

山东大学微积分

课后习题解析

作者: 洛七

组织: 806136495@qq.com

更新: January 18, 2021

版本: 1.0 beta

目 录

第1章 无穷级数

1.1 常数项级数的概念和性质

1. 利用级数收敛的定义判断下列技术的敛散性,如收敛则求其和:

(1)
$$\sum_{n=1}^{\infty} (\sqrt{n+1} - \sqrt{n});$$

(2)
$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)};$$

(3)
$$\sum_{n=1}^{\infty} (\sqrt{n+2} - 2\sqrt{n+1} + \sqrt{n});$$

(4)
$$\sum_{n=1}^{\infty} \frac{1}{(3n-2)(3n+1)};$$

(5)
$$\frac{1}{1 \cdot 2 \cdot 3} + \frac{1}{2 \cdot 3 \cdot 4} + \dots + \frac{1}{n \cdot (n+1) \cdot (n+2)} + \dots;$$

*(6)
$$\sin \frac{\pi}{6} + \sin \frac{2\pi}{6} + \dots + \sin \frac{n\pi}{6} + \dots$$

2. 利用几何级数、调和级数以及收敛级数的性质,判定下列技术的敛散性: (1) $\frac{1}{3} + \frac{1}{6} + \frac{1}{9} + \frac{1}{12} + \cdots$;

(1)
$$\frac{1}{3} + \frac{1}{6} + \frac{1}{9} + \frac{1}{12} + \cdots;$$

(2)
$$\frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \cdots;$$

(3)
$$-\frac{8}{9} + \frac{8^2}{9^2} - \frac{8^3}{9^3} + \cdots;$$

$$(4) \ \frac{3}{2} + \frac{3^2}{2^2} + \frac{3^3}{2^3} + \cdots;$$

(5)
$$\left(\frac{1}{6} + \frac{8}{9}\right) + \left(\frac{1}{6^2} + \frac{8^2}{9^2}\right) + \left(\frac{1}{6^3} + \frac{8^3}{9^3}\right) + \cdots;$$

(6)
$$\left(\frac{1}{2} + \frac{1}{10}\right) + \left(\frac{1}{4} + \frac{1}{20}\right) + \left(\frac{1}{8} + \frac{1}{30}\right) + \dots + \left(\frac{1}{2^n} + \frac{1}{10n}\right) + \dots;$$

(7)
$$\frac{1}{2} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt[3]{2}} + \dots + \frac{1}{\sqrt[n]{2}} + \dots;$$

$$(8) \sum_{n=1}^{\infty} \frac{1}{\sqrt[n]{n}}.$$

1.2 正项级数的审敛法

1. 用比较审敛法考察下列级数的敛散性: (1)
$$1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \cdots$$
;

(2)
$$\frac{1}{2 \cdot 5} + \frac{1}{3 \cdot 6} + \dots + \frac{1}{(n+1)(n+4)} + \dots;$$

(3)
$$1 + \frac{1+2}{1+2^2} + \frac{1+3}{1+3^2} + \cdots;$$

$$(4) \sum_{n=1}^{\infty} \sin \frac{\pi}{2^n};$$

(5)
$$\sum_{n=1}^{\infty} \frac{2 + (-1)^n}{4^n};$$

$$(6) \sum_{n=1}^{\infty} \frac{1}{n\sqrt[n]{n}};$$

(7)
$$\sum_{n=1}^{\infty} \frac{1}{1+a^n}$$
 $(a>0);$

(8)
$$\sum_{n=2}^{\infty} \frac{\ln n}{n^{4/3}}$$
.

