Package 'SimBEL'

March 27, 2017

Type Package

Title Un package de calcul du best estimate epargne sous Solvabilite

Version 0.3.1

Description Un modele de simulation Monte-Carlo s'appuyant sur une projection d'un canton (actif et passif) permettant l'evaluation des provisions best estimate d'un contrat d'epargne français en euros. Plusieurs chocs de la formule standard peuvent etre effectues.

Author Prim'Act

URL http://primact.fr

Maintainer Quentin Guibert <quentin.guibert@primact.fr>

Depends R (>= 3.3.1)

Imports rootSolve

Suggests rootSolve

License GPL-2

LazyData TRUE

RoxygenNote 5.0.1

Collate 'Action_class.R' 'Action_buy.R' 'Action_calc_pmvl.R'

'Action_calc_vm.R' 'Action_internal.R' 'Action_revalo.R'

'Action_sell.R' 'Action_sell_pvl.R' 'Action_update_dur_det.R'

'Action_update_vm.R' 'AlmEngine_class.R'

'AlmEngine_create_ptf_bought_action.R' 'Immo_class.R'

'AlmEngine_create_ptf_bought_immo.R' 'Oblig_class.R'

'AlmEngine_create_ptf_bought_oblig.R'

'AlmEngine_do_calc_nb_sold_action.R'

'AlmEngine_do_calc_nb_sold_immo.R'

'AlmEngine_do_calc_nb_sold_oblig.R' 'AlmEngine_internal.R'

'Treso class.R' 'RC class.R' 'PRE class.R' 'FraisFin class.R'

'PortFin class.R' 'AlmEngine reallocate.R' 'AlmEngine update.R'

'AutresPassifs-class.R' 'AutresPassifs-internal.R'

'AutresPassifs-load.R' 'AutresPassifs-proj_annee.R'

'AutresReserves-class.R' 'AutresReserves-init_debut_pgg_psap.R'

'AutresReserves-internal.R' 'AutresReserves-load.R'

'AutresReserves-update_reserves.R' 'ESG_class.R'

'ParamBe_class.R' 'ParamRevaloEngine_class.R'

'ParamAlmEngine_class.R' 'HypCanton_class.R' 'Ppb_class.R'

'ModelPointESG_class.R' 'TabEpEuroInd-class.R'

'EpEuroInd-class.R' 'TauxPB-class.R' 'FraisPassif-class.R'

'ParamRachDyn-class.R' 'ParamComport-class.R'

'ParamTableRach-class.R' 'ParamTableMort-class.R'

'HypTech-class.R' 'PortPassif-class.R' 'Canton_class.R'

'Be_class.R' 'Be-run_be.R' 'Be-run_be simu.R'

'Be-write_results.R' 'Be_internal.R' 'Canton_calc_fin_proj.R'

'Canton_calc_result_technique_ap_pb.R' 'Canton_internal.R'

'Canton_proj_an.R' 'ParamChocSousc-class.R'

'ParamChocMket_class.R' 'ChocSolvabilite2_class.R'

'ChocSolvabilite2_do_choc_action_type1.R'

'ChocSolvabilite2_do_choc_action_type2.R'

'ChocSolvabilite2 do choc frais.R'

'ChocSolvabilite2 do choc immo.R'

'ChocSolvabilite2_do_choc_longevite.R'

'ChocSolvabilite2_do_choc_mortalite.R' 'ChocSolvabilite2 do choc rachat down.R'

'ChocSolvabilite2_do_choc_rachat_up.R'

'ChocSolvabilite2_do_choc_spread.R'

'ChocSolvabilite2_do_choc_spread_unitaire.R'

'ChocSolvabilite2 do choc taux.R' 'ChocSolvabilite2 internal.R'

'ChocSolvabilite2_load.R' 'ESG-get_choc_inflation_frais.R'

'ESG_chargement.R' 'ESG_extract_mp.R' 'ESG_internal.R'

'EpEuroInd-calc_pm.R' 'EpEuroInd-calc_prest.R'

'EpEuroInd-calc_primes.R' 'EpEuroInd-calc_revalo_pm.R'

'EpEuroInd-calc_tx_cible.R' 'EpEuroInd-calc_tx_min.R'

'EpEuroInd-calc_tx_sortie.R' 'EpEuroInd-internal.R'

'EpEuroInd-vieilli_mp.R' 'FraisFin_calc.R'

'FraisFin_internal.R' 'FraisFin_load.R'

'FraisPassif-calc_frais.R' 'FraisPassif-internal.R'

'FraisPassif-load.R' 'HypCanton_internal.R' 'HypCanton_load.R'

'HypTech-get_choc_rach.R' 'HypTech-get_choc_table.R'

'HypTech-get_comport.R' 'HypTech-get_qx_mort.R'

'HypTech-get_qx_rach.R' 'HypTech-get_rach_dyn.R'

'HypTech-internal.R' 'Initialisation_class.R'

'Initialisation_load.R' 'HypTech-load.R' 'Immo_buy.R'

'Immo calc pmvl.R' 'Immo calc vm.R' 'Immo internal.R'

'Immo_revalo.R' 'Immo_sell.R' 'Immo_update_dur_det.R'

'Immo_update_vm.R' 'Initialisation_create_folder.R'

'Initialisation initSimBEL.R' 'Initialisation init scenario.R'

'Initialisation_internal.R' 'Initialisation_set_architecture.R'

'ModelPointESG_internal.R' 'Oblig_buy.R' 'Oblig_calc_coupon.R'

'Oblig_calc_dur.R' 'Oblig_calc_nominal.R' 'Oblig_calc_pmvl.R'

'Oblig calc sur dec.R' 'Oblig calc vm.R' 'Oblig calc vnc.R'

'Oblig_calc_z_spread.R' 'Oblig_echeancier.R'

'Oblig_flux_annee.R' 'Oblig_internal.R' 'Oblig_sell.R'

'Oblig_update_cc.R' 'Oblig_update_dur.r'

'Oblig_update_mat_res.R' 'Oblig_update_sd.r'

'Oblig_update_vm.r' 'Oblig_update_vnc.r' 'Oblig_update_zsp.r'

'Oblig_yield_to_maturity.R' 'PRE_calc.R'

'PRE_do_update_val_courante.R' 'PRE_do_update_val_debut.R'

'PRE internal.R' 'PRE load.R' 'ParamAlmEngine internal.R'

'ParamAlmEngine_load.R' 'ParamBe_internal.R'
'ParamChocMket_internal.R' 'ParamChocSousc-internal.R'
'ParamComport-calc_tx_cible.R' 'ParamComport-internal.R'
'ParamRachDyn-calc_rach_dyn.R' 'ParamRachDyn-internal.R'
'ParamRevaloEngine_internal.R' 'ParamRevaloEngine_load.R'
'ParamTableMort-calc_qx.R' 'ParamTableMort-internal.R'
'ParamTableRach-calc_rach.R' 'ParamTableRach-internal.R'
'PortFin_calc_pmvl.R' 'PortFin_calc_rdt.R'
'PortFin_calc_resultat_fin.R' 'PortFin_calc_tra.R'
'PortFin_chargement.R' 'PortFin_chargement_reference.R'
'PortFin_do_update_pmvl.R'
'PortFin_do_update_vm_vnc_precedent.R' 'PortFin_internal.R'
'PortFin_print_alloc.R' 'PortFin_update.R'
'PortFin_update_reference.R' 'PortFin_vieillissement_action.R'
'PortFin_vieillissement_immo.R'
'PortFin_vieillissement_oblig.R'
'PortFin_vieillissement_treso.R'
'PortPassif-calc_rdt_marche_ref.R' 'PortPassif-internal.R'
'PortPassif-load.R' 'PortPassif-proj_annee_av_pb.R'
'PortPassif-vieillissement_ap_pb.R'
'PortPassif-vieillissement_av_pb.R' 'Ppb_dotation_reprise.R'
'Ppb_init_debut.R' 'Ppb_internal.R' 'Ppb_load.R' 'RC_calc.R'
'RC_do_update_val_courante.R' 'RC_do_update_val_debut.R'
'RC_internal.R' 'RC_load.R' 'RevaloEngine_base_prod_fin.R'
'RevaloEngine_calc_marge_fin.R'
'RevaloEngine_calc_result_technique.R'
'RevaloEngine_calc_revalo.R' 'RevaloEngine_class.R'
'RevaloEngine_finance_cible_marge.R'
'RevaloEngine_finance_cible_pmvl.R'
'RevaloEngine_finance_cible_ppb.R'
'RevaloEngine_finance_contrainte_legale.R'
'RevaloEngine_finance_tmg.R' 'RevaloEngine_internal.R'
$'RevaloEngine_pb_contr.R'\ 'SimBEL.R'\ 'TabEpEuroInd-internal.R'$
'TauxPB-internal.R' 'Treso_calc_vm.R' 'Treso_internal.R'
'Treso_revalo.R' 'Treso_revenu.R' 'Treso_update.R'
'taux_period-function.R'

R topics documented:

Action	7
AlmEngine	7
AutresPassifs	8
AutresReserves	8
autres_passif_load	9
autres_reserves_load	9
base_prod_fin	C
Be	1
buy_action	1
buy_immo	12
buy_oblig	12
calc_coupon	13
calc_dotation_ppb	13

4

	14
	15
calc_frais	15
calc_frais_fin	16
calc_marge_fin	17
calc_nominal	18
calc_pm	18
calc_pmvl	20
calc_pmvl_action	20
calc_pmvl_immo	21
calc_pmvl_oblig	21
calc_PRE	22
calc_prest	22
-1	24
- 1	25
— 1	25
-	26
;	26
	27
-	27
	28
	28
•	29
	29 29
	29 30
	30 32
-	32
	33
	34
	34
	35
	36
	36
= = &	37
	37
	38
calc_z_spread	38
Canton	39
	40
chargement_ESG	40
chargement_PortFin	41
chargement_PortFin_reference	42
ChocSolvabilite2	42
create_ptf_bought_action	43
create_ptf_bought_immo	44
create_ptf_bought_oblig	45
do_calc_nb_sold_action	45
	46
	47
· · · · · · · · · · · · · · · · · · ·	47
• •	48
**	49

do_choc_immo
do_choc_longevite
do_choc_mortalite
do_choc_rachat_down
do_choc_rachat_up
do_choc_spread
do_choc_spread_unitaire
do_choc_taux
do_update_pmvl
do_update_PRE_val_courante
do_update_PRE_val_debut
do_update_RC_val_courante
do_update_RC_val_debut
do_update_vm_vnc_precedent
duration_sensi
echeancier
EpEuroInd
ESG
extract_ESG
finance_cible_marge
finance_cible_pmvl
finance_cible_ppb
finance_contrainte_legale
finance_tmg
FraisFin
FraisPassif
frais_fin_load
frais_passif_load
get_choc_inflation_frais
get_choc_rach
get_choc_table
get_comport
get_qx_mort
get_qx_rach
get_rach_dyn
HypCanton
HypTech
hyp_canton_load
Immo
Initialisation
initialisation load
init_create_folder
init_debut_pgg_psap
init_debut_ppb
init scenario
init SimBEL
load ht
load_pp
ModelPointESG
Oblig
ParamAlmEngine
ParamBe

6

	3
	3
ParamComport	4
ParamRachDyn	4
	5
	5
param_alm_engine_load	6
param_revalo_load	7
pb_contr	7
PortFin	8
PortPassif	9
Ppb	0
ppb_load	0
PRE	1
pre_load	1
	2
	2
1 J—	3
1 J=	4
rJ	5
	5
_	6
resultat_fin	
RevaloEngine	
revalo_action	
revalo_immo	
revalo_treso	
revenu_treso	
run_be	
run_be_simu	
sell_action	
sell immo	
sell_oblig	
sell_pvl_action	
set_architecture	
SimBEL	
TabEpEuroInd	
TauxPB	
Treso	
update_cc_oblig	
update_dur_det_action	
update_dur_det_immo	
update_dur_oblig	
update_mat_res	
update_PortFin	
update_PortFin_reference	
update_reserves	
update_sd_oblig	
update_treso	2
update_vm_action	2
update_vm_immo	3
update_vm_oblig	3

Action 7

Index		122
	yield_to_maturity	121
	write_be_results	120
	vieilli_mp	120
	vieillissment_ap_pb	119
	vieillissement_treso_PortFin	118
	vieillissement_oblig_PortFin	117
	vieillissement_immo_PortFin	117
	vieillissement_av_pb	116
	vieillissement_action_PortFin	115
	update_zsp_oblig	114
	update_vnc_oblig	114

Action

La classe Action

Description

Classe pour les actifs de type Action

Slots

ptf_action est un dataframe, chaque ligne represente un actif action du portefeuille d'action.

Author(s)

Prim'Act

See Also

Les operations d'achat vente action buy_action, sell_action et sell_pvl_action.

 ${\tt AlmEngine}$

La classe ALMEngine

Description

Classe ayant pour principal vocation de contenir des methodes de reallocation.

Slots

journal_achat_vente outil permettant de memoriser l'ensemble des operations d'achat-vente.

Author(s)

Prim'Act

See Also

La fonction de reallocation du Portefeuille reallocate

8 AutresReserves

AutresPassifs

La classe AutresPassifs

Description

Une classe pour la gestion des passifs hors modele.

Slots

mp un objet data. frame au format fige contenant les flux des passifs hors modele.

Author(s)

Prim'Act

See Also

La lecture des flux d'une annee proj_annee_autres_passifs.

AutresReserves

La classe AutreReserves

Description

Une classe de parametres permettant de gerer le stock de provision globale de gestion (PGG) et de provision pour sinistres a payer (PSAP).

Slots

pgg_debut la valeur de la PGG en debut de periode.

psap_debut la valeur de la PSAP en debut de periode.

pgg_valeur la valeur courant de la PGG.

psap_valeur la valeur courant de la PSAP.

tx_pgg_ep le taux de PGG applique sur l'epargne.

tx_pgg_autres le taux de PGG applique sur les autres passifs.

tx_psap_ep le taux de PGG applique sur l'epargne.

tx_psap_autres le taux de PGG applique sur les autres passifs.

Author(s)

Prim'Act

See Also

Le calcul et la mise a jour des autres reserves update_reserves et init_debut_pgg_psap.

autres_passif_load 9

autres_passif_load

Methode permettant de charger la valeur initiale des autres passifs.

Description

autres_passif_load est une methode permettant de charger les donnees associees a un objet de classe AutresPassifs.

Usage

```
autres_passif_load(file_autres_passif_address)
```

Arguments

file_autres_passif_address

est un character contenant l'adresse exacte du fichier d'input utilisateur permettant de renseigner un objet AutresPassifs.

Value

L'objet de la classe AutresPassifs construit a partir des inputs renseignes par l'utilisateur.

Author(s)

Prim'Act

See Also

La classe Initialisation et sa methode set_architecture pour renseigner l'input.

autres_reserves_load

Methode permettant de charger la valeur initiale de la PSAP et de la PGG.

Description

autres_reserves_load est une methode permettant de charger les donnees associees a un objet de classe AutresReserves.

Usage

```
autres_reserves_load(file_autres_reserves_address)
```

Arguments

```
file_autres_reserves_address
```

est un character contenant l'adresse exacte du fichier d'input utilisateur permettant de renseigner un objet AutresReserves.

base_prod_fin

Value

L'objet de la classe AutresReserves construit a partir des inputs renseignes par l'utilisateur.

Author(s)

Prim'Act

See Also

La classe Initialisation et sa methode set_architecture pour renseigner l'input.

base_prod_fin

Calcule la base de produits financiers attribuables.

Description

base_prod_fin est une methode permettant de calculer la base de produits financiers attribuables pour la revalorisation des contrats.

Usage

```
base_prod_fin(tra, pm_moy, ppb)
```

Arguments

tra est une valeur numeric donnant le taux de rendement de l'actif.

pm_moy est un vecteur numeric comprenant le montant de PM moyenne par produit.

ppb est un objet de la classe Ppb qui renvoie l'etat courant de la PPB.

Value

La valeur de la base de produit financier par produit et au total pour le portefeuille.

Author(s)

Prim'Act

See Also

Ppb.

Be 11

Be *La classe* Be.

Description

Une classe pour le calcul du best estimate d'un assureur.

Slots

param_be un objet ParamBe qui regroupe les parametres de base du calcul d'un best estimate. canton un objet de type Canton correspond au canton parametre en date initiale. esg un objet de type ESG.

tab_flux une liste qui contient les flux moyens de best estimate et de ses composantes. tab_be est une liste qui contient la valeur du best estimate et de ses composantes.

Author(s)

Prim'Act

See Also

Le calcul d'un best estimate : run_be. Le calcul d'une simulation de best estimate : run_be_simu. L'initialisation d'un best estimate dans les situations centrales et choquees : init_scenario. La sortie des resultats au format ".csv" : write_be_results. La classe Canton. La classe ESG. La classe ParamBe.

buy_action

Mise a jour de chaque composante d'un portefeuille action suite a un achat d'un autre portefeuille action.

Description

buy_action est une methode permettant de mettre a jour le portefeuille action suite a l'achat d'un autre portefeuille action. de chaque composante d'un portefeuille action.

Usage

```
buy_action(x, ptf_bought)
```

Arguments

x objet de la classe Action (decrivant le portefeuille action en detention).
ptf_bought objet de la classe Action (decrivant le portefeuille action achete).

Value

L'objet x complete des elements de ptf_bought.

Author(s)

12 buy_oblig

buy_immo	Mise a jour de chaque composante d'un portefeuille immo suite a un achat d'un autre portefeuille immo.

Description

buy_immo est une methode permettant de mettre a jour le portefeuille immo suite a l'achat d'un autre portefeuille immo. de chaque composante d'un portefeuille immo.

Usage

```
buy_immo(x, ptf_bought)
```

Arguments

```
x objet de la classe Immo (decrivant le portefeuille immo en detention).
ptf_bought objet de la classe Immo (decrivant le portefeuille immo achete).
```

Value

L'objet x complete des elements de ptf_bought.

Author(s)

Prim'Act

buy_oblig Mise a jour de chaque composante d'un portefeuille obligataire suite a un achat d'un autre portefeuille obligataire.

Description

buy_oblig est une methode permettant de mettre a jour le portefeuille obligataire suite a l'achat d'un autre portefeuille obligataire. de chaque composante d'un portefeuille obligataire.

Usage

```
buy_oblig(x, ptf_bought)
```

Arguments

```
x objet de la classe Oblig (decrivant le portefeuille obligataire en detention).
ptf_bought objet de la classe Oblig (decrivant le portefeuille obligataire achete).
```

Value

L'objet x complete des elements de ptf_bought.

Author(s)

calc_coupon 13

calc_coupon Calcul le coupon des models points constituant le portefeuille obligataire.	calc_coupon	Calcul le coupon des models points constituant le portefeuille obligataire.
---	-------------	---

Description

calc_coupon est une methode permettant de calculer les valeurs de coupon de l'ensemble des obligations composant un portefeuille obligataire.

Usage

```
calc_coupon(x)
```

Arguments

x un objet de la classe Oblig, dont on souhaite calculer le coupon annuel de chacune de ses composantes.

Value

Un vecteur dont chaque element correspond a la valeur du coupon de l'obligation consideree : tx_coupon * parite * nominal * nb_unit. Le vecteur renvoye a autant d'elements que le portefeuille obligataire en input a de lignes.

Author(s)

Prim'Act

	e la valeur de la PPB	calc_dotation_ppb	
--	-----------------------	-------------------	--

Description

calc_dotation_ppb est une methode permettant de doter la PPB. La dotation est effectuee si les limites de dotation de la PPB sur l'annee ne sont pas atteintes. La valeur de cette limite est mise a jour suite a la dotation.

Usage

```
calc_dotation_ppb(x, montant)
```

Arguments

x objet de la classe Ppb.
montant une valeur numeric a doter.

Value

```
ppb l'objet x mis a jour.
dotation le montnant de la dotation effectuee.
```

14 calc_fin_proj

Author(s)

Prim'Act

calc_fin_proj	calcule le flux et les resultats ajustes en fin de projection.	
carc_rin_proj	culcule le flux et les resultuis afastes en fin de projection.	

Description

calc_fin_proj est une methode permettant de calculer au niveau du canton les resultats financier, technique, brut et net d'impot, ainsi que le flux de passifs soldant une projection.

Usage

```
calc_fin_proj(x, resultat_fin, result_tech, pm_fin_ap_pb, tx_pb, tx_enc_moy)
```

Arguments

Х	est un objet de la classe Canton.
resultat_fin	est la valeur numeric du resultat financier avant fin de projection.
result_tech	est la valeur numeric du resultat technique avant fin de projection.
pm_fin_ap_pb	est un vecteur numeric par produit correspond au PM de fin avant application de la fin de projection.
tx_pb	est un vecteur numeric par produit correspond au taux de PB contractuel.
tx_enc_moy	est un vecteur numeric par produit correspond au taux chargement sur encours moyens.

Value

 ${\tt flux_fin_passif} \ un \ vecteur \ de \ flux \ de \ fin \ par \ produit.$

result_tech le montant de resultat technique en fin de projection.

result_fin le montant de resultat finanacier en fin de projection.

result_brut le montant de resultat brut d'impot en fin de projection.

result_net le montant de resultat net d'impot en fin de projection.

impot le montant d'impot sur le resultat en fin de projection.

calc_flux_annee 15

calc_flux_annee	Calcul les flux percus dans l'annee du fait de la detention des obligations du portefeuille obligataire.

