Другие регулярные модели. Синтаксический моноид

Теория формальных языков $2022 \ z$.

Класс грамматик, симметричный праволинейным:

- виды правил $A_i \to a_j, A_i \to A_k a_j$ и $S \to \epsilon$, если S не встречается в правых частях правил;
- описывает тот же самый класс языков, что и праволинейные грамматики.

Преобразование в леволинейную форму легко сделать по обратным проходам из финального в начальное состояние в НКА, соответствующем грамматике.

Преобразование в леволинейную форму легко сделать по обратным проходам из финального в начальное состояние в НКА, соответствующем грамматике.

$$S \rightarrow \alpha A \mid bB \quad A \rightarrow \alpha S \mid \alpha \quad B \rightarrow bS \mid b$$

Строим недетерминированный КА по грамматике. Здесь F — финальное состояние, куда добавляются переходы $\langle A_i, a_j \rangle \to$ F, соответствующие правилам $A_i \to a_j$ грамматики.

$$S \rightarrow aA \mid bB \quad A \rightarrow aS \mid a \quad B \rightarrow bS \mid b$$

Теперь обращаем стрелки и меняем начальное и финальное состояния местами.

$$S \rightarrow aA \mid bB \quad A \rightarrow aS \mid a \quad B \rightarrow bS \mid b$$

Теперь обращаем стрелки и меняем начальное и финальное состояния местами.

По полученному автомату строим леволинейную грамматику:

$$S \rightarrow A \alpha \, | \, Bb \quad A \rightarrow F \alpha \, | \, \alpha \quad B \rightarrow F b \, | \, b \quad F \rightarrow A \alpha \, | \, Bb$$

Формальный алгоритм приведения к леволинейности

- Добавляем в грамматику новый стартовый символ S' и для всех правил вида $A_i \to a_j$ правила $S' \to A_i a_j$.
- $oldsymbol{0}$ Правила вида $A_{\mathfrak{i}} o a_{\mathfrak{j}} A_k$ преобразуем в $A_k o A_{\mathfrak{i}} a_{\mathfrak{j}}.$
- **3** По правилам вида $S \to a_j A_k$ дополнительно порождаем правила $A_k \to a_j$.
- f a По правилам вида $S o a_j$ и $S o \epsilon$ порождаем правила $S' o a_j$ и $S' o \epsilon$ соответственно.

Если в исходной грамматике S не встречался в правых частях правил, тогда этот алгоритм породит непродуктивные правила $A_k \to S a_j$. Поэтому шаг 2 для правил вида $S \to a_j A_k$ и шаг 1 для $S \to a_j$ в этом случае делать не надо.

Обращение регулярного языка

Если $\mathscr L$ регулярен, то и $\mathscr L^\mathsf{R}$ регулярен.

Очевидно для НКА (обращаем стрелки в НКА без перемены стартовых и финальных состояний), также очевидно для regex (почему?)

А что с ДКА?

Обращение регулярного языка

Если $\mathscr L$ регулярен, то и $\mathscr L^\mathsf{R}$ регулярен.

Очевидно для НКА (обращаем стрелки в НКА без перемены стартовых и финальных состояний), также очевидно для regex (почему?)

А что с ДКА?

Минимизация по Брзозовски

 $\det(\operatorname{reverse}(\det(\operatorname{reverse}(\mathscr{A}))))$ является минимальным ДКА для любого НКА \mathscr{A} .

Реверсирование принципиально меняет структуру минимального автомата. Причина — асимметричность определения классов эквивалентности:

$$\mathbf{u} \equiv_{\mathscr{C}} \mathbf{w} \Leftrightarrow \forall \mathbf{x} (\mathbf{u} \, \mathbf{x} \in \mathscr{L} \Leftrightarrow \mathbf{v} \, \mathbf{x} \in \mathscr{L})$$

Цена детерминизма

Утверждение

Имея регулярную грамматику с N нетерминалами, по ней можно построить ДКА (самое большее) с $O(2^N)$ состояниями. Эта оценка является точной.

