Hoofdstuk 1: Transistorschakelingen: oefeningen

In Hoofdstuk 9 van de cursus Elektronica van H. Messiaen en J. Peuteman is de gemeenschappelijke emitterschakeling (GES), de gemeenschappelijke basisschakeling (GBS) en de gemeenschappelijke collectorschakeling (GCS) bestudeerd.

Dit hoofdstuk biedt de mogelijkheid de eerder geziene materie in verband met de GES, de GBS en de GCS verder in te oefenen en uit te diepen.

In de praktijk vindt men namelijk veel <u>uitbreidingen</u>, varianten en <u>combinaties</u> van deze basisschakelingen terug. Aan de hand van een aantal praktische voorbeelden worden in deze cursus enkele veel voorkomende opstellingen verduidelijkt. Meteen worden dan ook de aangepaste berekeningswijzen en formules aangereikt.

1: De GES, GBS of GCS met een praktische bron en een praktische belasting

1.1: De GES

Figuur 1.1: De gemeenschappelijke emitterschakeling

In de bovenstaande Figuur 1.1 wordt de gemeenschappelijke emitterschakeling gevoed door een microfoon die een spanning u_i opwekt. Indien men er van uit gaat dat deze

microfoon een ideale spanningsbron is en indien de uitgang van de schakeling niet belast is, dan is de <u>spanningsversterking</u>

$$A_V = -(h_{fe}/h_{ie}) R_C$$
.

Indien h_{fe} of h_{ie} niet gekend zijn, kan gebruik gemaakt worden van de benaderde uitdrukking

$$A_V = -38 I_C R_C (I_C \text{ is uitgedrukt in mA}).$$

Bij de bovenstaande uitdrukkingen is er wel van uit gegaan dat de wisselspanning over de koppelcondensator C_K verwaarloosbaar klein is. Een situatie die bekomen wordt indien de frequentie van u_i en/of de waarde van C_K voldoende groot is.

In de praktijk wordt de <u>transistoruitgang</u> zeer vaak belast door meer dan enkel de instelweerstand R_C . Bij de berekening van bijvoorbeeld de spanningsversterking moet in de formule R_C vervangen worden door de impedantie Z_L . De impedantie Z_L is <u>de vervangingsimpedantie van alle belastende elementen tussen de transistoruitgang en de massa</u>.

Dit betekent concreet dat $Z_L = R_C // R_L$ wanneer de schakeling belast wordt door een luidspreker met weerstand R_L (R_L is na de koppelcondensator C'_K geschakeld). De spanningsversterking wordt $A_V = -(h_{fe}/h_{ie}) Z_L$.

Veel praktische spanningsbronnen (zoals bijvoorbeeld de microfoon) hebben een niet te verwaarlozen <u>inwendige impedantie</u> Z_G . Als deze niet ideale spanningsbron belast wordt door een schakeling met een ingangsimpedantie $Z_{I,S}$, dan zal aan de transistoringang een kleinere spanning afgegeven worden dan in onbelaste toestand geproduceerd wordt (de open klemspanning).

Bij het berekenen van de echte spanningsversterking, moet dus niet enkel rekening gehouden worden met het onderscheid tussen R_C en Z_L . Er moet ook rekening gehouden worden met het feit dat aan de transistoringang slechts $Z_{I,S}$ / $(Z_{I,S} + Z_G)$ keer de open klemspanning terug te vinden is.

1.2: De GBS

Ga zelf na wat bij de GBS de invloed is van een belastingsweerstand R_L op de spanningsversterking.

Bestudeer ook het effect van de inwendige impedantie Z_G van de spanningsbron op de totale spanningsversterking. Vergelijk de ingangsimpedantie $Z_{I,S}$ bij de GES en de GBS. Heeft dit een effect op de spanningsversterking? Welk effect?

1.3: De GCS

Ga na waar de belastingweerstand R_L geschakeld wordt bij een gemeenschappelijke collector schakeling. Wat is het effect op de spanningsversterking en de stroomversterking?

Bestudeer ook het effect van de inwendige impedantie Z_G van de spanningsbron.

1.4: Oefening 1

Opgave:

Een silicium transistor (NPN of PNP) heeft een stroomversterking $\beta = h_{FE} = 200$. De transistor is in GES geschakeld zoals weergegeven in Figuur 1.1. De exacte waarden van de h-parameters zijn niet beschikbaar.

De transistor wordt ingesteld op een collectorstroom $I_C = 4$ mA. Bemerk dat de keuze van de instelstroom een compromis is. Indien I_C groter gekozen wordt, dan stijgt het vermogenverbruik wat een nadeel is. Het voordeel van een grotere I_C is dan weer dat een groter uitgangsvermogen aan de belasting geleverd kan worden.

De beschikbare voedingsspanning U_{CC} = 10 V. Er wordt een collector-emitter-instelspanning U_{CE} van 4 V gekozen. De spanning U_{E} (= de spanning over R_{E}) bedraagt 20% van U_{CC} .

Het te versterken wisselspanningsignaal wordt geleverd door een microfoon met een inwendige weerstand $Z_G = R_G = 2300 \ \Omega$. De microfoon produceert een open klemspanning van $e = 30 \ mV_{eff}$. Dit signaal kan dus enkel gemeten worden met behulp van een meettoestel met een hoge impedantie (bijvoorbeeld een oscilloscoop).

De schakeling moet alle frequenties tussen 300 Hz en 3 kHz probleemloos versterken. Verklaar die keuze als u weet dat de microfoon bijvoorbeeld een vliegtuigmicrofoon is die zich dicht bij de mond van de piloot bevindt.

