Recent Deep Neural Networks for Automatic Speech Recognition

NPEX 2022 Speech

CTC, LAS, RNNT

- ASR as sequence-to-sequence problem
 - Input length *T* and output length *U* are very different.
 - Three types of ASR systems have been introduced: CTC, LAS, RNNT (in order)
 - CTC: non-auto-regressive, fastest but needs more beam width
 - LAS: auto-regressive decoder, encoder-decoder architecture
 - RNNT: auto-regressive prediction network, exploiting left-to-right nature of speech

지금까지 다룬 Sequence Learning DNN Models

- LSTM RNN 가장 많이 사용되는 RNN 구조
 - 장점: 비교적 훈련이 RNN 중에서는 잘 된다. 성능이 좋다.
 - 단점: 출력이 한 샘플 씩 계산이 된다. 병렬처리 환경에서 불리하다.
- QRNN long term memory만 사용하고 short term feedback 을 사용 않는다. 대신에 입력을 추가 처리한다.
 - 장점: 출력을 여러 개 한번에 계산할 수 있다.
 - 단점: 성능 문제가 있다.
- CNN, gated convnet 정해진 길이의 convolution 을 사용한다.
 - 장점: 출력을 여러 개 한번에 계산할 수 있다.
 - 단점: 좋은 성능을 위해서는 convolution 의 길이를 늘려야 한다. 이 문제를 timedepth-wise 1-D convolution 을 이용해 해결하기도 하였으나 주로 mobile 용으로 사용된다.
- Transformer model 시간축의 연산을 모두 풀어놓고, 입력사이의 관계를 attention 을 이용해 파악.
 - 장점: 좋은 성능 (과거를 길게 본다), 출력을 여러 개 한번에 계산 (특히 훈련 시에 유리), 잘 훈련이 된다 (LSTM RNN 대비 2, 3배 빨리 훈련된다)
 - 단점: 길이가 길 경우 계산에 불리 (attention은 길이의 제곱 계산), 실시간 모델 만들기 어렵다 (내부 메모리 사용량 많다).

Transformer-Transducer

- Transformer encoder for ASR
 - Mostly used with RNNT
 - Much faster training compared to LSTM (Transformer is fully parallelizable)
 - Much slower inference because of $O(T^2)$ computation complexity
- Transformer encoder + Transformer transducer
 - 18-layer Transformer encoder + 2-layer Transformer prediction network
 - Relative positioning encoding (RPE) to embed the distance between frames
 - Good for streaming purpose when used with limited left & right context

Table 2. Comparison of WERs for Hybrid (streamable), LAS (e2e), RNN-T (e2e & streamable) and Transformer Transducer models (e2e & streamable) on LibriSpeech test sets.

Model	Param	No Ll	M (%)	With LM (%)		
Model	size	clean	other	clean	other	
Hybrid [22]	-	-	-	2.26	4.85	
LAS[23]	361M	2.8	6.8	2.5	5.8	
BiLSTM RNN-T	130M	3.2	7.8	-	-	
FullAttn T-T (Ours)	139M	2.4	5.6	2.0	4.6	

Conformer (RNNT)

- Conformer-Transducer
 - A variant of Transformer with additional convolution module
 - Conv module supplements the locality-aware characteristics which is often weak in Transformer-based models
 - Time-domain 1D convolution
 - Fewer layers than CNN-based models
 - Fewer parameters than LSTM-based models
 - Used for many state-of-the-art ASR models

Conformer (CTC, LAS)

Conformer also shows superior performance with CTC and LAS frameworks

Table 1. CER/WER results on various open source ASR corpora. Both Transformer and Conformer models are implemented based on ESPnet toolkit. * marks ESPnet2 results. † and ‡ indicate only w/ speed or only w/ SpecAugment, respectively. § denotes w/o any data augmentation.

