CAP 5619 - Deep and Reinforcement Learning Project2 Hua Huang

1 Task I-Recurrent Neural Network Design

A LSTM RNN is used in this project, 2 LSTM layers are used here and each layer has 100 hidden units. The loss function is categorical crossentropy here, and learning rate is 0.005.

2 Language Models for Protein Sequences and Evaluation

The kernel is initialized as TruncatedNormal(mean = 0.0, stddev = 0.1), the biases are initialized as Constant(value = 0.5).

The optimizer is $Adam(lr = 0.005, beta_1 = 0.9, beta_2 = 0.999, epsilon = None, decay = 0.0, amsgrad = False)$, which is the most popular one in the deep learning community currently. The training history is record in Fig.1 and Fig.2.

To have an intuitive understanding of the capturing of the long-term dependence, an experiment is carried here, in which the input sequence is based on the 1st sample in the test set. The 1st char is changed from K to L. Correspondingly, the output sequences are

klsegewqlvlhvwakveadvaghgqdilirlfkshpetlekfdrfkhlk (1) lyvpshkyisnifthkftvhkqghgflilirllkshpdtlpkldrfrhlk

We can see after 22 chars and begin with G there is no consecutive chars in the new sequence that are different from the old sequence, we can say the memory is about length of 22.

Figure 1: Training history of accuracy

2.1 Sequence Generation Techniques

To demonstrate the generation techiniques, 8 sequences chosen from the test samples are used as materials. The first 10 chars for each sequence are kept, and the model is asked to generate the next 10 chars. Then the original sequences are compared with the generated sequences. The model is supposed to be able to generate similar sequences compared with the original one, and the results are:

sample 1:

MVLSEGEWQL VLHVWAKVEA MVLSEGEWQL VLHVWAKVEA

sample 2: STAGKVIKCK AAVLWEEKKP STAGKVIKCK AAVLWEEKKP

sample 3: ETELAFLYER DIYRLLAECD ETELAFLYER DIYRLLALQA

Figure 2: Training history of loss

sample 4: MTEPLILQPA KPADACVIWL MTEPLILQPA KPADAVAPDK

sample 5:

VQAVAVLKGD AGVSGVVKFE VQAVAVLKGD AGVSGHASIQ

sample 6:

MSKGEELFTG VVPILVELDG MSKGEELFTG HTPPIDGVGK

sample 7:

VTSYTLSDVV SLKDVVPEWV VTSYTLSDVV SLKDVVATCK

sample 8:

MENLNMDLLY MAAAVMMGLA MENLNMDLLY MAAAVMMGLA

We can see based on the preceding 10 chars, we can guess the next 10 chars

reasonably well. In summary, the generation is successful.

The table is given in Tab1. In which, the maximum match is measured as how many chars match with the original sequence exactly after the leading k seed input. For example, after k, the follow m chars are exactly the same with the corresponding chars at the original sequences, but the m+1 char is different than the m+1 char in the original sequence, then the match number will be m.

Table 1: Num of sequences with the given maximum mathches

k	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19+
1	679	89	26	2	9	3	0	5	2	0	0	1	1	1	0	0	0	0	0	62
2	506	68	8	14	4	3	7	9	3	2	5	3	4	3	1	1	1	3	4	231
3	267	37	27	18	9	27	20	12	14	12	10	9	9	6	7	9	12	13	9	353
4	172	48	23	12	40	26	19	20	13	12	11	13	11	8	11	13	15	10	6	397
5	173	34	13	47	32	23	22	14	13	12	16	12	8	11	14	15	10	6	6	399
6	157	35	57	36	27	23	14	14	12	16	13	10	12	14	15	10	6	6	9	394
7	153	75	39	29	26	14	16	16	16	15	12	13	14	15	10	6	6	9	10	386
8	202	54	32	28	17	16	17	16	15	12	13	14	15	10	6	6	9	10	11	377
9	200	47	43	21	18	22	17	17	14	13	14	15	11	7	7	9	10	11	2	382
10	197	66	31	21	24	17	18	16	14	14	16	11	7	7	10	10	11	2	10	378
11	212	63	30	27	19	19	16	14	15	18	11	7	7	10	10	11	2	10	13	366
12	205	65	33	23	26	20	16	16	20	14	7	7	10	10	11	2	10	14	11	360
13	226	55	29	31	21	19	17	22	14	7	8	11	10	11	3	10	14	11	7	354
14	214	66	42	29	20	18	22	17	7	8	11	10	12	3	10	14	11	8	4	354
15	224	74	35	28	19	25	19	8	9	11	10	12	3	10	14	11	8	4	7	349
16	233	68	38	23	33	20	8	10	12	11	13	3	11	14	11	8	4	7	5	348
17	241	60	34	40	26	11	11	13	11	13	5	12	14	12	9	4	8	5	6	345
18	246	66	49	30	13	12	15	12	13	5	12	14	12	9	6	8	5	6	17	330
_19	240	89	41	21	13	15	13	13	5	12	15	12	9	6	8	7	6	17	7	331