Adjacency Matoix

Let $V = \{v_i, v_0, \dots, v_n\}$. The adjacency makeix $A = [a_{ij}]_{n \times n}$ where $a_{ij} = 1$ if $\{v_i, v_j\} \in E$, otherwise $a_{ij} = 0$

If $E = \{e_1, e_2, \dots, e_k\}$ the incidence matrix. I is the nxk matrix $[b_{ij}]_{nxk}$ where $b_{ij} = 1$ if v_i is the vertex on the edge e_j , otherwise.

ej = 6

(1) Find the adjacency matrix and incidence matrix associated with the given graph

Adjavency muloix

	- V ,	V 2	V 3	1/4	4	
٧. [0	1	1	٥	10	
√2 	1	0		1	1	
V 3	١	1	١	1		
V4	0	l	1	0	1	
ک ول	1	1	1	1	1	

Incidence makrix e_{l} 9 eg 90 e11 0 Ø 0 0 2. First the adjacency materix and incidence. matorx of the graph Solution Adjacency 0

0

Inei	lence	- mator	γ	
	e_{l}	e_{χ}	9	ey
M,		. 1. }	$\mathcal{J}_{\tau_{\ell,1}}.$	0
v ₂	e l 1	O ₁ , , , , ,		1
V3	0 ()	1,	O ,	1.
٧4	0		1 :	0

Planas Crouph.

A grouph on is called planar I'f on Con be drown in the plane with its edges intersecting only at vestices of on such a drowing of on is called an embedding of on

· in the plane!

K_{3 & planar}

The goodh is non planars the edges $\{x, z\}$ and $\{w, y\}$ overslap at a point other than a vestex.

But Ky is planas

Biparohite gouph

A graph (n=(v, E) is called bipartite

if. V=v,uv, with v,nvh=b, and every edge

of (n is of the from \$a,b) with acv, and beb.

If each vertex in v, is joined with every

vertex in v, the graph is called Complete

bipartite graph. In this case if (v,1=m, 1v1=n,

the graph is denoted by Km,n.

The gouphs K5 and K3,3 asc non planas

Let G be a connected planas graph with NI=v and IEI=e. Let v be the number of segions in the plane determined by planars embedding of G, then v-e+s=2.

(If f is the number of faces v-e+f=2.)

Then Let G = (V, E) be a loop free connected planars graph with |V| = V, |E| = e > 2, and 8 regions. Then $38 \le 2e$ and $e \le 3V - 6$.

Solution

Since (n is a reason loop free and is not a multigraph, the boundary of each region (ordering affects) affects a edges a Hence each region has degree $\frac{1}{3}$. Consequently, 2e = 2|E| = ho sum of the degrees of x regions determined by (n and 2e > 3x. We have v-e+x=2. $2=v-e+x \le v-e+(\frac{2}{3})e$.

= v-B)e

 $2 \leq \sqrt{-\frac{1}{3}e}$

2 4 <u>34-e</u> 3

6 = 3v-e.

e < 3V-6.