Машинное обучение (Machine Learning)

Глубокое обучение: Архитектуры сверточных нейронных сетей

Уткин Л.В.

Санкт-Петербургский политехнический университет Петра Великого

LeNet-5

- Одна из первых сетей (1998 г.)
- На входе черно-белое изоб-ие 32х32 пикселя, 7 слоев:
 - Свертка: каналов 6, ядро-5х5, шаг-1.
 - Пулинг: ядра 2х2.
 - Свертк: каналов 16, ядро 5х5, шаг 1. Некоторые соединения опущены, чтобы убрать симметричность в сети и уменьшить количество параметров.
 - Пулинг, аналогичный второму слою.
 - Свертка: каналов 120, ядро 5х5.
 - Полносвязный слой из 84 нейронов.
 - Полносвязный слой из 10 нейронов, после которого идет Softmax.

LeNet-5

Layer		Feature Map	Size	Kernel Size	Stride	Activation
Input	Image	1	32x32	-	-	-
1	Convolution	6	28x28	5x5	1	tanh
2	Average Pooling	6	14x14	2x2	2	tanh
3	Convolution	16	10x10	5x5	1	tanh
4	Average Pooling	16	5x5	2x2	2	tanh
5	Convolution	120	1x1	5x5	1	tanh
6	FC	-	84		-	tanh
Output	FC	-	10	-	-	softmax

AlexNet (Крижевский, 2012 г.)

AlexNet

- Сеть имеет два вытянутых параллельных участка, чтобы обучать нейросеть параллельно на двух видеокартах Nvidia Geforce GTX 580
- Использовался стох. град. спуск (SGD), learning rate 0.01
- Аугментации данных (data augmentation)
- Сеть обучалась по батчам размера 128 и имела 60 миллионов параметров

VGG16

 K. Simonyan и A. Zisserman, точность 92.7% на ImageNet

VGG16

- VGG использует свертки с малым размером ядра (3x3).
- Несколько сверток 3x3, объединенных в последовательность, могут эмулировать более крупные рецептивные поля, например, 5x5 или 7x7, а число обучаемых параметров меньше.
- Добавляются нулевые пиксели (padding)
- Уменьшение размера изображения только через max-pooling с размером ядра 2 и таким же шагом.
- Классификатор 3 полносвязных слоев с Softmax.
- Размер сети более 130 миллионов параметров

GoogLeNet (C. Szegedy, 2014)

• Первая архитектура Inception (модуль Inception)

GoogLeNet (1)

- Сеть в виде конструктора, который собирается по блокам.
- Данные в блоке по параллельным путям, которые затем конкатенируются, что позволяет выбирать наилучшее строение слоев самой сети. В результате обучения наиболее полезные пути станут вносить больший вклад в предсказание.

GoogLeNet (2)

- Использование сверток с ядром 1х1 (лин. комбинация карт признаков). Карты часто коррелированы между собой, поэтому ядра уменьшают число каналов, сохранив пространственные размеры. Свертки с ядром 1х1 ставят перед обычными сверточными слоями, что позволяет снизить количество параметров.
- Используются 2 дополн. выхода на более ранних слоях (с весом 0.3 к общей ошибке) для борьбы с затуханием градиента, так как сеть очень глубокая 22 слоя. При тестировании эти пути удаляются.

${\sf GoogLeNet}$

Inception v2 и v3

- Оледует избегать 1х1 сверток с сильным уровнем сжатия.
- Следует соблюдать баланс между глубиной и шириной сети.
- Можно заменить одну свертку с большими ядрами на несколько сверток с маленькими практически без потери качества.
- На доп. выходах добавили батч-нормализацию как средство регуляризации.
- Техника label-smoothing. Замена 1 и 0 на выходе смесью: softmax и распределение классов в датасете.

Inception v2 и v3

ResNet

- Идея: пустить данные параллельно модулю через тождественный слой (identity layer) и затем просуммировать выходы.
- Блоки можно описать рекурсивной формулой $y_{i+1} = f_i(x_i) + x_i$.
- Градиент через skip/shortcut connections вычисляется умножением на единичную матрицу.
- Размерность тензора может поменяться при прохождении через Residual block, в таком случае делаются свертки и батч-нормализация.

ResNet

ResNet

Inception-v4 (Inception-ResNet)

B Inception-v3 добавили к существующей архитектуре shortcut connections

SENet

- Новое адаптивная калибровка:
 - глобальный average-pooling с сохр-ем размерности по каналам, получаем одномерный вектор.
 - он пропускается через отдельную небольшую нейросеть, состоящую из линейного слоя, ReLU, линейного слоя и сигмоиды.
 - на выходе вектор той же размерности, что и на входе, с элементами от 0 до 1.
 - далее каждый канал тензора карт признаков умножается на соответствующую компоненту полученного вектора.
 - т.о выполняется масштабирование каждого канала в зависимости от его значимости: полезные каналы умножаются на числа близкие к 1, а не особо важные на числа близкие к 0.

