S.A.B.E.R. – wifi_pack_reg Product Guide

VLNV: xilinx.com:user:wifi_pack_reg:1.0
Date: August 31, 2025 License: MIT

1. Overview

wifi_pack_reg is a lightweight AXI4-Lite peripheral that exposes a 1792-bit encrypted frame (56 × 32-bit words) to a processor. A single-cycle strobe send_data_i latches the full frame from data_i[1791:0] into an internal buffer. A status/clear register allows software to check frame readiness and acknowledge/clear the capture.

Typical use Connect data_i to the cipher/packer output of the encryptor_system, assert send_data_i for one cycle when a frame is ready, then read the 56 words via AXI. Finally, write 1 to bit 0 of the status register to produce clr_o (clear pulse).

2. Features

- AXI4-Lite slave, 32-bit data, 8-bit address (configurable).
- Captures a full 1792-bit frame atomically on the rising edge of send_data_i.
- 56 read-only data words + 1 status/clear word at offset 0xE0.
- MSB-first word ordering: word $0 = data_i[1791:1760]$, word $55 = data_i[31:0]$.
- Write-1-to-clear (W1C) generates a one-cycle clr_o pulse.
- data_valid_i reflected in the status register (bit 1).
- Clock domain safety: send_data_i is synchronized to the AXI clock; the bus data_i must be stable for at least one AXI cycle around the strobe.

3. Parameters

Name	Description	Default
C_data_o_DATA_WIDTH	AXI data width (must be 32).	32
${\tt C_data_o_ADDR_WIDTH}$	AXI address width in bits (≥ 8) .	8

4. Ports

Name	Dir	Width	Clock	Description
data_i	in	1792	AXI	Flattened frame $(56 \times 32b)$.
data_valid_i	in	1	AXI	Frame-ready status from packer (mirrored in status bit 1).
send_data_i	in	1	AXI AXI	Rising edge latches data_i into internal buffer. One-cycle pulse when SW writes 1 to status bit 0.
clr_o	out	1	AAI	One-cycle pulse when 5 w writes 1 to status bit 0.

AXI4-Lite "data o" interface (standard signals not expanded here).

5. Memory Map (AXI4-Lite)

Address decoding uses word indices idx = AR/AWADDR[7:2] (for 8-bit address). Total space is 57 words = 0xE4 bytes.

5.1 Data window (read-only)

Offset	Idx	Access	Content (MSB-first)
0x00 0xDC	055	R	Word $i = data_i[TOTAL_BITS-1 - 32*i -: 32].$

5.2 Status / Clear register

Offset	\mathbf{Idx}	Access	Description
0xE0	56	R/W	[31:3] Reserved (read as 0); [2] captured (1 after capture); [1] data_valid_i; [0] CLR_W1C: write 1 to generate clr_o. Reads as 0.

Clear behavior Writing a 1 to bit 0 asserts clr_o for one AXI clock, and clears captured. Writes to other bits are ignored.

6. Word Ordering

The 1792-bit frame is presented MSB-first to software:

```
Word0 = data_i[1791:1760], \dots, Word55 = data_i[31:0].
```

This matches the packer layout used by the encryptor_system. If your software expects a different ordering, reverse the sequence when reading.

7. Timing and CDC Notes

- Capture: The rising edge of send_data_i (synchronized internally) snapshots all 1792 bits from data_i in one AXI clock.
- Data stability: Ensure data_i is stable for at least one AXI cycle around the strobe. Using the same clock domain is recommended.
- data_valid_i is sampled on the AXI clock and reflected in status bit 1.

8. Software Example (C pseudo-code)

```
#define WIFI_BASE 0x40000000u
#define REG(i) (*(volatile uint32_t *)(WIFI_BASE + ((i) << 2)))
#define REG_STATUS REG(56) // OxEO
#define CLR_W1C (1u << 0)
#define ST_DATA_RDY (1u << 1)
#define ST_CAPTURED (1u << 2)

void read_frame(uint32_t *buf56) {
    // Poll until hardware indicates a fresh capture is present
    while ((REG_STATUS & ST_CAPTURED) == 0) { /* spin or sleep */ }

    // Read 56 words (MSB-first)
    for (int i = 0; i < 56; ++i)
        buf56[i] = REG(i);

    // Optional: check producer status
    uint32_t st = REG_STATUS;</pre>
```

```
(void)st; // bit1 mirrors data_valid_i

// Acknowledge/clear
REG_STATUS = CLR_W1C;
}
```

9. Integration Checklist

- \bullet Connect AXI4-Lite interface $data_o$ to the SoC interconnect at a 4-byte aligned base address.
- Drive send_data_i with a single-cycle pulse when the 1792-bit frame on data_i is valid.
- Tie data_valid_i to your packer "frame ready" flag (optional but recommended for software polling).
- $\bullet\,$ Ensure timing closure for the 1792-bit bus into this IP at the AXI clock frequency.

10. Revision History

Version	Date	Notes
1.0	August 31, 2025	Initial release of wifi_pack_reg (AXI4-Lite, 56 data words + status/clear).

Contact For questions or issues, please open a ticket in your project repository.