# **American Computer Science League**

#### 2019-2020

# **Intermediate and Classroom Shorts Solutions**

**ACSL Finals** 

# 1. Boolean Algebra

$$\overline{A + \overline{B} C} + \overline{B + \overline{A} C} + \overline{\overline{C} + \overline{A} B}$$

$$= \overline{A} \overline{\overline{B} C} + \overline{B} \overline{A} \overline{C} + \overline{\overline{C} A} \overline{B}$$

$$= \overline{A} (B + \overline{C}) + \overline{B} (A C) + C(\overline{A} + \overline{B})$$

$$= \overline{A} B + \overline{A} \overline{C} + A \overline{B} C + \overline{A} C + \overline{B} C$$

$$= \overline{A} B + \overline{A} (\overline{C} + C) + \overline{B} C (A + 1)$$

$$= |\overline{A} B + \overline{A} + \overline{B} C|$$

$$= \overline{A} (B + 1) + \overline{B} C$$

$$= \overline{A} + \overline{B} C$$

There is 1 OR operator.

1.1 (B)

# 2. Boolean Algebra

First simplify the new operation:

$$A \$ B = \overline{A \overline{B} + \overline{A}}$$

$$= \overline{A \overline{B}} A$$

$$= (\overline{A} + B) A$$

$$= \overline{A} A + A B$$

$$= A B$$

$$A \$ B + B \$ C + \overline{A} \$ \overline{C}$$

$$= A B + B C + \overline{A} \overline{C}$$
If  $A = 0$ , then  $0 + B C + \overline{C} = 0$ 

$$\rightarrow \overline{C} = 0 \rightarrow C = 1 \land B = 0 \implies (0, 0, 1)$$
If  $A = 1$ , then  $B + B C = 0$ 

$$\rightarrow B = 0 \land C = 0 \text{ or } 1 \implies (1, 0, 1), (1, 0, 0)$$

2. 3 (C)

# 3. Bit-String Flicking X = 01101 and Y = 10110(RSHIFT-1 (LCIRC-3 X)) | (NOT (LSHIFT-1 ((RCIRC-2 X) & Y))) = (RSHIFT-1 (LCIRC-3 01101)) OR (NOT (LSHIFT-1 ((RCIRC-2 01101) AND 10110))) 3. 11111 (A) = (RSHIFT-1 01011) OR (NOT (LSHIFT-1 (01011 AND 10110))) = 00101 OR (NOT (LSHIFT-1 00010))= 00101 OR (NOT 00100)= 00101 OR 11011 = 1111114. Bit-String Flicking Let X = abcde and NOT X = ABCDELHS = (LCIRC-2 01010) OR (RSHIFT-1 ((LCIRC-2 abcde) AND 01110)) = 01001 OR (RSHIFT-1 (cdeab AND 01110)) = (01001 OR (RSHIFT-1 0dea0))4. 8 (C) = 01001 OR 00 dea= 01 de1LHS = RHS $\rightarrow$ 01de1 = 01101 $\rightarrow$ d = 1, e = 0, a = \*, b = \*, c = \* $\rightarrow$ b = 1, c = 1, e = 1 $\rightarrow$ a = \*, d = \* Therefore X = abcde = \*\*\*108 solutions 5. Recursive Functions f(30) = f(30 + 3) + 1 = f(33) + 1 = 27 + 1 = 28 $f(33) = 2 \cdot f\left(\left[\frac{33}{2}\right]\right) - 3 = 2 \cdot f(16) - 3 = 2 \cdot 15 - 3 = 27$ f(16) = 16 - 1 = 15f(28) = 28 - 1 = 27 $f(27) = 2 \cdot f\left(\left[\frac{27}{2}\right]\right) - 3 = 2 \cdot f(13) - 3 = 2 \cdot 12 - 3 = 21$ f(13) = 13 - 1 = 125. 15 (C) $f(21) = 2 \cdot f\left(\left[\frac{21}{2}\right]\right) - 3 = 2 \cdot 9 - 3 = 15$ f(10) = 10 - 1 = 9So f(f(f(f(30))))= f(f(f(28)))= f(f(27))= f(21)= 15

#### 6. Recursive Functions

$$f(14,20) = f(14+1,20-2) + f(14,20) + 1$$

$$= f(15,18) + f(20,14) + 1 = 12 + 6 + 1 = 19$$

$$f(15,18) = f(15+1,18-2) + f(18,15) + 1$$

$$= f(16,16) + f(18,15) + 1 = 8 + 3 + 1 = 12$$

$$f(20,14) = 20 - 14 = 6$$

$$f(16,16) = f\left(\frac{16}{2},16\right), \frac{16}{2} - 3 = f(f(8,16),8) - 3$$

$$= f(19,8) - 3 = 11 - 3 = 8$$

$$f(18,15) = 18 - 15 = 3$$

$$f(8,16) = f(8+1,16-2) + f(16,8) + 1$$

$$= f(9,14) + f(16,8) + 1 = 10 + 8 + 1 = 19$$

$$f(9,14) = f(9+1,14-2) + f(14,9) + 1$$

$$= f(10,12) + f(14,9) + 1 = 4 + 5 + 1 = 10$$

$$f(16,8) = 16 - 8 = 8$$

$$f(14,9) = 14 - 9 = 5$$

$$f(10,12) = f(10+1,12-2) + f(12,10) + 1$$

$$= f(11,10) + f(12,10) + 1 = 1 + 2 + 1 = 4$$

$$f(11,10) = 11 - 10 = 1$$

$$f(12,10) = 12 - 10 = 2$$

$$f(19,8) = 19 - 8 = 11$$

6. 19 (A)

#### 7. Digital Electronics

The digital circuit translates to:

$$\overline{(A + \overline{(A + B)(B C)})}C$$

$$= (\overline{A}(\overline{A + B})(\overline{B}C))C$$

$$= (\overline{A}\overline{A}\overline{B}(\overline{B} + \overline{C}))C$$

$$= \overline{A}\overline{B}C(\overline{B} + \overline{C})$$

$$= \overline{A}\overline{B}C\overline{B} + \overline{A}\overline{B}C\overline{C}$$

$$= \overline{A}\overline{B}C + 0$$

$$= \overline{A}\overline{B}C \text{ which is } TRUE \text{ if } A = 0, B = 0 \text{ and } C = 1$$

7. 001 (D)

# 8. Digital Electronics

The circuit translates to:

(A)( 
$$\square$$
(A, B, C) C) + ((  $\square$ (A, B, C) + C)

Let  $X = \bigsqcup (A, B, C)$ . The expression is now: AX + (X + C)

| A | В | С | X | AX | X + C | AX + (X+C) |
|---|---|---|---|----|-------|------------|
| 0 | 0 | 0 | 0 | 0  | 0     | 0          |
| 0 | 0 | 1 | 1 | 0  | 1     | 1          |
| 0 | 1 | 0 | 1 | 0  | 1     | 1          |
| 0 | 1 | 1 | 0 | 0  | 1     | 1          |
| 1 | 0 | 0 | 1 | 1  | 1     | 1          |
| 1 | 0 | 1 | 0 | 0  | 1     | 1          |
| 1 | 1 | 0 | 0 | 0  | 0     | 0          |
| 1 | 1 | 1 | 0 | 0  | 1     | 1          |

8.6 (D)

Therefore there are 6 triples that make the expression TRUE.

## 9. Prefix-Infix-Postfix

$$= (24 \#) (42 \$) 5 - \& + (82 \$) (73 \$) * - \&$$

$$= 2(35-)&+(55*)-&$$

$$= 2(-2 \&) + 25 - \&$$

$$= (22 +) 25 - &$$

$$= (425 -) &$$

= -21 &

= 21

9. 21 (D)

#### 10. Prefix-Infix-Postfix

$$= * /+1 (* 3 5) * 1 (^2 3) ^3 - 5 (* 3 1)$$

$$= * / (+ 1 15) (* 1 8) ^ 3 (- 5 3)$$

$$= * (/168) (^32)$$

= 18

10. 18 (D)

