An Infinite de Bruijn Sequence

December 25, 2016

1 A cycle joining Construction

Definition 1. A word in \mathbb{N}^* is called a *key word* if it is bigger in right-to-left lexicographical order than all of its rotations.

Definition 2 (Cycle Construction). For $n \in \mathbb{N}$, let k_1, k_2, \ldots be an enumeration in right-to-left lexicographic order of all the key words of length n and let $z(k_i)$ be the number of leading zeros in k_i . Define $C_0 = \langle 0^n \rangle$ and, for i > 0, let C_i be the sequence obtained from C_{i-1} by adding

$$\langle \text{RotLft}(k_i, z(k_i) + 1), \text{RotLft}(k_i, z(k_i) + 2), \dots, \text{RotLft}(k_i, z(k_i)) \rangle$$

after the word $(\sigma - 1)w$ where $\sigma w = \text{RotLft}(k_i, z(k_i))$.

Proposition 3. For every l > 0 there is some i > 0 such that the first l words in C_i are also the first l words in C_j for any j > i.

Definition 4. Let C_{∞} be the infinite sequence whose prefixes are all prefixes of an infinite number of elements in $\{C_0, C_1, \dots\}$.

Proposition 5. The sequence C_{∞} is a de Bruijn sequence of order n, i.e., it is a Hamiltonian path over the infinite de Bruijn graph of order n whose vertexes are the words \mathbb{N}^n and whose edges are $\{\langle \sigma w, w \sigma' \rangle : \sigma, \sigma' \in \mathbb{N}, w \in \mathbb{N}^{n-1} \}$.

Definition 6 (Last on Necklace). Let last(w) be true if and only if $w = \text{RotLft}(k_i, z(k_i))$ for some i. i.e., if w is the last member of its necklace (set of rotations) in the sequence.

Definition 7. Let $nxt: \mathbb{N}^n \to \mathbb{N}^n$ be defined by

$$nxt(\sigma w) = \begin{cases} w(\sigma + 1) & \text{if } last((\sigma + 1)w) \\ w0 & \text{if } last(\sigma w) \\ w\sigma & \text{otherwise} \end{cases}$$

Proposition 8. For every $w \in \mathbb{N}^n$, nxt(w) is the word that follows w in the sequence C_{∞} .

¹This is always possible because $(\sigma - 1)w$ is a rotation of a key word that is smaller than k_i in left-to-right lexicographic order, i.e., it came earlier in the enumeration.

Definition 9. Let $prv : \mathbb{N}^n \to \mathbb{N}^n$ be defined by

$$prv(w\sigma) = \begin{cases} (\sigma - 1)w & \text{if } last(\sigma w) \\ \sigma' w & \text{if } \sigma = 0 \text{ and } \sigma' \text{ is the maximal such that } last(\sigma' w) \\ \sigma w & \text{otherwise} \end{cases}$$

Proposition 10. For every $w \in \mathbb{N}^n \setminus \{0^n\}$, prv(w) is the word that precedes w in the sequence C_{∞} .

Proposition 11. Both prv and nxt can be computed in $O(n^2)$ time and space.

Proposition 12 (Prefer Maximum). For every $\sigma \in \mathbb{N}$ and $w \in \mathbb{N}^{n-1}$, the word σw comes before the word $(\sigma + 1)w$ in C_{∞} .

2 Forward and backwards transformations

Definition 13. For a parameter n, Let $L \subset \mathbb{N}^+$ be the set of non-periodic words over the alphabet $\Sigma = \mathbb{N}$ that are bigger in Arabic (right-to-left) lexicographical order than all of their rotations. Let L_n be the set of all the words in L whose length divides n.

Definition 14. For a word $w = w_1 \cdots w_{n-1} w_n$ let $R(w) = w_n w_1 \cdots w_{n-1}$ be the rotation of w to the right. Then, the nested invocation $R^m(w)$ is the m letter rotation to the right and its inverse $R^{-m}(w)$ is the m letter rotation to the left.

Definition 15. For a word w whose length is smaller or equal than n, let f(w) be the transformation defined by successive applications of the following steps to w:

 f_1 : Increase the first letter of the word by one.

 f_2 : Pad with zeros on the left to get a word of length n.

 f_3 : Apply the substitution rules $u(vu)^+ \mapsto vu$ and then $w^+ \mapsto w$, with the longest possible u and the shortest possible w.

Definition 16. For a a word w whose length is smaller or equal than n, let b(w) be the transformation defined by successive applications of the following steps to w:

 b_1 : Expand w to uw^m where $m = \lfloor n/|w| \rfloor$ and u is the suffix of length n-m|w| of w.

 b_2 : Remove leading zeros.

 b_3 : Decrease the first letter by one.

Observation 17. For any $w \in L_n$, f(b(w)) = b(f(w)) = w.

Proposition 18. If we start with w(0) = 0 and generate a sequence of words by w(i+1) = f(w(i)), we get an enumeration of all the words in L whose length is smaller or equal to n.

