A Short Lecture on Classical Optimization

Roy Vincent L.Canseco

Scientific Computing Laboratory Department of Computer Science

Candidacy, Summer 2014

Outline

- Preliminaries
 - Linear Programming
 - Convexity
 - Extreme Points
- Lagrangian Methods
 - Lagrangian Sufficiency Theorem
 - Methods of solution
- The Lagrangian Dual
 - The Dual Problem
 - The Dual Problem in Linear Programming

Linear Programming

Consider the problem P.

P: maximize
$$x_1+x_2$$
 subject to $x_1+2x_2 \le 6$ $x_1-x_2 \le 3$ x_1 , $x_2 \ge 0$

- objective function
- constraints

Linear Programming

Consider the problem P.

P: maximize
$$x_1+x_2$$
 subject to $x_1+2x_2 \le 6$ $x_1-x_2 \le 3$ x_1 , $x_2 \ge 0$

objective function

constraints

Linear Programming

Consider the problem P.

P: maximize
$$x_1+x_2$$
 subject to $x_1+2x_2 \leq 6$ $x_1-x_2 \leq 3$ x_1 , $x_2 \geq 0$

- objective function
- constraints

Matrix/ Vector Notation

P: maximize
$$x_1 + x_2$$

subject to $x_1 + 2x_2 \le 6$
 $x_1 - x_2 \le 3$
 x_1 , $x_2 \ge 0$

P: maximize
$$\begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 subject to
$$\begin{bmatrix} 1 & 2 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leq \begin{bmatrix} 6 \\ 3 \end{bmatrix}$$
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \geq \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Matrix/ Vector Notation

P: maximize
$$x_1 + x_2$$
 subject to $x_1 + 2x_2 \le 6$ $x_1 - x_2 \le 3$ x_1 , $x_2 \ge 0$

P: maximize
$$\begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 subject to
$$\begin{bmatrix} 1 & 2 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leq \begin{bmatrix} 6 \\ 3 \end{bmatrix}$$
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \geq \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Compact Form

P: maximize
$$\begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 subject to
$$\begin{bmatrix} 1 & 2 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leq \begin{bmatrix} 6 \\ 3 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \geq \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

P: maximize
$$c^T x$$

subject to $Ax \le b$
 $x > 0$

Compact Form

P: maximize
$$\begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 subject to
$$\begin{bmatrix} 1 & 2 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leq \begin{bmatrix} 6 \\ 3 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \geq \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

P: maximize
$$c^T x$$

subject to $Ax \le b$
 $x > 0$

P: maximize
$$c^T x$$

subject to $Ax \le b$
 $x \ge 0$

P: maximize
$$f(x)$$

subject to $g(x) = b$
 $x \in X$

- $Ax \le b$ will be the same as Ax + z = b
- z is the slack variable

P: maximize
$$c^T x$$

subject to $Ax \le b$
 $x \ge 0$

P: maximize
$$f(x)$$

subject to $g(x) = b$
 $x \in X$

- $Ax \le b$ will be the same as Ax + z = b
- z is the slack variable

P: maximize
$$c^T x$$

subject to $Ax \le b$
 $x \ge 0$

P: maximize
$$f(x)$$

subject to $g(x) = b$
 $x \in X$

- $Ax \le b$ will be the same as Ax + z = b
- z is the slack variable

General Optimization

P: maximize
$$f(x)$$

subject to $g(x) = b$
 $x \in X$

where

$$egin{array}{lll} x & \in & \mathbb{R}^n & (n \mbox{ decision variables}) \ f: \mathbb{R}^n & o & \mathbb{R} & (\mbox{objective function}) \ X & \subseteq & \mathbb{R}^n & (\mbox{regional constraints}) \ g: \mathbb{R}^n & o & \mathbb{R}^m & (m \mbox{ functional constraints}) \ b & \subseteq & \mathbb{R}^m \end{array}$$

Note that maximizing f(x) is the same as minimizing -f(x)

1st Functional Constraint

2nd Functional Constraint

Regional Constraint

Feasible Set

Convex Set

Definition

1.1 For a convex set S, any line segment connecting two points in S must also lie in S.

Equivalently, a set $S \subseteq \mathbb{R}^n$ is a **convex set** if $\forall x, y \in S$ and

$$0 \le \lambda \le 1 \Longrightarrow \lambda x + (1 - \lambda)y \in S$$

LP Feasible Set

Theorem

1.1 The feasible set of an LP problem is convex

Convex Function

Definition

1.2 A function $f: S \to \mathbb{R}$ is a convex function if the set above its graph is a convex set.

Equivalently, $\forall 0 \leq \lambda \leq 1$, $\lambda f(x) + (1 - \lambda)f(y) \geq f(\lambda x + (1 - \lambda)y)$

Convexity

- ullet In a general problem of minimizing f over a general S , there may be a lot of local minima
- It may be difficult to find the global minimum
- However, if S is a convex set and f is a convex function in S, then any local minima found is the global minimum
- if S is convex and f is a concave function in S, then any local maxima found is the global maximum
- Linear functions (e.g. those in LP) are both concave and convex at the same time. Any local optima found are also global.

Feasible Set

Objective Function

Family of Curves

Extreme Points

Writing out the Lagrangian

From our previous example,

P: maximize
$$x_1+x_2$$
 subject to $x_1+2x_2 \le 6$ $x_1-x_2 \le 3$ x_1 , $x_2 \ge 0$

The Lagrangian will be,

$$L(x,\lambda) = x_1 + x_2 - \lambda_1 (x_1 + 2x_2 + z_1 - 6) - \lambda_2 (x_1 - x_2 + z_2 - 3)$$

With the constraint that $x, z \ge 0$ where z is the slack variable and λ is the Lagrange multiplier

Other Representations

$$L(x,\lambda) = x_1 + x_2 - \lambda_1 (x_1 + 2x_2 + z_1 - 6) - \lambda_2 (x_1 - x_2 + z_2 - 3)$$

$$L(x,\lambda) = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} - \begin{bmatrix} \lambda_1 & \lambda_2 \end{bmatrix} \left(\begin{bmatrix} 1 & 2 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} - \begin{bmatrix} 6 \\ 3 \end{bmatrix} \right)$$

$$L(x,\lambda) = c^{T}x - \lambda^{T}(Ax + z - b)$$

$$L(x,\lambda) = f(x) - \lambda^{T} (g(x) + z - b)$$

where $x, z \ge 0$

The Lagrangian

For the general optimization problem P: minimize f(x) s.t. g(x) = b, $x \in X$ The Lagrangian is

$$L(x,\lambda) = f(x) - \lambda^{T} (g(x) - b)$$

with $x\in\mathbb{R}^n$, $b\in\mathbb{R}^m$, $\lambda\in\mathbb{R}^m$, meaning there are n decision variables, m constraints and m Lagrange multipliers.