Description

calc_flux_annee est une methode permettant de calculer les valeurs nominales de l'ensemble des obligations composant un portefeuille obligataire.

Usage

```
calc_flux_annee(x)
```

Arguments

x un objet de la classe Oblig.

Value

Une liste composee de deux vecteurs:

tombee_coupon: Chaque element correspond aux tombees de coupon pour l'annee a venir. Ce vecteur a autant d'elements que le portefeuille obligataire d'inputs a de lignes.

tombee_echeance: Chaque element correspond aux tombees d'echeances pour l'annee a venir. Ce vecteur a autant d'elements que le portefeuille obligataire d'inputs a de lignes.

Author(s)

Prim'Act

|--|

Description

calc_frais est une methode generique permettant de calculer les frais sur prestations, sur primes et sur encours.

Usage

```
calc_frais(x, type, nom_prod, nb, mt, coef_inf)
```

Arguments

x objet de la classe FraisPassif.

type un character designant le type de frais applique.

nom_prod est le nom de produit de type character.

nb correspond a un nombre de contrats, utilise comme assiette de frais fixe par

contrat.

mt correspond a un montant, utilise comme assiette de frais variable.

coef_inf correspond au coefficient d'inflation applique.

16 calc_frais_fin

Details

Le type du contrat prend pour valeur prime pour les frais sur primes, prest pour les frais sur prestations et enc pour les frais sur encours.

Value

Une liste contenant les montants de frais fixes et de frais variables.

Author(s)

Prim'Act

calc_frais_fin

Calcul des frais financier.

Description

calc_frais_fin est une methode permettant de calculer les frais financiers.

Usage

```
calc_frais_fin(x, vm_moy, coef_inflation)
```

Arguments

x est un objet de type FraisFin contenant les parametres des frais financiers as-

socies a un canton.

vm_moy est un objet de type numeric correspondant a la valeur moyenne de l'actif en

valeur de marche.

coef_inflation est un objet de type numeric correspondant au coefficient d'inflation des frais.

Value

La valeur des frais financiers : un reel de type numeric.

Author(s)

calc_marge_fin 17

calc_marge_fin

Calcule la marge financiere de l'assureur.

Description

calc_marge_fin est une methode permettant de de calculer la marge financiere de l'assureur apres attribution d'un certain niveau de revalorisation.

Usage

```
calc_marge_fin(base_fin, rev_prest_nette, rev_stock_nette, contrib_tmg_prest,
  contrib_tmg_stock, contrib_ppb_tx_cible)
```

Arguments

base_fin

est un vecteur de type numeric comprenant par produit la base de produits financiers.

rev_prest_nette

est un vecteur de type numeric comprenant par produit la revalorisation nette sur prestations.

rev_stock_nette

est un vecteur de type numeric comprenant par produit la revalorisation nette sur stock.

contrib_tmg_prest

est une valeur numeric comprenant par produit la contribution de la PPB au financement des TMG sur prestations.

contrib_tmg_stock

est une valeur numeric comprenant par produit la contribution de la PPB au financement des TMG sur stock.

contrib_ppb_tx_cible

une valeur de type numeric comprenant par produit la contribution de la PPB au financement au taux cible sur stock.

Value

Le montant de la marge de l'assureur.

Author(s)

18 calc_pm

0	calc_nominal	Calcul le nominal des models points constituant le portefeuille obligataire.
---	--------------	--

Description

calc_nominal est une methode permettant de calculer les valeurs de nominal de l'ensemble des obligations composant un portefeuille obligataire.

Usage

```
calc_nominal(x)
```

Arguments

Χ

un objet de la classe Oblig.

Value

Un vecteur dont chaque element correspond a la valeur du nominal de l'obligation consideree : parite * nominal * nb_unit. Le vecteur renvoye a autant d'elements que le portefeuille obligataire en input a de lignes.

Author(s)

Prim'Act

calc_pm

Calcul les PM pour des contrats epargne en euros.

Description

calc_pm est une methode permettant de calculer les provisions mathematiques (PM) de fin de periode avant application de la revalorisation au titre de la participation aux benefices.

Usage

```
calc_pm(x, tab_prime, tab_prest, tx_cible, tx_min, an, method, tx_soc)
```

Arguments

X	un objet de la classe EpEuroInd contenant les model points epargne euros.
tab_prime	une liste contenant les flux de primes pour chaque ligne de model points. Le format de cette liste correspond a la sortie flux de la methode calc_primes.
tab_prest	est une liste contenant les flux de prestations pour chaque ligne de model points. Le format de cette liste correspond a la sortie flux de la methode calc_prest.
tx_cible	est une liste conteant les taux cible annuel et semestriel par model points. Le format de cette liste correspond a la sortie de la methode calc_tx_cible.

calc_pm 19

tx_min une liste contenant le taux de revalorisation minimum associes a chaque ligne de model points. Le format de cette liste correspond a la sortie de la methode

calc_tx_min.

an une valeur numeric represantant l'annee de projection courante.

method un character prenant pour valeur normal pour le calcul des flux avec appli-

cation de la revalorisation au titre de la participation aux benefices, et la valeur

gar pour le calcul avec uniquement les flux garanti (calcul de la FDB).

tx_soc est une valeur numeric correspondant au taux de prelevements sociaux.

Details

Cette methode permet de calculer les montants de PM de fin d'annee avec une revalorisation minimale. Les chargements sur encours sont egalement preleves. Cette methode permet de gerer les contrats a taux de revalorisation net negatif. Cette methode permet egalement de calculer le besoin de financement necessaire pour atteindre les exigences de revalorisation des assures.

Value

Une liste contenant:

method: la valeur de l'argument method

flux: une liste comprenant les flux de l'annee

stock: une liste comprenant les nombres de sorties

Le format de la liste flux est :

rev_stock_brut: un vecteur contenant la revalorisation minimale brute de l'annee appliquee au

rev_stock_nette: un vecteur contenant la revalorisation minimale nette de l'annee appliquee au PM

enc_charg_stock: un vecteur contenant les chargement sur encours de l'annee, calcules en prenant en compte la revalorisation minimale

enc_charg_base_th: un vecteur contenant les chargements sur encours theoriques de l'annee, evalues sur la base de la PM non revalorisees

enc_charg_rmin_th: un vecteur contenant les chargements sur encours theoriques de l'annee, evalues sur la seule base de la revalorisation minimale des PM

base_enc_th: un vecteur contenant l'assiette de calcul des chargements sur encours de l'annee

soc_stock: un vecteur contenant le prelevements sociaux de l'annee

it_tech_stock: un vecteur contenant les interets techniques sur stock de l'annee

it_tech: un vecteur contenant les interets techniques sur stock et sur prestations de l'annee

bes_tx_cible: un vecteur contenant le besoin de financement de l'annee pour atteindre le taux cible de chaque assure.

Le format de la liste stock est :

pm_deb : un vecteur contenant le montant de PM en debut d'annee

pm_fin : un vecteur contenant le montant de PM en fin d'annee, avec revalorisation au taux minimum

pm_moy: un vecteur contenant le montant de PM moyenne sur l'annee.

20 calc_pmvl_action

Author(s)

Prim'Act

See Also

```
calc_primes, calc_prest, calc_tx_cible, calc_tx_min.
```

calc_pmvl

Mets a jour les sous totaux de d'actions et immobilier en plus ou moins value latente.

Description

calc_pmvl est une methode permettant de calculer les valeurs de marche.

Usage

```
calc_pmvl(x)
```

Arguments

Х

objet de la classe PortFin.

Value

L'objet PortFin dont la somme des composantes en PVL et en MVL a ete mise a jour

Author(s)

Prim'Act

 ${\tt calc_pmvl_action}$

Calcul les valeurs de marches de chaque composante du portefeuille action.

Description

calc_pmvl_action est une methode permettant de calculer les valeurs de marche.

Usage

```
calc_pmvl_action(x)
```

Arguments

Χ

objet de la classe Action (decrivant le portefeuille d'action).

Value

Une liste composee de deux elements (pv1, mv1) correspondant respectivement aux sommes des plus values latentes actions et aux sommes des moins values latentes action.

calc_pmvl_immo 21

Author(s)

Prim'Act

calc_pmvl_immo

Calcul les valeurs de marches de chaque composante du portefeuille immobilier.

Description

calc_pmvl_immo est une methode permettant de calculer les valeurs de marche.

Usage

```
calc_pmvl_immo(x)
```

Arguments

Χ

objet de la classe Immo (decrivant le portefeuille d'immobilier).

Value

Une liste composee de deux elements (pv1, mv1) correspondant respectivement aux sommes des plus values latentes immobilieres et aux sommes des moins values latentes immobilieres.

Author(s)

Prim'Act

calc_pmvl_oblig

Calcul les valeurs de marches de chaque composante du portefeuille d'obligations.

Description

calc_pmvl_oblig est une methode permettant de calculer les valeurs de marche.

Usage

```
calc_pmvl_oblig(x)
```

Arguments

Х

objet de la classe Oblig (decrivant le portefeuille d'obligations).

Value

Une liste composee de deux elements (pv1, mv1) correspondant respectivement aux sommes des plus values latentes obligations et aux sommes des moins values latentes obligations.

Author(s)

22 calc_prest

calc_PRE

Calcul de la PRE.

Description

calc_PRE est une methode permettant de calculer le montant de PRE.

Usage

```
calc_PRE(x, pmvl_action_immo)
```

Arguments

x objet de la classe PRE, necessaire pour connaître le stock de PRE initial. pmvl_action_immo

est un numeric correspondant au montant global de plus ou moins values latentes des actifs actions et immobiliers. En cas de moins value latente, la PRE est abondee. En cas de plus value latente, la PRE est integralement reprise.

Value

Le format de la liste renvoyee est :

```
pre_courante : valeur de la pre courante calculee a partir des inputs transmis
var_pre : variation de la pre courante
```

Author(s)

Prim'Act

calc_prest

Calcul les flux de prestations pour des contrats epargne en euros.

Description

calc_prest est une methode permettant de calculer les flux de prestations, les chargements sur encours relatifs a ces prestations et les nombres de sorties sur une periode.

Usage

```
calc_prest(x, tx_sortie, tx_min, an, method, tx_soc)
```

calc_prest 23

Arguments

x un objet de la classe EpEuroInd contenant les model points epargne euros.

tx_sortie une matrice contenant les taux de sortie associes a chaque ligne de model points.

Le format de cette matrice correspond a la sortie de la methode calc_tx_sortie.

tx_min une liste contenant le taux de revalorisation minimum associes a chaque ligne

de model points. Le format de cette liste correspond a la sortie de la methode

calc_tx_min.

an une valeur numeric represantant l'annee de projection courante.

method un character prenant pour valeur normal pour le calcul des flux avec appli-

cation de la revalorisation au titre de la participation aux benefices, et la valeur

gar pour le calcul avec uniquement les flux garanti (calcul de la FDB).

tx_soc est une valeur numeric correspondant au taux de prelevements sociaux.

Details

Cette methode permet de calculer les flux de sortie en echeance, les flux de rachat totaux et partiels et les flux de deces d'un contrat epargne en euros. Ces prestations font l'objet d'une relavorisation au taux minimum contractuel. Les nombres de sortie sont egalement produits. Des chargements sont appliques sur flux de rachats. Des prelevements sur encours sont appliques sur les prestations revalorises au taux minimum contractuel. Cette methode permet de gerer les contrats a taux de revalorisation net negatif.

Value

Une liste contenant:

method: la valeur de l'argument method

flux: une liste comprenant les flux de l'annee

stock: une liste comprenant les nombres de sorties

Le format de la liste flux est :

ech: un vecteur contenant les flux de sortie en echeance de l'annee

rach_tot: un vecteur contenant les flux de rachat totaux de l'annee

dc: un vecteur contenant les flux de deces de l'annee

rach_part: un vecteur contenant les flux de rachat partiel de l'annee

prest: un vecteur contenant les flux prestations de l'annee

rev_ech: un vecteur contenant la revalorisation des echeances de l'annee

rev_rach_tot: un vecteur contenant la revalorisation des rachats totaux de l'annee

rev_dc: un vecteur contenant la revalorisation des deces de l'annee

rev_rach_part: un vecteur contenant la revalorisation des rachats partiels de l'annee

rev_prest: un vecteur contenant la revalorisation brute des prestations de l'annee

rev_prest_nette: un vecteur contenant la revalorisation des prestations nette de l'annee

enc_charg: un vecteur contenant les chargements sur l'encours de l'annee

rach_charg: un vecteur contenant les chargements sur les rachats de l'annee

soc_prest: un vecteur contenant les prelevements sociaux sur prestations de l'annee

it_tech_prest: un vecteur contenant les interets techniques sur prestations de l'annee.

24 calc_primes

Le format de la liste stock est :

nb_ech : un vecteur contenant le nombre de sorties en echeance de l'anneenb_rach_tot : un vecteur contenant le nombre de rachats totaux de l'annee

nb_dc : un vecteur contenant le nombre de deces de l'annee

nb_sortie : un vecteur contenant le nombre de sorties de l'annee

nb_contr_fin : un vecteur contenant le nombre de contrats en cours en fin d'annee nb_contr_moy : un vecteur contenant la moyenne du nombre de contrats sur l'annee.

Author(s)

Prim'Act

See Also

```
calc_tx_sortie, calc_tx_min.
```

calc_primes

Calcul les flux de primes pour des contrats epargne en euros.

Description

calc_primes est une methode permettant de calculer les flux de primes sur une periode.

Usage

```
calc_primes(x)
```

Arguments

Χ

un objet de la classe EpEuroInd contenant les model points epargne euros.

Details

Cette fonction permet de projeter uniquement des primes periodiques de contrats epargne en euros.

Value

stock : une liste contenent le nombre de versements nb_vers associe a chaque model point.

flux: une liste contenant pour chaque model point les montants de primes brutes pri_brut, les montants de primes nettes pri_net et les chargemenets sur primes pri_chgt.

Author(s)

calc_qx 25

calc_qx

Calcule le taux de deces.

Description

calc_qx est une methode permettant de calculer le taux de deces.

Usage

```
calc_qx(table_mort, age, gen)
```

Arguments

table_mort un objet de la classe ParamTableMort contenant la table de mortalite.

age une valeur numeric correspondant a l'age.

gen une valeur numeric correspondant a la generation.

Value

La valeur du taux de deces calcule.

Author(s)

Prim'Act

calc_rach

Calcule le taux de rachat.

Description

calc_rach est une methode permettant de calculer le taux de rachat.

Usage

```
calc_rach(table_rach, age, anc)
```

Arguments

table_rach un objet de la classe ParamTableRach contenant la table de rachat.

age une valeur numeric correspondant a l'age.

anc une valeur numeric correspondant a l'anciennete.

Value

La valeur du taux de rachat calcule.

Author(s)

26 calc_RC

calc_rach_dyn	Calcule la composante rachats dynamique.

Description

calc_rach_dyn est une methode permettant de calculer la composante rachat dynamique selon la methodologie transmise dans le ONC de l'ACPR de 2013.

Usage

```
calc_rach_dyn(p, tx_cible, tx_serv)
```

Arguments

p un objet de la classe ParamRachDyn contenant les parametres de rachats dy-

namiques.

tx_cible une valeur numeric correspondant au taux de revalorisation cible. tx_serv une valeur numeric correspondant au taux de revalorisation servi.

Value

La valeur du taux rachat.

Author(s)

Prim'Act

calc_RC Calcul de la RC.

Description

calc_RC est une methode permettant de calculer le montant de RC.

Usage

```
calc_RC(x, pmvr_oblig)
```

Arguments

x objet de la classe RC, necessaire pour connaître le stock de RC initial.

pmr_oblig est un numeric correspondant au montant global annuel de plus ou moins values

realisees sur des actifs obligataires.

Value

Le format de la liste renvoyee est :

RC_courante : valeur de la RC courante initiale augmentee des plus ou moins values annuelles realisees

var_RC: variation de la RC courante.

calc_rdt 27

Author(s)

Prim'Act

calc_rdt Calcul les rendements de chacune des composante des sousportefeuilles action et immobilier du portefeuille PortFin.

Description

calc_rdt est une methode permettant de calculer les rendements des portfeuilles Action et Immo d'un objet PortFin.

Usage

```
calc_rdt(x, mp_ESG)
```

Arguments

x objet de la classe PortFin.

mp_ESG objet de la classe ModelPointESG decrivant les conditions de l'annee n (ainsi

que l'annee n-1 pour les indices actions & immo).

Value

Un data frame compose de deux colonnes et autant de lignes que le portefeuille action a de lignes.

Author(s)

Prim'Act

calc_rdt_marche_ref Calcul du taux de rendement de reference au niveau du marche

Description

calc_rdt_marche_ref est une methode permettant de calculer un taux cible.

Usage

```
calc_rdt_marche_ref(x, mp_esg)
```

Arguments

mp_esg est un objet de type ModelPointESG, qui represente la situation courante en

annee et simulations des valeurs de l'ESG.

param_comport un objet de la classe ParamComport.

Value

Une liste contenant les rendements de reference du marche.

28 calc_result_technique

Author(s)

Prim'Act

calc_reprise_ppb

Reprend sur la valeur de la PPB

Description

calc_reprise_ppb est une methode permettant de reprendre sur la PPB. La reprise est effectuee si les limites de reprise de la PPB sur l'annee ne sont pas atteintes. La valeur de cette limite est mise a jour suite a la reprise

Usage

```
calc_reprise_ppb(x, montant)
```

Arguments

x un objet de la classe Ppb.

montant la valeur numeric de la reprise.

Value

```
ppb l'objet x mis a jour
reprise le montnant de la reprise effectuee.
```

Author(s)

Prim'Act

calc_result_technique calcule le resultat technique

Description

calc_result_technique est une methode permettant de calculer le resultat technique avant attribution de participation aux benefices.

Usage

```
calc_result_technique(passif_av_pb, var_pre)
```

Arguments

passif_av_pb est une liste produit par la methode viellissement_av_pb appliquee a un porte-

feuille de passif.

var_pre est une valeur numeric correspondant a la variation de PRE.

Value

Le resultat technique.

Author(s)

Prim'Act

See Also

```
PRE, viellissement_av_pb.
```

```
calc_result_technique_ap_pb
```

calcule le resultat technique apres prise en compte de la participation aux benefices.

Description

calc_result_technique_ap_pb est une methode permettant de calculer le resultat technique apres attribution de participation aux benefices.

Usage

```
calc_result_technique_ap_pb(passif_av_pb, passif_ap_pb, ppb, var_pre)
```

Arguments

```
passif_av_pb est une liste produit par la methode viellissement_av_pb.

passif_ap_pb est une liste produit par la methode viellissement_ap_pb.

ppb est un objet de la classe Ppb qui renvoie l'etat courant de la PPB.

var_pre est une valeur numeric correspondant a la variation de PRE.
```

Value

Le resultat technique apres participation aux benefices.

calc_revalo

Applique la politique de revalorisation d'un canton.

Description

calc_revalo est une methode permettant de d'appliquer l'ensemble de la politique de revalorisation d'un assureur.

Usage

```
calc_revalo(x, passif_av_pb, tra, plac_moy_vnc, result_tech)
```

30 calc_revalo_pm

Arguments

x un objet de la classe Canton.

passif_av_pb est une liste produit par la methode viellissement_av_pb appliquee a un porte-

feuille de passif.

tra est la valeur numeric du taux de rendement de l'actif.

plac_moy_vnc est la valeur numeric moyenne des actifs en valeur nette comptable.

result_tech est la valeur numeric du resultat technique prise en compte avant distribution de

la PB.

Value

add_rev_nette_stock une liste avec la valeur de la revalorisation nette servie par produit au titre de la participation aux benefices.

pmvl_liq le montant de plus-values latentes en actions a realiser.

ppb un objet Ppb correspondant a la PPB mise a jour.

tx_pb un vecteur reprenant les taux de PB par produit renseigne dans l'objet x.

tx_enc_moy un vecteur reprenant les taux de chargement sur encours theoriques moyens par produit.

Author(s)

Prim'Act

See Also

Le calcul du TRA: calc_tra. Le vieillissemennt des passifs avant PB: viellissement_av_pb. Le calcul du resultat technique avant PB: calc_result_technique. Le calcul de la base de produits financiers: base_prod_fin. Le calcul de la PB contractuelle: pb_contr. Le financement des TMG par la PPB: finance_tmg. Le financement du taux cible par la PPB: finance_cible_ppb Le financement du taux cible par la realisation plus-values latentes actions: finance_cible_pmvl Le financement du taux cible par la compression de la marge de l'assureur: finance_cible_marge Le calcul de la marge de l'assureur: calc_marge_fin L'application de la contrainte legale de participation aux benefices: finance_contrainte_legale

calc_revalo_pm	Calcule et applique la revalorisation pour des PM pour des contrats
	epargne en euros.

Description

calc_revalo_pm est une methode permettant de calculer la revallorisation des PM sur une annee.

Usage

```
calc_revalo_pm(x, rev_net_alloue, tx_soc)
```

calc_revalo_pm 31

Arguments

un objet de la classe EpEuroInd contenant les model points epargne euros.

rev_net_alloue une valeur de type numeric correspondant au montant de revalorisation a al-

louer.

tx_soc est une valeur numeric correspondant au taux de prelevement sociaux.

