Здесь будет титульник, листай ниже

СОДЕРЖАНИЕ

1 ПОСТАНОВКА ЗАДАЧИ	5
1.1 Описание входных данных	5
1.2 Описание выходных данных	6
2 МЕТОД РЕШЕНИЯ	7
3 ОПИСАНИЕ АЛГОРИТМОВ	8
3.1 Алгоритм функции main	8
3.2 Алгоритм метода ArrIn класса Sort	8
3.3 Алгоритм метода ArrOut класса Sort	9
3.4 Алгоритм метода reverse класса Sort	9
3.5 Алгоритм конструктора класса Sort	10
4 БЛОК-СХЕМЫ АЛГОРИТМОВ	11
5 КОД ПРОГРАММЫ	13
5.1 Файл main.cpp	13
5.2 Файл Sort.cpp	13
5.3 Файл Sort.h	14
6 ТЕСТИРОВАНИЕ	15
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	16

1 ПОСТАНОВКА ЗАДАЧИ

Создать объект, который обрабатывает массив целых чисел не более 10 элементов.

Количество элементов определяются в момент конструирования объекта.

Объект обладает следующей функциональностью:

- в конструкторе считывает значение количества элементов массива, выводит значение количества элементов;
 - считывает значения элементов массива;
 - выводит значения элементов массива;
 - разворачивает последовательность значений элементов массива.

Написать программу, которая:

- 1. Создает объект и в конструкторе считывает количество элементов массива;
 - 2. Считывает элементы массива;
- 3. Выводит значения элементов массива согласно исходной последовательности;
 - 4. Разворачивает элементы массива;
- 5. Выводит значения элементов массива согласно новому их порядку следования.

1.1 Описание входных данных

Первая строка:

целое число в десятичном формате.

Вторая строка:

последовательность целых чисел в десятичном формате разделенных пробелом.

1.2 Описание выходных данных

Первая строка:

N = «количество элементов»

Вторая строка (исходный порядок следования элементов):

Значения элементов массива, значение каждого элемента занимает 5 позиции, выравнивание по правому краю.

Третья строка (порядок следования элементов после разворота):

Значения элементов массива, значение каждого элемента занимает 5 позиции, выравнивание по правому краю.

2 МЕТОД РЕШЕНИЯ

Для решения задачи используется:

- Объект стандарттного потока ввода сіп;
- Объект стандартного потока вывода cout;
- условный оператор;
- объект obj класса Sort .

3 ОПИСАНИЕ АЛГОРИТМОВ

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

3.1 Алгоритм функции main

Функционал: Основнаяя функция.

Параметры: нет.

Возвращаемое значение: целое, код успеха.

Алгоритм функции представлен в таблице 1.

Таблица 1 – Алгоритм функции таіп

N₂	Предикат	Действия			
			перехода		
1		Создание объекта obj	2		
2		Выполнение метода ArrIn, который вводит в массив значения считанные с клавиатуры	3		
3		выполнение метода ArrOut, которрый выводит элементы массива			
4		Переход на новую строку	5		
5		Выполнение метода reverse, который разворачивает элементы			
6		Выполнение метода ArrOut, который выводит элементы массива в обратной последовательности	Ø		

3.2 Алгоритм метода ArrIn класса Sort

Функционал: Вводит в массив значения, считанные с клавиаткуры.

Параметры: нет.

Возвращаемое значение: отсутствует.

Алгоритм метода представлен в таблице 2.

Таблица 2 – Алгоритм метода ArrIn класса Sort

N₂	Предикат	Действия	
			перехода
1		Ввод в массив значения, считанные с клавиаткуры	Ø

3.3 Алгоритм метода ArrOut класса Sort

Функционал: Выводит элементы массива.

Параметры: нет.

Возвращаемое значение: отсутствует.

Алгоритм метода представлен в таблице 3.

Таблица 3 – Алгоритм метода ArrOut класса Sort

N₂	Предикат	Действия	No
			перехода
1		Вывод элементов массива	Ø

3.4 Алгоритм метода reverse класса Sort

Функционал: разворачивает элемены массива.

Параметры: нет.

Возвращаемое значение: отсутствует.

Алгоритм метода представлен в таблице 4.

Таблица 4 – Алгоритм метода reverse класса Sort

No	Предикат	Действия	No
			перехода
1		Целочисленная переменная reverse	2
2	i < n/2	присваиваем перемннной reverse элементы	2
		массива arr на і позиции. Присваиваем к элементу	
		массива нахлдящийся на такой же позиции, если	
		начать с конца. Приваиваем элементу позиции	

N₂	Предикат	Действия	N₂
			перехода
		значение reverse. Прибавляем к і единицу	
			Ø

3.5 Алгоритм конструктора класса Sort

Функционал: Считываие количества элементов массива, вывод количества элементов.

Параметры: нет.

Алгоритм конструктора представлен в таблице 5.

Таблица 5 – Алгоритм конструктора класса Sort

No	Предикат	Действия	No
			перехода
1		ввод п	2
2		вывод п	Ø

4 БЛОК-СХЕМЫ АЛГОРИТМОВ

Представим описание алгоритмов в графическом виде на рисунках 1-2.

Рисунок 1 – Блок-схема алгоритма

Рисунок 2 – Блок-схема алгоритма

5 КОД ПРОГРАММЫ

Программная реализация алгоритмов для решения задачи представлена ниже.

5.1 Файл таіп.срр

Листинг 1 – main.cpp

```
#include <stdlib.h>
#include <stdio.h>
#include <iostream>
#include "Sort.h"
using namespace std;
int main()
{
    class Sort obj;
    obj.ArrIn();
    obj.ArrOut();
    cout << endl;
    obj.reverse();
    obj.ArrOut();
    return(0);
}</pre>
```

5.2 Файл Sort.cpp

```
#include "Sort.h"
#include <iostream>
#include <iomanip>
using namespace std;

Sort::Sort()
{
    cin >> n;
    cout << "N = " << n << endl;
}

void Sort::ArrIn()
{
    for (int i = 0; i < n; i++)</pre>
```

```
{
     cin >> arr[i];
  }
}
void Sort::ArrOut()
  for (int i = 0; i < n; i++)
     cout << setw(5) << arr[i];</pre>
  }
void Sort::reverse()
  int rever;
  for (int i = 0; i < n / 2; i++)
      rever = arr[i];
     arr[i] = arr[n-1-i];
     arr[n-1-i] = rever;
  }
}
```

5.3 Файл Sort.h

Листинг 3 – Sort.h

```
#ifndef __SORT__H
#define __SORT__H
#include <iostream>
using namespace std;

class Sort
{
  private:
    int arr[10];
    int n;
  public:
    Sort();
    void ArrIn();
    void ArrOut();
    void reverse();
};

#endif
```

6 ТЕСТИРОВАНИЕ

Результат тестирования программы представлен в таблице 6.

Таблица 6 – Результат тестирования программы

Входные данные	Ожидаемые выходные данные			Фактические выходные данные				
4 1 2 3 6	N = 4 1 6	2	3 2	6 1	N = 4 1 6	2	3 2	6 1
3 5 6 8	N = 3 5 8	6 6	8 5		N = 3 5 8	6 6	8 5	

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. ГОСТ 19 Единая система программной документации.
- 2. Методическое пособие студента для выполнения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe_posobie_dlya_laboratornyh_ra bot_3.pdf (дата обращения 05.05.2021).
- 3. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye_k_methodichke.pdf (дата обращения 05.05.2021).
- 4. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2019. 624 с.
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».
- 6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. М.: МИРЭА Российский технологический университет, 2018 1 электрон. опт. диск (CD-ROM).