Final Exam (100 pts)

Burak Ekici

Assigned : June the 2nd, 13h00

Duration : 120 minutes

Q1. (40 pts)

a) (25 pts) Design a total Turing Machine (TM)

$$M = (Q, \{0\}, \{0, \vdash, \sqcup, x\}, \vdash, \sqcup, \delta, s, t, r)$$

accepts every member of the set

$$A = \{0^{4^n} \mid n \ge 0\}$$

rejecting every non-member. Explain your implementation in a few lines.

Below are a few examples to the input-output harmony of the intended TM:

lana sak	0
Input	Output
⊢ ⊔ ^ω	reject
⊢ 0⊔ ^ω	accept
$\vdash 0^2 \sqcup^{\omega}$	reject
$\vdash 0^4 \sqcup^{\omega}$	accept
⊢ 0 ⁸ ⊔ ^ω	reject
$\vdash 0^{10} \sqcup^{\omega}$	reject
$\vdash 0^{16} \sqcup^{\omega}$	accept
$\vdash 0^{30} \sqcup^{\omega}$	reject
$\vdash 0^{60} \sqcup^{\omega}$	reject
⊢ 0 ⁶⁴ ⊔ ^ω	accept
$\vdash 0^{100} \sqcup^{\omega}$	reject
\vdash 0 ²⁵⁶ $⊔^{\omega}$	accept
$\vdash 0^{1000} \sqcup^{\omega}$	reject
$\vdash 0^{1024} \sqcup^{\omega}$	accept
\vdash 00 $α$ 00 $⊔$ $ω$	reject
⊢ 000 b 00 $^{\omega}$	reject
⊢ 00000 c ⊔ $^{\omega}$	reject
:	:

b) (15 pts) Design a total Turing Machine (TM)

$$M = (Q, \{a, b\}, \{a, b, 0, 1, 2, 3, 4, \vdash, \#, \sqcup\}, \vdash, \sqcup, \delta, s, t, r)$$

that inputs x#0 with $x\in\{a,b\}^*$, computes and halts with the length of x in base 5 stored on its tape. Explain your implementation in a few lines.

Below are a few examples to the input-output harmony of the intended TM:

Input	Output
⊢ #0⊔ ^ω	⊢ #0⊔ ^ω
⊢ $a#0$ ⊔ $^{\omega}$	⊦…#1⊔ ^ω
⊢ <i>bα</i> #0⊔ ^ω	⊦…#2⊔ ^ω
⊢ aba#0⊔ ^ω	⊦…#3⊔ ^ω
⊢ aaba#0⊔ ^ω	⊦…#4⊔ ^ω
⊢ $abbba#0$ ⊔ $^{\omega}$	⊦…#10⊔ ^ω
⊢ $ababba#0$ ⊔ $^{\omega}$	⊦…#11⊔ ^ω
⊢ $abbbbbabab#0$ ⊔ $^{\omega}$	⊦…#20⊔ ^ω
⊢ abaabbbbabab#0⊔ $^{\omega}$	⊦…#22⊔ ^ω
⊢ abbbaababbbabab#0⊔ $^{\omega}$	⊢…#30⊔ ^ω
⊢ $abbbaababababbbabab#0$ ⊔ $^{\omega}$	⊢…#34⊔ ^ω
⊢ aabc#0⊔ ^ω	reject
⊢ $a \times b # 0$ ⊔ $^{\omega}$	reject
⊢ αb#e0⊔ ^ω	reject
	:

Q2. (15 pts) Design non-deterministic push down automaton (NPDA)

$$N = (Q, \{a, b, c\}, \{\bot, \cdots\}, \delta, s, \bot, F)$$

that accepts every member of the set

$$A = \{a^n b^m c^k \mid n, k \ge 1 \text{ and } n + k = m\}$$

rejecting every non-member. Justify your design in a few lines.

Below are a few examples to the input-output harmony of the intended NPDA:

Input	Output
ε	reject
ab^2c	accept
$a^2b^4c^2$	accept
$a^2b^3c^2$	reject
a^3b^4c	accept
$a^3b^2c^2$	reject
$a^{5}b^{9}c^{4}$	accept
$a^5b^{12}c^7$	accept
$a^6b^3c^2$	reject
$a^8b^{20}c^{12}$	accept
bc	reject
cba	reject
a^2c	reject
:	:

Q3. (30 pts) Which of the following sets, constructed over the alphabet $\Sigma = \{a, b\}$, are context free and which are not?

- (a) **(10 pts)** $A = \{a^n b^m \mid n = m^2\}$
- (b) **(10 pts)** $B = \sim \{xx \mid x \in \Sigma^*\}$
- (c) **(10 pts)** $C = \{a^n w^R w b^{3n} \mid w \in \Sigma^* \text{ and } n \ge 1\}$

Give grammars for those that are context free and proofs for those that are not.

Q4. (15 pts) Prove that the Halting Problem for Turing Machines

 $HP = \{M#x \mid TM M \text{ halts on input } x\}$

is undecidable. Otherwise put, show that the set HP is recursively enumerable.