Topic 5 HW

Zander Bonnet 3/20/2024

References:

Cardiovascular Disease dataset. (2019). Kaggle [Dataset].

https://www.kaggle.com/datasets/sulianova/cardiovascular-disease-dataset/data.

COVID-19 in USA. (2021). Kaggle [Dataset].

https://www.kaggle.com/datasets/sudalairajkumar/covid19-in-usa?select=us_covid19_daily.csv.

Rogel-Salazar, J. (2023). Statistics and Data Visualization with Python. CRC Press.

Video: https://vimeo.com/925661752/efa69890a1? share=copy

```
import pandas as pd
import numpy as np
import scipy.stats as stats
import matplotlib.pyplot as plt
import statsmodels.formula.api as smf
import math
from sklearn.kernel_ridge import KernelRidge
from statsmodels.stats.outliers_influence import variance_inflation_factor
```

```
In [2]: data = pd.read_csv('/Users/zanderbonnet/Desktop/GCU/DSC_510/DataSets/cardio.csv'
#age in days
#height in cm
#weight in kg
#gender 1 = m, 2 = f
data.head()
```

Out[2]:		id	age	gender	height	weight	ap_hi	ap_lo	cholesterol	gluc	smoke	alco	active	cardic
	0	0	18393	2	168	62.0	110	80	1	1	0	0	1	C
	1	1	20228	1	156	85.0	140	90	3	1	0	0	1	,
	2	2	18857	1	165	64.0	130	70	3	1	0	0	0	,
	3	3	17623	2	169	82.0	150	100	1	1	0	0	1	,
	4	4	17474	1	156	56.0	100	60	1	1	0	0	0	(

```
In [3]:
         age = list(data['age'] / 365) # make age years
         gender = [] #sets gender to strings
         for gen in data['gender']:
             if gen == 1:
                 gender.append("Male")
             elif gen == 2:
                 gender.append("Female")
             else:
                 gender.append('Missing')
         height = list(data['height']) #get height
         weight = list(data['weight']) #gets weight
         hwa = pd.DataFrame({'Gender':gender,
                             'Age':age,
                             'Height':height,
                             'Weight':weight})
         hwa.head()
```

Out[3]:		Gender	Age	Height	Weight	
	0	Female	50.391781	168	62.0	
	1	Male	55.419178	156	85.0	
	2	Male	51.663014	165	64.0	
	3	Female	48.282192	169	82.0	
	4	Male	47.873973	156	56.0	

1. Hypothesis

```
In [4]: #checks normality of variables
fig, (ax1,ax2) = plt.subplots(1,2, figsize = (10,6))
stats.probplot(hwa.loc[hwa['Gender'] == 'Male']['Weight'], dist = 'norm', plot =
ax1.title.set_text('Q-Q plot male')
stats.probplot(hwa.loc[hwa['Gender'] == 'Female']['Weight'], dist = 'norm', plot
ax2.title.set_text('Q-Q plot female')
plt.show()
```



```
In [5]: #calculates the statistic
   mal = hwa.loc[hwa['Gender'] == 'Male']['Weight']
   fem = hwa.loc[hwa['Gender'] == 'Female']['Weight']
   tstat, pval = stats.ttest_ind(mal,fem)
   if pval < .05: print(pval,'< 0.05: P-Value is Significant')
   else: print(pval, '> 0.05: P-Value is Not Significant')
   print(mal.mean(),fem.mean())
```

0.0 < 0.05: P-Value is Significant
72.56560509554139 77.25730690641602</pre>

```
In [6]:
    #Visualize the data
    hei = hwa.loc[hwa['Gender'] == 'Male']['Height']
    wei = hwa.loc[hwa['Gender'] == 'Male']['Weight']
    plt.figure(figsize=(10,6))
    plt.scatter(hei,wei, label = 'Male', )

    hei = hwa.loc[hwa['Gender'] == 'Female']['Height']
    wei = hwa.loc[hwa['Gender'] == 'Female']['Weight']
    plt.scatter(hei,wei, label = 'Female', alpha = .3)

    plt.xlabel('Height in cm')
    plt.ylabel('Weight in kg')
    plt.title('Height vs Weight')
    plt.legend()
    plt.show()
```


Height in cm

2. Correlation Coefficient

```
In [7]:
    hei = hwa['Height']
    wei = hwa['Weight']
    plt.figure(figsize=(10,6))
    plt.scatter(hei,wei)
    plt.xlabel('Height in cm')
    plt.ylabel('Weight in kg')
    plt.title('Height vs Weight')
    plt.show()
    cor, pval = stats.pearsonr(hei,wei) #calculates the coef
    print('Correlation coefficent: {:.3f}'.format(cor))
    if pval < .05: print(pval,'< 0.05: P-Value is Significant')
    else: print(pval, '> 0.05: P-Value is Not Significant')
```


