SEQUENZPROTOKOLL Merck Patent GmbH <120> Glucose-Dehydrogenase-Fusionsproteine und ihre Verwendung in Expressionssystemen <130> 9906920-Bz-mi <140> <141> <160> 16 <170> PatentIn Ver. 2.1 <210> 1 <211> 3992 <212> DNA <213> Bacillus megaterium <220> <221> CDS <222> (186)..(968) <223> Glucose-Degydrogenase aus Bacillus megaterium <220> <221> CDS <222> (978)..(1010) <223> Poly-Histidintag <220> <221> gene <222> (1)..(3992) <223> Plasmid PAW2 <400> 1 ccatcgaatg gccagatgat taattcctaa tttttgttga cactctatca ttgatagagt 60 tattttacca ctccctatca gtgatagaga aaagtgaaat gaatagttcg acaaaaatct 120 agataacgag ggcaatcgat gaattcgagc tcggtacccg gggatccctc gaggtcgacc 180 tgcag atg tat aca gat tta aaa gat aaa gta gtt gta att aca ggt gga 230 Met Tyr Thr Asp Leu Lys Asp Lys Val Val Val Ile Thr Gly Gly tca aca ggt tta gga cgc gca atg gct gtt cgt ttc ggt caa gaa gaa Ser Thr Gly Leu Gly Arg Ala Met Ala Val Arg Phe Gly Gln Glu Glu

278

gca aaa gtt gtt att aac tat tac aac aat gaa gaa gct cta gat Ala Lys Val Val Ile Asn Tyr Tyr Asn Glu Glu Glu Ala Leu Asp 326

gcg aaa aaa gaa gta gaa gaa gca ggc gga caa gca atc atc gtt caa Ala Lys Lys Glu Val Glu Glu Ala Gly Gly Gln Ala Ile Ile Val Gln 50 55 60 374

ggc gat gta aca aaa gaa gaa gac gtt gta aat ctt gtt caa aca gct Gly Asp Val Thr Lys Glu Glu Asp Val Val Asn Leu Val Gln Thr Ala 422

									9906	920-	seq.	Prot	okol	1			470
	att Ile 80	aaa Lys	gaa Glu	ttt Phe	ggt Gly	aca Thr 85	tta Leu	nac	nta	ato	att	aac	aac	act	ggt Gly	gtt Val 95	470
	gaa Glu	aac Asn	cca Pro	gtt Val	cct Pro 100	tct Ser	cat His	gag Glu	cta Leu	tct ser 105	cta Leu	gat Asp	aac Asn	tgg Trp	aac Asn 110	aaa Lys	518
	gtt Val	att Ile	gat Asp	aca Thr 115	aac Asn	tta Leu	aca Thr	ggt Gly	gca Ala 120	ttc Phe	tta Leu	gga Gly	agc Ser	cgt Arg 125	gaa Glu	gca Ala	566
	att Ile	aaa Lys	tac Tyr 130	ttc Phe	gtt Val	gaa Glu	aac Asn	gac Asp 135	att Ile	aaa Lys	gga Gly	aat Asn	gtt Val 140	atc Ile	aac Asn	atg Met	614
	tct Ser	agc Ser 145	gtt Val	cac His	gaa Glu	atg Met	att Ile 150	cct Pro	tgg Trp	cca Pro	tta Leu	ttt Phe 155	gtt Val	cac His	tac Tyr	gca Ala	662
	gca Ala 160	Ser	aaa Lys	ggc Gly	ggt Gly	atg Met 165	aaa Lys	cta Leu	atg Met	acg Thr	gaa Glu 170	1111	ttg Leu	gct Ala	ctt Leu	gaa Glu 175	710
	tat Tyr	gcg Ala	cca Pro	aaa Lys	ggt Gly 180	Ile	cgc Arg	gta Val	aat Asn	aat Asn 185	TIE	gga Gly	cca Pro	ggt Gly	gcg Ala 190	atg Met	758
	aac Asn	aca Thr	cca Pro	att Ile 195	ASI	gca Ala	gag Glu	aaa Lys	ttt Phe 200	Ala	gat Asp	cca Pro	gaa Glu	caa Gln 205	, 3	gca Ala	806
	gac Asp	gta Val	gaa Glu 210	ser	atg Met	att :Ile	cca Pro	atg Met 215	. Gry	tac Tyr	ato Ile	ggt Gly	aaa Lys 220		gaa Glu	gaa Glu	854
	gta Val	gca Ala 225	gca Ala		gca Ala	gca Ala	tto Phe 230	. Lei	gct Ala	tca Ser	tca Ser	a caa Glr 23:	1 416	ago Ser	tat Tyr	gta Val	902
	aca Thi 240	ggt Gly	++	aca Thi	tta Leu	ttti Phe 245	gca Ala	ากลา	t ggo o Gly	ggt Gly	ato / Mei 250	_ !!!!	g aaa C Lys	a tao 5 Tyr	cct Pro	tct Ser 255	950
-	++	- caa	a gca n Ala	a gga a Gly	a aga / Arg 260	a ggo g Gly	: taa	ataga	agc (gct a Ala M	atg a Met /		gga 1 Gly 9 265	tcg (Ser H	cat d His H	cac cat	1001
	са Ні 27	s His	t cae	c ta	ataga		ttga	acct	gtg	aagt	gaaa	aa t	ggcg	caca [.]	t		1050
			acat	+++	++++	atc :	tacce	attt	ac c	acta	ctac	g tc	acgg	atct	cca	cgcgcc	1110
																tacact	
																gttcgc	
																tgcttt	
												e 2					

