

February 1992

DMS-DR-2476
NASA-CR-167, 691

VOLUME 2 OF 2

RESULTS OF EXPERIMENTAL INVESTIGATIONS TO DETERMINE
EXTERNAL TANK PROTUBERANCE LOADS
USING A 0.03-SCALE MODEL OF THE
SPACE SHUTTLE LAUNCH CONFIGURATION (MODEL 47-OTS) IN
THE NASA/ARC UNITARY PLAN WIND TUNNEL
(IA190A/B)

by

S.R. HOULIHAN
ROCKWELL INTERNATIONAL
SPACE TRANSPORTATION SYSTEMS DIVISION

Prepared under NASA Contract Number NAS9-17840

by

DATA MANAGEMENT SERVICES
CHRYSLER TECHNOLOGIES AIRBORNE SYSTEMS
MICHoud ENGINEERING OFFICE
NEW ORLEANS, LOUISIANA 70189

for

NAVIGATION, CONTROL & AERONAUTICS DIVISION

JOHNSON SPACE CENTER
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
HOUSTON, TEXAS

WIND TUNNEL TEST SPECIFICS:

TEST NUMBER:	411-1,2,3-11,	411-1,2,3-97
NASA SERIES NUMBER:	IA190A	IA190B
MODEL NUMBER:	47-OTS	
TEST DATES:	7 FEB-19 FEB.80	17 MAR-30 MAY 80
OCCUPANCY HOURS:	167 + 128	

FACILITY COORDINATOR:

J. J. Brownson
Mail Stop 227-5
Ames Research Center
Moffett Field, CA 94035
Phone (415) 965-6262

PROJECT ENGINEERS:

S.R. Houlihan
R. H. Spangler
A. R. Kanevsky
Rockwell International
STS D&P Division
12214 Lakewood Blvd.
Downey, CA 90241
Phone (213) 922-1463

ANALYSIS ENGINEERS:

J. W. Kuczwara
J. W. McClymonds
Rockwell International
STS D&P Division
12214 Lakewood Blvd.
Downey, CA 90241
Phone (213) 922-4434
922-2018

DATA MANAGEMENT SERVICES:

Approved: J. L. Glynn
J. L. Glynn, Manager
Data Management Services

Concurrence: D. E. Poucher
D. E. Poucher, Mgr.
CTAS Michoud Engrg.

RESULTS OF EXPERIMENTAL INVESTIGATIONS TO DETERMINE
EXTERNAL TANK PROTUBERANCE LOADS
USING A 0.03-SCALE MODEL OF THE
SPACE SHUTTLE LAUNCH CONFIGURATION(MODEL 47-OTS) IN
THE NASA/ARC UNITARY PLAN WIND TUNNEL
(IA190A/B)

by
S.R. HOULIHAN
ROCKWELL INTERNATIONAL
SPACE TRANSPORTATION SYSTEMS DIVISION

ABSTRACT

Data were obtained on a 3-percent model of the Space Shuttle launch vehicle in the NASA/Ames Research Center 11x11-foot and 9x7-foot Unitary Plan Wind Tunnels. This test series has been identified as IA190A/B and was conducted from 7 Feb. 1980 to 19 Feb. 1980 (IA190A) and from 17 March 1980 to 19 March 1980 and from 8 May 1980 to 30 May 1980 (IA190B). The primary test objective was to obtain structural loads on the following external tank protuberances:

- 1) LO₂ feedline
- 2) GO₂ pressure line
- 3) LO₂ antigeyser line
- 4) GH₂ pressure line
- 5) LH₂ tank cable tray
- 6) LO₂ tank cable tray
- 7) Bipod
- 8) ET/SRB cable tray
- 9) Crossbeam/Orbiter cable tray

To fulfill these objectives the following steps were taken:

- a) Eight 3-component balances were used to measure forces on various sections of 1 thru 6 above.
- b) 315 pressure orifices were distributed over all 9 above items. The LO₂ feedline was instrumented with 96 pressure taps and was rotated to four positions to yield 384 pressure measurements. The LO₂ antigeyser line was instrumented with 64 pressure taps and was rotated to two positions to yield 128 pressure measurements.
- c) Three Chrysler miniature flow direction probes were mounted on a traversing mechanism on the tank upper surface centerline to obtain flow field data between the forward and aft attach structures.
- d) Schlieren photographs and ultraviolet flow photographs were taken at all test conditions.

Data from each of the four test phases are presented.

TABLE OF CONTENTS

	<u>PAGE</u>
ABSTRACT	iii
INDEX OF MODEL FIGURES	2
INDEX OF DATA FIGURES	4
INTRODUCTION	7
NOMENCLATURE	10
CONFIGURATIONS INVESTIGATED	15
INSTRUMENTATION	19
TEST FACILITIES DESCRIPTION	23
DATA REDUCTION	24
REFERENCES	28
TABLES	
I TEST CONDITIONS	29
II DATA SET/RUN NUMBER COLLATION SUMMARY	30
III STATIC PRESSURE TAP LOCATIONS	39
FIGURES	
MODEL	43
DATA	75
APPENDIX - Tabulated Source Data	
FORCE - Volume I	
PRESSURE - Volume II (Microfiche only)	

INDEX OF MODEL FIGURES

<u>FIGURE</u>	<u>TITLE</u>	<u>PAGE</u>
1. Model Axis Systems and Sign Conventions		
a.	Orbiter Axis Systems	43
b.	Moment Sign Conventions	44
c.	Elevon Sign Conventions	45
d.	Definition of Angular Measurements	46
2. Model Sketches		
a.	Launch Vehicle Configuration	47
b.	Tunnel Installation	48
c.	ET Angular Definitions and Balance Locations	49
d.	ET Protuberance Locations	50
e.	Metric Protuberance Details	51
f.	Metric Protuberance Attachment Details	52
g.	Probe Axis Definition	53
h.	Probe Axis Details	54
i.	Probe Axis Details	55
j.	Probe Details	56
k.	Probe Calibration Installation in MSFC 14" TWT	57
l.	Probe Calibration Fixture Details	58
3. Model Photographs		
a.	Model 47-OTS in the NASA/ARC 11x11 foot tunnel front quarter view	59
b.	Model 47-OTS in the NASA/ARC 11x11 foot tunnel rear quarter view	60
c.	Model 47-OTS in the NASA/ARC 11x11 foot tunnel rear quarter view showing sting details	61
d.	Model 47-OTS detail showing traversing probe carrier details and pressure instrumented protuberances	62
e.	Model 47-OTS - Closeup of probe carrier	63
f.	Model 47-OTS - Closeup of Rear Attach Structure	64
g.	Model 47-OTS - Rear Attach Structure Details	65
h.	Model 47-OTS - Forward Attach Structure Detail and Metric Protuberances	66
i.	Model 47-OTS - Forward Attach Structure Detail and Pressure Instrumented Protuberances	67
j.	Model 47-OTS - Probe Traversing Mechanism	68
k.	Model 47-OTS - Protuberance Balances in their Carrying Case with Metric Protuberances Attached	69

INDEX OF MODEL FIGURES - (Concluded)

<u>FIGURE</u>	<u>TITLE</u>	<u>PAGE</u>
l.	Oil Flow Baseline Picture	70
m.	Oil Flow - $\alpha = -4^\circ$, $\beta = 0^\circ$, $M = 1.25$	71
n.	Oil Flow - $\alpha = 4^\circ$, $\beta = 0$, $M = 1.25$	72
o.	Oil Flow - $\alpha = 0$, $\beta = -4^\circ$, $M = 1.25$	73
p.	Oil Flow - $\alpha = 0$, $\beta = +4^\circ$, $M = 1.25$	74