Lagrangian Sufficiency Theorem

Theorem

2.1 If x^* and λ^* exist such that x^* is feasible for P and

$$L(x^*, \lambda^*) \le L(x, \lambda^*) \quad \forall x \in X$$

then x^* is optimal for P.

Proof

Lagrangian Sufficiency Theorem

Proof.

Define

$$X_b = \{x : x \in X \text{ and } g(x) = b\}$$

Note that $X_b \subseteq X$ and that for any $x \in X_b$ and any $\lambda \in \mathbb{R}^m$

$$L(x,\lambda) = f(x) - \lambda^{T} (g(x) - b) = f(x)$$

$$L(x,\lambda^*) = f(x) - \lambda^T (g(x) - b) = f(x)$$

Note also that for $x \in X_h$,

$$L(x^*, \lambda^*) = f(x^*)$$

Proof.

Since,

$$f(x^*) \leq f(x)$$

So,

$$f(x^*) = L(x^*, \lambda^*) \le L(x, \lambda^*) = f(x)$$

Thus x^* is optimal for P

- \bullet This is useful as long as we can find λ^* , which is usually the case
- This helps us find x^* by limiting the values of x to consider x = x + y = y = y = y

Example 1

Example

minimize
$$x_1 - x_2 - 2x_3$$

s.t. $x_1 + x_2 + x_3 = 5$
 $x_1^2 + x_2^2 = 4$
 $x \in X = \mathbb{R}^3$

A Look at the Constraints

$$x_1 + x_2 + x_3 = 5$$

$$x_1^2 + x_2^2 = 4$$

The Objective Function

Step 1 Solution to Example 1

Setup $L(x,\lambda)$ and for each λ , minimize $L(x,\lambda)$ subject to $x\in X$

$$L(x,\lambda) = f(x) - \lambda^{T} (g(x) - b)$$

$$= (x_{1} - x_{2} - 2x_{3}) - [\lambda_{1} \quad \lambda_{2}] \cdot \left(\begin{bmatrix} (x_{1} + x_{2} + x_{3}) \\ (x_{1}^{2} + x_{2}^{2}) \end{bmatrix} - \begin{bmatrix} 5 \\ 4 \end{bmatrix} \right)$$

$$= (x_{1} - x_{2} - 2x_{3}) - \lambda_{1} (x_{1} + x_{2} + x_{3} - 5) - \lambda_{2} (x_{1}^{2} + x_{2}^{2} - 4)$$

$$= [x_{1} (1 - \lambda_{1}) - \lambda_{2} x_{1}^{2}] + [x_{2} (-1 - \lambda_{1}) - \lambda_{2} x_{2}^{2}]$$

$$+ [-x_{3} (2 + \lambda_{1})] + 5\lambda_{1} + 4\lambda_{2}$$

• Minimize $L(x,\lambda)$ for a fixed λ in $x \in \mathbb{R}^3$. We can minimize with respect to our decision variables,

$$\frac{\partial L}{\partial x_1} = 1 - \lambda_1 - 2\lambda_2 x_1 = 0 \implies x_1 = \frac{1 - \lambda_1}{2\lambda_2}$$

$$\frac{\partial L}{\partial x_2} = -1 - \lambda_1 - 2\lambda_2 x_2 = 0 \implies x_2 = \frac{-1 - \lambda_1}{2\lambda_2}$$

Step 1 Solution to Example 1

Setup $L(x,\lambda)$ and for each λ , minimize $L(x,\lambda)$ subject to $x\in X$

$$L(x,\lambda) = f(x) - \lambda^{T} (g(x) - b)$$

$$= (x_{1} - x_{2} - 2x_{3}) - [\lambda_{1} \quad \lambda_{2}] \cdot (\begin{bmatrix} (x_{1} + x_{2} + x_{3}) \\ (x_{1}^{2} + x_{2}^{2}) \end{bmatrix} - \begin{bmatrix} 5 \\ 4 \end{bmatrix})$$

$$= (x_{1} - x_{2} - 2x_{3}) - \lambda_{1} (x_{1} + x_{2} + x_{3} - 5) - \lambda_{2} (x_{1}^{2} + x_{2}^{2} - 4)$$

$$= [x_{1} (1 - \lambda_{1}) - \lambda_{2} x_{1}^{2}] + [x_{2} (-1 - \lambda_{1}) - \lambda_{2} x_{2}^{2}]$$

$$+ [-x_{3} (2 + \lambda_{1})] + 5\lambda_{1} + 4\lambda_{2}$$

• Minimize $L(x,\lambda)$ for a fixed λ in $x \in \mathbb{R}^3$. We can minimize with respect to our decision variables,

$$\frac{\partial L/\partial x_1}{\partial L/\partial x_2} = 1 - \lambda_1 - 2\lambda_2 x_1 = 0 \implies x_1 = \frac{1 - \lambda_1}{2\lambda_2}$$

$$\frac{\partial L/\partial x_2}{\partial L/\partial x_2} = -1 - \lambda_1 - 2\lambda_2 x_2 = 0 \implies x_2 = \frac{-1 - \lambda_1}{2\lambda_2}$$