Details

Cette methode permet de calculer les montants de PM de fin d'annee avec une revalorisation minimale et une revalorisation additionnelle au titre de la participation aux benefices de l'annee. Les chargements sur encours sont egalement calcules et preleves. Cette methode permet de gerer les contrats a taux de revalorisation net negatif.

Value

Une liste contenant:

flux: une liste comprenant les flux de l'annee

stock: une liste comprenant les nombres de sorties

tx_rev_net: un vecteur correspondant au taux de revalorisation net appliques a chaque model point.

Le format de la liste flux est :

rev_stock_brut_ap_pb: un vecteur contenant la revalorisation brute de l'annee appliquee au PM

rev_stock_nette_ap_pb: un vecteur contenant la revalorisation nette de l'annee appliquee au PM. Elle peut etre negative pour des contrats a taux negatif.

enc_charg_stock_ap_pb: un vecteur contenant les montants de chargement sur encours de l'annee calcules pour le stock de PM

soc_stock_ap_pb: un vecteur contenant les prelevements sociaux de l'annee

Le format de la liste stock est : s

pm_fin_ap_pb : un vecteur contenant le montant de PM en fin d'annee

Author(s)

Prim'Act

See Also

Le calcul des PM avec revalorisation minimale uniquement calc_pm.

32 calc_tra

calc_sur_dec Calcul les surcote/decote de chaque compo obligataire.	nposante d'un portefeuille
---	----------------------------

Description

calc_sur_dec est une methode permettant de calculer les surcotes/decotes de chaque composante d'un portefeuille obligataire.

Usage

```
calc_sur_dec(x)
```

Arguments

Χ

objet de la classe Oblig (decrivant le portefeuille obligataire).

Value

Un data.frame compose de deux colonnes : 1 ere colonne : surcotes decotes ; 2de colonne : valeurs nettes comptables.

Author(s)

Prim'Act

calc_tra

Calcul du taux de rendement financier

Description

calc_tra est une methode permettant de calculer le taux de rendement financier du portefeuille.

Usage

```
calc_tra(plac_moy, res_fin)
```

Arguments

plac_moy est un objet de type numeric, qui fournit la valeur moyenne des placements de

l'annee en valeur nette comptable.

res_fin est un objet de type numeric, qui fournit le resultat financier du porfeuille.

Value

La valeur du taux de rendement de l'actif.

Author(s)

calc_tx_cible 33

calc_tx_cible Calcul du taux cible pour des contrats epargne en euros.
--

Description

calc_tx_cible est une methode permettant d'evaluer le taux de revalorisation cible de chaque model point.

Usage

```
calc_tx_cible(x, ht, list_rd)
```

Arguments

un objet de la classe EpEuroInd contenant les model points epargne euros.
 un objet de la classe HypTech contenant differentes lois de comportement.
 list_rd
 une liste contenant les rendements de reference. Le format de cette liste est :

le taux de rendement obligataire

le taux de rendement de l'indice action de reference le taux de rendement de l'indice immobilier de reference le taux de rendement de l'indice tresorerie de reference

Value

```
tx_cible_an : un vecteur contenant les taux cible de l'annee
tx_cible_se : un vecteur contenant les taux cible de l'annee sur base semestrielle
```

Note

Pour les besoins des calculs a mi-annee, des taux semestriels sont produits.

Author(s)

Prim'Act

See Also

La recuperation des taux cibles calcules : get_comport.

34 calc_tx_min

```
calc_tx_cible_ref_marche
```

Calcule le taux de revalorisation cible.

Description

calc_tx_cible_ref_marche est une methode permettant de calculer le taux de revalorisation cible en evaluant le taux de rendement des assureurs sur le marche.

Usage

```
calc_tx_cible_ref_marche(param_comport, list_rd, tx_cible_prec)
```

Arguments

param_comport un objet de la classe ParamComport contenant les parametres comportementaux.

list_rd une liste contenant les rendements de reference. Le format de cette liste est :

le taux de rendement obligataire

le taux de rendement de l'indice action de reference le taux de rendement de l'indice immobilier de reference le taux de rendement de l'indice tresorerie de reference

tx_cible_prec une valeur numeric correspondant au taux cible de la periode precedente.

Value

La valeur du taux cible.

Author(s)

Prim'Act

calc_tx_min Calcul le taux de revalorisation contractuel minimum pour des contrats epargne en euros.

Description

calc_tx_min est une methode permettant de calculer les taux de revalorisation minimum sur une periode. La revalorisation minimum est le maximum entre le taux technique et le taux minimim garanti (TMG) du contrat.

Usage

```
calc_tx_min(x, an)
```

Arguments

x un objet de la classe EpEuroInd contenant les model points epargne euros.

an un numeric representant l'annee de projection courante.

calc_tx_sortie 35

Value

tx_tech_an : un vecteur contenant les taux de technique de l'annee

tx_tech_se : un vecteur contenant les taux de technique de l'annee sur base semestrielle

tx_an : un vecteur contenant les taux de revalorisation minimum de l'annee

x_se: un vecteur contenant les taux de revalorisation minimum de l'annee exprimes en semestriel.

Note

Pour les besoins des calculs a mi-annee, des taux semestriels sont produits.

Author(s)

Prim'Act

calc_tx_sortie

Calcul des taux de sortie pour des contrats epargne en euros.

Description

calc_tx_sortie est une methode permettant de calculer les differents taux de sortie sur une periode.

Usage

```
calc_tx_sortie(x, ht)
```

Arguments

x un objet de la classe EpEuroInd contenant les model points epargne euros.

ht un objet de la classe HypTech contenant differentes tables de mortalite et differ-

entes lois de rachat.

Value

Une matrice contenant pour chaque model points en ligne :

```
qx_rach_tot: un vecteur contenant les taux de rachats totaux
```

qx_rach_tot_dyn: un vecteur contenant les taux de rachats totaux dynamiques

qx_dc: un vecteur contenant les taux de deces

qx_rach_part: un vecteur contenant les taux de rachats partiels

qx_rach_part_dyn: un vecteur contenant les taux de rachats partiels dynamiques.

Author(s)

Prim'Act

See Also

La recuperation des taux de rachat structurel : get_qx_rach. La recuperation des taux de rachat dynamique : get_rach_dyn. La recuperation des taux de deces : get_qx_mort.

36 calc_vm_immo

calc_vm_action Calcul les valeurs de marches de chaque composante du portefe action.	ruille
--	--------

Description

calc_vm_action est une methode permettant de calculer les valeurs de marche.

Usage

```
calc_vm_action(x, rdt)
```

Arguments

x objet de la classe Action (decrivant le portefeuille d'action).

rdt vecteur de type numeric decrivant le rendement de chacune des actions du porte-

feuille action de l'assureur. Contient autant d'elements que le portefeuille action

a de lignes.

Value

L'objet x dont les valeurs de marche ont ete mises a jour.

Author(s)

Prim'Act

calc_vm_immo	Calcul les valeurs de marches de chaque composante du portefeuille immobilier.

Description

calc_vm_immo est une methode permettant de calculer les valeurs de marche.

Usage

```
calc_vm_immo(x, rdt)
```

Arguments

x objet de la classe Immo (decrivant le portefeuille d'immobilier).

rdt vecteur de type numeric decrivant le rendement de chacune des lignes d'immobilier

du portefeuille immobilier de l'assureur. Contient autant d'elements que le

portefeuille immobilier a de lignes.

Value

L'objet x dont les valeurs de marche ont ete mises a jour.

calc_vm_oblig 37

Author(s)

Prim'Act

calc_vm_oblig	Calcul les valeurs de marches de chaque composante du portefeuille
	obligation.

Description

calc_vm_oblig est une methode permettant de calculer les valeurs de marche.

Usage

```
calc_vm_oblig(x, yield_curve)
```

Arguments

x objet de la classe Oblig (decrivant le portefeuille d'obligation).

yield_curve vecteur de type numeric contenant la courbe de taux (cf. l'attribut yield_curve

des objets de la classe ModelPointESG).

Value

L'objet x dont les valeurs de marche ont ete mises a jour.

Author(s)

Prim'Act

calc_vm_treso	Calcul les valeurs de marches de chaque composante du portefeuille treso.
	reso.

Description

calc_vm_treso est une methode permettant de calculer les valeurs de marche de chaque ligne du portefeuille treso.

Usage

```
calc_vm_treso(x, rdt, flux_milieu, flux_fin)
```

Arguments

x	objet de la classe treso (decrivant le portefeuille de treso).
rdt	vecteur decrivant le rendement de chacune des lignes treso du ptf. Contient autant d'elements que le portefeuille a de lignes.
flux_milieu	vecteur decrivant les flux (percus)entrants : positif, sortants : negatifs) en milieu d'annee, ventiles selon chacune des lignes de cash.
flux_fin	vecteur decrivant les flux (entrants : positifs, sortants : negatifs) en fin d'annee, ventiles selon chacune des lignes de cash.

38 calc_z_spread

Value

L'objet x dont les valeurs de marche ont ete mises a jour.

Author(s)

Prim'Act

calc_vnc Calcul les valeurs nettes comptables de chaque composante du portefeuille obligation.

Description

calc_vnc est une methode permettant de calculer les valeurs de marche.

Usage

```
calc_vnc(x, sd_unitaire)
```

Arguments

x objet de la classe Oblig (decrivant le portefeuille d'obligation).

sd_unitaire vecteur de type numeric decrivant la surcote decote de chacune des lignes d'obligation

du portefeuille obligation de l'assureur. Contient autant d'elements que le porte-

feuille a de lignes.

Value

L'objet x dont les valeurs nettes comptables ont ete mises a jour.

Author(s)

Prim'Act

calc_z_spread Calcul les zeros spreads de chaque composante d'un portefeuille obligataire.

Description

calc_z_spread est une methode permettant de calculer les zeros spread de chaque composante d'un portefeuille obligataire.

```
calc_z_spread(x, yield_curve)
```

Canton 39

Arguments

x objet de la classe Oblig (decrivant le portefeuile obligataire).
yield_curve vecteur decrivant la courbe de taux sans risque retenue.

Value

Un vecteur dont chaque element correspond a la valeur du zero spread de l'obligation du portefeuille obligataire. Ce vecteur a autant d'elements que le portefeuille obligataire a de lignes.

Author(s)

Prim'Act

Canton La classe Canton.

Description

Une classe pour le canton d'un assureur. Un objet de cette classe agrege un portefeuille financier, un portefeuille de passifs, l'ensemble des autres provisions ainsi que les parametres et données necessaires a la projection de la situation d'un l'assureur.

Slots

annee une valeur entiere correspondant a l'annee de projection.

ptf_fin est un objet de type PortFin, qui represente le portefeuille d'investissement d'un canton.

ptf_passif est un objet de type PortPassif, qui represente le portefeuille de passif d'un canton.

mp_esg est un objet de type ModelPointESG, qui represente la situation courante deduite de l'ESG. Cet objet traduit la situation economique pour une annee donnee et une simulation donnee.

ppb est un objet de type Ppb, qui represente la provision pour participation aux benefices (PPB).

hyp_canton est un objet de type HypCanton, qui regroupe les hypotheses generales applicables au canton.

param_alm est un objet de type ParamAlmEngine, qui contient les parametres utilises dans les methodes de gestion de l'allocation d'actifs.

param_revalo est un objet de type ParamRevaloEngine, qui contient les parametres utilises dans les methodes de gestion de la revalorisation.

Author(s)

Prim'Act

See Also

La projection du Canton sur une annee : proj_an. Le calcul du resultat technique : calc_result_technique_ap_pb. Le calcul des fins de projection : calc_fin_proj.

40 chargement_ESG

chargement_choc

Permet de charger les parametres de choc de la formule standard.

Description

chargement_choc est une methode permettant de charger les parametres l'ensemble des parametres necessaires a la bonne application des chocs de marche et de souscription au sens de la formule standard de la directive Solvabilite 2, tels que renseignes par l'utilisateur.

Usage

```
chargement_choc(x, folder_chocs_address)
```

Arguments

x objet de la classe ChocSolvabilite2.

folder_choc_address

est un character. Cette chaine de caractere est construite par la methode set_architecture de la classe Initialisation. Elle contient l'adresse du dossier contenant les fichiers de parametres des chocs de la formule standard a appliquer. Ces derniers doivent etre renseignes par l'utilisateur.

Value

x l'objet de la classe \codeChocSolvabilite2 dont les attributs param_choc_mket et param_choc_sousc ont ete mis a jour.

Author(s)

Prim'Act

See Also

La creation de l'architecture de chargement des donnees et parametres renseignes par l'utilisateur set_architecture, ainsi que les classes ParamChocMket et ParamChocSousc.

chargement_ESG

Cette methode charge les tables de simulations d'un ESG.

Description

chargement_ESG est une methode permettant de charger les trajectoires simulees par le generateur de scenarios economiques (ESG) de Prim'Act et d'alimenter un objet ESG.

```
chargement_ESG(folder_ESG_address, nb_simu, nb_annee_proj)
```

chargement_PortFin 41

Arguments

folder_ESG_address

est un character. Il correspond au chemin de reference du dossier contenant

les extractions de l'ESG Prim'Act.

nb_simu est une valeur de type integer correspondant au nombre de trajectoire simulees

par l'ESG Prim'Act.

nb_annee_proj est une valeur de type integer correspondant au nombre d'annees de projection

des sorties de l'ESG Prim'Act.

Details

Les differentes adresses potentielles pour les differents ESG employes (central, hausse de taux, baisse de taux) sont construites par la fonction set_architecture de la classe Initialisation.

Value

x l'objet de la classe ESG construit.

Author(s)

Prim'Act

chargement_PortFin

Charge le PortFin a partir des donnees renseignees par l'utilisateur.

Description

chargement_PortFin est une methode permettant de creer un objet PortFin a partir des donnees renseignees par l'utilisateur.

Usage

```
chargement_PortFin(folder_PortFin_address, mp_ESG)
```

Arguments

folder_PortFin_address

est un chemin de type character, cf la methode set_architecture

mp_ESG est un objet de la classe ModelPointESG, qui fournit le resultat financier du

porfeuille.

Value

L'objet PortFin tel que precise par les donnees initiales et les parametres renseignes par l'utilisateur.

Author(s)

42 ChocSolvabilite2

chargement_PortFin_reference

Charge le PortFin de reinvestissement a partir des donnees renseignees par l'utilisateur.

Description

chargement_PortFin_reference est une methode permettant de creer un objet PortFin correspondant au portefeuille finanicer de reinvestissement a partir des donnees renseignees par l'utilisateur.

Usage

```
chargement_PortFin_reference(folder_PortFin_reference_address, mp_ESG)
```

Arguments

folder_PortFin_reference_address

est un chemin de type character, cf la methode set_architecture

mp_ESG

est un objet de la classe ModelPointESG, qui fournit le resultat financier du porfeuille.

Value

L'objet PortFin correspondant au portefeuille financier de reinvestissement tel que precise par les donnees initiales et les parametres renseignes par l'utilisateur.

Author(s)

Prim'Act

ChocSolvabilite2

La classe ChocSolvabilite2 instancie les parametres de chocs Marche et Souscription de la formule standard de la directive Solvabilite 2.

Description

La classe ChocSolvabilite2 permet de realiser les principaux des scenarios de choc initiaux au sens de la formule standard de la directive Solvabilite 2.

Details

Cette classe contient deux attributs qui contiennent respectivement l'ensemble des parametres necessaires a l'application des chocs Marche et Souscription. Cette classe contient aussi l'ensemble des methodes permettant d'appliquer chacun de ces chocs individuellement a un objet de la classe Canton. Les chocs permis sont :

central: la situation centrale

taux_up: le choc de taux a la hausse

taux_down: le choc de taux a la baisse action_type1: le choc action de type 1 action_type2: le choc action de type 2

immo: le choc immobilier

spread: le choc spread sur les obligations corporates
mortalite: le choc mortalite sur les tables de mortalite
longevite: le choc longevite sur les tables de mortalite

frais: le choc depenses sur le niveau des frais et l'inflation des frais

rachat_up: le choc de rachat a la hausse rachat_down: le choc de rachat a la baisse.

Slots

param_choc_mket un objet de la classe ParamChocMket.
param_choc_sousc un objet de la classe ParamChocSousc.

Author(s)

Prim'Act

See Also

L'application des chocs de taux_up et taux_down : do_choc_taux. L'application des chocs de action_type1 et action_type2 : do_choc_action_type1, do_choc_action_type2. L'application du choc de immo : do_choc_immo. L'application du choc de spread : do_choc_spread. L'application du choc de mortalite : do_choc_mortalite. L'application du choc de longevite : do_choc_longevite. L'application du choc de frais : do_choc_frais, get_choc_inflation_frais. L'application des chocs de rachat_up et rachat_down : do_choc_rachat_up, do_choc_rachat_down.

create_ptf_bought_action

Ajuste les quantites d'actions a acheter.

Description

create_ptf_bought_action est une methode permettant d'ajuster d'un coefficient les quantites d'actions a acheter. Cette methode est utilisee pour l'achat de nouvelles actions.

Usage

```
create_ptf_bought_action(x, coefficient)
```

Arguments

x objet de la classe Action, correspondant au portefeuille actions de reinvestisse-

ment. Ce portefeuille est unitaire.

coefficient un vecteur de type numeric qui a autant d'elements que le portefeuille de reinvestissement action a de lignes. Il correspond au coefficient a appliquer au porte-

feuille de reinvestissement action pour effectuer l'achat desire.

Value

x un objet de la classe Action correspondant a une proportion precise du portefeuille de reinvestissement action.

Author(s)

Prim'Act

See Also

La classe Action.

create_ptf_bought_immo

Ajuste les quantites d'immobilier a acheter.

Description

create_ptf_bought_immo est une methode permettant d'ajuster d'un coefficient les quantites d'immobilier a acheter. Cette methode est utilisee pour l'achat de nouveaux titres immobilier.

Usage

```
create_ptf_bought_immo(x, coefficient)
```

Arguments

x objet de la classe Immo, correspondant au portefeuille immobilier de reinvestisse-

ment. Ce portefeuille est unitaire.

coefficient est un vecteur de type numeric qui a autant d'elements que le portefeuille de

reinvestissement immo a de lignes. Il correspond au coefficient a appliquer au

portefeuille de reinvestissement immo pour effectuer l'achat desire.

Value

x un objet de la classe Immo correspondant a une proportion precise du portefeuille de reinvestissement immo.

Author(s)

Prim'Act

See Also

La classe Immo.

```
create_ptf_bought_oblig
```

Ajuste les quantites d'obligations a acheter.

Description

Cette methode permet d'ajuster d'un coefficient les quantites d'obligations a acheter. Cette methode est utilisee pour l'achat de nouveaux titres obligataires.

Usage

```
create_ptf_bought_oblig(x, coefficient)
```

Arguments

x objet de la classe Oblig, correspondant au portefeuille obligataire de reinvestisse-

ment. Ce portefeuille est unitaire.

coefficient est un vecteur de type numeric qui a autant d'elements que le portefeuille de

reinvestissement obligataire a de lignes. Il correspond au coefficient a appliquer au portefeuille de reinvestissement obligataire pour effectuer l'achat desire.

Value

x un objet de la classe Oblig correspondant a une proportion precise du portefeuille de reinvestissement obligataire.

Author(s)

Prim'Act

See Also

La classe Oblig.

```
do_calc_nb_sold_action
```

Calcule le nombre d'actions a vendre.

Description

Cette methode permet de calculer pour chaque ligne d'un portefeuille action d'un assureur le nombre d'unites a vendre afin de realiser un certain montant de vente en actions.

```
do_calc_nb_sold_action(x, montant_vente, method_vente)
```

Arguments

x objet de la classe Action, correspondant au portefeuille action de l'assureur.

montant_vente est un reel de type numeric correspondant a un montant de vente (en valeur de

marche) totale d'action que l'assureur souhaite effectuer.

method_vente est un element de type character correspondant a methode de vente retenue

(seule la methode proportionnelle est implementee actuellement).

Value

data.frame contenant deux colonnes (num_mp, nb_sold) correspondant respectivement au numero de model point de chaque ligne action du portefeuille et du nombre d'unite a vendre pour chacune d'entre elles.

Author(s)

Prim'Act

See Also

Action.

do_calc_nb_sold_immo Calcule le nombre de titres immobilier a vendre.

Description

Cette methode permet de calculer pour chaque ligne d'un portefeuille immobilier d'un assureur le nombre d'unites a vendre afin de realiser un certain montant de vente immo.

Usage

```
do_calc_nb_sold_immo(x, montant_vente, method_vente)
```

Arguments

x objet de la classe Immo, correspondant au portefeuille immo de l'assureur.

montant_vente est un reel de type numeric correspondant a la vente totale de vm immo que

l'assureur souhaite effectuer.

method_vente est un element de type character correspondant a methode de vente retenue

(seule la methode proportionnelle est implementee actuellement).

Value

data.frame contenant deux colonnes (num_mp, nb_sold) correspondant respectivement au numero de model point de chaque ligne immo du portefeuille et du nombre d'unite a vendre pour chacune d'entre elles.

Author(s)

do_calc_nb_sold_oblig

See Also

La classe Immo.

do_calc_nb_sold_oblig Calcule le nombre d'obligations a vendre.

