Réalisation d'un robot d'assistance pour les personnes en situation de handicap

École Nationale Supérieure de l'Électronique et de ses Applications, Option Mécatronique et Systèmes Complexes

Année 2022 - 2023

Professeurs encadrants:
Alexis MARTIN
Nicolas PAPAZOGLOU

Sommaire

- I Contexte, objectifs et organisation du Projet
 - 1 Contexte et objectifs
 - 2 Diagramme de Gantt
- II Le projet
 - 1 Dimensionnement
 - 2 Modélisation
 - 3 Modèle réel
 - 4 Commande des steppers

III - Conclusion

Contexte du projet

Robot d'assistance

Mise en situation : préhension d'un pot de yaourt

Partenariat avec une clinique

Partage du travail avec un groupe d'étudiant en deuxième année

Objectifs

Manipulation du pot de yaourt sans détérioration

Maintient de la position pendant l'alimentation du patient

Commande au fauteuil

Mémorisation de la position?

Digramme de Gantt

Dimensionnement

Type de pince	Caractéristiques
Pince à vide	Puissante, abordable mais sensible à la poussière et pas pour tous les types d'objets
Pince pneumatique	Abordable, temps de réponse faible et peu d'encombrement mais peu efficace pour les objets à faible volume
Pince hydraulique	Très grande puissance mais complexe, maintenance élevée et ne convient pas pour des objets fragiles
Pince électrique	Faciles à contrôler mais moins de force que les autres types de pince. Peu avoir du mal avec les objets mous
Pince magnétique	Uniquement efficace pour manipuler des matériaux ferromagnétiques

Modèle réel

Place à la démonstration

CHOICE OF R _{SENSE} AND RESULTING MAX. MOTOR CURRENT				
R _{SENSE} [Ω]	RMS current [A]	Fitting motor type		
	VREF=2.5V (or open),	(examples)		
	IRUN=31,			
	vsense=0 (standard)			
1.00	0.22			
0.82	0.27			
0.75	0.29	300mA motor		
0.68	0.32	400mA motor		
0.50	0.43			
470m	0.46	500mA motor		
390m	0.55	600mA motor		
330m	0.64	700mA motor		
270m	0.77	800mA motor		
220m	0.92	1A motor		
180m	1.09	1.2A motor		
150m	1.28			
120m	1.53*)			
100m	1.77*)	1.5A motor		

MS1	25	DI (pd)	Microstep resolution configuration (internal pull-down resistors)
MS2	26	DT (pd)	MS2, MS1: 00: 1/4, 01: 1/8, 10: 1/16, 11: 1/32

Conclusion

Robot réel non terminé

Pas de stepper fonctionnels

Beaucoup de problèmes à surmonter

Beaucoup d'apprentissage technique

Développement de compétences humaines

Beaucoup de plaisir!

Nous vous remercions pour votre attention

Nous sommes à votre disposition pour répondre à vos questions

