汇编指令汇总

贺利坚 主讲

8086指令系统

- □数据传送指令
- □算术指令
- 旦逻辑指令
- □串处理指令
- □控制转移指令
- □处理机控制与杂项操作指令

汇编语言指令大全

AAA	未组合的十进制加法调整指令	说明:
	AAA(ASCII Adgust for Addition)	1. 组合的十进制数和未组合的十进制
	格式: AAA	数:在计算中,十进制数可用四位二进
	功能: 对两个组合的十进制数相加运算	制数编码, 称为 BCD 码.
	(存在 AL 中)的结果进行调整,产生一个	当一个节(8位)中存放一位 BCD 码,且
	未组合的十进制数放在 AX 中.	放在字节的低4位, 高4位为时称为未
		组合的 BCD 码.
		2. AAA 的调整操作
		若(AL) and OFH>9 或 AF=1,则调整如
		下:
		(AL) < (AL) +6, (AH) < (AH) +1, AF=1,
		CF <af, (al)<(al)="" and="" ofh<="" th=""></af,>
AAD	未组合十进制数除法调整指令	说明:
	AAD(ASCII Adjust for Division)	1. AAD 指令是在执行除法 DIV 之前使
	格式: AAD	用的,以便得到二进制结果存于 AL 中,
	功能:在除法指令前对AX中的两个未组	然后除以 OPRD, 得到的商在 AL 中, 余数
	合十进制数进行调整,以便能用 DIV 指令	在 AH 中.
	空和西人土组合的土进制粉的除注法	9 = April MOV RI 5

□通用数据传送指令

MOV、PUSH、POP、XCHG

□累加器专用传送指令

IN, OUT, XLAT

旦地址传送指令

LEA, LDS, LES

□标志寄存器传送指令

LAHF、SAHF、PUSHF、POPF

□类型转换指令

CBW, CWD

交换指令: XCHG OPR1, OPR2

执行操作: (OPR1) ↔ (OPR2)

例:XCHG BX,[BP+SI]

XCHG AL, BH

注意:

- * 不影响标志位
- * 不允许使用段寄存器

□通用数据传送指令

MOV, PUSH, POP, XCHG

□累加器专用传送指令

IN, OUT, XLAT

旦地址传送指令

LEA、LDS、LES

□标志寄存器传送指令

LAHF、SAHF、PUSHF、POPF

■类型转换指令

CBW, CWD

换码指令: XLAT 或 XLAT OPR

执行操作: (AL) ← ((BX) + (AL))

例:MOV BX, OFFSET TABLE ; (BX)=0040H

MOV AL, 3

XLAT TABLE

指令执行后 (AL)=33H

注意:

- * 不影响标志位
- * 字节表格(长度不超过256)
- * 首地址 → (BX)
- * 需转换的代码位移量 → (AL)

data segment

db 40H dup(?)

TABLE db 30H, 31H, 32H,33H

data ends

□通用数据传送指令

MOV, PUSH, POP, XCHG

□累加器专用传送指令

IN, OUT, XLAT

旦地址传送指令

LEA, LDS, LES

□标志寄存器传送指令

LAHF、SAHF、PUSHF、POPF

□类型转换指令

CBW, CWD

有效地址送寄存器指令: LEA REG, SRC 执行操作: (REG) ← SRC

指针送寄存器和DS指令: LDS REG, SRC 执行操作: (REG) ← (SRC) (DS) ← (SRC+2)

指针送寄存器和ES指令: LES REG, SRC 执行操作: (REG) ← (SRC)

(ES) \leftarrow (SRC+2)

□通用数据传送指令

MOV、PUSH、POP、XCHG

□累加器专用传送指令

IN, OUT, XLAT

旦地址传送指令

LEA、LDS、LES

□标志寄存器传送指令

LAHF、SAHF、PUSHF、POPF

□类型转换指令

CBW, CWD

标志送AH指令: LAHF

执行操作: (AH) ← (FLAGS的低字节)

AH送标志寄存器指令:SAHF

执行操作: (FLAGS的低字节) ← (AH)

标志进栈指令: PUSHF

执行操作: (SP) ← (SP) - 2

 $((SP)+1, (SP)) \leftarrow (FLAGS)$

标志出栈指令: POPF

执行操作: (FLAGS) ← ((SP)+1, (SP))

