WHAT IS CLAIMED IS

1	 A method for overcoming stiction in an electro-mechanical system, 					
2	the method comprising:					
3	providing a base layer;					
4	providing a contact area, wherein the contact area comprises a portion of					
5	the base layer or a stop disposed thereon;					
6	providing a structural plate, wherein a side of the structural plate is in					
7	contact with the contact area, and wherein a stiction force impedes movement of the					
8	structural plate away from the contact area; and					
. 9	producing a vibration local to the contact area and sufficient to overcome					
10	the stiction force.					
1	2. The method of claim 1, wherein the structural plate is one of a					
2	plurality of structural plates and the contact area is one of a plurality of contact areas, and					
3	wherein each of the structural plates is associated with at least one contact area, the					
4	method further comprising:					
5	producing a vibration local to a subset of the contact areas.					
1	3. An electo-mechanical system capable of overcoming stiction force					
2	through localized vibration, the system comprising:					
3	a base layer having a surface;					
4	a device supported above the surface by a pivot, wherein the device is					
5	movable along a movement path;					
6	a stop located at a contact position along the movement path, wherein the					
7	device contacts the stop at the contact position, and wherein a stiction force between the					
8	device and the stop exits at the contact postion; and					
9	a vibration element operable to cause a vibration at or near the contact					
10	position, wherein the vibration disrupts the stiction force.					
1	4. The system of claim 3, the system further comprising an device					
2	actuator, wherein the device actuator is operable to cause the device to move along the					
3	movement path.					
1	5. The system of claim 3, wherein the device is a structural plate,					
2	comprising a micro mirror.					

1		6.	The system of claim 3, wherein the stop comprises an area of the		
2	base layer.				
1		7.	The system of claim 6, wherein the vibration element is a		
2	mechanical s	tructure	operable to repeatedly contact the device at or near the contact point.		
1		8.	The system of claim 3, wherein the vibration element comprises a		
2	device actuat	or, whe	rein the device actuator is operable to cause the device to move		
3			ovement path.		
1		9.	The system of claim 3, wherein the vibration element is integral to		
2	the device.				
1		10.	The system of claim 3, wherein the device is a first device, the		
2	pivot is a firs		the stop is a first stop, the contact position is a first contact position,		
3	the movement path is a first movement path, and the vibration device is a first vibration				
4			urther comprising:		
5	,		st a second device and a second pivot, wherein the second device is		
6	supported ab	supported above the surface by the second pivot, and wherein the second device is			
7			cond movement path;		
8		at lea	ast a second stop located at a second contact position along the second		
9	movement p	ath, wh	erein the second device contacts the second stop at the second contact		
10			in the contact between the second device and the second stop is		
11	susceptible t				
12	·	at lea	ast a second vibration element operable to cause a vibration at or near		
13	the second c	ontact p	position, wherein the vibration disrupts the stiction force; and		
14		wher	rein the first and second vibration elements are electrically connected		
15	such that the	e first ar	nd second vibration elements are activated together.		
1		11.	A method for overcoming stiction in an electro-mechanical system,		
2	the method	compris	sing:		
3		prov	riding a base layer;		
4		prov	riding a device supported above a surface of the base layer by a pivot;		
5		prov	riding an actuator disposed on the base layer;		

6	activating the actuator to cause the device to deflect until an end of the				
7	device contacts the base layer or a structure disposed thereon at a contact position,				
8	wherein further movement of the device is retarded by a stiction force at the contact				
9	position;				
10	deactivating the actuator to allow the device to return to a static position;				
11	and ·				
12	vibrating an area at or about the contact position, wherein the vibration				
13	disrupts the stiction force.				
1	12. The method of claim 11, wherein the device comprises a structural				
2	plate with a micromirror mounted thereon.				
ĺ	13. The method of claim 11, wherein vibrating comprises applying a				
2	force to deform an elastic structure at or near the contact position, and subsequently				
3	removing the force to allow the elastic structure to reform, and wherein reforming the				
4	elastic structure causes a vibration at the contact position.				
1	14. The method of claim 11, wherein the force is a voltage.				
•					
1	15. The method of claim 11, wherein vibrating comprises applying a				
2	voltage alternating between a low potential and a high potential at a frequency, and				
3	wherein the high potential causes an elastic structure to deform at or near the contact				
4	position and the low potential allows the elastic structure to reform, and wherein				
5	deforming and reforming the elastic structure causes a vibration at or near the contact				
6	position.				
1	16. The method of claim 11, wherein the contact position is associate				
2	with a stop structure disposed on the base layer.				
1	17. The method of claim 16, wherein vibrating comprises applying ar				
2	alternating voltage to the stop structure, and wherein the frequency of the alternating				
3	voltage is at or near the natural frequency of the stop structure or a harmonic thereof.				
1	18. A method for overcoming stiction through vibrations localized to				
2	areas susceptible to stiction forces, the method comprising:				
3	providing a base layer;				

