Белорусский государственный университет

ФИЗИЧЕСКАЯ КИНЕТИКА

Учебная программа учреждения высшего образования по учебной дисциплине для специальности:

1-31 80 05 Физика

Учебная программа составлена на основе ОСВО 1-31 80 05-2019, учебного плана №G31-062/уч., утвержденного 11.04.2019.

СОСТАВИТЕЛЬ:

А.С. Гаркун – доцент кафедры теоретической физики и астрофизики Белорусского государственного университета, кандидат физико-математических наук.

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Кафедрой теоретической физики и астрофизики Белорусского государственного университета (протокол № 12 от 23.05.2019);

Научно-методическим Советом БГУ (протокол № 5 от 28.06.2019).

Заведующий кафедрой теоретической физики и астрофизики д. ф.-м. н., профессор

4

А.Н. Фурс

Wours

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Цели и задачи учебной дисциплины

Цель учебной дисциплины — способствовать формированию у студентов магистратуры представлений о взаимосвязи макроскопических явлений переноса массы, импульса и энергии с микроскопическими процессами взаимодействия между атомами и молекулами в статистически неравновесных системах; пониманию разнообразных динамических эффектов в сплошных средах и навыков их теоретического анализа.

Задачи учебной дисциплины:

- Изучение основных методов неравновесной термодинамики, кинетики неравновесных систем, теории флуктуаций;
- Формирование у студентов профессиональных компетенций, связанных с использованием современных теоретических концепций в области физики классических и квантовых неравновесных систем;
- Развитие умений, основанных на полученных знаниях, позволяющих построить модель неравновесного явления в различных физических ситуациях, сделать оценки для наблюдаемых величин и применить адекватный математический аппарат;
- Получение студентами навыков самостоятельной исследовательской работы, предполагающей вывод различных кинетических уравнений вместе с определением области применимости, определение студентами иерархии времен и масштабов применительно к конкретной физической ситуации;
- Анализ степени наблюдаемости и контролируемости изучаемых кинетических эффектов

Место учебной дисциплины в системе подготовки специалиста с высшим образованием (магистра).

Учебная дисциплина «Физическая кинетика» относится к модулю «Избранные разделы теоретической физики» компонента учреждения высшего образования (по выбору студента).

Связи с другими учебными дисциплинами.

Программа составлена с учетом связей со всеми дисциплинами, входящими в курс высшей математики и в курс теоретической физики, изученными студентами ранее, и является непосредственным логическим продолжением дисциплин «Термодинамика и статистическая физика», «Физика конденсированных сред».

Требования к компетенциям

Освоение учебной дисциплины «Физическая кинетика» должно обеспечить формирование универсальных, углубленных профессиональных и специализированных компетенций.

специализированные компетенции:

СК-7: Быть способным проводить расчеты термодинамических параметров с использованием микроскопической теории процессов в статистически неравновесных системах.

В результате освоения учебной дисциплины студент должен:

знать:

- кинетическое уравнение Больцмана;
- явный вид интеграла столкновений;
- метод Чепмена-Энскога для приближенного решения кинетического уравнения Больцмана;
- кинетическое уравнение для слабо неоднородного газа;
- уравнение Фоккера-Планка;
- систему уравнений для бесстолкновительной плазмы.

уметь:

- применять кинетическое уравнение Больцмана для решения практических задач расчета и моделирования;
- решать расчетные задачи по теме «коэффициенты диффузии, вязкости и теплопроводности неидеальных газов»;
- находить коэффициенты диэлектрической проницаемости холодной плазмы при различных конфигурациях внешнего магнитного поля и падающей электромагнитной волны;
 - решать задачи теории флуктуаций.

владеть:

- методами практического использования полученных знаний при решении конкретных задач в рамках исследований кинетических явлений в разреженных газах и твердых телах.

Структура учебной дисциплины

Дисциплина изучается в 1 семестре. Всего на изучение учебной дисциплины «Физическая кинетика» отведено:

– для очной формы получения высшего образования –90 часов, в том числе 42 аудиторных часа, из них: лекции – 32 часа, семинарские занятия– 6 часов, управляемая самостоятельная работа – 4 часа.

Трудоемкость учебной дисциплины составляет 3 зачетные единицы.

Форма текущей аттестации – экзамен.

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

1 Общие положения физической кинетики.

