تمرین درس تئوری مدارهای الکتریکی

تمرین شماره یک

دانشکده مهندسی برق دانشگاه صنعتی شریف ۱۶ مهر ۱۴۰۱

دو ولتاژ $v_{2}(t)$, $v_{2}(t)$ را با استفاده از روش گره در حالت دائم سینوسی بدست آورید.

- (آ) اندوكتانس متقابل صفر است.
- (ب) اندو کتانس متقابل یک هانری است.

سوال ۲

اگر $v_1(t)$ باشد. $L_1=0.4{\rm H}$, $L_2=2.5{\rm H}$, $\kappa=0.6$, $i_1=4i_2=20{\rm cos}(500{\rm t-}20^\circ){\rm mA}$ و تمام انرژی ذخیره شده در سیستم و در لحظه صفر را بدست آورید.

معادل T و π ترانزفورمر خطی را بیابید.

سوال ۴

باشد، $M_1=2$ H, $M_2=0$ H, $M_3=10$ H است. اگر $i_{s2}=1.5{\rm sin}({\rm t})$ mA و $i_{s1}=2{\rm cos}({\rm t})$ mA را محاسبه کنید. $v_{AG}({\rm t})$

برای دو مدار زیر، $V_2(\mathrm{j}\omega)$ و $V_2(\mathrm{j}\omega)$ را برحسب $V_2(\mathrm{j}\omega)$ بدست آورید.

سوال ۶

رآ) معادلات مش را برحسب $I_{1}(\mathrm{j}\omega)\;,\;I_{2}(\mathrm{j}\omega)\;,\;I_{3}(\mathrm{j}\omega)$ بدست بیاورید.

 $(\omega=2)$. را بیابید $I_3(\mathrm{j}\omega)$ (ب)

<u>سوال ۷</u>

را بدست آورید وقتی: V_2/V_s

رآ) $L_1 = 100 {
m mH} \;, \, L_2 = 500 {
m mH}$ و M ماکزیمم مقدار ممکن است.

(ب) $L_1 = 5^*L_2 = 1.4$ و κ درصد ماکزیمم مقدار ممکن است.

(ج) L_1 و L_2 یک ترانسفورمر ایده آل در نظر بگیرید. L_1 ۵۰۰، دور و L_2 ۲۰۰۰ دور دارند.

مقدار دارند. a و d را طوری انتخاب کنید که ولتاژ دوسر R_L به ماکزیمم $R_L=1$ مقدار دارند. $R_L=1$ مقدار دارند. و $R_L=1$ به ماکزیمم اندازه ۲۰۰ ولت برسد.

سوالات اختياري

سوالات ۲ ۵ ۱۳ ۱۵ ۱۹ ۲۵ ۳۳ ۴۲ از کتاب:)