UNIVERSITY OF PETROLEUM & ENERGY STUDIES, DEHRADUN

Program	B.Tech (All SoCSBranches)	Semester	III
Course	Discrete Mathematical Structures	Course Code	CSEG2006

1. Show that the set of all real valued continuous functions defined in the open interval (0, 1) is a vector space over the field of real numbers, with respect to the operations of vector addition and scalar multiplication defined as

$$(f+g)(x) = f(x) + g(x)$$

$$(\alpha f)(x) = \alpha f(x), \quad \alpha \in R \quad \text{and } 0 < x < 1.$$

2. Suppose $V = \{x \mid x \in \mathbb{R}, x > 0\}$. Define vector addition and scalar multiplication as follows:

Vector addition: for $x \in V$, $y \in V$, define $x \oplus y = xy$

Scalar multiplication: for $r \in \mathbb{R}$, $x \in V$, define $r \odot x = x^r$

Show that $V(\oplus, \bigcirc)$ is a vector space over the field of real numbers.

3. Let W be the union of the first and third quadrants in the xy-plane. That is, let

$$W = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : xy \ge 0 \right\}.$$

- i. If u is in W and c is any scalar, is cu in W? Why?
- ii. Find specific vectors u and v in W such that u + v is not in W. (This is enough to show that W is not a vector space.)
- **4.** Verify whether the set of all points in \mathbb{R}^2 of the form (3s, 2 + 5s) forms a vector space where $s \in \mathbb{R}$.
- 5. If a mass m is placed at the end of the spring and if the mass is pulled downward and released, the mass-spring system will begin oscillate. The displacement y of the mass from its resting position is given by a function of the form $y(t) = c_1 \cos \omega t + c_2 \sin \omega t$, where ω is a constant that depends on the spring and the mass. Show that the set of all functions described by y(t) (with ω fixed and c_1 , c_2 arbitary) is a vector space.
- **6.** Under what condition of β the set $\{(\beta, 1, 0), (1, \beta, 1), (0, 1, \beta)\}$ is L.I and L.D in \mathbb{R}^3 .
- 7. Let $M_{2\times 2}$ be the vector space of all 2×2 matrices, and define $T:M_{2\times 2}\to M_{2\times 2}$ by $T(A)=A+A^T$, where $A=\begin{bmatrix} a & b \\ c & d \end{bmatrix}$.
 - **i.** Show that T is linear transformation.
 - **ii.** Describe the kernel of *T*.
- **8.** The circuit in the figure consists of a resistor (R ohms), an inductor (L henrys), a capacitor (C farads) and an initial voltage source. Let b = R/2L and suppose R, L and C have been

selected so that b also equals $1/\sqrt{LC}$. Let v(t) be the voltage (in volts) at time t, measured across the capacitor. It can be shown that v is in the null space H of the linear transformation that maps v(t) into $Lv''(t) + Rv'(t) + \left(\frac{1}{c}\right)v(t)$ and H consists of all functions of the form $v(t) = e^{-bt}(c_1 + c_2t)$. Find a basis for H.

9. Let $H = span\{u_1, u_2, u_3\}$ and $K = span\{v_1, v_2, v_3\}$ where

$$u_{1} = \begin{bmatrix} 1 \\ 2 \\ 0 \\ -1 \end{bmatrix}, u_{2} = \begin{bmatrix} 0 \\ 2 \\ -1 \\ 1 \end{bmatrix}, u_{3} = \begin{bmatrix} 3 \\ 4 \\ 1 \\ -4 \end{bmatrix}, v_{1} = \begin{bmatrix} -2 \\ -2 \\ -1 \\ 3 \end{bmatrix}, v_{2} = \begin{bmatrix} 2 \\ 3 \\ 2 \\ -6 \end{bmatrix}, v_{3} = \begin{bmatrix} -1 \\ 4 \\ 6 \\ -2 \end{bmatrix}$$

Find bases for H, K and H + K.

- **10.** A linear transformation T is defined on $V_3(C)$ by $T(a,b)=(a\alpha+b\beta,\ a\gamma+b\delta)$ where $\alpha,\beta,\gamma,\delta$ are fixed elements of C. Prove that T is invertible if and only if $\alpha\delta-\beta\gamma\neq0$.
- **11.** Let $T: \mathbb{R}^4 \to \mathbb{R}^4$ be the linear transformation defined by T(a, b, c, d) = (2a, 0, 0, c + d) then find the range space, null space, rank and nullity of linear transformation.
- **12.** Verify the Rank-Nullity theorem for the linear transformation $T: V_4 \to V_3$ defined by $T(e_1) = f_1 + f_2 + f_3$, $T(e_2) = f_1 f_2 + f_3$, $T(e_3) = f_1$, $T(e_4) = f_1 + f_3$ when $\{e_1, e_2, e_3, e_4\}$ and $\{f_1, f_2, f_3\}$ are the standard basis V_4 and V_3 respectively.
- **13.** Show that the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$, defined by T(x, y, z) = (2x, 4x y, 2x + 3y z), is invertible and determine T^{-1} .
- **14.** The linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by T(x, y, z) = (3x + 2y 4z, x 5y + 3z). Determine the matrix of T relative to the bases $B_1 = \{(1, 1, 1), (1, 1, 0), (1, 0, 0)\}, \ B_2 = \{(1, 3), (1, 5)\}.$
- 15. If the matrix of a linear transformation T on $V_3(R)$ with respect to the standard bases is

$$\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & -1 \\ -1 & -1 & 0 \end{bmatrix}$$
 what is the matrix of T with respect to the bases $\{(0,1,-1), (1,-1,1), (-1,1,0)\}$.