

Optimización Biomecánica del Ciclismo Asistida por Inteligencia Artificial

Autor:

Ing. Rodrigo Iván Goñi

Director:

MSc. Fernado Corteggiano (FNRC)

Índice

1. Descripción técnica-conceptual del proyecto a realizar	5
2. Identificación y análisis de los interesados	6
3. Propósito del proyecto	7
4. Alcance del proyecto	7
5. Supuestos del proyecto	8
6. Product Backlog	9
7. Criterios de aceptación de historias de usuario	10
8. Fases de CRISP-DM	11
9. Desglose del trabajo en tareas	11
10. Diagrama de Gantt	12
11. Planificación de Sprints	13
12. Normativa y cumplimiento de datos (gobernanza)	14
13. Gestión de riesgos	15
14. Sprint Review	16
15. Sprint Retrospective	17

Registros de cambios

Revisión	Detalles de los cambios realizados	Fecha
0	Creación del documento	01 de julio de 2025

Acta de constitución del proyecto

Buenos Aires, 01 de julio de 2025

Por medio de la presente se acuerda con el Ing. Rodrigo Iván Goñi que su Trabajo Final de la Carrera de Especialización en Inteligencia Artificial se titulará "Optimización Biomecánica del Ciclismo Asistida por Inteligencia Artificial" y consistirá en y consistirá en el desarrollo de un prototipo de un sistema inteligente que, mediante la integración de la detección de pose por redes neuronales y el análisis de datos de sensores, optimice los parámetros biomecánicos de la bicicleta para maximizar la potencia, eficiencia y minimizar el riesgo de lesiones del ciclista. El trabajo tendrá un presupuesto preliminar estimado de 600 horas y un costo estimado de \$15000, con fecha de inicio el 01 de julio de 2025 y fecha de presentación pública el 15 de mayo de 2026.

Se adjunta a esta acta la planificación inicial.

Dr. Ing. Ariel Lutenberg Director posgrado FIUBA Nombre del cliente Empresa del cliente

MSc. Fernado Corteggiano Director del Trabajo Final

1. Descripción técnica-conceptual del proyecto a realizar

La biomecánica en el ciclismo es un factor fundamental para mejorar el rendimiento y prevenir lesiones, basándose en el principio de adaptar la bicicleta a las características físicas del ciclista. Un ajuste incorrecto no solo puede causar lesiones, sino también disminuir la potencia de salida hasta en un 20 % [1]. Sin embargo, el acceso a un análisis biomecánico profesional presenta barreras significativas: las soluciones actuales suelen ser costosas, de baja disponibilidad y requieren visitas a laboratorios especializados.

El desafío principal de este proyecto es encontrar el balance óptimo entre la posición que maximiza la velocidad y aquella que minimiza el esfuerzo y el riesgo de lesiones. Frecuentemente, la postura más aerodinámica no es la más sostenible a largo plazo. Para abordar este problema, se propone el desarrollo de un sistema que ajuste automáticamente los parámetros de la bicicleta. Mediante el uso de inteligencia artificial, el sistema analizará la postura del ciclista para optimizar la potencia de salida y reducir la tensión muscular, lo que exige un enfoque de optimización multiobjetivo con diversas restricciones.

Las soluciones convencionales se basan en un análisis estático y puntual, realizado en un único día y dependiente en gran medida de la experiencia del biomecánico. La recomendación de repetir el ajuste anualmente, sumada a su alto costo y escasa disponibilidad, provoca que la mayoría de los ciclistas no mantengan una configuración óptima en sus bicicletas.

El valor fundamental de este sistema radica en ofrecer al ciclista la capacidad de realizar autoajustes frecuentes, de forma autónoma y a un costo significativamente menor que las alternativas tradicionales. Esto democratiza el acceso a una biomecánica de precisión, permitiendo una mejora continua del rendimiento y la prevención de lesiones.