Dataset	Vocab	Metric	Evaluation Sets	Transformer	Conformer
AIDATATANG	Char	CER	dev / test	(†) 5.9 / 6.7	4.3 / 5.0
AISHELL-1	Char	CER	dev / test	(†) 6.0 / 6.7	(*) 4.4 / 4.7
AISHELL-2	Char	CER	android / ios / mic	(†) 8.9 / 7.5 / 8.6	7.6 / 6.8 / 7.4
AURORA4	Char	WER	dev_0330 (A / B / C / D)	3.3 / 6.0 / 4.5 / 10.6	4.3 / 6.0 / 5.4 / 9.3
CSJ	Char	CER	eval{1, 2, 3}	(*) 4.7 / 3.7 / 3.9	(*) 4.5 / 3.3 / 3.6
CHiME4	Char	WER	{dt05, et05}_{simu, real}	(†) 9.6 / 8.2 / 15.7 / 14.5	9.1 / 7.9 / 14.2 / 13.4
Fisher-CallHome	BPE	WER	dev / dev2 / test / devtest / evltest	22.1 / 21.5 / 19.9 / 38.1 / 38.2	21.5 / 21.1 / 19.4 / 37.4 / 37.5
HKUST	Char	CER	dev	(†) 23.5	(†) 22.2
JSUT	Char	CER	our split	(†) 18.7	14.5
LibriSpeech	BPE	WER	{dev, test}_{clean, other}	2.1 / 5.3 / 2.5 / 5.5	1.9 / 4.9 / 2.1 / 4.9
REVERB	Char	WER	et_{near, far}	(†) 13.1 / 15.4	(†) 10.5 / 13.9
Switchboard	BPE	WER	eval2000 (callhm / swbd)	17.2 / 8.2	14.0 / 6.8
TEDLIUM2	BPE	WER	dev / test	9.3 / 8.1	8.6 / 7.2
TEDLIUM3	BPE	WER	dev / test	10.8 / 8.4	9.6 / 7.6
VoxForge	Char	CER	our split	(§) 9.4 / 9.1	(§) 8.7 / 8.2
WSJ	BPE	WER	dev93/ eval92	(‡) 7.4 / 4.9	(‡) 7.7 / 5.3
WSJ-2mix	Char	WER	tt	(§) 12.6	(§) 11.7

Conformer with LAS (=encoder + decoder)

Dataset	Transformer-CTC	Conformer-CTC
CSJ	6.0 / 4.2 / 4.8	4.8 / 3.7 / 3.8
TEDLIUM2	16.7 / 16.6	9.3 / 8.7
VoxForge	14.0 / 14.1	9.2 / 8.4
WSJ	19.4 / 15.5	12.9 / 10.9

Conformer with CTC

Recent DNN Models for ASR

- DNN for sequence processing
 - Convolutional Neural Networks (CNN)
 - Long Short-Term Memory (LSTM)
 - Transformer / Conformer

Method	#Params (M)	WER Wi	thout LM	WER W	ith LM
		testclean	testother	testclean	testother
Hybrid					
Transformer [33]	-	-	-	2.26	4.85
CTC					
QuartzNet [9]	19	3.90	11.28	2.69	7.25
LAS					
Transformer [34]	270	2.89	6.98	2.33	5.17
Transformer [19]	-	2.2	5.6	2.6	5.7
LSTM	360	2.6	6.0	2.2	5.2
Transducer					
Transformer [7]	139	2.4	5.6	2.0	4.6
ContextNet(S) [10]	10.8	2.9	7.0	2.3	5.5
ContextNet(M) [10]	31.4	2.4	5.4	2.0	4.5
ContextNet(L) [10]	112.7	2.1	4.6	1.9	4.1
Conformer (Ours)					
Conformer(S)	10.3	2.7	6.3	2.1	5.0
Conformer(M)	30.7	2.3	5.0	2.0	4.3
Conformer(L)	118.8	2.1	4.3	1.9	3.9

ContextNet (RNNT)

- CNN encoder for ASR
 - Needs lots of #layers
 - Much fewer #parameters than LSTM
- ContextNet = **CNN** encoder + RNN transducer
 - 107 convolution layers with kernel size = 5
 - STFT with 10ms window → stride 3 times: 80ms per frame
- SE (Squeeze-and-Excite)
 - Adaptively re-weight each feature dimension based on the input
 - Provide global perspective of the entire sequence

Block ID	#Conv layers	#Output channels	Kernel size	Other
C_0	1	$256 \times \alpha$	5	No residual
C_1 - C_2	5	$256 \times \alpha$	5	
C_3	5	$256\times\alpha$	5	stride is 2
C_4 - C_6	5	$256 \times \alpha$	5	
C_7	5	$256 \times \alpha$	5	stride is 2
C_8 - C_{10}	5	$256 \times \alpha$	5	
C_{11} - C_{13}	5	$512 \times \alpha$	5	
C_{14}	5	$512\times\alpha$	5	stride is 2
C_{15} - C_{21}	5	$512 \times \alpha$	5	
C_{22}	1	$640 \times \alpha$	5	No residual

Wav2Vec 2.0

- Self-supervised learning
 - Learn useful representations without label
 - Mask parts of waveform and train the model to predict the original values
 - 12(base)/24(large)-layer Transformer encoder

- Fine-tuning for ASR
 - Only 1-hour labeled data shows better result than previous 100-hour case
 - When using full 960-hour (LibriSpeech) data, Wav2Vec pre-training shows much higher recognition performance than training the model from scratch.

