

Preliminary datasheet EasyPACK™ Modul mit CoolSiC™ Trench MOSFET und PressFIT / NTC / TIM

Eigenschaften

- Elektrische Eigenschaften
 - V_{DSS} = 1200 V
 - $I_{DN} = 75 \text{ A} / I_{DRM} = 150 \text{ A}$
 - Hohe Stromdichte
 - Niederinduktives Design
 - Niedrige Schaltverluste
- Mechanische Eigenschaften
 - Integrierter NTC Temperatur Sensor
 - PressFIT Verbindungstechnik
 - Robuste Montage durch integrierte Befestigungsklammern
 - Thermisches Interface Material bereits aufgetragen

Potenzielle Anwendungen

- Schweißen
- Anwendungen mit hohen Schaltfrequenzen
- Schnellladesäulen
- DC/DC Wandler

Produktvalidierung

 Qualifiziert für Industrieanwendungen entsprechend den relevanten Tests der IEC 60747, 60749 und 60068

Beschreibung

F4-15MR12W2M1P_B76 EasyPACK[™] Modul

Inhalt

	Beschreibung	1
	Eigenschaften	
	Potenzielle Anwendungen	1
	Produktvalidierung	1
	Inhalt	2
1	Gehäuse	3
2	MOSFET	3
3	Body diode	5
4	NTC-Widerstand	5
5	Kennlinien	7
6	Schaltplan	10
7	Gehäuseabmessungen	. 11
8	Modul-Label-Code	. 12
	Änderungshistorie	. 13
	Disclaimer	14

EasyPACK[™] Modul

1 Gehäuse

1 Gehäuse

Tabelle 1 Isolationskoordination

Parameter	Symbol Notiz oder Prüfbedingung		Werte	Einh.	
Isolations-Prüfspannung	V _{ISOL}	RMS, f = 50 Hz, t = 60 s	3.0	kV	
Innere Isolation		Basisisolierung (Schutzklasse 1, EN61140)	Al ₂ O ₃		
Kriechstrecke	d_{Creep}	Kontakt - Kühlkörper	11.5	mm	
Kriechstrecke	d_{Creep}	Kontakt - Kontakt	6.3	mm	
Luftstrecke	d_{Clear}	Kontakt - Kühlkörper	10.0	mm	
Luftstrecke	d_{Clear}	Kontakt - Kontakt	5.0	mm	
Vergleichszahl der Kriechwegbildung	СТІ		>200		
Relativer Temperaturindex (elektr.)	RTI	Gehäuse	140	°C	

Tabelle 2 Charakteristische Werte

Parameter	Symbol	Notiz oder Prüfbedingung		Werte		Einh.
			Min.	Тур.	Max.	
Modulstreuinduktivität	L _{sCE}			9		nH
Lagertemperatur	$T_{\rm stg}$		-40		125	°C
Höchstzulässige Bodenplattenbetriebstempe ratur	T _{BPmax}				125	°C
Anpresskraft für mech. Bef. pro Feder	F		40		80	N
Gewicht	G			39		g

Anmerkung: The current under continuous operation is limited to 25 A rms per connector pin.

Storage and shipment of modules with TIM => see AN 2012-07

Important note: The selection of positive and negative gate-source voltages impacts the long-term behavior of the device. The design guidelines described in Application Note AN 2018-09 must be considered to ensure sound operation of the device over the planned lifetime.

2 MOSFET

Tabelle 3 Höchstzulässige Werte

Parameter	Symbol	Notiz oder Prüfbedingung		Werte	Einh.
Drain-Source-Spannung	$V_{\rm DSS}$		T _{vj} = 25 °C	1200	V
Implementierter Drain- Strom	I _{DN}			75	А
Drain-Dauergleichstrom	I _{DDC}	$T_{\rm vj}$ = 175 °C, $V_{\rm GS}$ = 15 V	T _H = 65 °C	60	А

EasyPACK[™] **Modul**

2 MOSFET

Tabelle 3 (Fortsetzung) Höchstzulässige Werte

Parameter	Symbol	Notiz oder Prüfbedingung	Werte	Einh.
Periodischer Drain- Spitzenstrom	I _{DRM}	verified by design, t _p limited by T _{vjmax}	150	А
Gate-Source-Spannung	V_{GSS}		-10/20	V

