Spin-Echo Small-Angle Neutron Scattering Wim G. Bouwman

SESANS =
High resolution SANS
using a spin-echo technique

What to learn from this lecture?

1. Measurement principle

- 2. Visual data interpretation
- 3. What kind of scientific problems

Larmor encoding of scattering angle spin-echo small angle neutron scattering

- Unscattered beam gives spin echo $\phi = 0$ independent of height and angle
- Scattering by sample
 → no complete spin echo
 - → net precession angle
- High resolution with divergent beam, sensitive to scattering over 3 µrad

Realisation SESANS in Delft

Magnetised foils tuned for π -flip: can be considered reversal field

3 μm permalloy film

Precesion regions defined by foils and magnets (1)

Precesion regions defined by foils and magnets (2)

Precesion regions defined by foils and magnets (3)

Precesion regions defined by foils and magnets (4)

Why is Delft SESANS resolution higher than SANS?

$$\varphi = cL\lambda B$$
 $c = \frac{\gamma m}{h}$ $\Delta \varphi = 2c\Delta y \cot(\vartheta_0)\lambda \Delta B$

$$\Delta y = \frac{\Delta \varphi}{2c \cot(\theta_0) \lambda B} = \frac{1}{2 \times (5 \times 10^{14} \,\mathrm{T}^{-1} \mathrm{m}^{-2})(10)(2 \times 10^{-10} \,\mathrm{m})(0.2 \,\mathrm{T})} \approx 3 \mu \mathrm{m}$$

Effective slit width of foil flipper?

Why is Delft SESANS resolution 300 higher than SANS?

From SANS to SESANS

Precession angle proportional to: $\phi \propto \int B dL$: scattering angle

$$\phi = Q_z \delta_z$$

$$\delta_z = \frac{\gamma_n m \lambda^2 L B \cot \theta_0}{\pi h} \quad \text{spin-echo length}$$

single neutron:

$$P = \cos(\phi) = \cos(Q_z \delta_z)$$

single scattered neutron:

$$G(\delta_z) = \frac{1}{k_0^2} \int \int I(Q_y, Q_z) \cos(Q_z \delta_z) dQ_y dQ_z$$

isotropic scattering:

$$G(\delta_z) = \frac{1}{k_0^2} \int I(Q) J_0(Q\delta_z) Q dQ$$

Keller *et al.* Neutron News **6**, (1995) 16 Rekveldt, NIMB **114**, 366 (1996).

Analogy to neutron spin-echo in classical description (Slides Peter Fouquet)

$$\varphi=t\omega$$

$$t = \frac{\varphi}{\omega} = \frac{\hbar}{m} \frac{\gamma_L \int \vec{B} \cdot \vec{dl}}{\bar{v}^3} = \frac{m^2 \gamma_L \int \vec{B} \cdot \vec{dl}}{2\pi h^2} \lambda^3$$

$$P_x(Q,t) = \frac{\int S(Q,\omega)\cos(\omega t)d\omega}{\int S(Q,\omega)d\omega}$$

What to learn from this lecture?

- 1. Measurement principle
- 2. Visual data interpretation
- 3. What kind of scientific problems

SESANS = Fourier transform scattering \Rightarrow projected density correlation function 20 nm - 20 μ m

Dilute Randomly Ordered Uniform Particles (reminder Karen Edler's lecture)

scattering from independent particles:

$$I(q) = \frac{N}{V} (\rho_p - \rho_s)^2 V_p^2 \left| \frac{1}{V_p} \left| \int_{particle} e^{i\mathbf{q}\cdot\mathbf{r}} d\mathbf{r} \right|^2 \right|$$

- Assume: i) system is isotropic, then $\langle e^{-iqr} \rangle = \frac{\sin(qr)}{ar}$
 - ii) no long range order, so no correlations between two widely separated particles

$$I(q) = I_e(q)(\rho_p - \rho_s)^2 V_p \int_0^\infty \gamma(r) \frac{\sin(qr)}{qr} 4\pi r^2 dr$$

 $\gamma(r)$ = correlation function within particle

 $P(r)=4\pi r^2\gamma(r)$ is the probability of finding two points in the particle separated by r

Density, correlation, SANS, SESANS

Spheres

(adapted from Karen Edler's lecture)

Start with form factor:

$$F(q) = \frac{1}{V_p} \int_0^\infty \gamma(r) \frac{\sin(qr)}{qr} 4\pi r^2 dr$$

Now consider radial pair correlation function for sphere, with sharp edges, radius R:

$$\gamma(r) = 1 - \frac{3}{4} \left(\frac{r}{R}\right) + \frac{1}{16} \left(\frac{r}{R}\right)^{3}$$

$$F(qR) = \frac{1}{V_p} \int_0^\infty \left[1 - \frac{3}{4} \left(\frac{r}{R}\right) + \frac{1}{16} \left(\frac{r}{R}\right)^{3}\right] \frac{\sin(qr)}{qr} 4\pi r^2 dr$$

