Probabilità e Statistica – Corso di Laurea in Informatica A.A. 2020/2021

ESERCITAZIONE 8

E8.1 (\square video). Siano X e Y due variabili aleatorie discrete con densità congiunta p_{XY} illustrata dalla tabella

$$\begin{array}{c|cccc} p_{XY} & Y & & & & \\ \hline & 0 & & 1 & & \\ \hline & 0 & \frac{1}{4} - \epsilon & & \frac{1}{4} + \epsilon \\ X & & & \\ 1 & \frac{1}{4} + \epsilon & & \frac{1}{4} - \epsilon \end{array}$$

con ϵ costante arbitraria, compresa tra $-\frac{1}{4}$ e $\frac{1}{4}$. Per quale valore di ϵ le variabili X e Y risultano indipendenti?

Soluzione. Le variabili aleatorie X e Y hanno alfabeto $\mathcal{X}=\mathcal{Y}=\{0,1\}$ e densità marginali date da $p_X(0)=p_X(1)=\frac{1}{2}$ e $p_Y(0)=p_Y(1)=\frac{1}{2}$. Ora, X e Y sono indipendenti se e solo se, per ogni $h,k\in\{0,1\}$, vale $p_{XY}(h,k)=p_X(h)p_Y(k)$. In particolare, se prendiamo h=k=0, dovremmo avere

$$\frac{1}{4} - \epsilon = p_{XY}(0,0) = p_X(0)p_Y(0) = \frac{1}{4},$$

che è soddisfatta se $\epsilon=0$. È facile verificare che, se $\epsilon=0$, allora valgono anche le uguaglianze $p_{XY}(0,1)=p_X(0)p_Y(1), p_{XY}(1,0)=p_X(1)p_Y(0)$ e $p_{XY}(1,1)=p_X(1)p_Y(1)$. Pertanto, le variabili X e Y sono indipendenti se $\epsilon=0$.

E8.2. Dire se i vettori aleatori (X,Y) degli esercizi 7.3 e 7.6 sono coppie di variabili indipendenti.

Solutione.

• Vettore aleatorio (X,Y) dell'esercizio 7.3. Poiché si ha

$$p_{XY}(0,1) = \frac{1}{56} \neq \frac{1}{112} = p_X(0)p_Y(1),$$

le variabili X e Y <u>non</u> possono essere indipendenti.

• Vettore aleatorio (X,Y) dell'esercizio 7.6. In quanto correlate (cioè $Cov(X,Y) \neq 0$), le variabili aleatorie X e Y non possono essere indipendenti.

E8.3 (f difficile; f video). Si lancia 5 volte un dado a sei facce. Sia X la variabile aleatoria che conta il numero di volte in cui esce il punteggio 4.

- (a) Determinare alfabeto e densità discreta di X.
- (b) Calcolare il valor medio e la varianza di X.

Consideriamo $Y \sim \text{Bin}\left(2, \frac{1}{6}\right)$ indipendente da X e definiamo la variabile aleatoria Z = X + Y.

(c) Determinare la probabilità dell'evento $\{Z=2\}$.

(d) Calcolare il valor medio di Z, la covarianza fra X e Z e la varianza di Y + Z.

Solutione.

(a) La variabile aleatoria X ha alfabeto $\mathcal{X} = \{0, 1, 2, 3, 4, 5\}$ e distribuzione Bin $(5, \frac{1}{6})$. Infatti, possiamo scrivere $X = \sum_{i=1}^{5} X_i$, dove le variabili aleatorie

$$X_i = \left\{ \begin{array}{ll} 1 & \text{se all'} i\text{-esimo lancio esce il punteggio 4} \\ 0 & \text{altrimenti} \end{array} \right. \qquad (i=1,\dots,5)$$

sono indipendenti ed identicamente distribuite con distribuzione Be $(\frac{1}{6})$.

