Pucallpa, 25 de octubre de 2021

CARTA Nº 003/2021- IALE-RABP-EPIC CGT_FISeIC_UNU

SR : ING. ULLOA GALVEZ, RONALD HAROLD

PRESIDENTE DE LA COMISIÓN DE GRADOS Y TÍTULOS DE LA FISEIC

Presente. -

ASUNTO : REMITO TERCER LEVANTAMIENTO DE OBSERVACIONES A

PROYECTO DE TESIS

REF. : Observaciones presentadas por los revisores del P.T.

Es grato dirigirnos a usted para saludarle cordialmente y, a la vez agradecerle tenga a bien por medio de su despacho se sirva remitir el presente a los revisores de nuestro proyecto de tesis titulado "Propuesta de incremento a la resistencia de suelos para subrasante mediante incorporación de ceniza de palma aceitera (Elaeis guineensis) en vías afirmadas en el Jirón Galilea desde la cuadra 1 hasta la cuadra 3 de la urbanización Los Portales Yarinacocha, Perú 2022", en la Escuela Profesional de Ingeniería Civil, de la Facultad de Ingeniería de Sistemas e Ingeniería Civil, de la Universidad Nacional de Ucayali, en los términos siguientes:

JURADO	OBSERVACION	LEVANTAMIENTO DE
		OBSERVACION
PRESIDENTE	No formulo observación	
PRIMER MIEMBRO	En la fundamentación del problema, menciona al costo de la sub rasante con material convencional. Debe incluir un análisis de costos respectivos. Debe considerar un comparativo de costos, con material tradicional compararlo con el material materia de Tesis. Indicar en el Proyecto, que la tesis concluirá si el nuevo diseño materia de	Se incluyó en el iten 2.1 Descripción y Fundamentación del Problema cuadro con Costos de material convencional para afirmado de vías de acuerdo a las UND utilizadas con precios actuales. Se incorporó el análisis comparativo de costos en el proyecto de tesis, plasmada en la realización y cumplimiento del 4to objetivo específico. Se incluirá en el informe final una vez
	tesis, es más económico, que utilizando	culminada la investigación.
	material tradicional.	

	La envergadura del Proyecto, debe ser	De acuerdo al proyecto de tesis planteada				
	de 2km por tesista o de 3km mínimo	se realizará en el Jirón Galilea desde la				
	para 2 tesistas. Para tener una adecuada	cuadra 1 hasta la cuadra 3 de la				
	referencia de investigación.	urbanización Los Portales Yarinacocha				
		tiene una longitud de 300 m y un ancho				
		de via de 12 m, de los cuales tiene un área				
		total de 3600 m2.				
		Si al área lo multiplicamos costo unitario				
		de perfilado y compactado de sub				
		rasante + carpeta de rodadura con				
		material mejorado 60% hormigón +				
		15%TR + 25% de ceniza de palma				
		aceitera.				
		3600*(2.84+17.39) = S/.72,828.00 soles.				
		De acuerdo a la observación nos				
		recomienda hacer 3km mínimo; lo cual				
		sería imposible costear.				
		3000*12*20.23= S/. 728,280.00 soles.				
SEGUNDO	No formulo observación -	-				
MIEMBRO						

Sin otro particular, me suscribo de usted no sin antes expresarle muestras de consideración y estima personal.

Atentamente,

UNIVERSIDAD NACIONAL DE UCAYALI

FACULTAD DE INGENIERÍA DE SISTEMAS E INGENIERÍA CIVIL ESCUELA PROFESIONAL DE INGENIERÍA CIVIL CARRERA PROFESIONAL DE INGENIERÍA CIVIL

Proyecto de tesis:

Propuesta de incremento a la resistencia de suelos para subrasante mediante incorporación de ceniza de palma aceitera (Elaeis guineensis) en vías afirmadas en Jirón Galilea desde la cuadra 1 hasta la cuadra 3 de la urbanización Los Portales Yarinacocha, Perú 2022.

Tesis para optar el título de ingeniero Civil

Tesistas:	
Asesor:	

Ucayali – Perú 2021

ÍNDICE

I	. Generalidades	. 4
1.1	Título de la Investigación	. 4
1.2	Tesista(S)	. 4
1.3	Año Cronológico	. 4
I	I. Planteamiento del Problema	. 5
2.1	Descripción y Fundamentación del Problema	. 5
2.2	Formulación del Problema	. 6
2.2.1	Problema General	. 6
2.2.2	Problemas Específicos	. 7
2.3	Objetivos	. 7
2.3.1	Objetivo General	. 7
2.3.2	Objetivos Específicos	. 7
2.4	Justificación e Importancia	. 7
2.5	Limitaciones y Alcances	. 8
2.6	Hipótesis	. 8
2.6.1	Hipótesis General	. 8
2.6.2	Hipótesis Específicas	. 8
2.7	Sistema de Variables- Dimensiones e Indicadores	. 9
2.7.1	Variable Independiente	. 9
2.7.2	Variable Dependiente	. 9
2.8	Definición Operacional de Variables, Dimensiones e Indicador	10
I	II. Marco Teórico	11
3.1	Antecedentes o Revisión de Estudios Realizados	11
3.2	Bases Teóricas	12

