# Electromagnetismo 1

S05 - Flujo eléctrico

Josue Meneses Díaz

Universidad de Santiago de Chile

# Ley de Gauss - Idea



# Flujo Eléctrico

# Flujo eléctrico

El flujo eléctrico es una medida fundamental en el electrostática que cuantifica el número de líneas de campo eléctrico que atraviesan una superficie. Para un campo eléctrico uniforme y una superficie perpendicular al campo:



el flujo eléctrico  $\Phi_E$  es definido como el producto del campo eléctrico (E) y el área superficial (A),

$$\Phi_E = EA \quad [\mathrm{Nm}^2/\mathrm{C}]$$

3

Ahora, si inclinamos la superfie en  $\phi$ , el número de lineas de campo eléctrico atravesando la superficie sigue siendo la misma. Para compensar esta rotación, calculamos entonces el flujo eléctrico como



$$\Phi_E = EA\cos\theta = \vec{E} \cdot \vec{A}$$

Donde definimos como vector de área,  $\vec{A}=A\hat{n}$ , como un vector con tamaño del plano de la superficie, A, y apunta en la dirección normal,  $\hat{n}$ .

En la figura solo se muestra la vista lateral de la superficie rectangular de área A. El campo eléctrico uniforme  $\vec{E}$  siempre apunta en la dirección  $\hat{i}$ . La superficie tiene diferentes orientaciones con respecto a la dirección de  $\hat{n}$ , la normal a la superficie, como se muestra en las figuras.

- a) Calcular el flujo de cada uno de los casos.
- b) Ordenar cada flujo  $\Phi_E$  de menor a mayor.



- a) ¿Cuál es el flujo eléctrico a través del disco?
- b) ¿Cuál sería el flujo que cruzaría el disco si se girara para que fuera perpendicular a  $\vec{E}$ ?
- c) ¿Cuál sería el flujo que pasaría a través del disco si  $\hat{n}$  fuera paralelo a  $\vec{E}$ ?



Encuentre la magnitud del flujo eléctrico a través de la lámina. La lámina está inmersa en un campo eléctrico uniforme de magnitud  $75.0\ N/C$ .



# Flujo eléctrico - Distribución continua



### Flujo de Campo

Introduciremos un nuevo concepto antes de estudiar la ley de Gauss llamado  $\mathit{Flujo}$   $\mathit{el\'ectrico}$   $\Phi_{\mathsf{E}}$ , que involucra la una  $\mathit{integral}$  de  $\mathit{superficie}$  del campo  $\mathit{el\'ectrico}$   $\vec{E}$  y el  $\mathit{vector}$  area de una  $\mathit{superficie}$  de area  $\vec{A}$ . Matematicamente definido por:

$$\Phi_{\mathsf{E}} \equiv \int_{\mathsf{A}} \overrightarrow{\mathbf{E}} \cdot d\overrightarrow{\mathbf{A}}$$



Figure 1: Superficie abierta de area  $\vec{A}$ , sobre un campo uniforme  $\vec{E}$ 

Considere un campo eléctrico uniforme orientado en la dirección x. Determine el flujo eléctrico neto a través de la superficie de un cubo de arista l.



# Ejemplo (Flujo eléctrico a través de una superficie cerrada.) Calcular el flujo generado por una partícula de carga +q



## Resumen

#### Resumen

El flujo eléctrico es proporcional al número de líneas de campo eléctrico que penetran una superficie. Si el campo eléctrico es uniforme:

$$\Phi_E = EA\cos\theta$$

En general, el flujo eléctrico a través de una superficie es

$$\Phi_E \equiv \int_{\mathsf{S}} \, \overrightarrow{\mathbf{E}} \cdot d\overrightarrow{\mathbf{A}}$$

El flujo eléctrico generada por una partícula cargada es

$$\Phi_E = \oiint \overrightarrow{\mathbf{E}} \cdot d\overrightarrow{\mathbf{A}} = \frac{q}{\epsilon_0}$$

Donde ∯ simboliza una superficie cerrada.

Referencias

#### Referencias

- Freedman, Young, and S. Zemansky. 2009. "22 LEY DE GAUSS. 22.1 Carga y Flujo Eléctrico. 22.2 Cálculo Del Flujo Eléctrico." In *Física Universitaria*.
- Serway, Raymond A., and John W. Jewett. 2005. "24 Ley de Gauss. 24.1 Flujo Eléctrico." In *Física Para Ciencias e Ingeniería Con Física Moderna*, 7ma ed. Vol. 2. CENGAGE learning.