Math 122: Final Review

Alexander H. Patel

alexanderpatel@college.harvard.edu December 9, 2016

From the practice final: 5, 9, 10, 6

• Practice Final # 5: Prove group of order $1495 = 5 \times 13 \times 23$ is cyclic. Number of Sylow 5-subgroups divides 1, 13, 23, or 13×13 , but neither of the final three is 1 mod 5, and so there is only one Sylow 5-subgroup, which is C_5 because 5 is prime, and this subgroup is normal.

The same thing happens for Sylow 13-subgroup and Sylow 23 subgroup. So the Sylow subgroups are $C_5 = \langle a \rangle$, $C_1 = \langle b \rangle$, $C_2 = \langle c \rangle$, and all of them are normal.

Take some element $a \in C_5$ and conjugate by $b \in C_13$. So, $bab^{-1} = a^m$. We want to prove that m = 1 to show that the group is abelian and so cyclic. Similarly, $a^{-1}ba = b^n$.

So $ba = a^m b$ and substituting into second you get $a^{-1}(a^m b) = b^n$. So $a^{m-1} = b^{n-1}$. Since these are both equal, they must both be 1, so m = n = 1, and so a and b commute. The same argument applies to the other two pairs of Sylow subgroups, and so you get that all elements commute with one another.

So you get generators a, b, c where $a^5 = b^1 3 = c^2 3 = 1$ and ab = ba, bc = cb, ca = ac. The fact that the generators commute with eachother shows that the group is $C_5 \times C_1 3 \times C_2 3$.

- Practice Final # 9: R is a ring with ideals I and J. $I + J = \{x + y | x \in I, y \in J\}$.
 - Part (a) show I + J is an ideal omitted, just go from the definition.
 - Part (b) Show if I+J=R then $f:R\to R/J\times R/I$ that sends $a\to (a,a)$ is surjective.

So take $(x,y) \in R/I \times R/J$. We want f(a) = (x,y), so x = a+I and y = a+J. So a = x+I and a = y+J. If we can find an a so that a = x+I and a = y+J then we are done. So then subtracting the two equations we get $0 = x+I-(y+J) = x-y+(I=J) \Rightarrow y-x=I+J$. But this means that $\exists x \in I, j \in J$ such that $i+j=y-x \Rightarrow i+x=-j+y$.

• Practice Final # 10:

 $a, b \in R, \exists s, t \in R \text{ such that } as + bt = 1.$

Part (a) show a^n , b are relatively prime. $a^2s + abt = a$, plug in for a in first equation, you get $(a^2s + abt)s + bt = 1 = a^2s^2 + abts + bt = 1$ so $a^2s^2 + b(ats + t) = 1$. Do the same for $a^3s' + abt' = a$. Then prove by induction.

Part (b) show a^n, b^n are relatively prime. Easy, just assume the result of (a).

Part (c) Ideals I, J are relatively prime so that I + J = R then I^n, J^m are relatively prime so that $I^n + J^m = p$. Because I + J = R, $\exists a \in I, b \in J$ such that a + b = 1. Also, if you know a + b = 1 for $a \in I, b \in J$ then you know that I + J = R by just multiplying by any r.

Assume a+b=1. Re-write as a(1)+b(1)=1. So $a^m(s)+b^n(t)=1$. But then $a^m\in I^m$ and $b^n\in J^n$, so $a^m(s)\in I^m$ and $b^n(t)\in J^n$ and so I^m and J^n are relatively prime.

• Practice Final # 13

$$x^4 + x^2 + 1 = x(x^3 + 1) + x^2 + x + 1$$

 $x^3 + 1 = (x + 1)(x^2 + x + 1)$

• Practice Final # 12

Think of a free module of rank 3 as a vector space on three coordinates.

 $M \subset R$ is a submodule.

- (1) Show M is an ideal. Just go from the definition.
- (2) Show if R is PID then M is either the zero module or or else free of rank 1.

• Practice Final # 1

There are either 1 or 11 Sylow 5-subgroups, but there is only 1 Sylow 11-subgroup. Take $a^5=b^{11}=1$, then $aba^{-1}=b^n$ so $a^5ba^{-5}=b^{n^5}=b$. So $n^5\equiv 1\mod 11$

• Practice Final # 6

 R^{\times} is group of units, R_{+} is R with abelian group addition.

Part (a) take $\lambda \in R^x$, take $\phi(\lambda) : R_+ \to R_+$ that sends $x \to \lambda x$ is an automomorphism. Straightforward to show it is homomorphism. Next consider why it is an isomorphism.

First, $x \neq y$ then $\lambda x \neq \lambda y$. True because $\lambda x - \lambda y = \lambda(x - y)$. Suppose this is equal to 0. Then since $\lambda isaunit$, $\exists \lambda'$ such that $\lambda'\lambda = 1$. So then $\lambda'\lambda(x - y) = 1(x - y) \Rightarrow x = y$ which is a contradiction.

Part (b) show $\phi: R^{\times} \to Aut(R_{+})$ is a group homomorphism. ϕ sends λ to $\phi(\lambda)$. Must show sends identity to identity and that it sends $\lambda \lambda' \to \phi(\lambda)\phi(\lambda') = \phi(\lambda \lambda')$. $\phi(\lambda')\phi(\lambda)(x) = \lambda'\lambda x$ but $\phi(\lambda'\lambda)(x) = \lambda'\lambda x$ so it is a group homomorphism.

Part (c) Show when $R=\mathbb{Z}/n$ then $\phi:R^{\times}\to Aut(R_+)$ is an isomorphism of groups.