POLYTROPIC MODELS OF WHITE DWARFS UNC PHYS 331 PROJECT

Erin Conn Matthew Hurley

April 14, 2014

00000

Conn, Hurley

Polytropes

Polytropes

Theory 000000

Conn, Hurley

Polytropes

Polytropes

WHY POLYTROPES?

- ▶ Provide simplified stellar models simple pressure/density relation
- ► Easier to solve than full equations of stellar structure
- ▶ Require less computational effort some analytic solutions even exist!

WHAT ARE POLYTROPES?

Solutions to...

The Lane-Emden Equation

$$\frac{1}{\xi^2} \frac{d}{d\xi} \left(\xi^2 \frac{d\theta}{d\xi} \right) = -\theta^n(\xi)$$

A dimensionless, 2nd order nonlinear differential equation relating the pressure of a spherically-symmetric gas distribution to the radius.

DEFINITIONS

DEFINITION

Polytropic fluid - Fluid with an equation of state that depends on only one variable

DEFINITION

Polytropic index - Constant that relates pressure of a polytropic fluid to its volume (density). It may be any real number.

DEFINITION

Poisson's equation Relates a force density function to a potential field

$$\nabla^2 \Phi = f$$

Conn, Hurley Polytropes

Conn, Hurley Polytropes

DERIVATION 1: Poisson Equation

Can be derived multiple ways. From laws of mass conservation and hydrostatic equilibrium:

$$\begin{array}{ll} dM(r) &= 4\pi r^2 \rho(r) dr \rightarrow \frac{dM(r)}{dr} = 4\pi r^2 \rho(r) \\ \frac{dP(r)}{dr} &= -\frac{\rho(r)GM(r)}{r^2} \end{array}$$

These equations are related by multiplying the hydrostatic equation by r^2/ρ and differentiating:

$$\frac{d}{dr}\left(\frac{r^2}{\rho(r)}\frac{dP(r)}{dr}\right) = -G\frac{dM(r)}{dr}$$

Yielding Poisson's equation for gravity:

$$\frac{1}{r^2}\frac{d}{dr}\left(\frac{r^2}{\rho(r)}\frac{dP(r)}{dr}\right) = -4\pi G\rho(r)$$

Conn, Hurley Polytropes

Polytropes

00000

Theory

White Dwarfs

Conn, Hurley

Polytropes

DERIVATION 3: MORE SIMPLIFICATION

Define a new variable:

$$\alpha^2 \equiv \frac{(n+1)P_c}{4\pi G\rho_c^2}$$

Use it to define a dimensionless radius:

$$\xi \equiv \frac{r}{\alpha}$$

Substitute into the simplified Poisson:

$$\frac{1}{\xi^2} \frac{d}{d\xi} \left(\xi^2 \frac{d\theta(\xi)}{d\xi} \right) = -\theta^n(\xi)$$

DERIVATION 2: WORKING TOWARDS A DIMENSIONLESS FORM

Define a polytropic state equation:

$$P = K\rho^{\frac{n+1}{n}}$$

Make it dimensionless:

$$\theta^n \equiv \frac{\rho}{\rho_c}$$

$$P(r) = K \rho_c^{\frac{n+1}{n}} \theta^{n+1}(r) = P_c \theta^{n+1}(r)$$

Substitute into Poisson and simplify:

$$\frac{(n+1)P_c}{4\pi G\rho_c^2} \frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{d\theta(r)}{dr} \right) = -\theta^n(r)$$

WHY WHITE DWARES?

- ► They are very dense
- ▶ So dense that they are completely degenerate
- ▶ We'll see why that's important shortly

DEFINITIONS

White Dwarfs

DEFINITION

Degeneracy - In quantum mechanics, when 2 or more energy states correspond to the same measured energy

DEFINITION

Degenerate Matter - Quantum version of an ideal gas. Appear under extremely high density or extremely low temperatures.

Conn, Hurley Polytropes

Methods

DEGENERACY IN WHITE DWARFS

High density results in complete degeneracy of electrons.

Pauli exclusion principle prevents more than 2 electrons in each energy state.

