Fonctions dérivées

Différenciation

- Parcours 1: exercices 38; 42; 45; 57; 58; 77; 80;
- Parcours 2: exercices 48; 49; 67; 73; 79; 83; 84;
- Parcours 3: exercices 43; 46; 55; 59; 64; 70; 90; 94; 100;
- i Pour les exercices 74 à 86

On considère f et g deux fonctions définies et dérivables respectivement sur deux ensembles I et J de \mathbb{R} . On note f' et g' les fonctions dérivées associées.

- (74) [Calculer.]
- **1.** Calculer f'(x) pour f(x)=2019 et ${
 m I}=\mathbb{R}.$
- **2**. Calculer g'(x) pour g(x)=4x-7 et $\mathrm{J}=\mathbb{R}.$
- 75 [Calculer.]
- **1.** Calculer f' pour $f(x)=x^4$ et ${
 m I}={\Bbb R}.$
- **2**. Calculer g' pour $g(x)=4x^4$ et $\mathrm{J}=\mathbb{R}$.
 - **76** [Calculer.]

- **1.** Calculer f'(x) pour f(x)=(2x-1)(x+3) et ${
 m I}=\mathbb{R}.$
- **2.** Calculer g'(x) pour $g(x)=\left(x^2-x+2\right)\left(2x^3-4\right)$ et $\mathrm{J}=\mathbb{R}.$
- 77 [Calculer.] O O
- **1.** Calculer f'(x) pour $f(x)=2x^2-3x+1$ et ${
 m I}=\mathbb{R}.$
- **2.** Calculer g'(x) pour $g(x)=x^3+4x^2+5x-6$ et $\mathrm{J}=\mathbb{R}.$
- 78 [Calculer.]
- **1.** Calculer f'(x) pour $f(x)=rac{1}{4}x^4-rac{1}{3}x^3+rac{1}{2}x^2-10$ et $\mathrm{I}=\mathbb{R}.$
- **2.** Calculer g'(x) pour $g(x) = \sqrt{x} + \frac{1}{x}$ et $\mathrm{J} = \mathbb{R}$.
- 79 [Calculer.] • •

Soient f et g les fonctions définies par $f(x) = \sqrt{x}(x+1)$ et $g(x) = \sqrt{x}\left(x^2 - x + 1\right)$.

- 1. Déterminer l'ensemble de définition et de dérivabilité des fonctions f et g.
- 2. Calculer f'(x) et g'(x).
- 80 [Calculer.] • •
- **1. a.** Calculer f'(x) pour f(x)=(2x+3)(1-4x) et ${
 m I}=\mathbb{R}.$
- **b.** Développer et réduire f(x) et calculer la dérivée de l'expression obtenue.
- **2.** a. Calculer g'(x) pour $g(x)=\left(x^2-1\right)\left(x^3+x\right)$ et $\mathrm{J}=\mathbb{R}.$

- **b.** Développer et réduire g(x) et calculer la dérivée de l'expression obtenue.
- 81 [Calculer.]
- **1.** Calculer f'(x) pour $f(x) = \sqrt{x} \left(x^2 + 1 \right)$ et $\mathrm{I} =]0 \; ; +\infty[.$
- **2.** Calculer g'(x) pour $g(x)=rac{1}{x}\left(x^2-1
 ight)$ et $\mathrm{J}=]-\infty\ ;0[\cup]0\ ;+\infty[.$
- 82 [Calculer.]
- **1.** Calculer f'(x) pour $f(x)=rac{4}{2x-3}$ et $\mathrm{I}=]-\infty$; $rac{3}{2}[\ \cup\]rac{3}{2}\ ; +\infty[.$
- **2.** Calculer g'(x) pour $g(x)=rac{2}{1-4x}$ et $\mathrm{J}=]-\infty\ ; rac{1}{4}[\ \cup\]rac{1}{4}\ ; +\infty[.$
- 83 [Calculer.] \bullet \bullet \bigcirc
- **1.** Calculer f'(x) pour $f(x)=rac{-2}{x^2+x+1}$ et ${
 m I}=\mathbb{R}.$
- **2.** Calculer g'(x) pour $g(x)=rac{3}{x^4+1}$ et $\mathrm{J}=\mathbb{R}.$
- 84 [Calculer.] • •
- **1.** Calculer f'(x) pour $f(x)=rac{5x-1}{x+2}$ et $\mathrm{I}=]-\infty\ ; -2[\cup]-2\ ; +\infty[.$
- **2.** Calculer g'(x) pour $g(x)=rac{3-x}{1+4x}$ et $\mathrm{J}=]-\infty\ ; -rac{1}{4}[\cup]-rac{1}{4}\ ; +\infty[.$
 - 85 [Calculer.]