- (b) Usando quanto sappiamo sui parametri riassuntivi delle variabili aleatorie binomiali, otteniamo $E(X) = 5 \cdot \frac{1}{6} = \frac{5}{6}$ e $Var(X) = 5 \cdot \frac{1}{6} \cdot \frac{5}{6} = \frac{25}{36}$.
- (c) L'evento $\{Z=2\}$ si verifica, se uno dei seguenti eventi (che sono tra loro disgiunti) si verifica: $\{X=0,Y=2\}, \{X=1,Y=1\}$ oppure $\{X=2,Y=0\}$. Quindi otteniamo

$$\begin{split} P(Z=2) &= p_{XY}(0,2) + p_{XY}(1,1) + p_{XY}(2,0) \\ &= p_X(2)p_Y(0) + p_X(1)p_Y(1) + p_X(0)p_Y(2) \quad \text{(poiché le variabili aleatorie X e Y} \\ &= \left[\binom{5}{2} + \binom{5}{1}\binom{2}{1} + 1 \right] \left(\frac{1}{6} \right)^2 \left(\frac{5}{6} \right)^5 \qquad \text{(usando il fatto che X \sim Bin $(5,\frac{1}{6})$,} \\ &= 21 \left(\frac{1}{6} \right)^2 \left(\frac{5}{6} \right)^5 \,. \end{split}$$

(d) Sfruttando la linearità del valor medio e il fatto che $X \sim \text{Bin}\left(5, \frac{1}{6}\right)$ e $Y \sim \text{Bin}\left(2, \frac{1}{6}\right)$, otteniamo

$$E(Z) = E(X + Y) = E(X) + E(Y) = 5 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} = \frac{7}{6}.$$

Passiamo ora al calcolo della covarianza. Si ha

$$\begin{aligned} C\text{ov}(X,Z) &= E(XZ) - E(X)E(Z) \\ &= E[X(X+Y)] - E(X)E(X+Y) \\ &= E(X^2) + E(XY) - E(X)^2 - E(X)E(Y) \qquad \text{(per la linearità del valor medio)} \\ &= E(X^2) + E(X)E(Y) - E(X)^2 - E(X)E(Y) \qquad \text{(poiché X e Y sono indipendenti)} \\ &= V\text{ar}(X) \\ &= \frac{25}{36}. \qquad \qquad \text{(usando quanto calcolato in b)} \end{aligned}$$

Per finire, abbiamo

$$\begin{split} V\mathrm{ar}(Y+Z) &= V\mathrm{ar}(X+2Y) \\ &= V\mathrm{ar}(X) + V\mathrm{ar}(2Y) + 2C\mathrm{ov}(X,2Y) \\ &= V\mathrm{ar}(X) + V\mathrm{ar}(2Y) & \text{(poiché $C\mathrm{ov}(X,2Y) = 0$, dal momento } \\ &= V\mathrm{ar}(X) + V\mathrm{ar}(2Y) & \text{(per le proprietà della varianza)} \\ &= V\mathrm{ar}(X) + 4V\mathrm{ar}(Y) & \text{(per le proprietà della varianza)} \\ &= \frac{25}{36} + 4 \cdot 2 \cdot \frac{1}{6} \cdot \frac{5}{6} & \text{(usando quanto calcolato in b e il fatto } \\ &= \frac{65}{36}. \end{split}$$

E8.4. Un dado a sei facce viene lanciato due volte. Siano X e Y i punteggi ottenuti nei due lanci. Definiamo le variabili aleatorie Z := XY e W := X - Y.

- (a) Calcolare le densità discrete di Z e di W.
- (b) Dire se Z e W sono indipendenti.

Soluzione. Si noti che le variabili aleatorie X e Y sono indipendenti e quindi, per ogni $x,y \in \{1,2,\ldots,6\}$, si ha

$$p_{XY}(x,y) = p_X(x)p_Y(y) = \frac{1}{6} \cdot \frac{1}{6} = \frac{1}{36}.$$

Tenendo questo in mente, caratterizziamo le variabili Z e W.

