

Depth Controllable Very Deep Super-Resolution Neural Network (DCVDSR)

Dohyun Kim (Presenter): Chung-Ang University, Seoul, Korea

E-mail: dohyun.cau@gmail.com

Joongheon Kim: Chung-Ang University, Seoul, Korea Junseok Kwon: Chung-Ang University, Seoul, Korea

Taehyung Kim: KT AI Tech Center, Seoul, Korea

Introduction

Super-resolution (SR)

Super-resolution with Convolutional Neural Network

SRCNN VDSR

Super-resolution with Convolution Neural Network

Introduction

Trade-off relationship between speed and performance over depth

Shallow, Faster, lower performance

Deeper, slower, higher performance

Depth	Bicubic	4	6	8	11	14	17	20
PSRN (dB)	30.4	32.56	33.01	33.229	33.379	33.435	33.495	33.523
SSIM	0.8682	0.91	0.916	0.918	0.92	0.92	0.921	0.922
Processing time (CPU)	0.002	0.321	0.5468	0.7725	0.994	1.317	1.622	1.96
Processing time (GPU)	0.001	0.01	0.012	0.0152	0.0189	0.0224	0.0262	0.0305
# of parameters	0	75K	148K	222K	333K	444K	555K	665K

(processing time have measured on butterfly, 512 x 768)

Introduction - Motivation

Model selection problem

Model selection is important for efficiency and stability of the system

Shallow model

- Faster, lighter
- Lower performance
- Suit for mobile, IoT devices

Deeper model

- Slower, heavier
- Higher performance
- Suit for server, station

Introduction - Motivation

Necessity of Dynamic model adaptation

- However, sometimes it is hard to determine optimal model before running time
- For examples, when

- System requirements change during operating
 - Unfixed input rate (or image size)
 - Unfixed required scale (x4 is heavier than x2)
- Allocable system resource becomes insufficient

Service provider do not have any information about clients

Introduction - Motivation

Adaptation with bag of models

One simple reasonable solution is dynamically selecting SR models

Limitation of adaptation with bag of models

However, It causes <u>additional memory</u> proportion to the number of the models used

Preloaded models in difference depth

Disadvantages:

- More overhead when exporting new models to clients
- Difficult FPGA and embedded deployment

Goal of this paper

- Sharing the models to reduce parameter redundancy
- Maintainig comparable performance to its unshared baseline model

Depth Controllable SR Network

Implemental baseline - VDSR

Implemental baseline - VDSR

Motivation: depth-wise fine-tuning

Depth	Bicubic PSNR(dB)/SSIM	6 PSNR(dB)/SSIM	8 PSNR(dB)/SSIM	20 (VDSR) PSNR(dB)/SSIM	
Paper Baseline	30.4 / 0.8682	-	-	33.6 / 0.921	
Implemental Baseline	30.4 / 0.8682	33.01/0.916	33.229/0.918	33.523/0.921	
Depth-wise fine-tuning	30.4 / 0.8682	33.08/0.916	33.256/0.9184	33.548/0.9215	

- Training with weights which pretrained at lower depth helps model to converge fast and to be trained stably
- This indirectly present there is close relation between depth (similar observation is addressed in B. Lim *et al.**)
- Then, Our insight is that the model can share their weight over depth
- Enhanced Deep Residual Networks for Single Image Super-Resolution (EDSR) [https://arxiv.org/abs/1707.02921]

Shared Hidden layer Architecture

Skip connection strategy

Contiguous skip connection

Better performance!

Progressive skip connection

Shared Hidden layer Architecture

Backpropagation with averaged loss (multiply 1/n to every loss)

Special case of auxiliary loss* when weight is 1/n instead of 0.3ⁿ

^{*} L1 loss result higher reconstruction score

^{*} Rethinking the inception architecture for computer vision (InceptionV2) [https://arxiv.org/pdf/1512.00567v1.pdf]