| 11. Computer N    | umber Systems             |                    |             |
|-------------------|---------------------------|--------------------|-------------|
| Change each to    | its binary represen       | ntation:           |             |
|                   |                           |                    |             |
| 50: 110010        | 55: 110111                | 60: 111100         |             |
| 51: 110011        | 56: 111000                | 61: 111101         | 11. 60 (B)  |
| 52: 110100        | 57: 111001                | 62: 111110         | 11. 00 (B)  |
| 53: 110101        | 58: 111010                | 63: 111111         |             |
| 54: 110110        | 59: 111011                | 64: 1000000        |             |
| Therefore there   | e are 60 1's.             |                    |             |
| 12. Computer Nu   | ımber Systems             |                    |             |
| $2020_8 - 202_8$  | $-20_8 + 2_8 = 1$         | 600 <sub>8</sub>   |             |
|                   | bit to binary: 00         |                    | 12. 380 (C) |
| Group 4 at a ti   | ime: 0011 1000 0          | 000                |             |
| Convert to hex    | x: 3 8 0                  | )                  |             |
| 13. Data Structur | 205                       |                    |             |
|                   | onstructed using F        | IFO as follows:    |             |
| _                 | RHOD, <del>R</del> HOD, H |                    |             |
|                   |                           | EN, ODEN, DDEN,    |             |
|                   | ENDR, <del>D</del> DENDR  |                    |             |
|                   |                           | NDRON, DRON, DRON, |             |
|                   | next item popped v        |                    |             |
|                   | ioni nom poppod i         |                    |             |
|                   |                           |                    | 13. R (D)   |
|                   |                           |                    |             |
|                   |                           |                    |             |
|                   |                           |                    |             |
|                   |                           |                    |             |
|                   |                           |                    |             |
|                   |                           |                    |             |
|                   |                           |                    |             |
|                   |                           |                    |             |

#### 14. Data Structures

The binary search tree is as follows:



There are 4 nodes with only one left child: O, N, V, U

14.4(A)

## 15. Graph Theory

The graph that the adjacency matrix represents is:



The cycles are: AA, ACDA, ADA, CC, and CDC.

15. 5 (C)

# 16. Graph Theory

$$\begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 \end{bmatrix}^{2} = \begin{bmatrix} 1 & 0 & 2 & 1 & 1 & 0 \\ 2 & 0 & 2 & 1 & 0 & 0 \\ 1 & 1 & 2 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 & 0 & 0 \\ 0 & 1 & 3 & 1 & 1 & 0 \end{bmatrix}$$

The starting and ending vertices with the most paths of length 2 between them are from F to C or FC.

16. FC (C)

| 17. What Does This Program Do?                                                                                                                                                                                                                                                                        |                       |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|
| This program counts the number of increasing factors of 2020 that sum to less than 2020. They are 1, 2, 4, 5, 10, 20, 101, 202, 404 and 505.                                                                                                                                                          | 17. 10 (C)            |  |
| 18. LISP  (SETQ Z '(C(O N)(N(E C)T)(I(C(U)T))))  (CADADAR (REVERSE (CDDR Z)))  (CDDR Z) = (CDDR '(C(O N)(N(E C)T)(I(C(U)T))))                                                                                                                                                                         |                       |  |
| = (CDR '((O N)(N(E C)T)(I(C(U)T)))) = '((N(E C)T)(I(C(U)T))) (REVERSE '((N(E C)T)(I(C(U)T)))) = '((I(C(U)T))(N(E C)T)) (CADADAR '((I(C(U)T))(N(E C)T))) = (CADADR '(I(C(U)T))) = (CADAR '((C(U)T))) = (CADAR '((C(U)T)) = (CADR '(C(U)T)) = (CAR '((U)T))                                             | 18. (U) (B)           |  |
| 19. FSAs and Regular Expressions  [^aeiou] * [aeiou] [fghj-np-t] +. (ing ful age less)?  a. brush ing - OK b. help/ful - OK c. fractals - fails at C d. java - fails at V e. python! - OK f. shapeless - OK g. igloo - fails at second o h. apple - OK i. striving - fails at v j. image - fails at g |                       |  |
| Therefore, there are 5 strings that satisfy the regular expression.                                                                                                                                                                                                                                   | 19. a, b, e, f, h (C) |  |

## 20. Assembly Language

The assembly programs can be converted to ACSL WDTPD code as follows:

```
input n
while n != 0
  b = int(n / 10)
  x = b * 10
  c = n - x
  m = b + c
  y = m - int(m / 3) * 3
  if m == y then
      print n
  end if
  input n
end while
```

20.4(A)

This program checks if a given number is divisible by 3 by adding the digits to see if the sum is a multiple of 3. There are 4 such numbers before inputting 0: 24, 45, 51, 60.