University, Belagavi

Handbook of Physics

Department of Physics, RVCE, Bengaluru

For course: Quantum Physics for Engineers

Fundamental Constants

All the constants in this table are taken from *The NIST Reference on Constants*, *Units & Uncertainty* found in http://physics.nist.gov/constants.

Quantity	Symbol	Value	Unit
Speed of light in vacuum	c	299 792 458	$m s^{-1}$
Magnetic constant	μ_0	$4\pi \times 10^{-7}$	NA^{-2}
Electric constant $1/\mu_0 c^2$	ϵ_0	$8.854187817\times10^{-12}$	$\mathrm{F}\mathrm{m}^{-1}$
Newtonian constant of	G	6.67384×10^{-11}	${ m m}^{3}{ m kg}^{-1}{ m s}^{-2}$
gravitation			
Planck constant	h	6.62606957×10^{-34}	Js
$h/2\pi$	\hbar	$1.054571726 \times 10^{-34}$	Js
Elementary charge	e	$1.602176565\times10^{-19}$	C
Bohr magneton $e\hbar/2m_{\rm e}$	$\mu_{ m B}$	$927.400968 \times 10^{-26}$	$ m JT^{-1}$
Nuclear magneton $e\hbar/2m_{\rm p}$	$\mu_{ m N}$	$5.05078353 \times 10^{-27}$	$\mathrm{J}\mathrm{T}^{-1}$
Fine-structure constant	α	$7.2973525698 \times 10^{-3}$	
$e^2/4\pi\epsilon_0\hbar c$			
Rydberg constant $\alpha^2 m_e c/2h$	R_{∞}	10 973 731.568 539	m^{-1}
Bohr radius	a_0	$0.52917721092\times10^{-10}$	m
$\alpha/4\pi R_{\infty} = 4\pi\epsilon_0 \hbar^2/m_{\mathrm{e}}e^2$			
Electron mass	$m_{ m e}$	$9.10938291 \times 10^{-31}$	kg
energy equivalent	$m_{ m e}c^2$	0.510 998 928	MeV
Proton mass	$m_{ m p}$	$1.672621777 \times 10^{-27}$	kg
energy equivalent	$m_{ m p}c^2$	938.272 046	MeV
Neutron mass	$m_{\rm n}$	$1.674927351 \times 10^{-27}$	kg
energy equivalent	$m_{ m n}c^2$	939.565 379	MeV

Quantity	Symbol	Value	Unit
Avogadro constant	N_{A}	6.02214129×10^{23}	mol^{-1}
Atomic mass constant	$m_{ m u}$	$1.660538921 \times 10^{-27}$	kg
$m_{\rm u} = \frac{1}{12} m(^{12}{\rm C}) = 1{\rm u}$			
energy equivalent	$m_{ m u}c^2$	$1.492417954 \times 10^{-10}$	J
		931.494 061	MeV
Faraday constant $N_A e$	F	96 485.336 5	$C \text{mol}^{-1}$
Universal gas constant	R_u	8.314 462 1	$\mathrm{J}\mathrm{mol^{-1}K^{-1}}$
Boltzmann constant R/N_A	k	$1.3806488 \times 10^{-23}$	$\mathrm{J}\mathrm{K}^{-1}$
Stefan-Boltzmann constant	$\sigma_{\rm cho}$	5.670373×10^{-8}	${ m W}{ m m}^{-2}{ m K}^{-4}$
$(\pi^2/60)k^4/\hbar^3c^2$			
First radiation constant	c_1	$3.74177153 \times 10^{-16}$	${ m W}{ m m}^2$
$2\pi hc^2$			
Second radiation constant	c_2	1.4387770×10^{-2}	m K
hc/k			
Wien displacement law			
constant $b = \lambda_{\max} T$	b	2.8977721×10^{-3}	m K
constant $b' = v_{\text{max}}/T$	b'	5.8789254×10^{10}	$Hz K^{-1}$
Molar mass constant	$M_{ m u}$	1×10^{-3}	$kg mol^{-1}$
Molar mass of ¹² C	$M(^{12}C)$	12×10^{-3}	$kg mol^{-1}$
Standard atmosphere		101.325	k Pa
Standard acceleration of	g	9.806 65	${ m ms^{-2}}$
gravity			

