CML 103 (2021) Final

Part 1 (Marks 15)

- (1) An enzyme (E) has $K_M = 5$ uM and $k_{cat} = 210$ s⁻¹ for substrate S_1 .
 - (a) Calculate the initial rate of reaction (V) when concentration of substrate is 10 μ M and total enzyme concentration is 0.1 μ M. (2)
 - (b) The presence of 6 mM of an uncompetitive inhibitor (I) decreased the initial rate by a factor of 2. What is the value of K_{ESI} (3)
 - (c) A competitive inhibitor S_2 is simultaneously present in the solution ([S_1]=10 μ M, [S_2]= 10 μ M, [E_0]=10 μ M, [I]=0). If K_M =10 μ M and K_{cat} =100 S^{-1} , calculate V_B/V_A ? (2)
- (2) The rate of reaction between ethylene and hydrogen on Nickel surface is given by:

by

$$v = \frac{k[H_2][C_2H_4]}{(1 + K[C_2H_4])}$$

Propose the mechanism of addition of hydrogen on ethylene on two different surfaces with appropriate reasoning? (4)

(3) An enzyme, E, reacts with substrate A and B by following mechanism:

$$E + A \rightleftharpoons EA$$

$$k_{-1}$$

$$EA + B \rightleftharpoons k_{2}$$

$$k_{-2}$$

$$EAB \Longrightarrow E+Y+Z$$

Derive an expression for the steady state concentration of EAB and d[P]/dt in terms of total concentration of enzyme, $[E_0]$, [A], [B], rate constants k_1 , k_2 , k_2 and k_3 (Remember that $[E]_0=[E]+[EA]+[EAB]$. [4]

Part-2 (Total Marks: 40)

1. The treatment of chlorobenzene with potassium amide in liquid ammonia results in the formation of aniline. Propose **minimum three experiments** you can devise, that can be used to distinguish between the two mechanisms given below. **Explain each experiment** how it can distinguish one pathway compared to the other pathway. (6)

- 2. The hydroxylation of deuterionorbornane catalyzed by the following iron-oxo complex gives
- a) A mixture of endo- and exo-norboran-2-oIs is produced
- b) Shows a primary kinetic isotope effect of $(k_H/k_D) = 5$

What mechanism might account for this? (3)

Ar = 2,6-dichlorophenyl

3. Q. The following reaction occurs by a general-acid catalyzed mechanism. Propose a mechanism for this reaction (**draw every step clearly and cite the rate determining step**). Propose minimum three experiments you can devise to support your proposed mechanism. (3+3)

2

- 4. Q. The acid-catalyzed hydrolysis of substituted ethylbenzoates has a ρ value of 0.14, whereas the base-catalyzed hydrolysis of the same series of compounds shows a ρ value of 2.19. Why is there such a difference? **Explain with mechanisms** (3)
- 5. Q. Determine the value of $k_{\text{p-Br}}/k_{\text{p-NO2}}$. Show detailed calculation. (4) Which reaction is faster? (1)

$$\begin{array}{c} \text{CI} \\ \\ \text{Br} \\ \\ \text{CI} \\ \\ \text{NO}_2 \\ \end{array} \begin{array}{c} \text{OH} \\ \\ \text{Br} \\ \\ \text{OH} \\ \\ \text{NO}_2 \\ \end{array} \begin{array}{c} \text{OH} \\ \\ \\ \text{NO}_2 \\ \end{array}$$

6. Q. What is the value of k_{NO2} ? (3)

$$k = 2 \times 10^{-4} / \text{M s}$$

$$k = 2 \times 10^{-4} / \text{M s}$$

$$\rho = 2.38$$

7. Draw the mechanism of the following reaction. Show every step clearly. (4)

8.Q. Explain the difference between these Hammett ρ values by **drawing mechanisms** for the two reactions. In both cases the ring marked with the substituent X is varied.

When R = H, $\rho = -0.3$ but when R = Ph, $\rho = -5.1$. (4)

$$X \stackrel{R}{=} CI \xrightarrow{NaOH} X \stackrel{R}{=} OH$$

9. Q. The hydrolysis of the following acyl chloride displayed a non-linear Hammett plot. Draw the **possible mechanisms** of the hydrolysis reaction and **assign the rate determine step** that follows this non-linear Hammett plot. (6)

