Requested Patent:

EP0459887

Title:

HETEROCYCLIC DERIVATIVES WITH AN ANTICONVULSIVE ACTIVITY, PROCESS FOR PREPARATION AND PHARMACEUTICAL COMPOSITION.

Abstracted Patent:

EP0459887

Publication Date:

1991-12-04

inventor(s):

LEPAGE FRANCIS (FR); HUBLOT BERNARD (FR).

Applicant(s):

NOVAPHARME (FR)

Application Number:

EP19910401366 19910528

Priority Number(s):

FR19900006735 19900530

IPC Classification:

A61K31/415; C07D231/14; C07D231/22; C07D231/40; C07D261/18; C07D271/10; C07D285/12

Equivalents:

FR2662692

ABSTRACT:

The invention relates to heterocyclic compounds with anticonvulsive activity, of general formula (I) in which Y is chosen from -O-, -S- and , R4 being H or an alkyl, acyl or benzyl, optionally substituted; Z is chosen from the groups -CO-N(R6)-, -NH-CO-CH=CH- and -N(R6)-CO-, R6 being H or alkyl; R1 is a C1-C4 alkyl; R2 is a C1-C4 alkyl or a halogen; R3 represents a C1-C4 alkyl, alkoxy or hydroxyalkyl group, optionally substituted, or a C2-C7 alkanoyl group. Medicaments.

11) Numéro de publication : 0 459 887 A1

12

DEMANDE DE BREVET EUROPEEN

(21) Numéro de dépôt : 91401366.9

(2) Date de dépôt : 28.05.91

(a) Int. CI.⁵: **C07D 231/14,** A61K 31/415, C07D 231/22, C07D 261/18, C07D 271/10, C07D 285/12, C07D 231/40

(30) Priorité : 30.05.90 FR 9006735

(3) Date de publication de la demande : 04.12.91 Bulletin 91/49

(A) Etats contractants désignés : AT BE CH DE DK ES FR GB GR IT LI LU NL SE

7) Demandeur: NOVAPHARME 23 rue Jonquoy F-75014 Paris (FR) (7) inventeur : Lepage, Francis 9, allée des Platanes F-60150 Villers Sur Coudun (FR) inventeur : Hublot, Bernard 3, rue des Pommerelles F-60200 Complègne (FR)

(4) Mandataire: Varady, Peter et al Cabinet Lavoix 2, Place d'Estienne d'Orves F-75441 Paris Cedex 09 (FR)

- 64 Dérivés hétérocycliques doués d'activité anticonvulsivante, procédé de préparation et composition pharmaceutique.
- L'invention a pour objet des composés hétérocycliques doués d'activité anticonvulsivante de formule générale (I)

$$\mathbb{Z}$$
 \mathbb{R}_{2}
 \mathbb{R}_{3}

dans laquelle Y est choisi parmi -O-, -S- et

R4 | -N-

R₄ étant H ou un alkyle, acyle ou benzyle éventuellement substitués; Z est choisi parmi les groupes -CO-N(R₆)-, -NH-CO-CH=CH- et-N(R₆)-CO-, R₆ étant H ou alkyle; R₁ est un alkyle en C₁-C₄; R₂ est un alkyle en C₁-C₄ ou un halogène; R₃ représente un groupe alkyle, alkoxy ou hydroxyalkyle en C₁-C₄ éventuellement substitués, ou alkanoyle en C₂-C₇. Médicaments.

La présente inv ntion se rapport de manière générale à de n uveaux dérivés hétérocycliques doués d'activité anticonvulsivante, un procédé de préparati n ainsi qu'à des compositions thérapeutiques les contenant.

On dispose d'un nombre relativement faible d'agents ayant une activité anticonvulsivante. Parmi ceux-ci un grand nombre présentent des inconvénients liés à des phénomènes d'échappement thérapeutiques, des effets secondaires gênants tels que diminution de la vigilance, somnolence, .. ou des effets toxiques, en particulier hépatotoxiques.

Le but de la présente invention est de fournir de nouveaux composés ayant des propriétés anticonvulsivantes, et exempts des inconvénients de l'art antérieur.

La présente invention a ainsi pour objet des composés hétérocycliques de formule générale

$$Z \xrightarrow{R_1} Z$$

dans laquelle Y est choisi parmi -O-, -S- et

10

15

20

25

30

45

50

55

 R_4 étant choisi parmi un atome d'hydrogène, un groupe alkyle en C_1 - C_4 , benzyle, halogénobenzyle, acyle en C_2 - C_7 et un groupe alkyle en C_1 - C_4 substitué par un groupe alkanoyl(C_2 - C_7)oxy, dialkyl(C_1 - C_4)amino, alkoxy en C_1 - C_4 , phénoxy, ou halogénophénoxy,

Z est choisi parmi les groupes -CO-N(R_6)-, -NH-CO-CH=CH- et-N(R_6)-CO- dans lesquels R_8 est choisi parmi un atome d'hydrogène et un groupe alkyle en C_1 - C_4 ,

R, est un groupe alkyle en C1-C4,

R₂ est choisi parmi un groupe aikyle en C₁-C₄, et un atome d'halogène,

 R_3 est choisi parmi un atome d'hydrogène, un groupe alkyle en C_1 - C_4 , alkoxy en C_1 - C_4 , hydroxyalkyle en C_1 - C_4 , halogénoalkyle en C_1 - C_4 , alkanoyle en C_2 - C_7 et un groupe -CHR $_{10}$ OR $_5$ dans lequel R_5 est choisi parmi un groupe alkyle en C_1 - C_4 , un groupe phényle non substitué ou substitué par un ou plusieurs substituants choisis parmi un atome d'halogène, un groupe alkyle en C_1 - C_4 , alkoxy en C_1 - C_4 et trifluorométhyle; et un groupe COR $_7$, R_7 étant choisi parmi un groupe alkyle en C_1 - C_4 , phényle, et un groupe

R₈ et R₉ étant choisis parmi un atome d'hydrogène et un groupe alkyle en C₁-C₄,

et R_{10} représente un atome d'hydrogène ou un groupe alkyle en C_1 - C_4 , sous réserve que R_3 ne représente pas un atome d'hydrogène ou un groupe trifluorométhyle, alkyle, alkoxy ou hydroxyalkyle en C_1 - C_4 lorsque Y est C_1 .

