

ĐẠI HỌC QUỐC GIA THÀNH PHỐ HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN

Cơ sở trí tuệ nhân tạo

Tìm kiếm đối kháng

Nguyễn Ngọc Đức 2021

Nội dung

- 1 Mô hình Markov
- 2 Tìm kiếm bất định
- 3 Trò chơi đối kháng
- 4 Cây trò chơi
- 5 Expectimax
- 6 Minimax
- 7 Expectiminimax
- 8 Tia nhánh Alpha-Beta
- 9 Hàm đánh giá

Mô hình Markov

Nguyễn Ngọc Đức Cơ sở trí tuệ nhân tạo 2021 2 / 50

Markov

- Ta dùng từ "Markov" cho các quy trình mà hiện tại, tương lai và quá khứ độc lập với nhau
- Kết quả khi thực hiện một hành động chỉ phụ thuộc vào trạng thái hiện tại

Markov

- Ta dùng từ "Markov" cho các quy trình mà hiện tại, tương lai và quá khứ độc lập với nhau
- Kết quả khi thực hiện một hành động chỉ phụ thuộc vào trạng thái hiện tại
- Tương tự như bài toán tìm kiếm

Mô hình Markov

lacktriau Giá trị X trong một khoảng thời gian nhất định được gọi là trạng thái

- Tham số: Xác suất chuyển tiếp
- Giả định tính ổn định: Xác suất chuyển tiếp giống nhau ở mọi thời điểm

Hợp phân phối xác suất I

■ Dựa trên quy tắc chuỗi, mỗi hợp phân phối xác suất X_1, X_2, X_3, X_4 có thể được viết thành:

$$\mathbb{P}(X_1, X_2, X_3, X_4) = \mathbb{P}(X_1)\mathbb{P}(X_2|X_1)\mathbb{P}(X_3|X_1, X_2)\mathbb{P}(X_4|X_1, X_2, X_3)$$

■ Giả sử

$$X_3 \perp \!\!\! \perp X_1 | X_2$$
 và $X_4 \perp \!\!\! \perp X_1, X_2 | X_3$

Hợp phân phối xác suất II

Hợp phân phối xác suất:

$$\mathbb{P}(X_1, X_2, X_3, X_4) = \mathbb{P}(X_1)\mathbb{P}(X_2|X_1)\mathbb{P}(X_2|X_3)\mathbb{P}(X_4|X_3)$$

Mọi hợp phân phối xác suất X₁, X₂,..., X_T có thể được viết dưới dạng:

$$\mathbb{P}(X_1, X_2, \dots, X_T) = \mathbb{P}(X_1) \prod_{t=2}^{T} \mathbb{P}(X_t | X_1, X_2, \dots, X_{t-1})$$

Hợp phân phối xác suất III

■ Giả sử rằng với mọi t:

$$X_t \perp \!\!\! \perp X_1, \ldots, X_{t-2} | X_{t-1}$$

Ta có:

$$\mathbb{P}(X_1, X_2, \dots, X_T) = \mathbb{P}(X_1)\mathbb{P}(X_2|X_1)\mathbb{P}(X_3|X_2)\dots\mathbb{P}(X_T|X_{T-1})$$
$$= \mathbb{P}(X_1)\prod_{t=2}^T \mathbb{P}(X_t|X_{t-1})$$

Tìm kiếm bất định

Nguyễn Ngọc Đức Cơ sở trí tuệ nhân tạo 2021 8 / 50

Ví du: Hex world I

- Mỗi ô là một trạng thái
- Di chuyển theo 6 hướng
- Nhiễu: Kết quả di chuyển ngẫu nhiên
- Tác tử nhận điểm thưởng với mỗi bước di chuyển

Ví dụ: Hex world II

straight-line hex world

Quy trình Markov

- Một quy trình Markov được đinh nghĩa dưa trên:
 - 1 Tập trạng thái $s \in S$
 - 2 Tập hành động $a \in A$
 - 3 Hàm chuyển dịch T(s, a, s')
 - 4 Hàm điểm thưởng $R(s,a,s^\prime)$
 - Trạng thái bắt đầu
 - Trạng thái kết thúc (có thể có hoặc không)
 - MDP là một bài toán tìm kiếm bất định ⇒ Expectimax

Chiến lược

Trong các bài toán tìm kiếm, chúng ta cần một kế hoạch tối ưu

■ Với MDP:

Chiến lược

Trong các bài toán tìm kiểm, chúng ta cần một kế hoạch tối ưu

- lacktriangle Với MDP: Chúng ta cần một chiến lược tối ưu $\pi^*:S o A$
 - lacktriangle Một chiến lược π đưa ra hành động tại một trạng thái cụ thể
 - Một chiến lược tối ưu sẽ tối đa hóa lợi ích kỳ vọng (expectimax)
 - Một chiến lược rõ ràng định nghĩa một tác tử

Trò chơi đối kháng

Nguyễn Ngọc Đức Cơ sở trí tuệ nhân tạo 2021 13 / 50

Trò chơi

- Trò chơi là một trong những nghiên cứu chính cho việc phát triển các chương trình thông minh
- Đặc điểm:
 - 1 Môi trường đa nhân tố: sự hiện diện của những người chơi với mục đích không đồng nhất
 - Bất định (uncertainty): chiến lược di chuyển không rõ ràng

Các loại trò chơi

- Trò chơi có thể được phân loại dựa trên các yếu tố:
 - Hành động
 - 2 Số lượng người chơi
 - 3 Đối kháng?
 - 4 Cụ thể (perfect information)?

