BCSE302L - Database Systems

Module - 5

SCHEDULE

Schedules

- **TYPES**
- Serial Schedule
- Non serial Schedule
 - Serializable Schedule
 - Conflict Serializable Schedule
 - View Serializable Schedule
 - **Non-serializable**
 - Recoverable Schedule
 - » Cascading Schedule
 - » Cascadeless Schedule
 - » Strict Schedule
 - Non-recoverable

- If in a schedule,
 - A transaction performs a dirty read operation from an uncommitted transaction
 - And commits before the transaction from which it has read the value
 - then such a schedule is known as an non-recoverable or Irrecoverable Schedule.

Transaction T1	Transaction T2	
R (A) W (A)	R (A) W (A) Commit	// Dirty Read

- T2 performs a dirty read operation.
- T2 commits before T1.
- T1 fails later and roll backs.
- The value that T2 read now stands to be incorrect.
- T2 can not recover since it has already committed.

TRANSACTION T1	TIME	TRANSACTION T2
	t1	UPDATE t
RETRIEVE t	t2	
COMMIT	t3	
	t4	ROLLBACK

- If in a schedule,
 - A transaction performs a dirty read operation from an uncommitted transaction
 - And its commit operation is delayed till the uncommitted transaction either commits or roll backs
 - then such a schedule is known as a Recoverable Schedule.
- The commit operation of the transaction that performs the dirty read is delayed.
- This ensures that it still has a chance to recover if the uncommitted transaction fails later.

Transaction T1	Transaction T2	
R (A) W (A)	R (A) W (A)	// Dirty Read
Commit	Commit	// Delayed

- T2 performs a dirty read operation.
- The commit operation of T2 is delayed till T1 commits or roll backs.
- T1 commits later.
- T2 is now allowed to commit.
- In case, T1 would have failed, T2 has a chance to recover by rolling back.

Testing a schedule is recoverable or not?

■ Rule-1

- All conflict serializable schedules are recoverable.
- All recoverable schedules may or may not be conflict serializable.

■ Rule-2

No dirty read means a recoverable schedule.

Cascading Schedule

- A cascading schedule is classified as a recoverable schedule.
- A recoverable schedule is basically a schedule in which the commit operation of a particular transaction that performs read operation is delayed until the uncommitted transaction either commits or roll backs.
- Cascading rollback is a type of rollback in which if one transaction fails, then it will cause rollback of other dependent transactions.

T1	T2	T3	T4
Read(A)			
Write(A)			
	Read (A)		
	Write(A)		
		Read(A)	
		Write(A)	
			Read(A)
			Write(A)
Failure			

Cascading rollback - because of T1 failure, T2 is rollback and rollback of T2 causes T3 to rollback and rollback T3 causes the T4 to rollback.

Cascadeless schedule

• When a transaction is not allowed to read data until the last transaction which has written it is committed or aborted, these types of schedules are called cascadeless schedules.

T1	T2
R(X)	
W(X)	
	W(X)
commit	
	R(X)
	Commit

The updated value of X is read by transaction T2 only after the commit of transaction T1. Hence, the schedule is cascadeless schedule

■ Strict schedule

- If the schedule contains no read or write before commit then it is known as strict schedule.
- Schedule with no read-write or write-write conflict is strict schedule

T1	T2
Read (A) Write (A)	
Commit/Rollback	
	Read (A)
	Write (A)

Transaction T2 reads and writes the updated or written value of transaction T1 only after the transaction T1 commits. Hence, the schedule is strict schedule

Difference between cascading, cascadeless and strict schedule

Cascading Schedule	Casecadless Schedule	Strict Schedule
dependent Transaction (T2) before to T1 committed or abort.	Casecadless Don't allow READ to dependent Transaction (T2) untill T1 committed or abort. But it allows WRITE operation for dependent Transaction (T2) before to T1 committed.	Strict don't allow READ or WRITE operation to dependent Transaction (T2) until T1 committed or abort.
Note: Rollback of one Transaction leads to rollback of all other dependent Transactions Note: This case is problematic.	Note: This case is also problematic.	Note: This case if 100% safe.

All Serial schedules are Strict, Cascadeless, and recoverable but All Recoverable Schedules may or may not be a Cascadeless. Strict and Serial