Introduction to Computer Graphics

2. Transformations Geometry 3D幾何

I-Chen Lin
National Chiao Tung University

Textbook: E.Angel, D. Shreiner Interactive Computer Graphics, 6th Ed., Pearson Ref: D.D. Hearn, M. P. Baker, W. Carithers, Computer Graphics with OpenGL, 4th Ed., Pearson

Outline

- Introduce standard transformations
 - Rotation
 - ► Translation
 - Scaling
 - ► Shear 傾斜
- ► Derive <u>homogeneous coordinate</u> transformation matrices
- Learn to build arbitrary transformation matrices from simple transformations

General Transformations

► A transformation maps points to other points and/or vectors to other vectors

Affine Transformations

- A transformation that preserves lines and parallelism
 - ▶ maps parallel lines to parallel lines 圖案、線條不變形(直線和平行保持不變)

Characteristic of many physically important transformations

剛體運動:物體不易扭曲,保持基本形狀、角度

► Rigid body transformations: rotation, translation

平移

Scaling, shear

Translation

平移

Using the <u>homogeneous coordinate</u> representation in some frame 四維=>表示向量 note that this expression is in

$$p = [x y z \mathbf{1}]^{T}$$

$$p' = [x' y' z' \mathbf{1}]^{T}$$

$$d = [d_{x} d_{y} d_{z} \mathbf{0}]^{T}$$

Hence p' = p + d or

$$x' = x + d_{x}$$

$$y' = y + d_{y}$$

$$z' = z + d_{z}$$

note that this expression is in four dimensions and expresses point = vector + point

Translation Matrix glTranslation()

▶ We can also express translation using a 4 x 4 matrix T in homogeneous coordinates

因為3x3矩陣沒辦法做加法,所以需要這個1, 用來處裡物體平移=>固定用4x4的矩陣

Why do we use a matrix form instead of vector addition?

Rotation (2D)

- Consider rotation about the origin by q degrees
 - radius stays the same, angle increases by q

trigonometric identities

$$\sin(\theta + \varphi) = \sin\theta\cos\phi + \cos\theta\sin\phi$$
$$\cos(\theta + \varphi) = \cos\theta\cos\phi - \sin\theta\sin\phi$$

$$x' = x \cos \theta - y \sin \theta$$

 $y' = x \sin \theta + y \cos \theta$

Rotation about the z axis

- Rotation about z axis in three dimensions
 - leaves all points with the <u>same z</u>
 - Equivalent to rotation in two dimensions in planes of constant z

$$x' = x \cos \theta - y \sin \theta$$

 $y' = x \sin \theta + y \cos \theta$

Z' = Z 對Z軸旋轉,對Z軸距離不變

or in homogeneous coordinates

$$p'=R_z(\theta)p$$

Rotation Matrix

$$\mathbf{R} = \mathbf{R}_{z}(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotation about x and y axes

glRotate(角度, 1, 0, 0)=>對x軸旋轉 glRotate(角度, 0, 1, 0)=>對y軸旋轉 glRotate(角度, 0, 0, 1)=>對z軸旋轉

- Same argument as for rotation about z axis
 - For rotation about x axis, x is unchanged
 - For rotation about y axis, y is unchanged

$$\mathbf{R} = \mathbf{R}_{\mathcal{X}}(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$m{R} = m{R}_y(heta) = egin{bmatrix} \cos heta & 0 & \sin heta & 0 \ 0 & 1 & 0 & 0 \ -\sin heta & 0 & \cos heta & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

Scaling

Expand or contract along each axis (fixed point of origin)

$$x' = s_{x}x$$

$$y' = s_{y}x$$

$$z' = s_{z}x$$

$$p' = Sp$$

$$S = S(s_{x}, s_{y}, s_{z}) = \begin{bmatrix} s_{x} & 0 & 0 & 0 \\ 0 & s_{y} & 0 & 0 \\ 0 & 0 & s_{z} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Reflection

corresponds to negative scale factors

Inverses

Compute inverse matrices by general formulas, or use simple geometric observations

