# Appunti Ricerca Operativa

## 1 Lezione del 23-09-24

### 1.1 Introduzione

#### 1.1.1 Programma del corso

Il corso di ricerca operativa si divide in 4 parti:

1. Modello di programmazione lineare

2. ...

Le prime 3 parti hanno come prerequisiti l'algebra lineare: in particolare operazioni matriciali, prodotti scalari, sistemi lineari, teorema di Rouché-Capelli. La quarta parte richiede invece conoscenze di Analisi II.

#### 1.1.2 Introduzione alla ricerca operativa

La ricerca operativa si occupa di risolvere problemi di ottimizzazione con variabili decisionali e risorse limitate. Poniamo un problema di esempio:

Una ditta produce due prodotti: **laminato A** e **laminato B**. Ogni prodotto deve passare attraverso diversi reparti: il reparto **materie prime**, il reparto **taglio**, il reparto **finiture A** e il reparto **finiture B**. Il guadagno è rispettivamente di 8.4 e 11.2 (unità di misura irrilevante) per ogni tipo di laminato.

Ora, nel reparto materie prime, il laminato A occupa 30, ore, e lo B 20 ore. Nel reparto taglio il laminato A occupa 10 ore e lo B 20 ore. Il laminato A occupa poi 20 ore nel reparto finiture A, mentre il laminato B occupa 30 ore nel reparto finiture B. I reparti hanno a disposizione, rispettivamente, 120, 80, 62 e 105 ore. Possiamo porre queste informazioni in forma tabulare:

| Reparto       | Capienza | Laminato A | Laminato B |
|---------------|----------|------------|------------|
| Materie prime | 120      | 30         | 20         |
| Taglio        | 80       | 10         | 20         |
| Finiture A    | 62       | 20         | /          |
| Finiture B    | 105      | /          | 30         |
| Guadagno      |          | 8.4        | 11.2       |

Quello che ci interessa è chiaramente massimizzare il guadagno. Decidiamo di modelizzare questa situazione con un modello matematico.

Il guadagno che abbiamo dai laminati rappresenta una **funzione obiettivo**, ovvero la funzione che vogliamo ottimizzare. Ottimizzare significa trovare il modo migliore di massimizzare o minimizzare i valori della funzione agendo sulle variabili decisionali. La funzione obiettivo va ottimizzata rispettando determinati **vincoli**, che modellizzano il fatto che le risorse sono limitate. Una **soluzione ammissibile** è una qualsiasi soluzione che rispetta i vincoli del problema. Chiamiamo quindi **regione ammissibile** l'insieme di tutte le soluzioni ammissibili. All'interno della regione ammissibile c'è la soluzione che cerchiamo, ovvero la **soluzione ottima**.

Decidiamo quindi le **variabili decisionali**, ed esplicitiamo la funzione obiettivo e i vincoli.

In questo caso le variabili decisiali saranno le quantità di laminato A e B da produrre, che individuano un punto in  $\mathbb{R}^2$  denominato  $(x_A,x_B)$ . Decidere di usare la soluzione (1,1) significa decidere di produrre 1 unità di laminato A e 1 unità di laminato B, per un guadagno complessivo di 8.4+11.2=19.6.

La funzione obiettivo sarà quindi:

$$f(x_A, x_B) = 8.4x_A + 11.2x_B, \quad f: \mathbb{R}^2 \to \mathbb{R}$$

lineare, e noi saremo interessati a:

$$\max(f(x_A, x_B))$$

rispettando i vincoli, ergo nella regione ammissibile. Per esprimere questi vincoli, cioè il tempo limitato all'interno di ogni reparto, introduciamo il sistema di disequazioni:

$$\begin{cases} 30x_A + 20x_B \le 120 \\ 10x_A + 20x_B \le 80 \\ 20x_A + 0x_B \le 62 \\ 0x_A + 30x_B \le 105 \\ -x_A \le 0 \\ -x_B \le 0 \end{cases}$$

dove notiamo le ultime due disequazioni indicano la positività di  $x_A$  e  $x_B$ , in forma  $f(x_A, x_B) \leq b$ . Questo sistema non indica altro che la regione ammissibile.

Possiamo riscrivere questo modello usando la notazione dell'algebra lineare. La funzione obiettiva e i vincoli diventano semplicemente:

$$\begin{cases} \max(c^T \cdot x) \\ A \cdot x \le b \end{cases}$$

dove c rappresenta il vettore dei costi, A rappresenta la matrice dei costi a b il vettore dei vincoli. c è trasposto per indicare prodotto fra vettori.

Possiamo scrivere A, b e c per esteso:

$$A: \begin{pmatrix} 30 & 20\\ 10 & 20\\ 20 & 0\\ 0 & 30\\ -1 & 0\\ 0 & -1 \end{pmatrix}, b: \begin{pmatrix} 120\\ 80\\ 62\\ 105\\ 0\\ 0 \end{pmatrix}, c: \begin{pmatrix} 8.4\\ 11.2 \end{pmatrix}$$

Notiamo come A e b hanno dimensione verticale 4+2=6, dai 4 vincoli superiori e i 2 vincoli inferiori.

A questo punto, possiamo disegnare la regione ammissbile come l'intersezione dei semipiani individuati da ogni singola disuguaglianza. Si riporta un grafico:



In diversi colori sono riportate i margini delle disequazioni, mentre in grigio è evidenziata la regione ammissibile.

Il modello finora descritto prende il nome di modello di programmazione lineare.

"Programmazione" qui non ha alcun legame col concetto di programmazione informatica, ma si riferisce al fatto che il modello è effettivamente *programmabile*.

"Lineare" si riferisce alla linearità del problema (e quindi del modello).