singlepowder

February 17, 2020

Geometry of the diffractometer

Figure 1 shows a four circle diffractometer. The angles are shown with the directions used in the program (only 2θ is actually used so far). In order to avoid confusion, 2θ names the position of the detector while "powder angle" ε is used for the angle between the diffracted beam and the direct beam for a certain pixel. The pixel indices x and y and the pixel width w and height h are shown with the direction used by the classes Geometry and DetectorImage.

The variables in the figure and the following calculation refer to the following variables in the program code:

$d: {\it detector_distance}$	(mm)
2θ : two theta	(\deg)
ε : powder_angle	(\deg)
$x: pixel_x$	(index)
$y: \mathrm{pixel}_{-\!}\mathrm{y}$	(index)
$w: \mathbf{pixel_width}$	(mm)
$h: \mathbf{pixel_height}$	(mm)
$x_c: \text{centre_pixel_x}$	(index)
$y_c: \text{centre_pixel_y}$	(index)
Δx : delta_x	(mm)
Δy : delta_y	(mm)

 x_c and y_c are the indices of the pixel that is hit by the direct beam when all angles are set to zero. The deviation (in mm) from this pixel is for the pixel with indices (x, y):

Figure 1: Direction of the angles 2θ , ω , χ , φ , the pixel indices x, y and the axes e_1, e_2, e_3 .

$$\Delta x = w(x - x_c)$$
$$\Delta y = h(y - y_c)$$

Using the basis vectors¹ defined in Figure 1 (the origin is placed at the pivot point of the goniometer, i.e. the sample), we get for $2\theta = 0$ the following coordinates of the pixel:

$$\boldsymbol{p} = \begin{pmatrix} d \\ -\Delta x \\ \Delta y \end{pmatrix}$$

The rotation matrix around e_3 depends on 2θ :

$$R = \begin{pmatrix} \cos(2\theta) & -\sin(2\theta) & 0\\ \sin(2\theta) & \cos(2\theta) & 0\\ 0 & 0 & 1 \end{pmatrix}$$

The coordinates of the pixel with indices (x, y) depend on d and 2θ and are thus:

¹The basis vectors are dimensionless and the coordinates have unit mm.

$$\mathbf{p'} = R\mathbf{p}$$

$$= \begin{pmatrix} d\cos(2\theta) + \Delta x \sin(2\theta) \\ d\sin(2\theta) - \Delta x \cos(2\theta) \\ \Delta y \end{pmatrix}$$

The direct beam intersects the detector circle in the following point:

$$r = \begin{pmatrix} d \\ 0 \\ 0 \end{pmatrix}$$

For the angle ε between the direct and diffracted beam, the following condition holds:

$$|\boldsymbol{r}||\boldsymbol{p}|\cos(\varepsilon) = \boldsymbol{r}\cdot\boldsymbol{p'}$$
,

where \cdot denotes the scalar product.

From this, we can calculate the powder_angle ε :

$$\varepsilon = \arccos \frac{\boldsymbol{r} \cdot \boldsymbol{p'}}{|\boldsymbol{r}||\boldsymbol{p'}|}$$

$$= \arccos \frac{d(d\cos(2\theta) + \Delta x\sin(2\theta))}{\sqrt{(d\cos(2\theta) + \Delta x\sin(2\theta))^2 + (d\sin(2\theta) - \Delta x\cos(2\theta))^2} d}$$

$$= \arccos \frac{d\cos(2\theta) + \Delta x\sin(2\theta)}{\sqrt{(d\cos(2\theta) + \Delta x\sin(2\theta))^2 + (d\sin(2\theta) - \Delta x\cos(2\theta))^2}}$$