武汉大学计算机学院2005-2006学年第二学期 2003级《编译原理》参考答案

一、(1)由0和1组成,以0开始并以11结尾的字符串集合

(2)

(3)

- $(4) \ \textcircled{A} \xrightarrow{0} \textcircled{B} \xrightarrow{1} \textcircled{D} \xrightarrow{1} \textcircled{E} \xrightarrow{0} \textcircled{C} \xrightarrow{1} \textcircled{D} \xrightarrow{1} \textcircled{E}$
- \exists , (1) r = (0|1)*101(0|1)*;

(2)

(3)

- $\Xi, \quad (1) \ \operatorname{First}(S) = \{ a, b, d \};$ $\operatorname{First}(A) = \{ a, b, c, d \};$ $\operatorname{First}(B) = \{ a, b, d, \varepsilon \};$ $\operatorname{First}(C) = \{ a, b, d, \varepsilon \};$
 - (2) Follow(S) = $\{c, \$\}$; Follow(A) = $\{a, b, c, d, \$\}$; Follow(B) = $\{c, d, \$\}$; Follow(C) = $\{b\}$;

(3)

	a	b	c	d	\$
S	$S \to aAB, S \to Bd$	$S \to Bd$		$S \to Bd$	
A	$A \to BcA, A \to a$	$A \rightarrow BcA$	$A \rightarrow BcA$	$A \rightarrow BcA$	
В	$B \to Cb$	$B \to Cb$	$B \to \varepsilon$	$B \to Cb \varepsilon$	$B \to \varepsilon$
С	$C \to Sc$	$C \to Sc, C \to \varepsilon$		$C \to \varepsilon$	

(4) 不是LL(1)文法。

四、(1)

$$S \implies AcB$$

$$\stackrel{rm}{\Longrightarrow} AcbcB$$

$$\stackrel{rm}{\Longrightarrow} Acbcb$$

$$\stackrel{rm}{\Longrightarrow} acAcbcb$$

$$\stackrel{rm}{\Longrightarrow} acacbcb$$

- (2) 由a、b和c组成的字符串集合,形如: $(ac)^m(bc)^nb$ $(m>0,\,n\geq0)$;
- (3) 移进第一个a之后所在的状态{ $A \to a \bullet cA, A \to a \bullet$ }, 由于 $c \in Follow(A)$, 所以面对输入c, 在该状态下可以用 $A \to a$ 归约,也可移进c到状态{ $A \to ac \bullet A$ }, 因此有移进/归约冲突,不是SLR(1)文法;

(4)

$$\begin{array}{c} S \rightarrow AB \\ A \rightarrow acA \mid ac \\ B \rightarrow bcB \mid b \end{array}$$

五、 设有命题公式文法G(S)定义如下:

(10分, 5+5)

(1)

(2)

$$S \to S \lor T \mid T$$

$$T \to T \land F \mid F$$

$$F \to \neg F \mid (S) \mid a$$

 $\overrightarrow{\wedge}, \quad (1) \text{ First}(S) = \{ a, (, \neg \}; \\ \text{Follow}(S) = \{ \lor, \land,), \$ \};$

(2)

$$I_{2} = \left\{ \begin{array}{l} S \rightarrow (\bullet S), \, S \rightarrow \bullet S \vee S, \, S \rightarrow \bullet S \wedge S, \\ S \rightarrow \bullet \neg S, \, S \rightarrow \bullet (S), \, S \rightarrow \bullet a \, \right\} \\ I_{7} = \left\{ \begin{array}{l} S \rightarrow S \vee \bullet S, \, S \rightarrow \bullet S \vee S, \, S \rightarrow \bullet S \wedge S, \\ S \rightarrow \bullet \neg S, \, S \rightarrow \bullet (S), \, S \rightarrow \bullet a \, \right\} \end{array} \right.$$

