Harvard CS 121 and CSCI E-207 Lecture 15: Decidability, Recognizability, and a Universal Turing Machine

Harry Lewis

October 26, 2010

• Reading: Sipser §4.1.

Equivalent Formalisms

Many formalisms for computation are equivalent in power to the TM formalism:

- TMs with multiple tapes, multiple heads, 2-dimensional tapes, addressable storage (RAMs) . . .
- TMs with nondeterminisim, randomness,
- General Grammars
- Church's λ -calculus (μ -recursive functions)
- Markov algorithms
- Your favorite high-level programming language (C, Lisp, Java, . . .)

• . . .

Reduction of TMs to 2-CMs

A 2-counter machine (2-CM) has:

- A finite-state control
- Two counters, i.e. C1 and C2, which are registers containing integers ≥ 0 with only 3 operations:
 - Add 1 to C1/C2
 - Subtract 1 from C1/C2
 - ls C1/C2 = 0?

<u>Theorem:</u> For any TM, there is an equivalent 2-CM, in the sense that if you start the 2-CM with an encoding of the TM tape in its counters it will eventually halt with an encoding of what the TM computes.

Simulating a TM tape with 2 pushdown stores: Split the tape at the head position into two stacks

Moving TM head to left \equiv Pop from stack # 1

Push onto stack # 2

Moving TM head to right \equiv Pop from stack # 2

Push onto stack # 1

Change scanned symbol = Change top of stack # 1

(So 2-PDAs are as powerful as TMs)

Simulating One Stack with Two Counters: Think of the stack as number in a base = $|\Sigma| + 1$

[Assume ≤ 9 stack symbols]

Pop the stack \equiv Divide by 10 and

discard the remainder

Push $a_9 \equiv Multiply by 10 and add 9$

Is stack top = a_3 ? \equiv Is counter mod 10 = 3?

→ All of these can be calculated using a second counter.

Simulating Four Counters With Two: $(p, q, r, s) \rightarrow 2^p 3^q 5^r 7^s$

Add 1 to C1 $\equiv p \leftarrow p+1$

 \equiv Double C1'

 $ls C3 \neq 0? \qquad \equiv \qquad r \neq 0?$

 \equiv Does 5 divide C1' evenly?

Subtract 1 from $s \equiv \text{Divide } C1' \text{ by } 7$

The Church-Turing Thesis

The equivalence of each to the others is a mathematical theorem.

That these <u>formal models</u> of algorithms capture our <u>intuitive notion</u> of algorithms is the **Church–Turing Thesis**.

- Church's thesis = partial recursive functions, Turing's thesis =
 Turing machines
- Is the Church-Turing Thesis Provable?

Another TM Variant: Enumerators

Def: A TM M enumerates a language L if M, when started from a blank tape, runs forever and "emits" all and only the strings in L.

(For example, by writing the string on a special tape and passing through a designated state.)

Recognizable = enumerable

Theorem: L is Turing-recognizable iff L is enumerated by some TM.

Proof:

 (\Rightarrow) Suppose L(M)=L. We want to construct a TM M' that enumerates L.

M' dovetails all of the computations by M:

- 1. Do 1 step of M's computation on w_0
- 2. Do 2 steps of M on w_0 and w_1
- 3. Do 3 steps on each of w_0, w_1, w_2

where $w_0, w_1, \ldots =$ lexicographic enumeration of Σ^* .

Outputting any strings w_i whose computations have accepted.

Recognizable \equiv enumerable, finis

 (\Leftarrow)

- The Turing-decidable sets are often called *recursive* because they can be computed using certain systems of recursive equations, rather than via TMs.
- The Turing-recognizable sets are usually called recursively enumerable, i.e. "computably enumerable."

Decidability

• Recall that a language $L\subseteq \Sigma^*$ is decidable if there is a TM that always halts when started on an input in Σ^* , in either $q_{\mbox{accept}}$ if $w\in L$ or $q_{\mbox{reject}}$ if $w\notin L$.

Enumerability in order \equiv **decidability**

Theorem: L is decidable iff L is enumerable in lexicographic order.

(lexicographic order has shorter strings before longer, and alphabetic order among strings of the same length)

Proof:

Asking questions about arbitrary finite automata

• Proposition: Every regular language is decidable.

Proof: (By "coding" a DFA as a TM.)

What if the DFA D is part of the input?

- That is, can we design a single TM that, given two inputs, D and w, decides whether D accepts w?
 - The TM needs to use a fixed alphabet & state set for all inputs D, w.
- **Q:** How to represent $D = (Q, \Sigma_D, \delta, q_0, F)$ and w? List each component of the 5-tuple, separated by |'s.
 - Represent elements of Q as binary strings over {0, 1}, separated by ,'s.
 - Represent elements of Σ_D as binary strings over $\{0,1\}$, separated by ,'s.
 - Represent $\delta: Q \times \Sigma_D \to Q$ as a sequence of triples (q, σ, q') , separated by ,'s, etc.

We denote the encoding of D and w as $\langle D, w \rangle$.

A "Universal" algorithm for deciding regular languages

• **Proposition:** $A_{\mathsf{DFA}} = \{\langle D, w \rangle : D \text{ a DFA that accepts } w\}$ is decidable.

Proof sketch:

- First check that input is of proper form.
- Then simulate D on w. Implementation on a multitape TM:
 - Tape 2: String w with head at current position (or to be precise, its representation).
 - Tape 3: Current state q of D (i.e., its representation).
- Could work with other encodings, e.g. transition function as a matrix rather than list of triples.

Representation independence

- **General point:** Notions of computability (e.g. decidability and recognizability) are independent of data representation.
 - A TM can convert any reasonable encoding to any other reasonable encoding.
 - We will use $\langle \cdot \rangle$ to mean "any reasonable encoding".
 - We'll need to revisit representation issues again when we discuss computational speed.
 - For the moment when we are interested only in whether problems are decidable, undecidable, recognizable, etc., so we can be content knowing that there is *some* representation on which an algorithm could work.

More Decidable Problems

- $\{\langle R, w \rangle : R \text{ is a regular expression that generates } w\}.$
- $\{\langle X \rangle : X \text{ is an DFA/NFA/RE such that } L(X) = \emptyset\}.$
- $\{\langle X \rangle : X \text{ is a DFA/NFA/RE such that } |L(X)| = \infty\}.$
- $\{\langle M, w \rangle : M \text{ is a PDA that accepts } w\}.$
- Any given context-free language (what does this question mean?)

A Universal Turing machine

Theorem: There is a Turing machine U, such that when U is given $\langle M, w \rangle$ for any TM M and w, U produces the same result (accept/reject/loop) as running M on w.

Proof: Initially,

- First tape contains $\langle M \rangle$, including in particular its transition function δ_M .
- Second tape contains $\langle w \rangle$.
- Third tape contains $\langle q_{\text{start}} \rangle$.
- Simulate steps of M by multiple steps of U.

(Brief return to implementation description.)

⇒ Turing machines can be "programmed".

Consequences of the Existence of Universal Turing Machines

- Corollary: $A_{\mathsf{TM}} = \{ \langle M, w \rangle : M \text{ accepts } w \}$ is Turing-recognizable.
- Corollary: $HALT_{\mathsf{TM}} = \{\langle M, w \rangle : M \text{ eventually halts on } w\}$ ("The Halting Problem") is Turing-recognizable.
- Corollary: "The Turing Machines that halt on some input are an r.e. set" (What does this mean?)
- Q: Are these sets decidable?
- Q: Are there undecidable languages?