

Hardening Kubernetes Clusters

Reducing Attack Surface in Kubernetes by means of Rootless Containers, Network Policies and Role Based Access Control

Bachelor Thesis

Submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science in Engineering

to the University of Applied Sciences FH Campus Wien Bachelor Degree Program: Computer Science and Digital Communications

Author:

Guntram Björn Klaus

Student identification number:

c2110475170

Supervisor:

BSc. MSc. Bernhard Taufner

Date:

dd.mm.yyyy

Declaration of authorship: I declare that this Bachelor Thesis has been written by myself. I have not used any other				
than the listed sources, nor have I received any unauthorized help.				
I hereby certify that I have not submitted this Bachelor Thesis in any form (to a reviewer for assessment) either in Austria or abroad.				
Furthermore, I assure that the (printed and electronic) copies I have submitted are identical.				
Date: Signature:				

Student i

Abstract

(E.g. "This thesis investigates...")

Kurzfassung

(Z.B. "Diese Arbeit untersucht...")

List of Abbreviations

ARP Address Resolution Protocol GPRS General Packet Radio Service

GSM Global System for Mobile communication

WLAN Wireless Local Area Network

Key Terms

GSM

Mobilfunk

Zugriffsverfahren

Student v

Contents

1	Intr	oduction	1		
	1.1	Background: Enterprises and Cloud	2		
	1.2	Research Objectives	2		
	1.3	Methodology	3		
	1.4	Structure	3		
2	Con	cepts	4		
	2.1	Containervirtualization	4		
		2.1.1 Linux Kernel	5		
		2.1.2 Container Images	6		
		2.1.3 Container Runtimes	7		
	2.2	Kubernetes	8		
		2.2.1 Components	8		
		2.2.2 Cluster Architecture	9		
		2.2.3 Cluster Objects	10		
3	l ita	rature Review	11		
J	3.1	State of the Art	12		
	$\frac{3.1}{3.2}$	CVE Numbers	$\frac{12}{13}$		
	3.3	Incident Reports	13		
	ა.ა	incident Reports	14		
4		dening Measures	15		
	4.1	Securing Containers	15		
		4.1.1 Linux File Permissions	15		
		4.1.2 Root versus Rootless	16		
		4.1.3 Rootless Policy Enforcement	17		
	4.2	Securing the Network	18		
		4.2.1 Network Policies	18		
		4.2.2 Service Mesh	19		
	4.3	Authentication and Authorization	20		
		4.3.1 Role Based Access Control	20		
		4.3.2 Kubeconfig Keys and Certificates	21		
		4.3.3 Service Accounts	22		
5	Disc	cussion	23		
	5.1	Implications for businesses	23		
	5.2	Tradeoffs and Difficulties	24		
	5.3	Complexity	24		
6	Con	oclusion	25		
7					
7	Outlook / Future work 26				
Bi	Bibliography 2				

Student vi

List of Figures	28
List of Tables	29
Appendix	30

1 Introduction

- 1.1 Background: Enterprises and Cloud
- 1.2 Research Objectives

1 Introduction

1.3 Methodology

1.4 Structure

2 Concepts

2.1 Containervirtualization

2 Concepts

2.1.1 Linux Kernel

2.1.2 Container Images

2.1.3 Container Runtimes

2.2 Kubernetes

2.2.1 Components

2.2.2 Cluster Architecture

2.2.3 Cluster Objects

3 Literature Review

Kubernetes is highly customizable and offers a range of configuration options which determine the security posture of individual applications and the cluster as a whole. The purpose of this literature review is to explore the security threat landscape of Kubernetes environments. Specifically, recurring concepts and common denominators across vulnerabilities shall be identified and discussed. For this, the database of Common Vulnerabilities and Exposures (CVE), the IEEE database, the ACM digital library and the official Kubernetes feed of CVEs are queried using keywords pertaining to Container and Kubernetes Security. The acquired papers, articles and CVE descriptions are skimmed through. The most relevant results are narrowed down and selected for closer inspection. It shall be noted that Kubernetes vulnerabilities do not only entail standard Kubernetes components, but also add-ons deployed on top of 'plain' Kubernetes. Such can be the Nginx Ingress-Controller, a Service-Mesh, CI/CD tools closely embedded into Kubernetes and more. Generally, this can be anything that extends the Kubernetes API through Custom Resource Definitions (CRDs).

