CEDB1160 Project

Name	Date
Samer Kareshe	30 Nov 2019

Resources

- Python script for your analysis: WhiteWine_Analysis.py
- Results figure/saved file:
 - o Images\ correlation-winequality-white
 - Images\ whiteWineQuality
 - Distribution for Quality Differences(real-predicted)
 - V2 Distribution for Quality Differences(real-predicted)
- Dockerfile for your experiment: I will provide it by next week

Research Question

My approach for data analysis is focusing on enhancing the white wine quality based on the existing testing results for the below features

Fixedacidity	volatileacidity

citricacid	residualsugar
chlorides	totalsulfurdioxide
freesulfurdioxide	Density
рН	sulphates
alcohol	quality

Abstract

- **opportunity**: we have a 4,898 physical tests on white wine for all mentioned features
- action: increase Alcohol feature by 1% from the mean and apply machine learning to predict the quality, and finally compare the difference disruption for both schemes
- resolution: quality enhancement by increasing the wine alcohol feature

Introduction

The white wine dataset is related to white vinho verde wine samples, from the north of Portugal. The goal is to model wine quality based on physicochemical tests

https://archive.ics.uci.edu/ml/datasets/Wine+Quality

Methods

- conduct a correlation exercise and highlight the high correlated features with the quality one
- we have high correlation between Quality & Alcohol as below

Features	alcohol	*	quality	*
fixed acidity	-0.1208811	23	-0.1136628	31
volatile acidity	0.0677179	43	-0.1947229	69
citric acid	-0.075728	73	-0.0092090	91
residual sugar	-0.4506312	22	-0.0975768	29
chlorides	-0.3601887	12	-0.2099344	11
free sulfur dioxide	-0.2501039	41	0.0081580	67
total sulfur dioxide	-0.4488921	02	-0.1747372	18
density	-0.7801376	21	-0.3071233	13
pH	0.1214320	99	0.0994272	46
sulphates	-0.0174327	72	0.0536778	77
alcohol		1	0.4355747	15
quality	0.4355747	15		1,

 apply machine learning and predicted the quality as a target and plot the distribution value for differences between real and predicated one

- replace alcohol feature by alcoholplus =alcohol + 1% (alcohol mean) and repeat
 the previous step
- as a result, the distribution plot became more accurate and less variation

• I have saved the plots-based data and used Tableau BI on the top of them in order to provide more clear insights as below

Results

- The differences variation rate has been enhanced by the assumption of alcohol feature modification
- First scheme distribution rages for differences

Second scheme distribution rages for differences

diff (bin)	
-3.0	3
-2.0	32
-1.0	351
0.0	1,396
1.0	1,884
2.0	1,958
3.0	1,960
3	1.000
3	1,960

• Conclusion: we could have better white wine quality by increasing alcohol %