

AMATÉRSKÉ RÁDIO II

NOSITEL
VYZNAMENÁNÍ
ZA BRANNOU
VÝCHOVU
I. a II. STUPNĚ

ČASOPIS PRO ELEKTRONIKU
A AMATÉRSKÉ VYSÍLÁNÍ
ROČNÍK XXXVIII (LVII) 1988 ● ČÍSLO 2

VIII. sjezd Svazarmu.....	41
Gepor. s. J. Brychta, nový předseda ÚV Svazarmu.....	42
AR Svazarmovský ZO.....	43
AR mládeži.....	45
R15	46
AR seznamuje (družicový přijímač Salora XLE 8801).....	48
Jak na to?.....	49
Ctenář nám plní.....	49
Nízkofrekvenční zesilovač pro CD.....	50
Elektronická ladička kytar.....	54
Mikroelektronika.....	57
Programovatelný světelný had.....	59
Proč proudová sonda?.....	60
Družicový přijímač (dokončení).....	70
Ještě jednou dekodér PAL-SECAM.....	71
Zapojení časovače 555 pro středu 1:1.....	72
AR branné výchově.....	73
Z radicamatérského světa.....	75
Inzerce.....	75
Cedí jmeno.....	79
Středisko VTEI Svazarmu následi.....	80

AMATÉRSKÉ RÁDIO ŘADA A

Vydává ÚV Svazarmu. Opletalova 29, 116 31 Praha 1, tel. 22 25 49, ve Vydatelství NAŠE VOJSKO, Vladislavova 26, 113 66 Praha 1, tel. 26 06 51-7. Šéfredaktor ing. Jan Klabal, OK1UKA, zástupce Luboš Kalousek, OK1FAC. Redakční rada: Předseda ing. J. T. Hyun, členové: RNDr. V. Brunnhofer, CSc., OK1HAQ, V. Brzák, OK1DDK, K. Donát, OK1DY, ing. O. Filippi, A. Glanc, OK1GW, ing. F. Hanáček, P. Horák, Z. Hradík, J. Hudec, OK1RE, ing. J. Jaroš, ing. J. Kolmer, ing. F. Králik, RNDr. L. Kryška, CSc., J. Kroupa, V. Němec, ing. O. Petráček, OK1NB, ing. Z. Prosek, ing. F. Smolík, OK1ASF, ing. E. Smutný, pppl. ing. F. Simek, OK1FSI, ing. M. Šredi, OK1NL, doc. ing. J. Vackář, CSc., laureát st. ceny KG, J. Vorlický. Redakteur Jungmannova 24, 113 66 Praha 1, tel. 26 06 51-7, ing. Klabal I. 354, Kalousek, OK1FAC, ing. Engel, ing. Kellner, I. 353, ing. Myslík, OK1AMY, Havlíš, OK1PFM, I. 348, sekretář I. 355. Ročně vyjde 12 čísel. Cena výtisku 5 Kčs, pololetní předplatné 30 Kčs. Rozšířuje PNS. Informace o předplatném podává a objednávky přijímá každá administrace PNS, pošta a doručovatel. Objednávky do zahraničí vyfizuje PNS - ústřední expedice a dovoz tisku Praha, závod 01, administrace vývozu tisku, Kafkova 9, 160 00 Praha 6. V jednotkách ozbrojených si Vydatelství NAŠE VOJSKO, administrace, Vladislavova 26, 113 66 Praha 1, Tiskne NAŠE VOJSKO, n. p., závod 8, 162 00 Praha 6-Ruzyně, Vlasina 889/23. Inzerci přijímá Vydatelství NAŠE VOJSKO, Vladislavova 26, 113 66 Praha 1, tel. 26 06 51-7, i. 294. Za původnost a správnost příspěvku ručí autor. Redakce rukopis vrátí, bude-li vyzádán a bude-li připojená frankovaná obálka se zpětnou adresou. Návštěvy v redakci a telefonické dotazy po 14. hodině. C. indexu 46 043.

Rukopisy čísla odevzdány tiskárne 8. 12. 1988
Číslo má výjít podle plánu 31. 1. 1989

© Vydatelství NAŠE VOJSKO, Praha

VIII. sjezd Svazarmu

Pod heslem uskutečňování linie XVII. sjezdu KSC za masový rozvoj branné výchovy probíhal ve dnech 3. a 4. prosince 1988 v Praze VIII. sjezd Svazu pro spolupráci s armádou.

Hodnotil období uplynulých pěti let a stanovil další úkoly Svazarmu. Na 700 delegátů zastupovalo více než milion členů 11 575 základních organizací. Druhého dne jednání se zúčastnil generální tajemník ÚV KSC, předseda ústředního výboru Národní fronty ČSSR Miloš Jakeš. Delegaci ÚV KSC, ÚV NF ČSSR a vlády ČSSR vedl vedoucí oddělení ÚV KSC Rudolf Hegenbauer.

Dvoudennímu jednání sjezdu byly přítomny delegace bratrských branných a sportovních organizací deseti zemí.

Sjezd zvolil členy nového ústředního výboru Svazarmu ČSSR. Jeho předsedou byl zvolen generálporučík Jiří Brychta.

Zprávu předsednictva ústředního výboru Svazarmu ČSSR, hodnotici činnost organizace mezi VII. a VIII. sjezdem přednesl dosavadní předseda generálporučík Václav Horáček. V ní mimo jiné řekl:

„Průběh výročních členských schůzí, konferencí a sjezdů potvrdil, že od minulého sjezdu v roce 1983 jsme dosáhli některých pozitivních výsledků. Jsme na ně oprávněn hrati. Neskrýváme však, že ne vše se nám dařilo tak, jak jsme si představali a ne na všechny problémy známe hotové recepty.“

Dosažené výsledky byly nemyslitelné bez činorodé práce členů, bez obětavosti svazarmovských funkcionářů, bez pochopení partnerských organizací v Národní frontě a podpory hospodářských a státních orgánů.

U nejmladších členů převažuje jednoznačně užší zájem o vlastní odbornost, která je přivedla do Svazarmu, u věkově střední části členů je zřetelné prohlubující se jednota branné technického či branné sportovního zájmu s širší pracovní společenskou aktivitou. Zůstává však skutečnost, že nás i v budoucnu čeká několik úkolů v poznávání a ovlivňování myšlení, postojů a vývoje zájmů mladých členů, i v zabezpečování vhodných metodických materiálů a pomůcek pro branné výchovné pracovníky, kteří se jejich výchovou zabývají.“

V radioamatérské činnosti je nutno s větší pomocí centra řešit otázky nezbytného materiálu, jeho efektivní využívání pro širší rozvoj odbornosti, zvláště v práci s mládeží, a využívat pozitivních zkušeností pro zkvalitnění přípravy branců — spojařů a možnosti spojovací sítě. Zlepšovat přípravu kádrů, služby pro členy i organizace a spolupráci se složkami Národní fronty.

V elektronice, kde je zájem o zapojenost mládeže nejzřetelnější, byla cílevědoměji rozvíjena audiovizuální tvorba, práce s výpočetní technikou a příprava kádrů. Stále více funkcionářů si uvědomuje význam, který má spolupráce s ostatními odbornostmi a s partnery v Národní frontě. Dobudování krajských kabinetů, někde i vybudování okresních kabinetů, podpořilo rozvoj konstruktérské činnosti, programování a příprava kádrů.

Napětí mezi rostoucími potřebami a reálnými ekonomickými a technickými možnostmi nás nutí co nejdůsledněji dbát o maximální efektivnost. Nemáme jiného východiska — i při uznání oprávněných potřeb všech odborností — než vytvářet žádoucí podmínky jen vybraným disciplínám a jednotlivcům. Specifity vrcholového sportu a potřeba zefektivnit řízení nezmenšují odpovědnost rad odborností za konkrétní státní sportovní reprezentanty.

Rešení otázek ekonomického zabezpečení bylo po celé uplynulé období jedním

z nejsložitějších problémů. Proto se situaci zabývalo 5., 6. a 10. zasedání ústředního výboru.

Se základním úkolem — účinně řešit rozpor mezi rostoucími potřebami organizace a ekonomickými možnostmi — jsme se zatím vyrovnat nedokázali. Zdroje pro další rozvoj, tvořené státním příspěvkem částečně zvýšeným o výsledky hospodářské činnosti i činnosti odbornosti, se rozšiřovaly pomaleji než potřeby vyvolané rozvojem organizace, ale i růstem cen.

Nedařilo se prosadit diferencovaný způsob finančního zabezpečení prioritních činností, nepřipustit překračování rozpočtu, finančních limitů a závazných ukazatelů. V důsledku toho má organizace pasivní bilanci. Uvedené rozporu narůstala postupně, byly ovlivněny i objektivními vnějšími vlivy. Nedůslednost v jejich řešení se zvlášť nepříznivě projevuje v současné době. Příčinou toho stavu vychází z objektivních ekonomických podmínek, ale do značné míry i z našich vlastních nedostatků. Spouští se v stylu práce ekonomického úseku ústředního výboru, ale i republik, kde se projevuje nízká koncepčnost, malo náročnost, důslednost a iniciativy. Projevují se nedostatky vyplývající z nízké součinnosti při tvorbě plánů ekonomického zabezpečení, ale i při dlouhodobém plánování rozvoje jednotlivých odborností a z toho vyplývajících potřeb. Přijímaná opatření jsou málo perspektivní, odráží se v nich nedostatečná realnost v rozboru ekonomického zabezpečení a v systému kontroly. Dokladem toho jsou výsledky jednání UV k ekonomickým otázkám, neřešené problémy DOSS, zdlouhavé vypracovávání koncepce rozvoje autoškol, směrnice pro hospodářskou činnost základních organizací a další nedostatky. To má své příčiny i v nedostatečných řídících a kádrových práce ústředního výboru.“

Vážíme si pomocí, které se nám dostává od stranických a státních orgánů, od federálních resortů a společenských organizací. V posledních letech však některá opatření podstatně snížila naše možnosti. Byla to opatření státních orgánů v oblasti reklamní činnosti podniků, novela vyhlášky o fondu kulturních a sociálních potřeb a jejich využití pro brannou výchovu, omezení možností národních výborů přispívat k rozvoji branné výchovy i předáváním výcvikových středisek branců do plné materiální péče okresním výborům. Tyto problémy se násobi trvale rostoucími cenami branné technického a branné sportovního materiálu, nájemného a energie.

Východiska z této situace nejsou snadná. Na výročních schůzích, konferencích a sjezdech oprávněně žádali naši členové od ústředního výboru odpověď, jak v této situaci postupovat.

Chceme otevřeně říci, že existuje pouze jediná cesta: zvyšování podílu organizací na finančním a materiálním zabezpečení činnosti a maximální účelnost při využívání státního příspěvku na krytí rostoucích potřeb.

Jak chceme dále postupovat? Na základě zásad přestavby hospodářského mechanismu se ústřední výbor rozhodl prohloubit pravomoc nižších stupňů a poslat jejich odpovědnost za plnění stanovených priorit. Pro další období předpokládáme, že dosa-

vadní výše státního příspěvku zůstane zachována. Efektivní hospodaření s ním je doslova příkazem doby.

Podporu a příspěvek, který dostávají ostatní organizace Národní fronty, považujeme za správný. Jsme však přesvědčeni, že patří i naší organizaci. Nechceme na státních orgánech další dotace. Usilujeme však o pomoc poskytnutím úlevy z důchodové daně pro základní organizace a rozšíření okruhu společenskopropojených činností o výrobu potřeb a zařízení pro vlastní činnost. Takový návrh jsme již předložili.

Po sjezdu chceme řešit i výši členského příspěvku. Náš příspěvek je jeden z nejnižších. To neodpovídá jak náročnému charakteru činnosti, praxi jiných společenských organizací, tak mře růstu mezd i cen.

Masový rozvoj branně výchovné, technické a sportovní činnosti ZO Svazarmu bude záviset na získání dalších finančních a materiálových zdrojů. Na naší činnost si prostě musíme sami získat více prostředků. Tím bude do určité míry limitován i její rozsah.

V podmínkách základních organizací je možným zdrojem zvýšení příjmů hospodářské činnosti a rozvoj placených služeb. Tomu doposud bránily omezené limity počtu pracovníků a mzdrových prostředků. Ústřednímu výboru se podařilo, na základě jednání s příslušnými státními orgány, dosáhnout počínaje rokem 1989 zrušení těchto limitů. Objemy mzdrových prostředků si budou ZO Svazarmu vytvářet v závislosti na dosahovaných ekonomických výsledcích. To by mělo významně přispět k rozvoji iniciativ základních organizací a k vyšším finančním i materiálovým zdrojům.

Rada i těchto nedostatků má svůj původ v nedostatečně součinnosti odborných úseků a rad, v jejich malé schopnosti včas formulovat perspektivní a na vysoké technické úrovni závazné požadavky na zabezpečení rozvoje činnosti. Sebekriticky však musíme říci, že přes početná osobní jednání s resorty nebylo v této oblasti naše úsilí natolik důsledné, aby se nedostatky řešily účinněji a rychleji.

Trvale kritizovanou oblastí je materiálně technické zabezpečení organizace. Přestože jsme z centrálních zdrojů v uplynulém období vynaložili na materiálně technickou základnu o 26 % více finančních prostředků, zaostává jak za potřebami činnosti a rozvojem členské základny, tak za rozvojem poznatků vědy a techniky.

Oprávněné požadavky, odpovídající novým podmínkám, se vinou ústředního výboru nedala důsledně uskutečnit. V řízení došlo jen k některým změnám. Nicméně administrativní způsob řízení trval a byl oprávněn kritizován i letos na výročních jednáních, včetně republikových sjezdů. Je přičinou odtržení členských mas od řízení, negativně ovlivňuje rozvoj iniciativy a vztah k centrálním orgánům. Projevuje se ve velkém množství nepřehledných i zastaralých směrnic, předpisů a pokynů UV, ale i ve velkém množství obecných usnesení, rozširovaných často pokyny republikových UV a krajských výborů, které zahrnují okresy a znemožňují jim samostatnou tvůrčí práci. To vše se děje na úkor poznání situace a výsledků práce ZO a změn v okresech, pomocí při řešení problémů. Potíže jsme znásobili i my na UV tím, že jsme včas neomezili počty zbytečných směrnic, řídících norm a hlášení.

Přechod od direktivních metod k věcnému, aktivnímu stylu práce předpokládá, aby UV důsledně řešil hlavní koncepční záležitosti, založené na hlubokých rozborech praxe a potřeb vývoje Svazarmu. Pochoptejně komplexně, ale i v jednotlivých oblastech činnosti, ale vždy důsledně

Generálporučík soudruh Jiří Brychta, nový předseda ústředního výboru Svazu pro spolupráci s armádou.

Narodil se v rodině dělníka 13. 1. 1934 v obci Sedlejov v okrese Jihlava. Po vyučení a maturování na Škole důstojnického dorostu absolvoval vojenské učiliště a stal se vojákem z povolání.

Vykonával velitelské funkce v ČSLA a v roce 1966 zakončil pětileté studium strojního inženýrství na Vojenské akademii Antonína Zápotockého. V těchto letech byl aktivním členem ZO Svazarmu.

Po úspěšném výkonu vyšších velitelských a technických funkcí byl vyslan na studium Vojenské akademie generálního štabu ozbrojených sil SSSR v Moskvě. Po jejím zakončení zastával samostatné funkce náčelníka druhu vojska na stupni vojenského okruhu a FMNO. V posledních letech byl prvním zástupcem náčelníka generálního štabu ČSLA.

Je nositelem Řádu rudé hvězdy, státního vyznamenání Za zásluhy o výstavbu, Za zásluhy o obranu vlasti, Za službu vlasti a dalších československých a zahraničních vyznamenání.

v jednotě s ekonomickými možnostmi a kádrovými předpoklady.

Nepodařilo se nám v plné míře naplnit úkoly vyplývající z funkce kontrolního systému. Zde máme ještě značné nedostatky. Oproti tomu lze kládět hodnotit úzkou spolupráci s ÚKRK. Výsledky práce tohoto orgánu pomohly k zlepšení vlastní řídicí a organizátorské práce volených orgánů UV.

Svazarm v uplynulém pětiletém rozšířil svůj branně výchovný vliv ve společnosti, aktivně napomáhal formovat branné vědomí a posilovat vlasteneckou a internacionální odpovědnost svých členů i ostatních občanů za obranu socialismu. Patří za to dík většině našich členů, funkcionářů a pracovníků aparátu, branně výchovným pracovníkům základních organizací, jejich klubům, ale také okresům, krajům, republikám, i funkcionářům a aktivistům našeho ústředního výboru Svazarmu. "rekli závěrem generálporučík Václav Horáček.

Vedoucí delegace ÚV KSČ, ÚV NF ČSSR a vlády ČSSR, vedoucí oddělení ÚV KSČ Rudolf Hagenbart pozdravil delegáty sjezdu a dále mimo jiné řekl:

„Očekuju, že právě vaši organizaci je vlastní vysoký stupeň socialistického vlasteneckého a internacionálního citu, který prokazujete každodenně činnosti s vynikajícími výsledky doma i na mezinárodním poli. Svedčí o tom ocenění jednotlivců i kolektívů, i medaile a významných evropských a světových soutěží.

Na základě významných revolučních změn v naší společnosti se mění společenská praxe, je a bude nadále zvyšován tlak na urychlení sociálně ekonomického rozvoje společnosti s cílem v plné míře uspokojovat všechny společenské potřeby.

V tomto období procházíme dynamičtějšími změnami než v celém posledním desetiletí. Neobvyklým tempem, před očima každého z nás, uskutečňují se závažné změny ve struktuře výstavby strany, v celé státní a národnospodářské struktuře. K tomu, abychom rychle postupovali na vytýčené cestě, je nezbytné uplatňovat nové netradiční formy vzájemného spojení pracujících a inteligence na všech úsečích.

Zasedání ÚV KSČ znovu potvrdila, že rozhojující oblasti pro naše bytí, pro realizaci našich záměrů, je hospodářská politika. Právě na ni je orientována celková koncepce všech aktivit, které by měly cílevědomě přispívat ke kvalitativním pře-

měnám národního hospodářství, k jeho dynamickému rozvoji, k plnění všech stávajících úkolů pětiletky, tolik potřebných pro naš každodenní život.

Uspokojení potřeb každého znás se neobejde bez usilovné tvůrčí práce s vysokou produktivitou. Všichni, kdo se mohou podílet na zvyšování výkonnosti národního hospodářství, na vytváření společného bohatství, mají široký prostor k činům.

Proto nejvyšší stranický orgán zdůrazňuje, že další společenský postup je nemyslitelný bez harmonického rozvoje společenských funkcí vědy, jako sily zrychlující vědeckotechnický, ekonomický a sociální rozvoj. Na všechny stupně řídicích struktur je třeba vytvořit nezbytné podmínky pro autoritu vědy, pro to, aby se stala pevným základem a východiskem praktických činností ve všech stářích společenského dění. Je samozřejmé, že tato potřeba vyžaduje i v praxi strany využívat nové nástroje, nové metody a formy, které podnecují tvůrčí společenskou.

Vyslovujeme uspokojení, že ve členské základně Svazarmu, této významné masové společenské organizaci, je krédem úsilí zavítat se všech překonaných forem a metod práce, formalismu, starých přístupů upřednostňujících kvantit před kvalitou, že se mění a bude měnit dosud přehlíživý postoj k názorům členské základny, že právě ze zájmu této základny ve spojitosti se společenskou potřebou tvoří a bude tvořit svůj program.

Rovněž mírová politika Sovětského svazu a dalších socialistických zemí závažně změnila názory i celkový vztah k zabezpečování obrany. Jejím základem je bezesporu nové politické myšlení v mezinárodních vztazích, realističtější pohledy na mírové soužití zemí s rozdílným společenským zřízením, komplexní uznávání všeobecných hodnot, budování společného evropského domu, upevňovat víru v možnost zachování trvalého míru, aktivními a netradičními formami rozšiřovat mezinárodní spolupráci.“

V řadě diskusních příspěvků pak zaznělo mnoho podnětných připomínek na činnost celé organizace. V přijatém usnesení vzali delegáti na vědomí základní dokumenty sjezdu. Řadou připomínek schválili návrh úprav stanov, rezoluci a usnesení. Usnesení mimo jiné ukládá využít všechny podněty přednesené na sjezdu a důsledně vyřešit kritické připomínky.

AMATÉRSKÉ RADIO SVAZARMOVSKÝM ZO

Obr. 1. Účastníci slavnostního otevření výstavy

Obr. 2. Zahraniční expozice

ERA '88 v roce VIII. sjezdu Svazarmu

Dvacátý jubilejní ročník celostátní přehlídky svazarmovské technické činnosti v elektronice, ERA '88, se konal v listopadu loňského roku v Domě kultury v Příbrami. Zahájení výstavy, kterého se zúčastnili zástupci Svazarmu, ČSLA, KV a OV KSČ, NV, ministerstva paliv a energetiky, ministerstva školství, ČSVTS aj. (obr. 1), se uskutečnilo 22. 11. 1988.

Výstavy se také zúčastnili zástupci ze SSSR, MLR, BLR. Jejich část expozice je vidět na obr. 2. Z jednotlivých výrobků nás upoutal TV generátor — SSSR (obr. 3), přijímač — vysílač v pásmu 2 m FM — 20 kanálů z MLR (obr. 4) a počítač PRAVEC (IBM PC) — BLR (obr. 5). Maďarská delegace navíc vystavovala družicový přijímač, uveřejněný také v AR-A č. 12/88.

Na III. a IV. straně obálky jsou vidět výrobky, které nás nejvíce zaujaly a byly oceněné zlatými a stříbrnými visačkami. Celkem bylo na výstavě více než 400 soutěžních exponátů, z nich 158 bylo oceněno. Jednotlivé expozice byly rozděleny podle krajů. Nejúspěšnějším krajem byl Jihomoravský kraj, za ním s velkým odstupem následovala Praha a Středoslovenský kraj. V jednotlivých kategoriích byly navíc uděleny ceny za první tři místa.

Z mnoha exponátů bychom cheli vyzdihnout alespoň tyto:

V expozici Severomoravského kraje nás nejvíce upoutaly dva výrobky. Prvním z nich byl tuner pro příjem družicové televize (obr. 6, IV. strana

obálky). Toto technicky velmi náročné zařízení je elegantně obvodově vyřešeno při použití dostupných součástek. Tuner získal kromě zlaté visačky i první místo v kategorii B1. Druhým zajímavým exponátem byl výkonový zesilovač (IV. strana obálky), který je v konci osazen výkonovými tranzistory MOSFET naší výroby (KUN...). Na rozdíl od řady tvrzení, že dobrý koncový stupeň lze vyrobít pouze z komplementárních páru tranzistorů MOSFET, tento koncový stupeň je při stejných vlastnostech osazen stejnými tranzistory MOSFET (N-kanál). Zesilovač získal zlatou visačku.

Z výrobků, které vystavovala Praha, byla nejzajímavější sada zesilovačů do auta (obr. 7, IV. strana obálky). Zesilovače byly profesionálně provedené. Jsou určeny pro náročný poslech v automobilu nebo v terénu při napájení 12 V. Konkrétně byl vystaven zesilovač 4x 10 W, 2x 25 W, 150 W a kmitočtová výhybka. Sestava byla kromě zlaté visačky vyhodnocena jako první v kategorii B2.

Ve výstavce Středočeského kraje upoutal pěkně provedený elektronicky řízený gramofon a HiFi věž (III. strana obálky), které byly oceněny zlatou visačkou.

Jihočeský kraj vystavoval koncový zesilovač s výkonom 500 W a mixážní pult (III. strana obálky). Zesilovač je osazen výkonovými tranzistory MOSFET ze SSSR.

V expozici Jihomoravského kraje byly zajímavé tenzometrické váhy (III. strana obálky). Získaly jak zlatou visačku, tak první místo v kategorii B4.

Z výrobků z Bratislavы zaujala doko-
nalým vzhledem dvojice přístrojů — stabilizovaný zdroj a čítač do 1 GHz (III. strana obálky), která byla oceněna zlatou visačkou a čítač získal první místo v kategorii B5.

Středoslovenský kraj vystavoval dvojič transceiverů (80 m a 160 m), z nichž jeden získal zlatou a druhý stříbrnou visačku. Na fotografii na IV. straně obálky je vidět ještě měřič kapacit (zlatá visačka) a vf generátor 400 kHz až 32 MHz (stříbrná visačka).

Severočeský kraj vystavoval velmi pěkně provedený VKV transceiver 144/432 MHz (IV. strana obálky), který získal zlatou visačku.

Ve výstavce Východočeského kraje se nám líbil pomocník pro opravu desek s plošnými spoji, Atomic 87. Získal zlatou visačku. Jedná se vlastně

Obr. 3. TV generátor

Obr. 4. Přijímač-vysílač v pásmu 2 m

Obr. 5. Počítač Pravec

Obr. 6. Družicový přijímač

Obr. 7. Automobilové zesilovače

o zařízení, které po roztažení cínu ho „odfoukne“ horkým vzduchem z desky.

To je jen malá část exponátů, které nás zajaly. Na některé z popsaných výrobků bychom rádi uveřejnili staveb-

ní návody, pokud budou jednání s autory úspěšná.

Celkově se dá říci, že účast na výstavě ERA '88 byla dobrá. Zajímavé je, že bylo na expozici jednotlivých

krajů vidět, jak je kraj zásobený elektronickými součástkami a jaké podniky se v kraji nacházejí. Tím lze také vysvětlit poměrně rozdílnou úroveň zpracování jednotlivých exponátů. K

Rada radioamatérství ČÚV Svazarmu jednala

V. republikový sjezd české organizace Svazarmu byl příležitostí ohlednout se zpět a zhodnotit výsledky své práce. Zevšeobecnění kládne zkušenosť, vzít si poučení z chyb, kterých jsme se ve své činnosti dopustili. Svou práci hodnotila i rada radioamatérství ČÚV Svazarmu na rozšířeném zasedání, které se uskutečnilo v Praze 21. 9. 1988. Při zahájení uvítal místopředseda RR Ladislav Hlinský, OK1GL, čestné hosty plk. Ing. Procházku z kontrolního odboru ČÚV Svazarmu, plk. Ing. Šimka, OK1FSI, vedoucího oddělení elektroniky ÚV Svazarmu, předsedkyni rady radioamatérství ÚV Svazarmu Josefou Zaharovou, OK1FBL, a předsedu rady elektroniky ČÚV Svazarmu Ing. Petra Kratochvíla.

Hlavním bodem programu byla zpráva o činnosti RR, kterou přednesl její předseda Jaroslav Hudec, OK1RE. Zpráva se nezabývala pouze klady, ale velice kriticky poukázala i na nedostatky v dosavadním rozvoji radioamatérského hnutí.

Jedním z hlavních problémů, které diskuse řešila, byly otázky materiálně technického zabezpečení hlavně z hlediska součástkové základny a vybavení kolektivních stanic kvalitním zařízením. Jsou vážné nedostatky v konstruktérské a polytechnické výchově mládeže, kde zaznamenáváme značný pokles zájmu, zvláště u mládeže ve věku 15 až 19 let. Nelze vše svalovat na nedostatek

součástek a materiálu, ale je třeba hledat nové způsoby v činnosti a vedení oddílu mládeže. Ze to jde, můžeme ukázat na příkladu V. Podolky, OK1AXF, z Mariánských Lázní, který dosahuje velmi dobrých výsledků v práci s mládeží. Musíme zvážit i možnost konkrétního přístupu v oblasti spolupráce především s SSM a Školstvím, čímž bychom i důsledněji naplánovali usnesení vlády ČSSR č. 233/1984 týkající se účasti dětí a mládeže na vědeckotechnickém rozvoji. Na rozdíl od jiných odborností má radioamatérství vytvořeny dobré podmínky především v ediční činnosti, kde zástuhou Jirky Bláhy, OK1VIT, jsou vydávány velmi kvalitní tituly. Je významný nedostatkem, že se nedáří organizačně zabezpečit rozdělování publikací tak, aby se dostaly k těm, kteří je potřebují.

Vysoce kladně byla i hodnocena společenská angažovanost radioamatérů při zabezpečování spojení při oslavách 1. máje, motoristických soutěží, školení operátorů malých radiostanic pro různé podniky atd. Adolf Novák, OK1AO, se ve svém diskusním příspěvku zabýval zhodnocením akce SOS pražských radioamatérů. Tato činnost je společensky velmi prospěšná, protože napomáhá příslušníkům VB a záchranné službě řešit havarijní situace na našich silnicích. Zatím se ukazuje, po zkušební době

provozu, že tato akce bude rozšířena i do ostatních krajů ČSSR.

V poslední době se RR zabývala i takovými otázkami, jako je zkreslování výsledků jednotlivci i kolektivy při soutěžích a nekázní na pásmech zvláště u mládeže. V některých případech se musela i pozastavit činnost některých stanic OL. V příštím období se musí věnovat této otázce mimořádná pozornost, protože si musíme uvědomit, že každý koncesionář na pásmu reprezentuje naši vlast, a proto jeho vystoupení musí být vždy na vysoké úrovni. Proto rozšíření komisi rady o disciplinární komisi je naprostě opodstatněné.

Pro zabezpečení další činnosti musí být zajistěno i operativní přenášení informací na nižší stupně řízení, to znamená na krajské a okresní rady. Z tohoto důvodu byla vytvořena z funkcionářského aktivity nová rada radioamatérství ČÚV Svazarmu pro příští funkční období tak, aby mohly být tyto úkoly plněny. Při sestavování nové rady se braly v úvahu i takové důvody, jako je zastupitelnost všech krajů v radě, zastupitelnost žen a také aby členy rady byli i vedoucí hlavních komisí. Za jedno z hlavních kritérií bylo považováno i to, že členové rady budou aktivně zapojeni v práci ZO nebo v radách nižších stupňů.

Jsme svědky velmi rychlého vědeckotechnického rozvoje, a proto musí

V přestávce jednání. Zleva vedoucí oddělení elektroniky ÚV Svazarmu plk. ing. František Šimek, OK1FSI, vedoucí odboru elektroniky ČÚV Svazarmu plk. ing. Jiří Sloboda a předseda rady radioamatérství ČÚV Svazarmu Jaroslav Hudec, OK1RE

Z jednání RR ČÚV Svazarmu. Hovoří místopředseda Ladislav Hlinský, OK1GL

AMATÉRSKÉ RADIO MLÁDEŽI

Kompas Brno — OK2KBA

(Dokončení)

Když bylo před několika lety uvažováno o založení kolektivní stanice, byly hlavními iniciátory předseda ZO Svažaru Jiří Doležal, OK2BQY, a Vladimír Hora, OK2PEL, který se stal vedoucím operátorem kolektivní stanice. Vlastním náborem byla získána řada zájemců o vysílání a po školení operátorů a zkouškách má kolektivní stanice OK2KBA v současné době třicet operátorů, z toho 6 operátorů s vlastní značkou OK a 6 operátorů s vlastní značkou OL.

Hlavní činnost kolektivní stanice OK2KBA je zaměřena na vysílání v pásmu 145 MHz, protože kolektiv vlastní zařízení pro telegrafní a SSB provoz s příkonem asi 10 W. Pravidelná účast v závodech Polní den mládeže, Den rekordů, Provozní aktiv a v dalších závodech zařazuje značku OK2KBA zhruba do poloviny výsledkových listin závodů. Ani s těmito výsledky se však operátoři nechtějí smířit a snaží se neustále svoji provozní zručnost zvyšovat. Účast v 21 závodech v roce 1987 svědčí o jejich aktivitě.

Plně využité místnosti Kompasu umožňují pouze úterní schůzky zájemců o vysílání. I tak byl tento den vyhrazen pro další kurs výuky telegrafie a amatérského vysílání pro veřejnost. Rozvoji další provozní aktivity však brání nevhodné umístění kolektivní stanice OK2KBA. V Brně, v husté zástavbě na ne příliš vhodném stanovišti pro provoz v pásmech velmi krátkých vln

není možné dosáhnout vynikajících výsledků. Proto operátoři stanice stále častěji odjíždějí vysílat do přírody. Ve vysílání v pásmech krátkých vln je kolektiv OK2KBA omezen typickým městským problémem — rušením programu televize. Přes všechna opatření na zařízení Otava a přes spolupráci s odrušovací službou Inspektorátu radiokomunikaci je v rámci zachování dobrých sousedských vztahů v domě vysílání omezeno na minimum.

O tom, že práce Kompasu není zanedbatelná, svědčí také pořádání městských a krajských konferencí a technických soutěží v radioamatérství a elektronice, kterými je kolektiv Kompasu povídován. Kompas Brno, jako krajská technická základna mládeže, je také pravidelným pořadatelem krajských konferencí mladých radiotechniků.

Kolektiv Kompasu však trápí jedna skutečnost, že dosud jediný obor v jejich činnosti — počítacová technika — ještě nedoznala patřičného rozvoje. Je to zaviněno nedostatkem počítačů pro uspokojení zájmu velkého počtu zájemců. Dosavadní výuka je vedena na soukromých mikropočítačích cvičitelů a dále ve spolupráci s Domem pionýrů a mládeže v Brně. Po rozšíření technického vybavení lze i v tomto směru dosáhnout větších úspěchů, protože mládež má o tuto činnost velký zájem a členové kolektivu Kompas svojí obětavou činností ve prospěch

Mladý RO Jiří Šilhavý v závodě
Polní den mládeže

mládeže dávají záruku, že i tento druh zájmové činnosti by v jejich klubu byl úspěšný.

Radiotechnické středisko mládeže Kompas Brno za dobu své dvacetileté činnosti podchytilo k zájmu o elektroniku a radioamatérský provoz již několik tisíc mladých chlapců a dívek. Vychoval z nich mnoho současných inženýrů a elektroniků, kteří nejen že pomáhají rozvoji národního hospodářství, ale své bohaté zkušenosti předávají i mladé generaci.

Přejí celému kolektivu Kompasu doplnění potřebného technického vybavení klubu a mnoho dalších úspěchů v práci s mládeží.

Nezapomeňte, že ...

... Československý YL — OM závod bude probíhat v neděli 5. března 1989 v době od 06.00 do 08.00 UTC ve dvou etapách. V první etapě bude závod probíhat provozem CW, ve druhé etapě provozem SSB. Deníky je nutno zaslat do 14 dnů po závodě na adresu: Kurt Kawasch, Okružná 768/61, 058 01 Počerady.

... další kolo závodu TEST 160 m bude probíhat v pátek 31. března 1989 v době od 20.00 do 21.00 UTC. Deníky se zasílají nejpozději ve středu po závodě na adresu: OK2BHV, Milan Prokop, Nová 781, 685 01 Bučovice.

Přejí vám hodně úspěchů a těším se na vaše další dopisy a připomínky. Pište mi na adresu: OK2-4857, Josef Čech, Tyršova 735, 675 51 Jaroměřice nad Rokytnou.

73! Josef, OK2-4857

Předsednictvo ústředního výboru Svažaru na návrh rady elektroniky
ÚV Svažaru udělilo k VIII. celostátnímu sjezdu Svažaru
za úspěšnou a obětavou práci ve prospěch odbornosti elektronika tato ocenění:

Čestné uznání k VIII. sjezdu Svažaru:

Ing. Pavlu Blahutovi
Ing. Jánu Broszovi
Oldřichu Horákově
Ing. Radomíru Květonovi, CSc.
Ing. Slavojímu Mušilkovi
RNDr. Pavlu Petrovičovi, CSc.
Pavlu Plávkovi
Ing. Petru Ruslákovi
Martínu Sládkovi
Za brannou výchovu II. stupně:
Vladimíru Gazdovi
Ladislavu Svobodovi
Zdenku Vlkovi

Za brannou výchovu:

Ing. Karlu Hyánekovi
Ing. Tiboru Javorovi
Pavlu Suchánekovi
PhDr. Karlu Vraném

Za obětavou práci II. stupně:

Bedřichu Čermákově
Josefu Provazovi
Ing. Josefu Truxovi
Bohumilu Vebrové

Za obětavou práci I. stupně:

Jánu Ridzikovi
Jiřínu Stempinové

nové obory, jako je výpočetní technika nebo amatérská činnost v pásmu GHz, mít své zastoupení v jednotlivých komisech.

Diskuse dále ukázala nutnost zabývat se tradicemi odbornosti a popularizací radioamatérské činnosti na veřejnosti. Zde musí odvést velký podíl práce především politickovýchovná komise. Nedokážeme dostatečně využít výsledků činnosti především při působení na mládež. Příkladem mohou být vynikající výsledky našich reprezentantů na mistrovství světa v ROB ve Švýcarsku, o kterých se naše veřejnost dozvěděla velice málo.

V diskusních příspěvcích hosté vyjádřili především poděkování radě a širokému aktívu radioamatérského hnutí za jejich práci. Z diskusního příspěvku zástupce RE ČUV Ing. Petra Kratochvíla vyplynula pozitivní snaha odbornosti elektronika pomoci radioamatérskému hnutí především zaváděním výpočetní techniky a ještě více prohloubit spolupráci mezi oběma odbornostmi.

V závěrečném vystoupení předseda RR J. Hušec, OK1RE, konstatoval, že koncepce radioamatérství v české republikové organizaci je plněna. Uvedl, že jsme si vědomi nedostatků a že

záleží na snaze všech členů rady a širokého aktívnu tyto nedostatky odstranit a přispět tak k dalšímu rozvoji radioamatérského hnutí a tak i k technickému pokroku v celé naší společnosti. Vyhádřil přesvědčení, že přijaté usnesení se stane základem pro další zabezpečování naší činnosti.

plk. Ing. Jiří Svoboda
vedoucí odboru elektroniky
ČÚV Svažaru

Pozvánka do Polničky

Z pověření rady elektroniky ČÚV Svazarmu v Praze bude v roce 1989 již po osmé pořádáno letní soustředění talentované mládeže Svazarmu, odbornosti elektronika.

Toto soustředění se uskuteční v termínu od 2. do 22. 7. 1989 v Polničce, okres Žďár nad Sázavou, a cena pro jednoho účastníka byla stanovena na 550 Kčs. Vzhledem k tomu, že se jedná o vrcholnou akci tohoto typu v odbornosti elektronika, měli by se jí zúčastnit nejlepší jednotlivci ze základních organizací, kteří jsou již seznámeni alespoň se základy elektroniky.

Na tomto soustředění budou stavět účastníci v rámci programu elektronické zařízení, které si odvezou domů jako hotový výrobek. V minulosti stavěli účastníci např. sledovač signálu, nf milivoltmetr, čítač 20 MHz, zkoušec polovodičů a diod, napěťovou a TTL sondu, nf generátor, zesilovač a další účelná a potřebná zařízení, která najdou uplatnění jak v domácí dílně, tak i v kroužcích. Mimo to jsou součástí programu tábora teoretické přednášky, základy programování a další zájmová činnost.

Přihlášky zasílejte nejpozději do 30. 2. 1989 na adresu: Jan Nižník, OV Svazarmu, 591 01 Žďár nad Sázavou. Přihlášku pište strojem (čitelně) a uveďte: Jméno a příjmení, datum narození (nejvýše 14 let — rok narození 1975 a mladší) a přesnou adresu bydliště, včetně PSČ. Vzhledem k omezené kapacitě tábora budou přednostně vyřizovány přihlášky dříve došlé.

Po uzávěrce přihlášek, tj. po 30. 2. 1989, budou na adresu přihlášených zasílány podrobné informace a závazné přihlášky.

Organizační výbor LTTM

PRO NEJMLADŠÍ ČTENÁŘE

Základní obvody automatizační a zabezpečovací techniky

Zdeněk Kober

Klopny obvod R-S

K základním klopny obvodům, které byly probrány v minulém čísle, je třeba přiřadit i druh bistabilního klopny obvodu, který se používá ve výpočetní technice velmi často, a to klopny obvod R-S. Jde o nejjednodušší klopny obvod, který má v klasickém uspořádání dva vstupy (R — reset,

Obr. 24. Klopny obvod R-S; a — základní zapojení klopny obvodu z hradel NAND, b — zapojení použité ve stavebnici

Na obrázku jsou pro úplnost použity ke znázornění hradel NAND dva různé symboly, na obr. 24a dříve používaný symbol, na obr. 24b symbol nový.

nulování, S — set, nastavování) a dva výstupy, které se označují Q a \bar{Q} (\bar{Q} lze číst jako Qnon nebo Q s pruhem, jeho úroveň je vždy inverzní k úrovni na výstupu Q). Přijde-li na vstup S impuls s úrovni logické nuly a je-li přítom na vstupu R impuls s úrovni logické jedničky, nastaví se klopny obvod do stavu logické jedničky ($Q = 1$, $\bar{Q} = 0$) a setrvá v něm i tehdy, bude-li na vstupu S opět signál o úrovni log. 1. Přivede-li se na vstup R signál o úrovni log. 0, nastaví se klopny obvod do stavu logické nuly ($Q = 0$, $\bar{Q} = 1$) a setrvá v tomto stavu i tehdy, obnoví-li se na vstupu R úroveň log. 1. Charakteristikou vlastnosti obvodu typu R-S je, že nemá definován stav výstupu, přivede-li se impuls o úrovni log. 0 na oba vstupy současně.

Předcházející úvahu lze vyjádřit rozšířenou pravidlostní tabulkou, v níž je vyjádřena závislost stavu výstupů pro čtyři případy podmínek na vstupech a pro dva případy počátečních stavů výstupů. Počátečním stavem výstupů se rozumí stav výstupů před přivedením vstupních signálů.

Počát. stav		Vstupní inform.		Výsledný stav	
Q	\bar{Q}	R	S	Q	\bar{Q}
0	1	0	0	není definován	
0	1	1	1	0	1
0	1	0	1	0	1
0	1	1	1	0	1
1	0	0	0	není definován	
1	0	1	0	1	0
1	0	0	1	0	1
1	0	1	1	1	0

Základní schéma popisovaného klopny obvodu je na obr. 24a. Klopny obvod lze sestavit např. ze dvou logických obvodů se dvěma vstupy k realizaci negovaného součinu (NAND). Předpokládejme, že je klopny obvod zprvu ve stavu log. 0 a že se na vstup S přivede signál o úrovni log. 0. Vstup R je přitom připojen na signál s úrovni log. 1. Na vstupech horního hradla na obr. 24a je tedy jednak přítomen signál S = 0 a jednak $\bar{Q} = 1$. Při použití operace NAND se objeví na výstupu Q signál log. 1 a na výstupu \bar{Q} signál log. 0. Důsledkem je, že klopny obvod přejde do stavu log. 1 ($Q = 1$). Změnilo se úroveň na vstupu S na log. 1, bude na druhém vstupu horního obvodu NAND log. 0 a na výstupu se zachová stav Q = 1. Oba vstupy dolního

Obr. 25. Osazená deska s plošnými spoji klopny obvodu R-S z obr. 24b

obvodu NAND mají tedy úroveň log. 1 a na výstupu \bar{Q} bude log. 0. Oba logické obvody se vlivem křížové vazby udržují v nastaveném stavu a ten zůstane zachován, pokud se nezmění podmínky na vstupech. Je-li připojen signál log. 0 na oba vstupy R, S současně, budou na obou výstupech po dobu trvání těchto vstupních podmínek úrovně log 0. Přestanou-li působit na obou vstupech napětí o úrovni log. 0 současně, přejde klopný obvod do neurčitého stavu, tzn. že \bar{Q} může být jak 1, tak 0. Proto je třeba upřavit zapojení tak, aby se signál log. 0 nemohl dostat na oba vstupy současně.

Takové zapojení je na obr. 24b. Po zapnutí napájecího napětí se na okamžik objeví na výstupu 1 integrovaného obvodu MH7400 (hradlo NAND) úrovně log. 0 (nabíjejícím se kondenzátorem C1 prochází proud). Klopný obvod se tedy „vynuluje“, což při negativní logice — hradlo NAND 7400 — znamená, že na jeho výstupu bude log. 1. Objeví-li se na vstupu 3 (tj. vlastní vstup S) i na krátký okamžik log. 0, obvod se trvale překlopí do aktivního stavu — na výstupu bude tedy log. 0. Obvod bude překlopen až do vypnutí napájecího napětí, může tedy sloužit např. jako základní obvod poplašných zařízení, u nichž sebeplatí impuls na vstupu obvodu (z hlídaného objektu) způsobí trvalý poplach, který lze zrušit jen vypnutím zdroje napájecího napětí.

Osazená deska s plošnými spoji klopného obvodu R-S je na obr. 25, jako integrovaný obvod lze použít hra-

Obr. 26. Deska s plošnými spoji W43 pro dvouvstupová zapojení k obr. 24

dla TTL typu 7400, 8400, 5400, popř. z produkce NDR obvod D100D.

Deska s plošnými spoji pro dvouvstupové integrované obvody

Některé aplikace v zabezpečovací a automatizační technice vyžadují možnost snímat signál buď ze dvou míst nebo snímat z jednoho místa dva různé signály. Pro tato zapojení byla navržena deska s plošnými spoji, jejíž

nákres je na obr. 26. Z levé strany se připojují vstupní signály, z pravé se odebírá logický signál k ovládání vstupních obvodů.

Typickým a nejjednodušším dvouvstupovým obvodem je např. obvod, použitý v klopném obvodu R-S, popsánum v této lekci, tzn. dvouvstupové hradlo NAND, které jsou v pouzdře integrovaného obvodu typu 7400 čtyři. (Pokračování)

INTEGRA '88

Ve dnech 24. až 26. listopadu se v Rožnově pod Radhoštěm konal jubilejní XV. ročník soutěže Integra. Podrobnejší zprávu o průběhu soutěže a o výsledcích přeneseme v R15 v čísle 4, dnes uvedeme jako obvykle otázky z teoretické části soutěže, aby si připadní zájemci o účast v příštím ročníku soutěže mohli ověřit, jak náročná je soutěž a jakého typu jsou otázky v její teoretické části. Otázek bylo celkem 12:

- Jaký fyzikální rozměr má jednotka dB?
 - volt,
 - bezrozměrná jednotka,
 - watt.
- Převeďte číslo 17 v desíkové soustavě do soustavy dvojkové.
- Popište stručně oblast použití téhoto IO z produkce s. p. TESLA Rožnov: MAC625, MDA4700, MA1060, MA6520.
- Kolik adresových vstupů má polovodičová paměť (IO) MH93425 s organizací 1024 × 1 bit?
 - 8,
 - 10,
 - 12.
- Efektivní hodnota napětí na zakončovacím odporu $R = 75 \Omega$ se zvětší na dvojnásobek. Kolikrát se zvětší výkon, rozptýlený na tomto odporu?
- Vypočítejte proud, který protéká kondenzátorem o kapacitě 100 nF. Kondenzátor je připojen ke zdroji střídavého proudu (napětí 10 V, kmitočet 1 kHz).
- Průměr televizní signál geostacionárních družic je vysílán v kmitočtovém pásmu
 - 88 až 104 MHz,
 - 11,7 až 12,5 GHz,
 - 470 až 860 MHz.
- Jaká je výsledná kapacita
 - dvou paralelně zapojených kondenzátorů $1 \mu F$,
 - dvou sériově zapojených kondenzátorů $1 \mu F$.

9. Nakreslete zapojení s hradly NAND, které realizuje logickou funkci EXCLUSIVE-OR, která je popsána tabulkou

A	B	C
0	0	0
0	1	1
1	0	1
1	1	0

- V síťovém rozvodu 220 V je přípustná změna napětí $\pm 10\%$. Určete nejmenší a největší možné napětí v sítí.
- Z kterých barev se skládají jednotlivé barvy v televizní obrazovce 671QQ22?
 - červená, modrá, zelená,
 - červená, fialová, žlutá,
 - červená, zelená, žlutá.
- Rozhlasové vysílání v pásmu VKV je modulováno
 - amplitudově,
 - kmitočtově,
 - impulsně.

Obrázek vám přibližuje vypadající „soutěžní“ atmosféru na rožnovské Integře v jednom z jejich starších ročníků. Reportáž a obrázky z Integry '88 přineseme v AR-A č. 4/1989

V kulturním domě v Dubřanech
pořádá
ZO Svazarmu při SOU v Dubřanech
burzu
elektroniky a leteckého
modelářství.
dne 18. 3. 1989 od 7 do 12 hodin.

Desky s plošnými spoji
pro
konstrukce z AR A, AR B, Příloh
lze objednat na dobríku na adresu
Služba radioamatérům
Lidická 24
703 00 Ostrava-Vítkovice

Oprava ke Konstrukční příloze AR 1988

Prosíme naše čtenáře, aby si laskavě opravili desku s plošnými spoji Regulátoru nabíjení pro vozy vybavené devítidiodovým alternátorem z Konstrukční přílohy časopisu AR 1988. Deska je na str. 67 Přílohy — oprava spočívá v přerušení plochy mědi souběžně s rezistorem R8 tak, aby se oddělily U_{st} a zemní plocha desky.

Děkujeme. Redakce

AMATÉRSKÉ RÁDIO SEZNAKUJE...

Družicový přijímač SALORA XLE 8901

Celkový popis

Tento družicový přijímač je druhým typem, který bude prodáván v prodejnách PZO TUZEX. Přesná cena v okamžiku odevzdání rukopisu není sice ještě známa, byli jsme však informováni, že s největší pravděpodobností bude tento přijímač prodáván i jednotlivě, tedy bez vazby na kompletní antenní sestavu.

Obdobně jako dříve popsaný přijímač GRUNDIG STR 201, je i tento přístroj určen k příjmu signálů, přicházejících z mikrovlnného konvertoru, umístěného v parabolické anténě. Je schopen přijímat signály v rozsahu 950 až 1750 MHz. Kapacita paměti umožňuje naprogramovat až 9 × 16 vysílačů, což znamená, že je počítáno s připojením tzv. polarotoru, který umožní automaticky nastavit až devět poloh různých družic. Na každé nastavené pozici pak lze předem naprogramovat až 16 vysílačů, což při dnešním stavu družicového vybavení postačuje. Od většiny ostatních podobných přístrojů se XLE 8901 liší i tím, že je vybaven stereofonním výkonovým zesilovačem s přímým výstupem na reproduktory, takže ten, kdo se zajímá i o poslech rozhlasu vysílaného z družic, nepotřebuje nic víc, než připojit reproduktory. Pokud se ovšem spokojí s velice malým výstupním výkonem — jen 2 × 3 W — a také s tím, že nebude mít k dispozici žádné tónové korekce.

Některé ovládací prvky jsou umístěny na čelní stěně přijímače pod odklopným víkem, většinu potřebných úkonů lze však realizovat tlačítka na dálkovém ovladači. Za zmínku stojí, že například kmitočty stereofonních kanálů lze u tohoto přístroje nastavovat individuálně, to však přichází v úvahu

pouze při poslechu některých rozhlasových pořadů, kde kmitočtový rozdíl mezi jednotlivými kanály není stanovených 180 kHz. Přijímač umožňuje připojit dva vstupní konvertory, je vybaven zdrojem napětí obdélníkovitého průběhu pro ovládání polarizátora a má informativní indikátor sily pole. Rovněž má k dispozici prepínací napětí (pro konvertor) pro příjem družic na kmotčech 12 a 12,5 GHz. Odstup nosné zvuku lze volně naprogramovat stejně jako druh deemfáze. Navíc jsou k dispozici ještě další možnosti, například zařadit reprodukční filtr Dolby NR, pokud by snad některý vysílaný program tento způsob zmenšení šumu používal — zatím ho těžko využijeme. Za zmínku by snad stála i další výjimečnost, byť v praxi diskutabilní, kterou je možnost zablokovat kterýkoli z nastavených programů tak, aby bez odblokování nemohl být přijímán.

Panel dálkového ovládání působí pro nezasvěcené poněkud šokujícím dojmem, neboť, kromě neobvyklých rozmerů, má řadu pro laika nesnadno pochopitelných tlačítek. Pravdou je, že dálkovým ovládačem lze realizovat řadu úkonů a že nevhodnou obsluhou můžeme předem optimálně nastavený program spíše znehodnotit než zlepšit. Jedinou útěchou je, že tato korekce, pokud ji nepotvrďme tlačítkem STORE na přijímači, nebude uložena do paměti přístroje.

Funkce přístroje

Přijímač byl co do funkce porovnávan s přístroji GRUNDIG STR 201 a předešlým modelem firmy SALORA, typem 1150. V úvahu byl brán především počet drop-outů při příjmu slabého signálu. V tomto směru XLE 8901 svého předchůdce zřetelně předčil, v porovnání s přijímačem GRUNDIG se jevil jako prakticky shodný. Kdybychom chtěli skutečně „hledat vše“, mohli bychom obraz XLE 8901 považovat za o něco málo lepší — tedy s menším počtem drop-outů.

Vnější provedení přístroje

Přijímač je v celokovové krabici nastříkané černým matným lakem a po uzavření víka s ovládacími prvky na něm, kromě displeje s velkými a zřetel-

nými znaky, nevidíme žádné ovládací prvky. Jediné, čím majitele překvapí, jsou jeho neobvykle velké rozlohy. Přístroj je sice velmi plochý (pouze 55 mm vysoký), ale zato 49 cm široký a 32 cm hluboký, což je proti obdobným přijímačům tohoto typu neobvyklé.

Vnitřní provedení a opravitelnost

Jak vyplývá z obrázku, naprostá většina prvků je na základní desce, zasouvací moduly jsou použity jen výjimečně. Tato otázka, vzhledem ke složitosti přístroje a určité náročnosti oprav, však pro běžného amatéra patrně nepřichází v úvahu.

Závěr

Tento přijímač představuje nesporně špičkové zařízení, čemuž v zahraničí pochopitelně odpovídá i poněkud vyšší cena. I když jsou jeho přijímové vlastnosti velice dobré, bude patrně velmi záležet na tom, jak se bude cenově lišit od u nás rovněž nabízeného přístroje GRUNDIG STR 201. Pak bude záležet jen na zájemcích, aby posoudili, zda se případně zvýšené náklady vyplatí.

—Hs—

JAK NA TO

BEZKONTAKTNÝ SPÍNAČ BEZ TRANSFORMÁTORA

V rôznych aplikáciach ovládania sieťových spotrebičov vzniká problém napájania riadiacich častí priamo spojených s tyristorom, prípadne triakom. Pri riadení spínača prvkami, ktoré ho neumožňujú dostatočne vybudit', ako napríklad optočlen, termistor a iné, sa tento problém najčastejšie rieši napájacím transformátorm.

Nižšie popisujem zapojenie tyristoru pre spínanie striedavého prúdu. Zapojenie podľa obr. 1 umožní vo väčšine aplikácií napájať riadiacu časť trvalým jednosmerným napäťom. Pre iné spínače prvky je možné zapojenie modifikovať.

Obr. 1. Schéma zapojenia

Vo vypnutej stave tyristorového spínača je napájacie napätie pre riadiču časť pripojené cez spotrebič Z, usmerňovač s diódami D3 až D6, rezistor R2 na stabilizačnú diódu D1 a filtračný kondenzátor C. Maximálny stredný odber riadiacej časti vo vypnutej stave určuje rezistor R2. Riadiaca časť spína tyristor prostredníctvom bodov 2 a 3. Energia akumulovaná v kondenzátori C sa môže využívať tiež pre prvé zopnutia tyristoru, po ktorom je možné odber riadiacej časti zväčšiť. Napájaci prúd sa v zapnutom stave uzatvára cez spotrebič Z, usmerňovač D3 až D6, otvorený tyristor Ty1, diódu D2 na stabilizačnú diódu D1. Všetky tieto súčiastky musia byť dimenzované na maximálny prúd spotrebiča Z. Najväčšia záťaž bude na stabilizačnej dióde D1, z toho dôvodu jej menovité napätie volime čo najmenšie (pokiaľ nám to riadiaca časť umožní). Napätie na spotrebiči Z je zmenšené oproti napätiu v sieti o úbytky na usmerňovači, tyristore a diódoch D1 a D2. Z dôvodu veľkých rozdielov prúdu diódu D1 pri vypnutej a zopnutej stave je takto vytvárané napätie pohybív v závislosti na kvalite stabilizačnej diódy.

V zapojení podľa obr. 1 je na dióde D1 veľký stratový výkon. Preto bolo zapojenie upravené podľa obr. 2. Napájaci prúd sa v zopnutej stave uzatvára cez spotrebič Z, usmerňovač D2 až D6, otvorený tyristor Ty1, diódu D2 na filtračný kondenzátor C. V prípade dostatočného napájacieho napäťia stabilizačný prúd diódy D1 zopne tyristor Ty2, ktorý premosťí prúd tečúci cez diódu D2 a tým zamedzí ďalšiemu dobijaniu kondenzátora C. Tyristor Ty2 cyklicky zopína v každej polperiode striedavého napäťia.

Obr. 2. Upravené zapojenie

Súpiska súčiastok

Spotrebič Z	do 100 W/220 V
D1	1N270 (na chladiči)
D2	KY132/80
D3 až D6	KY132/600
Ty1, Ty2	KT506 (KT508/400)
D7, D8	KA261
R1	220 Ω
R2	470 kΩ
R3	220 kΩ (min. 33 kΩ)
R4	15 Ω
C	22 μF/15 V
Op	WK 164 ..., ťubovolný podľa potreby citlivosti.
H1 až H4	MHB4011

Ako príklad použitia zapojenia uvádzam ovládanie spínania spotrebiča prostredníctvom optočlenu (obr. 3).

Obr. 3. Schéma zapojenia ovládania

Otvorený tranzistor optočlenu vytvára na vstupe hradla H1 úroveň L, ako požiadavku o zopnutie tyristoru. Diódy D7 a D8 blokujú túto požiadavku v tom prípade, ak vytvárané jednosmerné napätie nie je dostatočné pre zopnutie tyristoru (prechodný stav po pripojení celého zariadenia k sieti). Rezistor R3 spolu s prenosovým pomerom optočlenu určujú citlosť spínania na vstupný prúd diódy optočlenu. Hradlá H2 až H4 slúžia pre vytvorenie ostrých hrán riadiaceho prúdu tyristoru. Hradlo H4 uzatvára riadiaci prúd pro tyristor z bodu 1 (napäjacie napätie) na bod 2. Z bodu 3 na bod 4 je zapojený rezistor, ktorý určuje prúd hradla tyristoru. Jeho hodnota nemôže byť nulová, pretože by sa v zopnutej stave nevytváralo napájacie napätie. V zapojení je možné využiť jeden zo vstupov hradla H1 pre blokovanie zopnutia počas zväčšenia napäcia na anóde tyristoru nad určitú nedz. Získame tak spínanie záťaže v prechodoch napäcia nulou.

Martin Melkovič

JEDNODUCHÝ MELODICKÝ ZVONEK

Veľice jednoduše lze zhotovit melodický zvonek z digitálních hodiniek. Pokud máme vadné hodiny (např. vadný displej), ale funkce ALARM je v pořadku, můžeme si postavit melodický zvonek. Nejdříve rozebereme

hodinky, vyjmeme z pouzdra článek a nahradíme ho tužkovým monočlánkem 1,5 V.

