Text Cleaning: An Introduction with R

Social Science Data Analytics Workshop

Caleb Lucas (@calebjlucas)
July 22, 2020

Michigan State University

· A sentence (or two) about me

- · A sentence (or two) about me
- Goals for today:

- · A sentence (or two) about me
- · Goals for today:
 - Understand why text cleaning matters

- · A sentence (or two) about me
- · Goals for today:
 - Understand why text cleaning matters
 - · Clean messy text using R

- · A sentence (or two) about me
- · Goals for today:
 - Understand why text cleaning matters
 - · Clean messy text using R
 - Process/prepare text for analysis using R

- · A sentence (or two) about me
- · Goals for today:
 - Understand why text cleaning matters
 - · Clean messy text using R
 - · Process/prepare text for analysis using R
 - Plan to attend the workshop tomorrow (same time, same place) that covers the next step- text analysis!

Text Analysis- what is it?

 Text analysis uses computers and statistics to extract information (patterns, entities, topics, etc) from text

- Text analysis uses computers and statistics to extract information (patterns, entities, topics, etc) from text
- We typically use text to make inferences about some latent variable

- Text analysis uses computers and statistics to extract information (patterns, entities, topics, etc) from text
- We typically use text to make inferences about some latent variable
 - Observe transcripts, news articles, social media posts, etc.

- Text analysis uses computers and statistics to extract information (patterns, entities, topics, etc) from text
- We typically use text to make inferences about some latent variable
 - Observe transcripts, news articles, social media posts, etc.
 - Make inferences about things we can't directly observe like ideology

- Text analysis uses computers and statistics to extract information (patterns, entities, topics, etc) from text
- We typically use text to make inferences about some latent variable
 - Observe transcripts, news articles, social media posts, etc.
 - Make inferences about things we can't directly observe like ideology
- Or to categorize texts into different classes

Fig. 1 An overview of text as data methods.

Countless applications:

- Countless applications:
 - Scale the ideology of politicians

- Countless applications:
 - Scale the ideology of politicians
 - Measure relationships between rebel groups using speech about each other

- Countless applications:
 - Scale the ideology of politicians
 - Measure relationships between rebel groups using speech about each other
 - Assist psychological assessments of patients using open-ended questions

- Countless applications:
 - Scale the ideology of politicians
 - Measure relationships between rebel groups using speech about each other
 - Assist psychological assessments of patients using open-ended questions
- Focus of published text models is on what readers want - the question, the math, the results, etc

- Countless applications:
 - · Scale the ideology of politicians
 - Measure relationships between rebel groups using speech about each other
 - Assist psychological assessments of patients using open-ended questions
- Focus of published text models is on what readers want - the question, the math, the results, etc
 - Text cleaning is rarely discussed in detail in published papers

- Countless applications:
 - Scale the ideology of politicians
 - Measure relationships between rebel groups using speech about each other
 - Assist psychological assessments of patients using open-ended questions
- Focus of published text models is on what readers want - the question, the math, the results, etc
 - Text cleaning is rarely discussed in detail in published papers
 - · ... but it can affect results/findings and is hard!

Tons of textual data sources

- Tons of textual data sources
 - Open-ended survey responses

- Tons of textual data sources
 - Open-ended survey responses
 - News articles

- Tons of textual data sources
 - Open-ended survey responses
 - News articles
 - Historical legal documents

- Tons of textual data sources
 - Open-ended survey responses
 - News articles
 - Historical legal documents
 - Social media posts

- Tons of textual data sources
 - Open-ended survey responses
 - News articles
 - Historical legal documents
 - Social media posts
 - · ... many more

- Tons of textual data sources
 - Open-ended survey responses
 - News articles
 - Historical legal documents
 - Social media posts
 - · ... many more
- Text data is not typically formatted nicely for us in nature

- Tons of textual data sources
 - Open-ended survey responses
 - News articles
 - Historical legal documents
 - Social media posts
 - · ... many more
- Text data is not typically formatted nicely for us in nature
 - Dirty documents OCR'ed

- Tons of textual data sources
 - Open-ended survey responses
 - News articles
 - Historical legal documents
 - Social media posts
 - · ... many more
- Text data is not typically formatted nicely for us in nature
 - Dirty documents OCR'ed
 - Messy scraped web pages

- Tons of textual data sources
 - Open-ended survey responses
 - News articles
 - Historical legal documents
 - Social media posts
 - · ... many more
- Text data is not typically formatted nicely for us in nature
 - Dirty documents OCR'ed
 - Messy scraped web pages
 - Poorly formatted web input forms

- Tons of textual data sources
 - Open-ended survey responses
 - News articles
 - Historical legal documents
 - Social media posts
 - · ... many more
- Text data is not typically formatted nicely for us in nature
 - Dirty documents OCR'ed
 - Messy scraped web pages
 - Poorly formatted web input forms
 - · Tweets with emojis, urls, etc.

