Artificial Intelligence

CSE 440

Chapter 14 Fall 2017

Mirza Mohammad Lutfe Elahi

Department of Electrical and Computer Engineering
North South University

Motivation for Bayesian Networks

- An important task for probabilistic systems is inference.
- In probability, inference is the task of computing:

$$P(A_1, ..., A_k \mid B_1, ..., B_m)$$

where $A_1, ..., A_k, B_1,, B_m$ are any random variables.

- Note that m can be zero, in which case we simply want to compute $P(A_1, ..., A_k)$.
- So far we have seen one way to solve the inference problem:
 ???

Motivation for Bayesian Networks

- An important task for probabilistic systems is inference.
- In probability, inference is the task of computing:

$$P(A_1, ..., A_k \mid B_1, ..., B_m)$$

where $A_1, ..., A_k, B_1,, B_m$ are any random variables.

- Note that m can be zero, in which case we simply want to compute $P(A_1, ..., A_k)$.
- So far we have seen one way to solve the inference problem: Inference by enumeration (using a joint distribution table).
- However, inference by enumeration has three limitations:
 - Too slow: time exponential to k+m.
 - Too much memory needed: space exponential to k+m.
 - Too much training data and effort are needed to compute the entries in the joint distribution table.

Motivation for Bayesian Networks

- Bayesian networks offer a different way to represent joint probability distributions.
- They require space linear to the number of variables, as opposed to exponential.
 - This means fewer numbers need to be stored, so less memory is needed.
 - This also means that fewer numbers need to be computed, so less effort is needed to compute those numbers and specify the probability distribution.
- Also, in specific cases, Bayesian networks offer polynomialtime algorithms for inference, using dynamic programming.
 - In this course, we will not cover such polynomial time algorithms, but it is useful to know that they exist.
 - If you are curious, see the variable elimination algorithm in the textbook, Chapter 14.4.2.

Definition of Bayesian Networks

- A Bayesian network is a directed acyclic graph, that defines a joint probability distribution over N random variables.
- The Bayesian network contains N nodes, and each node corresponds to one of the N random variables.
- If there is a directed edge from node X to node Y, then we say that X is a parent of Y.
- Each node X has a conditional probability distribution
 P(X | Parents(X)) that describes the probability of any value of X given any combination of values for the parents of X.

How many random variables do we have?

- How many random variables do we have?
 - 4: Weather, Cavity, Toothache, Catch.
- Note that Weather can take 4 discrete values.
- The other three variables are boolean.

- What are the parents of Weather?
- What are the parents of Cavity?
- What are the parents of Toothache?
- What are the parents of Catch?

- What are the parents of Weather? None.
- What are the parents of Cavity? None.
- What are the parents of Toothache? Cavity.
- What are the parents of Catch? Cavity.

- What does this network mean?
 - Weather is independent of the other three variables.
 - Cavities can cause both toothaches and catches.
 - Toothaches and catches are conditionally independent given the value for cavity.

Constructing Bayesian networks

- 1. Choose the set of relevant variables X_i, that describe the domain
- 2. Choose an ordering of variables X_1, \ldots, X_n
- 3. While there are variables left
 - Pick a variable X_i and add X_i to the network
 - Set parents(X_i) to some minimal set of existing nodes such that the conditional independence property is satisfied. Select parents from X₁, ..., X_{i-1} such that P(X_i | Parents(X_i)) = P(X_i | X₁, ... X_{i-1})
 - Define the condition prob table for X_i

Conditional independence

- Key assumption: X is conditionally independent of every non-descendant node given its parents
- Example: causal chain

X: Low pressure

Y: Rain

Z: Traffic

- Are X and Z independent?
- Is Z independent of X given Y?

$$P(Z \mid X, Y) = \frac{P(X, Y, Z)}{P(X, Y)} = \frac{P(X)P(Y \mid X)P(Z \mid Y)}{P(X)P(Y \mid X)} = P(Z \mid Y)$$

Conditional independence

Common cause

Y: Project due

X: Newsgroup

busy

Z: Lab full

Common effect

X: Raining

Z: Ballgame

Y: Traffic

- Are X and Z independent?
 - No
- Are they conditionally independent given Y?

- Yes

- Are X and Z independent?
 - Yes
- Are they conditionally independent given Y?
 - No

How many random variables do we have?

