

Computer Hardware Engineering (IS1200) Computer Organization and Components (IS1500)

Fall 2020

Lecture 7: Combinational Logic

Note: This lecture is optional for IS1200 (for review only)

Artur Podobas

Researcher, KTH Royal Institute of Technology

Slides by David Broman (extensions by Artur Podobas), KTH

Course Structure

Artur Podobas podobas@kth.se

Part I
Gates and
Boolean Algebra

Part II
Building Blocks: Multiplexers,
Decoders, and Adders

Part III Logisim Demo

Abstractions in Computer Systems

Networked Systems and Systems of Systems **Computer System Application Software** Software **Operating System** Hardware/Software Interface **Instruction Set Architecture Microarchitecture** Digital Hardware Design Logic and Building Blocks **Digital Circuits Analog Circuits** Analog Design and Physics **Devices and Physics**

Artur Podobas podobas@kth.se

Part I
Gates and
Boolean Algebra

Part II
Building Blocks: Multiplexers,
Decoders, and Adders

Part III Logisim Demo

Agenda

Part II
Building Blocks: Multiplexers,
Decoders, and Adders

Part III Logisim Demo

Part I Gates and Boolean Algebra

Acknowledgement: The structure and several of the good examples are derived from the book "Digital Design and Computer Architecture" (2013) by D. M. Harris and S. L. Harris.

Logic Gates (1/3) AND, OR, NOT, and BUF

A	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

0

_ <i>A</i>	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

The small circle (called a bubble) inverses the signal.

NOT is also called an inverter.

Looks like **not**, but has no circle.

Α	Y
0	0
1	1

Buffer. Logically the same as a wire. Relevant from an analog point of view.

Logic Gates (2/3) NAND, NOR, XOR, and XNOR

NAND	A)o- Y
	B-	

NOT AND. Note the

Small bubble at the end

A	В	Υ
0	0	1
0	1	1
1	0	1
1	1	0

NOR
$$B \longrightarrow Y$$

NOT OR.

Α	В	Y
0	0	1
0	1	0
1	0	0
1	1	0
		l

Exclusive OR, pronounced "ex-or".

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

XNOR
$$B \rightarrow Y$$

Exclusive NOT OR.

Ü	U	1
0	1	0
1	0	0
1	1	1

Logic Gates (3/3) Multi-Input Logic Gates

Gates can be generalized to have more than two inputs. For instance:

AND gate with 3 inputs.

NOT OR gate with 5 inputs.

Exclusive OR gate with 3 inputs.

An N-input XOR	ABC	<u>Y</u>
gate is also called	0 0 0	0
a parity gate. It	0 0 1	1
outputs 1 when	0 1 0	0
odd number of	0 1 1	0
inputs are 1.	1 0 0	1
	1 0 1	0
	1 1 0	0
	1 1 1	4

Combinational Circuit

This circuit is **combinational** because its outputs depend *only* on its inputs. The circuit is *memoryless*, that is, it has no memory.

We will introduce memories in Lecture 8

Observe that this (rather useless) circuit always outputs 1. As a logic formula, this is called a **tautology**.

Combinational Circuit

Problematic Circuits

Unstable circuit.

What is the value of Q?

Answer: it oscillates. This circuit is called a **ring oscillator**.

Illegal value (X)

What is the value of Q?

Answer: Q = **X**, called an unknown or illegal value. For example, when a wire is driven to both 0 and 1 at the same time.

This situation is called **contention**.

Floating Values and Tristate Buffers

A tristate (or three-state) buffer has high impedance if the output enable signal E is not active.

Commonly used in **buses** when connecting multiple chips. If the buffers are not enabled at the same time, contention is avoided.

EA	Y	
0 0	Z	_
0 1	Z	K
1 0	0	
1 1	1	
	l	

When the enable signal is not active, the output is said to be **floating** (using symbol Z).

Boolean Algebra (1/4) Truth Tables and Sum-of-Products Form

A truth table with random output (we have seen them before).