Proof. This is a version of Duval's algorithm with a reversed order of the alphabet and a reversed order of letters in a word. \Box

Definition 19. Let $f^*(w)$ be the first word in $f(w), f(f(w)), \ldots$ whose length divides n and, similarly, let $b^*(w)$ be the first word in $b(w), b(b(w)), \ldots$ whose length divides n.

Definition 20. Let w(0), w(1), ... be the sequence generated by starting with w(0) = 0 and then continuing ad infinitum by $w(i+1) = f^*(w(i))$ and let $w^{\infty} \in \mathbb{N}^{\omega}$ be the concatenation of all these words.

3 Where can I find w as a sub-word of w^{∞} ?

In this section we point at the position of an arbitrary word w as a sub-word of w^{∞} relative to the position of the a corresponding word in L_n . This is given in Proposition 24 and in Proposition 25. Towards the proofs of these propositions, we first establish some technical results about the functions b and b^* specified, respectively, in Definition 16 and in Definition 19.

Proposition 21. If $w \in L_n$ and $|w| \neq n$ then b(w) = uw for some non-empty word u.

Proof. The first transformation b_1 extends w to the left producing the word $b_1(w) = uw^m$ where u is a tail of w. Since $w \in L_n$ and because it contains a letter σ that is not zero, we have, by maximality of w among its rotations in right-to-left lexicographical order, that its last letter is not zero. The last letter of w is the last letter of w so it is also not zero. This gives us that the next transformation b_2 , that deletes trailing zeros, leaves at least the last copy of w and the last letter of the before-last (full or partial) copy at the tail of $b_1(w)$. Thus, $b_2(b_1(w)) = uw$ where w is a non-empty word whose first letter is not zero. Then, the last transformation w only decreases the first letter of w by one which gives us that w only w for some non-empty word w.

Proposition 22. For any $w = 0^l \sigma \hat{w} \in L_n$ where σ is a non-zero letter there is a non-empty word u such that $b(w) = u\hat{w}$.

Proof. If $|w| \neq n$ the proof follows by Proposition 21. If |w| = n then $b_1(w) = w$, $b_2(b_1(w)) = \sigma \hat{w}$, and $b_3(b_2(b_1(w))) = (\sigma - 1)\hat{w}$ and the claim follows as well. \square

Proposition 23. Let w be an arbitrary word in \mathbb{N}^n and let and let $\bar{w} = f_3(w)$. Let l be the (possibly zero) number of trailing zeros (from the left) in w. Then, for all $0 \le i \le |w| - l - 1$, the word $R^i(\bar{w})$ comes i + n - |w| letters before w as a sub-word of w^{∞} .

Proposition 24. For a given $w \in L_n$, let l be the number of trailing zeros (from the left) in w and let $\bar{w} = b_1(w)$. Then, for all $0 \le i \le |w| - l - 1$, the word $R^i(\bar{w})$ comes i + n - |w| letters before w as a sub-word of w^{∞} .

Proof. By Proposition ?? the words that come before w ends with the last |w|-l letters of w. In particular, the n letter word that starts i+n-|w| before w is $R^i(\bar{w})$.

Proposition 25. For a given $w \in L_n$, let l be the number of trailing zeros (from the left) in w and let $\bar{w} = b_1(w)$. Then, for all $|w| - l \le i \le n - 1$ the word $R^i(\bar{w})$ comes $i - (n - |f_3(u)| \pmod{n})$ letters before the first $u \in (0^{m-1}(\bar{w}_m + 1)\bar{w}_{m+1}\cdots\bar{w}_n)_{m=i+1}^n$ that is in L_n .

Proposition 26. The word w^{∞} contains all the words in \mathbb{N}^n as subwords.

Proof. Any word of length n is a rotation of the expansion of a word in L_n . \square

Proposition 27. For any k the prefix $w_1^{\infty} \cdots w_{k^n}^{\infty}$ is an n-order de Bruijn sequences. Moreover, it is the reversed of the n-order prefer-max sequence on the alphabet $(0, \ldots, k-1)$ (in this order).

Proof. Counting argument + arguing that if |w| = n - 1 and $\sigma_1 < \sigma_2$ then $w\sigma_1$ comes before $w\sigma_2$ as subwords of w^{∞} .

Proposition 28. For $w \in \mathbb{N}^n$, let i be the minimal index such that $R^{-i}(w) \in L$ and let $\bar{w} = R^{-i}(w)$. Let $\bar{w}^+ = \bar{w}_{1..i}(\bar{w}_{i+1} + 1)\bar{w}_{(i+2)..n}$, i.e., the word obtained by increasing the (i+1)th letter of \bar{w} by one. Then, the function

$$next(w) = \begin{cases} f^*(f_3(w))_1 & \text{if } w \in L; \\ w_1 + 1 & \text{if } \bar{w}_{1..i} = 0^i \wedge \bar{w}^+ \in L \wedge \max{(\bar{w}_{1..(n-1)}^+)} \leq \max(w); \\ 0 & \text{if } \bar{w}_{1..i} = 0^i \wedge (\bar{w}^+ \notin L \vee \max{(\bar{w}_{1..(n-1)}^+)} > \max(w)); \\ w_1 & \text{otherwise.} \end{cases}$$

represents the mapping of a word w to the letter that follows the (one and only) occurrence of w as a subword of w^{∞} .

