CS 4110 Programming Languages & Logics

Lecture 19
Proving Type Soundness

14 October 2016

Syntax

```
expressions e := x | \lambda x : \tau . e | e_1 e_2 | n | e_1 + e_2 | ()
```

values $v := \lambda x : \tau . e \mid n \mid ()$

types $\tau ::= \text{int} \mid \text{unit} \mid \tau_1 \rightarrow \tau_2$

Syntax

expressions
$$e := x | \lambda x : \tau. e | e_1 e_2 | n | e_1 + e_2 | ()$$

values $v := \lambda x : \tau . e \mid n \mid ()$

types $\tau ::= \text{int} \mid \text{unit} \mid \tau_1 \rightarrow \tau_2$

Dynamic Semantics

$$E ::= [\cdot] \mid E e \mid v E \mid E + e \mid v + E$$

$$\frac{e \to e'}{E[e] \to E[e']} \qquad \frac{n = n_1 + n_2}{(\lambda x : \tau. e) \ v \to e\{v/x\}} \qquad \frac{n = n_1 + n_2}{n_1 + n_2 \to n}$$

Static Semantics

Static Semantics

 $\frac{}{\Gamma \vdash n : \mathbf{int}} \mathsf{T-InT}$

Static Semantics

 $\frac{}{\Gamma \vdash n : int} \stackrel{\text{T-INT}}{} \frac{}{\Gamma \vdash () : unit} \stackrel{\text{T-UNIT}}{}$

Static Semantics

$$\frac{\Gamma \vdash n : \mathbf{int}}{\Gamma \vdash n : \mathbf{int}} \xrightarrow{\mathsf{T-INT}} \frac{\Gamma \vdash () : \mathbf{unit}}{\Gamma \vdash () : \mathbf{unit}} \xrightarrow{\mathsf{T-ADD}} \frac{\Gamma \vdash e_1 : \mathbf{int}}{\Gamma \vdash e_1 + e_2 : \mathbf{int}} \xrightarrow{\mathsf{T-ADD}} \mathbf{T-ADD}$$

Static Semantics

$$\frac{\Gamma \vdash n : \mathbf{int}}{\Gamma \vdash n : \mathbf{int}} \quad \frac{\Gamma \vdash e_1 : \mathbf{int}}{\Gamma \vdash e_1 : \mathbf{int}} \quad \frac{\Gamma \vdash e_2 : \mathbf{int}}{\Gamma \vdash e_1 + e_2 : \mathbf{int}} \quad \text{T-Add}$$

$$\frac{\Gamma(x) = \tau}{\Gamma \vdash x : \tau} \quad \text{T-VAR}$$

Static Semantics

$$\frac{\Gamma \vdash n : \mathbf{int}}{\Gamma \vdash n : \mathbf{int}} \xrightarrow{\mathsf{T-INT}} \frac{\Gamma \vdash () : \mathbf{unit}}{\Gamma \vdash () : \mathbf{unit}} \xrightarrow{\mathsf{T-UNIT}}$$

$$\frac{\Gamma \vdash e_1 : \mathbf{int}}{\Gamma \vdash e_1 + e_2 : \mathbf{int}} \xrightarrow{\mathsf{T-ADD}}$$

$$\frac{\Gamma(x) = \tau}{\Gamma \vdash x : \tau} \xrightarrow{\mathsf{T-VAR}} \frac{\Gamma, x : \tau \vdash e : \tau'}{\Gamma \vdash \lambda x : \tau . e : \tau \to \tau'} \xrightarrow{\mathsf{T-ABS}}$$

Static Semantics

Properties

Theorem (Type soundness)

If \vdash e: τ and e \rightarrow * e' and e' $\not\rightarrow$ then e' is a value and \vdash e': τ .

Properties

Theorem (Type soundness)

If \vdash e: τ and e \rightarrow * e' and e' \nrightarrow then e' is a value and \vdash e': τ .

Lemma (Preservation)

If $\vdash e : \tau$ and $e \rightarrow e'$ then $\vdash e' : \tau$.

Properties

Theorem (Type soundness)

If \vdash e: τ and e \rightarrow^* e' and e' $\not\rightarrow$ then e' is a value and \vdash e': τ .

Lemma (Preservation)

If \vdash *e* : τ *and e* \rightarrow *e' then* \vdash *e'* : τ .

Lemma (Progress)

If \vdash e: τ then either e is a value or there exists an e' such that e \rightarrow e'.

Extra Lemmas for Preservation

Lemma (Substitution)

If $x:\tau' \vdash e:\tau$ and $\vdash v:\tau'$ then $\vdash e\{v/x\}:\tau$.

Lemma (Context)

If \vdash E[e]: τ and \vdash e: τ' and \vdash e': τ' then \vdash E[e']: τ .

Extra Lemma for Progress

Lemma (Canonical Forms)

If \vdash v: τ , then

- **1.** If τ is **int**, then v is a constant, i.e., some c.
- 2. If τ is $\tau_1 \to \tau_2$, then v is an abstraction, i.e., $\lambda x : \tau_1$. e for some x and e.