cggcacctcg accccaaaaa acttgattag ggtgatggtt cacgtagtgg gccatcgccc 1350 tgatagacgg tttttcgccc tttgacgttg gagtccacgt tctttaatag tggactcttg 1410 ttccaaactg gaacaacact caaccctatc tcggtctatt cttttgattt ataagggatt 1470 ttgccgattt cggcctattg gttaaaaaat gagctgattt aacaaaaatt taacgcgaat 1530 tttaacaaaa tattaacgct tacaatttca ggtggcactt ttcggggaaa tgtgcgcgga 1590 acccctattt gtttatttt ctaaatacat tcaaatatgt atccgctcat gagacaataa 1650 ccctgataaa tgcttcaata atattgaaaa aggaagagta tgagtattca acatttccgt 1710 gtcgccctta ttcccttttt tgcggcattt tgccttcctg tttttgctca cccagaaacg 1770 ctggtgaaag taaaagatgc tgaagatcag ttgggtgcac gagtgggtta catcgaactg 1830 gatctcaaca gcggtaagat ccttgagagt tttcgccccg aagaacgttt tccaatgatg 1890 agcactttta aagttctgct atgtggcgcg gtattatccc gtattgacgc cgggcaagag 1950 caactcggtc gccgcataca ctattctcag aatgacttgg ttgagtactc accagtcaca 2010 gaaaagcatc ttacggatgg catgacagta agagaattat gcagtgctgc cataaccatg 2070 agtgataaca ctgcggccaa cttacttctg acaacgatcg gaggaccgaa ggagctaacc 2130 gcttttttgc acaacatggg ggatcatgta actcgccttg atcgttggga accggagctg 2190 aatgaagcca taccaaacga cgagcgtgac accacgatgc ctgtagcaat ggcaacaacg 2250 ttgcgcaaac tattaactgg cgaactactt actctagctt cccggcaaca attgatagac 2310 tggatggagg cggataaagt tgcaggacca cttctgcgct cggcccttcc ggctggctgg 2370 tttattgctg ataaatctgg agccggtgag cgtggctctc gcggtatcat tgcagcactg 2430 gggccagatg gtaagccctc ccgtatcgta gttatctaca cgacggggag tcaggcaact 2490 atggatgaac gaaatagaca gatcgctgag ataggtgcct cactgattaa gcattggtag 2550 gaattaatga tgtctcgttt agataaaagt aaagtgatta acagcgcatt agagctgctt 2610 aatgaggtcg gaatcgaagg tttaacaacc cgtaaactcg cccagaagct aggtgtagag 2670 cagcctacat tgtattggca tgtaaaaaat aagcgggctt tgctcgacgc cttagccatt 2730 gagatgttag ataggcacca tactcacttt tgccctttag aaggggaaag ctggcaagat 2790 tttttacgta ataacgctaa aagttttaga tgtgctttac taagtcatcg cgatggagca 2850 aaagtacatt taggtacacg gcctacagaa aaacagtatg aaactctcga aaatcaatta 2910 gcctttttat gccaacaagg tttttcacta gagaatgcat tatatgcact cagcgcagtg 2970 gggcatttta ctttaggttg cgtattggaa gatcaagagc atcaagtcgc taaagaagaa 3030 agggaaacac ctactactga tagtatgccg ccattattac gacaagctat cgaattattt 3090 gatcaccaag gtgcagagcc agccttctta ttcggccttg aattgatcat atgcggatta 3150 gaaaaacaac ttaaatgtga aagtgggtct taaaagcagc ataacctttt tccgtgatgg 3210