- **1.** Calculer f'(x) pour $f(x)=rac{x-1}{x^2+x+1}$ et $\mathrm{I}=\mathbb{R}.$
- **2.** Calculer g'(x) pour $g(x)=rac{x^2+x+1}{x^2+1}$ et $\mathrm{J}=\mathbb{R}.$
- 86 [Calculer.]
- **1.** Calculer f'(x) pour $f(x)=rac{\sqrt{x}}{x+1}$ et $\mathrm{I}=]0\;;+\infty[.$
- **2.** Calculer g'(x) pour $g(x)=rac{\sqrt{x}}{x^2+1}$ et $\mathrm{J}=]0\;;+\infty[.$
- 87 Python [Calculer.]

Soit f la fonction définie sur $\mathbb R$ par $f(x)=ax^2+bx+c$ où a,b et c sont des réels avec a
eq 0 .

- **1**. Démontrer que f est dérivable sur $\mathbb R$ et calculer f'(x) où f' est la fonction dérivée de f .
- 2. Écrire, en langage Python, une fonction qui calcule le nombre dérivé en un réel x_0 d'une fonction trinôme définie par $f(x)=ax^2+bx+c$.
- Cliquez pour accéder à la correction
- $\left(\begin{array}{c} \mathbf{88} \end{array}
 ight)$ [Calculer.]

Soit f une fonction définie sur un intervalle I de \mathbb{R} .

Dans chaque cas, identifier la forme g(ax+b), préciser l'ensemble de dérivabilité de f et calculer $f^{\prime}(x)$.

1.
$$f(x) = (5x+3)^2; \mathrm{I} = \mathbb{R}$$

2.
$$f(x)=\sqrt{3x-4}; \mathrm{I}=\left[rac{4}{3};+\infty
ight[$$

3.
$$f(x)=\left(rac{1}{2}x-1
ight)^3; ext{I}=\mathbb{R}$$

Soit f une fonction définie sur un ensemble I de \mathbb{R} .

Dans chaque cas, préciser l'ensemble de dérivabilité de f et calculer f'(x).

1.
$$f(x) = \sqrt{2x+3} + rac{1}{x}$$
 ; $\mathrm{I} = [rac{-3}{2}\ ; 0[\cup]0\ ; +\infty[.$

2.
$$f(x) = \sqrt{x-2} (x^2-1)$$
; $I = [2; +\infty[$.

3.
$$f(x)=rac{1}{\sqrt{1-2x}}$$
 ; $\mathrm{I}=]-\infty$; $rac{1}{2}$].

4.
$$f(x) = rac{\sqrt{3-x}}{x^3}$$
 ; $\mathrm{I} =]-\infty$; $0[\cup]0$; $3]$.

90 Vrai / Faux [Raisonner.] • • •

Pour chacune des propositions suivantes, indiquer si elle est vraie ou fausse en justifiant la réponse.

- 1. « Les fonctions f et g définies pour tout $x \neq -1$ et $x \neq 1$ par $f(x) = \frac{3x-1}{x^2-1}$ et $g(x) = 1+\frac{1}{x-1}+\frac{2}{x+1}$ ont la même fonction dérivée. »
- 2. « La dérivée de la fonction f définie sur \mathbb{R}^+ par $f(x)=rac{\sqrt{x}-1}{\sqrt{x}+1}$ est définie sur $]0\ ;+\infty[$ par $f'(x)=rac{\sqrt{x}}{(\sqrt{x}+1)^2}.$ »
- 3. « Soient les fonctions f et g définies sur $\mathbb R$ par $f(x)=(x-1)(x+1)^2$ et $g(x)=(x-1)^2(x+1)$. Il existe un unique réel a pour lequel f'(a)=g'(a). »