Evaluation result

Depth	Bicubic PSNR(dB)/SSIM	4 (SRCNN) PSNR(dB)/SSIM	6 PSNR(dB)/SSIM	8 PSNR(dB)/SSIM	11 PSNR(dB)/SSIM	14 PSNR(dB)/SSIM	17 PSNR(dB)/SSIM	20 (VDSR) PSNR(dB)/SSIM
Paper Baseline	30.4 / 0.8682	32.7 / 0.909	-	-	-	-	-	33.6 / 0.921
Implemental Baseline	30.4 / 0.8682	32.56/0.91	33.01/0.916	33.229/0.918	33.379/0.92	33.435/0.92	33.46/0.9209	33.523/0.921
Averaged loss (Contiguous skip connection)	30.4 / 0.8682	32.19/0.9058	32.79/0.9128	33.11/0.9164	33.3/0.9187	33.48/0.9208	33.56/0.9218	33.59/0.9222

- Performance increases proportional to depth of hidden layer
- Averaged loss seems to <u>make training stable</u> and be available to leverage performance of deeper model
- Contiguous skip connection shows better result than progressive skip connection

Performance bias problem

Depth	Bicubic PSNR(dB)/SSIM	4 (SRCNN) PSNR(dB)/SSIM	6 PSNR(dB)/SSIM	8 PSNR(dB)/SSIM	11 PSNR(dB)/SSIM	14 PSNR(dB)/SSIM	17 PSNR(dB)/SSIM	20 (VDSR) PSNR(dB)/SSIM
Paper Baseline	30.4 / 0.8682	32.7 / 0.909	-	-	-	-	-	33.6 / 0.921
Implemental Baseline	30.4 / 0.8682	32.56/0.91	33.01/0.916	33.229/0.918	33.379/0.92	33.435/0.92	33.46/0.9209	33.523/0.921
Averaged loss (Contiguous skip connection)	30.4 / 0.8682	32.19/0.9058	32.79/0.9128	33.11/0.9164	33.3/0.9187	33.48/0.9208	33.56/0.9218	33.59/0.9222

- However, training with averaged loss <u>deteriorates performance at shallow layer</u>
- Moreover, it is hard to predict which depth this deterioration start from

Attempts to improve : Stacked transfer learning

Gradually stacking additional layers to the previous model

Limitation of Stacked transfer learning

Depth	Bicubic PSNR(dB)/SSIM	4 (SRCNN) PSNR(dB)/SSIM	6 PSNR(dB)/SSIM	8 PSNR(dB)/SSIM	11 PSNR(dB)/SSIM	14 PSNR(dB)/SSIM	17 PSNR(dB)/SSIM	20 (VDSR) PSNR(dB)/SSIM
Paper Baseline	30.4 / 0.8682	32.7 / 0.909	-	-	-	-	-	33.6 / 0.921
Implemental Baseline	30.4 / 0.8682	32.56/0.91	33.01/0.916	33.229/0.918	33.379/0.92	33.435/0.92	33.46/0.9209	33.523/0.921
Averaged loss	30.4 / 0.8682	32.19/0.9058	32.79/0.9128	33.11/0.9164	33.3/0.9187	33.48/0.9208	33.56/0.9218	33.59/0.9222
Staked transfer learning (soft pretraining)	30.4 / 0.8682	32.47/0.91	32.86/0.9140	32.952/0.9148	32.959/0.9149	32.96/0.9149	32.96/0.9149	32.965/0.9144

- Shallow layers can be trained explicitly
- However, the performance of deeper layer are deteriorated since there is no consideration of sharing parameters with deep layers

Compromise plan: Stacked transfer learning with inversed auxiliary loss

Backpropagation with inversed auxiliary loss (multiply $\frac{c^{n-1}}{1-c}$ to every loss) [c=0.5]

- stacking with multiplying progressively smaller weight to loss against depth of layers
- The closer c is to 1, the closer it is to the averaged loss, so that the more it considers parameter sharing with deep layers, vise versa.

Compromise plan: Stacked transfer learning with inversed auxiliary loss

Backpropagation with inversed auxiliary loss (multiply $\frac{c^{n-1}}{1-c}$ to every loss) [c=0.5]

- stacking with multiplying progressively smaller weight to loss against depth of layers
- The closer c is to 1, the closer it is to the averaged loss, so that the more it considers parameter sharing with deep layers, vise versa.

Compromise plan: Stacked transfer learning with inversed auxiliary loss

Backpropagation with inversed auxiliary loss (multiply $\frac{c^{n-1}}{1-c}$ to every loss) [c=0.5]

- stacking with multiplying progressively smaller weight to loss against depth of layers
- The closer c is to 1, the closer it is to the averaged loss, so that the more it considers parameter sharing with deep layers, vise versa.

Compromise plan: Stacked transfer learning with inversed auxiliary loss

- Backpropagation with weighted loss (multiply $\frac{c^{n-1}}{1-c}$ to every loss) [c = 0.5]
- stacking with multiplying progressively smaller weight to loss against depth of layers
- The closer c is to 1, the closer it is to the averaged loss, so that the more it considers parameter sharing with deep layers, vise versa.

Experiments and Evaluations

Final Evaluation Result

Depth	Depth Bicubic PSNR(dB)/S		4 (SRCNN) PSNR(dB)/SSIM	6 PSNR(dB)/SSIM	8 PSNR(dB)/SSIM	11 PSNR(dB)/SSIM	14 PSNR(dB)/SSIM	17 PSNR(dB)/SSIM	20 (VDSR) PSNR(dB)/SSIM		
	Set5										
Paper Baseline	x 2 x 3 x 4	33.66/0.9299 30.40/0.8682 28.42/0.8104	36.66/0.9542 32.7/0.909 30.48/0.8628	-	-	-	-	-	37.53/0.9587 33.6/0.921 31.35/0.8838		
Implement al Baseline	x 2	33.66/0.9299	36.56/0.9551	37.05/0.9577	37.22/0.9584	37.33/0.9589	37.36/0.9591	37.37/0.9592	37.4/0.8252		
	x 3	30.40/0.8682	32.56/0.91	33.01/0.916	33.229/0.918	33.379/0.92	33.435/0.92	33.46/0.9209	33.523/0.921		
	x 4	28.42/0.8104	30.29/0.8649	30.64/0.8736	30.84/0.8774	30.97/0.8795	31.07/0.8816	31.1/0.8834	31.15/0.8837		
Averaged loss	x 2	33.66/0.9299	35.59/0.931	36.82/0.9501	37.13/0.9563	37.27/0.9579	37.39/0.9582	37.43/0.9594	37.45/0.9595		
	x 3	30.40/0.8682	32.19/0.9058	32.79/0.9128	33.11/0.9164	33.3/0.9187	33.48/0.9208	33.56/0.9218	33.59/0.9222		
	x 4	28.42/0.8104	29.81/0.8523	30.45/0.869	30.7/0.8745	30.89/0.8784	31.12/0.882	31.21/0.8837	31.26/0.8845		
inversed	x 2	33.66/0.9299	36.26/0.9537	36.98/0.9572	37.18/0.9582	37.31/0.9587	37.38.0.959	37.41/0.9591	37.41.0.9597		
auxiliary	x 3	30.40/0.8682	32.43/0.9093	32.97/0.915	33.18/0.9172	33.38/0.9195	33.49/0.9207	33.55/0.9213	33.57/0.9214		
loss 0.5	x 4	28.42/0.8104	30.13/0.8612	30.58/0.8722	30.79/0.8726	31.01/0.8761	31.15/0.8821	31.22/0.8831	31.23/0.8833		

