

5/5 points (100.00%)

✓ Congratulations! You passed!

Next Item

1/1 point

1

The method of maximum likelihood gives the same parameter estimates as the method of least squares for any measurement noise distribution.

True

Correct

Correct! The noise must be from the Gaussian family.

1/1 point

2.

The product of several Gaussian PDFs with identical variances is also Gaussian.

Correct

Correct! We used this fact to derive the connection between maximum likelihood and least squares.

False

1/1 point

3.

The least squares criterion is robust to outliers.

True

False

Correct

Correct! Least squares is particularly sensitive to outliers due to the use of squared errors!

1 / 1 point

4.

For a scalar Gaussian random variable, what is the form of the full log likelihood function?

 $-\frac{1}{2} \log(2\pi) - \frac{1}{2} \log\left(\sigma^2\right) - \frac{1}{2\sigma^2} \left(x - \mu\right)^2$

5/5 points (100.00%)

1/1 point

True or False, $\operatorname{argmin}_x f(x) = \operatorname{argmax}_x f(-x)$.

True

False

Correct

 $\text{Correct! argmin }_x\,f(x)=\operatorname{argmax}_x\,-f(x).$

