Analyse Numérique TD 3, S4, 2013/2014

Ordre de Convergence:

Soit α un point fixe d'une fonction $\varphi \in \mathscr{C}^{p+1}$ pour un entier $p \ge 1$ dans un intervalle [a;b] contenant α . Si $\varphi^{(i)}(\alpha) = 0$ pour $1 \le i \le p$ et $\varphi^{(p+1)}(\alpha) \ne 0$, alors la méthode de point fixe associée à la fonction d'itération φ est d'ordre p+1.

Exercice 1:

Déterminer la suite des premiers 3 itérés des méthodes de dichotomie dans l'intervalle [1,3] et de Newton avec $x_0 = 2$ pour l'approximation du zéro de la fonction $f(x) = x^2 - 2$. Combien de pas de dichotomie doit-on effectuer pour améliorer d'un ordre de grandeur la précision de l'approximation de la racine?

Exercice 2:

Le but de cet exercice est de calculer la racine cubique d'un nombre positif a. Soit g la fonction définie sur \mathbb{R}_+^* par

$$g(x) = \frac{2}{3}x + \frac{1}{3}\frac{a}{x^2}$$
 (a > 0 fixé).

- 1. Faire l'étude complète de la fonction g.
- 2. Comparer g à l'identité.
- 3. Soit la suite $(x_n)_{n\in\mathbb{N}}$ définie par

$$x_{n+1} = g(x_n), \qquad x_0 > 0.$$

À l'aide des graphe de g et de l'identité sur \mathbb{R}_+^* , dessiner la suite $(x_n)_{n\in\mathbb{N}}$ sur l'axe des abscisses. Observer graphiquement la convergence.

- Justifier mathématiquement la convergence observée graphiquement. En particulier, montrer que cette suite est décroissante à partir du rang 1.
- 5. Calculer l'ordre de convergence de la suite.
- 6. Écrire l'algorithme défini par la suite $(x_n)_{n\in\mathbb{N}}$ qui permet de déterminer $\sqrt[3]{a}$ à une précision de 10^{-6} .
- 7. Expliciter la méthode de Newton pour la recherche du zéro de la fonction f définie par $f(x) = x^3 a$. Que remarquet-on?

Exercice 3:

Soit f une application de \mathbb{R} dans \mathbb{R} définie par $f(x) = \exp(x^2) - 4x^2$. On se propose de trouver les racines réelles de f.

- 1. Situer les 4 racines de f (i.e. indiquer 4 intervalles disjoints qui contiennent chacun une et une seule racine).
- 2. Montrer qu'il y a une racine α comprise entre 0 et 1.
- 3. Soit la méthode de point fixe

$$\begin{cases} x_{k+1} = \phi(x_k), \\ x_0 \in]0, 1[, \end{cases}$$
(1.3)

avec ϕ l'application de $\mathbb R$ dans $\mathbb R$ définie par $\phi(x) = \frac{\sqrt{\exp(x^2)}}{2}$. Examiner la convergence de cette méthode et en préciser l'ordre de convergence.

- 4. Écrire la méthode de Newton pour la recherche des zéros de la fonction f.
- 5. Entre la méthode de Newton et la méthode de point fixe (1.3), quelle est la plus efficace? Justifier la réponse.

Exercice 4:

Soit
$$f(x) = x^3 - \frac{11}{4}x^2 + \frac{7}{2}x - \frac{3}{2}$$

- 1- Calculer f(0) et f(1).
- 2- Que peut-on déduire ?
- 3- En utilisant la méthode de Dichotomie, appliquée à f dans l'intervalle [0,1], calculer les deux premiéres
- 4- En partant de $x_0 = 0.5$, calculer les deux premières itérés obtenus par la méthode de Newton-raphson.

Exercice 5:

- 1- Montrer que l'équation tg(x) = x admet une solution unique α dans l'intervalle $\frac{\pi}{2}$, $\frac{3\pi}{2}$ [et vérifier que $\alpha\epsilon$]4.4,4.5[.
- 2- Quel est le nombre d'itérations nécessaire pour approcher α à 10^{-3} par la méthode de Dichotomie? 3- Déterminer α à 10^{-3} prés.

Solution

Exercice1:

FIGURE 1.1.: Approximation du zéro de la fonction $f(x) = x^2 - 2$.

SOLUTION. On cherche les zéros de la fonction $f(x) = x^2 - 2$:

 \triangleright Méthode de la dichotomie : en partant de $I_0 = [a, b]$, la méthode de la dichotomie produit une suite de sous-intervalles $I_k=[a_k,b_k]$ avec $I_{k+1}\subset I_k$ et tels que $f(a_k)f(b_k)<0$. Plus précisément \rhd on pose $a_0=a,\,b_0=b,\,x_0=\frac{a_0+b_0}{2},$

$$\Rightarrow$$
 on pose $a_0 = a$, $b_0 = b$, $x_0 = \frac{a_0 + b_0}{2}$

si $f(a_k) f(x_k) < 0$ on pose $a_{k+1} = a_k$, $b_{k+1} = x_k$ sinon on pose $a_{k+1} = x_k$, $b_{k+1} = b_k$ et on pose $x_{k+1} = \frac{a_k + b_k}{2}$.

$$\triangleright$$
 et on pose $x_{k+1} = \frac{a_k + b_k}{2}$

Voir la figure 1.1a.