(a) La variabile aleatoria Z ha alfabeto $\mathcal{Z} = \{1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 30, 36\}$, cioè l'insieme di tutti i valori che possiamo ottenere come prodotti xy con $x, y \in \{1, 2, \dots, 6\}$. Determiniamo la densità discreta di Z. Otteniamo

$$\begin{split} p_Z(1) &= p_{XY}(1,1) = \frac{1}{36} \\ p_Z(2) &= p_{XY}(1,2) + p_{XY}(2,1) = \frac{1}{18} \\ p_Z(3) &= p_{XY}(1,3) + p_{XY}(3,1) = \frac{1}{18} \\ p_Z(4) &= p_{XY}(1,4) + p_{XY}(2,2) + p_{XY}(4,1) = \frac{1}{12} \\ p_Z(5) &= p_{XY}(1,5) + p_{XY}(5,1) = \frac{1}{18} \\ p_Z(6) &= p_{XY}(1,6) + p_{XY}(2,3) + p_{XY}(3,2) + p_{XY}(6,1) = \frac{1}{9} \\ p_Z(8) &= p_{XY}(2,4) + p_{XY}(4,2) = \frac{1}{18} \\ p_Z(9) &= p_{XY}(3,3) = \frac{1}{36} \\ p_Z(10) &= p_{XY}(2,5) + p_{XY}(5,2) = \frac{1}{18} \\ p_Z(12) &= p_{XY}(2,6) + p_{XY}(3,4) + p_{XY}(4,3) + p_{XY}(6,2) = \frac{1}{9} \\ p_Z(15) &= p_{XY}(3,5) + p_{XY}(5,3) = \frac{1}{18} \\ p_Z(16) &= p_{XY}(4,4) = \frac{1}{36} \\ p_Z(18) &= p_{XY}(4,5) + p_{XY}(6,3) = \frac{1}{18} \\ p_Z(20) &= p_{XY}(4,5) + p_{XY}(5,4) = \frac{1}{18} \\ p_Z(24) &= p_{XY}(4,6) + p_{XY}(6,4) = \frac{1}{18} \\ p_Z(25) &= p_{XY}(5,5) = \frac{1}{36} \end{split}$$

$$p_Z(30) = p_{XY}(5,6) + p_{XY}(6,5) = \frac{1}{18}$$

 $p_Z(36) = p_{XY}(6,6) = \frac{1}{36}$

La variabile aleatoria W ha alfabeto $W = \{-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5\}$, cioè l'insieme di tutti i valori che possiamo ottenere come differenze x - y con $x, y \in \{1, 2, ..., 6\}$. Determiniamo la densità discreta di W. Otteniamo

$$\begin{split} p_W(-5) &= p_{XY}(1,6) = \frac{1}{36} \\ p_W(-4) &= p_{XY}(1,5) + p_{XY}(2,6) = \frac{1}{18} \\ p_W(-3) &= p_{XY}(1,4) + p_{XY}(2,5) + p_{XY}(3,6) = \frac{1}{12} \\ p_W(-2) &= p_{XY}(1,3) + p_{XY}(2,4) + p_{XY}(3,5) + p_{XY}(4,6) = \frac{1}{9} \\ p_W(-1) &= p_{XY}(1,2) + p_{XY}(2,3) + p_{XY}(3,4) + p_{XY}(4,5) + p_{XY}(5,6) = \frac{5}{36} \\ p_W(0) &= p_{XY}(1,1) + p_{XY}(2,2) + p_{XY}(3,3) + p_{XY}(4,4) + p_{XY}(5,5) + p_{XY}(6,6) = \frac{1}{6} \\ p_W(1) &= p_{XY}(2,1) + p_{XY}(3,2) + p_{XY}(4,3) + p_{XY}(5,4) + p_{XY}(6,5) = \frac{5}{36} \\ p_W(2) &= p_{XY}(3,1) + p_{XY}(4,2) + p_{XY}(5,3) + p_{XY}(6,4) = \frac{1}{9} \\ p_W(3) &= p_{XY}(4,1) + p_{XY}(5,2) + p_{XY}(6,3) = \frac{1}{12} \\ p_W(4) &= p_{XY}(5,1) + p_{XY}(6,2) = \frac{1}{18} \\ p_W(5) &= p_{XY}(6,1) = \frac{1}{36} . \end{split}$$

