# Logic - Notes

## Dom Hutchinson

## February 17, 2020

## Contents

| 1 |                                    | roduction                                       |  |  |  |  |  |  |  |
|---|------------------------------------|-------------------------------------------------|--|--|--|--|--|--|--|
|   |                                    | Alphabets & Strings                             |  |  |  |  |  |  |  |
|   | 1.2                                | Countable Sets                                  |  |  |  |  |  |  |  |
| 2 | Firs                               | st-Order Languages                              |  |  |  |  |  |  |  |
|   | 2.1                                | Induction of Terms & Formulae                   |  |  |  |  |  |  |  |
|   | 2.2                                | Free Variables                                  |  |  |  |  |  |  |  |
| 3 | Semantics of First-Order Languages |                                                 |  |  |  |  |  |  |  |
|   | 3.1                                | Structures, Variable Assignments & Satisfaction |  |  |  |  |  |  |  |
|   | 3.2                                | Important Semantic Concepts                     |  |  |  |  |  |  |  |
|   | 3.3                                | Substitution                                    |  |  |  |  |  |  |  |

## 1 Introduction

## 1.1 Alphabets & Strings

#### **Definition 1.1 -** Alphabet

An Alphabet is a set of symbols from which Strings can be created.

#### **Definition 1.2** - String

A String over a set  $\mathcal{A}$  is any sequence  $\alpha := \langle a_1, \ldots, a_n \rangle$  where  $a_1, \ldots, a_n \in \mathcal{A}$ . N.B. Here we say  $\alpha$  has length n and  $\alpha \in \mathcal{A}^n$ .

#### **Definition 1.3 -** Power Set

Let  $\mathcal{A}$  be an alphabet. We define

$$\mathcal{A}^* := \bigcup_{n \in \mathbb{N}} \mathcal{A}^n = \{ \langle a_1, \dots, a_n \rangle : n \in \mathbb{N}; a_1, \dots, a_n \in \mathcal{A} \}$$

This means  $\mathcal{A}^*$  is the set of all possible strings over alphabet  $\mathcal{A}$ .

## Remark 1.1 - Concatenating Strings

Define Strings  $\alpha := \langle a_1, \dots, a_n \rangle \in \mathcal{A}^n$  and  $\beta := \langle b_1, \dots, b_m \rangle \in \mathcal{A}^m$ .

We define Concatenation of  $\alpha$  &  $\beta$  as  $\alpha\beta := \langle a_1, \ldots, a_n, b_1, \ldots, b_m \rangle$  Note that

$$\alpha\beta \neq \langle \alpha, \beta \rangle = \langle \langle a_1, \dots, a_n \rangle, \langle b_1, \dots, b_m \rangle \rangle$$

*N.B.* Sometimes the following notation is used  $\alpha * \beta$ .

#### Example 1.1 - English Alphabet

If we define an alphabet  $\mathcal{A} := \{`a`, \ldots, `z`\}$  then  $\langle `t`, `h`, `i`, `s` \rangle$  is a *String* of  $\mathcal{A}$ .

#### Remark 1.2 - Ambiguity when using multiple Alphabets

Consider the Alphabets  $A_1 := \{0, 1, \dots, 9\} \& A_2 := \mathbb{N}$ .

Then we are unsure which of the following definitions of 123 is valid

$$\langle 123 \rangle$$
,  $\langle 12, 3 \rangle$ ,  $\langle 1, 23 \rangle$ ,  $\langle 1, 2, 3 \rangle$ 

**Remark 1.3 -**  $A := \{0,1\}$  is sufficient to describe any language - binary

#### Remark 1.4 - Describing Formal Languages

When describing a Formal Language we need to provide two things

- i) An Alphabet which defines what symbols are allowed.
- ii) A Grammar which defines what combinations of symbols are allowed.

#### 1.2 Countable Sets

#### **Definition 1.1 -** Countable Set

A set X is said to be Countable if

$$\exists$$
 a surjection  $f: \mathbb{N} \to X$   
 $\exists$  an injection  $f: X \to \mathbb{N}$ 

#### **Definition 1.2 -** Countably Infinite Set

A set X is said to be Countably Infinite if  $\exists$  a bijection  $f: X \to \mathbb{N}$ .

#### Theorem 1.1 - Power set is Countable

If set A is countable then  $A^*$  is countable.

#### **Proof 1.1** - *Theorem 1.1*

Let  $f: \mathcal{A} \longrightarrow \mathbb{N}$  (This function exists trivally since we define  $\mathcal{A}$  to be countable).

Define the following function  $g(\cdot): \mathcal{A}^* \longrightarrow \mathbb{N}$ 

$$g(\langle a_1, \dots, a_n \rangle) := p_1^{f(a_1)+1} \cdot \dots \cdot p_n^{f(a_n)+1}$$

where  $p_i$  is the  $i^{\text{th}}$  prime.

Since each natural number can be described by a unique composition of primes and since  $f(\dot{)}$  is injective, then  $g(\cdot)$  is injective.

Thus there exists an injection from  $\mathcal{A}^*$  to  $\mathbb{N}$ , making  $\mathcal{A}^*$  countable.

**Theorem 1.2** - If A is countable, then so are  $A^*, (A^*)^*, \dots$ 

## 2 First-Order Languages

#### **Definition 2.1 -** First-Order Language, $\mathcal{L}$

The Alphabet of a First-Order Language, comprises of the following, pairwise disjoint, categories (and nothing else)

- i) Negation,  $\neg$ , and implication,  $\longrightarrow$ .
- ii) For all,  $\forall$ .
- iii) Infinitely many variables,  $\{v_0, v_1, \dots\}$ .
- iv) Parentheses, '(' ')', and comman ','.
- v) Equality,  $\equiv$ , which is the only logical predicate symbol with 2-arity.
- vi) A set of constant symbols,  $\{c_1, c_2, \dots\}$ . (Possibly empty)
- vii) For each  $n \ge 1$ , a set of n-arity function symbols  $\{f_1^n, f_2^n, \dots\}$ . (Possibly empty)
- viii) For each  $n \ge 1$ , a set of *n*-arity non-logical predicate symbols  $\{P_1^n, P_2^n, \dots\}$ . (Possibly empty)

N.B. We denote the set of variables by  $Var := \{v_0, v_1, \dots\}$ ; denote a language as  $\mathcal{L}$  and the alphabet of  $\mathcal{L}$  as  $\mathcal{A}_{\mathcal{L}}$ .

N.B. In this course Alphabets are restricted to being Countable.