Definition 29. Let w(0) = 0, $w(1) = f^*(w(0)), \ldots, w(i) = f^*(w(i-1)), \ldots$ be our enumeration of all the words in L_n . Let $w^{(i)} = w(0) \cdots w(i)$ be the concatenation of the first i words in this enumeration and let $u(j) = w_{j-n+1}^{(i)} \cdots w_j^{(i)}$ be the "window" of length n before the jth letter in $w^{(i)}$.

Proposition 30. Let w = w(i) for some i and let l be the number of leading zeros in w. Then, inserting the cycle $\langle R^{-l-n-1}(w), \ldots, R^{-l}(w) \rangle$ to $\langle u(j) \rangle_{j=0}^{i-1}$ after the word obtained from $R^{-l}(w)$ by decreasing its first letter by one yields the sequence $\langle u(j) \rangle_{j=0}^{i}$.

4 Where can I find w as a sub-word of w^{∞} ? (second try...)

Definition 31. For a word w, max(w) is the maximal digit in w.

Definition 32. A word $u \in \mathbb{N}^n$ corresponds to $w \in L_n$ if u is a rotation of $w^{\frac{n}{|w|}}$. Note that each $u \in \mathbb{N}^n$ corresponds to exactly one word $w \in L_n$.

Proposition 33. If $w \in L_n$ and |w| < n, then $f^*(w) = f(w) = 0^{n-|w|}x$ for some word x.

Proof. Write $f_1(w) = x$, $f_2(x) = 0^{n-|w|}x$. Since $w \in L_n$ and |w| < n, $n - |w| \ge \frac{n}{2}$. Moreover, the last digit in x is not zero. Hecne, $f(w) = f_3(0^{n-|w|}x) = 0^{n-|w|}x$. Since $|0^{n-|w|}x| = n$, we have $f(w) = f^*(w) = 0^{n-|w|}x$.

Proposition 34. Take |w| < n so that w = w'k where 0 < k = max(w), then b(w) = uw and $max(u) \le max(w)$.

Proof. Write w = w'k. Thus, $b_1(w) = xk(w'k)^r$, r > 0. $b_2(xk(w'k)^r) = y(w'k)^r$. $b_3(y(w'k)^r) = uw'k = uw$. It is easy to see that $\max u \le k$.

Proposition 35. If $w \in L_n$, $|w|^m = n$, m > 1 and $w = 0^l \sigma \hat{w}$ such that $\sigma \neq 0$, then $b^*(w) = u \hat{w} w^{m-1}$ for some u.

Proof. Since $w \in L_n$ and $w \neq 0$, b(w) is defined and

$$b(w) = (\sigma - 1)\hat{w}w^{m-1}.$$

If $b(w) \in L_n$ we are done, and otherwise |b(w)| < n and several invocations of the previous proposition provide the required.

Proposition 36. Assume that $u \in \mathbb{N}^n$ corresponds to $w \in L_n$ such that |w| < n. then, u is a subword of w^{∞} .

Proof. If $u=0^n$, then u is a prefix of w^{∞} and we are done. Otherwise, $w=0^l\sigma\hat{w}$ where $\sigma\neq 0$. Take m such that $|w|^m=n$. Note that m>1. By Propositions 33 and 35, $b^*(w)wf^*(w)=x\hat{w}w^{m-1}w0^{|w|}y$, which is also a subword of w^{∞} . Hence,

$$\hat{w}(0^l\sigma\hat{w})^m0^l$$
 is a subword of w^{∞} .

u is a rotation of w^m thus u is a subword of $\hat{w}(0^l\sigma\hat{w})^m0^l$ which implies that u is a subword of w^{∞} .

Proposition 37. Assume that $u = yx \in \mathbb{N}^n$ corresponds to $w = xy \in L_n$ where |w| = n. If $x \neq 0^r$, then u is a subword of w^{∞} .

Proof. We show that u = yx is a subword of $b^*(w)w$. Write $x = 0^l \sigma z$ where $\sigma \neq 0$. Thus, since |w| = n, $b(w) = (\sigma - 1)zy$. If $b(w) = b^*(w)$, then

$$b^*(w)w = (\sigma - 1)zyx$$

and we get that u is a subowrd of $b^*(w)b(w)$. Otherwise, $|(\sigma-1)zy|$ does not divides n, and in particular, $|(\sigma-1)zy| < n$. By applying Proposition 34 several times, we get that $b^*(w) = v(\sigma-1)zy$ for some v, and u = yx is a subword of $b^*(w)w = v(\sigma-1)zyxyx$.

