TD14 - Déduction naturelle (1)

Exercice 1

Trouver un arbre de preuve pour chacun des séquents suivants.

Logique minimale. Cette question se place dans le cadre de la logique minimale : les règles de l'absurdité intuitionniste \perp_e , du raisonnement par l'absurde *raa* et du tiers exclu *te* ne sont pas utilisables.

Question 1. $p \lor (p \land q) \vdash p$

Question 4. $p \to q, r \to s \vdash (p \land r) \to (q \land s)$

Question 2. $p \rightarrow \neg p \vdash \neg p$

Question 5. $p \rightarrow q, r \rightarrow s \vdash (p \lor r) \rightarrow (q \lor s)$

Question 3. $p \rightarrow (q \lor r), q \rightarrow s, r \rightarrow s \vdash p \rightarrow s$

Question 6. $(p \lor q) \to r \vdash (p \to r) \land (q \to r)$

Lois de De Morgan. Établir les trois premiers résultats suivants dans le cadre de la logique minimale. Le quatrième résultat n'est vrai que dans le cadre de la logique classique; on utilise donc un raisonnement par l'absurde ou le tiers exclus.

Question 7. $\neg (p \lor q) \vdash \neg p \land \neg q$

Question 9. $\neg p \lor \neg q \vdash \neg (p \land q)$

Question 8. $\neg p \land \neg q \vdash \neg (p \lor q)$

Question 10. $\neg(p \land q) \vdash \neg p \lor \neg q$

Logique intuitionniste. On se place dans le cadre de la logique intuitionniste. On peut donc utiliser la règle de l'absurdité intuitionniste \perp_e mais pas celles du raisonnement par l'absurde raa et du tiers exclu te.

Question 11. $\neg p \vdash p \rightarrow p$

Question 12. $p \lor q, \neg q \vdash p$

Question 13. $\neg(p \rightarrow q) \vdash q \rightarrow p$

Logique classique. Toutes les règles sont désormais autorisées.

Question 14. $p \rightarrow (q \lor r) \vdash (p \rightarrow q) \lor (p \rightarrow r)$

Question 15. $(p \rightarrow r), (\neg q \rightarrow \neg p) \vdash p \rightarrow r$

Exercice 2

Dans le cadre de la logique classique, montrer les résultats suivants.

Question 1. $(\varphi \lor \psi) \vdash (\psi \lor \varphi)$

Question 6. $\Gamma \vdash \neg \varphi$ si et seulement si $\Gamma \vdash \varphi \rightarrow \bot$

Question 2. $(\varphi \to \psi), (\psi \to \omega) \vdash (\varphi \to \omega)$

Question 7. $\vdash \varphi \rightarrow (\psi \rightarrow \omega)$

Question 3. $(\neg \varphi \lor \psi) \vdash (\varphi \to \psi)$

Question 8. $\vdash (\neg \varphi \lor \psi) \rightarrow (\varphi \rightarrow \psi)$

Question 4. $\varphi \vdash \neg \neg \varphi$

Question 9. $(\varphi \rightarrow \neg \varphi) \rightarrow \neg \varphi$

Question 5. $\neg(\varphi \lor \psi) \vdash (\neg \varphi \land \neg \psi)$

Exercice 3

Sans utiliser le raisonnement par l'absurde, construire des arbres de dérivation pour les jugements suivants.

Question 1. $(\varphi_1 \land \varphi_2) \rightarrow \psi \vdash \varphi_1 \rightarrow (\varphi_2 \rightarrow \psi)$

Question 3. $\neg \varphi \lor \psi \vdash \varphi \to \psi$

Question 2. $\varphi \to (\psi \to \theta), \psi \to \varphi \vdash \psi \to \theta$

Question 4. $\varphi \rightarrow \neg \varphi \vdash \neg \varphi$

Exercice 4

Question 1. Donner une *dérivation* de $\neg\neg\varphi$, $\varphi \lor \neg\varphi \vdash \varphi$, sans utiliser la règle de raisonnement par l'absurde.

Question 2. Donner une *dérivation* de $\neg\neg\varphi \vdash \varphi$ en utilisant notamment le raisonnement par l'absurde.

Règles de la déduction naturelle

____ Règles de l'implication ___

$$\frac{\Gamma, \varphi_1 \vdash \varphi_2}{\Gamma \vdash \varphi_1 \to \varphi_2} \to \emptyset$$

$$\frac{\Gamma, \varphi_1 \vdash \varphi_2}{\Gamma \vdash \varphi_1 \to \varphi_2} \to_i \qquad \frac{\Gamma \vdash \varphi_1 \to \varphi_2}{\Gamma \vdash \varphi_2} \to_e$$

___ Règles du *et* _

$$\frac{\Gamma \vdash \varphi_1 \quad \Gamma \vdash \varphi_2}{\Gamma \vdash \varphi_1 \land \varphi_2} \land_i \qquad \frac{\Gamma \vdash \varphi_1 \land \varphi_2}{\Gamma \vdash \varphi_1} \land_e \qquad \frac{\Gamma \vdash \varphi_1 \land \varphi_2}{\Gamma \vdash \varphi_2} \land_e$$

$$\frac{\Gamma \vdash \varphi_1 \land \varphi_2}{\Gamma \vdash \varphi_1} \land_e$$

$$\frac{\Gamma \vdash \varphi_1 \land \varphi_2}{\Gamma \vdash \varphi_2} \land$$

___ Règle du ou __

$$\frac{\Gamma \vdash \varphi_1}{\Gamma \vdash \varphi_1 \vee \varphi_2} \vee_i \qquad \frac{\Gamma \vdash \varphi_2}{\Gamma \vdash \varphi_1 \vee \varphi_2} \vee_i \qquad \frac{\Gamma \vdash \varphi_1 \vee \varphi_2}{\Gamma \vdash \psi} \vee_e \frac{\Gamma, \varphi_1 \vdash \psi}{\Gamma \vdash \psi} \vee_e$$

$$\frac{\Gamma \vdash \varphi_2}{\Gamma \vdash \varphi_1 \lor \varphi_2} \lor$$

$$\frac{\Gamma \vdash \varphi_1 \lor \varphi_2}{}$$

$$\Gamma, \varphi_1 \vdash \psi$$

$$\frac{\Gamma, \varphi_2 \vdash \psi}{} \vee_{\epsilon}$$

_ Règles de la négation ______

$$\frac{\Gamma, \varphi \vdash \bot}{\Gamma \vdash \neg \varphi} \neg_{q}$$

$$\frac{\Gamma, \varphi \vdash \bot}{\Gamma \vdash \neg \varphi} \neg_i \qquad \frac{\Gamma \vdash \neg \varphi \qquad \Gamma \vdash \varphi}{\Gamma \vdash \bot} \neg_e$$

_____ Absurdité intuitionniste _____

$$\frac{\Gamma \vdash \bot}{\Gamma \vdash \varphi} \perp_e$$

Raisonnement par l'absurde _____

$$\frac{\Gamma, \neg \varphi \vdash \bot}{\Gamma \vdash \varphi}$$
 raa

$$\frac{}{\Gamma \vdash \varphi \lor \neg \varphi} te$$

. Règle de ⊤ ______

$$\frac{}{\Gamma \vdash \top} \top_i$$

Hypothèse _____

$$\frac{\varphi \in \Gamma}{\Gamma \vdash \varphi} \; \mathit{hyp}$$

_ Coupure ____

$$\frac{\Gamma \vdash \varphi \qquad \Gamma, \varphi \vdash \psi}{\Gamma \vdash \psi} \ \mathit{cut}$$