SENet

Squeeze-and-Excitation (SE) block

SENet

SE-блоки можно применять к другим сетям (SE-Inception модуль и SE-ResNet модуль)

Network in Network (1)

- Усложнение свертки добавлением внутрь нее небольшой нейронной сети на выход непосредственного применения ядра свертки к картам признаков.
- Особенность расширение возможностей сети для глубокого распознавания сверточным преобразованием исходных образов и дополнительным учетом этих локальных структур для более качественного отображения набора признаков на следующие этапы.

Network in Network (2)

Network in Network (3)

- Преобразования тензоров становятся более сложными.
- Внутренние сети позволяют извлекать дополнительные полезные признаки внутри внешнего блока.
- В качестве добавленной внутренней структуры выступает многослойный персептрон, допускающий заметное увеличение сложности и гибкости схемы.
- В эту подсеть подаются небольшие наборы признаков, однако благодаря новым параметрам подсетей архитектура усложняется на качественном уровне.

HyperNets (1)

- Идея: перевод операций сети к динамическому выполнению и рег-ке сверток как рез-т работы другой нейронной сети - гиперсети
- Статические гиперсети: внешняя двухслойная сеть генерирует фильтр свертки из принятого эмбеддинга очер. слоя внутренней сети. Эмбеддинги настраиваются, и в процессе работы обученной сети берутся как аргументы для генерации сверток на тестировании
- Динамические гиперсети: надстройки для RNN. Сеть на каждом шаге t принимает на вход конкатенацию входного вектора x_t и скрытое состояние с предыдущего временного слоя рекуррентной сети h_{t-1} и генерирует следующее скрытое состояние, с помощью которого формируются веса модели на текущем временном шаге.

HyperNets (2)

Deep Networks with Stochastic Depth (1)

- Проблемы затухания градиента или снижение роли полезных признаков в процессе прямого распространения.
- На этапе обучения для каждого батча выкидывается большая часть слоев сети и производится настройка параметров оставшейся неглубокой части модели.
 Выкинутые слои заменяются тождественными преобразованиями набора признаков.
- На этапе теста используются все обученные таким образом слои.

Deep Networks with Stochastic Depth (2)

Deep Networks with Stochastic Depth (3)

- В качестве решающего правила выкидывания блока исходной архитектуры значение с.в. с распределением Бернулли с параметром p_k
- Для реализации используют ResNet и исключают по такому распределению ее блоки, следующие за первым блоком Conv-BN-ReLU в сети
- Выход k-го слоя в таком случае можно выразить следующим образом: $H_k = \text{ReLU}(b_k f_k (H_{k1}) + id(H_{k1}))$
- Tect: $H_k^{Test} = \text{ReLU}(b_k f_k (H_{k-1}^{Test}, W_{k-1}) + H_{k-1}^{Test})$

Deep Networks with Stochastic Depth (4)

- Выход k-го слоя в таком случае можно выразить следующим образом: $H_k = \text{ReLU}(b_k f_k (H_{k1}) + id(H_{k1}))$
- Tect: $H_k^{Test} = \mathsf{ReLU}ig(b_k f_k \left(H_{k-1}^{Test}, W_{k-1}
 ight) + H_{k-1}^{Test}ig)$
- ullet Если L общая глубина исходной сети, то $p_k = 1 k/\left(1 p_L
 ight)$
- Выборочное выкидывание слоев эффективная модификация архитектур сверточных нейронных сетей.
- Позволяет добиться существенного ускорения обучения моделей.
- Позволяет сохранить и превзойти точность исходных моделей.

FractalNet (1)

• Идея: заданная фрактальная структура нейросети может достаточно хорошо связывать признаки разного уровня преобразований. В итоге это приводит к тому, что сеть можно отдельно настраивать на совместную обработку важных признаков и иметь возможность усложнять в процессе обучения архитектуру — эта идея соответствует подходу Fractal of FractalNet

FractalNet (2)

Правило рекуррентного усложнения архитектуры для достижения большей гибкости

FractalNet (3)

• Формально его можно записать в следующем виде:

$$f_1(z) = conv(z)$$

 $f_{C+1}(z) = [(f_C * f_C)(z)] + [conv(z)]$

- В итоге получается глубокая нейронная сеть с аналогичными результатами, как у ResNet
- Архитектура проста и не требует дополнительного прокидывания связей, как в ResNet

FractalNet (4)

FractalNet (drop-path)

- Drop-path в FractalNet аналог dropout в обычных сетях
- Заключается в исключении путей некоторых блоков
- Локальная реализация: Из блока сети каждая связь выбрасывается в соответствии с фиксированной вероятностью, при этом необходимо гарантировать, что по крайней мере один путь до выхода сети сохранится
- Глобальная реализация: из всей сети случайно выбирается единственный полноценный путь от входа до выхода, при этом выполняется условие, что он охватывает одинаковые пути по уровню фрактальной структуры.

