立创 EDA 原理图库与 PCB 库创建规范

初始版本: 2018.06.18 最近更新: 2021.12.15

起草/修订: 罗德松

中国自主研发的 PCB 设计工具 - 立创 EDA: https://lceda.cn

中国领先的现货元器件交易平台 - 立创商城: https://szlcsc.com

立创 EDA 开源协议 - MIT

点击查看最新版本

该规范适用于立创 EDA 官方库绘制

1. 原理图库

1.1 属性

- 1、画布使用默认属性
- 2、自定义属性

名称:默认生成。 封装:看后面章节。

1.2 编号

- 1)编号:默认生成。需要根据实际情况修改,默认生成的不一定正确。
- 2) 创建的原理图库需要根据元件类型指定对应预设编号:字母+问号

元件类型	编号	备注
电阻	R?	Resistor
电容	C?	Capacitor
电感	L?	Inductance
排阻	RN?	Resistor Network
热敏电阻	RT?	Resistor Thermistor
压敏电阻	RV?	Varistor
磁珠	FB?	Ferrite Bead
滤波器	FL?	Filter
通用二极管	D?	Diode
稳压(齐纳)二极管	ZD?	Zener Diode
发光二极管	LED?	Light-Emitting Diode
三极管	Q?	常用编号
整流桥	DB?	Diode Bridge
MOS 管	U?	用 U? 是为了和 Q? 区分开
芯片	U?	常用编号

有源晶振	OSC?	Oscillator
无源晶振	Х?	External Crystal Oscillator
保险丝	F?	Fuse
开关	SW?	Switch
按键	KEY?	Key
通用连接器 - 排针	Н?	Header
通用连接器 - 非排针	CN?	Connector
专用连接器	类型缩写?	如: USB?, LPC?, DC?, HDMI?, RJ?, FPC?, DP?, AUDIO?, SD?等
LED 数码管	LEDS?	LED Segment
继电器	RLY?	Relay
扬声器	SPK?	Speaker
蜂鸣器	BUZ?	Buzzer
马达	M?	Motor
麦克风	MIC?	Microphone
电池	BAT?	Battery
天线	ANT?	Antenna
变压器	Т?	Transformer
测试点	TP?	Test Point

1.3 引脚

1、引脚端点

引脚端点必须在网格格点上。否则当原理图放置在原理图上会导致无法正常连接。

2、引脚名称

- 1) 引脚名称需要和规格书的一致。如规格书标 GND 则不要写 VSS。
- 2) 引脚名称的斜线分隔需要保留。如 GPIO28/SCIRXDA/SDAA/TZ2#。
- 3) 引脚名称的低电平使用 # 表示。如 CS#, TRST#。立创 EDA 不支持在文字 顶部加横线表示低电平。如下图,第 3 脚:

4) 对于常用器件功能引脚名称必须填写,不能仅以数字代替,否则无法使用。如 USB 接口。

5)对于非常长的引脚名称,只需要保留重要的功能字段(通常 3 个即可)做引脚名,避免图形过长。 下图就太长了。

6) 当如 <u>C679368</u> 的有多种引脚定义的元件,只需要绘制第一个图形的引脚定义,并且在图形内部放置一个普通文本写明是什么模式。

PIN CONFIGURATIONS

3、引脚编号

1) 引脚编号如果规格书没有定义,可以参照立创 EDA 公众号的"电子硬件助手"小程序里面的定义。或根据通常的使用习惯进行定义,或者找工程部确认具体的引脚定义。

- 2) 引脚编号默认以数字方式编号,其他的按照规格书或者通用编号进行编号。
- 3)两脚器件,如规格书无特殊说明,则默认左边为一脚。二极管,电阻,电容默认左边为一脚。

4、引脚数

数量大于 100 的 GBA 暂时不绘制,将其提交到"不需要绘制",并选择原因"超过 100 脚"。

5、隐藏显示

- 1) 引脚名称和编号可以根据具体情况是否隐藏,如电阻。
- 2) 引脚本身不能隐藏。

6、引脚位置

引脚数量少的元件,引脚顺序位置放置优先与规格书的封装焊盘编号位置一

7、定位脚

元件存在金属外壳的定位脚的,需要放置对应引脚与焊盘对应,金属外壳相连的,则使用一个引脚即可,对应多个相同编号的焊盘;非金属的定位脚不需要绘制引脚。比如 USB 的第 5 脚:

