M1103 Chapter 2

Matrices

Definition:

A matrix of size (m,n) is a map from $\underbrace{\{1,\ldots,m\}}_i imes \underbrace{\{1,\ldots,n\}}_i o \mathbb{K}.$

A matrix is a family denoted (a_{ij}) , $i = \{1, \dots, m\}$ and $j = \{1, \dots, n\}$ of scalars.

In practice, we write

$$A = egin{pmatrix} a_{11} & \dots & a_{1j} & \dots & a_{1n} \ dots & & dots & & dots \ a_{i_1} & \dots & a_{ij} & \dots & a_{in} \ dots & & dots & & dots \ a_{m_1} & \dots & a_{mj} & \dots & a_{mn} \end{pmatrix}$$

- The set of matrices of size (m,n) on \mathbb{K} is denoted by $M_{m,n}(\mathbb{K})$
- If $A=(a_{ij})$ and $B=(b_{ij})$ are two elements of $M_{m,n}(\mathbb{K})$, we have

$$A=B\iff a_{ij}=b_{ij},\ orall (i,j)$$

Definition

• The <u>row matrix</u> ,respectively <u>column matrix</u>, on $\mathbb K$ is a matrix of size (1,n), (respectively (m,1)), on $\mathbb K$.

$$(a_{11} \ldots a_{1n})$$

- A square matrix of size n is a matrix size (n, n) on \mathbb{K} . Consequences:
- 1. Let $A = (a_{ij})$ be a square matrix of size n on \mathbb{K} . The main diagonal of that matrix is the family $(a_{ii})_{1 \le i \le n}$.

$$egin{pmatrix} a_{11} & & & & \ & a_{22} & & & \ & & \cdots & & \ & & & a_{nn} \end{pmatrix}$$

2. We will write $M_n(\mathbb{K})$ instead of $M_{n,n}(\mathbb{K})$.

Let $A \in M_{m,n}(\mathbb{K})$:

A sub-matrix of A is the restriction of the map A, to $I \times J$, where $I \subset \{1, \dots m\}$ and $J \subset \{1, \dots, n\}$ (with $I \neq \emptyset, J \neq \emptyset$).

Example

$$egin{pmatrix} 1 & -5 & 0 & 2 \ 2 & 1 & 4 & 3 \ 7 & 0 & 0 & -2 \end{pmatrix} = M_{3,4}(\mathbb{R})$$

We want to restrict this matrix to $I = \{1, 3\}$, $J = \{1, 4\}$:

$$\begin{pmatrix} 1 & 2 \\ 7 & -2 \end{pmatrix}$$

Thus, we got a square matrix from the restrictions.

Suppose we chose $I = \{1, 2\}$ and $J = \{1, 2, 3\}$, we get:

$$\begin{pmatrix} 1 & -5 & 0 \\ 2 & 1 & 4 \end{pmatrix}$$

We call this a block, corresponding to successive integers.

Section 2.2

Definition

The zero-matrix of size (m,n) on $\mathbb K$ is $A=(a_{ij})\in M_{m,n}(\mathbb K)$ such that:

$$a_{ij}=0,\ orall (i,j)$$

We write: $0_{m,n}$ (or 0).

Definition

$$A=(a_{ij})\in M_{m,n}(\mathbb{K}), \ B=(b_{ij})\in M(m,n)(\mathbb{K}).$$

The sum of A and B is the matrix in $M_{m,n}(\mathbb{K})$ denoted by:

$$A+B=(c_{ij}), ext{ with } c_{ij}=a_{ij}+b_{ij}, \ orall (i,j)$$

$$A=(a_{ij})\in M_{m,n}(\mathbb{K})$$
, $\lambda\in\mathbb{K}.$

The scalar multiplication of λ and A is the matrix in $M_{m,n}\mathbb{K}$ denoted by:

$$\lambda A = (d_{ij}) \in M_{m,n}(\mathbb{K}), ext{where} \ d_{ij} = \lambda a_{ij}, \ orall (i,j)$$

