MA398 Week 2 Intorial

1.6

1. (a) Given the matrix

$$A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 3 & -1 \\ 3 & -2 & -9 \end{bmatrix}, \quad b = \begin{bmatrix} 8 \\ 2 \\ 9 \end{bmatrix}$$

Use the Gaussian elimination method described in the lecture notes to solve the system Ax = b. Show each step of your work.

Answer: Given system of equations:

$$x_1 - x_2 + x_3 = 8,$$

$$2x_1 + 3x_2 - x_3 = 2,$$

$$3x_1 - 2x_2 - 9x_3 = 9.$$

Starting with these equations, we can perform the following row operations: $-3 \times R_1 + R_2$ and $-2 \times R_1 + R_3$ to get:

$$x_1 - x_2 + x_3 = 8,$$

 $0x_1 + x_2 - 12x_3 = -15,$
 $0x_1 + 5x_2 - 3x_3 = -18.$

Then, to get rid of x_2 in the third equation, we can subtract 5 times the second row from the third row:

$$x_1 - x_2 + x_3 = 8,$$

$$0x_1 + x_2 - 12x_3 = -15,$$

$$0x_1 + 0x_2 + 57x_3 = 57.$$

From the third equation we get $x_3 = 1$. Substituting $x_3 = 1$ into the second equation gives $x_2 = -3$. Using these values in the first equation gives $x_1 = 4$.

So the solution to the system of equations is x = (4, -3, 1).

1.6

Inpyter Notebook

2

Forward Substitution

tiven Lx = b

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	*	$\Gamma a_{\mathbf{u}}$	Ø	0 0	[24]	[by]
$a_{31} a_{32} a_{33} 0 \pi_{5} = b_{3}$ $\vdots \vdots \vdots \vdots \vdots$		an	azz	O D		b ₂
					ng =	b ₃
ani ans ansan sin bi		:	•			•
		anı	anz	ansan	Nn	b.

Expanding the above matrix yields

= b, an 24 an 24 + an 22 azy 24 + azz xz + azz xz + ann 1/2 + ans 1/2 + · · · + ann In = bn 24 = 6, /an 1/2 z (b2 - asix)/ass N3 = (b3 - a31 x - a32 x)/a33 $\frac{1}{2n} = \left(b_n - \sum_{i=1}^{n-1} a_{ni} \chi_i \right) / a_{nn}$ In general, 21 = b,/ au $\chi_{i} = (bi - \sum_{i=2,3,...,n} a_{ij} \chi_{j}) / a_{ii}, i = 2,3,...,n$ Computational Cost. In the Summation sign, we have both + and x x: 1+2+3+...+n-1+: 0 + 1 + 2+...+ n-2 (pigeon hole prin.) Subtracting bi is done n-1 times $= \frac{n^{2} - n}{2} + \frac{n^{2} - 3n + 2}{2} + 2n - 1 = n^{2} = 0 (n^{2})$

```
Egoriflum FS (forward Substitution)

Li = (lij)i,j=1 E (nxn), lii to \ti=1,...,n,
              b = (b_i)_{i=1}^n \in \mathbb{C}^n
    aut: x E C" Solution to Lix = 6
       x1:= b1/L,
      for i=2 to n do
          h:=0
3.
            for j=1 to i-1 do
4.
                hi= h + lists
 6.
             スi:= (bi-h)/lii
7.
            3. (LU decomposition)
               (a) Find the LU decomposition of the matrix
                                            A = \begin{bmatrix} 2 & -1 & 3 \\ 4 & 2 & 1 \\ -6 & -1 & 2 \end{bmatrix},
                   and use it to solve Ax = b with b = (7, 8, -3).
                   Answer: The LU decomposition of a matrix is a process where we factorize the orig-
                  inal matrix A into a product of a lower triangular matrix L and an upper triangular
                  matrix U.
 1-6-12 1R3+3R, L0-4 11 JR3+R2

    \begin{bmatrix}
      1 & 0 & 0 \\
      1 & 0 & 0 \\
      1 & 0 & 0
    \end{bmatrix}

    \begin{bmatrix}
      1 & 0 & 0 \\
      2 & -1 & 3 \\
      0 & 4 & -5 \\
      0 & 0 & 6
    \end{bmatrix}
```

The LU factorization is given by:

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -3 & -1 & 1 \end{bmatrix}, \quad U = \begin{bmatrix} 2 & -1 & 3 \\ 0 & 4 & -5 \\ 0 & 0 & 6 \end{bmatrix}.$$

Now that we have the LU decomposition of A, we can solve Ax = b as follows:

First, we solve Ly = b for y:

$$Ly = b$$

where b = (7, 8, -3).

