Math 63: Real Analysis

Winter 2024

PSET 6 — 02/14/2024

Prof. Erchenko

Student: Amittai Siavava

Credit Statement

I worked on these problems alone, with reference to class notes and the following books:

(a) Introduction to Analysis by Maxwell Rosenlicht

Problem 1.

$$\operatorname{Let} f(x) = \frac{1+x}{1+x^3}.$$

(i) Find a largest subset $U \subseteq \mathbb{R}$ where f is well-defined. Is f continuous on U?

Since f is a rational function, it is well-defined where the denominator is nonzero.

Thus,
$$U = \mathbb{R} \setminus \{-1\}$$
.

Since U is open and f is a rational function, f is continuous on U (This was proven in class.).

(ii) Let U be as in part (i). Let g be a function such that g(x) = f(x) if $x \in U$. Is there a way to define g on $\mathbb{R} \setminus U$ to obtain a continuous function g on \mathbb{R} ?

Note: value at x = -1 is not defined, which is not demonstrated in this plot.

For g to be continuous on \mathbb{R} , we need to define g at -1 such that $\lim_{x\to -1} g(x) = g(-1)$. Since g has an indeterminate form at -1, we use L'Hôpital's rule to find the limit:

$$\lim_{x \to -1} \frac{1+x}{1+x^3} = \lim_{x \to -1} \left[\frac{\mathrm{d}}{\mathrm{d}x} (1+x) / \frac{\mathrm{d}}{\mathrm{d}x} (1+x^3) \right]$$
$$= \lim_{x \to -1} \frac{1}{3x^2}$$
$$= \frac{1}{3}$$

Thus, we can define

$$g(x) = \begin{cases} f(x) & \text{if } x \in \mathbb{R} \setminus \{-1\} \\ \frac{1}{3} & \text{if } x = -1 \end{cases}$$

to obtain a continuous function on \mathbb{R} .

Problem 2.

Determine the points where the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x,y) = \begin{cases} \frac{1}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

is continuous.

Claim 2.1. The function f is continuous at all points $(x, y) \neq (0, 0)$.

Proof. Note that the function f is a composition of two functions; $f = h \circ g$, where

$$g: \mathbb{R}^2 \to \mathbb{R}$$
 and $h: \mathbb{R} \to \mathbb{R}$
$$(x,y) \mapsto x^2 + y^2 \qquad \qquad t \mapsto \frac{1}{t}.$$

Since g and h are both continuous over $U\coloneqq \big\{p\in\mathbb{R}^2\mid p\neq (0,0)\big\}$, Their is composition is also continuous over U. \square

Claim 2.2. The function f is not continuous at (0,0).

Proof. f is continuous at (0,0) if and only if

$$\lim_{(x,y)\to(0,0)} f(x,y) = f(0,0).$$

However;

$$\lim_{(x,y)\to(0,0)} f\big(x,y\big) = \lim_{(x,y)\to(0,0)} \frac{1}{x^2+y^2} = \infty,$$

so the limit does not exist. However, f(0,0) = 0 so f is not continuous at (0,0).

Problem 3.

Let $f : [a, b] \to \mathbb{R}$ with a < b be continuous. Show that functions

$$m(x) = \inf \{ f(y) \mid a \le y \le x \}$$
 and $M(x) = \sup \{ f(y) \mid a \le y \le x \}$

are continuous on [a, b].

We will show that m is continuous on [a, b]. The proof for M is analogous.

Claim 3.1. The function m is continuous on [a, b].

Proof. Let $x_0 \in [a, b]$. We need to show that $\lim_{x \to x_0} m(x) = m(x_0)$.

First, note that by definition of $m, m(x) \le f(x)$ for all $x \in [a, b]$. Thus, m is bounded above by f. Since f is continuous on [a, b], we have $\lim_{x \to x_0} f(x) = f(x_0)$.

Thus, for every $\varepsilon > 0$ there exists $\delta > 0$ such that $|x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon$.

For any such ε and δ , pick x so that $|x - x_0| < \delta$. We claim that $|m(x) - m(x_0)| < \varepsilon$. To show this, we shall demonstrate that $m(x_0) - \varepsilon < m(x) < m(x_0) + \varepsilon$.

1. Proof that $m(x_0) - \varepsilon < m(x)$:

$$m(x_0) - \varepsilon \le f(x_0) - \varepsilon$$
 since $m(x_0) \le f(x_0)$
$$< f(x)$$
 since $|f(x) - f(x_0)| < \varepsilon$
$$\le \inf \{ f(y) \mid a \le y \le x \}$$

$$= m(x)$$

2. Proof that $m(x) < m(x_0) + \varepsilon$:

$$m(x) \le f(x)$$

$$< f(x_0) + \varepsilon$$

$$\le \inf \{ f(y) \mid a \le y \le x_0 \} + \varepsilon$$

$$= m(x_0) + \varepsilon$$

Problem 4.

Show if each of this functions is uniformly continuous on $\ensuremath{\mathbb{R}}$ or not.

(i)
$$f(x) = x^2$$
.

(ii)
$$f(x) = \sqrt{|x|}$$
.

Problem 5.

Let (E,d_E) be a compact metric space, and let $f,f_1,f_2,f_3,\ldots:E\to\mathbb{R}$ be continuous real-values functions on E, with $\lim_{n\to\infty}f_n=f$. Prove that if $f_1(p)\leq f_2(p)\leq f_3(p)\leq \cdots$ for all $p\in E$ then the sequence f_1,f_2,f_3,\ldots converges uniformly.

Problem 6.

Let (X, d_X) and (Y, d_Y) be metric spaces. Assume (Y, d_Y) is complete. Show that a sequence of functions $f_n : X \to Y$ converges uniformly on X if and only if it is uniformly Cauchy on X.

Problem 7.

Let (X, d_X) be a metric space. A function $g: X \to \mathbb{R}$ is bounded on X if $\exists M$ such that $|g(x)| \leq M$ for all $x \in X$.

Suppose that $f_n: X \to \mathbb{R}$ is bounded on X for each $n \in \mathbb{N}$. Show that if a sequence of of f_n converges uniformly to a function $f: X \to \mathbb{R}$ then f is bounded on X.