Theoretische Grundlagen der Informatik 3: Hausaufgabenabgabe 9 Tutorium: Sebastian , Mi 14.00 - 16.00 Uhr

Tom Nick - 340528 Maximillian Bachl - 341455 Marius Liwotto - 341051

Aufgabe 1

(i)

```
\begin{split} \varphi_1 &:= \neg (\exists x \exists y E(x,y) \land \neg \exists x \forall y \exists z (\neg E(x,z) \lor f(x,y) = z)) \rightarrow \exists x E(x,f(y,x)) \\ &\equiv (\exists x \exists y E(x,y) \land \neg \exists x \forall y \exists z (\neg E(x,z) \lor f(x,y) = z)) \lor \exists x E(x,f(y,x)) \\ &\equiv (\exists x \exists y E(x,y) \land \forall x \exists y \forall z \neg (\neg E(x,z) \lor f(x,y) = z))) \lor \exists x E(x,f(y,x)) \\ &\equiv (\exists x \exists y E(x,y) \land \forall x \exists y \forall z (E(x,z) \land \neg (f(x,y) = z)))) \lor \exists x E(x,f(y,x)) \\ &\equiv (\exists x_1 \exists y_2 E(x_1,y_2) \land \forall x_2 \exists y_2 \forall z_1 (E(x_2,z_1) \land \neg (f(x_2,y_2) = z_1)))) \lor \exists x_3 E(x_3,f(y,x_3)) \\ &\equiv \exists x_1 \exists y_2 \forall x_2 \exists y_2 \forall z_1 \exists x_3 ((E(x_1,y_2) \land (E(x_2,z_1) \land \neg (f(x_2,y_2) = z_1)))) \lor E(x_3,f(y,x_3))) \end{split}
```

(ii)

$$\varphi_{2} := \exists y \forall z (E(x,z) \land (E(y,z) \rightarrow \forall x (E(f(x,y),z) \land \neg \forall y R(x,y))))
\equiv \exists y \forall z (E(x,z) \land (\neg E(y,z) \lor \forall x (E(f(x,y),z) \land \neg \forall y R(x,y))))
\equiv \exists y \forall z (E(x,z) \land (\neg E(y,z) \lor \forall x (E(f(x,y),z) \land \exists y \neg R(x,y))))
\equiv \exists y_{1} \forall z_{1} (E(x_{1},z_{1}) \land (\neg E(y_{1},z_{1}) \lor \forall x_{2} (E(f(x_{2},y_{1}),z_{1}) \land \exists y_{1} \neg R(x_{2},y_{1})))
\equiv \exists y_{1} \forall z_{1} \forall x_{2} (E(x_{1},z_{1}) \land (\neg E(y_{1},z_{1}) \lor (E(f(x_{2},y_{1}),z_{1}) \land \neg R(x_{2},y_{1}))))$$

Aufgabe 2

$$\phi_{1}(\mathcal{N}) := \exists x (y = x + x)
\phi_{one}(x) := \forall y (y \cdot x = y)
\phi_{two}(x) := \exists y (x = y + y \land \phi_{one}(y))
\phi_{prim}(x) := \forall y \forall z (y \cdot z = x \rightarrow (\phi_{1}(y) \land z = x) \lor (\phi_{1}(z) \land y = x))
\phi_{2}(\mathcal{N}) := \forall b \forall c ((b \cdot c = a \land \phi_{prim}(b)) \rightarrow \phi_{two}(b))
\phi_{3}(\mathcal{R}) := x = y \cdot y
\phi_{4}(\mathcal{R}) := \exists m \forall n (m \cdot n = m \land m = x + y)
\phi_{5}(\mathcal{R}) := \exists m \exists n (n \cdot n = m \land y = x + m)
\phi_{6}(\mathcal{R}) := (u'' = u \cdot u' - v \cdot v') \land (v'' = u' \cdot v + u \cdot v')$$

Aufgabe 3

(i)
$$\overline{x} := (x_1, x_2, ..., x_k)$$

 $\varphi(\mathcal{B}) = \pi(\varphi(\mathcal{A})) \Leftrightarrow \forall \overline{x} \ (\overline{x} \in \varphi(\mathcal{B}) \Leftrightarrow \overline{x} \in \pi(\varphi(\mathcal{A}))$

