

Universidade Federal da Bahia Escola Politécnica Colegiado do Curso de Eng. Elétrica

Equipe: NA1
Augusto Cesar Oliveira Marval
Daniel Novaes Augusto da Silva
Ricardo Augusto de Araújo Machado

Trabalho de Curto-Circuito: Curto-Circuito Simétrico

Equipe: NA1 Augusto Cesar Oliveira Marval Daniel Novaes Augusto da Silva Ricardo Augusto de Araújo Machado

Trabalho de Curto-Circuito: Curto-Circuito Simétrico

Trabalho apresentado à disciplina Sistemas de Potência I da Universidade Federal da Bahia como requisito parcial para a obtenção de nota.

Sumário

1	INTRODUÇÃO
2	SCRIPT
2.1	Definição das zonas do sistema por unidade.
2.2	Diagrama de sequência positiva do circuito.
2.3	Matriz Ybarra
2.4	Matriz Zbarra
2.5	Curto-circuito trifásico
2.5.1	Curto-circuito trifásico na barra 4
2.5.2	Curto-circuito trifásico na barra 9
2.5.3	Curto-circuito trifásico na barra 11
3	SIMULAÇÕES
3.1	Curto-circuito trifásico
3.1.1	Curto-circuito trifásico na barra 4
3.1.2	Curto-circuito trifásico na barra 9
3.1.3	Curto-circuito trifásico na barra 11
3.2	Especificação do disjuntor 52-1
3.3	Impedância do transformador TR 02T1 para obter nível de curto- circuito inferior à 8 kA no sistema de distribuição
3.4	Potência de curto-circuito máxima de um empreendimento de geração a ser instalado na Barra 7.
3.5	Mudança no grupo vetorial dos transformadores para Yy0y0 e Yy0. 19
4	CONCLUSÃO
5	TABELAS RESUMO 23
	REFERÊNCIAS 2!

1 Introdução

O objetivo deste relatório é apresentar os resultados obtidos nas atividades de simulação realizadas na segunda unidade da disciplina de Sistemas de Potência. Durante este período, foi fornecido um circuito unifilar e solicitado aos discentes que realizassem cálculos de tensão para faltas simétricas em barramentos específicos, além de outras tarefas relacionadas. Para cumprir essas demandas, utilizamos as ferramentas *MATLAB* para cálculos e o software ANAFAS para simulações.

O relatório está dividido em duas partes distintas, sendo a primeira destinada a descrever e discutir os resultados obtidos por meio do MATLAB, enquanto a segunda parte abordará os resultados provenientes do ANAFAS. A divisão facilitará a compreensão dos resultados e permitirá uma análise comparativa quando necessário. A análise do sistema elétrico foi conduzida de forma abrangente, utilizando o MATLAB para cálculos essenciais e o ANAFAS para simulações que complementam e validam as conclusões. A seguir, apresentaremos em detalhes os resultados e conclusões de cada parte deste estudo.

Para a análise do sistema elétrico, foi elaborado um *script* no *MATLAB* e realizadas simulações no ANAFAS. No decorrer do estudo, foram simulados curtos-circuitos simétricos nas barras 4, 9 e 11. Além disso, foi projetado um disjuntor de 52-1 e foram investigadas as implicações de ter transformadores no arranjo Yy0y0 ou Yy0. Adicionalmente, foi determinada a potência de curto-circuito máxima para um empreendimento de geração que seria instalado na Barra 7, assegurando que as capacidades de interrupção dos disjuntores não ultrapassassem 15% dos valores originais.

2 Script

Foi desenvolvido um programa em MATLAB para atender às exigências do trabalho, que incluem a determinação das impedâncias em PU, obtenção da matriz de impedância de barra e o cálculo das tensões pós-falta e correntes pós-falta no sistema.

2.1 Definição das zonas do sistema por unidade.

O diagrama unilifar do sistema elétrico abordado no trabalho é visto na figura separado em três zonas distintas de tensão. Dessa forma, adota-se $S_B = 100~MVA$ como potência de base para o sistema por unidade e calcula-se as correntes e impedâncias de base de acordo com a equação 2.1.

Fig. 1 – Diagrama unifilar do sistema separado em zonas.

$$I_B = \frac{S_B}{\sqrt{3}V_B I_B} \; ; \; Z_B = \frac{V_B^2}{S_B}$$
 (2.1)

Valores obtidos para a Zona 1:

$$S_B = 100 \ MVA \mid V_{B1} = 230kV \mid I_{B1} = 251.0219 \ A \mid Z_{B1} = 529 \ \Omega$$
 (2.2)

Valores obtidos para a Zona 2:

$$S_B = 100 \ MVA \mid V_{B2} = 69kV \mid I_{B2} = 836.7395 \ A \mid Z_{B2} = 47.61 \ \Omega$$
 (2.3)

Valores obtidos para a Zona 3:

$$S_B = 100 \ MVA \mid V_{B3} = 13.8kV \mid I_{B3} = 4.1837 \ kA \mid Z_{B2} = 1.9044 \ \Omega$$
 (2.4)

2.2 Diagrama de sequência positiva do circuito.

A primeira etapa para a elaboração do diagrama de sequência positiva consiste em passar todas as impedâncias do sistema para pu.

É possível calcular todos os valores em PU (Por unidade) para as impedância das linhas de transmissão. Utiliza-se a fórmula:

$$Z_{LT}(pu) = \frac{Z_{LT}(\frac{\Omega}{Km}) \cdot l}{Z_B}$$
 (2.5)

O comprimento da linha, representado por l, é uma variável que depende do valor de NA. Dado que as expressões envolvidas no cálculo das impedâncias de linha são claramente definidas, é factível implementá-las no ambiente MATLAB. Isso nos permitirá obter as impedâncias de linha desejadas de maneira eficiente e precisa, levando em consideração a variação do comprimento da linha em relação ao valor de NA. Resultado para as impedâncias de linha:

$$Z_{lt01c1} = (0.0662 + 0.3924j) \text{ pu}$$
 (2.6)

$$Z_{lt01c2} = (0.0662 + 0.3924j) \text{ pu}$$
 (2.7)

$$Z_{lt02c1} = (0.0306 + 0.1817j) \text{ pu}$$
 (2.8)

$$Z_{lt02c2} = (0.0306 + 0.1817j) \text{ pu}$$
 (2.9)

$$Z_{lt03c1} = (0.0612 + 0.4449j) \text{ pu}$$
 (2.10)

$$Z_{lt04c1} = (0.0390 + 0.5212j) \text{ pu}$$
 (2.11)

$$Z_{lt04c2} = (0.0390 + 0.5212j) \text{ pu}$$
 (2.12)

$$Z_{lt01i1} = (0.0275 + 0.4509j) \text{ pu}$$
 (2.13)

$$Z_{lt02j1} = (0.0214 + 0.3509j) \text{ pu}$$
 (2.14)

$$Z_{lt03j1} = (0.0215 + 0.2611j) \text{ pu}$$
 (2.15)

$$Z_{lt04j1} = (0.0153 + 0.2509j) \text{ pu}$$
 (2.16)

$$Z_{lt01k1} = (0.0577 + 1.0620j) \text{ pu}$$
 (2.17)