(b) Le variabili Z e W non sono indipendenti. Consideriamo, ad esempio, $p_{ZW}(36,5)$. Abbiamo

$$p_{ZW}(36,5) = P(Z = 36, W = 5) = P(\{X = Y = 6)\} \cap \{X = 6, Y = 1\}) = P(\emptyset) = 0,$$

ma $p_Z(36)p_W(5) = \frac{1}{36} \cdot \frac{1}{36} \neq 0$, da cui segue la dipendenza delle due variabili aleatorie.

E8.5 (**r** tratto da appello; **l** video). Si lanciano 3 monete: ①, ② e ③. Le prime due monete sono equilibrate, mentre la terza è truccata in modo che la probabilità di ottenere testa sia 4 volte quella di ottenere croce.

Siano U il numero di teste ottenute dal lancio delle monete ① e ②; V il numero di teste ottenute dal lancio delle monete ② e ③; e Z l'esito del lancio della moneta ③.

Determinare:

- (a) la densità della variabile aleatoria Z;
- (b) la densità della variabile aleatoria U;
- (c) la densità congiunta del vettore aleatorio (U, Z);
- (d) la densità congiunta del vettore aleatorio (U, V) e la densità marginale di V;
- (e) la covarianza tra U e V. Le variabili U e V sono indipendenti?

Solutione.

(a) Indichiamo con 1 (risp. 0) l'esito "testa" (risp. "croce"). La variabile Z è una variabile aleatoria di Bernoulli. Dobbiamo determinarne il parametro. Se poniamo P(Z=0)=x, allora P(Z=1)=4x. Per la condizione di normalizzazione deve valere x+4x=1, da cui segue $x=\frac{1}{5}$. Pertanto otteniamo $Z\sim \mathrm{Be}\left(\frac{4}{5}\right)$.

(b) La variabile aleatoria U ha alfabeto $\mathcal{U}=\{0,1,2\}$ e densità $\mathrm{Bin}\left(2,\frac{1}{2}\right)$. Infatti, abbiamo $U=X_1+X_2$, dove le variabili aleatorie

$$X_i = \begin{cases} 1 & \text{se l'esito dell'} i\text{-esimo lancio è testa} \\ 0 & \text{altrimenti} \end{cases}$$
 $(i = 1, 2)$

sono indipendenti ed identicamente distribuite con distribuzione Be $(\frac{1}{2})$.

(c) Gli esiti dei tre lanci sono indipendenti. Quindi U, che è funzione <u>solamente</u> degli esiti dei lanci delle monete $\mathbb O$ e $\mathbb O$, è indipendente da Z. Pertanto, la densità congiunta del vettore aleatorio (U,Z) è il prodotto delle densità marginali di U e Z. Poiché $U \sim \operatorname{Bin}\left(2,\frac{1}{2}\right)$ e $Z \sim \operatorname{Be}\left(\frac{4}{5}\right)$, otteniamo

$$p_{UZ}(i,j) = p_{U}(i)p_{Z}(j) = \begin{cases} \binom{2}{i} \left(\frac{1}{2}\right)^{2} \frac{1}{5} & \text{se } i \in \mathcal{U} \text{ e } j = 0\\ \binom{2}{i} \left(\frac{1}{2}\right)^{2} \frac{4}{5} & \text{se } i \in \mathcal{U} \text{ e } j = 1. \end{cases}$$

