Max Planck Institut za Gravitacijsku fiziku Grupa za kontrolu kvantne kvalitete

Pregled optomehanike

Doktorski studij

Adrian Udovičić

Sažetak

This is just an abstract.

Ι	Optičke	šupljine i	i mehanički	rezonatori

α	RŽAJ
UAL	

1	Osnovna svojstva	1
	Osnovna svojstva optičkih rezonatora	1
	Ulazno-Izlazni formalizam optičke šupljine	3
2	Mehanički rezonatori	_ 4
	Mehanički Normalni Modovi	4
	Mehanička disipacija	5
	Suseptibilnost, spektar šuma i fluktuacijsko-disipacijski teorem	
II	Principi Optomehaničkog vezanja	6

Dio I

Optičke šupljine i mehanički rezonatori

1 Osnovna svojstva

1.1 Osnovna svojstva optičkih rezonatora

Gledamo prvo klasični odziv jednostavne Fabry-Perot (FP) rezonirajuće komore.

Slika 1.1: Shema optomehaničkog sistema.

FP rezonantna šupljina sastoji se od dva visoko reflektivna zrcala udaljena L jedno od drugog, i niz rezonancija dane s kružnom frekvencijom $\omega_{cav,m} \approx \frac{m\pi c}{L}$. Ovdje je m cijeli broj koji označava vibracijski mod. Razmak između

1 OSNOVNA SVOJSTVA 2

dva logitudinalna rezonantna moda je dan s

$$\delta\omega_{FSR} = \pi \frac{c}{L},$$

gdje $\delta\omega_{FSR}$ označava slobodni spektralni raspon, odnosno raspon frekvencija kojim naš rezonator ne vibrira. Konačna transparentnost zrcala i interna absorpcija ili raspršenje van rezonantne šupljine dovode do konačnog fotonske stope istjecaja κ . Korisna je znati i optičku finesa (eng. finess) \mathcal{F} naše šupljine koja obilježava srednji broj refleksija fotona prije nego izađe iz šupljine. Dana je s

(1.2)
$$\mathcal{F} = \frac{\delta \omega_{FSR}}{\kappa}.$$

Optička finesa je bitna za određivanje snage unutar komore. Također možemo uvesti faktor kvalitete za optički rezonator dan pomoću

$$Q_{opt} = \omega_{cav} \tau.$$

Bilieška

Recimo da je snaga lasera za pumpanje komore prije ulaska u komoru 1W. Recimo da je reflektivnost visoko reflektivnih zrcala 0,99999. U komoru će ući $(1-1\cdot 0,99999)$ W snage zračenja. Ako je $\mathcal{F}=100000$ snaga zračenenja u komori će biti $(1-1\cdot 0,99999)\cdot 100000=1W$ prije nego iscjedi zračenje iz komore u vremenu $\kappa^{-1}=\tau$, što je u ovom primjeru isto kao i snaga ulaznog zračenja.

Općenito stopa istjecanja κ može imati dva doprinosa: Od korisnog ulaznog (izlaznog) vezanja, κ_{ex} i od unutarnjih gubitaka, κ_0 . Tako da možemo pisati

(1.4)
$$\kappa = \kappa_{ex} + \kappa_0.$$

1 OSNOVNA SVOJSTVA 3

1.2 Ulazno-Izlazni formalizam optičke šupljine

Kvantno mehanički opis rezonantne šupljine vezane za vanjsko elektromagnetsko zračenje može se dati ili koristeći tzv. *Master* jednadžbe (ako nas zanima samo unutarnja dinamika) ili, ako želimo saznati EM polje emitiranog (reflektiranog) zračenja u šupljini, pomoću ulazno-izlaznog formalizma. Taj formalizam nam dopušta modeliranje kvantnih fluktuacija iz bilo kojeg terminala vezanja (npr. ulazno zrcalo) šupljine. Također se uzima u obzir koherentno zračenje kojim "guramo" sustav[‡].

Korištenjem Heisenbergovih jednadžbi gibanja opisujemo vremensku evoluciju amplitude \hat{a} unutar šupljine. Amplituda se guši s $\frac{\kappa}{2}$. Istovremeno se fluktuacije konstantno obnavljaju kroz ulaze u šupljinu putem kvantnog šuma. Razlikujemo između dva kanala ulaznog vezanja (κ_{ex}) i ostalih gubitaka (κ_0) .

