

TEST REPORT

No. I19Z60700-EMC01

for

Hytera Communications Corporation Limited

Smart LTE Terminal

Model Name: PNC550

FCC ID: YAMPNC550B9

IC Number: 8913A-PNC550B9

with

Hardware Version: 1.01

Software Version: V1.0.01.001.01

Issued Date: 2019-05-14

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S.Government.

Test Laboratory:

CTTL, Telecommunication Technology Labs, CAICT

No. 52, Huayuan North Road, Haidian District, Beijing, P. R. China 100191.

Tel:+86(0)10-62304633-2512, Fax:+86(0)10-62304633-2504

Email: cttl_terminals@caict.ac.cn, website: www.caict.ac.cn,

REPORT HISTORY

Report Number	Revision	Description	Issue Date	
I19Z60700-EMC01	Rev.0	1 st edition	2019-05-14	

CONTENTS

1.	TEST LABORATORY	4
1.1.	TESTING LOCATION	4
1.2.	TESTING ENVIRONMENT	4
1.3.	PROJECT DATA	4
1.4.	SIGNATURE	4
2.	CLIENT INFORMATION	5
2.1.	CERTIFICATION MANAGER INFORMATION	5
2.2.	APPLICANT INFORMATION	5
2.3.	MANUFACTURER INFORMATION	5
3.	EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	6
3.1.	ABOUT EUT	6
3.2.	INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	6
3.3.	INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	6
3.4.	EUT SET-UPS	7
4.	REFERENCE DOCUMENTS	8
4.1.	REFERENCE DOCUMENTS FOR TESTING	8
5.	LABORATORY ENVIRONMENT	9
6.	SUMMARY OF TEST RESULTS	10
7.	TEST EQUIPMENTS UTILIZED	11
ANI	NEX A: MEASUREMENT RESULTS	12
A NIE	NEV D. DEDSONS INVOLVED IN THIS TESTING	26

1. Test Laboratory

1.1. Introduction & Accreditation

Telecommunication Technology Labs, CAICT is an ISO/IEC 17025:2005 accredited test laboratory under NATIONAL VOLUNTARY LABORATORY ACCREDITATION PROGRAM (NVLAP) with lab code 600118-0, and is also an FCC accredited test laboratory (CN5017), and ISED accredited test laboratory (CN0066). The detail accreditation scope can be found on NVLAP website.

1.2. Testing Location

CTTL (huayuan North Road)

Address: No. 52, Huayuan North Road, Haidian District, Beijing, P. R. China

100191

CTTL (BDA)

Address: No.18A, Kangding Street, Beijing Economic-Technology Development

Area, Beijing, P. R. China 100176

1.3. <u>Testing Environment</u>

Normal Temperature: 15-35°C Relative Humidity: 20-75%

1.4. Project data

Testing Start Date: 2019-04-24
Testing End Date: 2019-04-30

1.5. Signature

Wang Junqing

(Prepared this test report)

张

Zhang Ying

(Reviewed this test report)

Liu Baodian

Deputy Director of the laboratory

(Approved this test report)

2. Client Information

2.1. <u>Certification Manager Information</u>

Company Name: Hytera Communications Corporation Limited

Hytera Tower, Hi-Tech Industrial Park North, 9108# Beihuan Road, Address /Post:

Nanshan District, Shenzhen, People's Republic of China

Contact Person: licheng

Contact Email cheng.li@hytera.com

Telephone: 13717055929

Fax: /

Address /Post:

2.2. Applicant Information

Company Name: Hytera Communications Corporation Limited

Hytera Tower, Hi-Tech Industrial Park North, 9108# Beihuan Road,

Nanshan District, Shenzhen, People's Republic of China

Contact Person: licheng

Contact Email cheng.li@hytera.com

Telephone: 13717055929

Fax: /

2.3. Manufacturer Information

Company Name: Hytera Communications Corporation Limited

Hytera Tower, Hi-Tech Industrial Park North, 9108# Beihuan Road,

Address /Post:

Nanshan District, Shenzhen, People's Republic of China

Contact Person: licheng

Contact Email cheng.li@hytera.com

Telephone: 13717055929

Fax: /

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

AE5

Model

Description **Smart LTE Terminal**

Model Name PNC550

FCC ID YAMPNC550B9 8913A-PNC550B9 IC Number

Extreme vol. Limits 3.3VDC to 4.35VDC (nominal: 3.8VDC)

Note: Components list, please refer to documents of the manufacturer; it is also included in the original test record of CTTL, Telecommunication Technology Labs, Academy of Telecommunication Research, MIIT.

