МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа аэрокосмических технологий

Отчёт о выполнении лабораторной работы 2.1.3

Определение C_P/C_V по скорости звука в газе

Соболевский Федор Александрович Б03-109

1 Аннотация

В данной работе с помощью определения резонансных частот найдена скорость звука в различных газах. По скорости звука из уравнения идеального газа определён показатель адиабаты газов. Вычислены и проанализированы систематические и случайные погрешности, оценена применимость модели идеального газа для вычисления скорости звука.

2 Теоретические сведения

2.1 Скорость звука в газе

Скорость звука в идеальном газе определяется формулой

$$c = \sqrt{\gamma \frac{RT}{\mu}},$$

где R - универсальная газовая постоянная, T - температура газа, μ - его молярная масса, γ - его показатель адиабаты. Преобразуя данную формулу, получаем выражение для показателя адиабаты

$$\gamma = \frac{\mu}{RT}c^2. \tag{1}$$

При распространении звука в газе в трубе резонанс - резкое увеличение амплитуды колебаний - возникает, когда в длину трубы укладывается целое число полуволн, то есть

$$L = n\frac{\lambda}{2}, \ n \in \mathbb{N}.$$

Здесь L - длина трубы, λ - длина звуковой волны. Скорость звуковой волны связана с её длиной и частотой f соотношением

$$c = \lambda f. \tag{2}$$

Подбор условий возникновения резонанса можно производить двумя способами:

1. При неизменной частоте звукогенератора менять длину трубы. Для последовательных резонансов при неизменной длине волны имеем:

$$L_n = n\frac{\lambda}{2}, L_{n+k} = n\frac{\lambda}{2} + k\frac{\lambda}{2}.$$
 (3)

В этом случае величина $\lambda/2$ равна коэффициенту наклона графика зависимости длины трубы от номера резонанса.

2. При постоянной длине трубы изменять частоты звукогенератора. Для последовательных резонансов имеем

$$L = \frac{\lambda_1}{2}n = \frac{\lambda_2}{2}(n+1) = \dots = \frac{\lambda_{k+1}}{2}(n+k).$$
 (4)

Из (2) и (4) имеем

$$f_1 = \frac{c}{\lambda_1} = \frac{c}{2L}n$$
, $f_2 = \frac{c}{\lambda_2} = \frac{c}{2L}(n+1) = f_1 + \frac{c}{2L}$, ...,

$$f_{k+1} = \frac{c}{\lambda_{k+1}} = f_1 + \frac{c}{2L}k.$$

Скорость звука определяется из углового коэффициента наклона графика зависимости резонансной частоты от номера резонанса.

Рис. 1: Установка для измерения скорости звука при помощи раздвижной трубы

Рис. 2: Установка для изучения зависимости скорости звука от температуры

2.2 Экспериментальная установка

Соответственно двум методам измерения скорости звука в работе были использованы две установки (рис. 1 и 2). В обеих установках звуковые колебания в трубе возбуждались телефоном Т и улавливались микрофоном М. Мембрана телефона приводима в движение переменным током звуковой частоты; в качестве источника переменной ЭДС использовался звуковой генератор ГЗ. Возникающий в микрофоне сигнал наблюдался на осциллографе ЭО.

Микрофон и телефон присоединены к установке через тонкие резиновые трубки. Такая связь достаточна для возбуждения и обнаружения звуковых колебаний в трубе и в то же время мало возмущает эти колебания: при расчетах оба торца трубы можно считать неподвижными, а влиянием соединительных отверстий пренебречь.

Первая установка (рис. 1) содержит раздвижную трубу с миллиметровой шкалой. Через патрубок (на рисунке не показан) труба может наполняться воздухом или углекислым газом из газгольдера. На этой установке производились измерения показателя адиабаты для воздуха и для CO_2 . Вторая установка (рис. 2) содержит теплоизолированную трубу постоянной длины. Воздух в трубе нагревался водой из термостата. Температура газа принимается равной температуре омывающей трубу воды. На этой установке измерялась зависимость скорости звука от температуры.

Рис. 3: Резонансные длины трубы для воздуха

3 Оборудование и инструментальные погрешности

В работе использовались: звуковой генератор ГЗ; электронный осциллограф ЭО; микрофон; телефон; частотометр; раздвижная труба с линейкой; теплоизолированная труба, обогреваемая водой из термостата; баллон со сжатым углекислым газом; газгольдер.

