主成分分析 PCA(Principal Component Analysis)

数据压缩2D-1D

Reduce data from

$$\begin{array}{ccc} x^{(1)} \in \mathbb{R}^2 & \to z^{(1)} \in \mathbb{R} \\ x^{(2)} \in \mathbb{R}^2 & \to z^{(2)} \in \mathbb{R} \\ & \vdots \\ x^{(m)} \in \mathbb{R}^2 & \to z^{(m)} \in \mathbb{R} \end{array}$$

数据压缩3D-2D

数据可视化

						Mean	
		Per capita			Poverty	household	
	GDP	GDP	Human		Index	income	
	(trillions of	(thousands	Develop-	Life	(Gini as	(thousands	
Country	US\$)	of intl. \$)	ment Index	expectancy	percentage)	of US\$)	
Canada	1.577	39.17	0.908	80.7	32.6	67.293	
China	5.878	7.54	0.687	73	46.9	10.22	
India	1.632	3.41	0.547	64.7	36.8	0.735	
Russia	1.48	19.84	0.755	65.5	39.9	0.72	•••
Singapore	0.223	56.69	0.866	80	42.5	67.1	
USA	14.527	46.86	0.91	78.3	40.8	84.3	
•••	•••	•••	•••	•••	•••	•••	

数据可视化

Country		
Canada	1.6	1.2
China	1.7	0.3
India	1.6	0.2
Russia	1.4	0.5
Singapore	0.5	1.7
USA	2	1.5
•••	•••	•••

数据可视化

Python机器学习-覃秉丰

找到数据最重要的方向(方差最大的方向)

Python机器学习-覃秉丰

第一个主成分就是从数据差异性最大(方差最大)的方向提取出来的,第二个主成分则来自于数据差异性次大的方向,并且要与第一个主成分方向正交。

Python机器学习-覃秉丰

PCA不是线性回归

PCA算法流程

- 1.数据预处理:中心化 $X \bar{X}$ 。
- 2.求样本的协方差矩阵 $\frac{1}{m}XX^{T}$ 。
- 3.对协方 $\frac{1}{m}XX^T$ 矩阵做特征值分解。
- 4.选出最大的k个特征值对应的k个特征向量。
- 5.将原始数据投影到选取的特征向量上。
- 6.输出投影后的数据集。

方差描述一个数据的离散程度:

$$var(X) = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(X_i - \overline{X})}{n-1}$$

协方差描述两个数据的相关性,接近1就是正相关,接近-1就是负相关,接近0就是不相关。

$$cov(X,Y) = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{n-1}$$

协方差矩阵

协方差只能处理二维问题,那维数多了自然需要计算多个协方差,我们可以使用矩阵来组织这些数据。 协方差矩阵是一个对称的矩阵,而且对角线是各个维度的方差。

二维的例子:
$$C = \begin{pmatrix} cov(x,x) & cov(x,y) \\ cov(y,x) & cov(y,y) \end{pmatrix} = \begin{pmatrix} \frac{1}{m} \sum_{i}^{m} x_{i}^{2} & \frac{1}{m} \sum_{i}^{m} x_{i} y_{i} \\ \frac{1}{m} \sum_{i}^{m} y_{i} x_{i} & \frac{1}{m} \sum_{i}^{m} y_{i}^{2} \end{pmatrix}$$

三维的例子:
$$C = \begin{pmatrix} cov(x,x) & cov(x,y) & cov(x,z) \\ cov(y,x) & cov(y,y) & cov(y,z) \\ cov(z,x) & cov(z,y) & cov(z,z) \end{pmatrix}$$

协方差矩阵

n个特征,m个样本。n行m列

$$X = \begin{bmatrix} X_1 \\ \vdots \\ X_n \end{bmatrix} = \begin{bmatrix} x_1^{(1)} & \dots & x_1^{(m)} \\ \vdots & \dots & \vdots \\ x_n^{(1)} & \dots & x_n^{(m)} \end{bmatrix}$$

n行m列乘m行n列->n行n列

$$XX^T = \Sigma = \begin{bmatrix} \Sigma_{11} & \dots & \Sigma_{1n} \\ \vdots & \dots & \vdots \\ \Sigma_{n1} & \dots & \Sigma_{nn} \end{bmatrix}$$

$$C = \begin{pmatrix} cov(x,x) & cov(x,y) \\ cov(y,x) & cov(y,y) \end{pmatrix} = \begin{pmatrix} \frac{1}{m} \sum_{i}^{m} x_i^2 & \frac{1}{m} \sum_{i}^{m} x_i y_i \\ \frac{1}{m} \sum_{i}^{m} y_i x_i & \frac{1}{m} \sum_{i}^{m} y_i^2 \end{pmatrix}$$

特征值与特征向量

通过数据集的协方差矩阵及其特征值分析,我们可以得到协方差矩阵的特征向量和特征值。我们需要保留k个维度的特征就选取最大的k个特征值。

PCA-简单例子

Python机器学习-覃秉丰

手写数字识别降维可视化

Python机器学习-覃秉丰

sklearn-手写数字降维预测

「天汪 AI MOOC 官方公众号」

这里持续分享 Python、机器学习和深度学习的 各种资源干货及 有趣又实用的硬知识

M AI MOOC

AI MOOC创始人
网易计算机视觉微专业核心讲师
机器学习、深度学习多年开发经验

受邀为中国移动、国家电网、华夏银行、 太平洋保险等世界五百强企业总部做AI内训