Цена детерминизма

Утверждение

Имея регулярную грамматику с N нетерминалами, по ней можно построить ДКА (самое большее) с $O(2^N)$ состояниями. Эта оценка является точной.

Рассмотрим грамматику G:

$$S \rightarrow \alpha S$$
 $S \rightarrow$

$$S \rightarrow bA_1$$

$$\begin{array}{lll} S \rightarrow \alpha S & S \rightarrow b S & S \rightarrow b A_1 \\ A_1 \rightarrow \alpha A_2 & A_1 \rightarrow b A_2 & A_2 \rightarrow \alpha A_3 & A_2 \rightarrow b A_3 \end{array}$$

$$A_2 \rightarrow a A_3 \quad A_2 \rightarrow b A_3$$

$$A_{n-1} \rightarrow aA_n \quad A_{n-1} \rightarrow bA_n \quad A_n \rightarrow a \qquad A_n \rightarrow b$$

Грамматике G соответствует следующий НКА. Её язык — это слова вида $\{a \mid b\}^*b\{a \mid b\}\langle n-1\rangle$, то есть слова с n-ой буквой с конца, совпадающей с b.

Построим для этого языка таблицу классов эквивалентности и различающих слов по Майхиллу–Нероуду.

	ε	a	 $\mathfrak{a}^{\mathfrak{n}-3}$	$\mathfrak{a}^{\mathfrak{n}-2}$	\mathfrak{a}^{n-1}
a^n	_	_	 _	_	_
$a^{n-1}b$	_	_	 _	_	+
$a^{n-2}ba$	_		 _	+	_
$a^{n-2}bb$	_	_	 	+	+
$a^{n-3}baa$	_	_	 +	_	_
$a^{n-3}bab$	_	_	 +	_	+
$a^{n-3}bba$	_	_	 +	+	_
$a^{n-3}bbb$			 +	+	+
ab^{n-1}	_	+	 +	+	+
b ⁿ	+	+	 +	+	+

L(G) =	$= \{a \mid b\}^*\}$	b {a b}{n	$-1\rangle$.
--------	----------------------	-------------	---------------

	ε	a	 $\mathfrak{a}^{\mathfrak{n}-3}$	$\mathfrak{a}^{\mathfrak{n}-2}$	$\mathfrak{a}^{\mathfrak{n}-1}$
a ⁿ	_	_	 _	_	_
$a^{n-1}b$	_	_	 _	_	+
$a^{n-2}ba$	_	_	 _	+	_
$a^{n-2}bb$	_	_	 _	+	+
$a^{n-3}baa$	_	_	 +	_	_
a ^{n−3} bab	_	_	 +	_	+
a ^{n−3} bba	_	_	 +	+	_
$a^{n-3}bbb$	_	_	 +	+	+
$\mathfrak{a}\mathfrak{b}^{\mathfrak{n}-1}$	_	+	 +	+	+
b ⁿ	+	+	 +	+	+

Если в слове w_i в k-ой позиции стоит b, а в w_j стоит a, тогда суффикс a^{k-1} различает w_i и w_j . Все w_i различны \Rightarrow для каждой пары i, j есть такое $k \Rightarrow$ нашлось минимум 2^n классов эквивалентности, и ДКА для L имеет не меньше 2^n состояний.

Ещё раз о лемме о накачке

В отличие от теоремы Майхилла–Нероуда, лемма о накачке использует свойства НКА, а не ДКА. А именно, если константа накачки языка не может быть меньше k, то в НКА, распознающем этот язык, не меньше k состояний.

Рассмотрим язык $L = \{w_1bw_2 \mid |w_2| = 3\}$. Мы знаем, что распознающий его ДКА имеет минимум 16 состояний. Накачку $w \in L$, такую что w = xyz, $xy^nz \in L$, найти очень просто для всякого слова длины $\geqslant 5$: достаточно взять первую букву этого слова в качестве y, а x принять пустым.