De versterker wordt belast door een hoofdtelefoon met een inwendige weerstand van 1 $k\Omega$.

Gevraagd:

- 1) Bereken de instelweerstanden (R_E, R_C, R_{B1}, R_{B2}).
- 2) Met welke impedantie Z_L (hier R_L) wordt de transistoruitgang belast? Maak hierbij onderscheid tussen het geval waarbij de hoofdtelefoon niet en het geval waarbij de hoofdtelefoon wel aangesloten is.

- 3) Bepaal de spanningsversterking van de schakeling (u_0/u_i) . Maak onderscheid tussen het geval waarbij de hoofdtelefoon niet (A_{V1}) en het geval waarbij de hoofdtelefoon wel (A_{V2}) aangesloten is.
- 4) Welke ingangsweerstand vertoont de ingestelde transistorschakeling ten opzichte van de microfoon?
- 5) Welke ingangsspanning u_i ontvangt de transistorschakeling? Vergelijk dit met de onbelaste microfoonspanning e.
- 6) Welke spanning ontvangt de hoofdtelefoon? Vergelijk deze spanning met de onbelaste microfoonspanning? De spanningsversterking A_{V3} is gelijk aan de verhouding tussen de uitgangsspanning u_O (geleverd aan de hoofdtelefoon) en de open klemspanning e van de bron. Welk vermogen P_h ontvangt de hoofdtelefoon?
- 7) Dimensioneer alle condensatoren in de schakeling.
- 8) Welke maximale uitgangsspanning kan de schakeling leveren (spanning die niet vastloopt op de voedingsspanning U_{CC} of massa)? Wat is het maximale vermogen P_h welke de schakeling kan leveren aan de microfoon?
- 9) Welk maximaal rendement kan de schakeling halen? Is het duidelijk waarom de schakeling van Figuur 1.1 niet gebruikt zal worden voor versterkers die een groot vermogen moeten leveren? Denk hierbij, bij wijze van voorbeeld, aan een 100 W luidspreker die door een versterker gevoed wordt.

1.5: Oefening 2

Opgave:

Beschouw een gemeenschappelijke collectorschakeling (= een emittervolger). Ga uit van de veronderstelling dat $R_C = 0~\Omega$. De schakeling is ingesteld op een collectorstroom $I_C = 5~\text{mA}$ en een collector-emitter-spanning $U_{CE} = 6~\text{V}$. De voedingsspanning $U_{CC} = 12~\text{V}$.

De transistor is een PNP transistor met een $\beta = h_{FE} = 250$, een $h_{ie} = 1300 \Omega$ en een $h_{fe} = 250$.

Aan de uitgang wordt een belasting aangesloten (bijvoorbeeld een microfoon) met een weerstand van 100 Ω . Wat dus een relatief laagohmige belasting is.

Onbelast produceert de bron een open klemspanning e van 300 mV_{eff}. De bron heeft een inwendige impedantie $Z_G = R_G = 1 \text{ k}\Omega$. Deze bron kan een microfoon zijn, maar de bron kan even goed de uitgang zijn van een GES. Inderdaad, een GES die aan de

uitgang een onbelaste spanning van 300 m V_{eff} levert en die een uitgangsimpedantie $Z_{OS} \cong R_C = 1 \text{ k}\Omega$.

De schakeling moet alle frequenties tussen 300 Hz en 3 kHz probleemloos versterken.

Opgave:

- 1) Bepaal de spanningsversterking van de GCS (u_0/u_i) indien er geen belasting aangesloten is (A_{V1}) . Bepaal de spanningsversterking indien er wel een belasting aangesloten is (A_{V2}) .
- 2) Bepaal de ingangsimpedantie $Z_{I,T}$ van de transistor en bepaal de ingangsimpedantie $Z_{I,S}$ van de volledige GCS schakeling. Bepaal de ingangsspanning u_i van de transistor. Maakt het een verschil uit of er een belasting aangesloten is aan de uitgang van de transistor?
- 3) Welke spanning en welk vermogen ontvangt de belasting? Bepaal de versterkingsfactor A_{V3} die gelijk is aan de verhouding tussen de uitgangsspanning u_0 (met microfoonbelasting) en de open klemspanning e van de bron.
- 4) Dimensioneer de benodigde condensatoren.
- 5) Welke spanning en welk vermogen zou de belasting ontvangen indien deze rechtstreeks op de bron (dus zonder GCS) geschakeld zou zijn? Waarom is de vermogenoverdracht van de bron naar de belasting hier slecht?
- 6) Welke effectieve spanningswinst en vermogenswinst levert de GCS?

1.6: Belangrijke opmerkingen bij de GCS

De GCS fungeert als <u>impedantie-aanpasser</u>. Door tussenschakeling van een GCS kunnen relatief laagohmige belastingen en relatief hoogohmige bronnen toch met goed gevolg met elkaar gekoppeld worden. Zo is in ons voorbeeld van Paragraaf 1.5 een belasting van $100~\Omega$ via een GCS gekoppeld met een bron met een impedantie van $1~\mathrm{k}\Omega$.

De effectieve spanningsversterking (A_{V3}) die gelijk is aan de uitgangsspanning u_O gedeeld door de open klemspanning e van de bron zal dicht bij de eenheid liggen. Ook A_{V2} ligt dicht bij de eenheid. Inderdaad, in de bovenstaande alinea is $A_{V2} = u_O/u_i = h_{fe}R_L/(h_{ie} + h_{fe}R_L) \cong 1$ indien $h_{ie} << h_{fe}R_L$ (dus als $R_L >> h_{ie}/h_{fe} = 1/S$). Dit betekent dat de GCS geen spanningsversterking oplevert, wel geeft zij een grote vermogenversterking.

