SNA

Centrality

The Bavelas-Leavitt Experiment

Variables	Simple Task	Complex task
Fewest messages	Centralized	Centralized
Least errors	Centralized	Decentralized
Least time	Centralized	Decentralized
Satisfaction	Decentralized	Decentralized

Network centralization

- One or few actors are quite central, other actors are not central
- Intuition

Not centralized

Centrality

- Actor centrality (Micro)
 - Identify important or prominent actors
- Network centralization (Macro)
 - Characterize the structure of the network
 - Equality or evenness
 - If a system is very loosely coupled (sparse linkage) not much power can be exerted; in high density systems there is the potential for greater power.

Prominent individuals in a network

- Not all nodes are created equal
 - Centrality
 - Prominent actors have higher involvement in many relations
 - Prestige (in a directional network)
 - Where prominent actors initiates few relations but receives many directed ties.
 - E.g. PageRank

Centrality

- Network view of "power"
 - Manifest itself in social relationship
 - An ego's power is alter's dependence
- Centrality analysis identifies individuals having a favored position, having more opportunities and fewer constraints, and presumably possess more power

Micro and Macro view of centrality

(a) Star Graph

Micro: which node is the most central in each graph?

Macro: which graph has the most unevenly distributed degree ??

(b) Circle Graph

(c) Line Graph

Centrality

- Degree centrality
 - Counting the number of paths of length 1 emanating from a node
- Closeness centrality
 - The total geodesic distance from a given node to all other nodes
- Betweenness centrality
 - The extent that that node falls on the geodesic paths between other pairs of nodes
- Eigenvector centrality
 - assigns relative scores to all nodes in the network based on the principle that connections to high-scoring nodes contribute more to the score of the node in question than equal connections to low-scoring nodes.

Actor degree centrality

Actor closeness centrality

Actor betweenness centrality

Actor eigenvector centrality

Structural intuitions for actor centrality

- Intuition
 - Activity, visibility
 - Brokerage, control
 - Efficiency
 - Status, rank

- Measure
 - Degree
 - Betweenness
 - Closeness
 - Eigenvector

Actor Degree Centrality

• Measures the extent to which a node connect to all other nodes

$$C_{D}(Ni) = \sum_{j=1}^{g} X_{ij} (i \neq j)$$

For a network of size g,

Counts the number of direct ties that node i has to the g-1 other J nodes

General form of network attributes

- 1. Raw Measure—raw measures of network characteristics reflect a given characteristic that is not sensitive to the size or boundaries of a network or any of its websites
- 2. Normalized Measures—take on the general form of:

Normalized/standardized Actor Degree Centrality

- To eliminate the effect of variation in network size
 - Allow meaningful comparison of actors across different networks
- Vary from 0, indicating no connections with any actors (i.e. an isolate) to 1, reflecting direct ties to everyone

$$C'_D(Ni) = \frac{C_D(Ni)}{g-1}$$

Freeman normalize group centralization measure

- Macro-view: measure the extent to which the actors in a social network differ from one another in their individual degree of centrality
- Express the degree of variability in the degrees of all actors in the network
- Normalized by the theoretical maximums (i.e. of a perfect star network of the same size)

Normalized Centrality and Centralization

- Actor centrality measure
 - Raw
 - Normalized
- Normalize group centralization
 - Variation measure

The largest actor degree centrality observed

$$C_{A} = \frac{\sum_{i=1}^{g} [C_{A}(N^{*}) - C_{A}(Ni)]}{\max \sum_{i=1}^{g} C_{A}(N^{*}) - C_{A}(Ni)]}$$

Theoretical maximum hint: star network

Group Degree Centralization (Macro)

- Measure the extent to which the actors in a social network differ from one another in their individual degree centralities
- A variance measure
- How does it translate into social world?

The largest actor degree centrality observed

$$C_{A} = \frac{\sum_{i=1}^{g} [C_{A}(N^{*}) - C_{A}(Ni)]}{\max \sum_{i=1}^{g} C_{A}(N^{*}) - C_{A}(Ni)]}$$

a perfect star network of the same size.

