

PGCluster-II

Clustering system of PostgreSQL using Shared Data

Atsushi MITANI - mitani@sraw.co.jp

HA

First Italian PostgreSQL Day
PGDay 2007 – July 6,7 2007 – Prato, Italy

Requirement

PGCluster

New Requirement

PGCluster-II

Structure and Process sequence

As a background

Requirement

PGCluster

New Requirement

PCCluster-II

Structure and Process sequence

PG-JAY

Original requirement

- Target application
 - Web application
 - Heavy session load
- High availability
 - with ordinary servers
 - No down time
- High performance for data read
 - More than 90% sessions were data read query.

Requirement

PGCluster

New Requirement

PGCluster-II

Structure and Process sequence

PGJAY

PGCluster(2002-)

- Synchronous & Multi-master Replication system
- Query based replication
 - DB node independent data can replicate
 - now(),random()
- No single point of failure
 - Multiplex load balancer, replication server and cluster DBs.
- Automatic take over
 - Restore should do by manually
- Add cluster DB and replication server on the fly.
 - Version upgrade as well

Structure of PGCLuster

Pros & Cons of PGCluster

- Enough HA
- Enough performance
 - for data reading load
- Cost
 - Ordinary PC servers
 - BSD license SW

- Performance issue
 - Very bad for data writing load
- Maintenance issue
- Document issue

5 years later

Requirement

PCCluster

New Requirement

PGCluster-II

Structure and Process sequence

Requirement is changed

- Target application
 - Web application
 - OLTP application
- HA and HP
 - HP is required even for data write
 - Service stop is not allowed

PG-JAY

Coexistence of HA and HP

- HA and HP conflict each other
 - HA required redundancy
 - HP required quick response
- Performance point of view
 - Replication scales for data reading (not writing)
 - Parallel query has effect in both
 - However it is not easy to add redundancy (HA).
 - Shared Data Clustering also scales for both
 - However, it is not suitable for large data.
 - Shared Disk needs redundancy.

As a solution

Requirement

PCCluster

New Requirement

PGCluster-11

Structure and Process sequence

What is the PGCluster-II

- Data shared clustering system
 - Storage data shared by shared disk
 - NFS, GFS, GPFS(AIX) etc.
 - SAN/NAS
 - Cache and lock status shared by Virtual IPC
 - Detail as following slides

Concept of Shared Data

PG-DAY

Inside of PGCluster-II

Requirement

PCCluster

New Requirement

PCCluster-11

Structure and Process sequence

- Share semaphore and shared memory during DB nodes
 - Write it to remote nodes through cluster process
 - Read it from local node directory
- Signal and message queue are out of scope

Structure of PGCluster-II

- To Lock control
- How many semaphores are using?
 - Depends on the "max-connections" setting
 - In default, 7 x 16 semaphores are used.
- Mapping table is required

Shared Memory

- Communicate during each backend processes
- Store data of logs, caches, buffers and so on
- Single shared memory is allocated
 - But it is divided a number of peaces
 - more than 100 entry pointer are existing.

Issues of Shared Memory

- Activity issue
 - Size is not big but update frequency is very high
- Contents issue
 - It is including memory/function address
 - If copy shared memory to other server, other DB server may be crashed (depend on the OS).

Address	Data	Туре	Label
&1000	&1004	Char *	Data
&1004	1	OID	Oid
&1008	&1012	Char *	Next
&1012	&1024	Char *	Data

Address	Data	Type	Label
&2000	2,1004	Char *	Data
&2004	1	OID	Oid
&2008	21012	Char *	Next
&2012	&1024	Char *	Data

Solution

- Mask table & localization table
 - It worked, but very bad performance
- Data changed to offset from address
 - char * ptr -> Size offset
 - It's still over head, but better than before.

As a result

Requirement

PCCluster

New Requirement

PCCluster-11

Structure and Process sequence

- Easy to add a node for redundancy / replace.
- Data writing performance does not slow by adding node.
- Big improve to data reading / many connection load.

- Required large RAM.
- Writing performance is not good yet.
- Nothing expands
- Cost
 - Shared disk system is expensive

- Performance should more improve.
 - Narrow down the target shared memory data.
 - It should send multi memory data at once.
- Release source code
 - ASAP
- Documentation as well

Thank you

- Ask us about PGCluster
 - pgcluster-general@pgfoundry.org
- Ask me about PGCluster-II
 - mitani@sraw.co.jp