Lecture 6: Change of Basis (BK 1.5 RHB 7.14)

6. 1. Linear Transformation of Basis

Suppose \underline{e}_i and \underline{e}_i' are two different orthonormal bases, how do we relate them?

Clearly \underline{e}_1' can be written as a linear combination of the vectors $\underline{e}_1, \underline{e}_2, \underline{e}_3$. Let us write the linear combination as

$$\underline{e_1}' = \lambda_{11}\underline{e_1} + \lambda_{12}\underline{e_2} + \lambda_{13}\underline{e_3}$$

Similarly we may write

$$\boxed{\underline{e_i}' = \lambda_{ij} \underline{e_j}},$$

(assuming summation convention) where λ_{ij} (i=1,2,3 and j=1,2,3) are the 9 numbers relating the basis vectors $\underline{e_1}'$, $\underline{e_2}'$ and $\underline{e_3}'$ to the basis vectors $\underline{e_1}$, $\underline{e_2}$ and $\underline{e_3}$.

Notes

- (i) λ_{ij} are nine numbers defining the change of basis (abbreviated to 'c.o.b') or 'linear transformation'. They are sometimes known as 'direction cosines'. [Here a linear transformation is 'passive' and only the basis changes. In your maths courses you may have also met 'active transformations' which are mappings between vector spaces]
- (ii) Since \underline{e}_{i} are orthonormal

$$\underline{e_i}' \cdot \underline{e_j}' = \delta_{ij}$$
.

Now the l.h.s. of this equation may be written as

$$(\lambda_{ik} \underline{e}_k) \cdot (\lambda_{jl} \underline{e}_l) = \lambda_{ik} \lambda_{jl} \delta_{kl} = \lambda_{ik} \lambda_{jk}$$

(in the final step we have used the sifting property of δ_{kl}) and we deduce

$$\lambda_{ik}\lambda_{jk} = \delta_{ij}$$

Since there are 6 distinct relations, only 3 of the 9 numbers λ_{ij} are independent.

(iii) In order to determine λ_{ij} from the two bases consider

$$\underline{e_i}' \cdot \underline{e_j} = (\lambda_{ik} \, \underline{e_k}) \cdot \underline{e_j} = \lambda_{ik} \, \delta_{kj} = \lambda_{ij} \, .$$

Thus

$$e_{i}' \cdot \underline{e}_{j} = \lambda_{ij} \quad .$$

6. 2. Inverse Relations

Consider expressing the unprimed basis in terms of the primed basis and suppose that

$$\underline{e}_i = \mu_{ij} \, \underline{e}_{j'}.$$

Then
$$\lambda_{si} = \underline{e}_{s}' \cdot \underline{e}_{i} = \mu_{ij} (\underline{e}_{s}' \cdot \underline{e}_{j}') = \mu_{ij} \delta_{sj} = \mu_{is}$$
. Therefore
$$\mu_{ij} = \lambda_{ji} = (\lambda^{T})_{ij}$$

$$\mu_{ij} = \lambda_{ji} = \left(\lambda^T\right)_{ij}$$

Note that
$$\underline{e}_i \cdot \underline{e}_j = \delta_{ij} = \lambda_{si} (\underline{e}_s' \cdot \underline{e}_j) = \lambda_{si} \lambda_{sj}$$
 and so

$$\lambda_{si}\lambda_{sj} = \delta_{ij}$$
.

6. 3. The Transformation Matrix

The numbers λ_{ij} may be arranged in a square matrix, denoted by λ .

$$\lambda = \begin{pmatrix} \lambda_{11} & \lambda_{12} & \lambda_{13} \\ \lambda_{21} & \lambda_{22} & \lambda_{23} \\ \lambda_{31} & \lambda_{32} & \lambda_{33} \end{pmatrix} \Leftarrow \text{Transformation Matrix.}$$

Recall that in matrix form δ_{ij} is the identity matrix 1. The relations $\lambda_{ki}\lambda_{kj}=\lambda_{ik}\lambda_{jk}=\delta_{ij}$ can now be written as:-

This is the condition for an **orthogonal matrix** and the transformation (from the \underline{e}_i basis to the $\underline{e}_i{'}$ basis) is called an **orthogonal transformation**.

Now since
$$|\lambda\lambda^T|=|1\!\!1|=1=|\lambda|\,|\lambda^T|$$
 and $|\lambda^T|=|\lambda|$, we have that $|\lambda|^2=1$ hence

$$|\lambda| = \pm 1$$
.

