НУЛП, САПР, СПК		Тема	Оцінка:	Підпис:
КНМ-14	4			
Ласка Г. Л.		Використання генетичних		
№11341784		алгоритмів з бітовим		
Методи нечіткої логіки та		представленням хромосом	Викладач:	
еволюційні алгоритми			Кривий Р. 3.	

Мата: навчитися застосовувати генетичні алгоритми з побітовим представленням хромосом.

Хід роботи

Для виконання завдання була використана функція ga пакету MatLab, і окремо реалізовані функції для побітової мутації і побітового схрещування.

```
Цільові функції для пошуку мінімуму та максимуму:
function [output_args] = FitnessFcn(
                                       function
                                                 [output_args] =
input_args )
                                       MaxFitnessFcn( input_args )
% input_args = [x1]
% варіант 3
                                       output args =
a = 10; b = -20; c = -40; d = 1;
                                       (-1)*FitnessFcn(input_args);
x = input_args(1);
                                       end
f = a + b*x + c*(x^2) + d*(x^3);
output_args = f;
end
```

Побітова мутація function [mutationChildren] = MutationFcn(parents, options, nvars, ... FitnessFcn, state, thisScore, thisPopulation)

```
% parents - номер особини в популяції, що мутує
% nvars - кількість змінних
% state - інформація про поточну популяцію
% thisScore - оцінки поточної популяції
% thisPopulation - поточна популяція
% маска мутації. змінює випадковий біт на протилежний
mask = \overline{zeros}(1, 6);
mask(randi(6)) = 1;
mutant = thisPopulation(parents, :)+10;
for i=1:1:nvars
    dm = mutant(i);
    if dm > 63
       dm = de2bi(dm);
       dm = dm(1:6);
                              %відтинаємо лишні біти
    else
        dm = de2bi(dm, 6);
    end
    dm = bitxor(dm, mask);
   mutant(i) = bi2de(dm)-10;
end
mutationChildren = mutant;
end
```

Побітове схрещування function [xoverKids] = CrossoverFcn(parents, options, nvars, FitnessFcn, unused, this Population) % parents - індекси батьків в поточній популяції, що беруть участь у схрещуванні. вектор з парною кількістю елементів % nvars - кількість змінних (генів) % unused - вектор-стовбець із оцінкою кожної особини % thisPopulation - поточна популяція (матриця) ret = zeros(length(parents)/2, nvars); for i = 1:2:length(parents) p1 = thisPopulation(i, :); p2 = thisPopulation(i+1, :);c = thisPopulation(i, :); for j = 1:1:nvarsp1_bit = toBitArr(p1(j)+10); $p2_bit = toBitArr(p2(j)+10);$ $c_{bit} = [p1_{bit}(1:3), p2_{bit}(4:6)];$ $c(j) = bi2de(c_bit)-10;$ end ret((i+1)/2,:) = c;end; xoverKids = ret; end function [bitVal] = toBitArr(decVal) if decVal > 63 dm = de2bi(decVal);dm = dm(1:6);%відтинаємо лишні біти dm = de2bi(decVal, 6);

Результати кожної ітерації зберігаються в глобальну змінну, після чого виводяться на екран.

end

end

bitVal = dm;

Функція для збереженя везультатів кожної ітерації function [state, options, optchanged] = OutputFcn(options, state, flag) global RET; ci = state.Generation; RET.generation = ci; key = strcat('s', num2str(ci)); RET.population(:).(key) = state.Population; RET.fvals(:).(key) = state.Score; optchanged = false; end

Результати виконання:

Рис. 1. Графік функції

Command Window							
New to MATLAB? See resources for <u>Getting Started</u> .							
#Пошук максимуму							
Optimization terminated: average change in the fitness value less than options.TolFun.							
Початкова популяція:							
[42]=>2698 [47]=	=>14533 [-2]=>-11	8 [48]=>17482 [30]	=>- 9590				
Покоління 1:							
[51]=>27601 [51]:	=>27601 [48]=>174	82 [47]=>14533 [50]	=>24010				
Покоління 2:							
[51]=>27601 [51]=	=>27601 [51]=>276	601 [50]=>24010 [51]	=>27601				
Результат:							
	=>35467 [53]=>354	.67 [53]=>35467 [53 <u>]</u>	=>35467				
f(53) = 35467							

Висновок: якщо вхідні дані цілі числа, то побітове представлення хромосоми ϵ хорошим варіантом для зберігання цієї умови під час виконання генетичного алгоритму.