종합실습 2

A2 김승희

분석계획

- 01. Data Processing
 - 데이터 특성 파악,
 - 이상치 및 결측치 처리
- 02. EDA
 - 범주형 설명변수 카이제곱 검정
 - 연속형 설명변수 분포 확인
- 03. Modeling
 - 로지스틱 회귀분석, 의사결정나무, 랜덤포레스트, 그라디언트부스팅, MLP
- 04. Conclusion
 - 모델 평가 및 의견

Data Processing

- 사전 조사에 의하여 목표변수와 상관없다고 여겨지는 열 삭제
- 01. Plate_no: plate 번호
 - 제품번호는 제조과정에 전혀 관계가 없음
- 02. rolling_date: 열연작업시각
 - 자동화 공정이므로 작업시각 자체는 관계가 없다고 판단
- 03. spec_long : 제품 규격
 - 제품 규격은 철강의 제조과정과 관계가 없다고 판단
- 04. spec_country; 제품 규격 기준국
 - 위와 마찬가지로 규격 기준 잧는 제조 과정과 관계가 없다고 판단
- 11. fur_input_row : 가입로 장입열
 - 재료의 균질화에 기여하는 요소가 아니기 때문에 제거해도 된다고 판단
- 21. work_group : 작업조
 - 제조공정 자동화 시스템이므로 작업조 자체는 불량률과 관계가 없다고 판단

Data Processing

• 결측치 확인 = 결측치 없음을 확인

```
1 #결측치 확인
2 df_raw.isnull().sum()
```

```
scale
steel_kind
pt_thick
pt_width
pt_length
hsb
fur_no
fur_heat_temp
fur_heat_time
fur_soak_temp
fur_soak_time
fur_total_time
fur_ex_temp
rolling_method
rolling_temp
descaling_count
dtype: int64
```

Data Processing --> pt_thick, rolling_temp에서 이상치 확인

- 수치형 설명변수 이상치 확인

Data Processing . 파생 변수 생성

```
#邱樹 변수 생성
# 크기 = 亭판 자사두冽*(자사폭+자사길이)
df_raw['size'] = df_raw['pt_thick'] *(df_raw['pt_width'] + df_raw['pt_length'])
df_raw = df_raw.drop(['pt_thick', 'pt_width', 'pt_length'], axis=1)
```

재료 안에 균질을 하려면 재료의 중심부까지 열이 전달이 되어야 하는데 부피가 너무 크면 열이 전달이 잘 안될 것이라고 생각하였다.

따라서 지시 두께, 지시폭, 지시길이 변수를 이용하여 새롭게 크기라는 변수를 생성하였다.

타색저 분석 · 범주형 설명 변수에 대한 검정

```
1 # 설명변수 중 object형이 변수 확인
2 print(df_raw['steel_kind'].unique())
3 print(df_raw['hsb'].unique())
4 print(df_raw['fur_no'].unique())
5 print(df_raw['rolling_method'].unique())
['T' 'C']
['적용' '미적용']
```

「'1호기' '2호기' '3호기']

['TMCP(온도제어)' 'CR(제어압연)']

- 총 4개의 범주형 설명 변수가 있다.
- 각각의 설명변수들이 scale에 영향이 있는지, 범주별로 차이가 있는지에 대해 검정하고자 한다
- => 카이제곱검정 시행

타색저 분석 · 범주형 설명 변수에 대한 검정

```
1 chisquare(df_raw['fur_no'] 'fur_no')

Contingency Table:
fur_no 1호기 2호기 3호기 All
scale
0 231 231 219 681
1 100 92 116 308
All 331 323 335 989
```

카이제곱 통계량: 3.10

P-값: 0.80

-scale에 영향을 미치지 않습니다. 🟅

fur_no : 가열로 호기는 sc 호기 별로 scale에 차이가 없다

| chisquare(df_raw['hsb'],'hsb')=> 제거하기로 결정

```
Contingency Table:
hsb 미적용 적용 All
scale
0 0 681 681
1 47 261 308
All 47 942 989
카이제곱 통계량: 109.10
P-값: 0.00
scale에 영향을 미칩니다.
```

```
1 chisquare(df_raw['rolling_method'], 'rolling_method')

Contingency Table:
rolling_method CR(제어압연) TMCP(온도제어) All
scale
0 539 142 681
1 295 13 308
All 834 155 989

카이제곱 통계량: 44.38
P-값: 0.00
scale에 영향을 미칩니다.
```

chisquare(df_raw['steel_kind'], 'steel_kind') Contingency Table: C T ALL steel_kind scale 218 681 463 288 20 308 ALL 238 989 카이제곱 통계량: 75.58 P-값: 0.00 scale에 영향을 미칩니다.

