A számítástudomány alapjai 2022. I. félév

5. gyakorlat. Összeállította: Fleiner Tamás (fleiner@cs.bme.hu)

Tudnivalók

Def: A G = (V, E) gráf $Euler-(k\ddot{o}r)s\acute{e}t\acute{a}ja$ a G olyan (kör)sétája, mely G minden élét tartalmazza. **Megfigyelés:** Ha a véges G (irányított) gráfnak létezik Euler-körsétája, akkor (1) G izolált pontoktól eltekintve (irányítatlan értelemben) összefüggő és (2) G minden csúcsának fokszáma páros (irányított esetben minden v csúcsra $\delta(v) = \rho(v)$). Ha G-ben létezik Euler-séta, akkor (1) mellett teljesül, hogy (2') G-nek legfeljebb 2 páratlan fokú csúcsa van $(\sum_{v \in v} |\delta(v) - \rho(v)| \le 2)$.

Tétel: Tetszőleges G = (V, E) véges gráfra G-nek pontosan akkor van Euler-körsétája (Euler-sétája), ha a fenti (1) és (2) ((1) és (2')) teljesül.

Def: A G gráf Hamilton-köre (Hamilton-útja) egy G minden csúcsát tartalmazó kör (út).

Állítás: Ha a véges G gráfban létezik Hamilton-kör (ill. Hamilton-út), akkor G-nek k tetszőleges pontját törölve, a keletkező gráfnak legfeljebb k (ill. k+1) komponense van.

Dirac tétele: Ha az n-pontú $(n \ge 3)$, egyszerű G gráf minden pontjának legalább $\frac{n}{2}$ a fokszáma, akkor G-nek van Hamilton-köre.

Ore tétele: Ha az n-pontú $(n \ge 3)$, egyszerű G gráf olyan, hogy $uv \notin E(G)$ esetén $d(u) + d(v) \ge n$, akkor G-nek létezik Hamilton-köre.

Hízlalási lemma: Ha egy n-pontú G gráfban $d(u) + d(v) \ge n$, akkor G-nek pontosan akkor van Hamilton-köre, ha G + uv-nek Hamilton-köre van.

 $\mathbf{K\ddot{o}v}$: Ha van Hamilton-köre egy olyan G'-nek, amit a fenti Lemmában leírt élek behúzásával kapunk G-ből, akkor G-nek is van Hamilton-köre.