Les composés de formule (I) comprennent notamment les composés dans lesquels l'hétérocycle est un pyrazole c'est-à-dire Y représente le groupe -NR₄-, dans lequel R₄ est de préférence choisi parmi un atome d'hydrogène, le groupe méthyle, acétyle et méthoxyéthyle.

D'autres composés de formule I sont ceux dans lesquels l'hétérocycle est un isoxazole (Y st O), et parmi ceux-ci on préfère ceux dans lesquels R₃ représente un groupe halogénoalkyle ou acétyl .

Les composés de formule I que l' n préfère s nt également ceux dans lesquels R₁ représente le groupe méthyle, R₂ représente un atome de chlore, le groupe méthyle ou isopropyle, R₃ représente le groupe méthyle

ou méthoxy lorsque l'hétérocycle est un pyrazole et le groupe $-CH_2OR_5$ dans lequel R_5 est un groupe méthyle, phényle ou phényle substitué par un atom d'halogène tel que fluor ou brome, un groupe trifluorométhyle ou deux groupes méthoxy, lorsque l'hétérocycle est un isoxazole.

Plus particulièrement parmi les composés préférés selon l'invintion, on peut citer :

- le (chloro-2 méthyl-6 phénylcarbamoyl)-3 acétyl-1 méthyl-5 pyrazole,
- le N-(diméthyl-1,5 pyrazolyl-3) diméthyl-2,6 benzamide

6

10

15

20

30

35

50

- le (diméthyi-2,6 phénylcarbamoyl)-3 diméthyi-1,5 pyrazole,
- le (chloro-2 méthyl-6 phénylcarbamoyl)-3 diméthyl-1,5 pyrazole,
- le (diméthyl-2,6 phénylcarbamoyl)-3 méthyl-1 méthoxy-5 pyrazole, et
- le (diméthyl-2,6 phénylcarbamoyl)-3 fluorométhyi-5 isoxazole.

Ces composés portent respectivement les numéros 2, 3, 4, 5, 15 et 31 dans les tableaux.

La présente invention a également pour objet un procédé de préparation des composés de formule générale l, caractérisé en ce que l'on fait réagir un composé de formule générale

 $\begin{bmatrix} R_1 \\ R_2 \end{bmatrix}$

dans laquelle R₁ et R₂ ont les mêmes significations que dans la formule I et A représente un groupe-COOH,
-COCI ou -N(R₆)H dans lequel R₆ représente un atome d'hydrogène ou un groupe alkyle en C₁-C₄, avec un
composé de formule générale

dans laquelle Y et R_3 ont les mêmes significations que dans la formule I et B représente un groupe -COOH, COCI, -CH=CH-COOH, -CH=CH-COCI ou -N(R_6)H, R_6 étant H ou un alkyle en C_1 - C_4 . En particuller, a) quand Z représente les groupes -N(R_6)-CO-, ou -NH-CO-CH=CH-, R_6 étant tel que défini dans la formule générale I, on condense une amine de formule générale II dans laquelle A représente le groupe -NR $_6$ H avec un acide ou un chlorure d'acide de formule générale III dans laquelle B représente un groupe -COOH, -COCI, -CH=CH-COOH ou -CH=CH-COCI.

Quand on utilise un acide de formule générale III, on effectue la réaction en présence de dicyclohexylcarbodiimide (DCC) ou carbonyldiimidazole (CDI) dans un solvant qui peut être le diméthylforma-mide (DMF) ou le tétrahydrofuranne (THF) à une température de 10 à 25°C.

Dans le cas où l'on utilise un chlorure d'acide (III), on réalise la condensation en présence d'un capteur de proton tel que la triéthylamine ou le carbonate de potassium à une température de 20 à 120°C dans un solvant neutre tel que le toluène, l'acétone, etc.

Les acides de formule générale III (Y = -NR4-) sont connus de la littérature.

Il s'agit en particulier des acides :

- méthyi-1 méthoxy-5 pyrazole carboxylique-3
- (diméthyl-1,5 pyrazolył)-3 acrylique
- diméthyl-1,5 pyrazole carboxylique-3
- méthyl-5 pyrazole carboxylique-3

Les amines de formule générale II sont toutes des produits disponibles dans le commerce ou décrits dans la littérature.

b) Quand Z représente le groupe -CO-NH-, on condense un composé de formule générale II dans laquelle A représente -COOH ou -COCI avec un composé de formule générale III dans laquelle B représente -NH₂. Cette réaction st effectuée de la même manière que celle sous a) ci-d ssus. Les acides et chlorures d'acide de formule II et les amines de formule III sont disponibles dans le commerce ou décrits dans la littérature.

- c) Les composés de formule I dans laquelle R_4 représente un groupe benzyle, éventuellement substitué, acyte, ou alkyle substitué par alkanoyloxy, dialkylamin , alkoxy ou phénoxy sont préparés en faisant réagir sur un composé de formule I dans laquelle R_4 représente un atome d'hydrogèn , un composé d formule R_4 X, R_4 étant tel que défini précédemment et X représentant un atome d'halogène.
- d) Les composés de formule III telle que définie précédemment dans laquelle l'hétérocycle est un isoxazole (Y représentant -O-) et R₃ représente le groupe CHR₁₀OR₅, R₅ et R₁₀ étant tels que définis précédemment et B représente le groupe -COOH peuvent être préparés
 - soit en faisant réagir un composé de formule

10

20

25

30

35

45

50

55

R₅ et R₁₀ étant tels que définis précédemment avec un composé de formule

 R_{11} représentant un groupe méthyle ou éthyle pour obtenir un composé de formule

R₁₁00C R₁₀ OR₅ VII

R₆, R₁₀ et R₁₁ étant tels que définis précédemment, - soit en faisant réagir un composé de formule

R₁₀ étant tel que défini précédemment et X représentant un atome de chlore ou de brome avec un composé de formule

R₁₁ étant tel que défini précédemment pour obtenir un composé de formule

X étant tel que défini ci-dessus,

que l'on fait réagir ensuite avec un alcoolate de formule R_sO -Na, R_s étant tel que défini précédemment pour obtenir un composé de formule X telle que définie ci-dessus, puis en hydrolysant l'ester de formule X pour obtenir un composé de formule X pour obtenir un

nir l'acide corr spondant de formule III.

Certains composés de l'invention possèdent un u plusieurs carbones assymétriques. Les isomères optiques correspondants font aussi partie de l'invention.

Les exemples suivants illustrent la préparation d s c mposés de formule I.

