Notes for EECS 550: Information Theory

Yiwei Fu, Instructor: David Neuhoff

FA 2022

Contents

1			1
	1.1	Lossless Coding	1
	1.2	Shannon-McMillian Theorem	6
	1.3	Fixed Length to Variable L ength (FVB) Lossless Source codes	9
	1.4	Huffman's Code Design	12
Ot	ffice h	nours:	

Chapter 1

1.1 Lossless Coding

It is a type of data compression.

GOAL to encode data into bits so that

- 1. bits can be decoded perfectly or with very high accuracy back into original data;
- 2. we use as few bits as possible.

We need to model for data, a measure of decoding accuracy, a measure of compactness.

MODEL FOR DATA

Definition 1.1.1. A *source* is a sequence of i.i.d (discrete) random variables $U_1, U_2, ...$

We would like to assume a known alphabet $A = \{a_1, a_2, \dots, a_Q\}$ and known probability distribution either through probability mass functions $p_U(u) = \Pr[U = u]$.

Definition 1.1.2. Source coding

PERFORMANCE MEASURES A measure of compactness (efficiency)

Definition 1.1.3. rate = encoding rate = average number of encoded bits per data symbol

Two versions: empricial avg rate $\langle r \rangle = \lim_{N \to \infty} \frac{1}{N} \sum_{k=1}^{N} L_k(U_1, \dots, U_k)$.

Statistical avg rate:

$$\overline{r} = \lim_{N \to \infty} \frac{1}{N} \sum_{k=1}^{N} \mathbb{E}[L_k(U_1, \dots, U_k)]$$

where L_K is the number of bits out of the encoder after U_k and before U_{k+1} .

Accuracy per-letter frequency of error

$$\langle F_{LE} \rangle = \lim_{N \to \infty} \frac{1}{N} \sum_{k=1}^{N} I(\hat{U}_k = U_k)$$

per-letter error probability

$$p_{LE} = \lim_{N \to \infty} \frac{1}{N} \sum_{k=1}^{N} \mathbb{E}[I(\hat{U}_k = U_k)] = \lim_{N \to \infty} \frac{1}{N} \sum_{k=1}^{N} \Pr(\hat{U}_k = U_k)$$

Fixed-length to fixed-length block codes (FFB)

characteristics

A code is perfectly lossless (PL) if the $\beta(\alpha(\underline{u})) = \underline{u}$ for all $\underline{u} \in A_U^k$ (the set of all sequences u_1, \ldots, u_k).

In order to be perfectly loss, α must be one-to-one. Encode must assign a distinct codeword (L bits) to each data sequences. rate = L/K. We seek $R_{PL}^*(k)$ the smallest rate of any PL code.

Number of sequences of size $k=Q^k$, and number binary sequence of size $L=2^L$. We need $2^L\gg Q^K$.

$$\overline{r} = \frac{L}{k} \ge \frac{k \log_2 Q}{k} = \log_2 Q$$

Choose $\lceil k \log_2 Q \rceil$, then we have

$$\begin{split} R_{PL}^*(k) &= \frac{\lceil k \log_2 Q \rceil}{k} \leq \frac{k \log_2 Q + 1}{k} = \log_2 Q + \frac{1}{k}. \\ &\log_2 Q \leq R_{PL}^*(k) \leq \log_2 Q + \frac{1}{k} \end{split}$$

Let R_{PL}^* be the least rate of any PL FFB code with any k. $R_{PL}^*(k) \to \log_2 Q$ as $k \to \infty$.

$$R_{PL}^* = \inf_k R_{PL}^*(k)$$

Now we want rate less and $\log_2 Q$ almost lossless codes.

 $R_{AL}^* = \inf\{r, \text{there is an FFB code with } \bar{r} \leq n \text{ and arbitrarily small } P_{LE}\}$

= $\inf\{r, \text{ there is an FFB code with } \bar{r} \leq n \text{ and } P_{LE} < \delta \text{ for all } \delta > 0\}$

Instead of per-letter probability P_{LE} , we focus on block error probability $P_{BE} = \Pr(\underline{\hat{U}} \neq \underline{U})$

Lemma 1.1.1. $P_{BE} \ge P_{LE} \ge \frac{P_{BE}}{k}$

Proof. See homework.