(d) Il vettore aleatorio (U, V) assume valori in $\mathcal{U} \times \mathcal{V}$, con $\mathcal{U} = \mathcal{V} = \{0, 1, 2\}$. Usando, per chiarezza, le definizioni introdotte in (\bullet) , determiniamo la densità congiunta

$$p_{UV}(0,0) = P(X_1 = X_2 = Z = 0) = \left(\frac{1}{2}\right)^2 \frac{1}{5} = \frac{1}{20}$$

$$p_{UV}(0,1) = P(X_1 = X_2 = 0, Z = 1) = \left(\frac{1}{2}\right)^2 \frac{4}{5} = \frac{1}{5}$$

$$p_{UV}(0,2) = P(X_1 = X_2 = 0, X_2 = Z = 1) = 0$$

$$p_{UV}(1,0) = P(X_1 = 1, X_2 = Z = 0) = \left(\frac{1}{2}\right)^2 \frac{1}{5} = \frac{1}{20}$$

$$p_{UV}(1,1) = P(X_1 = Z = 1, X_2 = 0) + P(X_1 = Z = 0, X_2 = 1) = \left(\frac{1}{2}\right)^2 \frac{4}{5} + \left(\frac{1}{2}\right)^2 \frac{1}{5} = \frac{1}{4}$$

$$p_{UV}(1,2) = P(X_1 = 0, X_2 = Z = 1) = \left(\frac{1}{2}\right)^2 \frac{4}{5} = \frac{1}{5}$$

$$p_{UV}(2,0) = P(X_1 = X_2 = 1, X_2 = Z = 0) = 0$$

$$p_{UV}(2,1) = P(X_1 = X_2 = 1, Z = 0) = \left(\frac{1}{2}\right)^2 \frac{1}{5} = \frac{1}{20}$$

$$p_{UV}(2,2) = P(X_1 = X_2 = Z = 1) = \left(\frac{1}{2}\right)^2 \frac{4}{5} = \frac{1}{5}.$$

Inoltre, la densità marginale di V è data da

$$p_V(0) = p_{UV}(0,0) + p_{UV}(1,0) + p_{UV}(2,0) = \frac{1}{10}$$
$$p_V(1) = p_{UV}(0,1) + p_{UV}(1,1) + p_{UV}(2,1) = \frac{1}{2}$$
$$p_V(2) = p_{UV}(0,2) + p_{UV}(1,2) + p_{UV}(2,2) = \frac{2}{5}.$$

(e) Ricordiamo che Cov(U,V)=E(UV)-E(U)E(V). Poiché $U\sim \text{Bin}\left(2,\frac{1}{2}\right)$, si ha $E(U)=2\cdot\frac{1}{2}=1$. Calcoliamo

$$E(UV) = 1 \cdot 1 \cdot \frac{1}{4} + 1 \cdot 2 \cdot \frac{1}{5} + 2 \cdot 1 \cdot \frac{1}{20} + 2 \cdot 2 \cdot \frac{1}{5} = \frac{31}{20}$$

e

$$E(V) = 1 \cdot \frac{1}{2} + 2 \cdot \frac{2}{5} = \frac{13}{10}.$$

Quindi $Cov(U,V)=\frac{31}{20}-1\cdot\frac{13}{10}=\frac{1}{4}.$ In quanto correlate, le variabili U e V <u>non</u> possono essere indipendenti.

E8.6 (\nearrow tratto da appello e parzialmente svolto durante la lezione 14). Siano X e Y due variabili aleatorie discrete con densità congiunta p_{XY} illustrata dalla seguente tabella.

- (a) Determinare il valore di $p_{XY}(2,2)$.
- (b) Calcolare P(X < Y) e P(X = Y | Y = 3).
- (c) Determinare le densità marginali di X e Y.
- (d) Calcolare il valor medio e la varianza di X e di Y.
- (e) Dire se X e Y sono indipendenti.
- (f) Calcolare Var(X Y).

