Theoretische Informatik

Nicola Studer nicstuder@student.ethz.ch

April 5, 2023

Gruppentheorie

Def 1.1 (Monoid). $\langle M; *, e \rangle$ mit * assoziativ und e als neutrales Element.

Def 1.2 (Gruppe). $\langle G; *, e \rangle$ mit * assoziativ, e als neutrales Element und jedes element $x \in G$ hat Inverses \hat{x} .

Alphabete, Wörter, Sprachen und die Darstellung von Problemen

Def 2.1. Eine endliche nichtleere Menge Σ heisst **Alphabet**. Die Elemente eines Alphabets heissen Buchstaben (Zeichen, Symbole).

Bsp.
$$\Sigma_{\text{bool}} = \{0, 1\}, \ \Sigma_{\text{lat}} = \{a, b, c, \dots, z\},\ \Sigma_{\text{Keyboard}} = \Sigma_{\text{lat}} \cup \{A, B, \dots, Z, \neg, >, <, (,), \dots, !\},\ \Sigma_{\text{logic}} = \{0, 1, x, (,), \land, \lor, \neg\}$$

Def 2.2. Ein Wort über Σ ist eine endliche (eventuell leere) Folge von Buchstaben aus Σ . Das leere Wort λ ist die leere Buchstabenfolge. $|\lambda| = 0$.

 Σ^* ist die Menge aller Wörter über Σ , $\Sigma^+ = \Sigma^* - \{\lambda\}$. $\mathbf{\Sigma}^{i} = \{ x \in \Sigma^* \mid |x| = i \}$

Def 2.3 (Verkettung). Kon: $\Sigma^* \times \Sigma^* \to \Sigma^*$.

$$Kon(x, y) = x \cdot y = xy$$

Bmk 2.1. (Σ^*, Kon) ist Monoid mit neutralem Element λ .

Bmk 2.2. $\forall x, y \in \Sigma^* : |xy| = |x \cdot y| = |x| + |y|$.

Def 2.4 (Umkehrung). $a^{R} = a_n a_{n-1} \dots a_1$

Def 2.5. i-te Iteration x^i von $x \in \Sigma$ wird definiert als $x^0 = \lambda, x^1 = x \text{ und } x^i = xx^{i-1}.$

Def 2.6.

- v heisst **Teilwort** von $w \iff \exists x, y \in \Sigma^* : w = xvy$.
- v heisst **Präfix** von $w \iff \exists y \in \Sigma^* : w = vy$.
- v heisst Suffix von $w \iff \exists x \in \Sigma^* : w = xv$.
- $v \neq \lambda$ heisst echtes Teilwort (Präfix, Suffix) von w genau dann, wenn $v \neq w$ und v ein Teilwort (Präfix, Suffix) von w ist.

Def 2.7. $|x|_a$ Anzahl der Vorkommen von a in x.

Def 2.8. $\Sigma = \{s_1, s_2, \dots, s_m\}, m \ge 1 \text{ mit } s_1 < s_2 \dots < s_m < 1 \text{ mit } s_m < s_m < 1 \text{ mit } s_$ s_m als Ordnung auf Σ . Wir definieren die **kanonische Ordnung** auf Σ^* für $u, v \in \Sigma^*$:

$$u < v \iff |u| < |v| \lor |u| = |v| \land u = x \cdot s_i \cdot u' \land v = x \cdot s_j \cdot v'$$

für irgendwelche $x, u', v' \in \Sigma^*$ und $s_i < s_i$.

Def 2.9 (Sprache). $L \subseteq \Sigma^*$ mit Komplement $L^{\mathbb{C}} = \Sigma^* - L$.

- $L_{\emptyset} = \emptyset$ ist die leere Sprache
- $L_1 \cdot L_2 = L_1 L_2 = \{vw \mid v \in L_1 \text{ und } w \in L_2\}$
- $L^0 := L_{\lambda}$ und $L^{i+1} = L^i \cdot L$ für alle $i \in \mathbb{N}$
- $L^* = \bigcup_{i \in \mathbb{N}} L^i$ und $L^+ = \bigcup_{i \in \mathbb{N} \{0\}} L^i = L \cdot L^*$

Lemma 2.1. $L_1L_2 \cup L_1L_3 = L_1(L_2 \cup L_3)$

Lemma 2.2. $L_1(L_2 \cap L_3) \subseteq L_1L_2 \cap L_1L_3$

Lemma 2.3. Es existieren $U_1, U_2, U_3 \in (\Sigma_{\text{bool}})^*$, so dass $U_1(U_2 \cap U_3) \subsetneq U_1U_2 \cap U_1U_3$

 $h: \Sigma_1^* \to \Sigma_2^*$ mit:

- 1. $h(\lambda) = \lambda$
- 2. $h(uv) = h(u) \cdot h(v)$ für alle $u, v \in \Sigma_1^*$.

