ECONOMICS 8100

GREG LEO

Part 1. Budget

1. Consumption Set X

Assumptions: (Universe of Choice Objects): X

Bundles: Elements of X. $x \in X$

Assumptions about X.

- 1. $\emptyset \neq X \subseteq \mathbb{R}^n_+$.
- 2. X is closed.
- 3. X is convex.
- 4. $0 \in X$.

FIGURE 1.1. Examples of a Convex/Non-Convex Set.

2. Budget Set B

Budget Set: $B \subseteq X$

X defines the scope of the model. B is what an $individual\ consumer\ chooses\ among.$

Example. Budget Set with Prices and Income

$$B = \{x | x \in X \& x_1 p_1 + x_2 p_2 \le m\}$$

Example. Ice Cream Bowls

Every ice cream bowl x has some non-negative number of scoops of Vanilla, Chocolate, Strawberry.

$$X = \mathbb{R}^3_+$$

Budget B is the set of bowls with no more than one scoop of ice cream.

$$B = \left\{ x | x \in R_+^3 \& \sum_{i=1}^3 x_i \le 1 \right\}$$

This is the unit-simplex in \mathbb{R}_3 .

 $(1,0,0) \in B$. (On the boundary.)

 $(0.5, 0.5, 0) \in B$. (On the boundary.)

 $(0.25, 0.25, 0.25) \in B$. (In the interior.)

 $(2,0,0) \notin B$

Part 2. Preference

3. The Preference Relation

Preference Relation is a **Binary Relation**.

Formally, a binary relation on set X is a subset of the Cartesian product X with itself.

$$\succeq \subseteq X \times X$$

Another way to denote an ordered pair is "in" the relation:

If $(x, y) \in \succeq$ we can also write $x \succeq y$.

Informally we say "x" is at least as good as "y", or "x" preferred "y".

Axioms of \succeq .

Axiom 0 (reflexive): $\forall x \in X, x \succeq x$. This is implied by axiom 1.

Axiom 1 (complete): $\forall x, x' \in X$, either $x \succeq x'$ or $x' \succeq x$ (or both).

The consumer has "some" preference over every pair of objects.

Axiom 2 (transitive): $\forall x, x', x'' \in X$ if $x \succ x'$ and $x' \succ x'' \Rightarrow x \succ x''$.

≥ is a "weak order" if it is complete and transitive.

4. Relations and Sets Related to ≥

Subrelations:

 \sim is the indifference relation. $x \succeq y$ and $y \succeq x \Leftrightarrow x \sim y$.

 \succ is the strict relation. $x \succeq y$ and not $y \succeq x \Leftrightarrow x \succ y$.

Related Sets:

 $\succeq (x)$ "upper contour set"

5. From Preferences to Choice

Choice Correspondence.

We will assume that from a budget set B a consumer "chooses" choice set C according to their preference \succeq . $C = \{x | x \in B \& \forall x' \in B, x \succeq x'\}$.

Informally, C is the set of objects that are at least as good as anything else in the set.

Example With Transitive Preferences

$$X = \{a, b, c\}. \ a \succeq b, c \succeq a, c \succeq b.$$

$$C(\{a\}) = a, C(\{b\}) = b, C(\{c\}) = c$$

$$C\left(\left\{a,b\right\}\right)=a,C\left(\left\{a,c\right\}\right)=c,C\left(\left\{b,c\right\}\right)=c$$

$$C(\{a, b, c\}) = c$$

The Problem with Intransitive Preferences

 $X = \{a, b, c\}.$ $a \succeq b, c \succeq a, b \succeq c.$ This is intransitive! Choice correspondence:

$$C:P\left(X\right) /\emptyset \rightarrow X$$

$$C(\{a\}) = a, C(\{b\}) = b, C(\{c\}) = c$$

$$C(\{a,b\}) = a, C(\{a,c\}) = c, C(\{b,c\}) = b$$

$$C(\{a,b,c\}) = \emptyset$$

This consumer cannot make a choice from the set $\{a, b, c\}$.

Result (Impossibility of Choice): For every preference relation with an intransitive strict sub-relation \succ over some universe X. There is some budget $B \subseteq X$ with $\#(B) \geq 3$ such that $C(B) = \emptyset$.