CLAIMS

What is claimed is:

5 1. A polymer substituted with at least one group represented by Structural Formula (I) or (II):

$$\begin{cases} -R & Y & | | \\ B(OH)_2 & (I) \end{cases}$$

$$\begin{cases} (X)_k \\ B(OH)_2 & (II), \end{cases}$$

$$(II),$$

wherein:

10

R is a C6-C30 hydrocarbylene group optionally interrupted by one or more heteroatoms selected from the group consisting of NH, S, and O;

each X is independently a substituted or unsubstituted alkyl group, an electron withdrawing group, or an electron donating group meta to the boronic acid moiety;

15

Y is $-C(O)Z_{-}$, $-ZC(O)_{-}$ or $-S(CH_2)_{n-}$;

Z is a bond, CH₂S, S, NH, or O;

m is an integer from 0 to 3;

k is an integer from 0 to 4; and

n is an integer from 0 to 5.

2. The polymer of Claim 1, wherein each X is independently –H, a halogen, nitrile, ester or sulfone.

Best Available Copy

3. The polymer of Claim 2, wherein said polymer is substituted with at least one group represented by Structural Formula (III) or (IV):

$$R$$
 X_1
 X_2
 $B(OH)_2$
 X_1
 $B(OH)_2$
 $(IV),$

wherein X_1 and X_2 are each independently –H, a halogen or nitrile; and Y is -C(O)Z- or -ZC(O)-.

4. The polymer of Claim 3, wherein said polymer is substituted with at least one group represented by Structural Formula (V):

5. The polymer of Claim 4, wherein said polymer is substituted with at least one group represented by Structural Formula (VI), (VII), or (VIII):

wherein R' is a C6-C12 alkylene group.

5

6. A polymer comprised of polymerized monomer units, wherein the monomer unit is represented by Structural Formula (IX), (X), or (XI):

$$R_2$$
 R_2
 R_2
 R_2
 R_2
 R_2
 R_2
 R_2
 R_2
 R_2
 R_3
 R_4
 R_4
 R_5
 R_5

wherein:

0;

R is a C6-C30 hydrocarbylene group optionally interrupted by one or more heteroatoms selected from the group consisting of NH, S, and

5

15

R₁ is -H or a lower alkyl group;

R₂ is -H, a lower alkyl group, or is absent;

each X is independently -H, a substituted or unsubstituted alkyl

group, or an electron withdrawing group;

10 Y is $-C(O)Z_{-}$, $-ZC(O)_{-}$ or $-S(CH_2)_{n-}$;

Z is a bond, CH₂S, S, NH, or O;

 Z_1 is a bond, -C(O)NH-, -C(O)O-, -C₆H₄O-, or -C₆H₄NHC(O)-;

m is an integer from 0 to 3;

k is an integer from 0 to 4; and

n is an integer from 0 to 5.

- 7. The polymer of Claim 6, wherein R₁ is -H or -CH₃; each X is independently -H, a halogen, nitrile, ester or sulfone.
- 20 8. The polymer of Claim 7, wherein said polymer is comprised of polymerized monomer units represented by Structural Formula (XII) or (XIII):

$$X_1$$
 X_1
 X_2
 X_2
 X_3
 X_4
 X_4
 X_5
 X_6
 X_8
 X_8

$$Z_1$$
 R Y $B(OH)_2$ (XIIII),

wherein X_1 and X_2 are each independently –H, a halogen or nitrile; and Y is -C(O)Z- or -ZC(O)-.

- 5 9. The polymer of Claim 8, wherein R is a C6-C12 alkylene group; R₁ is -H; X₁ and X₂ are each independently -H or -F; Y is -OC(O)- or -SCH₂C(O)-; and Z₁ is -C(O)O-.
- 10. The polymer of Claim 9, wherein said polymer is comprised of polymerized monomer units, wherein the monomer unit is represented by Structural Formula (XIV), (XV), (XVI), or (XVII):

$$(CH_2)_{11}$$
 S $B(OH)_2$ (XVI) S $B(OH)_2$ $(XVII)$

- 11. The polymer of Claim 1, wherein said polymer is a copolymer.
- 12. The copolymer of Claim 11, wherein said copolymer comprises a hydrophobic repeat unit.

