Student: Gustavo Patino (20168196)

IFT6135-H2020

Prof: Aaron Courville

Due Date: February 4th (11pm), 2020

Question 1 (4-4-4). Using the following definition of the derivative and the definition of the Heaviside step function:

$$\frac{d}{dx}f(x) = \lim_{\epsilon \to 0} \frac{f(x+\epsilon) - f(x)}{\epsilon} \qquad H(x) = \begin{cases} 1 & \text{if } x > 0\\ \frac{1}{2} & \text{if } x = 0\\ 0 & \text{if } x < 0 \end{cases}$$

- 1. Show that the derivative of the rectified linear unit $g(x) = \max\{0, x\}$, wherever it exists, is equal to the Heaviside step function.
- 2. Give two alternative definitions of q(x) using H(x).
- 3. Show that H(x) can be well approximated by the sigmoid function $\sigma(x) = \frac{1}{1+e^{-kx}}$ asymptotically (i.e for large k), where k is a parameter.

Answer 1.

$$\begin{array}{ll} 1. & -if \ x>0 \lim_{\epsilon \to 0} \frac{g(x+\epsilon)-g(x)}{\epsilon} = \lim_{\epsilon \to 0} \frac{x+\epsilon-x}{\epsilon} = 1 \\ & -if \ x<0 \lim_{\epsilon \to 0} \frac{g(x+\epsilon)-g(x)}{\epsilon} = \lim_{\epsilon \to 0} \frac{0-0}{\epsilon} = 0 \\ & -if \ x=0 \ \text{we have two cases} \\ & -\lim_{\epsilon \to 0^-} \frac{g(x+\epsilon)-g(x)}{\epsilon} = \frac{0-0}{\epsilon} = 0 \\ & -\lim_{\epsilon \to 0^+} \frac{g(x+\epsilon)-g(x)}{\epsilon} = \frac{x+\epsilon-x}{\epsilon} = 1 \end{array}$$

So the function is not differentiable at x = 0

In summary

$$g'(x) = \begin{cases} 1, if \ x > 0 \\ 0, if \ x < 0 \end{cases}$$

2. The function g(x) can be alternatively defined as:

$$- g(x) = xH(x)$$
$$- g(x) = \int_{-\infty}^{\infty} H(t) dt$$

3.

$$\lim_{k \to \infty} \sigma(x) = \frac{1}{1 + e^{-kx}} = \begin{cases} 1, if \ x > 0 \\ 1/2, if \ x = 0 \\ 0, if \ x < 0 \end{cases} = H(x)$$

Question 2 (3-3-3). Recall the definition of the softmax function : $S(\mathbf{x})_i = e^{\mathbf{x}_i} / \sum_j e^{\mathbf{x}_j}$.

- 1. Show that softmax is translation-invariant, that is: $S(\boldsymbol{x}+c) = S(\boldsymbol{x})$, where c is a scalar constant.
- 2. Show that softmax is not invariant under scalar multiplication. Let $S_c(\mathbf{x}) = S(c\mathbf{x})$ where $c \geq 0$. What are the effects of taking c to be 0 and arbitrarily large?
- 3. Let \boldsymbol{x} be a 2-dimensional vector. One can represent a 2-class categorical probability using softmax $S(\boldsymbol{x})$. Show that $S(\boldsymbol{x})$ can be reparameterized using sigmoid function, i.e. $S(\boldsymbol{x}) = [\sigma(z), 1 \sigma(z)]^{\top}$ where z is a scalar function of \boldsymbol{x} .

Prof: Aaron Courville

Student: Gustavo Patino (20168196)

4. Let \boldsymbol{x} be a K-dimensional vector $(K \geq 2)$. Show that $S(\boldsymbol{x})$ can be represented using K-1parameters, i.e. $S(\boldsymbol{x}) = S([0, y_1, y_2, ..., y_{K-1}]^{\top})$ where y_i is a scalar function of \boldsymbol{x} for $i \in \{1, ..., K-1\}$ 1}.

Answer 2.

