પ્રશ્ન 1(અ) [3 માર્ક્સ]

હ્યુમન લર્નિંગને વ્યાખ્યાયિત કરો. હ્યુમન લર્નિંગના પ્રકારોની યાદી બનાવો.

જવાબ:

હ્યુમન લર્નિંગ એ પ્રક્રિયા છે જેના દ્વારા માનવીઓ અનુભવ, અભ્યાસ અથવા સૂચનાઓ દ્વારા નવા જ્ઞાન, કૌશલ્યો, વર્તન મેળવે છે અથવા હાલનાઓમાં ફેરફાર કરે છે.

હ્યુમન લર્નિંગના પ્રકારો:

รเรน	વર્ણન	
સુપરવાઇઝ્ડ લર્નિંગ	શિક્ષક/માર્ગદર્શકની મદદથી શીખવું	
અનસુપરવાઇઝ્ડ લર્નિંગ	બાહ્ય માર્ગદર્શન વિના સ્વ-નિર્દેશિત શીખવું	
રિઇનફોર્સમેન્ટ લર્નિંગ	ફીડબેક સાથે પ્રયાસ અને ભૂલ દ્વારા શીખવું	

મેમરી ટ્રીક: "SUR - Supervised, Unsupervised, Reinforcement"

પ્રશ્ન 1(બ) [4 માર્ક્સ]

ક્વાલિટેટિવ ડેટા અને ક્વોન્ટિટેટિવ ડેટા વચ્ચે તફાવત આપો.

જવાબ:

ટેબલ: ક્વાલિટેટિવ vs ક્વોન્ટિટેટિવ ડેટા

લક્ષણ	ક્વાલિટેટિવ ડેટા	ક્વોન્ટિટેટિવ ડેટા
ਮ <mark>਼</mark> ਬੂਰਿ	વર્ણનાત્મક, કેટેગોરિકલ	સંખ્યાત્મક, માપી શકાય તેવું
વિશ્લેષણ	વ્યક્તિગત અર્થઘટન	આંકડાકીય વિશ્લેષણ
ઉદાહરણો	રંગો, નામો, લિંગ	ઊંચાઈ, વજન, ઉંમર
પ્રતિનિધિત્વ	શબ્દો, કેટેગરીઓ	સંખ્યાઓ, ગ્રાફ્સ

મેમરી ટ્રીક: "QUAN-Numbers, QUAL-Words"

પ્રશ્ન 1(ક) [7 માર્ક્સ]

મશીન લર્નિંગના વિવિદ્ય પ્રકારોની સરખામણી કરો.

જવાબ:

ટેબલ: મશીન લર્નિંગના પ્રકારોની સરખામણી

уѕіг	ટ્રેનિંગ ડેટા	દયેય	ઉદાહરણો
સુપરવાઇઝ્ડ	લેબલ્ડ ડેટા	પરિણામોની આગાહી	ક્લાસિફિકેશન, રિગ્રેશન
અનસુપરવાઇઝ્ડ	અનલેબલ્ડ ડેટા	પેટર્ન શોધવા	ક્લસ્ટરિંગ, એસોસિએશન
રિઇનફોર્સમેન્ટ	રિવોર્ડ/પેનલ્ટી	રિવોર્ડ મેક્સિમાઇઝ કરવા	ગેમિંગ, રોબોટિક્સ

મુખ્ય તફાવતો:

• સુપરવાઇઝ્ડ: ટ્રેનિંગ માટે ઇનપુટ-આઉટપુટ જોડીનો ઉપયોગ કરે છે

• અનસુપરવાઇઝ્ડ: ડેટામાં છુપાયેલા પેટર્ન શોધે છે

• રિઇનફોર્સમેન્ટ: પર્યાવરણ સાથે ક્રિયાપ્રતિક્રિયા દ્વારા શીખે છે

મેમરી ટ્રીક: "SUR-LAP: Supervised-Labeled, Unsupervised-Reveal, Reinforcement-Action"

પ્રશ્ન 1(ક OR) [7 માર્ક્સ]

મશીન લર્નિંગ વ્યાખ્યાયિત કરો. મશીન લર્નિંગની કોઈપણ ચાર એપ્લિકેશનને ટૂંકમાં સમજાવો.

