Sampling and reconstruction

CS 4620 Lecture 13

Outline

- Review signal processing
 - Sampling
 - Reconstruction
 - Filtering
 - Convolution
- Closely related to computer graphics topics such as
 - Image processing
 - Anti-aliasing
 - Curve and surfaces

Sampling

• Image: A function defined on a two-dimensional plane

$$I:\mathbb{R}^2 o\dots$$

Sampled image: pixels

Sampled representations

- How to store and compute with continuous functions?
- Common scheme for representation: samples write down the function's values at many points

Reconstruction

 Making samples back into a continuous function for output (need realizable method)
 for analysis or processing (need mathematical method)
 amounts to "guessing" what the function did in between

Filtering

- Processing done on a function can be executed in continuous form (e.g. analog circuit) but can also be executed using sampled representation
- Simple example: smoothing by averaging

Roots of sampling

Nyquist 1928; Shannon 1949

famous results in information theory

- 1940s: first practical uses in telecommunications
- 1960s: first digital audio systems
- 1970s: commercialization of digital audio
- 1982: introduction of the Compact Disc

the first high-profile consumer application

 This is why all the terminology has a communications or audio "flavor"

early applications are 1D; for us 2D (images) is important

Sampling in digital audio

- Recording: sound to analog to samples to disc
- Playback: disc to samples to analog to sound again how can we be sure we are filling in the gaps correctly?

- What if we "missed" things between the samples?
- Simple example: undersampling a sine wave

- What if we "missed" things between the samples?
- Simple example: undersampling a sine wave

- What if we "missed" things between the samples?
- Simple example: undersampling a sine wave

- What if we "missed" things between the samples?
- Simple example: undersampling a sine wave unsurprising result: information is lost

- What if we "missed" things between the samples?
- Simple example: undersampling a sine wave

unsurprising result: information is lost

surprising result: indistinguishable from lower frequency

- What if we "missed" things between the samples?
- Simple example: undersampling a sine wave unsurprising result: information is lost surprising result: indistinguishable from lower frequency also was always indistinguishable from higher frequencies aliasing: signals "traveling in disguise" as other frequencies

Preventing aliasing

• Introduce lowpass filters: remove high frequencies leaving only safe, low frequencies choose lowest frequency in reconstruction (disambiguate)

Preventing aliasing

• Introduce lowpass filters: remove high frequencies leaving only safe, low frequencies choose lowest frequency in reconstruction (disambiguate)

Linear filtering: a key idea

- Transformations on signals; e.g.: bass/treble controls on stereo blurring/sharpening operations in image editing smoothing/noise reduction in tracking
- Can be modeled mathematically by convolution

- basic idea: define a new function by averaging over a sliding window
- a simple example to start off: smoothing

- basic idea: define a new function by averaging over a sliding window
- a simple example to start off: smoothing

- basic idea: define a new function by averaging over a sliding window
- a simple example to start off: smoothing

- basic idea: define a new function by averaging over a sliding window
- a simple example to start off: smoothing

- basic idea: define a new function by averaging over a sliding window
- a simple example to start off: smoothing

 Same moving average operation, expressed mathematically:

$$b_{\text{smooth}}[i] = \frac{1}{2r+1} \sum_{j=i-r}^{i+r} b[j]$$

Discrete convolution

Simple averaging:

$$b_{\text{smooth}}[i] = \frac{1}{2r+1} \sum_{j=i-r}^{i+r} b[j]$$

every sample gets the same weight

Convolution: same idea but with weighted average

$$(a \star b)[i] = \sum_{j} a[j]b[i-j]$$

each sample gets its own weight (normally zero far away)

 This is all convolution is: it is a moving weighted average

Filters

- Sequence of weights a[j] is called a filter
- Filter is nonzero over its *region of support* usually centered on zero: support radius *r*
- Filter is normalized so that it sums to 1.0 this makes for a weighted average, not just any old weighted sum
- Most filters are symmetric about 0 since for images we usually want to treat left and right the same

Convolution and filtering

Can express sliding average as convolution with a box filter

•
$$a_{\text{box}} = [..., 0, 1, 1, 1, 1, 1, 0, ...]$$

Example: box and step

Convolution and filtering

- Convolution applies with any sequence of weights
- Example: bell curve (gaussian-like) [..., 1, 4, 6, 4, 1, ...]/16

Convolution and filtering

- Convolution applies with any sequence of weights
- Example: bell curve (gaussian-like) [..., 1, 4, 6, 4, 1, ...]/16

And in pseudocode...

```
function convolve(sequence a, sequence b, int r, int i)
s = 0
for j = -r to r
s = s + a[j]b[i - j]
return s
```

Discrete convolution

- Notation $b = c \star a$
- Convolution is a multiplication-like operation

```
commutative a\star b=b\star a associative a\star (b\star c)=(a\star b)\star c distributes over addition a\star (b+c)=a\star b+a\star c scalars factor out \alpha a\star b=a\star \alpha b=\alpha (a\star b) identity: unit impulse e=[...,0,0,1,0,0,...] a\star e=a
```

