Cryptography in Cyclic Groups (episode 2)

Discrete Logarithm in \mathbb{Z}_p^{\times}

Questions

- **1**. How to find g of order q s.t. q has a prime factor $\geq 2^{256}$?
- 2. How to determine the order of g?
- 3. How to test if some element x belongs to $\langle g \rangle$?

Joseph-Louis Lagrange (1736–1813)

Theorem (Lagrange)

Let G be a finite group and $H \subseteq G$ a subgroup of G. Then |H| divides |G|.

Proof.

- ▶ Let $x, y \in G$
- ▶ Say that $x \sim y$ iff $\exists h \in H$ (the subgroup) such that x = yh
- ightharpoonup \sim is an equivalence relation (easy)
- ► The equivalence class of x is xH
- xH has cardinality |H|
 - Multiplication by x is a bijection in G
- ▶ Write [G : H] the number of equivalence classes
 - ► Also known as the "index of H in G"
- The equivalence classes form a partition of G
- ▶ Therefore $|G| = [G:H] \times |H|$

Interesting Consequence

► This is a very general result (all finite groups)

Corollary

Let \mathbb{G} be a finite group and $g \in \mathbb{G}$.

The order of g divides the order of \mathbb{G} .

Proof.

 $\langle g \rangle$ is a subgroup of $\mathbb G.$ Apply Lagrange's theorem.

5

Illustration: \mathbb{F}_{13}^{\times}

Going Further: Structure of Finite Abelian Groups

Theorem

Let \mathbb{G} be a finite abelian (e.g. commutative) group of finite order n. If k divides n, then \mathbb{G} has a unique subgroup of order k.

- ▶ Proof in the special case where G is cyclic
 - ▶ OK for us: \mathbb{Z}_p^{\times} is cyclic ...
- ► This is true in general
 - Any finite abelian group is a product of cyclic groups
 - (too complicated)

Proof (existence).

- ▶ Write $\mathbb{G} = \langle g \rangle \rightsquigarrow g$ has order n
- We claim that $h := g^{\frac{n}{k}}$ has order k
 - $h^k = g^n = 1$
 - ▶ If $0 \le i < k$, then $h^i = g^{i\frac{n}{k}} \ne 1$ because g has order n

Proof (unicity).

- Suppose that $h \in \mathbb{G}$ has order k > 0
- We claim that $\langle h \rangle = \langle g^{\frac{n}{k}} \rangle$
- ightharpoonup G is cyclic $\Longrightarrow h = g^x$ (for some x)
- $h^k = 1 \Longleftrightarrow g^{kx} = 1 \Longleftrightarrow kx \equiv 0 \mod n$ (g has order n)
- ▶ Because k divides n, we find that x is a multiple of $\frac{n}{k}$
- ▶ Therefore $h \in \langle g^{\frac{n}{k}} \rangle$ and $\langle h \rangle \subseteq \langle g^{\frac{n}{k}} \rangle$
- ▶ Both groups have the same order: $\langle h \rangle = \langle g^{\frac{n}{k}} \rangle$

Generators in \mathbb{Z}_p^{\times}

Let q denote the order of g modulo p

- $ightharpoonup \mathbb{Z}_p^{\times}$ has order p-1
 - Notice that p-1 is even
 - $\{-1,1\}$ is indeed a subgroup of order 2
- ► Therefore (Lagrange's theorem) q divides p-1
 - ∼ Considerably restricts the possible values of q
- ▶ q has a large prime factor $\Rightarrow p-1$ has a large prime factor
- $ightharpoonup \mathbb{Z}_p^{ imes}$ contains elements of order p-1
 - Non-trivial theorem (no proof given here)
 - ▶ This means that \mathbb{Z}_p^{\times} is cyclic
 - ▶ An element of order p-1 is called a **primitive root** mod p

Checking the Order of a Generator

Problem

- ▶ Someone "promises" you that g has order q modulo p
- Can you verify that it is true?

Validation?

- ► Check that q divides p-1
- Check that $g \neq 1$
- Check that $g^q = 1$ (necessary, **not sufficient**)
 - This proves that the actual order of g divides q
 - It could be smaller than q
- Special case: the previous test is sufficient if q is prime

Checking the Order of a Generator

Problem

- ▶ Someone "promises" you that g has order q modulo p
- q is not prime (relevant case: primitive roots)

Validation?