Densely Connected Convolutional Networks (DenseNet) (1)

 Основной принцип архитектуры - в полном дополнении всех попарных связей между слоями сети.
 При объединении признаков, пришедших в один слой сети DenseNet, производится конкатенация, что способствует линейному росту признаков, обрабатываемой в слое. Это приводит к возможности сокращения параметров сети и вычислительным объемам

Densely Connected Convolutional Networks (DenseNet) (2)

Densely Connected Convolutional Networks (DenseNet) (3)

 Для обработки очередной карты признаков на k-том. слое: $x_k = H_k([x_0, x_1, ..., x_{k-1}])$, т.е. каждый набор признаков получается преобразованием всех предыдущих. В сравнении с правилами ResNet-архитектур данное выражение кажется гораздо сложнее, но в реализации DenseNet используются определенные свойства, позволяющие избегать большие вычислительные затраты. Каждый слой состоит из комбинации блоков: BN + ReLU + 3x3Convolution + dropout.

Densely Connected Convolutional Networks (DenseNet) (4)

- Для нейронной сети с L слоями требуется провести L(L+1)/2 связей.
- Каждый слой получает обработанную информацию со всех предыдущих.
- Одним из свойств метода является снижение требуемых параметров модели для обучения, так как получаемые на каждом слое данные аккумулируются, и появляется возможность из полученных слоем множества карт признаков получать фиксированное число карт (как правило это число равно 12 и является гиперпараметром модели), а оставшиеся не подвергать изменениям.

Densely Connected Convolutional Networks (DenseNet) (5)

- Число параметров, настраиваемых сетью гораздо меньше, чем стандартной ResNet
- Улучшение информационного потока между слоями, входными и выходными данными. Так как каждый слой имеет непосредственную вычислительную связь с началом и концом сети, то как прямое, так и обратное распространение можно производить путем прямого доступа (до входных данных и до значения функции потерь на батче соответстсвенно).

Densely Connected Convolutional Networks (DenseNet) (6)

Densely Connected Convolutional Networks (DenseNet) (2)

- Для повышения эффективности DenseNet используют дополнительно два решения:
 - Для повышения выч. эффективности можно перейти к представлению слоя: [BN + ReLU + Conv(1x1)] + [BN + ReLU + Conv(3x3)]. Основные вычисления остаются во второй половине слоя. Добавление свертки 1x1 снижает количество карт признаков в слое
 - Регулируют долю карт признаков, переходящих от одного dense-блока к другому. За это отвечает гиперпараметр модели. На последующий dense-блок передается половина полученных карт признаков на текущем блоке. Это также позволяет повысить эффективность обучения.

Программное обеспечение Deep Learning: Torch

- Torch основан на библиотеке Lua
- Обработка естественного языка с помощью глубоких нейронных сетей
- Используется в Facebook и Twitter Research для исследований и разработки систем глубокого обучения

Программное обеспечение Deep Learning: MxNet

- MxNet мощная библиотека, поддерживающая различные языки программирования: Python, Scala, R
- Одна из самых эффективных по быстродействию и по использованию памяти библиотек
- Простота использования нескольких графических процессоров (GPU)

Программное обеспечение Deep Learning: Theano

- Theano Python-библиотека
- Объединяет Keras и Lasagne
- Охватывает не только глубокое обучение, но и различные методы машинного обучения: рекуррентная нейронная сеть, ограниченная машина Больцмана, глубокие сети доверия, сверточные нейронные сети
- Проста для разработчиков
- Имеются скрипты для конвертации моделей Caffe

Программное обеспечение Deep Learning: Lasagne

- Lasagne библиотека для построения и обучения нейронных сетей в Theano
- Проста в использовании, понимании и расширении
- Для установки требует сначала установить Python и Theano

Программное обеспечение Deep Learning: Keras

- Keras модульная библиотека для построения нейронных сетей для Python
- Запускается "поверх" либо TensorFlow, либо Theano

Программное обеспечение Deep Learning: Caffe

- Caffe флагман глубокого обучения
- Первая успешная открытая реализация с мощной, но простой базой: нет необходимости знать код для использования Caffe, используются простые файлы описаний сети
- Не поддерживает GPU, отличные от Nvidia

Программное обеспечение Deep Learning: TensorFlow

- TensorFlow открытая библиотека для анализа представления данных в виде графа
- Вершины графа математические операции, крайние вершины - матрицы данных большой размерности (тензоры)
- TensorFlow разработана в Google Brain Team в целях проведения исследования в области машинного обучения и глубоких нейронных сетей

Программное обеспечение Deep Learning: Deeplearning4j

• Deeplearning4j (DL4j) - JVM-фреймворк (Java Virtual Machine) для решения задач, связанных с большими данными

Вопросы

?