Obr. 1. Schéma zapojení

Přívody napájení připájíme na záporný a kladný pól desky s plošnými spoji hodinek. Pak musíme zkratovat spoje tak, abychom měli stále zapnutou funkcií ALARM. Jeden spoj zůstane volný a bude se jím spínat melodie. Nakonec odpájíme pružinku, která slouží k propojení na piezokeramický měnič hodinek, a připájíme místo ní vodič. Signál vyvedený tímto vodičem je zesilován zesilovačem na dostatečnou úroveň pro vybuzení reproduktoru. Kondenzátor C1 slouží k stejnosmernému oddělení zesilovače od hodinek. Reproduktor jsem použil ze starého tranzistorového přijímače. Součástky jsem umístil do elektroinstalační krabičky. Zvonek pracoval na první zapojení. Baterie vydrží v provozu asi rok.

Petr Kruček

ČTENÁŘI NÁM PÍŠÍ

Na upozornění čtenářů a autorů uvádíme opravy k článku

„Generátor tvarových kmitů“
z AR-A č. 9 a 10/1988.

Ve schématu na obr. 4 má být uveden obvod IO5 typu MH7437, správné označení rezistoru R63 na výstupu TTL je R83, rezistoru R87 na výstupu „ovl. H“ je R89, u potenciometru R64 má být R63. V seznamu součástek na str. 386 má být v prvním řádku R1, R44B a v posledních dvou řádcích na této stránce:

R70 390 Ω, TR 213

R75, R77,

R80 47 Ω, TR 213.

Na str. 387 má být v 6. a 7. řádku seznamu:

R86 1 kΩ, TR 214

R89 4,7 kΩ, TR 213.

V nákresu osazení základní desky na obr. 14 mají být diody nad IO5 správně označeny (zleva doprava): D31, D29, D27, D28, Zenerova dioda nad nimi D30. Správný text v odstavci *Stavba přístroje* (od 5. řádku): *Pozn.: Dioda D42 je umístěna na svorkách „ovl. H“, D41 a R89 ze strany plošných spojů.*

Autoři

V AR-A č. 12/1988 v článku „**Stereofonní indikátor**“ je chyba ve schématu zapojení. Rezistor R11 má být zapojen (namísto na R6) na napájecí napäť. Deska s plošnými spoji je v pořadku.

Nízkofrekvenční zesilovač pro CD

Ing. Karel Hájek, CSc.

V současné době je prakticky vyřešena téměř dokonalá kvalita záznamu akustického signálu kompaktní deskou či digitálním magnetofonem. A tak se nejslabším místem přenosového řetězce stává reprodukční část. Objevily se sice zesilovače, které řeší některé problémy, jako např. odstup rušivých signálů nebo přeběhové intermodulační zkreslení. Ale zbývají další problémy, zejména tvar modulové a fázové kmitočtové charakteristiky reproduktorských soustav a především poslechové místnosti [1].

U popisovaného zesilovače jsem se snažil řešit tyto problémy komplexně, aby se nejen odstup rušivých signálů, ale i ostatní parametry reprodukčního řetězce přiblížily kvalitě digitálního záznamu. Konstrukce zesilovače je poměrně jednoduchá, protože využívá převážně integrované obvody.

Základní parametry zesilovače

Výstupní výkon:

2x 12 W/8 Ω (sinus),
2x 3 x 10 W/8 Ω (hudební).

Harmonické zkreslení: 0,1 %/5 W.
Vstupy:

gramofon 5 mV/50 kΩ (1 kHz),
mikrofon 2 mV/8 kΩ,
lineární 200 mV/250 kΩ.

Odstup rušivých napětí (DIN):

gramofon 60 dB,
lineární vstup 70 dB.

Korekce:

— dvouoktaový ekvalizér;
kmitočty 50, 200, 800 Hz, 3,2,
12,5 kHz,
regulace ±15 dB,
relativní šířka pásma 1,1,
— připojitelný vnější třetino-
oktaový ekvalizér.

Rozmítaný generátor signálu pilovitého průběhu pro měření akustického řetězce a nastavení třetinooktaového ekvalizéru:

— kmitočet: 20 Hz až 20 kHz ve třech podrozsazích, každá dekáda plynule;
— rozmitání: kmitočtový zdvih 1/6 oktavy pilovitým signálem s třemi pevnými kmitočty pro každou dekádu.

Koncepce zesilovače

Pro reprodukci digitálně zaznamenaného signálu je vhodné realizovat akustický řetězec s odpovídajícími vlastnostmi ve všech podstatných hlediscích. Odstup rušivých napětí 90 dB u přehrávače CD je bohatě dimenzovaný a repro-

dukčním zařízením obtížně realizovatelný. Pro dostatečnou kvalitu postačuje 60 až 70 dB DIN. U tohoto zesilovače je z hlediska odstupu rušivých signálů nově navrženo úrovňové schéma. Předzesilovačem je vstupní signál s maximální úrovni 200 mV zesílen na maximální hodnotu 3 V, přičemž tato úroveň je vedena celým zesilovačem až po výkonový zesilovač. Takové řešení přináší některé výhody. Je možno zjednodušit konstrukci z hlediska „odstínění“ brumu, lze použít třetinooktaový ekvalizér s běžnými operačními zesilovači bez podstatného zhoršení odstupu šumu a lze dosáhnout lepších vlastností výkonového zesilovače, který může mít menší zesílení. Tento fakt umožňuje snadno zlepšit odstup rušivých napětí podle DIN vzhledem k tomu, že výkonový zesilovač zbytečně nezesiluje brum a šum, což je důležité pro tichý bytový poslech.

Základním parametrem pro posouzení jakosti zesilovače je zkreslení, a to nejen harmonické, ale také intermodulační a tzv. přeběhové intermodulační (tranzientní). V konstrukci zesilovače se vychází z nového pohledu na tuto otázku [2], kdy není s obtížemi přizpůsobován zesilovač obdélníkovému signálu, ale naopak je vstupní signál omezen na vstupu dolní propustí RC s mezním kmitočtem 20 kHz. Tento omezený signál pro lidské ucho s rezervou dostačuje; podstatné však je, že tímto způsobem se zmenšuje maximální rychlosť změny signálu, takže operační zesilovače s omezenou rychlosťí přeběhu se nedostávají do režimu dynamické saturace a pracují pou-

VYBRALI JSME NA
OBÁLKU

ze v lineárním režimu. Pak pro ně platí všechny základní poznatky o pozitivním působení záporné zpětné vazby. Při použití kvalitních operačních zesilovačů s dvojitými tranzistory FET na vstupu lze při použití členu RC s dostatečnou rezervou zpracovávat signál 3 V. K dynamickému intermodulačnímu zkreslení dochází až téměř při plné saturaci OZ. Omezení maximální rychlosti změny signálu působí stejně pozitivně i na výkonové zesilovače.

Z uvedeného hlediska ztrácí smysl i rozšiřování pásmo zesilovače jenom celku nad 20 kHz.

Dalšími důležitými požadavky jsou konstantní průběh amplitudové a lineární tvar fázové kmitočtové charakteristiky celého akustického řetězce. Málo jsou platné téměř ideální kmitočtové vlastnosti zesilovače či korekčního předzesilovače s charakteristikou RIAA pro dynamickou přenosu, když reproduktorské soustavy a především akustický prostor vnáší velké amplitudové a fázové zkreslení. Na obr. 1 je uveden příklad naměřených amplitudových charakteristik reproduktorské soustavy ve dvou místech běžného obyvacího pokoje. Je zřejmé, že tento vliv je až nečekaně velký a podílí se na něm především místnost — v podstatě odražené signály. Pro korekci tohoto vlivu je použit třetinooktaový či kvalitní parametrický ekvalizér. Vzhledem ke složitosti kmitočtových závislostí akustického prostoru je realizace a použití odpovídajícího parametrického ekvalizéru obtížnější, než třetinooktaový. Proto konstrukce zesilovače vychází z použití třetinooktaového ekvalizéru, který byl

Obr. 1. Kmitočtové vlastnosti reproduktorské soustavy ve dvou místech poslechové místnosti

postaven jako samostatný celek, připojitelný k zesilovači. Pro použití tohoto ekvalizéru je nutnou podmínkou měřicí zařízení. Měření s generátorem šumu a třetino-oktaovým analyzátorem spektra je rychlé a elegantní, ale pro amatérské podmínky příliš nákladné. Jednodušší je měřit s rozmitaným generátorem a vyhodnocovat běžným měřičem úrovně v zesilovači, na jehož vstup je připojen elektretový mikrofon. Jako rozmitaný generátor byl použit rozmitaný generátor pilovitého signálu, který lze jednoduše realizovat. Navíc se ukázalo, že k vyrovnaní amplitudové charakteristiky přenosového řetězce není nezbytné pilovitý signál tvarovat na harmonický, vzhledem k tomu, že zkreslení pilovitého signálu je asi 15 %, tj. odstup asi 16 dB. Tvarovač je nutný, má-li se měřit přesně při větších změnách amplitudové charakteristiky.

Měřicí úrovně má tři funkce. Lze jej využít k měření a nastavení úrovně (pro optimální využití dynamiky zesilovače a současně k nastavení úrovně pro správnou činnost fyziologické regulace hlasitosti). Kromě toho se použije při měření akustického řetězce s generátorem pily. Třetí funkce, spíše doplňková, je měření výstupní úrovně. Jako měřicí mikrofon postačuje běžný elektretový mikrofon, pro praxi se ukazuje tolerance nastavení ± 3 dB jako dostačující a sluchem takřka nepoznatelná.

S kmitočtovými vlastnostmi souvisí i volba reproduktorových soustav. Je vhodné dát přednost trípásmovej soustavám pro zmenšení intermodulačního zkreslení v reproduktorech. Vzhledem k některým výhodám byla zvolena koncepce tzv. aktivních výhybek. Především lze u nich snadno zajistit správnou a přesnou činnost; pasivní výhybky lze těžko „dostavovat“, jsou rozdílné, nákladné, a jsou zatíženy komplexní impedancí reproduktoru, což zhoršuje jejich funkci. Vnitřní cívek zvětšuje vnitřní odpory zdroje z hlediska napájení a tlumení reproduktoru. Proto je výhodné připojit reproduktory přímo na výstupy zesilovačů, jež mají minimální výstupní odpory. Rozdelením výkonu hudebního (širokospektrálního) signálu mezi tři výkonové zesilovače se zmenší intermodulační zkreslení a větší se celkový hudební výkon zesilovače. Vzhledem k rezervě výkonu byla zvolena zatěžovací impedance 8Ω ; tím se dále zmenší zkreslení.

Důležitá je volba strmosti výhybek. Pro ideální součet signálů ze dvou reproduktorů musí platit (v dělicí rovině mezi reproduktory, bez vlivu odražených signálů), že výsledná amplitudová charakteristika musí být konstantní a fázová charakteristika lineární (skupinové zpoždění konstantní). Tyto podmínky splňují výhybky 1. řádu se strmostí 6 dB/okt. Tato strmost ne-

stačí; výkon je nedostatečně rozdelen a je zbytečné velké intermodulační zkreslení na reproduktorech. Výhybky vyššího řádu s větší strmostí mají nelineární fázovou charakteristikou. Speciální výhybky [3], jež mají nulovou fázovou charakteristiku, se obtížně realizují a snižují dynamiku v oblasti dělicích kmitočtů. Proto byl ověřován skutečný vliv nelinearity fázové charakteristiky na kvalitu akustického signálu. Vzhledem k poznatkům z [4] se ukázal jako vhodný test rozmitaným obdélníkovým signálem. Tento signál byl po průchodu fázovacím článkem 2. řádu s nastavitelným činitelem jakosti sledován na kvalitních sluchátkách.

Pro větší činitel jakosti se prokazatelně objevoval nepřijemný sluchový vjem, zřejmý při porovnání s přímým signálem bez průchodu fázovacím článkem. Za mezi poznatelnosti lze považovat činitel jakosti asi 1.

Rozdelení signálu výhybkami 2. řádu se strmostí 12 dB/okt. je přijatelné. Při návrhu výhybek je však nutno použít činitel jakosti 0,5 a nikoliv 0,7 podle Butterworthovy approximace. Pak je při nesouhlasné orientaci polarity reproduktoru amplitudová charakteristika součtového signálu konstantní a průběh skupinového zpoždění přijatelný, pod mezi poznatelnosti. Vjem otočené fáze [5] pro jeden zdroj signálu či shodné cesty „stereo“ signálu je nepoznatelný lidským uchem vzhledem k tomu, že ucho nevnímá fázi signálu (ta se ostatně pro různé kmitočtové složky při cestě akustickém prostorem různě mění), ale vnímá časové zpoždění pro různé kmitočtové složky. Rozhodující je tedy ne fáze, ale linearita fázové charakteristiky (konstantní průběh skupinového zpoždění). Při použití souhlasné polarizovaných reproduktorů vzniká vlastně filtr typu pásmová zádrž (jak ukazuje amplitudová charakteristika na obr. 2). V praxi se tento jev uplatňuje méně, protože se k oběma signálům různě (podle vlastnosti místonosti) příčítá odražený signál. Je tedy výhodnější dát u výhybek 2. řádu přednost opačné polaritě reproduktorů.

Obr. 2. Závislost modulu přenosu a skupinového zpoždění pro součtový signál z výhybek 2. a 3. řádu při souhlasné a nesouhlasné polaritě reproduktoru

Z hlediska rozdelení signálu a malého intermodulačního zkreslení je lákavé použít výhybky 3. řádu se strmostí 18 dB/okt. Amplitudová charakteristika součtového signálu je u nich při použití Butterworthovy approximace konstantní při souhlasné i nesouhlasné polarizaci reproduktorů. Při souhlasné polarizaci je však průběh skupinového zpoždění shodný s fázovacím článkem 2. řádu s $Q = 1$ (tedy na mezi poznatelnosti), zatímco při nesouhlasné polarizaci reproduktoru je průběh skupinového zpoždění shodný s průběhem výhybek druhého řádu, tedy podstatně příznivější a pod mezi poznatelnosti. Proto byly pro zesilovače zvoleny výhybky 3. řádu a nesouhlasná polarizace reproduktorů, v daném případě optimální ze všech hledisek.

Důležité je volit kvalitní reproduktory, např. ARV 3608, ARZ 4608 a ARN 6608, pro větší nároky i ARN 8608. Při konstrukci ozvučnic lze postupovat podle AR-B6/86, AR-B2/84 či dalších pramenů.

Důležitá je minimální vzdálenost mezi reproduktory (především vyskovým a středovým), která zajišťuje co nejvíce úhel prostoru, v němž se správně sčítají signály s kmitočty v okolí dělicího kmitočtu. Ze stejného důvodu je nevhodnější umísťit reproduktory nad sebou (horizontální rovina je širší). Je vhodné využít ozvučnice třemi tyčemi, umístěnými uvnitř ve třech vzájemně kolmých směrech.

Koncepce zesilovače je patrná ze skupinového zapojení na obr. 3 (jeden kanál). Vstupní obvody jsou tvořeny předzesilovači pro dynamickou přenosku a pro mikrofon a přepínačem pro lineární vstup z magnetofonu či univerzálního zdroje s úrovní 200 mV. Obvod regulace vstupní úrovně umožňuje nastavit napětí signálu tak, aby za předzesilovačem byla maximální úroveň 3 V. Správně nastavená úroveň signálu je i podmínkou správné činnosti fyziologické regulace. K předzesilovači je připojen potenciometr pro vývážení kanálů. Přepínač Př3 umožňuje zapojit třetino-oktaový ekvalizér do cest signálu. Součástí zesilovače je stereofonní dvojoktaový ekvalizér, který nahrazuje běžné korektory výšek a hloubek a filtry hluku a šumu (vzhledem k fyziologické regulaci ani není třeba používat běžné korektory výšek a hloubek). Ekvalizér lze vyřadit z činnosti přepínačem Př4. Obdobně lze přepínačem Př5 zrušit fyziologickou regulaci hlasitosti. Její obvod je oddělen jednotkovým zesilovačem. Za ním je výstup pro sluchátko a přes vypínač reproduktoru Př6 je signál veden na aktivní filtry kmitočtových výhybek. Z nich lze signál na tři výkonové

Obr. 3. Skupinové zapojení zesilovače

zesilovače (s MDA2020) a dále na reproduktory; polarita středového je opačná vůči hloubkovému a výškovému. Každý kanál má měříč s přepínáčem Př7 na vstup či výstup zesilovače. Př2b slouží ke zvýšení citlivosti při měření akustického řetězce. Rozmítaný generátor pilovitého signálu je jeden společný pro oba kanály a je k nim připínán (Př2a a Př3a) nezávisle. Každý kanál se měří zvlášť. Rozmítaný generátor se přepíná po dekádách přepínáčem Př8 a jemně je nastavován v rozsahu dekády potenciometrem P5.

Popis zapojení

V předzesilovači pro dynamickou přenosku (obr. 4) jsou zapojeny dva tranzistory T1 a T2 pro zmenšení šumu. Nejvhodnější typy KC309F jsem nesehnal a tak jsem použil KC309B. Horní propust druhého řádu s R1, R2, C1 a C2 omezuje hluk z náhonu talíře. Dolní propust R3C3 omezuje kmitočty nad 30 kHz (pro zmenšení dynamického intermodulačního zkreslení). Rezistory R5, R6 a kondenzátor C5 zmenšují náchylnost předzesilovače k vysokofrekvenčnímu kmitání. Odpory a kapacity R10, R11, C8, C7 pro tvarování charakteristiky RIAA stačí dodržet s tolerancí $\pm 10\%$.

Na obr. 5 jsou obvody předzesilovače, dvouoktávového ekvalizéru a oddělovacího zesilovače. Za regulátorem vstupní úrovně je dolní propust R17, C12, potlačující signál s kmitočty nad 20 kHz a tím omezující rychlosť změny napětí signálu (zamezuje vznik přeběhového intermodulačního zkreslení). Potenciometrem se vyvažuje úroveň v kanálech. Výstup D je k měření úrovni, vstup E_L pro pilovitý signál při měření akustického řetězce (připojuje se přepínačem Př2a). Př3 za-

píná třetinooktávový ekvalizér. Ve dvouoktávovém ekvalizéru je zapojen neinvertující zesilovač IO3c s regulačními tandemovými potenciometry P3a až P3e. Sériové rezonanční obvody s IO4/a—d a IO3/b jsou navrženy pro $Q = 1,1$. Obvykle používané zapojení s invertujícím zesilovačem a pasivními korekčními členy RC má malé Q , a proto se jednotlivé korektory značně vzájemně ovlivňují (toto zapojení má též horší šumové vlastnosti). Oproti běžné používanému zapojení syntetických induktoru s jedničkovým zesilovačem u oktávových korektorů je použito zapojení s R23a—e a R25a—e k získání kmitočtově nezávislých syntetických in-

duktorů pro sériové rezonanční obvody. Jinak by byl ovlivňován přenos na vysokých kmitočtech při regulaci nízkých kmitočtů. Amplitudové charakteristiky jednotlivých korektorů jsou na obr. 6.

Přepínač Př4 umožňuje vyřadit ekvalizér z činnosti. Fyziologická regulace s vypínačem Př5 byla převzata z [6]. Oddělovací zesilovač IO2b odděluje regulátor hlasitosti, je z něj veden výstup pro sluchátka a tvoří zdroj s nulovým vnitřním odporem, potřebný pro správnou činnost aktivních filtrů kmitočtových výhybek. V výstupu zesilovače je též veden signál (přes C_L) na vstup měřiče úrovně. Přepínačem Př6 lze odpojit reproduktory. Odpor rezis-

Obr. 4. Zapojení vstupních obvodů zesilovače

Obr. 5. Zapojení předzesilovače, pětipásmového ekvalizéra a oddělovacího zesilovače

storu R28 lze změnit podle citlivosti použitých sluchátek.

Na obr. 7 je zapojení aktivních výhybek, jejichž dělící kmitočty jsou 450 Hz a 3 kHz. Je použito klasického zapojení dolních a horních propustí 3. řádu s Butterworthovou approximací. Vzájemné ovlivnění výhybek (součet v oblasti 1 kHz) je zmenšeno na minimum změnou C20 a R39 oproti teoreticky zjištěným hodnotám. Výhybky lze nastavit velice přesně, ale i použití součástek s tolerancí $\pm 10\%$ postačuje.

Na obr. 8 je zapojení jednoho ze tří obdobných výkonových zesilovačů (označeny a, b a c). Vychází z katalogového zapojení, odlišné je pouze zesílení, jež je nastaveno odpory R42 a R43 na hodnotu 3. Změnou těchto odporů lze vyrovnat odlišné citlivosti reproduktorů. V katalogovém zapojení doporučené kondenzátory C35 a C36 (100 nF) se neukázaly jako nezbytné, kon-

denzátory C37 a C38 postačují jen dva na celou desku s plošnými spoji zesilovačů. Rezistor R44 s odporem 1Ω se obtížně shání; nejjednodušší je použít např. paralelní spojení dvou rezistorů $2,2\Omega$. Odpor 1Ω nemusí být dodržen zcela přesně, ale nelze jej nahradit zkratem.

Obr. 6. Modulové charakteristiky jednotlivých ko-rektorů ekvalizéru

Obr. 7. Zapojení kmitočtových výhybek

Obr. 8. Zapojení výkonového zesilovače pro jedno kmitočtové pásmo

Obr. 9. Zapojení měřiče úrovni

Na obr. 9 je zapojení obvodu pro měření úrovně signálu. Bylo navrženo podle [7], ale oddělovací zesilovač byl současně využit jako operační usměrňovač pro rozšíření měřeného rozsahu. Pro dobrou činnost usměrňovače do 20 kHz je potřebné opět využít OZ s tranzistory FET na vstupu. Př2b zvětšuje citlivost měření akustického řetězce, protože mikrofonem je snímán signál ze vzdálených reproduktorů a k měření by jinak musel být užíván velký akustický výkon. Svítivé diody jsou připojeny tak, aby byl získán přibližně logaritmický průběh (+2, 0, -1,5, -3, -6, -9, -15 dB), vhodnější než v původním prame-nu.

Na obr. 10 je zapojení generátoru pilovitého signálu v klasickém zapojení s IO12 (postačuje typ MA1458). Přepínačem Př8a se volí rozmitací kmitočet pro každou de-kádu. Rozmitaný generátor je rovněž v klasickém zapojení: převodník U/f, u něhož kmitočet určuje napětí, přiváděné z potenciometru P5. Na tento potenciometr je přiváděn součet konstantního napětí +15 V a rozmitacího napětí IO12. Rezistor R58 určuje kmitočtový zdvih, rezistory R57 a R59 jsou zvoleny tak, aby rozsah přeladění

Obr. 10. Zapojení rozmítného generátoru pilovitého signálu

Obr. 11. Zapojení napájecího zdroje

jednoduchým tranzistorovým obvodem.

Při snaze o získání většího výkonu zesilovače je vhodné použít reproduktory s impedancí 4Ω , do statečně dimenzovat transformátor, filtrační kondenzátory a také chlazení výkonových zesilovačů. Lze použít i zesilovače A2030, jsou ovšem obtížně dostupné. Nedoporučují naopak použít MBA810 pro nižší výkony, jejich rychlosť přeběhu je značně horší než u MDA2020.

(Příště dokončení)

ELEKTRONICKÁ LADIČKA KYTAR

RNDr. ing. Václav Pasáček

Sejde-li se několik méně zkušených hráčů na kytaru, obvykle vzniknou problémy při sladování nástrojů. Ti, kteří viděli u profesionálních hráčů elektronickou ladičku indikující správné nastavení svítivou diodou, zatouží mít něco podobného. Aby jim to bylo umožněno, vznikla tato konstrukce ladičky.

Popis přístroje

Elektronická ladička slouží k ladění zejména akustických kytar opatřených snímačem. Jestliže kytara snímačem opatřena není, můžeme použít i citlivý mikrofon. Při ladění elektrických kytar je nutné nastavit ovládací prvky na kytare do takové polohy, aby signál ze snímače obsahoval co nejméně vyšších harmonických. Vzhledem k snadné manipulaci s ladičkou je napájení bateriové (dvě ploché baterie). Správné nastavení jednotlivých strun indikuje šest svítivých diod, přičemž ladění si můžeme usnadnit přepnutím ladičky na menší rozlišovací schopnost o jeden řád (zvětší se šířka pásmá kmotčů, pro něž příslušná dioda svítí).

Ladička pracuje na principu měření délky periody kmotů struny čítačem a vyhodnocení naměřené hodnoty pomocí logické sítě. Při volbě zapojení bylo nutné sáhnout k některým kompromisům, aby zařízení nebylo příliš složité a drahé. Vzhledem k bateriovému napájení bylo vhodné použít

vat stupnici s normovanými třetinootákovými kmotčity.

Na obr. 11 je zapojení zdroje napájecího zdroje. Jeho zapojení je jednoduché, z napájecího napětí ± 20 V pro výkonové zesilovače je odvozeno napětí ± 15 V k napájení operačních zesilovačů. Napětí -15 V je vzhledem k nedostupnosti integrovaného prvku stabilizováno

obvody CMOS. Pro většinu amatérů by však konstrukce byla spíše teoretickou, neboť v maloobchodním prodeji se tyto obvody vyskytují velmi málo. Proto byly použity dostupné obvody TTL i za cenu většího odběru proudu ze zdroje. Uvedený odběr se může zdát na dvě ploché baterie příliš velký, ale uváděme-li si, že přístroj je v cinnosti jen několik minut, a že pracuje již při napětí 5,6 V, je odběr ještě přijatelný. Místo baterií lze samozřejmě připojit jakýkoli síťový zdroj stejnosměrného napětí 6 až 9 V umožňující odběr 0,3 A.

Technické údaje

Laděné struny: E6, A5, D4, G3, H2, E1.
Způsob indikace: každá struna samostatnou svítivou diodou.

Přesnost ladění: 0,2 % pro nejnižší tón, až 0,7 % pro nejvyšší tón, možnost snížení rozlišovací schopnosti o jeden řád.

Napájecí napětí: 5,6 až 10 V (2 ploché baterie).

Odběr proudu: 300 mA.

Popis funkce

Signál z kytarového snímače je nejprve zesílen zesilovačem s tranzistory T1, T2, pak tvarován Schmittovým klop-

ným obvodem s tranzistory T3 a T4 a převeden na úroveň obvodů TTL tranzistorem T5 [3] (obr. 1). Zesílení signálu je nutné vzhledem ke zmenšující se amplitudě. Klopny obvod signál zpracuje, jestliže je amplituda dostatečně velká. Limitace signálu zesilovačem a spouštění klopného obvodu limitovaným signálem se neosvědčilo. Kondenzátor C2 omezuje přenos vyšších harmonických, C3 zamezuje vysokofrekvenčnímu rozkmitání zesilovače.

Z kolektoru tranzistoru T5 jde signál do řídící logické části tvořené třemi hradly IO10 a dekadickým čítačem IO13. Průběhy signálů ukazuje časový diagram na obr. 2. V jedné periodě signálu je čítán normálový kmotčet a v následujících devíti periodách je zobrazován údaj čítače. Tento dynamický režim umožnil ušetřit tři obvody typu MH7475. Při dekadickém stavu "9" výstupu IO13 prochází signál normálového kmotču do čítače tvořeného obvody IO1, IO2 a IO3. Výstupní stav jednotlivých dekád je převeden z kódu BCD na kód 1 z 10 dekodéry IO4 až IO6, invertorovým obvodem IO7, IO8, IO9 a jedním hradlem IO10. Vyhodnocení stavu zajišťují hradla obvodů IO11 a IO12. Jednotlivým strunám kytary E, A, D, G, H, E odpovídají načítané stavy 607, 454, 341, 255, 202, 152 (dvojnásobky příslušných period) jsou

Obr. 1. Schéma zapojení (tranzistor T6 má být p-n-p)

6,07 ms, 4,54 ms, 3,41 ms, 2,55 ms, 2,02 ms a 1,52 ms). Z dvojnásobků period se vychází proto, aby hodnoty vyšly v rozsahu jedné dekády (tj. větší než 100 a menší než 1000) a nebyla nutná další dekáda čítače nebo přepínání pro jednotlivé struny. Normálkový kmitočet je proto 50 kHz.

Čítače IO1 až IO3 jsou nulovány velmi krátkým impulsem (asi 300 ns) vytvořeným derivačním členem C7, R17 na začátku intervalu čítání. Chyba takto vzniklá je pod mezi rozlišovací schopnosti ladičky.

Hradla IO9 a jedno hradlo z IO10 umožňují vyhodnotit stav pouze dvou nejvyšších řádů (spínač S1 v poloze „hrubě“, tj. sepnut) a usnadnit tak počátek ladění.

Normálkový kmitočet je generován integrovaným obvodem IO14 řízeným krystalem [2] a děličkou IO15. Oscilátor řízený krystalem se může zdát pře-

chem, ale odpadnou tím starostí s teplotní stabilitou při používání ladičky při různých teplotách. Ideální by byl oscilátor s krystalem 50 kHz, případně 100 kHz, čímž by odpadla dělička deseti IO15. Protože však jediný snadněji dostupný krystal vhodného kmitočtu je 1 MHz, bylo zapojení navrženo s ním. Dvě hradla IO14 tvoří oscilátor, zbylá dvě pak klopý obvod RS, který dělí kmitočet oscilátoru dvěma. Při použití krystalu 500 kHz (případně 50 kHz) klopý obvod vyněcháme a signál vedeme z vývodu 6 (nejlépe přes jedno ze zbylých hradel) přímo na vstup děličky IO15 (případě přímo na vývod 2 obvodu IO10). Toto řešení umožňuje použít krystal 50 kHz, 100 kHz, 500 kHz nebo 1 MHz na téže desce s plošnými spoji (po nepatrných úpravách), což by při návrhu desky s krystalem 50 kHz (100 kHz) nebylo možné. Odpory a kapacity v obvodech oscilátoru

Obr. 2. Časový diagram

a děličky dvěma jsou optimalizovány pro kmitočet 1 MHz a napájecí napětí 4,5 až 5,5 V. Při jiném kmitočtu bude asi nutné kapacity kondenzátorů příslušně změnit.

