圏と表現論 演習問題

@naughiez

Contents

2	表現													1
	2.3	多元環と線形圏のより細かい対応	 	 	 									2

第2章表現

§ 2.3 多元環と線形圏のより細かい対応

 \Bbbk を可換体(可換環でもよい)とする. また、左加群の圏を $\mathrm{Mod}(X)$ 、右加群の圏を $\mathrm{Mod}(X^{\mathrm{op}})$ で表し、小線形圏全体のなす線形圏を \Bbbk -Cat と表す.

PROBLEM 2.3.2

A を多元環, $e \in A$ を冪等元とする. このとき次を示せ.

- i) $1-e \in A$ も冪等元である.
- ii) e が A の中に左逆元または右逆元を持てば、e=1 である.
- iii) 部分集合 $S \subset A$ が $eS \subset S$ を満たせば、 $eS = \{a \in S \mid a = ea\}$ となる.

Proof. (i) e が冪等元だから、 $(1-e)^2 = 1 - 2e + e^2 = 1 - e$ となる.

- (ii) $e' \in A$ を e の左逆元とすると、e = e(ee') = ee' = 1. e が右逆元を持つ場合も同様に確かめられる.
- (iii) $S = \emptyset$ のときは明らか、 $S \neq \emptyset$ とする、 $S' \coloneqq \{a \in S \mid a = ea\}$ とおく、

まず S の任意の元 $a \in S$ について, $ea = (e^2)a = e(ea)$ だから, $eS \subset S'$ が分かる.

逆に, 元 $a \in S$ が a = ea を満たすとき, $ea \in eS$ より, $a \in eS$ となる. よって $S' \subset eS$.

PROBLEM 2.3.5

A を多元環, $e \in A$ をその冪等元とする. 右 A 加群 M について,写像 $\phi: \mathsf{Hom}_A(eA,M) \to Me$ と $\psi: Me \to \mathsf{Hom}_A(eA,M)$ を

$$\phi: f \mapsto f(e)e,$$

$$\psi: me \mapsto (x \mapsto mex)$$

によって定める.

このとき次を示せ.

i) 写像 ϕ と ψ は互いに逆な線形写像である. 特に、ベクトル空間としての同型

$$\operatorname{\mathsf{Hom}}_A(eA,M)\cong Me$$

を得る.

- ii) M = A のとき, 上の同型 $Hom_A(eA, A) \cong Ae$ は左 A 加群としての同型となる.
- iii) M = eA のとき、上の同型 $End_A(eA) \cong eAe$ は多元環としての同型となる.

Proof. (i) 写像 ϕ と ψ がともに線形写像であることはよい.

 ψ が ϕ の左逆写像であること:

 $f \in Hom_A(eA, M)$ を任意に取ると、 $\psi(f(e)e)$ は写像 $x \mapsto f(e)ex$ である。特に

$$\psi(\phi(f))(ea) = f(e)e(ea) = f(e^3a) = f(ea) \quad (a \in A)$$

であるから、 $\psi(\phi(f)) = f$ となる. よって $\psi \circ \phi = \mathrm{id}_{\mathrm{Hom}_A(eA,M)}$.

 ψ が ϕ の右逆写像であること:

任意の $m \in M$ に対して

$$\phi(\psi(me)) = ((me)e)e = me^3 = me$$

が成り立つから、 $\phi \circ \psi = id_{Me}$.

(ii) ϕ が A 準同型であることを示せばよい.

元 $a \in A$ と $f \in Hom_A(eA, A)$ を任意に取ると

$$\phi(af) = (af)(e)e = a(f(e))e = a(f(e)e) = a\phi(f)$$

だから、 ϕ は A 準同型である.

(iii) ϕ が多元環準同型であることを示せばよい.

元 $f,g \in \text{End}_A(eA)$ を任意に取ると,

$$\phi(fg) = (fg)(e)e = f(e)g(e)e = f(e)eg(e)e = \phi(f)\phi(g)$$

だから、 ϕ は多元環準同型である.

PROBLEM 2.3.9

圏 k-Cat $_f$ を、有限対象の小線形圏からなる k-Cat の部分圏であって、射 $F: \mathcal{C} \to \mathcal{C}'$ の対象関数 $F_0: \mathcal{C}_0 \to \mathcal{C}'_0$ が単射であるようなものとする.

