Министерство образования и науки Российской Федерации

Федерльное государственное автономное образовательное учреждение высшего образования

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра систем управления и информатики

Отчет о лабораторной работе №1 «ПОСТРОЕНИЕ МАТЕМАТИЧЕСКОЙ МОДЕЛИ ДВИГАТЕЛЯ NXT»

по дисциплине «Введение в специальность»

Выполнили: студенты гр. Р3136

Дорофеев И. Д. Лисицына Е. А.

Ван Янь

Сюй Сюйчэн

Преподаватель: Капитонов А. А.,

Ассистент каф. СУиИ

1 Цель работы

Экспериментальным путем проверить справедливость функций, проанализировать характер зависимости T_m (Voltage) и ω_{nls} (Voltage), и определить значения параметров.

2 Материалы работы

2.1 Результаты необходимых расчетов и построений

В таблице 1 представлены результаты аппроксимации экспериментальных данных. В четвертом столбце указаны результаты расчета величины $M_{\rm st}$ по значениям величин из двух предшествующих столбцов.

Voltage,%	ω_{nls} , рад/с	T_m , c	М _{st} , Н*м
100	16.3	0.0655	0.572
80	12.9	0.0641	0.464
60	9.65	0.0632	0.351
40	6.34	0.0572	0.255
20	3.07	0.0534	0.132
0	0	0	0
-20	-3.07	0.0566	-0.125
-40	-6.39	0.0612	-0.24
-60	-9.68	0.0611	-0.365
-80	-12.9	0.0658	-0.453
-100	-16.3	0.0699	-0.536

Таблица 1. Результаты расчетов величин T_{m} , ω_{nls} и M_{st} .

Рисунок I График зависимости угла поворота ротора от времени при voltage = 100

Рисунок 2 График зависимости угла поворота ротора от времени при voltage = 80

 $\it Pucyhok~3$ $\it \Gamma paфик~$ зависимости угла поворота ротора от времени при $\it voltage=60$

Pисунок 4 Γ рафик зависимости угла поворота ротора от времени при voltage = 40

Рисунок 5 График зависимости угла поворота ротора от времени при voltage = 20

Pисунок 6 Γ рафик зависимости угла поворота ротора от времени при voltage = -20

Рисунок 7 График зависимости угла поворота ротора от времени при voltage = -40

Pисунок 8 Γ рафик зависимости угла поворота ротора от времени при voltage = -60

Pисунок 9 Γ рафик зависимости угла поворота ротора от времени при voltage = -80

Pисунок 10 Γ рафик зависимости угла поворота ротора от времени при voltage = -100

Рисунок 11 График зависимости T_m om Voltage

Рисунок 12 График зависимости ω_{nls} om Voltage

2.2 Схемы моделирования

Рисунок 13 Схема моделирования процесса разгона ненагруженного двигателя постоянного тока

2.3 Код основной программы

```
results = read("C:\Users\Sela\Desktop\L1\Data\100.txt", -1, 2);
qlines=size(:,1)
angle=results(:,2)
angle=angle*%pi/180
time=results(:,1)/1000
time=time-time(1)
plot2d(time, angle, 2)
aim=[time,angle]
aim=aim'
deff('e=func(k,z)','e=z(2)-k(1)*(z(1)-k(2)*(1-exp(-z(1)/k(2))))')
att=[-15;0.06]
[koeffs,errs]=datafit(func,aim,att)
 Wnls=koeffs(1)
Tm=koeffs(2)
model=Wnls*(time-Tm*(1-exp(-time/Tm)))
plot2d(time, model, 3)
J=0.0023
Mst=(J*Wnls)/(Tm)
importXcosDiagram("C:\Users\Sela\Desktop\L1\Data\scheme.zcos")
xcos simulate(scs m,4)
plot2d(A.time, A.values, 5)
legend('Experiment', \$\theta(t) = \log_{nls} t-\log_{nls} T_m + \log_{nls} T_m 
\frac{t}{T_m} \cdot \frac{T_m}{\sigma}, \dots, \infty
```

2.4 Код программы для NXT

```
task main()
{
byte handle;
int i, angle, time, jules;
string s;

DeleteFile("data.txt");
CreateFile("data.txt", 2048, handle);
Wait(50);
OnFwd(OUT_B, 100); //<— Variable
```

```
\label{eq:continuous_section} \begin{split} & \text{for (i=0; i < 200; i++)} \\ & \{ \\ & \text{time = CurrentTick() - FirstTick();} \\ & \text{angle = MotorRotationCount(OUT\_B);} \\ & \text{s = NumToStr(time) + " " + NumToStr(angle);} \\ & \text{WriteLnString(handle, s, jules);} \\ & \text{Wait(5);} \\ & \} \\ & \text{CloseFile(handle);} \\ & \} \end{split}
```

3 Выводы

Я ничего не понял