Codage numérique : du nombre au pixel - Cours 4

Codage des réels

L1 – Université de Lorraine B. Girau et N. de Rugy Altherre

Transparents disponibles sur la plateforme de cours en ligne

Codage des réels *Virgule fixe*

Principes du codage en virgule fixe

- codage entier + position virgule
- si f bits en partie fractionnaire, alors n f bits en partie entière
- codage de $x = \text{codage entier de } x.2^f$ (éventuellement négatif)

Exemple

nombre 3,4375 codé en virgule fixe avec 3 chiffres binaires en partie entière et 5 en partie fractionnaire (on parle de codage Q3.5) : 01101110_2 (110_{10}), car 110/32 = 3,4375.

On peut noter directement avec la virgule, mais celle-ci n'est que virtuelle, elle n'apparaît pas dans le code : 011.01110

Opérateurs

- opérateurs arithmétiques : utilisation des opérateurs entiers, puis "placement" de la virgule
- multiplication :
 - taille de la partie entière/fractionnaire = somme des tailles des parties entières/fractionnaires
 - troncature en fonction de la position de la virgule

Exemple

nombre de taille $2.6 \times$ nombre de taille 3.5 = nombre de taille 5.11

i.e. : $3,4375 (220/64) \times 0,625 (20/32) = 2,1484375 (4400/2048)$

Exemple 2

nombre de taille $2.6 \times$ nombre de taille 2.6 = nombre de taille 4.12 que se passe-t-il si on suppose maintenir un codage en taille 2.6

i.e. : 3,4375 (220/64) \times 0,3125 (20/64) = 0,07421875 (4400/4096) \simeq 1,0625

N.B.: on positionne la virgule (en comptant à partir des poids faibles) puis on tronque la partie fractionnaire.

Codage des réels *Virgule flottante*

Virgule flottante

Norme IEEE 754

- norme adoptée en 1985
- définit la simple et la double précision
- principe général :

signe

exposant de taille k (simple : 8, double : 11)

mantisse de taille m (simple : 23, double : 52)

$$x = (-1)^s x_0.x_{-1}x_{-2}...x_{-m+1} 2^e$$

est codé par $s e_{k-1}e_{k-2}...e_1e_0 x_0x_{-1}...x_{-m+2}x_{-m+1}$

Codage des réels

Codage numérique : du nombre au pixel

Mantisse normalisée

- on impose (sauf cas particulier) $x_0 = 1$
- il devient inutile de l'expliciter dans la mantisse donc

$$x = (-1)^s 1.x_{-1}x_{-2} \dots x_{-m} 2^e$$

est en fait codé par $s e_{k-1}e_{k-2}\dots e_1e_0 x_{-1}x_{-2}\dots x_{-m+1}x_{-m}$

Exposant biaisé

- pour ne pas avoir de signe, on code e+biais
- biais= $2^{k-1} 1$
- valeur min réservée pour le codage de 0
- valeur max réservée pour le codage des infinis et de NaN
- simple précision, biais= 127, exposant biaisé va de 1 pour e=-126 à 254 pour e=127
- double précision, biais= 1023, exposant biaisé va de 1 pour e=-1022 à 2046 pour e=1023

10 / 22

Cas général

En résumé, en norme IEEE 754, si $e=e_{k-1}\dots e_0$ est différent de 0 et de 2^k-1 , alors $s\,e_{k-1}e_{k-2}\dots e_1e_0\,x_{-1}x_{-2}\dots\,x_{-m+1}x_{-m}$ code le réel

$$x = (-1)^{s} 1.x_{-1}x_{-2}...x_{-m} 2^{e-(2^{k-1}-1)}$$

Exemple

Codage de 0

- exposant biaisé min = 000...000
- mantisse nulle = 000...000
- signe 0 ou 1, pour 0^+ et 0^-
- attention : $\sqrt{0^-} = 0^-$

Codage des infinis

- exposant biaisé max = 111...111
- mantisse nulle = 000...000
- signe 0 ou 1, pour $+\infty$ et $-\infty$

NaN

- "not a number"
- symbolise un résultat invalide ou indéterminé
- exposant biaisé max = 111...111
- mantisse non nulle
- signe 0 ou 1

Exemples (génération de NaN)

$$-+\infty$$
 $-+\infty$

-
$$0 \times \infty$$

$$-+\infty / +\infty$$

NaN (suite)

