Name:	
J#:	Dr. Clontz
Date:	

MASTERY QUIZ DAY 14

Math 237 – Linear Algebra Fall 2017

Version 1

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Let V be the set of all pairs of real numbers with the operations, for any $(x_1, y_1), (x_2, y_2) \in V, c \in \mathbb{R}$,

$$(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

 $c \odot (x_1, y_1) = (0, cy_1)$

- (a) Show that scalar multiplication **distributes vectors** over scalar addition: $(c+d)\odot(x,y)=c\odot(x,y)\oplus d\odot(x,y).$
- (b) Determine if V is a vector space or not. Justify your answer.

Standard V3.

$$\begin{bmatrix}
 \begin{bmatrix}
 2 \\
 -1 \\
 4
\end{bmatrix}, \begin{bmatrix}
 3 \\
 12 \\
 -9
\end{bmatrix}, \begin{bmatrix}
 1 \\
 2 \\
 3
\end{bmatrix}, \begin{bmatrix}
 -4 \\
 2 \\
 -8
\end{bmatrix}$$

$$= \mathbb{R}^3$$
?

Standard V4.	Mark:

Let W be the set of all complex numbers that are purely real (i.e of the form a+0i) or purely imaginary (i.e. of the form 0+bi). Determine if W is a subspace of \mathbb{C} .

Standard S2.

Mark:

Determine if the set $\{x^3 - 3x^2 + 2x + 2, -x^3 + 4x^2 - x + 1, -x^3 + 2x + 1, 3x^2 + 3x + 9\}$ is a basis of \mathcal{P}^3 or not.

Additional Notes/Marks