Part III Local Fields

Based on lectures by Dr. C Johansson

Michaelmas 2016 University of Cambridge

Contents

1 Basic Theory

1

1 Basic Theory

Definition (Absolute value). Let K be a field. An **absolute value** on K is a function $|\cdot|: K \to \mathbb{R}_{>0}$ s.t.

$$i. |x| = 0 \iff x = 0$$

$$ii. |xy| = |x||y| \quad \forall x, y \in K$$

iii.
$$|x+y| \le |x| + |y|$$

Definition (Valued field). A valued field is a field with an absolute value.

Definition (Equivalence of absolute values). Let K be a field and let $|\cdot|$, $|\cdot|'$ be absolute values on K. We say that $|\cdot|$ and $|\cdot|'$ are **equivalent** if the associated metrics induce the same topology.

Definition (Non-archimedean absolute value). An absolute value $|\cdot|$ on a field K is called **non-archimedean** if $|x+y| \leq \max(|x|,|y|)$ (the **strong triangle inequality**).

Metrics s.t. $d(x, z) \leq \max(d(x, y), d(y, z))$ are called **ultrametrics**.

Assumption: unless otherwise mentioned, all absolute values will be non-archimedean. These metrics are weird!

Proposition 1. Let K be a valued field. Then $\mathcal{O} = \{x \mid |x| \leq 1\}$ is an open subring of K, called the **valuation ring** of K. $\forall r \in (0,1], \{x \mid x < r\}$ and $\{x \mid x \leq r\}$ are open ideals of \mathcal{O} .

Moreover, $\mathcal{O}^x = \{x \mid |x| = 1\}.$

Proposition 2. Let K be a valued field.

i. Let (x_n) be a sequence in K. If $x_n - x_{n+1} \to 0$ then (x_n) is Cauchy

Assume that K is complete

- ii. Let (x_n) be a sequence in K. If $x_n x_{n+1} \to 0$ then (x_n) converges
- iii. Let $\sum_{n=0}^{\infty} y_n$ be a series in K. If $y_n \to 0$, then $\sum_{n=0}^{\infty} y_n$ converges