TEMA 7: Contraste de hipótesis

- 7.1. Planteamiento del problema y conceptos básicos.
- 7.2. Test de Neyman-Pearson.
- 7.3. Test de la razón de verosimilitudes.
- 7.4. Contrastes sobre los parámetros de una población normal.
- 7.5. Contrastes sobre los parámetros de dos poblaciones normales.
- 7.6. Dualidad entre estimación por intervalos y contraste de hipótesis.

7.1. PLANTEAMIENTO DEL PROBLEMA Y CONCEPTOS BÁSICOS

 $(X_1,\ldots,X_n)\in\chi^n$ muestra aleatoria simple de $X\to\{P_\theta;\ \theta\in\Theta\},\ \Theta=\Theta_0\cup\Theta_1$

 $H_0: \theta \in \Theta_0$ Hipótesis nula

 $H_1: \theta \in \Theta_1$ Hipótesis alternativa

Test de hipótesis: Es un estadístico, $\varphi(X_1, \ldots, X_n)$, con valores en [0,1], que especifica la probabilidad de rechazar H_0 a partir de X_1, \ldots, X_n .

• Test no aleatorizado: $\varphi: \chi^n \longrightarrow \{0,1\}.$

$$\varphi(X_1,\ldots,X_n)=\left\{\begin{array}{ll} 1 & (X_1,\ldots,X_n)\in C & C\subseteq\chi^n \ regi\'on \ cr\'itica \ o \ de \ rechazo \\ 0 & (X_1,\ldots,X_n)\notin C & C^c=\chi^n-C \ regi\'on \ de \ aceptaci\'on. \end{array}\right.$$

• Test aleatorizado: Toma algún valor distinto de 0, 1.

Tipos de errores asociados a un test de hipótesis:

- Error de tipo 1: Rechazar H_0 siendo cierta.
- Error de tipo 2: Aceptar H_0 siendo falsa.

Función de potencia de $\varphi(X_1,\ldots,X_n)$:

$$\beta_{\varphi}: \Theta \longrightarrow [0,1]$$
 $\theta \longmapsto \beta_{\varphi}(\theta) = E_{\theta} [\varphi(X_1,\ldots,X_n)]$ (probabilidad media de rechazar H_0 bajo P_{θ} .)

Tamaño de $\varphi(X_1,\ldots,X_n)$: $\sup_{\theta\in\Theta_0}\beta_{\varphi}(\theta)$ (máxima probabilidad media de cometer un error de tipo 1).

Nivel de significación de un test: $\varphi(X_1, ... X_n)$ tiene nivel de significación $\alpha \in [0, 1]$ si su tamaño es menor o igual que α (cota superior de las probabilidades medias de cometer error de tipo 1):

$$\forall \theta \in \Theta_0, \ \beta_{\varphi}(\theta) = E_{\theta} \left[\varphi(X_1, \dots, X_n) \right] \leq \alpha.$$

Test uniformemente más potente: Un test $\varphi(X_1, \ldots X_n)$ con nivel de significación α es uniformemente más potente a dicho nivel si para cualquier otro test, $\varphi'(X_1, \ldots X_n)$, con nivel de significación α , se tiene:

$$\beta_{\varphi'}(\theta) \le \beta_{\varphi}(\theta), \quad \forall \theta \in \Theta_1.$$

Resolución de un problema de contraste: fijado un nivel de significación, encontrar el test uniformemente más potente a dicho nivel.

7.2. LEMA DE NEYMAN-PEARSON $(H_0, H_1 \text{ simples})$

Sea $X \to \{P_{\theta}; \ \theta \in \{\theta_0, \theta_1\}\}\ y \ (X_1, \dots, X_n)$ una muestra aleatoria simple con funciones de densidad (o funciones masa de probabilidad) $f_0^n(x_1, \dots, x_n)$ ($\theta = \theta_0$) $y \ f_1^n(x_1, \dots, x_n)$ ($\theta = \theta_1$). Consideremos el problema de contraste

$$H_0: \theta = \theta_0$$

 $H_1: \theta = \theta_1$.

a) Sea $\varphi(X_1,\ldots,X_n)$ un test de la forma

$$\varphi(X_1, \dots, X_n) = \begin{cases} 1, & si \ f_1^n(X_1, \dots, X_n) > k f_0^n(X_1, \dots, X_n) \\ \gamma(X_1, \dots, X_n), & si \ f_1^n(X_1, \dots, X_n) = k f_0^n(X_1, \dots, X_n) \\ 0, & si \ f_1^n(X_1, \dots, X_n) < k f_0^n(X_1, \dots, X_n), \end{cases}$$

con $k \in \mathbb{R}^+ \cup \{0\}$ y $\gamma(X_1, \ldots, X_n) \in [0, 1]$. Si $\varphi(X_1, \ldots, X_n)$ tiene tamaño α , es de máxima potencia a nivel de significación α . Un test de esta forma se denomina test de Neyman-Pearson.

- b) Para todo $\alpha \in (0,1]$ existe un test de Neyman-Pearson de tamaño α , con $\gamma(X_1,\ldots,X_n) = \gamma$ constante.
- c) Si $\varphi'(X_1, ..., X_n)$ es un test de tamaño α y es de máxima potencia a nivel de significación α , $\varphi'(X_1, ..., X_n)$ es un test de Neyman-Pearson.
- d) El test de máxima potencia entre todos los de nivel de significación 0 (tamaño 0) es:

$$\varphi_0(X_1, \dots, X_n) = \begin{cases} 1, & si \ f_0^n(X_1, \dots, X_n) = 0 \\ 0, & si \ f_0^n(X_1, \dots, X_n) > 0. \end{cases}$$

7.3. TEST DE LA RAZÓN DE VEROSIMILITUDES $(H_0, H_1 \text{ arbitrarias})$

Sea $(X_1, ..., X_n) \in \chi^n$ una muestra aleatoria simple de $X \to \{P_\theta; \theta \in \Theta = \Theta_0 \cup \Theta_1\}$. El test de razón de verosimilitudes para el problema de contraste

$$H_0: \theta \in \Theta_0$$

$$H_1: \theta \in \Theta_1$$

se define como:

$$\varphi(X_1,\ldots,X_n) = \begin{cases} 1 & si \ \lambda(X_1,\ldots,X_n) < c \\ 0 & si \ \lambda(X_1,\ldots,X_n) \ge c \end{cases} \quad con \ \lambda(x_1,\ldots,x_n) = \frac{\sup_{\theta \in \Theta_0} L_{x_1,\ldots,x_n}(\theta)}{\sup_{\theta \in \Theta} L_{x_1,\ldots,x_n}(\theta)}, \ \forall (x_1,\ldots,x_n) \in \chi^n,$$

siendo $L_{x_1,...,x_n}$ la función de verosimilitud asociada a $(x_1,...,x_n)$, $y \in (0,1]$ una constante que se determina imponiendo el tamaño o nivel de significación requerido.

7.4. CONTRASTES SOBRE LOS PARÁMETROS DE UNA NORMAL

Contrastes sobre la media con varianza conocida

 (X_1,\ldots,X_n) muestra aleatoria simple de $X\longrightarrow \{\mathcal{N}(\mu,\sigma_0^2);\ \mu\in\mathbb{R}\}$

Función de verosimilitud:

$$(x_1, \dots, x_n) \in \mathbb{R}^n \longrightarrow L_{x_1, \dots, x_n}(\mu) = \frac{1}{(\sigma_0^2)^{n/2} (2\pi)^{n/2}} e^{-\sum_{i=1}^n (x_i - \mu)^2 / 2\sigma_0^2}, \quad \mu \in \mathbb{R}.$$

$$\sup_{\mu \in \mathbb{R}} L_{x_1,\dots,x_n}(\mu) = L_{x_1,\dots,x_n}(\overline{x})$$

$$\frac{H_0: \mu = \mu_0}{H_1: \mu \neq \mu_0} \text{ TRV de tamaño } \alpha \in [0, 1] \rightarrow \varphi(X_1, \dots, X_n) = \begin{cases}
1, & \text{si } \left| \frac{X - \mu_0}{\sigma_0 / \sqrt{n}} \right| > z_{\alpha/2} \\
0, & \text{si } \left| \frac{\overline{X} - \mu_0}{\sigma_0 / \sqrt{n}} \right| \leq z_{\alpha/2}
\end{cases}$$

$$\lambda(x_1, \dots, x_n) = \frac{\sup_{\mu = \mu_0} L_{x_1, \dots, x_n}(\mu)}{\sup_{\mu \in \mathbb{R}} L_{x_1, \dots, x_n}(\mu)} = \frac{L_{x_1, \dots, x_n}(\mu_0)}{L_{x_1, \dots, x_n}(\overline{x})} = \exp\left\{\frac{-n(\overline{x} - \mu_0)^2}{2\sigma_0^2}\right\}$$