2. 判定下列级数的敛散性: (1)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+1)}}$$
;

*(2)
$$\sum_{n=1}^{\infty} (a^{\frac{1}{n}} - 1) \quad (a > 1);$$

(3)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3+1}}$$
;

(4)
$$\sum_{n=1}^{\infty} \frac{n^2}{3^n}$$
;

$$(5) \sum_{n=1}^{\infty} \frac{1}{n} \tan \frac{1}{n};$$

(6)
$$\sum_{n=1}^{\infty} \frac{(2n-1)!!}{3^n \cdot n!};$$

$$(7) \sum_{n=1}^{\infty} \frac{2^n \cdot n!}{n^n};$$

$$(8) \sum_{n=1}^{\infty} \frac{3^n \cdot n!}{n^n};$$

(9)
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$$
;

$$(10) \sum_{n=1}^{\infty} 2^n \cdot \sin \frac{\pi}{3^n};$$

(11)
$$\sum_{n=1}^{\infty} \frac{n^2}{\left(1 + \frac{1}{n}\right)^n};$$

*(12)
$$\sum_{n=1}^{\infty} \frac{1}{(\ln n)^{\ln n}};$$

$$(13) \sum_{n=1}^{\infty} \sqrt{\frac{n+1}{n}};$$

(14)
$$\sum_{n=1}^{\infty} \left(\frac{b}{a_n}\right)^n$$
, 其中 $a_n \to a(n \to \infty)$, a_n , b , a 均为正数;

(15)
$$\sum_{n=1}^{\infty} \frac{1}{na+b}$$
 $(a>0,b>0);$

$$(16) \sum_{n=1}^{\infty} \frac{4^n}{5^n - 3^n}.$$

3. 利用级数收敛的必要条件证明: (1)
$$\lim_{n\to\infty} \frac{2^n \cdot n!}{n^n} = 0$$
;

(2)
$$\lim_{n \to \infty} \frac{n^n}{(n!)^2} = 0.$$

4. 若
$$\lim_{n\to\infty} nu_n = a \neq 0$$
,证明级数 $\sum_{n=1}^{\infty} u_n$ 发散.

5. 设
$$\{u_n\}$$
 是正项数列,若 $\lim_{n\to\infty}\frac{u_{n+1}}{u_n}=l$,证明 $\lim_{n\to\infty}\sqrt[n]{u_n}=l$.

6. 已知
$$a_n = \int_0^1 x^2 (1-x)^n \mathrm{d}x (n=1,2,\cdots)$$
. 证明 $\sum_{n=1}^\infty a_n$ 收敛,并求其和.

*7. 设
$$a_1=2$$
, $a_{n+1}=\frac{1}{2}\left(a_n+\frac{1}{a_n}\right)$ $(n=1,2,\cdots)$. 证明:

(1)
$$\lim_{n\to\infty} a_n$$
 存在;

(2) 级数
$$\sum_{n=1}^{\infty} \left(\frac{a_n}{a_{n+1}} - 1 \right)$$
 收敛.

*8.
$$\ensuremath{\,\,}^{\frac{\pi}{4}} \tan^n x \mathrm{d} x.$$

(1)
$$\bar{x} \sum_{n=1}^{\infty} \frac{1}{n} (a_n + a_{n+2})$$
 的值;

(2) 试证: 对任意的常数
$$\lambda > 0$$
, 级数 $\sum_{n=1}^{\infty} \frac{a_n}{n^{\lambda}}$ 收敛.

1.3 交错级数和任意项级数的审敛法

1. 判定下列级数的敛散性: (1)
$$1 - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{4}} + \cdots$$
;

1.4 幂级数

(2)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{3^{n-1}};$$

(3)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{\ln(n+1)};$$

(4)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p}$$
;

(5)
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt[n]{n}};$$

(6)
$$\sum_{n=1}^{\infty} (-1)^n \frac{n+2}{n+1} \cdot \frac{1}{\sqrt{n}}.$$

2. 判定下列级数的敛散性,如果收敛,是绝对收敛还是条件收敛? $1\sum_{n=1}^{\infty}\frac{1}{n^2}\sin\frac{n\pi}{2};$

$$1 \sum_{n=1}^{\infty} \frac{1}{n^2} \sin \frac{n\pi}{2}$$

$$2 \sum_{n=1}^{\infty} (-1)^n \ln \frac{n+1}{n};$$

*(3)
$$\sum_{n=2}^{\infty} \sin\left(n\pi + \frac{1}{\ln n}\right);$$

(4)
$$\frac{1}{3} \cdot \frac{1}{2} - \frac{1}{3} \cdot \frac{1}{2^2} + \frac{1}{3} \cdot \frac{1}{2^3} - \frac{1}{3} \cdot \frac{1}{2^4} + \cdots;$$

