Zadania – lista 2

- 1. Niech $\{A_i: i \in N\}$ będzie rodziną zbiorów takich, że $A_i =_{\text{def}} \{i, i+1, ..., i^2\}$. Obliczyć: $\bigcup_{i \in N} A_i$, $\bigcap_{i \in N} A_i$.
- 2. Rodzinę $\{A_i: i \in N\}$ nazywa się *zstępującą* rodziną zbiorów, gdy $A_{i+1} \subseteq A_i$ dla każdego $i \in N$. Udowodnić, że jeśli $\{A_i: i \in N\}$ oraz $\{B_i: i \in N\}$ są rodzinami zstępującymi, to:

$$\bigcap_{i\in N} (A_i \cup B_i) = (\bigcap_{i\in N} A_i) \cup (\bigcap_{i\in N} B_i)$$

- 3. Dane są dwa zbiory A i B. Rozwiązać równanie $A \cup X = B$, tj. podać możliwe wartość (lub wartości) zbioru X.
- 4. Czy istnieją zbiory A, B, C takie, że

$$A \cap B \neq \emptyset$$
 i $A \cap C = \emptyset$ oraz $(A \cap B) \setminus C = \emptyset$?

- 5. Udowodnić, że
 - a) Jeśli $A \subset B$ to $2^A \subset 2^B$
 - b) Jeśli $2^A \subseteq 2^B$ to $A \subseteq B$
- 6. Które z poniższych stwierdzeń są prawdziwe dla dowolnych zbiorów A, B, C? Odpowiedź uzasadnić.
 - a) Jeśli $A \subset B$ i $B \in C$ to $A \in C$.
 - b) Jeśli $((A \cap B) \cap C) = \emptyset$ i $(A \cup C) \subseteq B$ to $A \cap C = \emptyset$
 - c) Jeśli $A \subseteq B$ to $B \cap 2^A \neq \emptyset$
- 7. Ile relacji binarnych można zdefiniować na produkcie kartezjańskim $A \times B$, jeżeli A oraz B są zbiorami skończonymi o licznościach card(A) = n oraz card(B) = m.
- 8. Udowodnij wzór a), a dla wzorów b) i c) uzupełnij i udowodnij:
 - a) $(A \cap B) \times C = (A \times C) \cap (B \times C)$
 - b) $(A \cup B) \times C = ?$
 - c) $(A \cup B) \times (C \cup D) = ?$
- 9. Niech $X = \{a, b, c, d\}$ oraz $R \subseteq X^2$. Zbadać które spośród własności: symetrii, przeciwsymetrii, zwrotności, przeciwzwrotności, przechodniości, spójności i równoważności mają następujące relacje binarne:
 - a) $R = \{ \langle a, a \rangle, \langle b, b \rangle, \langle a, b \rangle, \langle b, a \rangle, \langle d, b \rangle \}$
 - b) $R = \{ \langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle, \langle d, d \rangle, \langle a, b \rangle, \langle b, a \rangle, \langle d, b \rangle, \langle d, c \rangle \}$
- 10. Niech X będzie pewnym zbiorem osób. Jakie własności ma relacja binarna $R \subseteq X^2$ zdefiniowana następująco: $\langle x, y \rangle \in R$ wtedy i tylko wtedy, gdy osoba x jest dzieckiem osoby y?

- 11. Czy prawdziwe są następujące stwierdzenia dotyczące relacji binarnych na dowolnym zbiorze X?
 - a) Suma dwóch relacji symetrycznych jest relacją symetryczną na X.
 - b) Część wspólna (przekrój) dwu relacji przechodnich jest relacją przechodnią na X.
 - c) Jeżeli R jest relacją przechodnią oraz zbiór S spełnia warunek $R\subseteq S\subseteq X^2$ to S jest także relacją przechodnią na X.