Course: Cell Physiology-PHYS-115

Introduction to Cell Biology Cell Structure & Function

Learning Objectives:

- ❖ Define the term "cell".
- ❖ Describe cell theory.
- * Explain the relation of cell size to the diffusion of substances into and out of cells.
- ❖ List the factors affecting rate of diffusion.
- ❖ Describe Prokaryotic and Eukaryotic cells.
- * Enumerate cell organelles and describe their functions.
- ❖ Describe the function of cells in general.

Introduction:

- All organisms are composed of cells; the gossamer wing of a butterfly is a thin sheet of cells and so is the glistening outer layer of your eyes.
- * The meat or cucumber you eat is composed of cells, and its contents soon become part of your own cells.
- Some organisms are made of a single cell too small to see with your naked eyes.
- Others, like human and animals are composed of millions of specialized cells.
- ❖ Cells are so much a part of life that we cannot imagine an organism that is not cellular in nature.

WHAT IS A CELL?

The cell is the smallest unit capable of carrying out the processes associated with life.

Living Organisms:

Reproduction

Nutrition

Respiration

Excretion

Irritability/respond

Movement

Growth

Classical Properties of | How cells fulfill these criteria of **Living Organisms:**

Cell replication

Nutrition

Respiration

Excretion

Respond to environment

Movement within and externally

Grow in number and size

Historical Background:

- **Cytology** = *The study of cells.*
 - ➤ Because the cells are so small (*microscopic in size*), they were not discovered until the invention of the microscope in the 17th century.
 - ➤ Robert Hooke was the first to observe cells in 1665, naming the shapes he saw in cork *cellullae* (Latin, "small rooms").
 - Another early microscopist, Leeuwenhoek first observed living cells, which termed "animalcules", or little animals.
 - After theses early efforts, a century and a half passed before biologist fully recognized the importance cells. Schleiden & Schwann saw cells in almost all living tissues they look at in 1839. Thus, the cell theory was born all living things are made of cells.
 - > (50 yrs. later) Rudolf Virchow: "all cells come from cells"

Historical Background: "contd."

- > The cell theory includes the following three principles:
 - ✓ All organisms consist of one or more cells.
 - ✓ The cells are the smallest living things, the basic units of organization of all organisms.
 - ✓ All cells arise only from pre-existing cells by division.
- In 1930 Electron microscope allowed the study of cell organelles in details. LM limit: 200nm (0.2 μm) " see mitochondria but not ribosomes", EM limit for biological sample is 0.5 nm.

Biochemistry:

- ➤ 1820's: Wohler synthesized urea.
- > 1860's: Pasteur discovered enzymes in yeasts.
- > 1920's: First biochemical pathways elucidated. More are elucidated every year.

Genetics:

- ➤ 1860's : Mendel did the first breeding experiments with peas.
- ➤ 1900's: Chromosomal theory of heredity.
- ➤ 1953: Watson & Crick proposed the DNA double helix and deciphered the genetic code, laying foundation for modern genetic analysis and engineering.

Sizes of Cells:

- ❖ Most cells are relatively small for *reasons related to the diffusion of substances into and out of cells.*
- ❖ The rate of diffusion is affected by a number of variables:
 - > Surface area available fro diffusion.
 - > Temperature.
 - > Concentration gradient of diffusion substance.
 - > Distance over which diffusion must occur.
- ❖ As the cell size increases, the length of time of diffusion from outside to inside the cell increases as well.
- ❖ Larger cells need more energy and produce a greater quantity of waste.

❖ The advantage of small cell size is readily apparent in terms of the surface area-to-volume ratio:

Linear Dimension	Surface Area	Volume	Surface Area to Volume Ration
2μ	24µm²	8 μm ³	3
4μ	96µm²	64 µm³	1.5

From the above table, you can see that for a mere doubling of linear dimensions, the surface area is increased four-fold, but the volume is increased eight -fold, resulting in a halving of the surface area:volume ratio

S=Side length

Surface area of a cube: 6S²

Volume of a cube: S³

S=Side length

WHY DOES THIS MATTER

- ❖ For the cell to function, *biochemical reactants must meet often enough to interreact*.
- **The smaller the cell, the more likely it is that a certain number of molecules can meet.**
- As the cell becomes larger, the number of molecules inside it must increase 8-fold to fill the volume and allow the same biochemical reactions to occur.
- ❖ But as the cell becomes larger, the smaller surface area allows fewer molecules to be transported in across the cell membrane for nutrition.
- So the cell stops functioning efficiently.