Solutione.

(a) Sfruttiamo la proprietà di normalizzazione. Affinché la densità congiunta sia una densità si deve avere $\sum_{j \in \{0,2\}} \sum_{k \in \{1,2,3\}} p_{XY}(j,k) = 1$, cioè

$$\frac{1}{16} + \frac{1}{6} + \frac{1}{48} + \frac{3}{16} + p_{XY}(2,2) + \frac{1}{16} = 1,$$

da cui si ricava $p_{XY}(2,2) = \frac{1}{2}$.

(b) Si ha

$$P(X < Y) = p_{XY}(0,1) + p_{XY}(0,2) + p_{XY}(0,3) + p_{XY}(2,3) = \frac{1}{16} + \frac{1}{6} + \frac{1}{48} + \frac{1}{16} = \frac{5}{16}$$

e, usando la definizione di probabilità condizionata,

$$P(X = Y \mid Y = 3) = \frac{P(X = Y, Y = 3)}{P(Y = 3)} = \frac{P(X = Y = 3)}{P(Y = 3)} = 0.$$

(c) Le variabili aleatorie X e Y hanno alfabeto $\mathcal{X} = \{0,2\}$ e $\mathcal{Y} = \{1,2,3\}$, rispettivamente. Ricaviamo le loro densità discrete. Abbiamo

marginale di
$$X \begin{bmatrix} p_X(0) = p_{XY}(0,1) + p_{XY}(0,2) + p_{XY}(0,3) = \frac{1}{16} + \frac{1}{6} + \frac{1}{48} = \frac{1}{48} \\ p_X(2) = p_{XY}(2,1) + p_{XY}(2,2) + p_{XY}(2,3) = \frac{3}{16} + \frac{1}{2} + \frac{1}{16} = \frac{3}{48} \end{bmatrix}$$

e

marginale di
$$Y$$

$$p_Y(1) = p_{XY}(0,1) + p_{XY}(2,1) = \frac{1}{16} + \frac{3}{16} = \frac{1}{4}$$

$$p_Y(2) = p_{XY}(0,2) + p_{XY}(2,2) = \frac{1}{6} + \frac{1}{2} = \frac{2}{3}$$

$$p_Y(3) = p_{XY}(0,3) + p_{XY}(2,3) = \frac{1}{48} + \frac{1}{16} = \frac{1}{12}$$

(d) Variabile aleatoria X. Calcoliamo

$$E(X) = 2 \cdot \frac{3}{4} = \frac{3}{2}$$
 e $E(X^2) = 2^2 \cdot \frac{3}{4} = 3$.

Pertanto, si ha $Var(X) = 3 - \left(\frac{9}{4}\right)^2 = \frac{3}{4}$.

Variabile aleatoria Y. Calcoliamo

$$E(Y) = 1 \cdot \frac{1}{4} + 2 \cdot \frac{2}{3} + 3 \cdot \frac{1}{12} = \frac{11}{6}$$
 e $E(Y^2) = 1^2 \cdot \frac{1}{4} + 2^2 \cdot \frac{2}{3} + 3^2 \cdot \frac{1}{12} = \frac{11}{3}$.

Pertanto, si ha $Var(Y) = \frac{11}{3} - (\frac{11}{6})^2 = \frac{11}{36}$.

- (e) È facile vedere che si ha $p_{XY}(j,k) = p_X(j)p_Y(k)$ <u>per ogni $j \in \mathcal{X}$ e $k \in \mathcal{Y}$ </u>. Pertanto, le variabili X e Y sono indipendenti.
- (f) Poiché X e Y sono indipendenti, risultano esserlo anche le variabili aleatorie X e -Y. Di conseguenza, otteniamo

$$Var(X - Y) \stackrel{\text{(additività)}}{=} Var(X) + Var(-Y) = Var(X) + (-1)^2 Var(Y) = \frac{3}{4} + \frac{11}{36} = \frac{19}{18}.$$

E8.7 (f. difficile). Mostrare che, se $X \sim \text{Po}(\lambda)$ e $Y \sim \text{Po}(\mu)$ sono due variabili aleatorie di Poisson indipendenti, allora si ha $X + Y \sim \text{Po}(\lambda + \mu)$.

