Motivación Projection Pursuit PPtree Aspectos menos deseables Extensiones

Árboles de clasificación basados en proyecciones y posibles extensiones

Natalia da Silva Instituto de Estadística-FCEA-UDELAR natalia.dasilva@fcea.edu.uy - natydasilva.com - @pacocuak

Noviembre-2022

FACULTAD DE CIENCIAS ECONÓMICA Y DE ADMINISTRACIÓN

Estructura de la charla

- Motivación
- Projection Pursuit
- Descripción de PPtree
- Aspectos menos deseables de PPtree
- Posibles extensiones de PPtree
- Comentarios Finales

Motivación

- Trabajo previo, PPforest, bosques aleatorios basados en proyecciones.
 [da Silva et al., 2021], [da Silva et al., 2022a], [da Silva et al., 2022b]
- Clasificador individual de PPforest es PPtree.
- Algunas debilidades de PPtree que se pueden mejorar.
- Mejorar la performance del bosques mejorando los árboles individuales.

Motivación, Bosques aleatorios

Bosques aleatoreos [Breiman, 2001] es un métodos de supervisado de agregación ampliamente utilizado y competitivo respecto a otros. Consiste en combinar árboles individuales incorporando dos conceptos claves:

- Agregación Bootstrap [Breiman, 1996]
- Selección aleatoria de variables [Amit and Geman, 1997], [Ho, 1998] en los árboles individuales.

Motivación, Bosques aleatorios

Dos propuestas de agregación basadas en árboles:

- Basada en árboles ortogonales
- Basada en árboles oblicuos

Motivación, PPforest

- PPforest, bosque aleatorio basado en proyecciones para clasificación.
- Clasificador individual PPtree[Lee et al., 2013], usa combinaciones lineales de variables en la partición del nodo, separa las clases teniendo en cuenta la correlación entre las variables.
- Hay algunos aspectos no deseables del clasificador individual que se pueden modificar para mejorar la performance del bosque.

Projection Pursuit

- PP es una técnica estadística para exploración para encontrar proyecciones de datos que revelen estructuras interesantes [Friedman and Tukey, 1974], [Friedman and Stuetzle, 1981].
- Los algoritmos de PP buscan proyecciones de bajas dimensiones optimizando un índice de proyección que mide si la proyección es útil en algún sentido.
- Algunos índices de PP incorporan información de las clases para el cálculo.

Indices PP para clasificación

- [Lee et al., 2005] proponen un índice derivado del análisis disciminante lineal útil para exploración en clasificación supervisada.
- [Lee and Cook, 2010] proponen un índice que funciona bien en el contexto de n << p y las variables altamente correlacionados.

Indice PP, \mathbb{I}_{LDA}

$$\mathbb{I}_{LDA}(\mathbf{A}) = \begin{cases} 1 - \frac{|\mathbf{A}^T \mathbf{W} \mathbf{A}|}{|\mathbf{A}^T (\mathbf{W} + \mathbf{B}) \mathbf{A}|} & \text{for } |\mathbf{A}^T (\mathbf{W} + \mathbf{B}) \mathbf{A}| \neq 0 \\ 0 & \text{for } |\mathbf{A}^T (\mathbf{W} + \mathbf{B}) \mathbf{A}| = 0 \end{cases}$$
(1)

donde $\mathbf{A} = [\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_q]$ es una matriz $p \times q$ y define una proyección ortonormal de p-dimensiones a un subespacio q-dimensional,

 $\mathbf{B} = \sum_{g=1}^{G} n_g (\bar{\mathbf{x}}_g - \bar{\mathbf{x}}) (\bar{\mathbf{x}}_g - \bar{\mathbf{x}})^T \text{ es La suma de cuadrados entre grupos } p \times p.$

 $\mathbf{W} = \sum_{g=1}^{G} \sum_{i \in H_g} (\mathbf{x}_i - \bar{\mathbf{x}}_g) (\mathbf{x}_i - \bar{\mathbf{x}}_g)^T$ es la suma de cuadrados al interor de los grupos $p \times p$ donde $H_g = \{i | y_i = g, i = 1, ..., n\}$, $\bar{\mathbf{x}}_g$ es el vector de medias de los grupos y $\bar{\mathbf{x}}$ vector de medias global. Si el indice LDA tiene valores altos hay una grand diferencia entre clases y no de lo contrario.