INDEX OF DATA FIGURES

	TITLE	SCHEDULE	PAGE
FIGURE 4.	AERODYNAMIC FORCES ON THE LO2 TANK CABLE TRAY AND GO2 PRESSURE LINES COMBINED. XT = 760.0 TO 895.0, RAMPS ON	A	1-8
FIGURE 5.	AERODYNAMIC FORCES ON THE LO2 TANK CABLE TRAY AND GO2 PRESSURE LINES COMBINED. XT = 760.0 TO 895.0, RAMPS OFF	A	9-16
FIGURE 6.	AERODYNAMIC FORCES ON THE LH2 TANK CABLE TRAY, GO2 PRESSURE, AND LO2 ANTI GEYSER LINES COMBINED. XT = 1043.0 TO 1237.9, RAMPS ON	B	17-24
FIGURE 7.	AERODYNAMIC FORCES ON THE LH2 TANK CABLE TRAY, GO2 PRESSURE, AND LO2 ANTI GEYSER LINES COMBINED. XT = 1043.0 TO 1237.9, RAMPS OFF	B	25-32
FIGURE 8.	AERODYNAMIC FORCES ON THE LH2 TANK CABLE TRAY, GO2 PRESSURE, AND LO2 ANTI GEYSER LINES COMBINED. XT = 1237.9 TO 1431.7, RAMPS ON	C	33-40
FIGURE 9.	AERODYNAMIC FORCES ON THE LH2 TANK CABLE TRAY, GO2 PRESSURE, AND LO2 ANTI GEYSER LINES COMBINED. XT = 1237.9 TO 1431.7, RAMPS OFF	C	41-48
FIGURE 10.	AERODYNAMIC FORCES ON THE LH2 TANK CABLE TRAY, GO2 PRESSURE, AND LO2 ANTI GEYSER LINES COMBINED. XT = 1431.7 TO 1625.5, RAMPS ON	D	49-56
FIGURE 11.	AERODYNAMIC FORCES ON THE LH2 TANK CABLE TRAY, GO2 PRESSURE, AND LO2 ANTI GEYSER LINES COMBINED. XT = 1431.7 TO 1625.5, RAMPS OFF	D	57-64
FIGURE 12.	AERODYNAMIC FORCES ON THE LH2 TANK CABLE TRAY, GO2 PRESSURE, AND LO2 ANTI GEYSER LINES COMBINED. XT = 1819.3 TO 2050.0, RAMPS ON	E	65-72
FIGURE 13.	AERODYNAMIC FORCES ON THE LH2 TANK CABLE TRAY, GO2 PRESSURE, AND LO2 ANTI GEYSER LINES COMBINED. XT = 1819.3 TO 2050.0, RAMPS OFF	E	73-80
FIGURE 14.	AERODYNAMIC FORCES ON THE GH2 PRESSURE LINE, XT = 1074.6 TO 1270.0, RAMPS ON	F	81-88
FIGURE 15.	AERODYNAMIC FORCES ON THE GH2 PRESSURE LINE, XT = 1074.6 TO 1270.0, RAMPS OFF	F	89-96
FIGURE 16.	AERODYNAMIC FORCES ON THE GH2 PRESSURE LINE, XT = 1399.4 TO 1593.2, RAMPS ON	G	97-104
FIGURE 17.	AERODYNAMIC FORCES ON THE GH2 PRESSURE LINE, XT = 1399.4 TO 1593.2, RAMPS OFF	G	105-112
FIGURE 18.	AERODYNAMIC FORCES ON THE GH2 PRESSURE LINE, XT = 1787.0 TO 2050.0, RAMPS ON	H	113-120
FIGURE 19.	AERODYNAMIC FORCES ON THE GH2 PRESSURE LINE, XT = 1787.0 TO 2050.0, RAMPS OFF	H	121-128
FIGURE 20.	ET PROBE SURVEY - LOCAL MACH NUMBER AND PRESSURE COEFFICIENT VERSUS TANK STATION	I	129-170
FIGURE 21.	ET PROBE SURVEY - LOCAL ANGLE OF ATTACK AND SIDESLIP ANGLE VERSUS TANK STATION	J	171-212

INDEX OF DATA FIGURES

	TITLE	SCHEDULE	PAGE
FIGURE 22.	CIRCUMFERENTIAL PRESSURE DISTRIBUTIONS ON THE LO2 FEED LINE	K	213-260
FIGURE 23.	CIRCUMFERENTIAL PRESSURE DISTRIBUTIONS ON THE LO2 ANTI GEYSER LINE	K	261-284
FIGURE 24.	CIRCUMFERENTIAL PRESSURE DISTRIBUTIONS ON THE GH2 PRESSURE LINE	K	285-296
FIGURE 25.	CIRCUMFERENTIAL PRESSURE DISTRIBUTIONS ON THE GO2 PRESSURE LINE	K	297-299
FIGURE 26.	LONGITUDINAL PRESSURE DISTRIBUTIONS ON THE LO2 TANK CABLE TRAY	L	300-305
FIGURE 27.	LONGITUDINAL PRESSURE DISTRIBUTIONS ON THE LH2 TANK CABLE TRAY	L	306-317
FIGURE 28.	PRESSURE DISTRIBUTIONS ON THE ET/SRB TANK CABLE TRAY	M	318-323
FIGURE 29.	PRESSURE DISTRIBUTIONS ON THE FORWARD ATTACH STRUCTURE	K	324-326
FIGURE 30.	RAKE PRESSURE DISTRIBUTIONS	M	327-329

SCHEDULE	COEFFICIENTS PLOTTED	SCHEDULE	COEFFICIENTS PLOTTED	SCHEDULE	COEFFICIENTS PLOTTED	SCHEDULE	COEFFICIENTS PLOTTED
A	C_{AB1} VS \bullet	E	C_{AB5} VS \bullet	I		C_{PL} VS X_T	
	C_{YB1} VS \bullet		C_{YB5} VS \bullet			M_L VS X_T	
	C_{NB1} VS \bullet		C_{Nb5} VS \bullet	J		c_{xxz} VS X_T	
B	C_{AB2} VS \bullet	F	C_{AB6} VS \bullet			c_{xy} VS X_T	
	C_{YB2} VS \bullet		C_{YB6} VS \bullet	K		c_p VS θ	
	C_{Nb2} VS \bullet		C_{Nb6} VS \bullet	L		c_p VS X_T	
C	C_{AB3} VS \bullet	G	C_{AB7} VS \bullet	M		c_p VS θ_T	
	C_{YB3} VS \bullet		C_{YB7} VS \bullet				
	C_{Nb3} VS \bullet		C_{Nb7} VS \bullet				
D	C_{AB4} VS \bullet	H	C_{AB8} VS \bullet				
	C_{YB4} VS \bullet		C_{YB8} VS \bullet				
	C_{Nb4} VS \bullet		C_{Nb8} VS \bullet				

INTRODUCTION

This report presents data obtained from a 3 percent model of the Space Shuttle launch vehicle (Model 47-OTS) in the NASA/Ames Research Center Unitary Plan Wind Tunnels. Testing at Mach numbers from 0.4 to 1.4 was conducted in the 11x11-foot tunnel (IA190A) and testing at Mach numbers from 1.55 to 2.5 was conducted in the 9x7-foot tunnel (IA190B).

The primary purpose of this test was to obtain loads information on the External Tank protuberances. A secondary purpose was to obtain flow field data between the external tank and the orbiter for ice debris analysis. To accomplish these objectives the test was run in four distinct phases. These phases were:

- 1) Force balance data: Eight 3-component balances were installed in the external tank to measure loads on four sections of the GO₂ pressure line/LO₂ antigeyser line/LH₂ tank cable tray array, three sections of the GH₂ pressure line, and one section of the GO₂ pressure line/LO₂ tank cable tray array. Figure 2c shows the exact limits of each metric section and the numbering sequence of the balances
- 2) Pressure data: 315 pressure taps were used to obtain distributed pressure data on the ET protuberances. The pressure taps were located on the model as follows:

<u>Location</u>	<u>Sequence</u>	<u>Cum.Total</u>
LO ₂ feedline	1-96	96
LO ₂ antigeyser line	101-164	160
LH ₂ tank cable tray	201-268	228
GH ₂ pressure line	301-332	260
LO ₂ tank cable tray	401-420	280
Orbiter/ET attach	501-516	296
ET/SRB cable tray	601-612	308
GO ₂ pressure line	701-704	312
ET/SRB cable tray rake	901-903	315

Pressure taps were located at 16 stations on the LO₂ feedline with 6 taps at each station spaced 60° apart. The LO₂ feedline was mounted on the model in such a way as to allow indexing about its longitudinal axis in 15° increments. By indexing the LO₂ feedline 4 times the effective density of pressure measurements was increased to 24 taps at each station. This indexing was done manually so four runs were necessary to get all the data.

The LO₂ antigeyser line had four taps 90° apart at 16° stations. It was indexed once to 45° to give an effective pressure measurement density of 8 taps per station. All pressure tap locations are listed in table III. These data are presented in the Appendix.

The data were combined and interpolated after the test to get section coefficient data and distributed pressure data. (These data are documented under Chrysler special requests SPRT8R and SPRT8T.)