(1.5)
$$\dot{\hat{a}} = -\frac{\kappa}{2}\hat{a} + i\Delta\hat{a} + \sqrt{\kappa_{\rm ex}}\hat{a}_{\rm in} + \sqrt{\kappa_0}\hat{f}_{\rm in}$$

U klasičnom slučaju \hat{a} bi zamjenili svojstvom normalizacije kompleksne amplitude električnog polja moda šupljine koji nas zanima. Prelazak na kasični slučaj možemo dobiti usrednjavanjem tako da $\hat{a} \mapsto \langle \hat{a} \rangle$. Odabrali smo rotirajući referentni sustav s frekvencijom ω_L odnosno, $\hat{a}^{ishodite} = e^{-i\omega_L t} \hat{a}^{tu}$, gdje uvodimo tzv. laser detuning $\Delta = \omega_L - \omega_{cav}$ u odnosnu na mod šupljine. Ulazno polje $\hat{a}_{in}(t)$ gledamo kao stohastičko[‡] kvantno polje. U najjednostavnijem slučaju predstavlja vakuumske fluktuacije električnog polja vezanog za šupljinu u trenutku t zajedno sa koherentnim laserskim pogonom. Isti formalizam se može koristiti za opis squeezanih stanja, odnosno, bilo kakvih kompleksnijih stanja polja. Polje je normalizirano na način da

$$(1.6) P = \hbar \omega_L \langle \hat{a}_{in}^{\dagger} \hat{a}_{in} \rangle,$$

gdje je P snaga ulaznog zračenja u šupljinu a $\langle \hat{a}_{in}^{\dagger} \hat{a}_{in} \rangle$ je stopa ulaznih fotona u šupljini. Isti opis vrijedi za \hat{f}_{in} . Polje reflektirano od FP rezonatora (ili vezano nazad u vezajući valovod) dano je s

$$\hat{a}_{out} = \hat{a}_{in} - \sqrt{\kappa_{ex}} \hat{a}.$$

Jednadžba 1.7 opisuje i jednosmjerne valovod-rezonator sustave poput whispering-gallery-mode rezonatora[‡]. Prvo ćemo gledati klasične usrednjene vrijednosti za jednostranu šupljinu. Usrednjimo 1.5 i 1.6. Iz jednadžbu 1.5 prvo možemo dobiti amplitudu za slučaj kad nemamo promjena u sistemu u prisutnosti monokromatskog pogonskog zračenaj (engl. steady state) čija je amplituda dana sa $\langle \hat{a}_{in} \rangle$. Recimo da je $\langle \hat{f}_{in} \rangle = 0$ i dobivamo

(1.8)
$$\langle \hat{a} \rangle = \frac{\sqrt{\kappa_{ex}^{(2)}} \langle \hat{a}_{in} \rangle}{\frac{\kappa}{2} - i\Delta}.$$

Izraz koji povezuje ulazno polje za polje u šupljini nazivamo optičkom suseptibilnošću,

(1.9)
$$\chi_{opt}(\omega) \equiv \frac{1}{-i(\omega + \Delta) + \kappa/2}.$$

Ovdje je ω Fourierova frekvencija fluktuacija ulaznog polja oko laserske frekvencije ω_L . Ovaj jednostavni Lorenzijanski odziv je aproksimacija i ignorira sve druge rezonancije šupljine. Dok god je stopa raspada κ mnogo

[‡]Baciti oko na [1] i [2].

[‡]Nasumično/stohastičko polje

[‡]Cai, Painter, Vahala, 2000

manja od udaljenosti između rezonancija (ω_{FSR}) ova aproksimacija je adekvatna, što bi značilo da je optički faktor kvalitete Q_{opt} visok. Steady-state naseljenost šupljine

$$(1.10) n_{cav} = \langle \hat{a}^{\dagger} \hat{a} \rangle,$$

odnosno srednji broj fotona u šupljini dan je s

(1.11)
$$n_{cav} = \langle \hat{a}^{\dagger} \hat{a} \rangle = \frac{\kappa_{ex} P}{\hbar \omega_L (\Delta^2 + (\kappa/2)^2)},$$

gdje je P ulazna snaga u šupljinu definirana s 1.6. Ubacimo li jednadžbu 1.8 u 1.7 dobivamo reflektivnost ili transmisiju amplitude. Označimo reflektivnost amplitude s \mathcal{R} ,

(1.12)
$$\mathcal{R} = \frac{\langle \hat{a}_{out} \rangle}{\langle \hat{a}_{i} n \rangle} = \frac{(\kappa_{0} - \kappa_{ex})/2 - i\Delta}{(\kappa_{0} + \kappa_{ex})/2 - i\Delta}.$$

Kvadrat ove reflektivnosti \mathcal{R}^2 daje vjerojatnost refleksije o šupljinu ili transmisiju u slučaju sustava jednosmjerne valovod-rezonator šupljine. Iz ovog izraza možemo raspoznati nekoliko režima.

