

PLANO DE ENSINO

Disciplina: Física Quântica - 2025.1

Prof. Márcio Sampaio Gomes Filho

(marcio.sampaio@ufabc.edu.br)

- Código da turma: NA1BCK0103-15SB
- Turma: Física Quântica A1-Noturno (SB)
- Recomendação: Estrutura da Matéria; Fenômenos Mecânicos; Fenômenos Térmicos; Fenômenos Eletromagnéticos.

Objetivos

Apresentar os conceitos da teoria quântica, com a perspectiva de uma compreensão básica dos fenômenos que se originam na escala atômica, seus efeitos e aplicações tecnológicas.

Aulas presenciais: Horário e local

- Horário:
 - Terça-feira das 21:00 às 23:00 (semanal); e
 - Sexta-feira das 19:00 às 21:00 (quinzenal I).
- Local:
 - Campus São Bernardo, Sala de aula A1-S203-SB.

Horário de atendimento

- Horário e local:
 - Quarta-feira das 18:30 às 20:30 (**semanal**) na sala 651-3 bloco A SA.

Ementa

Bases experimentais da Mecânica Quântica. Quantização de Energia e Momento Angular. Modelo de Bohr e átomo de hidrogênio. Dualidade onda-partícula. Relação de incerteza de Heisenberg. Equação de Schrodinger: função de onda, soluções de potenciais unidimensionais simples. Tunelamento. Solução da equação de Schrodinger para o átomo de Hidrogênio. Números quânticos, níveis de energia, spin e principio de exclusão de Pauli.

Metodologia

As aulas serão ministradas de forma expositiva, com o apoio de recursos audiovisuais, como slides e vídeos. Sempre que possível, serão utilizadas simulações computacionais para ilustrar os conceitos abordados.

Bibliografia

Livros mais utilizados na disciplina:

- (Livro Texto) TIPLER, P. A.; LLEWELLYN, R. A.; Física Moderna, Grupo Editorial Nacional (gen) LTC (sexta edição).
- SERWAY, R. A.; JEWETT JR, J. W.; Ótica e Física Moderna, Ed. Thomson.
- YOUNG, H.D.; FREEMAN, R. A.; Sears e Zemansky Física IV: ótica e Física Moderna, Ed. Pearson.

Livros complementares:

- CARUSO, Francisco; OGURI, Vitor. **Fisica Moderna; origens clássicas e fundamentos quânticos**. Rio de Janeiro: Elsevier, 2006. 608p.
- NUSSENZVEIG, H. Moyses, Curso de Fisica Básica volume 4 (Ótica, Relatividade), Ed. Edgard Blucher LTDA (1998)
- FEYNMAN, Richard P.; LEIGHTON, Robert B.; SANDS, Matthew. Lições de Fisica de Feynman. Porto Alegre: Bookman, 2008. 3 v.
- EISBERG, R.; RESNICK, R.; **Fisica Quântica**. CAmpus (referência básica auxiliar).

Critérios de Avaliação

O desempenho dos alunos será avaliado por meio de **duas provas** dissertativas com pesos iguais:

- Prova 1 (P_1) : 18 de março de 2025 (terça-feira):
 - Conteúdo: módulos 1 a 7.
- Prova 2 (P_2) : 25 de abril de 2025 (sexta-feira):
 - Conteúdo: módulos 8 a 13.

A Nota Final (NF) é definida como sendo a média aritmética das notas obtidas na P_1 e na P_2 , isto é:

$$NF = \frac{P_1 + P_2}{2},\tag{1}$$

Substitutiva

Os estudantes que, por motivo de força maior, não puderem realizar alguma atividade presencial (prova) poderão solicitar sua reposição. A solicitação deve ser feita em até **72** horas após a data da prova, por e-mail, acompanhada de um atestado que comprove a ausência. O deferimento da solicitação será decidido pelo professor.

Conceitos

Serão atribuídos conceitos finais (A, B, C, D, F) aos estudantes que cumprirem o mínimo de 75% de frequência. Caso contrário, o conceito atribuído será **O**.

As atividades avaliativas receberão notas de 0 a 100. A relação entre a nota final e o conceito final seguirá o seguinte critério:

Conceito	A	В	C	D	F
Nota	100 a 85	84 a 70	69 a 50	49 a 40	39 a 0

Recuperação final

Poderão realizar a recuperação os estudantes com conceitos finais \mathbf{D} ou \mathbf{F} . O conteúdo cobrado abrangerá todos os módulos. Não há recuperação para aluno com conceito O.

A Nova Nota Final (NNF) será a média entre a prova de recuperação com a média das provas 1 e 2, conforme:

$$NNF = \frac{NF + P_{REC}}{2},\tag{2}$$

onde P_{REC} refere-se a nota obtida na prova de recuperação.

Listas de exercícios

Os estudantes serão incentivados a resolver exercícios correspondentes a cada módulo do curso. As listas não valerão nota, pois fazem parte do estudo individual de cada aluno. No entanto, aqueles que resolverem **todas** as listas com um alto grau de desenvolvimento poderão entregá-las na data da P2, recebendo um bônus de **10 pontos** na média final. Note que esse bônus pode ser útil para melhorar o conceito final.

Cronograma e conteúdo programático

Dia	Módulo	Conteúdo	
$11/02/2025 \; (terça)$	1	Apresentação da disciplina; Evidências experimentais da teoria quântica: radiação do Corpo Negro.	
14/02/2025 (sexta)	2	Evidências experimentais da teoria quântica: efeito fotoelétrico e efeito Compton	
18/02/2025 (terça)	3	Espectros atômicos e modelo atômico de Rutherford	
25/02/2025 (terça)	4	Modelo de Bohr e Comprovações experimentais do modelo atômico (raios X e Experimento de Frank-Hertz)	
28/02/2025 (sexta)	5	Propriedades ondulatórias da matéria; Hipótese de De Broglie; Ondas de matéria,	
04/03/2025 (terça)	-	Feriado (carnaval)	
11/03/2025 (terça)	6	Pacotes de ondas, Interpretação probabilística da função de onda, O princípio de incerteza	
14/03/2025 (sexta)	7	Função de Onda e equação de Schrodinger	
18/03/2025 (terça)	P_1	Primeira Avaliação da disciplina	
25/03/2025 (terça)	8	Equação de Schrodinger em 1D; Potenciais simples: poço de potencial	
28/03/2025 (sexta)	9	Potenciais simples: poço quadrado finito; operadores e valores médios de observáveis	
$01/04/2025~{ m (terça)}$	10	Potenciais simples: Oscilador Harmônico Quântico;	
08/04/2025 (terça)	-	Feriado (Aniv. S.André/Recesso SBC)	
11/04/2025 (sexta)	11	Potenciais simples não confinantes; potencial degrau, reflexão, Transmissão de Ondas, Tunelamento Quântico	
$15/04/2025 \; (terça)$	12	Equação de Schrodinger em três dimensões (3D) - Poço quadrado infinito em 3D; Átomo de Hidrogênio: Quantização de Momento angular e Energia	
22/04/2025 (terça)	13	Funções de ondas do átomo de Hidrogênio e suas implicações; Orbitais; Significado físico dos números quânticos atômicos; Introdução (noções gerais): Átomos de muitos elétrons (Príncípio de exclusão de Pauli) e spin	
25/04/2025 (sexta)	P_2	Segunda Avaliação da disciplina	
29/04/2025 (terça)	Psub	Avaliação Substitutiva	
$\frac{06/05/2025 \; (terça)}{}$	Rec	Prova de Recuperação	

Tabela 1