(5)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2^{n^2}}{n!};$$

(6)
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{[n+(-1)^n]^p} \quad (p>0).$$

3. 已知
$$\sum_{n=1}^{\infty} a_n^2$$
 及 $\sum_{n=1}^{\infty} b_n^2$ 收敛, 证明级数 $\sum_{n=1}^{\infty} |a_n b_n|$, $\sum_{n=1}^{\infty} (a_n + b_n)^2$, $\sum_{n=1}^{\infty} \frac{|a_n|}{n}$ 都收敛.

4. 设
$$u_n = \int_{n\pi}^{(n+1)\pi} \frac{\sin x}{x} dx$$
, 证明 $\sum_{n=1}^{\infty} u_n$ 收敛.

*5. 已知 f(x) 在 x=0 点的某邻域内具有连续的二阶导数,且 $\lim_{x\to 0}\frac{f(x)}{x}=0$,证明级数 $\sum_{n=0}^{\infty} f\left(\frac{1}{n}\right)$ 绝对收敛. $\left(\frac{1}{n}\right)$ 的一阶麦克劳林公式.)

1.4 幂级数

- 1. 已知函数项级数 $x^2 + \frac{x^2}{1+x^2} + \frac{x^2}{(1+x^2)^2} + \cdots$ 在 $(-\infty, +\infty)$ 上收敛,求其和函数.

2. 求下列幂级数的收敛域: (1)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} x^n$$
;

1.4 幂级数 -5-

(2)
$$\sum_{n=1}^{\infty} \frac{2^n}{n^2 + 1} x^n;$$

(3)
$$\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{n}$$
;

(4)
$$1-x+\frac{x^2}{2^2}-\frac{x^2}{3^2}+\cdots;$$

(5)
$$\frac{x}{2} + \frac{x^2}{2 \cdot 4} + \frac{x^3}{2 \cdot 4 \cdot 6} + \cdots;$$

(6)
$$\sum_{n=1}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1};$$

(7)
$$\sum_{n=1}^{\infty} \frac{(x-5)^n}{\sqrt{n}};$$

(8)
$$\sum_{n=1}^{\infty} \frac{2n-1}{2^n} x^{2n-2};$$

(9)
$$\sum_{n=1}^{\infty} \left[\frac{(-1)^n}{2^n} + 3^n \right] x^n;$$

(10) 设
$$\sum_{n=0}^{\infty} a_n x^n$$
 的收敛半径为 3,求 $\sum_{n=1}^{\infty} n a_n (x-1)^{n+1}$ 的收敛区间.

- *3. 求幂级数 $\sum_{n=1}^{\infty} \frac{1}{3^n + (-2)^n} \frac{x^n}{n}$ 的收敛半径,并讨论该区间端点处的收敛性.
- 4. 利用逐项积分或者逐项求导,求下列级数在下列区间内的和函数**:**

(1)
$$\sum_{n=1}^{\infty} nx^{n-1}$$
 $(-1 < x < 1);$

(2)
$$\sum_{n=0}^{\infty} \frac{x^{2n+1}}{2n+1}$$
 $(-1 < x < 1)$, 并求 $\sum_{n=0}^{\infty} \frac{1}{2n+1} \cdot \frac{1}{2^{n+1}}$ 的和;

(3)
$$\sum_{n=1}^{\infty} \frac{2n-1}{2^n} x^{2n-2}$$
, $|x| < \sqrt{2}$, 并求 $\sum_{n=1}^{\infty} \frac{2n-1}{2^n}$ 的和;

(4)
$$\sum_{n=1}^{\infty} (2n+1)x^n$$
, $|x| < 1$.

