

Voronoi Diagrams and Delaunay Triangulations

O'Rourke, Chapter 5

Outline

- Preliminaries
- Voronoi Diagrams / Delaunay Triangulations
- Lloyd's Algorithm

Claim:

Given a connected planar graph with V vertices, E edges, and F faces^{*}, the graph satisfies:

$$V-E+F=2$$

*The "external" face also counts. (Can think of this as a graph on the sphere.)

Proof:

- 1. Show that this is true for trees.
- 2. Show that this is true by induction.

Proof (for Trees):

If a graph is a connected tree, it satisfies:

$$V = E + 1$$
.

Since there is only one (external) face:

$$V - E + F = (E + 1) - E + 1 = 2$$

Proof (by Induction):

Suppose that we are given a graph G.

- If it's a tree, we are done.
- Otherwise, it has a cycle.

Removing an edge on the cycle gives a graph G' with:

- The same vertex set (V' = V)
- ∘ One less edge (E' = E 1)
- One less face (F' = F 1)

By induction:

$$2 = V' - E' + F' = V - E + F$$

Note:

Given a planar graph G, we can get a planar graph G' with triangle faces:

Triangulate the interior polygons

 Add a "virtual point" outside and triangulate the exterior polygon.

Note:

The new graph has:

- $V' = V + 1, E' \ge E, F' \ge F$
- V' E' + F' = 2
- \circ 3E'=2F'

Note:

The new graph has:

$$V' = V + 1, E' \ge E, F' \ge F$$

$$V' - E' + F' = 2$$

$$\circ \ 3E' = 2F'$$

This gives:

The number of edges/faces of a planar graph is linear in the number of vertices.

Definition:

Given a set of points $\{p_1, ..., p_n\} \subset \mathbb{R}^d$, the *nearest-neighbor graph* is the directed graph with an edge from p_i to p_j , whenever:

$$||p_k - p_i|| \ge ||p_j - p_i|| \quad \forall 1 \le k \le n.$$

Naively, the nearest-neighbor can be computed in $O(n^2)$ time by testing all possible neighbors.

Outline

- Preliminaries
- Voronoi Diagrams / Delaunay Triangulations
- Lloyd's Algorithm

Definition:

Given points $P = \{p_1, ..., p_n\}$, the *Voronoi region* of point p_i , $V(p_i)$ is the set of points at least as close to p_i as to any other point in P: $V(p_i) = \{x | |p_i - x| \le |p_i - x| \ \forall 1 \le j \le n\}$

Definition:

The set of points with more than one nearest neighbor in *P* is the *Voronoi Diagram* of *P*:

- The set with two nearest neighbors make up the edges of the diagram.
- The set with three or more nearest neighbors make up the vertices of the diagram.

The points *P* are called the *sites* of the Voronoi diagram.

2 Points:

When $P = \{p_1, p_2\}$, the regions are defined by the perpendicular bisector:

3 Points:

When $P = \{p_1, p_2, p_3\}$, the regions are defined by the three perpendicular bisectors:

3 Points:

The three bisectors intersect at a point

The intersection can be outside the triangle. Fined

The point of intersection is center of the circle passing through the three points.

More Generally:

The Voronoi region associated to point p_i is the intersection of the half-spaces defined by the perpendicular bisectors:

$$V(p_i) = \bigcap_{j \neq i} H(p_i, p_j)$$

More Generally:

The Voronoi region associated to point p_i is the intersection of the half-spaces defined by the perpendicular bisectors:

⇒ Voronoi regions are convex polygons.

More Generally:

More Generally:

Voronoi regions are in 1-to-1 correspondence with points.

Most Voronoi vertices have valence 3.

Voronoi faces can be unbounded.

Properties:

- Each Voronoi region is convex.
- $V(p_i)$ is unbounded $\Leftrightarrow p_i$ is on the convex hull of P.
- If v is a at the junction of $V(p_1), ..., V(p_k)$, with $k \ge 3$, then v is the center of a circle, C(v),

with p_1, \dots, p_k on the boundary.

• The interior of C(v) contains no points.

Definition:

The *Delaunay triangulation* is the straight-line dual of the Voronoi Diagram.

Note:

The Delaunay edges don't have to cross their Voronoi duals.

Properties:

- The edges of D(P) don't intersect.
- \circ D(P) is a triangulation if no 4 points are co-circular.
- The boundary of D(P) is the convex hull of P.
- If p_j is the nearest neighbor of p_i then $\overline{p_i p_j}$ is a Delaunay edge.
- o There is a circle through p_i and p_j that does not contain any other points $\Leftrightarrow \overline{p_i p_j}$ is a Delaunay edge.
- The circumcircle of p_i , p_j , and p_k is empty $A_{n,n,n}$ is Delaunay tria

 $\Leftrightarrow \Delta p_i p_j p_k$ is Delaunay triangle.