De GCS zal weinig vervorming geven indien de totale belastingsweerstand R_L veel groter is dan h_{ie}/h_{fe} en als R_G flink kleiner is dan de ingangsimpedantie $Z_{I,S} = Z_{I,T} // R_{B1}$

// R_{B2}. Hierbij is $Z_{I,T} = h_{ie} + (1 + h_{fe})$ R_L. Toon aan dat in ons voorbeeld beide voorwaarden voldaan zijn. Dit betekent dus dat de belasting niet willekeurig laagohmig mag zijn en dat de bron niet willekeurig hoogohmig mag zijn.

Ga na dat de laatstgenoemde voorwaarde ($R_G << Z_{I,S}$) veel gemakkelijker vervuld wordt indien de transistor vervangen wordt door een Darlington transistor. Inderdaad, een Darlington transistor heeft een h_{fe} van bijvoorbeeld 10000 terwijl een gewone transistor slechts een h_{fe} van bijvoorbeeld 200 heeft. Die Darlington is bijgevolg vooral nuttig in de gevallen waarbij de belasting zeer laagohmig is en de bron zeer hoogohmig is.

Indien de GCS opgebouwd is met behulp van een Darlington, bekomt men inderdaad een hogere $Z_{I,T}$. Bemerk echter wel dat h_{ie}/h_{fe} niet kleiner zal zijn omdat h_{ie} ongeveer evenveel stijgt als h_{fe} .

Zoals we verderop zullen zien, is ook het gebruik van de GCS met bootstrap en de GES met emitter-degeneratie hier erg nuttig.

2: De tweetrapsversterker met AC of DC koppeling

2.1: De AC-gekoppelde versterker

Figuur 1.2: AC-gekoppelde versterker

De bovenstaande Figuur 1.2 toont een tweetrapsversterker welke geschikt is om audiosignalen te versterken. Er moeten AC-signalen versterkt worden tussen 200 Hz en 5 kHz.

Helemaal links ziet u een praktische spanningsbron (een microfoon) welke een open klemspanning e genereert en een inwendige weerstand $R_G = 2 \text{ k}\Omega$ heeft. Helemaal rechts is er een belasting aangebracht van 1 k Ω .

De schakeling is gevoed met een $U_{CC} = 10 \text{ V}$.

De eerste transistor wordt ingesteld op een $I_C = 1$ mA en een $U_{CE} = 5,1$ V. De transistor T_1 heeft een $\beta = h_{FE} = 250$, een $h_{ie} = 6,5$ k Ω en een $h_{fe} = 250$. Dimensioneer de schakeling zodanig dat er 2,2 V over R_4 staat.

De tweede transistor T_2 wordt ingesteld op een I_C = 4 mA en een U_{CE} = 4 V. De transistor T_2 heeft een β = h_{FE} = 200 terwijl h_{ie} en h_{fe} niet opgegeven zijn. Dimensioneer de schakeling zondanig dat er 2 V over R_8 staat.

Gevraagd:

Dimensioneer alle onderdelen en bepaal de effectieve spanningsversterking $A_{V3} = u_0/e$ van de volledige schakeling. Welke open klemspanning e moet de bron produceren opdat de uitgangsspanning u_0 een waarde van 1 V_{eff} zou hebben.

Oplossing:

Bij T₂ geldt bij benadering dat $h_{ie} = 26\beta/I_C = 1300 \Omega$. Bovendien is $h_{fe} \cong \beta$ zodat $h_{fe} = 200$ genomen wordt.

Transistor T_2 wordt zodanig ingesteld dat: $I_{R7} = I_C = 4$ mA, $I_{R8} = I_E \cong I_C$, $I_B = I_C/\beta = 20$ μ A. We nemen $I_{R5} = 10$ $I_B = 200$ μ A wat impliceert dat $I_{R9} = 9$ $I_B = 180$ μ A. Verder is $U_{R8} = 2V$ zodat $U_{R6} = 2.7$ V, $U_{R5} = 7.3$ V en $R_{R7} = 4$ V. Op die manier bekomen we dat $R_8 = 500$ Ω , $R_7 = 1$ k Ω , $R_6 = 15$ k Ω en dat $R_5 = 39$ k Ω .

Op een gelijkaardige manier kan de instelling van T_1 berekend worden. Zit resulteert in een $R_4 = 2.2 \text{ k}\Omega$, $R_3 = 2.7 \text{ k}\Omega$, $R_2 = 82 \text{ k}\Omega$ en een $R_5 = 39 \text{ k}\Omega$.

De spanningsversterking van de tweede trap (welke we noteren als A_{V2}) is gelijk aan

$$A_{V2} = u_0/u_{i2} = -(h_{fe}/h_{ie})(R_7 // 1 k\Omega) = -76.9.$$

De ingangsimpedantie van de tweede trap is $Z_{I,S,2} = Z_{I,T,2}$ // R_5 // $R_6 = 1,16$ k Ω . Hierbij is $Z_{I,T,2} = h_{ie} = 1300$ Ω .

