

Instituto Superior de Engenharia de Coimbra Departamento de Física e Matemática Licenciatura em Engenharia Informática (LEI, LEI-PL, LEICE) 1º Frequência de Métodos Estatísticos

12 de Maio de 2021 Versão 101 Duração: 1h30min

- (2.5) 1. Uma empresa produz para o mercado A e para o mercado B, sendo a produção para o mercado A um terço da destinada ao mercado B. Com base no controlo de qualidade à produção da empresa, admite-se que 5% dos produtos lançados no mercado A apresentam deficiências, sendo essa percentagem de 3% na produção destinada ao mercado B.
 - (a) Defina em compreensão os acontecimentos referidos no enunciado e extraia deste todos os dados fornecidos.
 - (b) Determine a probabilidade de um produto produzido por esta empresa ser defeituoso.
 - (c) Determine a probabilidade de um produto não defeituoso ter sido produzido para o mercado A.
 - (d) Considerando uma amostra de 10 produtos dessa empresa, explicite todo o processo de definição da variável aleatória bem como a sua lei de probabilidade, que lhe permitará determinar a probabilidade de, nesses 10 produtos, existir quando muito um defeituoso. Calcule uma aproximação para esse valor (utilize 4 casas decimais).
- (3.0) 2. Uma agência de um banco estudou as duas variáveis seguintes com o objetivo de conhecer o comportamento dos titulares de conta corrente num período difícil como o que o país está a atravessar:
 - X: "Número de meses com a conta corrente a descoberto no ano anterior por um titular de conta"
 - Y: "Número de moratórias¹ concedidas pelo banco ao titular da conta"

A função de probabilidade conjunta de (X, Y) é dada na forma de tabela, por

	Y	0	1	2
X				
0		0	0	0.10
1		0	0.05	0.05
$\parallel 2$		0.20	0.10	0.05
3		0.30	0.10	0.05

- a) Determine as leis de probabilidade marginal de X e Y.
- b) Qual o número de médio de meses que um cliente da agência apresentou a conta a descoberto no ano anterior? Com que desvio-padrão?
- c) Determine a probabilidade de um titular de conta que nunca teve a conta a descoberto no ano anterior, possuir 2 moratórias.
- d) Determine a covariância entre X e Y. O número de meses que um cliente da agência teve a conta a descoberto no ano anterior é independente do número de moratórias que lhe foram concedidas? Justifique.
- e) Calcule $P(Y = y/X = 1), \forall y \in \mathbb{R}$.

¹moratória - (latim moratoria, feminino de moratorius, -a, -um; *nome feminino*; 1. [Direito] Espera ou prorrogação concedida pelo credor ao devedor; 2. Adiamento de um prazo, geralmente em relação ao vencimento de uma dívida. "moratória", in Dicionário Priberam da Língua Portuguesa [em linha], 2008-2021, https://dicionario.priberam.org/morat%C3%B3ria [consultado em 06-05-2021].