1.4 样式

1、电阻用欧标样式;电感、电容用美标样式。两脚电阻、电容、电感、二极管横向绘制。

2、绘制的库(包括向导生成),中心不能有大的空白区域,避免过多占用空间。

- 3、手动绘制的图形与线条颜色请参考基础库或者向导生成的图形。
- 4、特殊功能的符号图形需要参照立创 EDA 公众号的"电子硬件助手"小程序。如压敏电阻等

5、形状不需要设置填充颜色。

6、图形样式需要和规格书封装的保持一致。继电器类原理图库线条要与 PCB 丝印样式一致。丝印的闭合要与规格书一致。

7、极性元件,原理图库与封装方向优先保持一致。如:二极管等

- 8、如果引脚功能或名称相同或相似的,可以分组为两组或以上的,需依次绘制子库。比如门电路芯片、FPGA、运算放大器等。
- 1) 有子库的元件,父库不需要绘制图形,绘制了也不会被调用!
- 2) 子库不能出现重复的引脚编号,避免在原理图里面出现异常(相同引脚编号却链接不同网络的情况,会导致 PCB 设计出错!)
- 3) 电源脚需要统一绘制在第一个子库。

9、如无特殊情况,绘制的原理图库图形默认竖直摆放,方便引脚连接。

10、有悬浮脚,或无需焊接的引脚,不需绘制,封装也不需要绘制对应的焊盘。如:C256461 的封装和原理图库 2 脚无需绘制,但是需要绘制 MB 脚。

11、规格书有提供电路范例的,根据范例里面的电路绘制引脚的摆放与符号样式。

8.2.1 3.3-V Output Application

A. The estimated printed circuit board area for the components used in this design is 0.55 inch². This area does not include test points or connectors.

12、保险丝与压敏电阻、热敏电阻样式如下:

13、样式默认优先使用规格书提供的符号绘制,若规格书没有提供符号样式,则 根据使用习惯绘制,若无则以器件的俯视图绘制符号样式。如继电器:

1.5 封装

1、检查

每个原理图库必须打开封装管理器检查是否存在错误。

2、编号

引脚编号必须和指定的封装焊盘编号一致,否则原理图无法转为 PCB。

3、指定

系统自动分配给新原理图库生成的封装名称不一定正确,必须根据封装命名规则重新指定。

4、库别

指定的封装必须是"立创商城库"或者"官方系统库"团队下的库,不能直接指定其他库,否则无法提交完成绘制。

5、极性

具有极性的元件必须指定带极性标识的封装。如: LED, 二极管等

6、分类

电阻电容电感等,如果是标准尺寸的需要取带有明显区分开头的封装。命名规则详见《立创 EDA 封装库命名规范》。

7、方向

选取的封装需要优先按照规格书 0 度的封装,如果没有,则另存一个已有封装,修改 0 度方向,并重新命名,命名规则详见<u>《立创 EDA 封装库命名规</u>

范》。 PCB 库 0 度绘制详情请查看下文规则。

1.6 原点

绘制完成后需要将原点设置在中心最近的格点,利于旋转。可通过:顶部工具栏 - 放置 - 设置画布原点 - 从图形中心格点。

1.7 其他

属于 SMT 类型的原理图库无法是否属于超过 100 脚的 BGA, 还是规格书图片缺失, 都需要绘制, 因为 SMT 需要使用到该库。

2. PCB 库

2.1 属性

- 1、画布采用默认属性,单位 mm。
- 2、自定义属性
- 1) 封装: PCB 库的标题。标题命名参考<u>《立创 EDA 封装库命名规范》</u>进行命名。
- 2)编号:默认 U?,需要根据常用编号修改为其他编号,只修改字母。具体参考前文原理图库编号。
- 3) 链接:新建自定义属性 link。填写规则:新建封装的链接取值顺序:
 - [5]1、SZLCSC PDF //商品详情页的 PDF 地址
 - 7,2、ILCPCB PDF // ILC PDF 地址
 - [3]、SZLCSC //商品详情链接
 - [74、Bing //在 Bing 上面搜索的地址,如:

https://cn.bing.com/search?q=datasheet%3A+%20MAL210225682E3

因为网上的规格书 PDF 链接可能会失效,所以使用 Bing 搜索型号的方式比较容易找到有效的规格书

2.2 标题

- 1、标题命名规则需要参照《立创 EDA 封装库命名规范》进行命名。
- 2、命名中需要使用 SN(Series Number) 的,使用 X 代替 SN 中的可变参数。如:

命名格式: RELAY-SMD/TH_[PKT/SN/MPN]。

(C41595, SRD-09VDC-SL-C) RELAY-TH_SRD-XXVDC-XX-C (SRD 和后面的 C 是决定 SN 的必要参数)

2.3 丝印

1、宽度

使用默认宽度。10mi1/0.254mm。其他根据实际情况修改。

2、尺寸

尺寸需要与规格书尺寸一致。用户会根据丝印大小准确摆放封装位置与间隙。避免导致元件无法焊接和插件。

3、标识

对于会出现方向性混淆的封装,需要添加文本丝印标识标明首尾焊盘编号,避免复用时混淆极性。如排针,DSUB接口等。

4、样式

1)标准的两脚贴片的电阻、电容、电感、保险丝、LED、晶振丝封装印样式要有明显区分,电阻(直角丝印),电容(圆角丝印),电感(45度角丝印)等。便于在 PCB 设计中区分元件类型。如: R0805, C0603, L1210等。0805等尺寸取英制单位绘制。

若封装太小,内部无法绘制丝印标识可以不绘制。

2) 圆柱形晶振默认绘制卧式封装

3) 绘制的封装丝印不能盖在焊盘上,即丝印不能从焊盘/通孔中穿过。部分厂家会直接把丝印印在焊盘上,PCB 库设计阶段需要避免这个情况。绘制丝印导线时编辑器会自动裁剪。

4) 圆形的大面积丝印可以使用实心填充绘制。L 键可以使走线形状为圆弧。

5) 部分器件需要根据实物形状绘制对应丝印。如: USB 接口。

6)对于极性和方向不一定一致的,需要分别添加丝印标识以示区分。比如: WS2812 的晶振; 钽电容; LED 等。

7) 端子类接插件需要绘制插入端丝印

2.4 焊盘

1、孔内径

1)接插件封装的过孔需要注意过孔内径,需要确保一定稍微大于规格尺寸,方形引脚还需要注意计算对角线长度(宽度*根号2)来设置孔内径。

- 2) 优先采用规格书推荐的孔内径尺寸大小。
- 3) 若规格书没有推荐尺寸,则孔内径需要比实际尺寸大 5 个阶度 (0.25mm),并且进位取 0.05mm 的倍数,因为机械钻头规格为 0.05mm 为一阶。

例如: 方形引脚宽 0.8mm, 对角长度 1.13mm, 1.13+0.05*5=1.38mm, 所以钻孔直径取 1.40mm。

孔直径 = 最大尺寸 + 0.25 mm 若大 0.25mm 会导致焊盘短路,则改为大 0.15mm 或 0.2mm

钻孔孔径 (机械钻) 0.2~6.3mr	最小孔径0.2mm,最大孔径6.3mm,如果大于6.3mm工厂要另行处理。机械钻头规格为0.05mm为一阶,如0.2,0.3mm
-----------------------------	--

2、直径

焊盘直径需要比孔内径大至少 0.8mm (若 0.8mm 过大导致焊盘短路则依次减少 0.1mm),以方便手工焊接。如内孔直径 1.3mm,则焊盘直径 2.1mm。

3、大小

- 1) 默认根据规格书提供的推荐尺寸绘制;
- 2) 若未提供推荐尺寸,则根据尺寸标注,大小往外扩展延伸 1mm。 部分常用封装有大、中、小三种焊盘尺寸,大利于手动焊接、小利于机器贴片,立 创 EDA 绘制中等焊盘尺寸。

4、检查尺寸

绘制完成后,使用尺寸检查工具检查封装尺寸:顶部工具栏 - 工具 - 检查尺寸。

5、形状

1)对于异形焊盘,可通过修改焊盘类型为多边形焊盘,然后编辑坐标点完成。也可以通过选中实心填充或导线右键转为焊盘。

2) 避免多个相同编号的焊盘重叠,可以通过实心填充转为焊盘。

3) 当接插件类焊盘使用圆形时,第一个焊盘默认使用矩形焊盘以做标识区分。如:

4) 从其他库另存的,导入的 PCB 库,需要确保没有大量多边形焊盘,避免 在 PCB 导致卡顿

6、非焊盘图元

不能直接通过实心填充,导线,圆弧,矩形等非焊盘元素来代替焊盘。否则在 PCB 进行 DRC 检测时会报错,且无法修改网络属性。

7、散热焊盘

封装内部的散热焊盘(EP),需要根据规格书和实物图是否绘制。编号取原理 图库对应引脚的编号,不能取 0,默认最后一个编号。如果散热焊盘需要放 置散热孔,则使用过孔,不使用多层焊盘。

8、定位

- 1) 金属外壳的定位孔用焊盘表示,焊盘添加编号。
- 2) 非金属定位孔用通孔表示。
- 3) 不允许使用边框层挖孔,不允许使用过孔。

10、编号

- 1) 优先根据规格书的描述进行编号。
- 2) 定位焊盘默认编号唯一,不重复。
- 3) 芯片类、多脚分立器件,若规格书无明确指出,默认从左下角开始,逆时针编号。

- 4)两脚分立器件、两脚贴片的电阻电容晶振二极管,默认从左往右进行编号。如果规格书一脚在右边,在绘制封装时一脚统一取左边,并保持 0 度与极性正确,原理图库也同时对应编号做修改。
- 5) 多脚分立器件, 若规格书无明确指出, 则默认从左下角开始, 逆时针编号。
- 6) 散热焊盘,定位焊盘编号需要使用最大值,不能使用 0,一般不允许使用 英文作为散热焊盘定位焊盘的编号。
- 7) 接插件类, 若规格书无标注:
 - 1>则根据"立创 EDA"公众号绑定的"电子硬件助手"里面的引脚定义进行编号;
 - 2>若小助手里面无,单排接插件从左往右依次编号;多排接插件则默认从下往上再从左往右,以 N 字形依次编号;其他接插件则默认从左下角开始,逆时针编号。

如:

a、USB 接口

b、单排排针

c、双排排针

d、开关按键

e、继电器

f、牛角座(规格书有小三角标注一脚)

11、焊盘间距

对于轴向电阻, 二极管等引脚跨距, 优先使用规格书的推荐值, 如果没有推荐值则: 引脚跨距 = 体长 + 4mm。下图: PP = BL + 4mm

12、助焊阻焊扩展

阻焊扩展默认 0.05mm,两个焊盘的阻焊扩展或自定义阻焊区域的边界区域(阻焊间距)不能小于 0.08mm(工艺限制,否则会连锡)

助焊扩展默认 0mm,两个焊盘的助焊扩展或自定义助焊区域(锡膏层图元)的边界区域(助焊间距或锡膏层图元间距)不能小于 0.15mm(工艺限制,否则会无法开钢网)

2.5 原点

PCB 库绘制完成后需要将原点中心设置在封装中心处。以利于封装贴片定位和在画布上面的旋转。通过: `顶部工具栏 - 放置 - 设置原点 - 从焊盘中央 `。 不设置原点为中心无法保存。

2.6 极性

1、有极性的封装必须绘制极性标识点。如: SOP-8、LED 等

2、PCB 库绘制时摆放方向(0 度方向,又称极性)需要根据规格书的方向。具体参考《 PCB 封装库 0 度图形制作标准》。

3、所有标准两脚贴片封装需要横向绘制,不能纵向绘制,基本上没有纵向放置的编带,如 0805,0603,0402,SMA,SMB 等。

4、SOT 类封装 0 度方向默认如下(绝大部分厂家的编带放置方向为该方向), 如果规格书有其他方向则根据规格书的绘制,并根据规则命名:

5、SOP、QFP、BGA、LGA、LCC、QFN、DFN 类等封装的 0 度方向默认如下(第一脚在左下角,逆时针开始增序焊盘编号;绝大部分厂家的编带放置方向为该方向),如果规格书的编带方向,有其他方向则根据规格书的绘制,并根据命名规则命名:

6、排针、牛角座、继电器横向绘制:

