Unsupervised Translation of Programming Languages

margin: 11px 28px Ope Ope

Marie-Anne Lachaux, Baptiste Roziere, Lowik Chanussot, Guillaume Lample(2020) | Citation: 72

Group3

Kim Yongtaek (김용택) Lee Jeongyun (이정윤)

Van Nam Vu

Contents

- 1. Main Topic
- 2. How it works
 - Data, Modeling, Evaluation, Results
- 3. Challenges & Opinion
- 4. Demo

1. Main Topic

There are various programming languages such as C, C++, Java and Python.

However, the languages are **not** all compatible according to os or programs, grammar, structure, function, etc. are the same in principle, but there is a difference in the way they are expressed. So far, there has been no translation into a supported language other than rewriting the code by human.

In this project, the goal is to make an Unsupervised Machine Translator which converts programming languages automatically by Deep Learning.

Data

Monolingual open source code from GitHub public dataset

- C++, Java, Python
- over 2.8 million open source GitHub repository
- Valid, Test Set
 - set of 852 parallel functions in 3 languages

Preprocessing

- Tokenizer: javalang (Java), clang (C++), standard library (Python)
- fastBPE (Byte Pair Encoding)

Data

```
Python function v1
                                                                      Python function v2
  def rm_file(path):
                                                        def rm_file(path):
      try:
          os.remove(path)
                                                            try:
          print("Deleted")
                                                                os.remove( path )
                                                                print( "Deleted" )
      except:
          print("Error while deleting file", path)
                                                            except :
                                                                print("Error while deleting file", path)
def rm_file ( path ) : NEWLINE try : NEWLINE INDENT os . remove (path) NEWLINE print ( " Deleted " )
DEDENT except : NEWLINE INDENT print ( " Error _ while _ deleting _ file " , path ) DEDENT
```

Data

```
Python function v1
                                                                       Python function v2
  def rm_file(path):
                                                         def rm_file(path):
      try:
          os.remove(path)
                                                             try:
          print("Deleted")
                                                                 os.remove( path )
                                                                 print( "Deleted" )
      except:
          print("Error while deleting file", path)
                                                              except :
                                                                  print("Error while deleting file", path)
def/rm_file/(/path/)/:/NEWLINE/try/:/NEWLINE/INDENT /os/./remove/(/path/)/NEWLINE/print/(/"/Deleted/"/)
DEDENT/except /: /NEWLINE/INDENT/print/(/" /Error _ while _ deleting _ file/"/,/path/)/DEDENT
```

Data

```
Python function v1
                                                                        Python function v2
                                                          def rm_file(path):
  def rm_file(path):
      try:
           os.remove(path)
                                                              try:
          print("Deleted")
                                                                  os.remove( path )
                                                                  print( "Deleted" )
      except:
           print("Error while deleting file", path)
                                                              except :
                                                                  print("Error while deleting file", path)
def/rm_file/(/path/)/:/NEWLINE/try/:/NEWLINE/INDENT os/./remove/(path/)/NEWLINE/print/(/"/Deleted/"/)
DEDENT except /: NEWLINE INDENT print (/ " Error _ while _ deleting _ file / " / , path ) DEDENT
```

Data

```
Python function v1
                                                                        Python function v2
                                                          def rm_file(path):
  def rm_file(path):
      try:
           os.remove(path)
                                                              try:
          print("Deleted")
                                                                  os.remove( path )
                                                                  print( "Deleted" )
      except:
          print("Error while deleting file", path)
                                                              except :
                                                                  print("Error while deleting file", path)
def/rm_file/(/path/)/:/NEWLINE/try/:/NEWLINE/INDENT os/./remove/(/path/)/NEWLINE/print/(/"/Deleted/"/)
DEDENT/ except /: /NEWLINE/ INDENT/print/(/" /Error _ while _ deleting _ file /" /, / path/)/DEDENT
```

Modeling

Embedding Model: Seq2Seq model with attention

- 6 layers of transformer, 8 attention heads, 1024 dimensions
- single encoder and decoder for all programming languages

Three parts of unsupervised machine translation

- (Pretraining) Cross Programming Language Model pretraining (XLM)
- Denoising auto-encoding (DAE)
- Back-translation

Modeling

Cross-lingual Masked Language Model pretraining

Cross-lingual token embedding space

Modeling

Cross-lingual Masked Language Model pretraining

Modeling

Cross-lingual Masked Language Model pretraining

Denoising auto-encoding

Back-translation

Evaluation

- Set of 852 parallel functions in 3 languages (C++, Java, Python)
 - For Validation and Test from GeeksForGeeks
- BLEU-Score
- Compute the reference match
- Computational Metric
 - To overcome BLEU limitation
 - Evaluates whether the hypothesis function generates the same outputs as the reference when given the same inputs
- Beam Search Decoding (Greedy Decoding)
 - Beam N: Percentage of functions with at least one correct translation in the beam

Results

Python input

```
def SumOfKsubArray(arr, n, k):
  Sum = 0
  S = deque()
  G = deque()
  for i in range(k):
    while (len(S) > 0 \text{ and } arr[S[-1]] >= arr[i]):
      S.pop()
    while (len(G) > 0 \text{ and } arr[G[-1]] \leftarrow arr[i]):
      G.pop()
    G.append(i)
    S.append(i)
  for i in range(k, n):
    Sum += arr[S[0]] + arr[G[0]]
    while (len(S) > 0 \text{ and } S[0] \le i - k):
      S.popleft()
    while (len(G) > 0 \text{ and } G[0] \le i - k):
      G.popleft()
    while (len(S) > 0 \text{ and } arr[S[-1]] >= arr[i]):
      S.pop()
    while (len(G) > 0 \text{ and } arr[G[-1]] \leq arr[i]):
      G.pop()
    G.append(i)
    S.append(i)
  Sum += arr[S[0]] + arr[G[0]]
  return Sum
```

