Answer Sheet 3

$$1. \qquad a) \ \frac{dy}{dx} = 3$$

$$b) \frac{dy}{dx} = 2x + 2$$

c)
$$\frac{dy}{dx} = \frac{4}{\left(1 + 2x\right)^2}$$

$$d) \frac{dy}{dx} = \frac{2x}{\sqrt{1 + 2x^2}}$$

e)
$$\frac{dy}{dx} = 3x^2 + 2x - 1$$

a)
$$\frac{dy}{dx} = 3$$
 b) $\frac{dy}{dx} = 2x + 2$ c) $\frac{dy}{dx} = \frac{4}{(1+2x)^2}$ d) $\frac{dy}{dx} = \frac{2x}{\sqrt{1+2x^2}}$ e) $\frac{dy}{dx} = 3x^2 + 2x - 1$ f) $\frac{dy}{dx} = \frac{x}{\sqrt{x^2 - 1}}$

2.
$$y = x - 2$$
, $y = 3 - x$

a) tends to zero. From above for positive infinity, from below for 3. negative infinity.

b)
$$x = 0, \quad x = 3/2$$

As shown by the sign of the 2nd derivative, the first is a minima and the c) second a maxima.

4. a) tends to zero. From above for positive infinity, from below for negative infinity.

b)
$$x = -1 - \sqrt{2}$$
, $x = -1 + \sqrt{2}$

c) As shown by the sign of the 2nd derivative, the first is a minima and the second a maxima.

5.
$$-2x(1+x^2)^{-2}$$
, $2(3x^2-1)(1+x^2)^{-3}$, $24x(1-x^2)(1+x^2)^{-4}$

6.
$$y = -x$$
, $y = 26x + 54$