UART Specification

Introduction

- There are many serial communication protocols as I2C, UART and SPI.
- A Universal Asynchronous Receiver/Transmitter (UART) is a block of circuitry responsible for implementing serial communication.
 UART is Full Duplex protocol (data transmission in both directions simultaneously).

- <u>Transmitting UART</u> converts parallel data from the master device (e.g., CPU) into serial form and transmit in serial to receiving UART.
- Receiving UART will then convert the serial data back into parallel data for the receiving device.

UART Transmitter

Block Diagram

Specifications

- 1. UART TX receives the new data on p_data Bus only when data_valid Signal is high.
- 2. Registers are cleared using asynchronous active low reset.
- 3. data_valid is high for only 1 clock cycle.
- 4. busy signal is high as long as UART_TX is transmitting the frame, otherwise low.
- 5. UART_TX couldn't accept any data on p_data during UART_TX processing, however data_valid get high.
- 6. s_data is high in the IDLE case (No transmission).
- 7. parity_en (Configuration)
 - 0: To disable frame parity bit
 - 1: To enable frame parity bit
- 8. parity_type (Configuration)
 - 0: Even parity bit
 - 1: Odd parity bit
- 9. 200 MHz clock frequency.

All Expected Output Frames

- 1. Data Frame (in case of Parity is enabled & Parity Type is even)
 - One start bit (1'b0)
 - Data (LSB first or MSB, 8 bits)
 - Even Parity bit
 - One stop bit

- 2. Data Frame (in case of Parity is enabled & Parity Type is odd)
 - One start bit (1'b0)
 - Data (LSB first or MSB, 8 bits)
 - Odd Parity bit
 - One stop bit

- 3. Data Frame (in case of Parity is not Enabled)
 - One start bit (1'b0)
 - Data (LSB first or MSB, 8 bits)
 - One stop bit

Waveforms

1. Expected Input

2. Expected Output

UART Receiver

Block Diagram

Specifications

- 1. UART TX receives a UART frame on s_data.
- 2. UART_RX supports oversampling by 8.
- 3. s_data is high in the IDLE case (No transmission).
- 4. parity_error signal is high when the calculated parity bit does not equal the received frame parity bit as this means that the frame is corrupted.
- 5. stop_error signal is high when the received stop bit does not equal 1 as this means that the frame is corrupted.
- 6. DATA is extracted from the received frame and then sent through p_data bus associated with data_valid signal only after checking that the frame is received correctly and not corrupted. (parity_error=0 && stop_error=0).
- 7. UART_RX can accept consequent frames.
- 8. Registers are cleared using asynchronous active low reset.
- 9. parity_en (Configuration)
 - 0: To disable frame parity bit
 - 1: To enable frame parity bit
- 10. parity_type (Configuration)
 - 0: Even parity bit
 - 1: Odd parity bit

Oversampling

1. Oversampling by 4: This means that the clock speed of UART_RX is 4 times the speed of UART_TX.

2. Oversampling by 8: This means that the clock speed of UART_RX is 8 times the speed of UART_TX.

Waveforms

1. Expected Input

In case of one frame

In case of multiple frames

2. Expected Output

UART Block p_data_tx s_data_tx data_valid_tx UART TX parity_en_tx busy_tx parity_type_tx • clk • **UART** rst s_data_rx p_data_rx parity_type_rx • UART RX parity_en_rx data_valid_rx prescale_rx