

Algoritmos Genéticos

TP2
Sistemas de Inteligencia Artificial
ler Cuatrimestre 2021

Grupo 3:

- Gonzalo Hirsch 59089
- Florencia Petrikovich 58637
- Juan Martin Oliva 58664

Presentación

A A

Resumen

Resumen del trabajo realizado en el TP

Enfoque

O2 Descripción del enfoque que usamos

Resultados

Q3 Resultados de los experimentos

04

Conclusiones

Conclusiones alcanzadas

01 Resumen

4 4 4 4

Resumen del Trabajo

Implementación

Implementación de **motor** de algoritmos genéticos con **distintos operadores** para cada etapa del algoritmo

Optimización

Extracción de **datos** y **análisis** para generar una **configuración** ideal que **maximice** el **fitness** de personajes de juego de rol

Diversidad

Contamos **Diversidad** como cantidad de **personajes diferentes**. Diferentes es que difieran en **al menos 1 alelo**.

▼								
	Genes Personaje 1	Arma 1	Bota 2	Casco 3	Guantes 4	Pechera 5	Altura 1.45	
Personajes Diferentes								
	Genes Personaje 2	Arma 1	Bota 2	Casco 6	Guantes 4	Pechera 5	Altura 1.45	
			Diferencia -			Delta de tura es 0.01	1111	,

02 Enfoque

4 4 4 4

Implementación de Algoritmos

Se implementaron **múltiples clases** para **abstraer** el comportamiento de cada paso del proceso.

Cada clase contenida por una clase que **maneja el proceso**.

Pruebas individuales de cada algoritmo antes de la integración.

Pruebas

Tamaño de Población

Cantidad de Padres

Diferentes Mutaciones

Diferentes Cruces

Diferentes Implementaciones

Diferentes Proporciones

Diferentes Combinaciones

Primera decisión a tomar es el tamaño de la población a usar.

K fijo como un 50% del tamaño de la población usado.

Más población inicial ⇒ Más variedad genética

N = 100 → Potenciales 100⁵ individuos diferentes a elegir

N = 10000 → Potenciales 10000^5 individuos diferentes a elegir

Tamaño de Población

Cantidad de Padres

Diferentes Mutaciones

Diferentes Cruces

Diferentes Implementaciones

Diferentes Proporciones

Diferentes Combinaciones

Cantidad de padres elegidos influye en la variedad generada.

K bajo → Riesgo de no introducir variedad

K alto → Riesgo de introducir demasiada variedad

Comparación de diferentes K con configuraciones fijas.

Tamaño de Población

Cantidad de Padres

Diferentes Mutaciones

Diferentes Cruces

Diferentes
Implementaciones

Diferentes Proporciones

Diferentes Combinaciones

La mutación define cuan exploratorio es el algoritmo.

Poca mutación → Poca variedad

Mucha mutación → Potencial pérdida de mejores individuos

Comparación de mutaciones con configuraciones fijas.

Tamaño de Población

Cantidad de Padres

Diferentes Mutaciones

Diferentes Cruces

Diferentes
Implementaciones

Diferentes Proporciones

Diferentes Combinaciones

Comparación de métodos de cruce con configuraciones fijas para determinar efectos.

Se busca el cruce que genere diversidad y un mejor personaje.

Tamaño de Población

Cantidad de Padres

Diferentes Mutaciones

Diferentes Cruces

DiferentesImplementaciones

Diferentes Proporciones

Diferentes Combinaciones

Comparación de los efectos de diferentes implementaciones en múltiples algoritmos.

Ver efectos de una implementación sobre variedad, velocidad de convergencia y máximo fitness alcanzado.

Pruebas con configuraciones fijas en diferentes implementaciones.

Ver efectos de diferentes métodos en varias métricas para clasificarlos.

Tamaño de Población

Cantidad de Padres

Diferentes Mutaciones

Diferentes Cruces

DiferentesImplementaciones

Diferentes Proporciones

Diferentes Combinaciones

Probar diferentes proporciones de los parámetros A y B para generar configuraciones orientadas a exploración y explotación.

Usar clasificaciones generadas en el paso anterior.

Tamaño de Población

Cantidad de Padres

Diferentes Mutaciones

Diferentes Cruces

DiferentesImplementaciones

Diferentes Proporciones

Diferentes Combinaciones Usar configuraciones de A y B obtenidas antes para guiar búsqueda de combinaciones de algoritmos de selección y reemplazo.

Pruebas de diferentes combinaciones para obtener una configuración ideal.

03

Resultados

Configuración Inicial

Clase

Guerrero

Cruce

2 Puntos

Mutación

Completa (Pm = 0.05)

Selección

Universal y Ruleta (A = 0.5)

Reemplazo

Elite y Ranking (B = 0.5)

Implementación

Fill Parent

Corte

Por Estructura

4 4 4 4

Tamaño de Población

En todos los casos, mayor N ⇒ Mayor fitness alcanzado

N mayores a 10000 tardan demasiado para probar

10.000

N elegido

Tamaño de Población

En todos los casos, mayor N ⇒ Menor desvío estándar

Genera menos variación con un N mayor

Cantidad de Padres

La elección del K tiene gran incidencia en máximo fitness alcanzado

7.500

K elegido

Diferentes Mutaciones

Mutaciones generan efectos diferentes sobre diversidad

> Uniforme (Pm=0.05) elegido

Diferentes Cruces

Uniforme (P=0.5) elegido

Diferentes implementaciones - Diversidad

Diferentes implementaciones - Fitness Promedio

Generación

Diferentes implementaciones - Fitness Máximo

Diferentes Proporciones - Diversidad

Diferentes Proporciones - Fitness Promedio

Diferentes Proporciones - Fitness Máximo

Diferentes Combinaciones - Diversidad

Diferentes Combinaciones - Fitness Promedio

Diferentes Combinaciones - Fitness Máximo

Diferentes Combinaciones - Fitness Máximo

Configuración Ideal

Clase

NyK

Cruce

Mutación

Selección

Reemplazo

Implementación

Corte

Cualquier Clase

N = 10.000 y K = 7.500

Uniforme (P = 0.5)

Uniforme (Pm = 0.05)

Ranking y Ruleta (A = 0.25)

Torneo Determinista (M=150) y Boltzmann (t0=150, tbase=5, kdecay=0.035) (B = 0.6)

Fill All

Por Cantidad (150 generaciones)

4 4 4 4

Casco

Arma

Botas

Guantes

36

Altura

04

Conclusiones

A

iGracias!

¿Preguntas?

ghirsch@itba.edu.ar fpetrikovich@itba.edu.ar juoliva@itba.edu.ar