また、圏 k-Alg_{coi}を

- ・対象: $(\mathbb{k}\text{-Alg}_{coi})_0 = \{(A, E) \mid A \text{ は多元環, } E \subset A \text{ は } A \text{ の直交冪等元の完全系}\},$
- ・射: \mathbb{k} -Alg_{coi}((A,E),(A',E')) = $\{f:A \to A' \mid f \$ は積を保つ線形写像で $f(E) \subset E'\}$,
- ・射の合成:通常の写像の合成,
- ・恒等射: $id_{(A,E)} = id_A$

で定義する.

このとき,以下で定義される函手 Cat: k-Alg_{coi} → k-Cat_f と Mat: k-Cat_f → k-Alg_{coi} が互いに擬逆

であり、特に圏同値 k-Alg_{coi} $\simeq k$ -Cat_f が成り立つことを示せ.

函手 $Cat: \mathbb{k}-Alg_{coi} \to \mathbb{k}-Cat_f$ を

- ・ k-Alg_{coi} の対象 (A,E) \in (k-Alg_{coi}) $_0$ に対して圏 $\mathcal{C}_{A,E}$ = $\mathsf{Cat}(A,E)$ \in k- Cat_f は
 - 対象: $(\mathcal{C}_{A.E})_0 \coloneqq E$,
 - 射: $\mathcal{C}_{A,E}(x,y) \coloneqq yAx$,
 - 射の合成: 多元環 A における積,
 - 恒等射: $id_x := x \cdot 1 \cdot x = x$,
- ・ \mathbb{k} -Alg_{coi} の射 $f:(A,E) \to (A',E')$ に対して函手 $F_f = \mathsf{Cat}(f): \mathcal{C}_{A,E} \to \mathcal{C}_{A',E'}$ は
 - 対象: $x \mapsto f(x)$,
 - 射: $a \in A$ のとき $yax \mapsto f(yax) = f(y)f(a)f(x)$

で定義し、函手 Mat: k-Cat_f → k-Alg_{coi} を

・ k-Cat_f の対象 $C \in (k$ -Cat_f) $_0$ に対して k-Alg_{coi} の対象 $(A_C, E_C) = Mat(C) \in k$ -Alg_{coi} は

$$A_{\mathcal{C}} \coloneqq \coprod_{x,y \in \mathcal{C}_0} \mathcal{C}(x,y), \quad E_{\mathcal{C}} \coloneqq \left\{ e_x \coloneqq \left(\operatorname{id}_x \delta_{(y,z),(x,x)} \right)_{y,z \in \mathcal{C}_0} \; \middle| \; \; x \in \mathcal{C}_0 \right\},$$

・ \mathbb{k} -Cat_f の射 $F: \mathcal{C} \to \mathcal{C}'$ に対して多元環準同型 $f_F: A_{\mathcal{C}} \to A_{\mathcal{C}'}$ は

$$f_F\left((a_{y,x})_{y,x\in\mathcal{C}_0}\right) \coloneqq \left(F(a_{y,x})\right)_{y,x\in\mathcal{C}_0} \quad (a_{y,x}\in\mathcal{C}(x,y),x,y\in\mathcal{C}_0)$$

で定義する*1. ただし線形圏 $\mathcal{C} \in (\mathbb{k}\text{-Cat}_{\mathsf{f}})_0$ に対し, $A_{\mathcal{C}} = \coprod_{x,y \in \mathcal{C}_0} \mathcal{C}(x,y)$ は \mathbb{k} 加群としての外部直和であり,積を

$$(a_{y,x})_{y,x\in\mathcal{C}_0}\cdot(b_{y,x})_{y,x\in\mathcal{C}_0}:=\left(\sum_{z\in\mathcal{C}_0}a_{y,z}\circ b_{z,x}\right)_{y,x\in\mathcal{C}_0} \quad (a_{y,x},b_{y,x}\in\mathcal{C}(x,y),x,y\in\mathcal{C}_0)$$

と定める. 単位元は $\sum_{x \in \mathcal{C}_0} id_x$ である.

