Probabilistic Watershed: Sampling all spanning forests for seeded segmentation and semi-supervised learning

Enrique Fita Sanmartín, Sebastian Damrich, Fred A. Hamprecht

HCI/IWR at Heidelberg University

Notation: edge cost vs edge weight

$$w(e) = \exp(-\mu c(e)), \ \mu \ge 0$$

(a) Graph's edge-costs

$$c(G) = \sum_{e \in E_G} c(e)$$

(b) Graph's edge-weights, $\mu=1$

$$w(G) = \prod_{e \in E_G} w(e)$$

Watershed computes a minimum cost spanning forest (mSF)

The assignment of q is doubtful

Figure: (2a) Graph with edge-costs and two seeds. (2b)The mSF (Watershed segmentation) assigns q to seed s_1 . (2c) Low cost, but not minimum, spanning forest connecting q to s_2 . The Watershed has a winner-takes-all behaviour. It only considers the mSF while ignores the rest of seed separating spanning forests

Question to solve

What is the probability of sampling a forest such that a node of interest is assigned to a certain seed?

Gibbs Distribution of $\mathcal{F}_{s_1}^{s_2}$

$$\mathcal{F}_{s_1}^{s_2} \coloneqq \{ \text{2-forests separating } s_1 \text{ and } s_2 \}$$

Definition: probability distribution over the forests

Given $J \in \mathbb{R}_{\geq 0}$

$$\mathsf{Pr}^* = \arg\min_{\mathsf{Pr}} \sum_{f \in \mathcal{F}^{\mathsf{s}_2}_{\mathsf{s}_1}} \mathsf{Pr}(f) c(f), \quad \text{s.t.} \quad \sum_{f \in \mathcal{F}^{\mathsf{s}_2}_{\mathsf{s}_1}} \mathsf{Pr}(f) = 1 \ \text{and} \ \mathcal{H}(\mathsf{Pr}) = J,$$

(1)

where $\mathcal{H}(Pr)$ = entropy Pr

Solution: Gibbs Probability distribution

$$\mathsf{Pr}^*(f) = \frac{\exp(-\mu c(f))}{\displaystyle\sum_{f' \in \mathcal{F}^{s_2}_{s_1}} \exp(-\mu c(f'))} = \frac{w(f)}{\displaystyle\sum_{f' \in \mathcal{F}^{s_2}_{s_1}} w(f')}$$

Probabilistic Watershed

$$\mathcal{F}_{s_1}^{s_2} \coloneqq \left\{ \text{2-forests separating } s_1 \text{ and } s_2 \right\}$$

$$\mathcal{F}_{s_1,q}^{s_2} \coloneqq \left\{ f \in \mathcal{F}_{s_1}^{s_2} \ : \ s_1 \text{ and } q \text{ are connected} \right\}$$

Probability q is connected with s_1

$$\mathsf{Pr}(q \sim s_1) \coloneqq \frac{w\left(\mathcal{F}_{s_1,q}^{s_2}\right)}{w\left(\mathcal{F}_{s_1}^{s_2}\right)} = \frac{\displaystyle\sum_{f \in \mathcal{F}_{s_1,q}^{s_2}} w\left(f\right)}{\displaystyle\sum_{f \in \mathcal{F}_{s_1}^{s_2}} w\left(f\right)}.$$

Figure: (**Top left**) Gibbs distribution over all spanning forests. (**Bottom right**) Probabilistic Watershed probabilities for assigning a node to s_2 . The Probabilistic Watershed computes the expected seed assignment of every node for a Gibbs distribution over all exponentially many spanning forests in closed-form. It thus avoids the winner-takes-all behaviour of the Watershed

Probabilistic Watershed

$$\mathcal{F}_{s_1}^{s_2} \coloneqq \{ 2 \text{-forests separating } s_1 \text{ and } s_2 \}$$

 $\mathcal{F}_{s_1,q}^{s_2} \coloneqq \{ f \in \mathcal{F}_{s_1}^{s_2} : s_1 \text{ and } q \text{ are connected} \}$