Def 2.11. Das Entscheidungsproblem (Σ, L) ist, für jedes $x \in \Sigma^*$ zu entscheiden, ob $x \in L$ oder $x \notin L$.

Ein Algorithmus A löst das Entscheidungsproblem (erkennt L), falls $\forall x \in \Sigma^*$:

$$A(x) = \begin{cases} 1, & \text{falls } x \in L \\ 0, & \text{falls } x \notin L \end{cases}$$

Def 2.12. Σ , Γ zwei Alphabete. Algorithmus A berechnet (realisiert) eine Funktion (Transformation) $f: \Sigma^* \to \mathbb{R}$ Γ^* falls $\forall x \in \Sigma^* : A(x) = f(x)$.

Def 2.13. Σ, Γ zwei Alphabete, $R \subseteq \Sigma^* \times \Gamma^*$ eine Relation. Ein Algorithmus A berechnet R (oder löst das Relationsproblem R), falls für alle $x \in \Sigma^*$, für das ein $y \in \Gamma^*$ nut $(x,y) \in R$ existert gilt: $(x, A(x)) \in R$.

Def 2.14 (Optimierungsproblem). Ist ein 6-Tupel $\mathcal{U} = (\Sigma_1, \Sigma_0, L, \mathcal{M}, \text{cost, goal}), \text{ wobei:}$

- 1. Σ_1 ist das Eingabealphabet
- 2. Σ_2 ist das Ausgabealphabet
- 3. $L \subseteq \Sigma^*$ ist die Sprache der zulässigen Eingaben. $x \in L$ ist ein Problemfall (Instanz) von \mathcal{U} .
- 4. $\mathcal{M}: L \to \mathcal{P}(\Sigma_0^*)$ und für jedes $x \in L$ ist $\mathcal{M}(x)$ die Menge der zulässigen Lösungen für x.
- 5. Kostenfunktion cost: $\bigcup_{x \in L} (\mathcal{M}(x) \times \{x\}) \to \mathbb{R}^+$
- 6. Optimierungsziel $qoal \in \{Minimum, Maximum\}$

Def. Eine zulässige Lösung $\alpha \in \mathcal{M}(x)$ heisst **optimal** für den Problemfall x, falls

$$cost(\alpha, x) = \mathbf{Opt}_{\mathcal{U}}(x) = goal\{cost(\beta, x) \mid \beta \in \mathcal{M}(x)\}\$$

Def. Ein Algorithmus A löst \mathcal{U} , falls für jedes $x \in L$

- 1. $A(x) \in \mathcal{M}(x)$
- 2. $cost(A(x), x) = goal\{cost(\beta, x) \mid \beta \in \mathcal{M}(x)\}\$

Def 2.15. Algorithmus A generiert das Wort x, falls A für die Eingabe λ die Ausgabe x liefert.

Def 2.10. Σ_1, Σ_2 zwei beliebige Alphabete. Homomorphismus: **Def 2.16.** A ist ein **Auszählungsalgorithmus für** L, falls A für jede Eingabe $n \in \mathbb{N}$ die Wortfolge x_1, x_2, \ldots, x_n ausgibt, wobei das die kanonisch n erster Wörter in L sind.

Shannon Entropie

Claude Shannon versuche den Informationsgehalt von String herauszufinden, hat es aber nicht geschafft Positionen darzusteller

Betrachte das Alphabet $\Sigma = \{a, b, c, d\}$ und das Wort mit Vorkommen $a \times 16, b \times 8, c \times 4, d \times 4$. Seine Codierung ist $a \mapsto 0, b \mapsto 10, c \mapsto 110, d \mapsto 111$. Man erkennt das nur die Präfixe erweitert werden.