Pro stabilizátor napětí 5 V pro obvody TTL se často používá zapojení s MA7805. Je třeba si uvědomit, že při poklesu vstupního napětí pod 7 V výstupní napětí tohoto stabilizátoru prudce klesá. Proto byl použit stabilizátor s diskrétními prvky, jehož vlastnosti jsou vyhovující pro napájení obvodů TTL ještě při napájecím napětí 5 V (výstupní napětí je 4,8 V při odběru 0,25 A a 4,7 V při odběru 0,5 A). Anachronismem se může zdát použití germaniového tranzistoru T6, ten však umožňuje funkci stabilizátoru již od napětí o 0,2 až 0,3 V většího než je napětí výstupní. Lze použít samozřejmě křemíkový typ např. KD333 bez jakýchkoli dalších úprav, ale vstupní napětí v tomto případě musí být minimálně asi o 0,65 V větší než napětí výstupní. Dioda D4 zlepšuje činnost stabilizace a slouží zároveň pro kontrolu zapnutí přístroje. Vhodná velikost rezistoru R33 zajišťuje omezení proudu tranzistorem T6 při nabíjení kondenzátoru C14 po zapnutí přístroje. Kondenzátory C14 a C15 zmenšují dynamický vnitřní odpor stabilizátoru a zároveň zamezuji jeho vysokofrekvenčnímu rozkmitání. Dioda D5 zabraňuje přepoložení baterie, čímž se potřebné minimální napětí zdrojů zvětší asi na 5,7 V, což představuje napětí téměř vybitých baterií.

Deska s plošnými spoji je na obr. 3.

Seznam součástek

Rezistory (TR212, MLT 0,25 apod.)

R1	22 kΩ TP042
R2, R33	56 kΩ
R3	120 Ω
R4, R10	18 kΩ
R5	22 kΩ
R6, R27, R29	2,7 kΩ
R7	470 Ω
R8	680 Ω
R9	82 kΩ
R11	2,2 kΩ
R12	12 kΩ
R13	180 Ω
R14, R26, R28	4,7 kΩ
R15	10 kΩ
R16, R24, R25, R35	1 kΩ
R17	390 Ω
R18 až R23	330 Ω
R30, R31	1,2 kΩ
R32	270 Ω
R34	56 Ω

Kondenzátory

C1, C15 až C17	0,15 µF, TK 782
C2	6,8 nF, TK 724
C3	120 pF, TK 754
C4	10 µF, TE 003
C5, C6, C14	200 µF, TE 002
C7	1 nF, TK 724

Obr. 3. Deska X03 s plošnými spoji a rozmištění součástek
(vývod 10 IO7 má být označen d a vývod 8 e)

C8	10 nF, TK 724
C9	33 pF, TK 754
C10	56 pF, TK 754
C11, C12	27 pF, TK 754
C13	1000 µF, TE 982
<i>Polovodíčkové součástky</i>	
IO1 až IO3, IO13,	MH7490
IO15	
IO4 až IO6	MH7442
IO7	MH7404
IO8	MH7420 (MH740)
IO9, IO10, IO14	MH7400

IO11, IO12	MH7410
T1, T2	KC149
T3 až T5, T7, T8	KC148
T6	OC30 (KD333)
D1 až D3	KA206
D4, D6 až D11	LQ1132
D5	KY132/80
<i>Ostatní</i>	
X	krystal 1 MHz (500 kHz, 100 kHz, 50 kHz viz text)
S1, S2	dvojpólový páčkový přepínač
třídutinkový nf konektor (zásvuka) univerzální krabička K5	

Jak bude vycházet AR-A v letošním roce

Na přání našich čtenářů uveřejňujeme termíny vycházení AR. Data znamenají plánované termíny expedice z tiskárny; ve stáncích PNS by se měl časopis objevit asi o jeden až dva dny později.

č. 3	28. 2.	č. 8	18. 7.
č. 4	28. 3.	č. 9	29. 8.
č. 5	25. 4.	č. 10	26. 9.
č. 6	23. 5.	č. 11	24. 10.
č. 7	20. 6.	č. 12	21. 11.

mikroelektronika

K 1
K 2
K 3
K 4
K 5
K 6
K 7
K 8stránka 1
Úvod v režimu : L/D/R/Z/K

JEDNODUCHÝ LOGICKÝ ANALYZÁTOR

Vladimír Doval

Logické analyzátor sú veľmi účinným prostriedkom pri diagnostike, návrhu a oživovaní číslicových zariadení. Ich širokému zavedeniu na pracoviská do istej miery bráni pomerne vysoká cena týchto zariadení a dlhé dodacie termíny. V súčasnej dobe, keď takmer na každom pracovisku zaoberajúcom sa elektronikou (návrh, diagnostika, oživovanie) stále viac vystupuje do popredia číslicová technika, možno konštatovať, že logické analyzátor sú rovnako potrebné ako osciloskopy. Prognózy dokonca tvrdia, že o niekoľko rokov budú logické analyzátor častejšie používané ako osciloskopy. Sortiment výberu logických analyzátorov však nie je taký bohatý ako je to napr. u osciloskopov, kde je rozpätie zložitosti, a tým aj cien značné. V mnohých prípadoch by postačovali jednoduchšie analyzátor s nižšou cenou, avšak je potrebné nakupovať zariadenia sice so špičkovými parametrami, ale i s vysokou cenou.

Jednoduchý logický analyzátor LOGAN-30 je určený pre pracoviská, ktoré sú vybavené osobným mikropočítačom (alebo mikropočítačovým systémom) a zároveň kde je potrebné sledovať priebehy v logických obvodoch TTL, pričom LOGAN-30 výber nechce a ani nemôže konkurovať profesionálne vyrábaným prístrojom, o čom môže svedčiť jeho jednoduchosť a z toho vyplývajúca nízka cena — niekoľko desa-

tok násobne nižšia ako cena analyzátorov najnižšej cenovej triedy. Nízka cena popísaného analyzátoru je dosiahnutá úsporným riešením, ponechaním iba nevyhnutnejších funkcií a predovšetkým faktom, že LOGAN-30 je doplnkom osobného mikropočítača, ktorý sa tu využíva vo funkcii riadiacej a zobrazovacej jednotky. Najjednoduchšie vo svete vyrábané analyzátor sú dodávajú takisto ako doplnky — avšak

k osciloskopom, keďže sa predpokladá, že osciloskop je pritomný na každom pracovisku, kde sa prevádzajú merania elektrických veličín. Osciloskop sa v týchto prípadoch používa vo funkcii zobrazovacej jednotky. LOGAN-30 oproti takýmto analyzátorom je jednoduchší v riadiacich obvodoch, keďže mnohé z ich funkcií preberá osobný mikropočítač.

Stručná charakteristika a technické parametre analyzátoru na báze LOGAN-30

LOGAN-30 je interfejs pre osobné mikropočítače na báze mikroprocesora I8080, Z80, ktorých výstupom je grafický displej. Pripojením interfejsu LOGAN-30 a po zavedení odpovedajúceho programového vybavenia možno mikropočítač využívať ako logický analyzátor.

Obr. 1. Bloková schéma analyzátoru na báze LOGAN-30

Všetky možné stavy týchto vstupov sú zhrnuté do prehľadnej tabuľky 2:

Tab. 2

funkcia	SYN/ ASYN	EXT/ INT	R/W
čítanie obsahu pamäti LOGAN-30 a prenos dát do RAM pamäte mikropočítača	0	X	0
nedovolený stav	1	X	0
synchrónne vzorkovanie, ext. spustenie snímania	1	1	1
synchrónne vzorkovanie, int. spustenie snímania	1	0	1
asynchónne vzorkovanie, int. spustenie snímania	0	0	1
asynchónne vzorkovanie, ext. spustenie snímania	0	1	1

Parametre logického analýzatora na báze interfejsu LOGAN-30:

Charakter snímaných procesov:

úroveň TTL.

Počet kanálov sledovania:

8.

Maximálna hĺbka pamäte:

1024 vzoriek.

Režimy sledovania:

synchrónny, asynchónny.

Režimy spustenia:

interný, externý.

Počet kvalifikačných hodinových kanálov:

2, voliteľná, nábežná alebo dobežná hraná.

Spôsob ovládania:

zadávanie režimov z klávesnice osobného mikropočítača, nastavenie spúšťacieho slova a výber priamych alebo negovaných signálov f, Q1, Q2 (sada mikrosníčkov na samotnom interfejsu).

Zobrazenie výsledkov:

časový diagram zobrazovaný na obrazovke mikropočítača.

Max. vzorkovacia frekvencia pri synchronnom sledovaní:

cca 4 MHz
(v závislosti od triedy použitých pamäti).

Rozsah vzorkovacích frekvencií pri asynchónnom sledovaní:

32 Hz až 1 MHz.

Zaťažovanie meraných obvodov:

0,25 mA.

Osadenie:

17 IO (ČSSR a RVHP).

Rozmery:

110 × 70 × 12 mm.

Odber zo zdroja:

600 mA.

Zapojenie interfejsu LOGAN-30 obsahuje iba 17 IO, ktoré sú umiestnené na univerzálnej doske plošných spojov, ktorá tvorí údajový súond logického analýzatora. Interfejs LOGAN-30 sa pripája k mikropočítaču pomocou plochého 30-žilového kabla max. dĺžky 1,5 m, ktorý je súčasťou interfejsu. Kábel je ukončený konektorm, ktorého typ závisí od konkrétneho mikropočítača.

Požiadavky k mikropočítaču pre pripojenie interfejsu LOGAN-30:

typ mikroprocesora: I8080, Z80, grafický displej, osadenie paralelnym stykovým obvodom 8255 a univerzálnym časovačom 8253.

LOGAN-30 po jeho doplnení o A/D prevodník možno využívať ako jednoduchý čísličkový osciloskop neperiodických dejov nízkofrekvenčných signálov. LOGAN-30 je možné taktiež využiť na sledovanie zbernice mikroprocesorového systému.

Bloková schéma

Všeobecná bloková schéma logických analýzatorov obsahuje štyri základné bloky:

- riadiaci blok,
- registračný blok,
- zobrazovacia jednotka,
- vstupný blok.

Ako vidno z obr. 1, LOGAN-30 neobsahuje všetky štyri bloky. Vyplýva to z faktu, že LOGAN-30 nie je samostatným prístrojom, ale iba doplnkom mikropočítača. LOGAN-30 obsahuje vstupný blok, registračný blok a časť riadiaceho bloku.

Riadiaci blok, sústredený v mikropočítači, slúži na zadávanie režimov, uvedenie interfejsu do základného stavu a pre prenos údajov z pamäti interfejsu do RAM pamäte mikropočítača, tj. pre funkcie, ktoré nie sú časovo kritické.

Časovo kritické riadiace signály sú generované riadiacim blokom, ktorý je súčasťou LOGAN-30. Sú to signály pre krokovanie pamäti registračného bloku, signál pre spustenie snímania po komparácii nastavenej a vstupného slova alebo po príhode signálu externého spustenia.

Taktiež registračný blok sa nachádza i v časti mikropočítača a v časti LOGAN-30. Rýchle zaznamenávanie vzoriek sledovanejho procesu sa uskutečňuje v registračnom bloku LOGAN-30 a po zosnímaní (po vygenerovaní signálu KON) sa prenáša do operačnej pamäte mikropočítača, kde na základe týchto údajov sa prevádzka zobrazenie priebehov.

Popis funkcie LOGAN-30 (obr. 2)

Na obr. 3 je znázornený princíp vzorkovania logického analýzatora.

Pred samotným započatím snímania vzoriek z meraného procesu je potrebné nastaviť vstupy interfejsu EXT/ANZ (spustenie procesu snímania externé/interné), SYN/ASYN (sledovanie synchrónne/asynchónne), R/W (zápis alebo čítanie pamäti LOGAN-30) na žiadaný režim.

Obr. 3. Princíp vzorkovania pri logickej analýze

Z obr. 2 vidno, že signály EXT/INT, SYN/ASYN sú vedené na adresovacie vstupy multiplexeru IO1. Na tomto mieste bude vhodné upozorniť na netradičné zapojenie tohto obvodu. Integrovaný obvod 74153 obsahuje dvojicu 4-kanálových multiplexerov so spoločným adresováním jedného zo štyroch kanálov v oboch dvojiciach. Keďže pre funkciu LOGAN-30 bola potrebná dvojica 2-kanálových multiplexerov s nezávislým nastavením výberu kanálu, multiplexer bol zapojený tak ako vidno na obr. 2. Funkcia obvodu je zrejmá z tab. 3.

Tab. 3

B	A	VSTUPY				VÝSTUPY		
		10,11	12,13	20,22	21,23	S,T	1Y	2Y
X	X	X	X	X	X	H	0	0
0	0	0	X	0	X	0	0	0
0	1	1	X	1	X	0	1	1
0	1	0	X	X	0	0	0	0
0	1	1	X	X	1	0	1	1
1	0	X	0	0	X	0	0	0
1	0	X	1	1	X	0	1	1
1	1	X	0	X	0	0	0	0
1	1	X	1	X	1	0	1	1

Vstupné obvody

Údajové vstupy meraného systému, tj. vstupy nezávislých logických kanálov K1 až K8, sú priamo pripojené k registru typu 8282. Register pomocou vstupu OE uvádzia svoje výstupy D00 až D07 do stavu veľkej impedancie (OE=1). Vstup STB slúži na riadenie zápisu údajov, ktoré sa nachádzajú na vstupoch obvodu, do vnútorných regisztrov. Pri nastavení STB=1 je obvod nastavený na prenos údajov vstup-výstup, pri STB=0 je obvod v stave uchovávania údajov, ktoré boli na vstupe v momente dobežnej hraný vstupu STB.

Hodinové signály, ku ktorým patria kvalifikačné signály Q1, Q2 a vstup hodinovej frekvencie f_{in} spolu so signálom externého spustenia procesu snímania EXT sú privezené na vstupy obvodu IO15, ktorý slúži ako oddelovací obvod. Vidno, že elektrická funkcia signálov f_{in} , Q1 a Q2 je naprostoto zhodná, ale i napriek tomu, kvôli jednoznačnosti ich nebude navzájom zamieňať. Za oddelovacím obvodom IO15 smerujú všetky signály na vstupy 2-vstupových logických komparátorov IO16. Na druhé vstupy komparátorov sú vedené signály od

prepínacov S21 až S23, pomocou ktorých sa volí priamy alebo negovaný vstupný signál.

Za komparátormi sa signály f_{in} , Q1, Q2 zlúčujú v 3-vstupovom hradle IO17. Logicky súčin týchto signálov má význam v tom, že signál hodinovej frekvencie f_{in} nadobúda platnosť iba za predpokladu prítomnosti definovaných hodnôt kvalifikačných signálov Q1, Q2. Nastavením prepínacov S22, S23 je možné maskovať signál f_{in} v nezádúcich okamihoch, nastavením prepínaca S21 (f/f) sa nastavuje aktívnosť nábežnej alebo dobežnej hrany hodinového signálu pri synchronnej analýze vzhľadom k momentu zápisu vstupných údajov do pamäti interfejsu. Pri nevyužívaní kvalifikačných signálov je potrebné nastaviť im zodpovedajúce prepínace do polohy 1.

Spúšťacie obvody

LOGAN-30 umožňuje 2 režimy započatia zápisu údajov — externý, interný. Signál externého spustenia sa odvozuje od meraného systému a do interfejsu vstupuje cez oddelovací obvod IO15. Signál interného spustenia sa vygeneruje po zhode nastavenejho 8-bitového slova a vstupného slova, ktoré je tvorené výstupnými kanálmi K1 až K8. Obvody pre vyhodnotenie zhody sú tvorené obvodmi IO13, IO14, IO11, IO12. Komparačné slovo sa nastavuje prepínacmi S1 až S8. Výstupy prepínacov sa vedú na zodpovedajúce vstupy 2-vstupových logických komparátorov. Na druhé vstupy komparátorov vstupujú signály jednotlivých kanálov, oddelené od snimaného procesu vstupným registrom IO7. Výstupy komparátorov sú vedené cez invertory s otvoreným kolektorm IO11, IO12 a prepínacmi S11 až S18 do spoločného bodu. V tom bude sa môže nastaviť úroveň log. 1 iba v prípade, že na všetkých vstupoch invertorov, ktorým priradené prepínacie sú v polohe 1 (tj. uzavorené), budú logické jednotky, tj. na ich vstupoch musia byť logické nuly, čo znamená, že na vstupoch zodpovedajúceho logického komparátora sa musia nachádzať zhodné logické úrovne. Vidno, že pokiaľ je zodpovedajúci prepínac v polohe 0, hodnota jemu zodpovedajúceho komparátora nevplýva na výsledný signál. Prepínace S11 až S18 teda slúžia na zamaskovanie bitu, ktorého hodnota nie je pre komparačné slovo zaujímatá. V profesionálnych logických analýzatoroch sa tento stav označuje „X“ alebo slovne „DON'T CARE“ a nastavuje sa ako 3. poloha prepínacov komparačného slova v prípade jednoduchších analýzatorov alebo znakom „X“ v prípade programovateľných analýzatorov.

Signál zhody a signál externého spustenia vstupujú cez hradlá IO8a, IO8d na vstupy multiplexeru IO1. Predpokladajme, že na vstupoch 2, 13 hradla IO8a,d sú log. 1. Signál ext. spustenia alebo signál shody v závislosti od nastavenia multiplexeru (viď tab. 2) postupuje na jeho výstup a ďalej cez komparátor IO16d na hodinový vstup klopného obvodu IO2. Klopný obvod v momente kladnej napäťovej úrovne na vstupe C sa nastaví na log. 1 (kedže na jeho údajovom vstupe je pevne nastavená log. 1). Komparátor IO16d slúži na nastavenie aktívnej nábežnej alebo dobežnej hrany vstupného signálu na jeho vstupe 12. V prípade, že je multiplexer nastavený na ext. spustenie, prepínac S24 volí moment

spustenia vzorkovacieho procesu nábežnou alebo dobežnou hranou signálu EXT. V prípade nastavenia multiplexeru na int. spustenie sa volí prepínacem S24 moment spustenia v momente prichodu zhody alebo v momente jej pominutia (v priemyselných analýzatoroch sa označuje obdoba tohto prepínaca slovne TRUE/FALSE).

Vstupy 2, 13 hradla IO8a, d slúžia pre znemožnenie opäťovného spustenia vzorkovacieho procesu po naplnení pamäti, kedy sa na týchto vstupoch objaví úroveň log. 0.

Zápis

Po nastavení režimov snímania (SYN/ASYN, EXT/INT) je potrebné nastaviť signál R/W na zápis (R/W=1) a uviesť odvody analyzátora do východzieho stavu.

Nastavenie signálu R/W na log. 1 spôsobi:

- nastavenie vstupu T multiplexeru IO1 na log. 0, čo umožní prechádzanie signálov EXT alebo zhoda cez multiplexer;
- nastavenie vstupu S klopného obvodu na log. 1 (neaktívna úroveň), čo dovolí jeho nulovanie;
- priviedenie log. 1 na hradlo IO8c, čo umožní pôsobenie vzorkovacej frekvencie na vstup WE pamäti pre zápis údajov.

Signál RES vynuluje čítače IO3, IO4, IO8, tj. zápis do pamäti IO5, IO6 sa bude prevádzkať od nulovej adresy, vynuluje klopný obvod IO2, to znamená, že zablokuje vzorkovacie impulzy až do momentu spustenia.

V momente prichodu kladnej napäťovej zmeny na hodinový vstup klopného obvodu IO2 sa jeho výstup nastaví na log. 1, to znamená, že impulzy vzorkovacej frekvencie (synchronnej alebo asynchronnej) — v závislosti od nastavenia vstupu B multiplexeru — začnú postupovať na nasledovné časti obvodu:

- na čítače IO3, IO4, IO8 — každý impulz zvýši obsah čítačov o 1. Výstupy čítačov sú privodené na adresovacie vstupy pamäti IO5, IO6;
- na vstupy WE pamäti IO5, IO6;
- v momente nulovej hodnoty impulzu na týchto vstupoch prebieha zápis do pamäti. Signál prechádza cez hradlo IO8c, na vstupe ktorého je v režime zápis log. 1. Paralelne s WE je pripojený vstup OE budiča, čím sa register uvádzá do 3. stavu počas WE=1. Tým je zabránené konfliktu signálov na obojsmernej internej zbernickej interfejsu LOGAN-30.

— na vstup STB budiča IO7, čím sa v momente STB=0 prenášajú na vstup tohto obvodu údaje, ktoré boli na jeho vstupe v momente závernej hrany signálu STB.

Obr. 4. Časový diagram LOGAN-30

Popisanú situáciu lepšie objasní časový diagram na obr. 4. Signál na vstup STB prechádza cez hradlo IO17, ktoré slúži na to, aby pred momentom spustenia, kedy je klopný obvod IO2 vynulovaný a teda na výstupe IO17 je log. 1, bol budič IO7 pre údaje vstupných kanálov otvorený (STB=1 — prenos údajov vstup — výstup).

Cinnosť zápisu hodnoty registra IO7 do pamäti, tj. zápisu vzoriek meraného

8násobného procesu v rytme vzorkovacej frekvencie zo vstupov K1 až K8, sa opakuje až do momentu načítania 1024 vzoriek, kedy sa od čítania IO8 cez invertor IO12 a hradla IO12c, IO12d vynuluje klopný obvod IO2, čím sa zabráni krokovaniu pamäti a zároveň tento signál zabráni svojou log. úrovňou 0 na vstupoch hradiel IO8a,d znovuspusteniu procesu snímania tým, že zablokuje vstupy externého alebo interného spustenia v závislosti od nastavenejho režimu spustenia. Zároveň je tento signál prítomný na výstupe KON, čím sa mikroprocesor hlási ukončenie činnosti snímania.

Popísaná situácia je naprostu rovnaká či pri synchronnej (SYN/ASYN = 1) alebo asynchronnej (SYN/ASYN = 0) analýze.

Čítanie

Po ukončení snímania následuje prenos dát z pamäti interfejsu LOGAN-30 do RAM pamäte mikropočítača. Kvôli tomu je potrebné nastaviť — SYN/ASYN = 0, tj. asynchronný režim, kvôli generovaniu od mikropočítača impulzov pre posuv čítačov IO3, IO4 až IO14, ktorí pre čítanie obsahu pamäti;

- uviesť univerzálny čítač (časovač) do 4. režimu,
- R/W = 0 — bude prebiehať čítanie obsahu pamäti,
- uviesť obvod LOGAN-30 do východzieho stavu, vygenerovaním nulovacieho impulzu na vstupe RES.

Po uvedení vstupov interfejsu LOGAN-30 na požadované hodnoty, na internej zbernickej interfejsu bude prítomný obsah pamäti IO5, IO6 s adresou, ktorá je daná hodnotou čítačov IO3, IO4, IO8. Obsah pamäti sa prenáša po internej zbernickej na vstup mikropočítača, odkiaľ sa prenáša na požadované miesto operačnej pamäte. Po zápisu hodnoty osembitového slova sa od mikropočítača vygeneruje impulz, ktorý cez vstup interfejsu TO, multiplexer IO15, hradlo IO8 spôsobí zvýšenie hodnoty čítačov o 1, čím sa na internej zbernickej objaví hodnota nasledujúceho slova (nasledujúcej zaznamenané vozky), ktorá sa opäť prepíše do pamäte počítača. Táto činnosť sa bude opakovať až pokiaľ nebude prepísaný celý obsah pamäti IO5, IO6.

Napájanie

Interfejs LOGAN-30 je možné napájať, ak to dovolí zdroj mikropočítača, priamo z tohto zdroja alebo z meraného systému cez svorky samotného interfejsu — $+U_{cc}$, GND. Jeden alebo druhý prípad sa volí prepojkou na plošnom spoji.

Konštrukčné prevedenie interfejsu LOGAN-30

Pri konštrukcii LOGAN-30 bol kladený dôraz na miniatúrnosť celého zariadenia tak, aby LOGAN-30 mal veľkosť sondy. Celé zariadenie bolo zabudované do prázdnego obalu pre magnetofónové kazety. Fakt, že všetky prvky sú umiestnené v blízkosti meraných procesov, robí prenos neskreslených údajov od procesov až do počítača bezproblematickým. Všetky rýchle deje priebehajú v samotnom interfejsi, kam sú pomocou krátkych vodičov pripojené merané body systému.

Aby bolo možné disiahnuť extrémnu hustotu súčiastok, a tým minimálne vonkajšie rozmerky, boli prvky interfejsu umiestnené na univerzálnej doske plošných spojov s rozmermi 100 x 65 mm.

(Dokončení prieskumu)

Vlastnosti obvodů, vlastnosti dokumentace

Pozoruhodnou odezvu vzbudil článek Jozefa Krála [1], věnovaný výsledkům delšího experimentování s obvodem MHB8253. Jeden z došlých dopisů vlastností popsanou v tomto článku potvrzuje a uvádí, že není v dokumentaci firmy INTEL popisována. Další dva citují zcela stejný odstavec ze dvou různých katalogů INTEL, který tuto vlastnost celkem bez zbytku vysvětluje; jeden z dopisů navíc navrhuje časopisecky publikovat přesné překlady kompletérských katalogových listů.

Pravdu ovšem mají spíše ti druzí: skutečně, dokumentace INTEL přetiskuje stále týž typový list obvodů 8253/8253-5 s příslušnými údaji; ale chceme-li se nyní věci nějakou chvíli dostatečně puntičkářsky zabývat, zůstává přesto několik otázek.

Předeším, co to je MHB8253? Toto označení bychom asi marně hledali v katalozích světových i jiných výrobců polovodičů. Na konec snad můžeme vyslovit předpoklad, že jestliže třeba MHB8251 znáčí USART vyráběný podnikem TESLA, pak MHB8253 se vši pravděpodobností označuje programovatelný časovač **nevyráběný** podnikem TESLA. V určité části československé technické literatury se ostatně stalo zvykem, kdykoliv se chci např. odvolat na některý méně běžný obvod TTL, vyráběný deseti různými světovými výrobci pod deseti označením, různými až na číslo, nazvat jej suverénně MH74XXX. Přijmejme to jako projev – dejme tomu – české národní hrosti; nevylučujme ale možnost nedořezání, které tak může nastat.

Vice pozornosti si asi zaslouží myšlenka publikovat v AR překlady katalogových listů. Ve specifických československých podmínkách, s kterými jsme – tak jako všichni – poněkud obeznámeni, by bylo pouhým tupým alibismem ji odmítout poukazem na to, že dodat odpovídající dokumentaci je věcí výrobce nebo dovozce. Ten to sotva udělá; musíme mu být dost vděční už jen za to, že vyrábí něco, co podle všeho je funkčním ekvivalentem světově rozšířených obvodů, které ovšem zdokumentovány jsou. (Těžko si představit jejich použití v jiném případě.) Nicméně, jsou zde drobné praktické potíže. Tím nemáme na mysli okolnost, že publikovat překlady bez svolení vlastníka autorských práv k originálu porušuje autorský zákon; to – jak víme – není praktická potíž. Popis obvodu 8253/8253-5 ale má v katalogu INTEL 11 stránek, což je ostatně poměrně málo např. proti 8251A (17 stránek), 8272 (19 stránek), 8255A (21 stránek), 8271/8271-6 nebo 8291A (každý 29 stránek) [2] či mikroprocesorům, kde už katalogový list nestojí; odpovídající dokumentace má stovky spíše než desítky stránek. Již seznam literatury INTEL [3] je sám o sobě docela úctyhodná brožurka o 32 stránkách (byť popisuje i produkty, s kterými se v Československu sotva kdo setká – někdy ovšem proto, že se jejich používání ve světě neprosadilo). A existují ovšem i jiní výrobci než INTEL. Kdyby tedy teď AR začalo otiskovat doslovné překlady všech relevantní dokumentace k nyní dostupným obvodům, a věnovalo tomu třeba polovinu zelené zálohy, skončilo by pravděpodobně v době, kdy už by jen málokdo pamatoval, jak ty obvody vlastně vypadaly.

Tim se ale nechceme zastávat zkrácených popisů. Naopak, je zřejmé, že i pokud je sestavoval někdo, kdo má s popisovanými obvodami nějaké reálné zkušenosti (stejně jako je zřejmé, že tomu tak není vždy), mohou profesionálové posloužit nanejvýš k tomu, ziskat představu o možnostech obvodu dříve, než se rozhodne jej použít; amatérovi pak poslouží jako východisko pro kratší či delší experimentování (na které profesionál, který potřebuje reálné výsledky, sotva má čas). Pro toho, kdo chce s nějakým obvodem vážně pracovat, je asi jediné řešení originální dokumentace; poté, co si ji zkusí objednat nejdříve jako literaturu a pak jako součástku, si ji může přiležitostně kupit za úspory z kapesného nebo vypůjčit a kopírovat od kolegy, který ji získal podobně.

Vraťme se nyní k výchozímu článku [1]. V popsané situaci viditelně není chybou autora, že si nebyl nejprve přečetl to, co posléze vyzkoumal; je zřejmou chybou redakce otisknout takový příspěvek bez konzultace s někým, kdo má originální dokumentaci k dispozici. Na druhé straně, autor s větší dávkou kritičnosti by si patrně položil otázku, je-li možné, aby taková vlastnost (či spíše v jeho pojetí chyba) obvodu, který se vyrábí déle než deset let, zůstala neodhalena, a autor s trochou technického cítění by si, než by začal psát článek, možná uvědomil, že procesor bude (v módu 0, výrobcem označovaném Interrupt on Terminal Count – nikoliv čítač událostí) asi zapisovat do nějakého vyrovnávacího registru spíše než přímo do čítače, a že tedy ten speciální popud pro přepis dat, který právě objevil, může být docela přirozená věc.