Gyakorlatok

- 1. Legyen G a $\{p_1, p_2, \dots, p_{2001}\}$ ponthalmazon az az egyszerű gráf, amire $(p_i p_j \in E(G)) \iff |i-j| \leq 2$. Van-e G-ben Euler-körséta, Euler-séta, Hamilton-kör ill. Hamilton-út? $(\checkmark)(V$ '01)
- 2. Legyenek a G_n gráf pontjai az n hosszú (0,1) sorozatok. Két pont akkor legyen szomszédos, ha pontosan egy helyen térnek el egymástól (pl. az n=4 esetben (0,0,0,1) és (0,1,0,1) szomszédosak). Van-e a G_n gráfnak Euler-körsétája (\checkmark) ill. Hamilton-köre? (ZH '01)
- 3. Legyenek a G gráf csúcsai az $1,2,\ldots,101$ számok, és az i és a j csúcsok akkor legyenek összekötve, ha i+j osztható 3-mal. Határozzuk meg, a legkisebb k értéket, amire igaz, hogy G-be k élt behúzva olyan egyszerű gráf kapható, aminek van Euler-körsétája.
- 4. Tegyük fel, hogy $G = (V, E_1 \cup E_2 \cup ... \cup E_k)$ összefüggő gráfban az E_i -k egymástól diszjunkt körséták. Az alábbi sétát végezzük az éleken. Tetszőleges pontjából indulva elkezdjük követni az E_1 körsétát. Mindig egy E_j körsétát követünk azzal, hogy amint olyan csúcsba érünk, amin átmegy egy eddig nem látott E_ℓ körséta, akkor elkezdjük E_ℓ -t követni, majd amint befejeztük, folytatjuk a felhagyott E_j követését. Mit kapunk, amikor befejezzük az E_1 körsétát?(*)
- 5. Mutassuk meg, hogy ha G egy 12-reguláris gráf, akkor élei pirosra és zöldre színezhetők úgy, hogy minden csúcsból pontosan 6 piros és 6 zöld él induljon. (!)
- 6. Igazoljuk, hogy tetszőleges véges gráf élei irányíthatók úgy, hogy minden v csúcsra $|\delta(v) \rho(v)| \le 1$ teljesüljön, ahol $\delta(v)$ ill. $\rho(v)$ a v csúcs ki- ill. befokát jelenti.
- 7. Drótból szeretnénk egy 4 × 4-es négyzetrácsot forrasztani, ahol az egyes négyzetek oldalhossza pontosan 1 cm. Megoldható-e a feladat akkor, (a) ha 8 db 5 cm-es drótunk van ill. (b) ha 5 db 8 cm-es drótot használhatunk? A drótokat elvágni nem, csak forrasztani szabad.
- 8. A mellékelt ábra Abszurdisztán fővárosa szennyvízhálózatának vázlatos rajzát mutatja. A vonalak a csatornákat jelképezik. Minden egyes csomópontban, ahol csatornák találkoznak, egy-egy létra vezet a felszínre. Nem zárható ki, hogy úgynevezett endzsió terroristák egy sátáni terv keretében valahol megmérgezték a szennyvízhálózatot. Ezért fertőtleníteni kell minden egyes csatornát, aminek az a módja, hogy a közszolgálati csatornák élő közvetítésében egy erre a feladatra speciálisan kiképzett szakember súlyos védőfelszerelésben végigkúszik a csöveken.

Mivel a szkafanderre is rátapadhat a szennyvizet szennyező ismeretlen méreg, a már fertőtlenített szakaszra nem szabad ismételten behatolni. Legalább hányszor kell a szakembernek kievickélnie a csatornából ahhoz, hogy a teljes fertőtlenítést elvégezhesse? (ZH '08)

- 9. Van-e olyan egyszerű gráf, melynek van Euler-körsétája, továbbá páros számú pontja és páratlan számú éle van? (\checkmark)
- 10. Mutassuk meg, hogy bármely összefüggő gráf élei bejárhatók úgy, hogy mindegyiken kétszer megyünk végig, éspedig mindkét irányban egyszer-egyszer.
- 11. Tegyük fel, hogy a G=(V,E) gráfban minden fokszám páros és $X\subseteq V$. Igazoljuk, hogy X-et páros számú él köti össze $V\setminus X$ -szel.
- 12. Van-e olyan 222 pontú G gráf, hogy G-nek és \overline{G} komplementerének is van Euler-sétája? (\checkmark)
- 13. A bölcsiben nyuszis-cicás dominókkal játszanak a gyerekek: a 24 darabos készlet kövei a 4-féle nyusziból és 6-féle cicából alkototható párok. Lehet-e az összes dominóból olyan kört alkotni, ahol az egymást követő köveken egymás mellett álló képek megegyeznek? (*)
- 14. Egy ajtót kell kinyitnunk úgy, hogy egy 10-gombos billentyűzeten egy általunk ismeretlen, titkos 3-jegyű számkód jegyeit egymás után begépeljük. (Az előzőleg lenyomott számok a nyitást nem befolyásolják.) Mennyi az a legkisebb összeg, amennyiért az ajtó bizonyosan kinyitható, bármi legyen is a titkos kód, ha minden egyes gombnyomás 1 Ft-ba kerül? (*)
- 15. Kritikus a helyzet: Abszurdisztán fővárosát, Mutyipusztát savköpő menyétek inváziója fenyegeti. A jobb oldali ábrán látható a főváros térképe: az egyes utak mellett álló számok az adott útvonal hosszát jelölik. A veszélyt mint mindig most is az ügyeletes szuperhős,
 - Órarugógerincű Felpattanó hárítja el. Mesteri tervének végrehajtása mellett (miszerint helikopterről lúgot permetezve semlegesíti a beto-lakodókat) még ebben a válságos pillanatban is a közvagyon megóvása a legfőbb célja. Ezért amellett, hogy minden utcát végigpermetez és visszatér a szabadon választott kiindulási pontra, szeretné egyúttal minimalizálni a lerepült össztávot is. Segítsünk Órarugógerincűnek abban, hogyan válasszon útvonalat! (*) (ZH '16)

