1. SVD

Suppose we have a matrix $A \in \mathbb{R}^{m \times n}$ with rank r.

We define the compact SVD as follows:

$$\underbrace{A}_{m \times n} = \underbrace{U_r}_{m \times r} \underbrace{\Sigma_r}_{r \times r} \underbrace{V_r^{\top}}_{r \times n}.$$

Here, $\Sigma_r \in \mathbb{R}^{r \times r}$ is a diagonal matrix containing non-zero singular values of A.

$$\Sigma_r = \begin{bmatrix} \sigma_1 & & & \\ & \ddots & & \\ & & \sigma_r \end{bmatrix},$$

with $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_r$.

Next, $U_r \in \mathbb{R}^{m \times r}$ is given by,

$$U_r = \left[\vec{u}_1, \vec{u}_2, \dots, \vec{u}_r \right],$$

where u_i is a left singular vector corresponding to non-zero singular value, σ_i , for $i = 1, 2, \dots, r$. The columns of U_r are orthonormal and together they span the columnspace of A.

Finally, $V_r^{\top} \in \mathbb{R}^{r \times n}$ is given by,

$$V_r^ op = egin{bmatrix} ec{v}_1^ op \ ec{v}_2^ op \ dots \ ec{v}_r^ op \end{bmatrix},$$

where \vec{v}_j is a right singular vector corresponding to non-zero singular value, σ_j for $j=1,2,\ldots,r$. The rows of V_r^{\top} are orthonormal and span the rowspace of A. Equivalently the columns of V_r span the column space of A^{\top} .

The matrix A can be expressed as,

$$A = \sigma_1 \vec{u}_1 \vec{v}_1^\top + \sigma_2 \vec{u}_2 \vec{v}_2^\top + \ldots + \sigma_r \vec{u}_r \vec{v}_r^\top.$$

Assume now that $m \geq n$.

Another type of SVD which might be more familiar is the full SVD of A which is defined as follows:

$$\underbrace{A}_{m \times n} = \underbrace{U}_{m \times m} \underbrace{\Sigma}_{m \times n} \underbrace{V}_{n \times n}^{\top}.$$

Here, $\Sigma \in \mathbb{R}^{m \times n}$ has non-diagonal entries as zero. The diagonal entries of Σ contain the singular values and we can write Σ in terms of Σ_r as,

$$\Sigma = \begin{bmatrix} \Sigma_r & 0_{r \times (n-r)} \\ \hline 0_{(m-r) \times r} & 0_{(m-r) \times (n-r)} \end{bmatrix}$$

Next, $U \in \mathbb{R}^{m \times m}$ is an orthogonal matrix. U can be expressed in terms of U_r as,

$$U = \underbrace{\begin{bmatrix} U_r \\ m \times r \end{bmatrix}}_{m \times (m-r)} \underbrace{\vec{u}_{r+1} \dots \vec{u}_m}_{m \times (m-r)}$$

The columns $\vec{u}_{r+1}, \vec{u}_{r+2}, \dots, \vec{u}_n$ are left singular vectors corresponding to singular value 0, and together span the nullspace of A^{\top} .

Finally, V^{\top} is an orthogonal matrix and can be expressed in terms of V_r^{\top} as,

$$V^{\top} = \begin{bmatrix} V_r^{\top} \\ \vec{v}_{r+1}^{\top} \\ \vdots \\ \vec{v}_n^{\top} \end{bmatrix} \right\} \qquad r \times n$$

$$(n-r) \times n$$

The rows $\vec{v}_{r+1}^{\top}, \vec{v}_{r+2}^{\top}, \dots, \vec{v}_n^{\top}$ when transposed are the right singular vectors corresponding to singular value of 0 and together span the nullspace of A.

- (a) For this problem assume that m > n > r. Which of the following are True:
 - (a) $UU^{\top} = I$

Solution: True. $UU^{\top} = I_m$ because U is an orthogonal matrix.

(b) $U^{\top}U = I$

Solution: True. $U^{\top}U = I_m$ because U is an orthogonal matrix.

(c) $V^{\top}V = I$

Solution: True. $V^{\top}V = I_n$ because V is an orthogonal matrix.

(d) $VV^{\top} = I$

Solution: True. $VV^{\top} = I_n$ because V is an orthogonal matrix.

(e) $U_r^{\top}U_r = I$

Solution: True. $U_r^{\top}U_r = I_r$ because the columns of U_r are orthonormal.

(f) $U_r U_r^{\top} = I$

Solution: False. $U_rU_r^{\top}$ is a $m \times m$, matrix but has rank less than or equal to r (since U_r has rank r and product of matrices has rank less than or equal to minimum of individual ranks).