Note:

Assuming that the edges of D(P) do not cross, we get a planar graph.

- ⇒ The number of edges/faces in a Delaunay Triangulation is linear in the number of vertices.
- ⇒ The number of edges/vertices in a Voronoi Diagram is linear in the number of faces.
- ⇒ The number of vertices/edges/faces in a Voronoi Diagram is linear in the number of sites.

Properties:

• The boundary of D(P) is the convex hull of P.

Proof:

Suppose that $\overrightarrow{p_ip_i}$ is an edge of the hull of P.

Consider circles with center on the bisector that intersect p_i and p_j .

As we move out along the bisector the circle converges to the half-space to the right of $\overrightarrow{p_ip_i}$.

Properties:

• The boundary of D(P) is the convex hull of P.

Proof:

Suppose that $\overrightarrow{p_ip_i}$ is an edge of the hull of P.

- \Rightarrow There is an (infinite) region on the bisector that is closer to p_i and p_i than to any other points.
- \Rightarrow There is a Voronoi edge between p_i and p_i .
- \Rightarrow The dual edge is in D(P).

Properties:

• If p_j is the nearest neighbor of p_i then $\overline{p_i p_j}$ is a Delaunay edge.

Proof:

 p_j is the nearest neighbor of p_i iff. the circle around p_i with radius $|p_i - p_j|$ is empty of other points.

 \Rightarrow The circle through $(p_i + p_j)/2$ with radius $|p_i - p_j|/2$ is empty of other points.

 $\Rightarrow (p_i + p_j)/2$ is on the Voronoi diagram.

 $\Rightarrow (p_i + p_i)/2$ is on a Voronoi edge.

Properties:

• If p_j is the nearest neighbor of p_i then $\overline{p_i p_j}$ is a Delaunay edge.

Implications:

The nearest neighbor graph is a subset of the Delaunay triangulation.

We will show that the Delaunay triangulation can be computed in $O(n \log n)$ time.

 \Rightarrow We can compute the nearest-neighbor graph in $O(n \log n)$.

Properties:

• There is a circle through p_i and p_j that does not contain any other points $\Leftrightarrow \overline{p_i p_j}$ is a Delaunay edge.

Proof (\Leftarrow) :

If $\overline{p_i p_j}$ is a Delaunay edge, then the Voronoi regions $V(p_i)$ and $V(p_j)$ intersect at an edge.

Set v to be some point on the interior of the edge.

$$|v - p_i| = |v - p_i| = r$$
 and $|v - p_k| > r \ \forall k \neq i, j$.

The circle at v with radius r is empty of other points.

 p_i

Properties:

• There is a circle through p_i and p_j that does not contain any other points $\Leftrightarrow \overline{p_i p_j}$ is a Delaunay edge.

Proof (\Rightarrow) :

If there is a circle through p_i and p_j , empty of other points, with center x, then $x \in V(p_i) \cap V(p_j)$.

Since no other point is in or on the circle there is a neighborhood of centers around x on the bisector with circles through p_i and p_j empty of other points.

x is on a Voronoi edge.

Properties:

• The edges of D(P) don't intersect.

Proof:

Given an edge $\overline{p_i p_j}$ in D(P), there is a circle with p_i and p_i on its boundary and empty of other points.

Let be $\overline{p_k p_l}$ be an edge in D(p) that intersect $\overline{p_i p_j}$:

 p_k and p_l cannot be in the circle.

- $\Rightarrow p_k$ and p_l are not in the triangle $\Delta c_{ij} p_i p_j$
- $\Rightarrow \overline{p_k p_l}$ intersects either $\overline{c_{ij} p_i}$ or $\overline{c_{ij} p_j}$.
- $\Rightarrow \overline{p_i p_j}$ intersects either $\overline{c_{kl} p_k}$ or $\overline{c_{kl} p_l}$.
- \Rightarrow One of $\overline{c_{ij}p_i}$ or $\overline{c_{ij}p_j}$ one of $\overline{c_{kl}p_k}$ or $\overline{c_{kl}p_l}$.

Properties:

• The edges of D(P) don't intersect.

Proof:

Given an edge $\overline{p_i p_j}$ in D(P), there is a circle with p_i and p_i on its boundary and empty of other points.

But $\overline{c_{ij}p_i}$ is in the Voronoi region of p_i and $\overline{c_{kl}p_k}$ is in the Voronoi region of p_k , so they cannot intersect.

