SIMPLIFICATION OF CONTEXT FREE GRAMMAR

Dr. A. Beulah AP/CSE

LEARNING OBJECTIVE

- To Understand the need of formal languages, and grammars (K3)
 - To Understand simplification of CFG

THREE WAYS TO SIMPLIFY/CLEAN A CFG

- Clean
 - Eliminate useless symbols
- Simplify
 - Eliminate ε-productions

$$A \Rightarrow \varepsilon$$
 $A \rightarrow \varepsilon$

- Eliminate unit productions

$$A \Rightarrow B$$
 $A \rightarrow R$

ELIMINATING USELESS SYMBOLS

Dr. A. Beulah AP/CSE

LEARNING OBJECTIVE

To eliminate useless symbols

FIND USEFUL SYMBOLS

A symbol X is <u>reachable</u> if there exists:

$$S \Rightarrow^* \alpha X \beta$$

• A symbol X is **generating** if there exists:

$$X \Rightarrow^* w$$
, for some $w \in T^*$

- For a symbol X to be "useful", it has to be both reachable and generating
 - $\underline{S} \Rightarrow^* \alpha \underline{X} \beta \Rightarrow^* w'$, for some $w' \in T^*$

 Omitting useless symbols obviously will not change the language generated by the grammar.

ALGORITHM TO DETECT USELESS SYMBOLS

1. Eliminate all symbols that are not generating

2. Eliminate all symbols that are *not* reachable

Is the order of these steps important, or can we switch?

- · S→AB | a

• $A \rightarrow \underline{b}$

BAG B

(1) SABABA

- A, S are generating $(S \rightarrow a, A \rightarrow b)$
- B is not generating (and therefore B is useless)
- Eliminating B... (i.e., remove all productions that involve B)

$$S \rightarrow a$$
 $A \rightarrow b$

• Now, A is not reachable and therefore is useless

Simplified G:

$$S \rightarrow a/$$

What would happen if you reverse the order: i.e., test reachability before generating?

Will fail to remove:

$$A \rightarrow b$$

ALGORITHM TO DETECT USELESS SYMBOLS

$$S \rightarrow aSb \mid A \mid \varepsilon$$

 $A \rightarrow aA$

ALGORITHM TO DETECT USELESS SYMBOLS

$$S \rightarrow aSb \mid A \mid \epsilon$$

 $A \rightarrow aA$

$$S \rightarrow aSb \mid \epsilon$$

18 August 2022

```
S \rightarrow AC \mid BS \mid B
         A \rightarrow aA \mid aF
          B \rightarrow CF \mid b
         C \rightarrow cC \mid D
          D \rightarrow aD \mid BD \mid C
         E \rightarrow aA \mid BSA
          F \rightarrow bB \mid b
Find useless symbols
```

Unit II

ToC, A.Beulah

11

- $S \rightarrow AC \mid BS \mid B$ $A \rightarrow aA \mid aF$ $B \rightarrow CF \mid b$ $C \rightarrow cC \mid D$ $D \rightarrow aD \mid BD \mid C$ $E \rightarrow aA \mid BSA$ $F \rightarrow bB \mid b$
- First Find generating symbols

- $S \rightarrow AC \mid BS \mid B$ $A \rightarrow aA \mid aF$ $B \rightarrow CF \mid b$ $C \rightarrow cC \mid D$ $D \rightarrow aD \mid BD \mid C$ $E \rightarrow aA \mid BSA$ $F \rightarrow bB \mid b$
- Find generating symbols
- B, F both generate terminals


```
• S \rightarrow AC \mid BS \mid B

A \rightarrow aA \mid aF

B \rightarrow CF \mid b

C \rightarrow cC \mid D

D \rightarrow aD \mid BD \mid C

E \rightarrow aA \mid BSA

F \rightarrow bB \mid b
```

- Find generating symbols
- B, F both generate symbols
- S is generate symbol, since S \rightarrow B and hence S \Rightarrow * b


```
• S \rightarrow AC \mid BS \mid B

A \rightarrow aA \mid \underline{aF}

B \rightarrow CF \mid b

C \rightarrow cC \mid D

D \rightarrow aD \mid BD \mid C

E \rightarrow \underline{aA} \mid \underline{BSA}

F \rightarrow bB \mid b
```