- How many random variables do we have?
- 5: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls.
 - All boolean.

- What are the parents of Burglary?
- What are the parents of Earthquake?
- What are the parents of Alarm?
- What are the parents of JohnCalls?
- What are the parents of MaryCalls?

- What are the parents of Burglary? None.
- What are the parents of Earthquake? None.
- What are the parents of Alarm? Burglary and Earthquake.
- What are the parents of JohnCalls? Alarm.
- What are the parents of MaryCalls? Alarm.

What does this network mean?

- What does this network mean?
 - Alarms can be caused by both burglaries and earthquakes.
 - Alarms can cause both John to call and Mary to call.
 - Whether John calls or not is conditionally independent of whether
 Mary calls or not, given the value of the Alarm variable.

Compactness

- Suppose we have a Boolean variable X_i with k Boolean parents. How many rows does its conditional probability table have?
 - 2^k rows for all the combinations of parent values
 - Each row requires one number p for X_i = true
- If each variable has no more than k parents, how many numbers does the complete network require?
 - $O(n \cdot 2^k)$ numbers vs. $O(2^n)$ for the full joint distribution
- How many nodes for the burglary network?

$$1 + 1 + 4 + 2 + 2 = 10$$
 numbers (vs. $2^{5}-1 = 31$)

Semantics

F

0.1

F

0.2

- So far, we have described the structure of a Bayesian network, as a directed acyclic graph.
- We also need to define the meaning: what does this graph mean? What information does it provide.

Semantics

- A Bayesian network defines the joint probability distribution of the variables represented by its nodes.
- If $X_1, ..., X_n$ are the n variables of the network, then:

$$P(X_1, ..., X_i) = \prod_{i=1}^{n} P(X_i | parents(X_i))$$

Semantics

- This equation is part of the definition of Bayesian networks.
- If you do not understand how to use it, you will not be able to solve most problems related to Bayesian networks.

- In general, probabilistic inference is the problem of computing $P(A_1, ..., A_k \mid B_1, ..., B_m)$
- In other words, it is the problem of computing the probability of values for some variables given values for some other variables.

- In Bayesian networks, all inference problems can be solved by one or more applications of the equation below.
- In many interesting cases there exist better (i.e., faster) methods, but we will not study such methods in this course.

- For example, compute:
 P(Sunny, not(Cavity), not(Toothache), Catch).
- Based on the equation, how do we compute this?

P(Sunny, not(Cavity), not(Toothache), Catch) =
P(Sunny | Parents(Weather)) *
P(not(Cavity) | Parents(Cavity)) *
P(not(Toothache) | Parents(Toothache)) *
P(Catch | Parents(Catch))

P(Sunny, not(Cavity), not(Toothache), Catch) =
P(Sunny) *
P(not(Cavity)) *
P(not(Toothache) | not(Cavity)) *
P(Catch | not(Cavity))

P(Sunny, not(Cavity), not(Toothache), Catch) =

- 0.6 *
- 0.8 *
- 0.9 *
- 0.2

P(Sunny, not(Cavity), not(Toothache), Catch) = 0.6 * 0.8 * 0.9 * 0.2 = 0.0864

• Compute P(B, not(E), A, JC, MC):

P(E) P(B) Another Burglary Earthquake 0.001 0.002 Example P(A) 0.95 0.94 Alarm $P(X_1, ..., X_i) = \left| P(X_i | parents(X_i)) \right|$ 0.29 0.001 A P(JC) P(MC) 0.90 0.70 John Calls Mary Calls F 0.05 0.01

P(B, not(E), A, JC, MC) =

P(B) * P(not(E)) * P(A | B, not(E)) * P(JC | A) * P(MC | A) =

P(E) P(B) Another Burglary Earthquake 0.001 0.002 Example P(A) 0.95 0.94 Alarm $P(X_1, ..., X_i) = \left| P(X_i | parents(X_i)) \right|$ 0.29 0.001 A P(JC) P(MC) 0.90 0.70 John Calls Mary Calls FΙ 0.05 0.01

P(B, not(E), A, JC, MC) =

P(B) * P(not(E)) * P(A | B, not(E)) * P(JC | A) * P(MC | A) =

0.001 * 0.998 * 0.94 * 0.9 * 0.7 = 0.0005910156

A More Complicated Case

- In the previous examples, we computed the probability of cases where all variables were assigned values.
 - We did that by directly applying the equation:

$$P(X_1, ..., X_i) = \prod_{i=1}^{n} P(X_i \mid parents(X_i))$$

- What do we do when some values are unspecified?
- For example, how do we compute $P(\neg B, JC, MC)$?