Final Evaluation Result

Depth	Pepth Bicubic PSNR(dB)/SSI		4 (SRCNN) PSNR(dB)/SSIM	6 PSNR(dB)/SSIM	8 PSNR(dB)/SSIM	11 PSNR(dB)/SSIM	14 PSNR(dB)/SSIM	17 PSNR(dB)/SSIM	20 (VDSR) PSNR(dB)/SSIM		
	Set14										
Paper Baseline	x 2 x 3 x 4	30.24/0.8688 27.55/0.7742 26.00/0.7027	32.42/0.9063 29.28/0.8209 27.49/0.7503	-	-	-	-	-	33.03/0.9124 29.77/0.8314 28.01/0.7674		
Implement al Baseline	x 2 x 3 x 4	30.24/0.8688 27.55/0.7742 26.00/0.7027	32.46/0.9064 29.17/0.8195 27.34/0.7480	32.8/0.9099 29.47/0.8251 27.58/0.7567	32.9/0.9106 29.56/0.8273 27.7/0.7593	32.99/0.9112 29.66/0.8285 27.76/0.7614	33.01/0.9115 29.71/0.8296 27.8/0.7632	33.02/0.9115 29.71/0.8301 27.82/0.7639	33.03/0.9117 29.71/0.8301 27.84/0.7639		
Averaged loss	x 2 x 3 x 4	30.24/0.8688 27.55/0.7742 26.00/0.7027	32.01/0.9022 28.95/0.8147 26.99/0.7356	32.65/0.9082 29.34/0.8222 27.46/0.7525	32.85/0.9101 29.52/0.8259 27.63/0.7573	32.94/0.911 29.63/0.8279 27.74/0.7605	33.03/0.9117 29.72/0.8299 27.84/0.7634	33.07/0.9122 29.75/0.8307 27.89/0.7649	33.08/0.9123 29.76/0.8309 27.9/0.7656		
inversed auxiliary loss 0.5	x 2 x 3 x 4	30.24/0.8688 27.55/0.7742 26.00/0.7027	32.31/0.9053 29.12/0.8191 27.22/0.7444	32.74/0.9093 29.43/0.8241 27.51/0.7549	32.88/0.9104 29.57/0.8266 27.66/0.7587	32.98/0.9112 29.67/0.8286 27.79/0.762	33.02/0.9116 29.72/0.8295 27.85/0.7635	33.04/0.9118 29.74/0.8298 27.88/0.7642	33.04.0.9119 29.74/0.9298 27.88/0.7644		

Final Evaluation Result

Depth	Depth Bicubic PSNR(dB)/S		4 (SRCNN) PSNR(dB)/SSIM	6 PSNR(dB)/SSIM	8 PSNR(dB)/SSIM	11 PSNR(dB)/SSIM	14 PSNR(dB)/SSIM	17 PSNR(dB)/SSIM	20 (VDSR) PSNR(dB)/SSIM		
	BSD100										
Paper Baseline	x 2 x 3 x 4	29.56/0.8431 27.21/0.7385 25.96/0.6675	31.36/0.8879 28.41/0.7863 26.90/0.7107	-	-	-	-	-	31.90/0.8960 28.82/0.7976 27.89/0.7251		
Implement al Baseline	x 2 x 3 x 4	29.56/0.8431 27.21/0.7385 25.96/0.6675	31.30/0.889 28.26/0.7853 26.75/0.7082	31.56/0.893 28.466/0.791 26.92/0.7166	31.65/0.8941 28.56/0.7932 27/0.7188	31.71/0.895 28.61/0.7947 27.05/0.7207	31.76/0.8954 28.65/0.7959 27.08/0.7221	31.76/0.8957 28.66/0.7963 27.09/0.7229	31.76/0.8958 28.66/0.7965 27.1/0.7231		
Averaged loss	x 2 x 3 x 4	29.56/0.8431 27.21/0.7385 25.96/0.6675	31/0.8849 28.1/0.7804 26.51/0.6966	31.42/0.8908 28.37/0.7879 26.83/0.7128	31.59/0.8933 28.49/0.7916 26.94/0.7171	31.68/0.8946 28.58/0.7938 27.02/0.7198	31.75/0.8956 28.65/0.7961 27.1.0.7225	31.79.0.8962 28.69/0.797 27.12/0.7238	31.8/0.8963 28.7/0.7974 27.14/0.7244		
inversed auxiliary loss 0.5	x 2 x 3 x 4	29.56/0.8431 27.21/0.7385 25.96/0.6675	31.2/0.8879 28.22/0.7851 26.67/0.7051	31.5/0.8922 28.44/0.7898 26.89/0.7151	31.61/0.8937 28.54/0.7925 26.97/0.7179	31.69/0.8947 28.62/0.7947 27.05/0.7209	31.74/0.8952 28.66/0.7958 27.09/0.7222	31.75/0.8953 28.67/0.7962 27.1/0.7229	31.75/0.8955 28.67/0.7964 27.1/0.7231		

Final Evaluation Results

Further Experiments

Comparison on different coefficient of inversed auxiliary loss

Depth	Bicubic PSNR(dB)/SSIM	4 (SRCNN) PSNR(dB)/SSIM	6 PSNR(dB)/SSIM	8 PSNR(dB)/SSIM	11 PSNR(dB)/SSIM	14 PSNR(dB)/SSIM	17 PSNR(dB)/SSIM	20 (VDSR) PSNR(dB)/SSIM
Paper Baseline	30.4 / 0.8682	32.7 / 0.909	-	-	-	-	-	33.6 / 0.921
Inversed auxiliary loss 0.7	30.4 / 0.8682	32.34/0.9079	32.9/0.9141	33.16/0.917	33.37/0.919	33.51/0.921	33.56/0.921	33.58/0.922
inversed auxiliary loss 0.5	30.4 / 0.8682	32.43/0.9093	32.97/0.915	33.18/0.9172	33.38/0.9195	33.49/0.9207	33.55/0.9213	33.57/0.9214
inversed auxiliary loss 0.3	30.4 / 0.8682	32.45/0.9092	32.907/0.9148	33.75/0.9171	33.33/0.9193	33.44/0.9203	33.47/0.9206	33.47/0.9206

Further Experiments

Comparison of different depth of output branch

Depth	Bicubic PSNR(dB)/SSIM	4 (SRCNN) PSNR(dB)/SSIM	6 PSNR(dB)/SSIM	8 PSNR(dB)/SSIM	11 PSNR(dB)/SSIM	14 PSNR(dB)/SSIM	17 PSNR(dB)/SSIM	20 (VDSR) PSNR(dB)/SSIM
Paper Baseline	30.4 / 0.8682	32.7 / 0.909	-	-	-	-	-	33.6 / 0.921
Implemental Baseline	30.4 / 0.8682	32.56/0.91	33.01/0.916	33.229/0.918	33.379/0.92	33.435/0.92	33.46/0.9209	33.523/0.921
Averaged loss (branch depth 1)	30.4 / 0.8682	32.19/0.9058	32.79/0.9128	33.11/0.9164	33.3/0.9187	33.48/0.9208	33.56/0.9218	33.59/0.9222
branch depth 2	30.4 / 0.8682	32.446/0.9088	33.026/0.9151	33.306/0.9185	33.487/0.9208	33.603/0.9223	33.647/0.9228	33.666/0.923

The deeper output branch shows the higher performance, but requires the more parameters

Further Experiments

comparison of interval of output branch

Depth	Bicubic PSNR(dB)/SSIM	4 (SRCNN) PSNR(dB)/SSIM	6 PSNR(dB)/SSIM	8 PSNR(dB)/SSIM	11 PSNR(dB)/SSIM	14 PSNR(dB)/SSIM	17 PSNR(dB)/SSIM	20 (VDSR) PSNR(dB)/SSIM
Paper Baseline	30.4 / 0.8682	32.7 / 0.909	-	-	-	-	-	33.6 / 0.921
Implemental Baseline	30.4 / 0.8682	32.56/0.91	33.01/0.916	33.229/0.918	33.379/0.92	33.435/0.92	33.46/0.9209	33.523/0.921
Averaged loss	30.4 / 0.8682	32.19/0.9058	32.79/0.9128	33.11/0.9164	33.3/0.9187	33.48/0.9208	33.56/0.9218	33.59/0.9222

Depth	Bicubic PSNR(dB)	4 (SRCNN) PSNR(dB)	6 PSNR(dB)	8 PSNR(dB)	10 PSNR(dB)	12 PSNR(dB)	14 PSNR(dB)	16 PSNR(dB)	18 PSNR(dB)	20 (VDSR) PSNR(dB)
Paper Baseline	30.4	32.7 / 0.909	-	+	-	-	+	-	-	33.6 / 0.921
Averaged loss (interval 2)	30.4	32.179 /0.9051	32.668 /0.9114	33.045 /0.9155	33.285 /0.9182	33.425 /0.9199	33.538 /0.9212	33.618 /0.9220	33.653 /0.9005	33.666/0.92 27

- The shorter interval of branch shows the higher performance at the deeper layer, but requires the more parameters
- It is useful that training with shorter branch then using only some of them when the deeper layer is more important

Discussion and Q&A

Contribution

• We proposed <u>depth controllable</u> super-resolution network in form of <u>shared single architecture</u> while maintaining <u>comparable performance</u>

Future work

Adapt this work to other SOTA methods

Q&A