V48

Dipolrelaxation in ionischen Kristallen

Lukas Bertsch lukas.bertsch@tu-dortmund.de

Tom Troska tom.troska@tu-dortmund.de

Durchführung: 20.11.2023

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1.	Zielsetzung	3
2.	Theorie 2.1. Elektrische Dipole in Ionenkristallen	4
3.	Durchführung	5
4.	Auswertung4.1. Substraktion des Hintergrundes4.2. Ausgleichsrechnung für den Polarisationsansatz4.3. Ausgleichsrechnung für den Integralansatz4.4. Bestimmung der charakteristischen Relaxationszeit	7 7
5.	Diskussion	15
Lit	teratur	16
Α.		17 17

1. Zielsetzung

In diesem Versuch werden die Eigenschaften eines Ionenkristalls (Strontium dotiertes Kaliumbromid) mithilfe der Ionen-Thermostrom Methode (ITC: ionic thermocurrents [1]) untersucht. Dabei wird die temperaturabhängige Relaxationszeit der Dipole des Ionenkristall vermessen und so die charakteristische Relaxationszeit τ_0 , sowie die Aktivierungsenergie W der Dipole bestimmt.

2. Theorie

Ionenkristalle sind Kristalle, bei denen der Beitrag der ionischen Bindung überwiegt. Die positiv geladenen Kationen (hier: K⁺) gehen dabei eine Bindung mit den negativ geladenen Anionen (hier: Br⁻) ein und bilden ein kubisches Kristallgitter. In der Realität ist dieses Gitter jedoch nicht perfekt und es kommt zu Punktdefekten (Störstellen) an denen beispielsweise ein Gitterplatz nicht besetzt ist. Leerstellen können sich wie Ladungsträger im Kristall bewegen oder von anderen Atomen besetzt werden. Diese Eigenschaft wird sich bei der Dotierung von Kristallen zu Nutze gemacht, indem (geladene) Fremdatome in diese Störstellen eingebracht werden. Bei der Dotierung von Kaliumbromid mit Strontium nehmen zweifach positiv geladenen Strontiumatome eine Leerstelle ein. Damit lokal Ladungsneutralität gewährleistet ist, wandert ein benachbartes Kaliumatom zu einer anderen Leerstelle oder an die Oberfläche des Kristalls. Es entstehen elektrische Dipole, die sich innerhalb des Kirstallgitters orientieren können.

2.1. Elektrische Dipole in Ionenkristallen

Durch die unterschiedlich geladenen Atome bildet sich ein Dipolmoment

$$ec{P} = \sum_i ec{p}_i = \sum_i q \cdot ec{r}_i$$

wobei q die Ladung der Dipole und r_i der Abstand ist. Ohne äußere Einflüsse sind die einzelnen Dipole des Kristalls zufällig ausgerichtet und das Gesamtdipolmoment verschwindet. Wird jedoch ein elektrisches Feld \vec{E} angelegt, kann die potentielle Energie

$$E_{\rm pot} = -\vec{p}\cdot\vec{E}$$

der Dipole minimiert werden, indem sich die Dipole parallel zu den Feldlinien des elektrischen Feldes ausrichten. Da dazu die Leerstellen des Kirstalls ihre Position ändern müssen (Leerstellendiffusion) ist eine materialspezifische Aktivierungsenergie W von nöten, um die Coulombbarriere des Gitterpontetials zu überwinden. Ist genügend Energie durch thermische Anregung gegeben, richten sich die Dipole entlang des \vec{E} -Feldes aus. Durch Abschalten des elektrischen Feldes relaxieren die Dipole wieder in eine zufällige Verteilung. Die Eneergieverteilung des Kristalls folgt dabei der Boltzmann-Statistik, weshalb sich eine temperaturabhängige Relaxationszeit

$$\tau(T) = \tau_0 e^{W/k_B T} \tag{1}$$

angeben lässt. Die materialspezifische charakteristische Relaxationszeit des Kristalls ist $\tau_0 = \tau(\infty)$. Bei der Ionen-Thermostrom Methode wird der Kristall bei einer (hohen) Temperatur T_1 ausreichend lang durch ein elektrisches Feld E polarisiert. Anschließend wird der Kristall auf eine Temperatur T_0 herunter gekühlt, sodass die durch Gleichung 1 gegebene Relaxationszeit sehr lang ist. Durch Erwärmen des Kristalls relaxieren mehr und mehr Dipole, wodurch ein Strom an den senkrecht zum \vec{E} -Feld liegenden Flächen des Kristalls messbar ist. Anhand des Temperaturverlaufs des Stroms lassen sich τ_0 und W bestimmen. Dazu werden zwei Herleitungen eines Zusammenhangs zwischen den gesuchten Größen und dem Strom betrachtet [2].