1.
$$S(\mathbf{x}+c)_i = \frac{e^{x_i+c}}{\sum_i e^{x_j+c}} = \frac{e^{x_i}e^c}{e^c\sum_i e^{x_i}} = S(\mathbf{x})$$

2. $S(c\mathbf{x})_i = \frac{(e^{x_i})^c}{\sum_{i}(e^{x_j})^c} \neq S(\mathbf{x})_i$ except when c = 1. This expression can be written as

$$S_c(\mathbf{x})_i = \frac{1}{\sum_j \left(\frac{e^{x_j}}{e^{x_i}}\right)^c}$$

so we can evaluate different cases:

— if
$$c = 0$$
, $S_c(\mathbf{x})_i = \frac{1}{n}$

— if
$$\lim c \to \infty$$
 and

— if
$$x_i > x_i$$
, $S_c(\mathbf{x})_i \to 1$

— if
$$x_i < x_i$$
, $S_c(\mathbf{x})_i \to 0$

3. The component 1 of the vector is

$$S(\mathbf{x})_1 = \frac{e^{x_1}}{e^{x_1} + e^{x_2}} = \frac{1}{1 + e^{-z}} = \sigma(z)$$

with $z \equiv x_1 - x_2$. In the same way the component 2 is

$$S(\mathbf{x})_2 = \frac{e^{x_2}}{e^{x_1} + e^{x_2}} = \frac{1}{1 + e^z} = 1 - \frac{1}{1 + e^{-z}} = 1 - \sigma(z)$$

SO

$$S(\mathbf{x}) = [\sigma(z), 1 - \sigma(z)]$$

4. According to the property of invariance to translations, we can deduce that $S(\mathbf{x}) = S(\mathbf{x} - x_1)$, i.e $S([x_1, x_2, \dots x_k]^T) = S([0, x_2 - x_1, x_3 - x_1, \dots x_k - x_1]^T) = S([0, y_1, y_2, \dots y_{k-1}])$

Question 3 (16). Consider a 2-layer neural network $y: \mathbb{R}^D \to \mathbb{R}^K$ of the form :

$$y(x, \Theta, \sigma)_k = \sum_{i=1}^{M} \omega_{kj}^{(2)} \sigma \left(\sum_{i=1}^{D} \omega_{ji}^{(1)} x_i + \omega_{j0}^{(1)} \right) + \omega_{k0}^{(2)}$$

for $1 \leq k \leq K$, with parameters $\Theta = (\omega^{(1)}, \omega^{(2)})$ and logistic sigmoid activation function σ . Show that there exists an equivalent network of the same form, with parameters $\Theta'=(\tilde{\omega}^{(1)},\tilde{\omega}^{(2)})$ and tanh activation function, such that $y(x, \Theta', \tanh) = y(x, \Theta, \sigma)$ for all $x \in \mathbb{R}^D$, and express Θ' as a function of Θ .

Answer 3. Considering the definition of $\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ and $\sigma(x) = \frac{1}{1 + e^{-x}}$ we can obtain the relation $\sigma(x) = \frac{\tanh(x/2)+1}{2}$ replacing in the 2-neural layer network we arrive to

$$y(x, \Theta, \sigma)_k = \sum_{j=1}^M \omega_{kj}^{(2)} \left[\frac{1}{2} \tanh \left(\sum_{i=1}^D \frac{\omega_{ji}}{2} x_i + \frac{\omega_{j0}}{2} \right) + \frac{1}{2} \right] + \omega_{k0}^{(2)}$$
$$= \sum_{j=1}^M \omega_{kj}^{(2)} \tanh \left(\sum_{i=1}^D \omega_{ji}^{(1)} x_i + \omega_{j0}^{(1)} \right) + \omega_{k0}^{(2)}$$

Prof : Aaron Courville

Student: Gustavo Patino (20168196)

TABLE 1 – Forward AD example, with $y = f(x_1, x_2) = \ln(x_1) + x_1x_2 - \sin(x_2)$ at $(x_1, x_2) = (2, 5)$ and setting $\dot{x}_1 = 1$ to compute $\partial y / \partial x_1$.

-	Forward evaluation trace										
-	21	$x_1 = x_1 = 2$			Forward derivative trace						
	v_{-1}	$=x_1$	-	_	$=\dot{v}_{-1}$	\dot{x}_1	= 1				
	v_0	$=x_2$	=5				= 0				
-	v_1	$=\ln(v_1)$	$=\ln(2)$		$=\dot{v}_0$	x_2					
	v_2	$-v + v_0$	$= v_{-1} \times v_0 \qquad = 2 \times 5$ $= \sin(v_0) \qquad \sin(5)$		\dot{v}_1	$=\dot{v}_{-1}/v_{-1}$	= 1/2				
	_				\dot{v}_2	$=\dot{v}_{-1}\times v_0+v_{-1}\times\dot{v}_0$	$= 1 \times 5 + 2 \times 0$				
\Downarrow	v_3	$=\sin(v_0)$			\dot{v}_3	$=\cos v_0 \times \dot{v}_0$	$=\cos(5)\times0$				
	v_4	$= v_1 + v_2$					\ /				
	_				\dot{v}_4	$=\dot{v}_1+\dot{v}_2$	= 0.5 + 5				
-			10 0001 + 0 0500		\dot{v}_5	$=\dot{v}_{4}-\dot{v}_{3}$	=5.5-0				
	v_5	$= v_4 - v_3 = 10.6931 + 0.9589$		\dot{y}	\dot{v}_{5}	= 5.5					
	y	$=v_5$	= 11.6521	= 11.6521 ——	9	~ 9					