$$\varphi(x_1, \dots, x_n) = \begin{cases} 1, & \lambda(x_1, \dots, x_n) < c & (\in (0, 1]) \\ 0, & \lambda(x_1, \dots, x_n) \ge c \end{cases} \Leftrightarrow \varphi(x_1, \dots, x_n) = \begin{cases} 1, & \left|\frac{\overline{x} - \mu_0}{\sigma_0 / \sqrt{n}}\right| > c' & (\ge 0) \\ 0, & \left|\frac{\overline{x} - \mu_0}{\sigma_0 / \sqrt{n}}\right| \le c' \end{cases}$$

$$\alpha = P_{\mu_0} \left(\left|\frac{\overline{X} - \mu_0}{\sigma_0 / \sqrt{n}}\right| > c'\right) = \left[Z \to \mathcal{N}(0, 1)\right] = P(|Z| > c') \Rightarrow c' = z_{\alpha/2} \ge 0, \ \forall \alpha \in [0, 1].$$

$$\begin{array}{c|c}
\hline
H_0: \mu \leq \mu_0 \\
H_1: \mu > \mu_0
\end{array}$$
TRV de tamaño $\alpha \leq 1/2 \rightarrow \varphi(X_1, \dots, X_n) = \begin{cases}
1, & \text{si } \frac{X - \mu_0}{\sigma_0 / \sqrt{n}} > z_\alpha \\
0, & \text{si } \frac{\overline{X} - \mu_0}{\sigma_0 / \sqrt{n}} \leq z_\alpha
\end{cases}$

$$\lambda(x_1,\ldots,x_n) = \frac{\sup\limits_{\mu \leq \mu_0} L_{x_1,\ldots,x_n}(\mu)}{L_{x_1,\ldots,x_n}(\overline{x})} = \begin{cases} 1, & \overline{x} - \mu_0 \\ \frac{L_{x_1,\ldots,x_n}(\mu_0)}{L_{x_1,\ldots,x_n}(\overline{x})}, & \overline{x} - \mu_0 \\ \frac{L_{x_1,\ldots,x_n}(\mu_0)}{L_{x_1,\ldots,x_n}(\overline{x})}, & \overline{x} - \mu_0 \\ \frac{L_{x_1,\ldots,x_n}(\mu_0)}{\sigma_0/\sqrt{n}} \geq 0 \end{cases}$$

$$\varphi(x_1,\ldots,x_n) = \begin{cases} 1, & \lambda(x_1,\ldots,x_n) < c \ (\in (0,1]) \\ 0, & \lambda(x_1,\ldots,x_n) \geq c \end{cases} \Leftrightarrow \varphi(x_1,\ldots,x_n) = \begin{cases} 1, & \overline{x} - \mu_0 \\ 0, & \overline{$$

$$\begin{array}{c|c}
\hline
H_0: \mu \ge \mu_0 \\
H_1: \mu < \mu_0
\end{array}$$
TRV de tamaño $\alpha \le 1/2 \rightarrow \varphi(X_1, \dots, X_n) = \begin{cases}
1, & \text{si } \frac{\overline{X} - \mu_0}{\sigma_0 / \sqrt{n}} < z_{1-\alpha} \\
0, & \text{si } \frac{\overline{X} - \mu_0}{\sigma_0 / \sqrt{n}} \ge z_{1-\alpha}
\end{cases}$

$$\lambda(x_1,\ldots,x_n) = \frac{\sup\limits_{\mu\geq\mu_0}L_{x_1,\ldots,x_n}(\mu)}{L_{x_1,\ldots,x_n}(\overline{x})} = \begin{cases} \frac{L_{x_1,\ldots,x_n}(\mu_0)}{L_{x_1,\ldots,x_n}(\overline{x})}, & \frac{\overline{x}-\mu_0}{\sigma_0/\sqrt{n}} \leq 0 \\ 1, & \frac{\overline{x}-\mu_0}{\sigma_0/\sqrt{n}} \geq 0 \end{cases}$$

$$\varphi(x_1,\ldots,x_n) = \begin{cases} 1, & \lambda(x_1,\ldots,x_n) < c \ (\in (0,1]) \\ 0, & \lambda(x_1,\ldots,x_n) \geq c \end{cases} \Leftrightarrow \varphi(x_1,\ldots,x_n) = \begin{cases} 1, & \frac{\overline{x}-\mu_0}{\sigma_0/\sqrt{n}} < c' \ (c'\leq 0) \\ 0, & \frac{\overline{x}-\mu_0}{\sigma_0/\sqrt{n}} < c' \end{cases} \Leftrightarrow \varphi(x_1,\ldots,x_n) = \begin{cases} 1, & \frac{\overline{x}-\mu_0}{\sigma_0/\sqrt{n}} < c' \ (c'\leq 0) \\ 0, & \frac{\overline{x}-\mu_0}{\sigma_0/\sqrt{n}} \geq c' \end{cases}$$

$$\alpha = \sup\limits_{\mu\geq\mu_0} P_{\mu} \left(\frac{\overline{X}-\mu_0}{\sigma_0/\sqrt{n}} < c' \right) = \sup\limits_{\mu\geq\mu_0} P_{\mu} \left(\overline{X} < \mu_0 + c' \frac{\sigma_0}{\sqrt{n}} \right) = \sup\limits_{\mu\geq\mu_0} P_{\mu} \left(\frac{\overline{X}-\mu}{\sigma_0/\sqrt{n}} < \frac{\mu_0-\mu}{\sigma_0/\sqrt{n}} + c' \right) = \\ \left[Z \to \mathcal{N}(0,1) \right] = \sup\limits_{\mu\geq\mu_0} P\left(Z < \frac{\mu_0-\mu}{\sigma_0/\sqrt{n}} + c' \right) = P\left(Z < c' \right) = \alpha \Rightarrow c' = z_{1-\alpha} \left(\leq 0 \Leftrightarrow \alpha \leq 1/2 \right)$$

Contrastes sobre la media con varianza desconocida

 (X_1,\ldots,X_n) muestra aleatoria simple de $X\longrightarrow \{\mathcal{N}(\mu,\sigma^2);\ \mu\in\mathbb{R},\ \sigma^2\in\mathbb{R}^+\}$

Función de verosimilitud:

$$(x_1, \dots, x_n) \in \mathbb{R}^n \longrightarrow L_{x_1, \dots, x_n}(\mu, \sigma^2) = \frac{1}{(\sigma^2)^{n/2} (2\pi)^{n/2}} e^{-\sum_{i=1}^n (x_i - \mu)^2 / 2\sigma^2}, \quad \mu \in \mathbb{R}, \ \sigma^2 \in \mathbb{R}^+.$$

$$\sup_{\mu \in \mathbb{R}, \sigma^2 \in \mathbb{R}^+} L_{x_1, \dots, x_n}(\mu, \sigma^2) = L_{x_1, \dots, x_n}(\overline{x}, \widehat{\sigma}^2), \quad \widehat{\sigma}^2 = \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n}$$

$$\sup_{\mu=\mu_0,\sigma^2\in\mathbb{R}^+} L_{x_1,\dots,x_n}(\mu,\sigma^2) = L_{x_1,\dots,x_n}(\mu_0,\widehat{\sigma}_0^2), \quad \widehat{\sigma}_0^2 = \frac{\sum_{i=1}^n (x_i - \mu_0)^2}{n}$$

$$\int_{\mathbb{R}^n} L_{x_1,\dots,x_n}(\overline{x},\widehat{\sigma}^2), \quad \overline{x} \leq \mu_0 \quad \Leftrightarrow \frac{\overline{x}}{n}$$

$$\sup_{\mu \ge \mu_0, \sigma^2 \in \mathbb{R}^+} L_{x_1, \dots, x_n}(\mu, \sigma^2) = \begin{cases} L_{x_1, \dots, x_n}(\mu_0, \widehat{\sigma}_0^2), & \overline{x} \le \mu_0 \ \left(\Leftrightarrow \frac{\overline{x} - \mu_0}{s / \sqrt{n}} \le 0 \right) \\ L_{x_1, \dots, x_n}(\overline{x}, \widehat{\sigma}^2), & \overline{x} \ge \mu_0 \ \left(\Leftrightarrow \frac{\overline{x} - \mu_0}{s / \sqrt{n}} \ge 0 \right) \end{cases}$$

$$\begin{bmatrix}
H_0: \mu = \mu_0 \\
H_1: \mu \neq \mu_0
\end{bmatrix} \text{ TRV de tamaño } \alpha \in [0, 1] \rightarrow \varphi(X_1, \dots, X_n) = \begin{cases}
1, & \text{si } \left| \frac{X - \mu_0}{S/\sqrt{n}} \right| > t_{n-1; \alpha/2} \\
0, & \text{si } \left| \frac{\overline{X} - \mu_0}{S/\sqrt{n}} \right| \leq t_{n-1; \alpha/2}
\end{cases}$$