No caso dos transformadores, é essencial realizar a mudança de base das impedâncias fornecidas pelo fabricante para o valor da potência de base adotada no trabalho. Especificamente no transformador de três enrolamentos, a impedância a ser considerada é

apenas o componente Zps, uma vez que o terciário se encontra em aberto. Dessa forma, para o transformador TR01T1 - Yd1d1:

$$R_{ps} = 0.0481 + NA \cdot 10^{-4} \mid X_{ps} = 7.5457 + NA \cdot 10^{-2}$$
 (2.18)

$$Z_{psTR01T1} = R_{ps} + jX_{ps} = 0.0005 + 0.0756j \ pu$$
 (2.19)

Já para os outros transformadores, a impedância é dada em porcentagem e numa base de potência diferente(S_{B0}) da base adotada no trabalho(S_B). Dessa forma, o valor das impedâncias em pu é obtido pela equação 2.20.

$$Z_{trafo} = \frac{Z_{trafo}(\%)}{100} \cdot \frac{S_B}{S_{B0}} \tag{2.20}$$

Para o transformador TR01T2:

$$Z_{TR01T2} = \left(\frac{j \cdot \left(4.2 + \frac{NA}{100}\right)}{100}\right) \cdot \left(\frac{100 \ MVA}{40 \ MVA}\right) = j0.1052$$
 (2.21)

Para o transformador TR02T1:

$$Z_{TR02T1} = \left(\frac{j \cdot \left(4 + \frac{NA}{100}\right)}{100}\right) \cdot \left(\frac{100 \ MVA}{20 \ MVA}\right) = j0.2005$$
 (2.22)

Para o transformador TR03T1:

$$Z_{TR03T1} = \left(\frac{j \cdot \left(5.5 + \frac{NA}{100}\right)}{100}\right) \cdot \left(\frac{100 \ MVA}{30 \ MVA}\right) = j0.1837 \tag{2.23}$$

A impedância do equivalente de rede da barra 1 é dada em percentual, portanto, o valor em pu é descrito pela equação abaixo.

$$Z_{eq\#1} = \frac{Z_{eq\#1}(\%)}{100} = 0.0075 + j0.1355$$
 (2.24)

A impedância do equivalente de rede da barra 3 pode ser calculada com base na potência complexa do equivalente de rede.

$$Z_{eq\#3} = \frac{1}{\mathbf{S}_{cc3\phi}} = 0.0003 + j0.0069 \tag{2.25}$$

Após colocar todas as impedâncias do circuito em pu, chega-se no seguinte Diagrama de Sequência Positiva visto na figura 2:

Fig. 2 – Diagrama de sequência positiva do sistema.

2.3 Matriz Ybarra

Como a Y_{barra} é esparsa, ela pode ser obtida no script através da criação de uma matriz 11x11 nula e pela posterior substituição dos termos diferentes de zero. As expressões dos termos não nulos da Y_{barra} são listados na equação abaixo.

$$Y_{1,1} = \frac{1}{Z_{eq\#1}} + \frac{1}{Z_{lt02c1}} + \frac{1}{Z_{lt02c2}} + \frac{1}{Z_{lt04c1}} + \frac{1}{Z_{lt04c2}}$$
 (2.26)

$$Y_{2,2} = \frac{1}{Z_{lt02c1}} + \frac{1}{Z_{lt02c2}} + \frac{1}{Z_{lt03c1}}$$
 (2.27)

$$Y_{3,3} = \frac{1}{Z_{lt01c2}} + \frac{1}{Z_{lt01c1}} + \frac{1}{Z_{eg\#3}}$$
 (2.28)

$$Y_{4,4} = \frac{1}{Z_{lt01c2}} + \frac{1}{Z_{lt01c1}} + \frac{1}{Z_{ps}} + \frac{1}{Z_{tr01t2}} + \frac{1}{Z_{lt03c1}}$$
(2.29)

$$Y_{5,5} = \frac{1}{Z_{ps}} + \frac{1}{Z_{tr01t2}} + \frac{1}{Z_{lt01j1}} + \frac{1}{Z_{lt02j1}}$$
(2.30)

$$Y_{6,6} = \frac{1}{Z_{lt02j1}} + \frac{1}{Z_{lt04j1}} + \frac{1}{Z_{lt03j1}}$$
(2.31)

$$Y_{7,7} = \frac{1}{Z_{lt03j1}} + \frac{1}{Z_{tr03t1}} \tag{2.32}$$

$$Y_{8,8} = \frac{1}{Z_{tr03t1}} + \frac{1}{Z_{lt04c1}} + \frac{1}{Z_{lt04c2}}$$
(2.33)

$$Y_{9,9} = \frac{1}{Z_{lt04j1}} + \frac{1}{Z_{lt01j1}} + \frac{1}{Z_{tr02t1}}$$
(2.34)

$$Y_{10,10} = \frac{1}{Z_{tr02t1}} + \frac{1}{Z_{lt01k1}} \tag{2.35}$$

$$Y_{11,11} = \frac{1}{Z_{lt01k1}} \tag{2.36}$$

$$Y_{2,1} = Y_{1,2} = -\left(\frac{1}{Z_{lt02c1}} + \frac{1}{Z_{lt02c2}}\right)$$
 (2.37)

$$Y_{8,1} = Y_{1,8} = -\left(\frac{1}{Z_{lt04c1}} + \frac{1}{Z_{lt04c2}}\right)$$
 (2.38)

$$Y_{4,2} = Y_{2,4} = -\frac{1}{Z1_{t=0.3c1}} (2.39)$$

$$Y_{4,3} = Y_{3,4} = -\left(\frac{1}{Z_{lt01c2}} + \frac{1}{Z_{lt01c1}}\right)$$
 (2.40)

$$Y_{5,4} = Y_{4,5} = -\left(\frac{1}{Zps} + \frac{1}{Z_{tr01t2}}\right)$$
 (2.41)

$$Y_{6,5} = Y_{5,6} = -\frac{1}{Z_{lt02i1}} (2.42)$$

$$Y_{9,5} = Y_{5,9} = -\frac{1}{Z_{lt01j1}} \tag{2.43}$$

$$Y_{9,6} = Y_{6,9} = -\frac{1}{Z_{lt04j1}} \tag{2.44}$$

$$Y_{7,6} = Y_{6,7} = -\frac{1}{Z_{tt03i1}} (2.45)$$

$$Y_{8,7} = Y_{7,8} = -\frac{1}{Z_t r 03t1} (2.46)$$

$$Y_{10,9} = Y_{9,10} = -\frac{1}{Z_{tr02t1}} (2.47)$$

$$Y_{11,10} = Y_{10,11} = -\frac{1}{Z_{lt01k1}} (2.48)$$

A matriz Y_{barra} é calculada através do MATLAB a partir das expressões desenvolvidas acima. Os valores obtidos são apresentados nas tabelas 1 e 2.