- Find generating symbols
- B, F both generate symbols
- S is generate symbol, since S \rightarrow B and hence S \Rightarrow * b
- A is generate symbol, since $A \rightarrow aF$ and hence $A \Rightarrow^* ab$

- $S \rightarrow AC \mid BS \mid B$ $A \rightarrow aA \mid aF$ $B \rightarrow CF \mid b$ $C \rightarrow cC \mid D$ $D \rightarrow aD \mid BD \mid C$ $E \rightarrow aA \mid BSA$ $F \rightarrow bB \mid b$
- Find generating symbols
- B, F both generate symbols
- S is generate symbol, since S \rightarrow B and hence S \Rightarrow * b
- A is generate symbol, since $A \rightarrow aF$ and hence $A \Rightarrow^* ab$
- E is generate symbol, since $E \rightarrow aA$ and hence $E \Rightarrow^* aab$

- $S \rightarrow AC \mid BS \mid B$ $A \rightarrow aA \mid aF$ $B \rightarrow CF \mid b$ $C \rightarrow cC \mid D$ $D \rightarrow aD \mid BD \mid C$ $E \rightarrow aA \mid BSA$ $F \rightarrow bB \mid b$
- Find generating symbols
- C and D are not generating symbols, so all rules containing C and D are removed


```
• S \rightarrow \underline{AC} \mid BS \mid B

A \rightarrow aA \mid aF

B \rightarrow CF \mid b

C \rightarrow cC \mid D

D \rightarrow aD \mid BD \mid C

E \rightarrow aA \mid BSA

F \rightarrow bB \mid b
```

- Find generating symbols
- C and D are not generating symbols, so all rules containing C and D are removed

eb D

$$S \rightarrow BS \mid B$$
 $A \rightarrow aA \mid aF$
 $B \rightarrow b$
 $E \rightarrow aA \mid BSA$
 $F \rightarrow bB \mid b$

- All non-terminals generate terminal strings
- Next, find reachable symbols


```
S \rightarrow BS \mid B
A \rightarrow aA \mid aF
B \rightarrow b
E \rightarrow aA \mid BSA
F \rightarrow bB \mid b
```

- All non-terminals generate terminal strings
- Next, find reachable symbols
- S is a reachable symbol, since it is the start symbol


```
S \rightarrow BS \mid B
A \rightarrow aA \mid aF
B \rightarrow b
E \rightarrow aA \mid BSA
F \rightarrow bB \mid b
```

- All non-terminals generate terminal strings
- Next, find reachable symbols
- S is a reachable symbol, since it is the start symbol
- B is a reachable symbol, since $S \rightarrow BS$, and hence B is derivable from S


```
S \rightarrow BS \mid B
A \rightarrow aA \mid aF
B \rightarrow b
E \rightarrow aA \mid BSA
F \rightarrow bB \mid b
```

- All non-terminals generate terminal strings
- Next, find reachable symbols
 - A, E, and F can not be derived from S or B, so all rules containing A, E and F are removed

The new grammar is

$$S \rightarrow BS \mid B$$

$$B \rightarrow b$$

• The set of terminals of G_U is $\{b\}$, a is removed since it does not occur in any string in the language of G_U

- S→aAa
- A→Sb
- A→bCC
- A→DaA
- C→abb
- $C \rightarrow DD$
- E → aC
- D→aDA

$$G=\{S,A,C,E\}$$
 \Rightarrow $S\Rightarrow AA$
 $A\Rightarrow Sb\mid bEC$
 $C\Rightarrow abb$
 $E\Rightarrow aC$

ELIMINATING ε-PRODUCTIONS

• It is *not* possible to eliminate ϵ -productions for languages which include ϵ in their word set

3← A

• Theorem: If G=(V,T,P,S) is a CFG for a language L, then L- $\{\epsilon\}$ has a CFG without ϵ -productions

- A non-terminal symbol that can **derive** the *null string* (ϵ) is called **nullable**.
- <u>Definition</u>: A is "nullable" if $\underline{A} \rightarrow * \varepsilon$