જવાબ:

મશીન લર્નિંગ આર્ટિફિશિયલ ઇન્ટેલિજન્સનો ઉપવિભાગ છે જે કમ્પ્યુટરોને સ્પષ્ટ પ્રોગ્રામિંગ વિના ડેટામાંથી શીખવા અને નિર્ણયો લેવા સક્ષમ બનાવે છે.

ચાર એપ્લિકેશનો:

એપ્લિકેશન	વર્ણન	
ઈમેઇલ સ્પામ ડિટેક્શન	ઈમેઇલને સ્પામ અથવા વૈદ્ય તરીકે વર્ગીકૃત કરે છે	
ઇમેજ રેકગ્નિશન	ફોટોમાં ઓબ્જેક્ટ્સ ઓળખે છે	
રેકમેન્ડેશન સિસ્ટમ	યુઝર્સને પ્રોડક્ટ્સ/કન્ટેન્ટ સૂચવે છે	
મેડિકલ ડાયગ્નોસિસ	રોગોની શોધમાં ડૉક્ટરોની મદદ કરે છે	

મેમરી ટ્રીક: "SIRM - Spam, Image, Recommendation, Medical"

પ્રશ્ન 2(અ) [3 માર્ક્સ]

નીચેના ઉદાહરણોનો યોગ્ય ડેટા પ્રકાર જણાવો.

જવાબ:

ડેટા પ્રકાર વર્ગીકરણ:

ઉદાહરણ	ડેટા પ્રકાર
વિદ્યાર્થીઓની રાષ્ટ્રીયતા	કેટેગોરિકલ (નોમિનલ)
વિદ્યાર્થીઓની શિક્ષણ સ્થિતિ	કેટેગોરિકલ (ઓર્ડિનલ)
વિદ્યાર્થીઓની ઊંચાઈ	ન્યુમેરિકલ (કન્ટિન્યુઅસ)

મેમરી ટ્રીક: "NCN - Nominal, Categorical, Numerical"

પ્રશ્ન 2(બ) [4 માર્ક્સ]

ડેટા પ્રી-પ્રોસેસિંગ ટૂંકમાં સમજાવો.

જવાબ:

ડેટા પ્રી-પ્રોસેસિંગ એ મશીન લર્નિંગ અલ્ગોરિધમ માટે કાચા ડેટાને તૈયાર કરવાની તકનીક છે.

મુખ્ય સ્ટેપ્સ:

સ્ટેપ	હેતુ	
ડેટા ક્લીનિંગ	ભૂલો અને અસંગતતાઓ દૂર કરવી	
ડેટા ઇન્ટીગ્રેશન	બહુવિધ સ્ત્રોતોમાંથી ડેટાને જોડવો	
ડેટા ટ્રાન્સફોર્મેશન	ડેટાને યોગ્ય ફોર્મેટમાં બદલવો	
ડેટા રિડક્શન	માહિતી જાળવીને ડેટાનું કદ ઘટાડવું	

મેમરી ટ્રીક: "CITR - Clean, Integrate, Transform, Reduce"

પ્રશ્ન 2(ક) [7 માર્ક્સ]

K-કોલ્ડ ક્રોસ વેલિડેશન વિગતવાર સમજાવો.

જવાબ:

K-ફોલ્ડ ક્રોસ વેલિડેશન એ ડેટાને K સમાન ભાગોમાં વિભાજિત કરીને મોડેલ પરફોર્મન્સ મૂલ્યાંકનની તકનીક છે.

પ્રક્રિયા:

સ્ટેપ્સ:

• વિભાજન: ડેટાસેટને K સમાન ભાગોમાં વહેંચો

• **ટ્રેનિંગ**: K-1 ફોલ્ડનો ઉપયોગ ટ્રેનિંગ માટે કરો

• ટેસ્ટ: બાકીના ફોલ્ડનો ઉપયોગ વેલિડેશન માટે કરો

• **પુનરાવર્તન**: K વખત પ્રક્રિયા કરો

• સરેરાશ: સરેરાશ પરફોર્મન્સ કાઢો

ફાયદા:

• ઓવરફિટિંગ ઘટાડે છે

• મર્યાદિત ડેટાનો બહેતર ઉપયોગ

• વધુ વિશ્વસનીય પરફોર્મન્સ અંદાજ

મેમરી ટ્રીક: "DTRA - Divide, Train, Repeat, Average"

પ્રશ્ન 2(અ OR) [3 માર્ક્સ]

નીચેના શબ્દો વ્યાખ્યાયિત કરો: i) Mean, ii) Outliers, iii) Interquartile range

જવાબ:

આંકડાકીય શબ્દો:

કાલ્દ	વ્યાખ્યા	
Mean	ડેટાસેટમાં બધી વેલ્યુઝની સરેરાશ	
Outliers	અન્ય ડેટા પોઇન્ટ્સથી નોંધપાત્ર રીતે અલગ ડેટા પોઇન્ટ્સ	
Interquartile Range	75મા અને 25મા પર્સેન્ટાઇલ વચ્ચેનો તફાવત	

મેમરી ટ્રીક: "MOI - Mean, Outliers, Interquartile"

પ્રશ્ન 2(બ OR) [4 માર્ક્સ]

કન્ફ્યુશન મેટ્રિક્સની રચના સમજાવો.

જવાબ:

કન્ફ્યુશન મેટ્રિક્સ સ્ટ્રક્ચર:

	આગાહી	
વાસ્તવિક	પોઝિટિવ	નેગેટિવ
પોઝિટિવ	True Positive (TP)	False Negative (FN)
નેગેટિવ	False Positive (FP)	True Negative (TN)

ઘટકો:

• **TP**: સાચી રીતે આગાહી કરેલા પોઝિટિવ કેસો

• TN: સાચી રીતે આગાહી કરેલા નેગેટિવ કેસો

• **FP**: ખોટી રીતે પોઝિટિવ તરીકે આગાહી કરેલા

• FN: ખોટી રીતે નેગેટિવ તરીકે આગાહી કરેલા

ਮੇਮਣੀ ਟ੍ਰੀs: "TTFF - True True, False False"

પ્રશ્ન 2(ક OR) [7 માર્ક્સ]

ફીચર સબસેટની પસંદગી પર ટૂંકી નોંધ લખો.

જવાબ:

ફીચર સબસેટ સિલેક્શન એ મૂળ ફીચર સેટમાંથી સંબંધિત ફીચર્સ પસંદ કરવાની પ્રક્રિયા છે.

મેથડ્સ:

મેથડ	વર્ણન	
ફિલ્ટર મેથડ્સ	ફીચર્સ રેન્ક કરવા આંકડાકીય માપદંડોનો ઉપયોગ	
રેપર મેથડ્સ	ફીચર સબસેટ્સ મૂલ્યાંકન માટે ML અલ્ગોરિધમનો ઉપયોગ	
એમ્બેડેડ મેથડ્સ	મોડેલ ટ્રેનિંગ દરમિયાન ફીચર સિલેક્શન	

ફાયદા:

• ઘટાડેલી જટિલતા: ઓછા ફીચર્સ, સરળ મોડેલ્સ

• સુધારેલ પરફોર્મન્સ: નોઇઝ અને અપ્રસ્તુત ફીચર્સ દૂર કરે છે

• ઝડપી ટ્રેનિંગ: ઓછો કમ્પ્યુટેશનલ ઓવરહેડ

લોકપ્રિય તકનીકો:

• Chi-square ટેસ્ટ

• Recursive Feature Elimination

• LASSO રેગ્યુલરાઇઝેશન

મેમરી ટ્રીક: "FWE - Filter, Wrapper, Embedded"

પ્રશ્ન 3(અ) [3 માર્ક્સ]

પ્રેડિક્ટિવ મોડેલ અને ડીસ્ક્રિપ્ટિવ મોડેલ વચ્ચેનો તફાવત આપો.