- Tons of textual data sources
 - Open-ended survey responses
 - News articles
 - Historical legal documents
 - Social media posts
 - · ... many more
- Text data is not typically formatted nicely for us in nature
 - Dirty documents OCR'ed
 - Messy scraped web pages
 - · Poorly formatted web input forms
 - · Tweets with emojis, urls, etc.
 - → Need to clean and prepare for statistical modeling

Text Cleaning

Text Cleaning

 Goal: use substantive knowledge to strip text of unhelpful features

- Goal: use substantive knowledge to strip text of unhelpful features
 - Help computer know "msu" and "MSU!" are the same

- Goal: use substantive knowledge to strip text of unhelpful features
 - Help computer know "msu" and "MSU!" are the same
 - $msu = \u006d\u0073\u0075$

- Goal: use substantive knowledge to strip text of unhelpful features
 - · Help computer know "msu" and "MSU!" are the same
 - $msu = \u006d\u0073\u0075$
 - MSU! = u004du0053u0055u0021

- Goal: use substantive knowledge to strip text of unhelpful features
 - · Help computer know "msu" and "MSU!" are the same
 - $msu = \frac{u006d}{u0073}\frac{u0075}{u0075}$
 - MSU! = \u004d\u0053\u0055\u0021
 - Reduce the corpus to meaningful words

- Goal: use substantive knowledge to strip text of unhelpful features
 - · Help computer know "msu" and "MSU!" are the same
 - $msu = \frac{u006d u0073 u0075}$
 - MSU! = \u004d\u0053\u0055\u0021
 - Reduce the corpus to meaningful words
- Target: punctuation, numbers, lowercasing, reducing words, stopwords, n-grams, infrequent terms

- Goal: use substantive knowledge to strip text of unhelpful features
 - · Help computer know "msu" and "MSU!" are the same
 - $msu = \u006d\u0073\u0075$
 - MSU! = \u004d\u0053\u0055\u0021
 - · Reduce the corpus to meaningful words
- Target: punctuation, numbers, lowercasing, reducing words, stopwords, n-grams, infrequent terms
- How we go about this can have down-stream effects

- Goal: use substantive knowledge to strip text of unhelpful features
 - · Help computer know "msu" and "MSU!" are the same
 - $msu = \frac{u006d u0073 u0075}$
 - MSU! = \u004d\u0053\u0055\u0021
 - Reduce the corpus to meaningful words
- Target: punctuation, numbers, lowercasing, reducing words, stopwords, n-grams, infrequent terms
- How we go about this can have down-stream effects
 - Different cleaning procedures = different results

- Goal: use substantive knowledge to strip text of unhelpful features
 - · Help computer know "msu" and "MSU!" are the same
 - $msu = \frac{u006d u0073 u0075}$
 - MSU! = \u004d\u0053\u0055\u0021
 - Reduce the corpus to meaningful words
- Target: punctuation, numbers, lowercasing, reducing words, stopwords, n-grams, infrequent terms
- How we go about this can have down-stream effects
 - Different cleaning procedures = different results
 - 7 binary preprocessing steps = 128 possible models

Denny and Spirling (2018)

1. Fix representational issues

- 1. Fix representational issues
 - Expand contractions, expand abbreviations, make lowercase, etc.

- 1. Fix representational issues
 - Expand contractions, expand abbreviations, make lowercase, etc.
- 2. Keep meaningful words

- 1. Fix representational issues
 - Expand contractions, expand abbreviations, make lowercase, etc.
- 2. Keep meaningful words
 - · Remove common words ('stopwords') like the

- 1. Fix representational issues
 - Expand contractions, expand abbreviations, make lowercase, etc.
- 2. Keep meaningful words
 - · Remove common words ('stopwords') like the
- 3. Remove 'dirty' characters/text

- 1. Fix representational issues
 - Expand contractions, expand abbreviations, make lowercase, etc.
- 2. Keep meaningful words
 - · Remove common words ('stopwords') like the
- 3. Remove 'dirty' characters/text
 - · Correct spelling, remove numbers, etc.

