Classe: 4 eme	<u>Serie en</u> mathematique	<u>Prof : H -</u> JAMEL

EXERCICE N°1:

Soit (Un) la suite définie sur IN par : $\begin{cases} u_0 = 3 \\ u_{n+1} = \frac{3u_n - 1}{2u_n} \end{cases}$

- 1°) a Montrer que pour tout $n \in IN$, on a : $U_n \ge 1$.
 - b Montrer que pour tout $n \in IN$, on a : $U_n \ge U_{n+1}$.
- c)- déduire que la suite U est convergente vers une limite I que I on précisera
- 2°) Soit (Vn) la suite définie par : $V_n = \frac{u_n 1}{u_n \frac{1}{2}}$.
- a- Montrer que V_n est une suite géométrique dont on précisera le premier terme et la raison.
- b-Exprimer V_n et U_n en fonction de n.
- c- Calculer la limites des suites Un et

EXERCICE Nº:2

Soit u_n la suite définie par : $u_0 = -1$ et pour tout $n \in IN$: $u_{n+1} = \frac{4u_n + 3}{u_n + 6}$.

- 1°) a Montrer que : pour tout $n \in IN$ on a : 3 < u_n <1 .
 - b Montrer que : pour tout $n \in IN$ on a : $u_{n+1} > u_n$.
- c)- déduire que la suite U est convergente vers une limite l que I on précisera
- 2°) Soit la suite v_n définie sur IN par : $v_n = \frac{u_n-1}{u_n+3}$.
- a Montrer que v_n est une suite géométrique puis calculer v_n en fonction de n.
 - b- Calculer u_n en fonction de n.
 - c Quelle est la limite de v_n ? En déduire celle de u_n .

EXERCICE Nº:3

On considère la suite u_n définie sur IN par : $u_0 = 0$ et $u_{n+1} = \frac{3}{\sqrt{6-u^2}}$.

- 1°) Montrer que pour tout $n \in IN$, on a : $0 \le u_n < \sqrt{3}$.
 - b) etudier le sens de variation de la suite U
- c) déduire que la suite U est convergente vers une limite l que I on précisera
- 2°) Soit v_n la suite définie sur IN par : $v_n = \frac{u_n^2}{3-u_n^2}$.
 - a Montrer que v_n est une suite arithmétique .
 - b Exprimer v_n et u_n en fonction de n .
 - c Calculer la limite de u_n quand n tend vers + ∞

<u>BON</u>

TRAVAIL

