$$I^{G}(J^{PC}) = ?^{?}(1^{-})$$

Seen in radiative return from e^+e^- collisions at $\sqrt{s}=9.54$ –10.58 GeV by AUBERT 07S, WANG 07D, and LEES 14F. See also the review under the X(3872) particle listings. (See the index for the page number.)

X(4360) MASS

VALUE	(MeV)		EVTS	DOCUMENT	ID	TECN	COMMENT
4341	± 8	OUR	AVERAGE	Error includ	des sc	ale facto	or of 1.3. See the ideogram below.
4320.0	0 ± 10.4	4±7.0					$e^+e^- ightarrow \pi^+\pi^-J/\psi$
4347	\pm 6	± 3	279				10.58 $e^+e^- \to \gamma \pi^+\pi^-\psi(2S)$
4340	± 16	± 9	37	³ LEES	14F	BABR	10.58 $e^+e^- \to \gamma \pi^+\pi^-\psi(2S)$
• • •	We do	o not us	se the follo	wing data for	avera	ges, fits	, limits, etc. • • •
4355	$^{+}_{-10}$	± 9	74	⁴ LIU	08н	RVUE	10.58 $e^+e^- \to \gamma \pi^+\pi^-\psi(2S)$
4324	± 24			⁵ AUBERT	07 S	BABR	10.58 $e^+e^- \to \gamma \pi^+\pi^-\psi(2S)$
4361	\pm 9	± 9	47	³ WANG	07 D	BELL	10.58 $e^+e^- \to \gamma \pi^+\pi^- \psi(2S)$
1 Every a three vectorouse fit							

From a three-resonance fit.

Created: 5/30/2017 17:21

² From a two-resonance fit. Supersedes WANG 07D.

³ From a two-resonance fit.

⁴ From a combined fit of AUBERT 07s and WANG 07D data with two resonances. ⁵ From a single-resonance fit. Systematic errors not estimated.

X(4360) WIDTH

VALUE (MeV)	EVTS	<u>DOCUMENT</u>	ID	TECN	COMMENT	
102 ± 9 OUR	WERAGE					
$101.4^{+25.3}_{-19.7}{\pm}10.2$		¹ ABLIKIM	17 B	BES3	$e^+e^- \rightarrow \pi^+\pi^- J/\psi$	
$103~\pm~9~\pm~5$	279	² WANG			10.58 $e^+e^- \to \gamma \pi^+\pi^-\psi(2S)$	
$94 \pm 32 \pm 13$	37	³ LEES	14F	BABR	10.58 $e^+e^- \to \gamma \pi^+\pi^- \psi(2S)$	
• • • We do not us	se the foll	owing data for	avera	ages, fits	, limits, etc. • • •	
103 $^{+17}_{-15}$ ± 11	74	⁴ LIU	08н	RVUE	10.58 $e^+e^- \to \gamma \pi^+\pi^-\psi(2S)$	
172 ± 33		⁵ AUBERT			10.58 $e^+e^- \to \gamma \pi^+\pi^-\psi(2S)$	
$74\pm15\pm10$	47	³ WANG	07 D	BELL	10.58 $e^+e^- \to \gamma \pi^+\pi^- \psi(2S)$	
$\frac{1}{2}$ From a three-resonance fit. $\frac{2}{2}$ From a two-resonance fit. Supersedes WANG 07D.						

I

X(4360) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	e^+e^-	
Γ_2^-	$\psi(2S)\pi^+\pi^-$	seen
Γ_3	$\psi(3823)\pi^{+}\pi^{-}$	possibly seen
Γ_4	$J/\psi \eta$	
-	$D^{0}D^{*-}\pi^{+}$	
	$\chi_{c1}\gamma$	
Γ ₇	$\chi_{c2}\gamma$	

$X(4360) \Gamma(i) \times \Gamma(e^+e^-)/\Gamma(total)$

$\Gamma(\psi(2S)\pi^+\pi^-)$ × $\Gamma(e^+e^-)/\Gamma_{\rm total}$ $\Gamma_2\Gamma_1/\Gamma$ DOCUMENT ID TECN COMMENT • We do not use the following data for averages, fits, limits, etc. • • •

$9.2 \pm 0.6 \pm 0.6$	279	¹ WANG	15A BELL 10.58 $e^+e^- \to \gamma \pi^+\pi^-\psi(2S)$
$10.9\!\pm\!0.6\!\pm\!0.7$	279	² WANG	15A BELL 10.58 $e^+e^- \to \gamma \pi^+\pi^-\psi(2S)$
$6.0\!\pm\!1.0\!\pm\!0.5$	37	³ LEES	14F BABR 10.58 $e^+e^- \to \gamma \pi^+\pi^- \psi(2S)$
$7.2\!\pm\!1.0\!\pm\!0.6$	37	⁴ LEES	14F BABR 10.58 $e^+e^- \to \gamma \pi^+\pi^-\psi(2S)$
$11.1^{+1.3}_{-1.2}$	74	⁵ LIU	08H RVUE 10.58 $e^{+}e^{-} \rightarrow \gamma \pi^{+}\pi^{-}\psi(2S)$
12.3 ± 1.2	74	⁶ LIU	08H RVUE 10.58 $e^{+}e^{-} \rightarrow \gamma \pi^{+}\pi^{-}\psi(2S)$
$10.4 \pm 1.7 \pm 1.5$	47	³ WANG	07D BELL 10.58 $e^{+}e^{-} \rightarrow \gamma \pi^{+}\pi^{-}\psi(2S)$
$11.8\!\pm\!1.8\!\pm\!1.4$	47	⁴ WANG	07D BELL 10.58 $e^+e^- \to \gamma \pi^+\pi^- \psi(2S)$