Die Codierung hat nun die Folgende Länge mit |w| als Wortlänge, H_a Häufigkeit von $a,\ h_a$ relative Häufigkeit und p_a die Wahrscheinlichkeit:

$$56 = 16 \cdot 1 + 8 \cdot 2 + 4 \cdot 3 + 4 \cdot 3$$

$$= H_a \log_2 \frac{|w|}{H_a} + H_b \log_2 \frac{|w|}{H_b} + \dots$$

$$= H_a \cdot (-\log_2 \frac{H_a}{|w|}) + \dots$$

$$= H_a \cdot (-\log_2 h_a) + \dots$$

$$= H_a \cdot (-\log_2 p_a) + \dots$$

$$= -\sum_{a \in \Sigma} H_a \cdot \log_2 p_a$$

Kolmogorov-Komplexität

Def 2.17. Für jedes Wort $x \in \{0,1\}^*$ ist die K(x) des Wortes das Minimum der binären Länge der Pascal-Programme, die x generieren.

Lemma 2.4. $\exists d \in \mathbb{N} \ \forall x \in \{0,1\}^* : K(x) \leq |x| + d$

Def 2.18. $\forall n \in \mathbb{N} : K(n) = K(\operatorname{Bin}(n))$

Lemma 2.5. $\forall n \in \mathbb{N}_1 \ \exists w_n \in \{0,1\}^n : K(w_n) \ge |w| = n$

Thm 2.1. Sei A und B Programmiersprachen. Es existiert eine Konstante $c_{A,B}$ die nur von A und B abhängt, so dass $\forall x \in \{0,1\}^* : |K_A(x) - K_B(x)| \le c_{A,B}$

Def 2.19. $x \in \{0,1\}^*$ heisst zufällig $\iff K(x) \ge |x|$. Eine Zahl n heisst zufällig $\iff K(n) = K(\operatorname{Bin}(n)) \ge \lceil \log_2(n+1) \rceil - 1$. Die -1 kommt von der führenden 1, welche bei jeder Binären Zahl führend ist.

Thm 2.2. $L \subseteq \{0,1\}^*$, sei z_n das kanonisch n-te Wort in L. Wenn ein Programm A_L existiert, das das $\{0,1\}^*$, L löst, dann gilt für alle $n \in \mathbb{N} - \{0\}$: $K(z_n) \leq \lceil \log_2(n+1) \rceil + c$, wobei c eine von n unabhängige Konstante ist.

Thm 2.3 (Primzahlsatz).

$$\lim_{n \to \infty} \frac{\operatorname{Prim}(n)}{n/\ln n} = 1$$

Lemma 2.6. Sei n_1, n_2, n_3, \ldots eine steigende unendliche folge natürlicher Zahlen mit $K(n_i) \geq \lceil \log_2 n_i \rceil / 2$. Für jedes $i \in \mathbb{N} - \{0\}$ sei q_i die grösste Primzahl, die die Zahl n_i teilt. Dann ist die Menge $Q = \{q_i \mid i \in \mathbb{N} - \{0\}\}$ unendlich.

Thm 2.4. Für unendlich viele $k \in \mathbb{N}$ gilt

$$\operatorname{Prim}(\mathbf{k}) \geq \frac{k}{2^{17}} \log_2 k \cdot (\log_2 \log_2 k)^2$$

3 Endliche Automaten

Def 3.1 (deterministischer endlicher Automat). $M = (q, \Sigma, \delta, q_0, F)$ mit:

- 1. Q: endliche Menge von Zuständen
- 2. Σ : Eingabealphabet
- 3. $q_0 \in Q$: der Anfangszustand
- 4. $F \subseteq Q$: Menge der akzeptierenden Zustände
- 5. $\delta: Q \times \Sigma \to Q$: Übergangsfunktion

Def (Weitere Terminologie).

