ALGEBRA LINEARE E GEOMETRIA

1º Compitino — 20 aprile 2024

Esercizio 1. In \mathbb{R}^4 sia U il sottospazio generato dai vettori $u_1 = (2, 1, 0, -2), u_2 = (3, 2, -1, -1), u_3 = (0, -1, 2, -4).$

- (a) Verificare che u_1, u_2, u_3 sono linearmente dipendenti. Scrivere uno di essi come combinazione lineare degli altri due e trovare una base di U.
- (b) Determinare per quale valore di α il vettore $(\alpha, -4, 3, -1)$ appartiene a U.
- (c) Trovare una base del sottospazio W di equazioni $\begin{cases} x_1 + x_2 2x_4 = 0 \\ x_2 x_4 = 0. \end{cases}$
- (d) Trovare una base di $U \cap W$ e una base di U + W

Soluzione. (a) Si verifica facilmente che $u_3 = 3u_1 - 2u_2$, mentre i vettori u_1 e u_2 sono linearmente indipendenti. Quindi U ha dimensione 2 e una sua base è formata da u_1 e u_2 .

- (b) Per $\alpha = -5$ si ha $(\alpha, -4, 3, -1) = 2u_1 3u_2 \in U$.
- (c) Dalle equazioni di W si ricava $x_1 = x_4$ e $x_2 = x_4$. Ci sono due incognite libere di variare $(x_3 e x_4)$, quindi W ha dimensione 2 e una sua base è formata dai vettori $w_1 = (0,0,1,0)$ e $w_2 = (1,1,0,1)$.
- (d) Un generico vettore di *U* si scrive come segue:

$$\lambda_1 u_1 + \lambda_2 u_2 = (2\lambda_1 + 3\lambda_2, \lambda_1 + 2\lambda_2, -\lambda_2, -2\lambda_1 - \lambda_2)$$

Sostituendo queste coordinate nelle equazioni di W si trova $\lambda_1 = -\lambda_2$, da cui si deduce che $\dim(U \cap W) = 1$. Ponendo $\lambda_1 = 1$ e $\lambda_2 = -1$ si ottiene il vettore $u_1 - u_2 = (-1, -1, 1, -1)$ il quale è una base di $U \cap W$.

Si ha poi $\dim(U+W)=3$ e come base di U+W si possono prendere i vettori u_1,u_2,w_1 (naturalmente bisogna verificare che questi tre vettori siano linearmente indipendenti).

Esercizio 2. Consideriamo la matrice

$$A = \begin{pmatrix} 1 & -2 & 1 \\ 1 & -1 & 4 \\ 2 & -4 & t+1 \\ 2 & -3 & t+4 \end{pmatrix}$$

- (a) Calcolare il rango di A al variare di $t \in \mathbb{R}$.
- (b) Esistono valori di t per i quali il sistema $AX = \vec{0}$ non ha soluzioni? Per quali valori di t il sistema $AX = \vec{0}$ ha una sola soluzione? Per quali valori di t ci sono infinite soluzioni?
- (c) Poniamo t = 0 e sia $u = (1, 5, 1, \alpha)$. Determinare per quale valore di α il sistema AX = u ha soluzione.
- (d) Poniamo t=1. Determinare tutte le soluzioni del sistema AX=w, con w=(-2,3,-4,1).

Soluzione. (a) Riducendo la matrice A in forma a scala si trova la matrice

$$\begin{pmatrix} 1 & -2 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & t-1 \\ 0 & 0 & 0 \end{pmatrix}$$

Da ciò si deduce che il rango di A è 2 se t=1, mentre per $t\neq 1$ il rango è 3.

- (b) Il sistema $AX = \vec{0}$ ha sempre soluzioni ($X = \vec{0}$ è ovviamente una soluzione). Tale sistema ha una sola soluzione se $t \neq 1$, mentre per t = 1 ci sono infinite soluzioni.
- (c) Per t = 0 la matrice è

$$A = \begin{pmatrix} 1 & -2 & 1 \\ 1 & -1 & 4 \\ 2 & -4 & 1 \\ 2 & -3 & 4 \end{pmatrix}$$

Applicando l'eliminazione di Gauss alla matrice completa

$$\begin{pmatrix} 1 & -2 & 1 & | & 1 \\ 1 & -1 & 4 & | & 5 \\ 2 & -4 & 1 & | & 1 \\ 2 & -3 & 4 & | & \alpha \end{pmatrix}$$

si trova la forma a scala

$$\begin{pmatrix}
1 & -2 & 1 & | & 1 \\
0 & 1 & 3 & | & 4 \\
0 & 0 & -1 & | & -1 \\
0 & 0 & 0 & | & \alpha - 5
\end{pmatrix}$$

da cui si deduce che il sistema AX = u ha soluzione se e solo se $\alpha = 5$.