Network>Centrality>Degree Knokbur

1 OutDegree	2 InDegree	NrmOutDeg	NrmInDeg 4
4.000 7.000 6.000 4.000 8.000 3.000 6.000 3.000 5.000	5.000 8.000 4.000 5.000 8.000 1.000 9.000 2.000 5.000 2.000	44.444 77.778 66.667 44.444 88.889 33.333 33.333 66.667 33.333 55.556	55.556 88.889 44.444 55.556 88.889 11.111 100.000 22.222 55.556 22.223

DESCRIPTIVE STATISTICS

		1 OutDegree	2 InDegree	3 NrmOutDeg	4 NrmInDeg
1	Mean	4.900	4.900	54.444	54.444
2	Std Dev	1.700	2.625	18.889	29.165
3	Sum	49.000	49.000	544.444	544.444
4	Variance	2.890	6.890	356.790	850.617
5	SSQ	269.000	309.000	33209.875	38148.148
6	MCSSQ	28.900	68.900	3567.901	8506.173
7	Euc Norm	16.401	17.578	182.236	195.316
8	Minimum	3.000	1.000	33.333	11.111
9	Maximum	8.000	9.000	88.889	100.000

Network Centralization (Outdegree) = 38.272% Network Centralization (Indegree) = 50.617%

Drawbacks of degree measure

- An actor could be not quite central even with lots of connection
 - Overlook indirect links
 - One actor might be tied to a large number of others, but those others might be rather disconnected from the network as a whole. (occur more likely in a large network
 - A "local" measure
- Or, a person with few ties yet exert great influence

Cersei is the main character?!

We use the size of node represents the In-degree

Degree centrality, however, can be deceiving, *because it is a purely local measure*.

Actor Closeness Centrality

- Emphasizes the distance of an actor to all (not just the neighbors) others
- Reflect how far/near a node is to the other nodes in a social network
- How quickly an actor can interact with others

$$C_{C}(Ni) = \frac{1}{[\sum_{j=1}^{g} d(N_{i}, N_{j})]} (i \neq j)$$

Can't be computed for isolated nodes, whose distances from i are undefined

Closeness centrality normalization

The closeness centrality of A is 1/(1+2) = 1/3 (i.e. ab, ac)

The normalized closeness centrality is? 2/3

The closeness centrality of A is ? AB, AC, AD 1/(1+1+1)

The normalized closeness centrality is? 1

Need for normalization (n-1)

Normalized Actor Closeness Centrality

Computed as the inverse of the sum of the geodesic distances between actor i and the g-1 other actors

$$C_{C}(Ni) = \frac{1}{[\sum_{j=1}^{g} d(N_{i}, N_{j})]} (i \neq j)$$

which varies with network size, to control for the size of the network

$$C'_{C}(N_{i}) = (g-1)(C_{C}(N_{i}))$$

Closeness Centrality of two graphs

Distance closeness normalized

01111111	.143	1.00
10222222	.077	.538
12022222	.077	.538
12202222	.077	.538
12220222	.077	.538
12222022	.077	.538
12222202	.077	.538
12222220	.077	.538

Distance closeness normalized

2344321	.050	.400
1234432	.050	.400
0123443	.050	.400
1012344	.050	.400
2101234	.050	.400
3210123	.050	.400
4321012	.050	.400
4432101	.050	.400
3443210	.050	.400

Index of Group Closeness Centralization (Macro)

- The extent to which actors in a given network differ in their closeness centrality
- A dispersion measure indicating the hierarchy of closeness centralities within a network (p. 67)
- It's sociological implications?

