Assignment2

CS20Btech11035 -NYALAPOGULA MANASWINI

Download python code from

https://github.com/N-Manaswini23/Assignment-2/ blob/main/assignment2%20(2).py

GATE QUESTION 63

Let the random variable X have the distribution function:

$$F(x) = \begin{cases} 0 & x < 0\\ \frac{x}{2} & 0 \le x < 1\\ \frac{3}{5} & 1 \le x < 2\\ \frac{1}{2} + \frac{x}{8} & 2 \le x < 3\\ 1 & x \ge 3 \end{cases}$$
 (0.0.1)

Then $P(2 \le X < 4)$ is equal to

SOLUTION

Let X be a binomial random variable. Cumulative distribution function F(x) is given in (0.0.1), it is represented in tabular form (0)

S.No	x(range)	F(x)
1	<i>x</i> < 0	0
2	$0 \le x < 1$	$\frac{x}{2}$
3	$1 \le x < 2$	$\frac{3}{5}$
4	$2 \le x < 3$	$\frac{1}{2} + \frac{x}{8}$
5	3 ≤ x	1

TABLE 0: This is table 1

We know that

$$F_X(r) = \Pr(X \le r)$$
 (0.0.2) we know that

Substituting $x = \{0, 1, 2, 3\}$ in the piecewise cumulative distribution function.

$$x = 0 \implies F(0) = \frac{x}{2} = 0$$
 (0.0.3)

$$x = 0 \implies F(0) = \frac{x}{2} = 0$$

$$x = 1 \implies F(1) = \frac{3}{5}$$

$$(0.0.3)$$

$$x = 2 \implies F(2) = \frac{1}{2} + \frac{x}{8} = \frac{1}{2} + \frac{2}{8} = \frac{3}{4}$$
 (0.0.5)

$$x = 3 \implies F(3) = 1$$
 (0.0.6)

$$x = 4 \implies F(4) = 1$$
 (0.0.7)

we get F(x) values at x as respresented in table (0)

S.No	F(x)	value of $value of F(X)$
1	F(0)	0
2	<i>F</i> (1)	$\frac{3}{5}$
3	F(2)	$\frac{3}{4}$
4	<i>F</i> (3)	1
5	<i>F</i> (4)	1

TABLE 0: This is table2

 $P(2 \le X < 4)$ can be written as follows:

$$P(2 \le X < 4) = P(0 \le X < 4) - P(0 \le X < 2)$$

$$(0.0.8)$$

$$= P(3 < X < 4) + P(0 \le X \le 3) - P(0 \le X < 2)$$

$$(0.0.9)$$

$$= P(3 < X < 4) + F(3) - P(0 \le X < 2)$$

$$(0.0.10)$$

$$= P(3 < X < 4) + 1 - P(0 \le X < 2)$$

$$(0.0.11)$$

$$P(X > 3) = 1 - P(X \le 3) \tag{0.0.12}$$

$$= 1 - F(3) \tag{0.0.13}$$

$$=0$$
 (0.0.14)

(0.0.15)

$$\Pr(0 \le X < 1) = \frac{x}{2} = \frac{1}{2} \tag{0.0.16}$$

$$\Pr(0 \le X < 2) = \frac{3}{5} \tag{0.0.17}$$

$$\Pr(0 \le X < 3) = \frac{x}{8} + \frac{1}{2} = \frac{3}{8} + \frac{1}{2} = \frac{7}{8}$$
 (0.0.18)

S.No	Pr(X)	value of $Pr(X)$
1	Pr(X < 0)	0
2	$\Pr(0 \le X < 1)$	$\frac{1}{2}$
3	$\Pr(0 \le X < 2)$	<u>3</u> 5
4	$\Pr(0 \le X < 3)$	$\frac{7}{8}$
5	$\Pr(0 \le X \le 3)$	ĺ
6	Pr(X > 3)	0

TABLE 0: This is table3

Substituting (0.0.14) and (0.0.17) in (0.0.11)

$$P(2 \le X < 4) = P(3 < X < 4) + 1 - P(0 \le X < 2)$$

(0.0.19)

$$= 0 + 1 - \frac{3}{5} \tag{0.0.20}$$

$$=\frac{2}{5} \tag{0.0.21}$$

$$= \frac{2}{5}$$
 (0.0.21)

$$\therefore P(2 \le X < 4) = \frac{2}{5}$$
 (0.0.22)

VERIFICATION IF $P(2 \le X < 4) = F(4) - F(2)$

Here we take F(4) = 1, $F(2) = P(0 \le X < 2) = \frac{3}{5}$ because we need to find $P(2 \le X < 4)$, here X = 12 is included. If we use $F(2) = \frac{3}{4}$ then we obtain P(2 < X < 4).

$$F(4) - F(2) = 1 - \frac{3}{5}$$
 (0.0.23)

$$=\frac{2}{5} \tag{0.0.24}$$

$$= P(2 \le X < 4) \tag{0.0.25}$$

$$\therefore P(2 \le X < 4) = F(4) - F(2) \tag{0.0.26}$$

PROOF

$$P(2 \le X < 4) = P(0 \le X < 4) - P(0 \le X < 2)$$

$$(0.0.27)$$

$$= F(4) - F(2)$$

$$(0.0.28)$$

Hence proved.

