VOLKAN KURSUN **Bilkent University**

Digital Representation of Information

VOLKAN KURSUN

EEE 102 Introduction to Digital Circuit Design

Stored Program Computers **Bilkent University**

Memory

Accounting program (machine code)

> Editor program (machine code)

(machine code)

Processor

Payroll data

Book text

Source code in C for editor program

EEE 102 Introduction to Digital Circuit Design

- Modern computers are built on two key principles (stored program concept):
- 1) Instructions and data are represented as binary numbers
- 2) These binary numbers are stored in memory to be read or written as needed by a program
- Stored programs allow a computer to perform various tasks:

To switch from one task to another simply load the memory with the corresponding program and data and tell the computer to begin executing at a specific location in memory

 Representing instructions and data with binary numbers and letting them share the same memory simplifies both the memory hardware and the software: same memory technology used for both data and instructions

VOLKAN KURSUN

VOLKAN KURSUN

Outline

 Prelude: Digital Representation of Information

- Positional Number Systems
 - Decimal Number System
 - Binary Number System
 - Octal Number System
 - Hexadecimal Number System
- General base-r system
 EEE 102 Introduction to Digital Circuit Design

VOLKAN KURSUN

Bilkent University

Digital Representation of Information Bilkent University

- Information is represented in logic circuits as electronic signals
- Different signal levels represent different digits of information
- •To make the design of logic circuits easier (more compatible with how transistors operate), each digit is allowed to take only two possible values, denoted as 0 and
- These logic levels are implemented as voltage levels in a circuit:
 - •0 is typically represented with 0V (ground)
 - •1 is typically represented with the power supply voltage (V_{DD})
- •All information in logic circuits is represented as combinations of 0s and 1s (binary digits)

 EEE 102 Introduction to Digital Circuit Design

VOLKAN KURSUN

Data Representation in Computers

- Everything in computer is a string of bits.
 - ❖ Represent 1000₁₀ as 1111101111₂.
 - ❖ Represent 1.708984375₁₀ as 1.101101011₂.
 - ❖ Represent 9.5*10² as 1.11011011₂*29.
- Issues of binary number representation:
 - How to represent –ve number,
 - How to represent fractional and real number
 - How to handle number that go beyond the representation range.

VOLKAN KURSUN

Bilkent University

Number Systems

- Human beings typically use <u>decimal</u> (base 10) numbers for counting
 - Natural choice: we have 10 fingers
- Computers use binary (base 2) number system
 - Natural choice: <u>transistors have binary</u> state: on or off, voltage high or low
- In computing, <u>hexadecimal</u> (base 16) and octal (base 8) number systems are also commonly used for compact representation of binary numbers with many digits (bits)

VOLKAN KURSUN

Bilkent University Outline

 Prelude: Digital Representation of Information

- Positional Number Systems
 - Decimal Number System
 - Binary Number System
 - Octal Number System
 - Hexadecimal Number System
- General base-r system
 EEE 102 Introduction to Digital Circuit Design

Decimal Numbers (Base 10)

 Decimal number system has 10 symbols that are called digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9

A number written without any prefix or suffix is interpreted as decimal. Sometimes a suffix of D may be used to represent decimal numbers explicitly

Positional number system: every digit, depending on its position, has a corresponding weight and value

$$(a_{n-1}a_{n-2}a_{n-3}...a_1a_0)_{10} = a_{n-1}^*10^{n-1} + a_{n-2}^*10^{n-2} + a_{n-3}^*10^{n-3} + ... + a_1^*10^1 + a_0^*10^0$$

Example: 2019 = 2019D = (2019)₁₀ $2019 = 2*10^3 + 0*10^2 + 1*10^1 + 9*10^0$

Unsigned Number Representation

In computers, unsigned number refers to nonnegative integers

- •Such as 0, 1, 2, 3 ...
- Example: binary number $0b\ 101 = 5\ (base\ 10)$

VOLKAN KURSUN

Bilkent University

Outline

- Prelude: Digital Representation of Information
- Positional Number Systems
 - Decimal Number System
 - Binary Number System
 - Octal Number System
 - Hexadecimal Number System
- General base-r system
 EEE 102 Introduction to Digital Circuit Design

