Proximal Methods

Tobia Boschi

Stat 540 - Spring 2108

Why Proximal Methods?

- High dimensional convex problems
 - non-differentiable
 - constrained
 - large-size and parallel implementations
- Proximal methods to solve LASSO

Key Idea

- avoid gradient and hessian computation
- evaluate instead the *proximal operator*:
- → small convex optimization problem

Definition

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a closed proper *convex* function. The proximal operator $\operatorname{prox}_{\lambda f}: \mathbb{R}^n \to \mathbb{R}^n$ is defined by:

$$\operatorname{prox}_{\lambda f}(x) = \operatorname{argmin}_z \left(f(z) + \frac{1}{2\lambda} ||z - x||_2^2 \right)$$

It balances two goals:

- \odot minimizing f
- staying near x

Possible interpretations

- surrogate method: $f(x) \longrightarrow f(z) + \frac{1}{2\lambda} ||z x||_2^2$
- gradient step for f: $\operatorname{prox}_{\lambda f}(x) \cong x \lambda \nabla f(x)$

2

- \odot f(x) = |x|
- $|z| + \frac{1}{2\lambda}(x-z)^2$
- o $\operatorname{prox}_{\lambda f}(x) = \operatorname{sign}(x)(|x| \lambda)_{+}$

- \circ f(x) = |x|
- $|z| + \frac{1}{2\lambda}(x-z)^2$
- o $\operatorname{prox}_{\lambda f}(x) = \operatorname{sign}(x)(|x| \lambda)_{+}$

- \odot f(x) = |x|
- $|z| + \frac{1}{2\lambda}(x-z)^2$
- o $\operatorname{prox}_{\lambda f}(x) = \operatorname{sign}(x)(|x| \lambda)_{+}$

- \odot f(x) = |x|
- $|z| + \frac{1}{2\lambda}(x-z)^2$
- o $\operatorname{prox}_{\lambda f}(x) = \operatorname{sign}(x)(|x| \lambda)_{+}$

Proximal Methods and Regression

Let $x \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, $A \in \mathbb{R}^{m \times n}$. We want to minimize:

$$g(x) + h(x) = \frac{1}{2}||Ax - b||_2^2 + h(x)$$

- \odot LASSO: $h(x) = \gamma ||x||_1$
- ⊚ RIDGE: $h(x) = \frac{y}{2}||x||_2^2$
- © ELASTIC: $h(x) = \gamma_1 ||x||_1 + \frac{\gamma_2}{2} ||x||_2^2$

Implemented Algorithms

- Proximal Gradient
- Proximal ADMM

 (alternating direction method of multipliers)

Proximal Methods and Regression

Let $x \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, $A \in \mathbb{R}^{m \times n}$. We want to minimize:

$$g(x) + h(x) = \frac{1}{2}||Ax - b||_2^2 + h(x)$$

- \odot LASSO: $h(x) = \gamma ||x||_1$
- ⊚ RIDGE: $h(x) = \frac{y}{2}||x||_2^2$
- © ELASTIC: $h(x) = \gamma_1 ||x||_1 + \frac{\gamma_2}{2} ||x||_2^2$

Implemented Algorithms

- Proximal Gradient
- Proximal ADMM

 (alternating direction method of multipliers)

Pseudo-code

Gradient step

$$v^k = x^k - \lambda \nabla \mathbf{g}(x^k)$$

Proximal operator step

$$x^{k+1} = \operatorname{prox}_{\lambda h}(v^k)$$

Pseudo-code

Gradient step

$$v^k = x^k - \lambda \nabla \mathbf{g}(x^k)$$

Proximal operator step

$$x^{k+1} = \operatorname{prox}_{\lambda \mathbf{h}}(v^k)$$

- $\nabla g(x) = A'Ax A'b$
 - precompute A'A and A'b
 - at each iteration evaluate A'Ax: $O(n^2)$
- $\left(\operatorname{prox}_{\lambda\gamma||x||_1}(x)\right)_i = \operatorname{prox}_{\lambda\gamma|x_i|}(x) = \operatorname{sign}(x)(|x| \lambda\gamma)_+$

Proximal Gradient as an Majorization-Minimization algorithm

$$\hat{g}_{\lambda}(x,y) = g(y) + \nabla g(y)'(x-y) + \tfrac{1}{2\lambda}||x-y||_2^2 \geq g(x)$$

Majorization step

 \circ compute $\hat{g}_{\lambda}(x, x^k) + h(x)$

Minimizaztion step

$$\min_{x} \left(\hat{g}_{\lambda}(x, x^{k}) + h(x) \right) = \operatorname{prox}_{\lambda h} \left(x^{k} - \lambda \nabla g(x^{k}) \right)$$

$$= \operatorname{prox}_{\lambda h}(v^{k})$$

Proximal Gradient as an Majorization-Minimization algorithm

$$\hat{g}_{\lambda}(x,y) = g(y) + \nabla g(y)'(x-y) + \tfrac{1}{2\lambda}||x-y||_2^2 \geq g(x)$$

