5.7 Puisque $14 = 2 \cdot 7$, tout élément \overline{a} de $\mathbb{Z}/14\mathbb{Z}$ est inversible si et seulement si a n'est divisible ni par 2, ni par 7.

Par conséquent, les éléments inversibles de $\mathbb{Z}/14\mathbb{Z}$ sont :

$$(\mathbb{Z}/14\mathbb{Z})^* = \{\overline{1}; \overline{3}; \overline{5}; \overline{9}; \overline{11}; \overline{13}\}$$

Clairement $\overline{1}^{-1} = \overline{1}$, car $1 \cdot 1 = 1 \mod 7$.

Vu que $3 \cdot 5 = 15 \equiv 1 \mod 7$, on a que $\overline{3}^{-1} = \overline{5}$ et que $\overline{5}^{-1} = \overline{3}$.

On remarque que $9 \cdot 3 = 27 \equiv -1 \mod 14$, si bien que $\overline{9}^{-1} = \overline{-3} = \overline{11}$. Par suite, $\overline{11}^{-1} = \overline{9}^{-1}$.

 $13 \equiv -1 \mod 14$ et $(-1) \cdot (-1) = 1$ impliquent $\overline{13}^{-1} = \overline{13}$.