VOLKAN KURSUN

Unsigned Binary Numbers (Base 2) Computers use binary (base 2) number system

- - Natural choice: transistor on or off, voltage high or low, binary state
- Binary number system has 2 symbols that are called binary digits (bits): 0 and 1

A binary number is identified with either a prefix of **0b** or **0B** or a prefix of b'bits inside apostrophe' or a suffix of B or b

$$(a_{n-1}a_{n-2}a_{n-3}...a_1a_0)_2 = a_{n-1}^*2^{n-1} + a_{n-2}^*2^{n-2} + a_{n-3}^*2^{n-3} + ... + a_1^*2^1 + a_0^*2^0$$

•Example: 0b101011 = b'101011' = $101011B = (101011)_2 = 1*2^5 + 0*2^4$ $+ 1*2^3 + 0*2^2 + 1*2^1 + 1*2^0 = 43$

VOLKAN KURSUN
Unsigned Binary ↔ Decimal Conversion

Unsigned Binary \rightarrow Decimal $0b1001010 = ?_{ten}$

Binary Digit			ecir Valu		l
0	0	Х	20	=	0
1	1	Х	21	=	2
0	0	Х	22	=	0
1	1	Х	23	=	8
0	0	Х	2^4	=	0
0	0	х	2 ⁵	=	0
1	1	х	26	=	64
		Σ	= 7	4 _t	en

Decimal → Binary

74 = 0b?

<u> </u>	
Decimal	Binary Digit
74	
74/2 = 37	0
37/2 = 18	1
18/2 = 9	0
9/2 = 4	1
4/2 = 2	0
2/2 = 1	0
1/2 = 0	1
Collect > remainder bits in reverse order	0b1001010

VOLKAN KURSUN

EEE 102 Introduction to Digital Circuit Design

Unsigned Binary Integers

Decimal equivalent of an n-bit unsigned binary number:

$$x = x_{n-1}2^{n-1} + x_{n-2}2^{n-2} + \dots + x_12^1 + x_02^0$$

Range: 0 to $+2^{n} - 1$

32-Bit Binary Number Example:

0b 0000 0000 0000 0000 0000 0000 0001 1011

$$= 0 + ... + 1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0}$$

$$= 0 + ... + 8 + 0 + 2 + 1 = (11)_{10}$$

Range with 32 bits: 0 to $+2^{32} - 1$

0 to +4,294,967,295

VOLKAN KURSUN

Bilkent University

VOLKAN KURSUN
Unsigned Binary ↔ Decimal Conversion

Unsigned Binary → Decimal

$$0b11011 = ?_{ten}$$

De	CII	mai	Va	ue
1	Х	20	=	1
1	х	21	=	2
0	х	22	=	0
1	х	23	=	8
1	X	2^{4}	=	16
	Σ	=	27	
	1 1 0 1	1 x 1 x 0 x 1 x 1 x	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Decimal Va 1 x 2 ⁰ = 1 x 2 ¹ = 0 x 2 ² = 1 x 2 ³ = 1 x 2 ⁴ = $\Sigma = 27$

- Same symbols can mean different things
- Be explicit unless you mean decimal

 EEE 102 Introduction to Digital Circuit Design

Decimal \rightarrow Binar 11011 = 0b?

Dec	imal	Binary
11	011	
/2 =	5505	1
/2 =	2752	1
/2 =	1376	0
/2 =	688	0
/2 =	344	0
/2 =	172	0
/2 =	86	0
/2 =	43	0
/2 =	21	1
/2 =	10	1
/2 =	5	0
/2 =	2	1
/2 =	1	0
/2 =	0	1
Colle	ct →	0b10101100000011

Bilkent University

VOLKAN KURSUN

Unsigned Binary Integers

Decimal equivalent of an n-bit unsigned binary number:

$$x = x_{n-1}2^{n-1} + x_{n-2}2^{n-2} + \dots + x_12^1 + x_02^0$$

Range: 0 to $+2^{n} - 1$

Range with 32 bits: 0 to $+2^{32} - 1$

0 to +4,294,967,295

Range with 64 bits: 0 to $+2^{64} - 1$

0 to +18,446,744,073,709,551,615

18 quintillion 446 quadrillion 744 trillion 73 billion 709 million 551 thousand 615
EEE 102 Introduction to Digital Circuit Design

