Specification Document

Omkar Girish Kamath

November 18, 2022

Contents

1	\mathbf{Pro}	cessor	1				
	1.1	Instruction Set]				
	1.2	Input Output Interface	4				
2	Memory						
	2.1	Description	4				
	22	I/O of RAM	6				

1 Processor

1.1 Instruction Set

In this instruction syntax X=Not used, K=Constant, A=Instruction Address, P=Data Address

Table 1: Instruction Set of the Simple CPU

Opcode	Instruction	RTL
Load ACC kk	OOOO XXXX KKKKKKKK	ACC <- KK
Add ACC kk	O100 XXXX KKKKKKKK	ACC <- ACC + KK
And ACC kk	0001 XXXX KKKKKKKK	ACC <- ACC & KK
Sub ACC kk	O110 XXXX KKKKKKKK	ACC <- ACC - KK
Input ACC pp	1010 XXXX PPPPPPPP	ACC <- M[PP]
Output ACC pp	1110 XXXX PPPPPPPP	M[PP] <- ACC
Jump U aa	1000 XXXX AAAAAAA	PC <- AA
Jump Z aa	1001 OOXX AAAAAAA	IF Z=1 PC <- AA ELSE PC <- PC + 1
		continued on next page

Table 1: (continued from previous page)

Opcode	Instruction	RTL
Jump C aa	1001 10XX AAAAAAA	IF C=1 PC <- AA ELSE PC <- PC + 1
Jump NZ aa	1001 01XX AAAAAAA	IF Z=O PC <- AA ELSE PC <- PC + 1
Jump NC aa	1001 11XX AAAAAAA	IF C=O PC <- AA ELSE PC <- PC + 1

Here '->' indicates updated with .

The processor has an extra cycle to save on hardware which would have been required for incrementing the PC. So the processor follows **fetch-decode-execute-increment** cycle .

1.2 Input Output Interface

Table 2: I/O signals

Signals	type	size	description

2 Memory

2.1 Description

Size of RAM -> 4 Kilobytes

RAM used is DDR5 Synchronous Dynamic RAM .

Instruction length is $16 \ bit$, maximum instructions and data than can be stored is 256. Address length required is $8 \ bits$.

2.2 I/O of RAM