⊳ Méthode de Newton :

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} = x_k - \frac{x_k^2 - 2}{2x_k} = \frac{1}{2}x_k + \frac{1}{x_k}$$

Voir la figure 1.1b.

Donc on a le tableau suivant

	x_0	x_1	x_2	x_3
Dichotomie	2	$\frac{3}{2} = 1,5$	$\frac{5}{4} = 1,25$	$\frac{11}{8} = 1,375$
Newton	2	$\frac{3}{2} = 1,5$	$\frac{17}{12} = 1,416$	$\tfrac{17}{24} + \tfrac{12}{17} \simeq 1{,}4142156$

On rappelle qu'avec la méthode de la dichotomie, les itération s'achèvent à la m-ème étape quand $|x_m - \alpha| \le |I_m| < \varepsilon$, où ε est une tolérance fixée et $|I_m|$ désigne la longueur de l'intervalle I_m . Clairement $I_k = \frac{b-a}{2^k}$, donc pour avoir $|x_m - \alpha| < \varepsilon$ on doit

$$m \ge \log_2 \frac{b-a}{\varepsilon}$$
.

Améliorer d'un ordre de grandeur la précision de l'approximation de la racine signifie avoir

$$|x_k - \alpha| = \frac{|x_j - \alpha|}{10}$$

donc on doit effectuer $k - j = \log_2(10) \approx 3.3$ itérations de dichotomie.

Exercice2:

1. Étude de la fonction $g: \mathbb{R}_+^* \to \mathbb{R}$ définie par $g(x) = \frac{2}{3}x + \frac{1}{3}\frac{a}{x^2}$:

 $\star g(x) > 0$ pour tout $x \in \mathbb{R}_+^*$;

(b) Étude graphique de la convergence de la méthode de point fixe.

FIGURE 1.2.: Exercice 1.5

- $\star \lim_{x\to 0^+} g(x) = \lim_{x\to +\infty} g(x) = +\infty;$
- $\lim_{x \to +\infty} \frac{g(x)}{x} = \frac{2}{3} \text{ et } \lim_{x \to +\infty} g(x) \frac{2}{3}x = 0 \text{ donc } y = \frac{2}{3}x \text{ est un asymptote};$ $\star g'(x) = \frac{2}{3x^3}(x^3 a);$
- \star g est croissante sur $[\sqrt[3]{a}, +\infty[$, décroissante sur $[0, \sqrt[3]{a}]$;
- * $x = \sqrt[3]{a}$ est un minimum absolu et $g(\sqrt[3]{a}) = \sqrt[3]{a}$.

х	0	v V	a	+∞
g'(x)		in .	+	
g(x)	+∞ _	3 V	/a	+∞

2. Graphe de g comparé au graphe de i(x) = x; voir la figure 1.2a. On vérifie analytiquement qu'il existe une et une seule intersection entre la courbe d'équation y = g(x) et la droite d'équation y = x:

$$g(x) = x \iff \frac{2}{3}x + \frac{1}{3}\frac{a}{x^2} = x \iff x^3 = a.$$

- 3. Étude graphique de la convergence de la méthode de point fixe : voir la figure 1.2a.
- 4. On en déduit que pour tout x > 0 on a $g(x) \ge \sqrt[3]{a}$. Donc, pour tout k > 0, $x_k = g(x_{k-1}) \ge \sqrt[3]{a}$. Vérifions les hypothèses du théorème de point fixe qui fournit une condition suffisante de convergence de la suite :
 - 4.1. pour tout x dans $[\sqrt[3]{a}, +\infty[$ on a $g(x) > \sqrt[3]{a}$ donc $g([\sqrt[3]{a}, +\infty[)] \subset [\sqrt[3]{a}, +\infty[$ (i.e. l'intervalle $\sqrt[3]{a}, +\infty[$ est stable);
 - 4.2. $g \in \mathcal{C}^1([\sqrt[3]{a}, +\infty[);$
 - 4.3. pour tout x dans $[\sqrt[3]{a}, +\infty[$ on a

$$|g'(x)| = \left|\frac{2}{3}\left(1 - \frac{a}{x^3}\right)\right| < 1$$

donc g est contractante.

Alors la méthode converge vers α point fixe de g. De plus, pour tout $\alpha \in [\sqrt[3]{a}, +\infty[$ on a $\alpha = g(\alpha) \iff \alpha = \sqrt[3]{a}$: la méthode permet donc de calculer de façon itérative la racine cubique de a.

5. Étant donné que

$$g'(\alpha) = 0$$
, $g''(\alpha) = \frac{2a}{\alpha^4} \neq 0$

la méthode de point fixe converge à l'ordre 2.

