

Presented by Ayan Duisenov, Galamat Sadr

PROJECT DESCRIPTION

- * Match Outcome Prediction project is relevant due to football's global popularity and the growing interest in it.
- * It addresses the demand for predictive insights among fans, bookmakers, and analysts.
 - * It can enhance the accuracy of predictions and unlock new opportunities in sports analytics and betting.

Aim: predict the football match result based on the historical data

ROLES

- Galamat 🍲
- 1) Data validation
- 2) Buidling & testing architecture (RNN)

- Ayan 🍲
- 1) Data exploration
- 2) Buidling & testing architecture (MLP)

DATA

- Open source data from Kaggle:
- FIFA World Cup Dataset
- La Liga Dataset

Examples of features:

- XG (Expected goals)
- Penalty stats
- Free kick stats
- Captain, Manager

Example of Data

home_team away_team home_score home_xg home_penalty away_score away_xg away_penalty France 3.3 4.0 2.2 2.0 Argentina 1.2 0.7 0.0 Croatia Morocco 0.0 Morocco 2 2.0 0.0 0 0.9 0.0 D France 2.3 0.0 0.5 Argentina Croatia 0 0.0 1.4 0.0 0 0.9 Morocco Portugal 0.0

Distribution of classes

DATA

Winners of World Cups 1930 - 2022

The team with the highest number of championship titles is Brazil, followed by Italy and Argentina.

DATA

Teams represented by the number of times they have been Champions and Runners-Up.

ARCHITECTURES/ALGORITHMS

MLP (Multilayer perceptron)

 RNN (Recurrent Neural Network)

WORK #1

(Predicting match outcomes of english premier league (EPL))

RELATED WORKS

WORK #2

(Predicting match outcomes of english premier league (EPL) 1500 matches)

If a bet was missed, the profit would decrease by 2 euros. If correct, the profit is calculated according to equation: $Profit = bet_{amount} \times bet_{odd} - bet_{amount}$. For example, in a game with a bet on a tie and the draw odd is 1.5 the profit would be 1 euro. As the value bet is always 2 euros the profit would be equal to 2x1.5-2 = 1. Table 2 presents the results of predictions made with the 8 models developed with the selected algorithms.

Table 4. Analysis of proposed approach

Algorithm	Accuracy (in %)	F1-score (in %)
MLP	73.57	71.45
SVM	58.77	50.07
Gaussian Naive Bayes	65.84	64.26
Random Forrest	72.92	66.07

Table 2. Forecast results with 18 variables.

Algorithm	Accuracy	Profit	% Victories Home Team	Draws	% Victories Away Team
Bayes	53,42%	17,40€	51,87%	30,95%	73,79%
KNN	57,63%	78,02€	78,07%	15,48%	55,05%
RF	59,21%	85,20€	75,40%	21,43%	60,55%
SVM	61,32%	95,06€	88,77%	3,57%	58,72%
C5.0	55,26%	42,52€	72,73%	23,81%	49,54%
Xgboost	59,47%	72,80€	77,54%	10,71%	66,06%
RLM	57,63%	32,56€	78,07%	5,95%	62,34%
RNA	50,00%	18,28€	58,29%	30,95%	50,46%

EVALUATION METRICS

Precision - the quality of a positive prediction made by the model

For each class:

- $\operatorname{Precision}_H = \frac{\operatorname{TP}_H}{\operatorname{TP}_H + \operatorname{FP}_H}$
- $\operatorname{Precision}_A = \frac{\operatorname{TP}_A}{\operatorname{TP}_A + \operatorname{FP}_A}$
- $\operatorname{Precision}_D = \frac{\operatorname{TP}_D}{\operatorname{TP}_D + \operatorname{FP}_D}$

The F1-score is the harmonic mean of precision and recall

$$F1_c = 2 \cdot rac{ ext{Precision}_c \cdot ext{Recall}_c}{ ext{Precision}_c + ext{Recall}_c}$$

$$F1_{ ext{weighted}} = rac{\sum_{c \in \{H,A,D\}} \left(F1_c \cdot ext{Support}_c
ight)}{\sum_{c \in \{H,A,D\}} ext{Support}_c}$$

RESULTS

MLP Results

F1 Score: 0.827187603802889 Precision: 0.8269052448565634					
Classification Report:					
	precision	recall	f1-score	support	
Α	0.79	0.77	0.78	35	
D	0.67	0.67	0.67	27	
Н	0.89	0.90	0.90	83	
accuracy			0.83	145	
macro avg	0.78	0.78	0.78	145	
weighted avg	0.83	0.83	0.83	145	

```
Predictions for the Qatar Final match with actual results:
home_team away_team result predicted_result

O Argentina France H H
```

RNN results

F1 Score: 0.4201085534548268 Precision: 0.445093201754386 Classification Report: recall f1-score precision support 0.02 0.04 47 0.50 0.00 0.00 0.00 D 36 0.72 0.57 0.99 109 0.57 192 accuracy 0.25 192 macro avg 0.36 0.34 weighted avg 0.45 0.57 0.42 192

```
Predictions for the separated Qatarfinal match dataset:
home_team away_team result predicted_result

O Argentina France H H
```

FURTHER WORK

Future work:

- Add more data about matches in club league games
- Test on new football matches
- Data augmentation
 allows us to use LSTM
- Add context encoders on dataset

Work on RNN results

6/6 [===================================					
Classification Report:					
	precision	recall	f1-score	support	
Α	0.50	0.02	0.04	47	
D	0.00	0.00	0.00	36	
Н	0.57	0.99	0.72	109	
accuracy			0.57	192	
macro avg	0.36	0.34	0.25	192	
weighted avg	0.45	0.57	0.42	192	

```
Predictions for the separated Qatarfinal match dataset:
home_team away_team result predicted_result
O Argentina France H H
```

REFERENCES

- Rudrapal, Dwijen & Boro, Sasank & Srivastava, Jatin & Singh, Shyamu. (2020). A Deep Learning Approach to Predict Football Match Result. 10.1007/978-981-13-8676-3 9.
- Naccarato, K., & Zanni-Merk, C. (2022). Smart mobility:
 Towards new public transportation systems based on big data and artificial intelligence. Procedia Computer Science,
 204, 864–873.
 https://doi.org/10.1016/j.procs.2022.08.057
- Sherstinsky, A. (2020). Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Physica D: Nonlinear Phenomena, 404, 132306.
- Zou, J., Han, Y., & So, S. S. (2009). Overview of artificial neural networks. Artificial neural networks: methods and applications, 14-22.

