Prof. Dr. Marc Stamminger Prof. Dr. Michael Philippsen Department Informatik, FAU

Klausur: Algorithmen und Datenstrukturen

Angaben zur Person (Bitte Etikett aufkleben bzw. in Druckbuchstaben ausfüllen!):

Name, Vorname:	Matrikelnummer:
Laufende Nr.:	
Bitte kleben Sie hier das Etikett auf.	
Folgende Hinweise bitte lesen und Kenntnisnahme d • Hilfsmittel außer Schreibmaterialien sind nicht zugelassen. • Lösungen müssen in den dafür vorgesehenen freien Raum geschrieben	
verwenden Sie zunächst (mit kurzem Hinweis) die Zusatzseite am E Aufsicht ausgegeben und $eingeheftet$ werden.	Ende. Weitere Zusatzseiten müssen von der
 Sie können Schmierpapier von der Aufsicht anfordern. Das Schmierpe Können Sie die Prüfung aus gesundheitlichen Gründen nicht fortsetzer durch Vorlage eines erweiterten ärztlichen Attestes beim Prüfungsamt der Aufsicht und lassen Sie sich das entsprechende Formular aushändig 	n, dann müssen Sie Ihre Prüfungsunfähigkeit nachweisen. Melden Sie sich in jedem Fall bei
• Überprüfen Sie diese Klausur auf Vollständigkeit (14 Seiten inkl.	$Deckblatt)\ und\ einwand freies\ Druckbild!$
Durch meine Unterschrift bestätige ich den Empfang der voldie Kenntnisnahme der obigen Informationen.	llständigen Klausurunterlagen und
Erlangen, den 30.03.2016	Unterschrift)

Nicht von der Kandidatin bzw. vom Kandidaten auszufüllen!

Bewertung (Punkteverteilung unter Vorbehalt):

Aufgabe	1	2	3	4	5	6	7	8	\sum
Maximal	14	9	17	10	14	20	20	16	120
Erreicht									

Aufgabe 1 (Wissensfragen)

(14 Punkte)

Bei den folgenden Teilaufgaben werden richtige Kreuze positiv (+) und falsche **oder fehlende** Kreuze entsprechend negativ (-) gewertet. Jede Teilaufgabe wird mit mindestens 0 Punkten bewertet. Pro Teilaufgabe ist mind. eine Aussage wahr. Kreuzen Sie alle richtigen Aussagen an:

a) Angenommen, s1 und s2 sind korrekt initialisierte Variablen vom Typ String. Welche der folgenden Anweisungen verursachen eine Fehlermeldung (entweder zur Übersetzungszeit mit javac oder zur Ausführungszeit mit java)?

```
boolean istNull = null.equals(s1);

if (s1 == s2) System.out.println("sind_gleich");

boolean b = s1.charAt(s1.length()) == s2.charAt(0);

int i = s1.toUpperCase().indexOf("null");
```

b) Welche Aussagen sind wahr?

```
void sterneSehen(int x, int y) {
    for (int a = 0; a < x; a++) {
        for (int b = 0; b <= y; b++) {
            System.out.print("*");
        }
        System.out.println();
    }
}</pre>
```

Der Aufruf sterneSehen (10, 5) gibt 50 Sterne aus.

Der Aufruf sterneSehen (10, 5) gibt 60 Sterne aus.

It Lösung nicht, ich bin aber dafür

Für positive x und y hat sterneSehen eine Laufzeit von $\mathcal{O}(x \cdot y)$.

sterneSehen terminiert nicht, wenn mindestens ein Argument negativ ist.

c)		r welchen Umständen ist die $sequentielle$ (lineare) Suche nach einem Wert v in einem eigend sortierten Feld $\underline{schneller}$ als die $bin\ddot{a}re$ Suche?
		v ist kleiner als das erste Element im Feld.
	X	v ist genau das erste Element im Feld.
		Die Länge des Feldes ist keine 2er-Potenz.
		Die sequentielle Suche kann niemals schneller als die binäre Suche sein.

