Reprezentacja układów liniowych niezmienniczych w czasie w Matlabie

Sprawozdanie

Akademia Górniczo-Hutnicza im. Stanisława Staszica

Modelowanie Systemów Dynamicznych 2022 WEAliIB, Automatyka i Robotyka

Data wykonania ćwiczenia: 12.10.2022r.

Data oddania sprawozdania: 18.10.2022r.

Spis Treści

- 1. Cel ćwiczeń
- 2. Wstęp teoretyczny
- 3. Wykonanie zadań
- 3.1. Transformata Laplace'a przykład z konspektu
- 3.2. Zadanie 1
- 3.3. Model zawieszenia samochodowego przykład z konspektu
- 3.4. Zadanie 2
- 3.5. Schemat blokowy
- Zera, bieguny, wzmocnienie przykład z konspektu
- 3.7. Zadanie 3
- 3.8. Przestrzeń stanów przykład z konspektu
- 3.9. Zadanie 4
- 3.10. Zadanie 5
- 4. Wnioski
- 5. Bibliografia

1. Cel ćwiczeń

Zadaniem laboratorium jest zdobycie wiedzy dotyczącej reprezentacji i konwersji liniowych układów dynamicznych przy użyciu odpowiednich poleceń oraz funkcji dostarczonych przez oprogramowanie *Matlab/Simulink*.

2. Wstęp teoretyczny

Układ LTI to układ o operatorze g, wejściu u(t) i wyjściu y(t), który spełnia zasadę superpozycji:

$$g[u_1(t) + u_2(t)] = y_1(t) + y_2(t)$$

zasadę jednorodności:

$$g[au(t)] = ay(t)$$

oraz jest niezmienniczy w czasie, czyli odpowiedzią na opóźnione wejście będzie opóźnione wyjście:

$$g[u(t-\tau)] = y(t-\tau)$$

W *Matlabie* można reprezentować układy liniowe niezmiennicze w czasie korzystając z jednej z czterech metod:

- za pomocą transmitancji,
- przy wykorzystaniu zer, biegunów i wzmocnienia układu,
- w przestrzeni stanów,
- za pomocą schematu blokowego znajdującego się w Simulinku.

3. Wykonanie zadań

3.1. Transformata Laplace'a – przykład z konspektu

Poniżej znajduje się kod z przykładu podanego w podrozdziale konspektu o nazwie "Transformata Laplace'a".

```
%% Transformata Laplace'a - przykład
syms t s
syms a positive
f = heaviside(t-a)
Fs = laplace(f,t,s)

Kod do przykładu "Transformata Laplace'a"

Fs =

exp(-a*s)/s

Wynik funkcji laplace
```

3.2. Zadanie 1

Celem tego zadanie jest narysowanie funkcji Heaviside'a dla parametru a=1 oraz jej transformaty Laplace'a, wykorzystując przy tym funkcję *ezplot*.

```
%% Zadanie 1
syms t s
f = heaviside(t-1)
Fs = laplace(f,t,s)

%% Zadanie 1 - (wykres funkcji Heaviside'a dla a = 1)
ezplot(f, [-2, 3])

%% Zadanie 1 - (wykres transformaty Laplace'a funkcji Heaviside'a dla a = 1)
ezplot(Fs)
```

Kod do zadania 1

Wykres funkcji Heaviside'a dla parametru a = 1

Wykres transformaty Laplace'a funkcji Heaviside'a dla parametru a=1

3.3. Model zawieszenia samochodowego – przykład z konspektu

Model zawieszenia samochodowego został uproszczony do układu inercyjnego II rzędu, w którym masa zgromadzona jest w sprężynie i tłumiku. W momencie przyłożenia siły w kierunku pionowym masa zaczyna się przemieszczać.