3.3	Definición de Términos Básicos	. 13
	IV. Metodología o Marco Metodológico	. 14
4.1	Tipo y Nivel de Investigación	. 14
<i>4.</i> 1.	1 Tipo de Investigación	. 14
4.1.2	2 Nivel de Investigación	. 14
4.2	Diseño de la Investigación – Esquema de la Investigación	. 14
4.3	Determinación del Universo/ Población	.14
4.4	Muestra	. 15
4.5	Técnicas de Recolección y Tratamientos de Datos	. 15
4.5.	1 Fuentes, técnicas e instrumentos de recolección de datos	. 15
4.5.2	2 Procesamiento Y Presentación De Datos	. 15
	V. Aspectos Administrativos y Presupuestales	. 16
5.1	Potencial Humano	. 16
5.2	Recursos Materiales	.16
5.3	Recursos Financieros	. 17
5.4	Cronograma de Gantt	. 18
5.5	Presupuesto	. 19
	VI. Referencias Bibliográficas	20
6.1	Bibliografía Física	20
6.2	Bibliografía Electrónica	. 21

I. Generalidades.

1.1 Título de la Investigación

Propuesta de incremento a la resistencia de suelos para subrasante mediante incorporación de ceniza de palma aceitera (Elaeis guineensis) en vías afirmadas en Jirón Galilea desde la cuadra 1 hasta la cuadra 3 de la urbanización Los Portales Yarinacocha, Perú 2022

1.2 Tesista(S)

_

-

1.3 Año Cronológico

2021

II. Planteamiento del Problema

2.1 Descripción y Fundamentación del Problema

La construcción y mantenimiento de vías en el Perú es una actividad que tiene gran demanda debido a que el país tiene aún muchas limitaciones en cuanto a infraestructura vial adecuada. Es en ese sentido que, en aras de atender esa demanda estructural, se utilizan materiales convencionales que en muchos de los casos generan limitaciones en rendimiento, resistencia, costos y afectación al ambiente.

Costos de material convencional para afirmado de vías.

01.02	AFIRMADO DE VIAS		
01.02.01	MEJORAMIENTO DEL JR. FRANCISCO BOLOGNESI (ENTRE LA AV. C		
01.02.01.01	TRABAJOS PRELIMINARES		
01.02.01.01.01	TRAZO, NIVEL Y REPLANTEO 3 ETAPAS (P/ EXCAV., P/RELLENO,	m2	S/ 1.92
01.02.01.01.02	LIMPIEZA DE TERRENO CON MAQUINARIA	m2	S/ 0.61
01.02.01.02	MOVIMIENTO DE TIERRAS		
01.02.01.02.01	CORTE DE TERRENO A NIVEL DE SUB-RASANTE	m3	S/ 6.67
01.02.01.02.02	RELLENO COMPACTADO C/MATERIAL PRESTAMO	m3	S/ 65.13
01.02.01.02.03	CORTE DE TERRENO CON EQUIPO EN ZONA DE	m3	S/ 4.69
01.02.01.02.04	RELLENO CON MATERIAL DE PRESTAMO EN ZONA DE MATERIAL	m3	S/ 65.82
01.02.01.02.05	ELIMINACION DE MATERIAL EXCEDENTE (MAQUINARIA)	m3	S/ 8.68
01.02.01.03	SISTEMA DE DRENAJE		
01.02.01.03.01	CONFORMACION DE CUNETAS	m	S/ 2.20
01.02.01.04	PAVIMENTOS		
01.02.01.04.01	PERFILADO Y COMPACTADO DE SUB RASANTE	m2	S/ 2.84
01.02.01.04.02	CARPETA DE RODADURA CON MATERIAL MEJORADO 70%	m2	S/ 16.39

Partida 01.02.01.04.01 PERFILADO Y COMPACTADO DE SUB RASANTE				ANTE				
Rendimiento	m2/DIA	2,000.0000	EQ.	2,000.0000	Costo unitario d	recto por : m2	2.84	
Código	Descripción	n Recurso		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
		Mano de Obr	a					
0147010002	OPERARIO			hh	1.0000	0.0040	23.46	0.09
0147010004	PEON			hh	2.0000	0.0080	16.78	0.13
								0.22
		Materiales						
0239050000	AGUA			m3		0.1000	5.00	0.50
								0.50
		Equipos						
0337010001	HERRAMIEN	TAS MANUALE	S	%MO		3.0000	0.22	0.01
0348120001	CAMION CISTERNA 4X2 (AGUA) 1,500 GAL.		hm	0.5000	0.0020	175.00	0.35	
0349030007	RODILLO LISO VIBR AUTOP 101-135HP 10-12		hm	1.0000	0.0040	200.00	0.80	
0349090003	MOTONIVEL	ADORA DE 130-	135 HP	hm	1.0000	0.0040	240.00	0.96
								2.12