Page 3

taacttcact agittaaaag gatctaggtg aagatccttt tigataatct catgaccaaa 3270
atcccttaac gtgagittic gitccactga gcgtcagacc ccgtagaaaa gatcaaagga 3330
tcttcttgag atcctittit tctgcgcgta atctgctgt tgcaaacaaa aaaaccaccg 3390
ctaccagcgg tggittgtti gccggatcaa gagctaccaa ctctitticc gaaggtaact 3450
ggcttcagca gagcgcagat accaaatact gitccttctag tgtagccgta gitaggccac 3510
cacttcaaga actctgtagc accgcctaca tacctcgctc tgctaatcct gitaccagtg 3570
gctgctgcca gtggcgataa gicgitcti accgggitgg actcaagacg atagttaccg 3630
gataaggcgc agcggtcggg ctgaacgggg ggitcgtgca cacagcccag cttggagcga 3690
acgacctaca ccgaactgag atacctacag cgtgagctat gagaaaggcg cacgcttccc 3750
gaagggagaa aggcggacag giatccggta cittatagtc ctggaacagg agagcgcacg 3810
aggagcttc cagggggaaa cgcctggtat ctttatagtc ctgtcgggt tcgcaacagc 3930
agcaacgcgg cctttttacg gitcctggcc tttggcgc cttttgctca catgacccg 3930
agcaacgcgg cctttttacg gitcctggcc ttttgctgc cttttgctca catgacccg 3990
ca

<210> 2 <211> 272 <212> PRT <213> Bacillus megaterium

<400> 2 Met Tyr Thr Asp Leu Lys Asp Lys Val Val Val Ile Thr Gly Gly Ser 1 5 10 15

Thr Gly Leu Gly Arg Ala Met Ala Val Arg Phe Gly Gln Glu Glu Ala 20 25 30

Lys Val Val Ile Asn Tyr Tyr Asn Asn Glu Glu Glu Ala Leu Asp Ala 35 40 45

Lys Lys Glu Val Glu Glu Ala Gly Gly Gln Ala Ile Ile Val Gln Gly 50 60

Asp Val Thr Lys Glu Glu Asp Val Val Asn Leu Val Gln Thr Ala Ile 65 70 75 80

Lys Glu Phe Gly Thr Leu Asp Val Met Ile Asn Asn Ala Gly Val Glu 85 90 95

Asn Pro Val Pro Ser His Glu Leu Ser Leu Asp Asn Trp Asn Lys Val 100 105 110

Ile Asp Thr Asn Leu Thr Gly Ala Phe Leu Gly Ser Arg Glu Ala Ile 115 120 125

```
9906920-Seq.Protokoll
Lys Tyr Phe Val Glu Asn Asp Ile Lys Gly Asn Val Ile Asn Met Ser
130 135 140
Ser val His Glu Met Ile Pro Trp Pro Leu Phe Val His Tyr Ala Ala
Ser Lys Gly Gly Met Lys Leu Met Thr Glu Thr Leu Ala Leu Glu Tyr
Ala Pro Lys Gly Ile Arg Val Asn Asn Ile Gly Pro Gly Ala Met Asn
Thr Pro Ile Asn Ala Glu Lys Phe Ala Asp Pro Glu Gln Arg Ala Asp
Val Glu Ser Met Ile Pro Met Gly Tyr Ile Gly Lys Pro Glu Glu Val
210 215 220
Ala Ala Val Ala Ala Phe Leu Ala Ser Ser Gln Ala Ser Tyr Val Thr
225
Gly Ile Thr Leu Phe Ala Asp Gly Gly Met Thr Lys Tyr Pro Ser Phe
Gln Ala Gly Arg Gly Ala Met Arg Gly Ser His His His His His His 260 265 270
<210> 3
<211> 4193
<212> DNA
<213> Bacillus megaterium + Heamenteria ghilianii Fusions-Gen
<220>
<221> gene
<222> (1)..(4193)
 <223> Plasmid PAW4
 <220>
 <221> CDS
 <222> (141)..(344)
<223> Tridegin
 <220>
 <221> CDS
<222> (387)..(1169)
 <223> Glucose-Dehydrogenase
 <220>
 <221> CDS
 <222> (1179)..(1211)
 <223> Poly-Histidintag
 <400> 3
 ccatcgaatg gccagatgat taattcctaa tttttgttga cactctatca ttgatagagt 60
 tattttacca ctccctatca gtgatagaga aaagtgaaat gaatagttcg acaaaaatct 120
 agataacgag ggcaatcgat atg aaa cta ttg cct tgc aaa gaa tgg cat caa 173
                         Met Lys Leu Leu Pro Cys Lys Glu Trp His Gln
1 5 10
```

