13.3 (a)
$$A^{+} = AK_{A}' + A'J_{A} = A(B' + X) + A'(BX' + B'X)$$

 $B^{+} = B'J_{B} + BK_{B}' = AB'X + B(A' + X')$
 $Z = AB$

A^+	X			$\mathbf{B}_{\searrow}^{+}$	X		
АВ	1	0	1	АВ	/	0	1
	00	0	1		00	0	0
	01	1	0		01	1	1
	11	0	1		11	1	0
	10	1	1		10	0	1

Present State	Next A ⁺	7	
AB	X = 0	X = 1	Z
00	00	10	0
01	11	01	0
11	01	10	1
10	10	11	0

13.3 (b)
$$X = 0 \quad 1 \quad 1 \quad 0 \quad 0$$

 $AB = 00 \quad 00 \quad 10 \quad 11 \quad 01 \quad 11$
 $Z = (0) \quad 0 \quad 0 \quad 1 \quad 0 \quad 1$

13.3 (c) *See FLD p. 758 for solution.*

13.13

Correct output: Z = 1011

silonnios ci

13.21

Clock Cycle	Information Gathered
1	$Q_1Q_2 = 00, X = 0 \Rightarrow Z = 1, Q_1^+Q_2^+ = 01$
2	$Q_1Q_2 = 01, X = 0 \Rightarrow Z = 0; X = 1 \Rightarrow Z = 1, Q_1^+Q_2^+ = 11$
3	$Q_1Q_2 = 11, X = 1 \Rightarrow Z = 1; X = 0 \Rightarrow Z = 0, Q_1^+Q_2^+ = 10$
4	$Q_1Q_2 = 10, X = 0 \Rightarrow Z = 1; X = 1 \Rightarrow Z = 0, Q_1^+Q_2^+ = 00$
5	$Q_1Q_2 = 00, X = 1 \Rightarrow Z = 0, Q_1^+Q_2^+ = 10$
6	$Q_1Q_2 = 10, X = 1 \Rightarrow (Z = 0); X = 0 \Rightarrow (Z = 1), Q_1^+Q_2^+ = 11$
7	$Q_1Q_2 = 11, X = 0 \Rightarrow (Z = 0); X = 1 \Rightarrow (Z = 1), Q_1^+Q_2^+ = 01$
8	$Q_1Q_2 = 01, X = 1 \Rightarrow (Z = 1); X = 0 \Rightarrow (Z = 0), Q_1^+Q_2^+ = 00$
9	$Q_1 Q_2 = 00, X = 0 \Rightarrow (Z = 1)$

Note: Information inside parentheses was already obtained in a previous clock cycle.

Present State	Next Q_1^+	State Q_2^+	2	Z
Q_1Q_2	X = 0	X=1	X=0	X = 1
00	01	10	1	0
01	00	11	0	1
10	11	00	1	0
11	10	01	0	1

13.27 Transition table using a straight binary state assignment:

State	Present State	Next State $Q_1^+Q_2^+Q_3^+$		2	Z
	$Q_{1}Q_{2}Q_{3}$	X = 0	X=1	X = 0	X=1
S_{0}	000	001	011	0	0
$S_{_{1}}$	001	010	011	0	0
S_2	010	001	011	0	1
S_3	011	100	000	0	0
$S_{\scriptscriptstyle A}$	100	011	000	0	1

13.30 (cont.)

a	Present	$X_1X_2=$			$X_1 X_2 = \begin{bmatrix} Z_1 Z_2 \\ X_1 X_2 \end{bmatrix}$				
State	State								
	AB	00	01	10	11	00	01	10	11
S_{0}	00				00				
$S_{_{1}}$	01				01				
S_2	10				10				
S_3	11	10	00	11	01	00	00	00	00

State	Z = 0
S_{0}	Last input was 00
S_1	Last input was 01
S_2	Last input was 11
S,	Last input was 10

State	Z = 1
S_4	Last input was 00
S_5	Last input was 01
S_6	Last input was 11
S_7	Last input was 10

Each input takes you to the state defined by that input (e.g. an input of 01 takes you to either S_1 or S_3). The only thing in question is whether the output is 0 or 1. Determine the output by checking whether the last two inputs correspond to the three input sequences.

