Kvantna računala, međuispit, 25. studenog 2020.

Ime, prezime i JMBAG:

Uputa:

- Ispit se sastoji od 10 zadataka u obliku pitanja s ponuđenim odgovorima.
- Odgovore koje smatrate točnima označite (zacrnite) na posebnom obrascu. Mogu se pojaviti zadaci u kojima je potrebno označiti više od jednog ponuđenog odgovora.
- U praznom prostoru pored zadatka ili na dodatnim papirima napišite obrazloženje ili računski postupak koji vas je doveo do rješenja koje smatrate točnim.
- Točno riješeni zadatak donosi 4 boda. Kazneni (negativni) bodovi se ne obračunavaju.

Notacija i terminologija:

- Vektori $|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ i $|1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ čine ortonormiranu bazu u $\mathcal{H}^{(2)}$.
- Pri realizaciji qubita projekcijom spina čestice spinskog kvantnog broja s=1/2 na z-os uzimamo da $|0\rangle$ i $|1\rangle$ odgovarju projekcijama $\hbar/2$ i $-\hbar/2$.
- Računalnu bazu u prostoru stanja dvaju qubitova obilježavamo s $\{|ij\rangle = |i\rangle \otimes |j\rangle$; $i, j = 0, 1\}$.

- 1 Koji od navedenih vektora su normirani? // Which of the following vectors are normalized?
 - (a) $\sqrt{\frac{2}{3}} |0\rangle + \frac{\mathrm{i}}{\sqrt{3}} |1\rangle$ točno
 - (b) $\frac{1}{\sqrt{3}} |0\rangle + \frac{2}{\sqrt{3}} |1\rangle$
 - (c) $\frac{2}{\sqrt{5}}|0\rangle + \frac{i}{\sqrt{5}}|1\rangle$ točno
 - (d) $\frac{3}{5} |0\rangle i\frac{2}{5} |1\rangle$
 - (e) $\frac{3}{\sqrt{25}} |0\rangle + \frac{4}{\sqrt{25}} |1\rangle$ **točno**
- 2 Koja dva od navedenih vektora čine ortonormiranu bazu u $\mathcal{H}^{(2)}$? // Which two of the following vectors comprise an orthonormal basis in $\mathcal{H}^{(2)}$?
 - (a) $\frac{4}{5} |0\rangle \frac{3}{5} |1\rangle$
 - (b) $\frac{3}{5}|0\rangle \frac{4}{5}|1\rangle$
 - (c) $\frac{4}{5}|0\rangle + \frac{3}{5}i|1\rangle$
 - (d) $\frac{\sqrt{3}}{2}|0\rangle \frac{1}{2}|1\rangle$ točno
 - (e) $\frac{1}{2}|0\rangle + \frac{\sqrt{3}}{2}|1\rangle$ **točno**
- 3 Koji (dva ili više) od navedenih vektora predstavljaju isto stanje kvantnog bita? // Which (two or more) of the following kets represent the same qubit state?
 - (a) $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ točno
 - (b) $\frac{1}{\sqrt{2}}(i\ket{0}+i\ket{1})$ točno
 - (c) $\frac{1}{\sqrt{2}}(-|0\rangle |1\rangle)$ točno
 - (d) $\frac{1}{\sqrt{2}}(|0\rangle i|1\rangle)$
 - (e) $\frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle)$
- 4 Kvantni bit se nalazi u stanju // Qubit is in the state

$$\frac{4}{\sqrt{25}}\ket{0} + \frac{3}{\sqrt{25}}\ket{1}.$$

U kojem od ponuđenih stanja je vjerojatnost nalaženja tog kvantnog bita najveća? // In which of the following states are we most likely to find this qubit?

- (a) $|0\rangle$
- (b) $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ točno

- (c) $\frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle)$
- (d) $\frac{1}{\sqrt{2}}(|0\rangle i|1\rangle)$
- (e) $|1\rangle$

5 Operatoru projekcije na stanje // Projector onto the state

$$\frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle)$$

odgovara matrica // has the matrix representation

- (a) $\frac{1}{2}\begin{pmatrix} 1 & -i \\ i & 1 \end{pmatrix}$. **točno**
- (b) $\frac{1}{2}\begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix}$.
- (c) $\begin{pmatrix} 1 & 0 \\ 0 & -i \end{pmatrix}$.
- (d) $\frac{1}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$.
- (e) $\frac{1}{2}\begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}$.

6 Očekivana vrijednost operatora // The expectation value of the operator

$$|0\rangle\langle 0| - |1\rangle\langle 1|$$

za kvantni bit u stanju // for the qubit in the state

$$\frac{1}{\sqrt{2}} (|0\rangle + i |1\rangle)$$

- je: // *is:*
 - (a) -1
- (b) -1/2
- (c) 0 **točno**
- (d) 1/2
- (e) 1
- 7 Ako je hamiltonijan kvantnog bita // If the Hamiltonian of a qubit is

$$H = \frac{\hbar\omega}{2} |0\rangle \langle 0| - \frac{\hbar\omega}{2} |1\rangle \langle 1|,$$

te ako je početno stanje kvantnog bita // and if the initial state of the qubit is

$$\frac{1}{\sqrt{5}}(2|0\rangle+|1\rangle),$$

taj će se kvantni naći u stanju // that qubit will find itself in the state

$$\frac{1}{\sqrt{5}}(|0\rangle + 2|1\rangle)$$

- nakon vremena // after the time
- (a) $\frac{\pi}{2\omega}$
- (b) $\frac{\pi}{\omega}$
- (c) $\frac{3\pi}{2\omega}$
- (d) $\frac{2\pi}{\omega}$
- (e) to se neće dogotiti. // that will not happen. točno
- 8 U kojima od pet navedenih stanja je sustav dvaju kvantnih bitova u spregnutom stanju? // In which of the following states is the system of two quantum bits in the entangled state?
 - (a) $\frac{1}{2}(|00\rangle + |01\rangle + |10\rangle + |11\rangle)$
 - (b) $\frac{1}{2}(|00\rangle |01\rangle + |10\rangle |11\rangle)$

(c) $\frac{1}{\sqrt{2}} (|00\rangle + i |11\rangle)$ točno

(d) $\frac{1}{\sqrt{2}}\left(\left|01\right\rangle+i\left|10\right\rangle\right)$ točno

(e) $\frac{1}{\sqrt{2}}(|00\rangle + |01\rangle)$

9 Matrica // The matrix

$$\frac{1}{2} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$

prikazuje operator projekcije na stanje // represents the projection operator onto the state

(a) $\frac{1}{\sqrt{2}}(|01\rangle + |10\rangle)$

(b) $\frac{1}{\sqrt{2}}(|01\rangle - |10\rangle)$

(c) $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$ točno

(d) $\frac{1}{\sqrt{2}}(|00\rangle - |11\rangle)$

(e) — nijedno od navedenih.

10 Sustav dvaju kvantnih bitova realiziran je projekcijama spinova dviju čestica (s=1/2) os z. Sustav se nalazi u stanju // The system of two quantum bits is realized by projections of spins (s=1/2) onto the z-axis. The state of the system is

$$\frac{1}{\sqrt{2}}\big(\ket{00}+\ket{01}\big).$$

Očekivana vrijednost projekcije spina prve čestice na z-os iznosi // The expectation value of the projection of the spin of the first particle onto the z-axis is

(a) $-\hbar$

(b) $-\hbar/2$

(c) 0

(d) $+\hbar/2$ točno

(e) $+\hbar$