

Sztuczna inteligencja Laboratorium

 $Synteza\ układu\ wnioskującego$

Stanislau Antanovich

nr. indeksu: 173590 gr. lab: L04

Spis treści

1	Wstęp			
	1.1	Cel ćw	viczenia	
2	Sys	System ekspertowy typu Mamdaniego		
	2.1	Proble	em	
	2.2	Realiza	acja	
		2.2.1	Inicjowanie modułów	
		2.2.2	Tworzenie zmiennych stanu poprzednika "obsługa" oraz następnika "napiwek"	
		2.2.3	Dodanie zbiorów rozmytych	
		2.2.4	Podgląd zbiorów rozmytych	
		2.2.4 $2.2.5$	Definicja reguł	
		2.2.6	Dodanie reguł do systemu rozmytego	
		2.2.7	Sprawdzenie działania systemu	
		2.2.8	Sprawdzenie działania systemu dla wartości obsługi	
		2.2.9	Dodanie drugiej wejściowej	
		2.2.10		
		2.2.11	Sprawdzenie działania systemu dla wartości "obsługi" .	
		2.2.12	Sprawdzenie działania systemu dla wartości "obsługi" i "jedzenia"	
3	Mo	odyfikacja systemu		
1	Prz	zykładowe zadania zaliczeniowe		
5	Wn	nioski		
~				
5	pıs	rysui	nków	
	1	Obsłud	ga	
	2	_	, ek	
	3	Jedzen	nie	
	4		rzenie metodą środka ciężkości dla wejścia obsługa $=0$.	
	5		rzenie metodą środka ciężkości dla wejścia obsługa = 10	
	6		rzchnia prejścia systemu "napiwek" o jednym wejściu	
	7	Powie	rzchnia przejścia systemu "napiwek" o dwóch wejściach .	

1 Wstęp

1.1 Cel ćwiczenia

Laboratorium składa się z trzech zasadniczych części. Część 2 ma na celu zapoznanie się ze sposobem syntezy rozmytego systemu ekspertowego typu Mamdaniego z wykorzystaniem biblioteki **scikit-fuzzy**. W części 3, należy zapoznać się z ideą działania systemu Mamdaniego a następnie dokonać modyfikacji systemu wykonanego w części 2. Część 4 laboratorium polega na wykonaniu przykładowego zadania zaliczeniowego.

2 System ekspertowy typu Mamdaniego

2.1 Problem

Zaprojektować rozmyty układ ekspertowy doradzający ile napiwku pozostawić w restauracji na podstawie oceny jakości obsługi oraz jakości jedzenia. Jakość obsługi i jakość jedzenia będzie oceniana w skali od 1 do 10, gdzie 10 reprezentuję ocenę maksymalną, natomiast napiwek będzie liczbą z przedziału [0,30] reprezentującą procent wartości rachunku.

Baza reguł będzie składała się z 5 reguł. System zostanie wykonany w dwóch etapach. W **etapie pierwszym**(rys. 1 i 2) system będzie zbudowany z jednego wejścia(obsługa) i jednego wyjścia(napiwek) oraz 3 reguł postaci:

R1 jeżeli obsługa jest słaba, to napiwek jest mały

R2 jeżeli obsługa jest dobra, to napiwek jest średni

R3 jeżeli obsługa jest wspaniała, to napiwek jest duży

Rysunek 1: Obsługa

Rysunek 2: Napiwek

 ${\bf W}$ etapie drugim do systemu zostanie dodane gruga zmienna wejściowa $jedzenie ({\rm rys.~3})$ oraz 2 dodatkowe reguły

R4 jeżeli jedzenie jest zepsute, to napiwek jest mały

R5 jeżeli jedzenie jest wyborne, to napiwek jest duży

Rysunek 3: Jedzenie

2.2 Realizacja

2.2.1 Inicjowanie modułów

 \mathbf{W} tej sekcji inicjujemy wszystkie wymagane biblioteki dla prawidłowego działania programu.

```
import numpy as np
import skfuzzy as fuzz
from skfuzzy import control as ctrl
import matplotlib.pyplot as plt
```

2.2.2 Tworzenie zmiennych stanu poprzednika "obsługa" oraz następnika "napiwek"

W tej sekcji tworzymy zmienne stanu poprzednika "obsługa" oraz następnika "napiwek".

```
1 obsluga = ctrl.Antecedent(np.arange(0, 10.01, 0.01), 'obsluga')
2 napiwek = ctrl.Consequent(np.arange(0, 30.01, 0.01), 'napiwek')
```

2.2.3 Dodanie zbiorów rozmytych

W tej sekcji do zminnej $\it obsługa$ dodajemy następujące zbiory: $\it slaba, dobra, wspaniala.$

Zbiór slaba o centrum umieszczonym w punkcie uniwersum równym 0 i rozpiętości wynoszącej 1.5. Dla zbiorów dobra i wspaniala o centrach ulokowanych w punktach odpowiednio 5 oraz 10 i rozpiętości wynoszącej 1.5

Dla zmiennej *napiwek* dodajemy zbiory trójkątne: *maly, sredni, duzy* o parametrach [0, 5, 10], [10, 15, 20] i [20, 25, 30] odpowiednio.

```
obsluga ['slaba'] = fuzz.gaussmf(obsluga.universe, 0, 1.5)
obsluga ['dobra'] = fuzz.gaussmf(obsluga.universe, 5, 1.5)
obsluga ['wspaniala'] = fuzz.gaussmf(obsluga.universe, 10, 1.5)

napiwek ['maly'] = fuzz.trimf(napiwek.universe, [0, 5, 10])
napiwek ['sredni'] = fuzz.trimf(napiwek.universe, [10, 15, 20])
napiwek ['duzy'] = fuzz.trimf(napiwek.universe, [20, 25, 30])
```

