Les mémoires

Dr Zekrifa Djabeur

Mémoire

- Mémoire
 - Dispositif capable d'enregistrer, de conserver et de restituer des informations
 - Informations binaires pour un ordinateur
- On classe les mémoires selon
 - Caractéristiques : capacité, débit ...
 - Type d'accès : séquentiel, direct ...

Organisation de l'information

- Unité de base : bit
 - Le plus petit élément de stockage
- Octet (ou byte): groupe de 8 bits
- Le caractère (7, 8 ou 16 bits)
 - ◆ Codage selon un standard (ASCII, Unicode ...)
- ◆ Mot: groupement d'octets (8, 16, 32, 64 ...)
 - Unité d'information adressable en mémoire
- Enregistrement : bloc de donnée
- Fichier : ensemble d'enregistrements

Caractéristiques des mémoires

- Adresse
 - Valeur numérique référençant un élément de mémoire (un mot ou un fichier)
- Capacité ou taille
 - Nombre d'informations que peut contenir la mémoire
 - S'exprime en nombre de mots ou d'octets
 - ◆ 128 Mmots de 64 bits, 60 Go, 512 Ko
- Temps d'accès
 - Temps s'écoulant entre le lancement d'une opération de lecture/écriture et son accomplissement

Caractéristiques des mémoires

- Cycle mémoire
 - Temps minimal entre 2 accès successifs à la mémoire
 - Cycle > temps d'accès
 - Car besoin d'opérations supplémentaires entre 2 accès (stabilisation des signaux, synchronisation ...)
- Débit
 - Nombre d'informations lues ou écrites par seconde
 - Exemple : 300 Mo/s
- Volatilité
 - Conservation ou disparition de l'information dans la mémoire hors alimentation électrique de la mémoire

Méthodes d'accès

- Accès séquentiel
 - Pour accéder à une information on doit parcourir toutes les informations précédentes
 - Accès lent
 - Exemple : bandes magnétiques (K7 vidéo)
- Accès direct
 - Chaque information a une adresse propre
 - On peut accéder directement à chaque adresse
 - Exemple : mémoire centrale

Méthodes d'accès

- Accès semi-séquentiel
 - Intermédiaire entre séquentiel et direct
 - Exemple : disque dur
 - Accès direct au cylindre
 - Accès séquentiel au secteur sur un cylindre
- Accès associatif/par le contenu
 - Une information est identifiée par une clé
 - On accède à une information via sa clé
 - Exemple : mémoire cache

Types de mémoire

- 2 grandes familles
 - Mémoires non volatiles : ROM (Read Only Memory) dites mémoires mortes
 - Leur contenu est fixe (ou presque ...)
 - Conservé en permanence
 - Mémoires volatiles : RAM (Random Access Memory) dites mémoires vives
 - Leur contenu est modifiable
 - Perte des informations hors alimentation électrique
 - Random : à prendre dans le sens « accès sans contraintes » (et non pas aléatoire)

Mémoires non volatiles (ROM)

- ROM
 - « Câblage en dur » de l'information
 - Premier type de mémoire morte, on a gardé son nom pour toute cette famille
- PROM : mémoire programmable une seule fois
- EPROM : mémoire reprogrammable (via des ultra-violets)
- EEPROM : mémoire reprogrammable (électriquement)
 - Exemple : BIOS d'un ordinateur

Mémoires volatiles (RAM)

- 2 grands types de RAM
 - DRAM : Dynamic RAM
 - Dynamique : nécessite un rafraîchissement périodique de l'information
 - Peu coûteuse
 - SRAM : Static RAM
 - Statique : ne nécessite pas de rafraîchissement
 - Beaucoup plus rapide que la DRAM
 - Mais beaucoup plus chère

Hiérarchie mémoire

Dans un ordinateur, plusieurs niveaux de mémoire

Registres

- Se trouvent intégrés dans le CPU
- Un registre est un mot stockant des informations relatives à une instruction
 - Opérandes
 - Paramètres
 - Résultats
- Peu nombreux dans un CPU
- Très rapides (vitesse du CPU)
- Voir le cours sur les processeurs

Mémoire cache

- Mémoire intermédiaire entre le processeur et la mémoire centrale
 - Mémoire cache est intégrée dans le processeur et est cadencée à la même fréquence
- But de la mémoire cache
 - Débit de la mémoire centrale très lent par rapport au débit requis par le processeur
 - On accélère la vitesse de lecture des informations par le CPU en les plaçant (en avance) dans le cache
- Mémoire associative
- De type SRAM car doit être rapide
- Taille : de quelques centaines de Ko à quelques Mo

Mémoire centrale

- ◆ Taille : quelques centaines de Mo à quelques Go
- Accès direct
- De type DRAM car moins cher
- Vitesse relativement lente

Comparaison vitesse cache/centrale

- Mémoire : SDRAM-DDR 2100
- Processeur : AMD Athlon XP 2200+ (1.8 Ghz)
- Dans les 2 cas : lecture de mots de 64 bits
- Mémoire
 - Fréquence de 133 Mhz et mots de 64 bits
 - 2 accès par cycle horloge (DDR = Double Data Rate)
 - Débit théorique maximum de 2,1 Go/s (moins en pratique)
- Processeur
 - Cache L1 du processeur : débit mesuré de 18 Go/s
 - Cache L2 du processeur : débit mesuré de 5,6 Go/s

Mémoire de masse

- Mémoire de grande capacité : plusieurs centaines de Mo à plusieurs centaines de Go
- Mémoire non volatile
 - Stockage
- Très lente
- Exemples
 - Disque dur
 - Bande magnétiques
 - DVD ou CD

Hiérarchie mémoire : conclusion

- Organisation de façon à ce que
 - Le CPU accède le plus rapidement possible aux données les plus utilisées
- Hiérarchie
 - Mémoire cache : rapide et petit
 - Mémoire centrale : moins rapide et plus gros
 - Mémoire de masse : lent et très gros
- Plus une mémoire est lente, moins elle est chère