Proof. Mat が Cat の左擬逆であること:

各 $(A, E) \in (\mathbb{k}\text{-Alg}_{coi})_0$ に対し

$$A = \bigoplus_{x,y \in E} yAx$$

が成り立つことに注意する. 実際、相異なる $(y,x) \neq (y',x') \in E \times E$ に対して元 $yax = y'a'x' \in yAx \cap y'Ax'$ を任意に取ると、 $x \neq x'$ ならば yax = (yax)x = (y'a'x)'x = 0 となり、 $y \neq y'$ ならば yax = y(yax) = y(y'a'x') = 0

^{**} $^{*1}(F(a_{y,x}))_{y,x\in\mathcal{C}_0}$ は、x'=F(x) かつ y'=F(y) のとき $b_{y',x'}=F(a_{y,x})$ で、それ以外のとき $b_{y',x'}=0$ であるような元 $(b_{y',x'})_{y',x'\in\mathcal{C}_0'}$ を意味する.

となるから、いずれの場合でも $yAx \cap y'Ax' = 0$ が分かる. また、任意の元 $a \in A$ は

$$a = \left(\sum_{y \in E} y\right) a \left(\sum_{x \in E} x\right) = \sum_{x, y \in E} y ax$$

と書けるから、 $A = \sum_{x,y \in E} yAx$ となる. 以上より $A = \bigoplus_{x,y \in E} yAx$.

そこで多元環準同型 $\alpha_{A,E}:A\to A_{\mathcal{C}_{A,E}}$ を内部直和と外部直和の間の自然な同型

$$A = \bigoplus_{x,y \in E} yAx \to \coprod_{x,y \in E} yAx$$

とすれば、準同型の族 $\alpha = (\alpha_{A,E})_{(A,E) \in (\mathbb{k}-\mathsf{Alg}_{\mathsf{coi}})_0}$ は自然同型 $\alpha : \mathsf{id}_{\mathbb{k}-\mathsf{Alg}_{\mathsf{coi}}} \to \mathsf{Mat} \circ \mathsf{Cat}$ を定める.

ただし、 \Bbbk -Alg_{coi} の射 $f:(A,E)\to (A',E')$ と元 $a\in A$ に対して等式 $(y'f(a)x')_{y',x'\in E'}=(f(y)f(a)f(x))_{y,x\in E}$ が成り立つことは、内部直和 $A'=\bigoplus_{x',y'\in E'}y'A'x'$ における等式

$$\left(\sum_{y' \in E'} y'\right) f(a) \left(\sum_{x' \in E'} x'\right) = f(a) = \left(\sum_{y \in E} f(y)\right) f(a) \left(\sum_{x \in E} f(x)\right)$$

から従う.

$$(A,E) \xrightarrow{\alpha_{A,E}} \operatorname{Mat}(\operatorname{Cat}(A,E)) = \left(A_{\mathcal{C}_{A,E}}, E_{\mathcal{C}_{A,E}}\right)$$

$$\downarrow \operatorname{Mat}(\operatorname{Cat}(f))$$

$$\downarrow (A',E') \xrightarrow{\alpha_{A',E'}} \operatorname{Mat}(\operatorname{Cat}(A',E')) = \left(A_{\mathcal{C}_{A',E'}}, E_{\mathcal{C}_{A',E'}}\right)$$

$$a \xrightarrow{\alpha_{A,E}} (yax)_{y,x \in E}$$

$$\downarrow \operatorname{Mat}(\operatorname{Cat}(f))$$

Mat が Cat の右擬逆であること:

各 $C \in (\mathbb{k}\text{-Cat}_f)_0$ に対して函手 $\beta_C : C \to C_{Ac,E_c}$ を

- · 対象: $x \mapsto e_x$,
- ・射: $f: x \to y$ のとき $f \mapsto e_y(f \delta_{(z,w),(y,x)})_{z,w \in \mathcal{C}_0} e_x$

で定義する. これらはそれぞれ全単射

$$C_0 \to (C_{A_C, E_C})_0$$
, $C_1 \to (C_{A_C, E_C})_1$

となっているから、問 1.4.5 より函手 $\beta_{\mathcal{C}}: \mathcal{C} \to \mathcal{C}_{A_{\mathcal{C}},E_{\mathcal{C}}}$ は同型.

残りは、函手の族 $\beta = (\beta_{\mathcal{C}})_{\mathcal{C} \in (\mathbb{k}-\mathsf{Cat}_{\mathsf{f}})_0}$ が自然変換 $\beta : \mathsf{id}_{\mathbb{k}-\mathsf{Cat}_{\mathsf{f}}} \to \mathsf{Cat} \circ \mathsf{Mat}$ となることを示せばよい.

圏 \mathbb{k} -Cat_f の対象 $\mathcal{C},\mathcal{C}' \in (\mathbb{k}$ -Cat_f)₀ と射 $F:\mathcal{C} \to \mathcal{C}'$ を任意に取る.

