lil' Lemma

C. Garfinkle

Lemma 1. Suppose $E \subseteq 2^{[m]}$ is a hypergraph with the SIP and let $d_1 \ge d_2 \ge ... \ge d_m$ be the degree sequence of nodes in E. If for some \bar{m} the map $\pi: E \to 2^{[\bar{m}]}$ has $\sum_{S \in E} |\pi(S)| = \sum_{S \in E} |S|$ and:

$$|\cap \pi(F)| \le |\cap F| \text{ for all } F \subseteq E,$$
 (1)

then $\bar{m} \ge \sum_i d_i/d_1$ and the association $i \mapsto \cap \pi(F(i))$ defines an injective map from J to $[\bar{m}]$ for some $J \in {[m] \choose p}$, where p (provided it exists) is the largest positive integer in $\{1, \ldots, m\}$ satisfying:

$$\sum_{i=\ell}^{m} d_i > (\bar{m} + 1 - \ell)(d_{\ell} - 1) \text{ for all } \ell \le p.$$
 (2)

If $\bar{m} < \sum_i d_i/(d_1-1)$ then $p \ge 1$. In particular, if $\bar{m} = m$ and E is regular, then π is induced by a permutation on [m].

Proof. Consider the collection of pairs: $T_1 := \{(i,S) : i \in \pi(S), S \in E\}$, which number $|T_1| = \sum_{S \in E} |\pi(S)| = \sum_{S \in E} |S| = \sum_{i \in [m]} d_i$. Note that assumption (1) implies $\bar{m} \ge |T_1|/d_1$, since otherwise pigeonholing the elements of T_1 with respect to their set of possible first indices $[\bar{m}]$ would lead us to conclude that there are more than d_1 sets in E sharing a common element.

By (2) we have $|T_1| > \bar{m}(d_1 - 1)$, which implies, again by the pigeonhole principle, that there must be at least d_1 elements of T_1 sharing the same first index. By (1), the intersection of the set F_1 consisting of their second indices is non-empty. As $d_1 \geq d_i$ for all i, and E satisfies the SIP, it must be that the sets in F_1 intersect at a singleton. Since $\cap \pi(F_1)$ is non-empty, applying (1) again implies $\cap \pi(F_1) = \{i_1\}$ for some $i_1 \in [m]$.

If p=1 then we are done. Otherwise, define $T_2:=T_1\setminus\{(i_1,S)\in T_1:S\in E\}$, which contains $|T_2|=|T_1|-d_1=\sum_{i=2}^m d_i$ ordered pairs having $\bar{m}-1$ distinct first indices. By (2) we have $|T_2|>(\bar{m}-1)(d_2-1)$ and reiterating the above arguments produces a (necessarily) distinct index i_2 . Iterating the arguments p times yields the set of singletons $J=\{\cap F_1,\ldots,\cap F_p\}\subseteq [m]$.

Remark 1 (Regular hypergraphs). Note that if E is d-regular then $\sum_{i=\ell}^m d = (m-\ell+1)d$ and we have $\bar{m} \ge \sum_i d_i/d_1 \ge m$ while (2) becomes $\ell < \bar{m} - (\bar{m} - m)d + 1$ for all $\ell \le p$. Hence, it suffices to know that $p = \bar{m} - (\bar{m} - m)d$ is positive to know that (2) is satisfied, which is true if an only if $\bar{m} < md/(d+1)$. Hence we must have $m \le \bar{m} < md/(d-1)$ for the conclusion of the lemma to hold for some non-empty $J \subseteq [m]$. We therefore have J = [m] when $\bar{m} = m$ and E is regular.

Remark 2 (General hypergraphs). For what range of values of \bar{m} can we guarantee there exists some $p \in \{1, \ldots, m\}$ in general? If $\bar{m} < \sum_i d_i/(d_1-1)$ then we can peel off at least one index for any hypergraph, i.e. $p \ge 1$. Can we find a lower bound on \bar{m} in general, though (not just for regular hypergraphs)? The difficulty is we have to make sure (2) holds for all values of $\ell \le p$, which was easy for regular hypergraphs (by the resulting transitivity of (2)). My thought is that in general the lower bound $\bar{m} \ge \sum_i d_i/d_1$ which *has* to hold given (1) might not correspond to what condition (2), which comes from our crappy pigeonholing, gives us as a constraint on \bar{m} when we make the substitution p = m (as was the case for regular hypergraphs). Could we have $\bar{m} < m$ but still recover a positive p number of indices?

Question 1. Do we only need E to satisfy the SIP on the p nodes of highest degree, those we end up isolating, for all of Chaz' Thm. to run through? That would be good!

1