EIE4003 Final Project Presentation

Massive MIMO Performance With Imperfect Channel Reciprocity and Channel Estimation Error

Content

1. Introduction/Background

2. Theory Section

- A. System Model
- B. SINR for MRT and ZF
- C. Asymptotic SINR Analysis

3. Simulation Result

- A. Channel Reciprocity Error
- B. Compound Effect
- C. MRT ZF Comparison
- 4. Conclusion/Discussion
- 5. Reference List

 <u>Massive MIMO Performance</u> With <u>Imperfect Channel Reciprocity</u> and <u>Channel Estimation Error</u>

Core concepts:

- 1. TDD and Channel Reciprocity
- 2. Channel Estimation
- 3. Massive MIMO

1. TDD and Channel Reciprocity

TDD - Time Division Duplexing

FDD - Frequency Division Duplexing

1. TDD and Channel Reciprocity

- Channel Reciprocity $H_r = H_t^T$:
 - TDD: time difference < channel coherence time \checkmark smaller pilot overhead
 - FDD: freq. difference < channel coherence bandwidth
- Imperfect Channel Reciprocity —> RF chain mismatch

Fig.1 Channel Coherence Time

Fig.2 Channel Coherence Bandwidth

2. Channel Estimation

- Utilize Channel Reciprocity $H_u = H_d^T$
- But with Estimation Error

Base Station H_d User Equipment $H_u = H_d^T$

3. Massive MIMO

- Natural extend of MIMO
- $M \to \infty, N \to \infty$
- Millimeter Wave (mmWave)
- Ultra-dense Network
- Channel Hardening -> linear precoding

Core concepts:

- 1. TDD and Channel Reciprocity ——— Imperfect Channel Reciprocity
- 2. Channel Estimation ——— Channel Estimation Error
- 3. Massive MIMO --- Asymptotic SINR Analysis

2. Theory Section

- A. System Model
- B. SINR for MRT and ZF
- C. Asymptotic SINR Analysis

- Imperfect Channel Reciprocity
- Channel Estimation Error

Basic Setting:

- 1 BS with M antennas
- K user with single antenna
- M >> k
- Antenna coupling negligible
- Within channel coherence time

Fig. 1. A massive MU-MIMO TDD system.

• 1. Imperfect Channel Reciprocity (e.g. in RX)

- Effective response of RF: $H_{br} = diag(h_{br,1}, \dots, h_{br,i}, \dots, h_{br,M})$, $\mathbf{H} \in \mathbb{C}^{M \times K}$
- Amplitude/Phase: $h_{br,i} = A_{br,i} \exp \left(j \varphi_{br,i} \right)$
- Independent Variable: (truncated gaussian distribution)

$$A_{bt,i} \sim \mathcal{N}_{\Gamma}(\alpha_{bt,0}, \sigma_{bt}^{2}), A_{bt,i} \in [a_{t}, b_{t}],$$

$$\varphi_{bt,i} \sim \mathcal{N}_{\Gamma}(\theta_{bt,0}, \sigma_{\varphi_{t}}^{2}), \varphi_{bt,i} \in [\theta_{t,1}, \theta_{t,2}],$$

$$A_{br,i} \sim \mathcal{N}_{\Gamma}(\alpha_{br,0}, \sigma_{br}^{2}), A_{br,i} \in [a_{r}, b_{r}],$$

$$\varphi_{br,i} \sim \mathcal{N}_{\Gamma}(\theta_{br,0}, \sigma_{\varphi_{r}}^{2}), \varphi_{br,i} \in [\theta_{r,1}, \theta_{r,2}],$$

• 1. Imperfect Channel Reciprocity (e.g. in RX)

• RF Mismatch:
$$\mathbf{E} \triangleq \mathbf{H}_{bt}\mathbf{H}_{br}^{-1} = \operatorname{diag}\left(\frac{h_{bt,1}}{h_{br,1}}, \cdots, \frac{h_{bt,i}}{h_{br,i}}, \cdots, \frac{h_{bt,M}}{h_{br,M}}\right)$$

• RF Mismatch is a multiplicative error, which will be shown later.