—ph—

Literatura

- [1] Kráľ, J.: Vlastnost obvodu MHB8253. AR A10/88.
- [2] Component Data Catalog. Firemní literatura INTEL Corp., 1982.
- [3] Literature Guide. Firemní literatura INTEL Corp., 1985.

C-correction

Rád bych se omluvil všem čtenářům mého článku „Programovací jazyk C“ v AR 12/88, kteří při čtení posledního odstavce pochybovali střídavě o mém a svém zdravém rozumu. Tiskařský šotek propustil téměř celý článek bez chybíčky, aby si to vynahradil na konci:

- výsledkem příkazu “# define NULA 0;” samozřejmě bude nahrazení identifikátoru NULA řetězcem “0;” (a ne samotnou nulou),
- v definici makra “max” mají být použity normální závorky, ne složené;

#define max(a,b) ((a)>(b)?(a):(b))

—konečně, naprostě pythický poslední odstavec měl vypadat takto: V PASCALU podobná možnost není; od funkce se makro liší tím, že se do textu programu uloží jeho (rozvinutá) definice, takže zápis “max(2, i)” je, ekvivalentní zápisu

“(2)>(i)?(2):(i)”. Závorky zajišťují správné vyhodnocení výrazu typu “max(2<=i?i:+1,i)“ (prvním operandem je zde opět podmíněný výraz).

Ondřej Čada

EMUSAPI

Ing. M. Pianežzer

(Dokončení)

LOAD ve formátu ZX Spectrum

Blok v paměti

Typ:
Délka:
Název:
Pozn.:

Funkce

- zavádí do paměti všechny typy bloků
- bloky mohou být s hlavičkou i bez
- maximální délka je 41000 bajtu

Informace

Zvol: LOAD, SAVE nebo RETURN (=RESET)

Blok pro záznam

Délka:
Název:

Zavedení do SAPI-1

- * pro MIKRO BASIC povolen R-B + adresa
- * pro MIKROBASIC povolen LOAD od adresy 40EF H

SAVE pro MIKROBASIC SAPI-1

2. Obsluha programu

Program se nahrává obvyklým způsobem, tzn. LOAD ““. Po nahrání a spuštění se na obrazovce objeví 5 informačních oken (viz obr.). V oknu „Informace“ se po dobu úvodního zvukového znamení objeví nabídka volby režimu LOAD, SAVE nebo RETURN. Všechna okna jsou zobrazena po celou dobu chodu programu. V těchto ok-

nech se zobrazují veškeré informace pro obsluhu, takže není třeba listovat návodem a obsluha je okamžitě informována jak o bloku v paměti, bloku vyslaném na magnetofon, chybových hlášeních, tak i o možnosti volby další funkce.

2.1. LOAD

Na magnetofonu nastavíme daný blok, spustíme ho a stiskneme LOAD. Rozbliká se nápis LOAD — blok je nahráván. Obsluha je zároveň informována o možnosti stisku BREAK a tedy přerušení LOAD a návratu do hlavní povelové smyčky.

Pokud při nahrávání dojde k chybě, nebo obsluha stiskne BREAK, nebo je-li program delší než 41 kB, tak v oknu „informace“ se objeví příslušná zpráva doprovázená zvukovým signálem. Je-li vše v pořádku, pak v oknu „blok v paměti“ se zobrazí údaje o tomto bloku. Jedná-li se o hlavičku, čeká program na nahrání dalšího bloku. Jedná-li se o bezhlavičkový program, údaje se vypisují po jeho nahrání. Vypisuje se typ bloku, jeho délka a název, popř. v poznámce jedná-li se o blok, který není nahrávaný standardní rutinou SAVE z ROMky ZX Spectra. U programu BASIC se vypisuje číslo startovací linky atd. (viz kap. 1.2.). Po nahrání následuje návrat do hlavní povelové smyčky.

2.2. SAVE

Jestliže tento režim navolíme a v paměti není platný blok z LOAD, vypíše se v oknu „Informace“ chyba. Jinak se rozblížka nápis SAVE a obsluha je informována, že při stisku ENTER je jméno zaznamenávaného bloku, stejně jako bloku z LOAD. Při stisku jiné klávesy je tato brána jako začátek nového jména, které se ukončí ENTER. Následuje konverze malých písmen na velká a znaků jež nejsou tisknutelné ASCII (znaky jsou nahrazeny podtržkem). Souhlasí-li obsluha se jménem a odstartováním programu, stiskne znova ENTER. Stisk jiné klávesy ruší režim SAVE. Při záznamu lze použít BREAK k přerušení SAVE a návratu do hlavní povelové smyčky, kde lze volit LOAD, SAVE a RETURN. Tam se také program vrací po skončení SAVE. Na začátku nahrávaného bloku je asi 5 sekund úvodní tón. Vystupující impulsy jsou zobrazeny jako pruhy na okraji obrazovky — borderu, stejně jako při SAVE na ZX Spectru.

2.3. RETURN

Po jeho stisku se provede restart systému ZX Spectra. Je to obdoba tlačítka RESET na ZX Spectru +.

3. Závěr

Tato první verze programu EMUSAPI je po programátorské stránce otevřený systém. Je to jádro, kolem kterého jsou dále vytvářeny další uživatelské vrstvy.

Protože nemám možnost připojit na ZX Spectrum grafickou tiskárnu přes sériovou linku a SAPI-1 sériový kanál má, odladil jsem už druhou verzi EMUSAPI, která „rozezná“ blok SCREEN\$ a při záznamu na SAPI-1 k němu automaticky připojí ovlaďač grafické tiskárny. Ten umožňuje tisknout SCREEN\$ v původní velikosti nebo dvakrát zvětšený. V provozu jsou ovlaďače grafických tiskáren Seikosha GP-100AS a Siemens PT88.

Výhledově bude v další verzi EMUSAPI „rozebíráč“ znaků klíčových slov BASIC na jednotlivá písmena a úprava listingu pro zobrazení a tisk na API-1.


```

***** EMUSAPI V1.0 *****
(c)1986 Ing.M.Pianecker
***** FUNKCE:
;Program je urcen pro mikropocitac ZX
;Spectrum. Slouzi k prenosu programu ze
;ZX Spectra na mikropocitac SAPI-1.
;Prenos se uskutecnuje pres
;magнетofonovou kazetu nebo primym
;spojenim vystupu MIC ZX Spectra na
;vstup kazety magnetofon desky
;DSM-1 v SAPI-1.
;Dve hlavní casti programu plni tyto
;funkce:
;LOAD - cte z kazety vsechny typy bloku
;ve formatu ZX Spectrum a to s hlavickou
;si bez.
;SAVE - na vystupu MIC je dany blok
;vysilan ve formatu a kodovani SAPI.
;
;ROZDELENI PAMETI:
;4000-screen s texty a okny vytvoreny
; pomocí MEGABASIC a LEONARDO
;5800-tabulka vsech zprav TAB a buffer
; pro umistení hlavicky
;5C00-pole promennych ZX Spectra
;5D00-vlastni program
;62xx-volna pamet
;FFD3-casovaci smycka SAPI modulace
;
***** DEFINICE SYMBOLU *****
;
KAT EQU %D1000010 ;klidovy
;atribut (neblikajici)
AAT EQU %11000010 ;aktivni
;atribut (blikajici)
ZACB EQU #D0 ;l byte EDBUF
ZACVO EQU #B5AF ;zacatek volne
;pameti
DELVO EQU #FFD0-ZACVO ;delka
;volne pameti
EDBUF EQU %5C00 ;editacni buffer
;
;kod radky a sloupce pro umistení textu
;
LC_TYP EQU #141E ;typu
LC_DEL EQU #131C ;delky
LC_NAZ EQU #121C ;nazvu
LC_POZ EQU #111D ;pozice
LC_P01 EQU #1020 ;pozice1
LC_MSG EQU #0B1E ;zpravy
LC_SAV EQU #0809 ;pro save
LC_SA1 EQU #071C ;pro save1
;
***** TABULKA VSECH VYPISOVANYCH ZPRAV *****
;
-konec zpravy označuje byte se
7_bitemH
-zpravy jsou vypisovany pomocí P-MSG
-v Acc je P-MSG predavano poradi
zpravy v TAB
;
ORG #5800
;
TAB DEFB #80
DEFM "RETURN=RESE"
DEFB "T@#80"
DEFM "BREAK=konec funkce"
DEFB "e@#80"
DEFM "Chyba zaznam"
DEFB "u@#80"
DEFM "Velmi dlouhy blo"
DEFB "k@#80"
DEFM "start link"
DEFB "a@#80"
DEFM "% ASCII znak"
DEFB "u@#80"
DEFM "Neni format ZX SAV"
DEFB "E@#80"
DEFM "Bez hlavick"
DEFB "y@#80"
DEFM "Neplatny blok v RA"
DEFB "M@#80"
DEFM "ENTER=puvodni naze"
DEFB "v@#80"
DEFM "stisk ENTER=Star"
DEFB "t@#80"
DEFM "BASIC progra"
DEFB "m@#80"
DEFM "Number arra"
DEFB "v@#80"
DEFM "Character arra"
DEFB "y@#80"
DEFM " Byte"
DEFB "#10,6,#11,2,#13,#80
HEAD DEFB "#10,7,#11,3,#13,#81
HE DEFES 25 ;buffer pro hlavicku
; :konec bufferu
;
***** ZACATEK PROGRAMU *****
;
ORG #5D00
;
; inicializace vykonavana pouze pri
; prvnim spusteni programu
;
LD A,#D6 ;atribut blinka
LD HL,#59A6 ;na adresu informaci o okna
LD B,20 ;macnihbo okna
;
```


KONSTRUKTÉŘI SVAZARNU

PROGRAMOVATELNÝ SVĚTELNÝ HAD

Jiří Kimmel, Libor Koloničný

Námět na tuto konstrukci světelného hada vznikl z nedostatků světelních hadů, které byly dosud publikovány. Budě se jednalo o jednoduché zařízení, které umožňovalo chod vpřed i vzad s jedinou kombinací nebo byly uveřejněny konstrukce poskytující sice více kombinací, ale v zapojení byla použita paměť PROM. Protože každý nemá k dispozici programátor, navrhli jsme zapojení světelného hada s pamětí RAM, která umožňuje naprogramovat kombinace podle vlastní představy. Samotná elektronika se nemusí používat jen pro připojení světelného hada, ale lze k ní též připojit doplněk napodobující světelný maják.

Základní technické údaje

Kapacita paměti:	64 bitů.
Počet kombinací v jednom směru:	256.
Počet spínacích okruhů	4.
Max. spínací proud (závisí na použitém tranzistoru):	3,2 A.
Napájecí napětí:	220 V, 50 Hz.
Deska logiky:	
Napájecí napětí:	5 V.
Odběr ze zdroje:	300 mA.
Jištění tavnou pojistkou:	100 mA.
Spínací deska:	
Napájecí napětí:	220 V.
Jištění tavnou pojistkou:	4 A.
Osazení:	7 integrovaných obvodů, 4 tranzistory, 15 diod, 5 tranzistorů.

Blokové schéma

Činnost programovatelného světelného hada je vysvětlena na obr. 1.

Zdrojem hodinových impulsů je generátor (1). Z něj jsou impulsy přivedeny

do čítače (3), který vytváří adresu pro paměť RAM (6). Tento čítač (následovně i paměť) nemusí procházet všechny šestnácti cykly, tj. od adresy 0000 do 1111 (při chodu vpřed), ale může se předvolit číslo, od kterého čítač pracuje až do konečného stavu 1111. Tato předvolba se uskutečňuje druhým

Obr. 1. Blokové schéma

čítačem (4). Impulsy na hodinový vstup čítače předvolbý (nebo na vstup čítače (3)) se přivádějí z krokového generátoru (5) a (2). Impulsy z krokového generátoru (2) se používají jen při programování paměti, kdy si vždy po jednom kroku zapisujeme data do paměti. Tyto datové signály tvoří čtyři páčkové spínače (8), kterými se určí, jaký výstupní žárovkový okruh bude sepnutý. Na výstupech z paměti jsou zapojeny spínací obvody (7). Zdroj (9) zajišťuje napájecí napětí +5 V pro veškerou logiku a +220 V pro napájení žárovek.

Popis zapojení

Logická část zapojení světelného hada je na obr. 2. Jako hodinový generátor je použit multivibrátor z hradel NAND. Abychom dosáhli stejného trvání úrovně L i H na výstupu, musí být shodné obě kapacity a oba odpory. Pak bude na výstupu z obvodu signál se střídou 1:1. Kmitočet měníme tandemovým potenciometrem. Nejmenší odpór, při kterém ještě generátor kmitá, je asi $220\ \Omega$, proto je tento rezistor v sérii s potenciometrem.

Krokové generátory tvoří klopné obvody R-S, složené ze dvou hradel NAND, které tvarují impulsy z běžného tlačítka nebo vypínače. Připojením tlačítka do logiky TTL by vznikaly často hazardní stav, způsobené přechodovými jevy na kontaktech.

Jako čítač, který vytváří adresu pro paměť RAM (3), je použit binární synchronní reverzibilní čítač MH74193, a jako čítač předvolby (4) je použit binární čítač MH7493. Vysvětlovat funkci těchto známých obvodů jistě není třeba, podrobný popis je např. v literatuře [2] a [3]. Ke zpoždění o 200 ns u IO MH74193 je použit integrační článek RC doplněný dvěma hradly NAND. Impuls přenosu přijde na vstup hradla NAND dříve než negovaný zpožděný impuls. Výpočtem jsme zjistili, že odpór rezistoru bude $470\ \Omega$, kapacita kondenzátoru bude $470\ \text{pF}$.

Použitá paměť RAM MH7489 má 64 bitů. Je to vlastně jediná statická bipolární paměť, která má čtyři výstupy. Kapacita této paměti pro daný účel zcela postačuje. Použití jiné paměti by bylo neekonomické. Na výstupy je třeba přes rezistor $820\ \Omega$ až $2,2\ \text{k}\Omega$ přivést logickou úroveň H.

Signály z paměti přicházejí do báze spínacího tranzistoru přes rezistor omezující proud do báze a do diody,

Obr. 2. Schéma zapojení logické části

Obr. 5. Deska X04 s plošnými spoji logické části

Obr. 3. Schéma zapojení spínací části

Obr. 4. Schéma zapojení zdroje a blikáče

Obr. 6. Deska X05 s plošnými spoji spínací části

Seznam součástek

Rezistory (TR 212)

R1 až R6	1,2 kΩ
R7, R8	390 Ω
R9	470 Ω
R10 až R22	2,2 kΩ
R23 až R26	68 Ω
R27	4,7 kΩ
R28	1 kΩ
R29	4,7 kΩ
R30	220 Ω
R31	1 kΩ
R32	2,2 kΩ
P1	5 kΩ/G-TP283

Kondenzátory

C1, C2	200 μF, TE002
C3	470 pF, TK774
C4, C5	50 μF, TE002
C6	1000 μF, TE984
C7	2 μF, TE005
C8	100 nF, TK782

Polovodičové součástky:

D1 až D4	KY130/600
D5, D6	LQ...
D7 až D10	KY130/80
D11	1NZ70
D12 až D15	1N4004
T1 až T4	KS500
Ty1 až Ty4	KT110/500
Ty5	KT501
IO1, IO2, IO5	MH7400
IO3	MH7493
IO4	MH74193
IO6	MH7489
IO7	MA7805

Ostatní součástky

Po1	100 mA
Po2	4 A
Po3	500 mA
S1 až S4	spínače Isostat
S5 až S8	páckové spínače
T11 až T14	tlačítka Isostat

Literatura

- [1] Syrovátko, M.: Zapojení s integrovanými obvody.
- [2] Katalog polovodičových součástek 1984/1985.
- [3] Kratochvíl, Š.: Dálkový kurz číslicové techniky.

světelného hada je vhodné použít atypický konektor. Vnitřní uspořádání je vidět na obr. 8.

V zapojení jsou použity IO tuzemské výroby. Ochranné diody D1 až D4 mohou být jakékoli, ale se závěrným napětím větším než 400 V. Diody pro usměrnění 220 V pro žárovky zvolíme podle potřebného proudu. Zenerovu diodu staršího typu 1NZ70 lze nahradit diodou KZ260/5V1. Tyristory pro spínání žárovek musí být dimenzované podle žárovek, a také musí být na dostatečné napětí (např. KT504, KT110/400). Všechny součástky lze použít druhé jakosti. Integrovaný stabilizátor MA7805 musí být umístěn na chladiči! Jako programovací spínače můžeme použít klasické páckové spínače. Ostatní spínače a tlačítka mohou být např. typu Isostat.

Pro lepší orientaci při obsluze a programování je dobré vyvést na

ným potenciálem! Při tomto spojení by se překlenula jedna z diod v usměrňovači!

Protože nám při navrhování zbyly nezapojená dvě hradla NAND, využili jsme je pro blikač (obr. 3) se dvěma diodami LED, který indikuje chod celého zařízení.

Konstrukční provedení

Celé zařízení je rozvrženo na tři desky s plošnými spoji (obr. 5, 6, 7). První deska (logika — obr. 5) má rozměry 160 × 85 mm. Po osazení desek součástkami je propojíme podle schématu. K desce logiky připojíme zdroj napětí a vyzkoušme jednotlivé funkce obvodu. K oživení není potřeba žádných složitých přístrojů, postačí logicke sonda a Avomet. Celé zařízení vestavíme do skřínky, zhotovené podle materiálových možností. K připojování

která má chránit desku logiky před případným proniknutím napětí 220 V. Kolektor spinaciho tranzistoru je připojen na 5 V a emitor je spojen přes rezistor s řidicí elektrodou tyristoru (obr. 3). Anoda je připojena přes zátěž na usměrněné nevyfiltrované napětí 220 V. Zátěž může být světelny had nebo světelny maják.

Střidavé napětí z transformátoru je usměrněno klasickým můstkovým usměrňovačem s filtrovacím kondenzátorem 1000 μF. U stabilizátoru 5 V (obr. 4) je použit stabilizátor napětí MA7805, zablokován na výstupu kondenzátorem 2 μF. Na desce stabilizátoru je také ochrana, která chrání desku logiky před přepětím.

Stejnosměrné napětí 220 V se získává opět pomocí můstkového usměrňovače. Pozor, v žádném případě se nesmí spojit kostra přístroje se zápor-

přední panel světelnou indikaci (diody LED), např. z výstupu čítače a výstupu paměti.

Postup při programování

Po zapnutí celého přístroje musíme využít oba čítače tlačítka T12, T14. Na vstup čítače MH74193 přepneme spínačem S2 krokový generátor. Spínačem S4 přepneme paměť RAM do funkce zápis a můžeme přistoupit k programování.

Při první adrese, tj. 0000, zvolíme páčkovými spínači S5 až S8 kombinaci rozsvícení žárovek světelného hada. Krokovým obvodem (T13) přivedeme impuls na vstup čítače MH74193 a na jeho výstupu se stav změní na 0001. Do paměti opět zapíšeme další kombinaci, a tak pokračujeme až do úplného naplnění paměti, tj. až na výstupu čítače MH74193 bude stav 1111.

Můžeme však využít i předvolby tohoto čítače. Předvolbu programujeme čítačem MH7493. Na vstup tohoto čítače je připojen opět krokový generátor, kterým nastavíme adresu na výstupech čítače MH7493 a zároveň na výstupech předvolby čítače MH74193. Pak vynulujeme (T13) čítač MH74193 a tím se také zapíše předvolba. Tak např. při vzestupném čítání nastavíme na vstupy předvolby 0111, což odpovídá v dekadickém kódu 7. Pak čítač vždy čítá od 7 do 16 a při sestupném čítání (S3) by čítač od 7 do 0. Takže, jestliže čítač bude čítat jen od 7 do 16, nemusíme programovat celou paměť a tím si urychlíme celé programování.

Jestliže již máme paměť naprogramovanou, přepneme ji zpět do stavu čtení, vynulujeme čítač MH74193 a na jeho vstup připojíme spínačem S2 výstup hodinového oscilátoru. Oscilátor odblokuje a nastavíme rychlosť postupného spinání žárovek (potenciometr P1). Na výstup celého zařízení připojíme světelného hada.

Závěr

Toto zapojení světelného hada není složité ani nákladné. Pokud se použijí předem vyzkoušené součástky, pracuje zařízení na první zapojení. Při oživování se nevyužívají žádná „kritická“ místa. Snad jedinou nevýhodou je velký počet ovládacích prvků, ale tento problém se nedá jinak vyřešit. Přístroj může být použit na diskotékách s připojením světelného hada nebo majáku, může být také využit k vytváření efektů ve výkladních skříních.

Obr. 7. Deska X06 s plošnými spoji zdroje

Obr. 8. Vnitřní uspořádání přístroje

Proč proudová sonda?

Základními veličinami v elektrotechnice jsou proud a napětí. Tedy napětí... a proud. Snad nás tak vycvičily elektronky, tranzistorová éra nás nepředělala a již logika TTL, ale zcela jistě obvody MOS nás vrátily k napěťovému myšlení. Proud tedy bereme na vědomí prostřednictvím převodníků proud/napětí.

Představme si třeba obvod s tyristorem, který spiná proudový impuls 1 A. Když impuls chceme „vidět“ s amplitudou 1 V, musíme do obvodu zařadit snímací odpor 1 Ω. Ten nelze zapojit kdekoli (pokud nemáme k dispozici diferenciální vstupy na měřicím zařízení) a jeho velikost může ovlivnit chování spínacího obvodu. Co nabízí proudová sonda? Proudový impuls 1 A můžeme snímat proudovou sondou s citlivostí 1 V/A. Není vodivě spojena s měřeným obvodem, můžeme ji tedy umístit kde-

koli. Do měřeného obvodu vnáší (při $N_1 = 1$, $N_2 = 50$ a $R_T = 25 \Omega$ — viz dále) jen asi 0,04 Ω.

Základní údaje

Obecné schéma zapojení a náhradní obvod jsou na obr. 1, 2. Primární závit je obvykle jen jeden ($N_1 = 1$). Pak je výstupní napětí U_T při primárním proudu i_1 ,

$$U_T = i_1 R_T = (i_1 / N_2) R_T = i_1 (R_T / N_2).$$

**PŘIPRAVUJEME
PRO VÁS**

**Třetinoaktárový
ekvalizér**

Výraz R_T/N_2 udává citlivost proudové sondy a vyjadřuje se ve V/A. Náhradním obvodem proudové sondy je zdroj proudu zatížený indukčností sekundárního vinutí L_2 a odporem vinutí R_2 v sérii se zatěžovacím odporem R_T . Napětí na zakončovacím odporu R_T při skoku I_1 , primárnímu proudu je:

$$U_T = (I_1 R_1) / N_2 e^{-t/\tau}$$

kde $\tau = L_2 / (R_2 + R_T)$

(Zatěžovací odpor se s ohledem na připojení souosého kabelu obvykle volí 50Ω . Pokud je kabel zakončen odporem 50Ω také na druhém konci, musíme za R_T dosadit 25Ω !) Amplituda se na výstupu tedy exponenciálně změnuje. Při měření impulsů se prakticky využívá jen počáteční části, kde lze exponenciál approximovat přímokou. Pokles v $\%/\mu\text{s}$ je udávaným parametrem proudové sondy.

Celkové napětí na jeden závit sekundárního vinutí je dánou součtem úbytku na odporu vinutí (U_2) a úbytku na zakončovacím odporu (U_T), děleným počtem závitů (N_2). Magnetickou indukci B v jádru udává integrál napěti na jeden závit na jednotku plochy jádra. Pro proudový skok I_1 platí:

$$B = \frac{I_1 (R_T + R_2)}{A N_2^2} \tau (1 - e^{-t/\tau})$$

kde A je plocha řezu jádra.

Pro časový úsek $t << \tau$ lze exponenciální průběh nahradit prvním členem rozvoje, pak:

$$B = I_1 \frac{R_T + R_2}{A N_2^2} t$$

Tedy magnetická indukce B roste s časem až do bodu efektivní saturace jádra. Násobek primárního proudu I_1 a času, kdy k této saturaci dochází, je důležitým parametrem proudové sondy

$$I_1 t_{\max} = B_{\max} \frac{A N_2^2}{R_T + R_2} .$$

Některá omezení proudové sondy

Proudová sonda je vlastně transformátor, který do obvodu, v němž měříme proud, transformuje impedanci sekundární strany (teoreticky jen velmi malý odpor):

$$R_1 = (R_T + R_2) / N_2^2 .$$

Skutečný průběh U_T se liší od idealizované odezvy na skok proudu:

- Doba náběhu a doběhu není nulová.
- Na náběžné hraně vzniká překmit a tlumené kmitání. Tyto projevy způsobují především rozptylové parametry konstrukce, které při návrhu lze jen odhadovat.
- Ploché temeno odezvy impulsu s časem klesá. Souvisí to s dolním

mezním kmitočtem přenosu, s časovou konstantou L_2/R_T . Podle konkrétního požadavku lze tento nedostatek kompenzovat buď zvětšením indukčnosti vinutí (buď počtem závitů, tím se ovšem zhorší dynamické vlastnosti, nebo použitím jádra z materiálu s větší permeabilitou, což je možnost spíše (teoretická) nebo zmenšením zatěžovacího odporu. Také z tohoto důvodu dáváme přednost zakončení 50Ω na obou koncích kabelu.

— Chyba citlivosti. Prakticky je závislá na přesnosti a časové stálosti zakončovacích rezistorů (předpokládáme, že počet závitů N_2 spočítáme s absolutní přesností).

Přes tyto nedostatky je proudová sonda velmi širokopásmovým převodníkem, jehož amatérská realizace není obtížná.

Praktické provedení

Ověřené provedení proudové sondy je v řezu znázorněno na obr. 3. Plášť je z mosazné trubky obdélníkového průřezu (vlňovod) a dvou připájených víček z mosazného plechu tloušťky 1 mm. Plášť lze sestavit také třeba z odřezků kuprextitu, masivnější vodivý plášť však zvětšuje dokonalost stínění. Podstatné je, že plášť nesmí tvořit závit nakrátko kolem toroidu. Plášť v ose toroidu tvoří mosazný trubkový nýt, připájený k spodnímu víku. Izolační vložky středu toroidu na trubce nýtu a zajišťují pírušení pláště.

S feritovým toroidem $\varnothing 10/6 \times 4$ mm z materiálu H22 s počtem závitů $N_2 = 50$ dosahneme $L_2 = 2$ mH. Při vinutí vodičem CuL, $\varnothing 0,3$ mm vychází 50 závitů těsně vedle sebe na vnitřním průměru toroidu. Zakončovací odpor 50Ω se nejsnadněji (a nejpřesněji) vytvoří paralelním zapojením rezistorů 100Ω (např. TR 151). Výstupní konektor byl použit WK 465 50. Je možné však použít jakýkoli souosý konektor 50Ω .

Výpočtem určíme další parametry: citlivost $R_T/N_2 = 1$ V/A (nebo $0,5$ V/A se zakončením kabelu), časová konstanta $L_2/R_T = 40 \mu\text{s}$ (nebo $80 \mu\text{s}$), tedy pokles $2,5 \%/\mu\text{s}$ (nebo 1, 25 $\%/\mu\text{s}$), násobek $I_1 t_{\max} = 80 \text{ A } \mu\text{s}$ (nebo $160 \text{ A } \mu\text{s}$ se zakončením kabelu).

Pro ilustraci skutečných „dovedností“ popsané proudové sondy je na obr. 4 osciloskopogram budicího napětí a odpovídajícího proudu přes rezistor 50Ω snímaného proudovou sondou (šířka pásma osciloskopu 100 MHz). Amplituda napěti 5 V na odporu 50Ω dává proud 100 mA , změřený proud je rovněž 100 mA . Osciloskopogram na obr. 5 je proudový impuls přes stejný rezistor 50Ω , vybuzený vybitím souosého kabelu. Strmost náběhu zo-

Obr. 1. Obecné schéma zapojení

Obr. 2. Náhradní obvod

Obr. 3. Mechanické provedení sondy

Obr. 4. Průběh napětí a proudu

Obr. 5. Průběh proudového impulsu

Obr. 6. Průběh proudu v přívodu k anténě vysílače, soupravy RC

brazeného průběhu je ovlivněna zejména strmostí proudové sondy a osciloskopu (3,5 ns). Z osciloskopu usoudíme, že doba náběhu proudové sondy je menší než 3,5 ns. Na obr. 6 je osciloskopogram proudu v přívodu k anténě radiového vysílače v pásmu 27 MHz pro řízení modelů, při náhodném nastavení ovládacích prvků. Mezivrcholový proud dosahuje 100 mA , klíčovací poměr asi 30 dB.

Proudová sonda je jistě nejlépe využita ve spojení s osciloskopem, ale nic nebrání jejímu použití s jinými přístroji (vč. voltmetrem, logickými obvody atd.).

Velkou výhodou je galvanické oddělení měřeného a měřicího obvodu. Při vhodné izolaci může být na měřeném vodiči značné stejnosměrné napětí (nikoli stejnosměrný proud!).

Proudovou sondu lze trvale vestavět do libovolného zařízení k monitorování. Při vhodném uspořádání (tloušťka vodiče a izolantu primárního průchozího závitu) se může zachovat impedance vedení, tedy jeho přizpůsobení, např. přívodu k anténě vysílače.

šb

Družicový přijímač

(Dokončení)

Napájení

Přijímač napájíme stabilizovaným napětím +18 V. V přijímači z něj ještě odvozujeme napětí +12 V. Schéma zapojení a rozmišlení součástek na základní desce je na obr. 13. Stabilizátor MA7812 je umístěn na vnitřní přepážce. Odběr proudu ze zdroje 12 V je asi 350 mA. Napětí 18 V se používá také k napájení konvertoru. Pro ladění varikapů je ještě potřeba napětí 42 V.