Unsupervised C++ translation

```
int SumOfKsubArray(int arr[], int n, int k){
  int Sum = 0;
  deque <int> S;
  deque <int> G;
  for(int i = 0; i < k; i ++){
    while((int) S.size() > 0 && arr[S.back()] >= arr[i])
      S.pop_back();
    while((int) G.size() > 0 && arr[G.back()] <= arr[i])</pre>
      G.pop_back();
    G.push_back(i);
    S.push_back(i);
 for(int i = k; i < n; i ++){
    Sum += arr[S.front()] + arr[G.front()]:
    while((int) S.size() > 0 && S.front() <= i - k)</pre>
      S.pop_front();
    while((int) G.size() > 0 && G.front() <= i - k)
      G.pop_front();
    while((int) S.size() > 0 && arr[S.back()] >= arr[i])
      S.pop_back();
    while((int) G.size() > 0 && arr[G.back()] <= arr[i])</pre>
      G.pop_back();
    G.push_back(i);
    S.push_back(i);
 Sum += arr[S.front()] + arr[G.front()];
  return Sum;
```

2. How it works **Results**

	$C++ \rightarrow Java$	$C++ \rightarrow Python$	$Java \rightarrow C +\!$	$Java \rightarrow Python$	Python \rightarrow C++	Python \rightarrow Java
Reference Match BLEU	$\frac{3.1}{85.4}$	$6.7 \\ 70.1$	$24.7 \\ 97.0$	3.7 68.1	$\frac{4.9}{65.4}$	$0.8 \\ 64.6$
BLEU	00.4	10.1	91.0	00.1	05.4	04.0
Computational Accuracy	60.9	44.5	80.9	35.0	32.2	24.7

	$C++ \rightarrow Java$	$C++ \rightarrow Python$	$Java \rightarrow C +\!$	$Java \rightarrow Python$	Python \rightarrow C++	Python \rightarrow Java
Baselines	61.0		<u> </u>	38.3	-	營
TransCoder Beam 1	60.9	44.5	80.9	35.0	32.2	24.7
TransCoder Beam 5	70.7	58.3	86.9	60.0	44.4	44.3
TransCoder Beam 10	73.4	62.0	89.3	64.4	49.6	51.1
TransCoder Beam 10 - Top 1	65.1	46.9	79.8	49.0	32.4	36.6
TransCoder Beam 25	74.8	67.2	91.6	68.7	57.3	56.1

3. Challenges & Opinion

```
adding to path /content/CodeGen
                                                                                                Pytorch and CUDA version do not match
adding to path /content/CodeGen
adding to path /content/CodeGen
adding to path /content/CodeGen
adding to path /content/CodeGen
                                                                                                Github, Apex Functions deprecated
adding to path /content/CodeGen
Traceback (most recent call last):
 File "codegen sources/model/train.py", line 13, in <module>
   from src.evaluation.evaluator import SingleEvaluator, EncDecEvaluator
  File "/content/CodeGen/codegen sources/model/src/evaluation/evaluator.py", line 22, in <module>
    from ..trainer import get programming language name
 File "/content/CodeGen/codegen sources/model/src/trainer.py", line 15, in <module>
    import apex
 File "/usr/local/lib/python3.7/dist-packages/apex/ init .py", line 13, in <module>
    from pyramid.session import UnencryptedCookieSessionFactoryConfig
ImportError: cannot import name 'UnencryptedCookieSessionFactoryConfig' from 'pyramid.session' (unknown location)
```

```
n --dump path '/content/CodeGen/dump' --data path '/content/CodeGen/data/test dataset/XLM-syml' --split data accross gpu local --mlm steps
adding to path /content/CodeGen
ERROR - 11/29/22 15:01:16 - 0:00:00 - /content/CodeGen/data/test dataset/XLM-syml/valid.python.pth not found
ERROR - 11/29/22 15:01:16 - 0:00:00 - /content/CodeGen/data/test dataset/XLM-syml/test.python.pth not found
Traceback (most recent call last):
  File "codegen sources/model/train.py", line 850, in <module>
    check data params(params)
  File "/content/CodeGen/codegen sources/model/src/data/loader.py", line 540, in check data params
    for paths in params.mono dataset.values()
AssertionError: [[], [], ['/content/CodeGen/data/test dataset/XLM-syml/valid.python.pth', '/content/CodeGen/data/test dataset/XLM-syml/test.python.pth'
```

3. Challenges & Opinion

- Automatic translation can make programmers more efficient
 - By allowing them to join various codes from other programmers easily
 - Lower the cost of updating an old codebase written in an obsolete language to a more recent language
 - A powerful tool for programmers for their more innovative projects
- Some mistakes made by the model could be fixed by adding some constraints to the decoder to ensure that the generated functions are syntactically correct, or by using dedicated architectures
- Leveraging the compiler output or other approaches such as iterative error correction could also improve the accuracy of model

4. Demo

Google Colab Links