# Meta-analysis of the glial marker TSPO in psychosis revisited: reconciling inconclusive findings of patient-control differences - Result Report

Pontus Plavén-Sigray
10/05/2020

# Descriptive data

The table below displays the demographic data of the included studies.

Table 1: Descriptive data of all included studies. DOI, duration of illness; HABs, high-affinity binders; HCs, healthy control subjects; MABs, mixed-affinity binders; PANSS-Negative score; PANSS-P, PANSS-Positive score; Pat, participants with psychosis or schizophrenia.

| Diagnostic<br>group | Schizophrenia/<br>Other* | Age Years<br>Mean (SD) | Count | HABs | MABs | Men | Women | PANSS-P<br>Mean (SD) | PANSS-N<br>Mean (SD) | DOI Months<br>Mean (SD) | Drug free/<br>Total | Radioligand |
|---------------------|--------------------------|------------------------|-------|------|------|-----|-------|----------------------|----------------------|-------------------------|---------------------|-------------|
| Collste et          | al.                      |                        |       |      |      |     |       |                      |                      |                         |                     |             |
| $^{\mathrm{HC}}$    | -                        | 26.38 (8.44)           | 16    | 9    | 7    | 7   | 9     | -                    | -                    | -                       | -                   | [11C]PBR28  |
| Pat                 | 4/12                     | 28.50 (8.37)           | 16    | 8    | 8    | 11  | 5     | 20.3(4.9)            | 18.1 (7.0)           | 7.9(9.6)                | 16/16               | [11C]PBR28  |
| Laurikaine          | en et al.                |                        |       |      |      |     |       |                      |                      |                         |                     |             |
| $^{\mathrm{HC}}$    | -                        | 29.7(7.45)             | 15    | 9    | 6    | 5   | 10    | -                    | -                    | -                       | -                   | [11C]PBR28  |
| Pat                 | 4/9                      | 24.8 (4.00)            | 13    | 8    | 5    | 7   | 6     | **                   | **                   | 3.9(3.4)                | 2/13                | [11C]PBR28  |
| Coughlin            | et al.                   |                        |       |      |      |     |       |                      |                      |                         |                     |             |
| $^{ m HC}$          | -                        | 25.36 (4.89)           | 14    | 9    | 5    | 9   | 5     | -                    | -                    | -                       | -                   | [11C]DPA173 |
| Pat                 | 12/0                     | 24.33 (3.28)           | 12    | 8    | 4    | 9   | 3     | 13.8(2.7)            | 15.8(4.6)            | 25.0(16.3)              | 2/12                | [11C]DPA173 |
| Hafizi et a         | ıl.                      |                        |       |      |      |     |       |                      |                      |                         |                     |             |
| $^{ m HC}$          | -                        | 27.17 (9.07)           | 18    | 14   | 4    | 8   | 10    | -                    | -                    | -                       | -                   | [18F]FEPPA  |
| Pat                 | 15/4                     | 27.53 (6.78)           | 19    | 14   | 5    | 12  | 7     | 19.2(3.8)            | 16.1 (6.1)           | 33.6 (40.1)             | 19/19               | [18F]FEPPA  |
| Bloomfield          | d et al.                 |                        |       |      |      |     |       |                      |                      |                         |                     |             |
| $^{\mathrm{HC}}$    | -                        | 46.21 (13.62)          | 14    | 14   | 0    | 11  | 3     | -                    | -                    | -                       | -                   | [11C]PBR28  |
| Pat                 | 12/0                     | 47.00 (9.31)           | 12    | 12   | 0    | 9   | 3     | 17.0(6.1)            | 14.1 (4.0)           | 108.9 (46.7)            | 0/12                | [11C]PBR28  |
| Kenk et a           | l.                       |                        |       |      |      |     |       |                      |                      |                         |                     |             |
| $^{\mathrm{HC}}$    | -                        | 54.27 (9.51)           | 15    | 10   | 5    | 7   | 8     | -                    | -                    | -                       | -                   | [18F]FEPPA  |
| Pat                 | 16/0                     | 42.50 (14.03)          | 16    | 10   | 6    | 10  | 6     | 19.3(2.2)            | 18.6(5.0)            | 177.3 (105.7)           | 0/16                | [18F]FEPPA  |
| Ottoy et a          | ıl.                      |                        |       |      |      |     |       |                      |                      |                         |                     |             |
| ЙС                  | -                        | 27.1 (5.69)            | 15    | 6    | 9    | 15  | 0     | -                    | -                    | -                       | -                   | [18F]PBR111 |
| Pat                 | 11/0                     | 30.6 (7.65)            | 11    | 6    | 5    | 11  | 0     | 24.3(5.6)            | 17.4(7.3)            | 62.2 (96.1)             | 1/11                | [18F]PBR111 |
| All                 |                          |                        |       |      |      |     |       |                      |                      |                         |                     |             |
| $^{ m HC}$          | -                        | 33.5 (13.6)            | 107   | 71   | 36   | 62  | 45    | -                    | -                    | -                       | -                   | -           |
| Pat                 | 74/25                    | 32.4 (11.7)            | 99    | 66   | 33   | 69  | 30    | 19.8 (4.9)           | 16.8 (5.8)           | 65.9 (87.1)             | 40/99               | -           |