TABLE 2 – Reverse AD example, with $y = f(x_1, x_2) = \ln(x_1) + x_1x_2 - \sin(x_2)$ at $(x_1, x_2) = (2, 5)$. Setting $\bar{y} = 1$, $\partial y/\partial x_1$ and $\partial y/\partial x_2$ are computed in one reverse sweep.

					Reverse adjoint trace		
		Forward ev	raluation trace		\bar{x}_1	$= \bar{v}_{-1}$	= 5.5
\	v_{-1}	$=x_1$	=2		\bar{x}_2	$=\bar{v}_0$	= 1.7163
	v_0	$=x_2$	=5		\bar{v}_{-1}	$= \bar{v}_{-1} + \bar{v}_1 \frac{\partial v_1}{\partial v_{-1}}$	= 5.5
	v_1	$=\ln(v_1)$	$=\ln(2)$		\bar{v}_0	$= \bar{v}_0 + \bar{v}_2 \frac{\partial v_2}{\partial v_0}$	= 1.7163
	v_2	$=v_{-1}\times v_0$	$=2\times5$	\uparrow	\bar{v}_{-1}	$= \bar{v}_2 \frac{\partial v_2}{\partial v_{-1}}$	=5
	v_3	$=\sin(v_0)$	$= \sin(5)$		\bar{v}_0	$= \bar{v}_3 \frac{\partial v_3}{\partial v_0}$	=-0.2837
	v_4	$v_4 = v_1 + v_2$	=0.6931+10		\bar{v}_2	$= \bar{v}_4 \frac{\partial v_4}{\partial v_2}$	= 1
	v_5	$= v_4 - v_3$	= 10.6931 + 0.9589		\bar{v}_1	$= \bar{v}_4 \frac{\partial v_4}{\partial v_1}$	=1
		1 0			\bar{v}_3	$= \bar{v}_5 \frac{\partial v_5}{\partial v_3}$	= -1
	y	$=v_5$	= 11.6521		\bar{v}_4	$=\bar{v}_5\frac{\partial v_5}{\partial v_4}$	= 1
					\bar{v}_5	$=\bar{y}$	=1

with the definitions

$$\widetilde{\omega_{kj}}^{(2)} \equiv \frac{\omega_{kj}^{(2)}}{2}; \ \widetilde{\omega_{ji}}^{(1)} \equiv \frac{\omega_{ji}^{(1)}}{2}; \ \widetilde{\omega_{k0}}^{(2)} \equiv \frac{1}{2} \sum_{j=1}^{M} \omega_{kj}^{(2)} + \omega_{k0}^{(2)}$$

Question 4 (5-5). Fundamentally, back-propagation is just a special case of reverse-mode Automatic Differentiation (AD), applied to a neural network. Based on the "three-part" notation shown in Table 1 and 2, represent the evaluation trace and derivative (adjoint) trace of the following examples. In the last columns of your solution, numerically evaluate the value up to 4 decimal places.

- 1. Forward AD, with $y = f(x_1, x_2) = 1/(x_1 + x_2) + x_2^2 + \cos(x_1)$ at $(x_1, x_2) = (3, 6)$ and setting $\dot{x}_1 = 1$ to compute $\partial y/\partial x_1$.
- 2. Reverse AD, with $y = f(x_1, x_2) = 1/(x_1 + x_2) + x_2^2 + \cos(x_1)$ at $(x_1, x_2) = (3, 6)$. Setting $\bar{y} = 1$, $\partial y/\partial x_1$ and $\partial y/\partial x_2$ can be computed together.

 $\begin{array}{rcl}
\dot{x}_2 & = 0 \\
 & = -\frac{(\dot{v}_{-1} + \dot{v}_0)}{(v_{-1} + v_0)^2} & = -0.012
\end{array}$

 $= 2v_0\dot{v_0} = 0$ $= \dot{v_1} + \dot{v_2} = -0.012$ $= -\sin(v_{-1})\dot{v_{-1}} = -0.14$

Prof : Aaron Courville

Student: Gustavo Patino (20168196)

TABLE 3 – Forward AD exercise, with $y = f(x_1, x_2) = \frac{1}{x_1 + x_2} + x_2^2 + \cos(x_1)$ at $(x_1, x_2) = (3, 6)$ and setting $\dot{x}_1 = 1$ to compute $\partial y/\partial x_1$.

