Exam 2 Main Concepts

Contents

1	Lesson 4		1
	1.1	Job Finding Rate	1
	1.2	Vacancy Filling Rate	1
	1.3	Steady-State Unemployment	2
	1.4	Vacancy-Supply Curve	2
	1.5	Wage-Setting Curve	2
2		son 5	2
	2.1	IBL	2
3		son 6	2
	3.1	UC = MPK	
	3.2	Savings and Investment	3
4	Less	son 7	4
	4.1	Notation	4
	4.2	Steady-State	4

1 Lesson 4

1.1 Job Finding Rate

Probability of find a job

$$f = \frac{H(U,V)}{U}$$

$$f = \gamma \sqrt{\theta}$$

 $\frac{1}{f}$ - average length of unemployment

1.2 Vacancy Filling Rate

Probability of filling a vacancy

$$q = \frac{H(U, V)}{V}$$
$$q = \gamma(\theta)^{-1/2}$$

 $[\]frac{1}{q}$ - average length of vacancy (time to fill)

1.3 Steady-State Unemployment

Natural rate of unemployment when f * U = s * E:

$$u* = \frac{s}{(s + f(\theta))}$$

This is known as the Beveridge curve.

1.4 Vacancy-Supply Curve

$$\theta(w) = (\frac{\gamma * (y - w)}{s * k})^2$$

1.5 Wage-Setting Curve

Will be given as $w(\theta)$

2 Lesson 5

2.1 IBL

Find equation of consumption values from preferences and plug into PVLC = PVLR

$$C_1 + \frac{C_2}{(1+r)} = (Y_1 + W_1) + \frac{(Y_2 + W_2)}{(1+r)}$$

- Y-intercept = Only Future consumption (C_2)
- X-intercept = Only Current consumption (C_1)
- intserction of IBL and y = x is $C_1 = C_2$ (Consumption Smoothing)
- No-Lending/No-Borrowing Point

$$\begin{array}{l} - \ C_1 = Y_1 + W_1 \\ - \ C_2 = Y_2 + W_2 \end{array}$$

- Slope = -(1 + r)
 - r = real interest rate

3 Lesson 6

$3.1 \quad UC = MPK$

Firms will choose a level of capital (K) that maximizes profit by reaching the condition MB = MC

MB = Expected marginal product of capital (MPK^e)

MC = User-cost of capital (UC)

 π_{max} when UC = MPK^e

User Cost depends on:

- Real Price of capital (P_k)
- The depreciation rate (δ)
- The real interest rate (r)
- The business tax on revenue (τ)
- Investment Tax Credit (ITC)

$$UC = \frac{(r+\delta)(1-ITC)P_k}{(1-\tau)}$$

Savings and Investment

 $I_t = Gross$ investment in year t $K_t = capital$ stock at beginning of year t $K_{t+1} = capital$ stock at beginning of year t + 1

- Net investment = ΔK during year t
 - $-K_{t+1}-K_t$
- Net investment = gross investment depreciation

Goods Market Equlibrium

- We are in a closed economy so NX = 0
- Savings = Investment

$$I = Y - C - G$$

3.2.2 Savings Function

$$S = Y - C - G$$

- Y +
- Y₂ W₁ W₂ -
- T +
- Autonomous Consumption -
- Consumer confidence -
- G -

3.2.3 Investment Function

$$I = K^* - K_t + \delta K_t$$

- A +
- AS +
- τ -
- δ -
- P_k -
- ITC +

Lesson 7 4

Notation 4.1

- \bullet L_t Number of workers
- n growth rate of work force
 - population growth rate
- K_t capital stock
- δ depreciation rate
- Y_t output (GDP)
- \bullet C_t consumption
- \bullet I_t gross investment

$$-C_t = Y_t - I_t$$

- $y_t = \frac{Y_t}{L_t}$ ouput per worker $c_t = \frac{C_t}{L_t}$ consumption per worker $k_t = \frac{K_t}{L_t}$ capital per worker (capital-labor ratio) $i_t = \frac{I_t}{L_t}$ investment per worker

Steady-State 4.2

$$i = (n + \delta)k$$

$$y_t = Af(k_t)$$

$$c = Af(k) - (n + \delta)k$$

STEADY STATE CONDITION

$$sf(k) = (n + \delta)k$$

There are three main factors that change the solow model

- 1. Changes in TFP (A) change sf(k)
- 2. Cahnges in savings rate (s) change sf(k)
- 3. Changes in the population growth rate (n) change $(n + \delta)k$