Теперь пусть длина накачки р меньше 5. Рассмотрим слово $baaa \in L$. Любая накачка только букв a (нулевая и нет) выводит слово из языка, и нулевая накачка подслова, содержащего букву b, также выводит из языка L. Поэтому НКА, распознающий L, не может иметь меньше 5 состояний.

Трансформационный моноид

Посмотрим на правила перехода: $\langle q_1, \alpha \rangle \to q_2$. Если частично специализировать их по элементам из Σ , то получится функция $F_\alpha: Q \to Q$ (Q — множество состояний автомата). Такие же функции можно определить для слов по композиции.

Каждый автомат \mathscr{A} определяет моноид $\mathcal{M} = \{w \,|\, w \in \Sigma^+\}$ такой, что $w_i = w_j \Leftrightarrow \mathsf{F}_{w_i} = \mathsf{F}_{w_j}$. Классы эквивалентности слов в \mathcal{M} соответствуют функциям F_{w_i} .

Пример построения Т.М.

Определим соответствие между буквами и множествами переходов по ним и будем расширять этот список новыми словами в лексикографическом порядке.

$$a := \{(0,1), (1,1), (2,1)\}$$
 $b := \{(0,0), (1,2), (2,2)\}$ $c := \{(1,1), (2,2)\}$

Пример построения Т.М.

Определим соответствие между буквами и множествами переходов по ним и будем расширять этот список новыми словами в лексикографическом порядке.

 $bb \rightarrow b$ $cc \rightarrow c$ $cb \rightarrow bc$

$$\begin{array}{lll} \alpha := \{(0,1),(1,1),(\hat{2},\hat{1})\} & b := \{(\hat{0},0),(1,2),(2,2)\} & c := \{(1,1),(2,2)\} \\ ab := \{(0,2),(1,2),(2,2)\} & bc := \{(1,2),(2,2)\} & c\alpha := \{(1,1),(2,1)\} \\ a\alpha \to \alpha & ac \to \alpha & b\alpha \to \alpha \end{array}$$

8/25

Пример построения Т.М.

Определим соответствие между буквами и множествами переходов по ним и будем расширять этот список новыми словами в лексикографическом порядке.

$$\begin{array}{lll} a := \{(0,1), (1,1), (2,1)\} & b := \{(0,0), (1,2), (2,2)\} & c := \{(1,1), (2,2)\} \\ ab := \{(0,2), (1,2), (2,2)\} & bc := \{(1,2), (2,2)\} & ca := \{(1,1), (2,1)\} \\ aa \to a & ac \to a & ba \to a \\ bb \to b & cc \to c & cb \to bc \\ abc \to ab & bca \to ca & cab \to bc \end{array}$$

Синтаксический моноид

Положим $\mathfrak{u} \sim_{\mathscr{L}} \mathfrak{v} \Leftrightarrow \forall \mathsf{x}, \mathsf{y}(\mathsf{x}\,\mathfrak{u}\,\mathsf{y} \in \mathscr{L} \Leftrightarrow \mathsf{x}\,\mathsf{v}\,\mathsf{y} \in \mathscr{L}).$ Синтаксический моноид $\mathfrak{M}(\mathscr{L})$: $\{w\,|\,w_\mathfrak{i}=w_\mathfrak{j}\Leftrightarrow w_\mathfrak{i}\sim_{\mathscr{L}} w_\mathfrak{j}\}.$

Синтаксический моноид регулярного языка \mathscr{L} совпадает с трансформационным моноидом минимального ДКА, его распознающего.

Одному классу эквивалентности синтаксического моноида может соответствовать несколько классов эквивалентности трансформационного, но не наоборот.

