Probability Theory: HW1

Aamod Varma

 $August\ 26,\ 2025$

Exercise 1.10

Given $A, B \in \mathscr{F}$ and we need to show that $A \triangle B \in \mathscr{F}$. Now if $x \in A \triangle B$ then we know that $x \in (A \cup B) \setminus (A \cap B)$. By definition we have $A \cup B \in \mathcal{F}$ (closure under countable union) and we also have $A^c, B^c \in \mathcal{F}(\text{closure under complement}) \Rightarrow$ $(A^c \cup B^c) \in \mathscr{F} \Rightarrow (A \cap B)^c \Rightarrow A \cap B \in \mathscr{F}$. So now let $C = A \cup B$ and $D = A \cap B$. It is enough to show that if $C, D \in \mathscr{F}$ then $C \setminus D \in \mathscr{F}$. We have $C \setminus D = C \cap D^c$. We know $D^c \in \mathscr{F}$ and \mathscr{F} is closed under intersection as shown above which means that $C \cap D^c \in F \Rightarrow C \setminus D \in \mathscr{F} \Rightarrow (A \cup B) \setminus (A \cap B) \in \mathscr{F} \Rightarrow A \triangle B \in \mathscr{F}$

Exercise 1.17

First given that \mathscr{F} is the powerset of Ω .

- 1. We have $\mathbb{Q}(A) = \sum_{i:\omega_i \in A} p_i$ for $A \in \mathscr{F}$ and we know that $p_i \geq 0$ for any i so sum of non-negative numbers are also non-negative which means that $\mathbb{Q}(A) \geq 0$ for $A \in \mathscr{F}$
- 2. We have $\mathbb{Q}(\Omega) = \sum_{i:\omega_i \in \Omega} p_i = p_1 + \cdots + p_n = 1$. Similarly we have $\mathbb{Q}(\phi) = \sum_{i:\omega_i \in \Omega} p_i = p_1 + \cdots + p_n = 1$.
- $\begin{array}{l} \sum_{i:\omega_i\in\phi}p_i=0.\\ 3.\quad \text{We need to show that given disjoint events }A_1,A_2,\cdots\in\mathscr{F} \text{ we have,}\\ \mathbb{Q}\big(\bigcup_{i=1}^\infty A_i\big)=\sum_{i=1}^\infty\mathbb{Q}(A_i). \end{array}$

$$\mathbb{Q}\big(\bigcup_{i=1}^{\infty}A_i\big) = \mathbb{Q}(A_1 \cup A_2 \dots)$$

$$= \sum_{i:\omega_i \in (A_1 \cup A_2 \dots)} p_i$$
Now since A_1, \dots are pairwise disjoint we can write,
$$= \sum_{i:\omega_i \in (A_1)} p_i + \sum_{i:\omega_i \in (A_2)} p_i + \dots$$

$$= \mathbb{Q}(A_1) + \mathbb{Q}(A_2) + \dots$$

$$= \sum_{i=1}^{\infty} \mathbb{Q}(A_i)$$

Exercise 1.21

We need to find,

$$\begin{split} &P(A \cap B \cap C^c) + P(A \cap B^c \cap C) + P(A^c \cap B \cap C) \\ &= P((A \cap B) \setminus C) + P((A \cap C) \setminus B) + P((C \cap B) \setminus A) \\ &= P(A \cap C) - P(A \cap B \cap C) + P(A \cap B) - P(A \cap B \cap C) + P(B \cap C) - P(A \cap B \cap C) \\ &= .3 - .1 + .4 - .1 + .2 - .1 = .6 \end{split}$$

Exercise 1.27

First the ways to distribute 4 aces among 4 players would be 4!. Now with the remaining 48 cards, the ways to split it among 4 people random is, $\binom{48}{12}\binom{36}{12}\binom{24}{12}\binom{12}{12}$. Similarly the total ways to split 52 cards among 4 people w 13 each would be $\binom{52}{13}\binom{39}{13}\binom{26}{13}\binom{13}{13}$. So the probability would be,

$$\frac{\binom{48}{12}\binom{36}{12}\binom{24}{12}4!}{\binom{52}{13}\binom{39}{13}\binom{26}{13}} = 0.1055$$

Exercise 1.30

Exercise 1.44

Exercise 1.52

Problem 9

Problem 14

Problem 17