Senior Thesis Notes

Anuththari Gamage

November 7, 2017

- 1. Clustering with Multiple Graphs (Tang et al.)
 - Linked Matrix Factorization (LMF)

Given tensor A, each layer being a separate graph $A^{(m)}$, construct a common factor matrix $P \in \mathbf{R}^{n \times k}$ and layer-specific factor matrices $\Lambda^{(m)} \in \mathbf{R}^{k \times k}$ s.t.

$$[\hat{P}, \hat{\Lambda}^{(1...m)}] = \arg\min \frac{1}{2} \sum_{m=1}^{M} \left\| A^{(m)} - P \Lambda^{(m)} P^T \right\|_F^2 + \frac{\alpha}{2}$$

where α is a Frobenius norm regularization term. Here, $\Lambda^{(m)}$ are not necessarily diagonal.

- 2. Consistency of Community Detection in Multi-layer Networks (Paul et al.)
 - Orthogonal Linked Matrix Factorization (OLMF)

The same approach as LMF with the constraint that P is orthogonal, which avoids the need for the regularization term. $\Lambda^{(m)} \in \mathbf{R}^{k \times k}$ s.t.

$$[\hat{P}, \hat{\Lambda}^{(1...m)}] = \underset{P^T P = I}{\arg\min} \sum_{m=1}^{M} \left\| A^{(m)} - P\Lambda^{(m)} P^T \right\|_F^2$$

- Baseline comparison to Spectral Clustering and similar methods
- Tested on Multi-Layer Stochastic Block Model (MLSBM) graphs.
- 3. Extensions to try:
 - Replacing the adjacency matrix in LMF/OLMF with the *normalized* graph Laplacian. Does this still give the same results as using the adjacency matrix?
 - Using the NBT operator instead. Proven to capture the community structure better (Spectral Redemption) but is this necessarily the case?
- 4. Other approaches:
 - Tensor methods?
 - Manifold alignment? (discuss)