Sucessões Numéricas

Luísa Morgado

1º Ciclo em Engenharia Informática

Sucessões de números reais

Uma sucessão de números reais é uma função $u: \mathbb{N} \to \mathbb{R}$, em que $\mathbb{N} = \{1, 2, \ldots\}$ representa o conjunto de índices e $u(\mathbb{N})$ o conjunto dos termos gerados por aqueles índices. O valor u(n) representase por u_n e designa-se por termo de ordem n ou n-ésimo termo da sucessão.

Escrevemos ou $(u_n)_{n\in\mathbb{N}}$, ou simplesmente $(u_n)_n$, para indicar a sucessão $u:\mathbb{N}\to\mathbb{R}$. Para melhor identificarmos a posição relativa dos seus termos, uma sucessão $(u_n)_n$ pode ainda ser representada por (u_1,u_2,u_3,\ldots) .

Exemplo

- **1** $u_n = 1, \forall n \in \mathbb{N}, define a sucessão constante <math>(1, 1, 1, \ldots)$;
- 2 $u_n = \frac{1}{n}, \forall n \in \mathbb{N}, define \ a \ successão \left(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right);$
- **4** A sucessão $(u_n)_{n\in\mathbb{N}_0}$ definida por

$$\begin{cases} u_0 = 0 \\ u_1 = 1 \\ u_{n+1} = u_{n-1} + u_n \end{cases}$$

é um exemplo de uma **sucessão definida por recorrência** uma vez que cada termo se define à custa dos anteriores. Trata-se da sucessão de Fibonacci.

Princípio de indução matemática

Muitas propriedades do conjunto dos números naturais demonstram-se usando o chamado princípio de indução matemática que enunciamos a seguir.

A cada número natural $n \in \mathbb{N}$ associemos a proposição $\mathcal{P}(n)$. Se $\mathcal{P}(1)$ é uma proposição verdadeira e se do facto de $\mathcal{P}(k)$ ser verdadeira, para um dado natural $k \in \mathbb{N}$, se puder concluir que $\mathcal{P}(k+1)$ também é verdadeira, então $\mathcal{P}(n)$ é verdadeira para todo o $n \in \mathbb{N}$.

O estabelecer da verdade para n=1, i.e., a $\mathcal{P}(1)$ verdadeira, chama-se **passo básico**. O estabelecer da verdade da condição

$$\mathcal{P}(k)$$
 verdadeira $\implies \mathcal{P}(k+1)$ verdadeira

chama-se **passo de indução**. A $\mathcal{P}(k)$ verdadeira chama-se **hipótese de indução** e a $\mathcal{P}(k+1)$ verdadeira chama-se **tese de indução**.

Numa demonstração por indução deve sempre utilizar-se a hipótese de indução.

Classificação de sucessões

Uma sucessão $(u_n)_n$ diz-se

- 1. crescente, se $u_{n+1} u_n \ge 0$, $\forall n \in \mathbb{N}$, i.e., se $u_1 \le u_2 \le u_3 \le \ldots$;
- 2. estritamente crescente, se $u_{n+1} u_n > 0$, $\forall n \in \mathbb{N}$, i.e., se $u_1 < u_2 < u_3 < \dots$;
- 3. decrescente, se $u_{n+1} u_n \le 0$, $\forall n \in \mathbb{N}$, i.e., se $u_1 \ge u_2 \ge u_3 \ge \dots$;
- 4. estritamente decrescente, se $u_{n+1} u_n < 0, \forall n \in \mathbb{N}$, i.e., se $u_1 > u_2 > u_3 > \dots$;
- 5. monótona, se satisfaz uma das condições anteriores.
- 6. limitada se existirem dois números reais a e b tais que a ≤ u_n ≤ b, ∀n ∈ N, i.e., se todos os termos da sucessão (u_n)_{n∈N} pertencem ao intervalo fechado e limitado [a, b]. De forma equivalente, (u_n)_{n∈N} é limitada se existir L ∈ R⁺ tal que |u_n| ≤ L, ∀n ∈ N.

Exemplo

- **1** $u_n = \frac{1}{n}$ $u_{n+1} u_n = \frac{1}{n+1} \frac{1}{n} = \frac{-1}{n(n+1)} < 0$, $\forall n \in \mathbb{N}$, $logo(u_n)_{n \in \mathbb{N}}$ é uma sucessão monótona estritamente decrescente. $(u_n)_{n \in \mathbb{N}}$ é uma sucessão limitada pois, $0 < \frac{1}{n} \le 1$, $\forall n \in \mathbb{N}$.
- ② $u_n = (-1)^n$ $u_{n+1} - u_n = (-1)^{n+1} - (-1)^n = (-1)^n (-1-1) = -2(-1)^n$. Assim, tem-se por exemplo, $u_2 - u_1 = 2 > 0$ e $u_3 - u_2 = -2 < 0$, $logo(u_n)_{n \in \mathbb{N}}$ não é monótona. $(u_n)_{n \in \mathbb{N}}$ é uma sucessão limitada pois, $-1 \le (-1)^n \le 1$, $\forall n \in \mathbb{N}$.

Convergência de sucessões

Dizemos que o número real a é o limite da sucessão $(u_n)_n$ e escreve-se

$$\lim_{n} u_n = a \quad \text{ou} \quad \lim_{n \to +\infty} u_n = a$$

quando, para cada número real $\epsilon>0$ dado arbitrariamente, é possível obter uma ordem $n_0\in\mathbb{N}$ a partir da qual se tem $|u_n - a| < \epsilon$, i.e.,

$$\forall \epsilon > 0 \ \exists n_0 \in \mathbb{N} : \ \forall n \in \mathbb{N} \ n > n_0 \implies |u_n - a| < \epsilon.$$

Se uma sucessão $(u_n)_n$ possui limite finito a dizemos que essa sucessão é convergente, caso contrário dizemos que é divergente.

