

実習 - IPv4 アドレスを 2 進数に変換する(インストラクタ用)

インストラクタ用メモ: 赤いフォントまたはグレーの強調表示のテキストは、インストラクタ向け資料にのみ記載される情報です。

目的

パート 1: IPv4 アドレスのドット付き 10 進数を 2 進数に変換する

パート 2:ビット単位の AND 処理を使用してネットワーク アドレスを決定する

パート 3: ネットワーク アドレスの計算を適用する

背景/シナリオ

すべての IPv4 アドレスはネットワーク部とホスト部という 2 つの部分で構成されています。アドレスのネットワーク部は、同じネットワーク内に存在するすべてのデバイスに共通です。ホスト部は、特定のネットワーク内の特定のホストを識別します。サブネット マスクは、IP アドレスのネットワーク部を求めるために使用されます。同じネットワーク上のデバイスは直接通信できますが、別のネットワーク上のデバイスが通信するには、ルータのような中間のレイヤ 3 デバイスが必要です。

ネットワーク上のデバイスの動作を理解するには、デバイスがするように、アドレスを 2 進表記で確認する必要があります。そのためには、IP アドレスとそのサブネット マスクのドット付き 10 進表記を 2 進表記に変換しなければなりません。これを行った後、ビット単位の AND 処理を使用してネットワーク アドレスを決定できます。

この実習では、アドレスのサブネット マスクを 10 進数から 2 進数に変換して IP アドレスのネットワーク部とホスト部を決定し、ビット単位の AND 処理を使用する方法を説明します。次に、この情報を適用してネットワークのアドレスを識別します。

パート 1: IPv4 アドレスのドット付き 10 進数を 2 進数に変換する

パート 1 では、10 進数を相当する 2 進数に変換します。この課題を習得したら、IPv4 アドレスとサブネット マスクを 10 進数から 2 進数の形式に変換します。

手順 1: 10 進数を相当する 2 進数に変換します。

10 進数を 8 ビットの 2 進数に変換して次の表に入力します。参照用に最初の数字は入力されています。オクテットの 8 個の 2 進数のビット値は 2 の乗数に基づいており、左から右に 128、64、32、16、8、4、2、および 1 であることを思い出してください。

10 進数	2 進数
192	11000000
168	10101000
10	00001010
255	1111111
2	0000010

手順 2: IPv4 アドレスを相当する 2 進数に変換します。

IPv4 アドレスは、上で使用した同じ手法を使用して変換できます。次の表に、指定されたアドレスに相当する 2 進数を入力します。回答を読みやすくするために、2 進数のオクテットをピリオドで区切ります。

10 進数	2 進数
192.168.10.10	11000000.10101000.00001010.00001010
209.165.200.229	11010001.10100101.11001000.11100101
172.16.18.183	10101100.00010000.00010010.10110111
10.86.252.17	00001010.01010110.111111100.00010001
255.255.255.128	11111111.11111111.11111111.10000000
255.255.192.0	11111111.11111111.11000000.00000000

パート 2: ビット単位の AND 処理を使用してネットワーク アドレスを決定する

パート 2 では、ビット単位の AND 処理を使用して、指定されたホスト アドレスのネットワーク アドレスを計算します。まず、10 進数の IPv4 アドレスとサブネット マスクを、相当する 2 進数に変換する必要があります。2 進形式のネットワーク アドレスを取得したら、それを 10 進数に変換します。

注: AND 処理のプロセスは、32 ビット ホスト IP の各ビット位置の 2 進数値と、32 ビット サブネット マスクの対応する 位置を比較します。2 つの 0 がある場合、または 0 と 1 がある場合は、AND 処理の結果は 0 になります。この例に 示すように、2 つの 1 があれる場合は、結果は 1 になります。

手順 1: ネットワーク アドレスの計算に使用するビットの数を決定します。

説明 10 進数		2 進数	
IP アドレス	192.168.10.131	11000000.10101000.00001010.10000011	
サブネット マスク	255.255.255.192	11111111.11111111.11111111.11000000	
ネットワーク アドレス	192.168.10.128	11000000.10101000.00001010.10000000	

ネットワークアドレスの計算に使用するビットはどのように決定しますか。

2 進数のサブネット マスクで 1 に設定されているビットはネットワーク アドレスの計算に使用されます。 上記の例では、ネットワーク アドレスの計算に何ビットが使用されますか。