- 1.1 *Функция распределения*. Классические и квантовые степени свободы. Принцип детального равновесия. Пространственная и временная четность.
- 1.2 *Кинетическое уравнение Больцмана*. Интеграл столкновений. Н-теорема Больцмана.

2 Макроскопические уравнения переноса.

- 2.1 Локально-равновесное течение идеального газа. Определение макроскопических параметров газа на основе функции распределения.
- 2.2 Вывод уравнений гидродинамики идеальной жидкости. Поток массы, энергии и импульса.

3 Приближенное решение уравнения Больцмана.

- 3.1 *Приближение Чепмена-Энскога*. Приближение времени релаксации. Приближение Эйлера.
 - 3.2 Кинетическое уравнение для слабо неоднородного газа.

4 Теплопроводность и вязкость газов.

- 4.1 *Теплопроводность газов*. Теплопроводность одноатомного и многоатомных газов. Теплопроводность газа из твердых сфер.
 - 4.2 Вязкость газов. Вязкость одноатомного и многоатомных газов.

5 Диффузия газов.

- 5.1 Диффузия легкого газа в тяжелом. Транспортное сечение. Коэффициенты диффузии и термодиффузии.
 - 5.2 Диффузия тяжелого газа в легком. Соотношение Эйнштейна.

6 Кинетические явления во внешних полях.

- 6.1 Теплопроводность газа во внешнем магнитном и электрическом поле. Анизотропия теплопроводности. Нечетный эффект для теплопроводности в магнитном поле.
- 6.2 Вязкость газа во внешнем магнитном и электрическом поле. перекрестные эффекты для вязкости и теплопроводности.

7 Диффузионное приближение.

- 7.1 *Уравнение Фоккера-Планка для тяжелого газа в легком*. Уравнение Фоккера-Планка для легкого газа в тяжелом. Диффузия в импульсном пространстве.
- 7.2 Слабо-ионизированный газ во внешнем электрическом поле. Подвижность электронов в случае слабых и сильных полей.

8 Бесстолкновительная плазма.

- 8.1 *Уравнения для бесстолкновительной плазмы*. Кинетическое уравнение в приближении времени релаксации. Электронный газ в постоянном электрическом поле. Пространственная дисперсия в плазме.
- 8.2 Диэлектрическая проницаемость бесстолкновительной плазмы. Затухание Ландау.
- 8.3 Плазма в магнитном поле. Диэлектрическая проницаемость магнитоактивной плазмы.

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА УЧЕБНОЙ ДИСЦИПЛИНЫ

Дневная форма получения образования

	дневная форма по							,
•		Количество аудиторных часов)B	_	
Номер раздела, темы	Название раздела, темы	Лекции	Практические занятия	Семинарские занятия	Лабораторные занятия	Иное	Количество часов УСР	Форма контроля знаний
1	2	3	4	5	6	7	8	9
1	Общие положения физической кинетики.	4						
1.1	Функция распределения. Принцип детального равновесия	2						
1.2	Кинетическое уравнение Больцмана. Интеграл столкновений.	1						решение задач
1.3	Н-теорема Больцмана.	1						устный опрос
2	Макроскопические уравнения переноса.	4						
2.1	Локально-равновесное течение идеального газа.	2						устный опрос
2.2	Уравнения гидродинамики идеальной жидкости.	2						коллоквиум
3	Приближенное решение уравнения Больцмана.	4						
3.1	Приближение Чепмена-Энскога.	2						устный опрос
3.2	Кинетическое уравнение для слабо неоднородного газа.	2						решение задач
4	Теплопроводность и вязкость газов.	4		3				
4.1	Теплопроводность газов.	2		2				устный опрос
4.2	Вязкость газов.	2		1				коллоквиум
5	Диффузия газов.	4		1			2	
5.1	Диффузия легкого газа в тяжелом. Транспортное	2		1				устный опрос

	сечение				
5.2	Диффузия тяжелого газа в легком.	2		2	коллоквиум по темам № 1-5
6	Кинетические явления во внешних полях.	2			
6.1	Теплопроводность газа во внешнем магнитном и электрическом поле.	1			устный опрос
6.2	Вязкость газа во внешнем магнитном и электрическом поле.	1			решение задач
7	Диффузионное приближение.	4			
7.1	Уравнение Фоккера-Планка.	2			устный опрос
7.2	Слабо-ионизированный газ во внешнем электрическом поле.	2			коллоквиум
8	Бесстолкновительная плазма.	6	2	2	
8.1	Уравнения для бесстолкновительной плазмы. Пространственная дисперсия в плазме.	2	1		устный опрос
8.2	Диэлектрическая проницаемость бесстолкновительной плазмы. Затухание Ландау.	2	1		решение задач
8.3	Плазма в магнитном поле. Диэлектрическая	2		2	контрольная работа
	проницаемость магнитоактивной плазмы				по темам № 4–8
	Итого	32	6	4	