Para lograr estos objetivos, el sistema propuesto se estructura en una serie de módulos interconectados, como se ilustra en el diagrama de bloques de la Figura 1 a continuación:

Figura 1. Diagrama en bloques del sistema.

- Entrada de datos: Este módulo es el encargado de recolectar datos de las distintas fuentes de información. Se compone de una fuente de video, sensores de rendimiento y los datos antropomórficos del ciclista.
- Procesamiento y análisis: Este módulo toma los datos de entrada y los procesa. Con la ayuda de una red neuronal de detección de pose, añade los datos de posición del ciclista al sistema. Luego, en un módulo de preprocesamiento, los datos se filtran, sincronizan, limpian y completan.
- Modelado y Simulación: Con ayuda de un modelo físico y aerodinámico, se predice cómo impactarán los cambios de los parámetros de la bicicleta en el rendimiento.
- Optimización Multi-Objetivo: Con un algoritmo genético, se buscará maximizar la performance del objetivo en un rango adecuado de posición, tratando de minimizar la resistencia aerodinámica y teniendo en cuenta la morfología y el nivel del ciclista.
- Salida y Retroalimentación: Con los datos de la optimización, se generará un reporte de recomendaciones y posibles configuraciones de la bicicleta. Una vez finalizado el reporte, se recomienda a justar los parámetros para volver a iniciar el análisis.

2. Identificación y análisis de los interesados

Rol	Nombre y Apellido	Organización	Puesto
Auspiciante	-	-	-
Cliente	Ciclistas de distintos	-	-
	tipos		
Impulsor	-	-	-
Responsable	Ing. Rodrigo Iván Go-	FIUBA	Alumno
	ñi		
Colaboradores	-	-	-
Orientador	MSc. Fernado Corteg-	FNRC	Director del Trabajo Final
	giano		
Equipo	-	-	-
Opositores	-	-	-
Usuario final	-	-	-

- Cliente: Ciclistas de distintos tipos que buscan optimizar la comodidad o el rendimiento de su bicicleta a través de ajustes personalizados.
- Responsable:Ing. Rodrigo Iván Goñies el líder del proyecto de optimización biomecánica asistida por IA, originado por una necesidad personal de ajustar su bicicleta. Es ingeniero en Mecatrónica.
- Orientador: MSc. Fernado Corteggiano, Ingeniero Electricista y Magister en Ciencias de la Ingeniería de la UNRC, es director y profesor adjunto, ya ha dirigido diversas tesis, va a aportar su experiencia en electrónica, telecomunicaciones y software, para definir el alcance y requerimientos del sistema.

3. Propósito del proyecto

El propósito de este proyecto es desarrollar un sistema inteligente y personalizado que, mediante la integración de la detección de pose por redes neuronales y el análisis exhaustivo de datos provenientes de sensores de ciclismo, optimice los parámetros biomecánicos de la bicicleta. Esto incluye la altura y posición del sillín, la longitud de las bielas, la altura y ancho del manillar. El objetivo principal es maximizar la potencia y eficiencia del pedaleo, minimizar el riesgo de lesiones y equilibrar estos factores con la aerodinámica. El objetivo fundamental de este sistema radica en ofrecer al ciclista la capacidad de realizar autoajustes frecuentes, de forma autónoma y a un costo significativamente menor que las alternativas tradicionales, democratizando el acceso a una biomecánica de precisión y permitiendo una mejora continua del rendimiento y la prevención de lesiones.

4. Alcance del proyecto

El presente proyecto incluye el desarrollo de un sistema inteligente y personalizado para la optimización biomecánica del ciclismo, asistida por inteligencia artificial.

El proyecto incluye:

- Desarrollo de un sistema de optimización personalizado: Proporcionará recomendaciones para el ajuste biomecánico de la bicicleta, buscando maximizar el rendimiento, medido por la potencia y velocidad, la eficiencia y prevenir lesiones.
- Ciclo continuo de análisis y retroalimentación: El sistema funcionará a través de las siguientes etapas:

• Captura de Datos:

- o Calibración de la cámara.
- o Grabación de videos del ciclista pedaleando.
- Recopilación simultánea de datos de rendimiento mediante sensores de potencia, cadencia y velocidad.