 $(SP) \leftarrow (SP) + 2$

□通用数据传送指令

MOV、PUSH、POP、XCHG

□累加器专用传送指令

IN, OUT, XLAT

旦地址传送指令

LEA、LDS、LES

□标志寄存器传送指令

LAHF、SAHF、PUSHF、POPF

■类型转换指令

CBW、CWD

CBW $AL \rightarrow AX$

执行操作: 若(AL)的最高有效位为0,则(AH)=00H

若(AL)的最高有效位为1,则(AH)=FFH

CWD $AX \rightarrow (DX,AX)$

执行操作: 若(AX)的最高有效位为0,则(DX)= 0000H

若(AX)的最高有效位为1,则(DX)=FFFFH

例: (AX) = OBA45H

CBW; (AX)=0045H

CWD; (DX)=0FFFFH (AX)=0BA45H

注意: * 无操作数指令

* 隐含对AL或AX进行符号扩展

* 不影响条件标志位

算术指令

□加法指令

ADD, ADC, INC

□减法指令

SUB, SBB, DEC, NEG, CMP

□乘法指令

MUL, IMUL

□除法指令

DIV, IDIV

□十进制调整指令

DAA、DAS、AAA、AAS、AAM、AAD

• BCD码:用二进制编码的十进制数,又称二--十进制数

压缩的BCD码:用4位二进制数表示1位十进制数

例:(59)₁₀ = (0101 1001)_{BCD}

非压缩的BCD码:用8位二进制数表示1位十进制数

例: $(59)_{10} = (00000101 00001001)_{BCD}$

数字的 ASCII 码是一种 非压缩的 BCD 码

DIGIT	ASCII	BCD
0	30H	0011 0000
1	31H	0011 0001
2	32H	0011 0010
9	39H	0011 1001

算术指令

□加法指令

ADD, ADC, INC

□减法指令

SUB, SBB, DEC, NEG, CMP

□乘法指令

MUL, IMUL

□除法指令

DIV, IDIV

□十进制调整指令

DAA, DAS, AAA, AAS, AAM, AAD

• BCD码:用二进制编码的十进制数,又称二--十进制数

压缩的BCD码:用4位二进制数表示1位十进制数

例:(59)₁₀ = (0101 1001)_{BCD}

非压缩的BCD码:用8位二进制数表示1位十进制数

例: $(59)_{10} = (0000\ 0101\ 0000\ 1001)_{BCD}$

问题的提出:		
	用压缩BCD	这样才对
19	0001 1001	0001 1001
+ 08	+ 0000 1000	+ 0000 1000
27	0010 0001	0010 (0001+110)

压缩的BCD码调整

算术指令

□加法指令

ADD, ADC, INC

□减法指令

SUB、SBB、DEC、NEG、CMP

□乘法指令

MUL, IMUL

□除法指令

DIV, IDIV

□十进制调整指令

DAA, DAS, AAA, AAS, AAM, AAD

- (1)压缩的BCD码调整指令
 - DAA 加法的十进制调整指令
 - DAS 减法的十进制调整指令
- (2) 非压缩的BCD码调整指令
 - AAA 加法的ASCII码调整指令
 - AAS 减法的ASCII码调整指令
 - AAM 乘法的ASCII码调整指令
 - AAD 除法的ASCII码调整指令

```
(1) MOV
          AL, BCD1
                       ; BCD1=34H
    ADD
           AL, BCD2
                       ; BCD2=59H, (AL)=8DH
    DAA
                       ; 8DH+06H=93H
    MOV
           BCD3, AL
                       ; BCD3=93H
(2) MOV
           AL, BCD1
                       ; BCD1=34H
    SUB
           AL, BCD2
                       ; BCD2=59H , (AL)=0DBH
                        ; 0DBH - 60H - 06H=75H
    DAS
    MOV
                       ; BCD3 = 75 = -25
           BCD3, AL
```

逻辑指令

□逻辑运算指令

AND, OR, NOT, XOR, TEST

□移位指令

SHL、SHR、SAL、SAR、ROL、ROR、RCL、RCR

串处理指令

□设置方向标志指令

CLD、STD

□ 串处理指令

MOVSB / MOVSW

STOSB / STOSW

LODSB / LODSW

CMPSB / CMPSW

SCASB / SCASW

串重复前缀REPREPE / REPZREPNE / REPNZ

例:从附加段字符串中查找一个指定的字符

mess db 'COMPUTER'

lea di, mess mov al, 'T' mov cx, 8 cld repne scasb

控制转移指令

- □无条件转移指令 JMP
- 条件转移指令

 JZ / JNZ 、 JE / JNE、 JS / JNS、 JO / JNO、

 JP / JNP、 JB / JNB、 JL / JNL、 JBE / JNBE、

 JLE / JNLE、 JCXZ
- □循环指令 LOOP、LOOPZ / LOOPE、LOOPNZ / LOOPNE
- □ 子程序调用和返回指令 CALL、RET
- □中断与中断返回指令 INT、INTO、IRET

处理机控制与杂项操作指令

□标志处理指令

```
CLC、STC、CMC、
```

CLD, STD,

CLI, STI

其他处理机控制与杂项操作指令

NOP 无操作 (机器码占一个字节)

HLT 暂停机 (等待一次外中断,之后继续执行程序)

WAIT 等待 (等待外中断,之后仍继续等待)

ESC 换码

LOCK 封锁 (维持总线的锁存信号,直到其后的指令执行完)