

COSC 522 – Machine Learning

Baysian Decision Theory

Hairong Qi, Gonzalez Family Professor Electrical Engineering and Computer Science University of Tennessee, Knoxville https://www.eecs.utk.edu/people/hairong-qi/

Email: hqi@utk.edu

AICIP RESEARCH

Outline/Questions

- Supervised vs. Unsupervised Learning
- Training set vs. Test set
- Features vs. Samples vs. Dimension
- Classification vs. Regression
- Parametric Learning vs. Non-parametric Learning
- What is pdf? pdf vs. histogram?
- What is Bayes' Formula?
- What is the difference between probability and pdf?
- What is the role of "evidence"?
- In Bayes' Formula, what is conditional pdf? Prior probability? Posterior probability?
- What does the normalization factor (or evidence) do?
- What is Baysian decision rule? or MPP?
- What are decision regions?
- How to calculate conditional probability of error and overall probability of error?
 - What are cost function (or objective function) and optimization method?

M. Mafu, "Advances in artificial intelligence and machine learning for quantum communication applications," IET Quantum Communication, 2024, DOI: 10.1049/qtc2.12094

Reading Assignment in HW1

 Leo Breiman, "Statistical modeling: The two cultures," Statistical Science 16(3):199-231, 2001.

Revisiting the Toy Example – An Intuitive Solution

Movie name	Mary's rating	John's rating	I like?
Lord of the Rings II	1	5	No
•••	•••	•••	•••
Star Wars I	4.5	4	Yes
Gravity	3	3	?

Supervised learning:

- Training data vs. testing data
- Training: given input-output pairs
- Features
- Samples
- Dimensions

Bayes' Formula (Bayes' Rule)

conditional probability density function (pdf) or "likelihood"

from training data

prior probability (apriori probability)

from domain knowledge

$$P(w_j|x) = \frac{p(x|w_j)P(w_j)}{p(x)}$$

j index for different classes

w_i: different classes

x: training sample

posterior probability (a-posteriori probability)

$$p(x) = \sum_{j=1}^{c} p(x|w_j) P(w_j)$$
normalization constant (evidence)

How do They Apply to the Toy Example

Movie name	Mary's rating	John's rating	I like?
Lord of the Rings II	1	5	No
•••	•••	•••	• • •
Star Wars I	4.5	4	Yes
Gravity	3	3	?

Toy Example Reduced to 1-D Feature (Mary's rating) from histogram to probability

```
P(w_j|x) = \frac{p(x|w_j)P(w_j)}{p(x)}
```

```
Training Set:

Movies Marv
```

Movies Mary rated that I liked

$$x1 = [2.5]$$

- 3.5
- 3.5
- 4.5
- 4.5]

Movies Mary rated that I disliked

$$x2 = [1]$$

- 1
- 1.5
- 2.5
- 2.5
- 2.5]

Test Set:

$$x = [3]$$

Will I like it?

Toy Example Reduced to 1-D Feature (Mary's rating) from probability to model fitting

$$P(w_j|x) = \frac{p(x|w_j)P(w_j)}{p(x)}$$

Train(Gaussian)

Movies Mary rated that I liked

$$x1 = [2.5]$$

- 3.5
- 3.5
- 4.5
- 4.5]

Movies Mary rated that I disliked

$$x2 = [1]$$

- 1
- 1.5
- 2.5
- 2.5
- 2.5]

Test Set:

$$x = [3]$$

Will I like it?

Toy Example Reduced to 1-D Feature (Mary's rating) from model fitting to decision boundary

A Snippet to Discriminant Functions – RESEARCH Minimum Distance Classifier (Assumptions)

1. pdf is Gaussian

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} exp \left[-\frac{(x-\mu)^2}{2\sigma^2} \right]$$

2. equal prior probability

$$P(w_1) = P(w_2)$$

3. equal standard deviation

$$\sigma_1 = \sigma_2$$

AICIP RESEARCH

Bayes Decision Rule

Maximum Posterior Probability (MPP): For a given x, if $P(\omega_1 | x) > P(\omega_2 | x)$, then x belongs to class 1, otherwise, 2.

Decision Regions

The effect of any decision rule is to partition the feature space into c decision regions $\Re_1, \Re_2, \dots, \Re_c$

Conditional Probability of **Error**

$$P(error \mid x) = \begin{cases} P(\omega_1 \mid x) \\ P(\omega_2 \mid x) \end{cases}$$

$$P(error \mid x) = \begin{cases} P(\omega_1 \mid x) & \text{if we decide } \omega_2 \\ P(\omega_2 \mid x) & \text{if we decide } \omega_1 \end{cases} = \min[P(\omega_1 \mid x), P(\omega_2 \mid x)]$$

Overall Probability of Error

Or unconditional risk, unconditional probability of error

$$P(error) = \int_{-\infty}^{\infty} P(error, x) dx = \int_{-\infty}^{\infty} P(error \mid x) p(x) dx$$

$$P(error) = \int_{\Re_{1}}^{\infty} P(\omega_{2} \mid x) p(x) dx + \int_{\Re_{2}}^{\infty} P(\omega_{1} \mid x) p(x) dx$$

$$= P(error \mid \omega_{2}) + P(error \mid \omega_{1})$$

$$p(x \mid \omega_{1}) P(\omega_{1})$$

$$p(x \mid \omega_{1}) P(\omega_{1})$$

- What is the cost function?
- What is the optimization approach we use to find the optimal solution to the cost function?

Theme 1: Cost functions and Optimization approaches

Recap

$$P(\omega_j \mid x) = \frac{p(x \mid \omega_j)P(\omega_j)}{p(x)}$$

Maximum Posterior Probability

For a given x, if $P(\omega_1 | x) > P(\omega_2 | x)$, then x belongs to class 1, otherwise, 2.

Overall probability of error

$$P(error) = \int_{\Re_1} P(\omega_2 \mid x) p(x) dx + \int_{\Re_2} P(\omega_1 \mid x) p(x) dx$$

- ◆Bayes decision rule → maximum posterior probability (MPP)
- ◆Decision regions → How to calculate the overall probability of error