De uitgangsspanning u_{O1} van de eerste trap is gelijk aan de ingangsspanning van de tweede trap zodat $u_{O1} = u_{i2}$. De spanningsversterking van de eerste trap is gelijk aan

$$A_{V1} = u_{i2}/u_{i1} = -(h_{fe}/h_{ie})(R_3 // Z_{LS.2}) = -31,2.$$

De ingangsimpedantie van de eerste trap $Z_{I,S,1} = Z_{I,T,1}$ // R_1 // $R_2 = 5,82$ k Ω . Hierbij is $Z_{I,T,1} = h_{ie} = 6,5$ k Ω .

De spanning $u_{i1} = (Z_{LS.1}/(Z_{LS.1} + R_G)) e = 0.744 e$.

Dit betekent dat de uitgangsspanning $u_O = (0,744 \text{ e}) \text{ A}_{V1} \text{ A}_{V2} = 1785 \text{ e}$. Teneinde een u_O van 1 V_{eff} te bekomen, moet de open klemspanning e van de bron 560 μV_{eff} bedragen.

Zonder de versterkerschakeling zou de spanning over de belasting e/3 bedragen in plaats van de hier bekomen 1785 e. Feitelijk betekent dat een spanningswinst van 5355. Dit stemt zelfs overeen met een vermogenwinst van 28 10⁶.

2.2: De DC-gekoppelde versterker

Figuur 1.3: DC-gekoppelde versterker

Bemerk eerst en vooral dat er in de dimensionering van Figuur 1.2 een aantal keuzes gemaakt zijn. Zo staat er 2,7 V over R_3 en staat er 2 V over R_8 ($U_{R8} + U_{BE2} \cong U_{R3}$). Bij

de AC-gekoppelde versterker van Figuur 1.2 is het niet belangrijk dat $U_{R8} + U_{BE2} \cong U_{R3}$, hier bij de DC-gekoppelde versterker zal dit wel belangrijk zijn.

Een mogelijke manier van dimensioneren van de weerstanden in Figuur 1.3 bestaat er in de weerstandswaarden R_1 , R_2 , R_3 en R_4 gewoon over te nemen uit Paragraaf 2.1.

De DC-gekoppelde versterker van Figuur 1.3 wordt dan bekomen door in Figuur 1.2 de koppelcondensator C_2 kort te sluiten en de transistor T_2 te vervangen door een PNP-transistor (bijvoorbeeld een BC557 in plaats van een BC547). Bemerk dat ook R_7 en R_8 van plaats omgewisseld worden. Bovendien kunnen R_5 en R_6 weggelaten worden en moeten R_7 en R_8 niet herberekend worden omdat $U_{R8} + 0.7$ $V \cong U_{R3}$.

Door een PNP transistor als T_2 te gebruiken, moet de condensator C_6 parallel met R_8 geplaatst worden opdat de tweede trap nog steeds een GES zou zijn.

Opgave:

Verifieer de dimensionering van Figuur 1.3. Verifieer onder meer dat bij de tweede trap $I_C = 4$ mA en dat $U_{CE} = 4$ V.

Verklaar waarom de schakeling van Figuur 1.3 een beter laagfrequent gedrag heeft dan de schakeling van Figuur 1.2. Verklaar waarom de schakeling in Figuur 1.3 een iets grotere spanningsversterking heeft dan de AC-gekoppelde versie van Figuur 1.2. Bereken de spanningsversterking van de schakeling van Figuur 1.3.

2.3: De DC-gekoppelde versterker: opmerkingen

De DC-koppeling heeft ook nadelen. Indien de DC-instelling in de eerste trap verschuift (bijvoorbeeld ten gevolge van temperatuursvariaties, toleranties op de weerstanden, spreiding op de h-parameters van T_1, \ldots), dan wordt deze verschuiving doorgegeven naar de tweede trap. Deze tweede trap kan eventueel de verschuiving van de DC-instelling in de eerste trap versterken. De verschuiving van de DC-instelling in de tweede trap kan dan ook ontoelaatbaar groot worden.

Is het u duidelijk waarom bij een AC-koppeling een verschuiving van de DC-instelling niet doorgegeven wordt naar de tweede trap? Waarom gebeurt dit bij een DC-koppeling wel?

Vanzelfsprekend kan men meer dan twee trappen met elkaar koppelen. Deze trappen kunnen een verschillende configuratie (GES, GCS, GBS) hebben. Alle berekeningen kunnen doorgevoerd worden zoals weergegeven in Paragraaf 2.2. Trouwens, ook bij een AC-koppeling is het mogelijk meer dan twee trappen (eventueel met een verschillende configuratie) aan elkaar te koppelen. Alle berekeningen kunnen dan doorgevoerd worden zoals weergegeven in Paragraaf 2.1.

2.4: Oefening

Bij de schakeling weergegeven in Figuur 1.4 zorgt de eerste trap voor de nodige spanningsversterking (GES). De tweede trap (GCS) zorgt voor de extra stroomversterking. De tweede trap kan meer stroom leveren dan de eerste trap want de uitgangsimpedantie $Z_{O,S}$ van de GCS schakeling is lager dan de uitgangsimpedantie van de GES.

Figuur 1.4: GES en GCS in cascade

Opgave:

1) Dimensioneer de schakeling weergegeven in Figuur 1.4. Kies hierbij een U_{R4} = 2,2 V en een collectorstroom I_{C1} = 1 mA door T_1 . Ga er van uit dat de transistor T_1 een β = h_{FE} = 250, een h_{ie} = 6,5 k Ω en een h_{fe} = 250 heeft.

