

Distilling Large Vision-Language Model with Out-of-Distribution Generalizability

Xuanlin Li*, Yunhao Fang*, Minghua Liu, Zhan Ling, Zhuowen Tu, Hao Su University of California San Diego

Al research

Paper Link

Overview

- Goal: Distill visual representations in large vision-language teachers into lightweight student models, while allowing students to possess strong open-vocabulary generalization ability towards out-of-distribution (OOD) concepts.
 - Potential for deployment on mobile / IoT devices and robotics scenarios.
- Experiments are conducted on small-to-medium datasets, allowing for fast research & development (R&D) cycles and is practical for lower-data regimes like 3D and robotics.
- . Main Findings: 2 principles to enhance student's OOD generalizability:
- Better imitate teacher's visual representation space, and carefully promote better visionlanguage alignment coherence with the teacher.
- Enrich teacher's language representations with more finegrained & meaningful attributes to
 effectively distinguish between different labels, both during distillation and inference. This can be
 accomplished by prompting LLMs like ChatGPT.

Teacher-Student Visual Space Alignments

- Precisely matching teacher and student's highdimensional visual spaces is inherently challenging (with high MSE feature matching loss).
- In this case, minimizing student-teacher visual feature distance does NOT yield the best OOD generalization ability for students.

$$\begin{split} \mathcal{L}_{\text{cb}}(\mathbf{x}, y) &= \sum_{y'} -\mathbf{1}_{y'=y} \log P_S(y'|\mathbf{x}) \\ P_S(y|\mathbf{x}) &= \frac{\exp(\cos(S(\mathbf{x}), T_{\text{txt}}(l(y)))/\tau)}{\sum_{y' \in \mathcal{Y}} \exp(\cos(S(\mathbf{x}), T_{\text{txt}}(l(y')))/\tau)} \end{split}$$

$$\begin{split} \mathcal{L}_{\text{msc}}(\mathbf{x}) &= ||S(\mathbf{x}) - T_{\text{img}}(\mathbf{x})||_2^2 \\ \mathcal{L}_{\text{im-cst}}(\mathbf{x}) &= \frac{\exp(-||S(\mathbf{x}) - T_{\text{img}}(\mathbf{x})||_2^2/\tau)}{\sum_{\mathbf{x}'} \exp(-||S(\mathbf{x}) - T_{\text{img}}(\mathbf{x}')||_2^2/\tau)} \end{split}$$

	Food101	SUN397
\mathcal{L}_{mse}	0.24 / 28.4°	0.36 / 34.9°
\mathcal{L}_{mse} (RN50)	0.24 / 28.4°	0.35 / 34.4°
$\mathcal{L}_{\mathrm{cls}} + \mathcal{L}_{\mathrm{mse}}$	0.45 / 39.2°	0.71 / 49.8°
$\mathcal{L}_{\text{cls}} + \mathcal{L}_{\text{mse}} + \mathcal{L}_{\text{im-cst}}$	0.65 / 47.6°	0.82 / 53.8°
$\mathcal{L}_{\text{cls}} + \mathcal{L}_{\text{im-cst}}$	1.29 / 69.2°	1.28 / 68.9°

Average MSE / degree difference between student & teacher visual features for students trained with different strategies. Student: RN18; Teacher: CLIP VIT-L/14

- However, teacher-student coherence in local visual space structures and relative visual feature relationships is crucial for student OOD generalization, as they implicitly enhance vision-language alignments.
- We find that Contrastive losses like L_{lm cst} are especially helpful for student OOD generalization, as it enables much better student-teacher proximity in both local and relative visual feature structures.

Teacher-Student Vision-Language Alignments

- Explicitly enhance teacher-student vision-language alignment coherency.
- Carefully preserve teacher's vision-language alignment structure by accounting for teacher misalignments (through e.g., Lviprox).

$$\begin{split} \mathcal{L}_{\text{vlprox}}(\mathbf{x}, k) &= I(\mathbf{x}) \cdot \mathcal{D}_{\text{KL}}(P_{T, \text{topk}}(\cdot | \mathbf{x}) || P_{S, \text{topk}}(\cdot | \mathbf{x})) \\ I(\mathbf{x}) &= \mathbf{1}[\text{argmax}_y P_T(y | \mathbf{x}) = \text{label}(\mathbf{x})] \\ P_{\cdot, \text{topk}}(y | \mathbf{x}) &= \frac{\mathbf{1}_{y \in Y_{\text{topk}}} P_{\cdot}(y | \mathbf{x})}{\sum_{y \in Y_{\text{topk}}} P_{\cdot}(y | \mathbf{x})}; Y_{\text{topk}} = \text{argtopk}_y P_T(y | \mathbf{x}) \end{split}$$