The largest actor closeness centrality observed

$$C_{C} = \frac{\sum_{i=1}^{g} [C'_{C}(N^{*}) - C'_{C}(N_{i})]}{[(g-2)(g-1)]/(2g-3)}$$

Path distances

• Network>Centrality>Closeness

Closeness: the reciprocal of "farness" (i.e. the sum of the lengths of the shortest paths from an ego to all other nodes

	inFarnes	1 s outFa	2 rness	inClose	3 ness	outClose	4 ness		
7 5 2 4 9 1 3 10	9.00 10.00 10.00 13.00 14.00 14.00 16.00 17.00	00 1 10 1 10 1 10 1 10 1 10 1	6.000 0.000 1.000 5.000 6.000 5.000 2.000 3.000 3.000	98 90 69 64 64 56	000 .000 .000 .231 .231 .286 .286 .250 .941	90 81 60 56 60 75 69	.250 .000 .818 .000 .250 .000 .000 .231 .231		
tatist	ics	inFarnes	1 s ou	2 utFarness	in(3 Closeness	outClc	ser	4 ness
3	Mean d Dev Sum iance	13.80 3.68 138.00 13.56	2 0	13.800 2.227 138.000 4.960		69.713 17.584 697.133 309.201		11 70	.072 .616 .721
5 6 7 Euc	SSQ MCSSQ Norm nimum	2040.00 135.60 45.16 9.00 22.00	0 0 6 0	1954.000 49.600 44.204 10.000 17.000		51691.488 3092.015 227.358 40.909 100.000	463 13	35 49 15 52	. 906 . 255 . 258 . 941 . 000

Actor 6 has the largest sum of geodesic distances from other actors (inFarness of 22) and to other actors (outFarness of 17).

The farness figure can then be reexpressed as nearness and normed relative to the greatest nearness observed in the graph (the inCloseness of actor 6)

Measure of inequality in the distribution of distances across the actors

Normalized Freeman closeness using new closeness procedure

Matrix: KNOKI

	1	2	3	4	5	6
	0ut F r	InFre	OutVa	InVal	OutRe	InRec
	eeC1o	eC1o	1C1o	C1o	cipCl	ipClo
					0	
COUN	0. 600	0. 643	0. 778	0. 815	0. 704	0. 759
COMM	0.818	0.900	0.926	0.963	0.889	0.944
EDUC	0.750	0.643	0.889	0.815	0.833	0.722
INDU	0.600	0.692	0. 778	0.852	0.704	0.778
MAYR	0.900	0. 900	0.963	0.963	0. 944	0. 944
WRO	0. 529	0.409	0.704	0. 519	0.630	0.463
NEWS	0. 563	1.000	0.741	1.000	0.648	1.000
UWAY	0.692	0. 529	0.852	0.704	0.815	0. 593
WELF	0. 563					0. 778
WEST	0.692	0. 563	0.852	0. 741	0. 778	0.611
	COMM EDUC INDU MAYR WRO NEWS UWAY WELF	eeClo COUN 0.600 COMM 0.818 EDUC 0.750 INDU 0.600 MAYR 0.900 WRO 0.529 NEWS 0.563 UWAY 0.692 WELF 0.563	eeClo eClo COUN	Outfr Infre Outva eeClo eClo lClo COUN 0.600 0.643 0.778 COMM 0.818 0.900 0.926 EDUC 0.750 0.643 0.889 INDU 0.600 0.692 0.778 MAYR 0.900 0.900 0.963 WRO 0.529 0.409 0.704 NEWS 0.563 1.000 0.741 UWAY 0.692 0.529 0.852 WELF 0.563 0.692 0.741	eeClo eClo lClo Clo COUN 0.600 0.643 0.778 0.815 COMM 0.818 0.900 0.926 0.963 EDUC 0.750 0.643 0.889 0.815 INDU 0.600 0.692 0.778 0.852 MAYR 0.900 0.900 0.963 0.963 WRO 0.529 0.409 0.704 0.519 NEWS 0.563 1.000 0.741 1.000 UWAY 0.692 0.529 0.852 0.704 WELF 0.563 0.692 0.741 0.852	COUN

Different operationalization of closeness centrality

Sum of geodesic distances(Freeman) distances are lengths of shortest paths (geodesic), the standard Freeman measure.