	(A) 0.7636	(B) 0.7407	(C) 0.5091	(D) 0.2364
1.0) 5.	Ao lançar um dardo, a probabil tentativas o jogador acerta 1.4 uma vez.			
	(A) 0.3500	(B) 0.3845	(C) 0.0961	(D) 0.0897
0.5) 6.	A estatística revela que o João uma série de 8 lances livres. In		•	
		$1 - 0.9^8 - {}^8C$	$_7 \times 0.9^7 \times 0.1^1$	
	 (A) O João concretiza pelo m (B) O João concretiza pelo m (C) O João concretiza no máx (D) O João concretiza no máx 	enos 7 lances livres; ximo 6 lances livres;		
1.0) 7.	A experiência, de um determin hora, segue uma distribuição d	-	· · · · · · · · · · · · · · · · · · ·	ue o número de clientes, p
	(a) A probabilidade de o pos	to ter, no máximo, 5 c	lientes numa determinad	a hora é
	(A) 0.0671	(B) 0.0378	(C) 0.0293	(D) 0.9329
	(b) A probabilidade de o pos clientes é	to ter, no período entr	re as 8h e as 12h de um	determinado dia, mais de
	(A) 0.5419	(B) 0.4581	(C) 0.4790	(D) 0.5210
0.5) 8.	Uma variável aleatória X tem	a seguinte função de p	robabilidade, onde a desi	igna um número real:
		$\begin{array}{ c c c c } \hline x & a \\ \hline P(X=x) & \frac{1}{6} \\ \hline \end{array}$	$\begin{array}{c cc} 2 & 3 \\ \hline a^2 & 2 \\ \hline 6 & 3 \\ \end{array}$	
	O valor médio de X é $\frac{13}{6}$. Qua	al pode ser o valor de a	n?	
	(A) $\frac{1}{2}$	(B) -1	(C) $-\frac{1}{2}$	(D) 1
	inição Sejam A e B acontecin	. 1 O P/1		
реп	3	mentos de Ω com $P(B)$	(3) > 0. A probabilidad	e de A condicionada por
	B), é dada por	mentos de Ω com $P(A/B) = \frac{P(A/B)}{A}$		e de A condicionada por
P(A/	B), é dada por	$P(A/B) = \frac{P(A/B)}{A}$	$\frac{(A \cap B)}{P(B)}$.	
Teo		$P(A/B) = \frac{P(A/B)}{A_1}$ Sejam $A_1, A_2,, A_n$	P(B).	is que $A_i \cap A_j = \emptyset, \ i \neq j$
P(A/	B), é dada por rema [probabilidade total]	$P(A/B) = \frac{P(A/B)}{P(A/B)}$ Sejam $A_1, A_2,, A_n$ o qualquer. Tem-se $P(A/B)$	$\frac{(A \cap B)}{P(B)}$. acontecimentos de Ω ta $B) = \sum_{i=1}^{n} P(B/A_i) P(A_i)$	is que $A_i\cap A_j=\emptyset,\ i\neq j$.

(0.75) 3. Seja Ω o espaço de resultados associado a uma experiência aleatória. Sejam A e B dois acontecimentos

(0.75) 4. Uma empresa de computadores ofereceu 3 computadores para serem sorteados por 3 dos 12 melhores

(B) 0.775

sabendo que A se realiza é

(A) 0.18

possíveis, contidos em Ω , tais que P(A/B) = 0.45 e P(B) = 0.5P(A). A probabilidade de B não se realizar

estudantes, 8 rapazes e 4 raparigas, de Engenharia Informática. Sabendo que qualquer dos estudantes pode

(C) 0.225

(D) 0.9

Instituto Superior de Engenharia de Coimbra Departamento de Física e Matemática Licenciatura em Engenharia Informática (LEI, LEI-PL, LEICE) 1º Frequência de Métodos Estatísticos

12 de Maio de 2021 Versão 102 Duração: 1h30min

- (2.5) 1. Uma empresa produz para o mercado A e para o mercado B, sendo a produção para o mercado A dois terços da destinada ao mercado B. Com base no controlo de qualidade à produção da empresa, admite-se que 5% dos produtos lançados no mercado A apresentam deficiências, sendo essa percentagem de 3% na produção destinada ao mercado B.
 - (a) Defina em compreensão os acontecimentos referidos no enunciado e extraia deste todos os dados fornecidos.
 - (b) Determine a probabilidade de um produto produzido por esta empresa ser defeituoso.
 - (c) Determine a probabilidade de um produto não defeituoso ter sido produzido para o mercado B.
 - (d) Considerando uma amostra de 10 produtos dessa empresa, explicite todo o processo de definição da variável aleatória bem como a sua lei de probabilidade, que lhe permitará determinar a probabilidade de, nesses 10 produtos, existir quando muito um defeituoso. Calcule uma aproximação para esse valor (utilize 4 casas decimais).
- (3.0) 2. Uma agência de um banco estudou as duas variáveis seguintes com o objetivo de conhecer o comportamento dos titulares de conta corrente num período difícil como o que o país está a atravessar:
 - X: "Número de meses com a conta corrente a descoberto no ano anterior por um titular de conta"
 - Y: "Número de moratórias¹ concedidas pelo banco ao titular da conta"

A função de probabilidade conjunta de (X,Y) é dada na forma de tabela, por

	Y	0	1	2
X				
0		0	0	0.10
1		0	0.05	0.05
$\parallel 2$		0.20	0.10	0.05
3		0.30	0.10	0.05

- a) Determine as leis de probabilidade marginal de X e Y.
- b) Qual o número de médio de moratórias que um cliente da agência tem? Com que desvio-padrão?
- c) Determine a probabilidade de um titular de conta que possui 2 moratórias nunca ter tido a conta a descoberto no ano anterior.
- d) Determine a covariância entre X e Y. O número de meses que um cliente da agência teve a conta a descoberto no ano anterior é independente do número de moratórias que lhe foram concedidas? Justifique.
- e) Calcule $P(X = x/Y = 0), \forall x \in \mathbb{R}$.