Conceptually no distinction between filter and signal

Discrete filtering in 2D

Same equation, one more index

$$(a \star b)[i,j] = \sum_{i',j'} a[i',j']b[i-i',j-j']$$

now the filter is a rectangle you slide around over a grid of numbers

- Commonly applied to images blurring (using box, using gaussian, ...) sharpening (impulse minus blur)
- Usefulness of associativity often apply several filters one after another: $(((a * b_1) * b_2) * b_3)$ this is equivalent to applying one filter: a * $(b_1 * b_2 * b_3)$

And in pseudocode...

```
function convolve2d(filter2d a, filter2d b, int i, int j)
s=0
r=a.radius

for i'=-r to r do

for j'=-r to r do
s=s+a[i'][j']b[i-i'][j-j']

return s
```


sharpened ▲ | ▼ gaussian blur

Optimization: separable filters

- basic alg. is $O(r^2)$: large filters get expensive fast!
- definition: $a_2(x,y)$ is separable if it can be written as:

$$a_2[i,j] = a_1[i]a_1[j]$$

this is a useful property for filters because it allows factoring:

$$(a_2 \star b)[i,j] = \sum_{i'} \sum_{j'} a_2[i',j']b[i-i',j-j']$$

$$= \sum_{i'} \sum_{j'} a_1[i']a_1[j']b[i-i',j-j']$$

$$\stackrel{\mathsf{r**2} \to \mathsf{r} :}{\mathsf{complexity}}$$

$$= \sum_{i'} a_1[i'] \left(\sum_{j'} a_1[j']b[i-i',j-j'] \right)$$

Separable filtering

$$a_2[i,j] = a_1[i]a_1[j]$$

1	4	6	4	1
4	16	24	16	4
6	24	36	24	6
4	16	24	16	4
1	4	6	4	1

first, convolve with this
$$\sum_{i'} a_1[i'] \left(\sum_{j'} a_1[j'] b[i-i',j-j'] \right)$$

Separable filtering

$$a_2[i,j] = a_1[i]a_1[j]$$

second, convolve with this first, convolve with this $\sum_{i'} a_1[i'] \left(\sum_{j'} a_1[j']b[i-i',j-j'] \right)$

Can apply sliding-window average to a continuous function just as well

Can apply sliding-window average to a continuous function just as well

Can apply sliding-window average to a continuous function just as well

Can apply sliding-window average to a continuous function just as well

Can apply sliding-window average to a continuous function just as well

Continuous convolution

Sliding average expressed mathematically:

$$g_{\text{smooth}}(x) = \frac{1}{2r} \int_{r-r}^{x+r} g(t)dt$$

note difference in normalization (only for box)

Convolution just adds weights

$$(f \star g)(x) = \int_{-\infty}^{\infty} f(t)g(x-t)dt$$

weighting is now by a function weighted integral is like weighted average again bounds are set by support of f(x)

One more convolution

Continuous-discrete convolution

$$(a \star f)(x) = \sum_{i} a[i]f(x-i)$$
$$(a \star f)(x,y) = \sum_{i,j} a[i,j]f(x-i,y-j)$$

used for reconstruction and resampling

- Changing the sample rate
 in images, this is enlarging and reducing
- Creating more samples: increasing the sample rate "upsampling"
 "enlarging"
- Ending up with fewer samples: decreasing the sample rate "downsampling" "reducing"

Cornell CS4620 Fall 2008 Lecture 13 • 5

And in pseudocode...

function reconstruct(sequence a, filter f, real x) s = 0 r = f.radius **for** $i = \lceil x - r \rceil$ **to** $\lfloor x + r \rfloor$ **do** s = s + a[i]f(x - i) **return** s

Cont.-disc. convolution in 2D

same convolution—just two variables now

$$(a \star f)(x,y) = \sum_{i,j} a[i,j]f(x-i,y-j)$$

loop over nearby pixels, average using filter weight

looks like discrete filter, but offsets are not integers and filter is continuous

remember placement of filter relative to grid is variable

Separable filters for resampling

• just as in filtering, separable filters are useful separability in this context is a statement about a continuous filter, rather than a discrete one:

$$f_2(x,y) = f_1(x)f_1(y)$$

- resample in two passes, one resampling each row and one resampling each column
- intermediate storage required: product of one dimension of src. and the other dimension of dest.
- same yucky details about boundary conditions

Cornell CS4620 Fall 2008 Lecture 13 •

A gallery of filters

- Box filter
 Simple and cheap
- Tent filter
 Linear interpolation
- Gaussian filter
 Very smooth antialiasing filter
- B-spline cubic
 Very smooth
- Catmull-rom cubic
 Interpolating
- Mitchell-Netravali cubic
 Good for image upsampling

Box filter

Figure 9.19. The discrete and continuous box filters.

Tent filter

Figure 9.20. The tent filter and two scaled versions.

