ALGEBRA 3 NOTES NICHOLAS HAYEK

Lectures by Prof. Henri Darmon

CONTENTS

I	Groups		1
---	--------	--	---

1 GROUPS

I Groups

In Algebra 3 we will study abstract algebraic structures. Chiefly among them, we have (1) *groups*, which are useful in representing symmetries, (2) *rings* & *fields*, which help us think about number systems, and (3) *vector spaces* & *modules*, which encode physical space.sdfgsdfghn

A *group* is a set G endowed with a binary composition $G \times G \to G$ such that the following axioms hold:

- 1. $\exists e \in G$, an identity element, such that $e * a = a * e = a \forall a \in G$.
- 2. $\forall a \in G$, $\exists a' \in G$ such that a * a' = a' * a = e.
- 3. $a * (b * c) = (a * b) * c \forall a, b, c \in G$.

If $a * b = b * a \forall a, b \in G$, we call G commutative.

Why do we care about groups? If X is an object, we call a *symmetry* of X a function $X \to X$ which preserves the structure of the object.

The collection of symmetries, $\operatorname{Aut}(X) = \{f : X \to X\}$, we can structure as a group: $* = \circ$, composition of functions; $e = \operatorname{Id}$; $f \in \operatorname{Aut}(X)$ must be bijective.

A note on notation: for non-commutative groups, we write a * b = ab, e = 1 or $\mathbb{1}$, $a' = a^{-1}$, and $a^n = \underbrace{a \cdot ... \cdot a}_{n \text{ times}}$. This is called *multiplicative notation*. For commutative

rings, we write a * b = a + b, e = 0 or \mathbb{O} , a' = -a, and $na = \underbrace{a + ... + a}_{n \text{ times}}$.

e.g. a polygon, graphs, tilings, "crystal," "molecules," rings, vector spaces, metric spaces, manifolds

EXAMPLES

1.