Theorem

Suppose $\lambda, \mu \in \mathbb{K}$, $A, B, C \in M_{m,n}(\mathbb{K})$

Then,

1.
$$(A + B) + C = A + (B + C)$$

2.
$$A + 0 = 0 + A = A$$

3.
$$A + (-A) = (-A) + A = 0$$

4.
$$A + B = B + A$$

5.
$$\lambda(A+B) = \lambda A + \lambda B$$

6.
$$(\lambda + \mu)A = \lambda A + \mu A$$

7.
$$\lambda(\mu A) = (\lambda \mu)A$$

8.
$$1A = A$$

Proof

Trivial □

Note

By the previous theroem, we can say that $M_{m,n}(\mathbb{K},+)$ is an abelian group.

Definition

The identity matrix of size n on \mathbb{K} , is the square matrix $A=a_{ij}$ with

$$(a_{ij}) = egin{cases} 1 \ if \ i = j \ 0 \ if \ i
eq j \end{cases}$$

M1103 Chapter 2
$$egin{pmatrix} 1 & \dots & 0 \ & \ddots & \ 0 & \dots & 1 \end{pmatrix} = I_n$$

$$egin{aligned} A &= (a_{ij}) \in M_{m,n}(\mathbb{K}), \ B &= (b_{jk}) \in M(n,p)(\mathbb{K}). \end{aligned}$$

The product of A and B is the matrix $AB=(p_{ij})\in M_{m,p}(\mathbb{K})$ where:

$$p_{ij} = \sum_{j=1}^n a_{ij} b_{jk}, \ \ orall (i,k)$$

Example

(1)

$$A = egin{pmatrix} 1 & 2 & 0 \ 1 & -3 & 4 \end{pmatrix} \in M_{2,3}(\mathbb{K}) \ B = egin{pmatrix} 0 & -1 & 0 & -5 \ 0 & 2 & 1 & 2 \ 1 & -3 & 4 & 1 \end{pmatrix} \in M_{3,4}(\mathbb{K})$$

The product is well defined, and $AB \in M_{2,4}(\mathbb{K}).$ So

We will continue doing this directly,

$$\begin{pmatrix} 1 & 2 & 0 \\ -1 & -3 & 4 \end{pmatrix} \begin{pmatrix} 0 & -1 & 0 & -5 \\ 0 & 2 & 1 & 2 \\ 1 & -3 & 4 & 1 \end{pmatrix}$$

Continue applying the equation mentally to make it easier.

$$AB = egin{pmatrix} \mathsf{M1103\,Chapter\,2} \ 0 & 3 & 2 & -1 \ 4 & -12 & 13 & 3 \end{pmatrix} : \checkmark$$

Theorem

1. $\forall A \in M_{m,n}(\mathbb{K}), \ \forall B \in M_{n,p}(\mathbb{K}), \ \forall C \in M_{p,q}(\mathbb{K}), \ \text{we have: } (AB)B = A(BC).$

2.
$$\forall A \in M_{m,n}(\mathbb{K})$$
, we have: $\underbrace{A}_{m,n}\underbrace{I_n}_{n,n} = \underbrace{A}_{m,n} = \underbrace{I_m}_{m,m}\underbrace{A}_{m,n}.$

- 3. $\forall A_1, A_2 \in M_{m,n}(\mathbb{K}), \forall B \in M_{n,p}(\mathbb{K})$, we have $(A_1 + A_2)B = A_1B + A_2B$.
- 4. $\forall A \in M_{m,n}(\mathbb{K}), \forall B_1, B_2 \in M_{n,p}(\mathbb{K})$, then $A(B_1 + B_2) = AB_1 + AB_2$.
- 5. $\forall A \in M_{m,n}(\mathbb{K}), \forall B \in M_{n,p}(\mathbb{K}), \forall \lambda \in \mathbb{K}$, we have $(\lambda A)B = A(\lambda B) = \lambda(AB)$.