Gaussian filter

$$f_g(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$$

B-Spline cubic

$$f_B(x) = rac{1}{6} egin{cases} -3(1-|x|)^3 + 3(1-|x|)^2 + 3(1-|x|) + 1 & -1 \le x \le 1, \ (2-|x|)^3 & 1 \le |x| \le 2, \ 0 & ext{otherwise.} \end{cases}$$

Catmull-Rom cubic

$$f_C(x) = \frac{1}{2} \begin{cases} -3(1-|x|)^3 + 4(1-|x|)^2 + (1-|x|) & -1 \le x \le 1, \\ (2-|x|)^3 - (2-|x|)^2 & 1 \le |x| \le 2, \\ 0 & \text{otherwise.} \end{cases}$$

Michell-Netravali cubic

Figure 9.24. The Mitchell-Netravali filter.

$$f_M(x) = rac{1}{3}f_B(x) + rac{2}{3}f_C(x)$$

$$= rac{1}{18} \begin{cases} -21(1-|x|)^3 + 27(1-|x|)^2 + 9(1-|x|) + 1 & -1 \le x \le 1, \\ 7(2-|x|)^3 - 6(2-|x|)^2 & 1 \le |x| \le 2, \\ 0 & ext{otherwise.} \end{cases}$$

Effects of reconstruction filters

- For some filters, the reconstruction process winds up implementing a simple algorithm
- Box filter (radius 0.5): nearest neighbor sampling box always catches exactly one input point it is the input point nearest the output point so output[i, j] = input[round(x(i)), round(y(j))] x(i) computes the position of the output coordinate i on the input grid
- Tent filter (radius 1): linear interpolation tent catches exactly 2 input points weights are a and (1 a) result is straight-line interpolation from one point to the next

Properties of filters

- Degree of continuity
- Impulse response
- Interpolating or no
- Ringing, or overshoot

Figure 9.25. An interpolating filter reconstructs the sample points exactly because it has the value zero at all non-zero integer offsets from the center.

Ringing, overshoot, ripples

Overshoot caused by negative filter values

•

Figure 9.26. A filter with negative lobes will always produce some overshoot when filtering or reconstructing a sharp discontinuity.

Ringing, overshoot, ripples

- Overshoot
- caused by negative filter values
- Ripples

constant in, non-const. out ripple free when:

What about near the edge?
 the filter window falls off the edge of the image need to extrapolate
 methods:

clip filter (black)

What about near the edge?

the filter window falls off the edge of the image

need to extrapolate

methods:

clip filter (black)

What about near the edge?
 the filter window falls off the edge of the image need to extrapolate
 methods:

• clip filter (black)

• What about near the edge? the filter window falls off the edge of the image

need to extrapolate

methods:

- clip filter (black)
- wrap around

What about near the edge?
 the filter window falls off the edge of the image need to extrapolate
 methods:

- clip filter (black)
- wrap around

• What about near the edge? the filter window falls off the edge of the image

need to extrapolate

methods:

- clip filter (black)
- wrap around
- copy edge

What about near the edge?
 the filter window falls off the edge of the image need to extrapolate

methods:

- clip filter (black)
- wrap around
- copy edge

What about near the edge?
 the filter window falls off the edge of the image

need to extrapolate

methods:

- clip filter (black)
- wrap around
- copy edge
- reflect across edge

What about near the edge?
 the filter window falls off the edge of the image need to extrapolate

methods:

- clip filter (black)
- wrap around
- copy edge
- reflect across edge

What about near the edge?
 the filter window falls off the edge of the image need to extrapolate

methods:

- clip filter (black)
- wrap around
- copy edge
- reflect across edge
- vary filter near edge

What about near the edge?
 the filter window falls off the edge of the image need to extrapolate

- methods:
 - clip filter (black)
 - wrap around
 - copy edge
 - reflect across edge
 - vary filter near edge

Reducing and enlarging

- Very common operation devices have differing resolutions applications have different memory/quality tradeoffs
- Also very commonly done poorly
- Simple approach: drop/replicate pixels
- Correct approach: use resampling

Reducing and enlarging

- Very common operation devices have differing resolutions applications have different memory/quality tradeoffs
- Also very commonly done poorly
- Simple approach: drop/replicate pixels
- Correct approach: use resampling

1000 pixel width

Lecture 13 • 9 Cornell CS4620 Fall 2008

by dropping pixels

gaussian filter

250 pixel width

Reducing

Figure 9.38. Resampling involves filtering for reconstruction and for sampling. Since two convolution filters applied in sequence can be replaced with a single filter, we only need one resampling filter, which serves the roles of reconstruction and sampling.

box reconstruction filter

bicubic reconstruction filter

4000 pixel width

Types of artifacts

- Garden variety
 what we saw in this natural image
 fine features become jagged or sparkle
- Moiré patterns

600ppi scan of a color halftone image

by dropping pixels

gaussian filter

downsampling a high resolution scan

Types of artifacts

- Garden variety
 what we saw in this natural image
 fine features become jagged or sparkle
- Moiré patterns
 caused by repetitive patterns in input
 produce large-scale artifacts; highly visible
- These artifacts are aliasing just like in the audio example earlier
- How do I know what filter is best at preventing aliasing?
 practical answer: experience

theoretical answer: there is another layer of cool math behind all this

- based on Fourier transforms
- provides much insight into aliasing, filtering, sampling, and reconstruction