¹moratória - (latim moratoria, feminino de moratorius, -a, -um; nome feminino; 1. [Direito] Espera ou prorrogação concedida pelo credor ao devedor; 2. Adiamento de um prazo, geralmente em relação ao vencimento de uma dívida. "moratória", in Dicionário Priberam da Língua Portuguesa [em linha], 2008-2021, https://dicionario.priberam.org/morat%C3%B3ria [consultado em 06-05-2021].

	ser premiado, a probabilidade	de mais de uma aluna g	anhar um dos computac	dores é
	(A) 0.7636	(B) 0.7407	(C) 0.5091	(D) 0.2364
1.0) 5.	Ao lançar um dardo, a probabi tentativas o jogador acerta 1.4 uma vez.			
	(A) 0.0897	(B) 0.0961	(C) 0.3845	(D) 0.3500
0.5) 6.	A estatística revela que o João uma série de 8 lances livres. In		•	
		$1 - 0.9^8 - {}^8C_7$	$\times 0.9^7 \times 0.1^1$	
	 (A) O João concretiza pelo n (B) O João concretiza pelo n (C) O João concretiza no má (D) O João concretiza no má 	nenos 6 lances livres; ximo 7 lances livres;		
1.0) 7.	A experiência, de um determin hora, segue uma distribuição d	-	· -	ue o número de clientes,
	(a) A probabilidade de o pos	sto ter, no mínimo, 5 clie	entes numa determinada	a hora é
	(A) 0.0671	(B) 0.9707	(C) 0.0293	(D) 0.9329
	(b) A probabilidade de o pos clientes é	sto ter, no período entre	as 8h e as 12h de um e	determinado dia, mais de
	(A) 0.5419	(B) 0.5210	(C) 0.4790	(D) 0.4581
0.5) 8.	Uma variável aleatória X tem	a seguinte função de pro	babilidade, onde a desi	gna um número real:
		$\begin{array}{c cc} x & a \\ \hline P(X=x) & \frac{1}{6} \end{array}$	$\begin{array}{c c} 2 & 3 \\ \hline a^2 & 2 \\ \hline 6 & 3 \\ \end{array}$	
	O valor médio de X é $\frac{13}{6}$. Qu			
	(A) -1	(B) $\frac{1}{2}$	(C) $-\frac{1}{2}$	(D) 1
Defin	nição Sejam A e B acontecimer	ntos de Ω com $P(B) > 0$.	A probabilidade de $A c$	ondicionada por $B, P(A/$
é dad	a por	$P(A/B) = \frac{P(A)}{P}$	$\frac{(\cap B)}{(B)}$.	
Teo	rema probabilidade total	Sejam $A_1, A_2,, A_n$ a	contecimentos de Ω ta:	is que $A_i \cap A_j = \emptyset$, $i \neq \emptyset$
	rema [probabilidade total] $i = \Omega$. Seja B um aconteciment			
$\bigcup_{i=1} A_i$		to qualquer. Tem-se $P(B)$	$P(B/A_i) P(A_i) P(A_i)$. n

(0.75) 3. Seja Ω o espaço de resultados associado a uma experiência aleatória. Sejam A e B dois acontecimentos

(0.75) 4. Uma empresa de computadores ofereceu 3 computadores para serem sorteados por 3 dos 12 melhores

(B) 0.775

sabendo que A se realiza é

(A) 0.18

possíveis, contidos em Ω , tais que P(A/B) = 0.45 e P(B) = 0.5P(A). A probabilidade de B se realizar

estudantes, 8 rapazes e 4 raparigas, de Engenharia Informática. Sabendo que qualquer dos estudantes pode

(C) 0.225

(D) 0.9