탐색적 분석 .

• 연속형 설명 변수에 대한 분포 확인

• 로지스틱 회귀 수치형 설명변수 scale한 뒤 로지스틱 회귀 진행

과적합 X

Trian 예측/분류 결과 Accuracy: 0.863

Test 예측/분류 결과 Accuracy: 0.862

Confusion Matrix:

26] [[183 [15 73]]

• hsb T.적용이 우선적으로 고려되어야 함

가 높게 나와 다른 설명변수들의 영향을 정확히 알 수 없으므로 이 변수를 제거 한

뒤 다시 로지스티 회귀 진행

Coef descaling_count rolling_temp fur_ex_temp fur_total_time fur_soak_time fur_soak_temp fur_heat_time fur_heat_temp • hsb 설명변수에서 T.적용이 너무 중요도 C(hsb)[T.적용] C(steel_kina)[1.1] -20 -5 -15 -10

• 로지스틱 회귀 hsb 변수 제거한 뒤 로지스틱 회귀 진행

과적합 X

Trian 예측/분류 결과 Accuracy: 0.682

Test 예측/분류 결과 Accuracy: 0.862

• rolling_temp : 압연온도

• descaling_count : 압연 횟수

• rolling_method : 압연 방법

순으로 영향력 있는 인자라는 결과가 나왔다

• 의사결정나무

```
tree_uncustomized = DecisionTreeClassifier(random_state = 1234)
tree_uncustomized.fit(df_train_x, df_train_y)

print("Score on training set: {:.3f}".format(tree_uncustomized.score(df_train_x, df_train_y)))
print("Score on test set: {:.3f}".format(tree_uncustomized.score(df_test_x, df_test_y)))
```

Score on training set: 1.000 Score on test set: 0.993

RandomizedSearchCV를 통해 parameter 조절 => train데이터에 과대적합 해결

```
tree_final = DecisionTreeClassifier(min_samples_leaf=7,min_samples_split=19,max_depth=9, random_state=1234)
tree_final.fit(df_train_x, df_train_y)

print("Score on training set: {:.3f}".format(tree_final.score(df_train_x, df_train_y)))
print("Score on test set: {:.3f}".format(tree_final.score(df_test_x, df_test_y)))
```

Score on training set: 0.993 Score on test set: 0.993

• 의사결정나무

	Feature	importance
6	rolling_temp	0.541
11	hsb_미적용	0.163
2	fur_soak_temp	0.153
7	descaling_count	0.100
5	fur_ex_temp	0.042
4	fur_total_time	0.001
0	fur_heat_temp	0.000
1	fur_heat_time	0.000
3	fur_soak_time	0.000
8	size	0.000
9	steel_kind_C	0.000
10	steel_kind_T	0.000
12	hsb_적용	0.000
13	rolling_method_CR(제어압연)	0.000
14	rolling_method_TMCP(온도제어)	0.000

• 랜덤포레스트

```
rf_uncustomized = RandomForestClassifier(random_state=1234)
rf_uncustomized.fit(df_train_x, df_train_y)

print("Score on training set: {:.3f}".format(rf_uncustomized.score(df_train_x, df_train_y)))
print("Score on test set: {:.3f}".format(rf_uncustomized.score(df_test_x, df_test_y)))
```