9906920-Seq.Protokoll ggt att cct aac cct agg tgc tgg tgt ggg gct gat cta gaa tgc gca Gly Ile Pro Asn Pro Arg Cys Trp Cys Gly Ala Asp Leu Glu Cys Ala 15 20 25	221
caa gac caa tac tgt gcc ttc ata cct caa tgt aga cca aga tca gaa Gln Asp Gln Tyr Cys Ala Phe Ile Pro Gln Cys Arg Pro Arg Ser Glu 30 35 40	269
ctg att aaa cct atg gat gat ata tac caa aga cca gtc gag ttt cca Leu Ile Lys Pro Met Asp Asp Ile Tyr Gln Arg Pro Val Glu Phe Pro 45 50 55	317
aac ctt cca tta aaa cct agg gag gaa agcgctatga gaggatcgca Asn Leu Pro Leu Lys Pro Arg Glu Glu 60 65	364
tcaccatcac catcacctgc ag atg tat aca gat tta aaa gat aaa gta gtt Met Tyr Thr Asp Leu Lys Asp Lys Val Val 70	416
gta att aca ggt gga tca aca ggt tta gga cgc gca atg gct gtt cgt Val Ile Thr Gly Gly Ser Thr Gly Leu Gly Arg Ala Met Ala Val Arg 80 85 90	464
ttc ggt caa gaa gaa gca aaa gtt gtt att aac tat tac aac aat gaa Phe Gly Gln Glu Glu Ala Lys Val Val Ile Asn Tyr Tyr Asn Asn Glu 95 100 105	512
gaa gaa gct cta gat gcg aaa aaa gaa gta gaa gaa gca ggc gga caa Glu Glu Ala Leu Asp Ala Lys Lys Glu Val Glu Glu Ala Gly Gly 115 120	560
gca atc atc gtt caa ggc gat gta aca aaa gaa gaa gac gtt gta aat Ala Ile Ile Val Gln Gly Asp Val Thr Lys Glu Glu Asp Val Val Asn 130 135 140	608
ctt gtt caa aca gct att aaa gaa ttt ggt aca tta gac gta atg att Leu Val Gln Thr Ala Ile Lys Glu Phe Gly Thr Leu Asp Val Met Ile 145 150	656
aac aac gct ggt gtt gaa aac cca gtt cct tct cat gag cta tct cta Asn Asn Ala Gly Val Glu Asn Pro Val Pro Ser His Glu Leu Ser Leu 160 165 170	704
gat aac tgg aac aaa gtt att gat aca aac tta aca ggt gca ttc tta Asp Asn Trp Asn Lys Val Ile Asp Thr Asn Leu Thr Gly Ala Phe Leu 175 180 185	752
gga agc cgt gaa gca att aaa tac ttc gtt gaa aac gac att aaa gga Gly Ser Arg Glu Ala Ile Lys Tyr Phe Val Glu Asn Asp Ile Lys Gly 195 200	800
aat gtt atc aac atg tct agc gtt cac gaa atg att cct tgg cca tta Asn Val Ile Asn Met Ser Ser Val His Glu Met Ile Pro Trp Pro Leu 210 215 220	848
ttt gtt cac tac gca gca agt aaa ggc ggt atg aaa cta atg acg gaa Phe Val His Tyr Ala Ala Ser Lys Gly Gly Met Lys Leu Met Thr Glu 225 230	896
aca ttg gct ctt gaa tat gcg cca aaa ggt att cgc gta aat aat att Thr Leu Ala Leu Glu Tyr Ala Pro Lys Gly Ile Arg Val Asn Asn Ile 240 245 250	944
Page 6	•

