ALL-PAIR S	HORTEST PATHS		< + ve / -ve \$
INPUT:	Graph	G= (V,E) with	edge weights (we)
GOAL			storres between all
	,	, ,	pairs.
	(tue)		
Naive :		ustra from every	node i
	-> N	- Dikhtras	
	-> 1	(
] /	The Control of the Control	= [VI·IE] log[V].

length of the shortest path from i — j D(i,j,K) =ط۱۰. **«**۲ which only uses officky ors intermediate vertices D[i,j,0] = lengthof shortest path with NO intermediate vertices = Wij D[i,j,n] = length of shortest path i~j

Subproblem:

K& Shortest path i ~ j every intermediate vertex € pl~ K-1) D[i,j,K-1] D(i, j, K) = min(KE Shorfest path i - j using V(i, K). D[i,k,k-i] + D[k,j,k-i]D[i,j,k]= min dD[i,j,k-1], O[i,k,k-1]+O[kj,k-1]

PSEUDO CODE

for
$$j=1$$
 to n

$$D[i,j,o] = Wij$$

for $k=0$ to n

$$for j=1$$
 to n

$$D[i,j,k] = min \begin{cases} O[i,j,k-1], \\ O[i,k,k-1], \\ + O[k,j,k-1] \end{cases}$$

LINEAR PROGRAMMING - family of optimization prostems

Voriables: x,...xn EIR

Maix/Min linearfunction (max. xn)

Subject to

linear constraint

COFFEE SHOP:

2.				
	 			
	COFFEE	MILK		
		11110		
$\gamma = 1$.			
X = Junit of CAPPUCINO	31	1· X		
	+	4		
11 1 + 1 1 1 1 1 1 1 1	7 .	1,		
Y = lunit of LATTE	24	44		
	-			
	< 6	< 8		
		•		
AVAILABLE	COFFEE =	0		
A A A		o		
AVAILABLE	MILK =	8		
Μ	1 6 4			
Maximum # 0	J drinks	$\sim \chi^{-1}$	- 4	
)	7			
\/ - 4\\ '				
X = 7 of Ow	to of lappe	y cino	\sim 1 \sim 0 \sim 1 \sim	
X = # of om	J J/	\leftarrow	positive real numbers	
y = # of unit	A 1 A			
9 - 71 9 011.	is of com	K		
J	/			

Feasible = satinfy all Constraints range of vortables Fearible region = that natisfy all constraints. Feorible region of a linear program FACT1: is a Convex Polyhodron.

The optima of a linear program

occurs at vertex of a polygon

pory Ledron.

Corner / Vertex of polygon

is given by the intersection of comminishs FACT2: FACTS:

CONVEX: A subset of points $S \subseteq \mathbb{R}^d$ is convex if \forall $a,b \in S$.

(Line joining a,b) $\in S$.

Maximiye
$$x + y$$
 $0072^{\circ}2.6^{\circ}1$ 0.3 $3x + 2y \le 6$ 0.1 $0.$