OIFC 训练营 NOIP 模拟 17

OIFC 未来共同体

题目名称	分组	星辰不坠落	河流	它像一颗
题目类型	传统题型	传统题型	传统题型	传统题型
目录	group	fall	river	star
可执行文件名	group	fall	river	star
输入文件名	group.in	fall.in	river.in	star.in
输出文件名	group.out	fall.out	river.out	star.out
每个测试点时限	1秒	1.5 秒	2 秒	2 秒
内存限制	512 MB	128 MB	512 MB	256 MB
测试点数目	10	20	10	20
测试点是否等分	是	是	是	是

编译选项

注意事项

- 1. 文件名(包括程序名,后缀名和输入输出文件名)必须使用英文小写。
- 2. C++ 中函数 main() 的返回值类型必须是 int,程序正常结束时的返回值必须 为 0。
- 3. 提交的程序代码文件的放置位置请参照考场具体要求。
- 4. 因违反以上三点而出现的错误或问题,申诉时一律不予受理。
- 5. 若无特殊说明,结果的比较方式为全文比较(过滤行末空格及文末回车)。
- 6. 程序可使用的栈内存空间限制与题目的内存限制一致。
- 7. 评测在 xyd 评测机下进行。
- 8. 最终评测时所用的编译命令中不含编译选项之外的任何优化开关。
- 9. oi 的单题代码长度限制好像是 50KB 还是 64KB 来着,请注意不要爆了。

分组 (Group)

【题目描述】

小 A 班上一共有 n 个同学(不包括小 A),小 A 作为班长,需要将所有同学(除自己以外)划分为若干个小组,以方便管理。

为了让大家尽量满意分组的结果,小 A 用**独立程度**来描述每一个同学,即其希望自己所在小组的人数 \leq **独立程度**。

经过观察,小 A 得到了每个同学的**独立程度**,其中第 i 个同学为 a_i 。

小 A 很快分好了组,但他并不满足于此,他希望求出一共有多少种**本质不同**的分组方式。 这里两组方案**本质不同**当且仅当存在两个同学,其中一组方案中两人在同一组,而另一种 方案中两人不在同一组。

由于答案可能非常大,只需要求出对 109+7 取模后的结果。

提示:每个同学需恰在某一组中,且每组均需至少包含一个人。

【输入格式】

从文件 group.in 中读入数据。

第一行一个整数 n,表示同学个数。

第二行 n 个整数 a_1, a_2, \dots, a_n ,表示每个人的**独立程度**。

【输出格式】

输出到文件 group.out 中。

一行一个整数,表示答案。

【样例输入】

Input 1

4

1 3 2 4

Input 2

见附件中的 group1.in

Input 3

见附件中的 group2.in

Input 4

见附件中的 group3.in

【样例输出】

Output 1

4

Output 2

见附件中的 group1.ans

Output 3

见附件中的 group2.ans

Output 4

见附件中的 group3.ans

【样例解释】

【样例 1 解释】

1 必然单独分为一组,其余 3 人分为两组或三组,共 3+1=4 种。

【数据范围与提示】

对于所有测试数据,保证 $1 \le n \le 2000$, $1 \le a_i \le n$ 。

测试点编号	$n \leq$
1	10
2	15
3,4	40
5~7	300
8~10	2000

题目附件

group.zip

【更多提示】

下发样例与真实数据使用同一个 Generator 和基本一致的参数生成,你可以用下发样例来估计评测数据的实际范围。

星辰不坠落(fall)

【题目描述】

你总说

月光不会躲

星辰不会坠落

你对我的感受

一直从未被撼动

风吹蓝了天空

像你给的温柔

我迷失其中

原来这是心动

——《星辰不坠落》

Emissary 有 n 张卡牌,每一张卡牌有正反两面,第 i 张卡牌的正面写着整数 a_i ,反面写着整数 b_i 。

我们称两张卡牌 x, y 是配对的, 当且仅当 $\{a_x, b_x\} \cap \{a_y, b_y\} \neq \emptyset$ 。

定义一个卡牌集合 S 的分数为 f(S) 表示最多能从 S 中选出多少对配对的卡牌,一张卡牌只能用于一个配对。

定义 $C_{l,r}$ 表示第 l 张卡牌到第 r 张卡牌构成的集合。 你需要解决以下两个问题。

- 1. 对于每一个 $i \in [1, n]$ 求出 $f(C_{1,i})$ 。
- 2. 给出一个 $f(C_{1,n})$ 的构造。

【输入格式】

第一行为一个正整数 n 表示卡牌数量。 接下来 n 行,每行两个正整数 a_i, b_i ,表示一张卡牌的正反面。

【输出格式】

第一行为 n 个正整数 $f(C_{1,1}), f(C_{1,2}) \dots f(C_{1,n})$ 。 接下来 $f(C_{1,n})$ 行,每行两个正整数,表示你选出的一对配对的卡牌。**如果有多种方案输出任 意一种,输出顺序没有关系。**