Proof

We shall only prove one of them:

3.
$$(A_1 + A_2)B \stackrel{?}{=} A_1B + A_2B$$

We write

$$A_1=(a_{ij}),\ \ A_2=(a'_{ij}),\ \ B=(b_{jk}),$$

Then,

$$egin{align} (A_1+A_2)B &= (p_{ik}), \;\; A_1B+A_2B = (q_{ik}) \ &p_{ik} = \sum_{j=1}^n (a_{ij}+a'_{ij})b_{jk} = \sum_{j=1}^n (a_{ij}b_{jk}+a'_{ij}b_{jk}) \ &= \sum_{j=1}^n a_{ij}b_{jk} + \sum_{j=1}^n a'_{ij}b_{jk} = q_{ik} \quad \Box \ \end{array}$$

Definition

Suppose $A=a_{ij}\in M_{m,n}(\mathbb{K})$

The transpose of A is the matrix defined by:

$$tA = (b_{ij}) \in M_{m,n}(\mathbb{K}) \ b_{ij} = a_{ij}, \ \ orall (i,j)$$

Let
$$A=egin{pmatrix} 1 & 2 & 0 \ -1 & 3 & 4 \end{pmatrix} \in M_{2,3}(\mathbb{R})$$

Then,

$$tA=egin{pmatrix}1&-1\2&3\0&4\end{pmatrix}\in M_{3,2}(\mathbb{R})$$

Theorem

- 1. $\forall A, B \in M_{m,n}(\mathbb{K}), t(A+B) = tA + tB$
- 2. $\forall \lambda \in \mathbb{K}, \forall A \in M_{m,n}(\mathbb{K}), t(\lambda A) = \lambda t A$
- 3. $\forall A \in M_{m,n}(\mathbb{K}), \forall B \in M_{m,n}(\mathbb{K}), tAB = tBtA$
- 4. t(tA) = A

Proof

- 1, 2 and 4 are easy
- 3. Write $A = (a_{ij}), B = (b_{ik}), AB = (p_{ik})$

$$tB=(eta_{ij}),\ tA=(lpha_{jk}) \ tBtA=(\pi_{ik})\ ext{and}\ t(AB)=(\gamma_{ik}) \ \pi_{ik}=\sum_{j=1}^n b_{ij}a_{kj}=\sum_{j=1}^n a_{jk}b_{ij}=p_{ki}=\gamma_{ik},\ orall (i,k)$$

Section 2.3

Theorem

Consider the set $M_n(\mathbb{K})$ of square matrices of size n, equipped with addition and multiplication of matrices is a ring, with zero matrix $0_{n,n}$ and unit element I_n

Proof

by the theorem at the end of the last session, restricted to the case m = n = p = q.

Consequences

for
$$n=1$$
, $M_1(\mathbb{K})\cong\mathbb{K}$:

$$M$$
1103 Chapter 2 $M_1(\mathbb{K})=\{(a);a\in\mathbb{K}\}$ $\mathbb{K} o M_1(\mathbb{K})$ $a o (a)$

So, $M_1(\mathbb{K})$, like \mathbb{K} , is a commutative field.

for $n \geq 2$, the ring $M_n(\mathbb{K})$ is NOT commutative, and it has zero divisors.

Indeed, consider
$$A=egin{pmatrix} 0 & 0 \ 1 & 0 \end{pmatrix} \in M_2(\mathbb{K}), \ B=egin{pmatrix} 0 & 0 \ 0 & 1 \end{pmatrix} \in M_2(\mathbb{K}) \ AB=egin{pmatrix} 0 & 0 \ 1 & 0 \end{pmatrix} \cdot egin{pmatrix} 0 & 0 \ 0 & 1 \end{pmatrix} = egin{pmatrix} 0 & 0 \ 0 & 0 \end{pmatrix} \ BA=egin{pmatrix} 0 & 0 \ 0 & 1 \end{pmatrix} \cdot egin{pmatrix} 0 & 0 \ 1 & 0 \end{pmatrix} = egin{pmatrix} 0 & 0 \ 1 & 0 \end{pmatrix}$$

We notice that $AB \neq BA$, ergo it is not commutative.

Newtons binomial formula

$$(x+y)^2 = (x+y)(x+y)$$

= $x^2 + xy + yx + y^2$
= $x^2 + 2xy + y^2$ if x and y commute

Newtons binomial formula for matrices:

lf

$$(A+B)^n = \sum_{k=0}^n C_n^k A^{n-k} B^k$$

If $\mathbb R$ is a ring, then x invertible $\iff \exists y \in \mathbb R; xy=yx=1$, which we denote x^{-1}

$$xx^{-1} = x^{-1}x = 1$$

Also, a matrix $A \in M_n(\mathbb{K})$ is invertible if:

$$\exists B \in M_n(\mathbb{K}); AB = BA = I_n$$

then, if A is invertible, this B will be unique. We write it A^{-1} . Then we will have

$$AA^{-1} = A^{-1}A = I_n$$

Example

Let
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
.

We claim that if $ad - bc \neq 0$, then A is invertible, and we have:

$$A^{-1} = rac{1}{ad-bc}igg(egin{matrix} d & -b \ -c & a \end{matrix}igg)$$

Indeed,

Let
$$B = rac{1}{ad-bc} igg(egin{matrix} d & -b \ -c & a \end{matrix} igg).$$

Then
$$AB=egin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{bmatrix} \frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{bmatrix} \end{bmatrix}$$
 . We recall that $A(\lambda B)=\lambda(AB)$

$$egin{align} AB &= rac{1}{ad-bc} [egin{pmatrix} a & b \ c & d \end{pmatrix} \cdot egin{pmatrix} d & -b \ -c & a \end{pmatrix}] \ &= rac{1}{ad-bc} egin{pmatrix} ad-bc & -ab+ba \ cd-dc & -cb+da \end{pmatrix} \ &= egin{pmatrix} rac{ad-bc}{ad-bc} & 0 \ 0 & rac{ad-bc}{ad-bc} \end{pmatrix} \ &= egin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix} = I_2 \ \end{align}$$

Also, $BA = \cdots = I_2$

So
$$A$$
 is invertible, and $A^{-1}=rac{1}{ad-bc}inom{d}{-c}inom{d}{-c}$. \Box

Note

Like in any ring, the set of invertible matrices is a group for multiplication. It is called the general linear group and is denoted by: $GL_n(\mathbb{K})$.

(Also,
$$\forall A,B \in GL_n(\mathbb{K}), (AB)^{-1} = B^{-1}A^{-1}$$
)

Theorem

 $A \in M_n(\mathbb{K})$, then A invertible $\iff transpose A$ invertible.

In this case, the inverse of the transpose is:

$$t(A^{-1})$$

Proof

If A is invertible, then:

$$tA\cdot tA^{-1}=t(A^{-1}A)=t(I_n)=I_n$$

Also,

$$t(A^{-1})tA = t(AA^{-1}) = t(I_n) = I_n$$

Therefore tA is invertible and $(tA)^{-1}=t(A^{-1})$. \square

Definition

Let $A = (a_{ij})$

1. We say that A is <u>upper triangular</u> (resp. <u>lower triangular</u>) if:

$$i > j \implies a_{ij} = 0$$

respectively

$$i < j \implies a_{ij} = 0$$

What does this mean?

2. We say that A is diagonal if:

$$i
eq j \implies a_{ij=0}$$

What does this mean?

$$\begin{pmatrix} \ddots & & 0 \\ & \ddots & \\ 0 & & \ddots \end{pmatrix}$$
 (Where the dots indicate values)

3. We say that A is scalar if it is diagonal and all its diagonal entries are equality

What does this mean?

M1103 Chapter 2
$$diag(a_1,\ldots,a_n)=egin{pmatrix} a_1&&0\ &\ddots&\ 0&&a_n \end{pmatrix}$$
 $diag(a,\ldots,a)=egin{pmatrix} a&&0\ &\ddots&\ 0&&a \end{pmatrix}$ $=aegin{pmatrix} 1&&0\ &\ddots&\ 0&&1 \end{pmatrix}=aI_n$

Consequences

- 1. A upper triangular $\iff tA$ lower triangular
- 2. A diagonal \iff A both upper and lower triangular
- 3. If $A = diag(\lambda, \dots, \lambda) = \lambda I_n$
- 4. A is invertible $\iff \lambda \neq 0$, and then

$$A^{-1} = egin{pmatrix} rac{1}{\lambda} & & 0 \ & \ddots & \ 0 & & rac{1}{\lambda} \end{pmatrix}$$

such matrix is invertible $\iff orall i, a_i
eq 0$

Theorem

The set of upper triangular matrices is a sub-ring of $M_n(\mathbb{K})$. (resp. lower triangular)