Sum of reciprocal distances As an alternative to taking the reciprocal after the summation, the reciprocals can be taken before. In this case the closeness is the sum of the reciprocated distances (i.e. undefined) so that infinite distances contribute a value of zero. (Harmonic closeness centrality), used when graph is NOT strongly connected THIS IS CALLED "HARMONIC CLOSENESS CENTRALITY" IN GEPHI

Avg of reversed distances (Valente-Foreman) the reversed distance is the diameter minus the geodesic distance.

*When a graph is not <u>strongly connected</u>, a widespread idea is that of using the sum of reciprocal of distances, instead of the reciprocal of the sum of distances, with the convention :why?

Betweenness Centrality

- Reflects how other actors control or mediate the relations between dyads that are not directly connected
- Views an actor as being in a favored position to the extent that the actor falls on the geodesic paths between other pairs of actors in the network. That is, the more people depend on me to make connections with other people, the more power I have.

Betweenness centrality

Figure 4.9 Betweenness Centrality in an Egocentric Network

Actor Betweenness Centrality

 Measures the extent to which other actors lie on the geodesic path (shortest distance) between pairs of actors in the network.

$$C_B = (N_i) = \sum_{j < k} \frac{g_{jk}(N_i)}{g_{jk}} \begin{array}{l} \text{Sum the number of geodesic path between J and K that} \\ \hline g_{jk} & \text{The number of geodesic path between J and K} \end{array}$$

Normalized Actor Betweenness Centrality

- Normed by the maximum theoretical value of actor betweenness
- When node i falls on every geodesic path for all dyads, assuming each pair has only one geodesic path

Normalized Actor Betweenness Centrality

The normalized value varies from 0 to 1

$$C'_{B}(N_{i}) = \frac{C_{B}(N_{i})X2}{(g-1)(g-2)}$$

Excluding node i, the total number of geodesic paths among the (g-1) nodes will be? (g-1)(g-2)/2

Index of Group Betweenness Centralization

• Reach 1 when a single dominant actor sits on all geodesic paths, reaches 0 when every node has the same betweenness centrality

Sum the differences in betweenness centrality for the actor with the highest value and every other actor

$$C_{B} = \frac{\sum_{i=1}^{g} [C_{B}(N^{*}) - C_{B}(N_{i})]}{((g-1)^{2}(g-2))/2}$$

Maximum possible value of betweenness centralities for all nods in a network

Network>Centrality>Betweenness>Nodes

2 weenness	nBetv	1 <u>Betweenne</u> ss	
24.769	7	17.833	5
17.130 16.242		12.333 11.694	2
3.819		2.750	7
1.698		1.222	9
1.119		0.806	4
0.926		0.667	1
0.502		0.361	0
0.463		0.333	6
0.000		0.000	8

DESCRIPTIVE STATISTICS FOR EACH MEASURE

		Betweenness	nBetweenness
1	Mean	4.800	6.667
2	Std Dev	6.220	8.639
3	Sum	48.000	66.667
4	Variance	38.689	74.632
5	SSQ	617.290	1190.760
6	MCSSQ	386.890	746.316
7	Euc Norm	24.845	34.507
8	Minimum	0.000	0.000
9	Maximum	17.833	24.769

Network Centralization Index = 20.11%

Kind of low, despite wide Variation in betweenness From 17.833 to 0 why?

Network>Centrality>Betweenness>Lines (edges)

Another way to think about betweenness is to ask which <u>relations</u> are most central, rather than which <u>actors</u>. Freeman's definition can be easily applied: a relation is between to the extent that it is part of the geodesic between pairs of actors.

