Suggested Solutions to the Exam

80 points, 80 minutes. Closed books, notes, calculators. Indicate your reasoning. Use BOTH clearly written words and math.

- 1. (30 pts) A firm produces output q from inputs $z=(z_1,\ldots,z_n)$ using a strictly increasing C^2 production function f. Let c(w,q) be the firm's cost function, z(w,q) be its conditional factor demand function, and $D_w z(w,q) = [\partial z_i/\partial w_j]$ be the Jacobian matrix of z(w,q) with respect to w. For each property below, state further assumptions that imply it is true, and prove your answer.
 - (a) (10 pts) c(w, q) is convex in q.

Soln: True if f is concave.

Proof. Given q^0 , q^1 , let z^0 and z^1 be the corresponding cost minimizing input bundles. Let $\lambda \in [0,1]$, and define

$$q^{\lambda} = \lambda q^{1} + (1 - \lambda)q^{1},$$

$$z^{\lambda} = \lambda z^{1} + (1 - \lambda)z^{1}.$$

The concavity of *f* implies

$$f(z^{\lambda}) \ge \lambda f(z^1) + (1 - \lambda)f(z^0)$$

$$\ge \lambda q^1 + (1 - \lambda)q^0 = q^{\lambda}.$$

Hence, z^{λ} is feasible for the cost minimization problem for producing output q^{λ} . It follows that c is convex in q since

$$c(w,q) \le w \cdot z^{\lambda}$$

= $\lambda(w \cdot z^1) + (1 - \lambda)(w \cdot z^0)$
= $\lambda c(q^1) + (1 - \lambda)c(q^0)$.

(b) (10 pts) c(w, q) is linear in q.

Soln: True if f is homogeneous of degree one (constant returns to scale).

Proof. (Drop the *w* here, as it is held constant). We have

$$c(tq) = \min_{z} w \cdot z \text{ such that } f(z) \ge tq$$

$$= t \min_{z} w \cdot \frac{z}{t} \text{ such that } f(z) \ge tq$$

$$= t \min_{z} w \cdot \frac{z}{t} \text{ such that } f(\frac{z}{t}) \ge q,$$

where the last equality holds because f is homogeneous of degree one. Letting $\hat{z} = z/t$, we reach our conclusion:

$$c(tq) = t \min_{\hat{z}} w \cdot \hat{z} \text{ such that } f(\hat{z}) \ge q$$

= $tc(q)$.

(c) (10 pts) $D_w z(w,q) w = 0$.

Soln: True at any (w, q) at which the derivatives $D_w z(w, q)$ exist.

Proof. The conditional factor demands are homogeneous of degree zero in w. Hence, by Euler's formula, for any i we have

$$\sum_{j} \frac{\partial z_{i}(w,q)}{\partial w_{j}} w_{j} = 0.$$

In matrix form, these *n* equations are $D_w z(w, q) w = 0$.

2. (20 pts) Robinson Crusoe has an endowment $e \in \mathbb{R}_{++}$ of bananas that he can consume or use to make clothing. If he uses $x \in [0,e]$ bananas to make clothing, his utility will be u(e-x,f(x)), where $u:\mathbb{R}^2_+\to\mathbb{R}$ and $f:\mathbb{R}_+\to\mathbb{R}_+$ are strictly increasing functions. Let

$$x^*(e) := \arg\max_{0 \le x \le e} u(e - x, f(x)).$$

(a) (10 pts) Show that x^* (e) is convex if u is quasiconcave and f is concave.

Soln: Let $x^0, x^1 \in x^*(e)$, and $\bar{u} = u(e - x^0, f(x^0)) = u(e - x^1, f(x^1))$. Let $x^{\lambda} = \lambda x^1 + (1 - \lambda)x^1$ for some $\lambda \in [0, 1]$. Since f is concave, we have

$$f(x^{\lambda}) \ge \lambda f(x^1) + (1 - \lambda)f(x^0).$$

Thus, as u is increasing in its second argument and is quasiconcave, we have

$$u(e - x^{\lambda}, f(x^{\lambda})) \ge u(e - x^{\lambda}, \lambda f(x^{1}) + (1 - \lambda)f(x^{0}))$$

$$= u(\lambda(e - x^{1}) + (1 - \lambda)(e - x^{0}), \lambda f(x^{1}) + (1 - \lambda)f(x^{0}))$$

$$\ge \min\{u(e - x^{1}, f(x^{1})), u(e - x^{0}, f(x^{0}))\}$$

$$= \bar{u}.$$

Since \bar{u} is the maximal utility Robinson can obtain, x^{λ} must be a maximizer: $x^{\lambda} \in x^*(e)$. This proves $x^*(e)$ is a convex set.

(b) (10 pts) Assume now that $x^*(e)$ is a singleton for any e > 0, u and f are C^2 functions, f and u are concave, and $u_{12} \ge 0$. Prove that $x^*(e)$ is a nondecreasing function, stating any further (minor) assumptions you need.

