Mathematics Department

N COALLO	Spoqtoy	Cr acoV	040 +30+	,
CHOIR CEALCOULORS	puədəpul 🦕	ent Public Sch	loo	
	oitqəpx3	iloodəs lanc	ng. Excepti	tudents.
	PERT	IOW H	SEKN 3	TOO

Course Methods Year 12 test one 2022

дед: Уеs	Formula sheet provi
% ⁻ 01 ⁻	Task weighting:
40 <u> </u>	Marks available:
Drawing instruments, templates, notes on one unfolded sheet of $$\rm A4$$ paper.	:sməti lsiɔəqZ
Pens (blue/black preferred), pencils (including coloured), sharpener, correction fluid/tape, eraser, ruler, highlighters	Standard items:
No calculators nor classpads allowed	Materials required:
8 <u></u> :s	Number of questions
s task:40 mins	Time allowed for this
уesbouse	<u>т</u> 92k
Teacher name:	Student name:

Vote: All part questions worth more than 2 marks require working to obtain full marks.

9 g s q <u>1</u>			
	9 g s q 1		
	Note: All part questions wor		

Differentiate the following: a) $(3x-1)^5$

Solution

 $5(3x-1)^43$

Specific behaviours

P correct power

P uses factor of 5

P uses factor of 3

(no need to simplify)

b) $(5x^2 - 1)^7 3x^2$ and simplify

Solution

$$(5x^2 - 1)^7 3x^2$$

$$(5x^2 - 1)^7 6x + 3x^2 7(5x^2 - 1)^6 10x$$

$$(5x^2 - 1)^6 2x [3(5x^2 - 1) + 105x^2]$$

$$(5x^2 - 1)^6 6x [40x^2 - 1]$$

Specific behaviours

P uses product rule

P uses chain rule for bracket term

P obtains a correct expression

P shows a fully simplified expression

c)
$$\frac{3x+1}{\sqrt{7-2x}}$$
 (do not simplify)

$$\frac{\sqrt{7-2x}(3)-(3x+1)\frac{1}{2}(7-2x)^{\frac{-1}{2}}(-2)}{7-2x}$$

Specific behaviours

Solution

2 | P a g e

 $T = A(800 - 20A) = 800A - 20A^2$

$$=A(800 - 20A) = 800A - 20A$$

$$\frac{dT}{dA} = 800 - 40A = 0$$

$$A = 20$$
 ha

Mathematics Department

$$\frac{dT^2}{dA^2} = -40$$

A = 20 A'' = -40: local max

Specific behaviours

P determines expression for total amount of corn

P differentiates and equates to zero

P solves for A (no units required)

P shows using a derivative test that this is a local max

Let the cost, C, to make X items in a factory be given by $C = 3x^3 - 12x^2 + 40x$ dollars. Using calculus show that the minimum average cost per item is equal to the marginal cost at this number of

Solution

$$C = 3x^3 - 12x^2 + 40x$$

$$Av = \frac{C}{x} = 3x^2 - 12x + 40$$

$$(Av)' = 6x - 12 = 0$$
 , $x = 2$

$$(Av)^{''} = 6 : local min$$

$$Av(2) = 12 - 24 + 40 = 28$$

$$M \arg inal(x) = 9x^2 - 24x + 40$$

$$M \arg inal(2) = 36 - 48 + 40 = 28$$

OED

Specific behaviours

P determines exp for average and differentiates

P equates derivative to zero and solves for x

P shows with derivative test that local min

P shows marginal cost formula

Pshows both equal at required x value

Mathematics Department Perth Modern

(8,1) at (xx)(1-xz)=y of the tangent to of the equation of the tangent to Q2 (4 marks)

P states tangent line

Solution

Solution

$$y' = (5x - 1)6x^2 + 10x^3$$

$$y = 34x + c$$

$$c = -26$$

$$y = 34x - 26$$
Specific behaviours

P uses product rule
P determines gradient
P sets up a constant and equation to solve
P sets up a constant and equation to solve

Determine the coordinates of the stationary points and their nature for $y = x^3 - 2x^2 - x + 2$. Justify. Q3 (5 marks)

Specific behaviours
$\left(-\frac{1}{3},\frac{27}{20}\right)$ & (-1,2)
Z = Z + I - Z + I = V max $y = -I + Z = X$
$x = \frac{1}{27} \Rightarrow y = 2 \log al \min y = \frac{1}{27} + \frac{2}{9} + \frac{1}{27} = \frac{1}{27} + \frac{6}{12} + \frac{1}{27} = \frac{9}{27} + \frac{1}{27} = \frac{9}{27} = \frac{1}{27}$
$y' = 0$, $x = \frac{1}{5}$, $x = -1$
t + x = x
(1+x)(1+x+1=(3x+1)(x+1)
$\lambda = x_3 + \zeta x_5 + x + \zeta$
noibulo2

Mathematics Department Perth Modern

Note: No follow through if sketch is wrong as original function given & do not accept

60 (2 % 3 = 5 marks)

Consider the function y = g(x) where g(x) = 10, g'(2) = 5

a) Using the increments formula (small change) determine an approximate value for g(2.1) and express this as an approximate percentage change again using the increments formula.

P determines approx. g(2.1) P uses increments formula Specific behaviours 2.01≈ (1.2)₽ $2.0 = 1.0(2)^{\circ} \varrho = x \Delta \frac{\sqrt{b}}{xb} \approx \sqrt{\Delta}$ Solution

formula determine the approximate percentage change in volume for a 3% change in the . Using the increments b) The volume of a sphere of radius $^{\Gamma}$ metres is given by

де срапде іп volume	Refrequence of the service of the states A		
oecific behaviours	ds		
	$\%6 = \frac{1}{\sqrt{1}} \xi = \frac{\varepsilon^{JL} \frac{\xi}{2}}{\sqrt{1}\sqrt{1}} \approx \frac{\Lambda}{\Lambda \nabla}$		
uoiiuloS			

P simplifies expression

Psubs % change for r to give approx. % change in V

the number of hectares that should be used to maximise the amount of corn produced. corn to be harvested per hectare is given by (800 - 20A) kg for A 440 . Using calculus determine Let ${\mathbb A}$ equal the number of hectares that a farmer will use to grow corn one season. The amount of Q7 (4 marks)

Solution

Mathematics Department

Perth Modern

P determines first derivative

P equates derivative to zero

P solves for x values of both stationary pts

P uses a derivative test and shows values to determine nature

P determines y values of stationary pts

Q4 (3 marks)

The displacement of a body from an origin O, at time $\,^t$ seconds, is $\,^\chi$ metres where

$$x = t^3 - 3t^2 + 5t + 1$$
, $t \ge 0$

Determine the velocity and the displacement of the body when the acceleration is zero.

Solution

 $x = t^3 - 3t^2 + 5t + 1, t \ge 0$

 $v = 3t^2 - 6t + 5$

a = 6t - 6 = 0

t = 1

x = 1 - 3 + 5 + 1 = 4

v = 3 - 6 + 5 = 2

Specific behaviours

P differentiates to determine velocity and acceleration

P equates acceleration to zero and solves for t

P states velocity and displacement for this time

Q5 (4 marks)

Consider the function f(x) which is graphed below.

Mathematics Department

On the **axes below**, sketch the gradient function f'(x) indicating on your sketch the location of any stationary points and any inflection points. (labelled)

P labels local minimum (accept min)

P labels inflection pt

P labels local max (accept max)