Differentialgeometrie I

gehalten von Dr. Anna Siffert im Sommersemester 2018

an der **Ruprecht-Karls-Universität Heidelberg**

In IATEX gesetzt von

Mathieu Kaltschmidt & Quirinus Schwarzenböck

aktueller Stand: 7. Mai 2018

Differentialgeometrie I

Dr. Anna Siffert

Vorwort

Bei diesen Vorlesungsnotizen handelt es sich um kein offizielles Skript, sondern lediglich um die Umsetzung des Vorlesungsmitschriebs in LATEX.

Für die Vollständigkeit & Richtigkeit des Inhalts wird deshalb **keine Gewährleistung** übernommen.

Bei Fragen, Korrekturen und Verbesserungsvorschlägen freuen wir uns über eine Nachricht. 1

Die Dozentin Frau Dr. Siffert empfiehlt die nachfolgende Literatur zur Vertiefung des in der Vorlesung behandelten Stoffs:

Eine Inhaltsübersicht der in der Vorlesung behandelten Themen befindet sich auf der nächsten Seite.

¹Mail an M.Kaltschmidt@stud.uni-heidelberg.de oder quirin.s@icloud.com

Inhaltsverzeichnis

1	Differenzierbare Mannigfaltigkeiten
	1.1 Definitionen
	1.2 Tangentialraum
2 Vek	Vektorbündel
	2.1 Tangentialbündel
	2.2 Vektorbündel

1 Differenzierbare Mannigfaltigkeiten

Worum geht es in der Differentialgeometrie?

Die zentralen Objekte der Differentialgeometrie sind Mannigfaltigkeiten. Das Ziel ist es, Analysis und Geometrie auf solchen Mannigfaltigkeiten zu betreiben.

Wir beginnen zunächst einmal mit einer kurzen Gegenüberstellung der bereits bekannten Konzepte aus dem \mathbb{R}^n mit den korrespondierenden Begriffen der Differentialgeometrie, welche wir in den kommenden Vorlesungen noch genauer kennenlernen werden.

1.1 Definitionen

Um differenzierbare Mannigfaltigkeiten definieren zu können wiederholen wir zunächst die Definition eines topologischen Raumes.

Erinnerung: $M \subseteq \mathbb{R}^n$ offen, wenn $\forall p \in U \exists \varepsilon > 0$, sodass $B_{\varepsilon}(p) \subset U$. Dieser Begriff von Offenheit heißt *euklidische Topologie* und erfüllt:

- i) \emptyset , \mathbb{R}^n offen
- ii) $U, V \subset \mathbb{R}^n$ offen $\Rightarrow U \cap V$ offen in \mathbb{R}^n
- iii) $U_i, i \in \mathcal{I}$ offen in $\mathbb{R}^n \Rightarrow \bigcup_{i \in \mathcal{I}} U_i \subset \mathbb{R}^n$ offen

Definition 1.1 (Topologischer Raum)

Ein topologischer Raum ist eine Menge X zusammen mit einer Menge $\mathcal{O} \subset \mathcal{P}(X)$, sodass:

- i) $\emptyset, X \in \mathcal{O}$
- ii) $U, V \in \mathcal{O} \Rightarrow U \cap V \in \mathcal{O}$
- iii) $U_i \in \mathcal{O} \Rightarrow \bigcup_{i \in I} U_i \in \mathcal{O}$

Beispiel 1.2

- a) $(X, \mathcal{O} = \mathcal{P}(x))$
- b) $N \subset X$ Teilmenge. Dann ist auch (N, \mathcal{O}_1) ein topologischer Raum, wobei \mathcal{O}_1 wie folgt gegeben ist:

$$V \in \mathcal{O}_1 \Leftrightarrow \exists U \in \mathcal{O}, \text{ sodass } V = N \cap U$$

Teilmengen topologischer Räume sind topologische Räume.

Definition 1.3 (Topologische Mannigfaltigkeiten)

Eine topologische Mannigfaltigkeit ist ein topologischer Raum \mathcal{M} der Dimension n mit folgenden Eigenschaften:

- i) \mathcal{M} ist hausdorffsch. Das heißt $\forall p, q \in \mathcal{M}$ mit $p \neq q \exists$ zwei disjunkte, offene Umgebungen $U \in p$ und $V \in q$ wobei $U, V \in \mathcal{O}$
- ii) 2. Abzählbarkeitsaxiom

 \mathcal{M} hat eine abzählbare Basis der Topologie, das heißt es existieren abzählbar viele Mengen $\{U_1, \ldots, U_k, \ldots\}$ offener Teilmengen mit $U_i \in \mathcal{O}$, sodass $\forall p \in \mathcal{M}$ und alle Umgebungen U von p gibt es ein K sodass $p \in U_k \subseteq U$.

iii) \mathcal{M} ist homöomorph zu \mathbb{R}^n , das heißt $\forall p \in \mathcal{M}$ existiert eine Umgebung U von p und ein **Homöomorphismus** $X: U \to V \subseteq \mathbb{R}^n$ (offen).