• Análisis y Modelado:

- Análisis de Movimiento: Uso de red neuronal de estimación de pose para extraer coordenadas 2D de puntos clave del cuerpo del ciclista desde los videos.
- Análisis Cinemático: Estudio de ángulos de articulaciones, fluidez del pedaleo y variabilidad del movimiento.
- o Modelo Biomecánico: Creación de un modelo digital del sistema ciclista y bicicleta para simular el impacto de los ajustes en la potencia y el riesgo de lesión.
- Optimización Integral: Un algoritmo de optimización analizará combinaciones para lograr el equilibrio perfecto entre:
 - o Ajuste Biomecánico: Determinación de la configuración óptima de componentes.
 - o Aerodinámica: Evaluación de la postura del ciclista para la resistencia del aire, buscando la posición más aerodinámica y sostenible.
 - o Prevención de Lesiones: Penalización de configuraciones que aumenten el estrés en articulaciones.

• Recomendación y Re-evaluación: Generación de un reporte con recomendaciones claras para ajustar la bicicleta, permitiendo nuevas sesiones de captura de datos para refinar el ajuste.

• Adquisición y uso de datos:

- Videos de ciclismo grabados desde el lateral y el frontal.
- Datos de sensores sincronizados; potencia, cadencia y velocidad.
- Datos antropométricos del ciclista y configuración actual de la bicicleta.
- Utilización de recursos propios y entorno controlado para pruebas sistemáticas y sincronización precisa.

El presente proyecto no incluye:

- El desarrollo de hardware personalizado para la captura de datos, más allá de la integración con sensores comerciales existentes.
- El entrenamiento de la red neuronal de detección de pose desde cero. Se espera utilizar o adaptar redes neuronales preexistentes.
- La integración con todos los posibles modelos de bicicletas y componentes del mercado.
- La simulación de factores externos complejos como condiciones climáticas extremas o interacciones con el tráfico.

5. Supuestos del proyecto

Para el desarrollo del presente proyecto se supone que:

- Se dispondrá de un rodillo de entrenamiento inteligente y sus respectivos sensores (potenciómetro, cadencia, velocidad) para la captura de datos en un entorno controlado y la realización de pruebas sistemáticas.
- Se tendrá acceso a una cámara de video con capacidad para grabar en alta resolución.
- La red neuronal de detección de pose (como Keypoint R-CNN o MediaPipe) a utilizar será lo suficientemente robusta y precisa para extraer los puntos clave del cuerpo del ciclista necesarios para el análisis biomecánico, y que su rendimiento será adecuado para el procesamiento de video.
- Existirá suficiente disponibilidad de datos propios y de la comunidad.
- El entorno de desarrollo y las herramientas de software necesarias son adecuadas.
- Se contará con el tiempo y los recursos humanos necesarios para la investigación, desarrollo, implementación y realización de pruebas del sistema, incluyendo la mano de obra propia para la ejecución del proyecto.
- Se contará con la revisión y retroalimentación constante del director del proyecto, MSc. Fernado Corteggiano, para asegurar la correcta orientación técnica y académica.

- Las condiciones de iluminación durante la captura de video serán adecuadas para permitir una detección de pose precisa.
- El proyecto se centrará en optimizaciones biomecánicas para el ciclismo en carretera o interior en rodillo.
- Las variaciones individuales en la anatomía y flexibilidad de los ciclistas podrán ser adecuadamente modeladas y tenidas en cuenta por el algoritmo de optimización.

6. Product Backlog

El Product Backlog debe organizarse en cuatro *épicas* fundamentales del proyecto. Cada épica debe contener al menos dos historias de usuario que describan funcionalidades clave.

El Product Backlog debe permitir interpretar cómo será el proyecto y su funcionalidad. Se deben indicar claramente las prioridades entre las historias de usuario y si hay alguna opcional.