4. « Les nombres dérivés en 1 des fonctions inverse et valeur absolue sont égaux. »
91 QCM [Calculer.]
Pour chacune des propositions suivantes, choisir la (ou les) réponse(s) correcte(s).
1. Soit f la fonction définie sur \mathbb{R} par $f(x)=3x-5$. Alors $f'(x)$ est égal à : a. -5 b. 3 c. $3x$ d. 0
2. La dérivée de la fonction f définie sur $\mathbb R$ par $f(x)=x^2+x+1$ est définie par $f'(x)=$: \square a. $2x+1$ \square b. $2x$ \square c. 2 \square d. 0
3. Soit f la fonction définie pour tout $x \neq 0$ par $f(x) = \frac{-1}{x^2}$. Alors $f'(x)$ est égal à : \Box a. $\frac{1}{x}$
■ b. 0
\square c. $\frac{2}{x^2}$
\square d. $\frac{2}{x^3}$
4. Soit f la fonction définie par $f(x)=3x^2+2x-1$. Alors f est la fonction dérivée de la fonction g définie par : \square a. $g(x)=(x-1)^3$ \square b. $g(x)=(x^2-1)(x+1)$ \square c. $g(x)=(x+1)(x-1)^2+1$ \square d. $g(x)=x^3+x^2-x-1$
5.Soit f la fonction définie pour tout $x>0$ par $f(x)=\sqrt{x}+\frac{1}{x}.$ Alors $f'(1)$ est égal à : $\hfill\Box$ a. 1

- \Box b. -1
- \square c. $\frac{1}{2}$
- \square d. $\frac{-1}{2}$
- 92 Démo [Raisonner.]

Soit f la fonction définie sur $\mathbb R$ par f(x)=|3x-2|.

- **1.** Déterminer la fonction dérivée de f sur $]rac{2}{3} \ ; +\infty[$
- **2.** Même consigne sur $]-\infty; \frac{2}{3}[$
- 3. Montrer que la fonction f n'est pas dérivable en $\frac{2}{3}$.
- 93 Démo [Raisonner.]

Soit f la fonction définie sur $\mathbb R$ par $f(x)=\left|x^2+x-12\right|$

- **1**. Vérifier que, pour tout $x \in \mathbb{R}, x^2+x-12=(x+4)(x-3)$.
- 2. Déterminer la fonction dérivée de f sur $]-\infty \ ; -4[\cup]3 \ ; +\infty[.$
- 3. Même consigne sur $]-4\ ;3[.$
- **4.** Montrer que la fonction f n'est pas dérivable en -4, ni en 3.
- 5. Tracer la courbe de f à la calculatrice. Que remarque-t-on ?
- 94 Démo [Raisonner.] • •

Soit f la fonction définie sur $\mathbb R$ par : $f(x)=rac{|x-1|}{x-1}$ pour x
eq 1 et f(1)=0.

1. Déterminer la fonction dérivée de f sur $]1\;;+\infty[.$

- **2.** Même consigne sur $]-\infty;1[$.
- 3. Calculer la limite du taux de variation de f pour x>1 et pour x<1. Conclure
- 95 En physique [Communiquer.]

Une particule évolue de façon rectiligne au cours du temps. Sa position x en fonction du temps est donnée par l'équation $x(t)=3t^2+9t+8$ où x(t) exprime (en mètre) la distance parcourue par la particule au temps t (en seconde). La vitesse de la particule en fonction du temps est donnée en mètre par seconde par la fonction dérivée de la fonction x. On note $v(t)=\frac{\mathrm{d}x(t)}{\mathrm{d}t}$ 1. Quelle est la vitesse de la particule lorsque t=2 ?

2. Quelle est la position de la particule lorsque v(t)=10 ?

Isaac Newton (1642-1727), physicien anglais, a aussi contribué à l'avancée des mathématiques. Ses travaux sur le calcul infinitésimal, inspirés par la définition de la tangente à une courbe comme position limite d'une sécante donnée par le mathématicien français Fermat (1610-1665) et menés en concurrence avec le mathématicien allemand Leibniz (1646-1716) ont jeté les bases du calcul différentiel et de la dérivation.