### **Definition 2.2** - Negation, $\neg$

Negation returns in the inverse of a predicate (DO I MEAN PREDICATE)

$$\begin{array}{c|c} P & \neg P \\ \hline T & F \\ F & T \end{array}$$

#### **Definition 2.3** - *Implication*, $\longrightarrow$

Implication returns whether one predicate being true necessarily implies a second predicate being true

$$\begin{array}{c|cc} P & Q & P \rightarrow Q \\ \hline T & T & T \\ T & F & F \\ F & T & T \\ F & F & T \\ \end{array}$$

**Remark 2.1** - First-Order Languages don't have  $\land$ ,  $\lor$ ,  $\exists$ 

Alphabets for First-Order Languages do not contain propositional connectives for AND,  $\wedge$ , OR,  $\vee$ , or EXISTS,  $\exists$  since they can be expressed as a combination of negation & implication.

$$\begin{array}{ccc} P \vee Q & \Longleftrightarrow & \neg P \to Q \\ P \wedge Q & \Longleftrightarrow & \neg (P \to \neg Q) \\ \exists \; x \; \mathrm{st} \; P(x) \; \mathrm{is} \; \mathrm{true} & \Longleftrightarrow & \neg (\forall \; x, \; \neg P(x)) \end{array}$$

| P            | Q            | $\neg P$ | $\neg P \rightarrow Q$ | P            | Q            | $\neg Q$ | $P \to \neg Q$ | $\neg (P \to \neg Q)$ |
|--------------|--------------|----------|------------------------|--------------|--------------|----------|----------------|-----------------------|
| Т            | Т            | F        | T                      | Т            | Т            | F        | F              | T                     |
| $\mathbf{T}$ | $\mathbf{F}$ | F        | ${ m T}$               | $\mathbf{T}$ | F            | Τ        | ${ m T}$       | ${ m F}$              |
| F            | $\mathbf{T}$ | F        | ${ m T}$               | $\mathbf{F}$ | $\mathbf{T}$ | F        | ${ m T}$       | ${ m F}$              |
| $\mathbf{F}$ | F            | F        | F                      | $\mathbf{F}$ | $\mathbf{F}$ | Τ        | ${ m T}$       | ${ m F}$              |

Example 2.1 - Recursive Defintion

Consider the following, normal, deifition

x is a multiple of 
$$5 \iff \exists y \in \mathbb{Z} \text{ st } y.5 = x$$

We can instead use the recursive definition

- i) 0 is a multiple of 5.
- ii) If n is a multiple of 5 then n + 5 is a multiple of 5.

**Definition 2.4 -** *L-Term & Complexity* 

Let  $\mathcal{L}$  be a First-Order Language.

We define  $\mathcal{L}$ -Terms & Complexity,  $cp(\cdot)$ , together using the following recursive definition

- i) If s is a variable or a constant symbol, then s is an  $\mathcal{L}$ -Term with cp(s) = 0. N.B. Terms with  $cp(\cdot) = 0$  are called Atomic Terms.
- ii) If f is a function symbol with k-arity & if  $a_1, \ldots, a_k$  are  $\mathcal{L}$ -Terms then  $f(a_1, \ldots, f_k)$  is an  $\mathcal{L}$ -Term with complexity

$$cp(f(a_1,...,a_k)) := \max\{cp(a_1),...,cp(a_k)\} + 1$$

N.B. Terms with  $cp(\cdot) \geq 1$  are called Compound Terms.

- iii) Nothing else is an  $\mathcal{L}$ -Term
- *N.B.* We denote the set of  $\mathcal{L}$  Terms by  $T_{\mathcal{M}_{\mathcal{L}}}$ .

Example 2.2 - L-Term & Complexity

Let  $\{c, d, f, g, h, p\} \subseteq \mathbb{E}$  with c, d being constants, g, p being uniary functions & f, h being binary functions.

Show that the following is an  $\mathcal{L}$ -Term & find its Complexity

i) x is an  $\mathcal{L}$ -Term with cp(x) = 0 by (i).

- ii) c & d are  $\mathcal{L}$ -Terms with cp(c) = 0 = cp(d) by (i).
- iii) f(x,c) is an  $\mathcal{L}$ -Term with  $cp(f) = \max 0, 0 + 1 = 1$  by (ii).
- iv) p(d) is an  $\mathcal{L}$ -Term with  $cp(f) = \max 0 + 1 = 1$  by (ii).
- v) g(f(x,c),p(d)) is an  $\mathcal{L}$ -Term with  $cp(g) = \max 1, 1+1=2$  by (ii).
- vi) h(g(f(x,c),p(d))) is an  $\mathcal{L}$ -Term with  $cp(h) = \max 2 + 1 = 3$  by (ii).

Thus h(g(f(x,c),p(d))) is an  $\mathcal{L}$ -Term with Complexity 3.

#### Notation 2.1 - More readble Functions

WE often write  $x \circ y$  instead of  $\circ (x, y)$  as it is more readable (even though the later is technically the only correct notation). Similarly, x + y instead of +(x, y).

#### **Definition 2.5 -** Atomic Formulae

Let  $\mathcal{L}$  be a First-Order Language.

The atomic  $\mathcal{L}$ -Formulae are those strings over  $\mathcal{A}_{\mathcal{L}}$  of the form

$$R(t_1,\ldots,t_n)$$
 for  $n\in\mathbb{N}$ 

where R is a predicate symbol of  $\mathcal{L}$  with n-arity and  $t_1, \ldots, t_n$  are  $\mathcal{L}$ -terms.  $N.B. \equiv (t_1, t_2)$  is an  $Atomic \mathcal{L}$ -Formula for each  $\mathcal{L}$  terms  $t_1, t_2$ .

#### **Definition 2.6 -** *L-Formulae & Complexity*

We define  $\mathcal{L}$ -Formulae & Complexity,  $cp(\cdot)$ , together using the following recursive definition

- i) If  $\phi \in \mathcal{A}_{\mathcal{L}}^*$  is an Atomic  $\mathcal{L}$ -Formula then  $\phi$  is an  $\mathcal{L}$ -Formula with  $cp(\phi) = 0$ .
- ii) If  $\phi$  is an  $\mathcal{L}$ -Formula with  $cp(\phi) = n$  then  $\neg \phi$  is an  $\mathcal{L}$ -Formula with  $cp(\neg \phi) = n + 1$ .
- iii) If  $\phi \& \psi$  are  $\mathcal{L}$ -Formulae then  $\phi \to \psi$  is an  $\mathcal{L}$ -Formula with  $cp(\phi \to \psi) = \max\{cp(\phi), cp(\psi)\} + 1$ .
- iv) if  $\phi$  is an  $\mathcal{L}$ -Formula then  $\forall x \phi$  is an  $\mathcal{L}$ -Formula with  $cp(\forall x \phi) = cp(\phi) + 1$ , where x is a variable.

N.B. Complexity is just a measure of the syntactic complexity, not semantic. Notice how  $cp(\neg\neg\phi) = cp(\phi) + 2$ .

#### Remark 2.2 - Formulae are uniquely readable & parsable

## Example 2.3 - L-Formulae Complexity

Let  $\{R, f\} \subset \mathcal{L}$  be binary operations.

Show that the following is an  $\mathcal{L}$ -Formula

$$\forall v_0 (\neg R(f(v_0, v_2), v_2) \longrightarrow \underbrace{\equiv (v_0, v_2)}_{v_0 \equiv v_2}$$

- i)  $v_0, v_2$  are  $\mathcal{L}$ -Terms.
- ii)  $f(v_0, v_2)$  is an  $\mathcal{L}$ -Term.
- iii)  $R(f(v_0, v_2), v_2)$  is an  $\mathcal{L}$ -Formula with  $cp(\cdot) = 0$ .
- iv)  $\neg R(f(v_0, v_2), v_2)$  is an  $\mathcal{L}$ -Formula with  $cp(\cdot) = 0 + 1 = 1$ .