EXEMPLE 1

Préparation du (diméthyl-2,6 phénylcarbamoyl)-3 diméthyl-1,5-pyrazole (composé n° 4)

a) préparation de l'ester éthylique de l'acide (diméthyl-1,5) pyrazole carboxylique-3

On obtient:

15

30

35

45

. l'ester éthylique de l'acide (diméthyl-1,5) pyrazole carboxylique-3 : 9,85 g (rendement 56,9%). Eb : 92-96°C/0,17 mmHg.

20 b) préparation de l'acide diméthyl-1,5 pyrazole carboxylique-3

A 9,8 g (58,3 mmoles) de l'ester éthylique de l'acide diméthyl-1,5 pyrazole carboxylique-3 on ajoute 50 ml d'éthanol et 2,3 g (58,3 mmoles) de soude additionnés de 19,5 ml d'eau. On obtient 6,15 g d'acide diméthyl-1,5 pyrazole carboxylique-3 sous forme de cristaux blancs (rendement : 75,4%). Pf = 175°C.

c) préparation du (diméthyl-2,6 phénylcarbamoyl)-3 diméthyl-1,5 pyrazole

A 18,4 g (131,4 mmoles) du composé obtenu précédemment, on ajoute 11,3 ml (131,4 mmoles) de chlorure de thionyle dans 1 l de toluène puis 15,9 g (131,4 mmoles) de diméthyl-2,6 aniline, 18 ml (131,4 mmoles) de triéthylamine dans 750 ml de toluène. On obtient 27,65 g du produit du titre sous forme de cristaux ocres.

Rendement: 86,6%

Pf = 155°C

EXEMPLE 2

Préparation du (diméthyl-2,6 phénylcarbamoyl)-3 méthyl-5 pyrazole (composé n° 1) (D.E. Butler et H.A. Dewald JOC 1975, 40(9), 1353))

Dans un ballon de 100 ml surmonté d'un réfrigérant muni d'une garde à CaCl₂, on introduit 5,8 g (40 mmoles) de chlorhydrate de pyridine et 2,4 g (10 mmoles) du composé n° 4 obtenu à l'exemple précédent. On chauffe à 220°C pendant 12 heures. On laisse refroidir, dilue à la saumure, extrait à l'acétate d'éthyle et sèche sur MgSO₄ anhydre. Après évaporation du solvant, purification par flash-chromatographie et recristallisation dans CH₂Cl₂, on obtient 0,4 g du produit du titre sous forme de cristaux de couleur beige.

Rendement = 21,2%

Pf = 198°C.

Le composé du titre peut également être obtenu en procédant de la manière suivante :

A 4 g (30 mmoles) d'acide méthyl-5 pyrazole carboxylique-3, on ajoute 7,1 g (60 mmoles) de chlorure de thionyle, 150 ml de toluène et quelques gouttes de DMF. Au produit obtenu, on ajoute alors 7,7 g de diméthyl-2,6 aniline (60 mmoles), 200 ml de toluène et encore quelques gouttes de DMF. On obtient 2,60 g du produit du titre sous forme de cristaux ocres.

Rendement: 37,8%

Pf = 190°C.

EXEMPLE 3

Préparation du (diméthyl-2,6 phénylcarbamoyl)-3 méthyl-1 méthoxy 5 pyrazole (composé n° 15) (d'après S. Suguira; S. Ohno; O. Ohtari; K. Iraini; T. Kitamikado; H. Asai, K. Kato; J. Med. Ch. m. 1977, 20 p. 80)

a) préparation de l'ester éthylique de l'acide méthyl-1 méthoxy-5 pyrazole carboxylique-3

Dans un ballon de 1 litre, on introduit 31 g (182 mmol s) d'ester éthylique de l'acide méthyl-1-hydroxy-5 pyrazole-carboxylique-3, 22,9 g (182 mmoles) de sulfate de diméthyle, 12,5 g (91 mmoles) de K₂CO₃ et 500 ml d'acétone. On chauffe au reflux pendant 5 heures.

On laisse refroidir, filtre le précipité obtenu, évapore le solvant reprend le résidu dans de l'acétone et filtre le précipité obtenu. On obtient 12 g de cristaux blancs (Pf : 78°C). Le filtrat contient encore 19 g de produit impur (Rendement : 90%).

b) préparation de l'acide méthyl-1 méthoxy-5 pyrazole carboxylique-3

A 12 g (65,2 mmoles) de l'ester obtenu précédemment, on ajoute 100 ml d'éthanol et 2,6 g (62,5 mmoles) de soude dans 50 ml d'eau. On laisse une nuit à température ambiante. On obtient 9 g d'acide.

Rendement: 88,5%

Pf = 194°C.

15

20

25

30

40

50

c) préparation du (diméthyl-2,6 phénylcarbamoyl)-3 méthyl-1 méthoxy-5 pyrazole

A 9 g (57,6 mmoles) du produit obtenu précédemment, on ajoute 200 ml de toluène et 6,86 g (57,6 mmoles) de chlorure de thionyle. On chauffe au reflux pendant 6 heures. On obtient 10,5 g de chlorure d'acide (Pf = 76°C).

On ajoute au chlorure d'acide obtenu 7,28 g (60,1 mmoles) de diméthylaniline, 6,07 g (60,1 mmoles) de triéthylamine et 200 g de toluène. On obtient 11 g du produit du titre sous forme de cristaux blancs.

Rendement: 73,7%

Pf = 144°C.

EXEMPLE 4

Préparation du diméthyl-2,6 phénylcarbamoyl)-3 benzyl-1 méthyl-5 pyrazole (composé n° 14)

Le produit est préparé comme décrit par G. Tarrago et A. Ramdari (J. Hetero Chem. 17, 137 (1980).

Dans un ballon de 100 ml surmonté d'une colonne réfrigérante munie d'une garde à CaCl₂, on introduit 1 g (4,4 mmoles) du composé n° 1 obtenu à l'exemple n° 2. On ajoute 30 ml de DMF, 7,50 mg (4,4 mmoles) de bromure de benzyle et 2,1 g (13 mmoles) d'iodure de potassium. On chauffe pendant 1 h à 100°C. Après évaporation du solvant, on reprend le résidu obtenu dans du chloroforme. On lave la phase organique avec une solution de thiosulfate de sodium puis avec de l'eau et on sèche sur Na₂SO₄.