To analyze, we focus on the set of correctly encoded sequences. $G = \{\underline{u} : \beta(\alpha(\underline{u})) = \underline{u}\}$

Then we have

$$P_{BE} = 1 - \Pr[U \in G], |G| \le 2^k, L \ge \lceil \log_2 |G| \rceil.$$

QUESTION How large is the smallest set of sequences with length k form A_U with probability ≈ 1 ?

We need to use weak law of large numbers (WLLN).

Theorem 1.1.1. Suppose $A_x = \{1, 2, ..., Q\}$ with probability $p_1, ..., p_Q$. Given $\underline{u} = (u_1, ..., u_k) \in A_U^k$.

$$n_q(\underline{u}) := \# times \ a_q \ occurs \ in \ \underline{u}, \quad f_q(\underline{u}) = \frac{n_q(\underline{u})}{k} = f requency$$

Fix any $\varepsilon > 0$ *,*

$$\Pr[f_q(\underline{u}) \doteq p_q \pm \varepsilon] \to 1 \text{ as } k \to \infty.$$

Moreover,

$$\Pr[f_q(\underline{u}) \doteq p_q \pm \varepsilon, q = 1, \dots, Q] \to q \text{ as } k \to \infty.$$

 $\underline{\text{NOTATION}} \ a \doteq b \pm \varepsilon \iff |a - b| \le \varepsilon$

Consider subset of A_U^k that corresponds to this event x.

$$T_k = \{\underline{u} : f_q(\underline{u}) \doteq p_q \pm \varepsilon, q = 1, \dots, Q\}.$$

$$\Pr[\underline{U} = \underline{u}] = p(u_1)p(u_2)\dots p(u_k).$$

By WLLN, $\Pr(T_k) \to 1$ as $k \to \infty$.

KEY FACT all sequences in T_k have approximately the same probability.

For $\underline{u} \in T_k$,

$$\begin{split} p(\underline{u}) &= p(u_1)p(u_2)\dots p(u_k) \\ &= p_1^{n_1(u)}p_2^{n_2(u)}\dots p_k^{n_k(u)} \\ &= p_1^{kf_1(u)}p_2^{kf_2(u)}\dots p_k^{kf_k(u)} \\ &\approx \tilde{p}^k \text{ where } \tilde{p} = p_1^{p_1}p_2^{p_2}\dots p_Q^{p_Q}. \end{split}$$

So we have $|T_k| \approx \frac{1}{\tilde{p}^k}$.

Then we have

$$\overline{r} = \frac{\log_2 |T_k|}{k} = -\frac{k \log_2 \tilde{p}}{k} = -\log_2 \tilde{p}.$$

Is that rate good? Can we do better? Can we have a set S with probability ≈ 1 and significantly smaller?

Since $\Pr(\underline{U} \in A_U^k \setminus T_k) \approx 0 \implies \Pr(\underline{U} \in S) \approx \Pr(\underline{U} \in S \cap T_k) \approx \frac{|S|}{|T_k|}$. So when k is large, T_k is the smallest set with large probability. And $R_{AL}^* \approx -\log \tilde{p}$.

How to express \tilde{p} .

$$-\log \tilde{p} = -\log \prod_{i=1}^Q p_i^{p_i}$$

$$= -\sum_{i=1}^Q p_i \log p_i =: \text{entropy} = H.$$

Some properties of *H*:

- 1. its unit is bits
- 2. $H \ge 0$.
- 3. $H = 0 \implies \iff p_q = 1 \text{ for some } q.$
- 4. $H \leq \log_2 Q$.
- 5. $H = \log_2 Q \iff p_q = \frac{1}{Q}$ for all q.

Identify the set that WLLN says has probability \rightarrow 1. Suppose X_1, X_2, \dots i.i.d. real-valued variables.

$$T = \{\underbrace{x_1 \dots x_n}_{x} \in A_X^N : \frac{1}{N} \sum_{i=1}^N x_i \doteq \overline{x} \pm \varepsilon\}$$

is called a typical set. $\Pr(\underline{X} \in T) \approx 1$ when *N* is large.

