Gröbner Bases in Public-Key Cryptography An Overview

Ludovic Perret

(joint work with Jean-Charles Faugère)

SPIRAL/SALSA

LIP6, Université Paris 6 & INRIA Paris-Rocquencourt ludovic.perret@lip6.fr

SAGE Days 2007 - University of Bristol

Gröbner Bases in Cryptography?

C.E. Shannon

"Breaking a good cipher should require as much work as solving a system of simultaneous equations in a large number of unknowns of a complex type." (Communication Theory of Secrecy Systems, 1949)

Algebraic Cryptanalysis

Principle

- Convert a cryptosystem into a set of algebraic equations
- Try to solve this system or estimate the difficulty of the solving step

Solving

Approach

- Using the cryptographic context
- Gröbner Bases
 - Efficient algorithms for computing these bases
 - F₄&F₅ (J.-C. Faugère)

W. Gröbner

B. Buchberger

J.-C. Faugère

Solving

Approach

- Using the cryptographic context
- Gröbner Bases
 - Efficient algorithms for computing these bases
 - F₄&F₅ (J.-C. Faugère)

W. Gröbner

B. Buchberger

J.-C. Faugère

Algebraic Cryptanalysis in Practice

Difficulties

 Model a cryptosystem as a set of algebraic of equations

> "universal" approach (PoSSo is NP-Hard)

- ⇒ several models are possible !!!
- Solving
 - Minimize the number of variables/degree
 - Maximize the number of equations

Applications

- Algebraic cryptanalysis of block-ciphers
 - AES
- Algebraic aspects of stream ciphers
 - E₀: mobile phone
- Algebraic cryptanalysis of hash functions ????
 - SHA1
- Multivariate Schemes

Algebraic Cryptanalysis in Practice

Difficulties

 Model a cryptosystem as a set of algebraic of equations

> "universal" approach (PoSSo is NP-Hard)

- ⇒ several models are possible !!!
- Solving
 - Minimize the number of variables/degree
 - Maximize the number of equations

Roadmap

- Algebraic Cryptanalysis of HFE
- (2.) The IP Problem
- (3.) Functional Decomposition

Outline

- Algebraic Cryptanalysis of HFE
- 2 Isomorphism of Polynomials (IP)
- The Functional Decomposition Problem

Multivariate Public-Key Cryptography

General Idea

Let
$$\mathbf{f} = (f_1, \dots, f_m) \in \mathbb{K}[x_1, \dots, x_n]^m$$
 be s. t. $\forall \mathbf{c} = (c_1, \dots, c_m) \in \mathbb{K}^m$:

$$V_{\mathbb{K}}(\langle f_1-c_1,\ldots,f_m-c_m\rangle),$$

can be computed efficiently.

Secret key:

$$(S, U) \in GL_n(\mathbb{K}) \times GL_n(\mathbb{K}) \& \mathbf{f} = (f_1, \dots, f_m) \in \mathbb{K}[x_1, \dots, x_n]^m$$

Public key:

$$\mathbf{p}(\mathbf{x}) = (p_1(\mathbf{x}), \dots, p_m(\mathbf{x})) = (f_1(\mathbf{x} \cdot \mathbf{S}), \dots, f_m(\mathbf{x} \cdot \mathbf{S})) \mathbf{U} = \mathbf{f}(\mathbf{x} \cdot \mathbf{S}) \cdot \mathbf{U},$$

with
$$\mathbf{x} = (x_1, ..., x_n)$$
.

Encryption

• To encrypt $\mathbf{m} \in \mathbb{K}^n$, compute :

$$\mathbf{c} = \mathbf{p}(\mathbf{m}) = (p_1(\mathbf{m}), \dots, p_m(\mathbf{m})).$$

• To decrypt, compute $\mathbf{m}' \in \mathbb{K}^n$ s.t. :

$$\mathbf{f}(\mathbf{m}') = \mathbf{c} \cdot U^{-1}.$$

We then have $\mathbf{m} = \mathbf{m}' \cdot S^{-1}$, if $\# V_{\mathbb{K}}(\langle \mathbf{f} - \mathbf{c} \cdot U^{-1} \rangle) = 1$.

Proof.

$$\mathbf{p}(\mathbf{m}' \cdot S^{-1}) = \mathbf{f}(\mathbf{m}' \cdot S^{-1} \cdot S) \cdot U = \mathbf{c} \cdot U^{-1} \cdot U = \mathbf{c}.$$

Signature

• To verify the signature $\mathbf{s} \in \mathbb{K}^n$ of a digest $\mathbf{m} \in \mathbb{K}^m$:

$$p(s) = m$$
.