Lemma 38. Assume that $w = 0^l v \in L_n$ and |w| = n. Write $w = 0^l z_1 \sigma z_2$ where σ is the first digit in v such that $0^{l+|z_1|}(\sigma+1)z_2$ is lexicographically maximal among its rotations. Take $k \in \mathbb{N}$ and a suffix of (σz_2) , u such that $|u(\sigma z_2)^{k+1}| = |z_1(\sigma z_2)|$. Then, $u(\sigma z_2)^{k+1} = z_1(\sigma z_2)$.

Proof. Assume for a contradiction that the claim is false, and hence $z_1 \neq u(\sigma z_2)^k$. Therefore, there are $\tau \neq \tau'$ in \mathbb{N} and a word y, such that $\tau'y$ is a suffix of σz_2 , and

$$z_1 = x\tau y(\sigma z_2)^r$$
, $(\sigma z_2)^k = x'\tau' y(\sigma z_2)^r$.

Clearly, $\tau < \tau'$ since otherwise, $\tau' < \tau$, and we get that $w = 0^l z_1 \sigma z_2 = 0^l x \tau y (\sigma z_2)^{r+1}$. However, if we assume that $\tau' < \tau$, $w' = (\sigma z_2)^r 0^l x \tau y$ is lexicographically larger than w, in contradiction to $w \in L_n$.

Corrolary 39. Assume that $w = 0^l v \in L_n$ and |w| = n. Write $w = 0^l z_1 \sigma z_2$ where σ is the first digit in such that $0^{l+|z_1|}(\sigma+1)z_2$ is lexicographically maximal among its rotations. Then, there are words x, y such that $z_2 = xy$, $w = 0^l y (\sigma xy)^{r+1}$ and $z_1 = y (\sigma xy)^r$.

Proof. This is a consequence of the previous Lemma and the fact that $|0^l z_1| = |x(\sigma z_2)|^m$.

Lemma 40. If uv = vu and $u, v \neq \varepsilon$, then there is some word w, such that $u, v \in \{w\}^*$.

Proof. By induction on |u|+|v|. If |u|=|v|, u=v and we are done. Otherwise, assume w.l.o.g. that |u|>|v| and write u=vx (since uv=vu). Then, ux=vxv=vvx=vu. We see that xv=vx. By the induction hypothesis, $x=w^k$ and $v=w^l$. Hence, $u=w^{l+k}$ as required.

Lemma 41. Let $w = 0^l y(x0^l y)^{r+1}$ be an n-length word such that $y \notin \{0\}^*$. Then, $w \notin L_n$.

Proof. Assume for a contradiction that w is a key-word of length n, and take a maximal $t \in \mathbb{N}$ such that $x0^l y = x'(0^l y)^{t+1}$. First, we note that $x' \neq \varepsilon$. Indeed, if $x' = \varepsilon$, then $w = (0^l y)(0^l y)^{(t+1)(r+1)}$, a periodic word, and then $w \notin L_n$.

Now we claim that $|x'| < |0^l y|$. For verifying this claim, assume that $|x'| \ge |0^l y|$ and write $x' = x_1' x_2'$, where $|x_2'| = |0^l y|$. By maximality of $t, x_2' \ne 0^l y$, and since $w \in L_n$, $x_2' <_{lex} 0^l y$. Therefore,

$$w' = (x0^l y)^r x_1' x_2' (0^l y)^{t+1} 0^l y$$

is a rotation of w which is lexicographically larger then w, in contradiction to $w \in L_n$.

To summary our conclusions, we have $w = 0^l y (x'(0^l y)^{t+1})^{r+1} \in L_n$, and $|x'| < |0^l y|$. Write $0^l y = z_1 z_2$ where $|x'| = |z_2|$. Therefore,

$$w = z_1 z_2 (z_2 (z_1 z_2)^{t+1}) \dots (z_2 (z_1 z_2)^{t+1}).$$

We look now at a rotation of $w, w' = (z_2(z_1z_2)^{t+1}) \dots (z_2(z_1z_2)^{t+2})$. Since $w \in L_n$, w is lexicographically larger than w' and in particular, $(z_1z_2z_2(z_1z_2)^{t+1}) \ge_{lex} (z_2(z_1z_2)^{t+2})$ which implies that $z_1z_2z_2 \ge_{lex} z_2z_1z_2$, and hence

$$z_1 z_2 \ge_{lex} z_2 z_1$$
.

In addition, $z_2z_1z_2$ is a suffix of w while $z_1z_2z_2$ is a subword of w. Hence, as $w \in L_n$ we have, $z_2z_1z_2 \ge_{lex} z_1z_2z_2$, and hence

$$z_2z_1 \geq_{lex} z_1z_2$$
.

As a result, $z_2z_1=z_1z_2$ m and then by Lemma 40, $z_1=z^{l_1}$ and $z_2=z^{l_2}$ for some non empty word z. Therefore, $w=z^m$ for some z>0 in contradiction to $w\in L_n$.

Proposition 42. Assume that $v0^l \in \mathbb{N}^n$ corresponds to $w = 0^l v \in L_n$ where |w| = n and l > 0. Then, $v0^l$ is a subword of w^{∞} .

