Machine Learning Regression analysis

Fernando Rodríguez Sánchez

ferjorosa@gmail.com

Universidad Politécnica de Madrid

16/10/2020

- Introduction
- 2 Linear regression
- Non-linear regression
- Decision trees
- K-nearest neighbours

- Introduction
- 2 Linear regression
- Non-linear regression
- Decision trees
- K-nearest neighbours

Introduction

	X_1	 X_n	Y
$\overline{(\mathbf{x}^{(1)}, y^{(1)})}$	$x_1^{(1)}$	 $x_n^{(1)}$	$y^{(1)}$
$(\mathbf{x}^{(2)}, y^{(2)})$	$x_1^{(2)}$	 $x_n^{(2)}$	$y^{(2)}$
$(\mathbf{x}^{(m)}, y^{(m)})$	$x_1^{(m)}$	 $x_n^{(m)}$	$y^{(m)}$

Objective: To find a function $f(\mathbf{x})$ that correctly predicts the value of y given \mathbf{x}

$$f(\mathbf{x}) \to \hat{y}^{(i)} \approx y(i)$$

Introduction

Objective: To find a function $f(\mathbf{x})$ that correctly predicts the Price of the house given the number of squared metres

$$f(\mathbf{x}) \to \hat{y}^{(i)} \approx y(i)$$

- Introduction
- 2 Linear regression
- Non-linear regression
- Decision trees
- K-nearest neighbours

Linear regression (one variable)

One variable:

$$f(\mathbf{x}) = \beta_0 + \beta_1 x_1$$

- $\beta_0 \rightarrow$ function's intercept
- $\beta_1 \rightarrow$ function's slope

Linear regression with one variable

Linear regression (multiple variables)

2 variables:

$$f(\mathbf{x}) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

n variables

$$f(\mathbf{x}) = \beta_0 + \beta_1 x_1 + \dots + \beta_n x_n$$

Linear regression with two variables

Loss function

How can we know the goodness of f(x)?

$$\mathcal{L}(\hat{y}, y) = (\hat{y} - y)^2$$

Determine the values of β_0 , β_1 , ..., β_n that **minimize** $\mathcal{L}(\hat{y}, y)$

Linear regression:

- Gradient descent
- Normal equations

Extensions of linear regression

Square meters (X_1) can be transformed to allow linear regression techniques to fit much more complicated datasets

Polynomial transformation

$$f(\mathbf{x}) = \beta_0 + \beta_1 x_1 + \beta_2 x_1^2 + \beta_3 x_1^3$$

Variables generated from X_1 :

•
$$X_2 = X_1^2$$

•
$$X_3 = X_1^3$$

Polynomial regression with "one" variable

Underfitting vs Overfitting

Overfitting: If our model is too complex, the learned function may fit the training set very well $(\mathcal{L}(\hat{y},y)\approx 0)$, but **fail to generalize** to new examples (predict prices of new houses)

"Just right"

Underfit. High bias

Overfit. High variance

Addressing overfitting

1. Reduce the number of features

- Manual selection
- With an algorithm

2. Regularization

- ullet Keep all the features, but reduce magnitude/values of eta_i
- Two types: L1 (lasso), L2 (ridge)

Strengths and weaknesses

Strengths

- Regression coefficients are easy to understand
- Best model when there is a linear relationship

Weaknesses

- Outliers have a big effect, especially with small data
- Doesn't work well when there is a non-linear relationship

- Introduction
- 2 Linear regression
- Non-linear regression
- Openion Decision trees
- K-nearest neighbours

Non-linear regression

Objective: To find a function $f(\mathbf{x})$ that correctly predicts the effectiveness of a drug given its dose

$$f(\mathbf{x}) \to \hat{y}^{(i)} \approx y(i)$$

Is it appropriate to use a linear function?

- Introduction
- 2 Linear regression
- Non-linear regression
- Decision trees
- K-nearest neighbours

Decision trees

We observe three main sections of drug effectiveness

We can use a **different function** for each one of them

Decision trees

We have a numeric value (the mean) on each leaf of the tree We could have a linear regression on each leaf o **model trees**

Decision trees

We have a numeric value (the mean) on each leaf of the tree We could have a linear regression on each leaf o **model trees**

Strengths and weaknesses

Strengths

- Easy to understand (if-then-else rules)
- Easy to combine with other approaches (i.e., model trees)
- Very good when done in ensembles

Weaknesses

- Individual trees are prone to overfitting
- Pruning is usually necessary (when/how to prune?)

- Introduction
- 2 Linear regression
- Non-linear regression
- Openion Decision trees
- **6** K-nearest neighbours

K-nearest neighbours

Procedure to predict a new x:

- Measure distance to all the other instances
- Select k closest ones
- Average of the y values of those k instances

Example for k=2

K-nearest neighbours

Procedure to predict a new x:

- Measure distance to all the other instances
- Select k closest ones
- Average of the y values of those k instances

Example for k=2

K-nearest neighbours

Procedure to predict a new x:

- Measure distance to all the other instances
- Select k closest ones
- Average of the y values of those k instances

Regression function for k=2

Strengths and weaknesses

Strengths

- Easy to understand
- Can represent any function with enough data

Weaknesses

- Memory intensive
- Problems on high dimensional data (distances)
- ullet May overfit with small k

Machine Learning Regression analysis

Fernando Rodríguez Sánchez

ferjorosa@gmail.com

Universidad Politécnica de Madrid

16/10/2020

