32

self.fingerpris

CONSTELLATION

ASSET MANAGEMENT

CONSTELLATION TALKS #3

Prevendo Séries Temporais

```
th:
elf.file.
self.fingerprints.
thod
n_settings(cls,
ug = settings.
urn cls(job_dir(sett
quest_seen(self,
   self.request_fi
 fp in self.fingerprints:
  return True
elf.fingerprints.add(fp)
  self.file:
   self.file.write(fp + os.limena
request_fingerprint(self, re
return request_fingerprint(reque
```

Novembro | 2022

Quem é a Constellation?

SOMOS UMA GESTORA DE INVESTIMENTOS QUE BUSCA GERAR VALOR NO LONGO PRAZO

Quem é a pessoa que vos fala?

LEONARDO PAZ

Head of Software Development and Technology

Gamer nas horas que sobram

Machine Learning Enthusiast

Requisitos

Precisamos garantir que quem está assistindo já possua alguns conhecimentos básicos

| Noções de Aprendizado de Máquina e estatística

Encontre o conteúdo em https://github.com/Constellation-Dev-Team

- O que é aprendizado de máquina?
- Como uma máquina pode aprender?
- O que são séries temporais
- Observando o comportamento no tempo
- Diferenças ao prever séries temporais
- Estacionariedade
- Decomposição de séries temporais
- Exemplos

O que é aprendizado de máquina?

Campo de estudo que dá aos computadores a habilidade de aprender sem serem explicitamente programados

Arthur Samuel (1959)

O que é aprendizado de máquina?

- Toda função matemática, estatística ou computacional que consegue extrair parâmetros de de uma série de dados para representar aquele conjunto de dados.
- Pode-se, posteriormente, usar essas funções e parâmetros para prever novas amostras desses conjunto de dados (Aprendizado Supervisionado).
- Pode-se, também, utilizar essa nova representação para identificar padrões nos dados (Aprendizado não-supervisionado).

Tipos de aprendizado de máquina

Supervisionado	Não-Supervisionado	Por Reforço
Dados $X \in \mathbb{R}^n$, $y \in R$ Encontre f , t . q . $f(X) \mapsto y$	Dado $X \in \mathbb{R}^n$, encontre f , t.q. $f(X)$ extraia alguma informação relevante de X	Dados um conjuto de ações A , um conjunto de estados S e uma função de recompensa R , encontre $\pi(s,a) = max_{a \in A, s \in S}R(s)$
Você conhece X e y e quer encontrar algo que preveja y baseado em X	Você quer encontrar algum padrão relevante em X.	Você quer encontrar uma solução onde você não consegue definir certos e errados, apenas recompensar o for correto
Baseado no preço anterior, quero definir o próximo preço de uma ação	Quero encontrar grupos semelhantes na minha amostra	Quero que um robô jogue xadrez –

Aprendizado Supervisionado

O que é uma série temporal?

| Uma série temporal é um conjunto de dados INDEXADO pelo tempo.

| Em geral, tentamos usar um modelo de regressão. Também pode ser utilizado com classificação, mas possui um uso menos frequente.

| Existe uma noção natural e intríseca de sequência e ordenação nos dados

date

Exemplo

Dado uma amostra de dados, podemos encontrar uma função linear

Prevendo uma série temporal

Mas o que poderia ser modelado dessa forma?

- Garantir algum grau de estacionariedade
- Garantir que a variável prevista é uma variável aleatória independente e identicamente distribuída

Observando um comportamento no tempo

A realidade é diferente da teoria:

- Nem todo dado de uma série pode ser explicado pela série
- Diferente de outros conjuntos de dados, impactos aleatórios aqui são mais graves e tendem a fazer a predição muito mais volátil.
- Boa parte dos usos reais de predição de séries temporais contem variáveis externas que não estão incluídas no conjunto dado

Por quê precisamos tratá-las de forma diferente?

É muito fácil cometer erros de Look-ahead

Muito fácil criar modelos que não performam bem fora do conjunto de dados (overfit)

Métricas pouco assertivas para predição de casos reais

Como podemos prever séries temporais?

- A chave da predição de séries temporais está na criação de um modelo que consegue identificar os padrões cíclicos e não-cíclicos dos dados
- Estacionariedade e Variável IID
- Padrões não-cíclicos:
 - Tendências globais
 - Tendências locais
- Padrões cíclicos:
 - Sazonalidade
 - Outros padrões cíclicos

Como endereçar os problemas anteriores?

- Separação Treino/Desenvolvimento/Teste sequencial
- Walking-Forward Validation
- Não utilizar validação cruzada normal
- Combinatorial Purged Cross Validation em alguns casos (Marco Lopes de Prado, 2016)

Estacionariedade e Var. IID

Antes de seguirmos, vamos escrever essas equações em formato matricial para facilitar nosso futuro

- Podemos utilizar o Augmented Dickey-Fuller Test para verificar estacionariedade da série
- Separar os dados em sets de treino, desenvolvimento e teste podem ser uma forma de garantir que o processo observado é IID
- Caso a variável não seja completamente IID, ela pode ser IID por um período de tempo, ou pelo menos podemos assumir isso.
- Walking-Forward Validation é uma forma de testar períodos onde o processo seja IID

Decomposição da série temporal

Modelo Aditivo P(t) = trend + seasonality + ciclic + noise

Modelo Multiplicativo P(t) = trend * seasonality * ciclic * noise

Componentes

- Tendência: componente permanente que permeia toda a série
 - Linear
 - Não linear
- Seasonalidade: componente cíclico que depende do calendário
 - Minutos, Horas, Dias, Semanas, Meses, Semestres e Anos
- Ciclos: demais componentes cíclicos que não depende do calendário
 - Podemos extrair tendências cíclicas utilizando regressões sobre séries de Fourier e as séries
- Auto-regressivos: comportamentos que dependem dos valores anteriores da série

$$P(t) \coloneqq f(P(t-1))$$

Ruído em Séries temporais

Vamos considerar a equação:

$$P(t)$$
=trend + seasonality + ciclic + noise

- Uma regressão pode capturar parte do comportamento do ruído como valor significante da série temporal.
- Séries em que a razão ruído-sinal seja alto, se tornam mais difíceis de prever para períodos fora da amostra (out of sample)

Algumas técnicas para reduzir o ruído:

- Médias móveis
- Filtro de Kalman
- AR models: ARMA, ARIMA, ARIMAX...

Métricas de Erro em séries temporais

Erro quadrático médio (MSE)

Raiz do Erro quadrático médio (RMSE)

Erro Médio Absoluto (MAE)

Erro Médio Percentual Absoluto (MAPE)

Agora vamos para o código

ASSET MANAGEMENT

Referências

https://www.kaggle.com/learn/time-series

https://machinelearningmastery.com/decompose-time-series-data-trend-seasonality/

https://machinelearningmastery.com/time-series-seasonality-with-python/

https://medium.com/@khairulomar/deconstructing-time-series-using-fourier-transform-e52dd535a44e

