Definice kongruence

Kongruence modulo p (kde $p \in \mathbb{N}$) je relace \equiv definovaná na \mathbb{Z} : $x \equiv y \pmod{p} \Leftrightarrow p \mid (x - y)$ $p \mid (x - y) \Leftrightarrow x - y = k \cdot p, \ k \in \mathbb{Z}$

Sčítání, odčítání, násobení kongruencí

Kongruence lze sčítat, odčítat a násobit. $\forall n \in \mathbb{N}, x \equiv a \pmod{p}, y \equiv b \pmod{p}$: $x \pm y \equiv a \pm b \pmod{p}$ $xy \equiv ab \pmod{p}$

Příklad 1

$$(15 \cdot 19 + 17)^3 \mod 5 =$$

Řešení

Nejprve upravíme výrazy modulo 5:

15
$$\mod 5 = 0$$
, 19 $\mod 5 = 4$, 17 $\mod 5 = 2$

Dosadíme do výrazu:

$$(15 \cdot 19 + 17)^3 \equiv (0 \cdot 4 + 2)^3 \pmod{5}$$

Zjednodušíme:

$$(0 \cdot 4 + 2)^3 \equiv 2^3 \pmod{5}$$

Vypočítáme mocninu:

$$2^3 = 8 \quad \Rightarrow \quad 8 \mod 5 = 3$$

Konečný výsledek:

$$(15 \cdot 19 + 17)^3 \mod 5 = 3$$

Umocňování kongruencí

Obě strany kongruence lze umocnit na totéž číslo. $\forall n \in \mathbb{N}, \forall k \in \mathbb{N}, x \equiv a \pmod{p}$: $x^k \equiv a^k \pmod{p}$

Příklad 2

 $7^5 \mod 6 =$

Řešení

Nejprve využijeme vlastnosti kongruence:

$$7 \equiv 1 \pmod{6}$$

Poté umocníme obě strany:

$$7^5 \equiv 1^5 \pmod{6}$$

Proto:

$$7^5 \mod 6 = 1$$

Malá Fermatova věta

 $Mal \acute{a}$ Fermatova věta je základní tvrzení v teorii čísel: $a^p \equiv a \pmod{p}$,

kde p je prvočíslo a a je libovolné celé číslo.

Pokud a a p jsou nesoudělná čísla, platí zjednodušený tvar: $a^{p-1} \equiv 1 \pmod{p}$.

Příklad 3

 $17^{100} \mod 5 =$

Řešení

Podle Malé Fermatovy věty:

$$a^{p-1} \equiv 1 \pmod{p}$$
, kde $a = 17, p = 5$.

Protože p-1=4, víme:

$$17^4 \equiv 1 \pmod{5}.$$

Rozložíme exponent:

$$17^{100} = (17^4)^{25}.$$

Dosadíme za $17^4 \mod 5$:

$$(17^4)^{25} \equiv 1^{25} \equiv 1 \pmod{5}.$$

Konečný výsledek: $17^{100} \mod 5 = 1$

Příklad 4

Dokažte, že pro všechna přirozená čísla n platí: $2 \mid (n^2 - n)$

Řešení

1. Důkaz pomocí algebraického rozkladu

Nejprve rozložíme výraz $n^2 - n = n(n-1)$.

Tento součin je součinem dvou po sobě jdoucích čísel n a n-1. Nyní je třeba ukázat, že tento součin je vždy dělitelný 2:

- a) Pokud je n sudé, tj. n=2k, pak n-1=2k-1 je liché. Součin n(n-1)=2k(2k-1) obsahuje činitel 2k, který je sudý, a tedy celý součin je sudý.
- b) Pokud je n liché, tj. n=2k+1, pak n-1=2k je sudé. Součin n(n-1)=(2k+1)2k obsahuje činitel 2, který je sudý, a tedy celý součin je sudý. Tedy pro všechna n platí $2 \mid (n^2-n)$.

2. Důkaz pomocí Malé Fermatovy věty

MFV: $a^p \equiv a \pmod{p}$, kde p je prvočíslo a a je libovolné celé číslo.