2000	·o	1 2 00 001111	1400 09/00	1.					
	For	rward evaluation trace				Forward derivative trace			
	v_{-1}	$=x_1$	=3			$=\dot{v}_{-1}$	\dot{x}_1	=	
	v_0	$=x_2$	=6	-		$=\dot{v}_0$	\dot{x}_2	=	
	$\overline{v_1}$	$=\frac{1}{v_{-1}+v_0}$	= 0.1			\dot{v}_1	$= -\frac{(\dot{v}_{-1} + \dot{v}_0)}{(v_{-1} + v_0)^2}$	= -0	
	v_2	$=v_{0}^{2}$	= 36		\dot{v}_2	$=2v_0\dot{v_0}$	=		
\	v_3	$= v_1 + v_2$	= 36.1		\downarrow	\dot{v}_3	$= \dot{v_1} + \dot{v_2}$	= -0	
	v_4	$= \cos(v_{-1})$	= -0.99			\dot{v}_4	$= -\sin(v_{-1})\dot{v_{-1}}$	= -	
	v_5	$= v_4 + v_3$	= 35.11				$= \dot{v}_4 + \dot{v}_3$	= -0	
	\overline{y}	$=v_5$	= 35.11		•	$=\dot{u}$	$\dot{v}_{\scriptscriptstyle 5}$	= -(

TABLE 4 – Reverse AD example, with
$$y = f(x_1, x_2) = \frac{1}{x_1 + x_2} + x_2^2 + \cos(x_1)$$
 at $(x_1, x_2) = (3, 6)$. Setting $\bar{y} = 1$, $\partial y/\partial x_1$ and $\partial y/\partial x_2$ are computed in one reverse sweep.

	Forward evaluation trace							
	v_{-1}	$=x_1$	=3					
	v_0	$=x_2$	=6					
	v_1	$=\frac{1}{v_{-1}+v_0}$	= 0.1					
	v_2	$=v_0^2$	= 36					
\Downarrow	v_3	$= v_1 + v_2$	= 36.1					
	v_4	$= \cos(v_{-1})$	= -0.99					
	v_5	$= v_4 + v_3$	= 35.11					
	\overline{y}	$= v_5$	= 35.11					

verse sweep.								
	Reverse adjoint trace							
	\bar{x}_1	$= \bar{v}_{-1}$	=-0.153					
	\bar{x}_2	$=\bar{v}_0$	= 11.98					
	\bar{v}_{-1}	$= \bar{v}_1 \frac{\partial v_1}{\partial v_{-1}} + \bar{v}_4 \frac{\partial v_4}{\partial v_{-1}}$	=-0.153					
	\bar{v}_0	$=\bar{v}_1\frac{\partial v_1}{\partial v_1}+\bar{v}_2\frac{\partial v_2}{\partial v_2}$	= 11.98					
1	\bar{v}_1	$=\bar{v}_3\frac{\partial v_3}{\partial v_1}$	=1					
	\bar{v}_2	$=\bar{v}_3\frac{\partial v_3}{\partial v_2}$	=1					
	\bar{v}_3	$= \bar{v}_5 \frac{\partial v_5}{\partial v_3}$	=1					
	\bar{v}_4	$= \bar{v}_3 \frac{\partial v_3}{\partial v_1}$ $= \bar{v}_3 \frac{\partial v_3}{\partial v_2}$ $= \bar{v}_5 \frac{\partial v_5}{\partial v_3}$ $= \bar{v}_5 \frac{\partial v_5}{\partial v_4}$	=1					
	\bar{v}_5	$=\bar{y}$	= 1					

Answer 4. Solutions are shown in Tab.3 and Tab.4

Question 5 (6). Compute the full, valid, and same convolution (with kernel flipping) for the following 1D matrices: [1, 2, 3, 4] * [1, 0, 2]

Answer 5. Considering the N=4 elements of [1,2,3,4] and the M=3 elements of [1,0,2] the size of the full convolution is N + (M - 1) = 6. The elements in the full convolution are calculted as

$$\begin{bmatrix} [0,0,1,2,3,4]*[2,0,1,0,0,0]\\ [0,1,2,3,4]*[2,0,1,0,0]\\ [1,2,3,4]*[2,0,1,0]\\ [1,2,3,4]*[0,2,0,1]\\ [1,2,3,4,0]*[0,0,2,0,1]\\ [1,2,3,4,0]*[0,0,0,2,0,1] \end{bmatrix} = [1,2,5,8,6,8]$$