- ightharpoonup Let ℓ denote the actual order of g
- Check that $g^q = 1$ (necessary, **not sufficient**)
 - ▶ This proves that ℓ divides q
 - Write $q = \ell r$
- ▶ Suppose ℓ < q ($r \neq 1$)
 - Let f be a prime factor of r (and thus of q)
 - ► Then $g^{\frac{q}{t}} = g^{\frac{q}{t}} = g^{\ell} = 1^{\frac{t}{t}} = 1$
- Contrapositive:
 - $ightharpoonup g^{\frac{q}{t}} \neq 1$ for each prime factor f of $q \Longrightarrow g$ has order q

This procedure requires knowledge of the factorization of q

Application: the "Oakley Groups" (RFC 2412 and 3526) Standardized Groups for the Masses

$$p = 2^{2048} - 2^{1984} - 1 + 2^{64} \times ([2^{1918}\pi] + 124476)$$

$$g = 2$$

Claim : g has order p-1 modulo p

Proof.

- Let q denote the order of g
- $ightharpoonup \ell = (p-1)/2$ is also prime
 - p is a Sophie Germain prime or a safe prime
- ▶ Therefore $q \in \{2, \ell, 2\ell\}$
- $ightharpoonup g^2
 eq 1$ and $g^\ell
 eq 1$, therefore g has order p-1

Conclusion: $\mathbb{Z}_p^{\times} = \langle 2 \rangle$

Creating Generators of Prime Order in \mathbb{Z}_p^{\times} — Schnorr's Trick

Procedure

- 1. Choose a 256-bit prime q
- 2. Pick a random 1792-bit integer k
- 3. Set p = 1 + kq
- 4. If *p* is not prime, go back to 2.
- 5. Pick a random x modulo p
- 6. Set $g \leftarrow x^k$
- 7. If g = 1, go back to 5.
- 8. g has (prime) order q modulo p

Proof.

- - ▶ By Fermat's little theorem
- ▶ Therefore, if $g \neq 1$, then g has order q
 - cf. previous slides (easy case: q is prime)

Digression: Primality Certificates 1975

If g has order n-1 modulo n, then n is prime

- $ightharpoonup \langle g \rangle \subseteq \mathbb{Z}_n^{\times}$
- ightharpoonup g has order n-1, therefore $|\mathbb{Z}_n^{\times}|=n-1$
- ▶ All integers except zero are invertible modulo *n*
- n does not have any non-trivial divisor
- n is prime
- ▶ providing g of order n-1 proves that n is prime
- ightharpoonup Checking the order of g requires the factorization of n-1
- Certificate of n =
 - 1. 8
 - 2. Factorization of n-1
 - 3. Certificates of the prime factors (recursively)
- ► Conclusion: PRIMES ∈ NP

Digression: Primality Certificates 1975

Vaughan Pratt (1944–)

DDH Can be Easier than CDH

Let g be a primitive root modulo p

- **DLOG** and **CDH** are (presumably) hard in \mathbb{Z}_p^{\times}
- ▶ But **DDH** is easy in \mathbb{Z}_p^{\times} !!!
- Argument given around 1800

Leonhard Euler 1707–1783

Adrien-Marie Legendre 1752–1833

Quadratic Residuosity

Definition (Quadratic Residue)

 $x \in \mathbb{Z}_p^{\times}$ is a **quadratic residue** $\Leftrightarrow x$ is a square $(\exists y. \ x = y^2)$

- Fun": $25^2 = 5 \mod 31$

Important because...

It is easy to test if $x \in \mathbb{Z}_p$ is a quadratic residue

How Many Quadratic Residues?

Observation

- Suppose $x^2 \equiv y^2 \mod p$
 - $\implies (x y)(x + y) \equiv 0 \mod p$ $\implies x \equiv \pm y \mod p$
- ▶ (p-1)/2 distinct pairs $\{x, -x\}$ with $x \neq 0$ (p-1)/2 distinct quadratic residues

More structure

- ▶ $QR(\mathbb{Z}_p^{\times})$ is the **subgroup** of \mathbb{Z}_p^{\times} of order (p-1)/2
 - 1 is a QR
 - The product of QRs is a QR
 - The inverse of a QR is a QR

$$a^2b^2 = (ab)^2$$

 $(a^2)^{-1} = (a^{-1})^2$

- $ightharpoonup \overline{QR}(\mathbb{Z}_p^{\times})$ is **not** a **subgroup** of \mathbb{Z}_p^{\times}
 - Because 1 is a QR

Quadratic Residuosity (cont'd)

Lemma

Multiplication by a non-QR is a bijection between $QR(\mathbb{Z}_p^{\times})$ and $\overline{QR}(\mathbb{Z}_p^{\times})$.