- 3) Probe data: Three miniature flow direction probes were mounted on a traversing carriage at the top centerline of the ET. The tip of the probes could move from $X_T = 1180.7$ to $X_T = 1926.3$. The three probes were located at $\theta_T = 165^\circ$, 180° and 195° and were .25 inches (model scale) above the tank surface. The probes measured local flow direction and velocity as well as local pressure. These data are also presented in the Appendix.
- 4) Oil flow: Oil was released from a manifold at $X_T = 731$ and allowed to flow down the tank surface and around the protuberances. Photographs of the resulting fluorescent oil patterns were taken at each α/β combination using ultraviolet lighting. Samples of these photographs are shown in Figures 3l thru 3p. Schlieren photographs were taken during the test to help analyze the flow field between the ET and orbiter but these were not successful and are not presented. All tank protuberances were updated to the latest lines prior to this test. The exterior moldline of the SOFI was modeled around all protuberances. Figures 2e and 2f show the details of the protuberance attachments and Figures 3a thru 3k show the entire model in detail.

NOMENCLATURE

<u>Symbol</u>	<u>Mnemonic</u>	<u>Description</u>
A_{Bi}		Axial force measured by balance i (1-8), pounds
a_L	AL	Local speed of sound, ft/sec
	BREF	Span of vehicle, inches
C_{pi}	CPI	Pressure coefficient at orifice i - $(P_i - P_\infty)/q_\infty$
$C_{A_{Bi}}$	CABI	Axial force coefficient for balance i (1-8)
$C_{N_{Bi}}$	CNBi	Normal force coefficient for balance i (1-8)
$C_{Y_{Bi}}$	CYBi	Side force coefficient for balance i (1-8)
D		Reference diameter of protuberance, inches
ET		External Tank
	GAP	Change in relative spacing from scale between orbiter and E.T., inches.
GH_2	GH2	Gaseous hydrogen
GO_2	GO2	Gaseous oxygen
K		A complex function relating local flow conditions at the probe tip to local pressure, determined during calibration of the probes and applied during data reduction.
LH_2	LH2	Liquid hydrogen
LO_2	LO2	Liquid oxygen
	LREF	Reference length of vehicle, inches
ℓ		Reference length of metric protuberances, inches
M_L	ML	Local Mach number
M_∞	MACH	Freestream Mach number

NOMENCLATURE (Continued)

<u>Symbol</u>	<u>Mnemonic</u>	<u>Description</u>
N_{Bi}		Normal force measured by balance i(1-8), pounds
OMS	OMS	Orbital Maneuvering System
P_i	Pi	Pressure at orifice i, psia
P_T	PT	Freestream total pressure, psia
P_{TL}	PTL	Local total pressure, psia
P_L	PL	Local static pressure, psia
\bar{P}	PBAR	Average probe tip measured pressure, psia
P_{1-s}		Individual probe measured pressures, psia
P_{1/pT_L}	P10PTL	Ratio of measured probe total pressure to actual local total pressure, from calibration.
P_∞	P	Freestream static pressure, psia
	POSTN	Position (1-4) identifying on which face of cable tray pressure tap is located. 1 = bottom, 2 = outbd, 3 = top, 4 = inboard.
q_∞	Q(PSF)	Freestream dynamic pressure, psf
q_L	QL	Local dynamic pressure, psf
R		Gas constant
Rn	RN/L	Reynolds number per unit length
SRB		Solid Rocket Booster
SSME		Space Shuttle Main Engines
	SREF	Reference area, in. ²
	SCALE	Model scale (0.03)
SOFI		Spray On Foam Insulation
T_L	TL	Local static temperature, °R

NOMENCLATURE (Continued)

<u>Symbol</u>	<u>Mnemonic</u>	<u>Description</u>
T_{T_∞}	TTF	Freestream total temperature, °R
v_{x_p}	VXP	Velocity component measured by a probe parallel to ET X-axis, ft/sec.
v_{R_p}	VRP	Radial velocity component measured by a probe perpendicular to local ET surface, ft/sec.
v_{θ_p}	VTP	Tangential velocity component measured by a probe perpendicular to VXP and VRP, ft/sec.
v_{X_T}	VXT	Velocity component measured by a probe parallel to ET x-axis, equal to VXP, ft/sec.
v_{Y_T}	VYT	Velocity component measured by a probe parallel to Y-axis, ft/sec.
v_{Z_T}	VZT	Velocity component measured by a probe parallel to Z-axis, ft/sec.
v_{L_p}	VLP	Magnitude of total velocity vector measured by a probe, ft/sec.
x_p	XP	Probe axial location, inches
X_T	XT	External Tank station, full scale, inches
X/L_s	XLS	Percent of total length of bipod strut
	XMRP	Location of model reference point along x-axis, inches
y_{B_i}		Side force measured by balance i (1→8), pounds
	YMRP	Location of model reference point along Y-axis, inches
	ZMRP	Location of model reference point along Z-axis, inches

NOMENCLATURE (Continued)

<u>Symbol</u>	<u>Mnemonic</u>	<u>Description</u>
α	ALPHA	Model pitch angle, degrees
α_L	ALPHAL	Local angle of attack of velocity vector at a probe tip relative to probe centerline, degrees
α_{xz}	ALFAXZ	Angle of attack of velocity vector at a probe tip when projected onto the X-Z plane, degrees
β	BETA	Model angle of sideslip, degrees
β_L	BETAL	Angle of sideslip of velocity vector at a probe tip when projected onto the X-Y plane, degrees
BXY	BETAXY	
δ	DELTA	Probe crossflow direction relative to the radial line perpendicular to local ET surface, deg., $\delta = \delta_c + 45^\circ$ for IA190A; $\delta = \delta_c - 45^\circ$ for IA190B.
δ_c	DELTAC	Probe crossflow direction relative to the probe reference line, deg. ($0\sim 360^\circ$)
δ_a	IB-ELV	Deflection angle of inboard elevons, degrees
δ_o	OB-ELV	Deflection angle of outboard elevons, degrees
γ		Ratio of specific heat at a constant pressure to specific heat at a constant volume, 1.4 for air
ρ	RHO	Probe pitch angle pressure parameter, function of P1~P5, used in calibration table lookup, degrees
ϵ	EPSILON	Probe directional pressure parameter, function of P1~P5, used in calibration table lookup, degrees
ϕ	PHI	Angle of rotation of the probe about the local radial direction, degrees
θ	THETA	General angular location on ET or protuberances, degrees

NOMENCLATURE (Concluded)

<u>Symbol</u>	<u>Mnemonic</u>	<u>Description</u>
θ_{AG}		Angular location of pressure taps on the LO ₂ antigeyser line, degrees
θ_{GP}		Angular location of pressure taps on the GO ₂ pressure line, degrees
θ_{HP}		Angular location of pressure taps on the GH ₂ pressure line, degrees
θ_{OF}		Angular location of pressure taps on the LO ₂ feedline, degrees
θ_p		Angular location of a probe, degrees
θ_s		Angular location of pressure taps on the bipod strut, degrees
θ_T		Angular location on the ET, degrees

CONFIGURATIONS INVESTIGATED

The model provided for this test was a 0.030 scale replica of the Rockwell International Space Shuttle Vehicle in the launch configuration. The launch configuration consists of the assembly of a payload carrying Orbiter, an expendable External Oxygen/Hydrogen Tank (ET) which provides fuel for the Orbiter main engines (SSME) and two expendable Solid Rocket Boosters (SRB). See figure 2a.

The Orbiter is of blended wing/body design with a double delta plan form ($81^\circ/45^\circ$ leading edge), 12% thick wing with full span elevons incorporating a six-inch interpanel gap between the independently deflectable inboard and outboard panels. A single swept (45°) centerline vertical tail with rudder/speed brake capability is mounted on the top of the orbiter behind the cargo bay and between the two Orbital Maneuvering System (OMS) pods. At the lower aft end of the fuselage is a body flap to aid in trim control when the speed brakes are used. Three engines (SSME) are mounted on the blunt base of the orbiter.

The External Tank is of cylindrical cross section with a nominal diameter of 333 inches and a maximum diameter of 336.2 inches. The forward section of the ET has a tangent ogive nose which terminates in a biconic nose cap over the LO₂ vent valve. The forward third of the tank is filled with liquid oxygen and the rest with liquid hydrogen. Covering the entire tank is up to two

inches of Spray On Foam Insulation (SOFI) to prevent ice formation. There are a number of external protuberances which consist of fluid lines, electrical conduits and attach hardware. The fluid lines modeled are the LO₂ feedline, LO₂ antigeyser line, GO₂ pressure line, GH₂ pressure line and the LH₂ feedline. Conduits modeled were the LO₂ tank cable tray, the LH₂ tank cable tray, the ET/SRB cable tray (on both sides) and all the brackets, fittings and fairings associated with each of these. Removable load reducing ramps were provided for each of these cable trays.

