One-way ANOVA F-test

STAT 401 - Statistical Methods for Research Workers

Jarad Niemi

Iowa State University

19 September 2013

Two-sample assumptions

Previously, we studied a number of two-sample tests of location, e.g. two means (medians) are the same:

	Samples Paired			
Parametric	t-test, Welch's t-test (unequal variances)	paired <i>t</i> -test		
Non-parametric	rank sum test	sign test, signed-rank test		

Except permutation test, all made assumptions about the distributions:

- non-parametric tests assume shifted distributions and
- parametric tests assumed normality.

t-tests assume $Y_{ij} \stackrel{ind}{\sim} N(\mu_i, \sigma_i^2)$ for individual j of group i with possibly additional structure:

- two-sample *t*-test: $\sigma_i = \sigma$ for all *i*
- t-tests are robust to departures from these assumptions

ANOVA assumptions

$$Y_{ij} \stackrel{ind}{\sim} N(\mu_i, \sigma^2)$$

$$j=1,\ldots,n_i$$
 and $i=1,\ldots,I$ (n_i means there can be different $\#$ of observations in each group)

One-way ANOVA F-test

 $H_0: \mu_i = \mu$ for all i

 $H_a: \mu_i \neq \mu_{i'}$ for some i and i'

 $Y_{ij} \stackrel{iid}{\sim} N(\mu, \sigma^2)$ $Y_{ij} \stackrel{ind}{\sim} N(\mu_i, \sigma^2)$

Full vs reduced model

Model	Full	Reduced
Assumption	$H_a: Y_{ij} \stackrel{ind}{\sim} N(\mu_i, \sigma^2)$	$H_0: Y_{ij} \stackrel{iid}{\sim} N(\mu, \sigma^2)$
Mean	$\hat{\mu}_i = \overline{Y}_i = \frac{1}{n_i} \sum_{j=1}^{n_i} Y_{ij}$	$\hat{\mu} = \overline{Y} = \frac{1}{n} \sum_{i=1}^{I} \sum_{j=1}^{n_i} Y_{ij}$
Residual	$r_{ij} = Y_{ij} - \overline{Y}_i$	$r_{ij} = Y_{ij} - \overline{Y}$
Sum of squares	$SSE = \sum_{i=1}^{I} \sum_{j=1}^{n_i} r_{ij}^2$	$SST = \sum_{i=1}^{\mathrm{I}} \sum_{j=1}^{n_i} r_{ij}^2$

ANOVA table

A start of an ANOVA table:

Source of variation	Sum of squares	d.f.	Mean square
Factor A (Between groups)	$SSA = \sum_{i=1}^{I} n_i (\overline{Y}_i - \overline{Y})^2$	I-1	<u>SSA</u> I—1
Error (Within groups)	$SSE = \sum_{i=1}^{\mathrm{I}} \sum_{j=1}^{n_i} (Y_{ij} - \overline{Y}_i)^2$	n-I	$\frac{\tilde{S}\tilde{S}\tilde{E}}{n-1}$ $(=s_p^2)$
Total	$SST = \sum_{i=1}^{\operatorname{I}} \sum_{j=1}^{n_i} (Y_{ij} - \overline{Y})^2$	n-1	

where

- I is the number of groups,
- n_i is the number of observations in group i,
- $n = \sum_{i=1}^{I} n_i$ (total observations),
- $\overline{Y}_i = \frac{1}{n_i} \sum_{i=1}^{n_i} Y_{ij}$ (average in group *i*),
- and $\overline{Y} = \frac{1}{n} \sum_{i=1}^{I} \sum_{i=1}^{n_i} Y_{ij}$ (overall average).

ANOVA table

An easier to remember ANOVA table:

Source of variation	Sum of squares	df	Mean square	F-statistic	p-value
Factor A (between groups)	SSA	I - 1	MSA = SSA/I - 1	MSA/MSE	(see below)
Error (within groups)	SSE	n-I	MSE = SSE/n - I		
Total	SST	n - 1			

Under H_0 .

- the quantity MSA/MSE has an F-distribution with I-1 numerator and n - I denominator degrees of freedom,
- larger values of MSA/MSE indicate evidence against H_0 , and
- the p-value is determined by $P(F_{I-1,n-1} > MSA/MSE)$.

Lifetimes of mice on different diets

Diet	Count
lopro	56
N/N85	57
N/R40	60
N/R50	71
NP	49
R/R50	56

SAS code and output for one-way ANOVA

```
DATA mice;

INFILE 'case0501.csv' DSD FIRSTOBS=2;

INPUT lifetime diet $;

PROC GLM DATA=mice;

CLASS diet;

MODEL lifetime = diet;

RUN;
```

The GLM Procedure

Dependent Variable: lifetime

		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	5	12733.94181	2546.78836	57.10	<.0001
Error	343	15297.41532	44.59888		
Corrected Total	348	28031.35713			

Summary

One-way ANOVA F-test model:

$$Y_{ij} \stackrel{ind}{\sim} N(\mu_i, \sigma^2)$$

The test:

 $H_0: \mu_i = \mu \text{ for all } i$

 H_a : $\mu_i \neq \mu_{i'}$ for some i and i'

An ANOVA table organizes the relevant quantities for this test and computes the pvalue.