- ► Translation: $T^{-1}(d_x, d_y, d_z) = T(-d_x, -d_y, -d_z)$
- ► Rotation: $R^{-1}(q) = R(-q)$
 - ► Holds for any rotation matrix
 - Since $cos(-\theta) = cos(\theta)$; $sin(-\theta) = -sin(\theta)$

 $R^{-1}(q) = R^{T}(q)$ orthogonal matrix: 自己和自己的反矩陣相乘會等於I

► Scaling: $S^{-1}(s_x, s_y, s_z) = S(1/s_x, 1/s_y, 1/s_z)$

Shear

► Equivalent to pulling faces in opposite directions

Shear Matrix

Consider simple shear along x axis

$$x' = x + y \cot \theta$$
$$y' = y$$
$$z' = z$$

$$\mathbf{H}(\theta) = \begin{bmatrix} 1 & \cot \theta & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Concatenation

► Form arbitrary affine transformation matrices by multiplying together rotation, translation, and scaling matrices.

for each i ABCDpi ,

or

cost較低 —————

M=ABCD, for each i Mpi

同一個剛體會乘上相同的矩陣, EX: 摩天輪

Order of Transformations

- Note that matrix on the right is the first applied
- Mathematically, the following are equivalent

$$p' = ABCp = A(B(Cp))$$
 p:column vetor

矩陣順序不能調換,乘的順序影響結果

row vector

Note many references use column matrices to represent points. In terms of column matrices

$$p^{\prime T} = p^T C^T B^T A^T$$

General Rotation about the Origin 對世界軸旋轉

Decompose into the concatenation of rotations about the x, y, and z axes

$$R(\theta) = R_z(\theta_z) R_y(\theta_y) R_x(\theta_x)$$

 θ_x , θ_v , θ_z are called the <u>Euler angles</u>

https://zh.wikipedia.org/wiki/%E6%AC%A7%E6%8B%89%E8%A7%92

Commutative?

Rotation about a Fixed Point other than the Origin

對自己旋轉

- Move fixed point to origin
- 2. Rotate
- 3. Move fixed point back

EX: Ry(5度)T(c)Ry(10度)T(-c)*E: 拉到世界中心·先自轉10度再公轉5度· 再放回原本的位置

Rotation about an Arbitrary Axis 對任意軸旋轉

Rotate around an axis vector u.

$$v = u/|u| = [\alpha_x, \alpha_y, \alpha_z]^T$$

$$\cos \phi_{x} = \alpha_{x}$$

$$\cos\phi_{y} = \alpha_{y}$$
$$\cos\phi_{z} = \alpha_{z}$$

$$\cos \phi_z = \alpha_z$$

$$\cos\phi_x + \cos\phi_y + \cos\phi_z = 1$$

錯誤=>應改為三個cos的平方相加等於1

Hint: What we already have are rotations around x, or y, or z axes.

Rotation about an Arbitrary Axis

有分量的話不能直接轉=>分段轉

先將物體轉到我們會的軸

- 1. Rotate the axis vector to match z (x or y) axis. [R_{axis}]
- 2. Rotate around z axis. $[R_z(\theta)]$
- 3. Rotate the axis vector back. $[R_{axis}^{-1}]$

$R_x(\theta_x)$

任何旋轉不會改變物體間的相對關係及距離

$R_y(\theta_y)$

Rotation about an Arbitrary Axis

$$M = R_{axis}^{-1} R_z(\theta) R_{axis}$$

$$= R_x(-\theta_x) R_y(-\theta_y) R_z(\theta) R_y(\theta_y) R_x(\theta_x)$$

沿著原路回去,旋轉矩陣transpose就是他的inverse

Instancing 實例化

In modeling, we often start with a simple object centered at the origin, oriented with the axis, and at a standard size

▶ We apply an *instance transformation* to its vertices to

Hierarchical structure

In addition to separate instances, plenty of objects consist of hierarchical sub-components, e.g. skeletons, <u>desk lamps</u>,

excavators, etc. EX:機器人大腿動的話小腿也會跟著動

底盤動的話,其他骨架也會跟著移動

挖土機

Hierarchical structure (cont.)