Majorization step

 \circ compute $\hat{g}_{\lambda}(x, x^k) + h(x)$

Minimizaztion step

$$\min_{x} \left(\hat{g}_{\lambda}(x, x^{k}) + h(x) \right) = \operatorname{prox}_{\lambda h} \left(x^{k} - \lambda \nabla g(x^{k}) \right)$$

$$= \operatorname{prox}_{\lambda h}(v^{k})$$

\odot Backtracking of λ

- $\circ \ x = \operatorname{prox}_{\lambda h} \left(x^k \lambda \nabla g(x^k) \right)$
- reduce λ since: $g(x) \leq \hat{g}_{\lambda}(x, x^k)$

Proximal ADMM

Note: minimize g(x) + h(x) is equivalent to minimize:

$$g(x) + h(z)$$
 subject to $x - z = 0$

Proximal ADMM

Note: minimize g(x) + h(x) is equivalent to minimize:

$$g(x) + h(z)$$
 subject to $x - z = 0$

Pseudo-code

- \circ $z^{k+1} = \operatorname{prox}_{\lambda h}(x^{k+1} + u^k)$
- $oldsymbol{0} u^{k+1} = u^k + x^{k+1} z^{k+1}$
- $g(x) = \frac{1}{2}||Ax b||_2^2 = \frac{1}{2}(b Ax)'(b Ax)$
- $\operatorname{prox}_{\lambda g}(x) = (I_n + \lambda A'A)^{-1}(x + \lambda A'b)$

Proximal ADMM

How to compute $(I_n + \lambda A'A)^{-1}$:

- $\odot n > m$
 - $C = \operatorname{chol}(I_n + \lambda A'A)$
 - $\circ (I_n + \lambda A'A)^{-1} = (C')^{-1}C^{-1}$
 - \circ \circ \circ (n^3)
- $\odot m > n$
 - inversion lemma: $(I_n + \lambda A'A)^{-1} = A'(I_m + \lambda AA')^{-1}A$
 - $C = \operatorname{chol}(I_m + \lambda AA')$
 - \circ \circ \circ (m^3)

Simulation 1

- $A = \text{random normal}(m \times n)$
- $x_0 = \text{random normal}(n \times 1)$
- $b = Ax_0 + err$

- sparsity = 0.95
- $\lambda = 1$
- $\gamma = 0.1 ||A'b||_{\infty}$

$$\odot$$
 $m = 500$, $n \uparrow$

		sec			obj	
	CVX	grad	ADMM	CVX	err grad	err ADMM
$n = 10^2$	0.10966	0.00136	0.02259	0.4606	0	0
$n = 10^3$	11.10568	0.02289	0.02589	8.5773	0.0010	0.0003
$n = 10^4$	155.49445	3.97270	0.57923	86.8624	0.1288	0.00665
$n=4\cdot 10^4$	820.12007	111.32019	4.21288	305.0444	1.0231	0.08624

Simulation 1

• $A = \text{random normal}(m \times n)$

• $x_0 = \text{random normal}(n \times 1)$

• $b = Ax_0 + err$

• sparsity = 0.95

• $\lambda = 1$

• $\gamma = 0.1 ||A'b||_{\infty}$

$$\odot$$
 $m = 500$, $n \uparrow$

		sec			obj	
	CVX	grad	ADMM	CVX	err grad	err ADMM
$n = 10^2$	0.10966	0.00136	0.02259	0.4606	0	0
$n = 10^3$	11.10568	0.02289	0.02589	8.5773	0.0010	0.0003
$n = 10^4$	155.49445	3.97270	0.57923	86.8624	0.1288	0.00665
$n=4\cdot 10^4$	820.12007	111.32019	4.21288	305.0444	1.0231	0.08624

$$n >> m \Rightarrow \text{ADMM } \mathfrak{G}(m^3) > \text{Gradient } \mathfrak{G}(n^2)$$

Distributed ADMM

 \odot reduce $m \longrightarrow \text{divide } A \text{ in } S \text{ blocks}$

•
$$g(x) = \sum g_i(x)$$

= $\sum \frac{1}{2} ||A_i x - b_i||_2^2$

• $\mathbb{O}((m/S)^3)$

Distributed ADMM

 \odot reduce $m \longrightarrow$ divide A in S blocks

•
$$g(x) = \sum g_i(x)$$

= $\sum \frac{1}{2} ||A_i x - b_i||_2^2$

 $\bullet \ \mathbb{O}\big((m/S)^3\big)$

Pseudo-code

$$\odot z^{k+1} = \operatorname{prox}_{\frac{\lambda h}{S}} (\bar{x}^{k+1} + \bar{u}^k)$$

$$u_{i}^{k+1} = u_{i}^{k} + x_{i}^{k+1} - z^{k+1}$$

Simulation 2

- \odot m = 10.000, n = 50.000
- \circ *S* = 10

sec				obj		
grad	ADMM	distr		grad	ADMM	distr
3463	423	90		609.012	607.046	609.747

Simulation 2

- \odot m = 10.000, n = 50.000
- \circ *S* = 10

sec			obj			
grad	ADMM	distr	grad	ADMM	distr	
3463	423	90	609.012	607.046	609.747	

Conclusions

Pros

- non-smooth problem
- much faster
- easy to parallelize
- good approximations

Cons

- convex problems
- pointwise estimation
- approximations

More work...

- sensitivity study for λ and γ
- add performance indicators (prediction error)
- study constrained problems (matrix decomposition)