Proof

- 1. Clearly, \sum of two upper triangular matrices is upper triangular.
- 2. I_n is also clearly upper triangular.
- 3. Suppose $A=(a_{ij})$ and $B=(b_{ij})$ are upper triangular, so that

$$a_{ij} = 0, b_{ij} = 0$$
, whenever $i > j$

Write $AB = (c_{ik});$

Now,

M1103 Chapter 2
$$c_{ik} = \sum_{i=1}^n a_{ij} b_{jk}$$

Suppose i > k, if $\exists j; a_{ij} \neq 0$ and $b_{jk} \neq 0$, then $i \leq j$, and $j \leq k$

But then we will have $i \leq k$, which is a contradiction. Thus, $\forall j, a_{ij} = 0 \text{ or } b_{jk} = 0$. So the product $a_{ij}b_{jk}$ is necessarily 0

Thus, $c_{ik} = 0$. And finally, AB is upper triangular \square .

Remark

$$c_{ii} = \sum_{j=1}^n a_{ij} b_{ji} = a_{ii} b_{ii}$$

Remark

Clearly, if λ a scalar and $A \in M_n(\mathbb{K})$, then if (A upper triangular (resp. lower))

 $\implies \lambda A$ is upper/lower triangular or diagonal

Definition

Let $A \in M_n(\mathbb{K})$.

We say that A is symmetric (resp. anti-symmetric/skew symmetric) if:

$$tA = A \text{ (resp. } tA = -A)$$

Consequence

Write $A = a_{ij}$, then

- A symmetric means $a_{ij} = a_{ji}, \ orall i, j$
- A anti-symmetric means $a_{ij} = -a_{ji}, \ orall i, j$

In particular, if A anti-symmetric, then the diagonal entries a_{ii} are all 0.

We denote by $MS_n(\mathbb{K})$ (resp. $MA_n\mathbb{K}$) the set of symmetric (resp. anti-symmetric) matrices

Theorem

Each of $MS_n(\mathbb{K})$ and $MA_n(\mathbb{K})$ are an additive sub-group of $(M_n(\mathbb{K}), +)$.

Proof

Consider the 0 matrix, $0 \in MS_n(\mathbb{K})$ and $0 \in MA_n(\mathbb{K})$.

Let
$$A, B \in MS_n(\mathbb{K})$$
, then $t(A - B) = tA - tB = A - B$. Then $A - B \in MS_n(\mathbb{K})$.

Thus we proved that $MS_n(\mathbb{K})$ is an additive sub-group.

Take
$$C, D \in MA_n(\mathbb{K})$$
. Then $t(C-D) = tC - tD = -C - (-D) = -C + D$. Then $C-D = -(C+D)$. So, $C-D \in MA_n(\mathbb{K})$.

Thus we proved that $MA_n(\mathbb{K})$ is an additive sub-group. \square

Remark

Suppose $A, B \in MS_n(\mathbb{K})$,

$$t(AB) = tBtA = BA$$

So, AB is symmetric if AB = BA.

Similarly, if $A, B \in MA_n(\mathbb{K})$,

$$t(AB) = tBtA = (-B) \cdot (-A)$$

So, $AB \in MA_n(\mathbb{K}) \iff AB = -BA$.

Exercise

Show that,

$$egin{aligned} orall \lambda \in \mathbb{K}, orall A \in M_n(\mathbb{K}) \ & ext{we have} \ A \in MS_n(\mathbb{K}) \implies \lambda A \in MS_n(\mathbb{K}) \ A \in MA_n(\mathbb{K}) \implies \lambda A \in MA_n(\mathbb{K}) \end{aligned}$$

do at home

Let $A, B \in M_{m,n}(\mathbb{K})$

We say that A and B are row equivalent and we write $A \equiv B$ if B can be obtained from A by a sequence of elementary row operations.