- 1. Fix representational issues
 - Expand contractions, expand abbreviations, make lowercase, etc.
- 2. Keep meaningful words
 - · Remove common words ('stopwords') like the
- 3. Remove 'dirty' characters/text
 - · Correct spelling, remove numbers, etc.
- 4. Analysis-specific steps

- 1. Fix representational issues
 - Expand contractions, expand abbreviations, make lowercase, etc.
- 2. Keep meaningful words
 - · Remove common words ('stopwords') like the
- 3. Remove 'dirty' characters/text
 - · Correct spelling, remove numbers, etc.
- 4. Analysis-specific steps
 - · Normalize synonyms, remove parentheticals, etc.

- 1. Fix representational issues
 - Expand contractions, expand abbreviations, make lowercase, etc.
- 2. Keep meaningful words
 - · Remove common words ('stopwords') like the
- 3. Remove 'dirty' characters/text
 - · Correct spelling, remove numbers, etc.
- 4. Analysis-specific steps
 - · Normalize synonyms, remove parentheticals, etc.
 - Researchers typically 'fall into' these steps as they analyze - leads to important point...

Cleaning is not a series of steps

- · Cleaning is not a series of steps
 - · Clean your corpus

- · Cleaning is not a series of steps
 - Clean your corpus
 - Should be a continual process

- Cleaning is not a series of steps
 - · Clean your corpus
 - Should be a continual process
 - · Clean, inspect, clean, inspect, analyze, clean, ...

- Cleaning is not a series of steps
 - · Clean your corpus
 - Should be a continual process
 - · Clean, inspect, clean, inspect, analyze, clean, ...
 - Text is messier than most other forms of data, takes more time/effort to prepare

- Cleaning is not a series of steps
 - · Clean your corpus
 - Should be a continual process
 - · Clean, inspect, clean, inspect, analyze, clean, ...
 - Text is messier than most other forms of data, takes more time/effort to prepare
 - Take time to read the text (yes!) before/during/after

- Cleaning is not a series of steps
 - · Clean your corpus
 - Should be a continual process
 - · Clean, inspect, clean, inspect, analyze, clean, ...
 - Text is messier than most other forms of data, takes more time/effort to prepare
 - Take time to read the text (yes!) before/during/after
- Most researchers 'do the steps' and then proceed to their analysis

- Cleaning is not a series of steps
 - · Clean your corpus
 - Should be a continual process
 - · Clean, inspect, clean, inspect, analyze, clean, ...
 - Text is messier than most other forms of data, takes more time/effort to prepare
 - Take time to read the text (yes!) before/during/after
- Most researchers 'do the steps' and then proceed to their analysis
- Crucial to always be in cleaning mode

- Cleaning is not a series of steps
 - · Clean your corpus
 - Should be a continual process
 - · Clean, inspect, clean, inspect, analyze, clean, ...
 - Text is messier than most other forms of data, takes more time/effort to prepare
 - Take time to read the text (yes!) before/during/after
- Most researchers 'do the steps' and then proceed to their analysis
- · Crucial to always be in cleaning mode
 - More confidence you have the 'right' data

- Cleaning is not a series of steps
 - · Clean your corpus
 - · Should be a continual process
 - · Clean, inspect, clean, inspect, analyze, clean, ...
 - Text is messier than most other forms of data, takes more time/effort to prepare
 - · Take time to read the text (yes!) before/during/after
- Most researchers 'do the steps' and then proceed to their analysis
- · Crucial to always be in cleaning mode
 - · More confidence you have the 'right' data
 - Limits chance of weird data/results, which is easy to spot with text data

1. So... I JUST GOT ACCEPTED TO MICHIGAN STATE

©

- 1. So... I JUST GOT ACCEPTED TO MICHIGAN STATE

 ©
 - so i just got accepted to msu

- 1. So... I JUST GOT ACCEPTED TO MICHIGAN STATE 😊 😊
 - so i just got accepted to msu
- 2. Check out this study by MSU profs- bitly.com/123

- 1. So... I JUST GOT ACCEPTED TO MICHIGAN STATE ❸ ☺
 - so i just got accepted to msu
- 2. Check out this study by MSU profs- bitly.com/123
 - check out this study by msu profs [professors]

- 1. So... I JUST GOT ACCEPTED TO MICHIGAN STATE \odot \odot
 - · so i just got accepted to msu
- 2. Check out this study by MSU profs- bitly.com/123
 - check out this study by msu profs [professors]
- 3. The plans by Mich. State U. profs for a cheap ventilator are GREAT y'all

- 1. So... I JUST GOT ACCEPTED TO MICHIGAN STATE

 ©
 - · so i just got accepted to msu
- 2. Check out this study by MSU profs- bitly.com/123
 - check out this study by msu profs [professors]
- 3. The plans by Mich. State U. profs for a cheap ventilator are GREAT y'all
 - the plans by msu profs [professors] for a cheap ventilator are great yall [you all]

Text Processing

Text Processing

Ok, you cleaned the text up... now what?

