NMB - Oefenzitting 1 Benaderingstheorie

Simon Telen

Opgave 1. Beschouw de vectorruimte C[-1, 1] van continue reële functies op het interval $[-1, 1] \subset \mathbb{R}$. De L_p -norm, $p \in \mathbb{R}$, $p \ge 1$, is gegeven door de functionaal

$$\|\cdot\|_p: C[-1,1] \to \mathbb{R}: f \mapsto \left(\int_{-1}^1 |f(x)|^p dx\right)^{1/p}.$$

Voor welke waarden van $p \in \mathbb{N}, p \ge 1$ is de volgende functionaal een norm

$$\|\cdot\|_p': C[-1,1] \to \mathbb{R}: f \mapsto \left| \int_{-1}^1 f(x)^p dx \right|^{1/p}.$$

Bewijs je antwoord.

Opgave 2. Op een verzameling S van eindige verzamelingen definiëert men de Silverman afstand als

$$\rho(A, B) = \#(A \triangle B) = \#\{(A \cup B) \setminus (A \cap B)\}\$$

met $A, B \in S$. De verzameling $A \triangle B = (A \cup B) \setminus (A \cap B)$ wordt ook het *symmetrisch* verschil van A en B genoemd. Het symbool '#' staat voor kardinaalgetal, d.w.z. het aantal elementen in de verzameling.

- Waarom worden er enkel eindige verzamelingen beschouwd?
- Toon aan dat ρ inderdaad een afstand is.

Opgave 3. We beschouwen de vectorruimte $V=\mathbb{R}^{m\times n}$ van reële $m\times n$ matrices. Beschouw

$$(\cdot,\cdot)_F: V \times V \to \mathbb{R}: (A,B) \mapsto \operatorname{trace}(A^\top B).$$

Dit wordt het Frobenius inwendig product genoemd.

• Toon aan dat $(\cdot,\cdot)_F$ een inwendig product is.

- Toon aan dat de norm op V geïnduceerd door het Frobenius inwendig product op V equivalent is met de 2-norm op \mathbb{R}^{mn} , of nog $||A||_F = ||\operatorname{vec}(A)||_2$. Hierbij staat 'vec' voor de *vectorizatie-operatie*. Dit is een lineaire transformatie die de matrix A omzet tot een kolomvector, bestaande uit een verticale stapeling van de kolommen van A. Men noemt deze norm de *Frobeniusnorm* op V.
- Bereken de Frobenius norm van de matrix $A = \begin{bmatrix} 1 & 2 \\ 3 & \sqrt{2} \end{bmatrix}$ en de Frobenius afstand tussen A en $B = \begin{bmatrix} 4 & 2 \\ 3 & 4 + \sqrt{2} \end{bmatrix}$.

Opgave 4. Beschouw de verzameling W van 'woorden' waarbij we een woord definiëren als een eindige sequentie van karakters. De verzameling W is een metrische ruimte met de volgende, recursief gedefiniëerde afstandsfunctie. Voor $a, b \in W$, schrijf |a|, |b| voor het aantal karakters in a, b respectievelijk. De afstand tussen a en b is recursief gedefiniëerd als $\rho(a, b) = \text{lev}_{a,b}(|a|, |b|)$ met

$$\operatorname{lev}_{a,b}(i,j) = \begin{cases} \max(i,j) & \min(i,j) = 0 \\ \min \begin{cases} \operatorname{lev}_{a,b}(i-1,j) + 1 \\ \operatorname{lev}_{a,b}(i,j-1) + 1 \\ \operatorname{lev}_{a,b}(i-1,j-1) + (1 - \delta_{a_i b_j}) \end{cases} \text{ anders}$$

waarbij $\delta_{a_ib_j} = \begin{cases} 1 & a_i = b_j \\ 0 & a_i \neq b_j \end{cases}$. Deze afstand noemt men de *Levenshtein afstand* en ze wordt gebruikt in onder andere spellingscontrole software.

- Schrijf een functie lev(a,b,i,j) in Matlab die als input twee strings en twee positieve integers neemt en het getal $lev_{a,b}(i,j)$ teruggeeft.
- Gebruik je implementatie om het volgende na te gaan: de Levenshtein afstand geeft het minimum aantal toevoegingen, verwijderingen of vervangingen van karakters die nodig zijn om het woord a in het woord b te veranderen. Zo is bijvoorbeeld $\rho(\text{`kater'}, \text{`kat'}) = 2$ volgens deze metriek.
- Gebruik je implementatie om de afstand te berekenen tussen jouw achternaam en die van de docent van dit deel van het vak: 'Vandewalle'.

Opgave 5.

• Gebruik de Gram-Schmidt orthogonalizatie procedure om het stel $\{1, x, x^2, x^3\}$ te orthogonalizeren tot het stel $\{T_0(x), T_1(x), T_2(x), T_3(x)\}$ ten opzichte van het scalair product

$$(f,g) = \int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} f(x)g(x)dx.$$

Start met $T_0(x) = 1$, ga na dat $||T_0||^2 = \pi$ (we gebruiken de geïnduceerde norm) en normalizeer $T_1(x), \ldots, T_3(x)$ zodat de coëfficiënt van $T_i(x)$ by x^i gelijk is aan 2^{i-1} .

• De veeltermen die je bekomt zijn de zogenaamde Chebyshev veeltermen van de eerste soort. Ze hebben uitzonderlijk goede benaderingseigenschappen. Men toont aan dat dit stel orthogonale veeltermen voldoet aan de recursiebetrekking

$$T_0(x) = 1,$$
 $T_1(x) = x,$ $T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x).$

Vind nu op een eenvoudige manier $T_4(x)$ en $T_5(x)$.

• Leid met behulp van deze recursiebetrekking een matrix af waarvan de eigenwaarden de nulpunten zijn van $T_5(x)$. Controleer het resultaat met Matlab.

Opgave 6. Beschouw de vectorruimte $V = C^1[a, b]$ van continue functies met continue afgeleide op het interval $[a, b] \subset \mathbb{R}$. Op $C^1[a, b]$ is het Sobolev inwendig product $(f, g)_{H^1}$ gedefiniëerd als

$$(f,g)_{H^1} = \int_a^b (f(x)g(x) + f'(x)g'(x))dx.$$

- Toon aan dat $(\cdot, \cdot)_{H^1}$ een scalair product is en leid een formule af voor de geïnduceerde norm $\|\cdot\|_{H^1}$.
- Is $(f,g) = \int_a^b f'(x)g'(x)dx$ een scalair product op V? Bewijs je antwoord.
- Bereken de Sobolev en de L^2 -afstand tussen x en e^x op [0,1].
- Toon aan dat $||f||_{H^1} \ge ||f||_{L^2}, \forall f \in V.$