Integrate by parts three times:

$$F(Q) = \left[\frac{3(\sin(QR_p) - QR_p\cos(QR_p))}{(QR_p)^3}\right]^2$$

Spheres in SESANS

$$\gamma(r) = 1 - \frac{3}{4} \frac{r}{R} + \frac{1}{16} \left(\frac{r}{R}\right)^3 \quad G(z) = \Re\left(\left[1 - \left(\frac{z}{2R}\right)^2\right]^{1/2} \left[1 + \frac{1}{2} \left(\frac{z}{2R}\right)^$$

$$G(z) = \frac{2}{\xi} \int_{-\infty}^{\infty} \frac{\gamma(r)r}{(r^2 - z^2)^{1/2}} dr + 2\left(\frac{z}{2R}\right)^2 \left(1 - \frac{z}{4R}\right)^2 \ln\left\{\frac{z/R}{2 + \left[4 - (z/R)^2\right]^{1/2}}\right\}\right)$$

$$G(z) = \exp[-(9/8)(z/a)^{2}] P(z) = \exp\{\Sigma_{t}[G(z) - 1]\}$$

SESANS semi-quantum mechanically

Wave function is superposition of eigen states:

Shifting of eigen states
$$|\Psi\rangle = |\Psi^-\rangle + |\Psi^+\rangle$$
 or $\bullet = \phi + \phi$

Low field: correlation short distance

High field: correlation long distance Inhomogeneities -> phase shift -> depolarisation 4

More Complex: Fitting Scattering (Karen Edler)

observed scattered intensity is Fourier Transform of real-space shapes

$$I(Q)=N_{p}V_{p}^{2}(\rho_{p}-\rho_{s})^{2}F(Q)S(Q)+B$$

where: F(Q) = form factor

S(Q) = structure factor

Form Factor = scattering from within same particle

 \Rightarrow depends on particle shape

Structure Factor = scattering from different particles

⇒ depends on interactions between particles

Structure Factors (Karen Edler)

- for dilute solutions S(Q) = 1
- particle interactions will affect the way they are distributed in space ⇒ changes scattering
- for charged spheres:

Average distance between nearest neighbours relatively constant = "correlation distance" 1.0 -Structure Factor 0.6 Position of first 0.4 maximum related to 0.2 correlation distance 0.00 0.05 0.10 0.20 0.25 0.30

Structure factor in SESANS convolution product

Krouglov et al. J. Appl. Cryst. 36, 1417-1423 (2003)

Present data analysis

- Mostly ad hoc Matlab written real space models
- Recently started to Hankel transform SANS models

User-friendly software for dissemination Data-analysis: SANS into SESANS conversion

$$\tilde{G}(z) = \int_{0}^{\infty} J_{0}(Qz)I(Q)QdQ \qquad P(z) = e^{\frac{t\lambda^{2}}{2\pi}(\tilde{G}(z) - \tilde{G}(0))}$$

$$P(z) = e^{\frac{t\lambda^2}{2\pi} \left(\tilde{G}(z) - \tilde{G}(0)\right)}$$

Data analysis with SasView 4.1 and Sasfit by Joachim Kohlbrecher

What to learn from this lecture?

- 1. Measurement principle
- 2. Visual data interpretation
- 3. What kind of scientific problems

Depletion interactions in charged, aqueous colloid-polymer mixtures (model for e.g. milk)

salt reduces repulsion

Kitty van Gruijthuijsen

Peter Schurtenberger, Anna Stradner - Lund University

Adolphe Merkle Institute, Université de Fribourg

Water holding of ovalbumin gels Juiciness, release tastants

Granular matter Robert Andersson

- To understand the bulk properties of assemblies of grains we better understand the microstructure of those assemblies.
- What is the distribution of density in an powder?
- How does all this change when we perturb the powder?

SESANS experiments on SiO₂ powders Exercise: interpret both measurements

Two samples:

Compacted, Structure

Saturation at 3mm and a hard sphere repulsion peak

"Poured", Clustered

Correlations extends over measured range due to clusters

Molecular dynamics

Extract the SESANS correlation function from MD packings

Conclusion: simulations don't describe features of poured samples.

Big holes could explain measurements

R. Andersson et al. Granular Matter 10 407-414 (2008)

Fractal structure of nanoparticles in fluidised bed

Lilian de Martin

$$\gamma_1(r) = (r/r_p + 1)^{D_{f,1}-3}$$
 for $r \le r_{c,1}$

$$\gamma_2(r) = (r/a + 1)^{D_{f,2}-3} h(r, \xi_2)$$
 for $r > r_{c,1}$

Nanopowder has three length regimes

L. de Martin et al. Langmuir (2014) 30 12696

LARMOR: Delft coils for spin-echo

LARMOR @ ISIS

SANS with option for polarised neutrons

SESANS real space scattering technique

Andersson, Robert, et al. "Analysis of spin-echo small-angle neutron scattering measurements." *Journal of Applied Crystallography* 41 (2008) 868

Rekveldt, M. Theo, et al. "Spin-echo small angle neutron scattering in Delft." *Review of Scientific Instruments* 76 (2005) 033901

Washington, A. L., et al. "Inter-particle correlations in a hard-sphere colloidal suspension with polymer additives investigated by Spin Echo Small Angle Neutron Scattering (SESANS)." *Soft Matter* 10 (2014) 3016