Density of electrons in with a range of momentum [p, p + dp]:

$$n_e(p, p + dp) \le \frac{8\pi p^2 dp}{h^3}$$

When $n_e \ll \frac{8\pi p^2 dp}{h^3}$, behaves as an ideal gas As $n_e \to \frac{8\pi p^2 dp}{h^3}$, degeneracy increases and equation of state becomes:

$$P = K \rho^{\gamma}$$

As the density increases further the electrons become Conn, Hurley Polytropes

In the non - 5/3 In the relativistic

REARRANGE THE LANE-EMDEN EQUATION

$$\frac{d^2\theta}{d\xi^2} = -\frac{2}{\xi} \frac{d\theta}{d\xi} - \theta^n(\xi)$$

Translating to a system of 1st order **EQUATIONS**

$$\begin{cases} \phi &= \frac{d\theta}{d\xi} \\ \frac{d\phi}{d\xi} &= -\frac{2}{\xi}\phi - \theta^n \end{cases}$$

Conn, Hurley Polytropes

Conn, Hurley Polytropes

BOUNDARY VALUES

Obtained from central density and hydrostatic equation

$$\begin{array}{ccc} \xi & = 0 \\ \theta & = 1 \\ \frac{d\theta}{d\xi} & = 0 \end{array}$$

RUNGE-KUTTA SOLUTION

Used a 4th degree Runge-Kutta solver Did not know the integration range beforehand: To find the surface with arbitrary precision, backed up a step and halved the step size if $\theta < 0$ until desired precision reached

Conn, Hurley Polytropes

Theory Methods

ods

esults

Discussio:

References

Conn, Hurley Polytropes

> neory 00000 00

Methods

Kesults

iscussion

Reference

References

PROBLEM!

Singularity at $\xi_0 = 0$:

$$\phi' = -\left(\frac{2}{\xi_0}\phi\right) - \theta_0^n$$

Need to work around this somehow:

- ▶ Taylor expand at $\xi = 0$ and take limit as $\xi \to 0$: $\phi' \to -\frac{1}{3}$
- ▶ Offset the starting point: $0 < \xi_0 \ll 1$

GETTING SOMETHING USEFUL

Finding the density & pressure:

$$\frac{\rho}{\rho_c} = \frac{1}{3} \frac{\xi_f}{\theta(\xi_f)}$$

Solutions for N=1.5 and N=3

Parameters for n=1.5, 3 polytropes[1]

n	ξ_f	$ heta'(\xi_f)$	$ ho_c/\langle ho angle$
		-0.20330	5.991
3	6.8969	-0.04243	54.1825

		~ J	$ heta'(\xi_f)$. , ., ,
Our calculated values:	1.5	3.6538	-0.2033	5.9907
	3	6.8968	-0.0424	54.1825

DENSITY PROFILE

image created by present

Conn, Hurley Polytropes

000000 000 Methods

rtesur

Discussion

Poforono

Mass - Radius Relationship

We did not get this working correctly yet. We believe we're having trouble with unit conversions

CHALLENGES

- ▶ Major difficulty was in correctly framing the problem.
- ▶ Initially tried to use a shooting method but with free boundary it became prohibitively difficult.
- ▶ Rearranged & used known physics to turn into initial value problem.
- ► Computing the mass-radius relationship
- ▶ Sources differed on derivation
- ▶ UNITS

Conn, Hurley Polytropes Discussion Discussion

Where to go from here?

Fix our calculation of the mass-radius relationship Real white dwarfs have a mixed equation of state; non-relativistic near surface and highly relativistic near core. Approximate this state equation to find behavior near Chandrasekhar mass

Conn, Hurley Polytropes

References

QUESTIONS?

Copyright by Abe, http://downloadwallpaperhd.com Non-commercial use only

Conn, Hurley Polytropes

References

References II

C. Hansen, S. D. Kawaler, V. Trimble. Stellar interiors: physical principles, structure, and evolution.Springer-Verlag, 2004.

F. LeBlanc

An introduction to stellar astrophysics. John Wiley & Sons, 2010.

W. S. Jardetsky. Theories of figures of celestial bodies. Dover Publications, 1958.

E. W. Weisstein.

Lane-Emden differential equation.

http://mathworld.wolfram.com/ Lane-EmdenDifferentialEquation.html

V. Dhillon.

Solving the Lane-Emden equation

PHY 213 - The structure of main-sequence stars http://www.vikdhillon.staff.shef.ac.uk/teaching/ phy213/phy213_le.html