3500320 Seq. (Session)	
gga cca ggt gcg atg aac aca cca att aac gca gag aaa ttt gca gat 992 Gly Pro Gly Ala Met Asn Thr Pro Ile Asn Ala Glu Lys Phe Ala Asp 255 260 265 270	
cca gaa caa cgt gca gac gta gaa agc atg att cca atg ggt tac atc Pro Glu Gln Arg Ala Asp Val Glu Ser Met Ile Pro Met Gly Tyr Ile 275 280 285	
ggt aaa cca gaa gaa gta gca gca gtt gca gca ttc tta gct tca tca 1088 Gly Lys Pro Glu Glu Val Ala Ala Val Ala Ala Phe Leu Ala Ser Ser 290 295 300	
caa gca agc tat gta aca ggt att aca tta ttt gca gat ggc ggt atg 1136 Gln Ala Ser Tyr Val Thr Gly Ile Thr Leu Phe Ala Asp Gly Gly Met 305 310 315	
acg aaa tac cct tct ttc caa gca gga aga ggc taatagagc gct atg aga 1187 Thr Lys Tyr Pro Ser Phe Gln Ala Gly Arg Gly Ala Met Arg 320 325 330	
gga tcg cat cac cat cac cat cac taatagaagc ttgacctgtg aagtgaaaaa 1241 Gly Ser His His His His His 335 340	
tggcgcacat tgtgcgacat tttttttgtc tgccgtttac cgctactgcg tcacggatct 1301	
ccacgcgccc tgtagcggcg cattaagcgc ggcgggtgtg gtggttacgc gcagcgtgac 1361	
cgctacactt gccagcgccc tagcgcccgc tcctttcgct ttcttccctt cctttctcgc 1421	
cacgttcgcc ggctttcccc gtcaagctct aaatcggggg ctccctttag ggttccgatt 1481	
tagtgcttta cggcacctcg accccaaaaa acttgattag ggtgatggtt cacgtagtgg 1541	
gccatcgccc tgatagacgg tttttcgccc tttgacgttg gagtccacgt tctttaatag 1601	
tggactcttg ttccaaactg gaacaacact caaccctatc tcggtctatt cttttgattt 1661	
ataagggatt ttgccgattt cggcctattg gttaaaaaat gagctgattt aacaaaaatt 1721	
taacgcgaat tttaacaaaa tattaacgct tacaatttca ggtggcactt ttcggggaaa 1781	
tgtgcgcgga acccctattt gtttattttt ctaaatacat tcaaatatgt atccgctcat 1841	
gagacaataa ccctgataaa tgcttcaata atattgaaaa aggaagagta tgagtattca 1901	
acatttccgt gtcgccctta ttcccttttt tgcggcattt tgccttcctg tttttgctca 1961	
cccagaaacg ctggtgaaag taaaagatgc tgaagatcag ttgggtgcac gagtgggtta 2021	
catcgaactg gatctcaaca gcggtaagat ccttgagagt tttcgccccg aagaacgttt 2081	
tccaatgatg agcactttta aagttctgct atgtggcgcg gtattatccc gtattgacgc 2141	
cgggcaagag caactcggtc gccgcataca ctattctcag aatgacttgg ttgagtactc 2201	
accagtcaca gaaaagcatc ttacggatgg catgacagta agagaattat gcagtgctgc 226	
cataaccatg agtgataaca ctgcggccaa cttacttctg acaacgatcg gaggaccgaa 2323	
ggagctaacc gcttttttgc acaacatggg ggatcatgta actcgccttg atcgttggga 238	
gyayetaace geeteetege acaacatggg ggattatg.	