Las historias de usuario deben ser breves, claras y medibles, expresando el rol, la necesidad y el propósito de cada funcionalidad. También deben tener una prioridad definida para facilitar la planificación de los sprints.

Cada historia de usuario debe incluir una ponderación en *Story Points*, un número entero que representa el tamaño relativo de la historia. El criterio para calcular los Story Points debe indicarse explícitamente.

Las historias deben seguir el formato: "Como [rol], quiero [tal cosa] para [tal otra cosa]".

Las épicas deben estructurarse de la siguiente forma:

- Épica 1
 - HU1
 - HU2
- Épica 2
 - HU3
 - HU4
- Épica 3
 - HU5
 - HU6
- Épica 4
 - HU7
 - HU8

Reglas para definir historias de usuario:

• Ser concisas y claras.

- Expresarlas en términos cuantificables y medibles.
- No dejar margen para interpretaciones ambiguas.
- Indicar claramente su prioridad y si son opcionales.
- Considerar regulaciones y normas vigentes.

7. Criterios de aceptación de historias de usuario

Los criterios de aceptación deben establecerse para cada historia de usuario, asegurando que se cumplan las condiciones necesarias para que la funcionalidad sea validada correctamente.

Cada historia debe tener criterios medibles, específicos y verificables. Deben permitir validar que se cumple con las necesidades del usuario.

Se estructuran de forma análoga a las épicas del backlog:

• Épica 1

- Criterios de aceptación HU1
- Criterios de aceptación HU2

Épica 2

- Criterios de aceptación HU3
- Criterios de aceptación HU4

Épica 3

- Criterios de aceptación HU5
- Criterios de aceptación HU6

■ Épica 4

- Criterios de aceptación HU7
- Criterios de aceptación HU8

Reglas para definir criterios de aceptación:

- Medibles y verificables.
- Especificar cuándo una historia se considera completada.
- Incluir condiciones específicas.
- No ambiguos.
- Probables de testear funcional o técnicamente.
- Mínimo 3 criterios por HU.

8. Fases de CRISP-DM

- 1. Comprensión del negocio: objetivo, valor agregado de IA, métricas de éxito.
- 2. Comprensión de los datos: tipo, origen, cantidad, calidad.
- 3. Preparación de los datos: características clave, transformaciones necesarias.
- 4. Modelado: tipo de problema, algoritmos posibles.
- 5. Evaluación del modelo: métricas de rendimiento.
- 6. Despliegue del modelo (opcional): tipo de despliegue y herramientas.

9. Desglose del trabajo en tareas

A partir de cada HU, descomponer en tareas concretas, técnicas y medibles:

- Duración estimada: entre 2 y 8 h. Evitar tareas genéricas.
- Si una tarea excede 8 h, dividirla.
- Indicar prioridad relativa (Alta, Media, Baja).

Historia de usuario	Tarea técnica	Estimación	Prioridad
HU1	Tarea 1 HU1	6 h	Alta
HU1	Tarea 2 HU1	8 h	Alta
HU2	Tarea 1 HU2	5 h	Media
HU2	Tarea 2 HU2	6 h	Alta
			•••

Criterios para estimar tiempos:

- Considerar dificultad, complejidad técnica y grado de incertidumbre de cada tarea.
- Evitar subestimar el esfuerzo requerido. Si una tarea supera las 8 h, dividirla en subtareas.
- Basar la estimación en la experiencia propia o en referencias de tareas similares.

Sobre la prioridad:

- Asignar una prioridad relativa (Alta, Media o Baja) según la relevancia funcional de la tarea y su impacto en los entregables.
- Priorizar tareas que estén vinculadas a criterios de aceptación de las HU o que sean necesarias para desbloquear otras.
- Incluir tareas opcionales solo si están bien justificadas.

