Let L_1 , L_2 is recognizable Let M_1 , M_2 be TM's such that $\mathcal{L}(M_1) = L_1$ $\mathcal{L}(M_2) = L_2$ (a) Suppose $L = L_1 \cup L_2$ WTS: L is recognizable Here is a TM M that recognizes LM = "On input w1. for s=1 to ∞ run M_1 on w for s steps 3. run M_2 on w for s steps 4. if M_1 accepts w or M_2 accepts w5. accept" (b) Suppose $L = L_1 \circ L_2$ WTS: L is recognizable Create a new TM with the q_{reject} from L_1 replaced with a state going to q_1 from L_2 (c) Suppose $L = L_1^*$ WTS: L is recognizable (d) Suppose $L = L_1 \cap L_2$ WTS: L is recognizable Here is a TM M that recognizes LM = "On input w1. for s=1 to ∞ run M_1 on w for s steps $\mathbf{2}.$ run M_2 on w for s steps 3. 4. if M_1 accepts w and M_2 accepts w5. accept" (e') Let f be a homomorphic function. Suppose $L = f(L_1)$ WTS: L is recognizable