Then, we solve Ux = y for x:

$$Ux = y$$

We can solve Ly = b as follows:

Here,

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -3 & 1 & 1 \end{bmatrix}, \quad b = \begin{pmatrix} 7 \\ 8 \\ -3 \end{pmatrix}.$$

Solving Ly = b yields:

$$y_1 = 7,$$
 $2y_1 + y_2 = 8,$
 $-3y_1 + y_2 + y_3 = -3.$

From the above system, we can find $y = (7, -6, -6)^T$.

Next, we use y to solve Ux = y:

$$U = \begin{bmatrix} 2 & -1 & 3 \\ 0 & 4 & -5 \\ 0 & 0 & -1 \end{bmatrix}, \quad y = \begin{pmatrix} 7 \\ -6 \\ -6 \end{pmatrix}.$$

Solving Ux = y yields:

$$2x_1 - x_2 + 3x_3 = 7,$$
 $4x_2 - 5x_3 = -6,$
 $-x_3 = -6.$

From the above system, we can find $x = (1, 1, 2)^T$, which is the solution to the original system Ax = b.

4.

Algorithm 2 LU

input: $A = (a_{ij})_{i,j=1}^n \in \mathbb{C}^{n \times n}$ with $\det(A_k) \neq 0, k = 1, \dots, n$.

output: $L \in \mathbb{C}^{n \times n}$ unit lower triangular, $U \in \mathbb{C}^{n \times n}$ upper triangular and regular with A = LU.

1:
$$U = A, L = I$$
.
2: **for** $k = 1$ to $n - 1$ **do**
3: **for** $j = k + 1$ to n **do**
4: $l_{j,k} := u_{j,k}/u_{k,k}$
5: $u_{j,k} := 0$
6: **for** $i = k + 1$ to n **do**
7: $u_{j,i} := u_{j,i} - l_{j,k}u_{k,i}$
8: **end for**

9: end for

10: **end for**

One step in Ganssian to prot by a constant i.e n-i multiplicer tous. & Then add it to fee row undernenth It de repeat flus for flue n-i rows underweth So we have (n-i) x (n-i) operations each for the addition and multiplication. * We have to do this for n-1 different pirots. So we have the total number of operations to be $\delta LoPs = 2 \int_{i=1}^{n-1} (n-i)^2 = 2 \left[\sum_{i=1}^{n-1} n^2 - 2ni + i^2 \right]$ $= 2n^{2} \sum_{i=1}^{n-1} 1 - 4n \sum_{i=1}^{n-1} i + 2 \sum_{i=1}^{n-1} i^{2}$ $=2n^{2}(n-1)-4n[n(n-1)]$ $+2 \frac{1}{6} \left\{ (n-1)n \left(2[n-1]+1 \right) \right\}$ $=2n^3-2n-2n^3+2n$ $\frac{1}{3} \left[n \left[2(n-1)^{2} + n - 1 \right] \right] = \frac{1}{3} \left[n \left[2n^{2} - 4n + 2 + n - 1 \right] \right] \\
= \frac{1}{3} \left(2n^{3} - 2n^{2} + 1 \right) = O(n^{3})$

Prod I They are egnal beeanse of fere expression used to compute now operations. In the end, we have shown that the matrix after a Grassian elimination process is still diagonally dominant. Note that a matrix A is invertible if det (A) \pm 0 (i.e not a singular matrix) For the Lu factorization of A to exist, then det (A) \pm 0 1.e A must be invertible. For flee LU of A to be computable (voithant piroting), we need A:i + 0 (the diagonal entries) to be non-tero.

A diagonally dominant matrix ensures that the entries in the major diagonal are always non-zero.

