Lin_ST625_HW5

Frances Lin

2/5/2022

1

Suppose we have

Group A: 14, 25, 30, 34+, 46, 56+

Group B: 25+, 34, 34, 36, 43+, 46,

1a

Log-rank test is calculated by

- 1. List out the uncensored survival time of both groups (e.g. t = 14, 25, 30, 34, 36, 46)
- 2. At each t, construct a table with # of death (d_{i1}, d_{i2}) and # of alive $(Y_{i1} d_{i1}, Y_{i2} d_{i2})$ and their row and column total for each j = 1, 2 group
- 3. Compute $e_{i1} = d_i * (y_{i1}/y_i)$ and $v_{i1} = d_i * (y_{i1}/y_i) * ((y_i y_{i1})/(y_i)) * ((y_i d_i)/(y_i 1))$
- 4. Each row of **1b** contains d_{i1} , e_{i1} and v_{i1} of each table

At each t_i ,

# death	# alive	total
di1	yi1 - di1	yi1
di2	yi2 - di2	yi2
di	yi - di	yi

t = 14

d	y_d	У
1	5	6
0	6	6
1	11	12

t = 25

d	y_d	у
1	4	5
0	6	6
1	10	11

t = 30

d	y_d	У
1	3	4
0	5	5
1	8	9

t = 34

d	y_d	у
0	3	3
2	3	5
2	6	8

t = 36

d	y_d	У
0	2	2
1	2	3
1	4	5

Finally, t = 46

d	y_d	У
1	1	2
1	0	1
2	1	3

1b

t	d_i_1	e_i_1	v_i_1
14	1	0.5	0.25
25	1	0.4545	0.2479
30	1	0.4444	0.2469
34	0	0.75	0.4018
36	0	0.4	0.24
46	1	1.333	0.2222
sum	4	3.882	1.609

1c

Logrank (test statistics) =
$$\frac{(d-e)^2}{v}$$
 = $(4-3.882)^2/1.609$ =

[1] 0.008607251

1d

Recall that if H_0 is true, then it follows χ_1^2 , so p-val = $P(\chi_1^2 \ge Logrank)$ =

[1] 0.9260821

Since p-val > 0.05 ($\alpha = 0.05$), we conclude that there is no significant evidence that the survival of the two groups are different.

$\mathbf{2}$

 ${\rm Drug\ A:\ } 16,16+,18+,19+,20,28,32+$

Drug B: 10, 14, 15, 18, 20+, 21

2a

t = 10

d	y_d	У
0	7	7
1	5	6
1	12	13

t = 14

d	y_d	У
0	7	7
1	4	5
1	11	12

t = 15

d	y_d	У
0	7	7
1	3	4
1	10	11

t = 16

d	y_d	У
1	6	7
0	3	3
1	9	10

t = 18

d	y_d	у
0	5	5
1	2	3
1	7	8

t = 20

d	y_d	у
1	2	3
0	2	2
1	4	5

t = 21

d	y_d	У
0	2	2
1	0	1
1	2	3

t=28

d	y_d	У
1	1	2
0	0	0
1	1	2

2b

t	d_i_1	e_i_1	v_i_1
10	0	0.5385	0.2485
14	0	0.5833	0.2431
15	0	0.6364	0.2314
16	1	0.7	0.21
18	0	0.625	0.2344
20	1	0.6	0.24
21	0	0.6667	0.2222
28	1	1	0
sum	3	5.35	1.63

2c

Logrank (test statistics) =
$$\frac{(d-e)^2}{v}$$
 = $(3-5.35)^2/1.63$ =

[1] 3.388409

2d

$$\text{p-val} = P(\chi_1^2 \geq Logrank) =$$

[1] 0.06565627

For $\alpha=0.05$ at least, since p-val > 0.05, we conclude that there is no significant evidence that the survival of the two groups are different. At $\alpha=0.1$, there is some evidence.

It is not consistent with my finding in Homework 4. Perhaps I made some errors somewhere.

