- 3 n を自然数として , $f(x) = \sum_{k=1}^{n} \frac{x^k}{k}$ とおく .
- (1) x < 1 において,

$$f(x) = -\log(1-x) - \int_0^x \frac{t^n}{1-t} dt$$

が成り立つことを示せ.ここで, $\log rac{t^n}{1-t}$ は自然対数を表す.

- (2) $|x| \leq \frac{1}{3}$ とするとき,次の不等式が成り立つことを示せ.
 - (i) $x \ge 0$ において , $\int_0^x rac{t^n}{1-t} dt \le rac{3x^{n+1}}{2(n+1)}$
 - (ii) x < 0 において, $\left| \int_0^x \frac{t^n}{1-t} dt \right| \leq \frac{|x|^{n+1}}{n+1}$
 - (iii) $\left| f(s) f(-x) \log \frac{1+x}{1-x} \right| \le \frac{5|x|^{n+1}}{2(n+1)}$
- (3) この不等式を用いて, $\log 2$ の近似値を誤差が $\frac{1}{100}$ 以下となるような分数で求めよ.