(3)

state	action			goto				
	_	()	\wedge	a	V	\$	S
0	s1	s2	/	/	s9	/	/	11
1	s1	s2	/	/	s9	/	/	10
2	s1	s2	/	/	s9	/	/	3
3	/	/	s4	s5	/	s7	/	/
4	/	/	r4	r4	/	r4	r4	/
5	s1	s2	/	/	s9	/	/	6
6	/	/	r2	r2	/	r2	r2	/
7	s1	s2	/	/	s9	/	/	8
8	/	/	r1	s5	/	r1	r1	/
9	/	/	r5	r5	/	r5	r5	/
10	/	/	r3	r3	/	r3	r3	/
11	/	/	/	s5	/	s7	acc	/

(4)

	stack	input	action
(1)	I_0	$\neg a \lor a \land a\$$	shift
(2)	$I_0 \neg I_1$	$a \vee a \wedge a$ \$	shift
(3)	$I_0 \neg I_1 a I_9$	$\forall a \land a\$$	reduce $S \to a$
(4)	$I_0 \neg I_1 S I_{10}$	$\forall a \land a\$$	reduce $S \to \neg S$
(5)	I_0SI_{11}	$\forall a \land a\$$	shift
(6)	$I_0SI_{11} \vee I_7$	$a \wedge a$ \$	shift
(7)	$I_0SI_{11} \vee I_7aI_9$	$\wedge a$ \$	reduce $S \to a$
(8)	$I_0SI_{11} \vee I_7SI_8$	$\wedge a$ \$	shift
(9)	$I_0SI_{11} \vee I_7SI_8 \wedge I_5$	a\$	shift
(10)	$I_0SI_{11} \vee I_7SI_8 \wedge I_5aI_9$	\$	reduce $S \to a$
(11)	$I_0SI_{11} \vee I_7SI_8 \wedge I_5SI_6$	\$	reduce $S \to S \land S$
(12)	$I_0SI_{11} \vee I_7SI_8$	\$	reduce $S \to S \vee S$
(13)	I_0SI_{11}	\$	accept

(1)
$$S \to S_1 \vee S_2$$
 { $S.neg := "(" + S_1.neg + "\wedge" + S_2.neg + ")"$ }
(2) $S \to S_1 \wedge S_2$ { $S.neg := "(" + S_1.neg + "\vee" + S_2.neg + ")"$ }
(3) $S \to \neg S_1$ { $S.neg := \text{if if.first_is_neg}(S_1.neg) \text{ then}$

(2)
$$S \to S_1 \land S_2 \quad \{ S.neg := "(" + S_1.neg + "\lor" + S_2.neg + ")" \}$$

(3)
$$S \to \neg S_1$$
 { $S.neg := if if_first_is_neg(S_1.neg) then delete_first(S_1.neg)}$

"¬" +
$$S_1.neg$$
 }

$$(4) \quad S \to (S_1) \qquad \{ S.neg := S_1.neg \}$$

(4)
$$S \rightarrow (S_1)$$
 { $S.neg := S_1.neg$ }
(5) $S \rightarrow a$ { $S.neg := S_1.neg$ }
{ $S.neg := "\neg" + a.lexme$ }

(2)

// (1) if (a > b + c) x = b - c + b * c; else x = e / f; t0 := b + c(1) b С t1 if a > t0 goto L1 (2) if> (7) t0 a t1 := e / f (4) / е f t1 x := t1(5) := t1 Х goto L2 (6) jump (11) L1: t2 := b * c(7) t2 b С (8) t3 := b - cb t3 С (9) +t4 := t2 + t3t2 t3 t4 x := t4(10) := t4 / Х L2: (11)

(2) do s = s + 1; i++; while (i < 100);

九、 设main()中的变量i的地址为x,则f()被调用时运行环境如下:

address	memory	note	
х	1	\leftarrow i of main, a+7	
x-4	fp	← of main, a+6	
x-8	ret add	\leftarrow of main, a+5	
x-16	1	←i of f, a+4	
x-24	-1	←a+3	
x-28	-1	←a+2	
x-32	-1	←a+1	
x-36	-1	←a of f	

利用缓冲区溢出实现对运行环境的修改: 当f()中的while (i)循环执行到i = 4时,a + 4指向i, *(a + 4)= -1将修改i的值为-1, i++又将i的值修改为0, 再次进入循环时, 循环条件不成立, 从而终止循环; *(a + 7) += 2将修改main()中i的值为1 + 2, 所以最后的打印结果为3。