EEE 102 Introduction to Digital Circuit Design

Decimal Fraction to Base-2 Conversion

There is **no guarantee** that the fraction would become zero after a certain number of steps: repeating binary sequences may be encountered in the fraction

 Successively multiply the fraction by 2 until either the fraction becomes 0 or the binary sequence starts to repeat

Example: Convert 3.47 to binary

			- 1				
0.47	x 2	0.94		0.32	x 2	0 .64	
0.94	x 2	1.88		0.64	x 2	1.28	
0.88	x 2	1 .76		0.28	x 2	0 .56	
0.76	x 2	1.52		0.56	x 2	1 .12	
0.52	x 2	1.04		0.12	x 2	0.24	
0.04	x 2	0.08		0.24	x 2	0.48	
0.08	x 2	0 .16		0.48	x 2	0.96	
0.16	x 2	0.32		0.96	x 2	1.92	
EEE 102 la	EEE 102 Introduction to Digital Circuit Design						

x 2 1.68 0.84 0.68 x 2 1.36 0.72 0.36 x 2 1.44 0.72 x 2 0.88 0.44 x 2 **1**.76 x 2 88.0 1.52 0.76

0.92 x 2

1.84

Repeating 20-digit binary sequence

VOLKAN KURSUN

VOLKAN KURSUN

Decimal Fraction to Base-2 Conversion

Successively multiply the fractions with 2 and record and collect the integer parts until the fraction becomes zero

VOLKAN KURSUN

Bilkent University

Bilkent University

Decimal Fraction to Base-2 Conversion

 Successively multiply the fraction by 2 until either the fraction becomes 0 or the binary sequence starts to repeat

0.64

1.28 0.56

1.12

0.24

0.48

0.96

1.92

Example: Convert 3.47 to binary

0.47	x 2	0.94	0.32	x 2
0.94	x 2	1.88	0.64	x 2
0.88	x 2	1 .76	0.28	x 2
0.76	x 2	1.52	0.56	x 2
0.52	x 2	1.04	0.12	x 2
0.04	x 2	0.08	0.24	x 2
0.08	x 2	0.16	0.48	x 2
0.16	x 2	0.32	0.96	x 2

	0.92	x 2	1 .84
	0.84	x 2	1 .68
	0.68	x 2	1 .36
	0.36	x 2	0 .72
	0.72	x 2	1 .44
	0.44	x 2	0 .88
	0.88	x 2	1 .76
	0.76	x 2	1 .52

Repeating 20-digit binary sequence

• $3.47 = 0b11.01_{1}1100001010001111010_{1}...$

Repeating 20-digit binary sequence

VOLKAN KURSUN Bilkent University

Outline

- Prelude: Digital Representation of Information
- Positional Number Systems
 - Decimal Number System
 - Binary Number System
 - Octal Number System
 - Hexadecimal Number System
- General base-r system
 EEE 102 Introduction to Digital Circuit Design

VOLKAN KURSUN

Binary to Octal Conversion

O100011001112 = 21478

Octal equivalent of an unsigned binary number with fraction:

O10, 1011001011200 = 2.54548

d=2 d=4 d=5 d=4 d=5 d=9

EEE 102 Introduction to Digital Circuit Design

Octal to Binary Conversion

Bilkent University

Binary equivalent of an octal number with fraction:

VOLKAN KURSUN **Octal with Fraction to Decimal**

Decimal equivalent of an octal number with fraction:

EEE 102 Introduction to Digital Circuit Design

EEE 102 Introduction to Digital Circuit Design

VOLKAN KURSUN

VOLKAN_KURSUN Hexadecimal Numbers (Base 16) Hexadecimal number system has 16 symbols

- called hexadecimal digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
- Hexadecimal numbers are identified with either a prefix of **0x** or **0X** or a suffix of **H** or **h**
- Compact representation of bit strings

• 4	 4 bits per hexadecimal digit Nibble: group of 4 bits 							
0	0000	4	0100	8	1000	С	1100	
1	0001	5	0101	9	1001	d	1101	
2	0010	6	0110	а	1010	е	1110	
3	0011	7	0111	b	1011	f	1111	

VOLKAN KURSUN

Outline

Bilkent University

- Prelude: Digital Representation of Information
- Positional Number Systems
 - Decimal Number System
 - Binary Number System
 - Octal Number System
 - Hexadecimal Number System
- General base-r system
 EEE 102 Introduction to Digital Circuit Design