2.7 方向

- 1、如果有不同元件可以使用相同尺寸封装,但是封装 0 度方向不一样的,需要"另存为"新建一个封装并重新命名并做好描述用以区分。命名规则参见《立创 EDA 封装库命名规范》。
- 2、规格书上有注明 0 度的,根据规格书绘制。
- 3、如果规格书没有注明料带/料盘的零度方向,优先根据实物图上物料表面的文字和标识点来确定。

例如: 当文字为正,标识点在左下方,则封装 0 度时 1 脚在左下方。如果无法确定则默认根据左下角为第一脚,以逆时针方向编号。

4、如果规格书和实物图也没有标明零度方向,则需要按照规格书绘制的封装

方向绘制 0 度。

5、接插件、连接器类器件的丝印绘制时,距离焊盘最远的丝印需要绘制在下方,统一接插件摆放方向。如:

6、如果规格书也没有标明零度方向,两脚的电解电容、发光二极管、二极管 默认横向绘制封装,左边为 1 脚,右边为 2 脚,信号方向从右到左。如:

2.8 保存

在保存对话框需要填对应的信息:

1	保存为PCB库	文件			
	所有者:	UserSupport			
	标题:	SOP-8_8PIN-L3-W4.9-H0.96-PITCH0.65-BL			
	标签:	SOP-8			
3	链接:	https://html.alldatasheet.com/html-pdf/110070/PHILIP			

1、标题

前面描述的一致。参考封装命名规则命名。

2、标签

根据封装类型填写英文标签。默认是封装名前段部分。

SOIC-8 L3.0-W4.9-P0.65-BL 则标签是 SOIC-8;

CAP-ARRAY-SMD 10P-L2.5-W1.2-P0.50 则标签是 CAP-ARRAY-SMD;

CO603 则标签是 CAP-SMD:

L0805 则标签是 IND-SMD;

具体根据命名规则《立创 EDA 封装库命名规范》

3、链接

复制商品详情地址(非 pdf 后缀地址)。因为商城的 pdf 地址会定期变更,所以只能填写商品详情页地址。链接用于封装复用后,用于查错。如果是非商城的地址可以填写对应的官网 PDF 地址,或者其他 PDF 地址。

4、描述

选填,填入封装的规格说明。

2.9 挖槽

有些器件是反贴或者是沉板安装,故封装需要添加对应的槽孔。注意挖槽尺寸需要确保可以正常安装。

1) 器件是属于板内挖槽时, 封装用实心填充挖槽, 比如反贴 LED C264609

2)器件是靠近板边安装时,封装用一段内壁的边框线段来实现挖槽最低边界(剩下的部分让用户自行挖槽),避免板厂会制作突出边框的板子。比如 USB 接口 C112454

3. 其他

1、标题重名

原理图库和 PCB 库在立创 EDA 标题均不允许重名。当原理图库在保存时提示标题已存在,需要在原有标题添加下划线和商品编号以区分。如

2、在线创建

规则的 IPC 封装(如 BGA 等多脚封装), 如果系统库和用户贡献库没有可以用来另存二次修改编辑的,可使用在线封装创建工具创建(需要注册登录)。创建后导出 lbr 文件(Eagle 的库文件),再从编辑器打开,设置原点,修改编号和标题后保存。

工具地址: https://editor-package.library.io

3、错误反馈

规格书尺寸标注异常、不明确的需要在商品详情页提交错误反馈,"欢迎纠错"入口,等待工程部确认,获取最新规格书。如果无法获取则让工程部直接测量。

4、不需绘制

不需要绘制的库,必须写明备注信息,以便后期复查再次进入绘制流程。

4. 更新记录

2020.08.13, 优化焊盘孔内径的规则描述

2021. 04. 13, 更新焊盘孔内径的扩展为 0. 25mm; 增加 2. 3. 7 端子插入端丝印; 2. 4. 11 增加轴向元件跨距间距

2021.04.14, 2.4 焊盘章节增加子标题;增加2.4.12 阻焊助焊扩展说明

2021.04.15, 修改 2.1 链接的填写取值顺序

2021.04.29, 更新 2.3.4 标准规格封装丝印样式,内部丝印移出外部

2021.06.28, 更新 2.3.4 标准规格封装丝印样式

2021.09.02, 增加 2.9 章节挖槽规范

2021.12.15, 更新 1.4.8 子库的绘制说明