Инструментальные погрешности:

• Линейка: $\Delta_L = 1$ мм;

• Частотометр: $\Delta_f = 1 \Gamma_{\text{Ц}}$;

• Термометр термостата: $\Delta_T = 0.1 \text{ K}.$

4 Результаты измерений и обработка экспериментальных данных

4.1 Измерение скорости звука на первой установке

Измерения на первой установке проводились для воздуха и для углекислого газа. Начальная длина раздвижной трубы $L_0 = 570 \pm 1$ мм, комнатная температура - 24,8 °C.

Для набора частот были найдены соответствующие резонансу длины трубы. По этим данным были построены зависимости резонансных длин от их номера. Графики данных зависимостей изображены на рис. 3 и 4. Далее методом наименьших квадратов были найдены угловые коэффициенты наилучших прямых, равные из (3) $\lambda/2$. Отсюда по формуле (2) была найдена скорость звука для каждого измерения. Результаты измерений представлены в таблице 1.

По результатам опыта с углекислым газом видно, что полученные значения скорости звука гораздо ближе к табличному значению для воздуха ($c_{\rm air}=334~{\rm m/c}$), чем для углекислого газа ($c_{\rm CO_2}=260~{\rm m/c}$). Это говорит о том, что при проведении измерений для углекислого газа в установку натекло значительное количество воздуха, из-за чего результаты эксперимента ошибочны. Из-за этого в дальнейшем будут рассматриваться только значения скорости звука в воздухе.

По результатам опыта можно определить среднее значение скорости звука, случайную, систематическую и полную погрешность его определения:

Рис. 4: Резонансные длины трубы для углекислого газа

Воздух						
f , к Γ ц	$\Delta L_{ m pes},{ m cm}$	$k = \lambda/2$, cm	λ, м	с, м/с		
1,7	5,4; 15,6	10,2	0,204	346,8		
2,55	4,2; 10,9; 17,6	6,7	0,134	341,7		
3,4	3,3; 8,4; 13,3; 18,4	5,0	0,100	341,4		
4,25	4,7; 8,8; 12,9; 16,9; 21,0	4,1	0,081	346,0		
5,1	1,4; 4,7; 8,1; 11,5; 14,8; 18,2	3,4	0,067	343,0		
Углекислый газ						
f , к Γ ц	$\Delta L_{ m pes},{ m cm}$	$k = \lambda/2$, cm	λ, м	с, м/с		
1,1	1,4; 15,6	14,2	0,284	312,4		
1,6	4,4; 13,1; 21,8	8,7	0,174	278,4		
2,7	0,1; 6,3; 12,7; 18,9	6,3	0,126	339,1		
3,5	2,1; 7,0; 11,8; 16,7; 21,6	4,9	0,097	340,9		
4,2	0,8; 5,0; 9,0; 13,1; 17,2; 21,2	4,1	0,082	342,5		

Таблица 1: Результаты вычисления скорости звука с помощью раздвижной трубы

t, °C	$f_{1-7},$ к Γ ц	$k = c/2L, c^{-1}$	c , $\mathrm{m/c}$	γ
24,8	1,521; 1,743; 1,959; 2,176; 2,393; 2,611; 2,827	217,0	347,2	1,412
30,0	1,319; 1,538; 1,757; 1,975; 2,194; 2,413; 2,633	218,9	350,2	1,412
35,0	1,330; 1,551; 1,771; 1,991; 2,211; 2,432; 2,653	220,4	352,6	1,408
40,0	1,340; 1,563; 1,785; 2,007; 2,229; 2,451; 2,674	222,2	355,5	1,408
45,0	1,351; 1,575; 1,799; 2,022; 2,246; 2,470; 2,695	223,9	358,2	1,408
50,0	1,359; 1,585; 1,810; 2,034; 2,260; 2,486; 2,711	225,3	360,5	1,403