જવાબ:

મોડેલ પ્રકાર સરખામણી:

લક્ષણ	પ્રેડિક્ટિવ મોડેલ	ડીસ્ક્રિપ્ટિવ મોડેલ
હેતુ	ભાવિ પરિણામોની આગાહી	વર્તમાન પેટર્ન સમજવા
આઉટપુટ	આગાહીઓ/વર્ગીકરણ	અંતર્વૃષ્ટિ/સારાંશ
ઉદાહરણો	રિગ્રેશન, ક્લાસિફિકેશન	ક્લસ્ટરિંગ, એસોસિએશન રૂલ્સ

ਮੇਮਰੀ ਟ੍ਰੀਡ: "PF-DC: Predictive-Future, Descriptive-Current"

પ્રશ્ન 3(બ) [4 માર્ક્સ]

ક્લાસિફિકેશન અને રિગ્રેશન વચ્ચેના તફાવતની ચર્ચા કરો.

જવાબ:

ક્લાસિફિકેશન vs રિગ્રેશન:

પાસું	ક્લાસિફિકેશન	રિગ્રેશન
આઉટપુટ	ડિસ્ક્રીટ કેટેગરીઓ	કન્ટિન્યુઅસ વેલ્યુઝ
ધ્યેય	ક્લાસ લેબલ્સની આગાહી	ન્યુમેરિકલ વેલ્યુઝની આગાહી
ઉદાહરણો	સ્પામ ડિટેક્શન, ઇમેજ રેકગ્નિશન	કિંમત આગાહી, તાપમાન
મૂલ્યાંકન	Accuracy, precision, recall	MSE, RMSE, R-squared

મેમરી ટ્રીક: "CCNM - Classification-Categories, Regression-Numbers"

પ્રશ્ન 3(ક) [7 માર્ક્સ]

ક્લાસિફિકેશનને વ્યાખ્યાયિત કરો. ક્લાસિફિકેશન લર્નિંગના સ્ટેપને વિગતોમાં સમજાવો.

જવાબ:

ક્લાસિફિકેશન એ સુપરવાઇઝ્ડ લર્નિંગ તકનીક છે જે ઇનપુટ ડેટા માટે ડિસ્ક્રીટ ક્લાસ લેબલ્સની આગાહી કરે છે.

ક્લાસિકિકેશન લર્નિંગ સ્ટેપ્સ:

વિગતવાર સ્ટેપ્સ:

- ડેટા કલેક્શન: લેબલ્ડ ટ્રેનિંગ ડેટા એકત્ર કરવો
- પ્રીપ્રોસેસિંગ: ડેટાને સાક કરવો અને તૈયાર કરવો
- ફ્રીચર સિલેક્શન: સંબંધિત લક્ષણો પસંદ કરવા
- ડેટા સ્પ્લિટ: ટ્રેનિંગ અને ટેસ્ટિંગ સેટમાં વિભાજન
- ટ્રેનિંગ: ટ્રેનિંગ ડેટાનો ઉપયોગ કરીને મોડેલ બનાવવું
- મૂલ્યાંકન: મોડેલ પરફોર્મન્સ ચકાસવી
- ડિપ્લોયમેન્ટ: આગાહીઓ માટે મોડેલનો ઉપયોગ

મેમરી ટ્રીક: "DCFSTED - Data, Clean, Features, Split, Train, Evaluate, Deploy"

પ્રશ્ન 3(અ OR) [3 માર્ક્સ]

બેગિંગ અને બૂસ્ટિંગ વચ્ચેનો તફાવત આપો.

જવાબ:

બેગિંગ vs બૂસ્ટિંગ:

લક્ષણ	બેગિંગ	બૂસ્ટિંગ
સેમ્પલિંગ	બૂટસ્ટ્રેપ સેમ્પલિંગ	ક્રમાનુગત વેઇટેડ સેમ્પલિંગ
ટ્રેનિંગ	પેરેલલ ટ્રેનિંગ	ક્રમાનુગત ટ્રેનિંગ
ફોકસ	વેરિયન્સ ઘટાડવું	બાયસ ઘટાડવું

મેમરી ટ્રીક: "BPV-BSB: Bagging-Parallel-Variance, Boosting-Sequential-Bias"

પ્રશ્ન 3(બ OR) [4 માર્ક્સ]

લોજિસ્ટિક રિગ્રેશનના વિવિદ્ય પ્રકારો સંક્ષિપ્તમાં સમજાવો.