Setup $L(x,\lambda)$ and for each λ , minimize $L(x,\lambda)$ subject to $x\in X$

$$L(x,\lambda) = f(x) - \lambda^{T}(g(x) - b)$$

$$= (x_{1} - x_{2} - 2x_{3}) - [\lambda_{1} \quad \lambda_{2}] \cdot \left(\begin{bmatrix} (x_{1} + x_{2} + x_{3}) \\ (x_{1}^{2} + x_{2}^{2}) \end{bmatrix} - \begin{bmatrix} 5 \\ 4 \end{bmatrix}\right)$$

$$= (x_{1} - x_{2} - 2x_{3}) - \lambda_{1}(x_{1} + x_{2} + x_{3} - 5) - \lambda_{2}(x_{1}^{2} + x_{2}^{2} - 4)$$

$$= [x_{1}(1 - \lambda_{1}) - \lambda_{2}x_{1}^{2}] + [x_{2}(-1 - \lambda_{1}) - \lambda_{2}x_{2}^{2}]$$

$$+ [-x_{3}(2 + \lambda_{1})] + 5\lambda_{1} + 4\lambda_{2}$$

• Minimize $L(x,\lambda)$ for a fixed λ in $x \in \mathbb{R}^3$. We can minimize with respect to our decision variables,

$$\frac{\partial L}{\partial x_1} = 1 - \lambda_1 - 2\lambda_2 x_1 = 0 \implies x_1 = \frac{1 - \lambda_1}{2\lambda_2}$$

$$\frac{\partial L}{\partial x_2} = -1 - \lambda_1 - 2\lambda_2 x_2 = 0 \implies x_2 = \frac{-1 - \lambda_1}{2\lambda_2}$$

Setup $L(x,\lambda)$ and for each λ , minimize $L(x,\lambda)$ subject to $x\in X$

$$L(x,\lambda) = f(x) - \lambda^{T} (g(x) - b)$$

$$= (x_{1} - x_{2} - 2x_{3}) - [\lambda_{1} \quad \lambda_{2}] \cdot (\begin{bmatrix} (x_{1} + x_{2} + x_{3}) \\ (x_{1}^{2} + x_{2}^{2}) \end{bmatrix} - \begin{bmatrix} 5 \\ 4 \end{bmatrix})$$

$$= (x_{1} - x_{2} - 2x_{3}) - \lambda_{1} (x_{1} + x_{2} + x_{3} - 5) - \lambda_{2} (x_{1}^{2} + x_{2}^{2} - 4)$$

$$= [x_{1} (1 - \lambda_{1}) - \lambda_{2} x_{1}^{2}] + [x_{2} (-1 - \lambda_{1}) - \lambda_{2} x_{2}^{2}]$$

$$+ [-x_{3} (2 + \lambda_{1})] + 5\lambda_{1} + 4\lambda_{2}$$

• Minimize $L(x,\lambda)$ for a fixed λ in $x \in \mathbb{R}^3$. We can minimize with respect to our decision variables,

$$\frac{\partial L}{\partial x_1} = 1 - \lambda_1 - 2\lambda_2 x_1 = 0 \implies x_1 = \frac{1 - \lambda_1}{2\lambda_2}$$

$$\frac{\partial L}{\partial x_2} = -1 - \lambda_1 - 2\lambda_2 x_2 = 0 \implies x_2 = \frac{-1 - \lambda_1}{2\lambda_2}$$

Define the set $Y = \left\{\lambda : \min_{\mathbf{x} \in \mathbf{X}} L(\mathbf{x}, \lambda) > -\infty\right\}$, i.e. λ for which the Lagrangian will have a finite minimum.

$$L(x,\lambda) = \left[x_1(1-\lambda_1) - \lambda_2 x_1^2\right] + \left[x_2(-1-\lambda_1) - \lambda_2 x_2^2\right] + \left[-x_3(2+\lambda_1)\right] + 5x_1^2$$

- notice that $[-x_3(2+\lambda_1)]$ has a minimum of $-\infty$ unless $\lambda_1=-2$. So we only consider $\lambda_1=-2$.
- also, observe that $\left[x_1(1-\lambda_1)-\lambda_2x_1^2\right]+\left[x_2(-1-\lambda_1)-\lambda_2x_2^2\right]$ will only have a finite minimum if λ_2 is strictly <0

$$Y = \{\lambda : \lambda_1 = -2, \ \lambda_2 < 0\}$$

Define the set $Y = \left\{\lambda : \min_{\mathbf{x} \in \mathbf{X}} L(\mathbf{x}, \lambda) > -\infty\right\}$, i.e. λ for which the Lagrangian will have a finite minimum.

$$L(x,\lambda) = \left[x_1(1-\lambda_1) - \lambda_2 x_1^2\right] + \left[x_2(-1-\lambda_1) - \lambda_2 x_2^2\right] + \left[-x_3(2+\lambda_1)\right] + 5\lambda_1^2$$

- notice that $[-x_3(2+\lambda_1)]$ has a minimum of $-\infty$ unless $\lambda_1=-2$. So we only consider $\lambda_1=-2$.
- also, observe that $\left[x_1(1-\lambda_1)-\lambda_2x_1^2\right]+\left[x_2(-1-\lambda_1)-\lambda_2x_2^2\right]$ will only have a finite minimum if λ_2 is strictly <0

$$Y = \{\lambda : \lambda_1 = -2, \ \lambda_2 < 0\}$$

Define the set $Y = \left\{\lambda : \min_{\mathbf{x} \in \mathbf{X}} L(\mathbf{x}, \lambda) > -\infty\right\}$, i.e. λ for which the Lagrangian will have a finite minimum.

$$L(x,\lambda) = \left[x_1(1-\lambda_1) - \lambda_2 x_1^2\right] + \left[x_2(-1-\lambda_1) - \lambda_2 x_2^2\right] + \left[-x_3(2+\lambda_1)\right] + 5\lambda_1^2$$

- notice that $[-x_3(2+\lambda_1)]$ has a minimum of $-\infty$ unless $\lambda_1=-2$. So we only consider $\lambda_1=-2$.
- also, observe that $\left[x_1\left(1-\lambda_1\right)-\lambda_2x_1^2\right]+\left[x_2\left(-1-\lambda_1\right)-\lambda_2x_2^2\right]$ will only have a finite minimum if λ_2 is strictly <0

$$Y = \{\lambda : \lambda_1 = -2, \ \lambda_2 < 0\}$$

The minimum will be found at some $x(\lambda)$, for $\lambda \in Y$. We find $x(\lambda)$ that minimizes $L(x,\lambda)$.