Soluzione. La variabile aleatoria X+Y assume valori in \mathbb{N}_0 . Determiniamo la sua densità discreta. Per ogni $k \in \mathbb{N}_0$, si ha

$$P(X+Y=k) = \sum_{h=0}^{k} P(X+Y=k|Y=h)P(Y=h) \quad \text{(per la formula delle probabilità totali)}$$

$$= \sum_{h=0}^{k} P(X=k-h|Y=h)P(Y=h) \quad \text{(poiché sappiamo che } Y=h)$$

$$= \sum_{h=0}^{k} P(X=k-h)P(Y=h) \quad \text{(poiché gli eventi } \{X=k-h\} \in \{Y=h\} \text{ sono indipendenti)}$$

$$= \sum_{h=0}^{k} \frac{e^{-\lambda} \lambda^{k-h}}{(k-h)!} \cdot \frac{e^{-\mu} \mu^{h}}{h!} \quad \text{(usando il fatto che } X \sim \text{Po}(\lambda) \in Y \sim \text{Po}(\mu))$$

$$= \frac{e^{-(\lambda+\mu)}}{k!} \sum_{h=0}^{k} \binom{k}{h} \lambda^{k-h} \mu^{h} \quad \text{(moltiplicando e dividendo per } k!)$$

$$= \frac{e^{-(\lambda+\mu)} (\lambda+\mu)^{k}}{k!}, \quad \text{(usando la formula del binomio di Newton)}$$

da cui segue $X + Y \sim Po(\lambda + \mu)$, come si voleva.

E8.8. Se $X \sim \text{Bin}(n, p)$ e $Y \sim \text{Bin}(m, p)$ sono *indipendenti*, allora $X + Y \sim \text{Bin}(n + m, p)$. Perché? Rispondere senza fare alcun conto.

Soluzione. Osserviamo che $X=\sum_{i=1}^n X_i$ con $(X_i)_{i=1}^n$ variabili aleatorie Be(p) indipendenti e, analogamente, $Y=\sum_{i=1}^m Y_i$ con $(Y_i)_{i=1}^n$ variabili aleatorie Be(p) indipendenti. Inoltre, poiché X e Y sono indipendenti, anche la famiglia $\{X_1,\ldots,X_n,Y_1,\ldots,Y_m\}$ risulta indipendente. Pertanto, $X+Y=\sum_{i=1}^n X_i+\sum_{i=1}^m Y_i$, cioè X+Y è la somma di n+m variabili Be(p) indipendenti, e di conseguenza $X+Y\sim \mathrm{Bin}(n+m,p)$.

E8.9. In virtù di quanto enunciato nell'esercizio precedente, verificare la risposta data alla domanda (c) dell'esercizio 8.3.

Soluzione. Poiché $X \sim \text{Bin}\left(5, \frac{1}{6}\right)$ e $Y \sim \text{Bin}\left(2, \frac{1}{6}\right)$ sono variabili aleatorie binomiali indipendenti, si ha $Z = X + Y \sim \text{Bin}\left(7, \frac{1}{6}\right)$. Pertanto, risulta

$$P(Z=2) = \binom{7}{2} \left(\frac{1}{6}\right)^2 \left(\frac{5}{6}\right)^5 = 21 \left(\frac{1}{6}\right)^2 \left(\frac{5}{6}\right)^5,$$

che coincide con quanto abbiamo ottenuto al punto (c) dell'esercizio 8.3.