Project 2 – Nature-Inspired Algorithms

Willi Gierke, Lawrence Benson, Nico Ring

12th June 2017

1 (1+1)-EA LeadingOnes

Theorem 1. The runtime of the (1+1) EA on LeadingOnes is $\mathcal{O}(n^2)$

Proof. We use fitness levels to find an upper bound for the runtime of (1+1) EA on *LeadingOnes*. We partition $\{0,1\}^n$ into disjoint sets A_0, A_1, \ldots, A_n where $x \in A_i$ iff it has i leading ones.

To escape A_i the first i bits must leave unchanged and at least the bit i + 1 must flip. The remaining bits can flip arbitrarily, because we can only get more leading ones and so cannot get worse.

Thus we get the probability to leave A_i , $s_i = \frac{1}{n}(1-\frac{1}{n})^i$ and $\frac{1}{s_i} = n(1-\frac{1}{n})^{-i}$

So we conclude:

$$E(T) = \sum_{i=1}^{n-1} \frac{1}{s_i} \le \sum_{i=1}^{n} \frac{1}{s_i}$$

$$= \sum_{i=1}^{n} n \left(1 - \frac{1}{n} \right)^{-i} = n \sum_{i=1}^{n} \left(1 - \frac{1}{n} \right)^{-i}$$

$$\le n \sum_{i=1}^{n} \left(1 - \frac{1}{n} \right)^{-n} \le n \sum_{i=1}^{n} e$$

$$= n^2 e = \mathcal{O}(n^2)$$
as $\lim_{n \to \infty} \left(1 + \frac{1}{-n} \right)^{-n} = e$

2 (1+1)-**EA** $Jump_k$

Theorem 2. The runtime of the (1+1) EA on $Jump_k$ is $\mathcal{O}(n^k)$.

Proof. We use fitness levels to find an upper bound for the runtime of (1+1) EA on $Jump_k$.

We partition the data as for the OneMax function, where $x \in A_i$ iff it has i 1s, but we merge the partitions n-k until n-1, because they all receive the same value from $Jump_k$. The probability to leave a partition s_i is defined as for OneMax. Only the second last parition gets a different probability. Thus, we have two cases that we retrieved from the definition of $Jump_k$: 1) |x| < n-k (all partitions but the last two) and 2) $n-k \le |x| < n$ (the second last partition) which we consider separately in the following and afterwards sum the results, what we can do because $E(T) = \sum_{i=1}^{m-1} \frac{1}{s_i} = \sum_{i=1}^{m-2} \frac{1}{s_i} + \frac{1}{s_{m-1}}$.

Case 1: |x| < n - k

For this we partition $\{0,1\}^n$ into disjoint sets A_0, A_1, \ldots, A_j where $a \in A_i$ iff $|x|_a = i$. We do this as we have analysed the runtime of this in Lecture 4 as (1+1) EA with OneMax. Until case 2, the score of Jump behaves identically to that of $OneMax \implies$ runtime until |x| = n - k is in $O(n \log(n))$.

Case 2: $n - k \le |x| < n$

This case is just one partition A_k , which contains all a with $n-k \leq |x|_a < n$. So we cover the part after case 1 until the optimal solution containing only 1s. For us to leave A_k and reach the optimal solution A_{k+1} , we need to flip exactly the remaining k bits and leave the other n-k bits unflipped. Thus, $s_k = (\frac{1}{n})^k (1-\frac{1}{n})^{n-k}$.

We conclude

$$E(T_{s_k}) = \frac{1}{\left(\frac{1}{n}\right)^k \left(1 - \frac{1}{n}\right)^{n-k}}$$

$$= \left(\frac{1}{n}\right)^{-k} \left(1 - \frac{1}{n}\right)^{k-n}$$

$$= \frac{1}{\left(\frac{1}{n}\right)^k} \left(1 - \frac{1}{n}\right)^{k-n}$$

$$= n^k \left(1 - \frac{1}{n}\right)^k \left(1 - \frac{1}{n}\right)^{-n}$$

$$= n^k \left(1 - \frac{1}{n}\right)^k \left(1 - \frac{1}{n}\right)^{-n}$$
if we now look at $\lim_{n \to \infty}$

$$\leq n^k 1e$$
as $1 - \frac{1}{n}$ goes to 1 and $1^k = 1$
and $\left(1 - \frac{1}{n}\right)^{-n}$ goes to e as shown in Section 1.
$$= \mathcal{O}(n^k)$$

From this we can follow that 1+1 (EA) with $Jump_k$ has a runtime of $\mathcal{O}(n\log(n) + n^k)$. For k < 2 we have a runtime of $\mathcal{O}(n\log(n))$, because n^0 and n^1 are dominated by $\mathcal{O}(n\log(n))$. For $k \geq 2$ we get $\mathcal{O}(n^k)$, so the Theorem only holds for $k \geq 2$.