$$\lambda(x_1,\ldots,x_n) = \frac{\sup\limits_{\mu=\mu_0,\sigma^2\in\mathbb{R}^+} L_{x_1,\ldots,x_n}(\mu,\sigma^2)}{\sup\limits_{\mu\in\mathbb{R},\sigma^2\in\mathbb{R}^+} L_{x_1,\ldots,x_n}(\mu,\sigma^2)} = \frac{L_{x_1,\ldots,x_n}(\mu_0,\widehat{\sigma}_0^2)}{L_{x_1,\ldots,x_n}(\overline{x},\widehat{\sigma}^2)} =$$

$$= \begin{bmatrix} \sum\limits_{i=1}^n (x_i-\overline{x})^2 \\ \sum\limits_{i=1}^n (x_i-\mu_0)^2 \end{bmatrix}^{n/2} = \begin{bmatrix} \sum\limits_{i=1}^n (x_i-\overline{x})^2 \\ \sum\limits_{i=1}^n (x_i-\overline{x})^2 + n(\overline{x}-\mu_0)^2 \end{bmatrix}^{n/2} = \begin{bmatrix} \frac{1}{1+\frac{n(\overline{x}-\mu_0)^2}{(n-1)s^2}} \end{bmatrix}^{n/2}$$

$$\varphi(x_1,\ldots,x_n) = \begin{cases} 1, \quad \lambda(x_1,\ldots,x_n) < c & (\in(0,1]) \\ 0, \quad \lambda(x_1,\ldots,x_n) \geq c \end{cases} \Leftrightarrow \varphi(x_1,\ldots,x_n) = \begin{cases} 1, \quad \left| \frac{\overline{x}-\mu_0}{s/\sqrt{n}} \right| > c' & (c'\geq 0) \\ 0, \quad \left| \frac{\overline{x}-\mu_0}{s/\sqrt{n}} \right| \leq c'. \end{cases}$$

$$\alpha = \sup\limits_{\sigma^2\in\mathbb{R}^+} P_{\mu_0,\sigma^2} \left(\left| \frac{\overline{X}-\mu_0}{s/\sqrt{n}} \right| > c' \right) = [T \to t(n-1)] = P(|T| > c') \Rightarrow c' = t_{n-1; \alpha/2} \geq 0, \ \forall \alpha \in [0,1].$$

INFERENCIA ESTADÍSTICA (G. I. Informática y Matemáticas) Tema 7: Contraste de hipótesis

$$\frac{H_0: \mu \leq \mu_0}{H_1: \mu > \mu_0} \quad \text{TRV de tamaño } \alpha \leq 1/2 \rightarrow \varphi(X_1, \dots, X_n) = \begin{cases}
1, & \text{si } \frac{X - \mu_0}{S/\sqrt{n}} > t_{n-1; \alpha} \\
0, & \text{si } \frac{\overline{X} - \mu_0}{S/\sqrt{n}} \leq t_{n-1; \alpha}
\end{cases}$$

$$\lambda(x_1,\ldots,x_n) = \frac{\sup\limits_{\mu \leq \mu_0,\sigma^2 \in \mathbb{R}^+} L_{x_1,\ldots,x_n}(\mu,\sigma^2)}{L_{x_1,\ldots,x_n}(\overline{x},\widehat{\sigma}^2)} = \begin{cases} 1, & \frac{\overline{x}-\mu_0}{s/\sqrt{n}} \leq 0 \\ \frac{L_{x_1,\ldots,x_n}(\mu_0,\widehat{\sigma}_0^2)}{L_{x_1,\ldots,x_n}(\overline{x},\widehat{\sigma}^2)}, & \frac{\overline{x}-\mu_0}{s/\sqrt{n}} \geq 0 \end{cases}$$

$$\varphi(x_1,\ldots,x_n) = \begin{cases} 1, & \lambda(x_1,\ldots,x_n) < c \ (\in (0,1]) \\ 0, & \lambda(x_1,\ldots,x_n) \geq c \end{cases} \Leftrightarrow \varphi(x_1,\ldots,x_n) = \begin{cases} 1, & \frac{\overline{x}-\mu_0}{s/\sqrt{n}} > c' \ (c' \geq 0) \\ 0, & \frac{\overline{x}-\mu_0}{s/\sqrt{n}} \leq c'. \end{cases}$$

$$\alpha = \sup\limits_{\mu \leq \mu_0,\sigma^2 \in \mathbb{R}^+} P_{\mu,\sigma^2} \left(\frac{\overline{X}-\mu_0}{S/\sqrt{n}} > c' \right) = \sup\limits_{\mu \leq \mu_0,\sigma^2 \in \mathbb{R}^+} P_{\mu,\sigma^2} \left(\overline{X} > \mu_0 + c' \frac{S}{\sqrt{n}} \right) = \sup\limits_{\mu \leq \mu_0,\sigma^2 \in \mathbb{R}^+} P_{\mu,\sigma^2} \left(\frac{\overline{X}-\mu}{S/\sqrt{n}} > \frac{\mu_0 - \mu}{S/\sqrt{n}} + c' \right) = \\ \left[T \to t(n-1) \right] = \sup\limits_{\mu \leq \mu_0} P\left(T > \frac{\mu_0 - \mu}{S/\sqrt{n}} + c' \right) = P\left(T > c' \right) = \alpha \Rightarrow c' = t_{n-1; \alpha} \ (\geq 0 \Leftrightarrow \alpha \leq 1/2) \end{cases}$$

$$\begin{array}{c}
H_0: \mu \geq \mu_0 \\
H_1: \mu < \mu_0
\end{array}
\text{ TRV de tamaño } \alpha \leq 1/2 \rightarrow \varphi(X_1, \dots, X_n) = \begin{cases}
1, & \text{si } \frac{X - \mu_0}{S/\sqrt{n}} < t_{n-1; 1-\alpha} \\
0, & \text{si } \frac{\overline{X} - \mu_0}{S/\sqrt{n}} \geq t_{n-1; 1-\alpha}
\end{cases}$$

$$\lambda(x_1,\ldots,x_n) = \frac{\sup\limits_{\mu \geq \mu_0,\sigma^2 \in \mathbb{R}^+} L_{x_1,\ldots,x_n}(\mu,\sigma^2)}{L_{x_1,\ldots,x_n}(\overline{x},\widehat{\sigma}^2)} = \begin{cases} \frac{L_{x_1,\ldots,x_n}(\mu_0,\widehat{\sigma}_0^2)}{L_{x_1,\ldots,x_n}(\overline{x},\widehat{\sigma}^2)}, & \frac{\overline{x}-\mu_0}{s/\sqrt{n}} \leq 0 \\ 1, & \frac{\overline{x}-\mu_0}{s/\sqrt{n}} \geq 0 \end{cases}$$

$$\varphi(x_1,\ldots,x_n) = \begin{cases} 1, & \lambda(x_1,\ldots,x_n) < c \ (\in (0,1]) \\ 0, & \lambda(x_1,\ldots,x_n) \geq c \end{cases} \Leftrightarrow \varphi(x_1,\ldots,x_n) = \begin{cases} 1, & \frac{\overline{x}-\mu_0}{s/\sqrt{n}} < c' \ (c' \leq 0) \\ 0, & \frac{\overline{x}-\mu_0}{s/\sqrt{n}} \geq c'. \end{cases}$$

$$\alpha = \sup\limits_{\mu \geq \mu_0,\sigma^2 \in \mathbb{R}^+} P_{\mu,\sigma^2} \left(\frac{\overline{X}-\mu_0}{s/\sqrt{n}} < c' \right) = \sup\limits_{\mu \geq \mu_0,\sigma^2 \in \mathbb{R}^+} P_{\mu,\sigma^2} \left(\overline{X} < \mu_0 + c' \frac{S}{\sqrt{n}} \right) = \sup\limits_{\mu \geq \mu_0,\sigma^2 \in \mathbb{R}^+} P_{\mu,\sigma^2} \left(\frac{\overline{X}-\mu}{s/\sqrt{n}} < \frac{\mu_0-\mu}{s/\sqrt{n}} + c' \right) = \\ \left[T \to t(n-1) \right] = \sup\limits_{\mu \geq \mu_0} P\left(T < \frac{\mu_0-\mu}{s/\sqrt{n}} + c' \right) = P\left(T < c' \right) = \alpha \Rightarrow c' = t_{n-1; \ 1-\alpha} \ (\geq 0 \Leftrightarrow \alpha \leq 1/2) \end{cases}$$

Contrastes sobre la varianza con media conocida

 (X_1,\ldots,X_n) muestra aleatoria simple de $X\longrightarrow \{\mathcal{N}(\mu_0,\sigma^2);\ \sigma^2\in\mathbb{R}^+\}$

