第七章 复数 典型易错题集

易错点 1. 忽视复数 z = a + bi 是纯虚数的充要条件

例题 1. (湖南·高一课时练习)求m为何实数时,复数 $z=m^2+m-6+(m^2-2m-15)$ i 是纯虚数;

【常见错解】若复数 z 为纯虚数,则 $m^2 + m - 6 = 0$ 解得 m = 2 或者 m = -3

【错因分析】对复数为纯虚数理解不透彻,对于复数 z = a + bi 为纯虚数 \Leftrightarrow $\begin{cases} a = 0 \\ b \neq 0 \end{cases}$,在本

题中, $z = m^2 + m - 6 + (m^2 - 2m - 15)$ i,错解只考虑了实部 $m^2 + m - 6 = 0$,而忽略了考虑虚部 $m^2 - 2m - 15 \neq 0$ 而造成错解.

【动手实战】

- 1. (湖南·高一课时练习) 若复数 $z = (a^2 2a) + (a^2 a 2)i$ 对应的点在虚轴上,求实数 a 应满足的条件.
- 2. (湖南·高一课时练习) 当实数 a 为何值时,复数 $z = (a^2 + 2a 3) + (a + 3)$ i 为纯虚数?
- 3. (贵州·沿河民族中学高二开学考试(理))已知复数 $z = \frac{m^2 m 6}{m + 2} + (m^2 2m 15)$ i(i 是虚数单位),复数 z 是纯虚数,求实数 m 的值.

好学熊资料库

易错点2. 错误的理解复数比大小

例题 1. (湖南·高一课时练习)求使不等式 $\lambda^2 - (\lambda^2 - 3\lambda)$ i $< (\lambda^2 - 4\lambda + 3)$ i + 10 成立的实数 λ 的取值范围.

【常见错解】因为不等式 $\lambda^2 - (\lambda^2 - 3\lambda)i < (\lambda^2 - 4\lambda + 3)i + 10$ 成立,

所以
$$\begin{cases} \lambda^2 < 10 \\ -(\lambda^2 - 3\lambda) < \lambda^2 - 4\lambda + 3 \end{cases}$$
 解得: $-\sqrt{10} < \lambda < \frac{1}{2}$ 或 $3 < \lambda < \sqrt{10}$

【错因分析】对于复数a+bi < c+di错误的理解两个复数比大小,

 $a+bi < c+di \Leftrightarrow \begin{cases} a < c \\ b < d \end{cases}$, 而造成错误,事实上,两个复数不能直接比大小,但如果

a+bi < c+di 成立,等价于 $\begin{cases} a < c \\ b=d=0 \end{cases}$ 本题是实数比较大小的惯性思维导致的错误.

【动手实战】

- 1. (全国·) 设 $z_1 = m^2 + 1 + (m^2 + m 2)i$, $z_2 = 4m + 2 + (m^2 5m + 4)i$, 若 $z_1 < z_2$, 求实数 m 的取值范围.
- 2. (重庆市万州沙河中学) 已知复数 $z = (m^2 8m + 15) + (m^2 7m + 12)i$ (其中 i 为虚数单位),当实数 m 为何值时.复数 z < 0.
- 3. (上海师范大学第二附属中学)已知复数 $z = m^2 5m + 6 + (m^2 m 2)i$ (i 为虚数单位). 若 z > 0,求实数 m 的值.

易错点3. 错误的惯性思维理解复数的模

例题 1. (福建宁德·模拟预测)复数 $z_1 = \cos x - i \sin x$, $z_2 = \sin x - i \cos x$, 则 $|z_1 \cdot z_2| =$ _____.

【常见错解】 $z_1 = \cos x - i \sin x \Rightarrow |z_1| = \sqrt{\cos^2 x + (-\sin x)^2} = 1$,同样,

$$z_2 = \sin x - i\cos x \Rightarrow |z_2| = \sqrt{\sin^2 x + (-\cos x)^2} = 1$$
, $\text{FIU}|z_1 \cdot z_2| = |z_1| \cdot |z_2| = 1$

【错因分析】错误的理解两个复数乘积的模等于两个复数模的积 $|z_1 \cdot z_2| = |z_1| \cdot |z_2|$ 而造成错解.

例题 2. (山东潍坊·高三期末)复数 z 满足 zi=2-i (其中 i 为虚数单位),则 |z|=____.

