chard_wuebker@berkeley.eau-ren J du-Feb 5, 2021, 4:21:51 PM PST MFE Math Foundations Assignment 1 Solutions

(a) To compute the value of the growing perpetuity, we need the present value of all future cash flows, which is given by

ven by
$$P = \frac{C}{1+r} + \frac{C(1+g)}{(1+r)^2} + \frac{C(1+g)^2}{(1+r)^3} + \dots = \frac{C}{1+r} \sum_{n=1}^{\infty} \left[\frac{1+g}{1+r} \right]^n.$$

Note that the series only converges if g < r, in which case we have

$$P = \frac{C}{1+r} \sum_{n=0}^{\infty} \left[\frac{1+g}{1+r} \right]^n = \frac{C}{1+r} \cdot \frac{1}{1-\frac{1+g}{1+r}} = \frac{C}{1+r} \cdot \frac{1+r}{r-g} = \frac{C}{r-g} \,.$$

(b) For simplicity, suppose that the end of the year 2061 A.D. is exactly 47 years away. Let m = 76and let C = 2061. To simplify later calculations we will also define $\alpha = (1+r)^{-m}$. Then the present value of all future cash flows is given by

value of all future cash flows is given by
$$P = \frac{C}{(1+r)^{47}} + \frac{C+m}{(1+r)^{47+m}} + \frac{C+2 \cdot m}{(1+r)^{47+2 \cdot m}} + \cdots$$

$$= \frac{1}{(1+r)^{47}} \sum_{k=0}^{\infty} \frac{C+km}{(1+r)^{mk}}$$

$$= \frac{1}{(1+r)^{47}} \left[C \sum_{k=0}^{\infty} \alpha^k + m \sum_{k=1}^{\infty} k \alpha^k \right]$$

$$= \frac{1}{(1+r)^{47}} \left[\frac{C}{1-\alpha} + \frac{m\alpha}{(1-\alpha)^2} \right]$$

$$\approx 2512.92.$$

Note that we have used the result of Problem 2(b). In Figure 1, one can see that the sequence of partial sums converges quite rapidly to the exact value.

- 21:51 PM PST 2. Let $P_K(S)$ denote the Black-Scholes value of a European put option. Define $x=\frac{\ln(S/K)+(r+\sigma^2/2)T}{\sigma\sqrt{T}}$ in the lecture notes. (a) We first compute $\frac{\partial x}{\partial S}=\frac{1}{S\sigma\sqrt{T}}.$

2021 A:21:51 PM PST

$$\frac{\partial x}{\partial S} = \frac{1}{S\sigma\sqrt{T}}$$

Waley edu - F

Using the chain and product rules, we compute
$$\Delta_{PK} = Ke^{-rT} \left[-N'(x - \sigma\sqrt{T}) \frac{\partial x}{\partial S} \right] + N(x) - 1 - S[-N'(x) \frac{\partial x}{\partial S}]$$

$$= N(x) - 1 + \frac{N'(x)}{\sigma\sqrt{T}} - \frac{Ke^{-rT}}{S\sigma\sqrt{T}} N'(x - \sigma\sqrt{T})$$

$$= N(x) - 1 + \frac{N'(x)}{\sigma\sqrt{T}} \left[1 - \frac{Ke^{-rT}}{S} e^{x\sigma\sqrt{T} - \frac{\sigma^2T}{2}} \right].$$
where we have used the fact that $N'(x - \sigma\sqrt{T}) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2} + x\sigma\sqrt{T} - \frac{\sigma^2T}{2}}$. However, from the definition of x we have

where we have used the fact that $N'(x-\sigma\sqrt{T})=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}+x\sigma\sqrt{T}-\frac{\sigma^2T}{2}}$. However, from the definition of x we have

$$x\sigma\sqrt{T} = \ln(S/K) + rT + \frac{\sigma^2 T}{2}$$

from which it follows that $e^{x\sigma\sqrt{T}-\frac{\sigma^2T}{2}}=\frac{S}{K}e^{rT}$. Inserting this into the final expression in (1)

we observe that $\Gamma_{P_K}=\frac{\partial^2}{\partial S^2}P_K=\frac{\partial}{\partial S}\Delta_{P_K}$. Thus, by the chain rule, one has $\Gamma_{P_{\nu}}=N'(-1)^{2r}$ (b) Thankfully, most of our work has been done in part (a): to compute the gamma of the put Γ_{P_K} ,

$$\Gamma_{P_K} = N'(x) \frac{\partial x}{\partial S} = \frac{N'(x)}{S\sigma\sqrt{T}}$$

by our previous calculations.