Definition 1.4 (Karte, Atlas)

Das Paar (X, U) heißt **Karte** von \mathcal{M} um p. Eine Menge $\mathcal{A} = \{(x_{\alpha}, U_{\alpha})_{\alpha \in \mathcal{A}}\}$ von Karten hießt **Atlas** von \mathcal{M} , falls

$$\bigcup_{\alpha \in \mathcal{A}} = \mathcal{M} \tag{1.1}$$

Topologische Mannigfaltigkeiten sind die Grundbausteine. Nun wollen wir auf diesen Mannigfaltigkeiten Geometrie betreiben. Dafür benötigen wir mehr Struktur. Wir wollen die differenzierbare Struktur des \mathbb{R}^n auf unseren Mannigfaltigkeiten "holen".

Definition 1.5 (Kartenwechsel)

Seien x_{α} und x_{β} zwei Karten, dann ist der Kartenwechsel wie folgt definiert:

$$x_{\alpha} \circ x_{\beta}^{-1} : x_{\beta}(U_{\alpha} \cap U_{\beta}) \to x_{\alpha}(U_{\alpha} \cap U_{\beta}) \subseteq \mathbb{R}^{n}$$
(1.2)

Dies ist ein Homöomorphismus.

Nun wollen wir, dass $x_{\alpha} \circ x_{\beta}^{-1}$ Diffeomorphismen sind.

Definition 1.6

Sei M eine topologische Mannigfaltigkeit.

- a) Ein Atlas $\mathcal{A} = \{(x_{\alpha}, U_{\alpha})\}$ auf \mathcal{M} heißt C^{∞} -Atlas, falls alle Kartenwechsel $x_{\alpha} \circ x_{\beta}^{-1}$ mit $\alpha, \beta \in A$ C^{∞} -Diffeomorphismen sind.
- b) Sei A ein C^{∞} -Atlas von M. Eine Karte (x, U) ist verträglich mit A, falls $x \circ x^{-1}$ ein C^{∞} -Diffeomorphismus ist.

Gegeben ein C^{∞} -Atlas, so kann man diesen zu einem *maximalen* C^{∞} -Atlas vervollständigen. Maximal bedeutet hierbei, dass der Atlas nicht strikt in einem anderen enthalten ist.

Definition 1.7 (Differenzierbare Mannigfaltigkeit)

Eine differenzierbare Struktur auf einer topologischen Mannigfaltigkeit M ist ein maximaler C^{∞} -Atlas. Eine differenzierbare Mannigfaltigkeit ist eine topologische Mannigfaltigkeit mit einer differenzierbaren Struktur.

Bemerkung: Man kann auch eine topologische Mannigfaltigkeit definieren, ohne das 2. Abzählbarkeitsaxiom zu fordern.

Aber: Dann bekommt man Mannigfaltigen mit ganz anderen Eigenschaften als diejenigen, die wir betrachten wollen.

Wichtig: Hausdorffsch + 2. Abzählbarkeitsaxiom ⇒ parakompakt, d. h. jede offene Überdeckung hat eine lokale Verfeinerung.

 (V_j) heißt Verfeinerung von (U_j) , falls $\forall V_j \exists U_j$ mit $V_j \subseteq U_j$ Lokal endlich: $\forall p \in X \exists$ Umgebung U, die nur endlich viele U_i trifft Parakompakt $\Rightarrow \exists$ Partition der Eins f mit

$$f_i: V_i \subseteq X \rightarrow [0,1], \sum_{i \in I} f_i(x) = 1$$

Beispiel 1.9

Metrische Räume sind parakompakt.

Beispiel 1.10 (differenzierbare Mannigfaltigkeiten)

- 1. \mathbb{R}^n mit Atlas $\mathcal{A} = \{(id, \mathbb{R}^n)\}$
- 2. *V* Vektorraum, *B* Basis mit $B = \{v_1, \dots, v_n\}$, Atlas $A = \{(\chi_B, V)\}$

$$\chi_B: V \to \mathbb{R}^n$$

$$v = \sum_{i=1}^n a_i v_i \mapsto \sum_{i=1}^n a_i e_i$$

wobei (e_1, \dots, e_n) die Standartbasis ist.