Синхронизирующиеся автоматы

ДКА \mathscr{A} называется синхронизирующимся, если $\exists w, q_s \forall q_i (q_i \xrightarrow{w} q_s).$

Критерий синхронизации

ДКА \mathscr{A} синхронизирующийся $\Leftrightarrow \forall q, q' \exists w, q_x (q \xrightarrow{w} q_x \& q' \xrightarrow{w} q_x).$

Синхронизирующиеся автоматы

ДКА \mathscr{A} называется синхронизирующимся, если $\exists w, q_s \forall q_i (q_i \xrightarrow{w} q_s).$

Критерий синхронизации

ДКА \mathscr{A} синхронизирующийся $\Leftrightarrow \forall q, q' \exists w, q_x (q \xrightarrow{w} q_x \& q' \xrightarrow{w} q_x).$

Рассмотрим слово w_1 , синхронизирующее q_1 и q_2 . Если w_1 синхронизирует все состояния, доказывать нечего. Иначе построим множество $Q_1 = \{q \mid q_i \xrightarrow{w_1} q\}$. По построению, $Q_1 \subset \{q_1, \ldots, q_n\}$. Выберем в нём два первых состояния, $q_i, q_j,$ и слово $w_2,$ синхронизирующее их. Построим множество $Q_2 = \{q \mid q_i \in Q_1 \ \& \ q_i \xrightarrow{w_2} q\}$. По построению, $Q_2 \subset Q_1$. Продолжив так не более чем n-1 раз, построим синхронизирующее слово.

10 / 25

Синхронизирующиеся автоматы

ДКА \mathscr{A} называется синхронизирующимся, если $\exists w, q_s \forall q_i (q_i \xrightarrow{w} q_s).$

Критерий синхронизации

ДКА \mathscr{A} синхронизирующийся $\Leftrightarrow \forall q, q' \exists w, q_x (q \xrightarrow{w} q_x \& q' \xrightarrow{w} q_x).$

ДКА синхронизируется \Leftrightarrow классы эквивалентности его трансформационного моноида содержат «константу», т.е. класс, переводящий все состояния в одно.

Дорогой друг! Недавно я купил старый дом, в котором обитают два призрака: Певун и Хохотун. Я установил, что их поведение подчиняется определенным законам, и что я могу воздействовать на них, играя на органе или сжигая ладан. В течение каждой минуты каждый из призраков либо шумит, либо молчит. Поведение же их в каждую минуту зависит только от минуты до этого, и эта зависимость такова.

Певун всегда ведет себя так же, как и в предыдущую минуту (звучит или шумит), если только в эту предыдущую минуту не было игры на органе при молчании Хохотуна. В последнем случае Певун меняет свое поведение на противоположное. Что касается Хохотуна, то, если в предыдущую минуту горел ладан, он будет вести себя так же, как Певун минутой раньше. Если, однако, ладан не горел, Хохотун будет вести себя противоположно Певуну в предыдущую минуту. Что мне делать, чтобы установить и поддерживать тишину в доме?

- Если не играли на органе или Хохотун шумел, Певун не меняет поведение, иначе меняет.
- Если горел ладан, Хохотун делает то же, что делал Певун, иначе противоположное.

- Если не играли на органе или Хохотун шумел, Певун не меняет поведение, иначе меняет.
- Если горел ладан, Хохотун делает то же, что делал Певун, иначе противоположное.

Синхронизирующее к состоянию 00 слово: ¬и¬ж, и¬ж, ¬иж.

Префиксное кодирование

Двоичное префиксное кодирование — это гомоморфизм $h: \Sigma^+ \to \{0, 1\}^+$ такой, что $\forall a, b \in \Sigma \ \forall w \in \{0, 1\}^* (h(a) \neq h(b)w).$

Рассмотрим префиксный код из 9-буквенного алфавита: $\mathcal{C} = \{000, 0010, 0011, 010, 0110, 0111, 10, 110, 111\}.$

Префиксное кодирование

Рассмотрим префиксный код из 9-буквенного алфавита: $\mathcal{C} = \{000, 0010, 0011, 010, 0110, 0111, 10, 110, 111\}.$

Автомат–декодер для ${\mathfrak C}$ (возвращается в ${\varepsilon}$ -состояние, дочитав очередной код):

Коды, исправляющие ошибки

Префиксный код максимален, если к множеству кодирующих слов нельзя добавить ни одно слово без нарушения префикс-свойства (т.е. запрета слов из множества быть префиксами друг друга).