Alternate Solution: Notice that when Z = 0, "causes the output to become 0" is the same as remaining constant, and "causes the output to become 1" is the same as toggling the output. The situation is similar when Z = 1. So we can use only four states, as follows:

State	Meaning
S_0	Z=0 and last input was either 00 or 01
S_1	Z = 0 and last input was either 10 or 11
S_2	Z = 1 and last input was either 00 or 11
S,	Z = 1 and last input was either 01 or 10

	Next State	
State	$X_1 X_2 = 00 \ 01 \ 10 \ 11$	Z
$S_{_{0}}$	S_0 S_0 S_1 S_1	0
S_1	S_2 S_0 S_1 S_1	0
S_2	S_2 S_3 S_3 S_2	1
S_3	S_0 S_3 S_3 S_2	1

Note: The state table with 8 states reduces to this 4-state table using methods in Unit 15.

14.21 Plot 0's horizontally. Plot 1's vertically. Receiving a 0 takes us one state to the right. Receiving a 1 takes us one state down. The output is a 1 only in the "three 0's or more, one 1 or more" state:

14.24 (a) We need four states to describe the 1's received, as there are four possible remainders when dividing by four. An input of 1 takes us to the next state in cyclic fashion. An input of zero leaves us in the same state.

4.26 There are two identical parts: one with an output of 0 and one with an output of 1.

State	Meaning
S_1, S_4	Previous input was 0
S_2, S_5	Previous inputs were 01
S_{3}, S_{0}	Previous input was $1 / \text{Reset}(S_0)$

14.34 To delay by two clock periods, we need to remember the previous two inputs. So we have four states, one for each combination of two inputs:

	Next	State		Z
State	X = 0	X=1	X = 0	X=1
S_0	S_{0}	S_1	0	0
S_1	S_2	S_3	0	0
S_2	S_{0}	S_1	1	1
S_3	S ₂	S_{3}	1	1

State	Meaning
S_0	Previous two inputs were 00
S	Previous two inputs were 01
S.	Previous two inputs were 10
S_{γ}	Previous two inputs were 11

Note: Just go to the state that represents the last two inputs.

14.45

Present State	Next State 00 01 10 11	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
S_0	S_1 S_0 S_2 S_2	01 10 01 01
S_1	S_1 S_2 S_0 S_0	00 11 00 00
S_2	S_2 S_1 S_0 S_0	00 00 00 00

15.3

S_0	$S_5 - a$ $S_1 - b$	\$ -d \$1-8	X
S_1	S -d 8 - b	$S_5 - a$ $S_6 - c$	\times
S_2	S ₂ -d 8 ₆ -b	S ₂ -d 8 ₆ -e	X
S_3	X	X	$S_0 - a$ $S_1 - b$
S_4	S ₄ -d 8 ₃ -b	S ₄ -d 8 ₃ -e	\times
S_5	$S_0 - a$ $S_1 - b$	\$ -a \$1 - c	\times
S_6	X	\times	$S_5 - a$ $S_1 - b$
	a	b	с

$$S_0 \equiv a$$

$$S_1 \equiv b$$

$$S_3 \equiv c$$

$$S_5 \equiv a$$

$$S_6 \equiv c$$

$$S_2 \text{ and } S_4 \text{ have no equivalent states.}$$

15.3 (a)
$$a = S_0, S_5$$

 $b = S_1$
 $c = S_3, S_6$

Since S_2 and S_4 do not have corresponding states, the circuits are *not* equivalent.

15.3 (b) Starting from S_0 , it is not possible to reach S_2 or S_4 . So then the circuits would perform the same.