3.2. Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	HW Version	SW Version
EUT1	864608040026119/	1.01	V1.0.01.001.01
	864608040026101		

^{*}EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE used during the test				
AE ID*	Description	SN	Remarks	
AE1	Battery	/	inbuilt	
AE2	Charger	/	CH008	
AE3	USB Cable	/	DC002	
AE4	Headset	/	HS001	
AE5	Single unit Charger	/	CH001	
AE1				
Model		BP4003		
Manufact	urer	FPR Connectivity Technolog	y Inc.	
Capacitar	nce	4000mAh		
Nominal v	Nominal voltage /			
AE2				
Model		PS2032		
Manufact	urer	TENPAO		
Length of	cable	/		
AE3				
Model		PC143(C-type)		
Manufact	urer	TENPAO		
Length of	cable	1		
AE4				
Model		Earset for PNC550(C-type)		
Manufact	Manufacturer savox			
Length of	Length of cable /			

CH20L14

Manufacturer Hytera Length of cable /

*AE ID: is used to identify the test sample in the lab internally.

Note: The USB cables are shielded.

3.4. EUT set-ups

EUT set-up No.	Combination of EUT and AE	Remarks
Set.11	EUT1+ AE1+ AE2+ AE3 +AE4	Charger +MP3
Set.12	EUT1+ AE1+ AE2+ AE3 +AE5	Charger
Set.13	EUT1+ AE1+ AE3	USB mode +GPS

4. Reference Documents

4.1. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version
FCC Part 15, Subpart B	Radio frequency devices - Unintentional Radiators	2016
ANSI C63.4	American National Standard for	2014
	Methods of Measurement of Radio-	
	Noise Emissions from Low-Voltage	
	Electrical and Electronic Equipment	
	in the Range of 9 kHz to 40 GHz	
ICES-003	Information Technology Equipment (Including	Issue 6
	Digital Apparatus) — Limits and Methods of	
	Measurement	

Note: The test methods have no deviation with standards.

5. LABORATORY ENVIRONMENT

Semi-anechoic chamber SAC-1 (23 meters × 17meters × 10meters) did not exceed following limits along the EMC testing:

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 15 %, Max. = 75 %
Chickling offoctiveness	0.014MHz - 1MHz, >60dB;
Shielding effectiveness	1MHz - 1000MHz, >90dB.
Electrical insulation	> 2 MΩ
Ground system resistance	< 4 Ω
Normalised site attenuation (NSA)	< ± 4 dB, 3m distance, from 30 to 1000 MHz
Site voltage standing-wave ratio (S_{VSWR})	Between 0 and 6 dB, from 1GHz to 18GHz
Uniformity of field strength	Between 0 and 6 dB, from 80 to 3000 MHz

Shielded room did not exceed following limits along the EMC testing:

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 20 %, Max. = 75 %
Shielding effectiveness	0.014MHz-1MHz, >60dB;
	1MHz-1000MHz, >90dB.
Electrical insulation	> 2 MΩ
Ground system resistance	< 4 Ω

6. SUMMARY OF TEST RESULTS

Abbreviations used in this clause:		
	Р	Pass
Verdict Column	NA	Not applicable
	F	Fail

Items	Test Name	Clause in FCC rules	Section in this report	Verdict	Test Location
1	Radiated Emission	15.109(a)	B.1	Р	CTTL(huayuan North Road)
2	Conducted Emission	15.107(a)	B.2	Р	CTTL(huayuan North Road)

