Временная методика проверки соответствия образца физического генератора случайных чисел его теоретико-вероятностной модели

Содержание

O(Обозначения и сокращения			
Введение				
1	Объекты и параметры тестирования		5	
2	Tec	гирование исходной последовательности		
	2.1	Проверка гипотезы независимости знаков в исходной последова-		
		тельности	6	
	2.2	Проверка гипотезы однородности знаков в исходной последова-		
		тельности	7	
	2.3	Проверка согласия распределения числа k -грамм в исходной по-		
		следовательности с полиномиальным законом	8	
3	Тестирование выходной последовательности			
	3.1	Проверка соответствия частот знаков в выходной последователь-		
		ности теоретико-вероятностной модели образца ФГСЧ	10	
	3.2	Проверка гипотезы независимости знаков в выходной последова-		
		тельности	10	
	3.3	Проверка гипотезы однородности знаков в выходной последова-		
		тельности	11	
	3.4	Проверка согласия распределения числа k -грамм в выходной по-		
		следовательности с полиномиальным законом	12	
Cı	тисок	: литературы	14	

Обозначения и сокращения

\mathbb{N}	множество натуральных чисел;
\mathbb{Z}	множество целых чисел;
\mathbb{Z}_{2^s}	кольцо вычетов по модулю $2^s, s \in \mathbb{N}$;
V_n	множество всех двоичных последовательностей
	длины $n \in \mathbb{N}$;
$\{x\}_{i=1}^n$	последовательность x_1, \ldots, x_n элементов из V_1 ;
[z]	целая часть числа z , равная $\max\{s\in\mathbb{Z}\colon s\leq z\};$
$I\{A\}$	индикатор события A ;
$wt \colon \mathbb{N} \cup \{0\} \to \mathbb{N} \cup \{0\}$	функция, сопоставляющая аргументу число еди-
	ниц в его двоичном представлении;
$Vec_s \colon \mathbb{Z}_{2^s} \to V_s$	биективное отображение, сопоставляющее эле-
	менту кольца \mathbb{Z}_{2^s} его двоичное представление, т.е.
	для любого элемента $z\in\mathbb{Z}_{2^s}$, представленно-
	го в виде $z=z_0+2z_1+\ldots+2^{s-1}z_{s-1}$, где
	$z_i \in \{0,1\}, i=0,1,\ldots,s-1$, выполнено равен-
	ство $Vec_s(z) = (z_0, z_1, \dots, z_{s-1});$
$Int_s\colon V_s \to \mathbb{Z}_{2^s}$	отображение, обратное к отображению Vec_s ;
χ^2_r	функция распределения хи-квадрат с $r \in \mathbb{N}$ степе-
	нями свободы;
t_z	квантиль уровня $z \in [0;1]$ стандартного нормаль-

ного распределения.

Введение

Настоящая методика предназначена для проверки соответствия образца физического генератора случайных чисел (далее – ФГСЧ) его теоретиковероятностной модели. В рамках методики предполагается, что образец ФГСЧ функционирует по схеме, представленной на рис. 1, и формирует два типа данных: исходную и выходную последовательности. Исходная последовательность является результатом оцифровки физического сигнала, регистрируемого ФГСЧ, выходная последовательность – результатом применения алгоритмов улучшения статистических характеристик типа [1] к исходной последовательности.

Проверка образца ФГСЧ выполняется путём тестирования указанных типов последовательностей. Для исходной последовательности проверяется гипотеза о согласии её статических свойств с условиями применимости алгоритмов типа [1] — проверка гипотезы о неотличимости исходной последовательности от реализации схемы независимых одинаково распределённых испытаний Бернулли. Для выходной последовательности проверяется гипотеза о её неотличимости от реализации схемы равновероятных независимых испытаний Бернулли.

Рис. 1: Блок-схема функционирования ФГСЧ, где "УРИП" — устройство регистрации исходного процесса, "БУСХ" — блок улучшения статистических характеристик, реализующий алгоритм типа [1], $\{x\}_{i=1}^n$ — исходная последовательность, $\{z\}_{i=1}^m$ — выходная последовательность, $n, m \in \mathbb{N}$.

1. Объекты и параметры тестирования

Объектами тестирования являются:

- $\{x\}_{i=1}^n$ исходная последовательность, $n \in \mathbb{N}$.
- $\{z\}_{i=1}^m$ выходная последовательность, $m \in \mathbb{N}$.

Параметрами тестирования являются:

• α — уровень значимости каждого из статистических критериев, используемых в настоящей методике.

Рекомендуемое значение параметра α равно 0, 005.

• n — длина последовательности $\{x\}_{i=1}^n$, определяемая соотношением

$$n \ge 10^{10}$$
.

• δ — максимально допустимое отклонение частоты знака "1" в последовательности $\{z\}_{i=1}^m$ от $\frac{1}{2}$;

Рекомендуемое значение параметра δ равно 0,001.

• m — длина последовательности $\{z\}_{i=1}^m$, определяемая соотношением

$$m \ge \max\left\{ \left(\frac{t_{1-\frac{\alpha}{2}}}{4\delta}\right)^2, 10^{10} \right\}.$$

Замечание 1 При наличии обоснования допускается использование отличных от рекомендуемых в настоящей методике значений параметров α и δ .

Замечание 2 Соотношение $n \geq 10^{10}$ является оценкой снизу на длину $\{x\}_{i=1}^n$. В зависимости от значения частоты знака "1" в $\{x\}_{i=1}^n$, для прохождения этапа 2.3 тестирования может потребоваться большее значение n.

2. Тестирование исходной последовательности

Тестирование исходной последовательности осуществляется в 3 этапа:

- 1. Проверка гипотезы независимости знаков в $\{x\}_{i=1}^n$.
- 2. Проверка гипотезы однородности распределения знаков в $\{x\}_{i=1}^n$.
- 3. Проверка согласия распределения числа k-грамм в $\{x\}_{i=1}^n$ с полиномиальным законом.

Замечание 3 Этапы 1-3 нацелены на проверку соответствия исходной последовательности условиям применимости алгоритмов улучшения статистических характеристик типа [1].

2.1. Проверка гипотезы независимости знаков в исходной последовательности

Для всех $j\in\{0,1\}, \vec{i}=(i_1,\ldots,i_k)\in V_k, k\in\{1,2,\ldots,k_{max}\}$ рассчитываются величины:

•
$$v_{\vec{i},j} = \sum_{t=1}^{n-k} I\{x_t = i_1, x_{t+1} = i_2, \dots, x_{t+k-1} = i_k, x_{t+k} = j\};$$

•
$$v_{\vec{i}} = v_{\vec{i}.0} + v_{\vec{i}.1};$$

•
$$u_j = \sum_{\vec{i} \in V_k} v_{\vec{i},j}$$
,

где $k_{max}=\min\Big\{24,\max\Big\{k\mid v_{\vec{i},j}\geq 20,\ \forall \vec{i}\in V_k,j\in\{0,1\}\Big\}\Big\}.$ Далее для каждого $k\in\{1,2,\ldots,k_{max}\}$ вычисляется значение статистики

$$S_k^{(1)} = \frac{1}{n} \sum_{\vec{i} \in V_k} \sum_{j=0}^{1} \frac{\left(n \cdot v_{\vec{i},j} - v_{\vec{i}} \cdot u_j\right)^2}{v_{\vec{i}} \cdot u_j},\tag{1}$$

которая при справедливости проверяемого свойства имеет асимптотическое распределение хи-квадрат с 2^k-1 степенями свободы [2, § 5.5, стр. 435].

На основе значений (1) рассчитываются *p-value*

$$P_k^{(1)} = 1 - \chi_{2^k - 1}^2 \left(S_k^{(1)} \right).$$

2.2. Проверка гипотезы однородности знаков в исходной последовательности

На основе $\{x\}_{i=1}^n$ формируются последовательности вида:

$$x^{(1)} = (x_1, x_2, \dots, x_s),$$

$$x^{(2)} = (x_{s+1}, x_{s+2}, \dots, x_{2s}),$$

$$\vdots$$

$$x^{(\left[\frac{n}{s}\right])} = \left(x_{(\left[\frac{n}{s}\right]-1\right)s+1}, x_{(\left[\frac{n}{s}\right]-1\right)s+2}, \dots, x_{\left[\frac{n}{s}\right]s}\right),$$

где $s \in \mathbb{N}, s \leq \frac{n}{2}$, и определяется

$$\begin{split} k &= \min \left\{ s \in \mathbb{N} \mid \forall j \in \left\{ 1, 2, \dots, \left[\frac{n}{s} \right] \right\} : \\ & \min \left\{ s - wt \left(Int_s \left(x^{(j)} \right) \right), wt \left(Int_s \left(x^{(j)} \right) \right) \right\} \geq 20 \right\}. \end{split}$$

Далее для всех $t \in \{1, 2, \dots, \left[\frac{n}{k}\right]\}, j \in \{0, 1\}$ рассчитываются величины:

•
$$v_{t,j} = \sum_{i=1}^{k} I\{x_{(t-1)k+i} = j\};$$

•
$$u_j = \sum_{i=1}^{\left[\frac{n}{k}\right]} v_{i,j}$$
,

с использованием которых вычисляется значение статистики

$$S_k^{(2)} = \left[\frac{n}{k}\right] \sum_{i=1}^{\left[\frac{n}{k}\right]} \sum_{j=0}^{1} \frac{1}{u_j} \left(v_{i,j} - \frac{u_j}{\left[\frac{n}{k}\right]}\right)^2.$$
 (2)

При справедливости проверяемого свойства статистика $S_k^{(2)}$ имеет асимптотическое распределение хи-квадрат с $\left[\frac{n}{k}\right]-1$ степенями свободы [2, § 4.4, стр. 342].

На основе значения (2) рассчитывается *p-value*

$$P_k^{(2)} = 1 - \chi_{\lceil \frac{n}{t} \rceil - 1}^2 \left(S_k^{(2)} \right).$$

Правило принятия решения по п. 2.2. Если значение $P_k^{(2)} < \alpha$, то образец $\Phi \Gamma C \Psi$ бракуется, процедура тестирования завершается с отрицательным результатом, в противном случае выполняется тестирование по п. 2.3.

2.3. Проверка согласия распределения числа k-грамм в исходной последовательности с полиномиальным законом

На основе $\{x\}_{i=1}^n$ формируются последовательности вида:

$$x^{(1)} = (x_1, x_2, \dots, x_s),$$

$$x^{(2)} = (x_{s+1}, x_{s+2}, \dots, x_{2s}),$$

$$\vdots$$

$$x^{(\left[\frac{n}{s}\right])} = \left(x_{(\left[\frac{n}{s}\right]-1\right)s+1}, x_{(\left[\frac{n}{s}\right]-1\right)s+2}, \dots, x_{\left[\frac{n}{s}\right]s}\right),$$

где $s \in \mathbb{N}$, s > 1, и значения

$$v_i^{(s)} = \sum_{j=1}^{\left[\frac{n}{s}\right]} I\left\{Int_s(x^{(j)}) = i\right\}$$

для всех $i \in \{0, 1, \dots, 2^s - 1\}$. Далее определяется

$$k_{max} = \min\{16, \max\{6, s_{max}\}\},\$$

где

$$s_{max} = \max\left\{s \in \mathbb{N} \mid \forall i \in \{0, 1, \dots, 2^s - 1\} \colon v_i^{(s)} \ge 20\right\}.$$

Замечание 4 Если для некоторых $k \in \{2,3,\ldots,6\}$, $i \in \{0,1,\ldots,2^k-1\}$ значение $v_i^{(k)} < 20$, то процедура тестирования завершается с отрицательным результатом, но образец ФГСЧ не бракуется. Допускается повторное тестирование данного образца ФГСЧ на исходной последовательности длины, достаточной для выполнения условий:

- $n \ge 10^{10}$;
- $\forall k \in \{2, 3, \dots, 6\}$, $\forall i \in \{0, 1, \dots, 2^k 1\}$ значение $v_i^{(k)} \geq 20$.

Для $k=2,3,\ldots,k_{max}$ при справедливости проверяемого свойства последовательность k-грамм $x^{(1)},x^{(2)},\ldots,x^{(\left[\frac{n}{k}\right])}$ является реализацией выборки из полиномиального распределения с параметрами $(\theta^k,\theta^{k-1}(1-\theta),\ldots,(1-\theta)^k)$, где $\theta\in(0,1)$.

Для каждого из указанных значений k на основе последовательности $x^{(1)},x^{(2)},\dots,x^{\left(\left[\frac{n}{k}\right]\right)}$ по методу максимального правдоподобия [2, § 3.5, стр. 219]

вычисляется оценка $\widehat{\theta}_k$ для параметра θ :

$$\widehat{\theta_k} = \sum_{i=0}^{2^k - 1} \frac{v_i^{(k)} \cdot wt(i)}{k \left[\frac{n}{k}\right]} = \frac{1}{k \left[\frac{n}{k}\right]} \sum_{i=1}^{k \left[\frac{n}{k}\right]} x_i.$$

Затем для всех $k \in \{2,3,\dots,k_{max}\}, i \in \{0,1,\dots,2^k-1\}$ вычисляются

$$p_i^{(k)}(\widehat{\theta}_k) = \left(\widehat{\theta}_k\right)^{wt(i)} \cdot \left(1 - \widehat{\theta}_k\right)^{k - wt(i)}$$