Da π ein Isomorphismus von $\mathcal A$ nach $\mathcal B$ ist, gilt für alle Relationen R aus σ :

$$(*)\,\overline{a}\in R^{\mathcal{A}} \Leftrightarrow \pi(\overline{a})\in R^{\mathcal{B}}$$

$$\begin{split} \left(\forall \overline{x} \; \left(\overline{x} \in \varphi(\mathcal{B}) \Leftrightarrow \varphi(\overline{x}) = 1 \right) \right) \\ & \Leftrightarrow \left(\forall \overline{x} \; \left(\overline{x} \in \varphi(\mathcal{B}) \stackrel{(*)}{\Leftrightarrow} \varphi(\pi^{-1}(x_1), ..., \pi^{-1}(x_k)) = 1 \right) \right) \\ & \Leftrightarrow \left(\forall \overline{x} \; \left(\overline{x} \in \varphi(\mathcal{B}) \Leftrightarrow (\pi^{-1}(x_1), ..., \pi^{-1}(x_k)) \in \varphi(\mathcal{A}) \right) \right) \\ & \Leftrightarrow \left(\forall \overline{x} \; \left(\overline{x} \in \varphi(\mathcal{B}) \Leftrightarrow \overline{x} \in \pi(\varphi(\mathcal{A})) \right) \right) \\ & \Leftrightarrow \varphi(\mathcal{B}) = \pi(\varphi(\mathcal{A})) \end{split}$$

(ii) Die gegebene Struktur enthält nur die Relation < aber keine Funktionssymbole. < ist über Z eine Relation ohne Maximum oder Minimum.

Damit es ein φ gibt sodass $\varphi(\mathcal{Z}) = \{0\}$, muss es möglich sein, die 0 von allen anderen Zahlen zu unterscheiden. Durch die Unendlichkeit von \mathbb{Z} ist es nicht möglich durch Quantifikation bestimmte Zahlen zu erkennen:

- $\exists y (x < y)$
- $\exists x (x < y)$
- $\forall y (x < y)$
- $\forall x (x < y)$

In jedem der Fälle kommt wieder \mathbb{Z} herraus, jegliche logische Verknüpfungen erzeugen entweder wieder \mathbb{Z} oder die leere Menge, man könnte das mit einer strukturellen Induktion beweisen, aber wer echt viel Schreibarbeit.

Durch die Abwesenheit von Funktionssymbolen ist es somit nicht möglich, eine Formel φ aufzustellen, die die gegebenen Vorraussetzungen erfüllt.

Aufgabe 4

Es gibt folgende Fälle:

1. q = 0

Dann gilt die Aussage schon nach dem Hinweis des Aufgabenblattes.

2. $q \ge 1$

Sei φ die Formel ohne freie Variablen mit maximal q Quantoren. Dann gibt es eine zu φ nach Theorem 4.34 der Folien eine äquivalente Formel φ' in Pränexnormalform. Also gilt $\varphi \equiv \varphi'$. Es reicht also zu zeigen, dass es nur endlich viele Formeln in Pränexnormalform gibt.

Diese Formel φ' hat dann die Form $Q_1x_1...Q_px_p$ ψ , mit $1 \leq p \leq q$, wobei ψ eine Formel der Aussagenlogik ist.

Es existieren für k Quantoren, wobei gilt $0 \le k \le q$, $\frac{q!}{(q-k)!}$ Möglichkeiten die Reihenfolge zu vertauschen. Des Weiteren gilt, dass man bei k Quantoren nur k Variablen quantifizieren kann, sodass man bei endlicher Variablenzahl n, was nach Annahme gilt, n^k Möglichkeiten existieren, die Variablen zu quantifizieren kann, sodass man bei endlicher Variablenzahl n, was nach Annahme gilt, n^k Möglichkeiten existieren, die Variablen zu quantifizieren kann, sodass man bei endlicher Variablen zu quantifizieren kann, sodass man bei endlicher Variablen zu quantifizieren kann, sodass man bei k Quantoren nur k Variablen zu quantifizieren kann, sodass man bei endlicher Variablen zu quantifizieren kann, sodas en det variablen zu quantifizieren kann, sodas en det variablen zu quantifizieren kann det variablen zu quantifizieren kann det variablen zu quanti

ren. Daraus folgt, dass es insgesamt $\sum\limits_{k=0}^{q}(\frac{q!}{(q-k)!}\cdot n^k)$ Möglichkeiten gibt, für die Quantifizierung von einer

aussagenlogischen Formel ψ mit maximal q Quantoren. Da es nur endliche viele verschiedene aussagenlogische Formel ψ gibt, die man mit n Variablen bilden kann und auch nur für jede Formel ψ endlich viele Möglichkeiten existieren, folgt daraus, dass es auch nur endlich viele Formeln ϕ der Prädikatenlogik geben kann.