2. Channel Estimation Error

- Additive Random Error:
 - $\hat{\mathbf{H}}_{u} = \sqrt{1 \tau^2} \mathbf{H}_{br} \mathbf{H} + \tau \mathbf{V}$
- Estimation Variance Parameter $\tau \in [0,1]$:
 - $\tau = 0$, perfect estimation
 - $\tau = 1$, only estimation error, uncorrelated with real channel response

 $\hat{\mathbf{H}}_u$: estimation of uplink channel \mathbf{H}_u : actual uplink channel response \mathbf{H} : propagation channel

 ${f V}$: channel estimation error

Entire Channel Model:

• Estimated downlink by Channel Reciprocity: $\hat{\mathbf{H}}_d = \hat{\mathbf{H}}_u^T = \sqrt{1 - \tau^2} \mathbf{H}^T \mathbf{H}_{br} + \tau \mathbf{V}^T$

• Actual downlink channel response: $\mathbf{H}_d = \mathbf{H}^T \mathbf{H}_{bt}$

Comparison:
$$\mathbf{H}_d = \frac{1}{\sqrt{1 - \tau^2}} \left(\hat{\mathbf{H}}_d \right)$$

 $\mathbf{H}_{d} = \frac{1}{\sqrt{1 - \tau^{2}}} \left(\hat{\mathbf{H}}_{d} - \tau \mathbf{V}^{T} \right) \cdot \mathbf{H}_{br}^{-1} \mathbf{H}_{bt}$ reciprocity errors

Receive Signal:

$$\mathbf{y} = \sqrt{\rho_d} \lambda \mathbf{H}_d \mathbf{W} \mathbf{s} + \mathbf{n} = \sqrt{\rho_d} \lambda \mathbf{H}^T \mathbf{H}_{bt} \mathbf{W} \mathbf{s} + \mathbf{n}$$

2B. Theory - SINR for MRT and ZF

- MRT (maximum ratio transmission):
 - a match filter approach to maximize SNR:

$$\mathbf{W}_{\text{mrt}} = \hat{\mathbf{H}}_d^H = \sqrt{1 - \tau^2} \mathbf{H}_{br}^* \mathbf{H}^* + \tau \mathbf{V}^*$$

- **ZF** (zero-forcing):
 - Cancel the interference:

$$\mathbf{W}_{\mathrm{zf}} = \hat{\mathbf{H}}_{d}^{H} \left(\hat{\mathbf{H}}_{d} \hat{\mathbf{H}}_{d}^{H} \right)^{-1}$$

2B. Theory - SINR for MRT and ZF

• SINR (Signal to Interference and Noise Ratio):

$$y_k = \underbrace{\sqrt{\rho_d} \lambda \mathbf{h}_k^T \mathbf{H}_{bt} \mathbf{w}_k s_k}_{\text{Desired Signal}} + \underbrace{\sqrt{\rho_d} \lambda \sum_{i=1, i \neq k}^{K} \mathbf{h}_k^T \mathbf{H}_{bt} \mathbf{w}_i s_i}_{\text{Inter-user Interference}} + \underbrace{n_k}_{\text{Noise}}$$

And it can be approximated by:

$$SINR_{k} = \mathbb{E}\left\{\frac{P_{s}}{P_{I} + \sigma_{k}^{2}}\right\} \approx \mathbb{E}\left\{P_{s}\right\} \mathbb{E}\left\{\frac{1}{P_{I} + \sigma_{k}^{2}}\right\}$$

2C. Theory - Asymptotic SINR Analysis

Asymptotic SINR: (Channel Reciprocity Error Only)

$$\lim_{\substack{M \to \infty \\ K \gg 1}} SINR_{k,mrt} = \boxed{\frac{M}{K}} A_I \qquad \qquad \lim_{\substack{M \to \infty \\ M \gg K \gg 1,}} SINR_{k,zf} = \boxed{\frac{M}{K}} \left(\frac{1}{A_I^{-1} - 1}\right)$$

- Upper Bound due to inter-user interference (ISI): MRT = ZF
- Ceiling Effect due to the reciprocity error (A_I)

2C. Theory - Asymptotic SINR Analysis

Asymptotic SINR: (Compound Effect of two Errors)

$$\lim_{M \to \infty, \atop K \gg 1} \operatorname{SINR}_{k, \operatorname{mrt}} = \boxed{\frac{M}{K}} \left(\frac{\rho_d \tilde{B}_I}{\rho_d + A_t^{-1}} \right) \qquad \lim_{M \to \infty, \atop K \gg 1} \operatorname{SINR}_{k, \operatorname{zf}} = \boxed{\frac{M - K}{K}} \left(\frac{\rho_d \tilde{B}_I}{\rho_d \left(1 - \tilde{B}_I \right) + A_t^{-1}} \right)$$