¹ Solution I of two equivalent solutions from a fit using two interfering resonances. Super-

Created: 5/30/2017 17:21

³ From a two-resonance fit. ⁴ From a combined fit of AUBERT 07s and WANG 07D data with two resonances. ⁵ From a single-resonance fit. Systematic errors not estimated.

sedes WANG 07D. 2 Solution II of two equivalent solutions from a fit using two interfering resonances. Supersedes WANG 07D.

³ Solution I of two equivalent solutions in a fit using two interfering resonances.

 $^{^4\,\}text{Solution II}$ of two equivalent solutions in a fit using two interfering resonances. $^5\,\text{Solution I}$ in a combined fit of AUBERT 07s and WANG 07D data with two resonances. $^6\,\text{Solution II}$ in a combined fit of AUBERT 07s and WANG 07D data with two resonances.

$\Gamma(J/\psi\eta) \times \Gamma(e^+$	$e^-)/\Gamma_{ m tot}$	al				$\Gamma_4\Gamma_1/\Gamma$
VALUE (eV)	CL%	DOCUMENT ID		TECN	COMMENT	
ullet $ullet$ We do not use	the followin	ng data for average	s, fits,	, limits,	etc. • • •	
<6.8	90	WANG	13 B	BELL	$e^+e^- o J_{/}$	$\psi \eta \gamma$
$\Gamma(\chi_{c1}\gamma) \times \Gamma(e^+c^-)$	e ⁻)/Γ _{tota}	hl				$\Gamma_6\Gamma_1/\Gamma$
VALUE (eV)	CL%	DOCUMENT ID		TECN	COMMENT	
<0.57	90	¹ HAN	15	BELL	$10.58 e^{+}e^{-}$	$\rightarrow \chi_{c1} \gamma$
1 Using B($\eta ightarrow \gamma \gamma$) = (39.41	\pm 0.21)%.				
$\Gamma(\chi_{c2}\gamma) \times \Gamma(e^+e^-)$	e ⁻)/Γ _{tota}	al				$\Gamma_7\Gamma_1/\Gamma$
<i>VALUE</i> (eV)		DOCUMENT ID		TECN	COMMENT	
<1.9	90	¹ HAN	15	BELL	$10.58 e^+e^-$	$\rightarrow \chi_{c2} \gamma$
1 Using B($\eta ightarrow \gamma \gamma$) = (39.41	\pm 0.21)%.				

X(4360) BRANCHING RATIOS

$$\frac{\Gamma(D^0D^{*-}\pi^+)/\Gamma(\psi(2S)\pi^+\pi^-)}{\langle 8} \qquad \qquad \frac{CL\%}{90} \qquad \frac{DOCUMENT\ ID}{PAKHLOVA} \qquad \frac{TECN}{90} \qquad \frac{COMMENT}{e^+e^- \rightarrow X(4360) \rightarrow D^0D^{*-}\pi^+}$$

X(4360) REFERENCES

ABLIKIM	17B	PRL 118 092001	M. Ablikim et al.	(BES III Collab.)
ABLIKIM	15S	PRL 115 011803	M. Ablikim <i>et al.</i>	(BES III Collab.)
HAN	15	PR D92 012011	Y.L. Han <i>et al.</i>	(BELLE Collab.)
WANG	15A	PR D91 112007	X.L. Wang <i>et al.</i>	(BELLE Collab.)
LEES	14F	PR D89 111103	J.P. Lees et al.	(BABAR Collab.)
WANG	13B	PR D87 051101	X.L. Wang <i>et al.</i>	(BELLE Collab.)
PAKHLOVA	09	PR D80 091101	G. Pakhlova <i>et al.</i>	(BELLE Collab.)
LIU	H80	PR D78 014032	Z.Q. Liu, X.S. Qin, C.Z. Yuan	,
AUBERT	07S	PRL 98 212001	B. Aubert <i>et al.</i>	(BABAR Collab.)
WANG	07D	PRL 99 142002	X.L. Wang et al.	(BELLE Collab.)

Created: 5/30/2017 17:21

¹ From a fit of $e^+e^- \to \pi^+\pi^-\psi(3823)$, $\psi(3823) \to \chi_{c1}\gamma$ cross sections taken at \sqrt{s} values of 4.23, 4.26, 4.36, 4.42, and 4.60 GeV to the X(4360) line shape.

 $^{^{1}}$ Using 4355 $^{+}_{-10}$ 9 \pm 9 MeV for the mass of X(4360).