- 3. $M \subseteq \mathbb{R}^n$, (χ_U, U) mit $\chi_U = \operatorname{id}|_U$, $V \subseteq M^n$, M differenzierbare Mannigfaltigkeit, $\mathcal{A} = \{(\chi_X, U)\}$ Atlas von M $\mathcal{A}_V = \{(\chi_V, U_V)\}$ wobei $(\chi_V, U_V) = (\chi_{U \cap V}, U \cap V)$
- 4. $M_1 = S^1$, $M_2 = \mathbb{R}$, $M_1 \times M_2 =$ "unendlicher Zylinder" Seien $M_1^{n_1}, M_1^{n_2}$ differenzierbare Mannigfaltigkeiten, so ist $M_1 \times M_2$ ebenfalls eine differenzierbare Mannigfaltigkeit der Dimension $n_1 + n_2$. Atlas $\mathcal{A} = \{(x \times y, U \times V)\}$, wobei

$$(x, U) = \text{Karte von } M_1$$

 $(y, V) = \text{Karte von } M_2$

$$(x \times y)(p_1, p_2) = (x(p_1), y(p_2))$$

Bemerkung: N mit der Teilraumtopologie und dem Atlas $A_N = \{(\chi|_U, U \cap N)\}$ ist eine differenzierbare Mannigfaltigkeit.

Definition 1.12

Seien M,N differenzierbare Mannigfaltigkeiten. Eine Einbettung ist eine differenzierbare Abbildung

$$f: N \to M$$

sodass

- 1. $f(N) \subset M$ eine Untermannigfaltigkeit
- 2. $f: N \to f(N)$ Diffeomorphismus

1.2 Tangentialraum

Definition 1.13

1. Ein Tangentialvektor an M im Punkt $p \in M$ ist eine \mathbb{R} -lineare Abbildung

$$v: \mathcal{F}(M) \to \mathbb{R}$$

$$mit \ v(fg) = v(f)g(p) + f(p)v(g).$$

2. Die Menge aller Tangentialvektoren an M in p heißt Tangentialraum von M in p: T_pM ist ein Vektorraum.

1.14 Hilfslemma (Existenz einer Glockenfunktion)

Sei $U \subseteq M$ offen, $p \in U$. Dann $\exists \varphi \in \mathcal{F}(M)$, s. d.

- 1. $\operatorname{supp} \varphi \subseteq U$
- 2. φ auf einer Umgebung $U' \subset U$ von p ist

Beweis:

Sei (x, U) eine Karte um $\varphi, \varepsilon > 0$, s. d. $B_{2\varepsilon}(x(p)) \subset V \subset \mathbb{R}^n$ und wähle $\psi : \mathbb{R}^n \to \mathbb{R}$ mit

$$\sup_{\varphi = 1 \text{ auf } B_{\varepsilon}} \left\{ \begin{array}{l} \operatorname{Resultat \ aus \ Analysis} \\ \end{array} \right\} \text{ Resultat \ aus \ Analysis}$$

$$\mathit{Setze}\ \varphi(q) = \left\{ \begin{array}{l} \psi(x(q)) \ \mathit{f\"{u}r}\ q \in U \\ 0 \ \mathit{sonst} \end{array} \right. \ \Box$$

1.16 Satz (Eigenschaften des Tangentialraums)

Für $v \in T_pM$ gilt:

- 1. $v(konstante\ Funktion) = 0$
- 2. Falls f = g in einer Umgebung von p, so gilt v(f) = v(g)

"Lokalisierung von Tangentialvektoren"

Beweis: (zu 2)

Wähle φ wie im Hilfslemma, wobei Uso gewählt ist, dass $\varphi f = \varphi g$ auf U ist. Nun gilt:

$$\begin{aligned} v(\varphi f) &= v(\varphi) f(p) + \varphi(p) v(f) \\ &= v(\varphi) f(p) + v(f) \\ v(\varphi g) &= v(\varphi) g(p) + v(g) \end{aligned}$$

Dann folgt
$$v(\varphi f) = v(\varphi g) \Leftrightarrow v(f) = v(g)$$
.

Beweis: (zu 1)

$$v(\lambda f) = \lambda v(f), \ \lambda \in \mathbb{R}, \ f \in \mathcal{F}(\mathbb{R})$$

zz: $v(\lambda)=0$. Aufgrund von $v(\lambda)=\lambda v(1)$ genügt es zu zeigen, dess v(1)=0. Dies folgt aus der Produktregel

$$v(1) = v(1 * 1) = 1v(1) + v(1)1 = 2v(1) \Rightarrow v(1) = 0$$

2 Vektorbündel

2.1 Tangentialbündel

Wir wollen alle Tangentialräume von ${\cal M}$ gemeinsam betrachten.

$$TM = \bigsqcup_{p \in M} = \{(p, v) | p \in M, \ v \in T_pM\}$$

Wollen: Struktur einer differenzierbaren Mannigfaltigkeit, das heißt wir wollen eine Topologie + c^{∞} -Struktur auf TM definieren.