Now suppose X_1, X_2, \ldots i.i.d. A_x -valued random variables, function $g: A_x \to \mathbb{R}$. Consider Y_1, Y_2, \ldots with $Y_i = g(X_i)$. Y_i 's are i.i.d. random variables.

If $\mathbb{E}[g(X)]$ is finite than we can apply WLLN that

$$\Pr\left(\frac{1}{N}\sum_{i=1}^{N}Y_{i} \doteq \mathbb{E}[Y] \pm \varepsilon\right) \to 1 \quad \text{as} \quad N \to \infty.$$

Typical sequences wrt g:

$$T_{x,p_{\lambda},g,\varepsilon}^{N} = \left\{ \underline{x} : \frac{1}{N} \sum_{i=1}^{N} g(x_{i}) \doteq \overline{g(X)} \pm \varepsilon \right\}.$$

If $\mathbb{E}[g(X)]$ is finite then by WLLN we have

$$\Pr(\underline{X} \in T_g) \to 1 \quad \text{as} \quad N \to \infty.$$

Example 1.1.1 (Indicator function). Suppose $F \subset A_X$, and $g(x) = \begin{cases} 1 & x \in F \\ 0 & x \notin F \end{cases}$. Then $\frac{1}{N} \sum_{i=1}^{N} g(x_i) = f_F(x)$. Now

$$T_q = \{\underline{x} : f_F(x) \doteq \Pr(X \in F) \pm \varepsilon\}.$$

By WLLN,

$$\Pr(\underline{X} \in T_q) \to 1$$
 as $N \to \infty$, $\Longrightarrow \Pr(n_F(\underline{X}) \doteq \mathbb{E}[x] \pm \varepsilon) \to 1$.

Example 1.1.2. $A_x = \mathbb{R}, g(x) = x^2. T_g = \{\underline{x}:\}$

Theorem 1.1.2. Now suppose M functions g_1, g_2, \ldots, g_M . Fix ε . Then

$$T_{g_1,g_2,...,g_M} = \bigcap_{i=1}^{M} T_{g_i}.$$

$$\Pr(\underline{X} \in T_{g_1,g_2,...,g_M}) \to 1 \quad \text{as} \quad N \to \infty.$$

Proof.

$$\Pr(\underline{X} \notin T_{g_1,g_2,...,g_M}) = \Pr\left(\underline{X} \in \left(\bigcap_{i=1}^M T_{g_i}\right)^c\right)$$

$$= \Pr\left(\underline{X} \in \left(\bigcup_{i=1}^M T_{g_i}^c\right)\right)$$

$$\leq \sum_{i=1}^M \Pr(\underline{X} \in T_{g_i}^c) \to 0 \quad \text{as} \quad N \to \infty.$$

IMPORTANT APPLICATION

Suppose $A_x = \{a_1, \dots, a_Q\}$ a finite alphabet with probability p_1, \dots, p_Q . The $g_q(x)$ be the

indicator of a_q . $T_q = \{\underline{x}: f_q(\underline{x}) \doteq p_q \pm \varepsilon\}$. And $\tilde{T} = \bigcap_{i=1}^Q T_i = \{\underline{x}: \forall q, f_q(x) \doteq p_q \pm \varepsilon\}$. $\tilde{T}^N_{X,p_X,\varepsilon}$ very typical sequence. We have

$$\Pr(X \in \tilde{T}) \to 1 \quad \text{as} \quad N \to \infty.$$

If $\underline{x} \in \tilde{T}$, then $\underline{x} \in \tilde{T}_g$ for any other g. Consider any real-valued g. If $\underline{x} \in \tilde{T}_{\varepsilon}$ then $\underline{x} \in T_{g,\varepsilon c}$ for some c.

$$\frac{1}{N} \sum_{i=1}^{N} g(x_i) = \sum_{q=1}^{Q} \frac{n_q(x)}{N} g(Q_q) = \sum_{q=1}^{Q} (p_q \pm \varepsilon) q(a_q) = \mathbb{E}[g(X)] + \varepsilon \sum_{q=1}^{Q} g(Q_q)$$