Edge	Betwee	enness								
	COUN	2 COMM	EDUC 3	4 INDU	5 MAYR	6 WRO	7 NEWS	8 YAWU	9 WELF	10 WEST
1	0.000	2.833	0.000	0.000	3.833	0.000	1.333	0.000	1.667	0.000
2	2.417	0.000	7.500	1.917	1.500	0.000	1.000	4.500	2.500	0.000
3	0.000	2.694	0.000	2.111	2.694	9.333	1.000	0.000	0.000	2.861
4	2.139	2.833	0.000	0.000	3.833	0.000	1.000	0.000	0.000	0.000
5	2.417	1.000	7.000	1.917	0.000	0.000	1.000	4.500	2.500	6.500
6	0.000	0.000	3.944	0.000	0.000	0.000	2.833	0.000	2.556	0.000
7	0.000	3.944	0.000	2.861	4.944	0.000	0.000	0.000	0.000	0.000
8	1.000	2.000	0.000	1.000	3.000	0.000	1.000	0.000	1.000	0.000
9	0.000	3.944	0.000	0.000	4.944	0.000	1.333	0.000	0.000	0.000
10	1.694	2.083	2.250	0.000	2.083	0.000	1.250	0.000	0.000	0.000

Betweenness between 3 and 6, 3.944 Relative high

This particular high value arises because without the tie to actor 3, actor 6 would be largely isolated.

Visualizing centrality

- Netdraw
 - Analysis>Centrality Measures
 - High tech (advise, friend, report-to)

Visualize line-betweenness

Betweenness: flow centrality

- Assume that actors will use all pathways (instead of the most efficient one only; blocked by a reluctant broker)
- Adds up how involved that actor is in all of the flows between all other pairs of actors (i.e. independent paths)
- Normalized by network size and density

Network>Centrality>Betweenness>Flow Betweenness

٥	2 nFlowBet	1 FlowBet	
	5.352	3.854	1
	28.866	20.783	2
	23.547	16.954	3
	5.861	4.220	4
	35.939	25.876	1 2 3 4 5 6 7 8 9
	2.083	1.500	6
	11.668	8.401	7
	4.102	2.954	8
	5.630	4.054	9
	5.683	4.092	10

Network Centralization Index = 25.629%

DESCRIPTIVE STATISTICS FOR EACH MEASURE

		1 FlowBet	2 nFlowBet
1	Mean	9.269	12.873
2	Std Dev	8.230	11.430
2	Sum	92.687	128.732
4	Variance	67.725	130.642
5	SSQ	1536.335	2963.609
6	MCSSQ	677.249	1306.421
7	Euc Norm	39.196	54.439
8	Minimum	1.500	2.083
9	Maximum	25.876	35.939

2 nBetweenness	1 Betweenness	
24.769	17.833	5
17.130	12.333	2
16.242	11.694	3
3.819	2.750	7
1.698	1.222	9
1.119	0.806	4
0.926	0.667	1
0.502	0.361	10
0.463	0.333	6
0.000	0.000	8

DESCRIPTIVE STATISTICS FOR EACH MEASURE

nBetweenness	Betweenness nI		
6.667	4.800	Mean	1
8.639	6.220	Std Dev	2
66.667	48.000	Sum	3
74.632	38.689	Variance	4
1190.760	617.290	SSQ	5
746.316	386.890	MCSSQ	6
34.507	24.845	Euc Norm	7
0.000	0.000	Minimum	8
24.769	17.833	Maximum	9

Actor eigenvector centrality

- Ties to prominent others gives you more power
- Network>Centrality>Eigenvector routine calculates individual actor centrality, and graph centralization using weights on the first eigenvector.
- The assumption is that each node's centrality is the sum of the centrality values of the nodes that it is connected to.

Review of centrality in undirected networks

Comparison

Comparing across these 3 centrality values

- •Generally, the 3 centrality types will be positively correlated
- •When they are not (low) correlated, it probably tells you something interesting about the network.

	Low Degree	Low Closeness	Low Betweenness
High Degree		Embedded in cluster that is far from the rest of the network	Ego's connections are redundant - communication bypasses him/her
High Closeness	Key player tied to important important/active alters		Probably multiple paths in the network, ego is near many people, but so are many others
High Betweenness	Ego's few ties are crucial for network flow	Very rare cell. Would mean that ego monopolizes the ties from a small number of people to many others. As in a hierarchy? (unidirectional)	

slide: Jim Moody