Famille de modèles aléatoires Famille de modèles adaptatifs Super apprenti en régression Exemples

Apprentissage Machine / Statistique

Agrégation de modèles

PHILIPPE BESSE

INSA de Toulouse Institut de Mathématiques

Introduction

- Stratégies adaptatives (boosting) ou aléatoires (bagging)
- Combinaison ou agrégation de modèles (presque) sans sur-ajustement
- Apprentissage machine (machine learning) et Statistique
- Comparatifs heuristiques et propriétés théoriques
- Bagging pour bootstrap aggregating (Breiman, 1996)
- Forêts aléatoires (random forests) (Breiman, 2001)
- Du Boosting (Freund et Shapiro, 1996) déterministe et adaptatif à l'extrem gradient boosting
- Toute méthode de modélisation non linéaire
- Méthodes efficaces : Fernandez-Delgado et al. (2014), Kaggle

Famille de modèles aléatoires Famille de modèles adaptatifs Super apprenti en régression Exemples

	Logit	Tree	RN	RF	Boost
Moyenne	0.0820	0.078	0.055	0.049	0.061

Spams : Comparaison par validation croisée Monte Carlo des erreurs de prévision de détections de pourriels

Criblage virtuel de molécule : prévision de la capacité d'une molécule à traverser la barrière du cerveau

Marketing bancaire : Score d'appétance de la carte Visa Premier

Bootstrap aggregating: principe

- Soit Y une variable à expliquer quantitative ou qualitative
- X^1, \ldots, X^p les variables explicatives
- $f(\mathbf{x})$ un modèle fonction de $\mathbf{x} = \{x^1, \dots, x^p\} \in \mathbb{R}^p$
- $\mathbf{z} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$ échantillon de loi F et de taille n
 - $f(.) = E_F(\hat{f}_z)$ estimateur sans biais de variance nulle
 - B échantillons indépendants $\{\mathbf{z}_b\}_{b=1,B}$
 - *Y* quantitative : $\widehat{f}_B(.) = \frac{1}{R} \sum_{b=1}^B \widehat{f}_{\mathbf{z}_b}(.)$ (moyenne)
 - Y qualitative : $\widehat{f}_B(.) = \arg \max_j \operatorname{card} \left\{ b \mid \widehat{f}_{\mathbf{z}_b}(.) = j \right\}$ (vote)
- Principe : Moyenner des prévisions indépendantes pour réduire la variance
- B échantillons indépendants remplacés par B réplications bootstrap

Bagging: algorithme

- Soit x₀ à prévoir et
- $\mathbf{z} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$ un échantillon
- pour b=1 à B
 - Tirer un échantillon bootstrap z_b*
 - Estimer $\hat{f}_{z_b}(\mathbf{x}_0)$ sur l'échantillon bootstrap
- Calculer l'estimation moyenne $\hat{f}_B(\mathbf{x}_0) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}_{\mathbf{z}_b}(\mathbf{x}_0)$ ou le résultat du vote

Bagging: utilisation

- Estimation bootstrap out-of-bag de l'erreur de prévision : contrôle de la qualité et du sur-ajustement
- CART pour construire une famille d'arbres binaires
- Trois stratégies d'élagage sont alors possibles :
 - garder un arbre complet pour chacun des échantillons
 - 2 arbre d'au plus q feuilles
 - arbre complet élagué par validation croisée
- Première stratégie compromis entre calculs et qualité de prévision : faible biais de chaque arbre et variance réduite par agrégation

Famille de modèles aléatoires Famille de modèles adaptatifs

Famille de modèles adaptatifs Super apprenti en régression Exemples

Bagging

Forêts aléatoires Utilisation des forêts aléatoires

Bagging: problèmes

- Temps de calcul et contrôle de l'erreur
- Stockage de tous les modèles de la combinaison
- Modèle boîte noire

Forêts aléatoires : principe

- Amélioration du bagging d'arbres binaires
- Variance de *B* variables corrélées : $\rho \sigma^2 + \frac{1-\rho}{B} \sigma^2$

Exemples

- Ajout d'une randomisation pour rendre les arbres plus indépendants
- Choix aléatoire des variables
- Intérêt : grande dimension

Exemples

Forêts aléatoires : algorithme

- Soit \mathbf{x}_0 à prévoir et $\mathbf{z} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$ un échantillon pour b = 1 à B
 - Tirer un échantillon bootstrap z_b*
 - Estimer un arbre avec randomisation des variables :
 - Pour chaque nœud, tirage aléatoire de m prédicteurs
- Calculer l'estimation moyenne $\widehat{f}_B(\mathbf{x}_0) = \frac{1}{B} \sum_{b=1}^B \widehat{f}_{\mathbf{z}_b}(\mathbf{x}_0)$ ou le vote

