CXD1267AN

CCD Vertical Clock Driver

Description

The CXD1267AN is a vertical clock driver for CCD image sensors. This IC is the successor of the CXD1250N with attractive features.

Power consumption is reduced approximately 30% for the CXD1267AN version.

Features

- 1) Substrate voltage (Vsub) generator is built-in.
 - Variable Vsub in the range of 4.0V to 18.5V.
 - Reduction of peripheral parts saves space.
- 2) Only two power supplies (+15V and -8.5V) are needed.
- 3) 3.3V clock interface is acceptable.
- 4) 20-pin SSOP package is used.
- 5) Low power consumption

90mW (CXD1267N)

62mW (CXD1267AN)

approximately 30% reduction

20 pin SSOP (Plastic)

Appllications

CCD cameras

Structure

CMOS

Absolute Maximum Ratings (Ta = 25°C)

 Supply voltage 	VL	0 to −10	V		
 Supply voltage 	Vн	$V_L - 0.3$ to $2V_L + 35$	V		
 Supply voltage 	Vм	$V_L - 0.3$ to 3.0	V		
 Input voltage 	Vı	$V_L - 0.3$ to $V_H + 0.3$	V		
 Output voltage (V2, V4) 	$MV \varphi$	$V_L - 0.3$ to $V_M + 0.3$	V		
 Output voltage (V1, V3) 	$HV \phi$	$V_L - 0.3$ to $V_H + 0.3$	V		
 Output voltage (VSHT) 	$HHV\phi$	$V_L - 0.3$ to $V_H + 0.3$	V		
 Operational amplifier outp 	ut current				
	Ідсоцт	±5	mA		
 Operating temperature 	Topr	-25 to +85	°C		
Storage temperature	Tstg	-40 to +125	°C		
Recommended Operating	Conditio	ns			
 Supply voltage 	Vн	14.5 to 15.5	V		
 Supply voltage 	Vм	0	V		
 Supply voltage 	V_L	-6.0 to -9.0	V		
• Input voltage (except for p	oin 3)				
	Vı	0 to 6.0	V		
Operational amplifier input voltage					
	VIOP	1.0 to 4.5	V		
 Operating temperature 	Topr	-20 to +75	°C		

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Block Diagram and Pin Configuration (Top View)

Pin Description

Pin No.	Symbol	I/O	Description
1	CPP3	0	Charge pump
2	Vн	_	Power supply (15V)
3	DCIN	I	Operational amplifier input
4	XSHT	I	Output control (VSHT)
5	XV2	I	Output control (V
6	XV1	I	Output control (V
7	XSG1	I	Output control (Vφ1)
8	XV3	I	Output control (V
9	XSG2	I	Output control (V
10	XV4	I	Output control (V
11	V ₀ 4	0	High-voltage output (2 levels: Vм, VL)
12	Vφ3	0	High-voltage output (3 levels: Vн, Vм, VL)
13	Vм	_	GND
14	V ₀ 1	0	High-voltage output (3 levels: Vн, Vм, VL)
15	V ₀ 2	0	High-voltage output (2 levels: Vм, VL)
16	VL	_	Power supply (–8.5V)
17	VSHT	0	High-voltage output (2 levels: Vн, VL)
18	DCOUT	0	Operational amplifier output
19	CPP2	_	Charge pump
20	CPP1		Charge pump

Truth Table

Input				Output			
XV1, 3	XSG1, 2	XV2, 4	XSHT	V ₀ 1, 3	Vφ2, 4	VSHT	
L	L	Х	Х	Vн	Х	Х	
Н	L	Х	Х	Z	Х	Х	
L	Н	Х	Х	Vм	Х	Х	
Н	Н	Х	Х	VL	Х	Х	
Х	Х	L	Х	Х	Vм	Х	
Х	Х	Н	Х	Х	VL	Х	
Х	Х	Х	L	Х	Х	Vн	
Х	Х	Х	Н	Х	Х	VL	

X: Don't care

Z: High impedance

Electrical Characteristics

DC Characteristics

(Unless otherwise specified, $Ta = 25^{\circ}C$, VH = 15V, VM = GND, VL = -8.5V)