2.2. Herleitung über Polarisationsstrom

In dieser Herleitung ist der Ansatz des Polarisationsstroms durch die Überlegung

$$i(T) = (\varnothing \text{Polarisierung}) \cdot (\# \text{ beteiligte Dipole}) \cdot (\text{Rate der Dipolrelaxation})$$
 (2)

gegeben. Die durchschnittliche Polarisierung ist dabei über die Debye-Polarisierung

$$P(T) = \frac{p^2 E}{3k_{\rm B}T}$$

gegeben, wobei p das Dipolmoment eines einzelnen Dipols ist. Die Anzahl der bei der Temperatur T beitragenden Dipole wird über die Relaxationsgleichung

$$\frac{\mathrm{d}N}{\mathrm{d}T} = -\frac{1}{\tau(T)} \cdot N$$

beschrieben und ist bei konstanter Heizrate b über die Lösung

$$\begin{split} N &= N_0 \mathrm{exp} \left(- \int_{t_0}^t \frac{1}{\tau(T)} \mathrm{d}t' \right) \\ &= N_0 \mathrm{exp} \left(- \int_{T_0}^T (b\tau_0)^{-1} \mathrm{e}^{-W/k_\mathrm{B}T'} \mathrm{d}T' \right) \end{split}$$

gegeben, wobei N_0 die Zahl der ursprünglich ausgerichteten Dipole bei T_0 ist. Die Rate der Dipolrelaxation ist das Inverse der Relaxationszeit (Gleichung 1). Damit folgt aus Gleichung 2 für den Strom

$$i(T) = \frac{N_0 p^2 E}{3k_{\rm B} T_1 \tau_0} e^{-W/k_{\rm B} T} \cdot \exp\left(-\int_{T_0}^T (b\tau_0)^{-1} e^{-W/k_{\rm B} T'} dT'\right). \tag{3}$$

Für tiefe Temperaturen, also zum Beginn der Messung gilt $\mathrm{e}^{-W/k_{\mathrm{B}}T}\approx 0$

$$\Rightarrow \int_{T_0}^T e^{-W/k_B T'} dT' \approx 0,$$

weshalb sich für den Anfangsbereich (für tiefe T)

$$\ln(i(T)) = const - \frac{W}{k_{\rm B}T} \tag{4}$$

schreiben lässt. Damit lässt sich durch eine lineare Regression des Anfangsbereichs die Aktivierungsenergie W der Dipole bestimmen. Des Weiteren ergibt sich ein von der Feldstärke E unabhängiges Maximum des Stromverlaufes bei

$$T_{\text{max}}^2 = \frac{bW\tau(T_{\text{max}})}{k_{\text{B}}} \tag{5}$$

durch Ableiten von Gleichung 3. Mit dem Wertepaar $(T_{\text{max}}, \tau(T_{\text{max}}))$ lässt sich so ebenfalls die Aktivierungsenergie W bestimmen.

2.3. Herleitung über die Stromdichte

Der zweiten Methode zur Herleitung des Depolarisationsstroms liegt die Überlegung zu Grunde, dass die zeitliche Änderungsrate der Polarisation gleich der Stromdichte j ist:

$$\frac{\mathrm{d}P}{\mathrm{d}t} = \frac{P(T)}{\tau T} = j(T). \tag{6}$$

Durch Integration folgt

$$P(T) \cdot A = \int_T^{T_f} j(T') \cdot A \mathrm{d}T' = \int_{t(T)}^{\infty} i(t') \mathrm{d}t',$$

wobei A die Fläche der Kontakte am Kristall ist. Zusammen mit Gleichung 6 ergibt sich so

$$\tau(T) = \frac{\int_{t(T)}^{\infty} i(t')dt'}{i(T)}$$

$$\Leftrightarrow \ln(\tau(T)) = \ln(\tau_0) + \frac{W}{k_{\rm B}T} = \ln\left(\int_{i(T)}^{\infty} i(T')dT'\right) - \ln(i(T)). \tag{7}$$

Das Integral kann dabei über graphische Integration über i(T) approximiert werden. Durch eine lineare Ausgleichsrechnung können W und τ_0 bestimmt werden.