Remark

- ullet $orall A \in M_{m,n}(\mathbb{K})$, we have $A \equiv A$
- $\forall A, B \in M_{m,n}(\mathbb{K})$, we have $A \equiv B \implies B \equiv A$.
- $ullet \ \ orall A,B,C\in M_{m,n}(\mathbb{K}), (A\equiv B ext{ and } B\equiv C) \implies A\equiv C.$

Definition

An elementary matrix of size n is a matrix $E \in M_{m,n}(\mathbb{K})$ obtained from the identity matrix by a single row operation.

examples

 $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$

This is an elementary matrix, that comes from I_3 by multiplying the third row by (-2).

 $\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{pmatrix}$

This comes from \mathcal{I}_4 by interchanging the second and fourth row.

 $\begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}$

This comes from I_2 by doing R_1+3R_2

4. I_3

Theorem

If an elementary matrix E comes from preforming a certain row operation on I_n , the the matrix $E \cdot A$ comes from A by preforming the same row operations.

Proof

This is trivial, but lets take an example:

Let $c \neq 0$. Suppose,

$$E = egin{pmatrix} 1 & 0 & 0 \ 0 & c & 0 \ 0 & 0 & 1 \end{pmatrix}$$

This comes from I_3 by multiplying the second row by c.

Let,

$$A = egin{pmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

Then,

$$E \cdot A = egin{pmatrix} a_{11} & a_{12} & a_{13} \ ca_{21} & ca_{22} & ca_{23} \ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

Which we got by simply multiplying the second row by c. \square

Let us now attempt this with other kinds of row operations:

Take,

$$E=egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix}$$

This comes from interchanging row 1 and 2 of I_2

Let,

$$A = egin{pmatrix} a & b \ c & d \end{pmatrix}$$

Then,

$$E \cdot A = \begin{pmatrix} c & d \\ a & b \end{pmatrix}$$

Which can be derived from interchanging the first and second row of A. \square

Let us take a last example:

Let,

$$E = egin{pmatrix} ext{M1103 Chapter 2} \ 0 & 1 & 0 \ 3 & 0 & 1 \end{pmatrix}$$

This comes from I_3 by doing $R_1 + 3R_3$

Let,

$$A = egin{pmatrix} 1 & 0 & 2 & 3 \ 2 & -1 & 3 & 6 \ 1 & 4 & 4 & 0 \end{pmatrix}$$

Then,

$$E \cdot A = egin{pmatrix} 1 & 0 & 2 & 3 \ 2 & -1 & 3 & 6 \ 4 & 4 & 10 & 9 \end{pmatrix}$$

This matrix comes from A by doing the same row operation of R_3+3R_1 . \square

This now tells us that elementary matrices can be derived from elementary row operations

Theorem

Every elementary matrix is invertible, and it's inverse is an elementary matrix.

Proof

Suppose we drive E from I_n by some row operation.

Suppose we derive E' from I_n by the inverse row operations

Then, E'E comes from preforming the inverse operations, and so we get back the identity I_n $E'E = I_n$ (since the operations cancel each other out.)

Similarly, $EE' = I_n$.

So E is invertible and $E^{-1} = E' \square$.

Remark

Consider the system,

$$\left\{egin{aligned} a_{11}x_1+\cdots+a_{1n}x_n&=b_1\ &dots\ a_mx_1+\cdots+a_{mn}x_n&=b_n \end{aligned}
ight.$$

We can write this system as,

$$egin{pmatrix} a_{11} & \dots & a_{1n} \ dots & & dots \ a_n & \dots & a_{mn} \end{pmatrix} \cdot egin{pmatrix} x_1 \ dots \ x_n \end{pmatrix} = egin{pmatrix} b_1 \ dots \ b_n \end{pmatrix}$$

That is, Ax = b, where A is the matrix of coefficients, the matrix x is the coefficients, and the matrix b is the results.

Theorem

 $A \in M_n(\mathbb{K})$, the following statements are equivalent:

- 1. *A* is invertible.
- 2. The homogeneous linear system Ax = 0, has only the trivial solution.
- 3. The RREF of A is the identity matrix I_n .
- 4. *A* is expressible as a product of elementary matrices.

