Measurement

Date: @Feb 12, 2020

Topic: Measurement

Recall Notes

Prob. of each outcome is the coeff. squared.

Measuring Qubits After the measurement, the system acts as if it had been in the measured state all along.

Basis:
$$|e_0\rangle_A, |e_1\rangle_A, \ldots, |e_{d-1}\rangle_A$$
.

$$|\psi
angle_{AB} = \sum_{i=0}^{d-1} |e_i
angle_A |v_i
angle_B$$

Measure system A against a basis:

Partial Inner Product

After measurement, system B is in the state: $=rac{|v_i
angle}{||v_i
angle||}$

Another way of doing the measurement:

Hermitian Matrix

Both matrices of dim. d have Measure A in that basis, prob. of $|e_i\rangle=||v_i\rangle|^2$

Prob. of
$$e_i = |\langle e_i | \psi \rangle|$$

$$|A\langle e_i|a_kb_i
angle_{AB}|=\delta_{e_ia_k}|b_i
angle$$

orthonormal

eigen

vectors.

$$U^{-1}=U^\dagger,~U=\sum_{i=0}^{d-1}e^{i heta}|e_i
angle\langle e_i|$$

Unitary

Matrix

$$H=H^\dagger,\ H=\sum_{i=0}^{d-1}\lambda_i|e_i
angle\langle e_i|,\ orall i,\lambda_i\in\mathbb{R}$$

 $\langle \psi | H | \psi
angle$

Expected

value

of

observable

(Hermitian

Matrix)

in state:

Spin for

$$S_x = ext{spin of first one} + ext{spin of second one} = I \otimes \sigma_x + \sigma_x \otimes I$$

two

particles

$$rac{1}{2}(lpha_x\sigma_x+lpha_y\sigma_y+lpha_z\sigma_z)$$

observable

for

spin in

а

specific

direction:

$$rac{\ket{00}+\ket{11}}{\sqrt{2}},\ldots$$

Bell

States(EPR

Pairs)

Measurement 3