

				Sub	ject	Coc	le: F	CE	301
Roll No:									

Printed Page: 1 of 3

BTECH (SEM III) THEORY EXAMINATION 2021-22 ENGG. MECHANICS

Time: 3 Hours Total Marks: 100

Notes:

- Attempt all Sections and Assume any missing data.
- Appropriate marks are allotted to each question, answer accordingly.

SECT	ON-A Attempt All of	the following Questions in brief	Marks (10X2=20)	CO					
Q1(a)	Write down the different t	ypes of supports and loading system.		3					
Q1(b)	Define work and power. V	Vrite the mathematical relation and SI un	it.	4					
Q1(c)	Q1(c) Define center of mass and write down the coordinates of center of gravity of triangle.								
Q1(d)	What is the difference between colinear and concurrent forces?								
Q1(e)	Write down D'Alembert's Principle.								
Q1(f)	A body of weight 50N placed on a horizontal surface is just moved by a force of 29N. Find								
	the frictional force and norn	nal reaction.							
Q1(g)	What do you understand b	y point of contraflexure?		3					
Q1(h)	Discuss the merits and der	nerits of friction.		1					
Q1(i)	Calculate the bending mor	nent at centre of a simply supported bear	n carrying a point load.	3					
Q1(j)	Two spheres of weight P a	nd Q rest inside a hollow cylinder which	is resting on a horizonta	1					
	force. Draw the free body d	iagram of both the spheres, together and	separately.						

	force. Draw the free body diagram of both the spheres, together and separately.	
SECT	ION-B Attempt ANY THREE of the following Questions Marks (3X10=30)	CO
Q2(a)	Two channels are kept as shown in given figure, at a distance d between them to form the cross section of a column. Find the value of the distance 'd' if the centroidal moment of inertia I_x and I_y of the area are equal.	2
Q2(b)	A uniform rod 4 m long weighing 400 N is rigidly connected to the centre of a cylinder of mass 30 kg, as shown in given figure. The diameter of cylinder is 2 m. Find the linear acceleration of block weighted 2000 N connected to the cylinder by an inextensible string. $r = 1 \text{ m}$ $m = 30 \text{ kg}$	5
Q2(c)	Explain the principle of virtual work. A simply supported beam AB of span 5 m is loaded as shown in given figure, Using the principle of virtual work, find the reactions at A and B.	3
Q2(d)	State and prove Lami's theorem. Two spheres, A and B, are resting in a smooth through as shown in given figure. Draw the free body diagrams of A and B showing all the forces acting on them, both in magnitude and direction. Radius of spheres A and B are 250 mm and 200 mm, respectively.	1

				Sub	ject	Coc	le: F	CE	301
Roll No:									

Printed Page: 2 of 3

BTECH (SEM III) THEORY EXAMINATION 2021-22 ENGG. MECHANICS

Q2(e) Differentiate between rectilinear and curvilinear motion. Also derive the expression for the Horizontal Range, Time of flight and maximum height of a projectile with initial velocity 'u' and inclined at an angle "α" with the horizontal.

SECT	ION-C	Attempt ANY	ONE following	ng Question		Marks (1X10=10)	CO
Q3(a)	A ladder against a vecoefficient is 0.2 and the ladder a man weight Calculate the against the ladder a man weight calculate the same a man weight the ladder a man weight the same a man weight the ladder a man weight the same against the ladder against the same against the ladder	of length ertical wall, as of friction bet hat between the in addition to ghing 600 N a	4 m weighi shown in give ween the wall a e ladder and th ts own weight l t a distance of orizontal force	ing 200 N in figure. The and the ladder e floor is 0.3 has to suppor 3 m from A	e - - t	600 N B 200 N 60°	1
Q3(b)		_	ity and centroic		E 0	8 m	2

SECTION-C	Attempt ANY ONE following Quest:	ion	Marks (1X10=10)	CO
- ' '	SF and BM diagram for the simply beam loaded as shown gimen	A 1 mm B 1 mm	8 5 E E C 1 mm D 1 mm	3
and EF by	forces in the members DF, DE, CE method of joints only for the pinme shown in given figure.	40 kN 6 m D 6	30 kN 20 kN m F 6 m G	3

SECTION-C		Attempt ANY ONE following Question	Marks (1X10=10)	CO				
Q5(a)	State Wor	k Energy principle. A uniform cylinder of 125mm radi	us has a mass of 0.15 kg	. 4				
,	This cylinder rolls without slipping along a horizontal surface with a translation velocity of							
	20cm/sec.	Determine its total kinetic energy.	·					

Printed Page: 3 of 3
Subject Code: KCE301
Roll No:

BTECH (SEM III) THEORY EXAMINATION 2021-22 ENGG. MECHANICS

Q5(b) Block P of mass 5 kg and block Q of mass 'm' kg are suspended through the chord, which is in the equilibrium position, as shown ginven figure Determine the mass of block Q.

SECT	ION-C	Attempt ANY ONE following Question	l	Marks (1X10=10)	CO						
Q6(a)	Derive an equation for moment of inertia of triangle centroidal axis and about its base.										
Q6(b)	Find the r	noment of inertia of shaded area shown		<i>y</i> _♠	2						
	in given fi	gure, about x-x axis and y-y axis.	20 cm	0 20 cm 10 cm							

SECT	ION-C	Attempt Al	NY ONE fo	ollowing	Question	1		Ma	rks (1X10=1	0) CO	
Q7(a)	Two bodi	ies A and B	of mass 80							5	
	kg and 20	kg are conne	ected by a			A					
	thread and	l move along	g a rough				٦		В		
	horizontal	plane under	the action	40037		80 Kg			20		
		400 N appl		400N	•	30 Kg			Kg		
	first body of	of mass 80 kg	; as shown		111111	111111		11111			
	in given f	igure. The c	oefficient								
	of friction	between the	sliding su	rfaces of	the boo	lies and t	the plane	is 0.3.	Determine th	ne	
	acceleratio	on of the two	bodies and	the tension	on in the	thread, u	ising D' A	lember	t's principle.		
Q7(b)	The c	rank BC	of a	slider	crai	nk me	chanism	is	rotating	at 5co	nstant
	speed of 3	0 rpm, as she	own in give	en figure	e clockw	ise. Dete	rmine the	veloci	ty of the cros	s-	
	head A at t	the given inst	tant.								
							B				
				4	400 mm		77				
			_			/	//100 mm				
		A	0			del	\60°				
		Th	iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
						C					
<u> </u>											