(d) Poniamo t=1. Applicando l'eliminazione di Gauss alla matrice completa

$$\begin{pmatrix}
1 & -2 & 1 & | & -2 \\
1 & -1 & 4 & | & 3 \\
2 & -4 & 2 & | & -4 \\
2 & -3 & 5 & | & 1
\end{pmatrix}$$

si trova la forma a scala

$$\begin{pmatrix}
1 & -2 & 1 & | & -2 \\
0 & 1 & 3 & | & 5 \\
0 & 0 & 0 & | & 0 \\
0 & 0 & 0 & | & 0
\end{pmatrix}$$

Il sistema corrispondente a questa matrice è

$$\begin{cases} x_1 - 2x_2 + x_3 = -2\\ x_2 + 3x_3 = 5 \end{cases}$$

Ricavando x_1 e x_2 in funzione di x_3 le soluzioni si scrivono come segue:

$$\begin{cases} x_1 = 8 - 7x_3 \\ x_2 = 5 - 3x_3 \end{cases}$$

Esercizio 3. Sia $f: \mathbb{R}^4 \to \mathbb{R}^3$ la funzione lineare la cui matrice, nelle basi canoniche di \mathbb{R}^4 e di \mathbb{R}^3 , è la seguente:

$$A = \begin{pmatrix} 2 & 0 & -1 & 1 \\ 4 & 4 & 1 & 3 \\ -1 & 2 & 2 & 0 \end{pmatrix}$$

- (a) Scrivere una base del nucleo e una base dell'immagine di f.
- (b) Dire per quale valore di α il vettore $v = (4, 2, \alpha)$ appartiene all'immagine di f. Per tale valore di α determinare l'antiimmagine $f^{-1}(v)$.
- (c) Sia \mathcal{B} la base di \mathbb{R}^4 formata dai vettori $v_1 = (1, 0, -1, 0), v_2 = (0, 1, 0, -1), v_3 = (-1, 0, 0, 1), v_4 = (0, 1, 1, 0)$. Scrivere la matrice A' di f rispetto alla base \mathcal{B} di \mathbb{R}^4 e alla base canonica di \mathbb{R}^3 .
- (d) Si dica se esiste una funzione lineare $g: \mathbb{R}^3 \to \mathbb{R}^4$ tale che si abbia f(g(w)) = w, per ogni $w \in \mathbb{R}^3$. [La risposta deve essere adequatamente giustificata]

Soluzione. (a) Riducendo la matrice A in forma a scala si trova che il rango è 2, quindi una base di Imf è formata da due colonne linearmente indipendenti di A. Il nucleo di f è l'insieme delle soluzioni del sistema

$$\begin{cases} 2x_1 - x_3 + x_4 = 0\\ 4x_2 + 3x_3 + x_4 = 0 \end{cases}$$

Risolvendo questo sistema si trova che una base di Ker f è formata dai vettori $u_1 = (2, 1, 0, -4)$ e $u_2 = (2, 0, 1, -3)$.

(b) Il vettore $v=(4,2,\alpha)$ appartiene all'immagine di f se e solo se $\alpha=-5$. Risolvendo il sistema AX=v si trova

$$\begin{cases} x_1 = 5 + 2x_2 + 2x_3 \\ x_4 = -6 - 4x_2 - 3x_3 \end{cases}$$

quindi $f^{-1}(v) = (5, 0, 0, -6) + \operatorname{Ker} f$.

(c) Le colonne della matrice A' sono formate dalle coordinate (rispetto alla base canonica) dei vettori $f(v_1)$, $f(v_2)$, $f(v_3)$, $f(v_4)$. Si trova

$$A' = \begin{pmatrix} 3 & -1 & -1 & -1 \\ 3 & 1 & -1 & 5 \\ -3 & 2 & 1 & 4 \end{pmatrix}$$

(d) Affermare che esiste una funzione g tale che f(g(w)) = w equivale a dire che $w \in \text{Im } f$ (perché w sarebbe l'immagine tramite f del vettore u = g(w)). Dato che questo dovrebbe valere per ogni $w \in \mathbb{R}^3$, si dovrebbe necessariamente avere $\text{Im } f = \mathbb{R}^3$. Ma noi sappiamo che ciò è falso perché dim(Im f) = 2, quindi una tale funzione g non può esistere.