International Olympiad in Informatics 2015

26th July - 2nd August 2015 Almaty, Kazakhstan Day 2

sorting

Language: sr-RS

Besprekorni sort Dimitrijeve mame

Dimitrijevoj mami je dat niz od N celih brojeva: $S[0], S[1], \ldots, S[N-1]$. Svi elementi niza su međusobno različiti brojevi od N-1. Ona želi da zamenom mesta nekih elemenata sortira dati niz u rastući. Njen sin Dimitrije Trololo će takođe menjati mesta nekim elementima datog niza, ali ne obavezno tako da to pomaže mami u sortiranju.

Dimitrije i njegova mama se igraju sa elementima datog niza, menjajući redosled elemenata kroz više rundi. U svakoj rundi, prvo Dimitrije zameni mesta nekim elementima niza, pa zatim mama uradi isto. Tačnije, osoba koja vrši zamenu izabere dva ispravna indeksa i zameni mesta elementima koji se nalaze na njima. Obratite pažnju da pozicije ne moraju biti različite. U slučaju jednakih pozicija, element menja mesto sa samim sobom, što u stvari znači da ne dolazi do promene u samom nizu.

Mama zna da Dimitrija nije briga oko sortiranja niza S. Ona takođe unapred zna koje će pozicije Dimitrije izabrati za zamenu. On planira da napravi ukupno M zamena, koje su numerisane redom brojevima od 0 do M-1. Za svako i između 0 i M-1 uključivo, Dimitrije će u i-toj rundi izabrati pozicije X[i] i Y[i].

Kako mama želi da sortira niz S, ona pre početka svake runde proveri da li je niz već sortiran u rastući, i ako jeste, prekida igru. Dati su početni niz S i indeksi koje će Dimitrije birati tokom igre. Vaš zadatak je da odredite niz zamena mesta elemenata koje mama može iskoristiti za sortiranje niza. U nekim od podzadataka od vas se zahteva da nađete najmanji mogući broj zamena. Možete pretpostaviti da je moguće sortirati dati niz S u M ili manje rundi.

Primetite da ako mama vidi da je niz S već sortiran posle Dimitrijeve zamene, ona može izabrati da zameni dve iste pozicije (na primer, pozicije 0 i 0). Kao krajnji rezultat, niz S je sortiran na kraju te runde, pa je mama postigla ono što je želela. Takođe, primetite da ako je početni niz S već sortiran, tada je minimalni broj rundi potrebnih za sortiranje jednak S0.

Primer 1

Pretpostavimo da važi:

- Početni niz je S = 4, 3, 2, 1, 0.
- Dimitrije želi da napravi M = 6 zamena.
- Nizovi X i Y koji opisuju pozicije koje će Dimitrije izabrati za menjanje mesta su X = 0, 1, 2, 3, 0, 1 i Y = 1, 2, 3, 4, 1, 2. Drugim rečima, parovi pozicija koje Dimitrije planira da upotrebi u igri su (0, 1), (1, 2), (2, 3), (3, 4), (0, 1) i (1, 2).

Sa ovakvom postavkom, mama može sortirati dati niz S u rastući 0, 1, 2, 3, 4 za tri runde, tako što će izabrati sledeće parove pozicija: (0, 4), (1, 3) i na kraju (3, 4).

Sledeća tabela opisuje tok igre između mame i Dimitrija:

Runda	Igrač	Par pozicija koje se menjaju	Niz
početak			4, 3, 2, 1, 0
0	Dimitrije	(0,1)	3, 4, 2, 1, 0
0	Mama	(0,4)	0, 4, 2, 1, 3
1	Dimitrije	(1,2)	0, 2, 4, 1, 3
1	Mama	(1,3)	0, 1, 4, 2, 3
2	Dimitrije	(2,3)	0, 1, 2, 4, 3
2	Mama	(3,4)	0, 1, 2, 3, 4

Primer 2

Pretpostavimo da važi:

- Početni niz je S = 3, 0, 4, 2, 1.
- Dimitrije želi da napravi M = 5 zamena.
- Parovi pozicija koje Dimitrije planira da upotrebi u igri su (1,1), (4,0), (2,3), (1,4) i (0,4).

Sa ovakvom postavkom, mama može sortirati dati niz S u rastući za tri runde, tako što će izabrati sledeće parove pozicija: (1,4), (4,2) i na kraju (2,2).

Sledeća tabela opisuje tok igre između mama i Dimitrija:

Runda	Igrač Par pozicija koje se menja		Niz
početak			3, 0, 4, 2, 1
0	Dimitrije	(1,1)	3, 0, 4, 2, 1
0	Mama	(1,4)	3, 1, 4, 2, 0
1	Dimitrije	(4,0)	0, 1, 4, 2, 3
1	Mama	(4,2)	0, 1, 3, 2, 4
2	Dimitrije	(2,3)	0, 1, 2, 3, 4
2	Mama	(2,2)	0, 1, 2, 3, 4

Zadatak

Dati su niz S, broj M i nizovi indeksa X i Y. Odredite niz zamena mesta koje mama može upotrebiti da sortira niz S. U podzadacima S i S traženi niz zamena mesta mora biti najkraći mogući.

- Potrebno je implementirati funkciju findSwapPairs— Ovu funkciju će grejder pozvati tačno jednom.
 - N: dužina niza S.
 - S: niz celih brojeva koji sadrži početne vrednosti niza S.
 - M: broj zamena koje Dimitrije planira da uradi.

- X, Y: nizovi celih brojeva dužine M. Za svako $0 \le i \le M 1$, u i-toj rundi Dimitrije planira da zameni brojeve koji su na pozicijama X[i] i Y[i].
- P, Q: nizovi celih brojeva. Ovi nizovi opisuju jedan mogući niz zamena mesta koji mami omogućava da sortira niz S. Označimo sa R broj zamena koje je vaš program našao. Za svako i između 0 i R-1 uključivo, pozicije koje je mama izabrala za zamenu mesta u i-toj rundi sačuvati u P[i] i Q[i]. Možete pretpostaviti da je memorija za nizove P i Q već alocirana i da oba niza imaju po M elemenata.
 - Ova funkcija treba vrati broj R (definisan iznad).

Podzadaci

podzadatak	bodovi	N	M	dodatna ograničenja za X, Y	ograničenja za R
1	8	$1 \le N \le 5$	$M=N^2$	$oxed{X[i]=Y[i]=0}$ za svako $oldsymbol{i}$	$R \leq M$
2	12	$1 \le N \le 100$	M = 30N	$oxed{X[i]=Y[i]=0}$ za svako $oldsymbol{i}$	$R \leq M$
3	16	$1 \le N \le 100$	M=30N	X[i] = 0, Y[i] = 1 za svako i	$R \leq M$
4	18	$1 \le N \le 500$	M = 30N	nema	$R \leq M$
5	20	$6 \leq N \leq 2,000$	M=3N	nema	najmanje moguće
6	26	$6 \leq N \leq 200,000$	M=3N	nema	najmanje moguće

Možete pretpostaviti da postoji rešenje u M ili manje rundi.

Primer grejdera

Grejder čita ulazne podatke iz fajla sorting.in u sledećem formatu:

- linija 1: N
- linija 2: S[0] ... S[N 1]
- linija 3: M
- linije 4, ..., M+3: X[i] Y[i]

Grejder daje sledeći izlaz:

- lacktriangle linija 1: vrednost $oldsymbol{R}$ koju vraća funkcija findSwapPairs
- linije 2+i, za $0 \le i < R$: P[i] Q[i]