Coluna 1	Coluna 2	Coluna 3	Coluna 4	Coluna 5
2.49897-21.88071i	-1.80526+10.70534i	0	0	0
-1.80526+10.70534i	2.10869-12.91119i	0	-0.30343+2.20585i	0
0	0	7.98745-150.11458i	-0.83568+4.95567i	0
0	-0.30343+2.20585i	-0.83568+4.95567i	1.22354-29.89721i	-0.08443+22.73569i
0	0	0	-0.08443+22.73569i	0.39183-27.78455i
0	0	0	0	-0.17286+2.83920i
0	0	0	0	0
-0.28565+3.81590i	0	0	0	0
0	0	0	0	-0.13454+2.20966i
0	0	0	0	0
0	0	0	0	0

Tab. 1 – Colunas 1 a 5 da matriz Y_{barra}

Tab. 2 – Colunas 6 a 11 da matriz Y_{barra}

Coluna 6	Coluna 7	Coluna 8	Coluna 9	Coluna 10	Coluna 11
0	0	-0.28565+3.81590i	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
-0.17286+2.83920i	0	0	-0.13454+2.20966i	0	0
0.72783-10.61328i	-0.31323+3.80374i	0	-0.24173+3.97035i	0	0
-0.31323+3.80374i	0.31323-9.24838i	0.00000+5.44465i	0	0	0
0	0.00000+5.44465i	0.28565-9.26055i	0	0	0
-0.24173+3.97035i	0	0	0.37627-11.16754i	0.00000+4.98753i	0
0	0	0	0.00000+4.98753i	0.05105-5.92641i	-0.05105+0.93887i
0	0	0	0	-0.05105+0.93887i	0.05105-0.93887i

Matriz Zbarra 2.4

 A Z_{barra} é obtida pela inversão da matriz Y_{barra} . As colunas da matriz impedância de barra são mostradas na tabelas 3 e 4.

Tab. 3 – Colunas 1 a 5 da matriz Z_{barra}

$$Z_{barra} = (Y_{barra})^{-1} (2.49)$$

Coluna 1	Coluna 2	Coluna 3	Coluna 4	Coluna 5
0.00765 + 0.10881i	0.00676 + 0.09715i	-0.00002+0.00135i	0.00414 + 0.04022i	0.00414 + 0.04329i
0.00676+0.09715i	0.01902 + 0.16587i	0.00003 + 0.00194i	0.00739 + 0.05766i	0.00727+0.05942i
-0.00002+0.00135i	0.00003 + 0.00194i	0.00034 + 0.00680i	0.00014 + 0.00483i	0.00014 + 0.00468i
0.00414+0.04022i	0.00739 + 0.05766i	0.00014 + 0.00483i	0.02062 + 0.14309i	0.02012+0.13847i
0.00414 + 0.04329i	0.00727 + 0.05942i	0.00014+0.00468i	0.02012 + 0.13847i	0.01989 + 0.17621i
0.00505+0.05961i	0.00716 + 0.06882i	0.00010 + 0.00385i	0.01609 + 0.11400i	0.01590+0.14311i
0.00645 + 0.07782i	0.00726 + 0.07932i	0.00004 + 0.00292i	0.01100 + 0.08676i	0.01065 + 0.10621i
0.00638 + 0.09063i	0.00673 + 0.08667i	0.00004+0.00227i	0.00902 + 0.06743i	0.00910+0.08013i
0.00472 + 0.05377i	0.00720 + 0.06545i	0.00012+0.00414i	0.01753 + 0.12275i	0.01733 + 0.15494i
0.00472+0.05377i	0.00720 + 0.06545i	0.00012+0.00414i	0.01753 + 0.12275i	0.01733 + 0.15494i
0.00472 + 0.05377i	0.00720 + 0.06545i	0.00012+0.00414i	0.01753 + 0.12275i	0.01733 + 0.15494i

Coluna 6	Coluna 7	Coluna 8	Coluna 9	Coluna 10	Coluna 11
0.00505+0.05961i	0.00645 + 0.07782i	0.00638 + 0.09063i	0.00472 + 0.05377i	0.00472 + 0.05377i	0.00472+0.05377i
0.00716 + 0.06882i	0.00726 + 0.07932i	0.00673 + 0.08667i	0.00720 + 0.06545i	0.00720 + 0.06545i	0.00720 + 0.06545i
0.00010 + 0.00385i	0.00004 + 0.00292i	0.00004 + 0.00227i	0.00012+0.00414i	0.00012 + 0.00414i	0.00012+0.00414i
0.01609 + 0.11400i	0.01100 + 0.08676i	0.00902 + 0.06743i	0.01753 + 0.12275i	0.01753 + 0.12275i	0.01753 + 0.12275i
0.01590 + 0.14311i	0.01065 + 0.10621i	0.00910 + 0.08013i	0.01733 + 0.15494i	0.01733 + 0.15494i	0.01733 + 0.15494i
0.02373 + 0.29799i	0.01467 + 0.20979i	0.01342 + 0.14765i	0.02093 + 0.24261i	0.02093 + 0.24261i	0.02093+0.24261i
0.01467 + 0.20979i	0.02165 + 0.32546i	0.01986 + 0.22301i	0.01324 + 0.17275i	0.01324 + 0.17275i	0.01324 + 0.17275i
0.01342 + 0.14765i	0.01986 + 0.22301i	0.02003 + 0.27602i	0.01188 + 0.12351i	0.01188 + 0.12351i	0.01188 + 0.12351i
0.02093+0.24261i	0.01324 + 0.17275i	0.01188 + 0.12351i	0.02946 + 0.37248i	0.02946 + 0.37248i	0.02946 + 0.37248i
0.02093+0.24261i	0.01324 + 0.17275i	0.01188 + 0.12351i	0.02946 + 0.37248i	0.02946 + 0.57298i	0.02946 + 0.57298i
0.02093+0.24261i	0.01324 + 0.17275i	0.01188 + 0.12351i	0.02946 + 0.37248i	0.02946 + 0.57298i	0.08720 + 1.63495i

Tab. 4 – Colunas 6 a 11 da matriz Z_{barra}

2.5 Curto-circuito trifásico

Na área de sistemas de potência, uma falta em circuitos elétricos refere-se a qualquer anomalia que perturba o fluxo regular de corrente. O curto-circuito simétrico caracteriza-se por envolver todas as fases de um sistema trifásico e corresponde a cerca de 5% das faltas que ocorrem.(GRAINGER; STEVENSON, 1994)

Os valores da tensões pré-falta referenciadas à barra 1 são carregados no vetor $\begin{bmatrix} \vec{V_{pr\acute{e}B1}} \end{bmatrix}$ dentro do MATLAB. Devido ao grupo vetorial dos transformadores, é preciso criar também os vetores $\begin{bmatrix} \vec{V_{pr\acute{e}B9}} \end{bmatrix}$ e $\begin{bmatrix} \vec{V_{pr\acute{e}B11}} \end{bmatrix}$, que representam as tensões pré-falta referenciadas à barra 9 e 11, respectivamente.

