DEUXIÈME COMPOSITION DE MATHÉMATIQUES (M')

(Durée: 4 heures)

* * *

Dans tout le problème, K désigne un corps commutatif arbitraire. Si E et F sont des espaces vectoriels sur K, on note $\mathcal{L}(E,F)$ l'espace vectoriel des applications linéaires de E dans F; pour tout élément T de $\mathcal{L}(E,F)$, on désigne par Ker T et Im T respectivement le noyau de T dans E et son sous-espace image dans F. Un élément T de $\mathcal{L}(E,E)$ est dit nilpotent s'il existe un entier strictement positif r tel que $T^r = 0$.

On appelle sous-algèbre de $\mathcal{L}(E, E)$ tout sous-espace vectoriel stable par multiplication; une sous-algèbre \mathcal{A} est dite commutative si l'on a ST = TS pour tous S et T dans \mathcal{A} ; enfin \mathcal{A} est dite nilpotente s'il existe un entier strictement positif r tel que le produit de r éléments quelconques de \mathcal{A} soit nul, et on appelle ordre de nilpotence de \mathcal{A} le plus petit de ces entiers r.

Le but de ce problème est d'établir quelques propriétés des sous-algèbres commutatives nilpotentes.

Première partie

Dans cette partie, on note E l'espace vectoriel K^2 .

- 1. Soit T un endomorphisme nilpotent non nul de E, r le plus petit entier positif tel que $T^r = 0$.
 - a) Déterminer les dimensions de $\operatorname{Ker} T$ et $\operatorname{Im} T$.
 - **b)** Construire une base de E dans laquelle T est représenté par la matrice $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ et préciser la valeur de r.
- **2.** Soit \mathcal{A} une sous-algèbre commutative nilpotente non nulle de $\mathcal{L}(E,E)$. Montrer qu'il existe une base de E dans laquelle les matrices représentant les éléments de \mathcal{A} sont exactement les matrices $\begin{pmatrix} 0 & 0 \\ c & 0 \end{pmatrix}$ avec $c \in K$.

Deuxième partie

Cette partie a pour but de justifier la décomposition par blocs. Il n'est pas obligatoire de la traiter.

Dans cette partie, on se donne un espace vectoriel E sur K et une décomposition de E en somme directe de sous-espaces vectoriels $E = E_1 \oplus E_2 \oplus \cdots \oplus E_n$; pour tout $i = 1, \ldots, n$, on note P_i le projecteur sur E_i associé à cette décomposition; on écrit aussi x_i au lieu de $P_i(x)$ pour $x \in E$.

3. Etant donné un endomorphisme T de E, construire des applications linéaires $T_{i,j}$ appartenant à $\mathcal{L}(E_j, E_i)$ telles que l'on ait $(T(x))_i = \sum_j T_{i,j}(x_j)$ pour tout $x \in E$.

On dira que T est représenté par le tableau d'applications linéaires $(T_{i,j})$.

4. Etant donné deux endomorphismes S et T de E, exprimer les composantes $(ST)_{i,j}$ de ST en fonction de celles de S et T.

Troisième partie

Dans cette partie, on pose $E=K^n$, où n est un entier strictement positif; on considère un endomorphisme nilpotent non nul T de E et on note r le plus petit entier strictement positif tel que $T^r=0$. On pose $E_3=\operatorname{Im} T\cap \operatorname{Ker} T$.

- **5.** Vérifier que E_3 est distinct de $\{0\}$ et de E.
- **6.** Pour quelles valeurs de r a-t-on $E_3 = \operatorname{Im} T$?
- 7. Dans cette question, on suppose $r \geqslant 3$ et on note E_1 (resp. E_2) un sous-espace vectoriel supplémentaire de Im T dans E (resp.de E_3 dans Im T). Vérifier que, dans la décomposition en somme directe $E = E_1 \oplus E_2 \oplus E_3$, T est représenté par un tableau de la forme

$$\begin{pmatrix} 0 & 0 & 0 \\ T_{2,1} & T_{2,2} & 0 \\ T_{3,1} & T_{3,2} & 0 \end{pmatrix} .$$

- 8. Montrer que $T_{2,2}$ est nilpotent et qu'il existe une base de E dans laquelle T est représenté par une matrice $(t_{i,j})$ telle que $t_{i,j}$ soit nul lorsque $i \leq j$.
- **9.** Comparer r et n.
- 10. Appliquer ce qui précède au cas où n=4 et où T est représenté par la matrice

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{pmatrix}$$

dans la base naturelle de K^4 .

