

Instituto Superior Técnico

MESTRADO INTEGRADO EM ENGENHARIA ELECTROTÉCNICA E DE COMPUTADORES

Electrónica de Potência

Conversor CC/CC

Redutor, Ampliador & Redutor-Ampliador

João Bernardo Sequeira de Sá	$\rm n.^o~68254$
Maria Margarida Dias dos Reis	$\rm n.^o~73099$
Rafael Augusto Maleno Charrama Gonçalves	n.º 73786
Nuno Miguel Rodrigues Machado	n.º 74236

Turno de Segunda-feira das 17h00 - 20h00

${\rm \acute{I}ndice}$

1	Introdução				
2	Con	ıdução	do Trabalho	2	
	2.1	Conve	ersor Redutor	2	
		2.1.1	Carga R	2	
		2.1.2	Carga RL	3	
		2.1.3	Carga RLC	3	
	2.2	Conve	ersor Ampliador	3	
	2.3	3 Converor Redutor-Ampliador			

1 Introdução

O objetivo deste trabalho é estudar o funcionamento das três principais topologias de conversores CC/CC, sendo estas o conversor redutor, conversor ampliador e redutor-ampliador.

Este tipo de conversores pode ser visto como o equivalente em corrente continua de um transformador cuja relação de transformação é variável. Quer isto dizer que através de um conversor CC/CC é possível converter uma certa fonte de tensão continua com valor fixo para uma fonte de tensão com valor variável, fazendo-se uma elevação ou redução do valor. [2]

Sendo assim pode considerar-se que este trabalho está dividido em três partes sendo que em cada uma destas se estuda o funcionamento de uma topologia diferente.

A primeira topologia a considerar é o conversor redutor. O objetivo neste caso é obter-se à saída uma tensão inferior à de entrada, sendo que se pode controlar esta diferença através do fator de ciclo.

De seguida estuda-se o conversor ampliador, onde o objetivo é o contrário da anterior topologia, querendo-se obter à saída uma tensão superior à de entrada. Novamente esta relação pode ser controlada através do fator de ciclo.

Por fim tem-se o conversor redutor-ampliador, onde é possível obter na saída um valor inferior ou superior da tensão de entrada. Novamente o parâmetro de controlo aqui é o fator de ciclo, onde abaixo de um certo valor se obtém uma redução da tensão e acima uma ampliação desta. Em condições de operação semelhantes este conversor não consegue obter uma redução de tensão tão grande quanto o conversor redutor e o mesmo pode ser dito entre a ampliação e o conversor ampliador.

2 Condução do Trabalho

2.1 Conversor Redutor

2.1.1 Carga R

No estudo do conversor redutor começa-se por considerar uma carga resistiva pura sendo o circuito considerado apresentado na Figura 1

R.png

Figura 1: Esquema do Conversor Redutor com Carga Resistiva.

Após feitas as ligações necessárias, regulado o Gerador de Funções para que se obtenha o sinal quadrado com as caraterísticas desejadas.

- 2.1.1.1 Formas de onda da tensão V_{GA} e corrente de Gate para $50~\mathrm{kHz}$
- 2.1.1.2 Formas de onda da tensão e corrente na carga
- 2.1.2 Carga RL
- 2.1.2.1 Formas de onda da tensão no Díodo D_1 e corrente na carga para $10~\mathrm{kHz}$
- 2.1.2.2 Frequência limiar do regime lacunar
- 2.1.3 Carga RLC
- 2.1.3.1 Formas de onda da tensão V_{DS} e corrente I_D para $20~\mathrm{kHz}$
- 2.1.3.2 Formas de onda da tensão e corrente no Díodo D_1
- 2.1.3.3 Formas de onda da tensão na carga e corrente na bobine
- 2.1.3.4 Tensão na carga em função do fator de ciclo
- ${\bf 2.1.3.5}$ Efeito da adição de um Snubberentre o Dreno e Source do MOSFET para $50~{\rm kHz}$
- 2.1.3.6 Forma de onda da tensão V_{AK} do Díodo D_1 para 200 kHz
- 2.2 Conversor Ampliador
- 2.2.0.7 Formas de onda da tensão V_{DS} e da corrente I_D para $40~\mathrm{kHz}$
- 2.2.0.8 Formas de onda na Resistência e corrente em D_1
- 2.2.0.9 Tensão na carga em função do fator de ciclo
- 2.3 Converor Redutor-Ampliador
- 2.3.0.10 Formas de onda da tensão e corrente aos terminais da bobina para 40 kHz
- 2.3.0.11 Formas de onda da tensão na Resistência e corrente D_1
- 2.3.0.12 Tensão na carga em função do fator de ciclo

2.3.0.13 Rendimento do conversor para um fator de ciclo de 60~%

Referências

- [1] Kassakian, John G. et al (1992, June), Principles of Power Electronics, Addison-Wesley Publishing Company
- [2] Rashid, Muahammad H. (2004), Power Electronics Circuits, Devices and Applications, $Prentice\ Hall$
- [3] Silva, Fernando (1998), Eletrónica Industrial, Fundação Calouste Gulbenkian