Boolean Algebra (1/4) Truth Tables and Sum-of-Products Form

$\mathbf{V}_{1}\mathbf{Z}_{0}$
1 1
1 0
0 1
0 1
0 0
0 0
0 0
0 0

Count leading zeroes: Given a bit vector b₂b₁b₁, count the number of leading zeroes and output as c_1c_0 .

$$Y = \overline{ABC} + \overline{ABC}$$

$$Z = \overline{ABC} + \overline{A}B\overline{C} + \overline{A}BC$$

Boolean Algebra (2/4) Some Theorems

Theorem	Dual	Name		
$A \bullet 1 = A$	A+0 = A	Identity	Exercise: Derive the simple	est
$A \bullet 0 = 0$	<i>A</i> +1 = 1	Null Element	form of expressi	on
$A \bullet A = A$	A+A=A	Idempotency	$BA + A\overline{B} + A$	
$\overline{\overline{A}} = A$		Involution	Solution:	
$A \bullet \overline{A} = 0$	$A+\overline{A}=1$	Complements	$BA + A\overline{B} + A$	
$A \bullet B = B \bullet A$	A+B=B+A	Commutativity	$=AB+A\overline{B}+A$	Commutativity
(A•B)•C=	(A+B)+C=	Associativity	$=A(B+\overline{B})+A$	Distributivity
<i>A</i> •(<i>B</i> • <i>C</i>)	A+(B+C)	Associativity	$= A \cdot 1 + A$	Complements (dual)
$(A \cdot B) + (A \cdot C) =$	(A+B)•(A+C)= A+(B•C) ►	Distributivity	=A+A	Identity
<i>A</i> •(<i>B</i> + <i>C</i>)	,	as traditional algebra	=A	Indempotency (dual)

Boolean Algebra (3/4) De Morgan's Theorem

Theorem

Dual

$$\overline{A_1 \cdot A_2 \cdot A_3} \dots = (\overline{A}_1 + \overline{A}_2 + \overline{A}_3 \dots)$$

$$\overline{A_1 + A_2 + A_3} \dots = (\overline{A}_1 \bullet \overline{A}_2 \bullet \overline{A}_3 \dots)$$

The law shows that these gates are equivalent

Augustus De Morgan British mathematician and logician (1806 – 1871).

$$\overline{AB} = \overline{A} + \overline{B} = Y$$

$$\begin{array}{ccc}
A & & & & & & & \\
B & & & & & & \\
\hline
A+B & = \overline{A} & \overline{B} & = Y
\end{array}$$

Important law. For CMOS (Complementary metal—oxide—semiconductor), **NAND** and **NOR** gates are preferred over AND and OR gates, and are also universal (any other gates can be constructed using e.g., NAND).

But how can we know that this theorem is true?

Boolean Algebra (4/4) Proof by Perfect Induction

Perfect Induction = Proof by Exhaustion = Proof by Cases

Prove the De Morgan's Theorem for three variables

$$\overline{ABC} = \overline{A} + \overline{B} + \overline{C}$$

Proof by **perfect induction**. Exhaustively show all cases in a truth table.

Note that these two columns are equal

ABC	ABC	$\overline{A} + \overline{B} + \overline{C}$
0 0 0	1	1
0 0 1	1	1
0 1 0	1	1
0 1 1	1	1
1 0 0	1	1
1 0 1	1	1
1 1 0	1	1
1 1 1	0	0

Part II

Building Blocks: Multiplexers, Decoders, and Adders

Acknowledgement: The structure and several of the good examples are derived from the book "Digital Design and Computer Architecture" (2013) by D. M. Harris and S. L. Harris.

Abstractions in Computer Systems

Part I
Gates and
Boolean Algebra

Building Blocks: Multiplexers, Decoders, and Adders

Part III Logisim Demo

Combinational Blocks (1/3) Multiplexers

One possible implementation. Convince yourself of its correctness!

Artur Podobas

Combinational Blocks (2/3) Multiplexers

A multiplexer can be seen as a simple switch, selecting which signal that should pass through the block.

4:1 multiplexer (4 inputs, 1 output).

What is the output signal Y for the 4:1 multiplexer with these inputs?

$$D0 = 1$$
, $D1 = 0$, $D2=1$, $D3=0$, $S1 = 1$, $S0 = 0$ Answer: $Y = 1$

A 4:1 multiplexer can be defined hierarchically.

Part II

Building Blocks: Multiplexers,

Decoders, and Adders

Combinational Blocks (3/3) Decoders

A **decoder** has N inputs and 2^N outputs. Asserts exactly one output.

2:4 decoder (2 inputs, 4 output).

A1	<i>A0</i>	Y3	Y2	Y1	<i>Y0</i>
0	0	0 0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0
	'				

Note that only one signal is 1 on each row. This is called **one-hot**.

