

Análise Matemática II 2021/2022

Atividade 01 – Métodos numéricos para EDO/PVI

Pedro Emanuel Dinis Serrano nº2016017926

Marinela Suely João Bettencourt nº2020110142

Ana Sofia Cristóvão Ferreira da Silva nº2021154586

Índice

1. Introdução	3
1.1 Equação diferencial: definição e propriedades	3
1.2 Definição de PVI	3
2. Métodos Numéricos para resolução de PVI	
2.1 Método de Euler	
2.2.1 Fórmulas	
2.1.2 Algoritmo/Função	
2.2 Método de Euler Melhorado ou Modificado	
2.2.1 Fórmulas	
2.1.2 Algoritmo/Função	
2.3 Método de RK2	7
2.3.1 Fórmulas	7
2.3.2 Algoritmo/Função	8
2.4 Método de RK4	
2.4.1 Fórmulas	9
2.4.2 Algoritmo/Função	9
2.5 Função ODE45 do Matlab	
2.5.1 Fórmulas	9
2.5.2 Algoritmo/Função	
2.6 Método de RK4	11
2.6.1 Fórmulas	
2.6.2 Algoritmo/Função	
3. Exemplos de aplicação e teste dos métodos	12
3.1 Exercício 3 do Teste Farol	
3.1.1 PVI - Equação Diferencial de 1º ordem e Condições Iniciais	12
3.1.2 Exemplos de output - App com gráfico e tabela	
3.2 Problemas de aplicação do livro	15
3.2.1 Modelação matemática do problema	
3.2.2 Resolução através da App desenvolvida	
4. Conclusão	
5. Bibliografia	19
J. DIDIIVELUITU	

1. Introdução

1.1 Equação diferencial: definição e propriedades

Uma equação diferencial é uma equação que relaciona funções com as suas derivadas. Estas equações podem ser classificadas quanto ao tipo, quanto à ordem e quanto à linearidade:

Em relação ao tipo, uma equação pode ser ordinária se a incógnita depender apenas de uma variável ou de derivadas parciais se depender de duas ou mais variáveis.

Chama-se ordem de uma equação diferencial à maior ordem das derivadas que figuram na equação.

Em relação à linearidade, uma equação diferencial é linear se:

$$a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \ldots + a_1(x)y' + a_0(x)y = b(x),$$

em que $a_n \neq 0$ e a_0, a_1, \ldots, a_n, b são funções definidas num intervalo $I \subseteq \mathbb{R}$.

- a incógnita e as suas derivadas têm expoente um;
- não há produtos entre incógnitas e as duas derivadas ou entre derivadas da incógnita;
- não há funções transcendentes que envolvam a incógnita ou as suas derivadas.

1.2 Definição de PVI

Um PVI consiste numa equação diferencial que que satisfaz determinadas condições dadas num único ponto do intervalo em que a equação é considerada.

Estes problemas estão muitas vezes associados a problemas reais, nomeadamente em àreas científicas e servem para descrever a evolução de um sistema ao longo do tempo, no caso de as condições iniciais se verificarem.

2. Métodos Numéricos para resolução de PVI

2.1 Método de Euler

2.1.1 Fórmulas

O Método de Euler para resolver um PVI é dado pela seguinte equação:

$$y_{i+1} = y_i + h * f(x_i, y_i), i = 0, 1, 2, ..., n - 1$$

- y_{i+1} Valor seguinte ao valor aproximado da solução do problema original na abcissa t_{i+1};
- y_i Valor aproximado da solução do problema original na abcissa atual;
- h Valor do subintervalo;
- f(t_i, y_i) Valor da equação em t_i e y_i;

2.1.2 Algoritmo/Função

Algoritmo:

- 1. Definir o valor de h;
- 2. Criar um vetor y que guarde a solução e atribui y(1) = y_0 ;
- 3. Atribuir o primeiro valor de y;
- 4. Calcular o método de Euler para a iésima iteração.

2.2 Método de Euler Melhorado ou Modificado

2.2.1 Fórmulas

O Método de Euler Melhorado para resolver um PVI é dado pelas seguintes equações:

$$y_{i+1} = y_i + \frac{h}{2}(k_1 + k_2), i = 0, 1, 2, ..., n - 1$$

- y_{i+1} Valor seguinte ao valor aproximado da solução do problema original na abcissa t_{i+1};
- y_i Valor aproximado da solução do problema original na abcissa atual;
- h Valor do subintervalo;
- k1 Inclinação no início do intervalo;
- k2 Inclinação no fim do intervalo.

