			NOMBRE	FORMA	ÁREA
	TRIÁNGULOS (Polígonos de 3 lados)		Triángulo	b	$A = \frac{b \cdot h}{2}$
	CUADRILÁTEROS (Polígonos de cuatro lados)	CUADRILÁTEROS (Tienen los lados paralelos dos a dos)	Cuadrado		$A = l \cdot l = l^2$
			Rectángulo	b a	$A = b \cdot a$
VAS			Rombo	D	$A = \frac{D \cdot d}{2}$
PLAN			Romboide	h	$A = b \cdot h$
ÁREAS DE FIGURAS PLANAS		TRAPECIOS (Tienen dos lados paralelos)	Trapecio rectángulo	b h B	
			Trapecio isósceles	h B	$A = \frac{(B+b) \cdot h}{2}$
			Trapecio escaleno	h B	
		TRAPEZOIDES	Trapezoide		Se divide en dos triángulos y se suman sus áreas
	POLÍGONOS DE n LADOS		Polígono regular		$A = \frac{p \cdot a}{2}$ $p = \text{perimetro}$ $a = \text{apotema}$
			Polígono irregular		Se descompone en triángulos y se suman sus áreas

		Circunferencia		$L = 2 \cdot \pi \cdot r$
ÁREAS FIGURAS CURVILÍNEAS		Círculo		$A = \pi \cdot r^2$
		Sector circular	r	$A = \frac{\pi \cdot r^2 \cdot n^o}{360^o}$ $n^o = \text{número de grados}$
	Corona circular	r R	$A = \pi R^2 - \pi r^2$	
	Trapecio circular	r n° R	$A = \frac{\pi \cdot \left(R^2 - r^2\right) \cdot n^{\circ}}{360^{\circ}}$	
	Segmento circular	n° r	$A = A_{\substack{ ext{sector} \ ext{circular}}} - A_{\substack{ ext{triángulo} \ ext{isósceles}}}$	
		Elipse		$A = \pi a b$
		Segmento de parábola	a b	$A = \frac{2}{3}ab$

		NOMBRE	FORMA	ÁREAS	VOLUMEN
OLÚMENES ERPOS	ROS os limitados por os)	PRISMA	h la	$A_L = p_B \cdot h$ p_B = perímetro base $A_B = \frac{p_B \cdot a_B}{2}$ a_B = apotema base $A_T = A_L + 2A_B$	$V = A_{\scriptscriptstyle B} \cdot h$
ÁREAS Y VC DE CUI	POLIEDR (Cuerpos geométricos] polígonos)	PIRÁMIDE	a _i h	$A_{TRIANG.} = rac{l_B \cdot a_l}{2}$ a_l = apotema lateral l_B = lado base $A_B = rac{p_B \cdot a_B}{2}$ $A_T = A_L + 2A_B$	$V = \frac{A_B \cdot h}{3}$

OLUCIÓN girar una figura	CILINDRO		$A_L = 2\pi r \cdot h$ $A_B = \pi \cdot r^2$ $A_T = A_L + 2A_B$	$V = A_B \cdot h$
S DE REVO se obtienen al gii plana)	CONO	h g	$A_L = \pi \cdot r \cdot g$ $g = generatriz$ $A_B = \pi \cdot r^2$ $A_T = A_L + A_B$	$V = \frac{A_B \cdot h}{3}$
CUERPOS DE REVOL (Cuerpos que se obtienen al girar plana)	ESFERA	R	$A_T = 4\pi r^2$	$V = \frac{4}{3}\pi R^3$

		NOMBRE	FORMA	ÁREAS	VOLUMEN
NES DE CUERPOS RICOS	TRONCOS (Cuerpos geométricos que se obtienen de otros, al cortarlos por un plano paralelo a la base)	TRONCO DE PIRÁMIDE	h ap	$A_{L} = \frac{(P+p) \cdot ap}{2}$ $P = \text{perimetro base mayor}$ $p = \text{perimetro base menor}$ $ap = \text{apotema tronco}$ $A_{T} = A_{L} + A_{B} + A_{b}$ $A_{B} = \text{área base mayor}$ $A_{b} = \text{área base menor}$	$V = \frac{\left(A_B + A_b + \sqrt{A_B A_b}\right) \cdot h}{3}$
	TR (Cuerpos g obtienen de otre	TRONCO DE CONO	h g	$A_{L} = \pi (R+r) g$ $A_{T} = \pi g (R+r) +$ $+ \pi R^{2} + \pi r^{2}$	$V = \frac{\pi h \left(R^2 + r^2 + Rr\right)}{3}$
ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS	AICOS la esfera al planos)	ZONA ESFÉRICA	n R	$A = 2\pi r \cdot h$	$V = \frac{\pi h \left(h^2 + 3R^2 + 3r^2\right)}{6}$
	CUERPOS ESFÉRICOS (Cuerpos que se obtienen de la esfera al cortarla por uno o varios planos)	CASQUETE ESFÉRICO	h R	$A = 2\pi R \cdot h$	$V = \frac{\pi h^2 \left(3R - h\right)}{3}$
	CUERP (Cuerpos que cortarla po	HUSO (o SECTOR ESFÉRICO)	nº o	$A = 4\pi r^2 \cdot \frac{n^{\circ}}{360^{\circ}}$	$V = \frac{4}{3}\pi r^3 \cdot \frac{n^\circ}{360^\circ}$

Si no queremos memorizar las fórmulas para hallar el volumen de los troncos, lo que se hace es utilizar la semejanza de triángulos y el teorema de Tales.

Para hallar el área y el volumen de un huso esférico podemos usar una regla de tres simple directa.

Otras fórmulas:

Fórmula de Herón para calcular el área de un triángulo:

$$A_{triángulo} = \sqrt{s(s-a)(s-b)(s-c)} \text{ donde } s = \frac{a+b+c}{2} = \text{ semiperíemtro}$$

Segmento de parábola:

$$A_{\text{segmento}\atop\text{de parábola}} = \frac{4}{3} A_{\text{triángulo}}$$

