Segmentação de tumor em ressonâncias magnéticas multi-paramétricas de mama

Medição volumétrica de tumores _____ mamários

Dataset - Duke breast Cancer MRI

 Contém uma coleção de 922 pacientes com cancro de mama invasivo confirmado por biópsia, ao longo de uma década, no Hospital Duke nos EUA.

- Foram selecionados 3 pacientes:
 - Imagens MR T1 weighted para segmentação;
 - Imagens binárias com segmentos da mama e do tumor.

Método - resumo

- 1. Seleção manual da região de interesse(ROI);
- Separação automática do volume da lesão do volume mamário circundante;
 - a. Gaussian mixture modeling(GMM);
 - b. Sobreposição de Marcadores.
- 3. O tumor segmentado em um slice é propagado para o slice adjacente de maneira a formar um novo ROI.
- Os marcadores são, então, determinados novamente para obter um contorno do tumor no slice propagado.
- 5. Este procedimento é encerrado quando não há tumor em slices adjacentes.

Leitura de imagens

- Limpeza das imagens
 - Opening-Closing by Reconstruction

Guardar numa stack

Fig. 1: Stack montage

Seleção do ROI

- Primeira imagem → Imagem média do array
- Desenhar um contorno num slice através do cursor ROI.
- Criar um histograma da imagem dentro do ROI.

Fig. 2: Histograma do ROI

Fig. 3: ROI

Gaussian mixture modeling

- Aplicação do Gaussian mixture model para encontrar a porção do histograma que pertence ao tumor.
- 3 componentes gaussianos para o filtro (tumor, parenchyma and muscle)
- O mean value de menor valor constitui o mean value da porção do tumor
- Os 2 thresholds são calculados:
 - Tupper = max(μ Tumor 1.0 * σ Tumor , (μ Tumor + μ 2) / 2.0)
 - Tlower = μ Tumor (Tupper μ Tumor)

Fig. 4: Histograma com os thresholds

Determinar os marcadores

- Marcadores internos e externos são derivados dos dois thresholds.
- A área dentro da ROI onde as intensidades dos pixels são menores do que Tupper → marcador Interno(Fig. 5).
- A área dentro da ROI onde as intensidades dos pixels são menores do que Tlower → marcador Externo(Background - Fig. g).

Fig. 5: Marcador interno

Fig. 6: Marcador externo

Segmentação final

 Um merge das duas máscaras é feito de maneira a que a segmentação final(fig. 7) inclua a área do marcador interno e exclua a área do marcador externo(background).

Fig. 7: Segmentação final

Segmentação do volume por propagação

- **Estratégia de propagação:** segmentar o tumor num slice através da segmentação propagada de um slice adjacente.
 - A segmentação da região do tumor é morfologicamente dilatada, e seguidamente utilizada como ROI no slice adjacente.
- Assume-se que a forma e tamanho do tumor não variam drasticamente entre slices adjacentes.
- Ambos os thresholds Tupper e Tlower da slice segmentada são passadas para as slices adjacentes.
- No slice adjacente, os marcadores interno e externo são construídos com base na ROI e thresholds do slice atual.
- O procedimento de propagação é automático nas duas direções até não encontrar mais tumores nos slices adjacentes (pixels no ROI com intensidade inferior a Tupper).

Resultados para diferentes ROIs iniciais

Volume final

Avaliação

Segmentos para avaliação

Fig. 8: Segmento 1

Fig. 9: Segmento 2

Fig. 10: Segmento 3

Método de avaliação

 Sobreposição das imagens dos segmentos obtidos e dos segmentos para avaliação(Figs: 11,12)

Fig. 11: Sobreposição dos segmentos do algoritmo Fig. 12: Sobreposição dos segmentos de avaliação

Coeficiente de similaridade Sørensen-Dice

Resultados

Paciente	Seg. Algoritmo	Seg. Avaliação	Similaridade
48	To a company		0.31
18			0.42
57	Name Annual Annu	May and American comp	0.44