Quantum Mechanics

Planck's formula for the blackbody radiation: Power radiated per unit area per unit solid angle $U(v,T) = \frac{8\pi h v^3/c^3}{c}$ $h = \text{Planck constant}$ $c = \text{speed of light in vacuum}$ $vacuum$	Quantity	Formula	Glossary
	Planck's formula for the blackbody radiation: Power radiated per unit area per unit solid angle per unit frequency by a black body at	7 02 112 02 10	h = Planck constant c = speed of light in

Einstein's fundamental equation for photoelectric effect:	$E_K = h\nu - \Phi$	E_K = kinetic energy of the ejected electron ν = frequency of photon Φ = work function of the metal
Energy of the discrete emission or absorption of radiation by atoms:	$h\nu = \left E_i - E_f \right $	E_i = initial state energy E_f = final state energy
Energy of the emitted photon:	$E = h\nu = \frac{hc}{\lambda}$	λ = wavelength of the emitted photon
Compton formula:	$\lambda' - \lambda = \frac{h}{m_e c} (1 - \cos \theta)$	$\lambda =$ wavelength of the incident photon $\lambda' =$ wavelength after scattering $m_e =$ electron rest mass $c =$ speed of light $\theta =$ scattering angle
Compton wavelength of the electron:	$\lambda_e = \frac{h}{m_e c}$ $= 2.43 \times 10^{-12} \text{ m}$	
Compton formula in terms of the energies:	$E_{\gamma'} = \frac{E_{\gamma}}{1 + \frac{E_{\gamma}}{m_e c^2} (1 - \cos \theta)}$	$E_{\gamma} = hc/\lambda = \text{incident}$ energy $E_{\gamma'} = \text{scattered photon}$ energy
de Broglie wavelength:	$\lambda = \frac{h}{p}$ $\lambda = \frac{h}{\sqrt{2mqV}}$	p = momentum of the particle $m =$ mass of the particle $q =$ charge of the particle $V =$ potential with which the particle is accelerated
Phase velocity:	$v_p = \frac{\omega}{k} = \nu \lambda$	ω = angular frequency $k = 2\pi/\lambda$ = wave number ν = frequency
Group velocity:	$v_g = \frac{d\omega}{dk}$	

Relation between group velocity and phase velocity:	$v_g = v_p - \frac{2\pi}{k} \left(\frac{dv_p}{d\lambda} \right)$	
Heisenberg uncertainty relationships:	$\Delta x \Delta p_x \ge \frac{h}{4\pi}$ $\Delta E \Delta t \ge \frac{h}{4\pi}$ $\Delta J \Delta \theta \ge \frac{h}{4\pi}$	Δx , Δp_x , ΔE , Δt , ΔJ and $\Delta \theta$ are the uncertainties in the measurement of the position, momentum, energy, time, angular momentum and angular position respectively.
Time independent Schrödinger wave equation in one dimension:	$\frac{d^2\psi}{dx^2} + \frac{8\pi^2 m}{h^2} (E - V)\psi = 0$	$\psi \equiv \psi(x)$ = wave function E = total energy V = potential energy
Probability density:	$P(x,t) = \Psi^*\Psi = \Psi(x,t) ^2$	E \
Normalization condition:	$\int_{X} \Psi(x,t) ^2 dx = 1$	
Schrödinger equation in operator form:	$\hat{H}\psi = E\psi$	$\hat{H}=$ Hamiltonian operator
Particle in one-dimensional of infinite depth:	7/10	
a) Differential equation:	$\frac{d^2\psi}{dx^2} + k^2\psi = 0$ $8m\pi^2 E$	
b) Solution:	$k^{2} = \frac{8m\pi^{2}E}{h^{2}}$ $\psi = A\cos(kx) + B\sin(kx)$	
c) Energy eigen values:	$E = \frac{n^2 h^2}{8ma^2}$ $n = 1, 2, 3 \dots$	a = width of the well
d) Normalized wave function:	$\psi_n = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right)$	

