CC3-S1

2019-2020

CORRECTION - ANALYSE -

On considère l'équation différentielle suivante :

$$x^{2}(1-x)y'' - x(x+1)y' + y = 2x^{3} \quad (E)$$

PARTIE I

Dans cette partie on cherche les solutions développables en série entière de l'équation différentielle homogène associée à (E):

$$x^{2}(1-x)y'' - x(x+1)y' + y = 0 \quad (H)$$

On considère une suite de réels $(a_n)_{n\in\mathbb{N}}$ telle que la série entière $\sum a_n x^n$ ait un rayon de convergence r>0. On définit la fonction $f:]-r, r[\longrightarrow \mathbb{R}$ par :

$$\forall x \in]-r, r[, \quad f(x) = \sum_{n=0}^{+\infty} a_n x^n$$

1. Justifier que la fonction f est de classe C^2 et que les fonctions f' et f'' sont développables en série entière. Exprimer avec la suite $(a_n)_{n\in\mathbb{N}}$ les développements respectifs des fonctions f' et f'' en précisant leur rayon de convergence.

f est la somme d'une série entière de rayon de convergence r>0. Elle est donc de classe C^{∞} sur]-r,r[et en particulier de classe C^2 , et le théorème de dérivation des séries entières donne f' et f'' développables en séries entières, avec même rayon de convergence r, et pour tout $x \in]-r, r[$:

$$f'(x) = \sum_{n=0}^{+\infty} na_n x^{n-1}$$
 et $f''(x) = \sum_{n=0}^{+\infty} n(n-1)a_n x^{n-2}$.

2. Montrer qu'il existe une suite $(b_n)_{n\geq 2}$ de nombres réels non nuls telle que pour tout $x\in]-r,r[$ on a :

$$x^{2}(1-x)f''(x) - x(x+1)f'(x) + f(x) = a_{0} + \sum_{n=2}^{+\infty} b_{n} (a_{n} - a_{n-1}) x^{n}.$$

D'après la question précédente, pour tout $x \in]-r,r[$, on a :

$$x^{2}(1-x)f''(x) - x(x+1)f'(x) + f(x) = x^{2}(1-x)\sum_{n=0}^{+\infty} n(n-1)a_{n}x^{n-2} - x(x+1)\sum_{n=0}^{+\infty} na_{n}x^{n-1} + \sum_{n=0}^{+\infty} a_{n}x^{n}$$

$$= \sum_{n=0}^{+\infty} (n(n-1) - n + 1) a_n x^n - \sum_{n=0}^{+\infty} (n(n-1) + n) a_n x^{n+1} = a_0 + \sum_{n=1}^{+\infty} (n-1)^2 a_n x^n - \sum_{n=1}^{+\infty} (n-1)^2 a_{n-1} x^n$$
Les termes d'indice 1 sont nuls dans les deux sommes, on a donc :

$$x^{2}(1-x)f''(x) - x(x+1)f'(x) + f(x) = a_{0} + \sum_{n=2}^{+\infty} (n-1)^{2} (a_{n} - a_{n-1}) x^{n}.$$

3. Montrer que f est solution de (H) sur l'intervalle]-r,r[si et seulement si, $a_0=0$ et $a_{n+1}=a_n$ pour tout $n \in \mathbb{N}^*$.

f est solution de (H) sur]-r,r[si, et seulement si pour tout $x \in]-r,r[$, on a : $a_0 + \sum_{n=0}^{+\infty} (n-1)^2(a_n - a_{n-1})x^n = 0$

Par unicité du développement en série entière, on en déduit que $a_0 = 0$ et $\forall n \geq 2, a_n - a_{n-1} = 0$ (car $n - 1 \neq 0$), donc $a_0 = 0$ et $\forall n \ge 1, a_{n+1} = a_n$.

Réciproquement, si $a_0 = 0$ et $\forall n \geq 1, a_{n+1} = a_n$ alors (H) est bien vérifiée.

