Section 2.6 Exercises

David Piper

September 30, 2020

- 2.35 Let P:18 is odd and Q:25 is even. Then $P\iff Q$ can be written as 18 is odd if and only if 25 is even. Furthermore $P\iff Q$ is true.
- 2.37 For the open sentences P(x): |x-3| < 1 and $Q(x): x \in (2,4)$ over the domain $\mathbb R$ the biconditional $P(x) \iff Q(x)$ can be stated in a few different ways including the following.
 - 1. |x-3| < 1 if and only if $x \in (2,4)$.
 - 2. |x-3| < 1 is equivalent to $x \in (2,4)$.
- 2.39 For the following open sentences P(x) and Q(x) over a domain S, determine all values of $x \in S$ for which the biconditional $P(x) \iff Q(x)$ is true.
 - (a) $P(x): |x|=4; Q(x): x=4; S=\{-4,-3,1,4,5\}$. This has the following corresponding truth table.

X	-4	3	1	4	5
$\overline{P(x)}$	Τ	F	F	Τ	F
Q(x)	\mathbf{F}	F	F	Τ	F

From this truth table we can observe that $P(x) \iff Q(x)$ is false when x = -4 and true for all other vales of $x \in S$.