Principles of Quantum Computation

Quantity	Formula	Glossary
Inner product of two wave functions $\psi(x)$ and $\phi(x)$:	$\langle \psi \phi \rangle = \int \psi^* \phi dx$ $\langle \phi \psi \rangle = \int \phi^* \psi dx = \langle \psi \phi \rangle^*$	
Wave function as linear combination of basis vectors:	$ \psi\rangle = a_1 \phi_1\rangle + a_2 \phi_2\rangle + \cdots$ $ \psi\rangle = \sum_{n=1}^{\infty} a_n \phi_n\rangle$	$ \phi_1\rangle, \phi_2\rangle, \dots$ are basis vectors. a_1, a_2, a_3, \dots are complex coefficients.
Inner product of $ \psi\rangle$ with itself:	$\langle \psi \psi \rangle = \sum_{n=1}^{\infty} a_n ^2$	2:\\
Normalization condition:	$\langle \psi \psi \rangle = 1$	lkns
Orthogonality condition:	$\langle \psi_1 \psi_2 \rangle = \langle \psi_2 \psi_1 \rangle = 0$	54
Condition for orthnormality of basis vectors:	$\langle \phi_1 \phi_2 \rangle = \langle \phi_2 \phi_1 \rangle = 0$ $\langle \phi_1 \phi_1 \rangle = 1 \text{ and }$ $\langle \phi_2 \phi_2 \rangle = 1$ In general $\langle \phi_m \phi_n \rangle = \delta_{mn}$	$\delta_{mn} = \begin{cases} 0 & \text{for } m \neq n \\ 1 & \text{for } m = n \end{cases}$
Hermitian matrix M:	$\mathbf{M}^{\dagger} = \mathbf{M}$	M [†] is the conjugate transpose of M
Unitary matrix U:	$\mathbf{U}^{\dagger}\mathbf{U} = \mathbf{U}\mathbf{U}^{\dagger} = \mathbf{I}$	
Pauli's spin matrices:	$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix},$ $\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	$ 0\rangle = \begin{pmatrix} 1\\0 \end{pmatrix}$ and $ 1\rangle = \begin{pmatrix} 0\\1 \end{pmatrix}$ α and β are complex
A qubit:	$ \psi\rangle = \alpha 0\rangle + \beta 1\rangle$	numbers, called the amplitude of the states.
Bloch sphere representation:	$ \psi\rangle = \cos\frac{\theta}{2} 0\rangle + e^{i\phi}\sin\frac{\theta}{2} 1\rangle$	θ = polar angle ϕ = azimuth angle

Electrical Conductivity in Solids and Band Theory of Solids

Quantity	Formula	Glossary
Ohm's Law:	V = IR	V = voltage applied
Resistivity:	$\rho = \frac{RA}{L}$	I = current flowingR = resistanceA = area of
Conductivity:	$\sigma = \frac{1}{\rho} = \frac{L}{RA}$	cross-section $L = \text{length of the}$
Electric field:	$E = \frac{V}{L}$	material $n = \text{carrier}$
Current density:	$J = \frac{I}{A} = \sigma E$	concentration $e = \text{electronic charge}$
Electric current in a conductor:	$I = nev_d A$	v_d = drift velocity m = mass of the
Drift velocity:	$v_d = \frac{eE}{m}\tau$	electron $ au=$ mean collision time
Electrical conductivity of a conductor:	$\sigma = \frac{ne^2\tau}{m}$	
Mobility of electrons:	$\mu = \frac{v_d}{E} = \frac{e\tau}{m}$	/
Fermi factor:	$f(E) = \frac{1}{1 + \exp\left(\frac{E - E_F}{kT}\right)}$	E = energy level E_F = Fermi level k = Boltzmann
Density of states in a material in the energy range $E \& E + dE$:	$g(E)dE = \frac{4\pi}{h^3} (2m)^{3/2} E^{1/2} dE$	constant $T = \text{temperature of the}$ material
Number of free electrons per unit volume in the energy range $E \& E + dE$:	N(E) dE = g(E)f(E) dE	macriai
Total number of free electrons per unit volume in metals:	$n = \frac{8\pi}{3h^3} (2m)^{3/2} E_F^{3/2}$	m = mass of the electron