150

Height in cm

175

200

225

250

Correlation coefficent: 0.291 0.0 < 0.05: P-Value is Significant

100

75

50

3. Linear Regression

```
results = smf.ols('Weight ~ Height', data = hwa).fit()
print(results.summary())
```

125

OLS Regression Results												
Dep. Variabl Model: Method: Date: Time: No. Observat Df Residuals	ions:	Weig 0 Least Squar Wed, 20 Mar 20 18:23: 700	LS es 24 08 00 98	F-sta Prob	ared: R-squared: tistic: (F-statistic) ikelihood:	:	0.085 0.085 6474. 0.00 -2.8291e+05 5.658e+05 5.659e+05					
Df Model: Covariance Type:		nonrobu	1 st									
========	coef	std err	====	===== t	P> t	[0.025	0.975]					
•	-9.6483 0.5102		-9 80		0.000 0.000	-11.693 0.498	-7.603 0.523					
Omnibus: Prob(Omnibus Skew: Kurtosis:): =========	1.2	===== 22 00 15 11				1.994 53181.354 0.00 3.30e+03					

Notes:

[2] The condition number is large, 3.3e+03. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [9]:
    plt.figure(figsize=(10,6))
    plt.scatter(hwa.index,results.resid)
    plt.axhline(0, linestyle = '--', color = 'red')
    plt.title('Residual Plot')
    plt.ylabel('Residual Value')
    plt.show()
```



```
In [10]:     hei = hwa['Height']
     wei = hwa['Weight']

     plt.figure(figsize=(10,6))
     plt.scatter(hei,wei)
     plt.xlabel('Height in cm')
     plt.ylabel('Weight in kg')
     plt.title('Height vs Weight')
     plt.xlim(0,275)
     plt.ylim(0,225)

plt.scatter(hwa['Height'],results.fittedvalues, label = 'Fitted Values')
     plt.legend()
     plt.show()
```



```
In [11]: #takes the log of the numerical variables
loghwa = hwa.copy()
loghwa['Age'] = loghwa['Age'].apply(math.log)
loghwa['Height'] = loghwa['Height'].apply(math.log)
loghwa['Weight'] = loghwa['Weight'].apply(math.log)

results1 = smf.ols('Weight ~ Height', data = loghwa).fit()
print(results1.summary())
```

Dep. Variabl Model: Method: Date: Time: No. Observat Df Residuals Df Model: Covariance T	ions: :	Weight OLS Least Squares Wed, 20 Mar 2024 18:23:09 70000 69998 1 nonrobust			uared: R-squared: atistic: (F-statistic): Likelihood:	:	0.089 0.089 6857. 0.00 21256. -4.251e+04 -4.249e+04
========	coef	std err	=====	t	P> t	[0 . 025	0.975]
•	-1.2136 1.0788		-18 82		0.000 0.000	-1.344 1.053	
Omnibus: Prob(Omnibus Skew: Kurtosis:): 	0	.571 .000 .451 .708	Jarqı Prob(· ·		1.990 10879.145 0.00 521.

Notes:

```
In [12]:
    plt.figure(figsize=(10,6))
    plt.scatter(loghwa.index,results1.resid)
    plt.axhline(0, linestyle = '--', color = 'red')
    plt.title('Residual Plot')
    plt.ylabel('Residual Value')
    plt.show()
```



```
In [13]:
    hei = loghwa['Height']
    wei = loghwa['Weight']

    plt.figure(figsize=(10,6))
    plt.scatter(hei,wei)
    plt.xlabel('Log Height in cm')
    plt.ylabel('Log Weight in kg')
    plt.title('Log Height vs Log Weight')
    plt.scatter(loghwa['Height'], results1.fittedvalues, label = 'Fitted Values')
    plt.legend()
    plt.show()
```


4. Multiple Regression Model

