

 $\beta_{(i-1),i'} = (s_{(i,j')} + \beta_{(i,j')}t_1)/(s_{(i')} - s_{(i-1),i'}).$

core idea

For $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, don't use curve arithmetic but pairing e(P,Q) to get overlap in orders!

general approach

Instead I describe the general approach, and leave all details out

fast pairings

 $\beta_{(i-1),i'} = (x_{(i),i'} + \beta_{(i),i'}t_1)/(x_{(i')} - x_{(i-1),i'}).$

general notice

Computing pairings fast is quite technical. Better suited for papers than slides

core idea

For $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, don't use curve arithmetic but pairing e(P, Q) to get overlap in orders!

general approach

Instead I describe the general approach, and leave all details out