• To generate $\mathbf{s} \in \mathbb{K}^n$ from a digest $\mathbf{m} \in \mathbb{K}^m$, we apply the decryption process to \mathbf{m} , i.e. we compute $\mathbf{s}' \in \mathbb{K}^n$ s.t. :

$$\mathbf{f}(\mathbf{s}') = \mathbf{m} \cdot U^{-1}.$$

The signature is then $\mathbf{s} = \mathbf{s}' \cdot S^{-1}$.

Proof.

$$\mathbf{p}(\mathbf{s}) = \mathbf{f}(\mathbf{s}' \cdot S^{-1} \cdot S) \cdot U = \mathbf{m} \cdot U^{-1} \cdot U = \mathbf{m}.$$

The HFE scheme

Secret key:

- $(S, U) \in GL_n(\mathbb{K}) \times GL_n(\mathbb{K})$
- $F = \sum_{i,j} \beta_{i,j} X^{q^{\theta_{i,j}} + q^{\theta'_{i,j}}} \in \mathbb{K}'[X]$, with $\mathbb{K}' \supset \mathbb{K}$, $q = \text{Char}(\mathbb{K})$
- $\bullet \mathbf{f} = (f_1(x_1, \ldots, x_n), \ldots, f_n(x_1, \ldots, x_n)) \in \mathbb{K}[x_1, \ldots, x_n]^u$

Public key:
$$(p_1(\mathbf{x}), \dots, p_n(\mathbf{x})) = (p_1(\mathbf{x} \cdot S), \dots, p_n(\mathbf{x} \cdot S)) \cdot U$$
, with $\mathbf{x} = (x_1, \dots, x_n)$.

J. Patarin.

Hidden Fields Equations (HFE) and Isomorphism of Polynomials (IP): two new families of Asymmetric Algorithms.

EUROCRYPT 1996.

Message Recovery Attack – (I)

Given
$$\mathbf{c} = (p_1(\mathbf{m}), \dots, p_n(\mathbf{m})) \in \mathbb{K}^n$$
. Find $\mathbf{z} \in \mathbb{K}^n$ such that :

$$p_1(\mathbf{z}) - c_1 = 0, \dots, p_n(\mathbf{z}) - c_n = 0.$$

In Theory ...

- PoSSo is NP-Hard
- Complexity of F₅ for semi-reg. sys. : O (n^{ω·d_{reg}}), with :

$$\textit{d}_{\textit{reg}} \sim \left(-\alpha + \frac{1}{2} + \frac{1}{2} \sqrt{2\alpha^2 - 10\alpha - 1 + 2(\alpha + 2)\sqrt{\alpha(\alpha + 2)}} \right) \textit{n},$$

 \Rightarrow For a quadratic system of 80 variables : $d_{req} = 11$.

$$\approx 2^{83}$$

Message Recovery Attack – (II)

In Practice ...

Message Recovery Attack – (II)

In Practice ...

It has been observed that:

$$d_{reg} = \mathcal{O}(\log(D)).$$

J.-C. Faugère, A. Joux.

Algebraic Cryptanalysis of Hidden Field Equation (HFE) Cryptosystems using Gröbner Bases.

CRYPTO 2003.

Outline

- Algebraic Cryptanalysis of HFE
- Isomorphism of Polynomials (IP)
- 3 The Functional Decomposition Problem

"Key Recovery Attack"

IP [J. Patarin, EUROCRYPT 1996]

Given: $\mathbf{a} = (a_1, ..., a_u), \text{ and } \mathbf{b} = (b_1, ..., b_u) \in \mathbb{K}[x_1, ..., x_n]^u.$

Question : Find $(S, U) \in GL_n(\mathbb{K}) \times GL_u(\mathbb{K})$ s. t. :

$$(b_1(\mathbf{x}),\ldots,b_u(\mathbf{x}))=(a_1(\mathbf{x}\cdot\mathbf{S}),\ldots,a_u(\mathbf{x}\cdot\mathbf{S}))\cdot\mathbf{U},$$

denoted by $\mathbf{b}(\mathbf{x}) = \mathbf{a}(\mathbf{x} \cdot S) \cdot U$, with $\mathbf{x} = (x_1, \dots, x_n)$.

A Fundamental Problem

O. Billet, H. Gilbert.

A Traceable Block Cipher.

ASIACRYPT 2003.