Максимальный префиксный двоичный код \mathcal{C} называют синхронизированным, если $\exists z \in \{0,1\}^+$, такое что $\forall y \in \{0,1\}^+$ слово уz можно представить как конкатенацию слов из \mathcal{C} .

Если код $\mathcal C$ синхронизирован, тогда ошибки в передаче закодированного слова будут исправляться сами при передаче достаточно длинной закодированной последовательности.

13 / 25

Коды, исправляющие ошибки

Префиксный код максимален, если к множеству кодирующих слов нельзя добавить ни одно слово без нарушения префикс-свойства (т.е. запрета слов из множества быть префиксами друг друга).

Максимальный префиксный двоичный код \mathcal{C} называют синхронизированным, если $\exists z \in \{0,1\}^+$, такое что $\forall y \in \{0,1\}^+$ слово уz можно представить как конкатенацию слов из \mathcal{C} .

Если код С синхронизирован, тогда ошибки в передаче закодированного слова будут исправляться сами при передаче достаточно длинной закодированной последовательности.

Утверждение

Максимальный префиксный код синхронизирован \Leftrightarrow его декодер — синхронизирующийся ДКА.

Алфавитные префиксные грамматики

Определение APG

Дана SRS S с правилами переписывания двух видов:

$$a_i \to b_1 \dots b_n$$
 $a_i \to \varepsilon$

Разрешим применять правила только к первым буквам слова. Пусть дана пара $\langle S, w_0 \rangle$, где w_0 — слово в алфавите Σ . Эта пара определяет алфавитную префиксную грамматику.

Утверждение

Язык $L(S, w_0)$ регулярен.

14 / 25

Алфавитные префиксные грамматики

Утверждение

Язык $L\langle S, w_0 \rangle$ регулярен.

Скажем, что $a \twoheadrightarrow \epsilon$ (а коллапсирует), если либо $a \to \epsilon \in S$, либо $\exists b_1, \ldots, b_n (\forall b_i (b_i \twoheadrightarrow \epsilon) \ \& \ a \to b_1 \ldots b_n \in S).$

По APG $\langle S, s_1 \dots s_n \rangle$ породим праволинейную грамматику G. Каждому символу алфавита \mathfrak{a}_i сопоставим A_i — нетерминал G.

- Пусть $a \to b_1 \dots b_n$ и $\exists b_i (\neg (b_i \twoheadrightarrow \epsilon) \& \forall j (j < i \Rightarrow b_j \twoheadrightarrow \epsilon)).$ Тогда добавим в G правила $A \to B_1 b_2 \dots b_n, A \to B_2 b_3 \dots b_n, \dots, A \to B_i b_{i+1} \dots b_n, A \to a.$
- **②** Если такого b_i нет, добавляем в G все правила вида $A \to B_1 b_2 \dots b_n, \dots, A \to B_{n-1} b_n, A \to B_n, A \to a$.
- **3** Вводим стартовый нетерминал S и для него добавляем развёртку в исходное слово $s_1 \dots s_m$ по правилам выше.
- **1** Если все s_i коллапсируют, тогда добавляем в G правило $S \to \epsilon$.

Алфавитные префиксные грамматики

Скажем, что $a \twoheadrightarrow \epsilon$ (а коллапсирует), если либо $a \to \epsilon \in S$, либо $\exists b_1, \ldots, b_n (\forall b_i (b_i \twoheadrightarrow \epsilon) \& a \to b_1 \ldots b_n \in S).$

По APG $\langle S, s_1 \dots s_n \rangle$ породим праволинейную грамматику G. Каждому символу алфавита \mathfrak{a}_i сопоставим A_i — нетерминал G.