<sup>\*</sup>For Collste et al. (1) other diagnoses were: 7 schizophreniform disorder, 4 psychosis not otherwise specified, and 1 brief psychosis. For Hafizi et al. (2) other diagnoses were: 3 schizophreniform and 1 delusional disorder. For Laurikainen et al. (3) other diagnoses were: 2 schizophreniform disorder, 4 psychosis not otherwise specified, 2 Major depressive episode, severe with psychotic features and 1 Bipolar disorder, manic episode, severe with psychotic features.

Fourteen healthy-control subjects were shared across two of the original studies (2, 4). In this meta-analysis, healthy control subjects from these two studies have been uniquely assigned to either one of the studies, so that no subject's  $V_T$  value appears more than once in the statistical models. Assignment was done as to best match the patient groups based on count, genotype, gender, and age.

<sup>\*\*</sup>Laurikainen et al. (3) used the Brief Psychiatric Rating Scale (BPRS) for assessing symptom severity. The BPRS positive mean symptom scale scores were 17.8 (SD = 7.1), and BPRS mean negative symptom scale scores were 17.0 (SD = 6.4) for patients.



Figure 1: Individual participant data showing translocator protein levels (estimated using VT) in participants with first-episode psychosis or schizophrenia and healthy control subjects, from all seven included studies, from frontal cortex (FC), temporal cortex (TC), and hippocampus (HIP). The black bars denote the group means. For each region, subjects' VT values have been Z-scored within study, and within genotype, in order to produce the pooled plots of all high-affinity binders (HABs) and mixed-affinity binders (MABs). For this reason, HABs and MABs have the same mean (set to zero) in the right-hand panels.

Figure 1 shows the rae VT data from all included studies. The the right most panel data for all HABs and MABs have been pooled. VT values have been z-scored (mean set to 0 and SD set to 1) within each genotype group to allow for visualization.

## Hypotheses testing

Three hypotheses were examined:

- H0: No difference in V<sub>T</sub> between patients and controls
- H1: Patients have higher  $V_T$  as compared to controls
- H2: Patients have lower  $V_T$  as compared to controls

#### Frequentist stats

Results from LME model including only genotype as covariate:

Table 2: Association between VT and Patient-Control status

| Region | Estimate | SE   | $\mathbf{t}$ | $\mathrm{d}\mathrm{f}$ | p      |
|--------|----------|------|--------------|------------------------|--------|
| FC     | -0.41    | 0.13 | -3.11        | 205                    | 0.0022 |
| TC     | -0.38    | 0.13 | -2.85        | 205                    | 0.0048 |
| HIP    | -0.53    | 0.13 | -4.02        | 203                    | 0.0001 |

Results from LME model including genotype as covariate and age and sex as additional predictors:

Table 3: Association between VT and Patient-Control status while controlling for age and sex.

| Region                 | Estimate | SE   | t     | df  | p      |  |  |  |  |
|------------------------|----------|------|-------|-----|--------|--|--|--|--|
| Patient-Control status |          |      |       |     |        |  |  |  |  |
| FC                     | -0.37    | 0.13 | -2.82 | 203 | 0.0053 |  |  |  |  |
| TC                     | -0.34    | 0.13 | -2.60 | 203 | 0.0101 |  |  |  |  |
| HIP                    | -0.50    | 0.13 | -3.79 | 201 | 0.0002 |  |  |  |  |
| $\mathbf{Age}$         |          |      |       |     |        |  |  |  |  |
| FC                     | 0.00     | 0.07 | -0.06 | 203 | 0.9488 |  |  |  |  |
| TC                     | -0.01    | 0.07 | -0.11 | 203 | 0.9120 |  |  |  |  |
| HIP                    | -0.03    | 0.07 | -0.38 | 201 | 0.7080 |  |  |  |  |
| $\mathbf{Sex}$         |          |      |       |     |        |  |  |  |  |
| FC                     | -0.37    | 0.14 | -2.70 | 203 | 0.0076 |  |  |  |  |
| TC                     | -0.31    | 0.14 | -2.24 | 203 | 0.0259 |  |  |  |  |
| HIP                    | -0.28    | 0.14 | -2.08 | 201 | 0.0392 |  |  |  |  |

When controlling for sex and age, patient-control status remain a significant predictor for VT in all three regions. Hence, lower VT in patients does not appear to be explained by either of these two variables. VT is significantly lower in males compared to females.

