Problem Set 6

Daniel Halmrast

November 11, 2017

PROBLEM 2

Show that the closure of the ball B(a,r) is the closed ball $\overline{B}(a,r) = \{x \mid |x-a| \leq r\}$

Proof. Suppose x is in $\overline{B}(a,r)$. Then, consider the sequence

$$(x_n) = (x-a)(1-\frac{1}{n}) + a$$

Clearly, this sequence converges to x, and each term is in B(a,r). To see this, we observe that

$$||x_n - a|| = ||(x - a)(1 - \frac{1}{n}) + a - a||$$

= $||x - a||(1 - \frac{1}{n})$
 $\leq r(1 - \frac{1}{n})$
 $\leq r$

Thus, each point in $\overline{B}(a,r)$ is a limit point of B(a,r), and since $\overline{B}(a,r)$ is closed, it follows that it is the closure of B(a,r) (since the closure of B(a,r) is the smallest closed set containing it.)

Problem 10

Show that ℓ^1 is not complete in the ℓ^{∞} norm.

Proof. We will show that the sequence $(x_m)_k = (\frac{1}{m^{1+\frac{1}{k}}})$ converges to the function $x_m = \frac{1}{m}$, which is not in ℓ^1 , even though each term in the sequence is in ℓ^1 .

To show convergence, we wish to show that the functions

$$f_k(n) = \frac{1}{n^{1+\frac{1}{k}}}$$

converges uniformly to $f(n) = \frac{1}{n}$. To do so, we will consider instead the extended functions

$$f_k(x) = x^{1+\frac{1}{k}}, \ x \in [0,1]$$

which clearly converges pointwise to f(x) = x. Now, since f is defined on a compact domain, it must also uniformly converge to f(x) = x. Thus, the restriction $f_k(x)|_{\{\frac{1}{n}\}}$ also converges

uniformly to $f(n) = \frac{1}{n}$. Thus, the sequence of sequences $(x_m)_k$ converges uniformly (in ℓ^{∞}) to (x_m) as desired. Furthermore, since each $(x_m)_k$ is in ℓ^1 , but (x_m) is not, it follows that ℓ^1 is not complete in the ℓ^{∞} norm.