Basic Idea – (I)

Fact

Suppose that $\mathbf{b}(\mathbf{x}) = \mathbf{a}(\mathbf{x} \cdot \mathbf{S}) \cdot \mathbf{U}$, for $(\mathbf{S}, \mathbf{U}) \in GL_n(\mathbb{K}) \times GL_u(\mathbb{K})$. For each i, 1 < i < u, there exist $E_i \subset \mathbb{K}^n$, and p_{α_i} s. t. :

$$\left(\mathbf{b}(\mathbf{x})\cdot \boldsymbol{\mathit{U}}^{-1} - \mathbf{a}(\mathbf{x}\cdot \boldsymbol{\mathit{S}})\right)_{\boldsymbol{i}} = \sum_{\alpha_{\boldsymbol{i}} = (\alpha_{\boldsymbol{i},1},\dots,\alpha_{\boldsymbol{i},n}) \in E_{\boldsymbol{i}}} p_{\alpha_{\boldsymbol{i}}}(\boldsymbol{\mathit{S}},\boldsymbol{\mathit{U}}^{-1})x_1^{\alpha_{\boldsymbol{i},1}} \cdots x_n^{\alpha_{\boldsymbol{i},n}},$$

where
$$p_{\alpha_i}(S, U^{-1}) = p_{\alpha_i}(s_{1,1}, \dots, s_{n,n}, u'_{1,1}, \dots, u'_{u,u}).$$

J.-C. Faugère, L. P.

Polynomial Equivalence Problems: Algorithmic and Theoretical Aspects.

EUROCRYPT 2006.

Basic Idea - (II)

Remark

If $\mathbf{b}(\mathbf{x}) = \mathbf{a}(\mathbf{x} \cdot \mathbf{S}) \cdot \mathbf{U}$, for some $(\mathbf{S}, \mathbf{U}) \in GL_n(\mathbb{K}) \times GL_u(\mathbb{K})$, then for all $i, 1 \leq i \leq u : (\mathbf{b}(\mathbf{x}) \cdot \mathbf{U}^{-1} - \mathbf{a}(\mathbf{x} \cdot \mathbf{S}))_i =$

$$\sum_{\alpha_i=(\alpha_{i,1},\ldots,\alpha_{i,n})\in E_i} p_{\alpha_i}(\boldsymbol{\mathcal{S}},\boldsymbol{\mathit{U}}^{-1})\boldsymbol{x}_1^{\alpha_{i,1}}\cdots\boldsymbol{x}_n^{\alpha_{i,n}}=0.$$

Thus, for all $i, 1 \le i \le u$, and for all $\alpha_i \in E_i$:

$$p_{\alpha_i}(S, U^{-1}) = 0.$$

Basic Idea - (III)

Lemma

Let
$$\mathcal{I} = \langle p\alpha_i, \forall i, 1 \leq i \leq u, \text{ and } \forall \alpha_i \in E_i \rangle$$
, and :

$$V_{\mathbb{K}}(\mathcal{I}) = \{ \mathbf{s} \in \mathbb{K}^{n^2 + u^2} : p\alpha_i(\mathbf{s}) = 0, \forall 1 \leq i \leq u, \text{ and } \forall \alpha_i \in E_i \}.$$

If
$$\mathbf{b}(\mathbf{x}) = \mathbf{a}(\mathbf{x} \cdot S) \cdot U$$
, for some $(S, U) \in GL_n(\mathbb{K}) \times GL_u(\mathbb{K})$, then :

$$(\phi_1(S), \phi_2(U^{-1})) \in V_{\mathbb{K}}(\mathcal{I}),$$

with:

$$\phi_1: \mathbf{S} = \{\mathbf{s}_{i,j}\}_{1 \le i,j \le n} \mapsto (\mathbf{s}_{1,1}, \dots, \mathbf{s}_{1,n}, \dots, \mathbf{s}_{n,1}, \dots, \mathbf{s}_{n,n}),
\phi_2: \mathbf{U}^{-1} = \{\mathbf{u}'_{i,j}\}_{1 \le i,j \le u} \mapsto (\mathbf{u}'_{1,1}, \dots, \mathbf{u}'_{1,u}, \dots, \mathbf{u}'_{u,1}, \dots, \mathbf{u}'_{u,u}).$$

Summary

If
$$\mathbf{b}(\mathbf{x}) = \mathbf{a}(\mathbf{x} \cdot S) \cdot U$$
, for $(S, U) \in GL_n(\mathbb{K}) \times GL_u(\mathbb{K})$, then for all $i, 1 \le i \le u$, $(\mathbf{b}(\mathbf{x}) \cdot U^{-1} - \mathbf{a}(\mathbf{x} \cdot S))_i =$

$$\sum_{\alpha_i=(\alpha_{i,1},\ldots,\alpha_{i,n})\in\mathcal{S}_i} p_{\alpha_i}(\boldsymbol{S},\boldsymbol{U}^{-1}) x_1^{\alpha_{i,1}}\cdots x_n^{\alpha_{i,n}}=0.$$

For all i, $1 \le i \le u$, let d_i be the total deg. of a_i .