4	providing at least a first and a second device;				
5	wherein the first device is moveable to contact the base layer or a				
6	first structure thereon at a first contact position, and wherein at the first contact position,				
7	movement of the first device is susceptible to stiction forces; and				
8	wherein the second device is moveable to contact the base layer or				
9	a second structure thereon at a second contact position, and wherein at the second contact				
10	position, movement of the second device is susceptible to stiction forces; and				
11	concurrently vibrating an area at or about the first and the second contact				
12	positions, wherein the vibration disrupts the stiction forces.				
1	19. The method of claim 18, wherein the device comprises a structural				
2	plate with a micromirror mounted thereon.				
1	20. The method of claim 18, wherein vibrating comprises applying a				
2	force to deform an elastic structure at or near the first contact position, and subsequently				
3	removing the force to allow the elastic structure to reform, and wherein reforming the				
4	elastic structure causes a vibration at the first contact position.				
1	21. The method of claim 18, wherein vibrating comprises applying a				
2	voltage alternating between a low potential and a high potential at a frequency, and				
3	wherein the high potential causes an elastic structure to deform at or near the first contact				
4	position and the low potential allows the elastic structure to reform, and wherein				
5	deforming and reforming the elastic structure causes a vibration at or near the first contact				
6	position.				
1	22. The method of claim 21, wherein the elastic structure is a first				
2	elastic structure, the method further comprising:				
3	concurrently applying the voltage to a second elastic structure, wherein				
4	deformation and reformation of the second elastic structure causes a vibration at or near				
5	the second contact position.				
1	23. The method of claim 18, wherein the first contact position is				
2	associated with a first stop structure disposed on the base layer, and wherein the second				
3	1's and an the bose lever				

1	24. The method of claim 23, wherein vibrating comprises applying an			
2	alternating voltage to both the first and the second stop structures, and wherein the			
3	frequency of the alternating voltage is at or near the natural frequency of the first and the			
4	second stop structures or a harmonic thereof.			
	oc A - 1 mechanical system the system comprising			
1	25. An electro-mechanical system, the system comprising:			
2	a structural plate in contact with a stop; and			
3	an actuator activated by a force for creating a movement of the stop			
4	relative to the structural plate, wherein the movement is sufficient to overcome stiction			
5	forces between the structural plate and the stop.			
. 1	26. The system of claim 25, wherein activating the actuator with a			
2	force causes the stop to displace from a static position to a displaced position, and			
3	wherein the movement results from elastic forces associated with the stop which cause			
4	the stop to displace from the displaced position to the static position when the actuator is			
5	de-activated.			
1	27. The system of claim 26, wherein the movement comprises an			
2	oscillation of the stop.			
1	28. The system of claim 27, wherein the oscillation comprises			
2	displacement of the stop from the displaced position passed the static position to an			
3	overshoot position and back to the static position.			
1				
2	wherein the structural plate is supported above the substrate by a pivot and the stop is			
3	disposed over the base layer.			
1	30. The system of claim 29, the system further comprising a micro-			
2	mirror disposed on the structural plate.			
1	31. The system of claim 29, wherein the actuator is a first actuator, the			
2	system further comprising a second actuator, wherein application of a DC voltage to the			
3	second actuator cause the structural plate to displace and contact the stop.			