$$\begin{bmatrix} \vec{V_{pr\acute{e}B9}} \end{bmatrix} = \begin{bmatrix} \vec{V_{pr\acute{e}B1}} \end{bmatrix} \cdot 1 \angle -30^{\circ} \tag{2.50}$$

$$[\overrightarrow{V_{pr\acute{e}B11}}] = [\overrightarrow{V_{pr\acute{e}B1}}] \cdot 1 \angle -60^{\circ}$$
 (2.51)

2.5.1 Curto-circuito trifásico na barra 4

A corrente de falta obtida para um curto-circuito simétrico com $R_f=0.264~\Omega$ é descrita na equação 2.52 .O vetor $\left[V_{pr\acute{e}B1}\right]$ é utilizado nos cálculos a seguir, pois as barras 1 e 4 têm a mesma referência de fase.

$$\vec{I_f} = \frac{\vec{V}_{\#4pr\acute{e}}}{Z_{4,4} + R_f} = 6.7843 \angle -60.3275^{\circ} \ pu = 1703.00 \angle -60.3275^{\circ} \ A \tag{2.52}$$

As tensões de pós-falta do sistema são calculadas pela forma matricial no *script*. Conforme visto na equação 2.53, o vetor das tensões pós-falta referenciadas a barra 4 ($[V_{p\acute{o}sB4}]$) é dado pela subtração do vetor das tensões pré-falta com a coluna 4 da matriz Z_{barra} multiplicada por $\vec{I_f}$.

$$[\vec{V_{p\acute{o}sB4}}] = [\vec{V_{p\acute{o}sB1}}] - \vec{I_f} \cdot col_4(Z_{barra})$$
(2.53)

Para colocar cada barra do circuito em sua referência de fase relativa cria-se um vetor auxiliar no MATLAB (D_{B1}) para defasar corretamente as tensões.

$$D_{B1} = [1; 1; 1; 1; 1 \angle -30^{\circ}; 1 \angle -30^{\circ}; 1 \angle -30^{\circ}; 1; 1 \angle -30^{\circ}; 1 \angle -60^{\circ}; 1 \angle -60^{\circ}]$$
(2.54)

O vetor das tensões pós-falta com a referência de fase corrigida é obtido pela multiplicação por elemento do vetor $\begin{bmatrix} \overrightarrow{V_{pósB4}} \end{bmatrix}$ com o vetor de defasagem D_{B1} .

$$\begin{bmatrix} \vec{V_{ip6sA}} \end{bmatrix} = \vec{V_{p6sB4}} \quad .* D_{B1}$$
(2.55)

As fases B e C das tensões pós-falta são obtidas defasando o vetor $\left[\overrightarrow{V_{p\acute{o}sA}}\right]$ em -120° e 120° , respectivamente.

$$\begin{bmatrix} \vec{V_{ip\acute{o}sB}} \end{bmatrix} = \begin{bmatrix} \vec{V_{ip\acute{o}sA}} \end{bmatrix} \angle -120^{\circ}$$
(2.56)

Os valores de tensões pós-falta obtidos para a simulação de curto-circuito simétrico estão na parte 1 a) i da tabelas 5 e 6.

As correntes pós-falta dos transformadores e das linhas de transmissão circunvizinhas à barra 4 são calculadas com base nas equações abaixo. Os valores obtidos são vistos na tabela 7.

$$\vec{I}_{lt03c1} = \frac{\vec{V}_{\#2p\acute{o}s} - \vec{V}_{\#4p\acute{o}s}}{Z_{lt03c1}}$$
(2.58)

$$\vec{I}_{lt01c1} = \frac{\vec{V}_{\#3p\acute{o}s} - \vec{V}_{\#4p\acute{o}s}}{Z_{lt01c1}}$$
(2.59)

$$\vec{I}_{lt01c2} = \frac{\vec{V}_{\#3p\acute{o}s} - \vec{V}_{\#4p\acute{o}s}}{Z_{lt01c2}}$$
(2.60)

$$\vec{I}_{tr01t1} = \frac{\vec{V}_{\#5p\acute{o}s} - \vec{V}_{\#4p\acute{o}s}}{Z_{ps}}$$
 (2.61)

$$\vec{I}_{tr01t2} = \frac{\vec{V}_{\#5p\acute{o}s} - \vec{V}_{\#4p\acute{o}s}}{Z_{tr01t2}}$$
 (2.62)

2.5.2 Curto-circuito trifásico na barra 9

De forma análoga ao procedimento realizado anteriormente, a corrente de falta para um curto-circuito trifásico na barra 9 com resistência de falta $R_f = 0.388~\Omega$ é dada pela equação 2.63. A tensão de pré-falta $\vec{V}_{\#9pr\acute{e}}$ é referenciada em relação à barra 9.

$$\vec{I_f} = \frac{\vec{V}_{\#9pr\acute{e}}}{Z_{9.9} + R_f} = 2.5653 \angle -100.5188^{\circ} \ pu = 2146.52 \angle -100.5188^{\circ} \ A \tag{2.63}$$

O vetor das tensões de pós-falta do circuito é descrito pela equação 2.64.

$$[\vec{V_{p\acute{o}sB9}}] = [\vec{V_{p\acute{o}sB9}}] - \vec{I_f} \cdot col_9(Z_{barra})$$
(2.64)

Para colocar cada barra do circuito em sua referência de fase relativa cria-se um vetor auxiliar no MATLAB (D_{B9}) para defasar corretamente as tensões.

$$D_{B9} = [1 \angle 30; 1 \angle 30; 1 \angle 30; 1 \angle 30; 1; 1; 1; 1; 1 \angle 30; 1; 1 \angle -30; 1 \angle -30]$$
 (2.65)

O vetor das tensões pós-falta com a referência de fase corrigida é obtido pela multiplicação por elemento do vetor $\left[V_{p\acute{o}sB9}^{\vec{}}\right]$ com o vetor de defasagem D_{B9} .

$$[\overrightarrow{V_{iip\acute{o}sA}}] = [\overrightarrow{V_{p\acute{o}sB9}}] \cdot *D_{B9}$$
 (2.66)

As fases B e C das tensões pós-falta são obtidas defasando o vetor $\begin{bmatrix} \vec{V_{iipósA}} \end{bmatrix}$ em -120° e 120° , respectivamente.

$$\begin{bmatrix} \overrightarrow{V_{iip\acute{o}sB}} \end{bmatrix} = \begin{bmatrix} \overrightarrow{V_{iip\acute{o}sA}} \end{bmatrix} \angle -120^{\circ}$$
(2.67)

$$[\vec{V_{iip\acute{o}sC}}] = [\vec{V_{iip\acute{o}sA}}] \ \angle \ 120^{\circ}$$
 (2.68)

Os valores de tensões pós-falta obtidos para a simulação de curto-circuito simétrico estão na parte 1 a) ii da tabelas 5 e 6.