Uproszczony schemat modelu zawieszenia samochodowego

Oznaczenia:

- F siła zewnętrzna
- M masa układu
- α stała tłumika
- c stała sprężyny
- x przemieszczenie zawieszenia

Równanie różniczkowe II rzędu opisujące układ:

$$M\ddot{x} + \alpha \dot{x} + cx = F$$

Po obłożeniu obu stron równania transformacją Laplace'a, a także wykonaniu przekształceń otrzymuję się poniższą transmitancję zadanego układu.

$$G(s) = \frac{X(s)}{F(s)} = \frac{1}{Ms^2 + \alpha s + c}$$

W ramach przykładu przyjęto podane wartości parametrów:

- M = 1000,
- F = 1000,
- $\alpha = 500$,
- c = 400,

```
%% Transmitancja - przykład
 licz = [0 0 1];
mian = [1000 500 400];
%% Transmitancja - przykład c.d. (odpowiedź skokowa dla 'licz' i 'mian')
step(licz,mian)
%% Transmitancja - przykład c.d. (odpowiedź impulsowa dla 'licz' i 'mian')
impulse(licz,mian)
%% Transmitancja - przykład c.d. (zastosowanie funkcji 'tf')
 obiekt = tf(licz,mian)
get(obiekt)
 %% Transmitancja - przykład c.d. (odpowiedź skokowa dla 'obiekt')
%% Transmitancja - przykład c.d. (odpowiedź impulsowa dla 'obiekt')
impulse(obiekt)
%% Transmitancja - przykład c.d. (konwersja transmitancji do reprezentacji zera/bieguny/wzmocnienie)
[z, p, k] = tf2zp(licz,mian)
%% Transmitancja - przykład c.d. (przedstawienie graficzne zer i biegunów - I sposób)
pzmap(p,z)
%% Transmitancja - przykład c.d. (przedstawienie graficzne zer i biegunów - II sposób)
pzmap(licz,mian)
 %% Transmitancja - przykład c.d. (przedstawienie graficzne zer i biegunów - III sposób)
 pzmap(obiekt)
```

Kod do przykładu związanego z modelowaniem zawieszenia samochodu

Odpowiedź skokowa dla zadanej transmitancji (taka sama, gdy jako argumentu użyje się struktury *obiekt*, czy też *licz* i *mian*)

Odpowiedź impulsowa dla zadanej transmitancji (taka sama, gdy jako argumentu użyje się struktury *obiekt*, czy też *licz* i *mian*)

```
obiekt =
            1
  1000 \text{ s}^2 + 500 \text{ s} + 400
Continuous-time transfer function.
      Numerator: {[0 0 1]}
     Denominator: {[1000 500 400]}
       Variable: 's'
         IODelay: 0
     InputDelay: 0
     OutputDelay: 0
      InputName: {''}
      InputUnit: {''}
      InputGroup: [1x1 struct]
      OutputName: {''}
      OutputUnit: {''}
     OutputGroup: [1×1 struct]
           Notes: [0×1 string]
        UserData: []
           Name: ''
              Ts: 0
        TimeUnit: 'seconds'
    SamplingGrid: [1×1 struct]
```

Wynik zastosowania funkcji tf oraz polecenia get

z =
 0×1 empty double column vector

p =
 -0.2500 + 0.5809i
 -0.2500 - 0.5809i

k =
 1.0000e-03

Zera, bieguny i wzmocnienie dla zadanej transmitancji

Przedstawienie graficzne zer i biegunów przy pomocy funkcji *pzmap* (niezależne od sposobu podania argumentów)

3.4. Zadanie 2

1. Czy bieguny są rzeczywiste?

Nie. Są wartościami zespolonymi.

Czy układ jest stabilny?

Układ jest asymptotycznie stabilny (części rzeczywiste wartości zespolonych są ujemne).

