Calc III: Workshop 8, Fall 2017

Problem 1. Use spherical coordinates to evaluate $\iiint_E y \, dV$, where E is the solid hemisphere inside $x^2 + y^2 + z^2 = 9$ where $y \ge 0$.

Problem 2. Suppose a hemisphere H has constant density. Find its center of mass.

Problem 3. Use cylindrical coordinates to evaluate $\iiint_E z \, dV$, where E is enclosed by the paraboloid $z = x^2 + y^2$ and the plane z = 4.

Problem 4. Find the center of mass of the solid S bounded by the parabolid $z = 4x^2 + 4y^2$ and the plane z = a (where a > 0) if S has constant density.

Problem 5. Evaluate $\int_C (2+xy^2) ds$, where C is the upper half of the unit circle $x^2+y^2=1$.

Problem 6. Let C be a curve in the plane, parameterized by (x(t), y(t)) for $a \le t \le b$.

- (a) Note that (x(a+b-t), y(a+b-t)), where $a \le t \le b$ parameterizes the same curve, but in the opposite direction. Denote this "opposite direction curve" by -C.
- (b) Show that $\int_C f(x,y) ds = \int_{-C} f(x,y) ds$.