Заметки к семинарам по комплексному анализу

https://github.com/bdemeshev/complan_pro 3 июля 2024 г.

Содержание

1	Графики	3
2	Геометрия	3
3	Первые функции	3
4	Решения	4
Хэ	штэги	4
Ис	точники мудрости	4

Это задачки по ...

1. Графики

- 1.1 Нарисуйте множества
 - a) |z 1| = 3;
 - 6) |z-1|+|z+1|=4;
 - B) |z-1|-|z+1|=1;

r)

2. Геометрия

Эти задачи можно легко решить с помощью комплексных чисел.

2.1 Рассмотрим произвольный треугольник $\triangle ABC$. На сторонах AB и BC отложены два квадрата, ABDE и BCFG. Центры этих квадратов соединены отрезком. На середине отрезка отмечена точка P.

Где может быть расположена точка P в зависимости от расположения точки B исходного треугольника?

2.2 Теорема Наполена. Рассмотрим произвольный треугольник $\triangle ABC$. На сторонах треугольника отложены три равносторонних треугольника. Центры этих трёх треугольников попарно соединены.

Чему равны углы получившегося треугольника?

- **2.3** Рассмотрим произвольный выпуклый четырёхугольник ABCD. На его сторонах отложены четыре квадрата. Центры противолежащий квадратов соединены отрезками.
 - а) Под каким углом расположены эти отрезки?
 - б) Как связаны между собой длины этих отрезков?
- **2.4** На единичной окружности на равных расстояниях расставлены n точек. Одна из точек соединена со всеми остальными.

Чему равно произведение длин полученных отрезков?

3. Первые функции

Под записью $\log z$ мы подразумеваем все значения логарифма, а под записью $\log z$ — главное значение логарифма.

3.1 Упростите $\exp(\log z)$ и $\log(\exp(z))$.

4. Решения

- 1.1.
- а) окружность;
- б) эллипс;
- в) ветвь гиперболы;
- r)
- **2.1.** Расположение точки P не зависит от расположения точки B.
 - **2.2.** 60°
 - 2.3. Отрезки пересекаются под прямым углом, а их длины равны.
 - **2.4.** Обозначим единичные корни с помощью $z_0=1,\,z_1,\,...,\,z_{n-1}.$ Нам нужно найти значение:

$$(z_0-z_1)(z_0-z_2)\dots(z_0-z_{n-1}).$$

Вместо z_0 рассмотрим произвольную точку z:

$$(z-z_1)(z-z_2)\dots(z-z_{n-1})=\frac{(z-z_0)(z-z_1)(z-z_2)\dots(z-z_{n-1})}{z-z_0}=\frac{z^n-1}{z-1}=1+z+z^2+\dots+z^{n-1}$$

Остаётся устремить $z \to z_0 = 1$ и получить, что

$$(z_0 - z_1)(z_0 - z_2) \dots (z_0 - z_{n-1}) = n$$

3.1. $\exp(\log z) = z, \log(\exp(z)) = z + 2\pi i.$