

Doc. TF

Étude de système de laboratoire

Industrielles de l'Ingénieur

Sciences

Doc. TP

Étude du Galet freineur

1	Modélisation et paramétrage	2
2	Cinématique	2
2.1	Étude du train complet	2
2.2	Étude du train 3 – 9 – 10 – 12	2
2.3	Étude du train 3 – 9′ – 10 – 12 – 18	2

Modélisation et paramétrage

Cinématique

Étude du train complet

On cherche $\frac{\omega(18/3)}{\omega(12/3)}$

Étude du train 3 – 9 – 10 – 12

Le porte satellite 3 est bloqué. Le train épicycloïdal se comporte don comme un train simple. On a donc : $\frac{\omega(12/3)}{\omega(10/3)}$ = $-\frac{Z_{10}Z_9}{Z_{12}Z_9} = -\frac{Z_{10}}{Z_{12}}.$

2.3 Étude du train 3 – 9' – 10 – 12 – 18

On bloque le porte satellite 10 et on libère la pièce 3. On a donc : $\frac{\omega(12/10)}{\omega(18/10)} = -\frac{Z_{18}}{Z_{12}}$. On libère le porte satellite : $\frac{\omega(12/10)}{\omega(18/10)} = \frac{\omega(12/3) + \omega(3/10)}{\omega(18/3) + \omega(3/10)} = -\frac{Z_{18}}{Z_{12}}$.

On a donc:

$$\frac{\omega(12/3) + \omega(3/10)}{\omega(18/3) + \omega(3/10)} = -\frac{Z_{18}}{Z_{12}} \Longleftrightarrow \omega(12/3) + \omega(3/10) = -\frac{Z_{18}}{Z_{12}} (\omega(18/3) + \omega(3/10)) \Longleftrightarrow \omega(3/10) \left(1 + \frac{Z_{18}}{Z_{12}}\right) = -\frac{Z_{18}}{Z_{12}} \omega(18/3) - \omega(12/3) + \omega(3/10) = -\frac{Z_{18}}{Z_{12}} \omega(18/3) + \omega(3/10) = -\frac$$

$$\omega(10/3)\left(1+\frac{Z_{18}}{Z_{12}}\right) = \frac{Z_{18}}{Z_{12}}\omega(18/3) + \omega(12/3)$$

Or $\omega(10/3) = -\omega(12/3) \frac{Z_{12}}{Z_{10}}$. On a donc:

$$-\omega(12/3)\frac{Z_{12}}{Z_{10}}\left(1+\frac{Z_{18}}{Z_{12}}\right) = \frac{Z_{18}}{Z_{12}}\omega(18/3) + \omega(12/3) \Leftrightarrow -\omega(12/3)\left(\frac{Z_{12}}{Z_{10}}\left(1+\frac{Z_{18}}{Z_{12}}\right) + 1\right) = \frac{Z_{18}}{Z_{12}}\omega(18/3)$$

Xavier Pessoles

$$\Leftrightarrow \frac{\omega(18/3)}{\omega(12/3)} = -\frac{Z_{10} + Z_{12} + Z_{18}}{Z_{10}} \cdot \frac{Z_{12}}{Z_{18}}$$