Après évaporation du solvant et purification par flash-chromatograhie, on obtient 0,2 g du produit du titre sous forme de cristaux blancs.

Rendement: 14,3%

Pf = 147°C

EXEMPLE 5

Préparation du (diméthyl-2,6 phénylcarbamoyl)-3 méthoxyméthyl-5 isoxazole (composé n° 21)

a) préparation de l'ester éthylique de l'acide méthoxyméthyl-5 isoxazole carboxylique-3

9 g (0,128 mole) d'éther méthoxypropargylique préparé selon L.A. CABE, D.R. BENEDICT, T.A. BIANCHI (Synthesis, 428, 1979) sont dilués dans 100 ml de chloroforme. 69 g de K_2CO_3 (0,5 mole) sont ajoutés à température ambiante et le métange obtenu agité mécaniquement à cette température.

19,5 g (0,129 mole) de chlorooximidoacétate d'éthyle sont ensuite ajoutés goutte à goutte (J. ORG. CHEM., 48(3), 371, 1983).

La réaction achevée, le milieu réactionnel est rincé avec 50 ml de CHCl₃ et agité pendant 48 heures. Le K₂CO₃ est filtré, le chloroforme évaporé et le produit purifié par distillation. On obtient 13 g de produit pur.

Rendement: 59%

55 Eb₂₀ = 168-172°C

b) préparation de l'acide méthoxyméthyl-5 isoxazole carboxylique-3

13 g (0,075 mole) du produit obtenu à l'étape précédente sont mis en suspension dans 40 ml d'eau. Le mélange est refroidi dans un bain de glace. 12 ml de soude à 30% (0,120 mole) sont alors ajoutés. On laisse revenir à température ambiante et on agite pendant 1 heure. On refroidit à nouveau le milieu réactionnel et on ajoute 12 ml d'HCl à 37%. On évapore l'eau, reprend le résidu par de l'acétone, filtre, sèche sur MgSO₄ et évapore le solvant.

c) préparation du (diméthyl-2,6 phénylcarbamoyl)-3 méthoxyméthyl-5 isoxazole

10

5

On procède comme décrit dans J. MED. CHEM., 30(11), 2008-2012.

4,3 g de 2,6 diméthylaniline (0,036 mole) sont dilués dans 100 ml de THF et refroidis dans un bain d'eau et de glace. On ajoute 4,2 ml de POCl₃ (0,045 mole), puis 7 g (0,045 mole) du produit obtenu à l'étape précédente. On laisse le mélange en contact pendant 1/2 heure. On ajoute lentement 9 ml de triéthylamine dans 50 ml de THF. On laisse revenir lentement à température ambiante et on agite pendant 1 nuit.

On extrait à l'acétate d'éthyle, lave avec de l'eau saturée en NaCl jusqu'à pH neutre, sèche sur MgSO₄ et évapore le solvant. Le produit brut obtenu est purifié sur une colonne de silice (éluant CH₂Cl₂). On obtient 4,3 g du produit du titre.

Rendement: 46%.

20

EXEMPLE 6

Préparation du (diméthyl-2,6 phénylcarbamoyl)-3 (diméthoxy-2,6 phénoxyméthyl)-5 isoxazole (composé n° 25)

25

30

35

40

50

55

a) préparation de l'ester méthylique de l'acide (diméthoxy-2,6 phénoxyméthyl)-5 isoxazole carboxylique-3

On chauffe au reflux pendant 6 heures 5,1 g (0,023 mole) d'ester méthylique de l'acide bromométhyl-5 isoxazole carboxylique-3, 3,6 g de diméthoxy-2,6 phénol (0,023 mole) et 5 g de K₂CO₃ (0,036 mole) dans 150 ml d'acétone.

On filtre le K2CO3 rince avec de l'acétone et évapore le solvant.

On obtient 6,2 g de produit pur (rendement : 100%).

b) préparation de l'acide (diméthoxy-2,6 phénoxyméthyl)-5 isoxazole carboxylique-3

On dissout 6,7 g de l'ester obtenu à l'étape précédente dans 200 ml de métha

On dissout 6,7 g de l'ester obtenu à l'étape précédente dans 200 ml de méthanol. On ajoute 1,5 g de soude (0,0375 mole) dans 20 ml d'eau et on agite à température ambiante jusqu'à disparition de toute trace de l'ester. On évapore ensuite le solvant. On dissout le sel de sodium dans de l'eau, acidifie à froid jusqu'à pH2 pour obtenir la précipitation de l'acide. On filtre et sèche sur P₂O₆. On obtient ainsi 6,5 g de produit du titre.

Rendement: 100%.

c) Préparation du (diméthyl-2,6 phénylcarbamoyl)-3 (diméthoxy-2,6 phénoxyméthyl)-5 isoxazole

On dilue dans 150 ml de THF, 6,5 g du produit obtenu à l'étape précédente et 2,9 g de diméthyl-2,6 aniline (0,023 mole) et on refroidit à 0°C.

On ajoute 2,8 ml de POCl₃ (0,030 mole). On laisse en contact pendant 1/2 heure. On ajoute ensuite lentement 7 ml de triéthylamine (0,070 mole) dans 50 ml de THF. On laisse en contact pendant 12 heures, filtre sur verre fritté et évapore le solvant.

On purifie le produit brut obtenu sur une colonne de silice (éluant : CH₂Cl₂).

On obtient 4,6 g de produit.

Rendement: 50%.

EXEMPLE 7

Préparation du diméthyl-2,6 phénylcarbamoyl)-3 acétoxyméthyl-5 isoxazole (composé n° 27)

a) préparation de l'ester méthylique de l'acide hydroxyméthyl-5 isoxazole carboxylique-3

60 g de chlorooximidoacétate de méthyle (0,436 male) dilué dans 100 ml de chloroforme sont ajoutés très lentement à une solution composée de 30 g d'alcool propargylique (0,535 mole) et 180 g de K₂CO₃ (1,3 mole) dans 500 ml de chloroforme.

L'addition s'accompagne d'un échauffement produisant un reflux du chloroforme.

Après retour à la température ambiante, le mélange est agité pendant 6 heures.

Une chromatographie sur couche mince (éluant: CH₂Cl₂/MeOH : 98/2) montre un taux de conversion de 100%.

Le mélange réactionnel est filtré sur verre fritté, le résidu rincé au chloroforme et le solvant évaporé sous pression réduite.