4. En déduire que si f est solution de (H) sur]-r,r[, alors $r\geq 1$ et il existe $\lambda\in\mathbb{R}$ tel que :

$$\forall x \in]-1,1[, \quad f(x) = \frac{\lambda x}{1-x}$$

Si f est solution de (H) sur]-r,r[, alors d'après la question précédente :

$$\exists \lambda \in \mathbb{R}, \forall x \in]-r, r[, f(x) = \sum_{n=1}^{+\infty} \lambda x^n$$

Spé PT Page 1 sur 2 Cette série entière a un rayon de convergence supérieur ou égal à 1 (il vaut 1 si $\lambda \neq 0$, et $+\infty$ sinon), et

$$\forall x \in]-1,1[,f(x) = \lambda \left(\sum_{n=0}^{+\infty} x^n - 1\right) = \lambda \left(\frac{1}{1-x} - 1\right) = \frac{\lambda x}{1-x}.$$

5. Réciproquement, montrer que si $\lambda \in \mathbb{R}$, alors la fonction

$$g:]-1,1[\longrightarrow \mathbb{R}, \quad x\mapsto \frac{\lambda x}{1-x}$$

est une solution de (H) sur] - 1,1[, développable en série entière.

$$g$$
 est de classe C^{∞} sur $]-1,1[$, et pour tout $x \in]-1,1[$, $g'(x)=\frac{\lambda}{(1-x)^2}$ et $g''(x)=\frac{2\lambda}{(1-x)^3}$.

Ainsi, pour tout $x \in]-1,1[$ on a :

$$x^{2}(1-x)g''(x) - x(x+1)g'(x) + g(x) = 0$$

donc g est solution de (H) sur]-1,1[.

D'autre part, pour tout $x \in]-1,1[,g(x)=\lambda x\sum_{n=0}^{+\infty}x^n=\sum_{n=0}^{+\infty}\lambda x^{n+1}$ donc g est développable en série entière.

PARTIE II

Soit $y:]0,1[\longrightarrow \mathbb{R}$ une fonction de classe C^2 . On définit la fonction $z:]0,1[\longrightarrow \mathbb{R}$ par la relation :

$$\forall x \in]0,1[, \quad z(x) = \left(\frac{1}{x} - 1\right)y(x)$$

2. Montrer que y est solution de (E) sur]0,1[si, et seulement si z est solution sur]0,1[de l'équation différentielle :

$$xz'' + z' = 2x \quad (E_1)$$

z est solution de (E_1) sur]0,1[si, et seulement si pour tout $x \in]0,1[$:

$$x\left(\frac{2}{x^3}y(x) - \frac{2}{x^2}y'(x) + \left(\frac{1}{x} - 1\right)y''(x)\right) + \left(-\frac{1}{x^2}y(x) + \left(\frac{1}{x} - 1\right)y'(x)\right) = 2x \text{ ce qui \'equivaut \'a}:$$

$$x^2(1-x)y''(x) - x(x+1)y'(x) + y(x) = 2x^3.$$

Ainsi, z est solution de (E_1) si, et seulement si y est solution de (E).

3. Montrer que si z est solution de (E_1) sur]0,1[, alors il existe $\lambda \in \mathbb{R}$ tel que

$$\forall x \in]0,1[, \quad z'(x) = \frac{\lambda}{x} + x$$

z est solution de (E_1) si et seulement siz' est solution de (E_2) : xy' + y = 2x.

L'équation homogène associée à (E_2) a pour solutions les fonctions $x \mapsto \frac{\lambda}{x}$, $\lambda \in \mathbb{R}$, et la fonction $x \mapsto x$ est une solution particulière de (E_2) .

On en déduit que les solutions de (E_2) sont les fonctions $x \mapsto \frac{\lambda}{x} + x, \lambda \in \mathbb{R}$, donc que z' est de cette forme.

4. En déduire l'ensemble des solutions de (E) sur [0,1[.

D'après les questions précédentes, y est solution de (E) sur]0,1[si et seulement si $z:x\mapsto\left(\frac{1}{x}-1\right)y(x)$ est solution de (E_1) sur]0,1[, donc si, et seulement si il existe $\lambda \in \mathbb{R}$ tel que $z'(x) = \frac{\lambda}{x} + x$ ce qui équivaut à : il existe $\mu \in \mathbb{R}$ tel que pour tout $x \in]0,1[, z(x) = \lambda \ln(x) + \frac{1}{2}x^2 + \mu.$ On en déduit les solutions y de (E) sur]0,1[:

$$\forall x \in]0,1[,y(x) = \frac{x}{1-x} \left(\lambda \ln(x) + \frac{1}{2}x^2 + \mu \right) \quad (\lambda,\mu) \in \mathbb{R}^2$$

Spé PT Page 2 sur 2