$$Y = \{\lambda : \lambda_1 = -2, \ \lambda_2 < 0\}$$

$$x_1 = \frac{1 - \lambda_1}{2\lambda_2} \implies x_1 = 3/2\lambda_2$$

$$x_2 = \frac{-1 - \lambda_1}{2\lambda_2} \implies x_2 = 1/2\lambda_2$$

$$x(\lambda) = (3/2\lambda_2, 1/2\lambda_2, x_3)^T$$

The minimum will be found at some $x(\lambda)$, for $\lambda \in Y$. We find $x(\lambda)$ that minimizes $L(x,\lambda)$.

$$Y = \{\lambda : \lambda_1 = -2, \ \lambda_2 < 0\}$$

$$x_1 = \frac{1 - \lambda_1}{2\lambda_2} \implies x_1 = 3/2\lambda_2$$

$$x_2 = \frac{-1 - \lambda_1}{2\lambda_2} \implies x_2 = 1/2\lambda_2$$

$$x(\lambda) = (3/2\lambda_2, 1/2\lambda_2, x_3)^T$$

Step 4

Solution to Example 1

Adjust or find λ values so that $x(\lambda)$ is feasible.

If $\lambda^* \in Y$ exists such that $x^* = x(\lambda^*)$ is feasible, then x^* is optimal for P by the Lagrangian sufficiency theorem

$$Y = \{\lambda : \lambda_1 = -2, \ \lambda_2 < 0\}$$

$$x(\lambda) = \left(\frac{3}{2\lambda_2}, \frac{1}{2\lambda_2}, x_3\right)^T$$

To find a feasible $x(\lambda)$, we can use the second constraint.

$$x_1^2 + x_2^2 = 4 \implies \frac{9}{4\lambda_2^2} + \frac{1}{4\lambda_2^2} = 4 \implies \lambda_2 = \pm \sqrt{5/8}$$

Since
$$\lambda_2 < 0$$
 , $\lambda_2 = -\sqrt{5/8}$

Adjust or find λ values so that $x(\lambda)$ is feasible. If $\lambda^* \in Y$ exists such that $x^* = x(\lambda^*)$ is feasible, then x^* is optimal for P by the Lagrangian sufficiency theorem

$$Y=\{\lambda:\lambda_1=-2,\,\lambda_2<0\}$$

$$x(\lambda) = \left(\frac{3}{2\lambda_2}, \frac{1}{2\lambda_2}, x_3\right)^T$$

To find a feasible $x(\lambda)$, we can use the second constraint.

$$x_1^2 + x_2^2 = 4 \implies \frac{9}{4\lambda_2^2} + \frac{1}{4\lambda_2^2} = 4 \implies \lambda_2 = \pm \sqrt{5/8}$$

Since
$$\lambda_2 < 0$$
 , $\lambda_2 = -\sqrt{5/8}$

Solution to Example 1

We can now solve for the values of x_1 and x_2

$$x_1 = \frac{3}{2\lambda_2} = -3\sqrt{\frac{2}{5}} \approx -1.90$$

 $x_2 = \frac{1}{2\lambda_2} = -\sqrt{\frac{2}{5}} \approx -0.632$

To find the value of x_3 we can use the first constraint

$$x_3 = 5 - x_1 - x_2 = 5 + 4\sqrt{2/5} \approx 7.53$$

$$x^* = \left(-3\sqrt{2/5}, -\sqrt{2/5}, 5 + 4\sqrt{2/5}\right)^T$$

$$\lambda^* = \left(-2\,,\,-\sqrt{5/8}\right)^T$$

The conditions of the theorem are satisfied, so x^* is optimal. :)

A Review of the Plots

Summary of Steps

- \bullet Setup $L(x,\lambda)$ and for each λ , minimize $L(x,\lambda)$ subject to $x\in X$
- ② Define the set $Y = \left\{\lambda : \min_{x \in X} L(x, \lambda) > -\infty\right\}$, i.e. λ for which the Lagrangian will have a finite minimum.
- **3** The minimum will be found at some $x(\lambda)$, for $\lambda \in Y$. We find $x(\lambda)$ that minimizes $L(x,\lambda)$.
- Adjust or find λ values so that $x(\lambda)$ is feasible.

If $\lambda^* \in Y$ exists such that $x^* = x(\lambda^*)$ is feasible, then x^* is optimal for P by the Lagrangian sufficiency theorem

Example 2

Example

minimize
$$\frac{1}{1+x_1}+\frac{1}{2+x_2}$$
 s.t. $x_1+x_2=b$, $x_1,x_2\geq 0$

The Functional Constraint

The Objective Function to Minimize

Step 1

Solution to Example 2

Setup $L(x,\lambda)$ and for each λ , minimize $L(x,\lambda)$ subject to $x\in X$

Definition

$$X = \{x : x \ge 0\}$$
 ,
Lagrangian $L(x, \lambda) = f(x) - \lambda (g(x) - b)$

$$L(x,\lambda) = \frac{1}{1+x_1} + \frac{1}{2+x_2} - \lambda (x_1 + x_2 - b)$$

= $\left(\frac{1}{1+x_1} - \lambda x_1\right) + \left(\frac{1}{2+x_2} - \lambda x_2\right) + \lambda b$

$$\partial L/\partial x_1 = -\frac{1}{(1+x_1)^2} - \lambda = 0 \implies x_1 = -1 + \sqrt{\frac{-1}{\lambda}}$$

 $\partial L/\partial x_2 = -\frac{1}{(2+x_2)^2} - \lambda = 0 \implies x_2 = -2 + \sqrt{\frac{-1}{\lambda}}$

Setup $L(x,\lambda)$ and for each λ , minimize $L(x,\lambda)$ subject to $x\in X$

Definition

$$X = \{x : x \ge 0\}$$
 ,
Lagrangian $L(x,\lambda) = f(x) - \lambda (g(x) - b)$

$$L(x,\lambda) = \frac{1}{1+x_1} + \frac{1}{2+x_2} - \lambda (x_1 + x_2 - b)$$

= $\left(\frac{1}{1+x_1} - \lambda x_1\right) + \left(\frac{1}{2+x_2} - \lambda x_2\right) + \lambda b$