The two Solid Rocket Boosters are 146 inch nominal diameter cylinders with 18° half angle nose cones and a 13.27" spherical tip.

The SRB's and Orbiter were built to conform to ICD-2-0001, Revision C lines while the ET was updated to Revision E details.

The LH₂ pressure line was intentionally constructed at double scale diameter for the pressure phase of the test to allow room for instrumentation inside the line. This increased the diameter from 0.060 inches to 0.120 inches model scale. A scaled diameter line was used for the force, probe and oil flow phases of the test.

The aft Orbiter/ET attach structure was modified for structural reasons. The LH₂ feedline and LO₂ feedline extensions were used to support the orbiter. This caused slight deformities in each

of these lines.

The forward Orbiter/ET (bipod) attach structure was modified for a small portion of the pressure test. The diameter of the support posts was doubled to allow room for instrumentation. The majority of the pressure test and all the remaining testing was done with the scaled bipod.

During the same runs that the enlarged bipod was used, and for a few runs thereafter (see run schedule), the left hand SRB/ET cable tray and its load reduction ramp were removed and replaced with a three-tube rake.

Several runs were made during the "A" portion of the pressure test with the Orbiter raised 0.2 inches model scale from its normal position relative to the ET. These runs are indicated in the run schedule.

The following nomenclature was used during the test to identify model components.

B62	-140 A/B Body
C9	-140 A/B Canopy
E64	OV102 Elevon
W131	OV102 Wing
M16	-140C Short OMS pods
N112	SSME Nozzles

R5 **146A Rudder**
V8 **146A Vertical Tail**
FD3 **Flipper doors**
T39 **External Tank with "E" protuberances**
S27 **Solid Rocket Boosters**

INSTRUMENTATION

The instrumentation used during each of the four phases of the test were distinctly different from one another and required a complete disassembly of the model and reinstallation in the tunnel.

Force Balances

Eight separate 3-component balances were used to obtain protuberance force data. Each balance was mounted inside the tank and supported a length of one of the fluid lines or cable trays by small posts projecting through the tank surface. The exact location and size of the metric protuberances can be found in figure 2c.

The rated loads of each balance are listed below:

<u>Balance Position</u>	Rated Load ~ lbs		
	N	Y	A
1	3	3	1.5
2	12	12	6
3	12	12	6
4	12	12	6
5	12	12	6
6	3	3	1.5
7	3	3	1.5
8	3	3	1.5

Each balance was calibrated prior to the test to determine its basic calibration matrix and was check-loaded after installation to insure proper clearances and function.

Pressures

There were 315 pressure taps on the tank protuberances. These were recorded on 10 scanivalve modules driven by two drive/stepper motors mounted inside the ET. The location of the pressure taps is listed in Table III.

A completely different set of protuberances were used for the pressure measurements than those used for force data. The pressure lines were routed through the parts and were carried into the tank through or just behind a mounting structure to minimize flow disturbance. The only exception to this was at the aft end of the LO₂ feedline where 48 pressure tubes crossed from the LO₂ feedline to the tank. The resulting bundle of tubes was approximately the same diameter as the LO₂ feedline.

The diameter of the bipod and of the GH₂ pressure line were doubled from scale to allow room inside these parts for pressure tubing. Pressure taps 257 thru 268 listed with an asterisk in Table III are located on the crossbeam/ET cable tray that can be seen in Figure 3b as a small curved rectangular cross-section part near the top of the aft right-hand support strut. The taps are located, one on each face, at the forward end of the curved section (257~260), in the middle of the curved section (261~264) and at the upper tangent point (265~268) of the curved section. These are labeled in the data as being at X_T 4001, 2 or 3 for convenience only. These numbers do not reflect the actual location of the taps.

Probes

The probes used were constructed by the Chrysler/Slidell Engineering Office specifically for this test program. The probes are 0.050 inches in diameter with a 25° half angle conical tip. Five pressure orifices with an inside diameter of 0.005 inches are on the tip of each probe. Figure 2j shows the probes in detail. Each probe was calibrated by Chrysler for flow angle, Mach number and local pressure in the NASA/MSFC 14" TWT prior to the test. Figures 2k and 2l show the calibration fixture and installation.

Three probes were used simultaneously during the test. The resulting 15 pressures were read on 5 scanivalve modules using one drive mounted in the ET. The pressures were plumbed to the scanivalve such that all five pressures on one probe were read simultaneously.

Oil Flow

The oil flow phase of the test was conducted with the force balances in place on the tank. All pressure instrumented parts of the model that remain during this configuration were sealed at the orifice and disconnected at the scanivalve to prevent oil from damaging the transducers or plugging the tubing.

The oil was delivered to the model under pressure through a 1/4" copper line. A solenoid valve was mounted in the tank nose to control oil flow onto the tank surface.

Photographs were taken under ultraviolet light only from both sides of the model. An observer determined when the proper amount of fluorescent oil was present on the ET surface and triggered the camera. A sampling of these photographs are presented in Figures 31 thru 3p.

TEST FACILITIES DESCRIPTION

Ames 11 x 11-Foot Transonic

The Ames 11 x 11-Foot Transonic Wind Tunnel is a variable density, closed return, continuous flow type. This tunnel has an adjustable nozzle (two flexible walls) and a slotted test section to permit transonic testing over a Mach number range continuously variable from 0.4 to 1.4.

Ames 9 x 7-Foot Supersonic

The Ames 9 x 7-Foot Supersonic Wind Tunnel is a variable density, continuous flow type with an adjustable nozzle to permit supersonic testing over a Mach number range continuously variable from 1.5 to 2.5. The nozzle is of the asymmetric, sliding-block type in which the variation of the test section Mach number is achieved by translating, in the stream-wise direction, the fixed-contour block that forms the floor of the nozzle.

DATA REDUCTION

All pressure data recorded were reduced to standard pressure coefficients of the form.

$$Cp_i = \frac{P_i - P_\infty}{q_\infty}$$

These data are listed by geometric location for each $\alpha/B/M$ combination in the Appendix.

Force data for each of the eight balances were reduced to force coefficients per unit length of the form:

$$C_{N_{Bi}} = \frac{N_{Bi}}{q_\infty D_l} \quad (\text{Normal force})$$

$$C_{Y_{Bi}} = \frac{Y_{Bi}}{q_\infty D_l} \quad (\text{Side force})$$

$$C_{A_{Bi}} = \frac{A_{Bi}}{q_\infty D_l} \quad (\text{Axial force})$$

where Bi = balance position number (1-8)

D = protuberance reference diameter 0.0171 inches

l = length of metric section

The reference axis system for each balance consists of three mutually perpendicular axes with the normal force axis

perpendicular to the local ET surface, axial force perpendicular to normal force and parallel to the ET centerline and side force parallel to the local ET surface and perpendicular to normal force and axial force. Forces were resolved at a point .116 inches above the local ET surface for the GH₂ pressure line and .147 inches above the local ET surface for the cable tray/antigeyser line/GO₂ pressure line array.