(c) Our portfolio value is given by

$$V(S) = h_S S + h_1 P_{K_1} + h_2 P_{K_2}.$$

The first and second order Taylor expansions are given by

$$V(S + \Delta S) = V(S) + V'(S)\Delta S + C\Delta S^{2},$$

and

21:51 PM PST

$$\Gamma_{P_K} = N'(x) \frac{\partial x}{\partial S} = \frac{N'(x)}{S\sigma\sqrt{T}}$$
 deculations. The is given by
$$V(S) = h_S S + h_1 P_{K_1} + h_2 P_{K_2} \,.$$
 and order Taylor expansions are given by
$$V(S + \Delta S) = V(S) + V'(S) \Delta S + C \Delta S^2 \,,$$

$$V(S + \Delta S) = V(S) + V'(S) \Delta S + \frac{1}{2} V''(S) \Delta S^2 + C' \Delta S^3 \,.$$

$$V(S + \Delta S) = V(S) + V'(S) \Delta S + \frac{1}{2} V''(S) \Delta S^2 + C' \Delta S^3 \,.$$

$$V(S + \Delta S) = V(S) + V'(S) \Delta S + \frac{1}{2} V''(S) \Delta S^2 + C' \Delta S^3 \,.$$

$$V(S + \Delta S) = V(S) + V'(S) \Delta S + \frac{1}{2} V''(S) \Delta S^2 + C' \Delta S^3 \,.$$

for some constants C, C'. Thus for a delta-gamma hedge, we require V'(S) = V''(S) = 0 (this will immunize our portfolio to small changes in the stock ΔS , with errors as above). Assuming that h_S is fixed, we compute

$$V'(S) = h_S + h_1 \Delta_{P_{K_1}} + h_2 \Delta_{P_{K_2}}$$
$$V''(S) = h_1 \Gamma_{P_{K_1}} + h_2 \Gamma_{P_{K_2}}$$

Setting these equal to 0 and then solving yields

$$V'(S) = h_S + h_1 \Delta_{P_{K_1}} + h_2 \Delta_{P_{K_2}}$$

$$V''(S) = h_1 \Gamma_{P_{K_1}} + h_2 \Gamma_{P_{K_2}}$$
en solving yields
$$h_1 = \frac{-h_S \Gamma_{P_{K_2}}}{\Gamma_{P_{K_2}} \Delta_{P_{K_1}} - \Delta_{P_{K_2}} \Gamma_{P_{K_1}}}$$

$$h_2 = \frac{h_S \Gamma_{P_{K_1}}}{\Gamma_{P_{K_2}} \Delta_{P_{K_1}} - \Delta_{P_{K_2}} \Gamma_{P_{K_1}}}$$

Waley edu - F

3. Let
$$\bar{\mathbf{D}} = \begin{bmatrix} -\mathbf{s}^0, \mathbf{D} \end{bmatrix} = \begin{bmatrix} -2 & 1 & 1 \\ -3 & 1 & 2 \\ -16 & 8 & 9 \end{bmatrix}$$
.

2021 A:21:51 PM PST

(a) The time 0 price of the portfolio $\mathbf{h} = (1, 1, 0)^T$ is $\mathbf{h}^T \mathbf{s}^0 = 5$.

- ket: (b) The market is complete since $rank(\mathbf{D}) = 2$ which is equal to the number of states.
- (c) The LOOP does not hold in this market. Note that $rank(\mathbf{D}) = 3$ but $rank(\mathbf{D}) = 2$, so the system of equations for a state price vector is inconsistent. For example, the portfolio $\mathbf{h}^1 = (7, 1, 0)^T$ costs 17 and generates payoffs of 8 in outcome m=1 and 9 in outcome m=2. This is the same as the payoffs generated by the portfolio $\mathbf{h}^2 = (0,0,1)^T$, which at a cost of 16 is cheaper than \mathbf{h}_1 .
- (a) An equivalent way of stating that $\psi \in \mathbb{R}^M$ is a state price vector is that $\mathbf{h}^T \bar{\mathbf{D}}[1;\psi] = 0$ for all $\mathbf{h} \in \mathbb{R}^N$, i.e., that $\bar{\mathbf{D}}[1;\psi] = \mathbf{0}$. Recall that $\mathcal{N}(\bar{\mathbf{D}}) = \{ \eta \in \mathbb{R}^{M+1} : \bar{\mathbf{D}}\eta = \mathbf{0} \}$, so if we define $\Psi = \mathcal{N}(\bar{\mathbf{D}}), \ \psi \text{ is a state price vector if } [1; \psi] \in \Psi.$

Recall that $Range(\bar{\mathbf{D}}^T) = {\bar{\mathbf{D}}^T \mathbf{h} : \mathbf{h} \in \mathbb{R}^N}$. We define $R = Range(\bar{\mathbf{D}}^T)$, and from the theory in class we then know that $R^{\perp} = \Psi$, $\mathbb{R}^{M+1} = R \oplus \Psi$, and the rank theorem: $\dim(R) + \dim(\Psi) = \mathbb{R}^{M+1}$ M + 1.

Now, define the vector $\delta_0 = (1, 0, 0, \dots, 0)^T \in \mathbb{R}^{M+1}$, i.e., the vector with the first element being equal to one and all other elements equal to zero. The law of one price can then equivalently be stated as $\delta_0 \notin R$.

So, the linear algebraic formulation of part 1 is that

$$\delta_0 \notin R \Leftrightarrow [1; \psi] \in \Psi \text{ for some } \psi \in \mathbb{R}^M,$$

which is the result we wish to prove.