 $\Pr(\underline{X} \in \tilde{T}) \to 1 \text{ as } N \to \infty.$

If $x \in \tilde{T}$,

$$p(\underline{x}) = p(x_1)p(x_2) \dots p(x_N)$$

$$= p_1^{n_1(\underline{x})} \dots$$

$$= p_1^{f_1(\underline{x})N} \dots$$

$$\doteq p_1^{(p_1 \pm \varepsilon)N} \dots$$

$$\doteq 2^N (\sum_{q=1}^Q p_q \log p_q \pm \varepsilon \sum_{q=1}^Q \log p_q) \qquad \qquad \dot{=} 2^{-NH \pm N \varepsilon c}$$

Theorem 1.1.3 (Shannon-McMillian Theorem). Suppose $X_1, X_2, \ldots i.i.d$, $A_x = \{a_1, \ldots, a_Q\}$ with probability p_1, \ldots, p_Q . Then

1.

$$\Pr(\tilde{X} \in \tilde{T}^N_{\varepsilon}) \to 1 \text{ as } N \to \infty.$$

2. If $\underline{x} \in \tilde{T}_{\varepsilon}^N$, $p(\underline{x}) \doteq 2^{-NH \pm N\varepsilon c}$.

3.
$$\left| \tilde{T}_{\varepsilon}^{N} \right| \doteq \Pr(\underline{X} \in \tilde{T}_{\varepsilon}^{N}) 2^{N(H \pm \varepsilon x)}$$
.

Proof.

1.2 Shannon-McMillian Theorem

Is \tilde{T} essentially a smallest set with probability ≈ 1 ?

Yes. Let $S \in A_x^N$.

$$\Pr(\underline{X} \in S = \Pr(X \in S \cap \tilde{T}) + \Pr(X \in S \cap \tilde{T}^c) \ddot{=} |S \cap \tilde{T}| 2^{-NH \pm 2N\varepsilon c} + \Pr(\tilde{T}^c) \to 0 \text{ as } N \to \infty.$$

Theorem 1.2.1. For every $\varepsilon > 0$, there is a sequence $b_{\varepsilon,1}, b_{\varepsilon,2}, \ldots s.t.$ $b_{\varepsilon,N} \to 0$ as $N \to \infty$, $b_{\varepsilon,B} \ge 0$.

For any N and any $S \subset A_X^N$,

$$|S| \ge (\Pr(\underline{X} \in S) - b_{\varepsilon,N}) 2^{NH - N\varepsilon c}.$$

An in hindsight shortcut

Let us directly consider

$$T_{S,\varepsilon}^{N} = \left\{ \underline{x} : p(\underline{x}) \doteq 2^{-N(H \pm \varepsilon)} \right\}$$

$$= \left\{ \underline{x} : -\frac{1}{N} \log p(\underline{x}) \doteq H \pm \varepsilon \right\}$$

$$= \left\{ \underline{x} : -\frac{1}{N} \sum_{i=1}^{N} \log p(x_i) \doteq H \pm \varepsilon \right\}$$

compare $\tilde{T}_{\varepsilon}^{N}$ and $T_{s,\varepsilon}^{N}$.

Claim: $\tilde{T}^N_\varepsilon\subset T^N_{s,\varepsilon}$ where $c=-;\sum_{q=1}^Q\log p_q.$

Suppose $\underline{x} \in \tilde{T}_{\varepsilon}^{N}$. Show if it is also in $T_{s,\varepsilon}^{N}$. Check the following $p(x) \doteq 2^{-NH \pm N\varepsilon c}$, $-\log p(x) \doteq NH \pm N\varepsilon c$.