જવાબ:

લોજિસ્ટિક રિગ્રેશનના પ્રકારો:

увіг	કલાસો	ઉપયોગ
બાઇનરી	2 ક્લાસો	હા/ના, પાસ/ફેઇલ
મલ્ટિનોમિયલ	3+ ક્લાસો (અવ્યવસ્થિત)	રંગ વર્ગીકરણ
ઓર્ડિનલ	3+ ક્લાસો (ક્રમાંકિત)	રેટિંગ સ્કેલ

મેમરી ટ્રીક: "BMO - Binary, Multinomial, Ordinal"

પ્રશ્ન 3(ક OR) [7 માર્ક્સ]

k-NN અલ્ગોરિધમ લખો અને તેના ઉપયોગ બતાવો.

જવાબ:

K-નિયરેસ્ટ નેઇબર્સ (k-NN) એ લેઝી લર્નિંગ અલ્ગોરિધમ છે જે k નજીકના પડોશીઓના બહુમતી ક્લાસના આધારે ડેટા પોઇન્ટ્સને વર્ગીકૃત કરે છે.

અલ્ગોરિધમ:

- 1. k ની વેલ્યુ પસંદ કરો
- 2. બધા ટ્રેનિંગ પોઇન્ટ્સ સાથે અંતર કાઢો
- 3. k નજીકના પડોશીઓ પસંદ કરો
- 4. ક્લાસિફિકેશન માટે: બહુમતી મત રિગ્રેશન માટે: k પડોશીઓની સરેરાશ
- 5. ટેસ્ટ પોઇન્ટને ક્લાસ/વેલ્યુ અસાઇન કરો

અંતર ગણતરી:

યુક્લિડિયન ડિસ્ટન્સ: √[(x₁-x₂)² + (y₁-y₂)²]

એપ્લિકેશનો:

• રેકમેન્ડેશન સિસ્ટમ્સ: સમાન યુઝર પ્રાધાન્યો

• ઇમેજ રેકગ્નિશન: પેટર્ન મેચિંગ

• મેડિકલ ડાયગ્નોસિસ: લક્ષણોની સમાનતા

ફાયદા:

• અમલમાં મૂકવામાં સરળ

• ટ્રેનિંગની જરૂર નથી

• નાના ડેટાસેટ સાથે સારું કામ કરે છે

મેમરી ટ્રીક: "CDSA - Choose, Distance, Select, Assign"

પ્રશ્ન 4(અ) [3 માર્ક્સ]

સપોર્ટ વેક્ટર મશીનની એપ્લિકેશનોની યાદી બનાવો.

જવાબ:

SVM એપ્લિકેશનો:

એપ્લિકેશન	ડોમેન
ટેક્સ્ટ ક્લાસિફિકેશન	ડોક્યુમેન્ટ કેટેગોરાઇઝેશન
ઇમેજ રેકગ્નિશન	ફેસ ડિટેક્શન
બાયોઇન્ફોર્મેટિક્સ	જીન ક્લાસિફિકેશન

भेभरी ट्रीड: "TIB - Text, Image, Bio"

પ્રશ્ન 4(બ) [4 માર્ક્સ]

k-means અલ્ગોરિધમ માટે સ્યુડો કોડ બનાવો.

જવાબ:

K-means સ્થુડો કોડ:

BEGIN K-means

- 1. k ક્લસ્ટર સેન્ટ્રોઇડ્સને રેન્ડમલી ઇનિશિયલાઇઝ કરો
- 2. REPEAT
 - a. દરેક પોઇન્ટને નજીકના સેન્ટ્રોઇડને અસાઇન કરો
 - b. અસાઇન કરેલા પોઇન્ટ્સના મીન તરીકે સેન્ટ્રોઇડ્સ અપડેટ કરો
 - c. ટોટલ વિથિન-ક્લસ્ટર સમ ઓફ સ્ક્વેર્સ કાઢો
- 3. UNTIL કન્વર્જન્સ અથવા મેક્સ આવર્તન
- 4. RETURN ફાઇનલ ક્લસ્ટર્સ અને સેન્ટ્રોઇડ્સ

END

મેમરી ટ્રીક: "IAUC - Initialize, Assign, Update, Check"

પ્રશ્ન 4(ક) [7 માર્ક્સ]

અનસુપરવાઇઝ્ડ લર્નિંગની એપ્લિકેશનો લખો અને સમજાવો.