Score on training set: 1.000 Score on test set: 0.963

RandomizedSearchCV를 통해 parameter 조절 => train데이터에 과대적합 해결

Score on training set: 0.954 Score on test set: 0.939

• 랜덤포레스트

	Feature	importance
6	rolling_temp	0.491
5	fur_ex_temp	0.103
2	fur_soak_temp	0.093
7	descaling_count	0.072
11	hsb_미적용	0.051
12	hsb_적용	0.047
0	fur_heat_temp	0.035
8	size	0.032
9	steel_kind_C	0.017
3	fur_soak_time	0.016
4	fur_total_time	0.015
1	fur_heat_time	0.014
10	steel_kind_T	0.009
13	rolling_method_CR(제어압연)	0.003
14	rolling_method_TMCP(온도제어)	0.002

• 그라디언트부스팅

```
1 # 早里 생성: GradientboostingRegressor
2 gb_uncustomized = GradientBoostingClassifier(random_state=1234)
3 gb_uncustomized.fit(df_train_x, df_train_y)
4
5
6 print("Score on training set: {:.3f}".format(gb_uncustomized.score(df_train_x, df_train_y)))
7 print("Score on test set: {:.3f}".format(gb_uncustomized.score(df_test_x, df_test_y)))
```

Score on training set: 1.000 Score on test set: 0.993

RandomizedSearchCV를 통해 parameter 조절 => train데이터에 과대적합 해결

```
# 그리디언트부스팅 최종 모델
gb_final = GradientBoostingClassifier(min_samples_leaf=4,max_depth=6, n_estimators=100,learning_rate=0.7, random_state=1234)

gb_final.fit(df_train_x, df_train_y)
y_pred = gb_final.predict(df_test_x)

print("Accurcy on training set: {:.3f}".format(gb_final.score(df_train_x,df_train_y)))
print("Accuracy on test set: {:.3f}".format(gb_final.score(df_test_x,df_test_y)))
```

Accuracy on training set: 1.000 Accuracy on test set: 0.997

• 그라디언트부스팅

	Feature	importance
6	rolling_temp	0.530
7	descaling_count	0.162
2	fur_soak_temp	0.147
11	hsb_미적용	0.142
12	hsb_적용	0.016
4	fur_total_time	0.001
0	fur_heat_temp	0.001
5	fur_ex_temp	0.001
3	fur_soak_time	0.000
1	fur_heat_time	0.000
10	steel_kind_T	0.000
8	size	0.000
9	steel_kind_C	0.000
13	rolling_method_CR(제어압연)	0.000
14	rolling_method_TMCP(온도제어)	0.000

• 인공신경망

```
v_feature_names = df_train_x.columns
scaler = StandardScaler()
df_scaled = scaler.fit_transform(df_raw_x)
df_scaled_train_x, df_scaled_test_x = train_test_split(df_scaled, test_size = 0.3, random_state = 1234)
print("Accuracy on training set: {:.3f}".format(nn_scaled.score(df_scaled_train_x,df_train_y)))
print("Accuracy on test set: {:.3f}".format(nn_scaled.score(df_scaled_test_x, df_test_y)))
```

Accuracy on training set: 0.575 Accuracy on test set: 0.559

RandomizedSearchCV를 통해 parameter 조절

=> train score는 유의미하게 상승했지만 test score는 변동 없음

Accuracy on training set: 0.727 Accuracy on test set: 0.559

일반적으로 불량품을 제조하는 공정과 같이 실제 Positive한 경우가 적은 경우에는 재현율을 더 중요하게 여기는 경우가 많다.

Decision Tree [[186 3] [11 178]]	e Confusion n	matrix :			 RandomForest [[209 0] [18 70]]	Confusion ma	atrix:		
[11 110]]	precision	recall	t1-score	support	[10 10]]	precision	recall	f1-score	support
0 1	0.944 0.983	0.984 0.942	0.964 0.962	189 189	0 1	0.921 1.000	1.000 0.795	0.959 0.886	209 88
accuracy macro avg weighted avg	0.964 0.964	0.963 0.963	0.963 0.963 0.963	378 378 378	accuracy macro avg weighted avg	0.960 0.944	0.898 0.939	0.939 0.922 0.937	297 297 297
GradientBoost [[209 0] [1 87]]	ing Confusion	n matrix :			MLP Confusion ([[209 0] [72 16]]	matrix :			
	precision	recall t	1-score	support	1	precision 【	recall	f1-score	support
0 1	0.995 1.000	1.000 0.989	0.998 0.994	209 88	0 1	0.744 1.000	1.000 0.182	0.853 0.308	209 8 8
accuracy macro avg weighted avg	0.998 0.997	0.994 0.997	0.997 0.996 0.997	297 297 297	accuracy macro avg weighted avg	0.872 0.820	0.591 0.758	0.758 0.580 0.691	297 297 297