- $\Rightarrow p_k$ and p_l are not in the triangle $\Delta c_{ij} p_i p_j$
- $\Rightarrow \overline{p_k p_l}$ intersects either $\overline{c_{ij} p_i}$ or $\overline{c_{ij} p_j}$.
- $\Rightarrow \overline{p_i p_j}$ intersects either $\overline{c_{kl} p_k}$ or $\overline{c_{kl} p_l}$.
- \Rightarrow One of $\overline{c_{ij}p_i}$ or $\overline{c_{ij}p_j}$ one of $\overline{c_{kl}p_k}$ or $\overline{c_{kl}p_l}$.

Outline

- Preliminaries
- Voronoi Diagrams / Delaunay Triangulations
 - Naive Algorithm
 - Fortune's Algorithm
- Lloyd's Algorithm

Naive Algorithm


```
Delaunay( \{p_1, \dots, p_n\} )
\circ for i \in [1, n]
    \mathsf{*for}\ j \in [1,i)
       - for k \in [1, j)
          • (c,r) \leftarrow Circumcircle(p_i, p_i, p_k)

 isTriangle ← true

          • for l \in [1, k)
              • if ||p_l - c|| < r ) is Triangle \leftarrow false
          • if (is Triangle) Output (p_i, p_i, p_k)
```

Complexity: $O(n^4)$

Voronoi Diagrams and Cones

Key Idea:

We can think of generating Voronoi regions by expanding circles centered at points of P.

When multiple circles overlap a point, track the one that is closer.

Voronoi Diagrams and Cones

Key Idea:

We can visualize the Voronoi regions by drawing right cones over the points, with axes along the positive *z*-axis.

Circles with radius r are the projections of the intersections of the plane z = r plane with the cones, onto the xy-plane.

Voronoi Diagrams and Cones

Key Idea:

To track the closer circle, we can render the cones with an orthographic camera looking up the z-axis.

Voronoi Diagrams and Cones

Key Idea:

To track the closer circle, we can render the cones with an orthographic camera looking up the z-axis.

Visualization

Approach:

Sweep a line and maintain the solution for all points behind the line.

Why This Shouldn't Work:

The Voronoi region behind the line can depend on points that are in front of the line!

(Looking up the z-axis, we see

the cone before the apex.)

Key Idea:

We can finalize points behind the line that are closer to a site than to the line.

Given a site $p \in P$ and the line with height y_0 , we can finalize the points satisfying:

$$\{(x,y)|(y-y_0)^2 > ||p-(x,y)||^2\}$$

Points on the boundary satisfy:

$$(y - y_0)^2 = ||p - (x, y)||^2$$

Setting $z = \|p - (x, y)\|$, this gives:

$$z = y - y_0$$

Formally:

Points on the right cone, centered at *p*, centered around the positive *z*-axis

 $y = y_0$

2.
$$z = y - y_0$$

Sweep the cones with a plane parallel to the *x*-axis making a 45° angle with the *xy*-plane.

Points on the plane, making a 45° angle with the xy-plane, passing through the line $y = y_0$ and z = 0

Sweep with a plane π_y , parallel to the x-axis, making a 45° angle with the xy-plane.

"Render" the cones and the plane with an orthographic camera looking up the z-axis.

At each point, we see:

- The part of π_y that is in front of the line (since it is below the xy-plane and hence below the cones).
- The part of the cones that are behind the line and below π_{ν} .

As y advances, the algorithm maintains a set of parabolic fronts (the projection of the

intersections of π_y with the cones).

At any point, the Voronoi diagram is finalized behind the parabolic fronts.

As y advances, the algorithm maintains a set of parabolic fronts (the projection of the

intersections of π_y with the cones).

At any point, the Voronoi diagram is finalized behind the

Implementation:

- The fronts are maintained in order.
- As y intersects a site, its front is inserted.
- Complexity $O(n \log n)$.

Outline

- Preliminaries
- Voronoi Diagrams / Delaunay Triangulations
- Lloyd's Algorithm

Challenge:

Solve for the position of points $P = \{p_1, ..., p_n\}$ inside the unit square minimizing:

$$E(P) = \int_{[0,1]^2} d^2(q, P) dq$$

where
$$d(q, P) = \min_{i} |p_i - q|$$
.

Approach:

- 1. Initialize the points to random positions.
- 2. Compute the Voronoi Diagram of the points, clipped to the unit square.
- 3. Set the positions of the points to the centers of mass of the corresponding Voronoi cells.
- 4. Go to step 2.

2. Compute the Voronoi Diagram of the points, clipped to the unit square.

Since:

$$\int_{[0,1]^2} d^2(q,P) dq = \sum_{F_i \in V(P)} \int_{F_i} ||p_i - q||^2 dq$$

this provides the assignment of points in $[0,1]^2$ to points in P that minimize the energy.

3. Set the positions of the points to the centers of mass of the corresponding Voronoi cells.

Since:

$$\arg\min_{p\in[0,1]^2} \int_F ||p-q||^2 dq = C(F)$$

with C(F) the center of mass of face F, repositioning to the center reduces the energy.