対象 $x \in C$ については

$$\begin{split} \mathsf{Cat}(\mathsf{Mat}(F))(e_x) &= f_F(e_x) = f_F\left((\mathsf{id}_x\,\delta_{(y,z),(x,x)})_{y,z\in\mathcal{C}_0}\right) \\ &= \left(F(\mathsf{id}_x\,\delta_{(y,z),(x,x)})\right)_{y,z\in\mathcal{C}_0} \\ &= e_{F(x)} \end{split}$$

であるから、 $(Cat(Mat(F)) \circ \beta_C)_0 = (\beta_{C'} \circ F)_0$. 圏 C の射 $f: x \to y$ については

$$\begin{split} \mathsf{Cat}(\mathsf{Mat}(F)) \left(e_y (f \, \delta_{(z,w),(y,x)})_{z,w \in \mathcal{C}_0} e_x \right) &= f_F(e_y) f_F \left((f \, \delta_{(z,w),(y,x)})_{z,w \in \mathcal{C}_0} \right) f_F(e_x) \\ &= e_{F(y)} (F(f \, \delta_{(z,w),(y,x)}))_{z,w \in \mathcal{C}_0} e_{F(x)} \\ &= e_{F(y)} (F(f) \delta_{(z',w'),(F(y),F(x))})_{z',w' \in \mathcal{C}_0'} e_{F(x)} \end{split}$$

であるから、 $(Cat(Mat(F)) \circ \beta_C)_1 = (\beta_{C'} \circ F)_1$.

以上より、 $\beta: id_{\mathbb{k}\text{-Cat}_f} \to \mathsf{Cat} \circ \mathsf{Mat}$ は自然変換である. よって β は自然同型となる.

PROBLEM 2.3.15

有限次元(長さ有限)多元環 $A \neq 0$ は直交原始冪等元の完全系を持つことを示せ、また $E \subset A$ を直交原始冪等元の完全系とすると,右 A 加群として $A = \bigoplus_{e \in E} eA$ となることも示せ、

Proof. 有限個の直既約部分右 A 加群 $P_1, \dots, P_n \subset A$ が存在して $A = P_1 \oplus \dots \oplus P_n$ とできる.このことを A の次元 $\dim A$ についての帰納法で証明する.

まず $\dim A=1$ のときは明らか、次元が $\dim A$ より小さい任意の多元環について,主張が成り立ったとする、 A 自身が直既約右 A 加群のときはよい、そうでないならば,ある部分右 A 加群 $0 \neq I, J \subset A$ が存在して $A=I\oplus J$ と書ける、このとき $\dim I, \dim J < \dim A$ だから,帰納法の仮定により,ある有限個の直既約部分加 群 $P'_1,\dots,P'_\ell\subset I$ と $P''_1,\dots,P''_m\subset J$ が存在して

$$I = P_1' \oplus \cdots \oplus P_{\ell}', \quad J = P_1'' \oplus \cdots \oplus P_m''$$

とできる.

このとき $P_1', \dots, P_\ell', P_1'', \dots, P_m'' \subset A$ はすべて A の直既約部分右 A 加群であって,

$$A = P_1' \oplus \cdots \oplus P_\ell' \oplus P_1'' \oplus \cdots \oplus P_m''$$

という直和分解を得る.

この直和分解 $A=P_1\oplus\cdots\oplus P_n$ から,各 $1\leq i\leq n$ に対して元 $e_i\in P_i$ が存在して, $1=e_1+\cdots+e_n$ とできる. $E:=\{e_1,\ldots,e_n\}$ が A の直交原始冪等元の完全系であることを示す.

各 $1 \le i \le n$ について、等式 $1 = e_1 + \cdots + e_n$ の両辺に右から e_i を掛けて

$$e_i = e_1 e_i + \cdots + e_n e_i$$

となる. この左辺は $e_i \in P_i$ であり、右辺の各項は $e_i e_i \in P_i$ だから、

$$e_j e_i = \begin{cases} e_i & (j=i), \\ 0 & (j \neq i), \end{cases}$$

すなわち E は直交冪等元の完全系である.

また $1 = e_1 + \dots + e_n$ より $A \subset e_1 A + \dots + e_n A$ が分かる. 一方各 $1 \leq i \leq n$ について $e_i A \subset P_i$ だから, $e_1 A + \dots + e_n A \subset P_1 \oplus \dots \oplus P_n$. よって $e_i A = P_i$ となる.