Partida	01.02.01.04.0	2	CARPETA DE	ARPETA DE RODADURA CON MATERIAL MEJORADO 70% HORMIGON +30% T.F						
Rendimiento	m2/DIA	2,200.0000	EQ.	2,200.0000	Costo unitario di	recto por : m2	16.39			
Código	Descripción	Recurso		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.		
		Mano de Obr	a							
0147010003	OFICIAL			hh	1.0000	0.0036	18.56	0.07		
0147010004	PEON			hh	4.0000	0.0145	16.78	0.24		
								0.31		
		Materiales								
0204110022	TIERRA ROJA			m3		0.0585	50.00	2.93		
0238000000	HORMIGON			m3		0.1365	80.00	10.92		
								13.85		
		Equipos								
0337010001	HERRAMIENT	AS MANUALE	S	%MO		3.0000	0.31	0.01		
0348120001	CAMION CIST	ERNA 4X2 (AG	UA) 1,500 GAL.	hm	0.5000	0.0018	175.00	0.32		
0348130092	CAMION VOLQUETE 330 HP DE 15 M3		hm	0.5000	0.0018	180.00	0.32			
0349030007	RODILLO LISO VIBR AUTOP 101-135HP 10-12		hm	1.0000	0.0036	200.00	0.72			
0349090003	MOTONIVELA	DORA DE 130-	135 HP	hm	1.0000	0.0036	240.00	0.86		
								2.23		

La agencia peruana de noticias Andina 2021. Reveló que "De las 86,000 hectáreas de palma aceitera nivel del país, Ucayali cuenta con casi 50,000 hectáreas" teniendo un auge sumamente llamativo desde el punto de vista industrial. Sin embargo, no se aprovecha adecuadamente los residuos que este genera.

Es así que Ramírez N. et al, 2011. Afirmó que "En el proceso de beneficio del fruto de palma de aceite se generan varios subproductos", y que "De la biomasa generada se destaca el uso de un alto porcentaje de fibra (...) de las cuales el 80 por ciento de las mismas se deriva como combustible en la caldera" por otro lado el manual Técnico de palma africana generada por Technoserve (s.f.) refiere que, "el contenido de fibra por racimos de palma aceitera es del 13%" y que la nuez tiene un rendimiento de uno a 1.6 toneladas por hectárea al año. Que harían un aproximado de mil toneladas de fibra generados en la región Ucayali.

Por lo mencionado en los párrafos anteriores se pudo observar que el sub producto ceniza no es aprovechado en la actualidad, y teniendo en cuenta que este tipo de materiales cuentan con sílice en su composición se presume pueda servir como sub producto para tratamiento y mejoramiento de suelos destinados a vías afirmadas, los cuales por las características arcillosas de los suelos en la amazonia se ven muy afectados en la actualidad.

2.2 Formulación del Problema

2.2.1 Problema General

¿Cuál será el efecto de la incorporación de ceniza de fibra de palma en el suelo adecuada que permita incrementar la resistencia al esfuerzo cortante de los suelos en vías afirmadas en la región Ucayali?

2.2.2 Problemas Específicos

- ¿Qué diseño proporcional de suelo/ ceniza será adecuada en la formulación del experimento en suelos de vías afirmadas en la región Ucayali?
- ¿De qué manera influirá la incorporación de ceniza de fibra de palma aceitera a diversas proporciones de sustitución en el comportamiento de los suelos respecto a la resistencia al esfuerzo cortante?
- ¿Cuál será la relación experimental suelo/ceniza, más adecuada que mejorar la condición de resistencia de los suelos?
- ¿Cuál será la diferencia de costos entre el método propuesto y el método tradicional?

2.3 Objetivos

2.3.1 Objetivo General

Explicar el efecto que tiene la incorporación de la ceniza de palma aceitera sobre la resistencia al esfuerzo cortante y comparar los costos de los mismos en suelos destinados al mantenimiento de vías afirmadas en la región Ucayali.

2.3.2 Objetivos Específicos

- Formular diversas proporciones la incorporación de ceniza en los suelos destinados al mantenimiento de vías afirmadas en la región Ucayali.
- Comparar el comportamiento de los suelos en resistencia al esfuerzo cortante tratados con ceniza de fibra de palma aceitera a diversas proporciones de sustitución.
- Establecer la relación más adecuada respecto de la mejor condición de resistencia.
- Determinar los costos comparativos entre el método objeto de estudio y el método tradicional

2.4 Justificación e Importancia

En la selva peruana predomina los suelos arcillosos, que por sus características son propensas a tener baja resistencia frente a la compresión, esta característica ha hecho que las vías afirmadas en la región tengan un tiempo de uso efectivo limitado, que conlleva perjuicio económico al estado e incomodidad a los usuarios.

Como lo define DG Fredlund, H. Rahardjo, (1993). "Cada año en los Estados Unidos, los suelos expansivos causan \$ 2.3 mil millones en daños a casas, otros edificios, carreteras, tuberías y otras estructuras".