3. Durchführung

Für die Durchführung des Versuches wird der in Abbildung 1 gezeigte Versuchsaufbau verwendet. Die Kaliumbromid Probe befindet sich im Rezipienten, der mithilfe einer Vakkumpumpe evakuiert ist. Zuerst wird die Probe mittels des Heizgerätes auf etwa 50 °C erhitzt und ein Spannung von 950 V an den Kondensator angelegt. Nach ca. 900 s ist die Probe ausreichend polarisiert und die Heizung kann abgeschaltet werden. Flüssiger

Abbildung 1: Der Aufbau des Versuches [4].

Stickstoff wird in das Dewar-Gefäß gefüllt, welcher die Probe über den Kupfer-Kühlfinger auf eine Temperatur von ungefähr $-60\,^{\circ}\mathrm{C}$ herunter kühlt. Ist die Zieltemperatur erreicht, kann das elektrische Feld abgeschalten und der Kondensator über die Erdung des Amperemeters für einige Minuten entladen werden. Anschließend wird das Picoamperemeter angeschlossen. Über das Heizgerät wird die Probe langsam wieder auf 50 °C mit einer möglichst konstanten Heizrate erhitzt. Dabei wird jede Minute die Temperatur und der Depolarisationsstrom notiert. Dieses Vorgehen wird für zwei unterschiedliche Heizraten b (z.B. $b=1,4/2\,^{\circ}\mathrm{C/min}$) durchgeführt.

4. Auswertung

Zur Messung der Dipol
relaxation in dem betrachteten Kristall wird der Kondensatorstrom I in Abhängigkeit von der Temperatur T gemessen. Dabei werden zwei verschiedene Heizraten $b\approx 1.4\,\mathrm{K/min}$ und $b\approx 2\,\mathrm{K/min}$ verwendet. Die Messwerte sind in Tabelle 1 und Tabelle 2 angegeben.

Für die weitere Auswertung wird der Mittelwert der tatsächlichen Heizraten genommen.

Es ergibt sich

$$b_1 = (1.9 \pm 0.4) \frac{\text{K}}{\text{min}}$$

$$b_2 = (1.47 \pm 0.26) \frac{\text{K}}{\text{min}}$$

4.1. Substraktion des Hintergrundes

Der zu erwartende Untergrund bei Messung des Stroms I entspricht einer Exponentialfunktion. Als gute Näherung kann mithilfe einer durch Fitten einer Exponentialfunktion an Datenpunkte, die nicht am Peak liegen, berechnet und subtrahiert werden. Dies ist in Abbildung 2 für die beiden Messreihen zu sehen. Mit einer Exponentialfunktion vom Typ $f(x) = a_{Bg} e^{b_{Bg}x} + c_{Bg}$ ergeben sich die Fitparameter

$$\begin{split} a_{\mathrm{Bg},1} &= (0,\!006 \pm 0,\!005)\,\mathrm{pF} \qquad b_{\mathrm{Bg},1} = 0,\!0282 \pm 0,\!0030 \qquad c_{\mathrm{Bg},1} = (0,\!3 \pm 0,\!6)\,\mathrm{pF} \\ a_{\mathrm{Bg},2} &= (0,\!022 \pm 0,\!030)\,\mathrm{pF} \qquad b_{\mathrm{Bg},2} = 0,\!023 \pm 0,\!005 \qquad c_{\mathrm{Bg},2} = (-2,\!0 \pm 1,\!3)\,\mathrm{pF}. \end{split}$$

In Abbildung 3 sind die um den Hintergrund bereinigten Messdaten dargestellt. Es fällt auf, dass sich für den höheren Temperaturbereich unphysikalische, negative Ströme ergeben. In der Diskussion der Ergebnisse in Abschnitt 5 werden mögliche Gründe und die Wirkung auf die weitere Auswertung erörtert.

