Modelado semi-físico, estimación de parámetros y simulación Clase Experiencia 2

Profesor: Juan C. Agüero

Departamento de Ingeniería Electrónica UTFSM, Chile

Valparaíso, 09 de Junio de 2021

Outline

- Sesión 1: Simulación del sistema de estanques acoplados
 - Estrategia de Modelado
 - Ecuaciones que definen el sistema de interés
 - Esquema de SIMULINK para los simulación del sistema no-lineal
 - Ejemplo de linealización de un sistema dinámico
 - Actividades en Sesión 1
- Sesión 2: Modelado y simulación del Levitador Magnético
 - Modelado
 - Bloque saturación y integral saturada
 - Simulación

Estrategia de Modelado

Procedimiento para modelar un sistema:

- Determinar qué variables son entradas (capacidad de manipulación) y cuáles salidas (variables que podemos medir y queremos controlar).
- Utilizar las ecuaciones de Física para establecer cuáles variables son importantes y qué tipo de relaciones existen entre las variables.
- Utilizar data experimental para estimar parámetros que no podemos medir exactamente, o posiblemente varian en el tiempo.
- Existen dos formas de tratar el problema:
 - Considerar el sistema alrededor de un punto de operación y realizar experimentos (por ejemplo, obtener la respuesta a escalón del sistema). Luego obtener un modelo *lineal* alrededor de ese punto de operación. Ventaja: el modelo es *bueno* en el rango de interés.
 - ② Considerar el sistema en un rango amplio de operación y realizar un experimento (por ejemplo, respuesta a escalón). Luego obtener un modelo más complejo (no-lineal). Ventaja: el modelo es válido en un rango más amplio de operación.

Outline

- Sesión 1: Simulación del sistema de estanques acoplados
 - Estrategia de Modelado
 - Ecuaciones que definen el sistema de interés
 - Esquema de SIMULINK para los simulación del sistema no-lineal
 - Ejemplo de linealización de un sistema dinámico
 - Actividades en Sesión 1
- Sesión 2: Modelado y simulación del Levitador Magnético
 - Modelado
 - Bloque saturación y integral saturada
 - Simulación

Sistema Estanques Acoplados:

$$A\frac{dh_1(t)}{dt} = q_1(t) - q_{12}(t)$$

$$A\frac{dh_2(t)}{dt} = q_{12}(t) - q_2(t)$$

$$q_{12}(t) = \kappa \sqrt{h_1(t) - h_2(t)} \quad \text{si } h_1(t) \ge h_2(t)$$

Sensores de nivel:

$$v_1(t) = a_1h_1(t) + b_1 \rightarrow v_1$$
 Corresponde a Analog input 0
 $v_2(t) = a_2h_2(t) + b_2 \rightarrow v_2$ Corresponde a Analog input 1

Bombas:

$$q_1(t)=c_1u_1(t)+d_1u_1^2(t)\to u_1$$
 Corresponde a Analog output 0 $q_2(t)=c_2u_2(t)+d_2u_2^2(t)\to u_2$ Corresponde a Analog output 1

Variables:

t	tiempo en $[s]$
$h_1(t)$	nivel en el estanque 1 en [cm]
$h_2(t)$	nivel en el estanque 2 en [cm]
$q_1(t)$	caudal de entrada del estanque 1 en $[cm^3/s]$
$q_2(t)$	caudal de entrada del estanque 2 en $[cm^3/s]$
$q_{12}(t)$	caudal de traspaso del estanque 1 al 2 en $[cm^3/s]$
$0 \le v_1(t) \le 10$	voltaje de medición de nivel del estanque 1 en $[V]$
$0 \le v_2(t) \le 10$	voltaje de medición de nivel del estanque 2 en $[V]$
$0 \le u_1(t) \le 10$	voltaje de actuación sobre la bomba 1 en $[V]$
$0 \le u_2(t) \le 10$	voltaje de actuación sobre la bomba 2 en $[V]$

Parámetros:

- A área basal de ambos estanques en $[cm^2]$
- κ coeficiente de traspaso en $[cm^{2,5}/s]$
- a_1 ganancia de la característica del sensor de nivel estanque 1 en [V/cm]
- b_1 offset de la característica del sensor de nivel estanque 1 en [V]
- a_2 ganancia de la característica del sensor de nivel estanque 2 en [V/cm]
- b_2 offset de la característica del sensor de nivel estanque 2 en [V]
- c_1 coeficiente del término lineal de la característica de la bomba 1 en $[cm^3/(s)]$
- c_1 coeficiente del término lineal de la característica de la bomba 1 en $\lfloor cm^3 \rfloor$ (s d_1 coeficiente del término caudrático de la característica de la bomba 1 en $\lfloor cn^3 \rfloor$
- a_1 coefficiente del término caudratico de la característica de la bomba 1 en $[cn^3/(sn^2)]$
- d_2 coeficiente del término caudrático de la característica de la bomba 2 en [cn]

Experimento de igualación de nivel:

- Parámetro a estimar: κ
- Resolviendo la ecuación diferencial (considerando $q_1(t) = q_2(t) = 0$) con respecto a la diferencia de nivel $z(t) = h_1(t) h_2(t)$, se tiene que:

$$A\frac{dz(t)}{dt} = -2\kappa\sqrt{z(t)} \Rightarrow \sqrt{z(t)} = \sqrt{z(0)} - \frac{\kappa}{A}t$$

Como el área es conocida, se puede estimar κ utilizando un regresión lineal (puede usar EXCEL o MATLAB).

Ver video de análisis fenomenológico del sistema de estanques acoplados.

Outline

- Sesión 1: Simulación del sistema de estanques acoplados
 - Estrategia de Modelado
 - Ecuaciones que definen el sistema de interés
 - Esquema de SIMULINK para los simulación del sistema no-lineal
 - Ejemplo de linealización de un sistema dinámico
 - Actividades en Sesión 1
- Sesión 2: Modelado y simulación del Levitador Magnético
 - Modelado
 - Bloque saturación y integral saturada
 - Simulación

Esquema de SIMULINK para los simulación del sistema no-lineal

Esquema de SIMULINK para los simulación del sistema no-lineal

- Conviene utilizar el bloque "Integrator" de modo de incluir la condición inicial de la variables $h_i(t)$.
- Se agregan un par de flechas para crear un "subsystem".

Ver video de como hacer una máscara.

Esquema de SIMULINK para los simulación del sistema no-lineal

- Además se tiene que agregar los modelos para los sensores (afín) y actuadores (cuadrático).
- Se debe agregar a la máscara los parámetros que definen los sensores (a_1, b_1, a_2, b_2) y los actuadores (c_1, c_2) .

Outline

- Sesión 1: Simulación del sistema de estanques acoplados
 - Estrategia de Modelado
 - Ecuaciones que definen el sistema de interés
 - Esquema de SIMULINK para los simulación del sistema no-lineal
 - Ejemplo de linealización de un sistema dinámico
 - Actividades en Sesión 1
- Sesión 2: Modelado y simulación del Levitador Magnético
 - Modelado
 - Bloque saturación y integral saturada
 - Simulación

Example

Considere el siguiente sistema

Planta:
$$\begin{cases} A\dot{h}(t) = q_1(t) - q_2(t) \\ q_2(t) = \kappa \sqrt{h(t)} \end{cases}$$

Sensor estático: v(t) = ah(t) + b

Actuador estático: $q_1(t) = cu(t) + du^2(t)$

donde la entrada es u(t) y la salida v(t).

Considere la siguiente definición de variables:

$$h(t) = (h)_{Q} + \Delta H(t)$$

$$q_{1}(t) = (q_{1})_{Q} + \Delta Q_{1}(t)$$

$$q_{2}(t) = (q_{2})_{Q} + \Delta Q_{2}(t)$$

$$v(t) = (v)_{Q} + \Delta V(t)$$

$$u(t) = (u)_{Q} + \Delta U(t)$$

En el punto de operación (equilibrio):

$$(q_1)_Q = (q_2)_Q = \kappa \sqrt{(h)_Q}$$

 $(\nu)_Q = a(h)_Q + b$
 $(q_1)_Q = c(u)_Q + d(u_Q)^2$

Reemplazando la definición de variables en el sistema dinámico:

$$\begin{split} A\Delta\dot{H}(t) &= \{(q_1)_Q + \Delta Q_1(t)\} - \{(q_2)_Q + \Delta Q_2(t)\}\\ (v)_Q + \Delta V(t) &= a\left\{(h)_Q + \Delta H(t)\right\} + b \end{split}$$

