ASIDE

Copyright 2015 by William J. Ebel

Suppose x(t) is a highpass or bandpass signal with minimum frequency f_{\min}

frequency (Hz)

4000

6000

The Discrete-Time Fourier (DFT) Transform

Copyright 2015 by William J. Ebel

- The Fourier Transform involves an integral: $X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft}dt$
- The weight distribution of a signal, x(t), can be expressed in "packets" using the delta function, $x_c(t)$.

$$x_s(t) = \sum_{n=-\infty}^{\infty} Tx[nT]\delta(t-nT)$$

We conclude: $X(f) \approx X_{s}(f)$

-4000

The Discrete-Time Fourier Transform (DTFT)

$$X_{s}(f) = \int_{-\infty}^{\infty} \left[\sum_{n=-\infty}^{\infty} Tx[nT]\delta(t-nT) \right] e^{-j2\pi f t} dt$$

$$= \sum_{n=-\infty}^{\infty} Tx[nT]e^{-j2\pi f(nT)}$$

$$= T \sum_{n=-\infty}^{\infty} x[nT]e^{-j2\pi n(f/f_{s})}$$

The Discrete Fourier Transform: $X_s(k) = T \sum_{n=0}^{\infty} x[n]e^{-j2\pi nk(\Delta f/f_s)}$ $(f \leftarrow k(\Delta f))$

The Discrete Fourier Transform (DFT)

Time Domain	Frequency Domain
Periodic —	➤ Delta Functions
Delta Functions	→ Periodic

- **The Consider** x[n] for n = 0, 1, 2, ..., N-1
- Choose Δf so that: $f_s/(\Delta f) = N$
- **♦** Then the DFT becomes

$$X_s(k) = T \sum_{n=0}^{N-1} x[n] e^{-j2\pi n k(1/N)}$$
 for $k = 0, 1, 2, ..., N-1$

- **❖** Notes:
 - $X_s(k)$ is periodic
 - In order for $X_s(k)$ to be discrete, x[n] must be periodic

The DFT is more accurately described by the Discrete Fourier Series (DFS)

The MATLAB fft and ifft functions

Copyright 2015 by William J. Ebel

• The fft calculates:
$$Xf(k) = \sum_{n=1}^{N} x[n]e^{-j2\pi(n-1)(k-1)(1/N)} = \left(\frac{1}{T}\right)X_s(k-1)$$
 $k = 1, ..., N$

• The ifft calculates:
$$x1(n) = \left(\frac{1}{N}\right) \sum_{k=1}^{N} Xf(k) e^{j2\pi(n-1)(k-1)(1/N)}$$
 $n = 1, ..., N$

Time Domain	Frequency Domain
x(t) Continuous	$X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft}dt$ Continuous
x[n] = x[nT] Discrete	$X_s(f) = T \sum_{n=-\infty}^{\infty} x[n]e^{-j2\pi n(f/f_s)}$ Continuous
$x(t) = \sum_{n=-\infty}^{\infty} X_n [e^{jn2\pi f_0 t}]$ Continuous	X_n Discrete
x[n] = x[nT] Discrete	$X_s(k) = T \sum_{n=-\infty}^{\infty} x[n] e^{-j2\pi n k(\Delta f/f_s)}$ Discrete