【样例输入】

Input 1

3 1 2 2 1 3 4

Input 2

见下发文件中的 fall2.in

Input 3

见下发文件中的 fall3.in

【样例输出】

Output 1

 $\begin{array}{c} 0 \ 1 \ 1 \\ 1 \ 2 \end{array}$

Output 2

见下发文件中的 fall2.out

Output 3

见下发文件中的 fall3.out

【样例解释】

只有卡牌 1,2 是配对的。 **更多样例请到题目附件领取。**

- 样例 2 符合测试点 8~10 的限制。
- 样例 3 符合测试点 15~20 的限制。

大样例中输出文件不包含方案。

【数据范围与提示】

测试点编号	$n \le$	特殊性质
$1 \sim 5$	8	
$6 \sim 7$	20	
$8 \sim 10$	400	A
$11 \sim 14$	5×10^5	A
$15\sim20$	5×10^5	

特殊性质 A: 保证 a_i 互不相同, b_i 互不相同。

对于 100% 的数据,满足 $1 \le n \le 5 \times 10^5$, $1 \le a_i, b_i \le 10^9$ 。

本题采用 Special Judge。

只有你正确回答了两个问题才能得到该测试点的分。

题目附件

fall.zip

【更多提示】

下发样例与真实数据使用同一个 Generator 和基本一致的参数生成, 你可以用下发样例来估计评测数据的实际范围。

河流 (river)

【题目描述】

upd on 9:35: 给出了样例的部分解释和修改了题面(已经用加粗字体显示修改的位置)

恐怖分子又要发动袭击了。不幸中的万幸,这次你不用为可怜的当局提供人员疏散等救灾 抢险的计划,也不用冒着生命危险去逮捕恐怖分子;相反,你可以扮演恐怖分子来爽一把:瘫 痪整个水运系统。

你袭击的对象是 K 河水系。该水系由 n 个河口组成,编号为 1...n,其中 1 号河口为入海口。每个河口都设有港口,i 号河口的港口人口为 a_i 。任意两个港口之间存在一条航线,一条航线的价值是经过的所有未瘫痪的港口的人口和(包括起点和终点)。

你的计划是破坏每一个港口。每当你破坏一个港口后,**该港口先瘫痪**,所有经过这个港口的航线的价值减去该港口人口,然后你再获得等同于所有经过该港口的航线的价值之和的爽快程度。

我已经帮你埋设好了所有炸弹,完成了所有准备工作,现在只需要你确定破坏港口的顺序。 当然,作为心存良知的人,你希望最小化你获得的爽快程度之和,否则我会作为卧底举报你的 行为。

【输入格式】

总共三行。

第一行一个正整数 n 表示河口个数。

第二行共输入 n 个整数, 第 i 个数表示 i 号港口的人口。

第三行共输入 n-1 个数,第 i 个数表示 i+1 号河口下游的第一个河口。

【输出格式】

共一行,一个整数表示最小爽快程度之和。

【样例输入】

Input 1

4

 $1\ 4\ 3\ 2$

1 2 2

Input 2

见下发 ex river2.in

Input 3

见下发 ex_river3.in

Input 4

见下发 ex_river4.in

【样例输出】

Output 1

22

Output 2

见下发 ex_river2.ans

Output 3

见下发 ex_river3.ans

Output 4

见下发 ex_river4.ans

【样例解释】

【数据范围与提示】

- 测试点 1 满足 $n \le 8$,
- 测试点 2,3 满足 $n \le 18$,
- 测试点 4 满足: $\forall i, fa_i = i-1$ 且 $a_i = i$,
- 测试点 5 满足: $\forall i, fa_i = 1 且 a_i = i$,
- 测试点 6,7 满足: $n \le 5000$,
- 测试点 8,9,10 无特殊限制。