Exemplo

- $0 \lim_{n \to \infty} \frac{1}{n} = 0;$
- $\lim_{n} \left(1 + \frac{1}{n}\right)^n = e;$

 $\lim_{n} \frac{\sin n}{n} = 0.$ $\lim_{n} \frac{1}{n} = 0 \ e \ u_n = \sin n \ e \ uma \ sucessão \ limitada, \ uma \ vez \ que \ -1 \le \sin n \le 1, \ \forall n \in \mathbb{N}; \ assim,$

temos $\lim_{\infty} \frac{1}{1} \sin n = 0$, por ser o limite do produto de um infinitésimo por uma sucessão limitada.

5 / 10

Dada uma sucessão $(u_n)_n$ de números reais, uma subsucessão de $u: \mathbb{N} \to \mathbb{R}$ é a restrição da função u a um subconjunto infinito $\mathbb{N}' = \{n_1, n_2, \ldots\}$ de \mathbb{N} . Escreve-se $u' = (u_n)_{n \in \mathbb{N}'}$ ou $(u_{n_k})_{k \in \mathbb{N}}$ para indicar a subsucessão $u' = u_{|_{\mathbb{N}'}}$.

Propriedades:

- Toda a subsucessão de uma sucessão limitada é limitada.
- É condição necessária e suficiente para que uma sucessão monótona seja limitada que ela possua uma subsucessão limitada.
 Nota: a sucessão u_n = [1 + (-1)ⁿ⁺¹] ⁿ/₂ possui uma subsucessão limitada: u_{2n} = 0, ∀n ∈ N; no entanto, (u_n)_n não é limitada (uma vez que não é
- Se $\lim_{n} u_n = a$, então toda a subsucessão de $(u_n)_n$ converge para a;
- **4** Se $\lim_{n} u_n = a$, então $\lim_{n} u_{n+k} = a$, para todo o $k \in \mathbb{N}$.

monótona);

Note que:

 Atendendo à propriedade 3., para mostrar que uma sucessão não converge basta obter duas subsucessões que convirjam para limites distintos.

Por exemplo, dada a sucessão $u_n = \frac{1 + (-1)^{n+1}}{2}$, considerem-se as subsucessões

$$u_{2n} = 0$$
 e $u_{2n-1} = 1$.

Tem-se

$$\lim_{n} u_{2n} = 0$$
 e $\lim_{n} u_{2n-1} = 1$,

pelo que $(u_n)_n$ não converge, i.e., não tem limite.

- Se as subsucessões dos termos de ordem par e de ordem ímpar de uma dada sucessão $(u_n)_n$ convergirem para a, então prova-se que $\lim_n u_n = a$.
- A propriedade 4. equivale a afirmar que o limite de uma sucessão não se altera se a ela acrescentarmos ou retirarmos um número finito de termos.

Toda a sucessão convergente é limitada.

Toda a sucessão monótona e limitada é convergente.

Note que:

Uma sucessão monótona crescente e convergente é limitada inferiormente pelo 1º termo e superiormente pelo seu limite. Analogamente, uma sucessão monótona decrescente e convergente é limitada inferiormente pelo limite e superiormente pelo 1º termo.

Exemplo

$$u_n = 1 - \frac{1}{n}$$

 $u_{n+1} - u_n = 1 - \frac{1}{n+1} - 1 + \frac{1}{n} = \frac{1}{n(n+1)} > 0, \ \forall n \in \mathbb{N}, \ logo(u_n)_n \ \'e \ mon\'otona$
crescente;

$$\lim_{n} u_n = \lim_{n} \left(1 - \frac{1}{n}\right) = 1;$$

$$0 \le u_n < 1, \forall n \in \mathbb{N}.$$

Se uma sucessão monótona $(u_n)_n$ possui uma subsucessão convergente, então $(u_n)_n$ é convergente.

Exemplo

Consideremos a sucessão $u_n = a^n$, com $a \in \mathbb{R}$. $(u_n)_n$ define a sucessão $(a, a^2, a^3, a^4, \ldots)$.

- Se a = 0 ou a = 1, obtém-se uma sucessão constante. Em ambos os casos a sucessão é monótona e limitada e, como tal, convergente.
- 2 Se 0 < a < 1, então, multiplicando ambos os termos da desigualdade a < 1 por a^n , obtém-se

$$a^{n+1} < a^n, \ \forall n \in \mathbb{N}$$

e a sucessão é decrescente. Como a sucessão é limitada, a proposição anterior garante que a sucessão é convergente. Tem-se efetivamente

$$\lim_{n} a^{n} = 0.$$

- § Se −1 < a < 0, analogamente se prova que $\lim_{n} a^{n} = 0$ (apesar de, neste caso, $(u_{n})_{n}$ não ser monótona).
- Se a > 1 ou a < -1, então $u_n = a^n$ diverge.

$$\lim_{n} a^{n} = \begin{cases} 0 & se & |a| < 1\\ 1 & se & a = 1\\ +\infty & se & a > 1\\ n\tilde{a}o \ existe & se & a \le -1 \end{cases}.$$

Seja $(u_n)_n$ uma sucessão de números reais positivos. Se existir $\lim_n \frac{u_{n+1}}{u_n}$ (ou $\lim_n \frac{u_{n+1}}{u_n} = +\infty$), então existe $\lim_n \sqrt[n]{u_n}$ (ou $\lim_n \sqrt[n]{u_n} = +\infty$) e tem-se $\lim_n \sqrt[n]{u_n} = \lim_n \frac{u_{n+1}}{u_n}$.

Calcule
$$\lim \sqrt[n]{\frac{2+n}{n!}}$$
.