Description

Cette methode permet de calculer pour chaque ligne d'un portefeuille obligataire d'un assureur le nombre d'unites a vendre afin de realiser un certain montant de vente obligataire.

Usage

```
do_calc_nb_sold_oblig(x, montant_vente, method_vente)
```

Arguments

x objet de la classe Oblig, correspondant au portefeuille obligataire de l'assureur.

montant_vente est un reel de type numeric correspondant a la vente totale de vm obligataire que l'assureur souhaite effectuer.

method_vente est un element de type character correspondant a methode de vente retenue (seule la methode proportionnelle est implementee actuellement).

Value

data.frame contenant deux colonnes (num_mp, nb_sold) correspondant respectivement au numero de model point de chaque ligne obligataire du portefeuille et du nombre d'unite a vendre pour chacune d'entre elles.

Author(s)

Prim'Act

See Also

La classe Oblig.

Description

do_choc_action_type1 est une methode permettant d'appliquer le choc action type 1 de la formule standard Solvabilite 2 a un canton.

```
do_choc_action_type1(x, canton)
```

Arguments

x objet de la classe ChocSolvabilite2.

canton un objet de la classe Canton. Il correspond au canton non choque (i.e. central)

de l'assureur.

Value

canton l'objet de la classe Canton correspondant au scenario choque action au sens de la formule standard Solvabilite 2.

Note

Il est possible d'appliquer des chocs actions distincts a chaque action selon l'index. Cette parametrisation est effectuee dans les fichiers d'inputs utilisateurs.

Author(s)

Prim'Act

do_choc_action_type2 Permet a part

Permet a partir d'un canton initial de creer un canton choque action.

Description

do_choc_action_type2 est une methode permettant d'appliquer le choc action type 2 de la formule standard Solvabilite 2 a un canton.

Usage

```
do_choc_action_type2(x, canton)
```

Arguments

x objet de la classe ChocSolvabilite2.

canton un objet de la classe Canton. Il correspond au canton non choque (i.e. central)

de l'assureur.

Value

canton l'objet de la classe Canton correspondant au scenario choque action au sens de la formule standard Solvabilite 2.

Note

Il est possible d'appliquer des chocs actions distincts a chaque action selon l'index. Cette parametrisation est effectuee dans les fichiers d'inputs utilisateurs.

Author(s)

do_choc_frais 49

		_	
do	choc	fra	is

Permet a partir d'un canton initial de creer un canton choque frais.

Description

do_choc_frais est une methode permettant d'appliquer le choc frais de la formule standard Solvabilite 2 a un canton.

Usage

```
do_choc_frais(x, canton, autres_passifs_choc)
```

Arguments

x objet de la classe ChocSolvabilite2.

canton est un objet de la classe Canton. Il correspond au canton non choque (i.e. cen-

tral) de l'assureur.

autres_passifs_choc

est un objet de la classe AutresPassifs, il correspond au chargement des autres passifs choques. Ces derniers ont ete renseignes par l'utilisateur en donnees.

Value

canton l'objet de la classe Canton correspondant au scenario choque frais au sens de la formule standard Solvabilite 2.

Note

La parametrisation des chocs de frais est effectuee dans les fichiers d'inputs utilisateurs.

Author(s)

Prim'Act

do_choc_immo	Permet a partir d'un canton initial de creer un canton choque immo-
	hilier

Description

do_choc_immo est une methode permettant d'appliquer le choc immobilier de la formule standard Solvabilite 2 a un canton.

```
do_choc_immo(x, canton)
```

50 do_choc_longevite

Arguments

x objet de la classe ChocSolvabilite2.

canton est un objet de la classe Canton. Il correspond au canton non choque (i.e. cen-

tral) de l'assureur.

Value

canton l'objet de la classe Canton correspondant au scenario choque immobilier au sens de la formule standard Solvabilite 2.

Note

Il est possible d'appliquer des chocs immobiliers distincts a chaque ligne immobilier present en portefeuille selon l'index. Cette parametrisation est effectuee dans les fichiers d'inputs utilisateurs.

Author(s)

Prim'Act

do_choc_longevite

Permet a partir d'un canton initial de creer un canton choque longevite.

Description

do_choc_longevite est une methode permettant d'appliquer le choc longevite de la formule standard Solvabilite 2 a un canton.

Usage

```
do_choc_longevite(x, canton, autres_passifs_choc)
```

Arguments

x objet de la classe ChocSolvabilite2.

canton est un objet de la classe Canton. Il correspond au canton non choque (i.e. cen-

tral) de l'assureur.

autres_passifs_choc

est un objet de la classe AutresPassifs, il correspond au chargement des autres passifs choques en longevite. Ces derniers ont ete renseignes par l'utilisateur en donnees.

Value

canton l'objet de la classe Canton correspondant au scenario choque longevite au sens de la formule standard Solvabilite 2.

Note

La parametrisation des chocs de longevite est effectuee dans les fichiers d'inputs utilisateurs.

do_choc_mortalite 51

Author(s)

Prim'Act

do_choc_mortalite

Permet a partir d'un canton initial de creer un canton choque mortal-

ite.

Description

do_choc_mortalite est une methode permettant d'appliquer le choc mortalite de la formule standard Solvabilite 2 a un canton.

Usage

```
do_choc_mortalite(x, canton, autres_passifs_choc)
```

Arguments

x objet de la classe ChocSolvabilite2.

canton est un objet de la classe Canton. Il correspond au canton non choque (i.e. cen-

tral) de l'assureur.

autres_passifs_choc

est un objet de la classe AutresPassifs, il correspond au chargement des autres passifs choques en mortalite. Ces derniers ont ete renseignes par l'utilisateur en

donnees.

Value

canton l'objet de la classe canton correspondant au scenario choque mortalite au sens de la formule standard Solvabilite 2.

Note

La parametrisation des chocs de mortalite est effectuee dans les fichiers d'inputs utilisateurs.

Author(s)

52 do_choc_rachat_up

do_choc_rachat_down	Permet a partir d'un canton initial de creer un canton dont les taux de
	rachat sont choques a la baisse.

Description

do_choc_rachat_down est une methode permettant d'appliquer le choc a la baisse des taux de rachat de la formule standard Solvabilite 2 a un canton.

Usage

```
do_choc_rachat_down(x, canton, autres_passifs_choc)
```

Arguments

x objet de la classe ChocSolvabilite2.

canton est un objet de la classe Canton. Il correspond au canton non choque (i.e. cen-

tral) de l'assureur.

autres_passifs_choc

est un objet de la classe AutresPassifs, il correspond au chargement des autres passifs choques en rachat a la baisse. Ces derniers ont ete renseignes par l'utilisateur

en donnees.

Value

canton l'objet de la classe Canton correspondant au scenario de choc a la baisse des taux de rachats au sens de la formule standard Solvabilite 2.

Note

La parametrisation des chocs a la baisse des taux de rachat est effectuee dans les fichiers d'inputs utilisateurs.

Author(s)

Prim'Act

Description

do_choc_rachat_up est une methode permettant d'appliquer le choc a la hausse des taux de rachat de la formule standard Solvabilite 2 a un canton.

```
do_choc_rachat_up(x, canton, autres_passifs_choc)
```

do_choc_spread 53

Arguments

x objet de la classe ChocSolvabilite2.

canton est un objet de la classe Canton. Il correspond au canton non choque (i.e. cen-

tral) de l'assureur.

autres_passifs_choc

est un objet de la classe AutresPassifs, il correspond au chargement des autres passifs choques en rachat a la hausse. Ces derniers ont ete renseignes par

l'utilisateur en donnees.

Value

canton l'objet de la classe Canton correspondant au scenario de choc a la hausse des taux de rachats au sens de la formule standard Solvabilite 2.

Note

La parametrisation des chocs a la hausse des taux de rachat est effectuee dans les fichiers d'inputs utilisateurs.

Author(s)

Prim'Act

do_choc_spread

Permet a partir d'un canton initial de creer un canton choque spread.

Description

do_choc_spread est une methode permettant d'appliquer le choc spread de la formule standard Solvabilite 2 a un canton. Cette methode s'applique uniquement aux obligations de type corp.

Usage

```
do_choc_spread(x, canton)
```

Arguments

x objet de la classe ChocSolvabilite2.

canton est un objet de la classe Canton. Il correspond au canton non choque (i.e. cen-

tral) de l'assureur.

Value

canton l'objet de la classe Canton correspondant au scenario choque spread au sens de la formule standard Solvabilite 2.

Note

Il est possible d'appliquer des chocs de spreads distincts a chaque ligne du portefeuille obligataire selon le numero de rating et la duration de l'obligation. Cette parametrisation est effectuee dans les fichiers d'inputs utilisateurs.

Author(s)

Prim'Act

See Also

L'application du choc de spread a une ligne obligataire : do_choc_spread_unitaire.

```
do_choc_spread_unitaire
```

Applique le choc spread de la formule standard Solvabilite 2 a une ligne obligataire.

Description

do_choc_spread_unitaire Permet a partir d'une table contenant les elements du choc de spread obligataire Solvabilite 2 et d'une ligne obligataire d'un element Oblig d'un portefeuille financier PortFin d'appliquer le choc de spread a cette ligne obligataire.

Usage

```
do_choc_spread_unitaire(table_choc_spread, ligne_oblig)
```

Arguments

table_choc_spread

un data. frame contenant la table de parametres avec les chocs de spreads.

ligne_oblig |

un data.frame. Il correspond a une ligne obligataire d'un portefeuille Oblig d'un assureur.

Value

vm_choquee une valeur numeric correspondant a la valeur de marche de la ligne obligataire suite a l'application du choc de spread a cette ligne.

Author(s)

Prim'Act

See Also

La classe PortFin.

do_choc_taux 55

do_choc_taux

Methode permettant d'appliquer le choc de taux a un Canton.

Description

do_choc_taux est une methode permettant d'appliquer le choc de taux de la formule standard Solvabilite 2 a un canton.

Usage

```
do_choc_taux(canton)
```

Arguments

canton

un objet de la classe Canton, correspondant au canton auquel on souhaite appliquer le choc de taux.

Value

canton l'objet de la classe Canton, mis a jour du choc de taux.

Author(s)

Prim'Act

do_update_pmvl

Met a jour l'ensemble des attributs pvl et pml d'un objet PortFin

Description

do_update_pmvl est une methode permettant de calculer le taux de rendement financier du porte-feuille.

Usage

```
do_update_pmvl(x)
```

Arguments

Х

est un objet de la classe PortFin,

Value

L'objet x de la classe PortFin dont les plus values et moins values ont ete recalculees avec les elements du PortFin renseigne en input.

Author(s)

do_update_PRE_val_courante

Mise a jour de la valeur courante de PRE.

Description

do_update_PRE_val_courante est une methode permettant de calculer le montant de PRE.

Usage

```
do_update_PRE_val_courante(x, val_courante)
```

Arguments

x objet de la classe PREcorrespondant a la PRE avant mise a jour.
val_courante est un numeric correspondant au montant de PRE calcule par la fonction calc_PRE.

Value

L'objet PRE mis a jour de la nouvelle valeur courante de PRE

Author(s)

Prim'Act

See Also

La methode de calcul de la PRE calc_PRE

```
do_update_PRE_val_debut
```

Mise a jour de la valeur de debut de periode de la PRE

Description

do_update_PRE_val_debut est une methode permettant de mettre a jour le montant de debut de periode de PRE.

Usage

```
do_update_PRE_val_debut(x, val_debut)
```

Arguments

x objet de la classe PRE correspondant a la PRE avant mise a jour.
val_debut est un numeric correspondant au montant de debut de periode de PRE.

Value

L'objet PRE mis a jour de la nouvelle valeur de debut de PRE

Author(s)

Prim'Act

See Also

La methode de calcul de la PRE calc_PRE

```
do_update_RC_val_courante
```

Mise a jour de la valeur courante de RC

Description

do_update_RC_val_courante est une methode permettant de calculer le montant de RC.

Usage

```
do_update_RC_val_courante(x, val_courante)
```

Arguments

x objet de la classe RCcorrespondant a la RC avant mise a jour.
val_courante est un numeric correspondant au montant de RC calcule par la fonction calc_RC.

Value

L'objet RC mis a jour de la nouvelle valeur courante de RC

Author(s)

Prim'Act

See Also

La methode de calcul de la RC calc_RC

```
do_update_RC_val_debut
```

Mise a jour de la valeur initiale de RC

Description

do_update_RC_val_debut est une methode permettant de mettre a jour le montant de debut de periode de RC.

```
do_update_RC_val_debut(x, val_debut)
```

Arguments

x objet de la classe RC correspondant a la RC avant mise a jour.

val_debut est un numeric correspondant au montant de debut de periode de RC.

Value

L'objet RC mis a jour de la nouvelle valeur de debut de RC

Author(s)

Prim'Act

See Also

La methode de calcul de la RC calc_RC

do_update_vm_vnc_precedent

Evalue et met a jour les objets constituants un PortFin.

Description

do_update_vm_vnc_precedent est une methode permettant de calculer et mettre a jour un portefeuille financier suite a un vieillissement.

Usage

```
do_update_vm_vnc_precedent(x)
```

Arguments

x objet de la classe PortFin, correspondant au portefeuille financier de l'assureur avant mise a jour de l'attribut vm_vnc_precedent.

Value

L'objet de la classe PortFin renvoye correspond au portefeuille financier de l'assureur dont l'attribut vm_vnc_precedent a ete mis a jour.

Author(s)

duration_sensi 59

|--|

Description

duration_sensi est une methode permettant de calculer la duration de chaque composante d'un portefeuille obligataire.

Usage

```
duration_sensi(x)
```

Arguments

Χ

objet de la classe Oblig (decrivant le portefeuille obligataire).

Value

Un data frame compose de deux colonnes : la premiere est composee de la duration de chacune des obligations du portefeuille obligataire. La seconde est compose de la sensibilite de chacune des obligations du portefeuille obligataire. Le dataframe de sortie a autant d'elements que le portefeuille obligataire a de lignes.

Author(s)

Prim'Act

echeancier	Calcule les flux d'un model point ou d'un ensemble de models points
	obligataires.

Description

echeancier est une methode permettant de calculer les flux jusqu'a maturite residuelle.

Usage

```
echeancier(coupon, maturite, zspread, nominal, yield)
```

Arguments

coupon	vecteur contenant les taux de coupons
maturite	vecteur d'entiers contenant les maturites residuelles
zspread	vecteur contenant les zero-spreads
nominal	vecteur contenant les valeurs nominales de chaque obligation
yield	vecteur contenant la courbe de taux consideree (peut-etre vide)

60 ESG

Value

Une matrice contenant:

grid_flux: la matrice d'ecoulement des flux. Cette matrice a autant de colonnes que le max du
 vecteur de maturite residuelle, et autant de lignes que les vecteurs d'input coupon, maturite, zspread, nominal.
 Chaque ligne decrit les flux annuels a venir pour l'actif obligataire de caracteristique renseigne
 en input.

Author(s)

Prim'Act

EpEuroInd

La classe EpEuroInd.

Description

Une classe pour les passifs epargne en euros.

Slots

mp un objet data. frame au format fige contenant l'ensemble de model points epargne en euros. tab un objet de la classe TabEpEuroInd dedie au stockage de variables intermediaires.

Author(s)

Prim'Act

See Also

Le calcul des primes, des prestations et des PM : calc_primes, calc_prest, calc_pm. Le calcul des taux de sortie, du taux minimum et des taux cible de revalorisation : calc_tx_sortie, calc_tx_min, calc_tx_cible. La revalorisation des PM apres participation aux benefices : calc_relavo_pm. Le vieillissement des model points sur une periode : vieilli_mp.

ESG

La classe ESG

Description

Une classe de parametres contenant les tables de simulation, generees par une generateur de scenarions economique. extract_ESG 61

Slots

nb_simu un entier (integer) correspondant au nombre de simulations.

ind_action une liste contenant les differents indices actions utilises. Chaque element de la liste contient nb_simu simulations de l'indice.

ind_immo une liste contenant les differents indices immobilier utilises. Chaque element de la liste contient nb_simu simulations de l'indice.

ind_inflation une liste contenant l'indice inflation utilise. L'element de la liste contient nb_simu simulations de l'indice.

yield_curve une liste contenant les courbes de taux simulees a chaque date de projection. Chaque element de la liste, correspondant a une annee de projection, contient nb_simu simulations de la courbe des taux.

deflateur une liste contenant le deflateur stochastique a utiliser. L'element de la liste contient nb_simu simulations du deflateur.

Author(s)

Prim'Act

See Also

Les methodes de chargement d'un ESG chargement_ESG et d'extraction d'un model point ESG extract_ESG.

extract_ESG

permet de construire et charger les trajectoires simulees par le Generateur de Scenarios Economiques de Prim'Act.

Description

extract_ESG construit l'objet de classe ModelPoint_ESG a partir d'un objet de la classe ESG. Le ModelPointESG ainsi construit correspond a l'extraction de donnees de l'ESG pour une annee specifique et pour une simulation specifique.

Usage

```
extract_ESG(x, num_trajectoire, annee)
```

Arguments

x un objet de la classe ESG.

num_trajectoire

une valeur de type integer correspondant a la trajectoire de simulation dont on souhaite obtenir les valeurs.

annee

une valeur de type integer correspondant a l'annee d'interet pour le model point (possibilite de selectionner les annees 0 a nb_annee_proj).

Value

x l'objet de la classe ModelPoint_ESG construit.

62 finance_cible_marge

Author(s)

Prim'Act

See Also

La classe ModelPoint_ESG.

finance_cible_marge

Evalue le financement d'une revalorisation au taux cible par la marge de l'assureur

Description

finance_cible_marge est une methode permettant de determiner le financement d'une revalorisation au taux cible en comprimant la marge financiere de l'assureur

Usage

```
finance_cible_marge(marge_fin, bes_cible, rev_stock_nette, marge_min)
```

Arguments

marge_fin une valeur numeric donnant le montant courant de la marge financiere de l'assureur.

bes_cible un vecteur numeric correspondant au besoin de financement necessaire pour

atteindre le taux cible part produit.

rev_stock_nette

un vecteur numeric comprenant par produit le montant de revalorisation nette

au titre de le PB atteint.

marge_min est une valeur numeric correspondant au montant minimum de marge financiere

souhaite par l'assureur.

Value

rev_stock_nette la valeur de la revalorisation nette servie par produit apres reduction de marge.

marge_fin le montant de marge de l'assureur apres reduction.

Author(s)

finance_cible_pmvl 63

finance_cible_pmvl	Evalue le financement d'une revalorisation au taux cible par des cessions de plus-values latentes.
·	1

Description

finance_cible_pmvl est une methode permettant de determiner le financement d'une revalorisation au taux cible par une cession de plus-values latentes en actions.

Usage

```
finance_cible_pmvl(bes_cible, rev_stock_nette, base_fin, seuil_pmvl, tx_pb)
```

Arguments

bes_cible	un vecteur numeric	correspondant au	besoin de financen	nent necessaire pour

atteindre le taux cible part produit.

rev_stock_nette

un vecteur numeric comprenant par produit le montant de revalorisation nette

au titre de le PB atteint.

base_fin un vecteur numeric comprenant par produit la base de produits financiers.

seuil_pmvl une valeur numeric correspondant au montant de plus-values latentes qui peut

etre liquidee. Ce montant doit etre exprime en tenant compte de l'abattement (mise a l'echelle) realise pour rapport aux plus-values latentes de l'actif general

au passif.

tx_pb un vecteur numeric comprenant par produit les taux de participation aux benefices

contractuels.

Details

Lorsque la revalorisation nette est superieure au besoin de financement des taux cibles, on sert le taux cible et on partage le surplus. A l'inverse, les taux cible sont finances par les compensations entre produits lorsque certains prevoient une revalorisation superieure au taux cible, et par une liquidation de plus-values latentes.

Value

rev_stock_nette la valeur de la revalorisation nette servie par produit apres cession.

pmvl_liq le montant de plus-values a liquider, ramene a la valeur du passif, pour financer la revalorisation.

Author(s)

64 finance_cible_ppb

finance_cible_ppb	Evalue le financement d'une revalorisation au taux cible par une reprise de PPB.

Description

finance_cible_ppb est une methode permettant de determiner le financement d'une revalorisation au taux cible par la reprise de provision pour participation aux benefices (PPB). Cette methode evalue egalement si une dotation est effectue.

Usage

```
finance_cible_ppb(bes_cible, rev_stock_nette, ppb)
```

Arguments

bes_cible un vecteur numeric correspondant au besoin de financement necessaire pour

atteindre le taux cible par produit.

rev_stock_nette

un vecteur numeric comprenant par produit le montant de revalorisation nette

au titre de le PB atteint.

ppb un objet de la classe Ppb qui renvoie l'etat courant de la PPB.

Details

Lorsque la revalorisation nette est superieure au besoin de financement des taux cibles, on sert le taux cible et on dote le reste a la PPB dans la limite du plafond de dotation annuel. A l'inverse, les taux cible sont finances par les compensations entre produits lorsque certains prevoient une revalorisation superieure au taux cible, puis par une reprise sur PPB.

Value

rev_stock_nette la valeur de la revalorisation nette servie apres une eventuelle reprise de PPB.

dotation le montant de dotation a la PPB.

reprise le montant de reprise sur la PPB.

ppb l'objet ppb mis a jour.

Author(s)

```
finance_contrainte_legale
```

Applique la contrainte legale de participation aux benefices.