6. (a) Let $A = (a_{ij})_{i,j=1}^n \in \mathbb{C}^{n \times n}$ be a matrix of bandwidth $w \in \{0, \dots, n-1\}$, i.e., $a_{ij} = 0$ if |j-i| > w.

Give an example of a 4×4 matrix of bandwidth w=2 but not w=1 which fulfils the strong row sum criterion (also known as strict diagonal dominance).

Answer: Example:

$$A = \begin{pmatrix} 4 & -1 & -1 & 0 \\ -1 & 4 & -1 & -1 \\ -1 & -1 & 4 & -1 \\ 0 & -1 & -1 & 4 \end{pmatrix}$$

(b) Assume that the LU factorisation of a matrix $A \in \mathbb{C}^{n \times n}$ of bandwidth w = 1 can be computed with the algorithm LU (without pivoting!). Show that then the computed matrices L and U are of bandwidth w = 1, too.

Answer: By induction. Assume that $U^{(k-1)}$ and $L^{(k-1)}$ after step k-1 have bandwidth w=1. Then $u_{ik}^{(k-1)}=0$ if i>k+1 which yields that $l_{ik}=0$ (if i>k+1). But this means that $L^{(k)}$ will have bandwidth w=1. Moreover, only the row i=k+1 (if i< n) of $U^{(k-1)}$ may involve changes when updating to $U^{(k)}$.

From this row i = k + 1 the multiple l_{ik} of row k is subtracted. The bandwidth assumption on $U^{(k-1)}$ implies that $u_{kj}^{(k-1)} = 0$ if j > k + 1. Therefore, only the entries $u_{ij}^{(k-1)}$ with $j = k, \ldots, \min(k+1, n)$ may involve changes. But since i = k + 1 we have for these entries that |i - j| <= w = 1. As a consequence, if |i - j| > w = 1 then $u_{ij}^{(k)} = u_{ij}^{(k-1)} = 0$ so that also $U^{(k)}$ will have bandwidth w = 1.

(c) Formulate a specialised version of the algorithm LU for band matrices of bandwidth w=1 where only the necessary operations are carried out. Ensure and check that the number of elementary executable operations is O(n) as $n \to \infty$.

Answer: Cf. algorithm 1. Only the loops for i and j had to be adapted. In every step $k \in \{1, \ldots, n-1\}$ we have to perform at most one division to compute the $l_{k+1,k}$, and in order to update the $u_{k+1,j}$ we need at most one multiplication and one subtraction. Hence, the cost for step k is at most three operations. Altogether therefore

$$C_{LUB}(n) \le \sum_{k=1}^{n-1} 3 = 3(n-1) = O(n)$$
 as $n \to \infty$.

Algorithm 1 LU for banded matrices

end for

input: $A \in \mathbb{C}^{n \times n}$ of bandwidth w with $\det(A_j) \neq 0$ for $j = 0, \dots, n$.

output: $L, U \in \mathbb{C}^{n \times n}$ where LU is the LU factorisation of A. L = I, U = Afor $k = 1, \dots, n - 1$ do $l_{k+1,k} = u_{k+1,k}/u_{k,k}$ $u_{k+1,k} = 0$ $u_{k+1,k+1} = u_{k+1,k+1} - l_{k+1,k}u_{k,k+1}$

/

Note that a matrix with bandwidth w=1 is a fridiagonal matrix

Tridiagonal Matrix Example to Solve Math Problems

to find x value of math problem below :

$$\begin{bmatrix} 2 & 3 & 0 & 0 \\ 6 & 3 & 9 & 0 \\ 0 & 2 & 5 & 2 \\ 0 & 0 & 4 & 3 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 21 \\ 69 \\ 34 \\ 22 \end{bmatrix}$$

R2-3R,

	2	3	D	i
,				

ī	0	0	0
0	1	, O.	0
0	0	l	0
0	D	D	l

2	3	D	D
0	-6	9	D
0	2	5	2
L o	0	4	3_

		1	0	O	0
		3	1	Ø	Ö
_	R3 + 1/3 R2	0	D	l	O
<u> </u>		D	0	0	l
	1				

_			
2	3	D	ם _
0	-6	9	D
0	0	8	2
0	0	4	3_

 ြာ	3	D	0
Ò	-6	9	D
0	0	8	2
0	O	0	4_
			· .