One dimensional defects

Dislocations

"Introduction to dislocations" By D. Hull and D.J. Bacon Section 1.4, 3.1 to 3.6

One dimensional defects

Dislocations

"Solid State Chemistry and its Applications"

By A. R. West

Section 2.5

"Introduction to dislocations"

By D. Hull and D.J. Bacon

Section 1.4, 3.1 to 3.6

Mechanical response of materials

Extending elastic deformation concept

Final configuration

$$\tau = \tau_m \sin\left(\frac{2\pi x}{b}\right)$$

$$\tau = \tau_m \sin\left(\frac{2\pi x}{b}\right)$$

$$\tau = \tau_m \sin\left(\frac{2\pi x}{b}\right)$$

Small displacements

$$\tau = \tau_m \sin\left(\frac{2\pi x}{b}\right)$$

Small displacements

$$\tau = \tau_m \times \left(\frac{2\pi x}{b}\right)$$

$$\tau = \tau_m \sin\left(\frac{2\pi x}{b}\right)$$

Small displacements

$$\tau = \tau_m \times \left(\frac{2\pi x}{b}\right)$$

Hooke's Law:

$$\tau = \tau_m \sin\left(\frac{2\pi x}{b}\right)$$

Small displacements

$$\tau = \tau_m \times \left(\frac{2\pi x}{b}\right)$$

Hooke's Law:

$$\tau = \tau_m \sin\left(\frac{2\pi x}{b}\right)$$

Small displacements

$$\tau = \tau_m \times \left(\frac{2\pi x}{b}\right)$$

Hooke's Law:

Equating R.H.S

$$\therefore \frac{G}{a} = \frac{2\pi\tau_m}{b}$$

$$\tau = \tau_m \sin\left(\frac{2\pi x}{b}\right)$$

Small displacements

$$\tau = \tau_m \times \left(\frac{2\pi x}{b}\right)$$

Equating R.H.S
$$\therefore \frac{G}{a} = \frac{2\pi\tau_m}{b}$$

With
$$b \sim a$$
, $\tau_m = \frac{G}{2\pi}$

• Shear Modulus of metals, G = 20 - 150 GPa

The need for a different mechanism

• Shear Modulus of metals, G = 20 - 150 GPa

•
$$au_{\it m} = \frac{G}{2\pi}$$
 , even if we take $au_{\it m,theory} = 0.1 imes au_{\it m}$

The need for a different mechanism

• Shear Modulus of metals, G = 20 - 150 GPa

•
$$au_{\it m} = \frac{G}{2\pi}$$
 , even if we take $au_{\it m,theory} = 0.1 imes au_{\it m}$

• Shear Modulus of metals, G = 20 - 150 GPa

.
$$au_{\it m} = \frac{G}{2\pi}$$
 , even if we take $au_{\it m,theory} = 0.1 imes au_{\it m}$

• Shear Modulus of metals, G = 20 - 150 GPa

•
$$au_{\it m} = {G \over 2\pi}$$
 , even if we take $au_{\it m,theory} = 0.1 imes au_{\it m}$

• Shear Modulus of metals, G = 20 - 150 GPa

•
$$au_m = \frac{G}{2\pi}$$
 , even if we take $au_{m,theory} = 0.1 imes au_m$

Dislocations – 1-D defects

Line defects are called dislocations

Lower stress to plastic deformation

Geometry of of dislocations

- Two vectors define a dislocation
 - Line Vector
 - Burgers vector

- Angle between these vectors characterizes it
 - Always 90° Edge dislocation
 - Always 0° Screw dislocation
 - Any other Mixed dislocation

- extra half-plane of atoms
- distortion concentrated around the bounding line
- deflection and distortion of the interatomic bonds decrease with increasing distance from the line
- line sense taken as positive going in to the plane of the paper

Edge Dislocations – Line vector

- Circuit MNOPQ with Ds. inside : $3 \downarrow , 4 \leftarrow , 3 \uparrow , 5 \rightarrow (Right Handed, RH)$
- Follow the same steps in the perfect crystal
- The 'missing link' (*Finish to Start, FS*) in the *perfect crystal* is the **Burgers vector**
- In this case, \overrightarrow{QM} is the Burgers vector, \overrightarrow{b}

Edge Dislocations – Burgers vector

- Circuit P \rightarrow P in perfect crystal: $4 \uparrow$, $5 \rightarrow$, $4 \downarrow$, $5 \leftarrow$ (*Right Handed, RH*)
- Follow the same steps in the defected crystal, the circuit will end at Q
- The 'missing link' (*Finish to Start, FS*) in the *defected crystal* is the **Burgers vector**
- In this case, $\overrightarrow{\mathbf{QP}}$ is the Burgers vector, $\overrightarrow{\mathbf{b}}$

Alternate conventions

Screw dislocations Line and Burgers vector

Dislocation density

Length of dislocations per unit volume Dislocation density, $\rho:=$ Number of dislocations intersecting unit area

Dislocation density

- Units of $/ m^2$
- \bullet High in metallic materials $\left(10^{12}-10^{14}\right)$
- Increases with plastic deformation to 10^{15}
- Low in non-metallic crystals, as low as 10^5

Dislocation loops and branches

- Dislocation lines can end at the surface of a crystal and at grain boundaries
 - never inside a crystal
 - form closed loops
 - branch into other dislocations
- When three or more dislocations meet at a point, or node
 - Burgers vector is conserved
 - vector total in equals vector total out

Kamaladasa, Ranga & Jiang Wenkan & Picard, Yoosuf. (2011). Imaging Dislocations in Single-Crystal SrTiO3 Substrates by Electron Channeling, Journal of s11664-011-1723-9

b.

