Evolucija programa upotrebnom genetičkog programiranja

Kristina Petrović, Nikola Milovanović

Jun 2020

Evolucija programa upotrebnom genetičkog programiranja

Uvod

Genetičko programiranje je tehnika koja omogućava rešavanje nekog problema bez potrebe za stvaranjem programa koji rešava zadati problem.

- Način rada genetskog programiranja je upotreba evolutivnog procesa u stvaranju računarskinh programa
- Jedinke u populaciji genetičkog programa predstavljaju računarske programe
- Programi su u većini primera genetskog programiranja napisani u obliku stabla
- Novi programi se dobijaju jednostavnim manipulacijama nad već postojećim stablima

- Podacijski i funkcijski elementi rešenja
- Funkcija prilagođenosti
- Parametri genetskog programiranja
- Uslov zaustavljanja
- Građa rešenja

Odabir podatkovnih i funkcijskih elemenata

Zahtevi koje treba zadovoljiti prilikom odabira podatkovnih i funkcijskih elemenata:

- potpunost označava da je moguće izraziti rešenje problema uz pomoc odabranih podatkovnih i funkcijskih elemenata
- zatvorenost označava sposobnost funkcijskog elementa da prihvata rezult od bilo kojeg drugog funkcijskog ili podatkovnog elemenata

Funkcija prilagođenosti

- Funkcija prilagođenosti ili fitnes funkcija je najzaslužniji element u rukovođenju evolucijom i upravljanjem kretanja celokupne populacije
- Treba da nagrađuje ne samo bolja rešenja, već i sva poboljšanja pronađena tokom evolucije
- U većini primera određivanje fitnes funkcije oduzima najviše procesorksog vremena

Parametri genetskog programa

- Izbor odgovarajućih vrednosti zavisi od konkretne primene
- Postavljanje parametara postaje složenije sa povećanjem zavisnosti između njih
- Jedan od najvažnijih parametara u genetskom programiranju je veličina populacije, za netrivijalne probleme preporučuje se da ona bude veća od 1000 jedinki

6/22

Uslov zaustavljanja

- Pronalazak tačnog rešenja
- Dostizanje predefinisanog broja generacija
- Ako u zadatom broju uzastopnih generacija nije postignuto poboljšanje fitnes funkcije najbolje jedinke

7 / 22

Prednosti i nedostaci gentičkog programiranja

Prednosti upotrebe:

- Može rešavati proizvoljni optimizacioni problem
- Rešenjem se dobija algoritam rešavanja koji se može primeniti nad proizvoljnim podacima
- Jednostavnost izvođenja

Nedostaci upotrebe:

- Preuranjena konvergencija
- Spora konvergencija

Reprezentacija jedinki

- Jedinske se predstavljaju najčešće upotrebom strukture stabla
- U listovima se nalaže terminali.
- Terminale čine ulazni parametni, numeričke konstante...
- U ostalim čvorovima se nalaze funkcije
- Funkcije mogu biti logičke, aritmetičke, ražličite programske konstrukcije...

Reprezentacija jedinki

Reprezentacija jedinke upotrebom stabla:

- Genetičko programiranje opisuje proces evolucije u prirodi
- Varijacija gena je neophodna
- Bolje i prilagodljivije jedinke opstaju
- Genetički operatori:
 - Selekcija
 - Ukrštanje
 - Mutacija

Selekcija

Proces kojim se odredene jedinke biraju iz trenutne generacije za roditelje naredne generacije se naziva selekcija.

- Najčešće metode selekcije su turnirska i ruletska
- Turnirska selekcija:
 - Jedinke se izvlače slučajno
 - Poređenje se vrši preko funkcije prilagođenosti
 - Najbolje jedinke učestvuju u reprodukciji
- Ruletska selekcija:
 - Jedinke se izvlače sa verovatnoćom: $p_i = \frac{f(i)}{\sum_{i=1}^{N} f(i)}$
 - f(i) funkcija prilagođenosti za i-tu jedinku

Ukrštanje

Ukrštanje predstavlja razmenu genetskog materijala između dve jedinke populacije.

