OSNOVE ELEKTROTEHNIKE

1. MI - 2008/09 - review

hmp

Listopad, 2009.

1. zadatak Pomakom naboja $Q=10~\mu As$ iz točke 1 u točku 2 električnog polja, električna potencijalna energija naboja smanji se za 0.1~mWs. Koliki je napon U_{12} ?

Rješenje: Ovdje čak i da pojma nemate o ničem kako se naboji ponašaju, sve možete izvuć iz jedne formule koja piše u skripti:

$$W_1 - W_2 = Q \cdot U_{12}$$

Kaže da je W_2 za 0.1~mWsmanji od W_1 i to uvrstimo zajedno s $Q=10~\mu As$

$$W_1 - W_1 + 0.1 \ mWs = 10 \ \mu As \cdot U_{12}$$

$$U_{12} = \frac{0.1 \ mWs}{10 \ \mu As} = 10 \ V$$

2. zadatak Prethodno nenabijeni kondenzatori spojeni su na izvor napona U, prema slici, pri čemu je napon između točaka A i B jednak nuli. Koliki bi bio napon U_{AB} da su kondenzatorima C_1 i C_2 prije spajanja na izvor bila zamijenjena mjesta? $U = 48 \ V$; $C_1 = 60 \ nF$; $C_2 = C_3 = 30 \ nF$.

Rješenje: Prvo gledamo granu gdje sve znamo, nazovimo je grana A, pa prema tome Q_a je naboj u grani, C_a je kapacitet grane, isto i sB:

$$Q_a = C_a \cdot U = 960 \ nC$$

Računamo $U_{ab}=0\ V$, krenemo od točke b do točke a i gledamo padove napona na kondenzatorima:

$$\frac{Q_b}{C_3} - \frac{Q_a}{C_1} = 0 \qquad \rightarrow \qquad Q_b = 480 \ nC$$

$$U_{C3} = \frac{Q_b}{C_3} = 16 \ V$$

$$U_{C4} = U - U_{C3} = 32 \ V$$

$$C_4 = \frac{Q_b}{U_{C4}} = 15 \ nF$$

i sad opet računamo U_{ab} nakon što zamijenili mjesta:

$$U_{ab} = \frac{Q_b}{C_3} - \frac{Q_a}{C_1} = -16 \ V$$

3. zadatak Otpor namota stroja na radnoj temperaturi povećao se za 16 % u odnosu na otpor tog namota pri temperaturi od 20 ^{o}C . Kolika je bila radna temperatura namota, ako je temperaturni koeficijent materijala namota $\alpha_{20} = 0.004 \, \frac{1}{^{o}C}$?

Rješenje: Glavna formula u zagrijavanju vodiča glasi:

$$R_{\upsilon} = R_{20}(1 + \alpha(\upsilon - 20))$$

Gdje je α temperaturni koeficijent, R_{20} otpor na 20 0C , a v radna temperatura. Isada samo pišemo što zadatak kaže:

$$1.16R_{20} = R_{20}(1 + 0.004(\upsilon - 20))$$

$$v = \frac{1.16}{0.004} + 20 = 60 \, ^{\circ}C$$

4. zadatak U paralelnom spoju snage otpornika R_1 i R_2 odnose sa kao 1:2. Kako će se odnositi te snage ako se otpornici spoje serijski?

Rješenje: Znamo da je u paralelnom spoju napon jednak, pa mozemo gledati:

$$P_1: P_2 = 1: 2$$
 \rightarrow $\frac{U^2}{R_1}: \frac{U^2}{R_2} = 1: 2$

$$R_1 = 2 \cdot R_2$$

Iz ovog vidimo da je prvi otpornik dvostruko veći od drguog. Kada ih spojimo serijski onda kroz njih teče ista struja pa snagu kroz njih možemo računati prema:

$$P = I^2 R$$

odnosno:

$$I = I$$
 \rightarrow $R_1 I^2 = R_1 I^2$

$$P_1 = 2 \cdot P_2 \qquad \rightarrow \qquad P_1 : P_2 = 2 : 1$$

5. zadatak Na priključnicama nekog izvora u praznom hodu izmjeren je napon 14 V. Nakon što se na izvor priključi trošilo otpora 6 Ω , napon na priključnicama padne na 12 V. Koliki je unutarnji otpor tog izvora?

Rješenje: zapišimo dane podatke:

$$E = 14 V$$
 ; $R = 6 \Omega$; $U = 12 V$

Izračunajmo struju u krugu:

$$I = \frac{U}{R} = 2 A$$

Pa je unutarnji otpor:

$$R_i = \frac{E - U}{I} = 1 \ \Omega$$

6. zadatak Dva nelinearna elementa, s UI-karakteristikama prema slici, spojena su serijski i priključena na izvor stalnog napona U. Koliki je napon izvora, ako je jakost struje izvora jednaka $2\ mA$?