Kies een $U_{R5} = 6$ V (op die manier is een onvervormde belasting van maximaal 6 V mogelijk) en een collectorstroom $I_{C2} = 5$ mA door T_2 . Ga er van uit dat de transistor T_1 een $\beta = 200$, een $h_{ie} = 1$ k Ω en een $h_{fe} = 200$ heeft.

Dimensioneer niet alleen de weerstanden, maar ook de condensatoren. Het is de bedoeling frequenties te versterken tussen 300 Hz en 50 kHz.

2) Bepaal $Z_{O.S.2}$, u_O en $A_V = u_O/e$ bij nagenoeg onbelaste uitgang.

- 3) Welke ingangsimpedantie $Z_{I,T}$ ziet de niet-ideale spanningsbron. Maak hierbij onderscheid tussen het geval waarbij de uitgang onbelast is en het geval waarbij de uitgang belast is met 100 Ω .
- 4) Bepaal u_0 en $A_V = u_0/e$ wanneer de uitgang belast is met 100Ω . Vergelijk het bekomen resultaat met de resultaten bekomen in 2). Ga er van uit dat de microfoon een open klemspanning e = 2 mV levert.

Oplossing:

1) Er is eerst en vooral opgegeven dat $U_{R5} = 6$ V. Aangezien $U_{BE2} \cong 0.7$ V, weten we dat $U_{R3} = U_{CC} - U_{BE2} - U_{R5} = 5.3$ V. Aangezien $I_{R3} \cong I_{C1} = 1$ mA, bekomen we een $R_5 = 5.3$ k Ω (of $R_5 = 5.6$ k Ω als we ons beperken tot de E12-reeks).

Er is eveneens opgegeven dat $U_{R4} = 2.2 \text{ V}$ zodat $U_{CE1} = U_{CC} - U_{R4} - U_{R3} = 4.5 \text{ V}$. De collector-emitter-spanning van de eerste transistor kan dus niet meer vrij gekozen worden.

Aangezien $U_{R4} = 2.2 \text{ V}$ en aangezien $I_{R4} \cong I_{C1} = 1 \text{ mA}$, bekomen we een $R_4 = 2.2 \text{ k}\Omega$.

We weten dat $I_{R5} \cong 5$ mA en dat $U_{R5} = 6V$ zodat $R_5 = 1.2$ k Ω .

De basisstroom I_{B1} van transistor T_1 is gelijk aan $I_{C1}/\beta=1$ mA / 250=4 μA . We nemen $I_{R1}=10$ $I_{B1}=40$ μA zodat $I_{R2}=I_{R1}-I_{B1}=36$ μA . De spanning $U_{R1}=U_{CC}-U_{R4}-U_{BE1}=9,1$ V zodat $R_1\cong 220$ k Ω .

Verifieer zelf dat $R_2 = 82 \text{ k}\Omega$ een goede keuze is.

2) De tweede trap heeft een spanningsversterking $A_{V2} = h_{fe}R_E/(h_{ie} + h_{fe}R_E) = 0,95$ die dus iets kleiner is dan de eenheid. De tweede trap heeft een ingangsimpedantie $Z_{I,T,2} = h_{ie} + h_{fe}R_E = 19,5$ k Ω . Deze keer geldt trouwens dat $Z_{I,T,2} = Z_{I,S,2}$ omdat er geen basisweerstanden aanwezig zijn.

Duid aan op Figuur 1.4 waartussen die impedantie $Z_{I,S,2}$ terug te vinden is. Duid ook de spanning u_{i2} aan.

3) De eerste trap heeft een spanningsversterking

$$A_{V1} = u_{O1}/u_{i1} = u_{i2}/u_{i1} = \text{-} \left(h_{fe}/h_{ie}\right) \left(R_3 \mathrel{//} Z_{I,S,2}\right) = \text{-}167.$$

De eerste trap heeft een ingangsimpedantie $Z_{I,S,1}$ = $Z_{I,T,1}$ // R_1 // R_2 = h_{ie} // R_1 // R_2 = 5,8 $k\Omega$.

De ingangsspanning u_{i1} van de eerste trap is gelijk aan $u_{i1} = e Z_{I,S,1}/(Z_{I,S,1} + R_G) = 1,7$ mV.

De uitgangsspanning u_{O1} van de eerste trap is gelijk aan $u_{O1} = A_{V1}$ $u_{i1} = 286$ mV. Tenslotte is $u_{O} = u_{O2} = A_{V2}$ $u_{i2} = A_{V2}$ $u_{O1} = 271$ mV.

De belasting van 100 Ω (bijvoorbeeld een hoofdtelefoon) ontvangt 0,735 mW.

De bepalen van de condensatoren gebeurt op identiek dezelfde manier als bij een eentrapsversterker.

3: De GES met stroomtegenkoppeling

De GES en de GBS geven een grote spanningsversterking A_V , doch zeker bij grotere u_i is de <u>vervorming</u> aanzienlijk. Verklaar dit! Bij de emittervolger of GCS is de <u>vervorming</u> zeer gering, doch de spanningsversterking A_V is hoogstens 1.

Bij de schakeling van Figuur 1.5 worden <u>de goede eigenschappen van de GES</u> (een grote spanningsversterking) <u>en de GCS</u> (weinig vervorming en een grote $Z_{I,T}$) <u>verenigd</u>. In de realiteit zullen we een middelmatige spanningsversterking A_V bekomen bij een geringe vervorming en een grote $Z_{I,T}$.

Figuur 1.5: De GES met emitterdegeneratie

De GES met stroomtegenkoppeling in Figuur 1.4 wordt ook de emittervolger met collector-uitgang of de GES met emitterdegeneratie genoemd (gedegenereerde GES).

