Support Vector Machines

October 4, 2016

1 Linear SVM

We have a set of points (x_i, y_i) where each x_i is a vector and each y_i is either -1 or 1.

1.1 Hard Margin

- First consider the line $L = \{y = mx\}.$
- What is the distance from a point $p_0 = (x_0, y_0)$ to this line?
- As we know from high school the answer is p₀ · n where n is the unit normal of the line.
- The equation $n \cdot p_0 + \tilde{b} = 0$ defines the set of points lying on another line with gradient m, but with a different intercept.
- In fact, for the line (defined by) $y = mx + \tilde{b}$, then the points lying on the line is defined by $(p_0 \tilde{b}) \cdot n = 0$, ie $p_0 \cdot n \tilde{b} \cdot n = 0$, and we can denote $b = \tilde{b} \cdot n$.

1.1.1 The Optimization Problem

• Equivalently this can be written

$$\frac{1}{\|w\|}\left(w \cdot p_0 + \frac{b}{\|w\|}\right) = 0$$

We need to find w and b to maximize the "margin", in this case 1/||w||.

- This is basically saying find w and b such that $w \cdot x_i + b \ge 1$ if $y_i = 1$, and $w \cdot x_i + b \le -1$ if $y_i = -1$, and such that ||w|| is minimized.
- Ie, minimize ||w|| such that

$$\operatorname{sgn}(w \cdot x_i + b) = y_i$$

for all i.

ullet The point is that getting n and \tilde{b} is equivalent to specifying a hyperplane. The margin is then

$$\frac{1}{\|w\|} = \min_{i} \left(n \cdot x_{i} - \tilde{b} \right)$$

The good part about w is that we can get rid of more unknowns in the constraint.

1.2 Soft Margin

- If the classification is wrong, we need a measure of how wrong it is.
- This can be given by the hinge loss

$$L(x,y) = \max(0, 1 - (w \cdot x + b)y)$$

Now minimize the average hinge loss.

• Remark: This is conceptually similar not entirely equivalent to maximizing

$$(w \cdot x + b) y$$

which is what was done at [1].

1.2.1 Regularization

- Have a parameter λ that regulates the tradeoff between the margin and the hinge loss.
- Ie between getting more points right and getting wrong points less wrong.
- Now minimize

$$\frac{1}{n}\sum_{i}^{n}L(x_{i},y_{i})+\lambda \|w\|$$

2 General Kernels

What's actually happening here?

 \bullet We're basically picking a function f so that the predictions are given by

$$pred(x) = sgn(f(x) + b)$$

$$f(x) = w \cdot x$$

$$= \sum_{j} w_{j}x_{j}$$

 \bullet Of course, we pick f to minimize the hinge loss

$$L(x_i, y_i) = \max (1 - y_i (f(x_i) + b), 0)$$

$$\bar{L} = \frac{1}{N} \sum_{i=1}^{N} L(x_i, y_i)$$

2.1 RBF Kernel

This is where it gets more interesting: we can pick something else for f

$$f(x) = \sum_{i=1}^{n} w_{i} y_{i} \exp\left(-4 \|x_{i} - x\|^{2}\right)$$

- Think of this as just superimposing a Gaussian hump on top of every point in the training dataset, pointing up or down depending on y_i .
- Then to classify a point, just look at whether the humps sum to something positive at that location.

2.2 General

In fact we actually pick anything for f, as long as it's of the form

$$f(x) = \sum_{i} \alpha_{i} y_{i} K(x_{i}, x)$$

- We require that *K* be positive-semidefinite. (otherwise there might be more than one solution).
- Without the positive semidefinite property all of these optimization problems would be able to "run to negative infinity" or use negative terms [1].
- Remark: the α_i are positive, otherwise having y_i would be redundant (it would also imply we could flip the sign of K with impunity, which is false).

2.3 Recasting the Linear Kernel

To compare the above to the linear kernel, write

$$K(x_i, x) = \langle x_i, x \rangle = \sum_{j=1}^{n} x_{ij} x_j$$

$$f(x) = \sum_{i=1}^{n} \alpha_i y_i \sum_{j=1}^{n} x_{ij} x_j$$

$$= \sum_{j=1}^{n} \left(\sum_{i=1}^{n} \alpha_i y_i x_{ij} \right) x_j$$

So that

$$w_j = \sum_i \alpha_i y_i x_{ij}$$
$$w = \sum_i \alpha_i y_i x_i$$

• Ie we have a linear combination of dot prducts which will reduce to just a dot product in the end.

• Graphically, think of it like this: the 3d plot for $x \cdot y$ is just a tilted plane that passes through the origin. Superimposing such planes results in just another such plane. Eventually you just get a plane, and this is what you're testing is greater or less than zero.

2.3.1 Support Vectors

Are those for which $w_i \neq 0$. In the linear case there are two points p_1 and p_2 such that $p_1 - p_2$ is parallel to the dividing line. But this isn't necessarily the only way.

2.4 Higher Dimensional Projection

Abstractly, the positive-definiteness can be captured by setting $K(x_1, x_2) = \langle \phi(x_1), \phi(x_2) \rangle$ where $\phi: V \to W$ is some map between inner product spaces.

For example

$$\phi: (x,y) \mapsto (x,y,x^2+y^2)$$

So that

$$K(x,y) = \phi(x) \cdot \phi(y)$$

= $x \cdot y + (x_1^2 + x_2^2)(y_1^2 + y_2^2)$

- Note that this doesn't imply conjugate symmetry or sesquilinearity at all, since φ can be anything, perhaps even discontinuous.
- The whole projection to a higher dimensional space metaphor/interpretation really isn't all that useful. It's really trying to apply the intuition of the linear kernel to general kernels, when the other way around is much more natural.

2.5 Relationship to kNN

- The SVM is actually the same as weighted kNN with k infinite, except that in this case $\alpha_i = 1$ for all i.
- So an SVM is like a weighted kNN on steroids.
- Note that the rbf kernel is not separable, ie cannot be written in the form

$$\exp\left(-4\|x_i - x\|^2\right) = f(x_i)g(x)$$

2.6 Relationship to Logistic Regression

• Remember that

$$\log\left(\frac{p}{1-p}\right) = \sum_{i} w_i x_i$$
$$= w \cdot x$$

and

$$\operatorname{pred}(x) = \operatorname{sgn}(w \cdot x + \beta)$$

where β is some function of the probability threshold.

- So you're optimizing w again, which is the vector of coefficients.
- What we have is a linear SVM where you're maximizing the log likelihood instead of the margin (or minimizing the hinge loss).

References

- [1] http://www.win-vector.com/blog/2011/10/kernel-methods-and-support-vector-machines-de-mystified/
- [2]