Tutorial-1

- 1. Differentiate between DFA, NFA and ϵ -NFA. Design a deterministic finite automata for the following language:
 - a) Accepting string over {a, b} containing either 'ab' or 'bba' as substring.
 - b) Which accepts the strings with an even number of 0's followed by a single 1.
 - c) For the regular expression (a(ab)*b)*
- 2. Convert into DFA:

a)

- 3. Construct a NFA for the language (ab*a* ∪ b*aa). Provide any two accepted strings and two rejected strings.
- 4. Minimize the following DFA (Draw initial diagram first). Specify performed operations in each step

δ/Σ	0	1
$\rightarrow q_0$	\mathbf{q}_1	q ₂
*q1	q_1	q ₃
*q2	q_2	q_2
*q3	q ₅	q ₂
*q4	q ₄	q_2
*q5	q_4	q_2
q_6	q ₅	q_6
q ₇	q ₅	q ₆

- 5. Describe the closure properties of regular languages.
- 6. State Pumping Lemma for regular language. Show that the following language are not regular using Pumping Lemma
 - a) L= $\{0^n 1 2^n : n \ge 0 \}$
 - b) $L = \{1^n : n \text{ is a prime number}\}\$
 - c) $1 = \{a^n b^{2n} : n \ge 1\}$
- 7. Define countably infinite and uncountable sets with example. What are the differences between-reflexive relation and reflexive closure?
- 8. Justify that "The complement of diagonal set is different from each row sets." with the help of diagonalization principle. Show that if 3n+2 is odd then n is odd by using proof by contradiction technique.
- 9. State Pigeonhole Principle. What is the basic principle of proof using Mathematical Induction? Illustrate with any one example.
- 10. Define function with its types and example. Explain equivalence relations and partial order relations with examples of each.