Bidding Algorithm Overview

Yuanlong Chen

Brand Auction

July 11, 2024

Agenda

- Bidding Products
- Auto-Bidding Algorithm
- Cost Cap Bidding Algorithm

Bidding Products

Three Major Bidding Products

- Max Delivery (a.k.a no bid, lowest cost) Advertiser's input: budget, no ROI requirements
- Cost Cap Advertiser's input: budget + cost cap (max CPX)
- Manual bidding(other companies)
 Advertiser's input: budget + fixed bid price

Formulation(use CPC ads as example)

$$\max_{x_t} \sum_{t=1}^{T} x_t \cdot r_t \quad \text{s.t.} \quad \sum_{t=1}^{T} x_t \cdot c_t \le B$$

where

t — t-th auction opportunity

T – total auction opportunity

 r_t — pctr at t

 c_t — cost at t

B − total budget

 x_t — indicator whether t-th auction win or lose, $x_t \in \{0,1\}$

Optimal Bidding Formula

Auction Mechanism: assume we use second price auction, then

$$\mathbf{x}_t = \mathbf{1}_{\{\mathsf{ecpm}_t > c_t\}} \quad \mathsf{where} \quad \mathsf{ecpm}_t = b_t * r_t$$

Optimal Bidding Formula(cont'd)

STEP 1: Write Lagrangian

$$\mathcal{L}(x_t, \lambda) = \sum_{t=1}^{T} x_t r_t + \lambda \left(B - \sum_{t=1}^{T} x_t c_t \right)$$
$$= \sum_{t=1}^{T} x_t (r_t - \lambda c_t) + \lambda B$$

Optimal Bidding Formula(cont'd)

STEP 2: Derive dual problem

$$\mathcal{L}^*(\lambda) = \max_{\mathsf{x}_t} \mathcal{L}(\mathsf{x}_t, \lambda)$$

$$=\sum_{t=1}^T (r_t - \lambda c_t)_+ + \lambda B$$

where $(z)_+ = \max(0, z)$ (a.k.a ReLU)

Optimal Bidding Formula(cont'd)

STEP 3: Solve dual problem

$$\lambda^* = \min_{\lambda \geq 0} \mathcal{L}^*(\lambda)$$

$$\Rightarrow \mathsf{ecpm}_t^* = \frac{r_t}{\lambda^*}$$

i.e.

$$b_t^* \cdot r_t = rac{r_t}{\lambda^*} \Rightarrow b_t^* = rac{1}{\lambda^*}$$

Note: this is true for all incentive compatible auctions

Conclusion: optimal bid is constant bid

How To Find Optimal Bid b^*

(From KKT condition) b^* is the bid level that exactly depletes the budget, i.e.,

$$\sum_{t=1}^{T} x_t c_t \le B \implies \sum_{t=1}^{T} x_t c_t = B$$

Assume r_t , c_t are subject to i.i.d. at $(\tau, \tau + d\tau)$, the cost

$$\sum_{\tau \leq t \leq \tau + d\tau} x_t c_t \sim \# \text{ of auction opportunities in } (\tau, \tau + d\tau)$$

Figure: Left: Accumulated number of eligible requests. Right:Accumulated expected cost.

In practice, we construct an expected cost curve based on flow ratio map (e.g. 15 minute granularity):

Figure: Expected cost vs Actual cost over time

How To Find Optimal Bid b^* (cont'd)

Intuitively, do pacing by comparing actual cost to expected cost:

- ullet Ahead schedule o lower bid
- \bullet Behind schedule \rightarrow increase bid
- Ahead schedule → lower bid
- Behind schedule → increase bid

By following the curve: $b_t o b^*$

Controller-based Algrorithm

Approach 1: PID Controller

$$\bullet (t_k) = C_e(t_k) - C_a(t_k)$$

 $b(t_{k+1}) \leftarrow b(t_k) \cdot \exp(\phi(t_{k+1}))$

Controller-based Algrorithm(cont'd)

Approach 2: MPC Controller

MPC optimizes the entire future spend, at time t, remaining budget $B_{t,r}$

- \Rightarrow expected cost speed cs_t
- \Rightarrow expected bid price b_t

Goal: find $cs_t = f(b_t)$ where f is monotonically non-decreasing

iMPC: Longest Increasing Subsequence of historical (bid, cost) pairs + interpolation

Figure: (Bid, cost) pair in past N minutes. Blue line represents the longest increasing subsequence used for interpolation.

iMPC Controller(cont'd)

At time, t, for a given cost speed cs_t , find corresponding bid price b_t

iMPC algorithm:

- fetch historical bid-cost pairs in past N minutes
- $b_t = f^{-1}(cs_t)$

MPC Controller

LIS drawbacks: potentially throws away data points.

Q: How to utilize all data to reduce noise while maintain monotonicity property of f?

Idea: Use Isotonic Regression

Figure: Isotonic Regression vs LIS.

Cost Cap Algorithm

Formulation(use CPC ads as example)

$$\max_{x_t} \sum_{t=1}^{T} x_t r_t$$

subject to

$$\sum_{t=1}^{T} x_t c_t \leq B$$

$$\sum_{t=1}^{T} x_t c_t \le C \left(\sum_{t=1}^{T} x_t r_t \right)$$

where C is cost cap (advertiser bid)

Cost Cap Algorithm

Optimal Bidding Formula

Use primal-dual method, similarly we get optimal bid:

$$b^* = \frac{1 + \mu^* C}{\lambda^* + \mu^*} = \frac{\lambda^*}{\lambda^* + \mu^*} \cdot \frac{1}{\lambda^*} + \frac{\mu^*}{\lambda^* + \mu^*} \cdot C$$

Note: if $\mu^*=0$, $b^*=\frac{1}{\lambda^*}$ which is equivalent to auto bidding In practice, we use the "cost-min" algorithm:

$$b_t = \min(\text{flow_bid}, \text{risk_bid})$$

where

$$risk_bid = \frac{remaining \ budget}{remaining \ event \ goal}$$

flow_bid is the same as in auto-bidding.