各 $e_i A = P_i$ は直既約であるから、補題 2.3.3 より e_i は原始的である.

PROBLEM 2.3.21

 $A \neq 0$ を多元環とする. 次が同値であることを示せ.

- i) *A* は局所的である.
- ii) 任意の $a \in A$ に対して、a または1-a が単元である.

Proof. (i) \Longrightarrow (ii)

ある元 $a \in A$ に対して $a \ge 1-a$ がともに非単元であるとすると,A は局所的だから 1=a+(1-a) もまた非単元となり矛盾する.よって $a \ge 1-a$ の少なくとも一方は単元である.

$(ii) \Longrightarrow (i)$

非単元 $a,b \in A$ の和 $c := a+b \in A$ が単元であるとする.このとき $a' := c^{-1}a$, $b' := c^{-1}b$ とおくと,1 = a' + b' が成り立つ.よって a' と b' のいずれかは単元である.

a' が単元であれば,a=ca' は逆元 $a'^{-1}c^{-1}$ を持つ.これは a が非単元であることに矛盾する.同様に b' が単元ならば b が単元となり矛盾する.従って c は非単元である.

PROBLEM 2.3.23

A を多元環とし、 $M \in (Mod(A^{op}))_0$ とする. このとき次を示せ.

- i) $M = M_1 \oplus M_2$ なる部分加群 $M_1, M_2 \subset M$ が存在するとき,各 i = 1, 2 について A 自己準同型 $e_i \in \operatorname{End}_A(M)$ を合成 $e_i : M \twoheadrightarrow M_i \hookrightarrow M$ によって定める.ただし $M \twoheadrightarrow M_i$ は標準射影である.このとき各 e_i は $\operatorname{End}_A(M)$ の冪等元であって, $\operatorname{id}_M = e_1 + e_2$ を満たす.
- ii) $e \in \operatorname{End}_A(M)$ が冪等元ならば、右 A 加群として

$$M = \operatorname{Im} e \oplus \operatorname{Im}(\operatorname{id}_M - e)$$

となる.

iii) 次は同値である:

- a) *M* は直既約である;
- b) $\operatorname{End}_A(M)$ の冪等元は 0 と id_M のみである.

Proof. (i) 任意の元 $m \in M$ に対して, $m = m_1 + m_2$ なる元 $m_1 \in M_1$ と $m_2 \in M_2$ が存在する.このとき

$$e_1(m) = m_1, \quad e_1^2(m) = e_1(m_1) = m_1$$

より、 e_1 は冪等元である.同様に e_2 も冪等元である.また $e_1(m)+e_2(m)=m_1+m_2=m$ だから $\mathrm{id}_M=e_1+e_2$ も確かめられる.

(ii) まず任意の元 $m \in M$ に対して $m = e(m) + (\mathrm{id}_M - e)(m)$ であるから, $M = \mathrm{Im}\, e + \mathrm{Im}(\mathrm{id}_M - e)$ となる. 次に $x \in \mathrm{Im}\, e \cap \mathrm{Im}(\mathrm{id}_M - e)$ とすると,ある $m, m' \in M$ が存在して,x = e(m) かつ $x = (\mathrm{id}_M - e)(m)$ が成り立つ.このとき

$$x = e(m) = e^{2}(m) = e(x) = e(m - e(m)) = e(m) - e^{2}(m) = 0.$$

よって $\operatorname{Im} e \cap \operatorname{Im}(\operatorname{id}_M - e) = 0$ となる.

以上より $M = \operatorname{Im} e \oplus \operatorname{Im}(\operatorname{id}_M - e)$.

(iii) $(a) \Longrightarrow (b)$

冪等元 0, $\mathrm{id}_M \neq e \in \mathrm{End}_A(M)$ が存在すれば,(ii) より $M = \mathrm{Im}\, e \oplus \mathrm{Im}(\mathrm{id}_M - e)$ かつ $\mathrm{Im}\, e$, $\mathrm{Im}(\mathrm{id}_M - e) \neq 0$ が成り立つ.よって M は直既約でない.

 $(b) \Longrightarrow (a)$

M が直既約でないとすると、部分加群 $0 \neq M_1, M_2 \subset M$ が存在して $M = M_1 \oplus M_2$ とできる.このとき (i) より、0 とも id_M とも異なる冪等元 $e_1, e_2 \in \mathrm{End}_A(M)$ の存在が分かる.