- v)  $\equiv (v_0, v_2)$  is an  $\mathcal{L}$ -Formula with  $cp(\cdot) = 0$ .
- vi)  $\neq R(f(v_0, v_2), v_2) \longrightarrow \equiv (v_0, v_2)$  is an  $\mathcal{L}$ -Formula with  $cp(\cdot) = \max\{0, 1\} + 1 = 2$ .
- vii)  $\forall v_0 (\neg R(f(v_0, v_2), v_2) \longrightarrow \equiv (v_0, v_2))$  is an  $\mathcal{L}$ -Formula with  $cp(\dot{}) = 2 + 1 = 3$ .

#### Notation 2.2 - Convention for common operators

To make formulae more readble we general make the following allowances in notation

$$t_1 \equiv t_2 \text{ for } \equiv (t_1, t_2)$$
  
 $t_1 \not\equiv t_2 \text{ for } \neg \equiv (t_1, t_2)$   
 $t_1 < t_2 \text{ for } < (t_1, t_2)$   
 $t_1 \not\equiv t_2 \text{ for } \neg \equiv (t_1, t_2)$ 

Further, when a formula is encapsulated by parantheses then we will often surpress the outermost parentheses (only), as they do not affect anything.

$$\phi \longrightarrow (\psi \longrightarrow \theta) \text{ for } (\phi \longrightarrow (\psi \longrightarrow \theta))$$

**Definition 2.7 -** More complex operators

- AND,  $(\phi \wedge \psi) := \neg(\phi \longrightarrow \neg \psi)$ .
- OR,  $(\phi \lor \psi) := (\neg \phi \longrightarrow \psi)$ .
- IFF,  $(\phi \longleftrightarrow \psi) := (\phi \longrightarrow \psi) \land (\psi \longrightarrow \phi)$ .
- EXISTS,  $(\exists x\phi) := \neg \forall x \neg \phi$ .

Notation 2.3 - Sets of  $\mathcal{L}$  Features

- $T_{\mathcal{M}_{\mathcal{L}}} := \text{Set of } \mathcal{L}\text{-Terms.}$
- $F_{\mathcal{M}_{\mathcal{L}}} := \text{Set of } \mathcal{L}\text{-Formulae}.$
- Var := Set of Variables.

**Proposition 2.1** -  $T_{\mathcal{M}_{\mathcal{L}}}$  &  $F_{\mathcal{M}_{\mathcal{L}}}$  are always countable in this course since we assume  $\mathcal{L}$  to be finite.

## 2.1 Induction of Terms & Formulae

**Theorem 2.1 -** Inheritance of a Proeprty - L-Terms

Let P be a property of  $\mathcal{L}$ -Terms.

Suppose the following to be true

- i) All Atomic  $\mathcal{L}$ -Terms have property P.
- ii)  $\forall k \in \mathbb{N}, \forall$  function symbols f with k-arity: If  $\mathcal{L}$ -Terms  $t_1, \ldots, t_k$  have property P then  $f(t_1, \ldots, t_k)$  has P.

Then every  $\mathcal{L}$ -Term has property P.

#### **Proof 2.1** - *Theorem 2.1*

This is a proof by contradiction. Suppose that i) & ii) are true but there exists some  $\mathcal{L}$ -Term which does not have P.

Let t be an  $\mathcal{L}$ -Term with minimum complexity st t does not have P.

Then  $cp(t) \neq 0$  otherwise i) would be untrue.

Thus  $t \equiv f(t_1, \ldots, t_k)$  by the minimlaity of cp(t).

We know that  $t_1, \ldots, t_k$  have P.

Thus  $f(t_1, \ldots, t_k)$  has P. This is a contradiction.

## **Theorem 2.2 -** Inheritance of a Proeprty - L-Formulae

Let P be a property of  $\mathcal{L}$ -Formula.

Suppose the following to be true

- i) All Atomic  $\mathcal{L}$ -Formulae have property P.
- ii) If  $\phi, \psi \in F_{\mathcal{M}_{\mathcal{L}}}$  have P then  $\neg \phi, (\phi \to \psi)$  &  $\forall x \phi$  have P to.

Then every  $\mathcal{L}$ -Formulae has property P.

#### **Theorem 2.3 -** Number of Parenthese

Ever  $\mathcal{L}$ -Formula has as many left parentheses as right parentheses.

Ever  $\mathcal{L}$ -Term has as many left parentheses as right parentheses.

#### **Proof 2.2** - *Theorem 2.3*

This is a proof by induction.

Let P be the property "Has as many left parenthese as right".

Base Case - When  $\phi$  is an Atomic  $\mathcal{L}$  Formula it trivially has equal number of parenthese.

## Inductive Case

Let  $\phi \& \psi$  be arbitrary  $\mathcal{L}$ -Formulae.

Assume that  $P(\phi) \& P(\psi)$  hold.

We need to show that  $P(\neg \phi)$ ,  $P(\phi \rightarrow \psi)$  &  $P(\forall x\phi)$  all hold.

We do not need to show  $P(\neg \psi)$ ,  $P(\psi \rightarrow \phi)$  &  $P(\forall x\psi)$  hold as  $\phi$  &  $\psi$  are arbitrary.

We have that  $\neg \phi$  and  $\forall x \phi$  don't add any brackets, so P holds.

We have that  $(\phi \to \psi)$  add one left & one right parentheses (although they are often surpressed), thus P holds.

Thus by the process of mathematical induction P holds for all  $\mathcal{L}$ -Formulae.

N.B. The proof for  $\mathcal{L}$ -Terms is very similar.

#### 2.2 Free Variables

## **Definition 2.1** - Variable Function, $var(\cdot)$

Define  $var: \mathcal{A}_{\mathcal{L}}^* \to 2^{\text{Var}}$  st var(s) is the set of all variables in string s.

#### Example 2.4 - $Var(\cdot)$

$$var(f(x, f(y, c)) = \{x, y\}$$
  
 $var(f(c, f(c, c)) = \emptyset$   
 $var(\equiv, \equiv, \equiv) = \emptyset$  nonsense strins are acceptable

#### **Definition 2.2 -** Free Variables

Free Variables are variables whose value are ambiguous in an  $\mathcal{L}$ -Formula.

