Transition to Advanced Mathematics

Fall 2021

Practically Perfect Proof

Patrick May

December 31, 2021

Question 4.

Theorem 1. Suppose n is a natural number and let p be the smallest prime divisor of n. If $p > \sqrt[3]{n}$, then $\frac{n}{p}$ is not composite.

Proof. Assume $p > \sqrt[3]{n}$.

Proceeding via contrapositive, assume that $\frac{n}{p}$ is composite.

Since $\frac{n}{p}$ is composite, there exists a natural number d, a divisor of $\frac{n}{p}$ that is not $\frac{n}{p}$ or 1.

Then $ad = \frac{n}{p}$ for some $a \in \mathbb{Z}$.

$$ad = \frac{n}{p} \tag{1}$$

$$\implies pad = n$$
 (2)

$$\implies pa = \frac{n}{d} \tag{3}$$

Since pa is an integer by closure, so $d \mid n$.

Likewise, pd is an integer by closure, so $a \mid n$.

Note that since $d \in \mathbb{N}$, and $1 < d < \frac{n}{p}$, and since $ad = \frac{n}{p}$, we know $a \ne 0$, as that would mean $d = \frac{n}{p}$. Likewise, $a \ne \frac{n}{p}$ as that would mean d = 1. As a is a divisor of $\frac{n}{p}$ such that $a \ne 1, a \ne \frac{n}{p}$, we know $1 < a < \frac{n}{p}$.

Then since p is the smallest prime divisor of n, and because d > 1 and a > 1,

$$d \ge p$$
, $a \ge p$ (4)

It follows from our original assumption:

$$p > \sqrt[3]{n} \tag{5}$$

$$\implies p^3 > n \tag{6}$$

$$\implies p^2 > \frac{n}{p} \tag{7}$$

$$\implies p^2 > ad \tag{8}$$

Using 4 it follows that $ad \ge p^2$, which implies either $ad > p^2$ or $p^2 = ad$.

Case 1. Assume $p^2 = ad$.

Referring to 8, this implies $p^2 > p^2$, which is a contradiction.

Case 2. Assume $ad > p^2$.

Referring to 8, this implies $p^2 > ad$ and $ad > p^2$, which is a contradiction.

Thus, by contradiction, the original claim is true.