и значение статистики

$$S_k^{(3)} = \sum_{i=0}^{2^k - 1} \frac{\left(v_i^{(k)} - p_i^{(k)}(\widehat{\theta}_k) \cdot \left[\frac{n}{k}\right]\right)^2}{p_i^{(k)}(\widehat{\theta}_k) \cdot \left[\frac{n}{k}\right]}.$$
 (3)

При справедливости проверяемого свойства статистика $S_k^{(3)}$ имеет асимптотическое распределение хи-квадрат с 2^k-2 степенями свободы [2, § 4.2, стр. 329]. На основе значений (3) рассчитываются *p-value*

$$P_k^{(3)} = 1 - \chi_{2^{k-2}}^2 \left(S_k^{(3)} \right).$$

3. Тестирование выходной последовательности

Тестирование выходной последовательности осуществляется в 4 этапа:

- 1. Проверка соответствия частот знаков в $\{z\}_{i=1}^m$ теоретико-вероятностной модели образца ФГСЧ.
- 2. Проверка гипотезы независимости знаков в $\{z\}_{i=1}^{m}$.
- 3. Проверка гипотезы однородности распределения знаков в $\{z\}_{i=1}^m$.
- 4. Проверка согласия распределения числа k-грамм в $\{z\}_{i=1}^m$ с полиномиальным законом.

3.1. Проверка соответствия частот знаков в выходной последовательности теоретико-вероятностной модели образца ФГСЧ

В соответствии с теоретико-вероятностной моделью образца ФГСЧ интервал значений для частоты знака "1" в $\{z\}_{i=1}^m$ при надежности $1-\alpha$ имеет вид:

$$\Delta = \left[\frac{1}{2} - \frac{t_{1-\frac{\alpha}{2}}}{2\sqrt{m}}; \frac{1}{2} + \frac{t_{1-\frac{\alpha}{2}}}{2\sqrt{m}} \right].$$

На основе $\{z\}_{i=1}^m$ вычисляется значение статистики

$$T^{(0)} = \frac{1}{m} \sum_{i=1}^{m} z_i.$$

Правило принятия решения по п. 3.1. Если $T^{(0)} \notin \Delta$, то образец $\Phi \Gamma C \Psi$ бракуется, процедура тестирования завершается с отрицательным результатом, в противном случае выполняется тестирование по п. 3.2.

3.2. Проверка гипотезы независимости знаков в выходной последовательности

Для всех $j\in\{0,1\}, \vec{i}=(i_1,\ldots,i_k)\in V_k, k\in\{1,2,\ldots,k_{max}\}$ рассчитываются величины:

•
$$v_{\vec{i},j} = \sum_{t=1}^{m-k} I\{z_t = i_1, z_{t+1} = i_2, \dots, z_{t+k-1} = i_k, z_{t+k} = j\};$$

•
$$v_{\vec{i}} = v_{\vec{i},0} + v_{\vec{i},1};$$

•
$$u_j = \sum_{\vec{i} \in V_k} v_{\vec{i},j}$$
,

где $k_{max}=\min\Big\{24,\max\Big\{k\mid v_{\vec{i},j}\geq 20,\ \forall \vec{i}\in V_k,j\in\{0,1\}\Big\}\Big\}.$ Для каждого $k\in\{1,2,\ldots,k_{max}\}$ вычисляются значения статистики

$$T_k^{(1)} = \frac{1}{m} \sum_{\vec{i} \in V_k} \sum_{j=0}^{1} \frac{\left(m \cdot v_{\vec{i},j} - v_{\vec{i}} \cdot u_j \right)^2}{v_{\vec{i}} \cdot u_j},\tag{4}$$

которая при справедливости проверяемого свойства имеет асимптотическое распределение хи-квадрат с 2^k-1 степенями свободы [2, § 5.5, стр. 435].

На основе значений (4) рассчитываются *p-value*

$$R_k^{(1)} = 1 - \chi_{2^k - 1}^2 \left(T_k^{(1)} \right).$$

Правило принятия решения по п. 3.2. Если для некоторого k из множества $\{1,2,\ldots,k_{max}\}$, значение $R_k^{(1)}<\alpha$, то образец $\Phi \Gamma C \Psi$ бракуется, процедура тестирования завершается c отрицательным результатом, в противном случае выполняется тестирование по c 3.3.