Hierarchical structure (cont.)

Hierarchical structure (cont.)

Hierarchical transformation

Hierarchical transformation (cont.)

Hierarchical transformation (cont.)

► There are <u>common sub-transformation</u>.

We can avoid redundant matrix multiplication by stack mechanism 多餘的

Matrix in **OpenGL** style

*ModelView Matrix

push-pop:保存M的狀態,避免中間被改掉

qlut: 處理user interface

glIndentity(): 將原本的global M matrix變成I

"Draw the base"

.

 $g|Rotate(\theta_a)$; radian=>g|Rotate(角度, 1, 0, 0)

glPushMatrix(); 保存M: 此時Ra

"Draw the dark blue arm"

glPopMatrix(); Ra

glTranslate(d₁); Td1Ra

glRotate(θ_h); RbTd1Ra

glPushMatrix();

"Draw the light blue arm"

glPopMatrix(); RbTd1Ra

glTranslate(d₂); Td2RbTd1Ra

glRotate(θ_c); RcTd2RbTd1Ra

glPushMatrix();

"Draw the lampshade"

glPopMatrix(); RcTd2RbTd1Ra

 $R_{\theta a}T_{d1}R_{\theta b}T_{d2}R_{\theta c}$

How to deal with branches? push and pop

··········· *最後會使用qlflush()清除整個stack

Appendix

Basic Elements

- Geometry:
 - ▶ the relationships among objects in an *n-dimensional space*
 - Computer graphics mainly focuses on three dimensions.
- Want a minimum set of primitives from which we can build more sophisticated objects
- We will need three basic elements
 - Scalars
 - Vectors
 - Points

Vectors

- Physical definition: a vector is a quantity with two attributes
 - Direction
 - Magnitude
- Examples include
 - Force
 - Velocity
 - Directed line segments
 - Most important example for graphics
 - Can map to other types

Vector Operations

- Every vector has an inverse
 - Same magnitude but points in opposite direction
- Every vector can be multiplied by a scalar
- There is a zero vector
 - Zero magnitude, undefined orientation
- ► The sum of any two vectors is a vector
 - Use head-to-tail axiom

v = u + w

Linear Vector Spaces

- Mathematical system for manipulating vectors
- Operations
 - \triangleright Scalar-vector multiplication $u=\alpha v$
 - \triangleright Vector-vector addition: w=u+v
- Expressions such as

$$v=u+2w-3r$$

Make sense in a vector space

Vectors Lack Position

- These vectors are identical
 - Same length and magnitude

- Vectors spaces insufficient for geometry
 - Need points

Points

- Location in space
- Operations allowed between points and vectors
 - Point-point subtraction yields a vector
 - Equivalent to point-vector addition

Affine Spaces

- Point + a vector space
- Operations
 - Vector-vector addition
 - Scalar-vector multiplication
 - Point-vector addition
 - Scalar-scalar operations
- For any point define
 - $\mathbf{1} \cdot \mathbf{P} = \mathbf{P}$
 - $ightharpoonup 0 \cdot P = 0$ (zero vector)

Lines

- Consider all points of the form
 - $P(\alpha)=P_0+\alpha \mathbf{d}$
 - ightharpoonup Set of all points that pass through P_0 in the direction of the vector ${f d}$

Parametric Form

- ▶ This form is known as the parametric form of the line
 - More robust and general than other forms
 - Extends to curves and surfaces
- ► Two-dimensional forms
 - **Explicit:** y = mx + h
 - ightharpoonup Implicit: ax + by + c = 0
 - **Parametric:**

$$x(\alpha) = \alpha x_0 + (1-\alpha)x_1$$

$$y(\alpha) = \alpha y_0 + (1-\alpha)y_1$$

Rays and Line Segments

- \triangleright $\alpha >= 0$, ray leaving P_0 in the direction **d**
- If we use two points to define v, then $P(\alpha) = Q + \alpha \ (R-Q) = Q + \alpha v = \alpha R + (1-\alpha)Q$
- \triangleright 0<= α <=1, *line segment* joining R and Q