- Пусть $a \to b_1 \dots b_n$ и $\exists b_i (\neg (b_i \twoheadrightarrow \epsilon) \& \forall j (j < i \Rightarrow b_j \twoheadrightarrow \epsilon)).$ Тогда добавим в G правила $A \to B_1 b_2 \dots b_n, A \to B_2 b_3 \dots b_n, \dots, A \to B_i b_{i+1} \dots b_n, A \to a.$
- **2** Если такого b_i нет, добавляем в G все правила вида $A \to B_1 b_2 \dots b_n, \dots, A \to B_{n-1} b_n, A \to B_n, A \to a.$
- **3** Вводим стартовый нетерминал S и для него добавляем развёртку в исходное слово $s_1 \dots s_m$ по правилам выше.
- **1** Если все s_i коллапсируют, тогда добавляем в G правило $S \to \varepsilon$.

Остается сделать развертку правил вида $A \to B_n$, либо перейти от G к НКА с ϵ -переходами.

14/25

Неалфавитные грамматики

Если вместо правил $a_i \to b_1 \dots b_n$ к префиксам слов можно применять любые правила вида $a_1 \dots a_m \to b_1 \dots b_n$, такая грамматика называется (просто) префиксной. Для простоты предполагаем, что начальное слово также может быть не единственным.

Языки префиксных грамматик регулярны.

Доказательство использует ту же идею, что в случае АПГ: множество минимальных укорачивающихся комбинаций правил переписывания конечно.

От ДКА к префиксной грамматике

В данном алгоритме рассматривается минимальный ДКА для языка.

- Ведущими словами для нетерминалов (состояний) q_i объявим классы эквивалентности w_i такие, что $q_0 \xrightarrow{w_i} q_i$.
- Для всех стрелок, входящих в q_i из q_k и помеченных буквами а_і, построим правила переписывания: $w_i \rightarrow w_k a_i$.
- Начальными словами объявим слова из классов эквивалентности, лежащих в языке автомата.

От ДКА к префиксной грамматике

Построим префиксную грамматику для языка уже знакомого нам автомата: b a, c b, c

Для q_0 ведущим словом будет b, для q_1 — a, для q_2 ведущее ab (оно же стартовое слово).

Правила префиксной грамматики:

От ДКА к префиксной грамматике

Стартовое слово: аb. Правила переписывания:

 $b \to bb$ (в q₀ входит лишь одна стрелка)

 $a \to aa$ $a \to ac$ (стрелки из q_1 в себя)

 $a \to ba$ (стрелка из q_0 в q_1)

 $ab \to ab$ (стрелка из q_1 в q_2)

 $ab \to abc$ $ab \to abb$ (стрелки из q_2 в себя)

Результат похож на обращенные правила трансформационного моноида, но учитывает префиксность: нет смысла переписывать $c \to cc$, если c может встретиться только после буквы a, либо после префикса ab.

Поведение стека в CBV-семантике

Рассмотрим стек с вершиной \bullet_n :

$$\bullet_n \leftarrow f_{n+1}(\dots), \ \bullet_{n-1} \leftarrow f_n(\bullet_n \dots) \dots, \ \bullet_0 \leftarrow f_1(\bullet_1 \dots)$$

Опишем его состояние перечислением имён функций в порядке их вхождения: $f_{n+1}f_n \dots f_1$.

Шаги вычислений над такими состояниями стека описываются как применения правил в APG.

«Подозрительное» поведение — такое, при котором вершина стека повторяется, выбрасывая промежуточные вычисления.

Поиск бесконечных циклов

Отношение Турчина

Пусть на пути развертки программы имеются два состояния стеков: $c_1:\Phi\Theta_0$, $c_2:\Phi\Psi\Theta_0$, такие что Θ_0 неизменна на всём отрезке пути от c_1 до c_2 . Тогда скажем, что $c_1 \leq c_2$ (связаны отношением Турчина).