Probe data were reduced using calibration tables supplied by Chrysler/DATAMAN. These tables consisted of a three parameter table lookup and interpolation routine. The five probe pressures (figure 2j) were used to obtain the following three parameters:

$$\rho = \frac{\sqrt{(P_3 - P_5)^2 + (P_2 - P_4)^2}}{P_1}$$

$$\epsilon = 57.2958 \tan^{-1} \left[\frac{P_3 - P_5}{P_4 - P_2} \right]$$

$$P_1 = \frac{P_2 + P_3 + P_4 + P_5}{4P_1}$$

These parameters where used to obtain δ_c , M_L and α from the tables

δ_c = probe crossflow direction with respect to the probe reference line, deg

M_L = Local Mach number

α_L = angle of the flow relative to the probe centerline

For Test IA190A, $\delta = \delta_c + 45^\circ$

For Test IA190B, $\delta = \delta_c - 45^\circ$

Local total pressure, P_{TL} , was determined from the above parameters

$$P_{TL} = P_1/K$$

where $K = f(\delta_c, M_L, \alpha_L)$

Other local conditions were determined using standard perfect adiabatic flow relationships:

$$P_L = P_{T_L} \left(1 + \frac{M_L^2}{5}\right)^{-3.5}$$

$$q_L = \frac{\gamma}{2} P_L M_L^2$$

$$a_L = \sqrt{\gamma R T_L}$$

$$T_L = \frac{5 T_{T_L}}{5 + M_L^2}$$

$$V_{L_p} = M_L a_L$$

Having determined all of the local flow conditions relative to the probe reference line the local velocity components were determined in the probe reference system.

$$V_{X_p} = M_L a_L \cos \alpha_L$$

$$V_{R_p} = \frac{\sin \alpha_L M_L a_L}{\sqrt{1 + \tan^2 \delta}} = (\sin \alpha_L \cos \delta) M_L a_L$$

$$V_{\theta_p} = - \frac{\sin \alpha_L \tan \delta M_L a_L}{\sqrt{1 + \tan^2 \delta}} = -M_L a_L \sin \alpha_L \sin \delta$$

The velocity components were then rotated into the standard aircraft rectangular coordinate system

$$V_{X_T} = V_{X_p}$$

$$V_{Y_T} = V_{R_p} \sin \theta_p - V_{\theta_p} \cos \theta_p$$

$$V_{Z_T} = -V_{R_p} \cos \theta_p - V_{\theta_p} \sin \theta_p$$

Finally pitch and yaw angles of the velocity vector were determined

$$\alpha_{xz} = \tan^{-1} \left[\frac{V_{Z_T}}{V_{X_T}} \right]$$

$$\beta_{xy} = -\tan^{-1} \left[\frac{V_{Y_T}}{V_{X_T}} \right]$$

References

1. STS79-0308, "Pretest Information for Test IA190 of the 0.03-Scale Pressure Loads Space Shuttle Launch Vehicle Model 47-OTS in the NASA/ARC Unitary Plan Wind Tunnel," 18 Dec. 79 by S.R. Houlihan & A.R. Kanevsky, Rockwell International.
2. TN-AP-70-462, "Results of a Test to Determine the Feasibility of Use of Two Miniature Flow Direction and Velocity Measuring Probes at Subsonic and Supersonic Speeds," 1 June 70 by J. E. Foley, Chrysler Corporation.
3. DMS-TP-79-1, "Plan for a Wind Tunnel Test to Calibrate Four Miniature Flow Velocity and Direction Measuring Probes at Mach Numbers from 0.4 to 1.96," 5 Dec. 79 by John E. Vaughn, Chrysler Corporation.
4. SAS/AERO/80-792, "Final Report for ET Protuberance Airloads Wind Tunnel Test IA190A&B," 12 Jan. 81 by J. W. Kuczwara, Rockwell International.
5. SAS/AERO/80-771, "ET Protuberance and Flow Field Final Report - IA-190A/B (EMS MILESTONE 790-200-205)," 10 Nov. 80 by J.W. McClymonds, Rockwell International.

TABLE 1 TEST CONDITIONS

TABLE II – EXTERNAL TANK PROTUBERANCE LOADS TEST (A190A) RUN SCHEDULE

SCHEDELL ES

A: ALPHA = -4, 0, +4 DEG.

卷之三

S:A - BALANCE #1

S: B - BALANCES #2 #3 & #4

S - B - B A L A N C E S

S:C - BALANCES #2, #3, & #4

TABLE II - EXTERNAL TANK PROTUBERANCE LOADS TEST (IA190A) RUN SCHEDULE
PRESSURE

TEST: IA190A (ARC 411-1-11)		DATA SET/RUN NUMBER COLLATION SUMMARY										DATE: MARCH 1980			
DATA SET IDENTIFIER	CONFIGURATION	PARAMETERS										ALPHA			
		SCHD.	Beta	Mach	Q	ELVI	ELVO	LO2	A-G	GAP	-4	0	+0	+4	
R3U\$12	OTS BIPOD / RAKE /	A	0.60	600	10	0	0	0	0	0	119	120	121		
R3U\$13	RAMPS ON	A	0.90	600	10	0	0	0	0	0	116	117	118		
R3U\$14		A	1.10	600	10	0	0	0	0	0	113	114	115	T	
R3U\$15		B	1.25	600	10	0	0	0	0	0	110	111	112	E	
R3U\$16		A	1.40	600	10	0	0	0	0	0	107	108	109	S	
R3U\$17	OTS RAMPS ON / RAKE	A	0.60	600	10	9	0	0	0	0	138	139	140	T	
R3U\$18		A	0.90	600	10	9	0	0	0	0	135	136	137	R	
R3U\$19		A	1.10	600	10	9	0	0	0	0	131	132	133	U	
R3U\$20		B	1.25	600	10	0	0	0	0	0	129	128	127	N	
R3U\$21		A	1.40	600	10	0	0	0	0	0	124	125	126		
R3U\$22	OTS RAMPS ON	B	0.60	600	10	9	15	45	0	0	238	239	240		
R3U\$23		B	0.90	600	10	9	15	45	0	0	235	236	237		
R3U\$24		B	1.10	600	10	9	15	45	0	0	232	233	234		
R3U\$25		B	1.25	600	10	0	15	45	0	0	245	246	247	M	
R3U\$26		B	1.40	600	10	0	15	45	0	0	242	243	244	B	
R3U\$27		A	0.60	600	10	9	30	0	0	0	203	204	205	E	
R3U\$28		A	0.90	600	10	9	30	0	0	0	200	201	202	R	
R3U\$29		A	1.10	600	10	9	30	0	0	0	197	198	199	S	
R3U\$30		B	1.25	600	10	0	30	0	0	0	210	211	212		
R3U\$31		A	1.40	600	10	0	30	0	0	0	207	208	209		

alpha or beta
SCHEDULES

A: BETA = -4, 0, +4, DEG.
B: BETA = -4,-2,0,+2,+4, DEG.

\$: B - LO2 ANTI GEYSER LINE \$: F - GH2 PRESSURE LINE
\$: C - GO2 PRESSURE LINE \$: G - ET / SRB CABLE TRAY

\$: D - LO2 FEEDLINE \$: H - PRESSURE RAKE
\$: E - FWD ATTACH STRUTS

NOTE : WHEN RAKE IS INSTALLED, THE L. H. ET / SRB CABLE TRAY RAMP IS REMOVED

TABLE II – EXTERNAL TANK PROTUBERANCE LOADS TEST (IA190A) RUN SCHEDULE
PRESSURE (CONT'D)

TEST: IA190A (ARC 411-1-11)		DATA SET/RUN NUMBER COLLATION SUMMARY										DATE: MARCH 1980	
DATA SET IDENTIFIER	CONFIGURATION	PARAMETERS										ALPHA	
		SCHD.	Beta	Mach	Q	ELV1	ELV0	LO2	A-G	GAP	-4	0	+4
R3U\$32	OTS RAMPS ON	B	0.60	600	10	9	45	45	0		228	229	230
R3U\$33		B	0.90	600	10	9	45	45	0		225	226	227
R3U\$34		B	1.10	600	10	9	45	45	0		222	223	224
R3U\$35		B	1.25	600	10	0	45	45	0		218	219	220
R3U\$36		B	1.40	600	10	0	45	45	0		215	216	217
R3U\$37		A	0.60	600	10	0	15	45	0.20		262	263	264
R3U\$38		A	0.90	600	10	0	15	45	0.20		259	260	261
R3U\$39		A	1.10	600	10	0	15	45	0.20		256	257	258
R3U\$40		B	1.25	600	10	0	15	45	0.20		253	254	255
R3U\$41		A	1.40	600	10	0	15	45	0.20		250	251	252
R3U\$42	OTS RAMPS OFF	A	0.60	600	10	9	0	0	0	157	158	159	
R3U\$43		A	0.90	600	10	9	0	0	0	154	155	156	
R3U\$44		A	1.10	600	10	9	0	0	0	151	152	153	
R3U\$45		A	1.25	600	10	0	0	0	0	174	175	176	
R3U\$46		A	1.40	600	10	0	0	0	0	171	172	173	
R3U\$47		A	0.60	600	10	9	30	0	0	193	194	195	
R3U\$48		A	0.90	600	10	9	30	0	0	190	191	192	
R3U\$49		A	1.10	600	10	9	30	0	0	187	188	189	
R3U\$50		B	1.25	600	10	0	30	0	0	183	184	185	
R3U\$51		A	1.40	600	10	0	30	0	0	180	181	182	

alpha or beta
SCHEDULES

A: BETA = -4, 0, +4 DEG. \$: B - LO2 ANTIGEYSER LINE \$: F - GH2 PRESSURE LINE
 B: BETA = -4, -2, 0, +2, +4, DEG. \$: C - GO2 PRESSURE LINE \$: G - ET / SRB CABLE TRAY
 \$: A - TANK CABLE TRAYS \$: D - LO2 FEEDLINE \$: H - PRESSURE RAKE
 \$: E - FWD ATTACH STRUTS

