mercoledì 5 ottobre 2022 09:10

DEF - Un (S, &) & detto BENE ORDINATO & YXES, X \$ \$, \$ mins(X)

Es. (No, <) è bene ordinato

(R, <) non è bene ordinato

PEUP - & (S, S) & bene ordinate = total mente ordinate

05) - (Sie) totalmente ordinado $\Rightarrow (SE) \in bene ordinado (es-(Rie))$

DEF (1) WE ON HAGGISRANTE PAR XES DED XEW YXEX

(c) VE ON MINORANTE PAR XES DED VEX YXEX

(ves)

ES- $A = \{ n \in \mathbb{N}_{2} : n \mid 36 \}$ (A.1) $A = \{ 4, 2, 3, 4, 6, 12, 13, 36, 9 \}$

$$max(X) = 12$$

 $min(X) = 2$

maggioranti
$$di X = \{12, 34\}$$

minoranti di $X = \{2, 1\}$

DEF - Sia N={inserme dei maggiorenti d' X = S} (S, 5) insieme ordinato Chlamamo Estreno Esperiore Di X in S il mins (N) (x existe)

e le indichiame con $Sup_s(X)$ -

DEF_ Sia M= {insieme de mineranti di XES}

Chiamiamo ESTREHO INFERIORE di X in S il max, (N) (& esiste)

e lo indichiamo con infs (X)_

 $v = inf_s(X) = \begin{cases} 6i & v \in X \ \forall x \in X \ \forall x \in X \end{cases}$ (v \(in \) m: no rante d: \(X \) \\
(ii) \(\delta \) \(Y \in Y \) (v \(in \) pi \(\delta \) grande de \(mi \) no rante \(1 \)

A=
$$\{2,3,4,5,6\}$$
 (A,1)
X= $\{2,3,6\}$
Max(X) = 6 min(X) \neq
maggioranti di X = $\{6\}$ =0 sip_A(X) = 6
minoranti di X = \neq \neq inf(X)

DEF - Un insieme ordinate
$$(S_1 \le)$$
 is dette RETICOLO & $\forall x, y \in S$ existence inf (x,y) e sup (x,y) .

So in reticulation inf (x,y) := xxy
$$\sup(x,y):=xy$$

& Séun retido con un massimo a e un minimo b, chiamo COMPLEMENTO di XES un elemento y tale che $\begin{cases} xvy = a \\ xny = b \end{cases}$

$$ES = (P(A), \subseteq) \qquad A = \{a, b, c\}$$

$$\{a, b\} \in \{a, b\} \in \{a,$$

D= Sup(X,4) = Xu4

in (S(A), it complements di XEA & AIX

VA + +, (B(A), E) = un reticolo tale che ogui elemento ha un complemento. Vo gliumo dimostrare the $\forall X, Y \subseteq A$, $X \cup Y = \sup(X, Y)$ a $X \cap Y = \inf(X, Y)$

(i) XUY é un maggiorante - Questo vole per definizione di U, perche Supprimo che XEXUY e YEXUY

(ii) Xuy é iè pir picolo de maggioranti :

Sia Z tale the Zé un altro maggibrante. Albra XEZe YEZ

Albra, \forall neX =0 neZ} =0 cogni element

che apportene a X oppur a 4, apportengeno a I

=0 XU4 = I

(i) Xn4 & un minorante. Quest vale per definizione di n, perche Xn4 = X = Xn4 = 4.

(ir) Sia Z altro minorante. Albra devr esere, per definitione di minorante, ZEX = ZEY = D

YXEA, AX é l'amplemento di X.

per de
$$(A \times X) \cup X = A (A \in max(P(A)))$$

 $(A \times X) \cap X = \phi (\phi \in min(P(A)))$

Date A, GSP(A) THEFT, FAGE &

Date A,
$$\frac{1}{3} \leq P(A)$$
 $\frac{1}{3} + \frac{1}{4} = \frac{1}{4} =$