Proof.

Let $x \in QR(\mathbb{Z}_p^{\times})$ and $\alpha \in \overline{QR}(\mathbb{Z}_p^{\times})$. Write $x = y^2$.

- ▶ Write $\mathcal{M}_{\alpha} : \mathbf{x} \mapsto \alpha \mathbf{x}$
- $\mathcal{M}_{\alpha}^{-1} = \mathcal{M}_{\alpha^{-1}}$

 $(\mathbb{Z}_p^{\times} \text{ is a group})$

- Suppose $x\alpha = z^2$. Then $\alpha = z^2x^{-1} = (zy^{-1})^2 \rightsquigarrow \alpha$ is a QR! $\rightsquigarrow \mathcal{M}_{\alpha}$ sends $QR(\mathbb{Z}_p^{\times})$ to $\overline{QR}(\mathbb{Z}_p^{\times})$
- $|QR(\mathbb{Z}_p^{\times})| = |\overline{QR}(\mathbb{Z}_p^{\times})| \text{ and } \mathcal{M}_{\alpha} \text{ is injective}$ $\Longrightarrow \mathcal{M}_{\alpha} \text{ is a bijection between the two sets}$
- $\implies QR \times \overline{QR} = \overline{QR}$
- $\Longrightarrow \overline{QR} \times \overline{QR} = QR$

Proposition

Let g be a primitive root modulo p > 2. Then

$$g^x$$
 is a quadratic residue $\iff x \equiv 0 \mod 2$

Proof.

- \Leftarrow Trivial. $x \equiv 0 \mod 2 \Rightarrow \exists y. x = 2y \Rightarrow g^x = g^{2y} = (g^y)^2$
- \Rightarrow Suppose that $g^x = \alpha^2$
 - ▶ g is a primitive root: $\exists y.\alpha = g^y$
 - $\Rightarrow g^x = \alpha^2 = (g^y)^2 = g^{2y}$
 - ► Therefore (lemma from last week)

$$x \equiv 2y \mod p - 1 \quad \Rightarrow \quad \exists k.x = 2y + k(p - 1)$$

- ightharpoonup p is odd $\leadsto p 1 = 2\ell$, so $x = 2(y + k\ell)$
- x is even

One-Way Functions?

Exponentiation mod $p: x \mapsto g^x$

- ▶ I claimed that it is one-way...
 - $ightharpoonup \mathcal{A}$ does not recover x from F(x)

One-Way Functions?

Exponentiation mod $p: x \mapsto g^x$

- I claimed that it is one-way...
 - \triangleright A does not recover x from F(x)
- ▶ Could A recover **one bit** P(x) of information about x?

Legendre Symbol and Euler's Criterion

Definition (Legendre Symbol)

Let p be an odd prime number.

$$\begin{pmatrix} \frac{a}{p} \end{pmatrix} \stackrel{def}{=} \begin{cases} 1 & \text{if a is a quadratic residue mod p} \\ 0 & \text{if $a = 0$} \\ -1 & \text{if a is a not quadratic residue mod p} \end{cases}$$

- (just a weird notation for this specific function)
- We have shown earlier that $\left(\frac{ab}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$

Theorem: Euler's Criterion

$$\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \mod p$$

Weak Bits of the Discrete Logarithm

Exponentiation mod $p: x \mapsto g^x$

With g a primitive root modulo p

Euler's Criterion: p > 2 prime $\Rightarrow \left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \mod p$

Proof.