- 13. The copolymer of Claim 11, wherein said copolymer comprises a cationic, anionic, zwitterionic, or neutral hydrophilic repeat unit.
- 14. The copolymer of Claim 13, wherein said copolymer comprises an anionic repeat unit or a zwitterionic repeat unit.
 - 15. The copolymer of Claim 14, wherein the anionic repeat unit or zwitterionic repeat unit comprises a sulfonic acid moiety or a salt thereof.
- 20 16. The copolymer of Claim 15, wherein the anionic repeat unit is polymerized 2-acrylamido-2-methyl-1-propane sulfonic acid or a salt thereof; polymerized

20

styrene sulfonic acid or a salt thereof; or polymerized 3-acrylatopropane sulfonic acid or a salt thereof.

- 17. The copolymer of Claim 13, wherein said copolymer comprises a polyether sidechain.
 - 18. The copolymer of Claim 13, wherein said copolymer is a block copolymer, a graft copolymer, a comb copolymer, a star copolymer, a dendrimer, a hyperbranched polymer, or a crosslinked hydrogel.
 - 19. The polymer of Claim 6, wherein said polymer is a copolymer and wherein said copolymer comprises a hydrophobic repeat unit.
- The polymer of Claim 6, wherein said polymer is a copolymer and wherein said copolymer comprises a cationic, anionic, zwitterionic, or neutral hydrophilic repeat unit.
 - 21. The copolymer of Claim 20, wherein said copolymer comprises an anionic repeat unit or a zwitterionic repeat unit.
 - 22. The copolymer of Claim 21, wherein the anionic repeat unit or zwitterionic repeat unit comprises a sulfonic acid moiety or a salt thereof.
- 23. The copolymer of Claim 22, wherein the anionic repeat unit is polymerized
 2-acrylamido-2-methyl-1-propane sulfonic acid or a salt thereof; polymerized
 styrene sulfonic acid or a salt thereof; or polymerized 3-acrylato-1-propane
 sulfonic acid or a salt thereof.
- The copolymer of Claim 23, wherein the copolymer is poly{4-(14'-acryloxy-3'-thia-1'-keto)tetradecyl phenyl boronic acid-co-potassium 3-sulfopropyl acrylate)}, poly{4-(14'-methacryloxy-3'-thia-1'-keto)tetradecyl phenyl

10

15

20

boronic acid-co-sodium 4-styrene sulfonate}, poly{11-acryloxyundecyl(4-boronato)benzoate-co-sodium 2-acrylamido-2-methyl-1-propanesulfonate}, poly{4-(14'-acryloxy-3'-thia-1'-keto)tetradecyl phenyl boronic acid-co-sodium 2-acrylamido-2-methyl-1-propanesulfonate}, or poly{4-(14'-acryloxy-3'-thia-1'-keto)tetradecyl phenyl boronic acid-co-sodium-4-styrene sulfonate}.

25. A method for treating obesity in a mammal, comprising the step of orally administering to the mammal an effective amount of a polymer substituted with at least one group represented by Structural Formula (I) or (II):

wherein:

R is a C6-C30 hydrocarbylene group optionally interrupted by one or more heteroatoms selected from the group consisting of NH, S, and O;

R₁ is -H or a lower alkyl group;

Z is a bond, CH₂S, S, NH, or O;

 R_2 is -H, a lower alkyl group, or is absent; each X is independently -H, a substituted or unsubstituted alkyl group, an electron withdrawing group, or an electron donating group meta to the boronic acid moiety; Y is -C(O)Z-, -ZC(O)- or -S(CH₂)_n-; Z₁ is a bond, -C(O)NH-, -C(O)O-, -C₆H₄O-, or -C₆H₄NHC(O)-; m is an integer from 0 to 3; k is an integer from 0 to 4; n is an integer from 0 to 5.

5

- 26. The method of Claim 25, further comprising the step of administering a fat binding polymer to the mammal.
- The method of Claim 25, wherein each X is independently -H, a halogen, nitrile, ester or sulfone.
 - 28. The method of Claim 27, wherein said polymer is substituted with at least one group represented by Structural Formula (V):

$$R$$
 Z
 $B(OH)_2$ (V)

wherein X_1 is -H, a halogen, or nitrile and.