$$-\log p(\underline{x}) = -\log \prod_{i=1}^{N} p(x_i)$$

$$= -\log \prod_{q=1}^{Q} p_q^{n_q(x)}$$

$$= -\log \prod_{q=1}^{Q} p_q^{Nf_q(x)}$$

$$\doteq -\log \prod_{q=1}^{Q} p_q^{N(p_q \pm \varepsilon)}$$

$$\doteq -\sum_{q=1}^{Q} N(p_q \pm \varepsilon) \log p_a$$

$$\doteq NH \pm N\varepsilon \sum_{q=1}^{C} \log p_k$$

$$\doteq NH \pm N\varepsilon c.$$

Extreme example:

$$\begin{split} A_x &= \{0,1\}, p_0 = p_1 = \frac{1}{2}. \ H = 1. \\ p(\underline{x}) &= 2^{-N}. \\ T_{s,\varepsilon}^N &= \left\{\underline{x}: p(\underline{x}) = 2^{-N(H\pm\varepsilon)} = 2^{-N}\right\} = A_X^N. \\ \tilde{T}_{\varepsilon}^N &= \left\{\underline{x}: n_1(\underline{x} \doteq N\left(\frac{1}{2} + \varepsilon\right))\right\}. \\ |T_{s,\varepsilon}^N| &\coloneqq 2^{N(H\pm\varepsilon)}, |\tilde{T}_{\varepsilon}^N| &\coloneqq 2^{N(H\pm2\varepsilon c)}. \end{split}$$

 T_s is called probability typical. \tilde{T} is called frequency typical.

Example
$$A_x = \{0,1\}$$
, $p_1 = \frac{1}{4}$, $p_0 = \frac{3}{4}$. $\tilde{T}_{\varepsilon}^N = \{\underline{x}: f_1(\underline{x}) \doteq \frac{1}{4} + \varepsilon\}$. $T_{s,\varepsilon}^T = \{\underline{x}: f_1(\underline{x}) = \frac{1}{4} \pm N\varepsilon\log\frac{1-p_1}{p_1}\}$

Typical sequences for an infinite alphabet

There are two cases: A_x is countably infinite / random variables are continuous

In the first case, frequency typical approach doesn't work. Probabilistic typical approach works just as is. $H = -\sum_{q=1}^{\infty} p_q \log p_q$ can be infinite.

Let $S_{\delta,N}=$ size of the smallest set of N sequences form A_x with probability at least $1-\delta$. Then for any $0<\delta<1$ and any h, $\frac{S_{\delta,N}}{2^Nh}\to\infty$ as $N\to\infty$.

1.3 Fixed Length to Variable L ength (FVB) Lossless Source codes

Recall that FFB perfectly lossless has $R_{PL}^* = \log_2 |A_x|$, and FFB almost lossless has $R_{AL}^* = H$

FVB perfectly lossless $R_{VL}^* \leq \log_2 |A_x|$.

Suppose we have a source with $A_x = \{a, b, c, d\}$ with probability $\{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}\}$.

p(u)	u	code1	code2	code3	code4	code5	code6
$\frac{1}{2}$	a	00	0	0	0	0	0
$\frac{1}{4}$	b	01	10	10	10	1	01
$\frac{1}{8}$	c	10	110	10	11	01	011
$\frac{1}{8}$	d	11	111	11	111	10	0111
	Rate	2	1.75	1.5	1.625	1.25	1.875

We can see that code 3-5 are all bad.

Suppose 101110101110

Let say if one bit is changed to zero, 1010101011110

Code 6 has an advantage that you know 0 represents the start of a codeword.

FVB source code is characterized by

- source length k
- codebook of binary codewords $C = \{\underline{v}_1, \underline{v}_2, \dots, \underline{v}_{Q^K}\}$, $Q = |A_U|$.
- encoding rule $\alpha: A_U^K \to C$
- decoding rule $\beta: C \to A_U^K$.

The encoder operates in block fashion. The decoder does not.

Distinguish codes that look like code2 and codes that look like code6.

Definition 1.3.1. A codebook *C* is *prefix-free* if no codeword is the prefix of another.

A prefix-free code is called a prefix code. We will stick to prefix codes until states otherwise. (instantaneously decodable)

We like to draw binary tree diagrams of code.

