

ITSOMET

INSTITUTO TECNOLÓGICO SUPERIOR QUITO METROPOLITANO

UNIDADII: FUNCIONES DE UNA VARIABLE REAL

ING. FRANCISCO TAPIA

FORMANDO PROFESIONALES DE ÉLITE

- Aprender los fundamentos y definición de una relación y función.
- Desarrollar los métodos de resolución para problemas de dominio y rango de una relación y función.
- Conocer las propiedades y campos de aplicación de las variable dependiente e independiente.

Función de una variable real

Sean X y Y dos conjuntos no vacíos, subconjuntos de los números reales. Una función de variable real de X en Y es una regla de correspondencia que asocia a cada elemento de X un único elemento de Y. Esto se representa simbólicamente por:

$$f: X \to Y$$

 $x \to y = f(x)$

A la variable x se le llama variable independiente y a la variable y se la conoce como variable dependiente.

Dominio de una función de variable real

Sea f una función de variable real $f: X \to Y$. El conjunto X para el cual se encuentra definida, constituye el dominio de la función. Este conjunto se representa simbólicamente por dom f.

Rango de una función de variable real

Sea f una función de variable real $f: X \to Y$, el conjunto de todas las imágenes de los elementos del dominio, constituye el rango de la función. Este conjunto se representa simbólicamente por rgf.

Representación gráfica de funciones

Si f es una función de A en B, entonces la gráfica de f es el conjunto de puntos o pares ordenados de A x B, tales que sus coordenadas (x,y) pertenecen a f.

Funciones Lineales

Sean a y b números reales, la función f de \mathbb{R} en \mathbb{R} cuya regla de correspondencia es f(x) = ax + b, recibe el nombre de función lineal.

- Su gráfica es una recta.
- Su pendiente está dada por a
- Su intercepto con el eje Y
 es el punto (0, b).

Funciones Cuadráticas

Sean a, b y c números reales con $a \neq 0$, la función f de \mathbb{R} en \mathbb{R} cuya regla de correspondencia es $f(x) = ax^2 + bx + c$, recibe el nombre de función cuadrática.

• Forma canónica de la función cuadrática.

$$f(x) = ax^2 + bx + c \equiv f(x) = a\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a}$$

Esta última expresión es la forma canónica de la función cuadrática, siendo $\Delta = b^2 - 4ac$, valor que se denomina **discriminante**.

El punto de coordenadas $\left(-\frac{b}{2a}, -\frac{\Delta}{4a}\right)$ es el vértice de la parábola, punto en el cual la gráfica de f alcanza su valor máximo o mínimo en y.

Rango de la función cuadrática

Se trata de determinar el subconjunto de \mathbb{R} que es el rango de la función cuadrática, esto es, el conjunto de valores que toma $f(x) = ax^2 + bx + c$, cuando x varía de $-\infty$ a $+\infty$.

Consideremos los siguientes casos:

$$\therefore rgf = \left[-\frac{\Delta}{4a}, +\infty \right)$$

$$\therefore rgf = \left(-\infty, -\frac{\Delta}{4a}\right]$$

• Forma factorizada de la función cuadrática.

Dada la regla de correspondencia de f, si $\Delta \ge 0$, siempre es posible factorizarla y llevarla a la forma $f(x) = a(x - x_1)(x - x_2)$, donde x_1 y x_2 son las raíces de la ecuación cuadrática f(x) = 0.

Ejemplo 3.20 Forma factorizada de la función cuadrática.

Obtenga la forma factorizada de $f(x) = x^2 - 5x - 6$, $\forall x \in \mathbb{R}$.

Solución:

La expresión equivalente factorizada es: f(x) = (x - 6)(x + 1). Las raíces de la ecuación cuadrática f(x) = 0 son: $(x = 6) \lor (x = -1)$.

• Gráfica de la función cuadrática.

Para graficar la función $f(x) = ax^2 + bx + c$ en el plano cartesiano, se debe tener en cuenta que:

- Su gráfica es una parábola.
- Tiene simetría con respecto a la recta $x = -\frac{b}{2a}$.
- El signo de a indica la concavidad de la curva. Si a>0, la parábola es cóncava hacia arriba; y, si a<0, la parábola es cóncava hacia abajo.
- El signo de Δ está relacionado con la cantidad de intersecciones con el eje X. Si Δ > 0, la gráfica de f tiene dos intersecciones con el eje X. Si Δ = 0, la gráfica de f interseca al eje X en un solo punto. Por último, si Δ < 0, la gráfica de f no interseca al eje X.</p>

