SCOTCH COLLEGE

12 Mathematics Methods 2019

Test 1 – Differentiation and Logarithms

Section 1: Calculator-free

Time allowed: 25 minutes Maximum marks: 24

Name:	Teacher:	Foster	I Giogo	Daybani
Name:	i eacher:	Foster	1 Cilese	i Kevnani

Instructions:

- Show all working clearly.
- Sufficient detail must be shown for marks to be awarded for reasoning.
- A formula sheet will be provided.
- No calculators or personal notes are permitted.

Question 1 [2, 2, 3 = 7 marks]

Differentiate the following with respect to x (do not simplify):

(a)
$$\frac{3}{x} - \frac{5}{x^3}$$

(b)
$$(2-x^5)^4$$

(c)
$$x^3\sqrt{1-x^2}$$

Question 2 [4 marks]

Determine the equation of the tangent to $y = \frac{x^3}{x+1}$ at x = 1.

Question 3 [4 marks]

Solve for x:

$$2\ln(x) - 3\ln\left(\frac{1}{x}\right) = 10$$

Question 4 [2, 3 = 5 marks]

Consider the function $f(x) = \log_2(x - 1) + 1$.

(a) State the domain and range of f.

 (\mathbf{b}) Find any asymptotes and co-ordinates of axes intercepts.

Question 5 [4 marks]

If $y = \sqrt[3]{x}$, use the incremental formula to determine the approximate value of $\sqrt[3]{1001}$.

SCOTCH COLLEGE

12 Mathematics Methods 2019

Test 1 – Differentiation and Logarithms

Section 2: Calculator-assumed

Time allowed: 25 minutes	Maximum marks: 21			
Nama	Tanchary Foster Giese Reybani			

Instructions:

- Show all working clearly.
- Sufficient detail must be shown for marks to be awarded for reasoning.
- A formula sheet will be provided.
- Calculators and 1A4 double-sided page of personal notes are permitted.

Question 6 [2, 1, 2 = 5 marks]

A particle moves in a straight line with its position from the origin given by

$$x(t) = 15t - \frac{60}{(t+1)^2}$$
 cm

where t is the time in seconds, $t \ge 0$.

- (a) What is the initial velocity of the particle?
- **(b)** Determine the acceleration function for the particle's motion.

(c) For what values of t is the particle's velocity increasing? Justify your answer.

Question 7 [2, 3 = 5 marks]

If $A = \log_5 2$ and $B = \log_5 3$, write the following in terms of A and B:

(a) $\log_5 1.5$

(b) log₅ 60

Question 8 [5 marks]

Sketch a function y = f(x) with all of the following features, clearly indicating any stationary points and points of inflection:

- f(0) = f(6) = 0
- f'(0) = f'(4) = 0
- $f'(x) \ge 0$ strictly for x < 4
- f''(x) > 0 strictly for 0 < x < 2

Question 9 [2, 4 = 6 marks]

The diagram below shows a square with side x cm and a circle with radius y cm.

The two shapes are made out of a piece of wire of length 8 cm.

(a) Show that the total area of the two shapes is given by:

$$A = \left(2 - \frac{\pi y}{2}\right)^2 + \pi y^2$$

(b) Showing the use of calculus techniques, determine the value of y which minimises the total area of the two shapes and confirm that it is a minimum area.