CG 法のアルゴリズム

行列 $A \in \mathbb{R}^{n \times n}$ は正定値対称行列であるとする.連立一次方程式 Ax = b を解く CG 法 (Conjugate Gradient Method, 共役勾配法) のアルゴリズムは以下のようになる.

Algorithm 1 Conjugate Gradient Method

Input: $A, \boldsymbol{b}, \boldsymbol{x}_0$

Output: \hat{x} where $A\hat{x} \approx b$

1:
$$r_0 = b - Ax_0$$

2:
$$p_0 = r_0$$

3: **for**
$$k = 0, 1, ...$$
 do

4:
$$\alpha_k = \frac{(\boldsymbol{p}_k, \boldsymbol{r}_k)}{(\boldsymbol{p}_k, A \boldsymbol{p}_k)}$$

5:
$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \alpha_k \boldsymbol{p}_k$$

6:
$$\boldsymbol{r}_{k+1} = \boldsymbol{r}_k - \alpha_k A \boldsymbol{p}_k$$

7:
$$\beta_k = -\frac{(\boldsymbol{r}_{k+1}, A\boldsymbol{p}_k)}{(\boldsymbol{p}_k, A\boldsymbol{p}_k)}$$

8:
$$\boldsymbol{p}_{k+1} = \boldsymbol{r}_{k+1} + \beta_k \boldsymbol{p}_k$$

9: end for

反復は Step~6. において残差ベクトルの 2 ノルム $||r_{k+1}||_2$ が小さくなったときに終了する.アルゴリズム中で行列 A とベクトル p_k の積 Ap_k が複数回現れるが,一度計算したときに変数の代入しておき,何度も行列とベクトルの積を計算することを避けること.

Step 4. は
$$\alpha_k = \frac{(\boldsymbol{r}_k, \boldsymbol{r}_k)}{(\boldsymbol{p}_k, A \boldsymbol{p}_k)}$$
, Step 7. は $\beta_k = \frac{(\boldsymbol{r}_{k+1}, \boldsymbol{r}_{k+1})}{(\boldsymbol{r}_k, \boldsymbol{r}_k)}$ としてもよい.