Función de verosimilitud:

$$(x_1, \dots, x_n) \in \mathbb{R}^n \longrightarrow L_{x_1, \dots, x_n}(\sigma^2) = \frac{1}{(\sigma^2)^{n/2} (2\pi)^{n/2}} e^{-\sum_{i=1}^n (x_i - \mu_0)^2 / 2\sigma^2}, \quad \sigma^2 \in \mathbb{R}^+.$$

$$\sup_{\sigma^2 \in \mathbb{R}^+} L_{x_1, \dots, x_n}(\sigma^2) = L_{x_1, \dots, x_n}(\widehat{\sigma}_0^2), \quad \widehat{\sigma}_0^2 = \frac{\sum_{i=1}^n (x_i - \mu_0)^2}{n}$$

$$\sup_{\sigma^2 \le \sigma_0^2} L_{x_1, \dots, x_n}(\sigma^2) = \begin{cases} L_{x_1, \dots, x_n}(\widehat{\sigma}_0^2), & \widehat{\sigma}_0^2 \le \sigma_0^2 \ \left(\Leftrightarrow \frac{\sum_{i=1}^n (x_i - \mu_0)^2}{\sigma_0^2} \le n \right) \\ L_{x_1, \dots, x_n}(\sigma_0^2), & \widehat{\sigma}_0^2 \ge \sigma_0^2 \ \left(\Leftrightarrow \frac{\sum_{i=1}^n (x_i - \mu_0)^2}{\sigma_0^2} \ge n \right) \end{cases}$$

$$\frac{H_0: \sigma^2 = \sigma_0^2}{H_1: \sigma^2 \neq \sigma_0^2}$$

$$\text{TRV}(\approx) \text{ de tamaño } \alpha \in [0, 1] \to \varphi(X_1, \dots, X_n) = \begin{cases}
1, & \text{si } \frac{\sum_{i=1}^n (X_i - \mu_0)^2}{\sigma_0^2} < \chi_{n; 1-\alpha/2}^2 \text{ ó } > \chi_{n; \alpha/2}^2 \\
0, & \text{si } \chi_{n; 1-\alpha/2}^2 \leq \frac{\sum_{i=1}^n (X_i - \mu_0)^2}{\sigma_0^2} \leq \chi_{n; \alpha/2}^2.
\end{cases}$$

$$\lambda(x_1,\dots,x_n) = \frac{\sup\limits_{\sigma^2 = \sigma_0^2} L_{x_1,\dots,x_n}(\sigma^2)}{\sup\limits_{\sigma^2 \in \mathbb{R}^+} L_{x_1,\dots,x_n}(\sigma^2)} = \frac{L_{x_1,\dots,x_n}(\sigma_0^2)}{L_{x_1,\dots,x_n}(\hat{\sigma}_0^2)} = \left(\frac{\hat{\sigma}_0^2}{\sigma_0^2}\right)^{n/2} \exp\left\{\frac{-n\hat{\sigma}_0^2}{2\sigma_0^2} + \frac{n}{2}\right\} \quad \begin{array}{c} \mathbf{1} \\ \mathbf{c} \\$$

donde $c_1 \le n$ y $c_2 \ge n$ son tales que $(c_1/n)^{n/2}e^{-c_1/2+n/2} = (c_2/n)^{n/2}e^{-c_2/2+n/2}$ y

$$\alpha = P_{\sigma_0^2} \left(\frac{\sum\limits_{i=1}^n (X_i - \mu_0)^2}{\sigma_0^2} < c_1 \right) + P_{\sigma_0^2} \left(\frac{\sum\limits_{i=1}^n (X_i - \mu_0)^2}{\sigma_0^2} > c_2 \right) = P\left(Y < c_1 \right) + P\left(Y > c_2 \right), \text{ con } Y \to \chi^2(n).$$

En la práctica, se toma el test de colas iguales, $c_1=\chi^2_{n;\ 1-\alpha/2},\ c_2=\chi^2_{n;\ \alpha/2}$ ($\forall \alpha \in [0,1],\ \chi^2_{n;\ 1-\alpha/2} \leq \chi^2_{n;\ \alpha/2}$).

$$\begin{bmatrix}
H_0: \sigma^2 \leq \sigma_0^2 \\
H_1: \sigma^2 > \sigma_0^2
\end{bmatrix}$$
TRV de tamaño $\alpha \leq P(Y > n) \ (Y \to \chi^2(n)) \longrightarrow \varphi(X_1, \dots, X_n) = \begin{cases}
1, & \text{si } \frac{\sum\limits_{i=1}^n (X_i - \mu_0)^2}{\sigma_0^2} > \chi_{n; \alpha}^2 \\
0, & \text{si } \frac{\sum\limits_{i=1}^n (X_i - \mu_0)^2}{\sigma_0^2} \leq \chi_{n; \alpha}^2
\end{cases}$

$$\lambda(x_1,\ldots,x_n) = \frac{\sup\limits_{\sigma^2 \leq \sigma_0^2} L_{x_1,\ldots,x_n}(\sigma^2)}{L_{x_1,\ldots,x_n}(\hat{\sigma}_0^2)} = \begin{cases} 1, & \sum\limits_{i=1}^n (x_i - \mu_0)^2 \\ \frac{L_{x_1,\ldots,x_n}(\sigma_0^2)}{L_{x_1,\ldots,x_n}(\sigma^2)}, & \sum\limits_{i=1}^n (x_i - \mu_0)^2 \\ \frac{L_{x_1,\ldots,x_n}(\sigma^2)}{\sigma_0^2} \geq n \end{cases} = \begin{cases} 1, & \lambda(x_1,\ldots,x_n) < c \ (\in (0,1]) \\ 0, & \lambda(x_1,\ldots,x_n) \geq c \end{cases} \Leftrightarrow \varphi(x_1,\ldots,x_n) = \begin{cases} 1, & \sum\limits_{i=1}^n (x_i - \mu_0)^2 \\ 0, & \sum\limits_{$$

$$\frac{H_0: \sigma^2 \ge \sigma_0^2}{H_1: \sigma^2 < \sigma_0^2}$$
TRV de tamaño $\alpha \le P(Y \le n) \ (Y \to \chi^2(n)) \longrightarrow \varphi(X_1, \dots, X_n) = \begin{cases}
1, & \text{si } \frac{\sum_{i=1}^n (X_i - \mu_0)^2}{\sigma_0^2} < \chi_{n; 1-\alpha}^2 \\
0, & \text{si } \frac{\sum_{i=1}^n (X_i - \mu_0)^2}{\sigma_0^2} \ge \chi_{n; 1-\alpha}^2
\end{cases}$

$$\lambda(x_1,\ldots,x_n) = \frac{\sup\limits_{\sigma^2 \geq \sigma_0^2} L_{x_1,\ldots,x_n}(\sigma^2)}{L_{x_1,\ldots,x_n}(\widehat{\sigma}_0^2)} = \begin{cases} \frac{L_{x_1,\ldots,x_n}(\sigma_0^2)}{L_{x_1,\ldots,x_n}(\widehat{\sigma}_0^2)}, & \frac{\sum\limits_{i=1}^n (x_i-\mu_0)^2}{\sigma_0^2} \leq n \\ 1, & \sum\limits_{i=1}^n (x_i-\mu_0)^2 \geq n \end{cases}$$

$$\varphi(x_1,\ldots,x_n) = \begin{cases} 1, & \lambda(x_1,\ldots,x_n) < c \ (\in (0,1]) \\ 0, & \lambda(x_1,\ldots,x_n) \geq c \end{cases} \Leftrightarrow \varphi(x_1,\ldots,x_n) = \begin{cases} 1, & \sum\limits_{i=1}^n (x_i-\mu_0)^2}{\sigma_0^2} < c' \ (c' \leq n) \end{cases}$$

$$\alpha = \sup\limits_{\sigma^2 \geq \sigma_0^2} P_{\sigma^2} \left(\frac{\sum\limits_{i=1}^n (X_i-\mu_0)^2}{\sigma_0^2} < c' \right) = \sup\limits_{\sigma^2 \geq \sigma_0^2} P_{\sigma^2} \left(\frac{\sum\limits_{i=1}^n (X_i-\mu_0)^2}{\sigma^2} < c' \frac{\sigma_0^2}{\sigma^2} \right) = [Y \rightarrow \chi^2(n)] = \sup\limits_{\sigma^2 \geq \sigma_0^2} P\left(Y < c' \frac{\sigma_0^2}{\sigma^2}\right) = P\left(Y < c' \right) \Rightarrow c' = \chi_{n; \ 1-\alpha}^2 \left(\leq n \Leftrightarrow P\left(Y < n \right) \geq \alpha \right).$$

Contrastes sobre la varianza con media desconocida

 (X_1,\ldots,X_n) muestra aleatoria simple de $X\longrightarrow \{\mathcal{N}(\mu,\sigma^2);\ \mu\in\mathbb{R},\ \sigma^2\in\mathbb{R}^+\}$