Define the set $Y = \left\{\lambda : \min_{\mathbf{x} \in \mathbf{X}} L(\mathbf{x}, \lambda) > -\infty\right\}$, i.e. λ for which the Lagrangian will have a finite minimum.

$$L(x,\lambda) = \left(\frac{1}{1+x_1} - \lambda x_1\right) + \left(\frac{1}{2+x_2} - \lambda x_2\right) + \lambda b$$

• given that $x \ge 0$, the first 2 terms of the rhs will only have a finite minimum if $\lambda < 0$

$$Y = \{\lambda : \lambda \le 0\}$$

Define the set $Y = \left\{\lambda : \min_{\mathbf{x} \in \mathbf{X}} L(\mathbf{x}, \lambda) > -\infty\right\}$, i.e. λ for which the Lagrangian will have a finite minimum.

$$L(x,\lambda) = \left(\frac{1}{1+x_1} - \lambda x_1\right) + \left(\frac{1}{2+x_2} - \lambda x_2\right) + \lambda b$$

• given that $x \ge 0$, the first 2 terms of the rhs will only have a finite minimum if $\lambda < 0$

$$Y = {\lambda : \lambda \leq 0}$$

The minimum will be found at some $x(\lambda)$, for $\lambda \in Y$. We find $x(\lambda)$ that minimizes $L(x,\lambda)$.

ullet for $x \geq 0$ and $\lambda \leq 0$, we examine functions of the form

$$\left(\frac{1}{a+x}-\lambda x\right)$$

$$(2+x)^{-1}+x=v$$

The minimum will be found at some $x(\lambda)$, for $\lambda \in Y$. We find $x(\lambda)$ that minimizes $L(x,\lambda)$.

ullet for $x\geq 0$ and $\lambda\leq 0$, we examine functions of the form

$$\left(\frac{1}{a+x}-\lambda x\right)$$

$$(2+x)^{-1} + x = y$$

$$(0.2+x)^{-1}+x=y$$

RVLC

Step 3 Solution to Example 2 (slide 2)

• for a range of $x \geq 0$, a function of the form $\left(\frac{1}{a+x} - \lambda x\right)$ will have a minimum at either x=0 or at the stationary point of the function depending on whether the function is increasing or decreasing at x=0

$$\frac{d}{dt}\left(\frac{1}{a+x}-\lambda x\right) \quad = \quad -\frac{1}{\left(a+x\right)^2}-\lambda \quad = \quad 0 \quad \Longrightarrow \quad x \quad = \quad -a+\sqrt{\frac{-1}{\lambda}}$$

• so the minimum will occur at

$$x = \begin{cases} 0 & , & \sqrt{-1/\lambda} \le a \\ -a + \sqrt{-1/\lambda} & , & \sqrt{-1/\lambda} \ge a \end{cases}$$

Step 3 Solution to Example 2 (slide 3)

$$x = \begin{cases} 0 & , & \sqrt{-1/\lambda} \le a \\ -a + \sqrt{-1/\lambda} & , & \sqrt{-1/\lambda} \ge a \end{cases}$$

- ullet we look at the boundary values for λ
- we know that $\lambda \leq 0$
- we now find λ for $\sqrt{-1/\lambda} = a$ where a = 1, 2

$$\sqrt{-1/\lambda} = a
-1/\lambda = a^2
-1/a^2 = \lambda$$

ullet There will be boundaries at $\lambda=-1$ and $\lambda=-1/4$

Step 4

Solution to Example 2

Adjust / Find λ values so that $x(\lambda)$ is feasible.

• we use our constraint and substitute our values for $x(\lambda)$ to it

$$x_1 + x_2 = b$$

$$x = \begin{cases} 0 & , & \sqrt{-1/\lambda} \le a \\ -a + \sqrt{-1/\lambda} & , & \sqrt{-1/\lambda} \ge a \end{cases}$$

Definition

$$c^+ = \max(0, c)$$

$$x(\lambda) = \left(-a + \sqrt{-1/\lambda}\right)^{+}$$

Adjust / Find λ values so that $x(\lambda)$ is feasible.

ullet we use our constraint and substitute our values for $imes(\lambda)$ to it

$$x_1 + x_2 = b$$

$$x = \begin{cases} 0 & , & \sqrt{-1/\lambda} \le a \\ -a + \sqrt{-1/\lambda} & , & \sqrt{-1/\lambda} \ge a \end{cases}$$

Definition

$$c^+ = \max(0, c)$$

$$x(\lambda) = \left(-a + \sqrt{-1/\lambda}\right)^+$$

Step 4 Solution to Example 2 (slide 2)

ullet we use our constraint and substitute our values for $x(\lambda)$ to it

$$x_{1} + x_{2} = b$$

$$x_{1}(\lambda) + x_{2}(\lambda) = \left(-1 + \sqrt{-1/\lambda}\right)^{+} + \left(-2 + \sqrt{-1/\lambda}\right)^{+}$$

$$= \begin{cases} 0, & \lambda \leq -1 \\ -1 + 1/\sqrt{-\lambda}, & \lambda \in [-1, -1/4] \\ -3 + 2/\sqrt{-\lambda}, & \lambda \in [-1/4, 0] \end{cases}$$

Step 4 Solution to Example 2 (slide 3)

- by the Intermediate Value Theorem , for any b>0there will be a unique value of λ ,say λ^* , for which $x_1(\lambda^*) + x_2(\lambda^*) = b$
- x^* and λ^* will satisfy the conditions for the Lagrangian sufficiency theorem and thus, x^* will be optimal

