### Chapter 4

# 다중 개체명 인식

이상민



## 목차

- 1. 개체명 인식
- 2. 데이터셋
- 3. 토큰화
- 4. 개체명 인식을 위한 트랜스포머
- 5. 사용자 정의 모델 생성
- 6. XLM-RoBERTa finetuning
- 7. 교차언어 전이

## 1. 다중언어 개체명 인식

- 다중언어개체명인식: 여러 언어로 구성된 말뭉치로부터 아래 예시와 같이 **사람, 조직, 위치**와 같은 개체명을 식별하는 **NLP작업**으로 다양한 어플리케이션에 사용된다.

| Tokens | 2.000 | Einwohnern | an | der | Danziger | Bucht | in | der | polnischen | Woiwodschaft | Pommern |   |
|--------|-------|------------|----|-----|----------|-------|----|-----|------------|--------------|---------|---|
| Tags   | 0     | О          | 0  | 0   | B-LOC    | I-LOC | 0  | 0   | B-LOC      | B-LOC        | I-LOC   | 0 |

### 1. 다중언어 개체명 인식

-XLM-RoBERTa:이번 챕터에서 사용할 XLM - RoBERTa 모델은 100개의 언어로 구성된 2.5TB 대규모 데이터로 사전학습된 **다중언어 모델**이다. 다중언어로 학습된 모델은 제로샷 교차 언어 전이가 가능하다.

-zero-shot transfer or zero-shot learning: 한 레이블 집합에서 모델을 훈련한 뒤 다른 레이블 집합에서 평가하는 작업을 의미함.

### 1. 다중언어 개체명 인식

PAN-X: 모델을 fine tune하기 위해 WikiANN 또는 PAN-X라 불리는 데이터 셋을 사용한다. PAN-X 데이터는 스위스에서 사용되는 독일어(62.9%), 프랑스어(22.9%), 이탈리아어(8.4%), 영어(5.9%) 네 가지 언어로 작성된 wikipedia 문서로 구성되어있다. 각 문서는 IOB2 포맷을 따른다

| 4 |            |    |        |    |           |          |   |    |       |       |        |
|---|------------|----|--------|----|-----------|----------|---|----|-------|-------|--------|
|   | 9          | 8  | 7      | 6  | 5         | 4        | 3 | 2  | 1     | 0     |        |
|   | California | in | Google | at | scientist | computer | а | is | Dean  | Jeff  | Tokens |
|   | B-LOC      | 0  | B-ORG  | 0  | 0         | 0        | 0 | 0  | I-PER | B-PER | Tags   |

PER(사람), ORG(조직), LOC(위치)의 태그로 나타내며 B- 접두사는 개체명의 시작, I- 접두사는 동일한 개체명에 속해 연속되는 토큰, O 태그는 토큰이 어떤 개체에도 속하지 않음을 나타낸다

### 2. 데이터셋

```
from collections import defaultdict
from datasets import DatasetDict
langs = ["de","fr","it","en"]
fracs = [0.629, 0.229, 0.084, 0.059]
panx_ch = defaultdict(DatasetDict)# 키가 없으면 DatasetDict을 변환
for lang,frac in zip(langs, fracs):
  ds = load_dataset("xtreme",name=f"PAN-X.{lang}")
  # 각 분할을 언어 비율에 따라 다운 샘플링하고 섞는다
  for split in ds:
    panx_ch[lang][split] = (
        ds[split].shuffle(seed = 0).select(range(int(frac*ds[split].num_rows)))
```

- 데이터 샘플링: 각 언어를 load한 뒤 데이터에 의도하지 않은 편향이 들어가지 않게 shuffle()을 사용해서 섞은 뒤 사전에 정의된 비율에 따라 각 언어를 **다운 샘플링**한다..

### 2. 데이터셋

- 데이터분포확인: 사전 정의된 비율에 따라 데이터를 샘플링하면 불균형한 데이터 분포를 갖는다.