NULLABLE NON-TERMINALS

The set of nullable non-terminals of the grammar

$$-S \rightarrow ACA$$

$$A \rightarrow aAa \mid B \mid C$$

$$B \rightarrow bB \mid b$$

$$C \rightarrow cC \mid E$$

- -C is nullable
 - since $C \rightarrow \varepsilon$ and hence $C \Rightarrow^* \varepsilon$

NULLABLE NON-TERMINALS

The set of nullable non-terminals of the grammar

$$- \underbrace{S \rightarrow ACA}$$

$$\underline{A \rightarrow aAa \mid B \mid C}$$

$$B \rightarrow bB \mid b$$

$$C \rightarrow cC \mid \varepsilon$$

$$\underbrace{S \rightarrow ACA}$$

$$\Rightarrow z \leftarrow A$$

- -C is nullable
 - since $C \rightarrow \varepsilon$ and hence $C \Rightarrow^* \varepsilon$
- -A is nullable
 - since $A \rightarrow C$, and C is nullable

NULLABLE NON-TERMINALS

The set of nullable non-terminals of the grammar

$$-S \rightarrow ACA$$

$$A \rightarrow aAa \mid B \mid C$$

$$B \rightarrow bB \mid b$$

$$C \rightarrow cC \mid \varepsilon$$

- -C is nullable
 - since $C \rightarrow \varepsilon$ and hence $C \Rightarrow^* \varepsilon$
- -A is nullable

• since $A \rightarrow C$, and C is nullable

ALGORITHM TO DETECT ALL NULLABLE NT

• Basis:

• If A $\rightarrow \epsilon$ is a production in G, then A is nullable (note: A can still have other productions)

Induction:

• If there is a production B \rightarrow C₁C₂...C_k, where *every* C_i is nullable, then B is also nullable

ELIMINATING ε-PRODUCTIONS

- If $\varepsilon \notin L(G)$, we can eliminate all productions $A \to \varepsilon$
- For every *B* referring to *A*:

- For example, if $B \rightarrow \varepsilon$ and $A \rightarrow BABa$
- Then after eliminating the rule $B \to \varepsilon$, new rules for A will be added

$$-A \rightarrow BABa$$

$$-A \rightarrow ABa$$

$$-A \rightarrow BAa$$

$$A \rightarrow BABa$$
 $A \rightarrow BABa$
 $A \rightarrow BABa$
 $A \rightarrow BABa$
 $A \rightarrow BABa$
 $A \rightarrow BABa$

- Let *G* be
 - $-S \rightarrow SaB \mid aB$ $B \rightarrow bB \mid \varepsilon$

- Let *G* be
 - $-S \rightarrow SaB \mid aB$ $B \rightarrow bB \mid \varepsilon$
- After removing ε -productions, the new grammar will be
 - $-S \rightarrow SaB \mid Sa \mid aB \mid a$ $B \rightarrow bB \mid b$
- The removal of e-productions increases the number of rules but reduces the length of derivations.

ELIMINATING ε-PRODUCTIONS

Let L be the language represented by the following CFG G:

$$S \rightarrow AB$$

 $A \rightarrow aAA \mid \varepsilon$
 $B \rightarrow bBB \mid \varepsilon$

Nullable symbols: {A, B}

New grammar constructed from G as follows:

Simplified

grammar

• Let G $S \rightarrow ACA$ $A \rightarrow aAa \mid B \mid C$ $B \rightarrow bB \mid b$ $C \rightarrow cC \mid \varepsilon$

- Let G $S \rightarrow ACA$ $A \rightarrow aAa \mid B \mid C$ $B \rightarrow bB \mid b$ $C \rightarrow cC \mid \epsilon$
- The equivalent essentially grammar is

$$S \rightarrow ACA \mid CA \mid AA \mid AC \mid A \mid C \mid \varepsilon$$
 $A \rightarrow aAa \mid aa \mid B \mid C$
 $B \rightarrow bB \mid b$
 $C \rightarrow cC \mid c$

• Since $S \Rightarrow^* \varepsilon$ in G, the rule $S \to \varepsilon$ is allowed in G_L , but all other ε -productions are replaced

