

Model Development Phase Template

Date	14th July 2024
Team ID	739889
Project Title	SENTIMENTAL ANALYSIS OF COMMODITY NEWS (GOLD)
Maximum Marks	4 Marks

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be show cased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

```
In [15]: #the updated text here

df['Cleaned_News'] = pd.DataFrame(df.News.apply(Cleaned_News))

Out[15]:

| News | Price Sentiment | Cleaned_News |
| o april gold down 20 cents to settle at $1,116.1... | negative | april gold down cents to settle at |
| 1 gold suffers third straight daily decline | negative | gold suffers third straight daily decline |
```

0	april gold down 20 cents to settle at \$1,116.1	negative	april gold down cents to settle at
1	gold suffers third straight daily decline	negative	gold suffers third straight daily decline
2	Gold futures edge up after two-session decline	positive	gold futures edge up after twosession decline
3	dent research: is gold's day in the sun comin	none	dent research is golds day in the sun coming
4	Gold snaps three-day rally as Trump, lawmakers	negative	gold snaps threeday rally as trump lawmakers r
5	Dec. gold climbs \$9.40, or 0.7%, to settle at	positive	dec gold climbs or to settle at
6	gold falls by rs 25 on sluggish demand, global	negative	gold falls by rs on sluggish demand global cues
7	Gold futures fall for the session, but gain fo	positive	gold futures fall for the session but gain for
8	Gold struggles; silver slides, base metals falter	neutral	gold struggles silver slides base metals falter
9	april gold holds slight gain, up \$2.50, or 0.2	positive	april gold holds slight gain up or at

Model building with Logistic Regression

Model building with SVM ¶


```
In [24]: #Logistic Regression
              from sklearn.metrics import accuracy_score
print("Accuracy_test : ", accuracy_score(predictions, y_test))
print("Accuracy_train : ", accuracy_score(pred_train, y_train))
              Accuracy_test: 0.8831598864711447
Accuracy_train: 0.9331835383159887
In [25]: #SVM
              #SVM
#from sklearn.metrics import accuracy_score
print("Accuracy_test: ", accuracy_score(predictions2, y_test))
print("Accuracy_train : ", accuracy_score(pred2_train, y_train))
              Accuracy_test: 0.8831598864711447
Accuracy_train : 0.9331835383159887
In [26]: example = ["gold to trade in 28670-29160 range: achiievers equities"]
result = model.predict(example)
              print(result)
              ['neutral']
In [27]: example = ["gold to trade in 28670-29160 range: achiievers equities"]
result = model2.predict(example)
              print(result)
              ['neutral']
In [28]: example = ["can investment in gold, sensex & ppfs give the same returns?"]
result = model.predict(example)
              print(result)
              ['none']
In [29]: example = ["can investment in gold, sensex & ppfs give the same returns?"]
              result = model2.predict(example)
             print(result)
              ['none']
```

Model Validation and Evaluation Report:

Model		C	lassif	icatio	on Report		F1 Scor e	Confusion Matrix	
	#for Logistic F from sklearn.me # assume y_trai print(classific	etrics impo in and pred	train ar	e your true	and predicted labels, res	pectively		confusion_matrix(predictions, y_test) array([[701, 15, 26, 29],	
LOGISTIC REGRESS ION	negative neutral none positive accuracy macro avg weighted avg	0.91 0.93 0.79 0.90	necall 0.91 0.56 0.84 0.91 0.81 0.88	f1-score 0.91 0.70 0.82 0.91 0.88 0.83 0.88	support 769 89 391 865 2114 2114				

SUPPORT	#for SVM from sklearn. # assume y_tro print(classifi	ain and pred	2_train a	re your tr	ue and predicted La	bels, respectively	confusion_matrix(predictions2, y_test)
VECTOR		precision	recall	f1-score	support	889	% array([[701, 15, 26, 29],
MACHINE	negative	0.92	0.90	0.91	769		[31, 9, 330, 48],
MACHINE	neutral	0.81	0.64	0.72	89		[36, 15, 34, 786]], dtype=int64)
	none	0.79	0.85	0.82	391		
	positive	0.90	0.90	0.90	865		
	accuracy			0.88	2114		
	macro avg	0.86	0.82	0.84	2114		
	weighted avg	0.88	0.88	0.88	2114		