

Inteligência Artificial 2ª avaliação

Prof. Bruno Feres de Souza

Aluno: Layane Menezes Azevedo

Bacharelado Interdisciplinar em Ciência e Tecnologia

_____ Matrícula: 2015016216

A tabela abaixo consiste de um conjunto de dados com cinco exemplos, três atributos binários (A_1, A_2, A_3) e uma saída binária y. Utilize esse conjunto para as resoluções das questões I e II.

Exemplo	A_1	A_2	A_3	У
$-x_1$	1	0	-0	0
x_2	1	0	1	0
x_3	0	1	0	0
x_4	1	1	1	1
x_5	1	1	0	1

- I. (4,0 pts) Utilize o algoritmo de indução de árvore de decisão para construir a árvore correspondente aos dados da tabela acima. Observação: indique todos os cálculos realizados.
 - II. (5,0 pts) Utilize o algoritmo Naive Bayes para calcular as probabilidades de os exemplos abaixo serem da classe 0 e serem da classe 1. Utilize o estimador de Laplace sempre que necessário. Observação: indique todos os cálculos realizados.

1.
$$x_6 = \{0, 0, 0\}$$

$$2. x_7 = \{0, 1, 1\}$$

III. (1,0 pts) Por que um valor pequeno de k no algoritmo k-NN aumenta o risco de overfitting? Por que um valor grande de k aumenta o risco de underfitting? Como escolher um bom valor de k para evitar esses problemas?