Math 310 - HW 1 (Due Friday 01/31)

- **1**. Let \mathbb{F} be an ordered field and $a, b, \epsilon \in \mathbb{F}$.
- (i) Show that if $a < b + \epsilon$ for every $\epsilon > 0$, then $a \le b$.
- (ii) Use (i) to show that if $|a-b| < \epsilon$ for all $\epsilon > 0$, then a = b. (Hint: You may use contradiction.)
- **2**. Let $A \subseteq \mathbb{R}$. Define $-A = \{-a : a \in A\}$. Suppose that A is non-empty and bounded below. Show that

$$in f(A) = -sup(-A)$$

(*Hint*: Use the Analytic definition of *sup,inf*)

- **3**. Let $A = \{\frac{n}{n+1} : n \in \mathbb{N}\}$. Prove that sup(A) = 1, $inf(A) = \frac{1}{2}$.
- **4.** (i) Let $A, B \subseteq \mathbb{R}$ be sets which are bounded above, such that $A \subseteq B$. Show that $sup(A) \leq sup(B)$.
- (ii) Let $A, B \subseteq \mathbb{R}$ such that sup(A) < sup(B). Show that there exists $b \in B$ that is an upper bound of A. Show that this result does not hold if we instead assume that $sup(A) \le sup(B)$.
- **5**. For $A, B \subseteq \mathbb{R}$, define

$$A + B = \{a + b : a \in A, b \in B\}$$

$$A\cdot B=\{a\cdot b:a\in A,b\in B\}$$

- (i) Determine $\{3,1,0\} + \{2,0,2,3\}$ and $\{3,1,0\} \cdot \{2,0,2,3\}$
- (ii) Assume that sup(A) and sup(B) exist. Prove that sup(A+B) = sup(A) + sup(B).
- (iii) Give an example of sets A, B where $sup(A \cdot B) \neq sup(A) \cdot sup(B)$

Warm-up Problems, Not for credit:

- 1. Let \mathbb{F} be any field. Prove that both the additive and multiplicative identities in \mathbb{F} are unique.
- **2.** Given an ordered field \mathbb{F} , we saw that it has a set of *positive* elements P satisfying certain two conditions.
- (i) Give an example of some $P_1 \subseteq \mathbb{R}$ such that it satisfies the first condition, but not the second.
- (ii) Give an example of some $P_2 \subseteq \mathbb{R}$ such that it satisfies the second condition, but not the first.
- **3**. Prove the various properties of an ordered field along with those of absolute value function discussed in class.