4.2. Ausgleichsrechnung für den Polarisationsansatz

In Unterabschnitt 2.2 wird eine näherungsweise lineare Abhängigkeit des Logarithmus des Polarisationsstroms zum inversen der Temperatur hergeleitet. Die in Abbildung 3 rot markierten Werte werden dafür verwendet und sind in Abbildung 4 in linearisierter Form dargestellt. Der Zusammenhang aus Formel (3) wird verwendet, um mithilfe der Parameter einer linearen Ausgleichsrechnung vom Typ $f(x) = m_{\text{Anstieg}} x + b_{\text{Anstieg}}$ die Aktivierungsenergie W der Dipole auszurechnen.

Für die Parameter und die daraus folgende Aktivierungsenergie ergibt sich

$$\begin{split} b_{\text{Anstieg},1} &= 34.6 \pm 1.0 \quad m_{\text{Anstieg},1} = (-8.04 \pm 0.25) \cdot 10^3 \, \text{K} \quad \Rightarrow W_{\text{Anstieg},1} = (0.693 \pm 0.022) \, \text{eV} \\ b_{\text{Anstieg},2} &= 36.5 \pm 0.8 \quad m_{\text{Anstieg},2} = (-8.64 \pm 0.21) \cdot 10^3 \, \text{K} \quad \Rightarrow W_{\text{Anstieg},2} = (0.744 \pm 0.018) \, \text{eV}. \end{split}$$

4.3. Ausgleichsrechnung für den Integralansatz

Gemäß des in Unterabschnitt 2.3 hergeleiteten Zusammenhangs (7) kann durch graphische Integration über den Strom erneut ein linearer Zusammenhang zum inversen der

Tabelle 1: Daten der ersten Messreihe mit der Heizrate $b_1 = (1.9 \pm 0.4) \, {\rm K/min}.$

t / \min	<i>T</i> / °C	T/K	I/pA	$b / \mathrm{K/min}$	t / \min	<i>T</i> / °C	T/K	I/pA	$b / K/\min$
0	-68,0	205,0	4,2	0,0	31	-10,0	263,0	54,0	1,9
1	-68,0	205,0	$3,\!4$	0,3	32	-8,0	265,0	52,0	2,0
2	-67,0	206,0	3,0	0,7	33	-6,0	268,0	47,0	2,1
3	-66,0	207,0	2,6	0,9	34	-4,0	270,0	39,0	2,1
4	-65,0	208,0	2,5	1,3	35	-1,0	272,0	30,0	2,2
5	-63,0	210,0	2,4	1,6	36	1,0	274,0	23,0	2,0
6	-62,0	212,0	2,4	1,8	37	3,0	276,0	18,0	2,1
7	-60,0	213,0	2,4	1,9	38	5,0	278,0	16,0	2,1
8	-58,0	215,0	2,5	2,0	39	7,0	280,0	16,0	1,9
9	-56,0	217,0	2,6	2,0	40	9,0	282,0	16,5	2,0
10	-54,0	219,0	2,7	2,0	41	11,0	284,0	17,5	2,0
11	-52,0	222,0	2,9	2,1	42	13,0	286,0	18,5	1,9
12	-49,0	224,0	3,1	2,2	43	15,0	288,0	19,0	2,0
13	-47,0	226,0	$3,\!4$	2,2	44	17,0	290,0	20,0	1,9
14	-45,0	228,0	4,2	2,2	45	19,0	292,0	20,5	2,0
15	-42,0	231,0	5,1	2,5	46	21,0	294,0	21,5	2,0
16	-40,0	233,0	5,6	2,5	47	23,0	296,0	22,0	2,0
17	-38,0	236,0	6,1	2,5	48	25,0	298,0	22,0	2,1
18	-35,0	238,0	6,8	2,3	49	27,0	300,0	21,5	2,1
19	-33,0	240,0	7,7	2,2	50	29,0	302,0	20,5	2,0
20	-31,0	242,0	8,9	2,0	51	31,0	304,0	19,0	1,9
21	-29,0	244,0	10,5	2,1	52	33,0	306,0	17,5	2,0
22	-27,0	246,0	12,0	2,2	53	35,0	308,0	15,5	1,9
23	-25,0	249,0	15,5	2,1	54	37,0	310,0	14,0	2,0
24	-23,0	250,0	19,0	1,8	55	39,0	312,0	12,0	2,0
25	-21,0	252,0	$23,\!5$	1,8	56	40,0	314,0	11,0	1,9
26	-19,0	254,0	29,0	1,9	57	42,0	316,0	11,0	2,0
27	-17,0	256,0	35,0	1,9	58	45,0	318,0	10,5	2,1
28	-15,0	258,0	42,0	1,9	59	47,0	320,0	10,5	2,0
29	-13,0	260,0	48,0	1,9	60	49,0	322,0	11,5	2,0
30	-12,0	262,0	52,0	1,8	61	51,0	324,0	12,0	2,0

