# **Podcast Listening Time Prediction**

May 2, 2025 Elvis - Suguru - Dana

## Agenda



Project Overview

Prediction of podcast listening time using a Kaggle dataset.



Process

We cleaned the data, explored it, engineered features, and trained regression models.



Findings

One feature had a dominant influence on predictions.



Challenges

We faced communication gaps and production capacity limitations during the project.

## **Project Overview**

- Goal: Predict podcast episode listening time
- **Dataset**: Kaggle Podcast Listening Time Prediction
- **Focus**: Understand which features influence user listening behavior
- Approach: Build a regression model to forecast listening time
- **Data includes:** episode metadata, publication info, sentiment, popularity scores, etc.



| Datairaille        |                       |                   |                            |                   |                                |                     |                      | Shape: (750000, 12)             |                   |                       |                            |
|--------------------|-----------------------|-------------------|----------------------------|-------------------|--------------------------------|---------------------|----------------------|---------------------------------|-------------------|-----------------------|----------------------------|
| Numerical Features |                       | eatures           | Categorical Feature        |                   | es                             | Important Feature   |                      | Target Feature                  |                   | ire                   |                            |
| ı                  | Podcast<br>_Name      | Episod<br>e_Title | Episode_Leng<br>th_minutes | Genr<br>e         | Host_Popularity<br>_percentage | Publicati<br>on_Day | Publicatio<br>n_Time | Guest_Popularity<br>_percentage | Number_<br>of_Ads | Episode_S<br>entiment | Listening_Tim<br>e_minutes |
|                    | Mystery<br>Matters    | Episode<br>98     | NaN                        | True<br>Crim<br>e | 74.81                          | Thursday            | Night                | NaN                             | 0.0               | Positive              | 31.41998                   |
|                    | Joke<br>Junction      | Episode<br>26     | 119.8                      | Com<br>edy        | 66.95                          | Saturday            | Afternoon            | 75.95                           | 2.0               | Negative              | 88.01241                   |
|                    | Study<br>Session<br>s | Episode<br>16     | 73.9                       | Educ<br>ation     | 69.97                          | Tuesday             | Evening              | 8.97                            | 0.0               | Negative              | 44.92531                   |

# EDA & Data Preprocessing

#### Exploratory Data Analysis

- Initial dataset exploration and variable assessment
- Correction of outliers that did not align with expected ranges
- Imputation of missing values to ensure data completeness

# Target Feature Behaviour



## **Numerical Features**

We noticed that the main feature influencing the target is *Episode\_Length\_minutes,* showing a 92% correlation.

This makes sense, as the total listening time largely depends on the length of each episode.



### **Publication Day & Time**

- → No clear trend was observed across days or times of publication.
- → These features did not significantly contribute to predicting listening time.
- → Therefore, they were not prioritized during feature selection.





### **Listening Time by Genre**

- → The average listening time is <u>relatively consistent</u> across genres.
- → No specific genre stands

  out as significantly more or
  less listened to.
- This suggests genre does not strongly influence listening time predictions.



### **Listening Time by Sentiment**

- → Sentiment categories show similar average listening times.
- → Episodes with positive sentiment had a slightly higher average listening time.
- Overall, <u>sentiment had limited</u>
   <u>impact on prediction</u>
   <u>performance.</u>



### **Podcast Performance Insights**

- → "Tech Talks", "Sports Weekly", and "Melody Mix" led in total listening time.
- "Money Matters" and "Crime Chronicles" had the highest average listening time per episode, showing strong engagement.
- → Due to many missing values, features like Episode\_Length\_minutes and Guest\_Popularity\_percentage were not used directly in modeling but helped create derived metrics during preprocessing.







### **MISSING VALUES**

Missing values in test:
Episode\_Length\_minutes 28736
Guest\_Popularity\_percentage 48832

Missing values in train:
Episode\_Length\_minutes 87093
Guest\_Popularity\_percentage 146030
Number\_of\_Ads 1



**Episode\_Length\_minutes** was our most important feature, so we imputed missing values carefully using the Podcast Name and Genre to maintain consistency.

Guest\_Popularity\_percentage had ~19.47% missing values. These likely indicated no guest rather than missing data, so we created a "No Guest" category and imputed the remaining nulls with the mean.

**Number\_of\_Ads** had only one missing value and was filled with the mode.

Challenge of communication on deciding how to handle this

## **Feature Engineering Highlights**

### Ad\_Density

- → Calculated as Number of Ads / Episode Length
- → Reflects ad concentration and its potential effect on listener engagement
- → Helps detect patterns related to ad saturation and drop-off behavior

### **Guest\_Popularity\_missing**

- → Created a binary feature to indicate episodes without a guest
- → Addressed the ambiguity in missing Guest\_Popularity\_percentage values
- → Provided a clearer signal during modeling and preserved meaningful variation

# Regression Models

Training the Data

#### Modeling Approach

Since our target variable (Listening\_Time\_minutes) is continuous, we focused exclusively on regression models.

The dataset's structure and the prediction goal aligned best with supervised regression techniques.