26 ビット

手順 2: AND 処理を使用してネットワーク アドレスを決定します。

a. 次の表に、不足している情報を入力してください。

説明 10 進数		2 進数	
IP アドレス	172.16.145.29	5.29 10101100.00010000.10010001.00011101	
サブネット マスク	255.255.0.0	11111111.11111111.00000000.00000000	
ネットワーク アドレス	172.16.0.0	10101100.00010000.00000000.00000000	

b. 次の表に、不足している情報を入力してください。

説明	10 進数	2 進数	
IP アドレス	192.168.10.10	11000000.10101000.00001010.00001010	
サブネット マスク	255.255.255.0	255.255.0 111111111.11111111.1111111.00000000	
ネットワーク アドレス	192.168.10.0	11000000.10101000.00001010.00000000	

c. 次の表に、不足している情報を入力してください。

説明	10 進数	2 進数	
IP アドレス	192.168.68.210	11000000.10101000.01000100.11010010	
サブネット マスク	255.255.255.128 111111111.11111111.1111111.10000000		
ネットワーク アドレス	192.168.68.128	11000000.10101000.01000100.10000000	

d. 次の表に、不足している情報を入力してください。

説明	10 進数	2 進数	
IP アドレス	172.16.188.15	10101100.00010000.10111100.00001111	
サブネット マスク	255.255.240.0	11111111.11111111.11110000.00000000	
ネットワーク アドレス	172.16.176.0	10101100.00010000.10110000.00000000	

e. 次の表に、不足している情報を入力してください。

説明	10 進数	2 進数
IP アドレス	10.172.2.8	00001010.10101100.00000010.00001000
サブネット マスク	255.224.0.0 11111111.11100000.00000000000000000000	
ネットワーク アドレス	10.160.0.0	00001010.10100000.00000000.000000000

パート 3: ネットワーク アドレスの計算を適用する

パート 3 では、指定された IP アドレスとサブネット マスクのネットワーク アドレスを計算する必要があります。ネットワーク アドレスを取得したら、実習を完了するために必要な回答を決定します。

手順 1:	IP アドレ	ノスが同じネッ	トワークにネ	マ在するか	いどうかを決定	します。
J //UR	/ . /		1 / / 1-1	1 11 2 10 10		U O D J O

a.	ネットワークで使用する 2 台の PC を設定しています。PC-A には 192.168.1.18、PC-B には 192.168.1.33 の IF アドレスが与えられています。どちらの PC もサブネット マスク 255.255.255.240 を受け取ります。				
	PC-A のネットワーク アドレスはいくつ)ですか。	192.168.1.16		
	PC-B のネットワーク アドレスはいくつ)ですか。	192.168.1.32		
	これらの PC は互いに直接通信できる	ますか。	いいえ		
	PC-B が PC-A と同じネットワーク上にですか。	こ存在できるようにするために PC-B に指定	できる、最も大きなアドレスは何		
		192.168.1.30			
b.	ネットワークで使用する 2 台の PC を設定しています。PC-A には 10.0.0.16、PC-B には 10.1.14.68 の IP アドレスが与えられています。どちらの PC もサブネット マスク 255.254.0.0 を受け取ります。				
	PC-A のネットワーク アドレスはいくつ)ですか。	10.0.0.0		
	PC-B のネットワーク アドレスはいくつ)ですか。	10.0.0.0		
	これらの PC は互いに直接通信できる	ますか。	_ はい		
	PC-B が PC-A と同じネットワーク上にですか。	に存在できるようにするために PC-B に指定	こできる、最も小さなアドレスは何		
		10.0.0.1			
手順 2	:: デフォルト ゲートウェイ アドレス	を識別します。			
a.		アドレスをデフォルト ゲートウェイ アドレスと このホストに IP アドレス 172.16.140.24 とも			
	このネットワークのネットワーク アドレ	スはいくつですか。			
	r	172.16.128.0			
	このホストのデフォルト ゲートウェイフ	アドレスはいくつですか。			
		172.16.128.1			
b.		Pドレスをデフォルト ゲートウェイ アドレスと 92.168.184.227 とサブネット マスク 255.2			
	このネットワークのネットワーク アドレ	スはいくつですか。			
		192.168.184.224			
	このサーバのデフォルト ゲートウェイ	はいくつですか。			
		192.168.184.225			

復習

ネットワーク アドレスの決定にサブネット マスクが重要なのはなぜですか。

サブネット マスクは、アドレスのネットワーク部に使用するビット数を提供します。ネットワーク アドレスは、サブネットマスクなしでは決定できません。