Van "basis naar emitter" werkt de schakeling als <u>emittervolger</u> of GCS want de invloed van R_C is erg gering (verklaar!). Dus bekomen we dezelfde (doorgaans hoge) ingangsimpedanties $Z_{I,T}$ en $Z_{I,S}$ als bij de GCS. Meer concreet is $Z_{I,T}$ = hie + $h_{fe}R_E$ en $Z_{I,S} = Z_{I,T} // R_{B1} // R_{B2}$.

Verder geldt (zie de GCS) dat $u'_O/u_i = h_{fe}R_E/(h_{ie} + h_{fe}R_E)$ zodat $u'_O/u_i \cong 1$. Dit laatste wordt bekomen indien de realistische eis $R_E >> h_{ie}/h_{fe}$ voldaan is.

Aangezien de emitterstroom $i_e = u'_O/R_E$ geldt dat $i_e = u_i h_{fe}/(h_{ie} + h_{fe}R_E)$. Bovendien is $u_O = -R_C i_C \cong -R_C i_e$. De schakeling levert dus een spanningsverterking

 $A_V = u_O/u_i = -R_C i_e/u_i = -(R_C h_{fe} R_E)/(R_E (h_{ie} + h_{fe} R_E)) \cong -R_C/R_E$ (in de veronderstelling dat $R_E >> h_{ie}/h_{fe}$).

3.1: Opmerkingen 1

De spanningsversterking van de GES met gedegenereerde emitter is gelijk aan

$$A_{V} = u_{O}/u_{i} = -R_{C}/R_{E}$$
.

Bemerk dat deze versterking nagenoeg onafhankelijk is van de h-parameters van de transistor.

Aangezien aan de eis $R_E >> h_{ie}/h_{fe}$ voldaan moet zijn, zal A_V wel kleiner zijn dan bij de gewone GES. Wel is $R_C/R_E >> 1$.

Verklaar vanuit een fysisch standpunt dat $|A_V| = R_C/R_E$.

Daar de uitgangsspanning u_O een vast aantal keer (R_C/R_E) groter is dan u'_O $(R_C$ en R_E worden door nagenoeg dezelfde stroom doorlopen) en daar u'_O een getrouwe kopie is van u_i al u_O een versterkte en getrouwe kopie zijn van u_i . De vervorming zal dus zeer gering zijn.

De ingangsweerstand van de schakeling is even <u>hoog</u> als bij de GCS.

3.2: Opmerkingen 2

Indien $R_C = R_E$, dan zijn de ingangsspanning en de uitgangsspanning even groot. Ook zijn u'_O en u_O even groot. Wel zijn u'_O en u_O in tegenfase, de schakeling fungeert als een <u>fase-splitter</u>.

Indien aan de uitgang na de koppelcondensator een belastingsweerstand R aangelegd wordt, dan moet in de bovenstaande uitdrukkingen R_C vervangen worden door R_C // R. De spanningsversterking wordt dan $A_V = -(R R_C)/(R_E (R + R_C))$.

3.3: Oefening

Ontwerp een GES met emitterdegeneratie zoals weergegeven in Figuur 1.5. Er is een spanningsversterking u_0/u_i gelijk aan 10 gewenst. De aan te sturen belasting vereist dat de uitgangsimpedantie van de schakeling maximaal 1 k Ω bedraagt.

De voedingsspanning $U_{CC} = 24$ V. De transistor wordt ingesteld op een $I_C = 10$ mA. De gebruikte transistor is een NPN-transistor (silicium) met een $\beta = h_{FE} = 250$. De waarden van h_{ie} en h_{fe} zijn niet opgegeven.

Opgave:

- 1) Bepaal bij benadering de waarden van h_{ie} en h_{fe}.
- 2) Bepaal R_C , R_E , R_{B1} en R_{B2} . Wat stelt u vast bij U_{RE} ? Teken een oplossing die het AC-gedrag van de schakeling niet zal wijzigen, maar toch een stabiele DC-instelling $(U_E > 4 \text{ V})$ zal opleveren.
- 3) Natuurlijk dient men na te gaan of het ontwerp zal voldoen. Is het hoofdcriterium voldaan? Bereken u'_O/u_i en u_O/u_i . Hoe brengt u_O/u_i exact op 10?
- 4) Bereken $Z_{I,S}$ en de versterking u_O/e als de bron een inwendige weerstand van 1 k Ω heeft. Hoe zou u u_O/e op 10 kunnen brengen? Eventueel neemt u voor het nietontkoppelde R_E -deel een 100 Ω potentiometer.
- 5) Herhaal de vragen 1) tot en met 4) waarbij $A_V = 30$ in plaats van 10.

Bij het oplossen van vraag 5) zult u constateren dat de uiterste mogelijkheden van de schakeling bereikt worden. Meer specifiek is u'_{O}/u_{i} gedaald tot 0,927, wat reeds een afwijking van 7,3 % op de eenheidversterking betekent. Zeker bij nog grotere A_{V} -waarden (> 30) zal nauwelijks nog sprake zijn van een echte "emittervolgerwerking". De schakeling evolueert dan reeds teveel naar een zuivere GES (grotere versterking, maar ook meer vervorming en een lagere ingangsimpedantie).