Indice PP, \mathbb{I}_{PDA}

Cuando las variables están altamente correlacionadas $|\mathbf{A}^T(\mathbf{W} + \mathbf{B})\mathbf{A}|$ en \mathbb{I}_{LDA} es cercano a cero y no funciona bien.

$$\mathbb{I}_{PDA}(\mathbf{A}, \lambda) = 1 - \frac{|\mathbf{A}^T \mathbf{W}_{PDA}(\lambda) \mathbf{A}|}{|\mathbf{A}^T (\mathbf{W}_{PDA}(\lambda) + \mathbf{B}) \mathbf{A}|}$$
(2)

misma notación que en \mathbb{I}_{LDA} , agregando que $\lambda \in [0,1)$ es un parámetro de contracción y usamos una suma de cuadrados al interior de grupos diferente, $\mathbf{W}_{PDA}(\lambda) = \mathrm{diag}(\mathbf{W}) + (1-\lambda)\mathrm{offdiag}(\mathbf{W})$.

Optimización e \mathbb{I}_{LDA} y \mathbb{I}_{PDA}

Para los dos índices de proyección seleccionados se puede encontrar el óptimo teórico.

- La proyección q-dimensional que maximiza \mathbb{I}_{LDA} , son los primeros q vectores propios de $(\mathbf{W} + \mathbf{B})^{-1}\mathbf{B}$
- La proyección q-dimensional que maximiza \mathbb{I}_{LDA} , on los primeros q vectores propios de $(\mathbf{W}_{PDA} + \mathbf{B})^{-1}\mathbf{B}$

Huber plot, datos simulados

Huber plot [Huber, 1990]

- Muestra el índice PP em todas las posibles direcciones en 2D
- Los índices se calculan usando las proyecciones para $(cos \theta, sin \theta)$
- $\theta = 1^{\circ}, \ldots, 180^{\circ}$
- Para cada proyección, cálculo el índice en los datos proyectados (línea sólida)
- Círculo punteado es de referencia, mediana de todos los valores del índice.
- Línea punteada corresponde al máximo índice

$\overline{\mathbb{I}_{LDA}}$, proyección 1-D

PPtree: Projection pursuit classification tree

Método supervisado de clasificación

- PPtree: Árbol de clasificación basados en proyecciones [Lee et al., 2005] .
- Combina métodos de árboles con reducción de dimensionalidad basada en proyecciones, optimizando un índice de PP.
- Las particiones en PPtree se basan en combinaciones lineales de variables por lo que toma en cuenta la correlación entre las variables para separar las clases.

CART vs PPtree, datos simulados

PPtree

- Aunque el problema sea de clases múltiples, el método lo transforma en un problema de dos clases.
- Cuando las clases son más de dos el algoritmo usas dos pasos de proyección optimizando un índice de proyección en cada partición del nodo.
- Los coeficientes de proyección en cada nodo representan la importancia de la variables, útiles para explorar como las clases son separadas en cada árbol.

Algoritmo de PPtree

- ① Optimiza un indice de proyección para encontrar una proyección 1-D óptima, $\mathbf{a_1}^*$, para separarar todas las classes obteniendo los datos proyectados $z_i = \mathbf{a_1}^{*T} \mathbf{x_i}$ para todo i
- ② En los datos proyectados, re-define el problema en uno de dos clases comparando distancias entre medias y asigna una nueva etiqueta, g_1^* o g_2^* para cada observación, generando una nueva variable y_i^* para la clase $(g_1*y_2^*)$.
- **②** Encuentra una proyección 1-D óptima $\mathbf{a_1}^{**}$, usando $\{(\mathbf{x_i},y_i^*)\}_{i=1}^n$ para separar g_1^* y g_2^* . La mejor separación y la regla de decisión para el nodo, si $\mathbf{a_1}^{**T}\bar{\mathbf{x}}_{g_1^*} < c$ entonces asigna g_1^* al nodo izquierdo y en otro caso g_2^* al derecho, donde $\bar{\mathbf{x}}_{g_1^*}$ es la media de g_1^* .
- **Q** Para cada grupo, todos los pasos previos son repetidos hasta que g_1^* y g_2^* tienen una sola clase de la clase original.