A More Complicated Case

- In the previous examples, we computed the probability of cases where all variables were assigned values.
 - We did that by directly applying the equation:

$$P(X_1, ..., X_i) = \prod_{i=1}^{n} P(X_i \mid parents(X_i))$$

- What do we do when some values are unspecified?
- For example, how do we compute $P(\neg B, JC, MC)$?
 - Answer: we need to apply the above equation repeatedly, and sum over all possible values that are left unspecified.

- Variables E, A are unspecified.
 - Each variable is binary, so we must sum over four possible cases.

P(B)P(E)Another Earthquake Burglary 0.001 0.002 Example Ε P(A)0.95 0.94 Alarm $P(X_1, ..., X_i) = \left| P(X_i | parents(X_i)) \right|$ 0.29 0.001 A P(JC) P(MC) 0.90 0.70 John Calls Mary Calls

- Variables E, A are unspecified.
 - Each variable is binary, so we must sum over four possible cases.

F

0.05

0.01

P(B)P(E)Another Earthquake Burglary 0.001 0.002 Example Ε P(A)0.95 0.94 Alarm $P(X_1, ..., X_i) = \left| P(X_i | parents(X_i)) \right|$ 0.29 0.001 A P(JC) P(MC) 0.90 0.70 John Calls Mary Calls 0.05 0.01

- Variables E, A are unspecified.
 - Each variable is binary, so we must sum over four possible cases.

•
$$P(\neg B, JC, MC) = P(\neg B, E, A, JC, MC) +$$

$$P(\neg B, E, \neg A, JC, MC) +$$

$$P(\neg B, \neg E, A, JC, MC) +$$

$$P(\neg B, \neg E, \neg A, JC, MC) +$$

$$P(\neg B, \neg E, \neg A, JC, MC) = ???$$

Here we apply the equation to each of the four terms

- Variables E, A are unspecified.
 - Each variable is binary, so we must sum over four possible cases.
- P(¬B, JC, MC) =
 P(¬B) * P(E) * P(A | ¬B, E) * P(JC | A) * P(MC | A) +
 P(¬B) * P(E) * P(¬A | ¬B, E) * P(JC | ¬A) * P(MC | ¬A) +
 P(¬B) * P(¬E) * P(A | ¬B, ¬E) * P(JC | A) * P(MC | A) +
 P(¬B) * P(¬E) * P(¬A | ¬B, ¬E) * P(JC | ¬A) * P(MC | ¬A)

- Variables E, A are unspecified.
 - Each variable is binary, so we must sum over four possible cases.
- P(¬B, JC, MC) =
 0.999 * 0.002 * 0.290 * 0.90 * 0.70 +
 0.999 * 0.002 * 0.710 * 0.05 * 0.01 +
 0.999 * 0.998 * 0.001 * 0.90 * 0.70 +
 0.999 * 0.998 * 0.999 * 0.05 * 0.01

P(B) P(E) Another Burglary Earthquake 0.001 0.002 Example P(A) Ε В 0.95 0.94 Alarm $P(X_1, ..., X_i) = P(X_i | parents(X_i))$ 0.29 0.001 A P(JC) P(MC) 0.70 0.90 John Calls Mary Calls 0.05 0.01

- Variables E, A are unspecified.
 - Each variable is binary, so we must sum over four possible cases.
- $P(\neg B, JC, MC) = 0.0003650 + 0.0000007 + 0.0006281 + 0.0004980$ = 0.0014918

Computing Conditional Probabilities

- So far we have seen how to compute, in Bayesian Networks, these types of probabilities:
 - $P(X_1, ..., X_n)$, where we specify values for all n variables of the network.
 - $P(A_1, ..., A_k)$, where we specify values for only k of the n variables of the network.
- We now need to cover the case of conditional probabilities:

$$P(A_1, ..., A_k \mid B_1, ..., B_m)$$

How can we compute this?