On obtient le produit du titre brut avec une pureté d'environ 100%.

b) préparation de l'acide hydroxyméthyl-5 isoxazole carboxylique-3

15

20

25

5

10

38 g du produit obtenu à l'étape précédente (0,242 mole) sont mis en suspension dans 50 ml d'eau distillée. Après refroidissement sur bain de glace, 10 g de soude (0,25 mole) dans 50 ml d'eau distillée sont ejoutés goutte à goutte.

Le mélange réactionnel est agité à 0°C pendant 1 heure, puis pendant 1 heure à température ambiante.

On refroidit à 0°C, neutralise la soude en excès par de l'HCl dilué et acidifie jusqu'à pH2.

On évapore l'eau, reprend par de l'acétone, filtre le NaCl insoluble, sèche sur MgSO4 et évapore le solvant.

c) préparation de l'acide acétoxyméthyl-5 isoxazole carboxylique-3

25 g du produit obtenu à l'étape précédente (0,16 mole) sont mis en suspension dans un mélange composé de 125 ml d'anhydride acétique et 25 ml d'acide acétique pur.

5 gouttes d'H₂SO₄ sont ajoutés, et après dissolution totale des matières premières, on chauffe le mélange réactionnel pendant 1 heure à 60°C.

Une chromatographie sur couche mince (éluant: CH₂Cl₂/MeOH : 80/20) montre qu'à ce stade, la réaction est totale.

L'acide acétique et l'anhydride acétique sont éliminés par distillation sous pression réduite.

On obtient 29 g du produit du titre.

Rendement: 98%

Pf = 84°C.

35

40

d) préparation du (diméthyi-2,6 phénylcarbamoyi)-3 acétoxyméthyi-5 isoxazole

20 g de diméthyl-2,6 aniline (0,16 mole) sont dilués dans 200 ml de THF anhydre et refroidis à 0°C sur un bain de glace.

18,5 ml de POCl₃ (0,20 mole) sont ajoutés lentement puis 29 g du composé obtenu à l'étape précédente (0,16 mole) dilués dans 150 ml de THF sec.

50 ml de triéthylamine dilués dans 50 ml de THF sec sont ensuite additionnés très lentement.

Le mélange est agité progressivement à température ambiante pendant 12 heures.

Le chlorhydrate de triéthylamine est filtré et le mélange réactionnel lavé par de l'acétone.

Après évaporation des solvants, le produit brut obtenu est purifié sur colonne de silice (éluant: CH₂Cl₂). On obtient 46 g du produit du titre.

Rendement: 100%.

EXEMPLE 8

50

Préparation du (diméthyl-2,6 phénylcarbamoyl)-3 t-butyryloxyméthyl-5 isoxazole (composé n° 28)

a) préparation du (diméthyl-2,6 phénylcarbamoyl)-3 hydroxyméthyl-5 isoxazole (d'après J. Med. Chem., 32(8), 1868, 1989)

55

14 g du composé obtenu à l'exemple précédent (0,0486 mole) sont dissous dans 50 ml de méthanol t refroidis à 5°C sur un bain d'eau et d glace.

4,5 ml d'ammoniaque à 28% sont ajoutés et le mélange agité à température ambiante pendant 12 heures.

Après évaporation du solvant, le produit brut est purifié sur colonne de silice (éluant : gradient CH₂Cl₂-CH₂Cl₂/MeOH : 97/3).

On obti nt 9 g du produit du titre pur.

Rendement: 76%

Pf = 100°C.

5

15

20

25

35

b) préparation du (diméthyl-2,6 phénylcarbamoyl)-3 t-butyryloxyméthyl-5 isoxazole

On dissout 5 g (0,020 mole) du produit obtenu à l'étape précédente dans 150 ml de THF et on refroidit dans un bain de glace et d'eau.

On ajoute 7 ml de triéthylamine (0,070 mole) en une fois, puis goutte à goutte sous vive agitation 2,6 ml de chlorure de pivaloyle (0,020 mole) dans 50 ml de THF. On laisse revenir à température ambiante, on agite pendant 12 heures, filtre sur verre fritté, évapore le solvant et purifie le produit brut obtenu sur une colonne de silice (éluant : acétone).

On obtient 5,5 g de produit du titre.

Rendement: 85%.

Les composés de ces exemples, ainsi que d'autres composés de formule I sont rassemblés dans le tableau II, plus loin.

Les composés selon l'invention se sont révélés doués de propriétés intéressantes sur le système nerveux central, en particulier de propriétés anticonvulsivantes susceptibles de les rendre utiles dans le traitement de l'épilepsie ou comme complément de la thérapeutique anticomitiale, de propriétés de protection cérébrale et d'augmentation de la mémoire.

Ainsi, l'invention comprend aussi les compositions thérapeutiques contenant à titre de principe actif les composés de formule générale I.

On donnera ci-après des résultats pharmacologiques et toxicologiques mettant en évidence les propriétés des composés de formule I.

1. Activité pharmacologique

L'activité anticonvulsivante est mesurée par les tests à l'électrochoc et au pentétrazole selon la technique de A. SWINYARD (ADD PROGRAM OF NINCDS BY H.J. KUPFERBERG. E.A. SWINYARD AND G.D. GLAD-DING in advances in epileptology/XIIth Epilepsy International Symposium edited by M. DAM, L. GRAM and J.K. PENRYRAVEN press NEW-YORK 1981). Les composés sont toujours administrés (au 1/10e de la DL50) par injections IP à des souris SWISS CD1 (Charles River) d'un poids moyen de 20-25g. Tous les produits sont dissous dans une solution à 0,9% de chlorure de sodium ou mis en suspension dans une solution de carboxyméthyl-cellulose ou de tween à 1%.

Test à l'électrochoc. Des lots de 10 souris (1 lot témoin et un lot traité) sont utilisés pour chaque composé. Le lot traité reçoit le produit à tester par voie intrapéritonéale, d'une part 30mn avant l'électrochoc et d'autre part 4 heures avant l'électrochoc. Celui-ci est appliqué à l'aide d'électrodes coméennes (50 milliampères pendant 0,2 seconde). La protection est mesurée par le pourcentage d'animaux neprésentant pas d'extension des pattes postérieures.

