Student nr.: Side 1 av 7

Eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 14. Desember 1999, kl 0900-1500

Faglig kontakt under eksamen: Arne Halaas, tlf. 73 593442.

Hjelpemidler: Alle kalkulatortyper tillatt. Alle trykte og håndskrevne hjelpemidler tillatt. **Rubrikksvar**: Alle svar skal avgis i angitte svar-ruter. Ikke legg ved ekstra ark som svar. **Krav**: Det kreves "bestått" både på de ordinære og på de øvingsrelaterte spørsmål.

Husk: Fyll inn rubrikken "Student nr." øverst på alle ark.

Oppgave 1. (18%)

- a) Er høyden på et 2-3–tre med n dataposter $\theta(\log_3 n)$?
- b) Er Dijkstras algoritme basert på Dynamisk Programmering?
- c) Er Kruskals algoritme en grådighetsalgoritme som alltid gir beste løsning?
- d) Er antallet ordninger ved topologisk sortering av en vilkårlig graf G(V,E) $\mathbf{O}(|V|!)$?
- e) Er antallet ordninger ved topologisk sortering av en vilkårlig graf G(V,E) $\mathbf{O}(|E|!)$?
- f) Er Quicksort $\Omega(n \cdot \log n)$?
- g) Bør "sortering ved innsetting" brukes i forbindelse med Quicksort?
- h) Kan maks-flyt-algoritmen brukes til å finne ut om en sammenhengende graf G har en bro?
- i) Er Huffmans algoritme aktuell i forbindelse med fletting (Merge) av m > 2 sorterte lister?

Svar: (Stryk "Ja" eller "Nei". Begrunnelsen må fylles ut. Hvert delsvar teller 2%)

a) Ja/nei	Begrunnelse
b) Ja/nei	Begrunnelse:
c) Ja/nei	Begrunnelse:
d) Ja/nei	Begrunnelse:
e) Ja/nei	Begrunnelse:

f) Ja/nei	Begrunnelse:			
g) Ja/nei	Begrunnelse:			
h) Ja/nei	Begrunnelse:			
i) Ja/nei	Begrunnelse:			
	Oppgave 2. (20%)			
Vi definerer pi	roblemet $P(A,n,k,b)$ slik: Finn, om mulig, et utvalg av k (>1) verdier i			
$A = \{a_1, a_2,, a_n\}$	} som er slik at summen av disse k verdiene er lik b. Alle verdiene er heltall.			
(a) Skisser en	algoritme Q som løser problemet $P(A,n,k,b)$ i $\mathbf{O}(n^{k-1}\log n)$ tid.			
Svar: 4%				
(b) Skisser en	mer effektiv algoritme R som løser problemet $P(A,n,k,b)$ i $O(n^{k-1})$ tid når k>2.			
Svar: 4%				

Student nr.:

Side 2 av 7

Student nr.: Side 3 a	ıv 7
(a) Hyandan vil dy losa mushlamat D(A u h h) mên u > 100 aa h u 2 2	
(c) Hvordan vil du løse problemet $P(A,n,k,b)$ når $n > 100$ og $k = n-3$?	
Svar: 5%	
(A) F 1 'H 1 1' 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
(d) For hvilke verdier av k vil du anta at $P(A,n,k,b)$ krever mest tid for å bli løst? (Begrunn.)	
Svar: 4%	
Vi definerer nå problemet $P'(A,n,b)$ slik: Finn, om mulig, et utvalg av inntil n verdier i	
$A = \{a_1, a_2,, a_n\}$ som er slik at summen av disse verdiene er lik b. Alle verdiene er heltall.	
11-{\alpha_1,\alpha_2,\dots,\alpha_n\} som er stik at stillmen av atsse veratene er tik b. Titte veratene er nettati.	
(e) Hvilken metode vil du foreslå for å løse problemet P'? Angi metodens tidskompleksitet.	
Svar: 3%	
<u> </u>	
Oppgave 3. (8%)	
Oppgate of (0 to)	
Student Lurvik hevder å ha utviklet en ny datastruktur for prioritetskøer som støtter	
operasjonene Insert (Queue, element), FindMaximum (Queue) og	
DeleteMaximum (Queue). Lurvik påstår at alle disse 3 operasjonene kun krever O (1) tid.	
(a) Det er ingen grunn til å tro på Lurvik. Hvorfor ikke?	
Svar: 8%	

Student nr.:	Side 4 av 7

Oppgave 4. (21%)

Vi skal her se på et problem som skal løses ved hjelp av Dynamisk Programmering:

Problem P(S, n): Gitt en sekvens $S = \langle s_1, s_2, ..., s_n \rangle$ bestående av n heltall. Finn lengden L_n av den lengste subsekvensen S^{\bullet} i S som er slik at verdiene i S^{\bullet} er stigende. Verdiene i S^{\bullet} må ikke nødvendigvis være naboer i S.

