Apuntes de clase

José Antonio de la Rosa Cubero

Proposición 1. Sea G un grupo finito $y H \leq G$ tal que [G : H] = p siendo p el menor primo que divide al orden de G.

Entonces $H \subseteq G$.

Demostración. Consideramos

$$G/H = \{xH : x \in G\}$$

y la acción por traslación g(xH)=(gx)H y ρ la representación asociada. Veamos que $\ker \rho \leq H$. $\ker \rho = \{\rho(g)(xH)=xH \forall x \in G\}=\{(gx)H=xH \forall x \in G\}$

Si $g \in \ker \rho$ entonces (gx)H = xH para todo $x \in G$. En particular para x = 1 se tendrá

$$qH = H$$

y por lo tanto $g \in H$.

Por el primer teorema de isomorfía tenemos que $G/\ker\rho\cong\operatorname{Im}\rho$

$$[G : \ker \rho] = |\operatorname{Im} \rho|$$

 $\operatorname{Im} \rho \leq S(G/H) \cong S_p \operatorname{y} \operatorname{como} |G/H| = [G:H] = p$, tenemos que $\operatorname{Im}(\rho)|p!$ como queríamos ver.

Veamos que $[H : \ker(\rho)]|(p-1)!$.

Consideramos

$$\ker(\rho) \leq H \leq G$$

Luego

$$[G : \ker \rho] = [G : H][H : \ker \rho] = p[H : \ker \rho]$$

Como el segundo miembro del producto divide a p! , tenemos que $[G:\ker\rho]|(p-1)!$.

Ahora tenemos que ver que $[H:\ker\rho]=1.$

Supongamos que no fuera 1. Elegimos un primo q que divida a $[H:\ker\rho]$. Por transitividad, q||H| e igualmente q||G|.

Como por el apartado anterior, tenemos que $[H:\ker\rho]|(p-1)!$ y $q|[H:\ker\rho]$, luego q< p, lo cual contradice que p es el menor primo que divide al orden de G.

Consecuentemente $[H:\ker\rho]=1$, por tanto $H=\ker\rho$ y por tanto $H\unlhd G$ pues el núclao es siempre normal en el dominio de ρ .

Proposición 2. Sea G un p-grupo y H normal en G de orden p. Entonces $H \leq Z(G)$.

Demostración. Consideramos $|G| = p^n$, $n \ge 1$, $H \le G$ y |H| = p.

Como $H \leq G$ entonces $gHg^{-1} = H$ para toda $g \in G$.

Entonces podemos considerar la acción por conjugación de G sobre H.

$$gh = ghg^{-1}$$

Entonces

$$|H| = |\operatorname{Fix}(H)| \sum_{h \notin \operatorname{Fix}(H)} [G : \operatorname{Stab}_G(h)]$$

Si $h \notin \text{Fix}(H)$, $[G : \text{Stab}_G(h)] > 1$, y como $[G : \text{Stab}_G(h)] | |G| = p^n$ luego existe un $r \ge 1$ tal que $[G : \text{Stab}_G(h)] = p^r$.

Consecuentemente $p|\sum_{h\notin \text{Fix}(H)}[G:\text{Stab}_G(h)]$ y como |H|=p entonces p||Fix(H)|.

 $h \in \text{Fix}(H) \iff O(h) = \{h\}$ o equivalentemente $ghg^{-1} = h$ para toda $g \in G$, es decir, si gh = hg o lo que es lo mismo, si $h \in Z(G)$.

Por tanto, $Fix(H) = H \cap Z(G)$.

Como $p||H\cap Z(G)|$ y $H\cap Z(G)\leq H$ entonces $|H\cap Z(G)|||H|=p$ Luego $|H\cap Z(G)|=p=|H|$ y entonces $H\cap Z(G)=H$ lo que implica que $H\leq Z(G)$.

