Assignment-based Subjective Questions

1.	From your analysis of the categorical variables from the dataset, what could you in their effect on the dependent variable?	nfer about (3 marks)	
Ans	: Season, ye, mnth, holiday, weekday, weathersit are categorical variables in the datase From the analysis it can be inferred that:		
	 Bike demand takes a dip in spring If clear Weather= demand is high other side light rain=demand is low. In Fall season is Bike demand in high Bike Demand is high in duration of May-October In year Demand is 2019 has higher demand than 2018 Working day does not affect bike demand. In weekday bike demand is almost similar 		
2.	Why is it important to use drop_first=True during dummy variable creation?	(2 mark)	
Ans	: Dummy variable creates separate variable for each category, for example if categories, then it will create n features (columns). Not using drop_first=True wo dummy variables correlated to each other and hence, redundant, which is not expanalysis.	uld make the	
3.	Looking at the pair-plot among the numerical variables, which one has the highest with the target variable?	correlation (1 mark)	
Ans	: Temp / atemp		
4.	How did you validate the assumptions of Linear Regression after building the mod training set?	del on the (3 marks)	
	: - Validate the linear regression by validating the VIF and P values - By analysing the Residual error analysis - And linear relationship between dependent and target variable.		
5.	Based on the final model, which are the top 3 features contributing significantly explaining the demand of the shared bikes?		
Ans: Top 3 variables are Actual temperature(atemp), year, spring			

General Subjective Questions

1. Explain the linear regression algorithm in detail.

(4 marks)

Ans -

Linear Regression is an ML algorithm used for supervised learning. It helps in predicting a dependent variable(target) based on the given independent variable(s).

The regression technique tends to establish a linear relationship between a dependent variable and the other given independent variables. There are two types of linear regression- simple linear regression and multiple linear regression. Simple linear regression is used when a single independent variable is used to predict the value of the target variable. Multiple Linear Regression is when multiple independent variables are used to predict the numerical value of the target variable.

A linear line showing the relationship between the dependent and independent variables is called a regression line. A positive linear relationship is when the dependent variable on the Y-axis along with the independent variable in the X-axis. However, if dependent variables value decreases with increase in independent variable value increase in X-axis, it is a negative linear relationship.

2. Explain the Anscombe's quartet in detail.

(3 marks)

Ans:

Anscombe's quartet consists of four data sets that have nearly identical simple descriptive statistics but have very different distributions and appear very different when presented graphically. Each dataset consists of eleven points. The primary purpose of Anscombe's quartet is to illustrate the importance of looking at a set of data graphically before beginning the analysis process as the statistics merely does not give the an accurate representation of two datasets being compared.

3. What is Pearson's R?

(3 marks)

Ans:

It is the most common way of measuring a linear correlation. It's a number between -1 to 1 that measures the strength and direction of relationship between two variables.

4. What is scaling? Why is scaling performed? What is the difference between normalized scaling and standardized scaling? (3 marks)

Ans:

Scaling is a technique performed in pre-processing during building a machine learning model to standardize the independent feature variables in the dataset in a fixed range. The dataset could have several features which are highly ranging between high magnitudes and units. If there is no scaling performed on this data, it leads to incorrect modelling as there will be some mismatch in the units of all the features involved in the model. The difference between normalization and standardization is that while normalization brings all the data points in a range between 0 and 1, standardization replaces the values with their Z scores.

	(3 marks)
An	S:
	The value of VIF is infinite when there is a perfect correlation between the two independent variables. The Rsquared value is 1 in this case. This leads to VIF infinity as VIF equals to 1/(1-R2). This concept suggests that is there is a problem of multi-collinearity and one of these variables need to be dropped in order to define a working model for regression.
6.	What is a Q-Q plot? Explain the use and importance of a Q-Q plot in linear regression. (3 marks)
An	,
	The quantile-quantile (Q-Q) plot are used to plot quantiles of a sample distribution with a theoretical distribution to determine if any dataset concerned follows any distribution such as normal, uniform or exponential distribution. It helps us determine if two datasets follow the same kind of distribution. It also helps to find out if the errors in dataset are normal in nature or not

5. You might have observed that sometimes the value of VIF is infinite. Why does this happen?