Crises au pentétrazole. On injecte par voie sous-cutanée à des lots de 10 souris (1 lot témoin et un lot traité) 70 mg/kg de pentétrazole à raison de 0.2 ml/20g de poids corporel. Les produits à tester sont administrés d'une part 30 mn avant le pentétrazole, d'autre part 4 heures avant le pentétrazole, par voie intrapéritonéale. Les animaux sont observés pendant 30 mn. On note le nombre de crises cloniques d'une durée supérieure ou égale à 5 secondes et le pourcentage des animaux protégés contre les crises cloniques.

Les résultats sont consignés dans le tableau ci-dessous.

2. Activité protectrice cérébrale

Cinq souris (20 à 25g) reçoivent une administration par voie intrapéritonéale de produit ou de liquide-véhicule 30 min avant d'être placées dans une enceinte close, où la pression atmosphérique est diminuée de 210 mm Hg. La durée de survie (en secondes) est mesurée depuis l'induction de l'hypoxie jusqu'à la disparition des mouvements respiratoires.

3. Détermination de la dose léthale 50

55

La toxicité est mesurée par la technique de MILLER et TAINTER par voie intrapéritonéale. Les résultats sont consignés dans le tableau I ci-dessous.

TABLEAU I

Compo	osés DL.50 mg/kg	Ą	protec	tion pou	ir 🦈	
			rochoc n. 4h	Pentétr 30 mn.		hypoxie induite par l'altitude augmentation temps de survie en % par rapport au témoin
					· .	71.7 ·
2	350	100	0	80	0	
3	1000	100	0	50	0	
4	150	100	0	30	10	. 60
5	500	100	10	40	10	
7	400	70	0	30	0	
15	400	10	0 .	0	10	· 21
29	2000	70	0	10	10	•
31	375	100	0	0	0	
41	350	100	O	50	. 0	

Les compositions thérapeutiques selon l'invention peuvent être administrées par voie orale, parenterale ou endorectale.

Elles peuvent être sous la forme de comprimés, dragées, gélules, solutions ou suspensions injectables et suppositoires.

La quantité de principe actif administrée dépend évidemment du patient qui est traité, de la voie d'administration et de la sévérité de la maladie.

Cependant, la posologie quotidienne sera de l'ordre de 10 à 300 mg. La dose unitaire peut être de 10 à 100 mg.

50

35

40

45

EXEMPLES DE FORMULATION

1) Formul type comprimé:

5

10

Pour 5000 comprimes a 20 mg		
Composé de l'exemple 2	:	100g
Cellulose microcristalline	:	1000g
Carboxyméthyl cellulose sodique	:	15g
Stéarate de magnésium	:	10g

15 Total = 1125g

2) Formules type gélules :

	Pour 5000 gélules taille	1 dosées	s à	10 mg
	Composé de l'exemple 2		:	. 50g
25	Amidon de mais		:	150g
	Lactose		:	1250g
	PVP K30		:	75g
30	Talc		:	30g
	Stéarate de magnésium		:	10g
	TC	otal		1565g
35	Alcool à	50°	= (QS .

Dans un mélangeur planétaire, mélanger pendant 10 min les constituants suivants : composé N° 1 - amidon de maïs - lactose - PVP.

45

50

⁻ Mélanger tous les constituants dans un mélangeur Turbula^R pendant 10min

⁻ Comprimer sur machine alternative, poids théorique : 225 mg.

⁻ Toujours sous agitation, verser lentement l'alcool jusqu'à granulation satisfaisante.

⁻ Etendre sur plateaux, faire sécher en étuve à 50°C.

⁻ Calibrer sur granulateur oscillant, grille de 1 mm.

⁻ Mélanger le grain avec le talc et le stéarate de magnésium 10 min au TurbulaR.

⁻ Mettre en gélule, poids théorique : 313 mg.

TABLEAU II : Exemples de composés de l'invention

Z 2	R ₁	R ₂	P.F.
CH3 -NH-CO-	сн3	сн ₃	190
CH3 -NH-CO-	сн3	C1	151
CH3 -CO-NH-	сн3	сн3	186
CH3 -NH-CO-	сн3	сн3	144
	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ -CO-NH- CH ₃ CO-NH-	CH ₃	CH ₃

6	5	CH ³	-NH-CO-	сн ₃	C1	182
10	6	Сн3	-NH-CO-	C ₃ H ₇ -iso	сн3	100
15	7	СН ³	CH ₃	сн ³	Сн3	134
20	8	OCH ₃	~CO-NH-	сн ³	сн3	157
25	9	CH ³	-ин-со-сн=сн-	сн ₃	Сн3	112
30	10	COCH ₃	-co-nh-	сн3	сн3	182
35		CH ³				
40	11		-NH-CO- -F	Сн3	C1	108
45		осн 3	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			

5	14	N-N-O	-NH-CO	СH ³	СН3	147
10	15	OCH ³	-NH-CO-	CH ³	сн3	134
15	16	CH ₂ -Br	-NH-CO-	CH ₃	Сн3	142
20	18	CH ₂ ocol	-NH-CO-	СН ₃	Сн3	135
<i>25</i> <i>30</i>	20	COCH ₃	-NH-CO-	СH ₃	СН3	117
35	21	ОСН3	-NH-CO-	сн ₃	СН ₃	87
40	22		-NH-CO-	СН ₃	сн3	116
45	23	N-O O Br	-NH-CO-	сн ₃	сн3	99
			·			

5	24		-NH-CO-	сн ³	сн3	107
10	25	сн30 осн3	-NH-CO-	сн ₃	CH ₃	75
15	26		-NH-CO-	сн ₃	сн3	118
20		CF ₃				
25	27	О. СН3	-NH-CO-	сн ₃	CH ³	71
30	28	O C4H9-tert	-NH-CO-	сн3	CH ₃	132
35	29		-NH-CO-	сн3	CH3	69
40	30	N (CH ₃) ₂	-NH-CO-	СH ³	CH3	82
45						

5	31	N-OF	-NH-CO-	сн3	сн ₃	90
10	32	C1	-NH-CO-	сн3	СН3	130
15	33	N_N_N_OF	-NH-CO-	СН3	C1	157
20		33		·		
25	34	OCH ₃	-NH-CO-	сн ₃	C1	192
30	35 .	CH ₃	-NH-CO-	сн3	Cl	97
35	36	N-CH ₂ -O	-ин-со-	CH ₃	C1	97
40	37	N-N-N-CH3	-NH-CO-	сн3	C1	113
45						

