

New directions in nearest neighbor searching with applications to lattice sieving

Anja Becker, Léo Ducas, Nicolas Gama, Thijs Laarhoven

mail@thijs.com
http://www.thijs.com/

SODA 2016, Arlington (VA), USA (January 10, 2016)

Nearest neighbor searching

Nearest neighbor searching

Data set

Nearest neighbor searching

Target

Nearest neighbor searching

Nearest neighbor

Distance guarantee

Approximate nearest neighbor

Approximation factor c>1

Nearest neighbor searching

Example: Precompute Voronoi cells

Nearest neighbor searching

Problem setting

• High dimensions d

Nearest neighbor searching

- High dimensions d
- Large data set of size $n = 2^{\Omega(d/\log d)}$

Nearest neighbor searching

- High dimensions d
- Large data set of size $n = 2^{\Omega(d/\log d)}$
- Assumption: Data set lies on the sphere
 - lacktriangle Eucl./angular NNS in \mathbb{R}^d reduce to Eucl. NNS on the sphere [AR'15]

- High dimensions d
- Large data set of size $n = 2^{\Omega(d/\log d)}$
- Assumption: Data set lies on the sphere
 - lacktriangle Eucl./angular NNS in \mathbb{R}^d reduce to Eucl. NNS on the sphere [AR'15]
- "Random" case: $c \cdot r = \sqrt{2}$

Nearest neighbor searching

- High dimensions d
- Large data set of size $n = 2^{\Omega(d/\log d)}$
- Assumption: Data set lies on the sphere
 - ightharpoonup Eucl./angular NNS in \mathbb{R}^d reduce to Eucl. NNS on the sphere [AR'15]
- "Random" case: $c \cdot r = \sqrt{2}$
- Goal: Query time $O(n^{\rho})$ with $\rho < 1$

Hyperplane LSH

[Charikar, STOC'02]

Hyperplane LSH

Random point

Hyperplane LSH

Opposite point

TU/e **Hyperplane LSH** Two Voronoi cells

Hyperplane LSH

Another pair of points

TU/e **Hyperplane LSH** Overview

Hyperplane LSH

Overview

For "random" settings, query time $O(n^{\rho})$ with

$$\rho = \frac{\sqrt{2}}{\pi \ln 2} \cdot \frac{1}{c} \left(1 + o_{d,c}(1) \right).$$

Hyperplane LSH

Overview

For "random" settings, query time $O(n^{\rho})$ with

$$\rho = \frac{\sqrt{2}}{\pi \ln 2} \cdot \frac{1}{c} \left(1 + o_{d,c}(1) \right).$$

Efficient but suboptimal as $ho \propto \frac{1}{c^2}$ is achievable

Cross-Polytope LSH

[Terasawa-Tanaka, WADS'07] [Andoni et al., NIPS'15]

Cross-Polytope LSH

Vertices of cross-polytope (simplex)

Cross-Polytope LSH

Random rotation

Cross-Polytope LSH Overview

For "random" settings, query time $O(n^{\rho})$ with

$$ho = rac{1}{2c^2-1} \left(1+o_d(1)
ight)$$

Cross-Polytope LSH

For "random" settings, query time $O(n^{\rho})$ with

$$\rho = \frac{1}{2c^2 - 1} \left(1 + o_d(1) \right)$$

Essentially optimal for large c and $n = 2^{o(d)}$ [Dub'10, AR'15]

Spherical/Voronoi LSH

[Andoni et al., SODA'14] [Andoni-Razenshteyn, STOC'15]

Spherical/Voronoi LSH

Random points

Spherical/Voronoi LSH

Overview

$2^{O(\sqrt{d})}$ points in d dimensions

- More points improves performance
- More points makes decoding slower

Spherical/Voronoi LSH

Overview

$2^{O(\sqrt{d})}$ points in d dimensions

- More points improves performance
- More points makes decoding slower

For "random" settings, query time $O(n^{\rho})$ with

$$\rho = \frac{1}{2c^2 - 1} \left(1 + o_d(1) \right).$$

Spherical/Voronoi LSH

Overview

$2^{O(\sqrt{d})}$ points in d dimensions

- More points improves performance
- More points makes decoding slower

For "random" settings, query time $O(n^{\rho})$ with

$$\rho = \frac{1}{2c^2 - 1} \Big(1 + o_d(1) \Big).$$

Essentially optimal for large c and $n = 2^{o(d)}$

- Hyperplane LSH: 2 Voronoi cells
 - Efficient decoding
 - ightharpoonup Suboptimal for large d, c
- Cross-Polytope LSH: 2d Voronoi cells
 - Reasonably efficient decoding
 - ▶ Optimal for large c and $n = 2^{o(d)}$
- Spherical/Voronoi LSH: $2^{O(\sqrt{d})}$ Voronoi cells
 - Slow decoding
 - ▶ Optimal for large c and $n = 2^{o(d)}$

- Hyperplane LSH: 2 Voronoi cells
 - Efficient decoding
 - ► Suboptimal for large *d*, *c*
- Cross-Polytope LSH: 2d Voronoi cells
 - ► Reasonably efficient decoding
 - ▶ Optimal for large c and $n = 2^{o(d)}$
- Spherical/Voronoi LSH: $2^{O(\sqrt{d})}$ Voronoi cells
 - Slow decoding
 - ▶ Optimal for large c and $n = 2^{o(d)}$
- 1. Can we use even more Voronoi cells?

- Hyperplane LSH: 2 Voronoi cells
 - Efficient decoding
 - ightharpoonup Suboptimal for large d, c
- Cross-Polytope LSH: 2d Voronoi cells
 - Reasonably efficient decoding
 - Optimal for large c and $n = 2^{o(d)}$
- Spherical/Voronoi LSH: $2^{O(\sqrt{d})}$ Voronoi cells
 - Slow decoding
 - Optimal for large c and $n = 2^{o(d)}$
- 1. Can we use even more Voronoi cells?
- 2. Can decoding be made faster?

- Hyperplane LSH: 2 Voronoi cells
 - Efficient decoding
 - \triangleright Suboptimal for large d, c
- Cross-Polytope LSH: 2d Voronoi cells
 - Reasonably efficient decoding
 - Optimal for large c and $n = 2^{o(d)}$
- Spherical/Voronoi LSH: $2^{O(\sqrt{d})}$ Voronoi cells
 - Slow decoding
 - ▶ Optimal for large c and $n = 2^{o(d)}$
- 1. Can we use even more Voronoi cells?
- 2. Can decoding be made faster?
- 3. What about $n = 2^{\Omega(d)}$?

Contribution

Overview

TU/e Contribution Partition dimensions into blocks

TU/e Contribution **Construct concatenated code**

Contribution

Construct concatenated code

Contribution

Normalize (only for example)

Contribution

Normalize (only for example)

Contribution

Normalize (only for example)

Techniques

- Idea 1: Increase number of regions to $2^{\Theta(d)}$
 - ▶ Number of hash tables increases to $2^{\Theta(d)}$
 - ▶ Decoding cost potentially increases,..

Techniques

- Idea 1: Increase number of regions to $2^{\Theta(d)}$
 - Number of hash tables increases to $2^{\Theta(d)}$
 - Decoding cost potentially increases...
- Idea 2: Use structured codes for random regions
 - Spherical/Voronoi LSH with dependent random points
 - Allows for efficient list-decoding

Techniques

- Idea 1: Increase number of regions to $2^{\Theta(d)}$
 - Number of hash tables increases to $2^{\Theta(d)}$
 - Decoding cost potentially increases...
- Idea 2: Use structured codes for random regions
 - ► Spherical/Voronoi LSH with dependent random points
 - Allows for efficient list-decoding
- Idea 3: Replace partitions with filters
 - Relaxation: filters need not partition the space
 - ▶ Might not be needed to achieve improvement

Results

For random sparse settings
$$(n=2^{o(d)})$$
, query time $O(n^{\rho})$ with
$$\rho=\frac{1}{2c^2-1}\Big(1+o_d(1)\Big).$$

Results

For random sparse settings $(n = 2^{o(d)})$, query time $O(n^{\rho})$ with

$$\rho = \frac{1}{2c^2 - 1} \left(1 + o_d(1) \right).$$

For random dense settings ($n=2^{\kappa d}$ with small κ), we obtain

$$\rho = \frac{1-\kappa}{2c^2-1} \left(1+o_{d,\kappa}(1)\right).$$

Results

For random sparse settings $(n = 2^{o(d)})$, query time $O(n^{\rho})$ with

$$ho = rac{1}{2c^2 - 1} \left(1 + o_d(1) \right).$$

For random dense settings ($n=2^{\kappa d}$ with small κ), we obtain

$$\rho = \frac{1-\kappa}{2c^2-1} \left(1+o_{d,\kappa}(1)\right).$$

For random dense settings ($n = 2^{\kappa d}$ with large κ), we obtain

$$\rho = \frac{-1}{2\kappa} \log \left(1 - \frac{1}{2c^2 - 1} \right) \left(1 + o_d(1) \right).$$

Conclusions

Main result: Use even more regions using list-decodable codes

- For $n = 2^{o(d)}$, non-asymptotic improvement
- For $n = 2^{\Theta(d)}$, asymptotic improvement
- Corollary: Lower bounds for $n = 2^{o(d)}$ do not hold for $n = 2^{\Theta(d)}$

Conclusions

Main result: Use even more regions using list-decodable codes

- For $n = 2^{o(d)}$, non-asymptotic improvement
- For $n = 2^{\Theta(d)}$, asymptotic improvement
- Corollary: Lower bounds for $n=2^{o(d)}$ do not hold for $n=2^{\Theta(d)}$

Concrete improvements in cryptanalysis

- · Reduce exponent for lattice sieving algorithms
- Reduce exponent for decoding binary codes [MO'15]

Conclusions

Main result: Use even more regions using list-decodable codes

- For $n = 2^{o(d)}$, non-asymptotic improvement
- For $n = 2^{\Theta(d)}$, asymptotic improvement
- Corollary: Lower bounds for $n = 2^{o(d)}$ do not hold for $n = 2^{\Theta(d)}$

Concrete improvements in cryptanalysis

- · Reduce exponent for lattice sieving algorithms
- Reduce exponent for decoding binary codes [MO'15]

Questions?