El fin que persigue nuestra investigación está dada según la problemática vista en los párrafos anteriores, y trae como objetivo inherente la búsqueda de una solución practica en uso y tecnología de diseño para el tratamiento de suelos y estas alcancen un mejor desempeño de utilización cuando formen parte de las vías afirmadas.

2.5 Limitaciones y Alcances

El estudio tiene como limitación principal la obtención de la ceniza, ya que debido a la cantidad a utilizar sería trabajoso realizarla en una estufa de laboratorio. Sin embargo, esta limitación será superada con la obtención de ceniza de la empresa OLAMSA de la planta del kilómetro 59+800. De acuerdo con los resultados que se generarán, los municipios, gobierno regional y entidades gubernamentales podrían utilizar el diseño que mejor resultados obtenga y los utilice en el mantenimiento y construcción de vías en la región u otras regiones con similares características. Así mismo, se dará un re uso a los materiales de desecho de la palma que generan contaminación a los suelos agua y aire, beneficiando de sobre manera al cuidado del medio ambiente.

2.6 Hipótesis

2.6.1 Hipótesis General

La incorporación de ceniza de fibra de palma aceitera a los suelos utilizados en el mantenimiento de vías afirmadas, mejora hasta un 20% en resistencia al esfuerzo cortante con una sustitución del 50%.

2.6.2 Hipótesis Específicas

Las proporciones de incorporación de ceniza en los suelos destinados al mantenimiento de vías afirmadas en la región Ucayali será adecuada en un rango que no supere los 60% de sustitución parcial.

El comportamiento de los suelos tendrá una tendencia al incremento respecto de la resistencia al esfuerzo cortante tratados con ceniza de fibra de palma aceitera.

La relación experimental suelo/ceniza, más adecuada que mejorar la condición de resistencia de los suelos es con un porcentaje de sustitución de 50% a más.

2.7 Sistema de Variables- Dimensiones e Indicadores

2.7.1 Variable Independiente

Ceniza de fibra de palma aceitera.

2.7.2 Variable Dependiente

resistencia al esfuerzo cortante del suelo.

2.8 Definición Operacional de Variables, Dimensiones e Indicador

VARIABLES	Definición operacional	Dimensión	Indicador	Instrumento	Unidad	Escala	Valor Final	Tipo de variable
Variable Independiente Ceniza de fibra de palma aceitera	Su fabricación se realiza a altas temperaturas y presión las cuales hacen que las partículas que conforman la estructura del material sean más pequeñas hasta llegar a niveles nanométricos	Calcinación de fibra a altas temperaturas	Temperatura Peso/volumen	Estufa Incinerador Balanza	°C Kg. m³	Medición de temperatura de incineración Peso y volumen	Por determinar	Cuantitativa (escalar)
Variable	Se ejerce gran presión sobre	Diseño proporcional 25/75	Mejora de capacidad de resistencia	equipo de ensayo al esfuerzo cortante	Ensayos CBR	% resistencia al esfuerzo cortante	Por determinar	Cuantitativa (escalar)
resistencia al esfuerzo cortante del	probetas mediante un equipo de	Diseño proporcional 50/50	Mejora de capacidad de resistencia	equipo de ensayo al esfuerzo cortante	Ensayos CBR	% resistencia al esfuerzo cortante	Por determinar	Cuantitativa (escalar)
suelo del	ensayo al esfuerzo cortante.	Diseño proporcional 75/25	Mejora de capacidad de resistencia	equipo de ensayo al esfuerzo cortante	Ensayos CBR	% resistencia al esfuerzo cortante	Por determinar	Cuantitativa (escalar)

Fuente: Elaboración propia

III. Marco Teórico

3.1 Antecedentes o Revisión de Estudios Realizados

López, et al (2017). estudiaron en su investigación "Expansion reduction of clayey soils through Surcharge application and Lime Treatment" el comportamiento de los suelos expansivos las cuales deben sus características al contenido de arcillas que poseen. Los autores determinaron que los suelos de este tipo se contraen y expanden por los cambios en el contenido de humedad que estas experimentan en la intemperie. Ellos sostienen que se puede contrarrestar la expansión de los suelos de este tipo con la adición de cal, ya que de acuerdo a sus resultados los suelos disminuyeron su expansión e incrementaron su resistencia.

Landa y Torres. (2019). En su tesis "Mejoramiento de suelos arcillosos en subrasante mediante el uso de cenizas volantes de bagazo de caña de azúcar y cal" tuvieron como objetivo la utilización de residuos agroindustriales ceniza de bagazo de caña (CBCA), conjuntamente con Cal para estabilizar la sub rasante de una carretera sin pavimentar.

Los ensayos de mecánica de suelos que realizaron en su estudio fueron el proctor modificado y la california bearing ratio CBR. Teniendo en su diseño una modificación en proporciones globales de 5%, 15% y 25% aplicada en estado seco, con cuatro combinaciones según el nivel de experimento que propusieron CBCA; 75% CBCA + 25% Cal; 50% CBCA + 50% Cal; y 100% Cal. Como resultado concluyente determinaron un aumento del CBR en 110.81% respecto del suelo encontrado.

