Introducción a Destilación

IIQ2023 - Operaciones Unitarias II

José Rebolledo Oyarce

18 de Marzo de 2021

Contenidos

- Objetivos de la Clase
- Introducción de Conceptos Claves
 - Presión Parcial
 - Diagrama de Temperatura Composición
 - Volatilidad relativa
- Destilación Flash o de Equilibrio
 - Balances en la Operación Unitaria

Objetivos de la Clase

- Recordar los principios de la destilación.
- Comprender cómo la destilación en una sola etapa restringe la posibilidad de separación, a través del análisis de la destilación flash.

Efecto de Mezclar un compuesto volátil con uno NO volátil

Presión de vapor como función de fracción molar de soluto no volátil x₂

Solución Ideal

 La presión de vapor de la solución diluida (x2 → 0) se aproxima a la línea recta. Esto se cumple ∀ solución diluida.

 Una solución ideal es aquella en la cual la presión de vapor disminuye en forma lineal cuando aumenta la [c] de soluto, en todo el intervalo de [c] y se obtiene:

Presión de vapor como función de fracción molar de soluto no volátil x₂

Solución Ideal

 La presión de vapor de la solución diluida (x2 → 0) se aproxima a la línea recta. Esto se cumple ∀ solución diluida.

 Una solución ideal es aquella en la cual la presión de vapor disminuye en forma lineal cuando aumenta la [c] de soluto, en todo el intervalo de [c] y se obtiene:

Ley de Raoult

$$p_v = x \cdot p_v^o$$

Presión de vapor como función de fracción molar de soluto no volátil x₂

Solución ideal de Múltiples Componentes

El concepto de solución ideal se extiende a una solución binaria en la que ambos constituyentes son volátiles.

Ley de Dalton

$$p_{total} = p_A + p_B$$

Donde p_i = Presión parcial del compuesto i en el gas

Entonces para soluciones diluidas en equilibrio:

$$p_i = x_{ig} \cdot p_{vi}^o$$

Donde x_{ig} corresponde a la fracción molar del compuesto i en el gas.

Ejemplo de Solución ideal de Múltiples Componentes

La solución ideal es aquella en que se cumple lo anterior para todo el intervalo de concentraciones y para ambas sustancias:

¿Qué pasa en solución reales (no ideales)?

Aplica para compuesto A en bajas concentraciones

Ley de Henry

Aplica para 1 compuesto A en altas concentraciones $p_A = H_A \cdot x_A$

¿Qué pasa en solución reales (no ideales)?

¿Qué pasa en solución reales (no ideales)?

Diagrama de Temperatura - Composición

Para una mezcla binaria de A y B que se comporta idealmente, la composición de una fase liquida (I) y otra gaseosa (g) que se encuentran en equilibrio a una presión P y temperatura T esta dada por:

$$X_{A,l} = \frac{1 - K_B}{K_A - K_B}$$
$$X_{A,g} = K_A \cdot X_{A,l}$$

donde:

$$K_A = \frac{1}{P} \cdot \exp\left(A_A - \frac{B_A}{T + C_A}\right)$$

$$K_B = \frac{1}{P} \cdot \exp\left(A_B - \frac{B_B}{T + C_B}\right)$$

Ejercicio: Diagrama de Temperatura - Composición

Identifique en el gráfico los siguiente:

- 1. ¿A que fases corresponden cada una de las regiones?
- Indique a que corresponde cada una de las curvas y a través de qué expresión matemática se determinan

13

Volatilidad relativa

La volatilidad relativa de dos componentes es una medida de la facilidad con que estas sustancias pueden separarse por destilación.

Se define por medio de la ecuación:

$$\alpha_{i,j} = \frac{y_i/x_i}{y_j/x_j}$$

donde $\alpha_{i,j}$ es la volatilidad relativa del componente i con respecto al componente j , x e y son las fracciones molares en el líquido y en el vapor respectivamente.

En el proceso de destilación hace uso de que la volatilidad relativa de 2 compuestos es > 1.

Relación entre Volatilidad y Presión Parcial

En una mezcla líquida que se comporta idealmente, bajo condiciones de equilibrio fisicoquímico con una fase gaseosa, se cumple que:

$$P \cdot y_i = p_i^o(T) \cdot x_i$$

Reemplazando en la definición se obtiene que:

$$\alpha_{i,j} = \frac{y_i/x_i}{y_j/x_j} = \frac{K_i}{K_j} = \frac{p_i^o(T)}{p_j^o(T)}$$

Por otro lado, un reordenamiento de la ecuación resulta en:

$$\alpha_{i,j} = \frac{y_i/x_i}{y_j/x_j} = \frac{y_i/x_i}{(1-y_i)/(1-x_i)} \iff y_i = \frac{\alpha_{i,j} \cdot x_i}{1 + (\alpha_{i,j} - 1) \cdot x_i}$$

$$\alpha_{A,B} = \frac{\exp\left(14,7171 - \frac{2975,95}{T - 34,5228}\right)}{\exp\left(16,5362 - \frac{3985,44}{T - 38,9974}\right)}$$

Desde 329,3 K
$$\alpha_{A,B} = 4,788$$
 Hasta 373,2 K

Compuesto más volátil sobre la línea de 45°

Fracción molar de acetona en líquido (x_A)

Destilación Flash o de Equilibrio

F = flujo molar de la alimentación

z_A = fracción molar del componente volátil (A) en la alimentación

V = flujo molar del vapor

y_D = fracción molar de A en el vapor

L = fujo molar de líquido

x_B = fracción molar de A en el líquido

Proceso continuo, en estado estacionario, de una etapa, en que el vapor generado esta en equilibrio fisicoquímico con el líquido generado, i.e. y_D y x_B están en equilibrio (existe gran contacto entre el líquido y el vapor antes de separación)

Balance General de Flujo

Flujos Entrantes = Flujos Salientes

$$F = V + L$$

Balance de Masa del Compuesto A

$$F \cdot z_A = V \cdot y_D + L \cdot x_B \iff z_A = \frac{V}{L+V} \cdot y_D + \frac{L}{L+V} \cdot x_B \tag{1}$$

Pero si definimos lo siguiente:

$$f = \frac{V}{L+V}$$
 (fracción vaporizada)

$$\therefore \frac{L}{L+V} = 1 - f$$

Reemplazando en la ecuación (1):

$$z_A = f \cdot y_D + (1 - f) \cdot x_B$$

$$y = -\frac{(1-f)}{f} \cdot x + \frac{z}{f}$$
 Ecuación de una recta con pendiente –(1-f)/f que corta a x=y en x = y = z

Entonces por balance de materia tenemos que:

$$y = -\frac{(1-f)}{f} \cdot x + \frac{z}{f}$$

Además, x_B e y_D (incógnitas) se pueden relacionar por la ecuación de equilibrio (por definición):

$$y = \frac{\alpha \cdot x}{1 + (\alpha - 1) \cdot x}$$

∃ 2 ecuaciones con 2 incógnitas

Fracción molar comp. más volátil en líquido (x)

21

Ejemplo: Sistema Benceno-Tolueno

22

Introducción a Destilación 17 de marzo de 2021

Conceptos Revisados en la Clase

- Recordaron los principios de la destilación.
- Comprendieron las restricciones de la destilación flash en una sola etapa.

Introducción a Destilación

IIQ2023 - Operaciones Unitarias II

José Rebolledo Oyarce

18 de Marzo de 2021