Computing Conditional Probabilities

Using the definition of conditional probabilities, we get:

$$P(A_1, ..., A_k \mid B_1, ..., B_m) = \frac{P(A_1, ..., Ak, B_1, ..., Bm)}{P(B_1, ..., Bm)}$$

- Now, both the numerator and the denominator are probabilities that we already learned how to compute:
 - They are probabilities where values are provided for some,
 but possibly not all, variables of the network.

- Here is a more interesting example:
 - John calls, to say the alarm is ringing.
 - Mary also calls, to say the alarm is ringing.
 - What is the probability there is a burglary?
- How do we write our question as a formula? What do we want to compute?

P(B | JC, MC)

• How do we compute it? $P(B \mid JC, MC) = \frac{P(B, JC, MC)}{P(JC, MC)}$

•
$$P(B \mid JC, MC) = \frac{P(B, JC, MC)}{P(JC, MC)}$$

• First let's compute the denominator, P(JC, MC):

```
P(JC, MC) =
     P(B, E, A, JC, MC) +
     P(B, E, \neg A, JC, MC) +
     P(B, \neg E, A, JC, MC) +
     P(B, \neg E, \neg A, JC, MC) +
     P(\neg B, E, A, JC, MC) +
     P(\neg B, E, \neg A, JC, MC) +
     P(\neg B, \neg E, A, JC, MC) +
     P(\neg B, \neg E, \neg A, JC, MC) =
```

- $P(B \mid JC, MC) = \frac{P(B, JC, MC)}{P(JC, MC)}$
- First let's compute the denominator, P(JC, MC):

```
P(JC, MC) =
     P(B) * P(E) * P(A | B, E) * P(JC | A) * P(MC | A) +
     P(B) * P(E) * P(\neg A \mid B, E) * P(JC \mid \neg A) * P(MC \mid \neg A) +
     P(B) * P(\neg E) * P(A | B, \neg E) * P(JC | A) * P(MC | A) +
     P(B) * P(\neg E) * P(\neg A | B, \neg E) * P(JC | \neg A) * P(MC | \neg A) +
     P(\neg B) * P(E) * P(A | \neg B, E) * P(JC | A) * P(MC | A) +
     P(\neg B) * P(E) * P(\neg A | \neg B, E) * P(JC | \neg A) * P(MC | \neg A) +
     P(\neg B) * P(\neg E) * P(A | \neg B, \neg E) * P(JC | A) * P(MC | A) +
     P(\neg B) * P(\neg E) * P(\neg A | \neg B, \neg E) * P(JC | \neg A) * P(MC | \neg A) =
```

•
$$P(B \mid JC, MC) = \frac{P(B, JC, MC)}{P(JC, MC)}$$

• First let's compute the denominator, P(JC, MC):

```
P(JC, MC) =
    0.001 * 0.002 * 0.950 * 0.90 * 0.70 +
    0.001 * 0.002 * 0.050 * 0.05 * 0.01 +
    0.001 * 0.998 * 0.940 * 0.90 * 0.70 +
    0.001 * 0.998 * 0.060 * 0.05 * 0.01 +
    0.999 * 0.002 * 0.290 * 0.90 * 0.70 +
    0.999 * 0.002 * 0.710 * 0.05 * 0.01 +
    0.999 * 0.998 * 0.001 * 0.90 * 0.70 +
    0.999 * 0.998 * 0.999 * 0.05 * 0.01 =
```

•
$$P(B \mid JC, MC) = \frac{P(B, JC, MC)}{P(JC, MC)}$$

First let's compute the denominator, P(JC, MC):

```
P(JC, MC) =
   0.000001197 +
   0.000000000 +
   0.000591015 +
   0.00000030 +
   0.000365034 +
   0.000000709 +
   0.000628111 +
   0.000498002
```

• P(B | JC, MC) =
$$\frac{P(B, JC, MC)}{P(JC, MC)}$$

• First let's compute the denominator, P(JC, MC): P(JC, MC) = 0.002084098

- P(B | JC, MC) = $\frac{P(B, JC, MC)}{P(JC, MC)}$
- First let's compute the denominator, P(JC, MC):
 P(JC, MC) = 0.002084098
- Now, let's compute the numerator, P(B, JC, MC):
 - Note: this is a sum over only a subset of the cases that we included in the denominator. So, we have already done most of the work:

- $P(B \mid JC, MC) = \frac{P(B, JC, MC)}{P(JC, MC)}$
- First let's compute the denominator, P(JC, MC):
 P(JC, MC) = 0.002084098
- Now, let's compute the numerator, P(B, JC, MC):

```
P(B, JC, MC) =

P(B, E, A, JC, MC) +

P(B, E, ¬A, JC, MC) +

P(B, ¬E, A, JC, MC) +

P(B, ¬E, ¬A, JC, MC)
```

- $P(B \mid JC, MC) = \frac{P(B, JC, MC)}{P(JC, MC)}$
- First let's compute the denominator, P(JC, MC):
 P(JC, MC) = 0.002084098
- Now, let's compute the numerator, P(B, JC, MC):
 P(B, JC, MC) =
 P(B) * P(E) * P(A | B, E) * P(JC | A) * P(MC | A) +
 P(B) * P(E) * P(¬A | B, E) * P(JC | ¬A) * P(MC | ¬A) +
 P(B) * P(¬E) * P(A | B, ¬E) * P(JC | A) * P(MC | A) +
 P(B) * P(¬E) * P(¬A | B, ¬E) * P(JC | ¬A) * P(MC | ¬A)

• P(B | JC, MC) =
$$\frac{P(B, JC, MC)}{P(JC, MC)}$$

First let's compute the denominator, P(JC, MC):
 P(JC, MC) = 0.002084098

Now, let's compute the numerator, P(B, JC, MC):

```
P(B, JC, MC) =
0.001 * 0.002 * 0.950 * 0.90 * 0.70 +
0.001 * 0.002 * 0.050 * 0.05 * 0.01 +
0.001 * 0.998 * 0.940 * 0.90 * 0.70 +
0.001 * 0.998 * 0.060 * 0.05 * 0.01
```

•
$$P(B \mid JC, MC) = \frac{P(B, JC, MC)}{P(JC, MC)}$$

First let's compute the denominator, P(JC, MC):
 P(JC, MC) = 0.002084098

Now, let's compute the numerator, P(B, JC, MC):

```
P(B, JC, MC) =
0.000001197 +
0.000000000 +
0.000591015 +
0.000000030
```

- P(B | JC, MC) = $\frac{P(B, JC, MC)}{P(JC, MC)}$
- First let's compute the denominator, P(JC, MC):
 P(JC, MC) = 0.002084098
- Now, let's compute the numerator, P(B, JC, MC):
 P(B, JC, MC) = 0.000592242
- Therefore, P(B | JC, MC) = $\frac{0.000592242}{0.002084098}$ = 0.284.
- There is a 28.4% probability that there was a burglary.

Complexity of Inference

- What is the complexity of the inference algorithm we have been using in the previous examples?
- We sum over probabilities of various combinations of values.
- In the worst case, how many combinations of values do we need to consider?
 - All possible combinations of values of all variables in the Bayesian network.
- This is NOT any faster than inference by enumeration using a joint distribution table.
 - We are still doing inference by enumeration, but using a Bayesian network.
- As mentioned before, in some cases (but not always) there are polynomial time inference algorithms for Bayesian networks (e.g., the variable elimination algorithm, textbook chapter 14.4.2).
- However, we will not go over such algorithms in this course.

Complexity of Inference

- So, our inference method using Bayesian networks is not any faster than using joint distribution tables.
- The big advantage over using joint distribution tables is space.
- To define a joint distribution table, we need space exponential to n (the number of variables).
- To define a Bayesian network, the space we need is linear to n, and exponential to r, where:
 - n is the number of variables.
 - r is the maximum number of parents that any node in the network has.
- In the typical case, r << n, and thus Bayesian networks require much fewer numbers to be specified, compared to joint distribution tables.

Simplified Calculations

- Some times, we can compute some probabilities in a more simple manner than using enumeration.
- For example: compute P(B, E).
 - We could sum over the eight possible combinations of A, JC, MC.
 - Or, we could just remember that B and E are independent, so: P(B, E) = P(B) * P(E) = 0.001 * 0.002.

Simplified Calculations

- Another example: compute $P(JC, \neg MC \mid A)$.
- Again, we can do inference by enumeration, or we can simply recognize that JC and MC are conditionally independent given A.
- Therefore, $P(JC, \neg MC \mid A) = P(JC \mid A) * P(\neg MC \mid A) = 0.9 * 0.3$.