#### Bayes factor

The Bayes Factors show that there is strong evidence in data for the hypothesis that patients have lower VT than HC in all three regions, compared to patients having higher VT than HC.

Table 4: BF10 - Higher in patients v.s. no difference; BF20 - Lower in patients v.s. no difference; BF12 - Higher in patients v.s. lower in patients

| Region | BF10 | BF01 | BF20  | BF02 | BF12 | BF21   |
|--------|------|------|-------|------|------|--------|
| FC     | 0.13 | 7.73 | 8.28  | 0.12 | 0.02 | 64.01  |
| TC     | 0.16 | 6.39 | 5.03  | 0.20 | 0.03 | 32.11  |
| HIP    | 0.16 | 6.26 | 24.12 | 0.04 | 0.01 | 150.98 |



Figure 2: Estimated standardized difference in VT using a Bayesian linear effects model, with study as random effect. The black circle denotes the posterior mean, and the thick line denotes the 95% credible interval of the estimated random slopes (study specific effects); these are also presented in text next to the plots. The cross denotes the patient—control mean difference in raw data (together with its 95 percent confidence interval) without performing linear mixed-effects modeling. Hence, the difference between the dot and the cross displays the model shrinkage towards the mean.

#### Parameter estimation

Figure 2 shows the meta-analytic estimate of on overall patient-control difference in VT. The overall effect suggest that patients have lower VT in all three regions compared to controls. The posterior distributions are centered around what is commonly interpreted as a "medium" sized effect. The 95% credible intervals does however indicate that the uncertainty of the overall effect range from a negligible effect (i.e. a Cohen's D close to 0) to a large effect (i.e. a Cohen's D close to 1).

# Secondary analyses

#### Effect of medication

When adding anti-psychotic medication-status (medicated or non-medicated) as predictor, it shows no significant association to VT in any of the three regions. Patient-control status also remains a significant predictor of VT.

Table 5: Association between VT and medication status.

| Region                 | Estimate          | SE   | $\mathbf{t}$ | df  | p      |  |  |  |  |  |
|------------------------|-------------------|------|--------------|-----|--------|--|--|--|--|--|
| Patient-control status |                   |      |              |     |        |  |  |  |  |  |
| FC                     | -0.37             | 0.13 | -2.82        | 203 | 0.0053 |  |  |  |  |  |
| TC                     | -0.34             | 0.13 | -2.60        | 203 | 0.0101 |  |  |  |  |  |
| HIP                    | -0.50             | 0.13 | -3.79        | 201 | 0.0002 |  |  |  |  |  |
| medica                 | medication status |      |              |     |        |  |  |  |  |  |
| FC                     | 0.10              | 0.20 | 0.50         | 204 | 0.6151 |  |  |  |  |  |
| TC                     | 0.08              | 0.20 | 0.43         | 204 | 0.6658 |  |  |  |  |  |
| HIP                    | 0.08              | 0.19 | 0.41         | 202 | 0.6822 |  |  |  |  |  |

## Symptom severity

Association between VT and PANSS-Positive (or equivalent) and PANSS-Negative (or equivalent) in all three regions.

Table 6: Association between VT and symptom severity

| Region         | Estimate   | SE   | $\mathbf{t}$ | df     | p      |  |  |  |
|----------------|------------|------|--------------|--------|--------|--|--|--|
| PANSS-Positive |            |      |              |        |        |  |  |  |
| FC             | 0.05       | 0.09 | 0.55         | 110.00 | 0.5844 |  |  |  |
| TC             | 0.05       | 0.09 | 0.61         | 102.67 | 0.5437 |  |  |  |
| HIP            | 0.01       | 0.08 | 0.06         | 104.88 | 0.9490 |  |  |  |
| PANSS          | S-Negative |      |              |        |        |  |  |  |
| FC             | -0.01      | 0.09 | -0.09        | 110.00 | 0.9259 |  |  |  |
| TC             | 0.02       | 0.09 | 0.18         | 102.49 | 0.8610 |  |  |  |
| HIP            | -0.01      | 0.08 | -0.11        | 104.75 | 0.9104 |  |  |  |
|                |            |      |              |        |        |  |  |  |

There is no significant association between VT and PANSS-Positive or PANSS-Negative scores in any of the three regions.

