Last time: Complex differentiability

f(x+iy) = u(x,y) + iv(x,y). Say $f: C \rightarrow C$ entire if it's everywhere holomorphic. Thus: f: s holomorphic with continuous derivative f'(a) at a, if and only if u, v have continuous first order partial derivatives which sectiofy the Country-kiem. eq

Moreover, $f'(t) = \frac{3x}{3u} + i\frac{3x}{3v} = \frac{3y}{3v}$, $\frac{3y}{3y} = -\frac{3x}{3v}$.

 $EX: f(x) = x^2 - x^2 - y^2 + 2i xy \qquad U = x^2 - y^2, \quad U = 2xy$ $\Rightarrow \frac{\partial u}{\partial x} = 2x = \frac{\partial v}{\partial y}, \qquad \frac{\partial u}{\partial y} = -2y = -\frac{\partial v}{\partial x}.$

Harmonic functions.

Def: $A \subseteq \mathbb{R}^2$ open, $f: A \to \mathbb{R}$ twice differentiable. Say f is harmonic, if $\Delta f:=\frac{3^2f}{3x^2}+\frac{3^2f}{3y^2}=0$. (for vector fields $\overrightarrow{X}=(9/h)$)

Note: recall that gradient $\nabla f=(\frac{2f}{3x},\frac{3f}{3y})$, and [divergence $\dim \overrightarrow{X}=\frac{3g}{3x}+\frac{3h}{3y}$]

Then $\Delta f=\dim(\nabla f)$

Now: suppose f(z) = u(x,y) + iv(x,y), $u, v \in C^2(A)$. Then both u, v are harmonic: $\frac{\partial^2 u}{\partial x^2} = \partial_x \left(\frac{\partial u}{\partial x}\right)^{\frac{CR}{2}} \partial_x \left(\frac{\partial v}{\partial y}\right) = \frac{\partial^2 v}{\partial x \partial y} \qquad \Rightarrow \qquad \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$

Rmk: If $u, v \in C^2(A)$ satisfy the Cauchy-Riem eq., say u, v are conjugate harmonic functions.

Basic properties:

- A = C open, f, g holomorphic.

(1) f+g is holomorphic, and (f+g)'=f'+2'

(2) fg is holom, (fg)' = f'g + fg'

(3) $\frac{f}{g}$ is bolom. on $\{9 \neq 0\}$, and $(\frac{f}{g})' = \frac{f'g - fg'}{gz}$

(4) Chain rule: $h: B \to \mathbb{C}$ holon, $B \supseteq f(A) \Rightarrow h \circ f : A \to \mathbb{C}$ is holon, $(h \circ f)'(A) = h'(f(A)) \cdot f'(A)$.

Derivatives of complex fundabus.

Prop: exp: (-> C is holomorphic, and exp'(2) = exp2

Proof: $exp(x+iy) = e^{x}(cosy + isiny)$

$$\mathcal{U} = e^{x} \cos y, \quad \mathcal{V} = e^{x} \sin y. \quad \Rightarrow \quad \frac{\partial u}{\partial x} = e^{x} \cos y, \quad \frac{\partial v}{\partial x} = e^{x} \sin y.$$

$$\Rightarrow \quad e^{x} p'(2) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = e^{x} (\cos y + i \sin y) = e^{\frac{1}{2}}.$$

 $\frac{\text{Cor}: \text{Sin'} t = \cos t, \quad \cos t = \sin t.}{\text{Prof}: \quad \text{Sin'} t = \frac{1}{2i} \left(e^{it} - e^{-it} \right)' = \frac{1}{2i} \left(e^{it} - (-i) e^{-it} \right) = \frac{1}{2} \left(e^{it} + e^{-it} \right) \\
= \cos t \\
\cos t = \frac{1}{2} \left(e^{it} + e^{-it} \right)' = \frac{1}{2} \left(e^{it} - ie^{-it} \right) = -\frac{1}{2i} \left(e^{it} - e^{-it} \right) = \sin t.$

