USN						
	 	_	 	 	 	<u> </u>

PES UNIVERSITY, BANGALORE-85

(Established under Karnataka Act 16 of 2013)

UE19/20MA151D

(Lateral

END SEMESTER ASSESSMENT, BE IVSEM

Entry only)

December-2021

ENGINEERING MATHEMATICS-II

(Common for All Branches)

Sub Code: UE19/20MA151D

Time	: 2 Hrs	Answer All Questions Max Marks: 50	
1.	a)	Find the value of 'a' for vector field $\vec{F} = y(ax^2+1)\hat{\imath} + x(y^2-z^2)\hat{\jmath} + 2xy(z-xy)\hat{k}$ i. \vec{F} is source field ii. \vec{F} is sink field iii. \vec{F} is solenoidal field Given x,y > 0	5
	b)	Find the angle between the surface $x^2 + y^2 + z^2 = 9$ and $z^2 + y^2 - 3 = x$ at (2,-1,2)	5
2.	a)	Evaluate $\int_C \vec{F} \cdot \vec{dr}$ Where $\vec{F} = y^2 \hat{i} + 2xy \hat{j}$ and C is straight line joining (0,0) to (1,2)	5
	b)	Evaluate $\oint_{\mathbb{C}} (3x^2-8y^2) dx + (4y-6xy) dy$, using Green's theorem. Where C is the closed curve bounded by $y=x^2$, and $y=\sqrt{x}$	5
3. a)	a)	Find the Laplace transform of the following function $ i. \qquad e^{-2t}(2\cos 5t - \sin 5t) \\ ii. \qquad t(\cos at) $	5
	b)	Evaluate L[\frac{\cosat - \cosbt}{\tau}]	5
	a)	Solve $\frac{d^2y}{dx^2} + 4\frac{dy}{dt} + 4y = e^{-t}$, using Laplace transforms given that $y(0) = 0$, $y^1(0) = 0$,	6
	b)	Evaluate $L^{-1} \left[\frac{3}{s^2} + \frac{2e^{-s}}{s^3} - \frac{3e^{-2s}}{s} \right]$	4
5. a)	a)	Find the Fourier series for the function $f(x) = x^2$ in the interval $(-l, l)$	6
	b)	Express $f(x) = x$ as half range sine series in $0 < x < 2$	4