Diaz (2018). En su tesis de grado "Mejoramiento del cbr de un suelo arcilloso con cloruro de sodio" Tuvo como objetivo de investigación, conocer el mejoramiento de suelos arcillosos mediante la medición con el ensayo CBR, suelos, que fueron tratados con la adición de cloruro de sodio en una proporción de 14%, 16% y 18%. De los resultados, el autor concluye que existe una mejora de hasta 20% en resistencia respecto de la muestra patrón.

Terrones (2018). Desarrolló su tesis "Estabilización de suelos arcillosos adicionando cenizas de bagazo de caña para el mejoramiento de subrasante en el sector Barraza, Trujillo" donde incorporó ceniza de bagazo de caña en porcentajes de 5%, 10%, y 15%, desarrollando para ello ensayos de caracterización y de CBR. Los

resultados muestran que los suelos tratados con 15% cumplen con los requisitos del manual de carreteras del ministerio de transportes, llegando a alcanzar en promedio 150.60 kPa y un porcentaje de CBR de 23.67%. concluye el autor que es adecuado el uso de este residuo para el mejoramiento de suelos en carreteras.

Torres y Landa (2021). En su tesis "Mejoramiento de suelos arcillosos en subrasante mediante el uso de cenizas volantes de bagazo de caña de azúcar y cal en el tramo de la carretera Tingo María – Monzón en la provincia de Leoncio Prado" se propusieron como objetivo determinar la cantidad en porcentaje óptimo de ceniza de bagazo de caña de azúcar y cal que mejore las condiciones de CBR de suelo natural y así determinar sus propiedades físicas y mecánicas de la mezcla. Se utilizaron como material experimental 100% de CBCA, 75% CBCA y 25% Cal, 50% CBCA y 50% de cal, y 100% de cal. Los resultados mostraron en el CBR que este aumenta en un 110.81% respecto del suelo natural y la densidad aumentando en 54.7%, concluyendo así que la proporción 50% y 50% es la más adecuada en este tipo de suelos.

Pérez y Ochoa (2021) desarrollaron la tesis titulada "Análisis comparativo de la resistencia a la fuerza cortante de un mortero adicionado con ceniza de cáscara de arroz con respecto a un mortero patrón de calidad f'c=175 kg/cm2" En la cual se propusieron determinar la resistencia del mortero y su incremento que pudiera sufrir con la adición proporcional de ceniza de cascara de arroz. Este estudio es importante para nuestra investigación ya que proporciona parámetros de carbonización y obtención de la ceniza las cuales serán utilizadas en nuestro estudio. Respecto de lo anterior los tesistas utilizaron un horno artesanal con una temperatura entre 800 y 900 °C, luego realizaron un segundo proceso de calcinación con una mufla a 400°C por un espacio de dos horas basados en las especificaciones de la norma nacional NTP 334.104:2011.

3.2 Bases Teóricas

Métodos para determinación de objetivos específicos.

Para determinar la relación adecuada densidad y humedad de compactación utilizaremos el ensayo de Proctor modificado, siendo el método a utilizar el MTC E115 (compactación de suelos en laboratorio utilizando una energía modificada (56

000 pie-lb/pie³ [2 700 kn-m/m³]), Este método se basa en la norma ASTM D1557, que corresponde a nuestro nivel de investigación.

En la determinación de resistencia al esfuerzo cortante del suelo. En la construcción y mantenimiento de vía se utiliza el CBR (variación de relación de soporte) como ensayo para conocer las características de resistencia del suelo a intervenir, es en ese sentido que en el presente estudio se utilizará el método MTC E – 132. Este modo de operación se basa en las normas ASTM D1883 y AASHTOT 193, que cumplen con nuestros niveles de rendimiento y condiciones. Teniendo en cuenta que este modo de funcionamiento está sujeto a constantes revisiones y actualizaciones.

3.3 Definición de Términos Básicos

Palma aceitera. - Según Technoserve. (s.f.), "La palma aceitera es una planta perenne, cultivada para la extracción de aceite. La especie de palma tiene tres variedades: Dura, pisifera y tenera. De ellas la variedad tenera es la que se utiliza comercialmente para la extracción del aceite y es un cruce entre las otras dos variedades (Dura y pisifera)".

Ceniza. - Es considerado un sub producto, que resulta de la combustión de la fibra de la palma en el caldero que proporciona energía en los procesos de fabricación de aceite. Según manifiesta Ramírez N. *et al*, 2011. "Este producto se obtiene quemando una mezcla de fibra y corteza en la caldera de una planta de enriquecimiento. El uso de cenizas en el sector del aceite de palma se ha enfocado en la aplicación directa de las plantaciones al suelo, además del proceso de compostaje, por su alto contenido en potasio".