Description

finance_contrainte_legale est une methode permettant de calculer la contrainte legale de participation aux benefices et de l'appliquer si necessaire pour accroitre la revalorisation.

Usage

```
finance_contrainte_legale(base_fin, base_fin_etendu, result_tech, it_stock,
  rev_stock_nette, rev_prest_nette, dot_ppb, marge_fin, ppb, param_revalo)
```

Arguments

base_fin un vecteur numeric comprenant par produit la base de produits financiers.

result_tech une valeur numeric comprenant le resultat technique.

it_stock un vecteur numeric comprenant par produit les interets techniques affectes au

stock.

rev_stock_nette

un vecteur de type numeric comprenant par produit la revalorisaton nette af-

fectee au stock.

rev_prest_nette

un vecteur de type numeric comprenant par produit a revalorisaton nette affectee

aux prestations.

dot_ppb une valeur numeric comprenant la dotation de PPB financant la revalorisation

sur stock.

marge_fin une valeur numeric comprenant la marge financiere courante de l'assureur.

ppb un objet de la classe Ppb qui renvoie l'état courant de la PPB.

param_revalo un objet de la classe ParamRevaloEngine. comprenant les parametres de reval-

orisation.

base_fin_entendu

une valeur numeric comprenant la base totale de produits financiers (somme des

produits modelise et des passifs non modelises).

Details

Cette methode permet de calculer la contrainte de revalorisation imposee par la reglementation. Si cette contrainte est verifie alors rien n'est fait, hormis la mise a jour eventuelle du solde negatif de PB. Sinon, la revalorisation additionnelle est dote a la PPB, jusqu'au maximum de dotation possible, puis le relicat est alloue entre les produits. La revalorisation additionelle vient diminuer la marge financiere de l'assureur.

Value

rev_stock_nette la valeur de la revalorisation nette servie apres application de la contrainte legale. marge_fin le montant de marge de l'assureur apres reduction.

ppb l'objet ppb mis a jour.

param_revalo l'objet param_revalo mis a jour (solde de PB reglementaire negatif).

66 finance_tmg

Author(s)

Prim'Act

finance_tmg

Calcule la contribution de la PPB au financement des taux minimums garantis.

Description

finance_tmg est une methode permettant d'evaluer le contribution de la PPB au financement des taux minimums garantis (TMG) sur prestations et sur stock.

Usage

```
finance_tmg(bes_tmg_prest, bes_tmg_stock, ppb)
```

Arguments

bes_tmg_prest

un vecteur numeric comprenant par produit le besoin de finance des TMG sur prestations. @param bes_tmg_stock un vecteur numeric comprenant par pro-

duit le besoin de finance des TMG sur le stock.

ppb

est un objet de la classe Ppb qui renvoie l'etat courant de la PPB.

Details

Dans cette methode, il est considere que le PPB peut venir financer les TMG sur prestations et sur stock. Par convention, la PPB finance d'abord les TMG sur prestations, puis sur stock.

Value

contrib_tmg_prest la valeur de la contribution au financement des TMG sur prestations. contrib_tmg_stock la valeur de la contribution au financement des TMG sur stock. ppb l'objet ppb mis a jour.

Author(s)

FraisFin 67

FraisFin La classe FraisFin

Description

Classe pour les parametres de frais financiers d'un assureur.

Slots

tx_chargement est une valeur numeric correspondant au taux de frais de gestion financiere.

indicatrice_inflation est un objet de type logical, qui permet d'indiquer si une inflation doit etre appliquee.

Author(s)

Prim'Act

See Also

Mettre le lien vers les methodes de la classe

FraisPassif

La classe FraisPassif

Description

Une classe de parametres pour les frais des produits du portefeuille de passif.

Slots

mp un objet data. frame contenant les parametres de frais au passif par produit.

Author(s)

Prim'Act

See Also

Le calcul des frais de passif calc_frais.

68 frais_passif_load

frais_fin_load	Methode permettant de charger la valeur initiale des frais financiers dans un objet de type FraisFin.

Description

frais_fin_load est une methode permettant de charger les frais financiers.

Usage

```
frais_fin_load(file_frais_fin_address)
```

Arguments

```
file_frais_fin_address
```

est un character contenant l'adresse exacte du fichier d'input utilisateur permettant de renseigner les Frais financier.

Value

L'objet de la classe FraisFin construit a partir des inputs renseignes par l'utilisateur.

Author(s)

Prim'Act

See Also

La classe Initialisation et sa methode set_architecture pour renseigner l'input.

Description

frais_passif_load est une methode permettant de charger les donnees associees a un objet de classe FraisPassif.

Usage

```
frais\_passif\_load(file\_frais\_passif\_address)
```

Arguments

```
{\tt file\_frais\_passif\_address}
```

est un character contenant l'adresse exacte du fichier d'input utilisateur permettant de renseigner un objet FraisPassif.

Value

L'objet de la classe FraisPassif construit a partir des inputs renseignes par l'utilisateur.

Author(s)

Prim'Act

See Also

La classe Initialisation et sa methode set_architecture pour renseigner l'input.

```
get_choc_inflation_frais
```

Applique le choc frais de la formule standard a la table de simulation pour l'indice inflation.

Description

get_choc_inflation_frais est une methode permettant d'appliquer le choc frais de la formule standard a la table de simulation pour l'indice inflation.

Usage

```
get_choc_inflation_frais(x, choc)
```

Arguments

x un objet de la classe ESG.

choc une valeur numeric correspondant au coefficient de choc a appliquer en additif

au taux d'inflation.

Value

L'objet x mis a jour.

Note

L'inflation comprise dans l'ESG est suppose etre deja capitalise, i.e. $indice_inflation = (1 + txinflation)^{annee}$. Il ne s'agit pas du taux d'inflation.

Author(s)

70 get_choc_table

σΔt	choc	rach	
26.	CHOC	racii	

Applique les chocs de rachat de la formule standard.

Description

get_choc_rach est une methode permettant d'appliquer a l'ensemble des lois de rachat structurelle d'un objet HypTech les chocs a la hausse ou a la baisse de la formule standard.

Usage

```
get_choc_rach(x, type_choc_rach, choc, choc_lim)
```

Arguments

type_choc_rach est un character renseignant le type de choc a applique : up pour le choc a la

hausse, et down pour le choc a la baisse.

choc une valeur numeric indiquant le taux de choc.

choc_lim une valeur numeric indiquant la limite haute pour le choc a la hausse, ou une

limite basse pour le choc a baisse.

ht un objet de la classe HypTech contenant differentes lois de rachat partielles et

totales.

Value

L'objet ht apres choc.

get_choc_table

Applique les chocs de mortalite et de longevite de la formule standard.

Description

get_choc_table est une methode permettant d'appliquer a l'ensemble des table de mortalite d'un objet HypTech les chocs de mortalite ou de longevite de la formule standard.

Usage

```
get_choc_table(x, choc)
```

Arguments

choc une valeur numeric indiquant le taux de choc.

ht un objet de la classe HypTech contenant differentes tables de mortalite.

Value

L'objet ht apres choc.

Author(s)

get_comport 71

get_comport	Recuperer les taux de revalorisation cible calcules.

Description

get_comport est une methode permettant d'executer le calcul des taux de revalorisation cible.

Usage

```
get_comport(x, nom_table, list_rd, tx_cible_prec)
```

Arguments

x un objet de la classe HypTech.

nom_table un nom de la table de parametres de taux cible.

list_rd une liste contenant les rendements de reference. Le format de cette liste est :

le taux de rendement obligataire

le taux de rendement de l'indice action de reference le taux de rendement de l'indice immobilier de reference le taux de rendement de l'indice tresorerie de reference

tx_cible_prec une valeur numeric correspondant au taux cible de la periode precedente.

Value

La valeur du taux cible.

Author(s)

Prim'Act

See Also

Le calcul du taux cible calc_tx_cible_ref_marche.

er les taux de deces calcules.

Description

get_qx_mort est une methode permettant d'executer le calcul des taux de deces.

```
get_qx_mort(x, nom_table, age, gen)
```

72 get_qx_rach

Arguments

x un objet de la classe HypTech.nom_table un nom de la table de mortalite.age est la valeur numeric de l'age.

gen est la valeur numeric de la generation.

Value

Le taux de deces.

Author(s)

Prim'Act

See Also

Le calcul du taux de deces calc_qx.

get_qx_rach

Recuperer les taux de rachat calcules.

Description

get_qx_rach est une methode permettant d'executer le calcul des taux de rachat structurel. Il peut s'agir soit de taux de rachat partiels, soit de taux de rachat totaux.

Usage

```
get_qx_rach(x, nom_table, age, anc)
```

Arguments

x un objet de la classe HypTech.nom_table un nom de la table de rachat.age est la valeur numeric de l'age.

anc est la valeur numeric de l'anciennete du contrat.

Details

Selon le nom de la table nom_table, le resultat de cette fonction sera un taux de rachat partiel ou un taux de rachat total.

Value

Le taux de rachat.

Author(s)

get_rach_dyn 73

See Also

Le calcul du taux de rachat calc_rach.

get_rach_dyn	Recuperer les taux de rachat dynamiques calcules.
--------------	---

Description

get_rach_dyn est une methode permettant d'executer le calcul des taux de rachat dynamique.

Usage

```
get_rach_dyn(x, nom_table, tx_cible, tx_serv)
```

Arguments

x un objet de la classe HypTech.

nom_table un nom de jeu de paramatre de rachat dynamique.

tx_cible est une valeur numeric correspondant taux de revalorisation cible.
tx_serv est une valeur numeric correspondant taux de revalorisation servi.

Value

Le taux de rachat dynamique.

Author(s)

Prim'Act

See Also

Le calcul du taux de rachat dynamique calc_rach_dyn.

Description

Une class de parametres pour les parametres generaux du canton.

Slots

```
tx_soc une valeur numeric correspondant au taux de prelevements social.
tx_import une valeur numeric correspondant au taux d'impot sur le resultat.
method_taux_cible un character correspond au nom de la methode de calcul du taux cible.
```

Note

Dans la version courante, la valeur de method_taux_cible doit etre parametree a "Meth1".

74 hyp_canton_load

Author(s)

Prim'Act

HypTech

La classe HypTech.

Description

Une classe contenant les listes de tables de mortalite, de rachat, les parametres de rachat dynamique et les parametres comportementaux qui permettent de calculer les attentes en matiere de taux de revalorisation cible.

Details

Chaque elements de ces liste doit avoir prealablement ete nomme.

Slots

tables_mort une liste contenant des tables de mortalite au format ParamTableMort.

tables_rach une liste contenant des tables de rachat (structurel) au format ParamTableRach.

param_rach_dyn une liste contenant des parametres de rachat dynamique au format ParamRachDyn.

param_comport une liste contenant des des parametres comportementaux au format ParamComport.

Author(s)

Prim'Act

See Also

Les classes de parametres contenues ParamTableMort, ParamTableRach, ParamRachDyn, ParamComport. La methode pour l'application des chocs de mortalite et de longevite : get_choc_table. La methode pour l'application des chocs de rachat haut et bas : get_choc_rach. La methode pour la recuperation des parametres comportementaux : get_comport. La methode pour la recuperation des taux de deces : get_qx_mort. La methode pour la recuperation des taux de rachat structurel : get_qx_rach. La methode pour la recuperation des taux de rachat dynamique : get_rach_dyn.

hyp_canton_load

Methode permettant de charger la valeur initiale des hypotheses du canton.

Description

hyp_canton_load est une methode permettant de charger les parametres associees a un objet de classe HypCanton.

Usage

hyp_canton_load(file_hyp_canton_address)

Immo 75

Arguments

file_hyp_canton_address

est un character contenant l'adresse exacte du fichier d'input utilisateur permettant de renseigner un objet HypCanton.

Value

L'objet de la classe HypCanton construit a partir des inputs renseignes par l'utilisateur.

Author(s)

Prim'Act

See Also

La classe Initialisation et sa methode set_architecture pour renseigner l'input.

Immo

Classe pour les actifs de type immobilier.

Description

Classe pour les actifs de type immobilier.

Slots

ptf_immo est un dataframe, chaque ligne represente un actif immobilier du portefeuille d'immobilier.

Author(s)

Prim'Act

See Also

Les operations d'achat vente immo buy_immo et sell_immo.

Initialisation

La classe Initialisation.

Description

Une classe permettant de gerer les parametres techniques necessaire a l'initialisation d'une etude.

76 initialisation_load

Slots

root_address ce character doit correspondre a la racine du projet. C'est dans les sous dossiers de cet emplacement que l'ensemble des donnees, parametres et dossiers de sauvegarde doivent se situer, en respectant l'architecture etablie par Prim'Act.

address est une liste renseignee par la fonction set_architecture qui contient l'ensemble des adresses de l'architecture physique du projet (emplacement des donnnees utilisateurs, emplacement des parametres utilisateurs, emplacement des sauvegardes temporaires et definitives).

nb_simu est un integer correspondant aux nombres de trajectoires simulees par le jeu de donnees de l'ESG Prim'Act.

nb_annee_proj est un integer correspondant au nombre d'annee de projection de la modelisation.

Note

Il est necessaire que l'attribut nb_annee_proj corresponde au nombre d'annee de projection des donnees de l'ESG Prim'Act.

Author(s)

Prim'Act

See Also

La mise en place de l'architecture de chargement des donnees et parametres renseignes par l'utilisateur set_architecture, la creation et la sauvegarde du canton initial init_SimBEL, la creation de l'architecture des scenarios central, de marche et de souscription de la formule standard ainsi que la creation des objets Be pour chacun de ces scenarios.

initialisation_load

Chargement de certains attributs dans un objet Initialisation

Description

initialisation_load est la methode de chargement des attributs nb_simu et nb_annee_proj a partir des donnees de l'environnement utilisateur.

Usage

```
initialisation_load(x, file_lancement_address)
```

Arguments

x un objet de la classe Initialisation.

 $file_lancement_address$

nom complet (i.e. avec chemin d'acces et extension) du fichier contenant les parametres de lancement.

Value

Pas de sortie.

init_create_folder 77

Note

Cette methode permet de creer l'objet Canton initial et de le sauvegarder dans le repertoire adequat de l'architecture.

Author(s)

Prim'Act

init_create_folder

Creation de l'architecture de sauvegarde des scenarios et executions du code a partir de la racine renseignee.

Description

init_create_folder est une methode permettant de creer l'architecture de sauvegarde des scenarios et les executions du code a partir de la racine renseignee.

Usage

```
init_create_folder(x)
```

Arguments

Х

objet de la classe Initialisation.

Value

En cas de bonne execution (i.e. l'ensemble des dossiers est cree ou ecrase) la methode renvoie un logical.

Note

Il est necessaire anterieurement a l'appel de cette fonction d'avoir dans un premier temps cree un objet Initialisation en lui ayant affecte une racine, puis dans un second temps d'avoir appele la methode set_architecture a ce meme objet.

Author(s)

78 init_debut_ppb

 $init_debut_pgg_psap$

Re-initialise un objet AutresReserves en debut d'annee.

Description

init_debut_pgg_psap est une methode permettant de re-initialiser les montants de PGG et de PSAP de debut de periode.

Usage

```
init_debut_pgg_psap(x)
```

Arguments

Х

objet de la classe AutresReserves.

Value

L'objet x reinitialise.

Author(s)

Prim'Act

init_debut_ppb

Re-initialise la PPB en debut d'annee.

Description

init_debut_ppb est une methode permettant de re-initialiser les montants de dotation ou de reprise cumules sur l'annee et de re-initialiser le montant de PPB de debut de periode.

Usage

```
init_debut_ppb(x)
```

Arguments

Х

un objet de la classe Ppb.

Value

L'objet x reinitialise.

Author(s)

init_scenario 79

init_scenario

Initialisation des scenarios : central et de chocs d'un workspace.

Description

init_scenario est la methode d'initialisation.

Usage

```
init_scenario(x)
```

Arguments

Х

un objet de la classe Initialisation

Value

Pas de sortie.

Note

Cette methode cree l'architecture, puis les objets Be correspondant a chacun des scenarios : central et de chocs de la formule standard.

Author(s)

Prim'Act

init_SimBEL

Initialisation d'un workspace.

Description

init_SimBEL est la methode d'initialisation d'un workspace.

Usage

```
init_SimBEL(x)
```

Arguments

Х

un objet de la classe Initialisation.

Value

Pas de sortie.

Note

Cette methode permet de creer l'objet Canton initial et de le sauvegarder dans le repertoire adequat de l'architecture.

load_pp

Author(s)

Prim'Act

load_ht

Methode permettant de charger la valeur des parametres techniques.

Description

load_ht est une methode permettant de charger les parametres associees a un objet de classe HypTech.

Usage

load_ht(x)

Arguments

Х

est un objet de la classe Initialisation qui est utilise pour renseigner le chemin d'acces de tous les parametres techniques.

Value

L'objet de la classe HypTech construit a partir des inputs renseignes par l'utilisateur.

Author(s)

Prim'Act

See Also

La classe Initialisation et sa methode set_architecture pour renseigner l'input.

load_pp

Methode permettant de charger et d'instancier un portfeuille de passif.

Description

load_pp est une methode permettant de charger les parametres et les donnees associees a un objet de classe PortPassifs.

Usage

 $load_pp(x)$

Arguments

Х

est un objet de la classe Initialisation qui est utilise pour renseigner le chemin d'acces de tous les parametres et les donnees necessaires.

ModelPointESG 81

Value

L'objet de la classe PortPassif construit a partir des inputs renseignes par l'utilisateur.

Author(s)

Prim'Act

See Also

La classe Initialisation et sa methode set_architecture pour renseigner l'input.

ModelPointESG

La classe ModelPointESG.

Description

Une classe pour une extraction de l'ES pour une annee et une simulation particuliere.

Slots

annee une valeur integer correspondant a l'annee de projection.

 $\verb|num_traj| une valeur integer correspondant au numero de simulation de l'ESG.$

indice_action un data. frame contenant les valeurs prises par les indices actions pour l'annee et la simulation selectionnees.

indice_immo un data. frame contenant les valeurs prises par les indices immobiliers pour l'annee et la simulation selectionnees.

indice_inflation une valeur numeric correspondant a la valeur prise par l'indice inflation pour l'annee et la simulation selectionnees.

yield_curve un vecteur numeric contenant la structure par terme des taux d'interets spots pour l'annee et la simulation selectionnees. La courbe representee correspond aux valeurs des R(k, k+i) ou i va de 1 au nb_annee_proj.

deflateur une valeur numeric correspondant a la valeur prise par le deflateur stochastique pour l'annee et la simulation selectionnees.

Author(s)

Prim'Act

See Also

Les methodes de chargement d'un ESG chargement_ESG et d'extraction d'un model point extract_ESG.

82 ParamAlmEngine

Oblig

Classe pour les actifs de type obligation.

Description

Classe pour les actifs de type obligation.

Slots

ptf_oblig est un dataframe, chaque ligne represente un actif obligation du portefeuille d'obligation.

Author(s)

Prim'Act

See Also

Les operations d'achat vente obligations buy_oblig et sell_oblig.

ParamAlmEngine

La classe ParamAlmEngine.

Description

Une classe pour le parametre ALM d'un canton.

Slots

ptf_reference est un objet de type PortFin, qui represente le portefeuille d'investissement de reference d'un canton.

alloc_cible un vecteur de 4 elements rendant compte du pourcentage de l'actif composant respectivement les investissements: actions, immobiliers, obligataires et de tresorerie.

seuil_realisation_PVL une valeur numeric correspondant au pourcentage de plus-values actions qui peut etre liquidee chaque annee pour atteindre l'objectif de revalorisation cible des passifs.

Author(s)

ParamBe 83

ParamBe

La classe ParamBe.

Description

Une classe contenant le nombre d'annees de projection utilise pour le calcul du best estimate d'un assureur.

Slots

nb_annee un entier comprenant le nombre d'annees de projection.

Author(s)

Prim'Act

ParamChocMket

La classe ParamChocMket.

Description

Une classe contenant les parametres des chocs de marche de la formule standard.

Slots

```
table_choc_action_type1 un data.frame contenant les parametres du choc action type 1. table_choc_action_type2 un data.frame contenant les parametres du choc action type 2. table_choc_immo un data.frame contenant les parametres du choc immobilier. table_choc_spread un data.frame contenant les parametres du choc de spread.
```

Author(s)

Prim'Act

ParamChocSousc

La classe ParamChocSousc.

Description

Une classe contenant les parametres des chocs souscription de la formule standard.

Slots

mp un data. frame contenant l'ensemble des parametres necessaires a l'application des chocs du module Souscription Vie.

Author(s)

84 ParamRachDyn

ParamComport

La classe de parametres de comportement ParamComport.

Description

Une classe pour les parametres de comportement.

Slots

- mat_oblig une valeur numeric correspondant a la maturite du taux de rendement obligataire pris en reference sur le marche.
- alloc_mar un vecteur numeric correspondant a l'allocation pris en reference sur le marche. Le format de cette liste est :

le taux de rendement obligataire

le taux de rendement de l'indice action de reference

le taux de rendement de l'indice immobilier de reference

le taux de rendement de l'indice tresorerie de reference.