Recomendaciones generales:

- Incluir al menos dos tareas por historia de usuario.
- El total estimado debe ser coherente con la planificación global de unas 600 horas (la cantidad de horas sugeridas para un trabajo de posgrado).
- Este desglose se utilizará en las secciones siguientes para armar el diagrama de Gantt (sección 10) y la planificación de sprints (sección 11).
- Recordar que la calidad del desglose impacta directamente en la calidad de la planificación del proyecto.

10. Diagrama de Gantt

El diagrama de Gantt debe representar de forma visual y cronológica todas las tareas del proyecto, abarcando aproximadamente 600 horas totales, de las cuales entre 480 y 500 deben destinarse a tareas técnicas (desarrollo, pruebas, implementación) y entre 100 y 120 a tareas no técnicas (planificación, documentación, escritura de memoria y preparación de la defensa).

Consignas y recomendaciones:

- Incluir tanto tareas técnicas derivadas de las HU como tareas no técnicas generales del proyecto.
- El eje vertical debe listar las tareas y el eje horizontal representar el tiempo en semanas o fechas.
- Utilizar colores diferenciados para distinguir tareas técnicas y no técnicas.
- Las tareas deben estar ordenadas cronológicamente y reflejar todo el ciclo del proyecto.
- Iniciar con la planificación del proyecto (coincidente con el inicio de Gestión de Proyectos)
 y finalizar con la defensa, próxima a la fecha de cierre del trabajo.
- Configurar el software para mostrar los códigos del desglose de tareas y los nombres junto a cada barra.
- Asegurarse de que la fecha final coincida con la del Acta Constitutiva.
- Evitar tareas genéricas o ambiguas y asegurar una secuencia lógica y realista.
- Las fechas pueden ser aproximadas; ajustar el ancho del diagrama según el texto y el parámetro x unit. Para mejorar la apariencia del diagrama, es necesario ajustar este valor y, quizás, acortar los nombres de las tareas.

Herramientas sugeridas:

- Planner, GanttProject, Trello + plugins https://blog.trello.com/es/diagrama-de-gantt-de-un-proyecto
- Creately (colaborativa online) https://creately.com/diagram/example/ieb3p3ml/LaTeX
- LaTeX con pgfgantt: http://ctan.dcc.uchile.cl/graphics/pgf/contrib/pgfgantt/pgfgantt.pdf

Incluir una imagen legible del diagrama de Gantt. Si es muy ancho, presentar primero la tabla y luego el gráfico de barras.

11. Planificación de Sprints

Organizar las tareas técnicas del proyecto en sprints de trabajo que permitan distribuir de forma equilibrada la carga horaria total, estimada en 600 horas.

Consigna:

- Completar una tabla que relacione sprints con HU y tareas técnicas correspondientes.
- Incluir estimación en horas para cada tarea.
- Indicar responsable y porcentaje de avance estimado o completado.
- Contemplar también tareas de planificación, documentación, redacción de memoria y preparación de defensa.

Conceptos clave:

- Una épica es una unidad funcional amplia; una historia de usuario es una funcionalidad concreta; un sprint es una unidad de tiempo donde se ejecutan tareas.
- Las tareas son el nivel más desagregado: permiten estimar tiempos, asignar responsables y monitorear progreso.

Duración sugerida:

- Para un proyecto de 600 h, se recomienda planificar entre 10 y 12 sprints de aproximadamente 2 semanas cada uno.
- Asignar entre 45 y 50 horas efectivas por sprint a tareas técnicas.
- Reservar 100 a 120 h para actividades no técnicas (planificación, escritura, reuniones, defensa).

Importante:

- En proyectos individuales, el responsable suele ser el propio autor.
- Aun así, desagregar tareas facilita el seguimiento y mejora continua.

Conversión opcional de Story Points a horas:

- 1 SP \approx 2 h como referencia flexible.
- Tener en cuenta aproximaciones tipo Fibonacci.