Forêts aléatoires : utilisation

- Élagage : Arbres de taille q, ou complet.
- La sélection aléatoire des m prédicteurs ($m = \sqrt{p}$ en classification, $\frac{p}{3}$ en régression) accroît la variabilité

Exemples

- Chaque modèle de base est moins performant mais l'agrégation est performante
- Évaluation itérative de l'erreur out-of-bag

Aide à l'interprétation : indices d'importances

- Mean Decrease Accuracy
- Mean Decrease Gini

Forêts aléatoires : implémentations

R

- randomForest: interface du programme Fortran77
- ranger

Weka version en java

Scikit-learn analogue de la version originale

Spark/MLlib

- arbre "scalable" du projet PLANET
- Deux paramètres supplémentaires

```
subsamplingRate = 1.0
maxBins=32
```


Exemples

Autres utilisations

- Proximités ou similarités des observations
- Atypiques ou anomalies
- Classification non supervisée
- Imputation de données manquantes missForest
- Détection d'anomalies (outlier)
- Durée de vie : survival forest

Boosting: principe

- Améliorer les compétences d'un faible classifieur (Schapire, 1990; Freund et Schapire, 1996)
- AdaBoost (Adaptative boosting) prévision d'une variable binaire
- Réduire la variance mais aussi le biais de prévision
- Meilleure méthode off-the-shelf
- Agrégation d'une famille de modèles récurents
 Chaque modèle est une version adaptative du précédent
 en donnant plus de poids, lors de l'estimation suivante, aux
 observations mal ajustées
- Variantes: type de la variable à prédire (binaire, k classes, réelles), fonction perte (robustesse)

AdaBoost discret

- Fonction δ de discrimination $\{-1,1\}$
- Soit x₀ à prévoir et
- $\mathbf{z} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$ un échantillon
- Initialiser les poids $w = \{w_i = 1/n \; ; \; i = 1, \ldots, n\}$
- pour m=1 à M
 - Estimer δ_m sur l'échantillon pondéré par w
 - Calculer le taux d'erreur apparent : $\widehat{\mathcal{E}}_p = \frac{\sum_{i=1}^n w_i \mathbf{1} \{\delta_m(x_i) \neq y_i\}}{\sum_{i=1}^n w_i}$
 - Calculer les logit : $c_m = \log((1-\widehat{\mathcal{E}}_p)/\widehat{\mathcal{E}}_p)$
 - Nouvelles pondérations (normalisation) : $w_i \leftarrow w_i$. exp $[c_m \mathbf{1} \{ \delta_m(x_i) \neq y_i \}]$; i = 1, ..., n
- ullet Résultat du vote : $\widehat{f}_{M}(x_{0})=$ signe $\left[\sum_{m=1}^{M}c_{m}\delta_{m}(x_{0})
 ight]$

Boosting: utilisation

- Arbre comme modèle de base
- Recommandation : q entre 4 et 8
- Version aléatoire : Arcing (Breiman, 1998)
- Empiriquement, l'erreur de prévision peut continuer à décroître après que l'erreur d'ajustement se soit annulée
- Attention aux données bruitées (erreur de label), source de dérive ou sur-apprentissage.
- Boosting réduit la variance comme le bagging mais aussi le biais

Boosting pour la régression : algorithme

- Soit \mathbf{x}_0 à prévoir et $\mathbf{z} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$ un échantillon
- Initialiser $\mathbf{p} = \{p_i = 1/n \; ; \; i = 1, \dots, n\}$
- pour $m = 1 \stackrel{\land}{a} M$
 - Tirer avec remise dans z un échantillon z_m^* suivant p
 - Estimer \hat{f}_m sur l'échantillon \mathbf{z}_m^*
 - Calculer à partir de l'échantillon initial z :

$$l_m(i) = l\left(y_i, \widehat{f}_m(\mathbf{x}_i)\right)$$
 $i = 1, \dots, n;$ $(l: \text{fonction perte})$

$$\widehat{\mathcal{E}}_m = \sum_{i=1}^n p_i l_m(i); \quad w_i = g(l_m(i))p_i \quad p_i \leftarrow \frac{w_i}{\sum_{i=1}^n w_i}$$

ullet Moyenne ou médiane des $\widehat{f}_m(\mathbf{x}_0)$ pondérées par $\log(\frac{1}{\beta_m})$