Therefore Full: [1, 2, 5, 8, 6, 8]. "Same" returns an output of length max[M, N] = 4. and it is obtained from

$$\begin{bmatrix} [0,1,2,3,4] * [2,0,1,0,0] \\ [1,2,3,4] * [2,0,1,0] \\ [1,2,3,4] * [0,2,0,1] \\ [1,2,3,4,0] * [0,0,2,0,1] \end{bmatrix} = [2,5,8,6]$$

IFT6135-H2020 Prof : Aaron Courville

Student: Gustavo Patino (20168196)

so **Same** :[2,5,8,6]. Finally, "valid" returns an output of length $\max[M,N] - \min[M,N] + 1 = 4 - 3 + 1 = 2$ obtained using

$$\begin{bmatrix} [1,2,3,4] * [2,0,1,0] \\ [1,2,3,4] * [0,2,0,1] \end{bmatrix} = [5,8]$$

Valid matrix is **Valid** :[5, 8].

Question 6 (5-5). Consider a convolutional neural network. Assume the input is a colorful image of size 256×256 in the RGB representation. The first layer convolves 64.8×8 kernels with the input, using a stride of 2 and no padding. The second layer downsamples the output of the first layer with a 5×5 non-overlapping max pooling. The third layer convolves 128.4×4 kernels with a stride of 1 and a zero-padding of size 1 on each border.

- 1. What is the dimensionality (scalar) of the output of the last layer?
- 2. Not including the biases, how many parameters are needed for the last layer?

Answer 6.

- 1. We use the expression $o = \frac{i-k+2p}{s} + 1$, where o = output width size of the image, i = input width size of the image, k = size width of the kernel, s = stride of the convolution operator and p = padding. Using this expression in each layer we obtain
 - First layer : $o = \left(\frac{256-8+0}{2}+1\right) \times \left(\frac{256-8+0}{2}+1\right) \times 64 = 125 \times 125 \times 64$
 - Second layer : $o = \left(\frac{125-5+0}{5}+1\right) \times \left(\frac{125-5+0}{5}+1\right) \times 64 = 25 \times 25 \times 64$
 - Third layer : $o = \left(\frac{25-4+2}{1} + 1\right) \times \left(\frac{25-4+2}{1} + 1\right) \times 128 = 24 \times 24 \times 128$

thus the third layer has 24 * 24 * 128 = 73728 dimensions.

2. The number of parameters p is defined by $p = k^2 * c * N + B_c$ where N = is the number of kernels, c = the number of channels of the input image and B_c the number of biases, the other variables have the same definition as above. In the third layer $p = 4^2 * 64 * 128 = 131072$

Question 7 (4-4-6). Assume we are given data of size $3 \times 64 \times 64$. In what follows, provide a correct configuration of a convolutional neural network layer that satisfies the specified assumption. Answer with the window size of kernel (k), stride (s), padding (p), and dilation (d), with convention d = 1 for no dilation). Use square windows only (e.g. same k for both width and height).

- 1. The output shape (o) of the first layer is (64, 32, 32).
 - (a) Assume k = 8 without dilation.
 - (b) Assume d = 7, and s = 2.
- 2. The output shape of the second layer is (64, 8, 8). Assume p = 0 and d = 1.
 - (a) Specify k and s for pooling with non-overlapping window.
 - (b) What is output shape if k = 8 and s = 4 instead?
- 3. The output shape of the last layer is (128, 4, 4).
 - (a) Assume we are not using padding or dilation.
 - (b) Assume d = 2, p = 2.
 - (c) Assume p = 1, d = 1.

Answer 7. In this case we use the expression $o = \frac{i-k'+2p}{s} + 1$, with k' = d(k-1) + 1, we observe that when d = 1 (no dilation), k' = k as used in the last exercise. Filling the table we obtain:

Assignment 1, Theoretical Part Multilayer Perceptrons and Convolutional Neural networks

IFT6135-H2020 Prof : Aaron Courville

Student: Gustavo Patino (20168196)

		i	p	d	k	s	0
1.	(a)	64	3	1	8	2	32
	(b)	64	3	7	2	2	32
2.	(a)	32	0	1	4	4	8
	(b)	32	0	1	8	4	7
3.	(a)	8	0	1	2	2	4
	(b)	8	2	2	5	1	4
	(c)	8	1	1	4	2	4