Entonces:

$$A\Delta \dot{H}(t) = \Delta Q_1(t) - \Delta Q_2(t)$$

$$\Delta V(t) = a\Delta H(t)$$

Usando serie de Taylor de primer orden alrededor del punto de operación para las ecuaciones no-lineales:

$$q_{2}(t) = f_{1}(h) = \kappa \sqrt{(h)_{Q}} + \frac{\kappa}{2\sqrt{(h)_{Q}}} \{h(t) - (h)_{Q}\}$$

$$q_{1}(t) = f_{2}(u) = c\{(u)_{Q} + \Delta U(t)\} + d\{(u)_{Q}^{2} + 2(u)_{Q}(u(t) - (u)_{Q})\}$$

Entonces:

$$\begin{split} \Delta Q_2(t) &= \frac{\kappa}{2\sqrt{(h)_Q}} \Delta H(t) \\ \Delta Q_1(t) &= c\Delta U(t) + 2d(u)_Q \Delta U(t) \end{split}$$

Juntando ecuaciones:

$$\begin{split} A\Delta \dot{H}(t) &= \{c\Delta U(t) + 2d(u)_Q \Delta U(t)\} - \left\{\frac{\kappa}{2\sqrt{(h)_Q}} \Delta H(t)\right\} \\ \Delta V(t) &= a\Delta H(t) \end{split}$$

Usando transformada de Laplace:

$$As\Delta \bar{H}(s) = (c + 2d(u)_{Q})\Delta \bar{U}(s) - \frac{\kappa}{2\sqrt{(h)_{Q}}}\Delta \bar{H}(s) \Rightarrow \frac{\Delta \bar{H}(s)}{\Delta \bar{U}(s)} = \frac{c + 2d(u)_{Q}}{As + \frac{\kappa}{2\sqrt{(h)_{Q}}}}$$
$$\Delta \bar{V}(s) = a\Delta \bar{H}(s) \Rightarrow \frac{\Delta \bar{V}(s)}{\Delta \bar{U}(s)} = \underbrace{a}_{sensor} \underbrace{\frac{1}{As + \frac{\kappa}{2\sqrt{(h)_{Q}}}}}_{actuador} \underbrace{\{c + 2d(u)_{Q}\}}_{actuador}$$

planta

Método alternativo:

Alternativamente (siguiendo el procedimiento descrito en la clase de sistemas lineales) se puede resolver para h(t) como $h(t) = \frac{v(t)-b}{a}$ y luego obtener la representación entrada-salida del sistema:

$$\frac{A}{a}\dot{v}(t) = cu(t) + du^{2}(t) - \kappa\sqrt{\frac{v(t) - b}{a}}$$

Definiendo variables $x_1 = u(t)$, $x_2 = v(t)$, $x_3 = \dot{v}(t)$ la ecuación que define al sistema en la forma entrada-salida se puede re-escribir como una ecuación estática:

$$f(x_1, x_2, x_3) = 0$$

utilizando una serie de Taylor de primer orden (en las tres variables) se obtiene el sistema linealizado.

Para el caso de estanques acoplados:

- hay dos entradas $(u_1(t), u_2(t))$ y dos salidas $(v_1(t), v_2(t))$
- el caudal entre estanques depende de las dos alturas: $q_{12}(t)=f_3(h_1,h_2)=\kappa\sqrt{h_1(t)-h_2(t)}$
- los caudales de entrada y salida son no-lineales: $q_1(t) = f_4(u_1) = c_1u_1(t) + d_1u_1^2(t)$, $q_2(t) = f_5(u_2) = c_2u_2(t) + d_2u_2^2(t)$.
- los sensores son no-lineales: $v_1(t) = a_1h_1(t) + b_1$, $v_2(t) = a_2h_2(t) + b_2$.
- En la representación entrada-salida del sistema se obtienen dos ecuaciones que se tienen que aproximar por una serie de Taylor en varias variables.