Tabelle 4 Charakteristische Werte

Parameter	Symbol	Notiz oder Prüfbedingu	ng		Werte		Einh.
				Min.	Тур.	Max.	
Einschaltwiderstand	R _{DS(on)}	I _D = 75 A	$V_{\rm GS} = 15 \rm V,$ $T_{\rm vj} = 25 ^{\circ} \rm C$		15		mΩ
			$V_{\rm GS}$ = 15 V, $T_{\rm vj}$ = 125 °C		19.7		
			V _{GS} = 15 V, T _{vj} = 150 °C		22		
Gate-Schwellenspannung	V _{GS(th)}	$I_D = 30 \text{ mA}, V_{DS} = V_{GS}, T_{vj} = 1 \text{ms pulse at } V_{GS} = +20 \text{ V})$		3.45	4.5	5.55	V
Gateladung	Q _G	$V_{\rm DS}$ = 800 V, $V_{\rm GS}$ = -5/15 V			0.186		μC
Interner Gatewiderstand	R _{Gint}	T _{vj} = 25 °C			1.3		Ω
Eingangskapazität	C _{ISS}	$f = 1 \text{ MHz}, V_{DS} = 800 \text{ V},$ $V_{GS} = 0 \text{ V}$	T _{vj} = 25 °C		5.52		nF
Ausgangskapazität	C _{OSS}	$f = 1 \text{ MHz}, V_{DS} = 800 \text{ V},$ $V_{GS} = 0 \text{ V}$	T _{vj} = 25 °C		0.33		nF
Rückwirkungskapazität	C _{rss}	$f = 1 \text{ MHz}, V_{DS} = 800 \text{ V},$ $V_{GS} = 0 \text{ V}$	T _{vj} = 25 °C		0.042		nF
C _{OSS} Speicherenergie	E _{OSS}	$V_{\rm DS}$ = 800 V, $V_{\rm GS}$ = -5/15 V,	T _{vj} = 25 °C		132		μJ
Drain-Source-Reststrom	I _{DSS}	$V_{\rm DS}$ = 1200 V, $V_{\rm GS}$ = -5 V	T _{vj} = 25 °C		0.3	300	μA
Gate-Source-Reststrom	I _{GSS}	$V_{\rm DS}$ = 0 V, $T_{\rm vj}$ = 25 °C	V _{GS} = 20 V			400	nA
Einschaltverzögerungszeit	t _{d on}	$I_{\rm D} = 75 \text{A}, R_{\rm Gon} = 5.6 \Omega,$	T _{vj} = 25 °C		20		ns
(ind. Last)		$V_{\rm DS} = 600 \text{ V}, V_{\rm GS} = -5/15 \text{ V}$	T _{vj} = 125 °C		19		
			T _{vj} = 150 °C		19		
Anstiegszeit (induktive Last)	t _r	$I_{\rm D} = 75 \text{A}, R_{\rm Gon} = 5.6 \Omega,$	T _{vj} = 25 °C		16		ns
		$V_{\rm DS} = 600 \text{ V}, V_{\rm GS} = -5/15 \text{ V}$	T _{vj} = 125 °C		15		
			T _{vj} = 150 °C		15		
Abschaltverzögerungszeit	t _{d off}	$I_{\rm D} = 75 \text{A}, R_{\rm Goff} = 3.9 \Omega,$	T _{vj} = 25 °C		55		ns
(ind. Last)		$V_{\rm DS} = 600 \text{ V}, V_{\rm GS} = -5/15 \text{ V}$	T _{vj} = 125 °C		59		
			T _{vj} = 150 °C		59		

(wird fortgesetzt...)