Proof

- $1-(1) \implies (2)$
- $2-(2) \implies (3)$
- $3-(3) \implies (4)$
- $4-(4) \implies (1)$
 - 1. Let x_0 be a solution of Ax = 0, then $Ax_0 = 0$. Then

$$A^{-1}(Ax_0) = A^{-1}0$$

$$egin{aligned} \mathrm{so}\,(A^{-1}A)x_0 &= 0 \ I_nx_0 &= 0 \ x_0 &= 0 \end{aligned}$$

2. Since Ax = 0 has only the trivial solution, it's RREF has to be:

$$\left\{egin{array}{cccc} x_1 & & = 0 \ & x_2 & & = 0 \ & & \ddots & & \ & & & x_n = 0 \end{array}
ight.$$

Which corresponds to the following augmented matrix:

$$\begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ & & \ddots & \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

3. Since A can be reduced to I_n by the sequence of elementary row operations, there exists elementary matrices $E_1, \ldots, E_k \in GL_n(\mathbb{K})$, such that $E_k \ldots E_1 A = I_n$.

$$E_1^{-1} \dots E_k^{-1} \dots E_1 A = E_1^{-1} \dots E_k^{-1} I_n$$

SO,

$$A=E_1^{-1}\dots E_k^{-1}$$

And we know that the inverse of an elementary matrix is an elementary matrix. Thus,

A can be expressed as a product of elementary matrices.

4. Every elementary matrix is invertible + the fact that the product of invertibles is invertible.

Important Remark

Let $A \in GL_n(\mathbb{K})$,

Then, there exists elementary matrices $E_1, \ldots, E_k \in GL_n(\mathbb{K})$ such that

$$E_k \dots E_1 A = I_n$$

Then.

$$E_k \dots E_1 A A^{-1} = I_n A^{-1} \ E_k \dots E_1 I_n = A^{-1}$$

Example

Find the inverse of the matrix:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{pmatrix}$$

Consider the augmented matrix $(A \mid I_3)$. That is,

$$\begin{pmatrix} 1 & 2 & 3 & | & 1 & 0 & 0 \\ 2 & 5 & 3 & | & 0 & 1 & 0 \\ 1 & 0 & 8 & | & 0 & 0 & 1 \end{pmatrix}$$

$$R_2 - 2R_1$$

$$R_3 - R_1$$

$$\begin{pmatrix} 1 & 2 & 3 & | & 1 & 0 & 0 \\ 0 & 1 & -3 & | & -2 & 1 & 0 \\ 0 & -2 & 5 & | & -1 & 0 & 1 \end{pmatrix}$$

Cover first row,

$$R_3 + 2R_2$$

$$\begin{pmatrix} 1 & 2 & 3 & | & 1 & 0 & 0 \\ 0 & 1 & -3 & | & -2 & 1 & 0 \\ 0 & 0 & -1 & | & -5 & 2 & 1 \end{pmatrix}$$

Cover first two rows,

$$R_3 \cdot (-1)$$

$$\begin{pmatrix} 1 & 2 & 3 & | & 1 & 0 & 0 \\ 0 & 1 & -3 & | & -2 & 1 & 0 \\ 0 & 0 & 1 & | & 5 & -2 & -1 \end{pmatrix}$$

We have reached REF. Lets proceed to RREF:

$$R_2 + 3R_3$$

$$R_1 - 3R_3$$

$$\begin{pmatrix} 1 & 2 & 0 & | & -14 & 6 & 3 \\ 0 & 1 & 0 & | & 13 & -5 & -3 \\ 0 & 0 & 1 & | & 5 & -2 & -1 \end{pmatrix}$$

$$R_1 - 2R_2$$

$$\begin{pmatrix} 1 & 0 & 0 & | & -40 & 16 & 9 \\ 0 & 1 & 0 & | & 13 & -5 & -3 \\ 0 & 0 & 1 & | & 5 & -2 & -1 \end{pmatrix}$$

Thus, the inverse of the matrix A is:

$$A^{-1} = egin{pmatrix} -40 & 16 & 9 \ 13 & -5 & -3 \ 5 & -2 & -1 \end{pmatrix}$$

Remark

Often, we dont know if the matrix is invertible or not. We can still continue doing this. But by the theorem, RREF of A will not be the identity and, at some point, we will get a row of zeros.