Výstupní díl

Přestože rezistor R341 je v zásadě výstupem přijímače (u továrních přijímačů je označován např. Basisband), při příjmu z družic se k němu musí připojit další přídavné stupně, které rozdělí úplný obrazový signál na audio a video signály. Pokud by slo o vysílání kódovaném v soustavě D-MAC, D2-MAC apod., bude se dekodér zapojovat rovněž na tento výstup.

Příklad jednoduchého zapojení pro zpracování video a audio signálu je na obr. 14. Doprovodný zvuk programu bývá obvykle na kmitočtu 5 až 8 MHz. Na vstupu zvukové části, za vstupním tranzistorem T1, je filtr, který propustí jen pásmo 5 až 8 MHz. IO1 pracuje jako

oscilátor a směšovač. Oscilátor je pře-
laďován varikapou D2 v rozmezí 15 až
19 MHz. V směšovači potom získáme
mf signál 10,7 MHz, který zesílíme s T2.
Potom mf signál prochází keramickým
filtrém SFE 10,7 MHz do IO2, ve kterém
z něj získáme výstupní nízkofrekvenční
signál.

Současně úplný obrazový signál přichází na filtr, kde nastavíme minimum kmitočtu 5,5 MHz (L5) a 6,5 MHz (L6).

Tranzistory T3 a T4 můžeme měnit polaritu videosignálu. Za T5 následuje dolní propust (deemfáze), zesilovače T6 a T7 a emitorový sledovač T8, na jehož výstupu již dostaneme videosignal.

Zapojení obvodů pro úpravu úplného obrazového signálu jsou poměrně jednoduchá a mohou mít mnoho variant. Proto zde není uveden ani nákres desky s plošnými spoji.

Pokud TVP nemá video a audio vstup, musíme do družicového přijímače ještě zabudovat modulátor.

V obr. 9 má mít rezistor R406 hodnotu 8,2 kΩ.

Výhodou tohoto přijímače je, že jeho konstrukce má dostatečné rezervy (příkladem je 1. směšovač), takže je dobré reprodukovatelný. To vyvažuje nevýhodu v poměrné složitosti přijímače. K

Obr. 13. Schéma zapojení a rozmišlení součástek zdroje

Obr. 14. Schéma zapojení pro zpracování úplného obrazového signálu
(L1 – 15 z, drát ø 0,2 CuL; L2 – 18 z, drát ø 0,2 CuL; L3 – 20 z, drát ø 0,2 CuL;
L4 – 8 z, drát ø 0,4 CuL; L5 – 60 z, drát ø 0,1 CuL; L6 – 70 z, drát ø 0,1 CuL;
všechny čívky na jádře 4x10, hmota N10)

Ještě jednou dekodér PAL/SECAM

Petr Vávra

Od uveřejnění článku „Úprava televizoru SECAM pro příjem SECAM/PAL“ v AR A12/86 str. 467 a v AR A1/87 str. 25 uběhl již delší čas. Během této doby jsem provedl několik úprav zapojení, které zlepšují činnost modulu dekodéru PAL/SECAM. Tímto článkem bych chtěl zároveň odpovědět na četné dotazy čtenářů, které se týkaly úprav podobných televizorů, ať už naši, či zahraniční výroby.

V AR A3/87 na str. 91 byla uveřejněna oprava. Mimo chyby uvedené v této opravě jsem zjistil ještě následující: Na obr. [6] chybí spoj čtvercové plochy (mezi ploškami A a L) a ploškou F. V obr. [7] u vývodu 6 IO2 chybí za písmenem C v kroužku uzemnění, které je nutné na desce s plošnými spoji proškrábnot.

Chtěl bych hned v úvodu upozornit, že při photování a montáži obvodu je nutno pracovat velmi pečlivě. Zároveň doporučuji přečíst si AR B4/87 až AR B6/87, kde je mimo jiné velmi podrobne popsán celý BTVP Color 110 ST, z jehož zapojení jsem vycházel. Pro přehlednost u obrázků z minulých čísel bude číslo obrázku uvedeno v hranaté závorce.

Obr. 1. Upravený obvod deemfáze a správné zapojení trimru R18

Nejprve se budu věnovat úpravám, které jsou nutné pro správnou činnost dekodéru PAL/SECAM. Typické závady byly:

- 1) Posuv barev vůči jasovému signálu Y.
- 2) Špatné nasazení barev při přepnutí do soustavy PAL.
- 3) Velká sytost barev (až viditelné modré zpětné běhy).

První závada byla způsobena špatným zapojením běžečky trimru R18 v obr. [5], které bylo převzato ze schématu BTVP Color 110. Správně má být běžeček trimru zapojen na napájecí napětí IO1 MBA540 — vývod 3. R18 slouží k nastavení úrovni nasazení barvového AVC na vývodech 10 a 12 IO1. Zároveň je běžeček R18 spojen přes rezistory R22 a R21 s katodami diod D3 a D4, které slouží k vypínání deemfáze v normě PAL. V normě PAL jsou diody v zavřeném stavu a členy RC R23, C23, R20, C22 jsou odpojeny. V normě SECAM jsou diody otevřené a uvedené členy zajišťují koincidenční signály R—Y a B—Y s jasovým signálem Y. Chybou zapojením běžečky R18 byly diody stále otevřené a způsobovaly v normě PAL posuv barev na obrazovce vůči černobílému obrazu. Protože jsou však na desce SECAM členy RC již osazeny (jde o součástky R34, C39, R36, C43 na obr. [7]), jsou součástky R23, C23, R20, C22 zbytečné. Je možné odstranit členy RC na desce z obr. [7] a ponechat členy RC na desce z obr. [5] nebo naopak. Ve

druhém případě je nutné desku SECAM (obr. [7]) patřičně upravit. Diody D3 a D4 se přemístí na desku SECAM, kde se proškrábnou spoje mezi původními členy RC a body A a B. Vše by mělo být jasné z obr. 1. Je lepší vést přepínací napětí na desku SECAM a vyněchat členy RC na desce PAL (deska U58). Pro velké obrazovky, kde by nebylo dostatečné krytí barev a jasového signálu, je možné nahradit R34 a R36 na desce z obr. [7] trimry 1,5 kΩ a posuv nastavit přesně.

Druhá závada byla způsobena nevhodným umístěním součástek C5, C3, C7, D1, R2 na desce PAL. Bylo nutné rozložit mírně kanálový volič směrem k vyšším kmitočtům a po zasynchronizování barev ho přesně dočasit. Na propojovací vodiče se naindukovalo napětí, které znemožňovalo synchronizaci barev. Přemístěním uvedených součástek přímo na desku SECAM (ze strany spojů) se tato závada odstranila (viz obr. 2).

Třetí úprava se týká nastavení pracovního bodu diody D1 na desce PAL (obr. [5]). Rezistory R100 a R101 1 kΩ a 5,6 kΩ se nastaví na katodě diody stejnosměrné předpětí 2 až 3 V. Kondenzátor C100 (100 nF) slouží k výzemně vstupnímu obvodu. Součástky jsou umístěny také na desce SECAM ze strany spojů. V původním zapojení nedocházelo k zatlumení TR1 v normě PAL a barvový siflovač v MCA640 byl přebuzen. Správně má být na vývodu 3 IO1 z obr. [7] v normě SECAM signál o mezivrcholové úrovni 80 až 120 mV a v normě PAL o mezivrcholové úrovni 4 až 80 mV. Viz obr. 3.

Obr. 3. Zapojení upraveného obvodu s TR1

Dále jsem provedl následující úpravu. V barevném televizním přijímači TESLA Color 110 ST jsou mezi vývody 13 MCA640 a 5 MBA540 (výstup a vstup SIB — synchronizačních impulů barev PAL) zařazeny součástky R23, C39, C41, L9, C40. Tyto součástky opravují fázi SIB a odstraňují „žaluzie“ v obraze. Mimo jiné po jejich doplnění do obvodu (na desku PAL se pohodlně vejduj) se zlepší i nasazení barev v normě PAL, viz obr. 4.

Obr. 4. Obnovovač fáze SIB PAL (článek L9 je lepší objednat v zásilkové službě — obj. č. 6PK 855 89)

Obr. 2. Upravená deska SECAM z BTVP Elektronika C401

Tolik k nutným úpravám a nyní k jednotlivým dotazům. Nejčastější otázkou byla možnost použití úpravy na jiném televizoru. V zásadě je úprava možná u jakéhokoliv tranzistorového BTVP, který je řešen modulovým způsobem. U televizorů, které neobsahují integrované obvody MCA640, MCA650, nebo jejich ekvivalenty (např. TCA640, TCA650, K174ChA9, K174ChA8 aj.), je pravděpodobně nutné vyměnit celý modul dekodéru barev. U televizorů, které obsahují uvedené IO, je možné dekodér upravit. Proto doplňující obvod MCA660 (slouží pro vytvoření signálů G—Y, řízení sytosti, jasu a kontrastu) nemusí být v dekodéru osazen. IO sovětské výroby řady K224 (tj. K224UP1, K224UP2, K224TP1, K224ChP1) jsou určeny pouze pro normu SECAM a týká se jich výměna celého dekodéru.

Další dotazy se týkaly způsobu vinutí a zapojení cívky L1, L2 z obr. [5]. Cívka je vinuta na vf kostičce o průměru 5 mm drátem CuL, o průměru 0,1 mm. Jádro je z materiálu N01 (červené). Způsob vinutí je popsán dále a schématicky nakreslen na obr. 5. Postup vinutí cívky L1, L2: Na vývod 6 a C24 připájíme po jednom drátu a vineme 40 závitů oběma dráty současně (při pohledu na cívku shora), proti směru hodinových ručiček (ne křížově). Poté konec dráty vedoucího od vývodu 6 připájíme na vývod C24 a volný konec druhého drátu připájíme na vývod 4.

Obr. 5. Vinutí a zapojení cívek L1 a L2

Další dotazy byly na možnost nastavení bez měřicích přístrojů. Modul s dekodérem po pečlivé kontrole připojíme k televizoru, který poté zapneme. Zkontrolujeme, zda je příjem v normě SECAM v pořádku. Pokud není, je nutno vše pořádně opět zkонтrolovat. V případě úspěšné kontroly příjmu v normě SECAM připojíme signál PAL na vstup BTVP a dekodér přepneme do normy PAL. Dále nastavíme regulátor sytosti barev na maximum a trimr R18 nastavíme do takové polohy, aby se na obrazovce objevily barevné „utíkající“ pruhy. Pokud jsou málo sytý, zvětšíme systost trimrem R16. Dále trimrem C12 otáčíme tak dlouho, až se pruhy labilně zastaví. Ladíme nekovovým šroubovákem, nejlépe keramickým. Pak trimrem R18 nastavíme na vývod 9 IO1 napětí 1 až 2 V nebo nepřebuzenou systost barev. Barvy by měly být nyní již zasynchronizované. Trimrem R8 nastavíme správnou fázi mezi referenčními signály R—Y a B—Y. Bez osciloskopu, kde nastavíme posuv o čtvrtinu periody, lze trimr R8 nastavit zkusmo podle barev v obraze. V obraze nesmí být „žaluzie“. Pokud máme k dispozici monoskop v normě PAL, pak lze R8

Obr. 6. Zapojení zvukové mf a demodulátoru 5,5 a 6,5 MHz

nastaví podle signálů U a V (viz AR B4/87 str. 155). Cívka L1, L2 se ladí na nezkraslený přenos signálu z vývodu 4 na vývod 6 IO MBA540 (posuv o polovinu periody a maximální amplituda). Nastavení není kritické. Tímto je modul nastaven.

Další dotazy se týkaly zvukového doprovodu v normě CCIR 5,5 MHz a samočinného přepínání norem. Modul A z BTVP Color 110 (přepínač norem) je popsán v AR B4/87, takže se jím nebudu podrobněji zabývat. Jen doplním, že cívka L1 má asi 30 závitů drátem CuL o průměru 0,2 mm na vf kostičce o průměru 5 mm s červeným jádrem z materiálu N01. Obvod LC s L1 je laděn na rezonanci na kmotku 3,9 MHz.

Zvukový doprovod v normě CCIR je doplněn zdvojením obvodů LC mezi vývody 2, 14 a 9, 7 IO A220D (K174UR1, A223D atd.). Jeden ze dvou sériově zapojených LC obvodů je laděn na 6,5 MHz a druhý na 5,5 MHz. Zapojení obvodu je na obr. 6.

Kromě těchto úprav lze zvětšovat kvalitu reprodukce obvody, které nejsou nezbytně nutné pro činnost celého televizoru. Záleží na majiteli televizoru, zda ho doplní i témito obvody nebo ne. Popis obvodů, jejich funkce a nastavení bylo uveřejněno v AR B4/87 až AR B6/87, proto jej nebudu opakovat. Pro ty, kteří se rozhodnou doplnit i tyto obvody, uvádíme seznam součástek s objednacími čísly, které lze objednat v záslíkové službě TESLA Uherský Brod. Označení součástek se shoduje s AR B4/87 až AR B6/87 a schématem BTVP Color 110. Hodnoty součástek neuvedlím, lze je získat z uvedené literatury.

Seznam součástek

Demodulátor zvuku a mf zesilovač (modul Z)

VD2 — L1, C3... 6PK 855 78

VD1 — L2, C2... 6PK 855 77

FD1 — L3, C9... 6PK 855 80

FD2 — L4, C10... 6PK 855 79

Odláďovač nosné 32,5 MHz v mf obrazu (základní deska)

C103, L101... 6PK 855 92

C102, R105, D101, T141, D141,

přepínač K/G

Odláďovač 5,5 MHz (základní deska)

L54... 6PK 855 88

C150, R148

Horní propust 2,1 MHz (základní deska)

R141, C141, C143, L152... 6PK 585 97

Přepínač PAL/SECAM... 6 PN 052 09 (modul A)

ZAPOJENIE ČASOVAČA 555 PRE STRIEDU 1:1

Široká amatérská verejnosť zná časovač s označením 555 ako jednoduchý, ale presný a spoľahlivý integrovaný obvod, určený pre stavbu najrôznejších zariadení využívajúcich monostabilný či astabilný multivibrátor.

Prikladom použitia tohto obvodu bolo na stránkach odbornej tlače uvedených dosť [1], [2], [3]. Týmto príspievkom by som chcel upozorniť na ďalšiu možnosť, ktorú tento obvod poskytuje a to zapojenie astabilného multivibrátora produkujúceho signál so striedou 1:1. Ako je známe, pre tento typ generátora [4] je doba nabijania zapojeného kondenzátora

$$T_{\text{nab}} = C (R_a + R_b) \ln 2$$

a doba jeho vybijania

$$T_{\text{vyb}} = R_b C \ln 2.$$

Z týchto vzťahov je zrejmé, že striedu signálu 1:1 možno dosiahnuť len približne a to za predpokladu $R_a \ll R_b$. V niektorých prípadoch je problematické dodržať danú podmienku, resp. nie je žiaduce prúdrovo preťažovať obvod pri značnom zmenení odporu R_a . V takom prípade je vhodnejšie zapojiť na obvode medzi vývod 5 (tzv. napäťová kontrola) a vývod 1 (zem) rezistor o odpore $R_c = 2 R_a ((K-1)/(2-K))$.

$R = 5 \text{ k}\Omega$, je to rezistor k deliči napäťia vo vnútornej štruktúre obvodu

$$K = 2(R_b/(R_a + R_b)).$$

Pri uvedenom zapojení (obr. 1) nie je potrebné dodržať podmienku $R_a \ll R_b$, avo vzorci pre T_{nab} možno tak eliminovať zapojením rezistoru R_c . Presné nastavenie striedy 1:1 možno najľahšie dosiahnuť osciloskopom a trimrom R_c . Treba si len uvedomiť, že pri zmenšovaní odporu R_c sa skracuje doba nabijania a naopak. Zapojený trimer R_c neovplyvňuje dobu vybijania.

Obr. 1. Schéma zapojenia

[1] ST 12/1977, s. 458.

[2] AR B5/1978, s. 199.

[3] AR B2/1979, s. 68.

AMATÉRSKÉ RÁDIO BRANNÉ VÝCHOVĚ

Ján Orosi a Ildiko Venczelová v cíli. Najdôležitejší je čas, tak si ho porovnajme. Z počasia prihliada vedúci družstva Bratislavu ing. A. Maťaš, OK3CMR

Pod týmto názvom usporiadal okresný rádioklub v Nyiregyháze (východné Maďarsko) zaujímavú súťaž v rádioorientačnom behu — ARDF. V období záverečných príprav na nadchdzajúci svetový šampionát vo Švajčiarsku sa po zrušení porovnávacích pretekov ZST v Rumunsku stala vlastne jediným fórom na nazretie do súčasnej výkonnosti zúčastnených tímov. Je pravdou, že pretek sa okrem domácich športovcov zúčastnili viacmenej len klubové celky družobných rádioklubov z Maďarska (ZSSR), Subotice (Juhoslávia), Bratislav (CSSR), rozšírené o účasť časti reprezentatívneho družstva DARC z NSR, ale aj tak bolo dosť poznáť, najmä kto a ako väzne „zbrojí“.

Zahraničných účastníkov v priebehu piatka 23. 7. 1988 osobne vital tajomník organizácie Jozef Dévenyi a pracovník rádioklubu a štátny tréner ARDF v jednej osobe, majster Európy Miklós Venczel, HA2LZ. Pri rýchlo ubiehajúcim čase v rozhovoroch zostalo trochu aj na prehliadku priestorov rádioklubu, ktorý zaberá celé jedno poschodie v budove MHSZ v Nyiregyháze, na Arany János utca 7. Videli sme bohaté vybavenú (KV a VKV zariadením) okresnú stanici HA2KLZ, a aj priestory pre výpočtovú techniku, elektrické a mechanické dielne, nechýbala ani odpočinková miestnosť pre KV pretekárov, kancelárie funkcionárov, zasadacia miestnosť atď. Rádioklub má vlastnú výrobnú činnosť, z ktorej dotuje (aj finančne) svojich špičkových športovcov v ROB — ARDF, a tiež nakupuje techniku pre KV a VKV prevádzku. Príklad, ako spojiť dobré s užitočným v jeden celok a jedný cieľ — ako pomôcť rádioamatérom vecne a cieľa vedomie.

Vráime sa však k pretekom. Pripravené bulletiny s bohatým textom o každom významnejšom účastníkovi, nielen zo zahraničia, ale aj domácich reprezentantoch, príhovorom sponzorov a už neodmysliteľnou reklamou, z ktorej, ako inak, sa poriada aj táto súťaž. Za povšimnutie stojí zmienka o patronáte riaditeľa miestnej konzervárne, Rudolfo Bélu, ktorý sa osobne zúčastnil vyhlasovania záverečných výsledkov, a dal k dispozícii účastníkom jedáleň, spoločenské miestnosti, a tiež participoval na cenách.

Prijemným prekvapením organizátorov boli operativne spracované štartovné a výsledkové listiny na Commodore 64. V miestnych novinách sme si prečítali v športovej rubrike obsiahlu stať o „Bereg Kupe“, o jej účastníkoch aj o tom, že v pondelok priniesú celkové výsledky a reportáz z priebehu pretekov. Zaujímavé, kam sa ARDF v Nyiregyháze dostalo ...

A teraz niečo k samotným pretekom. Okrem domáceho reprezentatívneho družstva a zahraničných účastníkov sa

bojov o Bereg Kupu zúčastnili pretekári v juniorských kategóriach chlapcov a tiež súperili dievčatá-juniorky vo svojej vlastnej kategórii.

Pre každý pretek bol vyhradený jeden súťažný deň a časť terénu, kde sa simulčne bežalo v pásme 80 a súčasne aj 2 metrov. Mapy IOF v mierke 1:20 000 boli na dobrej úrovni a čo je dôležité, bol v nich zakreslený štart aj cieľ. Teda už podľa pravidiel, aké sa používajú na svetovom šampionáte. Zvláštnosťou bol štart vždy 4 pretekárov do dvoch koridorov so štartom do prvej minúty, namiesto tradičného štartu do piatej min. Cieľ bol zjednodušený o cieľový koridor, ktorý prostre a jednoducho neboli tak pretekári mohli doskakovať na svetelný túč elektronického časomeriaceho zariadenia z jednej, alebo z druhej strany. Nikto pritom neprotestoval, žiadne čas nechýbal a bola vcelku dobrá pohoda. Extrémne horúce počasie koncom júla nedalo na seba zabudnúť ani na rovinách v Nyiregyháze. Nameraná teplota (na poludne) bola úctyhodných 36 °C v tieni pichlavých agátov, ktoré tvorili väčšinu porastu. Nikomu nepridal ani pieskový podklad (maratónky sa doslova prešmykovali) a žihľava vysoká po krku. Niektorí pretekári podceňovali rovinu, ale natiahnutá kilometráž dala každému jednému účastníkovi načrieť až na dno fyzického fondu. Boli to pretekári pre fyzicky naprostozdatných, ku ktorým trebalo pridať trochu kumštu v kreslení do mapy, vychytanie dohľadávok na totálne neviditeľné kontroly a tiež trochu kumštu, ktorou z desiatok cestičiek sa uberať. Svoje urobila aj „para“ 3 W vysielačov znásobená „haló“ anténami na pásme 145 MHz. Z týchto na záver uvádzaných zvláštností vyťažilo domáce reprezentatívne družstvo a na veľké prekvapenie aj pretekári NSR.

Analýza výsledkov: v kat. mladších juniorov (asi ako naša kat. C1) pri 18 účastníkoch získal desaťročný Miloš Harminc z OK3KII na dvoch metrech 7. miesto. V mužoch dominuje v súčasnosti domáca trojica Lukács, Orosi, Nagy. Tu sme získali najlepšie 2x 10. miesto Ing. J. Fekiača, OK3CCE (inak predsedu nášho rádioklubu). V kat. žien sú opäť tri jedničky M. Fentová, J. Horváthová, I. Venczelová. Naša M.

Stržinová dobehla na najlepšom 13. mieste. Trochu viac radosti sme mali z veteránov nad 40 rokov. I. Harminc, OK3UQ, obsadil 6., resp. 5. miesto a s vynoveným výsledkom Janka Töröka, OK3TCH, sme získali v hodnotení družstiev prvé miesto a jedinú (záťu) medailu za súťaž v pásme 80 metrov. V tejto kategórii dominoval nestarnúci István Mátrai s dvoma víťazstvami. Za zmienku stojí spomenúť aj popredné miestá pretekárov z NSR. Muži nad 40 let: Bernd Jurgens 2 m/3,5 MHz, ženy: Carola Voith 3 m/144 MHz a v juniorenoch Martin Stadler 3 m/3,5 MHz. Tito nám až neskôr prezradili, že na domáčich pretekoch používajú väčšie výkony vysielačov a že teda aj na tom najviac získali. Fyzickú pripravenosť im však za tieto získané medailové miestá nemožno uprieť. Rezumé k športovej časti: dlhé, pritom rýchle trate, kde strata relácie je tvrde postihnutá stratu lepšieho umiestnenia. Maximálna koncentrácia špičkových pretekárov s plným fyzickým nasadením až do cieľa. Nevyhnutná perfektná práca s mapou a kreslením smerov a predpokladaného miesta ukrytie kontroly. V podstate nič nového pod slnkom, ale prakticky vykonávané na profesionálnej úrovni s rutinou ako z trenérskej učebnice. Neexistujú problémy s funkčnosťou prijímača, alebo fyzickým fondom.

x

Rezumé k organizácii: jednoduchá organizácia pretekov na európskej úrovni s neuveriteľne malým počtom rozhodcov, bez samozrejmých ťažkopádnych obslúh na kontrolách, s dokonale fungujúcou technikou bez výpadku relácií.

x

Rezumé k pretekom: Moc sa páčila pohostinnosť, dobrá športová atmosféra, ohľaduplnosť, samozrejme vynikajúca maďarská kuchyňa a nepopieraťná snaha zo strany organizátorov urobiť z Bereg Kupy skutočne dobrú pohárovú európsku súťaž. Držíme im palce, aby im to vyšlo.

—IHC—

QRQ

pozdravování, do
práce požadovat plnění a neopovídáním odpovězen
komunikací požadovat plnění a neopovídáním odpovězen
dokumentu požadovat plnění a neopovídáním odpovězen
v telegrafu požadovat plnění a neopovídáním odpovězen

Úřad

Neplatí rozhodnutí

QRQ lístek. Podle ménění redakce za-
tím jen slabá náplast na léta slibovaný
diplom

QRQ

QRQ lístky

Vzduch úvahám, zda telegrafie vymizí z radioamatérských pásem, ví každý radioamatér, že ve skutečnosti z nich nevymizí ani nikdy, protože její přednosti lze jen těžko nahradit, přes všechny problémy, které jsou spojeny hlavně s její výukou. Vážný zájemce o radioamatérský sport se bez ní neobejde. Mnoho radioamatérských organizací ve světě vydává proto diplomy (i jiná ocenění) těm, kdo ji umí používat opravdu kvalitně. Také u nás bude takový diplom vydáván; jedinou překážkou je dost zdluhavá výroba, věřme ale, že s podmínkami našeho Diplomu QRQ seznámíme čtenáře co nejdříve. Prozatím bylo pro naše telegrafisty připraveno jiné ocenění — lístky QRQ, které jsou potvrzením jejich schopnosti přijímat telegrafii. Mají formát i úpravu běžného QSL lístku, a mohou být pěknou ozdobou koutku se sportovními trofejemi radioamatéra.

QRQ lístky jsou vystavovány na požádání účastníkům kterékoli soutěže ve sportovní telegrafii (včetně QRQ testu). Je na nich zaznamenán a potvrzen jakýkoli výkon dosažený v disciplíně příjem na rychlosť. Vystavují je pořadatel soutěži, správnost údajů potvrzuje hlavní rozhodčí soutěže (a samozřejmě že na odpovídá).

Lístky mají být určitým suvenýrem, který si může odnést z jakékoli soutěže v telegrafii kterýkoli účastník, i když mu při ní ne vše vyšlo podle jeho přání. Především jsou ale dokladem pro pozdější vystavení Diplomu QRQ — obsahují totiž všechny údaje potřebné pro posouzení splnění jeho podmínek. O vystavení lístku stačí požádat pořadatele ústně po skončení disciplíny příjem na rychlosť. Lístek nedostane jen ten, kdo byl v dané soutěži diskvalifikován.

QRQ lístky jsou vystavovány již v probíhající sezóně soutěží 1988/89. Bližší podrobnosti o podmírkách jejich získání se lze dočíst v Rádu QRQ lístek, který je součástí nových Pravidel telegrafie (vydala Účelová edice ÚV Sazarmu v roce 1987). Rozhodčí mohou formuláře lístek získat spolu se soutěžními materiály.

(Text byl publikován se souhlasem komise telegrafie RR ÚV Sazarmu).

OK1XU

KV

OK — QRP závod 1989

Doba konání: každoročně poslední neděli v únoru v jedné etapě od 07.00 UTC do 08.30 UTC (tj. 26. 2. 1989).

Kmitočty: 3540 až 3600 kHz.

Druh provozu: CW.

Kategorie:

- a) příkon do 10 W nebo výkon do 5 W;
- b) příkon do 2 W nebo výkon do 1 W;
- c) posluchači.

Kód: RST a dvoumístné číslo udávající příkon ve wattech a okresní znak (např. 579 02 FCR).

Bodování: podle všeobecných podmínek.

Nášobiče: okresní znaky (různé, vlastní okres se jako nášobič počítá).

Doplňující údaje: s každou stanicí je možno navázat jedno platné spojení.

Výza do závodu: CQ QRP.

Omezení: v kategorii b) je nutno zařízení napojit z chemických zdrojů.

Deníky: nejpozději do 10 dnů po závodu na adresu OK1AJ, Karel Běhounek, Čs. armády 539, 537 01 Chrudim IV.

Pořadatel: rada radioamatérství OV Sazarmu v Chrudimi.

Pokud není uvedeno jinak, platí všeobecné podmínky závodů a soutěží na krátkých vlnách. V případě rovnosti bodů rozhoduje počet spojení v prvních 30 minutách. Vyhodnocení bude vyhlášeno na QRP setkání v Chrudimi dne 18. 3. 1989.

OK1AJ

Kalendář KV závodů na únor a březень 1989

4.—5. 2. RSGB 7 MHz fone	12.00—09.00
4.—5. 2. YU DX contest CW	21.00—21.00
10. 2. Čs. SSB závod	17.00—20.00
11.—12. 2. PACC contest	12.00—12.00
11.—12. 2. RSGB 1,8 MHz	21.00—01.00
11.—13. 2. YL OM contest int. SSB	14.00—02.00
18.—19. 2. ARRL Int. DX CW	00.00—24.00
24. 2. TEST 160 m	20.00—21.00
24.—26. 2. CQ WW DX 160 m SSB	22.00—16.00
25.—26. 2. French (REF) contest fone	06.00—18.00
25.—26. 2. UBA contest SSB	13.00—13.00
25.—26. 2. RSGB 7 MHz CW	12.00—09.00
26. 2. RTTY World Championship	00.00—24.00
26. 2. OK-QRP závod	07.00—08.30
25.—27. 2. YL OM contest int. CW	14.00—02.00
4.—5. 3. ARRL Int. DX fone	00.00—24.00
5. 3. Čs. YL-OM závod	06.00—08.00
11.—12. 3. DIG QSO Party fone	12.00—17.00 a 07.00—11.00
24.—25. 3. CQ WW WPX contest SSB	00.00—24.00

Podmínky YU-DX contestu najdete v AR 2/87, PACC v AR 1/88, ARRL DX v AR 1/86, REF contestu v AR 1/87, Čs. YL-OM Závodu v AR 2/88 a UBA contestu v minulém čísle AR.