SSI

- Let *G* be
 - $-S \rightarrow aS \mid SS \mid bA$
 - $-A \rightarrow BB$
 - $-B \rightarrow ab \mid aAbC \mid aAb \mid CC$
 - $-C \rightarrow \varepsilon$

- Let G be
 - $-S \rightarrow aS \mid SS \mid bA$
 - $-A \rightarrow BB$
 - $-B \rightarrow ab \mid aAbC \mid aAb \mid CC$
 - $-C \rightarrow \varepsilon$
- We eliminate $C \rightarrow \varepsilon$ by replacing:
 - $-B \rightarrow CC$ into $B \rightarrow CC$, $B \rightarrow C$, and $B \rightarrow \varepsilon$
 - $-B \rightarrow aAbC$ into $B \rightarrow aAbC$ and $B \rightarrow aAb$
- Since $C \rightarrow \varepsilon$ is only C production
 - only $B \rightarrow ε$ and $B \rightarrow aAb$ retained.
- The new grammar:
 - $-S \rightarrow aS \mid SS \mid bA$
 - $-A \rightarrow BB$

• The new grammar:

- $-S \rightarrow aS \mid SS \mid bA$
- $-A \rightarrow BB$
- $-B \rightarrow \varepsilon \mid ab \mid aAb$

- The new grammar:
 - $-S \rightarrow aS \mid SS \mid bA$
 - $-A \rightarrow BB$
 - $-B \rightarrow \varepsilon \mid ab \mid aAb$
- We eliminate $B \rightarrow \varepsilon$ by replacing
 - $-A \rightarrow BB$ into $A \rightarrow BB$, $A \rightarrow B$, and $A \rightarrow \varepsilon$
- Since there are other B productions, these are all retained
- The new grammar:
 - $-S \rightarrow aS \mid SS \mid bA$
 - $-A \rightarrow BB \mid B \mid \varepsilon$
 - $-B \rightarrow ab \mid aAb$

- The new grammar:
 - $-S \rightarrow aS \mid SS \mid bA$
 - $-A \rightarrow BB \mid B \mid \varepsilon$
 - $-B \rightarrow ab \mid aAb$

- The new grammar:
 - $-S \rightarrow aS \mid SS \mid bA$
 - $-A \rightarrow BB \mid B \mid \varepsilon$
 - $-B \rightarrow ab \mid aAb$
- Finally we eliminate $A \rightarrow \varepsilon$ by replacing
 - $-B \rightarrow aAb$ into $B \rightarrow aAb, B \rightarrow ab$
 - $-S \rightarrow bA$ into $S \rightarrow bA \mid b$
- The final CFG is:
 - $-S \rightarrow aS \mid SS \mid bA \mid b$
 - $-A \rightarrow BB \mid B$
 - $-B \rightarrow ab \mid aAb$

ELIMINATING ε-PRODUCTIONS

Given: G=(V,T,P,S)

Algorithm:

- 1. Detect all nullable variables in G
- 2. Then construct $G_1 = (V,T,P_1,S)$ as follows:
 - For each production of the form: A → X₁X₂...X_k, where k≥1, suppose m out of the k X_i's are nullable symbols, then G₁ will have 2^m versions for this production i.e, all combinations where each X_i is either present or absent
 - Alternatively, if a production is of the form: A $\rightarrow \epsilon$, then remove it

ELIMINATING UNIT PRODUCTIONS

- Rules having the form $\underline{A} \rightarrow \underline{B}$ are called **unit rules**
- Consider the rules

$$-\underline{A} \rightarrow aA \mid \underline{a} \mid \underline{B}$$

$$-\underline{B} \rightarrow bB \mid b \mid \underline{C}$$

- The unit rule $A \rightarrow B$ indicates that any string derivable from B is also derivable from A
- The **removal of unit** rules *increases the number of rules* but reduces the length of derivations.