- 1. Konfiguration von M ist $x \in Q \times \Sigma^*$.
- 2. Startkonfiguration von M auf x ist $(q_0, x) \in \{q_0\}$
- 3. Endkonfiguration: Jede Konfiguration von $Q \times \{\lambda\}$
- 4. Schritt von M: Relation $\vdash_M \subseteq (Q \times \Sigma^*) \times (Q \times \Sigma^*)$ definiert durch: $(q, w) \vdash_M (p, x) \iff w = ax, a \in \Sigma \text{ und } \delta(q, a) = p$
- 5. **Berechnung** C von M: Folge Folge von Konfigurationen $C = C_0, \ldots, C_n$ so dass $\forall 0 \le i < n : C_i \vdash_M C_{i+1}$
- 6. Berechnung von M auf Eingabe $x \in \Sigma^*$: Falls $C_0 = (q_0, x)$ und $C_n \in Q \times \{\lambda\}$
- 7. Akzeptierende Berechnung von M auf x: Falls $C_n \in F \times \{\lambda\}$ und M das Wort x akzeptiert.
- 8. Verwerfende Berechnung von M auf x: Falls $C_n \in (Q F) \times \{\lambda\}$ und M das Wort x verwirft.
- 9. Die von M akzeptierte Sprache L(M) =

 $\{w \in \Sigma^* \mid \text{Die Berechnung von } M \text{ auf } w \text{ endet in}$ einer Endkonfiguration $(q, \lambda) \text{ mit } q \in F$

10. Klasse der regulären (akzeptierten) Sprachen: $\mathcal{L}_{EA} = \{L(M) \mid M \text{ ist ein EA}\}$

Def 3.2. $(q, w) \vdash_M^* (p, u) \iff (q = p \land w = u) \lor k \in \mathbb{N}_1 :$ (i) $w = a_1 a_2 \dots a_k u, a_i \in \Sigma$ für $i = 1, 2, \dots, k$

(ii) $\exists r_1, r_2, \dots, r_{k-1} \in Q$, so dass $(q, w) \vdash_M (r_1, a_2 \dots a_k u) \dots \vdash_M (r_{k-1}, a_k u) \vdash_M (p, u)$

Def. $\hat{\delta}: Q \times \Sigma^* \to Q$ durch:

- (i) $\forall q \in Q : \hat{\delta}(q, \lambda) = q$
- (ii) $\forall a \in \Sigma, w \in \Sigma^*, q \in Q : \hat{\delta}(q, wq) = \delta(\hat{\delta}(q, w), a)$

Lemma 3.1. $L(M) = \{w \in \{0,1\}^* \mid |w|_0 + |w|_1 \equiv_2 0\}$

Def. Kl[p] = $\{w \in \Sigma^* \mid \hat{\delta}(q_0, w) = p\} = \{w \in \Sigma^* \mid (q_0, w) \vdash_M^* (p, \lambda)\}$

Lemma 3.2. $M_1 = (Q_1, \Sigma, \delta_1, q_{01}, F_1)$, sowie auch $M_2 = (Q_2, \Sigma, \delta_2, q_{02}, F_2)$ sind zwei EA, es gilt: $\forall \odot \in \{ \cup, \cap, - \} \ \exists M : L(M) = L(M_1) \odot L(M_2)$

Konstruktion von $M: M = (Q, \Sigma, \delta, q_0, F_{\odot})$

- (i) $Q = Q_1 \times Q_2$
- (ii) $q_0 = (q_{01}, q_{02})$
- (iii) $\forall q \in Q_1 p \in Q_2 a \in \Sigma : \delta((q, p), a) = (\delta_1(q, a), \delta_2(p, a))$

(iv) $\odot = \cup \implies F = F_1 \times Q_2 \cup Q_1 \times F_2$ $\odot = \cap \implies F = F_1 \times F_2$ $\odot = - \implies F = F_1 \times (Q_2 - F_2)$

Lemma 3.3. $\forall A = (Q, \Sigma, \delta_A, q_0, F) \forall x, y \in \Sigma^*, x \neq y$:

$$\begin{split} &(q_0,x)\vdash_A^*(p,\lambda)\wedge(q_0,y)\vdash_A^*(p,\lambda)\\ \Longrightarrow \forall z\in\Sigma^*\,\exists r\in Q: xz\in\mathrm{Kl}[r]\wedge yz\in\mathrm{Kl}[r]\\ \Longrightarrow xy\in L(A)\iff yz\in L(A) \end{split}$$

Lemma 3.4 (Pumping-Lemma).