【常见错解】
$$zi = 2-i \Rightarrow z = \frac{2-i}{i} = -1-2i$$
, 所以 $|z| = |-1| + |-2| = 3$

【错因分析】错误的理解复数 z = a + bi 的模 |z| = |a| + |b|.

【动手实战】

1. (北京师大附中高二期末)已知复数 $z = \frac{2}{1+i}$,则 $|z| = _____.$

牙学熊资料库

易错点 4. 误把复数当实数代入计算

例题 1. (全国·高一课时练习)已知 $z \in \mathbf{C}$,且 $|z-2-2i| = \sqrt{13}$,(i 为虚数单位),则 $|z|_{\max} = \underline{\hspace{1cm}}.$

【常见错解】因为 $|z-2-2i| = \sqrt{13}$,所以 $(z-2)^2 + 4 = 13$ 解得: z = 5或z = -1,所以 $|z|_{\text{max}} = 5$.

【错因分析】本题是极易出错的题目,本题中,由题意知 $z \in \mathbb{C}$,而错解中,把 z 直接当实数参与了复数模的运算,而造成错解,特别题型同学们,当题意出现 $z \in \mathbb{C}$,应首先设出复数 z 的代数形式: z = a + bi,再代入运算求解.

【动手实战】

- 1. (全国·高三专题练习)设 a ∈ C, $a \neq 0$, 化简: $\frac{a-i}{1+ai} =$ ____.
- 2. (全国·高三专题练习)设 $z \in C$,且 $\frac{z-2}{z+2} = i$,其中 i 为虚数单位,则 $\frac{3-4i}{z}$ 的模为
- 3. (全国·高二课时练习)设 $a,b \in C$,则"a-b>0"是"a>b"的_____条件.

好学熊资料库

易错点 5. 忽视了 $i^2 = -1$, 习惯性的认为平方是正数

例题 1. (黑龙江·哈尔滨德强学校高三期末(理))复数 $\frac{2+i}{2i-1}$ 的共轭复数是______.

【常见错解】由题意得, $\frac{2+i}{2i-1} = \frac{(2+i)(2i+1)}{(2i-1)(2i+1)} = \frac{2i^2+2+5i}{4i^2-1} = \frac{4+5i}{3}$,所以 $\frac{2+i}{2i-1}$ 的共轭复数

为
$$\frac{4-5i}{3}$$

【错因分析】本题错解在于把 $i^2 = 1$ 代入计算了。

【动手实战】

- 1. (北京密云·高三期末)在复平面内,复数 $\frac{3+i}{2-i}$ 对应的点为Z,则点Z的坐标为_____.
- 2. (天津红桥·高三期中) 若 i 是虚数单位,则 $\frac{1+2i}{2+i}$ 的虚部为______.
- 3. (天津实验中学高三阶段练习)已知复数 $z = \frac{2+i}{1-i}$,则复数 z 的虚部为______

好学熊资料库

易错点 6. 复数三角形式的标准形式理解错误

(全国·高一课时练习) 下列各式中已表示成三角形式的复数是(

A.
$$\sqrt{2} \left(\cos \frac{\pi}{6} - i \sin \frac{\pi}{6} \right)$$

B.
$$\sqrt{2} \left(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6} \right)$$

c.
$$\sqrt{2} \left(\sin \frac{\pi}{6} + i \cos \frac{\pi}{6} \right)$$

D.
$$-\sqrt{2}\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$$

【常见错解】C

【错因分析】忽略了复数三角表示的标准形式: $r(\cos\theta + i\sin\theta)$, 考生往往只注意到 $r \ge 0$, 没有注意其它要求,复数三角形式的特点口诀: "模非负,角相同,余弦前,加号连"

【动手实战】

A. $\sin 30^{\circ} + i \sin 30^{\circ}$

B. $\cos 240^{\circ} + i \sin 240^{\circ}$

C. $\cos 30^{\circ} + i \sin 30^{\circ}$

D. $\sin 240^{\circ} + i \cos 240^{\circ}$

2. (上海·高一课时练习)复数
$$z = -3\left(\cos\frac{\pi}{5} - i\sin\frac{\pi}{5}\right)$$
 的三角形式为(