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

Перечень основной литературы

- 1. Ландау, Л.Д. Теоретическая физика: Учеб. пособие для студентов физ. специальностей ун-тов: В 10 т. / Под ред. Питаевского Л.П. Т.10, Физическая кинетика. М.: Физматлит, 2002. 535 с.
- 2. Базаров, И.П. Неравновесная термодинамика и физическая кинетика. М.: Изд-во МГУ, 1989. 240 с.
- 3. Байков, В.И. Теплофизика. Т. 2. / В.И. Байков, Н.В. Павлюкевич, А.К. Федотов, А.И. Шнип. Минск: ИТМО им. А.В. Лыкова НАНБ, 2014.
- 4. Лойцянский, Л.Г. Механика жидкости и газа / Л.Г. Лойцянский. М.: Дрофа, 2003.
- 5. Кутателадзе, С.С. Основы теории теплообмена / С.С. Кутателадзе.
 - М.: Атомиздат, 1979.

Перечень дополнительной литературы

- 1. Седов, Л.И. Механика сплошной среды. Т. 1. / Л.И. Седов. М.: Наука, 1970.
- 2. Шлихтинг, Г. Теория пограничного слоя / Г. Шлихтинг. М.: Мир, 1969.
- 3. Исаченко, В.И. Теплопередача / В.И. Исаченко, В.А. Осипова, А.С. Сукомел. М.: Энергия, 1975.
- 4. Цветков, Ф.Ф. Тепломассообмен / Ф.Ф. Цветков, Б.А. Григорьев. М.: Издательство МЭИ, 2005.

Перечень рекомендуемых средств диагностики и методика формирования итоговой оценки

Для текущего контроля качества усвоения знаний по дисциплине использовать контрольную работу рекомендуется коллоквиум. Контрольные проводятся соответствии учебномероприятия В c методической картой дисциплины. В случае неявки на контрольное мероприятие по уважительной причине студент вправе по согласованию с преподавателем выполнить его в дополнительное время. Для студентов, получивших неудовлетворительную оценку за контрольное мероприятие, либо не явившихся по неуважительной причине, по согласованию с преподавателем и с разрешения заведующего кафедрой мероприятие может быть проведено повторно.

Контрольная работа проводится в письменной форме и включает в себя от 2 до 5 задач. Каждая задача в соответствии с ее сложностью оценивается от 2 до 3 баллов (максимальная сумма баллов за все задачи в контрольной работе равна 10). Количество баллов за каждую решенную задачу

выставляется в зависимости от правильности, полноты и оригинальности ее решения. Нерешенная или решённая полностью неправильно задача оценивается в 0 баллов. Оценка за контрольную работу рассчитывается как сумма баллов, полученных за каждую задачу.

Коллоквиум проводятся в письменной форме, и включает в себя 2–3 задания. По согласованию с преподавателем разрешается использовать справочные, научные и учебные печатные издания. Каждая задача в соответствии с ее сложностью оценивается от 3 до 5 баллов (максимальная сумма баллов за все задачи равна 10). Количество баллов за каждую решенную задачу выставляется в зависимости от правильности, полноты и оригинальности ее решения. Нерешенная или решённая полностью неправильно задача оценивается в 0 баллов. Оценка за коллоквиум рассчитывается как сумма баллов, полученных за каждую задачу.

Формирование оценки за текущую успеваемость:

- коллоквиум -50 %;
- контрольная работа -50 %;

При оценке текущей успеваемости 4 балла и более студенты допускаются к экзамену. При оценке ниже 4 баллов решением кафедры студенты не допускаются к экзамену, и им назначается срок выполнения контрольного мероприятия.

Рейтинговая оценка по дисциплине рассчитывается на основе оценки текущей успеваемости и экзаменационной оценки с учетом их весовых коэффициентов Вес оценка по текущей успеваемости составляет 30 %, экзаменационная оценка -70 %.