Trò chơi đối kháng 2 người l

Tập người chơi $Players = \{agent, opp\}$

- 1 s_0 : trạng thái bắt đầu
- $oxed{2}$ Action(s): Các hành động có thể thực hiện với trạng thái s
- ${f 3}$ Succ(s,a): trạng thái kết quả thực hiện hành động a ở trạng thái s
- 4 IsEnd(s): kiểm tra trạng thái s có phải là trạng thái cuối (kết thúc trò chơi)
- $6 \ Player(s) \in Players$: người chơi điểu khiển trạng thái s

Trò chơi đối kháng 2 người II

- Có 2 đặc điểm chính:
 - 1 Tất cả mục tiêu đều nằm ở trạng thái cuối cùng
 - 2 Người chơi khác nhau điều khiển các trạng thái khác nhau

Cờ vua

- Players={đen, trắng}
- State(s): vị trí của các quân cờ
- Action(s): nước đi hợp lệ mà người chơi Player(s) có thể thực hiện
- IsEnd(s): kiểm tra trạng thái hiện tại là chiếu bí hay hòa
- lacksquare Utility(s): $+\infty$ nếu đen thắng, $-\infty$ nếu trắng thắng, 0 nếu hòa

Thành tựu hiện nay l

Cờ đam:

■ Đô phức tạp: $\approx 10^{18}$ nút

■ 1950: chương trình đầu tiên

■ 1991: Chinook đánh bại hoàn toàn nhà vô địch Marion Tinsley

Thành tựu hiện nay II

- Cờ vua:
 - Độ phức tạp: $b \approx 35, d \approx 100, 10^{154}$ nút
 - 1997: Deep Blue đánh bại Gary Kasparov trong ván đấu 6 trận.

Thành tựu hiện nay III

- Cờ vây:
 - Độ phức tạp: $b \approx 361, d \approx 200, 10^{174}$ trạng thái bàn cờ
 - Không thể đoán trước được ngay cả ở giai đoạn thu quan
 - 2016: AlphaGo đánh bại kỳ thủ cửu đẳng Lee Sedol (4-1)

Cây trò chơi

Nguyễn Ngọc Đức Cơ sở trí tuệ nhân tạo 2021 22 / 50

Trò chơi 3 chiếc hộp

- Có 3 chiếc hộp, mỗi hộp chứa 2 con số (hình 1).
- Bạn chọn một chiếc hộp sau đó mình chọn một con số nằm trong hộp đó
- Nhiệm vụ của bạn là phải tối đa con số mà mình chọn

Hình 1: Ví dụ một trò chơi

Cây trò chơi

Cây trò chơi

- Mỗi nút là một điểm quyết định cho mỗi người chơi
- Mỗi đường đi tới nút lá là một kết quả của trò chơi

Expectimax

Nguyễn Ngọc Đức Cơ sở trí tuệ nhân tạo 2021 25 / 50

Chiến lược

■ Chiến lược xác định: hành động người chơi p thực hiện ở trạng thái s

$$\pi(s) \in Action(s)$$

■ Chiến lược bất định: xác suất người chơi p thực hiện hành động a ở trạng thái s

$$\pi(s,a) \in [0,1]$$

Nguyễn Ngọc Đức Cơ sở trí tuệ nhân tạo 2021 26 / 50

Đánh giá trò chơi l

■ Lợi ích kỳ vọng (giá trị của trò chơi)

$$V_{eval}(s) = \begin{cases} Utility(s) & IsEnd(s) \\ \sum_{a \in Actions(s)} \pi_{agent}(s, a) V_{eval}(Succ(s, a)) & Player(s) = agent \\ \sum_{a \in Actions(s)} \pi_{opp}(s, a) V_{eval}(Succ(s, a)) & Player(s) = opp \end{cases}$$

- Trò chơi kết thúc, lợi ích ở trạng thái cuối Utility(s)
- 2 Lượt của agent, dựa trên giá trị các successor trả về
- 3 Lượt của opp, tương tự agent

Đánh giá trò chơi II

Hình 2: Giá trị trò chơi

Expectimax I

■ Giá trị expectimax $V_{exptmax}(s)$ ở trạng thái s, là lợi ích tối đa của người chơi đạt được ở trạng thái s nếu biết trước chiến lược chơi của đối thủ

$$V_{exptmax}(s) = \begin{cases} Utility(s) & IsEnd(s) \\ \max_{a \in Actions(s)} V_{exptmax}(Succ(s, a)) & Player(s) = agent \\ \sum_{a \in Actions(s)} \pi_{opp}(s, a) V_{eval}(Succ(s, a)) & Player(s) = opp \end{cases}$$