Soln: Proof 1. To simplify notation, let v(e, x) := u(e - x, f(x)). Note that

$$v_{12} = -u_{11} + u_{12}f' \ge 0,$$

since the concavity of u implies $u_{11} \leq 0$, f increasing implies $f' \geq 0$, and we've been told that $u_{12} \geq 0$. Now, for some \bar{e} and $\hat{e} > \bar{e}$, let $\bar{x} = x^*(\bar{e})$ and $\hat{x} = x^*(\hat{e})$. We must show that $\hat{x} \geq \bar{x}$. This is obvious if the two are equal, so we can assume $\bar{x} \neq \hat{x}$. Then

$$\int_{\hat{x}}^{\bar{x}} \int_{\bar{e}}^{\hat{e}} v_{12}(e,x) de \, dx = [v(\hat{e},\bar{x}) - v(\hat{e},\hat{x})] - [v(\bar{e},\bar{x}) - v(\bar{e},\hat{x})] < 0,$$

since \hat{x} is the unique maximizer of $v(\hat{e},\cdot)$ and \bar{x} is the unique maximizer of $v(\bar{e},\cdot)$. Since $v_{12} \geq 0$ and $\hat{e} > \bar{e}$, the double integral would be nonnegative if $\hat{x} < \bar{x}$. Hence, $\hat{x} > \bar{x}$.

Proof 2. This time we use the implicit function theorem to find $x^{*\prime}(e)$ at some e, making stronger derivative assumptions to make sure the troublesome denominator is not zero.

First additional assumption:

(A1)
$$0 < x^*(e) < e$$
.

The FOC thus holds with equality at $x^*(e) : -u_{11} + u_2 f' = 0$. Differentiate it with respect to e and solve for $x^{*'}(e)$:

$$x^{*'}(e) = \frac{u_{11} - u_{12}f'}{D},\tag{1}$$

where

$$D = (1, -f') \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} \begin{pmatrix} 1 \\ -f' \end{pmatrix} + u_2 f''$$

and all functions are evaluated at $x = x^*(e)$. The concavity of u implies its Hessian is negative semidefinite, so the quadratic form term is nonpositive. The last term is nonpositive because $u_2 \ge 0$ and $f'' \le 0$. To make sure D is not zero, we make a second additional assumption:

(A2) $[u_{ij}]$ is a negative definite matrix, or $u_2 > 0$ and f'' < 0.

Since (A2) implies D < 0, the IFT tells us x^* is differentiable at e and its derivative there is as shown in (1). Since $u_{11} \le 0$, $u_{12} \ge 0$, and $f' \ge 0$, we conclude that $x^{*'}(e) \ge 0$.

3. (30 pts) Let $\tilde{x} = a + \tilde{\epsilon}$ be a gamble, where $a \in \mathbb{R}$ and $\tilde{\epsilon}$ is a random variable with mean zero. A consumer has a C^2 Bernoulli utility function, $u : \mathbb{R} \to \mathbb{R}$, satisfying u' > 0 and $u'' \le 0$. Her sale price for the gamble is the minimum amount she would sell the gamble for: it is the number s(a) satisfying

$$u(s(a)) = \mathbb{E}u(a + \tilde{\varepsilon}).$$

(a) (10 pts) If u exhibits constant absolute risk aversion, what can you say about the derivative s'(a)? Prove your answer.

Soln: s'(a) = 1, i.e., s(a) = a + constant.

Proof. Let A be the constant coefficient of absolute risk aversion. If A = 0, then we can normalize so $u(x) \equiv x$, and the definition of s(a) implies $s(a) = a + \mathbb{E}(\tilde{\epsilon}) = a$. So we can assume A > 0 (if A < 0, u would not be concave). We can now normalize u so that

$$u(x) = -e^{-Ax},$$

and so the definition of s(a) implies

$$e^{-As(a)} = e^{-Aa} \mathbb{E} e^{-A\tilde{\varepsilon}} \implies e^{-A(s(a)-a)} = \mathbb{E} e^{-A\tilde{\varepsilon}}.$$

This implies that s(a) - a does not depend on a, and so again s'(a) = 1.

(b) (20 pts) If u exhibits decreasing absolute risk aversion (DARA), what can you say about the derivative s'(a)? Prove your answer.

Soln: $s'(a) \ge 1$.

Proof 1. For any a, define a utility function u_a by $u_a(z) := u(a+z)$. DARA implies u_a is more risk averse than $u_{\hat{a}}$ if $a < \hat{a}$. The definition of s(a) implies

$$u_a(s(a) - a) = u(s(a)) = \mathbb{E}u(a + \tilde{\varepsilon}) = \mathbb{E}u_a(\tilde{\varepsilon}).$$

Thus, s(a) - a is the certainty equivalent of the risk $\tilde{\epsilon}$ for the utility function u_a . Since u_a becomes less risk averse as a increases, this certainty equivalent increases in a. Hence, $s'(a) - 1 \ge 0$.

Proof 2. Differentiate the identity defining s(a) to obtain.

$$s'(a) = \frac{\mathbb{E}u'(a+\tilde{\varepsilon})}{u'(s(a))}.$$

Now we observe that DARA implies u' is a convex function of u: letting $g := u' \circ u^{-1}$, we have u'(z) = g(u(z)) for any z, and at any \bar{u} ,

$$g'(\bar{u}) = \frac{u''(u^{-1}(\bar{u}))}{u'(u^{-1}(\bar{u}))}$$

is increasing in \bar{u} by DARA. Rewrite the expression for s'(a) in terms of g:

$$s'(a) = \frac{\mathbb{E}g(u(a+\tilde{\varepsilon}))}{g(u(s(a)))}.$$

Since g is convex, Jensen's theorem and the definition of s(a) yield

$$\mathbb{E}g(u(a+\tilde{\epsilon})) \geq g(\mathbb{E}u(a+\tilde{\epsilon})) = g(\mathbb{E}u(s(a))),$$

and so $s'(a) \ge 1$.