Примерный перечень заданий для управляемой самостоятельной работы студентов

Тема № 5.2. Диффузия тяжелого газа в легком (2 ч.)

Примерный перечень вопросов:

- 1. Физический смысл и условия нормировки для функции распределения.
- 2. Кинетическое уравнение Больцмана и явный вид интеграла столкновений.
- 3. Определение макроскопических параметров газа на основе функции распределения.
- 4. Приближенные методы решение уравнения Больцмана.
- 5. Кинетическое уравнение для слабо неоднородного газа.
- 6. Диффузия легкого газа в тяжелом.
- 7. Связь коэффициентов диффузии и термодиффузии с транспортным сечением.
- 8. Диффузия тяжелого газа в легком.
- 9. Соотношение Эйнштейна.

Форма контроля - коллоквиум

Тема № 8.3. Плазма в магнитном поле (2 ч.)

Примерный перечень заданий:

1. Рассчитать проводимость однородной незамагниченной плазмы с максвелловским распределением электронов по скоростям, учитывая

столкновения в приближении времени релаксации.

- 2. Рассчитать и сравнить отношение амплитуд электрического и магнитного полей у альфвеновской волны и у обычной электромагнитной волны.
- 3. Рассчитать диэлектрическую проницаемость вырожденного электронного газа (в отсутствии внешнего магнитного поля).
- 4. Рассчитать диэлектрическую проницаемость вырожденного электронного газа в магнитном поле.
- 5. Рассчитать диэлектрическую проницаемость релятивистского электронного газа (в отсутствии внешнего магнитного поля).
- 6. Рассчитать коэффициент теплопроводности газа со степенной зависимостью межмолекулярного сечения рассеяния.
- 7. Рассчитать коэффициент вязкости газа со степенной зависимостью межмолекулярного сечения рассеяния.
- 8. Рассчитать макроскопические параметры газа по задонной функции распределения.
- 9. Рассчитать длину и время свободного пробега молекул газа по заданному сечению рассеяния.

Форма контроля - контрольная работа.

Рекомендуемые темы коллоквиумов:

- 1. Кинетическое уравнение Больцмана.
- 2. Явный вид интеграла столкновений.
- 3. Макроскопические уравнения переноса.
- 4. Поток массы, энергии и импульса.
- 5. Методы приближенного решения уравнения Больцмана.
- 6. Диффузия газов.
- 7. Коэффициенты диффузии и термодиффузии.
- 8. Кинетические явления во внешних полях.
- 9. Уравнение Фоккера-Планка.
- 10. Уравнения для бесстолкновительной плазмы.
- 11. Пространственная дисперсия в плазме.
- 12. Диэлектрическая проницаемость бесстолкновительной плазмы.
- 13. Плазма в магнитном поле.
- 14. Диэлектрическая проницаемость магнитоактивной плазмы.

Примеры задач контрольной работы:

Тема: «Теплопроводность и вязкость газов» (2 ч.).

Найти температурную зависимость вязкости одноатомного газа из абсолютно твердых сфер с массами m и радиусом r.

Форма контроля – контрольная работа.

Тема: «Плазма в магнитном поле. Диэлектрическая проницаемость магнитоактивной плазмы» (2 ч.)

Определить диэлектрическую проницаемость нормально

намагниченного вырожденного электронного газа. Форма контроля – контрольная работа.

Описание инновационных подходов и методов к преподаванию учебной дисциплины

При организации образовательного процесса используется *практико-ориентированный подход*, который предполагает:

- освоение содержание образования через решения практических задач;
- приобретение навыков эффективного выполнения разных видов профессиональной деятельности;
- формирование навыков работы с информацией в процессе изучения научной литературы, выработку критического мышления.

При организации образовательного процесса применяются также методы и приемы развития критического мышления, используя построение индуктивно-дедуктивных логических связей в процессе нахождения макроскопических характеристик газа (теплопроводность, вязкость и др.) на основе микроскопических параметров межмолекулярного взаимодействия (индукция) и нахождение микроскопических первопричин для таких макроскопических явлений как четный эффект в теплопроводности газа, помещенного в магнитное поле (дедукции).

