We want: $S_1 = \frac{\partial C}{\partial z_1}$. (We already have expressions relating S_1 to the desired gradients $\frac{\partial C}{\partial \omega_1}$ and $\frac{\partial C}{\partial \omega_1 b}$.)

To calculate S_1 , we want to rewrite $\frac{\partial C}{\partial z_i}$ in terms of other partial derivatives that we already have.

Consider that C is a multivariate function over many things; among these, C is a function over both Zz1 and Zzz.

Zzi and Zzz, in turn, can each be written as a function of Z1. (= f(Z2, Z22) Z2 = g1(Z1)

Z22 = 9/1/10 92(21)

If you recall your multivariate chain rule, this means we can rewrite (= f(a(=)) a(=)) $C = f(g_1(z_1), g_2(z_1))$

 $\frac{3c}{3} = \frac{\partial C}{\partial g_1} = \frac{\partial C}{\partial g_2} \cdot \frac{\partial g_3}{\partial g_4} + \frac{\partial C}{\partial g_2} \cdot \frac{\partial g_2}{\partial g_4}$

Of course, we actually know the functions g, and gz.

"These are just the expressions relating Z, to Zzi

and Zi to Zzz, respectively.)

So, we get: $\frac{\partial C}{\partial z_1} = \frac{\partial C}{\partial z_2} + \frac{\partial C}{\partial z_{12}} + \frac{\partial C}{\partial z_{12}} = \frac{\partial z_{12}}{\partial z_1}$

Notice that the first element in each term here is just the 2 & value we already know: $\frac{\partial C}{\partial z_{21}} = S_{21}$ and $\frac{\partial C}{\partial z_{22}} = S_{22}$.

All that is left are 2221 and 2222, which are super easy

Since we know that: $Z_{21} = \omega_{21}b + \omega_{21}\sigma_1(z_1)$ $Z_{22} = \omega_{23}b + \omega_{22}\partial_1(z_1)$

So, $\frac{\partial z_{2i}}{\partial z_{i}} = \omega_{2i} \cdot \sigma_{i}(z_{i})$ and $\frac{\partial z_{22}}{\partial z_{2i}} = \omega_{22} \cdot \sigma_{i}(z_{i})$