```
In [14]:
    results2 = smf.ols('Weight ~ Height + Age', data = hwa).fit()
    print(results2.summary())
```

	OLS Regression Results										
Dep. Variab Model: Method: Date: Time: No. Observa Df Residual: Df Model:	tions:	Least Squ Wed, 20 Mar 18:2		Adj. F-sta Prob	uared: R-squared: atistic: (F-statistic) Likelihood:	0.091 0.091 3491. : 0.00 -2.8268e+05 5.654e+05					
Covariance -	Туре:	nonro	_								
	coef	std err		t	P> t	[0.025	0.975]				
Intercept Height Age	-20.3302 0.5213 0.1659	0.006	82	.646 .217 .547	0.000 0.000 0.000	-22.588 0.509 0.151	-18.072 0.534 0.181				
Omnibus: Prob(Omnibus Skew:	s):	0	.550 .000 .233	Jarq	in-Watson: ue-Bera (JB): (JB):		1.993 56413.600 0.00				

Notes:

Kurtosis:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

3.84e+03

6.641

[2] The condition number is large, 3.84e+03. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [15]: X = hwa[['Height', 'Weight', 'Age']]

# VIF dataframe
vif_data = pd.DataFrame()
vif_data["feature"] = X.columns

# calculating VIF for each feature

vif_data["VIF"] = [variance_inflation_factor(X.values, i) for i in range(len(X.c) vif_data)
```

```
      Out [15]:
      feature
      VIF

      0
      Height
      76.760870

      1
      Weight
      30.186875

      2
      Age
      52.074542
```

```
In [16]:
    plt.figure(figsize=(10,6))
    plt.scatter(hwa.index,results2.resid)
    plt.axhline(0, linestyle = '--', color = 'red')
    plt.title('Residual Plot')
    plt.ylabel('Residual Value')
    plt.show()
```



```
hei = hwa['Height']
wei = hwa['Weight']
fig, (ax1, ax2) = plt.subplots(1,2, figsize=(20,8))
ax1.scatter(hei,wei)
ax1.set_xlabel('Height in cm')
```

```
ax1.set_ylabel('Weight in kg')
ax1.set_title('Height vs Weight')
ax1.set_xlim(0,275)
ax1.set_ylim(0,225)
ax1.scatter(hwa['Height'],results2.fittedvalues, label = 'Fitted Values')
ax1.legend()

ax2.scatter(hwa['Age'],wei)
ax2.set_xlabel('Age')
ax2.set_ylabel('Weight in kg')
ax2.set_title('Age vs Weight')
ax2.scatter(hwa['Age'],results2.fittedvalues, label = 'Fitted Values')
ax2.legend()
plt.show()
```



```
In [18]:
loghwa = hwa.copy()
loghwa['Age'] = loghwa['Age'].apply(math.log)
loghwa['Height'] = loghwa['Height'].apply(math.log)
loghwa['Weight'] = loghwa['Weight'].apply(math.log)

results3 = smf.ols('Weight ~ Height + Age', data = loghwa).fit()
print(results3.summary())
```

Dep. Variable:	Weight	R-squared:	0.096
Model:	0LS	Adj. R-squared:	0.096
Method:	Least Squares	F-statistic:	3727.
Date:	Wed, 20 Mar 2024	<pre>Prob (F-statistic):</pre>	0.00
Time:	18:23:12	Log-Likelihood:	21527.
No. Observations:	70000	AIC:	-4.305e+04
Df Residuals:	69997	BIC:	-4.302e+04
Df Model:	2		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-1.8100	0.071	-25.504	0.000	-1.949	-1.671
Height	1.1024	0.013	84.688	0.000	1.077	1.128
Age	0.1200	0.005	23.320	0.000	0.110	0.130

Omnibus:	5222.715	Durbin-Watson:	1.990
<pre>Prob(Omnibus):</pre>	0.000	Jarque-Bera (JB):	12204.600
Skew:	0.468	Prob(JB):	0.00
Kurtosis:	4.819	Cond. No.	701.

Notes:

```
In [19]: 
    plt.figure(figsize=(10,6))
    plt.scatter(loghwa.index,results3.resid)
    plt.axhline(0, linestyle = '--', color = 'red')
    plt.title('Residual Plot')
    plt.ylabel('Residual Value')
    plt.show()
```



```
In [20]: hei = loghwa['Height']
    wei = loghwa['Weight']
    fig, (ax1, ax2) = plt.subplots(1,2, figsize=(20,8))
    ax1.scatter(hei,wei)
    ax1.set_xlabel('Log Height in cm')
    ax1.set_ylabel('Log Weight in kg')
    ax1.set_title('Log Height vs Log Weight')
    ax1.scatter(loghwa['Height'], results3.fittedvalues, label = 'Fitted Values')
    ax2.scatter(loghwa['Age'],wei)
    ax2.set_xlabel('Log Age')
    ax2.set_ylabel('Log Weight in kg')
    ax2.set_title('Log Age vs Log Weight')
    ax2.scatter(loghwa['Age'], results3.fittedvalues, label = 'Fitted Values')
```

```
ax2.legend()
plt.show()
```


5. Solutions

```
In [21]:
    cov = pd.read_csv('/Users/zanderbonnet/Desktop/GCU/DSC_510/DataSets/covidUS/us_c
    cov = cov.sort_values(by = 'date', ignore_index=True)
    cov['day'] = cov.index
    cov = cov.fillna(0)
    cov.head()
```