Solution to Example 2

• if we had a value for b , we can find the optimum by substituting it below

$$x_1 + x_2 = b$$

$$x_1(\lambda) + x_2(\lambda) = \left(-1 + \sqrt{-1/\lambda}\right)^+ + \left(-2 + \sqrt{-1/\lambda}\right)^+$$

ullet Then we shall get λ^* , which we will substitute below

$$x_1 = -1 + \sqrt{\frac{-1}{\lambda}}$$

$$x_2 = -2 + \sqrt{\frac{-1}{\lambda}}$$

ullet to get the optimal values for x_1 and x_2

Weak Duality Theorem Some definitions

Definition

$$Y = \left\{\lambda : \min_{\mathbf{x} \in \mathbf{X}} L(\mathbf{x}, \lambda) > -\infty\right\}$$

For $\lambda \in Y$,

Definition

$$L(\lambda) = \min_{x \in X} L(x, \lambda)$$

Weak Duality Theorem Theorem Proper (slide 2)

Theorem

3.1 Weak Duality Theorem

For any feasible $x \in X_b$ and any $\lambda \in Y$

$$L(\lambda) \leq f(x)$$

If the set Y is non-empty, we can pick any $\lambda \in Y$ and $L(\lambda)$ will be a lower bound for the minimum value of the objective function f(x)

Proof Weak Duality Theorem

- The Lagrangian is $L(x,\lambda) = f(x) \lambda^T (g(x) b)$
- If x is within the feasible region, then the constraint g(x) = b is satisfied and g(x) b = 0
- in this case, the Lagrangian $L(x,\lambda)$ is equal to the objective function f(x)

Proof.

For
$$x \in X_b$$
 , $\lambda \in Y$,

$$f(x) = L(x,\lambda) \ge \min_{x \in X_b} L(x,\lambda) \ge \min_{x \in X} L(x,\lambda) = L(\lambda)$$

Lagrangian Dual Problem

Consider the problem

D: maximize
$$L(\lambda)$$
 subject to $\lambda \in Y$

equivalently,

D:
$$\underset{\lambda \in Y}{\operatorname{maximize}} \left\{ \underset{x \in X}{\min} L(x, \lambda) \right\}$$

- this is the Lagrangian Dual Problem
- the original problem is called the Primal Problem
- ullet The optimal value of the dual is \leq to the optimal value of the primal
- \bullet If they are equal (e.g. in LP) , we call it a Strong Duality

Example 3

• We review Example 1

Example

minimize
$$f(x) = x_1 - x_2 - 2x_3$$

s.t. $g_1(x) = x_1 + x_2 + x_3 = 5$
 $g_2(x) = x_1^2 + x_2^2 = 4$
 $x \in X = \mathbb{R}^3$

- $Y = {\lambda : \lambda_1 = -2, \lambda_2 < 0}$
- The $\min_{x \in X} L(x, \lambda)$ occurred for $x(\lambda) = \left(\frac{3}{2\lambda_2}, \frac{1}{2\lambda_2}, x_3\right)$
- Solve for $L(\lambda) = L(x(\lambda), \lambda) = f(x(\lambda)) \lambda^{T}(g(x(\lambda)) b)$

Example 3 slide 2

- The $\min_{x \in X} L(x, \lambda)$ occurred for $x(\lambda) = \left(\frac{3}{2\lambda_2}, \frac{1}{2\lambda_2}, x_3\right)$
- $Y = {\lambda : \lambda_1 = -2, \lambda_2 < 0}$

$$L(x,\lambda) = (x_1 - x_2 - 2x_3) - \lambda_1 (x_1 + x_2 + x_3 - 5) - \lambda_2 (x_1^2 + x_2^2 - 4)$$

$$L(\lambda) = \left(\frac{3}{2\lambda_2} - \frac{1}{2\lambda_2} - 2x_3\right) - (-2)\left(\frac{3}{2\lambda_2} + \frac{1}{2\lambda_2} + x_3 - 5\right)$$

$$- \lambda_2 \left(\left(\frac{3}{2\lambda_2}\right)^2 + \left(\frac{1}{2\lambda_2}\right)^2 - 4\right)$$

$$L(\lambda) = \frac{3}{2\lambda_2} - \frac{1}{2\lambda_2} - 2x_3 + 2\left(\frac{3}{2\lambda_2} + \frac{1}{2\lambda_2} + x_3 - 5\right)$$

$$- \left(\frac{9}{4\lambda_2} + \frac{1}{4\lambda_2} - 4\lambda_2\right)$$

$$L(\lambda) = \frac{3}{2\lambda_2} - \frac{1}{2\lambda_2} - 2x_3 + \frac{3}{\lambda_2} + \frac{1}{\lambda_2} + 2x_3 - 10 - \frac{9}{4\lambda_2} - \frac{1}{4\lambda_2} + 4\lambda_2$$

$$= \frac{10}{4\lambda_2} - 10 + 4\lambda_2$$

Example 3 slide 3

 We define the Dual Problem

$$\underset{\lambda_2<0}{\text{maximize}}\left\{\frac{10}{4\lambda_2}-10+4\lambda_2\right\}$$

Example 3

• get the derivative and equate to 0

$$\frac{10}{4}(-1)(\lambda_2)^{-2} + 4 = 0
4 = \frac{5}{2\lambda_2^2}
\lambda_2^2 = \frac{5}{8}
\lambda_2 = \pm \sqrt{5/8}$$

• Since a $\lambda_2<0$ is required to have a finite minimum, the max is at $\lambda_2=\left(-\sqrt{5/8}\right)\approx-0.79$

Example 3 Dual Problem Optimum (slide 5)

ullet The optimum for the Dual Problem is at $L(\lambda_2)$

$$L(\lambda) = \frac{10}{4\lambda_2} - 10 + 4\lambda_2$$

$$= \frac{10}{4\left(-\sqrt{5/8}\right)} - 10 + 4\left(-\sqrt{5/8}\right)$$

$$= \frac{-10}{\sqrt{16 \cdot 5/8}} - 10 - \sqrt{16 \cdot 5/8}$$

$$= \frac{-10}{\sqrt{10}} - 10 - \sqrt{10}$$

$$= -10 - 2\sqrt{10} \approx -16.325$$

Example 3 Primal Problem Optimum (slide 6)

