@Group5 Lab3

a. Retrieve the names of all employees in the department whose name is Administration

ANSWER:

Relational Algebra:

```
R1 \leftarrow \sigma_{DName = "Administration"} (Department)
```

$$R2 \leftarrow Employee \bowtie_{DNumber = DNo} R1$$

Res $\leftarrow \pi_{\text{FName, LName}}$ (R2)

SQL SERVER:

```
SELECT FName, LName

FROM Department, Employee

WHERE DNumber = DNo AND DName = 'Administration';
```

KQ:

	FName	LName	
1	Jennifer	Wallace	
2	Ahmad	Jabbar	
3	Alicia	Zelaya	

b. Retrieve the names of all employees in the departments which are located in Houston

ANSWER:

Relational Algebra:

$$R1 \leftarrow \sigma_{DLocation \,=\, \text{``Houston''}} \, (DEPT_LOCATIONS)$$

$$R2 \leftarrow R1 \bowtie_{R1.DNumber = DEPARTMENT.DNumber} DEPARTMENT$$

$$R3 \leftarrow R2 \bowtie_{R2.DNumer = EMPLOYEE.DNo} EMPLOYEE$$

Res $\leftarrow \pi_{\text{FName, LName}}$ (R3)

SQL SERVER:

```
--b)
|SELECT FName, LName
|FROM Dept_locations, Department, Employee
| WHERE Dept_locations.DNumber = Department.DNumber AND Department.DNumber = DNO
| AND DLocation = 'Houston';
```

KQ:

	FName	LName	
1	John	Smith	
2	Franklin	Wong	
3	Joyce	English	
4	Ramesh	Narayan	
5	James	Borg	

c. List the names of all employees who have a dependent with the same first name as themselves

ANSWER:

Relational Algebra:

```
R1 \leftarrow \text{DEPENDENT} \bowtie_{\text{DEPENDENT.Essn} = \text{EMPLOYEE.Ssn AND Dependent\_name} = \text{EMPLOYEE.FName}} (\text{EMPLOYEE})
RES \leftarrow \pi_{\text{FName, LName}} \ (R1)
```

SQL SERVER:

```
| SELECT FName, LName | FROM [Dependent], Employee | WHERE Essn = Ssn AND DEPENDENT_NAME = FNAME
```

KQ: Not found

d. For each project, calculate the total number of employees who work for it, and the total number of hours that these employees work for the project.

ANSWER:

Relational Algebra:

```
\begin{split} &R1 \leftarrow_{PNo} \mathscr{F}_{COUNT \; Essn, \; SUM \; Hours}(WORK\_ON) \\ &R1 \leftarrow \rho_{\; (PNo, \; NumEmployee, \; TotalHours \; )} (R1) \\ &R2 \leftarrow PROJECT \bowtie_{PNo \; = \; PNum} R1 \\ &RES \leftarrow \pi_{PName, \; PNo, \; NumEmployee, \; TotalHours} \; (R2) \end{split}
```

SQL SERVER:

```
SELECT PNo, Pname, NumEmployee, TotalHours

FROM Project, (SELECT PNo, COUNT(Essn) AS NumEmployee, SUM(HOURS) AS TotalHours

FROM Works_on, Project

WHERE PNo = Pnumber

GROUP BY PNo) AS R1

WHERE Pnumber = R1.PNo
```

KQ:

	PNo	Pname	NumEmployee	TotalHours
1	1	ProductX	2	52.5
2	2	ProductY	3	37.5
3	3	ProductZ	2	50
4	10	Computerization	3	55
5	20	Reorganization	3	25
6	30	Newbenefits	3	55