Modelo linealizado del sistema de estanques acoplados

Estanques

El sistema de estanques acoplados linealizado esta dado por:

$$\begin{bmatrix} \Delta H_1 \\ \Delta H_2 \end{bmatrix} = \begin{bmatrix} \frac{s + \gamma/A}{As(s + 2\gamma/A)} & -\frac{\gamma/A^2}{s(s + 2\gamma/A)} \\ \frac{\gamma/A^2}{s(s + 2\gamma/A)} & -\frac{s + \gamma/A}{As(s + 2\gamma/A)} \end{bmatrix} \begin{bmatrix} \Delta Q_1 \\ \Delta Q_2 \end{bmatrix}$$

Sensores (estáticos)

$$\begin{bmatrix} \Delta v_1 \\ \Delta v_2 \end{bmatrix} = \begin{bmatrix} a_1 & 0 \\ 0 & a_2 \end{bmatrix} \begin{bmatrix} \Delta H_1 \\ \Delta H_2 \end{bmatrix}$$

Actuadores (estáticos)

$$\begin{bmatrix} \Delta Q_1 \\ \Delta Q_2 \end{bmatrix} = \begin{bmatrix} c_1 + 2d_1(u_1)_Q & 0 \\ 0 & c_2 + 2d_2(u_2)_Q \end{bmatrix} \begin{bmatrix} \Delta U_1 \\ \Delta U_2 \end{bmatrix}$$

Outline

- Sesión 1: Simulación del sistema de estanques acoplados
 - Estrategia de Modelado
 - Ecuaciones que definen el sistema de interés
 - Esquema de SIMULINK para los simulación del sistema no-lineal
 - Ejemplo de linealización de un sistema dinámico
 - Actividades en Sesión 1
- Sesión 2: Modelado y simulación del Levitador Magnético
 - Modelado
 - Bloque saturación y integral saturada
 - Simulación

Actividad 1: Simulación de sistema NL vs Sistema L

Actividad 2: Estimación del coeficiente de traspaso

Ecuación que describe como la diferencia de altura depende en forma afín de κ :

$$\sqrt{z(t)} = \sqrt{z(0)} - \frac{\kappa}{A}t$$

Mediciones disponibles ($i = \{1, 2\}$):

$$v_i^{med}(t) = v_i(t) + \varepsilon_i(t)$$
$$v_i(t) = a_i h_i(t) + b_i$$

- A partir de las mediciones de $v_i^{med}(t)$ obtenga una estimación de la altura $\hat{h}_i(t) = \frac{v_i^{med}(t) b_i}{a}$.
- Calcule una estimación de $\sqrt{z(t)}$ y utilizando LS estime la pendiente $\frac{\kappa}{4}$.
- Con una medición de A resuelva para κ .

Outline

- Sesión 1: Simulación del sistema de estanques acoplados
 - Estrategia de Modelado
 - Ecuaciones que definen el sistema de interés
 - Esquema de SIMULINK para los simulación del sistema no-lineal
 - Ejemplo de linealización de un sistema dinámico
 - Actividades en Sesión 1
- Sesión 2: Modelado y simulación del Levitador Magnético
 - Modelado
 - Bloque saturación y integral saturada
 - Simulación

- El sistema comprende dos tipos de imanes (imanes permanentes y un electroimán) y un rotor (objeto metálico que se suspende en el aire bajo el control de las fuerzas ejercidas por los imanes).
- El imán permanente mantiene el rotor en equilibrio (sin usar el electroimán, $i_e = 0$). Siempre ejerce una fuerza atractiva que lleva el rotor en dirección hacia el origen.
- El electroimán empuja o tira el rotor para que se mantenga en su punto de equilibrio con una fuerza proporcional a la corriente en el electroimán. Note que el rotor es de aluminio y tiene un imán permanente.
- Los fuerza ejercida por los imanes son proporcionales al inverso del cuadrado de la distancia.
- Se utilizan emisores y receptores infrarojos para determinar la posición del rotor.
- Sin la presencia de un controlador, cualquier perturbación ocasionaría que el rotor se caiga (punto de equilibrio inestable). Incluso en simulaciones se puede caer debido a errores numéricos.