.

de fr it en
Number of training examples 12580 4580 1680 1180

- **분할 별 개체명 빈도**: 각 분할 별 분포가 대체로 동일하기 때문에 일반화능력을 평가하기에 적합할 것으로 보인다.

|            | LOC  | ORG  | PER  |
|------------|------|------|------|
| train      | 6186 | 5366 | 5810 |
| validation | 3172 | 2683 | 2893 |
| test       | 3180 | 2573 | 3071 |

### 3. 토큰화

- 토큰화 파이프라인

**토큰화 파이프라인**은 일반적으로 정규화, 사전토큰화, 토크나이저 모델, 사후처리와 같이 네 단계로 진행 된다

토크나이저 모델:



jack, spa, rrow, loves, new, york, ! [CLS, jack, spa, rrow, loves, new, york, !, SEP]

사후처리:

8

### 3. 토큰화

SentencePiece: SentencePiece tokenizer는 **사전토큰화** 작업 없이 전처리를 하지 않은 raw data에 대해 바로 **토큰화**를 수행하므로 언어에 종속 되지 않는다.

```
words, labels = de_example["tokens"],de_example["ner_tags"]
tokenized_input = xlmr_tokenizer(
   de_example["tokens"],
   is_split_into_words=True#입력 문장이 이미 단어로 나누어 졌다는 사실을 전달.
tokens = xlmr_tokenizer.convert_ids_to_tokens(tokenized_input["input_ids"])
previous_word_idx = None
label_ids = []
                                                                    <s> __2.000 __Einwohner
                                                                                                                                 i wod schaft __Po mmer n __
for word_idx in word_ids:
                                                              Word
 if word_idx is None or word_idx == previous_word_idx:
                                                              IDs
   label_ids.append(-100)
                                                              Label
 elif word_idx != previous_word_idx:
                                                                   -100
                                                                                                                             5 -100 -100 -100
   label ids.append(labels[word idx])
 previous_word_idx = word_idx
                                                                                    Labels
                                                                   IGN
labels = [index2tag[l] if l != -100 else "IGN" for l in label_ids]
index = ["Token","Word IDs", "Label IDs", "Labels"]
pd.DataFrame([tokens,word_ids,label_ids,labels],index = index)
```

### 4. 개체명 인식을 위한 트랜스포머





감정분류 task에서 CLS 토큰을 이용해 이진 분류를 했던 것과 달리 NER 작업은 모든 토큰이 Fully Connect layer에 주입되어 해당 토큰의 개체명을 인식한다.

### 5. 사용자 정의 모델 만들기

```
import torch.nn as nn
from transformers import XLMRobertaConfig
from transformers.modeling_outputs import TokenClassifierOutput
from transformers.models.roberta.modeling roberta import RobertaModel
from transformers.models.roberta.modeling_roberta import RobertaPreTrainedModel
class XLMRobertaForTokenClassification(RobertaPreTrainedModel):
 config_class = XLMRobertaConfig
 def init (self, config):
   super().__init__(config)
   self.num labels = config.num labels
   #모델 바디로드
   self.roberta = RobertaModel(
                               config,
                               #[CLS] 토큰에 해당하는 은닉 상태 외 모든 은닉 상태를 반환
                               add pooling layer = False
   #모델 헤드 준비
   self.dropout = nn.Dropout(config.hidden dropout prob)
   self.classifier = nn.Linear(config.hidden_size,config.num_labels)
   self.init_weights() #RobertaPreTrainedModel에서 상속된 init_weight메소드 호출
 def forward(self, input_ids = None, attention_mask = None,
```

```
def forward(self, input_ids = None, attention_mask = None,
token type ids = None, labels = None, **kwargs):
  #인코도의 출력 결과
  outputs = self.roberta(input_ids, attention_mask = attention_mask,
  token_type_ids = token_type_ids, **kwargs)
  #인코더의 출력결과를 헤드에 입력
  sequence output = self.dropout(outputs[0])
 logits = self.classifier(sequence_output)
  #loss
  loss = None
  if labels is not None:
    loss fct = nn.CrossEntropyLoss()
   loss = loss_fct(logits.view(-1,self.num_labels), labels.view(-1))
  return TokenClassifierOutput(loss=loss, logits = logits,
                              hidden states = outputs.hidden states,
                              attentions = outputs.attentions)
```

### 6. XLM-RoBerta 파인튜닝하기

#### - argument 정의

```
from transformers import TrainingArguments

num_epochs = 3
# 코랩에서 GPU 메모리 부족 에러가 나는 경우 batch_size를 16으로 줄여 주세요.
batch_size = 24 # 16
logging_steps = len(panx_de_encoded["train"]) // batch_size
model_name = f"{xlmr_model_name}-finetuned-panx-de"
training_args = TrainingArguments(
    output_dir=model_name, log_level="error", num_train_epochs=num_epochs,
    per_device_train_batch_size=batch_size,
    per_device_eval_batch_size=batch_size, evaluation_strategy="epoch",
    save_steps=1e6, weight_decay=0.01, disable_tqdm=False,
    logging_steps=logging_steps, push_to_hub=True)
```

#### - data\_collator 정의

```
from transformers import DataCollatorForTokenClassification

data_collator = DataCollatorForTokenClassification(xlmr_tokenizer)
```

#### - model\_init 정의

#### - 인코딩된 정보를 Trainer에 전달

#### - 학습

```
trainer.train()
```

### 7. 교차언어 전이

독일어에서 fine tuning된 XLM-R 모델에 대해 다른 언어로 전이 되는 능력을 F1\_score기준으로 평가해 보겠습니다.

#### - 성능평가

```
def evaluate_lang_performance(lang, trainer):
    panx_ds = encode_panx_dataset(panx_ch[lang])
    return get_f1_score(trainer, panx_ds["test"])
```

#### - f1 score 결과

```
[de] 데이터셋에서 [de] 모델의 F1-점수: 0.867
[fr] 데이터셋에서 [de] 모델의 F1-점수: 0.699
[it] 데이터셋에서 [de] 모델의 F1-점수: 0.649
[en] 데이터셋에서 [de] 모델의 F1-점수: 0.592
```

```
f1_scores = defaultdict(dict)
f1_scores["de"]["de"] = get_f1_score(trainer, panx_de_encoded["test"])
f1_scores["de"]["fr"] = evaluate_lang_performance("fr", trainer)
f1_scores["de"]["it"] = evaluate_lang_performance("it", trainer)
f1_scores["de"]["en"] = evaluate_lang_performance("en", trainer)

print(f"[de] 데이터셋에서 [de] 모델의 F1-점수: {f1_scores['de']['de']:.3f}")
print(f"[fr] 데이터셋에서 [de] 모델의 F1-점수: {f1_scores['de']['fr']:.3f}")
print(f"[it] 데이터셋에서 [de] 모델의 F1-점수: {f1_scores['de']['it']:.3f}")
print(f"[en] 데이터셋에서 [de] 모델의 F1-점수: {f1_scores['de']['en']:.3f}")
```

# 7. 교차언어 전이

### 다국어에서 동시에 파인튜닝하기

-네 개의 언어로 구성된 말뭉치 만들기

```
corpora = [panx_de_encoded]

# 반복에서 독일어는 제외합니다.
for lang in langs[1:]:
    training_args.output_dir = f"xlm-roberta-base-finetuned-panx-{lang}"
    # 단일 언어 말뭉치에서 미세 튜닝합니다.
    ds_encoded = encode_panx_dataset(panx_ch[lang])
    metrics = train_on_subset(ds_encoded, ds_encoded["train"].num_rows)
    # 딕셔너리에 F1-점수를 모읍니다.
    f1_scores[lang][lang] = metrics["f1_score"][0]
    # 단일 언어 말뭉치를 corpora 리스트에 추가합니다.
    corpora.append(ds_encoded)
```

#### - 학습

```
training_args.logging_steps = len(corpora_encoded["train"]) // batch_size
training_args.output_dir = "xlm-roberta-base-finetuned-panx-all"

trainer = Trainer(model_init=model_init, args=training_args,
    data_collator=data_collator, compute_metrics=compute_metrics,
    tokenizer=xlmr_tokenizer, train_dataset=corpora_encoded["train"],
    eval_dataset=corpora_encoded["validation"])

trainer.train()
```

# 7. 교차언어 전이

### 다국어에서 동시에 파인튜닝하기

- 결과

|              | de     | fr     | it     | en    |
|--------------|--------|--------|--------|-------|
| Fine-tune on |        |        |        |       |
| de           | 0.8677 | 0.7141 | 0.6923 | 0.539 |
| all          | 0.8682 | 0.8647 | 0.0857 | 0.787 |