1	32. A method of providing localized vibration in an electro-mechanical				
2	system, the method comprising:				
3	providing a base layer;				
4	providing a stop disposed over the base layer;				
5	providing a structural plate supported over the base layer by a pivot,				
6	wherein the structural plate is moveable to contact the stop;				
7 .	providing an actuator disposed relative to the stop;				
8	applying a static force to the actuator, wherein the stop displaces from a				
9	static position to a displaced position; and				
10	removing the static force from the actuator to cause a movement of the				
11	stop relative to the structural plate, wherein the movement is sufficient to overcome				
12	stiction forces between the stop and the structural plate.				
1	33. The method of claim 32, wherein the static force is a DC voltage.				
1	34. The method of claim 32, wherein the movement comprises an				
2	oscillation of the stop.				
1	35. The method of claim 34, wherein the oscillation comprises				
2	displacement of the stop from the displaced position passed the static position to an				
3	overshoot position and back to the static position.				
1	36. The method of claim 32, wherein the movement is primarily				
2	vertical relative to the base layer.				
1	37. The method of claim 32, wherein the movement is primarily				
2	horizontal relative to the base layer.				
1	38. The method of claim 32, wherein the structural plate comprises a				
2	micro-mirror disposed thereon.				
1	39. The method of claim 32, wherein the actuator is a first actuator, the				
2	method further comprising:				
3	providing a second actuator, wherein activation of the second actuator				
4	causes the structural plate to contact the stop; and				
5	activating the second actuator.				

1	40. The method of claim 39, the method further comprising:			
2	removing the static force from the first actuator at or about the same time			
3	as deactivating the second actuator.			
1	41. An electro-mechanical system, the system comprising:			
2	a mechanical stop;			
3	a structural plate disposed relative to the mechanical stop, wherein a side			
4	of the structural plate contacts the mechanical stop; and			
5	an actuator, wherein application of a DC voltage to the actuator causes the			
6	mechanical stop to move relative to the structural plate from a static position to a			
7	displaced position, and wherein removal of the static force causes a movement of the			
8	mechanical stop from the displaced position to the static position, and wherein the			
9	movement is sufficient to overcome stiction forces between the structural plate and the			
10	mechanical stop.			
1	42. The system of claim 41, wherein the movement comprises an			
2	oscillation of the mechanical stop.			
1	The system of claim 42, wherein the oscillation comprises			
2	displacement of the mechanical stop from the displaced position passed the static position			
3	to an overshoot position and back to the static position.			
1	44. The system of claim 41, the system further comprising a base layer			
2	wherein the structural plate is supported above the substrate by a pivot and the			
3	mechanical stop is disposed over the base layer.			
1	The system of claim 44, wherein the actuator is a first actuator, the			
2	system further comprising a second actuator, wherein application of a force to the second			
3	actuator causes the structural plate to deflect into contact with the mechanical stop.			
1	46. An optical routing apparatus comprising a moveable micro-mirror,			
2	the optical routing apparatus comprising:			
3	a base layer;			
4	a stop disposed over the base layer;			

5	a structural plate supported above the substrate by a pivot, wherein the				
6	structural plate is deflectable to contact the stop;				
7	an actuator disposed near the stop, wherein application of a DC voltage to				
8	the actuator causes the stop to displace from a static position, and wherein removing the				
9	DC voltage allows the stop to displace to the static position, and wherein displacement to				
10	the static position creates a movement sufficient to overcome stiction related forces				
11	between the stop and the structural plate.				
1	47. The system of claim 46, wherein the movement comprises an				
2	oscillation of the stop.				
1	48. The system of claim 46, wherein the movement comprises a				
2	combination of horizontal and vertical movement relative to the base layer.				
1	49. The system of claim 46, wherein the actuator is a first actuator, the				
2	system further comprising a second actuator, wherein application of a force to the second				
3	actuator causes the structural plate to deflect into contact with the stop.				
1	50. An electro-mechanical system, the system comprising:				
2	a structural plate in contact with a stop; and				
3	an actuator activated by an alternating force for creating an oscillating				
4	movement of the stop relative to the structural plate, wherein the oscillating movement is				
5	sufficient to overcome stiction forces between the structural plate and the stop.				
1	51. The system of claim 50, wherein the alternating force is an AC				
2	voltage or a pulsed DC voltage.				
1	52. The system of claim 50, wherein activating the actuator with an				
2	alternating force causes the stop to displace to a displaced position when the alternating				
3	force is at a first potential, and wherein an elastic force associated with the stop causes th				
4	stop to displace toward a static position when the alternating force is at a second potentia				
.1	53. The system of claim 52, wherein the oscillating movement results				
2	from displacing the stop to the displaced position and returning the stop toward the static				
2	nosition				