Out[21]:		date	states	positive	negative	pending	hospitalizedCurrently	hospitalizedCumulative	in
	0	20200122	2	0	0	0.0	0.0	0.0	
	1	20200123	2	0	0	0.0	0.0	0.0	
	2	20200124	2	0	0	0.0	0.0	0.0	
	3	20200125	2	0	0	0.0	0.0	0.0	
	4	20200126	2	0	0	0.0	0.0	0.0	

5 rows × 26 columns

```
plt.figure(figsize = (10,6))
plt.scatter(cov['day'],cov['positive'])
plt.xlabel('Day')
plt.ylabel('Increase in Cases')
plt.show()
```



```
reg = smf.ols('positive ~ day', data = cov).fit()
print(reg.summary())
```

Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Least Squa Wed, 20 Mar 2 18:23	OLS Adj. res F-sta 024 Prob :14 Log- 320 AIC: 318 BIC:	uared: R-squared: atistic: (F-statisti Likelihood:	c):	0.908 0.908 3146. 5.93e-167 -4922.8 9850. 9857.
coe	f std err	t	P> t	[0.025	0.975]
Intercept -2.341e+0 day 3.953e+0		-18.023 56.085	0.000 0.000		-2.09e+06 4.09e+04
Omnibus: Prob(Omnibus): Skew: Kurtosis:	0. 1.	000 Jarq 382 Prob	======== in-Watson: ue-Bera (JB) (JB): . No. =========	:	0.002 132.617 1.59e-29 368.

Notes:

```
plt.figure(figsize = (10,6))
plt.scatter(cov['day'],cov['positive'])
plt.xlabel('Day')
plt.ylabel('Cases')
```

```
plt.scatter(cov['day'], reg.fittedvalues, label = 'Fitted Values')
plt.legend()
plt.show()
```



```
plt.figure(figsize=(10,6))
  plt.scatter(cov['day'],reg.resid)
  plt.axhline(0, linestyle = '--', color = 'red')
  plt.title('Residual Plot')
  plt.ylabel('Residual Value')
  plt.show()
```



```
In [26]:
    logpos = []
    for num in cov['positive']:
        logpos.append(math.sqrt(num))
    cov['logPos'] = logpos
    cov.head()
```

Out[26]:		date	states	positive	negative	pending	hospitalizedCurrently	hospitalizedCumulative	in
	0	20200122	2	0	0	0.0	0.0	0.0	
	1	20200123	2	0	0	0.0	0.0	0.0	
	2	20200124	2	0	0	0.0	0.0	0.0	
	3	20200125	2	0	0	0.0	0.0	0.0	
	4	20200126	2	0	0	0.0	0.0	0.0	

5 rows × 27 columns

```
plt.figure(figsize = (10,6))
plt.scatter(cov['day'],cov['logPos'])
plt.show()
```



```
reg1 = smf.ols('logPos ~ day', data = cov).fit()
print(reg1.summary())
```

Dep. Varia	ole:	lo	gPos	R–sqı	0.989		
Model:			0LS	Adj.	R-squared:		0.989
Method:		Least Squ	iares	F-sta	atistic:		2.863e+04
Date:		Wed, 20 Mar	2024	Prob	(F-statistic	:):	1.35e-313
Time:		18:2	23:14	Log-l	_ikelihood:		-1979.7
No. Observa	ations:		320	AIC:			3963.
Df Residua	ls:		318	BIC:			3971.
Df Model:			1				
Covariance	Type:	nonro	bust				
========			=====	======	=========		========
	coe	f std err		t	P> t	[0.025	0.975]
Intercept	-283 . 523	8 13.164	-21	 L . 538	0.000	-309 . 424	-257.624
day	12.085		169	217	0.000	11.945	12.226
Omnibus:	=======	============================== }	====== 3.559	Durb:	======= in-Watson:	=======	0.004
Prob(Omnibu	ıs):		.014		ue-Bera (JB):		8.783

Notes:

Skew:

Kurtosis:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Prob(JB):

Cond. No.

0.0124

368.

```
plt.figure(figsize = (10,6))
plt.scatter(cov['day'],cov['logPos'])

plt.scatter(cov['day'], reg1.fittedvalues, label = 'Fitted Values')
```

-0.385

2.745

6. Non Linear Regression

```
In [31]:
    clf = KernelRidge(kernel='polynomial', gamma = .2)
    d = np.array(cov['day']).reshape(-1,1)
    clf.fit(d, cov['positive'])
    pred = clf.predict(d)

    plt.figure(figsize=(10,6))
    plt.scatter(d,cov['positive'])
    plt.plot(d,pred, label = 'predicted', color = 'orange')
    plt.legend()
    plt.show()
```



```
res = pred - cov['positive']
plt.figure(figsize=(10,6))
plt.scatter(cov['day'], res)
plt.axhline(0, linestyle = '--', color = 'red')
plt.title('Residual Plot')
plt.show()
```

