

Topics

- File Server for Experiment Data
- New Hardware
 - 19" box
 - SATA Controller
- Performance Tests RAID 5
 - Kernel 2.6.8
 - Ext3
 - XFS
- Reliability
- Conclusion

File Server for Experiment Data at GSI

- typically units of about 1-2 TB
- large files
- one or few concurrent write processes
- a couple of concurrent read processes

History:

- some years ago: IDE-> SCSI technology
- Computer with scsi controller and a couple of attached (scsi cables) raid boxes
- EASY RAID 19" frames from TRANSTEC
 - Advantage:
 - cheap as compared to a scsi disks solution
 - >1 TB units possible
 - Disadvantage:
 - ATA disks not really reliable: not specified for 24x7 use
 - RAID controller not very performant:
 - About 24 MB/s for 1 Thread RAID 5
 - Very low performance for concurrent write processes
 - RAID controller not very reliable

New SATA file server

since 9 month testing, 6 month production

- 3 HU server with 15 ports (hot swap)
- Redundant cooler system, hot swap
- •CPU with air system, no cooler on the CPUś
- •Triple redundant power supplies, hot swap
- 24 x7 specified disks, 250 GB
- Two independent high performance SATA RAID controller
- With one system disk: 14 *250 = 3,5 TB capacity RAID 0
- With 4 GB Ram about 7 kEuro

SATA Controller:

3Ware Escalade 8506-8, 8 channel Bug: mixed up data under "rare conditions"

3Ware Escalade 9500S-8, 8 channel 64 MByte cache expandable to 512 MByte RAID level: 0,1,5,10 JBOD, 50

Mainboard:

supermicro X5DAL-TG2
SATA controller onboard
64 Bit PCI-X

CPU:

2x 2,66 MHz Xeon 2 GB Ram

Disks:

7200 RPM: Maxtor MaXLine Plus II

specified: 7×24 , MTBF > $1* 10^6$ h

seek time < 9 ms

8 MB cache, 250 GB

10000 RPM: WD Raptor

specified 7x24, MTBF> 1,2 *10^6h seek time 4,5 ms
8 MB cache, 73 GB

Performance Tests RAID 5

MB/s

comparison 7200/10000 rpm disks

System:

Debian "Sarge"

Kernel 2.6.8, RAID 5

File System: XFS

Read-Ahead Cache: 16384

Influence of Caching on Performance

=> all test performed with file size > 10 GB >>> RAM = 2 GB

Tuning with Read Ahead Cache Size

Comparison ext3 with XFS

Disk: "raptor"

RAID 5, 8 disks

Kernel: 2.6.8

Read-Ahead Cache: 16384

=> poor write performance of ext3!

Total Read Performance as Function of Concurrent Processes and Readahead

Reliability

 ~ 15 servers, 200 disks, 6 months

=> 864000 h heavy load 24 x 7 no disk failure, no hardware failure at all ,experimental MTBF: > 0.9*10^6h"

Reliability: very good! at least up to now ... ;-)

- At BIOS level
- Command line interface (very powerfull)
- Web browser (very easy)

SATA file servers - Conclusion:

- very good reliability
- •good performance in combination with
 - high performance controllers
 - xfs file system
 - Kernel 2.6 + ,,tuning/optimisation"

however:

- performance decreases for concurrent access
 - => needs optimisation