

IntroML Exercise 01 - Sampling

Paul Stoewer

Friedrich-Alexander-Universität Erlangen-Nürnberg

03.05.2024

Agenda

1. Exercise 1 - Sampling Theorem

2. Exercise 2 - Fourier Decomposition

3. Exercise 3 - Tuning a Piano

2/11

Exercise 1 - Sampling Theorem

Chirp Signal

A chirp signal is a signal which frequency changes over time:

Chirp Signal

A chirp signal is a signal which frequency changes over time¹:

Linear:

$$x(t) = \sin(2\pi(f_0 + \frac{c}{2}t)t)$$

with linear chirp rate: $c = \frac{f_1 - f_0}{T}$

Exponential:

$$x(t) = sin(\frac{2\pi f_0}{ln(k)}(k^t - 1))$$

with exponential chirp rate: $k = \frac{f_1}{f_0}^{\frac{1}{T}}$

5/11

¹More Details:https://en.wikipedia.org/wiki/Chirp

Exercise 2 - Fourier Decomposition

Fourier Decomposition

Create specific Fourier Decomposition functions:

Fourier Decomposition

Triangle Signal:

$$f_{\text{triangle}}(t) = \frac{8}{\pi^2} \sum_{k=0}^{\infty} (-1)^k \frac{\sin(2\pi(2k+1)ft)}{(2k+1)^2}$$

Square Signal:

$$f_{\text{square}}(t) = \frac{4}{\pi} \sum_{k=1}^{\infty} \frac{\sin(2\pi(2k-1)ft)}{2k-1}$$

Sawtooth Signal:

$$f_{\text{sawtooth}}(t) = \frac{A}{2} - \frac{A}{\pi} \sum_{k=1}^{\infty} \frac{\sin(2\pi \, k \, f \, t)}{k}$$

Exercise 3 - Tuning a Piano

Tuning a Piano

Goal: Find the main Frequency in the audio signal

- Calculate Fourier Transform of Signal to see which frequencies are present (Use a library function like np.fft.fft)
- Set frequencies smaller than min_freq to 0
- Be careful when searching for and returning frequencies in your Fourier transform about the sample frequency of the signal: $f_n(n) = f * (n * T_s)$
- Compare the found frequencies to the Piano key frequencies:
 - https://en.wikipedia.org/wiki/Piano_key_frequencies

Thank you for your attention!