WHAT IS CLAIMED:

1. A method for measuring the conductivity (σ) of a liquid or paste electrophotographic toner comprising:

5 providing two parallel plane conductive plates with a uniform separation

(d) between the plates to form a space between the plates;

filling the space between the plates with liquid or paste electrophotographic toner;

applying a voltage of at least 1V between the plates across the liquid or paste toner;

measuring as data the current vs. time passing through the plates;

digitizing the data;

sending digitizing data to a processor; and

determining the conductivity from the digitized data.

15

10

2. The method of claim 1 wherein determining conductivity and charge per mass from the digitized data includes determining toner particle current according to the relationships:

$$i = i_1 + i_2$$
 where i_1 =af '(t)
$$and \ i_2 = i_0 exp(-t/\tau_2)$$

$$q = af(t)$$

$$i_1 = af \ '(t)$$

$$a^2 = 2\epsilon \zeta A^2 V_0$$

$$\tau = (R + R_2)(2\epsilon \zeta A^2)$$

$$f(t) = (e^{2at/\tau} - 1)/(e^{2at/\tau} + 1)$$

$$f \ '(t) = (a/\tau)(1 - f^2(t))$$

 $R = d / \sigma A$,

 $i_2 = i_0 \exp(-t/\tau_2)$

Q/M (charge per mass)= $\zeta/\rho\alpha$, where ρ is the toner paste density and α is the paste concentration;

Wherein the terms in the Formulae affected are defined as	Symbol or letter	Meaning
Q=af(t)	q	Total toner charge accumulated on plate 6 at time t
	a	Square root of formula $a^2=2\varepsilon\zeta A^2V_0$ defined below
	f(t)	Function of time
i _l =af'(t)	i ₁	Toner particle current
	a	Square root of formula $a^2=2\varepsilon\zeta A^2V_0$
	f	Derivative of f, above
	t	Time
$a^2=2\epsilon\zeta A^2V_0$	a ²	A parameter defined by solving the adjacent formula
	2ε	Two times the dielectric constant of the toner ink/paste
	ζ	Toner charge density
	A ²	The area of the plate, squared
	V_0	Applied voltage
τ =(R+R ₂)(2ε ζA ²)	τ	A parameter defined by solving the formula
	R	Derived from R=d/σA, defined below
	R ₂	Resistance of resistor R ₂ ,
	2ε	Two times the dielectric constant of the toner
	ζ	Toner charge density
	A ²	The area of the plate, squared
R=d/σA	R	A parameter defined by solving the adjacent formula
	d	Separation between plates/distance

	· σ	Conductivity of the ink/paste
	A	Area of the plate
$f(t)=e^{2at/\tau}-1)/(e^{2at/\tau}+1)$	f(t)	Definition of the
		function of time
	e	Natural logarithm
	2at/τ	Solve using symbols
		defined above
$f'(t)=a/\tau)(1-f^2(t))$	As defined above	
$i_2 = i_0 \exp(-t/\tau_2)$	i ₀	The initial impurity
		current
	~.	The impurity migration
	$ au_2$	time constant

3. The method of claim 1 wherein the voltage is between 50V and 1000V.

5

10

15

20

- 4. The method of claim 1 including calculating the charge to mass ratio of the toner (Q/m) from ζ by assuming that the percent solids of the toner particles collected on the ground plate is the same as that collected on a development roller under a similar electroplating condition, wherein ζ is the associated charge density.
- 5. The method of claim 2 including calculating the charge to mass ratio of the toner (Q/m) from ζ by assuming that the percent solids of the toner particles collected on the ground plate is the same as that collected on a development roller under a similar electroplating condition, wherein ζ is the associated charge density.
- 6. The method of claim 3 including calculating the charge to mass ratio of the toner (Q/m) from ζ by assuming that the percent solids of the toner particles collected on the ground plate is the same as that collected on a development roller under a similar electroplating condition, wherein ζ is the associated charge density.
- 7. A method for measuring the conductivity (σ) of a liquid or paste electrophotographic toner comprising:

providing two parallel plane conductive plates with a uniform separation (d) between the plates to form a space between the plates;

filling the space between the plates with liquid or paste electrophotographic toner;

applying a current voltage of at least 1V between the plates across the liquid or paste toner;

measuring as data the current passing through an external component into the plates;

adjusting the data to remove current contributions attributable to impurity ions;

sending adjusted data to a processor; and determining the conductivity from the adjusted data.

8. The method of claim 7 wherein the voltage is between 1V and 1000V.

10

15

20

25

30

- 9. The method of claim 7 including calculating the charge to mass ratio of the toner (Q/m) from ζ by assuming that the percent solids of the toner particles collected on the ground plate is the same as that collected on a development roller under a similar electroplating condition, wherein ζ is the associated charge density.
- 10. The method of claim 8 including calculating the charge to mass ratio of the toner (Q/m) from ζ by assuming that the percent solids of the toner particles collected on the ground plate is the same as that collected on a development roller under a similar electroplating condition, wherein ζ is the associated charge density.
- 11. An apparatus for measuring the conductivity of a liquid or paste toner comprising: two parallel conductive plates (4, 6), an electrical switch (10) between the plates, a power supply (12) between the electrical switch(10) and one of the two conductive plates, a current sensor for measuring data relating to current (14), filter (16), a digitizer (18), data storage and processor (20) having analytic capability for adjusting

the data relating to current to remove contributions to the data attributable to impurity ions.

- 12. The apparatus of claim 11 wherein a data digitizer (18) is present between the sensor
 and the data storage and processor having analytic capability (20).
 - 13. The apparatus of claim 11 wherein the switch is a high speed switch.
 - 14. The apparatus of claim 11 wherein the switch is a bounceless switch.
- 15. The method of claim 7 wherein the voltage is between 50V and 1000V.
 - 16. The method of claim 7 wherein the voltage is between 100V and 1000V.

15

10