*6. 已知
$$f_n(x)$$
 满足 $f'_n(x) = f_n(x) + x^{n-1}e^x(n$ 为正整数),且 $f_n(1) = \frac{e}{n}$,求函数项级数
$$\sum_{x=1}^{\infty} f_n(x)$$
 之和.

*7. 验证函数
$$y(x) = 1 + \frac{x^3}{3!} + \frac{x^6}{6!} + \dots + \frac{x^{3n}}{(3n)!} + \dots (-\infty < x < +\infty)$$
 满足微分方程
$$y'' + y' + y = e^x.$$

并利用以上结果求幂级数 $\sum_{n=0}^{\infty} \frac{x^{3n}}{(3n)!}$ 的和函数.

1.5 函数展开成幂级数

- 1. 用直接展开法求下列函数在给定点的幂级数展开式,并指出收敛域:
 - (1) $f(x) = \cos x$, $x_0 = -\frac{\pi}{3}$;
 - (2) $f(x) = a^x$, $x_0 = 0$.
- 2. 将下列函数展成x的幂级数,并指出收敛域:
 - (1) $\sin \frac{x}{2}$;
 - (2) $\sin^2 x$;
 - (3) $\ln(a+x)$ (a>0);
 - (4) $\frac{1}{2+x}$;
 - (5) $(1+x)\ln(1+x)$;
 - (6) $\arctan x$;
 - $(7) \ \frac{x}{\sqrt{1+x^2}};$
 - (8) $\frac{1}{x^2 + 4x + 3}$.
- 3. 将函数 $f(x) = \frac{1}{x}$ 展成 (x-3) 的幂级数.
- 4. 将函数 $f(x) = \ln(1+x)$ 展成 (x-2) 的幂级数.
- 5. 将函数 $f(x) = \frac{1}{x^2 + 3x + 2}$ 展成 (x + 4) 的幂级数.
- *7. 设

$$f(x) = \begin{cases} \frac{1+x^2}{x} \arctan x, & x \neq 0, \\ 1, & x = 0, \end{cases}$$

试将 f(x) 展开成 x 的幂级数,并求级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{1-4n^2}$ 的和.

8. $\Re f(x) = x \ln(x + \sqrt{1 + x^2}) - \sqrt{1 + x^2}$ 展成 x 的幂级数.

1.6 幂级数的简单应用

1.7 反常积分的审敛法和 Γ 函数

1. 判定下列反常积分的敛散性:

1.8 傅里叶级数

(1)
$$\int_0^{+\infty} \frac{x^2}{x^4 + x^2 + 1} dx;$$

$$(2) \int_0^{+\infty} \frac{\sin x}{\sqrt[3]{x}} \mathrm{d}x;$$

$$(3) \int_0^{+\infty} \frac{\mathrm{d}x}{1 + x|\sin x|};$$

(4)
$$\int_{1}^{+\infty} \frac{x \arcsin x}{1 + x^3} dx;$$

(5)
$$\int_{1}^{2} \frac{\mathrm{d}x}{(\ln x)^{3}};$$

(6)
$$\int_0^1 \frac{x^4}{\sqrt{1-x^4}} dx;$$

(7)
$$\int_{1}^{2} \frac{\mathrm{d}x}{\sqrt[3]{x^2 - 3x + 2}};$$

$$(8) \int_0^\pi \frac{\mathrm{d}x}{\sqrt{\sin x}}.$$

2. 用 Γ 函数表示下列积分,并指出其收敛范围: (1)
$$\int_0^{+\infty} e^{-x^n} dx$$
 $(n > 0)$;

$$(2) \int_0^1 \left(\ln \frac{1}{x}\right)^p \mathrm{d}x.$$

3. 证明下列公式:

(1)
$$2 \cdot 4 \cdot 6 \cdot \cdots \cdot 2n = 2^n \Gamma(n+1);$$

(2)
$$1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1) = \frac{\Gamma(2n)}{2^{n-1}\Gamma(n)};$$

(3)
$$\sqrt{\pi}\Gamma(2n) = 2^{2n-1}\Gamma(n)\Gamma\left(n + \frac{1}{2}\right)$$
 (勒让德倍量公式).

