Complementing LLL Lattice Reduction Algorithm with BIROT to find Shortest Vectors in NTRU Cryptosystem

Tran Nguyen Bao Long, Liu Renhang

The NTRUEncrypt

- A form of Public Key Cryptography (Figure 1):
- o Key generator: outputs a public key and a private key with given security parameters (N, p, q, d)
- o Encryption algorithm: takes a public key and a message and output a ciphertext
- o Decryption algorithm: takes a private key and a ciphertext, and either output the same message (if successful)
- First cryptographic construction using Quotients of Polynomial Rings which is most usefully interpreted in terms of algebraically
- Integer N and two moduli p and q gives convolution

Hynomial rings:
$$R = \frac{\mathbb{Z}[x]}{(x^N-1)}, \qquad R_p = \frac{(\mathbb{Z}/p\mathbb{Z})[x]}{(x^N-1)}, \qquad R_q = \frac{(\mathbb{Z}/q\mathbb{Z})}{(x^N-1)}$$

- A polynomial $a(x) \in R$ can be naturally mapped to R_n and R_n by reducing its coefficients modulo p or q. In other directions, we use center-lifts to move elements from R_p or R_q to R.
- \circ Polynomials in $\mathcal{T}(d_1, d_2)$ are called ternary polynomials:

$$T(d_1, d_2) = \begin{cases} a(x) \text{ has } d_1 \text{ coefficients equal to 1,} \\ a(x) \in R: & a(x) \text{ has } d_2 \text{ coefficients equal to } -1, \\ a(x) \text{ has all other coefficients equal to 0} \end{cases}$$

SVPs and NTRU Lattices

- Basic Lattices Definitions (Figure 2):
- The lattice L generated by n linearly independent vectors $v_1,\ldots,v_n\in\mathbb{R}^m$ is the set of linear combinations of these vectors with integer coefficients:
 - $L = \{a_1v_1 + a_2v_2 + \dots + a_nv_n : a_1, a_2, \dots, a_n \in \mathbb{Z}\}.$
- Integral lattice is one whose vectors have integer coordinates • The basis for L is not unique and basis whose vectors are more
- orthogonal will have a Hadamard ratio closer to 1:

$$0 < \mathcal{H}(\mathcal{B}) = \left(\frac{\det L}{\|v_1\| \|v_2\| \cdots \|v_n\|}\right)^{1/n} \le 1$$

- Shortest Vector Problem (SVP):
- Find a shortest nonzero vector in a lattice L (min L2 norm)
- The Gaussian expected shortest length for L of dimension n:

$$||v_{\text{shortest}}|| \approx \sigma(L) = \sqrt{\frac{n}{2\pi e}} (\det L)^{1/n}$$

- o Becomes more computationally expensive as the dimension of
- \circ The shortest vector in a basis with $\mathcal{H}(\mathcal{B}) \approx 1$ (a "good" basis) will be the solution for SVP.
- The NTRU Lattice:
- \circ Reformat public key $h(x) = h_0 + h_1 x + \cdots + h_{N-1} x^{N-1}$ into a 2N-dimensional lattice spanned by the rows of

 \circ We have $f(x)\star h(x)\equiv g(x)\pmod{q}$ so we can find $u(x)\in R$ such that $f(x) \star h(x) = g(x) + qu(x)$ then the private key vector (f,g) will be inside the lattice as it can be written as a linear combination of the rows of $M_h^{\rm NTRU}$:

$$(f, -u)M_h^{ ext{NTRU}} = (f, g)$$

 \circ (f,g)will be one of the shortest vectors in the lattice.

LLL Lattice Reduction algorithm

- Turning any random ("bad") basis into a "better" basis:
- o Algorithm summarized in Figure 4.
- Vectors as short as possible: start with shortest vector, then small length increment until the last vector in the basis.
- o Basis vectors have Hadamard ratio close to 1 (orthogonal).
- Taking a Gram-Schmidt orthogonal basis $\mathcal{B}^* = \{v_1^*, v_2^*, \dots, v_n^*\}$ as reference., the basis $\,\mathcal{B}\,=\,\{v_1,v_2,\ldots,v_n\}\,$ of lattice L is said to be LLL-reduced if it satisfies:
- $\text{$\circ$ Size Condition } \qquad |\mu_{i,j}| = \frac{|v_i \cdot v_j^*|}{\|v_i^*\|^2} \leq \frac{1}{2} \qquad \text{for all } 1 \leq j < i \leq n.$ $||v_i^*||^2 \ge \left(\frac{3}{4} - \mu_{i,i-1}^2\right) ||v_{i-1}^*||^2 \text{ for all } 1 < i \le n.$

Public Parameter Creation Choose (N, p, q, d) s.t. N and p are primes, and gcd(N, q) = gcd(p, q) = 1, and q > (6d + 1)p Key creation that is invertible in both $R_{\!p}$ and $R_{\!q}$ Compute inverse of f in $R_p\colon F_p$ Compute inverse of f in $R_q\colon F_q$ Publish the public key: $h = F_q * g$ Encryption Choose plaintext $m \in R_p$ Choose a random $r \in T(d, d)$ Use Alice's public key h to compute cipher text