Mixed Dislocation Loop

Cubic crystal

- Mixed dislocation straight line
 - Along [112] direction
 - Burgers vector is ½[110]

What are the edge and screw vector components of the Burgers vector

• Two types of movement of dislocations

- Two types of movement of dislocations
 - Glide or conservative motion

- Two types of movement of dislocations
 - Glide or conservative motion
 - dislocation moves in the surface which contains both its line and Burgers vector

- Two types of movement of dislocations
 - Glide or conservative motion
 - dislocation moves in the surface which contains both its line and Burgers vector
 - a dislocation able to move in this way is glissile

- Two types of movement of dislocations
 - Glide or conservative motion
 - dislocation moves in the surface which contains both its line and Burgers vector
 - a dislocation able to move in this way is glissile
 - one which cannot is sessile

- Two types of movement of dislocations
 - Glide or conservative motion
 - dislocation moves in the surface which contains both its line and Burgers vector
 - a dislocation able to move in this way is glissile
 - one which cannot is sessile

- Two types of movement of dislocations
 - Glide or conservative motion
 - dislocation moves in the surface which contains both its line and Burgers vector
 - a dislocation able to move in this way is glissile
 - one which cannot is sessile
 - Climb or non-conservative motion

- Two types of movement of dislocations
 - Glide or conservative motion
 - dislocation moves in the surface which contains both its line and Burgers vector
 - a dislocation able to move in this way is glissile
 - one which cannot is sessile
 - Climb or non-conservative motion
 - occurs when the dislocation moves out of the glide surface

- Two types of movement of dislocations
 - Glide or conservative motion
 - dislocation moves in the surface which contains both its line and Burgers vector
 - a dislocation able to move in this way is glissile
 - one which cannot is sessile
 - Climb or non-conservative motion
 - occurs when the dislocation moves out of the glide surface
 - normal to the Burgers vector

- Two types of movement of dislocations
 - Glide or conservative motion
 - dislocation moves in the surface which contains both its line and Burgers vector
 - a dislocation able to move in this way is glissile
 - one which cannot is sessile
 - Climb or non-conservative motion
 - occurs when the dislocation moves out of the glide surface
 - normal to the Burgers vector

- Two types of movement of dislocations
 - Glide or conservative motion
 - dislocation moves in the surface which contains both its line and Burgers vector
 - a dislocation able to move in this way is glissile
 - one which cannot is sessile
 - Climb or non-conservative motion
 - occurs when the dislocation moves out of the glide surface
 - normal to the Burgers vector
- Glide of many dislocations results in slip: most common manifestation of plastic deformation in crystalline solids

• Boundary between *slipped and the un-slipped* parts of the crystal

• Plane containing the line and Burgers vector defines a *slip plane*

Dislocation - alternative definition

Dislocation Glide or Slip - Edge Ds

Dislocation Glide or Slip - Screw Ds.

vector and Burgers vector Slip in Crystals

Burgers vector is the slip direction

Slip occurs in that crystallographic

plane that contains both line

The plane and direction constitute a slip system

High linear density in that plane

High planar density

Why does a slip system exist?

Burgers
vector is
along a
close packed
direction

Why does a slip system exist?

Lower energy barrier for atom movement

Slip occurs on a close packed plane

Slip systems

Crystal system	Slip Plane	Slip direction	Degeneracy
FCC	{111}	<110>	12
	{110}		12
ВСС	{211}	⟨111⟩	12
	{321}		24
НСР	{001}	(011)	3
	{100}		3
	{101}		6

Glide and Deformation

- Uniaxial tensile test shear stress on all planes
- shear stress > stress needed to move dislocation

Resolved shear stress

Critical Resolved shear stress

Resolved shear stress

$$Stress = \left(\frac{Force}{Area}\right)_{1D} \quad \tau_{RSS} = \frac{F\cos\lambda}{\frac{A}{\cos\phi}}$$

$$\tau_{\rm RSS} = \frac{F\cos\lambda}{\frac{A}{\cos\phi}}$$

 $\tau_{RSS} = \sigma \cos \phi \cos \lambda$

- Maximum shear stress is in a plane inclined at $(\theta =) 45^{\circ}$.
- The vertical (90°) and horizontal plane (0°) feel no shear stresses.

Slip is initiated when $\tau_{RSS} \geq \tau_{CRSS}$

- Single crystal bcc Fe
- Tensile stress on (010)
- Slip initiated in a slip system
- $\tau_{CRSS} = 30 MPa$
- Compute resolved shear stress when a tensile stress of 52 MPa is applied
- 2. Compute the yield strength

- Single crystal bcc Fe
- Tensile stress on (010)
- Slip initiated in a slip system
- $\tau_{CRSS} = 30 MPa$
- Compute resolved shear stress when a tensile stress of 52 MPa is applied
- 2. Compute the yield strength

- Single crystal bcc Fe
- Tensile stress on (010)
- Slip initiated in a slip system
- $\tau_{CRSS} = 30 MPa$
- Compute resolved shear stress when a tensile stress of 52 MPa is applied
- 2. Compute the yield strength

- Single crystal bcc Fe
- Tensile stress on (010)
- Slip initiated in a slip system
- $\tau_{CRSS} = 30 MPa$
- Compute resolved shear stress when a tensile stress of 52 MPa is applied
- 2. Compute the yield strength

- Single crystal bcc Fe
- Tensile stress on (010)
- Slip initiated in a slip system
- $\tau_{CRSS} = 30 MPa$
- Compute resolved shear stress when a tensile stress of 52 MPa is applied
- 2. Compute the yield strength

- Single crystal bcc Fe
- Tensile stress on (010)
- Slip initiated in a slip system
- $\tau_{CRSS} = 30 MPa$
- Compute resolved shear stress when a tensile stress of 52 MPa is applied
- 2. Compute the yield strength