#### **Definition 2.3** - Free Variable Function, $FV(\cdot)$

We recursively define  $FV(\phi)$  for  $\mathcal{L}$ -Formulae as  $\phi$  as follows

- i)  $FV(\phi) = var(\phi)$  if  $\phi$  is an Atomic  $\mathcal{L}$ -Formula.
- ii)  $FV(\neg \phi) = FV(\phi)$ .
- iii)  $FV((\phi \to \psi)) = FV(\phi) \cup FV(\psi)$ .

iv) 
$$FV(\forall x\phi) = FV(\phi) \setminus \{x\}.$$

Example 2.5 - Free Variable Function

$$FV(\forall x(P(y) \rightarrow Q(x))) = FV(P(y) \rightarrow Q(x)) \setminus \{x\}$$

$$= [FV(P(y)) \cup FV(Q(x))] \setminus \{x\}$$

$$= [\{y\} \cup \{x\}] \setminus \{x\}$$

$$= \{y\}$$

Proposition 2.2 - Free Variable Function for more complex operators

$$FV(\phi \wedge \psi) = FV(\neg(\phi \rightarrow \neg \psi)) \text{ by definition of } \wedge$$

$$= FV(\phi) \cup FV(\psi)$$

$$FV(\phi \vee \psi) = FV(\neg\phi \rightarrow \psi) \text{ by definition of } \vee$$

$$= FV(\phi) \cup FV(\psi)$$

$$FV(\exists x\phi) = FV(\neg \forall x \neg \phi) \text{ by definition of } \exists$$

$$= FV(\phi) \backslash \{x\}$$

**Definition 2.4 -** Closed L-Term

Let t be an  $\mathcal{L}$ -Term.

If  $var(t) = \emptyset$  then t is called a Closed  $\mathcal{L}$ -Term.

Definition 2.5 - L-Sentence

Let  $\phi$  be an  $\mathcal{L}$ -Formula.

If  $FV(\phi) = \emptyset$  then  $\phi$  is called an  $\mathcal{L}$ -Sentence.

Example 2.6 -  $\mathcal{L}$ -Sentence

$$FV(\forall x (P(x) \to \exists y \ R(y, x))) = FV((P(x) \to \exists y \ R(y, x)) \setminus \{x\}$$

$$= FV(P(x)) \cup FC(\exists y \ R(y, x)) \setminus \{x\}$$

$$= \{x\} \cup (FV(R(y, x) \setminus \{y\}) \setminus \{x\}$$

$$= \{x\} \cup (\{y, x\} \setminus \{y\}) \setminus \{x\}$$

$$= \{x\} \cup \{x\} \setminus \{x\}$$

$$= \emptyset$$

Remark 2.3 - L-Sentences have no Free Variables and thus no ambiguity in meaning.

## 3 Semantics of First-Order Languages

## 3.1 Structures, Variable Assignments & Satisfaction

**Definition 3.1 -**  $\mathcal{L}$ -Structure

Let  $\mathcal{L}$  be a first-order language.

An  $\mathcal{L}$ -Structure is an ordered pair  $\mathfrak{M} = \langle D, \mathfrak{I} \rangle$ 

- i) D is a non-empty set.
- ii)  $\Im$  is a function on the non-logical symbols of  $\mathcal{L}$  st
  - For each predicate symbol  $P \in \mathcal{L}$  with n-arity.

$$\mathfrak{I}(P) \subset D^n$$

- For each function symbol f of  $\mathcal{L}$  with n-arity

$$\mathfrak{I}(f):D^n\to D$$

- For each constant symbol c of  $\mathcal{L}$ 

$$\Im(c) \in D$$

N.B. D is the domain,  $\Im$  is the interpretation.

#### Notation 3.1 - *L-Structure*

For ease we use the following notation wrt  $\mathcal{L}$ -Structure

$$|\mathfrak{M}| := D \quad f^{\mathfrak{M}} := \mathfrak{I}(f) \quad c^{\mathfrak{M}} := \mathfrak{I}(c) \quad p^{\mathfrak{M}} = \mathfrak{I}(p)$$

#### Example 3.1 - $\mathcal{L}$ -Structure

Let  $\mathcal{L}_{Rng} := \{\bar{0}, \bar{1}\bar{+}, \bar{\cdot}\}\$  where  $\bar{+}$  &  $\bar{\cdot}$  are binary functions and  $\bar{0}$  &  $\bar{1}$  are constants.

(This is the language for ring theory)

We use the overline to distringuish language symbols from standard symbols.

Define

$$\begin{array}{rcl} D & := & \mathbb{R} \\ \Im(\bar{0}) & = & 0 \in \mathbb{R} \\ \Im(\bar{1}) & = & 1 \in \mathbb{R} \\ \Im(\bar{+}) & : & \mathbb{R} \times \mathbb{R} \to \mathbb{R} \text{ with}(a,b) \mapsto (a+b) \\ \Im(\bar{\cdot}) & : & \mathbb{R} \times \mathbb{R} \to \mathbb{R} \text{ with}(a,b) \mapsto (a \cdot b) \end{array}$$

We recall  $\langle D, \mathfrak{I} \rangle$  is the standard model of the real field.

N.B. We can alternatively write  $\langle D, \mathfrak{I} \rangle = \langle \mathbb{R}, 0, 1, +, \cdot \rangle$  for neatness.

#### **Definition 3.2 -** Variable Assignment

A  $Variable\ Assignment\ over\ an\ \mathcal{L}$ -Structure is a function which maps from the set of variables to the domain of the  $\mathcal{L}$ -Structure.

$$s: \mathrm{Var} \to |\mathfrak{M}|$$

## **Definition 3.3 -** Extension of Variable Assignment

Let  $\mathfrak{M}$  be an  $\mathcal{L}$ -Structure & s be a variable assignment over  $\mathfrak{M}$ .

The function  $\bar{s}: T_{\mathfrak{M}_{\mathcal{L}}} \to |\mathfrak{M}|$  is defined using the following recursion

- i)  $\bar{s}(t) = s(t)$  if  $t \in \text{Var}$ .
- ii)  $\bar{s}(t) = t^{\mathfrak{M}}$  if t is a constant symbol.
- iii)  $\bar{s}(f(t_1,\ldots,t_k)) = f^{\mathfrak{M}}(\bar{s}(t_1),\ldots,\bar{s}(t_k)).$

#### Example 3.2 - Variable Assignment

Let  ${\mathfrak M}$  be the standard model of the real field.

Let s be avariable assignment over  $\mathfrak{M}$  st  $s(x) = s(y) = \pi$ . Then

$$\bar{s}(x + y) = \bar{+}^{\mathfrak{M}}(\bar{s}(x), \bar{s}(y))$$

$$= \bar{+}^{\mathfrak{M}}(s(x), s(y))$$

$$= \bar{+}^{\mathfrak{M}}(\pi, \pi)$$

$$= \pi + \pi$$

$$= 2\pi$$

#### Theorem 3.1 - Substitution

Let s be a variable assignment over  $\mathfrak{M}$ ,  $x \in \text{Var } \& d \in |\mathfrak{M}|$ . A new variable assignment  $\frac{sd}{x}$  over  $\mathfrak{M}$  is defined as

$$\frac{sd}{x}(y) = \begin{cases} d & \text{if } y = x\\ s(y) & \text{otherwise} \end{cases}$$

#### **Definition 3.4** - Satisfaction Relation

Let  $\mathfrak{M}$  be an  $\mathcal{L}$ -Structure & s be a variable assignment over  $\mathfrak{M}$ .