## **Duration of illness**

Table 7: Association between VT and duration of illness

| Region | Estimate | SE   | t    | df    | p      |
|--------|----------|------|------|-------|--------|
| FC     | 0.06     | 0.10 | 0.64 | 96.00 | 0.5269 |
| TC     | 0.05     | 0.09 | 0.51 | 10.45 | 0.6212 |
| HIP    | 0.01     | 0.09 | 0.15 | 95.00 | 0.8824 |

There is no significant association between VT and duration of illness in any of the three regions.

# Exploratory analyses

The following analyses were not part of the pre-registration, and performed after seeing the results of the analyses above.

## Age-Group interaction effect

Results from LME model including genotype as covariate and a patient-control status v.s. age interaction effect:

Table 8: Association between VT and age-group interaction effect.

| Region                 | Estimate                               | SE   | $\mathbf{t}$ | df  | p      |  |  |  |  |  |
|------------------------|----------------------------------------|------|--------------|-----|--------|--|--|--|--|--|
| Patient-Control status |                                        |      |              |     |        |  |  |  |  |  |
| FC                     | -0.37                                  | 0.13 | -2.81        | 202 | 0.0054 |  |  |  |  |  |
| $\mathrm{TC}$          | -0.34                                  | 0.13 | -2.59        | 202 | 0.0103 |  |  |  |  |  |
| HIP                    | -0.50                                  | 0.13 | -3.79        | 200 | 0.0002 |  |  |  |  |  |
| Patient                | Patient-Control status Age interaction |      |              |     |        |  |  |  |  |  |
| FC                     | 0.06                                   | 0.13 | 0.46         | 202 | 0.6438 |  |  |  |  |  |
| TC                     | 0.00                                   | 0.14 | 0.03         | 202 | 0.9723 |  |  |  |  |  |
| HIP                    | -0.04                                  | 0.13 | -0.31        | 200 | 0.7600 |  |  |  |  |  |

The patient-control status to age-interaction was not significant, indicating no differential age effect on patients' and controls' VT values in any of the three regions of interest.

#### Sex-Group interaction effect

Results from LME model including genotype as covariate and a patient-control status v.s. sex interaction effect:

Table 9: Association between VT and sex-group interaction effect.

| Region                 | Estimate                               | SE   | t     | df  | p      |  |  |  |  |  |
|------------------------|----------------------------------------|------|-------|-----|--------|--|--|--|--|--|
| Patient-Control status |                                        |      |       |     |        |  |  |  |  |  |
| FC                     | -0.50                                  | 0.22 | -2.27 | 203 | 0.0243 |  |  |  |  |  |
| TC                     | -0.52                                  | 0.22 | -2.31 | 203 | 0.0218 |  |  |  |  |  |
| HIP                    | -0.79                                  | 0.22 | -3.60 | 201 | 0.0004 |  |  |  |  |  |
| Patient                | Patient-Control status Sex interaction |      |       |     |        |  |  |  |  |  |
| FC                     | 0.20                                   | 0.28 | 0.74  | 203 | 0.4594 |  |  |  |  |  |
| TC                     | 0.27                                   | 0.28 | 0.96  | 203 | 0.3398 |  |  |  |  |  |
| HIP                    | 0.45                                   | 0.27 | 1.66  | 201 | 0.0981 |  |  |  |  |  |

The patient-control status to sex-interaction was not significant, indicating no differential sex effect on patients' and controls' VT values in any of the three regions of interest.

#### References

- 1. Collste K, Plavén-Sigray P, Fatouros-Bergman H, Victorsson P, Schain M, Forsberg A et al. (2017): Lower levels of the glial cell marker TSPO in drug-naive first-episode psychosis patients as measured using PET and [11C]PBR28. *Molecular Psychiatry*. 22: 850–856.
- 2. Hafizi S, Da Silva T, Gerritsen C, Kiang M, Bagby RM, Prce I et al. (2017): Imaging Microglial Activation in Individuals at Clinical High Risk for Psychosis: an In Vivo PET Study with [(18) F] FEPPA.

 $Neuropsychopharmacology:\ official\ publication\ of\ the\ American\ College\ of\ Neuropsychopharmacology.\ 174:118-124.$ 

- 3. Laurikainen H, Vuorela A, Toivonen A, Reinert-Hartwall L, Trontti K, Lindgren M et al. (2020): Elevated serum chemokine CCL22 levels in first-episode psychosis: associations with symptoms, peripheral immune state and in vivo brain glial cell function. *Translational psychiatry*. In press.
- 4. Kenk M, Selvanathan T, Rao N, Suridjan I, Rusjan P, Remington G et al. (2015): Imaging neuroinflammation in gray and white matter in schizophrenia: an in-vivo PET study with [18F]-FEPPA. Schizophrenia bulletin. 41: 85–93.