7. Test Equipments Utilized

			SERIES		CAL DUE	CALIBRATI
NO.	Description	TYPE	NUMBER	MANUFACTURE	DATE	ON
			NOWBER			INTERVAL
1	Test Receiver	ESU26	100235	R&S	2020-03-01	1 year
2	Test Receiver	ESCI3	100344	R&S	2020-02-14	1 year
	Universal Radio					
3	Communication	CMW500	150344	R&S	2019-12-27	1 year
	Tester					
	Universal Radio					
4	Communication	CMW500	116588	R&S	2020-01-26	1 year
	Tester					
5	LISN	ENV216	101459	R&S	2020-04-10	1 year
6	Signal Power	SMBV100A	260613	R&S	2019-12-27	1 year
7	EMI Antenna	VULB 9163	9163-483	Schwarzbeck	2021-08-21	3 years
8	EMI Antenna	3115	00167250	ETS-Lindgren	2020-05-21	3 years
9	PC	M4000e-17	M706GWXD	Lenovo	N/A	N/A
10	Printer	P1606dn	VNC3L52122	HP	N/A	N/A

Test Item	Test Software and Version	Software Vendor
Radiated Continuous Emission	EMC32 V9.01	R&S
Conducted Emission	EMC32 V8.52.0	R&S

ANNEX A: MEASUREMENT RESULTS

A.1 Radiated Emission

Reference

FCC: CFR Part 15.109(a).

A.1.1 Method of measurement

The field strength of radiated emissions from the unintentional radiator (USB mode of MS and charging mode of MS) at distances of 10 meters(for 30MHz-1GHz) and 3 meters (for above 1GHz) is tested. Tested in accordance with the procedures of ANSI C63.4 – 2014, section 8.3. The EUT was placed on a non-conductive table. The measurement antenna was placed at a

The EUT was placed on a non-conductive table. The measurement antenna was placed at a distance of 3/10 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

A.1.2 EUT Operating Mode

The MS is operating in the USB mode and charging mode. During the test MS is connected to a PC via a USB cable in the case of USB mode and is connected to a charger in the case of charging mode. The model of the PC is LENOVO M4000E-17, and the serial number of the PC is M706GWXD. The software is used to let the PC keep on copying data to MS, reading and erasing the data after copy action was finished.

Note: I/O information: Printer – USB, Mouse – PS/2, Keyboard – USB.

A.1.3 Measurement Limit

Frequency range	Field strength limit (μV/m)				
(MHz)	Quasi-peak	Quasi-peak Average			
30-88	100				
88-216	150				
216-960	200				
960-1000	500				
>1000		500	5000		

Note: the above limit is for 3 meters test distance. 10 meters' limit is got by converting.

A.1.4 Test Condition

Frequency range (MHz)	RBW/VBW	Sweep Time (s)	Detector
30-1000	120kHz (IF Bandwidth)	5	Peak/Quasi-peak
Above 1000	1MHz/1MHz	15	Peak, Average

A.1.5 Measurement Results

A "reference path loss" is established and the A_{Rpl} is the attenuation of "reference path loss". It includes the antenna factor of receive antenna and the path loss.

The measurement results are obtained as described below:

Result = $P_{Mea} + A_{Rpl} = P_{Mea} + G_A + G_{PL}$

Where

G_A: Antenna factor of receive antenna

G_{PL}: Path Loss

P_{Mea}: Measurement result on receiver.

Measurement uncertainty (worst case): U = 4.3 dB, k=2.

