Interoperability in IoT

Shubham Mante

Interoperability in daily life!!

What is interoperability?

ISO definition:

- The capability to communicate, execute programs, or transfer data
- Requires the user to have little or no knowledge of unique characteristics

IEEE definition:

 The ability of two or more systems or components to exchange the information and use the information that has been exchanged

IoT interoperability:

 Interoperability in IoT is the compatibility of multiple devices to communicate with each other irrespective of deployed software and hardware.

Why do we need IoT interoperability?

- Diversity in use of Internet of Things
 - Household Appliances
 - Wearables
 - Transportation
 - Hospitality
 - Energy Usage
 - Smart City
- Multiple device manufacturers with their own standards

Source: internetofbusiness.com

Why do we need IoT interoperability?

Devices speak their own language

Ex. Apples HomeKit -Swift language, Google Brillo – Weave, Amazon AWS IoT – SDKs for embedded C and NodeJS

An obstacle to the growth of IoT

Source:

- https://en.wikipedia.org/wiki/HomeKit
- https://www.arrkgroup.com/thought-leadership/what-is-google-brillo/
- https://docs.aws.amazon.com/iot/latest/developerguide/iot-sdks.html

Source: internetofbusiness.com

Types of Interoperability in IoT

Source: M Noura et. al., Interoperability in Internet of Things: Taxonomies and Open Challenges, 2019

Device Interoperability

- IoT system consists of variety of devices
 - High-end devices Raspberry Pi, Smartphones, etc.
 - Low-end devices Low-cost sensors, RFID tags, Actuator, etc.
- Vendor specific device specifications
 - Processor speed, RAM, battery capacity, communication technology, etc.
- Integration of new devices into a IoT platform

Syntactic Interoperability

- Use of serialization (XML / JSON / JSON-LD)
- Compatibility between sender's encoding rules and receiver's decoding rules

```
{
    "m2m:cin":{
        "lbl":["Label-1","Label-2"],
        "con":"[test1,test2]"
     }
}
```

Networking Interoperability

- IoT devices work on heterogeneous, multi-service, multi-vendor networks
 - Wi-Fi, Bluetooth, LoRaWAN, Cellular, etc
- Network level interoperability deals with mechanisms to enable seamless message exchange between systems through different networks
- Handles issues such as addressing, routing, resource optimization, security, QoS and mobility support

Platform Interoperability

- Issues arise due to;
 - The availability of diverse operating systems (OSs)
 - Programming languages
 - Data structures, architectures and access mechanisms for things
- Need to understand platform specific APIs and data models

Semantic Interoperability

- Exchange knowledge in a meaningful way
- Generate data in a standardized format
- World Wide Web Consortium (W3C) proposed the integration of Semantic Web and IoT:
 Semantic Web of Things (SWoT)
- Use of ontologies/vocabularies

Ex. ssn, sosa, etc

Source: https://w3c.github.io/sdw/ssn/

Standards jungle of IoT

Horizontal/Telecommunication

Source: AIOTI WG3 (IoT Standardisation) – Release 2.8

IoT standards for interoperability

- Device, Network, Syntactical, Semantic, Cross-platform and Cross-domain interoperability
- Interoperability approach
- Openness
- Connectivity
- Application protocols
- Security/ privacy metrics

	Ref	D	N	Sy	Se	СР	CD	Solution	Openness	Data Format	Application Protocols	Connectivity	Priv/ Sec
Standard Frameworks	oneM2M	✓	✓	✓	✓	✓		Open standard. Gateway, API	✓	-	RESTful HTTP, CoAP, MQTT	Cellular, Zigbee, Bluetooth, WiFi	✓
	OMA LWM2M	✓	✓					Open standard	ISC License	XML	CoAP	Cellular, Zigbee, WiFi	X
	OGC SWE				✓	✓		sensor data model	GPL License	XML, EXI	RESTful HTTP, MQTT	-	X
	ETSI Smart M2M	✓	✓	✓				Service layer	✓	XML, JSON, EXI	RESTful HTTP, CoAP	Cellular, Zigbee, Bluetooth, WiFi	✓
	HyperCat			✓				open standard, open API	✓	JSON, RDF	RESTful HTTP	-	X
	AllJoyn	✓						APIs, Open standard protocols	ISC License	JSON, XML, EXI	Proprietary protocol	WiFi, Bluetooth, NFC, ZigBee	✓
	OIC IoTivity	✓						Industry standard technologies, protocol plug-ins, APIs	Apache License 2.0	XML, JSON	RESTful HTTP, CoAP	WiFi, BLE,	✓

Source: M Noura et. al., Interoperability in Internet of Things: Taxonomies and Open Challenges, 2019

oneM2M standards

- A global initiative to develop IoT standards to enable interoperable, secure, and simple-to-deploy services for the IoT ecosystem.
- Allow any IoT application to discover and interact with any IoT device.
- IoT solutions can interoperate across silo boundaries
- Reduce fragmentation, increase reusability and improve the cost base through economies of scale

Source:

- 1. https://www.onem2m.org/
- 2. https://www.onem2m.org/using-onem2m/what-is-onem2m

Service Layer

Source:

1. https://www.onem2m.org/using-onem2m/developers/basics#n1a

oneM2M and IoT Interoperability

OneM2M Resources

- Common Services Entity (CSE) Base:
 - Parent resource
 - Serves as the root resource for all resources that are residing in the CSE
- Application Entity (AE):
 - Registered to a CSE
 - Serves as the root resource for <container>, <flexContainer>, <subscription> and <group> resources
- Container (CNT):
 - Describe attributes of the data and child resources
 - Can be created and organised in a similar manner to folders on a computer
 - Each Container is allocated a unique ID
 - A container can have another container as a child resource
- Content Instance (CIN):
 - Contains a single piece of data sent by the publishing application

Source:

^{1.} https://www.onem2m.org/using-onem2m/developers/rest-resources#n3a

OneM2M Resource Tree

Source:

1. https://www.onem2m.org/using-onem2m/developers/rest-resources#n3a

OM2M platform

- An open-source implementation of oneM2M standards by LAAS-CNRS
- A horizontal M2M service platform
- A horizontal Service Common Entity (CSE) that can be deployed in an M2M server, a gateway, or a device.

Source: https://www.eclipse.org/om2m/

Thank You!