DATA OF FUTURE PAST

POSTGRES AS DISTRIBUTED ONLINE PROCESSING ANALYTICS ENGINE

by Gavin McQuillan / @gmcquillan

SETTING

Data Engineering at Urban Airship, a mobile messaging company:

- Counting lots of things as fast as possible
- HBase to the rescue
- Home grown dimensional storage called datacube

POSTGRES AS DISTRIBUTED ONLINE PROCESSING ANALYTICS ENGINE

- 1. Problem Statement
- 2. Distributed Postgres
- 3. Probabalistic Datastructures
- 4. Benchmarking Solutions, Unloaded/Loaded.

THE PROBLEM

- Data consistency
- New dimensions multiply writes
- Double counting
- Changing schema is hard
- Consistent backups?

EXPLORING SOLUTIONS

Postgres is pretty nice to work with.

Makes adhoc analytics simple.

Well known replication and backup story

PROBLEMS WITH POSTGRES

Not particularly good at scaling writes horizontally

Operationally complex

PLPROXY

- Simple API
- Battle tested
- Flexible
- Easy upgrade paths, no lock-in

APPROACH

Two phase commit

Commutative, Idempotent data

IDEMPOTENT WRITES WITH HYPERLOGLOG

Postgres-hll extension

Commutative, idempotent

Fast, approximate, cardinality

BRIEFLY, HOW HYPERLOGLOG WORKS

PLPROXY: SETTING UP FOREIGN DATA WRAPPERS IN SQL.

CLUSTER CONFIG

Partition defs, cluster version, connection config elided

Partition mapping is as follows:

PARTITION MAPPING

PROXY FUNCTIONS

PL SYNTAX EXPLAINED

EXPERIMENTAL DESIGN

PHYSICAL LAYOUT

Three Dell R610s with:

- 2 8-core Xeon CPUs
- 6 SSDs in a RAID 10 configuration (~300GB usable)
- write-back cache enabled on the I/O controller
- 48GB of ECC RAM.
- Bonded Ethernet interfaces

SIMPLE TOPOLOGY

SETTING UP THE SHARDS

EXAMPLE TABLE

```
CREATE TABLE test_counts
(
    id CHAR(22),
    date DATE,
    hour SMALLINT,
    event_ids hll,
    category TEXT
);
```

SINGLE INSERT/UPDATE

Argument types other than hll field elided

SINGLE WRITE

TUNING

- Optimum index configuration (3/4 dimensions indexed)
- The fillfactor tells Postgres to pre-allocate 90% of the index space empty, copy data less.
- Standard best practices for workMem, and other memory settings

STILL TOO SLOW

~2,000 events/sec

A transaction per tuple just won't work long-term

BATCHING

```
CREATE OR REPLACE FUNCTION upsert_test_count(
    in_ids text[], in_dates date[], in_hours smallint[],
        in_event_ids text[], in_cats text[]
) RETURNS TABLE (update int)
BEGIN

RETURN QUERY SELECT upsert_push_hll(
        c.in_ids, c.in_date, c.in_hour, c.in_event_id, c.in_cats
) FROM unnest(
        in_ids, in_dates, in_hours, in_event_ids, in_cats
) as c (in_id, in_date, in_hour, in_event_id, in_cats);
END;
$$;
```

BATCH WRITE QUERY

ANATOMY OF A PLPROXY TRANSACTION

WHEN THINGS GO WRONG

DEADLOCK DETECTED!

DEADLOCK SOLUTIONS

- Sort tuples before submitting them
- Single writer pattern

Our functions make sorting difficult, so single writer

SIMPLE TOPOLOGY

Peaks out with tuning, indexes, and batching at 11k events/sec

Next step is to increase parallelism

BENCHMARK RESULTS

SIMPLE TOPOLOGY THROUGHPUT (200K)

ADVANCED TOPOLOGY

ADVANCED TOPOLOGY THROUGHPUT (2MM)

DIRECT COMPARISON (2MM)

BENCHMARKS ON A LOADED CLUSTER

TYPES OF LOAD

- 1. Data load: number of rows, size on disk
- 2. Concurrent requests

SETTING UP A LOADED SYSTEM

- 1. 60G of test data
- 2. 20G of indexes
- 3. Added 20G more data, and 6G more indexes

SETTING UP CONCURRENT REQUESTS

- Pre-generate insert query batches into .sql files
- Run 10 concurrently in a screen session
- Not 100% representative of real-world behavior

LOADED RESULTS

READ QUERY (ADHOC)

READ QUERY RESULTS

id	date hour hll_cardinalit	У
M2E0MDdlNzYtY2Y4NC00Nz M2E0MDdlNzYtY2Y4NC00Nz M2E0MDdlNzYtY2Y4NC00Nz M2E0MDdlNzYtY2Y4NC00Nz M2E0MDdlNzYtY2Y4NC00Nz	2015-06-10 18 2015-06-10 13 2015-06-10 13 2015-06-10 6 2015-06-10 21	6 6 6 6 5

WRAP UP: POSTGRES FOR DISTRIBUTED OLAP

- Postgres can scale horizontally.
- Write throughput ~= Hbase system.
- New features are a few lines of SQL
- We retain queryability and DDLs
- Operational concerns only get worse :(

REMAINING WORK

FUTURE FEATURES

- Cross table joins
- Automated failovers(shards)
- Automated, efficient backups
- Tools to help migrate data, add partitions
- Integrating PGBouncer

WORK IS ONGOING

Ansible automation for setting up a test cluster github.com/gmcquillan/pg_plural

THANK YOU

REFERENCES

- PLProxy Syntax Reference
- PLProxy FAQ
- Martin Kleppmann on Transactions [VIDEO]
- depesz.com
- Urbanski Presentation at pgconf.ru [PDF]
- Deadlocks in Postgresql
- HyperLogLog: the analysis of near-optimal cardinality estimation algorithm - Flajolet [PDF]