Cálculo de k1 e de k2:

$$k_1 = f(t_i, y_i)$$

 $k_2 = h * f(t_{i+1}, y_i + k_1)$

- f(t_i, y_i) Valor da equação em ti e yi;
- t_i-Valor da abcissa atual;
- h Valor do subintervalo;
- y_i. Valor aproximado da solução do problema original na abcissa actual.

2.2.2 Algoritmo/Função

Algoritmo:

- 1. Definir o valor de h;
- 2. Criar um vetor y que guarde a solução;
- 3. Atribuir o primeiro valor de y (condição inicial) do PVI;
- 4. Calcular a inclinação no início do intervalo;
- 5. Calcular a inclinação no fim do intervalo;
- 6. Calcular a média das inclinações;
- 7. Calcular o valor aproximado para a iésima iteração.

```
function y = N_EulerM(f,a,b,n,y0)
                                    % Tamanho dos sub-intervalos
   h = (b-a)/n;
   t = a:h:b;
                                    % Vetor das abcissas - alocação de memória
   y = zeros(1, n+1);
                                    % Vetor das ordenadas - alocação de memória
                                    % Condição inicial do pvi
   y(1) = y0;
   for i=1:n
                                    % n interações
       k1 = f(t(i),y(i));
                                    % Declive no início do intervalo
       k2 = f(t(i+1), y(i) + k1*h); % Declive no fim do intervalo
       k = 0.5*(k1+k2);
                                   % Cálculo da média das inclinações
                                   % Próximo valor aproximado
       y(i+1)=y(i)+h*k;
    end
end
```

2.3 Método de Runge-Kutta de Ordem 2

2.3.1 Fórmulas

O Método de Runge-Kutta de Ordem 2 para resolver um PVI é dado pelas seguintes equações:

$$y_{i+1} = y_i + \frac{h}{2}(k_1 + k_2), i = 0, 1, 2, ..., n - 1$$

- y_{i+1} Valor seguinte ao valor aproximado da solução do problema original na abcissa t_{i+1};
- y_i Valor aproximado da solução do problema original na abcissa atual;
- h Valor do subintervalo;
- k1 Inclinação no início do intervalo;
- k2 Inclinação no fim do intervalo.

Cálculo de k1 e de k2:

$$k_1 = h * f(t_i, y_i)$$

 $k_2 = h * f(t_{i+1}, y_i + k_1)$

- f(t_i, y_i) Valor da equação em x_i e y_i;
- t_i Valor da abcissa atual;
- h Valor do subintervalo;
- y_i Valor aproximado da solução do problema original na abcissa actual.

2.3.2 Algoritmo/Função

Algoritmo:

- 1. Definir o valor de h;
- 2. Criar um vetor y que guarde a solução;
- 3. Atribuir o primeiro valor de y (condição inicial) do PVI;
- 4. Calcular a inclinação no início do intervalo;
- 5. Calcular a inclinação no fim do intervalo;
- 6. Calcular a média das inclinações;
- 7. Calcular o método de RK2 para a iésima iteração.

```
function y = N_RK2(f,a,b,n,y0)
                                         % Tamanho de cada subintervalo
   h = (b-a)/n;
   t = a:h:b;
                                         % Vetor das abcissas - alocação de memória
   y = zeros(1, n+1);
                                         % Vetor das ordenadas - alocação de memória
   y(1) = y0;
                                          % Condição inicial do pvi
                                          % N iterações
   for i=1:n
       k1 = h * f(t(i), y(i));
                                          % Declive no início do intervalo
       k2 = h * f(t(i + 1), y(i) + k1);
                                         % Declive no fim do intervalo
       y(i + 1)=y(i) + (k1 + k2)/2;
                                        % Próximo valor aproximado
   end
end
```

2.4 Método Runge-Kutta de Ordem 4

2.4.1 Fórmulas

O Método de Runge-Kutta de Ordem 4 para resolver um PVI é dado pelas seguintes equações:

$$y_{i+1} = y_i + \frac{h}{6} * (k_1 + 2k_2 + 2k_3 + k_4), i = 0, 1, 2, ..., n - 1$$

- y_{i+1} Aproximação pelo método RK4 de y_(xn+1);
- y_i Valor de y na iésima iteração;
- h Valor do subintervalo;
- k1 Inclinação no início do intervalo;
- k2 Inclinação no ponto médio do intervalo;
- k3 Inclinação no ponto médio do intervalo;
- k4 Inclinação no final do intervalo.

$$k_1 = h * f(t_i, y_i)$$

$$k_2 = h * f(t_i + \frac{h}{2}, y_i + \frac{1}{2}k_1)$$

$$k_3 = h * f(t_i + \frac{h}{2}, y_i + \frac{1}{2}k_2)$$

$$k_4 = h * f(t_{i+1}, y_i + k_3)$$

2.4.2 Algoritmo/Função

Algoritmo:

- 1. Definir o valor de h;
- 2. Criar um vetor y que guarde a solução;
- 3. Atribuir o primeiro valor de y (condição inicial) do PVI;
- 4. Calcular a inclinação no início do intervalo;
- 5. Cálculo da inclinação nos pontos médios do intervalo (k2 e k3);
- 6. Calcular a inclinação no fim do intervalo;
- 7. Calcular o método de RK2 para a iésima iteração.

```
function y = N_RK4(f,a,b,n,y0)
   h = (b-a)/n;
                                                          % Tamanho de cada subintervalo
   t = a:h:b;
                                                          % Vetor das abcissas - alocação de memória
   y = zeros(1, n+1);
                                                          % Vetor das ordenadas - alocação de memória
                                                          % Condição inicial do pvi
   y(1) = y0;
    for i=1:n
                                                          % N iterações
        k1 = h*f(t(i), y(i));
                                                          % Declive no início do intervalo
                                                     % Declive no ponto médio do intervalo
% Declive novamente no ponto médio do intervalo
        k2 = h*f(t(i) + h/2, y(i) + 0.5*k1);
        k3 = h*f(t(i) + h/2, y(i) + 0.5*k2);
        k4 = h*f(t(i+1), y(i) + k3);
                                                         % Declive no final do intervalo
        y(i + 1) = y(i) + (k1 + 2*k2 + 2*k3 + k4)/6; % Próximo valor aproximado
```

2.5 Função ODE45 do Matlab

2.5.1 Fórmulas

A função ODE45 é uma da função do MATLAB. Para resolver um PVI com uma EDO de segunda ordem, pode ser chamada da seguinte forma:

$$[t, y] = ode45(f, t, y0)$$

- t Vetor das abcissas;
- f Equação diferencial em t e em y;
- y₀ Valor inicial do PVI.

2.5.2 Algoritmo/Função

Algoritmo:

- 1. Definir o valor de h;
- 2. Utilizar a função ODE45.

2.6 Método do Ponto Médio

2.6.1 Fórmulas

O método do Ponto-Médio para resolver um PVI é dado pelas seguintes equações:

Ponto Médio Explícito:

$$y_{i+1} = y_i + h * f(t_i + \frac{h}{2}, y_i + h * k1)$$

Ponto Médio Implícito:

$$y_{i+1} = y_i + h * f(t_i + \frac{h}{2}, \frac{1}{2}(y_i + y_{i+1}))$$

- y_{i+1} Valor seguinte ao valor aproximado da solução do problema original na abcissa t_{i+1};
- y_i Valor aproximado da solução do problema original na abcissa atual;
- h Valor do subintervalo;
- t_i. Valor de t na inésima iteração.

2.6.2 Algoritmo/Função

Algoritmo:

- 1. Definir o valor de h;
- 2. Calcular o Ponto Médio Explícito para a iésima iteração.
- 3. Calcular o Ponto Médio Implícito para a iésima iteração.

```
function y = N_PM(f,a,b,n,y0)
   h = (b-a)/n;
                                                                  % Tamanho de cada subintervalo (passo)
                                                                  % Alocação de memória - vetor das abcissas
   t = a:h:b:
   y = zeros(1, n+1);
                                                                  % Alocação de memória - vetor das ordenadas
   y(1) = y0;
                                                                  % O primeiro valor de y é sempre y0 (condição inicial do pvi)
    for i=1:n
                                                                 % O número de iterações vai ser igual a n
       k1 = 0.5 * f(t(i), y(i));
       y(i+1) = y(i) + h*f(t(i) + h/2, y(i) + h*k1);
                                                                  % Ponto médio explícito
       y(i+1) = y(i) + h*f(t(i) + h/2, 0.5*(y(i) + y(i+1)));
                                                                 % Ponto médio implícito e próximo valor aproximado da solução do problema original
```

- 3. Exemplos de aplicação e teste dos métodos
- 3.1 Exercício 3 do teste farol
- 3.1.1 PVI Equação Diferencial de 1º ordem e Condições Iniciais
- 3. Considere o problema de valor inicial y' = -2ty, y(0) = 2, $t \in [0, 1.5]$
- (a) Verifique que $y(t) = 2 \exp(-t^2)$ é a solução exata do problema.

