Machine Learning Lab program 3

 $\begin{aligned} Name-Pranshu\ Aggarwal\\ Class-CSE-3\\ Enroll-40576802717 \end{aligned}$

AIM: Estimate the accuracy of decision classifier on breast cancer dataset using 5 fold cross validation.

Program Snippets :- 1. Loading dataset

2. Data Cleaning/ Preprocessing

```
dropping id and unnamed: 32 column because they are noise are doesnt affect result
            df = df.drop(["id"], axis= 1)
            df.columns.values
              array(['diagnosis', 'radius_mean', 'texture_mean', 'perimeter_mean',
                       'area_mean', 'smoothness_mean', 'compactness_mean',
                       'concavity_mean', 'concave points_mean', 'symmetry_mean',
                      'fractal_dimension_mean', 'radius_se', 'texture_se',
'perimeter_se', 'area_se', 'smoothness_se', 'compactness_se',
                      'concavity_se', 'concave points_se', 'symmetry_se',
                      'fractal_dimension_se', 'radius_worst', 'texture_worst',
                      'perimeter_worst', 'area_worst', 'smoothness_worst',
                      'compactness_worst', 'concavity_worst', 'concave points_worst', 'symmetry_worst', 'fractal_dimension_worst', 'Unnamed: 32'],
                      dtype=object)
In [42]: df = df.drop(["Unnamed: 32"], axis=1)
In [43]: df.columns.values
              array(['diagnosis', 'radius_mean', 'texture_mean', 'perimeter_mean',
                       'area_mean', 'smoothness_mean', 'compactness_mean',
                      'concavity_mean', 'concave points_mean', 'symmetry_mean',
'fractal_dimension_mean', 'radius_se', 'texture_se',
                      'perimeter_se', 'area_se', 'smoothness_se', 'compactness_se', 'concavity_se', 'concave points_se', 'symmetry_se',
                      'fractal_dimension_se', 'radius_worst', 'texture_worst',
                      'perimeter_worst', 'area_worst', 'smoothness_worst',
'compactness_worst', 'concavity_worst', 'concave points_worst',
                       'symmetry_worst', 'fractal_dimension_worst'], dtype=object)
```

Х								
	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean	
0	0.521037	0.022658	0.545989	0.363733	0.593753	0.792037	0.703140	
1	0.643144	0.272574	0.615783	0.501591	0.289880	0.181768	0.203608	
2	0.601496	0.390260	0.595743	0.449417	0.514309	0.431017	0.462512	
3	0.210090	0.360839	0.233501	0.102906	0.811321	0.811361	0.565604	
4	0.629893	0.156578	0.630986	0.489290	0.430351	0.347893	0.463918	
564	0.690000	0.428813	0.678668	0.566490	0.526948	0.296055	0.571462	
565	0.622320	0.626987	0.604036	0.474019	0.407782	0.257714	0.337395	
566	0.455251	0.621238	0.445788	0.303118	0.288165	0.254340	0.216753	
567	0.644564	0.663510	0.665538	0.475716	0.588336	0.790197	0.823336	
568	0.036869	0.501522	0.028540	0.015907	0.000000	0.074351	0.000000	

3. Data Visualization

4. Dividing data into train/test splits

```
In [67]: from sklearn.model_selection import train_test_split

#for checking testing results
from sklearn.metrics import classification_report, confusion_matrix

#for visualizing tree
from sklearn.tree import plot_tree

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.2, random_state = 0)

print("Training split input- ", x_train.shape)
print("Testing split input- ", x_test.shape)

Training split input- (455, 10)
Testing split input- (114, 10)
```

5. Decision classifier using 5 folds cross validation

```
In [67]: dt = DecisionTreeClassifier()
        dt.fit(x train, y train)
         DecisionTreeClassifier()
In [69]: from sklearn.model_selection import cross_val_score,KFold
        kfold = KFold(n_splits=5, random_state=True, shuffle=True)
        y_pred = dt.predict(x_test)
        score = cross_val_score(dt, x, y, cv = kfold)
        print("decesion Tree Accuracy: {0:.2%}".format(accuracy_score(y_pred, y_test)))
         print("Cross validation score: {0:.2%}".format(np.mean(score)))
         decesion Tree Accuracy: 92.98%
         Cross validation score: 91.04%
        y_pred = dt.predict(x_test)
         print("Classification report - \n", classification report(y test,y pred))
         Classification report -
                              recall f1-score support
                                0.93
                                                  67
                        0.90
            accuracy
                                         0.93
                       0.93
                                 0.93
                                         0.93
         weighted avg
                       0.93
                                 0.93
                                         0.93
```

6. Confusion matrix

```
cm=confusion_matrix(y_test,y_pred)
cm
 array([[62, 5],
[ 3, 44]], dtype=int64)
plt.figure(figsize=(5,5))
sns.heatmap(data=cm,linewidths=1.0, annot=True,square = True, cmap = 'Blues')
plt.ylabel('Actual label')
plt.xlabel('Predicted label')
all_sample_title = 'Accuracy Score: {0}'.format(round(dt.score(x_test, y_test),2))
plt.title(all_sample_title, size = 15)
 Text(0.5, 1.0, 'Accuracy Score: 0.93')
```

Github Link:

https://github.com/pranshuag9/machine-learning-lab/blob/main/lab3/dt_5_fold_cv.ipynb