(g) $V_r V_r^{\top} = I$

Solution: False. $V_rV_r^{\top}$ is a $n \times n$, matrix but has rank less than or equal to r (since V_r has rank r and product of matrices has rank less than or equal to minimum of individual ranks).

 $(\mathbf{h}) \ V_r^\top V_r = I$

Solution: True. $V_r^{\top}V_r = I_r$ because the columns of V_r are orthonormal.

(b) Going from the full SVD to compact SVD. Find the compact SVD of A which has the full SVD:

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Solution: The compact SVD of *A* is given by:

$$A = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix}.$$

(c) Going from compact SVD to full SVD: Find the full SVD of A which has the compact SVD:

$$A = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0\\ \frac{1}{\sqrt{2}} & 0\\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0\\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}.$$

Solution: Observe that in this case, the full SVD of A has Σ and V^{\top} as those in the compact SVD but $U \in \mathbb{R}^{3\times 3}$. Thus we need to find a unit-norm column \vec{u}_3 orthogonal to columns of U_r . We can use a system of linear equations to solve this. That is we want $u_3 = [x, y, z]$ so we must have

- $[1/\sqrt{2}, 1/\sqrt{2}, 0]^{\top} \vec{u}_3 = 0$
- $[0, 0, 1]^{\top} \vec{u}_3 = 0$
- $\|\vec{u}_3\|_2 = 1$

Check that $\vec{u}_3 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ 0 \end{bmatrix}$ satisfies our requirements.

Thus the full SVD of A is given by:

$$A = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Alternatively we can use Gram-Schmidt procedure to find \vec{u}_3 . This has the added advantage of being useful when we want to find the full SVD when more than one singular vector is missing.

(d) (**Optional**) For a given matrix $A \in \mathbb{R}^{m \times n}$ with $\operatorname{rank}(A) = r = \min\{m, n\}$. Prove the rank nullity theorem, i.e., $n = r + \dim(\mathcal{N}(A))$

Solution: Since rank is r, there exists r linearly independent columns of A which without loss of generality we assume are the first r columns which form a matrix A_1 . So we can write $A = \begin{bmatrix} A_1 & A_2 \end{bmatrix}$ where $A_2 \in \mathbb{R}^{m \times (n-r)}$ which can all be written as linear combinations of columns of A_1 and hence $A_2 = A_1 B$ for some $B \in \mathbb{R}^{r \times (n-r)}$. Hence $A = \begin{bmatrix} A_1 & A_1 B \end{bmatrix}$. If $\vec{x} = \begin{bmatrix} \vec{x}_1 \\ \vec{x}_2 \end{bmatrix} \in \mathcal{N}(A)$, then $\vec{0} = A\vec{x} = \begin{bmatrix} A_1 & A_2 \end{bmatrix} \vec{x} = A_1 \vec{x}_1 + A_2 \vec{x}_2 = A_1 (\vec{x}_1 + B\vec{x}_2)$. As columns of A_1 are linearly independent, this implies $(\vec{x}_1 + B\vec{x}_2) = \vec{0}$. Equivalently,

$$\vec{x} = \begin{bmatrix} -B \\ I_{n-r} \end{bmatrix} \vec{x}_2 = C\vec{x}_2$$

Thus every vector in the null space of A can be expressed as above. The matrix C above has dimensions $n \times (n-r)$ so it's rank can be at most n-r. To see that the rank is exactly n-r, follows from noticing that the columns of the C are linearly independent thanks to the I_{n-r} .

2. SVD Part 2

Consider A to be the 4×3 matrix

$$A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \vec{a}_3 \end{bmatrix} \tag{1}$$

where \vec{a}_i for $i \in \{1, 2, 3\}$ form a set of *orthogonal* vectors satisfying $\|\vec{a}_1\|_2 = 3$, $\|\vec{a}_2\|_2 = 2$, $\|\vec{a}_3\|_2 = 1$.

(a) What is the SVD of A? Express it as $A = U\Sigma V^{\top}$, with Σ the diagonal matrix of singular values ordered in decreasing fashion, and explicitly describe U and V.

Solution: The SVD of $A = U\Sigma V^{\top}$. Due to the orthogonality of the \vec{a}_i we have that

$$A^{\top} A = V \Sigma^{2} V^{\top} = \begin{bmatrix} 9 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 (2)

Thus V = I and $\Sigma = \text{diag}(3, 2, 1)$. Finally we have that $U = A\Sigma^{-1}$ which becomes

$$U = \begin{bmatrix} \frac{\vec{a}_1}{3} & \frac{\vec{a}_2}{2} & \frac{\vec{a}_3}{1} \end{bmatrix} \tag{3}$$

(b) What is the dimension of the null space, $\dim(\mathcal{N}(A))$?