Wav2Vec XLSR

- Extend Wav2Vec to learn general speech representations
 - Pre-trained encoder is used for multiple language ASR
 - Pre-trained with 53 languages, achieve SOTA for many low-resource languages

			#p	re-tr	aının	g									
			laı	ngua	ges					Lo	w-re	sour	ce la	nguag	ges
Model	D	#pt	#ft	es	fr	it	ky	nl	ru	sv	tr	tt	zh	Avg	
Number of pretraining hours po Number of fine-tuning hours po				168h 1h	353h 1h	90h 1h	17h 1h	29h 1h	55h 1h	3h 1h	11h 1h	17h 1h	50h 1h	793h 10h	
Baselines from previous work															
m-CPC [†] (Rivière et al., 2020) m-CPC [†] (Rivière et al., 2020) Fer et al. [†] (Fer et al., 2017)	LS _{100h} LS _{360h} BBL _{all}	10 10 10	1 1 1	38.7 38.0 36.6	49.3 47.1 48.3	42.1 40.5 39.0	40.7 41.2 38.7	44.4 42.5 47.9	45.2 43.7 45.2	48.8 47.5 52.6	49.7 47.3 43.4	44.0 42.0 42.5	55.5 55.0 54.3	45.8 44.5 44.9	
Our monolingual models															
XLSR-English XLSR-Monolingual	CV _{en} CV _{mo}	1 1	1 1	13.7 6.8	20.0 10.4	19.1 10.9	13.2 29.6	19.4 37.4	18.6 11.6	21.1 63.6	15.5 44.0	11.5 21.4	27.1 31.4	17.9 26.7	
Our multilingual models															
XLSR-10 (unbalanced) XLSR-10 XLSR-10 (separate vocab) XLSR-10 (shared vocab)	$egin{array}{c} CV_{all} \ CV_{all} \ CV_{all} \ CV_{all} \end{array}$	10 10 10 10	1 1 10 10	9.7 9.4 10.0 9.4	13.6 14.2 13.8 13.4	15.2 14.1 14.0 13.8	11.1 8.4 8.8 8.6	18.1 16.1 16.5 16.3	13.7 11.0 11.6 11.2	21.4 20.7 21.4 21.0	14.2 11.2 12.0 11.7	9.7 7.6 8.7 8.3	25.8 24.0 24.5 24.5	15.3 13.6 14.1 13.8	
Our multilingual models (Large	e)														
XLSR-10 XLSR-10 (separate vocab) XLSR-10 (shared vocab)	CV _{all} CV _{all} CV _{all}	10 10 10	1 10 10	7.9 8.1 7.7	12.6 12.1 12.2	11.7 11.9 11.6	7.0 7.1 7.0	14.0 13.9 13.8	9.3 9.8 9.3	20.6 21.0 20.8	9.7 10.4 10.1	7.2 7.6 7.3	22.8 22.3 22.3	12.3 12.4 12.2	
Our Large XLSR-53 model pres	trained on	56k h	urs												
XLSR-53	D ₅₃	53	1	2.9	5.0	5.7	6.1	5.8	8.1	12.2	7.1	5.1	18.3	7.6	
												St	ate-d	of-the	art W

7

Korean Speech Recognition (Ours)

- Korean ASR
 - Different tokenization (consonant + vowel)
 - Korean is now not a low-resource language; there is a lot of labeled data
 - Ex) Korean Free Conversation (한국어 자유 음성 대화) 7,600 hours

	#Utterances	#Syllables	Hours(h)
Train	4,000,000	74,797,987	6,089.2
Valid	421,770	7,878,410	640.9
Test	557,564	10,116,858	871.4

 We achieved WER(word error rate) 6.6%, SER(syllable error rate) 1.46% using 16-layer Conformer encoder with CTC

(a) Word error rate (WER)

(b) Syllable error rate (SER)

	Valid (%)	Test (%)
No LM decoding	6.72	9.27
4-gram LM	5.84	8.57
6-gram LM	4.39	7.87
LSTM-LM (w/o SkipTC)	3.94	6.73
LSTM-LM (w/ SkipTC)	3.75	6.59

	Valid (%)	Test (%)
No LM decoding	1.65	2.19
4-gram LM	1.34	1.96
6-gram LM	0.96	1.80
LSTM-LM (w/o SkipTC)	0.87	1.50
LSTM-LM (w/ SkipTC)	0.80	1.46