BLASTn Notes V-Day edition

Project goals

- Query for our program based on NCBI format
 - · We want it to run fast as possible
 - We want to take any possible query and give same answers, faster.
 - · We want to get an exact result.
- What parts of the various implementations do we like?
 - · take those parts
 - · leave out parts we don't like
- We should likely preprocess the database
 - How do we store it on our FPGA?
 - · create database file
 - software routine to transfer/store database in hardware
 - Human genome database is 8GB? (nucleotide)
 - store hash table for database on FPGA?
 - NCBI site has 4^11 database of all possible entries
 - To-do: Look into format of databases
 - To-do: Run software and determine organization of database
- We could use two databases?
 - one for queries, nearest neighbor information
 - one for database, which strings include search term
 - Question: What is avg. length of a query? This number not official, find studies
- How are we going to handle our data?
- How are we going to transfer it
- How are we going to access it?

- We must consider the consequences of each question
 - Finite processing power
 - finite access to memory
 - · finite resources
- We should try at first without much parallelism
 - will likely have to add parallel abilities afterward
- Designing an architecture requires defining the software/hardware partition
- We should try to run and profile NCBI Blast software for performance
 - Run different queries and lengths/numbers of queries
 - · Benchmark with different genome databases
 - Run gprof on the software
 - See what parts are most time-consuming
 - Use an iterative method to increase speed
 - tackle most time-consuming methods
 - e.g, 70-80% was spent on scantask (finding the hits)
 - Is the throughput or the latency a problem?
 - If latency not a problem, we could provide a lot of pipes
 - send multiple queries at once on FPGAs
 - Likely that throughput can be added by multiple FPGAs, focus on latency for one
 - We should aim to process one guery at a high rate
 - Is one user ever processing one guery at a time?
 - Or does it run multiple jobs in a row?

Goals

- Goal #1: Do everything the NCBI software is doing
- Goal #2: Speed it up.
 - observe time/performance tradeoffs

- · use different amounts of queries and different query lengths
- We should develop benchmarking system tool (use gprof)
 - compare our version vs their version

Tasks for next week

- Designing an Architecture (TASKS REQUIRED)
 - Profiling (what sections to speed up) Taylor
 - · Become expert on NCBI software operations John
 - develop target specification
 - goal of the system
 - what speed can we hit
 - if having a question, refer to #3
 - · generate benchmarks Yash
 - write scripts to take in different queries
 - don't focus on what queries yet, just a base script
 - work for NCBI software
 - Find average query length
 - analyze prior work (what parts we like and should use) Nekhil
 - Propose architecture
 - consider and explain design decisions
 - Analyze scalability

Things to look into to help with above tasks

- Look into Mercury BLAST
 - 62 pages
 - NIH Public Access paper
- Herbordt BLASTn paper
 - Throughput was an issue

- Bottleneck slowed it down
- Pico can do 10x that speed, might want to look into
- Short read Archive
 - · massive database of publicly available sequences
 - · confusing to navigate
 - · a lot of sample sequences to run through our profiler
 - be sure to note what we downloaded and provide link to study in case of publishing our work later on
- NCBI has the databases that we would want to analyze
 - Human Genome
 - E. coli
 - Mouse
 - Virus database desirable too
- 50 hours of work per week required for this project minimum