જવાબ:

અનસુપરવાઇઝ્ડ લર્નિંગ લેબલ્ડ ઉદાહરણો વિના ડેટામાં છુપાયેલા પેટર્ન શોધે છે.

મુખ્ય એપ્લિકેશનો:

એપ્લિકેશન	વર્ણન	ઉદાહરણ
કસ્ટમર સેગ્મેન્ટેશન	વર્તન પ્રમાણે ગ્રાહકોનું ગ્રુપિંગ	માર્કેટ રિસર્ચ
એનોમેલી ડિટેક્શન	અસામાન્ય પેટર્ન ઓળખવા	ફ્રોડ ડિટેક્શન
ડેટા કમ્પ્રેશન	ડાયમેન્શનાલિટી ઘટાડવી	ઇમેજ કમ્પ્રેશન
એસોસિએશન રૂલ્સ	આઇટમ સંબંધો શોધવા	માર્કેટ બાસ્કેટ વિશ્લેષણ

ક્લસ્ટરિંગ એપ્લિકેશનો:

• માર્કેટ રિસર્ચ: કસ્ટમર ગ્રુપિંગ

• **સોશિયલ નેટવર્ક વિશ્લેષણ**: કમ્યુનિટી ડિટેક્શન

• જીન સીકવેન્સિંગ: બાયોલોજિકલ ક્લાસિફિકેશન

ડાયમેન્શનાલિટી રિડક્શન:

• વિઝ્યુઅલાઇઝેશન: હાઇ-ડાયમેન્શનલ ડેટા પ્લોટિંગ

• ફીચર એક્સ્ટ્રેક્શન: નોઇઝ રિડક્શન

મેમરી ટ્રીક: "CADA - Customer, Anomaly, Data, Association"

પ્રશ્ન 4(અ OR) [3 માર્ક્સ]

રિગ્રેશનની એપ્લિકેશનોની યાદી બનાવો.

જવાબ:

રિગ્રેશન એપ્લિકેશનો:

એપ્લિકેશન	હેતુ
સ્ટોક પ્રાઇસ પ્રેડિક્શન	ફાઇનાન્શિયલ ફોરકાસ્ટિંગ
સેલ્સ ફોરકાસ્ટિંગ	બિઝનેસ પ્લાનિંગ
મેડિકલ ડાયગ્નોસિસ	રિસ્ક એસેસમેન્ટ

ਮੇਮਣੀ ਟ੍ਰੀs: "SSM - Stock, Sales, Medical"

પ્રશ્ન 4(બ OR) [4 માર્ક્સ]

નીચેના શબ્દો વ્યાખ્યાયિત કરો: i) Support ii) Confidence

જવાબ:

એસોસિએશન 3લ શબ્દો:

શબ્દ	વ્યાખ્યા	ફોર્મ્યુલા
Support	ડેટાબેઝમાં આઇટમસેટની આવર્તન	Support(A) = A / D
Confidence	રૂલની શરતી સંભાવના	Confidence(A \rightarrow B) = Support(A \cup B) / Support(A)

ઉદાહરણ:

- જો 30% ટ્રાન્ઝેક્શનમાં બ્રેડ અને દૂધ હોય: Support = 0.3
- જો 80% બ્રેડ ખરીદનારાઓ દૂધ પણ ખરીદે: Confidence = 0.8

મેમરી ટ્રીક: "SF-CP: Support-Frequency, Confidence-Probability"

પ્રશ્ન 4(ક OR) [7 માર્ક્સ]

apriori algorithm ને વિગતવાર સમજાવો.

જવાબ:

Apriori અલ્ગોરિધમ એપ્રિઓરી પ્રોપર્ટીનો ઉપયોગ કરીને ટ્રાન્ઝેક્શનલ ડેટામાં ફ્રીક્વન્ટ આઇટમસેટ્સ શોધે છે.