The Satiscation Relation,  $\mathfrak{M}, s \models \phi$  between  $\mathfrak{M}, s$  and  $\mathcal{L}$ -Formula  $\phi$  is recursively defined as

- i)  $\mathfrak{M}, s \vDash t_1 \equiv t_2 \text{ iff } \bar{s}(t_1) = \bar{s}(t_2).$
- ii)  $\mathfrak{M}, s \models P(t_1, \ldots, t_k)$  iff  $\langle \bar{s}(t_1), \ldots, \bar{s}(t_k) \rangle \in P^{\mathfrak{M}} \subset D^k$ .
- iii)  $\mathfrak{M}, s \vDash \neg \phi$  iff  $\mathfrak{M}, s \nvDash \phi$ .
- iv)  $\mathfrak{M}, s \models \phi \rightarrow \psi$  iff if  $\mathfrak{M}, s \models \phi$  then  $\mathfrak{M}, s \models \psi$ .
- v)  $\mathfrak{M}, s \models \forall x \phi \text{ iff for all } d \in |\mathfrak{M}|, \mathfrak{M}^{\underline{sd}}_{\underline{\sigma}} \models \phi.$

## Proposition 3.1 - Extension of Satisfaction Relation

$$\begin{array}{lll} \mathfrak{M},s\vDash\phi\wedge\psi & \text{ iff } & \mathfrak{M},s\vDash\phi \text{ and } \mathfrak{M},s\vDash\psi \\ \mathfrak{M},s\vDash\phi\vee\psi & \text{ iff } & \mathfrak{M},s\vDash\phi \text{ or } \mathfrak{M},s\vDash\psi \\ \mathfrak{M},s\vDash\phi\leftrightarrow\psi & \text{ iff } & \mathfrak{M},s\vDash\phi \text{ iff } \mathfrak{M},s\vDash\psi \\ \mathfrak{M},s\vDash\exists x\phi & \text{ iff } & \mathfrak{M},s\frac{d}{x}\vDash\phi \text{ for some } d\in|\mathfrak{M}| \end{array}$$

#### **Definition 3.5 -** Model

Let  $\Phi \subset \operatorname{Fml}_{\mathcal{L}}$ , a subset of formulae of a first order language  $\mathcal{L}$ .

 $\mathfrak{M}, s$  is a model of  $\Phi$  iff  $\mathfrak{M}, s \propto \phi$  for all  $\phi \in \Phi$ .

*N.B.* This is denoted  $\mathfrak{M}, s \models \Phi$ .

#### Example 3.3 - Model

Let  $\mathfrak{M}$  be the standard model of ring theory & s be a variable assignment over  $\mathfrak{M}$  st  $s(v_1) = 3$  &  $s(v_2) = -\pi$ .

 $\mathfrak{M}, s \models \bar{0} \bar{<} v_1 \bar{+} v_2$ 

$$\Leftrightarrow \quad \overline{<}^{\mathfrak{M}}(\bar{s}(\bar{0}), \bar{s}(v_1 + v_2))$$

$$\Leftrightarrow \quad \overline{<}^{\mathfrak{M}}(\bar{0}^{\mathfrak{M}}, \bar{+}^{\mathfrak{M}}(\bar{s}(v_1), \bar{s}(v_2)))$$

$$\Leftrightarrow \quad \overline{<}^{\mathfrak{M}}(0, \bar{+}^{\mathfrak{M}}(s(v_1), s(v_2)))$$

$$\Leftrightarrow \quad 0 < 3 + (-\pi)$$

$$\Rightarrow \quad \mathfrak{M}, s \not\vDash \bar{0} \\cdot v_1 \\cdot v_2 \\cdot v_2 \\cdot v_2 \\cdot v_2 \\cdot v_0$$

$$\Leftrightarrow \quad \text{for all } d \in \mathbb{R}, \quad \mathfrak{M} s \frac{d}{v_2} \vDash \exists v_0, \quad v_2 \\cdot v_0 \\end{\Leftrightarrow} \quad \text{for all } d \in \mathbb{R}, \quad \mathfrak{M} (s \frac{d}{v_2}) \frac{e}{v_0} \vDash v_2 \\cdot v_0 \\end{\Leftrightarrow} \quad \text{for all } d \in \mathbb{R}, \quad \text{there is } e \in \mathbb{R}, \quad s (\frac{d}{v_2}) \frac{e}{v_0} v_2 < (s \frac{d}{v_0}) \frac{e}{v_0} v_0 \\end{\Leftrightarrow} \quad \text{for all } d \in \mathbb{R} \text{ there is } e \in \mathbb{R} \text{ st } d < e$$

#### Theorem 3.2 -

Let  $\mathcal{L}_1, \mathcal{L}_2$  be first order languages.

Define models

$$\mathfrak{M}_1 = \langle D, \mathcal{I}_1 \rangle : \mathcal{L}_1 \text{ structure}$$
  
 $\mathfrak{M}_1 = \langle D, \mathcal{I}_2 \rangle : \mathcal{L}_2 \text{ structure}$ 

Note that D is the same for both (i.e. Different languages, same world). Let  $\mathcal{L} := \mathcal{L}_1 \cup \mathcal{L}_2$ 

i) For all  $\mathcal{L}$ -Terms, t, for all variable assignments  $s_1$  over  $\mathfrak{M}_1$  &  $s_2$  over  $\mathfrak{M}_2$ .

If 
$$\begin{cases} c^{\mathfrak{M}_1} = c^{\mathfrak{M}_2} & \text{for all constants symbols that occur in } t \\ f^{\mathfrak{M}_1} = f^{\mathfrak{M}_2} & \text{for all functions symbols that occur in } t & \text{then } \bar{s}_1(t) = \bar{s}_2(t). \\ s_1(x) = s_2(x) & \text{for all variable symbols that occur in } t \end{cases}$$

ii) For all  $\phi \in \text{Fml}_{\mathcal{L}}$  & for all variable assignemnts  $s_1$  over  $\mathfrak{M}_1$  &  $s_2$  over  $\mathfrak{M}_2$ .

If 
$$\begin{cases} c^{\mathfrak{M}_1} = c^{\mathfrak{M}_2} & \text{for all constants symbols that occur in } \phi \\ f^{\mathfrak{M}_1} = f^{\mathfrak{M}_2} & \text{for all functions symbols that occur in } \phi \\ R^{\mathfrak{M}_1} = R^{\mathfrak{M}_2} & \text{for all predicate symbols that occur in } \phi \end{cases} \text{ then } \mathfrak{M}_1 s_1 \models \phi \text{ iff } \mathfrak{M}_2 \models \phi.$$

$$s_1(x) = s_2(x) & \text{for all variable symbols in } FV(\phi)$$

N.B. If  $\mathcal{L} = \emptyset$  it is not very interesting.

#### **Proof 3.1** - Theorem 3.2 i)

This is a proof by induction on  $\mathcal{L}$ -Term.

#### Base Case

Let t be atomic then  $\bar{s}_1(t) = \bar{s}_2(t)$  is trivial,  $\bar{s}_1(x) = s_1(x) = s_2(x) = \bar{s}_2(x)$  and  $\bar{s}_1(c) = c^{\mathfrak{M}_1} = c^{\mathfrak{M}_2} = \bar{s}_2(c)$ .