d)	Bei e	iner einfach verketteten Liste $\mathcal L$ mit n Elementen
		kann die Reihenfolge der Elemente in $\mathcal{O}(log(n))$ umgedreht werden.
		braucht das sortierte Einfügen (\mathcal{L} bereits sortiert) im worst-case $\mathcal{O}(\sqrt{n})$ Vergleiche
	X	hat eine Methode, die prüft, ob \mathcal{L} leer ist, einen Zeitaufwand von $\mathcal{O}(1)$.
		kann das Einfügen am Listenende mit konstantem Aufwand durchgeführt werden.

e)	Welch	e Aussagen zu Graphen stimmen?
	\times	Hat mehr als ein Knoten Grad 0, dann ist der Graph $nicht$ zusammenhängend.
		Ein Knoten mit Eingangsgrad 0 nennt man Senke.
		Ein DAG hat stets genau eine Quelle (Wurzel) und genau eine Senke.
	X	Ein DAG mit mindestens zwei Knoten ist $niemals$ stark zusammenhängend.
f)	,,Grah	nam's Einpackalgorithmus" aus der Vorlesung
		löst das Rucksackproblem für n Elemente mit $\mathcal{O}(n^2)$ zusätzlichem Speichex
	X	ermittelt die konvexe Hülle einer Punktewolke.
		ist ein gieriger Algorithmus zur Münzminimierung für kanonische Münzsysteme.
	X	untersucht und verwirft evtl. provisorische Lösungen.
g)		v und w konstante Laufzeiten und $T(n)$ die $worst$ -case-Laufzeit einer Methode für eld der Länge n . Was gilt für die asymptotisch obere Schranke im \mathcal{O} -Kalkül?
		$\mathcal{O}(g(n)) = \{ h \exists c > 0 \ \exists n_0 > 0 \ \forall n \ge n_0 : \ 0 \le c \cdot g(n) \le h(n) \}$
	X	$\mathcal{O}(g(n)) = \{ h \exists c_1 > 0 \ \exists c_2 > 0 \ \exists n_0 > 0 : \forall n \ge n_0 : 0 \le c_1 \cdot g(n) \le h(n) \le c_2 \cdot g(n) \}$
		Für $T(0) = v$ und $T(n) = T(0.666 \cdot n) + w$ gilt: $T(n) \in \mathcal{O}(\log(n))$
		Für $t(n) \in \mathcal{O}(m(n))$ und $f(n) \in \mathcal{O}(g(n))$ gilt: $w \cdot t(n) \cdot f(n) \in \mathcal{O}(m(n) \cdot g(n))$

Aufgabe 2 (Streuspeicherung)

(9 Punkte)

a) Gegeben seien die folgenden Schlüssel k zusammen mit ihren Streuwerten h(k):

k	A	В	\mathbf{C}	D	E	1
h(k)	1	3	3	3	0	ı

Fügen Sie die Schlüssel A-E in alphabetisch aufsteigender Reihenfolge in die folgende Streutabelle ein und lösen Sie Kollisionen durch verkettete Listen auf.

Fach	k (Liste, zuletzt eingetragener Schlüssel rechts)	
42	$X \rightsquigarrow Y \rightsquigarrow Z \rightsquigarrow \bot$ (Beispiel))
0	E	
1	A A	
2		
3	B -> C -> D	
4		
5		
6		

b) Zum quadratischen Sondieren stehen nun zusätzlich die Streuwerte $h_i(k)$ zur Verfügung:

k	A	В	\mathbf{C}	D	E
h(k)	1	3	3	3	0
$h_1(k)$	2	4	4	4	1
$h_2(k)$	5	0	0	0	4
$h_3(k)$	3	5	5	5	2

