Lesson 5.12 Volume: Pyramids

Volume is the amount of space a solid figure occupies. The volume of a pyramid is calculated as $\frac{1}{3}$ base \times height. This is because a pyramid occupies $\frac{1}{3}$ of the volume of a rectangular

prism of the same height. Because the base of a square pyramid is square, $B = s^2$.

So, $V = \frac{1}{3}Bh$ or $\frac{1}{3}s^2h$. Volume is given in **cubic units**, or **units**³.

If s = 10 cm and h = 9 cm, what is the volume?

$$V = \frac{1}{3}s^2h$$
 $V = \frac{1}{3}10^2 \times 9$ $V = \frac{900}{3}$ $V = 300 \text{ cm}^3$

If you do not know the height but you do know the slant height or length of a triangle, you can use the Pythagorean Theorem to find the height. $a=\frac{1}{2}$ of the side length, b= the height of the pyramid, c= length

If s = 6 m and $\ell = 5$ m, what is h? $a^2 + b^2 = c^2$ $3^2 + b^2 = 25$ m $b^2 = 16$

$$3^2 + b^2 = 25 \text{ m}$$

$$b^2 = 16$$

$$b = 4 \text{ m}$$

Find the volume of each pyramid. Round answers to the nearest hundredth.

Ι.

C

$$V = \text{ft.}^3$$

$$V = in.$$

$$V = m^3$$

$$V = cm^3$$

$$V = \text{in.}^3$$

3.

 $h = 1.5 \, \text{m}$ $s = 1.2 \, \text{m}$

$$V = m$$

$$V =$$
 cm³