

86.03 – DISPOSITIVOS SEMICONDUCTORES Evaluación Parcial 2 de junio de 2022

Nombre y apellido:			Tema 1
Padrón:	Turno:	N° de examen: _	
- Es condición necesaria para aprobar el parcial que al menos el 60 % de cada problema está correctamente			

- Es condición necesaria para aprobar el parcial que al menos el 60 % de cada problema esté correctamente planteado.
- Se considerará: La claridad y síntesis conceptual de las respuestas y justificaciones, los detalles de los gráficos/circuitos, la exactitud de los resultados numéricos.
- Cada uno de los dos ejercicios debe estar resuelto en hojas independientes.

Calificación: _____

Datos generales: $q = 1,602 \times 10^{-19} \,\mathrm{C}$; $m_0 = 9,109 \times 10^{-31} \,\mathrm{kg}$; $k = 1,381 \times 10^{-23} \,\mathrm{J/K}$; $h = 6,626 \times 10^{-34} \,\mathrm{J\,s}$; $\varepsilon_0 = 8,85 \times 10^{-12} \,\mathrm{F/m}$; $\varepsilon_r(\mathrm{Si}) = 11,7$; $\varepsilon_r(\mathrm{SiO}_2) = 3,9$.

1)

- a) Se tiene un bloque cúbico de lado a=1 mm de un material semiconductor y se desea que, cuando se le aplique una tensión entre 0 V y 1 V, obtener corrientes entre 0 mA y 1 mA. Conocidas las características del material que se detallan al final de este enunciado, determinar si el bloque necesita ser impurificado y, si este fuera el caso, obtener la concentración de impurezas para el caso donor. ($E_g=0.9\,\mathrm{eV};\ m_n^*/m_0=0.1;\ m_p^*/m_0=0.6;\ \mathrm{movilidades}$ caso intrínseco: $\mu_n=1000\,\mathrm{cm^2/Vs};\ \mu_p=500\,\mathrm{cm^2/Vs};\ \mathrm{movilidades}$ caso extrínseco: $\mu_n=200\,\mathrm{cm^2/Vs};\ \mu_p=150\,\mathrm{cm^2/Vs};\ T=300\,\mathrm{K}$).
- b) A partir del circuito de la figura 1 ($V_{DD}=5\,\mathrm{V};\ R_{G1}=2\,\mathrm{k}\Omega;\ R_D=1\,\mathrm{k}\Omega;\ T=300\,\mathrm{K}$), obtener la potencia entregada por la fuente cuando el transistor MOSFET ($\mu_n C'_{ox}W/L=1\,\mathrm{m}\mathrm{A}/\mathrm{V}^2;\ V_T=1\,\mathrm{V};\ \lambda=0\,\mathrm{V}^{-1}$) se encuentra polarizado para que haya una corriente constante de 1 mA circulando a través del diodo ($V_{\mathrm{ON}}=0.7\,\mathrm{V}$). Además, determinar el valor de R_{G2} para que el transistor se encuentre en saturación.

Figura 1

- 2) Se tiene un diodo de juntura PN⁺ del cual se conocen los siguientes datos: $A=1\,\mathrm{mm^2},~\phi_B=716\,\mathrm{mV},~W_p=100\,\mathrm{\mu m}\gg x_p,~W_n=100\,\mathrm{\mu m}\gg x_n$. Además, se sabe que el dopaje del lado menos dopado es $N_A<1\times10^{15}\,\mathrm{1/cm^3},~\mathrm{de}$ manera que en esa región se puede aproximar $\mu_n\approx1400\,\mathrm{cm^2/Vs}$ y $\mu_p\approx485\,\mathrm{cm^2/Vs}$. Se realiza una medición de la curva I-V del diodo a temperatura ambiente y se grafican los resultados en la figura 2 en escala semilogarítmica (atención: base 10), en donde se conoce $m=13\,\mathrm{V^{-1}},~P_x=(0.65\,\mathrm{V};1.64\,\mathrm{mA})$ e $I_{0\text{-real}}=8.1\,\mathrm{nA}.$
 - a) Calcular el coeficiente de idealidad, la corriente de saturación ideal $I_{0\text{-ideal}}$, las concentraciones de impurezas y explicar cómo se modificaría la curva I_D vs V_D si se aumenta la temperatura. (Ayuda: $\log_b(a) = \log_c(a)/\log_c(b)$).
 - b) Obtener los parámetros del modelo de pequeña señal $(r_d, C_j \ y \ C_d)$ en el punto P_x .

Figura 2