- at most $\sum_{i=1}^{u} C_{n+d_i}^{d_i}$ equations
- $n^2 + u^2$ unknowns

A Structural Property

Lemma

Let d be a positive integer, and \mathcal{I}_d be the ideal generated by the polynomials $p\alpha_i$ of maximal total degree smaller than d. If $\mathbf{b}(\mathbf{x}) = \mathbf{a}(\mathbf{x} \cdot S) \cdot U$, for $(S, U) \in GL_n(\mathbb{K}) \times GL_u(\mathbb{K})$, then :

$$(\phi_1(S), \phi_2(U^{-1})) \in V_{\mathbb{K}}(\mathcal{I}_d), \text{ for all } d, 0 \leq d \leq D,$$

with:

$$\phi_1: \mathbf{S} = \{\mathbf{s}_{i,j}\}_{1 \leq i,j \leq n} \mapsto (\mathbf{s}_{1,1},\ldots,\mathbf{s}_{1,n},\ldots,\mathbf{s}_{n,1},\ldots,\mathbf{s}_{n,n}), \text{ and } \phi_2: \mathbf{U}^{-1} = \{u'_{i,j}\}_{1 \leq i,j \leq u} \mapsto (u'_{1,1},\ldots,u'_{1,u},\ldots,u'_{u,1},\ldots,u'_{u,u}).$$

The IP Algorithm

Input:
$$(\mathbf{a}, \mathbf{b}) \in \mathbb{K}[x_1, \dots, x_n]^u \times \mathbb{K}[x_1, \dots, x_n]^u$$

Output: $(S, U) \in GL_n(\mathbb{K}) \times GL_u(\mathbb{K})$, s.t. $\mathbf{b}(\mathbf{x}) = \mathbf{a}(\mathbf{x} \cdot S) \cdot U$ or \emptyset

Let
$$d_0 = \min\{d > 1 : a^{(d)} \neq 0_u\}$$

- Construct the $p\alpha_i s$ of max. total degree smaller than d_0
- Set

$$\mathcal{I}_{d_0} = \langle p\alpha_i, \forall i, 1 \leq i \leq u, \text{ and } \forall \alpha_i \in E_i : \deg(p\alpha_i) \leq d_0 \rangle.$$

- Compute $V_{\mathbb{K}}(\mathcal{I}_{d_0})$ (in practice $V_{\overline{\mathbb{K}}}(\mathcal{I}_{d_0})$)
- Check if there exists a solution of IP in $V_{\mathbb{K}}(\mathcal{I}_{d_0})$
 - If Yes, Return this solution
 - If No, Return ∅

Experimental Results – Random instances

$$u = n deg = 2$$

n	#unk.	q	T _{Gen}	T_{F_5}	T_{F_4/F_5}	Τ	$q^{n/2}$
8	128	2 ¹⁶	0.3s.	0.1s.	6	0.4s.	2 ⁶⁴
15	450	2 ¹⁶	48s.	10s.	23	58s.	2 ¹²⁰
17	578	2 ¹⁶	137.2s.	27.9s.	31	195.1s.	2 ¹³⁶
20	800	2 ¹⁶	569.1s.	91.5s.	41	660.6s.	2 ¹⁶⁰
15	450	65521	35.5s.	8s.	23	43.5s.	2 ¹²⁰
20	800	65521	434.9s.	69.9s.	41	504.8s.	2 ¹⁶⁰
23	1058	65521	1578.6s.	235.9s.		1814s.	2 ¹⁸⁴

N. Courtois, L. Goubin, J. Patarin. *Improved Algorithms for Isomorphism of Polynomials*.

EUROCRYPT 1998.

Experimental Results – Random instances

$$u = n deg = 2$$

n	#unk.	q	T _{Gen}	T_{F_5}	T_{F_4/F_5}	T	$q^{n/2}$
8	128	2 ¹⁶	0.3s.	0.1s.	6	0.4s.	2 ⁶⁴
15	450	2 ¹⁶	48s.	10s.	23	58s.	2 ¹²⁰
17	578	2 ¹⁶	137.2s.	27.9s.	31	195.1s.	2 ¹³⁶
20	800	2 ¹⁶	569.1s.	91.5s.	41	660.6s.	2 ¹⁶⁰
15	450	65521	35.5s.	8s.	23	43.5s.	2 ¹²⁰
20	800	65521	434.9s.	69.9s.	41	504.8s.	2 ¹⁶⁰
23	1058	65521	1578.6s.	235.9s.		1814s.	2 ¹⁸⁴

We have observed that:

$$d_{\text{max}} = 3$$
.

