Höhere Technische Bundeslehranstalt Wien 3R Rennweg 89b, 1030 Wien Laborbericht		
Name:		Betreuer:
	Federanko	Übungsdatum:
Mitarbeiter		Abgabedatum:
		verspätet:
		Einsicht am:
		Benotung:
Informationstechnologie	Laboratorium:	Werkstättenlaboratorium
Mechatronik		
schule Informationstechnik		
Übungsthema: PTC Creo Simulationen		
	Name: Mitarbeiter Informationstechnologie Mechatronik schule Informationstechnik	Rennweg 89b, 1030 Wien Laborbericht Name: Federanko Mitarbeiter Informationstechnologie Mechatronik schule Informationstechnik

Verwendete Geräte				
Bez.	Art des Gerätes	Typ und Fabrikat	Inventarnr.	Anmerkungen

1. Aufgabenstellung	3
2. Durchführung	3
3. Ergebnisse	3
3.1.Stehender Träger einseitig eingespannt	3
3.2.Stehender Träger zweiseitig eingespannt	3
3.3.Liegender Träger zweiseitig eingespannt	4
4.Berechnungen & Formeln	4
5.Screenshots	5
6.Diskussion	6

1. Aufgabenstellung

Spannungen und Durchbiegungen mittels PTC Creo simulieren und diese Werte mittels Rechnung überprüfen. Zuerst war ein Hohlträger mit rechteckigem Querschnitt zu machen, wobei h > b war. Der zweite Träger war der Selbe und um 90 grad gedreht, so, dass b > h war und er wird dieses mal an beiden Seite eingespannt (Ein Loslager, ein Festlager).

2. Durchführung

Zuerst wurde der Träger mit dem Lehrer laut folgender Skizze gezeichnet.

Der Träger wurde in der Simulation einmal auf der Neutralfaser und einmal auf der Gesamten Querschnittsfläche. Da bei der Berechnung immer von einem Punkt ausgegangen wird, ist nur die Simulation mit der Aufhängung an der Neutralfaser korrekt.

3. Ergebnisse

3.1. Stehender Träger einseitig eingespannt

Belastung: 900N, Material: ggg50, E-Modul: 1.85*10^8

Wert	Rechenwert	Simulation I	Simulation II	Fehler I	Fehler II
Verf. mitte	3.51um	3.54um	3.67um	0.67%	4.57%
Verf. ende	11.24um	11.29um	11.57um	0.43%	2.88%
Spannung mitte	252.76N/mm^2	252.61N/mm^2	252.61N/mm^2	0.06%	0.06%
Spannung ende	505.52N/mm^2	604.15N/mm^2	5.51kN/mm^2	19.51%	990.11%

3.2. Stehender Träger zweiseitig eingespannt

Belastung: 1200N, Material: ggg50, E-Modul: 1.85*10^8

Wert	Rechenwert	Simulation	Fehler
Spannung	126.38N/mm^2	124.24N/mm^2	1.96%
Verformung Kraft	526.99um	542.93um	3.03%
Verformung max	654.65um	670.74um	2.46%

3.3. Liegender Träger zweiseitig eingespannt

Belastung: 1200N, Material: ggg50, E-Modul: 1.85*10^8

Wert	Rechenwert	Simulation	Fehler
Spannung	230N/mm^2	217.31N/mm^2	5.52%
Verformung Kraft	1.68um	1.70um	1.22%
Verformung max	2.09um	2.10um	0.75%

4. Berechnungen & Formeln

```
Biegegleichung:
```

$$w(x) = (Fl^3)/(3EI)(1-3/2*x/l+1/2*(x/l)^3)$$

Durchbiegung:

$$f = (F1^3)/(3EI)$$

Trägheitsmoment:

$$I = (bh^3)/12$$

$$--> Ix = 21^3 - (9*15^3)/12 = 6.73*10^3mm^4$$

Verformung an der Mitte:

$$w(1/2) = (F(1/2)^3)/(3EI)(1-3/2*1/2+1/2*(1/2)^3)$$

--> verf_m = 3.51*10^-3mm

Durchbiegung:

$$verf e = 11.24*10^3mm$$

Biegespannung:

$$Sigma = Mb/Wb = (Mb*e)/Ix$$

$$e = h/2 = 10.5mm$$

$$Mb = F*x$$

Biegespannung Mitte:

$$sigma_m = (F*x*e)/Ix = (900*180*10.5)/(6.73*10^3) = 252.76N/mm^2$$

Biegespannung Ende:

Maximale Durchbiegungsstelle:

$$x1max = a*sqrt((1+b)/(3a)) = 270*sqrt((360+90)/(3*270)) = 201.25mm$$

 $Ix = 6.73*10^3mm^4$

$$f = (Fl^3)/(3EI)(a/l)^2(b/l)^2 = 14.99*9/16*1/16 = 526.99*10^-6mm$$

 $fmax = f*(l+b)/(3b)*sqrt((l+b)/(3a)) = 526.99*10^-6*450/270*sqrt(1/3) =$

654.65*10^-6mm

Kräftesystem:

FB+FA = F

90FB = 270FA

--> FB = 3/4F = 900N

Biegemoment:

 $sigma_b_k = (FB*b*e)/Ix = (900*90*10.5)/(6.73*10^3) = 126.58N/mm^2$

Neuer Querschnitte (liegend):

Einsetzen des neuen Ix in alle vorhergehenden Rechnungen:

 $Ix = 21*12^2 - (15*9^3)/12 = 2.11*10^3mm^4$

 $--> f = 1.68*10^{-3}mm$

 $--> fmax = 2.09*10^-3mm$

 $--> sigma_b_k = 230N/mm^2$

5. Screenshots

6. Diskussion

Diese Übung war sehr interessant, ich habe sofort gesehen, wie die Ergebnisse sein sollten, als ich die Berechnungen gemacht hatte, sah ich sofort, als ich einen kleinen Denkfehler hatte. Die Simulationen sind aufschlussreich und leicht zu gestalten (was bei Creo ein wunder ist).