Facial Emotion Recognition using Ensembles of Deep Neural Networks

Deep Learning in Practice with Python and LUA VITMAV45

Csaba Bokányi Tamás Mészégető

Project and motivation

- A team of Deep Learning rookies
- A good start:
 - Classification
 - Challenging for humans
 - Relatively small models

Common FER workflow

- Preprocessing:
 - Create more data, enhance variance
 - Eliminate certain variances by normalizing pictures (pose/illumination etc.)
- Network design
 - All common achitectures (CNN, DBN, RNN, GAN, etc.)
 - Usually shallower networks as in other image processing tasks
 - Lately many deep CNNs (VGG, Inception, ResNet)
- Decision making
 - Ensembles of a few/thousands of different networks

The FER 2013 database

- ~35 000 images
- Train, valid, test split
- 48x48, grayscale
- 7 emotions (including neutral)
- One of the main static FER databases

Trained Models 1

- Shallow (figure), deep model
- 2(4) CNN, 1(2) FC layer
- Batch normalization, Dropout, Early stopping
- CNN: Max pooling
- Test accuracies: 0.606 (S), 0.665 (D)
- Tuning:
 - Learning rate (0.01)
 - Weight decay (1e-7)
 - Dropout rate (0.3)

Trained Models 2

- Agrawal et al. (2020)
- Overall accuracy: 63.36%

Input data (64 \times 64) grayscale image
Data augmentation
CONV $8 \times 8 \times 32$,BATCH NORM
CONV 8 \times 8 \times 32, RELU, STRIDE (2 \times 2)
CONV $8 \times 8 \times 32$, BATCH NORM
CONV 8 \times 8 \times 32, RELU, STRIDE (2 \times 2)
CONV $8 \times 8 \times 32$, BATCH NORM
CONV 8 \times 8 \times 32, RELU, STRIDE (2 \times 2)
CONV 8 \times 8 \times 16, BATCH NORM
CONV 8 \times 8 \times 16, RELU, STRIDE (2 \times 2)
CONV 8 \times 8 \times 16, BATCH NORM
CONV 8 \times 8 \times 16, RELU, STRIDE (2 \times 2)
CONV $8 \times 8 \times 16$, BATCH NORM
CONV 8 \times 8 \times 16, RELU, STRIDE (2 \times 2)
CONV 8 \times 8 \times 8, BATCH NORM
CONV 8 \times 8 \times 8, RELU, STRIDE (2 \times 2)
CONV 8 \times 8 \times 8, BATCH NORM
CONV 7 \times 7 \times 7, RELU, STRIDE (1 \times 1)
SOFTMAX

Ensembles

- Decision level ensembles
 - Simple averaging
 - Overall accuracy weighted averaging
 - Categorical cofidence weighted averaging
- A total of 9 models, accuracies between 55-66.48%
- Differences in the order of most confident classes
- Best accuracy weighted ensemble: 69.01%

Summary

- Reconstructed recent works and reached over human-level accuracies
- Combined different architectures and showed that even small ensembles can yield significant performance improvements

Thank you for watching!

Csaba Bokányi Tamás Mészégető