1.8 傅里叶级数

1. 下列周期函数 f(x) 的周期为 2π , 其再 $[-\pi,\pi)$ 上的表达式如下, 试将 f(x) 展为傅里叶级

(1)
$$f(x) = \begin{cases} x, & -\pi \leqslant x < 0; \\ 0, & 0 \leqslant x < \pi, \end{cases}$$

(2)
$$f(x) = \begin{cases} bx, & -\pi \leq x < 0, \\ ax, & 0 \leq x < \pi, \end{cases}$$
 $a > b > 0$ 是常数;

(3)
$$f(x) = 3x^2 + 1$$
, $-\pi \le x < \pi$.

2. 将下列函数展为傅里叶级数:

(1)
$$f(x) = e^{ax}, -\pi \leqslant \pi;$$

(2)
$$f(x) = \begin{cases} e^x, & -\pi \leqslant x < 0, \\ 1, & 0 \leqslant x \leqslant \pi; \end{cases}$$

(3)
$$f(x) = 2\sin\frac{x}{3}$$
, $-\pi \leqslant x \leqslant \pi$.

3. 设周期函数 f(x) 的周期是 2π , 证明 f(x) 的傅里叶系数可表示为

$$a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos nx dx \quad (n = 0, 1, 2, \dots),$$

 $b_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin nx dx \quad (n = 1, 2, 3, \dots).$

1.9 正弦级数、余弦级数和一般区间上的傅里叶级数

- 1. 将函数 $f(x) = \frac{\pi x}{2}$ $(0 \le x \le \pi)$ 展开为正弦级数.
- 2. 将函数 $f(x) = 2x^2$ $(0 \leqslant x \leqslant \pi)$ 分别展开成正弦级数和余弦级数.

3. 将
$$f(x) = \begin{cases} \frac{px}{2}, & 0 \leqslant x < \frac{l}{2}, \\ &$$
 展为正弦级数.
$$\frac{p(l-x)}{2}, & \frac{l}{2} \leqslant x \leqslant l \end{cases}$$

4. 将下列周期函数展为傅里叶级数 (下面给出函数在一个周期内的表达式):

(1)
$$f(x) = 1 - x^2 \left(-\frac{1}{2} \leqslant x < \frac{1}{2} \right);$$

(2)
$$f(x) = \begin{cases} 2x+1, & -3 \le x < 0, \\ 1, & 0 \le x < 3. \end{cases}$$

5. 设 $f(x) = x - 1(0 \le x \le 2)$, 将 f(x) 展为以 2 为周期的傅里叶级数.

6. 将
$$f(x) = \begin{cases} x, & 0 \leq x < \frac{l}{2} \\ l - x, & \frac{l}{2} \leq x \leq l \end{cases}$$
 展为正弦级数和余弦级数.