Code 1:

A prefix is perfectly lossless if and only if α is 1-to-1. The rate: $\overline{r}(c) = \frac{\overline{L}}{K} = \frac{1}{K} \sum_{\underline{u}} p(\underline{u}) L(\underline{u})$ (length of codeword assigned to \underline{u})

 $R_{VL}^*(k) = \min\left\{\overline{r}(c) : c \text{ is perfectly lossless FVB with source length } k\right\}.$

 $R_{VL}^* = \inf\left\{\overline{r}(c) : c \text{ is PL FVB prefix code with any source length}\right\} = \inf_K R_{VL}^*(k).$

How does one design a prefix code to have small or smallest rate?

Focus first k = 1. Shannon's idea: $L_q \approx -\log_2 p_q$.

$$\sum_{q=1}^{Q} p_q L_q \approx -\sum_{q=1}^{Q} p_q \log p_q = H.$$

Question. Is there a prefix code with $L_q \approx -\log p_q$ for $q=1,2,\ldots,Q$? Could there be prefix codes with even smaller rate?

Theorem 1.3.1 (Kraft inequality theorem). There is a binary prefix code with length L_1, L_2, \ldots, L_Q iff the Kraft sum

$$\sum_{q=1}^{Q} 2^{-L_q} \le 1.$$

Proof. Suppose $\underline{v}_1, \dots, \underline{v}_Q$ is a prefix code with length L_1, \dots, L_Q . Let $L_{\max} = \max_q L_q$.

From the tree, the number of sequences of length L_{\max} prefixed by any codeword, is $\sum_{q=1}^Q 2^{L_{\max}-L_q} \leq 2^{L_{\max}} \implies \sum_{q=1}^Q 2^{-L_q} \leq 1$. So the Kraft inequality holds.

Now suppose

$$L_q = [-\log_2 p_q], q = 1, \dots, Q.$$
 (1.3.1)

Is there a code with these lengths? Check Kraft.

$$\sum_{q=1}^{Q} 2^{-L_q} = \sum_{q=1}^{Q} 2^{-\lceil -\log p_q \rceil}$$

$$\leq \sum_{q=1}^{Q} 2^{-(-\log p_q)}$$

$$\leq \sum_{q=1}^{Q} 2^{\log p_q}$$

$$\leq \sum_{q=1}^{Q} p_q = 1.$$

So the Kraft inequality holds. \exists a prefix code with length L_1, \ldots, L_Q given by (1.3.1), called Shannon-Fano code.

Now the question is how good is this Shannon-Fano Code?

For the Shannon-Fano code, the rate (average length) is

$$\overline{L}_{SF} = \sum_{q=1}^{Q} p_q \left[-\log p_q \right].$$

We have the following bounds:

$$H = \sum_{q=1}^{Q} p_q(-\log p_q) \le \overline{L}_{SF} < \sum_{q=1}^{Q} p_q(-\log p_q + 1) = H + 1.$$

Question. Can we do better now?

We will show that $\overline{L} \ge H$ for any prefix code.

Let C be a prefix code with length L_1, \ldots, L_Q . Take the difference $\overline{L} - H = \sum_{q=1}^Q p_q L_q + \sum_{q=1}^Q p_q \log p_q$.

$$\begin{split} \overline{L} - H &= \sum_{q=1}^{Q} p_q L_q + \sum_{q=1}^{Q} p_q \log p_q \\ &= -\sum_{q} p_q \log \frac{2^{-L_q}}{p_q} \\ &= -\sum_{q} p_q \ln \frac{2^{-L_q}}{p_q} \frac{1}{\ln(2)} \\ &\geq -\sum_{q} p_q \left(\frac{2^{-L_q}}{p_q} - 1 \right) \frac{1}{\ln(2)} \\ &\geq -\frac{1}{\ln(2)} \sum_{q} 2^{-L_q} + \sum_{q} p_q \frac{1}{\ln(2)} = \frac{1}{\ln 2} (1 - 1) = 0. \end{split}$$

In homework we will that that \overline{L} can get very close to H+1.