Para que $2 * e^{-t^2}$ seja a solução geral, temos que:

$$y(0) = 2$$
, logo: $2 = 2 * e^{0^2} <=> 2 = 2 \longrightarrow P.V.$

$$y'=(2*e^{-t^2})'=-4*e^{-t^2}*t$$

$$y' = -2*t*y <=> -4*e^{-t^2}*t = -2*t*2*e^{-t^2} <=> -4*e^{-t^2}*t = -4*e^{-t^2}*t \longrightarrow \text{P.V.}$$

(b) Complete a tabela seguinte e interprete os resultados obtidos. Para o preenchimento da coluna das aproximações de Euler, deve apresentar os cálculos das iterações da aplicação da fórmula do método de Euler.

			Aproxi	mações	F	
		$y(t_i)$	y_i	y_i	$ y(t_i) - y_i $	$ y(t_i)-y_i $
i	t_i	Exata	Euler	RK2	Euler	RK2
0	0	2			0	0
1		1.5576		1.5000		0.0576
2	1					0.0142
3	1.5	0.2108		0.3750		

Calcular o valor de n para, de seguida, utilizar a aplicação desenvilvida para preencher os valores em falta na tabela:

$$h = \frac{b-a}{n} <=> 0.5 = \frac{1.5-0}{n} <=> n = 3$$

3.1.2 Exemplos de output - App com gráfico e tabela

Euler:

Runge-Kutta de ordem 2:

Tabela preenchida:

			Aproxi	imações	F	Žiros
-		$y(t_i)$	y_i	y _i	$ y(t_i) - y_i $	$ y(t_i) - y_i $
i	t_i	Exata	Euler	RK2	Euler	RK2
0	0	2	2	2	0	0
1	0.5	1.5576	2	1.5000	0.4424	0.0576
2	1	0.7358	1	0.7500	0.2642	0.0142
3	1.5	0.2108	0	0.3750	0.2108	0.1642

Alínea c)

O gráfico que representa uma solução do PVI dado, como podemos observar através do gráfico obtido na aplicação, é o gráfico da Figura 4.

- 3.2 Problemas de aplicação do livro
- 3.2.1 PVI Modelação matemática do problema

Analisando o enunciado do problema, concluimos que:

$$m\frac{\tilde{d}v}{dt} = mg - kv^2, \ k > 0$$

$$t \in [0, 5]$$

$$v(0) = 0$$

O PVI pode ser ligeriamente simplificado, para que a sua interpretação seja mais fácil:

$$\frac{dv}{dt} = g - \frac{kv^2}{m}, \ k > 0$$

Analisando o resto da informação que nos é dada, temos que:

$$\frac{dv}{dt} = 32 - 0.025v^2$$

Uma vez que sabemos o valor de h, vamos então calcular o valor no n:

$$h = \frac{b-a}{n} <=> 1 = \frac{5-0}{n} <=> n = 5$$

3.2.2 Resolução através da App desenvolvida

Exercício 1:

Alínea a) 35.7128

Alínea b) Gráfico visível na aplicação

Alínea c) 35.7678

Exercício 2:

Sabendo o valor de h, vamos calcular o valor no n:

$$h = \frac{b-a}{n} <=> 0.5 = \frac{5-0}{n} <=> n = 10$$

t(days)	1	2	3	4	5
A(observed)	2.78	13.53	36.30	47.50	49.40
A(approximated)	1.93	12.50	36.46	47.23	49.00

Valores exatos:

t	Exata
0	0.2400
0.5000	0.6891
1.0000	1.9454
1.5000	5.2446
2.0000	12.6436
2.5000	24.6379
3.0000	36.6283
3.5000	44.0210
4.0000	47.3164
4.5000	48.5710
5.0000	49.0196

4. Conclusão

Concluímos que os métodos numéricos são úteis para a resolução de problemas reais, especialmente ligados à àrea científica.

Existem métodos mais precisos que outros, sendo o método Runge-Kutta de ordem 4 e a função ODE45 dos mais precisos, ou seja, com menor erro em relação à solução exata, enquanto que, por exemplo, o método de Euler apresenta erros maiores, o que faz com que a aproximação seja menos precisa.

De um modo geral, concluímos que quanto maior for o n, melhor será a aproximação do método e, consequentemente, menor será o erro.

5. Bibliografia

https://moodle.isec.pt/moodle/pluginfile.php/321364/mod_folder/content/0/Documentos%2 0e%20Apontamentos/doc01_EDO.pdf?forcedownload=1

https://en.wikipedia.org/wiki/Midpoint_method

https://en.wikipedia.org/wiki/Heun%27s_method

http://www.mat.uc.pt/~alma/aulas/anem/sebenta/cap6.pdf

http://www.mat.uc.pt/~alma/aulas/matcomp/documentos/IntroducaoaMatlabParte203.pdf