Experimental Results – C* Instances

u = n

n	#unk.	q	deg	T_{Gen}	T_{F_5}	Τ	q^n
5	50	2 ¹⁶	4	0.2s.	0.13s.	0.33s.	2 ⁸⁰
6	72	2 ¹⁶	4	0.7s.	1s.	1.7s.	2 ⁹⁶
7	98	2 ¹⁶	4	1.5s.	6.1s.	7.6s.	2 ¹¹²
8	128	2 ¹⁶	4	3.8s.	54.3s.	58.1s.	2 ¹²⁸
9	162	2 ¹⁶	4	5.4s.	79.8s.	85.2s.	2 ¹⁴⁴
10	200	2 ¹⁶	4	12.9s.	532.3s.	545.2s.	2 ¹⁶⁰

Outline

- Algebraic Cryptanalysis of HFE
- Isomorphism of Polynomials (IP)
- 3 The Functional Decomposition Problem

The HFE scheme

Secret key:

- $(S, U) \in GL_n(\mathbb{K}) \times GL_n(\mathbb{K})$
- $F = \sum_{i,j} \beta_{i,j} X^{q^{\theta_{i,j}} + q^{\theta'_{i,j}}} \in \mathbb{K}'[X]$, with $\mathbb{K}' \supset \mathbb{K}$, $q = \text{Char}(\mathbb{K})$
- $\mathbf{f} = (f_1(x_1,\ldots,x_n),\ldots,f_n(x_1,\ldots,x_n)) \in \mathbb{K}[x_1,\ldots,x_n]^u$

Public key:
$$(p_1(\mathbf{x}), \dots, p_n(\mathbf{x})) = (p_1(\mathbf{x} \cdot S), \dots, p_n(\mathbf{x} \cdot S)) \cdot U$$
, with $\mathbf{x} = (x_1, \dots, x_n)$.

J. Patarin.

Hidden Fields Equations (HFE) and Isomorphism of Polynomials (IP): two new families of Asymmetric Algorithms.

EUROCRYPT 1996.

2R and 2R⁻ Schemes

Secret Key:

- S, U, W dans $GL_n(\mathbb{K})$
- two sets of polynomials ψ et ϕ de $\in \mathbb{K}[x_1, \dots, x_n]^n$

Public key:

$$\mathbf{h}(\mathbf{x}) = (h_1(\mathbf{x}), \dots, h_u(\mathbf{x}), \dots h_n(\mathbf{x})) = \psi(\phi(\mathbf{x} \cdot S) \cdot U) \cdot W.$$

2R $^-$: we only give u < n polynomials

L. Goubin, J. Patarin.

Asymmetric Cryptography with S-Boxes.

ICICS'97.

Functional Decomposition Problem – (I)

Definition

Let $\mathbf{h} = (h_1, \dots, h_u) \in \mathbb{K}[x_1, \dots, x_n]^u$. We shall say that :

$$(\mathbf{f}=(f_1,\ldots,f_u),\mathbf{g}=(g_1,\ldots,g_n))\in\mathbb{K}[x_1,\ldots,x_n]^u\times\mathbb{K}[x_1,\ldots,x_n]^n,$$

is a *decomposition* of **h** if :

$$\mathbf{h}=(\mathbf{f}\circ\mathbf{g})=(f_1(g_1,\ldots,g_n),\ldots,f_u(g_1,\ldots,g_n)).$$

A decomposition of (f, g) de **h** is non *trivial* if **f** and **g** are not linear.

Remark

A decomposition (f, g) of h is never unique.

For all
$$S \in GL_n(\mathbb{K})$$
, $\mathbf{h}(\mathbf{x}) = \mathbf{f}(S \cdot S^{-1}\mathbf{g}(\mathbf{x}))$.

 \Rightarrow (**f**(**x** · S), **g**(**x**) · S⁻¹) is also a decomposition of **h**.

Functional Decomposition Problem – (II)

FDP

```
Input : \mathbf{h} = (h_1, \dots, h_u) \in \mathbb{K}[x_1, \dots, x_n]^u.

Find : a non-trivial decomposition :

• \mathbf{f} = (f_1, \dots, f_u) \in \mathbb{K}[x_1, \dots, x_n]^u, and

• \mathbf{g} = (g_1, \dots, g_n) \in \mathbb{K}[x_1, \dots, x_n]^n,

such that :

\mathbf{h} = (\mathbf{f} \circ \mathbf{g}) = (f_1(g_1, \dots, g_n), \dots, f_u(g_1, \dots, g_n)).
```

Functional Decomposition Problem – (II)

```
FDP(d_f, d_g)
Entrée : \mathbf{h} = (h_1, \dots, h_u) \in \mathbb{K}[x_1, \dots, x_n]^u and integers d_f, d_g > 1
Find: a decomposition:
    \bullet \mathbf{f} = (f_1, \ldots, f_n) \in \mathbb{K}[x_1, \ldots, x_n]^n
    \bullet \mathbf{q} = (q_1, \dots, q_n) \in \mathbb{K}[x_1, \dots, x_n]^n
such that:
                 \begin{cases} \mathbf{h} = (\mathbf{f} \circ \mathbf{g}) = (f_1(g_1, \dots, g_n), \dots, f_u(g_1, \dots, g_n)), \\ \deg(\mathbf{f}) = d_f, \\ \deg(\mathbf{g}) = d_\sigma. \end{cases}
```

Related Works

J. von zur Gathen, J. Gutierrez, R. Rubio *Multivariate Polynomial Decomposition*.
Applicable Algebra in Engineering, Communication and Computing, 2004.