Convexity

- Convex iff:
 - ► for any two points in the object all points on the line segment between these points are also in the object

Convex Hull

- ightharpoonup Smallest convex object containing P_1, P_2, \dots, P_n
- ► Formed by "shrink wrapping" points

Planes

A plane can be defined by a point and two vectors or by three points

$$P(\alpha,\beta)=R+\alpha u+\beta v$$

$$P(\alpha,\beta)=R+\alpha(Q-R)+\beta(P-Q)$$

Triangles

for $0 <= \alpha, \beta <= 1$, we get all points in triangle

Barycentric Coordinates

Triangle is convex so any point inside can be represented as an affine sum

$$P(a_1, a_2, a_3)=a_1P+a_2Q+a_3R$$
 where $a_1+a_2+a_3=1$, and $a_i>=0$

► The representation is called the barycentric coordinate representation of P

Normals

Every plane has a vector n normal (perpendicular, orthogonal) to it

From point-two vector form $P(\alpha,\beta)=R+\alpha u+\beta v$, we know we can use the cross product to find $n=u\times v$ and the equivalent form

$$(P(\alpha)-P) \cdot n=0$$

Dot product

$$u = [x_1, x_2, x_3]^T$$

$$v = [y_1, y_2, y_3]^T$$

$$u \cdot v = x_1 y_1 + x_2 y_2 + x_3 y_3 = /u//v/\cos\theta$$

Projection

$$w = (|v| \cos \theta) unit(u)$$

$$= (|v| \frac{u \cdot v}{|u||v|}) \frac{u}{|u|}$$

$$= (\frac{u \cdot v}{|u|^2}) u$$

Cross Product

- $u = [x_1, x_2, x_3]^T$
- $v = [y_1, y_2, y_3]^T$
- $|u \times v| = |u||v||\sin\theta|$

$$w = u \times v = \begin{bmatrix} x_2 y_3 - x_3 y_2 \\ x_3 y_1 - x_1 y_3 \\ x_1 y_2 - x_2 y_1 \end{bmatrix}$$

Linear Independence

- A set of vectors $v_1, v_2, ..., v_n$ is linearly independent if $\alpha_1 v_1 + \alpha_2 v_2 + ... \alpha_n v_n = 0$ iff $\alpha_1 = \alpha_2 = ... = 0$
- ► If a set of vectors is linearly independent, we cannot represent one in terms of the others
- ▶ If a set of vectors is linearly dependent, as least one can be written in terms of the others

Dimension

- Dimension of a space
 - ► In a vector space, the maximum number of linearly independent vectors is fixed
- Basis
 - ► In an *n*-dimensional space, any set of n linearly independent vectors form a *basis* for the space
- Given a basis $v_1, v_2, ..., v_n$, any vector v can be written as $v = \alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_n v_n$

where the $\{\alpha_i\}$ are unique

Representation

- Need a frame of reference to relate points and objects to our physical world.
 - ► For example, where is a point? Can't answer without a reference system
 - World coordinates
 - Camera coordinates

Coordinate Systems

- \triangleright Consider a basis v_1, v_2, \ldots, v_n
- A vector is written $v = \alpha_1 v_1 + \alpha_2 v_2 + + \alpha_n v_n$
- The list of scalars $\{\alpha_1, \alpha_2, ..., \alpha_n\}$ is the *representation* of v with respect to the given basis
- We can write the representation as a row or column array of scalars

$$\mathbf{a} = [\alpha_1 \ \alpha_2 \ \dots \ \alpha_n]^T = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix}$$

Example

$$v = 2v_1 + 3v_2 - 4v_3$$

$$\mathbf{a} = [2\ 3\ -4]^{\mathrm{T}}$$

Note that this representation is with respect to a particular basis

Coordinate Systems

▶ Which is correct?

