Virtual Memory

Reading: OS Concepts: Chapter 10

Contents

Introduction
Demand
Replacement
Allocation

Replacement
Allocation

Contents

Introduction
Demand
Peplacement
Allocation

al Memory	What is virtual memory?
Virtua	■ Complete separation of logical and physical memory
sic 2,	₽
, Top	ℰ
ment	ℰ
nage	@
Storage Management, Topic 2, Virtual Memory	■ Virtual memory can be implemented via:

Storage Management, Topic 2, Virtual Memory	Performance EAT = $(1-p)$ * EAT _{paging} + p * [p is the Page Fault Rate p = 0.0 implies p = 1.0 implies	
emer	■ EAT _{paging} :	
rage Manage	■ Page Fault Service Time:	
Sto	■ Example	
	\blacksquare m = 100ns	
	\bullet $\varepsilon = 10 \text{ns}$	
	■ n = 2	
	p = 0.000001	$EAT_{paging} = \underline{\hspace{1cm}}$
6	■ Page Fault Service Time = 25ms	EAT =

al Memory	FIFO Page Replacement
Virtu	reference string
ic 2,	7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1
Storage Management, Topic 2, Virtual Memory	
Storage Man	page frames Simple concept:
	■ Belady's Anomaly:
9	

irtual Memory	Optimal Page Replacement
2,	reference string
opic 2	7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1
Storage Management, Topic 2, Virtual Memory	page frames
]
10	

Storage Management, Topic 2, Virtual Memory	LR	RU Implementations
/irtual	■ Co	unter implementation
oic 2, V	•	
nt, Top	•	
lageme		
ge Man		
Storag	■ Sta	ck implementation
	•	
11		

Storage Management, Topic 2, Virtual Memory	LRU Approximations
irtual	 Additional Reference bits algorithm
2, V ₁	-
Fopic	-
nent,	
nagen	-
Mar Mar	
torage	■ Second chance algorithm
S)	
	_
12	
12	

Implementing Working Set It is too complex to implement the working set model as we would need to keep incredibly long lists of previous page references for each process. Instead we can approximate it with Example: How accurate is the approximation?

Windows NT Uses Demand paging with clustering Processes are assigned Working set minimum & maximum Minimum: Maximum: When free memory falls below a threshold Windows NT Uses Demand paging with clustering When free assigned Working set minimum & maximum Minimum: When free memory falls below a threshold