California Bearing Ratio (CBR).- Para el manual de ensayos de materiales MTC. (2000), es una prueba de penetración para verificar las propiedades mecánicas del suelo. Desarrollado por el departamento de transporte de California antes de la Segunda Guerra Mundial. "Este índice se utiliza para evaluar la capacidad de soporte de los suelos de subrasante y de las capas de base, subbase y de afirmado"

IV. Metodología o Marco Metodológico

4.1 Tipo y Nivel de Investigación

4.1.1 Tipo de Investigación

De acuerdo a las características de la propuesta del proyecto, este estudio será del tipo aplicada ya que se aplicarán métodos existentes para la resolución del problema planteado. (Hernández, Sampieri 2006), y cuantitativo, así mismo será transversal por que los estudios se realizaran en un solo momento temporal.

4.1.2 Nivel de Investigación

El nivel del estudio será explicativo experimenta donde se analizará el comportamiento de la variable dependiente después de haber efectuado las modificaciones propias del experimento a la variable independiente.

4.2 Diseño de la Investigación – Esquema de la Investigación

El diseño del experimento estará dado por un diseño completamente al azar DCA con tres niveles de estudio y tres repeticiones en los ensayos.

Cuadro 1. Diseño completamente al azar con tres niveles experimentales

Variable independiente	Ceniza de fibra de palma aceitera					
Niveles experimentales	25% ceniza/75% suelos	50% ceniza / 50% suelos	75% ceniza/25% suelos			
Repeticiones						
R1	CBR1	CBR2	CBR3			
R2	CBR1	CBR2	CBR3			
R3	CBR1	CBR2	CBR3			
Variable dependiente	Resistencia al esfuerzo cortante del suelo					

Fuente: Diseño propio según características del estudio

4.3 Determinación del Universo/ Población

La investigación se realizará en la Urbanización "los Portales" del distrito de Yarinacocha, tomando para ello muestras de fibra de palma para el uso en el experimento; los análisis de laboratorio y ensayos se realizarán en los laboratorios de la Universidad de Ucayali.

La población la conforma toda la longitud y ancho de la vía que hace un total de 10 km² de área.

4.4 Muestra

Se utilizará un muestreo no probabilístico a conveniencia ya que se buscará en todo el desarrollo del experimento un proceso controlado, por lo tanto, la muestra a tratarse estará conformada por trescientos metros por el ancho de vía, con tres replicas que hacen un total de novecientos metros. Se desarrollará el experimento en sus tres niveles de dosificación (25/75%; 50/50%; 75/25%, ceniza/ suelo) tomando para el fin distancias proporcionales para cada tratamiento. La ejecución se llevará a cabo en jirón Galilea desde la cuadra 1 hasta la cuadra 3 de la urbanización Los Portales Yarinacocha.

4.5 Técnicas de Recolección y Tratamientos de Datos

4.5.1 Fuentes, técnicas e instrumentos de recolección de datos.

En el trabajo de investigación se utilizará la siguiente técnica.

- Análisis documental.

Esta técnica permitirá registrar información de fuentes bibliográficas, el cual se utilizará y servirá como sustento a la investigación.

Para la recolección de datos se usarán instrumentos como:

- Libretas de apuntes.
- Guía documental o manual de procedimientos.
- Instrumentos de medición (balanza, estufa, manómetro, termómetro, etc.) previamente calibrados

4.5.2 Procesamiento Y Presentación De Datos

Los datos se presentarán en tablas, cuadros, gráficos estadísticos como Histogramas, frecuencia, curva de tendencia, grafico de pastel incluyendo

porcentajes etc. Siendo estas interpretadas mediante un análisis estadístico de las mismas

Para el procesamiento de resultados con fines de comprobación de hipótesis se realizará un análisis de varianza ANOVA, para establecer si existen diferencias significativas entre las medias de los valores resultantes y los planteados, con una comparación de Tukey y Duncan ambas con un intervalo de confianza de 95% y un nivel de significancia de 0.05.

Kruskal Wallis o U de Mann-Whitney en caso de que los datos no se ajusten una distribución normal

V. Aspectos Administrativos y Presupuestales.

5.1 Potencial Humano

El presente estudio será realizado por dos investigadores.

5.2 Recursos Materiales

- Internet
- Papel bond A 4 de 80 g/m 2
- Libros especializados
- Impresiones
- Empastado
- Adquisición de ceniza
- Clasificación de suelos mediante el sistema SUCS
- Clasificación de suelos mediante el sistema AASHTO
- Ensayo de contenido de humedad
- Ensayo Límites de Atterberg y pesos específicos
- Aplicación de diseño de experimento
- Ensayo Proctor modificado
- Ensayo CBR
- Ensayo densidad en campo por cono de arena
- Servicio de especialista en estadística para aplicación de análisis estadístico
- Optimización de diseño

5.3 Recursos Financieros

El presente estudios será realizado con recursos propios de los investigadores conjunto con el laboratorio de la Universidad Nacional de Ucayali.