Función de verosimilitud:

$$(x_1, \dots, x_n) \in \mathbb{R}^n \longrightarrow L_{x_1, \dots, x_n}(\mu, \sigma^2) = \frac{1}{(\sigma^2)^{n/2} (2\pi)^{n/2}} e^{-\sum_{i=1}^n (x_i - \mu)^2 / 2\sigma^2}, \quad \mu \in \mathbb{R}, \quad \sigma^2 \in \mathbb{R}^+.$$

$$\sup_{\mu \in \mathbb{R}, \sigma^2 \in \mathbb{R}^+} L_{x_1, \dots, x_n}(\mu, \sigma^2) = L_{x_1, \dots, x_n}(\overline{x}, \widehat{\sigma}^2), \quad \widehat{\sigma}^2 = \frac{\sum\limits_{i=1}^n (x_i - \overline{x})^2}{n} = \frac{(n-1)s^2}{n}.$$

$$\sup_{\mu \in \mathbb{R}, \sigma^2 = \sigma_0^2} L_{x_1, \dots, x_n}(\mu, \sigma^2) = L_{x_1, \dots, x_n}(\overline{x}, \sigma_0^2)$$

$$\sup_{\mu \in \mathbb{R}, \sigma^2 \le \sigma_0^2} L_{x_1, \dots, x_n}(\mu, \sigma^2) = \begin{cases} L_{x_1, \dots, x_n}(\overline{x}, \widehat{\sigma}^2), & \widehat{\sigma}^2 \le \sigma_0^2 \ \left(\Leftrightarrow \frac{(n-1)s^2}{\sigma_0^2} \le n \right) \\ L_{x_1, \dots, x_n}(\overline{x}, \sigma_0^2), & \widehat{\sigma}^2 \ge \sigma_0^2 \ \left(\Leftrightarrow \frac{(n-1)s^2}{\sigma_0^2} \ge n \right) \end{cases}$$

$$\sup_{\mu \in \mathbb{R}, \sigma^2 \ge \sigma_0^2} L_{x_1, \dots, x_n}(\mu, \sigma^2) = \left\{ \begin{array}{l} L_{x_1, \dots, x_n}(\overline{x}, \sigma_0^2), \quad \widehat{\sigma}^2 \le \sigma_0^2 \ \left(\Leftrightarrow \frac{(n-1)s^2}{\sigma_0^2} \le n \right) \\ \\ L_{x_1, \dots, x_n}(\overline{x}, \widehat{\sigma}_0^2), \quad \widehat{\sigma}^2 \ge \sigma_0^2 \ \left(\Leftrightarrow \frac{(n-1)s^2}{\sigma_0^2} \ge n \right) \end{array} \right.$$

$$\frac{H_0: \sigma^2 = \sigma_0^2}{H_1: \sigma^2 \neq \sigma_0^2}$$

$$\text{TRV}(\approx) \text{ de tamaño } \alpha \in [0, 1] \rightarrow \varphi(X_1, \dots, X_n) = \begin{cases}
1, & \text{si } \frac{(n-1)S^2}{\sigma_0^2} < \chi_{n-1; 1-\alpha/2}^2 \text{ ó } > \chi_{n-1; \alpha/2}^2 \\
0, & \text{si } \chi_{n-1; 1-\alpha/2}^2 \leq \frac{(n-1)S^2}{\sigma_0^2} \leq \chi_{n-1; \alpha/2}^2
\end{cases}$$

$$\lambda(x_1,\ldots,x_n) = \frac{\displaystyle\sup_{\mu\in\mathbb{R},\sigma^2=\sigma_0^2} L_{x_1,\ldots,x_n}(\mu,\sigma^2)}{\displaystyle\sup_{\mu\in\mathbb{R},\sigma^2\in\mathbb{R}^+} L_{x_1,\ldots,x_n}(\mu,\sigma^2)} = \frac{L_{x_1,\ldots,x_n}(\overline{x},\sigma_0^2)}{L_{x_1,\ldots,x_n}(\overline{x},\widehat{\sigma}^2)} = \left(\frac{\widehat{\sigma}^2}{\sigma_0^2}\right)^{n/2} \exp\left\{\frac{-n\widehat{\sigma}^2}{2\sigma_0^2} + \frac{n}{2}\right\} \quad \mathbf{c}$$

$$\varphi(x_1, \dots, x_n) = \begin{cases} 1, & \lambda(x_1, \dots, x_n) < c \ (\in (0, 1]) \\ 0, & \lambda(x_1, \dots, x_n) \ge c \end{cases} \Leftrightarrow \varphi(x_1, \dots, x_n) = \begin{cases} 1 & \text{si } \frac{(n-1)s^2}{\sigma_0^2} < c_1 \text{ ó } \frac{(n-1)s^2}{\sigma_0^2} > c_2 \\ 0 & \text{si } c_1 \le \frac{(n-1)s^2}{\sigma_0^2} \le c_2 \end{cases}$$

donde $c_1 \le n, \ c_2 \ge n, \ (c_1/n)^{n/2} e^{-c_1/2 + n/2} = (c_2/n)^{n/2} e^{-c_2/2 + n/2}$ son tales que

$$\alpha = \sup_{\mu \in \mathbb{R}} P_{\mu, \sigma_0^2} \left(\frac{(n-1)S^2}{\sigma_0^2} < c_1 \right) + \sup_{\mu \in \mathbb{R}} P_{\mu, \sigma_0^2} \left(\frac{(n-1)S^2}{\sigma_0^2} > c_2 \right) = \left[Y \to \chi^2(n-1) \right] = P\left(Y < c_1 \right) + P\left(Y > c_2 \right)$$

En la práctica, se toma el test de colas iguales, $c_1 = \chi^2_{n-1;1-\alpha/2}, \ c_2 = \chi^2_{n-1;\alpha/2} \ (\forall \alpha \in [0,1], \ \chi^2_{n-1;\ 1-\alpha/2} \le \chi^2_{n-1;\ \alpha/2}).$

$$\frac{H_0: \sigma^2 \leq \sigma_0^2}{H_1: \sigma^2 > \sigma_0^2}$$
TRV de tamaño $\alpha \leq P(Y > n) \ (Y \to \chi^2(n-1)) \longrightarrow \varphi(X_1, \dots, X_n) = \begin{cases} 1, & \text{si } \frac{(n-1)S^2}{\sigma_0^2} > \chi^2_{n-1; \alpha} \\ 0, & \text{si } \frac{(n-1)S^2}{\sigma_0^2} \leq \chi^2_{n-1; \alpha} \end{cases}$

$$\lambda(x_1,\ldots,x_n) = \frac{\sup\limits_{\mu\in\mathbb{R},\sigma^2\leq\sigma_0^2}L_{x_1,\ldots,x_n}(\mu,\sigma^2)}{L_{x_1,\ldots,x_n}(\overline{x},\widehat{\sigma}^2)} = \begin{cases} 1, & \frac{(n-1)s^2}{\sigma_0^2}\leq n\\ \frac{L_{x_1,\ldots,x_n}(\overline{x},\sigma_0^2)}{L_{x_1,\ldots,x_n}(\overline{x},\widehat{\sigma}^2)}, & \frac{(n-1)s^2}{\sigma_0^2}\geq n \end{cases}$$

$$\varphi(x_1,\ldots,x_n) = \begin{cases} 1, & \lambda(x_1,\ldots,x_n) < c \ (\in(0,1])\\ 0, & \lambda(x_1,\ldots,x_n) \geq c \end{cases} \Leftrightarrow \varphi(x_1,\ldots,x_n) = \begin{cases} 1 & \text{si } \frac{(n-1)s^2}{\sigma_0^2} > c' \ (c'\geq n)\\ 0 & \text{si } \frac{(n-1)s^2}{\sigma_0^2} \leq c'. \end{cases}$$

$$\alpha = \sup\limits_{\mu\in\mathbb{R},\sigma^2\leq\sigma_0^2} P_{\mu,\sigma^2}\left(\frac{(n-1)S^2}{\sigma_0^2} > c'\right) = \sup\limits_{\mu\in\mathbb{R},\sigma^2\leq\sigma_0^2} P_{\mu,\sigma^2}\left(\frac{(n-1)S^2}{\sigma^2} > c'\frac{\sigma_0^2}{\sigma^2}\right) = [Y \to \chi^2(n-1)] =$$

$$= \sup\limits_{\sigma^2\leq\sigma_0^2} P\left(Y > c'\frac{\sigma_0^2}{\sigma^2}\right) = P\left(Y > c'\right) \Rightarrow c' = \chi^2_{n-1}; \ \alpha \ \left(\geq n \Leftrightarrow P(Y > n) \geq \alpha\right).$$