- w_n une valeur numeric correspondant au poids accorde au rendement de l'annee courante par rapport a l'annee precedente.
- marge_mar une valeur numeric correspondant a la marge financiere pris en reference sur le marche.
- ch_enc_mar une valeur numeric correspondant au niveau de chargement sur encours pris en reference sur le marche.
- ind_ref_action une valeur numeric correspondant au numero de l'indice action pris en reference sur le marche.
- ind_ref_immo une valeur numeric correspondant au numero de l'indice immobilier pris en reference sur le marche.

Author(s)

Prim'Act

See Also

Le calcul du taux cible calc_tx_cible_ref_marche.

ParamRachDyn

La classe de parametres de rachat dynamique ParamRachDyn.

Description

Une classe pour les parametres de des lois de rachat dynamique.

Slots

vec_param un data frame contenant les parametres pour les rachats dynamiques.

ParamRevaloEngine 85

Author(s)

Prim'Act

See Also

Le calcul du taux de rachat dynamique calc_rach_dyn.

ParamRevaloEngine

La classe ParamRevaloEngine. Une Classe pour les parametres utilises pour la gestion de la revalorisation.

Description

La classe ParamRevaloEngine. Une Classe pour les parametres utilises pour la gestion de la revalorisation.

Slots

taux_pb_fi une valeur numeric correspondant au taux de participation applique au resultat financier.

taux_pb_tech une valeur numeric correspondant au taux de participation applique au resultat technique.

tx_marge_min une valeur numeric correspondant au taux de marge minimal auquel s'attend l'assureur.

solde_pb_regl une valeur numeric correspondant au solde deficitaire de participation aux benefices reglementaire. Cette valeur doit etre negative.

Author(s)

Prim'Act

ParamTableMort

La classe de parametres pour les table de rachat ParamTableRach.

Description

Une classe de parametres pour les tables de rachat.

Une classe de parametres pour les tables de mortalite.

Details

Une table de rachat peut etre une table de rachat partiel ou une table de rachat total. Pour une table de rachat partiel, les taux de rachat sont exprimes en pourcentage de l'encours. Pour une table de rachat total, les taux de rachat sont exprimes en pourcentage du nombre de contrats.

Slots

```
age_min un entier correspondant a l'age minimal de la table.

age_max un entier correspondant a l'age maximal de la table.

anc_min un entier correspondant a la premiere anciennete de la table.

anc_max un entier correspondant a la derniere anciennete de la table.

table un data frame contenant la table de rachat.

age_min un entier correspondant a l'age minimal de la table.

age_max un entier correspondant a l'age maximal de la table.

gen_min un entier correspondant a la premiere generation de la table.

gen_max un entier correspondant a la derniere generation de la table.

table un data frame contenant la table de mortalite.
```

Note

Les tables de mortalite doivent contenir des effectifs sous risque par age (Lx).

Author(s)

Prim'Act

Prim'Act

See Also

Le calcul du taux de rachat calc_rach.

Le calcul du taux de deces calc_qx.

param_alm_engine_load *Chargement des attributs d'un objet* ParamAlmEngine *a partir des donnees utilisateurs*.

Description

param_alm_engine_load est la methode de chargement des attributs d'un objet ParamAlmEngine a partir des donnees de l'environnement utilisateur et d'un portefeuille financier de reference (charge par la fonction chargement_PortFin_ref.

Usage

```
param_alm_engine_load(file_alm_address, ptf_fin_ref)
```

Arguments

```
file_alm_address
```

un character contenant l'adresse exacte du fichier d'input utilisateur.

ptf_fin_ref un objet de la classe PortFin correspondant au portefeuille de reinvestissement.

Value

L'objet de la classe ParamAlmEngine construit a partir des inputs renseignes par l'utilisateur.

param_revalo_load 87

Author(s)

Prim'Act

param_revalo_load

Chargement des attributs d'un objet ParamRevaloEngine a partir des donnees utilisateurs.

Description

param_revalo_load est la methode de chargement des attributs d'un objet ParamRevaloEngine a partir des donnees de l'environnement utilisateur.

Usage

```
param_revalo_load(file_revalo_address)
```

Arguments

file_revalo_address

un character contenant l'adresse exacte du fichier d'input utilisateur.

Value

L'objet de la classe ParamRevaloEngine construit a partir des inputs renseignes par l'utilisateur.

Author(s)

Prim'Act

pb_contr

Calcule la PB contractuelle.

Description

pb_contr est une methode permettant de calculer la participation aux benefices contractuelle par produit.

Usage

```
pb_contr(base_fin, tx_pb, rev_stock_brut, ch_enc_th, tx_enc_moy)
```

88 PortFin

Arguments

base_fin un vecteur numeric comprenant par produit la base de produits financiers.

tx_pb un vecteur numeric comprenant par produit les taux de participation aux benefices contractuels.

rev_stock_brut un vecteur de type numeric comprenant par produit la revalorisation appliquee sur le stock au taux minimum.

ch_enc_th est un vecteur de type numeric comprenant par produit le montant total des chargements sur encours appliques au stock et revalorises au taux minimum. Il s'agit ici des chargements qui pourraient theoriquement etre preleves.

tx_enc_moy un vecteur numeric comprenant par produit les taux de chargements sur encours moyens.

Details

Le montant des chargements ch_enc_th est theorique et peut conduire a l'application d'une revalorisation nette negative.

Value

ch_enc_ap_pb_contr un vecteur comprenant par produit les chargements sur encours appliques rev_stock_nette_contr un vecteur comprenant par produit la revalorisation contractuelle nette.

Author(s)

Prim'Act

|--|

Description

Classe pour le portefeuille global d'actif

Slots

ptf_action est un objet de type Action, qui represente le portefeuille d'action d'un canton. ptf_immo est un objet de type Immo, qui represente le portefeuille immobilier d'un canton. ptf_oblig est un objet de type Oblig, qui represente le portefeuille obligataire d'un canton. ptf_treso est un objet de type Treso, qui represente le portefeuille monetaire d'un canton. pre est un objet de type PRE, qui represente la PRE d'un canton.

rc est un objet de type RC, qui represente la RC d'un canton.

frais_fin est un objet de type FraisFin, qui represente les frais financiers d'un canton.

pvl_action est un numeric, qui correspond a la somme des plus values latentes des actifs Actions qui sont en situation de plus values latentes.

pvl_immo est un numeric, qui correspond a la somme des plus values latentes des actifs Immo qui sont en situation de plus values latentes.

PortPassif 89

pvl_oblig est un numeric, qui correspond a la somme des plus values latentes des actifs Obligs qui sont en situation de plus values latentes.

- mvl_action est un numeric, qui correspond a la somme des moins values latentes des actifs Actions qui sont en situation de moins values latentes.
- mvl_immo est un numeric, qui correspond a la somme des moins values latentes des actifs Immos qui sont en situation de moins values latentes.
- mvl_oblig est un numeric, qui correspond a la somme des moins values latentes des actifs Obligs qui sont en situation de moins values latentes.
- vm_vnc_precedent est une liste composee de deux elements : la vm_precedente et la vnc_precedente, correspondant respectivement a la valeur de marche et a la valeur nette comptable en debut d'annee de l'objet PortFin.

Author(s)

Prim'Act

PortPassif

La classe PortPassif.

Description

Une classe regroupant l'ensemble des donnees de passifs et les hypotheses correspondantes.

Slots

annee une valeur entiere correspondant a l'annee de projection.

eei une liste d'objets de la classe EpEuroInd contenant l'ensemble des produits de type epargne en euros.

names_class_prod un vecteur character indiquant les noms de classes de produits.

ht un objet de classe HypTech contenant les hypotheses techniques.

fp un objet de classe FraisPassif contenant les hypotheses de frais de passif par produit.

tx_pb un objet de classe TauxPB contenant les taux contractuel de participation aux benefices par produit.

autres_passifs un objet de classe AutresPassifs.

autres_reserves un objet de classe AutresReserves.

Author(s)

Prim'Act

See Also

La projection des produits sur l'annee avant attributiuon de participation aux benefices : proj_annee_av_pb. Le vieillissement des model points de passifs avant et apres attributiuon de participation aux benefices : vieillissement_av_pb, vieillissement_ap_pb.

90 ppb_load

|--|

Description

Classe pour la provision pour participation aux benefices (PPB)

Slots

valeur_ppb est la valeur courante numeric prise par la PPB.

ppb_debut est la valeur prise numeric par la PPB en debut d'annee.

seuil_rep est une valeur numeric correspond a la proportion de PPB de debut d'annee que l'on peut reprendre sur une periode.

seuil_dot est une valeur numeric correspond a la montant maximal de dotation possible sur la PPB sur une periode, exprimee comme une fraction de la PPB de debut d'annee.

compte_rep est une valeur numeric qui totalise les montants de reprise effectuee sur une periode. compte_dot est une valeur numeric qui totalise les montants de dotation effectuee sur une periode.

Author(s)

Prim'Act

See Also

La dotation et la reprise de PPB : calc_dotation_ppb, calc_reprise_ppb.

ppb_load	Methode permettant de charger les valeurs des hypotheses et des don-
	nees de PPB

Description

ppb_load est une methode permettant de charger les parametres associees a un objet de classe Ppb.

Usage

```
ppb_load(file_ppb_address)
```

Arguments

file_ppb_address

est un character contenant l'adresse exacte du fichier d'input utilisateur permettant de renseigner un objet Ppb.

Value

L'objet de la classe Ppb construit a partir des inputs renseignes par l'utilisateur.

PRE 91

Author(s)

Prim'Act

See Also

La classe Initialisation et sa methode set_architecture pour renseigner l'input.

PRE

La classe PRE

Description

Classe pour la gestion de la provision pour risque d'exigibilite (PRE).

Slots

val_debut est une valeur numeric correspondant a la valeur de la PRE en debut d'annee. val_courante est une valeur numeric correspondant a la valeur courante de la PRE.

Author(s)

Prim'Act

See Also

Les methodes de calcul de la PRE calc_PRE, et de mises a jour des PRE initiales et courantes do_update_PRE_val_courante, do_update_PRE_val_debut.

pre_load

Chargement de la valeur initiale de la PRE

Description

pre_load est une methode permettant de charger la valeur de PRE initiale dans un objet de type PRE.

Usage

```
pre_load(file_PRE_address)
```

Arguments

file_PRE_address

est un character correspondant a l'adresse du fichier d'input renseignant les donnees de PRE

Value

Un objet de la classe PRE charge a partir des donnees du fichier dont le nom est precise en input.

Author(s)

92 proj_an

print_alloc

Calcul le poids de chaque composante du portefeuille action.

Description

pint_alloc est une methode permettant de calculer l'allocation absolue et relative du portefeuille.

Usage

```
print_alloc(x)
```

Arguments

Х

objet de la classe PortFin.

Value

Un data frame compose de quatre colonnes et cinq lignes. La colonne

alloc_valeur: decrit le montant alloue en valeur de marche par poche d'actif.

alloc_proportion: decrit la proportion allouee en valeur de marche par poche d'actif.

alloc_valeur_vnc: decrit le montant alloue en valeur nette comptable par poche d'actif.

alloc_proportion_vnc: decrit la proportion allouee en valeur nette comptable par poche d'actif.

Les lignes correspondent aux classes d'actifs : (Action / Immobilier / Obligation / Tresorerie / Actifs cumules)

Author(s)

Prim'Act

proj_an

Projette un canton sur une periode.

Description

proj_an est une methode permettant de projeter un canton sur une annee. Cette methode calcule les flux de best estimate des passifs et fait vieillir d'une annee les elements du canton.

Usage

```
proj_an(x, annee_fin, pre_on)
```

Arguments

x est un objet de type Canton.

annee_fin est une valeur numeric correpondant a l'annee de fin de projection.

pre_on est une valeur logical qui lorsqu'elle vaut TRUE prend en compte la variation

de PRE dans le resultat technique, utilisee pour le calcul de la participation aux

benefices reglementaires.

Details

Cette methode est la procedure central du package SimBEL puisqu'elle cohorde les interactions entre les actifs et les passifs, declenche l'algorithme de revalorisation, calcule le resultat comptable et evalue les flux de best estimate.

Value

canton l'objet x vieilli d'une annee.

annee l'annee de projection.

nom_produit le nom des produits de passifs consideres.

output_produit une liste comprenant les variables de flux, les variables de stocks et les resultats des passifs non-modelises.

output_be une liste comprenant les flux utilises pour le calcul du best estimate par produit.

result_tech la valeur du resultat technique.

result_fin la valeur du resultat financier.

tra la valeur du taux de rendement de l'actif.

result_brut la valeur du resultat brut d'impot.

result_net la valeur du resultat net d'impot.

Author(s)

Prim'Act

See Also

Le viellissement du portefeuille de passif avant PB : viellissement_av_pb. Le viellissement du portefeuille financier : update_PortFin, update_PortFin_reference. L'affiche de l'etat courant du portefeuille financier : print_alloc. Le calcul des frais financier : calc_frais_fin. La reallocation du portefeuille financier : reallocate. Le calcul de la PRE : calc_PRE. Le calcul du resultat technique : calc_result_technique, calc_result_technique_ap_pb. Le calcul du resultat financier et du TRA : calc_resultat_fin, calc_tra. L'application de l'algorithme d'attribution de la participation aux benefices : calc_revalo. Le viellissement du portefeuille de passif apres PB : viellissement_ap_pb. Les autres methodes de vieillissement des actifs et de passifs: sell_pvl_action, do_update_pmvl, do_update_PRE_val_courante, do_update_vm_vnc_precedent, init_debut_ppb, do_update_RC_val_debut, do_update_PRE_val_debut, init_debut_pgg_psap. Le calcul des fins de projection : calc_fin_proj.

```
proj_annee_autres_passifs
```

Extrait les flux et les PM des produits non modelises

Description

proj_annee_autres_passifs est une methode permettant de calculer les PM et les flux sur une annee pour des passif non modelises. Cette methode calcule applique une inflation au frais.

Usage

```
proj_annee_autres_passifs(an, x, coef_inf)
```

94 proj_annee_av_pb

Arguments

an est l'annee de projection.

x un objet de la classe AutresPassifs contenant l'ensemble des donnees de pas-

sifs non modelises.

coef_inf un numeric correpodant au coefficient d'inflation a appliquer sur les frais.

Value

Un data. frame contenant les flux des passifs de l'annee.

Author(s)

Prim'Act

proj_annee_av_pb

Calcule les flux et les PM des produits modelises

Description

proj_annee_av_pb est une methode permettant de calculer les PM et les flux sur une annee avant PB. Cette methode calcule egalement les frais sur flux et sur primes.

Usage

```
proj_annee_av_pb(an, x, tx_soc, coef_inf, list_rd)
```

Arguments

an une valeur numeric correspondant a l'annee de projection.

x un objet de la classe PortPassif contenant l'ensemble des produits de passifs.

tx_soc une valeur numeric correspondant au taux de charges sociales.

coef_inf une valeur numeric correspondant au coefficient d'inflation considere pour le

traitement des frais.

list_rd une liste contenant les rendements de reference. Le format de cette liste est :

le taux de rendement obligataire

le taux de rendement de l'indice action de reference le taux de rendement de l'indice immobilier de reference le taux de rendement de l'indice tresorerie de reference

Details

L'annee de projection est utilisée pour gerer les produits dont les clauses dependent de l'annee. Cette methode calcule deux fois les prestations et les PM pour permettre de calculer le montant de FDB.

RC 95

Value

x l'objet pour lequel les tableaux de resultats des objets EpEuroInd sont mis a jour.

nom_produit un vecteur de character contenant les noms des produits.

flux_agg une matrice contenant les flux aggreges par produits.

stock_agg une matrice contenant les stocks aggreges par produits.

Author(s)

Prim'Act

See Also

La classe EpEuroInd et ses methodes. La classe FraisPassif et ses methodes.

RC

La classe RC

Description

Classe pour la gestion de la reserve de capitalisation (RC).

Slots

val_debut est une valeur numeric correspondant a la valeur de la RC en debut d'annee.

val_courante est une valeur numeric correspondant a la valeur courante de la RC.

Author(s)

Prim'Act

See Also

Les methodes de calcul de la RC calc_RC, et de mises a jour des RC initiales et courantes do_update_RC_val_courante, do_update_RC_val_debut.

rc_load

Chargement de la valeur initiale de la RC

Description

rc_load est une methode permettant de charger la valeur de RC initiale dans un objet de type RC.

Usage

```
rc_load(file_RC_address)
```

96 reallocate

Arguments

```
file_RC_address
```

est un character correspondant a l'adresse du fichier d'input renseignant les donnees de RC

Value

Un objet de la classe RC charge a partir des donnees du fichier dont le nom est precise en input.

Author(s)

Prim'Act

reallocate

Realise les operations d'achats ventes

Description

reallocate est une methode permettant d'ajuster l'allocation du PortFin de l'assureur.

Usage

```
reallocate(x, ptf_reference, alloc_cible)
```

Arguments

x objet de la classe PortFin.

ptf_reference est le portefeuille de reinvestissement. C'est un objet de la classe PortFin.

alloc_cible est un vecteur de type numeric constitue de 4 elements, il contient les propo

est un vecteur de type numeric constitue de 4 elements, il contient les proportions cibles d'allocations action, immobilier, obligataire et de tresorerie.

Value

portFin l'objet initial de la classe PortFin realloue a l'allocation cible.

pmvr le montant total des plus ou moins values realisess.

pmvr_oblig le montant des plus ou moins values obligataires realisees lors de la reallocation.

pmvr_action le montant des plus ou moins values action realisees lors de l'etape de reallocation.

pmvr_immo le montant des plus ou moins values immobilieres realisees lors de l'etape de reallocation.

var_rc la variation de la reserve de capitalisation induite par la reallocation.

var_pre la variation de la provision pour risque d'exigibilite induite par la reallocation.

plac_moy_vm la valeur de marche moyenne des placements de l'assureur au cours de l'operation de reallocation.

plac_moy_vnc la valeur nette comptable moyenne des placements de l'assureur au cours de l'operation de reallocation.

Note

Les operations d'achat/vente sont effectuees en termes de nombre d'unite d'achat/vente.

resultat_fin 97

Author(s)

Prim'Act

See Also

La classe PortFin.

resultat_fin

Calcul de resultat financier

Description

calc_resultat_fin est une methode permettant de calculer le resultat financier du portfeuille.

Usage

```
calc_resultat_fin(revenu, produit, frais_fin, var_rc)
```

Arguments

revenu	est un objet de type numeric, qui fournit les revenus du portefeuille financier.
produit	est un objet de type numeric, qui fournit le produit (ou la perte) des cessions.
frais_fin	est un objet de type numeric, qui fournit le montant des frais financiers.
var_rc	est un objet de typenumeric, donnant la variation de la reserve de capitalisation.

Value

La valeur du result financier.

Author(s)

Prim'Act

RevaloEngine

La classe RevaloEngine.

Description

Une classe comprenant les methodes pour l'application de la revalorisation des passifs.

Slots

param_revalo est objet de type ParamRevalo comprenant les parametres utilises pour la revalorisation des contrats.

Author(s)

98 revalo_immo

revalo_action	Calcul les valeurs de marches de chaque composante du portefeuille action.
---------------	--

Description

revalo_action est une methode permettant de calculer les valeurs de marche.

Usage

```
revalo_action(x, S, S_prev)
```

Arguments

Χ	objet de la classe Action (decrivant le portefeuille d'action).
S	vecteur numeric de valeur de chaque stock du ptf en milieu d'annee N (date de
	versement des dividendes)

S_prev vecteur numeric de valeur de chaque stock du ptf en milieu d'annee N-1.

Value

Un data frame compose de deux colonnes et autant de lignes que le portefeuille action a de lignes. La premiere colonne decrit de le rendement annuel de chacune des actions composants le portefeuille action. La seconde colonne decrit les dividendes annuelles percues au titre de chacune des actions composants le portefeuille action.

Author(s)

Prim'Act

immobilier.	revalo_immo	Calcul les valeurs de marches de chaque composante du portefeuille immobilier.
-------------	-------------	--

Description

revalo_immo est une methode permettant de calculer les valeurs de marche.

Usage

```
revalo_immo(x, S, S_prev)
```

Arguments

X	objet de la classe Immo (decrivant le portefeuille d'immobilier).
S	vecteur numeric de valeur de chaque stock du ptf en milieu d'annee N (date de versement des dividendes)
S_prev	vecteur numeric de valeur de chaque stock du ptf en milieu d'annee N-1.

revalo_treso 99

Value

Un data frame compose de deux colonnes et autant de lignes que le portefeuille immobilier a de lignes. La premiere colonne decrit de le rendement annuel de chacune des lignes d'immobilier composants le portefeuille immobilier. La seconde colonne decrit les dividendes annuelles percues au titre de chacune des lignes d'immobilier composants le portefeuille immobilier.

Author(s)

Prim'Act

revalo_treso	Calcul les valeurs de marches de chaque composante du portefeuille
	treso.

Description

revalo_treso est une methode permettant de calculer les valeurs de marche.

Usage

```
revalo_treso(Rt, Rt_prev)
```

Arguments

S vecteur de valeur de chaque ligne du ptf en milieu d'annee N (date de calcul des flux).

S_prev vecteur de valeur de chaque ligne du ptf en milieu d'annee N-1.

Value

Un vecteur ayant autant d elements que les vecteurs inputs. Chaque element correspondant au rendement annuel d'une lige de tresorerie.

Author(s)

Prim'Act

|--|

Description

revenu_treso est une methode permettant de calculer les valeurs de marche.