Als zuivere GES (hoe bekomt u dat?) zou een $A_V = u_O/u_i \cong 380$ bekomen kunnen worden. In dit geval levert de schakeling echter geen enkele vervormingsreductie meer. Bovendien daalt $Z_{I,S}$ tot $h_{ie} \cong 650~\Omega$. Ten gevolge van de lagere ingangsimpedantie krijgt men echter een $u_O/e \cong 150$ in plaats van 380.

4: De emittervolger met bootstrap

In eerdere oefeningen constateerden we telkens het ongewenste fenomeen dat de instelweerstanden er voor zorgden dat de ingangsimpedantie $Z_{I,S}$ van de volledige schakeling lager was dan de ingangsimpedantie $Z_{I,T}$ van enkel de transistor.

Vooral bij de emittervolger (GCS) gebeurt het vaak dat de instelweerstanden $R_{\rm B1}$ en $R_{\rm B2}$ flink kleiner zijn dan $Z_{\rm I,T}$. Hierdoor gebeurt het vaak dat bij de emittervolger $Z_{\rm I,S}$ flink kleiner is dan $Z_{\rm I,T}$.

De kleinere waarde van $Z_{I,S}$ zorgt er voor dat de spanningsbron aan de ingang meer stroom moet leveren. Indien de bronweerstand R_G verschillend is van nul, dan is u_i kleiner dan e en is u_O /e kleiner.

Een oplossing voor de hierboven geschetste problematiek is de bootstrap schakeling welke weergegeven is in Figuur 1.6.

Figuur 1.6: De emittervolger met bootstrap

In plaats van het punt A zoals gewoonlijk rechtstreeks met het punt B (= de basis) te verbinden, wordt tussen A en B een zo groot mogelijke weerstand R_B geplaatst. De DC-instelstroom I_B van de transistor loopt door R_B wat er echter voor zorgt dat R_B niet willekeurig groot gekozen kan worden.

Het is bijvoorbeeld mogelijk over R_B een DC-spanningsval van 2 V te kiezen wat betekent dat $R_B = 2/I_B$.

De plaatsing van C_B impliceert dat u_A dat $u_A = u_O$.

De instelweerstanden R_{B1} , R_{B2} en R_{B2} zullen een des te geringere invloed hebben op $Z_{I,S}$ naarmate de door u_i veroorzaakte wisselstroom i kleiner is. Wanneer men i=0 zou krijgen, dan zou de invloed van de instelweerstanden volledig verdwenen zijn. Dit laatste is uiteraard niet realiseerbaar.

Nu is $i = u/R_B$ met $u = u_B - u_A$. Maar $u_B = u_i$ terwijl $u_A = u_O = A_V u_i$. Hierbij is $A_V = u_O/u_i$ de spanningsversterking van de GCS.

We weten bijgevolg dat $u = u_B - u_A = u_i - A_V u_i = u_i (1 - A_V)$. Als $R_E >> h_{ie}/h_{fe}$, dan is A_V ongeveer 1. Dit laatste betekent dat u en $i = u/R_B$ ongeveer nul worden zodat het nagestreefde effect duidelijk grotendeels bekomen wordt.

Ten opzichte van ui vertoont het instelnetwerk een wisselstroomweerstand

$$R_{AC} = u_i/i = u_i/(u/R_B) = u_i (R_B/(u_i(1 - A_V))) = R_B/(1 - A_V).$$

Dit betekent dat $Z_{I,S} = Z_{I,T} // R_{AC}$. Indien i bijna nul is, dan is R_{AC} bijna nul en is bij benadering $Z_{i,S} \cong Z_{I,T}$. De bron wordt enkel nuttig belast door de transistoringang en niet meer door de instelweerstanden.

4.1: Voorbeeld

Bereken hoe bij de schakeling van Figuur 1.6 een DC-instelling van I_C = 6 mA en U_{RE} = 6 V bekomen kan worden. Ga er van uit dat U_{CC} = 13,4 V en neem R_C = 0 Ω . De transistor is een NPN transistor (silicium) met een β = h_{FE} = 200, een h_{ie} = 860 Ω en een h_{fe} = 200.

Stel eerst de transistor in op de klassieke manier (dus zonder R_B) en vervolgens met een bootstrap-schakeling waarbij $U_{RB} = 2 \text{ V}$.

Bepaal in beide gevallen $Z_{I,T}$ en $Z_{I,S}$. Vergelijk de bekomen waarden en trek besluiten.

4.2: Opmerkingen

Alle verdere berekeningen (zoals de spanningsversterkingen A_{V1} , A_{V2} , A_{V3} , uitgangsweerstand, invloed van de belasting, ...) verlopen op volkomen analoge wijze als bij een schakeling zonder bootstrap.

Omdat de bootstrap voor een merkelijke verhoging van $Z_{I,S}$ zal zorgen, zal de bron minder belast worden. Dit betekent dat de spanningsversterking $A_{V3} = u_O/e$ hoger zal uitvallen (tenzij de bron een $R_G = 0$ zou hebben).

Vooral met Darlington-transistoren (bijvoorbeeld een BC517) kan de bootstrapschakeling een zeer hoge Z_{LS} opleveren. Verklaar dit nader!

5: Extra opmerkingen bij transistorschakelingen

Zoals u bijvoorbeeld op de datasheets van de BC546 en BC547 kunt zien varieert de waarde van h_{FE} in functie van de DC-collectorstroom I_C . Er is ook een grote spreiding te zien in h_{FE} -waarden bij verschillende transistoren van hetzelfde type. De datasheets van de BC546 en BC547 vindt u in Bijlage 3 in de cursus elektronica van het eerste semester.

