Indian Institute of Space Science and Technology

Vector Calculus

Spring 2023

Directional Derivatives

Tutorial-I

Prosenjit Das

Directional derivatives

- 1. Consider $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ defined by f(x,y) := ||x| |y|| |x| |y|. Determine whether (i) f is continuous at (0,0), (ii) the partial derivatives $D_x f|_{(0,0)}$ and $D_y f|_{(0,0)}$ exist, and (iii) the directional derivative $D_{\vec{v}} f|_{(0,0)}$ exists. Is f differentiable at (0,0)? Justify your answer.
- 2. Let $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ be defined by f(x,y) := 0 if xy = 0, and f(x,y) := 1 otherwise. Show that f is not continuous at (0,0) although both the partial derivatives of f exist at (0,0).
- 3. Let $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ be defined by $f(x,y) := x^2 + y^2$ if x and y are both rational, and f(x,y) := 0 otherwise. Determine the points of \mathbb{R}^2 at which (i) $D_x f$ exists, (ii) $D_y f$ exists.
- 4. Let $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ defined by one of the following functions. Check if $D_{\vec{v}}f|_{(0,0)}$ exists for any unit vector \vec{v} . Is f continuous at (0,0)? Is f differentiable at (0,0)?

 (i) $f(x,y) = \sqrt{x^2 + y^2}$, (ii) f(x,y) = |x| + |y|
- 5. Consider $f: \mathbb{R}^2 \longrightarrow R$ defined by f(0,0) := 0 and for $(x,y) \neq (0,0)$, by one of the following. In each case, determine whether the directional derivative $D_{\vec{v}}f|_{(0,0)}$ exists for any unit vector \vec{v} in \mathbb{R}^2 . If it does, then check whether $D_{\vec{v}}f|_{(0,0)} = \langle \nabla f_{(0,0)}, \vec{v} \rangle$ for a unit vector \vec{v} in \mathbb{R}^2 . Finally, determine whether f is differentiable at (0,0).

determine whether
$$f$$
 is differentiable at $(0,0)$.
(i) $\frac{x^2y}{x^2+y^2}$, (ii) $xy\frac{x^2-y^2}{x^2+y^2}$, (iii) $\frac{x^3}{x^2+y^2}$, (iv) $\frac{xy^2}{x^4+y^2}$, (v) $\ln(x^2+y^2)$, (vi) $xy\ln(x^2+y^2)$, (vii) $\frac{xy}{x^2+y^2}$.

- 6. Consider $f: \mathbb{R}^2 \longrightarrow R$ defined by $f(x,y) := (y/|y|)\sqrt{x^2 + y^2}$ if $y \neq 0$, and f(x,y) := 0 if y = 0. Show that f is continuous at (0,0), $D_{\vec{v}}f|_{(0,0)}$ exists for every unit vector \vec{v} in R^2 , but f is not differentiable at (0,0).
- 7. show that the function $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ defined by $f(x,y) = \frac{x^2y^2}{x^4 + y^2}$ for $(x,y) \neq (0,0)$ and f(0,0) = 0 is differentiable at (0,0).
- 8. Starting from (1,1), in which direction should one travel in order to obtain the most rapid rate of decrease of the function $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ defined by $f(x,y) := (x+y-2)^2 + (3x-y-6)^2$?
- 9. About how much will the function $f(x,y) := \ln \sqrt{x^2 + y^2}$ change if the point (x,y) is moved from (3,4) a distance 0.1 unit straight toward (3,6)?
- 10. Consider $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ defined by $f(x,y) := (x+y)/\sqrt{2}$ if x=y, and f(x,y) := 0 otherwise. Show that $D_x f|_{(0,0)} = D_x f|_{(0,0)} = 0$ and $D_{\vec{v}} f|_{(0,0)} = 1$, where $\vec{v} = (1/\sqrt{2}, 1/\sqrt{2})$. Deduce that f is not differentiable at (0,0).

- 11. Let $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ a C^1 -type function. Define $\phi(x,y) = \lim_{h \to 0} \frac{f(hx,hy) f(0,0)}{h}$ for all $(x,y) \in \mathbb{R}^2$ satisfying $x^2 + y^2 = 1$. Prove that the function ϕ exits, i.e., the given limit exists. Show that for any constant $\alpha \in \mathbb{R}$, the level curve $L := \{(x,y) \in \mathbb{R} \mid \phi(x,y) = \alpha\}$ represents a straight line. Find the normal vector at any point of this level curve.
- 12. Find the directional derivative, if exists, of the given function in the given point in the indicated direction
 (i) x²u u²z xuz at (1 -1 0) in the direction (î î + 2k) (ii) (x² + u² + z²) 3/2 at (-1 1 2) in

(i) $x^2y - y^2z - xyz$, at (1, -1, 0) in the direction $(\hat{i} - \hat{j} + 2\hat{k})$, (ii) $(x^2 + y^2 + z^2)^{\frac{3}{2}}$, at (-1, 1, 2) in the direction $(\hat{i} - 2\hat{j} + \hat{k})$, (iii) $e^x - yz$, at (1, 1, 1) in the direction $(\hat{i} - \hat{j} + \hat{k})$.

13. Let $h(x,y) = 2e^{-x^2} + e^{-3y^2}$ denote the height on a mountain at position (x,y). In what direction from (1,0) should one begin walking in order to climb the fastest?

(i) $x^2 + y^2 + z^2 = 9$ at $(0, \sqrt{3}, \sqrt{3})$, (ii) $x^3y^3 + y - z + 2 = 0$ at (0, 0, 2), (iii) $z = 1/(x^2 + y^2)$ at (1, 1, 1/2).

- 14. **(Theory)** Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ is a function. Show that f is differentiable at x_0 if and only if exists $\alpha \in \mathbb{R}$ such that $\lim_{h \longrightarrow 0} \frac{f(x_0 + h) f(x_0) \alpha h}{|h|} = 0$.
- 15. **(Theory)** Let $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ is a function. We know that f is differentiable at a point $(x_0, y_0) \in \mathbb{R}^2$ if there exist $\alpha, \beta \in \mathbb{R}$ such that $\lim_{(h,k) \longrightarrow (0,0)} \frac{f(x_0 + h, y_0 + k) f(x_0, y_0) \alpha h \beta k}{\sqrt{h^2 + k^2}} = 0$. Show that if f is differentiable at (x_0, y_0) , then α and β are the partial derivates of f at (x_0, y_0) .
- 16. (**Theory**) Let $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ is differentiable at a point (x_0, y_0) . Show that f is continuous at (x_0, y_0) .