Clasificación de grupos abelianos finitos

Proposición 3. Sea A un p-grupo abeliano finito con $|A| = p^n$, $n \ge 1$. $Entonces existen enteros <math>\beta_1 \ge \beta_2 \ge \ldots \ge \beta_t \ge 1$ y tales que $\sum \beta_i = n$ y

$$A \cong C_{p^{\beta_1}} \times C_{p^{\beta_2}} \times \dots \times C_{p^{\beta_t}}$$

Además esta expresión es única (salvo el orden). Esto es, si

$$A \cong C_{p^{\alpha_1}} \times C_{p^{\alpha_2}} \times \dots \times C_{p^{\alpha_s}}$$

 $y \ \alpha_1 \ge \alpha_2 \ge \ldots \ge \alpha_s \ge 1 \ y \ tales \ que \sum \alpha_i = n \ entonces \ s = t \ \alpha_i = \beta_i \ para \ todo \ 1 \le i \le t.$

Definición 1 (p-grupo abeliano elemental). Un p-grupo abeliano finito E diremos que es un p-grupo abeliano elemental si $x^p = 1$ para todo $x \in E$.

Un ejemplo de p-grupo abeliano elemental es $C_p \times \cdots \times C_p$.

Lema 1. Sea E un p-grupo abeliano elemental. Entonces para cada $x \in E$ existe un $M \leq E$ tal que E es el producto directo interno de M y $\langle x \rangle$, es decir, $E \cong M \times \langle x \rangle$.

Demostración. Si x = 1, basta tomar M = E.

Supongamos $x \neq 1$. Entonces $\operatorname{ord}(x) = p$.

Sea

$$\Sigma = \{ H \le E : x \notin H \}$$

Sabemos que no es vacío pues $\{1\} \in \Sigma$.

Sea $M \in \Sigma$ el elemento de mayor orden.

Aseguramos que [E:M]=p. Sabemos ya que $[E:M]|E|=p^n$, luego $[E:M]=p^r$ con $r\geq 1$.

Si [E:M]=p, veamos que E es el producto directo interno de M y $\langle x \rangle$. Como E es abeliano, M y $\langle x \rangle$ son subgrupos normales.

 $M \cap \langle x \rangle = \{1\}$ si $y \in M \cap \langle x \rangle$. Entonces $y = x^j$ y tenemos que $\langle x^j \rangle \leq M$. Como $x \notin M$, entonces j = 0 y por tanto y = 1. Si no $\langle x^j \rangle = \langle x \rangle$.

En tercer lugar, $M\langle x\rangle=E$. Aplicamos el tercer teorema de isomorfía a $M\leq E$ y $\langle x\rangle\leq E$ y obtenemos:

$$M\langle x \rangle / \langle x \rangle \cong M/(M \cap \langle x \rangle) = M/\{1\} = M$$

Como [E:M]=p, tenemos que $\frac{E}{M}=p,$ y po tanto $|M|=\frac{|E|}{p}=\frac{p^n}{p}=p^{n-1}.$

Entonces $|M\langle x\rangle| = p^{n-1}p = p^n = |E|$, con lo que $M\langle x\rangle = E$.

Por tanto, $E \cong M \times \langle x \rangle$.

Supongamos que no ocurriera que [E:M]=p, es decir, $[E:M]=p^i$, con $i \geq 2$.

Consideramos E/M, que es también un p-grupo abeliano y elemental.

 $yM \in E/M$ implica $(yM)^p = y^pM = M$ y entonces $y \in E$ implica que $y^p = 1$ y entonces cualquier elemento distinto de M en E/M tiene orden p. Elegimos $yM \in E/M$, $yM \neq M$ y $yM \notin \langle xM \rangle$.

 $xM \in E/M$, $xM \neq M$, $\operatorname{ord}(xM) = p$ tenemos $\langle xM \rangle \leq E/M$ y como $|E/M| = p^2$ y $|\langle xM \rangle| = p$ tenemos que $\langle xM \rangle < E/M$ y entonces existe yM en las condiciones anteriores.

Además podemos asegurar que $xM \notin \langle yM \rangle$ porque xM,yM tienen ambos orden p.

Consideramos la proyección canónica $\pi: E \longrightarrow E/M,$ dada por $\pi(a) = aM.$

Sea $H = \pi(\langle yM \rangle) = \{a \in E : \pi(a) \in \langle yM \rangle\} = \{a \in E : aM \in \langle yM \rangle\}.$

Como $xM \notin \langle yM \rangle$ entonces $x \notin H$.

Si $a \in M$, tenemos que $aM = M \in \langle yM \rangle$, $a \in H$, es decir, $M \leq H$.

Como $y \in H$ y también $y \not \in M,$ entonces M < Hy ya hemos llegado a la contradicción:

$$x \not\in H \implies H \in \Sigma$$

y M < H, en contra de la elección de M.