

Robert Morris (July 25, 1932 – June 26, 2011)

n	Chance to increment	Estimation	
0	1	1	

Robert Morris (July 25, 1932 – June 26, 2011)

n	Chance to increment	Estimation	
0	1	1	
1	$\frac{1}{2}$	2	

Robert Morris (July 25, 1932 – June 26, 2011)

n	Chance to increment	Estimation	
0	1	1	
1	$\frac{1}{2}$	2	
2	$\frac{1}{4}$	4	

Robert Morris (July 25, 1932 – June 26, 2011)

n	Chance to increment	Estimation	
0	1	1	
1	$\frac{1}{2}$	2	
2	$\frac{1}{4}$	4	
3	$\frac{1}{8}$	8	

Robert Morris (July 25, 1932 – June 26, 2011)

n	Chance to increment	Estimation	
0	1	1	
1	$\frac{1}{2}$	2	
2	$\frac{1}{4}$	4	
3	$\frac{1}{8}$	8	
4	$\frac{1}{16}$	16	

Robert Morris (July 25, 1932 – June 26, 2011)

n	Chance to increment	Estimation		
0	1	1		
1	$\frac{1}{2}$	2		
2	$\frac{1}{4}$	4		
3	$\frac{1}{8}$	8		
4	$\frac{1}{16}$	16		
		•••		
n	$\frac{1}{2^n}$	2^n		

Robert Morris (July 25, 1932 – June 26, 2011)

```
def probably_increment(x: Element): Unit = {
   // need edge case because generating
  // random of 0 is an error
   if (counter == 0) {
    counter += 1
     return
  //increment with probability 1 / 2^counter
   val r = Random.nextInt(pow(2, counter))
   if (r == 0) {
    counter += 1
```

Hashing

```
hash(x) \sim \{0,1\}^4
```

hash("foobar") = 1011 // von zufälliger Folge nicht zu unterscheiden

Wie oft muss man im Durchschnitt würfeln, um eine 6 zu bekommen? // W6

6 mal

Wie viele unterschiedliche Werte muss man im Durchschnitt hashen um alle Kombinationen zu erhalten? // 4-bit Hash

$$2^4 = 16$$

Wie viele unterschiedliche Werte muss man im Durchschnitt hashen um einen bestimmten Hash zu erhalten? // z.B. 1010

$$2^4 = 16$$

HyperLogLog (2007)

Philippe Flajolet Olivier Gandouet

Éric Fusy, Frédéric Meunier

Wie viele unterschiedliche Werte muss man im Durchschnitt Hashen um drei führende Nullen zu erhalten?

0001010111101101

$$2^3 = 8$$

Wie viele führenden Nullen hat man maximal, wenn man 1024 unterschiedliche Werte hasht?

0000000000101001

$$log_2(1024) = 10$$

Und für n Bit?

$$log_2(n)$$

Varianz 8 Beispiel: MorrisCounter 16 $n = 63 \rightarrow 2^{63} \approx 9.000.000.000.000.000$ 32 64 128 256 \rightarrow Man braucht $\sim 2^{63}$ weitere Versuche um n zu erhöhen 512 1.024 2.048 → Das ist nicht mal mehr auf die Milliarde genau 4.096 8.192 16.384 → Immer ungenauer für größere Zahlen 32.768 65.536 131.072 262.144 Analoges Problem bei HyperLogLog 524.288

Lösung für das Varianzproblem

Mehrere Counter parallel berechnen und einen Mittelwert bilden.

Beispiel:

	Wahrer Wert	Einfach	Artith. Mittel	Harm. Mittel
Counter	1.117	2.047	1.379	1.069
Distinct Elements	321	512	939	293

16.384 32.768 65.536 131.072 262.144 524.288