Practical 2: The random intercept model

Data

1. The GHQ data.

These data hold the response given by 12 students on two occasions to the 12-item General Health Questionnaire (GHQ), an instrument to measure psychological distress. The data are held in the file called ghq and its variables are:

id	Student	identifier				
GHQ1	${\tt General}$	${\tt Health}$	${\tt Questionnaire}$	score-	1st	${\tt occasion}$
GHQ2	General	Health	Questionnaire	score-	2nd	occasion

Questions

1. Load and summarise the GHQ data. Are the data balanced? Calculate and summarize the mean score for each student with

```
. gen mean_GHQ=(GHQ1+GHQ2)/2 .summ mean_GHQ
```

Check its values with list or browse and take a note of its mean and SD.

- 2. Reshape the data in long format with:
 - . reshape long GHQ, i(id) j(occasion)

and use the command xtsum to summarise the data again. Compare the results with those found in answering the previous question (it helps to create a new variable that holds the within person difference in GHQ score with gen dif_GHQ= (GHQ-mean_GHQ)).

- 3. Carry out an ANOVA of the repeated GHQ measures using the command loneway.
 - . loneway GHQ id

Make sure you understand the output. Compare the estimated SDs of the between and within effects with the sample statistics found in answering the previous question.

- 4. Fit a random effects model to these data using REML with the command mixed:
 - . mixed GHQ || id: , reml stddev

Compare the results with those found with loneway.

- 5. Now re-fit the model using ML:
 - . mixed $GHQ \mid \mid$ id: ,ml stddev

Have any of the results changed?

6. Finally fit a fixed effect model to these data:

summ GHQ

- . qui gen d_GHQ=GHQ-r(mean)
- . reg d_GHQ ibn.id,nocons

To check the SD of the fitted intercepts you could save them and summarize them as follows (note that their mean is 0 because of the parametrization we have used):

- . matrix A=e(b)
- . svmat A, names(alpha)
- . egen mean_id=rmean(alpha1-alpha12)
- . egen SD_id=rsd(alpha1-alpha12)
- . list mean_id SD_id in 1,noobs

Compare the results with those obtained earlier.

- 7. Fit a linear regression model on these data ignoring the clustering:
 - . reg GHQ

What happens?

8. Refit the simple regression model of question 7 but this time use the robust cluster(id) option. What happens?