Logistic Regression

Doru Arfire Papers we love X, June 23rd 2016

Contents

- Linear Regression
- Logistic Regression
- Extensions to Logistic Regression
- Overfitting & Regularization
- Parameter selection
- Demo
- Q&A

Ordinary Least Squares

- Given real values X_{NxK} and y_N, train model that can predict y' from X'
- X independent variables
- y dependent variable
- Assumes $y_i = w^T x_i + w_0 + \varepsilon_i$
- ϵ error terms, assumed to have E $[\epsilon] = 0$
- Columns (regressors) of X linearly independent

Ordinary Least Squares

- We're learning model given by
 f(x) = w^Tx
- $x_i = [1, x_{i1}, x_{i2}, ..., x_{iK}]^T$
- $\mathbf{w} = [\mathbf{w}_0, \mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_K]^T$
- w_o is called the *intercept*
- We find w by minimizing
 Ilf(x) yll²

$$w^* = \arg\max_{w} \sum_{i=1}^{N} (y_i - w^T x_i)^T (y_i - w^T x_i)$$

OLS: beyond linearity

- Sometimes we suspect our input variables to have non-linear interactions
- E.g., y depends not on x_1 , x_2 , etc., but on x_1^2 , x_1x_2 , etc.
- Take advantage of linear relationship between y and x_1^2 , x_1x_2
- Add extra variables $z_1 = x_1^2$, $z_2 = x_1x_2$, etc.

Logistic Regression: Introduction

- Linear regression is good for, well, regression
- Unnatural fit for *classification*: given \mathbf{X} , predict $\mathbf{y} \in \{0, 1\}$
- You could have a threshold Θ; anything above is 1, anything below is -1
- Difficult to interpret f(x) as degree of certainty (what is f(x) = 10, or -200)
- How do we find Θ

Generalized Linear Model

Logistic Function

$$sigm_{\alpha}(x) = \frac{1}{1 + e^{-\alpha x}}$$

- Differentiable everywhere => we can do gradient descent
- Result is a probability-like value
- We can use it as a measure of certainty
- ullet Parameterizable slope with lpha

Logistic Function

- First discovered by Pierre François
 Verhulst (1845)
- Rediscovered by Raymond Pearl and Lowell Reed (1920s)
- Used to model population growth
- Introduced in statistical analysis by Berkson (Application of the Logistic Function to Bio-Assay, 1944)
- Initially, an alternative to *probit* CDF of normal distribution

Logistic regression: loss function

- Find **W** by minimizing the number of errors $\|y \sigma(w^T x)\|$
- We interpret $P(y=1|x;w) = \sigma(w^Tx)$ Therefore $P(y=0|x;w) = 1 \sigma(w^Tx)$
- Equivalently $P(y|x;w) = \sigma(w^Tx)^y(1-\sigma(w^Tx))^{(1-y)}$
- We define the likelihood: $L(w) = \prod_{x_i} P(y_i|x_i;w)$
- The cost function $J(w) = -\frac{1}{N} \sum_{i=1}^{N} y_i log(\sigma(w^T x_i)) + (1 - y_i) log(1 - \sigma(w^T x_i))$
- Minimize it w.r.t. w (MLE)

Logistic Regression: discussion

- Bowl shaped error surface
- Gradient descent is guaranteed to find a global minimum
- Good results if data is linearly separable
- XOR problem, not linearly separable
- We need a more complex boundary

Logistic regression: multinomial extensions

- How do we use LR for more than 2 classes?
- 1-vs-all approach:
- We can run K independent regressions
- Each will compute a different set of parameters
- Choose class with best result
- The probabilities need not sum to 1

Logistic regression: Softmax

- A method to directly compute $P(y = k \mid w; X)$, using a single model
- Softmax function generalizes the logistic function to K classes

$$P(y_i = j | x_i; w) = \frac{e^{w_j^T x_i}}{\sum_{k=1}^K e^{w_k^T x_i}}$$

- X is NxM; w is MxK
- The cost function becomes

$$J(w) = -\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{K} I\{y_i = j\} log \frac{e^{w_j^T x_i}}{\sum_{l=1}^{K} e^{w_l^T x_i}}$$