Boosting: utilisation

- *l* peut être exponentielle, quadratique ou la valeur absolue
- $L_m = \sup_{i=1,...,n} l_m(i)$ maximum de l'erreur observée par le modèle \hat{f}_m sur l'échantillon initial

$$g(l_m(i)) = \beta_m^{1-l_m(i)/L_m}$$
 avec $\beta_m = \frac{\widehat{\mathcal{E}_m}}{L_m - \widehat{\mathcal{E}_m}}$

• Algorithme arrêté ou réinitiallisé à des poids uniformes si l'erreur se dégrade trop : si $\widehat{\mathcal{E}_m} < 0.5L_m$

Boosting: interprétation

 Approximation de f par un modèle additif pas à pas (Hastie et col., 2001)

$$\widehat{f}(\mathbf{x}) = \sum_{m=1}^{M} c_m \delta(\mathbf{x}; \gamma_m)$$

- c_m est un paramètre
- δ le classifieur de base fonction de x et dépendant d'un paramètre γ_m
- *l* une fonction perte

Modèle additif : optimisation

- $(c_m, \gamma_m) = \arg\min_{(c,\gamma)} \sum_{i=1}^n l(y_i, \widehat{f}_{m-1}(x_i) + c\delta(x_i; \gamma))$
- $\widehat{f}_m(x) = \widehat{f}_{m-1}(x) + c_m \delta(x; \gamma_m)$ améliore l'ajustement précédent
- f binaire, $l(y, f(x)) = \exp[-yf(x)]$

$$(c_m, \gamma_m) = \arg\min_{(c,\gamma)} \sum_{i=1}^n \exp\left[-y_i(\widehat{f}_{m-1}(\mathbf{x}_i) + c\delta(\mathbf{x}_i; \gamma))\right]$$

$$= \arg\min_{(c,\gamma)} \sum_{i=1}^{n} w_i^m \exp\left[-cy_i \delta(\boldsymbol{x}_i; \gamma)\right] \text{avec} \quad w_i = \exp\left[-y_i \widehat{f}_{m-1}(\boldsymbol{x}_i)\right]$$

• w_i^m : poids fonction de la qualité de l'ajustement précédent

Modèle additif: solution

• Deux étapes : classifieur optimal puis optimisation de c_m

$$\gamma_m = \arg\min_{\gamma} \sum_{i=1}^n \mathbf{1}\{y_i \neq \delta(\mathbf{x}_i; \gamma)\} \quad \text{et} \quad c_m = \frac{1}{2}\log\frac{1 - \widehat{\mathcal{E}}_p}{\mathcal{E}_p}$$

avec $\widehat{\mathcal{E}}_p$ erreur apparente de prévision

- les w_i sont mis à jour avec : $w_i^{(m)} = w_i^{(m-1)} \exp[-c_m]$
- Adaboost approche f pas à pas par un modèle additif en utilisant une fonction perte exponentielle
- D'autres fonctions perte (robustesse)
 - LogitBoost : $l(y, f(x)) = \log_2(1 + \exp[-2yf(x)]$
 - L^2 Boost : $l(y, f(x)) = (y f(x))^2/2$

GBM: Principe 1

- Gradient Boosting Models (Friedman, 2002-2009)
- dans le cas d'une fonction perte différentiable
- Principe:
 - Construire une séquence de modèles de sorte qu'à chaque étape, chaque modèle ajouté à la combinaison, apparaisse comme un pas vers une meilleure solution
 - Ce pas est franchi dans la direction du gradient de la fonction perte approché par un arbre de régression

GBM: Principe 2

Modèle adaptatif précédent :

$$\widehat{f}_m(\mathbf{x}) = \widehat{f}_{m-1}(\mathbf{x}) + c_m \delta(\mathbf{x}; \gamma_m)$$

• Transformé en une descente de gradient

$$\widehat{f}_m = \widehat{f}_{m-1} - \gamma_m \sum_{i=1}^n \nabla_{f_{m-1}} l(y_i, f_{m-1}(x_i)).$$

• Recherche d'un meilleur pas de descente γ :

$$\min_{\gamma} \sum_{i=1}^{n} \left[l \left(y_i, f_{m-1}(x_i) - \gamma \frac{\partial l(y_i, f_{m-1}(x_i))}{\partial f_{m-1}(x_i)} \right) \right].$$

GBM en régression : algorithme

- Soit x₀ à prévoir
- Initialiser $\hat{f}_0 = \arg\min_{\gamma} \sum_{i=1}^n l(y_i, \gamma)$
- pour $m = 1 \grave{\mathbf{a}} M$
 - ullet Calculer $r_{mi} = -\left[rac{\delta l(y_i,f(x_i))}{\delta f(x_i)}
 ight]_{f=f_{m-1}}; \quad i=1,\ldots,m$
 - Ajuster un arbre de régression δ_m aux $(\mathbf{x}_i, r_m i)$
 - Calculer $\gamma_{jm} = \operatorname{arg} \min_{\gamma} \sum_{i=1}^{n} l(y_i, f_{m-1}(\boldsymbol{x}_i) + \gamma \delta_m(\boldsymbol{x}_i))$
 - Mise à jour : $\widehat{f}_m(x) = \widehat{f}_{m-1}(x) + \gamma_m \delta_m(x)$
- Résultat : $\widehat{f}_M(x_0)$