$$m\ddot{x}(t) = mg - F(t)$$
 $F(t) = \underbrace{\frac{k_1 i_e}{x^2}}_{\text{Electroimán}} + \underbrace{\frac{k_2}{x^2}}_{\text{Imán permanente}}$

$$v_e(t) = -K_a u(t) + \delta_a$$

$$L \frac{di_e(t)}{dt} = v_e(t) - Ri_e(t)$$

$$v_x(t) = K_m x(t) - \delta_m$$

Respuesta a escalones en el voltaje de entrada

- Escalón positivo en u(t) implica un escalón negativo en v_e , y un disminución de la corriente (como un sistema de primer orden). Esto implica una disminución de la fuerza producida por el electroimán, y potencialmente el rotor se caerá llegando a la mesa.
- Escalón negativo en u(t) implica un escalón positivo en v_e , y un aumento de la corriente (como un sistema de primer orden). Esto implica un aumento de la fuerza producida por el electroimán, y potencialmente el rotor se pegará al imán permanente.

- Primero se define el punto de operación como un punto de equilibrio (las derivadas valen cero).
- Se reemplaza las variables por su versión linealizada (en delta) y se elimina el offset. Por ejemplo,
 - sean $v_e(t) = (v_e)_Q + \Delta v_e(t)$, $u(t) = (u)_Q + \Delta u(t)$, entonces en el punto de equilibrio $(v_e)_Q = -K_a(u)_Q + \delta_a$ y reemplazando en la ecuación original:

$$v_e(t) = -K_a u(t) + \delta_a$$

$$(v_e)_Q + \Delta v_e(t) = -K_a(u)_Q - K_a \Delta u(t) + \delta_a$$

$$\Delta v_e(t) = -K_a \Delta u(t)$$

Similarmente:

$$\begin{split} L\frac{d\Delta i_e(t)}{dt} &= \Delta v_e(t) - R\Delta i_e(t) \\ \Delta v_x(t) &= K_m \Delta x(t) \\ m\Delta \ddot{x}(t) &= -\Delta F(t) \end{split}$$

• La no-linealidades presentes se aproximan por una serie de Taylor de primer orden alrededor del punto de operación:

$$F(t) = \frac{k_1 i_e}{x^2} + \frac{k_2}{x^2}$$

$$= \underbrace{\frac{k_1 (i_e)_Q}{(x)_Q^2} + \frac{k_2}{(x)_Q^2}}_{(F)_Q} + \frac{\partial F}{\partial x} \Big|_Q (x - (x)_Q) + \frac{\partial F}{\partial i_e} \Big|_Q (i_e - (i_e)_Q)$$

$$\Delta F(t) = \underbrace{\frac{\partial F}{\partial x}}_{(F)_Q} \Delta x(t) + \underbrace{\frac{\partial F}{\partial i_e}}_Q \Delta i_e(t)$$

$$\frac{\partial F}{\partial x}\Big|_{Q} = -2\frac{k_{1}(i_{e})_{Q}}{(x)_{Q}^{3}} - 2\frac{k_{2}}{(x)_{Q}^{3}} = -\frac{2}{(x)_{Q}} \left[\frac{k_{1}(i_{e})_{Q}}{(x)_{Q}^{2}} + \frac{k_{2}}{(x)_{Q}^{2}} \right] = -2\frac{mg}{(x)_{Q}} = -\alpha_{1}$$

$$\frac{\partial F}{\partial i_{e}}\Big|_{Q} = \frac{k_{1}}{(x)_{Q}^{2}} = \alpha_{2}$$

Re-arreglando ecuaciones y aplicando transformada de Laplace:

$$\Delta v_x(t) = K_m \Delta x(t) \Rightarrow \Delta V_x(s) = K_m \Delta X(s)$$

$$m \Delta \ddot{x}(t) = \alpha_1 \Delta x(t) - \alpha_2 \Delta i_e(t) \Rightarrow \frac{\Delta X(s)}{\Delta I_e(s)} = -\frac{\alpha_2}{ms^2 - \alpha_1}$$

$$L \frac{d \Delta i_e(t)}{dt} = \Delta v_e(t) - R \Delta i_e(t) \Rightarrow \frac{\Delta I_E(s)}{\Delta V_e(s)} = \frac{1}{Ls + R}$$

$$\Delta v_e(t) = -K_a \Delta u(t) \Rightarrow \Delta V_e(s) = -K_a \Delta U(s)$$