5.4 Cronograma de Gantt

Actividad		MES							
Actividad	set	oct	nov	dic	ene	feb	mar		
Elaboración y presentación de proyecto									
Aprobación de proyecto									
Adquisición de Ceniza									
Calcinación de fibra									
Determinar las características de los suelos destinado	s al ma	antenir	miento	de vía	s afirm	nadas			
Clasificación de suelos mediante el sistema SUCS									
Clasificación de suelos mediante el sistema									
AASHTO									
Ensayo de contenido de humedad									
Ensayo Límites de Atterberg y pesos específicos									
Formular a diversas proporciones la incorporación	de d	eniza	en lo	s sue	los de	estinad	los al		
mantenimiento de vías afirmadas									
Aplicación de diseño de experimento									
Comparar el comportamiento de los suelos en resister	ncia al	esfuer	zo cor	tante ti	ratados	s con o	eniza		
de fibra de palma aceitera a diversas proporciones de	sustit	ución							
Ensayo Proctor Modificado									
Ensayo CBR									
Ensayo densidad en campo por cono de arena									
Establecer la relación más adecuada respecto de la m	nejor co	ondició	n de r	esister	ncia				
Aplicación de análisis estadístico									
Optimización de Diseño									
Actividades Complementarias									
Redacción de Informe									
Aprobación y sustentación de informe final									

5.5 Presupuesto

Descripción	Unidad de medida	Costo Unitario (S/)	Cantidad	Costo total (S/)
Elaboración de Proyecto				
Internet	hora	1.5	100	150.00
Papel bond A 4 de 80 g/m 2	millar	24	1	24.00
Libros especializados	und	150	3	450.00
Ejecución de proyecto				
Adquisición de ceniza	tn	320	3	960.00
Clasificación de suelos mediante el sistema SUCS	Ensayo	100	3	300.00
Clasificación de suelos mediante el sistema AASHTO	Ensayo	100	3	300.00
Ensayo de contenido de humedad	Ensayo	75	3	225.00
Ensayo Límites de Atterberg y pesos específicos	Ensayo	150	3	450.00
Aplicación de diseño de experimento (300m X 12m)	M2	3600	20.23	72,828.00
Ensayo Proctor modificado	Ensayo	150	3	450.00
Ensayo CBR	Ensayo	150	3	450.00
Ensayo densidad en campo por cono de arena	Ensayo	70	3	210.00
Servicio de especialista en estadística para aplicación de análisis estadístico	und	800	1	800.00
Optimización de diseño	und		1	0.00
Redacción de informe final				
Impresiones	und	0.2	400	80.00
Papel bond A 4 de 80 g/m 2	millar	24	2	48.00
Internet	hora	1.5	100	150.00
Empastado	und	50	4	200.00
			Total	78,075.00

VI. Referencias Bibliográficas

6.1 Bibliografía Física.

DG Fredlund, H. Rahardjo. (1993). Mecánica de suelos para suelos no saturados. Nueva York: Wiley.

Diaz, G. (2018). Mejoramiento del CBR de un suelo arcilloso. Cajamarca - Perú: Universidad privada del norte.

Landa; Torres. (2019). Mejoramiento de suelos arcillosos en subrasante mediante. Lima: Universidad Peruana de Ciencias Aplicadas (UPC).

Pérez, E; Ochoa, J. (2021). Análisis comparativo de la resistencia a la compresión de un mortero adicionado con ceniza de cáscara de arroz con respecto a un mortero patrón de calidad f'c=175 KG/CM2. Ucayali Perú: Universidad Nacional de Ucayali.

Ramírez N. Silva A, Garzon E. Yañez E. 2011. Caracterización y manejo de subproductos del beneficio del fruto de palma de aceite. Boletín Técnico No. 30. Centro de Investigación en Palma de Aceite – Cenipalma Bogotá.

T. López-Laraa, J.B. Hernández-Zaragozaa, J. Horta-Rangela, E. Rojas-Gonzáleza. (2017). Expansion reduction of clayey soils through Surcharge application. Case Studies in constructions materials, 102-109.

Terrones, A. (2018). Estabilización de suelos arcillosos adicionando cenizas de bagazo de caña para el mejoramiento de subrasante en el sector Barraza, Trujillo. Trujillo Perú: Universidad Privada del Norte.

Torres, Sergio; Landa, Jacques. (2021). Mejoramiento de suelos arcillosos en subrasante mediante el uso de cenizas volantes de bagazo de caña de azúcar y cal en el tramo de la carretera Tingo María - Monzón en la provincia de Leoncio Prado. Lima: Universidad Peruana de Ciencias Aplicadas (UPC)

6.2 Bibliografía Electrónica.

Andina. Agencia peruana de noticias 2021. Región Ucayali posee mayor plantación en hectáreas de palma aceitera

https://andina.pe/AGENCIA/noticia-region-ucayali-posee-mayor-plantacionhectareas-palma-aceitera-708897.aspx

Technoserve. (s.f.). Manual técnico de palma africana http://www.coapalmaecara.com/files/02%20Botanica%20de%20Palma.pdf

ANEXO:

MATRIZ DE CONSISTENCIA.