Part II

Arithmetic Circuits and Numbers (1/7) Half and Full Adders

A half adder has a carry out signal.

How can we add bigger numbers?

Idea: Chain adders together...

Α	В	S	C_{out}
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

A **full adder** has both *carry out* and *carry in* signals.

				•	
C_{in}	A	В	S	C_{out}	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	
	_	4	\sim	4	

Exercise:
Complete the truth table

Part I
Gates and
Boolean Algebra

Arithmetic Circuits and Numbers (2/7) Carry Propagate Adders

An N-bit carry propagate adder (CPA) sums two N-bit inputs.

Note the notation for a N-bit bus. $C_{out} \xrightarrow{A} \xrightarrow{B} C_{in}$ See course book (advanced part)

Three common implementations of CPAs are:

- Ripple-carry adder Simple but slow.
- Carry-lookahead adder Faster, divides into blocks.
- Prefix adder
 Even faster. Used in modern computers.

32-bit ripple-carry adder

Part I
Gates and
Boolean Algebra

Part II
Building Blocks: Multiplexers,
Decoders, and Adders

Part III Logisim Demo

Arithmetic Circuits and Numbers: Remember this circuit?

Written another way:

$$A_{1..0} = 0.01$$

 $A_{1..0} = 0.01$
 $A_{1..0} = 0.01$
 $A_{1..0} = 0.01$
 $A_{1..0} = 0.01$

A 2 bit adder! (without a carryout for the second bit)

Part I
Gates and
Boolean Algebra

Part II
Building Blocks: Multiplexers,
Decoders, and Adders

Part III Logisim Demo

Arithmetic Circuits and Numbers (7/7) Subtract

Subtract is simple to implemented with a carry propagate adder (CPA):

Invert input signal B and set $C_{in} = 1$.

Note that setting *carry in* to 1 adds 1 to A + B.

We can easily create a circuit where

K = 0 results in A + B and

K = 1 results in A - B

In lecture 9, we will generalize this idea into an *Arithmetic/Logic Unit (ALU)*, one of the main components of a processor.

Part III Logisim Demo

Logisim

Free graphical digital circuit simulator. Used in the LD-LAB and in LAB4.

Graphical Model CanvasBoth for construction and simulation

Explorer Pane Building blocks 1 · Constant and gates A Transistor Transmission Gate Sit Extended AND Gate D OR Gate NAND Gate NOR Gate Circuit: main Shared Label Facing SansSerif Plain 12 **Attribute Table** Configure different components

Part I
Gates and
Boolean Algebra

Part II
Building Blocks: Multiplexers,
Decoders, and Adders

Some Different Notations in Logisim

Part I
Gates and
Boolean Algebra

Part II
Building Blocks: Multiplexers,
Decoders, and Adders

Hardware Description Languages

Logisim is a simple graphical design and simulation environment for *educational purposes*.

Professional hardware designers work in textual Hardware Description Languages (HDL).

For those who are interested, see Harris & Harris (2012), chapter 4. This is not part of the course.

The two most commonly used HDLs in industry are:

- Verilog/System Verilog. Used a lot in USA/Japan. C-like syntax.
- VHDL. Used more in Europe. Ada-like syntax.

It also exist recent domain-specific languages (DSLs) for hardware design. Ex. **Chisel** from UC Berkeley (embedded in Scala). Also, there are tools that convert from C-code directly to Hardware; these are called **High-Level Synthesis** tools and are becoming very popular.

We will soon finish!

Part I
Gates and
Boolean Algebra

Part II
Building Blocks: Multiplexers,
Decoders, and Adders

Part III Logisim Demo

Reading Guidelines

Module 3: Logic Design

Lecture 7: Combinational Logic Design

H&H Chapters 1.5, 2.1-2.4, 2.6, 2.8-2.9

Lecture 8: Sequential Logic Design

H&H Chapters 3.1-3.3 (not 3.2.7),
 3.4.1-3.4.3, 5.2.1-5.2.2, 5.5.5

Reading Guidelines

See the course webpage for more information.

Summary

Some key take away points:

- Combinational logic design: Output is directly dependent on input. There is no memory.
- Main components to remember: multiplexer, decoder, and adder.

 Next lecture is about sequential logic design; circuits with memory.

Thanks for listening!