Exercício 13 - INF 280 Werikson Alves - ES96708 20/03/2022

Questão 1

Considere a rede abaixo onde os vértices representam cidades, e as arestas representam os custos para ligar as cidades por meio de cabos e torres de transmissão de energia (em milhões de reais). Resolva esse problema, mostrando a rede de interligação de menor custo possível, e calculando o custo ótimo.

Tabela 1: Matriz de Adjacência do grafo:

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1		6	4			6			3							
2	6		4							6		8				
3	4	4		11							8					
4			11		5		10									12
5				5		4							3		11	
6	6				4		8	7								
7				10		8		12								
8						7	12		11		4					
9	3							11		10				3		
10		6							10		5					
11			8					4		5		10				
12		8									10		11			4
13					3							11		10	4	
14									3				10		5	7
15					11								4	5		4
16				12								4		7	4	

Solução

Lista de arestas ordenadas do menor para o maior custo: L = (1,9), (5,13), (9,14), (1,3), (2,3), (5,6), (8,11), (13,15), (12,16), (15,16), (4,5), (10,11), (14,15), (1,2), (1,6), (2,10), (6,8), (14,16), (6,7), (3,11), (2,12), (4,7), (9,10), (11,12), (13,14), (3,4), (8,9), (12,13), (5,15), (7,8), (4,16)

Figura 1: AGM

1 Questão 2

(baseado em Hillier Lieberman, pág. 415)

O diagrama a seguir representa um sistema de aquedutos que se origina em três rios (nós R_l , R_2 e R_3) e termina em uma cidade importante (nó T), onde os demais nós são pontos de junção nesse sistema. Os valores das arestas mostram a quantidade máxima de água que pode ser bombeada diariamente em cada trecho, em milhares de m^3 .

O gerente da companhia de águas da cidade quer estabelecer um plano de fluxo que vai maximizar o fluxo de água para a cidade.

Modele esse problema como um problema do fluxo máximo. Depois resolva o modelo e mostre o grafo-solução.

1.1 Solução 1 QUESTÃO 2

1.1 Solução

Custo total

$$Max = xDT + xET + xFT;$$

Restrições

```
R1,R2,R3: xR1A + xR1B + xR2A + xR2B + xR2C + xR3B + xR3C - xDT - xET - xFT = 0
A: xAD + xAE - xR1A - xR2A = 0;
B: xBD + xBE + xBF - xR1B - xR2B - xR3B = 0;
C: xCE + xCF - xR2C - xR3C = 0;
D: xDT - xAD - xBD = 0;
E: xET - xAE - xBE - xCE = 0;
F: xFT - xBF - xCF = 0;
0 <= xR1A <= 75;
0 <= xR1B <= 65;
0 <= xR2A <= 40;
0 <= xR2B <= 50;
0 <= xR2C <= 60;
0 <= xR3B <= 80;
0 <= xR3C <= 70;
0 <= xAD <= 60;
0 <= xAE <= 45;
0 <= xBD <= 70;
0 <= xBE <= 55;
0 <= xBF <= 45;
0 <= xCE <= 70;
```

1.1 Solução 1 QUESTÃO 2

```
\begin{split} 0 <&= xCF <= 90; \\ 0 <&= xDT <= 120; \\ 0 <&= xET <= 190; \\ 0 <&= xFT <= 130; \end{split}
```

Variable	Value	Reduced Cost
XDT	120.0000	0.000000
XET	170.0000	0.000000
XFT	105.0000	0.000000
XAD	60.00000	0.000000
XAE	45.00000	0.000000
XR1A	75.00000	0.000000
XR2A	30.00000	0.000000
XBD	60.00000	0.000000
XBE	55.00000	0.000000
XBF	45.00000	0.000000
XR1B	65.00000	0.000000
XR2B	50.00000	0.000000
XR3B	45.00000	0.000000
XCE	70.00000	0.000000
XCF	60.00000	0.000000
XR2C	60.00000	0.000000
XR3C	70.00000	0.000000
_		
Row	Slack or Surplus	Dual Price
1	395.0000	1.000000
A	0.000000	0.000000
В	0.000000	0.000000
C	0.000000	1.000000
D	0.000000	0.000000
E	0.000000	1.000000
F	0.000000	1.000000
8 9	0.000000	0.000000
10	10.00000	0.000000
11	0.000000	0.000000
12	0.000000	1.000000
13	35.00000	0.000000
14	0.000000	1.000000
15	0.000000	0.000000
16	0.000000	1.000000
17	10.00000	0.000000
18	0.000000	1.000000
19	0.000000	1.000000
20	0.000000	0.000000
21	30.00000	0.000000
22	0.000000	1.000000
23	20.00000	0.000000
24	25.00000	0.000000
47	23.00000	0.000000

1.1 Solução 1 QUESTÃO 2