Podmínky závodu YL OM contest international

V tomto závodě navazují spojení vzájemně YL a OM stanice. Závodi se na všech pásmech, avšak spojení s jednou stanicí se hodnotí pouze jednou za závod, bez ohledu na pásmo a to jedním bodem. Vyměňuje se kód složený z RST, čísla spojení, ARRL sekce nebo názvu DXCC země. Nášobiče jsou DXCC země a ARRL sekce. Stanice, které vysílají s výkonem menším než 150 W, si dosažený výsledek vynásobí koeficientem 1,25. Deníky se zasílají do 31. 3. na adresu: Mary Brown, 504 Channel View Drive, Anacortes, WA 98221 USA (adresa z podmínek platných v roce 1988).

Předpověď podmínek šíření KV na březen 1989

Aktivní oblasti na povrchu Slunce jsou stále ještě dostatečně daleko od slunečního rovníku, což lze považovat za celkem spolehlivý indikátor současné fáze vývoje před maximem jedenáctiletého cyklu. Ten čekáme buď letos či spíše napříště, nejpozději do dvou let. V tomto případě lze říci: čím později, tím lépe — čím déle potrvá vzestupná fáze cyklu, tím výše stoupne intenzita sluneční radiace a o to lepší budou podmínky šíření, zejména na horních pásmech KV.

Dolní pásmo budou spíše nepříznivě ovlivněna zvýšeným útlumem v nižších vrstvách ionosféry, což se týká zejména denní doby. Spolu se zvětšením nárazovou ionizaci v období poblíže rovnodennosti, kdy Země prochází rovinou ekliptiky, budou ale častěji vznikat ionosférické vlnovody, takže šíření do příslušného směru bude po příslušnou omezenou dobu výrazně lepší. K tomuto jevu dochází dokonce i během delších poruch, ovšem pouze v jižních směrech, zejména na trasách, křížujících rovník, nebo transektaoriálních.

Pro březnovou předpověď vycházíme z předpokládaného relativního čísla slunečních skvrn 152 s možnou odchylkou ±38. To odpovídá slunečnímu toku okolo 197 jednotek. V dalším vývoji má stoupnout R v červnu na 174 a v říjnu na 178 ±58, což by odpovídalo slunečnímu toku okolo 222 — pro srovnání: minulý jedenáctiletý cyklus patřil mezi vysoké při nejvyšším R = 162,5. Hovoříme-li zde o relativním čísle R, jde nám vždy o vyhlazené dvanáctiměsíční průměry, které díky značné hysterezii ionosféry a současně i velkým nepravidelnostem nejlépe odpovídají našim potřebám. Praktičtěji a moderněji je používá sluneční toku, kde jsou již dostatečně reprezentativní měsíční průměry a kde má dokonce smysl používat i denní měření, pochopitelně s ohledem na historii a trend vývoje i s uvázením sezónních změn.

V říjnu 1988 byl sluneční tok měřen takto: 179, 195, 202, 189, 189, 188, 181, 174, 176, 179, 170, 149, 159, 151, 150, 155, 178, 162, 166, 168, 166, 166, 171, 170, 164, 157, 163, 158, 156, 167 a 161, v průměru 169,6. Nejzajímavější je denní měření 3.10., zatím nejvyšší ve 22. cyklu a poté zejména pokles 12.10., k němuž došlo po protonové erupci v 05.00 UTC, doprovázené náhlou ionosférickou poruchou a vyržením plazmy do meziplanetárního prostoru. Pravděpodobnosti navzdory pak nenásledovala porucha šíření, ale naopak zlepšení. Nejlepší ale byly klidné dny před poruchou 4.—6.10., v nichž bylo dobré a pravidelně používatelné šíření do oblasti Tichomoří dlouhou cestou. Denní indexy geomagnetické aktivity byly 14, 5, 3, 12, 18, 33, 10, 10, 21, 62, 10, 5, 5, 8, 7, 10, 19, 29, 15, 24, 10, 3, 6, 7, 4, 8, 13, 10, 3, 6 a 10.

Směry a časy otevření (UTC) v březnu předpokládáme tyto:

TOP band: UA1A 14.30—06.30, J2 16.40—03.30, W3 23.00—06.00.

Osmdesátka: A3 15.30—18.30 (17.00), JA 16.00—22.20 (20.00), YB 16.40—23.30 (19.00), W5 02.00—06.30 (04.30), KH6 05.15.

Čtyřicítka: YJ 14.45—19.30 (18.00), P2 14.30—21.15 (18.00), 4K 18.00—02.00 (20.00—22.00), VR6 03.45—07.00 (06.00).

Třicítka: JA 14.00—22.45 (18.00—19.00), W5—VE7 00.00—07.15.

Dvacítka: YJ 14.00—18.00 (15.00), P2 13.45—18.30 (15.30), OA 02.00 a 07.00, VE3 20.30—03.30 (02.00) a 06.30—08.00 (07.00).

Sedmnáctka: YJ 13.30—16.30, W2 10.00—11.00 a 18.00—22.30.

Patnáctka: YJ 14.00—15.15, VK6 15.00—16.00, W3 17.00—21.30.

Dvanáctka: P2 14.00, YB 14.20—16.00, W3 14.30—20.20 (19.00).

Desítka: BY1 08.00—14.00 (12.00), YB 15.00, VK9 14.00—15.00, ZD7 06.50—08.00 a 15.00—22.00 (19.00), W3 12.00—19.40 (19.00).

OK1HH

Z RADIOAMATÉRSKÉHO SVĚTA

F6AOI TO OK3-28013

MEMBER OF THE CLIPPERTON DX PEDITION

Takhle to vypadá na tichomořském ostrově Clipperton, jedné z vzácných zemí DXCC, která se stala v posledních letech cílem několika velkých radioamatérských expedic. Operátor André Figon, F6AOI, byl členem expedice FOOXA v roce 1987

(QSL TNX Cyril, OK3-28013)

Slyšeli jste nebo pracovali jste s ostrovem Pitcairn, VR6?

Dlouholetý spolupracovník naší redakce, doc. dr. ing. M. Joachim, OK1WI, se na nás obrátil s žádostí o zveřejnění této výzvy:

K prověření nejnovější předpovědi dálkového šíření dekametrových vln potřebuji co nejvíce údajů o poslechu nebo spojení ČSSR (CSR) se stanicemi VR6 od roku 1923 dodnes. Prosím sdělte mi data vašich spojení, čas UTC, RST, pásmo a údaje o zařízení (TX, RX, ANT). Staniční lístky, které nepotřebujete, budou výtvarny, případně je odkoupím. Miroslav Joachim, Podbělohorská 43/2881, 150 00 Praha 5.

INZERCE

Inzerci přijíma osobně a postou Vydavatelství Naše vojsko, inzertní oddělení, (inzerce ARA), Vladislavova 26, 113 66 Praha 1, tel. 26 06 51-9, linka 294. Uzávěrka tohoto čísla byla dne 18. 10. 1988, do kdy jsme museli obdržet úhradu za inzerát. Neopomeňte uvést prodejný cenu, jinak inzerát neuverejníme. Text inzerátu pište čitelně, aby se předešlo chybám vznikajícím z nečitelnosti předlohy.

PRODEJ

Video JVC HR-D211 M, Pal/Secam HQ v záruce, proclené (23 000). P. Kočan, Černockého 1486, 149 00 Praha 4, tel. 791 36 31.

ZX-81 17 kB (2 700), programy + kufr (300). Ing. P. Hasman, Návřší 4, 140 00 Praha 4-Krč.

DRAM 4164, C520 (100, 120). V. Krejzlík, Stavítelská 8, 160 00 Praha 6.

7106 (200), 4164 (120), 41256 (400), U806,7 (150, 150), 277D (25), 2764 (150), 520 (100), 6516 (120), B260 (35), 6264 (200), 555 (10), řada LS, S, 40, 45, AID, D/D, U8, aj. Seznam za známkou Končím.

M. Eisnerová, Petržillova 3296, 143 00 Praha 4. **Pro MZ 800** řadič FD (2800), RAM DISK 64 kB (2 500), hlas. výstup (1000). J. Havlíček, Zbuskova 41, 190 00 Praha 9.

4 TV antény 2053, K 50-55 (160). V. Janovský, Ke Stínce 31, 182 00 Praha 8.

TVB Elektronika 432 + klíčové nahr. desky + nová obraz. (3900), Ni-Cd baterka 10A-H 3,6 V (160), osciloskop + generátor + 2 nap. zdroje v jednom (2 600). E. Suchánková, Štichova 582, 149 00 Praha 4.

ZX Spectrum 48 kB Interface joystick nová náhr. klávesnice, český manuál, kompl. výpis ROM, jen společně (6000), programy (à 5-10). Z. Samánek, Kokešova 1101, 768 24 Hulín.

Oblastní radiostanici AM/FM, 12/40 kanálů, 1/4 W k zabudování do auta, dovoz NSR (8000). V. Kupka, Podjavorinské 1601, 149 00 Praha 4.

CD přehr. Toshiba XR-40 (11 000), PU500 (1400), amat. zes. TW120, 2 x 60 W sin. + předzes. (3000). Vše černé. P. Báša, Hušova 63, 250 88 Sedičánky.

Obrazovky oscilos. nové, nepoužité RFT B10S6 ø 100 a 12QR50 ø 120 s objm. (obě 1000). M. Jaňour. Pod Zemankou 22, 147 00 Praha 4.

ST 79-88 i jednotlivé (3-4), aktivní i pasivní materiál, relé, MP aj. Seznam za známkou.

Tov. oscil. N313, 1 ks C520D, 6 ks VQB37, Kempston + joystick (1300, 165, à 65, 650). L. Kubala, Řadová 18, 704 00 Ostrava 3.

Sov. oscil. C1-94 servisní, r. v. 88, 20 Hz - 10 MHz, 5 mV-5 V na dílce, funkce (3000). LQ650 5x, LQ410 4x, VQE24 2x, VQE23 1x, H. P. 251B 4x (50, 30, 80, 80), krystaly 1 MHz, 10 MHz, 4 MHz (à 100), CA555, 7490, D147 aj. (20, 10, 15). R. Miňovský, Poděbradská 590, 194 00 Praha 9-Hloubětín.

Disket. jednotka IBM komp. 5 1/4" 360 kB slim line, nová (6000). P. Božek, Nitranská 10, 101 00 Praha 10.

SAT reflektor ø 90 cm (1100), Astra. J. Sádlo, U vodárnny 1718, 288 02 Nymburk.

Trafo pro nabíječku 220/6 — 12 V, 8 A (150), usměrňovač (25), různý radiomateriál — levné, seznam proti známkce. S. Šádek, Křivenická 450, 181 00 Praha 8-Čimice.

Tranzistory BFR 90 (à 75), BFR 91 (à 75). J. Matyáš, Čechova 1181, 751 31 Lipník nad Bečvou.

BFR90 (60), měř. př. Unimer U, I, R (1000), měř. 10 µA(200), čívka: Unitra M 1417 stereo (1600), mono radio mgf. Sharp (1400), LP čs. i zahr.

— seznam proti známkce, přenosku JVC MD-1055 II nepouž. (300), mikro kazety Rex-Rotary 9—6 ks (200), sluch. k Walkmanu — nové (250), repro ARV 3604 2 ks, ARZ 4604 2 ks, ARN 8604 2 ks — nepouž. (1650) — nebo vyměním za osmiohmové. Koupím ARB 6/81; 1/82; 1, 2, 3, 5/83; 2, 3, 4, osciloskop T 565 nebo BM 370 — kval. K. Šrail, K prokopávce 15, 323 21 Plzeň.

Tiskárna, rychlou 9-jehl. Privileg 165-NLQ, Centronics (15 500). P. Polesný, Arbesova 3, 638 00 Brno.

AY-3-8500 (380), ICL7106 (400), NE555 (40), 100 kHz krystal, kov. (350). I. Javorský, Chuťkovej 17, 841 02 Bratislava.

Mgf. M 1417 S (1000). J. Starý, Opletalova 702, 537 01 Chrudim II, tel. 0455 3932.

Vyb. IFK 120 (60) nebo vym. za elektret. mikrof. J. Vrána, Kotovská 1433, 755 01 Vsetín.

Laminátovou parabolou pro TV typu Salora, D = 180 cm, F = 73,8 cm. Satelit (2500). Ing. M. Baleja, Č. J. Fučíkova 3985, 760 01 Gottwaldov.

Na Sord-M5: BASIC-F (1300). Ing. P. Dobrovolný, Třída pionýrů 4/6, 591 01 Žďár n. Sáz. III.

Univerzální navíječku pro vinutí křížových cívek (280), konvertor CCIR-OIRT i opačné OIRT-CCIR (300). J. Hůsek, Zálešná VIII. 1234, 760 01 Gottwaldov.

3 ks radiostanic HF-12/3 FM (3 kanály, dosah až

30 km), nové (à 2500). Ing. I. Drs., Moskevská 2726, 390 02 Tábor.

Špičkový Tuner Yamaha CT-610, reprobedne Saroy SR-5570, gramofon Dual 721 s přenoskou Shure M 97 HE, CD Tesla 902. Lacno (4800, 5800, 5600, 9000). L. Schmidta, Urzova 7, 034 00 Ružomberok.

3 1/2 místný panelmetr s 7106 (650), multimeter s 7106 bez krabice (1450), melodický zvonček 159 melodií s µP (650). A. Keszel, Agátová 66, 946 03 Kolárovo.

Přenos. komun. RX MARC 52F1, AM/SSB 0,15 — 30 MHz, FM 65 — 174, 420 — 470 MHz dvojí směšování, squelch (6500) a páry obč. radiostanic 1 W (6000). Koup. Crusader 8 000. P. Langer, Pod Labuťkou 13, 180 00 Praha 8.

Parabolickou anténu ø 170 cm na IV.—V. TV program (1500), duralová. L. Sakala, Nechvillová 1843, 149 00 Praha 4.

Predám a vymením programy na C-64 na kazetách disketách (à 5—15), disk driver Commodore 1571 — dvojhlavový systém + disky a lit. (10 000), bližšie údaje a zoznam proti známkce. M. Antal, Šafaříkova 10, 040 11 Košice.

Památki RAM 4116 (20 ks), sov. pam. I k K5731 (10 ks), IO — MHB8080, MHB8251, MHB8228, MHB8224, UCY748416 všetko spolu za (2500). V. Pavliák, Malinovského 8, 977 01 Brezno.

ZX Spectrum Plus, český manuál Basic, 200 programů, kempston interface + joystick, mnoho lit., komplet za (12 000). O. Polák, 739 34 Šenov. 703.

Yamaha CX5 Music Computer + kompletní příslušenství. Midi (30 000), Yamaha RX21 Rhythm Programmer, Midi (12 000). M. Voršek, Vítězná 73, 360 09 Karlovy Vary.

Mgf. B73 (2500), pásky Scotch, Basf, Maxell ø 18 nahrané (200), nové (250), LP, SP zahr. skupin, AR; koupím SN76477, XR2206, BFT, BFQ. Ing. Z. Žeman, Radoves 6, 594 57 Vidonín.

SAD 1024 (700), CA3080 (80), EF800, 6F3P, E88CC, EF22 (à 10), TC 939 1 m/150 V (25), TC 939 2 m/150 V (50). R. Szabó, Gerlachovská 5, 040 01 Košice.

BTY SABA T/S 3716 s d. o. včetně servis. dokument., vadné konvergence (1900). J. Hejdánek, Pieckova 16, 350 01 Cheb.

Commodore C-64, disketovou jednotku, magnetofon, programy (19 000). P. Pavlas, Dzeržinského 5, 360 04 Karlovy Vary, tel. 22356.

Televizní anténu KC91BL-Color, Color Spektrum (485, 350). Pošlem aj na dobírku. I. Lesay, SNP 997/17, 924 00 Galanta č. t. 40—39.

Technics: deck M 235 X, zesilovač SU — V505, reproboxy SB — X500, šasí JVC L-A100, spolu i jednotlivě. I. Feltovič, B. Němcové 252, 261 02 Příbram VII.

Elektronky starých typů (5—20). V. Vít, Táboršská 14, 301 45 Plzeň.

Mikrofon MD 021 (50), hol. strojek Charkiv (100), elektronkový rp Gavota (à 200), na souč. elektronkové rp — 2 ks (à 50), mgf. Telefunken MC 80 (500), rp Sokol (FM-AM) (à 500), mgf. Pluto (50), černobílé TVP Anabela a Dajana (à 500). P. Hadámek, 793 82 Třemešná v Krnově.

Mnoho konstrukcí podle AR (50—3000) — seznam za známkou; příp. uveďte o co máte zájem; koupím různé zahraniční součástky a parabolou pro příjem ze satelitu včetně LNB příp. celý komplet; dále přesné R a C — nabídnete. P. Pinc, Buková 36, 262 25 p. Pičín.

BP490, 91, 96 (75, 75, 85), ICL7106, (400, 400). J. Vyrubal, 783 45 Senice na Hané 358.

KF124, 517, 523 (4, 8, 15), KSY62, 71 (8), 5NU73 (5), LED (5), GD607 (4), MAA115 (8), MA3006 (20), MH7430, 53, 72, 164 (8, 8, 10, 20). Použ. GC, GS, OC, NU, GA, KY, (1), KA501 (2); 8342, SF121—8, GAZ51, SS109 (3), D100—250, OA9, KSY62, KF503, TR12, 15 (4) aj. IO, T, Ty, D, 50 ks R, C, D, T (5, 15, 20, 25). Seznam proti známce. Ing. M. Havlik, Federátor 12, 080 01 Prešov.

ZX-Spectrum Plus s manuálem, napáječem, kabely a kazetou v perfektním stavu (6300). M. Krška, Dunická 3142, 141 00 Praha 4.

Tranzistorový DIP-metr + absorpcní + záznamní. vinoměr (250) se šesti vým. cívками a stupnicemi 1,5 až 200 MHz (à 100), kalibrátor po 10 MHz až 10 kHz (500), VKV přijímač 2 m pro převáděč OKON, případ. předádím (500). Ing. I. Vávra, Pejovové 3121, 140 00 Praha 4.

MH7400, 10, 20, 30, 40, 50, 74 (à 3), KF503 (à 1), WK55928 (à 4), KF525 (à 2), ZM1082T (à 10), krystal 2 MHz (à 50). Vše použité. P. Košťál, Vodárenská 437, 330 21 Liné.

Hi-fi věžu Hitachi 9800; stabilizovaný zdroj 0—35 V/3 A s MP 80 (850); konvertor CCIR — ORT (250); ant. zosilňovač III. pásmo (190) a laditef ant. zosil. UHF (800). J. Jenča, Strážnická 9, 080 06 Prešov.

El. bici podle ARA 2/87 — osaz. deska, krabice (800), ferit. hrnce ø 26, ø 36 (8, 10), 0,5% svitky (5), různé součástky (10—70 % MC). Seznam a foto bicích za znám. P. Brož, Poštovní 14, 160 17 Praha 617.

Kvalit. software na ZX Spectrum (Deltu, Didaktik, Gamu, 128K), systém. programy i hry (à 10). Zoznam za známku. L. Wittek, Jaderná 15, 821 02 Bratislava.

Multimetr LCD — U, R, Ω + paměť — nový (1450), ICL7106 (420), BF960 (65), BF981 (75). J. Klas, Někrasova 3, 160 00 Praha 6, tel. 32 91 49.

Zvazané roč. časopisu Elektor od r. 1979 až 1987. Ročník (à 900). Upřednostním zájemcům o všechny ročníky. P. Hlubina, Palkovičova 13, 821 08 Bratislava, tel. 678 33.

ZX-Spectrum Plus nové (6500), Interface Beta 5.04 pro připojení floppy disku (4500), floppy disk 3,5" NEC DSDD (6500) a 20 disket DSDD (à 80). M. Kysela, Za tratí 784, 468 04 Proseč nad Nisou. **Nový počítač Atari 1040 ST** s pamětí 1 MB soc. organizaci s půlroční zárukou (80 000). D. Lániček, 503 51 Chlumec n. C. 107/1.

Hi-fi vst. jedn. VKV + mf 10.7 MHz (ARA 12/83) + digit. stupnice s LQ410 (1600); větší množství IO, T, D, MP 40, MP 80, DU10 ap. Seznam zašlu všem. Levně — končím. J. Baša, Družstevní 2, 679 04 Adamov.

Osciloskop H313 + dokument. + IO (2000), multimeter digit. VR-11 + dokument. + náhr. krytiny (1800), měří =, ~, U, I, R, f; vše 100% stav. A. Bečv, K. Gottwalda 574, 549 01 Nové Město nad Metují, tel. sob. — ned. večer 441 — 719 45.

Různá periferní zařízení k Sharp MZ-800. Seznam zašlu. T. Macourek, Politických věžů 13, 110 00 Praha 1.

Tape deck Sony TC378, 3 ferite head (6500), gramo poloautomat Aiwa AP 2 200 Direct drive s náhradní mušlou a vložkou (3600), DMM Miranda HC 5010 (2300), všetko perfektní stav. Vym. hry na ZX Spectrum (zoznam proti zoznamu a známke). J. Kviatek, Partizánská 1/15, 059 41 Tatranská Štrba.

Monitor Commodore monochrom. — zelený, vstup TTL (např. pro IBM PC), vys. rozlišení (4500). RAM NEC 41256 — 15, 9 ks (2400). J. Holinská, Severní IV č. 18, 141 00 Praha 4.

Nové TV hry s AY-3-8500, nové, vylepšené (900), BF4797 (18), BF198 (20) nebo vym. za přehrávač do auta bez repro. V. Pasáček, V brance 1030, 396 01 Humpolec.

Atari 800 XE, magnetofon Atari XC12 Turbo, joystick a 200 her (8000). K. Zeman, 391 52 Smilovy Hory 45.

Basreflex skříň 600 I odb. prov. dle amer. Audio 76 se speciální hlubokot. repr. 40 cm TESLA ARN 938 50 W/8 Ω (1900). K. Berka, Záběhlická 20, 106 00 Praha 10.

IO-SGS, Zilog, Mostek Z80A — SIO, PIO, CTC, CPU (350, 200, 130, 150), Z80 — PIO, DART, CPU (170, 300, 100), 4116 (80). A. Běták, Pod Klaudiánkou 1017, 147 00 Praha 4.

Sord M5 BG, BF, M5 + lit. a další přísl. (floopy, řadič, MG, CP/M) (7000) i jednotlivě. V. Hazuka, Púchovská 2788, 141 00 Praha 4.

ZX Printer (3200), ZX interface 1 + microdrive + cartr. (5800), Kempston + joy. (1200), HQ joystick (750), datarekordér Philips (2900), 2764, 27 128, 4164, ICL7106, AY-3-8500, C520D (350, 460, 120, 470, 430, 220), násobič pro sov. BTVP Elek. C 430. M. Ondráš, Bajkalská 11, 040 12 Košice.

Sord M5, Joy — 2x, BI, BG + hry (7000) nebo vyměnění za Sinclair. O. Prášek, U svobodárny 7, 190 00 Praha 9, tel. 839 95 79.

AR r. 1952—63 a r. 1982—87. Konstrukč. příl. čas. Radioamatér r. 1982—87 (à 3). M. Nedvědová, Přesličkova 2886, 100 00 Praha 10.

Klečkový ampérmetr KVAm, přepínače Isostat na zes. „mini“ ARA 6/86. J. Novák, Palackého 721, 543 01 Vrchlabí 1.

Detektor kovů, př. proton. magnetometr nebo alesp. zapůjčení výr. dokument., informace atp. Cena nerozhozduje. Spolupr. při vývoji vltána. J. Mikl, 763 07 H. Ujezd 60.

Paměti RAM a EPROM (min. 8 kB), IO — TTLs, CMOS a jiné, krystaly, prepínače a konektory. F. Bohdan, U Praždroje 27a, 301 00 Plzeň.

Všetky schémy a nákresy plošných spojov do FTVP TESLA Color 4401 A. J. Kočíš, 980 11 Ožďany 128.

ARA iba kompletne ročníky 1977 až 87. R. Macho, J. Fučík 59, 934 01 Levice.

RX Satelit 3000, 3400, VU 21, Lambda 5, Volna-K, apod. M. Valo, Hochmanova 7, 628 00 Brno. **GDO** jen tovární, integr. obvod SAA1059. Prodám integr. obvod SAA1057, MM5314 (320, 350). I. Šlejška, Černá 17, 747 05 Opava.

IO CIC 4820 (UM 3482). I. Gerhát, Bajkovova 1968, 155 00 Praha 5-Stodůlky.

RK r. 1972/3, ST r. 1969/3, 4, 1970/2, 1974/4, 7, 1980/5. L. Flajšinger, Marie Hübnerové 56, 621 00 Brno.

IO C520D, odpory TR 191; 192; TR 161. P. Gombos, Hvězdoslavova 2, 082 21 Velký Šariš. **Kvalitní tiskárnu** na volné listy A4; 41 256; Sinclair RS 232 C; krystal 2,4576 MHz. J. Kolařík, Leninova 969, 768 24 Hulín.

DRAM 256 kB s autorefresh. T. Macourek, Polit. věžní 13, 110 00 Praha 1.

Generátor FM 66 — 102 MHz. L. Hladík, Koněvova 124, 130 00 Praha 3.

Kryt na obr. B10S401 i kvalitní amatérský, více KSY71, KSY81, TR15, BF245, starší „vlivové“ prepínače 4 pakety. V. Pasáček, V brance 1030, 396 01 Humpolec.

TI 58, 59 kalkulačka Texas Instr. M. Ondráček, Sdružení 1341, 140 00 Praha 4.

IO Sony A1005 nebo vrak walkm s tímto IO. R. Hoterek, Paseky 3232, 760 01 Gottwaldov.

Tiskárnu k os. počítači Centronics. P. Fér, Lomník 9, 541 01 Trutnov.

KOUPE

Ploš. spoj na ZX Spectrum +. P. Maier, Lublaňská 39, 120 00 Praha 2.

Přenosný rádiograf do 2500 Kčs. Typ, cena. T. Kozohorský, Táboršská 21, 140 00 Praha 4.

Občanské radio stanice, nejraději mobilní — výkonné, kvalitní — popř. příslušenství. V. Havel, B. Němcové 1581, 511 01 Turnov.

ZX interface I + ZX Microdrive + cartridge, oboustr. kupřejit. L. Kubala, Řádová 18, 704 00 Ostrava 3.

VQE24 červené farby (1 ks), nepoužité. Ing. P. Kubuš, Polední 33, 312 00 Plzeň.

Přepín. WK 533 52, WK 533 43, BF 245. Prodám oscil. obr. B13S6 s krytem (600). Nepoužitá. J. Novotný, Jana Švermy 919, 674 01 Třebíč.

Přepín. WK 533 52, WK 533 43, BF 245. Prodám oscil. obr. B13S6 s krytem (600). Nepoužitá. J. Novotný, Jana Švermy 919, 674 01 Třebíč.

Přepín. WK 533 52, WK 533 43, BF 245. Prodám oscil. obr. B13S6 s krytem (600). Nepoužitá. J. Novotný, Jana Švermy 919, 674 01 Třebíč.

ARA 4/85, ARA 8/88. J. Dupalová, Na Pankráci 20, 140 00 Praha 4.

Ferit. ant. komplet. 1 PN 404 15 (do r. p. 1126-7A) (à 2 ks), i. o. (SSSR) K-176LA9, tranz. (SSSR) KT361E nebo ekvival. typy (à 2 ks). Nabídnete. F. Rusý, Klimentova 16/522, 149 00 Praha 4-J. M.-Háje.

Meradla V, A na stabilizovaný zdroj -0 V; 2,5 A, GC520K — GC510K nebo GC521K — GC511K 20 ks. V. Lukáš, Toporcerova 29, 060 01 Kežmarok.

Osciloskopickou obrazovku: TESLA 7QR20 nebo DG7-2 (Philips) nebo LB8 (Telefunken). Cenu respektuji. O. Buli, Josefa Hory 5, 736 01 Havířov-město.

ZX Spectrum nebo Sharp, interface, osciloskop i rozestav., naše i zahr. IO, T, BFT66, 7QR20, MP270. L. Hučík, 9. května 831, 538 03 Heřmanův Městec.

ZX Spectrum, popis, cena. F. Burian, Nová 286, 411 85 H. Bečovice.

Radiopřijímač Carina na souč. levně i vrak. P. Pavlák, Leninova 389, 535 01 Přelouč.

VÝMĚNA

Schneider/Amstrad CPC 6128, 3", výměna zkušeností a programů. L. Melíšek, Soudružská 12, 100 00 Praha 10, tel. 77 63 85.

Hledám majitele počítače MSX, výměna programů. T. Hrdý, U kněžské louky 1, 130 00 Praha 3.

RŮZNÉ

Mikropočítače a příslušenství opravím. Povolení ONV mám. Ing. M. Bartoš, Kozácká 23, 101 00 Praha 10.

Prodám knihu a časopisy, seznam zašlu. J. Daniš, Kutuzovova 6, 831 03 Bratislava.

Kdo zhotoví jednoduché trafo podle návodu? Ing. T. Pavlák, Svatová 3, 150 00 Praha 5.

Kdo zhotoví nebo zapůjčí dokumentaci zařízení k zabezpečení osob, auta před krádeží. JUDr. Z. Jára, Leningradská 2318, 390 01 Tábor.

Kdo připraví el. pací stroj k ZX Spectrum? A. Kellin, Janderova 28, 108 00 Praha 10.

Kdo zapůjčí, prodá plánek popř. dokumentaci k videomagn. zn. Orion — VH1030-ARC? L. Jindra, 9. května 572, 384 11 Netolice.

Dopisovat si chce

s radioamatérem-elektronikem z Československa polský radioamatér-elektronik.

Jarosław Źałak
ul. Polna 2
66 460 Witnica

a to polsky nebo rusky. Shání kromě jiného AR B1/82, B1/84 a Ročenku AR '88. Nabízí polské časopisy Radioelektronik, Bajtek, Komputer, Mikroklan a Audiovideo.