ELIMINATING UNIT PRODUCTIONS

- To eliminate the unit rule, add A rules that directly generate the same strings as B
 - Add a rule $A \rightarrow u$ for each $B \rightarrow u$ and deleting $A \rightarrow B$ from the grammar

$$A \rightarrow B$$
 $B \rightarrow \alpha_1 \mid \dots$

Consider the productions

$$-A \rightarrow aA \mid a \mid B$$

$$-B \rightarrow bB \mid b \mid d$$

$$A \rightarrow bB \mid b \mid d$$

$$A \rightarrow bB \mid b \mid d$$

• The new productions after eliminating the unit production $A \rightarrow B$

$$-A \rightarrow aA \mid a \mid bB \mid b \mid d$$

$$-B \rightarrow bB \mid b \mid d$$

$$B \rightarrow bB \mid b \mid d$$

We add new rules to A by replacing B in A with all its RHS rules

•
$$S \rightarrow \underline{ACA} \mid \underline{CA} \mid \underline{AA} \mid \underline{AC} \mid \underline{A} \mid \underline{C} \mid \underline{\varepsilon}$$
 $A \rightarrow aAa \mid aa \mid B \mid C$

$$B \rightarrow bB \mid b$$

 $C \rightarrow cC \mid c$

$$\begin{array}{c}
S \rightarrow A \\
S \rightarrow C \\
A \rightarrow B \\
A \rightarrow C
\end{array}$$

$$\frac{S \rightarrow c}{S \rightarrow aC}$$

$$\frac{S \rightarrow c}{S \rightarrow A}$$

$$S \rightarrow aA = |aa| c(|c|bB|b)$$

•
$$S \rightarrow ACA \mid CA \mid AA \mid AC \mid A \mid C \mid \varepsilon$$
 $A \rightarrow aAa \mid aa \mid B \mid C$
 $B \rightarrow bB \mid b$
 $C \rightarrow cC \mid c$

The new equivalent grammar (without unit rules)

•
$$S \rightarrow ACA \mid CA \mid AA \mid AC \mid aAa \mid aa \mid bB \mid b \mid cC \mid c \mid \varepsilon$$
 $A \rightarrow aAa \mid aa \mid bB \mid b \mid cC \mid c$
 $B \rightarrow bB \mid b$
 $C \rightarrow cC \mid c$

- $E \rightarrow T \mid E + T$
- $T \rightarrow F \mid F * T$
- $F \rightarrow a \mid (E)$

- $E \rightarrow T \mid E + T$
- $T \rightarrow F \mid F * T$
- $F \rightarrow a \mid (E)$

- $E \rightarrow T \mid E + T$
- $T \rightarrow a \mid (E) \mid F * T$
- $F \rightarrow a \mid (E)$

- $E \rightarrow T \mid E + T$
- $T \rightarrow F \mid F * T$
- $F \rightarrow a \mid (E)$
- $E \rightarrow T \mid E + T$
- $T \rightarrow a \mid (E) \mid F * T$
- $F \rightarrow a \mid (E)$
- $E \rightarrow a \mid (E) \mid F * T \mid E + T /$
- $T \rightarrow a \mid (E) \mid F * T$
- $F \rightarrow a \mid (E)$

TEST YOUR KNOWLEDGE

- Suppose A \rightarrow xBz and B \rightarrow y, then the simplified grammar would be:
 - a) $A \rightarrow xyz$
 - b) $A \rightarrow xBz | xyz$
 - c) $A \rightarrow xBz|B|y$
 - d) none of the mentioned
- Given Grammar: S → A, A → aA, A → e, B → bA
 Which among the following productions are Useless productions?
 - a) $S \rightarrow A$
 - b) $A \rightarrow aA$
 - c) $A \rightarrow e$
 - d) B \rightarrow bA

TEST YOUR KNOWLEDGE

- The Grammar can be defined as: G=(V, ∑, p, S)
 In the given definition, what does S represents?
 - a) Accepting State
 - b) Starting Variable
 - c) Sensitive Grammar
 - d) None of these

LEARNING OUTCOME

On successful completion of this topic, the student will be able to:

Understand simplification of CFG (K3)

REFERENCE

 Hopcroft J.E., Motwani R. and Ullman J.D, "Introduction to Automata Theory, Languages and Computations", Second Edition, Pearson Education, 2008