## **Inductive Case**

Let  $t = f(t_1, \ldots, t_k)$ . Then

$$\begin{array}{lll} \bar{s}_{1}(t) & = & f^{\mathfrak{M}_{1}}(\bar{s}_{1}(t_{1}), \ldots, \bar{s}_{1}(t_{k})) \\ & = & f^{\mathfrak{M}_{1}}(\bar{s}_{2}(t_{1}), \ldots, \bar{s}_{2}(t_{k})) \text{ by inductive hypothesis} \\ & = & f^{\mathfrak{M}_{2}}(\bar{s}_{2}(t_{1}), \ldots, \bar{s}_{2}(t_{k})) \\ & = & \bar{s}_{2}(t) \end{array}$$

#### **Proof 3.2** - *Theorem 3.2 ii)*

This is a proof by induction on  $\mathcal{L}$ -Formulae. Base Case

Let  $\phi = R(t_1, \ldots, t_k)$  be an atomic  $\mathcal{L}$ -formula (i.e.  $cp(\phi) = 0$ ).

Note that  $FV(\phi) = \text{var}(\phi)$ , thu conditions in **ii**) for  $\phi$  imply the conditions of **i**) for  $t_1, \ldots, t_k$ . Therefore  $\bar{s}_i(t_i) = \bar{s}_1(t_i) \ \forall i \in [1, k]$ . Then

$$\mathfrak{M}_{1}, s_{1} \vDash \phi$$

$$\iff \langle \bar{s}_{1}(t_{1}), \dots, \bar{s}_{1}(t_{k}) \rangle \in R^{\mathfrak{M}_{1}}$$

$$\iff \langle \bar{s}_{2}(t_{1}), \dots, \bar{s}_{2}(t_{k}) \rangle \in R^{\mathfrak{M}_{1}}$$

$$\iff \langle \bar{s}_{2}(t_{1}), \dots, \bar{s}_{2}(t_{k}) \rangle \in R^{\mathfrak{M}_{2}}$$

$$\iff \mathfrak{M}_{2}, s_{2} \vDash \phi$$

#### **Inductive Case**

Let  $\phi := \psi \to \theta$ .

Since the conditions hold for  $\phi$  they hold for  $\psi \& \theta$ . Then

$$\begin{array}{ccc} & \mathfrak{M}_{1}, s_{1} \vDash \phi \\ \Longleftrightarrow & \text{if } \mathfrak{M}_{1}, s_{1} \vDash \phi \text{ then } \mathfrak{M}_{1}, s_{1} \vDash \theta \\ \stackrel{\text{by IH}}{\Longleftrightarrow} & \text{if } \mathfrak{M}_{2}, s_{2} \vDash \phi \text{ then } \mathfrak{M}_{2}, s_{2} \vDash \theta \\ \Longleftrightarrow & \mathfrak{M}_{2}, s_{2} \vDash \phi \end{array}$$

Let  $\phi := \neg \psi$ .

By the inductive hypothesis the claim holds for  $\psi$ .

Since the conditions of ii) hold for  $\phi$  they hold for  $\psi$ .

Note that  $FV(\neg \psi) = FV(\psi)$ . Hence

$$\begin{array}{ccc} & \mathfrak{M}_{1}, s_{1} \vDash \phi \\ \Longleftrightarrow & \mathfrak{M}_{1}, s_{1} \not\vDash \psi \\ \overset{\text{by IH}}{\Longleftrightarrow} & \mathfrak{M}_{2}, s_{2} \not\vDash \psi \\ \Longleftrightarrow & \mathfrak{M}_{2}, s_{2} \vDash \phi \end{array}$$

Let  $\phi := \forall z \psi$ .

By the last condition of ii) we have that  $s_1(x) = s_2(x) \ \forall \ x \in FV(\phi)$ .

Since  $FV(\phi) \subset FV(\psi) \subset FV(\phi) \cup \{z\}$  it holds that  $\forall d \in D$  that  $s_1 \frac{d}{z}(x) = s_2 \frac{d}{z}(x) \ \forall \ x \in FV(\psi)$ . Meaning that  $\forall d \in D$  the conditions of **ii**) hold for  $\psi$  wrt  $s_1 \frac{d}{z} \ \& \ s_2 \frac{d}{z}$ .

Hence

$$\begin{array}{ccc} \mathfrak{M}_{1}, s_{1} \vDash \phi \\ \Longleftrightarrow & \forall \ d \in D, \ \mathfrak{M}_{1}, s_{1} \frac{d}{z} \vDash \psi \\ \stackrel{\text{by IH}}{\Longleftrightarrow} & \forall \ d \in D, \ \mathfrak{M}_{2}, s_{2} \frac{d}{z} \vDash \psi \\ \Longleftrightarrow & \mathfrak{M}_{2}, s_{2} \vDash \phi \end{array}$$

#### Theorem 3.3 -

Let  $\mathfrak{M}$  be an  $\mathcal{L}$ -Strucutre, t be a closed  $\mathcal{L}$ -Term,  $\phi$  to be an  $\mathcal{L}$ -Sentence and  $s_1, s$ )2 to be variable assignments over  $\mathfrak{M}$ .

Then  $\bar{s}_1(t) = \bar{s}_2(t)$  and  $\mathfrak{M}, s_1 \models \phi$  iff  $\mathfrak{M}, s_2 \models \phi$ .

N.B. This is since t is closed and thus its sematnic value is indepedent of variable assignment.

#### Notation 3.2 -

Let t be a closed  $\mathcal{L}$ -Term &  $\phi$  an  $\mathcal{L}$ -Sentence.

We use the following notation

 $t^{\mathfrak{M}} := \text{the unique } d \in D \text{ st } \bar{s}(t) = d \text{ for some variable assignment } s \text{ over } \mathfrak{M}$ 

:= the unique  $d \in D$  st  $\bar{s}(t) = d$  for all variable assignment s over  $\mathfrak{M}$ 

 $\mathfrak{M} \vDash \phi := \mathfrak{M}, s \vDash \phi$  for **some** variable assignment s over  $\mathfrak{M}$ 

 $:= \mathfrak{M}, s \models \phi$  for all variable assignment s over  $\mathfrak{M}$ 

*N.B.* The s is dropped in  $\mathfrak{M} \models \phi$ .

## 3.2 Important Semantic Concepts

**Remark 3.1** - Throughout this section  $\mathcal{L}$  will be a first-order language

#### **Definition 3.1 -** Logical Consequence

Let  $\phi \in \operatorname{Fml}_{\mathcal{L}} \& \Phi \subset \operatorname{Fml}_{\mathcal{L}}$ .

 $\phi$  is said to be a *Logical Consequence* of  $\Phi$  iff  $\forall$   $\mathcal{L}$ -Structures,  $\mathfrak{M}$ , and variable assignments, s, over  $\mathfrak{M}$  if  $\mathfrak{M}, s \models \Phi$  then  $\mathfrak{M}, s \models \phi$ .

N.B. When this holds we say  $\phi$  logically follows from  $\Phi$ , denoted  $\Phi \models \phi$ .

## Example 3.4 - Logical Consequence

TODO

#### Proposition 3.2 -

 $\forall \phi, \psi \in \mathrm{Fml}_{\mathcal{L}} \text{ and } \Phi \subset \mathrm{Fml}_{\mathcal{L}}$ 

$$\underbrace{\Phi, \phi}_{\equiv \Phi \cup \{\phi\}} \vDash \psi \text{ iff } \Phi \vDash \phi \to \psi$$

#### **Proof 3.3** - Proposition 3.2

$$\Phi, \phi \vDash \psi$$

$$\iff \forall \mathfrak{M}, s \text{ if } \mathfrak{M}s \vDash \theta \ \forall \ \theta \in \Phi \cup \{\psi\} \text{ then } \mathfrak{M}, s \vDash \psi$$

$$\iff \forall \mathfrak{M}, s \text{ if } \mathfrak{M}s \vDash \theta \ \forall \ \theta \in \Phi \text{ and } \mathfrak{M}, s \vDash \phi \text{ then } \mathfrak{M}, s \vDash \psi$$

$$\iff \text{if } \mathfrak{M}, s \vDash \theta \ \forall \ \theta \in \Phi \text{ then } \mathfrak{M}, s \vDash \phi \text{ implies } \mathfrak{M}, s \vDash \psi$$

$$\Leftrightarrow \Rightarrow \Phi \vDash \phi \to \psi$$

#### Definition 3.2 -

Let  $\Lambda$  be a set of  $\mathcal{L}$ -sentences

$$\mathfrak{M} \vDash \Lambda \text{ iff } \mathfrak{M} \vDash \sigma \ \forall \ \sigma \in \Lambda$$

## Example 3.5 -

Let  $\mathcal{L} = \mathcal{L}_{GT} = \{e, \cdot\}$  the language of group theory.

Let  $\Phi = \{ \forall x \forall y \forall z \ (x \cdot y) \cdot z \equiv x \cdot (y \cdot z), \ \forall \ x \cdot e \equiv x, \ \forall x \exists y \ x \cdot y \equiv e \}.$ 

Then  $\Phi \vDash \forall x \exists y \text{ st } y \cdot x \equiv e \text{ but } \Phi \not\vDash \forall x \forall y \ (x \cdot y) \equiv (y \cdot x).$ 

#### Remark 3.2 -

We always have either  $\mathfrak{M}, s \models \phi$  or  $\mathfrak{M}s \not\models \phi$  since  $\mathfrak{M}s \models \phi \Leftrightarrow \mathfrak{M}s \not\models \phi$ .

But it is not always the case that either  $\Phi \models \phi$  or  $\Phi \not\models \phi$ . (There may be some elements in a group with fulfil a criteria by chance).

#### **Definition 3.3 -** Logically Valid

Let  $\phi \in \text{Fml}_{\mathcal{L}}$ .

 $\phi$  is said to be *Logically Valid* iff  $\mathfrak{M}, s \models \phi \ \forall \ \mathfrak{M}, s$ .

N.B. This is also known as valid & logically true.

*N.B.* Denoted  $\vDash \phi$  for short.

## Example 3.6 - Logically Valid

- $\forall x \exists x \equiv y \text{ is } Logically Valid \text{ since trivially true for } y = x.$
- $\exists x P(x)$  is <u>not</u> Logically Valid. Consider the case where  $|\mathfrak{M}| = \mathbb{N} \& P^{\mathfrak{M}} = \emptyset$  where  $\mathfrak{M} \not\models \exists x P(x)$ .

#### **Definition 3.4** - Satisfiable

Let  $\phi \in \operatorname{Fml}_{\mathcal{L}} \& \Phi \subset \operatorname{Fml}_{\mathcal{L}}$ .

 $\phi$  is Satisfiable iff  $\mathfrak{M}, s \models \phi$  for some  $\mathfrak{M}, s$ .

 $\Phi$  is *Satisfiable* iff  $\mathfrak{M}, s \models \Phi$  for some  $\mathfrak{M}, s$ .

#### Example 3.7 - Satisfiable

- $\exists x P(x)$  is Satisfiable. Since  $|\mathfrak{M}| = \mathbb{N} \& P^{\mathfrak{M}} = |\mathfrak{M}| = \mathbb{N}$  satisfies  $\exists x P(x)$ .
- $x \not\equiv x$  is <u>not</u> Satisfiable as  $\bar{s}(x) = s(x) = \bar{s}(x)$  always and so  $\mathfrak{M}, s \models x \equiv x \, \forall \, \mathfrak{M}, s$ .

#### Theorem 3.4 -

Let  $\phi \in \operatorname{Fml}_{\mathcal{L}} \& \Phi \subset \operatorname{Fml}_{\mathcal{L}}$ .

- i)  $\phi$  is Logically Valid iff  $\emptyset \vDash \phi$ .
- ii)  $\Phi \vDash \phi$  iff  $\Phi \cup \{\neg \phi\}$  is *Unsatisfiable*.
- iii)  $\phi$  is logically valid iff  $\neg \phi$  is Unsatisfiable.

#### **Proof 3.4** - *Theorem 3.4*

i)  $\emptyset \vDash \phi$   $\iff \text{ for all } \mathfrak{M}, s \ \underline{\text{if }} \mathfrak{M}, s \vDash \theta \ \forall \ \theta \in \emptyset \text{ then } \mathfrak{M}, s \vDash \phi$   $\iff \forall \ M, s \ \mathfrak{M}, s \vDash \phi$   $\iff \phi \text{ is logically valid}$ 

ii) 
$$\begin{array}{c} \Phi \vDash \phi \\ \Leftrightarrow \quad \forall \; \mathfrak{M}, s \; \mathrm{if} \; \mathfrak{M}, s \vDash \phi \; \mathrm{then} \; \mathfrak{M}, s \vDash \phi \\ \Leftrightarrow \quad \mathrm{there} \; \mathrm{is} \; \mathrm{no} \; \mathfrak{M}, s \; \mathrm{if} \; \mathfrak{M}, s \vDash \Phi \; \mathrm{and} \; \underbrace{\mathfrak{M}, s \nvDash \phi}_{\mathfrak{M}, s \vDash \neg \phi} \\ \end{array}$$

iii) By i) & ii)

**Definition 3.5** - Logically Equivalent

Let  $\phi, \psi \in \text{Fml}_{\mathcal{L}}$ .

 $\phi$  is Logically Equivalent to  $\psi$  iff  $\phi \vDash \psi \& \psi \vDash \phi$ .

*N.B.* Equivalently  $\vDash \phi \leftrightarrow \psi$ .

**Proposition 3.3 -** Logical Equivalence

Let  $\phi, \psi \in \text{Fml}_{\mathcal{L}}$ .

 $\phi \& \psi$  are Logically Equivalent iff  $\models \phi \rightarrow \psi$ .

i.e.  $\phi \leftrightarrow \psi$  is Logically True.

