Penelitian Mandiri Sains Komputasi III dan IV ${\it Update\ Progress}$

Mohammad Rizka Fadhli Magister Sains Komputasi, FMIPA, ITB 20921004@mahasiswa.itb.ac.id

01 March 2022

CONTENTS CONTENTS

Contents

RENCANA KERJA	5
Rencana Judul Thesis	5
Target Luaran	5
Penelitian Mandiri III	5
Penelitian Mandiri IV	5
PENELITIAN MANDIRI III	6
PENELITIAN MANDIRI IV	7
MODEL OPTIMISASI	7
Parameter yang Diketahui	7
Variabel Keputusan	8
Kendala Optimisasi	9
Fungsi Objektif	11

LIST OF FIGURES

LIST OF FIGURES

List of Figures

LIST OF TABLES

LIST OF TABLES

List of Tables

RENCANA KERJA

Rencana Judul Thesis

Optimization and Computational Model for Supplier Selection and Raw-Material Composition: Case Study PT. NFI.

Target Luaran

Penelitian Mandiri III

Data collection dan dokumentasi production system.

Penelitian Mandiri IV

Model optimisasi yang telah disempurnakan.

PENELITIAN MANDIRI III

PENELITIAN MANDIRI IV

MODEL OPTIMISASI

Berdasarkan informasi-informasi yang telah didapatkan dari Penelitian Mandiri III, berikut adalah model optimisasi dari permasalahan supplier selection dan raw material selection.

Parameter yang Diketahui

Notasikan:

- M sebagai himpunan semua minggu.
 - $-\hat{M}\setminus\{1,6\}$
- $P = P_1 \cup P_2 \cup P_3 \cup P_4 \cup P_5 \cup P_6$ sebagai himpunan produk di semua minggu.
 - \hat{P} sebagai himpunan bagian dari P,yakni himpunan produk yang menggunakan minimal dua jenis BB.
 - \dot{P} sebagai himpunan bagian dari P,yakni himpunan produk yang menggunakan satu jenis BB saja.
- $G = \{1, 2, 3, 4, 5, 6\}$ sebagai himpunan BB.
- D sebagai kebutuhan BB di bulan perencanaan, yaitu: $week\ 3$ 6.
- maxcap sebagai kapasitas gudang BB.
- $\forall i \in P_j, g_{ijk}$ adalah kebutuhan BB (dalam ton) dari produk i pada week k.
- $\forall k \in G, c_k$ adalah harga BB k per ton.
- $\forall k \in G, \epsilon_k$ adalah minimum order quantity dari BB k.
- $\forall k \in G, \hat{d}_{2k}$ adalah total BB k yang dibutuhkan pada week 2.
- $\forall k \in G, Z_{ik}$ adalah stok level BB k di gudang pada akhir week 1.

Variabel Keputusan

Variabel I

Definisikan $\forall k \in G, x_k$ adalah banyaknya BB k yang dibeli.

Berdasarkan informasi sebelumnya, kita ketahui bahwa x_k bernilai bulat positif dan harus lebih besar atau sama dengan nilai ϵ_k . Kemudian tidak ada kewajiban untuk membeli BB dari seluruh *supplier*.

Maka kita bisa tuliskan: $x_k=0$ atau $\epsilon_k \leq x_k \leq maxcap$. Untuk menghindari nilai diskontinu dari x_k ini, definisikan:

$$y_k = \begin{cases} 1, & x_k = 0 \\ 0, & \epsilon_k \le x_k \le maxcap \end{cases}$$

 $\forall j \in M \setminus \{1, 6\}, \forall i \in P_j, \forall k \in G,$

Variabel II

Definisikan: \hat{x}_{jk} sebagai banyaknya pengiriman BB jenis k di awal week j.

$$a_{ijk} = \begin{cases} 1, & \text{produk ke } i \text{ di week } j \text{ menggunakan BB } k \\ 0, & \text{lainnya} \end{cases}$$

Variabel III

Definisikan: b_{ijk} sebagai proporsi penggunaan BB k dari seluruh kebutuhan BB untuk produk i di $week j, \forall j \in M \setminus \{1\}, \forall k \in G.$

Variabel IV

Definisikan: z_{jk} sebagai stok level BB k di akhir week j.

Kendala Optimisasi

Kendala I

Kendala I adalah penghubung yang benar antara variabel keputusan biner, integer, atau kontinu yang berkaitan:

$$\forall k \in G,$$

$$x_k \leq Dy_k$$

$$x_k \geq \epsilon y_k$$

$$\forall j \in M \setminus \{1,2\}, \forall i \in P_j, \forall k \in G,$$

$$b_{ijk} \leq a_{ijk}$$

$$b_{ijk} \geq \mu a_{ijk}$$

untuk suatu nilai μ yang kecil.

Kendala II

Kendala II dibuat agar total BB yang dipesan tidak kurang dari total demand di bulan perencanaan.

$$\sum_{k \in G} x_k \ge D$$

Kendala III

Kendala III mengatur hubungan antara total pembelian BB dan pengiriman setiap minggu.

$$\forall k \in G,$$

$$x_k = \sum_{j \in \hat{M}} \hat{x}_{jk}$$

Kendala IV

Kendala IV menjaga volume pengiriman gula pada week 2, 3, dan 4 selalu sama.

$$\forall k \in G,$$

$$\hat{x}_{3k} = \hat{x}_{4k}$$

$$\hat{x}_{4k} = \hat{x}_{5k}$$

Kendala V

Kendala V berfungsi untuk menjaga komposisi gula yang diinginkan.

$$\forall j \in M \setminus \{1, 2\}, \forall i \in \hat{P}_j,$$

$$\sum_{k \in G} a_{ijk} \ge 2$$

$$\sum_{k \in G} b_{ijk} = 1$$

$$\forall j \in M \setminus \{1, 2\}, \forall i \in \dot{P}_j,$$

$$\sum_{k \in G} a_{ijk} = 1$$

$$\sum_{k \in G} b_{ijk} = 1$$

Kendala VI

Kendala VI berfungsi untuk menjaga stok level sesaat setelah pengiriman BB agar tidak melebihi kapasitas gudang.

$$\sum_{k \in G} (Z_{1k} + \hat{x}_{1k} - \hat{d}_{2k} + z_{jk}) = maxcap$$

$$\forall j \in M \setminus \{1, 2\}$$

$$\sum_{k \in G} (z_{(j-1)k} + \hat{x}_{(j-1)k}) - \sum_{i \in P_j} b_{ijk} g_{ijk} + z_{jk} = maxcap$$

Fungsi Objektif

Permasalahan yang dihadapi adalah pemilihan supplier dan BB sebagai berikut:

$$\min \sum_{k \in G} c_k x_k$$

terhadap kendala I sampai VI dan

$$x_k = 0$$
 atau $\epsilon_k \le x_k \le maxcap, x_k \in \mathbb{Z}^+$
 $y_k \in \{0, 1\}, \hat{x}_{jk} \ge 0, a_{ijk} \in \{0, 1\}$
 $0 \le b_{ijk} \le 1$
 $0 \le z_{jk} \le maxcap$