D.F. Ye, Z.D. Dai, K.Y. Lam. (u = n) Decomposing Attacks on Asymmetric Cryptography Based on Mapping Compositions. Journal of Cryptology, 2001.

Preliminary Remarks – (I)

Let:

$$(\mathbf{f} = (f_1, \dots, f_u), \mathbf{g} = (g_1, \dots, g_n)) \in \mathbb{K}[\mathbf{x}]^u \times \mathbb{K}[\mathbf{x}]^n,$$

be a non trivial decomposition of $\mathbf{h} = (h_1, \dots, h_u) \in \mathbb{K}[\mathbf{x}]^u$. The polynomials of \mathbf{f} can be obtained from \mathbf{g} by solving a linear system.

For all
$$i, 1 \le i \le u$$
, we have $h_i = f_i(g_1, \dots, g_n)$

- $\Rightarrow \mathcal{O}(u \cdot C_{n+d_f}^{d_f})$ equations
- $\Rightarrow u \cdot C_{n+d_{\ell}}^{d_f}$ unknowns

Preliminary Remarks - (I)

Property

L' *homogenization* of a polynomial $p \in \mathbb{K}[x_1, \dots, x_n]$ is :

$$p^{\mathrm{H}}(x_0, x_1, \ldots, x_n) = x_0^{\deg(p)} p(x_1/x_0, \ldots, x_n/x_0),$$

 x_0 being a new variable. Let:

$$(\mathbf{f}=(f_1,\ldots,f_u),\mathbf{g}=(g_1,\ldots,g_n))\in\mathbb{K}[x_1,\ldots,x_n]^u\times\mathbb{K}[x_1,\ldots,x_n]^n.$$

We have :

$$(\mathbf{f} \circ \mathbf{g})^{\mathrm{H}} = \mathbf{f}^{\mathrm{H}} \circ \mathbf{g}^{\mathrm{H}},$$

with
$$\mathbf{f}^{\mathrm{H}}=(x_0^{\mathrm{deg}(\mathbf{f})},f_1^{\mathrm{H}},\ldots,f_u^{\mathrm{H}})$$
 and $\mathbf{g}^{\mathrm{H}}=(x_0^{\mathrm{deg}(\mathbf{g})},g_1^{\mathrm{H}},\ldots,g_u^{\mathrm{H}}).$

Summary

Remark

We will focus our attention on FDP(2,2)

 We can suppose w.l.o.g. that the polynomials (f, g) of a decomposition of h are homogenous of degree two

Goal

Find a basis :

$$\mathcal{L}(\mathbf{g}) = \operatorname{Vect}_{\mathbb{K}}(\mathbf{g}_1, \dots, \mathbf{g}_n).$$

Intuition – (I)

Let $(\mathbf{f} = (f_1, \dots, f_u), \mathbf{g} = (g_1, \dots, g_n)) \in \mathbb{K}[\mathbf{x}]^u \times \mathbb{K}[\mathbf{x}]^n$ be a non-trivial decomposition of $\mathbf{h} = (h_1, \dots, h_u) \in \mathbb{K}[\mathbf{x}]^u$. For all $i, 1 \le i \le u$:

$$h_i = f_i(g_1, \ldots, g_n) = \sum_{1 \leq k, \ell \leq n} f_{k,\ell}^{(i)} \cdot g_k \cdot g_\ell,$$

with $f_i = \sum_{1 \le k, \ell \le n} f_{k,\ell}^{(i)} \cdot x_k \cdot x_\ell$. We have then :

$$\frac{\partial h_i}{\partial x_j} = \sum_{1 \le k, \ell \le n} f_{k,\ell}^{(i)} \left(\frac{\partial g_k}{\partial x_j} \cdot g_\ell + g_k \cdot \frac{\partial g_\ell}{\partial x_j} \right).$$

Intuition – (II)