Cuadro 1. Formato sugerido

Sprint	HU o fase	Tarea	Horas / SP	Responsable	% Completado
Sprint 0	Planificación	Definir alcance y	10 h	Alumno	100 %
		cronograma			
Sprint 0	Planificación	Reunión con tu-	5 h	Alumno	50 %
		tor/cliente			
Sprint 0	Planificación	Ajuste de entrega-	6 h	Alumno	25%
		bles			
Sprint 1	HU1	Tarea 1 HU1	6 h / 3 SP	Alumno	0 %
Sprint 1	HU1	Tarea 2 HU1	10 h / 5 SP	Alumno	0 %
Sprint 2	HU2	Tarea 1 HU2	7 h / 5 SP	Alumno	0 %
	• • • •				
Sprint 5	Escritura	Redacción memo-	50 h / 34 SP	Alumno	0 %
		ria			
Sprint 6	Defensa	Preparación expo-	20 h / 13 SP	Alumno	0 %
		sición			

Recomendaciones:

- Verificar que la carga horaria por sprint sea equilibrada.
- Usar sprints de 1 a 3 semanas, acordes al cronograma general.
- Actualizar el % completado durante el seguimiento del proyecto.
- Considerar un sprint final exclusivo para pruebas, revisión y ajustes antes de la defensa.

12. Normativa y cumplimiento de datos (gobernanza)

En esta sección se debe analizar si los datos utilizados en el proyecto están sujetos a normativas de protección de datos y privacidad, y en qué condiciones se pueden emplear.

Aspectos a considerar:

- Evaluar si los datos están regulados por normativas como GDPR, Ley 25.326 de Protección de Datos Personales en Argentina, HIPAA u otras según jurisdicción y temática.
- Determinar si el uso de los datos requiere consentimiento explícito de los usuarios involucrados.
- Indicar si existen restricciones legales, técnicas o contractuales sobre el uso, compartición o publicación de los datos.
- Aclarar si los datos provienen de fuentes licenciadas, de acceso público o bajo algún tipo de autorización especial.
- Analizar la viabilidad del proyecto desde el punto de vista legal y ético, considerando la gobernanza de los datos.

Este análisis es clave para garantizar el cumplimiento normativo y evitar conflictos legales durante el desarrollo y publicación del proyecto.

13. Gestión de riesgos

a) Identificación de los riesgos (al menos cinco) y estimación de sus consecuencias:

Riesgo 1: detallar el riesgo (riesgo es algo que si ocurre altera los planes previstos de forma negativa)

- Severidad (S): mientras más severo, más alto es el número (usar números del 1 al 10). Justificar el motivo por el cual se asigna determinado número de severidad (S).
- Probabilidad de ocurrencia (O): mientras más probable, más alto es el número (usar del 1 al 10).
 Justificar el motivo por el cual se asigna determinado número de (O).

Riesgo 2:

- Severidad (S): X. Justificación...
- Ocurrencia (O): Y. Justificación...

Riesgo 3:

- Severidad (S): X. Justificación...
- Ocurrencia (O): Y. Justificación...
- b) Tabla de gestión de riesgos: (El RPN se calcula como RPN=SxO)

Riesgo	S	О	RPN	S*	O*	RPN*

Criterio adoptado:

Se tomarán medidas de mitigación en los riesgos cuyos números de RPN sean mayores a...

Nota: los valores marcados con (*) en la tabla corresponden luego de haber aplicado la mitigación.

c) Plan de mitigación de los riesgos que originalmente excedían el RPN máximo establecido:

Riesgo 1: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación). Nueva asignación de S y O, con su respectiva justificación:

- Severidad (S*): mientras más severo, más alto es el número (usar números del 1 al 10). Justificar el motivo por el cual se asigna determinado número de severidad (S).
- Probabilidad de ocurrencia (O*): mientras más probable, más alto es el número (usar del 1 al 10). Justificar el motivo por el cual se asigna determinado número de (O).

Riesgo 2: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación).

Riesgo 3: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación).