29. The method of Claim 28, wherein the polymer is substituted with at least one group represented by Structural Formula (VI), (VII), or (VIII):

wherein R' is a C6-C12 alkylene group.

A method for treating obesity in a mammal, comprising the step of orally administering to the mammal an effective amount of a polymer comprised of polymerized monomer units, wherein the monomer unit is represented by Structural Formula (IX), (X), or (XI):

$$Z_1$$
 Z_1 Z_1 Z_2 Z_1 Z_2 Z_3 Z_4 Z_4

$$R_2$$
 R_2
 R_3
 R_4
 R_4
 R_4
 R_5
 R_5

wherein:

R is a C6-C30 hydrocarbylene group optionally interrupted by one or more heteroatoms selected from the group consisting of NH, S, and O;

.

5

10

15

25

R₁ is -H or a lower alkyl group;

R₂ is -H, a lower alkyl group, or is absent;

each X is independently -H, a substituted or unsubstituted alkyl

group, or an electron withdrawing group;

Y is $-C(O)Z_{-}$, $-ZC(O)_{-}$ or $-S(CH_2)_{n}_{-}$;

Z is a bond, CH₂S, S, NH, or O;

 Z_1 is a bond, -C(O)NH-, -C(O)O-, $-C_6H_4O$ -, or $-C_6H_4NHC(O)$ -;

m is an integer from 0 to 3;

k is an integer from 0 to 4; and

n is an integer from 0 to 5.

- 31. The method of Claim 30, further comprising the step of administering a fat binding polymer to the mammal.
- The method of Claim 30, wherein R₁ is -H or -CH₃; each X is independently -H, a halogen, nitrile, ester or sulfone.
 - 33. The method of Claim 32, wherein said polymer is comprised of polymerized monomer units, wherein the monomer unit is represented by Structural Formula (XII) or (XIII):

$$X_1$$
 Z_1
 X_2
 X_2
 X_3
 X_4
 X_4
 X_5
 X_6
 X_{11}
 X_{11}
 X_{12}
 X_{13}
 X_{14}
 X_{15}
 X_{15}
 X_{16}
 X_{17}
 X_{17}
 X_{18}
 X_{19}
 X

wherein X_1 and X_2 are each independently -H, a halogen or nitrile and Y is -C(O)Z- or -ZC(O)-.

5

- 34. The method of Claim 33, wherein R is a C6-C12 alkylene group; R_1 is -H; X_1 and X_2 are each independently -H or -F; Y is -OC(O)- or -SCH₂C(O)-; and Z_1 is -C(O)O-.
- The method of Claim 34, wherein said polymer is comprised of polymerized monomer units, wherein the monomer unit is represented by Structural Formula (XIV), (XVI), (XVI) or (XVII):

$$O$$
 $(CH_2)_{11}$
 S
 $B(OH)_2$
 (XVI)
 O
 $(CH_2)_{11}$
 S
 $B(OH)_2$
 $(XVII)$

- 36. The method of Claim 30, wherein the polymer is a copolymer.
- 37. The method of Claim 36, wherein the copolymer comprises a hydrophobic repeat unit.

- 38. The method of Claim 36, wherein the copolymer comprises a cationic, anionic, zwitterionic, or neutral hydrophilic repeat unit.
- The method of Claim 38, wherein the copolymer comprises an anionic repeat unit or a zwitterionic repeat unit.
 - 40. The method of Claim 39, wherein the anionic repeat unit or zwitterionic repeat unit comprises a sulfonic acid moiety or a salt thereof.
- 20 41. The method of Claim 40, wherein the anionic repeat unit is polymerized 2-acrylamido-2-methyl-1-propane sulfonic acid or a salt thereof; polymerized

20

25

30

styrene sulfonic acid or a salt thereof; or polymerized 3-acrylato-1-propane sulfonic acid or a salt thereof.