Značkové prodejny TESLA ELTOS, které poskytují organizacím, radioamatérům, amatérským elektronikům, školám, Svazarmu, SSM aj. poradensko-prodejní služby v oblasti použití elektronických součástek a mikroelektronických prvků, aplikací mikroelektronických prvků, aplikací mikroelektroniky apod.:

PRAHA 1, Dlouhá 15, tel. 231 27 78

PRAHA 1, Martinská 3, tel. 235 87 94

PRAHA 2, Karlovo nám. 6, tel. 29 09 94

PARDUBICE, Palackého 580, tel. 230 95

PLZEŇ, Rooseveltova 20, tel. 348 49

ÚSTÍ NAD LABEM, Pařížská 19, tel. 260 91

OSTRAVA, Gottwaldova 10, tel. 21 15 64

BRNO, Františkánská 7, tel. 259 50

UHERSKÝ BROD, Moravská 92, tel. 2881

BRATISLAVA, Červenej armády 8,

tel. 529 83

BANSKÁ BYSTRICA, Malinovského 2,

tel. 520 63

KOŠICE, Leninova 104, tel. 218 12

Objednávky, nejlépe na korespondenčním lístku, přijímá, vyřizuje:

**Zásilková služba TESLA ELTOS
náměstí Vítězného února 12,
poštovní schránka 46,
telefon 3148,
688 19 UHERSKÝ BROD.**

DÚM OBCHODNÍCH SLUŽEB SVAZARNU

Odbytová a obchodní organizace

Zásilkový prodej

Pospíšilova 11–14

tel. 217 53, 219 20, 222 73, 218 04

telex 52662

757 01 Valašské Meziříčí

ODSÁVAČKA CÍNU

Pro práci na plošných spojích. Obj. č. 7401001, MC: 81 Kčs.

NÁHRADNÍ DÍLY K ODSÁVAČCE:

HROT TEFLONOVÝ k odsávačce cínu. Obj. č. 7401002, MC: 0,10 Kčs.

OCHRANNÁ HADIČKA na hrot odsávačky. Obj. č. 7401005, MC: 9 Kčs.

TĚSNĚNÍ K PÍSTU odsávačky cínu. Obj. č. 7401003, MC: 2,50 Kčs.

Katalog zboží DOSS č. 7, celobarevný. Obj. č. 5109030, MC: 15 Kčs.

Zásilkový prodej organizacím na fakturu, maloobděratelům na dobríku.

*Oddělení odbytu: Pospíšilova 11/14, tel. 217 53, 219 20, 222 73, 218 04,
telex. 526 62, 757 01 Valašské Meziříčí.*

Hotovostní prodej zajišťují maloobchodní prodejny DOSS.

ŘEDITELSTVÍ POŠTOVNÍ PŘEPRAVY PRAHA

přijme

do tříletého nově koncipovaného učebního oboru

MANIPULANT POŠTOVNÍHO PROVOZU A PŘEPRAVY

chlapce

Učební obor je určen především pro chlapce, kteří mají zájem o zeměpis a rádi cestují. Absolventi mají uplatnění ve vlakových poštách, výpravních listovních uzávěrů a na dalších pracovištích v poštovní přepravě. Úspěšní absolventi mají možnost dalšího zvyšování kvalifikace – nástavba ukončená maturitou.

Výuka je zajištěna v Olomouci, ubytování a stravování je internátovní a je zdarma. Učni dostávají zvýšené měsíční kapesné a obdrží náborový příspěvek ve výši 2000 Kčs.

Bližší informace podá
Ředitelství poštovní přepravy, Praha 1, Opletalova 40,
PSČ 116 70, telef. 22 20 51-5, linka 277.

Náborová oblast:
Jihomoravský, Severomoravský kraj.

VODNÍ STAVBY

VÝPOČETNÍ STŘEDISKO TEMELÍN

přijme:

- programátoři
- provozní programátoři

pro práci na systémech NCR
9050 a PC 6 (kompatibilní s IBM
PC/XT).

O zajímavých pracovních
a mzdových podmínkách
na největší stavbě ČSSR se
informujte na telefonu:
Týn n. V. 03 34/822 02.

BEZ štátnej podnik

VVJZT

Mlynské Nivy 43, 832 41 Bratislava

DODÁ DO 1. MESIACA:

Profesionálna kazetopásková pamäť QP-17

Profesionálna kazetopásková pamäť QP-17 je vonkajšia kazetopásková pamäť ťubovoľného mikroprocesorového systému. Ako záznamové zariadenie používa dve kazetopáskové jednotky KPP 800 pracujúce so štandardnými digitálnymi kazetami podľa normy ISO 3407.

Profesionálna kazetopásková pamäť QP-17 — výhody v porovnaní s obyčajným magnetofónom:

- vysoká rýchlosť prenosu dát (nominálne 10 000 Bit/s),
- vysoká spoľahlivosť záznamu (zabezpečená použitím digitálneho záznamu, certifikovaných digitálnych kaziet, kontrolného čítania pri zapisovaní),
- vysoká rýchlosť prevíjania kazety (max. 45 s),
- možnosť vyhľadávania záznamov počas rýchleho prevíjania v oboch smeroch,
- dve kazetopáskové mechaniky v jednej jednotke,
- všetky funkcie ovládané elektronicky.

Hlavné údaje QP17

Počet záznamových stop:	2 (A a B strana kazety).	Rozmery (šxvxh):	435×280×340 mm.
Spôsob záznamu:	sériový, fázová modulácia.	Hmotnosť:	18 kg.
Hustota záznamu:	31,5 bit/mm.	Napájacie napätie:	220 V + 10, -15 %/50 Hz.
Prac. rýchlosť posuvu pásky:	32 cm/s.	Odber:	0,7 A.
Vyhľadávacia rýchlosť:	1,5 m/s.	Krytie:	IP20.

Kapacita jednej kazety:

2×340 kbyte bez medziblokových medzier,
2×200 kbyte s medziblokovými medzerami.

TESLA Strašnice k. p.

závod J. Hakena

U náklad. nádraží 6, 130 65 Praha 3

lisařky
dělnice na montážní dílny
strojní zámečníky
provozní elektrikáře
malíře — natěrače
klemvíře
manipulační dělníky
členy závodní stráže — vhodné pro důchodce
a dále v kat. TH
odborné ekonomy (zásobovače)
odborné ekonomy (účtárny)
sam. konstruktéry
vývojové pracovníky
mistra energetické údržby

Zájemci hlaste se na osobním oddělení našeho závodu nebo na tel.
77 63 40

Nábor je povolen na celém území ČSSR s výjimkou vymezeného
území. Ubytování pro svobodné zajistíme v podn.
ubytovně. Platové zařazení podle ZEÚMS II.

NEVYUŽITÉ VYNÁLEZY

JZD Budislav, 391 26 Tučapy
nabízí spolupráci a volnou kapacitu při realizaci a zavedení
výroby nevyužitých vynálezů, ZN a nápadů v oborech elektronika
strojírenství, zemědělství...

Informace a nabídky přijímáme
na adresě:

Ing. Aleš Málek,
Na dolinách 18/169,
147 00 Praha 4.

Prosíme majiteľa pomalobežného osciloskopu OPD 280 XP 83002 (výrobok TESLA Val. Meziříčí) o započítanie technickej dokumentácie (návod, schéma elektr. zapojenia) od uvedeného prístroja. Uvitali by sme i adresu opravovne, ktorá môže tento prístroj opraviť.

Stredná priemyselná škola
M. Curie-Skłodowskej
059 21 SVIT, okr. Poprad

ČETLI JSME

Králiček, J.; Jelcov, V. A. a kol.:
LITOGRAFICKÉ TECHNIKY. SNTL:
Praha, Chimija: Leningrad 1988. 408
stran, 92 obrázků, 37 tabulek. Váz.
45 Kčs.

V posledním období se litografické techniky, využívající změn fyzikálních a chemických vlastností některých sloučenin po jejich interakci se zářením, rozvíjejí vysokým tempem. Litografické postupy s využitím rezistů jsou používány nejen v elektrotechnickém průmyslu (polovodičové technologie, výroba plošných spojů) a strojírenství, ale i v polygrafii (príprava ofsetových, knihtiskových a hlinotiskových forem) a v reprodukčních technikách. Fotorezisty, elektronové a rentgenové rezisty jsou obvykle směsi organických polymerů a látek citlivých na záření. V současné době existují tisíce kompozic, patentově chráněných velkými světovými firmami.

Výzkum při řešení úkolů, spojených s vývojem a použitím rezistů, vyžaduje kombinaci několika vědních disciplín. K tomu přihlíželi autoři při koncipování obsahu nové publikace, jejíž cílem je shrnout a zhodnotit výsledky výzkumu a použití rezistů za posledních 15 let.

První a druhá kapitola jsou věnovány obecným principům litografického a reliéfovýho zobrazení a základům litografických technik a procesů. Je popsáno zpracování rezistů a jsou formulovány požadavky na rezisty, vyplývající z jejich technologických aplikací. Na příkladech jsou demonstrovány metody výzkumu tenkých vrstev rezistů (teplotní odolnost, vylívání a odolnost vůči leptu aj.). Třetí kapitola se zabývá interakcí ionizujícího záření s atomy, molekulami a polymery. Poskytuje základ pro aplikaci elektron-

vého a rentgenového záření v litografii. Obsahlá čtvrtá kapitola pojednává o jednotlivých druzích rezistů pro technologické aplikace, o základních složkách pro jejich přípravu, o mechanismech fotolýzy aj. Jsou uvedeny rezisty vytvárané bez rozpouštědel, teplěně odolné rezisty, rezisty pro krátkovonné ultrafialové záření, mechanický přenos zobrazení a difuzi atd. Závěrečná kapitola obsahuje informace o perspektivních speciálních litografických technikách a materiálech, které jsou ještě ve stadiu výzkumu. Důležité pro použitelnost nových litografických postupů jsou rozlišovací schopnost, přesnost přenosu obrazu masky na podložku, produktivita a investiční náklady.

Tabelárně jsou uspořádány informace o komerčních negativních a pozitivních fotorezistech a o elektronových a rentgenových rezistech československé a zahraniční výroby, jejich charakteristiky a oblasti použití.

Publikace je určena vědeckým pracovníkům v oboru fyziky pevných látek, fyzikální polymerní chemie, dále výzkumným pracovníkům a technologům zabývajícím se mikroelektronikou, reprodukční technikou a polygrafii.

(tes)

Otter, J.: **VÝKONOVÁ ELEKTRONIKA PRE ELEKTRICKÉ POHONY.** Alfa:
Bratislava 1988. 408 stran, 172 obr., 11
tabulek, 6 příloh. Cena váz. 43 Kčs.

Kniha, určená především posluchačům elektrotechnických fakult, navazuje na vysokoškolskou učebnici Prof. Ing. Františka Poliaka a kol. *Elektrické pohony*. Zabývá se stejnosměrnými i střídavými elektrickými pohony, jejich principy, obvody i výkonovými polovodičovými součástkami, používanými v moderních zařízeních pro tento účel. Kromě toho probírá i vliv elektrických pohonů s polovodičovými součástkami na energetickou síť.

Ve stručném úvodu autor nejprve velmi stručně seznamuje čtenáře s hlavními etapami technického rozvoje v této oblasti, pak vysvětluje

koncepci knihy — uvádí rozvržení obsahu a požadavky na znalosti, předpokládané u čtenářů pro úspěšné porozumění textu.

Výklad je rozdělen do pěti částí. V první z nich (2. kap.) se probírají obecné vlastnosti polovodičových součástek s přihlédnutím k jejich využití ve výkonových obvodech. V dalších dvou částech jsou analyzována zapojení měničů, a to k napájení stejnosměrných motorů (3. kap.) a střídavých motorů (4. kap.), přičemž jsou rozdělena do jednotlivých skupin podle toho, k jakému účelu je jejich použití vhodné. Pátá kapitola je věnována problematice dimenzování transformátorů, tlumivek a kondenzátorů, zapojených v obvodech elektrických pohonů (měničových transformátorů, vyhlazovacích a komutacích tlumivek a komutacích kondenzátorů).

V poslední — šesté — kapitole se rozebírá vliv elektrických pohonů s polovodičovými měniči na energetickou síť, který je nezbytný u těchto typů brát v úvahu zejména s ohledem na komutaci děje a na fázové řízení měničů. Probírají se účinná opatření, která je třeba navrhovat proti zhoršování účinníku, deformaci harmonického průběhu napětí v sítí i proti šíření vlivu složek napětí.

Text je doplněn přehledem použitých značek a zkratek (na začátku knihy), seznamem 44 titulů doporučené literatury a věcným rejstříkem.

Výklad se opírá o matematické rozbory, na jejichž základě jsou vyvozeny závěry a shrnutý výsledné poznatky. Při náznacích postupů výpočtu se uvádějí často i mezinárodní zájemci je dáná určením publikace.

Kniha mohou využít nejen posluchači oboru *Silnoproudá elektrotechnika*, ale i dalších směrů, např. *Elektrické stroje a přístroje* apod. Stejně tak může být užitečná i inženýrům a ostatním zájemcům v praxi.

JB

STŘEDISKO VTEI SVAZARNU NABÍZÍ

Středisko vědeckotechnických informací Svažarmu pro elektroniku, Martinská 5, 110 00 Praha 1. ★ Pracovní doba: pondělí zavřeno, úterý až čtvrtok 10 až 12, 14 až 17, pátek 10 až 12, 14 až 16. ★ Telefon: 22 87 74. Služby střediska jsou poskytovány pouze osobně: vyřizování členství a hostování v 602. ZO Svažarmu, přístup ke knihovně časopisů na mikrofíších, porizování kopií, prodej programů Mikrobáze, nepájných kontaktních polí a poskytování dalších členských služeb.

KOMPUTER (PL) 3/88

Supradívový počítač — rozhovor s Romanem Sobolewskim [5] Jak vzniklo Fido? — o vzniku počítačové sítě [7] Šelmy a oběti — o modelování a využití [12] Jednoduché řídící systémy — o využití počítače Atari 800 XL [13] Disková paměť Ameprodu — test [14] Mark Williams C — 2. část [16] Terrorpods — hra [18] Annals of Rome — hra [19] Mikroprogramy pro Atari XE/XL — 3. část [20] MS-DOS program nad programy — popis 1. část [25] Computer '88 — dojmy z výstavy [27] Hloupé chyby — o chybách v Turbo Pascalu [31] Operace à la charte — o souborech BAT pro počítače IBM [32] Turbo Consruktor — popis [33] Skvělý svět zvuků — o počítačové hudbě [34] Norton Commander — pokračování [36] OrCAD — 2. část [37] Počítač Bondwell 8 — test [40] Acorn Archimedes — popis nového počítače [43]

KOMPUTER (PL) 4/88

Rozhovor — o redakci časopisu a jeho čtenářích [3] Bude papír — rozhovor s Helenou Zych [5] Místo myši — o výrobě počítačového příslušenství v Polsku [6] Software '88 — o softwarové výstavě a veletrhu v Maďarsku [7] Někdy stačí málo — o využití počítačů [13] Amstrad, Turbo Pascal a grafika — grafika v Turbo Pascalu pro Amstrada CPC 6128 [14] Triky a kousky — 2. část [16] Cambridge Computer Z88 — popis nového počítače [17] Fleet Street Editor Plus — popis programu [18] LocoScript 2 — popis programu [20] Nelehké rozhoznotu — o kompliačorech pro Atari ST [21] Mikroprogramy pro Atari XE/XL — 4. část [25] Kivika roste — test programu BGraf [32] Grafický editor GRAF — popis [35] MS-DOS — 2. část [36] OrCAD — 3. část [37] Handy Scanner — test [40]

KOMPUTER (PL) — 5/88

Giga — obchody — o výstavě CEBIT [3] Chceme být nezbytní — rozhovor s Berendem Harmensem [5] Vyhnaní z ráje — o práci polského podniku ZETO [10] Rekurence — o využití rekurence [14] Nejen pro zábavu — k čemu používat počítače [18] Pod podívkou — popis operačního systému Atari XE/XL [20] Triky a kousky — 3. část [22] Synstat-program pro Atari — popis [22] Timewarrior Publisher — popis [30] MS-DOS — 3. část [34] Znaky na obrazovce — programované grafické karty u počítače IBM [36] Dvakrát rychlejší IBM AT — jak urychlit práci s Hard Diskem [37] Psiorn Organisser II — test [39] Na cestě — rozhovor s Wiesławem Migutem [42] Živé dítě — rozhovor s Grzeforzem Turnakiem [42]

KOMPUTER (PL) 6/88

Smutek procesoru — o počítačovém vývoji v Polsku [3] Hvězda nad Evropou — rozhovor s Gaudenzem M. Juon a Krzysztofem Misalem [Star] [5] Mikrolaur '88 — nová řešení pro počítače IBM [8] Operační systém CP/M-80 — popis [13] Triky a kousky — 4. část [14] Kyan Pascal — záře a stíny — klády a záporý tohoto jazyka [15] Grafika Commodore 128 (D) — popis grafiky [17] Mega ST vlastní výroby — jak rozšířit paměť RAM na 2,5 MB [18] Mikroprogramy pro Atari XE/XL — 5. část [20] CeBIT — dojmy z výstavy [27] Vždy pošky — o programu QR-Tekst [31] MS-DOS — 4. část [34] Turbo Pascal 4.0 — popis [36] Podrobování myši — jak využívat myš [37] Praxe programování — kódování — poznámky ke kódování programů [40] Znaky na obrazovce — 2. část [41]

KOMPUTER (PL) — 7/88

Evoluce — o počítačové situaci [3] AutoCAD v Polsku — rozhovor s Richardem Handyside [5] Salmed '88 — využití počítačů v medicíně [8] Jak se dostat z geta mrázci? — počítače ve zvláštních školách [10] Pomohou počítače nevidomým? — o speciálních typech počítačů [12] Operační systém CP/M-80 — popis [16] Amstrad CPC a okna — jak dělat okna [19] Atari-Writer Plus — popis [20] Polské znaky pro Atari ST — polský standard pro tento počítač [22] Mikroprogramy pro Atari XE/XL — 6. část [25] Nesmrteľný hmyz — jak si zajímavě hrát s počítačem [31] Hry s obrazovkou — jak využít celou paměť grafické karty u IBM [36] Norton Integrator — popis [37] Kolgar portable AT — test [39] Frame Grabber — o nové kartě pro IBM [42]

Hi Fi NEWS & RECORD REVIEW (GB) 1/88

Index ročníku 1987 [5] Komentář vydavatele [7] Soutěž přehráváků kompaktních videodesek vyhrál Philips CD-V475 [9] Názory čtenářů ke zveřejněným článkům [13] Zprávy o nových výrobcích, lidech a událostech [17] Novinky pouze v zvukové a obrazové technice [23] Z rozhlasového vysílání BBC [25] Klub doplňků — gramodesky pro sběratele [29] Budování zvukového systému s rozpočtem kolem 1500 liber [33] Reportáz z výstavy Stereophile v Kodani [39] Vývoj elektrického záznamu zvuku [43] Obchodníci firmy Sony s cenou roku [50] Jak se stát zvukovním technikem [53] Zlepšování parametrů přehráváku kompaktních desek [55] 16bitový přehrávák kompaktních desek Meridian 207 doprovázený výkonovým zesilovačem Meridian 205 [59] Gramofon Lurne Audiomeca v kombinaci s raménkem SL5 [67] Výkonový zesilovač DNM GEM [73] Malé reprosoustavy WATT od firmy David Wilson [75] Test předzesilovače Rotel RC-870BX a výkonovým zesilovačem BR-870BX [79] Sluchátka Beyer DT-48 z třicátých let [83] Moderní gramofonová vložka od Kiseki [85] Krátké reportáže o reproduktorech Goodman Maxim II, předzesilovači Musical Fidelity a výkonovém zesilovači A370 [86] Pianistka Kathryn Stott [91] Nové knihy [93] Recenze gramofonových a kompaktních desek [95] Nejlepší nahrávky měsíce [97] Klasická hudba na LP a kompaktních deskách [119] Rock, pop a džez na LP a kompaktních deskách [123] Inzeráty [136] O některých rockových nahrávkách [138]

Hi Fi NEWS & RECORD REVIEW (GB) 02/88

Komentář vydavatele [5] Názory čtenářů ke zveřejněným článkům [7] Zprávy o nových výrobcích, lidech a událostech [17] Záznam zvuku na polodiodový čip [21] Reportáz z výstav v Nizozemsku a Finsku [25] Cena časopisu za úspěchy ve zvukové technice [33] Vývoj elektrického záznamu zvuku [37] Nové knihy [41] Ed Meitner a jeho elektronický gramofon bez talíře [43] Klub doplňků — síťový filtr pro hifi zařízení [47] Přehrávák kompaktních desek Accuphase DF-80 s procesorem DC-81 [51] Test tří kvalitních reproduktoričkových soustav AR55BX, B a WWMD1600 a Mission Freedom [59] Gramofonová vložka Ortofon MC 3000 [67] Posudek nových komponentů od Musical Fidelity: předzesilovač 3A/3B, výkonový zesilovač P140, reproduktorskou soustavu MC-4 [71] Zkuška nových mnohem větších reproduktoričkových soustav Wharfedale Ritz Diamond [77] Gramofonové šasi Thorens TD1605 MkIV [79] Výkonový integrovaný zesilovač PM640VXI [83] Recenze gramofonových a kompaktních desek [91] Nejlepší nahrávky měsíce [93] Klasická hudba na LP a kompaktních deskách [93] Rock, pop a džez na LP a kompaktních deskách [109] Inzeráty [120] O Glenni Millerovi [122]

ROBOTICA (GB) 1—3/88

Krátké zprávy a přehledy [1] Vizuální detekce diferenciálního pohybu — aplikace na robotiku [7] O užití deformačních matic v systémech umělého vidění [13] Levný chapadlo s hmatovým čidlem používající senzorové pole ze silikonové gumy [23] Termální snímače tvaru objektu a povahy materiálu [31] Plánování cesty pohybu mobilního robota [35] Syntéza dráhy manipulátoru minimalizací času [41] Výpočet vzdálenosti od hrozící kolize simulací systému robota [47] Analýza citlivosti využívaných robotizovaných manipulátorů [53] Příspěvek ke studiu dynamiky a řízení robotů s elastickými převody [63] Výhled na zavedení počítačů do řízení výroby v SSSR [71] Informace z konferencí [81] Recenze knižní literatury [83] Oznamení o setkáních a výstavách [91]

COMPUTER DESIGN (US) 1/88

Integrované obvody — mikroprocesor 68030 [20] GaAs, křemík soutěží o své postavení v optických spojích [24] Tvorba systémů a vývojové nástroje [24] Rozšířená analýza výkonnosti podporuje systémy pracující v reálném čase [26] Integrované nástroje a jednotný návrh automatizovaných systémů [27] Technologická zpráva zaměřená na programování technologických zařízení [31] Technologie barevného tisku [43] CASE — nástroje pro softwarovou analýzu [53] Návrh výkonného multiprogramního systému [77] Komponenty sub-systémů [84] Počítače a počítačové systémy — VME počítače na jedné kartě, postavené na základě mikroprocesoru 68030 [91] Vývojové nástroje: PCB CAD systémy pro 32bitové pracovní stanice [92] Integrované systémy: VLSI komponenty umožňující řešení problémů s výrobními procesory [93] Periferie a paměťové systémy: vysoko kapacitní Winchester disk soutěží s velkými disky [95] Testování a výroba: Cobra — přenosný počítač kompatibilní s PC [96] Analogodigitální konvertor

COMPUTER DESIGN (US) 2/88

Vývojové nástroje: Implementace VHDL umožňuje popisovat chování [21] Software: XDOS otevří dveře použití MSDOS programů na počítačích nekompatibilních s IBM PC [22] Grafika a zpracování obrazu [28] Periferie a paměťové systémy: nová technologie vysoko kapacitních archivacích systémů [30] Vojenské a komerční aplikace využívají vysoké spolehlivé systémy IC [37]

Technologie skleněných optických víáken [46] Problémy s pomály vstupní/výstupní zařízení [57] Problémy okolo návrhu lokálních sítí [79] Vývoj IPI-3 subsystémů pro diskové řadiče budoucnosti [87] Testování a výroba: 100 MHz analogové oscilátory [94] Počítače a počítacové systémy: Použití mikroprocesoru 68030 pro aplikace v reálném čase [98] Integrované obvody: Levný 32bitový procesor [101] Grafika a zpracování obrazu: VGA pro PS/2 [103] Emulátor mikroprocesoru 68030

COMPUTER DESIGN 3/88

Integrované obvody — 35. mezinárodní konference ISSCC [21] Integrované obvody — zvýšení rychlosti analogových polí [22] Integrované obvody — architektura více sběrnící [23] Nové emulátory pro PC [26] Nové programové nástroje umožňující optimalizaci mikrokontrolérů [30] Počítače a počítacové subsestemy — Transputery a jejich návrhy [31] Integrované obvody založené na GaAs [37] Spolehlivost, kapacita a výkonnost pevných (Winchester) disků [49] Kombinovaný analogo/digitální návrh [57] Plazma displeje [67] Integrovaný obvod V 35 — MS DOS kompatibilní mikrořadič [72] Integrovaný obvod OMTI 5086 [72] 256-kbit SRAM s rychlým přístupem [72] Integrovaný obvod 85C20 umožňuje zrychlit detekci opravy chyb na optickém disku [72] První CMOS 16-kbit EEPROM paměť [73] TC518128P — 1 Mbit statická RAM paměť EEPROM s přístupem 55 ns [73] Integrovaný obvod MB89352 pro levné mikročipovací systémy [73] 80C51BH a 80C31BH — CMOS integrované obvody s velmi malou spotřebou [73] Koprocesor + software pro provozování UNIXu pod DOSem [74] Karty umožňující programování v pohyblivé řádové čáře pro VME sběrnici [74] STD-BitBoss — inteligenční rozhraní pro STD sběrnici [74] MS68K — jednodeskový počítač založený na mikroprocesoru 6800 [32] 32bitová karta CPU pro IBM a kompatibilní [74] Hewlett-Packard PLD systém [75] Vývoj technologií integrovaných obvodů [80] Paměťové systémy [76] Literatura [78] Diskový řadič zvyšující výkonnost pracovních stanic firmy Sun [76] 40 Mbyte archivací systém „back up“ pro HP [76] Pevný disk s kapacitou 182 Mbyte [76] Velkokapacitní pevný disk

COMPUTER DESIGN (US) 4/88

Výběr mikroprocesoru [59] Přehled mikroprocesorů [78] Přehled „bit-slice“ mikroprocesorů [106] Přehled podpůrných IO [108] Přehled funkčních bloků [122] Bitbus podporuje tvorbu levných sériových spojení [23] Mechanické CAD nástroje [26] Grafická knihovna, umožňující interaktivní vizualizaci [30] Barevný tisk, barevná LED tiskárna [32] Technologie křemíkové komplikace (silicon-compilation) [37] Komunikační standardy [46] Paměťové systémy [135] MS-CPU100 a MS-CPU110 levné VME CPU karty [131] Buscon/88 — konference a výstava [128] PT-VME105 — jednodeskový řadič [130] PME 16EP dynamická RAM karta [132] ZX-532 — 32bitová CMOS V/V karta [133] Karta CD21/8286 — 4 Mbyte RAM a 8 MHz mikroprocesor [133] UNIX systém pro 34 uživatelů [133] Odlaďovač nástroj pro jazyk C [133] Spojení IBM PC — VAX [133] Rimfire 3510 VMEbus s kapacitou

COMPUTER DESIGN (US) 5/88

Integrované obvody — BiCMOS [19] Integrované obvody — uživatelsky programovatelný „Micro Channel“ IO zjednoduší tvorbu PS/2 [21] Integrované obvody — rychlé logické CMOS obvody [24] Grafika a zpracování obrazu — grafický procesor DP8500 [26] Vývojové nástroje — křemíkové komplikátory (silicon compilers) [28] Software modelování [29] Vývojové nástroje a jejich testování [41] Moderní způsoby návrhu komplexních počítacových systémů [53] ADA pro řešení problémů v reálném čase [58] Integrované obvody — D/A převodníky [63] Maticový procesor pro Multibus II [67] AT1750A — karta pro IBM PC, XT, AT [67] PME 68-25 — karta s 68020 — karta s 68020 (20 MHz) procesorem a 68881 koprocesorem [67] Koprocesor AT/Force [68] VMEcom2 — komunikační procesor [68] PC1553 — levné rozhraní spojující PC a sběrnici MIL-STD 1553 [69] R9696DP — duplexní modem (9600 bit/s) [69] MVME332XT — komunikační řadič [69] HyperCE-386 emuluje 80386 při rychlosti 25 MHz [70] Programový balík ICO-CAP [70] T-132-logický časový analyzátor [70] Vývojový systém pro Texas Instruments TMS32025 DSP mikrořadič [71] Karta PathFinder [71] VME sběrnice a zpracování obrazu [71] Grafická karta VGA-2 [72] Vysoké rozlišovací grafika pro PS/2 [72] Karta emulující barvy pro 3-D grafiku [72] AST-VGA — grafická karta pro IBM PC

COMPUTER GRAPHIC AND APPLICATIONS (IEEE)

(US) — 1/88

Letecké simulátory s cenou pod 100 000 dolarů [19] Analýza prostorových modelů založených na kvadratické approximaci [28] HotWindows — nástroj pro tvorbu uživatelského rozhraní [43] Dělení mnohostěností do neprotinajících se částí [53] Grafický UIMS — využití makropřeměnných [68] O obálcích [3] VLSI a třídimenziální grafika [6] Interaktivní zpracování obrazu [10] Budoucnost počítacové grafiky [17] Matematické triky pro počítacovou grafiku [82] Grafické standardy [87] Nové výrobky