1.10 复数形式的傅里叶级数

1.11 用 MATLAB 计算级数问题

第2章 向量代数与空间解析几何

2.1 向量及其运算

- 1. 设向量 a, b 为非零向量,试作出向量 2a + b, a 2b, b a, $\frac{1}{2}(a + b)$ 的图形.
- 2. 已知向量 a = (-1, 3, 2), b = (2, 5, -1), c = (6, 4, -6), 证明 a b = c 平行.
- 3. 证明三角形两边中点连线平行于第三边, 且等于第三边的一半.
- 4. 设 |a| = 3, |b| = 6, 且 a, b 同方向, 求 $a \cdot b$, $(a + 2b) \cdot (2a b)$.
- 5. 设 |a| = 2, |b| = 3, 且 a = b 垂直,求 $|a \times b|$, $|(a + b) \times (2a b)|$.
- 6. 设 |a| = 2, |b| = 1, $(\widehat{a,b}) = \frac{2\pi}{3}$, 求 2a + b 5a + 4b 的夹角.
- 7. 设 a + b + c = 0, 且 |a| = 1, |b| = 2, |c| = 3, 求 $a \cdot b + b \cdot c + c \cdot a$.
- 8. 一向量的重点 $M_2(4, -2, 0)$, 它在三个坐标轴上的投影依次为 3, 2, 7, 求该向量的起点 M_1 .
- 9. 设两点 $M_1(2,0,-3)$, $M_2(1,-2,0)$, 在线段 M_1M_2 上求一点 M, 满足 $M_1M=2MM_2$.
- 10. 求向量 $\mathbf{a} = (1, 1, -4), \mathbf{b} = (1, -2, 2)$ 的夹角.
- 11. 设向量 $\mathbf{a} = (3, 5, -4), b = (2, 1, 8),$ 向量 $m\mathbf{a} + \mathbf{b}$ 与 z 轴垂直,求 m.
- 12. 设向量 a = 3i j + 2k, b = i + 2j 2k, 求
 - (1) $(-2a) \cdot b$;
 - (2) $\boldsymbol{a} \times 3\boldsymbol{b}$;
 - (3) $\cos(\widehat{\boldsymbol{a},\boldsymbol{b}})$.
- 13. 设向量 a = -2i + 3j + nk 与 b = mi 6j + 2k 共线, 求 m 和 n.
- 14. 设 a = 3i + 4k, b = -4i + 3j, 求
 - (1) 以 a, b 为邻边的平行四边形的两条对角线的长度;
 - (2) 以 a, b 为邻边的平行四边形的面积;
 - (3) 与 a, b 垂直的单位向量.
- 15. 设向量 a = 2i 3j + k, b = i j + 3k, c = i 2j, 计算
 - (1) $(\boldsymbol{a} \cdot \boldsymbol{b})\boldsymbol{c} (\boldsymbol{a} \cdot \boldsymbol{c})\boldsymbol{b}$;
 - (2) $(\boldsymbol{a} \times \boldsymbol{b}) \times \boldsymbol{c}$;
 - (3) $(a + b) \times (b + c)$;
 - (4) $(\boldsymbol{a} \times \boldsymbol{b}) \cdot \boldsymbol{c}$.
- 16. 判别下列向量 a, b, c 是否共面:
 - (1) $\mathbf{a} = (3, -2, 1), \ \mathbf{b} = (2, 1, 2), \ \mathbf{c} = (3, -1, 3);$
 - (2) $\mathbf{a} = (2, -1, 2), \ \mathbf{b} = (1, 2, -3), \ \mathbf{c} = (3, -4, 7).$

17. 设 a = (2, -1, -1), b = (1, 1, z), 问 z 为何值时, a, b 的夹角 (a, b) 最小? 并求出此最小值.

2.2 空间的平面和直线

- 1. 求满足下列条件的平面方程:
 - (1) 过点 M(1,2,3) 且与平面 2x + 3y + z = 0 平行;
 - (2) 过点 $M_1(2,-2,1)$, $M_2(0,1,0)$, $M_3(1,4,5)$ 三点;
 - (3) 过点 (4, -3, -2) 和点 (4, 1, 1) 且平行于 x 轴.
- 2. 画出下列各平面图形:
 - (1) 2x + 3y + 4z = 6;
 - (2) 2x y = 3;
 - (3) x 2y + 3z = 0;
 - (4) z = 2.
- 3. 求距离原点为 3 且平行于 x + y + z = 1 的平面方程.
- 4. 求三平面 $\pi_1: x + y + z = 4$, $\pi_2: 3x y + z = 0$ 和 $\pi_3: x + 2y z = 6$ 的交点,以及两两平 面之间的夹角.
- 5. 求满足下列条件的直线方程:
 - (1) 过点 $M_1(-3,0,2)$ 和 $M_2(3,1,1)$;
 - (2) 过点 M(1,0,2) 且与两直线 $\frac{x-1}{1}=y=\frac{z+1}{-1}$ 和 $\frac{x}{1}=\frac{y-1}{-1}=\frac{z+1}{0}$ 垂直的直线;
 - (3) 过点 $M_1(2, -3, 1)$ 与平面 3x y + 4z 1 = 0 垂直:
 - (4) 过点 $M_1(0,2,4)$ 与两平面 x + 2z 1 = 0 及 y 3z 2 = 0 都平行;
 - (5) 过点 $M_1(11,9,0)$ 与直线 $\frac{x-1}{2} = \frac{y+3}{4} = \frac{z-5}{5}$ 及直线 $\frac{x}{5} = \frac{y-2}{-1} = \frac{z+1}{2}$ 相交.
- 6. 用对称式方程和参数方程表示直线