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
High level input voltage	VIH		2.3	_	_	V
Low level input voltage	VIL		_	_	1.3	V
High level output voltage	Vон	Io = -20µA	14.9	15.0	_	V
Middle level output voltage	Vом1	lo = 20μA	_	0.0	0.1	V
Middle level output voltage	Vom2	Io = -20µA	-0.1	0.0	_	V
Low level output voltage	Vol	lo = 20μA	_	-8.5	-8.4	V
Charge pump output voltage	VCPP3	$-1 \le I_{CPP3} \le 0mA$ $I_{DCOUT} = 0mA$, $Ta = -20$ to $75^{\circ}C$ $V_{IOP} = 4.5V$	20	_	_	V
Input current	lı	VI = VL to 5V	-1.0	0.0	1.0	μA
Operating supply current	Ін	*1	_	1.4	2.0	mA
Operating supply current	I L	*1	-6.0	-5.0		mA
Output current	loL	$V\phi 1 \text{ to } 4 = -8.0V$	25			mA
Output current	Іом1	$V\phi 1 \text{ to } 4 = -0.5V$	_	_	-10	mA
Output current	Іом2	Vφ1, 3 = 0.5V	9	_	_	mA
Output current	Іон	Vφ1, 3 = 14.5V	_		-12	mA
Output current	IosL	VSHT = -8.0V	12	_	_	mA
Output current	Іоѕн	VSHT = 14.5V			-7	mA
Operational amplifier gain	G	IDCOUT = -200/+100µA		× 4.40	_	
Gain error	ΔG	Ta = -20 to $75^{\circ}C^{*2}$ IDCOUT = $-200/+100\mu$ A VIOP = 1.0 to 4.5V	-3	_	+3	%

^{*1} See Measurement Circuit. Shutter speed: 1/10000.

Note) Current directions: + indicates the direction flowing to IC; - indicates the direction flowing from IC

^{*2} See Operational Amplifier Gain Characteristic.

Switching Characteristics

(VH = 15V, VM = GND, VL = -8.5V)

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Propagation delay time	TPLM	*1	30	50	75	ns
Propagation delay time	Трмн	*1	30	50	75	ns
Propagation delay time	TPLH	*1	30	50	75	ns
Propagation delay time	ТРМЬ	*1	50	80	120	ns
Propagation delay time	Трнм	*1	50	80	120	ns
Propagation delay time	TPHL	*1	50	80	120	ns
Rise time	TTLM	$VL \rightarrow VM^{*1}$	360	600	900	ns
Rise time	Ттмн	$VM \rightarrow VH^{*1}$	330	550	770	ns
Rise time	TTLH	$VL \rightarrow VH^{*1}$	30	50	75	ns
Fall time	Ттмь	$VM \rightarrow VL^{*1}$	180	300	500	ns
Fall time	Ттнм	$VH \rightarrow VM^{*1}$	330	550	770	ns
Fall time	TTHL	$VH \rightarrow VL^{*1}$	24	40	60	ns
Charge pump boosting time	Tc	*2	_	_	10	ms
Output noise voltage	Vclh	*3	_	_	0.5	V
Output noise voltage	VCLL	*3	_	_	0.5	V
Output noise voltage	Vсмн	*3		_	0.5	V
Output noise voltage	VсмL	*3	_	_	0.5	V

^{*1} See Response of Voltage Pulse.

Note) Each item is evaluated by Measurement Circuit.

Notes on Operation (See Application Circuit.)

- 1. Be sure to protect against static electricity because this IC is MOS structure.
- 2. A bypass capacitor is connected between each power supply (VH, VL) and GND.
- 3. To prevent latch-up, use a capacitor of 0.1µF (CP1, CP2) for charge pump. Insert a silicon diode (D2) between CPP3 and CPP1.
- 4. In order to protect CCD image sensor, pre-clamp is requested prior to clamp by DCOUT.

^{*2} CP1 = $0.1\mu\text{F}$, CP2 = $0.1\mu\text{F}$, VCPP3 = 20V; boosting time after all power supplies rose.

^{*3} See Noise on a Waveform.

Measurement Circuit

Operational Amplifier Gain Characteristics

Note) Operating amplifier maximum output voltage is restricted as shown in the formula below depending on supply voltage setting of VH and VL.

Maximum output voltage VDCOUT (max) ≈ VH + | VL | - 0.8V

For instance, when $V_H = 14.5V$ and $V_L = -6.0V$, output voltage is saturated at approximately 19.7V as shown above figure.

Response of Voltage Pulse

Noise on a Waveform

Application Circuit

* A peripheral circuit can be simplified by CCD image sensor.

Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

Note with power-on sequence

To protect CCD image sensor, rise two power supplies as follows.

Package Outline Unit: mm

20PIN SSOP (Plastic)

NOTE: Dimension "*" does not include mold protrusion.

PACKAGE STRUCTURE

SONY CODE	SSOP-20P-L071
EIAJ CODE	SSOP020-P-0044-AN
JEDEC CODE	

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER PLATING
LEAD MATERIAL	Cu ALLOY
PACKAGE WEIGHT	0.1g