TABLE II – EXTERNAL TANK PROTUBERANCE LOADS TEST (IA190A) RUN SCHEDULE
TRaversing PROBES

TEST: IA190A (ARC 411-3-11)		DATA SET/RUN NUMBER/COLLATION SUMMARY										DATE: MARCH 1980							
DATA SET IDENTIFIER	CONFIGURATION	SCHEDULES					PROBE LONGITUDINAL POSITION - COUNTS												
		beta	alpha	Mach	ELVI	ELVO	0	347	694	1041	1735	2429	3470	4511	5552	6593	7287	7634	7762
R3U\$52	OTS (TRaversing PROBE)	A	-4	0.60	10	0	104	107	110	113	116	119	122	125	128	131	134	137	140
R3U\$53		A	0	0.60	10	0	105	108	111	114	117	120	123	126	129	132	135	138	141
R3U\$54		A	4	0.60	10	0	106	109	112	115	118	121	124	127	130	133	136	139	142
R3U\$55		A	-4	0.90	10	0	189	186	183	180	177	174	171	168	165	162	159	156	144
R3U\$56		A	0	0.90	10	0	190	187	184	181	178	175	172	169	166	163	160	157	145
R3U\$57		A	4	0.90	10	0	191	188	185	182	179	176	173	170	167	164	161	158	146
R3U\$58		A	-4	1.10	10	0	269	272	278	275	278	281	281	281	284	287	290	293	296
R3U\$59		A	0	1.10	10	0	270	273	276	279	279	282	282	282	285	288	291	294	297
R3U\$60		A	4	1.10	10	0	271	274	274	277	280	280	283	283	286	289	292	295	298
R3U\$61		A	-4	1.25	10	0	266	263	263	260	257	254	251	248	245	242	239	236	233
R3U\$62		A	0	1.25	10	0	267	264	264	261	258	255	252	249	246	243	240	237	234
R3U\$63		A	4	1.25	10	0	268	265	265	262	259	256	253	250	247	244	241	238	235
R3U\$64		A	-4	1.40	10	0	194	197	200	203	206	212	215	218	221	224	227	230	U
R3U\$65		A	0	1.40	10	0	195	198	201	204	207	219	213	216	219	222	225	228	231
R3U\$66		A	4	1.40	10	0	196	199	202	205	208	211	214	217	220	223	226	229	232
																		E	
																		R	
																		S	

A: BETA = -4, 0, +4 DEG.

SCHEDULES

\$: 1 - LEFT TRaversing PROBE (PROBE #31)

\$: 2 - MID TRaversing PROBE (PROBE #46)

\$: 3 - RIGHT TRaversing PROBE (PROBE #43)

Page 5 of 5
 TABLE II – EXTERNAL TANK PROTUBERANCE LOADS TEST (IA190A) RUN SCHEDULE
 STATIONARY PROBE

TEST: IA190A (ARC 411-3-11)		DATA SET/RUN NUMBER COLLATION SUMMARY						DATE: MARCH 1980	
DATA SET IDENTIFIER	CONFIGURATION	SCHD.	BETA	ALPHAP.	POS.	ELVI	ELVO	PARAMETERS	MACH NUMBER
R3U467	OTS (STATIONARY PROBE)	A	-4	1	10	0		0.90	1.10
		A	0	1	10	0		309	306
R3U468		A	4	1	10	0		310	307
R3U469		A	-4	2	10	0		311	308
R3U470		A	0	2	10	0		319	316
R3U471		A	4	2	10	0		320	317
R3U472		A	-4	2	10	0		321	318
R3U473		A	0	3	10	0		322	315
R3U474		A	4	3	10	0		323	314
R3U475		A	-4	3	10	0		324	313
									303
									304
									305
									313
									314
									315
									325
									326
									327
									328
									329
									330
									331
									332
									333
									334
									335
									336
									337
									338
									339
									340
									341
									342
									343
									344
									345
									346
									347
									348
									349
									350
									351
									352
									353
									354
									355
									356
									357
									358
									359
									360
									361
									362
									363
									364
									365
									366
									367
									368
									369
									370
									371
									372
									373
									374
									375
									376
									377
									378
									379
									380
									381
									382
									383
									384
									385
									386
									387
									388
									389
									390
									391
									392
									393
									394
									395
									396
									397
									398
									399
									400
									401
									402
									403
									404
									405
									406
									407
									408
									409
									410
									411
									412
									413
									414
									415
									416
									417
									418
									419
									420
									421
									422
									423
									424
									425
									426
									427
									428
									429
									430
									431
									432
									433
									434
									435
									436
									437
									438
									439
									440
									441
									442
									443
									444
									445
									446
									447
									448
									449
									450
									451
									452
									453
									454
									455
									456
									457
									458
									459
									460
									461
									462
									463
									464
									465
									466
									467
									468
									469
									470
									471
									472
									473
									474
									475
									476
									477
									478
									479
									480
									481
									482
									483
									484
									485
									486
									487
									488
									489
									490
									491
									492
									493
									494
									495
									496
									497
									498
									499
									500

alpha or beta
SCHEDULES

NOTE : P. POS. = PROBE POSITION

A: BETA = -4, 0, +4 DEG.

TABLE II – EXTERNAL TANK PROTUBERANCE LOADS TEST (IA190B) RUN SCHEDULE
PRESSURE

TEST: IA190B (ARC 411-1-97)		DATA SET/RUN NUMBER/COLLATION SUMMARY										DATE: JUNE 1980			
DATA SET IDENTIFIER	CONFIGURATION	SCHD.		PARAMETERS				BETA							
		Alpha	Mach	Q	ELV1	ELV0	LO2	A-G	-6	-4	0	+4	+6		
R3V\$01	OTS BIPOD / RAKE /	A	1.55	600	8	-5	30	0	354	355	356	357	358		
R3V\$02	RAMPS (1)	D	2.00	600	8	-5	30	0	359	360	361	362	363		
R3V\$03		D	2.50	600	8	-5	30	0	364	365	366	367	368	T	
R3V\$04	OTS (RAMPS (1))	B	1.55	600	8	-5	0	45		327	328	329		E	
R3V\$05		B	2.00	600	8	-5	0	45		331	332	333	S		
R3V\$06		B	2.50	600	8	-5	0	45		335	336	337	T		
R3V\$07		C	1.55	600	8	-5	15	45		319	320	321			
R3V\$08		C	2.00	600	8	-5	15	45		322	323	324	R		
R3V\$09		B	1.55	600	8	-5	30	0	370	371	372	373	374	U	
R3V\$10		D	2.00	600	8	-5	30	0	375	376	377	378	379	N	
R3V\$11		D	2.50	600	8	-5	30	0	380	381	382	383	384		
R3V\$12		B	1.55	600	8	-5	45	0		340	341	342		N	
R3V\$13		B	2.00	600	8	-5	45	0		344	345	346		U	
R3V\$14		B	2.50	600	8	-5	45	0		348	349	350		M	
R3V\$15		C	1.55	600	10	-5	15	45		300	301	302		B	
R3V\$16		C	2.00	600	10	-5	15	45		303	304	305		E	
R3V\$17		C	2.50	600	10	-5	15	45		306	307	308		R	
R3V\$18		C	1.55	600	0	-2	15	45		310	311	312		S	
R3V\$19		C	2.00	600	0	-2	15	45		313	314	315			
R3V\$20		C	2.50	600	0	-2	15	45		316	317	318			

alpha or beta
SCHEDULES

A: ALPHA = -4, 0, +4, +6, DEG.
B: ALPHA = -6, -4, 0, +4, DEG.
C: ALPHA = -4, 0, +4, DEG.
D: ALPHA = -6, -4, 0, +4, +6, DEG.
E: D - LO2 FEEDLINE
F: B - LO2 ANTIGEYSER LINE
G: C - GO2 PRESSURE LINE
H: D - LO2 TRAY RAMPS
I: E - FWD ATTACH STRUTS
J: F - GH2 PRESSURE LINE
K: G - ET / SRB CABLE TRAY
L: H - PRESSURE RAKE