2.2.4 Podgląd zbiorów rozmytych

Podgląd zbiorów rozmytch można zrealizować metodą view() dla poszczególnych zmiennych stanu.

```
1 obsluga.view()
2 napiwek.view()
```

2.2.5 Definicja reguł

W tej sekcji definiujemy reguły.

```
regula1 = ctrl.Rule(obsluga['slaba'], napiwek['maly'])
regula2 = ctrl.Rule(obsluga['dobra'], napiwek['sredni'])
regula3 = ctrl.Rule(obsluga['wspaniala'], napiwek['duzy'])
```

2.2.6 Dodanie reguł do systemu rozmytego

W tej sekcji dodajemy powyżej zdefiniowane reguły do systemu rozmytego.

2.2.7 Sprawdzenie działania systemu

W tej sekcji sprawdzamy działanie systemu dla wartości obsługi równej $\mathbf{0}$ (rys. 4) oraz dla wartości równej $\mathbf{10}$ (rys. 5).

```
1    napiwek_sym.input['obsluga'] = 0
2    #napiwek_sym.input['obsluga'] = 10 # dla wartosci rownej 10
3    napiwek_sym.compute()
4    print('Wynik', napiwek_sym.output['napiwek'])
5    napiwek.view(sim=napiwek_sym)
```

Wartość napiwku dla wartości obsługi wynosi: 5.07657801 Wartość napiwku dla wartości obsługi wynosi: 24.9234219

Rysunek 4: Wyostrzenie metodą środka ciężkości dla wejścia obsługa = 0

Rysunek 5: Wyostrzenie metodą środka ciężkości dla wejścia obsługa = 10

2.2.8 Sprawdzenie działania systemu dla wartości obsługi

W tej sekcji sprawdzamy działanie systemu dla wartości obsługi od 0 do 10(rys. 6 wykres funkcji napiwek=f(obsluga)).

Rysunek 6: Powierzchnia prejścia systemu "napiwek" o jednym wejściu

2.2.9 Dodanie drugiej wejściowej

W tej selcji dodajemy drugą wejściową zmienną stanu "jedzenie" o trapezoidalnych(trapmf) zbiorach rozmytych "zepsute" oraz "wyborne".

```
l jedzenie = ctrl.Antecedent(np.arange(0, 10.01, 0.01), 'jedzenie')

l jedzenie['zepsute'] = fuzz.trapmf(jedzenie.universe, [-2, 0, 1, 3])

jedzenie['wyborne'] = fuzz.trapmf(jedzenie.universe, [7, 9, 10, 12])
```

2.2.10 Dodanie reguł 4 i 5

W tej sekcji dodajemy reguły 4 i 5 analogicznie do punktu 2.2.5.

```
1 regula4 = ctrl.Rule(jedzenie['zepsute'], napiwek['maly'])
2 regula5 = ctrl.Rule(jedzenie['wyborne'], napiwek['duzy'])
```

2.2.11 Sprawdzenie działania systemu dla wartości "obsługi"

W tej sekcji sprawdzamy działanie systemu dla wartości obsługi równej ${\bf 0}$ oraz wartości jedzenia równej ${\bf 0}$.

```
napiwek_sym.input['jedzenie'] = 0
napiwek_sym.input['obsluga'] = 0
#napiwek_sym.input['obsluga'] = 10 # dla wartosci rownej 10
napiwek_sym.compute()
print('Wynik', napiwek_sym.output['napiwek'])
napiwek.view(sim=napiwek_sym)
```

2.2.12 Sprawdzenie działania systemu dla wartości "obsługi" i "jedzenia"

W tej sekcji sprawdzamy działanie systemu dla wartości obsługi i jedzenia od 0 do $10 ({
m rys.}~7)$

```
1    n_points = 21
2    upsampled = np.linspace(0, 10, n_points)
3    x, y = np.meshgrid(upsampled, upsampled)
4    z = np.zeros_like(x)
6    for i in range(n_points):
7    for j in range(n_points):
```

```
napiwek_sym.input['obsluga'] = x[i,j]
napiwek_sym.input['jedzenie'] = y[i,j]
napiwek_sym.compute()
z[i,j] = napiwek_sym.output['napiwek']

fig = plt.figure(figsize=(8, 8))
ax = fig.add_subplot(111, projection='3d')
surf = ax.plot_surface(x, y, z, cmap='viridis')

ax.set_xlabel('obsluga')
ax.set_ylabel('jedzenie')
ax.set_zlabel('napiwek')
ax.view_init(30, 200)
plt.show()
```


Rysunek 7: Powierzchnia przejścia systemu "napiwek" o dwóch wejściach

3 Modyfikacja systemu

Jak można było zauważyć, wyjście systemu napiwek zawierało się w przedziale (5.08,24.9), a zatem niemożliwym było uzyskanie napiwku mniejszego od 5.08 i większego od 24.9. Celem tej części laboratorium będzie taka modyfikacja systemu, aby uzyskać wartość napiwku z przedziału (0,30). Zostanie to osiągnięte jedynie poprzez modyfikację kształtów zbiorów rozmytych zmiennej wejściowej "obsługa" oraz wyjściowej "napiwek". Uzasadnieniem modyfikacji systemu jest zrozumienie zasady działania systemu Mamdaniego.

4 Przykładowe zadania zaliczeniowe

5 Wnioski