1. 딥러닝 소개

- 날짜 @September 6, 2023

신경망은 무엇인가?

- 11 Neuron
 - ReLU 함수?
- 2 Neural Network

신경망을 이용한 지도학습

- Supervised Learning
- 2 신경망의 종류
 - 시퀀스 데이터?
- ③ 데이터의 종류

딥러닝의 주요 성장 동력

- 11 학습 알고리즘의 성능?
 - labeled data?
- 2 신경망 학습을 빠르게?

출석퀴즈 오답노트

신경망은 무엇인가?

11 Neuron

○ 인공신경망의 뉴런은 **입력값**을 바탕으로 함수를 계산하고 **결괏값을 예측**함

• e.g. 주택 크기 대비 주택 가격 예측 그래프 (선형회귀)

Housing Price Prediction Rectified Linear Unit Size of house

- 주택 가격은 음수가 될 수 없으므로 음수 부분은 기울기가 0인 직선으로 표현함
- 해당 뉴런은 주택의 크기를 입력값으로 받아 선형 함수를 계산, 결괏값과 0 중 더 큰 값을 주택의 가격으로 예측함 (ReLU 함수와 유사한 형태)

ReLU 함수?

- Rectified Linear Unit의 약자로, 활성화 함수의 한 종류
- 입력값이 0 이하인 경우 0 출력, 양수인 경우 입력값을 그대로 출력함

Neural Network

•

인공신경망은 여러 개의 single neuron이 쌓인 형태로, **입력층과 은닉층, 출력층** 으로 이루어짐

• e.g. 주택 가격 예측

input layer

주택 크기를 비롯하여 주택 가격을 결정짓는 데 영향을 끼치는 다른 feature를 고려한 경우의 신경망

- 위 신경망은 입력값(X) 4개, 예측하고자 하는 값(y) 1개로 이루어짐
- 신경망의 입력층 모두는 중앙의 은닉층과 조밀하게 연결되어 있음
- X와 y의 연결 함수가 잘 만들어지기 위해서는 train set으로 주어지는 X, y의 양이 충분 히 많아야 함

신경망을 이용한 지도학습

Supervised Learning

지도학습은 머신러닝의 한 종류로, **입력 X와 출력 y에 매핑되는 함수를 학습**하는 것

• 신경망을 이용한 지도학습의 예시

Input(X)	Output(y)	Application	Neural Network
home features	price	real estate	Standard NN
ad, user info	click on ad? (0/1)	online advertising	Standard NN
image	object (1, 2,, 1000)	photo tagging	CNN
audio	text transcript	speech recognition	RNN
English	Chinese	machine translation	RNN
image, radar info	position of other cars	autonomous driving	Hybrid NN

🙎 신경망의 종류

- 표준 신경망(Standard NN)
- 합성곱 신경망(CNN): 이미지 분야에 주로 이용
- 순환 신경망(RNN): 언어/오디오 등의 1차원 <u>시퀀스 데이터</u>에 주로 이용

시퀀스 데이터?

◆ 순서를 갖는 데이터이며, 그 종류로 시계열 데이터와 텍스트 데이터 등이 있음

🗿 데이터의 종류

Structured Data

Size	#bedrooms		Price (1000\$s)		
2104	(3)		400		
1600	3		330		
2400	3		369		
3000	4		540		

	\bigvee	V	\searrow
	User Age	Ad Id	 Click
	41	93242	1
١	80	93287	0
١	18	87312	1
١			
L	27	71244	1

Unstructured Data

Audio

Image

Four scores and seven years ago...

Text

- 구조적 데이터(Structured Data)
 - 。 데이터베이스(row, column 有)로 표현된 데이터
- 비구조적 데이터(Unstructured Data)
 - 。 음성, 이미지, 텍스트 데이터
 - 。 이미지의 픽셀 값이나 텍스트의 각 단어 등을 feature로 가짐

딥러닝의 주요 성장 동력

🔟 학습 알고리즘의 성능?

학습 알고리즘의 성능을 높이고자 할 때 중요한 것은 **규모(Scale)**로, 즉 **충분히 큰 신경망과 많은 양의 데이터**가 필요함

가로축: 어떤 task에 대한 <u>labeled 데이터</u>의 양(m) / 세로축: 학습 알고리즘의 성능

- 전통적인 학습 알고리즘 (SVM, 로지스틱 회귀 등)
 - 。 데이터 추가할수록 성능 향상 but 정체함
- 큰 신경망
 - 。 은닉 유닛, 연결, 파라미터의 개수가 많은 신경망
 - train data가 많을수록 압도적으로 성능이 높아지지만, 비교적 시간 소요가 큼
- train data가 많지 않을 때는 알고리즘의 상대적 순위가 잘 정의되지 않아, 구현 방법에 따라 성능이 결정되는 경우가 많음
- 이때 feature를 다루는 실력이나 알고리즘의 작은 부분이 성능을 크게 좌우하게 됨

labeled data?

→ 레이블이 있는 데이터로, input X와 label y가 함께 있는 train set

2 신경망 학습을 빠르게?

•

신경망과 데이터의 규모를 키우는 것으로 초창기 딥러닝의 문제는 대부분 해결되었으며, 현재는 **알고리즘 일부를 바꿔 많은 데이터를 다루는 큰 신경망의 학습 속 도(또는 계산 능력)를 높이는 시도가 중요**해짐

• e.g. 활성화 함수의 교체 (simoid → ReLU)

해당 내용은 후에 다시 다룰 예정이므로 지금 이해되지 않아도 괜찮다.

- 최적화 알고리즘 중 하나인 경사하강법에서 활성화 함수로 sigmoid를 채택할 경우,
 기울기가 0에 수렴하는 곳에서는 학습 속도가 굉장히 느려짐
- ReLU를 채택할 경우, 입력값이 양수일 때의 기울기가 1로 모두 같아 학습 속도가 느려질 가능성이 훨씬 적어지므로 경사하강법의 계산 능력을 크게 향상시킬 수 있음
- 빠른 계산이 중요한 이유

신경망 학습의 과정으로, '아이디어 생산 → 구현 → 성능 실험'을 반복하게 됨

 신경망 학습은 위 과정을 반복하는 경우가 많기 때문에, 신경망의 학습이 빨리 이루 어질수록 아이디어를 빠르게 테스트하고 발전시킬 수 있어 생산성이 크게 높아짐

출석퀴즈 오답노트

- ▼ 9. RNN이 기계번역에 많이 사용되는 이유
 - 지도학습으로 학습시킬 수 있다
 - 입력과 출력이 시퀀스일 때 적용 가능하다