1 CD 07		-	3.6		
MPSI	1	-La	$Martini\`ere$	Monnl	aisir
1111 01	_	1 40	111 001 0010001 0	11101000	a co c i

Interrogation n^o 32

Le 15 juin 2020

 $\underline{\text{Nom}}$:

<u>Correcteur:</u>

Note:

Énoncer l'inégalité de Cauchy-Schwarz.

Soit $(E, \langle \cdot, \cdot \rangle)$ un espace euclidien et F un sev de E. Montrer que $F \oplus F^{\perp} = E$.

Dans \mathbb{R}^3 muni de son produit scalaire usuel, on considère $\mathscr{B} = \left(\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \right)$.

- 1) Montrer que $\mathcal B$ est une base orthonormale.
- 2) Quelles sont les coordonnées de $x = \begin{pmatrix} 4 \\ -7 \\ 6 \end{pmatrix}$ dans \mathscr{B} ?

Soit X_1, \ldots, X_n des variables aléatoires réelles, indépendantes deux à deux. Que peut-on dire de $V(X_1 + \cdots + X_n)$? Le montrer.