5	38	N-CH ₂ CH ₂ N(C ₂ H ₅) ₂	-NH-CO-	сн3	C1	66
10	39	N-CH ₃ o-CH ₂ CH ₂ N(C ₂	-NH-CO-	сн3	cl	71
				0.		
15	40	N—N-CH ₂ CH ₂ OCH ₃	-NH-CO-	сн3	a	97
20	41	CH ₃	-NH-CO-	сн3	сн3	181
25						

30 Revendications

1. Composé hétérocycliques de formule générale (I)

$$\mathbb{Z}$$
 \mathbb{R}_{2}

dans laquelle
Y est choisi parmi -O-, -S- et

R4 -N-

50

35

 R_4 étant choisi parmi un atome d'hydrogène, un groupe aikyle en C_1 - C_4 , benzyle, halogénobenzyle, acyle en C_2 - C_7 et un groupe alkyle en C_1 - C_4 substitué par un groupe alkanoyl(C_2 - C_7)oxy, dialkyl(C_1 - C_4)amino, alkoxy en C_1 - C_4 , phénoxy, ou halogénophénoxy,

Z est choisi parmi les groupes -CO-N(R_6)-, -NH-CO-CH=CH- et -N(R_6)-CO- dans lesquels R_6 est choisi parmi un atome d'hydrogène et un groupe alkyle en C_1 - C_4 ,

R₁ est un groupe alkyle n C₁-C₄,

R₂ st choisi parmi un groupe alkyle en C₁-C₄, t un atome d'halogène,

R₃ est choisi parmi un atome d'hydrogèn , un group alkyle en C₁-C₄, alkoxy en C₁-C₄, hydroxyalkyle en C₁-C₄,

halogénoalkyle en C_1 - C_4 , alkanoyle n C_2 - C_7 et un groupe -CHR $_{10}$ OR $_5$ dans lequel R $_5$ est choisi parmi un group alkyle en C_1 - C_4 , un groupe phényle non substitué ou substitué par un ou plusieurs substituents choisis parmi un atome d'halogèn , un groupe alkyle en C_1 - C_4 , alkoxy en C_1 - C_4 et trifluorométhyle; et un groupe COR $_7$, C_4 et trifluorométhyle; et un groupe alkyle en C_1 - C_4 , phényle, et un groupe

 R_8 et R_9 étant choisis parmi un atome d'hydrogène et un groupe alkyle en C_1 - C_4 , et R_{10} représente un atome d'hydrogène ou un groupe alkyle en C_1 - C_4 , sous réserve que R_3 ne représente pas un atome d'hydrogène ou un groupe trifluorométhyle, alkyle, alkoxy ou hydroxyalkyle en C_1 - C_4 lorsque Y est

- 2 Composés hétérocycliques selon la revendication 1, caractérisés en ce que Y est un groupe -NR4-.
- 3 Composés hétérocycliques selon la revendication 1, caractérisés en ce que l'hétérocyclique est un groupe isoxazole de formule

R₅ et R₁₀ étant tels que définis à la revendication 1.

10

15

20

25

30

35

40

45

50

- 4 Composés hétérocycliques selon l'une quelconque des revendications précédentes, caractérisés en ce que Z représente le groupe -N(R₆)-CO- dans lequel R₆ représente un atome d'hydrogène ou le groupe méthyle.
- 5 Composés hétérocycliques selon l'une quelconque des revendications précédentes, caractérisés en ce que R₁ et R₂ représentent chacun le groupe méthyle.
 - 6 Composés hétérocycliques selon la revendication 1, choisis parmi :
 - le (chloro-2 méthyl-6 phénylcarbamoyl)-3 acétyl-1 méthyl-5 pyrazole,
 - le N-(diméthyl-1,5 pyrazolyl-3) diméthyl-2,6 benzamide
 - le (diméthyl-2,6 phénylcarbamoyl)-3 diméthyl-1,5 pyrazole,
 - le (chloro-2 méthyl-6 phénylcarbamoyl)-3 diméthyl-1,5 pyrazole,
 - le (diméthyl-2,6 phénylcarbamoyl)-3 méthyl-1 méthoxy-5 pyrazole, et
 - le (diméthyl-2,6 phénylcarbamoyl)-3 fluorométhyl-5 isoxazole.
- 7 Procédé de préparation d'un composé selon la revendication 1, caractérisé en ce que l'on fait réagir un composé de formule générale

$$R_2$$

dans laquelle R₁ et R₂ ont les mêmes significations que dans la formule I et A représente un groupe -COOH, -COCI ou -N(R₈)H dans lequel R₈ représente un atome d'hydrogène ou un groupe alkyle en C₁-C₄, avec un composé d formule générale

dans laquelle les symboles Y et R_3 ont la même signification que dans la formule I et B représente un groupement -COOH, -CH=CH-COOH, -CH=CH-COCI ou -NR $_8$ H, dans lequel R_8 représente un atome d'hydrogène ou un groupe alkyle en C_1 - C_4 .

- 8 Procédé de préparation des composés de formule I dans laquelle Z représente les groupes -N(R₆)-CO, selon la revendication 7, caractérisé en ce que l'on condense une amine de formule générale II dans laquelle A représente le groupe -NR₆H avec un acide ou un chlorure d'acide de formule générale III dans laquelle B représente un groupe -COOH, -COCI -CH=CH-COOH ou -CH=CH-COCI.
- 9 Composition pharmaceutique, caractérisée en ce qu'elle contient à titre de principe actif un composé selon l'une quelconque des revendications 1 à 6.

Revendications pour l'Etat contractant suivant : ES

1. Procédé de préparation d'un composé hétérocycliques de formule générale (I)

dans laquelle Y est choisi parmi -O-, -S- et

5

10

15

20

25

30

35

50

*5*5

 R_4 étant choisi parmi un atome d'hydrogène, un groupe alkyle en C_1 - C_4 , benzyle, halogénobenzyle, acyle en C_2 - C_7 et un groupe alkyle en C_1 - C_4 substitué par un groupe alkanoyl(C_2 - C_7)oxy, dialkyl(C_1 - C_4)amino, alkoxy en C_1 - C_4 , phénoxy, ou halogénophénoxy,

Z est choisi parmi les groupes -CO-N(R_6)-, -NH-CO-CH=CH- et -N(R_6)-CO- dans lesquels R_6 est choisi parmi un atome d'hydrogène et un groupe alkyle en C_1 - C_4 ,

R₁ est un groupe alkyle en C₁-C₄,

 R_2 est choisi parmi un groupe alkyle en $C_1\text{-}C_4$, et un atome d'halogène,

