2 case studies models with atypical behavior

09/11/08

1 class of users influence of think time on performance

objectives

- analyze the influence of think time Z on the system performance (response time R, throughput X, utilization U, power X/R, number of users in think state and in execution)
- the workload, number of users of the system, is fixed (N=300), the service requests and the service times are kept constant
- think time Z changes from 1 to 1000 sec

system topology

workload (D vector)

workload vector $\mathbf{D_i} = \mathbf{V_i} * \mathbf{S_i}$ [sec]

resources	D [sec]	bottleneck
think time (Z)	1-1000	D _{max}
CPU	0.100	
Web applic.	0.060	
DB data	0.020	

throughput X and response time R vs Z

asymptote R = $ND_{max} - Z = 300*0.1 - 1 = 29 sec$

utilizations

$$U_{CPU} = XD_{CPU}$$
 $U_{wappl} = XD_{wappl}$ $U_{db} = XD_{db}$

$$\frac{U_{wappl}}{U_{CPU}} = \frac{D_{wappl}}{D_{CPU}} = \frac{0.06}{0.10} = 0.6 \qquad \frac{U_{DB}}{U_{CPU}} = \frac{D_{DB}}{D_{CPU}} = \frac{0.02}{0.10} = 0.2$$

system power: X/R vs Z

users in think state and in execution vs Z

2 classes of requests unbalanced workload increase

system topology

workload behavior

- two classes of web requests: light e heavy
- balanced growth, up to N=200 requests (50% cl.1, 50% cl.2)
- unbalanced workload growth after 200 requests
 - 1. only light class users increase
 - 2. only heavy class users increase
- evaluate the performance indexes behavior (utilization, throughput, response time)

service demands matrix D (2 classes)

resources	class 1 light users		class 2 heavy users
browser think time Z		5	60
web application server		0.100	0.030
DB server 1		0.060	0.040
DB server 2		0.020	0.200
natural bottleneck class 1 DCPU=Dmax=0.1		natural bottleneck class 2 DDB=Dmax=0.2	

unbalanced growth: utilization asymptotes

only light users increase

$$U_{appl.server} = XD_{appl.server} = 1 \qquad U_{DB1} = XD_{DB1} \qquad \qquad U_{DB2} = XD_{DB2}$$

$$U_{DB2} = XD_{DB2}$$

$$U_{DB1} = U_{appl.server} \frac{D_{DB1}}{D_{appl.server}} = \frac{0.060}{0.100} = 0.6$$

$$U_{DB2} = U_{appl.server} \frac{D_{DB2}}{D_{appl.server}} = \frac{0.020}{0.100} = 0.2$$

only heavy users increase

$$U_{DB2} = 1$$
 $\frac{U_{DB1}}{U_{DB2}} = \frac{D_{DB1}}{D_{DB2}}$ $U_{DB1} = U_{DB2} \frac{D_{DB1}}{D_{DB2}} = \frac{0.040}{0.200} = 0.2$

$$\frac{U_{appl.server}}{U_{db}} = \frac{D_{appl.server}}{D_{db}} \qquad U_{appl.server} = U_{DB2} \frac{D_{appl.server}}{D_{DB2}} = \frac{0.030}{0.200} = 0.15$$

utilizations - only class 1 increases (light users)

utilizations - only class 2 increase (heavy users)

system throughput X [trans/sec]

response time R [sec]

response time R [sec]

