Roburoc ★

C2-04

Pas de corrigé pour cet exercice.

Question 1 Le système étudié est-il stable théoriquement? Justifier vos réponses.

Question 2 Etudier l'aptitude du système sans correction à respecter les critères de précision. Vous déterminerez notamment les expressions littérales de l'erreur statique en poursuite pour une consigne de vitesse de la plate-forme $V_c(t)$ en échelon d'amplitude $V_{CO}: V_C(t) = V_{CO}u(t)$ (avec u(t) l'échelon unitaire) et de l'influence en régulation d'une perturbation $C_{\rm equ}(t)$ en échelon d'amplitude C_0 , sur la vitesse réelle V(t) de la plate-forme en régime permanent.

Etude des performances avec un correcteur de fonction de transfert :
$$C(p) = \frac{K_I}{p}$$

Question 3 Indiquer quelle est la nature de la correction effectuée par ce correcteur (ou désignation du correcteur)? Indiquer pour quelle(s) raison(s) principale(s) ce correcteur a été choisi. Valider ce choix vis à vis du cahier des charges. Sans calcul, donner l'influence de ce correcteur sur les autres performances attendues.

Reprenons le diagramme de Bode précédent.

Question 4 Compléter le document-réponse en traçant les diagrammes de Bode du correcteur avec $K_I = 1 \, \mathrm{s}^{-1}$. Déterminer alors la valeur de K_I maximale notée $K_{I \, \mathrm{max}}$ permettant de respecter les marges de stabilité énoncées dans le cahier des charges.

Question 5 En analysant les valeurs numériques des pôles de la fonction de transfert du moteur en poursuite $H_U(p)$, préciser quel est le pôle dominant et proposer alors un modèle simplifié de la fonction de transfert $H_U(p)$. Déterminer alors la valeur numérique de K_I notée $K_{I5\%}$ minimisant le temps de réponse à 5% pour une entrée échelon en poursuite. Calculer alors la valeur approchée du temps de réponse à 5% minimale $T_{5\% \text{mini}}$ et comparer la au cahier des charges.

Etude des performances avec un correcteur proportionnel intégral :
$$C(p) = K_P \left(1 + \frac{1}{T_i p}\right)$$

Question 6 Parmi les différentes valeurs de T_I , choisir celle qui assure le temps de réponse à 5% le plus faible. Vous ferez apparaître ce temps de réponse sur la figure.

Question 7 Parmi les différentes valeurs de K_p , choisir la valeur qui assure un temps de réponse à 5% au plus près de la valeur fournie dans le cahier des charges.

Question 8 Conclure quant à la capacité de ce correcteur à respecter tous les critères du cahier des charges.

