Computational Stochastic Processes - Assignment 1

Tom McGrath

February 14, 2014

1 Question 1

1.1 q1.a.

Monte Carlo estimate with 100,000 samples: Z = 4.2966847565923385e + 19

1.2 q1.b.

Numerical integration gives Z=4.667589495153099e+19 Graph of error (blue) and variance (green) for MC integration:

There is another peak around (0.5,1), but it is smaller. A mixture of Gaussians is the appropriate distribution for importance sampling. The error & variance performance is in the figure below:

2 Question 2

2.1 q2.a.

Generated sample paths and first four moments plotted below (mean is black, variance blue, 3rd moment green and 4th moment red):

Odd moments are zero, as we would expect.

Mean square displacement graph:

2.2 q2.b.

By Monte Carlo estimate with 100000 runs:

$$\mathbb{P}\left(sup_{t\in[0,2]}X(t) > 2\right) = 0.48992\tag{1}$$

3 Q3

3.1 q3.a.

$$dX(t) = \mu(t)dt + \Sigma(t)dW(t), \quad X(0) = x \tag{2}$$

Integrating we obtain:

$$X(t) = X(0) + \int_0^t \mu(s)ds + \int_0^t \Sigma(s)dW(s)$$
 (3)

We have to deal with the integral with respect to W(s) - this is a martingale with quadratic variation:

$$I(t) = \int_0^t \Sigma(s)ds \implies \langle I(t)\rangle = \int_0^t (\Sigma(s) \otimes \Sigma(s))ds = \int_0^t \Gamma(s)ds \tag{4}$$

Therefore we have:

$$X(t) = X(0) + \int_0^t \mu(s)ds + \int_0^t \Gamma(s)ds$$
 (5)

The characteristic function of a random variable X is given by:

$$\phi(t) = \mathbb{E}(e^{itX}) \tag{6}$$

Which is Gaussian when:

$$\phi(t) = e^{\langle m, t \rangle - \frac{1}{2} \langle t, \Sigma t \rangle} \tag{7}$$

The X(t) determined above satisfies this, and the equation for X(t) - X(s) follows immediately.

3.2 q3.b.

By discretising time and calculating increments according to equation (4) on the problem sheet it is possible to generate sample paths for X(t).

3.3 q3.c.

Figure of sample path (x component in blue, y component in green):

Figure of mean and variance:

Figure of elements of covariance matrix:

The results match theoretical predictions well. Even with a relatively low number of sample paths, a good agreement is still occurring.

4 Q4

4.1 q4.a.

Using code from question 2 with the covariance function provided it is possible to generate samples from this field. Samples and first 4 moments are plotted below:

For 1000 samples, the first 4 moments are:

4.2 q4.b.

We have that:

$$\int_{-L}^{L} e^{-a|x-y|} f(y) dy = \lambda f(x)$$
(8)

Which is equivalent to

$$\int_{-L}^{x} e^{-a(x-y)} f(y) dy + \int_{x}^{L} e^{a(x-y)} f(y) dy = \lambda f(x)$$
 (9)

Differentiating once with respect to t gives:

$$-a\int_{-L}^{x} e^{-a(x-y)} f(y) dy + a\int_{x}^{L} e^{a(x-y)} f(y) dy - e^{-ax} e^{ax} + e^{-ax} e^{ax} = \lambda f'(x)$$
 (10)

The last 2 terms cancel. Differentiating again gives:

$$a^{2} \int_{-L}^{x} e^{-a(x-y)} f(y) dy + a^{2} \int_{x}^{L} e^{a(x-y)} f(y) dy - 2af(x) = \lambda f''(x)$$
 (11)

The terms in a^2 are now the original integral multiplied by a factor of a^2 , so we can

write:

$$a^{2}\lambda f(x) - 2af(x) = \lambda f''(x) \tag{12}$$

We can obtain the boundary conditions by evaluating the undifferentiated expression and the first derivative at the boundaries +L and -L to give:

$$af(L) + f'(L) = 0 (13)$$

$$af(-L) - f'(-L) = 0$$
 (14)

Now use the variation of constants method, with eigenfunctions in the form:

$$f(x) = c_1 \cos(\omega x) + c_2 \sin(\omega x) \tag{15}$$

Firstly we can recover the eigenvalues:

$$a^{2}\lambda f(x) - 2af(x) = \lambda f''(x) \implies a^{2}\lambda f(x) + 2af(x) = \omega^{2}\lambda f(x)$$
 (16)

Rearranging gives:

$$(a^2 = \omega^2)\lambda = 2a \implies \lambda = \frac{2a}{a^2 + \omega^2} \tag{17}$$

Now inserting the eigenfunctions and their derivatives into the boundary conditions gives the following equations:

$$c_1(a - \omega \tan(\omega L)) + c_2(\omega + a \tan(\omega L)) = 0$$
(18)

$$c_1(a - \omega \tan(\omega L)) - c_2(\omega + a \tan(\omega L)) = 0$$
(19)

These have nontrivial solutions when either the term in c1 or the term in c_2 is zero, and gives solutions:

$$f(x) = \frac{\cos(\omega x)}{\sqrt{L + \frac{\sin(2\omega L)}{2\omega}}}$$
 (20)

for the solutions given by $a - \omega \tan(\omega L) = 0$ and

$$f(x) = \frac{\sin(\omega x)}{\sqrt{L - \frac{\sin(2\omega L)}{2\omega}}}$$
 (21)

for solutions given by $\omega + a \tan(\omega L) = L$