Planetary Gearhead GP 26 A Ø26 mm, 0.75-4.5 Nm

Technical Data						
Planetary Gearhead		straigh	nt teeth			
Output shaft	stainless	steel, ha	rdened			
Bearing at output	preloade		earings 0.1 mm			
	Radial play, 5 mm from flange					
Axial play at axial load	< 6 N		0 mm			
	> 6 N	max. (0.4 mm			
Max. axial load (dynamic)			120 N			
Max. force for press fits			120 N			
Direction of rotation, drive	=					
Max. continuous input spe		00 rpm				
Recommended temperatu	-30+100°C					
Extended range as option	on	-40	+100°C			
Number of stages	1	2	3			
Max. radial load, 12 mm						
from flange	70 N	110 N	140 N			

Ν	Л	1	.2

Stock program Standard program		Part Numbers										
	Special program (on request)		406757	406762	406764	406767	406128	406769	406770	406771	406092	
Gea	rhead Data											
1	Reduction		5.2:1	19:1	27:1	35:1	71:1	100:1	139:1	181:1	236:1	
2	Absolute reduction		57/11	3591/187	3249/121	1539/44	226233/3179	204687/2057	185193/1331	87723/ ₄₈₄	41553/176	
3	Max. motor shaft diameter	mm	3	3	3	3	3	3	3	3	3	
4	Number of stages		1	2	2	2	3	3	3	3	3	
5	Max. continuous torque	Nm	0.75	2.25	2.25	2.25	4.5	4.5	4.5	4.5	4.5	
6	Max. intermittent torque at gear output	Nm	1.1	3.2	3.2	3.2	6.2	6.2	6.2	6.2	6.2	
7	Max. efficiency	%	90	80	80	80	70	70	70	70	70	
8	Weight	g	53	77	77	77	93	93	93	93	93	
9	Average backlash no load	۰	0.5	0.7	0.7	0.7	0.8	0.8	0.8	0.8	0.8	
10	Mass inertia	gcm ²	0.96	0.54	0.54	0.54	0.31	0.31	0.31	0.31	0.31	
11	Gearhead length L1	mm	23.4	32.9	32.9	32.9	39.5	39.5	39.5	39.5	39.5	
13	Max. transmittable power (continuous)	W	60	35	35	35	20	20	20	20	20	
14	Max. transmittable power (intermittent)	W	90	50	50	50	30	30	30	30	30	

+ Motor	Page	+ Sensor/Brake	Page	Overall le	ngth [mm]	= Motor ler	gth + gear	head lengtl	า + (sensor	/brake) + a:	ssembly pa	rts
RE 25	144/146		-	78.0	87.5	87.5	87.5	94.1	94.1	94.1	94.1	94.1
RE 25	144/146	MR	478	89.0	98.5	98.5	98.5	105.1	105.1	105.1	105.1	105.1
RE 25	144/146		483	92.1	101.6	101.6	101.6	108.2	108.2	108.2	108.2	108.2
RE 25		HED_ 5540	486/488	98.8	108.3	108.3	108.3	114.9	114.9	114.9	114.9	114.9
RE 25		DCT 22	495	100.3	109.8	109.8	109.8	116.4	116.4	116.4	116.4	116.4
RE 25, 20 W	145			66.5	76.0	76.0	76.0	82.6	82.6	82.6	82.6	82.6
RE 25, 20 W	145	MR	478	77.5	87.0	87.0	87.0	93.6	93.6	93.6	93.6	93.6
RE 25, 20 W	145	HED_ 5540	487	87.3	96.8	96.8	96.8	103.4	103.4	103.4	103.4	103.4
RE 25, 20 W	145	DCT 22	495	88.8	98.3	98.3	98.3	104.9	104.9	104.9	104.9	104.9
RE 25, 20 W	145	AB 28	535	100.6	110.1	110.1	110.1	116.7	116.7	116.7	116.7	116.7
RE 25, 20 W	145	HED_5540/AB 28		117.8	127.3	127.3	127.3	133.9	133.9	133.9	133.9	133.9
RE 25, 20 W	146	AB 28	535	112.1	121.6	121.6	121.6	128.2	128.2	128.2	128.2	128.2
RE 25, 20 W	146	HED_ 5540/AB 28		129.3	138.8	138.8	138.8	145.4	145.4	145.4	145.4	145.4
A-max 26	171-174	00 10/10/20	.00,000	68.2	77.7	77.7	77.7	84.3	84.3	84.3	84.3	84.3
A-max 26	171-174	MR	478	77.0	86.5	86.5	86.5	93.1	93.1	93.1	93.1	93.1
A-max 26	171-174		483	82.6	92.1	92.1	92.1	98.7	98.7	98.7	98.7	98.7
A-max 26		HED_ 5540	487/489	86.6	96.1	96.1	96.1	102.7	102.7	102.7	102.7	102.7
A-IIIdX 20	1/1-1/-	11LD_ 3340	TO1/TO3	00.0	30.1	30.1	30.1	102.7	102.7	102.7	102.7	102.7