- 1. $\kappa_{ex} \approx \kappa >> \kappa_0$ κ_{ex} dominira gubitke supljine, šupljinu nazivamo "prevezanom". U tom slučaju je $|\mathcal{R}|^2 \approx 1$ i fotoni pumpe izađu iz šupljine bez da apsorpcije ili izgubljeni preko drugog zrcala (limit kvantne detekcije).
- 2. $\kappa_0 = \kappa_{ex}$ Kritično vezanje. U ovom slučaju $\mathcal{R}(\Delta = 0) = 0$ na rezonanciji. Dolazi do kompletne disipacije snage u rezonatoru, ili je potpuno transmitirano kroz drugo zrcalo.
- 3. $\kappa_{ex} \ll \kappa_0$ "Podvezano" stanje. Dominiraju intrinzični gubici šupljine. Često zanemarivo stanje jer vodi do efektivnog gubitka informacija o sustavu.

Pod "steady-state" misli se na to da je sustav u nekoj vrsti ekvilibrija, zamislite laminarni tok vode kroz rupu.

2 Mehanički rezonatori

2.1 Mehanički Normalni Modovi

Vibracijski modovi bilo kojeg objekta mogu se izračunati rješavajući jednadžbe linearne teorije elastičnosti s primjerenim rubnim uvjetima određeni s geometrijom[‡]. Dobivamo skup svojstvenih vrijednosti normalnih modova koji odgovaraju frekvencijama Ω_n . Pomaci su dani s poljem pomaka $\vec{u_n}(\vec{r})$. Indeks 'n' opet označava normalni mod. Fokusiramo se na jedan normalni mod vibracije, Ω_m , gdje nam 'm' označava mehanički mod, s pretpostavkom da je spektar dovoljno širok da nema preklapanja s drugim mehaničkim modovima. Gubitci mehaničke

[‡]Koristeći simulacije, npr. simulacije finih elemenata, Cleland, 2003

energije opisan je sa stopom gušenja Γ_m , vezan s mehaničkim faktorom kvalitete $Q_m = \frac{\Omega_m}{\Gamma_m}$. Ako nas zanima jednadžba gibanja za globalnu amplitude gibanja (x(t)), možemo iskoristiti normaliziranu bezdimenzionalnu funkciju moda $\vec{v}(\vec{r},t)$, t.d. je pomak polja $\vec{u}(\vec{r},t) = x(t) \cdot \vec{u}(\vec{r})$. Tada je vremenska evolucija x(t) opisana s kanonskom jednadžbom jednostavnog harmonijskom oscilatora s efektivnom masom m_{eff} na sljedeći način:

$$(2.1) m_{eff}\frac{dx^2(t)}{dt^2} + m_{eff}\Gamma_m\frac{dx(t)}{dt} + m_{eff}\Omega_m^2x(t) = F_{ex}(t).$$

Ovdje je F_{ex} suma svih sila na oscilator. Ako nema vanjskih sila, dobije se s termičkim Langevinovim silama (u daljnjem tekstu 2.3). U jednadžbi 2.1 gušenje Γ_m je neovisno o frekvenciji[‡].

2.2 Mehanička disipacija

2.3 Suseptibilnost, spektar šuma i fluktuacijsko-disipacijski teorem

Dio II

Principi Optomehaničkog vezanja

LITERATURA 7

Literatura

[1]	С.	W.	Gardiner	and P.	Zoller,	Quantum	Noise:	A	handbook	of	markovian	and	$non\hbox{-}Markovian$	Quantum
	sto	chas	stic metho	ods with	applicat	ions to Qu	antum	Opt	ics. Sprin	nge	r, 2004.			

[2] A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J. Schoelkopf, "Introduction to quantum noise, measurement, and amplification," *Reviews of Modern Physics*, vol. 82, no. 2, p. 1155–1208, 2010.

Popis tablica

\mathbf{T}	•	1	• 1	
Po	pis	\mathbf{S}		ka

1.1 Shema optomehaničkog sistema					.]	l
----------------------------------	--	--	--	--	-----	---