PROBLEM 2.3.24

A を多元環とし、M を有限次元(長さ有限)右A 加群とする.このとき次を示せ.

- i) $f \in \text{End}_A(M)$ ならば、ある $n \in \mathbb{Z}_{\geq 1}$ によって $M = \text{Ker } f^n \oplus \text{Im } f^n$ となる.
- ii) M が直既約ならば、任意の $f \in \operatorname{End}_A(M)$ は同型または冪零である.
- iii) M が直既約ならば、 $\operatorname{End}_A(M)$ は局所多元環である.

Proof. (i) M の部分加群の昇鎖列

$$\operatorname{Ker} f \subset \operatorname{Ker} f^2 \subset \cdots$$

と降鎖列

$$\operatorname{Im} f \supset \operatorname{Im} f^2 \supset \cdots$$

8

を考える. M が有限次元だから,ある $\ell,m\in\mathbb{Z}_{\geqslant 1}$ によって $\ker f^\ell=\ker f^{\ell+1}$ と $\operatorname{Im} f^m=\operatorname{Im} f^{m+1}$ とできる. このとき,任意の $i\in\mathbb{Z}_{\geqslant 1}$ について $\ker f^\ell=\ker f^{\ell+i}$, $\operatorname{Im} f^m=\operatorname{Im} f^{m+i}$ となる.

 $n := \max\{\ell, m\}$ とおく. $M = \operatorname{Ker} f^n \oplus \operatorname{Im} f^n$ となっていることを示す.

まず $m \in \operatorname{Ker} f^n \cap \operatorname{Im} f^n$ を任意に取ると、 $m \in \operatorname{Im} f^n$ より、ある元 $m' \in M$ が存在して $m = f^n(m')$ となる. 一方 $m \in \operatorname{Ker} f^n$ より、 $f^{2n}(m') = f^n(m) = 0$ 、すなわち $m' \in \operatorname{Ker} f^{2n}$ となる.今、 $\operatorname{Ker} f^n = \operatorname{Ker} f^{2n}$ だから、 $m = f^n(m') = 0$.よって $\operatorname{Ker} f^n \cap \operatorname{Im} f^n = 0$ が分かる.

次に $M=\operatorname{Ker} f^n+\operatorname{Im} f^n$ を示す。 $m\in M$ を任意に取ると, $f^n(m)\in \operatorname{Im} f^n=\operatorname{Im} f^{2n}$ だから $f^n(m)=f^{2n}(m')$ なる元 $m'\in M$ が存在する.

このとき $f^n(m-f^n(m'))=0$ より, $m-f^n(m')\in \operatorname{Ker} f^n$ である.よって $m\in \operatorname{Ker} f^n+f^n(m')\subset \operatorname{Ker} f^n+\operatorname{Im} f^n$ となり, $M=\operatorname{Ker} f^n+\operatorname{Im} f^n$ を証明できた.

(ii) 任意の元 $f \in \operatorname{End}_A(M)$ を取る. (i) よりある $n \in \mathbb{Z}_{\geqslant 1}$ が存在して直和分解 $M = \operatorname{Ker} f^n \oplus \operatorname{Im} f^n$ を得るが, M が直既約だから $\operatorname{Ker} f^n = 0$ または $\operatorname{Im} f^n = 0$.

 $\operatorname{Im} f^n = 0$ は f が冪零であることに他ならない.

 $\operatorname{Ker} f^n = 0$ とすると、 $\operatorname{Ker} f \subset \operatorname{Ker} f^n = 0$ より、f は単射となる.一方このとき、 $\operatorname{Im} f \supset \operatorname{Im} f^n = M$ より、f は全射となる.よって f は同型.

- (iii) **PROBLEM 2.3.21** より、任意の $f \in \operatorname{End}_A(M)$ に対して f または $\operatorname{id}_M f$ が単元であることを示せばよい.
 - (ii) より、f は同型または冪零である.

f が同型ならば $\operatorname{End}_A(M)$ の単元である.

f が冪零ならばある $n\in\mathbb{Z}_{\geqslant 1}$ によって $f^n=0$ となる.このとき $g:=1+f+\dots+f^{n-1}\in\operatorname{End}_A(M)$ が id_M-f の逆元となる.実際

$$(\mathrm{id}_M - f)g = g(\mathrm{id}_M - f) = \mathrm{id}_M - f^n = \mathrm{id}_M.$$