NOTE : RAMPS (1) INCLUDES LH2 TANK CABLE TRAY RAMP AND ET / SRB CABLE TRAY RAMPS
(EXCEPT WHEN RAKE IS INSTALLED, THE L.H. ET / SRB CABLE TRAY IS REMOVED)

TABLE II – EXTERNAL TANK PROTUBERANCE LOADS TEST (IA190B) RUN SCHEDULE
PRESSURE (CONT'D)

Page 2 of 4

TEST: IA190B (ARC 411-1-97)		DATA SET/RUN NUMBER COLLATION SUMMARY										DATE : JUNE 1980				
DATA SET	CONFIGURATION	SCHD.	PARAMETERS						BETA							
IDENTIFIER		Alpha	Beta	Mach	Q	ELVI	LO2	A-G	-6	-4	0	+4	+6			
R3V\$21	OTS RAMPS (2)	B	--	1.55	600	8	-5	30	0	386	387	388	389	390	R	
R3V\$22		D	--	2.00	600	8	-5	30	0	391	392	393	394	395	U	
R3V\$23		D	--	2.50	600	8	-5	30	0	396	397	398	399	400	N	
R3V\$24	OTS RAMPS OFF	B	--	1.55	600	8	-5	30	0	402	403	404	405	406	T	
R3V\$25		D	--	2.00	600	8	-5	30	0	407	408	409	410	411	E	
R3V\$26		D	--	2.50	600	8	-5	30	0	412	413	414	415	416	S	
R3V\$27	OTS RAMPS (1)	0	C	1.55	600	8	-5	0	45						ALPHA	
R3V\$28		0	C	2.00	600	8	-5	0	45							R
R3V\$29		0	C	2.50	600	8	-5	0	45							U
R3V\$30		0	C	1.55	600	8	-5	45	0							N
R3V\$31		0	C	2.00	600	8	-5	45	0							T
R3V\$32		0	C	2.50	600	8	-5	45	0							E
																S
																M
																B
																R
																S

alpha or beta
SCHEDULES

A: ALPHA = -4, 0, +4, +6, DEG.
B: ALPHA = -6, -4, 0, +4, DEG.
C: ALPHA & BETA = -4, 0, +4, DEG
D: ALPHA = -6, -4, 0, +4, +6, DEG

\$: A - TANK CABLE TRAYS
\$: E - FWD ATTACH STRUTS
\$: B - LO2 ANTIGEYSER LINE
\$: F - GH2 PRESSURE LINE
\$: C - GO2 PRESSURE LINE
\$: G - ET / SRB CABLE TRAY
\$: D - LO2 FEEDLINE
\$: H - PRESSURE RAKE

NOTE: RAMPS (1) + LO2 TANK CABLE TRAY RAMPS

TABLE II – EXTERNAL TANK PROTUBERANCE LOADS TEST (IA190B) RUN SCHEDULE
FORCE

alpha or beta SCHEDULES

A: ALPHA = -6, -4, 0, +4, +6, DEG.
B: BETA = -6, -4, 0, +4, +6, DEG.

S: A - BALANCE #1

B: BETA = -6, -4, 0, +4, +6, DEG.

B: BETA = -6, -4, 0, +4, +6, DEG.

**S: C - BALANCE #5
S: D - BALANCES #6, #7, & #8**

TABLE II – EXTERNAL TANK PROTUBERANCE LOADS TEST (IA190B) RUN SCHEDULE
TRaversing PROBES

Page 4 of 4

TEST: IA190B (ARC 411-3-97)		DATA SET/RUN NUMBER COLLATION SUMMARY										DATE: JUNE 1980							
DATA SET IDENTIFIER	CONFIGURATION	SCH ID	PARAMETERS			PROBE POSITION													
		alpha beta	Mach	ELV1	ELVO	1181.7	1214.0	1247.33	1280.66	1347.33	1414.0	1514.0	1614.3	1714.0	1814.0	1880.7	1914.0	1926.3	
R3V\$60	OTS (TRaversing PROBE)	A	-4	1.55	10	-5	166	163	160	157	154	151	148	145	142	139	136	133	130
R3V\$61		A	0	1.55	10	-5	167	164	161	158	155	152	149	146	143	140	137	134	131
R3V\$62		A	4	1.55	10	-5	168	165	162	159	156	153	150	147	144	141	138	135	132
R3V\$63		A	-4	2.00	10	-5	170	173	176	179	182	185	204	213	210	207	222	219	216
R3V\$64		A	0	2.00	10	-5	171	174	177	180	183	186	205	214	211	208	223	220	217
R3V\$65		A	4	2.00	10	-5	172	175	178	181	184	187	206	215	212	209	224	221	218
R3V\$66		A	-4	2.50	10	-5	261	258	255	252	249	246	243	240	237	234	231	228	225
R3V\$67		A	0	2.50	10	-5	262	259	256	253	250	247	244	241	238	235	232	229	226
R3V\$68		A	4	2.50	10	-5	263	260	257	254	251	248	245	242	239	236	233	230	227
R3V\$69		A	-4	2.00	10	-5	264				201								N
R3V\$70		A	0	2.00	10	-5	265			202									U
R3V\$71		A	4	2.00	10	-5	266			203									M
																		B	
																		E	
																		R	
																		S	

alpha or beta
SCHEDULES

A: ALPHA = -4, 0, +4 DEG.

\$: 1 - LEFT TRaversing PROBE (PROBE #31)

\$: 2 - MID TRaversing PROBE (PROBE #46)

\$: 3 - RIGHT TRaversing PROBE (PROBE #43)

PROBE POSITION : 198 COUNTS/INCH MODEL SCALE STARTING AT XT = 11180.7
PROBES LOCATED AT TANK THETA = 165, 180, & 195 DEGREES AT .25 INCHES ABOVE SURFACE

Table III. PRESSURE TAP LOCATIONS

LO₂ FEEDLINE

x_T	θ_{OF} (Nominal Position)					
	0°	60°	120°	180°	240°	300°
1050	1	2	3	4	5	6
1100	7	8	9	10	11	12
1150	13	14	15	16	17	18
1200	19	20	21	22	23	24
1250	25	26	27	28	29	30
1300	31	32	33	34	35	36
1350	37	38	39	40	41	42
1400	43	44	45	46	47	58
1450	49	50	51	52	53	54
1500	55	56	57	58	59	60
1600	61	62	63	64	65	66
1700	67	68	69	70	71	72
1800	73	74	75	76	77	78
1900	79	80	81	82	83	84
1950	85	86	87	88	89	90
2000	91	92	93	94	95	96

Table III. PRESSURE TAP LOCATIONS (Continued)

LO_2 ANTIGEYSER LINE

GH_2 PRESSURE LINE (0.06 SCALE)

x_T	θ_{AG} (Nominal Position)			
	0°	90°	180°	270°
1050	101	102	103	104
1100	105	106	107	108
1130	109	110	111	112
1180	113	114	115	116
1240	117	118	119	120
1300	121	122	123	124
1370	125	126	127	128
1420	129	130	131	132
1450	133	134	135	136
1500	137	138	139	140
1625	141	142	143	144
1690	145	146	147	148
1820	149	150	151	152
1930	153	154	155	156
1965	157	158	159	160
2000	161	162	163	164

x_T	θ_{HP}			
	0°	90°	180°	270°
1120	301	302	303	304
1180	305	306	307	308
1300	309	310	311	312
1500	313	314	315	316
1690	317	318	319	320
1950	321	322	323	324
2000	325	326	327	328
2030	329	330	331	332

GO_2 PRESSURE LINE

x_T	θ_{OP}			
	0°	90°	180°	270°
950	701	702	703	704

Table III. PRESSURE TAP LOCATIONS (Continued)

LH₂ TANK CABLE TRAY

X _T	POSITION			
	BOTT	OUTBD	TOP	INBD
1130	201	202	203	204
1180	205	206	207	208
1240	209	210	211	212
1300	213	214	215	216
1370	217	218	219	220
1420	221	222	223	224
1450	225	226	227	228
1500	229	230	231	232
1625	233	234	235	236
1690	237	238	239	240
1820	241	242	243	244
1930	245	246	247	248
1965	249	250	251	252
2000	253	254	255	256
*4001	257	258	259	260
*4002	261	262	263	264
*4003	265	266	267	268

LO₂ TANK CABLE TRAY (OGIVE)

X _T	POSITION			
	BOTT	OUTBD	TOP	INBD
800	401	402	403	404
820	405	406	407	408
835	409	410	411	412
850	413	414	415	416
880	417	418	419	420

ET/SRB CABLE TRAY (R. H. SIDE)

θ _T	POSITION			
	BOTT	OUTBD	TOP	INBD
116°	601	602	603	604
120°	605	606	607	608
124°	609	610	611	612

TABLE III STATIC PRESSURE TAP LOCATIONS - CONCLUDED

ORBITER/ET FORWARD ATTACH STRUT (BIPOD)

x/l_s	θ_s							
	0	45°	90°	135°	180°	225°	270°	315°
.25		(501)		502		503		(504)
.50	(505)	(506)	507	508	509	510	(511)	(512)
.75		(513)		514		515		(516)

NOTE: NUMBERS IN PARENTHESIS ARE ON THE LEFT-HAND LEG
OF THE BIPOD. OTHERS ARE ON THE RIGHT-HAND LEG.