Методические рекомендации по организации самостоятельной работы обучающихся

Основой методики организации самостоятельной работы студентов по курсу является предоставление студентам необходимой для работы информации, а также обеспечение регулярных консультаций преподавателя и периодичной отчетности по различным видам учебной и самостоятельной деятельности, а также: обзор литературы и электронных источников по индивидуально заданной проблеме курса; выполнение домашнего задания; работы, предусматривающие решение задач и выполнение упражнений, выдаваемых на практических занятиях; изучение материала, вынесенного на самостоятельную проработку; подготовка к практическим семинарским занятиям; – подготовка к экзамену.

В открытом доступе для студентов размещается следующая информация:

- программа курса с указанием основной и дополнительной литературы;
- учебно-методические материалы;
- график консультаций преподавателя;
- вопросы для проведения экзамена;
- сроки проведения контрольных мероприятий по различным видам учебной деятельности:
 - коллоквиума по изучаемому материалу;

- для дополнительного развития творческих способностей одаренных студентов организуются:
 - студенческие научно-практические конференций, конкурсы;

Примерный перечень вопросов к экзамену

- 1. Общие положения физической кинетики.
- 2. Функция распределения. Принцип детального равновесия.
- 3. Кинетическое уравнение Больцмана. Интеграл столкновений.
- 4. Н-теорема Больцмана.
- 5. Макроскопические уравнения переноса.
- 6. Вывод уравнений гидродинамики идеальной жидкости. Поток массы, энергии и импульса.
- 7. Приближенное решение уравнения Больцмана. Приближение Чепмена-Энскога.
- 8. Кинетическое уравнение для слабо неоднородного газа.
- 9. Теплопроводность газов. Теплопроводность одноатомного и многоатомных газов.
- 10. Вязкость газов. Вязкость одноатомного и многоатомных газов.
- 11. Диффузия легкого газа в тяжелом. Транспортное сечение. Коэффициенты диффузии и термодиффузии.
- 12. Диффузия тяжелого газа в легком. Соотношение Эйнштейна.
- 13. Теория броуновского движения. Уравнение Ланжевена. Приближение "белого шума".
- 14. Кинетические явления во внешних полях.
- 15. Диффузионное приближение. Уравнение Фоккера-Планка для тяжелого газа в легком. Уравнение Фоккера-Планка для легкого газа в тяжелом.
- 16. Слабо-ионизированный газ во внешнем электрическом поле. Подвижность электронов в случае слабых и сильных полей.
- 17. Бесстолкновительная плазма. Уравнения для бесстолкновительной плазмы. Пространственная дисперсия в плазме.
- 18. Диэлектрическая проницаемость бесстолкновительной плазмы.
- 19. Кинетическое уравнение в приближении времени релаксации. Электронный газ в постоянном электрическом поле.
- 20. Затухание Ландау.
- 21. Плазма в магнитном поле.
- 22. Диэлектрическая проницаемость магнитоактивной плазмы.
- 23. Гауссово распределение вероятности малых флуктуаций.
- 24. Флуктуации системы, помещенной в термостат.
- 25. Корреляция флуктуаций во времени. Теорема Винера-Хинчина.
- 26. Принцип симметрии кинетических коэффициентов (соотношения Онзагера).
- 27. Потоки и обобщенные силы. Теорема Онзагера.

ПРОТОКОЛ СОГЛАСОВАНИЯ УЧЕБНОЙ ПРОГРАММЫ УВО

Название	Название	Предложения	Решение, принятое		
учебной	кафедры	об изменениях в	кафедрой,		
дисциплины, с		содержании учебной	разработавшей		
которой		программы	учебную		
требуется		учреждения высшего	программу (с		
согласование		образования по учебной	указанием даты и		
		дисциплине	номера протокола)		
Современные	Кафедра	Оставить содержание	Изменений не		
проблемы	теоретической	учебной дисциплины	требуется		
фундаментальн	физики и	без изменения	(протокол №12 от		
ой физики	астрофизики		23.05.2019)		

ДОПОЛНЕНИЯ И ИЗМЕНЕНИЯ К УЧЕБНОЙ ПРОГРАММЕ ПО ИЗУЧАЕМОЙ УЧЕБНОЙ ДИСЦИПЛИНЕ на ____/___ учебный год

№	Дополнения и изменения	Основание			
п/п					
Viiofi	TOR THOSPONIC HOPONICTPONO IL OHOSPONIC	va pagarayyyy kadagany			
J 400F	ная программа пересмотрена и одобрена (протокол	№ от 20 г.)			
Заведующий кафедрой					
					
	РЖДАЮ факультета				