Logistic regression: Softmax

$$J(w) = -\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{K} I\{y_i = j\} log \frac{e^{w_j^T x_i}}{\sum_{l=1}^{K} e^{w_l^T x_i}}$$

- Generalizes logistic regression cost function
- No closed form solution, solved using numeric optimization (GD)
- Still convex, GD will find a global maximum
- Overparameterized: multiple w settings will optimize it
- Not equivalent to 1-vs-all approach
- Output probabilities necessarily sum to 1

Softmax vs 1-vs-all

- Use softmax when we have mutually exclusive classes
 - Exclusive music genres: Pop, Rock, Jazz
- Use 1-vs-all when classes can overlap
 - A song can be Pop and Rock at the same time

Preparing the data

- The data needs to be scaled and centered
- All columns need to be in the same range
- Height: 1.5 2.0
- Yearly income: 30000 200000
- Can use categorical data: SUNNY, CLOUDY, RAINY
- Need to be numerically encoded, introducing extra columns
- One-Hot encoding: SUNNY = {0, 0}; CLOUDY = {0, 1}; RAINY = {1, 0}
- Ordinal variables encoding is trickier: COLD, WARM, HOT
- We need to preserve the idea of ordering, but don't know the "distances" between COLD and WARM, WARM and HOT, etc.

Overfitting

- Original $f(x) = -0.7x + 0.5x^2 + 3$
- Gaussian error: $\mathcal{N}(0, 0.7)$
- We fitted 4-degree polynomial
- And then 6-degree polynomial
- And then 9 degrees, which fits the data perfectly (9 points)
- However it will generalize poorly;
 it is overfitting
- The model is too complex; it is learning noise

Bias/Variance Tradeoff

- Suppose we train the same model M on different training sets from the same population
- Bias -- a measure of the mean error of M
- Variance -- a measure of how much the prediction of M differs from one training set to another
- High bias means underfitting; the model is too simple
- High variance means overfitting; the model is too complex
- In practice we can't eliminate both, hence the tradeoff

Bias/Variance Tradeoff

Bias/Variance Tradeoff

	Bias	Variance
Low	 Linear regression / linear data 3rd degree poly / quadratic data ANN with many nodes trained to completion 	Constant functionLinear regression / quadratic data
High	 Constant function Linear regression / quadratic data ANN with few nodes applied to nonlinear data 	 High degree poly ANN with many nodes trained to completion

How to deal with overfitting

- More data; cancels the effects of noise
- Early stopping: stop before starting to overfit
- Model selection: select a model that overfits less
 - Cross-validation
- Dropout (NN): randomly drop unit contribution
 - Forces the model to learn with less input, hence less noise and coadaptation
- Regularization: force a simpler model

L2 Regularization

- Also known as Ridge or Tikhonov regularization
- Complex models have w with a higher norm
- Change the loss function to force a lower norm
- Minimize: $\mathcal{L}(w) = -logL(w) + \lambda * ||w||^2$
- High values for w penalize the loss
- How do we choose λ ?
- In general, how do we choose the parameters of a model?

Parameter tuning

- In general, training set error is not a reliable estimation of a model's performance
- We need a test set, which is never seen during training; used to report a model's performance
- If we need to tune parameters (e.g. regularization λ), we set aside a *validation set*
- We train on training set, compare performance on different parameters on the validation set

Cross-validation

- A more robust validation technique
- Instead of using a fixed training/validation split
- Perform multiple splits (t_1, v_1) , (t_2, v_2) , (t_3, v_3) , ... from the same training set
- Train using t_i and validate using v_i
- The final error is the mean
- Multiple approaches:
 - Leave-one-out: validation set has size 1
 - K-fold: partition in K subsets; use K-1 for training and 1 for validation
 - Repeat K times
 - Repeated random split

Demo

Q&A