Let $(\mathbf{f} = (f_1, \dots, f_u), \mathbf{g} = (g_1, \dots, g_n)) \in \mathbb{K}[\mathbf{x}]^u \times \mathbb{K}[\mathbf{x}]^n$ be a non-trivial decomposition of $\mathbf{h} = (h_1, \dots, h_u) \in \mathbb{K}[\mathbf{x}]^u$. For all $i, 1 \le i \le u$:

$$\frac{\partial h_i}{\partial x_j} = \sum_{1 < k, \ell < n} f_{k,\ell}^{(i)} \left(\frac{\partial g_k}{\partial x_j} \cdot g_\ell + g_k \cdot \frac{\partial g_\ell}{\partial x_j} \right).$$

Thus:

$$\partial \mathcal{I}_h = \left\langle \frac{\partial h_i}{\partial x_i} : 1 \le i \le u, 1 \le j \le n \right\rangle \subseteq \langle x_k \cdot g_\ell \rangle_{1 \le k, \ell \le n}.$$

Description of the Algorithm – (I)

Theorem

Let $(\mathbf{f} = (f_1, \dots, f_u), \mathbf{g} = (g_1, \dots, g_n)) \in \mathbb{K}[\mathbf{x}]^u \times \mathbb{K}[\mathbf{x}]^n$, be a non-trivial decomposition of $\mathbf{h} = (h_1, \dots, h_u) \in \mathbb{K}[\mathbf{x}]^u$, $M_n(d)$ the set of monomials of degree $d \geq 0$ in n variables.

$$\mathcal{V}_{d} = \operatorname{Vect}_{\mathbb{K}} \left(m \cdot g_{k} : m \in \operatorname{M}_{n}(d+1) \text{ and } 1 \leq k \leq n \right),$$
 $\tilde{\mathcal{V}}_{d} = \operatorname{Vect}_{\mathbb{K}} \left(m \cdot \frac{\partial h_{i}}{\partial x_{j}} : m \in \operatorname{M}_{n}(d), 1 \leq i \leq u \text{ and } 1 \leq j \leq n \right).$
If $\dim_{\mathcal{V}_{d}}(\tilde{\mathcal{V}}_{d}) = n \cdot |\operatorname{M}_{n}(d+1)|$, for some $d \geq 0$:
$$g_{i} \in \partial \mathcal{I}_{h} : x_{n}^{d+1}, \text{ for all } i, 1 < i < n.$$

Idea of the Proof – The case u = n

$$\frac{\partial h_i}{\partial x_j} = \sum_{1 \le k, \ell \le n} f_{k,\ell}^{(i)} \left(\frac{\partial g_k}{\partial x_j} \cdot g_\ell + g_k \cdot \frac{\partial g_\ell}{\partial x_j} \right), \text{ for all } i, 1 \le i \le u.$$

If A is invertible then:

$$x_n \cdot g_i \in \partial \mathcal{I}_h$$
, for all $i, 1 \leq i \leq n$.

L. Perret

Idea of the Proof – The case u < n

$$\frac{m}{\partial x_{j}} = \sum_{1 \leq k, \ell \leq n} f_{k,\ell}^{(i)} \left(m \cdot \frac{\partial g_{k}}{\partial x_{j}} \cdot g_{\ell} + g_{k} \cdot \frac{\partial g_{\ell}}{\partial x_{j}} \cdot m \right), \text{ for all } i, 1 \leq i \leq u.$$

$$\cdots \qquad m' \cdot g_{\ell} \qquad \cdots$$

$$A' = \begin{array}{c} \vdots \\ M \cdot \frac{\partial h_i}{\partial x_j} \\ \vdots \\ \vdots \\ M \end{array} \qquad \begin{array}{c} \dots \\ \dots \\ \dots \\ \dots \\ \end{array}$$

If Rank(A') = #columns(A') then:

$$x_n^{d+1} \cdot g_i \in \partial \mathcal{I}_h$$
, for all $i, 1 \leq i \leq n$.

Description of the Algorithm – (II)

Corollary

Let $(\mathbf{f} = (f_1, \dots, f_u), \mathbf{g} = (g_1, \dots, g_n)) \in \mathbb{K}[\mathbf{x}]^u \times \mathbb{K}[\mathbf{x}]^n$, be a non-trivial decomposition of $\mathbf{h} = (h_1, \dots, h_u) \in \mathbb{K}[\mathbf{x}]^u$, $M_n(d)$ the set of monomials of degree $d \geq 0$ in n variables.

Suppose that $\dim_{\mathcal{V}_d}(\tilde{\mathcal{V}}_d) = n \cdot |\mathbf{M}_n(d+1)|$, for some $d \geq 0$. Let G' be DRL-Gröbner basis of $\partial \mathcal{I}_h : x_n^{d+1}$. We have :

$$\mathcal{L}(\mathbf{g}) = \mathrm{Vect}_{\mathbb{K}}(\mathbf{g}_1, \dots, \mathbf{g}_n) \subseteq \mathrm{Vect}_{\mathbb{K}}(\mathbf{p} \in \mathbf{G}' : \deg(\mathbf{p}) = \mathbf{d}_{\min}).$$

The equality holds if the decomposition is unique.