R₃ est choisi parmi un atome d'hydrogène, un groupe alkyle en C₁-C₄, alkoxy en C₁-C₄, hydroxyalkyle en C₁-C₄, halogénoalkyle en C₁-C₄, alkanoyle en C₂-C₇ et un groupe -CHR₁₀OR₅ dans lequel R₅ est choisi parmi un groupe alkyle en C₁-C₄, un groupe phényle non substitué ou substitué par un ou plusieurs substituants choisis parmi un atome d'halogène, un groupe alkyle en C₁-C₄, alkoxy en C₁-C₄ et trifluorométhyle; et un groupe COR₇, R₇ étant choisi parmi un groupe alkyle en C₁-C₄, phényle, et un groupe

 R_8 et R_9 étant choisis parmi un atome d'hydrogène et un groupe alkyle en C_1 - C_4 , et R_{10} représente un atome d'hydrogène ou un groupe alkyle en C_1 - C_4 , sous réserve que R_3 ne représente pas

un atome d'hydrogène ou un groupe trifluorométhyle, alkyle, alkoxy ou hydroxyalkyl en C₁-C₄ lorsque Y est O, caractérisé en ce que l'on fait réagir un composé de formule générale

dans laquelle R₁ et R₂ ont les mêmes significations que dans la formule I et A représente un groupe -COOH, -COCI ou -N(R₆)H dans lequel R₆ représente un atome d'hydrogène ou un groupe alkyle en C₁-C₄, avec un composé de formule générale

dans laquelle les symboles Y et R3 ont la même signification que dans la formule I et

B représente un groupement -COOH, -CH=CH-COOH, -CH=CH-COCI ou -NR₈H, dans lequel R₈ représente un atome d'hydrogène ou un groupe alkyle en C₁-C₄.

2 - Procédé selon la revendication 1, caractérisé en ce que l'on prépare un composé dans lequel Y est un groupe -NR4-.

3 - Procédé selon la revendication 1, caractérisé en ce que l'on prépare un composé dans lequel l'hétérocyclique est un groupe isoxazole de formule

40 R₅ et R₁₀ étant tels que définis à la revendication 1.

5

10

15

20

25

30

35

50

55

4 - Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'on prépare un composé dans lequel Z représente le groupe -N(R₆)-CO- dans lequel R₆ représente un atome d'hydrogène ou le groupe méthyle.

5 - Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'on prépare un composé dans lequel R₁ et R₂ représentent chacun le groupe méthyle.

6 - Procédé selon la revendication 1, caractérisé en ce que l'on prépare un composé choisi parmi:

- le (chloro-2 méthyl-6 phénylcarbamoyl)-3 acétyl-1 méthyl-5 pyrazole,
- le N-(diméthyl-1,5 pyrazolyl-3) diméthyl-2,6 benzamide.
- le (diméthyl-2,6 phénylcarbamoyl)-3 diméthyl-1,5 pyrazole,
- le (chloro-2 méthyl-6 phénylcarbamoyl)-3 diméthyl-1,5 pyrazole.
- le (diméthyl-2,6 phénylcarbamoyl)-3 méthyl-1 méthoxy-5 pyrazole, et
- le (diméthyl-2,6 phénylcarbamoyl)-3 fluorométhyl-5 isoxazole.

7 - Procédé de préparation des composés de formule I dans laquelle Z représente les groupes -N(R₆)-CO, selon la revendication 1, caractérisé en ce que l'on condense une amine de formule générale II dans laquelle A représente le groupe -NR₆H avec un acide ou un chlorure d'acide de formule général III dans laquelle B représente un groupe -COOH, -COCI -CH=CH-COOH ou -CH=CH-COCI.

8 - Procédé de préparation d'une composition pharmaceutique, caractérisé en c qu'on met sous forme pharmaceutiquement acceptable un comp sé obtenu selon l'une quelconque des revendications 1 à 7.

RAPPORT DE RECHERCHE EUROPEENNE

Numero de la demand

EP 91 40 1366

DC	CUMENTS CONSID	ERES COMME PERTI	NENTS	
Catégorie	Citation du document avec des parties pe	indication, en cas de besoin, rtinentes	Revendication concernée	CLASSEMENT DE LA DEMANDE (Ist. CJ.5)
X	FR-A-2 313 046 (L1 * Page 1, ligne 23 page 3, lignes 5-9,	LLY INDUSTRIES LTD) - page 3, ligne 18; 14-30 *	1-9	C 07 D 231/14 A 61 K 31/415 C 07 D 231/22
X	EP-A-0 049 071 (El * Pages 1-7 *	I LILLY AND CO.)	1-5	C 07 D 261/18 C 07 D 271/10 C 07 D 285/12
Α.	EP-A-0 048 162 (EL	I LILLY AND CO.)		C 07 D 231/40
A	US-A-3 905 997 (H.	ZINNES et al.)		
A	EP-A-0 013 376 (HC	DECHST AG)		
A	EP-A-0 029 363 (MC PHARMACEUTICAL CO.,	DRISHITA LTD)		
A	FR-A-2 315 923 (K) CO., LTD)	ORIN PHARMACEUTICAL		
A	juin 1976, page 468 no. 164767r, Columb JP-A-75 129 554 (MA	RUKO PHARMACEUTICAL	-	DOMAINES TECHNIQUE RECHERCHES (Int. CLS)
P,A	CO., LTD) 30-03-197 * Abrégé * EP-A-0 371 876 (NC		 	C 07 D 231/00 A 61 K 31/00 C 07 D 261/00 C 07 D 271/00
,,,,		,		C 07 D 285/00
			÷	
į				
				· · · · · · · · · · · · · · · · · · ·
Le pro	ésent rapport a été établi pour to	utes les revendications		
ı	Jen de la recherche	Date d'achèvement de la recherche		Examinateur
LA	HAYE .	04-09-1991	DE B	UYSER I.A.F.
X : part Y : part autr A : arric	CATEGORIE DES DOCUMENTS iculièrement pertinent à lui seul iculièrement pertinent en combinaisce document de la même catégorie bre-plan technologique ilgation non-écrite:	E : document date de di n avoc un D : cité dans L : cité pour	principe à la base de l'i de brevet antérieur, mal épût ou après cette date la demande d'autres raisans le la même famille, docu le la même famille, docu	s publié à la

SPO FORM 1503 03.42 (PO402)