- a) $n = 2k, k \in \mathbb{N} : n^2 n = 4k^2 4k + 1 2k + 1 = 2(2k^2 3k + 1)$
- b) $n \neq 2k, k \in \mathbb{N}: n^2 \equiv n \pmod 2$ MFV neboli 2 | (n^2-n) definice kongruence

3. Důkaz pomocí matematické indukce

Chceme dokázat, že pro všechna přirozená čísla n platí $2 \mid (n^2 - n)$.

Krok 1: Pro n=1 máme $n^2-n=1^2-1=0$, 0 je dělitelná dvěma.

Krok 2: Předpokládejme, že tvrzení platí pro nějaké n=k, tj. 2 | (k^2-k) , což znamená, že $k^2-k=2m$ pro nějaké celé číslo m.

Dokážeme, že tvrzení platí i pro n = k + 1, tedy že $2 \mid ((k+1)^2 - (k+1))$: $(k+1)^2 - (k+1) = k^2 + 2k + 1 - k - 1 = k^2 + k = (k^2 - k) + 2k$

Z indukčního předpokladu: $k^2-k=2m$, takže: $k^2+k=2m+2k=2(m+k)$. Tento výraz je dělitelný dvěma.

4. Důkaz pomocí zbytkových tříd

Pro dělitelnost dvěma použijeme zbytkové třídy po dělení dvěma.

- a) $n=2k, k\in\mathbb{N}: n^2-n=4k^2-2k=2k(2k-1)...$ je dělitelné dvěma
- b) $n = 2k 1, k \in \mathbb{N} : n^2 n = 4k^2 4k + 1 2k + 1 = 2(2k^2 3k + 1)...$ je dělitelné dvěma

Příklady k procvičení

bez kalkulaček:

- 1. $123 \pmod{7} =$
- 2. Ověřte, zda platí: 212 $\equiv 17 \pmod 3$
- 3. $(12 \cdot 19 8^4) \pmod{5} =$
- 4. $18^{501} \pmod{17} =$
- 5. $2^{120} \pmod{7} =$
- 6. $2^{501} \pmod{17} =$
- 7. $17^{341} \pmod{5} =$
- 8. $345^{123} \pmod{7} =$
- 9. Co jsou zbytkové třídy modulo 3 (na celých číslech)?
- 10. Dokažte, že pro všechna přirozená čísla n platí: $3 \mid (n^3 n)$
- 11. Dokažte, že pro všechna přirozená čísla n platí: 5 | (n^5-n)

Řešení

- 1. $123 \pmod{7} \equiv 53 \pmod{7} = 4$
- 2. Ověřte, zda platí: $212 \equiv 17 \pmod 3$ $212 \pmod 3 \equiv 2 \pmod 3 = 2$ $53 \pmod 3 \equiv 2 \pmod 3 = 2$ Čísla 212 a 53 dávají stejný zbytek po dělení třemi (zbytek 2), jsou ve stejné zbytkové třídě. Platí tedy, že $212 \equiv 17 \pmod 3$.
- 3. $(12 \cdot 19 8^4) \pmod{5} \equiv (2 \cdot 4 3^4) \pmod{5} \equiv (2 \cdot 4 9^2) \pmod{5} \equiv (2 \cdot 4 4^2) \pmod{5} \equiv 3 1 = 2$
- 4. $18^{501} \pmod{17} \equiv 1^{501} = 1$
- 5. $2^{120} \pmod{7} \equiv (2^3)^{40} = 1$
- 6. $2^{501} \pmod{17} \equiv (2^4)^{124} \cdot (2^4) \cdot 2 \pmod{17} \equiv (-1)^{124} \cdot (-2) \pmod{17} \equiv -2 \pmod{17} = 15$
- 7. $17^{341} \pmod{5} \equiv (17^2)^{170} \cdot 17 \pmod{5} \equiv (-1)^{170} \cdot 2 \pmod{5} = 2$
- 8. $345^{123} \pmod{7} \equiv (65^3)^{41} \pmod{7} = 1$