Отчёт по лабораторной работе №8

Основы информационной безопасности

Ищенко Ирина НПИбд-02-22

Содержание

1	Цель работы	5
2	Выполнение лабораторной работы	6
3	Контрольные вопросы	ç
4	Выводы	10
Сп	исок литературы	11

Список иллюстраций

2.1 Вывод программы								8
---------------------	--	--	--	--	--	--	--	---

Список таблиц

1 Цель работы

Освоить на практике применение режима однократного гаммирования на примере кодирования различных исходных текстов одним ключом [1].

2 Выполнение лабораторной работы

Постановка задания: два текста кодируются одним ключом (однократное гаммирование). Требуется не зная ключа и не стремясь его определить, прочитать оба текста. Необходимо разработать приложение, позволяющее шифровать и дешифровать тексты Р1 и Р2 в режиме однократного гаммирования. Приложение должно определить вид шифротекстов С1 и С2 обоих текстов Р1 и Р2 при известном ключе; Необходимо определить и выразить аналитически способ, при котором злоумышленник может прочитать оба текста, не зная ключа и не стремясь его определить.

Создаем функцию, генерирующую ключ из ascii-символов и цифр, и функцию, кодирующую исходный текст по ключу. На вход функция принимает текст и ключ. Переводит ключ в 16-ричную ИС, далее использует ХОR, переводит из 16-ричной ИС. Возвращает шифротекст.

```
import random
import string

def generate_key(length: int):
    return random.sample(string.ascii_letters + string.digits, length)

def encrypt(text: str, key: list = None):
    if not key:
```

```
key = generate_key(length=len(text))

text_16 = [ord(char) for char in text]
key = [ord(el) for el in key]

print(f"Ключ шифрования:", ' '.join(str(s) for s in key))

print(f"Исходный текст:", text)

encrypted_text = []
for i in range(len(text)):
    encrypted_text.append(text_16[i] ^ key[i])

ciphertext = ''.join([chr(i) for i in encrypted_text])

print(f'Шифротекст: {ciphertext}\n\n')

return ciphertext
```

Задаем два текста. Генерируем ключ. Зашифровываем оба текста по одному ключу. Зашифровываем первый шифротекст по второму шифротексту. Используем один из текстов в качестве ключа дешифровки.

```
p1 = 'НаВашисходящийот1204'
p2 = 'ВСеверныйфилиалБанка'
key = generate_key(20)

c1 = encrypt(p1, key=key)
c2 = encrypt(p2, key=key)

c1_c2 = encrypt(c1, key=c2)
```

```
encrypt(c1_c2, p1)
encrypt(c1_c2, p2)
```

Компилируем программу (рис. 2.1).

Рис. 2.1: Вывод программы

3 Контрольные вопросы

- 1. Как, зная один из текстов (P1 или P2), определить другой, не зная при этом ключа? Нужно применить XOR для двух шифротекстов, а к полученному результату применить XOR с ключом, равным известному открытому тексту. Тогда результатом будет второй открытый текст
- 2. Что будет при повторном использовании ключа при шифровании текста? Шифрование будет небезопасным, т.к. с помощью шифротекстов и одного открытого текста можно дешифровать другой текст
- 3. Как реализуется режим шифрования однократного гаммирования одним ключом двух открытых текстов? Каждый текст шифруется однократным гаммированием отдельно с использованием этого ключа
- 4. Перечислите недостатки шифрования одним ключом двух открытых текстов Главный недостаток можно дешифровать открытый текст без знания ключа.
- 5. Перечислите преимущества шифрования одним ключом двух открытых текстов. Т.к. ключей используется меньше, то тратится меньше памяти на хранение и передачу ключей.

4 Выводы

В ходе выполнения лабораторной работы я освоила на практике применение режима однократного гаммирования на примере кодирования различных исходных текстов одним ключом.

Список литературы

1. Кулябов Д.С., Королькова А.В., Геворкян М.Н. Информационная безопасность компьютерных сетей. Лабораторные работы, учебное пособие. Москва: РУДН, 2015. 64 с.