Definition 2.1 (Projektion)

$$\pi: TM \to M$$
$$(p, v) \mapsto p$$

Karten auf TM Sei (x, U) Karte von M. Definiere Karte (\bar{x}, \bar{U}) von TM wie folgt:

$$\bar{U} = \pi^{-1}(U)$$

$$\bar{x} : \bar{U} \to x(U) \times \mathbb{R}^n \subset \mathbb{R}^{2n}$$

$$(p, v) \mapsto (x(p), \xi)$$

wobei $\xi = (\xi_1, \dots, \xi_n) \in \mathbb{R}^n$ durch

$$v = \sum_{i=1}^{n} \xi_i \left. \frac{\partial}{\partial x^i} \right|_p \ \forall P \in U$$

Wir haben noch keine Topologie auf TM definiert, das heißt \bar{x} ist nur eine bijektive Abbildung zwischen Mengen. Wir können also nicht sagen ob \bar{x} Homöomorphismus oder Diffeomorphismus ist. Aber wir können einen "Kartenwechsel" betrachten. Seinen $(\bar{x}, \bar{U}), (\bar{y}, \bar{U}')$ zwei "Karten"

$$\bar{y} \circ \bar{x}^{-1} : \underbrace{\bar{x}(\bar{U} \cap \bar{U}')}_{x(U \cap U') \times \mathbb{R}^n} \to \underbrace{\bar{y}(U \cap \bar{U}')}_{y(U \cap U') \times \mathbb{R}^n}$$
$$(u, \xi) \mapsto (x \circ x^{-1}(u), \eta)$$

mit $\eta=\mathrm{d}(y\circ x^{-1}|_u(\xi))$. Da $y\circ x^{-1}$ ein Diffeomorphismus ist, ist $\mathrm{d}(y\circ x^{-1})|_u$ ein Isomorphismus (Analysis) $\Rightarrow \bar{y}\circ \bar{x}^{-1}$ ist ein Diffeomorphismus. Nun können wir die Topologie auf TM definieren.

 $\mathbb{O} \subset TM$ offen, falls $\bar{x}(\mathcal{O} \cup \bar{U})$ offen in $V \times \mathbb{R}^n$ ist \forall Karten $(x, U) \in \mathcal{A}_U$ (beziehungsweise $(\bar{x}, \bar{U}) \in \mathcal{A}_{TM}$)

$$x: U \to V \subseteq \mathbb{R}^n$$
$$\bar{x}: \bar{U} \to \bar{V} \subseteq \mathbb{R}^{2m}$$

2.2 Satz

TM mit dieser Topologie ist eine topologische Mannigfaltigkeit mit A_{TM} , welcher eine differenzierbare Struktur definiert.

2.2 Vektorbündel

TM hat die Struktur einer glatten Mannigfaltigkeit, aber es hat noch mehr Struktur: "Familie von Vektorräumen über M" (TM hat also die Struktur eines Vektorbündels)

Definition 2.3

Sei M eine differenzierbare Mannigfaltigkeit.

Ein \mathbb{R} -Vektorbündel vom Rang K über M ist eine differenzierbare Mannigfaltigkeit E mit einer glatten surjektiven Abbildung $\pi: E \to M$, so dass

1. $\forall p \in M \text{ hat } E_p := \pi - 1(\{p\}) \text{ die Struktur eines } \mathbb{R}\text{-Vektorraums der Dimension } K$ $(E_p = \text{``Faser von } E \text{ iiber } p\text{''})$ 2. $\forall p \in M \exists Umgebung U von p \in M und ein Diffeomorphismus$

so dass:

- a) $\pi \circ \phi = pr_1$
- b) $\forall q \in U$ ist die Abbildung

$$\phi_{K_q} : q \times \mathbb{R}^K \to E_q$$

$$(q, \xi) \mapsto \Phi_q(\xi) := \phi(q, \xi)$$

ein Isomorphismus.

 ϕ heißt eine lokale Trivialisierung von E.

Bemerkung: Ein Vektorbündel ist ein Tripel (π, E, M) (Projektion, Totalraum, Basis). Wir schreiben oft nur E.

Beispiel 2.5

1. Triviales Bündel

$$E = M \times \mathbb{R}^K \xrightarrow{\pi} M$$
$$(P, \xi) \mapsto p$$

2. Tangentialbündel

$$TM \xrightarrow{\pi} M$$

$$(p,v) \mapsto p \qquad \qquad \pi^{-1}(p) = T_p M \text{ VR der Dimension } m$$

Abbildungsverzeichnis