Practice Problems 2: Sets Hints and Answers

Instructions: The problems below are purely for you to practice. I will not collect these, but it is still a good idea to write out your solutions in full. Any of these problems or problems similar are fair game for quizzes and exams.

- 1. (a) $A \cap B = \{3, 4, 5\}.$
 - (b) $A \cup B = \{1, 2, 3, 4, 5, 6, 7\}.$
 - (c) $A \setminus B = \{1, 2\}.$
 - (d) Yes.
 - (e) No.
- 2. (a) $A \cap B = \{4, 6, 8, 10, 12\}$
 - (b) $A \cup B = \{x \in \mathbb{N} : (3 \le x \le 13) \lor x \text{ is even}\}$. (the set of all natural numbers which are either even or between 3 and 13 inclusive).
 - (c) $B \cap C = \emptyset$.
 - (d) $B \cup C = \mathbb{N}$.
- 3. For example, $A = \{2, 3, 5, 7, 8\}$ and $B = \{3, 5\}$.
- 4. Let $A = \{1, 2, 3\}$ and $B = \{1, 2, 3, 4, 5, \{1, 2, 3\}\}$
- 5. (a) No.
 - (b) No.
 - (c) $2\mathbb{Z} \cap 3\mathbb{Z}$ is the set of all integers which are multiples of both 2 and 3 (so multiples of 6). Therefore $2\mathbb{Z} \cap 3\mathbb{Z} = \{x \in \mathbb{Z} : \exists y \in \mathbb{Z} (x = 6y)\}.$
 - (d) $2\mathbb{Z} \cup 3\mathbb{Z}$.
- 6. The set of primes.

(c) $A \cap (B \cup C)$:

(e) $\overline{A} \cap B \cap \overline{C}$:

(b) $\overline{(A \cup B)}$:

(d) $(A \cap B) \cup C$:

(f) $(A \cup B) \setminus C$:

- 8. For example, $A \cup B \cap \overline{(A \cap B)}$. Note that $\overline{A \cap B}$ would almost work, but also contain the area outside of both circles.
- 9. (a) 34.
 - (b) 103.
 - (c) 8.
- 10. $\mathcal{P}(A) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}\}.$
- 11. There are 10 singletons. There are 45 doubletons (because $45 = 9 + 8 + 7 + \cdots + 2 + 1$).
- 12. $\{2,3,5\},\{1,2,3,5\},\{2,3,4,5\},\{2,3,5,6\},\{1,2,3,4,5\},\{1,2,3,5,6\},\{2,3,4,5,6\},$ and $\{1,2,3,4,5,6\}.$
- 13. For example $A = \{1, 2, 3, 4\}$ and $B = \{5, 6, 7, 8, 9\}$.
- 14. For example, $A = \{1, 2, 3\}$ and $B = \{2, 3, 4, 5\}$.
- 15. $0 \le |A \cap B| \le 10$ and $15 \le |A \cup B| \le 25$.
- 16. $|A \cup B| + |A \cap B| = 13$
- 17. If R is the set of red cards and F is the set of face cards, we have $|R \cup F| = |R| + |F| |R \cap F|$. There are 6 cards which are both red and a face card, so $|R \cup F| = 32$.
- 18. 39.
- 19. $|(A \cup C) \cap \overline{B}| = 44$
- 20. One possibility: $(A \cup B) \cap C$.