$$\begin{bmatrix}
H_0: \sigma^2 \ge \sigma_0^2 \\
H_1: \sigma^2 < \sigma_0^2
\end{bmatrix}$$
TRV de tamaño $\alpha \le P(Y \le n) \ (Y \to \chi^2(n-1)) \longrightarrow \varphi(X_1, \dots, X_n) = \begin{cases}
1, & \text{si } \frac{(n-1)S^2}{\sigma_0^2} < \chi^2_{n-1; 1-\alpha} \\
0, & \text{si } \frac{(n-1)S^2}{\sigma_0^2} \ge \chi^2_{n-1; 1-\alpha}
\end{cases}$

$$\lambda(x_1,\ldots,x_n) = \frac{\sup\limits_{\mu\in\mathbb{R},\sigma^2\geq\sigma_0^2}L_{x_1,\ldots,x_n}(\mu,\sigma^2)}{L_{x_1,\ldots,x_n}(\overline{x},\widehat{\sigma}^2)} = \begin{cases} \frac{L_{x_1,\ldots,x_n}(\overline{x},\sigma_0^2)}{L_{x_1,\ldots,x_n}(\overline{x},\widehat{\sigma}^2)}, & \frac{(n-1)s^2}{\sigma_0^2}\leq n \\ 1, & \frac{(n-1)s^2}{\sigma_0^2} \geq n \end{cases}$$

$$\varphi(x_1,\ldots,x_n) = \begin{cases} 1, & \lambda(x_1,\ldots,x_n) < c \ (\in(0,1]) \\ 0, & \lambda(x_1,\ldots,x_n) \geq c \end{cases} \Leftrightarrow \varphi(x_1,\ldots,x_n) = \begin{cases} 1 & \text{si } \frac{(n-1)s^2}{\sigma_0^2} < c' \ (c'\leq n) \\ 0 & \text{si } \frac{(n-1)s^2}{\sigma_0^2} \geq c'. \end{cases}$$

$$\alpha = \sup\limits_{\mu\in\mathbb{R},\sigma^2\geq\sigma_0^2} P_{\mu,\sigma^2}\left(\frac{(n-1)S^2}{\sigma_0^2} < c'\right) = \sup\limits_{\mu\in\mathbb{R},\sigma^2\geq\sigma_0^2} P_{\mu,\sigma^2}\left(\frac{(n-1)S^2}{\sigma^2} < c'\frac{\sigma_0^2}{\sigma^2}\right) = \left[Y \to \chi^2(n-1)\right] =$$

$$= \sup\limits_{\sigma^2\geq\sigma_0^2} P\left(Y < c'\frac{\sigma_0^2}{\sigma^2}\right) = P\left(Y < c'\right) \Rightarrow c' = \chi^2_{n-1;\ 1-\alpha} \ \left(\geq n \Leftrightarrow P\left(Y < n\right) \geq \alpha\right).$$

TESTS E INTERVALOS EN POBLACIONES NORMALES

Contraste	Región de rechazo $\sigma^2 = \sigma_0^2 \text{ conocida}$	Región de rechazo σ^2 desconocida
$H_0: \mu = \mu_0$ $H_1: \mu \neq \mu_0$	$\left \frac{\overline{X} - \mu_0}{\sigma_0/\sqrt{n}}\right > z_{\alpha/2}$	$\left \frac{\overline{X} - \mu_0}{S/\sqrt{n}}\right > t_{n-1; \alpha/2}$
1 / / / 0	$\mu_0 \notin \left(\overline{X} - z_{\alpha/2} \frac{\sigma_0}{\sqrt{n}}, \ \overline{X} + z_{\alpha/2} \frac{\sigma_0}{\sqrt{n}}\right)$	$\mu_0 \notin \left(\overline{X} - t_{n-1; \alpha/2} \frac{S}{\sqrt{n}}, \overline{X} + t_{n-1; \alpha/2} \frac{S}{\sqrt{n}}\right)$
$H_0: \mu \le \mu_0$ $H_1: \mu > \mu_0$	$\frac{\overline{X} - \mu_0}{\sigma_0 / \sqrt{n}} > z_\alpha$	$\frac{\overline{X} - \mu_0}{S/\sqrt{n}} > t_{n-1; \alpha}$
$111 \cdot \mu > \mu_0$	$\mu_0 \notin \left(\overline{X} - z_\alpha \frac{\sigma_0}{\sqrt{n}}, +\infty\right)$	$\mu_0 \notin \left(\overline{X} - t_{n-1; \alpha} \frac{S}{\sqrt{n}}, +\infty\right)$
$H_0: \mu \ge \mu_0$ $H_1: \mu < \mu_0$	$\frac{\overline{X} - \mu_0}{\sigma_0 / \sqrt{n}} < z_{1 - \alpha}$	$\frac{\overline{X} - \mu_0}{S/\sqrt{n}} < t_{n-1; 1-\alpha}$
1 - 1- 7	$\mu_0 \notin \left(-\infty, \ \overline{X} + z_\alpha \frac{\sigma_0}{\sqrt{n}}\right)$	$\mu_0 \notin \left(-\infty, \ \overline{X} + t_{n-1; \ \alpha} \frac{S}{\sqrt{n}}\right)$

Contraste	Región de rechazo $\mu = \mu_0$ conocida	Región de rechazo μ desconocida		
$H_0: \sigma^2 = \sigma_0^2$ $H_1: \sigma^2 \neq \sigma_0^2$	$\sum_{i=1}^{n} (X_i - \mu_0)^2$	$\frac{(n-1)S^2}{\sigma_0^2} < \chi_{n-1; \ 1-\alpha/2}^2 \ \ \acute{o} \ \ > \chi_{n-1; \ \alpha/2}^2$ $\sigma_0^2 \notin \left(\frac{(n-1)S^2}{\chi_{n-1; \ \alpha/2}^2}, \ \frac{(n-1)S^2}{\chi_{n-1; \ 1-\alpha/2}^2}\right)$		
$H_0: \sigma^2 \le \sigma_0^2$ $H_1: \sigma^2 > \sigma_0^2$	$\frac{\sum_{i=1}^{n} (X_i - \mu_0)^2}{\sigma_0^2} > \chi_{n; \alpha}^2$ $\sigma_0^2 \notin \left(\frac{\sum_{i=1}^{n} (X_i - \mu_0)^2}{\chi_{n; \alpha}^2}, +\infty\right)$	$\frac{(n-1)S^2}{\sigma_0^2} > \chi_{n-1; \alpha}^2$ $\sigma_0^2 \notin \left(\frac{(n-1)S^2}{\chi_{n-1; \alpha}^2}, +\infty\right)$		
$H_0:\sigma^2\geq\sigma_0^2\ H_1:\sigma^2<\sigma_0^2$	$\frac{\sum_{i=1}^{n} (X_i - \mu_0)^2}{\sigma_0^2} < \chi_{n; 1-\alpha}^2$ $\sigma_0^2 \notin \left(0, \frac{\sum_{i=1}^{n} (X_i - \mu_0)^2}{\chi_{n; 1-\alpha}^2}\right)$	$\frac{(n-1)S^2}{\sigma_0^2} < \chi_{n-1; 1-\alpha}^2$ $\sigma_0^2 \notin \left(0, \frac{(n-1)S^2}{\chi_{n-1; 1-\alpha}^2}\right)$		

INFERENCIA E	ESTADÍSTICA (G.	1. Intormática	y Matemáticas)	Tema 7: Contrast	e de hipótesis