Once we see the row of zeros, we can stop the operation and conclude that A is not invertible.

§ 2.5

Theorem

A linear system has zero, one, or infinitely many solutions. There are no other possibilities.

Proof:

Suppose that the linear system Ax=b has two distinct solutions x_1 and x_2 . Let $x_0=x_1=x_2\neq 0$.

Then:

$$Ax_0 = A(x_1 - x_2)$$

= $Ax_1 - Ax_2$
= $b - b = 0$

So the main solution of the homogeneous linear system is Ax = 0

 $\forall \lambda \in \mathbb{K}$,

$$A(x_1 + \lambda x_0) = Ax_1 + A(\lambda x_0) = Ax_1 + \lambda Ax_0 = b + \lambda(0) = b$$

So $\{x_1+\lambda x_0;\lambda\in\mathbb{K}\}$ is contained in the set of solutions of Ax=b

and $\{x_1 + \lambda x_0; \lambda \in \mathbb{K}\}$ is infitnite (since $x_0 \neq 0$). \square

Theorem

If $A \in GL_n(\mathbb{K})$, then $\forall b \in M_{m,n}(\mathbb{K})$, the linear system Ax = b has a unique solution, namely $x = A^{-1}b$.

Proof:

$$A(A^{-1}b) = (AA^{-1})b = I_nb = b$$

So $A^{-1}b$ is a solution of $Ax = b$.

Let x be a solution of Ax = b

then
$$Ax = b \implies A^{-1}(Ax) = A^{-1}b$$
 $\implies (A^{-1}Ax) = A^{-1}b$
 $\implies I_n x = A^{-1}b$

$$\implies x = A^{-1}b \square.$$

Theorem

Let $A \in M_n(\mathbb{K})$

- (1) If there exists $B\in M_n(\mathbb{K})$ such that $BA=I_n$, then A is invertible and $A^{-1}=B$
- (2) If there exists $B \in M_n(\mathbb{K})$ such that $AB = I_n$, then A is invertible and $A^{-1} = B$

Proof:

(1)

$$egin{aligned} Let \ x \in M_{n,1}(\mathbb{K}); Ax &= 0 \ then \ B(Ax) &= B(0) \ \Longrightarrow \ (BA)x &= 0 \ \Longrightarrow \ I_nx &= 0 \ \Longrightarrow \ x &= 0 \end{aligned}$$

So, the homogeneous linear system only has the trivial solution, so A is invertible.

Then
$$BA = I_n$$
 $\implies (BA)A^{-1} = I_nA^{-1}$
 $\implies B(AA^{-1}) = A^{-1}$
 $\implies BI_n = A^{-1}$
 $\implies B = A^{-1}$

(2)

Since $AB = I_n$, then B is invertible.

So
$$(AB)B^{-1} = I_nB^{-1}$$

 $\implies A(BB^{-1}) = B^{-1}$
 $\implies AI_n = B^{-1}$
 $\implies A = B^{-1}$
 $\implies B = A^{-1} \square$

Theorem

(continuation of the previous theorem)

- 5. The linear system Ax = b has a unique solution
- 6. The linear system Ax=b is consistent $orall b\in M_{n,1}(\mathbb{K}).$

Proof:

- $(5) \rightarrow (6)$: immediate
- $(6) \to (1)$:

There exists
$$x_1,x_2,\ldots,x_n;Ax_1=egin{pmatrix}1\\0\\\vdots\\0\end{pmatrix},Ax_2=egin{pmatrix}0\\1\\\vdots\\0\end{pmatrix},\ldots,Ax_n=egin{pmatrix}0\\0\\\vdots\\1\end{pmatrix}$$

Let
$$B=(x_2,\ldots,x_n)$$

Then,
$$AB=(Ax_1,\ldots,Ax_n)=I_n.$$
 So A is invertible. \Box