NCTU-EE DCS-2019

OT

Design: B2BCD

資料準備

- 1. 從 TA 目錄資料夾解壓縮 % tar -xvf ~dcsta01/OT.tar
- 2. 解壓縮資料夾 OT 包含以下:
 - A. 00 TESTBED/
 - B. 01 RTL/
 - C. 02 SYN/

Block Diagram

設計描述

OT 主要分成 sorting、B2BCD、7 段顯示器三大部分,下面依序講解。

Sorting

一開始 in_data(4bit)會連續給出 4 個個位數字(0~9),需要經過 sorting 後,以 A, B, C, D 表示(A>B>C>D),並且進行以下的合併再進行兩位數乘法。D 與 C 放在十位數,B 與 A 放在個位數,如下所示。

DB × CA

Example: in_data 連續吐 1、5、5、1, sorting 後變為, 5, 5, 1, 1(ABCD), 則為 15*15 = 255。

B2BCD:

這是一個將二進位轉成 BCD(二進碼十進數)的過程,在這種編碼下我們會用 4 位元表示一個十進位的數字。例如:25(10)在 BCD 中會表示成 0010_0101(BCD)。 上一步驟乘法出來後為 8bit(不會 overflow),並且可以用以下過程將 8bit 的 2 進 位,轉成用 4bit+4bit+4bit 共 12bit 二進位的方式表示十進位結果。

Exaple: 參考下圖

假設計算完後的結果為 255,可以用 1111_1111(8bit)來表示二進位。 將其經過 BCD 轉換後會變成 0010_0101_0101(12bit)來表示其 BCD 形式,分別就 代表 0010(2)、0101(5)、0101(5),三個十進位。

以下介紹轉換過程,可參考下圖。

Step1: 將 data 往左 shift 1bit。

Step2: 檢查 Hundreds、Tens、Units 各 4bit 數值是否大於 4,若大於則加上 3。(在下圖中都是以綠色框框代表需要加 3)

Step3.4.5.6...: 重複 step1、step2,直到 shift 八次後則得到結果。

最後的結果會得到 4bit 的 Hundreds 0010、4bit 的 Tens 0101、4bit 的 Units 0101。

Operation	Hundreds	Tens	Units	Rin	nary
HEX			Oillis		
Start				F	F
Shift 1				1 1 1 1	1 1 1 1
Shift 2			1	1 1 1 1	1 1 1
Shift 3			1 1	1 1 1 1	1 1
Add 3		-	1 1 1	1 1 1 1	1
Shift 4			1010	1 1 1 1	1
Add 3		1	0 1 0 1	1 1 1 1	
Shift 5		1	1000	1 1 1 1	
Shift 6		11	0 0 0 1	1 1 1	
Add 3	(110	0 0 1 1	1 1	
Shift 7		1001	0 0 1 1	1 1	
	1	0 0 1 0	0 1 1 1	1	
Add 3	1	0 0 1 0	1010	1	
Shift 8	1 0	0 1 0 1	0 1 0 1	-	
BCD	2	5	5		

7段顯示器:

將上一步的結果用三個七段顯示器表示出來,百位數用 seg_100 ,十位數用 seg_10 ,個位數用 seg_1 。

下面附上七段顯示器的 spec。

Digit	Display
0	0
1	8
2	9
3	3
4	8
5	5
6	8
7	8
8	8
9	9

MSB(Most Significant Bit) is A and LSB(Least Significant Bit) is G. DP will

be ignored.

Example:上一步驟出來的 12bit 10 進位為 255,因此為

Seg_100 =7'b 1101101

Seg_10 = 7'b 1011011

Seg_1 = 7'b 1011011

Signal name	Number of bit	Description	
clk	1 bit	Clock 5ns	
rst_n	1 bit	Asynchronous active-low reset	
in_valid	1 bit	為 1 時代表給 in_data 資料,連續給滿 4 cycle	
in_data	4 bit	計算用資料,連續吐 4cycle,收完後必 須先經過 sorting。(unsigned)	

Output

Signal name	Number of	Description
out_valid	1 bit	為 1 時代表 output seg_100 等值,維持一個 cycle。
seg_100	7 bit	顯示百位數的七段顯示器。
seg_10	7 bit	顯示十位數的七段顯示器。
seg_1 7 bit		顯示個位數的七段顯示器。

這次提供 5 組測資,請利用讀檔的方式下去讀取檔案。

Input.txt 每四個數字為一組,依序給值

Output.txt 每一個數字為乘法後的結果

Example Waveform

Specification

- Top module name : B2BCD(File name: B2BCD.sv)
- 2. 所有 output 必須為 0,在非同步負準位 reset。
- 3. 02_SYN result 不行有 error 且不能有 latchs。
- 4. Clock period 5ns •
- 5. Input delay = 0.5 * clock period; output delay = 0.5 * clock period;
- 6. 一定要使用以上 B2BCD 的方式

上傳檔案

- 1. Code 使用 09_upload 上傳。
- 2. 請 6/3 15:30 之前上傳(上傳時讓助教去協助)

Grading Policy

1. Pass the RTL & Synthesis simulation. 100%

Note

Template folders and reference commands:

- 1. 01_RTL/ (RTL simulation) ./01_run
- 2. 02_SYN/ (Synthesis) ./01_run_dc