EasyPACK[™] Modul

3 Body diode

Tabelle 4 (Fortsetzung) Charakteristische Werte

Parameter	Symbol	Notiz oder Prüfbedingu	ng		Werte		Einh.
				Min.	Тур.	Max.	
Fallzeit (induktive Last)	t _f	$I_{\rm D} = 75 \text{A}, R_{\rm Goff} = 3.9 \Omega,$	T _{vj} = 25 °C		23		ns
		$V_{\rm DS} = 600 \text{V}, V_{\rm GS} = -5/15 \text{V}$	T _{vj} = 125 °C		24		
			T _{vj} = 150 °C		24		
Einschaltverlustenergie pro	E _{on}	$I_{\rm D}$ = 75 A, $V_{\rm DS}$ = 600 V,	T _{vj} = 25 °C		1.25		mJ
Puls		$L_{\sigma} = 35 \text{ nH}, V_{GS} = -5/15 \text{ V},$ $R_{Gon} = 5.6 \Omega, \text{ di/dt} = 3.91$	T _{vj} = 125 °C		1.44		
		$kA/\mu s (T_{vj} = 150 \text{ °C})$	T _{vj} = 150 °C		1.51		
Abschaltverlustenergie pro	E _{off}	$I_{\rm D} = 75 \text{ A}, V_{\rm DS} = 600 \text{ V},$	T _{vj} = 25 °C		0.36		mJ
Puls		$L_{\sigma} = 35 \text{ nH}, V_{GS} = -5/15 \text{ V},$ $R_{Goff} = 3.9 \Omega, \text{ dv/dt} =$	T _{vj} = 125 °C		0.363		
		$28.9 \text{ kV/}\mu\text{s} (T_{\text{vj}} = 150 \text{ °C})$	T _{vj} = 150 °C		0.363		
Thermal resistance, junction to heat sink	R _{thJH}	pro MOSFET, Valid with IF Thermal Interface Materi				0.875	K/W
Temperatur im Schaltbetrieb	T _{vj op}			-40		150	°C

3 Body diode

Tabelle 5 Höchstzulässige Werte

Parameter	Symbol	Notiz oder Prüfbedingung		Werte	Einh.
Body Diode-Gleichstrom	I _{SD}	$T_{\rm vj}$ = 175 °C, $V_{\rm GS}$ = -5 V	T _H = 10 °C	24	Α

Tabelle 6 Charakteristische Werte

Parameter	Symbol	Notiz oder Prüfbedingung			Werte		Einh.
				Min.	Тур.	Max.	
Durchlassspannung	V_{SD}	$I_{SD} = 75 \text{ A}, V_{GS} = -5 \text{ V}$	T _{vj} = 25 °C		4.6	5.65	V
			T _{vj} = 125 °C		4.35		
			T _{vj} = 150 °C		4.3		

4 NTC-Widerstand

Tabelle 7 Charakteristische Werte

Parameter	Symbol Notiz oder Prüfbedingung			Werte		
			Min.	Тур.	Max.	
Nennwiderstand	R ₂₅	T _{NTC} = 25 °C		5		kΩ
Abweichung von R ₁₀₀	∆R/R	$T_{\rm NTC}$ = 100 °C, R_{100} = 493 Ω	-5		5	%
Verlustleistung	P ₂₅	T _{NTC} = 25 °C			20	mW

(wird fortgesetzt...)

EasyPACK[™] **Modul**

4 NTC-Widerstand

Tabelle 7 (Fortsetzung) Charakteristische Werte

Parameter	Symbol	Notiz oder Prüfbedingung		Werte		Einh.
			Min.	Тур.	Max.	
B-Wert	B _{25/50}	$R_2 = R_{25} \exp[B_{25/50}(1/T_2-1/(298,15 \text{ K}))]$		3375		K
B-Wert	B _{25/80}	$R_2 = R_{25} \exp[B_{25/80}(1/T_2-1/(298,15 \text{ K}))]$		3411		K
B-Wert	B _{25/100}	$R_2 = R_{25} \exp[B_{25/100}(1/T_2-1/(298,15 \text{ K}))]$		3433		K

Anmerkung: Angaben gemäß gültiger Application Note.

5 Kennlinien

5 Kennlinien

Ausgangskennlinie (typisch), MOSFET

 $I_D = f(V_{DS})$

 $V_{GS} = 15 V$

Ausgangskennlinienfeld (typisch), MOSFET

 $I_D = f(V_{DS})$

 $T_{vj} = 150$ °C

Übertragungscharakteristik (typisch), MOSFET

 $I_D = f(V_{GS})$

 $V_{DS} = 20 V$

Kapazitäts Charakteristik (typisch), MOSFET

 $C = f(V_{DS})$

 $f = 1 \text{ MHz}, T_{vj} = 25 \text{ °C}, V_{GS} = 0 \text{ V}$

EasyPACK[™] Modul

5 Kennlinien

Schaltverluste (typisch), MOSFET

 $E = f(I_D)$

$$R_{Goff} = 3.9 \Omega$$
, $R_{Gon} = 5.6 \Omega$, $V_{DS} = 600 V$, $V_{GS} = -5/15 V$

