U3_1. In the sequential system of the attached figure, it is assumed that initially Q0=Q1=0 and Q2=Q3=1. Draw the output signal of each FF block, if an input sequence 10101 is applied to the input of FF0 (D0), synchronously with the clock signal clk.

Solution:

U3_2. In the sequential system of the figure, it is assumed that initially Q0 = Q3 = 1, Q1 = Q2 = 0. Draw in a time diagram the output signals for the flip-flops 0, 1, 2 and 3 during five clock cycles.

U3_3. Given the sequence of the attached figure, and knowing the input signal D0 of the FF0, complete the chronogram of the three Q outputs for 5 clock cycles. Assume that the first and last FF are active with a rising edge and that the central FF is active with a falling edge. Consider that initially all outputs are 0.

Solution:

RELOJ

 $U3_4$. In the 4 flip-flops (FF) in the figure, it is assumed that initially Q0 = Q1 = 0, Q2 = Q3 = 1. Draw the output signal of each flip-flop if the input sequence D is applied to D0 synchronously with the clock in a time diagram. Note that all FFs are activated by clock falling edge.

Solution:

U3_5. In the sequence of the figure, it is assumed that initially Q0 = Q1 = 1 and Q2 = Q3 = 0. Draw the output signal of the FF 1,2 and 3 in the time diagram and reasonably indicate which type of FF is 0 (the first on the left). Flip-flops are activated by rising clock edge.

Solution:

U3_6. Given the sequence of flip-flops in the figure, complete the attached time diagram. Assume that all flip-

flops are initially in the state Qi = '0'.

Solution:

 ${\bf U3_7.}$ Indicate the combinational circuit that allows to build a type D flip-flop from a type T flip-flop..

Dn	Qn	Qn+1	Tn
0	0	0	0
0	1	0	1
1	0	1	1
1	1	1	0

$$T^n = D^n \oplus Q^n$$

U3_8. Given the circuit of the figure, and knowing that the reset is asynchronous, active by high level and initializes all the flip-flops to '0', fill the attached time diagram.

Solution:

U3_9. From the diagram of the figure, draw a chronogram for 5 complete clock cycles. The initial values for the flip-flops are Q0 = 0, Q1 = 1 and Q2=1

U3_11. From the diagram in the figure, it is requested to draw a chronogram for 5 complete clock cycles. The initial values for the flip-flops are Q0 = 0, Q1 = 0 and Q2 = 1

U3_12. From the diagram in the figure, complete the attached schedule for the 5 clock cycles indicated. As indicated in the schedule, the initial values for the flip-flops are Q0 = 1, Q1 = 0 and Q2 = 0

U3_13. Given the sequential circuit of the figure, design a chronogram for 5 clock cycles. The initial values for the flip-flops are Q0 = 0, Q1 = 1 and Q2 = 1

T, Q,

a,

Solution:

U3_14. From the diagram of the figure, make a chronogram for 5 clock cycles. The initial values for the flip-flops are Q0 = 0, Q1 = 1 and Q2 = 1

U3_15. From the diagram of the figure, make a chronogram for 5 clock cycles. The initial values for the flip-flops are $Q_0 = 1$, $Q_1 = 1$ y $Q_2 = 0$

Solution:

U3_16. The 4-bit register of the figure is formed by 4 FF of different types. It is requested to complete the diagram for the outputs Q_0 , Q_1 , Q_2 y Q_3 . Note: The Reset is asynchronous.

 $\begin{tabular}{ll} \textbf{U3_17.} Complete & the schedule of the attached figure, knowing that in the initial state the values of the flip-flops are: $Q_3=Q_1=1$ y $Q_2=Q_0=0$ \end{tabular}$

Note: Take into account the appropriate flank activation of each FF

Q,

Q,

U3_18. Given the following circuit, represent 4 consecutive clock cycles in the facilitated schedule, knowing that the initial state is $Q_0 = Q_1 = Q_2 = 0$.

U3_19. Given the circuit in the attached figure, and starting from the indicated initial state, complete the given schedule for the 4 clock cycles indicated. The initial states are: $Q_0 = 0$, $Q_1 = Q_2 = 1$

U3_20. In the sequential system of the attached figure, it is assumed that initially $Q_0 = Q_2 = 0$ y $Q_1 = Q_3 = Q_4 = 1$. Complete the attached schedule with the output signal of each FF, knowing that the reset signal is asynchronous.

U3_21. Given the sequential system of the attached figure, complete the given schedule with the output signal of each FF, knowing that the reset signal is asynchronous.

Solution:

U3_22. Given the sequential system of the attached figure, complete the given diagram with the output signal of each FF.

Notes:

- The Reset signal is asynchronous
- Consider the operation of each FF on its corresponding clock edge

Solution:

U3_23. Given the sequential system of the attached figure, complete the given diagram with the output signal of each FF, knowing that the Reset signal is asynchronous.

NOTE: Attention to the clock edge of each of the FF.

