CPEN441: user interface design controlled experiments - I

Controlled Studies

- eventually will want to determine whether interface is:
 - Better or worse
 - Meets spec
- controlled experiment is typical approach

2

This section: controlled experimentation (use for your primary Pass 2 eval)

- process
- experiment components
- hypothesis testing
- simplest experiment design
- basic statistical methods
- · normal distributions

read supplementary reading!

this material is well covered in the readings:

Newman & Lamming, Ch 10

4

process of planning an experiment

any controlled experiment plan has a basic form of:

- 1. state hypothesis to test (the point of the experiment) e.g. measure some attribute of subject behavior
- 2. choose experimental conditions which vary only in values of certain "controlled" variables
 - ightarrow any change in measures can be attributed to Δ conditions
- 3. then, choose
 - · subject pool to test
 - match to target pool
 - online resources like prolific.com
 - · factors to manipulate, and their test values

 - size and form of the actual test (many choices)

5

desired outcome of a controlled experiment

statistical inference of an event or situation's probability:

> "Design A is better <in some specific sense> than Design B"

> > or, Design A meets

"90% of incoming students who can complete course registration

s a target: b have web experience ion within 30 minutes"						
ion within 30 minutes"						
6						
	-					

experiment components

- hypothesis(es)
- variables:
 - independent
 - dependent
 - "nuisance"
- subjects
- · experiment task
- · experiment design
- statistical measures for results analysis

7

variables

independent variable: manipulated /

controlled

to produce different conditions for comparison

- each independent variable given a range of different values
- each value used in experiment = level (also called a treatment)

dependent variable: measured

- expectation that it is affected by the independent variable
- should be unaffected by other factors

some subjective measures can be applied against

8

example of controlled variables

an experiment will test whether performance **improves** as the **number of menu items decreases**.

independent variable: number of menu items

• test values: 5, 7, and 10 items (3 levels tested)

dependent variable: speed of menu selection

a more complex experiment:

2nd independent variable
 = function names displayed on menu
(dependent variable might depend on both)

nuisance variables

- undesired variations in experiment conditions which cannot be eliminated, but which may affect dependent variable
 - critical to know about them
- experiment design & analysis must generally accommodate them: usually treat as an additional experiment independent variable (easier when they can be controlled)
- a common nuisance variable: *subject* (individual differences)

10

hypothesis testing

hypothesis = **prediction** of the outcome of an experiment.

framed in terms of **independent** and **dependent** variables:

a variation in the independent variable will cause a difference in the dependent variable.

aim of the experiment: prove this prediction do by: disproving the "null hypothesis"

 H_0 : experimental conditions have no effect on performance (to some degree of significance) \rightarrow null hypothesis

 H_1 : experimental conditions have an effect on performance (to some degree of **significance**) \rightarrow alternate hypothesis

11

hypothesis testing for your project

- 3 possibilities (implications for prototype planning):
- 1. compare performance of new design with old
- 2. compare performance of 2 new designs
- determine whether single new design meets key design requirement
 - e.g. 'Telereg', where an essential performance requirement is given without reference to any past system:

"the maximum amount of time it should take an undergraduate to register over the phone is 5 minutes"

subjects

pool: similar issues as for uncontrolled studies

- match expected user population as closely as possible
- age, physical attributes, level of education
- general experience w/ systems similar to those being tested
- experience and knowledge of task domain

sample size: perhaps more critical here

- going for "statistical significance"
- should be large enough to be "representative" of population
- guidelines exist based on statistical methods used & required significance of results

13

subjects

individual differences may pose a **nuisance variable**:

variation in individual abilities can mask real differences in test conditions, if not analyzed properly.

14

most common way to deal with:

most common way to deal with:

- subtract each individual's mean performance at two factor levels from overall mean score, before combining with other individuals
 - paired test, used with within-subject protocol

16

Mean

subjects, cont.

within-subject comparisons:

- all subjects exposed to every condition
- → primary comparison internal to each subject
 - allows control over subject variable
 - · greater statistical power, fewer subjects required
 - not always possible (exposure to one condition might "contaminate" subject for another condition; or session too long)

between-subject comparisons:

- · subjects only exposed to one condition
- → primary comparison is from subject to subject
 - · less statistical power, more subjects required

poor experiment design less distinguishable results: perhaps task was poorly chosen – or there's really no difference 4.8 Design Design A B

poor experiment design Task performance time, secs Novice users Begin Design A B Task performance misleading results e.g. subject pool not controlled: one design tested on novices, others on experts, disguising actual trend

to summarize so far: how a controlled experiment works

1. formulate an alternate and a null hypothesis:

H₁: experimental conditions **have an effect** on performance H₀: experimental conditions have no effect on performance

2. through experiment task, try to demonstrate that the null hypothesis is false (reject it),

for a particular level of significance

- 3. if successful, we can accept the alternate hypothesis, and state the probability \boldsymbol{p} that we are wrong (the null hypothesis is true after all) → this is the result's confidence level
 - e.g., selection speed is significantly faster in menus of length 5 than of length 10 (p<.05)
 - ightarrow 5% chance we've made a mistake, 95% confident

statistical measures

allow answering questions like:

- e.g., is one system better than the other one?
 - answers of form "we are 99% certain that selection from menus of five items is faster than that from menus of seven items"
- · how big is the difference? e.g., selection from five items is 260 ms faster than seven items.
- · how accurate is the estimate?
 - e.g., "we are 95% certain that the difference in response time is faster by 260 ± 30 ms"
 - standard deviation or confidence intervals; probabilistic

23

statistical measures also good for...

just looking at data:

some phenomena are not obvious from inspection of raw (completely unprocessed) data:

statistic measures (and/or judicious plotting) can make

e.g. outliers: single data items which are very different from the rest

may be result of an experiment error or, a subject who had a bad day

→ if so, should remove from analysis

or, it might be really important. EXERCISE CAUTION!

the task to be performed

tasks must:

be externally valid

external validity = do the results generalize?

... will they be an accurate predictor of how well users can perform tasks as they would in real life?

can probably only test a small subset of all possible tasks.

exercise the designs, bringing out any differences in their support for the task

if the design modification supports website **navigation**, test task should **not** require subject to work within a **single page**

be feasible - supported by the prototype, and executable within experiment time scale

25

simplest (and very common) design: the 2-sample experiment

based on comparison of two sample means:

- performance data in response to Designs A, B
 - compare performance of new design with old
 - compare performance of 2 new designs

or, comparison of one sample mean with a constant:

- · performance data in response to Design A, compared to performance requirement
 - determine whether single new design meets key design requirement

26

types of variables (independent or dependent)

discrete: can take on finite number of levels

- e.g.
- a de

cont bounds

• e.g. (to re

norm conti

a 3-color display can only render in red, green or blu sign may be version A, or version B	iue,
sign may be version A, or version b	
nuous: can take any value (usually within) a response time that may be any positive number usolution of measuring technology)	
al: one particular distribution of a nuous variable	
	27

populations and samples

statistical sample = approximation of total possible set of, e.g.

- · people who will ever use the system
- tasks these users will ever perform
- state users might be in when performing tasks

"sample" a representative fraction

- · draw randomly from population
- if large enough and representative enough, the sample mean should lie somewhere near the population mean

28

← the

confidence levels

"the sample mean should lie somewhere near the population mean"

how close? how sure are we?

a confidence interval provides an estimate of the probability that the statistical measure is valid:

"We are **95%** certain that selection from menus of five items is faster than that from menus of seven items"

how does this work? important aspect of experiment design

29

establishing confidence levels: normal distributions

fundamental premise of statistics: predict behaviour of a population based on a small sample validity of this practice depends on the distribution of the population and of the sample

many populations are normally distributed: many statistical methods for **continuous dependent variables** are based on the assumption of normality

if your sample is normally distributed, your population is likely to be, and these statistical methods are valid, and everything is a lot easier.

variance and standard deviation

all normal distributions are not the same:

population variance is a measure of the distribution's "spread"

all normal population distributions still have the same shape $% \left(1\right) =\left(1\right) \left(1\right$

how do you get the population's variance?

estimate the population's (true) variance from the (measured) sample's standard deviation:

what's the big deal?

if you know you're dealing with samples from a normal distribution,

and you have a good estimate of its variance (i.e. your sample's std dev)

then, you know the **probability** that a given sample came from that population (vs. a different one).

Example: Pie vs Pull-down menus

35

Example: Pie vs Pull-down menus

	Keynote	File	Edit	Insert	Slid				
	About Keyr	note							
	Preference	s		94					
	Provide Ke	Provide Keynote Feedback							
	Services				>				
}	Hide Keyno	te		94	ВН				
'	Hide Other Show All	s		72.8	ВН				
	Quit Keyno	te		3	EQ.				

back to comparing means: for example,

- (a) the two samples come from two different populations;
- (b) the two samples are part of the same population.

Which represents H₀ and which represents H₁?

37

Let's look further...

How can we mathematically tell: which distribution was data from? how likely is it not from that distribution?