Rješenje: E ovo su stvarno free bodovi. Samo pogledate na graf koliki je napon kada je struja $2\ mA$. Za "crveni" element taj napon iznosi $2\ V$, a za "plavi" element taj napon iznosi $4\ V$. Kaže da su spojeni serijski (logično), pa je:

$$U = 2 V + 4 V = 6 V$$

7. zadatak Kolika je jakost struje kroz otpor R_2 u spoju na slici, ako je poznato: U=2 V i $R_1=R_2=R_3=R_4=R_5=1$ Ω ?

Rješenje: Pojednostavljena shema ovog zadatka izgleda ovako (dobiveno metodom "di ide struja"):

Ovo ima jako puno načina rješavanja pa ću ja iznjet samo jedan, mozda i nije najbrži al eto ;). Izračunamo prvo R_{uk} :

$$R_{23} = R_2 || R_3 = \frac{R_2 \cdot R_3}{R_2 + R_3} = 0.5 \ \Omega$$

$$R_{234} = R_{23} + R_4 = 1.5 \ \Omega$$

$$R_{2345} = R_{234} || R_5 = \frac{R_{234} \cdot R_5}{R_{234} + R_5} = 0.6 \ \Omega$$

$$R_{uk} = R_1 + R_{2345} = 1.6 \ \Omega$$

$$I_{uk} = \frac{U}{R_{uk}} = 1.25 A$$

E sad idemo propisno, iako bi se moglo lakše preko omjera, no to sve ovisi kako kome lakše :)

$$U_1 = I \cdot R_1 = 1.25 \ V$$

$$U_{2345} = U - U_1 = 0.75 V$$

$$I_{234} = \frac{U_{2345}}{R_{234}} = 0.5 \ A$$

Kako su otpori R_2 i R_3 jednaki kroz svaki od njih prolazi pola struje, odnosno: ${\it I}_2=0.25~A$

8. zadatak Kolika je snaga na otporu R_2 u mreži na slici, ako je zadano: $R_1=2~\Omega;~R_2=6~\Omega;~R_3=12~\Omega;~I_1=4~A$ i $I_2=2~A$?

Rješenje: Superpozicija ili pretvaranje izvora, ja biram ovo potonje jer mi se čini brže :D

Dakle, pretvaramo oba strujna u naponske i dobivamo 2 naponska izvora sa serijski spojenim otpornima:

$$U_1 = I_1 \cdot R_1 = 8 \ V$$

$$U_2 = I_2 \cdot R_2 = 12 \ V$$

$$U_{uk} = U_1 + U_2 = 20 \ V$$

$$R_{uk} = R_1 + R_2 + R_3 = 20 \ \Omega$$

$$I_{uk} = \frac{U_{uk}}{R_{uk}} = 1 \ A$$

$$P_2 = I^2 \cdot R_2 = 6 W$$

9. zadatak Koliki je napon na priključnicama voltmetra u mreži na slici, ako je $U=20\ V?$

Rješenje: Rješimo ovo superpozicijom

1. maknemo strujni izvor (iskopčamo ga):

Prepoznajemo spoj:

$$R_{uk} = (5+10)||10+10=15||10+10=6+10=16 \ \Omega$$

$$I_{uk} = \frac{U}{R_{uk}} = 1.25 A$$

Pa je, prema spoju, struja kroz serijsku kombinaciju od 15 Ω prema desno (na otporniku od 10 Ω prema dolje):

$$I' = I_{uk} \cdot \frac{10}{15 + 10} = 0.5 \ A$$

2. maknemo naponski izvor (kratko ga spojimo):

Opet prepoznajemo spoj:

$$R_{uk} = (10||10+5)||10 = (5+5)||10 = 10||10 = 5 \Omega$$

Struja od izvora (1 A) se prvo jednako djeli u dvije paralelne grane (jedna "čista" od 10 Ω a druga "mješovita" od 10 Ω) na jednake iznose pa je naša tažena struja (prema dolje):

$$I'' = 0.5 A$$

Ukupna je tada tražena struja kroz taj otpornik od 10 Ω (prema dolje):

$$I_R = I' + I'' = 1 A$$

pa je tada napon na voltmetru (pošto je spojen paralelno s tim otpornikom):

$$U = 10 \cdot I_R = 10 \ V$$

10. zadatak Magnetski tok kroz vodljivi zavoj (petlju) linearno se smanji od iznosa $\Phi=2~Vs$ na nulu tijekom vremena t. Koliki naboj pritom prođe kroz presjek vodiča od kojeg je napravljena petlja, ako je otpor vodiča $0.5~\Omega$?

Rješenje: prema formulama u skripti:

$$u_i = -\frac{\Delta\Phi}{\Delta t} = \frac{2}{t}$$

$$i = \frac{q}{t}$$
 ; $i = \frac{u_i}{R}$

$$u_i \cdot t = q \cdot R$$

$$q = \frac{u_i \cdot t}{R} = 4 \ C$$