14. Sprint Review

La revisión de sprint (Sprint Review) es una práctica fundamental en metodologías ágiles. Consiste en revisar y evaluar lo que se ha completado al finalizar un sprint. En esta instancia, se presentan los avances y se verifica si las funcionalidades cumplen con los criterios de aceptación establecidos. También se identifican entregables parciales y se consideran ajustes si es necesario.

Aunque el proyecto aún se encuentre en etapa de planificación, esta sección permite proyectar cómo se evaluarán las funcionalidades más importantes del backlog. Esta mirada anticipada favorece la planificación enfocada en valor y permite reflexionar sobre posibles obstáculos.

Objetivo: anticipar cómo se evaluará el avance del proyecto a medida que se desarrollen las funcionalidades, utilizando como base al menos cuatro historias de usuario del *Product Backloq*.

Seleccionar al menos 4 HU del Product Backlog. Para cada una, completar la siguiente tabla de revisión proyectada:

Formato sugerido:

HU seleccionada	Tareas asociadas	Entregable esperado	¿Cómo sabrás que está cumplida?	Observaciones o riesgos	
HU1	Tarea 1	Módulo funcional	Cumple criterios de aceptación	Falta validar con	
	Tarea 2		definidos	el tutor	
HU3	Tarea 1	Reporte generado	Exportación	Requiere datos reales	
	Tarea 2	reporte generado	disponible y clara		
HU5	Tarea 1	Panel de gestión	Roles diferenciados	Riesgo en integración	
1103	Tarea 2	Tanei de gestion	operativos		
HU7	Tarea 1	Informe	PDF con gráficos	Puede faltar	
	Tarea 2	trimestral	y evolución	tiempo para ajustes	

15. Sprint Retrospective

La retrospectiva de sprint es una práctica orientada a la mejora continua. Al finalizar un sprint, el equipo (o el alumno, si trabaja de forma individual) reflexiona sobre lo que funcionó bien, lo que puede mejorarse y qué acciones concretas pueden implementarse para trabajar mejor en el futuro.

Durante la cursada se propuso el uso de la **Estrella de la Retrospectiva**, que organiza la reflexión en torno a cinco ejes:

- ¿Qué hacer más?
- ¿Qué hacer menos?
- ¿Qué mantener?
- ¿Qué empezar a hacer?
- ¿Qué dejar de hacer?

Aun en una etapa temprana, esta herramienta permite que el alumno planifique su forma de trabajar, identifique anticipadamente posibles dificultades y diseñe estrategias de organización personal.

Objetivo: reflexionar sobre las condiciones iniciales del proyecto, identificando fortalezas, posibles dificultades y estrategias de mejora, incluso antes del inicio del desarrollo.

Completar la siguiente tabla tomando como referencia los cinco ejes de la Estrella de la Retrospectiva (*Starfish* o estrella de mar). Esta instancia te ayudará a definir buenas prácticas desde el inicio y prepararte para enfrentar el trabajo de forma organizada y flexible. Se deberá completar la tabla al menos para 3 sprints técnicos y 1 no técnico.

Formato sugerido:

Sprint tipo y N°	¿Qué hacer más?	¿Qué hacer menos?	¿Qué mantener?	¿Qué empezar a hacer?	¿Qué dejar de hacer?
Sprint técnico - 1	Validaciones continuas con el alumno	Cambios sin versión registrada	Pruebas con datos simulados	Documentar cambios propuestos	Ajustes sin análisis de impacto
Sprint técnico - 2	Verificar configuraciones en múltiples escenarios	Modificar parámetros sin guardar historial	Perfiles reutilizables	Usar logs para configuración	Repetir pruebas manuales innecesarias
Sprint técnico - 8	Comparar correlaciones con casos previos	Cambiar parámetros sin justificar	Revisión cruzada de métricas	Anotar configuraciones usadas	Trabajar sin respaldo de datos
Sprint no técnico - 12 (por ej.: "Defensa")	Ensayos orales con feedback	Cambiar contenidos en la memoria	Material visual claro	Dividir la presentación por bloques	Agregar gráficos difíciles de explicar