Zadanie 6

6.1 Opis problemu

Znaleźć miejsce zerowe funkcji $f_1(x)=e^{1-x}-1$, $f_2(x)=xe^{-x}$ za pomocą metody bisekcji, Newtona i siecznych. Wymagane dokładności obliczeń: $\delta=10^{-5}$, $\epsilon=10^{-5}$. Dobrać odpowiednio przedziały i przybliżenia początkowe.

Sprawdzić co się stanie dla pierwszej funkcji przy metodzie Newtona jeśli wybierzemy $x \in (1, \infty]$, a dla drugiej funkcji $x_0 > 1$. Czy można wybrać $x_0 = 1$ dla f_2 ?

6.2 Rozwiązanie

Na podstawie wykresu funkcji możemy w łatwy sposób wybrać takie przedziały oraz przybliżenia początkowe dla których metody będę zbieżne i będą dawały zadowalające wyniki. Poprawnym rozwiązaniem będzie wywołanie odpowiednich funkcji oraz sprawdzenie czy wyniki spełniają założenia zadania.

6.3 Wyniki

Meto da	X	f1(x)	it	X	f2(x)	it
bisek cji	0.9999984741210 939	1.5258800702966369 e-6	16	-3.8146972655 82706e-6	-3.81471181752 569e-6	17
Newt ona	0.999999998878 352	1.1216494399945987 e-10	4	-3.0642493416 461764e-7	-3.06425028060 87233e-7	5
siecz nych	0.9999999624498 374	3.755016342310569e -8	5	1.74416584992 4562e-8	1.7441658195034 172e-8	18

8993900008368314e

Metoda Newtona	r	v	it
ze zmienionymi			
danymi			
f1 x = 2.0	0.9999999710783241	2.892167638712806e-8	9
f2 x = 2.0	17.921103648665824	2.953441189651331e-7	7
f1 x = 1.0	1.0	0.0	0

6.4 Wnioski

Pierwiastkiem pierwszej funkcji jest x = 1.0 a drugiej x = 0.0. Są to jedyne pierwiastki tych funkcji. Dla pierwszej tabeli rozwiązania mieszczą się w granicach dokładności obliczeń. Ponownie można zauważyć wyższość metody Newtona nad metodą bisekcji pod względem ilości iteracji. Dla pierwszej funkcji i $x_0 \in (1, \infty]$ ilość iteracji zwiększyła się co jest naturalną konsekwencją oddalenia punktów przybliżonych od realnego pierwiastka funkcji. Dla funkcji drugiej i x_0 = 2.0 dostajemy odmienne wyniki. Spowodowane jest to kształtem funkcji która zbiega do 0 dla x > 1. Wtedy metoda stycznych jest nie zbiega do poprawnego pierwiastka funkcji. Dla naszego x wartość f(x) jest na tyle bliska zera że algorytm uznaje je jako pierwiastek. Dla funkcji f1 i x_0 = 1.0 bez wykonywania żadnych iteracji znajdujemy za darmo miejsce zerowe.