It is evident that the reliance on Kubernetes comes with the need of a clear security initiative. According to RedHat's report on the state of Kubernetes security of 2022, more than ninety percent of polled organizations underwent at least one security incident in their Kubernetes environment, which, in a third of cases, lead to the loss of revenue or customers. The majority of these incidents were detections of misconfigurations. About a third of respondents reported major vulnerabilities and runtime security incidents in relation to containers and/or Kubernetes which required immediate remediation. In a more recent, similar report conducted by RedHat in 2023, two thirds of respondents had to delay or slow down application deployments because of security concerns. This is a significant increase compared to the 2022 survey, where just over half of participants experienced delays. Three of the most frequently mentioned advantages of containerization include quicker release cycles, quicker bug fixes, and increased flexibility to operate and manage applications. But if security is neglected, you can lose out on containerization's biggest benefit: agility. It becomes apparent that Kubernetes is not something that is installed once and then never looked at again. Rather, a container-based environment that leverages this orchestration technology requires attention for detail and constant, rigurous inspection, despite the great amount of abstraction provided and due to its highly customizable nature. CITE REDHAT 2022 2023

Container Escape Major vulnerabilities include those which fall under the category of a so called container-escape. Since a container is intended to be a runtime environment isolated from the underlying host, the concept of a container-escape relates to performing an exploit that breaks the confines of exactly this isolation, resulting in full or limited access to the underlying host machine and/or network. A study conducted by Reeves et al. at the end of 2021 investigates the susceptibility of different container runtime systems to escape exploits by studying a batch of CVE reports.

CVE-2019-14891 is an example of host network access

CVE-2022-0811 (not discussed by above report) CRIO runtime escape

the foundation of such attacks is being able to either freely instantiate containers or freely move and operate from inside a container.

3 Literature Review

The most notable ones, which have a severity score above 8, according to the Common Vulnerability Scoring System (CVSS), are CVE-2022-0811 and such and such because they have been shown to provide full root access once successfully exploited.

We see that vulnerabilities vary tremendously in their appearance. CVE so and so targets a tool, CVE so and so targets the actual underlying kernel of a k8s node. However, all these things can be prevented or alleviated by applying the concept of least privilege to containers, access to Kubernetes and the Kubernetes network. For example, if a malicious actor cannot freely create files in any desired directory of a compromised container, it significantly reduces his ability to exploit a given vulnerability. Not being able to create that file in the first place, due to missing write permissions, would be a major obstacle for performing a container escape. It is not always possible to completely avoid a vulnerability. This is due to software bugs and unidentified weaknesses in the code that have passed through the testing and review process.

3.1 State of the Art

3.2 CVE Numbers

3.3 Incident Reports

4 Hardening Measures

- 4.1 Securing Containers
- 4.1.1 Linux File Permissions

4 Hardening Measures

4.1.2 Root versus Rootless

4.1.3 Rootless Policy Enforcement

4.2 Securing the Network

Default pod-to-pod network settings, as an example, allow open communication to quickly get a cluster up and running, at the expense of security hardening. Network segmentation.....

4.2.1 Network Policies

4 Hardening Measures

4.2.2 Service Mesh

4.3 Authentication and Authorization

4.3.1 Role Based Access Control

4 Hardening Measures

4.3.2 Kubeconfig Keys and Certificates

4 Hardening Measures

4.3.3 Service Accounts

5 Discussion

5.1 Implications for businesses

5.2 Tradeoffs and Difficulties

5.3 Complexity

6 Conclusion

7 Outlook / Future work

Bibliography

List of Figures

List of Tables

Appendix

(Hier können Schaltpläne, Programme usw. eingefügt werden.)