对于所有测试点,满足 $n \le 3 \cdot 10^5$, $a_i \le 10^6$ 并且所有 a_i 互不相同。

样例 1 解释:比如样例 1 中,炸掉节点 2,则获得的爽快程度由六条航线的价值之和组成: 1->2:经过 1、2 两个点,由于 2 节点被炸掉,所以航线的价值只由 1 号节点一个节点的人口 1 组成。1->3:经过 1、2、3 三个点,由于 2 节点被炸掉,所以航线的价值由 1、3 号节点两个节点的人口 1+3=4 组成。1->4:经过 1、2、4 三个点,由于 2 节点被炸掉,所以航线的价值由 1、4 号节点两个节点的人口 1+2=3 组成。2->3:经过 2、3 两个点,由于 2 节点被炸掉,所以航线的价值只由 3 号节点一个节点的人口 3 组成。2->4:经过 2、4 两个点,由于 2 节点被炸掉,所以航线的价值只由 4 号节点一个节点的人口 2 组成。3->4:经过 3、2、4 三个点,由于 2 节点被炸掉,所以航线的价值只由 4 号节点一个节点的人口 2 组成。3->4:经过 3、2、4 三个点,由于 2 节点被炸掉,所以航线的价值由 3、4 号节点两个节点的人口 2+3=5 组成。

故炸掉节点的 2 的爽快程度为 1+4+3+3+2+5=18。

题目附件

river.zip

【更多提示】

下发样例与真实数据使用同一个 Generator 和基本一致的参数生成, 你可以用下发样例来估计评测数据的实际范围。

它像一颗(star)

【题目描述】

我想为它开始尝试去努力 不为接近 只为说服梦醒之后的自己 你看即便是梦境 还是留下了痕迹 可以说出我先往前去不再等你 一一《它像一颗》

hanser 准备进行一次巡回演唱会,她在仔细地研究了三角形地图(关于三角形地图,后面有详细的介绍)后定下了 n 个演唱会进行地点。

因为受到交通、发展程度、毛怪的消费能力等等因素的影响,第 i 个演唱会地点可以吸引距离举办演唱会地点不超过 K_i 的区域里的毛怪来参加演唱会,而毛怪的时间精力都是有限的,只能参加一场演唱会。

为了衡量演唱会的影响力,hanser 希望求出这次巡演总共能吸引到多少个区域里的毛怪参加。

形式化题意: 给一个三角形平面,上面有 n 个关键点,求距离第 i 个关键点距离不超过 K_i 的点的集合的并集大小。

【输入格式】

第一行, 一个整数 N 表示选定了 N 个地点。 之后 N 行, 每行三个整数 x_i , y_i , K_i , 表示点 i 的坐标和限制 K_i 。

【输出格式】

一个正整数,表示有多少个区域的毛怪会来参加演唱会。

【样例输入】

Input 1

2

102

403

Input 2

2 1 1 1 1 0 1
Input 3
2 3 2 3 3 0 1
Input 4
见下发的 star4.in
Input 5
见下发的 star5.in
Input 6
见下发的 star6.in
Input 7
见下发的 star7.in
【样例输出】
Output 1
24
Output 2
6
Output 3

22

Output 4

见下发的 star4.out

Output 5

见下发的 star5.out

Output 6

见下发的 star6.out

Output 7

见下发的 star7.out

【样例解释】

以下为对于三角形地图和距离的说明:

注: 下文的点并不是指网格线的交点, 而是被网格线围起来的三角形。

三角形地图形是一种坐标系, 坐标的定义如上图所示,选定一个三角形为原点 (保证尖端向上),过原点做竖直 y 轴,经过的第 k 行的点纵坐标为 k,横坐标的定义为到最近的 y 轴上的点最少需要向左经过几条边。

a,b 距离的定义为从区域 a 到区域 b 最少需要经过的边数。

上图所示为 K_i 为 5 时,可以吸引到的我所在的区域集合,距离已标在图中。

下发数据里有样例 1~3 的图例 (可能)。

【数据范围与提示】

对于 100% 的数据 $1 \le n \le 15000$, $0 \le |x_i|, |y_i| \le 10^7$, $1 \le K_i \le 10^7$

测试点编号	$n \le$	特殊性质
$1 \sim 2$	1	
$3 \sim 4$	50	$L \leq 100$
$5\sim 6$	2	
$7 \sim 10$	10	

测试点编号	$n \leq$	特殊性质
$11 \sim 12$	50	
$13 \sim 17$	1000	
$18 \sim 20$	15000	

题目附件

star.zip

【更多提示】

下发样例与真实数据使用同一个 Generator 和基本一致的参数生成,你可以用下发样例来估计评测数据的实际范围。