Tabelle 2: Daten der zweiten Messreihe mit der Heizrate $b_2 = (1.47 \pm 0.26)\,\mathrm{K/min}$

t / \min	<i>T</i> / °C	T/K	I/pA	$b / K/\min$	t / \min	<i>T</i> / °C	T/K	I/pA	$b / K/\min$
0	-67,0	206,0	1,4	0,0	40	-6,0	267,0	40,0	$1,\!4$
1	-66,0	207,0	1,35	1,0	41	-5,0	268,0	36,0	$1,\!5$
2	-65,0	208,0	$1,\!25$	1,3	42	-3,0	270,0	30,0	1,5
3	-63,0	210,0	1,2	1,4	43	-2,0	271,0	24,0	1,5
4	-62,0	211,0	1,1	1,5	44	0,0	273,0	19,0	$1,\!4$
5	-60,0	213,0	1,05	1,5	45	1,0	274,0	15,5	1,3
6	-59,0	214,0	1,1	1,5	46	2,0	276,0	$13,\!5$	$1,\!5$
7	-57,0	216,0	1,1	1,4	47	4,0	277,0	12,5	$1,\!5$
8	-56,0	217,0	$1,\!15$	$1,\!5$	48	5,0	279,0	12,5	1,4
9	-54,0	219,0	1,3	$1,\!5$	49	7,0	280,0	12,5	1,4
10	-53,0	220,0	$1,\!45$	$1,\!5$	50	8,0	281,0	13,0	1,4
11	-51,0	222,0	$1,\!65$	1,8	51	10,0	283,0	14,0	1,6
12	-49,0	224,0	1,9	2,0	52	11,0	284,0	$14,\!5$	1,4
13	-47,0	226,0	2,7	2,4	53	13,0	286,0	15,5	1,4
14	-44,0	229,0	4,8	2,5	54	14,0	287,0	16,0	$1,\!5$
15	-42,0	231,0	5,2	1,8	55	16,0	289,0	17,0	1,4
16	-41,0	232,0	5,5	1,6	56	17,0	290,0	17,5	1,5
17	-39,0	234,0	5,5	1,5	57	18,0	292,0	18,5	1,5
18	-38,0	235,0	5,6	1,3	58	20,0	293,0	19,0	1,5
19	-37,0	236,0	5,6	1,2	59	21,0	295,0	19,0	1,4
20	-35,0	238,0	5,7	1,4	60	23,0	296,0	19,0	1,4
21	-34,0	239,0	6,0	1,4	61	24,0	297,0	19,0	1,5
22	-32,0	241,0	6,2	1,5	62	26,0	299,0	18,5	1,5
23	-31,0	242,0	6,7	1,5	63	27,0	300,0	17,5	1,4
24	-30,0	244,0	7,2	1,5	64	28,0	302,0	17,0	1,3
25	-28,0	245,0	7,9	1,5	65	30,0	303,0	16,0	1,5
26	-26,0	247,0	8,9	1,5	66	32,0	305,0	15,0	1,5
27	-25,0	248,0	10,5	1,5	67	33,0	306,0	14,0	1,4
28	-24,0	250,0	12,0	1,5	68	34,0	308,0	12,5	1,5
29	-22,0	251,0	14,0	1,5	69	36,0	309,0	11,5	1,5
30	-21,0	253,0	16,5	$1,\!4$	70	37,0	311,0	10,5	1,5
31	-19,0	254,0	19,0	1,4	71	39,0	312,0	10,0	$1,\!4$
32	-18,0	255,0	$22,\!5$	1,4	72	40,0	313,0	9,2	1,4
33	-16,0	257,0	26,5	$1,\!4$	73	42,0	315,0	8,9	$1,\!4$
34	-15,0	258,0	31,0	$1,\!4$	74	43,0	316,0	8,6	1,5
35	-14,0	260,0	35,0	1,5	75	44,0	318,0	8,7	1,3
36	-12,0	261,0	40,0	1,5	76	46,0	319,0	9,2	1,5
37	-10,0	263,0	42,0	1,5	77	47,0	321,0	9,7	1,5
38	-9,0	264,0	44,0	1,4	78	49,0	322,0	10,0	1,4
39	-8,0	266,0	43,0	1,5	79	50,0	323,0	10,5	1,5

