P425/1

PURE MATHEMATICS

Paper 1

Mid – Term III 2022

3 hours

INSTRUCTIONS:

Attempt all the eight questions in Section A and any five from Section B. Begin each answer on a fresh page.

Any additional question(s) answered will **not** be marked

All necessary working must be shown clearly.

Silent, non – programmable scientific calculators and mathematical tables with a list of formulae may be used.

SECTION A; (40 MARKS)

Attempt all questions in this section.

- 1. Given that α and β are roots of the equation $2x^2 11x + 15 = 0$ without solving the equation, find the possible value of $\alpha \beta$, hence form a quadratic equation with roots α and $-\beta$ ($\alpha > \beta$). (05 marks)
- 2. Solve the equation $3 \sin x + \cos 2x = 2$, for $0 \le x \le 2\pi$. (05 marks)
- 3. The first, fourth and eighth terms of an A.P form a G.P. if the first term is 9, find the common ration of the GP and the common difference of an A.P.

 (05 marks)
- 4. Find the equation of a circle with diameter AB, where A(-1,6), B(1,12).

 (05 marks)
- 5. The function $y = ax^3 + bx^2 + c$ has turning points at (0,4) and (-1,5). Find the values of a, b and c.
- 6. Find the equation of a line which is perpendicular to 3x + 2y = 1 and passes through the point of intersection of the lines. x + 2y 1 = 0 and 2x y + 8 = 0. (05 marks)
- 7. Given the parametric equation $y = \tan \theta$, $x = \sec^2 \theta$,

 Prove that $\frac{d^2y}{dx^2} = \frac{-1}{4}\cot^3 \theta$. (05 marks)
- 8. Given that the complex number Z and its complex X conjugate \overline{Z} satisfy $3Z\overline{Z} + 2i\overline{Z} = 11 + \frac{10}{3}i$ find the possible values of Z. (05 marks)

SECTION B; (60 MARKS)

Attempt any **five** questions from this section.

- 9. (a) The first term of an arithmetic progression is -11, the last term is 44 and the sum of the terms of the progression is 198. Find;
 - (i) The number of terms in the progression
 - (ii) The common difference (06 marks)
 - (b) John deposits shs. 3,000,000 at the beginning of every year in a macro finance bank starting 2015, how much would he collect at the each of 2020 if the bank offers compound interest of 12.5% per annum and the no withdrawal is made within the period. (06 marks)
- **10.** (a) Represent the following complex numbers on the same argand diagram.

$$z_1 = 3 + 4i$$

$$z_2 = -2 + 3i$$

$$z_3 = -4 - 2i$$

$$z_4 = 3 - 4i$$

Hence find the principle argument of each.

(08 marks)

(b) Use Demoivre's theorem to show that;

$$\frac{\cos 5\theta}{\cos \theta} = 1 - 12\sin^2 \theta + 16\sin^4 \theta. \tag{04 marks}$$

- 11. Given that $y = \frac{\sin x 2\sin 2x + \sin 2x}{\sin x + 2\sin 2x + \sin 3}$
 - (a) Prove that $y + \tan^2\left(\frac{x}{2}\right) = 0$, and hence express the exact value of $\tan^2 15^\circ$ in the form $p + q\sqrt{r}$ where p, q and r are integers.
 - (b) Hence find the value of x between 0° and 360° for which $2y + \sec^2\left(\frac{x}{2}\right) = 0.$ (12 marks)
- 12. (a) Show that the circles, $x^2 + y^2 6x 12y + 40 = 0$ and $x^2 + y^2 4y = 40$ are orthogonal. (06 marks)
 - (b) Sketch the parabola $(x 3)^2 = 16y$. State its;
 - (i) vertex
 - (ii) focus (06 marks)
- 13. (a) Given that $\frac{a}{b} = \frac{c}{d} = k$, show that $k = \frac{a+c}{b+d}$. Hence solve the equation $\frac{x+4z}{4} = \frac{y+z}{6} = \frac{3x+y}{5} \text{ and } 4x + 2y + 5z = 30$ (07 marks)
 - (b) Prove that $\log_c ab = \log_c a + \log_c b$. Hence solve the equation $\log_3(x-2) + \log_3(x+3) = 3$. (05 marks)

- 14. (a) Given that $y = \sqrt{\frac{1+\cos}{1-\cos}}$, show that $\frac{dy}{dx} = \frac{-1}{1-\cos}$ (06 marks)
 - (b) Given that $f(x) = 4x^2 8x + 13$. Express f(x) in the form $a + b(x + c)^2$, hence find the minimum value of f(x), starting the value of x which it occurs. (06 marks)
- 15. (a) A curve is given parametrically by $y = 3\left(\frac{1}{p^2} + \frac{2}{p} + 1\right)$ and $y = 6\left(\frac{1+p}{p}\right)$ show that the curve is a parabola and find its focus.

(05 marks)

- (b) (i) Find the equation of the tangent to the parabola $y^2 = 4ax$ at the $T(at^2, 2at)$
 - (ii) The tangent to the parabola $y^2 = 4ax$ at the point $P(ap^2, 2ap)$ and $Q(aq^2, 2aq)$ intersect at R, find the coordinates of R.

 (07 marks)

END

3