

AAAI-25 / IAAI-25 / EAAI-25

FEBRUARY 25 - MARCH 4, 2025 | PHILADELPHIA, USA

Qua²SeDiMo:

Quantifiable Quantization Sensitivity of Diffusion Models

Keith G. Mills^{1,2}, Mohammad Salameh², Ruichen Chen¹, Negar Hassanpour², Wei Lu³ and Di Niu¹

¹Dept. ECE, University of Alberta ²Huawei Technologies Canada Co., Ltd ³Huawei Kirin Solution, Shanghai, China

Motivation

- Diffusion Models generate great visual content!
 - Examples: SDXL, PixArt, Hunyuan, etc.

PixArt-Σ

Prompt:
"A westernstyle medieval
dragon with
large white
wings spread
wide"

HunYuan-DiT

Problem

Quantization

Reduces bit precision of weights/activations. Quantization-Aware Training (QAT) (costly) Post-Training Quantization (PTQ) (feasible)

4-bit and 3-bit PTQ

Why? Sensitivity Hypothesis

- Not all weights cause 3-bit performance loss.
- Assert that some sensitive weights are the culprit.
 - Motivates mixed-precision approach!
- "Sensitive"?
 - Individual weights? Too granular.
 - Weight categories? E.g., time-embed vs. caption-embed.
 - Weights in specific transformer blocks, like first/last?
- How to find sensitive weights?

Our Solution

Predictor with Hop-Level Ranking Loss

Preliminary: Graphs and GNNs

- $(arch, perf) = (G_1, y_1)$
- Learn $y'_1 = GNN(G_1)$

Building Optimal Neural Architectures using Interpretable Knowledge

CVPR'24

Keith G. Mills^{1,2} Fred X. Han² Mohammad Salameh² Shengyao Lu¹ Chunhua Zhou³ Jiao He³ Fengyu Sun³ Di Niu¹ ¹Dept. ECE, University of Alberta ²Huawei Technologies Canada ³Huawei Kirin Solution, China

{kgmills, shengyao, dniu}@ualberta.ca sunfengyu@hisilicon.com

{fred.xuefei.han1, mohammad.salameh, zhouchunhua, hejiao4}@huawei.com

- Intermediate workings: Node and Graph Embeddings $GNN(G) = MLP(h_G^m); \ h_G^m = \frac{1}{|V_G|} \sum_{v \in V_G} h_v^m$
- m is hop-level => h_n^m represents an entire subgraph/module!

Key learning constraint: if
$$y_1 > y_2$$
, then $\left\|h_{G_1}\right\|_1 > \left\|h_{G_2}\right\|_1$

Visual Frample

Predictor with Hop-Level Ranking Loss

Preliminary: Graphs and GNNs

- $(arch, perf) = (G_1, y_1)$
- Learn $y'_1 = GNN(G_1)$

Optimize
$$L_{orig}(y, y') + \frac{1}{M+1} \sum_{m=0}^{M} L_{rank}(y, ||h_G^m||_1)$$

- L_{orig} is traditional predictor loss, like MSE
- L_{rank} is SRCC, LambdaRank, or both.

Pareto Frontier Results

SRCC Block-level

SRCC Op-level

NDCG Block-level

Hybrid Op-level

Hybrid Block-level

NDCG Op-level

Pareto Frontier Results

Quantitative CLIP on PixArt-a

Qualitative Visual Results

Sample Insights

AAAI-25 / IAAI-25 / EAAI-25

FEBRUARY 25 - MARCH 4, 2025 | PHILADELPHIA, USA

Qua²SeDiMo:

Quantifiable Quantization Sensitivity of Diffusion Models

Thank you for watching 'till the end! See you in Philly!