9906920-Seq.Protokoll accggagctg aatgaagcca taccaaacga cgagcgtgac accacgatgc ctgtagcaat 2441 ggcaacaacg ttgcgcaaac tattaactgg cgaactactt actctagctt cccggcaaca 2501 attgatagac tggatggagg cggataaagt tgcaggacca cttctgcgct cggcccttcc 2561 ggctggctgg tttattgctg ataaatctgg agccggtgag cgtggctctc gcggtatcat 2621 tgcagcactg gggccagatg gtaagccctc ccgtatcgta gttatctaca cgacggggag 2681 tcaggcaact atggatgaac gaaatagaca gatcgctgag ataggtgcct cactgattaa 2741 gcattggtag gaattaatga tgtctcgttt agataaaagt aaagtgatta acagcgcatt 2801 agagctgctt aatgaggtcg gaatcgaagg tttaacaacc cgtaaactcg cccagaagct 2861 aggtgtagag cagcctacat tgtattggca tgtaaaaaat aagcgggctt tgctcgacgc 2921 cttagccatt gagatgttag ataggcacca tactcacttt tgccctttag aaggggaaag 2981 ctggcaagat tttttacgta ataacgctaa aagttttaga tgtgctttac taagtcatcg 3041 cgatggagca aaagtacatt taggtacacg gcctacagaa aaacagtatg aaactctcga 3101 aaatcaatta gcctttttat gccaacaagg tttttcacta gagaatgcat tatatgcact 3161 cagcgcagtg gggcatttta ctttaggttg cgtattggaa gatcaagagc atcaagtcgc 3221 taaagaagaa agggaaacac ctactactga tagtatgccg ccattattac gacaagctat 3281 cgaattattt gatcaccaag gtgcagagcc agccttctta ttcggccttg aattgatcat 3341 atgcggatta gaaaaacaac ttaaatgtga aagtgggtct taaaagcagc ataacctttt 3401 tccgtgatgg taacttcact agtttaaaag gatctaggtg aagatccttt ttgataatct 3461 catgaccaaa atcccttaac gtgagttttc gttccactga gcgtcagacc ccgtagaaaa 3521 gatcaaagga tcttcttgag atccttttt tctgcgcgta atctgctgct tgcaaacaaa 3581 aaaaccaccg ctaccagcgg tggtttgttt gccggatcaa gagctaccaa ctcttttcc 3641 gaaggtaact ggcttcagca gagcgcagat accaaatact gtccttctag tgtagccgta 3701 gttaggccac cacttcaaga actctgtagc accgcctaca tacctcgctc tgctaatcct 3761 gttaccagtg gctgctgcca gtggcgataa gtcgtgtctt accgggttgg actcaagacg 3821 atagttaccg gataaggcgc agcggtcggg ctgaacgggg ggttcgtgca cacagcccag 3881 cttggagcga acgacctaca ccgaactgag atacctacag cgtgagctat gagaaagcgc 3941 cacgcttccc gaagggagaa aggcggacag gtatccggta agcggcaggg tcggaacagg 4001 agagcgcacg agggagcttc cagggggaaa cgcctggtat ctttatagtc ctgtcgggtt 4061 tcgccacctc tgacttgagc gtcgattttt gtgatgctcg tcaggggggc ggagcctatg 4121 gaaaaacgcc agcaacgcgg cctttttacg gttcctggcc ttttgctggc cttttgctca 4181 4193 catgacccga ca

<210> 4 <211> 340 <212> PRT <213> Bacillus megaterium + Heamenteria ghilianii Fusions-Protein Met Lys Leu Leu Pro Cys Lys Glu Trp His Gln Gly Ile Pro Asn Pro 1 10 15 Arg Cys Trp Cys Gly Ala Asp Leu Glu Cys Ala Gln Asp Gln Tyr Cys
20 25 30 Ala Phe Ile Pro Gln Cys Arg Pro Arg Ser Glu Leu Ile Lys Pro Met 35 40 Asp Asp Ile Tyr Gln Arg Pro Val Glu Phe Pro Asn Leu Pro Leu Lys 50 60 Pro Arg Glu Glu Met Tyr Thr Asp Leu Lys Asp Lys Val Val 65 70 75 Val Ile Thr Gly Gly Ser Thr Gly Leu Gly Arg Ala Met Ala Val Arg 80 85 90 Phe Gly Gln Glu Glu Ala Lys Val Val Ile Asn Tyr Tyr Asn Asn Glu 95 100 105 110 Glu Glu Ala Leu Asp Ala Lys Lys Glu Val Glu Glu Ala Gly Gly Gln 115 120 125 Ala Ile Ile Val Gln Gly Asp Val Thr Lys Glu Glu Asp Val Val Asn 130 135 140 Leu Val Gln Thr Ala Ile Lys Glu Phe Gly Thr Leu Asp Val Met Ile 145 150 155 Asn Asn Ala Gly Val Glu Asn Pro Val Pro Ser His Glu Leu Ser Leu 160 165 170 Asp Asn Trp Asn Lys Val Ile Asp Thr Asn Leu Thr Gly Ala Phe Leu 175 180 185 190 Gly Ser Arg Glu Ala Ile Lys Tyr Phe Val Glu Asn Asp Ile Lys Gly 195 200 205 Asn Val Ile Asn Met Ser Ser Val His Glu Met Ile Pro Trp Pro Leu 210 215 220 Phe Val His Tyr Ala Ala Ser Lys Gly Gly Met Lys Leu Met Thr Glu 225 230 235 Thr Leu Ala Leu Glu Tyr Ala Pro Lys Gly Ile Arg Val Asn Asn Ile 240 245 250 Gly Pro Gly Ala Met Asn Thr Pro Ile Asn Ala Glu Lys Phe Ala Asp 255 260 265 270 Pro Glu Gln Arg Ala Asp Val Glu Ser Met Ile Pro Met Gly Tyr Ile 275 280 285 Gly Lys Pro Glu Glu Val Ala Ala Val Ala Ala Phe Leu Ala Ser Ser 290 295 300 Page 9

