

For keff:

$$keff = kpo \cdot exp \left(-\frac{E}{P} \right) \cdot \left[\frac{kr_{io} exp \left(-\frac{E}{P} | RT \right)}{n_{t} \cdot k_{to} exp \left(-\frac{E}{P} | RT \right)} \right]$$
 $keff = kpo \cdot \left(\frac{kr_{io}}{n_{t} \cdot k_{to}} \right) \cdot \left[\frac{Ei}{RT} - \frac{E}{L} + \frac{E}{L} + \frac{E}{L} \right]$
 $keff = ko' \cdot exp \left(-\frac{E}{L} \right) \cdot \left[\frac{Ei}{RT} - \frac{E}{L} + \frac{E}{L} + \frac{E}{L} \right]$
 $keff = ko' \cdot exp \left(-\frac{E}{L} \right) \cdot \left[\frac{Ei}{R} - \frac{E}{L} + \frac{E}{L} \right]$
 $keff = ko' \cdot exp \left(-\frac{E}{L} \right) \cdot \left[\frac{Ei}{R} - \frac{E}{L} + \frac{E}{L} \right]$
 $exp = ko' \cdot exp \left(-\frac{E}{L} \right) \cdot \left[\frac{Ei}{R} - \frac{E}{L} + \frac{E}{L} \right]$
 $exp = ko' \cdot exp \left(-\frac{E}{L} \right) \cdot \left[\frac{Ei}{R} - \frac{E}{L} + \frac{E}{L} \right]$
 $exp = ko' \cdot exp \left(-\frac{E}{L} \right) \cdot \left[\frac{Ei}{R} - \frac{E}{L} + \frac{E}{L} \right]$
 $exp = ko' \cdot exp \left(-\frac{E}{L} \right) \cdot \left[\frac{Ei}{R} - \frac{E}{L} + \frac{E}{L} \right]$
 $exp = ko' \cdot exp \left(-\frac{E}{L} \right) \cdot \left[\frac{Ei}{R} - \frac{E}{L} + \frac{E}{L} \right]$
 $exp = ko' \cdot exp \left(-\frac{E}{L} \right) \cdot \left[\frac{Ei}{R} - \frac{E}{L} + \frac{E}{L} \right]$
 $exp = ko' \cdot exp \left(-\frac{E}{L} \right) \cdot \left[\frac{Ei}{R} - \frac{E}{L} + \frac{E}{L} \right]$
 $exp = ko' \cdot exp \left(-\frac{E}{L} \right) \cdot \left[\frac{Ei}{R} - \frac{E}{L} + \frac{E}{L} \right]$
 $exp = ko' \cdot exp \left(-\frac{E}{L} \right) \cdot \left[\frac{Ei}{R} - \frac{E}{L} + \frac{E}{L} \right]$
 $exp = ko' \cdot exp \left(-\frac{E}{L} \right) \cdot \left[\frac{Ei}{R} - \frac{E}{L} + \frac{E}{L} \right]$
 $exp = ko' \cdot exp \left(-\frac{E}{L} \right) \cdot \left[\frac{Ei}{R} - \frac{E}{L} + \frac{E}{L} \right]$
 $exp = ko' \cdot exp \left(-\frac{E}{L} \right) \cdot \left[\frac{Ei}{R} - \frac{E}{L} + \frac{E}{L} \right]$
 $exp = ko' \cdot exp \left(-\frac{E}{L} \right) \cdot \left[\frac{Ei}{R} - \frac{E}{L} + \frac{E}{L} \right]$
 $exp = ko' \cdot exp \left(-\frac{E}{L} \right) \cdot \left[\frac{Ei}{R} - \frac{E}{L} + \frac{E}{L} \right]$
 $exp = ko' \cdot exp \left(-\frac{E}{L} \right) \cdot \left[\frac{Ei}{R} - \frac{E}{L} + \frac{E}{L} \right]$
 $exp = ko' \cdot exp \left(-\frac{E}{L} \right) \cdot \left[\frac{Ei}{R} - \frac{E}{L} + \frac{E}{L} \right]$
 $exp = ko' \cdot exp \left(-\frac{E}{L} \right) \cdot \left[\frac{Ei}{R} - \frac{E}{L} + \frac{E}{L} \right]$
 $exp = ko' \cdot exp \cdot \left[\frac{E}{R} - \frac{E}{L} + \frac{E}{L} \right]$
 $exp = ko' \cdot exp \cdot \left[\frac{E}{R} - \frac{E}{L} + \frac{E}{L} \right]$
 $exp = ko' \cdot exp \cdot \left[\frac{E}{R} - \frac{E}{L} + \frac{E}{L} \right]$
 $exp = ko' \cdot exp \cdot \left[\frac{E}{R} - \frac{E}{L} + \frac{E}{L} \right]$
 $exp = ko' \cdot exp \cdot \left[\frac{E}{R} - \frac{E}{L} + \frac{E}{L} \right]$
 $exp = ko' \cdot exp \cdot \left[\frac{E}{R} - \frac{E}{L} + \frac{E}{L} \right]$
 $exp = ko' \cdot exp \cdot \left[\frac{E}{R} - \frac{E}{L} + \frac{E}{L} \right]$