Probability q is connected to s_1

$$\mathsf{Pr}(q \sim s_1) \coloneqq \frac{w\left(\mathcal{F}_{s_1,q}^{s_2}\right)}{w\left(\mathcal{F}_{s_1}^{s_2}\right)} = \frac{\displaystyle\sum_{f \in \mathcal{F}_{s_1,q}^{s_2}} w\left(f\right)}{\displaystyle\sum_{f \in \mathcal{F}_{s_1}^{s_2}} w\left(f\right)}.$$

Question: How do we compute $w(\mathcal{F}_{s_1}^{s_2})$, $w(\mathcal{F}_{s_2,q}^{s_1})$ and $w(\mathcal{F}_{s_1,q}^{s_2})$? **Answer:** Matrix Tree Theorem (MTT).

Matrix Tree Theorem

Matrix Tree Theorem (MTT)

For any weighted multigraph G, the sum of the weights of the spanning trees of G, $w(\mathcal{T})$, is equal to

$$w(\mathcal{T}) := \sum_{t \in \mathcal{T}} \prod_{e \in E_t} w(e) = \frac{1}{|V|} \det(L + \frac{1}{|V|} \mathbb{1}\mathbb{1}^\top) = \det(L^{[v]}),$$

where $\mathbb{1}$ is the column of 1. $L^{[v]}$ is the matrix obtained from the Laplacian, L, after removing the row and column corresponding to an arbitrary node v.

Computation of $w(\mathcal{F}_{s_1}^{s_2})$

The relation between forests and trees allows the use of the MTT.

Computation of $w(\mathcal{F}_{s_1}^{s_2})$

 $r_{\mu\nu}^{\rm eff} =$ effective resistance metric between the nodes u and v.

Theorem (Consequence of the MTT)

$$w(\mathcal{F}_{s_1}^{s_2}) = w(\mathcal{T})r_{s_1s_2}^{\text{eff}} \propto r_{s_1s_2}^{\text{eff}}.$$

Computation of $w(\mathcal{F}_{s_1,s_2}^q)$ and $w(\mathcal{F}_{s_2,s_1}^q)$

Figure: $\mathcal{F}_{s_1,q}^{s_2}$ and $\mathcal{F}_{s_2,q}^{s_1}$ form a partition of $\mathcal{F}_{s_1}^{s_2}$ since q must be connected either to s_1 or s_2 , but not to both. Given an spanning tree (dashed lines represent all possible spanning trees), to form a forest in $\mathcal{F}_{s_1}^{s_2}$ we will have to remove an edge from the red part, forming a forest in $\mathcal{F}_{s_2,q}^{s_2}$, or from the blue part, forming a forest in $\mathcal{F}_{s_1,q}^{s_2}$.

Computation of $w(\mathcal{F}_{s_1,s_2}^q)$ and $w(\mathcal{F}_{s_2,s_1}^q)$

Figure: Analogously (c) \mathcal{F}_{s_2,s_1}^q and $\mathcal{F}_{q,s_2}^{s_2}$ form a partition of $\mathcal{F}_{s_2}^q$, and (d) \mathcal{F}_{s_1,s_2}^q and $\mathcal{F}_{q,s_0}^{s_1}$ form a partition of $\mathcal{F}_{s_1}^q$.

Computation $w(\mathcal{F}_{s_1,s_2}^q), w(\mathcal{F}_{s_2,s_1}^q)$

Linear system with 3 unknowns and 3 equations.

$$\begin{array}{lcl} w(\mathcal{F}^{s_2}_{s_1,q}) + w(\mathcal{F}^q_{s_1,s_2}) & = & w(\mathcal{F}^q_{s_2}) \\ w(\mathcal{F}^q_{s_1,s_2}) + w(\mathcal{F}^{s_1}_{s_2,q}) & = & w(\mathcal{F}^q_{s_1}) \\ w(\mathcal{F}^{s_2}_{s_1,q}) + w(\mathcal{F}^{s_2}_{s_2,q}) & = & w(\mathcal{F}^{s_2}_{s_1}). \end{array}$$