Proof. Write $w = 0^l z_1 \sigma z_2$ where $\sigma \in \mathbb{N}$ is the first digit in w so that $0^{l+|z_1|}(\sigma + 1)z_2$ is lexicographically maximal among its rotations. Note that such a digit exists since the last digit in w satisfies this requirement. Hence, $v = z_1 \sigma z_2$.

By Corollary 39, $z_2 = xy$ and $z_1 = y(\sigma xy)^r$. Now, since $|0^{l+|z_1|}(\sigma+1)z_2| = n$ and $0^{l+|z_1|}(\sigma+1)z_2$ is lexicographically maximal among its rotations, $0^{l+|z_1|}(\sigma+1)z_2 = (w')^{k+1}$ where $w' \in L_n$. Note that $0^{l+|z_1|}$ is a prefix of w'. We consider three possibilities

Case 1. $\sigma z_2 \in L_n$. We show that in this case, $v0^l$ is a subword of $b^*(b^*(w'))(b^*(w'))w'$, which is a subword of w^{∞} .

 $b_1(w') = w'^{k+1} = 0^{l+|z_1|}(\sigma+1)z_2$. Hence, $b(w') = b_3(b_2(0^{l+|z_1|}(\sigma+1)z_1)) = \sigma z_2$. Since $\sigma z_2 \in L_n$, $b(w') = b^*(w') = \sigma z_2$ and in particular, $|(\sigma z_2)^{m+1}| = n$ for some $m \in \mathbb{N}$. Observe that $|z_1| \leq |\sigma z_2|^m$ and use Lemma 38 to conclude that z_1 is a suffix of $(\sigma z_2)^m$.

By invoking Proposition 34 several times, $b^*(\sigma z_2) = u(\sigma z_2)^m$ for some u. Hence, $v0^l = z_1\sigma z_20^l$ is a subword of

$$b^*(b^*(w'))b^*(w')b(w') = u(\sigma z_2)^{m+1}0^{l+|z_1|}x'.$$

Before we deal with the other cases, we note that $b_1(\sigma z_2) = b_1(\sigma xy) = x'y(\sigma xy)^{r+1}$ for some x' that satisfies |x'| = l > 0.

Case 2. $\sigma z_2 \notin L_n$ and $x' \neq 0^l$. We show that in this case, $v0^l$ is a subword of $b^*(w')w'$, which is a subword of w^{∞} .

Recall that $b(w') = \sigma z_2$ which is, by assumption, not a key-word. Since $x' \neq 0^l$, several invocations of Proposition 34 imply that $b^*(\sigma z_2) = x''y(\sigma z_2)^{r+1}$. Since $v = z_1\sigma z_2 = y(\sigma z_2)^{r+1}$, we get that $v0^l$ is a subword of

$$b^*(w')w' = x''y(\sigma z_2)^{r+1}0^{l+|z_1|}u.$$

Case 3. $\sigma z_2 \notin L_n$ and $x' = 0^l$. In this case, $b_1(\sigma z_2) = 0^l y(\sigma xy)^{r+1}$. Note that $w = 0^l y(x''0^l y)^{r+1}$ and use Lemma 41 to obtain a contradiction.

Theorem 43. w^{∞} is an infinite de Bruijn sequence.

Proof. According to Propositions ??, every n-sequence is a subword of w^{∞} . By the "onion theorem" and by the pigeonhole principle, every n-sequence appears only once at w^{∞} .

5 Constructing an Infinite de Bruijn Cycle

A key word is an n-length word that is (arabic) maximal among its rotations. Let kw_0, kw_1, kw_2, \ldots be an enumeration of all key-words, ordered lexicographically. Let C_m be the cycle of kw_m . We order the elements of C_m as follows: if $kw_m = 0^l(\sigma + 1)w$, then $w0^l(\sigma + 1)$ is the first sequence in C_m , and each word w' is followed by R(w'). The last word in C_m is $(\sigma + 1)w0^l$.

For each m < n we define a de Bruijn sequence D_m , over the words $\bigcup_{i=0}^m C_i$ as follows:

- $D_0 = 0^n$.
- If $kw_{m+1} = 0^l(\sigma+1)w$, then D_{m+1} is obtained by inserting the sequence C_{m+1} after the word $\sigma w 0^l \in C_m$.

Definition 44. For $w, w \in \mathbb{N}^n$ and $m \in \mathbb{N}$, write $w <_m w'$ if w appears before w' in D_m . Write $<=\bigcup_{i=0}^{\infty}$.

For a word w, max(w) is the maximal number in w.

Lemma 45. If w < w', then $max(w) \le max(w')$.

Corrolary 46. < defines an infinite de Bruijn sequence.

Proof. By the previous Lemma, each word is preceded by finitely many words thus < defines an infinite sequence. Since each D_m is a de Bruijn sequence and since $<_m \subseteq <_{m+1}$, the sequence defined by < is a de Bruijn sequence.

Let D be the infinite de Bruijn sequence defined by <.