Entonces:

$$G(s) = \frac{\Delta V_x(s)}{\Delta U(s)} = \frac{K_a K_m \alpha_2}{(ms^2 - \alpha_1)(Ls + R)}$$
$$= \frac{\frac{K_a K_m \alpha_2}{mL}}{(s^2 - \frac{\alpha_1}{m})(s + \frac{R}{L})}$$

Punto de operación:

$$(i_e)_Q = 0 \Rightarrow mg = \frac{k_2}{(x)_Q^2} \Rightarrow (x)_Q = \sqrt{\frac{k_2}{mg}} = \sqrt{\frac{1536}{0.15 \times 1000}} = 3.2$$
$$\Rightarrow \alpha_1 = 2 \frac{mg}{(x)_Q} = 2 \frac{0.15 \times 1000}{3.2} = 93.75$$
$$\alpha_2 = \frac{k_1}{(x)_Q^2} = \frac{5888}{3.2^2} = 575$$

$$\frac{K_a K_m \alpha_2}{mL} = \frac{3 \times 1 \times 575}{0.15 \times 0.2} = 57500, \quad \frac{R}{L} = 100$$
$$\frac{\alpha_1}{m} = 625 \Rightarrow \sqrt{\frac{\alpha_1}{m}} = 25$$

Punto de operación:

$$G(s) = \frac{57500}{(s^2 - 25^2)(s + 100)}$$
$$= \frac{57500}{(s + 25)(s - 25)(s + 100)}$$

Outline

- Sesión 1: Simulación del sistema de estanques acoplados
 - Estrategia de Modelado
 - Ecuaciones que definen el sistema de interés
 - Esquema de SIMULINK para los simulación del sistema no-lineal
 - Ejemplo de linealización de un sistema dinámico
 - Actividades en Sesión 1
- Sesión 2: Modelado y simulación del Levitador Magnético
 - Modelado
 - Bloque saturación y integral saturada
 - Simulación

Integral + Saturación vs Integral Saturada

Outline

- Sesión 1: Simulación del sistema de estanques acoplados
 - Estrategia de Modelado
 - Ecuaciones que definen el sistema de interés
 - Esquema de SIMULINK para los simulación del sistema no-lineal
 - Ejemplo de linealización de un sistema dinámico
 - Actividades en Sesión 1
- Sesión 2: Modelado y simulación del Levitador Magnético
 - Modelado
 - Bloque saturación y integral saturada
 - Simulación

Comparación L vs NL con y sin saturación

- Modelo No-lineal sin saturaciones
- Modelo Linenalizado sin saturaciones
- Modelo No-lineal considerando saturaciones
- Modelo Lineal incorporando saturaciones

Tipo de saturaciones

- Saturación de posición -> Bloque sat
- Saturación sensor de posición -> Bloque sat
- Saturación de corriente-> Bloque integral saturada

Limites de saturación sistema No Lineal

- Posición : $0 \le x \le 10$
- Sensor de posición: $-10 \le v_x \le 0$
- Corriente: $i_e^{min} \le i_e \le i_e^{max}$

Limites de saturación sistema Lineal

- Posición : $0 (x)_Q \le \Delta_x \le 10 (x)_Q$
- Sensor de posición: $-10 (V_x)_Q \le \Delta_{v_x} \le 0 (V_x)_Q$
- Corriente: $i_e^{min} (i_e)_Q \le \Delta_{i_e} \le i_e^{max} (i_e)_Q$

Consejos varios:

- Usar el scope de Fuerza con limites −400 a 900.
- Cuando la posición es x = 0 el modelo no tiene sentido pues la fuerza es infinita y el comportamiento de las señales puede ser errático.
- Conviene desplegar en un scope la misma señal (por ejemplo fuerza) que corresponde a los modelos a comparar.