Sigma-Lab Framework

Formalization of the Adaptive Moral Control Theory

$$\theta_i(t) = f_i(E_t, M_{t-1})$$

$$M_t = \sum_{k=1}^n w_k \cdot C_k$$

$$\overline{C}_t = \frac{1}{n} \sum_{k=1}^n C_k$$

Core Relationships

- Ethical feedback loop: $\theta_i(t) \to C_k \to \overline{C}_t \to M_t \to \theta_i(t+1)$.
- Time-weighted moral memory: $w_k = \frac{1}{1 + e^{-\lambda (t t_k)}}$ (greater weight to recent; never fully forgets).
- Canonical comprehension vector: $C_k = (\text{non_harm}, \text{ equity}, \text{ stability}, \text{ resilience}).$

Legend (enhanced)

$\theta_i(t)$:	Ethical threshold for axiom <i>i</i> at time	t (e.g., non_harm,	eauity.	stability, resilience).	
~ 1 (-)-		. (6 . ,	-1,	,	

$$f_i$$
: Adjustment function using current context and moral memory: $f_i(E_t, M_{t-1})$.

$$E_t$$
: Semantic environment at time t (language, norms, legal state, crisis flags).

$$M_{t-1}$$
: Moral memory aggregated up to $t-1$; canonically $M_t = \sum_k w_k C_k$.

$$w_k$$
: Time-based weight $\frac{1}{1+e^{-\lambda(t-t_k)}}$ (λ controls persistence).

$$C_k$$
: Comprehension vector of validated interaction k : (non_harm, equity, stability, resilience).

$$\overline{C}_t$$
: Wisdom vector (mean of validated C_k) acting as an ethical attractor.

DeepKang-Labs (2025) — Scientific framework. Metaphysical depth preserved in internal archives.