$\begin{array}{cccc} {\bf HOMEWORK~4:~\S 2.2\text{-}2.5} & {\bf DUE~FEBRUARY~9} \\ & {\bf SOLUTIONS} \end{array}$

(1)	Find (with proof) all integers n such that $0 \mid n$. The only such n is 0 .
	Theorem. If n is an integer and $0 \mid n$, then $n = 0$.
	<i>Proof.</i> We use a direct proof. Suppose n is an integer and $0 \mid n$. That is, $n = 0 \cdot k$ for some integer k . But $0 \cdot k = 0$ regardless of the value of k , so $n = 0$.
	Theorem. $0 \mid n$.
	<i>Proof.</i> $n = 0 \cdot 1$ and $1 \in \mathbb{Z}$, so $0 \mid n$.
(2)	Find (with proof) all integers n such that $n \mid 0$. Every integer n satisfies $n \mid 0$.
	Theorem. For every integer $n, n \mid 0$.
	<i>Proof.</i> We use a direct proof. Let n be an arbitrary integer. Then $0 = n \cdot 0$, and since $0 \in \mathbb{Z}$, we have $n \mid 0$.
	we the following statements. For all integers a, b, c : if $a \mid b$ and $b \mid c$, then $a \mid c$.
	<i>Proof.</i> Direct proof. Let a,b,c be integers such that $a\mid b$ and $b\mid c$. Then $b=ak$ and $c=b\ell$ for some integers k,ℓ . Substituting the former into the latter gives $c=(ak)\ell=a(k\ell)$. Since $k\ell\in\mathbb{Z}$, this means that $a\mid c$.
(4)	For all integers a, b, c : if $a \mid b$ and $a \mid c$, then $a \mid (b + c)$.
	<i>Proof.</i> Direct proof. Let a,b,c be integers such that $a\mid b$ and $a\mid c$. Then $b=ak$ and $c=a\ell$ for some $k,\ell\in\mathbb{Z}$. Then $b+c=ak+a\ell=a(k+\ell)$. Since $k+\ell\in\mathbb{Z}$, this means that $a\mid (b+c)$. \square
(5)	For all integers a, b : if ab is odd, then a and b are both odd. (Use the WLOG technique.)
	<i>Proof.</i> We prove the contrapositive: "If at least one of a,b is even, then ab is even." Let a,b be arbitrary integers such that at least one of a,b is even. WLOG, assume a is even (otherwise switch the roles of a,b). Then $a=2k$ for some integer k . So $ab=2kb$, and since $kb\in\mathbb{Z}$, we have that ab is even.
(6)	The square of any integer has the form $4k$ or $4k + 1$ for some integer k .
	<i>Proof.</i> Rephrase the statement: "For any integer $n, n^2 = 4k$ or $n^2 = 4k+1$ for some integer k ." Direct proof, by cases. Suppose n is an arbitrary integer. Then n is either even or odd. Case 1: n is even. Then $n = 2\ell$ for some integer ℓ , and so $n^2 = 4\ell^2$. Letting $k = \ell^2$ gives $n^2 = 4k$ and $k \in \mathbb{Z}$.
	Case 2: n is odd. Then $n=2\ell+1$ for some integer ℓ , and so $n^2=4\ell^2+4\ell+1$. Letting $k=\ell^2+\ell$ gives $n^2=4k+1$ and $k\in\mathbb{Z}$.
(7)	The sum of a rational number and an irrational number is irrational.
	<i>Proof.</i> Rephrase the statement: "For every rational number r and irrational number x , $r+x$ is irrational." We prove this statement by contradiction. Suppose r is a rational number, x is irrational, but $r+x$ is rational. Then $x=(x+r)-r$. But $x+r$ is rational by assumption, and $-r$ is rational $[r=a/b, so -r=(-a)/b]$, and we have already proven that the sum of rational numbers is rational. This means x is rational, contradicting our original assumption that x was irrational.

(8) Every composite number n has a factor d with $1 < d \le \sqrt{n}$.

Proof. Direct proof. Let n be a composite number. By Workshop 6 Problem 4, n=ab for some positive integers a,b such that both a and b are < n. WLOG, assume that $a \le b$ (otherwise swap their names). We claim that d=a satisfies the theorem. Suppose to the contrary: then either a=1 or $a>\sqrt{n}$.

Case 1: a = 1. But since b < n, this gives $n = ab = 1 \cdot b = b < n$, a contradiction. **Case 2:** $a > \sqrt{n}$. Since $b \ge a$, we have $n = ab \ge a^2 > (\sqrt{n})^2 = n$, a contradiction.

Challenge: is it possible to make exactly \$3 using exactly 50 coins that are all pennies, dimes, and quarters? (Some of the homework problems may help, but are not necessary. Too hard? Try a warmup: is it possible to make \$3.14 using any combination of nickels, dimes, and quarters?)

No, it is not possible. Suppose to the contrary that it is possible, and let p, d, q represent the number of pennies, dimes, and quarters used, respectively. Then the stated requirements are equivalent to the system of equations

$$p + 10d + 25q = 300$$
$$p + d + q = 50$$

Solving each for p and equating gives 300 - 10d - 25q = 50 - d - q, and rearranging gives

$$(1) 250 = 9d + 24q.$$

But 9d = 3(3d) and $3d \in \mathbb{Z}$, so $3 \mid 9d$; and 24q = 3(8q) and $8q \in \mathbb{Z}$, so $3 \mid 24q$. By Problem 4, this means $3 \mid (9d + 24q)$. But $3 \nmid 250$. These two statements contradict Equation (1).