Termodinámica - Módulo de teoría Taller 1

Gabriel Sandoval gfsandovalv@unal.edu.co

Samuel Pozada sgpozadab@unal.edu.co

Febrero de 2017

1 Ley cero

Cuando los sistemas A y C están en equilibrio, se cumple la relación

$$4\pi nRC_cH - MPV = 0 (1)$$

Cuando B y C están en equilibrio se tiene,

$$nR\theta M' + 4\pi nRC_c'H' - M'PV = 0 \tag{2}$$

1.a Temperatura empírica

$$T_A(H, M) = \frac{4\pi nRC_cH}{M};$$

$$T_B(H', M') = nR(\theta + \frac{4\pi C_c'H'}{M'});$$

$$T_C(P, V) = PV$$

Donde n, R, C_c, C'_c y θ son constantes.

1.b Isotermas

1: Algunas isotermas de cada sistema, tomando $n=R=C_c=C_c'=\theta=1.$

2 Variable termométrica

$$\sqrt{\frac{\log R'}{\theta}} = a + b \log R' \tag{3}$$

Donde a = -1.16 y b = 0.675

2.a

$$\theta = \frac{\log R'}{(a + b \log R')^2}$$

$$\theta = \frac{\log 1000}{(a + b \log 1000)^2} = 4,0095$$

Donde θ está en K.

2.b

De la ecuación (3) se llega a lo sigueinte.

$$R' = \exp_{10}\left(\frac{(1 - 2ab\theta) \pm \sqrt{1 - 4ab\theta}}{2b^2\theta}\right)$$

Donde $\exp_{10}(x)$ es la función exponencial con base 10 (10^x).

2: Gráfico Log-Log de R' en función de θ , para $1000\Omega \le R' \le 30000\Omega$

3

La temperatura promedio de la atmósfera se aproxima mediante la relación

$$T_{atm} = 288.15 - 6.5z$$

Donde T_{atm} es la temperatura de la atmósfera medida en K, y Z es la altura en Km. La temperatura de un avión que viaja a 12,000m, viene dada por,

$$T_{atm} = 288.15 - 6.5(12) = 210.15$$