```
Exercicio:
 1. Se A B - B o que se pode dizer sobre A e B?
    Se ADB = B => AD (ADB) = ADB
                =>(AAA) AB = AAB
                => Ø AB = AAB (Inconclusivo)
   Le MAB) AB = BAB = AD (BAB) = 8
                     Como no há restrições par B, B é qualque
 2 ¿ resolute que As(Bnc)=(AsB)n(Asc)?
                                                An(BAC)=
  (Em Z): A -> + . N -- .
                                               (ANB) A (ANC)
         a + (b · c) = la + b) · b + c)
                 1 a2 + ac + ba + bc
                 L, FALSO
 Sojo A = B (.H.S = AD (Anc) = [A/ (Anc)] U[(Anc) (A]
                  = [An (Anc)] U[Anchā]
                  = An (āuā)
= (anā)u(anā)
                  = 8 0 (Anc)
                  = ALC
  R.H.S = (ADA) (ADC)
        = Ø (AAC)
 Escolhendo A # &, C # A e C CA
   obtenos
       ALC = L.H.S & R.H.S = 8
  Assim, par este situação L.H.J & R.H.S lego a suposte identidade é
```

Rolações 3 (1,3) $(1,3) \neq (3,1)$. (3, 1 }1,3{ = }3,1{ Definição: Sejam A, B conjuntos O conjunto de todos os pares cederados (a, b) com a E A e b E B diz se o producto contesiono de a pol B representa - sa por A×B Ax B= { (a, b) : a ∈ A, b ∈ B { No caso B = A esqueros A × A = A2 Exemplo: A 2 } 0, 1 \ B= { a . b , c \ } A+B= 36, a), (0,b), (0,c), (1,a), (1,b), (1,c) { BxA= ?(a.0),(b,0),(c,0),(a,1,),(p,1),(c,1)? Dofiniço: Sejam A. B. conjuntos Chamarnos RELAÇÃO BINÁRIA DE A PARA B a qualquer subconjunto do piodesto contesiono A×B. Notago: R Olardo B: A, dizernos que R é una relação definide em Exemplo: 130,18 B. 3a, b, c1 1 x B = ... R1: {10,9), (0, b), (0, c) {. Terros R. CA>B logo R1 é una colação

de A pare B

R2 = } 11,b)/ Rz, (BxA logo Rz é uno relogo de Apare B R3 - ? (1, f) (R3, 6 BXA logo R3 nos é uno reloços de A como B 10,b) E R1 (=1 0 R1 b (0 está em respes com b através de R1) (1, b) \$ R1 (1, 1 R1 b / 2 no) se relaciona con 6 através de R1) R, U Rz = ? (0,a), (0,b), (0,c), (1,b) { (A x B) \ R1 = R1 = \ (1, a) . (1, b) , (1, c) \{ Definiça: Sejan A. B. conjuntos. Se R é uma relação birária de A para B definimos a relação inversa como o serb confermo 1(b.al : (a.b) < R ? Representances par R-1 e é rema relação de B para A. Exemple: $R_1^{-1} = \{ (a,0), (b,0), (c,0) \}$ Definiça): Jepan A, B, C conjuntos. Se RVé uma relaps de A para B e se S é uma relaps de B pare C, definimos a composição de R com S como a relação de A para C dada por: (a,c) E Axc: existe um nEB: (a,x) ER e(n, c) ECE Depusationes por SoR e lè 1 'S apris R" Exemple: A=10,18 Blab, c8 C=1 x B, 7 8 Soyam R. 10,a), 10, c1, (1,b) { e 5=}(a,x), (a, B), (c, Y) { (RCA×B 5 C Bx C relega elepas de A para de B paro

	Ex	emp	و کو	:																								
		Sej Se																		, (.	e , e) <i>E</i>						
		R	é	ref	Us	liva	· ·	E	` <u> </u>		: الم	œ	7	Ĕ	Ev	ans	:4:	٥.										
		É	ہم.	fla	, vvc		l	<u> </u>	ye J	C	.∈	A	. 6	علور	ζ,	qu	الحا	α,	a)	ϵ	R))						
		é	Te	enc fles	03 (iub	∂ €	εA		Sa	voʻ	9	ىب	_ (0,0	3)	€ 1	? ?	N	න	(0	(0)	£	R	lag	0	R	ര	
		É	عند	~o:	tric	<u>a</u>	7 (70	yo	a	,b	ϵ	А	Co	m	la	(P)	E	R	. 5	<i>ف</i> ىو	q	عب	(<u>k</u>	o, a) د	R	7)
				- em 31	25	(c	3,1	() (E F	₹ .	0	ورد	nde	٠ .	tro	500	næ	s c	> (orq	em	٥	bte	roo	s (٠, ١	0)	Ras
		(,	0,	2) 2m	os os) ,) , hd	C 1.0 h) () (ext.	en P.	0	د ور د	ande R	· •	tro	5 CO	næ	s (۰ ۸	orq	em	0	bte	roo	_s (.đ, ·	1).	tas
	A.																											
R	é	32 32	.,	/ <u>2</u> 4~	(C)	· , D (E		0	١٥١	Ca	, 0	<i>,</i> c	1 7	•	101	בטן ז			1)1_		3 (.10,	α,	0	η.	٢٠(,
		Ė (i Tra	US.	F:v	a)	(Ser	jer å (qu	م ه	, b (а	, < , <)	€	A R))	sec.	(<u>a</u>	, b)	(R	e	(+	, ,	:)	R	•
		Te	377	2Ce	(1	رح)	ϵ	R	e (ر٥,	(بر	E	R .	٤	ع	R	₽ ^c	> <i>5</i> 2	<u>-</u>	tro	5N.	ŗ٢	•\C	- (1.	(۱	tes	
	Œ	4 P	et C	enc us	ее (1	ے (۸)	<u>-</u> ⊈	В К	Ç	20gg	>	R	ré) é	5 +	ra	مک	Li.	~									
	Exe	icic																										
		A	- }	1,3	2,3	{		R	· }	(1.	л)	, (1	.z)	, (.	2,1),	(2	, 3) . (3, 3	3)8	•						
		R	ė l	له	Jedi	w.)	2	۲.~	س'+	kC	.)	Tr	an:	: Li	ve)												
		Ré		efle	2من	va	?	Nb	O	lec.	دنو	a	E	A	ω	رم م	(2,	2)	4	R								
				1						•									1									

Résimétria? No pois (2,3) ER mas (3,2) & R Ré transitive? Na pous (2,1)(1,2) € R mas (2,2) € R Refiniço. Seja A rum conjunts e R uma relejo definida Digenos que R é une releço de EOUIVALÊNCIA en A se Ré reflexive, simétrice e transitive TPC: A= 30,1 (R_3 (0,0), (1.1) { É un releço de equiel? Para su una reloça de equivalência é precisa a rela ça su transitiva, simétrica e reflexiva. Révellaire? Sin poique 1 EA e (1,1) ER. Résimétrica? Sin porque (1,1) ER e (1,1) ER. Rétransitius? Sin parque (0,0) ER (0,0) Loga 10,01 ER logo R no é uma ulação de equivalência