Fermi energy at 0 K:	$E_F = \frac{h^2}{8m} \left(\frac{3n}{\pi}\right)^{2/3}$	
Carrier concentration in in	trinsic semiconductor:	
a) for electrons:	$n = N_C e^{-(E_C - E_F)/kT}$ $N_C = 2 \left[\frac{2\pi m_e^* kT}{h^2} \right]^{3/2}$	N_C and N_V are effective density of states in the conduction
b) for holes:	$p = N_V e^{-(E_F - E_V)/kT}$ $N_V = 2 \left[\frac{2\pi m_h^* kT}{h^2} \right]^{3/2}$	and valence band. $m_{\rm e}^* = \text{effective mass of}$ electron in the material $m_{\rm h}^* = \text{effective mass of}$
Fermi level in intrinsic semiconductor:	$E_F = \left(\frac{E_C + E_V}{2}\right) + \frac{3}{4}kT\ln\left(\frac{m_{\rm h}^*}{m_{\rm e}^*}\right)$	hole in the material E_C = lowest energy level in the conduction band E_V = is the highest
a) For small kT :	$E_F = \frac{E_C + E_V}{2}$	energy level in the valence band
b) With $E_C - E_V = E_g$:	$E_F = \frac{E_g}{2} + E_V$	E_g = is the energy gap
Intrinsic charge carrier concentration:	$n_i = \sqrt{np} = 2 \left(\frac{2\pi k}{h^2}\right)^{3/2}$ $(m_e^* m_h^*)^{3/4} T^{3/2} e^{-E_g/2kT}$	
Conductivity of an intrinsic semiconductor:	$\sigma_i = e n_i (\mu_{\rm e} + \mu_{ m h})$	$\mu_{\rm e} = { m mobility} \ { m of}$ electrons $\mu_{ m h} = { m mobility} \ { m of} \ { m holes}$
Fermi energy for extrinsic s		
a) n-type	$E_{F_n} = \frac{E_C + E_D}{2} - \frac{kT}{2} \ln \frac{N_C}{N_d}$	$N_d = $ donor concentration
b) p-type	$E_{F_p} = \frac{E_V + E_A}{2} + \frac{kT}{2} \ln \frac{N_V}{N_a}$	N_a = acceptor concentration
Law of Mass Action:	$np = n_i^2 = \text{constant}$	

Hall voltage:	$V_H = R_H \frac{BI}{t}$	R_H = Hall coefficient B = applied magnetic
Hall coefficient:		field
a) For metals and <i>n</i> -type	$R_{II} = \frac{-1}{-1}$	I = current flowing $t = $ thickness of the
semiconductors:	$R_H = \frac{1}{ne}$	material
b) For <i>p</i> -type	n 1	11111111111
semiconductors:	$R_H = \frac{1}{pe}$	

Lasers

Quantity	Formula	Glossary
Boltzmann factor:	$\frac{N_2}{N_1} = e^{-h\nu/kT}$	h = Planck constant $k = $ Boltzmann
Einstein's coefficients:	$\frac{A_{21}}{B_{21}} = \frac{8\pi h v^3}{c^3}$ $B_{12} = B_{21}$	constant $T = \text{temperature}$ $v = \text{frequency of the}$
Energy density at thermal equilibrium:	$U(v,T) = \frac{A}{B} \frac{1}{\exp\left(\frac{hv}{kT}\right) - 1}$	electromagnetic radiation $A = A_{21}$
Length of the resonator cavity:	$L=n\frac{\lambda}{2}, n=1,2,3,\ldots$	$B = B_{21}$ $\lambda = \text{wavelength}$

Optical Fibers

Quantity	Formula	Glossary
Snell's law:	$n_1\sin\theta_1=n_2\sin\theta_2$	n_1 and n_2 are the refractive indices. θ_1 and θ_2 are angle of incidence & refraction.
Absolute refractive index:	$n = \frac{c}{v}$	c and v are velocities of light in vacuum and the medium.
Numerical aperture:	$NA = \sin \theta_0 = \frac{\sqrt{n_1^2 - n_2^2}}{n_0}$	θ_0 = acceptance angle n_0 , n_1 and n_2 are the refractive indices of
Fraction Index Change:	$\Delta = \frac{n_1 - n_2}{n_1}$	surrounding medium, core and cladding.
Relation between NA and Δ :	$NA = n_1 \sqrt{2\Delta}$	
V-number if surrounding medium is air:	$V = \frac{\pi d}{\lambda} \text{NA}$	d = core diameter $\lambda = \text{wavelength of light}$
Number of modes for step index fiber:	$pprox rac{V^2}{2}$	
Number of modes for graded index fiber:	$pprox rac{V^2}{4}$	
Attenuation co-efficient (loss per unit length):	$\alpha = -\frac{10}{L} \log \left(\frac{P_{\text{out}}}{P_{\text{in}}} \right)$	P_{out} = output power P_{in} = input power L = length of the optical fiber

Superconductivity

Quantity	Formula	Glossary
Critical current required		R = radius of the wire
to destroy the	$I_c = 2\pi R H_c$	H_c = critical magnetic
superconductivity:		field
		$H_0 = \text{minimum}$
Minimum magnetic field	cikshanae	magnetic field required
required to destroy		at 0 K to destroy
superconductivity at	$H_c = H_0 \left[1 - \frac{T^2}{T_c^2} \right]$	superconductivity
temperature <i>T</i> :	[10]	T_c = transition
1.2		temperature
Frequency of		h = Planck's constant
electromagnetic radiation		V = voltage applied
emitted by a Josephson	$v = \frac{qV}{h} = \frac{2eV}{h}$	q = total charge of the
, , ,	h h	pair
junction:		e = electronic charge