 $\forall L \in \mathcal{L}_{EA} \, \exists n_0 \in \mathbb{N} \, \forall w \in \Sigma^*, |w| \ge n_0 \, \exists yxz = wl :$

- $1. |yx| \le n_0$
- 2. $|x| \ge 1$
- 3. $\{yx^k \mid k \in \mathbb{N}\} \vee \{yx^kz \mid k \in \mathbb{N}\} \cup L = \emptyset$

Thm 3.1. $\forall L \subset \{0,1\}^* \in \mathcal{L}_{EA} \ \forall x \in \{0,1\}^* \ \exists c : \forall n\text{-te Wort } y \text{ in } L_x : K(y) \leq \lceil \log_2(n+1) \rceil + c \text{ mit } L_x = \{y \in \Sigma^* \mid xy \in L\}$

Cor. $\forall L \subset \{0,1\}^* \in \mathcal{L}_{EA} \ \forall x \in \{0,1\}^* \ \exists c : \forall erste \ \textit{W\"{o}rter} \ y$ in $L_x \colon K(y) \leq c$

Nichtdeterminismus

Def 3.3 (*nicht deterministischer* endlicher Automat). $M = (q, \Sigma, \delta, q_0, F)$ mit:

- 1. Q: endliche Menge von Zuständen
- 2. Σ : Eingabealphabet
- 3. $q_0 \in Q$: der Anfangszustand
- 4. $F \subseteq Q$: Menge der akzeptierenden Zustände
- 5. $\delta: Q \times \Sigma \to \mathcal{P}(Q)$: Übergangsfunktion

Def (Weitere Terminologie).

- 1. Konfiguration von M ist $x \in Q \times \Sigma^*$.
- 2. Startkonfiguration von M auf x ist $(q_0, x) \in \{q_0\}$
- 3. Endkonfiguration: Jede Konfiguration von $Q \times \{\lambda\}$
- 4. **Schritt** von M: Relation $\vdash_M \subseteq (Q \times \Sigma^*) \times (Q \times \Sigma^*)$ definiert durch:

$$(q, w) \vdash_M (p, x) \iff w = ax, a \in \Sigma \text{ und } p \in \delta(q, a)$$

- 5. **Berechnung** C von M: Folge Folge von Konfigurationen $C = C_0, \ldots, C_n$ so dass $\forall 0 \le i < n : C_i \vdash_M C_{i+1}$
- 6. Berechnung von M auf Eingabe $x \in \Sigma^*$: Falls $C_0 = (q_0, x)$ und $C_n \in Q \times \{\lambda\}$
- 7. Akzeptierende Berechnung von M auf x: Falls $C_n = (p, \lambda), p \in F$ und M das Wort x akzeptiert.
- 8. Verwerfende Berechnung von M auf x: Falls $C_n \in (Q F) \times \{\lambda\}$ und M das Wort x verwirft.
- 9. Die von M akzeptierte Sprache $L(M) = \{w \in \Sigma^* \mid (q_0, w) \vdash_M^* (p, \lambda) \text{ für ein } p \in F\}$
- 10. $\hat{\delta}: Q \times \Sigma^* \to \mathcal{P}(q)$
 - (a) $\hat{\delta}(q,\lambda) = \{q\}$
 - (b) $\hat{\delta}(q, wa) = \{ p \mid \exists r \in \hat{\delta}(q, w) : p \in \delta(r, a) \}$
 - (c) $\hat{\delta}(q, wa) = \bigcup_{r \in \hat{\delta}(q, w)} \delta(r, a)$ für alle $q \in Q, a \in \Sigma, w \in \Sigma^*$

Thm 3.2. Zu jedem *NEA M* existiert ein *EA A*, so dass L(M) = L(A)

- 1. $Q_A = \{\langle P \rangle \mid P \subseteq Q\}$
- 2. $\Sigma_A = \Sigma$
- 3. $q_{0A} = \langle \{q_0\} \rangle$

- 4. $F_A = \{ \langle P \rangle P \mid P \subseteq Q \land P \cap F \neq \emptyset \}$
- 5. $\delta_A = Q_A \times \Sigma \times Q_A$
 - $\delta_A(\langle P \rangle, a) = \left\langle \bigcup_{p \in P} \delta_M(p, q) \right\rangle = \left\langle \{ p \in Q \mid \exists p \in P \land q \in \delta_M(p, a) \} \right\rangle$

Zahlen nachkorrigieren

Lemma 3.5. $L_k = \{x1y \mid x \in \{0,1\}^*, y \in \{0,1\}^{k-1}\}$

Für alle $k \in \mathbb{N}_1$ muss jeder EA, der L_k akzeptiert, mindestens 2^k Zustände haben.