• The primal optimum is given by $f(x^*)$ with

$$x^* = \left(-3\sqrt{2/5}, -\sqrt{2/5}, 5 + 4\sqrt{2/5}\right)^T$$

$$f(x^*) = x_1 - x_2 - 2x_3$$

$$= -3\sqrt{2/5} + \sqrt{2/5} - 2 \cdot \left(5 + 4\sqrt{2/5}\right)$$

$$= -2\sqrt{2/5} - 10 - 8\sqrt{2/5}$$

$$= -10\sqrt{2/5} - 10$$

$$= -2\sqrt{25 \cdot 2/5} - 10$$

$$= -2\sqrt{10} - 10$$

Example 4

• We review example 2:

Example

minimize $\frac{1}{1+x_1} + \frac{1}{2+x_2}$ s.t. $x_1 + x_2 = b$, $x_1, x_2 \ge 0$

- $Y = \{\lambda : \lambda \leq 0\}$
- $x(\lambda) = \left(-a + \sqrt{-1/\lambda}\right)^+ = \left(-a + 1/\sqrt{-\lambda}\right)^+$
- This time we have a function for $x(\lambda)$ that changes depending on the value of λ
- ullet The function for $L(\lambda)$ will be changing accordingly as well

Example 4

λ	$x(\lambda)$	$L(\lambda) = L(x(\lambda), \lambda)$
$\lambda \leq -1$	[0] [0]	$\left(\frac{1}{1}+\frac{1}{2}\right)-\lambda\left(-b ight)$
$\lambda \in [-1,-1/4]$	$\begin{bmatrix} (-1+1/\sqrt{-\lambda}) \\ 0 \end{bmatrix}$	$\left(\frac{1}{1+\left(-1+1/\sqrt{-\lambda}\right)}+\frac{1}{2}\right)$
	[[($-\lambda \left(\left(-1+1/\sqrt{-\lambda} ight) -b ight)$
$\lambda \in [-1/4,0]$	$\begin{bmatrix} (-1+1/\sqrt{-\lambda}) \\ (-2+\sqrt{-1/\lambda}) \end{bmatrix}$	$\frac{1}{1 + \left(-1 + 1/\sqrt{-\lambda}\right)}$
		$+\frac{1}{2+\left(-2+\sqrt{-1/\lambda}\right)}$
		$\begin{vmatrix} -\lambda \left(-1+1/\sqrt{-\lambda}\right) \\ -\lambda \left(-2+1/\sqrt{-\lambda}\right) + \lambda b \end{vmatrix}$

Example 4 $L(\lambda)$ for $\lambda \leq -1$ (slide 3)

• Solve for $L(\lambda)$ for $\lambda \leq -1$

$$L(\lambda) = (\frac{1}{1} + \frac{1}{2}) - \lambda (-b)$$

= $3/2 + \lambda b$

Example 4 $L(\lambda)$ for $\lambda \in [-1, -1/4]$ (slide 4)

- Solve for $L(\lambda)$ for $\lambda \in [-1, -1/4]$
- ullet Note that $\lambda \leq -1$ and $(-\lambda)$ is either a positive number or zero

$$L(\lambda) = \left(\frac{1}{1+\left(-1+1/\sqrt{-\lambda}\right)} + \frac{1}{2}\right) - \lambda\left(\left(-1+1/\sqrt{-\lambda}\right) - b\right)$$

$$= \frac{1}{1/\sqrt{-\lambda}} + \frac{1}{2} - \lambda\left(-1+1/\sqrt{-\lambda}\right) + \lambda b$$

$$= \sqrt{-\lambda} + \frac{1}{2} + \lambda + \frac{-\lambda}{\sqrt{-\lambda}} + \lambda b$$

$$= \sqrt{-\lambda} + \frac{1}{2} + \sqrt{-\lambda} + \lambda b + \lambda$$

$$= 2\sqrt{-\lambda} + \frac{1}{2} + \lambda\left(b+1\right)$$

Example 4 $L(\lambda)$ for $\lambda \in [-1/4, 0]$ (slide 5)

- Solve for $L(\lambda)$ for $\lambda \in [-1/4, 0]$
- ullet Note that $\lambda \leq -1$ and $(-\lambda)$ is either a positive number or zero

$$L(\lambda) = \frac{1}{1 + (-1 + 1/\sqrt{-\lambda})} + \frac{1}{2 + (-2 + 1/\sqrt{-\lambda})}$$

$$- \lambda \left(-1 + 1/\sqrt{-\lambda}\right) - \lambda \left(-2 + 1/\sqrt{-\lambda}\right) + \lambda b$$

$$L(\lambda) = \frac{1}{1/\sqrt{-\lambda}} + \frac{1}{1/\sqrt{-\lambda}} + \lambda + \frac{(-\lambda)}{\sqrt{-\lambda}} + 2\lambda + \frac{(-\lambda)}{\sqrt{-\lambda}} + \lambda b$$

$$= \sqrt{-\lambda} + \sqrt{-\lambda} + \lambda + \sqrt{-\lambda} + 2\lambda + \sqrt{-\lambda} + \lambda b$$

$$= 4\sqrt{-\lambda} + (b + 3)\lambda$$

Ex4 Plotting $L(\lambda)$ _{b=0.2}

- The dual problem is to maximize $L(\lambda)$ s.t. $\lambda \leq 0$
- The solution lies in $-1 \le \lambda \le -1/4$ for $b \in [0, 1]$
- The solutions is in $-1/4 \le \lambda \le 0$ for $b \in [1, \infty]$

Ex4 Plotting $L(\lambda)$ _{b=5}

- The dual problem is to maximize $L(\lambda)$ s.t. $\lambda \leq 0$
- The solution lies in $-1 \le \lambda \le -1/4$ for $b \in [0, 1]$
- The solutions is in $-1/4 \le \lambda \le 0$ for $b \in [1, \infty]$

Ex4 Objective function f(x)

Ex4 f(x) with b=5

The primal and the dual have the same optimal values for this case

Construction of Dual Problem for LP

The Dual Problem for a given LP Problem can be constructed in the following manner

- Consider the Primal Problem
- Write out the Lagrangian
- lacktriangle Set Y such that $\lambda \in Y$ implies that the maximum of the Lagrangian is finite
- $lackbox{0}$ For $\lambda \in Y$, compute the minimum of $L(\lambda)$