3a

type	time	delta
1	1	1
1	3	1
1	3	1
1	4	1
1	10	1
1	13	1

3b

Kaplan-Meier plot with point-wise CIs for An euploid Tumor (type = 1) and Diploid Tumor (type = 2) is given:

3c

 H_0 : There is no difference in survival functions between two groups (Aneuploid Tumor vs. Diploid Tumor) (or $H_0: S_1 = S_2$)

 H_a : There is some difference in survival functions between two groups (Aneuploid Tumor vs. Diploid Tumor) Log-rank test results:

```
## Call:
## survdiff(formula = Surv(time, delta) ~ type, data = Tongue)
```

```
##
##
           N Observed Expected (0-E)^2/E (0-E)^2/V
## type=1 52
                   31
                           36.6
                                    0.843
                                               2.79
## type=2 28
                   22
                           16.4
                                    1.873
                                               2.79
##
   Chisq= 2.8 on 1 degrees of freedom, p= 0.09
## survdiff(formula = Surv(time, delta) ~ type, data = Tongue, rho = 1)
##
##
           N Observed Expected (0-E)^2/E (0-E)^2/V
## type=1 52
                 20.2
                          24.4
                                    0.731
                                                3.3
## type=2 28
                 15.1
                           10.9
                                    1.643
                                                3.3
##
   Chisq= 3.3 on 1 degrees of freedom, p= 0.07
```

Chisq = 2.8 and p = 0.09 for the log-rank test and Chisq = 3.3 and p = 0.07 for the Peto-Peto test. At the $\alpha = 0.05$, we fail to reject the H_0 and conclude that there is not enough evidence to say that the survival functions of two groups differ. At the $\alpha = 0.1$, we would say there is some evidence.

3d

It is not quite consistent with the plots given in 3b. However, as Lab5-R-1.pdf points out that KM estimator has larger variability at later times. In addition, the 95% CI band of type = 2 does overlap with the survival curve of type = 1.

4

4a

Admitdate	Fdate	time
1997-01-13	2002-12-31	2178 days
1997-01-19	2002-12-31	2172 days
1997-01-01	2002-12-31	2190 days

 ${f 4b}$ Don't think this is right. Perhaps need to create a group variable.

name	gender	cvd	n
M0	0	0	89
M1	0	1	211
F0	1	0	36
F1	1	1	164

4c

 H_0 : There is no difference in survival functions among the four groups (F0, F1, M0, M2) (or H_0 : $S_1 = S_2 = S_3 = S_4$)

 H_a : There is at least one difference in survival functions among the four groups (F0, F1, M0, M2)

Let group=1 = F0 (Female with no history of Cardiovascular), group=2 = F1, group=3 = M0, etc

Log-rank test results:

```
## Call:
## survdiff(formula = Surv(time, fstat) ~ group, data = df)
##
             N Observed Expected (0-E)^2/E (0-E)^2/V
##
                             16.4
## group=1
            36
                      21
                                       1.315
## group=2 164
                      83
                             67.9
                                       3.352
                                                 4.987
                             39.5
                                                 7.479
## group=3
            89
                      24
                                       6.069
## group=4 211
                      87
                             91.2
                                       0.198
                                                 0.348
##
##
   Chisq= 11.1 on 3 degrees of freedom, p= 0.01
```

Since Chisq = 11.1 and p = 0.01, at the $\alpha = 0.05$, we reject the H_0 and conclude that there is evidence to say that at least one of the survival functions of the four groups differs.

```
chiSq df pChisq
##
                               2
## 1
              11.1470
                        3
                7.8125
                        3
                               6
## n
## sqrtN
               9.3779
                        3
                               5
## S1
               9.5028
                        3
                               3
## S2
               9.4896
                        3
                               4
## FH_p=1_q=1 12.4503
                               1
## $tft
                                           Z pNorm
##
                        Q
                                  Var
## 1
              2.8613e+01 2.1873e+02 1.9347
## n
              9.1960e+03 3.0725e+07 1.6590
                                                  6
## sqrtN
              5.0696e+02 7.7575e+04 1.8202
                                                  5
## S1
              2.1213e+01 1.3545e+02 1.8227
                                                  4
                                                  3
              2.1165e+01 1.3461e+02 1.8242
## FH_p=1_q=1 4.7986e+00 6.3355e+00 1.9064
                                                  2
##
## $scores
## [1] 1 2 3 4
```

PS. I know we are supposed to use the comp function of the survMisc package. However, there is perhaps a bug in there. There is an opened issue on Github: here. All pChisq > 1 for Lab5-R-1.Rmd too. All pChisq > 1 here too.

4d

Let group=1 = F0 (Female with no history of Cardiovascular), group=2 = F1, group=3 = M0, etc

```
##
## Pairwise comparisons using Log-Rank test
##
## data: df and group
##
## 1 2 3
## 2 1.000 - -
## 3 0.077 0.012 -
## 4 1.000 0.547 0.292
##
## P value adjustment method: bonferroni
```

Among them, group=2 (F1: Female with history of Cardiovascular) and group=3 (M0: Male with no history of Cardiovascular) are significantly different (p = 0.012). All the other pairs are not significantly different.