$\begin{aligned} & \text{MIT World Peace University} \\ & \textbf{\textit{Analysis of Algorithms}} \end{aligned}$

Unit 1

NAMAN SONI ROLL NO. 10

Contents

1	Divi	ide and Conquer	2
	1.1	Control Abstraction	2
	1.2	Time Complexity of the general algorithm	2
	1.3	Methods for Solving recurrences	2
	1 4	Math you need to Review	5

1 Divide and Conquer

1.1 Control Abstraction

```
DANDC (P)

if SMALL (P) then return S (p);

else

divide p into smaller instances p1, p2,...Pk, k>=1;

apply DANDC to each of these sub problems;

return (COMBINE (DANDC (p1), DANDC (P2),...,DANDC (pk)));

}
```

1.2 Time Complexity of the general algorithm

- A recurrence is an equation or inequality that describes a function in terms of its value on smaller inputs.
- Special techniques are required to analyze the space and time required.

```
• T(n) = \frac{aT(\frac{n}{b}+1)(n)+c(n)}{O(1)}
```

• Time Complexity (recurrence relation): (

```
- where D(n): time for splitting
```

- C(n): time for conquer

- c: a constant

1.3 Methods for Solving recurrences

- 1. Substitution method: This method involves guessing a solution and then proving that it is correct.
- 2. Recurrence tree method: This method involves constructing a tree diagram that represents the recursive calls and their relationship to each other.
- 3. Master theorem: This is a general theorem that provides a method for solving recurrences of a specific form.

1.4 Math you need to Review

Properties of Logarithms:

•
$$\log_b(xy) = \log_b(x) + \log_b(y)$$

•
$$\log_b(\frac{x}{y}) = \log_b(x) - \log_b(y)$$

•
$$\log_b xa = a \log_b x$$

•
$$\log_b a = \frac{\log_x a}{\log_b b}$$

Properties of exponentials:

$$\bullet \ a^{(b+c)} = a^b a^c$$

•
$$a^{bc} = (a^b)^c$$

- $\bullet \ \frac{a^b}{a^c} = a^{(b-c)}$
- $b = a^{\log_a b}$
- $\bullet \ b^c = a^{c^* \log_a b}$