Magnetic properties

- A substance through which the magnetic lines of force of an external magnetic field pass is paramagnetic.
- A substance becomes paramagnetic when it possesses unpaired electrons. Ex. Sc⁺⁺, Cr⁺⁺
- Para magnetism increases with increase in number of unpaired electrons.
- A substance through which magnetic lines of force do not pass and repelled is called diamagnetic.
- A substance which contains only paired electrons and no unpaired electrons is diamagnetic.

- Ferromagnetism is a special case of paramagnetism
- A substance which contains unpaired electrons and which are aligned in the same direction is ferromagnetic. Ex. Fe, Co, Ni.
- Ferromagnetism disappears in the solution of substance.
- In paramagnetic substance, the field strength (B) in the substance is greater than the applied field (H). i. e B > H.
- In ferromagnetic substance, the field strength (B) in the substance is much greater than (H) i.e. B>>H the applied field.
- In diamagnetic substance, the field strength (B) is less than the applied field. i.e B < H.
- Paramagnetic substance moves from a weaker part of the field to stronger part of the field
- Diamagnetic substance moves from a stronger part of the field to weaker part of the field.
- In 3d –series for some metal ions like Co²⁺, Fe²⁺ the experimental value of ② is slightly more than calculated value of ② due to contribution of orbital motion.
- Both spin and orbital motions of unpaired electrons will contribute to the net magnetic moment.
- Magnetic moment, $m_{S+L} = \sqrt{4S(S+1)+L(L+1)}BM$
 - $S \rightarrow Sum$ of the electron spin quantum numbers of all the unpaired electrons.
 - $L \rightarrow$ Sum of the Azimuthal quantum number of all the unpaired electrons.
- B.M = Bohr magneton.

1BM=
$$\frac{eh}{4\pi mc}$$
=9.273×10⁻²⁴Joules Tesla⁻¹ in S.I units

e = Charge of the electron

h = Planck's constant

m = Mass of an electron

T = Tesla

 Angular momentum due to orbital motion of unpaired electrons is small and ignored in 3d series.

- There fore the magnetic moment is due to spin of unpaired electron only.
- The following spin only formula gives spin only magnetic moment.

$$m_s = \sqrt{4S(S+1)}BM = \sqrt{n(n+2)}BM$$

n = number of unpaired electrons

S = sum of spin quantum number values

• For I 3d series of metal ions, the spin only magnetic moments are given below

Metal Ion	3d config uratio n	No.of Unpaired electron	Magnetic moment
Sc ⁺⁺⁺			0
Ti***			1.7 –
Ti ⁺⁺	3d ⁰	0	1.8
V**	3d ¹	1	2.8 –
Cr ⁺⁺ or	3d ²	2	3.1
Mn ⁺⁺	3d ³	3	3.7 –
Mn ⁺⁺ or	3d ⁴	4	3.9
Fe***	3d ⁵	5	4.8 –
Fe ⁺⁺	$3d^6$	6	4.9
			5.7 – 6
			5 – 5.6

• In II and III series transition elements, L must be included in the formula for m_{S+L} . Thus it is significant.