2. Wykonanie tego polecenia opiera się na obliczeniu zer, biegunów i wzmocnienia transmitancji bazując na wykorzystaniu funkcji *tf2zp*.

```
%% Zadanie 2
%% podpunkt b
licz = [0 0 1];
mian = [1000 500 400];
[z, p, k] = tf2zp(licz,mian)
   Kod do podpunktu b z zadania 2
z =
   0×1 empty double column vector

p =
   -0.2500 + 0.5809i
   -0.2500 - 0.5809i
k =
   1.0000e-03
```

Zera, bieguny i wzmocnienie transmitancji

Postać **sfaktoryzowana** transmitancji:

$$G(s) = 0.001 \frac{1}{(s + 0.25 - 0.5809i)(s + 0.25 + 0.5809i)}$$

3. Zadanie polega na dobraniu parametrów układu w taki sposób, by zaobserwować odpowiedź skokową układu oscylacyjnego, a także układu tłumionego.

```
%% podpunkt c (układ oscylacyjny)
M = 2000;
c = 380;
a = 600;
E = a/(2*sqrt(c*M))
licz = [0 0 1];
mian = [M a c];
obiekt = tf(licz, mian)
%% podpunkt c c.d. (odpowiedź układu na skok jednostkowy w przypadku układu oscylacyjnego)
step(obiekt)
%% podpunkt c c.d. (układ tłumiony)
M = 500;
c = 300;
a = 800;
E = a/(2*sqrt(c*M))
licz = [0 0 1];
mian = [M a c];
obiekt = tf(licz, mian)
%% podpunkt c c.d. (odpowiedź układu na skok jednostkowy w przypadku układu tłumionego)
step(obiekt)
```

Kod do podpunktu c z zadania 2

W pierwszej sytuacji $\xi = 0.3441 < 1$ (układ oscylacyjny), w drugim przypadku $\xi = 1.0328 > 1$ (układ tłumiony).

Odpowiedź układu oscylacyjnego na skok jednostkowy

Odpowiedź układu tłumionego na skok jednostkowy

3.5. Schemat blokowy

Ćwiczenie opiera się na utworzeniu przedstawionego w konspekcie schematu blokowego w *Simulinku* przy tych samych parametrach, co w podrozdziale 3.3..

Schemat blokowy

Przebieg przemieszczenia x zaobserwowany na oscyloskopie

Przebieg prędkości \dot{x} zaobserwowany na oscyloskopie

Przebieg prędkości \ddot{x} zaobserwowany na oscyloskopie

3.6. Zera, bieguny, wzmocnienie – przykład z konspektu

3.7. Zadanie 3

Poleceniem do tej części laboratorium jest zapisanie transmitancji $G(s) = \frac{4s+1}{s(0.2s+1)(10s+1)}$ w *Matlabie*, stosując przy tym funkcję *zpk*. Na wstępie należy

przekształcić podaną transmitancję do postaci $G(s) = 2 \frac{s + \frac{1}{4}}{s(s+5)(s+\frac{1}{10})}$

Wynik funkcji zpk z zadania 3

3.8. Przestrzeń stanów – przykład z konspektu

```
%% Przestrzeń stanów - przykład
M = 1000;
a = 500;
c = 400;
A = [0 1; -c/M -a/M]
B = [0; 1/M]
C = [1 0]
D = 0
obiekt = ss(A, B, C, D)
k = dcgain(A, B, C, D)
%% Przestrzeń stanów - przykład c.d. (odpowiedź skokowa dla argumentu 'obiekt')
step(obiekt)
%% Przestrzeń stanów - przykład c.d. (odpowiedź impulsowa dla argumentu 'obiekt')
impulse(obiekt)
%% Przestrzeń stanów - przykład (odpowiedź skokowa dla argumentów 'A', 'B', 'C', 'D')
step(A, B, C, D)
%% Przestrzeń stanów - przykład (odpowiedź impulsowa dla argumentów 'A', 'B', 'C', 'D')
impulse(A, B, C, D)
                        Kod do przykładu podanego w konspekcie
                      obiekt =
                        A =
                                x1
                                       x2
                                0
                         x1
                         x2 -0.4 -0.5
                        B =
                                 u1
                         x1
                                   0
                         x2 0.001
                        C =
                              x1 x2
                             1 0
                         y1
                        D =
                              u1
                              0
                         y1
                      Continuous-time state-space model.
                                    Wynik funkcji ss
                                    k =
```