Measurement results for Set.11:

Charging Mode/Average detector

Fraguency	Measurement	Cable	Antenna	Receiver	Antenna
Frequency	Result	loss	Factor	Reading	Pol.
(MHz)	(dBμV/m)	(dB)	(dB/m)	(dBμV)	(H/V)
17512.100	31.0	-19.2	45.6	4.600	Н
17474.700	30.9	-19.2	41.5	8.600	Н
17480.933	30.8	-19.2	41.5	8.500	V
17425.400	30.7	-19.2	41.5	8.400	Н
17824.900	30.7	-18.5	45.6	3.600	Н
17468.467	30.7	-19.2	41.5	8.400	Н

Charging Mode/Peak detector

Fraguancy	Measurement	Cable	Antenna	Receiver	Antenna
Frequency	Result	loss	Factor	Reading	Pol.
(MHz)	(dBμV/m)	(dB)	(dB/m)	(dBμV)	(H/V)
17359.667	42.5	-19.5	41.5	20.500	Н
17463.367	42.5	-19.2	41.5	20.200	Н
17809.600	42.2	-18.5	45.6	15.100	V
17410.667	42.0	-19.2	41.5	19.700	Н
17415.767	42.0	-19.2	41.5	19.700	Н
17947.867	42.0	-17.7	45.6	14.100	Н

Measurement results for Set.12: Charging Mode/Average detector

Fraguancy	Measurement	Cable	Antenna	Receiver	Antenna
Frequency (MHz)	Result	loss	Factor	Reading	Pol.
(IVITZ)	(dBμV/m)	(dB)	(dB/m)	(dBμV)	(H/V)
17481.500	30.9	-19.2	41.5	8.600	Н
17417.467	30.9	-19.2	41.5	8.600	Н
17963.733	30.8	-17.7	45.6	2.900	V
17823.767	30.8	-18.5	45.6	3.700	Н
17401.033	30.7	-19.2	41.5	8.400	Н
17401.600	30.7	-19.2	41.5	8.400	Н

Charging Mode/Peak detector

Faceureness	Measurement	Cable	Antenna	Receiver	Antenna
Frequency	Result	loss	Factor	Reading	Pol.
(MHz)	(dBμV/m)	(dB)	(dB/m)	(dBμV)	(H/V)
17560.267	43.7	-19.2	45.6	17.300	Н
17816.967	43.4	-18.5	45.6	16.300	Н
17356.267	42.8	-19.5	41.5	20.800	V
17446.367	42.5	-19.2	41.5	20.200	Н
17813.567	42.4	-18.5	45.6	15.300	Н
17456.567	42.3	-19.2	41.5	20.000	Н

Measurement results for Set.13:

USB Mode/Average detector

Fraguency	Measurement	Cable	Antenna	Receiver	Antenna
Frequency (MHz)	Result	loss	Factor	Reading	Pol.
(IVITZ)	(dBμV/m)	(dB)	(dB/m)	(dBμV)	(H/V)
17484.900	30.8	-19.2	41.5	8.500	Н
17882.133	30.5	-18.5	45.6	3.400	Н
17901.967	30.5	-18.5	45.6	3.400	V
17459.967	30.5	-19.2	41.5	8.200	Н
17288.833	30.4	-19.5	41.5	8.400	Н
17500.200	30.4	-19.2	45.6	4.000	Н

USB Mode/Peak detector

Fraguency	Measurement	Cable	Antenna	Receiver	Antenna
Frequency	Result	loss	Factor	Reading	Pol.
(MHz)	(dBμV/m)	(dB)	(dB/m)	(dBμV)	(H/V)
3585.700	48.0	-37.4	32.1	53.300	Н
3590.233	47.9	-37.4	32.1	53.200	Н
3595.333	47.2	-37.4	32.1	52.500	V
1195.500	47.1	-41.2	24.1	64.200	Н
3589.667	47.1	-37.4	32.1	52.400	Н
1039.100	44.7	-41.7	24.1	62.300	Н

Charging Mode, Set.11

Fig A.1 Radiated Emission from 30MHz to 1GHz

Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)
42.984000	17.70	30.00	12.30	1000.0	120.000	108.0	٧	0.0
52.689000	19.38	30.00	10.62	1000.0	120.000	225.0	٧	72.0
97.355000	19.32	33.50	14.20	1000.0	120.000	100.0	V	210.0
146.312000	23.43	33.50	10.09	1000.0	120.000	197.0	٧	72.0
154.493000	23.31	33.50	10.21	1000.0	120.000	125.0	٧	90.0
184.299000	21.92	33.50	11.60	1000.0	120.000	185.0	٧	4.0