VOLKAN KURSUN

Hexadecimal Numbers (Base 16)

- Compact representation of bit strings
 - 4 bits per hexadecimal digit

0	0000	4	0100	8	1000	С	1100
1	0001	5	0101	9	1001	d	1101
2	0010	6	0110	а	1010	е	1110
3	0011	7	0111	b	1011	f	1111

Example: **0**xeca86420 = eca86420**H** = $(eca86420)_{16} \ in \ binary \ {\tiny \begin{array}{c} \text{Replace each hexadecimal digit with 4} \\ \text{equivalent bits:} \end{array}}$

0b1110 1100 1010 1000 0110 0100 0010 0000

VOLKAN KURSUN
Hexadecimal

→ Decimal Conversion

Hexadecimal → **Decimal**

$$0x11011 = ?_{ten}$$

Hexadecimal Digit	Decimal Value				
1	1	х	16°	=	1
1	1	х	16 ¹	=	16
0	0	х	16 ²	=	0
1	1	х	16³	=	4096
1	1	х	16^{4}	=	65536
			Σ	=	69649

Dec	imal	Hexadecimal
110)11	
/16 =	688	3
/16 =	43	0
/16 =	2	В
/16 =	0	2
Colle	ct →	0x2B03
remai	nders	

11011

in reverse

order

- Same symbols can mean different things
- Be explicit unless you mean decimal

FEE 102 Introduction to Digital Circuit Design

VOLKAN KURSUN

Bilkent University

0x?

VOLKAN KURSUN Conversion Between Radix Bilkent University

Nibble: group of 4 bits

☐Byte = 8-bit data

♣Binary 00000000₂ to 11111111₂

❖Decimal 0₁₀ to 255₁₀

♦ Octal 000₈ to 377₈ (11,111,111₂)

♦ Hexadecimal 00₁₆ to FF₁₆

Byte, halfword (2 bytes), word (4 bytes), and doubleword (8 bytes): data sizes used in computers (largest data size depends on the width of the processor datapath and registers). Data are processed in chunks called bytes, halfwords, words, and doublewords in a computer 32-bit words in 32-bit ISA (Example: RV32, ARM-32) 64-bit doublewords in 64-bit ISA (Example: RV64, ARM-64)

Hex Decinal Binary

	•	•	0000			
	1	1	0001			
	2	2	0010			
	3	3	0011			
	4	4	0100			
	5	5	0101			
	6	6	0110			
	7	7	0111			
	8	8	1000			
h	9	9	1001			
	A	10	1010			
)	В	11	1011			
	С	12	1100			
	D	13	1101			
)	E	14	1110			
,	F	15	1111			
VOLKAN KURSUN						

VOLKAN KURSUN Outline

 Prelude: Digital Representation of Information

- Positional Number Systems
 - Decimal Number System
 - Binary Number System
 - Octal Number System
 - Hexadecimal Number System

General base-r system

EEE 102 Introduction to Digital Circuit Design

VOLKAN KURSUN Bilkent University Decimal to Base-r Conversion

- Take decimal representation, keep dividing by r until quotient is zero
- Record the remainder at each step
- Last remainder is the MSD. First remainder is the LSD

VOLKAN KURSUN

EEE 102 Introduction to Digital Circuit Design

Bilkent University

Decimal to Base-2 Conversion Example-2

- Take decimal representation, keep dividing by r until quotient is zero
- Record the remainder at each step
- Last remainder is the MSD. First remainder is the LSD

Convert (857) 10 to binary

Remainder

$$857 \div 2 = 428$$
 1 LSB
 $428 \div 2 = 214$ 0
 $214 \div 2 = 107$ 0
 $107 \div 2 = 53$ 1
 $53 \div 2 = 26$ 1
 $26 \div 2 = 13$ 0
 $13 \div 2 = 6$ 1
 $6 \div 2 = 3$ 0
 $3 \div 2 = 1$ 1
 $1 \div 2 = 0$ 1 MSB

Result is (1101011001)₂

VOLKAN KURSUN Base-r to Base-k Conversion Convert base r to decimal

Convert decimal to base k 2314

base

to

EEE 102 Introduction to Digital Circuit Design

EEE 102 Introduction to Digital Circuit Design

VOLKAN KURSUN