$n\phi dv endigv is være naboer i S.$ Merk at det her kun spørres etter lengden L_n av den (en av de) lengste subsekvensen(e) i S .
Eksempel (n =9): $S = \langle 9, 5, 2, 8, 7, 3, 1, 6, 4 \rangle$. Her er $L_n = 3$. Subsekvensen S^{\bullet} består da av enten $\langle 2, 3, 4 \rangle$ eller $\langle 2, 3, 6 \rangle$.
(a) Beskriv kort hvordan vi kan finne L_n ved dynamisk programmering.
Svar: 5%
(b) Finn tidskompleksiteten til metoden foreslått i (a) Svar: 4%
Svai. 470
(c) Forklar kort hvordan du kan finne selve sekvensen S [•] ved å føye ekstra informasjon til løsningen foreslått i (a). Bruk gjerne det oppgitte eksempelet for å illustrere ideene.
Svar: 4%
(d) Hva blir tidkompleksiteten i (c)?
Svar: 4%
(-) F = 1° = 10' 1 = 11 = 11 = 170' 1 = 11 = 11 = 11 = 11 = 11 = 11 = 11
(e) Foreslå en praktisk sammenheng der problemet P(S,n) er av interesse. Svar: 4%

Oppgave 5. (8%)
Vi skal i denne oppgaven se på et praktisk problem knyttet til et rettet nettverk G =(V , E). Kantene i E representerer vannførende kanaler, hver med en spesifisert kapasitet c kubikkmeter pr. sekund. Kanalene møtes i noder som ikke har noen kapasitetsbeskrankning. Kantene har i tillegg en parameter $InTown$ som har verdien $True$ dersom kanten ligger i tettbebyggelsen, $False$ ellers.
(Vi antar at en eventuell oversvømmelse bare vil forekomme i én kanal, dvs. vi ser bare på hvor oversvømmelsen starter.)
(a) Hvilken metode vil du bruke for å finne ut om en det er mulig at en oversvømmelse rammer en av kanalene i tettbygd strøk?
Svar: 4%
(b) Hvordan vil du finne ut om en oversvømmelse garantert vil ramme et tettbygd strøk?
Svar: 4%
Oppgave 6, Øvingsrelaterte oppgaver. (25%)
(a) Kjør Partition på tallene: 13, 7, 11, 4, 6, 2, 0, 32, 29. Bruk tallet 13 som pivot-element. Vis høyre og venstre partisjoneringsindeks per steg (i,j).
Svar: 4%
(b) Hva ville vært optimalt pivot-element generelt sett når Partition blir brukt i Quicksort?
Svar: 2%

Student nr.:

Side 5 av 7

Student nr.: Side 6 av 7

(c) Bruk Dijkstras algoritme til å finne korteste vei fra node 1 til de andre nodene i grafen over. Fyll inn verdier for avstandsfunksjonen d (for hvert steg i algoritmen) i tabellen under:

Svar: (8%)

Steg	Node 1	Node 2	Node 3	Node 4	Node 5	Node 6	Node 7
1							
2							
3							
4							
5							
6							
7							

Student nr.: Side 7 av 7

(d) Finn minste spenntre i grafen over, ved bruk av Prims algoritme. Fyll inn nodepar (fra-node – til-node) for kantene du legger til i hvert steg i tabellen under:

Svar: 6%

Steg	Fra-node	Til-node
1		
2		
3		
4		
5		
6		
7		
8		

(e)	Hya blir	summen	ay kant	tene i det	minimale	e spenntreet?
œ	пуарш	SIIIIIIIIII	ау каш	тене г пег	111111111111111111111111111111111111111	: spenincer/

(e) 11 to the summer of the manual special section (e)	
Svar: 2%	

(f) Kan man ha et største spenntre? Hvordan vil du evt. finne det, og hva blir tidskompleksiteten?

Svar: 3%