- Upper Bound due to inter-user interference (ISI): MRT > ZF
- Ceiling Effect due to the compound error: $\tilde{B}_I pprox \left(1 au^2\right) A_I$
 - Note that also affected by <u>transmit power</u>

3. Simulation Result

- A. Channel Reciprocity Error
- B. Compound Effect
- C. MRT ZF Comparison

Cases:

- 1. Fix phase, amplitude error only
- 2. Fix amplitude, phase error only
- 3. Both phase and amplitude error

Scenarios in each case:

- 1. Change truncated range and variance
- 2. Compare TX and RX
- 3. Compare MRT and ZF

- Cases 1: Fix phase, amplitude error only
 - 1. SINR degrades with the increase of variance and truncate range.

- Cases 1: Fix phase, amplitude error only
 - 2. TX and RX brings slightly different impact to SINR

SINR(Analytic)

0.45

[-1,1]

[-2,2]

- Cases 1: Fix phase, amplitude error only
 - 3. ZF is more sensitive to error than MRT

Cases 2: Fix amplitude, phase error only

- 1. Similar to case 1
- 2. Phase has more impact than amplitude
- 3. Error mean has less impact than truncate range on SINR

Fig. 4. Output SINR with MRT precoding in the presence of fixed amplitude errors and different combinations of phase errors.

Cases 3: both phase/amp error

- 1. SINR increases with the number of antennas in BS
- 2. Ceiling Effect (previous introduced): $\lim_{\substack{M \to \infty \\ \nu \le 1}} SINR_{k,mrt} = \frac{M}{K} A_I$
- 3. ZF outperforms MRT

3B. Result - Compound Effect

Compound Effect: channel reciprocity error + estimation error

- 1. Degradation dur to error
- 2. Again, ZF outperforms MRT

3C. Result - MRT ZF Comparison

MRT ZF Comparison:

ZF generally outperforms
MRT in both cases

$$\int_{C_{I}} \tilde{C}_{I} \triangleq \lim_{\substack{\rho_{d}(1-A_{I})\gg 1\\ M\to\infty, M\gg K\gg 1}} \frac{\operatorname{SINR}_{k,\operatorname{Zf}}}{\operatorname{SINR}_{k,\operatorname{mrt}}} = \frac{1}{1-A_{I}} > 1$$

$$C_{I} \triangleq \lim_{\substack{M\to\infty,\\ M\gg K\gg 1}} \frac{\operatorname{SINR}_{k,\operatorname{zf}}}{\operatorname{SINR}_{k,\operatorname{mrt}}} = \frac{1}{1-\tilde{B}_{I}} \geq 1$$

4. Conclusion/Discussion

4. Conclusion

- In conclusion, we model the system with
 - Imperfect Channel Reciprocity -> ceiling effect
 - Channel Estimation Error
- And analyze the output SINR in
 - Normal MIMO
 - Massive MIMO (asymptotic)
- Finally indicate **factors** that may affect output SINR, and **compare** different precoding scheme for choosing precoding scheme
 - -> ZF outperforms MRT, but MRT is more robust to error

4. Discussion

Further research:

- Consider other linear precoding scheme such as MMSE, or non-linear precoding scheme such as dirty paper coding
- Consider computational complexity and energy efficiency
- Possibly extend to FDD
- $M \approx k$ in ultra dense network?

5. Reference List

- D. Mi, M. Dianati, L. Zhang, S. Muhaidat and R. Tafazolli, "Massive MIMO Performance With Imperfect Channel Reciprocity and Channel Estimation Error," in IEEE Transactions on Communications, vol. 65, no. 9, pp. 3734-3749, Sept. 2017, doi: 10.1109/TCOMM.2017.2676088.
- Kumar, Dhananjay & C, Chellappan. (2020). ADAPTIVE CALL ADMISSION CONTROL IN TDD-CDMA CELLULAR WIRELESS NETWORKS.
- T. K. Y. Lo, "Maximum ratio transmission," in IEEE Transactions on Communications, vol. 47, no. 10, pp. 1458-1461, Oct. 1999, doi: 10.1109/26.795811.