

خسامكة هوارثر بوسحين للعلسوم والتكنيولوجيسا

Université des Sciences et de Technologie Houari Boumediene Faculté d'Electronique et d'Informatique

Examen ELF3

2015/2016

RCICE 1: 10 Pts

le montage suivant : On donne f=50Hz, R=10Ω.

🗫 95, L=55.1328mH, V₂₅m 13.4/V of θ₂m lπ/3 avec

i l'angle de fermentre

Fracer avec explication les chronogrammes suivants : $u_c(t)$, $u_{Th}(t)$ et $i_c(t)$.

2/ Calculer la valeur moyenne et efficace de la tension redressée.

3/ Quelle est l'indication du voltmètre, calculer cette valeur.

EXERCICE 2: 10 Pts

Fonsidérons le montage ci-contre. Le Hacheur est ammandé dans l'intervalle [0, αT]. L'est supposée les élevée devant R. On pose : I_0 =E/R, h=L/R et -E'/E.

Tracer avec explication les chronogrammes suivants : $u_c(t)$ et $i_c(t)$.

2/ Exprimer en fonction de I_0 , α , h, k, T, I_{min} et I_{max} sur une période $I_0(t)$, et $u_1(t)$.

Bonne Chan

جامحة هواري بومدين للعلوم و التكنولوجي

Université des Sciences et de Technologie Houari Boumediene Faculté d'Electronique et d'Informatique

Correction de l'Examen ELF3

2015 /2016

EXERCICE 1: 10Pts

1/Etude de fonctionnement: 4.25 Pts

Avec: $\theta_1 = \pi - \theta_2 = \pi - 2\pi/3 \implies \theta_1 = \pi/3$

Calcul de
$$\varphi$$
: $tg\varphi = \frac{L\omega}{R} = \frac{55.132810^{-3}.100\pi}{10} = 1.732 \implies \varphi = \frac{\pi}{3}$ 0.5

- $0 \le t \le T/4$: The t D bloqués: $u_c(t) = E$, $v_{Th}(t) = v_2(t) E$ et $i_c(t)=0;$
- $T/4 \le t \le T/2$: The passant et D bloquée: $u_c(t) = v_2(t)$, $v_{\text{Th}}(t)=0, i_{\text{c}}(t)\neq 0;$
- $T/2 \le t \le T/2 + t_1$: The t D bloqués: $u_c(t) = E$, $v_{Th}(t) = v_2(t) E$ et $i_c(t)=0;$
- $T/2+t_1 \le t \le T$: The bloqué et D passante: $u_c(t)=v'_2(t)$, $v_{\text{Th}}(t) = 2v_2(t) \text{ et } i_c(t) \neq 0.$

2/ Valeur moyenne de la tension redressée : 1.5 Pts

$$U_{cmoy} = \frac{1}{T} \int_{0}^{T} u_{c}(t) dt = \frac{1}{2\pi} \left[\int_{0}^{\pi/2} E d\theta + \int_{\pi/2}^{\pi} V_{M} \sin\theta d\theta + \int_{\pi}^{\pi+\theta_{A}} E d\theta + \int_{\pi+\theta_{A}}^{2\pi} V_{M} \sin\theta d\theta \right]$$

$$U_{cmoy} = \frac{1}{2\pi} \left[E. \frac{\pi}{2} + V_M + E\theta_1 - \frac{3}{2}.V_M \right] = \frac{1}{2\pi} \left[E. \frac{5\pi}{6} - \frac{V_M}{2} \right]$$

Avec: $E = V_M \sin \theta_1 = 115.47 \sin \pi/3$ \Rightarrow $E = 100V \theta_1$

A.N:
$$U_{cmoy} = \frac{1}{2\pi} \left[\frac{500\pi}{6} - \frac{115.47}{2} \right] \Rightarrow U_{cmoy} = 32.498V$$

Valeur efficace de la tension redressée : 2.5Pts

$$U_{ceff}^{2} = \frac{1}{T} \int_{0}^{T} u_{c}^{2}(t) dt = \frac{1}{2\pi} \left[\int_{0}^{\pi/2} E^{2} d\theta + \int_{\pi/2}^{\pi} V_{M}^{2} \sin^{2}\theta d\theta + \int_{\pi}^{\pi+\Theta} E^{2} d\theta + \int_{\pi+\Theta}^{2\pi} V_{M}^{2} \sin^{2}\theta d\theta \right]$$

جامعة هواري بومدين للهلوم و التكنولوجيا

Université des Sciences et de Technologie Houari Boumediene Faculté d'Electronique et d'Informatique