 Таблица 2: Результаты вычисления скорости звука и показателя адиабаты при разных температурах

$$\bar{c} = \frac{1}{5} \sum c_i = 343.8 \text{ m/c},$$

$$\sigma_c^{\text{случ}} = \sqrt{\frac{1}{5 \cdot 4} \sum (c_i - \bar{c})^2} = 1.1 \text{ m/c},$$

$$\sigma_c^{\text{сист}} = c \sqrt{(\frac{\Delta_f}{f})^2 + (\frac{2\Delta_L}{\lambda})^2} = 6.9 \text{ m/c},$$

$$\sigma_c^{\text{полн}} = \sqrt{(\sigma_c^{\text{сист}})^2 + (\sigma_c^{\text{случ}})^2} = 7 \text{ m/c}.$$

Итоговое значение скорости звука в воздухе в первом опыте:

•
$$c_1 = 344 \pm 7 \text{ m/c}$$
.

Отсюда можно найти по формуле (1) показатель адиабаты и определить погрешность его измерения:

$$\gamma = \frac{\mu}{RT}c^2 = 1.38$$

$$\sigma_{\gamma} = \gamma \sqrt{(\frac{\Delta_T}{T})^2 + 2^2(\frac{\sigma_c^{\text{полн}}}{c})^2} = 0.06$$

Итоговое значение показателя адиабаты воздуха в первом опыте:

• $\gamma = 1.38 \pm 0.06$.

4.2 Измерение скорости звука на второй установке

Во втором опыте измерения проводились на установке с трубой постоянной длины $L=800\pm1$ мм для 6 температур в диапазоне от 25 до 50 °C. Измерялись последовательные резонансные частоты для каждого значения температуры. Для каждого значения температуры найден угловой коэффициент c/2L и соответствующие значения скорости звука и показателя адиабаты. Результаты измерений приведены в таблице 2.

Среднее значение показателя адиабаты

$$\overline{\gamma} = \frac{\sum \gamma_i}{6} = 1,409.$$

Вычислим погрешность определения найденных величин:

$$\begin{split} \sigma_{c/2L}^{\text{случ}} &= \sqrt{\frac{1}{7} \left(\frac{\langle f^2 \rangle - \langle f \rangle^2}{\langle k^2 \rangle - \langle k \rangle^2} - (c/2L)^2 \right)} = 0,1 \text{ c}^{-1}, \\ \sigma_{c/2L}^{\text{полн}} &= \sqrt{(\sigma_{c/2L}^{\text{случ}})^2 + \Delta_f^2} = 1 \text{ Ги,} \\ \sigma_{\gamma}^{\text{сист}} &= \gamma \sqrt{2^2 (\frac{\sigma_{c/2L}^{\text{полн}}}{c/2L})^2 + 2^2 (\frac{\sigma_L}{L})^2 + (\frac{\Delta_T}{T})^2} = 0,014; \\ \sigma_{\gamma}^{\text{случ}} &= \sqrt{\frac{1}{5 \cdot 6} \sum (\gamma_i - \overline{\gamma})^2} = 0,001; \\ \sigma_{\gamma}^{\text{полн}} &= \sqrt{(\sigma_{\gamma}^{\text{сист}})^2 + (\sigma_{\gamma}^{\text{случ}})^2} = 0,014. \end{split}$$

Итоговое значение показателя адиабаты во втором опыте:

• $\gamma = 1,409 \pm 0,014$.

5 Обсуждение результатов и выводы

Табличное значение показателя адиабаты для воздуха $\gamma=1,40$. Полученные в обоих опытах значения совпадают с табличным в пределах одного стандартного отклонения, что говорит о высокой точности проведённых измерений. Более точными оказались измерения при помощи второй установки, т.к. относительная погрешность измерения во втором опыте составила лишь 25% от погрешности в первом опыте. Это было возможно благодаря высокой точности частотометра, вследствие чего систематическая погрешность измерений была мала, и итоговое значение относительной ошибки измерений не превышает 1%.

Найденное значение показателя адиабаты в пределах погрешности совпадает со значением показателя адиабаты двухатомного идеального газа, равного 7/5. Это доказывает, что модель идеального газа применима при изучении распространения звука в воздухе.

Опыт показал, что установка, не изолированная от внешнего воздушного пространства, мало подходит для измерений с другими газами. Решить эту проблему можно с помощью вакуумной откачки герметичной трубы и последующим заполнением её чистым CO_2 .