15.9

		Q_1	Q_2	Q_3
Assign	S ₀	1	0	0
	S_1	0	1	0

$$D_1 = X'Q_1 + XY'Q_3$$

$$D_2 = XQ_1 + YQ_3 + X'Q_2$$

$$D_3 = XQ_2 + X'Y'Q_3$$

$$P = XQ_1 + Y'Q_3 + XQ_2$$

$$S = X'Q_1 + XY'Q_3$$

State	Next State $X = 0$ $X = 1$		Out ₁ X = 0	
а	e	c	0	1
b	b	f	0	1
с	e	c	1	0
e	c	f	0	1
f	b	b	1	0

15.11 (b) Input: 000

Output starting in state *a*:

001 (state a^{0} state e^{0} state g^{0} state e)

Output starting in state *b*:

000 (state $b \xrightarrow{0}$ state $d \xrightarrow{0}$ state $b \xrightarrow{0}$ state d)

15.20 (a) Invert all three columns of assignment (iv), and then swap the first and last columns. Then (iii) and (iv) are the same, therefore, Assignment (iii) = Assignment (iv).

15.20 (c) Many state assignments are not equivalent to (i) through (v), for example:

101	or	011
000		101
011		000
100		100
010		010
110		110

15.20 (b) Equivalent assignments to each column having 000 as the starting state. Invert any column with 1 in the first row.

	$(ii) - (c'_2)$	<i>iii - c</i> ' ₁	iv - c' ₁ c' ₂	v - C' ₃
S_0	000	000	000	000
S_1	101	001	100	110
S_2	011	100	001	100
S_3	100	101	101	010
S_4	010	011	110	001
S_5	110	010	010	011

15.24 (a) Equations for one-hot state assignment:

$$D_{A} = X(A + B + D + E), D_{B} = X'(A + D),$$

 $D_{C} = X'B, D_{D} = XC, D_{E} = X'(C + E), z = D$

15.24 (b) Guidelines:

- 1. (A, D)x2 (C, E) (A, B, D, E)
- 2. (A, B)x2 (A, C) (D, E) (A, E)

The following assignment satisfies all but (A, E), (A, C) and (B, D):

$Q_2 Q_3$ Q_1	0	1
00	Α	-
01	В	-
11	E	С
10	D	-

$Q_{1}Q_{2}Q_{3}$	$Q_1^+ Q_2^+ Q_3^+ X = 0 1$	Z
000	001 000	0
010	111 000	0
011	011 000	0
010	001 000	1
110		-
111	011 010	0
101		-
100		-

$$D_1 = X'Q_2'Q_3, D_2 = X'Q_3 + Q_1, D_3 = X',$$

 $z = Q_2Q_3'$

15.35 By inspecting incoming arrows, we get:

$$\begin{aligned} &Q_0^{\ +} = D_0 = X'YQ_0 + Y'Q_1 + X'YQ_2 \\ &Q_1^{\ +} = D_1 = XY'Q_0 + XYQ_1 + Y'Q_2 \\ &Q_2^{\ +} = D_2 = XYQ_0 + X'Y'Q_0 + X'YQ_1 + XYQ_2 \\ &Z = X'YQ_1 + XYQ_2 + X'YQ_2 = X'YQ_1 + YQ_2 \end{aligned}$$

15.40 $S_7 \sim S_9$ and $S_8 \sim S_{10}$ so the table reduces to

Present	Next	State	Output	(Z)
State	X = 0	X = 1	X=0	X=1
S ₀	S_1	S_2	0	0
S ₀ S ₁	S_3	S_4	0	0
S_2	S_5	S_6	0	0
S_3	S_7	S_8	0	0
S_4	S ₈	S_7	0	0
S_5	S ₈	S_7	0	0
S ₅ S ₆ S ₇	S_7	S_8	0	0
S_7	S_0	S_0	1	0
S ₈	S_0	S_0	0	1

Now $\mathbf{S}_3 \sim \mathbf{S}_6$ and $\mathbf{S}_4 \sim \mathbf{S}_5$ so the table reduces to

Present State	1	State $X = 1$	Output X=0	(Z) $X=1$
S ₀	S ₁	S ₂	0	0
S_1	S_3	S_4	0	0
S_2	S_4	S_3	0	0
S_3	S_7	S_8	0	0
S_4	S ₈	S_7	0	0
S_7	S_0	S_0	1	0
S ₈	S_0	S_0	0	1

The implication chart verifies the answer.

Maximal Compatibles: (S $_3$ S $_6$), (S $_4$ S $_5$), (S $_7$ S $_9$), (S $_8$ S $_{10}$)