6. Aufgabenblatt

(Besprechung in den Tutorien 27.11.2023–01.12.2023)

Aufgabe 1. Mengendiagramm der Entscheidbarkeit

Sei Σ ein endliches Alphabet. Zeichnen Sie ein Mengendiagramm, das die folgenden Sprachklassen enthält:

- (a) 2^{Σ^*} (für eine Menge A ist $2^A := \{A' \mid A' \subseteq A\}$ die Potenzmenge von A)
- (b) entscheidbare Sprachen
- (c) co-entscheidbare Sprachen (eine Sprache $L \in \Sigma^*$ ist genau dann co-entscheidbar, wenn $\Sigma^* \setminus L$ entscheidbar ist)
- (d) semi-entscheidbare Sprachen
- (e) co-semi-entscheidbare Sprachen (eine Sprache $L \in \Sigma^*$ ist genau dann co-semi-entscheidbar, wenn $\Sigma^* \setminus L$ semi-entscheidbar ist)
- (f) unentscheidbare Sprachen
- (g) rekursiv aufzählbare Sprachen

Die Menge der unentscheidbaren Sprachen ist grau schattiert.

Aufgabe 2. Komplement des speziellen Halteproblems

Im Folgenden sei $\overline{K} := \{0,1\}^* \setminus K$ das Komplement des speziellen Halteproblems $K := \{w \in \{0,1\}^* \mid M_w \text{ hält auf Eingabe } w\}$. Sie können im Folgenden verwenden, dass K aufzählbar ist.

- (a) Ist \overline{K} entscheidbar?
- (b) Ist \overline{K} semi-entscheidbar?
- (c) Ist \overline{K} co-semi-entscheidbar?

- (a) Aus der Vorlesung wissen wir, dass eine Sprache genau dann entscheidbar ist, wenn sowohl die Sprache als auch das Komplement der Sprache semi-entscheidbar sind. Daraus folgt außerdem Folgendes: Eine Sprache ist genau dann entscheidbar, wenn ihr Komplement auch entscheidbar ist. DaK nicht entscheidbar ist, kann \overline{K} auch nicht entscheidbar sein.
- (b) Wir wissen, dass K aufzählbar und somit semi-entscheidbar (siehe VL) ist. Wenn nun \overline{K} semi-entscheidbar wäre, so wäre K entscheidbar ein Widerspruch. Also ist \overline{K} nicht semi-entscheidbar.
- (c) Ja, denn das Komplement $\overline{\overline{K}} = K$ ist semi-entscheidbar.

Aufgabe 3. Abgeschlossenheit semi-entscheidbarer Sprachen

Seien $A,B\subseteq \Sigma^*$ zwei semi-entscheidbare Sprachen, die nicht entscheidbar sind. Zeigen Sie, dass

- (a) $A \cup B$ semi-entscheidbar ist,
- (b) $A \cap B$ semi-entscheidbar ist,
- (c) $\overline{A} := \Sigma^* \setminus A$ nicht semi-entscheidbar ist.

———Lösungsskizze———

Da A und B unentscheidbar sind, wissen wir, dass $A \neq \emptyset \neq B$. Seien also $f_A, f_B \colon \mathbb{N} \to \Sigma^*$ berechenbare Funktionen mit $f_A(\mathbb{N}) = A$ und $f_B(\mathbb{N}) = B$.

(a) Behauptung: $A \cup B$ wird aufgezählt von

$$f(n) := \begin{cases} f_A(\frac{n}{2}), & \text{falls } n \text{ gerade} \\ f_B(\frac{n-1}{2}), & \text{falls } n \text{ ungerade} \end{cases}.$$

Beweis. Offensichtlich ist f total und berechenbar. Zu zeigen: $f(\mathbb{N}) = A \cup B$.

Die Inklusion $f(\mathbb{N}) \subseteq A \cup B$ ist klar, da nur auf Wörter aus A oder B abgebildet werden kann.

Sei nun $w \in A \cup B$. Falls $w \in A$, dann existiert ein $k \in \mathbb{N}$ mit $f_A(k) = w$. Dann gilt $f(2k) = f_A(\frac{2k}{2}) = f_A(k) = w$. Falls $w \in B$, so existiert ein $k \in \mathbb{N}$ mit $f_B(k) = w$ und es gilt f(2k+1) = w. In beiden Fällen haben wir damit $w \in f(\mathbb{N})$ gezeigt, woraus $A \cup B \subseteq f(\mathbb{N})$ folgt.

(b) Falls $A \cap B = \emptyset$, so ist $A \cap B$ klar semi-entscheidbar.

Sonst sei $w_0 \in A \cap B$ beliebig und sei $c : \mathbb{N}^2 \to \mathbb{N}$ eine berechenbare Bijektion (z.B. die Cantorsche Paarungsfunktion) mit der (auch berechenbaren) Umkehrfunktion $d(n) = (d_1(n), d_2(n))$, wobei für alle $x_1, x_2 \in \mathbb{N}$ gilt, dass $d_i(c(x_1, x_2)) = x_i$ für i = 1, 2.