Now allow $k \geq 1$. WE have a $C = \{\underline{v}_1, \dots, \underline{v}_{Q^k}\}$ of length L_1, \dots, L_{Q^k} . We want small

$$\overline{r}(c) = \frac{\overline{L}}{K} = \frac{\sum_{u} p(\underline{u}) L(\underline{u})}{k}.$$

Shannon-Fano code achieve that

$$H^k \le \overline{L}_{SF} < H^k + 1 \implies \frac{H^k}{k} \le \overline{r}_{SF} = \frac{\overline{L}_{SF}}{k} < \frac{H^k}{k} + \frac{1}{k}.$$

Since $H^k = kH$ we have

$$H \le \overline{r}_{SF} < H^k + \frac{1}{k}.$$

Similarly we have for any prefix code, we have

$$\overline{r} = \frac{\overline{L}}{K} \ge \frac{H^k}{k} = H.$$

This leads to a new coding theorem.

Theorem 1.3.2. Given i.i.d. source U with alpha A_U and entropy H. We have

- 1. For every k, $R_{VL}^* \le R_{VL}^*(k) < H + \frac{1}{k}$.
- 2. For every k, $R_{VL}^*(k) \ge R_{VL}^* \ge H$.

Combined we have

$$\forall k \in \mathbb{Z}_{>0}, H \le R_{VL}^*(k) < H + \frac{1}{k}$$

and

$$R_{VL}^* = H.$$

1.4 Huffman's Code Design

Given p_1, \ldots, p_Q , it finds a prefix code with smallest \overline{L} .

Algorithm 1.4.1 Huffman Code

Input: Alphabet probability $\{p_i|i=1,\ldots,Q\}$, WLOG assume $p_1\geq p_2\geq \ldots \geq p_Q$.

Output: FVB Codebook for alphabet $\{a_i | i = 1, ..., Q\}$.

- 1: **function** HUFFMAN($P_Q = \{p_i | i = 1, ..., Q\}$)
- 2: **if** Q = 2 **then return** $\{0, 1\}$
- 3: end if
- 4: $p'_{Q-1} \leftarrow p_{Q-1} + p_Q$
- 5: $P_{Q-1} \leftarrow (P_Q \setminus \{p_{Q-1} + p_Q\}) \cup \left\{p_{Q-1}'\right\}$
- 6: $c_{Q-1} \leftarrow \text{HUFFMAN}(P_{Q-1}) =: \{\underline{v}_1, \dots, \underline{v}_{Q-1}\}$
- 7: $c_Q \leftarrow \{\underline{v}_1, \dots, \underline{v}_{Q-2}, \underline{v}_{Q-1}0, \underline{v}_{Q-1}1\}$
- 8: end function

Proposition 1.4.1. If c_{Q-1} is optimal for P_{Q-1} then c_Q is optimal for P_Q .

Example 1.4.1.

We found that

But there is a tighter upper bound

$$\overline{L}^* \le \begin{cases} H + p_{\text{max}} & p_{\text{max}} < \frac{1}{2} \\ H + p_{\text{max}} + 0.086 & p_{\text{max}} \ge \frac{1}{2}. \end{cases}$$

Hence

$$\mathscr{R}_{VL}^{*}(k) \leq \begin{cases} H + \frac{p_{\max}^{k}}{k} & (p_{\max})^{k} < \frac{1}{2} \\ H + \frac{p_{\max}^{k}}{k} + \frac{0.086}{k} & (p_{\max})^{k} \geq \frac{1}{2}. \end{cases}$$

Up till now we've only focused on i.i.d RV's. Now suppose RV's are dependent, then

$$\frac{H^k}{k} < \frac{kH}{k}.$$

For a stationary random process,

$$\frac{H^k}{k} \searrow H_{\infty}.$$

For example, English has

$$H^1 \approx 4.08, H_\infty \approx 1.$$

The bits produced by a good lossless source code ($\overline{r} \approx H$) are approximately i.i.d. equiprobable.

Synchronization and transmission entropy

Suppose $\{01, 001, 101, 110\}$ for $\{a, b, c, d\}$.

 $\underline{u} = ddddddddd\dots, \underline{z} = 110110110110110110\dots$

 $\underline{z'} = 101101101101\dots$, $\hat{u} = cccccc\dots$

Now if $\{1,01,001,000\}$ for $\{a,b,c,d\}$. Then the same problem will not happen.