Theorem 47. For a word σw in D, let $nxt(\sigma w)$ be the successor of σw in D. Then,

$$nxt(\sigma w) = \begin{cases} w(\sigma + 1) & if \ last((\sigma + 1)w); \\ w0 & if \ last(\sigma w); \\ w\sigma & otherwise \end{cases}$$

Definition 48. If $kw_m = 0^l(\sigma+1)w$, we write $first(w0^l(\sigma+1))$, $key(0^l(\sigma+1)w)$ and $last((\sigma+1)w0^l)$. In addition, for a cycle C_m , $first(C_m) = w \in C_m$ so that first(w), $key(C_m) = kw_m$ and $last(C_m) = w \in C_m$ so that last(w).

Lemma 49. For any $w' \in C_m$, $first(C_m) \le w' \le last(C_m)$.

Proof. This the way we ordered the cycles.

Definition 50. We say that $C_{i_0}C_{i_1}\ldots C_{i_k}$ is a sequence of cycles, if for every j < k, $nxt(last(C_{i_j})) = first(C_{i_{j+1}})$.

Lemma 51. Let $C_{i_0}C_{i_1}...C_{i_k}$ be a sequence of cycles. Write, $key(C_{i_0}) = 0^l(\sigma)w$ where $\sigma \neq 0$. Then, for every $j \leq k$, $key(C_{i_j}) = 0^l(\sigma + j)w$.

Proof. Assume by induction that $key(C_{i_j}) = 0^l(\sigma + j)w$ for j < k. Hence, $last(C_{i_j}) = (\sigma + j)w0^l$. Thus, $nxt((\sigma + j)w0^l) = w0^l(\sigma + j + 1)$ or $nxt((\sigma + j)w0^l) = w0^{l+1}$. Since $\neg(first(w0^{l+1}))$, we have

$$nxt((\sigma+j)w0^l) = w0^l(\sigma+j+1) = first(C_{i_{j+1}}).$$

We conclude that $key(C_{i_{j+1}}) = 0^l(\sigma + j + 1)w$.

Lemma 52 (The parentheses property). For any two cycles C_k and C_m , one of the following occur

- $last(C_k) < first(C_m)$ or $last(C_m) < first(C_k)$.
- $first(C_k) < first(C_m) \le last(C_m) < last(C_k)$ or $first(C_m) < first(C_k) \le last(C_k) < last(C_m)$.

Proof. This concluded by the way D_{m+1} is obtained from D_m .

Definition 53. We say that C_m is embedded in C_k , if $C_m = C_k$ or $first(C_k) < first(C_m) \le last(C_m) < last(C_k)$.

In addition, C_m is said to be immediately embedded in C_k if there is no C_l such that C_m is embedded in C_l and C_l is embedded in C_k .

We define by inductively the statement: " C_m is r-embedded in C_k ":

- C_m is 0-embedded in C_k if $C_m = C_k$.
- C_m is r-embedded in C_k if there is a cycle C_l such that C_m is r-1-embedded in C_l and C_l is immediately embedded in C_k .

Lemma 54. Assume that C_m is immediately embedded C_k . Write $key(C_m) = 0^i(\sigma + 1)0^j w$ where w does not starts with 0. Then,

- $key(C_k) = 0^{i+1+j}w$.
- If $u \in C_k$ and $last(C_m) < u$, then $u = 0^{j_2}w0^{i+1+j_1}$ where $j_1 + j_2 = j$.

Proof. To prove the first item, note that since $0^i(\sigma+1)0^jw$ is maximal among its rotations, the same holds for $0^{i+1+j}w$. Thus, we need to show that $0^{i+1+j}w \in C_k$.

Take a maximal sequence of cycles that begins in C_m and let C_{m+r} be the last cycle in this sequence. By lemma 51, $key(C_{m+r}) = 0^i(\sigma + 1 + r)0^jw$. By the parentheses property, C_{m+r} is immediately embedded in C_k . And finally, by the maximality of the sequence of cycles, $nxt(last(C_{m+r})) \in C_k$.

As a result, we have:

$$nxt(last(C_{m+r})) = nxt((\sigma + 1 + r)0^j w0^i) \in \{0^j w0^i 0, 0^j w0^i (\sigma + 2 + r)\}.$$

If $nxt((\sigma+1+r)0^jw0^i)=0^jw0^i(\sigma+2+r)$, then $last((\sigma+2+r)0^jw0^i)$ which implies $first(0^jw0^i(\sigma+2+r))$. But $first(nxt(last(C_{m+r})))$ contradicts the maximality of our sequence of cycles. Hence, $nxt((\sigma+1+r)0^jw0^i)=0^jw0^i0\in C_k$. Now, $0^{i+1+j}w$ is a rotation of 0^jw0^i0 thus $0^{i+1+j}w\in C_k$ as required.