Expectimax II

Hình 3: Expectimax

Vấn đề

- Ta không biết rõ chiến lược của đối thủ
- Duy lý cá nhân
 - Mỗi người tham gia cuộc chơi sẽ cố gắng giành lợi ích tuyệt đối về bản thân
- Thuật toán Minimax

Minimax

Minimax I

- Nếu chúng ta có khả năng đọc suy nghĩ ⇒ Expectimax
- Tuy nhiên, trên thực tế chúng ta không biết chiến lược của đối thủ
- Giả định trường hợp xấu nhất: đối thủ làm mọi cách để giảm thiểu lợi ích

Minimax II

Lợi ích của đối thủ được thay thế bằng lợi ích tối thiểu

$$V_{minmax}(s) = \begin{cases} Utility(s) & IsEnd(s) \\ \max_{a \in Actions(s)} V_{minmax}(Succ(s, a)) & Player(s) = agent \\ \min_{a \in Action(s)} V_{minmax}(Succ(s, a)) & Player(s) = opp \end{cases}$$

Minimax III

Hình 4: Minimax

Expectiminimax

Expectimax

- Nếu trò chơi có yếu tố ngẫu nhiên?
- Giả sử mỗi nút ngẫu nhiên ta đều biết được phân phối của các successor
- Chiến lược bất định

Trò chơi 3 chiếc hộp

- Có 3 chiếc hộp, mỗi hộp chứa 2 con số.
- Bạn chọn một chiếc hộp sau đó tung đồng xu; nếu ra mặt ngửa, thay vì chọn hộp của bạn, mình sẽ chọn hộp bên trái và một con số nằm trong hộp đó
- Nhiệm vụ của bạn là phải tối đa con số mà mình chọn

Expectiminimax I

■ Trò chơi trên có thể được mô hình bằng expectiminimax.

$$V_{exptminmax}(s) = \begin{cases} Utility(s) & IsEnd(s) \\ \max_{a \in Actions(s)} V_{exptminmax}(Succ(s, a)) & Player(s) = agendal \\ \min_{a \in Actions(s)} V_{exptminmax}(Succ(s, a)) & Player(s) = opp \\ \sum_{a \in Actions(s)} \pi_{coin}(s, a) V_{exptminmax}(Succ(s, a)) & Player(s) = coin \end{cases}$$

Expectiminimax II

$$\pi_{\mathsf{coin}}(s,a) = \frac{1}{2} \text{ for } a \in \{0,1\}$$

Hình 5: Expectiminimax

Tía nhánh Alpha-Beta

Nguyễn Ngọc Đức Cơ sở trí tuệ nhân tạo 2021 41 / 50

Tía nhánh Alpha-Beta I

Ý tưởng chính:

- Giữ ngưỡng trên α của nút
 min và ngưỡng dưới β của
 nút max
- Tỉa nhánh một nút nếu khoảng giá trị của nút đó không giao với nút cha (α < β)

Tia nhánh Alpha-Beta II

- Việc tỉa nhánh không ảnh hưởng đến giá trị cuối cùng của trò chơi
- Trong trường hợp tốt nhất độ phức tạp giảm xuống $O(b^{m/2})$
- Tìm kiếm toàn bộ cây trò chơi cờ vua???

Tia nhánh Alpha-Beta II

- Việc tỉa nhánh không ảnh hưởng đến giá trị cuối cùng của trò chơi
- Trong trường hợp tốt nhất độ phức tạp giảm xuống $O(b^{m/2})$
- Tìm kiếm toàn bộ cây trò chơi cờ vua???

vô vọng!!!

Hàm đánh giá

Nguyễn Ngọc Đức Cơ sở trí tuệ nhân tạo 2021 44 / 50

Hàm đánh giá

- Xấp xỉ lợi ích của trạng thái hiện tại
- Thứ tự trạng thái cuối cùng đúng với lợi ích của trò chơi
 - Các trạng thái chiến thắng cần được đánh giá tốt hơn hòa và hòa tốt hơn thua
- Việc tính toán không quá lâu!
- Với các trạng thái không phải là trạng thái cuối, việc đánh giá cần phải tương quan chặt chẽ với tỷ lệ chiến thắng

Ví dụ

Eval(s) = material + mobility +king - safety + center - control

- $material = 10^{100}(K K') + 9(Q Q') + 5(R R') + 3(B B' + N N') + 1(P P')$
- **.**..

Bài tập I

Bài tập II

Tổng kết

Tổng kết

- Cây trò chơi: mô hình hóa trò chơi
- Minimax: tìm chiến lược chơi đối kháng
- Hàm đánh giá: tri thức cụ thể, xấp xỉ
- Tia nhánh Alpha-Beta: tri thức tổng quát, chính xác

Tài liệu tham khảo

- [1] Michael Negnevitsky Russell, S. and Norvig, P. (2021).
 - "Artificial intelligence: a modern approach."
- [2] Berkelev University

"CS188"