,	54	4 7	he system of claim 53, wherein the oscillating movement		
1					
2	oscillates at a fre	quency	at or about the frequency of the alternating force.		
1	55	5. Т	The system of claim 50, the system further comprising a base layer,		
2	wherein the struc	ctural p	late is supported above the base layer by a pivot and the stop is		
3	disposed over the		•		
1	56	6. 7	The system of claim 55, wherein the actuator is a first actuator, the		
2	system further co	ompris	ng a second actuator, wherein application of a voltage to the		
3	second actuator cause the structural plate to displace and contact the stop.				
1	5′	7. <i>I</i>	A method of providing localized vibration in an electro-mechanical		
2	system, the meth	od cor	nprising:		
3	pı	rovidin	g a base layer;		
4	· pı	rovidir	g a stop disposed over the base layer;		
5	pı	rovidir	g a structural plate supported over the base layer by a pivot,		
6	wherein the struc	ctural p	plate is moveable to contact the stop;		
7		rovidir	g an actuator disposed relative to the stop;		
8	· a _j	pplying	g an alternating force to the actuator to create a movement of the		
9	stop, wherein the	e stop (displaces from a static position to a displaced position when the		
10	alternating force	alternating force is at a first potential and returns toward the static position when the			
11	alternating force is at a second potential; and				
12	W	herein	the movement is sufficient to overcome stiction forces between		
13	the stop and the	structu	ral plate.		
1	5	8.	The method of claim 57, wherein the alternating force is an AC		
2	voltage.				
1	5	59.	The method of claim 57, wherein the movement comprises an		
2	oscillation of the	e stop.			
1	. 6	50.	The method of claim 59, wherein a frequency of the alternating		
2	force determine	s the fr	requency of the oscillation.		
1	6	51.	The method of claim 57, wherein the actuator is a first actuator, the		
2	method further	compri	sing:		

3	providing a second actuator, wherein activation of the second actuator			
4	causes the structural plate to contact the stop; and			
5	activating the second actuator.			
1	62. The method of claim 61, the method further comprising:			
2	de-activating the second actuator at or about the same time as applying an			
3	alternating force to the first actuator.			
1	63. An electro-mechanical system, the system comprising:			
2	a mechanical stop;			
3	a structural plate disposed relative to the mechanical stop, wherein a side			
4	of the structural plate contacts the mechanical stop; and			
5	an actuator, wherein application of an AC voltage to the actuator causes			
6	the mechanical stop to vibrate, and wherein the vibration is sufficient to overcome stiction			
7	forces between the structural plate and the mechanical stop.			
1	64. The system of claim 63, wherein the vibration occurs at a			
2	frequency at or about the frequency of the AC voltage.			
1	65. An optical routing apparatus comprising a moveable micro-mirror,			
2	the optical routing apparatus comprising:			
3	a base layer;			
4	a stop disposed over the base layer;			
5	a structural plate supported above the base layer by a pivot, wherein the			
6	structural plate is deflectable to contact the stop; and			
7	an actuator disposed near the stop, wherein application of an AC voltage to			
8	the actuator causes the stop to oscillate at a frequency at or about the frequency of the AC			
9	voltage, and wherein the oscillation is sufficient to overcome stiction related forces			
10	between the stop and the structural plate.			
1	66. The system of claim 65, wherein the oscillation comprises a			
2	combination of horizontal and vertical movement relative to the base layer.			
1	67. The system of claim 65, wherein the actuator is a first actuator, the			
2	system further comprising a second actuator, wherein application of a force to the second			
3	actuator causes the structural plate to deflect into contact with the stop.			