Inverse function Thm: $f: A \to \mathbb{C}$ analytic, $f'(\mathcal{C}_0) \neq 0$. Then \exists a nbhd U of \mathcal{Z}_0 , V while of $f(\mathcal{Z}_0)$, s.t. $f: U \to V$ is bijection and $f'': V \to V$ is analytic, with $(f^{-1})'(f(\mathcal{Z}_1)) = \frac{1}{f'(\mathcal{Z}_0)}$

Worming: f^{-1} exists only in a noble. $EX: f(z)=e^z$. $f'\neq 0$ everywhere. But we know $f^{-1}(z)=\log z$ is only defined in a browch. Proof of existence of f^{-1} : uses the inverse function. Thun for real-velocity functions in \mathbb{R}^2 .

Assume that f'' exists, then use chain vule: $(f'')(f(z)) = 2 \Rightarrow (f'')'(f(z)) \cdot f'(z) = 1$

approuch to from lower half: $\varepsilon[\mathfrak{g}_2\pi)$ = $\log \mathfrak{g}_0$.

lim $\log \mathfrak{f} = \lim \left(\log |\mathfrak{f}| + \arg \mathfrak{f} \right)$ from below = $\log \mathfrak{g}_0 + 2\pi$.

Thus, $\log \mathfrak{g}_0$ on branch A_0 , is only differentiable on $\mathbb{C} \setminus \{\mathfrak{f}: 2\pi \mathfrak{f} = 0, \ Re \mathfrak{f} \geq 0\}$.

Thus, \log , on branch Ao, is only differentiable on $\mathbb{C}\setminus\{2: ln2=0, Re2\geq 0\}$. But $(\log 1)' = \frac{1}{\exp'(\log 1)} = \frac{1}{\exp(\log 1)} = \frac{1}{2}$.

Remark: On any branch where log is differentiable, we always have $(\log \pm)' = \frac{1}{2}$.

Chapter 2. Contour integral and Carely's Thur.

Construct the integral of a complex function over a curve in C.

Lutegral over an interval, Step 1: [Consider a complex function f(t) = u(t) + iv(t), $t \in [a,b] \in \mathbb{R}$, u,v real. If f is continuous, then define $\int_{a}^{b} f(t) dt := \int_{a}^{b} u(t) dt + i \int_{a}^{b} v(t) dt.$

Properties:

· domain additive: $(a f(t)) dt + \int_{c}^{b} f(t) dt = \int_{a}^{b} f(t) dt$

· WARE, (Aft) dt = & (fut) dt

 $\cdot \quad \text{Re}\left(\int_a^b f(t) \, dt\right) = \int_a^b \text{ Re}f(t) \, dt \, , \qquad \text{len}\left(\int_a^b f(t) \, dt\right) = \int_a^b \text{ In}\left(f(t)\right) \, dt \, .$

Triangle inequality: $\left| \int_{a}^{b} f(t) dt \right| \leq \int_{a}^{b} \left| f(t) \right| dt$

Step 2: Let 8 be a piecewise differentiable curve in C, parametrized by 8: 2 = 2(t) a< t < b.

For f continuous on Y, fixth) is count. on (a,b). Define:

 $\int_{Y} f(t) dt := \int_{0}^{b} f(t) \frac{dt}{dt} dt$

Prop: Ix fixed is independent of the parametrization of 8.

Proof: Suppose $Y: T \in (\alpha, \beta) \mapsto 2(t(T))$ is another parametrization, have $t: T \in (\alpha, \beta) \mapsto E(\alpha, \beta)$ piecewise differentiable. Then $(\text{dec change of variable formula } dt = \frac{dt}{d\tau} d\tau$ $\int_{X}^{B} f(z) dz = \int_{\alpha}^{b} f(z(t)) \frac{dt}{d\tau} dt = \int_{X}^{B} f(z(t(\tau))) \frac{dt}{d\tau} d\tau d\tau$

 \Box

Arclength: $\mathcal{L}(x) = \int_{a}^{b} |2'(t)| dt$

Basic properties:

· Let Y: Z=2(t), $t\in(a,b)$. Define the opposite curve -Y, by -Y: Z=Z(-t), $t\in(-b,-a)$ Then: $\int_{-r}^{r} f(t) dt = \int_{-r}^{-\alpha} f(t+1) \frac{d}{dt} (t+1) dt$ set s = -t $= \int_{a}^{0} f(z(s)) - \frac{d}{ds} z(s) d(-s) = - \int_{a}^{b} f(z(s)) z'(s) ds = - \int_{a}^{b} f(z($

· Linearity on f. $\int_{\mathcal{X}} (af + bg) dz = a \int_{\mathcal{X}} f dz + b \int_{\mathcal{X}} g dz$

$$Q \in \mathbb{C}$$
. Consider $\int_{\gamma} \frac{dz}{z-a}$, $\gamma = closed$ circle of radius is constant and counterclockwise.

Parametrize
$$Y: \Theta \in [0, 2\pi) \rightarrow 2(\Theta) = \alpha + e^{i\Theta}$$
 $2'(\Theta) = i e^{i\Theta}$

$$\Rightarrow \int_{X} \frac{dz}{z-a} = \int_{0}^{2\pi} \frac{ie^{i\theta}}{e^{i\theta}} d\theta = 2\pi i$$

$$\int_{\gamma} 2^2 dz$$
, $\gamma = line$ segment converting δ to $1 \pm i$.

Parametize $8: t \mapsto = (1+i)t$, $0 \le t \le 1$. 2'(t) = 1 + i.

$$\int_{0}^{1} z^{2} dz = \int_{0}^{1} (1+i)^{2} t^{2} (1+i) dt = -2(1+i) \int_{0}^{1} t^{2} dt = -\frac{2}{3} (1+i)$$

Fundamental Thm of calculus for integrals in C.

Thu : Let
$$A \subseteq \mathbb{C}$$
 be open, $I = [a,b]$, $Y: I \to \mathbb{C}$ piecewise C' , $Y(I) \subseteq A$. Suppose $f: A \to \mathbb{C}$ is continuous, and $F: B \to \mathbb{C}$ s.t. $F'(t) = f(t)$ in an open ubild B containing $Y(I)$.

Then:
$$\int_{\gamma} f(z)dz = F(\gamma(b)) - F(\gamma(a))$$

$$\int_{\mathcal{X}} f(\xi) d\xi = \sum_{j=1}^{n} \int_{\mathcal{Y}_{j}} f(\xi) d\xi = \sum_{j=1}^{n} \int_{Q_{j-1}}^{Q_{j}} f(\chi(\xi)) \chi'(\xi) d\xi$$

$$=\sum_{j=1}^{n}\int_{a_{j-1}}^{a_{j}}F'(x(t)) f'(t)dt$$

$$= \sum_{j=1}^{L} \int_{a_{j-1}}^{a_{j}} \frac{d}{dt} F(s_{1}t_{1}) dt$$

$$=\sum_{j=1}^{n}\left(F(y(a_{j}))-F(y(a_{j+1}))\right)=F(y(b))-F(y(a_{j}))$$

Relations to line integral in R2.

Recall: Suppose
$$u(x,y)$$
, $v(x,y)$: $A \rightarrow IR$ cont. and $Y: [a,b] \rightarrow IR^2$ C^1 converged by $\chi(t)$, $\chi(t)$. Then

$$\int_{\gamma} u dx + v dy = \int_{\alpha}^{b} \left(u(x(t), y(t)) x'(t) + v(x(t), y(t)) y'(t) \right) dt$$

Thus, for
$$f(2) = u(x,y) + iv(x,y)$$
, $z=x+iy$,

$$\int_{\mathcal{X}} f(z) dz = \int_{\mathcal{X}} (u+iv) (dx+idy) = \int_{\mathcal{X}} (udx-vdy) + i(udy+vdx)$$

(This can be viewed as another definition of Ister dz.)