A.
$$3\left[\cos\left(-\frac{\pi}{5}\right) + i\sin\left(-\frac{\pi}{5}\right)\right]$$

B. $3\left(\cos\frac{\pi}{5} + i\sin\frac{\pi}{5}\right)$

C. $3\left(\cos\frac{4\pi}{5} + i\sin\frac{4\pi}{5}\right)$

D. $3\left(\cos\frac{6\pi}{5} - i\sin\frac{6\pi}{5}\right)$

B.
$$3\left(\cos\frac{\pi}{5} + i\sin\frac{\pi}{5}\right)$$

$$C. \quad 3\left(\cos\frac{4\pi}{5} + i\sin\frac{4\pi}{5}\right)$$

D.
$$3\left(\cos\frac{6\pi}{5} - i\sin\frac{6\pi}{5}\right)$$

3. (上海·高一单元测试)复数 $z = i \sin 10^\circ$ 的三角形式为(

A. $\cos 10^{\circ} + i \sin 10^{\circ}$

B. isin10°

C. $\sin 10^{\circ} (\cos 90^{\circ} + i \sin 90^{\circ})$

D. $\sin 10^{\circ} (\cos 0^{\circ} + i \sin 0^{\circ})$

易错点 7. 忽视复数 $z = r(\cos\theta + i\sin\theta)$ 在复平面的位置而求错 $\arg z$.

例题 1. (全国·高一课时练习)设 $z_1 = -1 + \sqrt{3}i$, $z_2 = \left(\frac{1}{2}z_1\right)^2$, 则 $\arg z_2 = \left(\frac{1}{2}z_1\right)^2$

A. $\frac{\pi}{3}$ B. $\frac{4}{3}\pi$ C. $\frac{11}{6}\pi$ D. $\frac{5}{3}\pi$

【常见错解】A $z_2 = \frac{1}{4}z_1^2 = \frac{1}{4}\left(-1+\sqrt{3}i\right)^2 = -\frac{1}{2}-\frac{\sqrt{3}}{2}i$, $\tan\theta = \frac{b}{a} = \frac{-\frac{\sqrt{3}}{2}}{-\frac{1}{2}} = \sqrt{3}$,所以 $\arg z_2 = \frac{\pi}{3}$.

【错因分析】本题在求辐角的主值时,直接利用公式 $\tan \theta = \frac{b}{a} = \sqrt{3}$,忽略了,复数对

应的点 $\left(-\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$ 在第三象限,而造成错解.

【动手实战】

1. (福建安溪·高三期中)任意复数z=a+bi(a、 $b\in R$, i为虚数单位)都可以写成 $z = r(\cos\theta + i\sin\theta)$ 的形式,其中 $r = \sqrt{a^2 + b^2}(0 \le \theta < 2\pi)$ 该形式为复数的三角形式,其中 θ 称为复数的辐角主值.若复数 $z = \frac{\sqrt{3}}{2} + \frac{1}{2}i$,则 z 的辐角主值为()

A. $\frac{\pi}{6}$ B. $\frac{\pi}{3}$ C. $\frac{2\pi}{3}$ D. $\frac{5\pi}{6}$

2. (山西怀仁·高一期中)已知复数 $z = \frac{\sqrt{3}}{2}i - \frac{1}{2}$.则 argz = ()

A. $\frac{\pi}{6}$ B. $\frac{\pi}{3}$ C. $\frac{5\pi}{6}$ D. $\frac{2\pi}{3}$

3. (重庆巴蜀中学高一期中)复数 $z = \sin 50^\circ - i \cos 50^\circ$ 的辐角主值是(

易错点 8. 忽视复数 z = a + bi 在复平面的位置在转化为复数三角形式 时出错.

例题 1. (上海市延安中学高一期末) $-1-\sqrt{3}$ i的三角形式是(

A. $2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$

B. $2 \left| \cos \left(-\frac{2\pi}{3} \right) + i \sin \left(-\frac{2\pi}{3} \right) \right|$

c. $2\left(\sin\frac{7\pi}{6} + i\cos\frac{7\pi}{6}\right)$

D. $2\left(\cos\frac{7\pi}{6} + i\sin\frac{7\pi}{6}\right)$

【常见错解】错解 1: 选 A, 由 $-1-\sqrt{3}$ i 得: r=2, $\tan\theta = \frac{b}{a} = \frac{-\sqrt{3}}{-1} = \sqrt{3} \Rightarrow \theta = \frac{\pi}{3}$, 根据复

