In [1]:

```
# Importando as bibliotecas
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sbs
%matplotlib inline
from statsmodels.formula.api import ols
```

In [2]:

```
# Carregando os dados
data = pd.read_csv ('pesos2.csv')
```

In [3]:

```
# Verificando as 5 primeiras linhas
data.head ( )
```

Out[3]:

	Sexo	Grupo	Head Size	Brain Weight
0	1	1	4512	1530
1	1	1	3738	1297
2	1	1	4261	1335
3	1	1	3777	1282
4	1	1	4177	1590

In [4]:

```
# Verificando as 15 primeiras linhas
data.head (15)
```

Out[4]:

	Sexo	Grupo	Head Size	Brain Weight
0	1	1	4512	1530
1	1	1	3738	1297
2	1	1	4261	1335
3	1	1	3777	1282
4	1	1	4177	1590
5	1	1	3585	1300
6	1	1	3785	1400
7	1	1	3559	1255
8	1	1	3613	1355
9	1	1	3982	1375
10	1	1	3443	1340
11	1	1	3993	1380
12	1	1	3640	1355
13	1	1	4208	1522
14	1	1	3832	1208

In [5]:

```
# Verificando as 5 últimas linhas
data.tail ( )
```

Out[5]:

	Sexo	Grupo	Head Size	Brain Weight
232	2	2	3214	1110
233	2	2	3394	1215
234	2	2	3233	1104
235	2	2	3352	1170
236	2	2	3391	1120

In [6]:

```
#Verificando o número de linhas e colunas
data.shape
```

Out[6]:

(237, 4)

In [7]:

```
#Verificar se há valores NAN (Retirar se houver)
data.isnull().sum()
```

Out[7]:

Sexo 0
Grupo 0
Head Size 0
Brain Weight 0
dtype: int64

In [8]:

```
#Retirando a coluna Grupo
data.drop('Grupo', axis = 1, inplace=True)
```

In [9]:

```
data.shape
```

Out[9]:

(237, 3)

In [10]:

```
data.head( )
```

Out[10]:

	Sexo	Head Size	Brain Weight
0	1	4512	1530
1	1	3738	1297
2	1	4261	1335
3	1	3777	1282
4	1	4177	1590

In [11]:

```
#Utilizar o método describe para conhecer sua tabela data.describe( )
```

Out[11]:

	Sexo	Head Size	Brain Weight
count	237.000000	237.000000	237.000000
mean	1.434599	3633.991561	1282.873418
std	0.496753	365.261422	120.340446
min	1.000000	2720.000000	955.000000
25%	1.000000	3389.000000	1207.000000
50%	1.000000	3614.000000	1280.000000
75%	2.000000	3876.000000	1350.000000
max	2.000000	4747.000000	1635.000000

In [12]:

```
data.rename(columns={'Head Size':'cabeca', 'Brain Weight':'peso'}, inplace= True)
```

In [13]:

data.corr()

Out[13]:

	Sexo	cabeca	peso
Sexo	1.000000	-0.51405	-0.465266
cabeca	-0.514050	1.00000	0.799570
peso	-0.465266	0.79957	1.000000

In [14]:

```
corr= data.corr()
```

In [15]:

sbs.heatmap(corr,annot = True)

Out[15]:

<matplotlib.axes._subplots.AxesSubplot at 0x59d4130>

In [16]:

```
sbs.scatterplot(x='cabeca' , y='peso', data=data)
```

Out[16]:

<matplotlib.axes._subplots.AxesSubplot at 0x70d6cd0>

In [17]:

```
formula = 'cabeca ~ peso'
modelo_v1 = ols (formula, data = data).fit()
modelo_v1.summary()
```

Out[17]:

OLS Regression Results

Dep. Variable: cabeca R-squared: 0.639 Model: OLS Adj. R-squared: 0.638 Method: Least Squares F-statistic: 416.5 Date: Wed, 18 Nov 2020 Prob (F-statistic): 5.96e-54 Time: 15:24:15 Log-Likelihood: -1613.4 No. Observations: 237 AIC: 3231. **Df Residuals:** 235 BIC: 3238. **Df Model:** 1 **Covariance Type:** nonrobust coef std err P>|t| [0.025 0.975] 3.398 0.001 218.759 822.461 Intercept 520.6101 153.215 2.4269 0.119 20.409 0.000 2.661 2.193 peso **Omnibus:** 2.687 **Durbin-Watson:** 1.726 Prob(Omnibus): 0.261 Jarque-Bera (JB): 2.321 **Skew:** 0.207 Prob(JB): 0.313

Warnings:

Kurtosis: 3.252

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Cond. No. 1.38e+04

[2] The condition number is large, 1.38e+04. This might indicate that there are strong multicollinearity or other numerical problems.

In [18]:

sbs.lmplot(x='cabeca', y='peso', data=data,fit_reg=True)

Out[18]:

<seaborn.axisgrid.FacetGrid at 0x712cb50>

In []: