

Dynamic Policies on Differentially Private Learning

Junyuan Hong Michigan State University

Machine Learning in Our Life

Hove you Amy e r t y u i o p dfghjkl z x c v b n m 🗵

McMahan, et al. (2017). Communication-Efficient Learning of Deep Networks from Decentralized Data. AISTAT Hard, A., et al. (2019). Federated Learning for Mobile Keyboard Prediction. ArXiv:1811.03604

McMahan, et al. (2017). Communication-Efficient Learning of Deep Networks from Decentralized Data. AISTAT Hard, A., et al. (2019). Federated Learning for Mobile Keyboard Prediction. ArXiv:1811.03604

Private Learning

Convergence theory and dynamic policy

Learning by Gradient Descent

 π projection: AdaGrad, etc

$$\nabla_t = \frac{1}{N} \sum_{n=1}^{N} \nabla f(\theta; x_n)$$
 Private sample (to protect)

Privacy attack

- 2019Grad: Deep Leakage from Gradients, Zhu et al.: $x = \arg\min_{x} \|\nabla f(x) \nabla_t\|^2$
- 2017MIA: Membership Inference Attacks, Shokri et al.: $P(x \in D_{\text{train}}) = h(f(x; \theta))$ where h() is a trained attack.
- 2017GAN: Info Leakage from Collaborative Deep Learning, Hitaj et al. 2017: x = G(z) where $z = \max_{z} f(G(z); \theta)$
- **2015MI**: Model Inversion, Fredrikson et al.: $x = \arg \max_{x} f(x)$ (statistical model)

Quantify privacy

If privacy cost is over a budget, we stop and publish model

Quantify privacy: Differential Privacy (DP)

Differential Privacy

Differential Privacy

Privacy loss at
$$y$$
 $Z(y) riangleq \log \left(\frac{p(\mathscr{A}(D) = y)}{p(\mathscr{A}(D') = y)} \right)$ where $y \sim \mathscr{A}(D)$ and D, D' are adjacent (differing at one sample)

Differential Privacy

Privacy loss at
$$y$$
 $Z(y) riangleq \log \left(\frac{p(\mathscr{A}(D) = y)}{p(\mathscr{A}(D') = y)} \right)$ where $y \sim \mathscr{A}(D)$

$$\mathscr{A}$$
 is ϵ -DP: $Z \le \epsilon$ or $P(Z > \epsilon) = 0$

$$\mathscr{A}$$
 is (ϵ, δ) -DP: $P(Z > \epsilon) = \delta$

$$\mathcal{A}$$
 is ρ -zCDP: $P(Z > t + \rho) \le e^{-t^2/(4\rho)}$ for $t \ge 0$

Quantify privacy: Accumulate privacy loss

Compose dynamic privacy parameter

LEMMA 3.5. (Composition) Suppose two mechanisms $\mathcal{M}, \mathcal{M}'$: $\mathcal{D}^n \to \mathbb{R}^d$ satisfy ρ_1 -zCDP and ρ_2 -zCDP, then their composition satisfies $(\rho_1 + \rho_2)$ -zCDP.

Note: zCDP allows ρ_1 and ρ_2 to be different, but DP does not. For DP, an additional privacy cost has to be paid.

Quantify privacy

- privacy measure
- π projection: AdaGrad, etc

$$\nabla_t = \frac{1}{N} \sum_{n=1}^{N} \nabla f(\theta; x_n)$$
 Private sample (to protect)

Privatize Gradients

- privacy measure
- π projection: AdaGrad, etc
- σ noise schedule
- **N** noise distribution
- c sensitivity constraint

Algorithm 1 Privatizing gradients

Input: Private gradient ∇_t summed from $[\nabla_t^{(1)},\dots,\nabla_t^{(n)}]$, residual privacy budget R_t 1: $\tilde{\nabla}_t \leftarrow \frac{1}{N} \sum_{n=1}^N \nabla_t^{(n)} \min\{1,C_t/\left\|\nabla_t^{(n)}\right\|\}$ \Rightarrow Sensitivity constraint

2: $\rho_t \leftarrow 1/\sigma_t^2$ 3: if $\rho_t < R_t$ then

4: $R_{t+1} \leftarrow R_t - \rho_t$ 5: $g_t \leftarrow \nabla_t + C_t \sigma_t \nu_t / N$, $\nu_t \sim \mathcal{N}(0,I)$ \Rightarrow Privacy noise

6: return $\eta_t g_t$, R_{t+1} \Rightarrow Utility projection

7: else

8: Terminate

Privatize Gradients

Lemma 3.1 (L_2 sensitivity). Given mapping from a n-element dataset domain to d-dimensional real space $f: \mathcal{D}^n \to \mathbb{R}^d$, the L_2 sensitivity of f, denoted by $\Delta_2(f)$ is defined as:

$$\Delta_2(f) = \max_{D,D'} ||f(D) - f(D')||_2,$$

 ρ privacy measure

 π projection: AdaGrad, etc

 σ noise schedule

N noise distribution

c sensitivity constraint

Algorithm 1 Privatizing gradients

Input: Private gradient ∇_t summed from $[\nabla_t^{(1)}, \dots, \nabla_t^{(n)}]$, residual privacy budget R_t

1:
$$\tilde{\nabla}_t \leftarrow \frac{1}{N} \sum_{n=1}^N \nabla_t^{(n)} \min\{1, C_t / \left\| \nabla_t^{(n)} \right\| \}$$

⊳ Sensitivity constraint

2: $\rho_t \leftarrow 1/\sigma_t^2$ 3: **if** $\rho_t < R_t$ **then** Control the influence of a sample

4: $R_{t+1} \leftarrow R_t - \rho_t$

5: $g_t \leftarrow \tilde{\nabla}_t + C_t \sigma_t \nu_t / N, \, \nu_t \sim \mathcal{N}(0, I)$

▷ Privacy noise▷ Utility projection

6: **return** $\eta_t g_t$, R_{t+1}

7: **else**

Terminate

where D, D' are adjacent datasets.

Differentially Private Learning

LEMMA 3.4. The Gaussian mechanism, which returns $f(D) + \sigma v$ satisfies $\Delta_2(f)^2/(2\sigma^2)$ -zCDP.

A deterministic function

- ρ privacy measure
- π projection: AdaGrad, etc
- σ noise schedule
- **N** noise distribution
- *C* sensitivity control

Algorithm 1 Privatizing gradients

Terminate

Input: Private gradient ∇_t summed from $[\nabla_t^{(1)},\dots,\nabla_t^{(n)}]$, residual privacy budget R_t 1: $\tilde{\nabla}_t \leftarrow \frac{1}{N} \sum_{n=1}^N \nabla_t^{(n)} \min\{1,C_t/\left\|\nabla_t^{(n)}\right\|\}$ \Rightarrow Sensitivity constraint

2: $\rho_t \leftarrow 1/\sigma_t^2$ \Rightarrow Budget request

3: If $\rho_t < R_t$ then

4: $R_{t+1} \leftarrow R_t - \rho_t$ 5: $g_t \leftarrow \tilde{\nabla}_t + C_t \sigma_t \nu_t/N, \nu_t \sim \mathcal{N}(0,I)$ 6: return $\eta_t g_t, R_{t+1}$ \Rightarrow Utility projection

7: else

Differentially Private Learning

If gradients are a stochastic mini-batch, e.g., sampled by q-probability, the privacy cost is $\propto q^2 \rho$ for DP metric, e.g, tCDP.

- privacy measure
- π projection: AdaGrad, etc
- σ noise schedule
- noise distribution
- c sensitivity control

Input: Private gradient ∇_t summed from $\left[\nabla_t^{(1)}, \dots, \nabla_t^{(n)}\right]$ residual privacy budget R_t 1: $\tilde{\nabla}_t \leftarrow \frac{1}{N} \sum_{n=1}^N \nabla_t^{(n)} \min\{1, C_t / \left\|\nabla_t^{(n)}\right\|\}$ \triangleright Sensitivity constraint 2: $\rho_t \leftarrow 1/\sigma_t^2$ \triangleright Budget request 3: if $\rho_t < R_t$ then

- 4: $R_{t+1} \leftarrow R_t \rho_t$
- 5: $g_t \leftarrow \tilde{\nabla}_t + C_t \sigma_t \nu_t / N, \nu_t \sim \mathcal{N}(0, I)$
- 6: **return** $\eta_t g_t$, R_{t+1} 7: **else**
- 8: Terminate

▷ Privacy noise

□ Utility projection

Privatize Gradients

- privacy measure
- projection: AdaGrad, etc
- noise schedule
- noise distribution
- sensitivity constraint

Algorithm 1 Privatizing gradients

Input: Private gradient ∇_t summed from $[\nabla_t^{(1)}, \dots, \nabla_t^{(n)}]$, residual privacy budget R_t

1:
$$\tilde{\nabla}_t \leftarrow \frac{1}{N} \sum_{n=1}^N \nabla_t^{(n)} \min\{1, C_t / \left\| \nabla_t^{(n)} \right\| \}$$
 > Sensitivity constraint
2: $\rho_t \leftarrow 1/\sigma_t^2$ > Budget request

- 2: $\rho_t \leftarrow 1/\sigma_t^2$ 3: **if** $\rho_t < R_t$ **then**
- $R_{t+1} \leftarrow R_t \rho_t$
 - $g_t \leftarrow \tilde{\nabla}_t + C_t \sigma_t \nu_t / N, \nu_t \sim \mathcal{N}(0, I)$
- return $\eta_t q_t$, R_{t+1}
- 7: else
- Terminate

▷ Privacy noise

□ Utility projection

Differentially Private Learning

Algorithm 1 Privatizing gradients

```
Input: Private gradient \nabla_t summed from [\nabla_t^{(1)}, \dots, \nabla_t^{(n)}], residual privacy budget R_t
 1: \tilde{\nabla}_t \leftarrow \frac{1}{N} \sum_{n=1}^N \nabla_t^{(n)} \min\{1, C_t / \left\| \nabla_t^{(n)} \right\| \}

⊳ Sensitivity constraint

 2: \rho_t \leftarrow 1/\sigma_t^2
3: if \rho_t < R_t then
                                                                                                                                    R_{t+1} \leftarrow R_t - \rho_t
            g_t \leftarrow \tilde{\nabla}_t + C_t \sigma_t \nu_t / N, \nu_t \sim \mathcal{N}(0, I)
                                                                                                                                      ▷ Privacy noise
            return \eta_t g_t, R_{t+1}

    □ Utility projection

 7: else
            Terminate
```

Private Learning

Algorithm

Convergence theory and dynamic policy

Does private learning converge?

- Not converge to the optimal
 - Finite iteration
 - Noise
- Improve the final iterate loss given a privacy budget:

$$EER = \mathbb{E}_{\nu}[f(\theta_{T+1})] - f(\theta^*)$$

The upper bound of EER

Why study convergence upper bound?

- Bound the worst case.
- Find a way to speed up optimization algorithm
- To study the impact of privacy operations, e.g., noise magnitude, clipping norm, etc.
- To compare different algorithms: convergence rate

Assumptions

- *G*-Lipschitz continuous loss, $\|f(x) f(x')\| \le G\|x x'\| \Leftrightarrow \|f'(x)\| \le G \text{ if } f \text{ is differentiable.}$
- M-Lipschitz continuous gradient or M-smooth loss: $\left\| \ \nabla f(x) \nabla f(x') \ \right\| \ \leq M \|x x'\|$
- μ -Polyak-Lojasiewicz (PL) condition < μ -strongly convex $\parallel \nabla f(\theta) \parallel^2 \geq 2\mu(f(\theta) f(\theta^*))$

Convergence

Algorithm 1 Privatizing gradients

Input: Private gradient ∇_t summed from $[\nabla_t^{(1)}, \dots, \nabla_t^{(n)}]$, residual privacy budget R_t

1:
$$\tilde{\nabla}_t \leftarrow \frac{1}{N} \sum_{n=1}^N \nabla_t^{(n)} \min\{1, C_t / \left\| \nabla_t^{(n)} \right\| \}$$
 \triangleright Sensitivity constraint
2: $\rho_t \leftarrow 1/\sigma_t^2$ \triangleright Budget request
3: **if** $\rho_t < R_t$ **then**
4: $R_{t+1} \leftarrow R_t - \rho_t$
5: $g_t \leftarrow \tilde{\nabla}_t + C_t \sigma_t \nu_t / N$, $\nu_t \sim \mathcal{N}(0, I)$ \triangleright Privacy noise
6: **return** $\eta_t g_t, R_{t+1}$ \triangleright Utility projection

7: else

8: Terminate

Theorem 3.2. Let α , κ and γ be defined in Eq. (5), and $\eta_t = \frac{1}{M}$. Suppose $f(\theta; x_i)$ is G-Lipschitz M-smooth and satisfies the Polyak-Lojasiewicz condition. If $C_t \leq G$, then clipping does not take place, i.e., $\tilde{\nabla}_t = \nabla_t$ and the following holds:

$$EER = \mathbb{E}_{\nu}[f(\theta_{T+1})] - f(\theta^*) \le \left(\gamma^T + R \sum_{t=1}^T q_t \sigma_t^2\right) (f(\theta_1) - f(\theta^*)), \tag{6}$$

where
$$q_t \triangleq \gamma^{T-t} \alpha_t$$
. (7)

$$\alpha_t \triangleq \frac{MD}{2R} \left(\frac{\eta_t C_t}{N}\right)^2 \frac{1}{f(\theta_1) - f(\theta^*)} > 0, \ \kappa \triangleq \frac{M}{\mu} \ge 1, \text{ and } \gamma \triangleq 1 - \frac{1}{\kappa} \in [0, 1). \tag{5}$$

Convergence

Theorem 3.2. Let α , κ and γ be defined in Eq. (5), and $\eta_t = \frac{1}{M}$. Suppose $f(\theta; x_i)$ is G-Lipschitz M-smooth and satisfies the Polyak-Lojasiewicz condition. If $C_t \leq G$, then clipping does not take place, i.e., $\tilde{\nabla}_t = \nabla_t$ and the following holds:

- · Schedule noise to
 - Extend iteration T
 - Reduce the effect of noise

Convergence

Theorem 3.2. Let α , κ and γ be defined in Eq. (5), and $\eta_t = \frac{1}{M}$. Suppose $f(\theta; x_i)$ is G-Lipschitz M-smooth and satisfies the Polyak-Lojasiewicz condition. If $C_t \leq G$, then clipping does not take place, i.e., $\tilde{\nabla}_t = \nabla_t$ and the following holds:

EER
$$\leq \left(\gamma^{T} + R \sum_{t=1}^{T} q_{t} \sigma_{t}^{2}\right) (f(\theta_{1}) - f(\theta^{*})),$$
 (6)

where $q_{t} \triangleq \gamma^{T-t} \alpha$. (7)

Influence of noise

Lemma 3.1 (Dynamic schedule). Suppose σ_t satisfy $\sum_{t=1}^T \sigma^{-2} = R$. Given a positive sequence $\{q_t\}$, the following equation holds

Reduce noise impact
$$\min_{\sigma} R \sum_{t=1}^{T} q_t \sigma_t^2 = \left(\sum_{t=1}^{T} \sqrt{q_t}\right)^2$$
, when $\sigma_t = \sqrt{\frac{1}{R} \sum_{i=1}^{T} \sqrt{\frac{q_i}{q_t}}}$. (10)

How much improvement can we achieve?

Advantage of dynamic schedule on optimal upper bound

• Empirically check the q_t

EER
$$\leq \left(\gamma^T + R \sum_{t=1}^T q_t \sigma_t^2\right) (f(\theta_1) - f(\theta^*)),$$
where $q_t \triangleq \gamma^{T-t} \alpha_t$.

Further reduce the noise by momentum

Algorithm 2 Privatizing gradients with debiased momentum Input: Private gradient ∇_t summed from $[\nabla_t^{(1)}, \dots, \nabla_t^{(n)}]$, residual privacy budget R_t 1: $\tilde{\nabla}_t \leftarrow \frac{1}{N} \sum_{n=1}^N \nabla_t^{(n)} \min\{1, C_t / \left\| \nabla_t^{(n)} \right\| \}$ \Rightarrow Sensitivity constraint 2: $\rho_t \leftarrow 1/\sigma_t^2$ \Rightarrow Budget request 3: if $\rho_t < R_t$ then 4: $R_{t+1} \leftarrow R_t - \rho_t$ 5: $q_t \leftarrow \tilde{\nabla}_t + \nu_t, \nu_t \sim \mathcal{N}(0, (C_t \sigma_t / N)^2 I)$ \Rightarrow Privacy noise 6: $v_{t+1} = \beta v_t + (1 - \beta) g_t, \ v_1 = 0$ 7: $\hat{v}_{t+1} = v_{t+1} / (1 - \beta^t)$ 8: return $\eta_t \hat{v}_{t+1}, R_{t+1}$ \Rightarrow Utility projection 9: else 10: Terminate

Further reduce the noise by momentum

Theorem 3.4 (Convergence under PL condition). Suppose $f(\theta; x_i)$ is M-smooth, G-Lipschitz and satisfies the Polyak-Lojasiewicz condition. Let $\eta_t = \eta_0$. If $C_t \geq G$ which implies $\tilde{\nabla}_t = \nabla_t$ (clipping does not take place), then the following holds:

$$\text{EER} \leq \gamma^{T}(f(\theta_{1}) - f(\theta^{*})) + \underbrace{\frac{2\eta_{0}D}{N^{2}} \underbrace{\sum_{t=1}^{T} q_{t} \left(C_{t}\sigma_{t}\right)^{2}}_{\text{noise varinace}} + \underbrace{\frac{1}{\eta_{0}\zeta \sum_{t=1}^{T} \gamma^{T-t} \|v_{t+1}\|^{2}}_{\text{momentum effect}}$$
 (16)
$$\text{where } q_{t} = \underbrace{\frac{\beta^{2(T-t+1)} - \gamma^{T-t+1}}{\beta^{2} - \gamma}}_{\text{Noise varinace}}, \ \gamma = 1 - \eta_{0}\mu, \ \zeta = \underbrace{\frac{4M^{2}\beta\gamma}{(\gamma - \beta)^{2}(1 - \beta)^{3}}}_{\text{Noise variance}}, \ \gamma_{0}^{2} + \frac{1}{2}M\eta_{0} - 1.$$
 (17)
$$\text{Especially, when } \eta_{0} \leq \frac{\beta(1-\beta)^{3}}{8M} \left[\sqrt{\frac{1}{4} + \frac{16}{\beta(1-\beta)^{3}}} + 1\right], \ \text{the noise variance do ninates the bound, i.e., }$$

EER = $\mathcal{O}\left(\frac{2\eta_0 D}{N^2} \sum_{t=1}^{T} q_t \left(C_t \sigma_t\right)^2\right)$.

— A negative term if η_0 is small.

The GD noise

Beyond dynamic noise magnitude

- Learning to protect: Transfer the dynamic policies learned from auxiliary tasks to private task.
- AdaClip (Pichapati et al. 2019):
 Adaptively clipping the gradients
- Dynamic batch size (Feldman et al., 2019, STOC): Increase the batch size to improve non-convex convergence bound.

Beyond dynamic noise magnitude

- Learning to protect: Transfer the dynamic policies learned from auxiliary tasks to private task.
- AdaClip (Pichapati et al. 2019): Adaptively clipping the gradients
- Dynamic batch size (Feldman et al., 2019, STOC): Increase the batch size to improve nonconvex convergence bound.

$$\min_{\pi,\sigma,T} \mathbb{E}\left[\tilde{F}(\sigma,\pi,T) \right], \text{ s.t. } h_T(\sigma;
ho_{ ext{tot}}) = 0$$

Beyond dynamic noise magnitude

- Learning to protect: Transfer the dynamic policies learned from auxiliary tasks to private task.
- AdaClip (Pichapati et al. 2019):
 Adaptively clipping the gradients
- Dynamic batch size (Feldman et al., 2019, STOC): Increase the batch size to improve non-convex convergence bound.

Figure 2: Test performance (top) and training loss values (bottom) by varying ϵ of logistic and MLP classifiers on IPUMS and MNIST35 datasets. The error bar presents the size of standard deviations. For better visualization, some horizontal offsets are added to every point.

$$\min_{\pi,\sigma,T} \mathbb{E}\left[\tilde{F}(\sigma,\pi,T)\right], \text{ s.t. } h_T(\sigma;\rho_{\text{tot}}) = 0$$

Thank you for your time!