Stemming is a form of word reduction

- · Stemming is a form of word reduction
- · Generally chops off inflections 'ing,' 'ed,' 'es,' etc.

- Stemming is a form of word reduction
- · Generally chops off inflections 'ing,' 'ed,' 'es,' etc.
 - learns, learning, learned → learn

- · Stemming is a form of word reduction
- · Generally chops off inflections 'ing,' 'ed,' 'es,' etc.
 - learns, learning, learned → learn
 - boy's, boys → boy

- Stemming is a form of word reduction
- · Generally chops off inflections 'ing,' 'ed,' 'es,' etc.
 - learns, learning, learned → learn
 - boy's, boys → boy
 - ties → ti

- Stemming is a form of word reduction
- · Generally chops off inflections 'ing,' 'ed,' 'es,' etc.
 - learns, learning, learned → learn
 - boy's, boys → boy
 - ties → ti
 - easily → easili

- Stemming is a form of word reduction
- · Generally chops off inflections 'ing,' 'ed,' 'es,' etc.
 - learns, learning, learned → learn
 - boy's, boys → boy
 - ties → ti
 - easily → easili
- This reduces the corpus' dimensions

- Stemming is a form of word reduction
- · Generally chops off inflections 'ing,' 'ed,' 'es,' etc.
 - learns, learning, learned → learn
 - boy's, boys → boy
 - ties → ti
 - · easily → easili
- This reduces the corpus' dimensions
- Acknowledges "run" and "runs" are different versions of the same word

· Lemmatization returns a word's 'dictionary' form

- · Lemmatization returns a word's 'dictionary' form
 - This is called a 'lemma'

- · Lemmatization returns a word's 'dictionary' form
 - This is called a 'lemma'
- Not just word reduction

- · Lemmatization returns a word's 'dictionary' form
 - · This is called a 'lemma'
- Not just word reduction
 - saw → see

- Lemmatization returns a word's 'dictionary' form
 - This is called a 'lemma'
- Not just word reduction
 - saw → see
 - geese → goose

- Lemmatization returns a word's 'dictionary' form
 - · This is called a 'lemma'
- Not just word reduction
 - saw → see
 - geese → goose
 - easily → easy

- · Lemmatization returns a word's 'dictionary' form
 - · This is called a 'lemma'
- Not just word reduction
 - saw → see
 - geese → goose
 - easily → easy
- This also reduces the corpus' dimensions

- · Lemmatization returns a word's 'dictionary' form
 - · This is called a 'lemma'
- Not just word reduction
 - saw → see
 - geese → goose
 - easily → easy
- This also reduces the corpus' dimensions
- More computationally expensive

- · Lemmatization returns a word's 'dictionary' form
 - · This is called a 'lemma'
- Not just word reduction
 - saw → see
 - geese → goose
 - easily → easy
- This also reduces the corpus' dimensions
- More computationally expensive
- Not available in every language

Data Format

- We typically format text data as a document term matrix
 - · Rows = documents, columns = terms
- Terms are typically single words, but can be other things that we tokenize the text into
 - · Tokens are just units of the text used in the analysis
 - We can tokenize text into sentences, paragraphs, n-grams (collections of words or sentences), etc.

	Token ₁	Token ₂	 Token _n
Doc_1	0	0	0
Doc_2	5	0	3
•••			
Caleb Lucas (@calebjlucas) n	1	0	0

Cleaning text is a messy process with many steps

- 1. Use your knowledge to clean your corpus
- 2. Assess the effect of other choices on your model

- · Cleaning text is a messy process with many steps
- There is not a predetermined set of steps

- 1. Use your knowledge to clean your corpus
- 2. Assess the effect of other choices on your model

- · Cleaning text is a messy process with many steps
- There is not a predetermined set of steps
- · Somewhat different than other types of data

- 1. Use your knowledge to clean your corpus
- 2. Assess the effect of other choices on your model

- · Cleaning text is a messy process with many steps
- There is not a predetermined set of steps
- Somewhat different than other types of data
 - · A great deal of ad hoc decisions

- 1. Use your knowledge to clean your corpus
- 2. Assess the effect of other choices on your model

- · Cleaning text is a messy process with many steps
- There is not a predetermined set of steps
- · Somewhat different than other types of data
 - A great deal of ad hoc decisions
 - Not obvious object type conversions, etc.
- 1. Use your knowledge to clean your corpus
- 2. Assess the effect of other choices on your model

R sesh!

R sesh!

https://github.com/caleblucas/text_
cleaning