3469674 FAIRCHILD SEMICONDUCTOR

84D 27296

BAY72/BAY80

Conductance Diodes

General Purpose High

 V_F...1.0V (MAX) @ 100 mA (BAY72) • VF... 1.0V (MAX) @ 150 mA (BAY80)

PACKAGES

BAY72 BAY80

DO-35 DO-35

ABSOLUTE MAXIMUM RATINGS (Note 1)

Temperatures

10

Storage Temperature Range Maximum Junction Operating Temperature Lead Temperature

-65°C to +200°C +175°Ç +260°C

Power Dissipation (Note 2)

Maximum Total Power Dissipation at 25°C Ambient Linear Power Derating Factor (from 25°C)

Average Rectified Current-

500 mW 3.33 mW/°C

Maximum Voltage and Currents WIV

Working Inverse Voltage

BAY 72 100 V. BAY 80 -120 V

Continuous Forward Current Peak Repetitive Forward Current if(surge)

200 mA 500 mA 600 mA

Peak Forward Surge Current Pulse Width = 1 s Pulse Width = $1 \mu s$

1.0 A 4.0 A

ELECTRICAL CHARACTERISTICS (25°C Ambient Temperature unless otherwise noted)

SYMBOL	CHARACTERISTIC	BAY 72		BAY 80			
		MIN	MAX	MIN	MAX	UNITS	TEST CONDITIONS
VF	Forward Voltage	0.78 0.73 0.63 0.51	1.00 0.92 0.78 0.64		1.00	V V V	IF = 150 mA IF = 100 mA IF = 50 mA IF = 10 mA IF = 1.0 mA
IR ·	Reverse Current		100 100		100 150	nA - μA nA μA	V _R = 120 V V _R = 120 V, T _A = 100°C V _R = 100 V V _R = 100 V, T _A = 125°C
BV	Breakdown Voltage	125		150		V	I _R = 100 μA
С	Capacitance		5.0		6.0	pF	V _R = 0, f = 1 MHz
ter	Rev. Rec. Time (note 3) (note 4)	-	50 400		60	ns .	$I_f = I_r = 30 \text{ mA}, R_L = 75 \Omega$ $I_f = 30 \text{ mA}, V_R = 35 \text{ V}$
Vfr	Fwd. Rec. Voltage (note 5)		2.5			v	R _L = 2.0 KΩ, C _L = 10 pF
Vfr	Fwd. Rec. Voltage (note 5)		2.5			v	If = 100 mA (pulsed)
tfr	Fwd. Rec. Time (note 5)		50			ns	
Q ₈	Stored Change (note 6)		250				If = 100 mA (pulsed)
RE	Rect. Efficiency (note 7)	35				pC %	If = 20 mA, I _r = 1.0 mA f = 100 MHz

NOTES:

1. These ratings are limiting values above which the serviceability of the diode may be impaired.

2. These are steady state limits. The factory should be consulted on applications involving pulsed or low duty-cycle operation.

3. Recovery to 1,0 mA.

4. Recovery to 400 ki, Jan 256 Circuit.

5. The oscilloscope used as the response detector shall have a bandwidth of at least 10 MHz (3 dB down), and shall be calibrated using a deposited carbon resistor of 50 R in the diode test clips. It is defined as the difference between the 10% point of the pulse and the point where V_F is to be within 10% of the quiescent value. Pulse conditions shall be 0.1 µs wide at base, 20 ns maximum rise time, repetition rate = 100 kHz max.

5. Measured on the Tektronix "3" unit.

6. Measured on the Tektronix "3" unit.

7. Rectification efficiency is defined as the ratio of do load voltage to peak rf input to the circuit. Load resistance of 5.0 kΩ, load capacitance 20 pF.

8. For product family characteristic curves, refer to Chapter 4, D1.

3-15