Если вершина Φ действительно входит в бесконечный цикл, порождая всё новые состояния вида $\Phi\Psi^n\Theta_0$, тогда правдоподобно, что $c_1 \leq c_2$. Однако может случиться, что $c_1 \leq c_2$ и на развертке завершающегося вычисления (ложное срабатывание).

Теорема Турчина

Вариант для CBV

На любом бесконечном пути вычислений имеются два состояния стека, такие что $c_1 \leq c_2$.

Теорема Турчина гарантирует, что существование <u>≺</u>-пар — необходимое условие бесконечного (зацикливающегося) вычисления. Поэтому <u>≺</u> может использоваться для приблизительного анализа завершаемости программ (наряду с другими условиями).

Пинг-понг протоколы

Определение

Пусть дано множество одноместных операций $\mathcal{V}_x = \mathcal{O}_x \cup \mathcal{P}_x$, задаваемое для участника x, причём для некоторых $p_1, p_2 \in \mathcal{V}_x$ выполняются тождества $p_1 \circ p_2 = id$, и для всех $p_1, p_2, p_3((p_1 \circ p_2) \circ p_3 = p_1 \circ (p_2 \circ p_3))$. Пинг-понг протокол для двух участников — это конечная последовательность инструкций $[p_1 \dots p_n, [x, y]]$, $p_i \in \mathcal{V}_x \cup \mathcal{O}_y$.

 O_{x} — публичные операции; P_{x} — приватные операции.

Модель угрозы Долева-Яо

Д. Долев & А. Яо — первая формальная модель угрозы и первое формальное понятие криптографического протокола (1983).

Злоумышленник по Долеву-Яо:

- Может перехватывать, пересылать и изменять любое сообщение в сети;
- Может играть роль любого пользователя (маскарад);
- Может убедить пользователей начать любой дозволенный протоколом сеанс передачи сообщений.
- Не может совершать битовые операции над сообщениями;
- Не может угадать свойства секретных операций.

Протокол для двух участников

Легальные пользователи — A, B. Злоумышленник — Z (одного всегда достаточно).

Изначальное сообщение — М (обычно засекреченное).

 Σ_x — словарь операторов x. E_x — зашифровка открытым ключом x, D_x — расшифровка E_x , a_x — приписывание к сообщению имени x, d_x — удаление префикса сообщения, совпадающего c именем x.

Протокол — набор α_i (слов протокола) и указаний, кто посылает α_i . Атака — последовательность подстановок в α_i , порождающая пустое слово (т.е. демаскирующая сообщение M).

Пример протокола

Первая атака A $1: E_B a_A E_B$ $4:E_{\mathbf{B}}a_{\mathbf{Z}}E_{\mathbf{B}}$ $3: E_{\mathbf{Z}} \mathfrak{a}_{\mathbf{A}} E_{\mathbf{B}}$ $(5:E_{\mathbf{Z}})$ $2: E_B a_Z E_B a_A E_B$ B

Вторая атака

Автоматная модель $\mathscr{A}(P)$

- Строим все возможные подстановки в протокол Р пар участников (включая злоумышленника);
- Строим начальное состояние 0 и конечное состояние 1, между ними — путь, соответствующий обращению первого слова протокола с двумя легальными участниками A, B (чтобы было что атаковать);
- Строим пути из 0 в 0, соответствующие реверсам (обращенным) словам-подстановкам в протокол Р;
- Строим пути из 0 в 0, соответствующие всем возможным индивидуальным действиям злоумышленника \mathbf{Z} т.е. элементам $\mathcal{O}_{\mathbf{A}}$, $\mathcal{O}_{\mathbf{B}}$, $\mathcal{O}_{\mathbf{Z}}$ и $\mathcal{P}_{\mathbf{Z}}$.

Утверждение

Протокол P ненадёжен в модели угрозы Долева–Яо тогда и только тогда, когда $\varepsilon \in L(\mathscr{A}(P)).$