#### **Models Trained**

- Linear Regression as a baseline model
- Random Forest Regressor for non-linear relationships and feature importance
- Gradient Boosting Regressor for improved performance through boosting
- XGBoost Regressor a powerful gradient boosting implementation

# **Testing**

#### **Final Model Results**

#### Best Result we Obtained

| Model                                   | RMSE    | R²     |
|-----------------------------------------|---------|--------|
| Linear Regression (Initial)             | 13.3071 | 0.7593 |
| Linear Regression (Final Preprocessing) | 13.2846 | 0.7602 |
| Gradient Boosting (First Run)           | 13.1363 | 0.7655 |
| Gradient Boosting (Tuned)               | 13.0846 | 0.7673 |
| Gradient Boosting (Feature Importance)  | 13.11   | 0.7665 |
| Gradient Boosting                       | 13.1363 | 0.7654 |
| Gradient Boosting (Tuned - Final)       | 13.0636 | 0.7681 |
| Gradient Boosting (Feature Based)       | 13.09   | 0.7672 |
| Gradient Boosting (Final)               | 13.134  | 0.7656 |

| Model                              | RMSE    | R²     |
|------------------------------------|---------|--------|
| Random Forest (Initial)            | 12.7906 | 0.7776 |
| Random Forest (First Run)          | 12.7821 | 0.7779 |
| Random Forest (Important Features) | 13.1374 | 0.7654 |
| Random Forest (Hyperparameters)    | 13.6069 | 0.7484 |
| Random Forest (Encoding Strategy)  | 12.7916 | 0.7776 |
| Random Forest (Final Preprocessed) | 12.7693 | 0.7784 |
| XGBoost (Initial)                  | 13.14   | 0.7677 |
| XGBoost (Tuned)                    | 13.16   | 0.7645 |
| XGBoost (Final)                    | 13.04   | 0.7689 |

## **Gradient Boost**

#### First attempt

Trained the initial model with default parameters — performance was promising.

#### Improving

Applied
RandomizedSearchCV to
find the best parameters —
results improved slightly.

MARINETH HEREITH HAR A STATE OF THE STATE OF

Explored feature importance to simplify the model — similar accuracy with fewer inputs.

#### Observations

Gradient Boosting trained faster than Random Forest but did not outperform it.

We had to split the dataset due to memory limitations, which restricted further tuning.

## XGBoost

#### First attempt

Ran the model with default parameters — performance was solid and comparable to Gradient Boosting.

#### Improving

Applied hyperparameter tuning — results got slightly worst.

Also tested optimized preprocessing, but improvements were minimal.

#### Observations

XGBoost was efficient and stable, but did not outperform Random Forest or tuned Gradient Boosting.

Improvements were limited despite tuning, and results with full data got minimal better..

## Random Forest

#### First attempt

Ran the base model with default settings — served as a strong baseline.

### Improving

RandomizedSearch for tuning, results got slight bad performance.

Tested feature importance to reduce input size — not relevant results.

Tried improving encoding, but it didn't enhance results.

#### Observations

Random Forest delivered solid results, the best of out all models, but had long training times, limiting our ability to experiment further and optimize the model.

# Final Results & Key Insights

After testing multiple models and tuning strategies, Random Forest with improved preprocessing achieved the best results, outperforming others in both RMSE and R<sup>2</sup>.

| Model                              | RMSE    | R²     |
|------------------------------------|---------|--------|
| Linear Regression (Final)          | 13.2846 | 0.7602 |
| Gradient Boosting (Final)          | 13.1340 | 0.7656 |
| Gradient Boosting (Tuned Final)    | 13.0636 | 0.7681 |
| Gradient Boosting (Feature Based)  | 13.0900 | 0.7672 |
| Random Forest (Final Preprocessed) | 12.7693 | 0.7784 |
| XGBoost (Final)                    | 13.0400 | 0.7689 |

# **Kaggle Competition**

**Out of deadline Result** 

**Last submitted Result** 

Submission and Description

Private Score ①

Public Score ①

SubmissionRF.csv
Complete (after deadline) · 18s ago

12.80040

12.86694

YOUR RECENT SUBMISSION



#### submission.csv

Submitted by SO - Submitted 28 seconds ago

Score: 12.90504

Public score: 12.99744



#### submission2.csv

Complete (after deadline) · 18s ago

13.42432 13.53060



#### submissionxgboost.csv

Complete (after deadline) · 4h ago

13.03634 13.16022

## Your branches Branch final-lr-gb linear-reg-gradient changing-preprocessing **Active branches** Branch final-lr-gb update-readme [ linear-reg-gradient xgboost-regressor random-forest

# **GITHUB VIEW**





## **Conclusion**

Random Forest was the best-performing model, delivering the highest R<sup>2</sup> and lowest RMSE after improved preprocessing.

Throughout the project, we analyzed the dataset from multiple angles to better understand what drives podcast listening time. We discovered that Episode\_Length\_minutes was the most influential feature, while genre, sentiment, and publication timing had minimal predictive power.

To enhance model performance, we engineered features like Ad\_Density and a No\_Guest, and applied various preprocessing strategies to handle missing data and reduce noise.

This project showed that beyond model tuning, deep data understanding and iterative processing are key to building effective predictive models.

# Final Thoughts

This project was a valuable experience in applying machine learning to real-world data. By combining data exploration, thoughtful preprocessing, and model experimentation, we gained both technical insights and a deeper understanding of podcast engagement patterns.

Our work highlighted the importance of staying curious, testing different approaches, and letting the data guide decision-making.

## Thank you for your time!