અલ્ગોરિદ્યમ સ્ટેપ્સ:

એપ્રિઓરી પ્રોપર્ટી:

- જો આઇટમસેટ ફ્રીક્વન્ટ છે, તો તેના બધા સબસેટ્સ ફ્રીક્વન્ટ છે
- જો આઇટમસેટ ઇનફ્રીક્વન્ટ છે, તો તેના બધા સુપરસેટ્સ ઇનફ્રીક્વન્ટ છે

સ્ટેપ્સ:

- 1. **ડેટાબેઝ સ્કેન**: 1-આઇટમ સપોર્ટ કાઉન્ટ કરો
- 2. **કેન્ડિડેટ્સ જનરેટ**: ફ્રીક્વન્ટ k-આઇટમસેટ્સમાંથી k+1 આઇટમસેટ્સ બનાવો
- 3. **પ્રન**: ઇનફ્રીક્વન્ટ સબસેટ્સ સાથેના કેન્ડિડેટ્સ દૂર કરો
- 4. **સપોર્ટ કાઉન્ટ**: કેન્ડિડેટ ફ્રીક્વન્સી માટે ડેટાબેઝ સ્કેન કરો
- 5. **પુનરાવર્તન**: નવા ફ્રીક્વન્ટ આઇટમસેટ્સ ન મળે ત્યાં સુધી

એપ્લિકેશનો:

- માર્કેટ બાસ્કેટ વિશ્લેષણ
- વેબ યુઝેજ પેટર્ન

• પ્રોટીન સીક્વન્સ

મેમરી ટ્રીક: "SGPCR - Scan, Generate, Prune, Count, Repeat"

પ્રશ્ન 5(અ) [3 માર્ક્સ]

matplotlib ના મુખ્ય ફીચર્સની યાદી બનાવો.

જવાબ:

Matplotlib ફીચર્સ:

ફીચર	વર્ણન
મલ્ટિપલ પ્લોટ ટાઇપ્સ	લાઇન, બાર, સ્કેટર, હિસ્ટોગ્રામ
કસ્ટમાઇઝેશન	કલર્સ, સ્ટાઇલ્સ, લેબલ્સ
એક્સપોર્ટ ઓપ્શન્સ	PNG, PDF, SVG ફોર્મેટ્સ

મેમરી ટ્રીક: "MCE - Multiple, Customization, Export"

પ્રશ્ન 5(બ) [4 માર્ક્સ]

Numpy ના પ્રોગ્રામમાં iris ડેટાસેટ કેવી રીતે લોડ કરવો? સમજાવો.

જવાબ:

NumPy માં Iris ડેટાસેટ લોડ કરવું:

```
import numpy as np
from sklearn.datasets import load_iris

# iris ડેટાસેટ લોડ કરો
iris = load_iris()
data = iris.data # ફીચર્સ
target = iris.target # લેબલ્સ
```

સ્ટેપ્સ:

- Import: જરૂરી લાઇબ્રેરીઓ import કરો
- Load: sklearn ના load_iris() ફંક્શનનો ઉપયોગ કરો
- Extract: ફીચર્સ અને ટાર્ગેટ એરે મેળવો
- Access: .data અને .target એટ્રિબ્યુટ્સનો ઉપયોગ કરો

મેમરી ટ્રીક: "ILEA - Import, Load, Extract, Access"

પ્રશ્ન 5(ક) [7 માર્ક્સ]

Pandas ની વિશેષતાઓ અને એપ્લિકેશનો સમજાવો.

જવાબ:

Pandas એ Python માટે શક્તિશાળી ડેટા મેનિપ્યુલેશન અને વિશ્લેષણ લાઇબ્રેરી છે.

મુખ્ય ફીચર્સ:

ફીચર	นต์า
DataFrame	2D લેબલ્ડ ડેટા સ્ટ્રક્યર
Series	1D લેબલ્ડ એરે
Data I/O	વિવિધ ફાઇલ ફોર્મેટ્સ વાંચવા/લખવા
Data Cleaning	મિસિંગ વેલ્યુઝ હેન્ડલ કરવા
Grouping	ગ્રુપ અને એગ્રીગેટ ઓપરેશન્સ

એપ્લિકેશનો:

એપ્લિકેશન	ઉપયોગ
ડેટા એનાલિસિસ	આંકડાકીય વિશ્લેષણ
ડેટા ક્લીનિંગ	ML માટે પ્રીપ્રોસેસિંગ
ફાઇનાન્શિયલ એનાલિસિસ	સ્ટોક માર્કેટ ડેટા
વેબ સ્ક્રેપિંગ	HTML ટેબલ્સ પાર્સ કરવા