(a) 1. Messreihe, Heizrate $b_1=(1.9\pm0.4)\,\mathrm{K/min}.$

(b) 2. Messreihe, Heizrate $b_2 = (1,47 \pm 0,26)\,\mathrm{K/min}.$

Abbildung 2: Messdaten des Stroms I in Abhängigkeit von der Temperatur T mit eingezeichnetem exponentiellen Fit für den thermischen Hintergrund. Die für den Fit verwendeten Messwerte sind rot markiert.

(a) 1. Messreihe, Heizrate $b_1 = (1.9 \pm 0.4)\,\mathrm{K/min}.$

(b) 2. Messreihe, Heizrate $b_2 = (1,\!47 \pm 0,\!26)\,\mathrm{K/min}.$

(a) 1. Messreihe, Heizrate $b_1 = (1.9 \pm 0.4)\,\mathrm{K/min}.$

(b) 2. Messreihe, Heizrate $b_2 = (1{,}47 \pm 0{,}26)\,\mathrm{K/min}.$

Abbildung 4: Linearisierte Darstellung der in Abbildung 3 in rot gekennzeichneten Messwerte mit eingezeichneter Ausgleichsgeraden.

Temperatur hergestellt werden. Die dafür verwendeten Datenpunkte sind in Abbildung 3 orange markiert und in Abbildung 5 linearisiert aufgetragen. Auch hier liefert eine lineare Ausgleichsrechnung vom Typ $f(x) = m_{intfit}x + b_{intfit}$ die Parameter, die über Gleichung 7 Aufschluss über die Aktivierungsenergie W geben. Es folgt

$$\begin{split} b_{\rm intfit,1} &= -39.5 \pm 2.6 \quad m_{\rm intfit,1} = (1.08 \pm 0.07) \cdot 10^4 \, {\rm K} \quad \Rightarrow W_{\rm intfit,1} = (0.93 \pm 0.06) \, {\rm eV} \\ b_{\rm intfit,2} &= -53 \pm 4 \qquad m_{\rm intfit,2} = (1.44 \pm 0.12) \cdot 10^4 \, {\rm K} \quad \Rightarrow W_{\rm intfit,2} = (1.24 \pm 0.10) \, {\rm eV}. \end{split}$$

4.4. Bestimmung der charakteristischen Relaxationszeit

Aus Gleichung 5 folgt, dass die charakteristische Relaxationszeit τ_0 von der Aktivierungsenergie W, der Heizrate b und der Temperatur $T_{\rm max}$ an der Stelle des Strompeaks abhängt. Mithilfe der zuvor bestimmten Aktivierungsenergien W werden

$$\begin{split} \tau_{0, \mathrm{Anstieg_1}} &= (5.4 \pm 1.3) \cdot 10^{-19} \, \mathrm{s} \\ \tau_{0, \mathrm{Anstieg_2}} &= (5.3 \pm 1.0) \cdot 10^{-19} \, \mathrm{s} \end{split}$$

berechnet. Mithilfe des Parameters $b_{\rm intfit}$ und Gleichung 7 wird ebenfalls τ_0 bestimmt. Es ergibt sich

$$\begin{split} \tau_{0,\mathrm{intfit}_1} &= (0.7 \pm 1.8) \cdot 10^{-17}\,\mathrm{s} \\ \tau_{0,\mathrm{intfit}_2} &= (1 \pm 5) \cdot 10^{-23}\,\mathrm{s} \end{split}$$

Unter Verwendung von Gleichung 1 wird die Relaxationszeit in Abhängigkeit von der Temperatur in Abbildung 6 geplottet. Auf das Einzeichnen der mithilfe der Integralmethode bestimmten Funktion von τ wird aufgrund der offensichtlich sehr großen Abweichung verzichtet.