DE CONFLANZA CONES NORMALES rechard $\alpha^2 - \alpha^2$ descrincida	Región de rechazo, $\sigma_1^2 = \sigma_2^2$ desconocida	e rechazo, $\sigma_1^2 = \sigma_2^2$ desconocida $\frac{\overline{X} - \overline{Y} }{(n_2 - 1)S_2^2} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} > t_{n_1 + n_2 - 2; \; \alpha/2}$ $2 - 2 \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$	$\frac{\overline{X} - \overline{Y}}{\sqrt{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} > t_{n_1 + n_2 - 2; \alpha}$ $\overline{X} - \overline{Y} - t_{n_1 + n_2 - 2; \alpha} \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}, +\infty$	Región de rechazo, μ_1, μ_2 desconocidas	$\frac{S_1^2}{S_2^2} < F_{n_1 - 1, n_2 - 1; 1 - \alpha/2} \ \delta \ > F_{n_1 - 1, n_2 - 1; \alpha/2}$	$1 \notin \left(F_{n_2 - 1, n_1 - 1; \ 1 - \alpha/2} \frac{S_1^2}{S_2^2}, \ F_{n_2 - 1, n_1 - 1; \ \alpha/2} \frac{S_1^2}{S_2^2} \right)$	$\frac{S_1^2}{S_2^2} > F_{n_1 - 1, n_2 - 1; \ \alpha}$	$1 \notin \left(F_{n_2 - 1, n_1 - 1; \ 1 - \alpha} \frac{S_1^2}{S_2^2}, + \infty \right)$
7.5. TESTS DE HIPÓTESIS E INTERVALOS DE CONFIANZA PARA LOS PARÁMETROS DE DOS POBLACIONES NORMALES	σ_1^2, σ_2^2 conocidas	$\frac{ \overline{X} - \overline{Y} }{n_1 + n_2} > z_{\alpha/2}$ $\sqrt{\frac{n_1 - 1)S_1^2 + (n_2 - 1)}{n_1 + n_2 - 2}}$ $-\overline{Y} \mp z_{\alpha/2} \sqrt{\frac{\sigma_1^2 + \sigma_2^2}{n_1 + n_2}}$ $0 \notin \left(\overline{X} - \overline{Y} \mp t_{n_1 + n_2 - 2}; \alpha/2\right)$	$\frac{\overline{X} - \overline{Y}}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} > z_{\alpha}$ $\sqrt{\frac{(n_1 - 1)S_1^2 + (n_2)}{n_1 + n_2 - z}}$ $\overline{Y} - z_{\alpha} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}, +\infty$ $0 \notin \left(\overline{X} - \overline{Y} - t_{n_1 + n_2 - 2}; \alpha \sqrt{\frac{\sigma_1^2}{n_2}}\right)$	Región de rechazo, μ_1,μ_2 conocidas	$(i - \mu_1)^2/n_1$ $(i - \mu_2)^2/n_2$ $< F_{n_1, n_2}, 1_{-\alpha/2} \circ > F_{n_1, n_2}, \alpha/2$	$\sum_{\substack{i=1\\i=1}}^{n_1} (X_i - \mu_1)^2 / n_1$ $\sum_{\substack{i=1\\i=1}}^{n_1} (X_i - \mu_1)^2 / n_1$ $F_{n_2,n_1; \alpha/2} \sum_{\substack{n_2\\n_2\\i=1}}^{n_1} (X_i - \mu_1)^2 / n_2$	$\sum_{i=1}^{n_1} (X_i - \mu_1)^2 / n_1$ $\sum_{i=1}^{n_2} (Y_i - \mu_2)^2 / n_2$ $> F_{n_1, n_2}; \alpha$	$\left(F_{n_2,n_1;\ 1-\alpha} \sum_{\substack{i=1\\i=1}}^{n_1} (X_i - \mu_1)^2/n_1, +\infty\right)$
7.5. TE PARA LO	Contraste Región de rechazo,	$H_0:\mu_1=\mu_2 \ H_1:\mu_1 eq \mu_2 \ 0 otin 0 otin 0$	$H_0: \mu_1 \leq \mu_2$ $H_1: \mu_1 > \mu_2$ $0 \notin \left(\overline{X} - \frac{1}{2}\right)$	Contraste R	$ \sum_{i=1}^{n_1} (X_i) $ $ H_0: \sigma_1^2 = \sigma_2^2 $ $ \prod_{i=1}^{n_2} (Y_i) $	$1 \notin \left(F_{n_2,n_1; \ 1} \right)$	$H_0:\sigma_{rac{1}{3}}^2\leq\sigma_{rac{3}{2}}^2$	^

INFERENCIA E	ESTADÍSTICA (G.	1. Intormática	y Matemáticas)	Tema 7: Contrast	e de hipótesis

7.6. DUALIDAD ENTRE TESTS DE HIPÓTESIS Y REGIONES DE CONFIANZA

Sea $X \to \{P_{\theta}; \ \theta \in \Theta\}$ y (X_1, \dots, X_n) una muestra aleatoria simple de X. Para cada $\theta_0 \in \Theta$ consideramos un conjunto $A(\theta_0) \subseteq \chi^n$ y, para cada realización muestral, $(x_1, \dots, x_n) \in \chi^n$, definimos:

$$\varphi_{\theta_0}(x_1, \dots, x_n) = \begin{cases} 1 & si \ (x_1, \dots, x_n) \notin A(\theta_0) \\ 0 & si \ (x_1, \dots, x_n) \in A(\theta_0). \end{cases}$$
$$S(x_1, \dots, x_n) = \{ \theta \in \Theta \ / \ (x_1, \dots, x_n) \in A(\theta) \} \subseteq \Theta.$$

Cada uno de lo tests $\varphi_{\theta_0}(X_1,\ldots,X_n)$ aplicado al problema de contrastar $H_0:\theta=\theta_0$ frente a $H_1:\theta\neq\theta_0$ tiene nivel de significación α si, y sólo si, $S(X_1,\ldots,X_n)$ es una región de confianza para θ al nivel de confianza $1-\alpha$.

DEMOSTRACIÓN LEMA DE NEYMAN-PEARSON

Sea $X \to \{P_{\theta}; \ \theta \in \{\theta_0, \theta_1\}\}\ y \ (X_1, \dots, X_n)$ una muestra aleatoria simple con funciones de densidad (o funciones masa de probabilidad) $f_0^n(x_1, \dots, x_n)$ ($\theta = \theta_0$) $y \ f_1^n(x_1, \dots, x_n)$ ($\theta = \theta_1$). Consideremos el problema de contraste

$$H_0: \theta = \theta_0$$

$$H_1: \theta = \theta_1.$$

a) Sea $\varphi(X_1,\ldots,X_n)$ un test de la forma

$$\varphi(X_1, \dots, X_n) = \begin{cases} 1, & si \ f_1^n(X_1, \dots, X_n) > k f_0^n(X_1, \dots, X_n) \\ \gamma(X_1, \dots, X_n), & si \ f_1^n(X_1, \dots, X_n) = k f_0^n(X_1, \dots, X_n) \\ 0, & si \ f_1^n(X_1, \dots, X_n) < k f_0^n(X_1, \dots, X_n), \end{cases}$$

con $k \in \mathbb{R}^+ \cup \{0\}$ y $\gamma(X_1, \ldots, X_n) \in [0, 1]$. Si $\varphi(X_1, \ldots, X_n)$ tiene tamaño α , es de máxima potencia a nivel de significación α .

Demostración: Supondremos que X es de tipo continuo y, para simplificar, notaremos $\mathbf{X} = (X_1, \ldots, X_n)$ a la muestra aleatoria simple y $\mathbf{x} = (x_1, \ldots, x_n) \in \chi^n$ a las realizaciones muestrales. Así,

$$\beta_{\varphi}(\theta_i) = E_{\theta_i}[\varphi(\mathbf{X})] = \int_{\chi^n} \varphi(\mathbf{x}) f_i^n(\mathbf{x}) d\mathbf{x}, \quad i = 0, 1.$$

Una demostración totalmente similar puede hacerse con variables discretas, sustituyendo las densidades por las funciones masa de probabilidad y las integrales por sumas.

Consideremos la siguiente integral:

$$I = \int_{\gamma^n} h(\mathbf{x}) d\mathbf{x}, \quad h(\mathbf{x}) = [\varphi(\mathbf{x}) - \varphi'(\mathbf{x})][f_1^n(\mathbf{x}) - kf_0^n(\mathbf{x})], \ \mathbf{x} \in \chi^n.$$

Teniendo en cuenta la forma de φ y que $\varphi' \in [0, 1]$ tenemos:

- $f_1^n(\mathbf{x}) > kf_0^n(\mathbf{x}) \Rightarrow h(\mathbf{x}) = [1 \varphi'(\mathbf{x})][f_1^n(\mathbf{x}) kf_0^n(\mathbf{x})] \ge 0.$
- $f_1^n(\mathbf{x}) < kf_0^n(\mathbf{x}) \Rightarrow h(\mathbf{x}) = [-\varphi'(\mathbf{x})][f_1^n(\mathbf{x}) kf_0^n(\mathbf{x})] \ge 0.$
- $f_1^n(\mathbf{x}) = k f_0^n(\mathbf{x}) \Rightarrow h(\mathbf{x}) = 0.$

Esto es, $h \ge 0$ y, consecuentemente, $I \ge 0$. Entonces, desarrollando h tenemos:

$$I = \int_{\chi^n} \varphi(\mathbf{x}) f_1^n(\mathbf{x}) d\mathbf{x} - \int_{\chi^n} \varphi'(\mathbf{x}) f_1^n(\mathbf{x}) d\mathbf{x} - k \left(\int_{\chi^n} \varphi(\mathbf{x}) f_0^n(\mathbf{x}) d\mathbf{x} - \int_{\chi^n} \varphi'(\mathbf{x}) f_0^n(\mathbf{x}) d\mathbf{x} \right)$$

= $\beta_{\varphi}(\theta_1) - \beta_{\varphi'}(\theta_1) - k(\alpha - E_{\theta_0} [\varphi'(\mathbf{X})]) \ge 0 \Rightarrow \beta_{\varphi}(\theta_1) - \beta_{\varphi'}(\theta_1) \ge k(\alpha - E_{\theta_0} [\varphi'(\mathbf{X})]).$

Por tanto, como $k \geq 0$ y $E_{\theta_0}[\varphi'(\boldsymbol{X})] \leq \alpha$, el segundo miembro es no negativo y, por tanto, el primero también. Esto es, $\beta_{\varphi}(\theta_1) \geq \beta_{\varphi'}(\theta_1)$.

b) Para todo $\alpha \in (0,1]$ existe un test de Neyman-Pearson de tamaño α , con $\gamma(\mathbf{X}) = \gamma$ constante.