Ilustración del algoritmo

PPtree, 8 reglas de corte

$$c = \frac{1}{2}\bar{\mathbf{x}}_1 + \frac{1}{2}\bar{\mathbf{x}}_2$$

$$c = \frac{n_1}{n_1+n_2}\bar{\mathbf{x}}_1 + \frac{n_1}{n_1+n_2}\bar{\mathbf{x}}_2$$

$$c = \frac{s_1}{s_1 + s_2} \bar{\mathbf{x}}_1 + \frac{s_1}{s_1 + s_2} \bar{\mathbf{x}}_2$$

$$c = \frac{s_2/\sqrt{n_2}}{s_1/\sqrt{n_1} + s_2\sqrt{n_2}} \bar{\mathbf{x}}_1 + \frac{s_1/\sqrt{n_1}}{s_1/\sqrt{n_1} + s_2\sqrt{n_2}} \bar{\mathbf{x}}_2$$

$$c = \frac{1}{2}\mathbf{x}_1^{med} + \frac{1}{2}\mathbf{x}_2^{med}$$

$$c = \frac{n_1}{n_1 + n_2} \mathbf{x}_1^{med} + \frac{n_1}{n_1 + n_2} \mathbf{x}_2^{med}$$

$$c = \frac{IQR_2}{IQR_1 + IQR_2}\mathbf{x}_1^{med} + \frac{IQR_1}{IQR_1 + IQR_2}\mathbf{x}_2^{med}$$

$$c = \frac{IQR_2/\sqrt{n_2}}{IQR_1/\sqrt{n_2} + IQR_2/\sqrt{n_2}} \mathbf{x}_1^{med} + \frac{IQR_1/\sqrt{n_1}}{IQR_1/\sqrt{n_1} + IQR_2/\sqrt{n_2}} \mathbf{x}_2^{med}$$

Aspectos menos deseables: I

PPtree define una banda entre el naranja y el violeta que es muy cercana al grupo ya que la primer partición usa información del naranja y verde para calcular la media que define el punto de corte.

Aspectos menos deseables: II

Los naranjas no pueden separarse por una única partición lineal y PPtree no puede modelar esto porque una clase es asignada solamente a un nodo terminal.

Extensión: PPtree

Hay dos formas que el algoritmo ha sido modificado:

- Regla de decisión.
- Permitiendo particiones múltiples por grupos.

Las modificaciones implican:

- Subdividir super-clase para producir valor de corte más apropiado.
- Para incrementar el número de particiones por grupos modifico la selección de la partición y debemos definir reglas de parada adicionales.

Extensión I: subdividiendo clases para producir mejores bandas

- La primer modificación se enfoca en el cuarto paso del algoritmo original.
- En vez de combinar clases en una super clase, unicamente las dos clases más cercanas son usadas para determinar la partición.

PPtree extensión I

Extensión II: permitiendo particiones múltiples por grupos

- La modificación introduce una nueva forma de seleccionar el valor de la partición basado en la impureza del grupo resultante.
- $E(s) = -\sum_{j=1}^{G} p_{js} log(p_{js})$ donde p_{js} es la proporción de puntos de la clase j en el subconjunto s y G el número de clases.
- E(s) grande indican grupos mezclados, impuros.
- E(s) = 0 grupo puro.

PPtree extension II

- Para determinar la calidad de la partición se debe considerar el lado izquierdo y derecho de la partición.
- $E(s_L, s_R) = \frac{n_L}{n_L + n_R} E(s_L) + \frac{n_R}{n_L + n_R} E(s_R)$
- $E(s_L, s_R)$ se calcula para cada posible partición y la que tiene la mínima impureza determina c el corte.
- Esta modificación cambia dramáticamente el algoritmo de PPtree con el objetivo de flexibilizarlo a clasificador no lineal permitiendo muchas particiones por clase.
- Necesitamos determinar reglas de parada.

PPtree extension II

- ① Optimiza un índice de proyección para encontr la proyección 1-D óptima $\mathbf{a_1}^*$ para separar todas las clases en los datos.
- ② Con los datos proyectados calcula la entropía para cada posible particción. Las posibles particiones son definidas entre cada valor proyectado.
- **3** Selecciona la mejor partición que minimiza $E(s_L, s_R)$.
- Repite los pasos anteriores hasta que la regla de parada se satisface.