Fig A.2 Radiated Emission from 1GHz to 18GHz

Charging Mode, Set.12

Fig A.3 Radiated Emission from 30MHz to 1GHz

Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)
31.460000	10.65	30.00	19.35	1000.0	120.000	112.0	٧	120.0
55.040000	23.97	30.00	6.03	1000.0	120.000	282.0	٧	210.0
60.135000	20.28	30.00	9.72	1000.0	120.000	100.0	V	113.0
86.953000	16.49	30.00	13.51	1000.0	120.000	125.0	٧	-20.0
146.455000	19.95	33.50	13.57	1000.0	120.000	225.0	V	72.0
181.255000	22.57	33.50	10.95	1000.0	120.000	108.0	V	120.0

Fig A.4 Radiated Emission from 1GHz to 18GHz

USB Mode, Set.13

Fig A.5 Radiated Emission from 30MHz to 1GHz

Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)
41.317000	15.85	30.00	14.15	1000.0	120.000	293.0	٧	25.0
77.068000	17.68	30.00	12.32	1000.0	120.000	191.0	٧	-28.0
104.635000	12.74	33.50	20.78	1000.0	120.000	100.0	V	92.0
197.556000	9.10	33.50	24.42	1000.0	120.000	111.0	٧	150.0
396.295000	17.70	36.00	18.32	1000.0	120.000	108.0	٧	155.0
593.963000	17.18	36.00	18.84	1000.0	120.000	191.0	V	-19.0

Fig A.6 Radiated Emission from 1GHz to 18GHz

A.2 Conducted Emission

Reference

FCC: CFR Part 15.107(a).

A.2.1 Method of measurement

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits. Tested in accordance with the procedures of ANSI C63.4 – 2014, section 7.3.

A.2.2 EUT Operating Mode

The MS is operating in the USB mode and charging mode. During the test MS is connected to a PC via a USB cable in the case of USB mode and is connected to a charger in the case of charging mode. The model of the PC is LENOVO M4000E-17, and the serial number of the PC is M706GWXD. The software is used to let the PC keep on copying data to MS, reading and erasing the data after copy action was finished.

Note: I/O information: Printer – USB, Mouse – PS/2, Keyboard – USB.

A.2.3 Measurement Limit

Frequency of emission (MHz)	Conducted limit (dBµV)					
	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30 60 50						
*Decreases with the logarithm of the frequency						

A.2.4 Test Condition in charging mode

Voltage (V)	Frequency (Hz)
120	60

RBW/IF bandwidth	Sweep Time(s)				
9kHz	1				

A.2.5 Measurement Results

Measurement uncertainty: *U*= 2.9 dB, *k*=2.

Charging Mode, Set.11

Fig A.7 Conducted Emission

Final Result 1

Frequency	QuasiPeak	Meas. Time	Bandwidth	Filter	Line	Corr.	Margin	Limit	Comment
(MHz)	(dBµV)	(ms)	(kHz)			(dB)	(dB)	(dBµV)	
0.150000	45.4	2000.0	9.000	On	L1	30.7	20.6	66.0	
0.577500	37.3	2000.0	9.000	On	L1	19.8	18.7	56.0	
2.836500	27.3	2000.0	9.000	On	N	19.6	28.7	56.0	
4.987500	33.6	2000.0	9.000	On	L1	19.6	22.4	56.0	
8.853000	48.0	2000.0	9.000	On	L1	19.7	12.0	60.0	
10.554000	40.6	2000.0	9.000	On	N	19.7	19.4	60.0	

