Operációs rendszerek BSc

5. Gyak. 2022. 03. 07.

Készítette:

Szkárosi Szilárd Bsc Mérnökinformatikus DLWGQZ

Miskolc, 2022

1. feladat – A *system()* rendszerhívással hajtson végre létező és nem létező parancsot, és vizsgálja a visszatérési érteket, magyarázza egyegy mondattal!

Mentés: neptunkod lfel.c

```
| Toursepartic | Tour
```

2. feladat – Írjon programot, amely billentyűzetről bekér Unix parancsokat és végrehajtja őket, majd kiírja a szabványos kimenetre. (pl.: amit bekér: date, pwd, who etc.; kilépés: CTRL-\) - magyarázza egy-egy mondattal.

Mentés: neptunkod2fel.c

```
#include <stdio.h>
#include <stdib.h>
#include <sys/types.h>
#include <sys/wait.h>

int main()

char input[100];
printf("Adjon meg egy parancsot: ");
scanf("%s", input);
system(input);
return 0;
}

Adjon meg egy parancsot: uname
Linux

Process returned 0 (0x0) execution time: 6.141 s

Press ENTER to continue.
```

3. feladat – Készítsen egy XY_parent.c és a XY_child.c programokat. A XY_parent.c elindít egy gyermek processzt, ami különbözik a szülőtől. A szülő megvárja a gyermek lefutását. A gyermek szöveget ír a szabványos kimenetre (10-szer) (pl. a hallgató neve és a neptunkód)!

Mentés: XY parent.c, ill. XY child.c

XY parent.c

XY_child.c

4. feladat – A fork() rendszerhívással hozzon létre egy gyerek processzt-t és abban hívjon meg egy exec családbeli rendszerhívást (pl. execlp). A szülő várja meg a gyerek futását! Mentés: *neptunkod4fel.c*

```
'minta jk_os.pdf' OS_5_Gyak _system.c
Process returned 0 (0x0) execution time : 0.012 s
Press ENTER to continue.
```

5. feladat – A fork() rendszerhívással hozzon létre gyerekeket, várja meg és vizsgálja a befejeződési állapotokat (gyerekben: exit, abort, nullával való osztás)!

Mentés: neptunkod5fel.c

```
Sikeres!:)
Process returned 0 (0x0) execution time: 0.006 s
Process ENTER to continue.

### Continue
### Cont
```

- 6. feladat Határozza meg FCFS és SJF esetén
- a.) A befejezési időt?
- b.) A várakozási/átlagos várakozási időt?
- c.) Ábrázolja Gantt diagram segítségével *az aktív/várakozó processzek* futásának menetét.

Megj.: a Gantt diagram ábrázolása szerkesztő program segítségével vagy Excel programmal.

Mentés: neptunkod6fel pdf

FCFS megoldás:

FCFS	Érkezés	CPU idő	Indulás Befejezé		Várakozás
P1	0	3	0 3		0
P2	1	8	3	11	2
Р3	3	2	11	13	8
P4	9	20	13	33	4
P5	12	5	33	38	21

Diagram:

SJF megoldás:

SJF	Érkezés	CPU idő	Indulás	Befejezés	Várakozás
P1	0	3	0	3	0
P2	1	8	5	13	4
Р3	3	2	3	5	0
P4	9	20	18	38	9
P5	12	5	13	18	1

Diagram:

Round Robin (RR) esetén

- a.) Ütemezze az adott időszelet (5ms) alapján az egyes processzek (befejezési és várakozási/átlagos várakozási idő) paramétereit (ms)!
- b.) A rendszerben lévő processzek végrehajtásának sorrendjét?
- c.) Ábrázolja Gantt diagram segítségével az *aktív/várakozó processzek* futásának menetét!"

Megj.: a Gantt diagram ábrázolása szerkesztő program segítségével vagy Excel programmal.

Mentés: neptunkod6fel pdf

Round Robin megoldás:

RR: 5ms	Érkezés	CPU idő	Indulás	Befejezés	Várakozás	Várakozó processz
P1	0	3	0	3	0	P2
P2	1	8	3	8	2	P2, P3
Р3	3	2	8	10	5	P2, P4
P4	9	20	13	18	4	P4, P5
P5	12	5	18	23	6	P4

Diagram:

