estimates of the standard deviation is that even if we assume that the underlying population standard deviations are the same (that is $\sigma_1 = \sigma_2 = \sigma$), it is unlikely that the sample estimates S_I and S_2 will be identical. By pooling the two estimates of the standard deviation, we obtain a more accurate estimate of their common value.

The sample estimate of the standardized mean difference is often called Cohen's d in research synthesis. Some confusion about the terminology has resulted from the fact that the index δ , originally proposed by Cohen as a population parameter for describing the size of effects for statistical power analysis is also sometimes called d. In this volume we use the symbol δ to denote the effect size parameter and d for the sample estimate of that parameter.