Wynik funkcji dcgain (wzmocnienie)

0.0025

Odpowiedź skokowa dla zadanego układu (niezależne od sposobu podania argumentów)

Odpowiedź impulsowa dla zadanego układu (niezależne od sposobu podania argumentów)

3.9. Zadanie 4

Polecenie opiera się na konwersji transmitancji modelu zawieszenia do przestrzeni stanów przy pomocy funkcji *zp2ss* i *tf2ss*.

```
%% Zadanie 4 ('zp2ss')
licz = [0 \ 0 \ 1];
mian = [1000 500 400];
[z, p, k] = tf2zp(licz,mian);
[A, B, C, D] = zp2ss(z, p, k)
step(A, B, C, D)
%% Zadanie 4 c.d. ('tf2ss')
[A, B, C, D] = tf2ss(licz, mian)
step(A, B, C, D)
          Kod do zadania 4
    A =
       -0.5000 -0.6325
        0.6325
                        0
    B =
         1
         0
    C =
            0
                   0.0016
    D =
         0
        Wynik dla funkcji zp2ss
```


Odpowiedź skokowa dla macierzy powstałych w wyniku działania funkcji zp2ss

A =

B =

1

C =

1.0e-03 *

0 1.0000

D =

0

Wynik dla funkcji tf2ss

Odpowiedź skokowa dla macierzy powstałych w wyniku działania funkcji tf2ss

Opracowując wyniki można zauważyć, że wynikowe macierze posiadają różne wartości w zależności od wybranej metody, natomiast analizując wykresy odpowiedzi skokowych nie dostrzega się dużych różnic.

3.10. Zadanie 5

Ta część laboratorium wymaga znalezienia transmitancji zastępczej dla połączeń szeregowych, równoległych oraz ujemnego sprzężenia zwrotnego przy założeniu, że

$$G_{sys1}(s) = \frac{s+1}{s^2+5s+1}$$
, a także $G_{sys2}(s) = \frac{1}{s^3+s^2-2s+1}$.

```
%% Zadanie 5
licz_sys1 = [0 1 1];
mian_sys1 = [1 5 1];
sys1 = tf(licz_sys1, mian_sys1)
licz_sys2 = [0 0 0 1];
mian_sys2 = [1 1 -2 1];
sys2 = tf(licz_sys2, mian_sys2)
sys_series = series(sys1, sys2)
sys_parallel = parallel(sys1, sys2)
sys_feedback = feedback(sys1, sys2)
```

Kod do zadania 5

```
sys\_series = \\ s + 1 \\ \hline s^5 + 6 s^4 + 4 s^3 - 8 s^2 + 3 s + 1
Continuous-time transfer function.
sys\_parallel = \\ s^4 + 2 s^3 + 4 s + 2 \\ \hline s^5 + 6 s^4 + 4 s^3 - 8 s^2 + 3 s + 1
Continuous-time transfer function.
sys\_feedback = \\ s^4 + 2 s^3 - s^2 - s + 1 \\ \hline s^5 + 6 s^4 + 4 s^3 - 8 s^2 + 4 s + 2
Continuous-time transfer function.
Wyniki do zadania 5
```

4. Wnioski

Środowisko *Matlab/Simulink* posiada wiele sposobów reprezentacji układów LTI. Przy zastosowaniu odpowiednich poleceń użytkownik jest w stanie dokonać konwersji między wybranymi metodami przedstawiania omawianych treści. Korzystając z funkcji *step* oraz *impulse* środowisko generuje wykresy ukazujące odpowiednio odpowiedź skokową i odpowiedź impulsową układu potrzebne w analizie pracy systemów.

5. Bibliografia

- konspekt do zajęć zatytułowanych "Reprezentacja układów LTI w Matlabie"
- dokumentacja Matlaba