RL Circuit

i_(0.)= Iz

$$= \frac{1}{12}(t) = \frac{Rt}{ke^{-t/2}}$$

$$= \frac{1}{12} = \frac{1}{$$

$$V \rightarrow Dc$$
 input
 $i_{i}(t) = Constant$ at $t = \infty$

$$\Rightarrow i_{i}(t) = Ke^{-t/x} + \chi$$
 $i_{i}(t) = i_{f} + (i_{i} - i_{f})e^{-t/x}$

$$\begin{cases} \dot{\zeta}(0-) = OA = \dot{\zeta}(1-\frac{1}{2}) \\ \dot{\zeta}(1+\frac{1}{2}) = \frac{1}{2} \\ \dot{\zeta}(1+\frac{1}{2}) = \frac{$$

$$\frac{d}{dx} = \frac{1}{100} = \frac{1}{$$

$$\frac{1}{5} = \frac{1}{1} (t = 0.5)$$

$$\frac{1}{1} = \frac{1}{1} (t = 0.5)$$

$$\frac{1}{1} = \frac{5}{3} A$$

$$\frac{7}{1} = \frac{1}{1} (t = 0.5)$$

$$\frac{7}{3} = \frac{1}{1} = \frac{1}{3} = \frac{$$