Types of Cells:

All cells have a cell membrane, a phospholipid bilayer with protein embedded in it, and they are made up of cytoplasm, or cytosol, inside the membrane.

Two Types of Cells:

> Prokaryotic

> Eukaryotic

Types of Cells – Prokaryotic Cells:

- **❖** The simplest, most primitive cell (Greek, pro= before; karyon= nucleus).
- * Do not have structures (organelles) surrounded by membranes in the cytoplasm (Few internal structures). 0.3-5μ in linear dimensions.
- ❖ They do all carry *DNA*, *RNA* and *ribosomes*.
 - > Nucleoid = region of DNA concentration
 - > The DNA carries their blue-print
 - > The RNA forms copies of parts of the blue print.
 - > RNA is used to direct protein synthesis which occurs on the ribosomes.
- Prokaryotes cannot grow beyond a few μm. This is called: THE PROBLEM OF CONCENTRATION. (no small organelles)
- **Examples: Bacteria and blue green algae.**

Types of Cells – Prokaryotic Cells:

Types of Cells – Eukaryotic Cells:

- **Contain** *organelles surrounded by membranes*.
- * Compartmentalization of the cell into organelles overcomes the problem of concentration to some extent, allowing plant and animal cells to grow to 10- 40 μm.
- Organelles have smaller volumes, to maintain necessary molecular concentrations; e.g. mitochondria are 1μm wide by 7μm long, lysosomes are
 0.5μm diameter.
- ❖ Cells with internal compartmentalization are called eukaryotic (Gk. Eu= good or true). Found in most living organisms: fungi, protists, plant, and animal cells.

Types of Cells – Eukaryotic Cells: "contd."

- Surrounding the cell is the cell membrane; *a double layer outer membrane* of cell that controls movement in and out of the cell.
- Inside the cell are the organelles:
 - ➤ Nucleus: information storage, software library, was called the " *brain of the cell*"
 - ➤ Rough Endoplasmic Reticulum (RER): membrane with ribosomes, protein/fat synthesis.
 - > Smooth Endoplasmic Reticulum (SER): site for fat synthesis and other metabolic reactions.
 - ➤ Golgi apparatus: packaging station.
 - **Lysosomes:** bags of digestive enzymes, "suicide bag".
 - ➤ Mitochondria: Power house, work with oxygen, have their own DNA
 - ➤ **Peroxisomes**: (catabolism of long chain & branched FA, *plasmalogin synthesis* "a phospholipid critical for brain function. They have no DNA.
 - > Structural organelles-made from microfilaments & microtubules:
 - ✓ Cytoskeleton: maintain complex shapes of cells
 - ✓ Cell cortex: form firm anchor underlying the cell membrane
 - ✓ Cilia & flagella: structures for locomotion, formed from microtubules.
 - ✓ Muscle filaments: actin & myosin, for contraction.
 - ✓ Centrioles: forms poles of mitotic spindle, made from microtubules.

Cells Function:

- * Almost all cells perform the same functions as we see in the whole body:
 - ➤ Respiration: almost all cells oxidize glucose to obtain energy and make ATP (Adenosine-5'-triphosphate coenzyme: ATP transports chemical energy within cells for metabolism.)
 - ➤ Nutrition: Phototrophs trap sun light to make nutrients, chemotrophs eat organisms. In our bodies, all cell can concentrate nutrients to higher levels than outside the cell.
 - > Creating an intracellular environment: all cells select certain ions and not others.
 - ➤ Communication: all cells have electrical properties, many cells fire action potentials. Many cells have receptors to pick up hormonal (or other types of) signals from outside.
 - **Locomotion:** cilia, flagella, muscle filaments
 - ➤ Reproduction: mitosis (cell replacement and tissue growth), meiosis (for gametes).

Examples of Cells:

Amoeba Proteus

Plant Stem

Bacteria

Nerve Cell

Red Blood Cell