- 42. The method of Claim 38, wherein the copolymer is a block copolymer, a graft copolymer, a comb copolymer, a star copolymer, a dendrimer, a hyperbranched polymer, or a crosslinked hydrogel.
 - 43. The method of Claim 33, wherein the polymer is a copolymer and wherein said copolymer comprises a hydrophobic repeat unit.
 - 44. The method of Claim 33, wherein the polymer is a copolymer and wherein said copolymer comprises a cationic, anionic, zwitterionic, or neutral hydrophilic repeat unit.
- 15 45. The method of Claim 44, wherein the copolymer comprises an anionic repeat unit or a zwitterionic repeat unit.
 - 46. The method of Claim 45, wherein the anionic repeat unit or zwitterionic repeat unit comprises a sulfonic acid moiety or a salt thereof.
 - 47. The method of Claim 46, wherein the anionic repeat unit is polymerized 2-acrylamido-2-methyl-1-propane sulfonic acid or a salt thereof; polymerized styrene sulfonic acid or a salt thereof; or polymerized 3-acrylato-1-propane sulfonic acid or a salt thereof.
 - The method of Claim 47, wherein the copolymer is poly{4-(14'-acryloxy-3'-thia-1'-keto)tetradecyl phenyl boronic acid-co-potassium 3-sulfopropyl acrylate)}, poly{4-(14'-methacryloxy-3'-thia-1'-keto)tetradecyl phenyl boronic acid-co-sodium 4-styrene sulfonate}, poly{11-acryloxyundecyl(4-boronato)benzoate-co-sodium 2-acrylamido-2-methyl-1-propanesulfonate}, poly{4-(14'-acryloxy-3'-thia-1'-keto)tetradecyl phenyl boronic acid-co-

Best Available Copy

sodium 2-acrylamido-2-methyl-1-propanesulfonate}, or poly{4-(14'-acryloxy-3'-thia-1'-keto)tetradecyl phenyl boronic acid-co-sodium-4-styrene sulfonate}.

A method for reducing absorption of fat in a mammal in need of such treatment, comprising the step of orally administering to the mammal an effective amount of a polymer substituted with at least one group represented by Structural Formula (I) or (II):

10

wherein:

R is a C6-C30 hydrocarbylene group optionally interrupted by one or more heteroatoms selected from the group consisting of NH, S and O; each X is independently –H, a substituted or unsubstituted alkyl group, an electron withdrawing group, or an electron donating group meta to the boronic acid moiety;

 $(\Pi),$

Y is -C(O)Z-, -ZC(O)- or -S(CH₂)_n-; Z is a bond, CH₂S, S, NH, or O; m is an integer from 0 to 3; k is an integer from 0 to 4; and n is an integer from 0 to 5.

15

- 50. The method of Claim 49, further comprising the step of administering a fat binding polymer to the mammal.
- 51. A method for reducing absorption of fat in a mammal in need of such treatment, comprising the step of orally administering to the mammal an effective amount of a polymer comprised of polymerized monomer units, wherein the monomer unit is represented by Structural Formula (IX), (X), or (XI):

wherein:

R is a C6-C30 hydrocarbylene group optionally interrupted by one or more heteroatoms selected from the group consisting of NH, S and O; R₁ is -H or a lower alkyl group; R₂ is -H, a lower alkyl group, or is absent; each X is independently -H, a substituted or unsubstituted alkyl group, or an electron withdrawing group;

15

10

Y is -C(O)Z-, -ZC(O)- or -S(CH₂)_n-;

Z is a bond, CH₂S, S, NH or O;

Z₁ is a bond, -C(O)NH-, -C(O)O-, -C₆H₄O-, or -C₆H₄NHC(O)-;

m is an integer from 0 to 3;

k is an integer from 0 to 4; and

n is an integer from 0 to 5.

- 52. The method of Claim 51, further comprising the step of administering a fat binding polymer to the mammal.
- 53. The method of Claim 51, wherein the copolymer is poly{4-(14'-acryloxy-3'-thia-1'-keto)tetradecyl phenyl boronic acid-co-potassium 3-sulfopropyl acrylate)}, poly{4-(14'-methacryloxy-3'-thia-1'-keto)tetradecyl phenyl boronic acid-co-sodium 4-styrene sulfonate}, poly{11-acryloxyundecyl(4-boronato)bezoate-co-sodium 2-acrylamido-2-methyl-1-propanesulfonate}, poly{4-(14'-acryloxy-3'-thia-1'-keto)tetradecyl phenyl boronic acid-co-sodium 2-acrylamido-2-methyl-1-propanesulfonate}, or poly{4-(14'-acryloxy-3'-thia-1'-keto)tetradecyl phenyl boronic acid-co-sodium-4-styrene sulfonate}.