$\mathcal{M}_{ ext{vlalign}} \downarrow$	k=2	k = 3	k = 5
$ \begin{array}{c} \mathcal{L}_{\text{cls}} + \mathcal{L}_{\text{mse}} \\ \mathcal{L}_{\text{cls}} + \mathcal{L}_{\text{mse}} + \mathcal{L}_{\text{im-cst}} \\ \mathcal{L}_{\text{cls}} + \mathcal{L}_{\text{mse}} + \mathcal{L}_{\text{im-cst}} + \mathcal{L}_{\text{vlprox}} \end{array} $	0.20 / 0.50	0.68 / 1.45	2.67 / 4.73
	0.18 / 0.43	0.62 / 1.3	2.52 / 4.24
	0.17 / 0.39	0.59 / 1.17	2.17 / 4.20

$$\begin{split} \mathcal{M}_{\text{vlalign}}(\mathcal{X}, k) &= \frac{\sum_{i=1}^{|\mathcal{X}|} \text{#reverse_pairs}(\text{arrS}(i, k))}{|\mathcal{X}|} \\ &\text{arrS}(i, k) = [||S(\mathbf{x}_i) - T_{\text{txt}}(l(y_j))||_2]_{j \in \mathcal{I}(i, k)} \\ &\mathcal{I}(i, k) = \text{argtopk}([-||T_{\text{im}}(\mathbf{x}_i) - T_{\text{txt}}(l(y_j))||_2)]_{i=1}^{|\mathcal{Y}|} \end{split}$$

Language Representation Enrichment

- Prompt ChatGPT to enrich label descriptions: "Use a single sentence to describe the appearance and shape of {cls}. Only describe the shape and appearance."
- ChatGPT-enriched descriptions are significantly more informative than e.g., auxiliary captions generated by OFA, supplying comprehensive details to distinguish finegrained categories.

Original Description:

"A photo of an Acura Integra Type R 2001" ChatGPT-Enriched:

"A photo of an Acura Integra Type R 2001. The 2001 Acura Integra Type R features a compact and sporty design with a sleek, aerodynamic body, sharp angles, and a distinctive rear spoiler."

Auxiliary Caption from OFA:

"A white car is parked in a field."

- ChatGPT-enriched language representation space confers more
- independent & meaningful attributes to distinguish labels, allowing
 OOD text features to be more precisely aligned with image features.

Figure 4: Top 10 eigenvalues of text features.

	Cos. Sim.
w/o enrichment	0.5156
ChatGPT	0.4462
Caption	0.5572

Table 6: Average cosine similarity between all pairs of text features.

Applications (e.g., Robotics)

	$\mathcal{X}_{\mathrm{id}}$	\mathcal{Y}_{id} on \mathcal{X}_{ood}	\mathcal{Y}_{ood} on \mathcal{X}_{ood}
Closed-Set	96.4 / 96.5	NA / 86.2	NA / 87.7
$\mathcal{L}_{\mathrm{cls}}$	96.9 / 97.2	79.3 / 85.3	71.7 / 87.3
+ Lim-est	99.2 / 99.2	84.0 / 91.9	76.3 / 88.3
+ Semantic Enrich	98.2 / 99.0	84.3 / 92.0	83.0 / 89.6

(a) Overall	accuracy	over all	YCB	objects
		10.000		20.00

	$\mathcal{X}_{\mathrm{id}}$	\mathcal{Y}_{id} on \mathcal{X}_{ood}	\mathcal{Y}_{ood} on \mathcal{X}_{ood}
losed-Set	91.6 / 91.9	NA / 57.8	NA / 35.9
cls	94.0 / 94.4	46.5 / 54.7	23.3 / 32.8
$\mathcal{L}_{\text{im-cst}}$	98.1 / 98.0	55.3 / 70.8	23.7 / 47.3
Semantic Enrich	97.2 / 97.4	55.6 / 70.8	11.7 / 50.7

(b) F1-measure over objects that exist in observations.