Quatrième partie

Dans cette quatrième et dernière partie, nous utiliserons les notations suivantes: si X et Y sont deux espaces vectoriels sur K et \mathcal{Z} un sous-ensemble de $\mathcal{L}(X,Y)$, nous désignerons par $\mathcal{K}(\mathcal{Z})$ l'intersection des noyaux des éléments de \mathcal{Z} , et par $\mathcal{I}(\mathcal{Z})$ le sous-espace vectoriel de Y engendré par les images des éléments de \mathcal{Z} .

On considère une sous-algèbre commutative nilpotente non nulle \mathcal{A} de $\mathcal{L}(E, E)$, où $E = K^n$; on note r son ordre de nilpotence et on pose $E_3 = \mathcal{I}(\mathcal{A}) \cap \mathcal{K}(\mathcal{A})$.

11. Vérifier que $\mathcal{I}(\mathcal{A})$ est distinct de E et que E_3 est distinct de $\{0\}$ et de E.

12. Pour quelles valeurs de r a-t-on $E_3 = \mathcal{I}(\mathcal{A})$?

Dans la suite du problème on suppose $r \geqslant 3$; on note E_1 (resp. E_2) un sous-espace vectoriel supplémentaire de $\mathcal{I}(\mathcal{A})$ dans E (resp. de E_3 dans $\mathcal{I}(\mathcal{A})$). On écrit les éléments T de \mathcal{A} sous la forme $\begin{pmatrix} 0 & 0 & 0 \\ T_{2,1} & T_{2,2} & 0 \\ T_{3,1} & T_{3,2} & 0 \end{pmatrix}$; pour i, j = 1, 2, 3, on note $\mathcal{A}_{i,j}$ l'espace vectoriel des $T_{i,j}$ où T parcourt \mathcal{A} .

- 13. a) Vérifier que $\mathcal{A}_{2,2}$ est une sous-algèbre commutative nilpotente de $\mathcal{L}(E_2, E_2)$ et dire pour quelles valeurs de r cette sous-algèbre est nulle.
 - b) Montrer qu'il existe une base de E dans laquelle tous les éléments T de \mathcal{A} sont représentés par des matrices $(t_{i,j})$ telles que $t_{i,j}$ soit nul lorsque $i \leq j$.
 - c) Comparer r et n.

A partir de maintenant on suppose $r \geqslant 4$.

- 14. Déterminer l'ordre de nilpotence r' de $\mathcal{A}_{2,2}$.
- **15.** a) Démontrer que l'on a $T_{2,2}(\mathcal{I}(\mathcal{A}_{2,1})) \subset \mathcal{I}(\mathcal{A}_{2,1})$ pour tout $T \in \mathcal{A}$.
 - **b)** Démontrer que l'on a $\mathcal{I}(\mathcal{A}_{2,1}) = E_2$. [On pourra raisonner par l'absurde, introduire un supplémentaire E_2' de $\mathcal{I}(\mathcal{A}_{2,1})$ dans E_2 et démontrer que $T_{2,2}$ peut s'écrire sous la forme $\begin{pmatrix} A(T) & 0 \\ C(T) & D(T) \end{pmatrix}$].
- 16. Soit T un élément de \mathcal{A} tel que $T_{2,1}=0$.
 - a) Démontrer que $T_{2,2}$ et $T_{3,2}$ sont nuls.
 - **b)** $T_{3,1}$ est-il nul aussi?