Schaltverluste (typisch), MOSFET

 $E = f(R_G)$

$$V_{DS} = 600 \text{ V}, I_D = 75 \text{ A}, V_{GS} = -5/15 \text{ V}$$

Sicherer Rückwärts-Arbeitsbereich (RBSOA), MOSFET

 $I_D = f(V_{DS})$

$$R_{Goff} = 3.9 \Omega$$
, $T_{vi} = 150 \, ^{\circ}$ C, $V_{GS} = -5/15 \, V$

Transienter Wärmewiderstand, MOSFET

 $Z_{th} = f(t)$

EasyPACK[™] Modul

9

6 Schaltplan

6 Schaltplan

Abbildung 1

7 Gehäuseabmessungen

Gehäuseabmessungen 7

Abbildung 2

EasyPACK[™] **Modul**

8 Modul-Label-Code

8 Modul-Label-Code

Code format	Data Matrix		Barcode C	Code128
Encoding	ASCII text		Code Set	Ą
Symbol size	16x16		23 digits	
Standard	IEC24720 and IEC16022		IEC8859-1	
Code content	Content Module serial number Module material number Production order number Date code (production year) Date code (production week)	Digit 1-5 6-11 12-19 20-21 22-23		Example 71549 142846 55054991 15 30
Example	71549142846550549911530			6550549911530

Abbildung 3

EasyPACK[™] Modul

Änderungshistorie

Dokumentenrevision	Freigabedatum	Beschreibung der Änderungen
0.10	2022-01-20	Initial version

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2022-01-20 Published by Infineon Technologies AG 81726 Munich, Germany

© 2022 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document?

 ${\bf Email: erratum@infineon.com}$

Document reference IFX-ABC673-001

WICHTIGER HINWEIS

Die in diesem Dokument enthaltenen Angaben stellen keinesfalls Garantien für die Beschaffenheit oder Eigenschaften des Produktes ("Beschaffenheitsgarantie") dar.

Für Beispiele, Hinweise oder typische Werte, die in diesem Dokument enthalten sind, und/oder Angaben, die sich auf die Anwendung des Produktes beziehen, ist jegliche Gewährleistung und Haftung von Infineon Technologies ausgeschlossen, einschließlich, ohne hierauf beschränkt zu sein, die Gewähr dafür, dass kein geistiges Eigentum Dritter verletzt ist.

Des Weiteren stehen sämtliche, in diesem Dokument enthaltenen Informationen, unter dem Vorbehalt der Einhaltung der in diesem Dokument festgelegten Verpflichtungen des Kunden sowie aller im Hinblick auf das Produkt des Kunden sowie die Nutzung des Infineon Produktes in den Anwendungen des Kunden anwendbaren gesetzlichen Anforderungen, Normen und Standards durch den Kunden.

Die in diesem Dokument enthaltenen Daten sind ausschließlich für technisch geschultes Fachpersonal bestimmt. Die Beurteilung der Eignung dieses Produktes für die beabsichtigte Anwendung sowie die Beurteilung der Vollständigkeit der in diesem Dokument enthaltenen Produktdaten für diese Anwendung obliegt den technischen Fachabteilungen des Kunden.

WARNHINWEIS

Aufgrund der technischen Anforderungen können Produkte gesundheitsgefährdende Substanzen enthalten. Bei Fragen zu den in diesem Produkt enthaltenen Substanzen, setzen Sie sich bitte mit dem nächsten Vertriebsbüro von Infineon Technologies in Verbindung.

Sofern Infineon Technologies nicht ausdrücklich in einem schriftlichen, von vertretungsberechtigten Infineon Mitarbeitern unterzeichneten Dokument zugestimmt hat, dürfen Produkte von Infineon Technologies nicht in Anwendungen eingesetzt werden, in welchen vernünftigerweise erwartet werden kann, dass ein Fehler des Produktes oder die Folgen der Nutzung des Produktes zu Personenverletzungen führen.