સામાન્ય ઓપરેશન્સ:

• ร่**ะ**เ **ต่อต**่: pd.read_csv(), pd.read_excel()

• ફિલ્ટરિંગ: df[df['column'] > value]

• ગ્રુપિંગ: df.groupby('column').mean()

भेभरी ट्रीड: "DSDCG - DataFrame, Series, Data I/O, Cleaning, Grouping"

પ્રશ્ન 5(અ OR) [3 માર્ક્સ]

matplotlib ની એપ્લિકેશનોની યાદી બનાવો.

જવાબ:

Matplotlib એપ્લિકેશનો:

એપ્લિકેશન	હેતુ
સાયન્ટિફિક વિઝ્યુઅલાઇઝેશન	રિસર્ચ ડેટા પ્લોટિંગ
બિઝનેસ એનાલિટિક્સ	ડેશબોર્ડ બનાવવું
એજ્યુકેશનલ કન્ટેન્ટ	શિક્ષણ સામગ્રી

મેમરી ટ્રીક: "SBE - Scientific, Business, Educational"

પ્રશ્ન 5(બ OR) [4 માર્ક્સ]

Pandas માં csv ફાઇલ ઇમ્પોર્ટ કરવાના સ્ટેપ્સ લખો અને સમજાવો.

જવાબ:

Pandas માં CSV ઇમ્પોર્ટ કરવાના સ્ટેપ્સ:

પ્રક્રિયા:

- Import: pandas લાઇબ્રેરી import કરો
- Read: pd.read_csv() ફંક્શનનો ઉપયોગ કરો
- Specify: ફાઇલ પાથ અને પેરામીટર્સ ઉમેરો
- **Store**: DataFrame વેરિએબલમાં અસાઇન કરો

ਮੇਮਣੀ ਟ੍ਰੀs: "IRSS - Import, Read, Specify, Store"

પ્રશ્ન 5(ક OR) [7 માર્ક્સ]

Scikit-Learn ની વિશેષતાઓ અને એપ્લિકેશનો સમજાવો.

જવાબ:

Scikit-Learn એ Python માટે વ્યાપક મશીન લર્નિંગ લાઇબ્રેરી છે.

મુખ્ય ફીચર્સ:

ફીચર	વર્ણન
અલ્ગોરિધમ્સ	ક્લાસિફિકેશન, રિગ્રેશન, ક્લસ્ટરિંગ
પ્રીપ્રોસેસિંગ	ડેટા સ્કેલિંગ અને ટ્રાન્સફોર્મેશન
મોડેલ સિલેક્શન	ક્રોસ-વેલિડેશન અને ગ્રિડ સર્ચ
મેટ્રિક્સ	પરફોર્મન્સ મૂલ્યાંકન ટૂલ્સ

એપ્લિકેશનો:

ડોમેન	ઉપયોગ
હેલ્થકેર	રોગ આગાહી
ફાઇનાન્સ	ક્રેડિટ સ્કોરિંગ
માર્કેટિંગ	કસ્ટમર સેગ્મેન્ટેશન
ટેકનોલોજી	રેકમેન્ડેશન સિસ્ટમ્સ

અલ્ગોરિદ્યમ કેટેગરીઓ:

• सुपरवाध्रञ्ड: SVM, Random Forest, Linear Regression

• अनसुपरवाधञ्ड: K-means, DBSCAN, PCA

• એન્સેમ્બલ: Bagging, Boosting

વર્કક્લો:

1. **ડેટા તૈયારી**: પ્રીપ્રોસેસિંગ

2. **મોડેલ સિલેક્શન**: અલ્ગોરિધમ પસંદ કરો

3. **ટ્રેનિંગ**: ડેટા પર મોડેલ ફિટ કરો

4. **મૂલ્યાંકન**: પરફોર્મન્સ આકારો

5. **આગાહી**: ફોરકાસ્ટ બનાવો

મેમરી ટ્રીક: "APME - Algorithms, Preprocessing, Metrics, Evaluation"