Usage

```
revenu_treso(x, rdt, flux_milieu)
```

100 run_be

Arguments

x est un objet de la classe Treso en debut d'annee

rdt est le rendement de la classe Treso au cours de l'annee (i.e. en fin d'annee) flux_milieu est le flux du milieu de l'annee en cours (i.e. ulterieur a l'objet Treso renseigne)

Value

Le montant du revenu.

Author(s)

Prim'Act

run_be

Calcul d'un BE.

Description

run_be est une methode permettant de calculer un best estimate pour un canton.

Usage

```
run_be(x, pre_on)
```

Arguments

x un objet de type Be.

pre_on une valeur logical qui lorsqu'elle vaut TRUE prend en compte la variation de

PRE dans le resultat technique utilisee pour le calcul de la participation aux

benefices reglementaires.

Details

Il s'agit de la methode principale du package SimBEL. Cette methode requiert le chargement d'un objet Be deja parametre et alimente en donnees. La methode init_scenario permet d'alimenter un objet Be dans la situation "centrale" de la formule standard et en situation de choc.

Value

be l'objet x mis a jour : l'attribut tab_be contient le best estimate et sa decomposition, l'attribut tab_flux contient les flux moyens du best estimate et ses composantes.

err_simu un vecteur contenant la liste des simulations qui ont generes des erreurs et qui n'ont pu etre utilisees pour le calcul du best estimate.

Author(s)

Prim'Act

See Also

Le calcul du best estimate pour une simulation : run_be_simu. L'initialisation d'un best estimate : init_scenario. La classe Be. La sortie des resultats au format ".csv" : write_be_results.

run_be_simu 101

run_be_simu	Calcul d'un BE par une simulation.
-------------	------------------------------------

Description

run_be_simu est une methode permettant de calculer un best estimate pour une simulation donnee.

Usage

```
run_be_simu(x, i, pre_on)
```

Arguments

x un objet de type Be.

i un entier (integer) correspondant au numero de la simulation.

pre_on une valeur logical qui lorsqu'elle vaut TRUE prend en compte la variation de

PRE dans le resultat technique utilisee pour le calcul de la participation aux

benefices reglementaires.

Details

Pour une simulation donnee, cette methode projette un Canton jusqu'au terme, parametre dans l'objet x.

Value

nom_produit un vecteur contenant le liste des noms de produits.

prime une matrice contenant les flux de primes par produit.

prestation une matrice contenant les flux de prestations par produit.

prestation_fdb une matrice contenant les flux de prestations discretionnaires par produit.

frais une matrice contenant les flux de frais par produit.

flux_be une matrice contenant les flux de best estimate par produit.

prime_actu une matrice contenant la valeur des primes actualisees par produit.

prestation_actu une matrice contenant la valeur des prestations actualisees par produit.

prestation_fdb_actu une matrice contenant la valeur des prestations discretionnaires actualisees par produit.

frais_actu une matrice contenant la valeur des frais actualisees par produit.

be une matrice contenant la valeur du best estimate par produit.

Author(s)

Prim'Act

See Also

La methode de projection d'un Canton : proj_an. L'extraction d'une simulation de l'ESG :extract_ESG. La classe Be.

sell_immo

sell_action	Mise a jour de chaque composante du portefeuille action suite a la vente de tout ou partie de ce portefeuille.

Description

sell_action est une methode permettant de mettre a jour chaque composante d'un portefeuille action suite a la vente de tout ou partie de ce portefeuille.

Usage

```
sell_action(x, num_sold, nb_sold)
```

Arguments

X	objet de la classe Action (decrivant le portefeuille action en detention).
num_sold	vecteur de type numeric contenant le numero de model point action du porte-feuille que l'on souhaite vendre.
nb_sold	vecteur de type numeric contenant le nombre d'unite que l'on souhaite vendre (a autant de ligne que le vecteur num_sold).

Value

L'objet x mis a jour de l'operation de vente (suppression des lignes vendues).

Author(s)

Prim'Act

sell_immo	Mise a jour de chaque composante du portefeuille immobilier suite a la vente de tout ou partie de ce portefeuille.

Description

sell_immo est une methode permettant de mettre a jour chaque composante d'un portefeuille immobilier suite a la vente de tout ou partie de ce portefeuille.

Usage

```
sell_immo(x, num_sold, nb_sold)
```

Arguments

X	objet de la classe immo (decrivant le portefeuille immobilier en detention).
num_sold	vecteur de type numeric contenant le numero de model point immobilier du portefeuille que l'on souhaite vendre.
nb_sold	vecteur de type numeric contenant le nombre d'unite que l'on souhaite vendre (a autant de ligne que le vecteur num sold).

sell_oblig 103

Value

L'objet x mis a jour de l'operation de vente (suppression des lignes vendues).

Author(s)

Prim'Act

sell_oblig	Mise a jour de chaque composante du portefeuille obligation suite a
	la vente de tout ou partie de ce portefeuille.

Description

sell_oblig est une methode permettant de mettre a jour chaque composante d'un portefeuille obligation suite a la vente de tout ou partie de ce portefeuille.

Usage

```
sell_oblig(x, num_sold, nb_sold)
```

Arguments

X	objet de la classe Oblig (decrivant le portefeuille obligation en detention).
num_sold	vecteur de type numeric contenant le numero de model point obligation du portefeuille que l'on souhaite vendre.
	portereume que i on sounaite venure.

nb_sold vecteur de type numeric contenant le nombre d'unite que l'on souhaite vendre

(a autant de ligne que le vecteur num_sold).

Value

L'objet x mis a jour de l'operation de vente (suppression des lignes vendues).

Author(s)

Prim'Act

sell_pvl_action	Mise a jour de chaque composante du portefeuille action suite a une
	realisation d'un montant de plus values latentes action.

Description

sell_pvl_action est une methode permettant de mettre a jour chaque composante d'un portefeuille action suite a la vente de tout ou partie de ce portefeuille afin de realiser un montant de plus values latentes.

Usage

```
sell_pvl_action(x, montant)
```

104 set_architecture

Arguments

x objet de la classe Action (decrivant le portefeuille action en detention).

montant reel de type numeric contient le montant de plus value latente que l'on souhaite

realiser.

Value

L'objet x mis a jour de l'operation de vente (suppression des lignes vendues) et pmvr le montant de plus value realisees.

Author(s)

Prim'Act

set_architecture

Definition de l'architecture d'un workspace.

Description

set_architecture.

Usage

set_architecture(x)

Arguments

x un objet de la classe Initialisation.

Value

Objet mis a jour de l'ensemble des chemins du workspace, ceux ci sont stockes sous forme de liste dans l'attribut address de l'objet Initialisation renseigne en input.

Author(s)

SimBEL: Un package de calcul du best estimate epargne sous S abilite 2.	SimBEL	SimBEL: Un package de calcul du best estimate epargne sous Solvabilite 2.
---	--------	---

Description

SimBEL fourni un ensemble de fonctionnalites pour permettre l'evaluation d'un best estimate epargne sous Solvabilite 2. L'utilisation de ce package necessite au prealable de disposer de donnees stockees dans un repertoire dont le format est predetermine par la societe Prim'Act. Ce package est developpe a partir d'objet de type S4.

Details

Ce package comprends:

- une modelisation d'un canton auquel est relie un portefeuille d'actifs et un portefeuille de passif. SimBEL gere les interactions entre ces deux objets.
- une modelisation du best estimate pour des produits d'epargne en euros.
- d'appliquer les principaux chocs de la formule standard.

TabEpEuroInd	La classe TabEpEuroInd.	

Description

Une classe pour le stockage en memoire de variable de calcul au niveau du model point EpEuroInd.

Slots

tab un objet list au format fige contenant l'ensemble des variables stockees.

Author(s)

Prim'Act

La classe TauxPB.

Description

Une classe pour le stockage des parametres de taux de participation contractuelle par produit.

Slots

mp un data frame contenant les parametres des taux de participation contractuelle par produit.

Author(s)

106 update_cc_oblig

Treso

La classe Treso

Description

Classe pour les actifs de type Tresorerie

Slots

ptf_treso est un dataframe, chaque ligne represente un actif de tresorerie du portefeuille de monetaire

Author(s)

Prim'Act

See Also

Les methodes de calcul des valeurs calc_vm_treso, de calcul des revenus de la tresorerie revenu_treso, de calcul de la revalorisation de la tresorerie revalo_treso, de mise a jour de la tresorerie update_treso.

update_cc_oblig

Mise a jour des coupons courus d'un portefeuille obligataire.

Description

update_cc_oblig est une methode permettant de mettre a jour les coupons courus des composantes d'un portefeuille obligataire.

Usage

```
update_cc_oblig(x, coupon)
```

Arguments

x objet de la classe Oblig (decrivant le portefeuille obligataire en detention).

coupon un vecteur de numeric a assigner a l'objet Obligation.

Value

L'objet x dont les coupons courus ont ete mis a jour

Author(s)

update_dur_det_action 107

update_dur_det_action Mise a jour des durees de detention d'un portefeuille action.

Description

update_dur_det_action est une methode permettant de mettre a jour la duree de detention des composantes d'un portefeuille Action.

Usage

```
update_dur_det_action(x)
```

Arguments

Х

objet de la classe Action (decrivant le portefeuille action en detention).

Value

L'objet x mis a jour du vieillissement de la duree de detention.

Author(s)

Prim'Act

update_dur_det_immo

Mise a jour des durees de detention des composantes d'un portefeuille immobilier.

Description

update_dur_det_immo est une methode permettant de mettre a jour la duree de detention des composantes d'un portefeuille immobilier.

Usage

```
update_dur_det_immo(x)
```

Arguments

Х

objet de la classe Immo (decrivant le portefeuille immo en detention).

Value

L'objet x mis a jour du vieillissement de la duree de detention.

Author(s)

108 update_mat_res

update_dur_oblig

Mise a jour des duration d'un portefeuille obligataire.

Description

update_dur_oblig est une methode permettant de mettre a jour la duration des composantes d'un portefeuille obligataire.

Usage

```
update_dur_oblig(x, duration)
```

Arguments

x objet de la classe Oblig (decrivant le portefeuille obligataire en detention). duration un vecteur de numeric a assigner a l'objet Obligation.

Value

L'objet x dont les durations ont ete mises a jour.

Author(s)

Prim'Act

update_mat_res

Mise a jour de la maturite residuelle et de la duree de detention de chaque composante d'un portefeuille obligataire.

Description

update_mat_res est une methode permettant de mettre a jour la maturite residuelle et la duree de detention de chaque composante d'un portefeuille obligataire.

Usage

```
update_mat_res(x)
```

Arguments

х

objet de la classe Oblig (decrivant le portefeuille obligataire).

Value

L'objet x dont

mat_res: est diminuee d'une unite (une unite correspond a un an)
dur_det: est augmentee d'une unite (une unite correspond a un an)

Author(s)

update_PortFin 109

update_PortFin	Evalue et met a jour les objets constituants un PortFin.	

Description

update_PortFin est une methode permettant de calculer et mettre a jour un portefeuille financier suite a un vieillissement.

Usage

```
update_PortFin(an, x, new_mp_ESG, flux_milieu, flux_fin)
```

Arguments

an	numeric correspond a l'annee de projection du portefeuille financier.
x	objet de la classe PortFin, correspondant au portefeuille financier de l'assureur avant l'etape de vieillissement.
new_mp_ESG	est un objet de la classe ModelPointESG, decrivant les conditions economiques permettant d'effectuer le vieillissement du portefeuille financier.
flux_milieu	est une valeur numeric correspondant a la somme des flux percus en milieu d'annee (coupons des obligations, loyers immobiliers, dividendes des actions, revenus de la tresorerie).
flux_fin	est une valeur numeric correspondant a la somme des flux percus en fin d'annee (tombee d'echeance d'obligation).

Value

Le format de la liste renvoyee est :

ptf: un vecteur contenant les flux de sortie en echeance de l'annee

revenu_fin: les revenus realises au cours de la periode (coupons, tombees d'echeance, dividendes et loyers).

var_vnc_oblig: la variation de valeur nette comptable obligataire.

Author(s)

Prim'Act

See Also

La fonction de mise a jour specifique au portefeuille de reinvestissement update_PortFin_reference.

110 update_reserves

```
update_PortFin_reference
```

Evalue et met a jour les objets constituants un PortFin_reference.

Description

update_PortFin_reference est une methode permettant de calculer et mettre a jour un porte-feuille financier de reinvestissement suite a un vieillissement.

Usage

```
update_PortFin_reference(an, x, mp_ESG)
```

Arguments

an	numeric correspond a l'annee de projection du portefeuille financier de reinvestissement.
x	objet de la classe PortFin, correspondant au portefeuille financier de reinvestissement avant l'étape de vieillissement.
mp_ESG	est un objet de la classe ModelPointESG, decrivant les conditions economiques permettant d'effectuer le vieillissement du portefeuille financier de reinvestissement.

Value

L'objet de la classe PortFin renvoye correspond au portefeuille financier de reinvesitssement veilli d'une annee.

Author(s)

Prim'Act

See Also

La fonction de mise a jour specifique au portefeuille update_PortFin.

update_reserves	Evalue et met a jour la valeur des autres reserves.
-----------------	---

Description

update_reserves est une methode permettant de calculer la valeur de la nouvelle PGG et de la nouvelle PSAP et les met a jour.

Usage

```
update_reserves(x, prest_ep, prest_autres, pm_ep, pm_autres)
```

update_sd_oblig 111

Arguments

x objet de la classe AutresReserves.

prest_ep est une valeur numeric correspondant a la somme des prestations nettes de

chargement et de charges sociales sur epargne.

prest_autres est une valeur numeric correspondant a la somme des prestations nettes de

chargements et de charges sociales sur autres passifs.

pm_ep est une valeur numeric correspondant a la somme des PM nettes de chargements

et de charges sociales sur epargne.

pm_autres est une valeur numeric correspondant a la somme des PM nettes de chargement

et de charges sociales sur autres passifs.

Value

x l'objet AutresReserves mis a jour.

var_psap une valeur numeric correspondant a la variation de PSAP.

var_gg une valeur numeric correspondant a la variation de PGG.

Note

Il s'agit d'une methode simplifiee.

Author(s)

Prim'Act

update_sd_oblig

Mise a jour des surcotes decotes d'un portefeuille obligataire.

Description

update_sd_oblig est une methode permettant de mettre a jour la surcotes decotes des composantes d'un portefeuille obligataire.

Usage

```
update_sd_oblig(x, sd)
```

Arguments

x objet de la classe Oblig (decrivant le portefeuille obligataire en detention).

sd un vecteur de numeric a assigner a l'objet Obligation.

Value

L'objet x dont les surcotes decotes ont ete mises a jour.

Author(s)

Prim'Act

112 update_vm_action

update_treso	Permet d'integrer un flux (entrant ou sortant) au compte de tresorerie d'un Portefeuille financier.
	a un i oriejemme juaneten.

Description

update_treso est une methode permettant d'integrer un flux au compte de tresorerie.

Usage

```
update_treso(x, flux)
```

Arguments

x objet de la classe Treso, correspondant a l'actif Tresorerie d'un assureur an-

terieur a integration d'un flux.

flux est un numeric correspondant a un flux. Si il est positif, le flux est entrant. Si il

est negatif, le flux est sortant.

Value

L'objet Treso mis a jour du flux precise en input.

Author(s)

Prim'Act

update_vm_action	a valeur de marche de chaque composante d'un porte-
------------------	---

Description

update_vm_action est une methode permettant de mettre a jour la valeur de marche des composantes d'un portefeuille Action.

Usage

```
update_vm_action(x, vm)
```

Arguments

x objet de la classe Action (decrivant le portefeuille action en detention).

vm un vecteur de numeric ayant la meme longueur que le portefeuille action a de lignes et correspondant aux nouvelles valeurs de marche du portefeuille action.

Value

L'objet x mis a jour du vieillissement de la duree de detention.

update_vm_immo 113

Author(s)

Prim'Act

Description

update_vm_immo est une methode permettant de mettre a jour les valeurs de marche des composantes d'un portefeuille immobilier.

Usage

```
update_vm_immo(x, vm)
```

Arguments

x objet de la classe Immo (decrivant le portefeuille immobilier en detention).

vm un vecteur de numeric ayant la meme longueur que le portefeuille immobilier

a de lignes et correspondant aux nouvelles valeurs de marche du portefeuille

immobilier.

Value

L'objet x mis a jour du vieillissement de la duree de detention.

Author(s)

Prim'Act

update_vm_oblig Mise a jour des valeurs de marche d'un portefeuille obligataire.

Description

update_vm_oblig est une methode permettant de mettre a jour les valeurs de marche des composantes d'un portefeuille obligataire.

Usage

```
update_vm_oblig(x, vm)
```

Arguments

x objet de la classe Oblig (decrivant le portefeuille obligataire en detention).

vm un vecteur de numeric a assigner a l'objet Obligation.

114 update_zsp_oblig

Value

L'objet x dont les valeurs de marche ont ete mises a jour.

Author(s)

Prim'Act

update_vnc_oblig

Mise a jour des valeurs nettes comptables d'un portefeuille obligataire.

Description

update_vnc_oblig est une methode permettant de mettre a jour les valeurs nettes comptables des composantes d'un portefeuille obligataire.

Usage

```
update_vnc_oblig(x, vnc)
```

Arguments

x objet de la classe Oblig (decrivant le portefeuille obligataire en detention).

vnc un vecteur de numeric a assigner a l'objet Obligation.

Value

L'objet x dont les valeurs nettes comptables ont ete mis a jour

Author(s)

Prim'Act

update_zsp_oblig

Mise a jour des zspreads d'un portefeuille obligataire.

Description

update_zsp_oblig est une methode permettant de mettre a jour les zspreads des composantes d'un portefeuille obligataire.

Usage

```
update_zsp_oblig(x, zspread)
```

Arguments

x objet de la classe Oblig (decrivant le portefeuille obligataire en detention).

zspread un vecteur de numeric a assigner a l'objet Obligation.

Value

L'objet x dont les zspreads ont ete mis a jour

Author(s)

Prim'Act

vieillissement_action_PortFin

Effectue le vieillissement/la projection du portefeuille action d'un portefeuille financier.

Description

vieillissement_action_PortFin est une methode permettant de projeter la composante action d'un portefeuille financier. suite a un vieillissement.

Usage

```
vieillissement_action_PortFin(x, table_rdt)
```

Arguments

x objet de la classe PortFin, correspondant au portefeuille financier de l'assureur

avant l'etape de vieillissement de son atribut ptf_action de la classe Action.

table_rdt est une liste, construite par la fonction calc_rdt. Cette table contient les ta-

bles d'evolution des cours et rendements sur l'annee consideree de chacune des classes d'actif. Les tables sont constuites a partir des extractions du Generateur

de Scenario Economique de Prim'Act.

Value

Le format de la liste renvoyee est :

portFin: le portefeuille financier dont l'attribut ptf_action a ete vieilli d'une annee.

dividende: le montant de dividende percus en milieu d'annee suite au vieillissement du portefeuille action.

Author(s)

Prim'Act

See Also

La fonction de calcul des rendements des actifs calc_rdt.

vieillissement_av_pb

vieillissement_av_pb Vieillissement du portefeuille sur l'annee avant attribution de participation aux benefices.

Description

viellissement_av_pb est une methode permettant de vieillir l'objet PortPassif sur l'annee avant attribution de participation aux benefices.

Usage

```
viellissement_av_pb(an, x, coef_inf, list_rd, tx_soc)
```

Arguments

an	une valeur numeric correspondant a l'annee de projection.
X	un objet de la classe PortPassif contenant l'ensemble des produits de passifs.
coef_inf	une valeur numeric correspondant au coefficient d'inflation considere pour le traitement des frais.
list_rd	une liste contenant les rendements de reference. Le format de cette liste est :
	le taux de rendement obligataire
	le taux de rendement de l'indice action de reference
	le taux de rendement de l'indice immobilier de reference
	le taux de rendement de l'indice tresorerie de reference
tx_soc	une valeur numeric correspondant au taux de charges sociales.

Value

Une liste comprenant:

```
ptf: Le portefeuille x mis a jour.
```

result_av_pb: Une liste dont le premier element designe les noms des produits, puis deux matrices de resultats aggreges: une pour les flux et une pour le stock. Le format de cette sortie decoule de celui de la methode proj_annee_av_pb.

result_autres_passifs: un vecteur contenant les resultats des passifs non modelises.

var_psap: la variation de PSAP sur l'annee.

var_pgg: la variation de PGG sur l'annee.

flux_milieu: les flux de milieu d'annee entrant en tresorerie en milieu de periode.

flux_fin: les flux de fin d'annee entrant en tresorerie en fin de periode.

Author(s)

Prim'Act

See Also

La projection des passifs sur un an avant PB : proj_annee_av_pb. La projection des autres passifs : proj_annee_autres_passifs. La mise a jour des autres reserves : update_reserves.

vieillissement_immo_PortFin

Effectue le vieillissement/la projection du portefeuille immo d'un portefeuille financier.

Description

vieillissement_immo_PortFin est une methode permettant de projeter la composante immobilier d'un portefeuille financier.