Algorithm 1 Calcul de x = g(x)

Require:
$$x_0 > 0$$

while $|x_{k+1} - x_k| > 10^{-6}$ do $x_{k+1} \leftarrow g(x_k)$
end while

6. Algorithme de point fixe : Quelques remarques à propos du critère d'arrêt basé sur le contrôle de l'incrément. Les itérations s'achèvent dès que $|x_{k+1} - x_k| < \varepsilon$; on se demande si cela garantît-t-il que l'erreur absolue e_{k+1} est elle aussi inférieur à ε . L'erreur absolue à l'itération (k+1) peut être évaluée par un développement de Taylor au premier ordre

$$e_{k+1} = |g(\alpha) - g(x_k)| = |g'(z_k)e_k|$$

avec z_k compris entre α et x_k . Donc

$$|x_{k+1} - x_k| = |e_{k+1} - e_k| = |g'(z_k) - 1|e_k \simeq |g'(\alpha) - 1|e_k.$$

Puisque $g'(\alpha) = 0$, on a bien $|x_{k+1} - x_k| \simeq e_k$.

7. La méthode de Newton est une méthode de point fixe avec $g(x) = x - \frac{f(x)}{f'(x)}$. Ici elle s'écrit

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} = x_k - \frac{x_k^3 - a}{3x_k^2} = x_k - \frac{1}{3}x_k + \frac{a}{3x_k^2} = \frac{2}{3}x_k + \frac{a}{3x_k^2}$$

autrement dit la méthode de point fixe assignée est la méthode de Newton (qu'on sait être d'ordre de convergence égale à 2 lorsque la racine est simple).

Exercice3:

SOLUTION. On cherche les zéros de la fonction $f(x) = \exp(x^2) - 4x^2$.

- 1. On remarque que f(-x) = f(x): la fonction est paire. On fait donc une brève étude sur $[0, +\infty[$:
 - $\triangleright f(0) = 1 \text{ et } \lim_{x \to +\infty} f(x) = +\infty,$
 - f'(x) = 0 pour x = 0 et $x = \sqrt{\ln 4}$ et on a f(0) = 1 et $f(\sqrt{\ln 4}) = 4(1 \ln 4) < 0$; f est croissante pour $x > \sqrt{\ln 4}$ et décroissante pour $0 < x < \sqrt{\ln 4}$.

On a

- \triangleright une racine dans l'intervalle $]-\infty, -\sqrt{\ln 4}[$,
- \triangleright une racine dans l'intervalle $]-\sqrt{\ln 4},0[$,
- \triangleright une racine dans l'intervalle $]0, \sqrt{\ln 4}[$,
- \triangleright une racine dans l'intervalle $|\sqrt{\ln 4}, \infty|$.

Voir la figure 1.4a pour le graphe de f sur \mathbb{R} .

2. Puisque f(0) = 1 > 0 et f(1) = e - 4 < 0, pour le théorème des valeurs intermédiaires il existe au moins un $\alpha \in]0,1[$ tel que $f(\alpha) = 0$. Puisque $f'(x) = 2x \exp(x^2) - 8x = 2x(\exp(x^2) - 2^2) < 2x(e - 4) < 0$ pour tout $x \in]0,1[$, ce α est unique. Voir la figure 1.4b.

/

FIGURE 1.4.: Exercice 1.7

- 3. Étude de la convergence de la méthode (1.3) :
 - 3.1. pour tout x dans]0,1[on a

$$0 < \sqrt{\frac{\exp(x^2)}{4}} < \sqrt{\frac{e}{4}} < 1$$

 $\begin{aligned} &\operatorname{donc} \phi \colon]0,1[\to]0,1[\,;\\ 3.2. \ \ &\phi \in \mathcal{C}^1(]0,1[)\,; \end{aligned}$

- 3.3. pour tout x dans]0,1[on a

$$|\phi'(x)| = \left| \frac{x\sqrt{\exp(x^2)}}{2} \right| = \left| x\phi(x) \right| < |x| < 1$$

donc ϕ est contractante.

Alors la méthode (1.3) converge vers α point fixe de ϕ . De plus, pour tout $\alpha \in]0,1[$,

$$\alpha = \phi(\alpha) \iff 2\alpha = \sqrt{\exp(\alpha^2)} \iff 4\alpha^2 = \exp(\alpha^2) \iff f(\alpha) = 0;$$

donc α , point fixe de ϕ , est un zéro de f.

Étant donné que

$$\phi'(\alpha) = \alpha \phi(\alpha) = \alpha^2 \neq 0$$
,

la méthode de point fixe (1.3) converge seulement à l'ordre 1.

4. La méthode de Newton est une méthode de point fixe avec $\phi(x) = x - \frac{f(x)}{f'(x)}$. Ici donc elle s'écrit

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} = x_k - \frac{\exp(x_k^2) - 4x_k^2}{2x_k \exp(x_k^2) - 8x_k} = x_k - \frac{\exp(x_k^2) - 4x_k^2}{2x_k (\exp(x_k^2) - 4)}.$$

5. Puisque α est une racine simple de f, la méthode de Newton converge à l'ordre 2 tandis que la méthode de point fixe (1.3) converge seulement à l'ordre 1 : la méthode de Newton est donc plus efficace.