Übungsblatt 21 zur Homologischen Algebra II

Aufgabe 1. Ext und Auflösungen

- a) Zeige, dass die kanonische Abbildung $\operatorname{Hom}_{K(\mathcal{A})}(X^{\bullet}, Y^{\bullet}) \to \operatorname{Hom}_{D(\mathcal{A})}(X^{\bullet}, Y^{\bullet})$ für $X^{\bullet} \in \operatorname{Kom}^{-}(\mathcal{P})$ oder für $Y^{\bullet} \in \operatorname{Kom}^{+}(\mathcal{I})$ ein Isomorphismus ist. Dabei ist \mathcal{P} (bzw. \mathcal{I}) die Klasse der projektiven (bzw. injektiven) Objekte einer abelschen Kategorie \mathcal{A} .

 Tipp: Ist $s: I^{\bullet} \to W^{\bullet}$ in Quasiiso in $\operatorname{Kom}(\mathcal{A})$, wobei $I^{\bullet} \in \operatorname{Kom}^{+}(\mathcal{I})$, so gibt es einen Morphismus $t: W^{\bullet} \to I^{\bullet}$ mit $ts \simeq \operatorname{id}$.
- b) Seien X und Y Objekte einer abelschen Kategorie \mathcal{A} . Zeige, dass $\operatorname{Ext}^{\bullet}(X,Y) := \operatorname{Hom}_{D(\mathcal{A})}(X[0],Y[n])$ wie klassisch bekannt über eine projektive Auflösung von X oder eine injektive Auflösung von Y berechnet werden kann.

Aufgabe 2. Die homologische Dimension erblicher Ringe

- a) Zeige, dass die homologische Dimension der Kategorie aller (nicht nur kohärenter) Moduln über einem erblichen Ring ≤ 1 ist.
- b) Zeige, dass Hauptidealbereiche erblich sind.

Hinweis: Ein Ring R heißt genau dann erblich (engl. hereditary), wenn Untermoduln projektiver R-Moduln projektiv sind. Dafür genügt es schon, wenn alle Ideale von R als R-Moduln projektiv sind, siehe Lam, Lectures on modules and rings, Thm. 2.24.

Aufgabe 3. Bewahrung von Injektiven

Beweise, dass additive Funktoren, die einen linksexakten Linksadjungierten besitzen, injektive Objekte bewahren.

Aufgabe 4. Die Feinstruktur von Vektorraumendomorphismen

Sei $\varphi:V\to V$ ein Endomorphismus eines endlich-dimensionalen Vektorraums.

- a) Zeige mit der Smithschen Normalform, dass V_{φ} isomorph zu einer direkten Summe der Form $\bigoplus_i k[T]/(f_i)$ ist, wobei die f_i normierte Polynome mit $f_1|f_2|\cdots|f_k$ sind. Wie sieht die Darstellungsmatrix von φ aus, wenn man in jedem Summanden die Basis $[1], [t], \ldots, [t^{\deg f_i-1}]$ wählt? Diese Matrix heißt Frobeniussche Normalform.
- b) Zeige, dass sich V_{φ} weiter in Summanden der Form $k[T]/(p^r)$, wobei p irreduzibel ist, zerlegen lässt. Welche Basis muss man, im Fall dass diese Polynome p alle linear sind, in den Summanden wählen, damit die zugehörige Darstellungsmatrix die bekannte Jordansche Normalform ist?

Hinweis: Durch die Setzung $f(t) \cdot v := f(\varphi)(v)$ wird V zu einem k[t]-Modul, notiert V_{φ} . Als solcher ist er endlich präsentiert mit Präsentationsmatrix tI - A, wenn A eine Darstellungsmatrix von V ist; es gilt also $V_{\varphi} \cong \operatorname{coker}(tI - A : k[t]^m \to k[t]^n)$.

Aufgabe 5. Die K-Theorie der Endomorphismenkategorie

Zeige, dass $K(\text{Vect}(k)_{\text{findim}}[T])$ isomorph ist zur multiplikativen Gruppe der rationalen Funktionen mit normiertem Zähler- und Nennerpolynom.

Hinweis: Es ist $\operatorname{Vect}(k)_{\operatorname{findim}}[T]$ die Kategorie der Endomorphismen endlich-dimensionaler Vektorräume über einem Körper k: Objekte sind Paare (V,φ) bestehend aus einem endlich-dimensionalen Vektorraum V und einem Endomorphismus $\varphi:V\to V$, Morphismen sind kommutative Quadrate. Das charakteristische Polynom einen solchen Paars ist $\det(xI-A)\in k[x]$. Zeige, dass das charakteristische Polynom multiplikativ in kurzen exakten Sequenzen ist, und verwende diese Erkenntnis, um den gesuchten Isomorphismus zu definieren.