Solution: From part (a) all of the singular values of the A are non-zero. So the dimension of the null space is 0. Alternatively, all the columns of A are orthogonal – so no (non-zero) linear combination of them can equal zero.

(c) What is the rank of A, rank(A)? Provide an orthonormal basis for the range of A.

Solution: The rank of A is simply the number of non-zero singular values. So rank(A) = 3. The columns of U (defined above) provide an orthonormal basis for the range of A.

(d) Let I_3 denote the 3×3 identity matrix. Consider the matrix $\tilde{A} = \begin{bmatrix} A \\ I_3 \end{bmatrix} \in \mathbb{R}^{7 \times 3}$. What are the singular values of \tilde{A} (in terms of the singular values of A)?

Solution: We have that $\tilde{A}^{\top}\tilde{A} = A^{\top}A + I_3 = V(\Sigma^2 + I_3)V^{\top}$. Hence if we denote σ_i as the singular values of A then the singular values of \tilde{A} are $\tilde{\sigma}_i = \sqrt{\sigma_i^2 + 1}$ which are $\sqrt{10}, \sqrt{5}, \sqrt{2}$.

(e) (**Optional**) Find an SVD of the matrix \tilde{A} .

Solution: The SVD of $\tilde{A} = \tilde{U}\tilde{\Sigma}\tilde{V}^{\top}$ has $\tilde{\Sigma} = \text{diag}(\tilde{\sigma}_1, \dots, \tilde{\sigma}_m)$; with $\tilde{\sigma}_i = \sqrt{\sigma_i^2 + 1}$ where σ_i are the singular values of A.

The eigenvectors of $\tilde{A}\tilde{A}^{\top}$ form the columns of matrix \tilde{U} , while the eigenvectors of $\tilde{A}^{\top}\tilde{A}$ form the columns of \tilde{V} . We can see this by writing out \tilde{A} in terms of the SVD of A and the identity matrix I.

Since $\tilde{A}^{\top}\tilde{A} = A^{\top}A + I$, we can choose $\tilde{V} = V$.

The condition for (\tilde{u}, \tilde{v}) to be a pair of left- and right-singular vectors of \tilde{A} are that both vectors must be unit-norm, and

$$\tilde{A}\tilde{v} = \tilde{\sigma}\tilde{u}, \quad \tilde{A}^{\top}\tilde{u} = \tilde{\sigma}\tilde{v}.$$

We have seen that we can choose $\tilde{v} = v$ to be an eigenvector of $A^{\top}A$ (that is, a right singular vector of A).

Further, decomposing $\tilde{u} = \begin{bmatrix} \tilde{u}^1 \\ \tilde{u}^2 \end{bmatrix}$, with $\tilde{u}^1 \in \mathbb{R}^4$ and $\tilde{u}^2 \in \mathbb{R}^3$, we obtain

$$Av = \tilde{\sigma}\tilde{u}^1, \ v = \tilde{\sigma}\tilde{u}^2, \ A^{\top}\tilde{u}^1 + \tilde{u}^2 = \tilde{\sigma}v.$$

Solving for the second equation: $\tilde{u}^2 = v/\tilde{\sigma}$, we obtain from the third $A^{\top}\tilde{u}^1 = (\tilde{\sigma} - 1/\tilde{\sigma})v$. Multiplying by A, and with the first equation, we then obtain

$$AA^{\top}\tilde{u}^1 = \tilde{\sigma}(\tilde{\sigma} - 1/\tilde{\sigma})\tilde{u}^1 = \sigma^2\tilde{u}^1.$$

This shows that we can set \tilde{u}^1 to be proportional to a left singular vector u of A, and $\tilde{u}^2=v/\tilde{\sigma}$ proportional to v. We have

$$\tilde{u} = \left[\begin{array}{c} \alpha u \\ \frac{1}{\tilde{\sigma}} v \end{array} \right],$$

where α must be chosen so that the above has unit Euclidean norm, that is:

$$\alpha = \frac{\sqrt{\tilde{\sigma}^2 - 1}}{\tilde{\sigma}} = \frac{\sigma}{\sqrt{\sigma^2 + 1}}.$$

We have obtained that a generic pair of left- and right singular vectors (\tilde{u}, \tilde{v}) of \tilde{A} corresponding to the singular value $\sqrt{\sigma^2+1}$, can be constructed from a generic pair of left- and right singular vectors (u,v) of A corresponding to the singular value σ , with the choice

$$\tilde{u} = \begin{bmatrix} \frac{\sigma}{\sqrt{\sigma^2 + 1}} u \\ \frac{1}{\sqrt{\sigma^2 + 1}} v \end{bmatrix}, \quad \tilde{v} = v.$$