For proving the second item, we note that $last(C_k) = w0^{i+1+j}$. As we have seen, the first element in C_k that follows C_m (and follows C_{m+r}) is $nxt(last(C_{m+r})) = 0^j w0^i 0$. As a result, if $u \in C_k$ and $last(C_m) < u$, then

$$0^{j}w0^{i}0 \le u \le w0^{i+1+j}$$

which implies that $u = 0^{j_2} w 0^{i+1+j_1}$

Corrolary 55. Assume that C_m is r-embedded in C_k . Write $key(C_m) = uv$ where u is the minimal prefix of $key(C_m)$ that includes r non-zero numbers. Then, $key(C_k) = 0^{|u|}v$.

Proof. By r invocations of the first item of the previous lemma.

Lemma 56. Assume that $last(C_k) < first(C_m)$ and C_k, C_m are both immediately embedded in a cycle C. Write $key(C_k) = 0^l w$ where w starts with a non-zero letter. Then, $key(C_m) = 0^l w'$ where $w <_{lex} w'$.

Proof. First, if there is a sequence of cycles from C_k and C_m , the claim follows from Lemma 51. Otherwise, there is some $u \in C$ such that

$$last(C_k) < u < first(C_m).$$

Consider a maximal sequence of cycles that starts with C_k . This sequence ends in some cycle $C_{k'}$. Similarly, consider a maximal sequence of cycles that ends in C_m and let $C_{m'}$ be the first element in this sequence. Therefore,

$$last(C_{k'}) < v < first(C_{m'}) \Longrightarrow v \in C.$$

Write $key(C_k) = 0^l(\sigma + 1)w_1$ (namely, $w = (\sigma + 1)w_1$) and write $w_1 = 0^j w_2$ where w_2 starts with non-zero letter. Hence,

$$key(C_k) = 0^l(\sigma + 1)0^j w_2.$$
 (1)

By Lemma 51, $key(C_{k'}) = 0^l(\sigma + 1 + r)0^j w_2$, and hence $last(C_{k'}) = (\sigma + 1 + r)0^j w_2 0^l$. Let u_1 be the successor of $last(C_{k'})$. Thus,

$$u_1 = 0^j w_2 0^{l+1}.$$

Now, let u_2 be the predecessor of $first(C_{m'})$. Thus,

$$u_2 = 0^{j_2} w_2 0^{l+1+j_1}$$
, where $j_1 + j_2 = j$.

In addition, since $C_{m'}$ is embedded in C, $u_2 \neq last(C)$ thus $j_2 > 0$. As a result,

$$first(C_{m'}) = 0^{j_2 - 1} w_2 0^{l + 1 + j_1} 1.$$

We get that $key(C_{m'}) = 0^{l+1+j_1} 10^{j_2-1} w_2$. Hence, by Lemma 51,

$$key(C_m) = 0^{l+1+j_1}(1+t)0^{j_2-1}w_2.$$
 (2)

By Equation 1, $w = (\sigma + 1)0^j w_2$. By Equation 2, $w' = 0^{1+j_1} (1+t)0^{j_2-1} w_2$. We see that indeed $w <_{lex} w'$.

Lemma 57. If k < m, then $first(C_k) < first(C_m)$.

Proof. Since < is a linear ordering, we can prove an equivalent statement:

$$first(C_k) < first(C_m) \Longrightarrow k < m.$$

We take such cycles C_k and C_m . By the parentheses property, either C_m is embedded in C_k , or C_m is entirely after C_k . If C_m is embedded in C_k , by Corollary 55 we get that k < m. It is left to deal with the case that $last(C_k) < first(C_m)$. We consider two cases.

Case 1. C_k and C_m are both embedded in some cycle C.

In this case, we can find cycles $C_{k'}$ and $C_{m'}$ such that

- 1. C_k is embedded in $C_{k'}$ and C_m is embedded in $C_{m'}$
- 2. $C_{k'}$ and $C_{m'}$ are immediately embedded in C.

By item 1 and Lemma 55, we can write $key(C_k) = uv$ and $key(C_{k'}) = 0^{|u|}v$. Write

$$v = 0^l v_1$$

where v_1 starts with a non-zero letter thus $key(C_{k'}) = 0^{|u|+l}v_1$. By item 2 and Lemma 56, $key(C_{m'}) = 0^{|u|+l}v_2$ where

$$v_1 <_{lex} v_2$$
.

Write $v_2 = 0^r v_2'$ where v_2' starts with a non zero letter. Hence,

$$v_1 = xv_1'$$

where |x| = r, $|v_1'| = |v_2'|$, and

$$v_1' <_{lex} v_2'$$
.

Since $key(C_{m'}) = 0^{|u|+l}v_2 = 0^{|u|+l+r}v_2'$, by item 2 and Lemma 55, $key(C_m) = u'v_2'$. Recall that $key(C_k) = uv = u0^lv_1 = u0^lxv_1'$. Since $v_1' <_{lex} v_2'$, $key(C_k) <_{lex} key(C_m)$ thus k < m as required.

case 2. There is no cycle C such that C_k and C_m are embedded in C.

