Trabalho T4 – Módulo de Young

Introdução à Física Experimental- 2021/22 Cursos: Engenharia Física e Física

Departamento de Física - Universidade do Minho

Objectivo

Determinação do módulo de Young de diversos materiais.

I - Fundamento teórico

Quando se aplicam forças a um corpo real, tanto a sua forma como as suas dimensões podem mudar pela acção da força. Essas deformações dependem das forças aplicadas e, muitas vezes, a deformação desaparece quando as forças deixam de actuar: o comportamento do material diz-se então **elástico**, e verificase em todos os materiais dentro de limites que podem variar muito de caso para caso. Quando se ultrapassa o **limite de elasticidade** o sólido não recupera a forma inicial quando a força deixa de actuar, ficando assim com uma deformação permanente. Se o sólido for submetido a forças de tracção que aumentam gradualmente no tempo, ele sofre inicialmente uma deformação elástica (reversível), depois deformação plástica (irreversível), e finalmente ruptura. Tal comportamento está patente na seguinte curva de tensão-deformação (stress-strain):

A – Limite de proporcionalidade
B – Limite de elasticidade
C – Ponto de tensão máxima
D – Ponto de ruptura

O factor de proporcionalidade que existe entre a tensão e a deformação no regime elástico (à esquerda do ponto A na figura) chama-se **módulo de Young** ou **módulo de elasticidade** e o seu valor é característico do material de que é feita a amostra.

A teoria da elasticidade de materiais mostra que uma barra de secção rectangular submetida a uma força de tracção (F), como indicado na figura 2, sofre uma flexão (X), a uma distância y do apoio, dada por:

$$X = F \times \frac{3L^2 y - 4y^3}{4Eh^3b} \tag{1}$$

em que E é o módulo de Young, L é o comprimento da vão entre os apoios, b a largura da barra e h a sua espessura. Se se medir a flexão X no centro da amostra, o módulo de Young será dado por:

$$E = \frac{FL^3}{4Xh^3b} \qquad \text{ou} \qquad F = \frac{4h^3bE}{L^3}X \tag{2}$$

$E_{vidro} = 72 \text{ GPa } (1 \text{ Pa} = 1 \text{ N} / \text{m}^2)$	E _{latão} = 103 GPa a 124 GPa
$E_{AI} = 70 \text{ GPa}$	$E_{Cu} = 130 \text{ GPa}$
E _{aço} = 190 GPa a 220 GPa	

II - Material necessário

O equipamento necessário para este trabalho laboratorial é o seguinte:

- amostras de diferentes materiais
- craveira
- Micrómetro
- Suporte
- massas
- prato para colocação das massas
- balança

III - Procedimento experimental

Módulo de Young

- i) Meça, o mais rigorosamente que puder, as seguintes dimensões:
 - L comprimento (distância entre os apoios, ver figura),
 - b largura da amostra e
 - h espessura da amostra
- ii) Coloque a amostra no suporte, ajuste a posição e a escala do aparelho de medida.
- iii) Meça a deformação da amostra no ponto central (*a flecha*) em função das massas colocadas no prato. Use como incremento as "massas" com a forma de disco com corte. Registe os resultados para um ciclo de carga e descarga (aumento e diminuição do número de massas).
- iv) Repita o procedimento para as amostras de diferentes materiais.

IV- Resultados e Relatório

- Na folha de resultados coloque os valores de todas as medidas efetuadas e as respetivas incertezas, tendo em atenção as unidades utilizadas.
- 2. Para cada um dos materiais utilizados, trace um gráfico de *F* em função de *X*. Determine graficamente o módulo de Young e compare com o valor tabelado.
- 3. Faça uma estimativa da incerteza no valor do módulo de Young encontrado em 2.
- 4. Discuta os erros sistemáticos e acidentais quantitativamente.
- 5. Discuta os resultados.

米	1,7	
Universidade do Minho Introdução à Física Experimental		

TRABALHO T	4 – MODULO DE YOUNG
FOLHA	DE RESULTADOS
Grupo:;	data:/
Alunos:	data :/ Nº
	Nº
	N_0

DIMENSÕES

	1	2	3
Comprimento, L			
Largura, b			
Espessura, h			
			

DEFORMAÇÕES MEDIDAS

Amostra	1	2	3
Massa (g)	X (mm)	X (mm)	X (mm)

Resultados e Relatório

Para cada um dos materiais, trace o gráfico de F em função de X, determine o declive da reta, calcule o módulo de Young e respetiva incerteza.

Discuta os resultados.