Fügen Sie die Schlüssel A-E in dieser Reihenfolge in eine neue Streutabelle mit den Fächern 0 bis 6 ein. Lösen Sie Kollisionen diesmal durch quadratisches Sondieren mit den obigen $h_i(k) = (h(k) + i^2) \mod 7$ auf. Geben Sie in der folgenden Tabelle zu jedem Schlüssel an, welche Fächer Sie in welcher Reihenfolge sondiert haben und ob die Sondierung aufgrund einer Primär- ($\stackrel{P}{\mapsto}$) oder Sekundärkollision ($\stackrel{S}{\mapsto}$) notwendig wurde. Das jeweils zuerst betrachtete Fach ist bereits vorgedruckt.

k	sondierte Fächer und Art der Kollision	
Z	$42 \stackrel{P}{\mapsto} 47 \stackrel{S}{\mapsto} 11$	(Beispiel)
A	1	
В	3	
С	3 P->4	
D	3 P->4S->0	
Ε	0 P->1S->4S->2	

Aufgabe 3 (Binäre Suche)

(17 Punkte)

Im Folgenden sollen Sie einen Schlüssel t
 in einem Feld ts mittels binärer Suche lokalisieren. Für die Schlüssel vom Typ T
 gibt es zwei Vergleicher c1 bzw. c2 und das Feld ts ist so sortiert, dass:

$$\forall i < j : ts[i] \prec_{c1} ts[j] \lor (ts[i] =_{c1} ts[j] \land ts[i] \preceq_{c2} ts[j])$$

Hinweis zur API der Methode int compare (T o1, T o2) im Interface Comparator<T>: Compares its two arguments for order. Returns a negative integer, zero, or a positive integer as the first argument is less than, equal to, or greater than the second.

Ergänzen Sie die <u>iterative</u> Methode suche so, dass sie den Index von t in ts mit einer Laufzeit von $\mathcal{O}(log(ts.length))$ zurückgibt, falls t in ts vorkommt, andernfalls sei ihr Ergebnis -1:

```
<T> int suche(T[] ts, T t, Comparator<T> c1, Comparator<T> c2) {
   int a = 0, m, z = ts.length - 1; // Anfang, Mitte, Ende
```

```
// schon alles durchsucht?
    while (m!=a\&\&m!=z)
        // neue Mitte zwischen a und z bestimmen (abgerundet)
        m =
             (a + z)/2;
        if (c1.compare(t, ts[m]) < 0)
            // Fall A: t VOR ts[m] laut c1
              z = m-1:
        } else if ( c1.compare(t, ts[m]) == 0 )
            // Fall B: t NAHE BEI ts[m] laut c1
            if (c2.compare(t,ts[m]) < 0
                 // Fall B1: t VOR ts[m] laut c2
                     z = m-1;
             } else if ( c2.compare(t,ts[m]) == 0 )
                 // Fall B2: gefunden :)!
                return m;
             } else {
                 // Fall B3: t NACH ts[m] laut c2
                  a = m+1;
        } else {
            // Fall C: t NACH ts[m] laut c1
              a = m+1;
    // nicht gefunden :(
    return -1;
}
```

Aufgabe 4 (Halden)

(10 Punkte)

Gegeben sei folgende Feld-Einbettung einer Min-Halde:

0	2	3	7	6	5	4	8	9	10	11	12

a) Stellen Sie die Halde graphisch als Baum dar; ergänzen Sie ggf. Knoten und/oder Kanten:

b) Entfernen Sie das kleinste Element (die Wurzel 0) aus der *unten gegebenen* initialen Halde, stellen Sie die Haldeneigenschaft wieder her und geben Sie das Endergebnis an:

0	1	2	3	4	5	6	γ	8	g	10	11
0	2	3	7	6	5	4	8	9	10	11	12
\swarrow 0 entfernen \swarrow											
7	6	3	7	10	5	4	8	9	12	Λη	

c) Fügen Sie nun den Wert 1 in die *unten gegebene* initiale Halde ein, stellen Sie die Haldeneigenschaft wieder her und geben Sie das Endergebnis an:

θ	1	2	3	4	5	6	γ	8	g	10	11	12
0	2	3	7	6	5	4	8	9	10	11	12	
	√ 1 einfügen √											
Õ	2	1	ц	6	3	4	8	9	10	11	12	8

Aufgabe 5 (Sortieren)

(14 Punkte)

a) Führen Sie "Sortieren durch Einfügen" lexikographisch aufsteigend, in-situ und <u>stabil</u> in einem Schreibtischlauf auf folgendem Feld aus. Jede Zeile stellt den Zustand des Feldes dar, nachdem das jeweils nächste Element in die Endposition verschoben wurde. Der bereits sortierte Teilbereich steht vor |||. Gleiche Elemente tragen zwecks Unterscheidung ihre "Objektidentität" als Index (z.B. " A_1 " .equals (" A_2 ") aber " A_1 " != " A_2 ").

L	A_1	B_1	F	A_2	B_2
A		Ba	F	A 7	Bz
AA	BA	L	F	12	Bz
AA	Ba	F		A2	B2
A	Az	Bn	F		B2
FIN	A2	BA	132	F	L

b) Ergänzen Sie die folgende Methode so, dass sie die Zeichenketten im Feld a lexikographisch aufsteigend durch Einfügen sortiert. Sie muss iterativ, in-situ und <u>stabil</u> sortieren. Außerdem dürfen Sie keine weiteren Variablen deklarieren, als die bereits vorgegebenen. Sie dürfen davon ausgehen, dass kein Eintrag im Feld null ist.

```
void sortierenDurchEinfuegen(String[] a) {
    // Hilfsvariable:
    String tmp;
```

Aufgabe 6 (Dynamische Programmierung)

(20 Punkte)

Die sogenannten Großen Schröder-Zahlen sind für ganzzahlige positive n wie folgt definiert:

$$a(n) = \begin{cases} 1 & falls & n \le 1 \\ a(n-1) + \sum_{i=1}^{n-1} a(i) \cdot a(n-i) & sonst \end{cases}$$

a) Um welche Art der Rekursion handelt es sich bei a (n)?

```
a(n): Kaskadiecende Rekursion
```

b) Ergänzen Sie die naive Implementierung der obigen Funktion ohne weitere Optimierungen:

```
long an = \alpha(N-\Lambda);

\{\alpha((i=\Lambda;i\leq N-i)\}\}

\{\alpha((i=\Lambda;i\leq N-i))\}
```

return an;
}

c) Mittels Dynamischer Programmierung soll adp (n) jede Schröder-Zahl höchstens einmal berechnen, auch wenn sie mehrmals benötigt wird. Dazu soll adp (n) bereits berechnete a(i) im Feld mem [i] verwalten. Das Feld mem wird nur bei Bedarf und höchstens bis zum erforderlichen Umfang vergrößert – dabei müssen die bisherigen Werte gerettet werden!

```
long[] mem;
```

long aDP(int n) {
 // Speicher ggf. passend vergroessern oder neu anlegen:

```
if (mem == null || n ≥ mem.length) {
    long[] oldMem = mem;
    mem = new long[N+1];
    if (old Mem!= null) {
        for (i=0; i < old Mem.length:i++) {
            mem[i] = old Mem[i];
        }
    }
}</pre>
```

```
if (n <= 1) {
    // Basisfall:
    mem[n] = 1;</pre>
```

```
} else if ( mam[n]==0) {

return mem[n];

clse {

mom[n] = adp(n-1);

fm(inti=1; i<n; i++)

mom[n]+=adp(i)* adp(n-1);

}

return mam[n];
```

Aufgabe 7 (Graphen)

}

(20 Punkte)

In dieser Aufgabe wird ein gerichteter Graph G = (V, E) als Adjazenz<u>matrix</u> am repräsentiert. Sie dürfen davon ausgehen, dass am wohlgeformt ist (also quadratisch und ohne null-Zeilen).