(a) 1. Messreihe, Heizrate $b_1 = (1.9 \pm 0.4)\,\mathrm{K/min}.$

(b) 2. Messreihe, Heizrate $b_2 = (1{,}47 \pm 0{,}26)\,\mathrm{K/min}.$

Abbildung 5: Linearisierte Darstellung der in Abbildung 3 in orange gekennzeichneten Messwerte mit eingezeichneter Ausgleichsgeraden.

Abbildung 6: Abhängigkeit der Relaxationszeit τ von der Temperatur.

5. Diskussion

Ein Theoriewert für die benötigte Aktivierungsenergie W des Kristalls liegt für strontiumdotierte Kaliumbromidkristalle bei rund $W=0.66\,\mathrm{eV}$ [3]. Die mit den zwei verschiedenen Methoden bestimmten Werte für die Aktivierungsenergie liegen allesamt im Bereich von etwa einem Elektronenvolt, explizit

$$\begin{split} W_{\rm Anstieg,1} &= (0.693 \pm 0.022) \, \mathrm{eV} \\ W_{\rm Anstieg,2} &= (0.744 \pm 0.018) \, \mathrm{eV} \\ W_{\rm intfit,1} &= (0.93 \pm 0.06) \, \mathrm{eV} \\ W_{\rm intfit,2} &= (1.24 \pm 0.10) \, \mathrm{eV}. \end{split}$$

Es zeigt sich, dass die Größenordnung bei allen berechneten Werten übereinstimmt, wobei die Werte der Aktivierungsenergie W, welche über die Integralmethode berechnet werden, stärker abweichen. Für die Relaxationszeit τ ist in der Literatur mit $\tau = 4 \cdot 10^{-14} \,\mathrm{s}$ [3]

angeben. Experimentell bestimmt werden

$$\begin{split} \tau_{0,\text{Anstieg}_1} &= (5.4 \pm 1.3) \cdot 10^{-19} \, \text{s} \\ \tau_{0,\text{Anstieg}_2} &= (5.3 \pm 1.0) \cdot 10^{-19} \, \text{s} \\ \tau_{0,\text{intfit}_1} &= (0.7 \pm 1.8) \cdot 10^{-17} \, \text{s} \\ \tau_{0,\text{intfit}_2} &= (1 \pm 5) \cdot 10^{-23} \, \text{s}. \end{split}$$

Hier zeigt sich, dass die Abweichungen mit bis zu 9 Größenordnungen als sehr groß zu bezeichnen sind.

Ein möglicher Grund für die großen Abweichungen ist die Tatsache, dass das benötigte Vakuum im Rezipienten erst kurz vor der Datennahme erzeugt wurde. Üblich ist es, dass eine durchgängig laufende Vakuumpumpe den Rezipienten permanent evakuiert und somit sicherstellt, dass sich eine möglichst geringe Menge Wasser ansammelt. Da dies bei dieser Durchführung nicht der Fall war, ist eine Abweichung der Daten nicht auszuschließen.

Es ist ebenfalls wahrscheinlich, dass der Fit für den thermischen Hintergrund ungenügend ist. Ein Hinweis darauf ist der unphysikalische, negative Strom nach Abzug des Hintergrundes. Diese Unsicherheit setzt sich in die Bestimmung der Aktivierungsenergie W und der Relaxationszeit τ fort und potenziert sich dabei.

Ableseungenauigkeiten am Picoamperemeter sind gleichermaßen nicht auszuschließen und können sich aufgrund von Fehlerfortpflanzung auch zu großen Ungenauigkeiten in der Berechnung der Endgrößen auswirken.

Insbesondere für die Integralmethode ist es essentiell, dass die Heizrate b konstant ist. Unsicherheiten hier können auch zu Abweichungen im Endergebnis führen.

Literatur

- [1] Cesare Bucci, Roberto Fieschi und Germano Guidi. "Ionic Thermocurrents in Dielectrics". In: *Phys. Rev.* 148 (Aug. 1966). DOI: 10.1103/PhysRev.148.816. URL: https://link.aps.org/doi/10.1103/PhysRev.148.816.
- [2] R.M. Fuller. "Research Project for Undergraduates: Ionic Thermoconductivity in Dielectrics". In: Am J. Phys 40 (1972).
- [3] J. Rolfe R. Muccillo. Effect of Irradiation on Impurity-Vacancy Dipoles in KBr Crystals Doped with Strontium(abstract). 1. Feb. 1974. URL: http://onlinelibrary.wiley.com/doi/10.1002/pssb.2220610223/abstract.
- [4] V48 Dipole relaxation in ionic crystals. TU Dortmund.