PPtree extensión II regla de parada

La regla de parada controla cuando el crecimiento del árbol debe parar. Las siguientes reglas de parada son usadas:

- Si un nodo es puro; todos los casos son de la misma clase en un nodo.
- Si el tamaño del nodo es menor a un valor determinado n_S .
- Si la reducción de la entropía de una partición es menos que un valor especificado ent_s.

Ilustración de la extensión II

Comparación de algoritmos

- Comparamos los métodos usando shiny [Chang et al., 2015] que nos permite incluir datos simulados y definir las bandas de cada algoritmo de forma interactiva.
- Se incluyen distintos métodos para simular datos 2D y se muetran las bandas definidad por los distintos algoritmos.

Comparación de algoritmos

- Hay tres pestañas que controlan los distintos tipos de datos simulados.
- 1 mixtura multivariada con igual matriz de var-cov para los grupos y distinta media.
- Incluye uno de los grupo con outliers.
- Simulación de mixturas con el paquete 'MixSim'.

- Panel 1: Simulación básica de 3 clases https://player.vimeo.com/video/222613204
- Panel 2: Simulación con Outliers https://player.vimeo.com/video/222613230
- Panel 3: Simulaciones con MixSim pkg https://player.vimeo.com/video/222613251

Con datos reales, resultados preliminares

Paquete PPtreeExt

- Paquete en R PPtreeExt en etapa de desarrollo
- Disponible en https://github.com/natydasilva/PPtreeExt

Comentarios Finales

- Se presentaron dos posibles modificaciones en el algoritmo de PPTree para hacerlo más flexible.
- shiny nos permite constuir una herramienta para explorar resultados primarios en la modificación del algoritmo con datos simulados
- Los resultados primarios muestran un algoritmo de clasificación más flexibles utilizando combinaciones de variables
- Implementado en un paquete en R en desarrolo.

Trabajo futuro

- Comparar la performance de PPtree con sus posibles extensiones con datos simulados y reales
- Con los nuevos árboles extender PPforest
-

References I

Amit, Y. and Geman, D. (1997).

Shape quantization and recognition with randomized trees.

Neural computation, 9(7):1545-1588.

Breiman, L. (1996).

Bagging predictors.

Machine Learning, 24(2):123-140.

Breiman, L. (2001).

Random forests.

Machine learning, 45(1):5-32.

Chang, W., Cheng, J., Allaire, J., Xie, Y., and McPherson, J. (2015). shiny: Web application framework for R, R package version 0.11.

da Silva, N., Cook, D., and Lee, E.-K. (2021).

A projection pursuit forest algorithm for supervised classification.

Journal of Computational and Graphical Statistics, 30(4):1168–1180.

References II

da Silva, N., Cook, D., and Lee, E.-K. (2022a). Interactive graphics for visually diagnosing forest classifiers in • Computational Statistics, Aceptado.

da Silva, N., Cook, D., and Lee, E.-K. (2022b). *PPforest: Projection Pursuit Classification Forest*. R package version 0.1.3.

Friedman, J. H. and Stuetzle, W. (1981).

Projection pursuit regression.

Journal of the American statistical Association, 76(376):817–823.

Friedman, J. H. and Tukey, J. W. (1974).

A projection pursuit algorithm for exploratory data analysis. *IEEE Transactions on computers*, 100(9):881–890.

References III

Ho, T. K. (1998).

The random subspace method for constructing decision forests.

Pattern Analysis and Machine Intelligence, IEEE Transactions on, 20(8):832–844.

Huber, P. (1990).

Data analysis and projection pursuit.

In *Technical report PJH-90-1*. Dept. of Mathematics, Massachusetts Institute of Technology Cambridge, MA.

Lee, E.-K. and Cook, D. (2010).

A projection pursuit index for large p small n data.

Statistics and Computing, 20(3):381-392.

Lee, E.-K., Cook, D., Klinke, S., and Lumley, T. (2005).

Projection pursuit for exploratory supervised classification.

Journal of Computational and Graphical Statistics, 14(4):831–846.

References IV

Lee, Y. D., Cook, D., Park, J.-W., and Lee, E.-K. (2013).

PPtree: Projection pursuit classification tree.

Electronic Journal of Statistics, 7:1369–1386.