- propagation des NaN
- résultats logiques pas toujours intuitifs

Exemples

- -x + NaN = NaN
- NaN NaN = NaN
- si x = NaN alors x == x est faux et x! = x est vrai
- si x = NaN ou y = NaN alors x < y, x <= y, x == y, x >= y et x > y sont faux

Nombres dénormalisés

- exposant minimal
- mantisse non normalisée (pas de '1' implicite)
- but : échantillonner mieux autour de 0

Exemples

Arrondis

Notion d'arrondi :

- ensemble des réels échantillonné par valeurs représentables en machine
- arrondi déterministe
- 4 modes possibles :
 - au plus proche (arrondi "pair" si on est au milieu)
 - par excès (vers $+\infty$)
 - par défaut (vers $-\infty$)
 - vers zéro

Arrondis (suite)

Notion d'arrondi "exact" ou "correct" :

- principe : le système doit se comporter comme si le calcul était fait en précision infinie sur les opérandes exactes, puis arrondi
- · comportement prévisible et reproductible
- indispensable pour portabilité des logiciels, reproductibilité des calculs, interopérabilité des systèmes
- difficile à satisfaire pour les opérations élémentaires

Arrondis, cas des fonctions élémentaires

- si on a m bits de mantisse, on calcule d'abord une approximation de précision n bits, avec m < n, puis on arrondit
- question fondamentale : quel n faut-il pour que l'approximation obtenue soit la même que l'arrondi du résultat exact?
- pour les opérateurs arithmétiques, n = m + 3 suffit toujours
- théorème/algo de 1975 : pour calculer log et exp en double précision, il faut $n=10^{244}\,!\,!\,!$
- théorème/algo de 1995 : on se ramène à environ n = 1 000 000 bits
- optimal???

Opérations arithmétiques : cas de l'addition $(s_x, e_x, m_x) + (s_y, e_y, m_y)$

• traiter les cas particuliers : $x_1 = NaN$ ou $x_2 = NaN$, $x_1 = 0$ ou $x_2 = 0$, $x_1 = +/-\infty$ ou $x_2 = +/-\infty$

addition	$-\infty$	$x\in\mathbb{F}_{-}^{*}$	0-	0+	$ extit{x} \in \mathbb{F}_+^*$	$+\infty$	NaN
$-\infty$	$-\infty$	$-\infty$	$-\infty$	$-\infty$	$-\infty$	NaN	NaN
$y \in \mathbb{F}_{-}^{*}$	$-\infty$	$x + y$ ou $-\infty$	У	У	x + y	$+\infty$	\mathtt{NaN}
0-	$-\infty$	X	0-	0^+	X	$+\infty$	NaN
0+	$-\infty$	X	0^+	0^+	X	$+\infty$	\mathtt{NaN}
$y \in \mathbb{F}_+^*$	$-\infty$	x + y	У	У	$x + y$ ou $+\infty$	$+\infty$	NaN
+∞	NaN	$+\infty$	$+\infty$	$+\infty$	$+\infty$	$+\infty$	NaN
NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN

19 / 22

Opérations arithmétiques : cas de l'addition $(s_1, e_1, m_1) + (s_2, e_2, m_2)$

- différence des exposants : $d = e_x e_y$
- échange des valeurs : $x \longleftrightarrow y$ et d = -d si d < 0
- alignement des mantisses : $m_V = m_V >> d$
- calcul du type d'opération :

$$op = + \text{ si } (add, s_x = s_y) \text{ ou } (sub, s_x \neq s_y)$$

 $op = - \text{ si } (add, s_x \neq s_y) \text{ ou } (sub, s_x = s_y)$

- addition/soustraction : $m_r = m_x$ op m_y
- correction du signe : $m_r = -m_r$ si $m_r < 0$

Opérations arithmétiques : cas de l'addition $(s_1, e_1, m_1) + (s_2, e_2, m_2)$

- détection du 1 de poids fort (t =indice MSO, most significant one)
- normalisation (et correction exposant) : $m_r = m_r << t$ et $e_r = e_r + t$
- dénormalisation
- arrondi (en fonction des 3 bits de garde)
- renormalisation si l'arrondi provoque une propagation de retenue

Opérations arithmétiques : cas de l'addition