Usage

```
vieillissement_immo_PortFin(x, table_rdt)
```

Arguments

x objet de la classe PortFin, correspondant au portefeuille financier de l'assureur

avant l'etape de vieillissement de son atribut ptf_immo de la classe Immo.

table_rdt est une liste, construite par la fonction calc_rdt. Cette table contient les ta-

bles d'evolution des cours et rendements sur l'annee consideree de chacune des classes d'actif. Les tables sont constuites a partir des extractions du Generateur

de Scenario Economique de Prim'Act.

Value

Le format de la liste renvoyee est :

portFin: le portefeuille financier dont l'attribut ptf_immo a ete vieilli d'une annee.

loyer: le montant de loyer percus en milieu d'annee suite au vieillissement du portefeuille immobilier.

Author(s)

Prim'Act

See Also

La fonction de calcul des rendements des actifs calc_rdt.

vieillissement_oblig_PortFin

Effectue le vieillissement/la projection du portefeuille obligataire d'un portefeuille financier.

Description

vieillissement_oblig_PortFin est une methode permettant de projeter la composante obligataire d'un portefeuille financier.

Usage

```
vieillissement_oblig_PortFin(x, new_mp_ESG)
```

Arguments

objet de la classe PortFin, correspondant au portefeuille financier de l'assureur Х

avant l'etape de vieillissement de son atribut ptf_oblig de la classe Oblig.

est un objet de type ModelPointESG, correspondant aux conditions economiques new_mp_ESG

de l'annee du vieillissement.

Value

Le format de la liste renvoyee est :

portFin: le portefeuille financier dont l'attribut ptf_oblig a ete vieilli d'une annee.

loyer: le montant de loyer percus en milieu d'annee suite au vieillissement du portefeuille obligataire.

Author(s)

Prim'Act

See Also

La fonction de calcul des rendements des actifs calc_rdt.

vieillissement_treso_PortFin

Effectue le vieillissement/la projection du portefeuille tresorerie d'un portefeuille financier.

Description

vieillissement_treso_PortFin est une methode permettant de projeter la composante obligataire d'un portefeuille financier.

Usage

```
vieillissement_treso_PortFin(x, flux_milieu, flux_fin, table_rdt)
```

Arguments

x	objet de la classe PortFin, correspondant au portefeuille financier de l'assureur avant l'etape de vieillissement de son atribut ptf_treso de la classe Treso.
flux_milieu	est un numeric correspondant aux revenus percus en milieu d'annee (coupons obligataires, loyers, dividendes).
flux_fin	est un numeric correspondant aux revenus percus en fin d'annee (tombees d'echeances et revenus de tresorerie).
table_rdt	est une liste, construite par la fonction calc_rdt. Cette table contient les tables d'evolution des cours et rendements sur l'annee consideree de chacune des

classes d'actif. Les tables sont constuites a partir des extractions du Generateur

de Scenario Economique de Prim'Act.

vieillissment_ap_pb 119

Value

L'objet renvoye de la classe PortFin correspond au portefeuille financier initial dont l'attribut ptf_treso a ete vieilli d'une annee.

Author(s)

Prim'Act

See Also

La fonction de calcul des rendements des actifs calc_rdt.

 $\verb|vieillissment_ap_pb|\\$

Vieillissement du portefeuille sur l'annee apres attribution de participation aux benefices.

Description

vieillissment_ap_pb est une methode permettant de calculer les PM et les flux sur une annee apres PB. Cette methode vieilli le portefeuille de passifs apres attribution de PB.

Usage

```
vieillissment_ap_pb(x, rev_nette_alloue, tx_soc)
```

Arguments

x un objet de la classe PortPassif contenant l'ensemble des produits de passifs. rev_nette_alloue

un vecteur numeric contenant par produit le supplement de revalorisation par rapport au taux minimum.

tx_soc une valeur numeric correspondant au taux de charges sociales.

Value

x l'objet x mis a jour.

nom_produit un vecteur de character contenant les noms des produits.

flux_agg une matrice contenant les flux aggreges par produits.

stock_agg une matrice contenant les stocks aggreges par produits.

Author(s)

Prim'Act

See Also

L'attribution de la revalorisation par model point : calc_revalo_pm Le viellissement des model points : vieilli_mp.

120 write_be_results

vieilli_mp Veillissement d'un an des contrats epargne en euros.
vieilli_mp Veillissement d'un an des contrats epargne en euros.

Description

vieilli_mp est une methode permettant de vieillir les model points epargne en euros d'une peridoe.

Usage

```
vieilli_mp(x, pm_fin_ap_pb, tx_revalo)
```

Arguments

un objet de la classe EpEuroInd contenant les model points epargne euros.
 un vecteur de type numeric contenant par model point les montants de PM revalorises apres participation aux benefices.
 tx_revalo
 un vecteur de type numeric contenant par model point les taux de revalorisation

nets appliques.

Value

l'objet x vieilli d'une periode.

Author(s)

Prim'Act

See Also

Calcul de la revalorisation des PM calc_revalo_pm.

write_be_results Enregistre les resultats d'une evaluation best estimate

Description

write_be_results est une methode permettant d'enregistrer en .cvs les resultats d'une evaluation best estimate.

Usage

```
write_be_results(nom_run, path, x)
```

Arguments

nom_run est un objet de type character utilise pour nommer le fichier de resultats.

path est un objet de type character utilise pour indiquer le chemin d'enregistrement des resultats.

x est un objet de type Be.

yield_to_maturity 121

Author(s)

Prim'Act

yield_to_maturity

Calcul les yield to maturity de chaque composante d'un portefeuille obligataire.

Description

yield_to_maturity est une methode permettant de calculer les yield to maturity de chaque composante d'un portefeuille obligataire.

Usage

```
yield_to_maturity(x)
```

Arguments

Х

objet de la classe Oblig (decrivant le portefeuile obligataire).

Value

Un vecteur dont chaque element correspond au yield to maturity de l'obligation correspondante du portefeuille obligataire. Ce vecteur a autant d'elements que le portefeuille obligataire a de lignes.

Author(s)

Prim'Act

Index

*Topic classes	AlmEngine (do_calc_nb_sold_action), 45
AutresPassifs, 8	AlmEngine (do_calc_nb_sold_immo), 46
AutresReserves, 8	AlmEngine (do_calc_nb_sold_oblig), 47
Be, 11	AlmEngine (reallocate), 96
Canton, 39	${\sf autres_passif_load}, 9$
EpEuroInd, 60	autres_reserves_load, 9
ESG, 60	AutresPassifs, 8, 9, 49-53, 89
FraisFin, 67	AutresPassifs(autres_passif_load),9
FraisPassif,67	AutresPassifs
HypCanton, 73	(proj_annee_autres_passifs), 93
HypTech, 74	AutresReserves, 8, 9, 10, 89
Initialisation, 75	AutresReserves (autres_reserves_load), 9
ModelPointESG, 81	AutresReserves (init_debut_pgg_psap), 78
ParamAlmEngine, 82	AutresReserves (update_reserves), 110
ParamBe, 83	
ParamChocMket, 83	$base_prod_fin, 10, 30$
ParamChocSousc, 83	Be, 11, 76, 79, 100, 101
ParamComport, 84	Be(run_be_simu), 101
ParamRachDyn, 84	Be (run_be), 100
ParamRevaloEngine, 85	Be(write_be_results), 120
ParamTableMort, 85	buy_action, 7, 11
PortFin, 88	buy_immo, 12, 75
PortPassif, 89	buy_oblig, 12, 82
Ppb, 90	
PRE, 91	calc_coupon, 13
RC, 95	calc_dotation_ppb, 13, 90
RevaloEngine, 97	calc_fin_proj, 14, 39, 93
TabEpEuroInd, 105	calc_flux_annee, 15
TauxPB, 105	calc_frais, 15, 67
Treso, 106	calc_frais_fin, 16, 93
	calc_marge_fin, 17, 30
Action, 7, 43, 44, 46, 88	calc_nominal, 18
Action (buy_action), 11	calc_pm, 18, 31, 60
Action (calc_pmvl_action), 20	calc_pmvl, 20
Action (calc_vm_action), 36	calc_pmvl_action, 20
Action (revalo_action), 98	calc_pmvl_immo, 21
Action (sell_action), 102	calc_pmvl_oblig, 21
Action (sell_pvl_action), 103	calc_PRE, 22, 56, 57, 91, 93
Action (update_dur_det_action), 107	calc_prest, 18, 20, 22, 60
Action (update_vm_action), 112	calc_primes, 18, 20, 24, 60
AlmEngine, 7	calc_qx, 25, 72, 86
AlmEngine (create_ptf_bought_action), 43	calc_rach, 25, 73, 86
AlmEngine (create_ptf_bought_immo), 44	calc_rach_dyn, 26, 73, 85
AlmEngine (create_ptf_bought_oblig), 45	calc_RC, 26, <i>57</i> , <i>58</i> , <i>95</i>

INDEX 123

calc_rdt, 27, 115, 117-119	do_calc_nb_sold_immo,46
<pre>calc_rdt_marche_ref, 27</pre>	do_calc_nb_sold_oblig,47
calc_relavo_pm, 60	do_choc_action_type1, 43, 47
calc_reprise_ppb, 28, 90	<pre>do_choc_action_type2, 43, 48</pre>
calc_result_technique, 28, 30, 93	do_choc_frais, 43, 49
calc_result_technique_ap_pb, 29, 39, 93	do_choc_immo, 43, 49
calc_resultat_fin, 93	do_choc_longevite, 43, 50
calc_revalo, 29, 93	do_choc_mortalite, 43, 51
calc_revalo_pm, 30, 119, 120	do_choc_rachat_down, 43, 52
calc_sur_dec, 32	do_choc_rachat_up, 43, 52
calc_tra, 30, 32, 93	do_choc_spread, 43, 53
calc_tx_cible, 18, 20, 33, 60	do_choc_spread_unitaire, 54, 54
calc_tx_cible_ref_marche, 34, 71, 84	do_choc_taux, 43, 55
calc_tx_min, 19, 20, 23, 24, 34, 60	do_update_pmv1, 55, 93
calc_tx_sortie, 23, 24, 35, 60	do_update_PRE_val_courante, 56, 91, 93
calc_vm_action, 36	do_update_PRE_val_debut, 56, 91, 93
calc_vm_immo, 36	do_update_RC_val_courante, 57, 95
calc_vm_oblig, 37	do_update_RC_val_debut, 57, 93, 95
calc_vm_treso, 37, 106	do_update_vm_vnc_precedent, 58, 93
calc_vnc, 38	duration_sensi, 59
calc_z_spread, 38	dui d'1011_301131, 37
Canton, 11, 14, 30, 39, 42, 48–53, 77, 79, 92,	echeancier, 59
101	EpEuroInd, 18, 23, 24, 31, 33–35, 60, 89, 95
Canton (calc_fin_proj), 14	105, 120
Canton (calc_result_technique_ap_pb), 29	EpEuroInd (calc_pm), 18
Canton (proj_an), 92	EpEuroInd (calc_prest), 22
chargement_choc, 40	EpEuroInd (calc_primes), 24
chargement_ESG, 40, <i>61</i> , <i>81</i>	EpEuroInd (calc_revalo_pm), 30
chargement_PortFin, 41	EpEuroInd (calc_tx_cible), 33
chargement_PortFin_ref, 86	EpEuroInd (calc_tx_min), 34
chargement_PortFin_reference, 42	EpEuroInd (calc_tx_sortie), 35
ChocSolvabilite2, 40, 42, 48–53	EpEuroInd (vieilli_mp), 120
ChocSolvabilite2 (chargement_choc), 40	ESG, 11, 40, 60, 61, 69, 101
ChocSolvabilite2	ESG (chargement_ESG), 40
(do_choc_action_type1), 47	ESG (extract_ESG), 61
ChocSolvabilite2	ESG (get_choc_inflation_frais), 69
(do_choc_action_type2), 48	extract_ESG, 61, 61, 81, 101
ChocSolvabilite2 (do_choc_frais), 49	extract_L36, 01, 01, 01, 101
ChocSolvabilite2 (do_choc_immo), 49	finance_cible_marge, 30,62
ChocSolvabilite2 (do_choc_longevite), 50	finance_cible_pmvl, 30, 63
ChocSolvabilite2 (do_choc_mortalite), 51	finance_cible_ppb, 30, 64
ChocSolvabilite2 (do_choc_rachat_down),	finance_contrainte_legale, 30, 65
52	finance_tmg, 30, 66
ChocSolvabilite2 (do_choc_rachat_up), 52	frais_fin_load, 68
ChocSolvabilite2	frais_passif_load, 68
(do_choc_spread_unitaire), 54	FraisFin, 67, 88
•	FraisFin (calc_frais_fin), 16
ChocSolvabilite2 (do_choc_spread), 53	FraisFin (caic_frais_fin), 10 FraisFin (frais_fin_load), 68
ChocSolvabilite2 (do_choc_taux), 55	FraisPassif, 15, 67, 68, 89, 95
create_ptf_bought_action, 43	FraisPassif (calc_frais), 15
create_ptf_bought_immo, 44	FraisPassif (caic_frais), 13 FraisPassif (frais_passif_load), 68
create_ptf_bought_oblig,45	11 a131 a3311 (11 a13_pa3311_10au), 08
do_calc_nb_sold_action, 45	<pre>get_choc_inflation_frais, 43, 69</pre>

124 INDEX

get_choc_rach, 70, 74	Oblig(calc_pmvl_oblig), 21
get_choc_table, 70, 74	Oblig(calc_sur_dec), 32
get_comport, 33, 71, 74	Oblig(calc_vm_oblig), 37
get_qx_mort, <i>35</i> , 71, <i>74</i>	Oblig (calc_vnc), 38
get_qx_rach, 35, 72, 74	Oblig(calc_z_spread), 38
get_rach_dyn, 35, 73, 74	Oblig (duration_sensi), 59
	Oblig (echeancier), 59
hyp_canton_load, 74	Oblig (sell_oblig), 103
HypCanton, 39, 73, 74, 75	Oblig (update_cc_oblig), 106
HypCanton (hyp_canton_load), 74	Oblig(update_dur_oblig), 108
HypCanton (ppb_load), 90	Oblig (update_mat_res), 108
HypTech, 33, 35, 70–73, 74, 80, 89	Oblig (update_sd_oblig), 111
HypTech (get_choc_rach), 70	Oblig (update_vm_oblig), 113
HypTech (get_choc_table), 70	Oblig (update_vnc_oblig), 114
<pre>HypTech (get_comport), 71</pre>	Oblig (update_zsp_oblig), 114
<pre>HypTech (get_qx_mort), 71</pre>	Oblig (yield_to_maturity), 121
HypTech (get_qx_rach), 72	
HypTech (get_rach_dyn), 73	param_alm_engine_load,86
HypTech (load_ht), 80	param_revalo_load, 87
	ParamAlmEngine, 39, 82, 86
Immo, 44, 46, 47, 75, 88	ParamAlmEngine (param_alm_engine_load),
Immo (buy_immo), 12	86
<pre>Immo (calc_pmvl_immo), 21</pre>	ParamBe, <i>11</i> , 83
<pre>Immo (calc_vm_immo), 36</pre>	ParamChocMket, 40, 43, 83
<pre>Immo (revalo_immo), 98</pre>	ParamChocSousc, 40, 43, 83
Immo (sell_immo), 102	ParamComport, <i>34</i> , <i>74</i> , 84
<pre>Immo (update_dur_det_immo), 107</pre>	
<pre>Immo (update_vm_immo), 113</pre>	ParamComport
<pre>init_create_folder, 77</pre>	(calc_tx_cible_ref_marche), 34
init_debut_pgg_psap, 8, 78, 93	ParamRachDyn, 26, 74, 84
init_debut_ppb, 78, 93	ParamRachDyn (calc_rach_dyn), 26
init_scenario, <i>11</i> , 79, <i>100</i>	ParamRevalo, 97
init_SimBEL, <i>76</i> , <i>79</i>	ParamRevaloEngine, 39, 65, 85, 87
Initialisation, 9, 10, 40, 41, 68, 69, 75, 75,	ParamRevaloEngine (param_revalo_load),
76, 77, 79–81, 91, 104	87
<pre>Initialisation (init_SimBEL), 79</pre>	ParamTableMort, 25, 74, 85
<pre>Initialisation(init_create_folder), 77</pre>	ParamTableMort (calc_qx), 25
<pre>Initialisation (init_scenario), 79</pre>	ParamTableRach, 25, 74
<pre>Initialisation (initialisation_load), 76</pre>	ParamTableRach (calc_rach), 25
<pre>Initialisation (set_architecture), 104</pre>	pb_contr, 30, 87
initialisation_load, 76	PortFin, 39, 54, 82, 86, 88, 96, 97
	PortFin (calc_pmvl), 20
load_ht, 80	PortFin (calc_rdt), 27
load_pp, 80	PortFin (calc_tra), 32
	PortFin (chargement_PortFin_reference),
ModelPoint_ESG, 61, 62	42
ModelPointESG, <i>37</i> , <i>39</i> , 81	PortFin (chargement_PortFin), 41
	PortFin (do_update_pmvl), 55
Oblig, 45, 47, 54, 82, 88	PortFin (do_update_vm_vnc_precedent), 58
Oblig (buy_oblig), 12	PortFin(print_alloc), 92
Oblig (calc_coupon), 13	PortFin (resultat_fin), 97
Oblig (calc_flux_annee), 15	PortFin(update_PortFin_reference), 110
Oblig (calc_nominal), 18	PortFin (update_PortFin), 109

INDEX 125

PortFin	RevaloEngine (finance_tmg), 66
<pre>(vieillissement_action_PortFin),</pre>	RevaloEngine (pb_contr), 87
115	revenu_treso, 99, 106
<pre>PortFin (vieillissement_immo_PortFin),</pre>	run_be, <i>11</i> , 100
117	run_be_simu, <i>11</i> , <i>100</i> , 101
<pre>PortFin (vieillissement_oblig_PortFin),</pre>	
117	sell_action, 7, 102
<pre>PortFin (vieillissement_treso_PortFin),</pre>	sell_immo, 75, 102
118	sell_oblig, 82, 103
PortPassif, 39, 81, 89, 94, 116, 119	sell_pvl_action, <i>7</i> , <i>93</i> , 103
<pre>PortPassif (calc_rdt_marche_ref), 27</pre>	set_architecture, 9, 10, 40–42, 68, 69,
PortPassif (load_pp), 80	<i>75–77</i> , <i>80</i> , <i>81</i> , <i>91</i> , 104
PortPassif (proj_annee_av_pb), 94	SimBEL, 105
<pre>PortPassif (vieillissement_av_pb), 116</pre>	SimBEL-package (SimBEL), 105
<pre>PortPassif (vieillissment_ap_pb), 119</pre>	
PortPassifs, 80	TabEpEuroInd, 60 , 105
Ppb, 10, 13, 29, 30, 39, 64–66, 78, 90, 90	TauxPB, <i>89</i> , 105
Ppb (calc_dotation_ppb), 13	Treso, 88, 106
Ppb (calc_reprise_ppb), 28	Treso (calc_vm_treso), 37
Ppb (init_debut_ppb), 78	Treso (revalo_treso), 99
ppb_load, 90	Treso (revenu_treso), 99
PRE, 29, 88, 91	Treso (update_treso), 112
PRE (calc_PRE), 22	
PRE (do_update_PRE_val_courante), 56	update_cc_oblig, 106
PRE (do_update_PRE_val_debut), 56	update_dur_det_action, 107
PRE (pre_load), 91	update_dur_det_immo, 107
pre_load, 91	update_dur_oblig, 108
print_alloc, 92, 93	update_mat_res, 108
proj_an, 39, 92, 101	update_PortFin, 93, 109, 110
proj_annee_autres_passifs, 8, 93, 116	update_PortFin_reference, 93, 109, 110
proj_annee_av_pb, 89, 94, 116	update_reserves, <i>8</i> , 110, <i>116</i>
prog_armee_av_pb, 65, 51, 116	update_sd_oblig, 111
RC, 88, 95	update_treso, <i>106</i> , 112
RC (calc_RC), 26	update_vm_action, 112
RC (do_update_RC_val_courante), 57	update_vm_immo, 113
RC (do_update_RC_val_debut), 57	update_vm_oblig, 113
RC (rc_load), 95	update_vnc_oblig, 114
rc_load, 95	update_zsp_oblig, 114
reallocate, 7, 93, 96	
resultat_fin, 97	vieilli_mp, 60, 119, 120
revalo_action, 98	vieillissement_action_PortFin, 115
revalo_immo, 98	vieillissement_ap_pb, 89
revalo_treso, 99, 106	vieillissement_av_pb, 89, 116
RevaloEngine, 97	vieillissement_immo_PortFin, 117
RevaloEngine (base_prod_fin), 10	vieillissement_oblig_PortFin, 117
RevaloEngine (calc_marge_fin), 17	vieillissement_treso_PortFin, 118
RevaloEngine (calc_result_technique), 28	vieillissment_ap_pb, 119
RevaloEngine (calc_revalo), 29	viellissement_ap_pb, 29, 93
RevaloEngine (finance_cible_marge), 62	viellissement_av_pb, 28-30, 93
RevaloEngine (finance_cible_pmvl), 63	11 100 100
RevaloEngine (finance_cible_ppb), 64	write_be_results, <i>11</i> , <i>100</i> , 120
RevaloEngine (Timanee_Elbie_ppb), 04	yield_to_maturity, 121
(finance_contrainte_legale), 65	y 101u_to_maturitty, 121
(