GBM: utilisation avec R

- Discrimination : autant de probabilités que de classes
- Coefficient de rétrécissement (schrinkage)

$$\widehat{f}_m(\mathbf{x}) = \widehat{f}_{m-1}(\mathbf{x}) + \nu \sum_{j=1}^{J_m} \gamma_{jm} \mathbf{1} \{ \mathbf{x} \in R_{jm} \}$$

- Équilibre entre rétrécissement et nombre d'itérations
- Profondeur maximale des arbres

GBM: utilisation avec Scikit-learn

- Importance des variables (cf. forêt aléatoire)
- Autres paramètres

max_features nombre de variables pour construire un arbre (cf. *RF*)

subsample *Stochastic gradient boosting*: sous-échantillonnage à chaque étape

min_sampes_leaf, min_weight_fraction_leaf
max leaf node

XGBoost: motivation

- Algorithme de Chen et Guestrin (2016)
- Pénalisation supplémentaire pour contrôle du sur-apprentissage
- Problème : nombre de paramètres à optimiser
- Astuces d'implémentation pour parallélisation
- Environnements: R (caret), Python, Julia, GPU, Amazon Web Service, Spark...
- Solutions gagnantes des concours Kaggle

Kaggle: Identify people who have a high degree of Psychopathy based on Twitter usage

XGBoost: pénalisation

Fonction perte L par pénalisation de l

$$\mathcal{L}(f) = \sum_{i=1}^{n} l(\widehat{y}_i, y_i) + \sum_{m=1}^{M} \Omega(\delta_m)$$

$$\Omega(\delta) = \alpha |\delta| + \frac{1}{2}\beta ||\mathbf{w}||^2$$

- $|\delta|$ nombre de feuilles de l'arbre δ
- w vecteur des valeurs attribuées à chaque feuille
- Ω mélange de pénalisation l_1 et l_2

XGBoost: astuces

- Approximation du gradient par développement de Taylor : sommations et parallélisation
- Complexité des divisions : quantiles des distributions
- Algorithme tolérant aux Données manquantes : gradient calculé sur les valeurs présentes
- Indicateur d'importance des variables
- Gestion des matrices creuses

XGBoost: paramètres supplémentaires

alpha pénalisation de type Lasso (l_1) sur la complexité de l'arbre de régression estimant le gradient

lambda pénalisation de type $ridge(l_2)$

gamma réduction minimale de la perte pour accepter une division

tree_method algorithme glouton de recherche des divisions ou simplification (quantiles ou regroupement de classes)

sketch_eps contrôle le nombre de classes

scale_pos_weight à prendre en compte pour des classes déséquilibrées

Autres paramètres d'optimisation des performances

XGBoost: stratégie d'optimisation

- Principe :
- Valeurs par défaut et optimiser les paramètres par ordre de décroissance de l'influence supposée
- Une stratégie parmi d'autres :
 - Nombre d'arbres
 - Profondeur maximale vs. nombre d'observations minimales par feuille
 - Réduction minimale de la perte
 - Taux d'échantillonnage vs. nombre de variables utilisées
 - Nombres d'arbres vs. rétrécissement
- Nécessité : puissance de calcul (GPU)

Famille de modèles aléatoires Famille de modèles adaptatifs Super apprenti en régression Exemples

Super apprenti en régression

- Super learner (van der Laan et al. 2007)
- Estimer des modèles variés de régression modèle linéaire, PLS, arbres, neurones, svm, agrégation...
- Combinaison linéaire convexe des prévisions
- Optimisation par validation croisée

Cancer: prévisions

Matrices de confusion :

	bagging(ipred)		adaboost (gbm)		randor	random forest	
	benign	malignant	benign	malignant	benign	malignant	
benign	83	3	84	1	83	0	
malignant	3	48	2	50	3	51	

Cancer: Evolution des taux d'erreur de l'apprentissage et du test en fonction du nombre d'arbres dans AdaBoost

Banque : Évolution du taux de mal classés "out-of-bag" et sur l'échantillon test en fonction du nombre d'arbres de la forêt

Ozone : Valeurs observées et résidus de l'échantillon test en fonction des valeurs prédites par une forêt aléatoire