 $Behauptung \colon A \cap B$ wird aufgezählt von

$$f(n) \coloneqq \begin{cases} w, & \text{falls } f_A(d_1(n)) = f_B(d_2(n)) =: w \\ w_0, & \text{sonst} \end{cases}.$$

Beweis. Die Funktion f ist klar berechenbar und alle ihre Werte liegen in $A \cap B$. Es bleibt $A \cap B \subseteq f(\mathbb{N})$ zu zeigen. Sei dazu $w \in A \cap B$. Damit existieren $k_1, k_2 \in \mathbb{N}$, sodass $w = f_A(k_1)$ und $w = f_B(k_2)$. Es folgt $f(c(k_1, k_2)) = w$, also $w \in f(\mathbb{N})$.

(c) Angenommen \overline{A} ist semi-entscheidbar, dann ist nach VLAentscheidbar (daAsemi-entscheidbar). Widerspruch.

Aufgabe 4. Streng monoton rekursiv aufzählbare Sprachen

Sei Σ ein endliches geordnetes Alphabet und $<_{\text{lex}}$ die lexikographische Ordnung auf Σ^* . Wir definieren die Ordnung \prec auf Σ^* so, dass für zwei Wörter $a, b \in \Sigma^*$ gilt:

$$a \prec b \iff |a| < |b| \lor (|a| = |b| \land a <_{\text{lex}} b).$$

Eine Funktion $f: \mathbb{N} \to \Sigma^*$ ist streng monoton, wenn für alle $x, y \in \mathbb{N}$ mit x < y gilt, dass $f(x) \prec f(y)$. Eine Sprache $A \subseteq \Sigma^*$ ist streng monoton rekursiv aufzählbar, falls A von einer berechenbaren streng monotonen Funktion aufgezählt wird.

- (a) Sei $A \subseteq \Sigma^*$ streng monoton rekursiv aufzählbar. Zeigen Sie, dass A entscheidbar ist.
- (b) Sei $A \subseteq \Sigma^*$ unendlich groß und entscheidbar. Zeigen Sie, dass A streng monoton rekursiv aufzählbar ist.

Lösungsskizze	
Losungsskizze	_

(a) Um zu zeigen, dass die Sprache A entscheidbar ist, beschreiben wir, wie sich die charakteristische Funktion χ_A berechnen lässt und zeigen dann die Korrektheit von diesem Algorithmus. Dafür sei f die Funktion, die A aufzählt.

Algorithmus: Für ein beliebiges Wort $w \in \Sigma^*$ berechnen wir χ_A , indem wir $f(0), f(1), \ldots$ berechnen, bis wir zu einem $n_0 \in \mathbb{N}$ gelangen, sodass $f(n_0) = w$ oder $w \prec f(n_0)$ gilt. Falls dann $f(n_0) = w$ gilt, geben wir eine 1 zurück. Falls andererseits $w \prec f(n_0)$ gilt, geben wir eine 0 zurück.

Korrektheit: Falls $w \in A$, dann gibt es ein $n \in \mathbb{N}$, sodass f(n) = w. Da f streng monoton ist, gilt außerdem für alle n' < n, dass $f(n') \prec f(n) = w$. Also endet der Algorithmus mit $n_0 = n$ und gibt korrekt 1 aus. Falls $w \notin A$, gibt es kein $n \in \mathbb{N}$ mit f(n) = w. Das heißt, der Algorithmus gibt niemals eine 1 zurück. Da es nur endlich viele Wörter $w' \in \Sigma^*$ mit $w' \prec w$ gibt und f wegen der strengen Monotonie auf jedes Wort in $f(n') \prec w$. Daher trifft der Fall f(n')0 im Algorithmus immer für irgendein f(n')1 ein und es wird eine 0 ausgegeben.

(b) Da A entscheidbar ist, gibt es eine TM M, die die charakteristische Funktion χ_A berechnet. Um zu zeigen, dass A streng monoton rekursiv aufzählbar ist, geben wir eine berechenbare Funktion $f: \mathbb{N} \to \Sigma^*$ an, die streng monoton ist und A aufzählt.

Für $n \in \mathbb{N}$ berechnen wir den Funktionswert f(n) wie folgt: Zunächst iterieren wir in der von \prec induzierten Reihenfolge über Σ^* beginnend beim leeren Wort. Für jedes Wort überprüfen wir dabei, ob das Wort in der Sprache A enthalten ist oder nicht, indem wir M simulieren. Dabei zählen wir mit, wieviele der bereits überprüften Wörter in A enthalten sind. Sobald wir auf diese Weise n+1 Wörter aus A gefunden haben, stoppen wir und geben das zuletzt gefundene Wort aus.

Da A entscheidbar ist, hält M immer und da A unendlich groß ist, finden wir immer ein solches (n+1)-tes Wort. Desweiteren ist unsere Funktion durch das Iterieren nach der Ordnung \prec streng monoton. Also ist f eine streng monotone berechenbare Funktion mit $f(\mathbb{N}) = A$.