- Na slučajan način se odaberu tačke ukrštanja roditelja
- Zamene se podstabla sa korenom u tački ukrštanja

Mutacija

Mutacija predstavlja izmenu slučajno izabranog gena jedinke.

- Primenjuje se da jedinke vremenom ne bi bile slične
- Preporučljivo da verovatnoća pojave mutacije bude što manja
- Podstablo se menja slučajno generisanim podstablom

Praktični problem

Simbolička regresija

Simbolička regresija predstavlja postupak pronalaženja matematičkog izraza iz empirijskih podataka.

- Pronalazi se izraz koji se sastoji od članova primitivnog skupa
- Evaluacija izraza što približnija evaluaciji funkcije

Praktični problem

- Problem je rešen u programskog jeziku Python, pomoću metoda DEAP biblioteke
- Ciline funkcije: $x^2 5x$, $x^4 + x^3 + x^2 + x$, $x^6 2 * x^4 + x^2$, $sin(\pi/4 + x^4)$ 2*x), $sin(3*x^3-x^2/7)$, N(0,1)
- Terminali: {x, -1, 1}
- Funkcije: {+, -, *, /, sin, cos}
- Veličina populacije, broj generacija, verovatnoća mutacija i ukrštanja i broj članova turnirske selekcije u različitim eksperimentima imaju različite vrednosti

Veličina populacije	Broj generacija	p mutacije	Turnirska selekcija	Metrika greške
50	30	0,3	2 jedinke	Kvadratna

Ciljna funkcija: $x^4 + x^3 + x^2 + x$ Najbolja jedinka: $x^2 + (x + (x^2 * (1 + (1 + x^2))))$

Veličina populacije	Broj generacija	p mutacije	Turnirska selekcija	Metrika greške
300	30	0,1	2 jedinke	Kvadratna

Ciljna funkcija: $x^4 + x^3 + x^2 + x$ Nabolja jedinka: $((1 - (1 - x^2)) - (cos(-x) + 1)) + ((x * (x + 1)) * (x^2 + sin(x)))$

Veličina populacije	Broj generacija	p mutacije	Turnirska selekcija	Metrika greške
300	5	0	5 jedinki	Apsolutna

Ciljna funkcija: $sin(\pi/4 + 2 * x)$ Najbolja jedinka: sin(cos(x)/x)

Veličina populacije	Broj generacija	p mutacije	Turnirska selekcija	Metrika greške
300	30	0,3	5 jedinki	Apsolutna

Ciljna funkcija: $sin(\pi/4 + 2 * x)$

Najbolja jedinka: cos(sin(((-x+x)+1))+(-x-x))

Nastanak živoga svieta možemo poistovetiti sa generiranjem nulte generacije. Nastanak prvih jednoćelijskih organizama i njihova evolucija, preko koje se ukrštanjem i mutiranjem gena došlo do složenijih organizama savršeno odgovara ukrštanju i mutaciji unutar genetičkog programa.

Oponašanjem prirodne evolucije omogućava se rešavanje najrazličitijih problema što inspiriše nastavak istraživanja i evoluciju algoritama u tom pravcu.

Hvala na pažnji!

Literatura

John Koza, Genetic programming: A paradigm for genetically breeding populations of computer programs to solve problems, 1990

A Aho, M.S. Lam, R. Sethi, and J. Ullman. Compilers: principles, techniques and tools. Addison-Wesley Longman Publishing Co., 2006.

https://en.wikipedia.org/wiki/Genetic programming

http://poincare.matf.bg.ac.rs/kartelj/nastava/RI2019/07.Genetsko.programi ranje.pdf

https://deap.readthedocs.io/en/master/

https://www.mi.sanu.ac.rs/jkratica/