VISUALIZING GROVER'S SEARCH ALGORITHM

JAMES WEAVER & PAUL KASSEBAUM

1. How Grover's Works

If we want an operator U_x with the following behavior

(1)
$$U_{x}|x\rangle = -|x\rangle$$
$$U_{x}|x_{\perp}\rangle = |x_{\perp}\rangle$$

where all $|x_{\perp}\rangle$ are orthogonal to $|x\rangle$, then the operator takes the form

$$(2) U_x = I - 2|x\rangle\langle x|$$

Let's demonstrate this with a couple of examples.

(3)
$$U_{x}|x\rangle = (I - 2|x\rangle\langle x|)|x\rangle$$
$$= |x\rangle - 2|x\rangle\langle x|x\rangle$$
$$= |x\rangle - 2|x\rangle$$
$$= -|x\rangle$$

because $\langle x|x\rangle = 1$.

(4)
$$U_{x}|x_{\perp}\rangle = (I - 2|x\rangle\langle x|)|x_{\perp}\rangle$$
$$= |x_{\perp}\rangle - 2|x\rangle\langle x|x_{\perp}\rangle$$
$$= |x_{\perp}\rangle - 2\langle x|x_{\perp}\rangle|x_{\perp}\rangle$$
$$= |x_{\perp}\rangle$$

because $\langle x|x_{\perp}\rangle = 0$.

Now let's look at the result of acting on an arbitrary state $|\alpha\rangle$, that is not completely orthogonal to $|x\rangle$.

(5)
$$U_{x}|\alpha\rangle = (I - 2|x\rangle\langle x|)|\alpha\rangle$$
$$= |\alpha\rangle - 2|x\rangle\langle x|\alpha\rangle$$
$$= (1 - 2\langle x|\alpha\rangle)|\alpha\rangle$$

In words, the result is the original state vector minus twice the overlap or projection of $|\alpha\rangle$ on $|x\rangle$. We can draw this out geometrically.

FIGURE 1. Geometric demonstration that the operator U_x has the effect of reflecting $|\alpha\rangle$ across $|x_{\perp}\rangle$, the vector orthogonal to $|x\rangle$.