Correction de l'Examen ELF3

2015 /2016

$$U_{coff}^{2} = \frac{1}{T} \int_{0}^{T} u_{c}^{2}(t) dt = \frac{1}{2\pi} \left[\int_{0}^{\pi/2} E^{2} d\theta + V_{M}^{2} \int_{\pi/2}^{\pi} \frac{1 - \cos 2\theta}{2} d\theta + \int_{\pi}^{\pi+\theta} E^{2} d\theta + V_{M}^{2} \int_{\pi+\theta}^{2\pi} \frac{1 - \cos 2\theta}{2} d\theta \right]$$

$$U_{ceff} = \left[\frac{1}{2\pi} \left[E^{2} [\theta]_{0}^{\pi/2} + \frac{V_{M}^{2}}{2} [\theta - 1/2 \sin 2\theta]_{\pi/2}^{\pi} + E^{2} [\theta]_{\pi}^{4\pi/3} + \frac{V_{M}^{2}}{2} [\theta - 1/2 \sin 2\theta]_{4\pi/3}^{2\pi} \right]^{1/2} \right]$$

A.N:

$$U_{ceff} = \left[\frac{1}{2\pi} \left[100^{\circ}(\pi/2) + \frac{11547^{2}}{2} (\pi - \pi/2 - \frac{1}{2} \sin 2\pi + \frac{1}{2} \sin \pi) + 100^{\circ}(4\pi/3 - \pi) + \frac{11547^{2}}{2} (2\pi - 4\pi/3 - \frac{1}{2} \sin 4\pi + \frac{1}{2} \sin 8\pi/3) \right]^{1/2}$$

$$U_{ceff} = \left[\frac{1}{2\pi} \left[100^{\circ}(5\pi/6) + \frac{11547^{2}}{2} (7\pi/6 + 0.433) \right]^{1/2} = \sqrt{85149787} \right]^{1/2}$$

$$U_{ceff} = 92.276V$$

3/Le voltmètre indique la valeur moyenne de la tension aux bornes du thyristor. 1.75Pts

$$U_{Thomosy} = \frac{1}{T} \int_{0}^{T} u_{Th}(t) dt = \frac{1}{2\pi} \left[\int_{0}^{\pi/2} (V_{M} \sin\theta - E) d\theta + \int_{\pi}^{\pi+A} (V_{M} \sin\theta - E) d\theta + \int_{\pi+A}^{2\pi} 2V_{M} \sin\theta d\theta \right]$$

$$U_{Three y} = \frac{1}{2\pi} \left[-E, \frac{5\pi}{6} - \frac{5V_M}{2} \right] =$$

A.N:
$$U_{Dimoy} = \frac{1}{2\pi} \left[\frac{500\pi}{6} - \frac{5*115.47}{2} \right] \Rightarrow U_{cmay} = -91.888V$$

جامعة هواري بومدين للعلوم و التكنولوجي

Université des Sciences et de Technologie Houari Boumediene Faculté d'Electronique et d'Informatique

Correction de l'Examen ELF3

2015 /2016

EXERCICE 2: 10Pts

1/Etude de fonctionnement :

Régime permanent : 1.5 Pts

 $0 \le t \le \alpha T$: H fermé et D_t bloquée: $u_c = E$ et $i_c = i_s > 0$ croissant de I_{min} à I_{max} .

O(2.5) $\alpha T \le t \le T$: H ouvert et D_r passante : $u_c = 0$ et $i_c = i_s > 0$ I_{max} décroissant de I_{max} à I_{min} .

2/Expression du courant ic(t) sur une période : 4Pt

$$0 \le t \le \alpha T : u_e = Ri_e(t) + L \frac{di_e(t)}{dt} + E = E$$

Remplaçant $Ri_{\varepsilon}(t)$ par RI_{ε} , on aura : $L\frac{dl_{\varepsilon}(t)}{dt} + RI_{\varepsilon} = E - E^{t}$

$$\Rightarrow i_c(t) = \frac{(E - E^* - RI_c)}{L}t + A$$

à l'instant t=0, on a : $\Rightarrow i_c(t=0) = A = I_{min}$ $\Rightarrow i_c(t) = \frac{(E - E' - RI_c)}{L}t + I_{min}$

$$\alpha T \le t \le T$$
: $u_c = Ri_c(t) + L \frac{di_c(t)}{dt} + E^* = 0$

Remplaçant $Ri_c(t)$ par RI_c , on aura : $L\frac{di_c(t)}{dt} + RI_c = -E'$

$$\Rightarrow i_e(t) = \frac{(-E' - RI_e)}{L}t + B$$

à l'instant t=0, on a : $i_e(t=\alpha T)I_{max}$ $\Rightarrow I_{max} = \frac{(-E'-RI_e)}{L}\alpha T + B$ $\Rightarrow B = I_{max} + \frac{E'+RI_e}{L}\alpha T + \frac{E'+RI_$

$$\Rightarrow I_c(t) = \frac{\left(-E' - RI_c\right)}{L} \left(t - \alpha T\right) + I_{max}$$