Formulae used in lab

Quantity	Formula	Glossary
Volume resonator:	$f_x = \sqrt{\frac{(f^2 V)_{\text{avg}}}{V_x}}$	f = frequency of the tuning fork
		V = volume of the resonating air
Young's modulus of the material of the cantilever:	$q = \frac{4mgL^3}{bd^3\delta_{\rm mean}}$	$\delta_{\mathrm{mean}} = \mathrm{depression}$ for mass m $L, b, d = \mathrm{length}$, breadth and thickness of the cantilever

Rigidity modulus of the wire of a torsional pendulum:	$\eta = \frac{8\pi L}{R^4} \left(\frac{I}{T^2}\right)$	R = radius L = length of the wire I = moment of inertia of the attached rigid body about the axis of rotation		
Moment of Inertia: (with rotation axis passing through their centers)				
a) For circular disc with	$I_1 = MR^2/2$	axis ⊥ to disc plane		
radius R and mass M:	$I_2 = MR^2/4$	axis along diameter		
b) For rectangular plate with length <i>L</i> , breadth <i>B</i> and mass <i>M</i> :	$I_3 = M(L^2 + B^2)/12$	axis ⊥ to plate plane		
	$I_4 = ML^2/12$	axis ⊥ to plate length		
	$I_5 = MB^2/12$	axis ⊥ to plate breadth		
Thickness of the paper by interference at an air wedge:	$t = \frac{\lambda L}{2\beta}$	$\lambda =$ wavelength of the light $L =$ air wedge length $\beta =$ fringe width		
Laser diffraction:	$\lambda = \frac{C \sin \theta_n}{n}$ $\theta_n = \tan^{-1} \left(\frac{x_n}{d}\right)$	$C =$ grating constant $n =$ order of diffraction $x_n =$ distance between central and n th maxima $d =$ distance between grating and screen		
Numerical Aperture (NA):	$\sin \theta_0 = \frac{W}{\sqrt{(4L^2 + W^2)}}$	L = distance from the optical fiber to screen		
Capacitance and dielectric constant:	$C = \frac{\tau}{R}$ and $\epsilon_r = \frac{Cd}{\epsilon_0 A}$	τ = time constant R = resistance in series		
Black box:	$R = \frac{V}{I}$ $L = \frac{V}{2\pi f I}$ $C = \frac{I}{2\pi f V}$	f = frequency of the applied AC source		

Series LCR:	$X_{L} = 2\pi f_{0}L$ $X_{C} = \frac{1}{2\pi f_{0}C}$ $L = \frac{1}{4\pi^{2}f_{0}^{2}C}$ $Q = f_{0}/\Delta f$	$L = \text{inductance}$ $C = \text{capacitance}$ $f_0 = \text{resonance}$ frequency
The diode equation: (at temperature <i>T</i>)	$I = I_0 \left[\exp\left(\frac{eV}{kT}\right) - 1 \right]$	e = electronic charge V = voltage across diode, I = current through the diode. I_0 = reverse saturation current
Wavelength of LED:	$\lambda = \frac{hc}{eV_K}$	V_K = knee voltage of the LED
Transistor parameters:	$\beta = \left[\frac{I_{C_2} - I_{C_1}}{I_{B_2} - I_{B_1}}\right]_{V_{CE}}$ $\alpha = \frac{\beta}{\beta + 1}$	I_C = collector current I_B = base current V_{CE} = voltage across collector & emitter
Fermi energy of copper:	$E_F = 1.36 \times 10^{-15} \sqrt{\frac{\rho Am}{l}}$ (in J)	ρ = density of copper. A and l are area of cross-section and length of the wire. m = slope of the resistance versus temperature graph.
Linear Least Square Fit formulas:	$m = \frac{n\sum xy - \sum x\sum y}{n\sum x^2 - (\sum x)^2}$ $c = \frac{\sum y\sum x^2 - \sum x\sum xy}{n\sum x^2 - (\sum x)^2}$	n = number of data points m = slope c = y-intercept
Band gap of a thermister:	$E_g = \frac{4.606 km}{1.6 \times 10^{-19}}$ (in eV)	k = Boltzmann constant m = slope of the log R versus $1/T$ graph