As correntes pós-falta dos transformadores e das linhas de transmissão circunvizinhas à barra 9 são calculadas com base nas equações abaixo. Os valores obtidos para as correntes são exibidos na tabela 8.

$$\vec{I}_{TR02T1} = \frac{\vec{V}_{\#10p\acute{o}s} - \vec{V}_{\#9p\acute{o}s}}{Z_{TR02T1}}$$
(2.69)

$$\vec{I}_{LT01J1} = \frac{\vec{V}_{\#5p\acute{o}s} - \vec{V}_{\#9p\acute{o}s}}{Z_{LT01J1}}$$
(2.70)

$$\vec{I}_{LT04J1} = \frac{\vec{V}_{\#6p\acute{o}s} - \vec{V}_{\#9p\acute{o}s}}{Z_{LT04J1}}$$
(2.71)

2.5.3 Curto-circuito trifásico na barra 11

A equação 2.72 descreve a expressão da corrente de falta para o curto-circuito trifásico na barra 11 com resistência de falta $R_f=0.172~\Omega.$

$$\vec{I_f} = \frac{\vec{V}_{\#11pr\acute{e}}}{Z_{11.11} + R_f} = 0.5824 \angle -131.4062^{\circ} \ pu = 2436.61 \angle -131.4062^{\circ} \ A \tag{2.72}$$

O vetor das tensões de pós-falta é obtido de forma análoga ao procedimento realizado nos casos anteriores de curto-circuito.

$$[\overrightarrow{V_{p\acute{o}sB11}}] = [\overrightarrow{V_{pr\acute{e}B11}}] - \overrightarrow{I_f} \cdot col_{11}(Z_{barra})$$
(2.73)

Para colocar cada barra do circuito em sua referência de fase relativa cria-se um vetor auxiliar no MATLAB (D_{B11}) para defasar corretamente as tensões.

$$D_{B11} = [1 \angle 60; 1 \angle 30; 1 \angle 30; 1 \angle 30; 1 \angle 30; 1 \angle 60; 1 \angle 30; 1; 1]]$$
(2.74)

O vetor das tensões pós-falta com a referência de fase corrigida é obtido pela multiplicação por elemento do vetor $V_{p\acute{o}sB11}$ com o vetor de defasagem D_{B11} .

$$[\overrightarrow{V_{iiip\acute{o}sA}}] = [\overrightarrow{V_{p\acute{o}sB11}}] \cdot *D_{B11}$$
 (2.75)

As fases B e C das tensões pós-falta são obtidas defasando o vetor $\begin{bmatrix} \vec{V_{iiipósA}} \end{bmatrix}$ em -120° e 120° , respectivamente.

$$\begin{bmatrix} \overrightarrow{V_{iiip\acute{o}sB}} \end{bmatrix} = \begin{bmatrix} \overrightarrow{V_{iiip\acute{o}sA}} \end{bmatrix} \angle -120^{\circ}$$
(2.76)

$$[\vec{V_{iiip\acute{o}sC}}] = [\vec{V_{iiip\acute{o}sA}}] \ \angle \ 120^{\circ}$$
 (2.77)

Os valores de tensões pós-falta obtidos para a simulação de curto-circuito simétrico estão na parte 1 a) iii da tabelas 5 e 6.

A corrente de pós-falta na linha de transmissão LT01K1, circunvizinha à barra 11 é calculada pela equação 2.78. O valor obtido está na tabela 9.

$$\vec{I}_{LT01K1} = \frac{\vec{V}_{\#10p\acute{o}s} - \vec{V}_{\#11p\acute{o}s}}{Z_{LT01K1}}$$
(2.78)

3 Simulações

Após a finalização do script no MATLAB, procedeu-se à montagem do diagrama unifilar no software ANAFAS. Nesse ambiente, realizou-se a simulação dos curtos-circuitos nas barras SE4, SE9 e SE11. Essa etapa de simulação foi fundamental para complementar os cálculos teóricos realizados anteriormente e validar as previsões feitas no script.

3.1 Curto-circuito trifásico

A simulação do curto-circuito trifásico no sistema é executada em três arquivos separados no ANAFAS, a fim de abranger as tensões pré-falta associadas às zonas 1, 2 e 3 do circuito devido à desfasagem dos transformadores.

3.1.1 Curto-circuito trifásico na barra 4

A simulação da curto-circuito trifásico na barra 4 com resistência de falta $R_f = 0.264~\Omega$ é exibida na figura 3

Fig. 3 – Simulação de curto-circuito trifásico com $R_f = 0.264~\Omega$ na barra 4.

3.1.2 Curto-circuito trifásico na barra 9

A simulação da curto-circuito trifásico na barra 9 com resistência de falta $R_f=0.388~\Omega$ é exibida na figura 4

Fig. 4 – Simulação de curto-circuito trifásico com $R_f = 0.388~\Omega$ na barra 9.

3.1.3 Curto-circuito trifásico na barra 11

A simulação da curto-circuito trifásico na barra 11 com resistência de falta $R_f=0.172~\Omega$ é exibida na figura 5

3.2 Especificação do disjuntor 52-1.

O disjuntor 52-1 precisa ter uma classe de tensão nominal mínima de $13.8\ kV$ e uma capacidade de interrupção superior a corrente de curto-circuito sólido na barra 11, que é medida como $2447.4\ A$ na simulação da figura 6.

Fig. 6 – Simulação de curto-circuito sólido na barra 11

Com base no catálogo da fabricante (ABB, 2015), o disjuntor à vácuo VD4/R 17.12.20 atende às especificações necessárias, pois opera até a tensão de 17.5 kV, tem corrente nominal de 1250 A e tem uma capacidade de interrupção de curto-circuito até 20 kA. Em relação ao nível básico de isolamento(NBI), a tensão suportável a 50 Hz do equipamento é 38 kV e a tensão de impulso suportável é 95 kV.

A capacidade de interrupção necessária para o circuito é dada pela equação 3.1, no cálculo, a tensão de pré-falta na barra 11 é aproximada para 1 $pu = 13.8 \ kV$. Já a equação 3.2 é relativa à capacidade de interrupção do disjuntor escolhido.

$$S_{cc3\phi} = \sqrt{3} V_{\#11}|_{t0^-} \cdot I_f = \sqrt{3} \cdot 13.8 \ kV \cdot 2447.4 \ A : S_{cc} = 58.498 \ MVA$$
 (3.1)

$$S_{cc} = \sqrt{3} \ V_{Lnominal} \cdot I_{Lnominal} = \sqrt{3} \cdot 17.5 \ kV \cdot 20 \ kA : S_{cc} = 606.22 \ MVA$$
 (3.2)

3.3 Impedância do transformador TR 02T1 para obter nível de curto-circuito inferior à 8 kA no sistema de distribuição.

Inicialmente, procede-se à simulação de um curto-circuito trifásico sólido nas barras do circuito relacionadas ao sistema de distribuição. Conforme ilustrado nas figuras 7 e 8, pode-se concluir que a corrente de falta na barra 10 é maior do que a corrente de falta na barra 11. Portanto, o objetivo dessa etapa é determinar a impedância mínima do transformador TR02T1 para que a corrente de curto-circuito na barra 10 seja inferior à 8 kA.