Calcul de la valeur moyenne du courant qui traverse la charge : 1.52ts

On a:
$$u_e = RI_e(t) + L \frac{dI_e(t)}{dt} + E^* \implies u_{consy} = RI_e + E' = \alpha E \text{ car } V_{1,may} = 0.$$

$$\Rightarrow I_e = \frac{\alpha E - E}{R} = \frac{\frac{dt}{\alpha E}}{R} - \frac{E}{R} = \alpha \frac{E}{R} - \frac{E}{E} \cdot \frac{E}{R} = \alpha I_0 - kI_0$$

$$\Rightarrow I_s = (\alpha - k)I_0$$

$$0 \le t \le \alpha T : \Rightarrow I_{\epsilon}(t) = \frac{\left(E - E' - RI_{\epsilon}\right)}{L}t + I_{min} = \frac{\left(E - E' - R\frac{\alpha E - E'}{R}\right)}{L}t + I_{min} = \frac{\left(1 - \alpha\right)E}{L}t + I_{min}}$$

جامعة هواري بوهدين للعلوم و التكنولوجيا

Faculté d'Electronique et d'Informatique

Correction de l'Examen ELF3

2015 /2016

$$\Rightarrow t_{e}(t) = \frac{(1-\alpha)E/R}{L/R}t + I_{min} \qquad \Rightarrow i_{e}(t) = \frac{(1-\alpha)I_{0}}{h}t + I_{min}$$

$$\alpha T \leq t \leq T : i_{e}(t) = \frac{(-E-RI_{e})}{L}(t-\alpha T) + I_{max} = \frac{\left(-E'-R\frac{\alpha E-E'}{R}\right)}{L}(t-\alpha T) + I_{max} = \frac{-\alpha E}{L}(t-\alpha T) + I_{min}$$

$$\Rightarrow i_{e}(t) = \frac{-\alpha E/R}{L/R}(t-\alpha T) + I_{max} \qquad \Rightarrow i_{e}(t) = \frac{-\alpha I_{0}}{h}(t-\alpha T) + I_{min}$$

$$= \frac{(1-\alpha)I_{0}}{h}t + I_{min} \qquad 0 \leq t \leq \alpha T$$
En fin:
$$i_{e}(t) = \frac{\left((1-\alpha)I_{0}\right)}{h}t + I_{min} \qquad 0 \leq t \leq \alpha T$$

Expression du courant uc(t) sur une période : 3Pts

Expression du courant
$$u_{\mathcal{E}}(t)$$
 sur une période : $3\Phi ts$

$$0 \le t \le \alpha T : u_{\varepsilon} = Rl_{\varepsilon}(t) + L \frac{di_{\varepsilon}(t)}{dt} + E = Rl_{\varepsilon}(t) + v_{L} + E = E$$

$$\Rightarrow v_{L} = E - E' - Ri_{\varepsilon}(t) = E - E' - R \left(\frac{(1 - \alpha)l_{0}}{h} t + I_{\min} \right) = E \left(1 - \frac{E'}{E} - \frac{R}{E} \left(\frac{(1 - \alpha)l_{0}}{h} t + I_{\min} \right) \right)$$

$$\Rightarrow v_{L} = E \left(1 - k - \frac{1}{I_{0}} \left(\frac{(1 - \alpha)l_{0}}{h} t + I_{\min} \right) \right) \Rightarrow v_{L} = E \left(1 - k - \left(\frac{(1 - \alpha)l_{0}}{h} t + I_{\min} \right) \right)$$

$$\alpha T \le t \le T : u_{\varepsilon} = Ri_{\varepsilon}(t) + L \frac{dl_{\varepsilon}(t)}{dt} + E' = Rl_{\varepsilon}(t) + v_{L} + E' = 0$$

$$\Rightarrow v_{L} = -E' - Ri_{\varepsilon}(t) = -E' - R \left(\frac{-\alpha l_{0}}{h} (t - \alpha T) + I_{\max} \right) = E \left(\frac{E'}{E} - \frac{R}{E} \left(\frac{-\alpha l_{0}}{h} (t - \alpha T) + I_{\max} \right) \right)$$

$$\Rightarrow v_{L} = E \left(-k - \frac{1}{I_{0}} \left(\frac{-\alpha l_{0}}{h} (t - \alpha T) + I_{\max} \right) \right)$$

$$En \text{ fin } : v_{L}(t) = \begin{cases} E \left(-k - \frac{1}{I_{0}} \left(\frac{-\alpha l_{0}}{h} (t - \alpha T) + I_{\max} \right) \right) \\ E \left(-k - \frac{1}{I_{0}} \left(\frac{-\alpha l_{0}}{h} (t - \alpha T) + I_{\max} \right) \right) \end{cases}$$

$$\alpha T \le t \le T$$