GradientBoosting - RandomForest - DecisionTree-MLP 순으로 1에 대한 Recall값이 높다

=> 불량여부를 예측할 때 GradientBoosing이 가장 성능이 좋을 것이라 판단

	AUC	Precision	Recall	F1 score
Decision Tree	0.993	1.000	0.977	0.989
RandomForest	0.966	1.000	0.852	0.920
GradientBoosting	1.000	1.000	0.989	0.994
MLP	0.889	0.944	0.386	0.548

|분류 모델의 성능이 좋을수록 ROC Curve는 왼쪽 상단 모서리로 갈수록 면적이 넓어져 AUC값이 증기 한다. AUC값이 가장 큰 그라디언트부스팅이 가장 성능이 좋다고 할 수 있다.

또한 그라디언트부스팅을 사용할 경우에 Recall값도 제일 높으므로 불량 살펴볼 경우에 제일 정확도가 높다고 할 수 있다.

따라서 그라디언트부스팅의 결과를 우선적으로 생각하기로 판단하였다.

	Feature	importance
6	rolling_temp	0.530
7	descaling_count	0.162
2	fur_soak_temp	0.147
11	hsb_미적용	0.142
12	hsb_적용	0.016
4	fur_total_time	0.001
0	fur_heat_temp	0.001
5	fur_ex_temp	0.001
3	fur_soak_time	0.000
1	fur_heat_time	0.000
10	steel_kind_T	0.000
8	size	0.000
9	steel_kind_C	0.000
13	rolling_method_CR(제어압연)	0.000
14	rolling_method_TMCP(온도제어)	0.000

7	descaling_count	0.072
11	hsb_미적용	0.051
12	hsb_적용	0.047
0	fur_heat_temp	0.035
8	size	0.032
9	steel_kind_C	0.017
3	fur_soak_time	0.016
4	fur_total_time	0.015
1	fur_heat_time	0.014
10	steel_kind_T	0.009
13	rolling method CR(제어압연)	0.003

Feature importance

rolling temp

fur_ex_temp

fur soak temp

0.491

0.103

0.093

	Feature	importance
6	rolling_temp	0.541
11	hsb_미적용	0.163
2	fur_soak_temp	0.153
7	descaling_count	0.100
5	fur_ex_temp	0.042
4	fur_total_time	0.001
0	fur_heat_temp	0.000
1	fur_heat_time	0.000
3	fur_soak_time	0.000
8	size	0.000
9	steel_kind_C	0.000
10	steel_kind_T	0.000
12	hsb_적용	0.000
13	rolling_method_CR(제어압연)	0.000
14	rolling_method_TMCP(온도제어)	0.000

그라디언트 부스팅

랜덤포레스트

14 rolling_method_TMCP(온도제어)

의사결정나무

모든 모델에서 rolling_temp : 압연온도, descaling_count : 압연횟수, fur_soak_temp : 가열로 균열 hsb적용 여부가 상단에 위치한다. 따라서 이 변수들이 scale불량 발생에 가장 큰 영향을 주는 인자들이다.

0.002

1. scale 불량 발생에 영향을 주는 인자 도출

rolling_temp: 압연온도,

descaling_count : 압연횟수

fur_soak_temp: 가열로 균열

hsb: hsb 적용 여부

따라서 전체적으로 불량 발생에는 온도적인 요소가 굉장히 중요함이 알 수 있다.

2. 모델의 성능 개선 방향

로지스틱 회귀분석의 결과에서 확인할 수 있듯이, hsb를 적용하지 않을 경우 무조건 불량이 발생하는데 의사결정나무, 랜덤포레스트, 그라디언트 부스팅에서 hsb변수를 제거하고 모델링을 했을 경우 수치형 변수들에 대한 더 정확한 영향력을 알 수 있을 것 같다.