Probabilistic Watershed corresponds to the effective resistance metric

Probability measures the gap of the triangle inequality

$$\Pr(q \sim s_1) = \frac{w(\mathcal{F}_{s_2}^q) + w(\mathcal{F}_{s_1}^{s_2}) - w(\mathcal{F}_{s_1}^q)}{2w(\mathcal{F}_{s_1}^{s_2})} = \frac{r_{s_2q}^{\text{eff}} + r_{s_2s_1}^{\text{eff}} - r_{s_1q}^{\text{eff}}}{2r_{s_2s_1}^{\text{eff}}}.$$
 (2)

$$\Pr(q \sim s_1) \ge \Pr(q \sim s_2) \iff r_{s_1q}^{\text{eff}} \le r_{s_2q}^{\text{eff}}.$$

Random Walker[Grady, 2006] = Probabilistic Watershed

Theorem

The probability, $x_q^{s_2}$, that a Random Walker starting at node q reaches first s_2 before reaching s_1 ([Grady, 2006]) is equal to the probability defined by the Probabilistic Watershed.

$$x_a^{s_2} = P(q \sim s_2).$$

Power Watershed [Couprie et al., 2011]

Power Watershed minimization problem

$$x^* = \arg\min_{x} \sum_{e=(v,u)\in E} (w(e))^{\alpha} (|x_v - x_u|)^{\beta}, \text{ s.t. } x_{s_1} = 1, x_{s_2} = 0,$$
 (3)

Random Walker: $\alpha = 1, \ \beta = 2$

Power Watershed: $\alpha \to \infty$, $\beta = 2$

α and μ are equivalent

$$w(e) = \exp(-\mu c(e)) \rightarrow (w(e))^{\alpha} = \exp(-\mu \alpha c(e)) = \exp(-\mu \alpha c(e))$$

Power Watershed [Couprie et al., 2011]

Power Watershed counts minimum cost/maximum weight spanning forests

Given $S = \{s_1, s_2\}$ a set of seeds, let us denote the potential of node q being assigned to seed s_1 by the Power Watershed with $\beta = 2$ as $x_q^{\text{PW}_1}$. Let further w_{max} be $\max_{f \in \mathcal{F}_{s_1}^{s_2}} w(f)$. Then

$$\mathsf{x}^{\mathsf{PW}_1}_q = \mathsf{Pr}_\infty(q \sim s_1) \coloneqq rac{\left| \{ f \in \mathcal{F}^{s_2}_{s_1, q} : \ w(f) = w_{\mathsf{max}} \}
ight|}{\left| \{ f \in \mathcal{F}^{s_2}_{s_1} : \ w(f) = w_{\mathsf{max}} \}
ight|}.$$

Power Watershed counts mSF

Figure: Forest-interpretation of Power Watershed. The Power Watershed computes the ratio between the mSFs connecting a node to s_2 and all possible mSFs. (7f) indicates the allowed Random Walker transitions when $\mu \to \infty$ with headed arrows. The Random Walker interpretation of the Power Watershed breaks down in the limit case since a Random Walker starting at node q does not reach any seed, but oscillates along the bold arrow.

Conclusion

- Probabilistic Watershed = Random Walker.
- Random Walker/Probabilistic Watershed probabilities are proportional to the triangle inequality gap.

$$\Pr(q \sim s_1) \propto r_{s_2q}^{\mathrm{eff}} + r_{s_2s_1}^{\mathrm{eff}} - r_{s_1q}^{\mathrm{eff}}.$$

• Power Watershed counts minimum cost spanning forests.

References

Couprie, C., Grady, L., Najman, L., and Talbot, H. (2011). Power watershed: A unifying graph-based optimization framework. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 33:1384–1399.

Grady, L. (2006).

Random walks for image segmentation.

IEEE Transactions on Pattern Analysis and Machine Intelligence.

The End