Para determinar a impedância mínima do transformador TR02T1 para atingir as especificações é necessário calcular primeiro a impedância de Thévenin vista na barra 10 do sistema de potência.

$$I_{fmax} = 8 \ kA = 1.912 \ pu$$
 (3.3)

Fig. 7 – Curto-circuito sólido - barra 10

Fig. 8 – Curto-circuito sólido - barra 11

$$|Z_{th\#10}| = \frac{V_{\#10}|_{t0^-}}{I_{fmax}} = \frac{0.9604}{1.912} : |Z_{th\#10}| = 0.5023 \ pu$$
 (3.4)

A impedância equivalente vista na barra 10 será a soma da impedância do transformador TR02T1 com a impedância de Thévenin vista na barra 9 do sistema, que é representada pelo elemento $Z_{9,9}$ da matriz Z_{barra} .

$$Z_{th\#10} = Z_{9.9} + Z_{TR02T1} \tag{3.5}$$

Como a impedância Z_{TR02T1} é puramente imaginária:

$$R = \Re(Z_{th\#10}) = \Re(Z_{9.9}) = 0.02946 \ pu \tag{3.6}$$

Dessa forma, determina-se a fase de Z_{TR02T1} e o valor complexo da impedância. Além do mais, chega-se no valor mínimo para a impedância do transformador TR02T1.

$$\theta = \arccos\left(\frac{R}{|Z_{th\#10}|}\right) = 86.6376^{\circ} \tag{3.7}$$

$$Z_{TR02T1} = 0.02946 \angle 86.6376^{\circ} pu$$
 (3.8)

$$Z_{TR02T1min} = Z_{th\#10} - Z_{9,9} = j0.12891 \ pu$$
 (3.9)

A reatância do transformador TR02T1 precisa ser superior a 0.12891 pu para garantir que a corrente de curto-circuito sólido na barra 10 seja menor que 8 kA. Na simulação da figura 9, adota-se como valor de reatância 12.90% = 0.1290 pu e o módulo da corrente de falta obtida é $I_f = 7.9985$ kA.

Fig. 9 – Simulação de curto-circuito sólido na barra 10 para reatância de 12.90%.

3.4 Potência de curto-circuito máxima de um empreendimento de geração a ser instalado na Barra 7.

O primeiro processo para dimensionar o empreendimento de geração a ser instalado é obter a atual corrente de curto-circuito trifásico sólido na barra 7 através de simulação, como é visto na figura 10. A corrente obtida é $I_f=2553.2\ A.$

Fig. 10 – Simulação de curto-circuito sólido na barra 7

Para que as capacidades dos disjuntores não excedam o valor desejado, a corrente de falta obtida na barra 7 após adição do gerador no sistema não deve ultrapassar em 15% a corrente $I_f=2553.2~A$. Dessa forma, a corrente de falta máxima tolerável é 2936.18 A e a contribuição de corrente máxima do gerador para a falta é $I_g=382.98~A=0.4577~pu$.

Aproximando a força eletromotriz de pré-falta do gerador para 1 pu, o módulo da impedância da máquina é dado pela equação 3.10.

$$|Z_g| = \frac{E_g}{I_g} = \frac{1}{0.4577} : |Z_g| = 2.1848 \ pu$$
 (3.10)

A potência de curto-circuito máxima é obtida pela equação 3.11.

$$S_{ccmax} = \frac{1}{|Z_g|} = 0.4577 \ pu : S_{ccmax} = 45.77 \ MVA$$
 (3.11)

A figura 11 mostra a simulação do sistema elétrico com o empreendimento de geração conectado à barra 7. Para fins de aproximação, considera-se no exemplo que a impedância do gerador é puramente indutiva. A corrente de falta obtida foi $I_g=2933.7\ A$

Fig. 11 – Simulação de curto-circuito trifásico sólido na barra 7 com empreendimento de geração conectado.

3.5 Mudança no grupo vetorial dos transformadores para Yy0y0 e Yy0.

A etapa atual consiste em mudar o grupo vetorial dos transformadores de dois e três enrolamentos para Yy0 e Yy0y0, respectivamente, e simular o sistema elétrico resultante. Visto que não há mais defasamento angular entre as zonas 1 e 2 e as zonas 2 e 3 do circuito, toda simulação no ANAFAS é realizada num único arquivo com todas as tensões referenciadas a barra 1.

A figura 12 mostra a simulação do curto-circuito trifásico com $R_f=0.264~\Omega$ na barra 4 após alterar o grupo vetorial dos transformadores.

Fig. 12 – Simulação de curto-circuito trifásico com $R_f=0.264~\Omega$ na barra 4.

A figura 13 mostra a simulação do curto-circuito trifásico com $R_f=0.388~\Omega$ na barra 9 após alterar o grupo vetorial dos transformadores.

A figura 14 mostra a simulação do curto-circuito trifásico com $R_f=0.172~\Omega$ na barra 11 após alterar o grupo vetorial dos transformadores.

Fig. 14 – Simulação de curto-circuito trifásico com $R_f = 0.172~\Omega$ na barra 11.

Na simulação de curto-circuito com os grupos vetoriais dos transformadores em Yy0y0 ou Yy0, percebe-se que o módulo das tensões e correntes do circuito permanece inalterado e há diferença na fase das grandezas elétricas relativas às zonas 2 e 3 do sistema elétrico em comparação aos valores obtidos na etapa do *script*.

4 Conclusão

A conclusão deste relatório enfatiza o sucesso da atividade de curto simétrico realizada. A abordagem que envolveu o estudo matemático das equações permitiu um entendimento valioso sobre o funcionamento desse tipo de curto-circuito. Além disso, a introdução do software ANAFAS destacou a praticidade e utilidade de sua utilização não apenas para simular curtos-circuitos simétricos, mas também para uma ampla gama de outros cenários que serão explorados ao longo do curso.

As atividades de simulação, em particular o dimensionamento de um empreendimento de geração e de um disjuntor despertaram um interesse especial. Elas demonstraram a aplicação prática e a utilidade direta dos conhecimentos adquiridos até o momento. Esse enfoque prático é fundamental para a consolidação do aprendizado, à medida que os alunos experimentam a aplicação real dos conceitos teóricos.

Em resumo, a combinação de abordagens teóricas e práticas neste curso está contribuindo significativamente para a compreensão dos sistemas elétricos de potência e sua operação. As simulações realizadas proporcionaram uma visão mais profunda e aplicada do assunto, preparando os alunos para enfrentar desafios no campo da engenharia elétrica com confiança e competência.

5 Tabelas Resumo

As tabelas 5 e 6 mostram as tensões de pós-falta obtidas nos três casos distintos de curto-circuito simétrico abordado no script.

Tab. 5 – Tabela Resumo para as tensões pós-falta das barras 1 a 5.

