CSC373 Worksheet 2 Solution

July 23, 2020

1. Notes:

- Greedy Algorithm
 - Always makes the choice that looks best at the moment
 - * Locally optimal solution leads to globally optimal solution
- Activity-selection Problem (Greedy algorithm using dynamic programming)
 - Goal: Selecting maximum size set of mutually compatible activities
 - Suppose a set exists $S = \{a_1 = [s_1, f_1), a_2 = [s_2, f_2), ..., a_n = [s_n, f_n)\}$
 - * a_i represents an i^{th} activity
 - * s_i represents starting time
 - * f_i represents finishing time
 - * $0 \le s_i < f_i < \infty$
 - Activities a_i and a_j are **compatible**, if intervals $[s_i, f_i)$ and $[s_j, f_j)$ don't overlap
 - Assume that activities are sorted in monotonically increasing order of finish time $f_1 \leq f_2 \leq f_3 \leq ... \leq f_{n-1} \leq f_n$
 - Steps
 - 1. Think about dynamic programming solution
 - 2. Observe that only one choice greedy choice, and that when we make the greedy choice, only one subproblem remains
 - 3. Develop recursive greedy solution
 - 4. Convert the recursive algorithm into iterative one