If $|\lambda| = +1$ the orthogonal transformation is said to be 'proper'

If $|\lambda| = -1$ the orthogonal transformation is said to be 'improper'

6. 4. Examples of Orthogonal Transformations

(a) Rotation about the \underline{e}_3 axis. For a rotation of θ , we have:

$$\underbrace{e_1'}_{\underline{e_1}'} \underbrace{e_3'}_{\underline{e_1}} = \underbrace{e_3}_{\underline{e_3}'} \Rightarrow \underbrace{e_3'}_{\underline{e_1}} = \underbrace{e_3'}_{\underline{e_2}} = 0$$

$$\underbrace{e_1'}_{\underline{e_1}} \cdot \underbrace{e_1}_{\underline{e_2}} = \cos \theta$$

$$\underbrace{e_1'}_{\underline{e_2}} \cdot \underbrace{e_2}_{\underline{e_2}} = \cos (\pi/2 - \theta) = \sin \theta$$

$$\underbrace{e_2'}_{\underline{e_2'}} \cdot \underbrace{e_2'}_{\underline{e_1}} = \cos (\pi/2 + \theta) = -\sin \theta$$

Thus

$$\lambda = \begin{pmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

It is easy to check that $\lambda \lambda^T = 1$. Since $|\lambda| = \cos^2 \theta + \sin^2 \theta = 1$, this is a proper transformation. Note that rotations cannot change the handedness of the basis vectors.

(b) Inversion or Parity transformation. This is defined such that $\underline{e_i}' = -\underline{e_i}$.

i.e.
$$\lambda_{ij} = -\delta_{ij}$$
 or $\lambda = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} = -1$.

Clearly $\lambda \lambda^T = 1$. Since $|\lambda| = -1$, this is an *improper* transformation. Note that the handedness of the basis is reversed.

(c) Reflection. Consider reflection of the axes in $\underline{e}_2 - \underline{e}_3$ plane so that $\underline{e}_1' = -\underline{e}_1$, $\underline{e}_2' = \underline{e}_2$ and $\underline{e}_3' = \underline{e}_3$. The transformation matrix is:-

$$\lambda = \left(\begin{array}{ccc} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right).$$

Since $|\lambda| = -1$, this is an *improper* transformation. Again the handedness of the basis changes.

6. 5. Products of Transformations

Consider a transformation λ to the \underline{e}_{i} basis followed by a transformation μ to another basis the \underline{e}_{i} basis

$$\underline{e}_i \stackrel{\lambda}{\Longrightarrow} \underline{e}_i' \stackrel{\mu}{\Longrightarrow} \underline{e}_i''$$

Clearly there must be an orthogonal transformation

$$\underline{e}_i \Longrightarrow \underline{e}_i''$$

Now

$$\underline{e_i}'' = \mu_{ij}\underline{e_j}' = \mu_{ij}\lambda_{jk}\underline{e_k} = (\mu\lambda)_{ik}\underline{e_k}$$

SO

$$\xi = \mu \lambda$$
 Note order of the product!

Notes

(i) In general transformations do not commute e.g. rotation of θ about \underline{e}_3 then reflection in $e_2 - e_2$

$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -\cos \theta & -\sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

whereas

$$\begin{pmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -\cos \theta & \sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- (ii) The inversion and the identity transformations commute with all transformations.
- 6. 6. Improper Transformations

We may write any improper transformation λ (for which $|\lambda| = -1$) as

$$\lambda = (-1)\mu$$
 where $\mu = -\lambda$ and $|\mu| = +1$

Thus an improper transformation can always be expressed as a proper transformation followed by an inversion.

e.g. consider λ for a reflection in the 1 – 3 plane which may be written as

$$\lambda = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

Identifying μ from $\lambda = (-1) \mu$ we see μ is a rotation of π about \underline{e}_2 .

$$\stackrel{e_3}{\longleftarrow} \stackrel{e_2}{\longleftarrow} \stackrel{\mu}{\longrightarrow} \stackrel{e_1'}{\longleftarrow} \stackrel{e_2'}{\longleftarrow} \stackrel{-1}{\longrightarrow} \stackrel{e_3''}{\longleftarrow} \stackrel{e_1''}{\longleftarrow}$$

6. 7. Summary

If $|\lambda| = +1$ we have a **proper** orthogonal transformation which is equivalent to rotation of axes. It can be proven that any rotation is a proper orthogonal transformation and vice-versa.

If $|\lambda| = -1$ we have an **improper** orthogonal transformation which is equivalent to rotation of axes then inversion. This is known as an improper rotation since it *changes the handedness* of the basis.

24