Een zelfde opmerking kan gemaakt worden voor h_{fe} . Een typisch verloop van h_{fe} in functie van de DC-collectorstroom I_C vindt u in Figuur 1.7. Bemerk wel dat de I_C -as een logaritmische schaal heeft terwijl de h_{fe} -as een lineaire schaal heeft.

Figuur 1.7: h_{fe} van een bipolaire transistor

Voor relatief kleine instelstromen I_C (mA) geldt bij benadering dat

$$S = h_{fe}/h_{ie} \cong 38 I_C$$
 en dat $h_{ie} \cong 26 h_{fe}/I_C$.

Indien de instelstroom I_C groter wordt, dan zal de steilheid S toenemen terwijl h_{ie} afneemt. Dit kan interessante gevolgen hebben voor de transistorschakeling. Inderdaad, bij een GES of GBS zal de spanningsversterking A_V merkelijk toenemen. Bij een GCS zal $Z_{O,T}$ lager worden. Bij een GBS zal $Z_{I,T}$ kleiner worden.

Wanneer voor een hogere voedingsspanning U_{CC} geopteerd wordt, dan bij een GES of GBS de collectorweerstand R_{C} groter genomen worden. Op die manier kan een hogere A_{V} bekomen worden.

Een transistorschakeling die bij een zekere instelstroom I_C en voedingsspanning U_{CC} niet aan de opgestelde eisen voldoet, kan dit soms wel doen na aanpassing en

herberekening bij een grotere I_C en/of U_{CC} . Vanzelfsprekend leiden grotere I_C en U_{CC} waarden tot grotere transistordissipaties en energieverbruiken. Dit is vooral nadelig indien de schakeling door batterijen gevoed wordt, daarom kan het nodig zijn om compromissen te sluiten (prestaties versus verbruik en dissipatie).

Het is belangrijk er op te wijzen dat bij een gelijk blijvende instelstroom I_C (en dus ongeveer constante $S = h_{fe}/h_{ie}$) een grotere h_{fe} ook automatisch een grotere h_{ie} met zich meebrengt. Als men met behulp van formules wil nagaan welke resultaten een transistor met een grotere h_{fe} zou opleveren, mag men dus niet vergeten tijdens de berekeningen ook evenredig grote h_{ie} -waarden in te vullen. Zoniet, komt men tot onrealistische conclusies.

We beschouwden enkel laagfrequente schakelingen met weerstandsbelasting. In deze omstandigheden hebben we de invloed van h_{oe} en h_{re} verwaarloosd. De fouten die in de praktijk door deze verwaarlozing ontstaan, zijn merkelijk kleiner dan deze ten gevolge van de spreiding op de h-parameters van de praktische transistor.

Bij radiofrequenties (hoge frequenties, HF) worden de h-parameters complexe getallen. Bovendien zijn deze h-parameters afhankelijk van de frequentie. Hoe verklaart u het verschijnen van complexe parameters?

Zo zal vanaf een zekere frequentie f_C , <u>de stroomversterking</u> $|h_{fe}|$ <u>met ongeveer 6 dB per octaaf dalen</u> (20 dB per decade). Anders uitgedrukt, boven f_C wordt $|h_{fe}|$ gehalveerd per frequentieverdubbeling. Per definitie is f_T de frequentie waarvoor $|h_{fe}|$ gedaald is tot 1.

Dit alles betekent dat bij benadering $|h_{fe}|$ een verloop heeft zoals weergegeven in Figuur 1.8. Indien h_{feLF} de waarde van h_{fe} is indien $f < f_C$, dan geldt dat $f_C = f_T/h_{feLT}$.

Figuur 1.8: De AC-stroomversterking in functie van de frequentie

Bij de bovenstaande Figuur 1.8 heeft de transistor bij lage frequenties bijvoorbeeld een stroomversterking $h_{feLF} = 200$. Zolang $f < f_C$ geldt met een goede benadering dat $h_{fe} \cong$

 h_{feLF} . Indien $f = f_C$ dan is de reële h_{fe} 3dB lager dan h_{feLF} . Bereken in ons numeriek voorbeeld zelf deze h_{fe} -waarde.

Bij frequenties $f > f_C$ geldt bij benadering dat $|h_{fe}| \cong f_T/f$.

Stel dat $f_T = 300$ MHz en dat $h_{feLF} = 200$. Bereken f_C . Bereken ook $|h_{fe}|$ bij een frequentie van 300 MHz, 100 MHz, 20 MHz, 500 kHz, 20 kHz en 20 Hz.

Bij hoge frequenties is het niet enkel zo dat $|h_{fe}|$ daalt. De invloed van de parameters h_{oe} en h_{re} is niet langer verwaarloosbaar. Bij een GES (bij hoge frequenties) is h_{re} vooral bepaald door <u>de capaciteit</u> C_{CB} <u>tussen de collector en de basis</u> (bij transistoren voor kleine signalen bedraagt C_{CB} tussen 0,2 pF en enkele pF). Verklaar het ontstaansprincipe van de capaciteit C_{CB} .

Deze C_{CB} veroorzaakt bij hoge frequenties een niet altijd verwaarloosbare (en vaak zeer nefaste) terugkoppeling van de uitgang naar de ingang. Verklaar dit (zie het Miller effect)

Voor een uitgebreide studie van de hoogfrequentie versterker verwijzen we de geïnteresseerde student naar de cursus hoogfrequent techniek uit het vierde jaar. Trouwens, bij hoge frequenties worden de h-parameters bijna nooit gebruikt. Men verkiest daar de zogenaamde s-parameters of y-parameters.