**Proof 3.5** - Logical Equivalence

Recall that  $\Phi, \phi \vDash \psi$  iff  $\Phi \vDash \phi \to \psi$ . Thus

$$\phi \vDash \psi$$

$$\iff \emptyset \cup \{\phi\} \vDash$$

$$\iff \emptyset \vDash \phi \to \psi$$

$$\iff \phi \to \psi$$

Similar for converse.

We have that  $\phi \vDash \psi$  and  $\psi \vDash \phi$  iff  $\vDash \phi \to \psi$  and  $\vDash \psi \to \phi$ .  $\iff \phi \vDash \psi$  and  $\psi \vDash \phi$  iff  $\vDash \phi \leftrightarrow \psi$ .

**Proposition 3.4** - Logical Equivalence

- i)  $((\phi \wedge \psi) \wedge \theta)$  is logically equivalent to  $(\phi \wedge (\psi \wedge \theta))$ .
- ii)  $((\phi \lor \psi) \lor \theta)$  is logically equivalent to  $(\phi \lor (\psi \lor \theta))$ .
- iii)  $\neg \neg \phi$  is logically equivalent to  $\phi$ .
- iv)  $\phi \wedge \psi$  is logically equivalent to  $\neg(\neg \phi \vee \neg \psi)$ .

*N.B.* We write  $\phi \wedge \psi \wedge \theta$  for  $(\phi \wedge \psi) \wedge \theta$ .

## 3.3 Substitution

Remark 3.3 -

If we have  $P(x) \to Q(x)$  then  $P(\bar{0}) \to Q(\bar{0})$  and  $P(f(y)) \to Q(f(y))$ .

If we have  $\forall x (P(\bar{0}) \to Q(\bar{0}))$  the  $\forall x$  is redundent.

**Definition 3.1 -** Substitution in an L-Term

Let  $a, t \in T_{\mathfrak{M}_{\mathcal{L}}}$ .

 $[a]\frac{t}{x}$  denotes the result of replacing all occurrences of x in a with t. We define this substitution using the following recursive definition

i) When a is atomic:

$$[a]\frac{t}{x} := \begin{cases} t & \text{if } a \equiv x \\ a & \text{otherwise} \end{cases}$$

ii) When  $a = f(a_1, \ldots, a_i)$  is a compound:

$$[a]\frac{t}{x} := f\left([a_1]\frac{t}{x}, \dots, [a_k]\frac{t}{x}\right)$$

Example 3.8 - Substitution in an  $\mathcal{L}$ -Term

$$\begin{aligned} & [(x+y)+z]^{\underline{\bar{0}}\cdot\bar{0}} \\ & \iff & [x+y]^{\underline{\bar{0}}\cdot\bar{0}} \cdot [z]^{\underline{\bar{0}}\cdot\bar{0}} \\ & \iff & \left([x]^{\underline{\bar{0}}\cdot\bar{0}} + [y]^{\underline{\bar{0}}\cdot\bar{0}} \right) \cdot z \\ & \iff & (x+\bar{0}\cdot\bar{0}) \cdot z \end{aligned}$$

**Definition 3.2 -** Substitution in an L-Formula

Let  $t \in T_{\mathfrak{M}_{\mathcal{L}}}$ ,  $x \in \text{Var and } \phi \in \text{Fml}_{\mathcal{L}}$ .

 $[\phi] \frac{t}{x}$  denotes the result of replacing all occurrences of x in  $\phi$  with t. We define this substitution using the following recursive definition

i) When  $\phi := (P(a_1, \dots, a_t))$  is atomic:

$$[\phi] \frac{t}{x} = P\left([a_1] \frac{t}{x}, \dots, [a_k] \frac{t}{x}\right)$$

ii) When  $\phi := \neg \psi$ :

$$[\phi]\frac{t}{x} := \neg [\psi]\frac{t}{x}$$

iii) When  $\phi := \psi \to \theta$ :

$$[\phi]\frac{t}{x}:=[\psi]\frac{t}{x}\to [\theta]\frac{t}{x}$$

iv) When  $\phi := \forall z \psi$ :

$$[\phi] \frac{t}{x} = \begin{cases} \forall z [\psi] \frac{t}{x} & \text{if } x \not\equiv z \\ \phi & \text{otherwise} \end{cases}$$

N.B. The otherwise case is due to all x variables being bounded.

Example 3.9 - Substitution in an L-Formula

Let  $x \not\equiv y$ 

$$\begin{array}{ll} [\forall x P(x) \rightarrow \forall y R(x,y)] \frac{c}{x} \\ = & [\forall x P(x)] \frac{c}{x} \rightarrow [\forall y R(x,y)] \frac{c}{x} \\ = & \forall x P(x) \rightarrow \forall y [R(x,y)] \frac{c}{x} \\ = & \forall x P(x) \rightarrow \forall y R([x] \frac{c}{x}, [y] \frac{c}{x}) \\ = & \forall x P(x) \rightarrow \forall y R(c,y) \end{array}$$

#### Proposition 3.5 -

For every  $x \in \text{Var}$ ,  $a, t \in T_{\mathfrak{M}_{\mathcal{L}}}$  and  $\phi \in \text{Fml}_{\mathcal{L}}$  the following results hold

$$[a]\frac{x}{x} = a$$
 and  $[\phi]\frac{x}{x} = \phi$ 

**Proof 3.6** - Proposition 3.5

TODO

Induction on terms and then on formulae

Proposition 3.6 -

For every  $x \in \text{Var}$ ,  $a, t \in T_{\mathfrak{M}_{\mathcal{L}}}$  and  $\phi \in \text{Fml}_{\mathcal{L}}$ .

- i) If  $x \notin Var(a)$  then  $[a] \frac{t}{x} = a$ .
- ii) If  $x \notin FV(\phi)$  then  $[\phi] \frac{t}{x} = \phi$ .

**Proof 3.7** - Proposition 3.6 ii)

Proof by induction on terms, and then on formulae.

Base Case

Let  $\phi := P(a_1, \ldots, a_k)$  be atomic.

Suppose  $x \in FV(\phi)$ 

We have that  $x \notin FV(\phi) = \underbrace{\operatorname{Var}(\phi)}_{\phi \text{ is atomic}}$ Then  $x \notin \operatorname{Var}(a_i) \ \forall \ i \in [1, k].$ 

$$[\phi] \frac{t}{x}$$

$$= P([a_1] \frac{t}{x}, \dots, [a_k] \frac{t}{x})$$

$$= P(a_1, \dots, a_k)$$

$$= \phi$$

Result holds for base case

Inductive Case Let  $\phi = \forall z\psi$ .

Suppose  $x \notin FV(\phi)$ .

Then  $FV(\phi) = FV(\psi) \setminus \{z\}.$ 

Then 
$$FV(\phi) = FV(\psi) \setminus \{z\}$$
.  
If  $x \notin FV(\psi)$  then  $[\phi] \frac{t}{x} = \begin{cases} \phi & \text{if } x = z \\ \forall z [\phi] \frac{t}{x} = \forall z \phi \\ \text{by IH} \end{cases}$  otherwise.

Otherwise x = z and  $[\phi] \frac{t}{x} = \phi$ .