higher in the first sample than in the second sample.

10

52. A method for screening for candidate agents that modulate the expression of a polynucleotide selected from the group consisting of the polynucleotides in SEQ ID NOS:1-732 or their respective complements, comprising contacting a test agent with a colon or pancreatic cell and monitoring expression of the polynucleotide, wherein the test agent which modifies the expression of the polynucleotide is a candidate agent.

B.

C.

FIG. 2

A.**B.****C.**