Final Result 2

Frequency	Average	Meas. Time	Bandwidth	Filter	Line	Corr.	Margin	Limit	Comment
(MHz)	(dBµV)	(ms)	(kHz)			(dB)	(dB)	(dBµV)	
0.586500	31.1	2000.0	9.000	On	L1	19.8	14.9	46.0	
0.852000	22.3	2000.0	9.000	On	L1	19.7	23.7	46.0	
2.863500	20.2	2000.0	9.000	On	L1	19.6	25.8	46.0	
4.978500	21.8	2000.0	9.000	On	L1	19.6	24.2	46.0	
8.817000	37.4	2000.0	9.000	On	L1	19.7	12.6	50.0	
10.747500	36.2	2000.0	9.000	On	L1	19.7	13.8	50.0	

Charging Mode, Set.12

Fig A.8 Conducted Emission

Final Result 1

Frequency	QuasiPeak	Meas. Time	Bandwidth	Filter	Line	Corr.	Margin	Limit	Comment
(MHz)	(dBµV)	(ms)	(kHz)			(dB)	(dB)	(dBµV)	
0.154500	46.7	2000.0	9.000	On	L1	29.7	19.1	65.8	
0.591000	35.0	2000.0	9.000	On	N	19.8	21.0	56.0	
2.026500	25.7	2000.0	9.000	On	N	19.6	30.3	56.0	
4.920000	28.4	2000.0	9.000	On	N	19.6	27.6	56.0	
9.645000	46.4	2000.0	9.000	On	L1	19.7	13.6	60.0	
10.405500	44.1	2000.0	9.000	On	L1	19.7	15.9	60.0	

Final Result 2

Frequency	Average	Meas. Time	Bandwidth	Filter	Line	Corr.	Margin	Limit	Comment
(MHz)	(dBµV)	(ms)	(kHz)			(dB)	(dB)	(dBµV)	
0.582000	29.8	2000.0	9.000	On	L1	19.8	16.2	46.0	
0.762000	20.3	2000.0	9.000	On	L1	19.8	25.7	46.0	
1.855500	20.0	2000.0	9.000	On	L1	19.6	26.0	46.0	
4.969500	19.4	2000.0	9.000	On	L1	19.6	26.6	46.0	
9.879000	36.4	2000.0	9.000	On	L1	19.7	13.6	50.0	
11.148000	35.4	2000.0	9.000	On	L1	19.7	14.6	50.0	

USB Mode, Set.13

Fig A.9 Conducted Emission

Final Result 1

Frequency	QuasiPeak	Meas. Time	Bandwidth	Filter	Line	Corr.	Margin	Limit	Comment
(MHz)	(dBµV)	(ms)	(kHz)			(dB)	(dB)	(dBµV)	
0.280500	37.0	2000.0	9.000	On	L1	19.8	23.8	60.8	
0.649500	39.0	2000.0	9.000	On	L1	19.8	17.0	56.0	
1.018500	39.5	2000.0	9.000	On	L1	19.7	16.5	56.0	
1.401000	39.2	2000.0	9.000	On	L1	19.6	16.8	56.0	
2.724000	34.5	2000.0	9.000	On	N	19.6	21.5	56.0	
4.402500	37.2	2000.0	9.000	On	N	19.6	18.8	56.0	

Final Result 2

Frequency	Average	Meas. Time	Bandwidth	Filter	Line	Corr.	Margin	Limit	Comment
(MHz)	(dBµV)	(ms)	(kHz)			(dB)	(dB)	(dBµV)	
0.271500	37.0	2000.0	9.000	On	L1	19.8	14.1	51.1	
0.451500	19.4	2000.0	9.000	On	N	19.8	27.4	46.8	
0.807000	26.0	2000.0	9.000	On	L1	19.7	20.0	46.0	
1.347000	28.6	2000.0	9.000	On	N	19.6	17.4	46.0	
2.418000	23.5	2000.0	9.000	On	L1	19.6	22.5	46.0	
4.402500	29.5	2000.0	9.000	On	N	19.6	16.5	46.0	

ANNEX B: Persons involved in this testing

Test Item	Tester
Conducted Continuous Emission	Li Jinpeng
Radiated Continuous Emission	Wang Huan, Lipengfei

END OF REPORT