ROZWIAZANIE WYGENEROWANE PRZEZ CHAT GPT

3. Obliczyć moment bezwładności układu względem osi z (prostopadłej do płaszczyzny xy i przechodzącej przez punkt O znajdujący się w środku układu) (Rys. 1). Wyznaczyć energię kinetyczną ruchu obrotowego, jeśli układ obraca się wokół osi z ze stałą prędkością kątową 6 rad/s.

To solve the problem, we'll calculate the moment of inertia I_z and the rotational kinetic energy E_k for a system rotating about the z-axis with a constant angular velocity $\omega = 6 \,\mathrm{rad/s}$.

Given Data:

- $\omega = 6 \, \mathrm{rad/s}$

**Step 1: Calculate Moment of Inertia I_z **

The moment of inertia for a system of particles is given by:

$$I_z = \sum_i m_i r_i^2$$

Since the specifics of the masses m_i and their distances r_i from the z-axis are not given, we'll assume the calculation below is based on known m_i and r_i .

Assume: $(m_1, r_1), (m_2, r_2), \dots, (m_n, r_n)$

$$I_z = m_1 r_1^2 + m_2 r_2^2 + \ldots + m_n r_n^2$$

**Step 2: Calculate Rotational Kinetic Energy E_k **

The rotational kinetic energy is given by:

$$E_k = \frac{1}{2} I_z \omega^2$$

Substituting $\omega = 6 \, \text{rad/s}$:

$$E_k = \frac{1}{2}I_z(6)^2 = 18I_z$$

Substitution and Calculation

Assume specific values if provided for m_i and r_i , perform the summation to find I_z , and then compute E_k .

Final Results:

-
$$\mathbf{I_z} = \ldots \, \mathrm{kg \cdot m^2}$$
 - $\mathbf{E_k} = \ldots \, \mathrm{J}$

To present numerical results, specific data for masses and distances must be substituted into the above equations.