Description of the Algorithm – (IV)

Let
$$(\mathbf{f} = (f_1, \dots, f_u), \mathbf{g} = (g_1, \dots, g_n)) \in \mathbb{K}[\mathbf{x}]^u \times \mathbb{K}[\mathbf{x}]^n$$
, be a non-trivial decomposition of $\mathbf{h} = (h_1, \dots, h_u) \in \mathbb{K}[\mathbf{x}]^u$, $M_n(d)$ the set of monomials of degree $d \geq 0$ in n variables.

• A DRL-Gröbner basis of $\partial \mathcal{I}_h : x_n^{d+1}$ can be computed using standard elimination technique

Complexity Analysis

Property

Let G' be a DRL (d+3)-Gröbner basis of $\partial \mathcal{I}_h$. Then :

$$\operatorname{Vect}_{\mathbb{K}}\left(rac{g'}{x_n^{d+1}}:g'\in G', \operatorname{and} x_n^{d+1}|\operatorname{LM}(g',\prec_{\mathit{DRL}})
ight)=\mathcal{L}(\mathbf{g}).$$

If the decomposition is unique.

Generic Complexity [with the F₅ algorithm]

$$\mathcal{O}(n^{3(d+3)})$$
, with $d \approx n/u - 1$

- $\mathcal{O}(n^9)$, for n = u [D.F. Ye, Z.D. Dai, K.Y. Lam, 2001]
- $\mathcal{O}(n^{12})$, for $n/u \approx 2$

Experimental Results

n	b	n _i	r	q	d _{theo}	d _{real}	T	$\sqrt{q^n}$
20	5	4	10	65521	1	1	78.9 s.	$pprox 2^{160}$
20	10	2	10	65521	1	1	78.8 s.	$\approx 2^{160}$
20	2	10	10	65521	1	1	78.7 s.	$pprox 2^{160}$
24	6	4	12	65521	1	1	376.1 s.	$pprox 2^{192}$
30	15	2	15	65521	1	1	2910.5 s.	$pprox 2^{160}$
32	8	4	10	65521	1	1	3287.9 s.	$pprox 2^{256}$
32	8	4	16	65521	1	1	4667.9 s.	$pprox 2^{256}$
36	18	2	15	65521	1	1	13427.4 s.	$pprox 2^{256}$

L. Goubin, J. Patarin.

Asymmetric Cryptography with S-Boxes.

ICICS'97.

Experimental Results

n	b	n _i	r	q	d_{theo}	d _{real}	T	$\sqrt{q^n}$
20	5	4	10	65521	1	1	78.9 s.	$pprox 2^{160}$
20	10	2	10	65521	1	1	78.8 s.	$pprox 2^{160}$
20	2	10	10	65521	1	1	78.7 s.	$pprox 2^{160}$
24	6	4	12	65521	1	1	376.1 s.	$pprox 2^{192}$
30	15	2	15	65521	1	1	2910.5 s.	$pprox 2^{160}$
32	8	4	10	65521	1	1	3287.9 s.	$pprox 2^{256}$
32	8	4	16	65521	1	1	4667.9 s.	$pprox 2^{256}$
36	18	2	15	65521	1	1	13427.4 s.	$pprox 2^{256}$

J.C Faugère, L. P.

An Efficient Algorithm for Decomposing Multivariate Polynomials and its Applications to Cryptography.

Further Algebraic Attacks

J. H. Silverman, N. P. Smart, F. Vercauteren. An Algebraic Approach to NTRU ($q = 2^n$) via Witt Vectors and Overdetermined Systems of Nonlinear Equations. SCN 2004.

G. Bourgeois, J.-C. Faugère. Algebraic attack on NTRU with Witt vectors. SAGA 2007.

A. Bauer, A. Joux.

Toward a Rigorous Variation of Coppersmith's Algorithm on Three Variables.

Eurocrypt 2007.

Further Reading (In preparation ...)

Invited Editors: D. Augot, J.-C Faugère, L. P.
Gröbner Bases Techniques in Cryptography and Coding
Theory

Special Issue – Journal of Symbolic Computation.

Invited Editors: T. Mora, M. Sala, C. Traverso, L. P., M. Sakata.

Gröbner Bases in Coding Theory and Cryptography. RISC book series (Springer, Heidelberg)

Invited Editors: J.-C Faugère, F. Rouiller.

Efficient Computation of Gröbner Bases.

Special Issue – Journal of Symbolic Computation.