Gln Ala Ser Tyr Val Thr Gly Ile Thr Leu Phe Ala Asp Gly Gly Met 305 310 315

Thr Lys Tyr Pro Ser Phe Gln Ala Gly Arg Gly Ala Met Arg Gly Ser	
His His His His His 335 340	
<210> 5 <211> 32 <212> DNA <213> Künstliche Sequenz	
<220> <221> primer_bind <222> (1)(32) <223> Primer 1, GlcDH	
<220> <223> Beschreibung der künstlichen Sequenz:Primer	
<400> 5 gcgcgaattc atgtatacag atttaaaaag at	32
<210> 6 <211> 31 <212> DNA <213> Künstliche Sequenz	
<220> <221> primer_bind <222> (1)(31) <223> Primer 2, GlcDH	
<220> <223> Beschreibung der künstlichen Sequenz:Primer	
<400> 6 gcgcttcgaa ctattagcct cttcctgctt g	31
<210> 7 <211> 31 <212> DNA <213> Künstliche Sequenz	
<220> <223> Beschreibung der künstlichen Sequenz:Primer	
<400> 7 gcgcctgcag atgtatacag atttaaaaga t	31
<210> 8 <211> 31 <212> DNA <213> Künstliche Sequenz	

<220> <221> primer_bind <222> (1)(31) <223> Primer 4, GlcDH	
<220> <223> Beschreibung der künstlichen Sequenz:Primer	
<400> 8 gcgcagcgct ctattagcct cttcctgctt g	31
<210> 9 <211> 31 <212> DNA <213> Künstliche Sequenz	
<220> <221> primer_bind <222> (1)(31) <223> Primer 5, Tridegin	
<220> <223> Beschreibung der künstlichen Sequenz:Primer	
<400> 9 gcgcatcgat atgaaactat tgccttgcaa a	31
<210> 10 <211> 31 <212> DNA <213> Künstliche Sequenz	
<220> <221> primer_bind <222> (1)(31) <223> Primer 6, Tridegin	
<220> <223> Beschreibung der künstlichen Sequenz:Primer	
<400> 10 gcgcctgcag gtgatggtga tggtgatgcg a	31
<210> 11 <211> 22 <212> DNA <213> Künstliche Sequenz	
<220> <221> primer_bind <222> (1)(22) <223> Primer 7, pASK 75UPN	•
<220> <223> Beschreibung der künstlichen Sequenz:Primer	
<400> 11 ccatcgaatg gccagatgat ta	22

<210> <211> <212> <213>	21	
<222>	primer_bind (1)(21) pASK 75 RPN	
<220> <223>	Beschreibung der künstlichen Sequenz:Primer	
<400> tagcgg	12 Itaaa cggcagacaa a	21
<210> <211> <212> <213>	20	
<222>	primer_bind (1)(20) Primer 9, T7 Seq.	
<220> <223>	Beschreibung der künstlichen Sequenz:Primer	
<400> taata	13 cgact cactataggg	20
<210> <211> <212> <213>	18	
<222>	primer_bind (1)(18) Rev. Seq.	
<220> <223>	Beschreibung der künstlichen Sequenz:Primer	
<400> tagaa	14 .ggcac agtcgagg	18