		Fases	#1	#2	#3	#4	#5
		Tases	$ \vec{V_1} \angle \vec{V_1}$	$ ec{V_2} \angle ec{V_2}$	$ \vec{V_3} \angle \vec{V_3}$	$ \vec{V_4} \angle \vec{V_4}$	$ \vec{V_5} \angle \vec{V_5}$
		A	0.7719 ∠ 7.4318°	0.6354 ∠ 5.6913°	0.9938 ∠ 32.3663°	0.0034 ∠ -60.3275°	0.0361 ∠ -43.1915°
	PU	В	0.7719 ∠ -112.5682°	0.6354 ∠ -114.3087°	0.9938 ∠ -87.6337°	$0.0034 \angle 179.6725^{\circ}$	0.0361 ∠ -163.1915°
1 a) i		С	0.7719 ∠ 127.4318°	0.6354 ∠ 125.6913°	$0.9938 \angle 152.3663^{\circ}$	$0.0034 \angle 59.6725^{\circ}$	$0.0361 \angle 76.8085^{\circ}$
1 4) 1		A	177537.8 ∠ 7.4318°	$146152.3 \angle 5.6913^{\circ}$	228574.5 ∠ 32.3663°	778.7 ∠ -60.3275°	2490.9 ∠ -43.1915°
	SI(V)	В	177537.8 ∠ -112.5682°	146152.3 ∠ -114.3087°	228574.5 ∠ -87.6337°	778.7 ∠ 179.6725°	2490.9 ∠ -163.1915°
		С	177537.8 ∠ 127.4318°	$146152.3 \angle 125.6913^{\circ}$	228574.5 ∠ 152.3663°	$778.7 \angle 59.6725^{\circ}$	$2490.9 \angle 76.8085^{\circ}$
		A	0.8997 ∠ 11.2758°	0.8506 ∠ 11.8390°	$1.0162 \angle 32.3756^{\circ}$	$0.6702 \angle 25.9714^{\circ}$	0.5844 ∠ -4.9401°
	PU	В	0.8997 ∠ -108.7242°	0.8506 ∠ -108.1610°	1.0162 ∠ -87.6244°	0.6702 ∠ -94.0286°	0.5844 ∠ -124.9401°
1 a) ii		С	0.8997 ∠ 131.2758°	0.8506 ∠ 131.8390°	$1.0162 \angle 152.3756^{\circ}$	$0.6702 \angle 145.9714^{\circ}$	$0.5844 \angle 115.0599^{\circ}$
1 a) 11	SI(V)	A	$206933.2 \angle 11.2758^{\circ}$	195641.6 ∠ 11.8390°	233726.2 ∠ 32.3756°	154149.0 ∠ 25.9714°	40324.3 ∠ -4.9401°
		В	206933.2 ∠ -108.7242°	195641.6 ∠ -108.1610°	233726.2 ∠ -87.6244°	154149.0 ∠ -94.0286°	40324.3 ∠ -124.9401°
		С	$206933.2 \angle 131.2758^{\circ}$	$195641.6 \angle 131.8390^{\circ}$	233726.2 ∠ 152.3756°	154149.0 ∠ 145.9714°	$40324.3 \angle 115.0599^{\circ}$
		A	1.0066 ∠ 11.6422°	0.9811 ∠ 12.0557°	1.0242 ∠ 32.2625°	$0.9105 \angle 22.1312^{\circ}$	0.8894 ∠ -8.9822°
	PU	В	1.0066 ∠ -108.3578°	0.9811 ∠ -107.9443°	1.0242 ∠ -87.7375°	0.9105 ∠ -97.8688°	0.8894 ∠ -128.9822°
1 a) iii		С	1.0066 ∠ 131.6422°	$0.9811 \angle 132.0557^{\circ}$	1.0242 ∠ 152.2625°	$0.9105 \angle 142.1312^{\circ}$	$0.8894 \angle 111.0178^{\circ}$
1 4) 111		A	$231513.2 \angle 11.6422^{\circ}$	$225664.4 \angle 12.0557^{\circ}$	235559.3 ∠ 32.2625°	$209407.3 \angle 22.1312^{\circ}$	61366.5 ∠ -8.9822°
	SI(V)	В	231513.2 ∠ -108.3578°	225664.4 ∠ -107.9443°	235559.3 ∠ -87.7375°	209407.3 ∠ -97.8688°	61366.5 ∠ -128.9822°
		С	231513.2 ∠ 131.6422°	$225664.4 \angle 132.0557^{\circ}$	$235559.3 \angle 152.2625^{\circ}$	$209407.3 \angle 142.1312^{\circ}$	61366.5 ∠ 111.0178°

Tab. 6 – Tabela Resumo para as tensões pós-falta das barras 6 a 11.

		Fases	#6	#7	#8	#9	#10	#11
		Tases	$ \vec{V_6} \angle \vec{V_6}$	$ \vec{V_7} \angle \vec{V_7}$	$ \vec{V_8} \angle \vec{V_8}$	$ \vec{V_9} \angle \vec{V_9}$	$ \vec{V_{10}} \angle \vec{V_{10}}$	$ \vec{V_{11}} \angle \vec{V_{11}}$
		A	0.2236 ∠ -42.7968°	0.4248 ∠ -32.2119°	0.5464 ∠ 3.8619°	0.1710 ∠ -58.3372°	0.1711 ∠ -88.3472°	0.1846 ∠ -94.0201°
	PU	В	0.2236 ∠ -162.7968°	0.4248 ∠ -152.2119°	0.5464 ∠ -116.1381°	0.1710 ∠ -178.3372°	0.1711 ∠ 151.6528°	0.1846 ∠ 145.9799°
1 a) i		С	$0.2236 \angle 77.2032^{\circ}$	0.4248 ∠ 87.7881°	0.5464 ∠ 123.8619°	0.1710 ∠ 61.6628°	0.1711 ∠ 31.6528°	$0.1846 \angle 25.9799^{\circ}$
1 1 1 1		A	15430.8 ∠ -42.7968°	29311.8 ∠ -32.2119°	125679.4 ∠ 3.8619°	11802.3 ∠ -58.3372°	2360.8 ∠ -88.3472°	2547.5 ∠ -94.0201°
	SI(V)	В	15430.8 ∠ -162.7968°	29311.8 ∠ -152.2119°	125679.4 ∠ -116.1381°	11802.3 ∠ -178.3372°	2360.8 ∠ 151.6528°	2547.5 ∠ 145.9799°
		С	15430.8 ∠ 77.2032°	29311.8 ∠ 87.7881°	125679.4 ∠ 123.8619°	11802.3 ∠ 61.6628°	2360.8 ∠ 31.6528°	2547.5 ∠ 25.9799°
		A	0.3491 ∠ -16.4926°	$0.5519 \angle -20.1575^{\circ}$	0.6773 ∠ 11.3409°	0.0209 ∠ -100.5188°	0.0209 ∠ -130.5298°	0.0429 ∠ -137.2917°
	PU	В	0.3491 ∠ -136.4926°	0.5519 ∠ -140.1575°	0.6773 ∠ -108.6591°	0.0209 ∠ 139.4812°	0.0209 ∠ 109.4702°	0.0429 ∠ 102.7083°
1 a) ii		С	0.3491 ∠ 103.5074°	$0.5519 \angle 99.8425^{\circ}$	0.6773 ∠ 131.3409°	0.0209 ∠ 19.4812°	0.0209 ∠ -10.5298°	0.0429 ∠ -17.2917°
1 4) 11		A	24090.5 ∠ -16.4926°	38078.6 ∠ -20.1575°	155786.9 ∠ 11.3409°	1442.5 ∠ -100.5188°	289.1 ∠ -130.5298°	591.3 ∠ -137.2917°
	SI(V)	В	24090.5 ∠ -136.4926°	38078.6 ∠ -140.1575°	155786.9 ∠ -108.6591°	1442.5 ∠ 139.4812°	289.1 ∠ 109.4702°	591.3 ∠ 102.7083°
		С	24090.5 ∠ 103.5074°	$38078.6 \angle 99.8425^{\circ}$	155786.9 ∠ 131.3409°	1442.5 ∠ 19.4812°	289.1 ∠ -10.5298	591.3 ∠ -17.2917°
		A	0.8320 ∠ -15.7360°	0.8945 ∠ -18.0406°	0.9231 ∠ 12.1155°	0.7428 ∠ -16.3884°	0.6265 ∠ -47.3195°	0.0526 ∠ -131.4062°
	PU	В	0.8320 ∠ -135.7360°	0.8945 ∠ -138.0406°	0.9231 ∠ -107.8845°	0.7428 ∠ -136.3884°	0.6265 ∠ -167.3195°	$0.0526 \angle 108.5938^{\circ}$
1 a) iii		С	$0.8320 \angle 104.2640^{\circ}$	$0.8945 \angle 101.9594^{\circ}$	0.9231 ∠ 132.1155°	0.7428 ∠ 103.6116°	0.6265 ∠ 72.6805°	0.0526 ∠ -11.4062°
1 4) 111		A	57406.7 ∠ -15.7360°	61717.9 ∠ -18.0406°	212323.9 ∠ 12.1155°	51252.7 ∠ -16.3884°	8646.3 ∠ -47.3195°	725.9 ∠ -131.4062°
	SI(V)	В	57406.7 ∠ -135.7360°	61717.9 ∠ -138.0406°	212323.9 ∠ -107.8845°	51252.7 ∠ -136.3884°	8646.3 ∠ -167.3195°	$725.9 \angle 108.5938^{\circ}$
		С	57406.7 ∠ 104.2640°	61717.9 ∠ 101.9594°	212323.9 ∠ 132.1155°	51252.7 ∠ 103.6116°	8646.3 ∠ 72.6805°	725.9 ∠ -11.4062°