3.3. Проверка гипотезы однородности знаков в выходной последовательности

На основе $\{z\}_{i=1}^m$ формируются последовательности вида:

$$z^{(1)} = (z_1, z_2, \dots, z_s),$$

$$z^{(2)} = (z_{s+1}, z_{s+2}, \dots, z_{2s}),$$

$$\vdots$$

$$z^{(\left[\frac{m}{s}\right])} = \left(z_{(\left[\frac{m}{s}\right]-1)s+1}, z_{(\left[\frac{m}{s}\right]-1)s+2}, \dots, z_{\left[\frac{m}{s}\right]s}\right),$$

где $s \in \mathbb{N},$ $s \leq \frac{m}{2},$ и определяется

$$k = \min \left\{ s \in \mathbb{N} \mid \forall j \in \left\{ 1, 2, \dots, \left[\frac{m}{s} \right] \right\} : \\ \min \left\{ s - wt \left(Int_s \left(z^{(j)} \right) \right), wt \left(Int_s \left(z^{(j)} \right) \right) \right\} \ge 100 \right\}.$$

Далее для всех $t \in \{1, 2, \dots, \left[\frac{m}{k}\right]\}, j \in \{0, 1\}$ рассчитываются величины:

•
$$v_{t,j} = \sum_{i=1}^{k} I\{z_{(t-1)k+i} = j\};$$

•
$$u_j = \sum_{i=1}^{\left[\frac{m}{k}\right]} v_{i,j}$$
,

с использованием которых вычисляется значение статистики

$$T_k^{(2)} = \left[\frac{m}{k}\right] \sum_{i=1}^{\left[\frac{m}{k}\right]} \sum_{j=0}^{1} \frac{1}{u_j} \left(v_{i,j} - \frac{u_j}{\left[\frac{m}{k}\right]}\right)^2.$$
 (5)

При справедливости проверяемого свойства статистика $T_k^{(2)}$ имеет асимптотическое распределение хи-квадрат с $\left[\frac{m}{k}\right]-1$ степенями свободы [2, § 4.4, стр. 342].

На основе значений (5) рассчитывается *p-value*

$$R_k^{(2)} = 1 - \chi_{\left[\frac{m}{k}\right] - 1}^2 \left(T_k^{(2)}\right).$$

Правило принятия решения по п. 3.3. Если значение $R_k^{(2)} < \alpha$, то образец $\Phi \Gamma C Y$ бракуется, процедура тестирования завершается с отрицательным результатом, в противном случае выполняется тестирование по п. 3.4.

3.4. Проверка согласия распределения числа k-грамм в выходной последовательности с полиномиальным законом

На основе $\{z\}_{i=1}^m$ формируются последовательности

$$z^{(1)} = (z_1, z_2, \dots, z_k),$$

$$z^{(2)} = (z_{k+1}, z_{k+2}, \dots, z_{2k}),$$

$$\vdots$$

$$z^{(\left[\frac{m}{k}\right])} = \left(z_{(\left[\frac{m}{k}\right]-1)k+1}, z_{(\left[\frac{m}{k}\right]-1)k+2}, \dots, z_{\left[\frac{m}{k}\right]k}\right),$$

где $k = 2, 3, \dots, 16$.

Для всех $k \in \{2,3,\dots,16\}, i \in \{0,1,\dots,2^k-1\}$ рассчитываются

$$v_i^{(k)} = \sum_{j=1}^{\left[\frac{m}{k}\right]} I\left\{Int_k(z^{(j)}) = i\right\},$$

с использованием которых вычисляется значения статистики

$$T_k^{(3)} = \sum_{i=0}^{2^k - 1} \frac{\left(2^k \cdot v_i^{(k)} - \left[\frac{m}{k}\right]\right)^2}{2^k \left[\frac{m}{k}\right]}.$$
 (6)

При справедливости проверяемого свойства статистика $T_k^{(3)}$ имеет асимптотическое распределение хи-квадрат с 2^k-1 степенями свободы [2, § 4.2, стр. 322]. На основе значений (6) расчитываются p-value

$$R_k^{(3)} = 1 - \chi_{2^k - 1}^2 \left(T_k^{(3)} \right).$$

Правило принятия решения по п. 3.4. Если для некоторого k из множества $\{2,3,\ldots,16\}$, значение $R_k^{(3)}<\alpha$, то образец $\Phi \Gamma C \Psi$ бракуется, процедура тестирования завершается c отрицательным результатом, в противном случае образец признаётся удовлетворяющим временной методики проверки соответствия образца $\Phi \Gamma C \Psi$ его теоретико-вероятностной модели .

Список литературы

- [1] *Рябко Б.Я., Мачикина Е.П.* Эффективное преобразование случайных последовательностей в равновероятностные и независимые, *Проблемы передачи информации*, 1999, том 35, выпуск 2, 23–28.
- [2] Ивченко Г.И., Медведев Ю.И. Введение в математическую статистику, М.: ЛЕНАНД, 2017, 606 с.