Formulación del problema	Objetivos	Hipotesis	Variables	Dimensión e Indicadores
Formulación del problema	Objetivo general	Hipótesis General	Variable	Diseño proporcional
principal	Explicar el efecto que tiene la	La incorporación de	independiente.	de incorporación de
¿Cuál será el efecto de la	incorporación de la ceniza de	ceniza a los suelos	Ceniza de fibra de	ceniza al suelo en
incorporación de ceniza de	palma aceitera sobre la	utilizados en el	palma	sub rasante
fibra de palma en el suelo	resistencia al esfuerzo	mantenimiento de vías	aceitera/suelo	
adecuada que permita	cortante y comparar los	afirmadas, mejora hasta	natural	Indicador
incrementar la resistencia al	costos de los mismos en	un 20% en resistencia al		% de incorporación
esfuerzo cortante de los	suelos destinados al	esfuerzo cortante con		según experimento
suelos en vías afirmadas en la	mantenimiento de vías	una sustitución del 50%		
región Ucayali?	afirmadas en la región Ucayali			
Problema Específicos	Objetivos Específicos	Hipótesis Especificas		
		- '		
¿Qué diseño proporcional de	Formular diversas	Las proporciones de		
suelo/ ceniza será adecuada	proporciones la incorporación	incorporación de ceniza		
en la formulación del	de ceniza en los suelos	en los suelos destinados		
experimento en suelos de	destinados al mantenimiento	al mantenimiento de vías		
vías afirmadas en la región	de vías afirmadas en la región	afirmadas en la región		
Ucayali?	Ucayali	Ucayali será adecuada		Ensayos CBR
		en un rango que no		
¿De qué manera influirá la	Comparar el comportamiento	supere los 60% de		
incorporación de ceniza de	de los suelos en resistencia al	sustitución parcial.	Maniable	Indicador
fibra de palma aceitera a	esfuerzo cortante tratados		Variable	% resistencia al
diversas proporciones de	con ceniza de fibra de palma	El comportamiento de los	dependiente	esfuerzo cortante
sustitución en el	aceitera a diversas	suelos tendrá una	Resistencia al esfuerzo cortante	
comportamiento de los suelos respecto a la resistencia al	proporciones de sustitución	tendencia al incremento respecto de la resistencia	del suelo	
esfuerzo cortante?		al esfuerzo cortante	del suelo	
esideizo contante:		ai esiueizo coitaille		

¿Cuál será la relación experimental suelo/ceniza, más adecuada que mejorar la condición de resistencia de los suelos? ¿Cuál será la diferencia de costos entre el método propuesto y el método tradicional?	Establecer la relación más adecuada respecto de la mejor condición de resistencia. Determinar los costos comparativos entre el método objeto de estudio y el método tradicional	tratados con ceniza de fibra de palma aceitera. La relación experimental suelo/ceniza, más adecuada que mejorar la condición de resistencia de los suelos es con un porcentaje de sustitución de 50% a más.		
Tipo y Nivel de Investigación	Población y Muestra	Diseño de investigación	Técnicas de Recojo de Datos	Procesamiento y Presentación de Datos
De acuerdo con los rasgos del estudio el tipo de investigación será Aplicada, ya que se aplicarán métodos existentes para la resolución del problema planteado. Hernández Sampieri, R, 2006, Refiere que este tipo de investigación busca generar información y conocimientos necesarios con aplicación directa en el problema planteado a fin de solucionarlo, que es el caso propuesto en las vías afirmadas. Cuantitativa, con un nivel explicativo experimental; así	La población la conforma toda la longitud y ancho de la vía que hace un total de 10 km² de área. Se utilizará un muestreo no probabilístico a conveniencia ya que se buscará en todo el desarrollo del experimento un proceso controlado, por lo tanto, la muestra a tratarse estará conformada por trescientos metros por el ancho de vía, con tres replicas que hacen un total de novecientos metros. Se desarrollará el experimento en sus tres niveles de dosificación	El diseño del experimento estará dado por un diseño completamente al azar DCA con tres niveles de estudio y tres repeticiones en los ensayos	Se tomará como base fundamental la técnica de la observación que supone el conjunto de cosas observadas, el conjunto de datos y conjunto de fenómenos. "En este sentido, que pudiéramos llamar objetivo, observación equivale a dato, a fenómeno, a hechos" (Pardinas, F. 2005)	Debido a la naturaleza del estudio las medidas estadísticas a utilizar serán de análisis de tendencia central. También se utilizará el ANOVA para determinar las diferencias significativas entre subgrupos o sub conjuntos que se generen entre tratamientos, para el caso se utilizará el software Minitab

mismo será transversal por	(25/75%; 50/50%; 75/25%,		para la evaluación y
que los estudios se realizaran	ceniza/ suelo) tomando para		cálculo de
en un solo momento	el fin distancias		resultados.
temporal.	proporcionales para cada		interpretadas
	tratamiento. La ejecución se		mediante un
	llevará a cabo en jirón Galilea		análisis estadístico
	desde la cuadra 1 hasta la		de las mismas.
	cuadra 3 urbanización Los		Como también el
	Portales Yarinacocha.		software SPSS
	(Hernández Sampieri, R,		
	2006).		