A tabela 7 mostra as correntes pós-falta dos transformadores e das linhas de transmissão circunvizinhas à barra 4.

		Fases	$\vec{I_{LT03C1}}$	$\vec{I_{LT01C1}}$	I_{LT01C2}	\vec{I}_{TR01T1}	I_{TR01T2}
		rases	$ \vec{I} \angle \vec{I}$	$ \vec{I} \angle \vec{I}$	$ \vec{I} \angle \vec{I}$	$ \vec{I} \angle \vec{I}$	$ \vec{I} \angle \vec{I}$
		A	$1.4119 \angle -76.1968^{\circ}$	2.4977 ∠ -47.8669°	2.4977 ∠ -47.8669°	0.4485 ∠ -98.6263°	0.3220 ∠ -98.9918°
	PU	В	$1.4119 \angle 163.8032^{\circ}$	$2.4977 \angle -167.8669^{\circ}$	2.4977 ∠ -167.8669°	$0.4485 \angle 141.3737^{\circ}$	$0.3220 \angle 141.0082^{\circ}$
1 a) i		С	$1.4119 \angle 43.8032^{\circ}$	$2.4977 \angle 72.1331^{\circ}$	2.4977 ∠ 72.1331°	$0.4485 \angle 21.3737^{\circ}$	$0.3220 \angle 21.0082^{\circ}$
1 a) 1		A	354.41 ∠ -76.1968°	626.97 ∠ -47.8669°	626.97 ∠ -47.8669°	112.58 ∠ -98.6263°	80.82 ∠ -98.9918°
	SI(A)	В	$354.41 \angle 163.8032^{\circ}$	626.97 ∠ -167.8669°	626.97 ∠ -167.8669°	$112.58 \angle 141.3737^{\circ}$	$80.82 \angle 141.0082^{\circ}$
		С	354.41 ∠ 43.8032°	626.97 ∠ 72.1331°	626.97 ∠ 72.1331°	112.58 ∠ 21.3737°	80.82 ∠ 21.0082°

Tab. 7 – Tabela Resumo para as correntes circunvizinhas à barra 4.

A tabela 8 mostra as correntes pós-falta dos transformadores e das linhas de transmissão circunvizinhas à barra 9.

			$ec{I}_{TR02T1}$	$ec{I}_{LT01J1}$	$ec{I}_{LT04J1}$
		Fases	$ \vec{I} \angle \vec{I}$	$ ec{I} \angle ec{I}$	$ ec{I} \ \angle ec{I}$
		A	$0.0002 \angle 163.7147^{\circ}$	$1.2991 \angle -89.4239^{\circ}$	$1.3826 \angle -99.5789^{\circ}$
	PU	В	$0.0002 \angle 43.7147^{\circ}$	$1.2991 \angle 150.5761^{\circ}$	$1.3826 \angle 140.4211^{\circ}$
1 a) ii		С	$0.0002 \angle -76.2853^{\circ}$	$1.2991 \angle 30.5761^{\circ}$	$1.3826 \angle 20.4211^{\circ}$
	SI(A)	A	$0.17 \angle 163.7147^{\circ}$	$1086.97 \angle -89.4239^{\circ}$	$1156.86 \angle -99.5789^{\circ}$
		В	$0.17 \angle 43.7147^{\circ}$	$1086.97 \angle 150.5761^{\circ}$	$1156.86 \angle 140.4211^{\circ}$
		С	$0.17 \angle -76.2853^{\circ}$	$1086.97 \angle 30.5761^{\circ}$	$1156.86 \angle 20.4211^{\circ}$

Tab. 8 – Tabela Resumo para as correntes circunvizinhas à barra 9.

A tabela 9 mostra a corrente pós-falta da linha de transmissão circunvizinha à barra 11.

TD 1	0 1 1	D			•	1	\ 1	11
Tab.	9 – Tabela	a Resumo i	oara as	correntes	circiinv	ızınhas	a barra	a. II.

		Fases	$ \frac{\vec{I}_{LT01K1}}{ \vec{I} \angle \vec{I}} $
		A	$0.5861 \angle -129.3923^{\circ}$
	PU	В	$0.5861 \angle 110.6077^{\circ}$
1 a) iii		С	$0.5861 \angle -9.3923^{\circ}$
		A	$2452.02 \angle -129.3923^{\circ}$
	SI(A)	В	$2452.02 \angle 110.6077^{\circ}$
		С	$2452.02 \angle -9.3923^{\circ}$

Referências

ABB. VD4/R - Disjuntores de média tensão em vácuo para distribuição secundária. [S.l.], 2015. Disponível em: . Acesso em: 25.10.2023. Citado na página 16.

GRAINGER, J. J.; STEVENSON, W. D. *Power system analysis.* [S.l.]: Tata McGraw-Hill Education, 1994. Citado na página 10.