Step 1 Construction of Dual Problem for LP

Consider the primal problem P:

Step 2 Construction of Dual Problem for LP

Write out the Lagrangian

$$L(x,z,\lambda) = c^{T}x - \lambda^{T}(Ax + z - b)$$

$$= c^{T}x - \lambda^{T}Ax - \lambda^{T}z - \lambda^{T}b$$

$$= (c^{T} - \lambda^{T}A)x - \lambda^{T}z + \lambda^{T}b$$

Step 3 Construction of Dual Problem for LP

Set Y such that $\lambda \in Y$ implies that the maximum of the Lagrangian is finite

$$L(x,z,\lambda) = (c^{T} - \lambda^{T}A)x - \lambda^{T}z + \lambda^{T}b$$

- for the linear term $-\lambda^T z$, if any $\lambda_i < 0$ we can make $\lambda_i z_i$ as large as we like by taking an arbitrarily large z_i
- ullet there is only a finite maximum in $z\geq 0$ if $\lambda_i\geq 0$
- for the term $(c^T \lambda^T A) x$, this can be made arbitrarily large for a positive $(c^T \lambda^T A)$
- there is only a finite maximum if $(c^T \lambda^T A) \le 0$ or $(\lambda^T A c^T) \ge 0$
- Therefore,

$$Y = \left\{\lambda : \lambda \ge 0, \lambda^T A - c^T \ge 0\right\}$$
RVLC Optimization

Step 4 Construction of Dual Problem for LP

For $\lambda \in Y$, compute the minimum of $L(\lambda)$

- ullet we pick a $\lambda \in Y$
- we then find $\max_{x,z>0} \lambda^T z = 0$
 - do this by choosing $z_i = 0$ if $\lambda_i > 0$ and any z_i if $\lambda_i = 0$
- we also find $\max_{x\geq 0} (c^T \lambda^T A) = 0$
- ullet Therefore, for $\lambda \in Y$,

$$L(\lambda) = \lambda^T b$$

The Dual Primal Pair

```
P: maximize c^T x s.t. Ax \le b, x \ge 0
D: minimize \lambda^T b s.t. \lambda^T A \ge c^T, \lambda \ge 0
```

The Dual of an LP is also an LP

$$\begin{array}{llll} \text{P:} & \text{maximize} & x_1+x_2 \\ & \text{subject to} & x_1+2x_2 & \leq & 6 \\ & x_1-x_2 & \leq & 3 \\ & & x_1,x_2 & \geq & 0 \end{array}$$

D: minimize
$$6\lambda_1+3\lambda_2$$
 subject to $\lambda_1+\lambda_2\geq 1$ $2\lambda_1-\lambda_2\geq 1$ $\lambda_1,\lambda_2\geq 0$

D can be written as

D: maximize
$$(-b)^T \lambda$$
 s.t. $(-A)^T \lambda \leq (-c)$, $\lambda \geq 0$

Alternative Form of the Dual

D can be written as

D: maximize
$$(-b)^T \lambda$$
 s.t. $(-A)^T \lambda \leq (-c)$, $\lambda \geq 0$

 D has the same form as P with the following changes in the variables

Р	\rightarrow	D
С	\rightarrow	-b
b	\rightarrow	-c
Α	\rightarrow	$-A^T$

 This also means that in Linear Programming, the Dual of the Dual is the Primal

The Weak Duality Theorem for LP

recall

Theorem

3.1 Weak Duality Theorem For any feasible $x \in X_b$ and any $\lambda \in Y$, then $L(\lambda) \le f(x)$

we apply this to Linear Programming

Theorem

3.3 Weak Duality Theorem for LP if x is feasible for P (meaning $Ax \leq b$ for $x \geq 0$) and λ is feasible for D (meaning $\lambda \geq 0$, $A^T\lambda \geq c$), then $c^Tx \leq \lambda^Tb$

Proof

The Weak Duality Theorem for LP

Theorem

3.3 Weak Duality Theorem for LP if x is feasible for P (meaning $Ax \leq b$ for $x \geq 0$) and λ is feasible for D (meaning $\lambda \geq 0$, $A^T\lambda \geq c$), then $c^Tx \leq \lambda^Tb$

Proof.

$$L(x,z,\lambda) = c^{T}x - \lambda^{T}(Ax + z - b)$$

where Ax + z = b, $z \ge 0$

Now for x and λ satisfying the conditions of the theorem,

$$c^T x = L(x, z, \lambda) = (c^T - \lambda^T A) x - \lambda^T z + \lambda^T b \le \lambda^T b$$

Sufficient Conditions for Optimality in LP

Theorem

3.4 Sufficient Conditions for Optimality in LP If x^* , z^* is feasible for P, and λ^* is feasible for D and $(c^T - \lambda^{*T}A) x^* = \lambda^{*T}z^* = 0$ and Then x^* is optimal for P, λ^* is optimal for D, and $c^Tx^* = \lambda^{*T}b$

The conditions $(c^T - \lambda^{*T}A)x^* = 0$ and $\lambda^{*T}z^* = 0$ are called complimentary slackness conditions

Proof

Sufficient Conditions for Optimality in LP

$$L(x^*, z^*, \lambda^*) = c^T x^* - \lambda^{*T} (Ax^* + z^* - b)$$
Now,
$$c^T x^* = L(x^*, z^*, \lambda^*)$$

$$= (c^T - \lambda^{*T} A) x^* - \lambda^{*T} z^* + \lambda^{*T} b$$

$$= \lambda^{*T} b$$

Proof.

For all x feasible for P, we have $c^Tx < \lambda^{*T}b$ by the Weak Duality Theorem 3.3

and this implies that for all feasible x, $c^Tx \le c^Tx^*$. So x^* is optimal for P and similarly, λ^* is optimal for D

The problems have the same optimums due to the strong duality of LP problems

Usefulness of the Primal-Dual Theory

- One is sometimes easier to solve than the other
- Sometimes, you want to solve both (e.g. two-person zero-sum games)
- To assure optimality of the LP solution: primal feasibility, dual feasibility and complimentary slackness

R. Weber. Optimization. Easter Term, 2010.