Let's work inside the finite field \mathbb{Z}_p .

$$P(X) = X^{p-1} - 1 = \left(X^{\frac{p-1}{2}}\right)^2 - 1 = \underbrace{\left(X^{\frac{p-1}{2}} - 1\right)}_{P_1(X)} \underbrace{\left(X^{\frac{p-1}{2}} + 1\right)}_{P_{-1}(X)}$$

1. α is a QR $\Longrightarrow \alpha^{\frac{p-1}{2}} \equiv 1 \mod p$ Let $\alpha = \beta^2$ be a quadratic residue. Then

$$P_1(\alpha) = P_1(\beta^2) = (\beta^2)^{\frac{\rho-1}{2}} - 1 = \beta^{\rho-1} - 1 = 0$$

(last step by Fermat's little theorem — everything mod p)

2. α is not a QR $\Longrightarrow P_1(\alpha) \neq 0$ Note that $P_1(0) = -1$, so that $P_1(X) \neq 0$ $P_1(X)$ vanishes over the (p-1)/2 quadratic residues $\deg P_1 = (p-1)/2 \leadsto P_1$ cannot have any more roots

Euler's Criterion:
$$\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \mod p$$

Proof.

$$P(X) = X^{p-1} - 1 = \left(X^{\frac{p-1}{2}}\right)^2 - 1 = \underbrace{\left(X^{\frac{p-1}{2}} - 1\right)}_{P_1(X)}\underbrace{\left(X^{\frac{p-1}{2}} + 1\right)}_{P_{-1}(X)}$$

- 1. α is a QR $\Longrightarrow \alpha^{\frac{p-1}{2}} = 1$
- 2. α is not a QR $\Longrightarrow P_1(\alpha) \neq 0$
- 3. α is not a QR $\Longrightarrow \alpha^{\frac{p-1}{2}} = -1$
 - Fermat's little theorem $\Rightarrow P(\alpha) = 0$
 - $P_1(\alpha) \neq 0 \Longrightarrow P_{-1}(\alpha) = 0$
 - (everything mod p again)

- ▶ Distinguisher must tell if he is in "world b = 0"...
- ightharpoonup ... or in "world b = 1"

- ▶ Distinguisher must tell if he is in "world b = 0"...
- ightharpoonup ... or in "world b = 1"

- ▶ Distinguisher must tell if he is in "world b = 0"...
- ightharpoonup ... or in "world b = 1"

Advantage 0.5

Computing Square Roots

Suppose *x* is a QR
$$\rightsquigarrow x = y^2$$

If
$$p \equiv 3 \mod 4$$

ightharpoonup (p+1)/4 is an integer, and we find:

$$\left(x^{\frac{p+1}{4}}\right)^2 = x^{\frac{p+1}{2}} = y^{p+1} = y^2y^{p-1} = y^2 = x$$

▶ (p-1)/2 is odd \leadsto -1 is a non-RQ \Longrightarrow Deterministic algorithm that finds a non-RQ

If $p \equiv 1 \mod 4$

- Computing square roots is polynomial (but complicated)
 - ► Nice challenge for the TME
- Requires finding a non-RQ. How to do this?

Application: the Rabin Trapdoor One-Way Function (1978)

Private key

ightharpoonup p, q: two (large) prime numbers with $p, q \equiv 3 \mod 4$

Public key

 \triangleright N = pq

("Blum integer")

Operation

Evaluation $F(x) := x^2 \mod N$

Inversion 1. Compute square roots $\pm u \mod p$

2. Compute square roots $\pm v \mod q$

(easy case) (easy case)

3. Get square roots mod N using the CRT

→ 4 possible preimages

The Rabin Trapdoor One-Way Function: Security

Theorem

Factoring is hard ⇔ the Rabin function is **one-way**

Proof.

Trivial

(factoring is easy \Longrightarrow broken)

- \Longrightarrow
- Suppose the Rabin function is not one-way
 - There is an efficient (randomized) A that inverts it
 - ightharpoons $\mathbb{P}\left[x\leftarrow\mathcal{A}(N,y),x^2\equiv y \bmod N\right]$ is non-negligible
- ► Factoring algorithm:
 - 1. Pick random $x \mod N$
 - 2. $z \leftarrow \mathcal{A}(N, x^2)$
 - 3. If $z^2 \not\equiv x^2 \mod N$, abort

 $(\mathcal{A} \ \mathsf{failed})$

4. If $z \equiv \pm x \mod N$, abort

(proba 0.5)

- 5. Return GCD(N, z x)
 - N does not divide z x or z + x, but N divides (z x)(z + x)