$$\begin{cases} 2x + y - z + 1 = 0, \\ 3x - y - 2z - 3 = 0. \end{cases}$$

- 7. 求点 (2,0,1) 到直线 $\frac{x-5}{3} = \frac{y}{2} = \frac{z+1}{-1}$ 的距离.
- 8. 求直线 $\frac{x}{-1} = \frac{1-y}{-1} = \frac{z-1}{2}$ 与平面 2x + y zz + 4 = 0 的交点和夹角.

9. 判断下列平面与直线间的关系: (1)
$$\frac{x+3}{-2} = \frac{y+4}{-7} = \frac{z}{3}$$
, $4x - 2y - 2z - 3 = 0$;

(2)
$$\frac{x}{3} = \frac{y}{-2} = \frac{z}{7}$$
, $3x - 2y + 7z - 8 = 0$;

(3)
$$\frac{x-2}{3} = \frac{y+2}{1} = \frac{z-3}{-4}, \ x+y+z-3 = 0.$$

- 10. 问 k 为何值时
 - (1) 直线 $\begin{cases} x = kz + 2, \\ y = 2kz + 4 \end{cases}$ 与平面 x + y + z = 0 平行;

(2) 直线
$$\begin{cases} x = z + k, \\ y = z \end{cases}$$
 与直线
$$\begin{cases} x = 2z + 1, \\ y = 3z + 2 \end{cases}$$
 相交.

(2) 直线
$$\begin{cases} x=z+k, \\ y=z \end{cases}$$
 与直线 $\begin{cases} x=2z+1, \\ y=3z+2 \end{cases}$ 相交.

11. 求直线 $\begin{cases} 2x-3y+4z-12=0, \\ x+4y-2z-10=0 \end{cases}$ 在平面 $x+y+z-1=0$ 上的投影直线方程.

- 12. 在 z 轴上求一点,使它与平面 12x + 9y + 20z 19 = 0 和 16x 12y + 15z 9 = 0 等距离.
- 13. 求点 M(4,1,2) 在平面 x + y + z = 1 上的投影.
- 14. 求与平面 x + 6y + z = 0 平行,且与坐标平面围成的四面体体积为 6 的平面方程.

2.3 空间的曲面和曲线

第3章 多元函数微分学及其应用

- 3.1 多元函数的概念及其极限和连续
- 3.2 偏导数与全微分
- 3.3 多元复合函数和隐函数的微分法
- 3.4 微分法在几何上的应用
- 3.5 多元函数的极值与最值
- 3.6 二元函数泰勒公式
- 3.7 MATLAB 求偏导数

第4章 重积分

- 4.1 二重积分的概念和性质
- 4.2 二重积分的计算
- 4.3 三重积分的概念
- 4.4 三重积分的计算
- 4.5 重积分的应用
- 4.6 用 MATLAB 计算重积分

第5章 曲线积分与曲面积分

- 5.1 对弧长的曲线积分
- 5.2 对坐标的曲线积分
- 5.3 格林公式及其应用
- 5.4 对面积的曲面积分
- 5.5 对坐标的曲面积分
- 5.6 高斯公式和斯托克斯公式
- 5.7 场论简介
- 5.8 用 MATLAB 计算曲线积分和曲面积分