Figure 1: NTRU Public Key Cryptosystem summary

Center-lift to a ∈ R and compute

the original message $m \equiv F_y \star a$

Figure 2: Integral Lattice (by Oded Regev)

- Conjectured security against quantum attack
- Strong security guarantees from worst-case
- Constructions of versatile and powerful

Figure 3: Attractive Features of LBC

[1]	Input a basis {v ₁ ,,v _n } for a lattice L	
[2]	Set k = 2	
[3]	Set $\nu_1^* = \nu_1$	
[4]	Loop while k ≤ n	
[5]	Loop down j = k-1, k-2,, 2, 1	
[6]	Set $v_k = v_k - [u_{kj}]v_j$	[Size Reduction]
[7]	End j loop	
[8]	$\left\ \left\ \left v_k^* \right \right\ ^2 \geq \left(\frac{3}{4} - \mu_{k,k-1}^2 \right) \left\ v_{k-1}^* \right\ ^2$	[Lovasz Condition
[9]	Set k = k+1	
[10]	Else	
[11]	Swap ν_{k-1} and ν_k	[Swap Step]
[12]	Set $k = max(k - 1, 2)$	
[13]	End If	
[14]	End k Loop	
[15]	Return LLL reduced basis {v ₁ ,,v _n }	

Fi	Figure 4: LLL lattice reduction algorithm			
[1]	Input a basis $B = (v_1,, v_n)$			
[2]	Input $m, n \in \mathbb{Z}$: $1 \le m \le n \le 2N$			
[3]	Set $a = det(B)$			
[4]	Set i = 1			
[5]	Loop while t < n			
[6]	Set $B' = \{v_1,, v_{n-1}, birotate_i(v_m), v_{n+1}, v_{2N}\}$			
[7]	If $det(B') = \pm a$ and $v_n \neq birotate_i(v_m)$:			
[8]	Return B'			
[9]	Return False			

Figure 5: BIROTATION algorithm

BIROT and GAME algorithm

- BIROTATION algorithm (Figure 5):
 - o based on the cyclic automorphisms of the NTRU lattice
 - o let $\mathbf{v} = (v_1, v_2, ..., v_{2N})$ then \mathbf{v} birotated by k position, birotate $\mathbf{v}(\mathbf{v})$

Supervisor: Wong Wei Pin

- $= (v_{1+k \bmod N}, \dots, v_{N+k \bmod N}, v_{N+(1+k \bmod N)}, \dots, v_{N+(N+k \bmod N)})$
- Thesis: For NTRU lattice L, $\mathbf{v} \subseteq L$ i.i.f birotate $\mathbf{v}(\mathbf{v}) \subseteq L$ replacing basis vector v_n with birotate_k(v_m) returns a
- ⇒ a new basis for L is created if the basis vectors of L' is linearly independent and they form the same span: $|\det(L')| = |\det(L)|$
- We have BIROT reduced basis (a hit) if $||v_m|| \le ||v_n||$,
- $\mathbf{v}_n = birotate_k(\mathbf{v}_m)$ and $|\det(L')| = |\det(L)|$ GAME algorithm (combining LLL and BIROT)
- LLL alone produces the same output when applied once or
- multiple consecutive times with same parameter ⇒ change LLL's output lattice with BIROT so running LLL again will result in further reduction
- o a round of GAME starts with LLL followed by trying BIROT until there is a hit (n loop down in step 10) as seen in Figure 6:

[1]	Input a basis $B = \{v_1,, v_{2N}\}$	[9]	Set m = 1	
[2]	Input r = max rounds of BIROT	[10]	Loop down n = 2N,, m + 1:	
[3]	Loop for i from 1 to r:	[11]	Set L2 = BIROT(L, m, n)	[BIROT]
[4]	Set L = LLL(L) [LLL]	[12]	If L2 is not False:	# a hit
[5]	Sort L by L2 norm	[13]	Set L = L2	
[6]	If $birotate_i(v_1) == v_1$:	[14]	Break loop n	
[7]	Set m = 2	[15]	If L == const:	# no hit
[8]	Else:	[16]	Break loop i	

Figure 6: GAME algorithm

Experimentations and Results

- For all experiments (Figure 7-9), we used:
 - Independent variables: N as safe primes (11, 23, 47)
 - o Constants: max rounds of GAME: 10; number of trials: 20

Figure 7: (N = 11) Both LLL and GAME (all 10 hits) performed well. GAME improved Hadamard ratio up to 9.25%. With the best basis, the shortest vector is 85.7% the length of (f, g). <u>Figure 8</u>: (N = 23) GAME

- o In most cases, BIROT can complement LLL to improve the Hadamard ratio of NTRU bases.
- o For small N (<47), BIROT significantly improves the Hadamard ratio of NTRU bases, increasing the chances of breaking NTRU
- o For large N (>=47), LLL worsens the Hadamard ratio of NTRU bases more than the improvement made by BIROT, thus BIROT cannot complement LLL to break NTRU for large N.

Acknowledgement

This project is our experimentations with the ideas presented in: 1. D. Socek (2002). Deterministic and Non-deterministic basis reduction techniques for NTRU lattices (Master's thesis,, Florida Atlantic University).

2. J. Hoffstein, J. Pipher, J. Silverman (2014). An Introduction to Mathematical Cryptography (Second Edition)