A. Anhang

A.1.	Origin	naldaten					20.11.12
		V48:	Dipoliela	exation 1	, loven	wist alles	
		t/mis	T/00	I/pA	to min	7/00	IlpA
	4	0	- 68,2	4,2	, , , , , , , , , , , , , , , , , , , ,		19
74		1	- 67,9	3,4	44	16,6	70.5
3		2	- 68,2 - 67,9 - 67,2 - 66,3	3.0	46	70,6	20 20,5 21,5 22 22
		3	-66,3	7,6	48	74,7	22
7		3	-65,0	2,5	50	788	27,5
		5	- 63,4	7,4	52	32,7	175
The state of the s		6	-61,6	74	54	36,6	14
6		7	- 59,7	7 4	56	40,5	117
15 15 15 15 15 15 15 15 15 15 15 15 15 1	G	7 8 9 10 12 13 14 15	- 57.7	I 4 4 3 7 4 3 7 6 2 7 7 4 4 5 6 7 5 7 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7	44567890 44567890 5555 557 558 550 601	76666788776665566666 11177777788776665566666	10,5 10,5 11,5 12
T _a		10	- \$7,7 - \$5,7 - \$3,7 - \$1,6 - 45,9 - 47,2 - 45,0 - 42,5 - 40,0	7,6	60	486	110,5
14		12	- 51,6	2,9	(0-1	50,0	12
3		13	-47,2	3,4			
5		15 16	- 42,5	51			
3		17	-37,5	6.1			
5		19	- 53/0	7,7			
3		21	- 28,5 - 26,7	10,5			
3 (23	- 2617	15,5			
		25	- 27,8	19 25,5			
2		26	-15/1	20,0 35,0 42'			
15		79	- 153	42			
2		30	- 37,0 - 29,5 - 29,6 - 24,8 - 21,7 - 21,7 - 15,7 - 15,7 - 5,7 - 5,7 - 5,7 - 5,7 - 5,7 - 5,7	52			
5		32	- 7.7	52			
5		34		35			
2		18 19 20 20 20 20 20 20 20 20 20 20 20 20 20	1,3 10,7 2,9 10,7 10,7 10,7 10,7 10,7	48 52 54 52 47 35 30 (23) 23 18 16 16 5 745 745			
Z		38	4/3	18			
2		3 9 4 0	88	16 5			
Z		47	10,8	175			
		400		-18,5			121
2							

V48	(Zwer	e yess	(7)			U.T.
t/mi	T/°C - 67,0	I/pA 1,40	t/min	7/20	I/pA 14,0	
3	- 66,0 - 64,7 - 63,5	1,35	5534	3,8	19,5	
567	-60,8	7,00	5567	7578	17,0	
60	- 555 - 575 - 575	1,30	59 60 61	7777	15,0	
17	- 49.7 - 46.7	7,65	67 64	7787	18.55	
75 76 17	- 42,4 - 40,8 - 39,3	\$7555	66	57790	16.0	
18 13 20	-380 -36,8 -35,4	5,6 5,6 5,7	65 70 71	35.5	10,5	
TO 125 45 678 507 125 45 678 501 25 45 678 501 25 45 678 50 123 45 678 50 123 45 678 50 123 45 678 50 123 45 678 50	00738384545757 66666535577 7	350050050500 350050050500 350050050505050505050505050505050505050	5525555566666666666667777777777777777	1,050,050,050,050,050,050,050,050,050,05	17111111111111111111111111111111111111	
25 26 27 72	-780 -26,5 -25,0	79	76 77 78	45,5	5 7 7 10 0	
25 30 31	- 27,0 - 20,6 - 15,7	19.0	7.5	50,5	70,5	
33	- 17,8 - 16,4 - 15,0	72,5				
36 37 38	- 12,0 - 10,5 - 5,1	33 40 44				
39 40 41	-7,6 -6,7 -4,7	43				
43	1.7.7	24,0 15,0				
46748	-124568	13,5 12,5 12,5 12,5 13,0				
50	3,2	13,0			d	