ET/SRB CABLE TRAY RAKE

θ_t	RAKE	
	TAP NO.	
116°	901	
120°	902	
124°	903	

NOTE: THIS RAKE REPLACES THE ET/SRB CABLE TRAY AND RAMP
ON THE LEFT-HAND SIDE OF THE ET

Notes:

1. Positive directions of force coefficients, moment coefficients, and angles are indicated by arrows
2. For clarity, origins of wind and stability axes have been displaced from the center of gravity

Figure 1. Model Axis Systems and Sign Conventions
a. Orbiter Axis System

Figure 1. Model Axis Systems and Sign Conventions
b. Moment Sign Conventions

Figure 1. Model Axis Systems and Sign Conventions
c. Elevon Sign Conventions

$$\delta_a = \frac{\delta_{EL} - \delta_{ER}}{2} \quad \delta_E = \frac{\delta_{EL} + \delta_{ER}}{2}$$

BODY FLAP DEFLECTIONS

X_o 1532

BODY FLAP HINGE LINE

Figure 1. Model Axis Systems and Sign Conventions
d. Definition of Angular Measurements

Figure 2. Model Sketches
a. Launch Vehicle Configuration

MODEL 47-OTS-INSTALLATION—11x11 FT

Figure 2. Model Sketches

b. Tunnel Installation

Figure 2. Model Sketches
c: ET Angular Definitions and Balance Locations

VIEW LOOKING AFT

Figure 2. Model Sketches
d. ET Protuberance Locations

Figure 2. Model Sketches
c. Metric Protuberance Details

Figure 2. Model Sketches

f. Metric Protuberance Attachment Details

Figure 2. Model Sketches
g. Probe Axis Definition

Figure 2. Model Sketches
h. Probe Axis Details

Figure 2. Model Sketches
 i. Probe Axis Details

Figure 2. Model Sketches
j. Probe Details

Figure 2. Model Sketches

K. Probe Calibration Installation in
MSFC 14' TWT

Figure 2. Model Sketches

1. Probe Calibration Fixture Details

FIGURE 3 - MODEL PHOTOGRAPHS
a. Model 47-OTS in the NASA/ARC 11x11
foot tunnel front quarter view

FIGURE 3 - MODEL PHOTOGRAPHS
b. Model 47-0TS in the NASA/ARC 11x11
foot tunnel rear quarter view

FIGURE 3 - MODEL PHOTOGRAPHS
c. Model 47-0TS in the NASA/ARC 11x11
foot tunnel rear quarter view
showing sting details

ORIGINAL PAGE
BLACK AND WHITE PHOTOGRAPH

FIGURE 3 - MODEL PHOTOGRAPHS
d. Model 47-OTS detail showing
traversing probe carrier details
and pressure instrumented protuber-
ances

ORIGINAL PAGE
BLACK AND WHITE PHOTOGRAPH

FIGURE 3 - MODEL PHOTOGRAPHS
e. Model 47-OTS - Closeup of probe
carrier

ORIGINAL PAGE
BLACK AND WHITE PHOTOGRAPH

FIGURE 3 - MODEL PHOTOGRAPHS
f. Model 47-OTS - Closeup of Rear
Attach Structure

ORIGINAL PAGE
BLACK AND WHITE PHOTOGRAPH

FIGURE 3 - MODEL PHOTOGRAPHS
g. Model 47-OTS - Rear Attach
Structure Details

65

FIGURE 3 - MODEL PHOTOGRAPHS
h. Model 47-OTS - Forward Attach
Structure Detail and Metric
Protuberances

FIGURE 3 - MODEL PHOTOGRAPHS
i. Model 47-OTS - Forward Attach
Structure Detail and Pressure
Instrumented Protuberances

OPTIONAL PAGE
BLACK AND WHITE PHOTOGRAPH

FIGURE 3 - MODEL PHOTOGRAPHS
j. Model 47-OTS - Orotate Traversing
Mechanism

ORIGINAL PAGE
BLACK AND WHITE PHOTOGRAPH

FIGURE 3 - MODEL PHOTOGRAPHS
k. Model 47-OTS - Protuberance
Balances in their Carrying Case
with Metric Protuberances Attached

FIGURE 3 - MODEL PHOTOGRAPHS
1. 011 Flow Baseline Picture

70

ORIGINAL PAGE
BLACK AND WHITE PHOTOGRAPH

66-1 $M = 1.25$ $\alpha = -4$ $\beta = 0$

FIGURE 3 - MODEL PHOTOGRAPHS
m. Oil Flow - $\alpha = -40^\circ$, $\beta = 0^\circ$, $M = 1.25$

R27

66-3 $M = 1.25$ $\alpha = 4$ $\beta \bar{C}$

R29

FIGURE 3 - MODEL PHOTOGRAPHS
n. Oil Flow - $\alpha = 4^0$, $\beta = 0$, $M = 1.25$

65-2 M = 1.25 $\alpha = 0$ $\beta = -4$

FIGURE 3. - MODEL PHOTOGRAPHS
0. Oil Flow - $\alpha = 0$, $\beta = -4^{\circ}$, M = 1.25

325

ORIGINAL
OF POOR
QUALITY

R31

67-2 M = 1.25 $\alpha = 0$ $\beta = 4$

FIGURE 3 - MODEL PHOTOGRAPHS

P. Oil Flow - $\alpha = 0$, $\beta = +4$, M = 1.25

APPENDIX - VOLUME II
PRESSURE DATA - MICROFICHE

	<u>CONTENTS</u>		<u>PAGE NO.</u>	<u>MICROFICHE PAGE NUMBER</u>
IA190A	TRaversing PROBE DATA	D/S 52-66	1-468	1-8
IA190A	STATIONARY PROBE DATA	D/S 67-75	468-474	8
IA190B	TRaversing PROBE DATA	D/S 60-71	475-792	9-14
IA190A	PROTUBERANCE DATA			
	TANK CABLE TRAYS (A)	D/S 12-51	793-1131	15-20
	LO2 ANTIGEYSER LINE(B)	D/S 12-51	1132-1360	20-24
	GO2 PRESSURE LINE (C)	D/S 12-51	1361-1495	24-26
	LO2 FEEDLINE (D)	D/S 12-51	1496-1740	26-30
	FWD ATTACH STRUT (E)	D/S 12-16	1741-1762	30
	GH2 PRESSURE LINK (F)	D/S 12-51	1763-1897	30-32
	ET/SRB CABLE TRAY (G)	D/S 12-51	1898-2032	32-34
	PRESSURE RAKE (H)	D/S 12-21	2033-2064	34-35
I190B	PROTUBERANCE DATA			
	TANK CABLE TRAYS (A)	D/S 01-32	2065-2384	36-41
	LO2 ANTIGEYSER LINE(B)	D/S 01-32	2385-2582	41-44
	GO2 PRESSURE LINE (C)	D/S 01-32	2583-2716	44-46
	LO2 FEEDLINE (D)	D/S 01-32	2717-2958	46-50
	FWD ATTACH STRUT (E)	D/S 01-03	2959-2983	50
	GH2 PRESSURE LINK (F)	D/S 01-32	2984-3117	50-52
	ET/SRB CABLE TRAY (G)	D/S 01-32	3118-3251	52-54
	PRESSURE RAKE (H)	D/S 01-32	3252-3270	54-55
	MINI-PROBE CALIBRATION TABLES		3271-3847	56-65

(This page intentionally left blank)