TMA4268 Statistical Learning

Chapter 10: Unsupervised Learning

Thiago G. Martins, Department of Mathematical Sciences, NTNU

Spring 2022

Contents

Lab 2: Clustering	1
K-Means Clustering	1
Hierarchical Clustering	

Lab 2: Clustering

K-Means Clustering

Simulate data

Lets simulate data with the intention to create two clusters:

```
set.seed(2)
x=matrix(rnorm(50*2), ncol=2)
x[1:25,1]=x[1:25,1]+3
x[1:25,2]=x[1:25,2]-4
```

Perform k-means

The function kmeans() performs K-means clustering in R. We now perform K-means clustering with K = 2. km.out=kmeans(x,2,nstart=20)

To run the kmeans() function in R with multiple initial cluster assignments, we use the nstart argument. The kmeans() function will report only the best results.

Cluster assignments

The cluster assignments of the 50 observations are contained in km.out\$cluster:

```
km.out$cluster
```

Plot the data

We can plot the data, with each observation colored according to its cluster assignment.

```
plot(x,
     col=(km.out$cluster+1),
```


K-Means Clustering Results with K=2

kmeans with k = 3

However, for real data, in general we do not know the true number of clusters. We could instead have performed K-means clustering on this example with K = 3.

```
set.seed(4)
km.out=kmeans(x,3,nstart=20)
km.out
## K-means clustering with 3 clusters of sizes 17, 23, 10
##
## Cluster means:
                     [,2]
##
          [,1]
## 1 3.7789567 -4.56200798
## 2 -0.3820397 -0.08740753
## 3 2.3001545 -2.69622023
## Clustering vector:
   ## [36] 2 2 2 2 2 2 2 2 3 2 3 2 2 2 2
## Within cluster sum of squares by cluster:
## [1] 25.74089 52.67700 19.56137
   (between_SS / total_SS = 79.3 %)
##
## Available components:
##
## [1] "cluster"
                    "centers"
                                 "totss"
                                               "withinss"
## [5] "tot.withinss" "betweenss"
                                 "size"
                                               "iter"
## [9] "ifault"
```

K-Means Clustering Results with K=3

Multiple starting points

We compare using nstart=1 to nstart=20.

```
set.seed(3)
km.out=kmeans(x,3,nstart=1)
km.out$tot.withinss

## [1] 97.97927
km.out=kmeans(x,3,nstart=20)
```

[1] 97.97927

km.out\$tot.withinss

Note that km.out\$tot.withinss is the total within-cluster sum of squares, which we seek to minimize by performing K-means clustering.

We strongly recommend always running K-means clustering with a large value of nstart, such as 20 or 50, since otherwise an undesirable local optimum may be obtained.

Hierarchical Clustering

The hclust() function implements hierarchical clustering in R. We will use the data simulated in the K-means section.

Next, we will compute hierarchical clustering dendrogram using complete, single, and average linkage clustering, with Euclidean distance as the dissimilarity measure.

Perform hierarchical clustering

The dist() function is used to compute the 50×50 inter-observation Euclidean distance matrix.

```
hc.complete=hclust(dist(x), method="complete")
hc.average=hclust(dist(x), method="average")
hc.single=hclust(dist(x), method="single")
```

Plot dendograms

We can now plot the dendrograms obtained using the usual plot() function. The numbers at the bottom of the plot identify each observation.

```
par(mfrow=c(1,3))
plot(hc.complete,main="Complete Linkage", xlab="", sub="", cex=.9)
plot(hc.average, main="Average Linkage", xlab="", sub="", cex=.9)
plot(hc.single, main="Single Linkage", xlab="", sub="", cex=.9)
```


Cluster assignment

To determine the cluster labels for each observation associated with a given cut of the dendrogram, we can use the cutree() function:

For this data, complete and average linkage generally separate the observations into their correct groups.

Single linkage singletons However, single linkage identifies one point as belonging to its own cluster. A more sensible answer is obtained when four clusters are selected, although there are still two singletons.

Scaling the variables

To scale the variables before performing hierarchical clustering of the observations, we use the scale() function:

```
xsc=scale(x)
plot(hclust(dist(xsc), method="complete"), main="Hierarchical Clustering with Scaled Features")
```

Hierarchical Clustering with Scaled Features

dist(xsc) hclust (*, "complete")

Correlation-based distance

Correlation-based distance can be computed using the as.dist() function, which converts an arbitrary square symmetric matrix into a form that the hclust() function recognizes as a distance matrix.

However, this only makes sense for data with at least three features since the absolute correlation between any two observations with measurements on two features is always 1.

```
# Code below is to check the statement above.

x=matrix(rnorm(5*2), ncol=2)
dd=as.dist(1-cor(t(x)))
dd
```

1 2 3 4

```
## 2 2
## 3 2 0
## 4 2 0 0
## 5 0 2 2 2
x=matrix(rnorm(5*3), ncol=3)
dd=as.dist(1-cor(t(x)))
dd
##
                              2
                                           3
                                                         4
## 2 1.765076e+00
## 3 1.638313e+00 1.595186e-02
## 4 1.630165e+00 1.788151e-02 5.554177e-05
## 5 1.954130e+00 7.722732e-02 1.605010e-01 1.662744e-01
Hence, we will cluster a three-dimensional data set.
# Simulate data
x=matrix(rnorm(30*3), ncol=3)
\# Compute correlation-distance matrix
dd=as.dist(1-cor(t(x)))
# Plot dendogram
plot(hclust(dd, method="complete"),
     main="Complete Linkage with Correlation-Based Distance",
     xlab="", sub="")
```

Complete Linkage with Correlation-Based Distance