数三角形式的标准形式得: $z = r(\cos\alpha + i\sin\alpha)$, 所以 $-1 - \sqrt{3}i$ 的三角形式是 $2(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3})$;

错解 2: 选 D $-1-\sqrt{3}i = 2\left(-\frac{1}{2}-\frac{\sqrt{3}}{2}i\right) = 2\left(\cos\frac{7\pi}{6}+i\sin\frac{7\pi}{6}\right).$

【错因分析】错解 1 中忽略了复数 $-1-\sqrt{3}$ i 对应点 $Z(-1,-\sqrt{3})$ 在第三象限,所以由

 $\tan \theta = \frac{b}{a} = \frac{-\sqrt{3}}{-1} = \sqrt{3} \Rightarrow \theta = \frac{4\pi}{3}$, 错解 1 错在忽视了复数对应点的位置; 错解

 $2-1-\sqrt{3}i=2\left(-\frac{1}{2}-\frac{\sqrt{3}}{2}i\right)=2\left(\cos\frac{7\pi}{6}+i\sin\frac{7\pi}{6}\right)$, 记错了常见角三角函数值, 注意 $\cos\frac{7\pi}{6}=-\frac{\sqrt{3}}{2}$,

 $\sin\frac{7\pi}{6} = -\frac{1}{2}.$

【动手实战】

- 1. (全国·高一课时练习)下列表示复数1+i的三角形式中① $\sqrt{2}\left(\cos\frac{\pi}{4}+i\sin\frac{\pi}{4}\right)$;

是 (

- A. 1
- B. 2
- C. 3
- D. 4
- 2. (全国·高一课时练习) 复数 $\frac{\sqrt{3}}{2} + \frac{1}{2}i$ 化成三角形式,正确的是 ()
- A. $\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}$

B. $\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}$

 $C. \quad \cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}$

- D. $\cos \frac{11\pi}{6} + i\sin \frac{11\pi}{6}$
- 3. (上海·高一课时练习)复数 -1+√3i 的三角形式是
- $A. \quad 2\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)$

B. $2\left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right)$

 $\mathsf{c.} \quad 2\bigg(\cos\frac{5\pi}{3} + i\sin\frac{5\pi}{3}\bigg)$

- D. $2\left(\cos\frac{11\pi}{6} + i\sin\frac{11\pi}{6}\right)$
- 4. (陕西·西安市第八十九中学高二阶段练习(文))设复数 $z = \frac{1}{2} + \frac{\sqrt{3}}{2}i$ (i 是虚数单位),

则 $z+2z^2+3z^3+4z^4+5z^5+6z^6=$ ()

- A. 6*z*
- B. $6z^{2}$
- C. $6\overline{z}$
- D. -6z

好学熊资料库

易错点9. 复数三角形式的除法没化标准就代入除法运算法

则

1. (湖南·高一课时练习) 计算:

 $8(\cos 240^{\circ} + i \sin 240^{\circ}) \div 2(\cos 150^{\circ} - i \sin 150^{\circ})$.

【常见错解】
$$8(\cos 240^{\circ} + i \sin 240^{\circ}) \div 2(\cos 150^{\circ} - i \sin 150^{\circ}) = \frac{4(\cos 240^{\circ} + i \sin 240^{\circ})}{\cos 150^{\circ} + i \sin 150^{\circ}}$$

$$= 4(\cos 90^{\circ} + i \sin 90^{\circ}) = 4i$$

【错因分析】本题错解在于分母复数的三角形式没有化成标准形式: 2(cos150°-isin150°),

所以首先要将该式化成标准式为: 2(cos(-150°)+isin(-150°)),特别注意复数三角形式的标准形式特点: "模非负,角相同,余弦前,加号连"

【动手实战】

1. (全国·高一课时练习) 计算:

$$(1)3\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right) \times 2\left(\cos\frac{\pi}{6} - i\sin\frac{\pi}{6}\right)$$

$$(2) \left\lceil \sqrt{6} \left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right) \right\rceil \div \left\lceil \sqrt{3} \left(\cos \frac{\pi}{6} - i \sin \frac{\pi}{6} \right) \right\rceil$$

$$(3)\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) \times \left(\cos\frac{\pi}{6} - i\sin\frac{\pi}{6}\right)$$

$$\binom{(1-i)\div\left(\cos\frac{\pi}{6}+i\sin\frac{\pi}{6}\right)}{4}$$

么久失手

牙学熊资料库