Tiempo de Ejecución (I)

Tiempo real de ejecución

- Sean 2 algoritmos de ordenación:
 - Selección
 - Mergesort
- A continuación se muestran datos reales de tiempo que ejecución

Tiempo real de ejecución

Cantidad	Selección	Merge
(N)	(milisegundos)	(milisegundos)
5000	47	0
80000	9391	15
155000	25188	31
230000	55782	47
305000	100312	62
380000	158875	78
455000	229985	109

Tiempo real de ejecución

- Los algoritmos poseen los siguientes órdenes:
 - Selección O(n²)
 - Mergesort O(n*Log(n))

Punto clave

 Calculamos el T(N) y el O(N) para comparar el desempeño de los algoritmos, sin necesidad de cronometrar su tiempo.

¿2ⁿ⁺¹ es O(2ⁿ)?

(es decir, 2^{n+1} crece a una velocidad \leq que 2^n ?)

Para que 2^{n+1} sea $O(2^n)$, usando definición de BigOh, tiene que verificarse que $2^{n+1} \le c2^n$ para todo $n \ge n_0$.

Ahora bien, $2^{n+1} = 2*2^n$

En particular, podemos decir que $2^{n+1} \le 2^{n+1}$.

Considerando c=2 y dado que vale para todo

 $\mathbf{n_0} > = \mathbf{0}$ logramos acotar 2^{n+1} con $c2^n$ por lo cual, 2^{n+1} es $O(2^n)$.

Puntos claves

Definición de BigOh: T(n) es O(n) si existen constantes c>0 y n₀, tal que T(n) <= cO(n) para todo n>=n₀

- Deben definirse arbitrariamente c y n₀
 para verificar la desigualdad
- Las propiedades de potenciación siguen valiendo

¿2²ⁿ es O(2ⁿ)?

Usando definición de BigOh, tiene que verificarse que 2²ⁿ <= c2ⁿ para todo n>=n₀

Ahora bien, $2^{2n} = 2^{n*}2^{n}$.

Por lo cual, podemos escribir 2ⁿ*2ⁿ <= c2ⁿ

Despejando c, $2^{n*}2^{n}/2^{n} \le c$.

Simplificando, 2ⁿ<= c.

Sin embargo, esto es absurdo, puesto que **nunca** se puede acotar con una constante a una función creciente. Por lo cual 2²ⁿ no es O(2ⁿ).

Encontrar T(n)

```
public static void uno (int n) {
    int i, j, k;
    int [] [] a, b, c;
    a = new int [n] [n];
    b = new int [n] [n];
    c = new int [n] [n];
    for ( i=1; i<=n-1; i++) {
          for ( j=i+1; j<=n; j++) {
                for (k=1; k \le j; k++) {
                   c[i][j] = c[i][j]+
a[i][j]*b[i][j];
```

Encontrar T(n)

$$T(n) = c1 + \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \sum_{k=1}^{j} c2 = c1 + \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} (j * c2) = c1 + c2 * \left(\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} j\right) = c1 + c2 * \left(\sum_{i=1}^{n} j\right) = c1 + c2 * \left(\sum_{i=1}^{n}$$

$$T(n) = c1 + c2 * \sum_{i=1}^{n-1} \left(\sum_{j=1}^{n} j - \sum_{j=1}^{i} j \right) = c1 + c2 * \sum_{i=1}^{n-1} \left(\frac{n * (n+1)}{2} - \frac{i * (i+1)}{2} \right) = c1 + c2 * \sum_{i=1}^{n-1} \left(\frac{n * (n+1)}{2} - \frac{i * (i+1)}{2} \right) = c1 + c2 * \sum_{i=1}^{n-1} \left(\frac{n * (n+1)}{2} - \frac{i * (i+1)}{2} \right) = c1 + c2 * \sum_{i=1}^{n-1} \left(\frac{n * (n+1)}{2} - \frac{i * (i+1)}{2} \right) = c1 + c2 * \sum_{i=1}^{n-1} \left(\frac{n * (n+1)}{2} - \frac{i * (i+1)}{2} \right) = c1 + c2 * \sum_{i=1}^{n-1} \left(\frac{n * (n+1)}{2} - \frac{i * (i+1)}{2} \right) = c1 + c2 * \sum_{i=1}^{n-1} \left(\frac{n * (n+1)}{2} - \frac{i * (i+1)}{2} \right) = c1 + c2 * \sum_{i=1}^{n-1} \left(\frac{n * (n+1)}{2} - \frac{i * (i+1)}{2} \right) = c1 + c2 * \sum_{i=1}^{n-1} \left(\frac{n * (n+1)}{2} - \frac{i * (n+1)}{2} - \frac{i * (n+1)}{2} \right) = c1 + c2 * \sum_{i=1}^{n-1} \left(\frac{n * (n+1)}{2} - \frac{i * (n+1)}{2} - \frac{i * (n+1)}{2} \right) = c1 + c2 * \sum_{i=1}^{n-1} \left(\frac{n * (n+1)}{2} - \frac{i * (n+1$$

$$T(n) = c1 + \frac{c2}{2} \sum_{i=1}^{n-1} n * (n+1) - \frac{c2}{2} \sum_{i=1}^{n-1} i * (i+1) = c1 + \frac{c2}{2} (n-1) * n * (n+1) - \frac{c2}{2} \sum_{i=1}^{n-1} (i^2 + i) = c1 + \frac{c2}{2} \sum_{i=1}^{n-1} (n+1) - \frac{c2}{2} \sum_{i=1}^{n-1} (i^2 + i) = c1 + \frac{c2}{2} \sum_{i=1}^{n-1} (n+1) - \frac{c2}{2} \sum_{i=1}^{n-1} (i^2 + i) = c1 + \frac{c2}{2} \sum_{i=1}^{n-1} (n+1) - \frac{c2}{2} \sum_{i=1}^{n-1} (i^2 + i) = c1 + \frac{c2}{2} \sum_{i=1}^{n-1} (n+1) - \frac{c2}{2} \sum_{i=1}^{n-1} (i^2 + i) = c1 + \frac{c2$$

$$c1 + \frac{c2}{2}(n-1) * n * (n+1) - \frac{c2}{2} \sum_{i=1}^{n-1} (i^2) - \frac{c2}{2} \sum_{i=1}^{n-1} (i) =$$

$$c1 + \frac{c2}{2}(n-1) * n * (n+1) - \frac{c2}{2} \left(\frac{(n-1) * n(2(n-1)+1)}{6} \right) - \frac{c2}{2} \left(\frac{(n-1)n}{2} \right)$$

Puntos claves

- Traducir constantes o iteraciones correctamente.
- Respetar los límites de las iteraciones al traducirlas a sumatorias (respetando las variables).
- Prestar atención a si dentro de una sumatoria se suma o no la variable índice.
- Tener presente que las equivalencias para la suma de los n primeros números naturales comienza en 1 y no en un número arbitrario.