 \Rightarrow : If $\delta_0 \notin R$, $\dim(R) \leq M$, so $\dim(\Psi) \geq 1$ from the rank theorem. Since $\delta_0 \notin R$, there is a $\eta \in \Psi$ that is not orthogonal to δ_0 , i.e., $\langle \delta_0, \eta \rangle \neq 0$, so $\eta_1 \neq 0$. Rescaling the vector, we get $\frac{1}{\eta_1}\eta = [1;\psi] \in \Psi$, so there exists a state price vector.

 \Leftarrow : If $\delta_0 \in R$, then any vector of the form $\eta = [1; \psi]$ has $\langle \delta_0, \eta \rangle \neq 0$, so it cannot be that $\eta \in \Psi$. Thus, no state price vector exists.

- (b) From the previous result, given that a state-price vector exists, $dim(R) \leq M$. Also, since a state price vector exists, $\bar{\mathbf{D}}[1;\psi] = \mathbf{0}$, which means that $\mathbf{s}^0 = \mathbf{D}\psi$, so \mathbf{s}^0 is within the range of \mathbf{D} , and therefore $Rank(\mathbf{D}) = Rank(\mathbf{D}) = dim(R)$. The market is complete if and only if $Rank(\mathbf{D}) = M$, which is therefore equivalent to dim(R) = M, and via the rank theorem to $dim(\Psi) = 1$, i.e., to uniqueness of the state price vector. $\mathbf{A} = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}.$ The eigenvalues are the resets of the shortest vicinities and the latter $\mathbf{A} = \mathbf{A} = \mathbf{A} = \mathbf{A} = \mathbf{A}$.
- 5. Let $\mathbf{A} = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$.

2021 A.21:51 PM PST

(a) The eigenvalues are the roots of the characteristic equation $\det(\lambda \mathbf{I} - \mathbf{A}) = 0$. In this case, the eb 5, 2021 equation reads 21:51 PM PST

$$\lambda^2 - 6\lambda + 8 = 0,$$

which has roots $\lambda_1 = 2$, $\lambda_2 = 4$.

The corresponding eigenvectors are found by finding the nullspace (just like we did in the previous assignment) of $\lambda_i \mathbf{I} - \mathbf{A}$ for i = 1, 2. In this case, we find $\mathbf{v}_1 = \begin{bmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$. $\mathbf{Q} = \begin{bmatrix} -1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$, $\mathbf{\Lambda} = \begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix}$ Yes, since \mathbf{A} is symmetric with signature (0,0,2).

Waley edu - F

(b)
$$\mathbf{Q} = \begin{bmatrix} -1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}, \mathbf{\Lambda} = \begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix}$$

- (c) **Yes**, since **A** is symmetric with signature (0,0,2).
- 6. Let \mathbf{X} be as in the problem statement.

d the (a) To find the optimal \mathbf{x} , we proceed as suggested in the lecture notes and compute the eigenvalue decomposition $\mathbf{X}\mathbf{X}^T = \mathbf{Q}\mathbf{\Lambda}\mathbf{Q}^T$, where the eigenvalues are listed in decreasing absolute value. We chard_wuebl

$$\mathbf{XX}^T = \begin{bmatrix} 0.7155 & 1.4200 \\ 1.4200 & 3.127 \end{bmatrix}.$$

have
$$\mathbf{X}\mathbf{X}^T = \begin{bmatrix} 0.7155 & 1.4200 \\ 1.4200 & 3.127 \end{bmatrix},$$
 and, calculating the eigenvalues and eigenvectors, we get $\lambda_1 = 3.784$, $\lambda_2 = 0.058$, and
$$\mathbf{X}\mathbf{X}^T = \mathbf{Q}\Lambda\mathbf{Q}^T = \begin{bmatrix} 0.42 & -0.9075 \\ 0.9075 & 0.42 \end{bmatrix} \begin{bmatrix} 3.874 & 0 \\ 0 & 0.0584 \end{bmatrix} \begin{bmatrix} 0.42 & 0.9075 \\ -0.9075 & 0.42 \end{bmatrix}.$$
 Then \mathbf{x} will be (transpose of) the first column of \mathbf{Q} . In this case $\mathbf{x} \approx (0.4200, 0.9075)^T$.

(b) The coordinates **c** that minimize the squared error given this **x** are $c_m = \frac{\langle \mathbf{x}, \mathbf{v}^m \rangle}{\|\mathbf{x}\|_2^2}$. In this case, the error is

$$\varepsilon = \frac{1}{M} \sqrt{\sum_m \|\mathbf{v}^m - \mathbf{x} c_m\|_2^2} \approx 0.0161$$

richard_Wuebker@berkeley.edu-Feb 5, 2021

-kaley edu - F

(c) The error suggests that this is a fairly good approximation. However, there are a few outliers. In richard_Wuebker@berkeley.edu - Feb 5, 2021, 4:21:51 Pl in the subspace produced by our PCA analysis. Figure 2, we display a scatter plot of the data points as well as the corresponding approximations

21:51 PM PST

2021 A:21:51 PM PST

Figure 1: Partial sums of the comet perpetuity expansion

Problem 6(c)

21:51 PM PST

-kaley edu - F

2021 A:21:51 PM PST