1		68.	An electro-mechanical system, the system comprising:	
		a base	•	
2			disposed on the base layer;	
3		a stop disposed on the base layer, a structural plate supported above the base layer by a pivot, wherein the		
4				
5	structural plat	e can de	eflect to contact the stop; and act for receiving a driving force, wherein a frequency of the driving	
6	•	a cont	act for receiving a driving force, wherein a nequency of either the stop or the	
7	force is at or 1	near the	resonant frequency, or a harmonic thereof, of either the stop or the	
8			wherein receiving the driving force causes a vibration of the stop	
9	relative to the	structu	ral plate.	
1		69.	The system of claim 68, wherein the driving force is a mechanical	
2	force.			
1		70.	The system of claim 68, wherein the driving force is sound.	
1		71.	The system of claim 68, wherein the driving force is an AC	
2	voltage.		•	
1		72.	The system of claim 71, wherein the contact comprises a portion of	
2	the stop.			
1		73.	The system of claim 71, wherein the contact comprises a portion of	
2	the pivot.			
1		74.	The system of claim 71, wherein the contact is an electrically	
2	conductive l	ead cou	pled to the stop.	
1		75.	The system of claim 71, wherein the vibration primarily comprises	
2	movement c	of the sto	op.	
1		76.	The system of claim 75, wherein the stop is comprised of a	
2	material and	l the dri	ving force has a frequency at or near the resonant frequency of the	
3	material.			
1		77.	The system of claim 71, wherein the vibration primarily comprises	
2	movement	of the st	ructural plate.	

1		78.	The system of claim 77, wherein the structural plate comprises a		
2	structure con	necting	a first and a second portion of the structural plate.		
1 .		79.	The system of claim 78, wherein the structure is a serpentine		
2	structure.				
1		80.	The system of claim 78, wherein the structure is comprised of a		
2	motorial and		ring force has a frequency at or near the resonant frequency of the		
3	material.	inc dire	ing force has a nequency at or near the recent to a specific service.		
1		81.	The system of claim 68, the system further comprising an actuator,		
2	wherein activ	vation o	of the actuator causes the structural plate to deflect and contact the		
3	stop.				
1		82.	The system of claim 81, wherein the actuator is integral to the stop.		
1	÷	83.	A method of providing localized vibration in an electro-mechanical		
2	system, the method comprising:				
3		provi	iding a base layer;		
4		prov	iding a stop disposed over the base layer;		
5		prov	iding a structural plate supported over the base layer by a pivot,		
6	wherein the	_	al plate is moveable to contact the stop;		
7		apply	ying a driving force to the stop, wherein a frequency of the driving		
8	force is at or		e resonant frequency, or a harmonic thereof, of either the stop or the		
9			wherein the driving force causes a vibration of the stop relative to the		
10	structural pla				
11	•		ein the movement is sufficient to overcome stiction forces between		
12	the stop and				
1		84.	The method of claim 83, wherein the driving force is an AC		
2	voltage.				
1		85.	The method of claim 83, wherein the stop comprises a material and		
2	the vibration	n compi	rises a vibration of the stop at or near the resonant frequency of the		
3	material.	•			

1	86. The method of claim 83, wherein the structural plate comprises a
2	material and the vibration comprises a vibration of the structural plate at or near the
3	resonant frequency of the material.
1	87. The method of claim 83, wherein the structural plate comprises a
2	structure disposed between a first and second portions of the structural plate.
1	88. The method of claim 87, wherein the vibration comprises a
2	vibration of the structural plate at or near the resonant frequency of the structure.
1	89. The method of claim 83, wherein the structural plate comprises a
2	micro-mirror disposed thereon.
1	90. An electro-mechanical system, the system comprising:
2	a base layer;
3	a structural plate supported above the base layer by a pivot, wherein a fire
4	portion of the structural plate contacts the base layer or a stop disposed on the base layer
5	and a second portion of the structural plate contacts the pivot, and wherein a structure is
6	disposed between the first and the second portions;
7	a driving force, wherein the driving force has a frequency at or near the
8	natural frequency, or a harmonic thereof, of the structure; and
9	wherein the driving force causes a vibration of the structural plate relativ
10	to the base layer, the vibration sufficient to overcome stiction related forces between the
11	base layer and the structural plate.
1	91. The system of claim 90, wherein the structure is comprised of a
2	material and the driving force has a frequency at or near the natural frequency of the
3	material.