- 16. Bejárható-e a 4 × 4-es sakktábla egy huszárral úgy, hogy minden mezőt pontosan egyszer érintünk? (A huszár mindig egy 3 × 2-es téglalap egyik csúcsából az átellenes csúcsába lép.) Mi a válasz valódi sakktábla esetén? (A valódi sakktábla 8 × 8-as.)
- 17. Bizonyítsuk be, hogy ha egy 2n-pontú G gráfban van Hamilton-kör, akkor kiválasztható G-nek néhány diszjunkt éle úgy, hogy G minden pontja végpontja valamelyik kiválasztott élnek. (\checkmark)
- 18. Mutassuk meg, hogy ha egy G gráfban van Hamilton-kör, akkor a G-v ill. a G-e gráf G bármely v csúcsára és bármely e élére is összefüggő. (\checkmark)
- 19. Tegyük fel, hogy G öf gráf és K egy olyan köre G-nek, aminek tetszőleges élét törölve, a kapott út G egy leghosszabb útja. Bizonyítsuk be, hogy K a G Hamilton-köre.
- 20. Legalább hány éle van egy olyan hat pontú gráfnak, melynek van Hamilton-köre? ()
- 21. Igazoljuk, hogy ha egy 3-reguláris G gráfban van Hamilton-kör, akkor G élei három színnel színezhetők úgy, hogy azonos színű éleknek ne legyen közös végpontjuk.
- 22. Legyen G egy 2n csúcsú egyszerű gráf és tegyük fel, hogy G minden csúcsának legalább n szomszédja van. Bizonyítsuk be, hogy ha G minden élének ki szeretnénk választani legalább egy végpontját, akkor G-nek legalább n csúcsát kell kiválasztanunk. (ZH '99)
- 23. Egy társaságban bármely két embernek legalább két közös ismerőse van. Igaz továbbá, hogy bármely két ember vagy ismeri egymást, vagy a társaság bármely harmadik tagját legalább az egyikük ismeri. Bizonyítsuk be, hogy a társaság tagjai leültethetők egy (megfelelő méretű) kerek asztal köré úgy, hogy mindenki két ismerőse között üljön. (\checkmark) (ZH '00)
- 24. Igazoljuk, hogy ha egy egyszerű G gráfnak 20 csúcsa van és bármely fokszáma legalább 12, akkor G-nek van két olyan Hamilton köre, melyeknek nincs közös éle. (pZH '14)
- 25. 222 politikus mindegyike legalább 133 másikat ismer, akik közül legfeljebb 22-t utál. Az ismeretség és az utálat is kölcsönös. Bizonyítsuk be, hogy a 222 politikus úgy tudja élő lánccal körülvenni a Tüskecsarnokot, hogy a szomszédos láncszemek ismerjék, de ne utálják egymást. (ZH '15)
- 26. Legyen G 10 csúcsú, egyszerű gráf. Bizonyítsuk be, hogy G-nek nincs Hamilton-köre, ha a csúcsok fokszámai pedig rendre 3, 3, 3, 4, 4, 4, 4, 9, 9, 9. (pZH '16)
 Mutassuk meg, hogy G-nek van Hamilton-köre, ha a csúcsok fokszámai 3, 3, 4, 5, 5, 5, 5, 5, 6.
- 27. A G egyszerű gráfnak 2n + 1 csúcsa van és minden csúcsának legalább n a foka. Bizonyítsuk be, hogy G-ben van Hamilton-út! (!) (ZH '01)