Take a cycle $C_{k'}$ such that C_k is r_1 -embedded in $C_{k'}$ and r_1 is maximal with respect to this property. Similarly, take a cycle $C_{m'}$ such that C_m is r_2 -embedded in $C_{m'}$ and r_2 is maximal as possible. By the parentheses property, $C_{k'}$ is entirely before $C_{m'}$. $C_{k'}$ and $C_{m'}$ are not embedded in any cycle so there is a sequence of cycles from $C_{k'}$ to $C_{m'}$. Write $key(C_k) = u(\sigma+1)v$ such that $key(C_{k'}) = 0^{|u|}(\sigma+1)v$ (by Lemma 55). Hence, $key(C_{m'}) = 0^{|u|}(\sigma+1+r)v$ where r>1 (by Lemma 51). Finally, by Lemma 55 we get $key(C_m) = u'(\sigma+1+r)v$. We see that $key(C_k) = u(\sigma+1)v <_{lex} u'(\sigma+1+r)v = key(C_m)$. Therefore, k< m.

Theorem 58. For any word τw , $\tau w < (\tau + 1)w$.

Proof. Fix an arbitrary cycle C_m . We show that if $(\tau + 1)w \in C_m$. Then, $\tau w < (\tau + 1)w$. We start by showing this fact for $last(C_m)$. Write $key(C_m) = 0^l(\sigma + 1)w'$ and hence, $last(C_m) = (\sigma + 1)w'0^l$ and $first(C_m) = w'0^l(\sigma + 1)$. Write $pre = nxt^{-1}$ and note that $pre(w'0^l(\sigma + 1)) = \sigma w'0^l$. Hence, we get that

$$\sigma w'0^l < (\sigma + 1)w'0^l$$
.

Now we deal with the general case in which $(\tau + 1)w \neq last(C_m)$. We write $key(C_m) = 0^l(\sigma + 1)w_1(\tau + 1)w_2$, where

$$(\tau + 1)w = (\tau + 1)w_20^l(\sigma + 1)w_1.$$

Let C_k be the cycle of τw . Since every rotation of τw is lexicographically smaller than some rotation of $(\tau + 1)w$, we have $key(C_k) <_{lex} key(C_m)$. Hence, k < m and by Lemma 57, we get

$$first(C_k) < first(C_m)$$
.

Now, if $last(C_k) < first(C_m)$ then every element of C_k precedes every element of C_m and we are done. Otherwise, by the parentheses property, C_m is embedded in C_k . Note that $|(\tau+1)w|_0 - |\tau w|_0 \in \{0,1\}$. Use corollary 55 to conclude that $|(\tau+1)w|_0 - |\tau w|_0 = 1$ and that C_m is immediately embedded in C_k . Moreover, note that as $|(\tau+1)w|_0 - |\tau w|_0 = 1$, we have $\tau = 0$.

According to our conclusions, we can write: $key(C_m) = 0^l(\sigma+1)w_11w_2$. We write $w_1 = 0^j w_1' 0^i$ and $w_2 = 0^r w_2'$ where w_1' and w_2' do not start or end with zero. We have,

$$key(C_m) = 0^l(\sigma + 1)0^j w_1' 0^i 10^r w_2'.$$

Assume for a contradiction that $(\tau + 1)w < \tau w$. Recall that $\tau w \in C_k$ and that C_m is immediately embedded in C_k , and conclude that $last(C_m) < \tau w \le last(C_k)$. Therefore, by Lemma 54, $\tau w = 0^{j_2} w_1' 0^i 10^r w_2' 0^{l+1+j_1}$. Thus, we have:

$$0^{j_2}w_1'0^i10^rw_2'0^{l+1+j_1} = 0^{r+1}w_2'0^l(\sigma+1)0^jw_1'0^i.$$
(3)

Since also $|0^{j_2}w_1'0^i10^rw_2'0^{l+1+j_1+1}|_1 = |0^{r+1}w_2'0^l(\sigma+1)0^jw_1'0^i|_1$ we get $\sigma+1=1$. Hence,

$$key(C_m) = 0^l 10^j w_1' 0^i 10^r w_2'$$
(4)

and Equation 3 can be rewritten as follows:

$$0^{j_2}w_1'0^i10^rw_2'0^{l+1+j_1} = 0^{r+1}w_2'0^l10^jw_1'0^i.$$
(5)

For the rest of the proof we assume that $w_1' \neq \varepsilon$ and $w_2' \neq \varepsilon$. The other cases are dealt similarly². By deleting the initial and final segments of zeroes, we get from Equation 5,

$$j_2 = r + 1, \quad w_1' 0^i 10^r w_2' = w_2' 0^l 10^j w_1'.$$
 (6)

Now, by Equation 4,

$$0^{l}10^{j}w_{1}'0^{i}10^{r}w_{2}' \ge_{lex} 0^{i}10^{r}w_{2}'0^{l}10^{j}w_{1}'. \tag{7}$$

By combining equations 6 and 7, we get

$$0^l 10^j \ge_{lex} 0^i 10^r. (8)$$

Hence, $j \leq r$ and in particular, $j_2 \leq r$ in contradiction to Equation 6.

²really! I checked!