Demostración: Dado $\alpha \in (0,1]$, hacemos $\gamma(\boldsymbol{X}) = \gamma$ en el test de Neyman-Pearson, $\varphi(\boldsymbol{X})$, y probamos que existen $k \geq 0$ y $\gamma \in [0,1]$ tales que el test tiene tamaño α . Esto es:

$$\alpha = E_{\theta_0}[\varphi(\boldsymbol{X})] = P_{\theta_0}(f_1^n(\boldsymbol{X}) > kf_0^n(\boldsymbol{X})) + \gamma P_{\theta_0}(f_1^n(\boldsymbol{X}) = kf_0^n(\boldsymbol{X}))^{-1}$$
$$= P_{\theta_0}\left(\frac{f_1^n(\boldsymbol{X})}{f_0^n(\boldsymbol{X})} > k\right) + \gamma P_{\theta_0}\left(\frac{f_1^n(\boldsymbol{X})}{f_0^n(\boldsymbol{X})} = k\right).$$

Equivalentemente, notando H_{θ_0} la función de distribución de $f_1^n(\mathbf{X})/f_0^n(\mathbf{X}) \ge 0$ bajo P_{θ_0} , dado $\alpha \in (0, 1]$, debemos encontrar $k \ge 0$ y $\gamma \in [0, 1]$ tales que:

$$1 - \alpha = H_{\theta_0}(k) - \gamma (H_{\theta_0}(k) - H_{\theta_0}(k^-)).$$

Existen dos posibilidades:

a)
$$\exists k_0 \ge 0 / H_{\theta_0}(k_0) = 1 - \alpha \rightarrow k = k_0, \ \gamma = 0.$$

b)
$$\exists k_1 \ge 0 / H_{\theta_0}(k_1^-) \le 1 - \alpha < H_{\theta_0}(k_1)$$

 $\rightarrow k = k_1, \ \gamma = \frac{H_{\theta_0}(k_1) - (1 - \alpha)}{H_{\theta_0}(k_1) - H_{\theta_0}(k_1^-)} \in (0, 1).$

c) Si $\varphi'(X)$ es un test de tamaño α y es de máxima potencia a nivel de significación α , $\varphi'(X)$ es un test de Neyman-Pearson.

Demostración: Por b), dado $\alpha = E_{\theta_0} [\varphi'(\mathbf{X})]$, podemos encontrar un test de Neyman-Pearson de tamaño α , $\varphi(\mathbf{X})$. Puesto que $\varphi(\mathbf{X})$ y $\varphi'(\mathbf{X})$ son de máxima potencia, ésta debe ser la misma, y ambos tests tienen el mismo tamaño y la misma potencia. Por tanto:

$$I = \int_{\chi^n} \left[\varphi(\mathbf{x}) - \varphi'(\mathbf{x}) \right] \left[f_1^n(\mathbf{x}) - k f_0^n(\mathbf{x}) \right] d\mathbf{x} = \beta_{\varphi}(\theta_1) - \beta_{\varphi'}(\theta_1) - k \left(\beta_{\varphi}(\theta_0) - \beta_{\varphi'}(\theta_0) \right) = 0.$$

Ya que, según se probó en el apartado a), el integrando es una función no negativa, I=0 significa que el integrando es nulo (salvo, quizás, en conjuntos con medida de Lebesgue nula, que tienen probabilidades nulas). Esto es:

•
$$f_1^n(\mathbf{x}) > k f_0^n(\mathbf{x}) \Rightarrow \varphi'(\mathbf{x}) = \varphi(\mathbf{x}) = 1.$$

•
$$f_1^n(\mathbf{x}) < k f_0^n(\mathbf{x}) \Rightarrow \varphi'(\mathbf{x}) = \varphi(\mathbf{x}) = 0.$$

Por tanto:

$$\varphi'(\mathbf{X}) = \begin{cases} 1, & f_1^n(\mathbf{X}) > kf_0^n(\mathbf{X}) \\ \gamma'(\mathbf{X}), & f_1^n(\mathbf{X}) = kf_0^n(\mathbf{X}) \\ 0, & f_1^n(\mathbf{X}) < kf_0^n(\mathbf{X}). \end{cases}$$

$${}^{1}P_{\theta_{0}}(f_{0}^{n}(\mathbf{X}) = 0) = \int_{\{\mathbf{x} \in \chi^{n} / f_{0}^{n}(\mathbf{x}) = 0\}} f_{0}^{n}(\mathbf{x}) d\mathbf{x} = 0.$$

d) El test de máxima potencia entre todos los de nivel de significación 0 (tamaño 0) es:

$$\varphi_0(\boldsymbol{X}) = \begin{cases} 1, & f_0^n(\boldsymbol{X}) = 0 \\ 0, & f_0^n(\boldsymbol{X}) > 0. \end{cases}$$

Demostración: Puesto que $P_{\theta_0}(f_0^n(\boldsymbol{X}) = 0)$, es inmediato que el test $\varphi_0(\boldsymbol{X})$ tiene tamaño 0.

Si $\varphi'_0(\mathbf{X})$ es cualquier otro test de tamaño cero, $E_{\theta_0}[\varphi'_0(\mathbf{X})] = 0$, y al ser una función no negativa, debe anularse en $\{\mathbf{x} \in \chi^n \ / \ f_0^n(\mathbf{x}) > 0\}$. Esto es:

$$\varphi_0'(\mathbf{X}) = \begin{cases} \gamma(\mathbf{X}), & f_0^n(\mathbf{X}) = 0, \\ 0, & f_0^n(\mathbf{X}) > 0, \end{cases} \qquad \gamma(\mathbf{X}) \in [0, 1].$$

Por tanto, $\varphi'_0(\boldsymbol{X}) \leq \varphi_0(\boldsymbol{X})$ y, consecuentemente:

$$\beta_{\varphi_0'}(\theta_1) = E_{\theta_1} \left[\varphi_0'(\boldsymbol{X}) \right] \le E_{\theta_1} \left[\varphi_0(\boldsymbol{X}) \right] = \beta_{\varphi_0}(\theta_1).$$

Expresión del test para su resolución en diferentes situaciones prácticas:

$$\chi_0 = \{x/f_0(x) > 0\}; \quad \chi_1 = \{x/f_1(x) > 0\}.$$

• $\chi_0 \supseteq \chi_1 \Rightarrow \chi^n = \chi_0^n = \{(x_1, \dots, x_n) / f_0^n(x_1, \dots x_n) \neq 0\}.$

En esta situación, se puede dividir siempre por $f_0^n(x_1, \dots x_n)$ y la función test queda:

$$\varphi(x_1, \dots, x_n) = \begin{cases} 1 & \text{si } \lambda(x_1, \dots, x_n) > k \\ \gamma & \text{si } \lambda(x_1, \dots, x_n) = k \\ 0 & \text{si } \lambda(x_1, \dots, x_n) < k, \end{cases} \quad \text{con } \lambda(x_1, \dots, x_n) = \frac{f_1^n(x_1, \dots, x_n)}{f_0^n(x_1, \dots, x_n)}.$$

• $\chi_0 \subset \chi_1 \Rightarrow \chi^n = \chi_1^n = \{(x_1, \dots, x_n) / f_1^n(x_1, \dots x_n) \neq 0\}.$

Existen realizaciones muestrales para las que $f_0^n(x_1, \dots x_n) = 0$ y no se puede dividir. Sin embargo, en estos casos es obvio que, $f_1^n(x_1, \dots x_n) > k f_0^n(x_1, \dots x_n)$, $\forall k \geq 0$, lo que significa que tales realizaciones conducen al rechazo de H_0 en cualquier test de Neyman-Pearson, y éste se expresa como:

$$\varphi(x_1, \dots, x_n) = \begin{cases} 1 & \text{si } f_0^n(x_1, \dots, x_n) = 0 \\ 1 & \text{si } f_0^n(x_1, \dots, x_n) \neq 0 \text{ y } \lambda(x_1, \dots, x_n) > k \\ \\ \gamma & \text{si } f_0^n(x_1, \dots, x_n) \neq 0 \text{ y } \lambda(x_1, \dots, x_n) = k \\ 0 & \text{si } f_0^n(x_1, \dots, x_n) \neq 0 \text{ y } \lambda(x_1, \dots, x_n) < k. \end{cases}$$