▶ Both are because vectors have no fixed location

Frames

- ▶ A coordinate system is insufficient to represent points
- If we work in an affine space we can add a single point, the *origin*, to the basis vectors to form a *frame*

Representation in a Frame

Frame determined by (P_0, v_1, v_2, v_3)

Within this frame, every vector can be written as

$$v = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n$$

Every point can be written as

$$P = P_0 + \beta_1 v_1 + \beta_2 v_2 + + \beta_n v_n$$

Confusing Points and Vectors

Consider the point and the vector

$$P = P_0 + \beta_1 v_1 + \beta_2 v_2 + + \beta_n v_n$$

$$v = \alpha_1 v_1 + \alpha_2 v_2 + + \alpha_n v_n$$

They appear to have the similar representations

$$\mathbf{p} = [\beta_1 \, \beta_2 \, \beta_3] \qquad \mathbf{v} = [\alpha_1 \, \alpha_2 \, \alpha_3]$$

$$\mathbf{v} = [\alpha_1 \, \alpha_3 \,$$

A Single Representation

If we define $0 \cdot P = 0$ and $1 \cdot P = P$ then we can write

$$v = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 = [\alpha_1 \alpha_2 \alpha_3 0] [v_1 v_2 v_3 P_0]^T$$

$$P = P_0 + \beta_1 v_1 + \beta_2 v_2 + \beta_3 v_3 = [\beta_1 \beta_2 \beta_3 1] [v_1 v_2 v_3 P_0]^T$$

Thus we obtain the four-dimensional <u>homogeneous</u> <u>coordinate</u> representation

$$\mathbf{v} = [\alpha_1 \, \alpha_2 \, \alpha_3 \, 0]^{\mathrm{T}}$$
$$\mathbf{p} = [\beta_1 \, \beta_2 \, \beta_3 \, 1]^{\mathrm{T}}$$

Homogeneous Coordinates

A three dimensional point $[x \ y \ z]$ is given as $p = [x'y'z'w]^{T} = [wx \ wy \ wz \ w]^{T}$

- We return to a three dimensional point (for $w\neq 0$) by x=x'/w; y=y'/w; z=z'/w
- ▶ If w=0, a vector.

► Homogeneous coordinates replaces points in three dimensions by lines through the origin in four dimensions.

Homogeneous Coordinates and Computer Graphics

- Homogeneous coordinates are key to all computer graphics systems
 - ► All standard transformations (rotation, translation, scaling) can be implemented with matrix multiplications using 4 x 4 matrices
 - ► Hardware pipeline works with 4 dimensional representations
 - For orthographic viewing, we can maintain w=0 for vectors and w=1 for points
 - ► For perspective we need a *perspective division*

Change of Coordinate Systems

Consider two representations of a the same vector with respect to two different bases. The representations are

$$\mathbf{a} = [\alpha_1 \ \alpha_2 \ \alpha_3]$$
$$\mathbf{b} = [\beta_1 \ \beta_2 \ \beta_3]$$

where

$$v = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 = [\alpha_1 \alpha_2 \alpha_3] [v_1 v_2 v_3]^T$$

$$= \beta_1 u_1 + \beta_2 u_2 + \beta_3 u_3 = [\beta_1 \beta_2 \beta_3] [u_1 u_2 u_3]^T$$

Representing second basis in terms of first

► Each of the basis vectors, u1,u2, u3, are vectors that can be represented in terms of the first basis

$$\begin{aligned} u_1 &= \gamma_{11} v_1 + \gamma_{12} v_2 + \gamma_{13} v_3 \\ u_2 &= \gamma_{21} v_1 + \gamma_{22} v_2 + \gamma_{23} v_3 \\ u_3 &= \gamma_{31} v_1 + \gamma_{32} v_2 + \gamma_{33} v_3 \end{aligned}$$