a) Ergänzen Sie die Methode sammle, die alle mit einem Knoten k in G direkt oder indirekt verbundenen Knoten in der Menge verb sammelt. Adjazente Knoten gelten <u>ung</u>eachtet der Kantenrichtung als verbunden. Bereits besuchte Knoten werden in bes verwaltet:

b) Die Methode mszt soll die Knotenmengen aller maximalen <u>schwach</u> zusammenhängenden Teilgraphen (sog. schwache Zusammenhangskomponenten) zurückgeben:

c) Definition aus der Vorlesung: "Ein Graph G' = (V', E') ist ein **induzierter Teilgraph** eines Graphen G = (V, E) genau dann, wenn $V' \subseteq V$ und $E' = \{(v, w) \in E \mid v, w \in V'\}$."

Ergänzen Sie die Methode itg so, dass sie aus am jede Kante (x,y) entfernt, wenn nicht sowohl x als auch y in vs $(\triangleq V')$ enthalten sind. Entfernen Sie (zur Vereinfachung) keine Knoten aus am.

```
void itg(boolean[][] am, Set<Integer> vs) {
```

```
for (int i=0: i c am. length, i+1) {

for (int i=0; i c am. length, i+1) {

for (int i=0; i c am. length, i+1) {

if (am. [i] [i] } {

if (xs. contains (i) & h. vs. rantados(j)) {

// ok

3

3

3

3

3

3
```

Aufgabe 8 (ADT) (16 Punkte)

Gegeben seien folgende abstrakte Datentypen:

```
adt S // Menge (Set)
sorts S, int, boolean
ops
                                     // erzeugt leere Menge: M = \emptyset
                           \mapsto S
     Empty:
                S \times int \mapsto S
                                        // ergänzt Wert n: M \leftarrow M \cup \{n\}
     Add:
                S \times int \mapsto boolean // prüft, ob Wert n in M enthalten ist: n \in M
     isIn:
axs
     ... // aus Platzgründen weggelassen
end S
adt G // Graph
sorts G, int, S, boolean
ops
                                                // erzeugt neuen Graphen: G = (V, E) mit V = \emptyset
     New:
                                  \mapsto G
                                                // ergänzt Knoten n: V \leftarrow V \cup \{n\}
                G \times int
                                  \mapsto G
     Node:
                G \times int \times int \mapsto G
                                                // ergänzt Kante (a,b): V \leftarrow V \cup \{a,b\}, E \leftarrow E \cup \{(a,b)\}
     Edqe:
     collect:
                                  \mapsto S
                                                // ermittelt Menge V aller Knoten in G
     path:
                G \times int \times int \mapsto boolean
                                                // existiert gerichteter Weg zwischen zwei Knoten?
                                  \mapsto boolean
     isRoot: G \times int
                                                // prüft, ob der Knoten eine Quelle in G ist
           // im Folgenden zu ergänzen
end G
```

Zusätzlich stehen Ihnen die Datentypen int und boolean mit den aus Java bekannten Ausprägungen und Operatoren zur Verfügung.

b) Ergänzen Sie den ADT G um Axiome für die Operation path, die genau dann true ergibt, wenn es im **gerichteten** Graphen G (d.h. edge(a,b) erzeugt eine **gerichtete** Kante) einen Pfad zwischen den zwei übergebenen Knoten x und y gibt:

$$path(New, x, y) = false$$

$$path(g, x, x) = true$$

$$path(Edge(g, a, b), a, b) = true$$

$$path(Node(g, n), x, y) = path(g, x, a) \wedge path(g, y, a) \wedge$$

c) Ergänzen Sie den ADT G um Axiome für die Operation isRoot, die genau dann true ergibt, wenn der übergebene Knoten eine Quelle im **gerichteten** Graphen G ist:

$$isRoot(New, x) = false$$

 $isRoot(Node(g, n), x) =$
 $= (x = n) \land \neg isIn(collect(g), x) \lor isRoot(g, x)$
 $isRoot(Edge(g, a, b), x) =$

${\bf Zusatz seite}$